MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01d 189 Deduction based on reducti...
pm2.6 190 Theorem *2.6 of [Whitehead...
pm2.61 191 Theorem *2.61 of [Whitehea...
pm2.65 192 Theorem *2.65 of [Whitehea...
pm2.65i 193 Inference for proof by con...
pm2.21dd 194 A contradiction implies an...
pm2.65d 195 Deduction for proof by con...
mto 196 The rule of modus tollens....
mtod 197 Modus tollens deduction. ...
mtoi 198 Modus tollens inference. ...
mt2 199 A rule similar to modus to...
mt3 200 A rule similar to modus to...
peirce 201 Peirce's axiom. A non-int...
looinv 202 The Inversion Axiom of the...
bijust0 203 A self-implication (see ~ ...
bijust 204 Theorem used to justify th...
impbi 207 Property of the biconditio...
impbii 208 Infer an equivalence from ...
impbidd 209 Deduce an equivalence from...
impbid21d 210 Deduce an equivalence from...
impbid 211 Deduce an equivalence from...
dfbi1 212 Relate the biconditional c...
dfbi1ALT 213 Alternate proof of ~ dfbi1...
biimp 214 Property of the biconditio...
biimpi 215 Infer an implication from ...
sylbi 216 A mixed syllogism inferenc...
sylib 217 A mixed syllogism inferenc...
sylbb 218 A mixed syllogism inferenc...
biimpr 219 Property of the biconditio...
bicom1 220 Commutative law for the bi...
bicom 221 Commutative law for the bi...
bicomd 222 Commute two sides of a bic...
bicomi 223 Inference from commutative...
impbid1 224 Infer an equivalence from ...
impbid2 225 Infer an equivalence from ...
impcon4bid 226 A variation on ~ impbid wi...
biimpri 227 Infer a converse implicati...
biimpd 228 Deduce an implication from...
mpbi 229 An inference from a bicond...
mpbir 230 An inference from a bicond...
mpbid 231 A deduction from a bicondi...
mpbii 232 An inference from a nested...
sylibr 233 A mixed syllogism inferenc...
sylbir 234 A mixed syllogism inferenc...
sylbbr 235 A mixed syllogism inferenc...
sylbb1 236 A mixed syllogism inferenc...
sylbb2 237 A mixed syllogism inferenc...
sylibd 238 A syllogism deduction. (C...
sylbid 239 A syllogism deduction. (C...
mpbidi 240 A deduction from a bicondi...
biimtrid 241 A mixed syllogism inferenc...
biimtrrid 242 A mixed syllogism inferenc...
imbitrid 243 A mixed syllogism inferenc...
syl5ibcom 244 A mixed syllogism inferenc...
syl5ibr 245 A mixed syllogism inferenc...
syl5ibrcom 246 A mixed syllogism inferenc...
biimprd 247 Deduce a converse implicat...
biimpcd 248 Deduce a commuted implicat...
biimprcd 249 Deduce a converse commuted...
syl6ib 250 A mixed syllogism inferenc...
syl6ibr 251 A mixed syllogism inferenc...
syl6bi 252 A mixed syllogism inferenc...
syl6bir 253 A mixed syllogism inferenc...
syl7bi 254 A mixed syllogism inferenc...
syl8ib 255 A syllogism rule of infere...
mpbird 256 A deduction from a bicondi...
mpbiri 257 An inference from a nested...
sylibrd 258 A syllogism deduction. (C...
sylbird 259 A syllogism deduction. (C...
biid 260 Principle of identity for ...
biidd 261 Principle of identity with...
pm5.1im 262 Two propositions are equiv...
2th 263 Two truths are equivalent....
2thd 264 Two truths are equivalent....
monothetic 265 Two self-implications (see...
ibi 266 Inference that converts a ...
ibir 267 Inference that converts a ...
ibd 268 Deduction that converts a ...
pm5.74 269 Distribution of implicatio...
pm5.74i 270 Distribution of implicatio...
pm5.74ri 271 Distribution of implicatio...
pm5.74d 272 Distribution of implicatio...
pm5.74rd 273 Distribution of implicatio...
bitri 274 An inference from transiti...
bitr2i 275 An inference from transiti...
bitr3i 276 An inference from transiti...
bitr4i 277 An inference from transiti...
bitrd 278 Deduction form of ~ bitri ...
bitr2d 279 Deduction form of ~ bitr2i...
bitr3d 280 Deduction form of ~ bitr3i...
bitr4d 281 Deduction form of ~ bitr4i...
bitrid 282 A syllogism inference from...
bitr2id 283 A syllogism inference from...
bitr3id 284 A syllogism inference from...
bitr3di 285 A syllogism inference from...
bitrdi 286 A syllogism inference from...
bitr2di 287 A syllogism inference from...
bitr4di 288 A syllogism inference from...
bitr4id 289 A syllogism inference from...
3imtr3i 290 A mixed syllogism inferenc...
3imtr4i 291 A mixed syllogism inferenc...
3imtr3d 292 More general version of ~ ...
3imtr4d 293 More general version of ~ ...
3imtr3g 294 More general version of ~ ...
3imtr4g 295 More general version of ~ ...
3bitri 296 A chained inference from t...
3bitrri 297 A chained inference from t...
3bitr2i 298 A chained inference from t...
3bitr2ri 299 A chained inference from t...
3bitr3i 300 A chained inference from t...
3bitr3ri 301 A chained inference from t...
3bitr4i 302 A chained inference from t...
3bitr4ri 303 A chained inference from t...
3bitrd 304 Deduction from transitivit...
3bitrrd 305 Deduction from transitivit...
3bitr2d 306 Deduction from transitivit...
3bitr2rd 307 Deduction from transitivit...
3bitr3d 308 Deduction from transitivit...
3bitr3rd 309 Deduction from transitivit...
3bitr4d 310 Deduction from transitivit...
3bitr4rd 311 Deduction from transitivit...
3bitr3g 312 More general version of ~ ...
3bitr4g 313 More general version of ~ ...
notnotb 314 Double negation. Theorem ...
con34b 315 A biconditional form of co...
con4bid 316 A contraposition deduction...
notbid 317 Deduction negating both si...
notbi 318 Contraposition. Theorem *...
notbii 319 Negate both sides of a log...
con4bii 320 A contraposition inference...
mtbi 321 An inference from a bicond...
mtbir 322 An inference from a bicond...
mtbid 323 A deduction from a bicondi...
mtbird 324 A deduction from a bicondi...
mtbii 325 An inference from a bicond...
mtbiri 326 An inference from a bicond...
sylnib 327 A mixed syllogism inferenc...
sylnibr 328 A mixed syllogism inferenc...
sylnbi 329 A mixed syllogism inferenc...
sylnbir 330 A mixed syllogism inferenc...
xchnxbi 331 Replacement of a subexpres...
xchnxbir 332 Replacement of a subexpres...
xchbinx 333 Replacement of a subexpres...
xchbinxr 334 Replacement of a subexpres...
imbi2i 335 Introduce an antecedent to...
jcndOLD 336 Obsolete version of ~ jcnd...
bibi2i 337 Inference adding a bicondi...
bibi1i 338 Inference adding a bicondi...
bibi12i 339 The equivalence of two equ...
imbi2d 340 Deduction adding an antece...
imbi1d 341 Deduction adding a consequ...
bibi2d 342 Deduction adding a bicondi...
bibi1d 343 Deduction adding a bicondi...
imbi12d 344 Deduction joining two equi...
bibi12d 345 Deduction joining two equi...
imbi12 346 Closed form of ~ imbi12i ....
imbi1 347 Theorem *4.84 of [Whitehea...
imbi2 348 Theorem *4.85 of [Whitehea...
imbi1i 349 Introduce a consequent to ...
imbi12i 350 Join two logical equivalen...
bibi1 351 Theorem *4.86 of [Whitehea...
bitr3 352 Closed nested implication ...
con2bi 353 Contraposition. Theorem *...
con2bid 354 A contraposition deduction...
con1bid 355 A contraposition deduction...
con1bii 356 A contraposition inference...
con2bii 357 A contraposition inference...
con1b 358 Contraposition. Bidirecti...
con2b 359 Contraposition. Bidirecti...
biimt 360 A wff is equivalent to its...
pm5.5 361 Theorem *5.5 of [Whitehead...
a1bi 362 Inference introducing a th...
mt2bi 363 A false consequent falsifi...
mtt 364 Modus-tollens-like theorem...
imnot 365 If a proposition is false,...
pm5.501 366 Theorem *5.501 of [Whitehe...
ibib 367 Implication in terms of im...
ibibr 368 Implication in terms of im...
tbt 369 A wff is equivalent to its...
nbn2 370 The negation of a wff is e...
bibif 371 Transfer negation via an e...
nbn 372 The negation of a wff is e...
nbn3 373 Transfer falsehood via equ...
pm5.21im 374 Two propositions are equiv...
2false 375 Two falsehoods are equival...
2falsed 376 Two falsehoods are equival...
2falsedOLD 377 Obsolete version of ~ 2fal...
pm5.21ni 378 Two propositions implying ...
pm5.21nii 379 Eliminate an antecedent im...
pm5.21ndd 380 Eliminate an antecedent im...
bija 381 Combine antecedents into a...
pm5.18 382 Theorem *5.18 of [Whitehea...
xor3 383 Two ways to express "exclu...
nbbn 384 Move negation outside of b...
biass 385 Associative law for the bi...
biluk 386 Lukasiewicz's shortest axi...
pm5.19 387 Theorem *5.19 of [Whitehea...
bi2.04 388 Logical equivalence of com...
pm5.4 389 Antecedent absorption impl...
imdi 390 Distributive law for impli...
pm5.41 391 Theorem *5.41 of [Whitehea...
imbibi 392 The antecedent of one side...
pm4.8 393 Theorem *4.8 of [Whitehead...
pm4.81 394 A formula is equivalent to...
imim21b 395 Simplify an implication be...
pm4.63 398 Theorem *4.63 of [Whitehea...
pm4.67 399 Theorem *4.67 of [Whitehea...
imnan 400 Express an implication in ...
imnani 401 Infer an implication from ...
iman 402 Implication in terms of co...
pm3.24 403 Law of noncontradiction. ...
annim 404 Express a conjunction in t...
pm4.61 405 Theorem *4.61 of [Whitehea...
pm4.65 406 Theorem *4.65 of [Whitehea...
imp 407 Importation inference. (C...
impcom 408 Importation inference with...
con3dimp 409 Variant of ~ con3d with im...
mpnanrd 410 Eliminate the right side o...
impd 411 Importation deduction. (C...
impcomd 412 Importation deduction with...
ex 413 Exportation inference. (T...
expcom 414 Exportation inference with...
expdcom 415 Commuted form of ~ expd . ...
expd 416 Exportation deduction. (C...
expcomd 417 Deduction form of ~ expcom...
imp31 418 An importation inference. ...
imp32 419 An importation inference. ...
exp31 420 An exportation inference. ...
exp32 421 An exportation inference. ...
imp4b 422 An importation inference. ...
imp4a 423 An importation inference. ...
imp4c 424 An importation inference. ...
imp4d 425 An importation inference. ...
imp41 426 An importation inference. ...
imp42 427 An importation inference. ...
imp43 428 An importation inference. ...
imp44 429 An importation inference. ...
imp45 430 An importation inference. ...
exp4b 431 An exportation inference. ...
exp4a 432 An exportation inference. ...
exp4c 433 An exportation inference. ...
exp4d 434 An exportation inference. ...
exp41 435 An exportation inference. ...
exp42 436 An exportation inference. ...
exp43 437 An exportation inference. ...
exp44 438 An exportation inference. ...
exp45 439 An exportation inference. ...
imp5d 440 An importation inference. ...
imp5a 441 An importation inference. ...
imp5g 442 An importation inference. ...
imp55 443 An importation inference. ...
imp511 444 An importation inference. ...
exp5c 445 An exportation inference. ...
exp5j 446 An exportation inference. ...
exp5l 447 An exportation inference. ...
exp53 448 An exportation inference. ...
pm3.3 449 Theorem *3.3 (Exp) of [Whi...
pm3.31 450 Theorem *3.31 (Imp) of [Wh...
impexp 451 Import-export theorem. Pa...
impancom 452 Mixed importation/commutat...
expdimp 453 A deduction version of exp...
expimpd 454 Exportation followed by a ...
impr 455 Import a wff into a right ...
impl 456 Export a wff from a left c...
expr 457 Export a wff from a right ...
expl 458 Export a wff from a left c...
ancoms 459 Inference commuting conjun...
pm3.22 460 Theorem *3.22 of [Whitehea...
ancom 461 Commutative law for conjun...
ancomd 462 Commutation of conjuncts i...
biancomi 463 Commuting conjunction in a...
biancomd 464 Commuting conjunction in a...
ancomst 465 Closed form of ~ ancoms . ...
ancomsd 466 Deduction commuting conjun...
anasss 467 Associative law for conjun...
anassrs 468 Associative law for conjun...
anass 469 Associative law for conjun...
pm3.2 470 Join antecedents with conj...
pm3.2i 471 Infer conjunction of premi...
pm3.21 472 Join antecedents with conj...
pm3.43i 473 Nested conjunction of ante...
pm3.43 474 Theorem *3.43 (Comp) of [W...
dfbi2 475 A theorem similar to the s...
dfbi 476 Definition ~ df-bi rewritt...
biimpa 477 Importation inference from...
biimpar 478 Importation inference from...
biimpac 479 Importation inference from...
biimparc 480 Importation inference from...
adantr 481 Inference adding a conjunc...
adantl 482 Inference adding a conjunc...
simpl 483 Elimination of a conjunct....
simpli 484 Inference eliminating a co...
simpr 485 Elimination of a conjunct....
simpri 486 Inference eliminating a co...
intnan 487 Introduction of conjunct i...
intnanr 488 Introduction of conjunct i...
intnand 489 Introduction of conjunct i...
intnanrd 490 Introduction of conjunct i...
adantld 491 Deduction adding a conjunc...
adantrd 492 Deduction adding a conjunc...
pm3.41 493 Theorem *3.41 of [Whitehea...
pm3.42 494 Theorem *3.42 of [Whitehea...
simpld 495 Deduction eliminating a co...
simprd 496 Deduction eliminating a co...
simprbi 497 Deduction eliminating a co...
simplbi 498 Deduction eliminating a co...
simprbda 499 Deduction eliminating a co...
simplbda 500 Deduction eliminating a co...
simplbi2 501 Deduction eliminating a co...
simplbi2comt 502 Closed form of ~ simplbi2c...
simplbi2com 503 A deduction eliminating a ...
simpl2im 504 Implication from an elimin...
simplbiim 505 Implication from an elimin...
impel 506 An inference for implicati...
mpan9 507 Modus ponens conjoining di...
sylan9 508 Nested syllogism inference...
sylan9r 509 Nested syllogism inference...
sylan9bb 510 Nested syllogism inference...
sylan9bbr 511 Nested syllogism inference...
jca 512 Deduce conjunction of the ...
jcad 513 Deduction conjoining the c...
jca2 514 Inference conjoining the c...
jca31 515 Join three consequents. (...
jca32 516 Join three consequents. (...
jcai 517 Deduction replacing implic...
jcab 518 Distributive law for impli...
pm4.76 519 Theorem *4.76 of [Whitehea...
jctil 520 Inference conjoining a the...
jctir 521 Inference conjoining a the...
jccir 522 Inference conjoining a con...
jccil 523 Inference conjoining a con...
jctl 524 Inference conjoining a the...
jctr 525 Inference conjoining a the...
jctild 526 Deduction conjoining a the...
jctird 527 Deduction conjoining a the...
iba 528 Introduction of antecedent...
ibar 529 Introduction of antecedent...
biantru 530 A wff is equivalent to its...
biantrur 531 A wff is equivalent to its...
biantrud 532 A wff is equivalent to its...
biantrurd 533 A wff is equivalent to its...
bianfi 534 A wff conjoined with false...
bianfd 535 A wff conjoined with false...
baib 536 Move conjunction outside o...
baibr 537 Move conjunction outside o...
rbaibr 538 Move conjunction outside o...
rbaib 539 Move conjunction outside o...
baibd 540 Move conjunction outside o...
rbaibd 541 Move conjunction outside o...
bianabs 542 Absorb a hypothesis into t...
pm5.44 543 Theorem *5.44 of [Whitehea...
pm5.42 544 Theorem *5.42 of [Whitehea...
ancl 545 Conjoin antecedent to left...
anclb 546 Conjoin antecedent to left...
ancr 547 Conjoin antecedent to righ...
ancrb 548 Conjoin antecedent to righ...
ancli 549 Deduction conjoining antec...
ancri 550 Deduction conjoining antec...
ancld 551 Deduction conjoining antec...
ancrd 552 Deduction conjoining antec...
impac 553 Importation with conjuncti...
anc2l 554 Conjoin antecedent to left...
anc2r 555 Conjoin antecedent to righ...
anc2li 556 Deduction conjoining antec...
anc2ri 557 Deduction conjoining antec...
pm4.71 558 Implication in terms of bi...
pm4.71r 559 Implication in terms of bi...
pm4.71i 560 Inference converting an im...
pm4.71ri 561 Inference converting an im...
pm4.71d 562 Deduction converting an im...
pm4.71rd 563 Deduction converting an im...
pm4.24 564 Theorem *4.24 of [Whitehea...
anidm 565 Idempotent law for conjunc...
anidmdbi 566 Conjunction idempotence wi...
anidms 567 Inference from idempotent ...
imdistan 568 Distribution of implicatio...
imdistani 569 Distribution of implicatio...
imdistanri 570 Distribution of implicatio...
imdistand 571 Distribution of implicatio...
imdistanda 572 Distribution of implicatio...
pm5.3 573 Theorem *5.3 of [Whitehead...
pm5.32 574 Distribution of implicatio...
pm5.32i 575 Distribution of implicatio...
pm5.32ri 576 Distribution of implicatio...
pm5.32d 577 Distribution of implicatio...
pm5.32rd 578 Distribution of implicatio...
pm5.32da 579 Distribution of implicatio...
sylan 580 A syllogism inference. (C...
sylanb 581 A syllogism inference. (C...
sylanbr 582 A syllogism inference. (C...
sylanbrc 583 Syllogism inference. (Con...
syl2anc 584 Syllogism inference combin...
syl2anc2 585 Double syllogism inference...
sylancl 586 Syllogism inference combin...
sylancr 587 Syllogism inference combin...
sylancom 588 Syllogism inference with c...
sylanblc 589 Syllogism inference combin...
sylanblrc 590 Syllogism inference combin...
syldan 591 A syllogism deduction with...
sylbida 592 A syllogism deduction. (C...
sylan2 593 A syllogism inference. (C...
sylan2b 594 A syllogism inference. (C...
sylan2br 595 A syllogism inference. (C...
syl2an 596 A double syllogism inferen...
syl2anr 597 A double syllogism inferen...
syl2anb 598 A double syllogism inferen...
syl2anbr 599 A double syllogism inferen...
sylancb 600 A syllogism inference comb...
sylancbr 601 A syllogism inference comb...
syldanl 602 A syllogism deduction with...
syland 603 A syllogism deduction. (C...
sylani 604 A syllogism inference. (C...
sylan2d 605 A syllogism deduction. (C...
sylan2i 606 A syllogism inference. (C...
syl2ani 607 A syllogism inference. (C...
syl2and 608 A syllogism deduction. (C...
anim12d 609 Conjoin antecedents and co...
anim12d1 610 Variant of ~ anim12d where...
anim1d 611 Add a conjunct to right of...
anim2d 612 Add a conjunct to left of ...
anim12i 613 Conjoin antecedents and co...
anim12ci 614 Variant of ~ anim12i with ...
anim1i 615 Introduce conjunct to both...
anim1ci 616 Introduce conjunct to both...
anim2i 617 Introduce conjunct to both...
anim12ii 618 Conjoin antecedents and co...
anim12dan 619 Conjoin antecedents and co...
im2anan9 620 Deduction joining nested i...
im2anan9r 621 Deduction joining nested i...
pm3.45 622 Theorem *3.45 (Fact) of [W...
anbi2i 623 Introduce a left conjunct ...
anbi1i 624 Introduce a right conjunct...
anbi2ci 625 Variant of ~ anbi2i with c...
anbi1ci 626 Variant of ~ anbi1i with c...
anbi12i 627 Conjoin both sides of two ...
anbi12ci 628 Variant of ~ anbi12i with ...
anbi2d 629 Deduction adding a left co...
anbi1d 630 Deduction adding a right c...
anbi12d 631 Deduction joining two equi...
anbi1 632 Introduce a right conjunct...
anbi2 633 Introduce a left conjunct ...
anbi1cd 634 Introduce a proposition as...
an2anr 635 Double commutation in conj...
pm4.38 636 Theorem *4.38 of [Whitehea...
bi2anan9 637 Deduction joining two equi...
bi2anan9r 638 Deduction joining two equi...
bi2bian9 639 Deduction joining two bico...
bianass 640 An inference to merge two ...
bianassc 641 An inference to merge two ...
an21 642 Swap two conjuncts. (Cont...
an12 643 Swap two conjuncts. Note ...
an32 644 A rearrangement of conjunc...
an13 645 A rearrangement of conjunc...
an31 646 A rearrangement of conjunc...
an12s 647 Swap two conjuncts in ante...
ancom2s 648 Inference commuting a nest...
an13s 649 Swap two conjuncts in ante...
an32s 650 Swap two conjuncts in ante...
ancom1s 651 Inference commuting a nest...
an31s 652 Swap two conjuncts in ante...
anass1rs 653 Commutative-associative la...
an4 654 Rearrangement of 4 conjunc...
an42 655 Rearrangement of 4 conjunc...
an43 656 Rearrangement of 4 conjunc...
an3 657 A rearrangement of conjunc...
an4s 658 Inference rearranging 4 co...
an42s 659 Inference rearranging 4 co...
anabs1 660 Absorption into embedded c...
anabs5 661 Absorption into embedded c...
anabs7 662 Absorption into embedded c...
anabsan 663 Absorption of antecedent w...
anabss1 664 Absorption of antecedent i...
anabss4 665 Absorption of antecedent i...
anabss5 666 Absorption of antecedent i...
anabsi5 667 Absorption of antecedent i...
anabsi6 668 Absorption of antecedent i...
anabsi7 669 Absorption of antecedent i...
anabsi8 670 Absorption of antecedent i...
anabss7 671 Absorption of antecedent i...
anabsan2 672 Absorption of antecedent w...
anabss3 673 Absorption of antecedent i...
anandi 674 Distribution of conjunctio...
anandir 675 Distribution of conjunctio...
anandis 676 Inference that undistribut...
anandirs 677 Inference that undistribut...
sylanl1 678 A syllogism inference. (C...
sylanl2 679 A syllogism inference. (C...
sylanr1 680 A syllogism inference. (C...
sylanr2 681 A syllogism inference. (C...
syl6an 682 A syllogism deduction comb...
syl2an2r 683 ~ syl2anr with antecedents...
syl2an2 684 ~ syl2an with antecedents ...
mpdan 685 An inference based on modu...
mpancom 686 An inference based on modu...
mpidan 687 A deduction which "stacks"...
mpan 688 An inference based on modu...
mpan2 689 An inference based on modu...
mp2an 690 An inference based on modu...
mp4an 691 An inference based on modu...
mpan2d 692 A deduction based on modus...
mpand 693 A deduction based on modus...
mpani 694 An inference based on modu...
mpan2i 695 An inference based on modu...
mp2ani 696 An inference based on modu...
mp2and 697 A deduction based on modus...
mpanl1 698 An inference based on modu...
mpanl2 699 An inference based on modu...
mpanl12 700 An inference based on modu...
mpanr1 701 An inference based on modu...
mpanr2 702 An inference based on modu...
mpanr12 703 An inference based on modu...
mpanlr1 704 An inference based on modu...
mpbirand 705 Detach truth from conjunct...
mpbiran2d 706 Detach truth from conjunct...
mpbiran 707 Detach truth from conjunct...
mpbiran2 708 Detach truth from conjunct...
mpbir2an 709 Detach a conjunction of tr...
mpbi2and 710 Detach a conjunction of tr...
mpbir2and 711 Detach a conjunction of tr...
adantll 712 Deduction adding a conjunc...
adantlr 713 Deduction adding a conjunc...
adantrl 714 Deduction adding a conjunc...
adantrr 715 Deduction adding a conjunc...
adantlll 716 Deduction adding a conjunc...
adantllr 717 Deduction adding a conjunc...
adantlrl 718 Deduction adding a conjunc...
adantlrr 719 Deduction adding a conjunc...
adantrll 720 Deduction adding a conjunc...
adantrlr 721 Deduction adding a conjunc...
adantrrl 722 Deduction adding a conjunc...
adantrrr 723 Deduction adding a conjunc...
ad2antrr 724 Deduction adding two conju...
ad2antlr 725 Deduction adding two conju...
ad2antrl 726 Deduction adding two conju...
ad2antll 727 Deduction adding conjuncts...
ad3antrrr 728 Deduction adding three con...
ad3antlr 729 Deduction adding three con...
ad4antr 730 Deduction adding 4 conjunc...
ad4antlr 731 Deduction adding 4 conjunc...
ad5antr 732 Deduction adding 5 conjunc...
ad5antlr 733 Deduction adding 5 conjunc...
ad6antr 734 Deduction adding 6 conjunc...
ad6antlr 735 Deduction adding 6 conjunc...
ad7antr 736 Deduction adding 7 conjunc...
ad7antlr 737 Deduction adding 7 conjunc...
ad8antr 738 Deduction adding 8 conjunc...
ad8antlr 739 Deduction adding 8 conjunc...
ad9antr 740 Deduction adding 9 conjunc...
ad9antlr 741 Deduction adding 9 conjunc...
ad10antr 742 Deduction adding 10 conjun...
ad10antlr 743 Deduction adding 10 conjun...
ad2ant2l 744 Deduction adding two conju...
ad2ant2r 745 Deduction adding two conju...
ad2ant2lr 746 Deduction adding two conju...
ad2ant2rl 747 Deduction adding two conju...
adantl3r 748 Deduction adding 1 conjunc...
ad4ant13 749 Deduction adding conjuncts...
ad4ant14 750 Deduction adding conjuncts...
ad4ant23 751 Deduction adding conjuncts...
ad4ant24 752 Deduction adding conjuncts...
adantl4r 753 Deduction adding 1 conjunc...
ad5ant12 754 Deduction adding conjuncts...
ad5ant13 755 Deduction adding conjuncts...
ad5ant14 756 Deduction adding conjuncts...
ad5ant15 757 Deduction adding conjuncts...
ad5ant23 758 Deduction adding conjuncts...
ad5ant24 759 Deduction adding conjuncts...
ad5ant25 760 Deduction adding conjuncts...
adantl5r 761 Deduction adding 1 conjunc...
adantl6r 762 Deduction adding 1 conjunc...
pm3.33 763 Theorem *3.33 (Syll) of [W...
pm3.34 764 Theorem *3.34 (Syll) of [W...
simpll 765 Simplification of a conjun...
simplld 766 Deduction form of ~ simpll...
simplr 767 Simplification of a conjun...
simplrd 768 Deduction eliminating a do...
simprl 769 Simplification of a conjun...
simprld 770 Deduction eliminating a do...
simprr 771 Simplification of a conjun...
simprrd 772 Deduction form of ~ simprr...
simplll 773 Simplification of a conjun...
simpllr 774 Simplification of a conjun...
simplrl 775 Simplification of a conjun...
simplrr 776 Simplification of a conjun...
simprll 777 Simplification of a conjun...
simprlr 778 Simplification of a conjun...
simprrl 779 Simplification of a conjun...
simprrr 780 Simplification of a conjun...
simp-4l 781 Simplification of a conjun...
simp-4r 782 Simplification of a conjun...
simp-5l 783 Simplification of a conjun...
simp-5r 784 Simplification of a conjun...
simp-6l 785 Simplification of a conjun...
simp-6r 786 Simplification of a conjun...
simp-7l 787 Simplification of a conjun...
simp-7r 788 Simplification of a conjun...
simp-8l 789 Simplification of a conjun...
simp-8r 790 Simplification of a conjun...
simp-9l 791 Simplification of a conjun...
simp-9r 792 Simplification of a conjun...
simp-10l 793 Simplification of a conjun...
simp-10r 794 Simplification of a conjun...
simp-11l 795 Simplification of a conjun...
simp-11r 796 Simplification of a conjun...
pm2.01da 797 Deduction based on reducti...
pm2.18da 798 Deduction based on reducti...
impbida 799 Deduce an equivalence from...
pm5.21nd 800 Eliminate an antecedent im...
pm3.35 801 Conjunctive detachment. T...
pm5.74da 802 Distribution of implicatio...
bitr 803 Theorem *4.22 of [Whitehea...
biantr 804 A transitive law of equiva...
pm4.14 805 Theorem *4.14 of [Whitehea...
pm3.37 806 Theorem *3.37 (Transp) of ...
anim12 807 Conjoin antecedents and co...
pm3.4 808 Conjunction implies implic...
exbiri 809 Inference form of ~ exbir ...
pm2.61ian 810 Elimination of an antecede...
pm2.61dan 811 Elimination of an antecede...
pm2.61ddan 812 Elimination of two anteced...
pm2.61dda 813 Elimination of two anteced...
mtand 814 A modus tollens deduction....
pm2.65da 815 Deduction for proof by con...
condan 816 Proof by contradiction. (...
biadan 817 An implication is equivale...
biadani 818 Inference associated with ...
biadaniALT 819 Alternate proof of ~ biada...
biadanii 820 Inference associated with ...
biadanid 821 Deduction associated with ...
pm5.1 822 Two propositions are equiv...
pm5.21 823 Two propositions are equiv...
pm5.35 824 Theorem *5.35 of [Whitehea...
abai 825 Introduce one conjunct as ...
pm4.45im 826 Conjunction with implicati...
impimprbi 827 An implication and its rev...
nan 828 Theorem to move a conjunct...
pm5.31 829 Theorem *5.31 of [Whitehea...
pm5.31r 830 Variant of ~ pm5.31 . (Co...
pm4.15 831 Theorem *4.15 of [Whitehea...
pm5.36 832 Theorem *5.36 of [Whitehea...
annotanannot 833 A conjunction with a negat...
pm5.33 834 Theorem *5.33 of [Whitehea...
syl12anc 835 Syllogism combined with co...
syl21anc 836 Syllogism combined with co...
syl22anc 837 Syllogism combined with co...
syl1111anc 838 Four-hypothesis eliminatio...
syldbl2 839 Stacked hypotheseis implie...
mpsyl4anc 840 An elimination deduction. ...
pm4.87 841 Theorem *4.87 of [Whitehea...
bimsc1 842 Removal of conjunct from o...
a2and 843 Deduction distributing a c...
animpimp2impd 844 Deduction deriving nested ...
pm4.64 847 Theorem *4.64 of [Whitehea...
pm4.66 848 Theorem *4.66 of [Whitehea...
pm2.53 849 Theorem *2.53 of [Whitehea...
pm2.54 850 Theorem *2.54 of [Whitehea...
imor 851 Implication in terms of di...
imori 852 Infer disjunction from imp...
imorri 853 Infer implication from dis...
pm4.62 854 Theorem *4.62 of [Whitehea...
jaoi 855 Inference disjoining the a...
jao1i 856 Add a disjunct in the ante...
jaod 857 Deduction disjoining the a...
mpjaod 858 Eliminate a disjunction in...
ori 859 Infer implication from dis...
orri 860 Infer disjunction from imp...
orrd 861 Deduce disjunction from im...
ord 862 Deduce implication from di...
orci 863 Deduction introducing a di...
olci 864 Deduction introducing a di...
orc 865 Introduction of a disjunct...
olc 866 Introduction of a disjunct...
pm1.4 867 Axiom *1.4 of [WhiteheadRu...
orcom 868 Commutative law for disjun...
orcomd 869 Commutation of disjuncts i...
orcoms 870 Commutation of disjuncts i...
orcd 871 Deduction introducing a di...
olcd 872 Deduction introducing a di...
orcs 873 Deduction eliminating disj...
olcs 874 Deduction eliminating disj...
olcnd 875 A lemma for Conjunctive No...
unitreslOLD 876 Obsolete version of ~ olcn...
orcnd 877 A lemma for Conjunctive No...
mtord 878 A modus tollens deduction ...
pm3.2ni 879 Infer negated disjunction ...
pm2.45 880 Theorem *2.45 of [Whitehea...
pm2.46 881 Theorem *2.46 of [Whitehea...
pm2.47 882 Theorem *2.47 of [Whitehea...
pm2.48 883 Theorem *2.48 of [Whitehea...
pm2.49 884 Theorem *2.49 of [Whitehea...
norbi 885 If neither of two proposit...
nbior 886 If two propositions are no...
orel1 887 Elimination of disjunction...
pm2.25 888 Theorem *2.25 of [Whitehea...
orel2 889 Elimination of disjunction...
pm2.67-2 890 Slight generalization of T...
pm2.67 891 Theorem *2.67 of [Whitehea...
curryax 892 A non-intuitionistic posit...
exmid 893 Law of excluded middle, al...
exmidd 894 Law of excluded middle in ...
pm2.1 895 Theorem *2.1 of [Whitehead...
pm2.13 896 Theorem *2.13 of [Whitehea...
pm2.621 897 Theorem *2.621 of [Whitehe...
pm2.62 898 Theorem *2.62 of [Whitehea...
pm2.68 899 Theorem *2.68 of [Whitehea...
dfor2 900 Logical 'or' expressed in ...
pm2.07 901 Theorem *2.07 of [Whitehea...
pm1.2 902 Axiom *1.2 of [WhiteheadRu...
oridm 903 Idempotent law for disjunc...
pm4.25 904 Theorem *4.25 of [Whitehea...
pm2.4 905 Theorem *2.4 of [Whitehead...
pm2.41 906 Theorem *2.41 of [Whitehea...
orim12i 907 Disjoin antecedents and co...
orim1i 908 Introduce disjunct to both...
orim2i 909 Introduce disjunct to both...
orim12dALT 910 Alternate proof of ~ orim1...
orbi2i 911 Inference adding a left di...
orbi1i 912 Inference adding a right d...
orbi12i 913 Infer the disjunction of t...
orbi2d 914 Deduction adding a left di...
orbi1d 915 Deduction adding a right d...
orbi1 916 Theorem *4.37 of [Whitehea...
orbi12d 917 Deduction joining two equi...
pm1.5 918 Axiom *1.5 (Assoc) of [Whi...
or12 919 Swap two disjuncts. (Cont...
orass 920 Associative law for disjun...
pm2.31 921 Theorem *2.31 of [Whitehea...
pm2.32 922 Theorem *2.32 of [Whitehea...
pm2.3 923 Theorem *2.3 of [Whitehead...
or32 924 A rearrangement of disjunc...
or4 925 Rearrangement of 4 disjunc...
or42 926 Rearrangement of 4 disjunc...
orordi 927 Distribution of disjunctio...
orordir 928 Distribution of disjunctio...
orimdi 929 Disjunction distributes ov...
pm2.76 930 Theorem *2.76 of [Whitehea...
pm2.85 931 Theorem *2.85 of [Whitehea...
pm2.75 932 Theorem *2.75 of [Whitehea...
pm4.78 933 Implication distributes ov...
biort 934 A disjunction with a true ...
biorf 935 A wff is equivalent to its...
biortn 936 A wff is equivalent to its...
biorfi 937 A wff is equivalent to its...
pm2.26 938 Theorem *2.26 of [Whitehea...
pm2.63 939 Theorem *2.63 of [Whitehea...
pm2.64 940 Theorem *2.64 of [Whitehea...
pm2.42 941 Theorem *2.42 of [Whitehea...
pm5.11g 942 A general instance of Theo...
pm5.11 943 Theorem *5.11 of [Whitehea...
pm5.12 944 Theorem *5.12 of [Whitehea...
pm5.14 945 Theorem *5.14 of [Whitehea...
pm5.13 946 Theorem *5.13 of [Whitehea...
pm5.55 947 Theorem *5.55 of [Whitehea...
pm4.72 948 Implication in terms of bi...
imimorb 949 Simplify an implication be...
oibabs 950 Absorption of disjunction ...
orbidi 951 Disjunction distributes ov...
pm5.7 952 Disjunction distributes ov...
jaao 953 Inference conjoining and d...
jaoa 954 Inference disjoining and c...
jaoian 955 Inference disjoining the a...
jaodan 956 Deduction disjoining the a...
mpjaodan 957 Eliminate a disjunction in...
pm3.44 958 Theorem *3.44 of [Whitehea...
jao 959 Disjunction of antecedents...
jaob 960 Disjunction of antecedents...
pm4.77 961 Theorem *4.77 of [Whitehea...
pm3.48 962 Theorem *3.48 of [Whitehea...
orim12d 963 Disjoin antecedents and co...
orim1d 964 Disjoin antecedents and co...
orim2d 965 Disjoin antecedents and co...
orim2 966 Axiom *1.6 (Sum) of [White...
pm2.38 967 Theorem *2.38 of [Whitehea...
pm2.36 968 Theorem *2.36 of [Whitehea...
pm2.37 969 Theorem *2.37 of [Whitehea...
pm2.81 970 Theorem *2.81 of [Whitehea...
pm2.8 971 Theorem *2.8 of [Whitehead...
pm2.73 972 Theorem *2.73 of [Whitehea...
pm2.74 973 Theorem *2.74 of [Whitehea...
pm2.82 974 Theorem *2.82 of [Whitehea...
pm4.39 975 Theorem *4.39 of [Whitehea...
animorl 976 Conjunction implies disjun...
animorr 977 Conjunction implies disjun...
animorlr 978 Conjunction implies disjun...
animorrl 979 Conjunction implies disjun...
ianor 980 Negated conjunction in ter...
anor 981 Conjunction in terms of di...
ioran 982 Negated disjunction in ter...
pm4.52 983 Theorem *4.52 of [Whitehea...
pm4.53 984 Theorem *4.53 of [Whitehea...
pm4.54 985 Theorem *4.54 of [Whitehea...
pm4.55 986 Theorem *4.55 of [Whitehea...
pm4.56 987 Theorem *4.56 of [Whitehea...
oran 988 Disjunction in terms of co...
pm4.57 989 Theorem *4.57 of [Whitehea...
pm3.1 990 Theorem *3.1 of [Whitehead...
pm3.11 991 Theorem *3.11 of [Whitehea...
pm3.12 992 Theorem *3.12 of [Whitehea...
pm3.13 993 Theorem *3.13 of [Whitehea...
pm3.14 994 Theorem *3.14 of [Whitehea...
pm4.44 995 Theorem *4.44 of [Whitehea...
pm4.45 996 Theorem *4.45 of [Whitehea...
orabs 997 Absorption of redundant in...
oranabs 998 Absorb a disjunct into a c...
pm5.61 999 Theorem *5.61 of [Whitehea...
pm5.6 1000 Conjunction in antecedent ...
orcanai 1001 Change disjunction in cons...
pm4.79 1002 Theorem *4.79 of [Whitehea...
pm5.53 1003 Theorem *5.53 of [Whitehea...
ordi 1004 Distributive law for disju...
ordir 1005 Distributive law for disju...
andi 1006 Distributive law for conju...
andir 1007 Distributive law for conju...
orddi 1008 Double distributive law fo...
anddi 1009 Double distributive law fo...
pm5.17 1010 Theorem *5.17 of [Whitehea...
pm5.15 1011 Theorem *5.15 of [Whitehea...
pm5.16 1012 Theorem *5.16 of [Whitehea...
xor 1013 Two ways to express exclus...
nbi2 1014 Two ways to express "exclu...
xordi 1015 Conjunction distributes ov...
pm5.54 1016 Theorem *5.54 of [Whitehea...
pm5.62 1017 Theorem *5.62 of [Whitehea...
pm5.63 1018 Theorem *5.63 of [Whitehea...
niabn 1019 Miscellaneous inference re...
ninba 1020 Miscellaneous inference re...
pm4.43 1021 Theorem *4.43 of [Whitehea...
pm4.82 1022 Theorem *4.82 of [Whitehea...
pm4.83 1023 Theorem *4.83 of [Whitehea...
pclem6 1024 Negation inferred from emb...
bigolden 1025 Dijkstra-Scholten's Golden...
pm5.71 1026 Theorem *5.71 of [Whitehea...
pm5.75 1027 Theorem *5.75 of [Whitehea...
ecase2d 1028 Deduction for elimination ...
ecase2dOLD 1029 Obsolete version of ~ ecas...
ecase3 1030 Inference for elimination ...
ecase 1031 Inference for elimination ...
ecase3d 1032 Deduction for elimination ...
ecased 1033 Deduction for elimination ...
ecase3ad 1034 Deduction for elimination ...
ecase3adOLD 1035 Obsolete version of ~ ecas...
ccase 1036 Inference for combining ca...
ccased 1037 Deduction for combining ca...
ccase2 1038 Inference for combining ca...
4cases 1039 Inference eliminating two ...
4casesdan 1040 Deduction eliminating two ...
cases 1041 Case disjunction according...
dedlem0a 1042 Lemma for an alternate ver...
dedlem0b 1043 Lemma for an alternate ver...
dedlema 1044 Lemma for weak deduction t...
dedlemb 1045 Lemma for weak deduction t...
cases2 1046 Case disjunction according...
cases2ALT 1047 Alternate proof of ~ cases...
dfbi3 1048 An alternate definition of...
pm5.24 1049 Theorem *5.24 of [Whitehea...
4exmid 1050 The disjunction of the fou...
consensus 1051 The consensus theorem. Th...
pm4.42 1052 Theorem *4.42 of [Whitehea...
prlem1 1053 A specialized lemma for se...
prlem2 1054 A specialized lemma for se...
oplem1 1055 A specialized lemma for se...
dn1 1056 A single axiom for Boolean...
bianir 1057 A closed form of ~ mpbir ,...
jaoi2 1058 Inference removing a negat...
jaoi3 1059 Inference separating a dis...
ornld 1060 Selecting one statement fr...
dfifp2 1063 Alternate definition of th...
dfifp3 1064 Alternate definition of th...
dfifp4 1065 Alternate definition of th...
dfifp5 1066 Alternate definition of th...
dfifp6 1067 Alternate definition of th...
dfifp7 1068 Alternate definition of th...
ifpdfbi 1069 Define the biconditional a...
anifp 1070 The conditional operator i...
ifpor 1071 The conditional operator i...
ifpn 1072 Conditional operator for t...
ifpnOLD 1073 Obsolete version of ~ ifpn...
ifptru 1074 Value of the conditional o...
ifpfal 1075 Value of the conditional o...
ifpid 1076 Value of the conditional o...
casesifp 1077 Version of ~ cases express...
ifpbi123d 1078 Equivalence deduction for ...
ifpbi123dOLD 1079 Obsolete version of ~ ifpb...
ifpbi23d 1080 Equivalence deduction for ...
ifpimpda 1081 Separation of the values o...
1fpid3 1082 The value of the condition...
elimh 1083 Hypothesis builder for the...
dedt 1084 The weak deduction theorem...
con3ALT 1085 Proof of ~ con3 from its a...
3orass 1090 Associative law for triple...
3orel1 1091 Partial elimination of a t...
3orrot 1092 Rotation law for triple di...
3orcoma 1093 Commutation law for triple...
3orcomb 1094 Commutation law for triple...
3anass 1095 Associative law for triple...
3anan12 1096 Convert triple conjunction...
3anan32 1097 Convert triple conjunction...
3ancoma 1098 Commutation law for triple...
3ancomb 1099 Commutation law for triple...
3anrot 1100 Rotation law for triple co...
3anrev 1101 Reversal law for triple co...
anandi3 1102 Distribution of triple con...
anandi3r 1103 Distribution of triple con...
3anidm 1104 Idempotent law for conjunc...
3an4anass 1105 Associative law for four c...
3ioran 1106 Negated triple disjunction...
3ianor 1107 Negated triple conjunction...
3anor 1108 Triple conjunction express...
3oran 1109 Triple disjunction in term...
3impa 1110 Importation from double to...
3imp 1111 Importation inference. (C...
3imp31 1112 The importation inference ...
3imp231 1113 Importation inference. (C...
3imp21 1114 The importation inference ...
3impb 1115 Importation from double to...
3impib 1116 Importation to triple conj...
3impia 1117 Importation to triple conj...
3expa 1118 Exportation from triple to...
3exp 1119 Exportation inference. (C...
3expb 1120 Exportation from triple to...
3expia 1121 Exportation from triple co...
3expib 1122 Exportation from triple co...
3com12 1123 Commutation in antecedent....
3com13 1124 Commutation in antecedent....
3comr 1125 Commutation in antecedent....
3com23 1126 Commutation in antecedent....
3coml 1127 Commutation in antecedent....
3jca 1128 Join consequents with conj...
3jcad 1129 Deduction conjoining the c...
3adant1 1130 Deduction adding a conjunc...
3adant2 1131 Deduction adding a conjunc...
3adant3 1132 Deduction adding a conjunc...
3ad2ant1 1133 Deduction adding conjuncts...
3ad2ant2 1134 Deduction adding conjuncts...
3ad2ant3 1135 Deduction adding conjuncts...
simp1 1136 Simplification of triple c...
simp2 1137 Simplification of triple c...
simp3 1138 Simplification of triple c...
simp1i 1139 Infer a conjunct from a tr...
simp2i 1140 Infer a conjunct from a tr...
simp3i 1141 Infer a conjunct from a tr...
simp1d 1142 Deduce a conjunct from a t...
simp2d 1143 Deduce a conjunct from a t...
simp3d 1144 Deduce a conjunct from a t...
simp1bi 1145 Deduce a conjunct from a t...
simp2bi 1146 Deduce a conjunct from a t...
simp3bi 1147 Deduce a conjunct from a t...
3simpa 1148 Simplification of triple c...
3simpb 1149 Simplification of triple c...
3simpc 1150 Simplification of triple c...
3anim123i 1151 Join antecedents and conse...
3anim1i 1152 Add two conjuncts to antec...
3anim2i 1153 Add two conjuncts to antec...
3anim3i 1154 Add two conjuncts to antec...
3anbi123i 1155 Join 3 biconditionals with...
3orbi123i 1156 Join 3 biconditionals with...
3anbi1i 1157 Inference adding two conju...
3anbi2i 1158 Inference adding two conju...
3anbi3i 1159 Inference adding two conju...
syl3an 1160 A triple syllogism inferen...
syl3anb 1161 A triple syllogism inferen...
syl3anbr 1162 A triple syllogism inferen...
syl3an1 1163 A syllogism inference. (C...
syl3an2 1164 A syllogism inference. (C...
syl3an3 1165 A syllogism inference. (C...
3adantl1 1166 Deduction adding a conjunc...
3adantl2 1167 Deduction adding a conjunc...
3adantl3 1168 Deduction adding a conjunc...
3adantr1 1169 Deduction adding a conjunc...
3adantr2 1170 Deduction adding a conjunc...
3adantr3 1171 Deduction adding a conjunc...
ad4ant123 1172 Deduction adding conjuncts...
ad4ant124 1173 Deduction adding conjuncts...
ad4ant134 1174 Deduction adding conjuncts...
ad4ant234 1175 Deduction adding conjuncts...
3adant1l 1176 Deduction adding a conjunc...
3adant1r 1177 Deduction adding a conjunc...
3adant2l 1178 Deduction adding a conjunc...
3adant2r 1179 Deduction adding a conjunc...
3adant3l 1180 Deduction adding a conjunc...
3adant3r 1181 Deduction adding a conjunc...
3adant3r1 1182 Deduction adding a conjunc...
3adant3r2 1183 Deduction adding a conjunc...
3adant3r3 1184 Deduction adding a conjunc...
3ad2antl1 1185 Deduction adding conjuncts...
3ad2antl2 1186 Deduction adding conjuncts...
3ad2antl3 1187 Deduction adding conjuncts...
3ad2antr1 1188 Deduction adding conjuncts...
3ad2antr2 1189 Deduction adding conjuncts...
3ad2antr3 1190 Deduction adding conjuncts...
simpl1 1191 Simplification of conjunct...
simpl2 1192 Simplification of conjunct...
simpl3 1193 Simplification of conjunct...
simpr1 1194 Simplification of conjunct...
simpr2 1195 Simplification of conjunct...
simpr3 1196 Simplification of conjunct...
simp1l 1197 Simplification of triple c...
simp1r 1198 Simplification of triple c...
simp2l 1199 Simplification of triple c...
simp2r 1200 Simplification of triple c...
simp3l 1201 Simplification of triple c...
simp3r 1202 Simplification of triple c...
simp11 1203 Simplification of doubly t...
simp12 1204 Simplification of doubly t...
simp13 1205 Simplification of doubly t...
simp21 1206 Simplification of doubly t...
simp22 1207 Simplification of doubly t...
simp23 1208 Simplification of doubly t...
simp31 1209 Simplification of doubly t...
simp32 1210 Simplification of doubly t...
simp33 1211 Simplification of doubly t...
simpll1 1212 Simplification of conjunct...
simpll2 1213 Simplification of conjunct...
simpll3 1214 Simplification of conjunct...
simplr1 1215 Simplification of conjunct...
simplr2 1216 Simplification of conjunct...
simplr3 1217 Simplification of conjunct...
simprl1 1218 Simplification of conjunct...
simprl2 1219 Simplification of conjunct...
simprl3 1220 Simplification of conjunct...
simprr1 1221 Simplification of conjunct...
simprr2 1222 Simplification of conjunct...
simprr3 1223 Simplification of conjunct...
simpl1l 1224 Simplification of conjunct...
simpl1r 1225 Simplification of conjunct...
simpl2l 1226 Simplification of conjunct...
simpl2r 1227 Simplification of conjunct...
simpl3l 1228 Simplification of conjunct...
simpl3r 1229 Simplification of conjunct...
simpr1l 1230 Simplification of conjunct...
simpr1r 1231 Simplification of conjunct...
simpr2l 1232 Simplification of conjunct...
simpr2r 1233 Simplification of conjunct...
simpr3l 1234 Simplification of conjunct...
simpr3r 1235 Simplification of conjunct...
simp1ll 1236 Simplification of conjunct...
simp1lr 1237 Simplification of conjunct...
simp1rl 1238 Simplification of conjunct...
simp1rr 1239 Simplification of conjunct...
simp2ll 1240 Simplification of conjunct...
simp2lr 1241 Simplification of conjunct...
simp2rl 1242 Simplification of conjunct...
simp2rr 1243 Simplification of conjunct...
simp3ll 1244 Simplification of conjunct...
simp3lr 1245 Simplification of conjunct...
simp3rl 1246 Simplification of conjunct...
simp3rr 1247 Simplification of conjunct...
simpl11 1248 Simplification of conjunct...
simpl12 1249 Simplification of conjunct...
simpl13 1250 Simplification of conjunct...
simpl21 1251 Simplification of conjunct...
simpl22 1252 Simplification of conjunct...
simpl23 1253 Simplification of conjunct...
simpl31 1254 Simplification of conjunct...
simpl32 1255 Simplification of conjunct...
simpl33 1256 Simplification of conjunct...
simpr11 1257 Simplification of conjunct...
simpr12 1258 Simplification of conjunct...
simpr13 1259 Simplification of conjunct...
simpr21 1260 Simplification of conjunct...
simpr22 1261 Simplification of conjunct...
simpr23 1262 Simplification of conjunct...
simpr31 1263 Simplification of conjunct...
simpr32 1264 Simplification of conjunct...
simpr33 1265 Simplification of conjunct...
simp1l1 1266 Simplification of conjunct...
simp1l2 1267 Simplification of conjunct...
simp1l3 1268 Simplification of conjunct...
simp1r1 1269 Simplification of conjunct...
simp1r2 1270 Simplification of conjunct...
simp1r3 1271 Simplification of conjunct...
simp2l1 1272 Simplification of conjunct...
simp2l2 1273 Simplification of conjunct...
simp2l3 1274 Simplification of conjunct...
simp2r1 1275 Simplification of conjunct...
simp2r2 1276 Simplification of conjunct...
simp2r3 1277 Simplification of conjunct...
simp3l1 1278 Simplification of conjunct...
simp3l2 1279 Simplification of conjunct...
simp3l3 1280 Simplification of conjunct...
simp3r1 1281 Simplification of conjunct...
simp3r2 1282 Simplification of conjunct...
simp3r3 1283 Simplification of conjunct...
simp11l 1284 Simplification of conjunct...
simp11r 1285 Simplification of conjunct...
simp12l 1286 Simplification of conjunct...
simp12r 1287 Simplification of conjunct...
simp13l 1288 Simplification of conjunct...
simp13r 1289 Simplification of conjunct...
simp21l 1290 Simplification of conjunct...
simp21r 1291 Simplification of conjunct...
simp22l 1292 Simplification of conjunct...
simp22r 1293 Simplification of conjunct...
simp23l 1294 Simplification of conjunct...
simp23r 1295 Simplification of conjunct...
simp31l 1296 Simplification of conjunct...
simp31r 1297 Simplification of conjunct...
simp32l 1298 Simplification of conjunct...
simp32r 1299 Simplification of conjunct...
simp33l 1300 Simplification of conjunct...
simp33r 1301 Simplification of conjunct...
simp111 1302 Simplification of conjunct...
simp112 1303 Simplification of conjunct...
simp113 1304 Simplification of conjunct...
simp121 1305 Simplification of conjunct...
simp122 1306 Simplification of conjunct...
simp123 1307 Simplification of conjunct...
simp131 1308 Simplification of conjunct...
simp132 1309 Simplification of conjunct...
simp133 1310 Simplification of conjunct...
simp211 1311 Simplification of conjunct...
simp212 1312 Simplification of conjunct...
simp213 1313 Simplification of conjunct...
simp221 1314 Simplification of conjunct...
simp222 1315 Simplification of conjunct...
simp223 1316 Simplification of conjunct...
simp231 1317 Simplification of conjunct...
simp232 1318 Simplification of conjunct...
simp233 1319 Simplification of conjunct...
simp311 1320 Simplification of conjunct...
simp312 1321 Simplification of conjunct...
simp313 1322 Simplification of conjunct...
simp321 1323 Simplification of conjunct...
simp322 1324 Simplification of conjunct...
simp323 1325 Simplification of conjunct...
simp331 1326 Simplification of conjunct...
simp332 1327 Simplification of conjunct...
simp333 1328 Simplification of conjunct...
3anibar 1329 Remove a hypothesis from t...
3mix1 1330 Introduction in triple dis...
3mix2 1331 Introduction in triple dis...
3mix3 1332 Introduction in triple dis...
3mix1i 1333 Introduction in triple dis...
3mix2i 1334 Introduction in triple dis...
3mix3i 1335 Introduction in triple dis...
3mix1d 1336 Deduction introducing trip...
3mix2d 1337 Deduction introducing trip...
3mix3d 1338 Deduction introducing trip...
3pm3.2i 1339 Infer conjunction of premi...
pm3.2an3 1340 Version of ~ pm3.2 for a t...
mpbir3an 1341 Detach a conjunction of tr...
mpbir3and 1342 Detach a conjunction of tr...
syl3anbrc 1343 Syllogism inference. (Con...
syl21anbrc 1344 Syllogism inference. (Con...
3imp3i2an 1345 An elimination deduction. ...
ex3 1346 Apply ~ ex to a hypothesis...
3imp1 1347 Importation to left triple...
3impd 1348 Importation deduction for ...
3imp2 1349 Importation to right tripl...
3impdi 1350 Importation inference (und...
3impdir 1351 Importation inference (und...
3exp1 1352 Exportation from left trip...
3expd 1353 Exportation deduction for ...
3exp2 1354 Exportation from right tri...
exp5o 1355 A triple exportation infer...
exp516 1356 A triple exportation infer...
exp520 1357 A triple exportation infer...
3impexp 1358 Version of ~ impexp for a ...
3an1rs 1359 Swap conjuncts. (Contribu...
3anassrs 1360 Associative law for conjun...
ad5ant245 1361 Deduction adding conjuncts...
ad5ant234 1362 Deduction adding conjuncts...
ad5ant235 1363 Deduction adding conjuncts...
ad5ant123 1364 Deduction adding conjuncts...
ad5ant124 1365 Deduction adding conjuncts...
ad5ant125 1366 Deduction adding conjuncts...
ad5ant134 1367 Deduction adding conjuncts...
ad5ant135 1368 Deduction adding conjuncts...
ad5ant145 1369 Deduction adding conjuncts...
ad5ant2345 1370 Deduction adding conjuncts...
syl3anc 1371 Syllogism combined with co...
syl13anc 1372 Syllogism combined with co...
syl31anc 1373 Syllogism combined with co...
syl112anc 1374 Syllogism combined with co...
syl121anc 1375 Syllogism combined with co...
syl211anc 1376 Syllogism combined with co...
syl23anc 1377 Syllogism combined with co...
syl32anc 1378 Syllogism combined with co...
syl122anc 1379 Syllogism combined with co...
syl212anc 1380 Syllogism combined with co...
syl221anc 1381 Syllogism combined with co...
syl113anc 1382 Syllogism combined with co...
syl131anc 1383 Syllogism combined with co...
syl311anc 1384 Syllogism combined with co...
syl33anc 1385 Syllogism combined with co...
syl222anc 1386 Syllogism combined with co...
syl123anc 1387 Syllogism combined with co...
syl132anc 1388 Syllogism combined with co...
syl213anc 1389 Syllogism combined with co...
syl231anc 1390 Syllogism combined with co...
syl312anc 1391 Syllogism combined with co...
syl321anc 1392 Syllogism combined with co...
syl133anc 1393 Syllogism combined with co...
syl313anc 1394 Syllogism combined with co...
syl331anc 1395 Syllogism combined with co...
syl223anc 1396 Syllogism combined with co...
syl232anc 1397 Syllogism combined with co...
syl322anc 1398 Syllogism combined with co...
syl233anc 1399 Syllogism combined with co...
syl323anc 1400 Syllogism combined with co...
syl332anc 1401 Syllogism combined with co...
syl333anc 1402 A syllogism inference comb...
syl3an1b 1403 A syllogism inference. (C...
syl3an2b 1404 A syllogism inference. (C...
syl3an3b 1405 A syllogism inference. (C...
syl3an1br 1406 A syllogism inference. (C...
syl3an2br 1407 A syllogism inference. (C...
syl3an3br 1408 A syllogism inference. (C...
syld3an3 1409 A syllogism inference. (C...
syld3an1 1410 A syllogism inference. (C...
syld3an2 1411 A syllogism inference. (C...
syl3anl1 1412 A syllogism inference. (C...
syl3anl2 1413 A syllogism inference. (C...
syl3anl3 1414 A syllogism inference. (C...
syl3anl 1415 A triple syllogism inferen...
syl3anr1 1416 A syllogism inference. (C...
syl3anr2 1417 A syllogism inference. (C...
syl3anr3 1418 A syllogism inference. (C...
3anidm12 1419 Inference from idempotent ...
3anidm13 1420 Inference from idempotent ...
3anidm23 1421 Inference from idempotent ...
syl2an3an 1422 ~ syl3an with antecedents ...
syl2an23an 1423 Deduction related to ~ syl...
3ori 1424 Infer implication from tri...
3jao 1425 Disjunction of three antec...
3jaob 1426 Disjunction of three antec...
3jaoi 1427 Disjunction of three antec...
3jaod 1428 Disjunction of three antec...
3jaoian 1429 Disjunction of three antec...
3jaodan 1430 Disjunction of three antec...
mpjao3dan 1431 Eliminate a three-way disj...
mpjao3danOLD 1432 Obsolete version of ~ mpja...
3jaao 1433 Inference conjoining and d...
syl3an9b 1434 Nested syllogism inference...
3orbi123d 1435 Deduction joining 3 equiva...
3anbi123d 1436 Deduction joining 3 equiva...
3anbi12d 1437 Deduction conjoining and a...
3anbi13d 1438 Deduction conjoining and a...
3anbi23d 1439 Deduction conjoining and a...
3anbi1d 1440 Deduction adding conjuncts...
3anbi2d 1441 Deduction adding conjuncts...
3anbi3d 1442 Deduction adding conjuncts...
3anim123d 1443 Deduction joining 3 implic...
3orim123d 1444 Deduction joining 3 implic...
an6 1445 Rearrangement of 6 conjunc...
3an6 1446 Analogue of ~ an4 for trip...
3or6 1447 Analogue of ~ or4 for trip...
mp3an1 1448 An inference based on modu...
mp3an2 1449 An inference based on modu...
mp3an3 1450 An inference based on modu...
mp3an12 1451 An inference based on modu...
mp3an13 1452 An inference based on modu...
mp3an23 1453 An inference based on modu...
mp3an1i 1454 An inference based on modu...
mp3anl1 1455 An inference based on modu...
mp3anl2 1456 An inference based on modu...
mp3anl3 1457 An inference based on modu...
mp3anr1 1458 An inference based on modu...
mp3anr2 1459 An inference based on modu...
mp3anr3 1460 An inference based on modu...
mp3an 1461 An inference based on modu...
mpd3an3 1462 An inference based on modu...
mpd3an23 1463 An inference based on modu...
mp3and 1464 A deduction based on modus...
mp3an12i 1465 ~ mp3an with antecedents i...
mp3an2i 1466 ~ mp3an with antecedents i...
mp3an3an 1467 ~ mp3an with antecedents i...
mp3an2ani 1468 An elimination deduction. ...
biimp3a 1469 Infer implication from a l...
biimp3ar 1470 Infer implication from a l...
3anandis 1471 Inference that undistribut...
3anandirs 1472 Inference that undistribut...
ecase23d 1473 Deduction for elimination ...
3ecase 1474 Inference for elimination ...
3bior1fd 1475 A disjunction is equivalen...
3bior1fand 1476 A disjunction is equivalen...
3bior2fd 1477 A wff is equivalent to its...
3biant1d 1478 A conjunction is equivalen...
intn3an1d 1479 Introduction of a triple c...
intn3an2d 1480 Introduction of a triple c...
intn3an3d 1481 Introduction of a triple c...
an3andi 1482 Distribution of conjunctio...
an33rean 1483 Rearrange a 9-fold conjunc...
an33reanOLD 1484 Obsolete version of ~ an33...
3orel2 1485 Partial elimination of a t...
3orel3 1486 Partial elimination of a t...
3orel13 1487 Elimination of two disjunc...
3pm3.2ni 1488 Triple negated disjunction...
nanan 1491 Conjunction in terms of al...
dfnan2 1492 Alternative denial in term...
nanor 1493 Alternative denial in term...
nancom 1494 Alternative denial is comm...
nannan 1495 Nested alternative denials...
nanim 1496 Implication in terms of al...
nannot 1497 Negation in terms of alter...
nanbi 1498 Biconditional in terms of ...
nanbi1 1499 Introduce a right anti-con...
nanbi2 1500 Introduce a left anti-conj...
nanbi12 1501 Join two logical equivalen...
nanbi1i 1502 Introduce a right anti-con...
nanbi2i 1503 Introduce a left anti-conj...
nanbi12i 1504 Join two logical equivalen...
nanbi1d 1505 Introduce a right anti-con...
nanbi2d 1506 Introduce a left anti-conj...
nanbi12d 1507 Join two logical equivalen...
nanass 1508 A characterization of when...
xnor 1511 Two ways to write XNOR (ex...
xorcom 1512 The connector ` \/_ ` is c...
xorcomOLD 1513 Obsolete version of ~ xorc...
xorass 1514 The connector ` \/_ ` is a...
excxor 1515 This tautology shows that ...
xor2 1516 Two ways to express "exclu...
xoror 1517 Exclusive disjunction impl...
xornan 1518 Exclusive disjunction impl...
xornan2 1519 XOR implies NAND (written ...
xorneg2 1520 The connector ` \/_ ` is n...
xorneg1 1521 The connector ` \/_ ` is n...
xorneg 1522 The connector ` \/_ ` is u...
xorbi12i 1523 Equality property for excl...
xorbi12iOLD 1524 Obsolete version of ~ xorb...
xorbi12d 1525 Equality property for excl...
anxordi 1526 Conjunction distributes ov...
xorexmid 1527 Exclusive-or variant of th...
norcom 1530 The connector ` -\/ ` is c...
norcomOLD 1531 Obsolete version of ~ norc...
nornot 1532 ` -. ` is expressible via ...
noran 1533 ` /\ ` is expressible via ...
noror 1534 ` \/ ` is expressible via ...
norasslem1 1535 This lemma shows the equiv...
norasslem2 1536 This lemma specializes ~ b...
norasslem3 1537 This lemma specializes ~ b...
norass 1538 A characterization of when...
trujust 1543 Soundness justification th...
tru 1545 The truth value ` T. ` is ...
dftru2 1546 An alternate definition of...
trut 1547 A proposition is equivalen...
mptru 1548 Eliminate ` T. ` as an ant...
tbtru 1549 A proposition is equivalen...
bitru 1550 A theorem is equivalent to...
trud 1551 Anything implies ` T. ` . ...
truan 1552 True can be removed from a...
fal 1555 The truth value ` F. ` is ...
nbfal 1556 The negation of a proposit...
bifal 1557 A contradiction is equival...
falim 1558 The truth value ` F. ` imp...
falimd 1559 The truth value ` F. ` imp...
dfnot 1560 Given falsum ` F. ` , we c...
inegd 1561 Negation introduction rule...
efald 1562 Deduction based on reducti...
pm2.21fal 1563 If a wff and its negation ...
truimtru 1564 A ` -> ` identity. (Contr...
truimfal 1565 A ` -> ` identity. (Contr...
falimtru 1566 A ` -> ` identity. (Contr...
falimfal 1567 A ` -> ` identity. (Contr...
nottru 1568 A ` -. ` identity. (Contr...
notfal 1569 A ` -. ` identity. (Contr...
trubitru 1570 A ` <-> ` identity. (Cont...
falbitru 1571 A ` <-> ` identity. (Cont...
trubifal 1572 A ` <-> ` identity. (Cont...
falbifal 1573 A ` <-> ` identity. (Cont...
truantru 1574 A ` /\ ` identity. (Contr...
truanfal 1575 A ` /\ ` identity. (Contr...
falantru 1576 A ` /\ ` identity. (Contr...
falanfal 1577 A ` /\ ` identity. (Contr...
truortru 1578 A ` \/ ` identity. (Contr...
truorfal 1579 A ` \/ ` identity. (Contr...
falortru 1580 A ` \/ ` identity. (Contr...
falorfal 1581 A ` \/ ` identity. (Contr...
trunantru 1582 A ` -/\ ` identity. (Cont...
trunanfal 1583 A ` -/\ ` identity. (Cont...
falnantru 1584 A ` -/\ ` identity. (Cont...
falnanfal 1585 A ` -/\ ` identity. (Cont...
truxortru 1586 A ` \/_ ` identity. (Cont...
truxorfal 1587 A ` \/_ ` identity. (Cont...
falxortru 1588 A ` \/_ ` identity. (Cont...
falxorfal 1589 A ` \/_ ` identity. (Cont...
trunortru 1590 A ` -\/ ` identity. (Cont...
trunorfal 1591 A ` -\/ ` identity. (Cont...
falnortru 1592 A ` -\/ ` identity. (Cont...
falnorfal 1593 A ` -\/ ` identity. (Cont...
hadbi123d 1596 Equality theorem for the a...
hadbi123i 1597 Equality theorem for the a...
hadass 1598 Associative law for the ad...
hadbi 1599 The adder sum is the same ...
hadcoma 1600 Commutative law for the ad...
hadcomb 1601 Commutative law for the ad...
hadrot 1602 Rotation law for the adder...
hadnot 1603 The adder sum distributes ...
had1 1604 If the first input is true...
had0 1605 If the first input is fals...
hadifp 1606 The value of the adder sum...
cador 1609 The adder carry in disjunc...
cadan 1610 The adder carry in conjunc...
cadbi123d 1611 Equality theorem for the a...
cadbi123i 1612 Equality theorem for the a...
cadcoma 1613 Commutative law for the ad...
cadcomb 1614 Commutative law for the ad...
cadrot 1615 Rotation law for the adder...
cadnot 1616 The adder carry distribute...
cad11 1617 If (at least) two inputs a...
cad1 1618 If one input is true, then...
cad0 1619 If one input is false, the...
cad0OLD 1620 Obsolete version of ~ cad0...
cadifp 1621 The value of the carry is,...
cadtru 1622 The adder carry is true as...
minimp 1623 A single axiom for minimal...
minimp-syllsimp 1624 Derivation of Syll-Simp ( ...
minimp-ax1 1625 Derivation of ~ ax-1 from ...
minimp-ax2c 1626 Derivation of a commuted f...
minimp-ax2 1627 Derivation of ~ ax-2 from ...
minimp-pm2.43 1628 Derivation of ~ pm2.43 (al...
impsingle 1629 The shortest single axiom ...
impsingle-step4 1630 Derivation of impsingle-st...
impsingle-step8 1631 Derivation of impsingle-st...
impsingle-ax1 1632 Derivation of impsingle-ax...
impsingle-step15 1633 Derivation of impsingle-st...
impsingle-step18 1634 Derivation of impsingle-st...
impsingle-step19 1635 Derivation of impsingle-st...
impsingle-step20 1636 Derivation of impsingle-st...
impsingle-step21 1637 Derivation of impsingle-st...
impsingle-step22 1638 Derivation of impsingle-st...
impsingle-step25 1639 Derivation of impsingle-st...
impsingle-imim1 1640 Derivation of impsingle-im...
impsingle-peirce 1641 Derivation of impsingle-pe...
tarski-bernays-ax2 1642 Derivation of ~ ax-2 from ...
meredith 1643 Carew Meredith's sole axio...
merlem1 1644 Step 3 of Meredith's proof...
merlem2 1645 Step 4 of Meredith's proof...
merlem3 1646 Step 7 of Meredith's proof...
merlem4 1647 Step 8 of Meredith's proof...
merlem5 1648 Step 11 of Meredith's proo...
merlem6 1649 Step 12 of Meredith's proo...
merlem7 1650 Between steps 14 and 15 of...
merlem8 1651 Step 15 of Meredith's proo...
merlem9 1652 Step 18 of Meredith's proo...
merlem10 1653 Step 19 of Meredith's proo...
merlem11 1654 Step 20 of Meredith's proo...
merlem12 1655 Step 28 of Meredith's proo...
merlem13 1656 Step 35 of Meredith's proo...
luk-1 1657 1 of 3 axioms for proposit...
luk-2 1658 2 of 3 axioms for proposit...
luk-3 1659 3 of 3 axioms for proposit...
luklem1 1660 Used to rederive standard ...
luklem2 1661 Used to rederive standard ...
luklem3 1662 Used to rederive standard ...
luklem4 1663 Used to rederive standard ...
luklem5 1664 Used to rederive standard ...
luklem6 1665 Used to rederive standard ...
luklem7 1666 Used to rederive standard ...
luklem8 1667 Used to rederive standard ...
ax1 1668 Standard propositional axi...
ax2 1669 Standard propositional axi...
ax3 1670 Standard propositional axi...
nic-dfim 1671 This theorem "defines" imp...
nic-dfneg 1672 This theorem "defines" neg...
nic-mp 1673 Derive Nicod's rule of mod...
nic-mpALT 1674 A direct proof of ~ nic-mp...
nic-ax 1675 Nicod's axiom derived from...
nic-axALT 1676 A direct proof of ~ nic-ax...
nic-imp 1677 Inference for ~ nic-mp usi...
nic-idlem1 1678 Lemma for ~ nic-id . (Con...
nic-idlem2 1679 Lemma for ~ nic-id . Infe...
nic-id 1680 Theorem ~ id expressed wit...
nic-swap 1681 The connector ` -/\ ` is s...
nic-isw1 1682 Inference version of ~ nic...
nic-isw2 1683 Inference for swapping nes...
nic-iimp1 1684 Inference version of ~ nic...
nic-iimp2 1685 Inference version of ~ nic...
nic-idel 1686 Inference to remove the tr...
nic-ich 1687 Chained inference. (Contr...
nic-idbl 1688 Double the terms. Since d...
nic-bijust 1689 Biconditional justificatio...
nic-bi1 1690 Inference to extract one s...
nic-bi2 1691 Inference to extract the o...
nic-stdmp 1692 Derive the standard modus ...
nic-luk1 1693 Proof of ~ luk-1 from ~ ni...
nic-luk2 1694 Proof of ~ luk-2 from ~ ni...
nic-luk3 1695 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1696 This alternative axiom for...
lukshefth1 1697 Lemma for ~ renicax . (Co...
lukshefth2 1698 Lemma for ~ renicax . (Co...
renicax 1699 A rederivation of ~ nic-ax...
tbw-bijust 1700 Justification for ~ tbw-ne...
tbw-negdf 1701 The definition of negation...
tbw-ax1 1702 The first of four axioms i...
tbw-ax2 1703 The second of four axioms ...
tbw-ax3 1704 The third of four axioms i...
tbw-ax4 1705 The fourth of four axioms ...
tbwsyl 1706 Used to rederive the Lukas...
tbwlem1 1707 Used to rederive the Lukas...
tbwlem2 1708 Used to rederive the Lukas...
tbwlem3 1709 Used to rederive the Lukas...
tbwlem4 1710 Used to rederive the Lukas...
tbwlem5 1711 Used to rederive the Lukas...
re1luk1 1712 ~ luk-1 derived from the T...
re1luk2 1713 ~ luk-2 derived from the T...
re1luk3 1714 ~ luk-3 derived from the T...
merco1 1715 A single axiom for proposi...
merco1lem1 1716 Used to rederive the Tarsk...
retbwax4 1717 ~ tbw-ax4 rederived from ~...
retbwax2 1718 ~ tbw-ax2 rederived from ~...
merco1lem2 1719 Used to rederive the Tarsk...
merco1lem3 1720 Used to rederive the Tarsk...
merco1lem4 1721 Used to rederive the Tarsk...
merco1lem5 1722 Used to rederive the Tarsk...
merco1lem6 1723 Used to rederive the Tarsk...
merco1lem7 1724 Used to rederive the Tarsk...
retbwax3 1725 ~ tbw-ax3 rederived from ~...
merco1lem8 1726 Used to rederive the Tarsk...
merco1lem9 1727 Used to rederive the Tarsk...
merco1lem10 1728 Used to rederive the Tarsk...
merco1lem11 1729 Used to rederive the Tarsk...
merco1lem12 1730 Used to rederive the Tarsk...
merco1lem13 1731 Used to rederive the Tarsk...
merco1lem14 1732 Used to rederive the Tarsk...
merco1lem15 1733 Used to rederive the Tarsk...
merco1lem16 1734 Used to rederive the Tarsk...
merco1lem17 1735 Used to rederive the Tarsk...
merco1lem18 1736 Used to rederive the Tarsk...
retbwax1 1737 ~ tbw-ax1 rederived from ~...
merco2 1738 A single axiom for proposi...
mercolem1 1739 Used to rederive the Tarsk...
mercolem2 1740 Used to rederive the Tarsk...
mercolem3 1741 Used to rederive the Tarsk...
mercolem4 1742 Used to rederive the Tarsk...
mercolem5 1743 Used to rederive the Tarsk...
mercolem6 1744 Used to rederive the Tarsk...
mercolem7 1745 Used to rederive the Tarsk...
mercolem8 1746 Used to rederive the Tarsk...
re1tbw1 1747 ~ tbw-ax1 rederived from ~...
re1tbw2 1748 ~ tbw-ax2 rederived from ~...
re1tbw3 1749 ~ tbw-ax3 rederived from ~...
re1tbw4 1750 ~ tbw-ax4 rederived from ~...
rb-bijust 1751 Justification for ~ rb-imd...
rb-imdf 1752 The definition of implicat...
anmp 1753 Modus ponens for ` { \/ , ...
rb-ax1 1754 The first of four axioms i...
rb-ax2 1755 The second of four axioms ...
rb-ax3 1756 The third of four axioms i...
rb-ax4 1757 The fourth of four axioms ...
rbsyl 1758 Used to rederive the Lukas...
rblem1 1759 Used to rederive the Lukas...
rblem2 1760 Used to rederive the Lukas...
rblem3 1761 Used to rederive the Lukas...
rblem4 1762 Used to rederive the Lukas...
rblem5 1763 Used to rederive the Lukas...
rblem6 1764 Used to rederive the Lukas...
rblem7 1765 Used to rederive the Lukas...
re1axmp 1766 ~ ax-mp derived from Russe...
re2luk1 1767 ~ luk-1 derived from Russe...
re2luk2 1768 ~ luk-2 derived from Russe...
re2luk3 1769 ~ luk-3 derived from Russe...
mptnan 1770 Modus ponendo tollens 1, o...
mptxor 1771 Modus ponendo tollens 2, o...
mtpor 1772 Modus tollendo ponens (inc...
mtpxor 1773 Modus tollendo ponens (ori...
stoic1a 1774 Stoic logic Thema 1 (part ...
stoic1b 1775 Stoic logic Thema 1 (part ...
stoic2a 1776 Stoic logic Thema 2 versio...
stoic2b 1777 Stoic logic Thema 2 versio...
stoic3 1778 Stoic logic Thema 3. Stat...
stoic4a 1779 Stoic logic Thema 4 versio...
stoic4b 1780 Stoic logic Thema 4 versio...
alnex 1783 Universal quantification o...
eximal 1784 An equivalence between an ...
nf2 1787 Alternate definition of no...
nf3 1788 Alternate definition of no...
nf4 1789 Alternate definition of no...
nfi 1790 Deduce that ` x ` is not f...
nfri 1791 Consequence of the definit...
nfd 1792 Deduce that ` x ` is not f...
nfrd 1793 Consequence of the definit...
nftht 1794 Closed form of ~ nfth . (...
nfntht 1795 Closed form of ~ nfnth . ...
nfntht2 1796 Closed form of ~ nfnth . ...
gen2 1798 Generalization applied twi...
mpg 1799 Modus ponens combined with...
mpgbi 1800 Modus ponens on biconditio...
mpgbir 1801 Modus ponens on biconditio...
nex 1802 Generalization rule for ne...
nfth 1803 No variable is (effectivel...
nfnth 1804 No variable is (effectivel...
hbth 1805 No variable is (effectivel...
nftru 1806 The true constant has no f...
nffal 1807 The false constant has no ...
sptruw 1808 Version of ~ sp when ` ph ...
altru 1809 For all sets, ` T. ` is tr...
alfal 1810 For all sets, ` -. F. ` is...
alim 1812 Restatement of Axiom ~ ax-...
alimi 1813 Inference quantifying both...
2alimi 1814 Inference doubly quantifyi...
ala1 1815 Add an antecedent in a uni...
al2im 1816 Closed form of ~ al2imi . ...
al2imi 1817 Inference quantifying ante...
alanimi 1818 Variant of ~ al2imi with c...
alimdh 1819 Deduction form of Theorem ...
albi 1820 Theorem 19.15 of [Margaris...
albii 1821 Inference adding universal...
2albii 1822 Inference adding two unive...
3albii 1823 Inference adding three uni...
sylgt 1824 Closed form of ~ sylg . (...
sylg 1825 A syllogism combined with ...
alrimih 1826 Inference form of Theorem ...
hbxfrbi 1827 A utility lemma to transfe...
alex 1828 Universal quantifier in te...
exnal 1829 Existential quantification...
2nalexn 1830 Part of theorem *11.5 in [...
2exnaln 1831 Theorem *11.22 in [Whitehe...
2nexaln 1832 Theorem *11.25 in [Whitehe...
alimex 1833 An equivalence between an ...
aleximi 1834 A variant of ~ al2imi : in...
alexbii 1835 Biconditional form of ~ al...
exim 1836 Theorem 19.22 of [Margaris...
eximi 1837 Inference adding existenti...
2eximi 1838 Inference adding two exist...
eximii 1839 Inference associated with ...
exa1 1840 Add an antecedent in an ex...
19.38 1841 Theorem 19.38 of [Margaris...
19.38a 1842 Under a nonfreeness hypoth...
19.38b 1843 Under a nonfreeness hypoth...
imnang 1844 Quantified implication in ...
alinexa 1845 A transformation of quanti...
exnalimn 1846 Existential quantification...
alexn 1847 A relationship between two...
2exnexn 1848 Theorem *11.51 in [Whitehe...
exbi 1849 Theorem 19.18 of [Margaris...
exbii 1850 Inference adding existenti...
2exbii 1851 Inference adding two exist...
3exbii 1852 Inference adding three exi...
nfbiit 1853 Equivalence theorem for th...
nfbii 1854 Equality theorem for the n...
nfxfr 1855 A utility lemma to transfe...
nfxfrd 1856 A utility lemma to transfe...
nfnbi 1857 A variable is nonfree in a...
nfnbiOLD 1858 Obsolete version of ~ nfnb...
nfnt 1859 If a variable is nonfree i...
nfn 1860 Inference associated with ...
nfnd 1861 Deduction associated with ...
exanali 1862 A transformation of quanti...
2exanali 1863 Theorem *11.521 in [Whiteh...
exancom 1864 Commutation of conjunction...
exan 1865 Place a conjunct in the sc...
alrimdh 1866 Deduction form of Theorem ...
eximdh 1867 Deduction from Theorem 19....
nexdh 1868 Deduction for generalizati...
albidh 1869 Formula-building rule for ...
exbidh 1870 Formula-building rule for ...
exsimpl 1871 Simplification of an exist...
exsimpr 1872 Simplification of an exist...
19.26 1873 Theorem 19.26 of [Margaris...
19.26-2 1874 Theorem ~ 19.26 with two q...
19.26-3an 1875 Theorem ~ 19.26 with tripl...
19.29 1876 Theorem 19.29 of [Margaris...
19.29r 1877 Variation of ~ 19.29 . (C...
19.29r2 1878 Variation of ~ 19.29r with...
19.29x 1879 Variation of ~ 19.29 with ...
19.35 1880 Theorem 19.35 of [Margaris...
19.35i 1881 Inference associated with ...
19.35ri 1882 Inference associated with ...
19.25 1883 Theorem 19.25 of [Margaris...
19.30 1884 Theorem 19.30 of [Margaris...
19.43 1885 Theorem 19.43 of [Margaris...
19.43OLD 1886 Obsolete proof of ~ 19.43 ...
19.33 1887 Theorem 19.33 of [Margaris...
19.33b 1888 The antecedent provides a ...
19.40 1889 Theorem 19.40 of [Margaris...
19.40-2 1890 Theorem *11.42 in [Whitehe...
19.40b 1891 The antecedent provides a ...
albiim 1892 Split a biconditional and ...
2albiim 1893 Split a biconditional and ...
exintrbi 1894 Add/remove a conjunct in t...
exintr 1895 Introduce a conjunct in th...
alsyl 1896 Universally quantified and...
nfimd 1897 If in a context ` x ` is n...
nfimt 1898 Closed form of ~ nfim and ...
nfim 1899 If ` x ` is not free in ` ...
nfand 1900 If in a context ` x ` is n...
nf3and 1901 Deduction form of bound-va...
nfan 1902 If ` x ` is not free in ` ...
nfnan 1903 If ` x ` is not free in ` ...
nf3an 1904 If ` x ` is not free in ` ...
nfbid 1905 If in a context ` x ` is n...
nfbi 1906 If ` x ` is not free in ` ...
nfor 1907 If ` x ` is not free in ` ...
nf3or 1908 If ` x ` is not free in ` ...
empty 1909 Two characterizations of t...
emptyex 1910 On the empty domain, any e...
emptyal 1911 On the empty domain, any u...
emptynf 1912 On the empty domain, any v...
ax5d 1914 Version of ~ ax-5 with ant...
ax5e 1915 A rephrasing of ~ ax-5 usi...
ax5ea 1916 If a formula holds for som...
nfv 1917 If ` x ` is not present in...
nfvd 1918 ~ nfv with antecedent. Us...
alimdv 1919 Deduction form of Theorem ...
eximdv 1920 Deduction form of Theorem ...
2alimdv 1921 Deduction form of Theorem ...
2eximdv 1922 Deduction form of Theorem ...
albidv 1923 Formula-building rule for ...
exbidv 1924 Formula-building rule for ...
nfbidv 1925 An equality theorem for no...
2albidv 1926 Formula-building rule for ...
2exbidv 1927 Formula-building rule for ...
3exbidv 1928 Formula-building rule for ...
4exbidv 1929 Formula-building rule for ...
alrimiv 1930 Inference form of Theorem ...
alrimivv 1931 Inference form of Theorem ...
alrimdv 1932 Deduction form of Theorem ...
exlimiv 1933 Inference form of Theorem ...
exlimiiv 1934 Inference (Rule C) associa...
exlimivv 1935 Inference form of Theorem ...
exlimdv 1936 Deduction form of Theorem ...
exlimdvv 1937 Deduction form of Theorem ...
exlimddv 1938 Existential elimination ru...
nexdv 1939 Deduction for generalizati...
2ax5 1940 Quantification of two vari...
stdpc5v 1941 Version of ~ stdpc5 with a...
19.21v 1942 Version of ~ 19.21 with a ...
19.32v 1943 Version of ~ 19.32 with a ...
19.31v 1944 Version of ~ 19.31 with a ...
19.23v 1945 Version of ~ 19.23 with a ...
19.23vv 1946 Theorem ~ 19.23v extended ...
pm11.53v 1947 Version of ~ pm11.53 with ...
19.36imv 1948 One direction of ~ 19.36v ...
19.36imvOLD 1949 Obsolete version of ~ 19.3...
19.36iv 1950 Inference associated with ...
19.37imv 1951 One direction of ~ 19.37v ...
19.37iv 1952 Inference associated with ...
19.41v 1953 Version of ~ 19.41 with a ...
19.41vv 1954 Version of ~ 19.41 with tw...
19.41vvv 1955 Version of ~ 19.41 with th...
19.41vvvv 1956 Version of ~ 19.41 with fo...
19.42v 1957 Version of ~ 19.42 with a ...
exdistr 1958 Distribution of existentia...
exdistrv 1959 Distribute a pair of exist...
4exdistrv 1960 Distribute two pairs of ex...
19.42vv 1961 Version of ~ 19.42 with tw...
exdistr2 1962 Distribution of existentia...
19.42vvv 1963 Version of ~ 19.42 with th...
3exdistr 1964 Distribution of existentia...
4exdistr 1965 Distribution of existentia...
weq 1966 Extend wff definition to i...
speimfw 1967 Specialization, with addit...
speimfwALT 1968 Alternate proof of ~ speim...
spimfw 1969 Specialization, with addit...
ax12i 1970 Inference that has ~ ax-12...
ax6v 1972 Axiom B7 of [Tarski] p. 75...
ax6ev 1973 At least one individual ex...
spimw 1974 Specialization. Lemma 8 o...
spimew 1975 Existential introduction, ...
speiv 1976 Inference from existential...
speivw 1977 Version of ~ spei with a d...
exgen 1978 Rule of existential genera...
extru 1979 There exists a variable su...
19.2 1980 Theorem 19.2 of [Margaris]...
19.2d 1981 Deduction associated with ...
19.8w 1982 Weak version of ~ 19.8a an...
spnfw 1983 Weak version of ~ sp . Us...
spvw 1984 Version of ~ sp when ` x `...
19.3v 1985 Version of ~ 19.3 with a d...
19.8v 1986 Version of ~ 19.8a with a ...
19.9v 1987 Version of ~ 19.9 with a d...
19.39 1988 Theorem 19.39 of [Margaris...
19.24 1989 Theorem 19.24 of [Margaris...
19.34 1990 Theorem 19.34 of [Margaris...
19.36v 1991 Version of ~ 19.36 with a ...
19.12vvv 1992 Version of ~ 19.12vv with ...
19.27v 1993 Version of ~ 19.27 with a ...
19.28v 1994 Version of ~ 19.28 with a ...
19.37v 1995 Version of ~ 19.37 with a ...
19.44v 1996 Version of ~ 19.44 with a ...
19.45v 1997 Version of ~ 19.45 with a ...
spimevw 1998 Existential introduction, ...
spimvw 1999 A weak form of specializat...
spvv 2000 Specialization, using impl...
spfalw 2001 Version of ~ sp when ` ph ...
chvarvv 2002 Implicit substitution of `...
equs4v 2003 Version of ~ equs4 with a ...
alequexv 2004 Version of ~ equs4v with i...
exsbim 2005 One direction of the equiv...
equsv 2006 If a formula does not cont...
equsalvw 2007 Version of ~ equsalv with ...
equsexvw 2008 Version of ~ equsexv with ...
cbvaliw 2009 Change bound variable. Us...
cbvalivw 2010 Change bound variable. Us...
ax7v 2012 Weakened version of ~ ax-7...
ax7v1 2013 First of two weakened vers...
ax7v2 2014 Second of two weakened ver...
equid 2015 Identity law for equality....
nfequid 2016 Bound-variable hypothesis ...
equcomiv 2017 Weaker form of ~ equcomi w...
ax6evr 2018 A commuted form of ~ ax6ev...
ax7 2019 Proof of ~ ax-7 from ~ ax7...
equcomi 2020 Commutative law for equali...
equcom 2021 Commutative law for equali...
equcomd 2022 Deduction form of ~ equcom...
equcoms 2023 An inference commuting equ...
equtr 2024 A transitive law for equal...
equtrr 2025 A transitive law for equal...
equeuclr 2026 Commuted version of ~ eque...
equeucl 2027 Equality is a left-Euclide...
equequ1 2028 An equivalence law for equ...
equequ2 2029 An equivalence law for equ...
equtr2 2030 Equality is a left-Euclide...
stdpc6 2031 One of the two equality ax...
equvinv 2032 A variable introduction la...
equvinva 2033 A modified version of the ...
equvelv 2034 A biconditional form of ~ ...
ax13b 2035 An equivalence between two...
spfw 2036 Weak version of ~ sp . Us...
spw 2037 Weak version of the specia...
cbvalw 2038 Change bound variable. Us...
cbvalvw 2039 Change bound variable. Us...
cbvexvw 2040 Change bound variable. Us...
cbvaldvaw 2041 Rule used to change the bo...
cbvexdvaw 2042 Rule used to change the bo...
cbval2vw 2043 Rule used to change bound ...
cbvex2vw 2044 Rule used to change bound ...
cbvex4vw 2045 Rule used to change bound ...
alcomiw 2046 Weak version of ~ ax-11 . ...
alcomw 2047 Weak version of ~ alcom an...
hbn1fw 2048 Weak version of ~ ax-10 fr...
hbn1w 2049 Weak version of ~ hbn1 . ...
hba1w 2050 Weak version of ~ hba1 . ...
hbe1w 2051 Weak version of ~ hbe1 . ...
hbalw 2052 Weak version of ~ hbal . ...
19.8aw 2053 If a formula is true, then...
exexw 2054 Existential quantification...
spaev 2055 A special instance of ~ sp...
cbvaev 2056 Change bound variable in a...
aevlem0 2057 Lemma for ~ aevlem . Inst...
aevlem 2058 Lemma for ~ aev and ~ axc1...
aeveq 2059 The antecedent ` A. x x = ...
aev 2060 A "distinctor elimination"...
aev2 2061 A version of ~ aev with tw...
hbaev 2062 All variables are effectiv...
naev 2063 If some set variables can ...
naev2 2064 Generalization of ~ hbnaev...
hbnaev 2065 Any variable is free in ` ...
sbjust 2066 Justification theorem for ...
sbt 2069 A substitution into a theo...
sbtru 2070 The result of substituting...
stdpc4 2071 The specialization axiom o...
sbtALT 2072 Alternate proof of ~ sbt ,...
2stdpc4 2073 A double specialization us...
sbi1 2074 Distribute substitution ov...
spsbim 2075 Distribute substitution ov...
spsbbi 2076 Biconditional property for...
sbimi 2077 Distribute substitution ov...
sb2imi 2078 Distribute substitution ov...
sbbii 2079 Infer substitution into bo...
2sbbii 2080 Infer double substitution ...
sbimdv 2081 Deduction substituting bot...
sbbidv 2082 Deduction substituting bot...
sban 2083 Conjunction inside and out...
sb3an 2084 Threefold conjunction insi...
spsbe 2085 Existential generalization...
sbequ 2086 Equality property for subs...
sbequi 2087 An equality theorem for su...
sb6 2088 Alternate definition of su...
2sb6 2089 Equivalence for double sub...
sb1v 2090 One direction of ~ sb5 , p...
sbv 2091 Substitution for a variabl...
sbcom4 2092 Commutativity law for subs...
pm11.07 2093 Axiom *11.07 in [Whitehead...
sbrimvw 2094 Substitution in an implica...
sbievw 2095 Conversion of implicit sub...
sbiedvw 2096 Conversion of implicit sub...
2sbievw 2097 Conversion of double impli...
sbcom3vv 2098 Substituting ` y ` for ` x...
sbievw2 2099 ~ sbievw applied twice, av...
sbco2vv 2100 A composition law for subs...
equsb3 2101 Substitution in an equalit...
equsb3r 2102 Substitution applied to th...
equsb1v 2103 Substitution applied to an...
nsb 2104 Any substitution in an alw...
sbn1 2105 One direction of ~ sbn , u...
wel 2107 Extend wff definition to i...
ax8v 2109 Weakened version of ~ ax-8...
ax8v1 2110 First of two weakened vers...
ax8v2 2111 Second of two weakened ver...
ax8 2112 Proof of ~ ax-8 from ~ ax8...
elequ1 2113 An identity law for the no...
elsb1 2114 Substitution for the first...
cleljust 2115 When the class variables i...
ax9v 2117 Weakened version of ~ ax-9...
ax9v1 2118 First of two weakened vers...
ax9v2 2119 Second of two weakened ver...
ax9 2120 Proof of ~ ax-9 from ~ ax9...
elequ2 2121 An identity law for the no...
elequ2g 2122 A form of ~ elequ2 with a ...
elsb2 2123 Substitution for the secon...
ax6dgen 2124 Tarski's system uses the w...
ax10w 2125 Weak version of ~ ax-10 fr...
ax11w 2126 Weak version of ~ ax-11 fr...
ax11dgen 2127 Degenerate instance of ~ a...
ax12wlem 2128 Lemma for weak version of ...
ax12w 2129 Weak version of ~ ax-12 fr...
ax12dgen 2130 Degenerate instance of ~ a...
ax12wdemo 2131 Example of an application ...
ax13w 2132 Weak version (principal in...
ax13dgen1 2133 Degenerate instance of ~ a...
ax13dgen2 2134 Degenerate instance of ~ a...
ax13dgen3 2135 Degenerate instance of ~ a...
ax13dgen4 2136 Degenerate instance of ~ a...
hbn1 2138 Alias for ~ ax-10 to be us...
hbe1 2139 The setvar ` x ` is not fr...
hbe1a 2140 Dual statement of ~ hbe1 ....
nf5-1 2141 One direction of ~ nf5 can...
nf5i 2142 Deduce that ` x ` is not f...
nf5dh 2143 Deduce that ` x ` is not f...
nf5dv 2144 Apply the definition of no...
nfnaew 2145 All variables are effectiv...
nfnaewOLD 2146 Obsolete version of ~ nfna...
nfe1 2147 The setvar ` x ` is not fr...
nfa1 2148 The setvar ` x ` is not fr...
nfna1 2149 A convenience theorem part...
nfia1 2150 Lemma 23 of [Monk2] p. 114...
nfnf1 2151 The setvar ` x ` is not fr...
modal5 2152 The analogue in our predic...
nfs1v 2153 The setvar ` x ` is not fr...
alcoms 2155 Swap quantifiers in an ant...
alcom 2156 Theorem 19.5 of [Margaris]...
alrot3 2157 Theorem *11.21 in [Whitehe...
alrot4 2158 Rotate four universal quan...
sbal 2159 Move universal quantifier ...
sbalv 2160 Quantify with new variable...
sbcom2 2161 Commutativity law for subs...
excom 2162 Theorem 19.11 of [Margaris...
excomim 2163 One direction of Theorem 1...
excom13 2164 Swap 1st and 3rd existenti...
exrot3 2165 Rotate existential quantif...
exrot4 2166 Rotate existential quantif...
hbal 2167 If ` x ` is not free in ` ...
hbald 2168 Deduction form of bound-va...
hbsbw 2169 If ` z ` is not free in ` ...
nfa2 2170 Lemma 24 of [Monk2] p. 114...
ax12v 2172 This is essentially Axiom ...
ax12v2 2173 It is possible to remove a...
19.8a 2174 If a wff is true, it is tr...
19.8ad 2175 If a wff is true, it is tr...
sp 2176 Specialization. A univers...
spi 2177 Inference rule of universa...
sps 2178 Generalization of antecede...
2sp 2179 A double specialization (s...
spsd 2180 Deduction generalizing ant...
19.2g 2181 Theorem 19.2 of [Margaris]...
19.21bi 2182 Inference form of ~ 19.21 ...
19.21bbi 2183 Inference removing two uni...
19.23bi 2184 Inference form of Theorem ...
nexr 2185 Inference associated with ...
qexmid 2186 Quantified excluded middle...
nf5r 2187 Consequence of the definit...
nf5ri 2188 Consequence of the definit...
nf5rd 2189 Consequence of the definit...
spimedv 2190 Deduction version of ~ spi...
spimefv 2191 Version of ~ spime with a ...
nfim1 2192 A closed form of ~ nfim . ...
nfan1 2193 A closed form of ~ nfan . ...
19.3t 2194 Closed form of ~ 19.3 and ...
19.3 2195 A wff may be quantified wi...
19.9d 2196 A deduction version of one...
19.9t 2197 Closed form of ~ 19.9 and ...
19.9 2198 A wff may be existentially...
19.21t 2199 Closed form of Theorem 19....
19.21 2200 Theorem 19.21 of [Margaris...
stdpc5 2201 An axiom scheme of standar...
19.21-2 2202 Version of ~ 19.21 with tw...
19.23t 2203 Closed form of Theorem 19....
19.23 2204 Theorem 19.23 of [Margaris...
alimd 2205 Deduction form of Theorem ...
alrimi 2206 Inference form of Theorem ...
alrimdd 2207 Deduction form of Theorem ...
alrimd 2208 Deduction form of Theorem ...
eximd 2209 Deduction form of Theorem ...
exlimi 2210 Inference associated with ...
exlimd 2211 Deduction form of Theorem ...
exlimimdd 2212 Existential elimination ru...
exlimdd 2213 Existential elimination ru...
nexd 2214 Deduction for generalizati...
albid 2215 Formula-building rule for ...
exbid 2216 Formula-building rule for ...
nfbidf 2217 An equality theorem for ef...
19.16 2218 Theorem 19.16 of [Margaris...
19.17 2219 Theorem 19.17 of [Margaris...
19.27 2220 Theorem 19.27 of [Margaris...
19.28 2221 Theorem 19.28 of [Margaris...
19.19 2222 Theorem 19.19 of [Margaris...
19.36 2223 Theorem 19.36 of [Margaris...
19.36i 2224 Inference associated with ...
19.37 2225 Theorem 19.37 of [Margaris...
19.32 2226 Theorem 19.32 of [Margaris...
19.31 2227 Theorem 19.31 of [Margaris...
19.41 2228 Theorem 19.41 of [Margaris...
19.42 2229 Theorem 19.42 of [Margaris...
19.44 2230 Theorem 19.44 of [Margaris...
19.45 2231 Theorem 19.45 of [Margaris...
spimfv 2232 Specialization, using impl...
chvarfv 2233 Implicit substitution of `...
cbv3v2 2234 Version of ~ cbv3 with two...
sbalex 2235 Equivalence of two ways to...
sb4av 2236 Version of ~ sb4a with a d...
sbimd 2237 Deduction substituting bot...
sbbid 2238 Deduction substituting bot...
2sbbid 2239 Deduction doubly substitut...
sbequ1 2240 An equality theorem for su...
sbequ2 2241 An equality theorem for su...
stdpc7 2242 One of the two equality ax...
sbequ12 2243 An equality theorem for su...
sbequ12r 2244 An equality theorem for su...
sbelx 2245 Elimination of substitutio...
sbequ12a 2246 An equality theorem for su...
sbid 2247 An identity theorem for su...
sbcov 2248 A composition law for subs...
sb6a 2249 Equivalence for substituti...
sbid2vw 2250 Reverting substitution yie...
axc16g 2251 Generalization of ~ axc16 ...
axc16 2252 Proof of older axiom ~ ax-...
axc16gb 2253 Biconditional strengthenin...
axc16nf 2254 If ~ dtru is false, then t...
axc11v 2255 Version of ~ axc11 with a ...
axc11rv 2256 Version of ~ axc11r with a...
drsb2 2257 Formula-building lemma for...
equsalv 2258 An equivalence related to ...
equsexv 2259 An equivalence related to ...
equsexvOLD 2260 Obsolete version of ~ equs...
sbft 2261 Substitution has no effect...
sbf 2262 Substitution for a variabl...
sbf2 2263 Substitution has no effect...
sbh 2264 Substitution for a variabl...
hbs1 2265 The setvar ` x ` is not fr...
nfs1f 2266 If ` x ` is not free in ` ...
sb5 2267 Alternate definition of su...
sb5OLD 2268 Obsolete version of ~ sb5 ...
sb56OLD 2269 Obsolete version of ~ sbal...
equs5av 2270 A property related to subs...
2sb5 2271 Equivalence for double sub...
sbco4lem 2272 Lemma for ~ sbco4 . It re...
sbco4lemOLD 2273 Obsolete version of ~ sbco...
sbco4 2274 Two ways of exchanging two...
dfsb7 2275 An alternate definition of...
sbn 2276 Negation inside and outsid...
sbex 2277 Move existential quantifie...
nf5 2278 Alternate definition of ~ ...
nf6 2279 An alternate definition of...
nf5d 2280 Deduce that ` x ` is not f...
nf5di 2281 Since the converse holds b...
19.9h 2282 A wff may be existentially...
19.21h 2283 Theorem 19.21 of [Margaris...
19.23h 2284 Theorem 19.23 of [Margaris...
exlimih 2285 Inference associated with ...
exlimdh 2286 Deduction form of Theorem ...
equsalhw 2287 Version of ~ equsalh with ...
equsexhv 2288 An equivalence related to ...
hba1 2289 The setvar ` x ` is not fr...
hbnt 2290 Closed theorem version of ...
hbn 2291 If ` x ` is not free in ` ...
hbnd 2292 Deduction form of bound-va...
hbim1 2293 A closed form of ~ hbim . ...
hbimd 2294 Deduction form of bound-va...
hbim 2295 If ` x ` is not free in ` ...
hban 2296 If ` x ` is not free in ` ...
hb3an 2297 If ` x ` is not free in ` ...
sbi2 2298 Introduction of implicatio...
sbim 2299 Implication inside and out...
sbrim 2300 Substitution in an implica...
sbrimOLD 2301 Obsolete version of ~ sbri...
sblim 2302 Substitution in an implica...
sbor 2303 Disjunction inside and out...
sbbi 2304 Equivalence inside and out...
sblbis 2305 Introduce left bicondition...
sbrbis 2306 Introduce right biconditio...
sbrbif 2307 Introduce right biconditio...
sbiev 2308 Conversion of implicit sub...
sbiedw 2309 Conversion of implicit sub...
axc7 2310 Show that the original axi...
axc7e 2311 Abbreviated version of ~ a...
modal-b 2312 The analogue in our predic...
19.9ht 2313 A closed version of ~ 19.9...
axc4 2314 Show that the original axi...
axc4i 2315 Inference version of ~ axc...
nfal 2316 If ` x ` is not free in ` ...
nfex 2317 If ` x ` is not free in ` ...
hbex 2318 If ` x ` is not free in ` ...
nfnf 2319 If ` x ` is not free in ` ...
19.12 2320 Theorem 19.12 of [Margaris...
nfald 2321 Deduction form of ~ nfal ....
nfexd 2322 If ` x ` is not free in ` ...
nfsbv 2323 If ` z ` is not free in ` ...
nfsbvOLD 2324 Obsolete version of ~ nfsb...
hbsbwOLD 2325 Obsolete version of ~ hbsb...
sbco2v 2326 A composition law for subs...
aaan 2327 Distribute universal quant...
aaanOLD 2328 Obsolete version of ~ aaan...
eeor 2329 Distribute existential qua...
eeorOLD 2330 Obsolete version of ~ eeor...
cbv3v 2331 Rule used to change bound ...
cbv1v 2332 Rule used to change bound ...
cbv2w 2333 Rule used to change bound ...
cbvaldw 2334 Deduction used to change b...
cbvexdw 2335 Deduction used to change b...
cbv3hv 2336 Rule used to change bound ...
cbvalv1 2337 Rule used to change bound ...
cbvexv1 2338 Rule used to change bound ...
cbval2v 2339 Rule used to change bound ...
cbvex2v 2340 Rule used to change bound ...
dvelimhw 2341 Proof of ~ dvelimh without...
pm11.53 2342 Theorem *11.53 in [Whitehe...
19.12vv 2343 Special case of ~ 19.12 wh...
eean 2344 Distribute existential qua...
eeanv 2345 Distribute a pair of exist...
eeeanv 2346 Distribute three existenti...
ee4anv 2347 Distribute two pairs of ex...
sb8v 2348 Substitution of variable i...
sb8f 2349 Substitution of variable i...
sb8fOLD 2350 Obsolete version of ~ sb8f...
sb8ef 2351 Substitution of variable i...
2sb8ef 2352 An equivalent expression f...
sb6rfv 2353 Reversed substitution. Ve...
sbnf2 2354 Two ways of expressing " `...
exsb 2355 An equivalent expression f...
2exsb 2356 An equivalent expression f...
sbbib 2357 Reversal of substitution. ...
sbbibvv 2358 Reversal of substitution. ...
sbievg 2359 Substitution applied to ex...
cleljustALT 2360 Alternate proof of ~ clelj...
cleljustALT2 2361 Alternate proof of ~ clelj...
equs5aALT 2362 Alternate proof of ~ equs5...
equs5eALT 2363 Alternate proof of ~ equs5...
axc11r 2364 Same as ~ axc11 but with r...
dral1v 2365 Formula-building lemma for...
dral1vOLD 2366 Obsolete version of ~ dral...
drex1v 2367 Formula-building lemma for...
drnf1v 2368 Formula-building lemma for...
drnf1vOLD 2369 Obsolete version of ~ drnf...
ax13v 2371 A weaker version of ~ ax-1...
ax13lem1 2372 A version of ~ ax13v with ...
ax13 2373 Derive ~ ax-13 from ~ ax13...
ax13lem2 2374 Lemma for ~ nfeqf2 . This...
nfeqf2 2375 An equation between setvar...
dveeq2 2376 Quantifier introduction wh...
nfeqf1 2377 An equation between setvar...
dveeq1 2378 Quantifier introduction wh...
nfeqf 2379 A variable is effectively ...
axc9 2380 Derive set.mm's original ~...
ax6e 2381 At least one individual ex...
ax6 2382 Theorem showing that ~ ax-...
axc10 2383 Show that the original axi...
spimt 2384 Closed theorem form of ~ s...
spim 2385 Specialization, using impl...
spimed 2386 Deduction version of ~ spi...
spime 2387 Existential introduction, ...
spimv 2388 A version of ~ spim with a...
spimvALT 2389 Alternate proof of ~ spimv...
spimev 2390 Distinct-variable version ...
spv 2391 Specialization, using impl...
spei 2392 Inference from existential...
chvar 2393 Implicit substitution of `...
chvarv 2394 Implicit substitution of `...
cbv3 2395 Rule used to change bound ...
cbval 2396 Rule used to change bound ...
cbvex 2397 Rule used to change bound ...
cbvalv 2398 Rule used to change bound ...
cbvexv 2399 Rule used to change bound ...
cbv1 2400 Rule used to change bound ...
cbv2 2401 Rule used to change bound ...
cbv3h 2402 Rule used to change bound ...
cbv1h 2403 Rule used to change bound ...
cbv2h 2404 Rule used to change bound ...
cbvald 2405 Deduction used to change b...
cbvexd 2406 Deduction used to change b...
cbvaldva 2407 Rule used to change the bo...
cbvexdva 2408 Rule used to change the bo...
cbval2 2409 Rule used to change bound ...
cbvex2 2410 Rule used to change bound ...
cbval2vv 2411 Rule used to change bound ...
cbvex2vv 2412 Rule used to change bound ...
cbvex4v 2413 Rule used to change bound ...
equs4 2414 Lemma used in proofs of im...
equsal 2415 An equivalence related to ...
equsex 2416 An equivalence related to ...
equsexALT 2417 Alternate proof of ~ equse...
equsalh 2418 An equivalence related to ...
equsexh 2419 An equivalence related to ...
axc15 2420 Derivation of set.mm's ori...
ax12 2421 Rederivation of Axiom ~ ax...
ax12b 2422 A bidirectional version of...
ax13ALT 2423 Alternate proof of ~ ax13 ...
axc11n 2424 Derive set.mm's original ~...
aecom 2425 Commutation law for identi...
aecoms 2426 A commutation rule for ide...
naecoms 2427 A commutation rule for dis...
axc11 2428 Show that ~ ax-c11 can be ...
hbae 2429 All variables are effectiv...
hbnae 2430 All variables are effectiv...
nfae 2431 All variables are effectiv...
nfnae 2432 All variables are effectiv...
hbnaes 2433 Rule that applies ~ hbnae ...
axc16i 2434 Inference with ~ axc16 as ...
axc16nfALT 2435 Alternate proof of ~ axc16...
dral2 2436 Formula-building lemma for...
dral1 2437 Formula-building lemma for...
dral1ALT 2438 Alternate proof of ~ dral1...
drex1 2439 Formula-building lemma for...
drex2 2440 Formula-building lemma for...
drnf1 2441 Formula-building lemma for...
drnf2 2442 Formula-building lemma for...
nfald2 2443 Variation on ~ nfald which...
nfexd2 2444 Variation on ~ nfexd which...
exdistrf 2445 Distribution of existentia...
dvelimf 2446 Version of ~ dvelimv witho...
dvelimdf 2447 Deduction form of ~ dvelim...
dvelimh 2448 Version of ~ dvelim withou...
dvelim 2449 This theorem can be used t...
dvelimv 2450 Similar to ~ dvelim with f...
dvelimnf 2451 Version of ~ dvelim using ...
dveeq2ALT 2452 Alternate proof of ~ dveeq...
equvini 2453 A variable introduction la...
equvel 2454 A variable elimination law...
equs5a 2455 A property related to subs...
equs5e 2456 A property related to subs...
equs45f 2457 Two ways of expressing sub...
equs5 2458 Lemma used in proofs of su...
dveel1 2459 Quantifier introduction wh...
dveel2 2460 Quantifier introduction wh...
axc14 2461 Axiom ~ ax-c14 is redundan...
sb6x 2462 Equivalence involving subs...
sbequ5 2463 Substitution does not chan...
sbequ6 2464 Substitution does not chan...
sb5rf 2465 Reversed substitution. Us...
sb6rf 2466 Reversed substitution. Fo...
ax12vALT 2467 Alternate proof of ~ ax12v...
2ax6elem 2468 We can always find values ...
2ax6e 2469 We can always find values ...
2sb5rf 2470 Reversed double substituti...
2sb6rf 2471 Reversed double substituti...
sbel2x 2472 Elimination of double subs...
sb4b 2473 Simplified definition of s...
sb4bOLD 2474 Obsolete version of ~ sb4b...
sb3b 2475 Simplified definition of s...
sb3 2476 One direction of a simplif...
sb1 2477 One direction of a simplif...
sb2 2478 One direction of a simplif...
sb3OLD 2479 Obsolete version of ~ sb3 ...
sb1OLD 2480 Obsolete version of ~ sb1 ...
sb3bOLD 2481 Obsolete version of ~ sb3b...
sb4a 2482 A version of one implicati...
dfsb1 2483 Alternate definition of su...
hbsb2 2484 Bound-variable hypothesis ...
nfsb2 2485 Bound-variable hypothesis ...
hbsb2a 2486 Special case of a bound-va...
sb4e 2487 One direction of a simplif...
hbsb2e 2488 Special case of a bound-va...
hbsb3 2489 If ` y ` is not free in ` ...
nfs1 2490 If ` y ` is not free in ` ...
axc16ALT 2491 Alternate proof of ~ axc16...
axc16gALT 2492 Alternate proof of ~ axc16...
equsb1 2493 Substitution applied to an...
equsb2 2494 Substitution applied to an...
dfsb2 2495 An alternate definition of...
dfsb3 2496 An alternate definition of...
drsb1 2497 Formula-building lemma for...
sb2ae 2498 In the case of two success...
sb6f 2499 Equivalence for substituti...
sb5f 2500 Equivalence for substituti...
nfsb4t 2501 A variable not free in a p...
nfsb4 2502 A variable not free in a p...
sbequ8 2503 Elimination of equality fr...
sbie 2504 Conversion of implicit sub...
sbied 2505 Conversion of implicit sub...
sbiedv 2506 Conversion of implicit sub...
2sbiev 2507 Conversion of double impli...
sbcom3 2508 Substituting ` y ` for ` x...
sbco 2509 A composition law for subs...
sbid2 2510 An identity law for substi...
sbid2v 2511 An identity law for substi...
sbidm 2512 An idempotent law for subs...
sbco2 2513 A composition law for subs...
sbco2d 2514 A composition law for subs...
sbco3 2515 A composition law for subs...
sbcom 2516 A commutativity law for su...
sbtrt 2517 Partially closed form of ~...
sbtr 2518 A partial converse to ~ sb...
sb8 2519 Substitution of variable i...
sb8e 2520 Substitution of variable i...
sb9 2521 Commutation of quantificat...
sb9i 2522 Commutation of quantificat...
sbhb 2523 Two ways of expressing " `...
nfsbd 2524 Deduction version of ~ nfs...
nfsb 2525 If ` z ` is not free in ` ...
nfsbOLD 2526 Obsolete version of ~ nfsb...
hbsb 2527 If ` z ` is not free in ` ...
sb7f 2528 This version of ~ dfsb7 do...
sb7h 2529 This version of ~ dfsb7 do...
sb10f 2530 Hao Wang's identity axiom ...
sbal1 2531 Check out ~ sbal for a ver...
sbal2 2532 Move quantifier in and out...
2sb8e 2533 An equivalent expression f...
dfmoeu 2534 An elementary proof of ~ m...
dfeumo 2535 An elementary proof showin...
mojust 2537 Soundness justification th...
nexmo 2539 Nonexistence implies uniqu...
exmo 2540 Any proposition holds for ...
moabs 2541 Absorption of existence co...
moim 2542 The at-most-one quantifier...
moimi 2543 The at-most-one quantifier...
moimdv 2544 The at-most-one quantifier...
mobi 2545 Equivalence theorem for th...
mobii 2546 Formula-building rule for ...
mobidv 2547 Formula-building rule for ...
mobid 2548 Formula-building rule for ...
moa1 2549 If an implication holds fo...
moan 2550 "At most one" is still the...
moani 2551 "At most one" is still tru...
moor 2552 "At most one" is still the...
mooran1 2553 "At most one" imports disj...
mooran2 2554 "At most one" exports disj...
nfmo1 2555 Bound-variable hypothesis ...
nfmod2 2556 Bound-variable hypothesis ...
nfmodv 2557 Bound-variable hypothesis ...
nfmov 2558 Bound-variable hypothesis ...
nfmod 2559 Bound-variable hypothesis ...
nfmo 2560 Bound-variable hypothesis ...
mof 2561 Version of ~ df-mo with di...
mo3 2562 Alternate definition of th...
mo 2563 Equivalent definitions of ...
mo4 2564 At-most-one quantifier exp...
mo4f 2565 At-most-one quantifier exp...
eu3v 2568 An alternate way to expres...
eujust 2569 Soundness justification th...
eujustALT 2570 Alternate proof of ~ eujus...
eu6lem 2571 Lemma of ~ eu6im . A diss...
eu6 2572 Alternate definition of th...
eu6im 2573 One direction of ~ eu6 nee...
euf 2574 Version of ~ eu6 with disj...
euex 2575 Existential uniqueness imp...
eumo 2576 Existential uniqueness imp...
eumoi 2577 Uniqueness inferred from e...
exmoeub 2578 Existence implies that uni...
exmoeu 2579 Existence is equivalent to...
moeuex 2580 Uniqueness implies that ex...
moeu 2581 Uniqueness is equivalent t...
eubi 2582 Equivalence theorem for th...
eubii 2583 Introduce unique existenti...
eubidv 2584 Formula-building rule for ...
eubid 2585 Formula-building rule for ...
nfeu1 2586 Bound-variable hypothesis ...
nfeu1ALT 2587 Alternate proof of ~ nfeu1...
nfeud2 2588 Bound-variable hypothesis ...
nfeudw 2589 Bound-variable hypothesis ...
nfeud 2590 Bound-variable hypothesis ...
nfeuw 2591 Bound-variable hypothesis ...
nfeu 2592 Bound-variable hypothesis ...
dfeu 2593 Rederive ~ df-eu from the ...
dfmo 2594 Rederive ~ df-mo from the ...
euequ 2595 There exists a unique set ...
sb8eulem 2596 Lemma. Factor out the com...
sb8euv 2597 Variable substitution in u...
sb8eu 2598 Variable substitution in u...
sb8mo 2599 Variable substitution for ...
cbvmovw 2600 Change bound variable. Us...
cbvmow 2601 Rule used to change bound ...
cbvmowOLD 2602 Obsolete version of ~ cbvm...
cbvmo 2603 Rule used to change bound ...
cbveuvw 2604 Change bound variable. Us...
cbveuw 2605 Version of ~ cbveu with a ...
cbveuwOLD 2606 Obsolete version of ~ cbve...
cbveu 2607 Rule used to change bound ...
cbveuALT 2608 Alternative proof of ~ cbv...
eu2 2609 An alternate way of defini...
eu1 2610 An alternate way to expres...
euor 2611 Introduce a disjunct into ...
euorv 2612 Introduce a disjunct into ...
euor2 2613 Introduce or eliminate a d...
sbmo 2614 Substitution into an at-mo...
eu4 2615 Uniqueness using implicit ...
euimmo 2616 Existential uniqueness imp...
euim 2617 Add unique existential qua...
moanimlem 2618 Factor out the common proo...
moanimv 2619 Introduction of a conjunct...
moanim 2620 Introduction of a conjunct...
euan 2621 Introduction of a conjunct...
moanmo 2622 Nested at-most-one quantif...
moaneu 2623 Nested at-most-one and uni...
euanv 2624 Introduction of a conjunct...
mopick 2625 "At most one" picks a vari...
moexexlem 2626 Factor out the proof skele...
2moexv 2627 Double quantification with...
moexexvw 2628 "At most one" double quant...
2moswapv 2629 A condition allowing to sw...
2euswapv 2630 A condition allowing to sw...
2euexv 2631 Double quantification with...
2exeuv 2632 Double existential uniquen...
eupick 2633 Existential uniqueness "pi...
eupicka 2634 Version of ~ eupick with c...
eupickb 2635 Existential uniqueness "pi...
eupickbi 2636 Theorem *14.26 in [Whitehe...
mopick2 2637 "At most one" can show the...
moexex 2638 "At most one" double quant...
moexexv 2639 "At most one" double quant...
2moex 2640 Double quantification with...
2euex 2641 Double quantification with...
2eumo 2642 Nested unique existential ...
2eu2ex 2643 Double existential uniquen...
2moswap 2644 A condition allowing to sw...
2euswap 2645 A condition allowing to sw...
2exeu 2646 Double existential uniquen...
2mo2 2647 Two ways of expressing "th...
2mo 2648 Two ways of expressing "th...
2mos 2649 Double "there exists at mo...
2eu1 2650 Double existential uniquen...
2eu1v 2651 Double existential uniquen...
2eu2 2652 Double existential uniquen...
2eu3 2653 Double existential uniquen...
2eu4 2654 This theorem provides us w...
2eu5 2655 An alternate definition of...
2eu6 2656 Two equivalent expressions...
2eu7 2657 Two equivalent expressions...
2eu8 2658 Two equivalent expressions...
euae 2659 Two ways to express "exact...
exists1 2660 Two ways to express "exact...
exists2 2661 A condition implying that ...
barbara 2662 "Barbara", one of the fund...
celarent 2663 "Celarent", one of the syl...
darii 2664 "Darii", one of the syllog...
dariiALT 2665 Alternate proof of ~ darii...
ferio 2666 "Ferio" ("Ferioque"), one ...
barbarilem 2667 Lemma for ~ barbari and th...
barbari 2668 "Barbari", one of the syll...
barbariALT 2669 Alternate proof of ~ barba...
celaront 2670 "Celaront", one of the syl...
cesare 2671 "Cesare", one of the syllo...
camestres 2672 "Camestres", one of the sy...
festino 2673 "Festino", one of the syll...
festinoALT 2674 Alternate proof of ~ festi...
baroco 2675 "Baroco", one of the syllo...
barocoALT 2676 Alternate proof of ~ festi...
cesaro 2677 "Cesaro", one of the syllo...
camestros 2678 "Camestros", one of the sy...
datisi 2679 "Datisi", one of the syllo...
disamis 2680 "Disamis", one of the syll...
ferison 2681 "Ferison", one of the syll...
bocardo 2682 "Bocardo", one of the syll...
darapti 2683 "Darapti", one of the syll...
daraptiALT 2684 Alternate proof of ~ darap...
felapton 2685 "Felapton", one of the syl...
calemes 2686 "Calemes", one of the syll...
dimatis 2687 "Dimatis", one of the syll...
fresison 2688 "Fresison", one of the syl...
calemos 2689 "Calemos", one of the syll...
fesapo 2690 "Fesapo", one of the syllo...
bamalip 2691 "Bamalip", one of the syll...
axia1 2692 Left 'and' elimination (in...
axia2 2693 Right 'and' elimination (i...
axia3 2694 'And' introduction (intuit...
axin1 2695 'Not' introduction (intuit...
axin2 2696 'Not' elimination (intuiti...
axio 2697 Definition of 'or' (intuit...
axi4 2698 Specialization (intuitioni...
axi5r 2699 Converse of ~ axc4 (intuit...
axial 2700 The setvar ` x ` is not fr...
axie1 2701 The setvar ` x ` is not fr...
axie2 2702 A key property of existent...
axi9 2703 Axiom of existence (intuit...
axi10 2704 Axiom of Quantifier Substi...
axi12 2705 Axiom of Quantifier Introd...
axbnd 2706 Axiom of Bundling (intuiti...
axexte 2708 The axiom of extensionalit...
axextg 2709 A generalization of the ax...
axextb 2710 A bidirectional version of...
axextmo 2711 There exists at most one s...
nulmo 2712 There exists at most one e...
eleq1ab 2715 Extension (in the sense of...
cleljustab 2716 Extension of ~ cleljust fr...
abid 2717 Simplification of class ab...
vexwt 2718 A standard theorem of pred...
vexw 2719 If ` ph ` is a theorem, th...
vextru 2720 Every setvar is a member o...
nfsab1 2721 Bound-variable hypothesis ...
hbab1 2722 Bound-variable hypothesis ...
hbab1OLD 2723 Obsolete version of ~ hbab...
hbab 2724 Bound-variable hypothesis ...
hbabg 2725 Bound-variable hypothesis ...
nfsab 2726 Bound-variable hypothesis ...
nfsabg 2727 Bound-variable hypothesis ...
dfcleq 2729 The defining characterizat...
cvjust 2730 Every set is a class. Pro...
ax9ALT 2731 Proof of ~ ax-9 from Tarsk...
eleq2w2 2732 A weaker version of ~ eleq...
eqriv 2733 Infer equality of classes ...
eqrdv 2734 Deduce equality of classes...
eqrdav 2735 Deduce equality of classes...
eqid 2736 Law of identity (reflexivi...
eqidd 2737 Class identity law with an...
eqeq1d 2738 Deduction from equality to...
eqeq1dALT 2739 Alternate proof of ~ eqeq1...
eqeq1 2740 Equality implies equivalen...
eqeq1i 2741 Inference from equality to...
eqcomd 2742 Deduction from commutative...
eqcom 2743 Commutative law for class ...
eqcoms 2744 Inference applying commuta...
eqcomi 2745 Inference from commutative...
neqcomd 2746 Commute an inequality. (C...
eqeq2d 2747 Deduction from equality to...
eqeq2 2748 Equality implies equivalen...
eqeq2i 2749 Inference from equality to...
eqeqan12d 2750 A useful inference for sub...
eqeqan12rd 2751 A useful inference for sub...
eqeq12d 2752 A useful inference for sub...
eqeq12 2753 Equality relationship amon...
eqeq12i 2754 A useful inference for sub...
eqeq12OLD 2755 Obsolete version of ~ eqeq...
eqeq12dOLD 2756 Obsolete version of ~ eqeq...
eqeqan12dOLD 2757 Obsolete version of ~ eqeq...
eqeqan12dALT 2758 Alternate proof of ~ eqeqa...
eqtr 2759 Transitive law for class e...
eqtr2 2760 A transitive law for class...
eqtr2OLD 2761 Obsolete version of eqtr2 ...
eqtr3 2762 A transitive law for class...
eqtr3OLD 2763 Obsolete version of ~ eqtr...
eqtri 2764 An equality transitivity i...
eqtr2i 2765 An equality transitivity i...
eqtr3i 2766 An equality transitivity i...
eqtr4i 2767 An equality transitivity i...
3eqtri 2768 An inference from three ch...
3eqtrri 2769 An inference from three ch...
3eqtr2i 2770 An inference from three ch...
3eqtr2ri 2771 An inference from three ch...
3eqtr3i 2772 An inference from three ch...
3eqtr3ri 2773 An inference from three ch...
3eqtr4i 2774 An inference from three ch...
3eqtr4ri 2775 An inference from three ch...
eqtrd 2776 An equality transitivity d...
eqtr2d 2777 An equality transitivity d...
eqtr3d 2778 An equality transitivity e...
eqtr4d 2779 An equality transitivity e...
3eqtrd 2780 A deduction from three cha...
3eqtrrd 2781 A deduction from three cha...
3eqtr2d 2782 A deduction from three cha...
3eqtr2rd 2783 A deduction from three cha...
3eqtr3d 2784 A deduction from three cha...
3eqtr3rd 2785 A deduction from three cha...
3eqtr4d 2786 A deduction from three cha...
3eqtr4rd 2787 A deduction from three cha...
eqtrid 2788 An equality transitivity d...
eqtr2id 2789 An equality transitivity d...
eqtr3id 2790 An equality transitivity d...
eqtr3di 2791 An equality transitivity d...
eqtrdi 2792 An equality transitivity d...
eqtr2di 2793 An equality transitivity d...
eqtr4di 2794 An equality transitivity d...
eqtr4id 2795 An equality transitivity d...
sylan9eq 2796 An equality transitivity d...
sylan9req 2797 An equality transitivity d...
sylan9eqr 2798 An equality transitivity d...
3eqtr3g 2799 A chained equality inferen...
3eqtr3a 2800 A chained equality inferen...
3eqtr4g 2801 A chained equality inferen...
3eqtr4a 2802 A chained equality inferen...
eq2tri 2803 A compound transitive infe...
abbi1 2804 Equivalent formulas yield ...
abbidv 2805 Equivalent wff's yield equ...
abbii 2806 Equivalent wff's yield equ...
abbid 2807 Equivalent wff's yield equ...
abbi 2808 Equivalent formulas define...
cbvabv 2809 Rule used to change bound ...
cbvabw 2810 Rule used to change bound ...
cbvabwOLD 2811 Obsolete version of ~ cbva...
cbvab 2812 Rule used to change bound ...
eqabw 2813 Version of ~ eqab using im...
dfclel 2815 Characterization of the el...
elex2 2816 If a class contains anothe...
issetlem 2817 Lemma for ~ elisset and ~ ...
elissetv 2818 An element of a class exis...
elisset 2819 An element of a class exis...
eleq1w 2820 Weaker version of ~ eleq1 ...
eleq2w 2821 Weaker version of ~ eleq2 ...
eleq1d 2822 Deduction from equality to...
eleq2d 2823 Deduction from equality to...
eleq2dALT 2824 Alternate proof of ~ eleq2...
eleq1 2825 Equality implies equivalen...
eleq2 2826 Equality implies equivalen...
eleq12 2827 Equality implies equivalen...
eleq1i 2828 Inference from equality to...
eleq2i 2829 Inference from equality to...
eleq12i 2830 Inference from equality to...
eqneltri 2831 If a class is not an eleme...
eleq12d 2832 Deduction from equality to...
eleq1a 2833 A transitive-type law rela...
eqeltri 2834 Substitution of equal clas...
eqeltrri 2835 Substitution of equal clas...
eleqtri 2836 Substitution of equal clas...
eleqtrri 2837 Substitution of equal clas...
eqeltrd 2838 Substitution of equal clas...
eqeltrrd 2839 Deduction that substitutes...
eleqtrd 2840 Deduction that substitutes...
eleqtrrd 2841 Deduction that substitutes...
eqeltrid 2842 A membership and equality ...
eqeltrrid 2843 A membership and equality ...
eleqtrid 2844 A membership and equality ...
eleqtrrid 2845 A membership and equality ...
eqeltrdi 2846 A membership and equality ...
eqeltrrdi 2847 A membership and equality ...
eleqtrdi 2848 A membership and equality ...
eleqtrrdi 2849 A membership and equality ...
3eltr3i 2850 Substitution of equal clas...
3eltr4i 2851 Substitution of equal clas...
3eltr3d 2852 Substitution of equal clas...
3eltr4d 2853 Substitution of equal clas...
3eltr3g 2854 Substitution of equal clas...
3eltr4g 2855 Substitution of equal clas...
eleq2s 2856 Substitution of equal clas...
eqneltrd 2857 If a class is not an eleme...
eqneltrrd 2858 If a class is not an eleme...
neleqtrd 2859 If a class is not an eleme...
neleqtrrd 2860 If a class is not an eleme...
nelneq 2861 A way of showing two class...
nelneq2 2862 A way of showing two class...
eqsb1 2863 Substitution for the left-...
clelsb1 2864 Substitution for the first...
clelsb2 2865 Substitution for the secon...
clelsb2OLD 2866 Obsolete version of ~ clel...
cleqh 2867 Establish equality between...
hbxfreq 2868 A utility lemma to transfe...
hblem 2869 Change the free variable o...
hblemg 2870 Change the free variable o...
abbi2dv 2871 Deduction from a wff to a ...
abbi1dv 2872 Deduction from a wff to a ...
abbi2i 2873 Equality of a class variab...
abid1 2874 Every class is equal to a ...
abid2 2875 A simplification of class ...
eqabr 2876 One direction of ~ eqab is...
eqab 2877 Equality of a class variab...
eqabOLD 2878 Obsolete version of ~ eqab...
eqabc 2879 Equality of a class variab...
eqabd 2880 Equality of a class variab...
eqabi 2881 Equality of a class variab...
eqabci 2882 Equality of a class variab...
clelab 2883 Membership of a class vari...
clelabOLD 2884 Obsolete version of ~ clel...
clabel 2885 Membership of a class abst...
sbab 2886 The right-hand side of the...
nfcjust 2888 Justification theorem for ...
nfci 2890 Deduce that a class ` A ` ...
nfcii 2891 Deduce that a class ` A ` ...
nfcr 2892 Consequence of the not-fre...
nfcrALT 2893 Alternate version of ~ nfc...
nfcri 2894 Consequence of the not-fre...
nfcd 2895 Deduce that a class ` A ` ...
nfcrd 2896 Consequence of the not-fre...
nfcriOLD 2897 Obsolete version of ~ nfcr...
nfcriOLDOLD 2898 Obsolete version of ~ nfcr...
nfcrii 2899 Consequence of the not-fre...
nfcriiOLD 2900 Obsolete version of ~ nfcr...
nfcriOLDOLDOLD 2901 Obsolete version of ~ nfcr...
nfceqdf 2902 An equality theorem for ef...
nfceqdfOLD 2903 Obsolete version of ~ nfce...
nfceqi 2904 Equality theorem for class...
nfcxfr 2905 A utility lemma to transfe...
nfcxfrd 2906 A utility lemma to transfe...
nfcv 2907 If ` x ` is disjoint from ...
nfcvd 2908 If ` x ` is disjoint from ...
nfab1 2909 Bound-variable hypothesis ...
nfnfc1 2910 The setvar ` x ` is bound ...
clelsb1fw 2911 Substitution for the first...
clelsb1f 2912 Substitution for the first...
nfab 2913 Bound-variable hypothesis ...
nfabg 2914 Bound-variable hypothesis ...
nfaba1 2915 Bound-variable hypothesis ...
nfaba1g 2916 Bound-variable hypothesis ...
nfeqd 2917 Hypothesis builder for equ...
nfeld 2918 Hypothesis builder for ele...
nfnfc 2919 Hypothesis builder for ` F...
nfeq 2920 Hypothesis builder for equ...
nfel 2921 Hypothesis builder for ele...
nfeq1 2922 Hypothesis builder for equ...
nfel1 2923 Hypothesis builder for ele...
nfeq2 2924 Hypothesis builder for equ...
nfel2 2925 Hypothesis builder for ele...
drnfc1 2926 Formula-building lemma for...
drnfc1OLD 2927 Obsolete version of ~ drnf...
drnfc2 2928 Formula-building lemma for...
drnfc2OLD 2929 Obsolete version of ~ drnf...
nfabdw 2930 Bound-variable hypothesis ...
nfabdwOLD 2931 Obsolete version of ~ nfab...
nfabd 2932 Bound-variable hypothesis ...
nfabd2 2933 Bound-variable hypothesis ...
dvelimdc 2934 Deduction form of ~ dvelim...
dvelimc 2935 Version of ~ dvelim for cl...
nfcvf 2936 If ` x ` and ` y ` are dis...
nfcvf2 2937 If ` x ` and ` y ` are dis...
cleqf 2938 Establish equality between...
abid2f 2939 A simplification of class ...
eqabf 2940 Equality of a class variab...
sbabel 2941 Theorem to move a substitu...
sbabelOLD 2942 Obsolete version of ~ sbab...
neii 2945 Inference associated with ...
neir 2946 Inference associated with ...
nne 2947 Negation of inequality. (...
neneqd 2948 Deduction eliminating ineq...
neneq 2949 From inequality to non-equ...
neqned 2950 If it is not the case that...
neqne 2951 From non-equality to inequ...
neirr 2952 No class is unequal to its...
exmidne 2953 Excluded middle with equal...
eqneqall 2954 A contradiction concerning...
nonconne 2955 Law of noncontradiction wi...
necon3ad 2956 Contrapositive law deducti...
necon3bd 2957 Contrapositive law deducti...
necon2ad 2958 Contrapositive inference f...
necon2bd 2959 Contrapositive inference f...
necon1ad 2960 Contrapositive deduction f...
necon1bd 2961 Contrapositive deduction f...
necon4ad 2962 Contrapositive inference f...
necon4bd 2963 Contrapositive inference f...
necon3d 2964 Contrapositive law deducti...
necon1d 2965 Contrapositive law deducti...
necon2d 2966 Contrapositive inference f...
necon4d 2967 Contrapositive inference f...
necon3ai 2968 Contrapositive inference f...
necon3aiOLD 2969 Obsolete version of ~ neco...
necon3bi 2970 Contrapositive inference f...
necon1ai 2971 Contrapositive inference f...
necon1bi 2972 Contrapositive inference f...
necon2ai 2973 Contrapositive inference f...
necon2bi 2974 Contrapositive inference f...
necon4ai 2975 Contrapositive inference f...
necon3i 2976 Contrapositive inference f...
necon1i 2977 Contrapositive inference f...
necon2i 2978 Contrapositive inference f...
necon4i 2979 Contrapositive inference f...
necon3abid 2980 Deduction from equality to...
necon3bbid 2981 Deduction from equality to...
necon1abid 2982 Contrapositive deduction f...
necon1bbid 2983 Contrapositive inference f...
necon4abid 2984 Contrapositive law deducti...
necon4bbid 2985 Contrapositive law deducti...
necon2abid 2986 Contrapositive deduction f...
necon2bbid 2987 Contrapositive deduction f...
necon3bid 2988 Deduction from equality to...
necon4bid 2989 Contrapositive law deducti...
necon3abii 2990 Deduction from equality to...
necon3bbii 2991 Deduction from equality to...
necon1abii 2992 Contrapositive inference f...
necon1bbii 2993 Contrapositive inference f...
necon2abii 2994 Contrapositive inference f...
necon2bbii 2995 Contrapositive inference f...
necon3bii 2996 Inference from equality to...
necom 2997 Commutation of inequality....
necomi 2998 Inference from commutative...
necomd 2999 Deduction from commutative...
nesym 3000 Characterization of inequa...
nesymi 3001 Inference associated with ...
nesymir 3002 Inference associated with ...
neeq1d 3003 Deduction for inequality. ...
neeq2d 3004 Deduction for inequality. ...
neeq12d 3005 Deduction for inequality. ...
neeq1 3006 Equality theorem for inequ...
neeq2 3007 Equality theorem for inequ...
neeq1i 3008 Inference for inequality. ...
neeq2i 3009 Inference for inequality. ...
neeq12i 3010 Inference for inequality. ...
eqnetrd 3011 Substitution of equal clas...
eqnetrrd 3012 Substitution of equal clas...
neeqtrd 3013 Substitution of equal clas...
eqnetri 3014 Substitution of equal clas...
eqnetrri 3015 Substitution of equal clas...
neeqtri 3016 Substitution of equal clas...
neeqtrri 3017 Substitution of equal clas...
neeqtrrd 3018 Substitution of equal clas...
eqnetrrid 3019 A chained equality inferen...
3netr3d 3020 Substitution of equality i...
3netr4d 3021 Substitution of equality i...
3netr3g 3022 Substitution of equality i...
3netr4g 3023 Substitution of equality i...
nebi 3024 Contraposition law for ine...
pm13.18 3025 Theorem *13.18 in [Whitehe...
pm13.181 3026 Theorem *13.181 in [Whiteh...
pm13.181OLD 3027 Obsolete version of ~ pm13...
pm2.61ine 3028 Inference eliminating an i...
pm2.21ddne 3029 A contradiction implies an...
pm2.61ne 3030 Deduction eliminating an i...
pm2.61dne 3031 Deduction eliminating an i...
pm2.61dane 3032 Deduction eliminating an i...
pm2.61da2ne 3033 Deduction eliminating two ...
pm2.61da3ne 3034 Deduction eliminating thre...
pm2.61iine 3035 Equality version of ~ pm2....
neor 3036 Logical OR with an equalit...
neanior 3037 A De Morgan's law for ineq...
ne3anior 3038 A De Morgan's law for ineq...
neorian 3039 A De Morgan's law for ineq...
nemtbir 3040 An inference from an inequ...
nelne1 3041 Two classes are different ...
nelne2 3042 Two classes are different ...
nelelne 3043 Two classes are different ...
neneor 3044 If two classes are differe...
nfne 3045 Bound-variable hypothesis ...
nfned 3046 Bound-variable hypothesis ...
nabbi 3047 Not equivalent wff's corre...
mteqand 3048 A modus tollens deduction ...
neli 3051 Inference associated with ...
nelir 3052 Inference associated with ...
neleq12d 3053 Equality theorem for negat...
neleq1 3054 Equality theorem for negat...
neleq2 3055 Equality theorem for negat...
nfnel 3056 Bound-variable hypothesis ...
nfneld 3057 Bound-variable hypothesis ...
nnel 3058 Negation of negated member...
elnelne1 3059 Two classes are different ...
elnelne2 3060 Two classes are different ...
nelcon3d 3061 Contrapositive law deducti...
elnelall 3062 A contradiction concerning...
pm2.61danel 3063 Deduction eliminating an e...
rgen 3066 Generalization rule for re...
ralel 3067 All elements of a class ar...
rgenw 3068 Generalization rule for re...
rgen2w 3069 Generalization rule for re...
mprg 3070 Modus ponens combined with...
mprgbir 3071 Modus ponens on biconditio...
raln 3072 Restricted universally qua...
ralnex 3075 Relationship between restr...
dfrex2 3076 Relationship between restr...
nrex 3077 Inference adding restricte...
alral 3078 Universal quantification i...
rexex 3079 Restricted existence impli...
rextru 3080 Two ways of expressing tha...
ralimi2 3081 Inference quantifying both...
reximi2 3082 Inference quantifying both...
ralimia 3083 Inference quantifying both...
reximia 3084 Inference quantifying both...
ralimiaa 3085 Inference quantifying both...
ralimi 3086 Inference quantifying both...
reximi 3087 Inference quantifying both...
ral2imi 3088 Inference quantifying ante...
ralim 3089 Distribution of restricted...
rexim 3090 Theorem 19.22 of [Margaris...
reximiaOLD 3091 Obsolete version of ~ rexi...
ralbii2 3092 Inference adding different...
rexbii2 3093 Inference adding different...
ralbiia 3094 Inference adding restricte...
rexbiia 3095 Inference adding restricte...
ralbii 3096 Inference adding restricte...
rexbii 3097 Inference adding restricte...
ralanid 3098 Cancellation law for restr...
rexanid 3099 Cancellation law for restr...
ralcom3 3100 A commutation law for rest...
ralcom3OLD 3101 Obsolete version of ~ ralc...
dfral2 3102 Relationship between restr...
rexnal 3103 Relationship between restr...
ralinexa 3104 A transformation of restri...
rexanali 3105 A transformation of restri...
ralbi 3106 Distribute a restricted un...
rexbi 3107 Distribute restricted quan...
rexbiOLD 3108 Obsolete version of ~ rexb...
ralrexbid 3109 Formula-building rule for ...
ralrexbidOLD 3110 Obsolete version of ~ ralr...
r19.35 3111 Restricted quantifier vers...
r19.35OLD 3112 Obsolete version of ~ 19.3...
r19.26m 3113 Version of ~ 19.26 and ~ r...
r19.26 3114 Restricted quantifier vers...
r19.26-3 3115 Version of ~ r19.26 with t...
ralbiim 3116 Split a biconditional and ...
r19.29 3117 Restricted quantifier vers...
r19.29OLD 3118 Obsolete version of ~ r19....
r19.29r 3119 Restricted quantifier vers...
r19.29rOLD 3120 Obsolete version of ~ r19....
r19.29imd 3121 Theorem 19.29 of [Margaris...
r19.40 3122 Restricted quantifier vers...
r19.30 3123 Restricted quantifier vers...
r19.30OLD 3124 Obsolete version of ~ 19.3...
r19.43 3125 Restricted quantifier vers...
2ralimi 3126 Inference quantifying both...
2ralbii 3127 Inference adding two restr...
2rexbii 3128 Inference adding two restr...
2ralbiim 3129 Split a biconditional and ...
ralnex2 3130 Relationship between two r...
ralnex3 3131 Relationship between three...
rexnal2 3132 Relationship between two r...
rexnal3 3133 Relationship between three...
nrexralim 3134 Negation of a complex pred...
r19.26-2 3135 Restricted quantifier vers...
2r19.29 3136 Theorem ~ r19.29 with two ...
r19.29d2r 3137 Theorem 19.29 of [Margaris...
r19.29d2rOLD 3138 Obsolete version of ~ r19....
r2allem 3139 Lemma factoring out common...
r2exlem 3140 Lemma factoring out common...
hbralrimi 3141 Inference from Theorem 19....
ralrimiv 3142 Inference from Theorem 19....
ralrimiva 3143 Inference from Theorem 19....
rexlimiva 3144 Inference from Theorem 19....
rexlimiv 3145 Inference from Theorem 19....
nrexdv 3146 Deduction adding restricte...
ralrimivw 3147 Inference from Theorem 19....
rexlimivw 3148 Weaker version of ~ rexlim...
ralrimdv 3149 Inference from Theorem 19....
rexlimdv 3150 Inference from Theorem 19....
ralrimdva 3151 Inference from Theorem 19....
rexlimdva 3152 Inference from Theorem 19....
rexlimdvaa 3153 Inference from Theorem 19....
rexlimdva2 3154 Inference from Theorem 19....
r19.29an 3155 A commonly used pattern in...
rexlimdv3a 3156 Inference from Theorem 19....
rexlimdvw 3157 Inference from Theorem 19....
rexlimddv 3158 Restricted existential eli...
r19.29a 3159 A commonly used pattern in...
ralimdv2 3160 Inference quantifying both...
reximdv2 3161 Deduction quantifying both...
reximdvai 3162 Deduction quantifying both...
reximdvaiOLD 3163 Obsolete version of ~ rexi...
ralimdva 3164 Deduction quantifying both...
reximdva 3165 Deduction quantifying both...
ralimdv 3166 Deduction quantifying both...
reximdv 3167 Deduction from Theorem 19....
reximddv 3168 Deduction from Theorem 19....
reximssdv 3169 Derivation of a restricted...
ralbidv2 3170 Formula-building rule for ...
rexbidv2 3171 Formula-building rule for ...
ralbidva 3172 Formula-building rule for ...
rexbidva 3173 Formula-building rule for ...
ralbidv 3174 Formula-building rule for ...
rexbidv 3175 Formula-building rule for ...
r19.21v 3176 Restricted quantifier vers...
r19.21vOLD 3177 Obsolete version of ~ r19....
r19.37v 3178 Restricted quantifier vers...
r19.23v 3179 Restricted quantifier vers...
r19.36v 3180 Restricted quantifier vers...
rexlimivOLD 3181 Obsolete version of ~ rexl...
rexlimivaOLD 3182 Obsolete version of ~ rexl...
rexlimivwOLD 3183 Obsolete version of ~ rexl...
r19.27v 3184 Restricted quantitifer ver...
r19.41v 3185 Restricted quantifier vers...
r19.28v 3186 Restricted quantifier vers...
r19.42v 3187 Restricted quantifier vers...
r19.32v 3188 Restricted quantifier vers...
r19.45v 3189 Restricted quantifier vers...
r19.44v 3190 One direction of a restric...
r2al 3191 Double restricted universa...
r2ex 3192 Double restricted existent...
r3al 3193 Triple restricted universa...
rgen2 3194 Generalization rule for re...
ralrimivv 3195 Inference from Theorem 19....
rexlimivv 3196 Inference from Theorem 19....
ralrimivva 3197 Inference from Theorem 19....
ralrimdvv 3198 Inference from Theorem 19....
rgen3 3199 Generalization rule for re...
ralrimivvva 3200 Inference from Theorem 19....
ralimdvva 3201 Deduction doubly quantifyi...
reximdvva 3202 Deduction doubly quantifyi...
ralrimdvva 3203 Inference from Theorem 19....
rexlimdvv 3204 Inference from Theorem 19....
rexlimdvva 3205 Inference from Theorem 19....
reximddv2 3206 Double deduction from Theo...
r19.29vva 3207 A commonly used pattern ba...
r19.29vvaOLD 3208 Obsolete version of ~ r19....
2rexbiia 3209 Inference adding two restr...
2ralbidva 3210 Formula-building rule for ...
2rexbidva 3211 Formula-building rule for ...
2ralbidv 3212 Formula-building rule for ...
2rexbidv 3213 Formula-building rule for ...
rexralbidv 3214 Formula-building rule for ...
r19.41vv 3215 Version of ~ r19.41v with ...
reeanlem 3216 Lemma factoring out common...
reeanv 3217 Rearrange restricted exist...
3reeanv 3218 Rearrange three restricted...
2ralor 3219 Distribute restricted univ...
2ralorOLD 3220 Obsolete version of ~ 2ral...
risset 3221 Two ways to say " ` A ` be...
nelb 3222 A definition of ` -. A e. ...
nelbOLD 3223 Obsolete version of ~ nelb...
rspw 3224 Restricted specialization....
cbvralvw 3225 Change the bound variable ...
cbvrexvw 3226 Change the bound variable ...
cbvral2vw 3227 Change bound variables of ...
cbvrex2vw 3228 Change bound variables of ...
cbvral3vw 3229 Change bound variables of ...
rsp 3230 Restricted specialization....
rspa 3231 Restricted specialization....
rspe 3232 Restricted specialization....
rspec 3233 Specialization rule for re...
r19.21bi 3234 Inference from Theorem 19....
r19.21be 3235 Inference from Theorem 19....
r19.21t 3236 Restricted quantifier vers...
r19.21 3237 Restricted quantifier vers...
r19.23t 3238 Closed theorem form of ~ r...
r19.23 3239 Restricted quantifier vers...
ralrimi 3240 Inference from Theorem 19....
ralrimia 3241 Inference from Theorem 19....
rexlimi 3242 Restricted quantifier vers...
ralimdaa 3243 Deduction quantifying both...
reximdai 3244 Deduction from Theorem 19....
r19.37 3245 Restricted quantifier vers...
r19.41 3246 Restricted quantifier vers...
ralrimd 3247 Inference from Theorem 19....
rexlimd2 3248 Version of ~ rexlimd with ...
rexlimd 3249 Deduction form of ~ rexlim...
r19.29af2 3250 A commonly used pattern ba...
r19.29af 3251 A commonly used pattern ba...
reximd2a 3252 Deduction quantifying both...
ralbida 3253 Formula-building rule for ...
ralbidaOLD 3254 Obsolete version of ~ ralb...
rexbida 3255 Formula-building rule for ...
ralbid 3256 Formula-building rule for ...
rexbid 3257 Formula-building rule for ...
rexbidvALT 3258 Alternate proof of ~ rexbi...
rexbidvaALT 3259 Alternate proof of ~ rexbi...
rsp2 3260 Restricted specialization,...
rsp2e 3261 Restricted specialization....
rspec2 3262 Specialization rule for re...
rspec3 3263 Specialization rule for re...
r2alf 3264 Double restricted universa...
r2exf 3265 Double restricted existent...
2ralbida 3266 Formula-building rule for ...
nfra1 3267 The setvar ` x ` is not fr...
nfre1 3268 The setvar ` x ` is not fr...
ralcom4 3269 Commutation of restricted ...
ralcom4OLD 3270 Obsolete version of ~ ralc...
rexcom4 3271 Commutation of restricted ...
ralcom 3272 Commutation of restricted ...
rexcom 3273 Commutation of restricted ...
rexcomOLD 3274 Obsolete version of ~ rexc...
rexcom4a 3275 Specialized existential co...
ralrot3 3276 Rotate three restricted un...
ralcom13 3277 Swap first and third restr...
ralcom13OLD 3278 Obsolete version of ~ ralc...
rexcom13 3279 Swap first and third restr...
rexrot4 3280 Rotate four restricted exi...
2ex2rexrot 3281 Rotate two existential qua...
nfra2w 3282 Similar to Lemma 24 of [Mo...
nfra2wOLD 3283 Obsolete version of ~ nfra...
hbra1 3284 The setvar ` x ` is not fr...
ralcomf 3285 Commutation of restricted ...
rexcomf 3286 Commutation of restricted ...
cbvralfw 3287 Rule used to change bound ...
cbvrexfw 3288 Rule used to change bound ...
cbvralw 3289 Rule used to change bound ...
cbvrexw 3290 Rule used to change bound ...
hbral 3291 Bound-variable hypothesis ...
nfraldw 3292 Deduction version of ~ nfr...
nfrexdw 3293 Deduction version of ~ nfr...
nfralw 3294 Bound-variable hypothesis ...
nfralwOLD 3295 Obsolete version of ~ nfra...
nfrexw 3296 Bound-variable hypothesis ...
r19.12 3297 Restricted quantifier vers...
r19.12OLD 3298 Obsolete version of ~ 19.1...
reean 3299 Rearrange restricted exist...
cbvralsvw 3300 Change bound variable by u...
cbvrexsvw 3301 Change bound variable by u...
nfraldwOLD 3302 Obsolete version of ~ nfra...
nfra2wOLDOLD 3303 Obsolete version of ~ nfra...
cbvralfwOLD 3304 Obsolete version of ~ cbvr...
raleqbidvv 3305 Version of ~ raleqbidv wit...
rexeqbidvv 3306 Version of ~ rexeqbidv wit...
raleqbi1dv 3307 Equality deduction for res...
rexeqbi1dv 3308 Equality deduction for res...
raleq 3309 Equality theorem for restr...
rexeq 3310 Equality theorem for restr...
raleqi 3311 Equality inference for res...
rexeqi 3312 Equality inference for res...
raleqdv 3313 Equality deduction for res...
rexeqdv 3314 Equality deduction for res...
raleqbii 3315 Equality deduction for res...
rexeqbii 3316 Equality deduction for res...
raleleq 3317 All elements of a class ar...
raleleqALT 3318 Alternate proof of ~ ralel...
raleqbidv 3319 Equality deduction for res...
rexeqbidv 3320 Equality deduction for res...
raleqbidva 3321 Equality deduction for res...
rexeqbidva 3322 Equality deduction for res...
cbvraldva2 3323 Rule used to change the bo...
cbvrexdva2 3324 Rule used to change the bo...
cbvrexdva2OLD 3325 Obsolete version of ~ cbvr...
cbvraldva 3326 Rule used to change the bo...
cbvrexdva 3327 Rule used to change the bo...
raleqf 3328 Equality theorem for restr...
rexeqf 3329 Equality theorem for restr...
raleqbid 3330 Equality deduction for res...
rexeqbid 3331 Equality deduction for res...
sbralie 3332 Implicit to explicit subst...
cbvralf 3333 Rule used to change bound ...
cbvrexf 3334 Rule used to change bound ...
cbvral 3335 Rule used to change bound ...
cbvrex 3336 Rule used to change bound ...
cbvralv 3337 Change the bound variable ...
cbvrexv 3338 Change the bound variable ...
cbvralsv 3339 Change bound variable by u...
cbvrexsv 3340 Change bound variable by u...
cbvral2v 3341 Change bound variables of ...
cbvrex2v 3342 Change bound variables of ...
cbvral3v 3343 Change bound variables of ...
rgen2a 3344 Generalization rule for re...
nfrald 3345 Deduction version of ~ nfr...
nfrexd 3346 Deduction version of ~ nfr...
nfral 3347 Bound-variable hypothesis ...
nfrex 3348 Bound-variable hypothesis ...
nfra2 3349 Similar to Lemma 24 of [Mo...
ralcom2 3350 Commutation of restricted ...
reu5 3355 Restricted uniqueness in t...
reurmo 3356 Restricted existential uni...
reurex 3357 Restricted unique existenc...
mormo 3358 Unrestricted "at most one"...
rmobiia 3359 Formula-building rule for ...
reubiia 3360 Formula-building rule for ...
rmobii 3361 Formula-building rule for ...
reubii 3362 Formula-building rule for ...
rmoanid 3363 Cancellation law for restr...
reuanid 3364 Cancellation law for restr...
rmoanidOLD 3365 Obsolete version of ~ rmoa...
reuanidOLD 3366 Obsolete version of ~ reua...
2reu2rex 3367 Double restricted existent...
rmobidva 3368 Formula-building rule for ...
reubidva 3369 Formula-building rule for ...
rmobidv 3370 Formula-building rule for ...
reubidv 3371 Formula-building rule for ...
reueubd 3372 Restricted existential uni...
rmo5 3373 Restricted "at most one" i...
nrexrmo 3374 Nonexistence implies restr...
moel 3375 "At most one" element in a...
cbvrmovw 3376 Change the bound variable ...
cbvreuvw 3377 Change the bound variable ...
moelOLD 3378 Obsolete version of ~ moel...
rmobida 3379 Formula-building rule for ...
reubida 3380 Formula-building rule for ...
rmobidvaOLD 3381 Obsolete version of ~ rmob...
cbvrmow 3382 Change the bound variable ...
cbvreuw 3383 Change the bound variable ...
nfrmo1 3384 The setvar ` x ` is not fr...
nfreu1 3385 The setvar ` x ` is not fr...
nfrmow 3386 Bound-variable hypothesis ...
nfreuw 3387 Bound-variable hypothesis ...
cbvrmowOLD 3388 Obsolete version of ~ cbvr...
cbvreuwOLD 3389 Obsolete version of ~ cbvr...
cbvreuvwOLD 3390 Obsolete version of ~ cbvr...
rmoeq1 3391 Equality theorem for restr...
reueq1 3392 Equality theorem for restr...
rmoeqd 3393 Equality deduction for res...
reueqd 3394 Equality deduction for res...
rmoeq1f 3395 Equality theorem for restr...
reueq1f 3396 Equality theorem for restr...
nfreuwOLD 3397 Obsolete version of ~ nfre...
nfrmowOLD 3398 Obsolete version of ~ nfrm...
cbvreu 3399 Change the bound variable ...
cbvrmo 3400 Change the bound variable ...
cbvrmov 3401 Change the bound variable ...
cbvreuv 3402 Change the bound variable ...
nfrmod 3403 Deduction version of ~ nfr...
nfreud 3404 Deduction version of ~ nfr...
nfrmo 3405 Bound-variable hypothesis ...
nfreu 3406 Bound-variable hypothesis ...
rabbidva2 3409 Equivalent wff's yield equ...
rabbia2 3410 Equivalent wff's yield equ...
rabbiia 3411 Equivalent formulas yield ...
rabbiiaOLD 3412 Obsolete version of ~ rabb...
rabbii 3413 Equivalent wff's correspon...
rabbidva 3414 Equivalent wff's yield equ...
rabbidv 3415 Equivalent wff's yield equ...
rabswap 3416 Swap with a membership rel...
cbvrabv 3417 Rule to change the bound v...
rabeqcda 3418 When ` ps ` is always true...
rabeqc 3419 A restricted class abstrac...
rabeqi 3420 Equality theorem for restr...
rabeq 3421 Equality theorem for restr...
rabeqdv 3422 Equality of restricted cla...
rabeqbidva 3423 Equality of restricted cla...
rabeqbidv 3424 Equality of restricted cla...
rabrabi 3425 Abstract builder restricte...
nfrab1 3426 The abstraction variable i...
rabid 3427 An "identity" law of concr...
rabidim1 3428 Membership in a restricted...
reqabi 3429 Inference from equality of...
rabrab 3430 Abstract builder restricte...
rabrabiOLD 3431 Obsolete version of ~ rabr...
rabbi 3432 Equivalent wff's correspon...
rabbida 3433 Equivalent wff's yield equ...
rabbid 3434 Version of ~ rabbidv with ...
rabid2f 3435 An "identity" law for rest...
rabid2 3436 An "identity" law for rest...
rabid2OLD 3437 Obsolete version of ~ rabi...
rabeqf 3438 Equality theorem for restr...
cbvrabw 3439 Rule to change the bound v...
nfrabw 3440 A variable not free in a w...
nfrabwOLD 3441 Obsolete version of ~ nfra...
rabeqiOLD 3442 Obsolete version of ~ rabe...
nfrab 3443 A variable not free in a w...
cbvrab 3444 Rule to change the bound v...
vjust 3446 Justification theorem for ...
dfv2 3448 Alternate definition of th...
vex 3449 All setvar variables are s...
vexOLD 3450 Obsolete version of ~ vex ...
elv 3451 If a proposition is implie...
elvd 3452 If a proposition is implie...
el2v 3453 If a proposition is implie...
eqv 3454 The universe contains ever...
eqvf 3455 The universe contains ever...
abv 3456 The class of sets verifyin...
abvALT 3457 Alternate proof of ~ abv ,...
isset 3458 Two ways to express that "...
issetf 3459 A version of ~ isset that ...
isseti 3460 A way to say " ` A ` is a ...
issetri 3461 A way to say " ` A ` is a ...
eqvisset 3462 A class equal to a variabl...
elex 3463 If a class is a member of ...
elexi 3464 If a class is a member of ...
elexd 3465 If a class is a member of ...
elex2OLD 3466 Obsolete version of ~ elex...
elex22 3467 If two classes each contai...
prcnel 3468 A proper class doesn't bel...
ralv 3469 A universal quantifier res...
rexv 3470 An existential quantifier ...
reuv 3471 A unique existential quant...
rmov 3472 An at-most-one quantifier ...
rabab 3473 A class abstraction restri...
rexcom4b 3474 Specialized existential co...
ceqsalt 3475 Closed theorem version of ...
ceqsralt 3476 Restricted quantifier vers...
ceqsalg 3477 A representation of explic...
ceqsalgALT 3478 Alternate proof of ~ ceqsa...
ceqsal 3479 A representation of explic...
ceqsalALT 3480 A representation of explic...
ceqsalv 3481 A representation of explic...
ceqsalvOLD 3482 Obsolete version of ~ ceqs...
ceqsralv 3483 Restricted quantifier vers...
ceqsralvOLD 3484 Obsolete version of ~ ceqs...
gencl 3485 Implicit substitution for ...
2gencl 3486 Implicit substitution for ...
3gencl 3487 Implicit substitution for ...
cgsexg 3488 Implicit substitution infe...
cgsex2g 3489 Implicit substitution infe...
cgsex4g 3490 An implicit substitution i...
cgsex4gOLD 3491 Obsolete version of ~ cgse...
ceqsex 3492 Elimination of an existent...
ceqsexOLD 3493 Obsolete version of ~ ceqs...
ceqsexv 3494 Elimination of an existent...
ceqsexvOLD 3495 Obsolete version of ~ ceqs...
ceqsexvOLDOLD 3496 Obsolete version of ~ ceqs...
ceqsexv2d 3497 Elimination of an existent...
ceqsex2 3498 Elimination of two existen...
ceqsex2v 3499 Elimination of two existen...
ceqsex3v 3500 Elimination of three exist...
ceqsex4v 3501 Elimination of four existe...
ceqsex6v 3502 Elimination of six existen...
ceqsex8v 3503 Elimination of eight exist...
gencbvex 3504 Change of bound variable u...
gencbvex2 3505 Restatement of ~ gencbvex ...
gencbval 3506 Change of bound variable u...
sbhypf 3507 Introduce an explicit subs...
sbhypfOLD 3508 Obsolete version of ~ sbhy...
vtoclgft 3509 Closed theorem form of ~ v...
vtocldf 3510 Implicit substitution of a...
vtocld 3511 Implicit substitution of a...
vtocldOLD 3512 Obsolete version of ~ vtoc...
vtocl2d 3513 Implicit substitution of t...
vtocleg 3514 Implicit substitution of a...
vtoclef 3515 Implicit substitution of a...
vtoclf 3516 Implicit substitution of a...
vtoclfOLD 3517 Obsolete version of ~ vtoc...
vtocl 3518 Implicit substitution of a...
vtoclALT 3519 Alternate proof of ~ vtocl...
vtocl2 3520 Implicit substitution of c...
vtocl3 3521 Implicit substitution of c...
vtoclb 3522 Implicit substitution of a...
vtoclgf 3523 Implicit substitution of a...
vtoclg1f 3524 Version of ~ vtoclgf with ...
vtoclg 3525 Implicit substitution of a...
vtoclgOLD 3526 Obsolete version of ~ vtoc...
vtoclgOLDOLD 3527 Obsolete version of ~ vtoc...
vtoclbg 3528 Implicit substitution of a...
vtocl2gf 3529 Implicit substitution of a...
vtocl3gf 3530 Implicit substitution of a...
vtocl2g 3531 Implicit substitution of 2...
vtocl3g 3532 Implicit substitution of a...
vtoclgaf 3533 Implicit substitution of a...
vtoclga 3534 Implicit substitution of a...
vtocl2ga 3535 Implicit substitution of 2...
vtocl2gaf 3536 Implicit substitution of 2...
vtocl3gaf 3537 Implicit substitution of 3...
vtocl3ga 3538 Implicit substitution of 3...
vtocl3gaOLD 3539 Obsolete version of ~ vtoc...
vtocl4g 3540 Implicit substitution of 4...
vtocl4ga 3541 Implicit substitution of 4...
vtoclegft 3542 Implicit substitution of a...
vtoclegftOLD 3543 Obsolete version of ~ vtoc...
vtocle 3544 Implicit substitution of a...
vtoclri 3545 Implicit substitution of a...
spcimgft 3546 A closed version of ~ spci...
spcgft 3547 A closed version of ~ spcg...
spcimgf 3548 Rule of specialization, us...
spcimegf 3549 Existential specialization...
spcgf 3550 Rule of specialization, us...
spcegf 3551 Existential specialization...
spcimdv 3552 Restricted specialization,...
spcdv 3553 Rule of specialization, us...
spcimedv 3554 Restricted existential spe...
spcgv 3555 Rule of specialization, us...
spcegv 3556 Existential specialization...
spcedv 3557 Existential specialization...
spc2egv 3558 Existential specialization...
spc2gv 3559 Specialization with two qu...
spc2ed 3560 Existential specialization...
spc2d 3561 Specialization with 2 quan...
spc3egv 3562 Existential specialization...
spc3gv 3563 Specialization with three ...
spcv 3564 Rule of specialization, us...
spcev 3565 Existential specialization...
spc2ev 3566 Existential specialization...
rspct 3567 A closed version of ~ rspc...
rspcdf 3568 Restricted specialization,...
rspc 3569 Restricted specialization,...
rspce 3570 Restricted existential spe...
rspcimdv 3571 Restricted specialization,...
rspcimedv 3572 Restricted existential spe...
rspcdv 3573 Restricted specialization,...
rspcedv 3574 Restricted existential spe...
rspcebdv 3575 Restricted existential spe...
rspcdv2 3576 Restricted specialization,...
rspcv 3577 Restricted specialization,...
rspccv 3578 Restricted specialization,...
rspcva 3579 Restricted specialization,...
rspccva 3580 Restricted specialization,...
rspcev 3581 Restricted existential spe...
rspcdva 3582 Restricted specialization,...
rspcedvd 3583 Restricted existential spe...
rspcime 3584 Prove a restricted existen...
rspceaimv 3585 Restricted existential spe...
rspcedeq1vd 3586 Restricted existential spe...
rspcedeq2vd 3587 Restricted existential spe...
rspc2 3588 Restricted specialization ...
rspc2gv 3589 Restricted specialization ...
rspc2v 3590 2-variable restricted spec...
rspc2va 3591 2-variable restricted spec...
rspc2ev 3592 2-variable restricted exis...
rspc3v 3593 3-variable restricted spec...
rspc3ev 3594 3-variable restricted exis...
rspceeqv 3595 Restricted existential spe...
ralxpxfr2d 3596 Transfer a universal quant...
rexraleqim 3597 Statement following from e...
eqvincg 3598 A variable introduction la...
eqvinc 3599 A variable introduction la...
eqvincf 3600 A variable introduction la...
alexeqg 3601 Two ways to express substi...
ceqex 3602 Equality implies equivalen...
ceqsexg 3603 A representation of explic...
ceqsexgv 3604 Elimination of an existent...
ceqsrexv 3605 Elimination of a restricte...
ceqsrexbv 3606 Elimination of a restricte...
ceqsralbv 3607 Elimination of a restricte...
ceqsrex2v 3608 Elimination of a restricte...
clel2g 3609 Alternate definition of me...
clel2gOLD 3610 Obsolete version of ~ clel...
clel2 3611 Alternate definition of me...
clel3g 3612 Alternate definition of me...
clel3 3613 Alternate definition of me...
clel4g 3614 Alternate definition of me...
clel4 3615 Alternate definition of me...
clel4OLD 3616 Obsolete version of ~ clel...
clel5 3617 Alternate definition of cl...
pm13.183 3618 Compare theorem *13.183 in...
rr19.3v 3619 Restricted quantifier vers...
rr19.28v 3620 Restricted quantifier vers...
elab6g 3621 Membership in a class abst...
elabd2 3622 Membership in a class abst...
elabd3 3623 Membership in a class abst...
elabgt 3624 Membership in a class abst...
elabgtOLD 3625 Obsolete version of ~ elab...
elabgf 3626 Membership in a class abst...
elabf 3627 Membership in a class abst...
elabg 3628 Membership in a class abst...
elabgOLD 3629 Obsolete version of ~ elab...
elab 3630 Membership in a class abst...
elabOLD 3631 Obsolete version of ~ elab...
elab2g 3632 Membership in a class abst...
elabd 3633 Explicit demonstration the...
elab2 3634 Membership in a class abst...
elab4g 3635 Membership in a class abst...
elab3gf 3636 Membership in a class abst...
elab3g 3637 Membership in a class abst...
elab3 3638 Membership in a class abst...
elrabi 3639 Implication for the member...
elrabiOLD 3640 Obsolete version of ~ elra...
elrabf 3641 Membership in a restricted...
rabtru 3642 Abstract builder using the...
rabeqcOLD 3643 Obsolete version of ~ rabe...
elrab3t 3644 Membership in a restricted...
elrab 3645 Membership in a restricted...
elrab3 3646 Membership in a restricted...
elrabd 3647 Membership in a restricted...
elrab2 3648 Membership in a restricted...
ralab 3649 Universal quantification o...
ralabOLD 3650 Obsolete version of ~ rala...
ralrab 3651 Universal quantification o...
rexab 3652 Existential quantification...
rexabOLD 3653 Obsolete version of ~ rexa...
rexrab 3654 Existential quantification...
ralab2 3655 Universal quantification o...
ralrab2 3656 Universal quantification o...
rexab2 3657 Existential quantification...
rexrab2 3658 Existential quantification...
reurab 3659 Restricted existential uni...
abidnf 3660 Identity used to create cl...
dedhb 3661 A deduction theorem for co...
class2seteq 3662 Writing a set as a class a...
nelrdva 3663 Deduce negative membership...
eqeu 3664 A condition which implies ...
moeq 3665 There exists at most one s...
eueq 3666 A class is a set if and on...
eueqi 3667 There exists a unique set ...
eueq2 3668 Equality has existential u...
eueq3 3669 Equality has existential u...
moeq3 3670 "At most one" property of ...
mosub 3671 "At most one" remains true...
mo2icl 3672 Theorem for inferring "at ...
mob2 3673 Consequence of "at most on...
moi2 3674 Consequence of "at most on...
mob 3675 Equality implied by "at mo...
moi 3676 Equality implied by "at mo...
morex 3677 Derive membership from uni...
euxfr2w 3678 Transfer existential uniqu...
euxfrw 3679 Transfer existential uniqu...
euxfr2 3680 Transfer existential uniqu...
euxfr 3681 Transfer existential uniqu...
euind 3682 Existential uniqueness via...
reu2 3683 A way to express restricte...
reu6 3684 A way to express restricte...
reu3 3685 A way to express restricte...
reu6i 3686 A condition which implies ...
eqreu 3687 A condition which implies ...
rmo4 3688 Restricted "at most one" u...
reu4 3689 Restricted uniqueness usin...
reu7 3690 Restricted uniqueness usin...
reu8 3691 Restricted uniqueness usin...
rmo3f 3692 Restricted "at most one" u...
rmo4f 3693 Restricted "at most one" u...
reu2eqd 3694 Deduce equality from restr...
reueq 3695 Equality has existential u...
rmoeq 3696 Equality's restricted exis...
rmoan 3697 Restricted "at most one" s...
rmoim 3698 Restricted "at most one" i...
rmoimia 3699 Restricted "at most one" i...
rmoimi 3700 Restricted "at most one" i...
rmoimi2 3701 Restricted "at most one" i...
2reu5a 3702 Double restricted existent...
reuimrmo 3703 Restricted uniqueness impl...
2reuswap 3704 A condition allowing swap ...
2reuswap2 3705 A condition allowing swap ...
reuxfrd 3706 Transfer existential uniqu...
reuxfr 3707 Transfer existential uniqu...
reuxfr1d 3708 Transfer existential uniqu...
reuxfr1ds 3709 Transfer existential uniqu...
reuxfr1 3710 Transfer existential uniqu...
reuind 3711 Existential uniqueness via...
2rmorex 3712 Double restricted quantifi...
2reu5lem1 3713 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3714 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3715 Lemma for ~ 2reu5 . This ...
2reu5 3716 Double restricted existent...
2reurmo 3717 Double restricted quantifi...
2reurex 3718 Double restricted quantifi...
2rmoswap 3719 A condition allowing to sw...
2rexreu 3720 Double restricted existent...
cdeqi 3723 Deduce conditional equalit...
cdeqri 3724 Property of conditional eq...
cdeqth 3725 Deduce conditional equalit...
cdeqnot 3726 Distribute conditional equ...
cdeqal 3727 Distribute conditional equ...
cdeqab 3728 Distribute conditional equ...
cdeqal1 3729 Distribute conditional equ...
cdeqab1 3730 Distribute conditional equ...
cdeqim 3731 Distribute conditional equ...
cdeqcv 3732 Conditional equality for s...
cdeqeq 3733 Distribute conditional equ...
cdeqel 3734 Distribute conditional equ...
nfcdeq 3735 If we have a conditional e...
nfccdeq 3736 Variation of ~ nfcdeq for ...
rru 3737 Relative version of Russel...
ru 3738 Russell's Paradox. Propos...
dfsbcq 3741 Proper substitution of a c...
dfsbcq2 3742 This theorem, which is sim...
sbsbc 3743 Show that ~ df-sb and ~ df...
sbceq1d 3744 Equality theorem for class...
sbceq1dd 3745 Equality theorem for class...
sbceqbid 3746 Equality theorem for class...
sbc8g 3747 This is the closest we can...
sbc2or 3748 The disjunction of two equ...
sbcex 3749 By our definition of prope...
sbceq1a 3750 Equality theorem for class...
sbceq2a 3751 Equality theorem for class...
spsbc 3752 Specialization: if a formu...
spsbcd 3753 Specialization: if a formu...
sbcth 3754 A substitution into a theo...
sbcthdv 3755 Deduction version of ~ sbc...
sbcid 3756 An identity theorem for su...
nfsbc1d 3757 Deduction version of ~ nfs...
nfsbc1 3758 Bound-variable hypothesis ...
nfsbc1v 3759 Bound-variable hypothesis ...
nfsbcdw 3760 Deduction version of ~ nfs...
nfsbcw 3761 Bound-variable hypothesis ...
sbccow 3762 A composition law for clas...
nfsbcd 3763 Deduction version of ~ nfs...
nfsbc 3764 Bound-variable hypothesis ...
sbcco 3765 A composition law for clas...
sbcco2 3766 A composition law for clas...
sbc5 3767 An equivalence for class s...
sbc5ALT 3768 Alternate proof of ~ sbc5 ...
sbc6g 3769 An equivalence for class s...
sbc6gOLD 3770 Obsolete version of ~ sbc6...
sbc6 3771 An equivalence for class s...
sbc7 3772 An equivalence for class s...
cbvsbcw 3773 Change bound variables in ...
cbvsbcvw 3774 Change the bound variable ...
cbvsbc 3775 Change bound variables in ...
cbvsbcv 3776 Change the bound variable ...
sbciegft 3777 Conversion of implicit sub...
sbciegf 3778 Conversion of implicit sub...
sbcieg 3779 Conversion of implicit sub...
sbciegOLD 3780 Obsolete version of ~ sbci...
sbcie2g 3781 Conversion of implicit sub...
sbcie 3782 Conversion of implicit sub...
sbciedf 3783 Conversion of implicit sub...
sbcied 3784 Conversion of implicit sub...
sbciedOLD 3785 Obsolete version of ~ sbci...
sbcied2 3786 Conversion of implicit sub...
elrabsf 3787 Membership in a restricted...
eqsbc1 3788 Substitution for the left-...
sbcng 3789 Move negation in and out o...
sbcimg 3790 Distribution of class subs...
sbcan 3791 Distribution of class subs...
sbcor 3792 Distribution of class subs...
sbcbig 3793 Distribution of class subs...
sbcn1 3794 Move negation in and out o...
sbcim1 3795 Distribution of class subs...
sbcim1OLD 3796 Obsolete version of ~ sbci...
sbcbid 3797 Formula-building deduction...
sbcbidv 3798 Formula-building deduction...
sbcbii 3799 Formula-building inference...
sbcbi1 3800 Distribution of class subs...
sbcbi2 3801 Substituting into equivale...
sbcbi2OLD 3802 Obsolete proof of ~ sbcbi2...
sbcal 3803 Move universal quantifier ...
sbcex2 3804 Move existential quantifie...
sbceqal 3805 Class version of one impli...
sbceqalOLD 3806 Obsolete version of ~ sbce...
sbeqalb 3807 Theorem *14.121 in [Whiteh...
eqsbc2 3808 Substitution for the right...
sbc3an 3809 Distribution of class subs...
sbcel1v 3810 Class substitution into a ...
sbcel2gv 3811 Class substitution into a ...
sbcel21v 3812 Class substitution into a ...
sbcimdv 3813 Substitution analogue of T...
sbcimdvOLD 3814 Obsolete version of ~ sbci...
sbctt 3815 Substitution for a variabl...
sbcgf 3816 Substitution for a variabl...
sbc19.21g 3817 Substitution for a variabl...
sbcg 3818 Substitution for a variabl...
sbcgOLD 3819 Obsolete version of ~ sbcg...
sbcgfi 3820 Substitution for a variabl...
sbc2iegf 3821 Conversion of implicit sub...
sbc2ie 3822 Conversion of implicit sub...
sbc2ieOLD 3823 Obsolete version of ~ sbc2...
sbc2iedv 3824 Conversion of implicit sub...
sbc3ie 3825 Conversion of implicit sub...
sbccomlem 3826 Lemma for ~ sbccom . (Con...
sbccom 3827 Commutative law for double...
sbcralt 3828 Interchange class substitu...
sbcrext 3829 Interchange class substitu...
sbcralg 3830 Interchange class substitu...
sbcrex 3831 Interchange class substitu...
sbcreu 3832 Interchange class substitu...
reu8nf 3833 Restricted uniqueness usin...
sbcabel 3834 Interchange class substitu...
rspsbc 3835 Restricted quantifier vers...
rspsbca 3836 Restricted quantifier vers...
rspesbca 3837 Existence form of ~ rspsbc...
spesbc 3838 Existence form of ~ spsbc ...
spesbcd 3839 form of ~ spsbc . (Contri...
sbcth2 3840 A substitution into a theo...
ra4v 3841 Version of ~ ra4 with a di...
ra4 3842 Restricted quantifier vers...
rmo2 3843 Alternate definition of re...
rmo2i 3844 Condition implying restric...
rmo3 3845 Restricted "at most one" u...
rmob 3846 Consequence of "at most on...
rmoi 3847 Consequence of "at most on...
rmob2 3848 Consequence of "restricted...
rmoi2 3849 Consequence of "restricted...
rmoanim 3850 Introduction of a conjunct...
rmoanimALT 3851 Alternate proof of ~ rmoan...
reuan 3852 Introduction of a conjunct...
2reu1 3853 Double restricted existent...
2reu2 3854 Double restricted existent...
csb2 3857 Alternate expression for t...
csbeq1 3858 Analogue of ~ dfsbcq for p...
csbeq1d 3859 Equality deduction for pro...
csbeq2 3860 Substituting into equivale...
csbeq2d 3861 Formula-building deduction...
csbeq2dv 3862 Formula-building deduction...
csbeq2i 3863 Formula-building inference...
csbeq12dv 3864 Formula-building inference...
cbvcsbw 3865 Change bound variables in ...
cbvcsb 3866 Change bound variables in ...
cbvcsbv 3867 Change the bound variable ...
csbid 3868 Analogue of ~ sbid for pro...
csbeq1a 3869 Equality theorem for prope...
csbcow 3870 Composition law for chaine...
csbco 3871 Composition law for chaine...
csbtt 3872 Substitution doesn't affec...
csbconstgf 3873 Substitution doesn't affec...
csbconstg 3874 Substitution doesn't affec...
csbconstgOLD 3875 Obsolete version of ~ csbc...
csbgfi 3876 Substitution for a variabl...
csbconstgi 3877 The proper substitution of...
nfcsb1d 3878 Bound-variable hypothesis ...
nfcsb1 3879 Bound-variable hypothesis ...
nfcsb1v 3880 Bound-variable hypothesis ...
nfcsbd 3881 Deduction version of ~ nfc...
nfcsbw 3882 Bound-variable hypothesis ...
nfcsb 3883 Bound-variable hypothesis ...
csbhypf 3884 Introduce an explicit subs...
csbiebt 3885 Conversion of implicit sub...
csbiedf 3886 Conversion of implicit sub...
csbieb 3887 Bidirectional conversion b...
csbiebg 3888 Bidirectional conversion b...
csbiegf 3889 Conversion of implicit sub...
csbief 3890 Conversion of implicit sub...
csbie 3891 Conversion of implicit sub...
csbieOLD 3892 Obsolete version of ~ csbi...
csbied 3893 Conversion of implicit sub...
csbiedOLD 3894 Obsolete version of ~ csbi...
csbied2 3895 Conversion of implicit sub...
csbie2t 3896 Conversion of implicit sub...
csbie2 3897 Conversion of implicit sub...
csbie2g 3898 Conversion of implicit sub...
cbvrabcsfw 3899 Version of ~ cbvrabcsf wit...
cbvralcsf 3900 A more general version of ...
cbvrexcsf 3901 A more general version of ...
cbvreucsf 3902 A more general version of ...
cbvrabcsf 3903 A more general version of ...
cbvralv2 3904 Rule used to change the bo...
cbvrexv2 3905 Rule used to change the bo...
rspc2vd 3906 Deduction version of 2-var...
difjust 3912 Soundness justification th...
unjust 3914 Soundness justification th...
injust 3916 Soundness justification th...
dfin5 3918 Alternate definition for t...
dfdif2 3919 Alternate definition of cl...
eldif 3920 Expansion of membership in...
eldifd 3921 If a class is in one class...
eldifad 3922 If a class is in the diffe...
eldifbd 3923 If a class is in the diffe...
elneeldif 3924 The elements of a set diff...
velcomp 3925 Characterization of setvar...
elin 3926 Expansion of membership in...
dfss 3928 Variant of subclass defini...
dfss2 3930 Alternate definition of th...
dfss2OLD 3931 Obsolete version of ~ dfss...
dfss3 3932 Alternate definition of su...
dfss6 3933 Alternate definition of su...
dfss2f 3934 Equivalence for subclass r...
dfss3f 3935 Equivalence for subclass r...
nfss 3936 If ` x ` is not free in ` ...
ssel 3937 Membership relationships f...
sselOLD 3938 Obsolete version of ~ ssel...
ssel2 3939 Membership relationships f...
sseli 3940 Membership implication fro...
sselii 3941 Membership inference from ...
sselid 3942 Membership inference from ...
sseld 3943 Membership deduction from ...
sselda 3944 Membership deduction from ...
sseldd 3945 Membership inference from ...
ssneld 3946 If a class is not in anoth...
ssneldd 3947 If an element is not in a ...
ssriv 3948 Inference based on subclas...
ssrd 3949 Deduction based on subclas...
ssrdv 3950 Deduction based on subclas...
sstr2 3951 Transitivity of subclass r...
sstr 3952 Transitivity of subclass r...
sstri 3953 Subclass transitivity infe...
sstrd 3954 Subclass transitivity dedu...
sstrid 3955 Subclass transitivity dedu...
sstrdi 3956 Subclass transitivity dedu...
sylan9ss 3957 A subclass transitivity de...
sylan9ssr 3958 A subclass transitivity de...
eqss 3959 The subclass relationship ...
eqssi 3960 Infer equality from two su...
eqssd 3961 Equality deduction from tw...
sssseq 3962 If a class is a subclass o...
eqrd 3963 Deduce equality of classes...
eqri 3964 Infer equality of classes ...
eqelssd 3965 Equality deduction from su...
ssid 3966 Any class is a subclass of...
ssidd 3967 Weakening of ~ ssid . (Co...
ssv 3968 Any class is a subclass of...
sseq1 3969 Equality theorem for subcl...
sseq2 3970 Equality theorem for the s...
sseq12 3971 Equality theorem for the s...
sseq1i 3972 An equality inference for ...
sseq2i 3973 An equality inference for ...
sseq12i 3974 An equality inference for ...
sseq1d 3975 An equality deduction for ...
sseq2d 3976 An equality deduction for ...
sseq12d 3977 An equality deduction for ...
eqsstri 3978 Substitution of equality i...
eqsstrri 3979 Substitution of equality i...
sseqtri 3980 Substitution of equality i...
sseqtrri 3981 Substitution of equality i...
eqsstrd 3982 Substitution of equality i...
eqsstrrd 3983 Substitution of equality i...
sseqtrd 3984 Substitution of equality i...
sseqtrrd 3985 Substitution of equality i...
3sstr3i 3986 Substitution of equality i...
3sstr4i 3987 Substitution of equality i...
3sstr3g 3988 Substitution of equality i...
3sstr4g 3989 Substitution of equality i...
3sstr3d 3990 Substitution of equality i...
3sstr4d 3991 Substitution of equality i...
eqsstrid 3992 A chained subclass and equ...
eqsstrrid 3993 A chained subclass and equ...
sseqtrdi 3994 A chained subclass and equ...
sseqtrrdi 3995 A chained subclass and equ...
sseqtrid 3996 Subclass transitivity dedu...
sseqtrrid 3997 Subclass transitivity dedu...
eqsstrdi 3998 A chained subclass and equ...
eqsstrrdi 3999 A chained subclass and equ...
eqimss 4000 Equality implies inclusion...
eqimss2 4001 Equality implies inclusion...
eqimssi 4002 Infer subclass relationshi...
eqimss2i 4003 Infer subclass relationshi...
nssne1 4004 Two classes are different ...
nssne2 4005 Two classes are different ...
nss 4006 Negation of subclass relat...
nelss 4007 Demonstrate by witnesses t...
ssrexf 4008 Restricted existential qua...
ssrmof 4009 "At most one" existential ...
ssralv 4010 Quantification restricted ...
ssrexv 4011 Existential quantification...
ss2ralv 4012 Two quantifications restri...
ss2rexv 4013 Two existential quantifica...
ralss 4014 Restricted universal quant...
rexss 4015 Restricted existential qua...
ss2ab 4016 Class abstractions in a su...
abss 4017 Class abstraction in a sub...
ssab 4018 Subclass of a class abstra...
ssabral 4019 The relation for a subclas...
ss2abdv 4020 Deduction of abstraction s...
ss2abdvALT 4021 Alternate proof of ~ ss2ab...
ss2abdvOLD 4022 Obsolete version of ~ ss2a...
ss2abi 4023 Inference of abstraction s...
ss2abiOLD 4024 Obsolete version of ~ ss2a...
abssdv 4025 Deduction of abstraction s...
abssdvOLD 4026 Obsolete version of ~ abss...
abssi 4027 Inference of abstraction s...
ss2rab 4028 Restricted abstraction cla...
rabss 4029 Restricted class abstracti...
ssrab 4030 Subclass of a restricted c...
ssrabdv 4031 Subclass of a restricted c...
rabssdv 4032 Subclass of a restricted c...
ss2rabdv 4033 Deduction of restricted ab...
ss2rabi 4034 Inference of restricted ab...
rabss2 4035 Subclass law for restricte...
ssab2 4036 Subclass relation for the ...
ssrab2 4037 Subclass relation for a re...
ssrab2OLD 4038 Obsolete version of ~ ssra...
rabss3d 4039 Subclass law for restricte...
ssrab3 4040 Subclass relation for a re...
rabssrabd 4041 Subclass of a restricted c...
ssrabeq 4042 If the restricting class o...
rabssab 4043 A restricted class is a su...
uniiunlem 4044 A subset relationship usef...
dfpss2 4045 Alternate definition of pr...
dfpss3 4046 Alternate definition of pr...
psseq1 4047 Equality theorem for prope...
psseq2 4048 Equality theorem for prope...
psseq1i 4049 An equality inference for ...
psseq2i 4050 An equality inference for ...
psseq12i 4051 An equality inference for ...
psseq1d 4052 An equality deduction for ...
psseq2d 4053 An equality deduction for ...
psseq12d 4054 An equality deduction for ...
pssss 4055 A proper subclass is a sub...
pssne 4056 Two classes in a proper su...
pssssd 4057 Deduce subclass from prope...
pssned 4058 Proper subclasses are uneq...
sspss 4059 Subclass in terms of prope...
pssirr 4060 Proper subclass is irrefle...
pssn2lp 4061 Proper subclass has no 2-c...
sspsstri 4062 Two ways of stating tricho...
ssnpss 4063 Partial trichotomy law for...
psstr 4064 Transitive law for proper ...
sspsstr 4065 Transitive law for subclas...
psssstr 4066 Transitive law for subclas...
psstrd 4067 Proper subclass inclusion ...
sspsstrd 4068 Transitivity involving sub...
psssstrd 4069 Transitivity involving sub...
npss 4070 A class is not a proper su...
ssnelpss 4071 A subclass missing a membe...
ssnelpssd 4072 Subclass inclusion with on...
ssexnelpss 4073 If there is an element of ...
dfdif3 4074 Alternate definition of cl...
difeq1 4075 Equality theorem for class...
difeq2 4076 Equality theorem for class...
difeq12 4077 Equality theorem for class...
difeq1i 4078 Inference adding differenc...
difeq2i 4079 Inference adding differenc...
difeq12i 4080 Equality inference for cla...
difeq1d 4081 Deduction adding differenc...
difeq2d 4082 Deduction adding differenc...
difeq12d 4083 Equality deduction for cla...
difeqri 4084 Inference from membership ...
nfdif 4085 Bound-variable hypothesis ...
eldifi 4086 Implication of membership ...
eldifn 4087 Implication of membership ...
elndif 4088 A set does not belong to a...
neldif 4089 Implication of membership ...
difdif 4090 Double class difference. ...
difss 4091 Subclass relationship for ...
difssd 4092 A difference of two classe...
difss2 4093 If a class is contained in...
difss2d 4094 If a class is contained in...
ssdifss 4095 Preservation of a subclass...
ddif 4096 Double complement under un...
ssconb 4097 Contraposition law for sub...
sscon 4098 Contraposition law for sub...
ssdif 4099 Difference law for subsets...
ssdifd 4100 If ` A ` is contained in `...
sscond 4101 If ` A ` is contained in `...
ssdifssd 4102 If ` A ` is contained in `...
ssdif2d 4103 If ` A ` is contained in `...
raldifb 4104 Restricted universal quant...
rexdifi 4105 Restricted existential qua...
complss 4106 Complementation reverses i...
compleq 4107 Two classes are equal if a...
elun 4108 Expansion of membership in...
elunnel1 4109 A member of a union that i...
elunnel2 4110 A member of a union that i...
uneqri 4111 Inference from membership ...
unidm 4112 Idempotent law for union o...
uncom 4113 Commutative law for union ...
equncom 4114 If a class equals the unio...
equncomi 4115 Inference form of ~ equnco...
uneq1 4116 Equality theorem for the u...
uneq2 4117 Equality theorem for the u...
uneq12 4118 Equality theorem for the u...
uneq1i 4119 Inference adding union to ...
uneq2i 4120 Inference adding union to ...
uneq12i 4121 Equality inference for the...
uneq1d 4122 Deduction adding union to ...
uneq2d 4123 Deduction adding union to ...
uneq12d 4124 Equality deduction for the...
nfun 4125 Bound-variable hypothesis ...
unass 4126 Associative law for union ...
un12 4127 A rearrangement of union. ...
un23 4128 A rearrangement of union. ...
un4 4129 A rearrangement of the uni...
unundi 4130 Union distributes over its...
unundir 4131 Union distributes over its...
ssun1 4132 Subclass relationship for ...
ssun2 4133 Subclass relationship for ...
ssun3 4134 Subclass law for union of ...
ssun4 4135 Subclass law for union of ...
elun1 4136 Membership law for union o...
elun2 4137 Membership law for union o...
elunant 4138 A statement is true for ev...
unss1 4139 Subclass law for union of ...
ssequn1 4140 A relationship between sub...
unss2 4141 Subclass law for union of ...
unss12 4142 Subclass law for union of ...
ssequn2 4143 A relationship between sub...
unss 4144 The union of two subclasse...
unssi 4145 An inference showing the u...
unssd 4146 A deduction showing the un...
unssad 4147 If ` ( A u. B ) ` is conta...
unssbd 4148 If ` ( A u. B ) ` is conta...
ssun 4149 A condition that implies i...
rexun 4150 Restricted existential qua...
ralunb 4151 Restricted quantification ...
ralun 4152 Restricted quantification ...
elini 4153 Membership in an intersect...
elind 4154 Deduce membership in an in...
elinel1 4155 Membership in an intersect...
elinel2 4156 Membership in an intersect...
elin2 4157 Membership in a class defi...
elin1d 4158 Elementhood in the first s...
elin2d 4159 Elementhood in the first s...
elin3 4160 Membership in a class defi...
incom 4161 Commutative law for inters...
ineqcom 4162 Two ways of expressing tha...
ineqcomi 4163 Two ways of expressing tha...
ineqri 4164 Inference from membership ...
ineq1 4165 Equality theorem for inter...
ineq2 4166 Equality theorem for inter...
ineq12 4167 Equality theorem for inter...
ineq1i 4168 Equality inference for int...
ineq2i 4169 Equality inference for int...
ineq12i 4170 Equality inference for int...
ineq1d 4171 Equality deduction for int...
ineq2d 4172 Equality deduction for int...
ineq12d 4173 Equality deduction for int...
ineqan12d 4174 Equality deduction for int...
sseqin2 4175 A relationship between sub...
nfin 4176 Bound-variable hypothesis ...
rabbi2dva 4177 Deduction from a wff to a ...
inidm 4178 Idempotent law for interse...
inass 4179 Associative law for inters...
in12 4180 A rearrangement of interse...
in32 4181 A rearrangement of interse...
in13 4182 A rearrangement of interse...
in31 4183 A rearrangement of interse...
inrot 4184 Rotate the intersection of...
in4 4185 Rearrangement of intersect...
inindi 4186 Intersection distributes o...
inindir 4187 Intersection distributes o...
inss1 4188 The intersection of two cl...
inss2 4189 The intersection of two cl...
ssin 4190 Subclass of intersection. ...
ssini 4191 An inference showing that ...
ssind 4192 A deduction showing that a...
ssrin 4193 Add right intersection to ...
sslin 4194 Add left intersection to s...
ssrind 4195 Add right intersection to ...
ss2in 4196 Intersection of subclasses...
ssinss1 4197 Intersection preserves sub...
inss 4198 Inclusion of an intersecti...
rexin 4199 Restricted existential qua...
dfss7 4200 Alternate definition of su...
symdifcom 4203 Symmetric difference commu...
symdifeq1 4204 Equality theorem for symme...
symdifeq2 4205 Equality theorem for symme...
nfsymdif 4206 Hypothesis builder for sym...
elsymdif 4207 Membership in a symmetric ...
dfsymdif4 4208 Alternate definition of th...
elsymdifxor 4209 Membership in a symmetric ...
dfsymdif2 4210 Alternate definition of th...
symdifass 4211 Symmetric difference is as...
difsssymdif 4212 The symmetric difference c...
difsymssdifssd 4213 If the symmetric differenc...
unabs 4214 Absorption law for union. ...
inabs 4215 Absorption law for interse...
nssinpss 4216 Negation of subclass expre...
nsspssun 4217 Negation of subclass expre...
dfss4 4218 Subclass defined in terms ...
dfun2 4219 An alternate definition of...
dfin2 4220 An alternate definition of...
difin 4221 Difference with intersecti...
ssdifim 4222 Implication of a class dif...
ssdifsym 4223 Symmetric class difference...
dfss5 4224 Alternate definition of su...
dfun3 4225 Union defined in terms of ...
dfin3 4226 Intersection defined in te...
dfin4 4227 Alternate definition of th...
invdif 4228 Intersection with universa...
indif 4229 Intersection with class di...
indif2 4230 Bring an intersection in a...
indif1 4231 Bring an intersection in a...
indifcom 4232 Commutation law for inters...
indi 4233 Distributive law for inter...
undi 4234 Distributive law for union...
indir 4235 Distributive law for inter...
undir 4236 Distributive law for union...
unineq 4237 Infer equality from equali...
uneqin 4238 Equality of union and inte...
difundi 4239 Distributive law for class...
difundir 4240 Distributive law for class...
difindi 4241 Distributive law for class...
difindir 4242 Distributive law for class...
indifdi 4243 Distribute intersection ov...
indifdir 4244 Distribute intersection ov...
indifdirOLD 4245 Obsolete version of ~ indi...
difdif2 4246 Class difference by a clas...
undm 4247 De Morgan's law for union....
indm 4248 De Morgan's law for inters...
difun1 4249 A relationship involving d...
undif3 4250 An equality involving clas...
difin2 4251 Represent a class differen...
dif32 4252 Swap second and third argu...
difabs 4253 Absorption-like law for cl...
sscon34b 4254 Relative complementation r...
rcompleq 4255 Two subclasses are equal i...
dfsymdif3 4256 Alternate definition of th...
unabw 4257 Union of two class abstrac...
unab 4258 Union of two class abstrac...
inab 4259 Intersection of two class ...
difab 4260 Difference of two class ab...
abanssl 4261 A class abstraction with a...
abanssr 4262 A class abstraction with a...
notabw 4263 A class abstraction define...
notab 4264 A class abstraction define...
unrab 4265 Union of two restricted cl...
inrab 4266 Intersection of two restri...
inrab2 4267 Intersection with a restri...
difrab 4268 Difference of two restrict...
dfrab3 4269 Alternate definition of re...
dfrab2 4270 Alternate definition of re...
notrab 4271 Complementation of restric...
dfrab3ss 4272 Restricted class abstracti...
rabun2 4273 Abstraction restricted to ...
reuun2 4274 Transfer uniqueness to a s...
reuss2 4275 Transfer uniqueness to a s...
reuss 4276 Transfer uniqueness to a s...
reuun1 4277 Transfer uniqueness to a s...
reupick 4278 Restricted uniqueness "pic...
reupick3 4279 Restricted uniqueness "pic...
reupick2 4280 Restricted uniqueness "pic...
euelss 4281 Transfer uniqueness of an ...
dfnul4 4284 Alternate definition of th...
dfnul2 4285 Alternate definition of th...
dfnul3 4286 Alternate definition of th...
dfnul2OLD 4287 Obsolete version of ~ dfnu...
dfnul3OLD 4288 Obsolete version of ~ dfnu...
dfnul4OLD 4289 Obsolete version of ~ dfnu...
noel 4290 The empty set has no eleme...
noelOLD 4291 Obsolete version of ~ noel...
nel02 4292 The empty set has no eleme...
n0i 4293 If a class has elements, t...
ne0i 4294 If a class has elements, t...
ne0d 4295 Deduction form of ~ ne0i ....
n0ii 4296 If a class has elements, t...
ne0ii 4297 If a class has elements, t...
vn0 4298 The universal class is not...
vn0ALT 4299 Alternate proof of ~ vn0 ....
eq0f 4300 A class is equal to the em...
neq0f 4301 A class is not empty if an...
n0f 4302 A class is nonempty if and...
eq0 4303 A class is equal to the em...
eq0ALT 4304 Alternate proof of ~ eq0 ....
neq0 4305 A class is not empty if an...
n0 4306 A class is nonempty if and...
eq0OLDOLD 4307 Obsolete version of ~ eq0 ...
neq0OLD 4308 Obsolete version of ~ neq0...
n0OLD 4309 Obsolete version of ~ n0 a...
nel0 4310 From the general negation ...
reximdva0 4311 Restricted existence deduc...
rspn0 4312 Specialization for restric...
rspn0OLD 4313 Obsolete version of ~ rspn...
n0rex 4314 There is an element in a n...
ssn0rex 4315 There is an element in a c...
n0moeu 4316 A case of equivalence of "...
rex0 4317 Vacuous restricted existen...
reu0 4318 Vacuous restricted uniquen...
rmo0 4319 Vacuous restricted at-most...
0el 4320 Membership of the empty se...
n0el 4321 Negated membership of the ...
eqeuel 4322 A condition which implies ...
ssdif0 4323 Subclass expressed in term...
difn0 4324 If the difference of two s...
pssdifn0 4325 A proper subclass has a no...
pssdif 4326 A proper subclass has a no...
ndisj 4327 Express that an intersecti...
difin0ss 4328 Difference, intersection, ...
inssdif0 4329 Intersection, subclass, an...
difid 4330 The difference between a c...
difidALT 4331 Alternate proof of ~ difid...
dif0 4332 The difference between a c...
ab0w 4333 The class of sets verifyin...
ab0 4334 The class of sets verifyin...
ab0OLD 4335 Obsolete version of ~ ab0 ...
ab0ALT 4336 Alternate proof of ~ ab0 ,...
dfnf5 4337 Characterization of nonfre...
ab0orv 4338 The class abstraction defi...
ab0orvALT 4339 Alternate proof of ~ ab0or...
abn0 4340 Nonempty class abstraction...
abn0OLD 4341 Obsolete version of ~ abn0...
rab0 4342 Any restricted class abstr...
rabeq0w 4343 Condition for a restricted...
rabeq0 4344 Condition for a restricted...
rabn0 4345 Nonempty restricted class ...
rabxm 4346 Law of excluded middle, in...
rabnc 4347 Law of noncontradiction, i...
elneldisj 4348 The set of elements ` s ` ...
elnelun 4349 The union of the set of el...
un0 4350 The union of a class with ...
in0 4351 The intersection of a clas...
0un 4352 The union of the empty set...
0in 4353 The intersection of the em...
inv1 4354 The intersection of a clas...
unv 4355 The union of a class with ...
0ss 4356 The null set is a subset o...
ss0b 4357 Any subset of the empty se...
ss0 4358 Any subset of the empty se...
sseq0 4359 A subclass of an empty cla...
ssn0 4360 A class with a nonempty su...
0dif 4361 The difference between the...
abf 4362 A class abstraction determ...
abfOLD 4363 Obsolete version of ~ abf ...
eq0rdv 4364 Deduction for equality to ...
eq0rdvALT 4365 Alternate proof of ~ eq0rd...
csbprc 4366 The proper substitution of...
csb0 4367 The proper substitution of...
sbcel12 4368 Distribute proper substitu...
sbceqg 4369 Distribute proper substitu...
sbceqi 4370 Distribution of class subs...
sbcnel12g 4371 Distribute proper substitu...
sbcne12 4372 Distribute proper substitu...
sbcel1g 4373 Move proper substitution i...
sbceq1g 4374 Move proper substitution t...
sbcel2 4375 Move proper substitution i...
sbceq2g 4376 Move proper substitution t...
csbcom 4377 Commutative law for double...
sbcnestgfw 4378 Nest the composition of tw...
csbnestgfw 4379 Nest the composition of tw...
sbcnestgw 4380 Nest the composition of tw...
csbnestgw 4381 Nest the composition of tw...
sbcco3gw 4382 Composition of two substit...
sbcnestgf 4383 Nest the composition of tw...
csbnestgf 4384 Nest the composition of tw...
sbcnestg 4385 Nest the composition of tw...
csbnestg 4386 Nest the composition of tw...
sbcco3g 4387 Composition of two substit...
csbco3g 4388 Composition of two class s...
csbnest1g 4389 Nest the composition of tw...
csbidm 4390 Idempotent law for class s...
csbvarg 4391 The proper substitution of...
csbvargi 4392 The proper substitution of...
sbccsb 4393 Substitution into a wff ex...
sbccsb2 4394 Substitution into a wff ex...
rspcsbela 4395 Special case related to ~ ...
sbnfc2 4396 Two ways of expressing " `...
csbab 4397 Move substitution into a c...
csbun 4398 Distribution of class subs...
csbin 4399 Distribute proper substitu...
csbie2df 4400 Conversion of implicit sub...
2nreu 4401 If there are two different...
un00 4402 Two classes are empty iff ...
vss 4403 Only the universal class h...
0pss 4404 The null set is a proper s...
npss0 4405 No set is a proper subset ...
pssv 4406 Any non-universal class is...
disj 4407 Two ways of saying that tw...
disjOLD 4408 Obsolete version of ~ disj...
disjr 4409 Two ways of saying that tw...
disj1 4410 Two ways of saying that tw...
reldisj 4411 Two ways of saying that tw...
reldisjOLD 4412 Obsolete version of ~ reld...
disj3 4413 Two ways of saying that tw...
disjne 4414 Members of disjoint sets a...
disjeq0 4415 Two disjoint sets are equa...
disjel 4416 A set can't belong to both...
disj2 4417 Two ways of saying that tw...
disj4 4418 Two ways of saying that tw...
ssdisj 4419 Intersection with a subcla...
disjpss 4420 A class is a proper subset...
undisj1 4421 The union of disjoint clas...
undisj2 4422 The union of disjoint clas...
ssindif0 4423 Subclass expressed in term...
inelcm 4424 The intersection of classe...
minel 4425 A minimum element of a cla...
undif4 4426 Distribute union over diff...
disjssun 4427 Subset relation for disjoi...
vdif0 4428 Universal class equality i...
difrab0eq 4429 If the difference between ...
pssnel 4430 A proper subclass has a me...
disjdif 4431 A class and its relative c...
disjdifr 4432 A class and its relative c...
difin0 4433 The difference of a class ...
unvdif 4434 The union of a class and i...
undif1 4435 Absorption of difference b...
undif2 4436 Absorption of difference b...
undifabs 4437 Absorption of difference b...
inundif 4438 The intersection and class...
disjdif2 4439 The difference of a class ...
difun2 4440 Absorption of union by dif...
undif 4441 Union of complementary par...
undif5 4442 An equality involving clas...
ssdifin0 4443 A subset of a difference d...
ssdifeq0 4444 A class is a subclass of i...
ssundif 4445 A condition equivalent to ...
difcom 4446 Swap the arguments of a cl...
pssdifcom1 4447 Two ways to express overla...
pssdifcom2 4448 Two ways to express non-co...
difdifdir 4449 Distributive law for class...
uneqdifeq 4450 Two ways to say that ` A `...
raldifeq 4451 Equality theorem for restr...
r19.2z 4452 Theorem 19.2 of [Margaris]...
r19.2zb 4453 A response to the notion t...
r19.3rz 4454 Restricted quantification ...
r19.28z 4455 Restricted quantifier vers...
r19.3rzv 4456 Restricted quantification ...
r19.9rzv 4457 Restricted quantification ...
r19.28zv 4458 Restricted quantifier vers...
r19.37zv 4459 Restricted quantifier vers...
r19.45zv 4460 Restricted version of Theo...
r19.44zv 4461 Restricted version of Theo...
r19.27z 4462 Restricted quantifier vers...
r19.27zv 4463 Restricted quantifier vers...
r19.36zv 4464 Restricted quantifier vers...
ralidmw 4465 Idempotent law for restric...
rzal 4466 Vacuous quantification is ...
rzalALT 4467 Alternate proof of ~ rzal ...
rexn0 4468 Restricted existential qua...
ralidm 4469 Idempotent law for restric...
ral0 4470 Vacuous universal quantifi...
ralf0 4471 The quantification of a fa...
rexn0OLD 4472 Obsolete version of ~ rexn...
ralidmOLD 4473 Obsolete version of ~ rali...
ral0OLD 4474 Obsolete version of ~ ral0...
ralf0OLD 4475 Obsolete version of ~ ralf...
ralnralall 4476 A contradiction concerning...
falseral0 4477 A false statement can only...
raaan 4478 Rearrange restricted quant...
raaanv 4479 Rearrange restricted quant...
sbss 4480 Set substitution into the ...
sbcssg 4481 Distribute proper substitu...
raaan2 4482 Rearrange restricted quant...
2reu4lem 4483 Lemma for ~ 2reu4 . (Cont...
2reu4 4484 Definition of double restr...
csbdif 4485 Distribution of class subs...
dfif2 4488 An alternate definition of...
dfif6 4489 An alternate definition of...
ifeq1 4490 Equality theorem for condi...
ifeq2 4491 Equality theorem for condi...
iftrue 4492 Value of the conditional o...
iftruei 4493 Inference associated with ...
iftrued 4494 Value of the conditional o...
iffalse 4495 Value of the conditional o...
iffalsei 4496 Inference associated with ...
iffalsed 4497 Value of the conditional o...
ifnefalse 4498 When values are unequal, b...
ifsb 4499 Distribute a function over...
dfif3 4500 Alternate definition of th...
dfif4 4501 Alternate definition of th...
dfif5 4502 Alternate definition of th...
ifssun 4503 A conditional class is inc...
ifeq12 4504 Equality theorem for condi...
ifeq1d 4505 Equality deduction for con...
ifeq2d 4506 Equality deduction for con...
ifeq12d 4507 Equality deduction for con...
ifbi 4508 Equivalence theorem for co...
ifbid 4509 Equivalence deduction for ...
ifbieq1d 4510 Equivalence/equality deduc...
ifbieq2i 4511 Equivalence/equality infer...
ifbieq2d 4512 Equivalence/equality deduc...
ifbieq12i 4513 Equivalence deduction for ...
ifbieq12d 4514 Equivalence deduction for ...
nfifd 4515 Deduction form of ~ nfif ....
nfif 4516 Bound-variable hypothesis ...
ifeq1da 4517 Conditional equality. (Co...
ifeq2da 4518 Conditional equality. (Co...
ifeq12da 4519 Equivalence deduction for ...
ifbieq12d2 4520 Equivalence deduction for ...
ifclda 4521 Conditional closure. (Con...
ifeqda 4522 Separation of the values o...
elimif 4523 Elimination of a condition...
ifbothda 4524 A wff ` th ` containing a ...
ifboth 4525 A wff ` th ` containing a ...
ifid 4526 Identical true and false a...
eqif 4527 Expansion of an equality w...
ifval 4528 Another expression of the ...
elif 4529 Membership in a conditiona...
ifel 4530 Membership of a conditiona...
ifcl 4531 Membership (closure) of a ...
ifcld 4532 Membership (closure) of a ...
ifcli 4533 Inference associated with ...
ifexd 4534 Existence of the condition...
ifexg 4535 Existence of the condition...
ifex 4536 Existence of the condition...
ifeqor 4537 The possible values of a c...
ifnot 4538 Negating the first argumen...
ifan 4539 Rewrite a conjunction in a...
ifor 4540 Rewrite a disjunction in a...
2if2 4541 Resolve two nested conditi...
ifcomnan 4542 Commute the conditions in ...
csbif 4543 Distribute proper substitu...
dedth 4544 Weak deduction theorem tha...
dedth2h 4545 Weak deduction theorem eli...
dedth3h 4546 Weak deduction theorem eli...
dedth4h 4547 Weak deduction theorem eli...
dedth2v 4548 Weak deduction theorem for...
dedth3v 4549 Weak deduction theorem for...
dedth4v 4550 Weak deduction theorem for...
elimhyp 4551 Eliminate a hypothesis con...
elimhyp2v 4552 Eliminate a hypothesis con...
elimhyp3v 4553 Eliminate a hypothesis con...
elimhyp4v 4554 Eliminate a hypothesis con...
elimel 4555 Eliminate a membership hyp...
elimdhyp 4556 Version of ~ elimhyp where...
keephyp 4557 Transform a hypothesis ` p...
keephyp2v 4558 Keep a hypothesis containi...
keephyp3v 4559 Keep a hypothesis containi...
pwjust 4561 Soundness justification th...
elpwg 4563 Membership in a power clas...
elpw 4564 Membership in a power clas...
velpw 4565 Setvar variable membership...
elpwd 4566 Membership in a power clas...
elpwi 4567 Subset relation implied by...
elpwb 4568 Characterization of the el...
elpwid 4569 An element of a power clas...
elelpwi 4570 If ` A ` belongs to a part...
sspw 4571 The powerclass preserves i...
sspwi 4572 The powerclass preserves i...
sspwd 4573 The powerclass preserves i...
pweq 4574 Equality theorem for power...
pweqALT 4575 Alternate proof of ~ pweq ...
pweqi 4576 Equality inference for pow...
pweqd 4577 Equality deduction for pow...
pwunss 4578 The power class of the uni...
nfpw 4579 Bound-variable hypothesis ...
pwidg 4580 A set is an element of its...
pwidb 4581 A class is an element of i...
pwid 4582 A set is a member of its p...
pwss 4583 Subclass relationship for ...
pwundif 4584 Break up the power class o...
snjust 4585 Soundness justification th...
sneq 4596 Equality theorem for singl...
sneqi 4597 Equality inference for sin...
sneqd 4598 Equality deduction for sin...
dfsn2 4599 Alternate definition of si...
elsng 4600 There is exactly one eleme...
elsn 4601 There is exactly one eleme...
velsn 4602 There is only one element ...
elsni 4603 There is at most one eleme...
absn 4604 Condition for a class abst...
dfpr2 4605 Alternate definition of a ...
dfsn2ALT 4606 Alternate definition of si...
elprg 4607 A member of a pair of clas...
elpri 4608 If a class is an element o...
elpr 4609 A member of a pair of clas...
elpr2g 4610 A member of a pair of sets...
elpr2 4611 A member of a pair of sets...
elpr2OLD 4612 Obsolete version of ~ elpr...
nelpr2 4613 If a class is not an eleme...
nelpr1 4614 If a class is not an eleme...
nelpri 4615 If an element doesn't matc...
prneli 4616 If an element doesn't matc...
nelprd 4617 If an element doesn't matc...
eldifpr 4618 Membership in a set with t...
rexdifpr 4619 Restricted existential qua...
snidg 4620 A set is a member of its s...
snidb 4621 A class is a set iff it is...
snid 4622 A set is a member of its s...
vsnid 4623 A setvar variable is a mem...
elsn2g 4624 There is exactly one eleme...
elsn2 4625 There is exactly one eleme...
nelsn 4626 If a class is not equal to...
rabeqsn 4627 Conditions for a restricte...
rabsssn 4628 Conditions for a restricte...
ralsnsg 4629 Substitution expressed in ...
rexsns 4630 Restricted existential qua...
rexsngf 4631 Restricted existential qua...
ralsngf 4632 Restricted universal quant...
reusngf 4633 Restricted existential uni...
ralsng 4634 Substitution expressed in ...
rexsng 4635 Restricted existential qua...
reusng 4636 Restricted existential uni...
2ralsng 4637 Substitution expressed in ...
ralsngOLD 4638 Obsolete version of ~ rals...
rexsngOLD 4639 Obsolete version of ~ rexs...
rexreusng 4640 Restricted existential uni...
exsnrex 4641 There is a set being the e...
ralsn 4642 Convert a universal quanti...
rexsn 4643 Convert an existential qua...
elpwunsn 4644 Membership in an extension...
eqoreldif 4645 An element of a set is eit...
eltpg 4646 Members of an unordered tr...
eldiftp 4647 Membership in a set with t...
eltpi 4648 A member of an unordered t...
eltp 4649 A member of an unordered t...
dftp2 4650 Alternate definition of un...
nfpr 4651 Bound-variable hypothesis ...
ifpr 4652 Membership of a conditiona...
ralprgf 4653 Convert a restricted unive...
rexprgf 4654 Convert a restricted exist...
ralprg 4655 Convert a restricted unive...
ralprgOLD 4656 Obsolete version of ~ ralp...
rexprg 4657 Convert a restricted exist...
rexprgOLD 4658 Obsolete version of ~ rexp...
raltpg 4659 Convert a restricted unive...
rextpg 4660 Convert a restricted exist...
ralpr 4661 Convert a restricted unive...
rexpr 4662 Convert a restricted exist...
reuprg0 4663 Convert a restricted exist...
reuprg 4664 Convert a restricted exist...
reurexprg 4665 Convert a restricted exist...
raltp 4666 Convert a universal quanti...
rextp 4667 Convert an existential qua...
nfsn 4668 Bound-variable hypothesis ...
csbsng 4669 Distribute proper substitu...
csbprg 4670 Distribute proper substitu...
elinsn 4671 If the intersection of two...
disjsn 4672 Intersection with the sing...
disjsn2 4673 Two distinct singletons ar...
disjpr2 4674 Two completely distinct un...
disjprsn 4675 The disjoint intersection ...
disjtpsn 4676 The disjoint intersection ...
disjtp2 4677 Two completely distinct un...
snprc 4678 The singleton of a proper ...
snnzb 4679 A singleton is nonempty if...
rmosn 4680 A restricted at-most-one q...
r19.12sn 4681 Special case of ~ r19.12 w...
rabsn 4682 Condition where a restrict...
rabsnifsb 4683 A restricted class abstrac...
rabsnif 4684 A restricted class abstrac...
rabrsn 4685 A restricted class abstrac...
euabsn2 4686 Another way to express exi...
euabsn 4687 Another way to express exi...
reusn 4688 A way to express restricte...
absneu 4689 Restricted existential uni...
rabsneu 4690 Restricted existential uni...
eusn 4691 Two ways to express " ` A ...
rabsnt 4692 Truth implied by equality ...
prcom 4693 Commutative law for unorde...
preq1 4694 Equality theorem for unord...
preq2 4695 Equality theorem for unord...
preq12 4696 Equality theorem for unord...
preq1i 4697 Equality inference for uno...
preq2i 4698 Equality inference for uno...
preq12i 4699 Equality inference for uno...
preq1d 4700 Equality deduction for uno...
preq2d 4701 Equality deduction for uno...
preq12d 4702 Equality deduction for uno...
tpeq1 4703 Equality theorem for unord...
tpeq2 4704 Equality theorem for unord...
tpeq3 4705 Equality theorem for unord...
tpeq1d 4706 Equality theorem for unord...
tpeq2d 4707 Equality theorem for unord...
tpeq3d 4708 Equality theorem for unord...
tpeq123d 4709 Equality theorem for unord...
tprot 4710 Rotation of the elements o...
tpcoma 4711 Swap 1st and 2nd members o...
tpcomb 4712 Swap 2nd and 3rd members o...
tpass 4713 Split off the first elemen...
qdass 4714 Two ways to write an unord...
qdassr 4715 Two ways to write an unord...
tpidm12 4716 Unordered triple ` { A , A...
tpidm13 4717 Unordered triple ` { A , B...
tpidm23 4718 Unordered triple ` { A , B...
tpidm 4719 Unordered triple ` { A , A...
tppreq3 4720 An unordered triple is an ...
prid1g 4721 An unordered pair contains...
prid2g 4722 An unordered pair contains...
prid1 4723 An unordered pair contains...
prid2 4724 An unordered pair contains...
ifpprsnss 4725 An unordered pair is a sin...
prprc1 4726 A proper class vanishes in...
prprc2 4727 A proper class vanishes in...
prprc 4728 An unordered pair containi...
tpid1 4729 One of the three elements ...
tpid1g 4730 Closed theorem form of ~ t...
tpid2 4731 One of the three elements ...
tpid2g 4732 Closed theorem form of ~ t...
tpid3g 4733 Closed theorem form of ~ t...
tpid3 4734 One of the three elements ...
snnzg 4735 The singleton of a set is ...
snn0d 4736 The singleton of a set is ...
snnz 4737 The singleton of a set is ...
prnz 4738 A pair containing a set is...
prnzg 4739 A pair containing a set is...
tpnz 4740 An unordered triple contai...
tpnzd 4741 An unordered triple contai...
raltpd 4742 Convert a universal quanti...
snssb 4743 Characterization of the in...
snssg 4744 The singleton formed on a ...
snssgOLD 4745 Obsolete version of ~ snss...
snss 4746 The singleton of an elemen...
eldifsn 4747 Membership in a set with a...
ssdifsn 4748 Subset of a set with an el...
elpwdifsn 4749 A subset of a set is an el...
eldifsni 4750 Membership in a set with a...
eldifsnneq 4751 An element of a difference...
neldifsn 4752 The class ` A ` is not in ...
neldifsnd 4753 The class ` A ` is not in ...
rexdifsn 4754 Restricted existential qua...
raldifsni 4755 Rearrangement of a propert...
raldifsnb 4756 Restricted universal quant...
eldifvsn 4757 A set is an element of the...
difsn 4758 An element not in a set ca...
difprsnss 4759 Removal of a singleton fro...
difprsn1 4760 Removal of a singleton fro...
difprsn2 4761 Removal of a singleton fro...
diftpsn3 4762 Removal of a singleton fro...
difpr 4763 Removing two elements as p...
tpprceq3 4764 An unordered triple is an ...
tppreqb 4765 An unordered triple is an ...
difsnb 4766 ` ( B \ { A } ) ` equals `...
difsnpss 4767 ` ( B \ { A } ) ` is a pro...
snssi 4768 The singleton of an elemen...
snssd 4769 The singleton of an elemen...
difsnid 4770 If we remove a single elem...
eldifeldifsn 4771 An element of a difference...
pw0 4772 Compute the power set of t...
pwpw0 4773 Compute the power set of t...
snsspr1 4774 A singleton is a subset of...
snsspr2 4775 A singleton is a subset of...
snsstp1 4776 A singleton is a subset of...
snsstp2 4777 A singleton is a subset of...
snsstp3 4778 A singleton is a subset of...
prssg 4779 A pair of elements of a cl...
prss 4780 A pair of elements of a cl...
prssi 4781 A pair of elements of a cl...
prssd 4782 Deduction version of ~ prs...
prsspwg 4783 An unordered pair belongs ...
ssprss 4784 A pair as subset of a pair...
ssprsseq 4785 A proper pair is a subset ...
sssn 4786 The subsets of a singleton...
ssunsn2 4787 The property of being sand...
ssunsn 4788 Possible values for a set ...
eqsn 4789 Two ways to express that a...
issn 4790 A sufficient condition for...
n0snor2el 4791 A nonempty set is either a...
ssunpr 4792 Possible values for a set ...
sspr 4793 The subsets of a pair. (C...
sstp 4794 The subsets of an unordere...
tpss 4795 An unordered triple of ele...
tpssi 4796 An unordered triple of ele...
sneqrg 4797 Closed form of ~ sneqr . ...
sneqr 4798 If the singletons of two s...
snsssn 4799 If a singleton is a subset...
mosneq 4800 There exists at most one s...
sneqbg 4801 Two singletons of sets are...
snsspw 4802 The singleton of a class i...
prsspw 4803 An unordered pair belongs ...
preq1b 4804 Biconditional equality lem...
preq2b 4805 Biconditional equality lem...
preqr1 4806 Reverse equality lemma for...
preqr2 4807 Reverse equality lemma for...
preq12b 4808 Equality relationship for ...
opthpr 4809 An unordered pair has the ...
preqr1g 4810 Reverse equality lemma for...
preq12bg 4811 Closed form of ~ preq12b ....
prneimg 4812 Two pairs are not equal if...
prnebg 4813 A (proper) pair is not equ...
pr1eqbg 4814 A (proper) pair is equal t...
pr1nebg 4815 A (proper) pair is not equ...
preqsnd 4816 Equivalence for a pair equ...
prnesn 4817 A proper unordered pair is...
prneprprc 4818 A proper unordered pair is...
preqsn 4819 Equivalence for a pair equ...
preq12nebg 4820 Equality relationship for ...
prel12g 4821 Equality of two unordered ...
opthprneg 4822 An unordered pair has the ...
elpreqprlem 4823 Lemma for ~ elpreqpr . (C...
elpreqpr 4824 Equality and membership ru...
elpreqprb 4825 A set is an element of an ...
elpr2elpr 4826 For an element ` A ` of an...
dfopif 4827 Rewrite ~ df-op using ` if...
dfopg 4828 Value of the ordered pair ...
dfop 4829 Value of an ordered pair w...
opeq1 4830 Equality theorem for order...
opeq2 4831 Equality theorem for order...
opeq12 4832 Equality theorem for order...
opeq1i 4833 Equality inference for ord...
opeq2i 4834 Equality inference for ord...
opeq12i 4835 Equality inference for ord...
opeq1d 4836 Equality deduction for ord...
opeq2d 4837 Equality deduction for ord...
opeq12d 4838 Equality deduction for ord...
oteq1 4839 Equality theorem for order...
oteq2 4840 Equality theorem for order...
oteq3 4841 Equality theorem for order...
oteq1d 4842 Equality deduction for ord...
oteq2d 4843 Equality deduction for ord...
oteq3d 4844 Equality deduction for ord...
oteq123d 4845 Equality deduction for ord...
nfop 4846 Bound-variable hypothesis ...
nfopd 4847 Deduction version of bound...
csbopg 4848 Distribution of class subs...
opidg 4849 The ordered pair ` <. A , ...
opid 4850 The ordered pair ` <. A , ...
ralunsn 4851 Restricted quantification ...
2ralunsn 4852 Double restricted quantifi...
opprc 4853 Expansion of an ordered pa...
opprc1 4854 Expansion of an ordered pa...
opprc2 4855 Expansion of an ordered pa...
oprcl 4856 If an ordered pair has an ...
pwsn 4857 The power set of a singlet...
pwsnOLD 4858 Obsolete version of ~ pwsn...
pwpr 4859 The power set of an unorde...
pwtp 4860 The power set of an unorde...
pwpwpw0 4861 Compute the power set of t...
pwv 4862 The power class of the uni...
prproe 4863 For an element of a proper...
3elpr2eq 4864 If there are three element...
dfuni2 4867 Alternate definition of cl...
eluni 4868 Membership in class union....
eluni2 4869 Membership in class union....
elunii 4870 Membership in class union....
nfunid 4871 Deduction version of ~ nfu...
nfuni 4872 Bound-variable hypothesis ...
uniss 4873 Subclass relationship for ...
unissi 4874 Subclass relationship for ...
unissd 4875 Subclass relationship for ...
unieq 4876 Equality theorem for class...
unieqOLD 4877 Obsolete version of ~ unie...
unieqi 4878 Inference of equality of t...
unieqd 4879 Deduction of equality of t...
eluniab 4880 Membership in union of a c...
elunirab 4881 Membership in union of a c...
uniprg 4882 The union of a pair is the...
unipr 4883 The union of a pair is the...
uniprOLD 4884 Obsolete version of ~ unip...
uniprgOLD 4885 Obsolete version of ~ unip...
unisng 4886 A set equals the union of ...
unisn 4887 A set equals the union of ...
unisnv 4888 A set equals the union of ...
unisn3 4889 Union of a singleton in th...
dfnfc2 4890 An alternative statement o...
uniun 4891 The class union of the uni...
uniin 4892 The class union of the int...
ssuni 4893 Subclass relationship for ...
uni0b 4894 The union of a set is empt...
uni0c 4895 The union of a set is empt...
uni0 4896 The union of the empty set...
csbuni 4897 Distribute proper substitu...
elssuni 4898 An element of a class is a...
unissel 4899 Condition turning a subcla...
unissb 4900 Relationship involving mem...
unissbOLD 4901 Obsolete version of ~ unis...
uniss2 4902 A subclass condition on th...
unidif 4903 If the difference ` A \ B ...
ssunieq 4904 Relationship implying unio...
unimax 4905 Any member of a class is t...
pwuni 4906 A class is a subclass of t...
dfint2 4909 Alternate definition of cl...
inteq 4910 Equality law for intersect...
inteqi 4911 Equality inference for cla...
inteqd 4912 Equality deduction for cla...
elint 4913 Membership in class inters...
elint2 4914 Membership in class inters...
elintg 4915 Membership in class inters...
elinti 4916 Membership in class inters...
nfint 4917 Bound-variable hypothesis ...
elintabg 4918 Two ways of saying a set i...
elintab 4919 Membership in the intersec...
elintabOLD 4920 Obsolete version of ~ elin...
elintrab 4921 Membership in the intersec...
elintrabg 4922 Membership in the intersec...
int0 4923 The intersection of the em...
intss1 4924 An element of a class incl...
ssint 4925 Subclass of a class inters...
ssintab 4926 Subclass of the intersecti...
ssintub 4927 Subclass of the least uppe...
ssmin 4928 Subclass of the minimum va...
intmin 4929 Any member of a class is t...
intss 4930 Intersection of subclasses...
intssuni 4931 The intersection of a none...
ssintrab 4932 Subclass of the intersecti...
unissint 4933 If the union of a class is...
intssuni2 4934 Subclass relationship for ...
intminss 4935 Under subset ordering, the...
intmin2 4936 Any set is the smallest of...
intmin3 4937 Under subset ordering, the...
intmin4 4938 Elimination of a conjunct ...
intab 4939 The intersection of a spec...
int0el 4940 The intersection of a clas...
intun 4941 The class intersection of ...
intprg 4942 The intersection of a pair...
intpr 4943 The intersection of a pair...
intprOLD 4944 Obsolete version of ~ intp...
intprgOLD 4945 Obsolete version of ~ intp...
intsng 4946 Intersection of a singleto...
intsn 4947 The intersection of a sing...
uniintsn 4948 Two ways to express " ` A ...
uniintab 4949 The union and the intersec...
intunsn 4950 Theorem joining a singleto...
rint0 4951 Relative intersection of a...
elrint 4952 Membership in a restricted...
elrint2 4953 Membership in a restricted...
eliun 4958 Membership in indexed unio...
eliin 4959 Membership in indexed inte...
eliuni 4960 Membership in an indexed u...
iuncom 4961 Commutation of indexed uni...
iuncom4 4962 Commutation of union with ...
iunconst 4963 Indexed union of a constan...
iinconst 4964 Indexed intersection of a ...
iuneqconst 4965 Indexed union of identical...
iuniin 4966 Law combining indexed unio...
iinssiun 4967 An indexed intersection is...
iunss1 4968 Subclass theorem for index...
iinss1 4969 Subclass theorem for index...
iuneq1 4970 Equality theorem for index...
iineq1 4971 Equality theorem for index...
ss2iun 4972 Subclass theorem for index...
iuneq2 4973 Equality theorem for index...
iineq2 4974 Equality theorem for index...
iuneq2i 4975 Equality inference for ind...
iineq2i 4976 Equality inference for ind...
iineq2d 4977 Equality deduction for ind...
iuneq2dv 4978 Equality deduction for ind...
iineq2dv 4979 Equality deduction for ind...
iuneq12df 4980 Equality deduction for ind...
iuneq1d 4981 Equality theorem for index...
iuneq12d 4982 Equality deduction for ind...
iuneq2d 4983 Equality deduction for ind...
nfiun 4984 Bound-variable hypothesis ...
nfiin 4985 Bound-variable hypothesis ...
nfiung 4986 Bound-variable hypothesis ...
nfiing 4987 Bound-variable hypothesis ...
nfiu1 4988 Bound-variable hypothesis ...
nfii1 4989 Bound-variable hypothesis ...
dfiun2g 4990 Alternate definition of in...
dfiun2gOLD 4991 Obsolete version of ~ dfiu...
dfiin2g 4992 Alternate definition of in...
dfiun2 4993 Alternate definition of in...
dfiin2 4994 Alternate definition of in...
dfiunv2 4995 Define double indexed unio...
cbviun 4996 Rule used to change the bo...
cbviin 4997 Change bound variables in ...
cbviung 4998 Rule used to change the bo...
cbviing 4999 Change bound variables in ...
cbviunv 5000 Rule used to change the bo...
cbviinv 5001 Change bound variables in ...
cbviunvg 5002 Rule used to change the bo...
cbviinvg 5003 Change bound variables in ...
iunssf 5004 Subset theorem for an inde...
iunss 5005 Subset theorem for an inde...
ssiun 5006 Subset implication for an ...
ssiun2 5007 Identity law for subset of...
ssiun2s 5008 Subset relationship for an...
iunss2 5009 A subclass condition on th...
iunssd 5010 Subset theorem for an inde...
iunab 5011 The indexed union of a cla...
iunrab 5012 The indexed union of a res...
iunxdif2 5013 Indexed union with a class...
ssiinf 5014 Subset theorem for an inde...
ssiin 5015 Subset theorem for an inde...
iinss 5016 Subset implication for an ...
iinss2 5017 An indexed intersection is...
uniiun 5018 Class union in terms of in...
intiin 5019 Class intersection in term...
iunid 5020 An indexed union of single...
iunidOLD 5021 Obsolete version of ~ iuni...
iun0 5022 An indexed union of the em...
0iun 5023 An empty indexed union is ...
0iin 5024 An empty indexed intersect...
viin 5025 Indexed intersection with ...
iunsn 5026 Indexed union of a singlet...
iunn0 5027 There is a nonempty class ...
iinab 5028 Indexed intersection of a ...
iinrab 5029 Indexed intersection of a ...
iinrab2 5030 Indexed intersection of a ...
iunin2 5031 Indexed union of intersect...
iunin1 5032 Indexed union of intersect...
iinun2 5033 Indexed intersection of un...
iundif2 5034 Indexed union of class dif...
iindif1 5035 Indexed intersection of cl...
2iunin 5036 Rearrange indexed unions o...
iindif2 5037 Indexed intersection of cl...
iinin2 5038 Indexed intersection of in...
iinin1 5039 Indexed intersection of in...
iinvdif 5040 The indexed intersection o...
elriin 5041 Elementhood in a relative ...
riin0 5042 Relative intersection of a...
riinn0 5043 Relative intersection of a...
riinrab 5044 Relative intersection of a...
symdif0 5045 Symmetric difference with ...
symdifv 5046 The symmetric difference w...
symdifid 5047 The symmetric difference o...
iinxsng 5048 A singleton index picks ou...
iinxprg 5049 Indexed intersection with ...
iunxsng 5050 A singleton index picks ou...
iunxsn 5051 A singleton index picks ou...
iunxsngf 5052 A singleton index picks ou...
iunun 5053 Separate a union in an ind...
iunxun 5054 Separate a union in the in...
iunxdif3 5055 An indexed union where som...
iunxprg 5056 A pair index picks out two...
iunxiun 5057 Separate an indexed union ...
iinuni 5058 A relationship involving u...
iununi 5059 A relationship involving u...
sspwuni 5060 Subclass relationship for ...
pwssb 5061 Two ways to express a coll...
elpwpw 5062 Characterization of the el...
pwpwab 5063 The double power class wri...
pwpwssunieq 5064 The class of sets whose un...
elpwuni 5065 Relationship for power cla...
iinpw 5066 The power class of an inte...
iunpwss 5067 Inclusion of an indexed un...
intss2 5068 A nonempty intersection of...
rintn0 5069 Relative intersection of a...
dfdisj2 5072 Alternate definition for d...
disjss2 5073 If each element of a colle...
disjeq2 5074 Equality theorem for disjo...
disjeq2dv 5075 Equality deduction for dis...
disjss1 5076 A subset of a disjoint col...
disjeq1 5077 Equality theorem for disjo...
disjeq1d 5078 Equality theorem for disjo...
disjeq12d 5079 Equality theorem for disjo...
cbvdisj 5080 Change bound variables in ...
cbvdisjv 5081 Change bound variables in ...
nfdisjw 5082 Bound-variable hypothesis ...
nfdisj 5083 Bound-variable hypothesis ...
nfdisj1 5084 Bound-variable hypothesis ...
disjor 5085 Two ways to say that a col...
disjors 5086 Two ways to say that a col...
disji2 5087 Property of a disjoint col...
disji 5088 Property of a disjoint col...
invdisj 5089 If there is a function ` C...
invdisjrabw 5090 Version of ~ invdisjrab wi...
invdisjrab 5091 The restricted class abstr...
disjiun 5092 A disjoint collection yiel...
disjord 5093 Conditions for a collectio...
disjiunb 5094 Two ways to say that a col...
disjiund 5095 Conditions for a collectio...
sndisj 5096 Any collection of singleto...
0disj 5097 Any collection of empty se...
disjxsn 5098 A singleton collection is ...
disjx0 5099 An empty collection is dis...
disjprgw 5100 Version of ~ disjprg with ...
disjprg 5101 A pair collection is disjo...
disjxiun 5102 An indexed union of a disj...
disjxun 5103 The union of two disjoint ...
disjss3 5104 Expand a disjoint collecti...
breq 5107 Equality theorem for binar...
breq1 5108 Equality theorem for a bin...
breq2 5109 Equality theorem for a bin...
breq12 5110 Equality theorem for a bin...
breqi 5111 Equality inference for bin...
breq1i 5112 Equality inference for a b...
breq2i 5113 Equality inference for a b...
breq12i 5114 Equality inference for a b...
breq1d 5115 Equality deduction for a b...
breqd 5116 Equality deduction for a b...
breq2d 5117 Equality deduction for a b...
breq12d 5118 Equality deduction for a b...
breq123d 5119 Equality deduction for a b...
breqdi 5120 Equality deduction for a b...
breqan12d 5121 Equality deduction for a b...
breqan12rd 5122 Equality deduction for a b...
eqnbrtrd 5123 Substitution of equal clas...
nbrne1 5124 Two classes are different ...
nbrne2 5125 Two classes are different ...
eqbrtri 5126 Substitution of equal clas...
eqbrtrd 5127 Substitution of equal clas...
eqbrtrri 5128 Substitution of equal clas...
eqbrtrrd 5129 Substitution of equal clas...
breqtri 5130 Substitution of equal clas...
breqtrd 5131 Substitution of equal clas...
breqtrri 5132 Substitution of equal clas...
breqtrrd 5133 Substitution of equal clas...
3brtr3i 5134 Substitution of equality i...
3brtr4i 5135 Substitution of equality i...
3brtr3d 5136 Substitution of equality i...
3brtr4d 5137 Substitution of equality i...
3brtr3g 5138 Substitution of equality i...
3brtr4g 5139 Substitution of equality i...
eqbrtrid 5140 A chained equality inferen...
eqbrtrrid 5141 A chained equality inferen...
breqtrid 5142 A chained equality inferen...
breqtrrid 5143 A chained equality inferen...
eqbrtrdi 5144 A chained equality inferen...
eqbrtrrdi 5145 A chained equality inferen...
breqtrdi 5146 A chained equality inferen...
breqtrrdi 5147 A chained equality inferen...
ssbrd 5148 Deduction from a subclass ...
ssbr 5149 Implication from a subclas...
ssbri 5150 Inference from a subclass ...
nfbrd 5151 Deduction version of bound...
nfbr 5152 Bound-variable hypothesis ...
brab1 5153 Relationship between a bin...
br0 5154 The empty binary relation ...
brne0 5155 If two sets are in a binar...
brun 5156 The union of two binary re...
brin 5157 The intersection of two re...
brdif 5158 The difference of two bina...
sbcbr123 5159 Move substitution in and o...
sbcbr 5160 Move substitution in and o...
sbcbr12g 5161 Move substitution in and o...
sbcbr1g 5162 Move substitution in and o...
sbcbr2g 5163 Move substitution in and o...
brsymdif 5164 Characterization of the sy...
brralrspcev 5165 Restricted existential spe...
brimralrspcev 5166 Restricted existential spe...
opabss 5169 The collection of ordered ...
opabbid 5170 Equivalent wff's yield equ...
opabbidv 5171 Equivalent wff's yield equ...
opabbii 5172 Equivalent wff's yield equ...
nfopabd 5173 Bound-variable hypothesis ...
nfopab 5174 Bound-variable hypothesis ...
nfopab1 5175 The first abstraction vari...
nfopab2 5176 The second abstraction var...
cbvopab 5177 Rule used to change bound ...
cbvopabv 5178 Rule used to change bound ...
cbvopabvOLD 5179 Obsolete version of ~ cbvo...
cbvopab1 5180 Change first bound variabl...
cbvopab1g 5181 Change first bound variabl...
cbvopab2 5182 Change second bound variab...
cbvopab1s 5183 Change first bound variabl...
cbvopab1v 5184 Rule used to change the fi...
cbvopab1vOLD 5185 Obsolete version of ~ cbvo...
cbvopab2v 5186 Rule used to change the se...
unopab 5187 Union of two ordered pair ...
mpteq12da 5190 An equality inference for ...
mpteq12df 5191 An equality inference for ...
mpteq12dfOLD 5192 Obsolete version of ~ mpte...
mpteq12f 5193 An equality theorem for th...
mpteq12dva 5194 An equality inference for ...
mpteq12dvaOLD 5195 Obsolete version of ~ mpte...
mpteq12dv 5196 An equality inference for ...
mpteq12 5197 An equality theorem for th...
mpteq1 5198 An equality theorem for th...
mpteq1OLD 5199 Obsolete version of ~ mpte...
mpteq1d 5200 An equality theorem for th...
mpteq1i 5201 An equality theorem for th...
mpteq1iOLD 5202 An equality theorem for th...
mpteq2da 5203 Slightly more general equa...
mpteq2daOLD 5204 Obsolete version of ~ mpte...
mpteq2dva 5205 Slightly more general equa...
mpteq2dvaOLD 5206 Obsolete version of ~ mpte...
mpteq2dv 5207 An equality inference for ...
mpteq2ia 5208 An equality inference for ...
mpteq2iaOLD 5209 Obsolete version of ~ mpte...
mpteq2i 5210 An equality inference for ...
mpteq12i 5211 An equality inference for ...
nfmpt 5212 Bound-variable hypothesis ...
nfmpt1 5213 Bound-variable hypothesis ...
cbvmptf 5214 Rule to change the bound v...
cbvmptfg 5215 Rule to change the bound v...
cbvmpt 5216 Rule to change the bound v...
cbvmptg 5217 Rule to change the bound v...
cbvmptv 5218 Rule to change the bound v...
cbvmptvOLD 5219 Obsolete version of ~ cbvm...
cbvmptvg 5220 Rule to change the bound v...
mptv 5221 Function with universal do...
dftr2 5224 An alternate way of defini...
dftr2c 5225 Variant of ~ dftr2 with co...
dftr5 5226 An alternate way of defini...
dftr5OLD 5227 Obsolete version of ~ dftr...
dftr3 5228 An alternate way of defini...
dftr4 5229 An alternate way of defini...
treq 5230 Equality theorem for the t...
trel 5231 In a transitive class, the...
trel3 5232 In a transitive class, the...
trss 5233 An element of a transitive...
trin 5234 The intersection of transi...
tr0 5235 The empty set is transitiv...
trv 5236 The universe is transitive...
triun 5237 An indexed union of a clas...
truni 5238 The union of a class of tr...
triin 5239 An indexed intersection of...
trint 5240 The intersection of a clas...
trintss 5241 Any nonempty transitive cl...
axrep1 5243 The version of the Axiom o...
axreplem 5244 Lemma for ~ axrep2 and ~ a...
axrep2 5245 Axiom of Replacement expre...
axrep3 5246 Axiom of Replacement sligh...
axrep4 5247 A more traditional version...
axrep5 5248 Axiom of Replacement (simi...
axrep6 5249 A condensed form of ~ ax-r...
axrep6g 5250 ~ axrep6 in class notation...
zfrepclf 5251 An inference based on the ...
zfrep3cl 5252 An inference based on the ...
zfrep4 5253 A version of Replacement u...
axsepgfromrep 5254 A more general version ~ a...
axsep 5255 Axiom scheme of separation...
axsepg 5257 A more general version of ...
zfauscl 5258 Separation Scheme (Aussond...
bm1.3ii 5259 Convert implication to equ...
ax6vsep 5260 Derive ~ ax6v (a weakened ...
axnulALT 5261 Alternate proof of ~ axnul...
axnul 5262 The Null Set Axiom of ZF s...
0ex 5264 The Null Set Axiom of ZF s...
al0ssb 5265 The empty set is the uniqu...
sseliALT 5266 Alternate proof of ~ sseli...
csbexg 5267 The existence of proper su...
csbex 5268 The existence of proper su...
unisn2 5269 A version of ~ unisn witho...
nalset 5270 No set contains all sets. ...
vnex 5271 The universal class does n...
vprc 5272 The universal class is not...
nvel 5273 The universal class does n...
inex1 5274 Separation Scheme (Aussond...
inex2 5275 Separation Scheme (Aussond...
inex1g 5276 Closed-form, generalized S...
inex2g 5277 Sufficient condition for a...
ssex 5278 The subset of a set is als...
ssexi 5279 The subset of a set is als...
ssexg 5280 The subset of a set is als...
ssexd 5281 A subclass of a set is a s...
prcssprc 5282 The superclass of a proper...
sselpwd 5283 Elementhood to a power set...
difexg 5284 Existence of a difference....
difexi 5285 Existence of a difference,...
difexd 5286 Existence of a difference....
zfausab 5287 Separation Scheme (Aussond...
rabexg 5288 Separation Scheme in terms...
rabex 5289 Separation Scheme in terms...
rabexd 5290 Separation Scheme in terms...
rabex2 5291 Separation Scheme in terms...
rab2ex 5292 A class abstraction based ...
elssabg 5293 Membership in a class abst...
intex 5294 The intersection of a none...
intnex 5295 If a class intersection is...
intexab 5296 The intersection of a none...
intexrab 5297 The intersection of a none...
iinexg 5298 The existence of a class i...
intabs 5299 Absorption of a redundant ...
inuni 5300 The intersection of a unio...
elpw2g 5301 Membership in a power clas...
elpw2 5302 Membership in a power clas...
elpwi2 5303 Membership in a power clas...
elpwi2OLD 5304 Obsolete version of ~ elpw...
axpweq 5305 Two equivalent ways to exp...
pwnss 5306 The power set of a set is ...
pwne 5307 No set equals its power se...
difelpw 5308 A difference is an element...
rabelpw 5309 A restricted class abstrac...
class2set 5310 The class of elements of `...
0elpw 5311 Every power class contains...
pwne0 5312 A power class is never emp...
0nep0 5313 The empty set and its powe...
0inp0 5314 Something cannot be equal ...
unidif0 5315 The removal of the empty s...
eqsnuniex 5316 If a class is equal to the...
iin0 5317 An indexed intersection of...
notzfaus 5318 In the Separation Scheme ~...
intv 5319 The intersection of the un...
zfpow 5321 Axiom of Power Sets expres...
axpow2 5322 A variant of the Axiom of ...
axpow3 5323 A variant of the Axiom of ...
elALT2 5324 Alternate proof of ~ el us...
dtruALT2 5325 Alternate proof of ~ dtru ...
dtrucor 5326 Corollary of ~ dtru . Thi...
dtrucor2 5327 The theorem form of the de...
dvdemo1 5328 Demonstration of a theorem...
dvdemo2 5329 Demonstration of a theorem...
nfnid 5330 A setvar variable is not f...
nfcvb 5331 The "distinctor" expressio...
vpwex 5332 Power set axiom: the power...
pwexg 5333 Power set axiom expressed ...
pwexd 5334 Deduction version of the p...
pwex 5335 Power set axiom expressed ...
pwel 5336 Quantitative version of ~ ...
abssexg 5337 Existence of a class of su...
snexALT 5338 Alternate proof of ~ snex ...
p0ex 5339 The power set of the empty...
p0exALT 5340 Alternate proof of ~ p0ex ...
pp0ex 5341 The power set of the power...
ord3ex 5342 The ordinal number 3 is a ...
dtruALT 5343 Alternate proof of ~ dtru ...
axc16b 5344 This theorem shows that Ax...
eunex 5345 Existential uniqueness imp...
eusv1 5346 Two ways to express single...
eusvnf 5347 Even if ` x ` is free in `...
eusvnfb 5348 Two ways to say that ` A (...
eusv2i 5349 Two ways to express single...
eusv2nf 5350 Two ways to express single...
eusv2 5351 Two ways to express single...
reusv1 5352 Two ways to express single...
reusv2lem1 5353 Lemma for ~ reusv2 . (Con...
reusv2lem2 5354 Lemma for ~ reusv2 . (Con...
reusv2lem3 5355 Lemma for ~ reusv2 . (Con...
reusv2lem4 5356 Lemma for ~ reusv2 . (Con...
reusv2lem5 5357 Lemma for ~ reusv2 . (Con...
reusv2 5358 Two ways to express single...
reusv3i 5359 Two ways of expressing exi...
reusv3 5360 Two ways to express single...
eusv4 5361 Two ways to express single...
alxfr 5362 Transfer universal quantif...
ralxfrd 5363 Transfer universal quantif...
rexxfrd 5364 Transfer universal quantif...
ralxfr2d 5365 Transfer universal quantif...
rexxfr2d 5366 Transfer universal quantif...
ralxfrd2 5367 Transfer universal quantif...
rexxfrd2 5368 Transfer existence from a ...
ralxfr 5369 Transfer universal quantif...
ralxfrALT 5370 Alternate proof of ~ ralxf...
rexxfr 5371 Transfer existence from a ...
rabxfrd 5372 Membership in a restricted...
rabxfr 5373 Membership in a restricted...
reuhypd 5374 A theorem useful for elimi...
reuhyp 5375 A theorem useful for elimi...
zfpair 5376 The Axiom of Pairing of Ze...
axprALT 5377 Alternate proof of ~ axpr ...
axprlem1 5378 Lemma for ~ axpr . There ...
axprlem2 5379 Lemma for ~ axpr . There ...
axprlem3 5380 Lemma for ~ axpr . Elimin...
axprlem4 5381 Lemma for ~ axpr . The fi...
axprlem5 5382 Lemma for ~ axpr . The se...
axpr 5383 Unabbreviated version of t...
zfpair2 5385 Derive the abbreviated ver...
vsnex 5386 A singleton built on a set...
snexg 5387 A singleton built on a set...
snex 5388 A singleton is a set. The...
prex 5389 The Axiom of Pairing using...
exel 5390 There exist two sets, one ...
exexneq 5391 There exist two different ...
exneq 5392 Given any set (the " ` y `...
dtru 5393 Given any set (the " ` y `...
el 5394 Any set is an element of s...
sels 5395 If a class is a set, then ...
selsALT 5396 Alternate proof of ~ sels ...
elALT 5397 Alternate proof of ~ el , ...
dtruOLD 5398 Obsolete proof of ~ dtru a...
snelpwg 5399 A singleton of a set is a ...
snelpwi 5400 If a set is a member of a ...
snelpwiOLD 5401 Obsolete version of ~ snel...
snelpw 5402 A singleton of a set is a ...
prelpw 5403 An unordered pair of two s...
prelpwi 5404 If two sets are members of...
rext 5405 A theorem similar to exten...
sspwb 5406 The powerclass constructio...
unipw 5407 A class equals the union o...
univ 5408 The union of the universe ...
pwtr 5409 A class is transitive iff ...
ssextss 5410 An extensionality-like pri...
ssext 5411 An extensionality-like pri...
nssss 5412 Negation of subclass relat...
pweqb 5413 Classes are equal if and o...
intidg 5414 The intersection of all se...
intidOLD 5415 Obsolete version of ~ inti...
moabex 5416 "At most one" existence im...
rmorabex 5417 Restricted "at most one" e...
euabex 5418 The abstraction of a wff w...
nnullss 5419 A nonempty class (even if ...
exss 5420 Restricted existence in a ...
opex 5421 An ordered pair of classes...
otex 5422 An ordered triple of class...
elopg 5423 Characterization of the el...
elop 5424 Characterization of the el...
opi1 5425 One of the two elements in...
opi2 5426 One of the two elements of...
opeluu 5427 Each member of an ordered ...
op1stb 5428 Extract the first member o...
brv 5429 Two classes are always in ...
opnz 5430 An ordered pair is nonempt...
opnzi 5431 An ordered pair is nonempt...
opth1 5432 Equality of the first memb...
opth 5433 The ordered pair theorem. ...
opthg 5434 Ordered pair theorem. ` C ...
opth1g 5435 Equality of the first memb...
opthg2 5436 Ordered pair theorem. (Co...
opth2 5437 Ordered pair theorem. (Co...
opthneg 5438 Two ordered pairs are not ...
opthne 5439 Two ordered pairs are not ...
otth2 5440 Ordered triple theorem, wi...
otth 5441 Ordered triple theorem. (...
otthg 5442 Ordered triple theorem, cl...
otthne 5443 Contrapositive of the orde...
eqvinop 5444 A variable introduction la...
sbcop1 5445 The proper substitution of...
sbcop 5446 The proper substitution of...
copsexgw 5447 Version of ~ copsexg with ...
copsexg 5448 Substitution of class ` A ...
copsex2t 5449 Closed theorem form of ~ c...
copsex2g 5450 Implicit substitution infe...
copsex2gOLD 5451 Obsolete version of ~ cops...
copsex4g 5452 An implicit substitution i...
0nelop 5453 A property of ordered pair...
opwo0id 5454 An ordered pair is equal t...
opeqex 5455 Equivalence of existence i...
oteqex2 5456 Equivalence of existence i...
oteqex 5457 Equivalence of existence i...
opcom 5458 An ordered pair commutes i...
moop2 5459 "At most one" property of ...
opeqsng 5460 Equivalence for an ordered...
opeqsn 5461 Equivalence for an ordered...
opeqpr 5462 Equivalence for an ordered...
snopeqop 5463 Equivalence for an ordered...
propeqop 5464 Equivalence for an ordered...
propssopi 5465 If a pair of ordered pairs...
snopeqopsnid 5466 Equivalence for an ordered...
mosubopt 5467 "At most one" remains true...
mosubop 5468 "At most one" remains true...
euop2 5469 Transfer existential uniqu...
euotd 5470 Prove existential uniquene...
opthwiener 5471 Justification theorem for ...
uniop 5472 The union of an ordered pa...
uniopel 5473 Ordered pair membership is...
opthhausdorff 5474 Justification theorem for ...
opthhausdorff0 5475 Justification theorem for ...
otsndisj 5476 The singletons consisting ...
otiunsndisj 5477 The union of singletons co...
iunopeqop 5478 Implication of an ordered ...
brsnop 5479 Binary relation for an ord...
brtp 5480 A necessary and sufficient...
opabidw 5481 The law of concretion. Sp...
opabid 5482 The law of concretion. Sp...
elopabw 5483 Membership in a class abst...
elopab 5484 Membership in a class abst...
rexopabb 5485 Restricted existential qua...
vopelopabsb 5486 The law of concretion in t...
opelopabsb 5487 The law of concretion in t...
brabsb 5488 The law of concretion in t...
opelopabt 5489 Closed theorem form of ~ o...
opelopabga 5490 The law of concretion. Th...
brabga 5491 The law of concretion for ...
opelopab2a 5492 Ordered pair membership in...
opelopaba 5493 The law of concretion. Th...
braba 5494 The law of concretion for ...
opelopabg 5495 The law of concretion. Th...
brabg 5496 The law of concretion for ...
opelopabgf 5497 The law of concretion. Th...
opelopab2 5498 Ordered pair membership in...
opelopab 5499 The law of concretion. Th...
brab 5500 The law of concretion for ...
opelopabaf 5501 The law of concretion. Th...
opelopabf 5502 The law of concretion. Th...
ssopab2 5503 Equivalence of ordered pai...
ssopab2bw 5504 Equivalence of ordered pai...
eqopab2bw 5505 Equivalence of ordered pai...
ssopab2b 5506 Equivalence of ordered pai...
ssopab2i 5507 Inference of ordered pair ...
ssopab2dv 5508 Inference of ordered pair ...
eqopab2b 5509 Equivalence of ordered pai...
opabn0 5510 Nonempty ordered pair clas...
opab0 5511 Empty ordered pair class a...
csbopab 5512 Move substitution into a c...
csbopabgALT 5513 Move substitution into a c...
csbmpt12 5514 Move substitution into a m...
csbmpt2 5515 Move substitution into the...
iunopab 5516 Move indexed union inside ...
iunopabOLD 5517 Obsolete version of ~ iuno...
elopabr 5518 Membership in an ordered-p...
elopabran 5519 Membership in an ordered-p...
elopabrOLD 5520 Obsolete version of ~ elop...
rbropapd 5521 Properties of a pair in an...
rbropap 5522 Properties of a pair in a ...
2rbropap 5523 Properties of a pair in a ...
0nelopab 5524 The empty set is never an ...
0nelopabOLD 5525 Obsolete version of ~ 0nel...
brabv 5526 If two classes are in a re...
pwin 5527 The power class of the int...
pwssun 5528 The power class of the uni...
pwun 5529 The power class of the uni...
dfid4 5532 The identity function expr...
dfid2 5533 Alternate definition of th...
dfid3 5534 A stronger version of ~ df...
dfid2OLD 5535 Obsolete version of ~ dfid...
epelg 5538 The membership relation an...
epeli 5539 The membership relation an...
epel 5540 The membership relation an...
0sn0ep 5541 An example for the members...
epn0 5542 The membership relation is...
poss 5547 Subset theorem for the par...
poeq1 5548 Equality theorem for parti...
poeq2 5549 Equality theorem for parti...
nfpo 5550 Bound-variable hypothesis ...
nfso 5551 Bound-variable hypothesis ...
pocl 5552 Characteristic properties ...
poclOLD 5553 Obsolete version of ~ pocl...
ispod 5554 Sufficient conditions for ...
swopolem 5555 Perform the substitutions ...
swopo 5556 A strict weak order is a p...
poirr 5557 A partial order is irrefle...
potr 5558 A partial order is a trans...
po2nr 5559 A partial order has no 2-c...
po3nr 5560 A partial order has no 3-c...
po2ne 5561 Two sets related by a part...
po0 5562 Any relation is a partial ...
pofun 5563 The inverse image of a par...
sopo 5564 A strict linear order is a...
soss 5565 Subset theorem for the str...
soeq1 5566 Equality theorem for the s...
soeq2 5567 Equality theorem for the s...
sonr 5568 A strict order relation is...
sotr 5569 A strict order relation is...
solin 5570 A strict order relation is...
so2nr 5571 A strict order relation ha...
so3nr 5572 A strict order relation ha...
sotric 5573 A strict order relation sa...
sotrieq 5574 Trichotomy law for strict ...
sotrieq2 5575 Trichotomy law for strict ...
soasym 5576 Asymmetry law for strict o...
sotr2 5577 A transitivity relation. ...
issod 5578 An irreflexive, transitive...
issoi 5579 An irreflexive, transitive...
isso2i 5580 Deduce strict ordering fro...
so0 5581 Any relation is a strict o...
somo 5582 A totally ordered set has ...
sotrine 5583 Trichotomy law for strict ...
sotr3 5584 Transitivity law for stric...
dffr6 5591 Alternate definition of ~ ...
frd 5592 A nonempty subset of an ` ...
fri 5593 A nonempty subset of an ` ...
friOLD 5594 Obsolete version of ~ fri ...
seex 5595 The ` R ` -preimage of an ...
exse 5596 Any relation on a set is s...
dffr2 5597 Alternate definition of we...
dffr2ALT 5598 Alternate proof of ~ dffr2...
frc 5599 Property of well-founded r...
frss 5600 Subset theorem for the wel...
sess1 5601 Subset theorem for the set...
sess2 5602 Subset theorem for the set...
freq1 5603 Equality theorem for the w...
freq2 5604 Equality theorem for the w...
seeq1 5605 Equality theorem for the s...
seeq2 5606 Equality theorem for the s...
nffr 5607 Bound-variable hypothesis ...
nfse 5608 Bound-variable hypothesis ...
nfwe 5609 Bound-variable hypothesis ...
frirr 5610 A well-founded relation is...
fr2nr 5611 A well-founded relation ha...
fr0 5612 Any relation is well-found...
frminex 5613 If an element of a well-fo...
efrirr 5614 A well-founded class does ...
efrn2lp 5615 A well-founded class conta...
epse 5616 The membership relation is...
tz7.2 5617 Similar to Theorem 7.2 of ...
dfepfr 5618 An alternate way of saying...
epfrc 5619 A subset of a well-founded...
wess 5620 Subset theorem for the wel...
weeq1 5621 Equality theorem for the w...
weeq2 5622 Equality theorem for the w...
wefr 5623 A well-ordering is well-fo...
weso 5624 A well-ordering is a stric...
wecmpep 5625 The elements of a class we...
wetrep 5626 On a class well-ordered by...
wefrc 5627 A nonempty subclass of a c...
we0 5628 Any relation is a well-ord...
wereu 5629 A nonempty subset of an ` ...
wereu2 5630 A nonempty subclass of an ...
xpeq1 5647 Equality theorem for Carte...
xpss12 5648 Subset theorem for Cartesi...
xpss 5649 A Cartesian product is inc...
inxpssres 5650 Intersection with a Cartes...
relxp 5651 A Cartesian product is a r...
xpss1 5652 Subset relation for Cartes...
xpss2 5653 Subset relation for Cartes...
xpeq2 5654 Equality theorem for Carte...
elxpi 5655 Membership in a Cartesian ...
elxp 5656 Membership in a Cartesian ...
elxp2 5657 Membership in a Cartesian ...
xpeq12 5658 Equality theorem for Carte...
xpeq1i 5659 Equality inference for Car...
xpeq2i 5660 Equality inference for Car...
xpeq12i 5661 Equality inference for Car...
xpeq1d 5662 Equality deduction for Car...
xpeq2d 5663 Equality deduction for Car...
xpeq12d 5664 Equality deduction for Car...
sqxpeqd 5665 Equality deduction for a C...
nfxp 5666 Bound-variable hypothesis ...
0nelxp 5667 The empty set is not a mem...
0nelelxp 5668 A member of a Cartesian pr...
opelxp 5669 Ordered pair membership in...
opelxpi 5670 Ordered pair membership in...
opelxpd 5671 Ordered pair membership in...
opelvv 5672 Ordered pair membership in...
opelvvg 5673 Ordered pair membership in...
opelxp1 5674 The first member of an ord...
opelxp2 5675 The second member of an or...
otelxp 5676 Ordered triple membership ...
otelxp1 5677 The first member of an ord...
otel3xp 5678 An ordered triple is an el...
opabssxpd 5679 An ordered-pair class abst...
rabxp 5680 Class abstraction restrict...
brxp 5681 Binary relation on a Carte...
pwvrel 5682 A set is a binary relation...
pwvabrel 5683 The powerclass of the cart...
brrelex12 5684 Two classes related by a b...
brrelex1 5685 If two classes are related...
brrelex2 5686 If two classes are related...
brrelex12i 5687 Two classes that are relat...
brrelex1i 5688 The first argument of a bi...
brrelex2i 5689 The second argument of a b...
nprrel12 5690 Proper classes are not rel...
nprrel 5691 No proper class is related...
0nelrel0 5692 A binary relation does not...
0nelrel 5693 A binary relation does not...
fconstmpt 5694 Representation of a consta...
vtoclr 5695 Variable to class conversi...
opthprc 5696 Justification theorem for ...
brel 5697 Two things in a binary rel...
elxp3 5698 Membership in a Cartesian ...
opeliunxp 5699 Membership in a union of C...
xpundi 5700 Distributive law for Carte...
xpundir 5701 Distributive law for Carte...
xpiundi 5702 Distributive law for Carte...
xpiundir 5703 Distributive law for Carte...
iunxpconst 5704 Membership in a union of C...
xpun 5705 The Cartesian product of t...
elvv 5706 Membership in universal cl...
elvvv 5707 Membership in universal cl...
elvvuni 5708 An ordered pair contains i...
brinxp2 5709 Intersection of binary rel...
brinxp 5710 Intersection of binary rel...
opelinxp 5711 Ordered pair element in an...
poinxp 5712 Intersection of partial or...
soinxp 5713 Intersection of total orde...
frinxp 5714 Intersection of well-found...
seinxp 5715 Intersection of set-like r...
weinxp 5716 Intersection of well-order...
posn 5717 Partial ordering of a sing...
sosn 5718 Strict ordering on a singl...
frsn 5719 Founded relation on a sing...
wesn 5720 Well-ordering of a singlet...
elopaelxp 5721 Membership in an ordered-p...
elopaelxpOLD 5722 Obsolete version of ~ elop...
bropaex12 5723 Two classes related by an ...
opabssxp 5724 An abstraction relation is...
brab2a 5725 The law of concretion for ...
optocl 5726 Implicit substitution of c...
2optocl 5727 Implicit substitution of c...
3optocl 5728 Implicit substitution of c...
opbrop 5729 Ordered pair membership in...
0xp 5730 The Cartesian product with...
csbxp 5731 Distribute proper substitu...
releq 5732 Equality theorem for the r...
releqi 5733 Equality inference for the...
releqd 5734 Equality deduction for the...
nfrel 5735 Bound-variable hypothesis ...
sbcrel 5736 Distribute proper substitu...
relss 5737 Subclass theorem for relat...
ssrel 5738 A subclass relationship de...
ssrelOLD 5739 Obsolete version of ~ ssre...
eqrel 5740 Extensionality principle f...
ssrel2 5741 A subclass relationship de...
ssrel3 5742 Subclass relation in anoth...
relssi 5743 Inference from subclass pr...
relssdv 5744 Deduction from subclass pr...
eqrelriv 5745 Inference from extensional...
eqrelriiv 5746 Inference from extensional...
eqbrriv 5747 Inference from extensional...
eqrelrdv 5748 Deduce equality of relatio...
eqbrrdv 5749 Deduction from extensional...
eqbrrdiv 5750 Deduction from extensional...
eqrelrdv2 5751 A version of ~ eqrelrdv . ...
ssrelrel 5752 A subclass relationship de...
eqrelrel 5753 Extensionality principle f...
elrel 5754 A member of a relation is ...
rel0 5755 The empty set is a relatio...
nrelv 5756 The universal class is not...
relsng 5757 A singleton is a relation ...
relsnb 5758 An at-most-singleton is a ...
relsnopg 5759 A singleton of an ordered ...
relsn 5760 A singleton is a relation ...
relsnop 5761 A singleton of an ordered ...
copsex2gb 5762 Implicit substitution infe...
copsex2ga 5763 Implicit substitution infe...
elopaba 5764 Membership in an ordered-p...
xpsspw 5765 A Cartesian product is inc...
unixpss 5766 The double class union of ...
relun 5767 The union of two relations...
relin1 5768 The intersection with a re...
relin2 5769 The intersection with a re...
relinxp 5770 Intersection with a Cartes...
reldif 5771 A difference cutting down ...
reliun 5772 An indexed union is a rela...
reliin 5773 An indexed intersection is...
reluni 5774 The union of a class is a ...
relint 5775 The intersection of a clas...
relopabiv 5776 A class of ordered pairs i...
relopabv 5777 A class of ordered pairs i...
relopabi 5778 A class of ordered pairs i...
relopabiALT 5779 Alternate proof of ~ relop...
relopab 5780 A class of ordered pairs i...
mptrel 5781 The maps-to notation alway...
reli 5782 The identity relation is a...
rele 5783 The membership relation is...
opabid2 5784 A relation expressed as an...
inopab 5785 Intersection of two ordere...
difopab 5786 Difference of two ordered-...
difopabOLD 5787 Obsolete version of ~ difo...
inxp 5788 Intersection of two Cartes...
xpindi 5789 Distributive law for Carte...
xpindir 5790 Distributive law for Carte...
xpiindi 5791 Distributive law for Carte...
xpriindi 5792 Distributive law for Carte...
eliunxp 5793 Membership in a union of C...
opeliunxp2 5794 Membership in a union of C...
raliunxp 5795 Write a double restricted ...
rexiunxp 5796 Write a double restricted ...
ralxp 5797 Universal quantification r...
rexxp 5798 Existential quantification...
exopxfr 5799 Transfer ordered-pair exis...
exopxfr2 5800 Transfer ordered-pair exis...
djussxp 5801 Disjoint union is a subset...
ralxpf 5802 Version of ~ ralxp with bo...
rexxpf 5803 Version of ~ rexxp with bo...
iunxpf 5804 Indexed union on a Cartesi...
opabbi2dv 5805 Deduce equality of a relat...
relop 5806 A necessary and sufficient...
ideqg 5807 For sets, the identity rel...
ideq 5808 For sets, the identity rel...
ididg 5809 A set is identical to itse...
issetid 5810 Two ways of expressing set...
coss1 5811 Subclass theorem for compo...
coss2 5812 Subclass theorem for compo...
coeq1 5813 Equality theorem for compo...
coeq2 5814 Equality theorem for compo...
coeq1i 5815 Equality inference for com...
coeq2i 5816 Equality inference for com...
coeq1d 5817 Equality deduction for com...
coeq2d 5818 Equality deduction for com...
coeq12i 5819 Equality inference for com...
coeq12d 5820 Equality deduction for com...
nfco 5821 Bound-variable hypothesis ...
brcog 5822 Ordered pair membership in...
opelco2g 5823 Ordered pair membership in...
brcogw 5824 Ordered pair membership in...
eqbrrdva 5825 Deduction from extensional...
brco 5826 Binary relation on a compo...
opelco 5827 Ordered pair membership in...
cnvss 5828 Subset theorem for convers...
cnveq 5829 Equality theorem for conve...
cnveqi 5830 Equality inference for con...
cnveqd 5831 Equality deduction for con...
elcnv 5832 Membership in a converse r...
elcnv2 5833 Membership in a converse r...
nfcnv 5834 Bound-variable hypothesis ...
brcnvg 5835 The converse of a binary r...
opelcnvg 5836 Ordered-pair membership in...
opelcnv 5837 Ordered-pair membership in...
brcnv 5838 The converse of a binary r...
csbcnv 5839 Move class substitution in...
csbcnvgALT 5840 Move class substitution in...
cnvco 5841 Distributive law of conver...
cnvuni 5842 The converse of a class un...
dfdm3 5843 Alternate definition of do...
dfrn2 5844 Alternate definition of ra...
dfrn3 5845 Alternate definition of ra...
elrn2g 5846 Membership in a range. (C...
elrng 5847 Membership in a range. (C...
elrn2 5848 Membership in a range. (C...
elrn 5849 Membership in a range. (C...
ssrelrn 5850 If a relation is a subset ...
dfdm4 5851 Alternate definition of do...
dfdmf 5852 Definition of domain, usin...
csbdm 5853 Distribute proper substitu...
eldmg 5854 Domain membership. Theore...
eldm2g 5855 Domain membership. Theore...
eldm 5856 Membership in a domain. T...
eldm2 5857 Membership in a domain. T...
dmss 5858 Subset theorem for domain....
dmeq 5859 Equality theorem for domai...
dmeqi 5860 Equality inference for dom...
dmeqd 5861 Equality deduction for dom...
opeldmd 5862 Membership of first of an ...
opeldm 5863 Membership of first of an ...
breldm 5864 Membership of first of a b...
breldmg 5865 Membership of first of a b...
dmun 5866 The domain of a union is t...
dmin 5867 The domain of an intersect...
breldmd 5868 Membership of first of a b...
dmiun 5869 The domain of an indexed u...
dmuni 5870 The domain of a union. Pa...
dmopab 5871 The domain of a class of o...
dmopabelb 5872 A set is an element of the...
dmopab2rex 5873 The domain of an ordered p...
dmopabss 5874 Upper bound for the domain...
dmopab3 5875 The domain of a restricted...
dm0 5876 The domain of the empty se...
dmi 5877 The domain of the identity...
dmv 5878 The domain of the universe...
dmep 5879 The domain of the membersh...
dm0rn0 5880 An empty domain is equival...
rn0 5881 The range of the empty set...
rnep 5882 The range of the membershi...
reldm0 5883 A relation is empty iff it...
dmxp 5884 The domain of a Cartesian ...
dmxpid 5885 The domain of a Cartesian ...
dmxpin 5886 The domain of the intersec...
xpid11 5887 The Cartesian square is a ...
dmcnvcnv 5888 The domain of the double c...
rncnvcnv 5889 The range of the double co...
elreldm 5890 The first member of an ord...
rneq 5891 Equality theorem for range...
rneqi 5892 Equality inference for ran...
rneqd 5893 Equality deduction for ran...
rnss 5894 Subset theorem for range. ...
rnssi 5895 Subclass inference for ran...
brelrng 5896 The second argument of a b...
brelrn 5897 The second argument of a b...
opelrn 5898 Membership of second membe...
releldm 5899 The first argument of a bi...
relelrn 5900 The second argument of a b...
releldmb 5901 Membership in a domain. (...
relelrnb 5902 Membership in a range. (C...
releldmi 5903 The first argument of a bi...
relelrni 5904 The second argument of a b...
dfrnf 5905 Definition of range, using...
nfdm 5906 Bound-variable hypothesis ...
nfrn 5907 Bound-variable hypothesis ...
dmiin 5908 Domain of an intersection....
rnopab 5909 The range of a class of or...
rnmpt 5910 The range of a function in...
elrnmpt 5911 The range of a function in...
elrnmpt1s 5912 Elementhood in an image se...
elrnmpt1 5913 Elementhood in an image se...
elrnmptg 5914 Membership in the range of...
elrnmpti 5915 Membership in the range of...
elrnmptd 5916 The range of a function in...
elrnmptdv 5917 Elementhood in the range o...
elrnmpt2d 5918 Elementhood in the range o...
dfiun3g 5919 Alternate definition of in...
dfiin3g 5920 Alternate definition of in...
dfiun3 5921 Alternate definition of in...
dfiin3 5922 Alternate definition of in...
riinint 5923 Express a relative indexed...
relrn0 5924 A relation is empty iff it...
dmrnssfld 5925 The domain and range of a ...
dmcoss 5926 Domain of a composition. ...
rncoss 5927 Range of a composition. (...
dmcosseq 5928 Domain of a composition. ...
dmcoeq 5929 Domain of a composition. ...
rncoeq 5930 Range of a composition. (...
reseq1 5931 Equality theorem for restr...
reseq2 5932 Equality theorem for restr...
reseq1i 5933 Equality inference for res...
reseq2i 5934 Equality inference for res...
reseq12i 5935 Equality inference for res...
reseq1d 5936 Equality deduction for res...
reseq2d 5937 Equality deduction for res...
reseq12d 5938 Equality deduction for res...
nfres 5939 Bound-variable hypothesis ...
csbres 5940 Distribute proper substitu...
res0 5941 A restriction to the empty...
dfres3 5942 Alternate definition of re...
opelres 5943 Ordered pair elementhood i...
brres 5944 Binary relation on a restr...
opelresi 5945 Ordered pair membership in...
brresi 5946 Binary relation on a restr...
opres 5947 Ordered pair membership in...
resieq 5948 A restricted identity rela...
opelidres 5949 ` <. A , A >. ` belongs to...
resres 5950 The restriction of a restr...
resundi 5951 Distributive law for restr...
resundir 5952 Distributive law for restr...
resindi 5953 Class restriction distribu...
resindir 5954 Class restriction distribu...
inres 5955 Move intersection into cla...
resdifcom 5956 Commutative law for restri...
resiun1 5957 Distribution of restrictio...
resiun2 5958 Distribution of restrictio...
dmres 5959 The domain of a restrictio...
ssdmres 5960 A domain restricted to a s...
dmresexg 5961 The domain of a restrictio...
resss 5962 A class includes its restr...
rescom 5963 Commutative law for restri...
ssres 5964 Subclass theorem for restr...
ssres2 5965 Subclass theorem for restr...
relres 5966 A restriction is a relatio...
resabs1 5967 Absorption law for restric...
resabs1d 5968 Absorption law for restric...
resabs2 5969 Absorption law for restric...
residm 5970 Idempotent law for restric...
resima 5971 A restriction to an image....
resima2 5972 Image under a restricted c...
rnresss 5973 The range of a restriction...
xpssres 5974 Restriction of a constant ...
elinxp 5975 Membership in an intersect...
elres 5976 Membership in a restrictio...
elsnres 5977 Membership in restriction ...
relssres 5978 Simplification law for res...
dmressnsn 5979 The domain of a restrictio...
eldmressnsn 5980 The element of the domain ...
eldmeldmressn 5981 An element of the domain (...
resdm 5982 A relation restricted to i...
resexg 5983 The restriction of a set i...
resexd 5984 The restriction of a set i...
resex 5985 The restriction of a set i...
resindm 5986 When restricting a relatio...
resdmdfsn 5987 Restricting a relation to ...
resopab 5988 Restriction of a class abs...
iss 5989 A subclass of the identity...
resopab2 5990 Restriction of a class abs...
resmpt 5991 Restriction of the mapping...
resmpt3 5992 Unconditional restriction ...
resmptf 5993 Restriction of the mapping...
resmptd 5994 Restriction of the mapping...
dfres2 5995 Alternate definition of th...
mptss 5996 Sufficient condition for i...
elidinxp 5997 Characterization of the el...
elidinxpid 5998 Characterization of the el...
elrid 5999 Characterization of the el...
idinxpres 6000 The intersection of the id...
idinxpresid 6001 The intersection of the id...
idssxp 6002 A diagonal set as a subset...
opabresid 6003 The restricted identity re...
mptresid 6004 The restricted identity re...
dmresi 6005 The domain of a restricted...
restidsing 6006 Restriction of the identit...
iresn0n0 6007 The identity function rest...
imaeq1 6008 Equality theorem for image...
imaeq2 6009 Equality theorem for image...
imaeq1i 6010 Equality theorem for image...
imaeq2i 6011 Equality theorem for image...
imaeq1d 6012 Equality theorem for image...
imaeq2d 6013 Equality theorem for image...
imaeq12d 6014 Equality theorem for image...
dfima2 6015 Alternate definition of im...
dfima3 6016 Alternate definition of im...
elimag 6017 Membership in an image. T...
elima 6018 Membership in an image. T...
elima2 6019 Membership in an image. T...
elima3 6020 Membership in an image. T...
nfima 6021 Bound-variable hypothesis ...
nfimad 6022 Deduction version of bound...
imadmrn 6023 The image of the domain of...
imassrn 6024 The image of a class is a ...
mptima 6025 Image of a function in map...
imai 6026 Image under the identity r...
rnresi 6027 The range of the restricte...
resiima 6028 The image of a restriction...
ima0 6029 Image of the empty set. T...
0ima 6030 Image under the empty rela...
csbima12 6031 Move class substitution in...
imadisj 6032 A class whose image under ...
cnvimass 6033 A preimage under any class...
cnvimarndm 6034 The preimage of the range ...
imasng 6035 The image of a singleton. ...
relimasn 6036 The image of a singleton. ...
elrelimasn 6037 Elementhood in the image o...
elimasng1 6038 Membership in an image of ...
elimasn1 6039 Membership in an image of ...
elimasng 6040 Membership in an image of ...
elimasn 6041 Membership in an image of ...
elimasngOLD 6042 Obsolete version of ~ elim...
elimasni 6043 Membership in an image of ...
args 6044 Two ways to express the cl...
elinisegg 6045 Membership in the inverse ...
eliniseg 6046 Membership in the inverse ...
epin 6047 Any set is equal to its pr...
epini 6048 Any set is equal to its pr...
iniseg 6049 An idiom that signifies an...
inisegn0 6050 Nonemptiness of an initial...
dffr3 6051 Alternate definition of we...
dfse2 6052 Alternate definition of se...
imass1 6053 Subset theorem for image. ...
imass2 6054 Subset theorem for image. ...
ndmima 6055 The image of a singleton o...
relcnv 6056 A converse is a relation. ...
relbrcnvg 6057 When ` R ` is a relation, ...
eliniseg2 6058 Eliminate the class existe...
relbrcnv 6059 When ` R ` is a relation, ...
relco 6060 A composition is a relatio...
cotrg 6061 Two ways of saying that th...
cotrgOLD 6062 Obsolete version of ~ cotr...
cotrgOLDOLD 6063 Obsolete version of ~ cotr...
cotr 6064 Two ways of saying a relat...
idrefALT 6065 Alternate proof of ~ idref...
cnvsym 6066 Two ways of saying a relat...
cnvsymOLD 6067 Obsolete proof of ~ cnvsym...
cnvsymOLDOLD 6068 Obsolete proof of ~ cnvsym...
intasym 6069 Two ways of saying a relat...
asymref 6070 Two ways of saying a relat...
asymref2 6071 Two ways of saying a relat...
intirr 6072 Two ways of saying a relat...
brcodir 6073 Two ways of saying that tw...
codir 6074 Two ways of saying a relat...
qfto 6075 A quantifier-free way of e...
xpidtr 6076 A Cartesian square is a tr...
trin2 6077 The intersection of two tr...
poirr2 6078 A partial order is irrefle...
trinxp 6079 The relation induced by a ...
soirri 6080 A strict order relation is...
sotri 6081 A strict order relation is...
son2lpi 6082 A strict order relation ha...
sotri2 6083 A transitivity relation. ...
sotri3 6084 A transitivity relation. ...
poleloe 6085 Express "less than or equa...
poltletr 6086 Transitive law for general...
somin1 6087 Property of a minimum in a...
somincom 6088 Commutativity of minimum i...
somin2 6089 Property of a minimum in a...
soltmin 6090 Being less than a minimum,...
cnvopab 6091 The converse of a class ab...
mptcnv 6092 The converse of a mapping ...
cnv0 6093 The converse of the empty ...
cnvi 6094 The converse of the identi...
cnvun 6095 The converse of a union is...
cnvdif 6096 Distributive law for conve...
cnvin 6097 Distributive law for conve...
rnun 6098 Distributive law for range...
rnin 6099 The range of an intersecti...
rniun 6100 The range of an indexed un...
rnuni 6101 The range of a union. Par...
imaundi 6102 Distributive law for image...
imaundir 6103 The image of a union. (Co...
cnvimassrndm 6104 The preimage of a superset...
dminss 6105 An upper bound for interse...
imainss 6106 An upper bound for interse...
inimass 6107 The image of an intersecti...
inimasn 6108 The intersection of the im...
cnvxp 6109 The converse of a Cartesia...
xp0 6110 The Cartesian product with...
xpnz 6111 The Cartesian product of n...
xpeq0 6112 At least one member of an ...
xpdisj1 6113 Cartesian products with di...
xpdisj2 6114 Cartesian products with di...
xpsndisj 6115 Cartesian products with tw...
difxp 6116 Difference of Cartesian pr...
difxp1 6117 Difference law for Cartesi...
difxp2 6118 Difference law for Cartesi...
djudisj 6119 Disjoint unions with disjo...
xpdifid 6120 The set of distinct couple...
resdisj 6121 A double restriction to di...
rnxp 6122 The range of a Cartesian p...
dmxpss 6123 The domain of a Cartesian ...
rnxpss 6124 The range of a Cartesian p...
rnxpid 6125 The range of a Cartesian s...
ssxpb 6126 A Cartesian product subcla...
xp11 6127 The Cartesian product of n...
xpcan 6128 Cancellation law for Carte...
xpcan2 6129 Cancellation law for Carte...
ssrnres 6130 Two ways to express surjec...
rninxp 6131 Two ways to express surjec...
dminxp 6132 Two ways to express totali...
imainrect 6133 Image by a restricted and ...
xpima 6134 Direct image by a Cartesia...
xpima1 6135 Direct image by a Cartesia...
xpima2 6136 Direct image by a Cartesia...
xpimasn 6137 Direct image of a singleto...
sossfld 6138 The base set of a strict o...
sofld 6139 The base set of a nonempty...
cnvcnv3 6140 The set of all ordered pai...
dfrel2 6141 Alternate definition of re...
dfrel4v 6142 A relation can be expresse...
dfrel4 6143 A relation can be expresse...
cnvcnv 6144 The double converse of a c...
cnvcnv2 6145 The double converse of a c...
cnvcnvss 6146 The double converse of a c...
cnvrescnv 6147 Two ways to express the co...
cnveqb 6148 Equality theorem for conve...
cnveq0 6149 A relation empty iff its c...
dfrel3 6150 Alternate definition of re...
elid 6151 Characterization of the el...
dmresv 6152 The domain of a universal ...
rnresv 6153 The range of a universal r...
dfrn4 6154 Range defined in terms of ...
csbrn 6155 Distribute proper substitu...
rescnvcnv 6156 The restriction of the dou...
cnvcnvres 6157 The double converse of the...
imacnvcnv 6158 The image of the double co...
dmsnn0 6159 The domain of a singleton ...
rnsnn0 6160 The range of a singleton i...
dmsn0 6161 The domain of the singleto...
cnvsn0 6162 The converse of the single...
dmsn0el 6163 The domain of a singleton ...
relsn2 6164 A singleton is a relation ...
dmsnopg 6165 The domain of a singleton ...
dmsnopss 6166 The domain of a singleton ...
dmpropg 6167 The domain of an unordered...
dmsnop 6168 The domain of a singleton ...
dmprop 6169 The domain of an unordered...
dmtpop 6170 The domain of an unordered...
cnvcnvsn 6171 Double converse of a singl...
dmsnsnsn 6172 The domain of the singleto...
rnsnopg 6173 The range of a singleton o...
rnpropg 6174 The range of a pair of ord...
cnvsng 6175 Converse of a singleton of...
rnsnop 6176 The range of a singleton o...
op1sta 6177 Extract the first member o...
cnvsn 6178 Converse of a singleton of...
op2ndb 6179 Extract the second member ...
op2nda 6180 Extract the second member ...
opswap 6181 Swap the members of an ord...
cnvresima 6182 An image under the convers...
resdm2 6183 A class restricted to its ...
resdmres 6184 Restriction to the domain ...
resresdm 6185 A restriction by an arbitr...
imadmres 6186 The image of the domain of...
resdmss 6187 Subset relationship for th...
resdifdi 6188 Distributive law for restr...
resdifdir 6189 Distributive law for restr...
mptpreima 6190 The preimage of a function...
mptiniseg 6191 Converse singleton image o...
dmmpt 6192 The domain of the mapping ...
dmmptss 6193 The domain of a mapping is...
dmmptg 6194 The domain of the mapping ...
rnmpt0f 6195 The range of a function in...
rnmptn0 6196 The range of a function in...
dfco2 6197 Alternate definition of a ...
dfco2a 6198 Generalization of ~ dfco2 ...
coundi 6199 Class composition distribu...
coundir 6200 Class composition distribu...
cores 6201 Restricted first member of...
resco 6202 Associative law for the re...
imaco 6203 Image of the composition o...
rnco 6204 The range of the compositi...
rnco2 6205 The range of the compositi...
dmco 6206 The domain of a compositio...
coeq0 6207 A composition of two relat...
coiun 6208 Composition with an indexe...
cocnvcnv1 6209 A composition is not affec...
cocnvcnv2 6210 A composition is not affec...
cores2 6211 Absorption of a reverse (p...
co02 6212 Composition with the empty...
co01 6213 Composition with the empty...
coi1 6214 Composition with the ident...
coi2 6215 Composition with the ident...
coires1 6216 Composition with a restric...
coass 6217 Associative law for class ...
relcnvtrg 6218 General form of ~ relcnvtr...
relcnvtr 6219 A relation is transitive i...
relssdmrn 6220 A relation is included in ...
relssdmrnOLD 6221 Obsolete version of ~ rels...
resssxp 6222 If the ` R ` -image of a c...
cnvssrndm 6223 The converse is a subset o...
cossxp 6224 Composition as a subset of...
relrelss 6225 Two ways to describe the s...
unielrel 6226 The membership relation fo...
relfld 6227 The double union of a rela...
relresfld 6228 Restriction of a relation ...
relcoi2 6229 Composition with the ident...
relcoi1 6230 Composition with the ident...
unidmrn 6231 The double union of the co...
relcnvfld 6232 if ` R ` is a relation, it...
dfdm2 6233 Alternate definition of do...
unixp 6234 The double class union of ...
unixp0 6235 A Cartesian product is emp...
unixpid 6236 Field of a Cartesian squar...
ressn 6237 Restriction of a class to ...
cnviin 6238 The converse of an interse...
cnvpo 6239 The converse of a partial ...
cnvso 6240 The converse of a strict o...
xpco 6241 Composition of two Cartesi...
xpcoid 6242 Composition of two Cartesi...
elsnxp 6243 Membership in a Cartesian ...
reu3op 6244 There is a unique ordered ...
reuop 6245 There is a unique ordered ...
opreu2reurex 6246 There is a unique ordered ...
opreu2reu 6247 If there is a unique order...
dfpo2 6248 Quantifier-free definition...
csbcog 6249 Distribute proper substitu...
snres0 6250 Condition for restriction ...
imaindm 6251 The image is unaffected by...
predeq123 6254 Equality theorem for the p...
predeq1 6255 Equality theorem for the p...
predeq2 6256 Equality theorem for the p...
predeq3 6257 Equality theorem for the p...
nfpred 6258 Bound-variable hypothesis ...
csbpredg 6259 Move class substitution in...
predpredss 6260 If ` A ` is a subset of ` ...
predss 6261 The predecessor class of `...
sspred 6262 Another subset/predecessor...
dfpred2 6263 An alternate definition of...
dfpred3 6264 An alternate definition of...
dfpred3g 6265 An alternate definition of...
elpredgg 6266 Membership in a predecesso...
elpredg 6267 Membership in a predecesso...
elpredimg 6268 Membership in a predecesso...
elpredim 6269 Membership in a predecesso...
elpred 6270 Membership in a predecesso...
predexg 6271 The predecessor class exis...
predasetexOLD 6272 Obsolete form of ~ predexg...
dffr4 6273 Alternate definition of we...
predel 6274 Membership in the predeces...
predbrg 6275 Closed form of ~ elpredim ...
predtrss 6276 If ` R ` is transitive ove...
predpo 6277 Property of the predecesso...
predso 6278 Property of the predecesso...
setlikespec 6279 If ` R ` is set-like in ` ...
predidm 6280 Idempotent law for the pre...
predin 6281 Intersection law for prede...
predun 6282 Union law for predecessor ...
preddif 6283 Difference law for predece...
predep 6284 The predecessor under the ...
trpred 6285 The class of predecessors ...
preddowncl 6286 A property of classes that...
predpoirr 6287 Given a partial ordering, ...
predfrirr 6288 Given a well-founded relat...
pred0 6289 The predecessor class over...
dfse3 6290 Alternate definition of se...
predrelss 6291 Subset carries from relati...
predprc 6292 The predecessor of a prope...
predres 6293 Predecessor class is unaff...
frpomin 6294 Every nonempty (possibly p...
frpomin2 6295 Every nonempty (possibly p...
frpoind 6296 The principle of well-foun...
frpoinsg 6297 Well-Founded Induction Sch...
frpoins2fg 6298 Well-Founded Induction sch...
frpoins2g 6299 Well-Founded Induction sch...
frpoins3g 6300 Well-Founded Induction sch...
tz6.26 6301 All nonempty subclasses of...
tz6.26OLD 6302 Obsolete proof of ~ tz6.26...
tz6.26i 6303 All nonempty subclasses of...
wfi 6304 The Principle of Well-Orde...
wfiOLD 6305 Obsolete proof of ~ wfi as...
wfii 6306 The Principle of Well-Orde...
wfisg 6307 Well-Ordered Induction Sch...
wfisgOLD 6308 Obsolete proof of ~ wfisg ...
wfis 6309 Well-Ordered Induction Sch...
wfis2fg 6310 Well-Ordered Induction Sch...
wfis2fgOLD 6311 Obsolete proof of ~ wfis2f...
wfis2f 6312 Well-Ordered Induction sch...
wfis2g 6313 Well-Ordered Induction Sch...
wfis2 6314 Well-Ordered Induction sch...
wfis3 6315 Well-Ordered Induction sch...
ordeq 6324 Equality theorem for the o...
elong 6325 An ordinal number is an or...
elon 6326 An ordinal number is an or...
eloni 6327 An ordinal number has the ...
elon2 6328 An ordinal number is an or...
limeq 6329 Equality theorem for the l...
ordwe 6330 Membership well-orders eve...
ordtr 6331 An ordinal class is transi...
ordfr 6332 Membership is well-founded...
ordelss 6333 An element of an ordinal c...
trssord 6334 A transitive subclass of a...
ordirr 6335 No ordinal class is a memb...
nordeq 6336 A member of an ordinal cla...
ordn2lp 6337 An ordinal class cannot be...
tz7.5 6338 A nonempty subclass of an ...
ordelord 6339 An element of an ordinal c...
tron 6340 The class of all ordinal n...
ordelon 6341 An element of an ordinal c...
onelon 6342 An element of an ordinal n...
tz7.7 6343 A transitive class belongs...
ordelssne 6344 For ordinal classes, membe...
ordelpss 6345 For ordinal classes, membe...
ordsseleq 6346 For ordinal classes, inclu...
ordin 6347 The intersection of two or...
onin 6348 The intersection of two or...
ordtri3or 6349 A trichotomy law for ordin...
ordtri1 6350 A trichotomy law for ordin...
ontri1 6351 A trichotomy law for ordin...
ordtri2 6352 A trichotomy law for ordin...
ordtri3 6353 A trichotomy law for ordin...
ordtri4 6354 A trichotomy law for ordin...
orddisj 6355 An ordinal class and its s...
onfr 6356 The ordinal class is well-...
onelpss 6357 Relationship between membe...
onsseleq 6358 Relationship between subse...
onelss 6359 An element of an ordinal n...
ordtr1 6360 Transitive law for ordinal...
ordtr2 6361 Transitive law for ordinal...
ordtr3 6362 Transitive law for ordinal...
ontr1 6363 Transitive law for ordinal...
ontr2 6364 Transitive law for ordinal...
onelssex 6365 Ordinal less than is equiv...
ordunidif 6366 The union of an ordinal st...
ordintdif 6367 If ` B ` is smaller than `...
onintss 6368 If a property is true for ...
oneqmini 6369 A way to show that an ordi...
ord0 6370 The empty set is an ordina...
0elon 6371 The empty set is an ordina...
ord0eln0 6372 A nonempty ordinal contain...
on0eln0 6373 An ordinal number contains...
dflim2 6374 An alternate definition of...
inton 6375 The intersection of the cl...
nlim0 6376 The empty set is not a lim...
limord 6377 A limit ordinal is ordinal...
limuni 6378 A limit ordinal is its own...
limuni2 6379 The union of a limit ordin...
0ellim 6380 A limit ordinal contains t...
limelon 6381 A limit ordinal class that...
onn0 6382 The class of all ordinal n...
suceq 6383 Equality of successors. (...
elsuci 6384 Membership in a successor....
elsucg 6385 Membership in a successor....
elsuc2g 6386 Variant of membership in a...
elsuc 6387 Membership in a successor....
elsuc2 6388 Membership in a successor....
nfsuc 6389 Bound-variable hypothesis ...
elelsuc 6390 Membership in a successor....
sucel 6391 Membership of a successor ...
suc0 6392 The successor of the empty...
sucprc 6393 A proper class is its own ...
unisucs 6394 The union of the successor...
unisucg 6395 A transitive class is equa...
unisuc 6396 A transitive class is equa...
sssucid 6397 A class is included in its...
sucidg 6398 Part of Proposition 7.23 o...
sucid 6399 A set belongs to its succe...
nsuceq0 6400 No successor is empty. (C...
eqelsuc 6401 A set belongs to the succe...
iunsuc 6402 Inductive definition for t...
suctr 6403 The successor of a transit...
trsuc 6404 A set whose successor belo...
trsucss 6405 A member of the successor ...
ordsssuc 6406 An ordinal is a subset of ...
onsssuc 6407 A subset of an ordinal num...
ordsssuc2 6408 An ordinal subset of an or...
onmindif 6409 When its successor is subt...
ordnbtwn 6410 There is no set between an...
onnbtwn 6411 There is no set between an...
sucssel 6412 A set whose successor is a...
orddif 6413 Ordinal derived from its s...
orduniss 6414 An ordinal class includes ...
ordtri2or 6415 A trichotomy law for ordin...
ordtri2or2 6416 A trichotomy law for ordin...
ordtri2or3 6417 A consequence of total ord...
ordelinel 6418 The intersection of two or...
ordssun 6419 Property of a subclass of ...
ordequn 6420 The maximum (i.e. union) o...
ordun 6421 The maximum (i.e., union) ...
onunel 6422 The union of two ordinals ...
ordunisssuc 6423 A subclass relationship fo...
suc11 6424 The successor operation be...
onun2 6425 The union of two ordinals ...
ontr 6426 An ordinal number is a tra...
onunisuc 6427 An ordinal number is equal...
onordi 6428 An ordinal number is an or...
ontrciOLD 6429 Obsolete version of ~ ontr...
onirri 6430 An ordinal number is not a...
oneli 6431 A member of an ordinal num...
onelssi 6432 A member of an ordinal num...
onssneli 6433 An ordering law for ordina...
onssnel2i 6434 An ordering law for ordina...
onelini 6435 An element of an ordinal n...
oneluni 6436 An ordinal number equals i...
onunisuci 6437 An ordinal number is equal...
onsseli 6438 Subset is equivalent to me...
onun2i 6439 The union of two ordinal n...
unizlim 6440 An ordinal equal to its ow...
on0eqel 6441 An ordinal number either e...
snsn0non 6442 The singleton of the singl...
onxpdisj 6443 Ordinal numbers and ordere...
onnev 6444 The class of ordinal numbe...
onnevOLD 6445 Obsolete version of ~ onne...
iotajust 6447 Soundness justification th...
dfiota2 6449 Alternate definition for d...
nfiota1 6450 Bound-variable hypothesis ...
nfiotadw 6451 Deduction version of ~ nfi...
nfiotaw 6452 Bound-variable hypothesis ...
nfiotad 6453 Deduction version of ~ nfi...
nfiota 6454 Bound-variable hypothesis ...
cbviotaw 6455 Change bound variables in ...
cbviotavw 6456 Change bound variables in ...
cbviotavwOLD 6457 Obsolete version of ~ cbvi...
cbviota 6458 Change bound variables in ...
cbviotav 6459 Change bound variables in ...
sb8iota 6460 Variable substitution in d...
iotaeq 6461 Equality theorem for descr...
iotabi 6462 Equivalence theorem for de...
uniabio 6463 Part of Theorem 8.17 in [Q...
iotaval2 6464 Version of ~ iotaval using...
iotauni2 6465 Version of ~ iotauni using...
iotanul2 6466 Version of ~ iotanul using...
iotaval 6467 Theorem 8.19 in [Quine] p....
iotassuni 6468 The ` iota ` class is a su...
iotaex 6469 Theorem 8.23 in [Quine] p....
iotavalOLD 6470 Obsolete version of ~ iota...
iotauni 6471 Equivalence between two di...
iotaint 6472 Equivalence between two di...
iota1 6473 Property of iota. (Contri...
iotanul 6474 Theorem 8.22 in [Quine] p....
iotassuniOLD 6475 Obsolete version of ~ iota...
iotaexOLD 6476 Obsolete version of ~ iota...
iota4 6477 Theorem *14.22 in [Whitehe...
iota4an 6478 Theorem *14.23 in [Whitehe...
iota5 6479 A method for computing iot...
iotabidv 6480 Formula-building deduction...
iotabii 6481 Formula-building deduction...
iotacl 6482 Membership law for descrip...
iota2df 6483 A condition that allows to...
iota2d 6484 A condition that allows to...
iota2 6485 The unique element such th...
iotan0 6486 Representation of "the uni...
sniota 6487 A class abstraction with a...
dfiota4 6488 The ` iota ` operation usi...
csbiota 6489 Class substitution within ...
dffun2 6506 Alternate definition of a ...
dffun2OLD 6507 Obsolete version of ~ dffu...
dffun2OLDOLD 6508 Obsolete version of ~ dffu...
dffun6 6509 Alternate definition of a ...
dffun3 6510 Alternate definition of fu...
dffun3OLD 6511 Obsolete version of ~ dffu...
dffun4 6512 Alternate definition of a ...
dffun5 6513 Alternate definition of fu...
dffun6f 6514 Definition of function, us...
dffun6OLD 6515 Obsolete version of ~ dffu...
funmo 6516 A function has at most one...
funmoOLD 6517 Obsolete version of ~ funm...
funrel 6518 A function is a relation. ...
0nelfun 6519 A function does not contai...
funss 6520 Subclass theorem for funct...
funeq 6521 Equality theorem for funct...
funeqi 6522 Equality inference for the...
funeqd 6523 Equality deduction for the...
nffun 6524 Bound-variable hypothesis ...
sbcfung 6525 Distribute proper substitu...
funeu 6526 There is exactly one value...
funeu2 6527 There is exactly one value...
dffun7 6528 Alternate definition of a ...
dffun8 6529 Alternate definition of a ...
dffun9 6530 Alternate definition of a ...
funfn 6531 A class is a function if a...
funfnd 6532 A function is a function o...
funi 6533 The identity relation is a...
nfunv 6534 The universal class is not...
funopg 6535 A Kuratowski ordered pair ...
funopab 6536 A class of ordered pairs i...
funopabeq 6537 A class of ordered pairs o...
funopab4 6538 A class of ordered pairs o...
funmpt 6539 A function in maps-to nota...
funmpt2 6540 Functionality of a class g...
funco 6541 The composition of two fun...
funresfunco 6542 Composition of two functio...
funres 6543 A restriction of a functio...
funresd 6544 A restriction of a functio...
funssres 6545 The restriction of a funct...
fun2ssres 6546 Equality of restrictions o...
funun 6547 The union of functions wit...
fununmo 6548 If the union of classes is...
fununfun 6549 If the union of classes is...
fundif 6550 A function with removed el...
funcnvsn 6551 The converse singleton of ...
funsng 6552 A singleton of an ordered ...
fnsng 6553 Functionality and domain o...
funsn 6554 A singleton of an ordered ...
funprg 6555 A set of two pairs is a fu...
funtpg 6556 A set of three pairs is a ...
funpr 6557 A function with a domain o...
funtp 6558 A function with a domain o...
fnsn 6559 Functionality and domain o...
fnprg 6560 Function with a domain of ...
fntpg 6561 Function with a domain of ...
fntp 6562 A function with a domain o...
funcnvpr 6563 The converse pair of order...
funcnvtp 6564 The converse triple of ord...
funcnvqp 6565 The converse quadruple of ...
fun0 6566 The empty set is a functio...
funcnv0 6567 The converse of the empty ...
funcnvcnv 6568 The double converse of a f...
funcnv2 6569 A simpler equivalence for ...
funcnv 6570 The converse of a class is...
funcnv3 6571 A condition showing a clas...
fun2cnv 6572 The double converse of a c...
svrelfun 6573 A single-valued relation i...
fncnv 6574 Single-rootedness (see ~ f...
fun11 6575 Two ways of stating that `...
fununi 6576 The union of a chain (with...
funin 6577 The intersection with a fu...
funres11 6578 The restriction of a one-t...
funcnvres 6579 The converse of a restrict...
cnvresid 6580 Converse of a restricted i...
funcnvres2 6581 The converse of a restrict...
funimacnv 6582 The image of the preimage ...
funimass1 6583 A kind of contraposition l...
funimass2 6584 A kind of contraposition l...
imadif 6585 The image of a difference ...
imain 6586 The image of an intersecti...
funimaexg 6587 Axiom of Replacement using...
funimaexgOLD 6588 Obsolete version of ~ funi...
funimaex 6589 The image of a set under a...
isarep1 6590 Part of a study of the Axi...
isarep1OLD 6591 Obsolete version of ~ isar...
isarep2 6592 Part of a study of the Axi...
fneq1 6593 Equality theorem for funct...
fneq2 6594 Equality theorem for funct...
fneq1d 6595 Equality deduction for fun...
fneq2d 6596 Equality deduction for fun...
fneq12d 6597 Equality deduction for fun...
fneq12 6598 Equality theorem for funct...
fneq1i 6599 Equality inference for fun...
fneq2i 6600 Equality inference for fun...
nffn 6601 Bound-variable hypothesis ...
fnfun 6602 A function with domain is ...
fnfund 6603 A function with domain is ...
fnrel 6604 A function with domain is ...
fndm 6605 The domain of a function. ...
fndmi 6606 The domain of a function. ...
fndmd 6607 The domain of a function. ...
funfni 6608 Inference to convert a fun...
fndmu 6609 A function has a unique do...
fnbr 6610 The first argument of bina...
fnop 6611 The first argument of an o...
fneu 6612 There is exactly one value...
fneu2 6613 There is exactly one value...
fnun 6614 The union of two functions...
fnund 6615 The union of two functions...
fnunop 6616 Extension of a function wi...
fncofn 6617 Composition of a function ...
fnco 6618 Composition of two functio...
fncoOLD 6619 Obsolete version of ~ fnco...
fnresdm 6620 A function does not change...
fnresdisj 6621 A function restricted to a...
2elresin 6622 Membership in two function...
fnssresb 6623 Restriction of a function ...
fnssres 6624 Restriction of a function ...
fnssresd 6625 Restriction of a function ...
fnresin1 6626 Restriction of a function'...
fnresin2 6627 Restriction of a function'...
fnres 6628 An equivalence for functio...
idfn 6629 The identity relation is a...
fnresi 6630 The restricted identity re...
fnima 6631 The image of a function's ...
fn0 6632 A function with empty doma...
fnimadisj 6633 A class that is disjoint w...
fnimaeq0 6634 Images under a function ne...
dfmpt3 6635 Alternate definition for t...
mptfnf 6636 The maps-to notation defin...
fnmptf 6637 The maps-to notation defin...
fnopabg 6638 Functionality and domain o...
fnopab 6639 Functionality and domain o...
mptfng 6640 The maps-to notation defin...
fnmpt 6641 The maps-to notation defin...
fnmptd 6642 The maps-to notation defin...
mpt0 6643 A mapping operation with e...
fnmpti 6644 Functionality and domain o...
dmmpti 6645 Domain of the mapping oper...
dmmptd 6646 The domain of the mapping ...
mptun 6647 Union of mappings which ar...
partfun 6648 Rewrite a function defined...
feq1 6649 Equality theorem for funct...
feq2 6650 Equality theorem for funct...
feq3 6651 Equality theorem for funct...
feq23 6652 Equality theorem for funct...
feq1d 6653 Equality deduction for fun...
feq2d 6654 Equality deduction for fun...
feq3d 6655 Equality deduction for fun...
feq12d 6656 Equality deduction for fun...
feq123d 6657 Equality deduction for fun...
feq123 6658 Equality theorem for funct...
feq1i 6659 Equality inference for fun...
feq2i 6660 Equality inference for fun...
feq12i 6661 Equality inference for fun...
feq23i 6662 Equality inference for fun...
feq23d 6663 Equality deduction for fun...
nff 6664 Bound-variable hypothesis ...
sbcfng 6665 Distribute proper substitu...
sbcfg 6666 Distribute proper substitu...
elimf 6667 Eliminate a mapping hypoth...
ffn 6668 A mapping is a function wi...
ffnd 6669 A mapping is a function wi...
dffn2 6670 Any function is a mapping ...
ffun 6671 A mapping is a function. ...
ffund 6672 A mapping is a function, d...
frel 6673 A mapping is a relation. ...
freld 6674 A mapping is a relation. ...
frn 6675 The range of a mapping. (...
frnd 6676 Deduction form of ~ frn . ...
fdm 6677 The domain of a mapping. ...
fdmOLD 6678 Obsolete version of ~ fdm ...
fdmd 6679 Deduction form of ~ fdm . ...
fdmi 6680 Inference associated with ...
dffn3 6681 A function maps to its ran...
ffrn 6682 A function maps to its ran...
ffrnb 6683 Characterization of a func...
ffrnbd 6684 A function maps to its ran...
fss 6685 Expanding the codomain of ...
fssd 6686 Expanding the codomain of ...
fssdmd 6687 Expressing that a class is...
fssdm 6688 Expressing that a class is...
fimass 6689 The image of a class under...
fimacnv 6690 The preimage of the codoma...
fcof 6691 Composition of a function ...
fco 6692 Composition of two functio...
fcoOLD 6693 Obsolete version of ~ fco ...
fcod 6694 Composition of two mapping...
fco2 6695 Functionality of a composi...
fssxp 6696 A mapping is a class of or...
funssxp 6697 Two ways of specifying a p...
ffdm 6698 A mapping is a partial fun...
ffdmd 6699 The domain of a function. ...
fdmrn 6700 A different way to write `...
funcofd 6701 Composition of two functio...
fco3OLD 6702 Obsolete version of ~ func...
opelf 6703 The members of an ordered ...
fun 6704 The union of two functions...
fun2 6705 The union of two functions...
fun2d 6706 The union of functions wit...
fnfco 6707 Composition of two functio...
fssres 6708 Restriction of a function ...
fssresd 6709 Restriction of a function ...
fssres2 6710 Restriction of a restricte...
fresin 6711 An identity for the mappin...
resasplit 6712 If two functions agree on ...
fresaun 6713 The union of two functions...
fresaunres2 6714 From the union of two func...
fresaunres1 6715 From the union of two func...
fcoi1 6716 Composition of a mapping a...
fcoi2 6717 Composition of restricted ...
feu 6718 There is exactly one value...
fcnvres 6719 The converse of a restrict...
fimacnvdisj 6720 The preimage of a class di...
fint 6721 Function into an intersect...
fin 6722 Mapping into an intersecti...
f0 6723 The empty function. (Cont...
f00 6724 A class is a function with...
f0bi 6725 A function with empty doma...
f0dom0 6726 A function is empty iff it...
f0rn0 6727 If there is no element in ...
fconst 6728 A Cartesian product with a...
fconstg 6729 A Cartesian product with a...
fnconstg 6730 A Cartesian product with a...
fconst6g 6731 Constant function with loo...
fconst6 6732 A constant function as a m...
f1eq1 6733 Equality theorem for one-t...
f1eq2 6734 Equality theorem for one-t...
f1eq3 6735 Equality theorem for one-t...
nff1 6736 Bound-variable hypothesis ...
dff12 6737 Alternate definition of a ...
f1f 6738 A one-to-one mapping is a ...
f1fn 6739 A one-to-one mapping is a ...
f1fun 6740 A one-to-one mapping is a ...
f1rel 6741 A one-to-one onto mapping ...
f1dm 6742 The domain of a one-to-one...
f1dmOLD 6743 Obsolete version of ~ f1dm...
f1ss 6744 A function that is one-to-...
f1ssr 6745 A function that is one-to-...
f1ssres 6746 A function that is one-to-...
f1resf1 6747 The restriction of an inje...
f1cnvcnv 6748 Two ways to express that a...
f1cof1 6749 Composition of two one-to-...
f1co 6750 Composition of one-to-one ...
f1coOLD 6751 Obsolete version of ~ f1co...
foeq1 6752 Equality theorem for onto ...
foeq2 6753 Equality theorem for onto ...
foeq3 6754 Equality theorem for onto ...
nffo 6755 Bound-variable hypothesis ...
fof 6756 An onto mapping is a mappi...
fofun 6757 An onto mapping is a funct...
fofn 6758 An onto mapping is a funct...
forn 6759 The codomain of an onto fu...
dffo2 6760 Alternate definition of an...
foima 6761 The image of the domain of...
dffn4 6762 A function maps onto its r...
funforn 6763 A function maps its domain...
fodmrnu 6764 An onto function has uniqu...
fimadmfo 6765 A function is a function o...
fores 6766 Restriction of an onto fun...
fimadmfoALT 6767 Alternate proof of ~ fimad...
focnvimacdmdm 6768 The preimage of the codoma...
focofo 6769 Composition of onto functi...
foco 6770 Composition of onto functi...
foconst 6771 A nonzero constant functio...
f1oeq1 6772 Equality theorem for one-t...
f1oeq2 6773 Equality theorem for one-t...
f1oeq3 6774 Equality theorem for one-t...
f1oeq23 6775 Equality theorem for one-t...
f1eq123d 6776 Equality deduction for one...
foeq123d 6777 Equality deduction for ont...
f1oeq123d 6778 Equality deduction for one...
f1oeq1d 6779 Equality deduction for one...
f1oeq2d 6780 Equality deduction for one...
f1oeq3d 6781 Equality deduction for one...
nff1o 6782 Bound-variable hypothesis ...
f1of1 6783 A one-to-one onto mapping ...
f1of 6784 A one-to-one onto mapping ...
f1ofn 6785 A one-to-one onto mapping ...
f1ofun 6786 A one-to-one onto mapping ...
f1orel 6787 A one-to-one onto mapping ...
f1odm 6788 The domain of a one-to-one...
dff1o2 6789 Alternate definition of on...
dff1o3 6790 Alternate definition of on...
f1ofo 6791 A one-to-one onto function...
dff1o4 6792 Alternate definition of on...
dff1o5 6793 Alternate definition of on...
f1orn 6794 A one-to-one function maps...
f1f1orn 6795 A one-to-one function maps...
f1ocnv 6796 The converse of a one-to-o...
f1ocnvb 6797 A relation is a one-to-one...
f1ores 6798 The restriction of a one-t...
f1orescnv 6799 The converse of a one-to-o...
f1imacnv 6800 Preimage of an image. (Co...
foimacnv 6801 A reverse version of ~ f1i...
foun 6802 The union of two onto func...
f1oun 6803 The union of two one-to-on...
f1un 6804 The union of two one-to-on...
resdif 6805 The restriction of a one-t...
resin 6806 The restriction of a one-t...
f1oco 6807 Composition of one-to-one ...
f1cnv 6808 The converse of an injecti...
funcocnv2 6809 Composition with the conve...
fococnv2 6810 The composition of an onto...
f1ococnv2 6811 The composition of a one-t...
f1cocnv2 6812 Composition of an injectiv...
f1ococnv1 6813 The composition of a one-t...
f1cocnv1 6814 Composition of an injectiv...
funcoeqres 6815 Express a constraint on a ...
f1ssf1 6816 A subset of an injective f...
f10 6817 The empty set maps one-to-...
f10d 6818 The empty set maps one-to-...
f1o00 6819 One-to-one onto mapping of...
fo00 6820 Onto mapping of the empty ...
f1o0 6821 One-to-one onto mapping of...
f1oi 6822 A restriction of the ident...
f1ovi 6823 The identity relation is a...
f1osn 6824 A singleton of an ordered ...
f1osng 6825 A singleton of an ordered ...
f1sng 6826 A singleton of an ordered ...
fsnd 6827 A singleton of an ordered ...
f1oprswap 6828 A two-element swap is a bi...
f1oprg 6829 An unordered pair of order...
tz6.12-2 6830 Function value when ` F ` ...
fveu 6831 The value of a function at...
brprcneu 6832 If ` A ` is a proper class...
brprcneuALT 6833 Alternate proof of ~ brprc...
fvprc 6834 A function's value at a pr...
fvprcALT 6835 Alternate proof of ~ fvprc...
rnfvprc 6836 The range of a function va...
fv2 6837 Alternate definition of fu...
dffv3 6838 A definition of function v...
dffv4 6839 The previous definition of...
elfv 6840 Membership in a function v...
fveq1 6841 Equality theorem for funct...
fveq2 6842 Equality theorem for funct...
fveq1i 6843 Equality inference for fun...
fveq1d 6844 Equality deduction for fun...
fveq2i 6845 Equality inference for fun...
fveq2d 6846 Equality deduction for fun...
2fveq3 6847 Equality theorem for neste...
fveq12i 6848 Equality deduction for fun...
fveq12d 6849 Equality deduction for fun...
fveqeq2d 6850 Equality deduction for fun...
fveqeq2 6851 Equality deduction for fun...
nffv 6852 Bound-variable hypothesis ...
nffvmpt1 6853 Bound-variable hypothesis ...
nffvd 6854 Deduction version of bound...
fvex 6855 The value of a class exist...
fvexi 6856 The value of a class exist...
fvexd 6857 The value of a class exist...
fvif 6858 Move a conditional outside...
iffv 6859 Move a conditional outside...
fv3 6860 Alternate definition of th...
fvres 6861 The value of a restricted ...
fvresd 6862 The value of a restricted ...
funssfv 6863 The value of a member of t...
tz6.12c 6864 Corollary of Theorem 6.12(...
tz6.12-1 6865 Function value. Theorem 6...
tz6.12-1OLD 6866 Obsolete version of ~ tz6....
tz6.12 6867 Function value. Theorem 6...
tz6.12f 6868 Function value, using boun...
tz6.12cOLD 6869 Obsolete version of ~ tz6....
tz6.12i 6870 Corollary of Theorem 6.12(...
fvbr0 6871 Two possibilities for the ...
fvrn0 6872 A function value is a memb...
fvn0fvelrn 6873 If the value of a function...
elfvunirn 6874 A function value is a subs...
fvssunirn 6875 The result of a function v...
fvssunirnOLD 6876 Obsolete version of ~ fvss...
ndmfv 6877 The value of a class outsi...
ndmfvrcl 6878 Reverse closure law for fu...
elfvdm 6879 If a function value has a ...
elfvex 6880 If a function value has a ...
elfvexd 6881 If a function value has a ...
eliman0 6882 A nonempty function value ...
nfvres 6883 The value of a non-member ...
nfunsn 6884 If the restriction of a cl...
fvfundmfvn0 6885 If the "value of a class" ...
0fv 6886 Function value of the empt...
fv2prc 6887 A function value of a func...
elfv2ex 6888 If a function value of a f...
fveqres 6889 Equal values imply equal v...
csbfv12 6890 Move class substitution in...
csbfv2g 6891 Move class substitution in...
csbfv 6892 Substitution for a functio...
funbrfv 6893 The second argument of a b...
funopfv 6894 The second element in an o...
fnbrfvb 6895 Equivalence of function va...
fnopfvb 6896 Equivalence of function va...
funbrfvb 6897 Equivalence of function va...
funopfvb 6898 Equivalence of function va...
fnbrfvb2 6899 Version of ~ fnbrfvb for f...
funbrfv2b 6900 Function value in terms of...
dffn5 6901 Representation of a functi...
fnrnfv 6902 The range of a function ex...
fvelrnb 6903 A member of a function's r...
foelcdmi 6904 A member of a surjective f...
dfimafn 6905 Alternate definition of th...
dfimafn2 6906 Alternate definition of th...
funimass4 6907 Membership relation for th...
fvelima 6908 Function value in an image...
fvelimad 6909 Function value in an image...
feqmptd 6910 Deduction form of ~ dffn5 ...
feqresmpt 6911 Express a restricted funct...
feqmptdf 6912 Deduction form of ~ dffn5f...
dffn5f 6913 Representation of a functi...
fvelimab 6914 Function value in an image...
fvelimabd 6915 Deduction form of ~ fvelim...
unima 6916 Image of a union. (Contri...
fvi 6917 The value of the identity ...
fviss 6918 The value of the identity ...
fniinfv 6919 The indexed intersection o...
fnsnfv 6920 Singleton of function valu...
fnsnfvOLD 6921 Obsolete version of ~ fnsn...
opabiotafun 6922 Define a function whose va...
opabiotadm 6923 Define a function whose va...
opabiota 6924 Define a function whose va...
fnimapr 6925 The image of a pair under ...
ssimaex 6926 The existence of a subimag...
ssimaexg 6927 The existence of a subimag...
funfv 6928 A simplified expression fo...
funfv2 6929 The value of a function. ...
funfv2f 6930 The value of a function. ...
fvun 6931 Value of the union of two ...
fvun1 6932 The value of a union when ...
fvun2 6933 The value of a union when ...
fvun1d 6934 The value of a union when ...
fvun2d 6935 The value of a union when ...
dffv2 6936 Alternate definition of fu...
dmfco 6937 Domains of a function comp...
fvco2 6938 Value of a function compos...
fvco 6939 Value of a function compos...
fvco3 6940 Value of a function compos...
fvco3d 6941 Value of a function compos...
fvco4i 6942 Conditions for a compositi...
fvopab3g 6943 Value of a function given ...
fvopab3ig 6944 Value of a function given ...
brfvopabrbr 6945 The binary relation of a f...
fvmptg 6946 Value of a function given ...
fvmpti 6947 Value of a function given ...
fvmpt 6948 Value of a function given ...
fvmpt2f 6949 Value of a function given ...
fvtresfn 6950 Functionality of a tuple-r...
fvmpts 6951 Value of a function given ...
fvmpt3 6952 Value of a function given ...
fvmpt3i 6953 Value of a function given ...
fvmptdf 6954 Deduction version of ~ fvm...
fvmptd 6955 Deduction version of ~ fvm...
fvmptd2 6956 Deduction version of ~ fvm...
mptrcl 6957 Reverse closure for a mapp...
fvmpt2i 6958 Value of a function given ...
fvmpt2 6959 Value of a function given ...
fvmptss 6960 If all the values of the m...
fvmpt2d 6961 Deduction version of ~ fvm...
fvmptex 6962 Express a function ` F ` w...
fvmptd3f 6963 Alternate deduction versio...
fvmptd2f 6964 Alternate deduction versio...
fvmptdv 6965 Alternate deduction versio...
fvmptdv2 6966 Alternate deduction versio...
mpteqb 6967 Bidirectional equality the...
fvmptt 6968 Closed theorem form of ~ f...
fvmptf 6969 Value of a function given ...
fvmptnf 6970 The value of a function gi...
fvmptd3 6971 Deduction version of ~ fvm...
fvmptn 6972 This somewhat non-intuitiv...
fvmptss2 6973 A mapping always evaluates...
elfvmptrab1w 6974 Implications for the value...
elfvmptrab1 6975 Implications for the value...
elfvmptrab 6976 Implications for the value...
fvopab4ndm 6977 Value of a function given ...
fvmptndm 6978 Value of a function given ...
fvmptrabfv 6979 Value of a function mappin...
fvopab5 6980 The value of a function th...
fvopab6 6981 Value of a function given ...
eqfnfv 6982 Equality of functions is d...
eqfnfv2 6983 Equality of functions is d...
eqfnfv3 6984 Derive equality of functio...
eqfnfvd 6985 Deduction for equality of ...
eqfnfv2f 6986 Equality of functions is d...
eqfunfv 6987 Equality of functions is d...
fvreseq0 6988 Equality of restricted fun...
fvreseq1 6989 Equality of a function res...
fvreseq 6990 Equality of restricted fun...
fnmptfvd 6991 A function with a given do...
fndmdif 6992 Two ways to express the lo...
fndmdifcom 6993 The difference set between...
fndmdifeq0 6994 The difference set of two ...
fndmin 6995 Two ways to express the lo...
fneqeql 6996 Two functions are equal if...
fneqeql2 6997 Two functions are equal if...
fnreseql 6998 Two functions are equal on...
chfnrn 6999 The range of a choice func...
funfvop 7000 Ordered pair with function...
funfvbrb 7001 Two ways to say that ` A `...
fvimacnvi 7002 A member of a preimage is ...
fvimacnv 7003 The argument of a function...
funimass3 7004 A kind of contraposition l...
funimass5 7005 A subclass of a preimage i...
funconstss 7006 Two ways of specifying tha...
fvimacnvALT 7007 Alternate proof of ~ fvima...
elpreima 7008 Membership in the preimage...
elpreimad 7009 Membership in the preimage...
fniniseg 7010 Membership in the preimage...
fncnvima2 7011 Inverse images under funct...
fniniseg2 7012 Inverse point images under...
unpreima 7013 Preimage of a union. (Con...
inpreima 7014 Preimage of an intersectio...
difpreima 7015 Preimage of a difference. ...
respreima 7016 The preimage of a restrict...
cnvimainrn 7017 The preimage of the inters...
sspreima 7018 The preimage of a subset i...
iinpreima 7019 Preimage of an intersectio...
intpreima 7020 Preimage of an intersectio...
fimacnvOLD 7021 Obsolete version of ~ fima...
fimacnvinrn 7022 Taking the converse image ...
fimacnvinrn2 7023 Taking the converse image ...
rescnvimafod 7024 The restriction of a funct...
fvn0ssdmfun 7025 If a class' function value...
fnopfv 7026 Ordered pair with function...
fvelrn 7027 A function's value belongs...
nelrnfvne 7028 A function value cannot be...
fveqdmss 7029 If the empty set is not co...
fveqressseq 7030 If the empty set is not co...
fnfvelrn 7031 A function's value belongs...
ffvelcdm 7032 A function's value belongs...
fnfvelrnd 7033 A function's value belongs...
ffvelcdmi 7034 A function's value belongs...
ffvelcdmda 7035 A function's value belongs...
ffvelcdmd 7036 A function's value belongs...
rexrn 7037 Restricted existential qua...
ralrn 7038 Restricted universal quant...
elrnrexdm 7039 For any element in the ran...
elrnrexdmb 7040 For any element in the ran...
eldmrexrn 7041 For any element in the dom...
eldmrexrnb 7042 For any element in the dom...
fvcofneq 7043 The values of two function...
ralrnmptw 7044 A restricted quantifier ov...
rexrnmptw 7045 A restricted quantifier ov...
ralrnmpt 7046 A restricted quantifier ov...
rexrnmpt 7047 A restricted quantifier ov...
f0cli 7048 Unconditional closure of a...
dff2 7049 Alternate definition of a ...
dff3 7050 Alternate definition of a ...
dff4 7051 Alternate definition of a ...
dffo3 7052 An onto mapping expressed ...
dffo4 7053 Alternate definition of an...
dffo5 7054 Alternate definition of an...
exfo 7055 A relation equivalent to t...
foelrn 7056 Property of a surjective f...
foco2 7057 If a composition of two fu...
fmpt 7058 Functionality of the mappi...
f1ompt 7059 Express bijection for a ma...
fmpti 7060 Functionality of the mappi...
fvmptelcdm 7061 The value of a function at...
fmptd 7062 Domain and codomain of the...
fmpttd 7063 Version of ~ fmptd with in...
fmpt3d 7064 Domain and codomain of the...
fmptdf 7065 A version of ~ fmptd using...
ffnfv 7066 A function maps to a class...
ffnfvf 7067 A function maps to a class...
fnfvrnss 7068 An upper bound for range d...
fcdmssb 7069 A function is a function i...
rnmptss 7070 The range of an operation ...
fmpt2d 7071 Domain and codomain of the...
ffvresb 7072 A necessary and sufficient...
f1oresrab 7073 Build a bijection between ...
f1ossf1o 7074 Restricting a bijection, w...
fmptco 7075 Composition of two functio...
fmptcof 7076 Version of ~ fmptco where ...
fmptcos 7077 Composition of two functio...
cofmpt 7078 Express composition of a m...
fcompt 7079 Express composition of two...
fcoconst 7080 Composition with a constan...
fsn 7081 A function maps a singleto...
fsn2 7082 A function that maps a sin...
fsng 7083 A function maps a singleto...
fsn2g 7084 A function that maps a sin...
xpsng 7085 The Cartesian product of t...
xpprsng 7086 The Cartesian product of a...
xpsn 7087 The Cartesian product of t...
f1o2sn 7088 A singleton consisting in ...
residpr 7089 Restriction of the identit...
dfmpt 7090 Alternate definition for t...
fnasrn 7091 A function expressed as th...
idref 7092 Two ways to state that a r...
funiun 7093 A function is a union of s...
funopsn 7094 If a function is an ordere...
funop 7095 An ordered pair is a funct...
funopdmsn 7096 The domain of a function w...
funsndifnop 7097 A singleton of an ordered ...
funsneqopb 7098 A singleton of an ordered ...
ressnop0 7099 If ` A ` is not in ` C ` ,...
fpr 7100 A function with a domain o...
fprg 7101 A function with a domain o...
ftpg 7102 A function with a domain o...
ftp 7103 A function with a domain o...
fnressn 7104 A function restricted to a...
funressn 7105 A function restricted to a...
fressnfv 7106 The value of a function re...
fvrnressn 7107 If the value of a function...
fvressn 7108 The value of a function re...
fvn0fvelrnOLD 7109 Obsolete version of ~ fvn0...
fvconst 7110 The value of a constant fu...
fnsnr 7111 If a class belongs to a fu...
fnsnb 7112 A function whose domain is...
fmptsn 7113 Express a singleton functi...
fmptsng 7114 Express a singleton functi...
fmptsnd 7115 Express a singleton functi...
fmptap 7116 Append an additional value...
fmptapd 7117 Append an additional value...
fmptpr 7118 Express a pair function in...
fvresi 7119 The value of a restricted ...
fninfp 7120 Express the class of fixed...
fnelfp 7121 Property of a fixed point ...
fndifnfp 7122 Express the class of non-f...
fnelnfp 7123 Property of a non-fixed po...
fnnfpeq0 7124 A function is the identity...
fvunsn 7125 Remove an ordered pair not...
fvsng 7126 The value of a singleton o...
fvsn 7127 The value of a singleton o...
fvsnun1 7128 The value of a function wi...
fvsnun2 7129 The value of a function wi...
fnsnsplit 7130 Split a function into a si...
fsnunf 7131 Adjoining a point to a fun...
fsnunf2 7132 Adjoining a point to a pun...
fsnunfv 7133 Recover the added point fr...
fsnunres 7134 Recover the original funct...
funresdfunsn 7135 Restricting a function to ...
fvpr1g 7136 The value of a function wi...
fvpr2g 7137 The value of a function wi...
fvpr2gOLD 7138 Obsolete version of ~ fvpr...
fvpr1 7139 The value of a function wi...
fvpr1OLD 7140 Obsolete version of ~ fvpr...
fvpr2 7141 The value of a function wi...
fvpr2OLD 7142 Obsolete version of ~ fvpr...
fprb 7143 A condition for functionho...
fvtp1 7144 The first value of a funct...
fvtp2 7145 The second value of a func...
fvtp3 7146 The third value of a funct...
fvtp1g 7147 The value of a function wi...
fvtp2g 7148 The value of a function wi...
fvtp3g 7149 The value of a function wi...
tpres 7150 An unordered triple of ord...
fvconst2g 7151 The value of a constant fu...
fconst2g 7152 A constant function expres...
fvconst2 7153 The value of a constant fu...
fconst2 7154 A constant function expres...
fconst5 7155 Two ways to express that a...
rnmptc 7156 Range of a constant functi...
rnmptcOLD 7157 Obsolete version of ~ rnmp...
fnprb 7158 A function whose domain ha...
fntpb 7159 A function whose domain ha...
fnpr2g 7160 A function whose domain ha...
fpr2g 7161 A function that maps a pai...
fconstfv 7162 A constant function expres...
fconst3 7163 Two ways to express a cons...
fconst4 7164 Two ways to express a cons...
resfunexg 7165 The restriction of a funct...
resiexd 7166 The restriction of the ide...
fnex 7167 If the domain of a functio...
fnexd 7168 If the domain of a functio...
funex 7169 If the domain of a functio...
opabex 7170 Existence of a function ex...
mptexg 7171 If the domain of a functio...
mptexgf 7172 If the domain of a functio...
mptex 7173 If the domain of a functio...
mptexd 7174 If the domain of a functio...
mptrabex 7175 If the domain of a functio...
fex 7176 If the domain of a mapping...
fexd 7177 If the domain of a mapping...
mptfvmpt 7178 A function in maps-to nota...
eufnfv 7179 A function is uniquely det...
funfvima 7180 A function's value in a pr...
funfvima2 7181 A function's value in an i...
funfvima2d 7182 A function's value in a pr...
fnfvima 7183 The function value of an o...
fnfvimad 7184 A function's value belongs...
resfvresima 7185 The value of the function ...
funfvima3 7186 A class including a functi...
rexima 7187 Existential quantification...
ralima 7188 Universal quantification u...
fvclss 7189 Upper bound for the class ...
elabrex 7190 Elementhood in an image se...
abrexco 7191 Composition of two image m...
imaiun 7192 The image of an indexed un...
imauni 7193 The image of a union is th...
fniunfv 7194 The indexed union of a fun...
funiunfv 7195 The indexed union of a fun...
funiunfvf 7196 The indexed union of a fun...
eluniima 7197 Membership in the union of...
elunirn 7198 Membership in the union of...
elunirnALT 7199 Alternate proof of ~ eluni...
elunirn2OLD 7200 Obsolete version of ~ elfv...
fnunirn 7201 Membership in a union of s...
dff13 7202 A one-to-one function in t...
dff13f 7203 A one-to-one function in t...
f1veqaeq 7204 If the values of a one-to-...
f1cofveqaeq 7205 If the values of a composi...
f1cofveqaeqALT 7206 Alternate proof of ~ f1cof...
2f1fvneq 7207 If two one-to-one function...
f1mpt 7208 Express injection for a ma...
f1fveq 7209 Equality of function value...
f1elima 7210 Membership in the image of...
f1imass 7211 Taking images under a one-...
f1imaeq 7212 Taking images under a one-...
f1imapss 7213 Taking images under a one-...
fpropnf1 7214 A function, given by an un...
f1dom3fv3dif 7215 The function values for a ...
f1dom3el3dif 7216 The codomain of a 1-1 func...
dff14a 7217 A one-to-one function in t...
dff14b 7218 A one-to-one function in t...
f12dfv 7219 A one-to-one function with...
f13dfv 7220 A one-to-one function with...
dff1o6 7221 A one-to-one onto function...
f1ocnvfv1 7222 The converse value of the ...
f1ocnvfv2 7223 The value of the converse ...
f1ocnvfv 7224 Relationship between the v...
f1ocnvfvb 7225 Relationship between the v...
nvof1o 7226 An involution is a bijecti...
nvocnv 7227 The converse of an involut...
f1cdmsn 7228 If a one-to-one function w...
fsnex 7229 Relate a function with a s...
f1prex 7230 Relate a one-to-one functi...
f1ocnvdm 7231 The value of the converse ...
f1ocnvfvrneq 7232 If the values of a one-to-...
fcof1 7233 An application is injectiv...
fcofo 7234 An application is surjecti...
cbvfo 7235 Change bound variable betw...
cbvexfo 7236 Change bound variable betw...
cocan1 7237 An injection is left-cance...
cocan2 7238 A surjection is right-canc...
fcof1oinvd 7239 Show that a function is th...
fcof1od 7240 A function is bijective if...
2fcoidinvd 7241 Show that a function is th...
fcof1o 7242 Show that two functions ar...
2fvcoidd 7243 Show that the composition ...
2fvidf1od 7244 A function is bijective if...
2fvidinvd 7245 Show that two functions ar...
foeqcnvco 7246 Condition for function equ...
f1eqcocnv 7247 Condition for function equ...
f1eqcocnvOLD 7248 Obsolete version of ~ f1eq...
fveqf1o 7249 Given a bijection ` F ` , ...
nf1const 7250 A constant function from a...
nf1oconst 7251 A constant function from a...
f1ofvswap 7252 Swapping two values in a b...
fliftrel 7253 ` F ` , a function lift, i...
fliftel 7254 Elementhood in the relatio...
fliftel1 7255 Elementhood in the relatio...
fliftcnv 7256 Converse of the relation `...
fliftfun 7257 The function ` F ` is the ...
fliftfund 7258 The function ` F ` is the ...
fliftfuns 7259 The function ` F ` is the ...
fliftf 7260 The domain and range of th...
fliftval 7261 The value of the function ...
isoeq1 7262 Equality theorem for isomo...
isoeq2 7263 Equality theorem for isomo...
isoeq3 7264 Equality theorem for isomo...
isoeq4 7265 Equality theorem for isomo...
isoeq5 7266 Equality theorem for isomo...
nfiso 7267 Bound-variable hypothesis ...
isof1o 7268 An isomorphism is a one-to...
isof1oidb 7269 A function is a bijection ...
isof1oopb 7270 A function is a bijection ...
isorel 7271 An isomorphism connects bi...
soisores 7272 Express the condition of i...
soisoi 7273 Infer isomorphism from one...
isoid 7274 Identity law for isomorphi...
isocnv 7275 Converse law for isomorphi...
isocnv2 7276 Converse law for isomorphi...
isocnv3 7277 Complementation law for is...
isores2 7278 An isomorphism from one we...
isores1 7279 An isomorphism from one we...
isores3 7280 Induced isomorphism on a s...
isotr 7281 Composition (transitive) l...
isomin 7282 Isomorphisms preserve mini...
isoini 7283 Isomorphisms preserve init...
isoini2 7284 Isomorphisms are isomorphi...
isofrlem 7285 Lemma for ~ isofr . (Cont...
isoselem 7286 Lemma for ~ isose . (Cont...
isofr 7287 An isomorphism preserves w...
isose 7288 An isomorphism preserves s...
isofr2 7289 A weak form of ~ isofr tha...
isopolem 7290 Lemma for ~ isopo . (Cont...
isopo 7291 An isomorphism preserves t...
isosolem 7292 Lemma for ~ isoso . (Cont...
isoso 7293 An isomorphism preserves t...
isowe 7294 An isomorphism preserves t...
isowe2 7295 A weak form of ~ isowe tha...
f1oiso 7296 Any one-to-one onto functi...
f1oiso2 7297 Any one-to-one onto functi...
f1owe 7298 Well-ordering of isomorphi...
weniso 7299 A set-like well-ordering h...
weisoeq 7300 Thus, there is at most one...
weisoeq2 7301 Thus, there is at most one...
knatar 7302 The Knaster-Tarski theorem...
fvresval 7303 The value of a restricted ...
funeldmb 7304 If ` (/) ` is not part of ...
eqfunresadj 7305 Law for adjoining an eleme...
eqfunressuc 7306 Law for equality of restri...
fnssintima 7307 Condition for subset of an...
imaeqsexv 7308 Substitute a function valu...
imaeqsalv 7309 Substitute a function valu...
canth 7310 No set ` A ` is equinumero...
ncanth 7311 Cantor's theorem fails for...
riotaeqdv 7314 Formula-building deduction...
riotabidv 7315 Formula-building deduction...
riotaeqbidv 7316 Equality deduction for res...
riotaex 7317 Restricted iota is a set. ...
riotav 7318 An iota restricted to the ...
riotauni 7319 Restricted iota in terms o...
nfriota1 7320 The abstraction variable i...
nfriotadw 7321 Deduction version of ~ nfr...
cbvriotaw 7322 Change bound variable in a...
cbvriotavw 7323 Change bound variable in a...
cbvriotavwOLD 7324 Obsolete version of ~ cbvr...
nfriotad 7325 Deduction version of ~ nfr...
nfriota 7326 A variable not free in a w...
cbvriota 7327 Change bound variable in a...
cbvriotav 7328 Change bound variable in a...
csbriota 7329 Interchange class substitu...
riotacl2 7330 Membership law for "the un...
riotacl 7331 Closure of restricted iota...
riotasbc 7332 Substitution law for descr...
riotabidva 7333 Equivalent wff's yield equ...
riotabiia 7334 Equivalent wff's yield equ...
riota1 7335 Property of restricted iot...
riota1a 7336 Property of iota. (Contri...
riota2df 7337 A deduction version of ~ r...
riota2f 7338 This theorem shows a condi...
riota2 7339 This theorem shows a condi...
riotaeqimp 7340 If two restricted iota des...
riotaprop 7341 Properties of a restricted...
riota5f 7342 A method for computing res...
riota5 7343 A method for computing res...
riotass2 7344 Restriction of a unique el...
riotass 7345 Restriction of a unique el...
moriotass 7346 Restriction of a unique el...
snriota 7347 A restricted class abstrac...
riotaxfrd 7348 Change the variable ` x ` ...
eusvobj2 7349 Specify the same property ...
eusvobj1 7350 Specify the same object in...
f1ofveu 7351 There is one domain elemen...
f1ocnvfv3 7352 Value of the converse of a...
riotaund 7353 Restricted iota equals the...
riotassuni 7354 The restricted iota class ...
riotaclb 7355 Bidirectional closure of r...
riotarab 7356 Restricted iota of a restr...
oveq 7363 Equality theorem for opera...
oveq1 7364 Equality theorem for opera...
oveq2 7365 Equality theorem for opera...
oveq12 7366 Equality theorem for opera...
oveq1i 7367 Equality inference for ope...
oveq2i 7368 Equality inference for ope...
oveq12i 7369 Equality inference for ope...
oveqi 7370 Equality inference for ope...
oveq123i 7371 Equality inference for ope...
oveq1d 7372 Equality deduction for ope...
oveq2d 7373 Equality deduction for ope...
oveqd 7374 Equality deduction for ope...
oveq12d 7375 Equality deduction for ope...
oveqan12d 7376 Equality deduction for ope...
oveqan12rd 7377 Equality deduction for ope...
oveq123d 7378 Equality deduction for ope...
fvoveq1d 7379 Equality deduction for nes...
fvoveq1 7380 Equality theorem for neste...
ovanraleqv 7381 Equality theorem for a con...
imbrov2fvoveq 7382 Equality theorem for neste...
ovrspc2v 7383 If an operation value is e...
oveqrspc2v 7384 Restricted specialization ...
oveqdr 7385 Equality of two operations...
nfovd 7386 Deduction version of bound...
nfov 7387 Bound-variable hypothesis ...
oprabidw 7388 The law of concretion. Sp...
oprabid 7389 The law of concretion. Sp...
ovex 7390 The result of an operation...
ovexi 7391 The result of an operation...
ovexd 7392 The result of an operation...
ovssunirn 7393 The result of an operation...
0ov 7394 Operation value of the emp...
ovprc 7395 The value of an operation ...
ovprc1 7396 The value of an operation ...
ovprc2 7397 The value of an operation ...
ovrcl 7398 Reverse closure for an ope...
csbov123 7399 Move class substitution in...
csbov 7400 Move class substitution in...
csbov12g 7401 Move class substitution in...
csbov1g 7402 Move class substitution in...
csbov2g 7403 Move class substitution in...
rspceov 7404 A frequently used special ...
elovimad 7405 Elementhood of the image s...
fnbrovb 7406 Value of a binary operatio...
fnotovb 7407 Equivalence of operation v...
opabbrex 7408 A collection of ordered pa...
opabresex2 7409 Restrictions of a collecti...
opabresex2d 7410 Obsolete version of ~ opab...
fvmptopab 7411 The function value of a ma...
fvmptopabOLD 7412 Obsolete version of ~ fvmp...
f1opr 7413 Condition for an operation...
brfvopab 7414 The classes involved in a ...
dfoprab2 7415 Class abstraction for oper...
reloprab 7416 An operation class abstrac...
oprabv 7417 If a pair and a class are ...
nfoprab1 7418 The abstraction variables ...
nfoprab2 7419 The abstraction variables ...
nfoprab3 7420 The abstraction variables ...
nfoprab 7421 Bound-variable hypothesis ...
oprabbid 7422 Equivalent wff's yield equ...
oprabbidv 7423 Equivalent wff's yield equ...
oprabbii 7424 Equivalent wff's yield equ...
ssoprab2 7425 Equivalence of ordered pai...
ssoprab2b 7426 Equivalence of ordered pai...
eqoprab2bw 7427 Equivalence of ordered pai...
eqoprab2b 7428 Equivalence of ordered pai...
mpoeq123 7429 An equality theorem for th...
mpoeq12 7430 An equality theorem for th...
mpoeq123dva 7431 An equality deduction for ...
mpoeq123dv 7432 An equality deduction for ...
mpoeq123i 7433 An equality inference for ...
mpoeq3dva 7434 Slightly more general equa...
mpoeq3ia 7435 An equality inference for ...
mpoeq3dv 7436 An equality deduction for ...
nfmpo1 7437 Bound-variable hypothesis ...
nfmpo2 7438 Bound-variable hypothesis ...
nfmpo 7439 Bound-variable hypothesis ...
0mpo0 7440 A mapping operation with e...
mpo0v 7441 A mapping operation with e...
mpo0 7442 A mapping operation with e...
oprab4 7443 Two ways to state the doma...
cbvoprab1 7444 Rule used to change first ...
cbvoprab2 7445 Change the second bound va...
cbvoprab12 7446 Rule used to change first ...
cbvoprab12v 7447 Rule used to change first ...
cbvoprab3 7448 Rule used to change the th...
cbvoprab3v 7449 Rule used to change the th...
cbvmpox 7450 Rule to change the bound v...
cbvmpo 7451 Rule to change the bound v...
cbvmpov 7452 Rule to change the bound v...
elimdelov 7453 Eliminate a hypothesis whi...
ovif 7454 Move a conditional outside...
ovif2 7455 Move a conditional outside...
ovif12 7456 Move a conditional outside...
ifov 7457 Move a conditional outside...
dmoprab 7458 The domain of an operation...
dmoprabss 7459 The domain of an operation...
rnoprab 7460 The range of an operation ...
rnoprab2 7461 The range of a restricted ...
reldmoprab 7462 The domain of an operation...
oprabss 7463 Structure of an operation ...
eloprabga 7464 The law of concretion for ...
eloprabgaOLD 7465 Obsolete version of ~ elop...
eloprabg 7466 The law of concretion for ...
ssoprab2i 7467 Inference of operation cla...
mpov 7468 Operation with universal d...
mpomptx 7469 Express a two-argument fun...
mpompt 7470 Express a two-argument fun...
mpodifsnif 7471 A mapping with two argumen...
mposnif 7472 A mapping with two argumen...
fconstmpo 7473 Representation of a consta...
resoprab 7474 Restriction of an operatio...
resoprab2 7475 Restriction of an operator...
resmpo 7476 Restriction of the mapping...
funoprabg 7477 "At most one" is a suffici...
funoprab 7478 "At most one" is a suffici...
fnoprabg 7479 Functionality and domain o...
mpofun 7480 The maps-to notation for a...
mpofunOLD 7481 Obsolete version of ~ mpof...
fnoprab 7482 Functionality and domain o...
ffnov 7483 An operation maps to a cla...
fovcl 7484 Closure law for an operati...
eqfnov 7485 Equality of two operations...
eqfnov2 7486 Two operators with the sam...
fnov 7487 Representation of a functi...
mpo2eqb 7488 Bidirectional equality the...
rnmpo 7489 The range of an operation ...
reldmmpo 7490 The domain of an operation...
elrnmpog 7491 Membership in the range of...
elrnmpo 7492 Membership in the range of...
elrnmpores 7493 Membership in the range of...
ralrnmpo 7494 A restricted quantifier ov...
rexrnmpo 7495 A restricted quantifier ov...
ovid 7496 The value of an operation ...
ovidig 7497 The value of an operation ...
ovidi 7498 The value of an operation ...
ov 7499 The value of an operation ...
ovigg 7500 The value of an operation ...
ovig 7501 The value of an operation ...
ovmpt4g 7502 Value of a function given ...
ovmpos 7503 Value of a function given ...
ov2gf 7504 The value of an operation ...
ovmpodxf 7505 Value of an operation give...
ovmpodx 7506 Value of an operation give...
ovmpod 7507 Value of an operation give...
ovmpox 7508 The value of an operation ...
ovmpoga 7509 Value of an operation give...
ovmpoa 7510 Value of an operation give...
ovmpodf 7511 Alternate deduction versio...
ovmpodv 7512 Alternate deduction versio...
ovmpodv2 7513 Alternate deduction versio...
ovmpog 7514 Value of an operation give...
ovmpo 7515 Value of an operation give...
fvmpopr2d 7516 Value of an operation give...
ov3 7517 The value of an operation ...
ov6g 7518 The value of an operation ...
ovg 7519 The value of an operation ...
ovres 7520 The value of a restricted ...
ovresd 7521 Lemma for converting metri...
oprres 7522 The restriction of an oper...
oprssov 7523 The value of a member of t...
fovcdm 7524 An operation's value belon...
fovcdmda 7525 An operation's value belon...
fovcdmd 7526 An operation's value belon...
fnrnov 7527 The range of an operation ...
foov 7528 An onto mapping of an oper...
fnovrn 7529 An operation's value belon...
ovelrn 7530 A member of an operation's...
funimassov 7531 Membership relation for th...
ovelimab 7532 Operation value in an imag...
ovima0 7533 An operation value is a me...
ovconst2 7534 The value of a constant op...
oprssdm 7535 Domain of closure of an op...
nssdmovg 7536 The value of an operation ...
ndmovg 7537 The value of an operation ...
ndmov 7538 The value of an operation ...
ndmovcl 7539 The closure of an operatio...
ndmovrcl 7540 Reverse closure law, when ...
ndmovcom 7541 Any operation is commutati...
ndmovass 7542 Any operation is associati...
ndmovdistr 7543 Any operation is distribut...
ndmovord 7544 Elimination of redundant a...
ndmovordi 7545 Elimination of redundant a...
caovclg 7546 Convert an operation closu...
caovcld 7547 Convert an operation closu...
caovcl 7548 Convert an operation closu...
caovcomg 7549 Convert an operation commu...
caovcomd 7550 Convert an operation commu...
caovcom 7551 Convert an operation commu...
caovassg 7552 Convert an operation assoc...
caovassd 7553 Convert an operation assoc...
caovass 7554 Convert an operation assoc...
caovcang 7555 Convert an operation cance...
caovcand 7556 Convert an operation cance...
caovcanrd 7557 Commute the arguments of a...
caovcan 7558 Convert an operation cance...
caovordig 7559 Convert an operation order...
caovordid 7560 Convert an operation order...
caovordg 7561 Convert an operation order...
caovordd 7562 Convert an operation order...
caovord2d 7563 Operation ordering law wit...
caovord3d 7564 Ordering law. (Contribute...
caovord 7565 Convert an operation order...
caovord2 7566 Operation ordering law wit...
caovord3 7567 Ordering law. (Contribute...
caovdig 7568 Convert an operation distr...
caovdid 7569 Convert an operation distr...
caovdir2d 7570 Convert an operation distr...
caovdirg 7571 Convert an operation rever...
caovdird 7572 Convert an operation distr...
caovdi 7573 Convert an operation distr...
caov32d 7574 Rearrange arguments in a c...
caov12d 7575 Rearrange arguments in a c...
caov31d 7576 Rearrange arguments in a c...
caov13d 7577 Rearrange arguments in a c...
caov4d 7578 Rearrange arguments in a c...
caov411d 7579 Rearrange arguments in a c...
caov42d 7580 Rearrange arguments in a c...
caov32 7581 Rearrange arguments in a c...
caov12 7582 Rearrange arguments in a c...
caov31 7583 Rearrange arguments in a c...
caov13 7584 Rearrange arguments in a c...
caov4 7585 Rearrange arguments in a c...
caov411 7586 Rearrange arguments in a c...
caov42 7587 Rearrange arguments in a c...
caovdir 7588 Reverse distributive law. ...
caovdilem 7589 Lemma used by real number ...
caovlem2 7590 Lemma used in real number ...
caovmo 7591 Uniqueness of inverse elem...
imaeqexov 7592 Substitute an operation va...
imaeqalov 7593 Substitute an operation va...
mpondm0 7594 The value of an operation ...
elmpocl 7595 If a two-parameter class i...
elmpocl1 7596 If a two-parameter class i...
elmpocl2 7597 If a two-parameter class i...
elovmpo 7598 Utility lemma for two-para...
elovmporab 7599 Implications for the value...
elovmporab1w 7600 Implications for the value...
elovmporab1 7601 Implications for the value...
2mpo0 7602 If the operation value of ...
relmptopab 7603 Any function to sets of or...
f1ocnvd 7604 Describe an implicit one-t...
f1od 7605 Describe an implicit one-t...
f1ocnv2d 7606 Describe an implicit one-t...
f1o2d 7607 Describe an implicit one-t...
f1opw2 7608 A one-to-one mapping induc...
f1opw 7609 A one-to-one mapping induc...
elovmpt3imp 7610 If the value of a function...
ovmpt3rab1 7611 The value of an operation ...
ovmpt3rabdm 7612 If the value of a function...
elovmpt3rab1 7613 Implications for the value...
elovmpt3rab 7614 Implications for the value...
ofeqd 7619 Equality theorem for funct...
ofeq 7620 Equality theorem for funct...
ofreq 7621 Equality theorem for funct...
ofexg 7622 A function operation restr...
nfof 7623 Hypothesis builder for fun...
nfofr 7624 Hypothesis builder for fun...
ofrfvalg 7625 Value of a relation applie...
offval 7626 Value of an operation appl...
ofrfval 7627 Value of a relation applie...
ofval 7628 Evaluate a function operat...
ofrval 7629 Exhibit a function relatio...
offn 7630 The function operation pro...
offun 7631 The function operation pro...
offval2f 7632 The function operation exp...
ofmresval 7633 Value of a restriction of ...
fnfvof 7634 Function value of a pointw...
off 7635 The function operation pro...
ofres 7636 Restrict the operands of a...
offval2 7637 The function operation exp...
ofrfval2 7638 The function relation acti...
ofmpteq 7639 Value of a pointwise opera...
ofco 7640 The composition of a funct...
offveq 7641 Convert an identity of the...
offveqb 7642 Equivalent expressions for...
ofc1 7643 Left operation by a consta...
ofc2 7644 Right operation by a const...
ofc12 7645 Function operation on two ...
caofref 7646 Transfer a reflexive law t...
caofinvl 7647 Transfer a left inverse la...
caofid0l 7648 Transfer a left identity l...
caofid0r 7649 Transfer a right identity ...
caofid1 7650 Transfer a right absorptio...
caofid2 7651 Transfer a right absorptio...
caofcom 7652 Transfer a commutative law...
caofrss 7653 Transfer a relation subset...
caofass 7654 Transfer an associative la...
caoftrn 7655 Transfer a transitivity la...
caofdi 7656 Transfer a distributive la...
caofdir 7657 Transfer a reverse distrib...
caonncan 7658 Transfer ~ nncan -shaped l...
relrpss 7661 The proper subset relation...
brrpssg 7662 The proper subset relation...
brrpss 7663 The proper subset relation...
porpss 7664 Every class is partially o...
sorpss 7665 Express strict ordering un...
sorpssi 7666 Property of a chain of set...
sorpssun 7667 A chain of sets is closed ...
sorpssin 7668 A chain of sets is closed ...
sorpssuni 7669 In a chain of sets, a maxi...
sorpssint 7670 In a chain of sets, a mini...
sorpsscmpl 7671 The componentwise compleme...
zfun 7673 Axiom of Union expressed w...
axun2 7674 A variant of the Axiom of ...
uniex2 7675 The Axiom of Union using t...
vuniex 7676 The union of a setvar is a...
uniexg 7677 The ZF Axiom of Union in c...
uniex 7678 The Axiom of Union in clas...
uniexd 7679 Deduction version of the Z...
unex 7680 The union of two sets is a...
tpex 7681 An unordered triple of cla...
unexb 7682 Existence of union is equi...
unexg 7683 A union of two sets is a s...
xpexg 7684 The Cartesian product of t...
xpexd 7685 The Cartesian product of t...
3xpexg 7686 The Cartesian product of t...
xpex 7687 The Cartesian product of t...
unexd 7688 The union of two sets is a...
sqxpexg 7689 The Cartesian square of a ...
abnexg 7690 Sufficient condition for a...
abnex 7691 Sufficient condition for a...
snnex 7692 The class of all singleton...
pwnex 7693 The class of all power set...
difex2 7694 If the subtrahend of a cla...
difsnexi 7695 If the difference of a cla...
uniuni 7696 Expression for double unio...
uniexr 7697 Converse of the Axiom of U...
uniexb 7698 The Axiom of Union and its...
pwexr 7699 Converse of the Axiom of P...
pwexb 7700 The Axiom of Power Sets an...
elpwpwel 7701 A class belongs to a doubl...
eldifpw 7702 Membership in a power clas...
elpwun 7703 Membership in the power cl...
pwuncl 7704 Power classes are closed u...
iunpw 7705 An indexed union of a powe...
fr3nr 7706 A well-founded relation ha...
epne3 7707 A well-founded class conta...
dfwe2 7708 Alternate definition of we...
epweon 7709 The membership relation we...
epweonALT 7710 Alternate proof of ~ epweo...
ordon 7711 The class of all ordinal n...
onprc 7712 No set contains all ordina...
ssorduni 7713 The union of a class of or...
ssonuni 7714 The union of a set of ordi...
ssonunii 7715 The union of a set of ordi...
ordeleqon 7716 A way to express the ordin...
ordsson 7717 Any ordinal class is a sub...
dford5 7718 A class is ordinal iff it ...
onss 7719 An ordinal number is a sub...
predon 7720 The predecessor of an ordi...
predonOLD 7721 Obsolete version of ~ pred...
ssonprc 7722 Two ways of saying a class...
onuni 7723 The union of an ordinal nu...
orduni 7724 The union of an ordinal cl...
onint 7725 The intersection (infimum)...
onint0 7726 The intersection of a clas...
onssmin 7727 A nonempty class of ordina...
onminesb 7728 If a property is true for ...
onminsb 7729 If a property is true for ...
oninton 7730 The intersection of a none...
onintrab 7731 The intersection of a clas...
onintrab2 7732 An existence condition equ...
onnmin 7733 No member of a set of ordi...
onnminsb 7734 An ordinal number smaller ...
oneqmin 7735 A way to show that an ordi...
uniordint 7736 The union of a set of ordi...
onminex 7737 If a wff is true for an or...
sucon 7738 The class of all ordinal n...
sucexb 7739 A successor exists iff its...
sucexg 7740 The successor of a set is ...
sucex 7741 The successor of a set is ...
onmindif2 7742 The minimum of a class of ...
ordsuci 7743 The successor of an ordina...
sucexeloni 7744 If the successor of an ord...
sucexeloniOLD 7745 Obsolete version of ~ suce...
onsuc 7746 The successor of an ordina...
suceloniOLD 7747 Obsolete version of ~ onsu...
ordsuc 7748 A class is ordinal if and ...
ordsucOLD 7749 Obsolete version of ~ ords...
ordpwsuc 7750 The collection of ordinals...
onpwsuc 7751 The collection of ordinal ...
onsucb 7752 A class is an ordinal numb...
ordsucss 7753 The successor of an elemen...
onpsssuc 7754 An ordinal number is a pro...
ordelsuc 7755 A set belongs to an ordina...
onsucmin 7756 The successor of an ordina...
ordsucelsuc 7757 Membership is inherited by...
ordsucsssuc 7758 The subclass relationship ...
ordsucuniel 7759 Given an element ` A ` of ...
ordsucun 7760 The successor of the maxim...
ordunpr 7761 The maximum of two ordinal...
ordunel 7762 The maximum of two ordinal...
onsucuni 7763 A class of ordinal numbers...
ordsucuni 7764 An ordinal class is a subc...
orduniorsuc 7765 An ordinal class is either...
unon 7766 The class of all ordinal n...
ordunisuc 7767 An ordinal class is equal ...
orduniss2 7768 The union of the ordinal s...
onsucuni2 7769 A successor ordinal is the...
0elsuc 7770 The successor of an ordina...
limon 7771 The class of ordinal numbe...
onuniorsuc 7772 An ordinal number is eithe...
onssi 7773 An ordinal number is a sub...
onsuci 7774 The successor of an ordina...
onuniorsuciOLD 7775 Obsolete version of ~ onun...
onuninsuci 7776 An ordinal is equal to its...
onsucssi 7777 A set belongs to an ordina...
nlimsucg 7778 A successor is not a limit...
orduninsuc 7779 An ordinal class is equal ...
ordunisuc2 7780 An ordinal equal to its un...
ordzsl 7781 An ordinal is zero, a succ...
onzsl 7782 An ordinal number is zero,...
dflim3 7783 An alternate definition of...
dflim4 7784 An alternate definition of...
limsuc 7785 The successor of a member ...
limsssuc 7786 A class includes a limit o...
nlimon 7787 Two ways to express the cl...
limuni3 7788 The union of a nonempty cl...
tfi 7789 The Principle of Transfini...
tfisg 7790 A closed form of ~ tfis . ...
tfis 7791 Transfinite Induction Sche...
tfis2f 7792 Transfinite Induction Sche...
tfis2 7793 Transfinite Induction Sche...
tfis3 7794 Transfinite Induction Sche...
tfisi 7795 A transfinite induction sc...
tfinds 7796 Principle of Transfinite I...
tfindsg 7797 Transfinite Induction (inf...
tfindsg2 7798 Transfinite Induction (inf...
tfindes 7799 Transfinite Induction with...
tfinds2 7800 Transfinite Induction (inf...
tfinds3 7801 Principle of Transfinite I...
dfom2 7804 An alternate definition of...
elom 7805 Membership in omega. The ...
omsson 7806 Omega is a subset of ` On ...
limomss 7807 The class of natural numbe...
nnon 7808 A natural number is an ord...
nnoni 7809 A natural number is an ord...
nnord 7810 A natural number is ordina...
trom 7811 The class of finite ordina...
ordom 7812 The class of finite ordina...
elnn 7813 A member of a natural numb...
omon 7814 The class of natural numbe...
omelon2 7815 Omega is an ordinal number...
nnlim 7816 A natural number is not a ...
omssnlim 7817 The class of natural numbe...
limom 7818 Omega is a limit ordinal. ...
peano2b 7819 A class belongs to omega i...
nnsuc 7820 A nonzero natural number i...
omsucne 7821 A natural number is not th...
ssnlim 7822 An ordinal subclass of non...
omsinds 7823 Strong (or "total") induct...
omsindsOLD 7824 Obsolete version of ~ omsi...
peano1 7825 Zero is a natural number. ...
peano1OLD 7826 Obsolete version of ~ pean...
peano2 7827 The successor of any natur...
peano3 7828 The successor of any natur...
peano4 7829 Two natural numbers are eq...
peano5 7830 The induction postulate: a...
peano5OLD 7831 Obsolete version of ~ pean...
nn0suc 7832 A natural number is either...
find 7833 The Principle of Finite In...
findOLD 7834 Obsolete version of ~ find...
finds 7835 Principle of Finite Induct...
findsg 7836 Principle of Finite Induct...
finds2 7837 Principle of Finite Induct...
finds1 7838 Principle of Finite Induct...
findes 7839 Finite induction with expl...
dmexg 7840 The domain of a set is a s...
rnexg 7841 The range of a set is a se...
dmexd 7842 The domain of a set is a s...
fndmexd 7843 If a function is a set, it...
dmfex 7844 If a mapping is a set, its...
fndmexb 7845 The domain of a function i...
fdmexb 7846 The domain of a function i...
dmfexALT 7847 Alternate proof of ~ dmfex...
dmex 7848 The domain of a set is a s...
rnex 7849 The range of a set is a se...
iprc 7850 The identity function is a...
resiexg 7851 The existence of a restric...
imaexg 7852 The image of a set is a se...
imaex 7853 The image of a set is a se...
exse2 7854 Any set relation is set-li...
xpexr 7855 If a Cartesian product is ...
xpexr2 7856 If a nonempty Cartesian pr...
xpexcnv 7857 A condition where the conv...
soex 7858 If the relation in a stric...
elxp4 7859 Membership in a Cartesian ...
elxp5 7860 Membership in a Cartesian ...
cnvexg 7861 The converse of a set is a...
cnvex 7862 The converse of a set is a...
relcnvexb 7863 A relation is a set iff it...
f1oexrnex 7864 If the range of a 1-1 onto...
f1oexbi 7865 There is a one-to-one onto...
coexg 7866 The composition of two set...
coex 7867 The composition of two set...
funcnvuni 7868 The union of a chain (with...
fun11uni 7869 The union of a chain (with...
fex2 7870 A function with bounded do...
fabexg 7871 Existence of a set of func...
fabex 7872 Existence of a set of func...
f1oabexg 7873 The class of all 1-1-onto ...
fiunlem 7874 Lemma for ~ fiun and ~ f1i...
fiun 7875 The union of a chain (with...
f1iun 7876 The union of a chain (with...
fviunfun 7877 The function value of an i...
ffoss 7878 Relationship between a map...
f11o 7879 Relationship between one-t...
resfunexgALT 7880 Alternate proof of ~ resfu...
cofunexg 7881 Existence of a composition...
cofunex2g 7882 Existence of a composition...
fnexALT 7883 Alternate proof of ~ fnex ...
funexw 7884 Weak version of ~ funex th...
mptexw 7885 Weak version of ~ mptex th...
funrnex 7886 If the domain of a functio...
zfrep6 7887 A version of the Axiom of ...
focdmex 7888 If the domain of an onto f...
f1dmex 7889 If the codomain of a one-t...
f1ovv 7890 The codomain/range of a 1-...
fvclex 7891 Existence of the class of ...
fvresex 7892 Existence of the class of ...
abrexexg 7893 Existence of a class abstr...
abrexexgOLD 7894 Obsolete version of ~ abre...
abrexex 7895 Existence of a class abstr...
iunexg 7896 The existence of an indexe...
abrexex2g 7897 Existence of an existentia...
opabex3d 7898 Existence of an ordered pa...
opabex3rd 7899 Existence of an ordered pa...
opabex3 7900 Existence of an ordered pa...
iunex 7901 The existence of an indexe...
abrexex2 7902 Existence of an existentia...
abexssex 7903 Existence of a class abstr...
abexex 7904 A condition where a class ...
f1oweALT 7905 Alternate proof of ~ f1owe...
wemoiso 7906 Thus, there is at most one...
wemoiso2 7907 Thus, there is at most one...
oprabexd 7908 Existence of an operator a...
oprabex 7909 Existence of an operation ...
oprabex3 7910 Existence of an operation ...
oprabrexex2 7911 Existence of an existentia...
ab2rexex 7912 Existence of a class abstr...
ab2rexex2 7913 Existence of an existentia...
xpexgALT 7914 Alternate proof of ~ xpexg...
offval3 7915 General value of ` ( F oF ...
offres 7916 Pointwise combination comm...
ofmres 7917 Equivalent expressions for...
ofmresex 7918 Existence of a restriction...
1stval 7923 The value of the function ...
2ndval 7924 The value of the function ...
1stnpr 7925 Value of the first-member ...
2ndnpr 7926 Value of the second-member...
1st0 7927 The value of the first-mem...
2nd0 7928 The value of the second-me...
op1st 7929 Extract the first member o...
op2nd 7930 Extract the second member ...
op1std 7931 Extract the first member o...
op2ndd 7932 Extract the second member ...
op1stg 7933 Extract the first member o...
op2ndg 7934 Extract the second member ...
ot1stg 7935 Extract the first member o...
ot2ndg 7936 Extract the second member ...
ot3rdg 7937 Extract the third member o...
1stval2 7938 Alternate value of the fun...
2ndval2 7939 Alternate value of the fun...
oteqimp 7940 The components of an order...
fo1st 7941 The ` 1st ` function maps ...
fo2nd 7942 The ` 2nd ` function maps ...
br1steqg 7943 Uniqueness condition for t...
br2ndeqg 7944 Uniqueness condition for t...
f1stres 7945 Mapping of a restriction o...
f2ndres 7946 Mapping of a restriction o...
fo1stres 7947 Onto mapping of a restrict...
fo2ndres 7948 Onto mapping of a restrict...
1st2val 7949 Value of an alternate defi...
2nd2val 7950 Value of an alternate defi...
1stcof 7951 Composition of the first m...
2ndcof 7952 Composition of the second ...
xp1st 7953 Location of the first elem...
xp2nd 7954 Location of the second ele...
elxp6 7955 Membership in a Cartesian ...
elxp7 7956 Membership in a Cartesian ...
eqopi 7957 Equality with an ordered p...
xp2 7958 Representation of Cartesia...
unielxp 7959 The membership relation fo...
1st2nd2 7960 Reconstruction of a member...
1st2ndb 7961 Reconstruction of an order...
xpopth 7962 An ordered pair theorem fo...
eqop 7963 Two ways to express equali...
eqop2 7964 Two ways to express equali...
op1steq 7965 Two ways of expressing tha...
opreuopreu 7966 There is a unique ordered ...
el2xptp 7967 A member of a nested Carte...
el2xptp0 7968 A member of a nested Carte...
el2xpss 7969 Version of ~ elrel for tri...
2nd1st 7970 Swap the members of an ord...
1st2nd 7971 Reconstruction of a member...
1stdm 7972 The first ordered pair com...
2ndrn 7973 The second ordered pair co...
1st2ndbr 7974 Express an element of a re...
releldm2 7975 Two ways of expressing mem...
reldm 7976 An expression for the doma...
releldmdifi 7977 One way of expressing memb...
funfv1st2nd 7978 The function value for the...
funelss 7979 If the first component of ...
funeldmdif 7980 Two ways of expressing mem...
sbcopeq1a 7981 Equality theorem for subst...
csbopeq1a 7982 Equality theorem for subst...
sbcoteq1a 7983 Equality theorem for subst...
dfopab2 7984 A way to define an ordered...
dfoprab3s 7985 A way to define an operati...
dfoprab3 7986 Operation class abstractio...
dfoprab4 7987 Operation class abstractio...
dfoprab4f 7988 Operation class abstractio...
opabex2 7989 Condition for an operation...
opabn1stprc 7990 An ordered-pair class abst...
opiota 7991 The property of a uniquely...
cnvoprab 7992 The converse of a class ab...
dfxp3 7993 Define the Cartesian produ...
elopabi 7994 A consequence of membershi...
eloprabi 7995 A consequence of membershi...
mpomptsx 7996 Express a two-argument fun...
mpompts 7997 Express a two-argument fun...
dmmpossx 7998 The domain of a mapping is...
fmpox 7999 Functionality, domain and ...
fmpo 8000 Functionality, domain and ...
fnmpo 8001 Functionality and domain o...
fnmpoi 8002 Functionality and domain o...
dmmpo 8003 Domain of a class given by...
ovmpoelrn 8004 An operation's value belon...
dmmpoga 8005 Domain of an operation giv...
dmmpogaOLD 8006 Obsolete version of ~ dmmp...
dmmpog 8007 Domain of an operation giv...
mpoexxg 8008 Existence of an operation ...
mpoexg 8009 Existence of an operation ...
mpoexga 8010 If the domain of an operat...
mpoexw 8011 Weak version of ~ mpoex th...
mpoex 8012 If the domain of an operat...
mptmpoopabbrd 8013 The operation value of a f...
mptmpoopabovd 8014 The operation value of a f...
mptmpoopabbrdOLD 8015 Obsolete version of ~ mptm...
mptmpoopabovdOLD 8016 Obsolete version of ~ mptm...
el2mpocsbcl 8017 If the operation value of ...
el2mpocl 8018 If the operation value of ...
fnmpoovd 8019 A function with a Cartesia...
offval22 8020 The function operation exp...
brovpreldm 8021 If a binary relation holds...
bropopvvv 8022 If a binary relation holds...
bropfvvvvlem 8023 Lemma for ~ bropfvvvv . (...
bropfvvvv 8024 If a binary relation holds...
ovmptss 8025 If all the values of the m...
relmpoopab 8026 Any function to sets of or...
fmpoco 8027 Composition of two functio...
oprabco 8028 Composition of a function ...
oprab2co 8029 Composition of operator ab...
df1st2 8030 An alternate possible defi...
df2nd2 8031 An alternate possible defi...
1stconst 8032 The mapping of a restricti...
2ndconst 8033 The mapping of a restricti...
dfmpo 8034 Alternate definition for t...
mposn 8035 An operation (in maps-to n...
curry1 8036 Composition with ` ``' ( 2...
curry1val 8037 The value of a curried fun...
curry1f 8038 Functionality of a curried...
curry2 8039 Composition with ` ``' ( 1...
curry2f 8040 Functionality of a curried...
curry2val 8041 The value of a curried fun...
cnvf1olem 8042 Lemma for ~ cnvf1o . (Con...
cnvf1o 8043 Describe a function that m...
fparlem1 8044 Lemma for ~ fpar . (Contr...
fparlem2 8045 Lemma for ~ fpar . (Contr...
fparlem3 8046 Lemma for ~ fpar . (Contr...
fparlem4 8047 Lemma for ~ fpar . (Contr...
fpar 8048 Merge two functions in par...
fsplit 8049 A function that can be use...
fsplitfpar 8050 Merge two functions with a...
offsplitfpar 8051 Express the function opera...
f2ndf 8052 The ` 2nd ` (second compon...
fo2ndf 8053 The ` 2nd ` (second compon...
f1o2ndf1 8054 The ` 2nd ` (second compon...
opco1 8055 Value of an operation prec...
opco2 8056 Value of an operation prec...
opco1i 8057 Inference form of ~ opco1 ...
frxp 8058 A lexicographical ordering...
xporderlem 8059 Lemma for lexicographical ...
poxp 8060 A lexicographical ordering...
soxp 8061 A lexicographical ordering...
wexp 8062 A lexicographical ordering...
fnwelem 8063 Lemma for ~ fnwe . (Contr...
fnwe 8064 A variant on lexicographic...
fnse 8065 Condition for the well-ord...
fvproj 8066 Value of a function on ord...
fimaproj 8067 Image of a cartesian produ...
ralxpes 8068 A version of ~ ralxp with ...
ralxp3f 8069 Restricted for all over a ...
ralxp3 8070 Restricted for all over a ...
ralxp3es 8071 Restricted for-all over a ...
frpoins3xpg 8072 Special case of founded pa...
frpoins3xp3g 8073 Special case of founded pa...
xpord2lem 8074 Lemma for Cartesian produc...
poxp2 8075 Another way of partially o...
frxp2 8076 Another way of giving a we...
xpord2pred 8077 Calculate the predecessor ...
sexp2 8078 Condition for the relation...
xpord2indlem 8079 Induction over the Cartesi...
xpord2ind 8080 Induction over the Cartesi...
xpord3lem 8081 Lemma for triple ordering....
poxp3 8082 Triple Cartesian product p...
frxp3 8083 Give well-foundedness over...
xpord3pred 8084 Calculate the predecsessor...
sexp3 8085 Show that the triple order...
xpord3inddlem 8086 Induction over the triple ...
xpord3indd 8087 Induction over the triple ...
xpord3ind 8088 Induction over the triple ...
orderseqlem 8089 Lemma for ~ poseq and ~ so...
poseq 8090 A partial ordering of ordi...
soseq 8091 A linear ordering of ordin...
suppval 8094 The value of the operation...
supp0prc 8095 The support of a class is ...
suppvalbr 8096 The value of the operation...
supp0 8097 The support of the empty s...
suppval1 8098 The value of the operation...
suppvalfng 8099 The value of the operation...
suppvalfn 8100 The value of the operation...
elsuppfng 8101 An element of the support ...
elsuppfn 8102 An element of the support ...
cnvimadfsn 8103 The support of functions "...
suppimacnvss 8104 The support of functions "...
suppimacnv 8105 Support sets of functions ...
fsuppeq 8106 Two ways of writing the su...
fsuppeqg 8107 Version of ~ fsuppeq avoid...
suppssdm 8108 The support of a function ...
suppsnop 8109 The support of a singleton...
snopsuppss 8110 The support of a singleton...
fvn0elsupp 8111 If the function value for ...
fvn0elsuppb 8112 The function value for a g...
rexsupp 8113 Existential quantification...
ressuppss 8114 The support of the restric...
suppun 8115 The support of a class/fun...
ressuppssdif 8116 The support of the restric...
mptsuppdifd 8117 The support of a function ...
mptsuppd 8118 The support of a function ...
extmptsuppeq 8119 The support of an extended...
suppfnss 8120 The support of a function ...
funsssuppss 8121 The support of a function ...
fnsuppres 8122 Two ways to express restri...
fnsuppeq0 8123 The support of a function ...
fczsupp0 8124 The support of a constant ...
suppss 8125 Show that the support of a...
suppssOLD 8126 Obsolete version of ~ supp...
suppssr 8127 A function is zero outside...
suppssrg 8128 A function is zero outside...
suppssov1 8129 Formula building theorem f...
suppssof1 8130 Formula building theorem f...
suppss2 8131 Show that the support of a...
suppsssn 8132 Show that the support of a...
suppssfv 8133 Formula building theorem f...
suppofssd 8134 Condition for the support ...
suppofss1d 8135 Condition for the support ...
suppofss2d 8136 Condition for the support ...
suppco 8137 The support of the composi...
suppcoss 8138 The support of the composi...
supp0cosupp0 8139 The support of the composi...
imacosupp 8140 The image of the support o...
opeliunxp2f 8141 Membership in a union of C...
mpoxeldm 8142 If there is an element of ...
mpoxneldm 8143 If the first argument of a...
mpoxopn0yelv 8144 If there is an element of ...
mpoxopynvov0g 8145 If the second argument of ...
mpoxopxnop0 8146 If the first argument of a...
mpoxopx0ov0 8147 If the first argument of a...
mpoxopxprcov0 8148 If the components of the f...
mpoxopynvov0 8149 If the second argument of ...
mpoxopoveq 8150 Value of an operation give...
mpoxopovel 8151 Element of the value of an...
mpoxopoveqd 8152 Value of an operation give...
brovex 8153 A binary relation of the v...
brovmpoex 8154 A binary relation of the v...
sprmpod 8155 The extension of a binary ...
tposss 8158 Subset theorem for transpo...
tposeq 8159 Equality theorem for trans...
tposeqd 8160 Equality theorem for trans...
tposssxp 8161 The transposition is a sub...
reltpos 8162 The transposition is a rel...
brtpos2 8163 Value of the transposition...
brtpos0 8164 The behavior of ` tpos ` w...
reldmtpos 8165 Necessary and sufficient c...
brtpos 8166 The transposition swaps ar...
ottpos 8167 The transposition swaps th...
relbrtpos 8168 The transposition swaps ar...
dmtpos 8169 The domain of ` tpos F ` w...
rntpos 8170 The range of ` tpos F ` wh...
tposexg 8171 The transposition of a set...
ovtpos 8172 The transposition swaps th...
tposfun 8173 The transposition of a fun...
dftpos2 8174 Alternate definition of ` ...
dftpos3 8175 Alternate definition of ` ...
dftpos4 8176 Alternate definition of ` ...
tpostpos 8177 Value of the double transp...
tpostpos2 8178 Value of the double transp...
tposfn2 8179 The domain of a transposit...
tposfo2 8180 Condition for a surjective...
tposf2 8181 The domain and codomain of...
tposf12 8182 Condition for an injective...
tposf1o2 8183 Condition of a bijective t...
tposfo 8184 The domain and codomain/ra...
tposf 8185 The domain and codomain of...
tposfn 8186 Functionality of a transpo...
tpos0 8187 Transposition of the empty...
tposco 8188 Transposition of a composi...
tpossym 8189 Two ways to say a function...
tposeqi 8190 Equality theorem for trans...
tposex 8191 A transposition is a set. ...
nftpos 8192 Hypothesis builder for tra...
tposoprab 8193 Transposition of a class o...
tposmpo 8194 Transposition of a two-arg...
tposconst 8195 The transposition of a con...
mpocurryd 8200 The currying of an operati...
mpocurryvald 8201 The value of a curried ope...
fvmpocurryd 8202 The value of the value of ...
pwuninel2 8205 Direct proof of ~ pwuninel...
pwuninel 8206 The power set of the union...
undefval 8207 Value of the undefined val...
undefnel2 8208 The undefined value genera...
undefnel 8209 The undefined value genera...
undefne0 8210 The undefined value genera...
frecseq123 8213 Equality theorem for the w...
nffrecs 8214 Bound-variable hypothesis ...
csbfrecsg 8215 Move class substitution in...
fpr3g 8216 Functions defined by well-...
frrlem1 8217 Lemma for well-founded rec...
frrlem2 8218 Lemma for well-founded rec...
frrlem3 8219 Lemma for well-founded rec...
frrlem4 8220 Lemma for well-founded rec...
frrlem5 8221 Lemma for well-founded rec...
frrlem6 8222 Lemma for well-founded rec...
frrlem7 8223 Lemma for well-founded rec...
frrlem8 8224 Lemma for well-founded rec...
frrlem9 8225 Lemma for well-founded rec...
frrlem10 8226 Lemma for well-founded rec...
frrlem11 8227 Lemma for well-founded rec...
frrlem12 8228 Lemma for well-founded rec...
frrlem13 8229 Lemma for well-founded rec...
frrlem14 8230 Lemma for well-founded rec...
fprlem1 8231 Lemma for well-founded rec...
fprlem2 8232 Lemma for well-founded rec...
fpr2a 8233 Weak version of ~ fpr2 whi...
fpr1 8234 Law of well-founded recurs...
fpr2 8235 Law of well-founded recurs...
fpr3 8236 Law of well-founded recurs...
frrrel 8237 Show without using the axi...
frrdmss 8238 Show without using the axi...
frrdmcl 8239 Show without using the axi...
fprfung 8240 A "function" defined by we...
fprresex 8241 The restriction of a funct...
dfwrecsOLD 8244 Obsolete definition of the...
wrecseq123 8245 General equality theorem f...
wrecseq123OLD 8246 Obsolete proof of ~ wrecse...
nfwrecs 8247 Bound-variable hypothesis ...
nfwrecsOLD 8248 Obsolete proof of ~ nfwrec...
wrecseq1 8249 Equality theorem for the w...
wrecseq2 8250 Equality theorem for the w...
wrecseq3 8251 Equality theorem for the w...
csbwrecsg 8252 Move class substitution in...
wfr3g 8253 Functions defined by well-...
wfrlem1OLD 8254 Lemma for well-ordered rec...
wfrlem2OLD 8255 Lemma for well-ordered rec...
wfrlem3OLD 8256 Lemma for well-ordered rec...
wfrlem3OLDa 8257 Lemma for well-ordered rec...
wfrlem4OLD 8258 Lemma for well-ordered rec...
wfrlem5OLD 8259 Lemma for well-ordered rec...
wfrrelOLD 8260 Obsolete proof of ~ wfrrel...
wfrdmssOLD 8261 Obsolete proof of ~ wfrdms...
wfrlem8OLD 8262 Lemma for well-ordered rec...
wfrdmclOLD 8263 Obsolete proof of ~ wfrdmc...
wfrlem10OLD 8264 Lemma for well-ordered rec...
wfrfunOLD 8265 Obsolete proof of ~ wfrfun...
wfrlem12OLD 8266 Lemma for well-ordered rec...
wfrlem13OLD 8267 Lemma for well-ordered rec...
wfrlem14OLD 8268 Lemma for well-ordered rec...
wfrlem15OLD 8269 Lemma for well-ordered rec...
wfrlem16OLD 8270 Lemma for well-ordered rec...
wfrlem17OLD 8271 Without using ~ ax-rep , s...
wfr2aOLD 8272 Obsolete proof of ~ wfr2a ...
wfr1OLD 8273 Obsolete proof of ~ wfr1 a...
wfr2OLD 8274 Obsolete proof of ~ wfr2 a...
wfrrel 8275 The well-ordered recursion...
wfrdmss 8276 The domain of the well-ord...
wfrdmcl 8277 The predecessor class of a...
wfrfun 8278 The "function" generated b...
wfrresex 8279 Show without using the axi...
wfr2a 8280 A weak version of ~ wfr2 w...
wfr1 8281 The Principle of Well-Orde...
wfr2 8282 The Principle of Well-Orde...
wfr3 8283 The principle of Well-Orde...
wfr3OLD 8284 Obsolete form of ~ wfr3 as...
iunon 8285 The indexed union of a set...
iinon 8286 The nonempty indexed inter...
onfununi 8287 A property of functions on...
onovuni 8288 A variant of ~ onfununi fo...
onoviun 8289 A variant of ~ onovuni wit...
onnseq 8290 There are no length ` _om ...
dfsmo2 8293 Alternate definition of a ...
issmo 8294 Conditions for which ` A `...
issmo2 8295 Alternate definition of a ...
smoeq 8296 Equality theorem for stric...
smodm 8297 The domain of a strictly m...
smores 8298 A strictly monotone functi...
smores3 8299 A strictly monotone functi...
smores2 8300 A strictly monotone ordina...
smodm2 8301 The domain of a strictly m...
smofvon2 8302 The function values of a s...
iordsmo 8303 The identity relation rest...
smo0 8304 The null set is a strictly...
smofvon 8305 If ` B ` is a strictly mon...
smoel 8306 If ` x ` is less than ` y ...
smoiun 8307 The value of a strictly mo...
smoiso 8308 If ` F ` is an isomorphism...
smoel2 8309 A strictly monotone ordina...
smo11 8310 A strictly monotone ordina...
smoord 8311 A strictly monotone ordina...
smoword 8312 A strictly monotone ordina...
smogt 8313 A strictly monotone ordina...
smocdmdom 8314 The codomain of a strictly...
smoiso2 8315 The strictly monotone ordi...
dfrecs3 8318 The old definition of tran...
dfrecs3OLD 8319 Obsolete proof of ~ dfrecs...
recseq 8320 Equality theorem for ` rec...
nfrecs 8321 Bound-variable hypothesis ...
tfrlem1 8322 A technical lemma for tran...
tfrlem3a 8323 Lemma for transfinite recu...
tfrlem3 8324 Lemma for transfinite recu...
tfrlem4 8325 Lemma for transfinite recu...
tfrlem5 8326 Lemma for transfinite recu...
recsfval 8327 Lemma for transfinite recu...
tfrlem6 8328 Lemma for transfinite recu...
tfrlem7 8329 Lemma for transfinite recu...
tfrlem8 8330 Lemma for transfinite recu...
tfrlem9 8331 Lemma for transfinite recu...
tfrlem9a 8332 Lemma for transfinite recu...
tfrlem10 8333 Lemma for transfinite recu...
tfrlem11 8334 Lemma for transfinite recu...
tfrlem12 8335 Lemma for transfinite recu...
tfrlem13 8336 Lemma for transfinite recu...
tfrlem14 8337 Lemma for transfinite recu...
tfrlem15 8338 Lemma for transfinite recu...
tfrlem16 8339 Lemma for finite recursion...
tfr1a 8340 A weak version of ~ tfr1 w...
tfr2a 8341 A weak version of ~ tfr2 w...
tfr2b 8342 Without assuming ~ ax-rep ...
tfr1 8343 Principle of Transfinite R...
tfr2 8344 Principle of Transfinite R...
tfr3 8345 Principle of Transfinite R...
tfr1ALT 8346 Alternate proof of ~ tfr1 ...
tfr2ALT 8347 Alternate proof of ~ tfr2 ...
tfr3ALT 8348 Alternate proof of ~ tfr3 ...
recsfnon 8349 Strong transfinite recursi...
recsval 8350 Strong transfinite recursi...
tz7.44lem1 8351 The ordered pair abstracti...
tz7.44-1 8352 The value of ` F ` at ` (/...
tz7.44-2 8353 The value of ` F ` at a su...
tz7.44-3 8354 The value of ` F ` at a li...
rdgeq1 8357 Equality theorem for the r...
rdgeq2 8358 Equality theorem for the r...
rdgeq12 8359 Equality theorem for the r...
nfrdg 8360 Bound-variable hypothesis ...
rdglem1 8361 Lemma used with the recurs...
rdgfun 8362 The recursive definition g...
rdgdmlim 8363 The domain of the recursiv...
rdgfnon 8364 The recursive definition g...
rdgvalg 8365 Value of the recursive def...
rdgval 8366 Value of the recursive def...
rdg0 8367 The initial value of the r...
rdgseg 8368 The initial segments of th...
rdgsucg 8369 The value of the recursive...
rdgsuc 8370 The value of the recursive...
rdglimg 8371 The value of the recursive...
rdglim 8372 The value of the recursive...
rdg0g 8373 The initial value of the r...
rdgsucmptf 8374 The value of the recursive...
rdgsucmptnf 8375 The value of the recursive...
rdgsucmpt2 8376 This version of ~ rdgsucmp...
rdgsucmpt 8377 The value of the recursive...
rdglim2 8378 The value of the recursive...
rdglim2a 8379 The value of the recursive...
rdg0n 8380 If ` A ` is a proper class...
frfnom 8381 The function generated by ...
fr0g 8382 The initial value resultin...
frsuc 8383 The successor value result...
frsucmpt 8384 The successor value result...
frsucmptn 8385 The value of the finite re...
frsucmpt2 8386 The successor value result...
tz7.48lem 8387 A way of showing an ordina...
tz7.48-2 8388 Proposition 7.48(2) of [Ta...
tz7.48-1 8389 Proposition 7.48(1) of [Ta...
tz7.48-3 8390 Proposition 7.48(3) of [Ta...
tz7.49 8391 Proposition 7.49 of [Takeu...
tz7.49c 8392 Corollary of Proposition 7...
seqomlem0 8395 Lemma for ` seqom ` . Cha...
seqomlem1 8396 Lemma for ` seqom ` . The...
seqomlem2 8397 Lemma for ` seqom ` . (Co...
seqomlem3 8398 Lemma for ` seqom ` . (Co...
seqomlem4 8399 Lemma for ` seqom ` . (Co...
seqomeq12 8400 Equality theorem for ` seq...
fnseqom 8401 An index-aware recursive d...
seqom0g 8402 Value of an index-aware re...
seqomsuc 8403 Value of an index-aware re...
omsucelsucb 8404 Membership is inherited by...
df1o2 8419 Expanded value of the ordi...
df2o3 8420 Expanded value of the ordi...
df2o2 8421 Expanded value of the ordi...
1oex 8422 Ordinal 1 is a set. (Cont...
2oex 8423 ` 2o ` is a set. (Contrib...
1on 8424 Ordinal 1 is an ordinal nu...
1onOLD 8425 Obsolete version of ~ 1on ...
2on 8426 Ordinal 2 is an ordinal nu...
2onOLD 8427 Obsolete version of ~ 2on ...
2on0 8428 Ordinal two is not zero. ...
ord3 8429 Ordinal 3 is an ordinal cl...
3on 8430 Ordinal 3 is an ordinal nu...
4on 8431 Ordinal 3 is an ordinal nu...
1oexOLD 8432 Obsolete version of ~ 1oex...
2oexOLD 8433 Obsolete version of ~ 2oex...
1n0 8434 Ordinal one is not equal t...
nlim1 8435 1 is not a limit ordinal. ...
nlim2 8436 2 is not a limit ordinal. ...
xp01disj 8437 Cartesian products with th...
xp01disjl 8438 Cartesian products with th...
ordgt0ge1 8439 Two ways to express that a...
ordge1n0 8440 An ordinal greater than or...
el1o 8441 Membership in ordinal one....
ord1eln01 8442 An ordinal that is not 0 o...
ord2eln012 8443 An ordinal that is not 0, ...
1ellim 8444 A limit ordinal contains 1...
2ellim 8445 A limit ordinal contains 2...
dif1o 8446 Two ways to say that ` A `...
ondif1 8447 Two ways to say that ` A `...
ondif2 8448 Two ways to say that ` A `...
2oconcl 8449 Closure of the pair swappi...
0lt1o 8450 Ordinal zero is less than ...
dif20el 8451 An ordinal greater than on...
0we1 8452 The empty set is a well-or...
brwitnlem 8453 Lemma for relations which ...
fnoa 8454 Functionality and domain o...
fnom 8455 Functionality and domain o...
fnoe 8456 Functionality and domain o...
oav 8457 Value of ordinal addition....
omv 8458 Value of ordinal multiplic...
oe0lem 8459 A helper lemma for ~ oe0 a...
oev 8460 Value of ordinal exponenti...
oevn0 8461 Value of ordinal exponenti...
oa0 8462 Addition with zero. Propo...
om0 8463 Ordinal multiplication wit...
oe0m 8464 Value of zero raised to an...
om0x 8465 Ordinal multiplication wit...
oe0m0 8466 Ordinal exponentiation wit...
oe0m1 8467 Ordinal exponentiation wit...
oe0 8468 Ordinal exponentiation wit...
oev2 8469 Alternate value of ordinal...
oasuc 8470 Addition with successor. ...
oesuclem 8471 Lemma for ~ oesuc . (Cont...
omsuc 8472 Multiplication with succes...
oesuc 8473 Ordinal exponentiation wit...
onasuc 8474 Addition with successor. ...
onmsuc 8475 Multiplication with succes...
onesuc 8476 Exponentiation with a succ...
oa1suc 8477 Addition with 1 is same as...
oalim 8478 Ordinal addition with a li...
omlim 8479 Ordinal multiplication wit...
oelim 8480 Ordinal exponentiation wit...
oacl 8481 Closure law for ordinal ad...
omcl 8482 Closure law for ordinal mu...
oecl 8483 Closure law for ordinal ex...
oa0r 8484 Ordinal addition with zero...
om0r 8485 Ordinal multiplication wit...
o1p1e2 8486 1 + 1 = 2 for ordinal numb...
o2p2e4 8487 2 + 2 = 4 for ordinal numb...
o2p2e4OLD 8488 Obsolete version of ~ o2p2...
om1 8489 Ordinal multiplication wit...
om1r 8490 Ordinal multiplication wit...
oe1 8491 Ordinal exponentiation wit...
oe1m 8492 Ordinal exponentiation wit...
oaordi 8493 Ordering property of ordin...
oaord 8494 Ordering property of ordin...
oacan 8495 Left cancellation law for ...
oaword 8496 Weak ordering property of ...
oawordri 8497 Weak ordering property of ...
oaord1 8498 An ordinal is less than it...
oaword1 8499 An ordinal is less than or...
oaword2 8500 An ordinal is less than or...
oawordeulem 8501 Lemma for ~ oawordex . (C...
oawordeu 8502 Existence theorem for weak...
oawordexr 8503 Existence theorem for weak...
oawordex 8504 Existence theorem for weak...
oaordex 8505 Existence theorem for orde...
oa00 8506 An ordinal sum is zero iff...
oalimcl 8507 The ordinal sum with a lim...
oaass 8508 Ordinal addition is associ...
oarec 8509 Recursive definition of or...
oaf1o 8510 Left addition by a constan...
oacomf1olem 8511 Lemma for ~ oacomf1o . (C...
oacomf1o 8512 Define a bijection from ` ...
omordi 8513 Ordering property of ordin...
omord2 8514 Ordering property of ordin...
omord 8515 Ordering property of ordin...
omcan 8516 Left cancellation law for ...
omword 8517 Weak ordering property of ...
omwordi 8518 Weak ordering property of ...
omwordri 8519 Weak ordering property of ...
omword1 8520 An ordinal is less than or...
omword2 8521 An ordinal is less than or...
om00 8522 The product of two ordinal...
om00el 8523 The product of two nonzero...
omordlim 8524 Ordering involving the pro...
omlimcl 8525 The product of any nonzero...
odi 8526 Distributive law for ordin...
omass 8527 Multiplication of ordinal ...
oneo 8528 If an ordinal number is ev...
omeulem1 8529 Lemma for ~ omeu : existen...
omeulem2 8530 Lemma for ~ omeu : uniquen...
omopth2 8531 An ordered pair-like theor...
omeu 8532 The division algorithm for...
oen0 8533 Ordinal exponentiation wit...
oeordi 8534 Ordering law for ordinal e...
oeord 8535 Ordering property of ordin...
oecan 8536 Left cancellation law for ...
oeword 8537 Weak ordering property of ...
oewordi 8538 Weak ordering property of ...
oewordri 8539 Weak ordering property of ...
oeworde 8540 Ordinal exponentiation com...
oeordsuc 8541 Ordering property of ordin...
oelim2 8542 Ordinal exponentiation wit...
oeoalem 8543 Lemma for ~ oeoa . (Contr...
oeoa 8544 Sum of exponents law for o...
oeoelem 8545 Lemma for ~ oeoe . (Contr...
oeoe 8546 Product of exponents law f...
oelimcl 8547 The ordinal exponential wi...
oeeulem 8548 Lemma for ~ oeeu . (Contr...
oeeui 8549 The division algorithm for...
oeeu 8550 The division algorithm for...
nna0 8551 Addition with zero. Theor...
nnm0 8552 Multiplication with zero. ...
nnasuc 8553 Addition with successor. ...
nnmsuc 8554 Multiplication with succes...
nnesuc 8555 Exponentiation with a succ...
nna0r 8556 Addition to zero. Remark ...
nnm0r 8557 Multiplication with zero. ...
nnacl 8558 Closure of addition of nat...
nnmcl 8559 Closure of multiplication ...
nnecl 8560 Closure of exponentiation ...
nnacli 8561 ` _om ` is closed under ad...
nnmcli 8562 ` _om ` is closed under mu...
nnarcl 8563 Reverse closure law for ad...
nnacom 8564 Addition of natural number...
nnaordi 8565 Ordering property of addit...
nnaord 8566 Ordering property of addit...
nnaordr 8567 Ordering property of addit...
nnawordi 8568 Adding to both sides of an...
nnaass 8569 Addition of natural number...
nndi 8570 Distributive law for natur...
nnmass 8571 Multiplication of natural ...
nnmsucr 8572 Multiplication with succes...
nnmcom 8573 Multiplication of natural ...
nnaword 8574 Weak ordering property of ...
nnacan 8575 Cancellation law for addit...
nnaword1 8576 Weak ordering property of ...
nnaword2 8577 Weak ordering property of ...
nnmordi 8578 Ordering property of multi...
nnmord 8579 Ordering property of multi...
nnmword 8580 Weak ordering property of ...
nnmcan 8581 Cancellation law for multi...
nnmwordi 8582 Weak ordering property of ...
nnmwordri 8583 Weak ordering property of ...
nnawordex 8584 Equivalence for weak order...
nnaordex 8585 Equivalence for ordering. ...
1onn 8586 The ordinal 1 is a natural...
1onnALT 8587 Shorter proof of ~ 1onn us...
2onn 8588 The ordinal 2 is a natural...
2onnALT 8589 Shorter proof of ~ 2onn us...
3onn 8590 The ordinal 3 is a natural...
4onn 8591 The ordinal 4 is a natural...
1one2o 8592 Ordinal one is not ordinal...
oaabslem 8593 Lemma for ~ oaabs . (Cont...
oaabs 8594 Ordinal addition absorbs a...
oaabs2 8595 The absorption law ~ oaabs...
omabslem 8596 Lemma for ~ omabs . (Cont...
omabs 8597 Ordinal multiplication is ...
nnm1 8598 Multiply an element of ` _...
nnm2 8599 Multiply an element of ` _...
nn2m 8600 Multiply an element of ` _...
nnneo 8601 If a natural number is eve...
nneob 8602 A natural number is even i...
omsmolem 8603 Lemma for ~ omsmo . (Cont...
omsmo 8604 A strictly monotonic ordin...
omopthlem1 8605 Lemma for ~ omopthi . (Co...
omopthlem2 8606 Lemma for ~ omopthi . (Co...
omopthi 8607 An ordered pair theorem fo...
omopth 8608 An ordered pair theorem fo...
nnasmo 8609 There is at most one left ...
eldifsucnn 8610 Condition for membership i...
on2recsfn 8613 Show that double recursion...
on2recsov 8614 Calculate the value of the...
on2ind 8615 Double induction over ordi...
on3ind 8616 Triple induction over ordi...
coflton 8617 Cofinality theorem for ord...
cofon1 8618 Cofinality theorem for ord...
cofon2 8619 Cofinality theorem for ord...
cofonr 8620 Inverse cofinality law for...
naddfn 8621 Natural addition is a func...
naddcllem 8622 Lemma for ordinal addition...
naddcl 8623 Closure law for natural ad...
naddov 8624 The value of natural addit...
naddov2 8625 Alternate expression for n...
naddov3 8626 Alternate expression for n...
naddf 8627 Function statement for nat...
naddcom 8628 Natural addition commutes....
naddid1 8629 Ordinal zero is the additi...
naddssim 8630 Ordinal less-than-or-equal...
naddelim 8631 Ordinal less-than is prese...
naddel1 8632 Ordinal less-than is not a...
naddel2 8633 Ordinal less-than is not a...
naddss1 8634 Ordinal less-than-or-equal...
naddss2 8635 Ordinal less-than-or-equal...
naddword1 8636 Weak-ordering principle fo...
naddunif 8637 Uniformity theorem for nat...
naddasslem1 8638 Lemma for ~ naddass . Exp...
naddasslem2 8639 Lemma for ~ naddass . Exp...
naddass 8640 Natural ordinal addition i...
nadd32 8641 Commutative/associative la...
nadd4 8642 Rearragement of terms in a...
nadd42 8643 Rearragement of terms in a...
naddel12 8644 Natural addition to both s...
dfer2 8649 Alternate definition of eq...
dfec2 8651 Alternate definition of ` ...
ecexg 8652 An equivalence class modul...
ecexr 8653 A nonempty equivalence cla...
ereq1 8655 Equality theorem for equiv...
ereq2 8656 Equality theorem for equiv...
errel 8657 An equivalence relation is...
erdm 8658 The domain of an equivalen...
ercl 8659 Elementhood in the field o...
ersym 8660 An equivalence relation is...
ercl2 8661 Elementhood in the field o...
ersymb 8662 An equivalence relation is...
ertr 8663 An equivalence relation is...
ertrd 8664 A transitivity relation fo...
ertr2d 8665 A transitivity relation fo...
ertr3d 8666 A transitivity relation fo...
ertr4d 8667 A transitivity relation fo...
erref 8668 An equivalence relation is...
ercnv 8669 The converse of an equival...
errn 8670 The range and domain of an...
erssxp 8671 An equivalence relation is...
erex 8672 An equivalence relation is...
erexb 8673 An equivalence relation is...
iserd 8674 A reflexive, symmetric, tr...
iseri 8675 A reflexive, symmetric, tr...
iseriALT 8676 Alternate proof of ~ iseri...
brdifun 8677 Evaluate the incomparabili...
swoer 8678 Incomparability under a st...
swoord1 8679 The incomparability equiva...
swoord2 8680 The incomparability equiva...
swoso 8681 If the incomparability rel...
eqerlem 8682 Lemma for ~ eqer . (Contr...
eqer 8683 Equivalence relation invol...
ider 8684 The identity relation is a...
0er 8685 The empty set is an equiva...
eceq1 8686 Equality theorem for equiv...
eceq1d 8687 Equality theorem for equiv...
eceq2 8688 Equality theorem for equiv...
eceq2i 8689 Equality theorem for the `...
eceq2d 8690 Equality theorem for the `...
elecg 8691 Membership in an equivalen...
elec 8692 Membership in an equivalen...
relelec 8693 Membership in an equivalen...
ecss 8694 An equivalence class is a ...
ecdmn0 8695 A representative of a none...
ereldm 8696 Equality of equivalence cl...
erth 8697 Basic property of equivale...
erth2 8698 Basic property of equivale...
erthi 8699 Basic property of equivale...
erdisj 8700 Equivalence classes do not...
ecidsn 8701 An equivalence class modul...
qseq1 8702 Equality theorem for quoti...
qseq2 8703 Equality theorem for quoti...
qseq2i 8704 Equality theorem for quoti...
qseq2d 8705 Equality theorem for quoti...
qseq12 8706 Equality theorem for quoti...
elqsg 8707 Closed form of ~ elqs . (...
elqs 8708 Membership in a quotient s...
elqsi 8709 Membership in a quotient s...
elqsecl 8710 Membership in a quotient s...
ecelqsg 8711 Membership of an equivalen...
ecelqsi 8712 Membership of an equivalen...
ecopqsi 8713 "Closure" law for equivale...
qsexg 8714 A quotient set exists. (C...
qsex 8715 A quotient set exists. (C...
uniqs 8716 The union of a quotient se...
qsss 8717 A quotient set is a set of...
uniqs2 8718 The union of a quotient se...
snec 8719 The singleton of an equiva...
ecqs 8720 Equivalence class in terms...
ecid 8721 A set is equal to its cose...
qsid 8722 A set is equal to its quot...
ectocld 8723 Implicit substitution of c...
ectocl 8724 Implicit substitution of c...
elqsn0 8725 A quotient set does not co...
ecelqsdm 8726 Membership of an equivalen...
xpider 8727 A Cartesian square is an e...
iiner 8728 The intersection of a none...
riiner 8729 The relative intersection ...
erinxp 8730 A restricted equivalence r...
ecinxp 8731 Restrict the relation in a...
qsinxp 8732 Restrict the equivalence r...
qsdisj 8733 Members of a quotient set ...
qsdisj2 8734 A quotient set is a disjoi...
qsel 8735 If an element of a quotien...
uniinqs 8736 Class union distributes ov...
qliftlem 8737 Lemma for theorems about a...
qliftrel 8738 ` F ` , a function lift, i...
qliftel 8739 Elementhood in the relatio...
qliftel1 8740 Elementhood in the relatio...
qliftfun 8741 The function ` F ` is the ...
qliftfund 8742 The function ` F ` is the ...
qliftfuns 8743 The function ` F ` is the ...
qliftf 8744 The domain and codomain of...
qliftval 8745 The value of the function ...
ecoptocl 8746 Implicit substitution of c...
2ecoptocl 8747 Implicit substitution of c...
3ecoptocl 8748 Implicit substitution of c...
brecop 8749 Binary relation on a quoti...
brecop2 8750 Binary relation on a quoti...
eroveu 8751 Lemma for ~ erov and ~ ero...
erovlem 8752 Lemma for ~ erov and ~ ero...
erov 8753 The value of an operation ...
eroprf 8754 Functionality of an operat...
erov2 8755 The value of an operation ...
eroprf2 8756 Functionality of an operat...
ecopoveq 8757 This is the first of sever...
ecopovsym 8758 Assuming the operation ` F...
ecopovtrn 8759 Assuming that operation ` ...
ecopover 8760 Assuming that operation ` ...
eceqoveq 8761 Equality of equivalence re...
ecovcom 8762 Lemma used to transfer a c...
ecovass 8763 Lemma used to transfer an ...
ecovdi 8764 Lemma used to transfer a d...
mapprc 8769 When ` A ` is a proper cla...
pmex 8770 The class of all partial f...
mapex 8771 The class of all functions...
fnmap 8772 Set exponentiation has a u...
fnpm 8773 Partial function exponenti...
reldmmap 8774 Set exponentiation is a we...
mapvalg 8775 The value of set exponenti...
pmvalg 8776 The value of the partial m...
mapval 8777 The value of set exponenti...
elmapg 8778 Membership relation for se...
elmapd 8779 Deduction form of ~ elmapg...
mapdm0 8780 The empty set is the only ...
elpmg 8781 The predicate "is a partia...
elpm2g 8782 The predicate "is a partia...
elpm2r 8783 Sufficient condition for b...
elpmi 8784 A partial function is a fu...
pmfun 8785 A partial function is a fu...
elmapex 8786 Eliminate antecedent for m...
elmapi 8787 A mapping is a function, f...
mapfset 8788 If ` B ` is a set, the val...
mapssfset 8789 The value of the set expon...
mapfoss 8790 The value of the set expon...
fsetsspwxp 8791 The class of all functions...
fset0 8792 The set of functions from ...
fsetdmprc0 8793 The set of functions with ...
fsetex 8794 The set of functions betwe...
f1setex 8795 The set of injections betw...
fosetex 8796 The set of surjections bet...
f1osetex 8797 The set of bijections betw...
fsetfcdm 8798 The class of functions wit...
fsetfocdm 8799 The class of functions wit...
fsetprcnex 8800 The class of all functions...
fsetcdmex 8801 The class of all functions...
fsetexb 8802 The class of all functions...
elmapfn 8803 A mapping is a function wi...
elmapfun 8804 A mapping is always a func...
elmapssres 8805 A restricted mapping is a ...
fpmg 8806 A total function is a part...
pmss12g 8807 Subset relation for the se...
pmresg 8808 Elementhood of a restricte...
elmap 8809 Membership relation for se...
mapval2 8810 Alternate expression for t...
elpm 8811 The predicate "is a partia...
elpm2 8812 The predicate "is a partia...
fpm 8813 A total function is a part...
mapsspm 8814 Set exponentiation is a su...
pmsspw 8815 Partial maps are a subset ...
mapsspw 8816 Set exponentiation is a su...
mapfvd 8817 The value of a function th...
elmapresaun 8818 ~ fresaun transposed to ma...
fvmptmap 8819 Special case of ~ fvmpt fo...
map0e 8820 Set exponentiation with an...
map0b 8821 Set exponentiation with an...
map0g 8822 Set exponentiation is empt...
0map0sn0 8823 The set of mappings of the...
mapsnd 8824 The value of set exponenti...
map0 8825 Set exponentiation is empt...
mapsn 8826 The value of set exponenti...
mapss 8827 Subset inheritance for set...
fdiagfn 8828 Functionality of the diago...
fvdiagfn 8829 Functionality of the diago...
mapsnconst 8830 Every singleton map is a c...
mapsncnv 8831 Expression for the inverse...
mapsnf1o2 8832 Explicit bijection between...
mapsnf1o3 8833 Explicit bijection in the ...
ralxpmap 8834 Quantification over functi...
dfixp 8837 Eliminate the expression `...
ixpsnval 8838 The value of an infinite C...
elixp2 8839 Membership in an infinite ...
fvixp 8840 Projection of a factor of ...
ixpfn 8841 A nuple is a function. (C...
elixp 8842 Membership in an infinite ...
elixpconst 8843 Membership in an infinite ...
ixpconstg 8844 Infinite Cartesian product...
ixpconst 8845 Infinite Cartesian product...
ixpeq1 8846 Equality theorem for infin...
ixpeq1d 8847 Equality theorem for infin...
ss2ixp 8848 Subclass theorem for infin...
ixpeq2 8849 Equality theorem for infin...
ixpeq2dva 8850 Equality theorem for infin...
ixpeq2dv 8851 Equality theorem for infin...
cbvixp 8852 Change bound variable in a...
cbvixpv 8853 Change bound variable in a...
nfixpw 8854 Bound-variable hypothesis ...
nfixp 8855 Bound-variable hypothesis ...
nfixp1 8856 The index variable in an i...
ixpprc 8857 A cartesian product of pro...
ixpf 8858 A member of an infinite Ca...
uniixp 8859 The union of an infinite C...
ixpexg 8860 The existence of an infini...
ixpin 8861 The intersection of two in...
ixpiin 8862 The indexed intersection o...
ixpint 8863 The intersection of a coll...
ixp0x 8864 An infinite Cartesian prod...
ixpssmap2g 8865 An infinite Cartesian prod...
ixpssmapg 8866 An infinite Cartesian prod...
0elixp 8867 Membership of the empty se...
ixpn0 8868 The infinite Cartesian pro...
ixp0 8869 The infinite Cartesian pro...
ixpssmap 8870 An infinite Cartesian prod...
resixp 8871 Restriction of an element ...
undifixp 8872 Union of two projections o...
mptelixpg 8873 Condition for an explicit ...
resixpfo 8874 Restriction of elements of...
elixpsn 8875 Membership in a class of s...
ixpsnf1o 8876 A bijection between a clas...
mapsnf1o 8877 A bijection between a set ...
boxriin 8878 A rectangular subset of a ...
boxcutc 8879 The relative complement of...
relen 8888 Equinumerosity is a relati...
reldom 8889 Dominance is a relation. ...
relsdom 8890 Strict dominance is a rela...
encv 8891 If two classes are equinum...
breng 8892 Equinumerosity relation. ...
bren 8893 Equinumerosity relation. ...
brenOLD 8894 Obsolete version of ~ bren...
brdom2g 8895 Dominance relation. This ...
brdomg 8896 Dominance relation. (Cont...
brdomgOLD 8897 Obsolete version of ~ brdo...
brdomi 8898 Dominance relation. (Cont...
brdomiOLD 8899 Obsolete version of ~ brdo...
brdom 8900 Dominance relation. (Cont...
domen 8901 Dominance in terms of equi...
domeng 8902 Dominance in terms of equi...
ctex 8903 A countable set is a set. ...
f1oen4g 8904 The domain and range of a ...
f1dom4g 8905 The domain of a one-to-one...
f1oen3g 8906 The domain and range of a ...
f1dom3g 8907 The domain of a one-to-one...
f1oen2g 8908 The domain and range of a ...
f1dom2g 8909 The domain of a one-to-one...
f1dom2gOLD 8910 Obsolete version of ~ f1do...
f1oeng 8911 The domain and range of a ...
f1domg 8912 The domain of a one-to-one...
f1oen 8913 The domain and range of a ...
f1dom 8914 The domain of a one-to-one...
brsdom 8915 Strict dominance relation,...
isfi 8916 Express " ` A ` is finite"...
enssdom 8917 Equinumerosity implies dom...
dfdom2 8918 Alternate definition of do...
endom 8919 Equinumerosity implies dom...
sdomdom 8920 Strict dominance implies d...
sdomnen 8921 Strict dominance implies n...
brdom2 8922 Dominance in terms of stri...
bren2 8923 Equinumerosity expressed i...
enrefg 8924 Equinumerosity is reflexiv...
enref 8925 Equinumerosity is reflexiv...
eqeng 8926 Equality implies equinumer...
domrefg 8927 Dominance is reflexive. (...
en2d 8928 Equinumerosity inference f...
en3d 8929 Equinumerosity inference f...
en2i 8930 Equinumerosity inference f...
en3i 8931 Equinumerosity inference f...
dom2lem 8932 A mapping (first hypothesi...
dom2d 8933 A mapping (first hypothesi...
dom3d 8934 A mapping (first hypothesi...
dom2 8935 A mapping (first hypothesi...
dom3 8936 A mapping (first hypothesi...
idssen 8937 Equality implies equinumer...
domssl 8938 If ` A ` is a subset of ` ...
domssr 8939 If ` C ` is a superset of ...
ssdomg 8940 A set dominates its subset...
ener 8941 Equinumerosity is an equiv...
ensymb 8942 Symmetry of equinumerosity...
ensym 8943 Symmetry of equinumerosity...
ensymi 8944 Symmetry of equinumerosity...
ensymd 8945 Symmetry of equinumerosity...
entr 8946 Transitivity of equinumero...
domtr 8947 Transitivity of dominance ...
entri 8948 A chained equinumerosity i...
entr2i 8949 A chained equinumerosity i...
entr3i 8950 A chained equinumerosity i...
entr4i 8951 A chained equinumerosity i...
endomtr 8952 Transitivity of equinumero...
domentr 8953 Transitivity of dominance ...
f1imaeng 8954 If a function is one-to-on...
f1imaen2g 8955 If a function is one-to-on...
f1imaen 8956 If a function is one-to-on...
en0 8957 The empty set is equinumer...
en0OLD 8958 Obsolete version of ~ en0 ...
en0ALT 8959 Shorter proof of ~ en0 , d...
en0r 8960 The empty set is equinumer...
ensn1 8961 A singleton is equinumerou...
ensn1OLD 8962 Obsolete version of ~ ensn...
ensn1g 8963 A singleton is equinumerou...
enpr1g 8964 ` { A , A } ` has only one...
en1 8965 A set is equinumerous to o...
en1OLD 8966 Obsolete version of ~ en1 ...
en1b 8967 A set is equinumerous to o...
en1bOLD 8968 Obsolete version of ~ en1b...
reuen1 8969 Two ways to express "exact...
euen1 8970 Two ways to express "exact...
euen1b 8971 Two ways to express " ` A ...
en1uniel 8972 A singleton contains its s...
en1unielOLD 8973 Obsolete version of ~ en1u...
2dom 8974 A set that dominates ordin...
fundmen 8975 A function is equinumerous...
fundmeng 8976 A function is equinumerous...
cnven 8977 A relational set is equinu...
cnvct 8978 If a set is countable, so ...
fndmeng 8979 A function is equinumerate...
mapsnend 8980 Set exponentiation to a si...
mapsnen 8981 Set exponentiation to a si...
snmapen 8982 Set exponentiation: a sing...
snmapen1 8983 Set exponentiation: a sing...
map1 8984 Set exponentiation: ordina...
en2sn 8985 Two singletons are equinum...
en2snOLD 8986 Obsolete version of ~ en2s...
en2snOLDOLD 8987 Obsolete version of ~ en2s...
snfi 8988 A singleton is finite. (C...
fiprc 8989 The class of finite sets i...
unen 8990 Equinumerosity of union of...
enrefnn 8991 Equinumerosity is reflexiv...
en2prd 8992 Two unordered pairs are eq...
enpr2d 8993 A pair with distinct eleme...
enpr2dOLD 8994 Obsolete version of ~ enpr...
ssct 8995 Any subset of a countable ...
ssctOLD 8996 Obsolete version of ~ ssct...
difsnen 8997 All decrements of a set ar...
domdifsn 8998 Dominance over a set with ...
xpsnen 8999 A set is equinumerous to i...
xpsneng 9000 A set is equinumerous to i...
xp1en 9001 One times a cardinal numbe...
endisj 9002 Any two sets are equinumer...
undom 9003 Dominance law for union. ...
undomOLD 9004 Obsolete version of ~ undo...
xpcomf1o 9005 The canonical bijection fr...
xpcomco 9006 Composition with the bijec...
xpcomen 9007 Commutative law for equinu...
xpcomeng 9008 Commutative law for equinu...
xpsnen2g 9009 A set is equinumerous to i...
xpassen 9010 Associative law for equinu...
xpdom2 9011 Dominance law for Cartesia...
xpdom2g 9012 Dominance law for Cartesia...
xpdom1g 9013 Dominance law for Cartesia...
xpdom3 9014 A set is dominated by its ...
xpdom1 9015 Dominance law for Cartesia...
domunsncan 9016 A singleton cancellation l...
omxpenlem 9017 Lemma for ~ omxpen . (Con...
omxpen 9018 The cardinal and ordinal p...
omf1o 9019 Construct an explicit bije...
pw2f1olem 9020 Lemma for ~ pw2f1o . (Con...
pw2f1o 9021 The power set of a set is ...
pw2eng 9022 The power set of a set is ...
pw2en 9023 The power set of a set is ...
fopwdom 9024 Covering implies injection...
enfixsn 9025 Given two equipollent sets...
sucdom2OLD 9026 Obsolete version of ~ sucd...
sbthlem1 9027 Lemma for ~ sbth . (Contr...
sbthlem2 9028 Lemma for ~ sbth . (Contr...
sbthlem3 9029 Lemma for ~ sbth . (Contr...
sbthlem4 9030 Lemma for ~ sbth . (Contr...
sbthlem5 9031 Lemma for ~ sbth . (Contr...
sbthlem6 9032 Lemma for ~ sbth . (Contr...
sbthlem7 9033 Lemma for ~ sbth . (Contr...
sbthlem8 9034 Lemma for ~ sbth . (Contr...
sbthlem9 9035 Lemma for ~ sbth . (Contr...
sbthlem10 9036 Lemma for ~ sbth . (Contr...
sbth 9037 Schroeder-Bernstein Theore...
sbthb 9038 Schroeder-Bernstein Theore...
sbthcl 9039 Schroeder-Bernstein Theore...
dfsdom2 9040 Alternate definition of st...
brsdom2 9041 Alternate definition of st...
sdomnsym 9042 Strict dominance is asymme...
domnsym 9043 Theorem 22(i) of [Suppes] ...
0domg 9044 Any set dominates the empt...
0domgOLD 9045 Obsolete version of ~ 0dom...
dom0 9046 A set dominated by the emp...
dom0OLD 9047 Obsolete version of ~ dom0...
0sdomg 9048 A set strictly dominates t...
0sdomgOLD 9049 Obsolete version of ~ 0sdo...
0dom 9050 Any set dominates the empt...
0sdom 9051 A set strictly dominates t...
sdom0 9052 The empty set does not str...
sdom0OLD 9053 Obsolete version of ~ sdom...
sdomdomtr 9054 Transitivity of strict dom...
sdomentr 9055 Transitivity of strict dom...
domsdomtr 9056 Transitivity of dominance ...
ensdomtr 9057 Transitivity of equinumero...
sdomirr 9058 Strict dominance is irrefl...
sdomtr 9059 Strict dominance is transi...
sdomn2lp 9060 Strict dominance has no 2-...
enen1 9061 Equality-like theorem for ...
enen2 9062 Equality-like theorem for ...
domen1 9063 Equality-like theorem for ...
domen2 9064 Equality-like theorem for ...
sdomen1 9065 Equality-like theorem for ...
sdomen2 9066 Equality-like theorem for ...
domtriord 9067 Dominance is trichotomous ...
sdomel 9068 For ordinals, strict domin...
sdomdif 9069 The difference of a set fr...
onsdominel 9070 An ordinal with more eleme...
domunsn 9071 Dominance over a set with ...
fodomr 9072 There exists a mapping fro...
pwdom 9073 Injection of sets implies ...
canth2 9074 Cantor's Theorem. No set ...
canth2g 9075 Cantor's theorem with the ...
2pwuninel 9076 The power set of the power...
2pwne 9077 No set equals the power se...
disjen 9078 A stronger form of ~ pwuni...
disjenex 9079 Existence version of ~ dis...
domss2 9080 A corollary of ~ disjenex ...
domssex2 9081 A corollary of ~ disjenex ...
domssex 9082 Weakening of ~ domssex2 to...
xpf1o 9083 Construct a bijection on a...
xpen 9084 Equinumerosity law for Car...
mapen 9085 Two set exponentiations ar...
mapdom1 9086 Order-preserving property ...
mapxpen 9087 Equinumerosity law for dou...
xpmapenlem 9088 Lemma for ~ xpmapen . (Co...
xpmapen 9089 Equinumerosity law for set...
mapunen 9090 Equinumerosity law for set...
map2xp 9091 A cardinal power with expo...
mapdom2 9092 Order-preserving property ...
mapdom3 9093 Set exponentiation dominat...
pwen 9094 If two sets are equinumero...
ssenen 9095 Equinumerosity of equinume...
limenpsi 9096 A limit ordinal is equinum...
limensuci 9097 A limit ordinal is equinum...
limensuc 9098 A limit ordinal is equinum...
infensuc 9099 Any infinite ordinal is eq...
dif1enlem 9100 Lemma for ~ rexdif1en and ...
dif1enlemOLD 9101 Obsolete version of ~ dif1...
rexdif1en 9102 If a set is equinumerous t...
rexdif1enOLD 9103 Obsolete version of ~ rexd...
dif1en 9104 If a set ` A ` is equinume...
dif1ennn 9105 If a set ` A ` is equinume...
dif1enOLD 9106 Obsolete version of ~ dif1...
findcard 9107 Schema for induction on th...
findcard2 9108 Schema for induction on th...
findcard2s 9109 Variation of ~ findcard2 r...
findcard2d 9110 Deduction version of ~ fin...
nnfi 9111 Natural numbers are finite...
pssnn 9112 A proper subset of a natur...
ssnnfi 9113 A subset of a natural numb...
ssnnfiOLD 9114 Obsolete version of ~ ssnn...
0fin 9115 The empty set is finite. ...
unfi 9116 The union of two finite se...
ssfi 9117 A subset of a finite set i...
ssfiALT 9118 Shorter proof of ~ ssfi us...
imafi 9119 Images of finite sets are ...
pwfir 9120 If the power set of a set ...
pwfilem 9121 Lemma for ~ pwfi . (Contr...
pwfi 9122 The power set of a finite ...
diffi 9123 If ` A ` is finite, ` ( A ...
cnvfi 9124 If a set is finite, its co...
fnfi 9125 A version of ~ fnex for fi...
f1oenfi 9126 If the domain of a one-to-...
f1oenfirn 9127 If the range of a one-to-o...
f1domfi 9128 If the codomain of a one-t...
f1domfi2 9129 If the domain of a one-to-...
enreffi 9130 Equinumerosity is reflexiv...
ensymfib 9131 Symmetry of equinumerosity...
entrfil 9132 Transitivity of equinumero...
enfii 9133 A set equinumerous to a fi...
enfi 9134 Equinumerous sets have the...
enfiALT 9135 Shorter proof of ~ enfi us...
domfi 9136 A set dominated by a finit...
entrfi 9137 Transitivity of equinumero...
entrfir 9138 Transitivity of equinumero...
domtrfil 9139 Transitivity of dominance ...
domtrfi 9140 Transitivity of dominance ...
domtrfir 9141 Transitivity of dominance ...
f1imaenfi 9142 If a function is one-to-on...
ssdomfi 9143 A finite set dominates its...
ssdomfi2 9144 A set dominates its finite...
sbthfilem 9145 Lemma for ~ sbthfi . (Con...
sbthfi 9146 Schroeder-Bernstein Theore...
domnsymfi 9147 If a set dominates a finit...
sdomdomtrfi 9148 Transitivity of strict dom...
domsdomtrfi 9149 Transitivity of dominance ...
sucdom2 9150 Strict dominance of a set ...
phplem1 9151 Lemma for Pigeonhole Princ...
phplem2 9152 Lemma for Pigeonhole Princ...
nneneq 9153 Two equinumerous natural n...
php 9154 Pigeonhole Principle. A n...
php2 9155 Corollary of Pigeonhole Pr...
php3 9156 Corollary of Pigeonhole Pr...
php4 9157 Corollary of the Pigeonhol...
php5 9158 Corollary of the Pigeonhol...
phpeqd 9159 Corollary of the Pigeonhol...
nndomog 9160 Cardinal ordering agrees w...
phplem1OLD 9161 Obsolete lemma for ~ php ....
phplem2OLD 9162 Obsolete lemma for ~ php ....
phplem3OLD 9163 Obsolete version of ~ phpl...
phplem4OLD 9164 Obsolete version of ~ phpl...
nneneqOLD 9165 Obsolete version of ~ nnen...
phpOLD 9166 Obsolete version of ~ php ...
php2OLD 9167 Obsolete version of ~ php2...
php3OLD 9168 Obsolete version of ~ php3...
phpeqdOLD 9169 Obsolete version of ~ phpe...
nndomogOLD 9170 Obsolete version of ~ nndo...
snnen2oOLD 9171 Obsolete version of ~ snne...
onomeneq 9172 An ordinal number equinume...
onomeneqOLD 9173 Obsolete version of ~ onom...
onfin 9174 An ordinal number is finit...
onfin2 9175 A set is a natural number ...
nnfiOLD 9176 Obsolete version of ~ nnfi...
nndomo 9177 Cardinal ordering agrees w...
nnsdomo 9178 Cardinal ordering agrees w...
sucdom 9179 Strict dominance of a set ...
sucdomOLD 9180 Obsolete version of ~ sucd...
snnen2o 9181 A singleton ` { A } ` is n...
0sdom1dom 9182 Strict dominance over 0 is...
0sdom1domALT 9183 Alternate proof of ~ 0sdom...
1sdom2 9184 Ordinal 1 is strictly domi...
1sdom2ALT 9185 Alternate proof of ~ 1sdom...
sdom1 9186 A set has less than one me...
sdom1OLD 9187 Obsolete version of ~ sdom...
modom 9188 Two ways to express "at mo...
modom2 9189 Two ways to express "at mo...
rex2dom 9190 A set that has at least 2 ...
1sdom2dom 9191 Strict dominance over 1 is...
1sdom 9192 A set that strictly domina...
1sdomOLD 9193 Obsolete version of ~ 1sdo...
unxpdomlem1 9194 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 9195 Lemma for ~ unxpdom . (Co...
unxpdomlem3 9196 Lemma for ~ unxpdom . (Co...
unxpdom 9197 Cartesian product dominate...
unxpdom2 9198 Corollary of ~ unxpdom . ...
sucxpdom 9199 Cartesian product dominate...
pssinf 9200 A set equinumerous to a pr...
fisseneq 9201 A finite set is equal to i...
ominf 9202 The set of natural numbers...
ominfOLD 9203 Obsolete version of ~ omin...
isinf 9204 Any set that is not finite...
isinfOLD 9205 Obsolete version of ~ isin...
fineqvlem 9206 Lemma for ~ fineqv . (Con...
fineqv 9207 If the Axiom of Infinity i...
enfiiOLD 9208 Obsolete version of ~ enfi...
pssnnOLD 9209 Obsolete version of ~ pssn...
xpfir 9210 The components of a nonemp...
ssfid 9211 A subset of a finite set i...
infi 9212 The intersection of two se...
rabfi 9213 A restricted class built f...
finresfin 9214 The restriction of a finit...
f1finf1o 9215 Any injection from one fin...
f1finf1oOLD 9216 Obsolete version of ~ f1fi...
nfielex 9217 If a class is not finite, ...
en1eqsn 9218 A set with one element is ...
en1eqsnOLD 9219 Obsolete version of ~ en1e...
en1eqsnbi 9220 A set containing an elemen...
dif1ennnALT 9221 Alternate proof of ~ dif1e...
enp1ilem 9222 Lemma for uses of ~ enp1i ...
enp1i 9223 Proof induction for ~ en2 ...
enp1iOLD 9224 Obsolete version of ~ enp1...
en2 9225 A set equinumerous to ordi...
en3 9226 A set equinumerous to ordi...
en4 9227 A set equinumerous to ordi...
findcard2OLD 9228 Obsolete version of ~ find...
findcard3 9229 Schema for strong inductio...
findcard3OLD 9230 Obsolete version of ~ find...
ac6sfi 9231 A version of ~ ac6s for fi...
frfi 9232 A partial order is well-fo...
fimax2g 9233 A finite set has a maximum...
fimaxg 9234 A finite set has a maximum...
fisupg 9235 Lemma showing existence an...
wofi 9236 A total order on a finite ...
ordunifi 9237 The maximum of a finite co...
nnunifi 9238 The union (supremum) of a ...
unblem1 9239 Lemma for ~ unbnn . After...
unblem2 9240 Lemma for ~ unbnn . The v...
unblem3 9241 Lemma for ~ unbnn . The v...
unblem4 9242 Lemma for ~ unbnn . The f...
unbnn 9243 Any unbounded subset of na...
unbnn2 9244 Version of ~ unbnn that do...
isfinite2 9245 Any set strictly dominated...
nnsdomg 9246 Omega strictly dominates a...
nnsdomgOLD 9247 Obsolete version of ~ nnsd...
isfiniteg 9248 A set is finite iff it is ...
infsdomnn 9249 An infinite set strictly d...
infsdomnnOLD 9250 Obsolete version of ~ infs...
infn0 9251 An infinite set is not emp...
infn0ALT 9252 Shorter proof of ~ infn0 u...
fin2inf 9253 This (useless) theorem, wh...
unfilem1 9254 Lemma for proving that the...
unfilem2 9255 Lemma for proving that the...
unfilem3 9256 Lemma for proving that the...
unfiOLD 9257 Obsolete version of ~ unfi...
unfir 9258 If a union is finite, the ...
unfi2 9259 The union of two finite se...
difinf 9260 An infinite set ` A ` minu...
xpfi 9261 The Cartesian product of t...
xpfiOLD 9262 Obsolete version of ~ xpfi...
3xpfi 9263 The Cartesian product of t...
domunfican 9264 A finite set union cancell...
infcntss 9265 Every infinite set has a d...
prfi 9266 An unordered pair is finit...
tpfi 9267 An unordered triple is fin...
fiint 9268 Equivalent ways of stating...
fodomfi 9269 An onto function implies d...
fodomfib 9270 Equivalence of an onto map...
fofinf1o 9271 Any surjection from one fi...
rneqdmfinf1o 9272 Any function from a finite...
fidomdm 9273 Any finite set dominates i...
dmfi 9274 The domain of a finite set...
fundmfibi 9275 A function is finite if an...
resfnfinfin 9276 The restriction of a funct...
residfi 9277 A restricted identity func...
cnvfiALT 9278 Shorter proof of ~ cnvfi u...
rnfi 9279 The range of a finite set ...
f1dmvrnfibi 9280 A one-to-one function whos...
f1vrnfibi 9281 A one-to-one function whic...
fofi 9282 If an onto function has a ...
f1fi 9283 If a 1-to-1 function has a...
iunfi 9284 The finite union of finite...
unifi 9285 The finite union of finite...
unifi2 9286 The finite union of finite...
infssuni 9287 If an infinite set ` A ` i...
unirnffid 9288 The union of the range of ...
imafiALT 9289 Shorter proof of ~ imafi u...
pwfilemOLD 9290 Obsolete version of ~ pwfi...
pwfiOLD 9291 Obsolete version of ~ pwfi...
mapfi 9292 Set exponentiation of fini...
ixpfi 9293 A Cartesian product of fin...
ixpfi2 9294 A Cartesian product of fin...
mptfi 9295 A finite mapping set is fi...
abrexfi 9296 An image set from a finite...
cnvimamptfin 9297 A preimage of a mapping wi...
elfpw 9298 Membership in a class of f...
unifpw 9299 A set is the union of its ...
f1opwfi 9300 A one-to-one mapping induc...
fissuni 9301 A finite subset of a union...
fipreima 9302 Given a finite subset ` A ...
finsschain 9303 A finite subset of the uni...
indexfi 9304 If for every element of a ...
relfsupp 9307 The property of a function...
relprcnfsupp 9308 A proper class is never fi...
isfsupp 9309 The property of a class to...
funisfsupp 9310 The property of a function...
fsuppimp 9311 Implications of a class be...
fsuppimpd 9312 A finitely supported funct...
fisuppfi 9313 A function on a finite set...
fdmfisuppfi 9314 The support of a function ...
fdmfifsupp 9315 A function with a finite d...
fsuppmptdm 9316 A mapping with a finite do...
fndmfisuppfi 9317 The support of a function ...
fndmfifsupp 9318 A function with a finite d...
suppeqfsuppbi 9319 If two functions have the ...
suppssfifsupp 9320 If the support of a functi...
fsuppsssupp 9321 If the support of a functi...
fsuppxpfi 9322 The cartesian product of t...
fczfsuppd 9323 A constant function with v...
fsuppun 9324 The union of two finitely ...
fsuppunfi 9325 The union of the support o...
fsuppunbi 9326 If the union of two classe...
0fsupp 9327 The empty set is a finitel...
snopfsupp 9328 A singleton containing an ...
funsnfsupp 9329 Finite support for a funct...
fsuppres 9330 The restriction of a finit...
ressuppfi 9331 If the support of the rest...
resfsupp 9332 If the restriction of a fu...
resfifsupp 9333 The restriction of a funct...
ffsuppbi 9334 Two ways of saying that a ...
fsuppmptif 9335 A function mapping an argu...
sniffsupp 9336 A function mapping all but...
fsuppcolem 9337 Lemma for ~ fsuppco . For...
fsuppco 9338 The composition of a 1-1 f...
fsuppco2 9339 The composition of a funct...
fsuppcor 9340 The composition of a funct...
mapfienlem1 9341 Lemma 1 for ~ mapfien . (...
mapfienlem2 9342 Lemma 2 for ~ mapfien . (...
mapfienlem3 9343 Lemma 3 for ~ mapfien . (...
mapfien 9344 A bijection of the base se...
mapfien2 9345 Equinumerousity relation f...
fival 9348 The set of all the finite ...
elfi 9349 Specific properties of an ...
elfi2 9350 The empty intersection nee...
elfir 9351 Sufficient condition for a...
intrnfi 9352 Sufficient condition for t...
iinfi 9353 An indexed intersection of...
inelfi 9354 The intersection of two se...
ssfii 9355 Any element of a set ` A `...
fi0 9356 The set of finite intersec...
fieq0 9357 A set is empty iff the cla...
fiin 9358 The elements of ` ( fi `` ...
dffi2 9359 The set of finite intersec...
fiss 9360 Subset relationship for fu...
inficl 9361 A set which is closed unde...
fipwuni 9362 The set of finite intersec...
fisn 9363 A singleton is closed unde...
fiuni 9364 The union of the finite in...
fipwss 9365 If a set is a family of su...
elfiun 9366 A finite intersection of e...
dffi3 9367 The set of finite intersec...
fifo 9368 Describe a surjection from...
marypha1lem 9369 Core induction for Philip ...
marypha1 9370 (Philip) Hall's marriage t...
marypha2lem1 9371 Lemma for ~ marypha2 . Pr...
marypha2lem2 9372 Lemma for ~ marypha2 . Pr...
marypha2lem3 9373 Lemma for ~ marypha2 . Pr...
marypha2lem4 9374 Lemma for ~ marypha2 . Pr...
marypha2 9375 Version of ~ marypha1 usin...
dfsup2 9380 Quantifier-free definition...
supeq1 9381 Equality theorem for supre...
supeq1d 9382 Equality deduction for sup...
supeq1i 9383 Equality inference for sup...
supeq2 9384 Equality theorem for supre...
supeq3 9385 Equality theorem for supre...
supeq123d 9386 Equality deduction for sup...
nfsup 9387 Hypothesis builder for sup...
supmo 9388 Any class ` B ` has at mos...
supexd 9389 A supremum is a set. (Con...
supeu 9390 A supremum is unique. Sim...
supval2 9391 Alternate expression for t...
eqsup 9392 Sufficient condition for a...
eqsupd 9393 Sufficient condition for a...
supcl 9394 A supremum belongs to its ...
supub 9395 A supremum is an upper bou...
suplub 9396 A supremum is the least up...
suplub2 9397 Bidirectional form of ~ su...
supnub 9398 An upper bound is not less...
supex 9399 A supremum is a set. (Con...
sup00 9400 The supremum under an empt...
sup0riota 9401 The supremum of an empty s...
sup0 9402 The supremum of an empty s...
supmax 9403 The greatest element of a ...
fisup2g 9404 A finite set satisfies the...
fisupcl 9405 A nonempty finite set cont...
supgtoreq 9406 The supremum of a finite s...
suppr 9407 The supremum of a pair. (...
supsn 9408 The supremum of a singleto...
supisolem 9409 Lemma for ~ supiso . (Con...
supisoex 9410 Lemma for ~ supiso . (Con...
supiso 9411 Image of a supremum under ...
infeq1 9412 Equality theorem for infim...
infeq1d 9413 Equality deduction for inf...
infeq1i 9414 Equality inference for inf...
infeq2 9415 Equality theorem for infim...
infeq3 9416 Equality theorem for infim...
infeq123d 9417 Equality deduction for inf...
nfinf 9418 Hypothesis builder for inf...
infexd 9419 An infimum is a set. (Con...
eqinf 9420 Sufficient condition for a...
eqinfd 9421 Sufficient condition for a...
infval 9422 Alternate expression for t...
infcllem 9423 Lemma for ~ infcl , ~ infl...
infcl 9424 An infimum belongs to its ...
inflb 9425 An infimum is a lower boun...
infglb 9426 An infimum is the greatest...
infglbb 9427 Bidirectional form of ~ in...
infnlb 9428 A lower bound is not great...
infex 9429 An infimum is a set. (Con...
infmin 9430 The smallest element of a ...
infmo 9431 Any class ` B ` has at mos...
infeu 9432 An infimum is unique. (Co...
fimin2g 9433 A finite set has a minimum...
fiming 9434 A finite set has a minimum...
fiinfg 9435 Lemma showing existence an...
fiinf2g 9436 A finite set satisfies the...
fiinfcl 9437 A nonempty finite set cont...
infltoreq 9438 The infimum of a finite se...
infpr 9439 The infimum of a pair. (C...
infsupprpr 9440 The infimum of a proper pa...
infsn 9441 The infimum of a singleton...
inf00 9442 The infimum regarding an e...
infempty 9443 The infimum of an empty se...
infiso 9444 Image of an infimum under ...
dfoi 9447 Rewrite ~ df-oi with abbre...
oieq1 9448 Equality theorem for ordin...
oieq2 9449 Equality theorem for ordin...
nfoi 9450 Hypothesis builder for ord...
ordiso2 9451 Generalize ~ ordiso to pro...
ordiso 9452 Order-isomorphic ordinal n...
ordtypecbv 9453 Lemma for ~ ordtype . (Co...
ordtypelem1 9454 Lemma for ~ ordtype . (Co...
ordtypelem2 9455 Lemma for ~ ordtype . (Co...
ordtypelem3 9456 Lemma for ~ ordtype . (Co...
ordtypelem4 9457 Lemma for ~ ordtype . (Co...
ordtypelem5 9458 Lemma for ~ ordtype . (Co...
ordtypelem6 9459 Lemma for ~ ordtype . (Co...
ordtypelem7 9460 Lemma for ~ ordtype . ` ra...
ordtypelem8 9461 Lemma for ~ ordtype . (Co...
ordtypelem9 9462 Lemma for ~ ordtype . Eit...
ordtypelem10 9463 Lemma for ~ ordtype . Usi...
oi0 9464 Definition of the ordinal ...
oicl 9465 The order type of the well...
oif 9466 The order isomorphism of t...
oiiso2 9467 The order isomorphism of t...
ordtype 9468 For any set-like well-orde...
oiiniseg 9469 ` ran F ` is an initial se...
ordtype2 9470 For any set-like well-orde...
oiexg 9471 The order isomorphism on a...
oion 9472 The order type of the well...
oiiso 9473 The order isomorphism of t...
oien 9474 The order type of a well-o...
oieu 9475 Uniqueness of the unique o...
oismo 9476 When ` A ` is a subclass o...
oiid 9477 The order type of an ordin...
hartogslem1 9478 Lemma for ~ hartogs . (Co...
hartogslem2 9479 Lemma for ~ hartogs . (Co...
hartogs 9480 The class of ordinals domi...
wofib 9481 The only sets which are we...
wemaplem1 9482 Value of the lexicographic...
wemaplem2 9483 Lemma for ~ wemapso . Tra...
wemaplem3 9484 Lemma for ~ wemapso . Tra...
wemappo 9485 Construct lexicographic or...
wemapsolem 9486 Lemma for ~ wemapso . (Co...
wemapso 9487 Construct lexicographic or...
wemapso2lem 9488 Lemma for ~ wemapso2 . (C...
wemapso2 9489 An alternative to having a...
card2on 9490 The alternate definition o...
card2inf 9491 The alternate definition o...
harf 9494 Functionality of the Harto...
harcl 9495 Values of the Hartogs func...
harval 9496 Function value of the Hart...
elharval 9497 The Hartogs number of a se...
harndom 9498 The Hartogs number of a se...
harword 9499 Weak ordering property of ...
relwdom 9502 Weak dominance is a relati...
brwdom 9503 Property of weak dominance...
brwdomi 9504 Property of weak dominance...
brwdomn0 9505 Weak dominance over nonemp...
0wdom 9506 Any set weakly dominates t...
fowdom 9507 An onto function implies w...
wdomref 9508 Reflexivity of weak domina...
brwdom2 9509 Alternate characterization...
domwdom 9510 Weak dominance is implied ...
wdomtr 9511 Transitivity of weak domin...
wdomen1 9512 Equality-like theorem for ...
wdomen2 9513 Equality-like theorem for ...
wdompwdom 9514 Weak dominance strengthens...
canthwdom 9515 Cantor's Theorem, stated u...
wdom2d 9516 Deduce weak dominance from...
wdomd 9517 Deduce weak dominance from...
brwdom3 9518 Condition for weak dominan...
brwdom3i 9519 Weak dominance implies exi...
unwdomg 9520 Weak dominance of a (disjo...
xpwdomg 9521 Weak dominance of a Cartes...
wdomima2g 9522 A set is weakly dominant o...
wdomimag 9523 A set is weakly dominant o...
unxpwdom2 9524 Lemma for ~ unxpwdom . (C...
unxpwdom 9525 If a Cartesian product is ...
ixpiunwdom 9526 Describe an onto function ...
harwdom 9527 The value of the Hartogs f...
axreg2 9529 Axiom of Regularity expres...
zfregcl 9530 The Axiom of Regularity wi...
zfreg 9531 The Axiom of Regularity us...
elirrv 9532 The membership relation is...
elirr 9533 No class is a member of it...
elneq 9534 A class is not equal to an...
nelaneq 9535 A class is not an element ...
epinid0 9536 The membership relation an...
sucprcreg 9537 A class is equal to its su...
ruv 9538 The Russell class is equal...
ruALT 9539 Alternate proof of ~ ru , ...
disjcsn 9540 A class is disjoint from i...
zfregfr 9541 The membership relation is...
en2lp 9542 No class has 2-cycle membe...
elnanel 9543 Two classes are not elemen...
cnvepnep 9544 The membership (epsilon) r...
epnsym 9545 The membership (epsilon) r...
elnotel 9546 A class cannot be an eleme...
elnel 9547 A class cannot be an eleme...
en3lplem1 9548 Lemma for ~ en3lp . (Cont...
en3lplem2 9549 Lemma for ~ en3lp . (Cont...
en3lp 9550 No class has 3-cycle membe...
preleqg 9551 Equality of two unordered ...
preleq 9552 Equality of two unordered ...
preleqALT 9553 Alternate proof of ~ prele...
opthreg 9554 Theorem for alternate repr...
suc11reg 9555 The successor operation be...
dford2 9556 Assuming ~ ax-reg , an ord...
inf0 9557 Existence of ` _om ` impli...
inf1 9558 Variation of Axiom of Infi...
inf2 9559 Variation of Axiom of Infi...
inf3lema 9560 Lemma for our Axiom of Inf...
inf3lemb 9561 Lemma for our Axiom of Inf...
inf3lemc 9562 Lemma for our Axiom of Inf...
inf3lemd 9563 Lemma for our Axiom of Inf...
inf3lem1 9564 Lemma for our Axiom of Inf...
inf3lem2 9565 Lemma for our Axiom of Inf...
inf3lem3 9566 Lemma for our Axiom of Inf...
inf3lem4 9567 Lemma for our Axiom of Inf...
inf3lem5 9568 Lemma for our Axiom of Inf...
inf3lem6 9569 Lemma for our Axiom of Inf...
inf3lem7 9570 Lemma for our Axiom of Inf...
inf3 9571 Our Axiom of Infinity ~ ax...
infeq5i 9572 Half of ~ infeq5 . (Contr...
infeq5 9573 The statement "there exist...
zfinf 9575 Axiom of Infinity expresse...
axinf2 9576 A standard version of Axio...
zfinf2 9578 A standard version of the ...
omex 9579 The existence of omega (th...
axinf 9580 The first version of the A...
inf5 9581 The statement "there exist...
omelon 9582 Omega is an ordinal number...
dfom3 9583 The class of natural numbe...
elom3 9584 A simplification of ~ elom...
dfom4 9585 A simplification of ~ df-o...
dfom5 9586 ` _om ` is the smallest li...
oancom 9587 Ordinal addition is not co...
isfinite 9588 A set is finite iff it is ...
fict 9589 A finite set is countable ...
nnsdom 9590 A natural number is strict...
omenps 9591 Omega is equinumerous to a...
omensuc 9592 The set of natural numbers...
infdifsn 9593 Removing a singleton from ...
infdiffi 9594 Removing a finite set from...
unbnn3 9595 Any unbounded subset of na...
noinfep 9596 Using the Axiom of Regular...
cantnffval 9599 The value of the Cantor no...
cantnfdm 9600 The domain of the Cantor n...
cantnfvalf 9601 Lemma for ~ cantnf . The ...
cantnfs 9602 Elementhood in the set of ...
cantnfcl 9603 Basic properties of the or...
cantnfval 9604 The value of the Cantor no...
cantnfval2 9605 Alternate expression for t...
cantnfsuc 9606 The value of the recursive...
cantnfle 9607 A lower bound on the ` CNF...
cantnflt 9608 An upper bound on the part...
cantnflt2 9609 An upper bound on the ` CN...
cantnff 9610 The ` CNF ` function is a ...
cantnf0 9611 The value of the zero func...
cantnfrescl 9612 A function is finitely sup...
cantnfres 9613 The ` CNF ` function respe...
cantnfp1lem1 9614 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9615 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9616 Lemma for ~ cantnfp1 . (C...
cantnfp1 9617 If ` F ` is created by add...
oemapso 9618 The relation ` T ` is a st...
oemapval 9619 Value of the relation ` T ...
oemapvali 9620 If ` F < G ` , then there ...
cantnflem1a 9621 Lemma for ~ cantnf . (Con...
cantnflem1b 9622 Lemma for ~ cantnf . (Con...
cantnflem1c 9623 Lemma for ~ cantnf . (Con...
cantnflem1d 9624 Lemma for ~ cantnf . (Con...
cantnflem1 9625 Lemma for ~ cantnf . This...
cantnflem2 9626 Lemma for ~ cantnf . (Con...
cantnflem3 9627 Lemma for ~ cantnf . Here...
cantnflem4 9628 Lemma for ~ cantnf . Comp...
cantnf 9629 The Cantor Normal Form the...
oemapwe 9630 The lexicographic order on...
cantnffval2 9631 An alternate definition of...
cantnff1o 9632 Simplify the isomorphism o...
wemapwe 9633 Construct lexicographic or...
oef1o 9634 A bijection of the base se...
cnfcomlem 9635 Lemma for ~ cnfcom . (Con...
cnfcom 9636 Any ordinal ` B ` is equin...
cnfcom2lem 9637 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9638 Any nonzero ordinal ` B ` ...
cnfcom3lem 9639 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9640 Any infinite ordinal ` B `...
cnfcom3clem 9641 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9642 Wrap the construction of ~...
ttrcleq 9645 Equality theorem for trans...
nfttrcld 9646 Bound variable hypothesis ...
nfttrcl 9647 Bound variable hypothesis ...
relttrcl 9648 The transitive closure of ...
brttrcl 9649 Characterization of elemen...
brttrcl2 9650 Characterization of elemen...
ssttrcl 9651 If ` R ` is a relation, th...
ttrcltr 9652 The transitive closure of ...
ttrclresv 9653 The transitive closure of ...
ttrclco 9654 Composition law for the tr...
cottrcl 9655 Composition law for the tr...
ttrclss 9656 If ` R ` is a subclass of ...
dmttrcl 9657 The domain of a transitive...
rnttrcl 9658 The range of a transitive ...
ttrclexg 9659 If ` R ` is a set, then so...
dfttrcl2 9660 When ` R ` is a set and a ...
ttrclselem1 9661 Lemma for ~ ttrclse . Sho...
ttrclselem2 9662 Lemma for ~ ttrclse . Sho...
ttrclse 9663 If ` R ` is set-like over ...
trcl 9664 For any set ` A ` , show t...
tz9.1 9665 Every set has a transitive...
tz9.1c 9666 Alternate expression for t...
epfrs 9667 The strong form of the Axi...
zfregs 9668 The strong form of the Axi...
zfregs2 9669 Alternate strong form of t...
setind 9670 Set (epsilon) induction. ...
setind2 9671 Set (epsilon) induction, s...
tcvalg 9674 Value of the transitive cl...
tcid 9675 Defining property of the t...
tctr 9676 Defining property of the t...
tcmin 9677 Defining property of the t...
tc2 9678 A variant of the definitio...
tcsni 9679 The transitive closure of ...
tcss 9680 The transitive closure fun...
tcel 9681 The transitive closure fun...
tcidm 9682 The transitive closure fun...
tc0 9683 The transitive closure of ...
tc00 9684 The transitive closure is ...
frmin 9685 Every (possibly proper) su...
frind 9686 A subclass of a well-found...
frinsg 9687 Well-Founded Induction Sch...
frins 9688 Well-Founded Induction Sch...
frins2f 9689 Well-Founded Induction sch...
frins2 9690 Well-Founded Induction sch...
frins3 9691 Well-Founded Induction sch...
frr3g 9692 Functions defined by well-...
frrlem15 9693 Lemma for general well-fou...
frrlem16 9694 Lemma for general well-fou...
frr1 9695 Law of general well-founde...
frr2 9696 Law of general well-founde...
frr3 9697 Law of general well-founde...
r1funlim 9702 The cumulative hierarchy o...
r1fnon 9703 The cumulative hierarchy o...
r10 9704 Value of the cumulative hi...
r1sucg 9705 Value of the cumulative hi...
r1suc 9706 Value of the cumulative hi...
r1limg 9707 Value of the cumulative hi...
r1lim 9708 Value of the cumulative hi...
r1fin 9709 The first ` _om ` levels o...
r1sdom 9710 Each stage in the cumulati...
r111 9711 The cumulative hierarchy i...
r1tr 9712 The cumulative hierarchy o...
r1tr2 9713 The union of a cumulative ...
r1ordg 9714 Ordering relation for the ...
r1ord3g 9715 Ordering relation for the ...
r1ord 9716 Ordering relation for the ...
r1ord2 9717 Ordering relation for the ...
r1ord3 9718 Ordering relation for the ...
r1sssuc 9719 The value of the cumulativ...
r1pwss 9720 Each set of the cumulative...
r1sscl 9721 Each set of the cumulative...
r1val1 9722 The value of the cumulativ...
tz9.12lem1 9723 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9724 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9725 Lemma for ~ tz9.12 . (Con...
tz9.12 9726 A set is well-founded if a...
tz9.13 9727 Every set is well-founded,...
tz9.13g 9728 Every set is well-founded,...
rankwflemb 9729 Two ways of saying a set i...
rankf 9730 The domain and codomain of...
rankon 9731 The rank of a set is an or...
r1elwf 9732 Any member of the cumulati...
rankvalb 9733 Value of the rank function...
rankr1ai 9734 One direction of ~ rankr1a...
rankvaln 9735 Value of the rank function...
rankidb 9736 Identity law for the rank ...
rankdmr1 9737 A rank is a member of the ...
rankr1ag 9738 A version of ~ rankr1a tha...
rankr1bg 9739 A relationship between ran...
r1rankidb 9740 Any set is a subset of the...
r1elssi 9741 The range of the ` R1 ` fu...
r1elss 9742 The range of the ` R1 ` fu...
pwwf 9743 A power set is well-founde...
sswf 9744 A subset of a well-founded...
snwf 9745 A singleton is well-founde...
unwf 9746 A binary union is well-fou...
prwf 9747 An unordered pair is well-...
opwf 9748 An ordered pair is well-fo...
unir1 9749 The cumulative hierarchy o...
jech9.3 9750 Every set belongs to some ...
rankwflem 9751 Every set is well-founded,...
rankval 9752 Value of the rank function...
rankvalg 9753 Value of the rank function...
rankval2 9754 Value of an alternate defi...
uniwf 9755 A union is well-founded if...
rankr1clem 9756 Lemma for ~ rankr1c . (Co...
rankr1c 9757 A relationship between the...
rankidn 9758 A relationship between the...
rankpwi 9759 The rank of a power set. ...
rankelb 9760 The membership relation is...
wfelirr 9761 A well-founded set is not ...
rankval3b 9762 The value of the rank func...
ranksnb 9763 The rank of a singleton. ...
rankonidlem 9764 Lemma for ~ rankonid . (C...
rankonid 9765 The rank of an ordinal num...
onwf 9766 The ordinals are all well-...
onssr1 9767 Initial segments of the or...
rankr1g 9768 A relationship between the...
rankid 9769 Identity law for the rank ...
rankr1 9770 A relationship between the...
ssrankr1 9771 A relationship between an ...
rankr1a 9772 A relationship between ran...
r1val2 9773 The value of the cumulativ...
r1val3 9774 The value of the cumulativ...
rankel 9775 The membership relation is...
rankval3 9776 The value of the rank func...
bndrank 9777 Any class whose elements h...
unbndrank 9778 The elements of a proper c...
rankpw 9779 The rank of a power set. ...
ranklim 9780 The rank of a set belongs ...
r1pw 9781 A stronger property of ` R...
r1pwALT 9782 Alternate shorter proof of...
r1pwcl 9783 The cumulative hierarchy o...
rankssb 9784 The subset relation is inh...
rankss 9785 The subset relation is inh...
rankunb 9786 The rank of the union of t...
rankprb 9787 The rank of an unordered p...
rankopb 9788 The rank of an ordered pai...
rankuni2b 9789 The value of the rank func...
ranksn 9790 The rank of a singleton. ...
rankuni2 9791 The rank of a union. Part...
rankun 9792 The rank of the union of t...
rankpr 9793 The rank of an unordered p...
rankop 9794 The rank of an ordered pai...
r1rankid 9795 Any set is a subset of the...
rankeq0b 9796 A set is empty iff its ran...
rankeq0 9797 A set is empty iff its ran...
rankr1id 9798 The rank of the hierarchy ...
rankuni 9799 The rank of a union. Part...
rankr1b 9800 A relationship between ran...
ranksuc 9801 The rank of a successor. ...
rankuniss 9802 Upper bound of the rank of...
rankval4 9803 The rank of a set is the s...
rankbnd 9804 The rank of a set is bound...
rankbnd2 9805 The rank of a set is bound...
rankc1 9806 A relationship that can be...
rankc2 9807 A relationship that can be...
rankelun 9808 Rank membership is inherit...
rankelpr 9809 Rank membership is inherit...
rankelop 9810 Rank membership is inherit...
rankxpl 9811 A lower bound on the rank ...
rankxpu 9812 An upper bound on the rank...
rankfu 9813 An upper bound on the rank...
rankmapu 9814 An upper bound on the rank...
rankxplim 9815 The rank of a Cartesian pr...
rankxplim2 9816 If the rank of a Cartesian...
rankxplim3 9817 The rank of a Cartesian pr...
rankxpsuc 9818 The rank of a Cartesian pr...
tcwf 9819 The transitive closure fun...
tcrank 9820 This theorem expresses two...
scottex 9821 Scott's trick collects all...
scott0 9822 Scott's trick collects all...
scottexs 9823 Theorem scheme version of ...
scott0s 9824 Theorem scheme version of ...
cplem1 9825 Lemma for the Collection P...
cplem2 9826 Lemma for the Collection P...
cp 9827 Collection Principle. Thi...
bnd 9828 A very strong generalizati...
bnd2 9829 A variant of the Boundedne...
kardex 9830 The collection of all sets...
karden 9831 If we allow the Axiom of R...
htalem 9832 Lemma for defining an emul...
hta 9833 A ZFC emulation of Hilbert...
djueq12 9840 Equality theorem for disjo...
djueq1 9841 Equality theorem for disjo...
djueq2 9842 Equality theorem for disjo...
nfdju 9843 Bound-variable hypothesis ...
djuex 9844 The disjoint union of sets...
djuexb 9845 The disjoint union of two ...
djulcl 9846 Left closure of disjoint u...
djurcl 9847 Right closure of disjoint ...
djulf1o 9848 The left injection functio...
djurf1o 9849 The right injection functi...
inlresf 9850 The left injection restric...
inlresf1 9851 The left injection restric...
inrresf 9852 The right injection restri...
inrresf1 9853 The right injection restri...
djuin 9854 The images of any classes ...
djur 9855 A member of a disjoint uni...
djuss 9856 A disjoint union is a subc...
djuunxp 9857 The union of a disjoint un...
djuexALT 9858 Alternate proof of ~ djuex...
eldju1st 9859 The first component of an ...
eldju2ndl 9860 The second component of an...
eldju2ndr 9861 The second component of an...
djuun 9862 The disjoint union of two ...
1stinl 9863 The first component of the...
2ndinl 9864 The second component of th...
1stinr 9865 The first component of the...
2ndinr 9866 The second component of th...
updjudhf 9867 The mapping of an element ...
updjudhcoinlf 9868 The composition of the map...
updjudhcoinrg 9869 The composition of the map...
updjud 9870 Universal property of the ...
cardf2 9879 The cardinality function i...
cardon 9880 The cardinal number of a s...
isnum2 9881 A way to express well-orde...
isnumi 9882 A set equinumerous to an o...
ennum 9883 Equinumerous sets are equi...
finnum 9884 Every finite set is numera...
onenon 9885 Every ordinal number is nu...
tskwe 9886 A Tarski set is well-order...
xpnum 9887 The cartesian product of n...
cardval3 9888 An alternate definition of...
cardid2 9889 Any numerable set is equin...
isnum3 9890 A set is numerable iff it ...
oncardval 9891 The value of the cardinal ...
oncardid 9892 Any ordinal number is equi...
cardonle 9893 The cardinal of an ordinal...
card0 9894 The cardinality of the emp...
cardidm 9895 The cardinality function i...
oncard 9896 A set is a cardinal number...
ficardom 9897 The cardinal number of a f...
ficardid 9898 A finite set is equinumero...
cardnn 9899 The cardinality of a natur...
cardnueq0 9900 The empty set is the only ...
cardne 9901 No member of a cardinal nu...
carden2a 9902 If two sets have equal non...
carden2b 9903 If two sets are equinumero...
card1 9904 A set has cardinality one ...
cardsn 9905 A singleton has cardinalit...
carddomi2 9906 Two sets have the dominanc...
sdomsdomcardi 9907 A set strictly dominates i...
cardlim 9908 An infinite cardinal is a ...
cardsdomelir 9909 A cardinal strictly domina...
cardsdomel 9910 A cardinal strictly domina...
iscard 9911 Two ways to express the pr...
iscard2 9912 Two ways to express the pr...
carddom2 9913 Two numerable sets have th...
harcard 9914 The class of ordinal numbe...
cardprclem 9915 Lemma for ~ cardprc . (Co...
cardprc 9916 The class of all cardinal ...
carduni 9917 The union of a set of card...
cardiun 9918 The indexed union of a set...
cardennn 9919 If ` A ` is equinumerous t...
cardsucinf 9920 The cardinality of the suc...
cardsucnn 9921 The cardinality of the suc...
cardom 9922 The set of natural numbers...
carden2 9923 Two numerable sets are equ...
cardsdom2 9924 A numerable set is strictl...
domtri2 9925 Trichotomy of dominance fo...
nnsdomel 9926 Strict dominance and eleme...
cardval2 9927 An alternate version of th...
isinffi 9928 An infinite set contains s...
fidomtri 9929 Trichotomy of dominance wi...
fidomtri2 9930 Trichotomy of dominance wi...
harsdom 9931 The Hartogs number of a we...
onsdom 9932 Any well-orderable set is ...
harval2 9933 An alternate expression fo...
harsucnn 9934 The next cardinal after a ...
cardmin2 9935 The smallest ordinal that ...
pm54.43lem 9936 In Theorem *54.43 of [Whit...
pm54.43 9937 Theorem *54.43 of [Whitehe...
enpr2 9938 An unordered pair with dis...
pr2nelemOLD 9939 Obsolete version of ~ enpr...
pr2ne 9940 If an unordered pair has t...
pr2neOLD 9941 Obsolete version of ~ pr2n...
prdom2 9942 An unordered pair has at m...
en2eqpr 9943 Building a set with two el...
en2eleq 9944 Express a set of pair card...
en2other2 9945 Taking the other element t...
dif1card 9946 The cardinality of a nonem...
leweon 9947 Lexicographical order is a...
r0weon 9948 A set-like well-ordering o...
infxpenlem 9949 Lemma for ~ infxpen . (Co...
infxpen 9950 Every infinite ordinal is ...
xpomen 9951 The Cartesian product of o...
xpct 9952 The cartesian product of t...
infxpidm2 9953 Every infinite well-ordera...
infxpenc 9954 A canonical version of ~ i...
infxpenc2lem1 9955 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 9956 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 9957 Lemma for ~ infxpenc2 . (...
infxpenc2 9958 Existence form of ~ infxpe...
iunmapdisj 9959 The union ` U_ n e. C ( A ...
fseqenlem1 9960 Lemma for ~ fseqen . (Con...
fseqenlem2 9961 Lemma for ~ fseqen . (Con...
fseqdom 9962 One half of ~ fseqen . (C...
fseqen 9963 A set that is equinumerous...
infpwfidom 9964 The collection of finite s...
dfac8alem 9965 Lemma for ~ dfac8a . If t...
dfac8a 9966 Numeration theorem: every ...
dfac8b 9967 The well-ordering theorem:...
dfac8clem 9968 Lemma for ~ dfac8c . (Con...
dfac8c 9969 If the union of a set is w...
ac10ct 9970 A proof of the well-orderi...
ween 9971 A set is numerable iff it ...
ac5num 9972 A version of ~ ac5b with t...
ondomen 9973 If a set is dominated by a...
numdom 9974 A set dominated by a numer...
ssnum 9975 A subset of a numerable se...
onssnum 9976 All subsets of the ordinal...
indcardi 9977 Indirect strong induction ...
acnrcl 9978 Reverse closure for the ch...
acneq 9979 Equality theorem for the c...
isacn 9980 The property of being a ch...
acni 9981 The property of being a ch...
acni2 9982 The property of being a ch...
acni3 9983 The property of being a ch...
acnlem 9984 Construct a mapping satisf...
numacn 9985 A well-orderable set has c...
finacn 9986 Every set has finite choic...
acndom 9987 A set with long choice seq...
acnnum 9988 A set ` X ` which has choi...
acnen 9989 The class of choice sets o...
acndom2 9990 A set smaller than one wit...
acnen2 9991 The class of sets with cho...
fodomacn 9992 A version of ~ fodom that ...
fodomnum 9993 A version of ~ fodom that ...
fonum 9994 A surjection maps numerabl...
numwdom 9995 A surjection maps numerabl...
fodomfi2 9996 Onto functions define domi...
wdomfil 9997 Weak dominance agrees with...
infpwfien 9998 Any infinite well-orderabl...
inffien 9999 The set of finite intersec...
wdomnumr 10000 Weak dominance agrees with...
alephfnon 10001 The aleph function is a fu...
aleph0 10002 The first infinite cardina...
alephlim 10003 Value of the aleph functio...
alephsuc 10004 Value of the aleph functio...
alephon 10005 An aleph is an ordinal num...
alephcard 10006 Every aleph is a cardinal ...
alephnbtwn 10007 No cardinal can be sandwic...
alephnbtwn2 10008 No set has equinumerosity ...
alephordilem1 10009 Lemma for ~ alephordi . (...
alephordi 10010 Strict ordering property o...
alephord 10011 Ordering property of the a...
alephord2 10012 Ordering property of the a...
alephord2i 10013 Ordering property of the a...
alephord3 10014 Ordering property of the a...
alephsucdom 10015 A set dominated by an alep...
alephsuc2 10016 An alternate representatio...
alephdom 10017 Relationship between inclu...
alephgeom 10018 Every aleph is greater tha...
alephislim 10019 Every aleph is a limit ord...
aleph11 10020 The aleph function is one-...
alephf1 10021 The aleph function is a on...
alephsdom 10022 If an ordinal is smaller t...
alephdom2 10023 A dominated initial ordina...
alephle 10024 The argument of the aleph ...
cardaleph 10025 Given any transfinite card...
cardalephex 10026 Every transfinite cardinal...
infenaleph 10027 An infinite numerable set ...
isinfcard 10028 Two ways to express the pr...
iscard3 10029 Two ways to express the pr...
cardnum 10030 Two ways to express the cl...
alephinit 10031 An infinite initial ordina...
carduniima 10032 The union of the image of ...
cardinfima 10033 If a mapping to cardinals ...
alephiso 10034 Aleph is an order isomorph...
alephprc 10035 The class of all transfini...
alephsson 10036 The class of transfinite c...
unialeph 10037 The union of the class of ...
alephsmo 10038 The aleph function is stri...
alephf1ALT 10039 Alternate proof of ~ aleph...
alephfplem1 10040 Lemma for ~ alephfp . (Co...
alephfplem2 10041 Lemma for ~ alephfp . (Co...
alephfplem3 10042 Lemma for ~ alephfp . (Co...
alephfplem4 10043 Lemma for ~ alephfp . (Co...
alephfp 10044 The aleph function has a f...
alephfp2 10045 The aleph function has at ...
alephval3 10046 An alternate way to expres...
alephsucpw2 10047 The power set of an aleph ...
mappwen 10048 Power rule for cardinal ar...
finnisoeu 10049 A finite totally ordered s...
iunfictbso 10050 Countability of a countabl...
aceq1 10053 Equivalence of two version...
aceq0 10054 Equivalence of two version...
aceq2 10055 Equivalence of two version...
aceq3lem 10056 Lemma for ~ dfac3 . (Cont...
dfac3 10057 Equivalence of two version...
dfac4 10058 Equivalence of two version...
dfac5lem1 10059 Lemma for ~ dfac5 . (Cont...
dfac5lem2 10060 Lemma for ~ dfac5 . (Cont...
dfac5lem3 10061 Lemma for ~ dfac5 . (Cont...
dfac5lem4 10062 Lemma for ~ dfac5 . (Cont...
dfac5lem5 10063 Lemma for ~ dfac5 . (Cont...
dfac5 10064 Equivalence of two version...
dfac2a 10065 Our Axiom of Choice (in th...
dfac2b 10066 Axiom of Choice (first for...
dfac2 10067 Axiom of Choice (first for...
dfac7 10068 Equivalence of the Axiom o...
dfac0 10069 Equivalence of two version...
dfac1 10070 Equivalence of two version...
dfac8 10071 A proof of the equivalency...
dfac9 10072 Equivalence of the axiom o...
dfac10 10073 Axiom of Choice equivalent...
dfac10c 10074 Axiom of Choice equivalent...
dfac10b 10075 Axiom of Choice equivalent...
acacni 10076 A choice equivalent: every...
dfacacn 10077 A choice equivalent: every...
dfac13 10078 The axiom of choice holds ...
dfac12lem1 10079 Lemma for ~ dfac12 . (Con...
dfac12lem2 10080 Lemma for ~ dfac12 . (Con...
dfac12lem3 10081 Lemma for ~ dfac12 . (Con...
dfac12r 10082 The axiom of choice holds ...
dfac12k 10083 Equivalence of ~ dfac12 an...
dfac12a 10084 The axiom of choice holds ...
dfac12 10085 The axiom of choice holds ...
kmlem1 10086 Lemma for 5-quantifier AC ...
kmlem2 10087 Lemma for 5-quantifier AC ...
kmlem3 10088 Lemma for 5-quantifier AC ...
kmlem4 10089 Lemma for 5-quantifier AC ...
kmlem5 10090 Lemma for 5-quantifier AC ...
kmlem6 10091 Lemma for 5-quantifier AC ...
kmlem7 10092 Lemma for 5-quantifier AC ...
kmlem8 10093 Lemma for 5-quantifier AC ...
kmlem9 10094 Lemma for 5-quantifier AC ...
kmlem10 10095 Lemma for 5-quantifier AC ...
kmlem11 10096 Lemma for 5-quantifier AC ...
kmlem12 10097 Lemma for 5-quantifier AC ...
kmlem13 10098 Lemma for 5-quantifier AC ...
kmlem14 10099 Lemma for 5-quantifier AC ...
kmlem15 10100 Lemma for 5-quantifier AC ...
kmlem16 10101 Lemma for 5-quantifier AC ...
dfackm 10102 Equivalence of the Axiom o...
undjudom 10103 Cardinal addition dominate...
endjudisj 10104 Equinumerosity of a disjoi...
djuen 10105 Disjoint unions of equinum...
djuenun 10106 Disjoint union is equinume...
dju1en 10107 Cardinal addition with car...
dju1dif 10108 Adding and subtracting one...
dju1p1e2 10109 1+1=2 for cardinal number ...
dju1p1e2ALT 10110 Alternate proof of ~ dju1p...
dju0en 10111 Cardinal addition with car...
xp2dju 10112 Two times a cardinal numbe...
djucomen 10113 Commutative law for cardin...
djuassen 10114 Associative law for cardin...
xpdjuen 10115 Cardinal multiplication di...
mapdjuen 10116 Sum of exponents law for c...
pwdjuen 10117 Sum of exponents law for c...
djudom1 10118 Ordering law for cardinal ...
djudom2 10119 Ordering law for cardinal ...
djudoml 10120 A set is dominated by its ...
djuxpdom 10121 Cartesian product dominate...
djufi 10122 The disjoint union of two ...
cdainflem 10123 Any partition of omega int...
djuinf 10124 A set is infinite iff the ...
infdju1 10125 An infinite set is equinum...
pwdju1 10126 The sum of a powerset with...
pwdjuidm 10127 If the natural numbers inj...
djulepw 10128 If ` A ` is idempotent und...
onadju 10129 The cardinal and ordinal s...
cardadju 10130 The cardinal sum is equinu...
djunum 10131 The disjoint union of two ...
unnum 10132 The union of two numerable...
nnadju 10133 The cardinal and ordinal s...
nnadjuALT 10134 Shorter proof of ~ nnadju ...
ficardadju 10135 The disjoint union of fini...
ficardun 10136 The cardinality of the uni...
ficardunOLD 10137 Obsolete version of ~ fica...
ficardun2 10138 The cardinality of the uni...
ficardun2OLD 10139 Obsolete version of ~ fica...
pwsdompw 10140 Lemma for ~ domtriom . Th...
unctb 10141 The union of two countable...
infdjuabs 10142 Absorption law for additio...
infunabs 10143 An infinite set is equinum...
infdju 10144 The sum of two cardinal nu...
infdif 10145 The cardinality of an infi...
infdif2 10146 Cardinality ordering for a...
infxpdom 10147 Dominance law for multipli...
infxpabs 10148 Absorption law for multipl...
infunsdom1 10149 The union of two sets that...
infunsdom 10150 The union of two sets that...
infxp 10151 Absorption law for multipl...
pwdjudom 10152 A property of dominance ov...
infpss 10153 Every infinite set has an ...
infmap2 10154 An exponentiation law for ...
ackbij2lem1 10155 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 10156 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 10157 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 10158 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 10159 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 10160 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 10161 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 10162 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 10163 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 10164 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 10165 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 10166 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 10167 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 10168 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 10169 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 10170 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 10171 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 10172 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 10173 Lemma for ~ ackbij1 . (Co...
ackbij1 10174 The Ackermann bijection, p...
ackbij1b 10175 The Ackermann bijection, p...
ackbij2lem2 10176 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 10177 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 10178 Lemma for ~ ackbij2 . (Co...
ackbij2 10179 The Ackermann bijection, p...
r1om 10180 The set of hereditarily fi...
fictb 10181 A set is countable iff its...
cflem 10182 A lemma used to simplify c...
cfval 10183 Value of the cofinality fu...
cff 10184 Cofinality is a function o...
cfub 10185 An upper bound on cofinali...
cflm 10186 Value of the cofinality fu...
cf0 10187 Value of the cofinality fu...
cardcf 10188 Cofinality is a cardinal n...
cflecard 10189 Cofinality is bounded by t...
cfle 10190 Cofinality is bounded by i...
cfon 10191 The cofinality of any set ...
cfeq0 10192 Only the ordinal zero has ...
cfsuc 10193 Value of the cofinality fu...
cff1 10194 There is always a map from...
cfflb 10195 If there is a cofinal map ...
cfval2 10196 Another expression for the...
coflim 10197 A simpler expression for t...
cflim3 10198 Another expression for the...
cflim2 10199 The cofinality function is...
cfom 10200 Value of the cofinality fu...
cfss 10201 There is a cofinal subset ...
cfslb 10202 Any cofinal subset of ` A ...
cfslbn 10203 Any subset of ` A ` smalle...
cfslb2n 10204 Any small collection of sm...
cofsmo 10205 Any cofinal map implies th...
cfsmolem 10206 Lemma for ~ cfsmo . (Cont...
cfsmo 10207 The map in ~ cff1 can be a...
cfcoflem 10208 Lemma for ~ cfcof , showin...
coftr 10209 If there is a cofinal map ...
cfcof 10210 If there is a cofinal map ...
cfidm 10211 The cofinality function is...
alephsing 10212 The cofinality of a limit ...
sornom 10213 The range of a single-step...
isfin1a 10228 Definition of a Ia-finite ...
fin1ai 10229 Property of a Ia-finite se...
isfin2 10230 Definition of a II-finite ...
fin2i 10231 Property of a II-finite se...
isfin3 10232 Definition of a III-finite...
isfin4 10233 Definition of a IV-finite ...
fin4i 10234 Infer that a set is IV-inf...
isfin5 10235 Definition of a V-finite s...
isfin6 10236 Definition of a VI-finite ...
isfin7 10237 Definition of a VII-finite...
sdom2en01 10238 A set with less than two e...
infpssrlem1 10239 Lemma for ~ infpssr . (Co...
infpssrlem2 10240 Lemma for ~ infpssr . (Co...
infpssrlem3 10241 Lemma for ~ infpssr . (Co...
infpssrlem4 10242 Lemma for ~ infpssr . (Co...
infpssrlem5 10243 Lemma for ~ infpssr . (Co...
infpssr 10244 Dedekind infinity implies ...
fin4en1 10245 Dedekind finite is a cardi...
ssfin4 10246 Dedekind finite sets have ...
domfin4 10247 A set dominated by a Dedek...
ominf4 10248 ` _om ` is Dedekind infini...
infpssALT 10249 Alternate proof of ~ infps...
isfin4-2 10250 Alternate definition of IV...
isfin4p1 10251 Alternate definition of IV...
fin23lem7 10252 Lemma for ~ isfin2-2 . Th...
fin23lem11 10253 Lemma for ~ isfin2-2 . (C...
fin2i2 10254 A II-finite set contains m...
isfin2-2 10255 ` Fin2 ` expressed in term...
ssfin2 10256 A subset of a II-finite se...
enfin2i 10257 II-finiteness is a cardina...
fin23lem24 10258 Lemma for ~ fin23 . In a ...
fincssdom 10259 In a chain of finite sets,...
fin23lem25 10260 Lemma for ~ fin23 . In a ...
fin23lem26 10261 Lemma for ~ fin23lem22 . ...
fin23lem23 10262 Lemma for ~ fin23lem22 . ...
fin23lem22 10263 Lemma for ~ fin23 but coul...
fin23lem27 10264 The mapping constructed in...
isfin3ds 10265 Property of a III-finite s...
ssfin3ds 10266 A subset of a III-finite s...
fin23lem12 10267 The beginning of the proof...
fin23lem13 10268 Lemma for ~ fin23 . Each ...
fin23lem14 10269 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10270 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10271 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10272 Lemma for ~ fin23 . The f...
fin23lem20 10273 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10274 Lemma for ~ fin23 . By ? ...
fin23lem21 10275 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10276 Lemma for ~ fin23 . The r...
fin23lem29 10277 Lemma for ~ fin23 . The r...
fin23lem30 10278 Lemma for ~ fin23 . The r...
fin23lem31 10279 Lemma for ~ fin23 . The r...
fin23lem32 10280 Lemma for ~ fin23 . Wrap ...
fin23lem33 10281 Lemma for ~ fin23 . Disch...
fin23lem34 10282 Lemma for ~ fin23 . Estab...
fin23lem35 10283 Lemma for ~ fin23 . Stric...
fin23lem36 10284 Lemma for ~ fin23 . Weak ...
fin23lem38 10285 Lemma for ~ fin23 . The c...
fin23lem39 10286 Lemma for ~ fin23 . Thus,...
fin23lem40 10287 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10288 Lemma for ~ fin23 . A set...
isf32lem1 10289 Lemma for ~ isfin3-2 . De...
isf32lem2 10290 Lemma for ~ isfin3-2 . No...
isf32lem3 10291 Lemma for ~ isfin3-2 . Be...
isf32lem4 10292 Lemma for ~ isfin3-2 . Be...
isf32lem5 10293 Lemma for ~ isfin3-2 . Th...
isf32lem6 10294 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10295 Lemma for ~ isfin3-2 . Di...
isf32lem8 10296 Lemma for ~ isfin3-2 . K ...
isf32lem9 10297 Lemma for ~ isfin3-2 . Co...
isf32lem10 10298 Lemma for isfin3-2 . Writ...
isf32lem11 10299 Lemma for ~ isfin3-2 . Re...
isf32lem12 10300 Lemma for ~ isfin3-2 . (C...
isfin32i 10301 One half of ~ isfin3-2 . ...
isf33lem 10302 Lemma for ~ isfin3-3 . (C...
isfin3-2 10303 Weakly Dedekind-infinite s...
isfin3-3 10304 Weakly Dedekind-infinite s...
fin33i 10305 Inference from ~ isfin3-3 ...
compsscnvlem 10306 Lemma for ~ compsscnv . (...
compsscnv 10307 Complementation on a power...
isf34lem1 10308 Lemma for ~ isfin3-4 . (C...
isf34lem2 10309 Lemma for ~ isfin3-4 . (C...
compssiso 10310 Complementation is an anti...
isf34lem3 10311 Lemma for ~ isfin3-4 . (C...
compss 10312 Express image under of the...
isf34lem4 10313 Lemma for ~ isfin3-4 . (C...
isf34lem5 10314 Lemma for ~ isfin3-4 . (C...
isf34lem7 10315 Lemma for ~ isfin3-4 . (C...
isf34lem6 10316 Lemma for ~ isfin3-4 . (C...
fin34i 10317 Inference from ~ isfin3-4 ...
isfin3-4 10318 Weakly Dedekind-infinite s...
fin11a 10319 Every I-finite set is Ia-f...
enfin1ai 10320 Ia-finiteness is a cardina...
isfin1-2 10321 A set is finite in the usu...
isfin1-3 10322 A set is I-finite iff ever...
isfin1-4 10323 A set is I-finite iff ever...
dffin1-5 10324 Compact quantifier-free ve...
fin23 10325 Every II-finite set (every...
fin34 10326 Every III-finite set is IV...
isfin5-2 10327 Alternate definition of V-...
fin45 10328 Every IV-finite set is V-f...
fin56 10329 Every V-finite set is VI-f...
fin17 10330 Every I-finite set is VII-...
fin67 10331 Every VI-finite set is VII...
isfin7-2 10332 A set is VII-finite iff it...
fin71num 10333 A well-orderable set is VI...
dffin7-2 10334 Class form of ~ isfin7-2 ....
dfacfin7 10335 Axiom of Choice equivalent...
fin1a2lem1 10336 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10337 Lemma for ~ fin1a2 . The ...
fin1a2lem3 10338 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10339 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10340 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10341 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10342 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10343 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10344 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10345 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10346 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10347 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10348 Lemma for ~ fin1a2 . (Con...
fin12 10349 Weak theorem which skips I...
fin1a2s 10350 An II-infinite set can hav...
fin1a2 10351 Every Ia-finite set is II-...
itunifval 10352 Function value of iterated...
itunifn 10353 Functionality of the itera...
ituni0 10354 A zero-fold iterated union...
itunisuc 10355 Successor iterated union. ...
itunitc1 10356 Each union iterate is a me...
itunitc 10357 The union of all union ite...
ituniiun 10358 Unwrap an iterated union f...
hsmexlem7 10359 Lemma for ~ hsmex . Prope...
hsmexlem8 10360 Lemma for ~ hsmex . Prope...
hsmexlem9 10361 Lemma for ~ hsmex . Prope...
hsmexlem1 10362 Lemma for ~ hsmex . Bound...
hsmexlem2 10363 Lemma for ~ hsmex . Bound...
hsmexlem3 10364 Lemma for ~ hsmex . Clear...
hsmexlem4 10365 Lemma for ~ hsmex . The c...
hsmexlem5 10366 Lemma for ~ hsmex . Combi...
hsmexlem6 10367 Lemma for ~ hsmex . (Cont...
hsmex 10368 The collection of heredita...
hsmex2 10369 The set of hereditary size...
hsmex3 10370 The set of hereditary size...
axcc2lem 10372 Lemma for ~ axcc2 . (Cont...
axcc2 10373 A possibly more useful ver...
axcc3 10374 A possibly more useful ver...
axcc4 10375 A version of ~ axcc3 that ...
acncc 10376 An ~ ax-cc equivalent: eve...
axcc4dom 10377 Relax the constraint on ~ ...
domtriomlem 10378 Lemma for ~ domtriom . (C...
domtriom 10379 Trichotomy of equinumerosi...
fin41 10380 Under countable choice, th...
dominf 10381 A nonempty set that is a s...
dcomex 10383 The Axiom of Dependent Cho...
axdc2lem 10384 Lemma for ~ axdc2 . We co...
axdc2 10385 An apparent strengthening ...
axdc3lem 10386 The class ` S ` of finite ...
axdc3lem2 10387 Lemma for ~ axdc3 . We ha...
axdc3lem3 10388 Simple substitution lemma ...
axdc3lem4 10389 Lemma for ~ axdc3 . We ha...
axdc3 10390 Dependent Choice. Axiom D...
axdc4lem 10391 Lemma for ~ axdc4 . (Cont...
axdc4 10392 A more general version of ...
axcclem 10393 Lemma for ~ axcc . (Contr...
axcc 10394 Although CC can be proven ...
zfac 10396 Axiom of Choice expressed ...
ac2 10397 Axiom of Choice equivalent...
ac3 10398 Axiom of Choice using abbr...
axac3 10400 This theorem asserts that ...
ackm 10401 A remarkable equivalent to...
axac2 10402 Derive ~ ax-ac2 from ~ ax-...
axac 10403 Derive ~ ax-ac from ~ ax-a...
axaci 10404 Apply a choice equivalent....
cardeqv 10405 All sets are well-orderabl...
numth3 10406 All sets are well-orderabl...
numth2 10407 Numeration theorem: any se...
numth 10408 Numeration theorem: every ...
ac7 10409 An Axiom of Choice equival...
ac7g 10410 An Axiom of Choice equival...
ac4 10411 Equivalent of Axiom of Cho...
ac4c 10412 Equivalent of Axiom of Cho...
ac5 10413 An Axiom of Choice equival...
ac5b 10414 Equivalent of Axiom of Cho...
ac6num 10415 A version of ~ ac6 which t...
ac6 10416 Equivalent of Axiom of Cho...
ac6c4 10417 Equivalent of Axiom of Cho...
ac6c5 10418 Equivalent of Axiom of Cho...
ac9 10419 An Axiom of Choice equival...
ac6s 10420 Equivalent of Axiom of Cho...
ac6n 10421 Equivalent of Axiom of Cho...
ac6s2 10422 Generalization of the Axio...
ac6s3 10423 Generalization of the Axio...
ac6sg 10424 ~ ac6s with sethood as ant...
ac6sf 10425 Version of ~ ac6 with boun...
ac6s4 10426 Generalization of the Axio...
ac6s5 10427 Generalization of the Axio...
ac8 10428 An Axiom of Choice equival...
ac9s 10429 An Axiom of Choice equival...
numthcor 10430 Any set is strictly domina...
weth 10431 Well-ordering theorem: any...
zorn2lem1 10432 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10433 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10434 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10435 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10436 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10437 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10438 Lemma for ~ zorn2 . (Cont...
zorn2g 10439 Zorn's Lemma of [Monk1] p....
zorng 10440 Zorn's Lemma. If the unio...
zornn0g 10441 Variant of Zorn's lemma ~ ...
zorn2 10442 Zorn's Lemma of [Monk1] p....
zorn 10443 Zorn's Lemma. If the unio...
zornn0 10444 Variant of Zorn's lemma ~ ...
ttukeylem1 10445 Lemma for ~ ttukey . Expa...
ttukeylem2 10446 Lemma for ~ ttukey . A pr...
ttukeylem3 10447 Lemma for ~ ttukey . (Con...
ttukeylem4 10448 Lemma for ~ ttukey . (Con...
ttukeylem5 10449 Lemma for ~ ttukey . The ...
ttukeylem6 10450 Lemma for ~ ttukey . (Con...
ttukeylem7 10451 Lemma for ~ ttukey . (Con...
ttukey2g 10452 The Teichmüller-Tukey...
ttukeyg 10453 The Teichmüller-Tukey...
ttukey 10454 The Teichmüller-Tukey...
axdclem 10455 Lemma for ~ axdc . (Contr...
axdclem2 10456 Lemma for ~ axdc . Using ...
axdc 10457 This theorem derives ~ ax-...
fodomg 10458 An onto function implies d...
fodom 10459 An onto function implies d...
dmct 10460 The domain of a countable ...
rnct 10461 The range of a countable s...
fodomb 10462 Equivalence of an onto map...
wdomac 10463 When assuming AC, weak and...
brdom3 10464 Equivalence to a dominance...
brdom5 10465 An equivalence to a domina...
brdom4 10466 An equivalence to a domina...
brdom7disj 10467 An equivalence to a domina...
brdom6disj 10468 An equivalence to a domina...
fin71ac 10469 Once we allow AC, the "str...
imadomg 10470 An image of a function und...
fimact 10471 The image by a function of...
fnrndomg 10472 The range of a function is...
fnct 10473 If the domain of a functio...
mptct 10474 A countable mapping set is...
iunfo 10475 Existence of an onto funct...
iundom2g 10476 An upper bound for the car...
iundomg 10477 An upper bound for the car...
iundom 10478 An upper bound for the car...
unidom 10479 An upper bound for the car...
uniimadom 10480 An upper bound for the car...
uniimadomf 10481 An upper bound for the car...
cardval 10482 The value of the cardinal ...
cardid 10483 Any set is equinumerous to...
cardidg 10484 Any set is equinumerous to...
cardidd 10485 Any set is equinumerous to...
cardf 10486 The cardinality function i...
carden 10487 Two sets are equinumerous ...
cardeq0 10488 Only the empty set has car...
unsnen 10489 Equinumerosity of a set wi...
carddom 10490 Two sets have the dominanc...
cardsdom 10491 Two sets have the strict d...
domtri 10492 Trichotomy law for dominan...
entric 10493 Trichotomy of equinumerosi...
entri2 10494 Trichotomy of dominance an...
entri3 10495 Trichotomy of dominance. ...
sdomsdomcard 10496 A set strictly dominates i...
canth3 10497 Cantor's theorem in terms ...
infxpidm 10498 Every infinite class is eq...
ondomon 10499 The class of ordinals domi...
cardmin 10500 The smallest ordinal that ...
ficard 10501 A set is finite iff its ca...
infinf 10502 Equivalence between two in...
unirnfdomd 10503 The union of the range of ...
konigthlem 10504 Lemma for ~ konigth . (Co...
konigth 10505 Konig's Theorem. If ` m (...
alephsucpw 10506 The power set of an aleph ...
aleph1 10507 The set exponentiation of ...
alephval2 10508 An alternate way to expres...
dominfac 10509 A nonempty set that is a s...
iunctb 10510 The countable union of cou...
unictb 10511 The countable union of cou...
infmap 10512 An exponentiation law for ...
alephadd 10513 The sum of two alephs is t...
alephmul 10514 The product of two alephs ...
alephexp1 10515 An exponentiation law for ...
alephsuc3 10516 An alternate representatio...
alephexp2 10517 An expression equinumerous...
alephreg 10518 A successor aleph is regul...
pwcfsdom 10519 A corollary of Konig's The...
cfpwsdom 10520 A corollary of Konig's The...
alephom 10521 From ~ canth2 , we know th...
smobeth 10522 The beth function is stric...
nd1 10523 A lemma for proving condit...
nd2 10524 A lemma for proving condit...
nd3 10525 A lemma for proving condit...
nd4 10526 A lemma for proving condit...
axextnd 10527 A version of the Axiom of ...
axrepndlem1 10528 Lemma for the Axiom of Rep...
axrepndlem2 10529 Lemma for the Axiom of Rep...
axrepnd 10530 A version of the Axiom of ...
axunndlem1 10531 Lemma for the Axiom of Uni...
axunnd 10532 A version of the Axiom of ...
axpowndlem1 10533 Lemma for the Axiom of Pow...
axpowndlem2 10534 Lemma for the Axiom of Pow...
axpowndlem3 10535 Lemma for the Axiom of Pow...
axpowndlem4 10536 Lemma for the Axiom of Pow...
axpownd 10537 A version of the Axiom of ...
axregndlem1 10538 Lemma for the Axiom of Reg...
axregndlem2 10539 Lemma for the Axiom of Reg...
axregnd 10540 A version of the Axiom of ...
axinfndlem1 10541 Lemma for the Axiom of Inf...
axinfnd 10542 A version of the Axiom of ...
axacndlem1 10543 Lemma for the Axiom of Cho...
axacndlem2 10544 Lemma for the Axiom of Cho...
axacndlem3 10545 Lemma for the Axiom of Cho...
axacndlem4 10546 Lemma for the Axiom of Cho...
axacndlem5 10547 Lemma for the Axiom of Cho...
axacnd 10548 A version of the Axiom of ...
zfcndext 10549 Axiom of Extensionality ~ ...
zfcndrep 10550 Axiom of Replacement ~ ax-...
zfcndun 10551 Axiom of Union ~ ax-un , r...
zfcndpow 10552 Axiom of Power Sets ~ ax-p...
zfcndreg 10553 Axiom of Regularity ~ ax-r...
zfcndinf 10554 Axiom of Infinity ~ ax-inf...
zfcndac 10555 Axiom of Choice ~ ax-ac , ...
elgch 10558 Elementhood in the collect...
fingch 10559 A finite set is a GCH-set....
gchi 10560 The only GCH-sets which ha...
gchen1 10561 If ` A <_ B < ~P A ` , and...
gchen2 10562 If ` A < B <_ ~P A ` , and...
gchor 10563 If ` A <_ B <_ ~P A ` , an...
engch 10564 The property of being a GC...
gchdomtri 10565 Under certain conditions, ...
fpwwe2cbv 10566 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10567 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10568 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10569 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10570 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10571 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10572 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10573 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10574 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10575 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10576 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10577 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10578 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10579 Given any function ` F ` f...
fpwwecbv 10580 Lemma for ~ fpwwe . (Cont...
fpwwelem 10581 Lemma for ~ fpwwe . (Cont...
fpwwe 10582 Given any function ` F ` f...
canth4 10583 An "effective" form of Can...
canthnumlem 10584 Lemma for ~ canthnum . (C...
canthnum 10585 The set of well-orderable ...
canthwelem 10586 Lemma for ~ canthwe . (Co...
canthwe 10587 The set of well-orders of ...
canthp1lem1 10588 Lemma for ~ canthp1 . (Co...
canthp1lem2 10589 Lemma for ~ canthp1 . (Co...
canthp1 10590 A slightly stronger form o...
finngch 10591 The exclusion of finite se...
gchdju1 10592 An infinite GCH-set is ide...
gchinf 10593 An infinite GCH-set is Ded...
pwfseqlem1 10594 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10595 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10596 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10597 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10598 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10599 Lemma for ~ pwfseq . Alth...
pwfseq 10600 The powerset of a Dedekind...
pwxpndom2 10601 The powerset of a Dedekind...
pwxpndom 10602 The powerset of a Dedekind...
pwdjundom 10603 The powerset of a Dedekind...
gchdjuidm 10604 An infinite GCH-set is ide...
gchxpidm 10605 An infinite GCH-set is ide...
gchpwdom 10606 A relationship between dom...
gchaleph 10607 If ` ( aleph `` A ) ` is a...
gchaleph2 10608 If ` ( aleph `` A ) ` and ...
hargch 10609 If ` A + ~~ ~P A ` , then ...
alephgch 10610 If ` ( aleph `` suc A ) ` ...
gch2 10611 It is sufficient to requir...
gch3 10612 An equivalent formulation ...
gch-kn 10613 The equivalence of two ver...
gchaclem 10614 Lemma for ~ gchac (obsolet...
gchhar 10615 A "local" form of ~ gchac ...
gchacg 10616 A "local" form of ~ gchac ...
gchac 10617 The Generalized Continuum ...
elwina 10622 Conditions of weak inacces...
elina 10623 Conditions of strong inacc...
winaon 10624 A weakly inaccessible card...
inawinalem 10625 Lemma for ~ inawina . (Co...
inawina 10626 Every strongly inaccessibl...
omina 10627 ` _om ` is a strongly inac...
winacard 10628 A weakly inaccessible card...
winainflem 10629 A weakly inaccessible card...
winainf 10630 A weakly inaccessible card...
winalim 10631 A weakly inaccessible card...
winalim2 10632 A nontrivial weakly inacce...
winafp 10633 A nontrivial weakly inacce...
winafpi 10634 This theorem, which states...
gchina 10635 Assuming the GCH, weakly a...
iswun 10640 Properties of a weak unive...
wuntr 10641 A weak universe is transit...
wununi 10642 A weak universe is closed ...
wunpw 10643 A weak universe is closed ...
wunelss 10644 The elements of a weak uni...
wunpr 10645 A weak universe is closed ...
wunun 10646 A weak universe is closed ...
wuntp 10647 A weak universe is closed ...
wunss 10648 A weak universe is closed ...
wunin 10649 A weak universe is closed ...
wundif 10650 A weak universe is closed ...
wunint 10651 A weak universe is closed ...
wunsn 10652 A weak universe is closed ...
wunsuc 10653 A weak universe is closed ...
wun0 10654 A weak universe contains t...
wunr1om 10655 A weak universe is infinit...
wunom 10656 A weak universe contains a...
wunfi 10657 A weak universe contains a...
wunop 10658 A weak universe is closed ...
wunot 10659 A weak universe is closed ...
wunxp 10660 A weak universe is closed ...
wunpm 10661 A weak universe is closed ...
wunmap 10662 A weak universe is closed ...
wunf 10663 A weak universe is closed ...
wundm 10664 A weak universe is closed ...
wunrn 10665 A weak universe is closed ...
wuncnv 10666 A weak universe is closed ...
wunres 10667 A weak universe is closed ...
wunfv 10668 A weak universe is closed ...
wunco 10669 A weak universe is closed ...
wuntpos 10670 A weak universe is closed ...
intwun 10671 The intersection of a coll...
r1limwun 10672 Each limit stage in the cu...
r1wunlim 10673 The weak universes in the ...
wunex2 10674 Construct a weak universe ...
wunex 10675 Construct a weak universe ...
uniwun 10676 Every set is contained in ...
wunex3 10677 Construct a weak universe ...
wuncval 10678 Value of the weak universe...
wuncid 10679 The weak universe closure ...
wunccl 10680 The weak universe closure ...
wuncss 10681 The weak universe closure ...
wuncidm 10682 The weak universe closure ...
wuncval2 10683 Our earlier expression for...
eltskg 10686 Properties of a Tarski cla...
eltsk2g 10687 Properties of a Tarski cla...
tskpwss 10688 First axiom of a Tarski cl...
tskpw 10689 Second axiom of a Tarski c...
tsken 10690 Third axiom of a Tarski cl...
0tsk 10691 The empty set is a (transi...
tsksdom 10692 An element of a Tarski cla...
tskssel 10693 A part of a Tarski class s...
tskss 10694 The subsets of an element ...
tskin 10695 The intersection of two el...
tsksn 10696 A singleton of an element ...
tsktrss 10697 A transitive element of a ...
tsksuc 10698 If an element of a Tarski ...
tsk0 10699 A nonempty Tarski class co...
tsk1 10700 One is an element of a non...
tsk2 10701 Two is an element of a non...
2domtsk 10702 If a Tarski class is not e...
tskr1om 10703 A nonempty Tarski class is...
tskr1om2 10704 A nonempty Tarski class co...
tskinf 10705 A nonempty Tarski class is...
tskpr 10706 If ` A ` and ` B ` are mem...
tskop 10707 If ` A ` and ` B ` are mem...
tskxpss 10708 A Cartesian product of two...
tskwe2 10709 A Tarski class is well-ord...
inttsk 10710 The intersection of a coll...
inar1 10711 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10712 Alternate proof of ~ r1om ...
rankcf 10713 Any set must be at least a...
inatsk 10714 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10715 The set of hereditarily fi...
tskord 10716 A Tarski class contains al...
tskcard 10717 An even more direct relati...
r1tskina 10718 There is a direct relation...
tskuni 10719 The union of an element of...
tskwun 10720 A nonempty transitive Tars...
tskint 10721 The intersection of an ele...
tskun 10722 The union of two elements ...
tskxp 10723 The Cartesian product of t...
tskmap 10724 Set exponentiation is an e...
tskurn 10725 A transitive Tarski class ...
elgrug 10728 Properties of a Grothendie...
grutr 10729 A Grothendieck universe is...
gruelss 10730 A Grothendieck universe is...
grupw 10731 A Grothendieck universe co...
gruss 10732 Any subset of an element o...
grupr 10733 A Grothendieck universe co...
gruurn 10734 A Grothendieck universe co...
gruiun 10735 If ` B ( x ) ` is a family...
gruuni 10736 A Grothendieck universe co...
grurn 10737 A Grothendieck universe co...
gruima 10738 A Grothendieck universe co...
gruel 10739 Any element of an element ...
grusn 10740 A Grothendieck universe co...
gruop 10741 A Grothendieck universe co...
gruun 10742 A Grothendieck universe co...
gruxp 10743 A Grothendieck universe co...
grumap 10744 A Grothendieck universe co...
gruixp 10745 A Grothendieck universe co...
gruiin 10746 A Grothendieck universe co...
gruf 10747 A Grothendieck universe co...
gruen 10748 A Grothendieck universe co...
gruwun 10749 A nonempty Grothendieck un...
intgru 10750 The intersection of a fami...
ingru 10751 The intersection of a univ...
wfgru 10752 The wellfounded part of a ...
grudomon 10753 Each ordinal that is compa...
gruina 10754 If a Grothendieck universe...
grur1a 10755 A characterization of Grot...
grur1 10756 A characterization of Grot...
grutsk1 10757 Grothendieck universes are...
grutsk 10758 Grothendieck universes are...
axgroth5 10760 The Tarski-Grothendieck ax...
axgroth2 10761 Alternate version of the T...
grothpw 10762 Derive the Axiom of Power ...
grothpwex 10763 Derive the Axiom of Power ...
axgroth6 10764 The Tarski-Grothendieck ax...
grothomex 10765 The Tarski-Grothendieck Ax...
grothac 10766 The Tarski-Grothendieck Ax...
axgroth3 10767 Alternate version of the T...
axgroth4 10768 Alternate version of the T...
grothprimlem 10769 Lemma for ~ grothprim . E...
grothprim 10770 The Tarski-Grothendieck Ax...
grothtsk 10771 The Tarski-Grothendieck Ax...
inaprc 10772 An equivalent to the Tarsk...
tskmval 10775 Value of our tarski map. ...
tskmid 10776 The set ` A ` is an elemen...
tskmcl 10777 A Tarski class that contai...
sstskm 10778 Being a part of ` ( tarski...
eltskm 10779 Belonging to ` ( tarskiMap...
elni 10812 Membership in the class of...
elni2 10813 Membership in the class of...
pinn 10814 A positive integer is a na...
pion 10815 A positive integer is an o...
piord 10816 A positive integer is ordi...
niex 10817 The class of positive inte...
0npi 10818 The empty set is not a pos...
1pi 10819 Ordinal 'one' is a positiv...
addpiord 10820 Positive integer addition ...
mulpiord 10821 Positive integer multiplic...
mulidpi 10822 1 is an identity element f...
ltpiord 10823 Positive integer 'less tha...
ltsopi 10824 Positive integer 'less tha...
ltrelpi 10825 Positive integer 'less tha...
dmaddpi 10826 Domain of addition on posi...
dmmulpi 10827 Domain of multiplication o...
addclpi 10828 Closure of addition of pos...
mulclpi 10829 Closure of multiplication ...
addcompi 10830 Addition of positive integ...
addasspi 10831 Addition of positive integ...
mulcompi 10832 Multiplication of positive...
mulasspi 10833 Multiplication of positive...
distrpi 10834 Multiplication of positive...
addcanpi 10835 Addition cancellation law ...
mulcanpi 10836 Multiplication cancellatio...
addnidpi 10837 There is no identity eleme...
ltexpi 10838 Ordering on positive integ...
ltapi 10839 Ordering property of addit...
ltmpi 10840 Ordering property of multi...
1lt2pi 10841 One is less than two (one ...
nlt1pi 10842 No positive integer is les...
indpi 10843 Principle of Finite Induct...
enqbreq 10855 Equivalence relation for p...
enqbreq2 10856 Equivalence relation for p...
enqer 10857 The equivalence relation f...
enqex 10858 The equivalence relation f...
nqex 10859 The class of positive frac...
0nnq 10860 The empty set is not a pos...
elpqn 10861 Each positive fraction is ...
ltrelnq 10862 Positive fraction 'less th...
pinq 10863 The representatives of pos...
1nq 10864 The positive fraction 'one...
nqereu 10865 There is a unique element ...
nqerf 10866 Corollary of ~ nqereu : th...
nqercl 10867 Corollary of ~ nqereu : cl...
nqerrel 10868 Any member of ` ( N. X. N....
nqerid 10869 Corollary of ~ nqereu : th...
enqeq 10870 Corollary of ~ nqereu : if...
nqereq 10871 The function ` /Q ` acts a...
addpipq2 10872 Addition of positive fract...
addpipq 10873 Addition of positive fract...
addpqnq 10874 Addition of positive fract...
mulpipq2 10875 Multiplication of positive...
mulpipq 10876 Multiplication of positive...
mulpqnq 10877 Multiplication of positive...
ordpipq 10878 Ordering of positive fract...
ordpinq 10879 Ordering of positive fract...
addpqf 10880 Closure of addition on pos...
addclnq 10881 Closure of addition on pos...
mulpqf 10882 Closure of multiplication ...
mulclnq 10883 Closure of multiplication ...
addnqf 10884 Domain of addition on posi...
mulnqf 10885 Domain of multiplication o...
addcompq 10886 Addition of positive fract...
addcomnq 10887 Addition of positive fract...
mulcompq 10888 Multiplication of positive...
mulcomnq 10889 Multiplication of positive...
adderpqlem 10890 Lemma for ~ adderpq . (Co...
mulerpqlem 10891 Lemma for ~ mulerpq . (Co...
adderpq 10892 Addition is compatible wit...
mulerpq 10893 Multiplication is compatib...
addassnq 10894 Addition of positive fract...
mulassnq 10895 Multiplication of positive...
mulcanenq 10896 Lemma for distributive law...
distrnq 10897 Multiplication of positive...
1nqenq 10898 The equivalence class of r...
mulidnq 10899 Multiplication identity el...
recmulnq 10900 Relationship between recip...
recidnq 10901 A positive fraction times ...
recclnq 10902 Closure law for positive f...
recrecnq 10903 Reciprocal of reciprocal o...
dmrecnq 10904 Domain of reciprocal on po...
ltsonq 10905 'Less than' is a strict or...
lterpq 10906 Compatibility of ordering ...
ltanq 10907 Ordering property of addit...
ltmnq 10908 Ordering property of multi...
1lt2nq 10909 One is less than two (one ...
ltaddnq 10910 The sum of two fractions i...
ltexnq 10911 Ordering on positive fract...
halfnq 10912 One-half of any positive f...
nsmallnq 10913 The is no smallest positiv...
ltbtwnnq 10914 There exists a number betw...
ltrnq 10915 Ordering property of recip...
archnq 10916 For any fraction, there is...
npex 10922 The class of positive real...
elnp 10923 Membership in positive rea...
elnpi 10924 Membership in positive rea...
prn0 10925 A positive real is not emp...
prpssnq 10926 A positive real is a subse...
elprnq 10927 A positive real is a set o...
0npr 10928 The empty set is not a pos...
prcdnq 10929 A positive real is closed ...
prub 10930 A positive fraction not in...
prnmax 10931 A positive real has no lar...
npomex 10932 A simplifying observation,...
prnmadd 10933 A positive real has no lar...
ltrelpr 10934 Positive real 'less than' ...
genpv 10935 Value of general operation...
genpelv 10936 Membership in value of gen...
genpprecl 10937 Pre-closure law for genera...
genpdm 10938 Domain of general operatio...
genpn0 10939 The result of an operation...
genpss 10940 The result of an operation...
genpnnp 10941 The result of an operation...
genpcd 10942 Downward closure of an ope...
genpnmax 10943 An operation on positive r...
genpcl 10944 Closure of an operation on...
genpass 10945 Associativity of an operat...
plpv 10946 Value of addition on posit...
mpv 10947 Value of multiplication on...
dmplp 10948 Domain of addition on posi...
dmmp 10949 Domain of multiplication o...
nqpr 10950 The canonical embedding of...
1pr 10951 The positive real number '...
addclprlem1 10952 Lemma to prove downward cl...
addclprlem2 10953 Lemma to prove downward cl...
addclpr 10954 Closure of addition on pos...
mulclprlem 10955 Lemma to prove downward cl...
mulclpr 10956 Closure of multiplication ...
addcompr 10957 Addition of positive reals...
addasspr 10958 Addition of positive reals...
mulcompr 10959 Multiplication of positive...
mulasspr 10960 Multiplication of positive...
distrlem1pr 10961 Lemma for distributive law...
distrlem4pr 10962 Lemma for distributive law...
distrlem5pr 10963 Lemma for distributive law...
distrpr 10964 Multiplication of positive...
1idpr 10965 1 is an identity element f...
ltprord 10966 Positive real 'less than' ...
psslinpr 10967 Proper subset is a linear ...
ltsopr 10968 Positive real 'less than' ...
prlem934 10969 Lemma 9-3.4 of [Gleason] p...
ltaddpr 10970 The sum of two positive re...
ltaddpr2 10971 The sum of two positive re...
ltexprlem1 10972 Lemma for Proposition 9-3....
ltexprlem2 10973 Lemma for Proposition 9-3....
ltexprlem3 10974 Lemma for Proposition 9-3....
ltexprlem4 10975 Lemma for Proposition 9-3....
ltexprlem5 10976 Lemma for Proposition 9-3....
ltexprlem6 10977 Lemma for Proposition 9-3....
ltexprlem7 10978 Lemma for Proposition 9-3....
ltexpri 10979 Proposition 9-3.5(iv) of [...
ltaprlem 10980 Lemma for Proposition 9-3....
ltapr 10981 Ordering property of addit...
addcanpr 10982 Addition cancellation law ...
prlem936 10983 Lemma 9-3.6 of [Gleason] p...
reclem2pr 10984 Lemma for Proposition 9-3....
reclem3pr 10985 Lemma for Proposition 9-3....
reclem4pr 10986 Lemma for Proposition 9-3....
recexpr 10987 The reciprocal of a positi...
suplem1pr 10988 The union of a nonempty, b...
suplem2pr 10989 The union of a set of posi...
supexpr 10990 The union of a nonempty, b...
enrer 10999 The equivalence relation f...
nrex1 11000 The class of signed reals ...
enrbreq 11001 Equivalence relation for s...
enreceq 11002 Equivalence class equality...
enrex 11003 The equivalence relation f...
ltrelsr 11004 Signed real 'less than' is...
addcmpblnr 11005 Lemma showing compatibilit...
mulcmpblnrlem 11006 Lemma used in lemma showin...
mulcmpblnr 11007 Lemma showing compatibilit...
prsrlem1 11008 Decomposing signed reals i...
addsrmo 11009 There is at most one resul...
mulsrmo 11010 There is at most one resul...
addsrpr 11011 Addition of signed reals i...
mulsrpr 11012 Multiplication of signed r...
ltsrpr 11013 Ordering of signed reals i...
gt0srpr 11014 Greater than zero in terms...
0nsr 11015 The empty set is not a sig...
0r 11016 The constant ` 0R ` is a s...
1sr 11017 The constant ` 1R ` is a s...
m1r 11018 The constant ` -1R ` is a ...
addclsr 11019 Closure of addition on sig...
mulclsr 11020 Closure of multiplication ...
dmaddsr 11021 Domain of addition on sign...
dmmulsr 11022 Domain of multiplication o...
addcomsr 11023 Addition of signed reals i...
addasssr 11024 Addition of signed reals i...
mulcomsr 11025 Multiplication of signed r...
mulasssr 11026 Multiplication of signed r...
distrsr 11027 Multiplication of signed r...
m1p1sr 11028 Minus one plus one is zero...
m1m1sr 11029 Minus one times minus one ...
ltsosr 11030 Signed real 'less than' is...
0lt1sr 11031 0 is less than 1 for signe...
1ne0sr 11032 1 and 0 are distinct for s...
0idsr 11033 The signed real number 0 i...
1idsr 11034 1 is an identity element f...
00sr 11035 A signed real times 0 is 0...
ltasr 11036 Ordering property of addit...
pn0sr 11037 A signed real plus its neg...
negexsr 11038 Existence of negative sign...
recexsrlem 11039 The reciprocal of a positi...
addgt0sr 11040 The sum of two positive si...
mulgt0sr 11041 The product of two positiv...
sqgt0sr 11042 The square of a nonzero si...
recexsr 11043 The reciprocal of a nonzer...
mappsrpr 11044 Mapping from positive sign...
ltpsrpr 11045 Mapping of order from posi...
map2psrpr 11046 Equivalence for positive s...
supsrlem 11047 Lemma for supremum theorem...
supsr 11048 A nonempty, bounded set of...
opelcn 11065 Ordered pair membership in...
opelreal 11066 Ordered pair membership in...
elreal 11067 Membership in class of rea...
elreal2 11068 Ordered pair membership in...
0ncn 11069 The empty set is not a com...
ltrelre 11070 'Less than' is a relation ...
addcnsr 11071 Addition of complex number...
mulcnsr 11072 Multiplication of complex ...
eqresr 11073 Equality of real numbers i...
addresr 11074 Addition of real numbers i...
mulresr 11075 Multiplication of real num...
ltresr 11076 Ordering of real subset of...
ltresr2 11077 Ordering of real subset of...
dfcnqs 11078 Technical trick to permit ...
addcnsrec 11079 Technical trick to permit ...
mulcnsrec 11080 Technical trick to permit ...
axaddf 11081 Addition is an operation o...
axmulf 11082 Multiplication is an opera...
axcnex 11083 The complex numbers form a...
axresscn 11084 The real numbers are a sub...
ax1cn 11085 1 is a complex number. Ax...
axicn 11086 ` _i ` is a complex number...
axaddcl 11087 Closure law for addition o...
axaddrcl 11088 Closure law for addition i...
axmulcl 11089 Closure law for multiplica...
axmulrcl 11090 Closure law for multiplica...
axmulcom 11091 Multiplication of complex ...
axaddass 11092 Addition of complex number...
axmulass 11093 Multiplication of complex ...
axdistr 11094 Distributive law for compl...
axi2m1 11095 i-squared equals -1 (expre...
ax1ne0 11096 1 and 0 are distinct. Axi...
ax1rid 11097 ` 1 ` is an identity eleme...
axrnegex 11098 Existence of negative of r...
axrrecex 11099 Existence of reciprocal of...
axcnre 11100 A complex number can be ex...
axpre-lttri 11101 Ordering on reals satisfie...
axpre-lttrn 11102 Ordering on reals is trans...
axpre-ltadd 11103 Ordering property of addit...
axpre-mulgt0 11104 The product of two positiv...
axpre-sup 11105 A nonempty, bounded-above ...
wuncn 11106 A weak universe containing...
cnex 11132 Alias for ~ ax-cnex . See...
addcl 11133 Alias for ~ ax-addcl , for...
readdcl 11134 Alias for ~ ax-addrcl , fo...
mulcl 11135 Alias for ~ ax-mulcl , for...
remulcl 11136 Alias for ~ ax-mulrcl , fo...
mulcom 11137 Alias for ~ ax-mulcom , fo...
addass 11138 Alias for ~ ax-addass , fo...
mulass 11139 Alias for ~ ax-mulass , fo...
adddi 11140 Alias for ~ ax-distr , for...
recn 11141 A real number is a complex...
reex 11142 The real numbers form a se...
reelprrecn 11143 Reals are a subset of the ...
cnelprrecn 11144 Complex numbers are a subs...
elimne0 11145 Hypothesis for weak deduct...
adddir 11146 Distributive law for compl...
0cn 11147 Zero is a complex number. ...
0cnd 11148 Zero is a complex number, ...
c0ex 11149 Zero is a set. (Contribut...
1cnd 11150 One is a complex number, d...
1ex 11151 One is a set. (Contribute...
cnre 11152 Alias for ~ ax-cnre , for ...
mulid1 11153 The number 1 is an identit...
mulid2 11154 Identity law for multiplic...
1re 11155 The number 1 is real. Thi...
1red 11156 The number 1 is real, dedu...
0re 11157 The number 0 is real. Rem...
0red 11158 The number 0 is real, dedu...
mulid1i 11159 Identity law for multiplic...
mulid2i 11160 Identity law for multiplic...
addcli 11161 Closure law for addition. ...
mulcli 11162 Closure law for multiplica...
mulcomi 11163 Commutative law for multip...
mulcomli 11164 Commutative law for multip...
addassi 11165 Associative law for additi...
mulassi 11166 Associative law for multip...
adddii 11167 Distributive law (left-dis...
adddiri 11168 Distributive law (right-di...
recni 11169 A real number is a complex...
readdcli 11170 Closure law for addition o...
remulcli 11171 Closure law for multiplica...
mulid1d 11172 Identity law for multiplic...
mulid2d 11173 Identity law for multiplic...
addcld 11174 Closure law for addition. ...
mulcld 11175 Closure law for multiplica...
mulcomd 11176 Commutative law for multip...
addassd 11177 Associative law for additi...
mulassd 11178 Associative law for multip...
adddid 11179 Distributive law (left-dis...
adddird 11180 Distributive law (right-di...
adddirp1d 11181 Distributive law, plus 1 v...
joinlmuladdmuld 11182 Join AB+CB into (A+C) on L...
recnd 11183 Deduction from real number...
readdcld 11184 Closure law for addition o...
remulcld 11185 Closure law for multiplica...
pnfnre 11196 Plus infinity is not a rea...
pnfnre2 11197 Plus infinity is not a rea...
mnfnre 11198 Minus infinity is not a re...
ressxr 11199 The standard reals are a s...
rexpssxrxp 11200 The Cartesian product of s...
rexr 11201 A standard real is an exte...
0xr 11202 Zero is an extended real. ...
renepnf 11203 No (finite) real equals pl...
renemnf 11204 No real equals minus infin...
rexrd 11205 A standard real is an exte...
renepnfd 11206 No (finite) real equals pl...
renemnfd 11207 No real equals minus infin...
pnfex 11208 Plus infinity exists. (Co...
pnfxr 11209 Plus infinity belongs to t...
pnfnemnf 11210 Plus and minus infinity ar...
mnfnepnf 11211 Minus and plus infinity ar...
mnfxr 11212 Minus infinity belongs to ...
rexri 11213 A standard real is an exte...
1xr 11214 ` 1 ` is an extended real ...
renfdisj 11215 The reals and the infiniti...
ltrelxr 11216 "Less than" is a relation ...
ltrel 11217 "Less than" is a relation....
lerelxr 11218 "Less than or equal to" is...
lerel 11219 "Less than or equal to" is...
xrlenlt 11220 "Less than or equal to" ex...
xrlenltd 11221 "Less than or equal to" ex...
xrltnle 11222 "Less than" expressed in t...
xrnltled 11223 "Not less than" implies "l...
ssxr 11224 The three (non-exclusive) ...
ltxrlt 11225 The standard less-than ` <...
axlttri 11226 Ordering on reals satisfie...
axlttrn 11227 Ordering on reals is trans...
axltadd 11228 Ordering property of addit...
axmulgt0 11229 The product of two positiv...
axsup 11230 A nonempty, bounded-above ...
lttr 11231 Alias for ~ axlttrn , for ...
mulgt0 11232 The product of two positiv...
lenlt 11233 'Less than or equal to' ex...
ltnle 11234 'Less than' expressed in t...
ltso 11235 'Less than' is a strict or...
gtso 11236 'Greater than' is a strict...
lttri2 11237 Consequence of trichotomy....
lttri3 11238 Trichotomy law for 'less t...
lttri4 11239 Trichotomy law for 'less t...
letri3 11240 Trichotomy law. (Contribu...
leloe 11241 'Less than or equal to' ex...
eqlelt 11242 Equality in terms of 'less...
ltle 11243 'Less than' implies 'less ...
leltne 11244 'Less than or equal to' im...
lelttr 11245 Transitive law. (Contribu...
leltletr 11246 Transitive law, weaker for...
ltletr 11247 Transitive law. (Contribu...
ltleletr 11248 Transitive law, weaker for...
letr 11249 Transitive law. (Contribu...
ltnr 11250 'Less than' is irreflexive...
leid 11251 'Less than or equal to' is...
ltne 11252 'Less than' implies not eq...
ltnsym 11253 'Less than' is not symmetr...
ltnsym2 11254 'Less than' is antisymmetr...
letric 11255 Trichotomy law. (Contribu...
ltlen 11256 'Less than' expressed in t...
eqle 11257 Equality implies 'less tha...
eqled 11258 Equality implies 'less tha...
ltadd2 11259 Addition to both sides of ...
ne0gt0 11260 A nonzero nonnegative numb...
lecasei 11261 Ordering elimination by ca...
lelttric 11262 Trichotomy law. (Contribu...
ltlecasei 11263 Ordering elimination by ca...
ltnri 11264 'Less than' is irreflexive...
eqlei 11265 Equality implies 'less tha...
eqlei2 11266 Equality implies 'less tha...
gtneii 11267 'Less than' implies not eq...
ltneii 11268 'Greater than' implies not...
lttri2i 11269 Consequence of trichotomy....
lttri3i 11270 Consequence of trichotomy....
letri3i 11271 Consequence of trichotomy....
leloei 11272 'Less than or equal to' in...
ltleni 11273 'Less than' expressed in t...
ltnsymi 11274 'Less than' is not symmetr...
lenlti 11275 'Less than or equal to' in...
ltnlei 11276 'Less than' in terms of 'l...
ltlei 11277 'Less than' implies 'less ...
ltleii 11278 'Less than' implies 'less ...
ltnei 11279 'Less than' implies not eq...
letrii 11280 Trichotomy law for 'less t...
lttri 11281 'Less than' is transitive....
lelttri 11282 'Less than or equal to', '...
ltletri 11283 'Less than', 'less than or...
letri 11284 'Less than or equal to' is...
le2tri3i 11285 Extended trichotomy law fo...
ltadd2i 11286 Addition to both sides of ...
mulgt0i 11287 The product of two positiv...
mulgt0ii 11288 The product of two positiv...
ltnrd 11289 'Less than' is irreflexive...
gtned 11290 'Less than' implies not eq...
ltned 11291 'Greater than' implies not...
ne0gt0d 11292 A nonzero nonnegative numb...
lttrid 11293 Ordering on reals satisfie...
lttri2d 11294 Consequence of trichotomy....
lttri3d 11295 Consequence of trichotomy....
lttri4d 11296 Trichotomy law for 'less t...
letri3d 11297 Consequence of trichotomy....
leloed 11298 'Less than or equal to' in...
eqleltd 11299 Equality in terms of 'less...
ltlend 11300 'Less than' expressed in t...
lenltd 11301 'Less than or equal to' in...
ltnled 11302 'Less than' in terms of 'l...
ltled 11303 'Less than' implies 'less ...
ltnsymd 11304 'Less than' implies 'less ...
nltled 11305 'Not less than ' implies '...
lensymd 11306 'Less than or equal to' im...
letrid 11307 Trichotomy law for 'less t...
leltned 11308 'Less than or equal to' im...
leneltd 11309 'Less than or equal to' an...
mulgt0d 11310 The product of two positiv...
ltadd2d 11311 Addition to both sides of ...
letrd 11312 Transitive law deduction f...
lelttrd 11313 Transitive law deduction f...
ltadd2dd 11314 Addition to both sides of ...
ltletrd 11315 Transitive law deduction f...
lttrd 11316 Transitive law deduction f...
lelttrdi 11317 If a number is less than a...
dedekind 11318 The Dedekind cut theorem. ...
dedekindle 11319 The Dedekind cut theorem, ...
mul12 11320 Commutative/associative la...
mul32 11321 Commutative/associative la...
mul31 11322 Commutative/associative la...
mul4 11323 Rearrangement of 4 factors...
mul4r 11324 Rearrangement of 4 factors...
muladd11 11325 A simple product of sums e...
1p1times 11326 Two times a number. (Cont...
peano2cn 11327 A theorem for complex numb...
peano2re 11328 A theorem for reals analog...
readdcan 11329 Cancellation law for addit...
00id 11330 ` 0 ` is its own additive ...
mul02lem1 11331 Lemma for ~ mul02 . If an...
mul02lem2 11332 Lemma for ~ mul02 . Zero ...
mul02 11333 Multiplication by ` 0 ` . ...
mul01 11334 Multiplication by ` 0 ` . ...
addid1 11335 ` 0 ` is an additive ident...
cnegex 11336 Existence of the negative ...
cnegex2 11337 Existence of a left invers...
addid2 11338 ` 0 ` is a left identity f...
addcan 11339 Cancellation law for addit...
addcan2 11340 Cancellation law for addit...
addcom 11341 Addition commutes. This u...
addid1i 11342 ` 0 ` is an additive ident...
addid2i 11343 ` 0 ` is a left identity f...
mul02i 11344 Multiplication by 0. Theo...
mul01i 11345 Multiplication by ` 0 ` . ...
addcomi 11346 Addition commutes. Based ...
addcomli 11347 Addition commutes. (Contr...
addcani 11348 Cancellation law for addit...
addcan2i 11349 Cancellation law for addit...
mul12i 11350 Commutative/associative la...
mul32i 11351 Commutative/associative la...
mul4i 11352 Rearrangement of 4 factors...
mul02d 11353 Multiplication by 0. Theo...
mul01d 11354 Multiplication by ` 0 ` . ...
addid1d 11355 ` 0 ` is an additive ident...
addid2d 11356 ` 0 ` is a left identity f...
addcomd 11357 Addition commutes. Based ...
addcand 11358 Cancellation law for addit...
addcan2d 11359 Cancellation law for addit...
addcanad 11360 Cancelling a term on the l...
addcan2ad 11361 Cancelling a term on the r...
addneintrd 11362 Introducing a term on the ...
addneintr2d 11363 Introducing a term on the ...
mul12d 11364 Commutative/associative la...
mul32d 11365 Commutative/associative la...
mul31d 11366 Commutative/associative la...
mul4d 11367 Rearrangement of 4 factors...
muladd11r 11368 A simple product of sums e...
comraddd 11369 Commute RHS addition, in d...
ltaddneg 11370 Adding a negative number t...
ltaddnegr 11371 Adding a negative number t...
add12 11372 Commutative/associative la...
add32 11373 Commutative/associative la...
add32r 11374 Commutative/associative la...
add4 11375 Rearrangement of 4 terms i...
add42 11376 Rearrangement of 4 terms i...
add12i 11377 Commutative/associative la...
add32i 11378 Commutative/associative la...
add4i 11379 Rearrangement of 4 terms i...
add42i 11380 Rearrangement of 4 terms i...
add12d 11381 Commutative/associative la...
add32d 11382 Commutative/associative la...
add4d 11383 Rearrangement of 4 terms i...
add42d 11384 Rearrangement of 4 terms i...
0cnALT 11389 Alternate proof of ~ 0cn w...
0cnALT2 11390 Alternate proof of ~ 0cnAL...
negeu 11391 Existential uniqueness of ...
subval 11392 Value of subtraction, whic...
negeq 11393 Equality theorem for negat...
negeqi 11394 Equality inference for neg...
negeqd 11395 Equality deduction for neg...
nfnegd 11396 Deduction version of ~ nfn...
nfneg 11397 Bound-variable hypothesis ...
csbnegg 11398 Move class substitution in...
negex 11399 A negative is a set. (Con...
subcl 11400 Closure law for subtractio...
negcl 11401 Closure law for negative. ...
negicn 11402 ` -u _i ` is a complex num...
subf 11403 Subtraction is an operatio...
subadd 11404 Relationship between subtr...
subadd2 11405 Relationship between subtr...
subsub23 11406 Swap subtrahend and result...
pncan 11407 Cancellation law for subtr...
pncan2 11408 Cancellation law for subtr...
pncan3 11409 Subtraction and addition o...
npcan 11410 Cancellation law for subtr...
addsubass 11411 Associative-type law for a...
addsub 11412 Law for addition and subtr...
subadd23 11413 Commutative/associative la...
addsub12 11414 Commutative/associative la...
2addsub 11415 Law for subtraction and ad...
addsubeq4 11416 Relation between sums and ...
pncan3oi 11417 Subtraction and addition o...
mvrraddi 11418 Move the right term in a s...
mvlladdi 11419 Move the left term in a su...
subid 11420 Subtraction of a number fr...
subid1 11421 Identity law for subtracti...
npncan 11422 Cancellation law for subtr...
nppcan 11423 Cancellation law for subtr...
nnpcan 11424 Cancellation law for subtr...
nppcan3 11425 Cancellation law for subtr...
subcan2 11426 Cancellation law for subtr...
subeq0 11427 If the difference between ...
npncan2 11428 Cancellation law for subtr...
subsub2 11429 Law for double subtraction...
nncan 11430 Cancellation law for subtr...
subsub 11431 Law for double subtraction...
nppcan2 11432 Cancellation law for subtr...
subsub3 11433 Law for double subtraction...
subsub4 11434 Law for double subtraction...
sub32 11435 Swap the second and third ...
nnncan 11436 Cancellation law for subtr...
nnncan1 11437 Cancellation law for subtr...
nnncan2 11438 Cancellation law for subtr...
npncan3 11439 Cancellation law for subtr...
pnpcan 11440 Cancellation law for mixed...
pnpcan2 11441 Cancellation law for mixed...
pnncan 11442 Cancellation law for mixed...
ppncan 11443 Cancellation law for mixed...
addsub4 11444 Rearrangement of 4 terms i...
subadd4 11445 Rearrangement of 4 terms i...
sub4 11446 Rearrangement of 4 terms i...
neg0 11447 Minus 0 equals 0. (Contri...
negid 11448 Addition of a number and i...
negsub 11449 Relationship between subtr...
subneg 11450 Relationship between subtr...
negneg 11451 A number is equal to the n...
neg11 11452 Negative is one-to-one. (...
negcon1 11453 Negative contraposition la...
negcon2 11454 Negative contraposition la...
negeq0 11455 A number is zero iff its n...
subcan 11456 Cancellation law for subtr...
negsubdi 11457 Distribution of negative o...
negdi 11458 Distribution of negative o...
negdi2 11459 Distribution of negative o...
negsubdi2 11460 Distribution of negative o...
neg2sub 11461 Relationship between subtr...
renegcli 11462 Closure law for negative o...
resubcli 11463 Closure law for subtractio...
renegcl 11464 Closure law for negative o...
resubcl 11465 Closure law for subtractio...
negreb 11466 The negative of a real is ...
peano2cnm 11467 "Reverse" second Peano pos...
peano2rem 11468 "Reverse" second Peano pos...
negcli 11469 Closure law for negative. ...
negidi 11470 Addition of a number and i...
negnegi 11471 A number is equal to the n...
subidi 11472 Subtraction of a number fr...
subid1i 11473 Identity law for subtracti...
negne0bi 11474 A number is nonzero iff it...
negrebi 11475 The negative of a real is ...
negne0i 11476 The negative of a nonzero ...
subcli 11477 Closure law for subtractio...
pncan3i 11478 Subtraction and addition o...
negsubi 11479 Relationship between subtr...
subnegi 11480 Relationship between subtr...
subeq0i 11481 If the difference between ...
neg11i 11482 Negative is one-to-one. (...
negcon1i 11483 Negative contraposition la...
negcon2i 11484 Negative contraposition la...
negdii 11485 Distribution of negative o...
negsubdii 11486 Distribution of negative o...
negsubdi2i 11487 Distribution of negative o...
subaddi 11488 Relationship between subtr...
subadd2i 11489 Relationship between subtr...
subaddrii 11490 Relationship between subtr...
subsub23i 11491 Swap subtrahend and result...
addsubassi 11492 Associative-type law for s...
addsubi 11493 Law for subtraction and ad...
subcani 11494 Cancellation law for subtr...
subcan2i 11495 Cancellation law for subtr...
pnncani 11496 Cancellation law for mixed...
addsub4i 11497 Rearrangement of 4 terms i...
0reALT 11498 Alternate proof of ~ 0re ....
negcld 11499 Closure law for negative. ...
subidd 11500 Subtraction of a number fr...
subid1d 11501 Identity law for subtracti...
negidd 11502 Addition of a number and i...
negnegd 11503 A number is equal to the n...
negeq0d 11504 A number is zero iff its n...
negne0bd 11505 A number is nonzero iff it...
negcon1d 11506 Contraposition law for una...
negcon1ad 11507 Contraposition law for una...
neg11ad 11508 The negatives of two compl...
negned 11509 If two complex numbers are...
negne0d 11510 The negative of a nonzero ...
negrebd 11511 The negative of a real is ...
subcld 11512 Closure law for subtractio...
pncand 11513 Cancellation law for subtr...
pncan2d 11514 Cancellation law for subtr...
pncan3d 11515 Subtraction and addition o...
npcand 11516 Cancellation law for subtr...
nncand 11517 Cancellation law for subtr...
negsubd 11518 Relationship between subtr...
subnegd 11519 Relationship between subtr...
subeq0d 11520 If the difference between ...
subne0d 11521 Two unequal numbers have n...
subeq0ad 11522 The difference of two comp...
subne0ad 11523 If the difference of two c...
neg11d 11524 If the difference between ...
negdid 11525 Distribution of negative o...
negdi2d 11526 Distribution of negative o...
negsubdid 11527 Distribution of negative o...
negsubdi2d 11528 Distribution of negative o...
neg2subd 11529 Relationship between subtr...
subaddd 11530 Relationship between subtr...
subadd2d 11531 Relationship between subtr...
addsubassd 11532 Associative-type law for s...
addsubd 11533 Law for subtraction and ad...
subadd23d 11534 Commutative/associative la...
addsub12d 11535 Commutative/associative la...
npncand 11536 Cancellation law for subtr...
nppcand 11537 Cancellation law for subtr...
nppcan2d 11538 Cancellation law for subtr...
nppcan3d 11539 Cancellation law for subtr...
subsubd 11540 Law for double subtraction...
subsub2d 11541 Law for double subtraction...
subsub3d 11542 Law for double subtraction...
subsub4d 11543 Law for double subtraction...
sub32d 11544 Swap the second and third ...
nnncand 11545 Cancellation law for subtr...
nnncan1d 11546 Cancellation law for subtr...
nnncan2d 11547 Cancellation law for subtr...
npncan3d 11548 Cancellation law for subtr...
pnpcand 11549 Cancellation law for mixed...
pnpcan2d 11550 Cancellation law for mixed...
pnncand 11551 Cancellation law for mixed...
ppncand 11552 Cancellation law for mixed...
subcand 11553 Cancellation law for subtr...
subcan2d 11554 Cancellation law for subtr...
subcanad 11555 Cancellation law for subtr...
subneintrd 11556 Introducing subtraction on...
subcan2ad 11557 Cancellation law for subtr...
subneintr2d 11558 Introducing subtraction on...
addsub4d 11559 Rearrangement of 4 terms i...
subadd4d 11560 Rearrangement of 4 terms i...
sub4d 11561 Rearrangement of 4 terms i...
2addsubd 11562 Law for subtraction and ad...
addsubeq4d 11563 Relation between sums and ...
subeqxfrd 11564 Transfer two terms of a su...
mvlraddd 11565 Move the right term in a s...
mvlladdd 11566 Move the left term in a su...
mvrraddd 11567 Move the right term in a s...
mvrladdd 11568 Move the left term in a su...
assraddsubd 11569 Associate RHS addition-sub...
subaddeqd 11570 Transfer two terms of a su...
addlsub 11571 Left-subtraction: Subtrac...
addrsub 11572 Right-subtraction: Subtra...
subexsub 11573 A subtraction law: Exchan...
addid0 11574 If adding a number to a an...
addn0nid 11575 Adding a nonzero number to...
pnpncand 11576 Addition/subtraction cance...
subeqrev 11577 Reverse the order of subtr...
addeq0 11578 Two complex numbers add up...
pncan1 11579 Cancellation law for addit...
npcan1 11580 Cancellation law for subtr...
subeq0bd 11581 If two complex numbers are...
renegcld 11582 Closure law for negative o...
resubcld 11583 Closure law for subtractio...
negn0 11584 The image under negation o...
negf1o 11585 Negation is an isomorphism...
kcnktkm1cn 11586 k times k minus 1 is a com...
muladd 11587 Product of two sums. (Con...
subdi 11588 Distribution of multiplica...
subdir 11589 Distribution of multiplica...
ine0 11590 The imaginary unit ` _i ` ...
mulneg1 11591 Product with negative is n...
mulneg2 11592 The product with a negativ...
mulneg12 11593 Swap the negative sign in ...
mul2neg 11594 Product of two negatives. ...
submul2 11595 Convert a subtraction to a...
mulm1 11596 Product with minus one is ...
addneg1mul 11597 Addition with product with...
mulsub 11598 Product of two differences...
mulsub2 11599 Swap the order of subtract...
mulm1i 11600 Product with minus one is ...
mulneg1i 11601 Product with negative is n...
mulneg2i 11602 Product with negative is n...
mul2negi 11603 Product of two negatives. ...
subdii 11604 Distribution of multiplica...
subdiri 11605 Distribution of multiplica...
muladdi 11606 Product of two sums. (Con...
mulm1d 11607 Product with minus one is ...
mulneg1d 11608 Product with negative is n...
mulneg2d 11609 Product with negative is n...
mul2negd 11610 Product of two negatives. ...
subdid 11611 Distribution of multiplica...
subdird 11612 Distribution of multiplica...
muladdd 11613 Product of two sums. (Con...
mulsubd 11614 Product of two differences...
muls1d 11615 Multiplication by one minu...
mulsubfacd 11616 Multiplication followed by...
addmulsub 11617 The product of a sum and a...
subaddmulsub 11618 The difference with a prod...
mulsubaddmulsub 11619 A special difference of a ...
gt0ne0 11620 Positive implies nonzero. ...
lt0ne0 11621 A number which is less tha...
ltadd1 11622 Addition to both sides of ...
leadd1 11623 Addition to both sides of ...
leadd2 11624 Addition to both sides of ...
ltsubadd 11625 'Less than' relationship b...
ltsubadd2 11626 'Less than' relationship b...
lesubadd 11627 'Less than or equal to' re...
lesubadd2 11628 'Less than or equal to' re...
ltaddsub 11629 'Less than' relationship b...
ltaddsub2 11630 'Less than' relationship b...
leaddsub 11631 'Less than or equal to' re...
leaddsub2 11632 'Less than or equal to' re...
suble 11633 Swap subtrahends in an ine...
lesub 11634 Swap subtrahends in an ine...
ltsub23 11635 'Less than' relationship b...
ltsub13 11636 'Less than' relationship b...
le2add 11637 Adding both sides of two '...
ltleadd 11638 Adding both sides of two o...
leltadd 11639 Adding both sides of two o...
lt2add 11640 Adding both sides of two '...
addgt0 11641 The sum of 2 positive numb...
addgegt0 11642 The sum of nonnegative and...
addgtge0 11643 The sum of nonnegative and...
addge0 11644 The sum of 2 nonnegative n...
ltaddpos 11645 Adding a positive number t...
ltaddpos2 11646 Adding a positive number t...
ltsubpos 11647 Subtracting a positive num...
posdif 11648 Comparison of two numbers ...
lesub1 11649 Subtraction from both side...
lesub2 11650 Subtraction of both sides ...
ltsub1 11651 Subtraction from both side...
ltsub2 11652 Subtraction of both sides ...
lt2sub 11653 Subtracting both sides of ...
le2sub 11654 Subtracting both sides of ...
ltneg 11655 Negative of both sides of ...
ltnegcon1 11656 Contraposition of negative...
ltnegcon2 11657 Contraposition of negative...
leneg 11658 Negative of both sides of ...
lenegcon1 11659 Contraposition of negative...
lenegcon2 11660 Contraposition of negative...
lt0neg1 11661 Comparison of a number and...
lt0neg2 11662 Comparison of a number and...
le0neg1 11663 Comparison of a number and...
le0neg2 11664 Comparison of a number and...
addge01 11665 A number is less than or e...
addge02 11666 A number is less than or e...
add20 11667 Two nonnegative numbers ar...
subge0 11668 Nonnegative subtraction. ...
suble0 11669 Nonpositive subtraction. ...
leaddle0 11670 The sum of a real number a...
subge02 11671 Nonnegative subtraction. ...
lesub0 11672 Lemma to show a nonnegativ...
mulge0 11673 The product of two nonnega...
mullt0 11674 The product of two negativ...
msqgt0 11675 A nonzero square is positi...
msqge0 11676 A square is nonnegative. ...
0lt1 11677 0 is less than 1. Theorem...
0le1 11678 0 is less than or equal to...
relin01 11679 An interval law for less t...
ltordlem 11680 Lemma for ~ ltord1 . (Con...
ltord1 11681 Infer an ordering relation...
leord1 11682 Infer an ordering relation...
eqord1 11683 A strictly increasing real...
ltord2 11684 Infer an ordering relation...
leord2 11685 Infer an ordering relation...
eqord2 11686 A strictly decreasing real...
wloglei 11687 Form of ~ wlogle where bot...
wlogle 11688 If the predicate ` ch ( x ...
leidi 11689 'Less than or equal to' is...
gt0ne0i 11690 Positive means nonzero (us...
gt0ne0ii 11691 Positive implies nonzero. ...
msqgt0i 11692 A nonzero square is positi...
msqge0i 11693 A square is nonnegative. ...
addgt0i 11694 Addition of 2 positive num...
addge0i 11695 Addition of 2 nonnegative ...
addgegt0i 11696 Addition of nonnegative an...
addgt0ii 11697 Addition of 2 positive num...
add20i 11698 Two nonnegative numbers ar...
ltnegi 11699 Negative of both sides of ...
lenegi 11700 Negative of both sides of ...
ltnegcon2i 11701 Contraposition of negative...
mulge0i 11702 The product of two nonnega...
lesub0i 11703 Lemma to show a nonnegativ...
ltaddposi 11704 Adding a positive number t...
posdifi 11705 Comparison of two numbers ...
ltnegcon1i 11706 Contraposition of negative...
lenegcon1i 11707 Contraposition of negative...
subge0i 11708 Nonnegative subtraction. ...
ltadd1i 11709 Addition to both sides of ...
leadd1i 11710 Addition to both sides of ...
leadd2i 11711 Addition to both sides of ...
ltsubaddi 11712 'Less than' relationship b...
lesubaddi 11713 'Less than or equal to' re...
ltsubadd2i 11714 'Less than' relationship b...
lesubadd2i 11715 'Less than or equal to' re...
ltaddsubi 11716 'Less than' relationship b...
lt2addi 11717 Adding both side of two in...
le2addi 11718 Adding both side of two in...
gt0ne0d 11719 Positive implies nonzero. ...
lt0ne0d 11720 Something less than zero i...
leidd 11721 'Less than or equal to' is...
msqgt0d 11722 A nonzero square is positi...
msqge0d 11723 A square is nonnegative. ...
lt0neg1d 11724 Comparison of a number and...
lt0neg2d 11725 Comparison of a number and...
le0neg1d 11726 Comparison of a number and...
le0neg2d 11727 Comparison of a number and...
addgegt0d 11728 Addition of nonnegative an...
addgtge0d 11729 Addition of positive and n...
addgt0d 11730 Addition of 2 positive num...
addge0d 11731 Addition of 2 nonnegative ...
mulge0d 11732 The product of two nonnega...
ltnegd 11733 Negative of both sides of ...
lenegd 11734 Negative of both sides of ...
ltnegcon1d 11735 Contraposition of negative...
ltnegcon2d 11736 Contraposition of negative...
lenegcon1d 11737 Contraposition of negative...
lenegcon2d 11738 Contraposition of negative...
ltaddposd 11739 Adding a positive number t...
ltaddpos2d 11740 Adding a positive number t...
ltsubposd 11741 Subtracting a positive num...
posdifd 11742 Comparison of two numbers ...
addge01d 11743 A number is less than or e...
addge02d 11744 A number is less than or e...
subge0d 11745 Nonnegative subtraction. ...
suble0d 11746 Nonpositive subtraction. ...
subge02d 11747 Nonnegative subtraction. ...
ltadd1d 11748 Addition to both sides of ...
leadd1d 11749 Addition to both sides of ...
leadd2d 11750 Addition to both sides of ...
ltsubaddd 11751 'Less than' relationship b...
lesubaddd 11752 'Less than or equal to' re...
ltsubadd2d 11753 'Less than' relationship b...
lesubadd2d 11754 'Less than or equal to' re...
ltaddsubd 11755 'Less than' relationship b...
ltaddsub2d 11756 'Less than' relationship b...
leaddsub2d 11757 'Less than or equal to' re...
subled 11758 Swap subtrahends in an ine...
lesubd 11759 Swap subtrahends in an ine...
ltsub23d 11760 'Less than' relationship b...
ltsub13d 11761 'Less than' relationship b...
lesub1d 11762 Subtraction from both side...
lesub2d 11763 Subtraction of both sides ...
ltsub1d 11764 Subtraction from both side...
ltsub2d 11765 Subtraction of both sides ...
ltadd1dd 11766 Addition to both sides of ...
ltsub1dd 11767 Subtraction from both side...
ltsub2dd 11768 Subtraction of both sides ...
leadd1dd 11769 Addition to both sides of ...
leadd2dd 11770 Addition to both sides of ...
lesub1dd 11771 Subtraction from both side...
lesub2dd 11772 Subtraction of both sides ...
lesub3d 11773 The result of subtracting ...
le2addd 11774 Adding both side of two in...
le2subd 11775 Subtracting both sides of ...
ltleaddd 11776 Adding both sides of two o...
leltaddd 11777 Adding both sides of two o...
lt2addd 11778 Adding both side of two in...
lt2subd 11779 Subtracting both sides of ...
possumd 11780 Condition for a positive s...
sublt0d 11781 When a subtraction gives a...
ltaddsublt 11782 Addition and subtraction o...
1le1 11783 One is less than or equal ...
ixi 11784 ` _i ` times itself is min...
recextlem1 11785 Lemma for ~ recex . (Cont...
recextlem2 11786 Lemma for ~ recex . (Cont...
recex 11787 Existence of reciprocal of...
mulcand 11788 Cancellation law for multi...
mulcan2d 11789 Cancellation law for multi...
mulcanad 11790 Cancellation of a nonzero ...
mulcan2ad 11791 Cancellation of a nonzero ...
mulcan 11792 Cancellation law for multi...
mulcan2 11793 Cancellation law for multi...
mulcani 11794 Cancellation law for multi...
mul0or 11795 If a product is zero, one ...
mulne0b 11796 The product of two nonzero...
mulne0 11797 The product of two nonzero...
mulne0i 11798 The product of two nonzero...
muleqadd 11799 Property of numbers whose ...
receu 11800 Existential uniqueness of ...
mulnzcnopr 11801 Multiplication maps nonzer...
msq0i 11802 A number is zero iff its s...
mul0ori 11803 If a product is zero, one ...
msq0d 11804 A number is zero iff its s...
mul0ord 11805 If a product is zero, one ...
mulne0bd 11806 The product of two nonzero...
mulne0d 11807 The product of two nonzero...
mulcan1g 11808 A generalized form of the ...
mulcan2g 11809 A generalized form of the ...
mulne0bad 11810 A factor of a nonzero comp...
mulne0bbd 11811 A factor of a nonzero comp...
1div0 11814 You can't divide by zero, ...
divval 11815 Value of division: if ` A ...
divmul 11816 Relationship between divis...
divmul2 11817 Relationship between divis...
divmul3 11818 Relationship between divis...
divcl 11819 Closure law for division. ...
reccl 11820 Closure law for reciprocal...
divcan2 11821 A cancellation law for div...
divcan1 11822 A cancellation law for div...
diveq0 11823 A ratio is zero iff the nu...
divne0b 11824 The ratio of nonzero numbe...
divne0 11825 The ratio of nonzero numbe...
recne0 11826 The reciprocal of a nonzer...
recid 11827 Multiplication of a number...
recid2 11828 Multiplication of a number...
divrec 11829 Relationship between divis...
divrec2 11830 Relationship between divis...
divass 11831 An associative law for div...
div23 11832 A commutative/associative ...
div32 11833 A commutative/associative ...
div13 11834 A commutative/associative ...
div12 11835 A commutative/associative ...
divmulass 11836 An associative law for div...
divmulasscom 11837 An associative/commutative...
divdir 11838 Distribution of division o...
divcan3 11839 A cancellation law for div...
divcan4 11840 A cancellation law for div...
div11 11841 One-to-one relationship fo...
divid 11842 A number divided by itself...
div0 11843 Division into zero is zero...
div1 11844 A number divided by 1 is i...
1div1e1 11845 1 divided by 1 is 1. (Con...
diveq1 11846 Equality in terms of unit ...
divneg 11847 Move negative sign inside ...
muldivdir 11848 Distribution of division o...
divsubdir 11849 Distribution of division o...
subdivcomb1 11850 Bring a term in a subtract...
subdivcomb2 11851 Bring a term in a subtract...
recrec 11852 A number is equal to the r...
rec11 11853 Reciprocal is one-to-one. ...
rec11r 11854 Mutual reciprocals. (Cont...
divmuldiv 11855 Multiplication of two rati...
divdivdiv 11856 Division of two ratios. T...
divcan5 11857 Cancellation of common fac...
divmul13 11858 Swap the denominators in t...
divmul24 11859 Swap the numerators in the...
divmuleq 11860 Cross-multiply in an equal...
recdiv 11861 The reciprocal of a ratio....
divcan6 11862 Cancellation of inverted f...
divdiv32 11863 Swap denominators in a div...
divcan7 11864 Cancel equal divisors in a...
dmdcan 11865 Cancellation law for divis...
divdiv1 11866 Division into a fraction. ...
divdiv2 11867 Division by a fraction. (...
recdiv2 11868 Division into a reciprocal...
ddcan 11869 Cancellation in a double d...
divadddiv 11870 Addition of two ratios. T...
divsubdiv 11871 Subtraction of two ratios....
conjmul 11872 Two numbers whose reciproc...
rereccl 11873 Closure law for reciprocal...
redivcl 11874 Closure law for division o...
eqneg 11875 A number equal to its nega...
eqnegd 11876 A complex number equals it...
eqnegad 11877 If a complex number equals...
div2neg 11878 Quotient of two negatives....
divneg2 11879 Move negative sign inside ...
recclzi 11880 Closure law for reciprocal...
recne0zi 11881 The reciprocal of a nonzer...
recidzi 11882 Multiplication of a number...
div1i 11883 A number divided by 1 is i...
eqnegi 11884 A number equal to its nega...
reccli 11885 Closure law for reciprocal...
recidi 11886 Multiplication of a number...
recreci 11887 A number is equal to the r...
dividi 11888 A number divided by itself...
div0i 11889 Division into zero is zero...
divclzi 11890 Closure law for division. ...
divcan1zi 11891 A cancellation law for div...
divcan2zi 11892 A cancellation law for div...
divreczi 11893 Relationship between divis...
divcan3zi 11894 A cancellation law for div...
divcan4zi 11895 A cancellation law for div...
rec11i 11896 Reciprocal is one-to-one. ...
divcli 11897 Closure law for division. ...
divcan2i 11898 A cancellation law for div...
divcan1i 11899 A cancellation law for div...
divreci 11900 Relationship between divis...
divcan3i 11901 A cancellation law for div...
divcan4i 11902 A cancellation law for div...
divne0i 11903 The ratio of nonzero numbe...
rec11ii 11904 Reciprocal is one-to-one. ...
divasszi 11905 An associative law for div...
divmulzi 11906 Relationship between divis...
divdirzi 11907 Distribution of division o...
divdiv23zi 11908 Swap denominators in a div...
divmuli 11909 Relationship between divis...
divdiv32i 11910 Swap denominators in a div...
divassi 11911 An associative law for div...
divdiri 11912 Distribution of division o...
div23i 11913 A commutative/associative ...
div11i 11914 One-to-one relationship fo...
divmuldivi 11915 Multiplication of two rati...
divmul13i 11916 Swap denominators of two r...
divadddivi 11917 Addition of two ratios. T...
divdivdivi 11918 Division of two ratios. T...
rerecclzi 11919 Closure law for reciprocal...
rereccli 11920 Closure law for reciprocal...
redivclzi 11921 Closure law for division o...
redivcli 11922 Closure law for division o...
div1d 11923 A number divided by 1 is i...
reccld 11924 Closure law for reciprocal...
recne0d 11925 The reciprocal of a nonzer...
recidd 11926 Multiplication of a number...
recid2d 11927 Multiplication of a number...
recrecd 11928 A number is equal to the r...
dividd 11929 A number divided by itself...
div0d 11930 Division into zero is zero...
divcld 11931 Closure law for division. ...
divcan1d 11932 A cancellation law for div...
divcan2d 11933 A cancellation law for div...
divrecd 11934 Relationship between divis...
divrec2d 11935 Relationship between divis...
divcan3d 11936 A cancellation law for div...
divcan4d 11937 A cancellation law for div...
diveq0d 11938 A ratio is zero iff the nu...
diveq1d 11939 Equality in terms of unit ...
diveq1ad 11940 The quotient of two comple...
diveq0ad 11941 A fraction of complex numb...
divne1d 11942 If two complex numbers are...
divne0bd 11943 A ratio is zero iff the nu...
divnegd 11944 Move negative sign inside ...
divneg2d 11945 Move negative sign inside ...
div2negd 11946 Quotient of two negatives....
divne0d 11947 The ratio of nonzero numbe...
recdivd 11948 The reciprocal of a ratio....
recdiv2d 11949 Division into a reciprocal...
divcan6d 11950 Cancellation of inverted f...
ddcand 11951 Cancellation in a double d...
rec11d 11952 Reciprocal is one-to-one. ...
divmuld 11953 Relationship between divis...
div32d 11954 A commutative/associative ...
div13d 11955 A commutative/associative ...
divdiv32d 11956 Swap denominators in a div...
divcan5d 11957 Cancellation of common fac...
divcan5rd 11958 Cancellation of common fac...
divcan7d 11959 Cancel equal divisors in a...
dmdcand 11960 Cancellation law for divis...
dmdcan2d 11961 Cancellation law for divis...
divdiv1d 11962 Division into a fraction. ...
divdiv2d 11963 Division by a fraction. (...
divmul2d 11964 Relationship between divis...
divmul3d 11965 Relationship between divis...
divassd 11966 An associative law for div...
div12d 11967 A commutative/associative ...
div23d 11968 A commutative/associative ...
divdird 11969 Distribution of division o...
divsubdird 11970 Distribution of division o...
div11d 11971 One-to-one relationship fo...
divmuldivd 11972 Multiplication of two rati...
divmul13d 11973 Swap denominators of two r...
divmul24d 11974 Swap the numerators in the...
divadddivd 11975 Addition of two ratios. T...
divsubdivd 11976 Subtraction of two ratios....
divmuleqd 11977 Cross-multiply in an equal...
divdivdivd 11978 Division of two ratios. T...
diveq1bd 11979 If two complex numbers are...
div2sub 11980 Swap the order of subtract...
div2subd 11981 Swap subtrahend and minuen...
rereccld 11982 Closure law for reciprocal...
redivcld 11983 Closure law for division o...
subrec 11984 Subtraction of reciprocals...
subreci 11985 Subtraction of reciprocals...
subrecd 11986 Subtraction of reciprocals...
mvllmuld 11987 Move the left term in a pr...
mvllmuli 11988 Move the left term in a pr...
ldiv 11989 Left-division. (Contribut...
rdiv 11990 Right-division. (Contribu...
mdiv 11991 A division law. (Contribu...
lineq 11992 Solution of a (scalar) lin...
elimgt0 11993 Hypothesis for weak deduct...
elimge0 11994 Hypothesis for weak deduct...
ltp1 11995 A number is less than itse...
lep1 11996 A number is less than or e...
ltm1 11997 A number minus 1 is less t...
lem1 11998 A number minus 1 is less t...
letrp1 11999 A transitive property of '...
p1le 12000 A transitive property of p...
recgt0 12001 The reciprocal of a positi...
prodgt0 12002 Infer that a multiplicand ...
prodgt02 12003 Infer that a multiplier is...
ltmul1a 12004 Lemma for ~ ltmul1 . Mult...
ltmul1 12005 Multiplication of both sid...
ltmul2 12006 Multiplication of both sid...
lemul1 12007 Multiplication of both sid...
lemul2 12008 Multiplication of both sid...
lemul1a 12009 Multiplication of both sid...
lemul2a 12010 Multiplication of both sid...
ltmul12a 12011 Comparison of product of t...
lemul12b 12012 Comparison of product of t...
lemul12a 12013 Comparison of product of t...
mulgt1 12014 The product of two numbers...
ltmulgt11 12015 Multiplication by a number...
ltmulgt12 12016 Multiplication by a number...
lemulge11 12017 Multiplication by a number...
lemulge12 12018 Multiplication by a number...
ltdiv1 12019 Division of both sides of ...
lediv1 12020 Division of both sides of ...
gt0div 12021 Division of a positive num...
ge0div 12022 Division of a nonnegative ...
divgt0 12023 The ratio of two positive ...
divge0 12024 The ratio of nonnegative a...
mulge0b 12025 A condition for multiplica...
mulle0b 12026 A condition for multiplica...
mulsuble0b 12027 A condition for multiplica...
ltmuldiv 12028 'Less than' relationship b...
ltmuldiv2 12029 'Less than' relationship b...
ltdivmul 12030 'Less than' relationship b...
ledivmul 12031 'Less than or equal to' re...
ltdivmul2 12032 'Less than' relationship b...
lt2mul2div 12033 'Less than' relationship b...
ledivmul2 12034 'Less than or equal to' re...
lemuldiv 12035 'Less than or equal' relat...
lemuldiv2 12036 'Less than or equal' relat...
ltrec 12037 The reciprocal of both sid...
lerec 12038 The reciprocal of both sid...
lt2msq1 12039 Lemma for ~ lt2msq . (Con...
lt2msq 12040 Two nonnegative numbers co...
ltdiv2 12041 Division of a positive num...
ltrec1 12042 Reciprocal swap in a 'less...
lerec2 12043 Reciprocal swap in a 'less...
ledivdiv 12044 Invert ratios of positive ...
lediv2 12045 Division of a positive num...
ltdiv23 12046 Swap denominator with othe...
lediv23 12047 Swap denominator with othe...
lediv12a 12048 Comparison of ratio of two...
lediv2a 12049 Division of both sides of ...
reclt1 12050 The reciprocal of a positi...
recgt1 12051 The reciprocal of a positi...
recgt1i 12052 The reciprocal of a number...
recp1lt1 12053 Construct a number less th...
recreclt 12054 Given a positive number ` ...
le2msq 12055 The square function on non...
msq11 12056 The square of a nonnegativ...
ledivp1 12057 "Less than or equal to" an...
squeeze0 12058 If a nonnegative number is...
ltp1i 12059 A number is less than itse...
recgt0i 12060 The reciprocal of a positi...
recgt0ii 12061 The reciprocal of a positi...
prodgt0i 12062 Infer that a multiplicand ...
divgt0i 12063 The ratio of two positive ...
divge0i 12064 The ratio of nonnegative a...
ltreci 12065 The reciprocal of both sid...
lereci 12066 The reciprocal of both sid...
lt2msqi 12067 The square function on non...
le2msqi 12068 The square function on non...
msq11i 12069 The square of a nonnegativ...
divgt0i2i 12070 The ratio of two positive ...
ltrecii 12071 The reciprocal of both sid...
divgt0ii 12072 The ratio of two positive ...
ltmul1i 12073 Multiplication of both sid...
ltdiv1i 12074 Division of both sides of ...
ltmuldivi 12075 'Less than' relationship b...
ltmul2i 12076 Multiplication of both sid...
lemul1i 12077 Multiplication of both sid...
lemul2i 12078 Multiplication of both sid...
ltdiv23i 12079 Swap denominator with othe...
ledivp1i 12080 "Less than or equal to" an...
ltdivp1i 12081 Less-than and division rel...
ltdiv23ii 12082 Swap denominator with othe...
ltmul1ii 12083 Multiplication of both sid...
ltdiv1ii 12084 Division of both sides of ...
ltp1d 12085 A number is less than itse...
lep1d 12086 A number is less than or e...
ltm1d 12087 A number minus 1 is less t...
lem1d 12088 A number minus 1 is less t...
recgt0d 12089 The reciprocal of a positi...
divgt0d 12090 The ratio of two positive ...
mulgt1d 12091 The product of two numbers...
lemulge11d 12092 Multiplication by a number...
lemulge12d 12093 Multiplication by a number...
lemul1ad 12094 Multiplication of both sid...
lemul2ad 12095 Multiplication of both sid...
ltmul12ad 12096 Comparison of product of t...
lemul12ad 12097 Comparison of product of t...
lemul12bd 12098 Comparison of product of t...
fimaxre 12099 A finite set of real numbe...
fimaxre2 12100 A nonempty finite set of r...
fimaxre3 12101 A nonempty finite set of r...
fiminre 12102 A nonempty finite set of r...
fiminre2 12103 A nonempty finite set of r...
negfi 12104 The negation of a finite s...
lbreu 12105 If a set of reals contains...
lbcl 12106 If a set of reals contains...
lble 12107 If a set of reals contains...
lbinf 12108 If a set of reals contains...
lbinfcl 12109 If a set of reals contains...
lbinfle 12110 If a set of reals contains...
sup2 12111 A nonempty, bounded-above ...
sup3 12112 A version of the completen...
infm3lem 12113 Lemma for ~ infm3 . (Cont...
infm3 12114 The completeness axiom for...
suprcl 12115 Closure of supremum of a n...
suprub 12116 A member of a nonempty bou...
suprubd 12117 Natural deduction form of ...
suprcld 12118 Natural deduction form of ...
suprlub 12119 The supremum of a nonempty...
suprnub 12120 An upper bound is not less...
suprleub 12121 The supremum of a nonempty...
supaddc 12122 The supremum function dist...
supadd 12123 The supremum function dist...
supmul1 12124 The supremum function dist...
supmullem1 12125 Lemma for ~ supmul . (Con...
supmullem2 12126 Lemma for ~ supmul . (Con...
supmul 12127 The supremum function dist...
sup3ii 12128 A version of the completen...
suprclii 12129 Closure of supremum of a n...
suprubii 12130 A member of a nonempty bou...
suprlubii 12131 The supremum of a nonempty...
suprnubii 12132 An upper bound is not less...
suprleubii 12133 The supremum of a nonempty...
riotaneg 12134 The negative of the unique...
negiso 12135 Negation is an order anti-...
dfinfre 12136 The infimum of a set of re...
infrecl 12137 Closure of infimum of a no...
infrenegsup 12138 The infimum of a set of re...
infregelb 12139 Any lower bound of a nonem...
infrelb 12140 If a nonempty set of real ...
infrefilb 12141 The infimum of a finite se...
supfirege 12142 The supremum of a finite s...
inelr 12143 The imaginary unit ` _i ` ...
rimul 12144 A real number times the im...
cru 12145 The representation of comp...
crne0 12146 The real representation of...
creur 12147 The real part of a complex...
creui 12148 The imaginary part of a co...
cju 12149 The complex conjugate of a...
ofsubeq0 12150 Function analogue of ~ sub...
ofnegsub 12151 Function analogue of ~ neg...
ofsubge0 12152 Function analogue of ~ sub...
nnexALT 12155 Alternate proof of ~ nnex ...
peano5nni 12156 Peano's inductive postulat...
nnssre 12157 The positive integers are ...
nnsscn 12158 The positive integers are ...
nnex 12159 The set of positive intege...
nnre 12160 A positive integer is a re...
nncn 12161 A positive integer is a co...
nnrei 12162 A positive integer is a re...
nncni 12163 A positive integer is a co...
1nn 12164 Peano postulate: 1 is a po...
peano2nn 12165 Peano postulate: a success...
dfnn2 12166 Alternate definition of th...
dfnn3 12167 Alternate definition of th...
nnred 12168 A positive integer is a re...
nncnd 12169 A positive integer is a co...
peano2nnd 12170 Peano postulate: a success...
nnind 12171 Principle of Mathematical ...
nnindALT 12172 Principle of Mathematical ...
nnindd 12173 Principle of Mathematical ...
nn1m1nn 12174 Every positive integer is ...
nn1suc 12175 If a statement holds for 1...
nnaddcl 12176 Closure of addition of pos...
nnmulcl 12177 Closure of multiplication ...
nnmulcli 12178 Closure of multiplication ...
nnmtmip 12179 "Minus times minus is plus...
nn2ge 12180 There exists a positive in...
nnge1 12181 A positive integer is one ...
nngt1ne1 12182 A positive integer is grea...
nnle1eq1 12183 A positive integer is less...
nngt0 12184 A positive integer is posi...
nnnlt1 12185 A positive integer is not ...
nnnle0 12186 A positive integer is not ...
nnne0 12187 A positive integer is nonz...
nnneneg 12188 No positive integer is equ...
0nnn 12189 Zero is not a positive int...
0nnnALT 12190 Alternate proof of ~ 0nnn ...
nnne0ALT 12191 Alternate version of ~ nnn...
nngt0i 12192 A positive integer is posi...
nnne0i 12193 A positive integer is nonz...
nndivre 12194 The quotient of a real and...
nnrecre 12195 The reciprocal of a positi...
nnrecgt0 12196 The reciprocal of a positi...
nnsub 12197 Subtraction of positive in...
nnsubi 12198 Subtraction of positive in...
nndiv 12199 Two ways to express " ` A ...
nndivtr 12200 Transitive property of div...
nnge1d 12201 A positive integer is one ...
nngt0d 12202 A positive integer is posi...
nnne0d 12203 A positive integer is nonz...
nnrecred 12204 The reciprocal of a positi...
nnaddcld 12205 Closure of addition of pos...
nnmulcld 12206 Closure of multiplication ...
nndivred 12207 A positive integer is one ...
0ne1 12224 Zero is different from one...
1m1e0 12225 One minus one equals zero....
2nn 12226 2 is a positive integer. ...
2re 12227 The number 2 is real. (Co...
2cn 12228 The number 2 is a complex ...
2cnALT 12229 Alternate proof of ~ 2cn ....
2ex 12230 The number 2 is a set. (C...
2cnd 12231 The number 2 is a complex ...
3nn 12232 3 is a positive integer. ...
3re 12233 The number 3 is real. (Co...
3cn 12234 The number 3 is a complex ...
3ex 12235 The number 3 is a set. (C...
4nn 12236 4 is a positive integer. ...
4re 12237 The number 4 is real. (Co...
4cn 12238 The number 4 is a complex ...
5nn 12239 5 is a positive integer. ...
5re 12240 The number 5 is real. (Co...
5cn 12241 The number 5 is a complex ...
6nn 12242 6 is a positive integer. ...
6re 12243 The number 6 is real. (Co...
6cn 12244 The number 6 is a complex ...
7nn 12245 7 is a positive integer. ...
7re 12246 The number 7 is real. (Co...
7cn 12247 The number 7 is a complex ...
8nn 12248 8 is a positive integer. ...
8re 12249 The number 8 is real. (Co...
8cn 12250 The number 8 is a complex ...
9nn 12251 9 is a positive integer. ...
9re 12252 The number 9 is real. (Co...
9cn 12253 The number 9 is a complex ...
0le0 12254 Zero is nonnegative. (Con...
0le2 12255 The number 0 is less than ...
2pos 12256 The number 2 is positive. ...
2ne0 12257 The number 2 is nonzero. ...
3pos 12258 The number 3 is positive. ...
3ne0 12259 The number 3 is nonzero. ...
4pos 12260 The number 4 is positive. ...
4ne0 12261 The number 4 is nonzero. ...
5pos 12262 The number 5 is positive. ...
6pos 12263 The number 6 is positive. ...
7pos 12264 The number 7 is positive. ...
8pos 12265 The number 8 is positive. ...
9pos 12266 The number 9 is positive. ...
neg1cn 12267 -1 is a complex number. (...
neg1rr 12268 -1 is a real number. (Con...
neg1ne0 12269 -1 is nonzero. (Contribut...
neg1lt0 12270 -1 is less than 0. (Contr...
negneg1e1 12271 ` -u -u 1 ` is 1. (Contri...
1pneg1e0 12272 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12273 0 minus 0 equals 0. (Cont...
1m0e1 12274 1 - 0 = 1. (Contributed b...
0p1e1 12275 0 + 1 = 1. (Contributed b...
fv0p1e1 12276 Function value at ` N + 1 ...
1p0e1 12277 1 + 0 = 1. (Contributed b...
1p1e2 12278 1 + 1 = 2. (Contributed b...
2m1e1 12279 2 - 1 = 1. The result is ...
1e2m1 12280 1 = 2 - 1. (Contributed b...
3m1e2 12281 3 - 1 = 2. (Contributed b...
4m1e3 12282 4 - 1 = 3. (Contributed b...
5m1e4 12283 5 - 1 = 4. (Contributed b...
6m1e5 12284 6 - 1 = 5. (Contributed b...
7m1e6 12285 7 - 1 = 6. (Contributed b...
8m1e7 12286 8 - 1 = 7. (Contributed b...
9m1e8 12287 9 - 1 = 8. (Contributed b...
2p2e4 12288 Two plus two equals four. ...
2times 12289 Two times a number. (Cont...
times2 12290 A number times 2. (Contri...
2timesi 12291 Two times a number. (Cont...
times2i 12292 A number times 2. (Contri...
2txmxeqx 12293 Two times a complex number...
2div2e1 12294 2 divided by 2 is 1. (Con...
2p1e3 12295 2 + 1 = 3. (Contributed b...
1p2e3 12296 1 + 2 = 3. For a shorter ...
1p2e3ALT 12297 Alternate proof of ~ 1p2e3...
3p1e4 12298 3 + 1 = 4. (Contributed b...
4p1e5 12299 4 + 1 = 5. (Contributed b...
5p1e6 12300 5 + 1 = 6. (Contributed b...
6p1e7 12301 6 + 1 = 7. (Contributed b...
7p1e8 12302 7 + 1 = 8. (Contributed b...
8p1e9 12303 8 + 1 = 9. (Contributed b...
3p2e5 12304 3 + 2 = 5. (Contributed b...
3p3e6 12305 3 + 3 = 6. (Contributed b...
4p2e6 12306 4 + 2 = 6. (Contributed b...
4p3e7 12307 4 + 3 = 7. (Contributed b...
4p4e8 12308 4 + 4 = 8. (Contributed b...
5p2e7 12309 5 + 2 = 7. (Contributed b...
5p3e8 12310 5 + 3 = 8. (Contributed b...
5p4e9 12311 5 + 4 = 9. (Contributed b...
6p2e8 12312 6 + 2 = 8. (Contributed b...
6p3e9 12313 6 + 3 = 9. (Contributed b...
7p2e9 12314 7 + 2 = 9. (Contributed b...
1t1e1 12315 1 times 1 equals 1. (Cont...
2t1e2 12316 2 times 1 equals 2. (Cont...
2t2e4 12317 2 times 2 equals 4. (Cont...
3t1e3 12318 3 times 1 equals 3. (Cont...
3t2e6 12319 3 times 2 equals 6. (Cont...
3t3e9 12320 3 times 3 equals 9. (Cont...
4t2e8 12321 4 times 2 equals 8. (Cont...
2t0e0 12322 2 times 0 equals 0. (Cont...
4d2e2 12323 One half of four is two. ...
1lt2 12324 1 is less than 2. (Contri...
2lt3 12325 2 is less than 3. (Contri...
1lt3 12326 1 is less than 3. (Contri...
3lt4 12327 3 is less than 4. (Contri...
2lt4 12328 2 is less than 4. (Contri...
1lt4 12329 1 is less than 4. (Contri...
4lt5 12330 4 is less than 5. (Contri...
3lt5 12331 3 is less than 5. (Contri...
2lt5 12332 2 is less than 5. (Contri...
1lt5 12333 1 is less than 5. (Contri...
5lt6 12334 5 is less than 6. (Contri...
4lt6 12335 4 is less than 6. (Contri...
3lt6 12336 3 is less than 6. (Contri...
2lt6 12337 2 is less than 6. (Contri...
1lt6 12338 1 is less than 6. (Contri...
6lt7 12339 6 is less than 7. (Contri...
5lt7 12340 5 is less than 7. (Contri...
4lt7 12341 4 is less than 7. (Contri...
3lt7 12342 3 is less than 7. (Contri...
2lt7 12343 2 is less than 7. (Contri...
1lt7 12344 1 is less than 7. (Contri...
7lt8 12345 7 is less than 8. (Contri...
6lt8 12346 6 is less than 8. (Contri...
5lt8 12347 5 is less than 8. (Contri...
4lt8 12348 4 is less than 8. (Contri...
3lt8 12349 3 is less than 8. (Contri...
2lt8 12350 2 is less than 8. (Contri...
1lt8 12351 1 is less than 8. (Contri...
8lt9 12352 8 is less than 9. (Contri...
7lt9 12353 7 is less than 9. (Contri...
6lt9 12354 6 is less than 9. (Contri...
5lt9 12355 5 is less than 9. (Contri...
4lt9 12356 4 is less than 9. (Contri...
3lt9 12357 3 is less than 9. (Contri...
2lt9 12358 2 is less than 9. (Contri...
1lt9 12359 1 is less than 9. (Contri...
0ne2 12360 0 is not equal to 2. (Con...
1ne2 12361 1 is not equal to 2. (Con...
1le2 12362 1 is less than or equal to...
2cnne0 12363 2 is a nonzero complex num...
2rene0 12364 2 is a nonzero real number...
1le3 12365 1 is less than or equal to...
neg1mulneg1e1 12366 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12367 One-half is real. (Contri...
halfcn 12368 One-half is a complex numb...
halfgt0 12369 One-half is greater than z...
halfge0 12370 One-half is not negative. ...
halflt1 12371 One-half is less than one....
1mhlfehlf 12372 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12373 An eighth of four thirds i...
halfpm6th 12374 One half plus or minus one...
it0e0 12375 i times 0 equals 0. (Cont...
2mulicn 12376 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12377 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12378 Closure of half of a numbe...
rehalfcl 12379 Real closure of half. (Co...
half0 12380 Half of a number is zero i...
2halves 12381 Two halves make a whole. ...
halfpos2 12382 A number is positive iff i...
halfpos 12383 A positive number is great...
halfnneg2 12384 A number is nonnegative if...
halfaddsubcl 12385 Closure of half-sum and ha...
halfaddsub 12386 Sum and difference of half...
subhalfhalf 12387 Subtracting the half of a ...
lt2halves 12388 A sum is less than the who...
addltmul 12389 Sum is less than product f...
nominpos 12390 There is no smallest posit...
avglt1 12391 Ordering property for aver...
avglt2 12392 Ordering property for aver...
avgle1 12393 Ordering property for aver...
avgle2 12394 Ordering property for aver...
avgle 12395 The average of two numbers...
2timesd 12396 Two times a number. (Cont...
times2d 12397 A number times 2. (Contri...
halfcld 12398 Closure of half of a numbe...
2halvesd 12399 Two halves make a whole. ...
rehalfcld 12400 Real closure of half. (Co...
lt2halvesd 12401 A sum is less than the who...
rehalfcli 12402 Half a real number is real...
lt2addmuld 12403 If two real numbers are le...
add1p1 12404 Adding two times 1 to a nu...
sub1m1 12405 Subtracting two times 1 fr...
cnm2m1cnm3 12406 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12407 A complex number increased...
div4p1lem1div2 12408 An integer greater than 5,...
nnunb 12409 The set of positive intege...
arch 12410 Archimedean property of re...
nnrecl 12411 There exists a positive in...
bndndx 12412 A bounded real sequence ` ...
elnn0 12415 Nonnegative integers expre...
nnssnn0 12416 Positive naturals are a su...
nn0ssre 12417 Nonnegative integers are a...
nn0sscn 12418 Nonnegative integers are a...
nn0ex 12419 The set of nonnegative int...
nnnn0 12420 A positive integer is a no...
nnnn0i 12421 A positive integer is a no...
nn0re 12422 A nonnegative integer is a...
nn0cn 12423 A nonnegative integer is a...
nn0rei 12424 A nonnegative integer is a...
nn0cni 12425 A nonnegative integer is a...
dfn2 12426 The set of positive intege...
elnnne0 12427 The positive integer prope...
0nn0 12428 0 is a nonnegative integer...
1nn0 12429 1 is a nonnegative integer...
2nn0 12430 2 is a nonnegative integer...
3nn0 12431 3 is a nonnegative integer...
4nn0 12432 4 is a nonnegative integer...
5nn0 12433 5 is a nonnegative integer...
6nn0 12434 6 is a nonnegative integer...
7nn0 12435 7 is a nonnegative integer...
8nn0 12436 8 is a nonnegative integer...
9nn0 12437 9 is a nonnegative integer...
nn0ge0 12438 A nonnegative integer is g...
nn0nlt0 12439 A nonnegative integer is n...
nn0ge0i 12440 Nonnegative integers are n...
nn0le0eq0 12441 A nonnegative integer is l...
nn0p1gt0 12442 A nonnegative integer incr...
nnnn0addcl 12443 A positive integer plus a ...
nn0nnaddcl 12444 A nonnegative integer plus...
0mnnnnn0 12445 The result of subtracting ...
un0addcl 12446 If ` S ` is closed under a...
un0mulcl 12447 If ` S ` is closed under m...
nn0addcl 12448 Closure of addition of non...
nn0mulcl 12449 Closure of multiplication ...
nn0addcli 12450 Closure of addition of non...
nn0mulcli 12451 Closure of multiplication ...
nn0p1nn 12452 A nonnegative integer plus...
peano2nn0 12453 Second Peano postulate for...
nnm1nn0 12454 A positive integer minus 1...
elnn0nn 12455 The nonnegative integer pr...
elnnnn0 12456 The positive integer prope...
elnnnn0b 12457 The positive integer prope...
elnnnn0c 12458 The positive integer prope...
nn0addge1 12459 A number is less than or e...
nn0addge2 12460 A number is less than or e...
nn0addge1i 12461 A number is less than or e...
nn0addge2i 12462 A number is less than or e...
nn0sub 12463 Subtraction of nonnegative...
ltsubnn0 12464 Subtracting a nonnegative ...
nn0negleid 12465 A nonnegative integer is g...
difgtsumgt 12466 If the difference of a rea...
nn0le2xi 12467 A nonnegative integer is l...
nn0lele2xi 12468 'Less than or equal to' im...
fcdmnn0supp 12469 Two ways to write the supp...
fcdmnn0fsupp 12470 A function into ` NN0 ` is...
fcdmnn0suppg 12471 Version of ~ fcdmnn0supp a...
fcdmnn0fsuppg 12472 Version of ~ fcdmnn0fsupp ...
nnnn0d 12473 A positive integer is a no...
nn0red 12474 A nonnegative integer is a...
nn0cnd 12475 A nonnegative integer is a...
nn0ge0d 12476 A nonnegative integer is g...
nn0addcld 12477 Closure of addition of non...
nn0mulcld 12478 Closure of multiplication ...
nn0readdcl 12479 Closure law for addition o...
nn0n0n1ge2 12480 A nonnegative integer whic...
nn0n0n1ge2b 12481 A nonnegative integer is n...
nn0ge2m1nn 12482 If a nonnegative integer i...
nn0ge2m1nn0 12483 If a nonnegative integer i...
nn0nndivcl 12484 Closure law for dividing o...
elxnn0 12487 An extended nonnegative in...
nn0ssxnn0 12488 The standard nonnegative i...
nn0xnn0 12489 A standard nonnegative int...
xnn0xr 12490 An extended nonnegative in...
0xnn0 12491 Zero is an extended nonneg...
pnf0xnn0 12492 Positive infinity is an ex...
nn0nepnf 12493 No standard nonnegative in...
nn0xnn0d 12494 A standard nonnegative int...
nn0nepnfd 12495 No standard nonnegative in...
xnn0nemnf 12496 No extended nonnegative in...
xnn0xrnemnf 12497 The extended nonnegative i...
xnn0nnn0pnf 12498 An extended nonnegative in...
elz 12501 Membership in the set of i...
nnnegz 12502 The negative of a positive...
zre 12503 An integer is a real. (Co...
zcn 12504 An integer is a complex nu...
zrei 12505 An integer is a real numbe...
zssre 12506 The integers are a subset ...
zsscn 12507 The integers are a subset ...
zex 12508 The set of integers exists...
elnnz 12509 Positive integer property ...
0z 12510 Zero is an integer. (Cont...
0zd 12511 Zero is an integer, deduct...
elnn0z 12512 Nonnegative integer proper...
elznn0nn 12513 Integer property expressed...
elznn0 12514 Integer property expressed...
elznn 12515 Integer property expressed...
zle0orge1 12516 There is no integer in the...
elz2 12517 Membership in the set of i...
dfz2 12518 Alternative definition of ...
zexALT 12519 Alternate proof of ~ zex ....
nnz 12520 A positive integer is an i...
nnssz 12521 Positive integers are a su...
nn0ssz 12522 Nonnegative integers are a...
nnzOLD 12523 Obsolete version of ~ nnz ...
nn0z 12524 A nonnegative integer is a...
nn0zd 12525 A nonnegative integer is a...
nnzd 12526 A positive integer is an i...
nnzi 12527 A positive integer is an i...
nn0zi 12528 A nonnegative integer is a...
elnnz1 12529 Positive integer property ...
znnnlt1 12530 An integer is not a positi...
nnzrab 12531 Positive integers expresse...
nn0zrab 12532 Nonnegative integers expre...
1z 12533 One is an integer. (Contr...
1zzd 12534 One is an integer, deducti...
2z 12535 2 is an integer. (Contrib...
3z 12536 3 is an integer. (Contrib...
4z 12537 4 is an integer. (Contrib...
znegcl 12538 Closure law for negative i...
neg1z 12539 -1 is an integer. (Contri...
znegclb 12540 A complex number is an int...
nn0negz 12541 The negative of a nonnegat...
nn0negzi 12542 The negative of a nonnegat...
zaddcl 12543 Closure of addition of int...
peano2z 12544 Second Peano postulate gen...
zsubcl 12545 Closure of subtraction of ...
peano2zm 12546 "Reverse" second Peano pos...
zletr 12547 Transitive law of ordering...
zrevaddcl 12548 Reverse closure law for ad...
znnsub 12549 The positive difference of...
znn0sub 12550 The nonnegative difference...
nzadd 12551 The sum of a real number n...
zmulcl 12552 Closure of multiplication ...
zltp1le 12553 Integer ordering relation....
zleltp1 12554 Integer ordering relation....
zlem1lt 12555 Integer ordering relation....
zltlem1 12556 Integer ordering relation....
zgt0ge1 12557 An integer greater than ` ...
nnleltp1 12558 Positive integer ordering ...
nnltp1le 12559 Positive integer ordering ...
nnaddm1cl 12560 Closure of addition of pos...
nn0ltp1le 12561 Nonnegative integer orderi...
nn0leltp1 12562 Nonnegative integer orderi...
nn0ltlem1 12563 Nonnegative integer orderi...
nn0sub2 12564 Subtraction of nonnegative...
nn0lt10b 12565 A nonnegative integer less...
nn0lt2 12566 A nonnegative integer less...
nn0le2is012 12567 A nonnegative integer whic...
nn0lem1lt 12568 Nonnegative integer orderi...
nnlem1lt 12569 Positive integer ordering ...
nnltlem1 12570 Positive integer ordering ...
nnm1ge0 12571 A positive integer decreas...
nn0ge0div 12572 Division of a nonnegative ...
zdiv 12573 Two ways to express " ` M ...
zdivadd 12574 Property of divisibility: ...
zdivmul 12575 Property of divisibility: ...
zextle 12576 An extensionality-like pro...
zextlt 12577 An extensionality-like pro...
recnz 12578 The reciprocal of a number...
btwnnz 12579 A number between an intege...
gtndiv 12580 A larger number does not d...
halfnz 12581 One-half is not an integer...
3halfnz 12582 Three halves is not an int...
suprzcl 12583 The supremum of a bounded-...
prime 12584 Two ways to express " ` A ...
msqznn 12585 The square of a nonzero in...
zneo 12586 No even integer equals an ...
nneo 12587 A positive integer is even...
nneoi 12588 A positive integer is even...
zeo 12589 An integer is even or odd....
zeo2 12590 An integer is even or odd ...
peano2uz2 12591 Second Peano postulate for...
peano5uzi 12592 Peano's inductive postulat...
peano5uzti 12593 Peano's inductive postulat...
dfuzi 12594 An expression for the uppe...
uzind 12595 Induction on the upper int...
uzind2 12596 Induction on the upper int...
uzind3 12597 Induction on the upper int...
nn0ind 12598 Principle of Mathematical ...
nn0indALT 12599 Principle of Mathematical ...
nn0indd 12600 Principle of Mathematical ...
fzind 12601 Induction on the integers ...
fnn0ind 12602 Induction on the integers ...
nn0ind-raph 12603 Principle of Mathematical ...
zindd 12604 Principle of Mathematical ...
fzindd 12605 Induction on the integers ...
btwnz 12606 Any real number can be san...
zred 12607 An integer is a real numbe...
zcnd 12608 An integer is a complex nu...
znegcld 12609 Closure law for negative i...
peano2zd 12610 Deduction from second Pean...
zaddcld 12611 Closure of addition of int...
zsubcld 12612 Closure of subtraction of ...
zmulcld 12613 Closure of multiplication ...
znnn0nn 12614 The negative of a negative...
zadd2cl 12615 Increasing an integer by 2...
zriotaneg 12616 The negative of the unique...
suprfinzcl 12617 The supremum of a nonempty...
9p1e10 12620 9 + 1 = 10. (Contributed ...
dfdec10 12621 Version of the definition ...
decex 12622 A decimal number is a set....
deceq1 12623 Equality theorem for the d...
deceq2 12624 Equality theorem for the d...
deceq1i 12625 Equality theorem for the d...
deceq2i 12626 Equality theorem for the d...
deceq12i 12627 Equality theorem for the d...
numnncl 12628 Closure for a numeral (wit...
num0u 12629 Add a zero in the units pl...
num0h 12630 Add a zero in the higher p...
numcl 12631 Closure for a decimal inte...
numsuc 12632 The successor of a decimal...
deccl 12633 Closure for a numeral. (C...
10nn 12634 10 is a positive integer. ...
10pos 12635 The number 10 is positive....
10nn0 12636 10 is a nonnegative intege...
10re 12637 The number 10 is real. (C...
decnncl 12638 Closure for a numeral. (C...
dec0u 12639 Add a zero in the units pl...
dec0h 12640 Add a zero in the higher p...
numnncl2 12641 Closure for a decimal inte...
decnncl2 12642 Closure for a decimal inte...
numlt 12643 Comparing two decimal inte...
numltc 12644 Comparing two decimal inte...
le9lt10 12645 A "decimal digit" (i.e. a ...
declt 12646 Comparing two decimal inte...
decltc 12647 Comparing two decimal inte...
declth 12648 Comparing two decimal inte...
decsuc 12649 The successor of a decimal...
3declth 12650 Comparing two decimal inte...
3decltc 12651 Comparing two decimal inte...
decle 12652 Comparing two decimal inte...
decleh 12653 Comparing two decimal inte...
declei 12654 Comparing a digit to a dec...
numlti 12655 Comparing a digit to a dec...
declti 12656 Comparing a digit to a dec...
decltdi 12657 Comparing a digit to a dec...
numsucc 12658 The successor of a decimal...
decsucc 12659 The successor of a decimal...
1e0p1 12660 The successor of zero. (C...
dec10p 12661 Ten plus an integer. (Con...
numma 12662 Perform a multiply-add of ...
nummac 12663 Perform a multiply-add of ...
numma2c 12664 Perform a multiply-add of ...
numadd 12665 Add two decimal integers `...
numaddc 12666 Add two decimal integers `...
nummul1c 12667 The product of a decimal i...
nummul2c 12668 The product of a decimal i...
decma 12669 Perform a multiply-add of ...
decmac 12670 Perform a multiply-add of ...
decma2c 12671 Perform a multiply-add of ...
decadd 12672 Add two numerals ` M ` and...
decaddc 12673 Add two numerals ` M ` and...
decaddc2 12674 Add two numerals ` M ` and...
decrmanc 12675 Perform a multiply-add of ...
decrmac 12676 Perform a multiply-add of ...
decaddm10 12677 The sum of two multiples o...
decaddi 12678 Add two numerals ` M ` and...
decaddci 12679 Add two numerals ` M ` and...
decaddci2 12680 Add two numerals ` M ` and...
decsubi 12681 Difference between a numer...
decmul1 12682 The product of a numeral w...
decmul1c 12683 The product of a numeral w...
decmul2c 12684 The product of a numeral w...
decmulnc 12685 The product of a numeral w...
11multnc 12686 The product of 11 (as nume...
decmul10add 12687 A multiplication of a numb...
6p5lem 12688 Lemma for ~ 6p5e11 and rel...
5p5e10 12689 5 + 5 = 10. (Contributed ...
6p4e10 12690 6 + 4 = 10. (Contributed ...
6p5e11 12691 6 + 5 = 11. (Contributed ...
6p6e12 12692 6 + 6 = 12. (Contributed ...
7p3e10 12693 7 + 3 = 10. (Contributed ...
7p4e11 12694 7 + 4 = 11. (Contributed ...
7p5e12 12695 7 + 5 = 12. (Contributed ...
7p6e13 12696 7 + 6 = 13. (Contributed ...
7p7e14 12697 7 + 7 = 14. (Contributed ...
8p2e10 12698 8 + 2 = 10. (Contributed ...
8p3e11 12699 8 + 3 = 11. (Contributed ...
8p4e12 12700 8 + 4 = 12. (Contributed ...
8p5e13 12701 8 + 5 = 13. (Contributed ...
8p6e14 12702 8 + 6 = 14. (Contributed ...
8p7e15 12703 8 + 7 = 15. (Contributed ...
8p8e16 12704 8 + 8 = 16. (Contributed ...
9p2e11 12705 9 + 2 = 11. (Contributed ...
9p3e12 12706 9 + 3 = 12. (Contributed ...
9p4e13 12707 9 + 4 = 13. (Contributed ...
9p5e14 12708 9 + 5 = 14. (Contributed ...
9p6e15 12709 9 + 6 = 15. (Contributed ...
9p7e16 12710 9 + 7 = 16. (Contributed ...
9p8e17 12711 9 + 8 = 17. (Contributed ...
9p9e18 12712 9 + 9 = 18. (Contributed ...
10p10e20 12713 10 + 10 = 20. (Contribute...
10m1e9 12714 10 - 1 = 9. (Contributed ...
4t3lem 12715 Lemma for ~ 4t3e12 and rel...
4t3e12 12716 4 times 3 equals 12. (Con...
4t4e16 12717 4 times 4 equals 16. (Con...
5t2e10 12718 5 times 2 equals 10. (Con...
5t3e15 12719 5 times 3 equals 15. (Con...
5t4e20 12720 5 times 4 equals 20. (Con...
5t5e25 12721 5 times 5 equals 25. (Con...
6t2e12 12722 6 times 2 equals 12. (Con...
6t3e18 12723 6 times 3 equals 18. (Con...
6t4e24 12724 6 times 4 equals 24. (Con...
6t5e30 12725 6 times 5 equals 30. (Con...
6t6e36 12726 6 times 6 equals 36. (Con...
7t2e14 12727 7 times 2 equals 14. (Con...
7t3e21 12728 7 times 3 equals 21. (Con...
7t4e28 12729 7 times 4 equals 28. (Con...
7t5e35 12730 7 times 5 equals 35. (Con...
7t6e42 12731 7 times 6 equals 42. (Con...
7t7e49 12732 7 times 7 equals 49. (Con...
8t2e16 12733 8 times 2 equals 16. (Con...
8t3e24 12734 8 times 3 equals 24. (Con...
8t4e32 12735 8 times 4 equals 32. (Con...
8t5e40 12736 8 times 5 equals 40. (Con...
8t6e48 12737 8 times 6 equals 48. (Con...
8t7e56 12738 8 times 7 equals 56. (Con...
8t8e64 12739 8 times 8 equals 64. (Con...
9t2e18 12740 9 times 2 equals 18. (Con...
9t3e27 12741 9 times 3 equals 27. (Con...
9t4e36 12742 9 times 4 equals 36. (Con...
9t5e45 12743 9 times 5 equals 45. (Con...
9t6e54 12744 9 times 6 equals 54. (Con...
9t7e63 12745 9 times 7 equals 63. (Con...
9t8e72 12746 9 times 8 equals 72. (Con...
9t9e81 12747 9 times 9 equals 81. (Con...
9t11e99 12748 9 times 11 equals 99. (Co...
9lt10 12749 9 is less than 10. (Contr...
8lt10 12750 8 is less than 10. (Contr...
7lt10 12751 7 is less than 10. (Contr...
6lt10 12752 6 is less than 10. (Contr...
5lt10 12753 5 is less than 10. (Contr...
4lt10 12754 4 is less than 10. (Contr...
3lt10 12755 3 is less than 10. (Contr...
2lt10 12756 2 is less than 10. (Contr...
1lt10 12757 1 is less than 10. (Contr...
decbin0 12758 Decompose base 4 into base...
decbin2 12759 Decompose base 4 into base...
decbin3 12760 Decompose base 4 into base...
halfthird 12761 Half minus a third. (Cont...
5recm6rec 12762 One fifth minus one sixth....
uzval 12765 The value of the upper int...
uzf 12766 The domain and codomain of...
eluz1 12767 Membership in the upper se...
eluzel2 12768 Implication of membership ...
eluz2 12769 Membership in an upper set...
eluzmn 12770 Membership in an earlier u...
eluz1i 12771 Membership in an upper set...
eluzuzle 12772 An integer in an upper set...
eluzelz 12773 A member of an upper set o...
eluzelre 12774 A member of an upper set o...
eluzelcn 12775 A member of an upper set o...
eluzle 12776 Implication of membership ...
eluz 12777 Membership in an upper set...
uzid 12778 Membership of the least me...
uzidd 12779 Membership of the least me...
uzn0 12780 The upper integers are all...
uztrn 12781 Transitive law for sets of...
uztrn2 12782 Transitive law for sets of...
uzneg 12783 Contraposition law for upp...
uzssz 12784 An upper set of integers i...
uzssre 12785 An upper set of integers i...
uzss 12786 Subset relationship for tw...
uztric 12787 Totality of the ordering r...
uz11 12788 The upper integers functio...
eluzp1m1 12789 Membership in the next upp...
eluzp1l 12790 Strict ordering implied by...
eluzp1p1 12791 Membership in the next upp...
eluzadd 12792 Membership in a later uppe...
eluzsub 12793 Membership in an earlier u...
eluzaddi 12794 Membership in a later uppe...
eluzaddiOLD 12795 Obsolete version of ~ eluz...
eluzsubi 12796 Membership in an earlier u...
eluzsubiOLD 12797 Obsolete version of ~ eluz...
eluzaddOLD 12798 Obsolete version of ~ eluz...
eluzsubOLD 12799 Obsolete version of ~ eluz...
subeluzsub 12800 Membership of a difference...
uzm1 12801 Choices for an element of ...
uznn0sub 12802 The nonnegative difference...
uzin 12803 Intersection of two upper ...
uzp1 12804 Choices for an element of ...
nn0uz 12805 Nonnegative integers expre...
nnuz 12806 Positive integers expresse...
elnnuz 12807 A positive integer express...
elnn0uz 12808 A nonnegative integer expr...
eluz2nn 12809 An integer greater than or...
eluz4eluz2 12810 An integer greater than or...
eluz4nn 12811 An integer greater than or...
eluzge2nn0 12812 If an integer is greater t...
eluz2n0 12813 An integer greater than or...
uzuzle23 12814 An integer in the upper se...
eluzge3nn 12815 If an integer is greater t...
uz3m2nn 12816 An integer greater than or...
1eluzge0 12817 1 is an integer greater th...
2eluzge0 12818 2 is an integer greater th...
2eluzge1 12819 2 is an integer greater th...
uznnssnn 12820 The upper integers startin...
raluz 12821 Restricted universal quant...
raluz2 12822 Restricted universal quant...
rexuz 12823 Restricted existential qua...
rexuz2 12824 Restricted existential qua...
2rexuz 12825 Double existential quantif...
peano2uz 12826 Second Peano postulate for...
peano2uzs 12827 Second Peano postulate for...
peano2uzr 12828 Reversed second Peano axio...
uzaddcl 12829 Addition closure law for a...
nn0pzuz 12830 The sum of a nonnegative i...
uzind4 12831 Induction on the upper set...
uzind4ALT 12832 Induction on the upper set...
uzind4s 12833 Induction on the upper set...
uzind4s2 12834 Induction on the upper set...
uzind4i 12835 Induction on the upper int...
uzwo 12836 Well-ordering principle: a...
uzwo2 12837 Well-ordering principle: a...
nnwo 12838 Well-ordering principle: a...
nnwof 12839 Well-ordering principle: a...
nnwos 12840 Well-ordering principle: a...
indstr 12841 Strong Mathematical Induct...
eluznn0 12842 Membership in a nonnegativ...
eluznn 12843 Membership in a positive u...
eluz2b1 12844 Two ways to say "an intege...
eluz2gt1 12845 An integer greater than or...
eluz2b2 12846 Two ways to say "an intege...
eluz2b3 12847 Two ways to say "an intege...
uz2m1nn 12848 One less than an integer g...
1nuz2 12849 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12850 A positive integer is eith...
uz2mulcl 12851 Closure of multiplication ...
indstr2 12852 Strong Mathematical Induct...
uzinfi 12853 Extract the lower bound of...
nninf 12854 The infimum of the set of ...
nn0inf 12855 The infimum of the set of ...
infssuzle 12856 The infimum of a subset of...
infssuzcl 12857 The infimum of a subset of...
ublbneg 12858 The image under negation o...
eqreznegel 12859 Two ways to express the im...
supminf 12860 The supremum of a bounded-...
lbzbi 12861 If a set of reals is bound...
zsupss 12862 Any nonempty bounded subse...
suprzcl2 12863 The supremum of a bounded-...
suprzub 12864 The supremum of a bounded-...
uzsupss 12865 Any bounded subset of an u...
nn01to3 12866 A (nonnegative) integer be...
nn0ge2m1nnALT 12867 Alternate proof of ~ nn0ge...
uzwo3 12868 Well-ordering principle: a...
zmin 12869 There is a unique smallest...
zmax 12870 There is a unique largest ...
zbtwnre 12871 There is a unique integer ...
rebtwnz 12872 There is a unique greatest...
elq 12875 Membership in the set of r...
qmulz 12876 If ` A ` is rational, then...
znq 12877 The ratio of an integer an...
qre 12878 A rational number is a rea...
zq 12879 An integer is a rational n...
qred 12880 A rational number is a rea...
zssq 12881 The integers are a subset ...
nn0ssq 12882 The nonnegative integers a...
nnssq 12883 The positive integers are ...
qssre 12884 The rationals are a subset...
qsscn 12885 The rationals are a subset...
qex 12886 The set of rational number...
nnq 12887 A positive integer is rati...
qcn 12888 A rational number is a com...
qexALT 12889 Alternate proof of ~ qex ....
qaddcl 12890 Closure of addition of rat...
qnegcl 12891 Closure law for the negati...
qmulcl 12892 Closure of multiplication ...
qsubcl 12893 Closure of subtraction of ...
qreccl 12894 Closure of reciprocal of r...
qdivcl 12895 Closure of division of rat...
qrevaddcl 12896 Reverse closure law for ad...
nnrecq 12897 The reciprocal of a positi...
irradd 12898 The sum of an irrational n...
irrmul 12899 The product of an irration...
elpq 12900 A positive rational is the...
elpqb 12901 A class is a positive rati...
rpnnen1lem2 12902 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12903 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12904 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12905 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12906 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12907 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12908 One half of ~ rpnnen , whe...
reexALT 12909 Alternate proof of ~ reex ...
cnref1o 12910 There is a natural one-to-...
cnexALT 12911 The set of complex numbers...
xrex 12912 The set of extended reals ...
addex 12913 The addition operation is ...
mulex 12914 The multiplication operati...
elrp 12917 Membership in the set of p...
elrpii 12918 Membership in the set of p...
1rp 12919 1 is a positive real. (Co...
2rp 12920 2 is a positive real. (Co...
3rp 12921 3 is a positive real. (Co...
rpssre 12922 The positive reals are a s...
rpre 12923 A positive real is a real....
rpxr 12924 A positive real is an exte...
rpcn 12925 A positive real is a compl...
nnrp 12926 A positive integer is a po...
rpgt0 12927 A positive real is greater...
rpge0 12928 A positive real is greater...
rpregt0 12929 A positive real is a posit...
rprege0 12930 A positive real is a nonne...
rpne0 12931 A positive real is nonzero...
rprene0 12932 A positive real is a nonze...
rpcnne0 12933 A positive real is a nonze...
rpcndif0 12934 A positive real number is ...
ralrp 12935 Quantification over positi...
rexrp 12936 Quantification over positi...
rpaddcl 12937 Closure law for addition o...
rpmulcl 12938 Closure law for multiplica...
rpmtmip 12939 "Minus times minus is plus...
rpdivcl 12940 Closure law for division o...
rpreccl 12941 Closure law for reciprocat...
rphalfcl 12942 Closure law for half of a ...
rpgecl 12943 A number greater than or e...
rphalflt 12944 Half of a positive real is...
rerpdivcl 12945 Closure law for division o...
ge0p1rp 12946 A nonnegative number plus ...
rpneg 12947 Either a nonzero real or i...
negelrp 12948 Elementhood of a negation ...
negelrpd 12949 The negation of a negative...
0nrp 12950 Zero is not a positive rea...
ltsubrp 12951 Subtracting a positive rea...
ltaddrp 12952 Adding a positive number t...
difrp 12953 Two ways to say one number...
elrpd 12954 Membership in the set of p...
nnrpd 12955 A positive integer is a po...
zgt1rpn0n1 12956 An integer greater than 1 ...
rpred 12957 A positive real is a real....
rpxrd 12958 A positive real is an exte...
rpcnd 12959 A positive real is a compl...
rpgt0d 12960 A positive real is greater...
rpge0d 12961 A positive real is greater...
rpne0d 12962 A positive real is nonzero...
rpregt0d 12963 A positive real is real an...
rprege0d 12964 A positive real is real an...
rprene0d 12965 A positive real is a nonze...
rpcnne0d 12966 A positive real is a nonze...
rpreccld 12967 Closure law for reciprocat...
rprecred 12968 Closure law for reciprocat...
rphalfcld 12969 Closure law for half of a ...
reclt1d 12970 The reciprocal of a positi...
recgt1d 12971 The reciprocal of a positi...
rpaddcld 12972 Closure law for addition o...
rpmulcld 12973 Closure law for multiplica...
rpdivcld 12974 Closure law for division o...
ltrecd 12975 The reciprocal of both sid...
lerecd 12976 The reciprocal of both sid...
ltrec1d 12977 Reciprocal swap in a 'less...
lerec2d 12978 Reciprocal swap in a 'less...
lediv2ad 12979 Division of both sides of ...
ltdiv2d 12980 Division of a positive num...
lediv2d 12981 Division of a positive num...
ledivdivd 12982 Invert ratios of positive ...
divge1 12983 The ratio of a number over...
divlt1lt 12984 A real number divided by a...
divle1le 12985 A real number divided by a...
ledivge1le 12986 If a number is less than o...
ge0p1rpd 12987 A nonnegative number plus ...
rerpdivcld 12988 Closure law for division o...
ltsubrpd 12989 Subtracting a positive rea...
ltaddrpd 12990 Adding a positive number t...
ltaddrp2d 12991 Adding a positive number t...
ltmulgt11d 12992 Multiplication by a number...
ltmulgt12d 12993 Multiplication by a number...
gt0divd 12994 Division of a positive num...
ge0divd 12995 Division of a nonnegative ...
rpgecld 12996 A number greater than or e...
divge0d 12997 The ratio of nonnegative a...
ltmul1d 12998 The ratio of nonnegative a...
ltmul2d 12999 Multiplication of both sid...
lemul1d 13000 Multiplication of both sid...
lemul2d 13001 Multiplication of both sid...
ltdiv1d 13002 Division of both sides of ...
lediv1d 13003 Division of both sides of ...
ltmuldivd 13004 'Less than' relationship b...
ltmuldiv2d 13005 'Less than' relationship b...
lemuldivd 13006 'Less than or equal to' re...
lemuldiv2d 13007 'Less than or equal to' re...
ltdivmuld 13008 'Less than' relationship b...
ltdivmul2d 13009 'Less than' relationship b...
ledivmuld 13010 'Less than or equal to' re...
ledivmul2d 13011 'Less than or equal to' re...
ltmul1dd 13012 The ratio of nonnegative a...
ltmul2dd 13013 Multiplication of both sid...
ltdiv1dd 13014 Division of both sides of ...
lediv1dd 13015 Division of both sides of ...
lediv12ad 13016 Comparison of ratio of two...
mul2lt0rlt0 13017 If the result of a multipl...
mul2lt0rgt0 13018 If the result of a multipl...
mul2lt0llt0 13019 If the result of a multipl...
mul2lt0lgt0 13020 If the result of a multipl...
mul2lt0bi 13021 If the result of a multipl...
prodge0rd 13022 Infer that a multiplicand ...
prodge0ld 13023 Infer that a multiplier is...
ltdiv23d 13024 Swap denominator with othe...
lediv23d 13025 Swap denominator with othe...
lt2mul2divd 13026 The ratio of nonnegative a...
nnledivrp 13027 Division of a positive int...
nn0ledivnn 13028 Division of a nonnegative ...
addlelt 13029 If the sum of a real numbe...
ltxr 13036 The 'less than' binary rel...
elxr 13037 Membership in the set of e...
xrnemnf 13038 An extended real other tha...
xrnepnf 13039 An extended real other tha...
xrltnr 13040 The extended real 'less th...
ltpnf 13041 Any (finite) real is less ...
ltpnfd 13042 Any (finite) real is less ...
0ltpnf 13043 Zero is less than plus inf...
mnflt 13044 Minus infinity is less tha...
mnfltd 13045 Minus infinity is less tha...
mnflt0 13046 Minus infinity is less tha...
mnfltpnf 13047 Minus infinity is less tha...
mnfltxr 13048 Minus infinity is less tha...
pnfnlt 13049 No extended real is greate...
nltmnf 13050 No extended real is less t...
pnfge 13051 Plus infinity is an upper ...
xnn0n0n1ge2b 13052 An extended nonnegative in...
0lepnf 13053 0 less than or equal to po...
xnn0ge0 13054 An extended nonnegative in...
mnfle 13055 Minus infinity is less tha...
xrltnsym 13056 Ordering on the extended r...
xrltnsym2 13057 'Less than' is antisymmetr...
xrlttri 13058 Ordering on the extended r...
xrlttr 13059 Ordering on the extended r...
xrltso 13060 'Less than' is a strict or...
xrlttri2 13061 Trichotomy law for 'less t...
xrlttri3 13062 Trichotomy law for 'less t...
xrleloe 13063 'Less than or equal' expre...
xrleltne 13064 'Less than or equal to' im...
xrltlen 13065 'Less than' expressed in t...
dfle2 13066 Alternative definition of ...
dflt2 13067 Alternative definition of ...
xrltle 13068 'Less than' implies 'less ...
xrltled 13069 'Less than' implies 'less ...
xrleid 13070 'Less than or equal to' is...
xrleidd 13071 'Less than or equal to' is...
xrletri 13072 Trichotomy law for extende...
xrletri3 13073 Trichotomy law for extende...
xrletrid 13074 Trichotomy law for extende...
xrlelttr 13075 Transitive law for orderin...
xrltletr 13076 Transitive law for orderin...
xrletr 13077 Transitive law for orderin...
xrlttrd 13078 Transitive law for orderin...
xrlelttrd 13079 Transitive law for orderin...
xrltletrd 13080 Transitive law for orderin...
xrletrd 13081 Transitive law for orderin...
xrltne 13082 'Less than' implies not eq...
nltpnft 13083 An extended real is not le...
xgepnf 13084 An extended real which is ...
ngtmnft 13085 An extended real is not gr...
xlemnf 13086 An extended real which is ...
xrrebnd 13087 An extended real is real i...
xrre 13088 A way of proving that an e...
xrre2 13089 An extended real between t...
xrre3 13090 A way of proving that an e...
ge0gtmnf 13091 A nonnegative extended rea...
ge0nemnf 13092 A nonnegative extended rea...
xrrege0 13093 A nonnegative extended rea...
xrmax1 13094 An extended real is less t...
xrmax2 13095 An extended real is less t...
xrmin1 13096 The minimum of two extende...
xrmin2 13097 The minimum of two extende...
xrmaxeq 13098 The maximum of two extende...
xrmineq 13099 The minimum of two extende...
xrmaxlt 13100 Two ways of saying the max...
xrltmin 13101 Two ways of saying an exte...
xrmaxle 13102 Two ways of saying the max...
xrlemin 13103 Two ways of saying a numbe...
max1 13104 A number is less than or e...
max1ALT 13105 A number is less than or e...
max2 13106 A number is less than or e...
2resupmax 13107 The supremum of two real n...
min1 13108 The minimum of two numbers...
min2 13109 The minimum of two numbers...
maxle 13110 Two ways of saying the max...
lemin 13111 Two ways of saying a numbe...
maxlt 13112 Two ways of saying the max...
ltmin 13113 Two ways of saying a numbe...
lemaxle 13114 A real number which is les...
max0sub 13115 Decompose a real number in...
ifle 13116 An if statement transforms...
z2ge 13117 There exists an integer gr...
qbtwnre 13118 The rational numbers are d...
qbtwnxr 13119 The rational numbers are d...
qsqueeze 13120 If a nonnegative real is l...
qextltlem 13121 Lemma for ~ qextlt and qex...
qextlt 13122 An extensionality-like pro...
qextle 13123 An extensionality-like pro...
xralrple 13124 Show that ` A ` is less th...
alrple 13125 Show that ` A ` is less th...
xnegeq 13126 Equality of two extended n...
xnegex 13127 A negative extended real e...
xnegpnf 13128 Minus ` +oo ` . Remark of...
xnegmnf 13129 Minus ` -oo ` . Remark of...
rexneg 13130 Minus a real number. Rema...
xneg0 13131 The negative of zero. (Co...
xnegcl 13132 Closure of extended real n...
xnegneg 13133 Extended real version of ~...
xneg11 13134 Extended real version of ~...
xltnegi 13135 Forward direction of ~ xlt...
xltneg 13136 Extended real version of ~...
xleneg 13137 Extended real version of ~...
xlt0neg1 13138 Extended real version of ~...
xlt0neg2 13139 Extended real version of ~...
xle0neg1 13140 Extended real version of ~...
xle0neg2 13141 Extended real version of ~...
xaddval 13142 Value of the extended real...
xaddf 13143 The extended real addition...
xmulval 13144 Value of the extended real...
xaddpnf1 13145 Addition of positive infin...
xaddpnf2 13146 Addition of positive infin...
xaddmnf1 13147 Addition of negative infin...
xaddmnf2 13148 Addition of negative infin...
pnfaddmnf 13149 Addition of positive and n...
mnfaddpnf 13150 Addition of negative and p...
rexadd 13151 The extended real addition...
rexsub 13152 Extended real subtraction ...
rexaddd 13153 The extended real addition...
xnn0xaddcl 13154 The extended nonnegative i...
xaddnemnf 13155 Closure of extended real a...
xaddnepnf 13156 Closure of extended real a...
xnegid 13157 Extended real version of ~...
xaddcl 13158 The extended real addition...
xaddcom 13159 The extended real addition...
xaddid1 13160 Extended real version of ~...
xaddid2 13161 Extended real version of ~...
xaddid1d 13162 ` 0 ` is a right identity ...
xnn0lem1lt 13163 Extended nonnegative integ...
xnn0lenn0nn0 13164 An extended nonnegative in...
xnn0le2is012 13165 An extended nonnegative in...
xnn0xadd0 13166 The sum of two extended no...
xnegdi 13167 Extended real version of ~...
xaddass 13168 Associativity of extended ...
xaddass2 13169 Associativity of extended ...
xpncan 13170 Extended real version of ~...
xnpcan 13171 Extended real version of ~...
xleadd1a 13172 Extended real version of ~...
xleadd2a 13173 Commuted form of ~ xleadd1...
xleadd1 13174 Weakened version of ~ xlea...
xltadd1 13175 Extended real version of ~...
xltadd2 13176 Extended real version of ~...
xaddge0 13177 The sum of nonnegative ext...
xle2add 13178 Extended real version of ~...
xlt2add 13179 Extended real version of ~...
xsubge0 13180 Extended real version of ~...
xposdif 13181 Extended real version of ~...
xlesubadd 13182 Under certain conditions, ...
xmullem 13183 Lemma for ~ rexmul . (Con...
xmullem2 13184 Lemma for ~ xmulneg1 . (C...
xmulcom 13185 Extended real multiplicati...
xmul01 13186 Extended real version of ~...
xmul02 13187 Extended real version of ~...
xmulneg1 13188 Extended real version of ~...
xmulneg2 13189 Extended real version of ~...
rexmul 13190 The extended real multipli...
xmulf 13191 The extended real multipli...
xmulcl 13192 Closure of extended real m...
xmulpnf1 13193 Multiplication by plus inf...
xmulpnf2 13194 Multiplication by plus inf...
xmulmnf1 13195 Multiplication by minus in...
xmulmnf2 13196 Multiplication by minus in...
xmulpnf1n 13197 Multiplication by plus inf...
xmulid1 13198 Extended real version of ~...
xmulid2 13199 Extended real version of ~...
xmulm1 13200 Extended real version of ~...
xmulasslem2 13201 Lemma for ~ xmulass . (Co...
xmulgt0 13202 Extended real version of ~...
xmulge0 13203 Extended real version of ~...
xmulasslem 13204 Lemma for ~ xmulass . (Co...
xmulasslem3 13205 Lemma for ~ xmulass . (Co...
xmulass 13206 Associativity of the exten...
xlemul1a 13207 Extended real version of ~...
xlemul2a 13208 Extended real version of ~...
xlemul1 13209 Extended real version of ~...
xlemul2 13210 Extended real version of ~...
xltmul1 13211 Extended real version of ~...
xltmul2 13212 Extended real version of ~...
xadddilem 13213 Lemma for ~ xadddi . (Con...
xadddi 13214 Distributive property for ...
xadddir 13215 Commuted version of ~ xadd...
xadddi2 13216 The assumption that the mu...
xadddi2r 13217 Commuted version of ~ xadd...
x2times 13218 Extended real version of ~...
xnegcld 13219 Closure of extended real n...
xaddcld 13220 The extended real addition...
xmulcld 13221 Closure of extended real m...
xadd4d 13222 Rearrangement of 4 terms i...
xnn0add4d 13223 Rearrangement of 4 terms i...
xrsupexmnf 13224 Adding minus infinity to a...
xrinfmexpnf 13225 Adding plus infinity to a ...
xrsupsslem 13226 Lemma for ~ xrsupss . (Co...
xrinfmsslem 13227 Lemma for ~ xrinfmss . (C...
xrsupss 13228 Any subset of extended rea...
xrinfmss 13229 Any subset of extended rea...
xrinfmss2 13230 Any subset of extended rea...
xrub 13231 By quantifying only over r...
supxr 13232 The supremum of a set of e...
supxr2 13233 The supremum of a set of e...
supxrcl 13234 The supremum of an arbitra...
supxrun 13235 The supremum of the union ...
supxrmnf 13236 Adding minus infinity to a...
supxrpnf 13237 The supremum of a set of e...
supxrunb1 13238 The supremum of an unbound...
supxrunb2 13239 The supremum of an unbound...
supxrbnd1 13240 The supremum of a bounded-...
supxrbnd2 13241 The supremum of a bounded-...
xrsup0 13242 The supremum of an empty s...
supxrub 13243 A member of a set of exten...
supxrlub 13244 The supremum of a set of e...
supxrleub 13245 The supremum of a set of e...
supxrre 13246 The real and extended real...
supxrbnd 13247 The supremum of a bounded-...
supxrgtmnf 13248 The supremum of a nonempty...
supxrre1 13249 The supremum of a nonempty...
supxrre2 13250 The supremum of a nonempty...
supxrss 13251 Smaller sets of extended r...
infxrcl 13252 The infimum of an arbitrar...
infxrlb 13253 A member of a set of exten...
infxrgelb 13254 The infimum of a set of ex...
infxrre 13255 The real and extended real...
infxrmnf 13256 The infinimum of a set of ...
xrinf0 13257 The infimum of the empty s...
infxrss 13258 Larger sets of extended re...
reltre 13259 For all real numbers there...
rpltrp 13260 For all positive real numb...
reltxrnmnf 13261 For all extended real numb...
infmremnf 13262 The infimum of the reals i...
infmrp1 13263 The infimum of the positiv...
ixxval 13272 Value of the interval func...
elixx1 13273 Membership in an interval ...
ixxf 13274 The set of intervals of ex...
ixxex 13275 The set of intervals of ex...
ixxssxr 13276 The set of intervals of ex...
elixx3g 13277 Membership in a set of ope...
ixxssixx 13278 An interval is a subset of...
ixxdisj 13279 Split an interval into dis...
ixxun 13280 Split an interval into two...
ixxin 13281 Intersection of two interv...
ixxss1 13282 Subset relationship for in...
ixxss2 13283 Subset relationship for in...
ixxss12 13284 Subset relationship for in...
ixxub 13285 Extract the upper bound of...
ixxlb 13286 Extract the lower bound of...
iooex 13287 The set of open intervals ...
iooval 13288 Value of the open interval...
ioo0 13289 An empty open interval of ...
ioon0 13290 An open interval of extend...
ndmioo 13291 The open interval function...
iooid 13292 An open interval with iden...
elioo3g 13293 Membership in a set of ope...
elioore 13294 A member of an open interv...
lbioo 13295 An open interval does not ...
ubioo 13296 An open interval does not ...
iooval2 13297 Value of the open interval...
iooin 13298 Intersection of two open i...
iooss1 13299 Subset relationship for op...
iooss2 13300 Subset relationship for op...
iocval 13301 Value of the open-below, c...
icoval 13302 Value of the closed-below,...
iccval 13303 Value of the closed interv...
elioo1 13304 Membership in an open inte...
elioo2 13305 Membership in an open inte...
elioc1 13306 Membership in an open-belo...
elico1 13307 Membership in a closed-bel...
elicc1 13308 Membership in a closed int...
iccid 13309 A closed interval with ide...
ico0 13310 An empty open interval of ...
ioc0 13311 An empty open interval of ...
icc0 13312 An empty closed interval o...
dfrp2 13313 Alternate definition of th...
elicod 13314 Membership in a left-close...
icogelb 13315 An element of a left-close...
elicore 13316 A member of a left-closed ...
ubioc1 13317 The upper bound belongs to...
lbico1 13318 The lower bound belongs to...
iccleub 13319 An element of a closed int...
iccgelb 13320 An element of a closed int...
elioo5 13321 Membership in an open inte...
eliooxr 13322 A nonempty open interval s...
eliooord 13323 Ordering implied by a memb...
elioo4g 13324 Membership in an open inte...
ioossre 13325 An open interval is a set ...
ioosscn 13326 An open interval is a set ...
elioc2 13327 Membership in an open-belo...
elico2 13328 Membership in a closed-bel...
elicc2 13329 Membership in a closed rea...
elicc2i 13330 Inference for membership i...
elicc4 13331 Membership in a closed rea...
iccss 13332 Condition for a closed int...
iccssioo 13333 Condition for a closed int...
icossico 13334 Condition for a closed-bel...
iccss2 13335 Condition for a closed int...
iccssico 13336 Condition for a closed int...
iccssioo2 13337 Condition for a closed int...
iccssico2 13338 Condition for a closed int...
ioomax 13339 The open interval from min...
iccmax 13340 The closed interval from m...
ioopos 13341 The set of positive reals ...
ioorp 13342 The set of positive reals ...
iooshf 13343 Shift the arguments of the...
iocssre 13344 A closed-above interval wi...
icossre 13345 A closed-below interval wi...
iccssre 13346 A closed real interval is ...
iccssxr 13347 A closed interval is a set...
iocssxr 13348 An open-below, closed-abov...
icossxr 13349 A closed-below, open-above...
ioossicc 13350 An open interval is a subs...
iccssred 13351 A closed real interval is ...
eliccxr 13352 A member of a closed inter...
icossicc 13353 A closed-below, open-above...
iocssicc 13354 A closed-above, open-below...
ioossico 13355 An open interval is a subs...
iocssioo 13356 Condition for a closed int...
icossioo 13357 Condition for a closed int...
ioossioo 13358 Condition for an open inte...
iccsupr 13359 A nonempty subset of a clo...
elioopnf 13360 Membership in an unbounded...
elioomnf 13361 Membership in an unbounded...
elicopnf 13362 Membership in a closed unb...
repos 13363 Two ways of saying that a ...
ioof 13364 The set of open intervals ...
iccf 13365 The set of closed interval...
unirnioo 13366 The union of the range of ...
dfioo2 13367 Alternate definition of th...
ioorebas 13368 Open intervals are element...
xrge0neqmnf 13369 A nonnegative extended rea...
xrge0nre 13370 An extended real which is ...
elrege0 13371 The predicate "is a nonneg...
nn0rp0 13372 A nonnegative integer is a...
rge0ssre 13373 Nonnegative real numbers a...
elxrge0 13374 Elementhood in the set of ...
0e0icopnf 13375 0 is a member of ` ( 0 [,)...
0e0iccpnf 13376 0 is a member of ` ( 0 [,]...
ge0addcl 13377 The nonnegative reals are ...
ge0mulcl 13378 The nonnegative reals are ...
ge0xaddcl 13379 The nonnegative reals are ...
ge0xmulcl 13380 The nonnegative extended r...
lbicc2 13381 The lower bound of a close...
ubicc2 13382 The upper bound of a close...
elicc01 13383 Membership in the closed r...
elunitrn 13384 The closed unit interval i...
elunitcn 13385 The closed unit interval i...
0elunit 13386 Zero is an element of the ...
1elunit 13387 One is an element of the c...
iooneg 13388 Membership in a negated op...
iccneg 13389 Membership in a negated cl...
icoshft 13390 A shifted real is a member...
icoshftf1o 13391 Shifting a closed-below, o...
icoun 13392 The union of two adjacent ...
icodisj 13393 Adjacent left-closed right...
ioounsn 13394 The union of an open inter...
snunioo 13395 The closure of one end of ...
snunico 13396 The closure of the open en...
snunioc 13397 The closure of the open en...
prunioo 13398 The closure of an open rea...
ioodisj 13399 If the upper bound of one ...
ioojoin 13400 Join two open intervals to...
difreicc 13401 The class difference of ` ...
iccsplit 13402 Split a closed interval in...
iccshftr 13403 Membership in a shifted in...
iccshftri 13404 Membership in a shifted in...
iccshftl 13405 Membership in a shifted in...
iccshftli 13406 Membership in a shifted in...
iccdil 13407 Membership in a dilated in...
iccdili 13408 Membership in a dilated in...
icccntr 13409 Membership in a contracted...
icccntri 13410 Membership in a contracted...
divelunit 13411 A condition for a ratio to...
lincmb01cmp 13412 A linear combination of tw...
iccf1o 13413 Describe a bijection from ...
iccen 13414 Any nontrivial closed inte...
xov1plusxeqvd 13415 A complex number ` X ` is ...
unitssre 13416 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13417 The closed unit interval i...
supicc 13418 Supremum of a bounded set ...
supiccub 13419 The supremum of a bounded ...
supicclub 13420 The supremum of a bounded ...
supicclub2 13421 The supremum of a bounded ...
zltaddlt1le 13422 The sum of an integer and ...
xnn0xrge0 13423 An extended nonnegative in...
fzval 13426 The value of a finite set ...
fzval2 13427 An alternative way of expr...
fzf 13428 Establish the domain and c...
elfz1 13429 Membership in a finite set...
elfz 13430 Membership in a finite set...
elfz2 13431 Membership in a finite set...
elfzd 13432 Membership in a finite set...
elfz5 13433 Membership in a finite set...
elfz4 13434 Membership in a finite set...
elfzuzb 13435 Membership in a finite set...
eluzfz 13436 Membership in a finite set...
elfzuz 13437 A member of a finite set o...
elfzuz3 13438 Membership in a finite set...
elfzel2 13439 Membership in a finite set...
elfzel1 13440 Membership in a finite set...
elfzelz 13441 A member of a finite set o...
elfzelzd 13442 A member of a finite set o...
fzssz 13443 A finite sequence of integ...
elfzle1 13444 A member of a finite set o...
elfzle2 13445 A member of a finite set o...
elfzuz2 13446 Implication of membership ...
elfzle3 13447 Membership in a finite set...
eluzfz1 13448 Membership in a finite set...
eluzfz2 13449 Membership in a finite set...
eluzfz2b 13450 Membership in a finite set...
elfz3 13451 Membership in a finite set...
elfz1eq 13452 Membership in a finite set...
elfzubelfz 13453 If there is a member in a ...
peano2fzr 13454 A Peano-postulate-like the...
fzn0 13455 Properties of a finite int...
fz0 13456 A finite set of sequential...
fzn 13457 A finite set of sequential...
fzen 13458 A shifted finite set of se...
fz1n 13459 A 1-based finite set of se...
0nelfz1 13460 0 is not an element of a f...
0fz1 13461 Two ways to say a finite 1...
fz10 13462 There are no integers betw...
uzsubsubfz 13463 Membership of an integer g...
uzsubsubfz1 13464 Membership of an integer g...
ige3m2fz 13465 Membership of an integer g...
fzsplit2 13466 Split a finite interval of...
fzsplit 13467 Split a finite interval of...
fzdisj 13468 Condition for two finite i...
fz01en 13469 0-based and 1-based finite...
elfznn 13470 A member of a finite set o...
elfz1end 13471 A nonempty finite range of...
fz1ssnn 13472 A finite set of positive i...
fznn0sub 13473 Subtraction closure for a ...
fzmmmeqm 13474 Subtracting the difference...
fzaddel 13475 Membership of a sum in a f...
fzadd2 13476 Membership of a sum in a f...
fzsubel 13477 Membership of a difference...
fzopth 13478 A finite set of sequential...
fzass4 13479 Two ways to express a nond...
fzss1 13480 Subset relationship for fi...
fzss2 13481 Subset relationship for fi...
fzssuz 13482 A finite set of sequential...
fzsn 13483 A finite interval of integ...
fzssp1 13484 Subset relationship for fi...
fzssnn 13485 Finite sets of sequential ...
ssfzunsnext 13486 A subset of a finite seque...
ssfzunsn 13487 A subset of a finite seque...
fzsuc 13488 Join a successor to the en...
fzpred 13489 Join a predecessor to the ...
fzpreddisj 13490 A finite set of sequential...
elfzp1 13491 Append an element to a fin...
fzp1ss 13492 Subset relationship for fi...
fzelp1 13493 Membership in a set of seq...
fzp1elp1 13494 Add one to an element of a...
fznatpl1 13495 Shift membership in a fini...
fzpr 13496 A finite interval of integ...
fztp 13497 A finite interval of integ...
fz12pr 13498 An integer range between 1...
fzsuc2 13499 Join a successor to the en...
fzp1disj 13500 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13501 Remove a successor from th...
fzprval 13502 Two ways of defining the f...
fztpval 13503 Two ways of defining the f...
fzrev 13504 Reversal of start and end ...
fzrev2 13505 Reversal of start and end ...
fzrev2i 13506 Reversal of start and end ...
fzrev3 13507 The "complement" of a memb...
fzrev3i 13508 The "complement" of a memb...
fznn 13509 Finite set of sequential i...
elfz1b 13510 Membership in a 1-based fi...
elfz1uz 13511 Membership in a 1-based fi...
elfzm11 13512 Membership in a finite set...
uzsplit 13513 Express an upper integer s...
uzdisj 13514 The first ` N ` elements o...
fseq1p1m1 13515 Add/remove an item to/from...
fseq1m1p1 13516 Add/remove an item to/from...
fz1sbc 13517 Quantification over a one-...
elfzp1b 13518 An integer is a member of ...
elfzm1b 13519 An integer is a member of ...
elfzp12 13520 Options for membership in ...
fzm1 13521 Choices for an element of ...
fzneuz 13522 No finite set of sequentia...
fznuz 13523 Disjointness of the upper ...
uznfz 13524 Disjointness of the upper ...
fzp1nel 13525 One plus the upper bound o...
fzrevral 13526 Reversal of scanning order...
fzrevral2 13527 Reversal of scanning order...
fzrevral3 13528 Reversal of scanning order...
fzshftral 13529 Shift the scanning order i...
ige2m1fz1 13530 Membership of an integer g...
ige2m1fz 13531 Membership in a 0-based fi...
elfz2nn0 13532 Membership in a finite set...
fznn0 13533 Characterization of a fini...
elfznn0 13534 A member of a finite set o...
elfz3nn0 13535 The upper bound of a nonem...
fz0ssnn0 13536 Finite sets of sequential ...
fz1ssfz0 13537 Subset relationship for fi...
0elfz 13538 0 is an element of a finit...
nn0fz0 13539 A nonnegative integer is a...
elfz0add 13540 An element of a finite set...
fz0sn 13541 An integer range from 0 to...
fz0tp 13542 An integer range from 0 to...
fz0to3un2pr 13543 An integer range from 0 to...
fz0to4untppr 13544 An integer range from 0 to...
elfz0ubfz0 13545 An element of a finite set...
elfz0fzfz0 13546 A member of a finite set o...
fz0fzelfz0 13547 If a member of a finite se...
fznn0sub2 13548 Subtraction closure for a ...
uzsubfz0 13549 Membership of an integer g...
fz0fzdiffz0 13550 The difference of an integ...
elfzmlbm 13551 Subtracting the lower boun...
elfzmlbp 13552 Subtracting the lower boun...
fzctr 13553 Lemma for theorems about t...
difelfzle 13554 The difference of two inte...
difelfznle 13555 The difference of two inte...
nn0split 13556 Express the set of nonnega...
nn0disj 13557 The first ` N + 1 ` elemen...
fz0sn0fz1 13558 A finite set of sequential...
fvffz0 13559 The function value of a fu...
1fv 13560 A function on a singleton....
4fvwrd4 13561 The first four function va...
2ffzeq 13562 Two functions over 0-based...
preduz 13563 The value of the predecess...
prednn 13564 The value of the predecess...
prednn0 13565 The value of the predecess...
predfz 13566 Calculate the predecessor ...
fzof 13569 Functionality of the half-...
elfzoel1 13570 Reverse closure for half-o...
elfzoel2 13571 Reverse closure for half-o...
elfzoelz 13572 Reverse closure for half-o...
fzoval 13573 Value of the half-open int...
elfzo 13574 Membership in a half-open ...
elfzo2 13575 Membership in a half-open ...
elfzouz 13576 Membership in a half-open ...
nelfzo 13577 An integer not being a mem...
fzolb 13578 The left endpoint of a hal...
fzolb2 13579 The left endpoint of a hal...
elfzole1 13580 A member in a half-open in...
elfzolt2 13581 A member in a half-open in...
elfzolt3 13582 Membership in a half-open ...
elfzolt2b 13583 A member in a half-open in...
elfzolt3b 13584 Membership in a half-open ...
elfzop1le2 13585 A member in a half-open in...
fzonel 13586 A half-open range does not...
elfzouz2 13587 The upper bound of a half-...
elfzofz 13588 A half-open range is conta...
elfzo3 13589 Express membership in a ha...
fzon0 13590 A half-open integer interv...
fzossfz 13591 A half-open range is conta...
fzossz 13592 A half-open integer interv...
fzon 13593 A half-open set of sequent...
fzo0n 13594 A half-open range of nonne...
fzonlt0 13595 A half-open integer range ...
fzo0 13596 Half-open sets with equal ...
fzonnsub 13597 If ` K < N ` then ` N - K ...
fzonnsub2 13598 If ` M < N ` then ` N - M ...
fzoss1 13599 Subset relationship for ha...
fzoss2 13600 Subset relationship for ha...
fzossrbm1 13601 Subset of a half-open rang...
fzo0ss1 13602 Subset relationship for ha...
fzossnn0 13603 A half-open integer range ...
fzospliti 13604 One direction of splitting...
fzosplit 13605 Split a half-open integer ...
fzodisj 13606 Abutting half-open integer...
fzouzsplit 13607 Split an upper integer set...
fzouzdisj 13608 A half-open integer range ...
fzoun 13609 A half-open integer range ...
fzodisjsn 13610 A half-open integer range ...
prinfzo0 13611 The intersection of a half...
lbfzo0 13612 An integer is strictly gre...
elfzo0 13613 Membership in a half-open ...
elfzo0z 13614 Membership in a half-open ...
nn0p1elfzo 13615 A nonnegative integer incr...
elfzo0le 13616 A member in a half-open ra...
elfzonn0 13617 A member of a half-open ra...
fzonmapblen 13618 The result of subtracting ...
fzofzim 13619 If a nonnegative integer i...
fz1fzo0m1 13620 Translation of one between...
fzossnn 13621 Half-open integer ranges s...
elfzo1 13622 Membership in a half-open ...
fzo1fzo0n0 13623 An integer between 1 and a...
fzo0n0 13624 A half-open integer range ...
fzoaddel 13625 Translate membership in a ...
fzo0addel 13626 Translate membership in a ...
fzo0addelr 13627 Translate membership in a ...
fzoaddel2 13628 Translate membership in a ...
elfzoext 13629 Membership of an integer i...
elincfzoext 13630 Membership of an increased...
fzosubel 13631 Translate membership in a ...
fzosubel2 13632 Membership in a translated...
fzosubel3 13633 Membership in a translated...
eluzgtdifelfzo 13634 Membership of the differen...
ige2m2fzo 13635 Membership of an integer g...
fzocatel 13636 Translate membership in a ...
ubmelfzo 13637 If an integer in a 1-based...
elfzodifsumelfzo 13638 If an integer is in a half...
elfzom1elp1fzo 13639 Membership of an integer i...
elfzom1elfzo 13640 Membership in a half-open ...
fzval3 13641 Expressing a closed intege...
fz0add1fz1 13642 Translate membership in a ...
fzosn 13643 Expressing a singleton as ...
elfzomin 13644 Membership of an integer i...
zpnn0elfzo 13645 Membership of an integer i...
zpnn0elfzo1 13646 Membership of an integer i...
fzosplitsnm1 13647 Removing a singleton from ...
elfzonlteqm1 13648 If an element of a half-op...
fzonn0p1 13649 A nonnegative integer is e...
fzossfzop1 13650 A half-open range of nonne...
fzonn0p1p1 13651 If a nonnegative integer i...
elfzom1p1elfzo 13652 Increasing an element of a...
fzo0ssnn0 13653 Half-open integer ranges s...
fzo01 13654 Expressing the singleton o...
fzo12sn 13655 A 1-based half-open intege...
fzo13pr 13656 A 1-based half-open intege...
fzo0to2pr 13657 A half-open integer range ...
fzo0to3tp 13658 A half-open integer range ...
fzo0to42pr 13659 A half-open integer range ...
fzo1to4tp 13660 A half-open integer range ...
fzo0sn0fzo1 13661 A half-open range of nonne...
elfzo0l 13662 A member of a half-open ra...
fzoend 13663 The endpoint of a half-ope...
fzo0end 13664 The endpoint of a zero-bas...
ssfzo12 13665 Subset relationship for ha...
ssfzoulel 13666 If a half-open integer ran...
ssfzo12bi 13667 Subset relationship for ha...
ubmelm1fzo 13668 The result of subtracting ...
fzofzp1 13669 If a point is in a half-op...
fzofzp1b 13670 If a point is in a half-op...
elfzom1b 13671 An integer is a member of ...
elfzom1elp1fzo1 13672 Membership of a nonnegativ...
elfzo1elm1fzo0 13673 Membership of a positive i...
elfzonelfzo 13674 If an element of a half-op...
fzonfzoufzol 13675 If an element of a half-op...
elfzomelpfzo 13676 An integer increased by an...
elfznelfzo 13677 A value in a finite set of...
elfznelfzob 13678 A value in a finite set of...
peano2fzor 13679 A Peano-postulate-like the...
fzosplitsn 13680 Extending a half-open rang...
fzosplitpr 13681 Extending a half-open inte...
fzosplitprm1 13682 Extending a half-open inte...
fzosplitsni 13683 Membership in a half-open ...
fzisfzounsn 13684 A finite interval of integ...
elfzr 13685 A member of a finite inter...
elfzlmr 13686 A member of a finite inter...
elfz0lmr 13687 A member of a finite inter...
fzostep1 13688 Two possibilities for a nu...
fzoshftral 13689 Shift the scanning order i...
fzind2 13690 Induction on the integers ...
fvinim0ffz 13691 The function values for th...
injresinjlem 13692 Lemma for ~ injresinj . (...
injresinj 13693 A function whose restricti...
subfzo0 13694 The difference between two...
flval 13699 Value of the floor (greate...
flcl 13700 The floor (greatest intege...
reflcl 13701 The floor (greatest intege...
fllelt 13702 A basic property of the fl...
flcld 13703 The floor (greatest intege...
flle 13704 A basic property of the fl...
flltp1 13705 A basic property of the fl...
fllep1 13706 A basic property of the fl...
fraclt1 13707 The fractional part of a r...
fracle1 13708 The fractional part of a r...
fracge0 13709 The fractional part of a r...
flge 13710 The floor function value i...
fllt 13711 The floor function value i...
flflp1 13712 Move floor function betwee...
flid 13713 An integer is its own floo...
flidm 13714 The floor function is idem...
flidz 13715 A real number equals its f...
flltnz 13716 The floor of a non-integer...
flwordi 13717 Ordering relation for the ...
flword2 13718 Ordering relation for the ...
flval2 13719 An alternate way to define...
flval3 13720 An alternate way to define...
flbi 13721 A condition equivalent to ...
flbi2 13722 A condition equivalent to ...
adddivflid 13723 The floor of a sum of an i...
ico01fl0 13724 The floor of a real number...
flge0nn0 13725 The floor of a number grea...
flge1nn 13726 The floor of a number grea...
fldivnn0 13727 The floor function of a di...
refldivcl 13728 The floor function of a di...
divfl0 13729 The floor of a fraction is...
fladdz 13730 An integer can be moved in...
flzadd 13731 An integer can be moved in...
flmulnn0 13732 Move a nonnegative integer...
btwnzge0 13733 A real bounded between an ...
2tnp1ge0ge0 13734 Two times an integer plus ...
flhalf 13735 Ordering relation for the ...
fldivle 13736 The floor function of a di...
fldivnn0le 13737 The floor function of a di...
flltdivnn0lt 13738 The floor function of a di...
ltdifltdiv 13739 If the dividend of a divis...
fldiv4p1lem1div2 13740 The floor of an integer eq...
fldiv4lem1div2uz2 13741 The floor of an integer gr...
fldiv4lem1div2 13742 The floor of a positive in...
ceilval 13743 The value of the ceiling f...
dfceil2 13744 Alternative definition of ...
ceilval2 13745 The value of the ceiling f...
ceicl 13746 The ceiling function retur...
ceilcl 13747 Closure of the ceiling fun...
ceilcld 13748 Closure of the ceiling fun...
ceige 13749 The ceiling of a real numb...
ceilge 13750 The ceiling of a real numb...
ceilged 13751 The ceiling of a real numb...
ceim1l 13752 One less than the ceiling ...
ceilm1lt 13753 One less than the ceiling ...
ceile 13754 The ceiling of a real numb...
ceille 13755 The ceiling of a real numb...
ceilid 13756 An integer is its own ceil...
ceilidz 13757 A real number equals its c...
flleceil 13758 The floor of a real number...
fleqceilz 13759 A real number is an intege...
quoremz 13760 Quotient and remainder of ...
quoremnn0 13761 Quotient and remainder of ...
quoremnn0ALT 13762 Alternate proof of ~ quore...
intfrac2 13763 Decompose a real into inte...
intfracq 13764 Decompose a rational numbe...
fldiv 13765 Cancellation of the embedd...
fldiv2 13766 Cancellation of an embedde...
fznnfl 13767 Finite set of sequential i...
uzsup 13768 An upper set of integers i...
ioopnfsup 13769 An upper set of reals is u...
icopnfsup 13770 An upper set of reals is u...
rpsup 13771 The positive reals are unb...
resup 13772 The real numbers are unbou...
xrsup 13773 The extended real numbers ...
modval 13776 The value of the modulo op...
modvalr 13777 The value of the modulo op...
modcl 13778 Closure law for the modulo...
flpmodeq 13779 Partition of a division in...
modcld 13780 Closure law for the modulo...
mod0 13781 ` A mod B ` is zero iff ` ...
mulmod0 13782 The product of an integer ...
negmod0 13783 ` A ` is divisible by ` B ...
modge0 13784 The modulo operation is no...
modlt 13785 The modulo operation is le...
modelico 13786 Modular reduction produces...
moddiffl 13787 Value of the modulo operat...
moddifz 13788 The modulo operation diffe...
modfrac 13789 The fractional part of a n...
flmod 13790 The floor function express...
intfrac 13791 Break a number into its in...
zmod10 13792 An integer modulo 1 is 0. ...
zmod1congr 13793 Two arbitrary integers are...
modmulnn 13794 Move a positive integer in...
modvalp1 13795 The value of the modulo op...
zmodcl 13796 Closure law for the modulo...
zmodcld 13797 Closure law for the modulo...
zmodfz 13798 An integer mod ` B ` lies ...
zmodfzo 13799 An integer mod ` B ` lies ...
zmodfzp1 13800 An integer mod ` B ` lies ...
modid 13801 Identity law for modulo. ...
modid0 13802 A positive real number mod...
modid2 13803 Identity law for modulo. ...
zmodid2 13804 Identity law for modulo re...
zmodidfzo 13805 Identity law for modulo re...
zmodidfzoimp 13806 Identity law for modulo re...
0mod 13807 Special case: 0 modulo a p...
1mod 13808 Special case: 1 modulo a r...
modabs 13809 Absorption law for modulo....
modabs2 13810 Absorption law for modulo....
modcyc 13811 The modulo operation is pe...
modcyc2 13812 The modulo operation is pe...
modadd1 13813 Addition property of the m...
modaddabs 13814 Absorption law for modulo....
modaddmod 13815 The sum of a real number m...
muladdmodid 13816 The sum of a positive real...
mulp1mod1 13817 The product of an integer ...
modmuladd 13818 Decomposition of an intege...
modmuladdim 13819 Implication of a decomposi...
modmuladdnn0 13820 Implication of a decomposi...
negmod 13821 The negation of a number m...
m1modnnsub1 13822 Minus one modulo a positiv...
m1modge3gt1 13823 Minus one modulo an intege...
addmodid 13824 The sum of a positive inte...
addmodidr 13825 The sum of a positive inte...
modadd2mod 13826 The sum of a real number m...
modm1p1mod0 13827 If a real number modulo a ...
modltm1p1mod 13828 If a real number modulo a ...
modmul1 13829 Multiplication property of...
modmul12d 13830 Multiplication property of...
modnegd 13831 Negation property of the m...
modadd12d 13832 Additive property of the m...
modsub12d 13833 Subtraction property of th...
modsubmod 13834 The difference of a real n...
modsubmodmod 13835 The difference of a real n...
2txmodxeq0 13836 Two times a positive real ...
2submod 13837 If a real number is betwee...
modifeq2int 13838 If a nonnegative integer i...
modaddmodup 13839 The sum of an integer modu...
modaddmodlo 13840 The sum of an integer modu...
modmulmod 13841 The product of a real numb...
modmulmodr 13842 The product of an integer ...
modaddmulmod 13843 The sum of a real number a...
moddi 13844 Distribute multiplication ...
modsubdir 13845 Distribute the modulo oper...
modeqmodmin 13846 A real number equals the d...
modirr 13847 A number modulo an irratio...
modfzo0difsn 13848 For a number within a half...
modsumfzodifsn 13849 The sum of a number within...
modlteq 13850 Two nonnegative integers l...
addmodlteq 13851 Two nonnegative integers l...
om2uz0i 13852 The mapping ` G ` is a one...
om2uzsuci 13853 The value of ` G ` (see ~ ...
om2uzuzi 13854 The value ` G ` (see ~ om2...
om2uzlti 13855 Less-than relation for ` G...
om2uzlt2i 13856 The mapping ` G ` (see ~ o...
om2uzrani 13857 Range of ` G ` (see ~ om2u...
om2uzf1oi 13858 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13859 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13860 An alternative definition ...
om2uzrdg 13861 A helper lemma for the val...
uzrdglem 13862 A helper lemma for the val...
uzrdgfni 13863 The recursive definition g...
uzrdg0i 13864 Initial value of a recursi...
uzrdgsuci 13865 Successor value of a recur...
ltweuz 13866 ` < ` is a well-founded re...
ltwenn 13867 Less than well-orders the ...
ltwefz 13868 Less than well-orders a se...
uzenom 13869 An upper integer set is de...
uzinf 13870 An upper integer set is in...
nnnfi 13871 The set of positive intege...
uzrdgxfr 13872 Transfer the value of the ...
fzennn 13873 The cardinality of a finit...
fzen2 13874 The cardinality of a finit...
cardfz 13875 The cardinality of a finit...
hashgf1o 13876 ` G ` maps ` _om ` one-to-...
fzfi 13877 A finite interval of integ...
fzfid 13878 Commonly used special case...
fzofi 13879 Half-open integer sets are...
fsequb 13880 The values of a finite rea...
fsequb2 13881 The values of a finite rea...
fseqsupcl 13882 The values of a finite rea...
fseqsupubi 13883 The values of a finite rea...
nn0ennn 13884 The nonnegative integers a...
nnenom 13885 The set of positive intege...
nnct 13886 ` NN ` is countable. (Con...
uzindi 13887 Indirect strong induction ...
axdc4uzlem 13888 Lemma for ~ axdc4uz . (Co...
axdc4uz 13889 A version of ~ axdc4 that ...
ssnn0fi 13890 A subset of the nonnegativ...
rabssnn0fi 13891 A subset of the nonnegativ...
uzsinds 13892 Strong (or "total") induct...
nnsinds 13893 Strong (or "total") induct...
nn0sinds 13894 Strong (or "total") induct...
fsuppmapnn0fiublem 13895 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13896 If all functions of a fini...
fsuppmapnn0fiubex 13897 If all functions of a fini...
fsuppmapnn0fiub0 13898 If all functions of a fini...
suppssfz 13899 Condition for a function o...
fsuppmapnn0ub 13900 If a function over the non...
fsuppmapnn0fz 13901 If a function over the non...
mptnn0fsupp 13902 A mapping from the nonnega...
mptnn0fsuppd 13903 A mapping from the nonnega...
mptnn0fsuppr 13904 A finitely supported mappi...
f13idfv 13905 A one-to-one function with...
seqex 13908 Existence of the sequence ...
seqeq1 13909 Equality theorem for the s...
seqeq2 13910 Equality theorem for the s...
seqeq3 13911 Equality theorem for the s...
seqeq1d 13912 Equality deduction for the...
seqeq2d 13913 Equality deduction for the...
seqeq3d 13914 Equality deduction for the...
seqeq123d 13915 Equality deduction for the...
nfseq 13916 Hypothesis builder for the...
seqval 13917 Value of the sequence buil...
seqfn 13918 The sequence builder funct...
seq1 13919 Value of the sequence buil...
seq1i 13920 Value of the sequence buil...
seqp1 13921 Value of the sequence buil...
seqexw 13922 Weak version of ~ seqex th...
seqp1d 13923 Value of the sequence buil...
seqp1iOLD 13924 Obsolete version of ~ seqp...
seqm1 13925 Value of the sequence buil...
seqcl2 13926 Closure properties of the ...
seqf2 13927 Range of the recursive seq...
seqcl 13928 Closure properties of the ...
seqf 13929 Range of the recursive seq...
seqfveq2 13930 Equality of sequences. (C...
seqfeq2 13931 Equality of sequences. (C...
seqfveq 13932 Equality of sequences. (C...
seqfeq 13933 Equality of sequences. (C...
seqshft2 13934 Shifting the index set of ...
seqres 13935 Restricting its characteri...
serf 13936 An infinite series of comp...
serfre 13937 An infinite series of real...
monoord 13938 Ordering relation for a mo...
monoord2 13939 Ordering relation for a mo...
sermono 13940 The partial sums in an inf...
seqsplit 13941 Split a sequence into two ...
seq1p 13942 Removing the first term fr...
seqcaopr3 13943 Lemma for ~ seqcaopr2 . (...
seqcaopr2 13944 The sum of two infinite se...
seqcaopr 13945 The sum of two infinite se...
seqf1olem2a 13946 Lemma for ~ seqf1o . (Con...
seqf1olem1 13947 Lemma for ~ seqf1o . (Con...
seqf1olem2 13948 Lemma for ~ seqf1o . (Con...
seqf1o 13949 Rearrange a sum via an arb...
seradd 13950 The sum of two infinite se...
sersub 13951 The difference of two infi...
seqid3 13952 A sequence that consists e...
seqid 13953 Discarding the first few t...
seqid2 13954 The last few partial sums ...
seqhomo 13955 Apply a homomorphism to a ...
seqz 13956 If the operation ` .+ ` ha...
seqfeq4 13957 Equality of series under d...
seqfeq3 13958 Equality of series under d...
seqdistr 13959 The distributive property ...
ser0 13960 The value of the partial s...
ser0f 13961 A zero-valued infinite ser...
serge0 13962 A finite sum of nonnegativ...
serle 13963 Comparison of partial sums...
ser1const 13964 Value of the partial serie...
seqof 13965 Distribute function operat...
seqof2 13966 Distribute function operat...
expval 13969 Value of exponentiation to...
expnnval 13970 Value of exponentiation to...
exp0 13971 Value of a complex number ...
0exp0e1 13972 The zeroth power of zero e...
exp1 13973 Value of a complex number ...
expp1 13974 Value of a complex number ...
expneg 13975 Value of a complex number ...
expneg2 13976 Value of a complex number ...
expn1 13977 A complex number raised to...
expcllem 13978 Lemma for proving nonnegat...
expcl2lem 13979 Lemma for proving integer ...
nnexpcl 13980 Closure of exponentiation ...
nn0expcl 13981 Closure of exponentiation ...
zexpcl 13982 Closure of exponentiation ...
qexpcl 13983 Closure of exponentiation ...
reexpcl 13984 Closure of exponentiation ...
expcl 13985 Closure law for nonnegativ...
rpexpcl 13986 Closure law for integer ex...
qexpclz 13987 Closure of integer exponen...
reexpclz 13988 Closure of integer exponen...
expclzlem 13989 Lemma for ~ expclz . (Con...
expclz 13990 Closure law for integer ex...
m1expcl2 13991 Closure of integer exponen...
m1expcl 13992 Closure of exponentiation ...
zexpcld 13993 Closure of exponentiation ...
nn0expcli 13994 Closure of exponentiation ...
nn0sqcl 13995 The square of a nonnegativ...
expm1t 13996 Exponentiation in terms of...
1exp 13997 Value of 1 raised to an in...
expeq0 13998 A positive integer power i...
expne0 13999 A positive integer power i...
expne0i 14000 An integer power is nonzer...
expgt0 14001 A positive real raised to ...
expnegz 14002 Value of a nonzero complex...
0exp 14003 Value of zero raised to a ...
expge0 14004 A nonnegative real raised ...
expge1 14005 A real greater than or equ...
expgt1 14006 A real greater than 1 rais...
mulexp 14007 Nonnegative integer expone...
mulexpz 14008 Integer exponentiation of ...
exprec 14009 Integer exponentiation of ...
expadd 14010 Sum of exponents law for n...
expaddzlem 14011 Lemma for ~ expaddz . (Co...
expaddz 14012 Sum of exponents law for i...
expmul 14013 Product of exponents law f...
expmulz 14014 Product of exponents law f...
m1expeven 14015 Exponentiation of negative...
expsub 14016 Exponent subtraction law f...
expp1z 14017 Value of a nonzero complex...
expm1 14018 Value of a nonzero complex...
expdiv 14019 Nonnegative integer expone...
sqval 14020 Value of the square of a c...
sqneg 14021 The square of the negative...
sqsubswap 14022 Swap the order of subtract...
sqcl 14023 Closure of square. (Contr...
sqmul 14024 Distribution of squaring o...
sqeq0 14025 A complex number is zero i...
sqdiv 14026 Distribution of squaring o...
sqdivid 14027 The square of a nonzero co...
sqne0 14028 A complex number is nonzer...
resqcl 14029 Closure of squaring in rea...
resqcld 14030 Closure of squaring in rea...
sqgt0 14031 The square of a nonzero re...
sqn0rp 14032 The square of a nonzero re...
nnsqcl 14033 The positive naturals are ...
zsqcl 14034 Integers are closed under ...
qsqcl 14035 The square of a rational i...
sq11 14036 The square function is one...
nn0sq11 14037 The square function is one...
lt2sq 14038 The square function is inc...
le2sq 14039 The square function is non...
le2sq2 14040 The square function is non...
sqge0 14041 The square of a real is no...
sqge0d 14042 The square of a real is no...
zsqcl2 14043 The square of an integer i...
0expd 14044 Value of zero raised to a ...
exp0d 14045 Value of a complex number ...
exp1d 14046 Value of a complex number ...
expeq0d 14047 If a positive integer powe...
sqvald 14048 Value of square. Inferenc...
sqcld 14049 Closure of square. (Contr...
sqeq0d 14050 A number is zero iff its s...
expcld 14051 Closure law for nonnegativ...
expp1d 14052 Value of a complex number ...
expaddd 14053 Sum of exponents law for n...
expmuld 14054 Product of exponents law f...
sqrecd 14055 Square of reciprocal is re...
expclzd 14056 Closure law for integer ex...
expne0d 14057 A nonnegative integer powe...
expnegd 14058 Value of a nonzero complex...
exprecd 14059 An integer power of a reci...
expp1zd 14060 Value of a nonzero complex...
expm1d 14061 Value of a nonzero complex...
expsubd 14062 Exponent subtraction law f...
sqmuld 14063 Distribution of squaring o...
sqdivd 14064 Distribution of squaring o...
expdivd 14065 Nonnegative integer expone...
mulexpd 14066 Nonnegative integer expone...
znsqcld 14067 The square of a nonzero in...
reexpcld 14068 Closure of exponentiation ...
expge0d 14069 A nonnegative real raised ...
expge1d 14070 A real greater than or equ...
ltexp2a 14071 Exponent ordering relation...
expmordi 14072 Base ordering relationship...
rpexpmord 14073 Base ordering relationship...
expcan 14074 Cancellation law for integ...
ltexp2 14075 Strict ordering law for ex...
leexp2 14076 Ordering law for exponenti...
leexp2a 14077 Weak ordering relationship...
ltexp2r 14078 The integer powers of a fi...
leexp2r 14079 Weak ordering relationship...
leexp1a 14080 Weak base ordering relatio...
exple1 14081 A real between 0 and 1 inc...
expubnd 14082 An upper bound on ` A ^ N ...
sumsqeq0 14083 The sum of two squres of r...
sqvali 14084 Value of square. Inferenc...
sqcli 14085 Closure of square. (Contr...
sqeq0i 14086 A complex number is zero i...
sqrecii 14087 The square of a reciprocal...
sqmuli 14088 Distribution of squaring o...
sqdivi 14089 Distribution of squaring o...
resqcli 14090 Closure of square in reals...
sqgt0i 14091 The square of a nonzero re...
sqge0i 14092 The square of a real is no...
lt2sqi 14093 The square function on non...
le2sqi 14094 The square function on non...
sq11i 14095 The square function is one...
sq0 14096 The square of 0 is 0. (Co...
sq0i 14097 If a number is zero, then ...
sq0id 14098 If a number is zero, then ...
sq1 14099 The square of 1 is 1. (Co...
neg1sqe1 14100 The square of ` -u 1 ` is ...
sq2 14101 The square of 2 is 4. (Co...
sq3 14102 The square of 3 is 9. (Co...
sq4e2t8 14103 The square of 4 is 2 times...
cu2 14104 The cube of 2 is 8. (Cont...
irec 14105 The reciprocal of ` _i ` ....
i2 14106 ` _i ` squared. (Contribu...
i3 14107 ` _i ` cubed. (Contribute...
i4 14108 ` _i ` to the fourth power...
nnlesq 14109 A positive integer is less...
zzlesq 14110 An integer is less than or...
iexpcyc 14111 Taking ` _i ` to the ` K `...
expnass 14112 A counterexample showing t...
sqlecan 14113 Cancel one factor of a squ...
subsq 14114 Factor the difference of t...
subsq2 14115 Express the difference of ...
binom2i 14116 The square of a binomial. ...
subsqi 14117 Factor the difference of t...
sqeqori 14118 The squares of two complex...
subsq0i 14119 The two solutions to the d...
sqeqor 14120 The squares of two complex...
binom2 14121 The square of a binomial. ...
binom21 14122 Special case of ~ binom2 w...
binom2sub 14123 Expand the square of a sub...
binom2sub1 14124 Special case of ~ binom2su...
binom2subi 14125 Expand the square of a sub...
mulbinom2 14126 The square of a binomial w...
binom3 14127 The cube of a binomial. (...
sq01 14128 If a complex number equals...
zesq 14129 An integer is even iff its...
nnesq 14130 A positive integer is even...
crreczi 14131 Reciprocal of a complex nu...
bernneq 14132 Bernoulli's inequality, du...
bernneq2 14133 Variation of Bernoulli's i...
bernneq3 14134 A corollary of ~ bernneq ....
expnbnd 14135 Exponentiation with a base...
expnlbnd 14136 The reciprocal of exponent...
expnlbnd2 14137 The reciprocal of exponent...
expmulnbnd 14138 Exponentiation with a base...
digit2 14139 Two ways to express the ` ...
digit1 14140 Two ways to express the ` ...
modexp 14141 Exponentiation property of...
discr1 14142 A nonnegative quadratic fo...
discr 14143 If a quadratic polynomial ...
expnngt1 14144 If an integer power with a...
expnngt1b 14145 An integer power with an i...
sqoddm1div8 14146 A squared odd number minus...
nnsqcld 14147 The naturals are closed un...
nnexpcld 14148 Closure of exponentiation ...
nn0expcld 14149 Closure of exponentiation ...
rpexpcld 14150 Closure law for exponentia...
ltexp2rd 14151 The power of a positive nu...
reexpclzd 14152 Closure of exponentiation ...
sqgt0d 14153 The square of a nonzero re...
ltexp2d 14154 Ordering relationship for ...
leexp2d 14155 Ordering law for exponenti...
expcand 14156 Ordering relationship for ...
leexp2ad 14157 Ordering relationship for ...
leexp2rd 14158 Ordering relationship for ...
lt2sqd 14159 The square function on non...
le2sqd 14160 The square function on non...
sq11d 14161 The square function is one...
mulsubdivbinom2 14162 The square of a binomial w...
muldivbinom2 14163 The square of a binomial w...
sq10 14164 The square of 10 is 100. ...
sq10e99m1 14165 The square of 10 is 99 plu...
3dec 14166 A "decimal constructor" wh...
nn0le2msqi 14167 The square function on non...
nn0opthlem1 14168 A rather pretty lemma for ...
nn0opthlem2 14169 Lemma for ~ nn0opthi . (C...
nn0opthi 14170 An ordered pair theorem fo...
nn0opth2i 14171 An ordered pair theorem fo...
nn0opth2 14172 An ordered pair theorem fo...
facnn 14175 Value of the factorial fun...
fac0 14176 The factorial of 0. (Cont...
fac1 14177 The factorial of 1. (Cont...
facp1 14178 The factorial of a success...
fac2 14179 The factorial of 2. (Cont...
fac3 14180 The factorial of 3. (Cont...
fac4 14181 The factorial of 4. (Cont...
facnn2 14182 Value of the factorial fun...
faccl 14183 Closure of the factorial f...
faccld 14184 Closure of the factorial f...
facmapnn 14185 The factorial function res...
facne0 14186 The factorial function is ...
facdiv 14187 A positive integer divides...
facndiv 14188 No positive integer (great...
facwordi 14189 Ordering property of facto...
faclbnd 14190 A lower bound for the fact...
faclbnd2 14191 A lower bound for the fact...
faclbnd3 14192 A lower bound for the fact...
faclbnd4lem1 14193 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 14194 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 14195 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 14196 Lemma for ~ faclbnd4 . Pr...
faclbnd4 14197 Variant of ~ faclbnd5 prov...
faclbnd5 14198 The factorial function gro...
faclbnd6 14199 Geometric lower bound for ...
facubnd 14200 An upper bound for the fac...
facavg 14201 The product of two factori...
bcval 14204 Value of the binomial coef...
bcval2 14205 Value of the binomial coef...
bcval3 14206 Value of the binomial coef...
bcval4 14207 Value of the binomial coef...
bcrpcl 14208 Closure of the binomial co...
bccmpl 14209 "Complementing" its second...
bcn0 14210 ` N ` choose 0 is 1. Rema...
bc0k 14211 The binomial coefficient "...
bcnn 14212 ` N ` choose ` N ` is 1. ...
bcn1 14213 Binomial coefficient: ` N ...
bcnp1n 14214 Binomial coefficient: ` N ...
bcm1k 14215 The proportion of one bino...
bcp1n 14216 The proportion of one bino...
bcp1nk 14217 The proportion of one bino...
bcval5 14218 Write out the top and bott...
bcn2 14219 Binomial coefficient: ` N ...
bcp1m1 14220 Compute the binomial coeff...
bcpasc 14221 Pascal's rule for the bino...
bccl 14222 A binomial coefficient, in...
bccl2 14223 A binomial coefficient, in...
bcn2m1 14224 Compute the binomial coeff...
bcn2p1 14225 Compute the binomial coeff...
permnn 14226 The number of permutations...
bcnm1 14227 The binomial coefficent of...
4bc3eq4 14228 The value of four choose t...
4bc2eq6 14229 The value of four choose t...
hashkf 14232 The finite part of the siz...
hashgval 14233 The value of the ` # ` fun...
hashginv 14234 The converse of ` G ` maps...
hashinf 14235 The value of the ` # ` fun...
hashbnd 14236 If ` A ` has size bounded ...
hashfxnn0 14237 The size function is a fun...
hashf 14238 The size function maps all...
hashxnn0 14239 The value of the hash func...
hashresfn 14240 Restriction of the domain ...
dmhashres 14241 Restriction of the domain ...
hashnn0pnf 14242 The value of the hash func...
hashnnn0genn0 14243 If the size of a set is no...
hashnemnf 14244 The size of a set is never...
hashv01gt1 14245 The size of a set is eithe...
hashfz1 14246 The set ` ( 1 ... N ) ` ha...
hashen 14247 Two finite sets have the s...
hasheni 14248 Equinumerous sets have the...
hasheqf1o 14249 The size of two finite set...
fiinfnf1o 14250 There is no bijection betw...
hasheqf1oi 14251 The size of two sets is eq...
hashf1rn 14252 The size of a finite set w...
hasheqf1od 14253 The size of two sets is eq...
fz1eqb 14254 Two possibly-empty 1-based...
hashcard 14255 The size function of the c...
hashcl 14256 Closure of the ` # ` funct...
hashxrcl 14257 Extended real closure of t...
hashclb 14258 Reverse closure of the ` #...
nfile 14259 The size of any infinite s...
hashvnfin 14260 A set of finite size is a ...
hashnfinnn0 14261 The size of an infinite se...
isfinite4 14262 A finite set is equinumero...
hasheq0 14263 Two ways of saying a finit...
hashneq0 14264 Two ways of saying a set i...
hashgt0n0 14265 If the size of a set is gr...
hashnncl 14266 Positive natural closure o...
hash0 14267 The empty set has size zer...
hashelne0d 14268 A set with an element has ...
hashsng 14269 The size of a singleton. ...
hashen1 14270 A set has size 1 if and on...
hash1elsn 14271 A set of size 1 with a kno...
hashrabrsn 14272 The size of a restricted c...
hashrabsn01 14273 The size of a restricted c...
hashrabsn1 14274 If the size of a restricte...
hashfn 14275 A function is equinumerous...
fseq1hash 14276 The value of the size func...
hashgadd 14277 ` G ` maps ordinal additio...
hashgval2 14278 A short expression for the...
hashdom 14279 Dominance relation for the...
hashdomi 14280 Non-strict order relation ...
hashsdom 14281 Strict dominance relation ...
hashun 14282 The size of the union of d...
hashun2 14283 The size of the union of f...
hashun3 14284 The size of the union of f...
hashinfxadd 14285 The extended real addition...
hashunx 14286 The size of the union of d...
hashge0 14287 The cardinality of a set i...
hashgt0 14288 The cardinality of a nonem...
hashge1 14289 The cardinality of a nonem...
1elfz0hash 14290 1 is an element of the fin...
hashnn0n0nn 14291 If a nonnegative integer i...
hashunsng 14292 The size of the union of a...
hashunsngx 14293 The size of the union of a...
hashunsnggt 14294 The size of a set is great...
hashprg 14295 The size of an unordered p...
elprchashprn2 14296 If one element of an unord...
hashprb 14297 The size of an unordered p...
hashprdifel 14298 The elements of an unorder...
prhash2ex 14299 There is (at least) one se...
hashle00 14300 If the size of a set is le...
hashgt0elex 14301 If the size of a set is gr...
hashgt0elexb 14302 The size of a set is great...
hashp1i 14303 Size of a finite ordinal. ...
hash1 14304 Size of a finite ordinal. ...
hash2 14305 Size of a finite ordinal. ...
hash3 14306 Size of a finite ordinal. ...
hash4 14307 Size of a finite ordinal. ...
pr0hash2ex 14308 There is (at least) one se...
hashss 14309 The size of a subset is le...
prsshashgt1 14310 The size of a superset of ...
hashin 14311 The size of the intersecti...
hashssdif 14312 The size of the difference...
hashdif 14313 The size of the difference...
hashdifsn 14314 The size of the difference...
hashdifpr 14315 The size of the difference...
hashsn01 14316 The size of a singleton is...
hashsnle1 14317 The size of a singleton is...
hashsnlei 14318 Get an upper bound on a co...
hash1snb 14319 The size of a set is 1 if ...
euhash1 14320 The size of a set is 1 in ...
hash1n0 14321 If the size of a set is 1 ...
hashgt12el 14322 In a set with more than on...
hashgt12el2 14323 In a set with more than on...
hashgt23el 14324 A set with more than two e...
hashunlei 14325 Get an upper bound on a co...
hashsslei 14326 Get an upper bound on a co...
hashfz 14327 Value of the numeric cardi...
fzsdom2 14328 Condition for finite range...
hashfzo 14329 Cardinality of a half-open...
hashfzo0 14330 Cardinality of a half-open...
hashfzp1 14331 Value of the numeric cardi...
hashfz0 14332 Value of the numeric cardi...
hashxplem 14333 Lemma for ~ hashxp . (Con...
hashxp 14334 The size of the Cartesian ...
hashmap 14335 The size of the set expone...
hashpw 14336 The size of the power set ...
hashfun 14337 A finite set is a function...
hashres 14338 The number of elements of ...
hashreshashfun 14339 The number of elements of ...
hashimarn 14340 The size of the image of a...
hashimarni 14341 If the size of the image o...
resunimafz0 14342 TODO-AV: Revise using ` F...
fnfz0hash 14343 The size of a function on ...
ffz0hash 14344 The size of a function on ...
fnfz0hashnn0 14345 The size of a function on ...
ffzo0hash 14346 The size of a function on ...
fnfzo0hash 14347 The size of a function on ...
fnfzo0hashnn0 14348 The value of the size func...
hashbclem 14349 Lemma for ~ hashbc : induc...
hashbc 14350 The binomial coefficient c...
hashfacen 14351 The number of bijections b...
hashfacenOLD 14352 Obsolete version of ~ hash...
hashf1lem1 14353 Lemma for ~ hashf1 . (Con...
hashf1lem1OLD 14354 Obsolete version of ~ hash...
hashf1lem2 14355 Lemma for ~ hashf1 . (Con...
hashf1 14356 The permutation number ` |...
hashfac 14357 A factorial counts the num...
leiso 14358 Two ways to write a strict...
leisorel 14359 Version of ~ isorel for st...
fz1isolem 14360 Lemma for ~ fz1iso . (Con...
fz1iso 14361 Any finite ordered set has...
ishashinf 14362 Any set that is not finite...
seqcoll 14363 The function ` F ` contain...
seqcoll2 14364 The function ` F ` contain...
phphashd 14365 Corollary of the Pigeonhol...
phphashrd 14366 Corollary of the Pigeonhol...
hashprlei 14367 An unordered pair has at m...
hash2pr 14368 A set of size two is an un...
hash2prde 14369 A set of size two is an un...
hash2exprb 14370 A set of size two is an un...
hash2prb 14371 A set of size two is a pro...
prprrab 14372 The set of proper pairs of...
nehash2 14373 The cardinality of a set w...
hash2prd 14374 A set of size two is an un...
hash2pwpr 14375 If the size of a subset of...
hashle2pr 14376 A nonempty set of size les...
hashle2prv 14377 A nonempty subset of a pow...
pr2pwpr 14378 The set of subsets of a pa...
hashge2el2dif 14379 A set with size at least 2...
hashge2el2difr 14380 A set with at least 2 diff...
hashge2el2difb 14381 A set has size at least 2 ...
hashdmpropge2 14382 The size of the domain of ...
hashtplei 14383 An unordered triple has at...
hashtpg 14384 The size of an unordered t...
hashge3el3dif 14385 A set with size at least 3...
elss2prb 14386 An element of the set of s...
hash2sspr 14387 A subset of size two is an...
exprelprel 14388 If there is an element of ...
hash3tr 14389 A set of size three is an ...
hash1to3 14390 If the size of a set is be...
fundmge2nop0 14391 A function with a domain c...
fundmge2nop 14392 A function with a domain c...
fun2dmnop0 14393 A function with a domain c...
fun2dmnop 14394 A function with a domain c...
hashdifsnp1 14395 If the size of a set is a ...
fi1uzind 14396 Properties of an ordered p...
brfi1uzind 14397 Properties of a binary rel...
brfi1ind 14398 Properties of a binary rel...
brfi1indALT 14399 Alternate proof of ~ brfi1...
opfi1uzind 14400 Properties of an ordered p...
opfi1ind 14401 Properties of an ordered p...
iswrd 14404 Property of being a word o...
wrdval 14405 Value of the set of words ...
iswrdi 14406 A zero-based sequence is a...
wrdf 14407 A word is a zero-based seq...
iswrdb 14408 A word over an alphabet is...
wrddm 14409 The indices of a word (i.e...
sswrd 14410 The set of words respects ...
snopiswrd 14411 A singleton of an ordered ...
wrdexg 14412 The set of words over a se...
wrdexb 14413 The set of words over a se...
wrdexi 14414 The set of words over a se...
wrdsymbcl 14415 A symbol within a word ove...
wrdfn 14416 A word is a function with ...
wrdv 14417 A word over an alphabet is...
wrdlndm 14418 The length of a word is no...
iswrdsymb 14419 An arbitrary word is a wor...
wrdfin 14420 A word is a finite set. (...
lencl 14421 The length of a word is a ...
lennncl 14422 The length of a nonempty w...
wrdffz 14423 A word is a function from ...
wrdeq 14424 Equality theorem for the s...
wrdeqi 14425 Equality theorem for the s...
iswrddm0 14426 A function with empty doma...
wrd0 14427 The empty set is a word (t...
0wrd0 14428 The empty word is the only...
ffz0iswrd 14429 A sequence with zero-based...
wrdsymb 14430 A word is a word over the ...
nfwrd 14431 Hypothesis builder for ` W...
csbwrdg 14432 Class substitution for the...
wrdnval 14433 Words of a fixed length ar...
wrdmap 14434 Words as a mapping. (Cont...
hashwrdn 14435 If there is only a finite ...
wrdnfi 14436 If there is only a finite ...
wrdsymb0 14437 A symbol at a position "ou...
wrdlenge1n0 14438 A word with length at leas...
len0nnbi 14439 The length of a word is a ...
wrdlenge2n0 14440 A word with length at leas...
wrdsymb1 14441 The first symbol of a none...
wrdlen1 14442 A word of length 1 starts ...
fstwrdne 14443 The first symbol of a none...
fstwrdne0 14444 The first symbol of a none...
eqwrd 14445 Two words are equal iff th...
elovmpowrd 14446 Implications for the value...
elovmptnn0wrd 14447 Implications for the value...
wrdred1 14448 A word truncated by a symb...
wrdred1hash 14449 The length of a word trunc...
lsw 14452 Extract the last symbol of...
lsw0 14453 The last symbol of an empt...
lsw0g 14454 The last symbol of an empt...
lsw1 14455 The last symbol of a word ...
lswcl 14456 Closure of the last symbol...
lswlgt0cl 14457 The last symbol of a nonem...
ccatfn 14460 The concatenation operator...
ccatfval 14461 Value of the concatenation...
ccatcl 14462 The concatenation of two w...
ccatlen 14463 The length of a concatenat...
ccat0 14464 The concatenation of two w...
ccatval1 14465 Value of a symbol in the l...
ccatval2 14466 Value of a symbol in the r...
ccatval3 14467 Value of a symbol in the r...
elfzelfzccat 14468 An element of a finite set...
ccatvalfn 14469 The concatenation of two w...
ccatsymb 14470 The symbol at a given posi...
ccatfv0 14471 The first symbol of a conc...
ccatval1lsw 14472 The last symbol of the lef...
ccatval21sw 14473 The first symbol of the ri...
ccatlid 14474 Concatenation of a word by...
ccatrid 14475 Concatenation of a word by...
ccatass 14476 Associative law for concat...
ccatrn 14477 The range of a concatenate...
ccatidid 14478 Concatenation of the empty...
lswccatn0lsw 14479 The last symbol of a word ...
lswccat0lsw 14480 The last symbol of a word ...
ccatalpha 14481 A concatenation of two arb...
ccatrcl1 14482 Reverse closure of a conca...
ids1 14485 Identity function protecti...
s1val 14486 Value of a singleton word....
s1rn 14487 The range of a singleton w...
s1eq 14488 Equality theorem for a sin...
s1eqd 14489 Equality theorem for a sin...
s1cl 14490 A singleton word is a word...
s1cld 14491 A singleton word is a word...
s1prc 14492 Value of a singleton word ...
s1cli 14493 A singleton word is a word...
s1len 14494 Length of a singleton word...
s1nz 14495 A singleton word is not th...
s1dm 14496 The domain of a singleton ...
s1dmALT 14497 Alternate version of ~ s1d...
s1fv 14498 Sole symbol of a singleton...
lsws1 14499 The last symbol of a singl...
eqs1 14500 A word of length 1 is a si...
wrdl1exs1 14501 A word of length 1 is a si...
wrdl1s1 14502 A word of length 1 is a si...
s111 14503 The singleton word functio...
ccatws1cl 14504 The concatenation of a wor...
ccatws1clv 14505 The concatenation of a wor...
ccat2s1cl 14506 The concatenation of two s...
ccats1alpha 14507 A concatenation of a word ...
ccatws1len 14508 The length of the concaten...
ccatws1lenp1b 14509 The length of a word is ` ...
wrdlenccats1lenm1 14510 The length of a word is th...
ccat2s1len 14511 The length of the concaten...
ccatw2s1cl 14512 The concatenation of a wor...
ccatw2s1len 14513 The length of the concaten...
ccats1val1 14514 Value of a symbol in the l...
ccats1val2 14515 Value of the symbol concat...
ccat1st1st 14516 The first symbol of a word...
ccat2s1p1 14517 Extract the first of two c...
ccat2s1p2 14518 Extract the second of two ...
ccatw2s1ass 14519 Associative law for a conc...
ccatws1n0 14520 The concatenation of a wor...
ccatws1ls 14521 The last symbol of the con...
lswccats1 14522 The last symbol of a word ...
lswccats1fst 14523 The last symbol of a nonem...
ccatw2s1p1 14524 Extract the symbol of the ...
ccatw2s1p2 14525 Extract the second of two ...
ccat2s1fvw 14526 Extract a symbol of a word...
ccat2s1fst 14527 The first symbol of the co...
swrdnznd 14530 The value of a subword ope...
swrdval 14531 Value of a subword. (Cont...
swrd00 14532 A zero length substring. ...
swrdcl 14533 Closure of the subword ext...
swrdval2 14534 Value of the subword extra...
swrdlen 14535 Length of an extracted sub...
swrdfv 14536 A symbol in an extracted s...
swrdfv0 14537 The first symbol in an ext...
swrdf 14538 A subword of a word is a f...
swrdvalfn 14539 Value of the subword extra...
swrdrn 14540 The range of a subword of ...
swrdlend 14541 The value of the subword e...
swrdnd 14542 The value of the subword e...
swrdnd2 14543 Value of the subword extra...
swrdnnn0nd 14544 The value of a subword ope...
swrdnd0 14545 The value of a subword ope...
swrd0 14546 A subword of an empty set ...
swrdrlen 14547 Length of a right-anchored...
swrdlen2 14548 Length of an extracted sub...
swrdfv2 14549 A symbol in an extracted s...
swrdwrdsymb 14550 A subword is a word over t...
swrdsb0eq 14551 Two subwords with the same...
swrdsbslen 14552 Two subwords with the same...
swrdspsleq 14553 Two words have a common su...
swrds1 14554 Extract a single symbol fr...
swrdlsw 14555 Extract the last single sy...
ccatswrd 14556 Joining two adjacent subwo...
swrdccat2 14557 Recover the right half of ...
pfxnndmnd 14560 The value of a prefix oper...
pfxval 14561 Value of a prefix operatio...
pfx00 14562 The zero length prefix is ...
pfx0 14563 A prefix of an empty set i...
pfxval0 14564 Value of a prefix operatio...
pfxcl 14565 Closure of the prefix extr...
pfxmpt 14566 Value of the prefix extrac...
pfxres 14567 Value of the subword extra...
pfxf 14568 A prefix of a word is a fu...
pfxfn 14569 Value of the prefix extrac...
pfxfv 14570 A symbol in a prefix of a ...
pfxlen 14571 Length of a prefix. (Cont...
pfxid 14572 A word is a prefix of itse...
pfxrn 14573 The range of a prefix of a...
pfxn0 14574 A prefix consisting of at ...
pfxnd 14575 The value of a prefix oper...
pfxnd0 14576 The value of a prefix oper...
pfxwrdsymb 14577 A prefix of a word is a wo...
addlenrevpfx 14578 The sum of the lengths of ...
addlenpfx 14579 The sum of the lengths of ...
pfxfv0 14580 The first symbol of a pref...
pfxtrcfv 14581 A symbol in a word truncat...
pfxtrcfv0 14582 The first symbol in a word...
pfxfvlsw 14583 The last symbol in a nonem...
pfxeq 14584 The prefixes of two words ...
pfxtrcfvl 14585 The last symbol in a word ...
pfxsuffeqwrdeq 14586 Two words are equal if and...
pfxsuff1eqwrdeq 14587 Two (nonempty) words are e...
disjwrdpfx 14588 Sets of words are disjoint...
ccatpfx 14589 Concatenating a prefix wit...
pfxccat1 14590 Recover the left half of a...
pfx1 14591 The prefix of length one o...
swrdswrdlem 14592 Lemma for ~ swrdswrd . (C...
swrdswrd 14593 A subword of a subword is ...
pfxswrd 14594 A prefix of a subword is a...
swrdpfx 14595 A subword of a prefix is a...
pfxpfx 14596 A prefix of a prefix is a ...
pfxpfxid 14597 A prefix of a prefix with ...
pfxcctswrd 14598 The concatenation of the p...
lenpfxcctswrd 14599 The length of the concaten...
lenrevpfxcctswrd 14600 The length of the concaten...
pfxlswccat 14601 Reconstruct a nonempty wor...
ccats1pfxeq 14602 The last symbol of a word ...
ccats1pfxeqrex 14603 There exists a symbol such...
ccatopth 14604 An ~ opth -like theorem fo...
ccatopth2 14605 An ~ opth -like theorem fo...
ccatlcan 14606 Concatenation of words is ...
ccatrcan 14607 Concatenation of words is ...
wrdeqs1cat 14608 Decompose a nonempty word ...
cats1un 14609 Express a word with an ext...
wrdind 14610 Perform induction over the...
wrd2ind 14611 Perform induction over the...
swrdccatfn 14612 The subword of a concatena...
swrdccatin1 14613 The subword of a concatena...
pfxccatin12lem4 14614 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14615 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14616 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14617 The subword of a concatena...
pfxccatin12lem2c 14618 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14619 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14620 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14621 The subword of a concatena...
pfxccat3 14622 The subword of a concatena...
swrdccat 14623 The subword of a concatena...
pfxccatpfx1 14624 A prefix of a concatenatio...
pfxccatpfx2 14625 A prefix of a concatenatio...
pfxccat3a 14626 A prefix of a concatenatio...
swrdccat3blem 14627 Lemma for ~ swrdccat3b . ...
swrdccat3b 14628 A suffix of a concatenatio...
pfxccatid 14629 A prefix of a concatenatio...
ccats1pfxeqbi 14630 A word is a prefix of a wo...
swrdccatin1d 14631 The subword of a concatena...
swrdccatin2d 14632 The subword of a concatena...
pfxccatin12d 14633 The subword of a concatena...
reuccatpfxs1lem 14634 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14635 There is a unique word hav...
reuccatpfxs1v 14636 There is a unique word hav...
splval 14639 Value of the substring rep...
splcl 14640 Closure of the substring r...
splid 14641 Splicing a subword for the...
spllen 14642 The length of a splice. (...
splfv1 14643 Symbols to the left of a s...
splfv2a 14644 Symbols within the replace...
splval2 14645 Value of a splice, assumin...
revval 14648 Value of the word reversin...
revcl 14649 The reverse of a word is a...
revlen 14650 The reverse of a word has ...
revfv 14651 Reverse of a word at a poi...
rev0 14652 The empty word is its own ...
revs1 14653 Singleton words are their ...
revccat 14654 Antiautomorphic property o...
revrev 14655 Reversal is an involution ...
reps 14658 Construct a function mappi...
repsundef 14659 A function mapping a half-...
repsconst 14660 Construct a function mappi...
repsf 14661 The constructed function m...
repswsymb 14662 The symbols of a "repeated...
repsw 14663 A function mapping a half-...
repswlen 14664 The length of a "repeated ...
repsw0 14665 The "repeated symbol word"...
repsdf2 14666 Alternative definition of ...
repswsymball 14667 All the symbols of a "repe...
repswsymballbi 14668 A word is a "repeated symb...
repswfsts 14669 The first symbol of a none...
repswlsw 14670 The last symbol of a nonem...
repsw1 14671 The "repeated symbol word"...
repswswrd 14672 A subword of a "repeated s...
repswpfx 14673 A prefix of a repeated sym...
repswccat 14674 The concatenation of two "...
repswrevw 14675 The reverse of a "repeated...
cshfn 14678 Perform a cyclical shift f...
cshword 14679 Perform a cyclical shift f...
cshnz 14680 A cyclical shift is the em...
0csh0 14681 Cyclically shifting an emp...
cshw0 14682 A word cyclically shifted ...
cshwmodn 14683 Cyclically shifting a word...
cshwsublen 14684 Cyclically shifting a word...
cshwn 14685 A word cyclically shifted ...
cshwcl 14686 A cyclically shifted word ...
cshwlen 14687 The length of a cyclically...
cshwf 14688 A cyclically shifted word ...
cshwfn 14689 A cyclically shifted word ...
cshwrn 14690 The range of a cyclically ...
cshwidxmod 14691 The symbol at a given inde...
cshwidxmodr 14692 The symbol at a given inde...
cshwidx0mod 14693 The symbol at index 0 of a...
cshwidx0 14694 The symbol at index 0 of a...
cshwidxm1 14695 The symbol at index ((n-N)...
cshwidxm 14696 The symbol at index (n-N) ...
cshwidxn 14697 The symbol at index (n-1) ...
cshf1 14698 Cyclically shifting a word...
cshinj 14699 If a word is injectiv (reg...
repswcshw 14700 A cyclically shifted "repe...
2cshw 14701 Cyclically shifting a word...
2cshwid 14702 Cyclically shifting a word...
lswcshw 14703 The last symbol of a word ...
2cshwcom 14704 Cyclically shifting a word...
cshwleneq 14705 If the results of cyclical...
3cshw 14706 Cyclically shifting a word...
cshweqdif2 14707 If cyclically shifting two...
cshweqdifid 14708 If cyclically shifting a w...
cshweqrep 14709 If cyclically shifting a w...
cshw1 14710 If cyclically shifting a w...
cshw1repsw 14711 If cyclically shifting a w...
cshwsexa 14712 The class of (different!) ...
cshwsexaOLD 14713 Obsolete version of ~ cshw...
2cshwcshw 14714 If a word is a cyclically ...
scshwfzeqfzo 14715 For a nonempty word the se...
cshwcshid 14716 A cyclically shifted word ...
cshwcsh2id 14717 A cyclically shifted word ...
cshimadifsn 14718 The image of a cyclically ...
cshimadifsn0 14719 The image of a cyclically ...
wrdco 14720 Mapping a word by a functi...
lenco 14721 Length of a mapped word is...
s1co 14722 Mapping of a singleton wor...
revco 14723 Mapping of words (i.e., a ...
ccatco 14724 Mapping of words commutes ...
cshco 14725 Mapping of words commutes ...
swrdco 14726 Mapping of words commutes ...
pfxco 14727 Mapping of words commutes ...
lswco 14728 Mapping of (nonempty) word...
repsco 14729 Mapping of words commutes ...
cats1cld 14744 Closure of concatenation w...
cats1co 14745 Closure of concatenation w...
cats1cli 14746 Closure of concatenation w...
cats1fvn 14747 The last symbol of a conca...
cats1fv 14748 A symbol other than the la...
cats1len 14749 The length of concatenatio...
cats1cat 14750 Closure of concatenation w...
cats2cat 14751 Closure of concatenation o...
s2eqd 14752 Equality theorem for a dou...
s3eqd 14753 Equality theorem for a len...
s4eqd 14754 Equality theorem for a len...
s5eqd 14755 Equality theorem for a len...
s6eqd 14756 Equality theorem for a len...
s7eqd 14757 Equality theorem for a len...
s8eqd 14758 Equality theorem for a len...
s3eq2 14759 Equality theorem for a len...
s2cld 14760 A doubleton word is a word...
s3cld 14761 A length 3 string is a wor...
s4cld 14762 A length 4 string is a wor...
s5cld 14763 A length 5 string is a wor...
s6cld 14764 A length 6 string is a wor...
s7cld 14765 A length 7 string is a wor...
s8cld 14766 A length 7 string is a wor...
s2cl 14767 A doubleton word is a word...
s3cl 14768 A length 3 string is a wor...
s2cli 14769 A doubleton word is a word...
s3cli 14770 A length 3 string is a wor...
s4cli 14771 A length 4 string is a wor...
s5cli 14772 A length 5 string is a wor...
s6cli 14773 A length 6 string is a wor...
s7cli 14774 A length 7 string is a wor...
s8cli 14775 A length 8 string is a wor...
s2fv0 14776 Extract the first symbol f...
s2fv1 14777 Extract the second symbol ...
s2len 14778 The length of a doubleton ...
s2dm 14779 The domain of a doubleton ...
s3fv0 14780 Extract the first symbol f...
s3fv1 14781 Extract the second symbol ...
s3fv2 14782 Extract the third symbol f...
s3len 14783 The length of a length 3 s...
s4fv0 14784 Extract the first symbol f...
s4fv1 14785 Extract the second symbol ...
s4fv2 14786 Extract the third symbol f...
s4fv3 14787 Extract the fourth symbol ...
s4len 14788 The length of a length 4 s...
s5len 14789 The length of a length 5 s...
s6len 14790 The length of a length 6 s...
s7len 14791 The length of a length 7 s...
s8len 14792 The length of a length 8 s...
lsws2 14793 The last symbol of a doubl...
lsws3 14794 The last symbol of a 3 let...
lsws4 14795 The last symbol of a 4 let...
s2prop 14796 A length 2 word is an unor...
s2dmALT 14797 Alternate version of ~ s2d...
s3tpop 14798 A length 3 word is an unor...
s4prop 14799 A length 4 word is a union...
s3fn 14800 A length 3 word is a funct...
funcnvs1 14801 The converse of a singleto...
funcnvs2 14802 The converse of a length 2...
funcnvs3 14803 The converse of a length 3...
funcnvs4 14804 The converse of a length 4...
s2f1o 14805 A length 2 word with mutua...
f1oun2prg 14806 A union of unordered pairs...
s4f1o 14807 A length 4 word with mutua...
s4dom 14808 The domain of a length 4 w...
s2co 14809 Mapping a doubleton word b...
s3co 14810 Mapping a length 3 string ...
s0s1 14811 Concatenation of fixed len...
s1s2 14812 Concatenation of fixed len...
s1s3 14813 Concatenation of fixed len...
s1s4 14814 Concatenation of fixed len...
s1s5 14815 Concatenation of fixed len...
s1s6 14816 Concatenation of fixed len...
s1s7 14817 Concatenation of fixed len...
s2s2 14818 Concatenation of fixed len...
s4s2 14819 Concatenation of fixed len...
s4s3 14820 Concatenation of fixed len...
s4s4 14821 Concatenation of fixed len...
s3s4 14822 Concatenation of fixed len...
s2s5 14823 Concatenation of fixed len...
s5s2 14824 Concatenation of fixed len...
s2eq2s1eq 14825 Two length 2 words are equ...
s2eq2seq 14826 Two length 2 words are equ...
s3eqs2s1eq 14827 Two length 3 words are equ...
s3eq3seq 14828 Two length 3 words are equ...
swrds2 14829 Extract two adjacent symbo...
swrds2m 14830 Extract two adjacent symbo...
wrdlen2i 14831 Implications of a word of ...
wrd2pr2op 14832 A word of length two repre...
wrdlen2 14833 A word of length two. (Co...
wrdlen2s2 14834 A word of length two as do...
wrdl2exs2 14835 A word of length two is a ...
pfx2 14836 A prefix of length two. (...
wrd3tpop 14837 A word of length three rep...
wrdlen3s3 14838 A word of length three as ...
repsw2 14839 The "repeated symbol word"...
repsw3 14840 The "repeated symbol word"...
swrd2lsw 14841 Extract the last two symbo...
2swrd2eqwrdeq 14842 Two words of length at lea...
ccatw2s1ccatws2 14843 The concatenation of a wor...
ccat2s1fvwALT 14844 Alternate proof of ~ ccat2...
wwlktovf 14845 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14846 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14847 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14848 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14849 There is a bijection betwe...
eqwrds3 14850 A word is equal with a len...
wrdl3s3 14851 A word of length 3 is a le...
s3sndisj 14852 The singletons consisting ...
s3iunsndisj 14853 The union of singletons co...
ofccat 14854 Letterwise operations on w...
ofs1 14855 Letterwise operations on a...
ofs2 14856 Letterwise operations on a...
coss12d 14857 Subset deduction for compo...
trrelssd 14858 The composition of subclas...
xpcogend 14859 The most interesting case ...
xpcoidgend 14860 If two classes are not dis...
cotr2g 14861 Two ways of saying that th...
cotr2 14862 Two ways of saying a relat...
cotr3 14863 Two ways of saying a relat...
coemptyd 14864 Deduction about compositio...
xptrrel 14865 The cross product is alway...
0trrel 14866 The empty class is a trans...
cleq1lem 14867 Equality implies bijection...
cleq1 14868 Equality of relations impl...
clsslem 14869 The closure of a subclass ...
trcleq1 14874 Equality of relations impl...
trclsslem 14875 The transitive closure (as...
trcleq2lem 14876 Equality implies bijection...
cvbtrcl 14877 Change of bound variable i...
trcleq12lem 14878 Equality implies bijection...
trclexlem 14879 Existence of relation impl...
trclublem 14880 If a relation exists then ...
trclubi 14881 The Cartesian product of t...
trclubgi 14882 The union with the Cartesi...
trclub 14883 The Cartesian product of t...
trclubg 14884 The union with the Cartesi...
trclfv 14885 The transitive closure of ...
brintclab 14886 Two ways to express a bina...
brtrclfv 14887 Two ways of expressing the...
brcnvtrclfv 14888 Two ways of expressing the...
brtrclfvcnv 14889 Two ways of expressing the...
brcnvtrclfvcnv 14890 Two ways of expressing the...
trclfvss 14891 The transitive closure (as...
trclfvub 14892 The transitive closure of ...
trclfvlb 14893 The transitive closure of ...
trclfvcotr 14894 The transitive closure of ...
trclfvlb2 14895 The transitive closure of ...
trclfvlb3 14896 The transitive closure of ...
cotrtrclfv 14897 The transitive closure of ...
trclidm 14898 The transitive closure of ...
trclun 14899 Transitive closure of a un...
trclfvg 14900 The value of the transitiv...
trclfvcotrg 14901 The value of the transitiv...
reltrclfv 14902 The transitive closure of ...
dmtrclfv 14903 The domain of the transiti...
reldmrelexp 14906 The domain of the repeated...
relexp0g 14907 A relation composed zero t...
relexp0 14908 A relation composed zero t...
relexp0d 14909 A relation composed zero t...
relexpsucnnr 14910 A reduction for relation e...
relexp1g 14911 A relation composed once i...
dfid5 14912 Identity relation is equal...
dfid6 14913 Identity relation expresse...
relexp1d 14914 A relation composed once i...
relexpsucnnl 14915 A reduction for relation e...
relexpsucl 14916 A reduction for relation e...
relexpsucr 14917 A reduction for relation e...
relexpsucrd 14918 A reduction for relation e...
relexpsucld 14919 A reduction for relation e...
relexpcnv 14920 Commutation of converse an...
relexpcnvd 14921 Commutation of converse an...
relexp0rel 14922 The exponentiation of a cl...
relexprelg 14923 The exponentiation of a cl...
relexprel 14924 The exponentiation of a re...
relexpreld 14925 The exponentiation of a re...
relexpnndm 14926 The domain of an exponenti...
relexpdmg 14927 The domain of an exponenti...
relexpdm 14928 The domain of an exponenti...
relexpdmd 14929 The domain of an exponenti...
relexpnnrn 14930 The range of an exponentia...
relexprng 14931 The range of an exponentia...
relexprn 14932 The range of an exponentia...
relexprnd 14933 The range of an exponentia...
relexpfld 14934 The field of an exponentia...
relexpfldd 14935 The field of an exponentia...
relexpaddnn 14936 Relation composition becom...
relexpuzrel 14937 The exponentiation of a cl...
relexpaddg 14938 Relation composition becom...
relexpaddd 14939 Relation composition becom...
rtrclreclem1 14942 The reflexive, transitive ...
dfrtrclrec2 14943 If two elements are connec...
rtrclreclem2 14944 The reflexive, transitive ...
rtrclreclem3 14945 The reflexive, transitive ...
rtrclreclem4 14946 The reflexive, transitive ...
dfrtrcl2 14947 The two definitions ` t* `...
relexpindlem 14948 Principle of transitive in...
relexpind 14949 Principle of transitive in...
rtrclind 14950 Principle of transitive in...
shftlem 14953 Two ways to write a shifte...
shftuz 14954 A shift of the upper integ...
shftfval 14955 The value of the sequence ...
shftdm 14956 Domain of a relation shift...
shftfib 14957 Value of a fiber of the re...
shftfn 14958 Functionality and domain o...
shftval 14959 Value of a sequence shifte...
shftval2 14960 Value of a sequence shifte...
shftval3 14961 Value of a sequence shifte...
shftval4 14962 Value of a sequence shifte...
shftval5 14963 Value of a shifted sequenc...
shftf 14964 Functionality of a shifted...
2shfti 14965 Composite shift operations...
shftidt2 14966 Identity law for the shift...
shftidt 14967 Identity law for the shift...
shftcan1 14968 Cancellation law for the s...
shftcan2 14969 Cancellation law for the s...
seqshft 14970 Shifting the index set of ...
sgnval 14973 Value of the signum functi...
sgn0 14974 The signum of 0 is 0. (Co...
sgnp 14975 The signum of a positive e...
sgnrrp 14976 The signum of a positive r...
sgn1 14977 The signum of 1 is 1. (Co...
sgnpnf 14978 The signum of ` +oo ` is 1...
sgnn 14979 The signum of a negative e...
sgnmnf 14980 The signum of ` -oo ` is -...
cjval 14987 The value of the conjugate...
cjth 14988 The defining property of t...
cjf 14989 Domain and codomain of the...
cjcl 14990 The conjugate of a complex...
reval 14991 The value of the real part...
imval 14992 The value of the imaginary...
imre 14993 The imaginary part of a co...
reim 14994 The real part of a complex...
recl 14995 The real part of a complex...
imcl 14996 The imaginary part of a co...
ref 14997 Domain and codomain of the...
imf 14998 Domain and codomain of the...
crre 14999 The real part of a complex...
crim 15000 The real part of a complex...
replim 15001 Reconstruct a complex numb...
remim 15002 Value of the conjugate of ...
reim0 15003 The imaginary part of a re...
reim0b 15004 A number is real iff its i...
rereb 15005 A number is real iff it eq...
mulre 15006 A product with a nonzero r...
rere 15007 A real number equals its r...
cjreb 15008 A number is real iff it eq...
recj 15009 Real part of a complex con...
reneg 15010 Real part of negative. (C...
readd 15011 Real part distributes over...
resub 15012 Real part distributes over...
remullem 15013 Lemma for ~ remul , ~ immu...
remul 15014 Real part of a product. (...
remul2 15015 Real part of a product. (...
rediv 15016 Real part of a division. ...
imcj 15017 Imaginary part of a comple...
imneg 15018 The imaginary part of a ne...
imadd 15019 Imaginary part distributes...
imsub 15020 Imaginary part distributes...
immul 15021 Imaginary part of a produc...
immul2 15022 Imaginary part of a produc...
imdiv 15023 Imaginary part of a divisi...
cjre 15024 A real number equals its c...
cjcj 15025 The conjugate of the conju...
cjadd 15026 Complex conjugate distribu...
cjmul 15027 Complex conjugate distribu...
ipcnval 15028 Standard inner product on ...
cjmulrcl 15029 A complex number times its...
cjmulval 15030 A complex number times its...
cjmulge0 15031 A complex number times its...
cjneg 15032 Complex conjugate of negat...
addcj 15033 A number plus its conjugat...
cjsub 15034 Complex conjugate distribu...
cjexp 15035 Complex conjugate of posit...
imval2 15036 The imaginary part of a nu...
re0 15037 The real part of zero. (C...
im0 15038 The imaginary part of zero...
re1 15039 The real part of one. (Co...
im1 15040 The imaginary part of one....
rei 15041 The real part of ` _i ` . ...
imi 15042 The imaginary part of ` _i...
cj0 15043 The conjugate of zero. (C...
cji 15044 The complex conjugate of t...
cjreim 15045 The conjugate of a represe...
cjreim2 15046 The conjugate of the repre...
cj11 15047 Complex conjugate is a one...
cjne0 15048 A number is nonzero iff it...
cjdiv 15049 Complex conjugate distribu...
cnrecnv 15050 The inverse to the canonic...
sqeqd 15051 A deduction for showing tw...
recli 15052 The real part of a complex...
imcli 15053 The imaginary part of a co...
cjcli 15054 Closure law for complex co...
replimi 15055 Construct a complex number...
cjcji 15056 The conjugate of the conju...
reim0bi 15057 A number is real iff its i...
rerebi 15058 A real number equals its r...
cjrebi 15059 A number is real iff it eq...
recji 15060 Real part of a complex con...
imcji 15061 Imaginary part of a comple...
cjmulrcli 15062 A complex number times its...
cjmulvali 15063 A complex number times its...
cjmulge0i 15064 A complex number times its...
renegi 15065 Real part of negative. (C...
imnegi 15066 Imaginary part of negative...
cjnegi 15067 Complex conjugate of negat...
addcji 15068 A number plus its conjugat...
readdi 15069 Real part distributes over...
imaddi 15070 Imaginary part distributes...
remuli 15071 Real part of a product. (...
immuli 15072 Imaginary part of a produc...
cjaddi 15073 Complex conjugate distribu...
cjmuli 15074 Complex conjugate distribu...
ipcni 15075 Standard inner product on ...
cjdivi 15076 Complex conjugate distribu...
crrei 15077 The real part of a complex...
crimi 15078 The imaginary part of a co...
recld 15079 The real part of a complex...
imcld 15080 The imaginary part of a co...
cjcld 15081 Closure law for complex co...
replimd 15082 Construct a complex number...
remimd 15083 Value of the conjugate of ...
cjcjd 15084 The conjugate of the conju...
reim0bd 15085 A number is real iff its i...
rerebd 15086 A real number equals its r...
cjrebd 15087 A number is real iff it eq...
cjne0d 15088 A number is nonzero iff it...
recjd 15089 Real part of a complex con...
imcjd 15090 Imaginary part of a comple...
cjmulrcld 15091 A complex number times its...
cjmulvald 15092 A complex number times its...
cjmulge0d 15093 A complex number times its...
renegd 15094 Real part of negative. (C...
imnegd 15095 Imaginary part of negative...
cjnegd 15096 Complex conjugate of negat...
addcjd 15097 A number plus its conjugat...
cjexpd 15098 Complex conjugate of posit...
readdd 15099 Real part distributes over...
imaddd 15100 Imaginary part distributes...
resubd 15101 Real part distributes over...
imsubd 15102 Imaginary part distributes...
remuld 15103 Real part of a product. (...
immuld 15104 Imaginary part of a produc...
cjaddd 15105 Complex conjugate distribu...
cjmuld 15106 Complex conjugate distribu...
ipcnd 15107 Standard inner product on ...
cjdivd 15108 Complex conjugate distribu...
rered 15109 A real number equals its r...
reim0d 15110 The imaginary part of a re...
cjred 15111 A real number equals its c...
remul2d 15112 Real part of a product. (...
immul2d 15113 Imaginary part of a produc...
redivd 15114 Real part of a division. ...
imdivd 15115 Imaginary part of a divisi...
crred 15116 The real part of a complex...
crimd 15117 The imaginary part of a co...
sqrtval 15122 Value of square root funct...
absval 15123 The absolute value (modulu...
rennim 15124 A real number does not lie...
cnpart 15125 The specification of restr...
sqrt0 15126 The square root of zero is...
01sqrexlem1 15127 Lemma for ~ 01sqrex . (Co...
01sqrexlem2 15128 Lemma for ~ 01sqrex . (Co...
01sqrexlem3 15129 Lemma for ~ 01sqrex . (Co...
01sqrexlem4 15130 Lemma for ~ 01sqrex . (Co...
01sqrexlem5 15131 Lemma for ~ 01sqrex . (Co...
01sqrexlem6 15132 Lemma for ~ 01sqrex . (Co...
01sqrexlem7 15133 Lemma for ~ 01sqrex . (Co...
01sqrex 15134 Existence of a square root...
resqrex 15135 Existence of a square root...
sqrmo 15136 Uniqueness for the square ...
resqreu 15137 Existence and uniqueness f...
resqrtcl 15138 Closure of the square root...
resqrtthlem 15139 Lemma for ~ resqrtth . (C...
resqrtth 15140 Square root theorem over t...
remsqsqrt 15141 Square of square root. (C...
sqrtge0 15142 The square root function i...
sqrtgt0 15143 The square root function i...
sqrtmul 15144 Square root distributes ov...
sqrtle 15145 Square root is monotonic. ...
sqrtlt 15146 Square root is strictly mo...
sqrt11 15147 The square root function i...
sqrt00 15148 A square root is zero iff ...
rpsqrtcl 15149 The square root of a posit...
sqrtdiv 15150 Square root distributes ov...
sqrtneglem 15151 The square root of a negat...
sqrtneg 15152 The square root of a negat...
sqrtsq2 15153 Relationship between squar...
sqrtsq 15154 Square root of square. (C...
sqrtmsq 15155 Square root of square. (C...
sqrt1 15156 The square root of 1 is 1....
sqrt4 15157 The square root of 4 is 2....
sqrt9 15158 The square root of 9 is 3....
sqrt2gt1lt2 15159 The square root of 2 is bo...
sqrtm1 15160 The imaginary unit is the ...
nn0sqeq1 15161 A natural number with squa...
absneg 15162 Absolute value of the oppo...
abscl 15163 Real closure of absolute v...
abscj 15164 The absolute value of a nu...
absvalsq 15165 Square of value of absolut...
absvalsq2 15166 Square of value of absolut...
sqabsadd 15167 Square of absolute value o...
sqabssub 15168 Square of absolute value o...
absval2 15169 Value of absolute value fu...
abs0 15170 The absolute value of 0. ...
absi 15171 The absolute value of the ...
absge0 15172 Absolute value is nonnegat...
absrpcl 15173 The absolute value of a no...
abs00 15174 The absolute value of a nu...
abs00ad 15175 A complex number is zero i...
abs00bd 15176 If a complex number is zer...
absreimsq 15177 Square of the absolute val...
absreim 15178 Absolute value of a number...
absmul 15179 Absolute value distributes...
absdiv 15180 Absolute value distributes...
absid 15181 A nonnegative number is it...
abs1 15182 The absolute value of one ...
absnid 15183 A negative number is the n...
leabs 15184 A real number is less than...
absor 15185 The absolute value of a re...
absre 15186 Absolute value of a real n...
absresq 15187 Square of the absolute val...
absmod0 15188 ` A ` is divisible by ` B ...
absexp 15189 Absolute value of positive...
absexpz 15190 Absolute value of integer ...
abssq 15191 Square can be moved in and...
sqabs 15192 The squares of two reals a...
absrele 15193 The absolute value of a co...
absimle 15194 The absolute value of a co...
max0add 15195 The sum of the positive an...
absz 15196 A real number is an intege...
nn0abscl 15197 The absolute value of an i...
zabscl 15198 The absolute value of an i...
abslt 15199 Absolute value and 'less t...
absle 15200 Absolute value and 'less t...
abssubne0 15201 If the absolute value of a...
absdiflt 15202 The absolute value of a di...
absdifle 15203 The absolute value of a di...
elicc4abs 15204 Membership in a symmetric ...
lenegsq 15205 Comparison to a nonnegativ...
releabs 15206 The real part of a number ...
recval 15207 Reciprocal expressed with ...
absidm 15208 The absolute value functio...
absgt0 15209 The absolute value of a no...
nnabscl 15210 The absolute value of a no...
abssub 15211 Swapping order of subtract...
abssubge0 15212 Absolute value of a nonneg...
abssuble0 15213 Absolute value of a nonpos...
absmax 15214 The maximum of two numbers...
abstri 15215 Triangle inequality for ab...
abs3dif 15216 Absolute value of differen...
abs2dif 15217 Difference of absolute val...
abs2dif2 15218 Difference of absolute val...
abs2difabs 15219 Absolute value of differen...
abs1m 15220 For any complex number, th...
recan 15221 Cancellation law involving...
absf 15222 Mapping domain and codomai...
abs3lem 15223 Lemma involving absolute v...
abslem2 15224 Lemma involving absolute v...
rddif 15225 The difference between a r...
absrdbnd 15226 Bound on the absolute valu...
fzomaxdiflem 15227 Lemma for ~ fzomaxdif . (...
fzomaxdif 15228 A bound on the separation ...
uzin2 15229 The upper integers are clo...
rexanuz 15230 Combine two different uppe...
rexanre 15231 Combine two different uppe...
rexfiuz 15232 Combine finitely many diff...
rexuz3 15233 Restrict the base of the u...
rexanuz2 15234 Combine two different uppe...
r19.29uz 15235 A version of ~ 19.29 for u...
r19.2uz 15236 A version of ~ r19.2z for ...
rexuzre 15237 Convert an upper real quan...
rexico 15238 Restrict the base of an up...
cau3lem 15239 Lemma for ~ cau3 . (Contr...
cau3 15240 Convert between three-quan...
cau4 15241 Change the base of a Cauch...
caubnd2 15242 A Cauchy sequence of compl...
caubnd 15243 A Cauchy sequence of compl...
sqreulem 15244 Lemma for ~ sqreu : write ...
sqreu 15245 Existence and uniqueness f...
sqrtcl 15246 Closure of the square root...
sqrtthlem 15247 Lemma for ~ sqrtth . (Con...
sqrtf 15248 Mapping domain and codomai...
sqrtth 15249 Square root theorem over t...
sqrtrege0 15250 The square root function m...
eqsqrtor 15251 Solve an equation containi...
eqsqrtd 15252 A deduction for showing th...
eqsqrt2d 15253 A deduction for showing th...
amgm2 15254 Arithmetic-geometric mean ...
sqrtthi 15255 Square root theorem. Theo...
sqrtcli 15256 The square root of a nonne...
sqrtgt0i 15257 The square root of a posit...
sqrtmsqi 15258 Square root of square. (C...
sqrtsqi 15259 Square root of square. (C...
sqsqrti 15260 Square of square root. (C...
sqrtge0i 15261 The square root of a nonne...
absidi 15262 A nonnegative number is it...
absnidi 15263 A negative number is the n...
leabsi 15264 A real number is less than...
absori 15265 The absolute value of a re...
absrei 15266 Absolute value of a real n...
sqrtpclii 15267 The square root of a posit...
sqrtgt0ii 15268 The square root of a posit...
sqrt11i 15269 The square root function i...
sqrtmuli 15270 Square root distributes ov...
sqrtmulii 15271 Square root distributes ov...
sqrtmsq2i 15272 Relationship between squar...
sqrtlei 15273 Square root is monotonic. ...
sqrtlti 15274 Square root is strictly mo...
abslti 15275 Absolute value and 'less t...
abslei 15276 Absolute value and 'less t...
cnsqrt00 15277 A square root of a complex...
absvalsqi 15278 Square of value of absolut...
absvalsq2i 15279 Square of value of absolut...
abscli 15280 Real closure of absolute v...
absge0i 15281 Absolute value is nonnegat...
absval2i 15282 Value of absolute value fu...
abs00i 15283 The absolute value of a nu...
absgt0i 15284 The absolute value of a no...
absnegi 15285 Absolute value of negative...
abscji 15286 The absolute value of a nu...
releabsi 15287 The real part of a number ...
abssubi 15288 Swapping order of subtract...
absmuli 15289 Absolute value distributes...
sqabsaddi 15290 Square of absolute value o...
sqabssubi 15291 Square of absolute value o...
absdivzi 15292 Absolute value distributes...
abstrii 15293 Triangle inequality for ab...
abs3difi 15294 Absolute value of differen...
abs3lemi 15295 Lemma involving absolute v...
rpsqrtcld 15296 The square root of a posit...
sqrtgt0d 15297 The square root of a posit...
absnidd 15298 A negative number is the n...
leabsd 15299 A real number is less than...
absord 15300 The absolute value of a re...
absred 15301 Absolute value of a real n...
resqrtcld 15302 The square root of a nonne...
sqrtmsqd 15303 Square root of square. (C...
sqrtsqd 15304 Square root of square. (C...
sqrtge0d 15305 The square root of a nonne...
sqrtnegd 15306 The square root of a negat...
absidd 15307 A nonnegative number is it...
sqrtdivd 15308 Square root distributes ov...
sqrtmuld 15309 Square root distributes ov...
sqrtsq2d 15310 Relationship between squar...
sqrtled 15311 Square root is monotonic. ...
sqrtltd 15312 Square root is strictly mo...
sqr11d 15313 The square root function i...
absltd 15314 Absolute value and 'less t...
absled 15315 Absolute value and 'less t...
abssubge0d 15316 Absolute value of a nonneg...
abssuble0d 15317 Absolute value of a nonpos...
absdifltd 15318 The absolute value of a di...
absdifled 15319 The absolute value of a di...
icodiamlt 15320 Two elements in a half-ope...
abscld 15321 Real closure of absolute v...
sqrtcld 15322 Closure of the square root...
sqrtrege0d 15323 The real part of the squar...
sqsqrtd 15324 Square root theorem. Theo...
msqsqrtd 15325 Square root theorem. Theo...
sqr00d 15326 A square root is zero iff ...
absvalsqd 15327 Square of value of absolut...
absvalsq2d 15328 Square of value of absolut...
absge0d 15329 Absolute value is nonnegat...
absval2d 15330 Value of absolute value fu...
abs00d 15331 The absolute value of a nu...
absne0d 15332 The absolute value of a nu...
absrpcld 15333 The absolute value of a no...
absnegd 15334 Absolute value of negative...
abscjd 15335 The absolute value of a nu...
releabsd 15336 The real part of a number ...
absexpd 15337 Absolute value of positive...
abssubd 15338 Swapping order of subtract...
absmuld 15339 Absolute value distributes...
absdivd 15340 Absolute value distributes...
abstrid 15341 Triangle inequality for ab...
abs2difd 15342 Difference of absolute val...
abs2dif2d 15343 Difference of absolute val...
abs2difabsd 15344 Absolute value of differen...
abs3difd 15345 Absolute value of differen...
abs3lemd 15346 Lemma involving absolute v...
reusq0 15347 A complex number is the sq...
bhmafibid1cn 15348 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15349 The Brahmagupta-Fibonacci ...
bhmafibid1 15350 The Brahmagupta-Fibonacci ...
bhmafibid2 15351 The Brahmagupta-Fibonacci ...
limsupgord 15354 Ordering property of the s...
limsupcl 15355 Closure of the superior li...
limsupval 15356 The superior limit of an i...
limsupgf 15357 Closure of the superior li...
limsupgval 15358 Value of the superior limi...
limsupgle 15359 The defining property of t...
limsuple 15360 The defining property of t...
limsuplt 15361 The defining property of t...
limsupval2 15362 The superior limit, relati...
limsupgre 15363 If a sequence of real numb...
limsupbnd1 15364 If a sequence is eventuall...
limsupbnd2 15365 If a sequence is eventuall...
climrel 15374 The limit relation is a re...
rlimrel 15375 The limit relation is a re...
clim 15376 Express the predicate: Th...
rlim 15377 Express the predicate: Th...
rlim2 15378 Rewrite ~ rlim for a mappi...
rlim2lt 15379 Use strictly less-than in ...
rlim3 15380 Restrict the range of the ...
climcl 15381 Closure of the limit of a ...
rlimpm 15382 Closure of a function with...
rlimf 15383 Closure of a function with...
rlimss 15384 Domain closure of a functi...
rlimcl 15385 Closure of the limit of a ...
clim2 15386 Express the predicate: Th...
clim2c 15387 Express the predicate ` F ...
clim0 15388 Express the predicate ` F ...
clim0c 15389 Express the predicate ` F ...
rlim0 15390 Express the predicate ` B ...
rlim0lt 15391 Use strictly less-than in ...
climi 15392 Convergence of a sequence ...
climi2 15393 Convergence of a sequence ...
climi0 15394 Convergence of a sequence ...
rlimi 15395 Convergence at infinity of...
rlimi2 15396 Convergence at infinity of...
ello1 15397 Elementhood in the set of ...
ello12 15398 Elementhood in the set of ...
ello12r 15399 Sufficient condition for e...
lo1f 15400 An eventually upper bounde...
lo1dm 15401 An eventually upper bounde...
lo1bdd 15402 The defining property of a...
ello1mpt 15403 Elementhood in the set of ...
ello1mpt2 15404 Elementhood in the set of ...
ello1d 15405 Sufficient condition for e...
lo1bdd2 15406 If an eventually bounded f...
lo1bddrp 15407 Refine ~ o1bdd2 to give a ...
elo1 15408 Elementhood in the set of ...
elo12 15409 Elementhood in the set of ...
elo12r 15410 Sufficient condition for e...
o1f 15411 An eventually bounded func...
o1dm 15412 An eventually bounded func...
o1bdd 15413 The defining property of a...
lo1o1 15414 A function is eventually b...
lo1o12 15415 A function is eventually b...
elo1mpt 15416 Elementhood in the set of ...
elo1mpt2 15417 Elementhood in the set of ...
elo1d 15418 Sufficient condition for e...
o1lo1 15419 A real function is eventua...
o1lo12 15420 A lower bounded real funct...
o1lo1d 15421 A real eventually bounded ...
icco1 15422 Derive eventual boundednes...
o1bdd2 15423 If an eventually bounded f...
o1bddrp 15424 Refine ~ o1bdd2 to give a ...
climconst 15425 An (eventually) constant s...
rlimconst 15426 A constant sequence conver...
rlimclim1 15427 Forward direction of ~ rli...
rlimclim 15428 A sequence on an upper int...
climrlim2 15429 Produce a real limit from ...
climconst2 15430 A constant sequence conver...
climz 15431 The zero sequence converge...
rlimuni 15432 A real function whose doma...
rlimdm 15433 Two ways to express that a...
climuni 15434 An infinite sequence of co...
fclim 15435 The limit relation is func...
climdm 15436 Two ways to express that a...
climeu 15437 An infinite sequence of co...
climreu 15438 An infinite sequence of co...
climmo 15439 An infinite sequence of co...
rlimres 15440 The restriction of a funct...
lo1res 15441 The restriction of an even...
o1res 15442 The restriction of an even...
rlimres2 15443 The restriction of a funct...
lo1res2 15444 The restriction of a funct...
o1res2 15445 The restriction of a funct...
lo1resb 15446 The restriction of a funct...
rlimresb 15447 The restriction of a funct...
o1resb 15448 The restriction of a funct...
climeq 15449 Two functions that are eve...
lo1eq 15450 Two functions that are eve...
rlimeq 15451 Two functions that are eve...
o1eq 15452 Two functions that are eve...
climmpt 15453 Exhibit a function ` G ` w...
2clim 15454 If two sequences converge ...
climmpt2 15455 Relate an integer limit on...
climshftlem 15456 A shifted function converg...
climres 15457 A function restricted to u...
climshft 15458 A shifted function converg...
serclim0 15459 The zero series converges ...
rlimcld2 15460 If ` D ` is a closed set i...
rlimrege0 15461 The limit of a sequence of...
rlimrecl 15462 The limit of a real sequen...
rlimge0 15463 The limit of a sequence of...
climshft2 15464 A shifted function converg...
climrecl 15465 The limit of a convergent ...
climge0 15466 A nonnegative sequence con...
climabs0 15467 Convergence to zero of the...
o1co 15468 Sufficient condition for t...
o1compt 15469 Sufficient condition for t...
rlimcn1 15470 Image of a limit under a c...
rlimcn1b 15471 Image of a limit under a c...
rlimcn3 15472 Image of a limit under a c...
rlimcn2 15473 Image of a limit under a c...
climcn1 15474 Image of a limit under a c...
climcn2 15475 Image of a limit under a c...
addcn2 15476 Complex number addition is...
subcn2 15477 Complex number subtraction...
mulcn2 15478 Complex number multiplicat...
reccn2 15479 The reciprocal function is...
cn1lem 15480 A sufficient condition for...
abscn2 15481 The absolute value functio...
cjcn2 15482 The complex conjugate func...
recn2 15483 The real part function is ...
imcn2 15484 The imaginary part functio...
climcn1lem 15485 The limit of a continuous ...
climabs 15486 Limit of the absolute valu...
climcj 15487 Limit of the complex conju...
climre 15488 Limit of the real part of ...
climim 15489 Limit of the imaginary par...
rlimmptrcl 15490 Reverse closure for a real...
rlimabs 15491 Limit of the absolute valu...
rlimcj 15492 Limit of the complex conju...
rlimre 15493 Limit of the real part of ...
rlimim 15494 Limit of the imaginary par...
o1of2 15495 Show that a binary operati...
o1add 15496 The sum of two eventually ...
o1mul 15497 The product of two eventua...
o1sub 15498 The difference of two even...
rlimo1 15499 Any function with a finite...
rlimdmo1 15500 A convergent function is e...
o1rlimmul 15501 The product of an eventual...
o1const 15502 A constant function is eve...
lo1const 15503 A constant function is eve...
lo1mptrcl 15504 Reverse closure for an eve...
o1mptrcl 15505 Reverse closure for an eve...
o1add2 15506 The sum of two eventually ...
o1mul2 15507 The product of two eventua...
o1sub2 15508 The product of two eventua...
lo1add 15509 The sum of two eventually ...
lo1mul 15510 The product of an eventual...
lo1mul2 15511 The product of an eventual...
o1dif 15512 If the difference of two f...
lo1sub 15513 The difference of an event...
climadd 15514 Limit of the sum of two co...
climmul 15515 Limit of the product of tw...
climsub 15516 Limit of the difference of...
climaddc1 15517 Limit of a constant ` C ` ...
climaddc2 15518 Limit of a constant ` C ` ...
climmulc2 15519 Limit of a sequence multip...
climsubc1 15520 Limit of a constant ` C ` ...
climsubc2 15521 Limit of a constant ` C ` ...
climle 15522 Comparison of the limits o...
climsqz 15523 Convergence of a sequence ...
climsqz2 15524 Convergence of a sequence ...
rlimadd 15525 Limit of the sum of two co...
rlimaddOLD 15526 Obsolete version of ~ rlim...
rlimsub 15527 Limit of the difference of...
rlimmul 15528 Limit of the product of tw...
rlimmulOLD 15529 Obsolete version of ~ rlim...
rlimdiv 15530 Limit of the quotient of t...
rlimneg 15531 Limit of the negative of a...
rlimle 15532 Comparison of the limits o...
rlimsqzlem 15533 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15534 Convergence of a sequence ...
rlimsqz2 15535 Convergence of a sequence ...
lo1le 15536 Transfer eventual upper bo...
o1le 15537 Transfer eventual boundedn...
rlimno1 15538 A function whose inverse c...
clim2ser 15539 The limit of an infinite s...
clim2ser2 15540 The limit of an infinite s...
iserex 15541 An infinite series converg...
isermulc2 15542 Multiplication of an infin...
climlec2 15543 Comparison of a constant t...
iserle 15544 Comparison of the limits o...
iserge0 15545 The limit of an infinite s...
climub 15546 The limit of a monotonic s...
climserle 15547 The partial sums of a conv...
isershft 15548 Index shift of the limit o...
isercolllem1 15549 Lemma for ~ isercoll . (C...
isercolllem2 15550 Lemma for ~ isercoll . (C...
isercolllem3 15551 Lemma for ~ isercoll . (C...
isercoll 15552 Rearrange an infinite seri...
isercoll2 15553 Generalize ~ isercoll so t...
climsup 15554 A bounded monotonic sequen...
climcau 15555 A converging sequence of c...
climbdd 15556 A converging sequence of c...
caucvgrlem 15557 Lemma for ~ caurcvgr . (C...
caurcvgr 15558 A Cauchy sequence of real ...
caucvgrlem2 15559 Lemma for ~ caucvgr . (Co...
caucvgr 15560 A Cauchy sequence of compl...
caurcvg 15561 A Cauchy sequence of real ...
caurcvg2 15562 A Cauchy sequence of real ...
caucvg 15563 A Cauchy sequence of compl...
caucvgb 15564 A function is convergent i...
serf0 15565 If an infinite series conv...
iseraltlem1 15566 Lemma for ~ iseralt . A d...
iseraltlem2 15567 Lemma for ~ iseralt . The...
iseraltlem3 15568 Lemma for ~ iseralt . Fro...
iseralt 15569 The alternating series tes...
sumex 15572 A sum is a set. (Contribu...
sumeq1 15573 Equality theorem for a sum...
nfsum1 15574 Bound-variable hypothesis ...
nfsum 15575 Bound-variable hypothesis ...
nfsumOLD 15576 Obsolete version of ~ nfsu...
sumeq2w 15577 Equality theorem for sum, ...
sumeq2ii 15578 Equality theorem for sum, ...
sumeq2 15579 Equality theorem for sum. ...
cbvsum 15580 Change bound variable in a...
cbvsumv 15581 Change bound variable in a...
cbvsumi 15582 Change bound variable in a...
sumeq1i 15583 Equality inference for sum...
sumeq2i 15584 Equality inference for sum...
sumeq12i 15585 Equality inference for sum...
sumeq1d 15586 Equality deduction for sum...
sumeq2d 15587 Equality deduction for sum...
sumeq2dv 15588 Equality deduction for sum...
sumeq2sdv 15589 Equality deduction for sum...
2sumeq2dv 15590 Equality deduction for dou...
sumeq12dv 15591 Equality deduction for sum...
sumeq12rdv 15592 Equality deduction for sum...
sum2id 15593 The second class argument ...
sumfc 15594 A lemma to facilitate conv...
fz1f1o 15595 A lemma for working with f...
sumrblem 15596 Lemma for ~ sumrb . (Cont...
fsumcvg 15597 The sequence of partial su...
sumrb 15598 Rebase the starting point ...
summolem3 15599 Lemma for ~ summo . (Cont...
summolem2a 15600 Lemma for ~ summo . (Cont...
summolem2 15601 Lemma for ~ summo . (Cont...
summo 15602 A sum has at most one limi...
zsum 15603 Series sum with index set ...
isum 15604 Series sum with an upper i...
fsum 15605 The value of a sum over a ...
sum0 15606 Any sum over the empty set...
sumz 15607 Any sum of zero over a sum...
fsumf1o 15608 Re-index a finite sum usin...
sumss 15609 Change the index set to a ...
fsumss 15610 Change the index set to a ...
sumss2 15611 Change the index set of a ...
fsumcvg2 15612 The sequence of partial su...
fsumsers 15613 Special case of series sum...
fsumcvg3 15614 A finite sum is convergent...
fsumser 15615 A finite sum expressed in ...
fsumcl2lem 15616 - Lemma for finite sum clo...
fsumcllem 15617 - Lemma for finite sum clo...
fsumcl 15618 Closure of a finite sum of...
fsumrecl 15619 Closure of a finite sum of...
fsumzcl 15620 Closure of a finite sum of...
fsumnn0cl 15621 Closure of a finite sum of...
fsumrpcl 15622 Closure of a finite sum of...
fsumclf 15623 Closure of a finite sum of...
fsumzcl2 15624 A finite sum with integer ...
fsumadd 15625 The sum of two finite sums...
fsumsplit 15626 Split a sum into two parts...
fsumsplitf 15627 Split a sum into two parts...
sumsnf 15628 A sum of a singleton is th...
fsumsplitsn 15629 Separate out a term in a f...
fsumsplit1 15630 Separate out a term in a f...
sumsn 15631 A sum of a singleton is th...
fsum1 15632 The finite sum of ` A ( k ...
sumpr 15633 A sum over a pair is the s...
sumtp 15634 A sum over a triple is the...
sumsns 15635 A sum of a singleton is th...
fsumm1 15636 Separate out the last term...
fzosump1 15637 Separate out the last term...
fsum1p 15638 Separate out the first ter...
fsummsnunz 15639 A finite sum all of whose ...
fsumsplitsnun 15640 Separate out a term in a f...
fsump1 15641 The addition of the next t...
isumclim 15642 An infinite sum equals the...
isumclim2 15643 A converging series conver...
isumclim3 15644 The sequence of partial fi...
sumnul 15645 The sum of a non-convergen...
isumcl 15646 The sum of a converging in...
isummulc2 15647 An infinite sum multiplied...
isummulc1 15648 An infinite sum multiplied...
isumdivc 15649 An infinite sum divided by...
isumrecl 15650 The sum of a converging in...
isumge0 15651 An infinite sum of nonnega...
isumadd 15652 Addition of infinite sums....
sumsplit 15653 Split a sum into two parts...
fsump1i 15654 Optimized version of ~ fsu...
fsum2dlem 15655 Lemma for ~ fsum2d - induc...
fsum2d 15656 Write a double sum as a su...
fsumxp 15657 Combine two sums into a si...
fsumcnv 15658 Transform a region of summ...
fsumcom2 15659 Interchange order of summa...
fsumcom 15660 Interchange order of summa...
fsum0diaglem 15661 Lemma for ~ fsum0diag . (...
fsum0diag 15662 Two ways to express "the s...
mptfzshft 15663 1-1 onto function in maps-...
fsumrev 15664 Reversal of a finite sum. ...
fsumshft 15665 Index shift of a finite su...
fsumshftm 15666 Negative index shift of a ...
fsumrev2 15667 Reversal of a finite sum. ...
fsum0diag2 15668 Two ways to express "the s...
fsummulc2 15669 A finite sum multiplied by...
fsummulc1 15670 A finite sum multiplied by...
fsumdivc 15671 A finite sum divided by a ...
fsumneg 15672 Negation of a finite sum. ...
fsumsub 15673 Split a finite sum over a ...
fsum2mul 15674 Separate the nested sum of...
fsumconst 15675 The sum of constant terms ...
fsumdifsnconst 15676 The sum of constant terms ...
modfsummodslem1 15677 Lemma 1 for ~ modfsummods ...
modfsummods 15678 Induction step for ~ modfs...
modfsummod 15679 A finite sum modulo a posi...
fsumge0 15680 If all of the terms of a f...
fsumless 15681 A shorter sum of nonnegati...
fsumge1 15682 A sum of nonnegative numbe...
fsum00 15683 A sum of nonnegative numbe...
fsumle 15684 If all of the terms of fin...
fsumlt 15685 If every term in one finit...
fsumabs 15686 Generalized triangle inequ...
telfsumo 15687 Sum of a telescoping serie...
telfsumo2 15688 Sum of a telescoping serie...
telfsum 15689 Sum of a telescoping serie...
telfsum2 15690 Sum of a telescoping serie...
fsumparts 15691 Summation by parts. (Cont...
fsumrelem 15692 Lemma for ~ fsumre , ~ fsu...
fsumre 15693 The real part of a sum. (...
fsumim 15694 The imaginary part of a su...
fsumcj 15695 The complex conjugate of a...
fsumrlim 15696 Limit of a finite sum of c...
fsumo1 15697 The finite sum of eventual...
o1fsum 15698 If ` A ( k ) ` is O(1), th...
seqabs 15699 Generalized triangle inequ...
iserabs 15700 Generalized triangle inequ...
cvgcmp 15701 A comparison test for conv...
cvgcmpub 15702 An upper bound for the lim...
cvgcmpce 15703 A comparison test for conv...
abscvgcvg 15704 An absolutely convergent s...
climfsum 15705 Limit of a finite sum of c...
fsumiun 15706 Sum over a disjoint indexe...
hashiun 15707 The cardinality of a disjo...
hash2iun 15708 The cardinality of a neste...
hash2iun1dif1 15709 The cardinality of a neste...
hashrabrex 15710 The number of elements in ...
hashuni 15711 The cardinality of a disjo...
qshash 15712 The cardinality of a set w...
ackbijnn 15713 Translate the Ackermann bi...
binomlem 15714 Lemma for ~ binom (binomia...
binom 15715 The binomial theorem: ` ( ...
binom1p 15716 Special case of the binomi...
binom11 15717 Special case of the binomi...
binom1dif 15718 A summation for the differ...
bcxmaslem1 15719 Lemma for ~ bcxmas . (Con...
bcxmas 15720 Parallel summation (Christ...
incexclem 15721 Lemma for ~ incexc . (Con...
incexc 15722 The inclusion/exclusion pr...
incexc2 15723 The inclusion/exclusion pr...
isumshft 15724 Index shift of an infinite...
isumsplit 15725 Split off the first ` N ` ...
isum1p 15726 The infinite sum of a conv...
isumnn0nn 15727 Sum from 0 to infinity in ...
isumrpcl 15728 The infinite sum of positi...
isumle 15729 Comparison of two infinite...
isumless 15730 A finite sum of nonnegativ...
isumsup2 15731 An infinite sum of nonnega...
isumsup 15732 An infinite sum of nonnega...
isumltss 15733 A partial sum of a series ...
climcndslem1 15734 Lemma for ~ climcnds : bou...
climcndslem2 15735 Lemma for ~ climcnds : bou...
climcnds 15736 The Cauchy condensation te...
divrcnv 15737 The sequence of reciprocal...
divcnv 15738 The sequence of reciprocal...
flo1 15739 The floor function satisfi...
divcnvshft 15740 Limit of a ratio function....
supcvg 15741 Extract a sequence ` f ` i...
infcvgaux1i 15742 Auxiliary theorem for appl...
infcvgaux2i 15743 Auxiliary theorem for appl...
harmonic 15744 The harmonic series ` H ` ...
arisum 15745 Arithmetic series sum of t...
arisum2 15746 Arithmetic series sum of t...
trireciplem 15747 Lemma for ~ trirecip . Sh...
trirecip 15748 The sum of the reciprocals...
expcnv 15749 A sequence of powers of a ...
explecnv 15750 A sequence of terms conver...
geoserg 15751 The value of the finite ge...
geoser 15752 The value of the finite ge...
pwdif 15753 The difference of two numb...
pwm1geoser 15754 The n-th power of a number...
geolim 15755 The partial sums in the in...
geolim2 15756 The partial sums in the ge...
georeclim 15757 The limit of a geometric s...
geo2sum 15758 The value of the finite ge...
geo2sum2 15759 The value of the finite ge...
geo2lim 15760 The value of the infinite ...
geomulcvg 15761 The geometric series conve...
geoisum 15762 The infinite sum of ` 1 + ...
geoisumr 15763 The infinite sum of recipr...
geoisum1 15764 The infinite sum of ` A ^ ...
geoisum1c 15765 The infinite sum of ` A x....
0.999... 15766 The recurring decimal 0.99...
geoihalfsum 15767 Prove that the infinite ge...
cvgrat 15768 Ratio test for convergence...
mertenslem1 15769 Lemma for ~ mertens . (Co...
mertenslem2 15770 Lemma for ~ mertens . (Co...
mertens 15771 Mertens' theorem. If ` A ...
prodf 15772 An infinite product of com...
clim2prod 15773 The limit of an infinite p...
clim2div 15774 The limit of an infinite p...
prodfmul 15775 The product of two infinit...
prodf1 15776 The value of the partial p...
prodf1f 15777 A one-valued infinite prod...
prodfclim1 15778 The constant one product c...
prodfn0 15779 No term of a nonzero infin...
prodfrec 15780 The reciprocal of an infin...
prodfdiv 15781 The quotient of two infini...
ntrivcvg 15782 A non-trivially converging...
ntrivcvgn0 15783 A product that converges t...
ntrivcvgfvn0 15784 Any value of a product seq...
ntrivcvgtail 15785 A tail of a non-trivially ...
ntrivcvgmullem 15786 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15787 The product of two non-tri...
prodex 15790 A product is a set. (Cont...
prodeq1f 15791 Equality theorem for a pro...
prodeq1 15792 Equality theorem for a pro...
nfcprod1 15793 Bound-variable hypothesis ...
nfcprod 15794 Bound-variable hypothesis ...
prodeq2w 15795 Equality theorem for produ...
prodeq2ii 15796 Equality theorem for produ...
prodeq2 15797 Equality theorem for produ...
cbvprod 15798 Change bound variable in a...
cbvprodv 15799 Change bound variable in a...
cbvprodi 15800 Change bound variable in a...
prodeq1i 15801 Equality inference for pro...
prodeq2i 15802 Equality inference for pro...
prodeq12i 15803 Equality inference for pro...
prodeq1d 15804 Equality deduction for pro...
prodeq2d 15805 Equality deduction for pro...
prodeq2dv 15806 Equality deduction for pro...
prodeq2sdv 15807 Equality deduction for pro...
2cprodeq2dv 15808 Equality deduction for dou...
prodeq12dv 15809 Equality deduction for pro...
prodeq12rdv 15810 Equality deduction for pro...
prod2id 15811 The second class argument ...
prodrblem 15812 Lemma for ~ prodrb . (Con...
fprodcvg 15813 The sequence of partial pr...
prodrblem2 15814 Lemma for ~ prodrb . (Con...
prodrb 15815 Rebase the starting point ...
prodmolem3 15816 Lemma for ~ prodmo . (Con...
prodmolem2a 15817 Lemma for ~ prodmo . (Con...
prodmolem2 15818 Lemma for ~ prodmo . (Con...
prodmo 15819 A product has at most one ...
zprod 15820 Series product with index ...
iprod 15821 Series product with an upp...
zprodn0 15822 Nonzero series product wit...
iprodn0 15823 Nonzero series product wit...
fprod 15824 The value of a product ove...
fprodntriv 15825 A non-triviality lemma for...
prod0 15826 A product over the empty s...
prod1 15827 Any product of one over a ...
prodfc 15828 A lemma to facilitate conv...
fprodf1o 15829 Re-index a finite product ...
prodss 15830 Change the index set to a ...
fprodss 15831 Change the index set to a ...
fprodser 15832 A finite product expressed...
fprodcl2lem 15833 Finite product closure lem...
fprodcllem 15834 Finite product closure lem...
fprodcl 15835 Closure of a finite produc...
fprodrecl 15836 Closure of a finite produc...
fprodzcl 15837 Closure of a finite produc...
fprodnncl 15838 Closure of a finite produc...
fprodrpcl 15839 Closure of a finite produc...
fprodnn0cl 15840 Closure of a finite produc...
fprodcllemf 15841 Finite product closure lem...
fprodreclf 15842 Closure of a finite produc...
fprodmul 15843 The product of two finite ...
fproddiv 15844 The quotient of two finite...
prodsn 15845 A product of a singleton i...
fprod1 15846 A finite product of only o...
prodsnf 15847 A product of a singleton i...
climprod1 15848 The limit of a product ove...
fprodsplit 15849 Split a finite product int...
fprodm1 15850 Separate out the last term...
fprod1p 15851 Separate out the first ter...
fprodp1 15852 Multiply in the last term ...
fprodm1s 15853 Separate out the last term...
fprodp1s 15854 Multiply in the last term ...
prodsns 15855 A product of the singleton...
fprodfac 15856 Factorial using product no...
fprodabs 15857 The absolute value of a fi...
fprodeq0 15858 Any finite product contain...
fprodshft 15859 Shift the index of a finit...
fprodrev 15860 Reversal of a finite produ...
fprodconst 15861 The product of constant te...
fprodn0 15862 A finite product of nonzer...
fprod2dlem 15863 Lemma for ~ fprod2d - indu...
fprod2d 15864 Write a double product as ...
fprodxp 15865 Combine two products into ...
fprodcnv 15866 Transform a product region...
fprodcom2 15867 Interchange order of multi...
fprodcom 15868 Interchange product order....
fprod0diag 15869 Two ways to express "the p...
fproddivf 15870 The quotient of two finite...
fprodsplitf 15871 Split a finite product int...
fprodsplitsn 15872 Separate out a term in a f...
fprodsplit1f 15873 Separate out a term in a f...
fprodn0f 15874 A finite product of nonzer...
fprodclf 15875 Closure of a finite produc...
fprodge0 15876 If all the terms of a fini...
fprodeq0g 15877 Any finite product contain...
fprodge1 15878 If all of the terms of a f...
fprodle 15879 If all the terms of two fi...
fprodmodd 15880 If all factors of two fini...
iprodclim 15881 An infinite product equals...
iprodclim2 15882 A converging product conve...
iprodclim3 15883 The sequence of partial fi...
iprodcl 15884 The product of a non-trivi...
iprodrecl 15885 The product of a non-trivi...
iprodmul 15886 Multiplication of infinite...
risefacval 15891 The value of the rising fa...
fallfacval 15892 The value of the falling f...
risefacval2 15893 One-based value of rising ...
fallfacval2 15894 One-based value of falling...
fallfacval3 15895 A product representation o...
risefaccllem 15896 Lemma for rising factorial...
fallfaccllem 15897 Lemma for falling factoria...
risefaccl 15898 Closure law for rising fac...
fallfaccl 15899 Closure law for falling fa...
rerisefaccl 15900 Closure law for rising fac...
refallfaccl 15901 Closure law for falling fa...
nnrisefaccl 15902 Closure law for rising fac...
zrisefaccl 15903 Closure law for rising fac...
zfallfaccl 15904 Closure law for falling fa...
nn0risefaccl 15905 Closure law for rising fac...
rprisefaccl 15906 Closure law for rising fac...
risefallfac 15907 A relationship between ris...
fallrisefac 15908 A relationship between fal...
risefall0lem 15909 Lemma for ~ risefac0 and ~...
risefac0 15910 The value of the rising fa...
fallfac0 15911 The value of the falling f...
risefacp1 15912 The value of the rising fa...
fallfacp1 15913 The value of the falling f...
risefacp1d 15914 The value of the rising fa...
fallfacp1d 15915 The value of the falling f...
risefac1 15916 The value of rising factor...
fallfac1 15917 The value of falling facto...
risefacfac 15918 Relate rising factorial to...
fallfacfwd 15919 The forward difference of ...
0fallfac 15920 The value of the zero fall...
0risefac 15921 The value of the zero risi...
binomfallfaclem1 15922 Lemma for ~ binomfallfac ....
binomfallfaclem2 15923 Lemma for ~ binomfallfac ....
binomfallfac 15924 A version of the binomial ...
binomrisefac 15925 A version of the binomial ...
fallfacval4 15926 Represent the falling fact...
bcfallfac 15927 Binomial coefficient in te...
fallfacfac 15928 Relate falling factorial t...
bpolylem 15931 Lemma for ~ bpolyval . (C...
bpolyval 15932 The value of the Bernoulli...
bpoly0 15933 The value of the Bernoulli...
bpoly1 15934 The value of the Bernoulli...
bpolycl 15935 Closure law for Bernoulli ...
bpolysum 15936 A sum for Bernoulli polyno...
bpolydiflem 15937 Lemma for ~ bpolydif . (C...
bpolydif 15938 Calculate the difference b...
fsumkthpow 15939 A closed-form expression f...
bpoly2 15940 The Bernoulli polynomials ...
bpoly3 15941 The Bernoulli polynomials ...
bpoly4 15942 The Bernoulli polynomials ...
fsumcube 15943 Express the sum of cubes i...
eftcl 15956 Closure of a term in the s...
reeftcl 15957 The terms of the series ex...
eftabs 15958 The absolute value of a te...
eftval 15959 The value of a term in the...
efcllem 15960 Lemma for ~ efcl . The se...
ef0lem 15961 The series defining the ex...
efval 15962 Value of the exponential f...
esum 15963 Value of Euler's constant ...
eff 15964 Domain and codomain of the...
efcl 15965 Closure law for the expone...
efval2 15966 Value of the exponential f...
efcvg 15967 The series that defines th...
efcvgfsum 15968 Exponential function conve...
reefcl 15969 The exponential function i...
reefcld 15970 The exponential function i...
ere 15971 Euler's constant ` _e ` = ...
ege2le3 15972 Lemma for ~ egt2lt3 . (Co...
ef0 15973 Value of the exponential f...
efcj 15974 The exponential of a compl...
efaddlem 15975 Lemma for ~ efadd (exponen...
efadd 15976 Sum of exponents law for e...
fprodefsum 15977 Move the exponential funct...
efcan 15978 Cancellation law for expon...
efne0 15979 The exponential of a compl...
efneg 15980 The exponential of the opp...
eff2 15981 The exponential function m...
efsub 15982 Difference of exponents la...
efexp 15983 The exponential of an inte...
efzval 15984 Value of the exponential f...
efgt0 15985 The exponential of a real ...
rpefcl 15986 The exponential of a real ...
rpefcld 15987 The exponential of a real ...
eftlcvg 15988 The tail series of the exp...
eftlcl 15989 Closure of the sum of an i...
reeftlcl 15990 Closure of the sum of an i...
eftlub 15991 An upper bound on the abso...
efsep 15992 Separate out the next term...
effsumlt 15993 The partial sums of the se...
eft0val 15994 The value of the first ter...
ef4p 15995 Separate out the first fou...
efgt1p2 15996 The exponential of a posit...
efgt1p 15997 The exponential of a posit...
efgt1 15998 The exponential of a posit...
eflt 15999 The exponential function o...
efle 16000 The exponential function o...
reef11 16001 The exponential function o...
reeff1 16002 The exponential function m...
eflegeo 16003 The exponential function o...
sinval 16004 Value of the sine function...
cosval 16005 Value of the cosine functi...
sinf 16006 Domain and codomain of the...
cosf 16007 Domain and codomain of the...
sincl 16008 Closure of the sine functi...
coscl 16009 Closure of the cosine func...
tanval 16010 Value of the tangent funct...
tancl 16011 The closure of the tangent...
sincld 16012 Closure of the sine functi...
coscld 16013 Closure of the cosine func...
tancld 16014 Closure of the tangent fun...
tanval2 16015 Express the tangent functi...
tanval3 16016 Express the tangent functi...
resinval 16017 The sine of a real number ...
recosval 16018 The cosine of a real numbe...
efi4p 16019 Separate out the first fou...
resin4p 16020 Separate out the first fou...
recos4p 16021 Separate out the first fou...
resincl 16022 The sine of a real number ...
recoscl 16023 The cosine of a real numbe...
retancl 16024 The closure of the tangent...
resincld 16025 Closure of the sine functi...
recoscld 16026 Closure of the cosine func...
retancld 16027 Closure of the tangent fun...
sinneg 16028 The sine of a negative is ...
cosneg 16029 The cosines of a number an...
tanneg 16030 The tangent of a negative ...
sin0 16031 Value of the sine function...
cos0 16032 Value of the cosine functi...
tan0 16033 The value of the tangent f...
efival 16034 The exponential function i...
efmival 16035 The exponential function i...
sinhval 16036 Value of the hyperbolic si...
coshval 16037 Value of the hyperbolic co...
resinhcl 16038 The hyperbolic sine of a r...
rpcoshcl 16039 The hyperbolic cosine of a...
recoshcl 16040 The hyperbolic cosine of a...
retanhcl 16041 The hyperbolic tangent of ...
tanhlt1 16042 The hyperbolic tangent of ...
tanhbnd 16043 The hyperbolic tangent of ...
efeul 16044 Eulerian representation of...
efieq 16045 The exponentials of two im...
sinadd 16046 Addition formula for sine....
cosadd 16047 Addition formula for cosin...
tanaddlem 16048 A useful intermediate step...
tanadd 16049 Addition formula for tange...
sinsub 16050 Sine of difference. (Cont...
cossub 16051 Cosine of difference. (Co...
addsin 16052 Sum of sines. (Contribute...
subsin 16053 Difference of sines. (Con...
sinmul 16054 Product of sines can be re...
cosmul 16055 Product of cosines can be ...
addcos 16056 Sum of cosines. (Contribu...
subcos 16057 Difference of cosines. (C...
sincossq 16058 Sine squared plus cosine s...
sin2t 16059 Double-angle formula for s...
cos2t 16060 Double-angle formula for c...
cos2tsin 16061 Double-angle formula for c...
sinbnd 16062 The sine of a real number ...
cosbnd 16063 The cosine of a real numbe...
sinbnd2 16064 The sine of a real number ...
cosbnd2 16065 The cosine of a real numbe...
ef01bndlem 16066 Lemma for ~ sin01bnd and ~...
sin01bnd 16067 Bounds on the sine of a po...
cos01bnd 16068 Bounds on the cosine of a ...
cos1bnd 16069 Bounds on the cosine of 1....
cos2bnd 16070 Bounds on the cosine of 2....
sinltx 16071 The sine of a positive rea...
sin01gt0 16072 The sine of a positive rea...
cos01gt0 16073 The cosine of a positive r...
sin02gt0 16074 The sine of a positive rea...
sincos1sgn 16075 The signs of the sine and ...
sincos2sgn 16076 The signs of the sine and ...
sin4lt0 16077 The sine of 4 is negative....
absefi 16078 The absolute value of the ...
absef 16079 The absolute value of the ...
absefib 16080 A complex number is real i...
efieq1re 16081 A number whose imaginary e...
demoivre 16082 De Moivre's Formula. Proo...
demoivreALT 16083 Alternate proof of ~ demoi...
eirrlem 16086 Lemma for ~ eirr . (Contr...
eirr 16087 ` _e ` is irrational. (Co...
egt2lt3 16088 Euler's constant ` _e ` = ...
epos 16089 Euler's constant ` _e ` is...
epr 16090 Euler's constant ` _e ` is...
ene0 16091 ` _e ` is not 0. (Contrib...
ene1 16092 ` _e ` is not 1. (Contrib...
xpnnen 16093 The Cartesian product of t...
znnen 16094 The set of integers and th...
qnnen 16095 The rational numbers are c...
rpnnen2lem1 16096 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 16097 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 16098 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 16099 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 16100 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 16101 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 16102 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 16103 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 16104 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 16105 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 16106 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 16107 Lemma for ~ rpnnen2 . (Co...
rpnnen2 16108 The other half of ~ rpnnen...
rpnnen 16109 The cardinality of the con...
rexpen 16110 The real numbers are equin...
cpnnen 16111 The complex numbers are eq...
rucALT 16112 Alternate proof of ~ ruc ....
ruclem1 16113 Lemma for ~ ruc (the reals...
ruclem2 16114 Lemma for ~ ruc . Orderin...
ruclem3 16115 Lemma for ~ ruc . The con...
ruclem4 16116 Lemma for ~ ruc . Initial...
ruclem6 16117 Lemma for ~ ruc . Domain ...
ruclem7 16118 Lemma for ~ ruc . Success...
ruclem8 16119 Lemma for ~ ruc . The int...
ruclem9 16120 Lemma for ~ ruc . The fir...
ruclem10 16121 Lemma for ~ ruc . Every f...
ruclem11 16122 Lemma for ~ ruc . Closure...
ruclem12 16123 Lemma for ~ ruc . The sup...
ruclem13 16124 Lemma for ~ ruc . There i...
ruc 16125 The set of positive intege...
resdomq 16126 The set of rationals is st...
aleph1re 16127 There are at least aleph-o...
aleph1irr 16128 There are at least aleph-o...
cnso 16129 The complex numbers can be...
sqrt2irrlem 16130 Lemma for ~ sqrt2irr . Th...
sqrt2irr 16131 The square root of 2 is ir...
sqrt2re 16132 The square root of 2 exist...
sqrt2irr0 16133 The square root of 2 is an...
nthruc 16134 The sequence ` NN ` , ` ZZ...
nthruz 16135 The sequence ` NN ` , ` NN...
divides 16138 Define the divides relatio...
dvdsval2 16139 One nonzero integer divide...
dvdsval3 16140 One nonzero integer divide...
dvdszrcl 16141 Reverse closure for the di...
dvdsmod0 16142 If a positive integer divi...
p1modz1 16143 If a number greater than 1...
dvdsmodexp 16144 If a positive integer divi...
nndivdvds 16145 Strong form of ~ dvdsval2 ...
nndivides 16146 Definition of the divides ...
moddvds 16147 Two ways to say ` A == B `...
modm1div 16148 An integer greater than on...
dvds0lem 16149 A lemma to assist theorems...
dvds1lem 16150 A lemma to assist theorems...
dvds2lem 16151 A lemma to assist theorems...
iddvds 16152 An integer divides itself....
1dvds 16153 1 divides any integer. Th...
dvds0 16154 Any integer divides 0. Th...
negdvdsb 16155 An integer divides another...
dvdsnegb 16156 An integer divides another...
absdvdsb 16157 An integer divides another...
dvdsabsb 16158 An integer divides another...
0dvds 16159 Only 0 is divisible by 0. ...
dvdsmul1 16160 An integer divides a multi...
dvdsmul2 16161 An integer divides a multi...
iddvdsexp 16162 An integer divides a posit...
muldvds1 16163 If a product divides an in...
muldvds2 16164 If a product divides an in...
dvdscmul 16165 Multiplication by a consta...
dvdsmulc 16166 Multiplication by a consta...
dvdscmulr 16167 Cancellation law for the d...
dvdsmulcr 16168 Cancellation law for the d...
summodnegmod 16169 The sum of two integers mo...
modmulconst 16170 Constant multiplication in...
dvds2ln 16171 If an integer divides each...
dvds2add 16172 If an integer divides each...
dvds2sub 16173 If an integer divides each...
dvds2addd 16174 Deduction form of ~ dvds2a...
dvds2subd 16175 Deduction form of ~ dvds2s...
dvdstr 16176 The divides relation is tr...
dvdstrd 16177 The divides relation is tr...
dvdsmultr1 16178 If an integer divides anot...
dvdsmultr1d 16179 Deduction form of ~ dvdsmu...
dvdsmultr2 16180 If an integer divides anot...
dvdsmultr2d 16181 Deduction form of ~ dvdsmu...
ordvdsmul 16182 If an integer divides eith...
dvdssub2 16183 If an integer divides a di...
dvdsadd 16184 An integer divides another...
dvdsaddr 16185 An integer divides another...
dvdssub 16186 An integer divides another...
dvdssubr 16187 An integer divides another...
dvdsadd2b 16188 Adding a multiple of the b...
dvdsaddre2b 16189 Adding a multiple of the b...
fsumdvds 16190 If every term in a sum is ...
dvdslelem 16191 Lemma for ~ dvdsle . (Con...
dvdsle 16192 The divisors of a positive...
dvdsleabs 16193 The divisors of a nonzero ...
dvdsleabs2 16194 Transfer divisibility to a...
dvdsabseq 16195 If two integers divide eac...
dvdseq 16196 If two nonnegative integer...
divconjdvds 16197 If a nonzero integer ` M `...
dvdsdivcl 16198 The complement of a diviso...
dvdsflip 16199 An involution of the divis...
dvdsssfz1 16200 The set of divisors of a n...
dvds1 16201 The only nonnegative integ...
alzdvds 16202 Only 0 is divisible by all...
dvdsext 16203 Poset extensionality for d...
fzm1ndvds 16204 No number between ` 1 ` an...
fzo0dvdseq 16205 Zero is the only one of th...
fzocongeq 16206 Two different elements of ...
addmodlteqALT 16207 Two nonnegative integers l...
dvdsfac 16208 A positive integer divides...
dvdsexp2im 16209 If an integer divides anot...
dvdsexp 16210 A power divides a power wi...
dvdsmod 16211 Any number ` K ` whose mod...
mulmoddvds 16212 If an integer is divisible...
3dvds 16213 A rule for divisibility by...
3dvdsdec 16214 A decimal number is divisi...
3dvds2dec 16215 A decimal number is divisi...
fprodfvdvdsd 16216 A finite product of intege...
fproddvdsd 16217 A finite product of intege...
evenelz 16218 An even number is an integ...
zeo3 16219 An integer is even or odd....
zeo4 16220 An integer is even or odd ...
zeneo 16221 No even integer equals an ...
odd2np1lem 16222 Lemma for ~ odd2np1 . (Co...
odd2np1 16223 An integer is odd iff it i...
even2n 16224 An integer is even iff it ...
oddm1even 16225 An integer is odd iff its ...
oddp1even 16226 An integer is odd iff its ...
oexpneg 16227 The exponential of the neg...
mod2eq0even 16228 An integer is 0 modulo 2 i...
mod2eq1n2dvds 16229 An integer is 1 modulo 2 i...
oddnn02np1 16230 A nonnegative integer is o...
oddge22np1 16231 An integer greater than on...
evennn02n 16232 A nonnegative integer is e...
evennn2n 16233 A positive integer is even...
2tp1odd 16234 A number which is twice an...
mulsucdiv2z 16235 An integer multiplied with...
sqoddm1div8z 16236 A squared odd number minus...
2teven 16237 A number which is twice an...
zeo5 16238 An integer is either even ...
evend2 16239 An integer is even iff its...
oddp1d2 16240 An integer is odd iff its ...
zob 16241 Alternate characterization...
oddm1d2 16242 An integer is odd iff its ...
ltoddhalfle 16243 An integer is less than ha...
halfleoddlt 16244 An integer is greater than...
opoe 16245 The sum of two odds is eve...
omoe 16246 The difference of two odds...
opeo 16247 The sum of an odd and an e...
omeo 16248 The difference of an odd a...
z0even 16249 2 divides 0. That means 0...
n2dvds1 16250 2 does not divide 1. That...
n2dvdsm1 16251 2 does not divide -1. Tha...
z2even 16252 2 divides 2. That means 2...
n2dvds3 16253 2 does not divide 3. That...
z4even 16254 2 divides 4. That means 4...
4dvdseven 16255 An integer which is divisi...
m1expe 16256 Exponentiation of -1 by an...
m1expo 16257 Exponentiation of -1 by an...
m1exp1 16258 Exponentiation of negative...
nn0enne 16259 A positive integer is an e...
nn0ehalf 16260 The half of an even nonneg...
nnehalf 16261 The half of an even positi...
nn0onn 16262 An odd nonnegative integer...
nn0o1gt2 16263 An odd nonnegative integer...
nno 16264 An alternate characterizat...
nn0o 16265 An alternate characterizat...
nn0ob 16266 Alternate characterization...
nn0oddm1d2 16267 A positive integer is odd ...
nnoddm1d2 16268 A positive integer is odd ...
sumeven 16269 If every term in a sum is ...
sumodd 16270 If every term in a sum is ...
evensumodd 16271 If every term in a sum wit...
oddsumodd 16272 If every term in a sum wit...
pwp1fsum 16273 The n-th power of a number...
oddpwp1fsum 16274 An odd power of a number i...
divalglem0 16275 Lemma for ~ divalg . (Con...
divalglem1 16276 Lemma for ~ divalg . (Con...
divalglem2 16277 Lemma for ~ divalg . (Con...
divalglem4 16278 Lemma for ~ divalg . (Con...
divalglem5 16279 Lemma for ~ divalg . (Con...
divalglem6 16280 Lemma for ~ divalg . (Con...
divalglem7 16281 Lemma for ~ divalg . (Con...
divalglem8 16282 Lemma for ~ divalg . (Con...
divalglem9 16283 Lemma for ~ divalg . (Con...
divalglem10 16284 Lemma for ~ divalg . (Con...
divalg 16285 The division algorithm (th...
divalgb 16286 Express the division algor...
divalg2 16287 The division algorithm (th...
divalgmod 16288 The result of the ` mod ` ...
divalgmodcl 16289 The result of the ` mod ` ...
modremain 16290 The result of the modulo o...
ndvdssub 16291 Corollary of the division ...
ndvdsadd 16292 Corollary of the division ...
ndvdsp1 16293 Special case of ~ ndvdsadd...
ndvdsi 16294 A quick test for non-divis...
flodddiv4 16295 The floor of an odd intege...
fldivndvdslt 16296 The floor of an integer di...
flodddiv4lt 16297 The floor of an odd number...
flodddiv4t2lthalf 16298 The floor of an odd number...
bitsfval 16303 Expand the definition of t...
bitsval 16304 Expand the definition of t...
bitsval2 16305 Expand the definition of t...
bitsss 16306 The set of bits of an inte...
bitsf 16307 The ` bits ` function is a...
bits0 16308 Value of the zeroth bit. ...
bits0e 16309 The zeroth bit of an even ...
bits0o 16310 The zeroth bit of an odd n...
bitsp1 16311 The ` M + 1 ` -th bit of `...
bitsp1e 16312 The ` M + 1 ` -th bit of `...
bitsp1o 16313 The ` M + 1 ` -th bit of `...
bitsfzolem 16314 Lemma for ~ bitsfzo . (Co...
bitsfzo 16315 The bits of a number are a...
bitsmod 16316 Truncating the bit sequenc...
bitsfi 16317 Every number is associated...
bitscmp 16318 The bit complement of ` N ...
0bits 16319 The bits of zero. (Contri...
m1bits 16320 The bits of negative one. ...
bitsinv1lem 16321 Lemma for ~ bitsinv1 . (C...
bitsinv1 16322 There is an explicit inver...
bitsinv2 16323 There is an explicit inver...
bitsf1ocnv 16324 The ` bits ` function rest...
bitsf1o 16325 The ` bits ` function rest...
bitsf1 16326 The ` bits ` function is a...
2ebits 16327 The bits of a power of two...
bitsinv 16328 The inverse of the ` bits ...
bitsinvp1 16329 Recursive definition of th...
sadadd2lem2 16330 The core of the proof of ~...
sadfval 16332 Define the addition of two...
sadcf 16333 The carry sequence is a se...
sadc0 16334 The initial element of the...
sadcp1 16335 The carry sequence (which ...
sadval 16336 The full adder sequence is...
sadcaddlem 16337 Lemma for ~ sadcadd . (Co...
sadcadd 16338 Non-recursive definition o...
sadadd2lem 16339 Lemma for ~ sadadd2 . (Co...
sadadd2 16340 Sum of initial segments of...
sadadd3 16341 Sum of initial segments of...
sadcl 16342 The sum of two sequences i...
sadcom 16343 The adder sequence functio...
saddisjlem 16344 Lemma for ~ sadadd . (Con...
saddisj 16345 The sum of disjoint sequen...
sadaddlem 16346 Lemma for ~ sadadd . (Con...
sadadd 16347 For sequences that corresp...
sadid1 16348 The adder sequence functio...
sadid2 16349 The adder sequence functio...
sadasslem 16350 Lemma for ~ sadass . (Con...
sadass 16351 Sequence addition is assoc...
sadeq 16352 Any element of a sequence ...
bitsres 16353 Restrict the bits of a num...
bitsuz 16354 The bits of a number are a...
bitsshft 16355 Shifting a bit sequence to...
smufval 16357 The multiplication of two ...
smupf 16358 The sequence of partial su...
smup0 16359 The initial element of the...
smupp1 16360 The initial element of the...
smuval 16361 Define the addition of two...
smuval2 16362 The partial sum sequence s...
smupvallem 16363 If ` A ` only has elements...
smucl 16364 The product of two sequenc...
smu01lem 16365 Lemma for ~ smu01 and ~ sm...
smu01 16366 Multiplication of a sequen...
smu02 16367 Multiplication of a sequen...
smupval 16368 Rewrite the elements of th...
smup1 16369 Rewrite ~ smupp1 using onl...
smueqlem 16370 Any element of a sequence ...
smueq 16371 Any element of a sequence ...
smumullem 16372 Lemma for ~ smumul . (Con...
smumul 16373 For sequences that corresp...
gcdval 16376 The value of the ` gcd ` o...
gcd0val 16377 The value, by convention, ...
gcdn0val 16378 The value of the ` gcd ` o...
gcdcllem1 16379 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16380 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16381 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16382 Closure of the ` gcd ` ope...
gcddvds 16383 The gcd of two integers di...
dvdslegcd 16384 An integer which divides b...
nndvdslegcd 16385 A positive integer which d...
gcdcl 16386 Closure of the ` gcd ` ope...
gcdnncl 16387 Closure of the ` gcd ` ope...
gcdcld 16388 Closure of the ` gcd ` ope...
gcd2n0cl 16389 Closure of the ` gcd ` ope...
zeqzmulgcd 16390 An integer is the product ...
divgcdz 16391 An integer divided by the ...
gcdf 16392 Domain and codomain of the...
gcdcom 16393 The ` gcd ` operator is co...
gcdcomd 16394 The ` gcd ` operator is co...
divgcdnn 16395 A positive integer divided...
divgcdnnr 16396 A positive integer divided...
gcdeq0 16397 The gcd of two integers is...
gcdn0gt0 16398 The gcd of two integers is...
gcd0id 16399 The gcd of 0 and an intege...
gcdid0 16400 The gcd of an integer and ...
nn0gcdid0 16401 The gcd of a nonnegative i...
gcdneg 16402 Negating one operand of th...
neggcd 16403 Negating one operand of th...
gcdaddmlem 16404 Lemma for ~ gcdaddm . (Co...
gcdaddm 16405 Adding a multiple of one o...
gcdadd 16406 The GCD of two numbers is ...
gcdid 16407 The gcd of a number and it...
gcd1 16408 The gcd of a number with 1...
gcdabs1 16409 ` gcd ` of the absolute va...
gcdabs2 16410 ` gcd ` of the absolute va...
gcdabs 16411 The gcd of two integers is...
gcdabsOLD 16412 Obsolete version of ~ gcda...
modgcd 16413 The gcd remains unchanged ...
1gcd 16414 The GCD of one and an inte...
gcdmultipled 16415 The greatest common diviso...
gcdmultiplez 16416 The GCD of a multiple of a...
gcdmultiple 16417 The GCD of a multiple of a...
dvdsgcdidd 16418 The greatest common diviso...
6gcd4e2 16419 The greatest common diviso...
bezoutlem1 16420 Lemma for ~ bezout . (Con...
bezoutlem2 16421 Lemma for ~ bezout . (Con...
bezoutlem3 16422 Lemma for ~ bezout . (Con...
bezoutlem4 16423 Lemma for ~ bezout . (Con...
bezout 16424 Bézout's identity: ...
dvdsgcd 16425 An integer which divides e...
dvdsgcdb 16426 Biconditional form of ~ dv...
dfgcd2 16427 Alternate definition of th...
gcdass 16428 Associative law for ` gcd ...
mulgcd 16429 Distribute multiplication ...
absmulgcd 16430 Distribute absolute value ...
mulgcdr 16431 Reverse distribution law f...
gcddiv 16432 Division law for GCD. (Con...
gcdzeq 16433 A positive integer ` A ` i...
gcdeq 16434 ` A ` is equal to its gcd ...
dvdssqim 16435 Unidirectional form of ~ d...
dvdsmulgcd 16436 A divisibility equivalent ...
rpmulgcd 16437 If ` K ` and ` M ` are rel...
rplpwr 16438 If ` A ` and ` B ` are rel...
rprpwr 16439 If ` A ` and ` B ` are rel...
rppwr 16440 If ` A ` and ` B ` are rel...
sqgcd 16441 Square distributes over gc...
dvdssqlem 16442 Lemma for ~ dvdssq . (Con...
dvdssq 16443 Two numbers are divisible ...
bezoutr 16444 Partial converse to ~ bezo...
bezoutr1 16445 Converse of ~ bezout for w...
nn0seqcvgd 16446 A strictly-decreasing nonn...
seq1st 16447 A sequence whose iteration...
algr0 16448 The value of the algorithm...
algrf 16449 An algorithm is a step fun...
algrp1 16450 The value of the algorithm...
alginv 16451 If ` I ` is an invariant o...
algcvg 16452 One way to prove that an a...
algcvgblem 16453 Lemma for ~ algcvgb . (Co...
algcvgb 16454 Two ways of expressing tha...
algcvga 16455 The countdown function ` C...
algfx 16456 If ` F ` reaches a fixed p...
eucalgval2 16457 The value of the step func...
eucalgval 16458 Euclid's Algorithm ~ eucal...
eucalgf 16459 Domain and codomain of the...
eucalginv 16460 The invariant of the step ...
eucalglt 16461 The second member of the s...
eucalgcvga 16462 Once Euclid's Algorithm ha...
eucalg 16463 Euclid's Algorithm compute...
lcmval 16468 Value of the ` lcm ` opera...
lcmcom 16469 The ` lcm ` operator is co...
lcm0val 16470 The value, by convention, ...
lcmn0val 16471 The value of the ` lcm ` o...
lcmcllem 16472 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16473 Closure of the ` lcm ` ope...
dvdslcm 16474 The lcm of two integers is...
lcmledvds 16475 A positive integer which b...
lcmeq0 16476 The lcm of two integers is...
lcmcl 16477 Closure of the ` lcm ` ope...
gcddvdslcm 16478 The greatest common diviso...
lcmneg 16479 Negating one operand of th...
neglcm 16480 Negating one operand of th...
lcmabs 16481 The lcm of two integers is...
lcmgcdlem 16482 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16483 The product of two numbers...
lcmdvds 16484 The lcm of two integers di...
lcmid 16485 The lcm of an integer and ...
lcm1 16486 The lcm of an integer and ...
lcmgcdnn 16487 The product of two positiv...
lcmgcdeq 16488 Two integers' absolute val...
lcmdvdsb 16489 Biconditional form of ~ lc...
lcmass 16490 Associative law for ` lcm ...
3lcm2e6woprm 16491 The least common multiple ...
6lcm4e12 16492 The least common multiple ...
absproddvds 16493 The absolute value of the ...
absprodnn 16494 The absolute value of the ...
fissn0dvds 16495 For each finite subset of ...
fissn0dvdsn0 16496 For each finite subset of ...
lcmfval 16497 Value of the ` _lcm ` func...
lcmf0val 16498 The value, by convention, ...
lcmfn0val 16499 The value of the ` _lcm ` ...
lcmfnnval 16500 The value of the ` _lcm ` ...
lcmfcllem 16501 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16502 Closure of the ` _lcm ` fu...
lcmfpr 16503 The value of the ` _lcm ` ...
lcmfcl 16504 Closure of the ` _lcm ` fu...
lcmfnncl 16505 Closure of the ` _lcm ` fu...
lcmfeq0b 16506 The least common multiple ...
dvdslcmf 16507 The least common multiple ...
lcmfledvds 16508 A positive integer which i...
lcmf 16509 Characterization of the le...
lcmf0 16510 The least common multiple ...
lcmfsn 16511 The least common multiple ...
lcmftp 16512 The least common multiple ...
lcmfunsnlem1 16513 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16514 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16515 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16516 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16517 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16518 The least common multiple ...
lcmfdvdsb 16519 Biconditional form of ~ lc...
lcmfunsn 16520 The ` _lcm ` function for ...
lcmfun 16521 The ` _lcm ` function for ...
lcmfass 16522 Associative law for the ` ...
lcmf2a3a4e12 16523 The least common multiple ...
lcmflefac 16524 The least common multiple ...
coprmgcdb 16525 Two positive integers are ...
ncoprmgcdne1b 16526 Two positive integers are ...
ncoprmgcdgt1b 16527 Two positive integers are ...
coprmdvds1 16528 If two positive integers a...
coprmdvds 16529 Euclid's Lemma (see ProofW...
coprmdvds2 16530 If an integer is divisible...
mulgcddvds 16531 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16532 If ` M ` is relatively pri...
qredeq 16533 Two equal reduced fraction...
qredeu 16534 Every rational number has ...
rpmul 16535 If ` K ` is relatively pri...
rpdvds 16536 If ` K ` is relatively pri...
coprmprod 16537 The product of the element...
coprmproddvdslem 16538 Lemma for ~ coprmproddvds ...
coprmproddvds 16539 If a positive integer is d...
congr 16540 Definition of congruence b...
divgcdcoprm0 16541 Integers divided by gcd ar...
divgcdcoprmex 16542 Integers divided by gcd ar...
cncongr1 16543 One direction of the bicon...
cncongr2 16544 The other direction of the...
cncongr 16545 Cancellability of Congruen...
cncongrcoprm 16546 Corollary 1 of Cancellabil...
isprm 16549 The predicate "is a prime ...
prmnn 16550 A prime number is a positi...
prmz 16551 A prime number is an integ...
prmssnn 16552 The prime numbers are a su...
prmex 16553 The set of prime numbers e...
0nprm 16554 0 is not a prime number. ...
1nprm 16555 1 is not a prime number. ...
1idssfct 16556 The positive divisors of a...
isprm2lem 16557 Lemma for ~ isprm2 . (Con...
isprm2 16558 The predicate "is a prime ...
isprm3 16559 The predicate "is a prime ...
isprm4 16560 The predicate "is a prime ...
prmind2 16561 A variation on ~ prmind as...
prmind 16562 Perform induction over the...
dvdsprime 16563 If ` M ` divides a prime, ...
nprm 16564 A product of two integers ...
nprmi 16565 An inference for composite...
dvdsnprmd 16566 If a number is divisible b...
prm2orodd 16567 A prime number is either 2...
2prm 16568 2 is a prime number. (Con...
2mulprm 16569 A multiple of two is prime...
3prm 16570 3 is a prime number. (Con...
4nprm 16571 4 is not a prime number. ...
prmuz2 16572 A prime number is an integ...
prmgt1 16573 A prime number is an integ...
prmm2nn0 16574 Subtracting 2 from a prime...
oddprmgt2 16575 An odd prime is greater th...
oddprmge3 16576 An odd prime is greater th...
ge2nprmge4 16577 A composite integer greate...
sqnprm 16578 A square is never prime. ...
dvdsprm 16579 An integer greater than or...
exprmfct 16580 Every integer greater than...
prmdvdsfz 16581 Each integer greater than ...
nprmdvds1 16582 No prime number divides 1....
isprm5 16583 One need only check prime ...
isprm7 16584 One need only check prime ...
maxprmfct 16585 The set of prime factors o...
divgcdodd 16586 Either ` A / ( A gcd B ) `...
coprm 16587 A prime number either divi...
prmrp 16588 Unequal prime numbers are ...
euclemma 16589 Euclid's lemma. A prime n...
isprm6 16590 A number is prime iff it s...
prmdvdsexp 16591 A prime divides a positive...
prmdvdsexpb 16592 A prime divides a positive...
prmdvdsexpr 16593 If a prime divides a nonne...
prmdvdssq 16594 Condition for a prime divi...
prmdvdssqOLD 16595 Obsolete version of ~ prmd...
prmexpb 16596 Two positive prime powers ...
prmfac1 16597 The factorial of a number ...
rpexp 16598 If two numbers ` A ` and `...
rpexp1i 16599 Relative primality passes ...
rpexp12i 16600 Relative primality passes ...
prmndvdsfaclt 16601 A prime number does not di...
prmdvdsncoprmbd 16602 Two positive integers are ...
ncoprmlnprm 16603 If two positive integers a...
cncongrprm 16604 Corollary 2 of Cancellabil...
isevengcd2 16605 The predicate "is an even ...
isoddgcd1 16606 The predicate "is an odd n...
3lcm2e6 16607 The least common multiple ...
qnumval 16612 Value of the canonical num...
qdenval 16613 Value of the canonical den...
qnumdencl 16614 Lemma for ~ qnumcl and ~ q...
qnumcl 16615 The canonical numerator of...
qdencl 16616 The canonical denominator ...
fnum 16617 Canonical numerator define...
fden 16618 Canonical denominator defi...
qnumdenbi 16619 Two numbers are the canoni...
qnumdencoprm 16620 The canonical representati...
qeqnumdivden 16621 Recover a rational number ...
qmuldeneqnum 16622 Multiplying a rational by ...
divnumden 16623 Calculate the reduced form...
divdenle 16624 Reducing a quotient never ...
qnumgt0 16625 A rational is positive iff...
qgt0numnn 16626 A rational is positive iff...
nn0gcdsq 16627 Squaring commutes with GCD...
zgcdsq 16628 ~ nn0gcdsq extended to int...
numdensq 16629 Squaring a rational square...
numsq 16630 Square commutes with canon...
densq 16631 Square commutes with canon...
qden1elz 16632 A rational is an integer i...
zsqrtelqelz 16633 If an integer has a ration...
nonsq 16634 Any integer strictly betwe...
phival 16639 Value of the Euler ` phi `...
phicl2 16640 Bounds and closure for the...
phicl 16641 Closure for the value of t...
phibndlem 16642 Lemma for ~ phibnd . (Con...
phibnd 16643 A slightly tighter bound o...
phicld 16644 Closure for the value of t...
phi1 16645 Value of the Euler ` phi `...
dfphi2 16646 Alternate definition of th...
hashdvds 16647 The number of numbers in a...
phiprmpw 16648 Value of the Euler ` phi `...
phiprm 16649 Value of the Euler ` phi `...
crth 16650 The Chinese Remainder Theo...
phimullem 16651 Lemma for ~ phimul . (Con...
phimul 16652 The Euler ` phi ` function...
eulerthlem1 16653 Lemma for ~ eulerth . (Co...
eulerthlem2 16654 Lemma for ~ eulerth . (Co...
eulerth 16655 Euler's theorem, a general...
fermltl 16656 Fermat's little theorem. ...
prmdiv 16657 Show an explicit expressio...
prmdiveq 16658 The modular inverse of ` A...
prmdivdiv 16659 The (modular) inverse of t...
hashgcdlem 16660 A correspondence between e...
hashgcdeq 16661 Number of initial positive...
phisum 16662 The divisor sum identity o...
odzval 16663 Value of the order functio...
odzcllem 16664 - Lemma for ~ odzcl , show...
odzcl 16665 The order of a group eleme...
odzid 16666 Any element raised to the ...
odzdvds 16667 The only powers of ` A ` t...
odzphi 16668 The order of any group ele...
modprm1div 16669 A prime number divides an ...
m1dvdsndvds 16670 If an integer minus 1 is d...
modprminv 16671 Show an explicit expressio...
modprminveq 16672 The modular inverse of ` A...
vfermltl 16673 Variant of Fermat's little...
vfermltlALT 16674 Alternate proof of ~ vferm...
powm2modprm 16675 If an integer minus 1 is d...
reumodprminv 16676 For any prime number and f...
modprm0 16677 For two positive integers ...
nnnn0modprm0 16678 For a positive integer and...
modprmn0modprm0 16679 For an integer not being 0...
coprimeprodsq 16680 If three numbers are copri...
coprimeprodsq2 16681 If three numbers are copri...
oddprm 16682 A prime not equal to ` 2 `...
nnoddn2prm 16683 A prime not equal to ` 2 `...
oddn2prm 16684 A prime not equal to ` 2 `...
nnoddn2prmb 16685 A number is a prime number...
prm23lt5 16686 A prime less than 5 is eit...
prm23ge5 16687 A prime is either 2 or 3 o...
pythagtriplem1 16688 Lemma for ~ pythagtrip . ...
pythagtriplem2 16689 Lemma for ~ pythagtrip . ...
pythagtriplem3 16690 Lemma for ~ pythagtrip . ...
pythagtriplem4 16691 Lemma for ~ pythagtrip . ...
pythagtriplem10 16692 Lemma for ~ pythagtrip . ...
pythagtriplem6 16693 Lemma for ~ pythagtrip . ...
pythagtriplem7 16694 Lemma for ~ pythagtrip . ...
pythagtriplem8 16695 Lemma for ~ pythagtrip . ...
pythagtriplem9 16696 Lemma for ~ pythagtrip . ...
pythagtriplem11 16697 Lemma for ~ pythagtrip . ...
pythagtriplem12 16698 Lemma for ~ pythagtrip . ...
pythagtriplem13 16699 Lemma for ~ pythagtrip . ...
pythagtriplem14 16700 Lemma for ~ pythagtrip . ...
pythagtriplem15 16701 Lemma for ~ pythagtrip . ...
pythagtriplem16 16702 Lemma for ~ pythagtrip . ...
pythagtriplem17 16703 Lemma for ~ pythagtrip . ...
pythagtriplem18 16704 Lemma for ~ pythagtrip . ...
pythagtriplem19 16705 Lemma for ~ pythagtrip . ...
pythagtrip 16706 Parameterize the Pythagore...
iserodd 16707 Collect the odd terms in a...
pclem 16710 - Lemma for the prime powe...
pcprecl 16711 Closure of the prime power...
pcprendvds 16712 Non-divisibility property ...
pcprendvds2 16713 Non-divisibility property ...
pcpre1 16714 Value of the prime power p...
pcpremul 16715 Multiplicative property of...
pcval 16716 The value of the prime pow...
pceulem 16717 Lemma for ~ pceu . (Contr...
pceu 16718 Uniqueness for the prime p...
pczpre 16719 Connect the prime count pr...
pczcl 16720 Closure of the prime power...
pccl 16721 Closure of the prime power...
pccld 16722 Closure of the prime power...
pcmul 16723 Multiplication property of...
pcdiv 16724 Division property of the p...
pcqmul 16725 Multiplication property of...
pc0 16726 The value of the prime pow...
pc1 16727 Value of the prime count f...
pcqcl 16728 Closure of the general pri...
pcqdiv 16729 Division property of the p...
pcrec 16730 Prime power of a reciproca...
pcexp 16731 Prime power of an exponent...
pcxnn0cl 16732 Extended nonnegative integ...
pcxcl 16733 Extended real closure of t...
pcge0 16734 The prime count of an inte...
pczdvds 16735 Defining property of the p...
pcdvds 16736 Defining property of the p...
pczndvds 16737 Defining property of the p...
pcndvds 16738 Defining property of the p...
pczndvds2 16739 The remainder after dividi...
pcndvds2 16740 The remainder after dividi...
pcdvdsb 16741 ` P ^ A ` divides ` N ` if...
pcelnn 16742 There are a positive numbe...
pceq0 16743 There are zero powers of a...
pcidlem 16744 The prime count of a prime...
pcid 16745 The prime count of a prime...
pcneg 16746 The prime count of a negat...
pcabs 16747 The prime count of an abso...
pcdvdstr 16748 The prime count increases ...
pcgcd1 16749 The prime count of a GCD i...
pcgcd 16750 The prime count of a GCD i...
pc2dvds 16751 A characterization of divi...
pc11 16752 The prime count function, ...
pcz 16753 The prime count function c...
pcprmpw2 16754 Self-referential expressio...
pcprmpw 16755 Self-referential expressio...
dvdsprmpweq 16756 If a positive integer divi...
dvdsprmpweqnn 16757 If an integer greater than...
dvdsprmpweqle 16758 If a positive integer divi...
difsqpwdvds 16759 If the difference of two s...
pcaddlem 16760 Lemma for ~ pcadd . The o...
pcadd 16761 An inequality for the prim...
pcadd2 16762 The inequality of ~ pcadd ...
pcmptcl 16763 Closure for the prime powe...
pcmpt 16764 Construct a function with ...
pcmpt2 16765 Dividing two prime count m...
pcmptdvds 16766 The partial products of th...
pcprod 16767 The product of the primes ...
sumhash 16768 The sum of 1 over a set is...
fldivp1 16769 The difference between the...
pcfaclem 16770 Lemma for ~ pcfac . (Cont...
pcfac 16771 Calculate the prime count ...
pcbc 16772 Calculate the prime count ...
qexpz 16773 If a power of a rational n...
expnprm 16774 A second or higher power o...
oddprmdvds 16775 Every positive integer whi...
prmpwdvds 16776 A relation involving divis...
pockthlem 16777 Lemma for ~ pockthg . (Co...
pockthg 16778 The generalized Pocklingto...
pockthi 16779 Pocklington's theorem, whi...
unbenlem 16780 Lemma for ~ unben . (Cont...
unben 16781 An unbounded set of positi...
infpnlem1 16782 Lemma for ~ infpn . The s...
infpnlem2 16783 Lemma for ~ infpn . For a...
infpn 16784 There exist infinitely man...
infpn2 16785 There exist infinitely man...
prmunb 16786 The primes are unbounded. ...
prminf 16787 There are an infinite numb...
prmreclem1 16788 Lemma for ~ prmrec . Prop...
prmreclem2 16789 Lemma for ~ prmrec . Ther...
prmreclem3 16790 Lemma for ~ prmrec . The ...
prmreclem4 16791 Lemma for ~ prmrec . Show...
prmreclem5 16792 Lemma for ~ prmrec . Here...
prmreclem6 16793 Lemma for ~ prmrec . If t...
prmrec 16794 The sum of the reciprocals...
1arithlem1 16795 Lemma for ~ 1arith . (Con...
1arithlem2 16796 Lemma for ~ 1arith . (Con...
1arithlem3 16797 Lemma for ~ 1arith . (Con...
1arithlem4 16798 Lemma for ~ 1arith . (Con...
1arith 16799 Fundamental theorem of ari...
1arith2 16800 Fundamental theorem of ari...
elgz 16803 Elementhood in the gaussia...
gzcn 16804 A gaussian integer is a co...
zgz 16805 An integer is a gaussian i...
igz 16806 ` _i ` is a gaussian integ...
gznegcl 16807 The gaussian integers are ...
gzcjcl 16808 The gaussian integers are ...
gzaddcl 16809 The gaussian integers are ...
gzmulcl 16810 The gaussian integers are ...
gzreim 16811 Construct a gaussian integ...
gzsubcl 16812 The gaussian integers are ...
gzabssqcl 16813 The squared norm of a gaus...
4sqlem5 16814 Lemma for ~ 4sq . (Contri...
4sqlem6 16815 Lemma for ~ 4sq . (Contri...
4sqlem7 16816 Lemma for ~ 4sq . (Contri...
4sqlem8 16817 Lemma for ~ 4sq . (Contri...
4sqlem9 16818 Lemma for ~ 4sq . (Contri...
4sqlem10 16819 Lemma for ~ 4sq . (Contri...
4sqlem1 16820 Lemma for ~ 4sq . The set...
4sqlem2 16821 Lemma for ~ 4sq . Change ...
4sqlem3 16822 Lemma for ~ 4sq . Suffici...
4sqlem4a 16823 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16824 Lemma for ~ 4sq . We can ...
mul4sqlem 16825 Lemma for ~ mul4sq : algeb...
mul4sq 16826 Euler's four-square identi...
4sqlem11 16827 Lemma for ~ 4sq . Use the...
4sqlem12 16828 Lemma for ~ 4sq . For any...
4sqlem13 16829 Lemma for ~ 4sq . (Contri...
4sqlem14 16830 Lemma for ~ 4sq . (Contri...
4sqlem15 16831 Lemma for ~ 4sq . (Contri...
4sqlem16 16832 Lemma for ~ 4sq . (Contri...
4sqlem17 16833 Lemma for ~ 4sq . (Contri...
4sqlem18 16834 Lemma for ~ 4sq . Inducti...
4sqlem19 16835 Lemma for ~ 4sq . The pro...
4sq 16836 Lagrange's four-square the...
vdwapfval 16843 Define the arithmetic prog...
vdwapf 16844 The arithmetic progression...
vdwapval 16845 Value of the arithmetic pr...
vdwapun 16846 Remove the first element o...
vdwapid1 16847 The first element of an ar...
vdwap0 16848 Value of a length-1 arithm...
vdwap1 16849 Value of a length-1 arithm...
vdwmc 16850 The predicate " The ` <. R...
vdwmc2 16851 Expand out the definition ...
vdwpc 16852 The predicate " The colori...
vdwlem1 16853 Lemma for ~ vdw . (Contri...
vdwlem2 16854 Lemma for ~ vdw . (Contri...
vdwlem3 16855 Lemma for ~ vdw . (Contri...
vdwlem4 16856 Lemma for ~ vdw . (Contri...
vdwlem5 16857 Lemma for ~ vdw . (Contri...
vdwlem6 16858 Lemma for ~ vdw . (Contri...
vdwlem7 16859 Lemma for ~ vdw . (Contri...
vdwlem8 16860 Lemma for ~ vdw . (Contri...
vdwlem9 16861 Lemma for ~ vdw . (Contri...
vdwlem10 16862 Lemma for ~ vdw . Set up ...
vdwlem11 16863 Lemma for ~ vdw . (Contri...
vdwlem12 16864 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16865 Lemma for ~ vdw . Main in...
vdw 16866 Van der Waerden's theorem....
vdwnnlem1 16867 Corollary of ~ vdw , and l...
vdwnnlem2 16868 Lemma for ~ vdwnn . The s...
vdwnnlem3 16869 Lemma for ~ vdwnn . (Cont...
vdwnn 16870 Van der Waerden's theorem,...
ramtlecl 16872 The set ` T ` of numbers w...
hashbcval 16874 Value of the "binomial set...
hashbccl 16875 The binomial set is a fini...
hashbcss 16876 Subset relation for the bi...
hashbc0 16877 The set of subsets of size...
hashbc2 16878 The size of the binomial s...
0hashbc 16879 There are no subsets of th...
ramval 16880 The value of the Ramsey nu...
ramcl2lem 16881 Lemma for extended real cl...
ramtcl 16882 The Ramsey number has the ...
ramtcl2 16883 The Ramsey number is an in...
ramtub 16884 The Ramsey number is a low...
ramub 16885 The Ramsey number is a low...
ramub2 16886 It is sufficient to check ...
rami 16887 The defining property of a...
ramcl2 16888 The Ramsey number is eithe...
ramxrcl 16889 The Ramsey number is an ex...
ramubcl 16890 If the Ramsey number is up...
ramlb 16891 Establish a lower bound on...
0ram 16892 The Ramsey number when ` M...
0ram2 16893 The Ramsey number when ` M...
ram0 16894 The Ramsey number when ` R...
0ramcl 16895 Lemma for ~ ramcl : Exist...
ramz2 16896 The Ramsey number when ` F...
ramz 16897 The Ramsey number when ` F...
ramub1lem1 16898 Lemma for ~ ramub1 . (Con...
ramub1lem2 16899 Lemma for ~ ramub1 . (Con...
ramub1 16900 Inductive step for Ramsey'...
ramcl 16901 Ramsey's theorem: the Rams...
ramsey 16902 Ramsey's theorem with the ...
prmoval 16905 Value of the primorial fun...
prmocl 16906 Closure of the primorial f...
prmone0 16907 The primorial function is ...
prmo0 16908 The primorial of 0. (Cont...
prmo1 16909 The primorial of 1. (Cont...
prmop1 16910 The primorial of a success...
prmonn2 16911 Value of the primorial fun...
prmo2 16912 The primorial of 2. (Cont...
prmo3 16913 The primorial of 3. (Cont...
prmdvdsprmo 16914 The primorial of a number ...
prmdvdsprmop 16915 The primorial of a number ...
fvprmselelfz 16916 The value of the prime sel...
fvprmselgcd1 16917 The greatest common diviso...
prmolefac 16918 The primorial of a positiv...
prmodvdslcmf 16919 The primorial of a nonnega...
prmolelcmf 16920 The primorial of a positiv...
prmgaplem1 16921 Lemma for ~ prmgap : The ...
prmgaplem2 16922 Lemma for ~ prmgap : The ...
prmgaplcmlem1 16923 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 16924 Lemma for ~ prmgaplcm : T...
prmgaplem3 16925 Lemma for ~ prmgap . (Con...
prmgaplem4 16926 Lemma for ~ prmgap . (Con...
prmgaplem5 16927 Lemma for ~ prmgap : for e...
prmgaplem6 16928 Lemma for ~ prmgap : for e...
prmgaplem7 16929 Lemma for ~ prmgap . (Con...
prmgaplem8 16930 Lemma for ~ prmgap . (Con...
prmgap 16931 The prime gap theorem: for...
prmgaplcm 16932 Alternate proof of ~ prmga...
prmgapprmolem 16933 Lemma for ~ prmgapprmo : ...
prmgapprmo 16934 Alternate proof of ~ prmga...
dec2dvds 16935 Divisibility by two is obv...
dec5dvds 16936 Divisibility by five is ob...
dec5dvds2 16937 Divisibility by five is ob...
dec5nprm 16938 Divisibility by five is ob...
dec2nprm 16939 Divisibility by two is obv...
modxai 16940 Add exponents in a power m...
mod2xi 16941 Double exponents in a powe...
modxp1i 16942 Add one to an exponent in ...
mod2xnegi 16943 Version of ~ mod2xi with a...
modsubi 16944 Subtract from within a mod...
gcdi 16945 Calculate a GCD via Euclid...
gcdmodi 16946 Calculate a GCD via Euclid...
decexp2 16947 Calculate a power of two. ...
numexp0 16948 Calculate an integer power...
numexp1 16949 Calculate an integer power...
numexpp1 16950 Calculate an integer power...
numexp2x 16951 Double an integer power. ...
decsplit0b 16952 Split a decimal number int...
decsplit0 16953 Split a decimal number int...
decsplit1 16954 Split a decimal number int...
decsplit 16955 Split a decimal number int...
karatsuba 16956 The Karatsuba multiplicati...
2exp4 16957 Two to the fourth power is...
2exp5 16958 Two to the fifth power is ...
2exp6 16959 Two to the sixth power is ...
2exp7 16960 Two to the seventh power i...
2exp8 16961 Two to the eighth power is...
2exp11 16962 Two to the eleventh power ...
2exp16 16963 Two to the sixteenth power...
3exp3 16964 Three to the third power i...
2expltfac 16965 The factorial grows faster...
cshwsidrepsw 16966 If cyclically shifting a w...
cshwsidrepswmod0 16967 If cyclically shifting a w...
cshwshashlem1 16968 If cyclically shifting a w...
cshwshashlem2 16969 If cyclically shifting a w...
cshwshashlem3 16970 If cyclically shifting a w...
cshwsdisj 16971 The singletons resulting b...
cshwsiun 16972 The set of (different!) wo...
cshwsex 16973 The class of (different!) ...
cshws0 16974 The size of the set of (di...
cshwrepswhash1 16975 The size of the set of (di...
cshwshashnsame 16976 If a word (not consisting ...
cshwshash 16977 If a word has a length bei...
prmlem0 16978 Lemma for ~ prmlem1 and ~ ...
prmlem1a 16979 A quick proof skeleton to ...
prmlem1 16980 A quick proof skeleton to ...
5prm 16981 5 is a prime number. (Con...
6nprm 16982 6 is not a prime number. ...
7prm 16983 7 is a prime number. (Con...
8nprm 16984 8 is not a prime number. ...
9nprm 16985 9 is not a prime number. ...
10nprm 16986 10 is not a prime number. ...
11prm 16987 11 is a prime number. (Co...
13prm 16988 13 is a prime number. (Co...
17prm 16989 17 is a prime number. (Co...
19prm 16990 19 is a prime number. (Co...
23prm 16991 23 is a prime number. (Co...
prmlem2 16992 Our last proving session g...
37prm 16993 37 is a prime number. (Co...
43prm 16994 43 is a prime number. (Co...
83prm 16995 83 is a prime number. (Co...
139prm 16996 139 is a prime number. (C...
163prm 16997 163 is a prime number. (C...
317prm 16998 317 is a prime number. (C...
631prm 16999 631 is a prime number. (C...
prmo4 17000 The primorial of 4. (Cont...
prmo5 17001 The primorial of 5. (Cont...
prmo6 17002 The primorial of 6. (Cont...
1259lem1 17003 Lemma for ~ 1259prm . Cal...
1259lem2 17004 Lemma for ~ 1259prm . Cal...
1259lem3 17005 Lemma for ~ 1259prm . Cal...
1259lem4 17006 Lemma for ~ 1259prm . Cal...
1259lem5 17007 Lemma for ~ 1259prm . Cal...
1259prm 17008 1259 is a prime number. (...
2503lem1 17009 Lemma for ~ 2503prm . Cal...
2503lem2 17010 Lemma for ~ 2503prm . Cal...
2503lem3 17011 Lemma for ~ 2503prm . Cal...
2503prm 17012 2503 is a prime number. (...
4001lem1 17013 Lemma for ~ 4001prm . Cal...
4001lem2 17014 Lemma for ~ 4001prm . Cal...
4001lem3 17015 Lemma for ~ 4001prm . Cal...
4001lem4 17016 Lemma for ~ 4001prm . Cal...
4001prm 17017 4001 is a prime number. (...
brstruct 17020 The structure relation is ...
isstruct2 17021 The property of being a st...
structex 17022 A structure is a set. (Co...
structn0fun 17023 A structure without the em...
isstruct 17024 The property of being a st...
structcnvcnv 17025 Two ways to express the re...
structfung 17026 The converse of the conver...
structfun 17027 Convert between two kinds ...
structfn 17028 Convert between two kinds ...
strleun 17029 Combine two structures int...
strle1 17030 Make a structure from a si...
strle2 17031 Make a structure from a pa...
strle3 17032 Make a structure from a tr...
sbcie2s 17033 A special version of class...
sbcie3s 17034 A special version of class...
reldmsets 17037 The structure override ope...
setsvalg 17038 Value of the structure rep...
setsval 17039 Value of the structure rep...
fvsetsid 17040 The value of the structure...
fsets 17041 The structure replacement ...
setsdm 17042 The domain of a structure ...
setsfun 17043 A structure with replaceme...
setsfun0 17044 A structure with replaceme...
setsn0fun 17045 The value of the structure...
setsstruct2 17046 An extensible structure wi...
setsexstruct2 17047 An extensible structure wi...
setsstruct 17048 An extensible structure wi...
wunsets 17049 Closure of structure repla...
setsres 17050 The structure replacement ...
setsabs 17051 Replacing the same compone...
setscom 17052 Component-setting is commu...
sloteq 17055 Equality theorem for the `...
slotfn 17056 A slot is a function on se...
strfvnd 17057 Deduction version of ~ str...
strfvn 17058 Value of a structure compo...
strfvss 17059 A structure component extr...
wunstr 17060 Closure of a structure ind...
str0 17061 All components of the empt...
strfvi 17062 Structure slot extractors ...
fveqprc 17063 Lemma for showing the equa...
oveqprc 17064 Lemma for showing the equa...
wunndx 17067 Closure of the index extra...
ndxarg 17068 Get the numeric argument f...
ndxid 17069 A structure component extr...
strndxid 17070 The value of a structure c...
setsidvald 17071 Value of the structure rep...
setsidvaldOLD 17072 Obsolete version of ~ sets...
strfvd 17073 Deduction version of ~ str...
strfv2d 17074 Deduction version of ~ str...
strfv2 17075 A variation on ~ strfv to ...
strfv 17076 Extract a structure compon...
strfv3 17077 Variant on ~ strfv for lar...
strssd 17078 Deduction version of ~ str...
strss 17079 Propagate component extrac...
setsid 17080 Value of the structure rep...
setsnid 17081 Value of the structure rep...
setsnidOLD 17082 Obsolete proof of ~ setsni...
baseval 17085 Value of the base set extr...
baseid 17086 Utility theorem: index-ind...
basfn 17087 The base set extractor is ...
base0 17088 The base set of the empty ...
elbasfv 17089 Utility theorem: reverse c...
elbasov 17090 Utility theorem: reverse c...
strov2rcl 17091 Partial reverse closure fo...
basendx 17092 Index value of the base se...
basendxnn 17093 The index value of the bas...
basendxnnOLD 17094 Obsolete proof of ~ basend...
basndxelwund 17095 The index of the base set ...
basprssdmsets 17096 The pair of the base index...
opelstrbas 17097 The base set of a structur...
1strstr 17098 A constructed one-slot str...
1strstr1 17099 A constructed one-slot str...
1strbas 17100 The base set of a construc...
1strbasOLD 17101 Obsolete proof of ~ 1strba...
1strwunbndx 17102 A constructed one-slot str...
1strwun 17103 A constructed one-slot str...
1strwunOLD 17104 Obsolete version of ~ 1str...
2strstr 17105 A constructed two-slot str...
2strbas 17106 The base set of a construc...
2strop 17107 The other slot of a constr...
2strstr1 17108 A constructed two-slot str...
2strstr1OLD 17109 Obsolete version of ~ 2str...
2strbas1 17110 The base set of a construc...
2strop1 17111 The other slot of a constr...
reldmress 17114 The structure restriction ...
ressval 17115 Value of structure restric...
ressid2 17116 General behavior of trivia...
ressval2 17117 Value of nontrivial struct...
ressbas 17118 Base set of a structure re...
ressbasOLD 17119 Obsolete proof of ~ ressba...
ressbas2 17120 Base set of a structure re...
ressbasss 17121 The base set of a restrict...
resseqnbas 17122 The components of an exten...
resslemOLD 17123 Obsolete version of ~ ress...
ress0 17124 All restrictions of the nu...
ressid 17125 Behavior of trivial restri...
ressinbas 17126 Restriction only cares abo...
ressval3d 17127 Value of structure restric...
ressval3dOLD 17128 Obsolete version of ~ ress...
ressress 17129 Restriction composition la...
ressabs 17130 Restriction absorption law...
wunress 17131 Closure of structure restr...
wunressOLD 17132 Obsolete proof of ~ wunres...
plusgndx 17159 Index value of the ~ df-pl...
plusgid 17160 Utility theorem: index-ind...
plusgndxnn 17161 The index of the slot for ...
basendxltplusgndx 17162 The index of the slot for ...
basendxnplusgndx 17163 The slot for the base set ...
basendxnplusgndxOLD 17164 Obsolete version of ~ base...
grpstr 17165 A constructed group is a s...
grpstrndx 17166 A constructed group is a s...
grpbase 17167 The base set of a construc...
grpbaseOLD 17168 Obsolete version of ~ grpb...
grpplusg 17169 The operation of a constru...
grpplusgOLD 17170 Obsolete version of ~ grpp...
ressplusg 17171 ` +g ` is unaffected by re...
grpbasex 17172 The base of an explicitly ...
grpplusgx 17173 The operation of an explic...
mulrndx 17174 Index value of the ~ df-mu...
mulrid 17175 Utility theorem: index-ind...
basendxnmulrndx 17176 The slot for the base set ...
basendxnmulrndxOLD 17177 Obsolete proof of ~ basend...
plusgndxnmulrndx 17178 The slot for the group (ad...
rngstr 17179 A constructed ring is a st...
rngbase 17180 The base set of a construc...
rngplusg 17181 The additive operation of ...
rngmulr 17182 The multiplicative operati...
starvndx 17183 Index value of the ~ df-st...
starvid 17184 Utility theorem: index-ind...
starvndxnbasendx 17185 The slot for the involutio...
starvndxnplusgndx 17186 The slot for the involutio...
starvndxnmulrndx 17187 The slot for the involutio...
ressmulr 17188 ` .r ` is unaffected by re...
ressstarv 17189 ` *r ` is unaffected by re...
srngstr 17190 A constructed star ring is...
srngbase 17191 The base set of a construc...
srngplusg 17192 The addition operation of ...
srngmulr 17193 The multiplication operati...
srnginvl 17194 The involution function of...
scandx 17195 Index value of the ~ df-sc...
scaid 17196 Utility theorem: index-ind...
scandxnbasendx 17197 The slot for the scalar is...
scandxnplusgndx 17198 The slot for the scalar fi...
scandxnmulrndx 17199 The slot for the scalar fi...
vscandx 17200 Index value of the ~ df-vs...
vscaid 17201 Utility theorem: index-ind...
vscandxnbasendx 17202 The slot for the scalar pr...
vscandxnplusgndx 17203 The slot for the scalar pr...
vscandxnmulrndx 17204 The slot for the scalar pr...
vscandxnscandx 17205 The slot for the scalar pr...
lmodstr 17206 A constructed left module ...
lmodbase 17207 The base set of a construc...
lmodplusg 17208 The additive operation of ...
lmodsca 17209 The set of scalars of a co...
lmodvsca 17210 The scalar product operati...
ipndx 17211 Index value of the ~ df-ip...
ipid 17212 Utility theorem: index-ind...
ipndxnbasendx 17213 The slot for the inner pro...
ipndxnplusgndx 17214 The slot for the inner pro...
ipndxnmulrndx 17215 The slot for the inner pro...
slotsdifipndx 17216 The slot for the scalar is...
ipsstr 17217 Lemma to shorten proofs of...
ipsbase 17218 The base set of a construc...
ipsaddg 17219 The additive operation of ...
ipsmulr 17220 The multiplicative operati...
ipssca 17221 The set of scalars of a co...
ipsvsca 17222 The scalar product operati...
ipsip 17223 The multiplicative operati...
resssca 17224 ` Scalar ` is unaffected b...
ressvsca 17225 ` .s ` is unaffected by re...
ressip 17226 The inner product is unaff...
phlstr 17227 A constructed pre-Hilbert ...
phlbase 17228 The base set of a construc...
phlplusg 17229 The additive operation of ...
phlsca 17230 The ring of scalars of a c...
phlvsca 17231 The scalar product operati...
phlip 17232 The inner product (Hermiti...
tsetndx 17233 Index value of the ~ df-ts...
tsetid 17234 Utility theorem: index-ind...
tsetndxnn 17235 The index of the slot for ...
basendxlttsetndx 17236 The index of the slot for ...
tsetndxnbasendx 17237 The slot for the topology ...
tsetndxnplusgndx 17238 The slot for the topology ...
tsetndxnmulrndx 17239 The slot for the topology ...
tsetndxnstarvndx 17240 The slot for the topology ...
slotstnscsi 17241 The slots ` Scalar ` , ` ....
topgrpstr 17242 A constructed topological ...
topgrpbas 17243 The base set of a construc...
topgrpplusg 17244 The additive operation of ...
topgrptset 17245 The topology of a construc...
resstset 17246 ` TopSet ` is unaffected b...
plendx 17247 Index value of the ~ df-pl...
pleid 17248 Utility theorem: self-refe...
plendxnn 17249 The index value of the ord...
basendxltplendx 17250 The index value of the ` B...
plendxnbasendx 17251 The slot for the order is ...
plendxnplusgndx 17252 The slot for the "less tha...
plendxnmulrndx 17253 The slot for the "less tha...
plendxnscandx 17254 The slot for the "less tha...
plendxnvscandx 17255 The slot for the "less tha...
slotsdifplendx 17256 The index of the slot for ...
otpsstr 17257 Functionality of a topolog...
otpsbas 17258 The base set of a topologi...
otpstset 17259 The open sets of a topolog...
otpsle 17260 The order of a topological...
ressle 17261 ` le ` is unaffected by re...
ocndx 17262 Index value of the ~ df-oc...
ocid 17263 Utility theorem: index-ind...
basendxnocndx 17264 The slot for the orthocomp...
plendxnocndx 17265 The slot for the orthocomp...
dsndx 17266 Index value of the ~ df-ds...
dsid 17267 Utility theorem: index-ind...
dsndxnn 17268 The index of the slot for ...
basendxltdsndx 17269 The index of the slot for ...
dsndxnbasendx 17270 The slot for the distance ...
dsndxnplusgndx 17271 The slot for the distance ...
dsndxnmulrndx 17272 The slot for the distance ...
slotsdnscsi 17273 The slots ` Scalar ` , ` ....
dsndxntsetndx 17274 The slot for the distance ...
slotsdifdsndx 17275 The index of the slot for ...
unifndx 17276 Index value of the ~ df-un...
unifid 17277 Utility theorem: index-ind...
unifndxnn 17278 The index of the slot for ...
basendxltunifndx 17279 The index of the slot for ...
unifndxnbasendx 17280 The slot for the uniform s...
unifndxntsetndx 17281 The slot for the uniform s...
slotsdifunifndx 17282 The index of the slot for ...
ressunif 17283 ` UnifSet ` is unaffected ...
odrngstr 17284 Functionality of an ordere...
odrngbas 17285 The base set of an ordered...
odrngplusg 17286 The addition operation of ...
odrngmulr 17287 The multiplication operati...
odrngtset 17288 The open sets of an ordere...
odrngle 17289 The order of an ordered me...
odrngds 17290 The metric of an ordered m...
ressds 17291 ` dist ` is unaffected by ...
homndx 17292 Index value of the ~ df-ho...
homid 17293 Utility theorem: index-ind...
ccondx 17294 Index value of the ~ df-cc...
ccoid 17295 Utility theorem: index-ind...
slotsbhcdif 17296 The slots ` Base ` , ` Hom...
slotsbhcdifOLD 17297 Obsolete proof of ~ slotsb...
slotsdifplendx2 17298 The index of the slot for ...
slotsdifocndx 17299 The index of the slot for ...
resshom 17300 ` Hom ` is unaffected by r...
ressco 17301 ` comp ` is unaffected by ...
restfn 17306 The subspace topology oper...
topnfn 17307 The topology extractor fun...
restval 17308 The subspace topology indu...
elrest 17309 The predicate "is an open ...
elrestr 17310 Sufficient condition for b...
0rest 17311 Value of the structure res...
restid2 17312 The subspace topology over...
restsspw 17313 The subspace topology is a...
firest 17314 The finite intersections o...
restid 17315 The subspace topology of t...
topnval 17316 Value of the topology extr...
topnid 17317 Value of the topology extr...
topnpropd 17318 The topology extractor fun...
reldmprds 17330 The structure product is a...
prdsbasex 17332 Lemma for structure produc...
imasvalstr 17333 An image structure value i...
prdsvalstr 17334 Structure product value is...
prdsbaslem 17335 Lemma for ~ prdsbas and si...
prdsvallem 17336 Lemma for ~ prdsval . (Co...
prdsval 17337 Value of the structure pro...
prdssca 17338 Scalar ring of a structure...
prdsbas 17339 Base set of a structure pr...
prdsplusg 17340 Addition in a structure pr...
prdsmulr 17341 Multiplication in a struct...
prdsvsca 17342 Scalar multiplication in a...
prdsip 17343 Inner product in a structu...
prdsle 17344 Structure product weak ord...
prdsless 17345 Closure of the order relat...
prdsds 17346 Structure product distance...
prdsdsfn 17347 Structure product distance...
prdstset 17348 Structure product topology...
prdshom 17349 Structure product hom-sets...
prdsco 17350 Structure product composit...
prdsbas2 17351 The base set of a structur...
prdsbasmpt 17352 A constructed tuple is a p...
prdsbasfn 17353 Points in the structure pr...
prdsbasprj 17354 Each point in a structure ...
prdsplusgval 17355 Value of a componentwise s...
prdsplusgfval 17356 Value of a structure produ...
prdsmulrval 17357 Value of a componentwise r...
prdsmulrfval 17358 Value of a structure produ...
prdsleval 17359 Value of the product order...
prdsdsval 17360 Value of the metric in a s...
prdsvscaval 17361 Scalar multiplication in a...
prdsvscafval 17362 Scalar multiplication of a...
prdsbas3 17363 The base set of an indexed...
prdsbasmpt2 17364 A constructed tuple is a p...
prdsbascl 17365 An element of the base has...
prdsdsval2 17366 Value of the metric in a s...
prdsdsval3 17367 Value of the metric in a s...
pwsval 17368 Value of a structure power...
pwsbas 17369 Base set of a structure po...
pwselbasb 17370 Membership in the base set...
pwselbas 17371 An element of a structure ...
pwsplusgval 17372 Value of addition in a str...
pwsmulrval 17373 Value of multiplication in...
pwsle 17374 Ordering in a structure po...
pwsleval 17375 Ordering in a structure po...
pwsvscafval 17376 Scalar multiplication in a...
pwsvscaval 17377 Scalar multiplication of a...
pwssca 17378 The ring of scalars of a s...
pwsdiagel 17379 Membership of diagonal ele...
pwssnf1o 17380 Triviality of singleton po...
imasval 17393 Value of an image structur...
imasbas 17394 The base set of an image s...
imasds 17395 The distance function of a...
imasdsfn 17396 The distance function is a...
imasdsval 17397 The distance function of a...
imasdsval2 17398 The distance function of a...
imasplusg 17399 The group operation in an ...
imasmulr 17400 The ring multiplication in...
imassca 17401 The scalar field of an ima...
imasvsca 17402 The scalar multiplication ...
imasip 17403 The inner product of an im...
imastset 17404 The topology of an image s...
imasle 17405 The ordering of an image s...
f1ocpbllem 17406 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17407 An injection is compatible...
f1ovscpbl 17408 An injection is compatible...
f1olecpbl 17409 An injection is compatible...
imasaddfnlem 17410 The image structure operat...
imasaddvallem 17411 The operation of an image ...
imasaddflem 17412 The image set operations a...
imasaddfn 17413 The image structure's grou...
imasaddval 17414 The value of an image stru...
imasaddf 17415 The image structure's grou...
imasmulfn 17416 The image structure's ring...
imasmulval 17417 The value of an image stru...
imasmulf 17418 The image structure's ring...
imasvscafn 17419 The image structure's scal...
imasvscaval 17420 The value of an image stru...
imasvscaf 17421 The image structure's scal...
imasless 17422 The order relation defined...
imasleval 17423 The value of the image str...
qusval 17424 Value of a quotient struct...
quslem 17425 The function in ~ qusval i...
qusin 17426 Restrict the equivalence r...
qusbas 17427 Base set of a quotient str...
quss 17428 The scalar field of a quot...
divsfval 17429 Value of the function in ~...
ercpbllem 17430 Lemma for ~ ercpbl . (Con...
ercpbl 17431 Translate the function com...
erlecpbl 17432 Translate the relation com...
qusaddvallem 17433 Value of an operation defi...
qusaddflem 17434 The operation of a quotien...
qusaddval 17435 The base set of an image s...
qusaddf 17436 The base set of an image s...
qusmulval 17437 The base set of an image s...
qusmulf 17438 The base set of an image s...
fnpr2o 17439 Function with a domain of ...
fnpr2ob 17440 Biconditional version of ~...
fvpr0o 17441 The value of a function wi...
fvpr1o 17442 The value of a function wi...
fvprif 17443 The value of the pair func...
xpsfrnel 17444 Elementhood in the target ...
xpsfeq 17445 A function on ` 2o ` is de...
xpsfrnel2 17446 Elementhood in the target ...
xpscf 17447 Equivalent condition for t...
xpsfval 17448 The value of the function ...
xpsff1o 17449 The function appearing in ...
xpsfrn 17450 A short expression for the...
xpsff1o2 17451 The function appearing in ...
xpsval 17452 Value of the binary struct...
xpsrnbas 17453 The indexed structure prod...
xpsbas 17454 The base set of the binary...
xpsaddlem 17455 Lemma for ~ xpsadd and ~ x...
xpsadd 17456 Value of the addition oper...
xpsmul 17457 Value of the multiplicatio...
xpssca 17458 Value of the scalar field ...
xpsvsca 17459 Value of the scalar multip...
xpsless 17460 Closure of the ordering in...
xpsle 17461 Value of the ordering in a...
ismre 17470 Property of being a Moore ...
fnmre 17471 The Moore collection gener...
mresspw 17472 A Moore collection is a su...
mress 17473 A Moore-closed subset is a...
mre1cl 17474 In any Moore collection th...
mreintcl 17475 A nonempty collection of c...
mreiincl 17476 A nonempty indexed interse...
mrerintcl 17477 The relative intersection ...
mreriincl 17478 The relative intersection ...
mreincl 17479 Two closed sets have a clo...
mreuni 17480 Since the entire base set ...
mreunirn 17481 Two ways to express the no...
ismred 17482 Properties that determine ...
ismred2 17483 Properties that determine ...
mremre 17484 The Moore collections of s...
submre 17485 The subcollection of a clo...
mrcflem 17486 The domain and codomain of...
fnmrc 17487 Moore-closure is a well-be...
mrcfval 17488 Value of the function expr...
mrcf 17489 The Moore closure is a fun...
mrcval 17490 Evaluation of the Moore cl...
mrccl 17491 The Moore closure of a set...
mrcsncl 17492 The Moore closure of a sin...
mrcid 17493 The closure of a closed se...
mrcssv 17494 The closure of a set is a ...
mrcidb 17495 A set is closed iff it is ...
mrcss 17496 Closure preserves subset o...
mrcssid 17497 The closure of a set is a ...
mrcidb2 17498 A set is closed iff it con...
mrcidm 17499 The closure operation is i...
mrcsscl 17500 The closure is the minimal...
mrcuni 17501 Idempotence of closure und...
mrcun 17502 Idempotence of closure und...
mrcssvd 17503 The Moore closure of a set...
mrcssd 17504 Moore closure preserves su...
mrcssidd 17505 A set is contained in its ...
mrcidmd 17506 Moore closure is idempoten...
mressmrcd 17507 In a Moore system, if a se...
submrc 17508 In a closure system which ...
mrieqvlemd 17509 In a Moore system, if ` Y ...
mrisval 17510 Value of the set of indepe...
ismri 17511 Criterion for a set to be ...
ismri2 17512 Criterion for a subset of ...
ismri2d 17513 Criterion for a subset of ...
ismri2dd 17514 Definition of independence...
mriss 17515 An independent set of a Mo...
mrissd 17516 An independent set of a Mo...
ismri2dad 17517 Consequence of a set in a ...
mrieqvd 17518 In a Moore system, a set i...
mrieqv2d 17519 In a Moore system, a set i...
mrissmrcd 17520 In a Moore system, if an i...
mrissmrid 17521 In a Moore system, subsets...
mreexd 17522 In a Moore system, the clo...
mreexmrid 17523 In a Moore system whose cl...
mreexexlemd 17524 This lemma is used to gene...
mreexexlem2d 17525 Used in ~ mreexexlem4d to ...
mreexexlem3d 17526 Base case of the induction...
mreexexlem4d 17527 Induction step of the indu...
mreexexd 17528 Exchange-type theorem. In...
mreexdomd 17529 In a Moore system whose cl...
mreexfidimd 17530 In a Moore system whose cl...
isacs 17531 A set is an algebraic clos...
acsmre 17532 Algebraic closure systems ...
isacs2 17533 In the definition of an al...
acsfiel 17534 A set is closed in an alge...
acsfiel2 17535 A set is closed in an alge...
acsmred 17536 An algebraic closure syste...
isacs1i 17537 A closure system determine...
mreacs 17538 Algebraicity is a composab...
acsfn 17539 Algebraicity of a conditio...
acsfn0 17540 Algebraicity of a point cl...
acsfn1 17541 Algebraicity of a one-argu...
acsfn1c 17542 Algebraicity of a one-argu...
acsfn2 17543 Algebraicity of a two-argu...
iscat 17552 The predicate "is a catego...
iscatd 17553 Properties that determine ...
catidex 17554 Each object in a category ...
catideu 17555 Each object in a category ...
cidfval 17556 Each object in a category ...
cidval 17557 Each object in a category ...
cidffn 17558 The identity arrow constru...
cidfn 17559 The identity arrow operato...
catidd 17560 Deduce the identity arrow ...
iscatd2 17561 Version of ~ iscatd with a...
catidcl 17562 Each object in a category ...
catlid 17563 Left identity property of ...
catrid 17564 Right identity property of...
catcocl 17565 Closure of a composition a...
catass 17566 Associativity of compositi...
catcone0 17567 Composition of non-empty h...
0catg 17568 Any structure with an empt...
0cat 17569 The empty set is a categor...
homffval 17570 Value of the functionalize...
fnhomeqhomf 17571 If the Hom-set operation i...
homfval 17572 Value of the functionalize...
homffn 17573 The functionalized Hom-set...
homfeq 17574 Condition for two categori...
homfeqd 17575 If two structures have the...
homfeqbas 17576 Deduce equality of base se...
homfeqval 17577 Value of the functionalize...
comfffval 17578 Value of the functionalize...
comffval 17579 Value of the functionalize...
comfval 17580 Value of the functionalize...
comfffval2 17581 Value of the functionalize...
comffval2 17582 Value of the functionalize...
comfval2 17583 Value of the functionalize...
comfffn 17584 The functionalized composi...
comffn 17585 The functionalized composi...
comfeq 17586 Condition for two categori...
comfeqd 17587 Condition for two categori...
comfeqval 17588 Equality of two compositio...
catpropd 17589 Two structures with the sa...
cidpropd 17590 Two structures with the sa...
oppcval 17593 Value of the opposite cate...
oppchomfval 17594 Hom-sets of the opposite c...
oppchomfvalOLD 17595 Obsolete proof of ~ oppcho...
oppchom 17596 Hom-sets of the opposite c...
oppccofval 17597 Composition in the opposit...
oppcco 17598 Composition in the opposit...
oppcbas 17599 Base set of an opposite ca...
oppcbasOLD 17600 Obsolete version of ~ oppc...
oppccatid 17601 Lemma for ~ oppccat . (Co...
oppchomf 17602 Hom-sets of the opposite c...
oppcid 17603 Identity function of an op...
oppccat 17604 An opposite category is a ...
2oppcbas 17605 The double opposite catego...
2oppchomf 17606 The double opposite catego...
2oppccomf 17607 The double opposite catego...
oppchomfpropd 17608 If two categories have the...
oppccomfpropd 17609 If two categories have the...
oppccatf 17610 ` oppCat ` restricted to `...
monfval 17615 Definition of a monomorphi...
ismon 17616 Definition of a monomorphi...
ismon2 17617 Write out the monomorphism...
monhom 17618 A monomorphism is a morphi...
moni 17619 Property of a monomorphism...
monpropd 17620 If two categories have the...
oppcmon 17621 A monomorphism in the oppo...
oppcepi 17622 An epimorphism in the oppo...
isepi 17623 Definition of an epimorphi...
isepi2 17624 Write out the epimorphism ...
epihom 17625 An epimorphism is a morphi...
epii 17626 Property of an epimorphism...
sectffval 17633 Value of the section opera...
sectfval 17634 Value of the section relat...
sectss 17635 The section relation is a ...
issect 17636 The property " ` F ` is a ...
issect2 17637 Property of being a sectio...
sectcan 17638 If ` G ` is a section of `...
sectco 17639 Composition of two section...
isofval 17640 Function value of the func...
invffval 17641 Value of the inverse relat...
invfval 17642 Value of the inverse relat...
isinv 17643 Value of the inverse relat...
invss 17644 The inverse relation is a ...
invsym 17645 The inverse relation is sy...
invsym2 17646 The inverse relation is sy...
invfun 17647 The inverse relation is a ...
isoval 17648 The isomorphisms are the d...
inviso1 17649 If ` G ` is an inverse to ...
inviso2 17650 If ` G ` is an inverse to ...
invf 17651 The inverse relation is a ...
invf1o 17652 The inverse relation is a ...
invinv 17653 The inverse of the inverse...
invco 17654 The composition of two iso...
dfiso2 17655 Alternate definition of an...
dfiso3 17656 Alternate definition of an...
inveq 17657 If there are two inverses ...
isofn 17658 The function value of the ...
isohom 17659 An isomorphism is a homomo...
isoco 17660 The composition of two iso...
oppcsect 17661 A section in the opposite ...
oppcsect2 17662 A section in the opposite ...
oppcinv 17663 An inverse in the opposite...
oppciso 17664 An isomorphism in the oppo...
sectmon 17665 If ` F ` is a section of `...
monsect 17666 If ` F ` is a monomorphism...
sectepi 17667 If ` F ` is a section of `...
episect 17668 If ` F ` is an epimorphism...
sectid 17669 The identity is a section ...
invid 17670 The inverse of the identit...
idiso 17671 The identity is an isomorp...
idinv 17672 The inverse of the identit...
invisoinvl 17673 The inverse of an isomorph...
invisoinvr 17674 The inverse of an isomorph...
invcoisoid 17675 The inverse of an isomorph...
isocoinvid 17676 The inverse of an isomorph...
rcaninv 17677 Right cancellation of an i...
cicfval 17680 The set of isomorphic obje...
brcic 17681 The relation "is isomorphi...
cic 17682 Objects ` X ` and ` Y ` in...
brcici 17683 Prove that two objects are...
cicref 17684 Isomorphism is reflexive. ...
ciclcl 17685 Isomorphism implies the le...
cicrcl 17686 Isomorphism implies the ri...
cicsym 17687 Isomorphism is symmetric. ...
cictr 17688 Isomorphism is transitive....
cicer 17689 Isomorphism is an equivale...
sscrel 17696 The subcategory subset rel...
brssc 17697 The subcategory subset rel...
sscpwex 17698 An analogue of ~ pwex for ...
subcrcl 17699 Reverse closure for the su...
sscfn1 17700 The subcategory subset rel...
sscfn2 17701 The subcategory subset rel...
ssclem 17702 Lemma for ~ ssc1 and simil...
isssc 17703 Value of the subcategory s...
ssc1 17704 Infer subset relation on o...
ssc2 17705 Infer subset relation on m...
sscres 17706 Any function restricted to...
sscid 17707 The subcategory subset rel...
ssctr 17708 The subcategory subset rel...
ssceq 17709 The subcategory subset rel...
rescval 17710 Value of the category rest...
rescval2 17711 Value of the category rest...
rescbas 17712 Base set of the category r...
rescbasOLD 17713 Obsolete version of ~ resc...
reschom 17714 Hom-sets of the category r...
reschomf 17715 Hom-sets of the category r...
rescco 17716 Composition in the categor...
resccoOLD 17717 Obsolete proof of ~ rescco...
rescabs 17718 Restriction absorption law...
rescabsOLD 17719 Obsolete proof of ~ seqp1d...
rescabs2 17720 Restriction absorption law...
issubc 17721 Elementhood in the set of ...
issubc2 17722 Elementhood in the set of ...
0ssc 17723 For any category ` C ` , t...
0subcat 17724 For any category ` C ` , t...
catsubcat 17725 For any category ` C ` , `...
subcssc 17726 An element in the set of s...
subcfn 17727 An element in the set of s...
subcss1 17728 The objects of a subcatego...
subcss2 17729 The morphisms of a subcate...
subcidcl 17730 The identity of the origin...
subccocl 17731 A subcategory is closed un...
subccatid 17732 A subcategory is a categor...
subcid 17733 The identity in a subcateg...
subccat 17734 A subcategory is a categor...
issubc3 17735 Alternate definition of a ...
fullsubc 17736 The full subcategory gener...
fullresc 17737 The category formed by str...
resscat 17738 A category restricted to a...
subsubc 17739 A subcategory of a subcate...
relfunc 17748 The set of functors is a r...
funcrcl 17749 Reverse closure for a func...
isfunc 17750 Value of the set of functo...
isfuncd 17751 Deduce that an operation i...
funcf1 17752 The object part of a funct...
funcixp 17753 The morphism part of a fun...
funcf2 17754 The morphism part of a fun...
funcfn2 17755 The morphism part of a fun...
funcid 17756 A functor maps each identi...
funcco 17757 A functor maps composition...
funcsect 17758 The image of a section und...
funcinv 17759 The image of an inverse un...
funciso 17760 The image of an isomorphis...
funcoppc 17761 A functor on categories yi...
idfuval 17762 Value of the identity func...
idfu2nd 17763 Value of the morphism part...
idfu2 17764 Value of the morphism part...
idfu1st 17765 Value of the object part o...
idfu1 17766 Value of the object part o...
idfucl 17767 The identity functor is a ...
cofuval 17768 Value of the composition o...
cofu1st 17769 Value of the object part o...
cofu1 17770 Value of the object part o...
cofu2nd 17771 Value of the morphism part...
cofu2 17772 Value of the morphism part...
cofuval2 17773 Value of the composition o...
cofucl 17774 The composition of two fun...
cofuass 17775 Functor composition is ass...
cofulid 17776 The identity functor is a ...
cofurid 17777 The identity functor is a ...
resfval 17778 Value of the functor restr...
resfval2 17779 Value of the functor restr...
resf1st 17780 Value of the functor restr...
resf2nd 17781 Value of the functor restr...
funcres 17782 A functor restricted to a ...
funcres2b 17783 Condition for a functor to...
funcres2 17784 A functor into a restricte...
wunfunc 17785 A weak universe is closed ...
wunfuncOLD 17786 Obsolete proof of ~ wunfun...
funcpropd 17787 If two categories have the...
funcres2c 17788 Condition for a functor to...
fullfunc 17793 A full functor is a functo...
fthfunc 17794 A faithful functor is a fu...
relfull 17795 The set of full functors i...
relfth 17796 The set of faithful functo...
isfull 17797 Value of the set of full f...
isfull2 17798 Equivalent condition for a...
fullfo 17799 The morphism map of a full...
fulli 17800 The morphism map of a full...
isfth 17801 Value of the set of faithf...
isfth2 17802 Equivalent condition for a...
isffth2 17803 A fully faithful functor i...
fthf1 17804 The morphism map of a fait...
fthi 17805 The morphism map of a fait...
ffthf1o 17806 The morphism map of a full...
fullpropd 17807 If two categories have the...
fthpropd 17808 If two categories have the...
fulloppc 17809 The opposite functor of a ...
fthoppc 17810 The opposite functor of a ...
ffthoppc 17811 The opposite functor of a ...
fthsect 17812 A faithful functor reflect...
fthinv 17813 A faithful functor reflect...
fthmon 17814 A faithful functor reflect...
fthepi 17815 A faithful functor reflect...
ffthiso 17816 A fully faithful functor r...
fthres2b 17817 Condition for a faithful f...
fthres2c 17818 Condition for a faithful f...
fthres2 17819 A faithful functor into a ...
idffth 17820 The identity functor is a ...
cofull 17821 The composition of two ful...
cofth 17822 The composition of two fai...
coffth 17823 The composition of two ful...
rescfth 17824 The inclusion functor from...
ressffth 17825 The inclusion functor from...
fullres2c 17826 Condition for a full funct...
ffthres2c 17827 Condition for a fully fait...
fnfuc 17832 The ` FuncCat ` operation ...
natfval 17833 Value of the function givi...
isnat 17834 Property of being a natura...
isnat2 17835 Property of being a natura...
natffn 17836 The natural transformation...
natrcl 17837 Reverse closure for a natu...
nat1st2nd 17838 Rewrite the natural transf...
natixp 17839 A natural transformation i...
natcl 17840 A component of a natural t...
natfn 17841 A natural transformation i...
nati 17842 Naturality property of a n...
wunnat 17843 A weak universe is closed ...
wunnatOLD 17844 Obsolete proof of ~ wunnat...
catstr 17845 A category structure is a ...
fucval 17846 Value of the functor categ...
fuccofval 17847 Value of the functor categ...
fucbas 17848 The objects of the functor...
fuchom 17849 The morphisms in the funct...
fuchomOLD 17850 Obsolete proof of ~ fuchom...
fucco 17851 Value of the composition o...
fuccoval 17852 Value of the functor categ...
fuccocl 17853 The composition of two nat...
fucidcl 17854 The identity natural trans...
fuclid 17855 Left identity of natural t...
fucrid 17856 Right identity of natural ...
fucass 17857 Associativity of natural t...
fuccatid 17858 The functor category is a ...
fuccat 17859 The functor category is a ...
fucid 17860 The identity morphism in t...
fucsect 17861 Two natural transformation...
fucinv 17862 Two natural transformation...
invfuc 17863 If ` V ( x ) ` is an inver...
fuciso 17864 A natural transformation i...
natpropd 17865 If two categories have the...
fucpropd 17866 If two categories have the...
initofn 17873 ` InitO ` is a function on...
termofn 17874 ` TermO ` is a function on...
zeroofn 17875 ` ZeroO ` is a function on...
initorcl 17876 Reverse closure for an ini...
termorcl 17877 Reverse closure for a term...
zeroorcl 17878 Reverse closure for a zero...
initoval 17879 The value of the initial o...
termoval 17880 The value of the terminal ...
zerooval 17881 The value of the zero obje...
isinito 17882 The predicate "is an initi...
istermo 17883 The predicate "is a termin...
iszeroo 17884 The predicate "is a zero o...
isinitoi 17885 Implication of a class bei...
istermoi 17886 Implication of a class bei...
initoid 17887 For an initial object, the...
termoid 17888 For a terminal object, the...
dfinito2 17889 An initial object is a ter...
dftermo2 17890 A terminal object is an in...
dfinito3 17891 An alternate definition of...
dftermo3 17892 An alternate definition of...
initoo 17893 An initial object is an ob...
termoo 17894 A terminal object is an ob...
iszeroi 17895 Implication of a class bei...
2initoinv 17896 Morphisms between two init...
initoeu1 17897 Initial objects are essent...
initoeu1w 17898 Initial objects are essent...
initoeu2lem0 17899 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 17900 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 17901 Lemma 2 for ~ initoeu2 . ...
initoeu2 17902 Initial objects are essent...
2termoinv 17903 Morphisms between two term...
termoeu1 17904 Terminal objects are essen...
termoeu1w 17905 Terminal objects are essen...
homarcl 17914 Reverse closure for an arr...
homafval 17915 Value of the disjointified...
homaf 17916 Functionality of the disjo...
homaval 17917 Value of the disjointified...
elhoma 17918 Value of the disjointified...
elhomai 17919 Produce an arrow from a mo...
elhomai2 17920 Produce an arrow from a mo...
homarcl2 17921 Reverse closure for the do...
homarel 17922 An arrow is an ordered pai...
homa1 17923 The first component of an ...
homahom2 17924 The second component of an...
homahom 17925 The second component of an...
homadm 17926 The domain of an arrow wit...
homacd 17927 The codomain of an arrow w...
homadmcd 17928 Decompose an arrow into do...
arwval 17929 The set of arrows is the u...
arwrcl 17930 The first component of an ...
arwhoma 17931 An arrow is contained in t...
homarw 17932 A hom-set is a subset of t...
arwdm 17933 The domain of an arrow is ...
arwcd 17934 The codomain of an arrow i...
dmaf 17935 The domain function is a f...
cdaf 17936 The codomain function is a...
arwhom 17937 The second component of an...
arwdmcd 17938 Decompose an arrow into do...
idafval 17943 Value of the identity arro...
idaval 17944 Value of the identity arro...
ida2 17945 Morphism part of the ident...
idahom 17946 Domain and codomain of the...
idadm 17947 Domain of the identity arr...
idacd 17948 Codomain of the identity a...
idaf 17949 The identity arrow functio...
coafval 17950 The value of the compositi...
eldmcoa 17951 A pair ` <. G , F >. ` is ...
dmcoass 17952 The domain of composition ...
homdmcoa 17953 If ` F : X --> Y ` and ` G...
coaval 17954 Value of composition for c...
coa2 17955 The morphism part of arrow...
coahom 17956 The composition of two com...
coapm 17957 Composition of arrows is a...
arwlid 17958 Left identity of a categor...
arwrid 17959 Right identity of a catego...
arwass 17960 Associativity of compositi...
setcval 17963 Value of the category of s...
setcbas 17964 Set of objects of the cate...
setchomfval 17965 Set of arrows of the categ...
setchom 17966 Set of arrows of the categ...
elsetchom 17967 A morphism of sets is a fu...
setccofval 17968 Composition in the categor...
setcco 17969 Composition in the categor...
setccatid 17970 Lemma for ~ setccat . (Co...
setccat 17971 The category of sets is a ...
setcid 17972 The identity arrow in the ...
setcmon 17973 A monomorphism of sets is ...
setcepi 17974 An epimorphism of sets is ...
setcsect 17975 A section in the category ...
setcinv 17976 An inverse in the category...
setciso 17977 An isomorphism in the cate...
resssetc 17978 The restriction of the cat...
funcsetcres2 17979 A functor into a smaller c...
setc2obas 17980 ` (/) ` and ` 1o ` are dis...
setc2ohom 17981 ` ( SetCat `` 2o ) ` is a ...
cat1lem 17982 The category of sets in a ...
cat1 17983 The definition of category...
catcval 17986 Value of the category of c...
catcbas 17987 Set of objects of the cate...
catchomfval 17988 Set of arrows of the categ...
catchom 17989 Set of arrows of the categ...
catccofval 17990 Composition in the categor...
catcco 17991 Composition in the categor...
catccatid 17992 Lemma for ~ catccat . (Co...
catcid 17993 The identity arrow in the ...
catccat 17994 The category of categories...
resscatc 17995 The restriction of the cat...
catcisolem 17996 Lemma for ~ catciso . (Co...
catciso 17997 A functor is an isomorphis...
catcbascl 17998 An element of the base set...
catcslotelcl 17999 A slot entry of an element...
catcbaselcl 18000 The base set of an element...
catchomcl 18001 The Hom-set of an element ...
catcccocl 18002 The composition operation ...
catcoppccl 18003 The category of categories...
catcoppcclOLD 18004 Obsolete proof of ~ catcop...
catcfuccl 18005 The category of categories...
catcfucclOLD 18006 Obsolete proof of ~ catcfu...
fncnvimaeqv 18007 The inverse images of the ...
bascnvimaeqv 18008 The inverse image of the u...
estrcval 18011 Value of the category of e...
estrcbas 18012 Set of objects of the cate...
estrchomfval 18013 Set of morphisms ("arrows"...
estrchom 18014 The morphisms between exte...
elestrchom 18015 A morphism between extensi...
estrccofval 18016 Composition in the categor...
estrcco 18017 Composition in the categor...
estrcbasbas 18018 An element of the base set...
estrccatid 18019 Lemma for ~ estrccat . (C...
estrccat 18020 The category of extensible...
estrcid 18021 The identity arrow in the ...
estrchomfn 18022 The Hom-set operation in t...
estrchomfeqhom 18023 The functionalized Hom-set...
estrreslem1 18024 Lemma 1 for ~ estrres . (...
estrreslem1OLD 18025 Obsolete version of ~ estr...
estrreslem2 18026 Lemma 2 for ~ estrres . (...
estrres 18027 Any restriction of a categ...
funcestrcsetclem1 18028 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 18029 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 18030 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 18031 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 18032 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 18033 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 18034 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 18035 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 18036 Lemma 9 for ~ funcestrcset...
funcestrcsetc 18037 The "natural forgetful fun...
fthestrcsetc 18038 The "natural forgetful fun...
fullestrcsetc 18039 The "natural forgetful fun...
equivestrcsetc 18040 The "natural forgetful fun...
setc1strwun 18041 A constructed one-slot str...
funcsetcestrclem1 18042 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 18043 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 18044 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 18045 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 18046 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 18047 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 18048 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 18049 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 18050 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 18051 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 18052 The "embedding functor" fr...
fthsetcestrc 18053 The "embedding functor" fr...
fullsetcestrc 18054 The "embedding functor" fr...
embedsetcestrc 18055 The "embedding functor" fr...
fnxpc 18064 The binary product of cate...
xpcval 18065 Value of the binary produc...
xpcbas 18066 Set of objects of the bina...
xpchomfval 18067 Set of morphisms of the bi...
xpchom 18068 Set of morphisms of the bi...
relxpchom 18069 A hom-set in the binary pr...
xpccofval 18070 Value of composition in th...
xpcco 18071 Value of composition in th...
xpcco1st 18072 Value of composition in th...
xpcco2nd 18073 Value of composition in th...
xpchom2 18074 Value of the set of morphi...
xpcco2 18075 Value of composition in th...
xpccatid 18076 The product of two categor...
xpcid 18077 The identity morphism in t...
xpccat 18078 The product of two categor...
1stfval 18079 Value of the first project...
1stf1 18080 Value of the first project...
1stf2 18081 Value of the first project...
2ndfval 18082 Value of the first project...
2ndf1 18083 Value of the first project...
2ndf2 18084 Value of the first project...
1stfcl 18085 The first projection funct...
2ndfcl 18086 The second projection func...
prfval 18087 Value of the pairing funct...
prf1 18088 Value of the pairing funct...
prf2fval 18089 Value of the pairing funct...
prf2 18090 Value of the pairing funct...
prfcl 18091 The pairing of functors ` ...
prf1st 18092 Cancellation of pairing wi...
prf2nd 18093 Cancellation of pairing wi...
1st2ndprf 18094 Break a functor into a pro...
catcxpccl 18095 The category of categories...
catcxpcclOLD 18096 Obsolete proof of ~ catcxp...
xpcpropd 18097 If two categories have the...
evlfval 18106 Value of the evaluation fu...
evlf2 18107 Value of the evaluation fu...
evlf2val 18108 Value of the evaluation na...
evlf1 18109 Value of the evaluation fu...
evlfcllem 18110 Lemma for ~ evlfcl . (Con...
evlfcl 18111 The evaluation functor is ...
curfval 18112 Value of the curry functor...
curf1fval 18113 Value of the object part o...
curf1 18114 Value of the object part o...
curf11 18115 Value of the double evalua...
curf12 18116 The partially evaluated cu...
curf1cl 18117 The partially evaluated cu...
curf2 18118 Value of the curry functor...
curf2val 18119 Value of a component of th...
curf2cl 18120 The curry functor at a mor...
curfcl 18121 The curry functor of a fun...
curfpropd 18122 If two categories have the...
uncfval 18123 Value of the uncurry funct...
uncfcl 18124 The uncurry operation take...
uncf1 18125 Value of the uncurry funct...
uncf2 18126 Value of the uncurry funct...
curfuncf 18127 Cancellation of curry with...
uncfcurf 18128 Cancellation of uncurry wi...
diagval 18129 Define the diagonal functo...
diagcl 18130 The diagonal functor is a ...
diag1cl 18131 The constant functor of ` ...
diag11 18132 Value of the constant func...
diag12 18133 Value of the constant func...
diag2 18134 Value of the diagonal func...
diag2cl 18135 The diagonal functor at a ...
curf2ndf 18136 As shown in ~ diagval , th...
hofval 18141 Value of the Hom functor, ...
hof1fval 18142 The object part of the Hom...
hof1 18143 The object part of the Hom...
hof2fval 18144 The morphism part of the H...
hof2val 18145 The morphism part of the H...
hof2 18146 The morphism part of the H...
hofcllem 18147 Lemma for ~ hofcl . (Cont...
hofcl 18148 Closure of the Hom functor...
oppchofcl 18149 Closure of the opposite Ho...
yonval 18150 Value of the Yoneda embedd...
yoncl 18151 The Yoneda embedding is a ...
yon1cl 18152 The Yoneda embedding at an...
yon11 18153 Value of the Yoneda embedd...
yon12 18154 Value of the Yoneda embedd...
yon2 18155 Value of the Yoneda embedd...
hofpropd 18156 If two categories have the...
yonpropd 18157 If two categories have the...
oppcyon 18158 Value of the opposite Yone...
oyoncl 18159 The opposite Yoneda embedd...
oyon1cl 18160 The opposite Yoneda embedd...
yonedalem1 18161 Lemma for ~ yoneda . (Con...
yonedalem21 18162 Lemma for ~ yoneda . (Con...
yonedalem3a 18163 Lemma for ~ yoneda . (Con...
yonedalem4a 18164 Lemma for ~ yoneda . (Con...
yonedalem4b 18165 Lemma for ~ yoneda . (Con...
yonedalem4c 18166 Lemma for ~ yoneda . (Con...
yonedalem22 18167 Lemma for ~ yoneda . (Con...
yonedalem3b 18168 Lemma for ~ yoneda . (Con...
yonedalem3 18169 Lemma for ~ yoneda . (Con...
yonedainv 18170 The Yoneda Lemma with expl...
yonffthlem 18171 Lemma for ~ yonffth . (Co...
yoneda 18172 The Yoneda Lemma. There i...
yonffth 18173 The Yoneda Lemma. The Yon...
yoniso 18174 If the codomain is recover...
oduval 18177 Value of an order dual str...
oduleval 18178 Value of the less-equal re...
oduleg 18179 Truth of the less-equal re...
odubas 18180 Base set of an order dual ...
odubasOLD 18181 Obsolete proof of ~ odubas...
isprs 18186 Property of being a preord...
prslem 18187 Lemma for ~ prsref and ~ p...
prsref 18188 "Less than or equal to" is...
prstr 18189 "Less than or equal to" is...
isdrs 18190 Property of being a direct...
drsdir 18191 Direction of a directed se...
drsprs 18192 A directed set is a proset...
drsbn0 18193 The base of a directed set...
drsdirfi 18194 Any _finite_ number of ele...
isdrs2 18195 Directed sets may be defin...
ispos 18203 The predicate "is a poset"...
ispos2 18204 A poset is an antisymmetri...
posprs 18205 A poset is a proset. (Con...
posi 18206 Lemma for poset properties...
posref 18207 A poset ordering is reflex...
posasymb 18208 A poset ordering is asymme...
postr 18209 A poset ordering is transi...
0pos 18210 Technical lemma to simplif...
0posOLD 18211 Obsolete proof of ~ 0pos a...
isposd 18212 Properties that determine ...
isposi 18213 Properties that determine ...
isposix 18214 Properties that determine ...
isposixOLD 18215 Obsolete proof of ~ isposi...
pospropd 18216 Posethood is determined on...
odupos 18217 Being a poset is a self-du...
oduposb 18218 Being a poset is a self-du...
pltfval 18220 Value of the less-than rel...
pltval 18221 Less-than relation. ( ~ d...
pltle 18222 "Less than" implies "less ...
pltne 18223 The "less than" relation i...
pltirr 18224 The "less than" relation i...
pleval2i 18225 One direction of ~ pleval2...
pleval2 18226 "Less than or equal to" in...
pltnle 18227 "Less than" implies not co...
pltval3 18228 Alternate expression for t...
pltnlt 18229 The less-than relation imp...
pltn2lp 18230 The less-than relation has...
plttr 18231 The less-than relation is ...
pltletr 18232 Transitive law for chained...
plelttr 18233 Transitive law for chained...
pospo 18234 Write a poset structure in...
lubfval 18239 Value of the least upper b...
lubdm 18240 Domain of the least upper ...
lubfun 18241 The LUB is a function. (C...
lubeldm 18242 Member of the domain of th...
lubelss 18243 A member of the domain of ...
lubeu 18244 Unique existence proper of...
lubval 18245 Value of the least upper b...
lubcl 18246 The least upper bound func...
lubprop 18247 Properties of greatest low...
luble 18248 The greatest lower bound i...
lublecllem 18249 Lemma for ~ lublecl and ~ ...
lublecl 18250 The set of all elements le...
lubid 18251 The LUB of elements less t...
glbfval 18252 Value of the greatest lowe...
glbdm 18253 Domain of the greatest low...
glbfun 18254 The GLB is a function. (C...
glbeldm 18255 Member of the domain of th...
glbelss 18256 A member of the domain of ...
glbeu 18257 Unique existence proper of...
glbval 18258 Value of the greatest lowe...
glbcl 18259 The least upper bound func...
glbprop 18260 Properties of greatest low...
glble 18261 The greatest lower bound i...
joinfval 18262 Value of join function for...
joinfval2 18263 Value of join function for...
joindm 18264 Domain of join function fo...
joindef 18265 Two ways to say that a joi...
joinval 18266 Join value. Since both si...
joincl 18267 Closure of join of element...
joindmss 18268 Subset property of domain ...
joinval2lem 18269 Lemma for ~ joinval2 and ~...
joinval2 18270 Value of join for a poset ...
joineu 18271 Uniqueness of join of elem...
joinlem 18272 Lemma for join properties....
lejoin1 18273 A join's first argument is...
lejoin2 18274 A join's second argument i...
joinle 18275 A join is less than or equ...
meetfval 18276 Value of meet function for...
meetfval2 18277 Value of meet function for...
meetdm 18278 Domain of meet function fo...
meetdef 18279 Two ways to say that a mee...
meetval 18280 Meet value. Since both si...
meetcl 18281 Closure of meet of element...
meetdmss 18282 Subset property of domain ...
meetval2lem 18283 Lemma for ~ meetval2 and ~...
meetval2 18284 Value of meet for a poset ...
meeteu 18285 Uniqueness of meet of elem...
meetlem 18286 Lemma for meet properties....
lemeet1 18287 A meet's first argument is...
lemeet2 18288 A meet's second argument i...
meetle 18289 A meet is less than or equ...
joincomALT 18290 The join of a poset is com...
joincom 18291 The join of a poset is com...
meetcomALT 18292 The meet of a poset is com...
meetcom 18293 The meet of a poset is com...
join0 18294 Lemma for ~ odumeet . (Co...
meet0 18295 Lemma for ~ odujoin . (Co...
odulub 18296 Least upper bounds in a du...
odujoin 18297 Joins in a dual order are ...
oduglb 18298 Greatest lower bounds in a...
odumeet 18299 Meets in a dual order are ...
poslubmo 18300 Least upper bounds in a po...
posglbmo 18301 Greatest lower bounds in a...
poslubd 18302 Properties which determine...
poslubdg 18303 Properties which determine...
posglbdg 18304 Properties which determine...
istos 18307 The predicate "is a toset"...
tosso 18308 Write the totally ordered ...
tospos 18309 A Toset is a Poset. (Cont...
tleile 18310 In a Toset, any two elemen...
tltnle 18311 In a Toset, "less than" is...
p0val 18316 Value of poset zero. (Con...
p1val 18317 Value of poset zero. (Con...
p0le 18318 Any element is less than o...
ple1 18319 Any element is less than o...
islat 18322 The predicate "is a lattic...
odulatb 18323 Being a lattice is self-du...
odulat 18324 Being a lattice is self-du...
latcl2 18325 The join and meet of any t...
latlem 18326 Lemma for lattice properti...
latpos 18327 A lattice is a poset. (Co...
latjcl 18328 Closure of join operation ...
latmcl 18329 Closure of meet operation ...
latref 18330 A lattice ordering is refl...
latasymb 18331 A lattice ordering is asym...
latasym 18332 A lattice ordering is asym...
lattr 18333 A lattice ordering is tran...
latasymd 18334 Deduce equality from latti...
lattrd 18335 A lattice ordering is tran...
latjcom 18336 The join of a lattice comm...
latlej1 18337 A join's first argument is...
latlej2 18338 A join's second argument i...
latjle12 18339 A join is less than or equ...
latleeqj1 18340 "Less than or equal to" in...
latleeqj2 18341 "Less than or equal to" in...
latjlej1 18342 Add join to both sides of ...
latjlej2 18343 Add join to both sides of ...
latjlej12 18344 Add join to both sides of ...
latnlej 18345 An idiom to express that a...
latnlej1l 18346 An idiom to express that a...
latnlej1r 18347 An idiom to express that a...
latnlej2 18348 An idiom to express that a...
latnlej2l 18349 An idiom to express that a...
latnlej2r 18350 An idiom to express that a...
latjidm 18351 Lattice join is idempotent...
latmcom 18352 The join of a lattice comm...
latmle1 18353 A meet is less than or equ...
latmle2 18354 A meet is less than or equ...
latlem12 18355 An element is less than or...
latleeqm1 18356 "Less than or equal to" in...
latleeqm2 18357 "Less than or equal to" in...
latmlem1 18358 Add meet to both sides of ...
latmlem2 18359 Add meet to both sides of ...
latmlem12 18360 Add join to both sides of ...
latnlemlt 18361 Negation of "less than or ...
latnle 18362 Equivalent expressions for...
latmidm 18363 Lattice meet is idempotent...
latabs1 18364 Lattice absorption law. F...
latabs2 18365 Lattice absorption law. F...
latledi 18366 An ortholattice is distrib...
latmlej11 18367 Ordering of a meet and joi...
latmlej12 18368 Ordering of a meet and joi...
latmlej21 18369 Ordering of a meet and joi...
latmlej22 18370 Ordering of a meet and joi...
lubsn 18371 The least upper bound of a...
latjass 18372 Lattice join is associativ...
latj12 18373 Swap 1st and 2nd members o...
latj32 18374 Swap 2nd and 3rd members o...
latj13 18375 Swap 1st and 3rd members o...
latj31 18376 Swap 2nd and 3rd members o...
latjrot 18377 Rotate lattice join of 3 c...
latj4 18378 Rearrangement of lattice j...
latj4rot 18379 Rotate lattice join of 4 c...
latjjdi 18380 Lattice join distributes o...
latjjdir 18381 Lattice join distributes o...
mod1ile 18382 The weak direction of the ...
mod2ile 18383 The weak direction of the ...
latmass 18384 Lattice meet is associativ...
latdisdlem 18385 Lemma for ~ latdisd . (Co...
latdisd 18386 In a lattice, joins distri...
isclat 18389 The predicate "is a comple...
clatpos 18390 A complete lattice is a po...
clatlem 18391 Lemma for properties of a ...
clatlubcl 18392 Any subset of the base set...
clatlubcl2 18393 Any subset of the base set...
clatglbcl 18394 Any subset of the base set...
clatglbcl2 18395 Any subset of the base set...
oduclatb 18396 Being a complete lattice i...
clatl 18397 A complete lattice is a la...
isglbd 18398 Properties that determine ...
lublem 18399 Lemma for the least upper ...
lubub 18400 The LUB of a complete latt...
lubl 18401 The LUB of a complete latt...
lubss 18402 Subset law for least upper...
lubel 18403 An element of a set is les...
lubun 18404 The LUB of a union. (Cont...
clatglb 18405 Properties of greatest low...
clatglble 18406 The greatest lower bound i...
clatleglb 18407 Two ways of expressing "le...
clatglbss 18408 Subset law for greatest lo...
isdlat 18411 Property of being a distri...
dlatmjdi 18412 In a distributive lattice,...
dlatl 18413 A distributive lattice is ...
odudlatb 18414 The dual of a distributive...
dlatjmdi 18415 In a distributive lattice,...
ipostr 18418 The structure of ~ df-ipo ...
ipoval 18419 Value of the inclusion pos...
ipobas 18420 Base set of the inclusion ...
ipolerval 18421 Relation of the inclusion ...
ipotset 18422 Topology of the inclusion ...
ipole 18423 Weak order condition of th...
ipolt 18424 Strict order condition of ...
ipopos 18425 The inclusion poset on a f...
isipodrs 18426 Condition for a family of ...
ipodrscl 18427 Direction by inclusion as ...
ipodrsfi 18428 Finite upper bound propert...
fpwipodrs 18429 The finite subsets of any ...
ipodrsima 18430 The monotone image of a di...
isacs3lem 18431 An algebraic closure syste...
acsdrsel 18432 An algebraic closure syste...
isacs4lem 18433 In a closure system in whi...
isacs5lem 18434 If closure commutes with d...
acsdrscl 18435 In an algebraic closure sy...
acsficl 18436 A closure in an algebraic ...
isacs5 18437 A closure system is algebr...
isacs4 18438 A closure system is algebr...
isacs3 18439 A closure system is algebr...
acsficld 18440 In an algebraic closure sy...
acsficl2d 18441 In an algebraic closure sy...
acsfiindd 18442 In an algebraic closure sy...
acsmapd 18443 In an algebraic closure sy...
acsmap2d 18444 In an algebraic closure sy...
acsinfd 18445 In an algebraic closure sy...
acsdomd 18446 In an algebraic closure sy...
acsinfdimd 18447 In an algebraic closure sy...
acsexdimd 18448 In an algebraic closure sy...
mrelatglb 18449 Greatest lower bounds in a...
mrelatglb0 18450 The empty intersection in ...
mrelatlub 18451 Least upper bounds in a Mo...
mreclatBAD 18452 A Moore space is a complet...
isps 18457 The predicate "is a poset"...
psrel 18458 A poset is a relation. (C...
psref2 18459 A poset is antisymmetric a...
pstr2 18460 A poset is transitive. (C...
pslem 18461 Lemma for ~ psref and othe...
psdmrn 18462 The domain and range of a ...
psref 18463 A poset is reflexive. (Co...
psrn 18464 The range of a poset equal...
psasym 18465 A poset is antisymmetric. ...
pstr 18466 A poset is transitive. (C...
cnvps 18467 The converse of a poset is...
cnvpsb 18468 The converse of a poset is...
psss 18469 Any subset of a partially ...
psssdm2 18470 Field of a subposet. (Con...
psssdm 18471 Field of a subposet. (Con...
istsr 18472 The predicate is a toset. ...
istsr2 18473 The predicate is a toset. ...
tsrlin 18474 A toset is a linear order....
tsrlemax 18475 Two ways of saying a numbe...
tsrps 18476 A toset is a poset. (Cont...
cnvtsr 18477 The converse of a toset is...
tsrss 18478 Any subset of a totally or...
ledm 18479 The domain of ` <_ ` is ` ...
lern 18480 The range of ` <_ ` is ` R...
lefld 18481 The field of the 'less or ...
letsr 18482 The "less than or equal to...
isdir 18487 A condition for a relation...
reldir 18488 A direction is a relation....
dirdm 18489 A direction's domain is eq...
dirref 18490 A direction is reflexive. ...
dirtr 18491 A direction is transitive....
dirge 18492 For any two elements of a ...
tsrdir 18493 A totally ordered set is a...
ismgm 18498 The predicate "is a magma"...
ismgmn0 18499 The predicate "is a magma"...
mgmcl 18500 Closure of the operation o...
isnmgm 18501 A condition for a structur...
mgmsscl 18502 If the base set of a magma...
plusffval 18503 The group addition operati...
plusfval 18504 The group addition operati...
plusfeq 18505 If the addition operation ...
plusffn 18506 The group addition operati...
mgmplusf 18507 The group addition functio...
issstrmgm 18508 Characterize a substructur...
intopsn 18509 The internal operation for...
mgmb1mgm1 18510 The only magma with a base...
mgm0 18511 Any set with an empty base...
mgm0b 18512 The structure with an empt...
mgm1 18513 The structure with one ele...
opifismgm 18514 A structure with a group a...
mgmidmo 18515 A two-sided identity eleme...
grpidval 18516 The value of the identity ...
grpidpropd 18517 If two structures have the...
fn0g 18518 The group zero extractor i...
0g0 18519 The identity element funct...
ismgmid 18520 The identity element of a ...
mgmidcl 18521 The identity element of a ...
mgmlrid 18522 The identity element of a ...
ismgmid2 18523 Show that a given element ...
lidrideqd 18524 If there is a left and rig...
lidrididd 18525 If there is a left and rig...
grpidd 18526 Deduce the identity elemen...
mgmidsssn0 18527 Property of the set of ide...
grprinvlem 18528 Lemma for ~ grprinvd . (C...
grprinvd 18529 Deduce right inverse from ...
grpridd 18530 Deduce right identity from...
gsumvalx 18531 Expand out the substitutio...
gsumval 18532 Expand out the substitutio...
gsumpropd 18533 The group sum depends only...
gsumpropd2lem 18534 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18535 A stronger version of ~ gs...
gsummgmpropd 18536 A stronger version of ~ gs...
gsumress 18537 The group sum in a substru...
gsumval1 18538 Value of the group sum ope...
gsum0 18539 Value of the empty group s...
gsumval2a 18540 Value of the group sum ope...
gsumval2 18541 Value of the group sum ope...
gsumsplit1r 18542 Splitting off the rightmos...
gsumprval 18543 Value of the group sum ope...
gsumpr12val 18544 Value of the group sum ope...
issgrp 18547 The predicate "is a semigr...
issgrpv 18548 The predicate "is a semigr...
issgrpn0 18549 The predicate "is a semigr...
isnsgrp 18550 A condition for a structur...
sgrpmgm 18551 A semigroup is a magma. (...
sgrpass 18552 A semigroup operation is a...
sgrp0 18553 Any set with an empty base...
sgrp0b 18554 The structure with an empt...
sgrp1 18555 The structure with one ele...
ismnddef 18558 The predicate "is a monoid...
ismnd 18559 The predicate "is a monoid...
isnmnd 18560 A condition for a structur...
sgrpidmnd 18561 A semigroup with an identi...
mndsgrp 18562 A monoid is a semigroup. ...
mndmgm 18563 A monoid is a magma. (Con...
mndcl 18564 Closure of the operation o...
mndass 18565 A monoid operation is asso...
mndid 18566 A monoid has a two-sided i...
mndideu 18567 The two-sided identity ele...
mnd32g 18568 Commutative/associative la...
mnd12g 18569 Commutative/associative la...
mnd4g 18570 Commutative/associative la...
mndidcl 18571 The identity element of a ...
mndbn0 18572 The base set of a monoid i...
hashfinmndnn 18573 A finite monoid has positi...
mndplusf 18574 The group addition operati...
mndlrid 18575 A monoid's identity elemen...
mndlid 18576 The identity element of a ...
mndrid 18577 The identity element of a ...
ismndd 18578 Deduce a monoid from its p...
mndpfo 18579 The addition operation of ...
mndfo 18580 The addition operation of ...
mndpropd 18581 If two structures have the...
mndprop 18582 If two structures have the...
issubmnd 18583 Characterize a submonoid b...
ress0g 18584 ` 0g ` is unaffected by re...
submnd0 18585 The zero of a submonoid is...
mndinvmod 18586 Uniqueness of an inverse e...
prdsplusgcl 18587 Structure product pointwis...
prdsidlem 18588 Characterization of identi...
prdsmndd 18589 The product of a family of...
prds0g 18590 Zero in a product of monoi...
pwsmnd 18591 The structure power of a m...
pws0g 18592 Zero in a structure power ...
imasmnd2 18593 The image structure of a m...
imasmnd 18594 The image structure of a m...
imasmndf1 18595 The image of a monoid unde...
xpsmnd 18596 The binary product of mono...
mnd1 18597 The (smallest) structure r...
mnd1id 18598 The singleton element of a...
ismhm 18603 Property of a monoid homom...
ismhmd 18604 Deduction version of ~ ism...
mhmrcl1 18605 Reverse closure of a monoi...
mhmrcl2 18606 Reverse closure of a monoi...
mhmf 18607 A monoid homomorphism is a...
mhmpropd 18608 Monoid homomorphism depend...
mhmlin 18609 A monoid homomorphism comm...
mhm0 18610 A monoid homomorphism pres...
idmhm 18611 The identity homomorphism ...
mhmf1o 18612 A monoid homomorphism is b...
submrcl 18613 Reverse closure for submon...
issubm 18614 Expand definition of a sub...
issubm2 18615 Submonoids are subsets tha...
issubmndb 18616 The submonoid predicate. ...
issubmd 18617 Deduction for proving a su...
mndissubm 18618 If the base set of a monoi...
resmndismnd 18619 If the base set of a monoi...
submss 18620 Submonoids are subsets of ...
submid 18621 Every monoid is trivially ...
subm0cl 18622 Submonoids contain zero. ...
submcl 18623 Submonoids are closed unde...
submmnd 18624 Submonoids are themselves ...
submbas 18625 The base set of a submonoi...
subm0 18626 Submonoids have the same i...
subsubm 18627 A submonoid of a submonoid...
0subm 18628 The zero submonoid of an a...
insubm 18629 The intersection of two su...
0mhm 18630 The constant zero linear f...
resmhm 18631 Restriction of a monoid ho...
resmhm2 18632 One direction of ~ resmhm2...
resmhm2b 18633 Restriction of the codomai...
mhmco 18634 The composition of monoid ...
mhmima 18635 The homomorphic image of a...
mhmeql 18636 The equalizer of two monoi...
submacs 18637 Submonoids are an algebrai...
mndind 18638 Induction in a monoid. In...
prdspjmhm 18639 A projection from a produc...
pwspjmhm 18640 A projection from a struct...
pwsdiagmhm 18641 Diagonal monoid homomorphi...
pwsco1mhm 18642 Right composition with a f...
pwsco2mhm 18643 Left composition with a mo...
gsumvallem2 18644 Lemma for properties of th...
gsumsubm 18645 Evaluate a group sum in a ...
gsumz 18646 Value of a group sum over ...
gsumwsubmcl 18647 Closure of the composite i...
gsumws1 18648 A singleton composite reco...
gsumwcl 18649 Closure of the composite o...
gsumsgrpccat 18650 Homomorphic property of no...
gsumccat 18651 Homomorphic property of co...
gsumws2 18652 Valuation of a pair in a m...
gsumccatsn 18653 Homomorphic property of co...
gsumspl 18654 The primary purpose of the...
gsumwmhm 18655 Behavior of homomorphisms ...
gsumwspan 18656 The submonoid generated by...
frmdval 18661 Value of the free monoid c...
frmdbas 18662 The base set of a free mon...
frmdelbas 18663 An element of the base set...
frmdplusg 18664 The monoid operation of a ...
frmdadd 18665 Value of the monoid operat...
vrmdfval 18666 The canonical injection fr...
vrmdval 18667 The value of the generatin...
vrmdf 18668 The mapping from the index...
frmdmnd 18669 A free monoid is a monoid....
frmd0 18670 The identity of the free m...
frmdsssubm 18671 The set of words taking va...
frmdgsum 18672 Any word in a free monoid ...
frmdss2 18673 A subset of generators is ...
frmdup1 18674 Any assignment of the gene...
frmdup2 18675 The evaluation map has the...
frmdup3lem 18676 Lemma for ~ frmdup3 . (Co...
frmdup3 18677 Universal property of the ...
efmnd 18680 The monoid of endofunction...
efmndbas 18681 The base set of the monoid...
efmndbasabf 18682 The base set of the monoid...
elefmndbas 18683 Two ways of saying a funct...
elefmndbas2 18684 Two ways of saying a funct...
efmndbasf 18685 Elements in the monoid of ...
efmndhash 18686 The monoid of endofunction...
efmndbasfi 18687 The monoid of endofunction...
efmndfv 18688 The function value of an e...
efmndtset 18689 The topology of the monoid...
efmndplusg 18690 The group operation of a m...
efmndov 18691 The value of the group ope...
efmndcl 18692 The group operation of the...
efmndtopn 18693 The topology of the monoid...
symggrplem 18694 Lemma for ~ symggrp and ~ ...
efmndmgm 18695 The monoid of endofunction...
efmndsgrp 18696 The monoid of endofunction...
ielefmnd 18697 The identity function rest...
efmndid 18698 The identity function rest...
efmndmnd 18699 The monoid of endofunction...
efmnd0nmnd 18700 Even the monoid of endofun...
efmndbas0 18701 The base set of the monoid...
efmnd1hash 18702 The monoid of endofunction...
efmnd1bas 18703 The monoid of endofunction...
efmnd2hash 18704 The monoid of endofunction...
submefmnd 18705 If the base set of a monoi...
sursubmefmnd 18706 The set of surjective endo...
injsubmefmnd 18707 The set of injective endof...
idressubmefmnd 18708 The singleton containing o...
idresefmnd 18709 The structure with the sin...
smndex1ibas 18710 The modulo function ` I ` ...
smndex1iidm 18711 The modulo function ` I ` ...
smndex1gbas 18712 The constant functions ` (...
smndex1gid 18713 The composition of a const...
smndex1igid 18714 The composition of the mod...
smndex1basss 18715 The modulo function ` I ` ...
smndex1bas 18716 The base set of the monoid...
smndex1mgm 18717 The monoid of endofunction...
smndex1sgrp 18718 The monoid of endofunction...
smndex1mndlem 18719 Lemma for ~ smndex1mnd and...
smndex1mnd 18720 The monoid of endofunction...
smndex1id 18721 The modulo function ` I ` ...
smndex1n0mnd 18722 The identity of the monoid...
nsmndex1 18723 The base set ` B ` of the ...
smndex2dbas 18724 The doubling function ` D ...
smndex2dnrinv 18725 The doubling function ` D ...
smndex2hbas 18726 The halving functions ` H ...
smndex2dlinvh 18727 The halving functions ` H ...
mgm2nsgrplem1 18728 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18729 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18730 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18731 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18732 A small magma (with two el...
sgrp2nmndlem1 18733 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18734 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18735 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18736 A small semigroup (with tw...
sgrp2rid2ex 18737 A small semigroup (with tw...
sgrp2nmndlem4 18738 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18739 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18740 A small semigroup (with tw...
mgmnsgrpex 18741 There is a magma which is ...
sgrpnmndex 18742 There is a semigroup which...
sgrpssmgm 18743 The class of all semigroup...
mndsssgrp 18744 The class of all monoids i...
pwmndgplus 18745 The operation of the monoi...
pwmndid 18746 The identity of the monoid...
pwmnd 18747 The power set of a class `...
isgrp 18754 The predicate "is a group"...
grpmnd 18755 A group is a monoid. (Con...
grpcl 18756 Closure of the operation o...
grpass 18757 A group operation is assoc...
grpinvex 18758 Every member of a group ha...
grpideu 18759 The two-sided identity ele...
grpmndd 18760 A group is a monoid. (Con...
grpcld 18761 Closure of the operation o...
grpplusf 18762 The group addition operati...
grpplusfo 18763 The group addition operati...
resgrpplusfrn 18764 The underlying set of a gr...
grppropd 18765 If two structures have the...
grpprop 18766 If two structures have the...
grppropstr 18767 Generalize a specific 2-el...
grpss 18768 Show that a structure exte...
isgrpd2e 18769 Deduce a group from its pr...
isgrpd2 18770 Deduce a group from its pr...
isgrpde 18771 Deduce a group from its pr...
isgrpd 18772 Deduce a group from its pr...
isgrpi 18773 Properties that determine ...
grpsgrp 18774 A group is a semigroup. (...
dfgrp2 18775 Alternate definition of a ...
dfgrp2e 18776 Alternate definition of a ...
isgrpix 18777 Properties that determine ...
grpidcl 18778 The identity element of a ...
grpbn0 18779 The base set of a group is...
grplid 18780 The identity element of a ...
grprid 18781 The identity element of a ...
grpn0 18782 A group is not empty. (Co...
hashfingrpnn 18783 A finite group has positiv...
grprcan 18784 Right cancellation law for...
grpinveu 18785 The left inverse element o...
grpid 18786 Two ways of saying that an...
isgrpid2 18787 Properties showing that an...
grpidd2 18788 Deduce the identity elemen...
grpinvfval 18789 The inverse function of a ...
grpinvfvalALT 18790 Shorter proof of ~ grpinvf...
grpinvval 18791 The inverse of a group ele...
grpinvfn 18792 Functionality of the group...
grpinvfvi 18793 The group inverse function...
grpsubfval 18794 Group subtraction (divisio...
grpsubfvalALT 18795 Shorter proof of ~ grpsubf...
grpsubval 18796 Group subtraction (divisio...
grpinvf 18797 The group inversion operat...
grpinvcl 18798 A group element's inverse ...
grpinvcld 18799 A group element's inverse ...
grplinv 18800 The left inverse of a grou...
grprinv 18801 The right inverse of a gro...
grpinvid1 18802 The inverse of a group ele...
grpinvid2 18803 The inverse of a group ele...
isgrpinv 18804 Properties showing that a ...
grplrinv 18805 In a group, every member h...
grpidinv2 18806 A group's properties using...
grpidinv 18807 A group has a left and rig...
grpinvid 18808 The inverse of the identit...
grplcan 18809 Left cancellation law for ...
grpasscan1 18810 An associative cancellatio...
grpasscan2 18811 An associative cancellatio...
grpidrcan 18812 If right adding an element...
grpidlcan 18813 If left adding an element ...
grpinvinv 18814 Double inverse law for gro...
grpinvcnv 18815 The group inverse is its o...
grpinv11 18816 The group inverse is one-t...
grpinvf1o 18817 The group inverse is a one...
grpinvnz 18818 The inverse of a nonzero g...
grpinvnzcl 18819 The inverse of a nonzero g...
grpsubinv 18820 Subtraction of an inverse....
grplmulf1o 18821 Left multiplication by a g...
grpinvpropd 18822 If two structures have the...
grpidssd 18823 If the base set of a group...
grpinvssd 18824 If the base set of a group...
grpinvadd 18825 The inverse of the group o...
grpsubf 18826 Functionality of group sub...
grpsubcl 18827 Closure of group subtracti...
grpsubrcan 18828 Right cancellation law for...
grpinvsub 18829 Inverse of a group subtrac...
grpinvval2 18830 A ~ df-neg -like equation ...
grpsubid 18831 Subtraction of a group ele...
grpsubid1 18832 Subtraction of the identit...
grpsubeq0 18833 If the difference between ...
grpsubadd0sub 18834 Subtraction expressed as a...
grpsubadd 18835 Relationship between group...
grpsubsub 18836 Double group subtraction. ...
grpaddsubass 18837 Associative-type law for g...
grppncan 18838 Cancellation law for subtr...
grpnpcan 18839 Cancellation law for subtr...
grpsubsub4 18840 Double group subtraction (...
grppnpcan2 18841 Cancellation law for mixed...
grpnpncan 18842 Cancellation law for group...
grpnpncan0 18843 Cancellation law for group...
grpnnncan2 18844 Cancellation law for group...
dfgrp3lem 18845 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18846 Alternate definition of a ...
dfgrp3e 18847 Alternate definition of a ...
grplactfval 18848 The left group action of e...
grplactval 18849 The value of the left grou...
grplactcnv 18850 The left group action of e...
grplactf1o 18851 The left group action of e...
grpsubpropd 18852 Weak property deduction fo...
grpsubpropd2 18853 Strong property deduction ...
grp1 18854 The (smallest) structure r...
grp1inv 18855 The inverse function of th...
prdsinvlem 18856 Characterization of invers...
prdsgrpd 18857 The product of a family of...
prdsinvgd 18858 Negation in a product of g...
pwsgrp 18859 A structure power of a gro...
pwsinvg 18860 Negation in a group power....
pwssub 18861 Subtraction in a group pow...
imasgrp2 18862 The image structure of a g...
imasgrp 18863 The image structure of a g...
imasgrpf1 18864 The image of a group under...
qusgrp2 18865 Prove that a quotient stru...
xpsgrp 18866 The binary product of grou...
mhmlem 18867 Lemma for ~ mhmmnd and ~ g...
mhmid 18868 A surjective monoid morphi...
mhmmnd 18869 The image of a monoid ` G ...
mhmfmhm 18870 The function fulfilling th...
ghmgrp 18871 The image of a group ` G `...
mulgfval 18874 Group multiple (exponentia...
mulgfvalALT 18875 Shorter proof of ~ mulgfva...
mulgval 18876 Value of the group multipl...
mulgfn 18877 Functionality of the group...
mulgfvi 18878 The group multiple operati...
mulg0 18879 Group multiple (exponentia...
mulgnn 18880 Group multiple (exponentia...
mulgnngsum 18881 Group multiple (exponentia...
mulgnn0gsum 18882 Group multiple (exponentia...
mulg1 18883 Group multiple (exponentia...
mulgnnp1 18884 Group multiple (exponentia...
mulg2 18885 Group multiple (exponentia...
mulgnegnn 18886 Group multiple (exponentia...
mulgnn0p1 18887 Group multiple (exponentia...
mulgnnsubcl 18888 Closure of the group multi...
mulgnn0subcl 18889 Closure of the group multi...
mulgsubcl 18890 Closure of the group multi...
mulgnncl 18891 Closure of the group multi...
mulgnn0cl 18892 Closure of the group multi...
mulgcl 18893 Closure of the group multi...
mulgneg 18894 Group multiple (exponentia...
mulgnegneg 18895 The inverse of a negative ...
mulgm1 18896 Group multiple (exponentia...
mulgnn0cld 18897 Closure of the group multi...
mulgcld 18898 Deduction associated with ...
mulgaddcomlem 18899 Lemma for ~ mulgaddcom . ...
mulgaddcom 18900 The group multiple operato...
mulginvcom 18901 The group multiple operato...
mulginvinv 18902 The group multiple operato...
mulgnn0z 18903 A group multiple of the id...
mulgz 18904 A group multiple of the id...
mulgnndir 18905 Sum of group multiples, fo...
mulgnn0dir 18906 Sum of group multiples, ge...
mulgdirlem 18907 Lemma for ~ mulgdir . (Co...
mulgdir 18908 Sum of group multiples, ge...
mulgp1 18909 Group multiple (exponentia...
mulgneg2 18910 Group multiple (exponentia...
mulgnnass 18911 Product of group multiples...
mulgnn0ass 18912 Product of group multiples...
mulgass 18913 Product of group multiples...
mulgassr 18914 Reversed product of group ...
mulgmodid 18915 Casting out multiples of t...
mulgsubdir 18916 Distribution of group mult...
mhmmulg 18917 A homomorphism of monoids ...
mulgpropd 18918 Two structures with the sa...
submmulgcl 18919 Closure of the group multi...
submmulg 18920 A group multiple is the sa...
pwsmulg 18921 Value of a group multiple ...
issubg 18928 The subgroup predicate. (...
subgss 18929 A subgroup is a subset. (...
subgid 18930 A group is a subgroup of i...
subggrp 18931 A subgroup is a group. (C...
subgbas 18932 The base of the restricted...
subgrcl 18933 Reverse closure for the su...
subg0 18934 A subgroup of a group must...
subginv 18935 The inverse of an element ...
subg0cl 18936 The group identity is an e...
subginvcl 18937 The inverse of an element ...
subgcl 18938 A subgroup is closed under...
subgsubcl 18939 A subgroup is closed under...
subgsub 18940 The subtraction of element...
subgmulgcl 18941 Closure of the group multi...
subgmulg 18942 A group multiple is the sa...
issubg2 18943 Characterize the subgroups...
issubgrpd2 18944 Prove a subgroup by closur...
issubgrpd 18945 Prove a subgroup by closur...
issubg3 18946 A subgroup is a symmetric ...
issubg4 18947 A subgroup is a nonempty s...
grpissubg 18948 If the base set of a group...
resgrpisgrp 18949 If the base set of a group...
subgsubm 18950 A subgroup is a submonoid....
subsubg 18951 A subgroup of a subgroup i...
subgint 18952 The intersection of a none...
0subg 18953 The zero subgroup of an ar...
0subgOLD 18954 Obsolete version of ~ 0sub...
trivsubgd 18955 The only subgroup of a tri...
trivsubgsnd 18956 The only subgroup of a tri...
isnsg 18957 Property of being a normal...
isnsg2 18958 Weaken the condition of ~ ...
nsgbi 18959 Defining property of a nor...
nsgsubg 18960 A normal subgroup is a sub...
nsgconj 18961 The conjugation of an elem...
isnsg3 18962 A subgroup is normal iff t...
subgacs 18963 Subgroups are an algebraic...
nsgacs 18964 Normal subgroups form an a...
elnmz 18965 Elementhood in the normali...
nmzbi 18966 Defining property of the n...
nmzsubg 18967 The normalizer N_G(S) of a...
ssnmz 18968 A subgroup is a subset of ...
isnsg4 18969 A subgroup is normal iff i...
nmznsg 18970 Any subgroup is a normal s...
0nsg 18971 The zero subgroup is norma...
nsgid 18972 The whole group is a norma...
0idnsgd 18973 The whole group and the ze...
trivnsgd 18974 The only normal subgroup o...
triv1nsgd 18975 A trivial group has exactl...
1nsgtrivd 18976 A group with exactly one n...
releqg 18977 The left coset equivalence...
eqgfval 18978 Value of the subgroup left...
eqgval 18979 Value of the subgroup left...
eqger 18980 The subgroup coset equival...
eqglact 18981 A left coset can be expres...
eqgid 18982 The left coset containing ...
eqgen 18983 Each coset is equipotent t...
eqgcpbl 18984 The subgroup coset equival...
qusgrp 18985 If ` Y ` is a normal subgr...
quseccl 18986 Closure of the quotient ma...
qusadd 18987 Value of the group operati...
qus0 18988 Value of the group identit...
qusinv 18989 Value of the group inverse...
qussub 18990 Value of the group subtrac...
lagsubg2 18991 Lagrange's theorem for fin...
lagsubg 18992 Lagrange's theorem for Gro...
cycsubmel 18993 Characterization of an ele...
cycsubmcl 18994 The set of nonnegative int...
cycsubm 18995 The set of nonnegative int...
cyccom 18996 Condition for an operation...
cycsubmcom 18997 The operation of a monoid ...
cycsubggend 18998 The cyclic subgroup genera...
cycsubgcl 18999 The set of integer powers ...
cycsubgss 19000 The cyclic subgroup genera...
cycsubg 19001 The cyclic group generated...
cycsubgcld 19002 The cyclic subgroup genera...
cycsubg2 19003 The subgroup generated by ...
cycsubg2cl 19004 Any multiple of an element...
reldmghm 19007 Lemma for group homomorphi...
isghm 19008 Property of being a homomo...
isghm3 19009 Property of a group homomo...
ghmgrp1 19010 A group homomorphism is on...
ghmgrp2 19011 A group homomorphism is on...
ghmf 19012 A group homomorphism is a ...
ghmlin 19013 A homomorphism of groups i...
ghmid 19014 A homomorphism of groups p...
ghminv 19015 A homomorphism of groups p...
ghmsub 19016 Linearity of subtraction t...
isghmd 19017 Deduction for a group homo...
ghmmhm 19018 A group homomorphism is a ...
ghmmhmb 19019 Group homomorphisms and mo...
ghmmulg 19020 A homomorphism of monoids ...
ghmrn 19021 The range of a homomorphis...
0ghm 19022 The constant zero linear f...
idghm 19023 The identity homomorphism ...
resghm 19024 Restriction of a homomorph...
resghm2 19025 One direction of ~ resghm2...
resghm2b 19026 Restriction of the codomai...
ghmghmrn 19027 A group homomorphism from ...
ghmco 19028 The composition of group h...
ghmima 19029 The image of a subgroup un...
ghmpreima 19030 The inverse image of a sub...
ghmeql 19031 The equalizer of two group...
ghmnsgima 19032 The image of a normal subg...
ghmnsgpreima 19033 The inverse image of a nor...
ghmker 19034 The kernel of a homomorphi...
ghmeqker 19035 Two source points map to t...
pwsdiagghm 19036 Diagonal homomorphism into...
ghmf1 19037 Two ways of saying a group...
ghmf1o 19038 A bijective group homomorp...
conjghm 19039 Conjugation is an automorp...
conjsubg 19040 A conjugated subgroup is a...
conjsubgen 19041 A conjugated subgroup is e...
conjnmz 19042 A subgroup is unchanged un...
conjnmzb 19043 Alternative condition for ...
conjnsg 19044 A normal subgroup is uncha...
qusghm 19045 If ` Y ` is a normal subgr...
ghmpropd 19046 Group homomorphism depends...
gimfn 19051 The group isomorphism func...
isgim 19052 An isomorphism of groups i...
gimf1o 19053 An isomorphism of groups i...
gimghm 19054 An isomorphism of groups i...
isgim2 19055 A group isomorphism is a h...
subggim 19056 Behavior of subgroups unde...
gimcnv 19057 The converse of a bijectiv...
gimco 19058 The composition of group i...
brgic 19059 The relation "is isomorphi...
brgici 19060 Prove isomorphic by an exp...
gicref 19061 Isomorphism is reflexive. ...
giclcl 19062 Isomorphism implies the le...
gicrcl 19063 Isomorphism implies the ri...
gicsym 19064 Isomorphism is symmetric. ...
gictr 19065 Isomorphism is transitive....
gicer 19066 Isomorphism is an equivale...
gicen 19067 Isomorphic groups have equ...
gicsubgen 19068 A less trivial example of ...
isga 19071 The predicate "is a (left)...
gagrp 19072 The left argument of a gro...
gaset 19073 The right argument of a gr...
gagrpid 19074 The identity of the group ...
gaf 19075 The mapping of the group a...
gafo 19076 A group action is onto its...
gaass 19077 An "associative" property ...
ga0 19078 The action of a group on t...
gaid 19079 The trivial action of a gr...
subgga 19080 A subgroup acts on its par...
gass 19081 A subset of a group action...
gasubg 19082 The restriction of a group...
gaid2 19083 A group operation is a lef...
galcan 19084 The action of a particular...
gacan 19085 Group inverses cancel in a...
gapm 19086 The action of a particular...
gaorb 19087 The orbit equivalence rela...
gaorber 19088 The orbit equivalence rela...
gastacl 19089 The stabilizer subgroup in...
gastacos 19090 Write the coset relation f...
orbstafun 19091 Existence and uniqueness f...
orbstaval 19092 Value of the function at a...
orbsta 19093 The Orbit-Stabilizer theor...
orbsta2 19094 Relation between the size ...
cntrval 19099 Substitute definition of t...
cntzfval 19100 First level substitution f...
cntzval 19101 Definition substitution fo...
elcntz 19102 Elementhood in the central...
cntzel 19103 Membership in a centralize...
cntzsnval 19104 Special substitution for t...
elcntzsn 19105 Value of the centralizer o...
sscntz 19106 A centralizer expression f...
cntzrcl 19107 Reverse closure for elemen...
cntzssv 19108 The centralizer is uncondi...
cntzi 19109 Membership in a centralize...
cntrss 19110 The center is a subset of ...
cntri 19111 Defining property of the c...
resscntz 19112 Centralizer in a substruct...
cntz2ss 19113 Centralizers reverse the s...
cntzrec 19114 Reciprocity relationship f...
cntziinsn 19115 Express any centralizer as...
cntzsubm 19116 Centralizers in a monoid a...
cntzsubg 19117 Centralizers in a group ar...
cntzidss 19118 If the elements of ` S ` c...
cntzmhm 19119 Centralizers in a monoid a...
cntzmhm2 19120 Centralizers in a monoid a...
cntrsubgnsg 19121 A central subgroup is norm...
cntrnsg 19122 The center of a group is a...
oppgval 19125 Value of the opposite grou...
oppgplusfval 19126 Value of the addition oper...
oppgplus 19127 Value of the addition oper...
setsplusg 19128 The other components of an...
oppglemOLD 19129 Obsolete version of ~ sets...
oppgbas 19130 Base set of an opposite gr...
oppgbasOLD 19131 Obsolete version of ~ oppg...
oppgtset 19132 Topology of an opposite gr...
oppgtsetOLD 19133 Obsolete version of ~ oppg...
oppgtopn 19134 Topology of an opposite gr...
oppgmnd 19135 The opposite of a monoid i...
oppgmndb 19136 Bidirectional form of ~ op...
oppgid 19137 Zero in a monoid is a symm...
oppggrp 19138 The opposite of a group is...
oppggrpb 19139 Bidirectional form of ~ op...
oppginv 19140 Inverses in a group are a ...
invoppggim 19141 The inverse is an antiauto...
oppggic 19142 Every group is (naturally)...
oppgsubm 19143 Being a submonoid is a sym...
oppgsubg 19144 Being a subgroup is a symm...
oppgcntz 19145 A centralizer in a group i...
oppgcntr 19146 The center of a group is t...
gsumwrev 19147 A sum in an opposite monoi...
symgval 19150 The value of the symmetric...
permsetexOLD 19151 Obsolete version of ~ f1os...
symgbas 19152 The base set of the symmet...
symgbasexOLD 19153 Obsolete as of 8-Aug-2024....
elsymgbas2 19154 Two ways of saying a funct...
elsymgbas 19155 Two ways of saying a funct...
symgbasf1o 19156 Elements in the symmetric ...
symgbasf 19157 A permutation (element of ...
symgbasmap 19158 A permutation (element of ...
symghash 19159 The symmetric group on ` n...
symgbasfi 19160 The symmetric group on a f...
symgfv 19161 The function value of a pe...
symgfvne 19162 The function values of a p...
symgressbas 19163 The symmetric group on ` A...
symgplusg 19164 The group operation of a s...
symgov 19165 The value of the group ope...
symgcl 19166 The group operation of the...
idresperm 19167 The identity function rest...
symgmov1 19168 For a permutation of a set...
symgmov2 19169 For a permutation of a set...
symgbas0 19170 The base set of the symmet...
symg1hash 19171 The symmetric group on a s...
symg1bas 19172 The symmetric group on a s...
symg2hash 19173 The symmetric group on a (...
symg2bas 19174 The symmetric group on a p...
0symgefmndeq 19175 The symmetric group on the...
snsymgefmndeq 19176 The symmetric group on a s...
symgpssefmnd 19177 For a set ` A ` with more ...
symgvalstruct 19178 The value of the symmetric...
symgvalstructOLD 19179 Obsolete proof of ~ symgva...
symgsubmefmnd 19180 The symmetric group on a s...
symgtset 19181 The topology of the symmet...
symggrp 19182 The symmetric group on a s...
symgid 19183 The group identity element...
symginv 19184 The group inverse in the s...
symgsubmefmndALT 19185 The symmetric group on a s...
galactghm 19186 The currying of a group ac...
lactghmga 19187 The converse of ~ galactgh...
symgtopn 19188 The topology of the symmet...
symgga 19189 The symmetric group induce...
pgrpsubgsymgbi 19190 Every permutation group is...
pgrpsubgsymg 19191 Every permutation group is...
idressubgsymg 19192 The singleton containing o...
idrespermg 19193 The structure with the sin...
cayleylem1 19194 Lemma for ~ cayley . (Con...
cayleylem2 19195 Lemma for ~ cayley . (Con...
cayley 19196 Cayley's Theorem (construc...
cayleyth 19197 Cayley's Theorem (existenc...
symgfix2 19198 If a permutation does not ...
symgextf 19199 The extension of a permuta...
symgextfv 19200 The function value of the ...
symgextfve 19201 The function value of the ...
symgextf1lem 19202 Lemma for ~ symgextf1 . (...
symgextf1 19203 The extension of a permuta...
symgextfo 19204 The extension of a permuta...
symgextf1o 19205 The extension of a permuta...
symgextsymg 19206 The extension of a permuta...
symgextres 19207 The restriction of the ext...
gsumccatsymgsn 19208 Homomorphic property of co...
gsmsymgrfixlem1 19209 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 19210 The composition of permuta...
fvcosymgeq 19211 The values of two composit...
gsmsymgreqlem1 19212 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 19213 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 19214 Two combination of permuta...
symgfixelq 19215 A permutation of a set fix...
symgfixels 19216 The restriction of a permu...
symgfixelsi 19217 The restriction of a permu...
symgfixf 19218 The mapping of a permutati...
symgfixf1 19219 The mapping of a permutati...
symgfixfolem1 19220 Lemma 1 for ~ symgfixfo . ...
symgfixfo 19221 The mapping of a permutati...
symgfixf1o 19222 The mapping of a permutati...
f1omvdmvd 19225 A permutation of any class...
f1omvdcnv 19226 A permutation and its inve...
mvdco 19227 Composing two permutations...
f1omvdconj 19228 Conjugation of a permutati...
f1otrspeq 19229 A transposition is charact...
f1omvdco2 19230 If exactly one of two perm...
f1omvdco3 19231 If a point is moved by exa...
pmtrfval 19232 The function generating tr...
pmtrval 19233 A generated transposition,...
pmtrfv 19234 General value of mapping a...
pmtrprfv 19235 In a transposition of two ...
pmtrprfv3 19236 In a transposition of two ...
pmtrf 19237 Functionality of a transpo...
pmtrmvd 19238 A transposition moves prec...
pmtrrn 19239 Transposing two points giv...
pmtrfrn 19240 A transposition (as a kind...
pmtrffv 19241 Mapping of a point under a...
pmtrrn2 19242 For any transposition ther...
pmtrfinv 19243 A transposition function i...
pmtrfmvdn0 19244 A transposition moves at l...
pmtrff1o 19245 A transposition function i...
pmtrfcnv 19246 A transposition function i...
pmtrfb 19247 An intrinsic characterizat...
pmtrfconj 19248 Any conjugate of a transpo...
symgsssg 19249 The symmetric group has su...
symgfisg 19250 The symmetric group has a ...
symgtrf 19251 Transpositions are element...
symggen 19252 The span of the transposit...
symggen2 19253 A finite permutation group...
symgtrinv 19254 To invert a permutation re...
pmtr3ncomlem1 19255 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 19256 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 19257 Transpositions over sets w...
pmtrdifellem1 19258 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19259 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19260 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19261 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19262 A transposition of element...
pmtrdifwrdellem1 19263 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19264 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19265 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19266 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19267 A sequence of transpositio...
pmtrdifwrdel2 19268 A sequence of transpositio...
pmtrprfval 19269 The transpositions on a pa...
pmtrprfvalrn 19270 The range of the transposi...
psgnunilem1 19275 Lemma for ~ psgnuni . Giv...
psgnunilem5 19276 Lemma for ~ psgnuni . It ...
psgnunilem2 19277 Lemma for ~ psgnuni . Ind...
psgnunilem3 19278 Lemma for ~ psgnuni . Any...
psgnunilem4 19279 Lemma for ~ psgnuni . An ...
m1expaddsub 19280 Addition and subtraction o...
psgnuni 19281 If the same permutation ca...
psgnfval 19282 Function definition of the...
psgnfn 19283 Functionality and domain o...
psgndmsubg 19284 The finitary permutations ...
psgneldm 19285 Property of being a finita...
psgneldm2 19286 The finitary permutations ...
psgneldm2i 19287 A sequence of transpositio...
psgneu 19288 A finitary permutation has...
psgnval 19289 Value of the permutation s...
psgnvali 19290 A finitary permutation has...
psgnvalii 19291 Any representation of a pe...
psgnpmtr 19292 All transpositions are odd...
psgn0fv0 19293 The permutation sign funct...
sygbasnfpfi 19294 The class of non-fixed poi...
psgnfvalfi 19295 Function definition of the...
psgnvalfi 19296 Value of the permutation s...
psgnran 19297 The range of the permutati...
gsmtrcl 19298 The group sum of transposi...
psgnfitr 19299 A permutation of a finite ...
psgnfieu 19300 A permutation of a finite ...
pmtrsn 19301 The value of the transposi...
psgnsn 19302 The permutation sign funct...
psgnprfval 19303 The permutation sign funct...
psgnprfval1 19304 The permutation sign of th...
psgnprfval2 19305 The permutation sign of th...
odfval 19314 Value of the order functio...
odfvalALT 19315 Shorter proof of ~ odfval ...
odval 19316 Second substitution for th...
odlem1 19317 The group element order is...
odcl 19318 The order of a group eleme...
odf 19319 Functionality of the group...
odid 19320 Any element to the power o...
odlem2 19321 Any positive annihilator o...
odmodnn0 19322 Reduce the argument of a g...
mndodconglem 19323 Lemma for ~ mndodcong . (...
mndodcong 19324 If two multipliers are con...
mndodcongi 19325 If two multipliers are con...
oddvdsnn0 19326 The only multiples of ` A ...
odnncl 19327 If a nonzero multiple of a...
odmod 19328 Reduce the argument of a g...
oddvds 19329 The only multiples of ` A ...
oddvdsi 19330 Any group element is annih...
odcong 19331 If two multipliers are con...
odeq 19332 The ~ oddvds property uniq...
odval2 19333 A non-conditional definiti...
odcld 19334 The order of a group eleme...
odm1inv 19335 The (order-1)th multiple o...
odmulgid 19336 A relationship between the...
odmulg2 19337 The order of a multiple di...
odmulg 19338 Relationship between the o...
odmulgeq 19339 A multiple of a point of f...
odbezout 19340 If ` N ` is coprime to the...
od1 19341 The order of the group ide...
odeq1 19342 The group identity is the ...
odinv 19343 The order of the inverse o...
odf1 19344 The multiples of an elemen...
odinf 19345 The multiples of an elemen...
dfod2 19346 An alternative definition ...
odcl2 19347 The order of an element of...
oddvds2 19348 The order of an element of...
finodsubmsubg 19349 A submonoid whose elements...
0subgALT 19350 A shorter proof of ~ 0subg...
submod 19351 The order of an element is...
subgod 19352 The order of an element is...
odsubdvds 19353 The order of an element of...
odf1o1 19354 An element with zero order...
odf1o2 19355 An element with nonzero or...
odhash 19356 An element of zero order g...
odhash2 19357 If an element has nonzero ...
odhash3 19358 An element which generates...
odngen 19359 A cyclic subgroup of size ...
gexval 19360 Value of the exponent of a...
gexlem1 19361 The group element order is...
gexcl 19362 The exponent of a group is...
gexid 19363 Any element to the power o...
gexlem2 19364 Any positive annihilator o...
gexdvdsi 19365 Any group element is annih...
gexdvds 19366 The only ` N ` that annihi...
gexdvds2 19367 An integer divides the gro...
gexod 19368 Any group element is annih...
gexcl3 19369 If the order of every grou...
gexnnod 19370 Every group element has fi...
gexcl2 19371 The exponent of a finite g...
gexdvds3 19372 The exponent of a finite g...
gex1 19373 A group or monoid has expo...
ispgp 19374 A group is a ` P ` -group ...
pgpprm 19375 Reverse closure for the fi...
pgpgrp 19376 Reverse closure for the se...
pgpfi1 19377 A finite group with order ...
pgp0 19378 The identity subgroup is a...
subgpgp 19379 A subgroup of a p-group is...
sylow1lem1 19380 Lemma for ~ sylow1 . The ...
sylow1lem2 19381 Lemma for ~ sylow1 . The ...
sylow1lem3 19382 Lemma for ~ sylow1 . One ...
sylow1lem4 19383 Lemma for ~ sylow1 . The ...
sylow1lem5 19384 Lemma for ~ sylow1 . Usin...
sylow1 19385 Sylow's first theorem. If...
odcau 19386 Cauchy's theorem for the o...
pgpfi 19387 The converse to ~ pgpfi1 ....
pgpfi2 19388 Alternate version of ~ pgp...
pgphash 19389 The order of a p-group. (...
isslw 19390 The property of being a Sy...
slwprm 19391 Reverse closure for the fi...
slwsubg 19392 A Sylow ` P ` -subgroup is...
slwispgp 19393 Defining property of a Syl...
slwpss 19394 A proper superset of a Syl...
slwpgp 19395 A Sylow ` P ` -subgroup is...
pgpssslw 19396 Every ` P ` -subgroup is c...
slwn0 19397 Every finite group contain...
subgslw 19398 A Sylow subgroup that is c...
sylow2alem1 19399 Lemma for ~ sylow2a . An ...
sylow2alem2 19400 Lemma for ~ sylow2a . All...
sylow2a 19401 A named lemma of Sylow's s...
sylow2blem1 19402 Lemma for ~ sylow2b . Eva...
sylow2blem2 19403 Lemma for ~ sylow2b . Lef...
sylow2blem3 19404 Sylow's second theorem. P...
sylow2b 19405 Sylow's second theorem. A...
slwhash 19406 A sylow subgroup has cardi...
fislw 19407 The sylow subgroups of a f...
sylow2 19408 Sylow's second theorem. S...
sylow3lem1 19409 Lemma for ~ sylow3 , first...
sylow3lem2 19410 Lemma for ~ sylow3 , first...
sylow3lem3 19411 Lemma for ~ sylow3 , first...
sylow3lem4 19412 Lemma for ~ sylow3 , first...
sylow3lem5 19413 Lemma for ~ sylow3 , secon...
sylow3lem6 19414 Lemma for ~ sylow3 , secon...
sylow3 19415 Sylow's third theorem. Th...
lsmfval 19420 The subgroup sum function ...
lsmvalx 19421 Subspace sum value (for a ...
lsmelvalx 19422 Subspace sum membership (f...
lsmelvalix 19423 Subspace sum membership (f...
oppglsm 19424 The subspace sum operation...
lsmssv 19425 Subgroup sum is a subset o...
lsmless1x 19426 Subset implies subgroup su...
lsmless2x 19427 Subset implies subgroup su...
lsmub1x 19428 Subgroup sum is an upper b...
lsmub2x 19429 Subgroup sum is an upper b...
lsmval 19430 Subgroup sum value (for a ...
lsmelval 19431 Subgroup sum membership (f...
lsmelvali 19432 Subgroup sum membership (f...
lsmelvalm 19433 Subgroup sum membership an...
lsmelvalmi 19434 Membership of vector subtr...
lsmsubm 19435 The sum of two commuting s...
lsmsubg 19436 The sum of two commuting s...
lsmcom2 19437 Subgroup sum commutes. (C...
smndlsmidm 19438 The direct product is idem...
lsmub1 19439 Subgroup sum is an upper b...
lsmub2 19440 Subgroup sum is an upper b...
lsmunss 19441 Union of subgroups is a su...
lsmless1 19442 Subset implies subgroup su...
lsmless2 19443 Subset implies subgroup su...
lsmless12 19444 Subset implies subgroup su...
lsmidm 19445 Subgroup sum is idempotent...
lsmlub 19446 The least upper bound prop...
lsmss1 19447 Subgroup sum with a subset...
lsmss1b 19448 Subgroup sum with a subset...
lsmss2 19449 Subgroup sum with a subset...
lsmss2b 19450 Subgroup sum with a subset...
lsmass 19451 Subgroup sum is associativ...
mndlsmidm 19452 Subgroup sum is idempotent...
lsm01 19453 Subgroup sum with the zero...
lsm02 19454 Subgroup sum with the zero...
subglsm 19455 The subgroup sum evaluated...
lssnle 19456 Equivalent expressions for...
lsmmod 19457 The modular law holds for ...
lsmmod2 19458 Modular law dual for subgr...
lsmpropd 19459 If two structures have the...
cntzrecd 19460 Commute the "subgroups com...
lsmcntz 19461 The "subgroups commute" pr...
lsmcntzr 19462 The "subgroups commute" pr...
lsmdisj 19463 Disjointness from a subgro...
lsmdisj2 19464 Association of the disjoin...
lsmdisj3 19465 Association of the disjoin...
lsmdisjr 19466 Disjointness from a subgro...
lsmdisj2r 19467 Association of the disjoin...
lsmdisj3r 19468 Association of the disjoin...
lsmdisj2a 19469 Association of the disjoin...
lsmdisj2b 19470 Association of the disjoin...
lsmdisj3a 19471 Association of the disjoin...
lsmdisj3b 19472 Association of the disjoin...
subgdisj1 19473 Vectors belonging to disjo...
subgdisj2 19474 Vectors belonging to disjo...
subgdisjb 19475 Vectors belonging to disjo...
pj1fval 19476 The left projection functi...
pj1val 19477 The left projection functi...
pj1eu 19478 Uniqueness of a left proje...
pj1f 19479 The left projection functi...
pj2f 19480 The right projection funct...
pj1id 19481 Any element of a direct su...
pj1eq 19482 Any element of a direct su...
pj1lid 19483 The left projection functi...
pj1rid 19484 The left projection functi...
pj1ghm 19485 The left projection functi...
pj1ghm2 19486 The left projection functi...
lsmhash 19487 The order of the direct pr...
efgmval 19494 Value of the formal invers...
efgmf 19495 The formal inverse operati...
efgmnvl 19496 The inversion function on ...
efgrcl 19497 Lemma for ~ efgval . (Con...
efglem 19498 Lemma for ~ efgval . (Con...
efgval 19499 Value of the free group co...
efger 19500 Value of the free group co...
efgi 19501 Value of the free group co...
efgi0 19502 Value of the free group co...
efgi1 19503 Value of the free group co...
efgtf 19504 Value of the free group co...
efgtval 19505 Value of the extension fun...
efgval2 19506 Value of the free group co...
efgi2 19507 Value of the free group co...
efgtlen 19508 Value of the free group co...
efginvrel2 19509 The inverse of the reverse...
efginvrel1 19510 The inverse of the reverse...
efgsf 19511 Value of the auxiliary fun...
efgsdm 19512 Elementhood in the domain ...
efgsval 19513 Value of the auxiliary fun...
efgsdmi 19514 Property of the last link ...
efgsval2 19515 Value of the auxiliary fun...
efgsrel 19516 The start and end of any e...
efgs1 19517 A singleton of an irreduci...
efgs1b 19518 Every extension sequence e...
efgsp1 19519 If ` F ` is an extension s...
efgsres 19520 An initial segment of an e...
efgsfo 19521 For any word, there is a s...
efgredlema 19522 The reduced word that form...
efgredlemf 19523 Lemma for ~ efgredleme . ...
efgredlemg 19524 Lemma for ~ efgred . (Con...
efgredleme 19525 Lemma for ~ efgred . (Con...
efgredlemd 19526 The reduced word that form...
efgredlemc 19527 The reduced word that form...
efgredlemb 19528 The reduced word that form...
efgredlem 19529 The reduced word that form...
efgred 19530 The reduced word that form...
efgrelexlema 19531 If two words ` A , B ` are...
efgrelexlemb 19532 If two words ` A , B ` are...
efgrelex 19533 If two words ` A , B ` are...
efgredeu 19534 There is a unique reduced ...
efgred2 19535 Two extension sequences ha...
efgcpbllema 19536 Lemma for ~ efgrelex . De...
efgcpbllemb 19537 Lemma for ~ efgrelex . Sh...
efgcpbl 19538 Two extension sequences ha...
efgcpbl2 19539 Two extension sequences ha...
frgpval 19540 Value of the free group co...
frgpcpbl 19541 Compatibility of the group...
frgp0 19542 The free group is a group....
frgpeccl 19543 Closure of the quotient ma...
frgpgrp 19544 The free group is a group....
frgpadd 19545 Addition in the free group...
frgpinv 19546 The inverse of an element ...
frgpmhm 19547 The "natural map" from wor...
vrgpfval 19548 The canonical injection fr...
vrgpval 19549 The value of the generatin...
vrgpf 19550 The mapping from the index...
vrgpinv 19551 The inverse of a generatin...
frgpuptf 19552 Any assignment of the gene...
frgpuptinv 19553 Any assignment of the gene...
frgpuplem 19554 Any assignment of the gene...
frgpupf 19555 Any assignment of the gene...
frgpupval 19556 Any assignment of the gene...
frgpup1 19557 Any assignment of the gene...
frgpup2 19558 The evaluation map has the...
frgpup3lem 19559 The evaluation map has the...
frgpup3 19560 Universal property of the ...
0frgp 19561 The free group on zero gen...
isabl 19566 The predicate "is an Abeli...
ablgrp 19567 An Abelian group is a grou...
ablgrpd 19568 An Abelian group is a grou...
ablcmn 19569 An Abelian group is a comm...
ablcmnd 19570 An Abelian group is a comm...
iscmn 19571 The predicate "is a commut...
isabl2 19572 The predicate "is an Abeli...
cmnpropd 19573 If two structures have the...
ablpropd 19574 If two structures have the...
ablprop 19575 If two structures have the...
iscmnd 19576 Properties that determine ...
isabld 19577 Properties that determine ...
isabli 19578 Properties that determine ...
cmnmnd 19579 A commutative monoid is a ...
cmncom 19580 A commutative monoid is co...
ablcom 19581 An Abelian group operation...
cmn32 19582 Commutative/associative la...
cmn4 19583 Commutative/associative la...
cmn12 19584 Commutative/associative la...
abl32 19585 Commutative/associative la...
cmnmndd 19586 A commutative monoid is a ...
rinvmod 19587 Uniqueness of a right inve...
ablinvadd 19588 The inverse of an Abelian ...
ablsub2inv 19589 Abelian group subtraction ...
ablsubadd 19590 Relationship between Abeli...
ablsub4 19591 Commutative/associative su...
abladdsub4 19592 Abelian group addition/sub...
abladdsub 19593 Associative-type law for g...
ablpncan2 19594 Cancellation law for subtr...
ablpncan3 19595 A cancellation law for Abe...
ablsubsub 19596 Law for double subtraction...
ablsubsub4 19597 Law for double subtraction...
ablpnpcan 19598 Cancellation law for mixed...
ablnncan 19599 Cancellation law for group...
ablsub32 19600 Swap the second and third ...
ablnnncan 19601 Cancellation law for group...
ablnnncan1 19602 Cancellation law for group...
ablsubsub23 19603 Swap subtrahend and result...
mulgnn0di 19604 Group multiple of a sum, f...
mulgdi 19605 Group multiple of a sum. ...
mulgmhm 19606 The map from ` x ` to ` n ...
mulgghm 19607 The map from ` x ` to ` n ...
mulgsubdi 19608 Group multiple of a differ...
ghmfghm 19609 The function fulfilling th...
ghmcmn 19610 The image of a commutative...
ghmabl 19611 The image of an abelian gr...
invghm 19612 The inversion map is a gro...
eqgabl 19613 Value of the subgroup cose...
subgabl 19614 A subgroup of an abelian g...
subcmn 19615 A submonoid of a commutati...
submcmn 19616 A submonoid of a commutati...
submcmn2 19617 A submonoid is commutative...
cntzcmn 19618 The centralizer of any sub...
cntzcmnss 19619 Any subset in a commutativ...
cntrcmnd 19620 The center of a monoid is ...
cntrabl 19621 The center of a group is a...
cntzspan 19622 If the generators commute,...
cntzcmnf 19623 Discharge the centralizer ...
ghmplusg 19624 The pointwise sum of two l...
ablnsg 19625 Every subgroup of an abeli...
odadd1 19626 The order of a product in ...
odadd2 19627 The order of a product in ...
odadd 19628 The order of a product is ...
gex2abl 19629 A group with exponent 2 (o...
gexexlem 19630 Lemma for ~ gexex . (Cont...
gexex 19631 In an abelian group with f...
torsubg 19632 The set of all elements of...
oddvdssubg 19633 The set of all elements wh...
lsmcomx 19634 Subgroup sum commutes (ext...
ablcntzd 19635 All subgroups in an abelia...
lsmcom 19636 Subgroup sum commutes. (C...
lsmsubg2 19637 The sum of two subgroups i...
lsm4 19638 Commutative/associative la...
prdscmnd 19639 The product of a family of...
prdsabld 19640 The product of a family of...
pwscmn 19641 The structure power on a c...
pwsabl 19642 The structure power on an ...
qusabl 19643 If ` Y ` is a subgroup of ...
abl1 19644 The (smallest) structure r...
abln0 19645 Abelian groups (and theref...
cnaddablx 19646 The complex numbers are an...
cnaddabl 19647 The complex numbers are an...
cnaddid 19648 The group identity element...
cnaddinv 19649 Value of the group inverse...
zaddablx 19650 The integers are an Abelia...
frgpnabllem1 19651 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19652 Lemma for ~ frgpnabl . (C...
frgpnabl 19653 The free group on two or m...
iscyg 19656 Definition of a cyclic gro...
iscyggen 19657 The property of being a cy...
iscyggen2 19658 The property of being a cy...
iscyg2 19659 A cyclic group is a group ...
cyggeninv 19660 The inverse of a cyclic ge...
cyggenod 19661 An element is the generato...
cyggenod2 19662 In an infinite cyclic grou...
iscyg3 19663 Definition of a cyclic gro...
iscygd 19664 Definition of a cyclic gro...
iscygodd 19665 Show that a group with an ...
cycsubmcmn 19666 The set of nonnegative int...
cyggrp 19667 A cyclic group is a group....
cygabl 19668 A cyclic group is abelian....
cygctb 19669 A cyclic group is countabl...
0cyg 19670 The trivial group is cycli...
prmcyg 19671 A group with prime order i...
lt6abl 19672 A group with fewer than ` ...
ghmcyg 19673 The image of a cyclic grou...
cyggex2 19674 The exponent of a cyclic g...
cyggex 19675 The exponent of a finite c...
cyggexb 19676 A finite abelian group is ...
giccyg 19677 Cyclicity is a group prope...
cycsubgcyg 19678 The cyclic subgroup genera...
cycsubgcyg2 19679 The cyclic subgroup genera...
gsumval3a 19680 Value of the group sum ope...
gsumval3eu 19681 The group sum as defined i...
gsumval3lem1 19682 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19683 Lemma 2 for ~ gsumval3 . ...
gsumval3 19684 Value of the group sum ope...
gsumcllem 19685 Lemma for ~ gsumcl and rel...
gsumzres 19686 Extend a finite group sum ...
gsumzcl2 19687 Closure of a finite group ...
gsumzcl 19688 Closure of a finite group ...
gsumzf1o 19689 Re-index a finite group su...
gsumres 19690 Extend a finite group sum ...
gsumcl2 19691 Closure of a finite group ...
gsumcl 19692 Closure of a finite group ...
gsumf1o 19693 Re-index a finite group su...
gsumreidx 19694 Re-index a finite group su...
gsumzsubmcl 19695 Closure of a group sum in ...
gsumsubmcl 19696 Closure of a group sum in ...
gsumsubgcl 19697 Closure of a group sum in ...
gsumzaddlem 19698 The sum of two group sums....
gsumzadd 19699 The sum of two group sums....
gsumadd 19700 The sum of two group sums....
gsummptfsadd 19701 The sum of two group sums ...
gsummptfidmadd 19702 The sum of two group sums ...
gsummptfidmadd2 19703 The sum of two group sums ...
gsumzsplit 19704 Split a group sum into two...
gsumsplit 19705 Split a group sum into two...
gsumsplit2 19706 Split a group sum into two...
gsummptfidmsplit 19707 Split a group sum expresse...
gsummptfidmsplitres 19708 Split a group sum expresse...
gsummptfzsplit 19709 Split a group sum expresse...
gsummptfzsplitl 19710 Split a group sum expresse...
gsumconst 19711 Sum of a constant series. ...
gsumconstf 19712 Sum of a constant series. ...
gsummptshft 19713 Index shift of a finite gr...
gsumzmhm 19714 Apply a group homomorphism...
gsummhm 19715 Apply a group homomorphism...
gsummhm2 19716 Apply a group homomorphism...
gsummptmhm 19717 Apply a group homomorphism...
gsummulglem 19718 Lemma for ~ gsummulg and ~...
gsummulg 19719 Nonnegative multiple of a ...
gsummulgz 19720 Integer multiple of a grou...
gsumzoppg 19721 The opposite of a group su...
gsumzinv 19722 Inverse of a group sum. (...
gsuminv 19723 Inverse of a group sum. (...
gsummptfidminv 19724 Inverse of a group sum exp...
gsumsub 19725 The difference of two grou...
gsummptfssub 19726 The difference of two grou...
gsummptfidmsub 19727 The difference of two grou...
gsumsnfd 19728 Group sum of a singleton, ...
gsumsnd 19729 Group sum of a singleton, ...
gsumsnf 19730 Group sum of a singleton, ...
gsumsn 19731 Group sum of a singleton. ...
gsumpr 19732 Group sum of a pair. (Con...
gsumzunsnd 19733 Append an element to a fin...
gsumunsnfd 19734 Append an element to a fin...
gsumunsnd 19735 Append an element to a fin...
gsumunsnf 19736 Append an element to a fin...
gsumunsn 19737 Append an element to a fin...
gsumdifsnd 19738 Extract a summand from a f...
gsumpt 19739 Sum of a family that is no...
gsummptf1o 19740 Re-index a finite group su...
gsummptun 19741 Group sum of a disjoint un...
gsummpt1n0 19742 If only one summand in a f...
gsummptif1n0 19743 If only one summand in a f...
gsummptcl 19744 Closure of a finite group ...
gsummptfif1o 19745 Re-index a finite group su...
gsummptfzcl 19746 Closure of a finite group ...
gsum2dlem1 19747 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19748 Lemma for ~ gsum2d . (Con...
gsum2d 19749 Write a sum over a two-dim...
gsum2d2lem 19750 Lemma for ~ gsum2d2 : show...
gsum2d2 19751 Write a group sum over a t...
gsumcom2 19752 Two-dimensional commutatio...
gsumxp 19753 Write a group sum over a c...
gsumcom 19754 Commute the arguments of a...
gsumcom3 19755 A commutative law for fini...
gsumcom3fi 19756 A commutative law for fini...
gsumxp2 19757 Write a group sum over a c...
prdsgsum 19758 Finite commutative sums in...
pwsgsum 19759 Finite commutative sums in...
fsfnn0gsumfsffz 19760 Replacing a finitely suppo...
nn0gsumfz 19761 Replacing a finitely suppo...
nn0gsumfz0 19762 Replacing a finitely suppo...
gsummptnn0fz 19763 A final group sum over a f...
gsummptnn0fzfv 19764 A final group sum over a f...
telgsumfzslem 19765 Lemma for ~ telgsumfzs (in...
telgsumfzs 19766 Telescoping group sum rang...
telgsumfz 19767 Telescoping group sum rang...
telgsumfz0s 19768 Telescoping finite group s...
telgsumfz0 19769 Telescoping finite group s...
telgsums 19770 Telescoping finitely suppo...
telgsum 19771 Telescoping finitely suppo...
reldmdprd 19776 The domain of the internal...
dmdprd 19777 The domain of definition o...
dmdprdd 19778 Show that a given family i...
dprddomprc 19779 A family of subgroups inde...
dprddomcld 19780 If a family of subgroups i...
dprdval0prc 19781 The internal direct produc...
dprdval 19782 The value of the internal ...
eldprd 19783 A class ` A ` is an intern...
dprdgrp 19784 Reverse closure for the in...
dprdf 19785 The function ` S ` is a fa...
dprdf2 19786 The function ` S ` is a fa...
dprdcntz 19787 The function ` S ` is a fa...
dprddisj 19788 The function ` S ` is a fa...
dprdw 19789 The property of being a fi...
dprdwd 19790 A mapping being a finitely...
dprdff 19791 A finitely supported funct...
dprdfcl 19792 A finitely supported funct...
dprdffsupp 19793 A finitely supported funct...
dprdfcntz 19794 A function on the elements...
dprdssv 19795 The internal direct produc...
dprdfid 19796 A function mapping all but...
eldprdi 19797 The domain of definition o...
dprdfinv 19798 Take the inverse of a grou...
dprdfadd 19799 Take the sum of group sums...
dprdfsub 19800 Take the difference of gro...
dprdfeq0 19801 The zero function is the o...
dprdf11 19802 Two group sums over a dire...
dprdsubg 19803 The internal direct produc...
dprdub 19804 Each factor is a subset of...
dprdlub 19805 The direct product is smal...
dprdspan 19806 The direct product is the ...
dprdres 19807 Restriction of a direct pr...
dprdss 19808 Create a direct product by...
dprdz 19809 A family consisting entire...
dprd0 19810 The empty family is an int...
dprdf1o 19811 Rearrange the index set of...
dprdf1 19812 Rearrange the index set of...
subgdmdprd 19813 A direct product in a subg...
subgdprd 19814 A direct product in a subg...
dprdsn 19815 A singleton family is an i...
dmdprdsplitlem 19816 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19817 The function ` S ` is a fa...
dprddisj2 19818 The function ` S ` is a fa...
dprd2dlem2 19819 The direct product of a co...
dprd2dlem1 19820 The direct product of a co...
dprd2da 19821 The direct product of a co...
dprd2db 19822 The direct product of a co...
dprd2d2 19823 The direct product of a co...
dmdprdsplit2lem 19824 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 19825 The direct product splits ...
dmdprdsplit 19826 The direct product splits ...
dprdsplit 19827 The direct product is the ...
dmdprdpr 19828 A singleton family is an i...
dprdpr 19829 A singleton family is an i...
dpjlem 19830 Lemma for theorems about d...
dpjcntz 19831 The two subgroups that app...
dpjdisj 19832 The two subgroups that app...
dpjlsm 19833 The two subgroups that app...
dpjfval 19834 Value of the direct produc...
dpjval 19835 Value of the direct produc...
dpjf 19836 The ` X ` -th index projec...
dpjidcl 19837 The key property of projec...
dpjeq 19838 Decompose a group sum into...
dpjid 19839 The key property of projec...
dpjlid 19840 The ` X ` -th index projec...
dpjrid 19841 The ` Y ` -th index projec...
dpjghm 19842 The direct product is the ...
dpjghm2 19843 The direct product is the ...
ablfacrplem 19844 Lemma for ~ ablfacrp2 . (...
ablfacrp 19845 A finite abelian group who...
ablfacrp2 19846 The factors ` K , L ` of ~...
ablfac1lem 19847 Lemma for ~ ablfac1b . Sa...
ablfac1a 19848 The factors of ~ ablfac1b ...
ablfac1b 19849 Any abelian group is the d...
ablfac1c 19850 The factors of ~ ablfac1b ...
ablfac1eulem 19851 Lemma for ~ ablfac1eu . (...
ablfac1eu 19852 The factorization of ~ abl...
pgpfac1lem1 19853 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 19854 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 19855 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 19856 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 19857 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 19858 Lemma for ~ pgpfac1 . (Co...
pgpfac1 19859 Factorization of a finite ...
pgpfaclem1 19860 Lemma for ~ pgpfac . (Con...
pgpfaclem2 19861 Lemma for ~ pgpfac . (Con...
pgpfaclem3 19862 Lemma for ~ pgpfac . (Con...
pgpfac 19863 Full factorization of a fi...
ablfaclem1 19864 Lemma for ~ ablfac . (Con...
ablfaclem2 19865 Lemma for ~ ablfac . (Con...
ablfaclem3 19866 Lemma for ~ ablfac . (Con...
ablfac 19867 The Fundamental Theorem of...
ablfac2 19868 Choose generators for each...
issimpg 19871 The predicate "is a simple...
issimpgd 19872 Deduce a simple group from...
simpggrp 19873 A simple group is a group....
simpggrpd 19874 A simple group is a group....
simpg2nsg 19875 A simple group has two nor...
trivnsimpgd 19876 Trivial groups are not sim...
simpgntrivd 19877 Simple groups are nontrivi...
simpgnideld 19878 A simple group contains a ...
simpgnsgd 19879 The only normal subgroups ...
simpgnsgeqd 19880 A normal subgroup of a sim...
2nsgsimpgd 19881 If any normal subgroup of ...
simpgnsgbid 19882 A nontrivial group is simp...
ablsimpnosubgd 19883 A subgroup of an abelian s...
ablsimpg1gend 19884 An abelian simple group is...
ablsimpgcygd 19885 An abelian simple group is...
ablsimpgfindlem1 19886 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 19887 Lemma for ~ ablsimpgfind ....
cycsubggenodd 19888 Relationship between the o...
ablsimpgfind 19889 An abelian simple group is...
fincygsubgd 19890 The subgroup referenced in...
fincygsubgodd 19891 Calculate the order of a s...
fincygsubgodexd 19892 A finite cyclic group has ...
prmgrpsimpgd 19893 A group of prime order is ...
ablsimpgprmd 19894 An abelian simple group ha...
ablsimpgd 19895 An abelian group is simple...
fnmgp 19898 The multiplicative group o...
mgpval 19899 Value of the multiplicatio...
mgpplusg 19900 Value of the group operati...
mgplemOLD 19901 Obsolete version of ~ sets...
mgpbas 19902 Base set of the multiplica...
mgpbasOLD 19903 Obsolete version of ~ mgpb...
mgpsca 19904 The multiplication monoid ...
mgpscaOLD 19905 Obsolete version of ~ mgps...
mgptset 19906 Topology component of the ...
mgptsetOLD 19907 Obsolete version of ~ mgpt...
mgptopn 19908 Topology of the multiplica...
mgpds 19909 Distance function of the m...
mgpdsOLD 19910 Obsolete version of ~ mgpd...
mgpress 19911 Subgroup commutes with the...
mgpressOLD 19912 Obsolete version of ~ mgpr...
ringidval 19915 The value of the unity ele...
dfur2 19916 The multiplicative identit...
issrg 19919 The predicate "is a semiri...
srgcmn 19920 A semiring is a commutativ...
srgmnd 19921 A semiring is a monoid. (...
srgmgp 19922 A semiring is a monoid und...
srgdilem 19923 Lemma for ~ srgdi and ~ sr...
srgcl 19924 Closure of the multiplicat...
srgass 19925 Associative law for the mu...
srgideu 19926 The unity element of a sem...
srgfcl 19927 Functionality of the multi...
srgdi 19928 Distributive law for the m...
srgdir 19929 Distributive law for the m...
srgidcl 19930 The unity element of a sem...
srg0cl 19931 The zero element of a semi...
srgidmlem 19932 Lemma for ~ srglidm and ~ ...
srglidm 19933 The unity element of a sem...
srgridm 19934 The unity element of a sem...
issrgid 19935 Properties showing that an...
srgacl 19936 Closure of the addition op...
srgcom 19937 Commutativity of the addit...
srgrz 19938 The zero of a semiring is ...
srglz 19939 The zero of a semiring is ...
srgisid 19940 In a semiring, the only le...
o2timesd 19941 An element of a ring-like ...
rglcom4d 19942 Restricted commutativity o...
srgo2times 19943 A semiring element plus it...
srgcom4lem 19944 Lemma for ~ srgcom4 . Thi...
srgcom4 19945 Restricted commutativity o...
srg1zr 19946 The only semiring with a b...
srgen1zr 19947 The only semiring with one...
srgmulgass 19948 An associative property be...
srgpcomp 19949 If two elements of a semir...
srgpcompp 19950 If two elements of a semir...
srgpcomppsc 19951 If two elements of a semir...
srglmhm 19952 Left-multiplication in a s...
srgrmhm 19953 Right-multiplication in a ...
srgsummulcr 19954 A finite semiring sum mult...
sgsummulcl 19955 A finite semiring sum mult...
srg1expzeq1 19956 The exponentiation (by a n...
srgbinomlem1 19957 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 19958 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 19959 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 19960 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 19961 Lemma for ~ srgbinom . In...
srgbinom 19962 The binomial theorem for c...
csrgbinom 19963 The binomial theorem for c...
isring 19968 The predicate "is a (unita...
ringgrp 19969 A ring is a group. (Contr...
ringmgp 19970 A ring is a monoid under m...
iscrng 19971 A commutative ring is a ri...
crngmgp 19972 A commutative ring's multi...
ringgrpd 19973 A ring is a group. (Contr...
ringmnd 19974 A ring is a monoid under a...
ringmgm 19975 A ring is a magma. (Contr...
crngring 19976 A commutative ring is a ri...
crngringd 19977 A commutative ring is a ri...
crnggrpd 19978 A commutative ring is a gr...
mgpf 19979 Restricted functionality o...
ringdilem 19980 Properties of a unital rin...
ringcl 19981 Closure of the multiplicat...
crngcom 19982 A commutative ring's multi...
iscrng2 19983 A commutative ring is a ri...
ringass 19984 Associative law for multip...
ringideu 19985 The unity element of a rin...
ringcld 19986 Closure of the multiplicat...
ringdi 19987 Distributive law for the m...
ringdir 19988 Distributive law for the m...
ringidcl 19989 The unity element of a rin...
ring0cl 19990 The zero element of a ring...
ringidmlem 19991 Lemma for ~ ringlidm and ~...
ringlidm 19992 The unity element of a rin...
ringridm 19993 The unity element of a rin...
isringid 19994 Properties showing that an...
ringid 19995 The multiplication operati...
ringo2times 19996 A ring element plus itself...
ringadd2 19997 A ring element plus itself...
ringidss 19998 A subset of the multiplica...
ringacl 19999 Closure of the addition op...
ringcomlem 20000 Lemma for ~ ringcom . Thi...
ringcom 20001 Commutativity of the addit...
ringabl 20002 A ring is an Abelian group...
ringcmn 20003 A ring is a commutative mo...
ringabld 20004 A ring is an Abelian group...
ringcmnd 20005 A ring is a commutative mo...
ringpropd 20006 If two structures have the...
crngpropd 20007 If two structures have the...
ringprop 20008 If two structures have the...
isringd 20009 Properties that determine ...
iscrngd 20010 Properties that determine ...
ringlz 20011 The zero of a unital ring ...
ringrz 20012 The zero of a unital ring ...
ringsrg 20013 Any ring is also a semirin...
ring1eq0 20014 If one and zero are equal,...
ring1ne0 20015 If a ring has at least two...
ringinvnz1ne0 20016 In a unital ring, a left i...
ringinvnzdiv 20017 In a unital ring, a left i...
ringnegl 20018 Negation in a ring is the ...
ringnegr 20019 Negation in a ring is the ...
ringmneg1 20020 Negation of a product in a...
ringmneg2 20021 Negation of a product in a...
ringm2neg 20022 Double negation of a produ...
ringsubdi 20023 Ring multiplication distri...
ringsubdir 20024 Ring multiplication distri...
mulgass2 20025 An associative property be...
ring1 20026 The (smallest) structure r...
ringn0 20027 Rings exist. (Contributed...
ringlghm 20028 Left-multiplication in a r...
ringrghm 20029 Right-multiplication in a ...
gsummulc1 20030 A finite ring sum multipli...
gsummulc2 20031 A finite ring sum multipli...
gsummgp0 20032 If one factor in a finite ...
gsumdixp 20033 Distribute a binary produc...
prdsmgp 20034 The multiplicative monoid ...
prdsmulrcl 20035 A structure product of rin...
prdsringd 20036 A product of rings is a ri...
prdscrngd 20037 A product of commutative r...
prds1 20038 Value of the ring unity in...
pwsring 20039 A structure power of a rin...
pws1 20040 Value of the ring unity in...
pwscrng 20041 A structure power of a com...
pwsmgp 20042 The multiplicative group o...
pwspjmhmmgpd 20043 The projection given by ~ ...
pwsexpg 20044 Value of a group exponenti...
imasring 20045 The image structure of a r...
qusring2 20046 The quotient structure of ...
crngbinom 20047 The binomial theorem for c...
opprval 20050 Value of the opposite ring...
opprmulfval 20051 Value of the multiplicatio...
opprmul 20052 Value of the multiplicatio...
crngoppr 20053 In a commutative ring, the...
opprlem 20054 Lemma for ~ opprbas and ~ ...
opprlemOLD 20055 Obsolete version of ~ oppr...
opprbas 20056 Base set of an opposite ri...
opprbasOLD 20057 Obsolete proof of ~ opprba...
oppradd 20058 Addition operation of an o...
oppraddOLD 20059 Obsolete proof of ~ opprba...
opprring 20060 An opposite ring is a ring...
opprringb 20061 Bidirectional form of ~ op...
oppr0 20062 Additive identity of an op...
oppr1 20063 Multiplicative identity of...
opprneg 20064 The negative function in a...
opprsubg 20065 Being a subgroup is a symm...
mulgass3 20066 An associative property be...
reldvdsr 20073 The divides relation is a ...
dvdsrval 20074 Value of the divides relat...
dvdsr 20075 Value of the divides relat...
dvdsr2 20076 Value of the divides relat...
dvdsrmul 20077 A left-multiple of ` X ` i...
dvdsrcl 20078 Closure of a dividing elem...
dvdsrcl2 20079 Closure of a dividing elem...
dvdsrid 20080 An element in a (unital) r...
dvdsrtr 20081 Divisibility is transitive...
dvdsrmul1 20082 The divisibility relation ...
dvdsrneg 20083 An element divides its neg...
dvdsr01 20084 In a ring, zero is divisib...
dvdsr02 20085 Only zero is divisible by ...
isunit 20086 Property of being a unit o...
1unit 20087 The multiplicative identit...
unitcl 20088 A unit is an element of th...
unitss 20089 The set of units is contai...
opprunit 20090 Being a unit is a symmetri...
crngunit 20091 Property of being a unit i...
dvdsunit 20092 A divisor of a unit is a u...
unitmulcl 20093 The product of units is a ...
unitmulclb 20094 Reversal of ~ unitmulcl in...
unitgrpbas 20095 The base set of the group ...
unitgrp 20096 The group of units is a gr...
unitabl 20097 The group of units of a co...
unitgrpid 20098 The identity of the group ...
unitsubm 20099 The group of units is a su...
invrfval 20102 Multiplicative inverse fun...
unitinvcl 20103 The inverse of a unit exis...
unitinvinv 20104 The inverse of the inverse...
ringinvcl 20105 The inverse of a unit is a...
unitlinv 20106 A unit times its inverse i...
unitrinv 20107 A unit times its inverse i...
1rinv 20108 The inverse of the ring un...
0unit 20109 The additive identity is a...
unitnegcl 20110 The negative of a unit is ...
dvrfval 20113 Division operation in a ri...
dvrval 20114 Division operation in a ri...
dvrcl 20115 Closure of division operat...
unitdvcl 20116 The units are closed under...
dvrid 20117 A ring element divided by ...
dvr1 20118 A ring element divided by ...
dvrass 20119 An associative law for div...
dvrcan1 20120 A cancellation law for div...
dvrcan3 20121 A cancellation law for div...
dvreq1 20122 Equality in terms of ratio...
ringinvdv 20123 Write the inverse function...
rngidpropd 20124 The ring unity depends onl...
dvdsrpropd 20125 The divisibility relation ...
unitpropd 20126 The set of units depends o...
invrpropd 20127 The ring inverse function ...
isirred 20128 An irreducible element of ...
isnirred 20129 The property of being a no...
isirred2 20130 Expand out the class diffe...
opprirred 20131 Irreducibility is symmetri...
irredn0 20132 The additive identity is n...
irredcl 20133 An irreducible element is ...
irrednu 20134 An irreducible element is ...
irredn1 20135 The multiplicative identit...
irredrmul 20136 The product of an irreduci...
irredlmul 20137 The product of a unit and ...
irredmul 20138 If product of two elements...
irredneg 20139 The negative of an irreduc...
irrednegb 20140 An element is irreducible ...
dfrhm2 20148 The property of a ring hom...
rhmrcl1 20150 Reverse closure of a ring ...
rhmrcl2 20151 Reverse closure of a ring ...
isrhm 20152 A function is a ring homom...
rhmmhm 20153 A ring homomorphism is a h...
isrim0OLD 20154 Obsolete version of ~ isri...
rimrcl 20155 Reverse closure for an iso...
isrim0 20156 A ring isomorphism is a ho...
rhmghm 20157 A ring homomorphism is an ...
rhmf 20158 A ring homomorphism is a f...
rhmmul 20159 A homomorphism of rings pr...
isrhm2d 20160 Demonstration of ring homo...
isrhmd 20161 Demonstration of ring homo...
rhm1 20162 Ring homomorphisms are req...
idrhm 20163 The identity homomorphism ...
rhmf1o 20164 A ring homomorphism is bij...
isrim 20165 An isomorphism of rings is...
isrimOLD 20166 Obsolete version of ~ isri...
rimf1o 20167 An isomorphism of rings is...
rimrhmOLD 20168 Obsolete version of ~ rimr...
rimrhm 20169 A ring isomorphism is a ho...
rimgim 20170 An isomorphism of rings is...
rhmco 20171 The composition of ring ho...
pwsco1rhm 20172 Right composition with a f...
pwsco2rhm 20173 Left composition with a ri...
f1ghm0to0 20174 If a group homomorphism ` ...
f1rhm0to0ALT 20175 Alternate proof for ~ f1gh...
gim0to0 20176 A group isomorphism maps t...
kerf1ghm 20177 A group homomorphism ` F `...
brric 20178 The relation "is isomorphi...
brric2 20179 The relation "is isomorphi...
ricgic 20180 If two rings are (ring) is...
rhmdvdsr 20181 A ring homomorphism preser...
rhmopp 20182 A ring homomorphism is als...
elrhmunit 20183 Ring homomorphisms preserv...
rhmunitinv 20184 Ring homomorphisms preserv...
isdrng 20189 The predicate "is a divisi...
drngunit 20190 Elementhood in the set of ...
drngui 20191 The set of units of a divi...
drngring 20192 A division ring is a ring....
drngringd 20193 A division ring is a ring....
drnggrpd 20194 A division ring is a group...
drnggrp 20195 A division ring is a group...
isfld 20196 A field is a commutative d...
fldcrngd 20197 A field is a commutative r...
isdrng2 20198 A division ring can equiva...
drngprop 20199 If two structures have the...
drngmgp 20200 A division ring contains a...
drngmcl 20201 The product of two nonzero...
drngid 20202 A division ring's unity is...
drngunz 20203 A division ring's unity is...
drngid2 20204 Properties showing that an...
drnginvrcl 20205 Closure of the multiplicat...
drnginvrn0 20206 The multiplicative inverse...
drnginvrcld 20207 Closure of the multiplicat...
drnginvrl 20208 Property of the multiplica...
drnginvrr 20209 Property of the multiplica...
drngmul0or 20210 A product is zero iff one ...
drngmulne0 20211 A product is nonzero iff b...
drngmuleq0 20212 An element is zero iff its...
opprdrng 20213 The opposite of a division...
isdrngd 20214 Properties that characteri...
isdrngrd 20215 Properties that characteri...
drngpropd 20216 If two structures have the...
fldpropd 20217 If two structures have the...
issubrg 20222 The subring predicate. (C...
subrgss 20223 A subring is a subset. (C...
subrgid 20224 Every ring is a subring of...
subrgring 20225 A subring is a ring. (Con...
subrgcrng 20226 A subring of a commutative...
subrgrcl 20227 Reverse closure for a subr...
subrgsubg 20228 A subring is a subgroup. ...
subrg0 20229 A subring always has the s...
subrg1cl 20230 A subring contains the mul...
subrgbas 20231 Base set of a subring stru...
subrg1 20232 A subring always has the s...
subrgacl 20233 A subring is closed under ...
subrgmcl 20234 A subgroup is closed under...
subrgsubm 20235 A subring is a submonoid o...
subrgdvds 20236 If an element divides anot...
subrguss 20237 A unit of a subring is a u...
subrginv 20238 A subring always has the s...
subrgdv 20239 A subring always has the s...
subrgunit 20240 An element of a ring is a ...
subrgugrp 20241 The units of a subring for...
issubrg2 20242 Characterize the subrings ...
opprsubrg 20243 Being a subring is a symme...
subrgint 20244 The intersection of a none...
subrgin 20245 The intersection of two su...
subrgmre 20246 The subrings of a ring are...
issubdrg 20247 Characterize the subfields...
subsubrg 20248 A subring of a subring is ...
subsubrg2 20249 The set of subrings of a s...
issubrg3 20250 A subring is an additive s...
resrhm 20251 Restriction of a ring homo...
rhmeql 20252 The equalizer of two ring ...
rhmima 20253 The homomorphic image of a...
rnrhmsubrg 20254 The range of a ring homomo...
cntzsubr 20255 Centralizers in a ring are...
pwsdiagrhm 20256 Diagonal homomorphism into...
subrgpropd 20257 If two structures have the...
rhmpropd 20258 Ring homomorphism depends ...
issdrg 20261 Property of a division sub...
sdrgid 20262 Every division ring is a d...
sdrgss 20263 A division subring is a su...
issdrg2 20264 Property of a division sub...
fldsdrgfld 20265 A sub-division-ring of a f...
acsfn1p 20266 Construction of a closure ...
subrgacs 20267 Closure property of subrin...
sdrgacs 20268 Closure property of divisi...
cntzsdrg 20269 Centralizers in division r...
subdrgint 20270 The intersection of a none...
sdrgint 20271 The intersection of a none...
primefld 20272 The smallest sub division ...
primefld0cl 20273 The prime field contains t...
primefld1cl 20274 The prime field contains t...
abvfval 20277 Value of the set of absolu...
isabv 20278 Elementhood in the set of ...
isabvd 20279 Properties that determine ...
abvrcl 20280 Reverse closure for the ab...
abvfge0 20281 An absolute value is a fun...
abvf 20282 An absolute value is a fun...
abvcl 20283 An absolute value is a fun...
abvge0 20284 The absolute value of a nu...
abveq0 20285 The value of an absolute v...
abvne0 20286 The absolute value of a no...
abvgt0 20287 The absolute value of a no...
abvmul 20288 An absolute value distribu...
abvtri 20289 An absolute value satisfie...
abv0 20290 The absolute value of zero...
abv1z 20291 The absolute value of one ...
abv1 20292 The absolute value of one ...
abvneg 20293 The absolute value of a ne...
abvsubtri 20294 An absolute value satisfie...
abvrec 20295 The absolute value distrib...
abvdiv 20296 The absolute value distrib...
abvdom 20297 Any ring with an absolute ...
abvres 20298 The restriction of an abso...
abvtrivd 20299 The trivial absolute value...
abvtriv 20300 The trivial absolute value...
abvpropd 20301 If two structures have the...
staffval 20306 The functionalization of t...
stafval 20307 The functionalization of t...
staffn 20308 The functionalization is e...
issrng 20309 The predicate "is a star r...
srngrhm 20310 The involution function in...
srngring 20311 A star ring is a ring. (C...
srngcnv 20312 The involution function in...
srngf1o 20313 The involution function in...
srngcl 20314 The involution function in...
srngnvl 20315 The involution function in...
srngadd 20316 The involution function in...
srngmul 20317 The involution function in...
srng1 20318 The conjugate of the ring ...
srng0 20319 The conjugate of the ring ...
issrngd 20320 Properties that determine ...
idsrngd 20321 A commutative ring is a st...
islmod 20326 The predicate "is a left m...
lmodlema 20327 Lemma for properties of a ...
islmodd 20328 Properties that determine ...
lmodgrp 20329 A left module is a group. ...
lmodring 20330 The scalar component of a ...
lmodfgrp 20331 The scalar component of a ...
lmodbn0 20332 The base set of a left mod...
lmodacl 20333 Closure of ring addition f...
lmodmcl 20334 Closure of ring multiplica...
lmodsn0 20335 The set of scalars in a le...
lmodvacl 20336 Closure of vector addition...
lmodass 20337 Left module vector sum is ...
lmodlcan 20338 Left cancellation law for ...
lmodvscl 20339 Closure of scalar product ...
scaffval 20340 The scalar multiplication ...
scafval 20341 The scalar multiplication ...
scafeq 20342 If the scalar multiplicati...
scaffn 20343 The scalar multiplication ...
lmodscaf 20344 The scalar multiplication ...
lmodvsdi 20345 Distributive law for scala...
lmodvsdir 20346 Distributive law for scala...
lmodvsass 20347 Associative law for scalar...
lmod0cl 20348 The ring zero in a left mo...
lmod1cl 20349 The ring unity in a left m...
lmodvs1 20350 Scalar product with the ri...
lmod0vcl 20351 The zero vector is a vecto...
lmod0vlid 20352 Left identity law for the ...
lmod0vrid 20353 Right identity law for the...
lmod0vid 20354 Identity equivalent to the...
lmod0vs 20355 Zero times a vector is the...
lmodvs0 20356 Anything times the zero ve...
lmodvsmmulgdi 20357 Distributive law for a gro...
lmodfopnelem1 20358 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20359 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20360 The (functionalized) opera...
lcomf 20361 A linear-combination sum i...
lcomfsupp 20362 A linear-combination sum i...
lmodvnegcl 20363 Closure of vector negative...
lmodvnegid 20364 Addition of a vector with ...
lmodvneg1 20365 Minus 1 times a vector is ...
lmodvsneg 20366 Multiplication of a vector...
lmodvsubcl 20367 Closure of vector subtract...
lmodcom 20368 Left module vector sum is ...
lmodabl 20369 A left module is an abelia...
lmodcmn 20370 A left module is a commuta...
lmodnegadd 20371 Distribute negation throug...
lmod4 20372 Commutative/associative la...
lmodvsubadd 20373 Relationship between vecto...
lmodvaddsub4 20374 Vector addition/subtractio...
lmodvpncan 20375 Addition/subtraction cance...
lmodvnpcan 20376 Cancellation law for vecto...
lmodvsubval2 20377 Value of vector subtractio...
lmodsubvs 20378 Subtraction of a scalar pr...
lmodsubdi 20379 Scalar multiplication dist...
lmodsubdir 20380 Scalar multiplication dist...
lmodsubeq0 20381 If the difference between ...
lmodsubid 20382 Subtraction of a vector fr...
lmodvsghm 20383 Scalar multiplication of t...
lmodprop2d 20384 If two structures have the...
lmodpropd 20385 If two structures have the...
gsumvsmul 20386 Pull a scalar multiplicati...
mptscmfsupp0 20387 A mapping to a scalar prod...
mptscmfsuppd 20388 A function mapping to a sc...
rmodislmodlem 20389 Lemma for ~ rmodislmod . ...
rmodislmod 20390 The right module ` R ` ind...
rmodislmodOLD 20391 Obsolete version of ~ rmod...
lssset 20394 The set of all (not necess...
islss 20395 The predicate "is a subspa...
islssd 20396 Properties that determine ...
lssss 20397 A subspace is a set of vec...
lssel 20398 A subspace member is a vec...
lss1 20399 The set of vectors in a le...
lssuni 20400 The union of all subspaces...
lssn0 20401 A subspace is not empty. ...
00lss 20402 The empty structure has no...
lsscl 20403 Closure property of a subs...
lssvsubcl 20404 Closure of vector subtract...
lssvancl1 20405 Non-closure: if one vector...
lssvancl2 20406 Non-closure: if one vector...
lss0cl 20407 The zero vector belongs to...
lsssn0 20408 The singleton of the zero ...
lss0ss 20409 The zero subspace is inclu...
lssle0 20410 No subspace is smaller tha...
lssne0 20411 A nonzero subspace has a n...
lssvneln0 20412 A vector ` X ` which doesn...
lssneln0 20413 A vector ` X ` which doesn...
lssssr 20414 Conclude subspace ordering...
lssvacl 20415 Closure of vector addition...
lssvscl 20416 Closure of scalar product ...
lssvnegcl 20417 Closure of negative vector...
lsssubg 20418 All subspaces are subgroup...
lsssssubg 20419 All subspaces are subgroup...
islss3 20420 A linear subspace of a mod...
lsslmod 20421 A submodule is a module. ...
lsslss 20422 The subspaces of a subspac...
islss4 20423 A linear subspace is a sub...
lss1d 20424 One-dimensional subspace (...
lssintcl 20425 The intersection of a none...
lssincl 20426 The intersection of two su...
lssmre 20427 The subspaces of a module ...
lssacs 20428 Submodules are an algebrai...
prdsvscacl 20429 Pointwise scalar multiplic...
prdslmodd 20430 The product of a family of...
pwslmod 20431 A structure power of a lef...
lspfval 20434 The span function for a le...
lspf 20435 The span operator on a lef...
lspval 20436 The span of a set of vecto...
lspcl 20437 The span of a set of vecto...
lspsncl 20438 The span of a singleton is...
lspprcl 20439 The span of a pair is a su...
lsptpcl 20440 The span of an unordered t...
lspsnsubg 20441 The span of a singleton is...
00lsp 20442 ~ fvco4i lemma for linear ...
lspid 20443 The span of a subspace is ...
lspssv 20444 A span is a set of vectors...
lspss 20445 Span preserves subset orde...
lspssid 20446 A set of vectors is a subs...
lspidm 20447 The span of a set of vecto...
lspun 20448 The span of union is the s...
lspssp 20449 If a set of vectors is a s...
mrclsp 20450 Moore closure generalizes ...
lspsnss 20451 The span of the singleton ...
lspsnel3 20452 A member of the span of th...
lspprss 20453 The span of a pair of vect...
lspsnid 20454 A vector belongs to the sp...
lspsnel6 20455 Relationship between a vec...
lspsnel5 20456 Relationship between a vec...
lspsnel5a 20457 Relationship between a vec...
lspprid1 20458 A member of a pair of vect...
lspprid2 20459 A member of a pair of vect...
lspprvacl 20460 The sum of two vectors bel...
lssats2 20461 A way to express atomistic...
lspsneli 20462 A scalar product with a ve...
lspsn 20463 Span of the singleton of a...
lspsnel 20464 Member of span of the sing...
lspsnvsi 20465 Span of a scalar product o...
lspsnss2 20466 Comparable spans of single...
lspsnneg 20467 Negation does not change t...
lspsnsub 20468 Swapping subtraction order...
lspsn0 20469 Span of the singleton of t...
lsp0 20470 Span of the empty set. (C...
lspuni0 20471 Union of the span of the e...
lspun0 20472 The span of a union with t...
lspsneq0 20473 Span of the singleton is t...
lspsneq0b 20474 Equal singleton spans impl...
lmodindp1 20475 Two independent (non-colin...
lsslsp 20476 Spans in submodules corres...
lss0v 20477 The zero vector in a submo...
lsspropd 20478 If two structures have the...
lsppropd 20479 If two structures have the...
reldmlmhm 20486 Lemma for module homomorph...
lmimfn 20487 Lemma for module isomorphi...
islmhm 20488 Property of being a homomo...
islmhm3 20489 Property of a module homom...
lmhmlem 20490 Non-quantified consequence...
lmhmsca 20491 A homomorphism of left mod...
lmghm 20492 A homomorphism of left mod...
lmhmlmod2 20493 A homomorphism of left mod...
lmhmlmod1 20494 A homomorphism of left mod...
lmhmf 20495 A homomorphism of left mod...
lmhmlin 20496 A homomorphism of left mod...
lmodvsinv 20497 Multiplication of a vector...
lmodvsinv2 20498 Multiplying a negated vect...
islmhm2 20499 A one-equation proof of li...
islmhmd 20500 Deduction for a module hom...
0lmhm 20501 The constant zero linear f...
idlmhm 20502 The identity function on a...
invlmhm 20503 The negative function on a...
lmhmco 20504 The composition of two mod...
lmhmplusg 20505 The pointwise sum of two l...
lmhmvsca 20506 The pointwise scalar produ...
lmhmf1o 20507 A bijective module homomor...
lmhmima 20508 The image of a subspace un...
lmhmpreima 20509 The inverse image of a sub...
lmhmlsp 20510 Homomorphisms preserve spa...
lmhmrnlss 20511 The range of a homomorphis...
lmhmkerlss 20512 The kernel of a homomorphi...
reslmhm 20513 Restriction of a homomorph...
reslmhm2 20514 Expansion of the codomain ...
reslmhm2b 20515 Expansion of the codomain ...
lmhmeql 20516 The equalizer of two modul...
lspextmo 20517 A linear function is compl...
pwsdiaglmhm 20518 Diagonal homomorphism into...
pwssplit0 20519 Splitting for structure po...
pwssplit1 20520 Splitting for structure po...
pwssplit2 20521 Splitting for structure po...
pwssplit3 20522 Splitting for structure po...
islmim 20523 An isomorphism of left mod...
lmimf1o 20524 An isomorphism of left mod...
lmimlmhm 20525 An isomorphism of modules ...
lmimgim 20526 An isomorphism of modules ...
islmim2 20527 An isomorphism of left mod...
lmimcnv 20528 The converse of a bijectiv...
brlmic 20529 The relation "is isomorphi...
brlmici 20530 Prove isomorphic by an exp...
lmiclcl 20531 Isomorphism implies the le...
lmicrcl 20532 Isomorphism implies the ri...
lmicsym 20533 Module isomorphism is symm...
lmhmpropd 20534 Module homomorphism depend...
islbs 20537 The predicate " ` B ` is a...
lbsss 20538 A basis is a set of vector...
lbsel 20539 An element of a basis is a...
lbssp 20540 The span of a basis is the...
lbsind 20541 A basis is linearly indepe...
lbsind2 20542 A basis is linearly indepe...
lbspss 20543 No proper subset of a basi...
lsmcl 20544 The sum of two subspaces i...
lsmspsn 20545 Member of subspace sum of ...
lsmelval2 20546 Subspace sum membership in...
lsmsp 20547 Subspace sum in terms of s...
lsmsp2 20548 Subspace sum of spans of s...
lsmssspx 20549 Subspace sum (in its exten...
lsmpr 20550 The span of a pair of vect...
lsppreli 20551 A vector expressed as a su...
lsmelpr 20552 Two ways to say that a vec...
lsppr0 20553 The span of a vector paire...
lsppr 20554 Span of a pair of vectors....
lspprel 20555 Member of the span of a pa...
lspprabs 20556 Absorption of vector sum i...
lspvadd 20557 The span of a vector sum i...
lspsntri 20558 Triangle-type inequality f...
lspsntrim 20559 Triangle-type inequality f...
lbspropd 20560 If two structures have the...
pj1lmhm 20561 The left projection functi...
pj1lmhm2 20562 The left projection functi...
islvec 20565 The predicate "is a left v...
lvecdrng 20566 The set of scalars of a le...
lveclmod 20567 A left vector space is a l...
lsslvec 20568 A vector subspace is a vec...
lvecvs0or 20569 If a scalar product is zer...
lvecvsn0 20570 A scalar product is nonzer...
lssvs0or 20571 If a scalar product belong...
lvecvscan 20572 Cancellation law for scala...
lvecvscan2 20573 Cancellation law for scala...
lvecinv 20574 Invert coefficient of scal...
lspsnvs 20575 A nonzero scalar product d...
lspsneleq 20576 Membership relation that i...
lspsncmp 20577 Comparable spans of nonzer...
lspsnne1 20578 Two ways to express that v...
lspsnne2 20579 Two ways to express that v...
lspsnnecom 20580 Swap two vectors with diff...
lspabs2 20581 Absorption law for span of...
lspabs3 20582 Absorption law for span of...
lspsneq 20583 Equal spans of singletons ...
lspsneu 20584 Nonzero vectors with equal...
lspsnel4 20585 A member of the span of th...
lspdisj 20586 The span of a vector not i...
lspdisjb 20587 A nonzero vector is not in...
lspdisj2 20588 Unequal spans are disjoint...
lspfixed 20589 Show membership in the spa...
lspexch 20590 Exchange property for span...
lspexchn1 20591 Exchange property for span...
lspexchn2 20592 Exchange property for span...
lspindpi 20593 Partial independence prope...
lspindp1 20594 Alternate way to say 3 vec...
lspindp2l 20595 Alternate way to say 3 vec...
lspindp2 20596 Alternate way to say 3 vec...
lspindp3 20597 Independence of 2 vectors ...
lspindp4 20598 (Partial) independence of ...
lvecindp 20599 Compute the ` X ` coeffici...
lvecindp2 20600 Sums of independent vector...
lspsnsubn0 20601 Unequal singleton spans im...
lsmcv 20602 Subspace sum has the cover...
lspsolvlem 20603 Lemma for ~ lspsolv . (Co...
lspsolv 20604 If ` X ` is in the span of...
lssacsex 20605 In a vector space, subspac...
lspsnat 20606 There is no subspace stric...
lspsncv0 20607 The span of a singleton co...
lsppratlem1 20608 Lemma for ~ lspprat . Let...
lsppratlem2 20609 Lemma for ~ lspprat . Sho...
lsppratlem3 20610 Lemma for ~ lspprat . In ...
lsppratlem4 20611 Lemma for ~ lspprat . In ...
lsppratlem5 20612 Lemma for ~ lspprat . Com...
lsppratlem6 20613 Lemma for ~ lspprat . Neg...
lspprat 20614 A proper subspace of the s...
islbs2 20615 An equivalent formulation ...
islbs3 20616 An equivalent formulation ...
lbsacsbs 20617 Being a basis in a vector ...
lvecdim 20618 The dimension theorem for ...
lbsextlem1 20619 Lemma for ~ lbsext . The ...
lbsextlem2 20620 Lemma for ~ lbsext . Sinc...
lbsextlem3 20621 Lemma for ~ lbsext . A ch...
lbsextlem4 20622 Lemma for ~ lbsext . ~ lbs...
lbsextg 20623 For any linearly independe...
lbsext 20624 For any linearly independe...
lbsexg 20625 Every vector space has a b...
lbsex 20626 Every vector space has a b...
lvecprop2d 20627 If two structures have the...
lvecpropd 20628 If two structures have the...
sraval 20637 Lemma for ~ srabase throug...
sralem 20638 Lemma for ~ srabase and si...
sralemOLD 20639 Obsolete version of ~ sral...
srabase 20640 Base set of a subring alge...
srabaseOLD 20641 Obsolete proof of ~ srabas...
sraaddg 20642 Additive operation of a su...
sraaddgOLD 20643 Obsolete proof of ~ sraadd...
sramulr 20644 Multiplicative operation o...
sramulrOLD 20645 Obsolete proof of ~ sramul...
srasca 20646 The set of scalars of a su...
srascaOLD 20647 Obsolete proof of ~ srasca...
sravsca 20648 The scalar product operati...
sravscaOLD 20649 Obsolete proof of ~ sravsc...
sraip 20650 The inner product operatio...
sratset 20651 Topology component of a su...
sratsetOLD 20652 Obsolete proof of ~ sratse...
sratopn 20653 Topology component of a su...
srads 20654 Distance function of a sub...
sradsOLD 20655 Obsolete proof of ~ srads ...
sralmod 20656 The subring algebra is a l...
sralmod0 20657 The subring module inherit...
issubrngd2 20658 Prove a subring by closure...
rlmfn 20659 ` ringLMod ` is a function...
rlmval 20660 Value of the ring module. ...
lidlval 20661 Value of the set of ring i...
rspval 20662 Value of the ring span fun...
rlmval2 20663 Value of the ring module e...
rlmbas 20664 Base set of the ring modul...
rlmplusg 20665 Vector addition in the rin...
rlm0 20666 Zero vector in the ring mo...
rlmsub 20667 Subtraction in the ring mo...
rlmmulr 20668 Ring multiplication in the...
rlmsca 20669 Scalars in the ring module...
rlmsca2 20670 Scalars in the ring module...
rlmvsca 20671 Scalar multiplication in t...
rlmtopn 20672 Topology component of the ...
rlmds 20673 Metric component of the ri...
rlmlmod 20674 The ring module is a modul...
rlmlvec 20675 The ring module over a div...
rlmlsm 20676 Subgroup sum of the ring m...
rlmvneg 20677 Vector negation in the rin...
rlmscaf 20678 Functionalized scalar mult...
ixpsnbasval 20679 The value of an infinite C...
lidlss 20680 An ideal is a subset of th...
islidl 20681 Predicate of being a (left...
lidl0cl 20682 An ideal contains 0. (Con...
lidlacl 20683 An ideal is closed under a...
lidlnegcl 20684 An ideal contains negative...
lidlsubg 20685 An ideal is a subgroup of ...
lidlsubcl 20686 An ideal is closed under s...
lidlmcl 20687 An ideal is closed under l...
lidl1el 20688 An ideal contains 1 iff it...
lidl0 20689 Every ring contains a zero...
lidl1 20690 Every ring contains a unit...
lidlacs 20691 The ideal system is an alg...
rspcl 20692 The span of a set of ring ...
rspssid 20693 The span of a set of ring ...
rsp1 20694 The span of the identity e...
rsp0 20695 The span of the zero eleme...
rspssp 20696 The ideal span of a set of...
mrcrsp 20697 Moore closure generalizes ...
lidlnz 20698 A nonzero ideal contains a...
drngnidl 20699 A division ring has only t...
lidlrsppropd 20700 The left ideals and ring s...
2idlval 20703 Definition of a two-sided ...
2idlcpbl 20704 The coset equivalence rela...
qus1 20705 The multiplicative identit...
qusring 20706 If ` S ` is a two-sided id...
qusrhm 20707 If ` S ` is a two-sided id...
crngridl 20708 In a commutative ring, the...
crng2idl 20709 In a commutative ring, a t...
quscrng 20710 The quotient of a commutat...
lpival 20715 Value of the set of princi...
islpidl 20716 Property of being a princi...
lpi0 20717 The zero ideal is always p...
lpi1 20718 The unit ideal is always p...
islpir 20719 Principal ideal rings are ...
lpiss 20720 Principal ideals are a sub...
islpir2 20721 Principal ideal rings are ...
lpirring 20722 Principal ideal rings are ...
drnglpir 20723 Division rings are princip...
rspsn 20724 Membership in principal id...
lidldvgen 20725 An element generates an id...
lpigen 20726 An ideal is principal iff ...
isnzr 20729 Property of a nonzero ring...
nzrnz 20730 One and zero are different...
nzrring 20731 A nonzero ring is a ring. ...
drngnzr 20732 All division rings are non...
isnzr2 20733 Equivalent characterizatio...
isnzr2hash 20734 Equivalent characterizatio...
opprnzr 20735 The opposite of a nonzero ...
ringelnzr 20736 A ring is nonzero if it ha...
nzrunit 20737 A unit is nonzero in any n...
subrgnzr 20738 A subring of a nonzero rin...
0ringnnzr 20739 A ring is a zero ring iff ...
0ring 20740 If a ring has only one ele...
0ring01eq 20741 In a ring with only one el...
01eq0ring 20742 If the zero and the identi...
0ring01eqbi 20743 In a unital ring the zero ...
rng1nnzr 20744 The (smallest) structure r...
ring1zr 20745 The only (unital) ring wit...
rngen1zr 20746 The only (unital) ring wit...
ringen1zr 20747 The only unital ring with ...
rng1nfld 20748 The zero ring is not a fie...
rrgval 20757 Value of the set or left-r...
isrrg 20758 Membership in the set of l...
rrgeq0i 20759 Property of a left-regular...
rrgeq0 20760 Left-multiplication by a l...
rrgsupp 20761 Left multiplication by a l...
rrgss 20762 Left-regular elements are ...
unitrrg 20763 Units are regular elements...
isdomn 20764 Expand definition of a dom...
domnnzr 20765 A domain is a nonzero ring...
domnring 20766 A domain is a ring. (Cont...
domneq0 20767 In a domain, a product is ...
domnmuln0 20768 In a domain, a product of ...
isdomn2 20769 A ring is a domain iff all...
domnrrg 20770 In a domain, any nonzero e...
opprdomn 20771 The opposite of a domain i...
abvn0b 20772 Another characterization o...
drngdomn 20773 A division ring is a domai...
isidom 20774 An integral domain is a co...
fldidom 20775 A field is an integral dom...
fldidomOLD 20776 Obsolete version of ~ fldi...
fidomndrnglem 20777 Lemma for ~ fidomndrng . ...
fidomndrng 20778 A finite domain is a divis...
fiidomfld 20779 A finite integral domain i...
cnfldstr 20798 The field of complex numbe...
cnfldex 20799 The field of complex numbe...
cnfldbas 20800 The base set of the field ...
cnfldadd 20801 The addition operation of ...
cnfldmul 20802 The multiplication operati...
cnfldcj 20803 The conjugation operation ...
cnfldtset 20804 The topology component of ...
cnfldle 20805 The ordering of the field ...
cnfldds 20806 The metric of the field of...
cnfldunif 20807 The uniform structure comp...
cnfldfun 20808 The field of complex numbe...
cnfldfunALT 20809 The field of complex numbe...
cnfldfunALTOLD 20810 Obsolete proof of ~ cnfldf...
xrsstr 20811 The extended real structur...
xrsex 20812 The extended real structur...
xrsbas 20813 The base set of the extend...
xrsadd 20814 The addition operation of ...
xrsmul 20815 The multiplication operati...
xrstset 20816 The topology component of ...
xrsle 20817 The ordering of the extend...
cncrng 20818 The complex numbers form a...
cnring 20819 The complex numbers form a...
xrsmcmn 20820 The "multiplicative group"...
cnfld0 20821 Zero is the zero element o...
cnfld1 20822 One is the unity element o...
cnfldneg 20823 The additive inverse in th...
cnfldplusf 20824 The functionalized additio...
cnfldsub 20825 The subtraction operator i...
cndrng 20826 The complex numbers form a...
cnflddiv 20827 The division operation in ...
cnfldinv 20828 The multiplicative inverse...
cnfldmulg 20829 The group multiple functio...
cnfldexp 20830 The exponentiation operato...
cnsrng 20831 The complex numbers form a...
xrsmgm 20832 The "additive group" of th...
xrsnsgrp 20833 The "additive group" of th...
xrsmgmdifsgrp 20834 The "additive group" of th...
xrs1mnd 20835 The extended real numbers,...
xrs10 20836 The zero of the extended r...
xrs1cmn 20837 The extended real numbers ...
xrge0subm 20838 The nonnegative extended r...
xrge0cmn 20839 The nonnegative extended r...
xrsds 20840 The metric of the extended...
xrsdsval 20841 The metric of the extended...
xrsdsreval 20842 The metric of the extended...
xrsdsreclblem 20843 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 20844 The metric of the extended...
cnsubmlem 20845 Lemma for ~ nn0subm and fr...
cnsubglem 20846 Lemma for ~ resubdrg and f...
cnsubrglem 20847 Lemma for ~ resubdrg and f...
cnsubdrglem 20848 Lemma for ~ resubdrg and f...
qsubdrg 20849 The rational numbers form ...
zsubrg 20850 The integers form a subrin...
gzsubrg 20851 The gaussian integers form...
nn0subm 20852 The nonnegative integers f...
rege0subm 20853 The nonnegative reals form...
absabv 20854 The regular absolute value...
zsssubrg 20855 The integers are a subset ...
qsssubdrg 20856 The rational numbers are a...
cnsubrg 20857 There are no subrings of t...
cnmgpabl 20858 The unit group of the comp...
cnmgpid 20859 The group identity element...
cnmsubglem 20860 Lemma for ~ rpmsubg and fr...
rpmsubg 20861 The positive reals form a ...
gzrngunitlem 20862 Lemma for ~ gzrngunit . (...
gzrngunit 20863 The units on ` ZZ [ _i ] `...
gsumfsum 20864 Relate a group sum on ` CC...
regsumfsum 20865 Relate a group sum on ` ( ...
expmhm 20866 Exponentiation is a monoid...
nn0srg 20867 The nonnegative integers f...
rge0srg 20868 The nonnegative real numbe...
zringcrng 20871 The ring of integers is a ...
zringring 20872 The ring of integers is a ...
zringabl 20873 The ring of integers is an...
zringgrp 20874 The ring of integers is an...
zringbas 20875 The integers are the base ...
zringplusg 20876 The addition operation of ...
zringmulg 20877 The multiplication (group ...
zringmulr 20878 The multiplication operati...
zring0 20879 The zero element of the ri...
zring1 20880 The unity element of the r...
zringnzr 20881 The ring of integers is a ...
dvdsrzring 20882 Ring divisibility in the r...
zringlpirlem1 20883 Lemma for ~ zringlpir . A...
zringlpirlem2 20884 Lemma for ~ zringlpir . A...
zringlpirlem3 20885 Lemma for ~ zringlpir . A...
zringinvg 20886 The additive inverse of an...
zringunit 20887 The units of ` ZZ ` are th...
zringlpir 20888 The integers are a princip...
zringndrg 20889 The integers are not a div...
zringcyg 20890 The integers are a cyclic ...
zringsubgval 20891 Subtraction in the ring of...
zringmpg 20892 The multiplication group o...
prmirredlem 20893 A positive integer is irre...
dfprm2 20894 The positive irreducible e...
prmirred 20895 The irreducible elements o...
expghm 20896 Exponentiation is a group ...
mulgghm2 20897 The powers of a group elem...
mulgrhm 20898 The powers of the element ...
mulgrhm2 20899 The powers of the element ...
zrhval 20908 Define the unique homomorp...
zrhval2 20909 Alternate value of the ` Z...
zrhmulg 20910 Value of the ` ZRHom ` hom...
zrhrhmb 20911 The ` ZRHom ` homomorphism...
zrhrhm 20912 The ` ZRHom ` homomorphism...
zrh1 20913 Interpretation of 1 in a r...
zrh0 20914 Interpretation of 0 in a r...
zrhpropd 20915 The ` ZZ ` ring homomorphi...
zlmval 20916 Augment an abelian group w...
zlmlem 20917 Lemma for ~ zlmbas and ~ z...
zlmlemOLD 20918 Obsolete version of ~ zlml...
zlmbas 20919 Base set of a ` ZZ ` -modu...
zlmbasOLD 20920 Obsolete version of ~ zlmb...
zlmplusg 20921 Group operation of a ` ZZ ...
zlmplusgOLD 20922 Obsolete version of ~ zlmb...
zlmmulr 20923 Ring operation of a ` ZZ `...
zlmmulrOLD 20924 Obsolete version of ~ zlmb...
zlmsca 20925 Scalar ring of a ` ZZ ` -m...
zlmvsca 20926 Scalar multiplication oper...
zlmlmod 20927 The ` ZZ ` -module operati...
chrval 20928 Definition substitution of...
chrcl 20929 Closure of the characteris...
chrid 20930 The canonical ` ZZ ` ring ...
chrdvds 20931 The ` ZZ ` ring homomorphi...
chrcong 20932 If two integers are congru...
chrnzr 20933 Nonzero rings are precisel...
chrrhm 20934 The characteristic restric...
domnchr 20935 The characteristic of a do...
znlidl 20936 The set ` n ZZ ` is an ide...
zncrng2 20937 The value of the ` Z/nZ ` ...
znval 20938 The value of the ` Z/nZ ` ...
znle 20939 The value of the ` Z/nZ ` ...
znval2 20940 Self-referential expressio...
znbaslem 20941 Lemma for ~ znbas . (Cont...
znbaslemOLD 20942 Obsolete version of ~ znba...
znbas2 20943 The base set of ` Z/nZ ` i...
znbas2OLD 20944 Obsolete version of ~ znba...
znadd 20945 The additive structure of ...
znaddOLD 20946 Obsolete version of ~ znad...
znmul 20947 The multiplicative structu...
znmulOLD 20948 Obsolete version of ~ znad...
znzrh 20949 The ` ZZ ` ring homomorphi...
znbas 20950 The base set of ` Z/nZ ` s...
zncrng 20951 ` Z/nZ ` is a commutative ...
znzrh2 20952 The ` ZZ ` ring homomorphi...
znzrhval 20953 The ` ZZ ` ring homomorphi...
znzrhfo 20954 The ` ZZ ` ring homomorphi...
zncyg 20955 The group ` ZZ / n ZZ ` is...
zndvds 20956 Express equality of equiva...
zndvds0 20957 Special case of ~ zndvds w...
znf1o 20958 The function ` F ` enumera...
zzngim 20959 The ` ZZ ` ring homomorphi...
znle2 20960 The ordering of the ` Z/nZ...
znleval 20961 The ordering of the ` Z/nZ...
znleval2 20962 The ordering of the ` Z/nZ...
zntoslem 20963 Lemma for ~ zntos . (Cont...
zntos 20964 The ` Z/nZ ` structure is ...
znhash 20965 The ` Z/nZ ` structure has...
znfi 20966 The ` Z/nZ ` structure is ...
znfld 20967 The ` Z/nZ ` structure is ...
znidomb 20968 The ` Z/nZ ` structure is ...
znchr 20969 Cyclic rings are defined b...
znunit 20970 The units of ` Z/nZ ` are ...
znunithash 20971 The size of the unit group...
znrrg 20972 The regular elements of ` ...
cygznlem1 20973 Lemma for ~ cygzn . (Cont...
cygznlem2a 20974 Lemma for ~ cygzn . (Cont...
cygznlem2 20975 Lemma for ~ cygzn . (Cont...
cygznlem3 20976 A cyclic group with ` n ` ...
cygzn 20977 A cyclic group with ` n ` ...
cygth 20978 The "fundamental theorem o...
cyggic 20979 Cyclic groups are isomorph...
frgpcyg 20980 A free group is cyclic iff...
cnmsgnsubg 20981 The signs form a multiplic...
cnmsgnbas 20982 The base set of the sign s...
cnmsgngrp 20983 The group of signs under m...
psgnghm 20984 The sign is a homomorphism...
psgnghm2 20985 The sign is a homomorphism...
psgninv 20986 The sign of a permutation ...
psgnco 20987 Multiplicativity of the pe...
zrhpsgnmhm 20988 Embedding of permutation s...
zrhpsgninv 20989 The embedded sign of a per...
evpmss 20990 Even permutations are perm...
psgnevpmb 20991 A class is an even permuta...
psgnodpm 20992 A permutation which is odd...
psgnevpm 20993 A permutation which is eve...
psgnodpmr 20994 If a permutation has sign ...
zrhpsgnevpm 20995 The sign of an even permut...
zrhpsgnodpm 20996 The sign of an odd permuta...
cofipsgn 20997 Composition of any class `...
zrhpsgnelbas 20998 Embedding of permutation s...
zrhcopsgnelbas 20999 Embedding of permutation s...
evpmodpmf1o 21000 The function for performin...
pmtrodpm 21001 A transposition is an odd ...
psgnfix1 21002 A permutation of a finite ...
psgnfix2 21003 A permutation of a finite ...
psgndiflemB 21004 Lemma 1 for ~ psgndif . (...
psgndiflemA 21005 Lemma 2 for ~ psgndif . (...
psgndif 21006 Embedding of permutation s...
copsgndif 21007 Embedding of permutation s...
rebase 21010 The base of the field of r...
remulg 21011 The multiplication (group ...
resubdrg 21012 The real numbers form a di...
resubgval 21013 Subtraction in the field o...
replusg 21014 The addition operation of ...
remulr 21015 The multiplication operati...
re0g 21016 The zero element of the fi...
re1r 21017 The unity element of the f...
rele2 21018 The ordering relation of t...
relt 21019 The ordering relation of t...
reds 21020 The distance of the field ...
redvr 21021 The division operation of ...
retos 21022 The real numbers are a tot...
refld 21023 The real numbers form a fi...
refldcj 21024 The conjugation operation ...
resrng 21025 The real numbers form a st...
regsumsupp 21026 The group sum over the rea...
rzgrp 21027 The quotient group ` RR / ...
isphl 21032 The predicate "is a genera...
phllvec 21033 A pre-Hilbert space is a l...
phllmod 21034 A pre-Hilbert space is a l...
phlsrng 21035 The scalar ring of a pre-H...
phllmhm 21036 The inner product of a pre...
ipcl 21037 Closure of the inner produ...
ipcj 21038 Conjugate of an inner prod...
iporthcom 21039 Orthogonality (meaning inn...
ip0l 21040 Inner product with a zero ...
ip0r 21041 Inner product with a zero ...
ipeq0 21042 The inner product of a vec...
ipdir 21043 Distributive law for inner...
ipdi 21044 Distributive law for inner...
ip2di 21045 Distributive law for inner...
ipsubdir 21046 Distributive law for inner...
ipsubdi 21047 Distributive law for inner...
ip2subdi 21048 Distributive law for inner...
ipass 21049 Associative law for inner ...
ipassr 21050 "Associative" law for seco...
ipassr2 21051 "Associative" law for inne...
ipffval 21052 The inner product operatio...
ipfval 21053 The inner product operatio...
ipfeq 21054 If the inner product opera...
ipffn 21055 The inner product operatio...
phlipf 21056 The inner product operatio...
ip2eq 21057 Two vectors are equal iff ...
isphld 21058 Properties that determine ...
phlpropd 21059 If two structures have the...
ssipeq 21060 The inner product on a sub...
phssipval 21061 The inner product on a sub...
phssip 21062 The inner product (as a fu...
phlssphl 21063 A subspace of an inner pro...
ocvfval 21070 The orthocomplement operat...
ocvval 21071 Value of the orthocompleme...
elocv 21072 Elementhood in the orthoco...
ocvi 21073 Property of a member of th...
ocvss 21074 The orthocomplement of a s...
ocvocv 21075 A set is contained in its ...
ocvlss 21076 The orthocomplement of a s...
ocv2ss 21077 Orthocomplements reverse s...
ocvin 21078 An orthocomplement has tri...
ocvsscon 21079 Two ways to say that ` S `...
ocvlsp 21080 The orthocomplement of a l...
ocv0 21081 The orthocomplement of the...
ocvz 21082 The orthocomplement of the...
ocv1 21083 The orthocomplement of the...
unocv 21084 The orthocomplement of a u...
iunocv 21085 The orthocomplement of an ...
cssval 21086 The set of closed subspace...
iscss 21087 The predicate "is a closed...
cssi 21088 Property of a closed subsp...
cssss 21089 A closed subspace is a sub...
iscss2 21090 It is sufficient to prove ...
ocvcss 21091 The orthocomplement of any...
cssincl 21092 The zero subspace is a clo...
css0 21093 The zero subspace is a clo...
css1 21094 The whole space is a close...
csslss 21095 A closed subspace of a pre...
lsmcss 21096 A subset of a pre-Hilbert ...
cssmre 21097 The closed subspaces of a ...
mrccss 21098 The Moore closure correspo...
thlval 21099 Value of the Hilbert latti...
thlbas 21100 Base set of the Hilbert la...
thlbasOLD 21101 Obsolete proof of ~ thlbas...
thlle 21102 Ordering on the Hilbert la...
thlleOLD 21103 Obsolete proof of ~ thlle ...
thlleval 21104 Ordering on the Hilbert la...
thloc 21105 Orthocomplement on the Hil...
pjfval 21112 The value of the projectio...
pjdm 21113 A subspace is in the domai...
pjpm 21114 The projection map is a pa...
pjfval2 21115 Value of the projection ma...
pjval 21116 Value of the projection ma...
pjdm2 21117 A subspace is in the domai...
pjff 21118 A projection is a linear o...
pjf 21119 A projection is a function...
pjf2 21120 A projection is a function...
pjfo 21121 A projection is a surjecti...
pjcss 21122 A projection subspace is a...
ocvpj 21123 The orthocomplement of a p...
ishil 21124 The predicate "is a Hilber...
ishil2 21125 The predicate "is a Hilber...
isobs 21126 The predicate "is an ortho...
obsip 21127 The inner product of two e...
obsipid 21128 A basis element has length...
obsrcl 21129 Reverse closure for an ort...
obsss 21130 An orthonormal basis is a ...
obsne0 21131 A basis element is nonzero...
obsocv 21132 An orthonormal basis has t...
obs2ocv 21133 The double orthocomplement...
obselocv 21134 A basis element is in the ...
obs2ss 21135 A basis has no proper subs...
obslbs 21136 An orthogonal basis is a l...
reldmdsmm 21139 The direct sum is a well-b...
dsmmval 21140 Value of the module direct...
dsmmbase 21141 Base set of the module dir...
dsmmval2 21142 Self-referential definitio...
dsmmbas2 21143 Base set of the direct sum...
dsmmfi 21144 For finite products, the d...
dsmmelbas 21145 Membership in the finitely...
dsmm0cl 21146 The all-zero vector is con...
dsmmacl 21147 The finite hull is closed ...
prdsinvgd2 21148 Negation of a single coord...
dsmmsubg 21149 The finite hull of a produ...
dsmmlss 21150 The finite hull of a produ...
dsmmlmod 21151 The direct sum of a family...
frlmval 21154 Value of the "free module"...
frlmlmod 21155 The free module is a modul...
frlmpws 21156 The free module as a restr...
frlmlss 21157 The base set of the free m...
frlmpwsfi 21158 The finite free module is ...
frlmsca 21159 The ring of scalars of a f...
frlm0 21160 Zero in a free module (rin...
frlmbas 21161 Base set of the free modul...
frlmelbas 21162 Membership in the base set...
frlmrcl 21163 If a free module is inhabi...
frlmbasfsupp 21164 Elements of the free modul...
frlmbasmap 21165 Elements of the free modul...
frlmbasf 21166 Elements of the free modul...
frlmlvec 21167 The free module over a div...
frlmfibas 21168 The base set of the finite...
elfrlmbasn0 21169 If the dimension of a free...
frlmplusgval 21170 Addition in a free module....
frlmsubgval 21171 Subtraction in a free modu...
frlmvscafval 21172 Scalar multiplication in a...
frlmvplusgvalc 21173 Coordinates of a sum with ...
frlmvscaval 21174 Coordinates of a scalar mu...
frlmplusgvalb 21175 Addition in a free module ...
frlmvscavalb 21176 Scalar multiplication in a...
frlmvplusgscavalb 21177 Addition combined with sca...
frlmgsum 21178 Finite commutative sums in...
frlmsplit2 21179 Restriction is homomorphic...
frlmsslss 21180 A subset of a free module ...
frlmsslss2 21181 A subset of a free module ...
frlmbas3 21182 An element of the base set...
mpofrlmd 21183 Elements of the free modul...
frlmip 21184 The inner product of a fre...
frlmipval 21185 The inner product of a fre...
frlmphllem 21186 Lemma for ~ frlmphl . (Co...
frlmphl 21187 Conditions for a free modu...
uvcfval 21190 Value of the unit-vector g...
uvcval 21191 Value of a single unit vec...
uvcvval 21192 Value of a unit vector coo...
uvcvvcl 21193 A coordinate of a unit vec...
uvcvvcl2 21194 A unit vector coordinate i...
uvcvv1 21195 The unit vector is one at ...
uvcvv0 21196 The unit vector is zero at...
uvcff 21197 Domain and codomain of the...
uvcf1 21198 In a nonzero ring, each un...
uvcresum 21199 Any element of a free modu...
frlmssuvc1 21200 A scalar multiple of a uni...
frlmssuvc2 21201 A nonzero scalar multiple ...
frlmsslsp 21202 A subset of a free module ...
frlmlbs 21203 The unit vectors comprise ...
frlmup1 21204 Any assignment of unit vec...
frlmup2 21205 The evaluation map has the...
frlmup3 21206 The range of such an evalu...
frlmup4 21207 Universal property of the ...
ellspd 21208 The elements of the span o...
elfilspd 21209 Simplified version of ~ el...
rellindf 21214 The independent-family pre...
islinds 21215 Property of an independent...
linds1 21216 An independent set of vect...
linds2 21217 An independent set of vect...
islindf 21218 Property of an independent...
islinds2 21219 Expanded property of an in...
islindf2 21220 Property of an independent...
lindff 21221 Functional property of a l...
lindfind 21222 A linearly independent fam...
lindsind 21223 A linearly independent set...
lindfind2 21224 In a linearly independent ...
lindsind2 21225 In a linearly independent ...
lindff1 21226 A linearly independent fam...
lindfrn 21227 The range of an independen...
f1lindf 21228 Rearranging and deleting e...
lindfres 21229 Any restriction of an inde...
lindsss 21230 Any subset of an independe...
f1linds 21231 A family constructed from ...
islindf3 21232 In a nonzero ring, indepen...
lindfmm 21233 Linear independence of a f...
lindsmm 21234 Linear independence of a s...
lindsmm2 21235 The monomorphic image of a...
lsslindf 21236 Linear independence is unc...
lsslinds 21237 Linear independence is unc...
islbs4 21238 A basis is an independent ...
lbslinds 21239 A basis is independent. (...
islinds3 21240 A subset is linearly indep...
islinds4 21241 A set is independent in a ...
lmimlbs 21242 The isomorphic image of a ...
lmiclbs 21243 Having a basis is an isomo...
islindf4 21244 A family is independent if...
islindf5 21245 A family is independent if...
indlcim 21246 An independent, spanning f...
lbslcic 21247 A module with a basis is i...
lmisfree 21248 A module has a basis iff i...
lvecisfrlm 21249 Every vector space is isom...
lmimco 21250 The composition of two iso...
lmictra 21251 Module isomorphism is tran...
uvcf1o 21252 In a nonzero ring, the map...
uvcendim 21253 In a nonzero ring, the num...
frlmisfrlm 21254 A free module is isomorphi...
frlmiscvec 21255 Every free module is isomo...
isassa 21262 The properties of an assoc...
assalem 21263 The properties of an assoc...
assaass 21264 Left-associative property ...
assaassr 21265 Right-associative property...
assalmod 21266 An associative algebra is ...
assaring 21267 An associative algebra is ...
assasca 21268 An associative algebra's s...
assa2ass 21269 Left- and right-associativ...
isassad 21270 Sufficient condition for b...
issubassa3 21271 A subring that is also a s...
issubassa 21272 The subalgebras of an asso...
sraassa 21273 The subring algebra over a...
rlmassa 21274 The ring module over a com...
assapropd 21275 If two structures have the...
aspval 21276 Value of the algebraic clo...
asplss 21277 The algebraic span of a se...
aspid 21278 The algebraic span of a su...
aspsubrg 21279 The algebraic span of a se...
aspss 21280 Span preserves subset orde...
aspssid 21281 A set of vectors is a subs...
asclfval 21282 Function value of the alge...
asclval 21283 Value of a mapped algebra ...
asclfn 21284 Unconditional functionalit...
asclf 21285 The algebra scalars functi...
asclghm 21286 The algebra scalars functi...
ascl0 21287 The scalar 0 embedded into...
ascl1 21288 The scalar 1 embedded into...
asclmul1 21289 Left multiplication by a l...
asclmul2 21290 Right multiplication by a ...
ascldimul 21291 The algebra scalars functi...
asclinvg 21292 The group inverse (negatio...
asclrhm 21293 The scalar injection is a ...
rnascl 21294 The set of injected scalar...
issubassa2 21295 A subring of a unital alge...
rnasclsubrg 21296 The scalar multiples of th...
rnasclmulcl 21297 (Vector) multiplication is...
rnasclassa 21298 The scalar multiples of th...
ressascl 21299 The injection of scalars i...
asclpropd 21300 If two structures have the...
aspval2 21301 The algebraic closure is t...
assamulgscmlem1 21302 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21303 Lemma for ~ assamulgscm (i...
assamulgscm 21304 Exponentiation of a scalar...
zlmassa 21305 The ` ZZ ` -module operati...
reldmpsr 21316 The multivariate power ser...
psrval 21317 Value of the multivariate ...
psrvalstr 21318 The multivariate power ser...
psrbag 21319 Elementhood in the set of ...
psrbagf 21320 A finite bag is a function...
psrbagfOLD 21321 Obsolete version of ~ psrb...
psrbagfsupp 21322 Finite bags have finite su...
psrbagfsuppOLD 21323 Obsolete version of ~ psrb...
snifpsrbag 21324 A bag containing one eleme...
fczpsrbag 21325 The constant function equa...
psrbaglesupp 21326 The support of a dominated...
psrbaglesuppOLD 21327 Obsolete version of ~ psrb...
psrbaglecl 21328 The set of finite bags is ...
psrbagleclOLD 21329 Obsolete version of ~ psrb...
psrbagaddcl 21330 The sum of two finite bags...
psrbagaddclOLD 21331 Obsolete version of ~ psrb...
psrbagcon 21332 The analogue of the statem...
psrbagconOLD 21333 Obsolete version of ~ psrb...
psrbaglefi 21334 There are finitely many ba...
psrbaglefiOLD 21335 Obsolete version of ~ psrb...
psrbagconcl 21336 The complement of a bag is...
psrbagconclOLD 21337 Obsolete version of ~ psrb...
psrbagconf1o 21338 Bag complementation is a b...
psrbagconf1oOLD 21339 Obsolete version of ~ psrb...
gsumbagdiaglemOLD 21340 Obsolete version of ~ gsum...
gsumbagdiagOLD 21341 Obsolete version of ~ gsum...
psrass1lemOLD 21342 Obsolete version of ~ psra...
gsumbagdiaglem 21343 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21344 Two-dimensional commutatio...
psrass1lem 21345 A group sum commutation us...
psrbas 21346 The base set of the multiv...
psrelbas 21347 An element of the set of p...
psrelbasfun 21348 An element of the set of p...
psrplusg 21349 The addition operation of ...
psradd 21350 The addition operation of ...
psraddcl 21351 Closure of the power serie...
psrmulr 21352 The multiplication operati...
psrmulfval 21353 The multiplication operati...
psrmulval 21354 The multiplication operati...
psrmulcllem 21355 Closure of the power serie...
psrmulcl 21356 Closure of the power serie...
psrsca 21357 The scalar field of the mu...
psrvscafval 21358 The scalar multiplication ...
psrvsca 21359 The scalar multiplication ...
psrvscaval 21360 The scalar multiplication ...
psrvscacl 21361 Closure of the power serie...
psr0cl 21362 The zero element of the ri...
psr0lid 21363 The zero element of the ri...
psrnegcl 21364 The negative function in t...
psrlinv 21365 The negative function in t...
psrgrp 21366 The ring of power series i...
psrgrpOLD 21367 Obsolete proof of ~ psrgrp...
psr0 21368 The zero element of the ri...
psrneg 21369 The negative function of t...
psrlmod 21370 The ring of power series i...
psr1cl 21371 The identity element of th...
psrlidm 21372 The identity element of th...
psrridm 21373 The identity element of th...
psrass1 21374 Associative identity for t...
psrdi 21375 Distributive law for the r...
psrdir 21376 Distributive law for the r...
psrass23l 21377 Associative identity for t...
psrcom 21378 Commutative law for the ri...
psrass23 21379 Associative identities for...
psrring 21380 The ring of power series i...
psr1 21381 The identity element of th...
psrcrng 21382 The ring of power series i...
psrassa 21383 The ring of power series i...
resspsrbas 21384 A restricted power series ...
resspsradd 21385 A restricted power series ...
resspsrmul 21386 A restricted power series ...
resspsrvsca 21387 A restricted power series ...
subrgpsr 21388 A subring of the base ring...
mvrfval 21389 Value of the generating el...
mvrval 21390 Value of the generating el...
mvrval2 21391 Value of the generating el...
mvrid 21392 The ` X i ` -th coefficien...
mvrf 21393 The power series variable ...
mvrf1 21394 The power series variable ...
mvrcl2 21395 A power series variable is...
reldmmpl 21396 The multivariate polynomia...
mplval 21397 Value of the set of multiv...
mplbas 21398 Base set of the set of mul...
mplelbas 21399 Property of being a polyno...
mplrcl 21400 Reverse closure for the po...
mplelsfi 21401 A polynomial treated as a ...
mplval2 21402 Self-referential expressio...
mplbasss 21403 The set of polynomials is ...
mplelf 21404 A polynomial is defined as...
mplsubglem 21405 If ` A ` is an ideal of se...
mpllsslem 21406 If ` A ` is an ideal of su...
mplsubglem2 21407 Lemma for ~ mplsubg and ~ ...
mplsubg 21408 The set of polynomials is ...
mpllss 21409 The set of polynomials is ...
mplsubrglem 21410 Lemma for ~ mplsubrg . (C...
mplsubrg 21411 The set of polynomials is ...
mpl0 21412 The zero polynomial. (Con...
mpladd 21413 The addition operation on ...
mplneg 21414 The negative function on m...
mplmul 21415 The multiplication operati...
mpl1 21416 The identity element of th...
mplsca 21417 The scalar field of a mult...
mplvsca2 21418 The scalar multiplication ...
mplvsca 21419 The scalar multiplication ...
mplvscaval 21420 The scalar multiplication ...
mvrcl 21421 A power series variable is...
mplgrp 21422 The polynomial ring is a g...
mpllmod 21423 The polynomial ring is a l...
mplring 21424 The polynomial ring is a r...
mpllvec 21425 The polynomial ring is a v...
mplcrng 21426 The polynomial ring is a c...
mplassa 21427 The polynomial ring is an ...
ressmplbas2 21428 The base set of a restrict...
ressmplbas 21429 A restricted polynomial al...
ressmpladd 21430 A restricted polynomial al...
ressmplmul 21431 A restricted polynomial al...
ressmplvsca 21432 A restricted power series ...
subrgmpl 21433 A subring of the base ring...
subrgmvr 21434 The variables in a subring...
subrgmvrf 21435 The variables in a polynom...
mplmon 21436 A monomial is a polynomial...
mplmonmul 21437 The product of two monomia...
mplcoe1 21438 Decompose a polynomial int...
mplcoe3 21439 Decompose a monomial in on...
mplcoe5lem 21440 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21441 Decompose a monomial into ...
mplcoe2 21442 Decompose a monomial into ...
mplbas2 21443 An alternative expression ...
ltbval 21444 Value of the well-order on...
ltbwe 21445 The finite bag order is a ...
reldmopsr 21446 Lemma for ordered power se...
opsrval 21447 The value of the "ordered ...
opsrle 21448 An alternative expression ...
opsrval2 21449 Self-referential expressio...
opsrbaslem 21450 Get a component of the ord...
opsrbaslemOLD 21451 Obsolete version of ~ opsr...
opsrbas 21452 The base set of the ordere...
opsrbasOLD 21453 Obsolete version of ~ opsr...
opsrplusg 21454 The addition operation of ...
opsrplusgOLD 21455 Obsolete version of ~ opsr...
opsrmulr 21456 The multiplication operati...
opsrmulrOLD 21457 Obsolete version of ~ opsr...
opsrvsca 21458 The scalar product operati...
opsrvscaOLD 21459 Obsolete version of ~ opsr...
opsrsca 21460 The scalar ring of the ord...
opsrscaOLD 21461 Obsolete version of ~ opsr...
opsrtoslem1 21462 Lemma for ~ opsrtos . (Co...
opsrtoslem2 21463 Lemma for ~ opsrtos . (Co...
opsrtos 21464 The ordered power series s...
opsrso 21465 The ordered power series s...
opsrcrng 21466 The ring of ordered power ...
opsrassa 21467 The ring of ordered power ...
mvrf2 21468 The power series/polynomia...
mplmon2 21469 Express a scaled monomial....
psrbag0 21470 The empty bag is a bag. (...
psrbagsn 21471 A singleton bag is a bag. ...
mplascl 21472 Value of the scalar inject...
mplasclf 21473 The scalar injection is a ...
subrgascl 21474 The scalar injection funct...
subrgasclcl 21475 The scalars in a polynomia...
mplmon2cl 21476 A scaled monomial is a pol...
mplmon2mul 21477 Product of scaled monomial...
mplind 21478 Prove a property of polyno...
mplcoe4 21479 Decompose a polynomial int...
evlslem4 21484 The support of a tensor pr...
psrbagev1 21485 A bag of multipliers provi...
psrbagev1OLD 21486 Obsolete version of ~ psrb...
psrbagev2 21487 Closure of a sum using a b...
psrbagev2OLD 21488 Obsolete version of ~ psrb...
evlslem2 21489 A linear function on the p...
evlslem3 21490 Lemma for ~ evlseu . Poly...
evlslem6 21491 Lemma for ~ evlseu . Fini...
evlslem1 21492 Lemma for ~ evlseu , give ...
evlseu 21493 For a given interpretation...
reldmevls 21494 Well-behaved binary operat...
mpfrcl 21495 Reverse closure for the se...
evlsval 21496 Value of the polynomial ev...
evlsval2 21497 Characterizing properties ...
evlsrhm 21498 Polynomial evaluation is a...
evlssca 21499 Polynomial evaluation maps...
evlsvar 21500 Polynomial evaluation maps...
evlsgsumadd 21501 Polynomial evaluation maps...
evlsgsummul 21502 Polynomial evaluation maps...
evlspw 21503 Polynomial evaluation for ...
evlsvarpw 21504 Polynomial evaluation for ...
evlval 21505 Value of the simple/same r...
evlrhm 21506 The simple evaluation map ...
evlsscasrng 21507 The evaluation of a scalar...
evlsca 21508 Simple polynomial evaluati...
evlsvarsrng 21509 The evaluation of the vari...
evlvar 21510 Simple polynomial evaluati...
mpfconst 21511 Constants are multivariate...
mpfproj 21512 Projections are multivaria...
mpfsubrg 21513 Polynomial functions are a...
mpff 21514 Polynomial functions are f...
mpfaddcl 21515 The sum of multivariate po...
mpfmulcl 21516 The product of multivariat...
mpfind 21517 Prove a property of polyno...
selvffval 21526 Value of the "variable sel...
selvfval 21527 Value of the "variable sel...
selvval 21528 Value of the "variable sel...
mhpfval 21529 Value of the "homogeneous ...
mhpval 21530 Value of the "homogeneous ...
ismhp 21531 Property of being a homoge...
ismhp2 21532 Deduce a homogeneous polyn...
ismhp3 21533 A polynomial is homogeneou...
mhpmpl 21534 A homogeneous polynomial i...
mhpdeg 21535 All nonzero terms of a hom...
mhp0cl 21536 The zero polynomial is hom...
mhpsclcl 21537 A scalar (or constant) pol...
mhpvarcl 21538 A power series variable is...
mhpmulcl 21539 A product of homogeneous p...
mhppwdeg 21540 Degree of a homogeneous po...
mhpaddcl 21541 Homogeneous polynomials ar...
mhpinvcl 21542 Homogeneous polynomials ar...
mhpsubg 21543 Homogeneous polynomials fo...
mhpvscacl 21544 Homogeneous polynomials ar...
mhplss 21545 Homogeneous polynomials fo...
psr1baslem 21556 The set of finite bags on ...
psr1val 21557 Value of the ring of univa...
psr1crng 21558 The ring of univariate pow...
psr1assa 21559 The ring of univariate pow...
psr1tos 21560 The ordered power series s...
psr1bas2 21561 The base set of the ring o...
psr1bas 21562 The base set of the ring o...
vr1val 21563 The value of the generator...
vr1cl2 21564 The variable ` X ` is a me...
ply1val 21565 The value of the set of un...
ply1bas 21566 The value of the base set ...
ply1lss 21567 Univariate polynomials for...
ply1subrg 21568 Univariate polynomials for...
ply1crng 21569 The ring of univariate pol...
ply1assa 21570 The ring of univariate pol...
psr1bascl 21571 A univariate power series ...
psr1basf 21572 Univariate power series ba...
ply1basf 21573 Univariate polynomial base...
ply1bascl 21574 A univariate polynomial is...
ply1bascl2 21575 A univariate polynomial is...
coe1fval 21576 Value of the univariate po...
coe1fv 21577 Value of an evaluated coef...
fvcoe1 21578 Value of a multivariate co...
coe1fval3 21579 Univariate power series co...
coe1f2 21580 Functionality of univariat...
coe1fval2 21581 Univariate polynomial coef...
coe1f 21582 Functionality of univariat...
coe1fvalcl 21583 A coefficient of a univari...
coe1sfi 21584 Finite support of univaria...
coe1fsupp 21585 The coefficient vector of ...
mptcoe1fsupp 21586 A mapping involving coeffi...
coe1ae0 21587 The coefficient vector of ...
vr1cl 21588 The generator of a univari...
opsr0 21589 Zero in the ordered power ...
opsr1 21590 One in the ordered power s...
mplplusg 21591 Value of addition in a pol...
mplmulr 21592 Value of multiplication in...
psr1plusg 21593 Value of addition in a uni...
psr1vsca 21594 Value of scalar multiplica...
psr1mulr 21595 Value of multiplication in...
ply1plusg 21596 Value of addition in a uni...
ply1vsca 21597 Value of scalar multiplica...
ply1mulr 21598 Value of multiplication in...
ressply1bas2 21599 The base set of a restrict...
ressply1bas 21600 A restricted polynomial al...
ressply1add 21601 A restricted polynomial al...
ressply1mul 21602 A restricted polynomial al...
ressply1vsca 21603 A restricted power series ...
subrgply1 21604 A subring of the base ring...
gsumply1subr 21605 Evaluate a group sum in a ...
psrbaspropd 21606 Property deduction for pow...
psrplusgpropd 21607 Property deduction for pow...
mplbaspropd 21608 Property deduction for pol...
psropprmul 21609 Reversing multiplication i...
ply1opprmul 21610 Reversing multiplication i...
00ply1bas 21611 Lemma for ~ ply1basfvi and...
ply1basfvi 21612 Protection compatibility o...
ply1plusgfvi 21613 Protection compatibility o...
ply1baspropd 21614 Property deduction for uni...
ply1plusgpropd 21615 Property deduction for uni...
opsrring 21616 Ordered power series form ...
opsrlmod 21617 Ordered power series form ...
psr1ring 21618 Univariate power series fo...
ply1ring 21619 Univariate polynomials for...
psr1lmod 21620 Univariate power series fo...
psr1sca 21621 Scalars of a univariate po...
psr1sca2 21622 Scalars of a univariate po...
ply1lmod 21623 Univariate polynomials for...
ply1sca 21624 Scalars of a univariate po...
ply1sca2 21625 Scalars of a univariate po...
ply1mpl0 21626 The univariate polynomial ...
ply10s0 21627 Zero times a univariate po...
ply1mpl1 21628 The univariate polynomial ...
ply1ascl 21629 The univariate polynomial ...
subrg1ascl 21630 The scalar injection funct...
subrg1asclcl 21631 The scalars in a polynomia...
subrgvr1 21632 The variables in a subring...
subrgvr1cl 21633 The variables in a polynom...
coe1z 21634 The coefficient vector of ...
coe1add 21635 The coefficient vector of ...
coe1addfv 21636 A particular coefficient o...
coe1subfv 21637 A particular coefficient o...
coe1mul2lem1 21638 An equivalence for ~ coe1m...
coe1mul2lem2 21639 An equivalence for ~ coe1m...
coe1mul2 21640 The coefficient vector of ...
coe1mul 21641 The coefficient vector of ...
ply1moncl 21642 Closure of the expression ...
ply1tmcl 21643 Closure of the expression ...
coe1tm 21644 Coefficient vector of a po...
coe1tmfv1 21645 Nonzero coefficient of a p...
coe1tmfv2 21646 Zero coefficient of a poly...
coe1tmmul2 21647 Coefficient vector of a po...
coe1tmmul 21648 Coefficient vector of a po...
coe1tmmul2fv 21649 Function value of a right-...
coe1pwmul 21650 Coefficient vector of a po...
coe1pwmulfv 21651 Function value of a right-...
ply1scltm 21652 A scalar is a term with ze...
coe1sclmul 21653 Coefficient vector of a po...
coe1sclmulfv 21654 A single coefficient of a ...
coe1sclmul2 21655 Coefficient vector of a po...
ply1sclf 21656 A scalar polynomial is a p...
ply1sclcl 21657 The value of the algebra s...
coe1scl 21658 Coefficient vector of a sc...
ply1sclid 21659 Recover the base scalar fr...
ply1sclf1 21660 The polynomial scalar func...
ply1scl0 21661 The zero scalar is zero. ...
ply1scln0 21662 Nonzero scalars create non...
ply1scl1 21663 The one scalar is the unit...
ply1idvr1 21664 The identity of a polynomi...
cply1mul 21665 The product of two constan...
ply1coefsupp 21666 The decomposition of a uni...
ply1coe 21667 Decompose a univariate pol...
eqcoe1ply1eq 21668 Two polynomials over the s...
ply1coe1eq 21669 Two polynomials over the s...
cply1coe0 21670 All but the first coeffici...
cply1coe0bi 21671 A polynomial is constant (...
coe1fzgsumdlem 21672 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 21673 Value of an evaluated coef...
gsumsmonply1 21674 A finite group sum of scal...
gsummoncoe1 21675 A coefficient of the polyn...
gsumply1eq 21676 Two univariate polynomials...
lply1binom 21677 The binomial theorem for l...
lply1binomsc 21678 The binomial theorem for l...
reldmevls1 21683 Well-behaved binary operat...
ply1frcl 21684 Reverse closure for the se...
evls1fval 21685 Value of the univariate po...
evls1val 21686 Value of the univariate po...
evls1rhmlem 21687 Lemma for ~ evl1rhm and ~ ...
evls1rhm 21688 Polynomial evaluation is a...
evls1sca 21689 Univariate polynomial eval...
evls1gsumadd 21690 Univariate polynomial eval...
evls1gsummul 21691 Univariate polynomial eval...
evls1pw 21692 Univariate polynomial eval...
evls1varpw 21693 Univariate polynomial eval...
evl1fval 21694 Value of the simple/same r...
evl1val 21695 Value of the simple/same r...
evl1fval1lem 21696 Lemma for ~ evl1fval1 . (...
evl1fval1 21697 Value of the simple/same r...
evl1rhm 21698 Polynomial evaluation is a...
fveval1fvcl 21699 The function value of the ...
evl1sca 21700 Polynomial evaluation maps...
evl1scad 21701 Polynomial evaluation buil...
evl1var 21702 Polynomial evaluation maps...
evl1vard 21703 Polynomial evaluation buil...
evls1var 21704 Univariate polynomial eval...
evls1scasrng 21705 The evaluation of a scalar...
evls1varsrng 21706 The evaluation of the vari...
evl1addd 21707 Polynomial evaluation buil...
evl1subd 21708 Polynomial evaluation buil...
evl1muld 21709 Polynomial evaluation buil...
evl1vsd 21710 Polynomial evaluation buil...
evl1expd 21711 Polynomial evaluation buil...
pf1const 21712 Constants are polynomial f...
pf1id 21713 The identity is a polynomi...
pf1subrg 21714 Polynomial functions are a...
pf1rcl 21715 Reverse closure for the se...
pf1f 21716 Polynomial functions are f...
mpfpf1 21717 Convert a multivariate pol...
pf1mpf 21718 Convert a univariate polyn...
pf1addcl 21719 The sum of multivariate po...
pf1mulcl 21720 The product of multivariat...
pf1ind 21721 Prove a property of polyno...
evl1gsumdlem 21722 Lemma for ~ evl1gsumd (ind...
evl1gsumd 21723 Polynomial evaluation buil...
evl1gsumadd 21724 Univariate polynomial eval...
evl1gsumaddval 21725 Value of a univariate poly...
evl1gsummul 21726 Univariate polynomial eval...
evl1varpw 21727 Univariate polynomial eval...
evl1varpwval 21728 Value of a univariate poly...
evl1scvarpw 21729 Univariate polynomial eval...
evl1scvarpwval 21730 Value of a univariate poly...
evl1gsummon 21731 Value of a univariate poly...
mamufval 21734 Functional value of the ma...
mamuval 21735 Multiplication of two matr...
mamufv 21736 A cell in the multiplicati...
mamudm 21737 The domain of the matrix m...
mamufacex 21738 Every solution of the equa...
mamures 21739 Rows in a matrix product a...
mndvcl 21740 Tuple-wise additive closur...
mndvass 21741 Tuple-wise associativity i...
mndvlid 21742 Tuple-wise left identity i...
mndvrid 21743 Tuple-wise right identity ...
grpvlinv 21744 Tuple-wise left inverse in...
grpvrinv 21745 Tuple-wise right inverse i...
mhmvlin 21746 Tuple extension of monoid ...
ringvcl 21747 Tuple-wise multiplication ...
mamucl 21748 Operation closure of matri...
mamuass 21749 Matrix multiplication is a...
mamudi 21750 Matrix multiplication dist...
mamudir 21751 Matrix multiplication dist...
mamuvs1 21752 Matrix multiplication dist...
mamuvs2 21753 Matrix multiplication dist...
matbas0pc 21756 There is no matrix with a ...
matbas0 21757 There is no matrix for a n...
matval 21758 Value of the matrix algebr...
matrcl 21759 Reverse closure for the ma...
matbas 21760 The matrix ring has the sa...
matplusg 21761 The matrix ring has the sa...
matsca 21762 The matrix ring has the sa...
matscaOLD 21763 Obsolete proof of ~ matsca...
matvsca 21764 The matrix ring has the sa...
matvscaOLD 21765 Obsolete proof of ~ matvsc...
mat0 21766 The matrix ring has the sa...
matinvg 21767 The matrix ring has the sa...
mat0op 21768 Value of a zero matrix as ...
matsca2 21769 The scalars of the matrix ...
matbas2 21770 The base set of the matrix...
matbas2i 21771 A matrix is a function. (...
matbas2d 21772 The base set of the matrix...
eqmat 21773 Two square matrices of the...
matecl 21774 Each entry (according to W...
matecld 21775 Each entry (according to W...
matplusg2 21776 Addition in the matrix rin...
matvsca2 21777 Scalar multiplication in t...
matlmod 21778 The matrix ring is a linea...
matgrp 21779 The matrix ring is a group...
matvscl 21780 Closure of the scalar mult...
matsubg 21781 The matrix ring has the sa...
matplusgcell 21782 Addition in the matrix rin...
matsubgcell 21783 Subtraction in the matrix ...
matinvgcell 21784 Additive inversion in the ...
matvscacell 21785 Scalar multiplication in t...
matgsum 21786 Finite commutative sums in...
matmulr 21787 Multiplication in the matr...
mamumat1cl 21788 The identity matrix (as op...
mat1comp 21789 The components of the iden...
mamulid 21790 The identity matrix (as op...
mamurid 21791 The identity matrix (as op...
matring 21792 Existence of the matrix ri...
matassa 21793 Existence of the matrix al...
matmulcell 21794 Multiplication in the matr...
mpomatmul 21795 Multiplication of two N x ...
mat1 21796 Value of an identity matri...
mat1ov 21797 Entries of an identity mat...
mat1bas 21798 The identity matrix is a m...
matsc 21799 The identity matrix multip...
ofco2 21800 Distribution law for the f...
oftpos 21801 The transposition of the v...
mattposcl 21802 The transpose of a square ...
mattpostpos 21803 The transpose of the trans...
mattposvs 21804 The transposition of a mat...
mattpos1 21805 The transposition of the i...
tposmap 21806 The transposition of an I ...
mamutpos 21807 Behavior of transposes in ...
mattposm 21808 Multiplying two transposed...
matgsumcl 21809 Closure of a group sum ove...
madetsumid 21810 The identity summand in th...
matepmcl 21811 Each entry of a matrix wit...
matepm2cl 21812 Each entry of a matrix wit...
madetsmelbas 21813 A summand of the determina...
madetsmelbas2 21814 A summand of the determina...
mat0dimbas0 21815 The empty set is the one a...
mat0dim0 21816 The zero of the algebra of...
mat0dimid 21817 The identity of the algebr...
mat0dimscm 21818 The scalar multiplication ...
mat0dimcrng 21819 The algebra of matrices wi...
mat1dimelbas 21820 A matrix with dimension 1 ...
mat1dimbas 21821 A matrix with dimension 1 ...
mat1dim0 21822 The zero of the algebra of...
mat1dimid 21823 The identity of the algebr...
mat1dimscm 21824 The scalar multiplication ...
mat1dimmul 21825 The ring multiplication in...
mat1dimcrng 21826 The algebra of matrices wi...
mat1f1o 21827 There is a 1-1 function fr...
mat1rhmval 21828 The value of the ring homo...
mat1rhmelval 21829 The value of the ring homo...
mat1rhmcl 21830 The value of the ring homo...
mat1f 21831 There is a function from a...
mat1ghm 21832 There is a group homomorph...
mat1mhm 21833 There is a monoid homomorp...
mat1rhm 21834 There is a ring homomorphi...
mat1rngiso 21835 There is a ring isomorphis...
mat1ric 21836 A ring is isomorphic to th...
dmatval 21841 The set of ` N ` x ` N ` d...
dmatel 21842 A ` N ` x ` N ` diagonal m...
dmatmat 21843 An ` N ` x ` N ` diagonal ...
dmatid 21844 The identity matrix is a d...
dmatelnd 21845 An extradiagonal entry of ...
dmatmul 21846 The product of two diagona...
dmatsubcl 21847 The difference of two diag...
dmatsgrp 21848 The set of diagonal matric...
dmatmulcl 21849 The product of two diagona...
dmatsrng 21850 The set of diagonal matric...
dmatcrng 21851 The subring of diagonal ma...
dmatscmcl 21852 The multiplication of a di...
scmatval 21853 The set of ` N ` x ` N ` s...
scmatel 21854 An ` N ` x ` N ` scalar ma...
scmatscmid 21855 A scalar matrix can be exp...
scmatscmide 21856 An entry of a scalar matri...
scmatscmiddistr 21857 Distributive law for scala...
scmatmat 21858 An ` N ` x ` N ` scalar ma...
scmate 21859 An entry of an ` N ` x ` N...
scmatmats 21860 The set of an ` N ` x ` N ...
scmateALT 21861 Alternate proof of ~ scmat...
scmatscm 21862 The multiplication of a ma...
scmatid 21863 The identity matrix is a s...
scmatdmat 21864 A scalar matrix is a diago...
scmataddcl 21865 The sum of two scalar matr...
scmatsubcl 21866 The difference of two scal...
scmatmulcl 21867 The product of two scalar ...
scmatsgrp 21868 The set of scalar matrices...
scmatsrng 21869 The set of scalar matrices...
scmatcrng 21870 The subring of scalar matr...
scmatsgrp1 21871 The set of scalar matrices...
scmatsrng1 21872 The set of scalar matrices...
smatvscl 21873 Closure of the scalar mult...
scmatlss 21874 The set of scalar matrices...
scmatstrbas 21875 The set of scalar matrices...
scmatrhmval 21876 The value of the ring homo...
scmatrhmcl 21877 The value of the ring homo...
scmatf 21878 There is a function from a...
scmatfo 21879 There is a function from a...
scmatf1 21880 There is a 1-1 function fr...
scmatf1o 21881 There is a bijection betwe...
scmatghm 21882 There is a group homomorph...
scmatmhm 21883 There is a monoid homomorp...
scmatrhm 21884 There is a ring homomorphi...
scmatrngiso 21885 There is a ring isomorphis...
scmatric 21886 A ring is isomorphic to ev...
mat0scmat 21887 The empty matrix over a ri...
mat1scmat 21888 A 1-dimensional matrix ove...
mvmulfval 21891 Functional value of the ma...
mvmulval 21892 Multiplication of a vector...
mvmulfv 21893 A cell/element in the vect...
mavmulval 21894 Multiplication of a vector...
mavmulfv 21895 A cell/element in the vect...
mavmulcl 21896 Multiplication of an NxN m...
1mavmul 21897 Multiplication of the iden...
mavmulass 21898 Associativity of the multi...
mavmuldm 21899 The domain of the matrix v...
mavmulsolcl 21900 Every solution of the equa...
mavmul0 21901 Multiplication of a 0-dime...
mavmul0g 21902 The result of the 0-dimens...
mvmumamul1 21903 The multiplication of an M...
mavmumamul1 21904 The multiplication of an N...
marrepfval 21909 First substitution for the...
marrepval0 21910 Second substitution for th...
marrepval 21911 Third substitution for the...
marrepeval 21912 An entry of a matrix with ...
marrepcl 21913 Closure of the row replace...
marepvfval 21914 First substitution for the...
marepvval0 21915 Second substitution for th...
marepvval 21916 Third substitution for the...
marepveval 21917 An entry of a matrix with ...
marepvcl 21918 Closure of the column repl...
ma1repvcl 21919 Closure of the column repl...
ma1repveval 21920 An entry of an identity ma...
mulmarep1el 21921 Element by element multipl...
mulmarep1gsum1 21922 The sum of element by elem...
mulmarep1gsum2 21923 The sum of element by elem...
1marepvmarrepid 21924 Replacing the ith row by 0...
submabas 21927 Any subset of the index se...
submafval 21928 First substitution for a s...
submaval0 21929 Second substitution for a ...
submaval 21930 Third substitution for a s...
submaeval 21931 An entry of a submatrix of...
1marepvsma1 21932 The submatrix of the ident...
mdetfval 21935 First substitution for the...
mdetleib 21936 Full substitution of our d...
mdetleib2 21937 Leibniz' formula can also ...
nfimdetndef 21938 The determinant is not def...
mdetfval1 21939 First substitution of an a...
mdetleib1 21940 Full substitution of an al...
mdet0pr 21941 The determinant function f...
mdet0f1o 21942 The determinant function f...
mdet0fv0 21943 The determinant of the emp...
mdetf 21944 Functionality of the deter...
mdetcl 21945 The determinant evaluates ...
m1detdiag 21946 The determinant of a 1-dim...
mdetdiaglem 21947 Lemma for ~ mdetdiag . Pr...
mdetdiag 21948 The determinant of a diago...
mdetdiagid 21949 The determinant of a diago...
mdet1 21950 The determinant of the ide...
mdetrlin 21951 The determinant function i...
mdetrsca 21952 The determinant function i...
mdetrsca2 21953 The determinant function i...
mdetr0 21954 The determinant of a matri...
mdet0 21955 The determinant of the zer...
mdetrlin2 21956 The determinant function i...
mdetralt 21957 The determinant function i...
mdetralt2 21958 The determinant function i...
mdetero 21959 The determinant function i...
mdettpos 21960 Determinant is invariant u...
mdetunilem1 21961 Lemma for ~ mdetuni . (Co...
mdetunilem2 21962 Lemma for ~ mdetuni . (Co...
mdetunilem3 21963 Lemma for ~ mdetuni . (Co...
mdetunilem4 21964 Lemma for ~ mdetuni . (Co...
mdetunilem5 21965 Lemma for ~ mdetuni . (Co...
mdetunilem6 21966 Lemma for ~ mdetuni . (Co...
mdetunilem7 21967 Lemma for ~ mdetuni . (Co...
mdetunilem8 21968 Lemma for ~ mdetuni . (Co...
mdetunilem9 21969 Lemma for ~ mdetuni . (Co...
mdetuni0 21970 Lemma for ~ mdetuni . (Co...
mdetuni 21971 According to the definitio...
mdetmul 21972 Multiplicativity of the de...
m2detleiblem1 21973 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 21974 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 21975 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 21976 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 21977 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 21978 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 21979 Lemma 4 for ~ m2detleib . ...
m2detleib 21980 Leibniz' Formula for 2x2-m...
mndifsplit 21985 Lemma for ~ maducoeval2 . ...
madufval 21986 First substitution for the...
maduval 21987 Second substitution for th...
maducoeval 21988 An entry of the adjunct (c...
maducoeval2 21989 An entry of the adjunct (c...
maduf 21990 Creating the adjunct of ma...
madutpos 21991 The adjuct of a transposed...
madugsum 21992 The determinant of a matri...
madurid 21993 Multiplying a matrix with ...
madulid 21994 Multiplying the adjunct of...
minmar1fval 21995 First substitution for the...
minmar1val0 21996 Second substitution for th...
minmar1val 21997 Third substitution for the...
minmar1eval 21998 An entry of a matrix for a...
minmar1marrep 21999 The minor matrix is a spec...
minmar1cl 22000 Closure of the row replace...
maducoevalmin1 22001 The coefficients of an adj...
symgmatr01lem 22002 Lemma for ~ symgmatr01 . ...
symgmatr01 22003 Applying a permutation tha...
gsummatr01lem1 22004 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 22005 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 22006 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 22007 Lemma 2 for ~ gsummatr01 ....
gsummatr01 22008 Lemma 1 for ~ smadiadetlem...
marep01ma 22009 Replacing a row of a squar...
smadiadetlem0 22010 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 22011 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 22012 Lemma 1a for ~ smadiadet :...
smadiadetlem2 22013 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 22014 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 22015 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 22016 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 22017 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 22018 Lemma 4 for ~ smadiadet . ...
smadiadet 22019 The determinant of a subma...
smadiadetglem1 22020 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 22021 Lemma 2 for ~ smadiadetg ....
smadiadetg 22022 The determinant of a squar...
smadiadetg0 22023 Lemma for ~ smadiadetr : v...
smadiadetr 22024 The determinant of a squar...
invrvald 22025 If a matrix multiplied wit...
matinv 22026 The inverse of a matrix is...
matunit 22027 A matrix is a unit in the ...
slesolvec 22028 Every solution of a system...
slesolinv 22029 The solution of a system o...
slesolinvbi 22030 The solution of a system o...
slesolex 22031 Every system of linear equ...
cramerimplem1 22032 Lemma 1 for ~ cramerimp : ...
cramerimplem2 22033 Lemma 2 for ~ cramerimp : ...
cramerimplem3 22034 Lemma 3 for ~ cramerimp : ...
cramerimp 22035 One direction of Cramer's ...
cramerlem1 22036 Lemma 1 for ~ cramer . (C...
cramerlem2 22037 Lemma 2 for ~ cramer . (C...
cramerlem3 22038 Lemma 3 for ~ cramer . (C...
cramer0 22039 Special case of Cramer's r...
cramer 22040 Cramer's rule. According ...
pmatring 22041 The set of polynomial matr...
pmatlmod 22042 The set of polynomial matr...
pmatassa 22043 The set of polynomial matr...
pmat0op 22044 The zero polynomial matrix...
pmat1op 22045 The identity polynomial ma...
pmat1ovd 22046 Entries of the identity po...
pmat0opsc 22047 The zero polynomial matrix...
pmat1opsc 22048 The identity polynomial ma...
pmat1ovscd 22049 Entries of the identity po...
pmatcoe1fsupp 22050 For a polynomial matrix th...
1pmatscmul 22051 The scalar product of the ...
cpmat 22058 Value of the constructor o...
cpmatpmat 22059 A constant polynomial matr...
cpmatel 22060 Property of a constant pol...
cpmatelimp 22061 Implication of a set being...
cpmatel2 22062 Another property of a cons...
cpmatelimp2 22063 Another implication of a s...
1elcpmat 22064 The identity of the ring o...
cpmatacl 22065 The set of all constant po...
cpmatinvcl 22066 The set of all constant po...
cpmatmcllem 22067 Lemma for ~ cpmatmcl . (C...
cpmatmcl 22068 The set of all constant po...
cpmatsubgpmat 22069 The set of all constant po...
cpmatsrgpmat 22070 The set of all constant po...
0elcpmat 22071 The zero of the ring of al...
mat2pmatfval 22072 Value of the matrix transf...
mat2pmatval 22073 The result of a matrix tra...
mat2pmatvalel 22074 A (matrix) element of the ...
mat2pmatbas 22075 The result of a matrix tra...
mat2pmatbas0 22076 The result of a matrix tra...
mat2pmatf 22077 The matrix transformation ...
mat2pmatf1 22078 The matrix transformation ...
mat2pmatghm 22079 The transformation of matr...
mat2pmatmul 22080 The transformation of matr...
mat2pmat1 22081 The transformation of the ...
mat2pmatmhm 22082 The transformation of matr...
mat2pmatrhm 22083 The transformation of matr...
mat2pmatlin 22084 The transformation of matr...
0mat2pmat 22085 The transformed zero matri...
idmatidpmat 22086 The transformed identity m...
d0mat2pmat 22087 The transformed empty set ...
d1mat2pmat 22088 The transformation of a ma...
mat2pmatscmxcl 22089 A transformed matrix multi...
m2cpm 22090 The result of a matrix tra...
m2cpmf 22091 The matrix transformation ...
m2cpmf1 22092 The matrix transformation ...
m2cpmghm 22093 The transformation of matr...
m2cpmmhm 22094 The transformation of matr...
m2cpmrhm 22095 The transformation of matr...
m2pmfzmap 22096 The transformed values of ...
m2pmfzgsumcl 22097 Closure of the sum of scal...
cpm2mfval 22098 Value of the inverse matri...
cpm2mval 22099 The result of an inverse m...
cpm2mvalel 22100 A (matrix) element of the ...
cpm2mf 22101 The inverse matrix transfo...
m2cpminvid 22102 The inverse transformation...
m2cpminvid2lem 22103 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 22104 The transformation applied...
m2cpmfo 22105 The matrix transformation ...
m2cpmf1o 22106 The matrix transformation ...
m2cpmrngiso 22107 The transformation of matr...
matcpmric 22108 The ring of matrices over ...
m2cpminv 22109 The inverse matrix transfo...
m2cpminv0 22110 The inverse matrix transfo...
decpmatval0 22113 The matrix consisting of t...
decpmatval 22114 The matrix consisting of t...
decpmate 22115 An entry of the matrix con...
decpmatcl 22116 Closure of the decompositi...
decpmataa0 22117 The matrix consisting of t...
decpmatfsupp 22118 The mapping to the matrice...
decpmatid 22119 The matrix consisting of t...
decpmatmullem 22120 Lemma for ~ decpmatmul . ...
decpmatmul 22121 The matrix consisting of t...
decpmatmulsumfsupp 22122 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 22123 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 22124 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 22125 Write a polynomial matrix ...
pmatcollpw2lem 22126 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 22127 Write a polynomial matrix ...
monmatcollpw 22128 The matrix consisting of t...
pmatcollpwlem 22129 Lemma for ~ pmatcollpw . ...
pmatcollpw 22130 Write a polynomial matrix ...
pmatcollpwfi 22131 Write a polynomial matrix ...
pmatcollpw3lem 22132 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 22133 Write a polynomial matrix ...
pmatcollpw3fi 22134 Write a polynomial matrix ...
pmatcollpw3fi1lem1 22135 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 22136 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 22137 Write a polynomial matrix ...
pmatcollpwscmatlem1 22138 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 22139 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 22140 Write a scalar matrix over...
pm2mpf1lem 22143 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 22144 Value of the transformatio...
pm2mpfval 22145 A polynomial matrix transf...
pm2mpcl 22146 The transformation of poly...
pm2mpf 22147 The transformation of poly...
pm2mpf1 22148 The transformation of poly...
pm2mpcoe1 22149 A coefficient of the polyn...
idpm2idmp 22150 The transformation of the ...
mptcoe1matfsupp 22151 The mapping extracting the...
mply1topmatcllem 22152 Lemma for ~ mply1topmatcl ...
mply1topmatval 22153 A polynomial over matrices...
mply1topmatcl 22154 A polynomial over matrices...
mp2pm2mplem1 22155 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 22156 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 22157 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 22158 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 22159 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 22160 A polynomial over matrices...
pm2mpghmlem2 22161 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 22162 Lemma 1 for pm2mpghm . (C...
pm2mpfo 22163 The transformation of poly...
pm2mpf1o 22164 The transformation of poly...
pm2mpghm 22165 The transformation of poly...
pm2mpgrpiso 22166 The transformation of poly...
pm2mpmhmlem1 22167 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 22168 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 22169 The transformation of poly...
pm2mprhm 22170 The transformation of poly...
pm2mprngiso 22171 The transformation of poly...
pmmpric 22172 The ring of polynomial mat...
monmat2matmon 22173 The transformation of a po...
pm2mp 22174 The transformation of a su...
chmatcl 22177 Closure of the characteris...
chmatval 22178 The entries of the charact...
chpmatfval 22179 Value of the characteristi...
chpmatval 22180 The characteristic polynom...
chpmatply1 22181 The characteristic polynom...
chpmatval2 22182 The characteristic polynom...
chpmat0d 22183 The characteristic polynom...
chpmat1dlem 22184 Lemma for ~ chpmat1d . (C...
chpmat1d 22185 The characteristic polynom...
chpdmatlem0 22186 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 22187 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 22188 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 22189 Lemma 3 for ~ chpdmat . (...
chpdmat 22190 The characteristic polynom...
chpscmat 22191 The characteristic polynom...
chpscmat0 22192 The characteristic polynom...
chpscmatgsumbin 22193 The characteristic polynom...
chpscmatgsummon 22194 The characteristic polynom...
chp0mat 22195 The characteristic polynom...
chpidmat 22196 The characteristic polynom...
chmaidscmat 22197 The characteristic polynom...
fvmptnn04if 22198 The function values of a m...
fvmptnn04ifa 22199 The function value of a ma...
fvmptnn04ifb 22200 The function value of a ma...
fvmptnn04ifc 22201 The function value of a ma...
fvmptnn04ifd 22202 The function value of a ma...
chfacfisf 22203 The "characteristic factor...
chfacfisfcpmat 22204 The "characteristic factor...
chfacffsupp 22205 The "characteristic factor...
chfacfscmulcl 22206 Closure of a scaled value ...
chfacfscmul0 22207 A scaled value of the "cha...
chfacfscmulfsupp 22208 A mapping of scaled values...
chfacfscmulgsum 22209 Breaking up a sum of value...
chfacfpmmulcl 22210 Closure of the value of th...
chfacfpmmul0 22211 The value of the "characte...
chfacfpmmulfsupp 22212 A mapping of values of the...
chfacfpmmulgsum 22213 Breaking up a sum of value...
chfacfpmmulgsum2 22214 Breaking up a sum of value...
cayhamlem1 22215 Lemma 1 for ~ cayleyhamilt...
cpmadurid 22216 The right-hand fundamental...
cpmidgsum 22217 Representation of the iden...
cpmidgsumm2pm 22218 Representation of the iden...
cpmidpmatlem1 22219 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 22220 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 22221 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 22222 Representation of the iden...
cpmadugsumlemB 22223 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 22224 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 22225 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 22226 The product of the charact...
cpmadugsum 22227 The product of the charact...
cpmidgsum2 22228 Representation of the iden...
cpmidg2sum 22229 Equality of two sums repre...
cpmadumatpolylem1 22230 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 22231 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 22232 The product of the charact...
cayhamlem2 22233 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 22234 Lemma for ~ chcoeffeq . (...
chcoeffeq 22235 The coefficients of the ch...
cayhamlem3 22236 Lemma for ~ cayhamlem4 . ...
cayhamlem4 22237 Lemma for ~ cayleyhamilton...
cayleyhamilton0 22238 The Cayley-Hamilton theore...
cayleyhamilton 22239 The Cayley-Hamilton theore...
cayleyhamiltonALT 22240 Alternate proof of ~ cayle...
cayleyhamilton1 22241 The Cayley-Hamilton theore...
istopg 22244 Express the predicate " ` ...
istop2g 22245 Express the predicate " ` ...
uniopn 22246 The union of a subset of a...
iunopn 22247 The indexed union of a sub...
inopn 22248 The intersection of two op...
fitop 22249 A topology is closed under...
fiinopn 22250 The intersection of a none...
iinopn 22251 The intersection of a none...
unopn 22252 The union of two open sets...
0opn 22253 The empty set is an open s...
0ntop 22254 The empty set is not a top...
topopn 22255 The underlying set of a to...
eltopss 22256 A member of a topology is ...
riinopn 22257 A finite indexed relative ...
rintopn 22258 A finite relative intersec...
istopon 22261 Property of being a topolo...
topontop 22262 A topology on a given base...
toponuni 22263 The base set of a topology...
topontopi 22264 A topology on a given base...
toponunii 22265 The base set of a topology...
toptopon 22266 Alternative definition of ...
toptopon2 22267 A topology is the same thi...
topontopon 22268 A topology on a set is a t...
funtopon 22269 The class ` TopOn ` is a f...
toponrestid 22270 Given a topology on a set,...
toponsspwpw 22271 The set of topologies on a...
dmtopon 22272 The domain of ` TopOn ` is...
fntopon 22273 The class ` TopOn ` is a f...
toprntopon 22274 A topology is the same thi...
toponmax 22275 The base set of a topology...
toponss 22276 A member of a topology is ...
toponcom 22277 If ` K ` is a topology on ...
toponcomb 22278 Biconditional form of ~ to...
topgele 22279 The topologies over the sa...
topsn 22280 The only topology on a sin...
istps 22283 Express the predicate "is ...
istps2 22284 Express the predicate "is ...
tpsuni 22285 The base set of a topologi...
tpstop 22286 The topology extractor on ...
tpspropd 22287 A topological space depend...
tpsprop2d 22288 A topological space depend...
topontopn 22289 Express the predicate "is ...
tsettps 22290 If the topology component ...
istpsi 22291 Properties that determine ...
eltpsg 22292 Properties that determine ...
eltpsgOLD 22293 Obsolete version of ~ eltp...
eltpsi 22294 Properties that determine ...
isbasisg 22297 Express the predicate "the...
isbasis2g 22298 Express the predicate "the...
isbasis3g 22299 Express the predicate "the...
basis1 22300 Property of a basis. (Con...
basis2 22301 Property of a basis. (Con...
fiinbas 22302 If a set is closed under f...
basdif0 22303 A basis is not affected by...
baspartn 22304 A disjoint system of sets ...
tgval 22305 The topology generated by ...
tgval2 22306 Definition of a topology g...
eltg 22307 Membership in a topology g...
eltg2 22308 Membership in a topology g...
eltg2b 22309 Membership in a topology g...
eltg4i 22310 An open set in a topology ...
eltg3i 22311 The union of a set of basi...
eltg3 22312 Membership in a topology g...
tgval3 22313 Alternate expression for t...
tg1 22314 Property of a member of a ...
tg2 22315 Property of a member of a ...
bastg 22316 A member of a basis is a s...
unitg 22317 The topology generated by ...
tgss 22318 Subset relation for genera...
tgcl 22319 Show that a basis generate...
tgclb 22320 The property ~ tgcl can be...
tgtopon 22321 A basis generates a topolo...
topbas 22322 A topology is its own basi...
tgtop 22323 A topology is its own basi...
eltop 22324 Membership in a topology, ...
eltop2 22325 Membership in a topology. ...
eltop3 22326 Membership in a topology. ...
fibas 22327 A collection of finite int...
tgdom 22328 A space has no more open s...
tgiun 22329 The indexed union of a set...
tgidm 22330 The topology generator fun...
bastop 22331 Two ways to express that a...
tgtop11 22332 The topology generation fu...
0top 22333 The singleton of the empty...
en1top 22334 ` { (/) } ` is the only to...
en2top 22335 If a topology has two elem...
tgss3 22336 A criterion for determinin...
tgss2 22337 A criterion for determinin...
basgen 22338 Given a topology ` J ` , s...
basgen2 22339 Given a topology ` J ` , s...
2basgen 22340 Conditions that determine ...
tgfiss 22341 If a subbase is included i...
tgdif0 22342 A generated topology is no...
bastop1 22343 A subset of a topology is ...
bastop2 22344 A version of ~ bastop1 tha...
distop 22345 The discrete topology on a...
topnex 22346 The class of all topologie...
distopon 22347 The discrete topology on a...
sn0topon 22348 The singleton of the empty...
sn0top 22349 The singleton of the empty...
indislem 22350 A lemma to eliminate some ...
indistopon 22351 The indiscrete topology on...
indistop 22352 The indiscrete topology on...
indisuni 22353 The base set of the indisc...
fctop 22354 The finite complement topo...
fctop2 22355 The finite complement topo...
cctop 22356 The countable complement t...
ppttop 22357 The particular point topol...
pptbas 22358 The particular point topol...
epttop 22359 The excluded point topolog...
indistpsx 22360 The indiscrete topology on...
indistps 22361 The indiscrete topology on...
indistps2 22362 The indiscrete topology on...
indistpsALT 22363 The indiscrete topology on...
indistpsALTOLD 22364 Obsolete proof of ~ indist...
indistps2ALT 22365 The indiscrete topology on...
distps 22366 The discrete topology on a...
fncld 22373 The closed-set generator i...
cldval 22374 The set of closed sets of ...
ntrfval 22375 The interior function on t...
clsfval 22376 The closure function on th...
cldrcl 22377 Reverse closure of the clo...
iscld 22378 The predicate "the class `...
iscld2 22379 A subset of the underlying...
cldss 22380 A closed set is a subset o...
cldss2 22381 The set of closed sets is ...
cldopn 22382 The complement of a closed...
isopn2 22383 A subset of the underlying...
opncld 22384 The complement of an open ...
difopn 22385 The difference of a closed...
topcld 22386 The underlying set of a to...
ntrval 22387 The interior of a subset o...
clsval 22388 The closure of a subset of...
0cld 22389 The empty set is closed. ...
iincld 22390 The indexed intersection o...
intcld 22391 The intersection of a set ...
uncld 22392 The union of two closed se...
cldcls 22393 A closed subset equals its...
incld 22394 The intersection of two cl...
riincld 22395 An indexed relative inters...
iuncld 22396 A finite indexed union of ...
unicld 22397 A finite union of closed s...
clscld 22398 The closure of a subset of...
clsf 22399 The closure function is a ...
ntropn 22400 The interior of a subset o...
clsval2 22401 Express closure in terms o...
ntrval2 22402 Interior expressed in term...
ntrdif 22403 An interior of a complemen...
clsdif 22404 A closure of a complement ...
clsss 22405 Subset relationship for cl...
ntrss 22406 Subset relationship for in...
sscls 22407 A subset of a topology's u...
ntrss2 22408 A subset includes its inte...
ssntr 22409 An open subset of a set is...
clsss3 22410 The closure of a subset of...
ntrss3 22411 The interior of a subset o...
ntrin 22412 A pairwise intersection of...
cmclsopn 22413 The complement of a closur...
cmntrcld 22414 The complement of an inter...
iscld3 22415 A subset is closed iff it ...
iscld4 22416 A subset is closed iff it ...
isopn3 22417 A subset is open iff it eq...
clsidm 22418 The closure operation is i...
ntridm 22419 The interior operation is ...
clstop 22420 The closure of a topology'...
ntrtop 22421 The interior of a topology...
0ntr 22422 A subset with an empty int...
clsss2 22423 If a subset is included in...
elcls 22424 Membership in a closure. ...
elcls2 22425 Membership in a closure. ...
clsndisj 22426 Any open set containing a ...
ntrcls0 22427 A subset whose closure has...
ntreq0 22428 Two ways to say that a sub...
cldmre 22429 The closed sets of a topol...
mrccls 22430 Moore closure generalizes ...
cls0 22431 The closure of the empty s...
ntr0 22432 The interior of the empty ...
isopn3i 22433 An open subset equals its ...
elcls3 22434 Membership in a closure in...
opncldf1 22435 A bijection useful for con...
opncldf2 22436 The values of the open-clo...
opncldf3 22437 The values of the converse...
isclo 22438 A set ` A ` is clopen iff ...
isclo2 22439 A set ` A ` is clopen iff ...
discld 22440 The open sets of a discret...
sn0cld 22441 The closed sets of the top...
indiscld 22442 The closed sets of an indi...
mretopd 22443 A Moore collection which i...
toponmre 22444 The topologies over a give...
cldmreon 22445 The closed sets of a topol...
iscldtop 22446 A family is the closed set...
mreclatdemoBAD 22447 The closed subspaces of a ...
neifval 22450 Value of the neighborhood ...
neif 22451 The neighborhood function ...
neiss2 22452 A set with a neighborhood ...
neival 22453 Value of the set of neighb...
isnei 22454 The predicate "the class `...
neiint 22455 An intuitive definition of...
isneip 22456 The predicate "the class `...
neii1 22457 A neighborhood is included...
neisspw 22458 The neighborhoods of any s...
neii2 22459 Property of a neighborhood...
neiss 22460 Any neighborhood of a set ...
ssnei 22461 A set is included in any o...
elnei 22462 A point belongs to any of ...
0nnei 22463 The empty set is not a nei...
neips 22464 A neighborhood of a set is...
opnneissb 22465 An open set is a neighborh...
opnssneib 22466 Any superset of an open se...
ssnei2 22467 Any subset ` M ` of ` X ` ...
neindisj 22468 Any neighborhood of an ele...
opnneiss 22469 An open set is a neighborh...
opnneip 22470 An open set is a neighborh...
opnnei 22471 A set is open iff it is a ...
tpnei 22472 The underlying set of a to...
neiuni 22473 The union of the neighborh...
neindisj2 22474 A point ` P ` belongs to t...
topssnei 22475 A finer topology has more ...
innei 22476 The intersection of two ne...
opnneiid 22477 Only an open set is a neig...
neissex 22478 For any neighborhood ` N `...
0nei 22479 The empty set is a neighbo...
neipeltop 22480 Lemma for ~ neiptopreu . ...
neiptopuni 22481 Lemma for ~ neiptopreu . ...
neiptoptop 22482 Lemma for ~ neiptopreu . ...
neiptopnei 22483 Lemma for ~ neiptopreu . ...
neiptopreu 22484 If, to each element ` P ` ...
lpfval 22489 The limit point function o...
lpval 22490 The set of limit points of...
islp 22491 The predicate "the class `...
lpsscls 22492 The limit points of a subs...
lpss 22493 The limit points of a subs...
lpdifsn 22494 ` P ` is a limit point of ...
lpss3 22495 Subset relationship for li...
islp2 22496 The predicate " ` P ` is a...
islp3 22497 The predicate " ` P ` is a...
maxlp 22498 A point is a limit point o...
clslp 22499 The closure of a subset of...
islpi 22500 A point belonging to a set...
cldlp 22501 A subset of a topological ...
isperf 22502 Definition of a perfect sp...
isperf2 22503 Definition of a perfect sp...
isperf3 22504 A perfect space is a topol...
perflp 22505 The limit points of a perf...
perfi 22506 Property of a perfect spac...
perftop 22507 A perfect space is a topol...
restrcl 22508 Reverse closure for the su...
restbas 22509 A subspace topology basis ...
tgrest 22510 A subspace can be generate...
resttop 22511 A subspace topology is a t...
resttopon 22512 A subspace topology is a t...
restuni 22513 The underlying set of a su...
stoig 22514 The topological space buil...
restco 22515 Composition of subspaces. ...
restabs 22516 Equivalence of being a sub...
restin 22517 When the subspace region i...
restuni2 22518 The underlying set of a su...
resttopon2 22519 The underlying set of a su...
rest0 22520 The subspace topology indu...
restsn 22521 The only subspace topology...
restsn2 22522 The subspace topology indu...
restcld 22523 A closed set of a subspace...
restcldi 22524 A closed set is closed in ...
restcldr 22525 A set which is closed in t...
restopnb 22526 If ` B ` is an open subset...
ssrest 22527 If ` K ` is a finer topolo...
restopn2 22528 If ` A ` is open, then ` B...
restdis 22529 A subspace of a discrete t...
restfpw 22530 The restriction of the set...
neitr 22531 The neighborhood of a trac...
restcls 22532 A closure in a subspace to...
restntr 22533 An interior in a subspace ...
restlp 22534 The limit points of a subs...
restperf 22535 Perfection of a subspace. ...
perfopn 22536 An open subset of a perfec...
resstopn 22537 The topology of a restrict...
resstps 22538 A restricted topological s...
ordtbaslem 22539 Lemma for ~ ordtbas . In ...
ordtval 22540 Value of the order topolog...
ordtuni 22541 Value of the order topolog...
ordtbas2 22542 Lemma for ~ ordtbas . (Co...
ordtbas 22543 In a total order, the fini...
ordttopon 22544 Value of the order topolog...
ordtopn1 22545 An upward ray ` ( P , +oo ...
ordtopn2 22546 A downward ray ` ( -oo , P...
ordtopn3 22547 An open interval ` ( A , B...
ordtcld1 22548 A downward ray ` ( -oo , P...
ordtcld2 22549 An upward ray ` [ P , +oo ...
ordtcld3 22550 A closed interval ` [ A , ...
ordttop 22551 The order topology is a to...
ordtcnv 22552 The order dual generates t...
ordtrest 22553 The subspace topology of a...
ordtrest2lem 22554 Lemma for ~ ordtrest2 . (...
ordtrest2 22555 An interval-closed set ` A...
letopon 22556 The topology of the extend...
letop 22557 The topology of the extend...
letopuni 22558 The topology of the extend...
xrstopn 22559 The topology component of ...
xrstps 22560 The extended real number s...
leordtvallem1 22561 Lemma for ~ leordtval . (...
leordtvallem2 22562 Lemma for ~ leordtval . (...
leordtval2 22563 The topology of the extend...
leordtval 22564 The topology of the extend...
iccordt 22565 A closed interval is close...
iocpnfordt 22566 An unbounded above open in...
icomnfordt 22567 An unbounded above open in...
iooordt 22568 An open interval is open i...
reordt 22569 The real numbers are an op...
lecldbas 22570 The set of closed interval...
pnfnei 22571 A neighborhood of ` +oo ` ...
mnfnei 22572 A neighborhood of ` -oo ` ...
ordtrestixx 22573 The restriction of the les...
ordtresticc 22574 The restriction of the les...
lmrel 22581 The topological space conv...
lmrcl 22582 Reverse closure for the co...
lmfval 22583 The relation "sequence ` f...
cnfval 22584 The set of all continuous ...
cnpfval 22585 The function mapping the p...
iscn 22586 The predicate "the class `...
cnpval 22587 The set of all functions f...
iscnp 22588 The predicate "the class `...
iscn2 22589 The predicate "the class `...
iscnp2 22590 The predicate "the class `...
cntop1 22591 Reverse closure for a cont...
cntop2 22592 Reverse closure for a cont...
cnptop1 22593 Reverse closure for a func...
cnptop2 22594 Reverse closure for a func...
iscnp3 22595 The predicate "the class `...
cnprcl 22596 Reverse closure for a func...
cnf 22597 A continuous function is a...
cnpf 22598 A continuous function at p...
cnpcl 22599 The value of a continuous ...
cnf2 22600 A continuous function is a...
cnpf2 22601 A continuous function at p...
cnprcl2 22602 Reverse closure for a func...
tgcn 22603 The continuity predicate w...
tgcnp 22604 The "continuous at a point...
subbascn 22605 The continuity predicate w...
ssidcn 22606 The identity function is a...
cnpimaex 22607 Property of a function con...
idcn 22608 A restricted identity func...
lmbr 22609 Express the binary relatio...
lmbr2 22610 Express the binary relatio...
lmbrf 22611 Express the binary relatio...
lmconst 22612 A constant sequence conver...
lmcvg 22613 Convergence property of a ...
iscnp4 22614 The predicate "the class `...
cnpnei 22615 A condition for continuity...
cnima 22616 An open subset of the codo...
cnco 22617 The composition of two con...
cnpco 22618 The composition of a funct...
cnclima 22619 A closed subset of the cod...
iscncl 22620 A characterization of a co...
cncls2i 22621 Property of the preimage o...
cnntri 22622 Property of the preimage o...
cnclsi 22623 Property of the image of a...
cncls2 22624 Continuity in terms of clo...
cncls 22625 Continuity in terms of clo...
cnntr 22626 Continuity in terms of int...
cnss1 22627 If the topology ` K ` is f...
cnss2 22628 If the topology ` K ` is f...
cncnpi 22629 A continuous function is c...
cnsscnp 22630 The set of continuous func...
cncnp 22631 A continuous function is c...
cncnp2 22632 A continuous function is c...
cnnei 22633 Continuity in terms of nei...
cnconst2 22634 A constant function is con...
cnconst 22635 A constant function is con...
cnrest 22636 Continuity of a restrictio...
cnrest2 22637 Equivalence of continuity ...
cnrest2r 22638 Equivalence of continuity ...
cnpresti 22639 One direction of ~ cnprest...
cnprest 22640 Equivalence of continuity ...
cnprest2 22641 Equivalence of point-conti...
cndis 22642 Every function is continuo...
cnindis 22643 Every function is continuo...
cnpdis 22644 If ` A ` is an isolated po...
paste 22645 Pasting lemma. If ` A ` a...
lmfpm 22646 If ` F ` converges, then `...
lmfss 22647 Inclusion of a function ha...
lmcl 22648 Closure of a limit. (Cont...
lmss 22649 Limit on a subspace. (Con...
sslm 22650 A finer topology has fewer...
lmres 22651 A function converges iff i...
lmff 22652 If ` F ` converges, there ...
lmcls 22653 Any convergent sequence of...
lmcld 22654 Any convergent sequence of...
lmcnp 22655 The image of a convergent ...
lmcn 22656 The image of a convergent ...
ist0 22671 The predicate "is a T_0 sp...
ist1 22672 The predicate "is a T_1 sp...
ishaus 22673 The predicate "is a Hausdo...
iscnrm 22674 The property of being comp...
t0sep 22675 Any two topologically indi...
t0dist 22676 Any two distinct points in...
t1sncld 22677 In a T_1 space, singletons...
t1ficld 22678 In a T_1 space, finite set...
hausnei 22679 Neighborhood property of a...
t0top 22680 A T_0 space is a topologic...
t1top 22681 A T_1 space is a topologic...
haustop 22682 A Hausdorff space is a top...
isreg 22683 The predicate "is a regula...
regtop 22684 A regular space is a topol...
regsep 22685 In a regular space, every ...
isnrm 22686 The predicate "is a normal...
nrmtop 22687 A normal space is a topolo...
cnrmtop 22688 A completely normal space ...
iscnrm2 22689 The property of being comp...
ispnrm 22690 The property of being perf...
pnrmnrm 22691 A perfectly normal space i...
pnrmtop 22692 A perfectly normal space i...
pnrmcld 22693 A closed set in a perfectl...
pnrmopn 22694 An open set in a perfectly...
ist0-2 22695 The predicate "is a T_0 sp...
ist0-3 22696 The predicate "is a T_0 sp...
cnt0 22697 The preimage of a T_0 topo...
ist1-2 22698 An alternate characterizat...
t1t0 22699 A T_1 space is a T_0 space...
ist1-3 22700 A space is T_1 iff every p...
cnt1 22701 The preimage of a T_1 topo...
ishaus2 22702 Express the predicate " ` ...
haust1 22703 A Hausdorff space is a T_1...
hausnei2 22704 The Hausdorff condition st...
cnhaus 22705 The preimage of a Hausdorf...
nrmsep3 22706 In a normal space, given a...
nrmsep2 22707 In a normal space, any two...
nrmsep 22708 In a normal space, disjoin...
isnrm2 22709 An alternate characterizat...
isnrm3 22710 A topological space is nor...
cnrmi 22711 A subspace of a completely...
cnrmnrm 22712 A completely normal space ...
restcnrm 22713 A subspace of a completely...
resthauslem 22714 Lemma for ~ resthaus and s...
lpcls 22715 The limit points of the cl...
perfcls 22716 A subset of a perfect spac...
restt0 22717 A subspace of a T_0 topolo...
restt1 22718 A subspace of a T_1 topolo...
resthaus 22719 A subspace of a Hausdorff ...
t1sep2 22720 Any two points in a T_1 sp...
t1sep 22721 Any two distinct points in...
sncld 22722 A singleton is closed in a...
sshauslem 22723 Lemma for ~ sshaus and sim...
sst0 22724 A topology finer than a T_...
sst1 22725 A topology finer than a T_...
sshaus 22726 A topology finer than a Ha...
regsep2 22727 In a regular space, a clos...
isreg2 22728 A topological space is reg...
dnsconst 22729 If a continuous mapping to...
ordtt1 22730 The order topology is T_1 ...
lmmo 22731 A sequence in a Hausdorff ...
lmfun 22732 The convergence relation i...
dishaus 22733 A discrete topology is Hau...
ordthauslem 22734 Lemma for ~ ordthaus . (C...
ordthaus 22735 The order topology of a to...
xrhaus 22736 The topology of the extend...
iscmp 22739 The predicate "is a compac...
cmpcov 22740 An open cover of a compact...
cmpcov2 22741 Rewrite ~ cmpcov for the c...
cmpcovf 22742 Combine ~ cmpcov with ~ ac...
cncmp 22743 Compactness is respected b...
fincmp 22744 A finite topology is compa...
0cmp 22745 The singleton of the empty...
cmptop 22746 A compact topology is a to...
rncmp 22747 The image of a compact set...
imacmp 22748 The image of a compact set...
discmp 22749 A discrete topology is com...
cmpsublem 22750 Lemma for ~ cmpsub . (Con...
cmpsub 22751 Two equivalent ways of des...
tgcmp 22752 A topology generated by a ...
cmpcld 22753 A closed subset of a compa...
uncmp 22754 The union of two compact s...
fiuncmp 22755 A finite union of compact ...
sscmp 22756 A subset of a compact topo...
hauscmplem 22757 Lemma for ~ hauscmp . (Co...
hauscmp 22758 A compact subspace of a T2...
cmpfi 22759 If a topology is compact a...
cmpfii 22760 In a compact topology, a s...
bwth 22761 The glorious Bolzano-Weier...
isconn 22764 The predicate ` J ` is a c...
isconn2 22765 The predicate ` J ` is a c...
connclo 22766 The only nonempty clopen s...
conndisj 22767 If a topology is connected...
conntop 22768 A connected topology is a ...
indisconn 22769 The indiscrete topology (o...
dfconn2 22770 An alternate definition of...
connsuba 22771 Connectedness for a subspa...
connsub 22772 Two equivalent ways of say...
cnconn 22773 Connectedness is respected...
nconnsubb 22774 Disconnectedness for a sub...
connsubclo 22775 If a clopen set meets a co...
connima 22776 The image of a connected s...
conncn 22777 A continuous function from...
iunconnlem 22778 Lemma for ~ iunconn . (Co...
iunconn 22779 The indexed union of conne...
unconn 22780 The union of two connected...
clsconn 22781 The closure of a connected...
conncompid 22782 The connected component co...
conncompconn 22783 The connected component co...
conncompss 22784 The connected component co...
conncompcld 22785 The connected component co...
conncompclo 22786 The connected component co...
t1connperf 22787 A connected T_1 space is p...
is1stc 22792 The predicate "is a first-...
is1stc2 22793 An equivalent way of sayin...
1stctop 22794 A first-countable topology...
1stcclb 22795 A property of points in a ...
1stcfb 22796 For any point ` A ` in a f...
is2ndc 22797 The property of being seco...
2ndctop 22798 A second-countable topolog...
2ndci 22799 A countable basis generate...
2ndcsb 22800 Having a countable subbase...
2ndcredom 22801 A second-countable space h...
2ndc1stc 22802 A second-countable space i...
1stcrestlem 22803 Lemma for ~ 1stcrest . (C...
1stcrest 22804 A subspace of a first-coun...
2ndcrest 22805 A subspace of a second-cou...
2ndcctbss 22806 If a topology is second-co...
2ndcdisj 22807 Any disjoint family of ope...
2ndcdisj2 22808 Any disjoint collection of...
2ndcomap 22809 A surjective continuous op...
2ndcsep 22810 A second-countable topolog...
dis2ndc 22811 A discrete space is second...
1stcelcls 22812 A point belongs to the clo...
1stccnp 22813 A mapping is continuous at...
1stccn 22814 A mapping ` X --> Y ` , wh...
islly 22819 The property of being a lo...
isnlly 22820 The property of being an n...
llyeq 22821 Equality theorem for the `...
nllyeq 22822 Equality theorem for the `...
llytop 22823 A locally ` A ` space is a...
nllytop 22824 A locally ` A ` space is a...
llyi 22825 The property of a locally ...
nllyi 22826 The property of an n-local...
nlly2i 22827 Eliminate the neighborhood...
llynlly 22828 A locally ` A ` space is n...
llyssnlly 22829 A locally ` A ` space is n...
llyss 22830 The "locally" predicate re...
nllyss 22831 The "n-locally" predicate ...
subislly 22832 The property of a subspace...
restnlly 22833 If the property ` A ` pass...
restlly 22834 If the property ` A ` pass...
islly2 22835 An alternative expression ...
llyrest 22836 An open subspace of a loca...
nllyrest 22837 An open subspace of an n-l...
loclly 22838 If ` A ` is a local proper...
llyidm 22839 Idempotence of the "locall...
nllyidm 22840 Idempotence of the "n-loca...
toplly 22841 A topology is locally a to...
topnlly 22842 A topology is n-locally a ...
hauslly 22843 A Hausdorff space is local...
hausnlly 22844 A Hausdorff space is n-loc...
hausllycmp 22845 A compact Hausdorff space ...
cldllycmp 22846 A closed subspace of a loc...
lly1stc 22847 First-countability is a lo...
dislly 22848 The discrete space ` ~P X ...
disllycmp 22849 A discrete space is locall...
dis1stc 22850 A discrete space is first-...
hausmapdom 22851 If ` X ` is a first-counta...
hauspwdom 22852 Simplify the cardinal ` A ...
refrel 22859 Refinement is a relation. ...
isref 22860 The property of being a re...
refbas 22861 A refinement covers the sa...
refssex 22862 Every set in a refinement ...
ssref 22863 A subcover is a refinement...
refref 22864 Reflexivity of refinement....
reftr 22865 Refinement is transitive. ...
refun0 22866 Adding the empty set prese...
isptfin 22867 The statement "is a point-...
islocfin 22868 The statement "is a locall...
finptfin 22869 A finite cover is a point-...
ptfinfin 22870 A point covered by a point...
finlocfin 22871 A finite cover of a topolo...
locfintop 22872 A locally finite cover cov...
locfinbas 22873 A locally finite cover mus...
locfinnei 22874 A point covered by a local...
lfinpfin 22875 A locally finite cover is ...
lfinun 22876 Adding a finite set preser...
locfincmp 22877 For a compact space, the l...
unisngl 22878 Taking the union of the se...
dissnref 22879 The set of singletons is a...
dissnlocfin 22880 The set of singletons is l...
locfindis 22881 The locally finite covers ...
locfincf 22882 A locally finite cover in ...
comppfsc 22883 A space where every open c...
kgenval 22886 Value of the compact gener...
elkgen 22887 Value of the compact gener...
kgeni 22888 Property of the open sets ...
kgentopon 22889 The compact generator gene...
kgenuni 22890 The base set of the compac...
kgenftop 22891 The compact generator gene...
kgenf 22892 The compact generator is a...
kgentop 22893 A compactly generated spac...
kgenss 22894 The compact generator gene...
kgenhaus 22895 The compact generator gene...
kgencmp 22896 The compact generator topo...
kgencmp2 22897 The compact generator topo...
kgenidm 22898 The compact generator is i...
iskgen2 22899 A space is compactly gener...
iskgen3 22900 Derive the usual definitio...
llycmpkgen2 22901 A locally compact space is...
cmpkgen 22902 A compact space is compact...
llycmpkgen 22903 A locally compact space is...
1stckgenlem 22904 The one-point compactifica...
1stckgen 22905 A first-countable space is...
kgen2ss 22906 The compact generator pres...
kgencn 22907 A function from a compactl...
kgencn2 22908 A function ` F : J --> K `...
kgencn3 22909 The set of continuous func...
kgen2cn 22910 A continuous function is a...
txval 22915 Value of the binary topolo...
txuni2 22916 The underlying set of the ...
txbasex 22917 The basis for the product ...
txbas 22918 The set of Cartesian produ...
eltx 22919 A set in a product is open...
txtop 22920 The product of two topolog...
ptval 22921 The value of the product t...
ptpjpre1 22922 The preimage of a projecti...
elpt 22923 Elementhood in the bases o...
elptr 22924 A basic open set in the pr...
elptr2 22925 A basic open set in the pr...
ptbasid 22926 The base set of the produc...
ptuni2 22927 The base set for the produ...
ptbasin 22928 The basis for a product to...
ptbasin2 22929 The basis for a product to...
ptbas 22930 The basis for a product to...
ptpjpre2 22931 The basis for a product to...
ptbasfi 22932 The basis for the product ...
pttop 22933 The product topology is a ...
ptopn 22934 A basic open set in the pr...
ptopn2 22935 A sub-basic open set in th...
xkotf 22936 Functionality of function ...
xkobval 22937 Alternative expression for...
xkoval 22938 Value of the compact-open ...
xkotop 22939 The compact-open topology ...
xkoopn 22940 A basic open set of the co...
txtopi 22941 The product of two topolog...
txtopon 22942 The underlying set of the ...
txuni 22943 The underlying set of the ...
txunii 22944 The underlying set of the ...
ptuni 22945 The base set for the produ...
ptunimpt 22946 Base set of a product topo...
pttopon 22947 The base set for the produ...
pttoponconst 22948 The base set for a product...
ptuniconst 22949 The base set for a product...
xkouni 22950 The base set of the compac...
xkotopon 22951 The base set of the compac...
ptval2 22952 The value of the product t...
txopn 22953 The product of two open se...
txcld 22954 The product of two closed ...
txcls 22955 Closure of a rectangle in ...
txss12 22956 Subset property of the top...
txbasval 22957 It is sufficient to consid...
neitx 22958 The Cartesian product of t...
txcnpi 22959 Continuity of a two-argume...
tx1cn 22960 Continuity of the first pr...
tx2cn 22961 Continuity of the second p...
ptpjcn 22962 Continuity of a projection...
ptpjopn 22963 The projection map is an o...
ptcld 22964 A closed box in the produc...
ptcldmpt 22965 A closed box in the produc...
ptclsg 22966 The closure of a box in th...
ptcls 22967 The closure of a box in th...
dfac14lem 22968 Lemma for ~ dfac14 . By e...
dfac14 22969 Theorem ~ ptcls is an equi...
xkoccn 22970 The "constant function" fu...
txcnp 22971 If two functions are conti...
ptcnplem 22972 Lemma for ~ ptcnp . (Cont...
ptcnp 22973 If every projection of a f...
upxp 22974 Universal property of the ...
txcnmpt 22975 A map into the product of ...
uptx 22976 Universal property of the ...
txcn 22977 A map into the product of ...
ptcn 22978 If every projection of a f...
prdstopn 22979 Topology of a structure pr...
prdstps 22980 A structure product of top...
pwstps 22981 A structure power of a top...
txrest 22982 The subspace of a topologi...
txdis 22983 The topological product of...
txindislem 22984 Lemma for ~ txindis . (Co...
txindis 22985 The topological product of...
txdis1cn 22986 A function is jointly cont...
txlly 22987 If the property ` A ` is p...
txnlly 22988 If the property ` A ` is p...
pthaus 22989 The product of a collectio...
ptrescn 22990 Restriction is a continuou...
txtube 22991 The "tube lemma". If ` X ...
txcmplem1 22992 Lemma for ~ txcmp . (Cont...
txcmplem2 22993 Lemma for ~ txcmp . (Cont...
txcmp 22994 The topological product of...
txcmpb 22995 The topological product of...
hausdiag 22996 A topology is Hausdorff if...
hauseqlcld 22997 In a Hausdorff topology, t...
txhaus 22998 The topological product of...
txlm 22999 Two sequences converge iff...
lmcn2 23000 The image of a convergent ...
tx1stc 23001 The topological product of...
tx2ndc 23002 The topological product of...
txkgen 23003 The topological product of...
xkohaus 23004 If the codomain space is H...
xkoptsub 23005 The compact-open topology ...
xkopt 23006 The compact-open topology ...
xkopjcn 23007 Continuity of a projection...
xkoco1cn 23008 If ` F ` is a continuous f...
xkoco2cn 23009 If ` F ` is a continuous f...
xkococnlem 23010 Continuity of the composit...
xkococn 23011 Continuity of the composit...
cnmptid 23012 The identity function is c...
cnmptc 23013 A constant function is con...
cnmpt11 23014 The composition of continu...
cnmpt11f 23015 The composition of continu...
cnmpt1t 23016 The composition of continu...
cnmpt12f 23017 The composition of continu...
cnmpt12 23018 The composition of continu...
cnmpt1st 23019 The projection onto the fi...
cnmpt2nd 23020 The projection onto the se...
cnmpt2c 23021 A constant function is con...
cnmpt21 23022 The composition of continu...
cnmpt21f 23023 The composition of continu...
cnmpt2t 23024 The composition of continu...
cnmpt22 23025 The composition of continu...
cnmpt22f 23026 The composition of continu...
cnmpt1res 23027 The restriction of a conti...
cnmpt2res 23028 The restriction of a conti...
cnmptcom 23029 The argument converse of a...
cnmptkc 23030 The curried first projecti...
cnmptkp 23031 The evaluation of the inne...
cnmptk1 23032 The composition of a curri...
cnmpt1k 23033 The composition of a one-a...
cnmptkk 23034 The composition of two cur...
xkofvcn 23035 Joint continuity of the fu...
cnmptk1p 23036 The evaluation of a currie...
cnmptk2 23037 The uncurrying of a currie...
xkoinjcn 23038 Continuity of "injection",...
cnmpt2k 23039 The currying of a two-argu...
txconn 23040 The topological product of...
imasnopn 23041 If a relation graph is ope...
imasncld 23042 If a relation graph is clo...
imasncls 23043 If a relation graph is clo...
qtopval 23046 Value of the quotient topo...
qtopval2 23047 Value of the quotient topo...
elqtop 23048 Value of the quotient topo...
qtopres 23049 The quotient topology is u...
qtoptop2 23050 The quotient topology is a...
qtoptop 23051 The quotient topology is a...
elqtop2 23052 Value of the quotient topo...
qtopuni 23053 The base set of the quotie...
elqtop3 23054 Value of the quotient topo...
qtoptopon 23055 The base set of the quotie...
qtopid 23056 A quotient map is a contin...
idqtop 23057 The quotient topology indu...
qtopcmplem 23058 Lemma for ~ qtopcmp and ~ ...
qtopcmp 23059 A quotient of a compact sp...
qtopconn 23060 A quotient of a connected ...
qtopkgen 23061 A quotient of a compactly ...
basqtop 23062 An injection maps bases to...
tgqtop 23063 An injection maps generate...
qtopcld 23064 The property of being a cl...
qtopcn 23065 Universal property of a qu...
qtopss 23066 A surjective continuous fu...
qtopeu 23067 Universal property of the ...
qtoprest 23068 If ` A ` is a saturated op...
qtopomap 23069 If ` F ` is a surjective c...
qtopcmap 23070 If ` F ` is a surjective c...
imastopn 23071 The topology of an image s...
imastps 23072 The image of a topological...
qustps 23073 A quotient structure is a ...
kqfval 23074 Value of the function appe...
kqfeq 23075 Two points in the Kolmogor...
kqffn 23076 The topological indistingu...
kqval 23077 Value of the quotient topo...
kqtopon 23078 The Kolmogorov quotient is...
kqid 23079 The topological indistingu...
ist0-4 23080 The topological indistingu...
kqfvima 23081 When the image set is open...
kqsat 23082 Any open set is saturated ...
kqdisj 23083 A version of ~ imain for t...
kqcldsat 23084 Any closed set is saturate...
kqopn 23085 The topological indistingu...
kqcld 23086 The topological indistingu...
kqt0lem 23087 Lemma for ~ kqt0 . (Contr...
isr0 23088 The property " ` J ` is an...
r0cld 23089 The analogue of the T_1 ax...
regr1lem 23090 Lemma for ~ regr1 . (Cont...
regr1lem2 23091 A Kolmogorov quotient of a...
kqreglem1 23092 A Kolmogorov quotient of a...
kqreglem2 23093 If the Kolmogorov quotient...
kqnrmlem1 23094 A Kolmogorov quotient of a...
kqnrmlem2 23095 If the Kolmogorov quotient...
kqtop 23096 The Kolmogorov quotient is...
kqt0 23097 The Kolmogorov quotient is...
kqf 23098 The Kolmogorov quotient is...
r0sep 23099 The separation property of...
nrmr0reg 23100 A normal R_0 space is also...
regr1 23101 A regular space is R_1, wh...
kqreg 23102 The Kolmogorov quotient of...
kqnrm 23103 The Kolmogorov quotient of...
hmeofn 23108 The set of homeomorphisms ...
hmeofval 23109 The set of all the homeomo...
ishmeo 23110 The predicate F is a homeo...
hmeocn 23111 A homeomorphism is continu...
hmeocnvcn 23112 The converse of a homeomor...
hmeocnv 23113 The converse of a homeomor...
hmeof1o2 23114 A homeomorphism is a 1-1-o...
hmeof1o 23115 A homeomorphism is a 1-1-o...
hmeoima 23116 The image of an open set b...
hmeoopn 23117 Homeomorphisms preserve op...
hmeocld 23118 Homeomorphisms preserve cl...
hmeocls 23119 Homeomorphisms preserve cl...
hmeontr 23120 Homeomorphisms preserve in...
hmeoimaf1o 23121 The function mapping open ...
hmeores 23122 The restriction of a homeo...
hmeoco 23123 The composite of two homeo...
idhmeo 23124 The identity function is a...
hmeocnvb 23125 The converse of a homeomor...
hmeoqtop 23126 A homeomorphism is a quoti...
hmph 23127 Express the predicate ` J ...
hmphi 23128 If there is a homeomorphis...
hmphtop 23129 Reverse closure for the ho...
hmphtop1 23130 The relation "being homeom...
hmphtop2 23131 The relation "being homeom...
hmphref 23132 "Is homeomorphic to" is re...
hmphsym 23133 "Is homeomorphic to" is sy...
hmphtr 23134 "Is homeomorphic to" is tr...
hmpher 23135 "Is homeomorphic to" is an...
hmphen 23136 Homeomorphisms preserve th...
hmphsymb 23137 "Is homeomorphic to" is sy...
haushmphlem 23138 Lemma for ~ haushmph and s...
cmphmph 23139 Compactness is a topologic...
connhmph 23140 Connectedness is a topolog...
t0hmph 23141 T_0 is a topological prope...
t1hmph 23142 T_1 is a topological prope...
haushmph 23143 Hausdorff-ness is a topolo...
reghmph 23144 Regularity is a topologica...
nrmhmph 23145 Normality is a topological...
hmph0 23146 A topology homeomorphic to...
hmphdis 23147 Homeomorphisms preserve to...
hmphindis 23148 Homeomorphisms preserve to...
indishmph 23149 Equinumerous sets equipped...
hmphen2 23150 Homeomorphisms preserve th...
cmphaushmeo 23151 A continuous bijection fro...
ordthmeolem 23152 Lemma for ~ ordthmeo . (C...
ordthmeo 23153 An order isomorphism is a ...
txhmeo 23154 Lift a pair of homeomorphi...
txswaphmeolem 23155 Show inverse for the "swap...
txswaphmeo 23156 There is a homeomorphism f...
pt1hmeo 23157 The canonical homeomorphis...
ptuncnv 23158 Exhibit the converse funct...
ptunhmeo 23159 Define a homeomorphism fro...
xpstopnlem1 23160 The function ` F ` used in...
xpstps 23161 A binary product of topolo...
xpstopnlem2 23162 Lemma for ~ xpstopn . (Co...
xpstopn 23163 The topology on a binary p...
ptcmpfi 23164 A topological product of f...
xkocnv 23165 The inverse of the "curryi...
xkohmeo 23166 The Exponential Law for to...
qtopf1 23167 If a quotient map is injec...
qtophmeo 23168 If two functions on a base...
t0kq 23169 A topological space is T_0...
kqhmph 23170 A topological space is T_0...
ist1-5lem 23171 Lemma for ~ ist1-5 and sim...
t1r0 23172 A T_1 space is R_0. That ...
ist1-5 23173 A topological space is T_1...
ishaus3 23174 A topological space is Hau...
nrmreg 23175 A normal T_1 space is regu...
reghaus 23176 A regular T_0 space is Hau...
nrmhaus 23177 A T_1 normal space is Haus...
elmptrab 23178 Membership in a one-parame...
elmptrab2 23179 Membership in a one-parame...
isfbas 23180 The predicate " ` F ` is a...
fbasne0 23181 There are no empty filter ...
0nelfb 23182 No filter base contains th...
fbsspw 23183 A filter base on a set is ...
fbelss 23184 An element of the filter b...
fbdmn0 23185 The domain of a filter bas...
isfbas2 23186 The predicate " ` F ` is a...
fbasssin 23187 A filter base contains sub...
fbssfi 23188 A filter base contains sub...
fbssint 23189 A filter base contains sub...
fbncp 23190 A filter base does not con...
fbun 23191 A necessary and sufficient...
fbfinnfr 23192 No filter base containing ...
opnfbas 23193 The collection of open sup...
trfbas2 23194 Conditions for the trace o...
trfbas 23195 Conditions for the trace o...
isfil 23198 The predicate "is a filter...
filfbas 23199 A filter is a filter base....
0nelfil 23200 The empty set doesn't belo...
fileln0 23201 An element of a filter is ...
filsspw 23202 A filter is a subset of th...
filelss 23203 An element of a filter is ...
filss 23204 A filter is closed under t...
filin 23205 A filter is closed under t...
filtop 23206 The underlying set belongs...
isfil2 23207 Derive the standard axioms...
isfildlem 23208 Lemma for ~ isfild . (Con...
isfild 23209 Sufficient condition for a...
filfi 23210 A filter is closed under t...
filinn0 23211 The intersection of two el...
filintn0 23212 A filter has the finite in...
filn0 23213 The empty set is not a fil...
infil 23214 The intersection of two fi...
snfil 23215 A singleton is a filter. ...
fbasweak 23216 A filter base on any set i...
snfbas 23217 Condition for a singleton ...
fsubbas 23218 A condition for a set to g...
fbasfip 23219 A filter base has the fini...
fbunfip 23220 A helpful lemma for showin...
fgval 23221 The filter generating clas...
elfg 23222 A condition for elements o...
ssfg 23223 A filter base is a subset ...
fgss 23224 A bigger base generates a ...
fgss2 23225 A condition for a filter t...
fgfil 23226 A filter generates itself....
elfilss 23227 An element belongs to a fi...
filfinnfr 23228 No filter containing a fin...
fgcl 23229 A generated filter is a fi...
fgabs 23230 Absorption law for filter ...
neifil 23231 The neighborhoods of a non...
filunibas 23232 Recover the base set from ...
filunirn 23233 Two ways to express a filt...
filconn 23234 A filter gives rise to a c...
fbasrn 23235 Given a filter on a domain...
filuni 23236 The union of a nonempty se...
trfil1 23237 Conditions for the trace o...
trfil2 23238 Conditions for the trace o...
trfil3 23239 Conditions for the trace o...
trfilss 23240 If ` A ` is a member of th...
fgtr 23241 If ` A ` is a member of th...
trfg 23242 The trace operation and th...
trnei 23243 The trace, over a set ` A ...
cfinfil 23244 Relative complements of th...
csdfil 23245 The set of all elements wh...
supfil 23246 The supersets of a nonempt...
zfbas 23247 The set of upper sets of i...
uzrest 23248 The restriction of the set...
uzfbas 23249 The set of upper sets of i...
isufil 23254 The property of being an u...
ufilfil 23255 An ultrafilter is a filter...
ufilss 23256 For any subset of the base...
ufilb 23257 The complement is in an ul...
ufilmax 23258 Any filter finer than an u...
isufil2 23259 The maximal property of an...
ufprim 23260 An ultrafilter is a prime ...
trufil 23261 Conditions for the trace o...
filssufilg 23262 A filter is contained in s...
filssufil 23263 A filter is contained in s...
isufl 23264 Define the (strong) ultraf...
ufli 23265 Property of a set that sat...
numufl 23266 Consequence of ~ filssufil...
fiufl 23267 A finite set satisfies the...
acufl 23268 The axiom of choice implie...
ssufl 23269 If ` Y ` is a subset of ` ...
ufileu 23270 If the ultrafilter contain...
filufint 23271 A filter is equal to the i...
uffix 23272 Lemma for ~ fixufil and ~ ...
fixufil 23273 The condition describing a...
uffixfr 23274 An ultrafilter is either f...
uffix2 23275 A classification of fixed ...
uffixsn 23276 The singleton of the gener...
ufildom1 23277 An ultrafilter is generate...
uffinfix 23278 An ultrafilter containing ...
cfinufil 23279 An ultrafilter is free iff...
ufinffr 23280 An infinite subset is cont...
ufilen 23281 Any infinite set has an ul...
ufildr 23282 An ultrafilter gives rise ...
fin1aufil 23283 There are no definable fre...
fmval 23294 Introduce a function that ...
fmfil 23295 A mapping filter is a filt...
fmf 23296 Pushing-forward via a func...
fmss 23297 A finer filter produces a ...
elfm 23298 An element of a mapping fi...
elfm2 23299 An element of a mapping fi...
fmfg 23300 The image filter of a filt...
elfm3 23301 An alternate formulation o...
imaelfm 23302 An image of a filter eleme...
rnelfmlem 23303 Lemma for ~ rnelfm . (Con...
rnelfm 23304 A condition for a filter t...
fmfnfmlem1 23305 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23306 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23307 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23308 Lemma for ~ fmfnfm . (Con...
fmfnfm 23309 A filter finer than an ima...
fmufil 23310 An image filter of an ultr...
fmid 23311 The filter map applied to ...
fmco 23312 Composition of image filte...
ufldom 23313 The ultrafilter lemma prop...
flimval 23314 The set of limit points of...
elflim2 23315 The predicate "is a limit ...
flimtop 23316 Reverse closure for the li...
flimneiss 23317 A filter contains the neig...
flimnei 23318 A filter contains all of t...
flimelbas 23319 A limit point of a filter ...
flimfil 23320 Reverse closure for the li...
flimtopon 23321 Reverse closure for the li...
elflim 23322 The predicate "is a limit ...
flimss2 23323 A limit point of a filter ...
flimss1 23324 A limit point of a filter ...
neiflim 23325 A point is a limit point o...
flimopn 23326 The condition for being a ...
fbflim 23327 A condition for a filter t...
fbflim2 23328 A condition for a filter b...
flimclsi 23329 The convergent points of a...
hausflimlem 23330 If ` A ` and ` B ` are bot...
hausflimi 23331 One direction of ~ hausfli...
hausflim 23332 A condition for a topology...
flimcf 23333 Fineness is properly chara...
flimrest 23334 The set of limit points in...
flimclslem 23335 Lemma for ~ flimcls . (Co...
flimcls 23336 Closure in terms of filter...
flimsncls 23337 If ` A ` is a limit point ...
hauspwpwf1 23338 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23339 If ` X ` is a Hausdorff sp...
flffval 23340 Given a topology and a fil...
flfval 23341 Given a function from a fi...
flfnei 23342 The property of being a li...
flfneii 23343 A neighborhood of a limit ...
isflf 23344 The property of being a li...
flfelbas 23345 A limit point of a functio...
flffbas 23346 Limit points of a function...
flftg 23347 Limit points of a function...
hausflf 23348 If a function has its valu...
hausflf2 23349 If a convergent function h...
cnpflfi 23350 Forward direction of ~ cnp...
cnpflf2 23351 ` F ` is continuous at poi...
cnpflf 23352 Continuity of a function a...
cnflf 23353 A function is continuous i...
cnflf2 23354 A function is continuous i...
flfcnp 23355 A continuous function pres...
lmflf 23356 The topological limit rela...
txflf 23357 Two sequences converge in ...
flfcnp2 23358 The image of a convergent ...
fclsval 23359 The set of all cluster poi...
isfcls 23360 A cluster point of a filte...
fclsfil 23361 Reverse closure for the cl...
fclstop 23362 Reverse closure for the cl...
fclstopon 23363 Reverse closure for the cl...
isfcls2 23364 A cluster point of a filte...
fclsopn 23365 Write the cluster point co...
fclsopni 23366 An open neighborhood of a ...
fclselbas 23367 A cluster point is in the ...
fclsneii 23368 A neighborhood of a cluste...
fclssscls 23369 The set of cluster points ...
fclsnei 23370 Cluster points in terms of...
supnfcls 23371 The filter of supersets of...
fclsbas 23372 Cluster points in terms of...
fclsss1 23373 A finer topology has fewer...
fclsss2 23374 A finer filter has fewer c...
fclsrest 23375 The set of cluster points ...
fclscf 23376 Characterization of finene...
flimfcls 23377 A limit point is a cluster...
fclsfnflim 23378 A filter clusters at a poi...
flimfnfcls 23379 A filter converges to a po...
fclscmpi 23380 Forward direction of ~ fcl...
fclscmp 23381 A space is compact iff eve...
uffclsflim 23382 The cluster points of an u...
ufilcmp 23383 A space is compact iff eve...
fcfval 23384 The set of cluster points ...
isfcf 23385 The property of being a cl...
fcfnei 23386 The property of being a cl...
fcfelbas 23387 A cluster point of a funct...
fcfneii 23388 A neighborhood of a cluste...
flfssfcf 23389 A limit point of a functio...
uffcfflf 23390 If the domain filter is an...
cnpfcfi 23391 Lemma for ~ cnpfcf . If a...
cnpfcf 23392 A function ` F ` is contin...
cnfcf 23393 Continuity of a function i...
flfcntr 23394 A continuous function's va...
alexsublem 23395 Lemma for ~ alexsub . (Co...
alexsub 23396 The Alexander Subbase Theo...
alexsubb 23397 Biconditional form of the ...
alexsubALTlem1 23398 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23399 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23400 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23401 Lemma for ~ alexsubALT . ...
alexsubALT 23402 The Alexander Subbase Theo...
ptcmplem1 23403 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23404 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23405 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23406 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23407 Lemma for ~ ptcmp . (Cont...
ptcmpg 23408 Tychonoff's theorem: The ...
ptcmp 23409 Tychonoff's theorem: The ...
cnextval 23412 The function applying cont...
cnextfval 23413 The continuous extension o...
cnextrel 23414 In the general case, a con...
cnextfun 23415 If the target space is Hau...
cnextfvval 23416 The value of the continuou...
cnextf 23417 Extension by continuity. ...
cnextcn 23418 Extension by continuity. ...
cnextfres1 23419 ` F ` and its extension by...
cnextfres 23420 ` F ` and its extension by...
istmd 23425 The predicate "is a topolo...
tmdmnd 23426 A topological monoid is a ...
tmdtps 23427 A topological monoid is a ...
istgp 23428 The predicate "is a topolo...
tgpgrp 23429 A topological group is a g...
tgptmd 23430 A topological group is a t...
tgptps 23431 A topological group is a t...
tmdtopon 23432 The topology of a topologi...
tgptopon 23433 The topology of a topologi...
tmdcn 23434 In a topological monoid, t...
tgpcn 23435 In a topological group, th...
tgpinv 23436 In a topological group, th...
grpinvhmeo 23437 The inverse function in a ...
cnmpt1plusg 23438 Continuity of the group su...
cnmpt2plusg 23439 Continuity of the group su...
tmdcn2 23440 Write out the definition o...
tgpsubcn 23441 In a topological group, th...
istgp2 23442 A group with a topology is...
tmdmulg 23443 In a topological monoid, t...
tgpmulg 23444 In a topological group, th...
tgpmulg2 23445 In a topological monoid, t...
tmdgsum 23446 In a topological monoid, t...
tmdgsum2 23447 For any neighborhood ` U `...
oppgtmd 23448 The opposite of a topologi...
oppgtgp 23449 The opposite of a topologi...
distgp 23450 Any group equipped with th...
indistgp 23451 Any group equipped with th...
efmndtmd 23452 The monoid of endofunction...
tmdlactcn 23453 The left group action of e...
tgplacthmeo 23454 The left group action of e...
submtmd 23455 A submonoid of a topologic...
subgtgp 23456 A subgroup of a topologica...
symgtgp 23457 The symmetric group is a t...
subgntr 23458 A subgroup of a topologica...
opnsubg 23459 An open subgroup of a topo...
clssubg 23460 The closure of a subgroup ...
clsnsg 23461 The closure of a normal su...
cldsubg 23462 A subgroup of finite index...
tgpconncompeqg 23463 The connected component co...
tgpconncomp 23464 The identity component, th...
tgpconncompss 23465 The identity component is ...
ghmcnp 23466 A group homomorphism on to...
snclseqg 23467 The coset of the closure o...
tgphaus 23468 A topological group is Hau...
tgpt1 23469 Hausdorff and T1 are equiv...
tgpt0 23470 Hausdorff and T0 are equiv...
qustgpopn 23471 A quotient map in a topolo...
qustgplem 23472 Lemma for ~ qustgp . (Con...
qustgp 23473 The quotient of a topologi...
qustgphaus 23474 The quotient of a topologi...
prdstmdd 23475 The product of a family of...
prdstgpd 23476 The product of a family of...
tsmsfbas 23479 The collection of all sets...
tsmslem1 23480 The finite partial sums of...
tsmsval2 23481 Definition of the topologi...
tsmsval 23482 Definition of the topologi...
tsmspropd 23483 The group sum depends only...
eltsms 23484 The property of being a su...
tsmsi 23485 The property of being a su...
tsmscl 23486 A sum in a topological gro...
haustsms 23487 In a Hausdorff topological...
haustsms2 23488 In a Hausdorff topological...
tsmscls 23489 One half of ~ tgptsmscls ,...
tsmsgsum 23490 The convergent points of a...
tsmsid 23491 If a sum is finite, the us...
haustsmsid 23492 In a Hausdorff topological...
tsms0 23493 The sum of zero is zero. ...
tsmssubm 23494 Evaluate an infinite group...
tsmsres 23495 Extend an infinite group s...
tsmsf1o 23496 Re-index an infinite group...
tsmsmhm 23497 Apply a continuous group h...
tsmsadd 23498 The sum of two infinite gr...
tsmsinv 23499 Inverse of an infinite gro...
tsmssub 23500 The difference of two infi...
tgptsmscls 23501 A sum in a topological gro...
tgptsmscld 23502 The set of limit points to...
tsmssplit 23503 Split a topological group ...
tsmsxplem1 23504 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 23505 Lemma for ~ tsmsxp . (Con...
tsmsxp 23506 Write a sum over a two-dim...
istrg 23515 Express the predicate " ` ...
trgtmd 23516 The multiplicative monoid ...
istdrg 23517 Express the predicate " ` ...
tdrgunit 23518 The unit group of a topolo...
trgtgp 23519 A topological ring is a to...
trgtmd2 23520 A topological ring is a to...
trgtps 23521 A topological ring is a to...
trgring 23522 A topological ring is a ri...
trggrp 23523 A topological ring is a gr...
tdrgtrg 23524 A topological division rin...
tdrgdrng 23525 A topological division rin...
tdrgring 23526 A topological division rin...
tdrgtmd 23527 A topological division rin...
tdrgtps 23528 A topological division rin...
istdrg2 23529 A topological-ring divisio...
mulrcn 23530 The functionalization of t...
invrcn2 23531 The multiplicative inverse...
invrcn 23532 The multiplicative inverse...
cnmpt1mulr 23533 Continuity of ring multipl...
cnmpt2mulr 23534 Continuity of ring multipl...
dvrcn 23535 The division function is c...
istlm 23536 The predicate " ` W ` is a...
vscacn 23537 The scalar multiplication ...
tlmtmd 23538 A topological module is a ...
tlmtps 23539 A topological module is a ...
tlmlmod 23540 A topological module is a ...
tlmtrg 23541 The scalar ring of a topol...
tlmscatps 23542 The scalar ring of a topol...
istvc 23543 A topological vector space...
tvctdrg 23544 The scalar field of a topo...
cnmpt1vsca 23545 Continuity of scalar multi...
cnmpt2vsca 23546 Continuity of scalar multi...
tlmtgp 23547 A topological vector space...
tvctlm 23548 A topological vector space...
tvclmod 23549 A topological vector space...
tvclvec 23550 A topological vector space...
ustfn 23553 The defined uniform struct...
ustval 23554 The class of all uniform s...
isust 23555 The predicate " ` U ` is a...
ustssxp 23556 Entourages are subsets of ...
ustssel 23557 A uniform structure is upw...
ustbasel 23558 The full set is always an ...
ustincl 23559 A uniform structure is clo...
ustdiag 23560 The diagonal set is includ...
ustinvel 23561 If ` V ` is an entourage, ...
ustexhalf 23562 For each entourage ` V ` t...
ustrel 23563 The elements of uniform st...
ustfilxp 23564 A uniform structure on a n...
ustne0 23565 A uniform structure cannot...
ustssco 23566 In an uniform structure, a...
ustexsym 23567 In an uniform structure, f...
ustex2sym 23568 In an uniform structure, f...
ustex3sym 23569 In an uniform structure, f...
ustref 23570 Any element of the base se...
ust0 23571 The unique uniform structu...
ustn0 23572 The empty set is not an un...
ustund 23573 If two intersecting sets `...
ustelimasn 23574 Any point ` A ` is near en...
ustneism 23575 For a point ` A ` in ` X `...
elrnustOLD 23576 Obsolete version of ~ elfv...
ustbas2 23577 Second direction for ~ ust...
ustuni 23578 The set union of a uniform...
ustbas 23579 Recover the base of an uni...
ustimasn 23580 Lemma for ~ ustuqtop . (C...
trust 23581 The trace of a uniform str...
utopval 23584 The topology induced by a ...
elutop 23585 Open sets in the topology ...
utoptop 23586 The topology induced by a ...
utopbas 23587 The base of the topology i...
utoptopon 23588 Topology induced by a unif...
restutop 23589 Restriction of a topology ...
restutopopn 23590 The restriction of the top...
ustuqtoplem 23591 Lemma for ~ ustuqtop . (C...
ustuqtop0 23592 Lemma for ~ ustuqtop . (C...
ustuqtop1 23593 Lemma for ~ ustuqtop , sim...
ustuqtop2 23594 Lemma for ~ ustuqtop . (C...
ustuqtop3 23595 Lemma for ~ ustuqtop , sim...
ustuqtop4 23596 Lemma for ~ ustuqtop . (C...
ustuqtop5 23597 Lemma for ~ ustuqtop . (C...
ustuqtop 23598 For a given uniform struct...
utopsnneiplem 23599 The neighborhoods of a poi...
utopsnneip 23600 The neighborhoods of a poi...
utopsnnei 23601 Images of singletons by en...
utop2nei 23602 For any symmetrical entour...
utop3cls 23603 Relation between a topolog...
utopreg 23604 All Hausdorff uniform spac...
ussval 23611 The uniform structure on u...
ussid 23612 In case the base of the ` ...
isusp 23613 The predicate ` W ` is a u...
ressuss 23614 Value of the uniform struc...
ressust 23615 The uniform structure of a...
ressusp 23616 The restriction of a unifo...
tusval 23617 The value of the uniform s...
tuslem 23618 Lemma for ~ tusbas , ~ tus...
tuslemOLD 23619 Obsolete proof of ~ tuslem...
tusbas 23620 The base set of a construc...
tusunif 23621 The uniform structure of a...
tususs 23622 The uniform structure of a...
tustopn 23623 The topology induced by a ...
tususp 23624 A constructed uniform spac...
tustps 23625 A constructed uniform spac...
uspreg 23626 If a uniform space is Haus...
ucnval 23629 The set of all uniformly c...
isucn 23630 The predicate " ` F ` is a...
isucn2 23631 The predicate " ` F ` is a...
ucnimalem 23632 Reformulate the ` G ` func...
ucnima 23633 An equivalent statement of...
ucnprima 23634 The preimage by a uniforml...
iducn 23635 The identity is uniformly ...
cstucnd 23636 A constant function is uni...
ucncn 23637 Uniform continuity implies...
iscfilu 23640 The predicate " ` F ` is a...
cfilufbas 23641 A Cauchy filter base is a ...
cfiluexsm 23642 For a Cauchy filter base a...
fmucndlem 23643 Lemma for ~ fmucnd . (Con...
fmucnd 23644 The image of a Cauchy filt...
cfilufg 23645 The filter generated by a ...
trcfilu 23646 Condition for the trace of...
cfiluweak 23647 A Cauchy filter base is al...
neipcfilu 23648 In an uniform space, a nei...
iscusp 23651 The predicate " ` W ` is a...
cuspusp 23652 A complete uniform space i...
cuspcvg 23653 In a complete uniform spac...
iscusp2 23654 The predicate " ` W ` is a...
cnextucn 23655 Extension by continuity. ...
ucnextcn 23656 Extension by continuity. ...
ispsmet 23657 Express the predicate " ` ...
psmetdmdm 23658 Recover the base set from ...
psmetf 23659 The distance function of a...
psmetcl 23660 Closure of the distance fu...
psmet0 23661 The distance function of a...
psmettri2 23662 Triangle inequality for th...
psmetsym 23663 The distance function of a...
psmettri 23664 Triangle inequality for th...
psmetge0 23665 The distance function of a...
psmetxrge0 23666 The distance function of a...
psmetres2 23667 Restriction of a pseudomet...
psmetlecl 23668 Real closure of an extende...
distspace 23669 A set ` X ` together with ...
ismet 23676 Express the predicate " ` ...
isxmet 23677 Express the predicate " ` ...
ismeti 23678 Properties that determine ...
isxmetd 23679 Properties that determine ...
isxmet2d 23680 It is safe to only require...
metflem 23681 Lemma for ~ metf and other...
xmetf 23682 Mapping of the distance fu...
metf 23683 Mapping of the distance fu...
xmetcl 23684 Closure of the distance fu...
metcl 23685 Closure of the distance fu...
ismet2 23686 An extended metric is a me...
metxmet 23687 A metric is an extended me...
xmetdmdm 23688 Recover the base set from ...
metdmdm 23689 Recover the base set from ...
xmetunirn 23690 Two ways to express an ext...
xmeteq0 23691 The value of an extended m...
meteq0 23692 The value of a metric is z...
xmettri2 23693 Triangle inequality for th...
mettri2 23694 Triangle inequality for th...
xmet0 23695 The distance function of a...
met0 23696 The distance function of a...
xmetge0 23697 The distance function of a...
metge0 23698 The distance function of a...
xmetlecl 23699 Real closure of an extende...
xmetsym 23700 The distance function of a...
xmetpsmet 23701 An extended metric is a ps...
xmettpos 23702 The distance function of a...
metsym 23703 The distance function of a...
xmettri 23704 Triangle inequality for th...
mettri 23705 Triangle inequality for th...
xmettri3 23706 Triangle inequality for th...
mettri3 23707 Triangle inequality for th...
xmetrtri 23708 One half of the reverse tr...
xmetrtri2 23709 The reverse triangle inequ...
metrtri 23710 Reverse triangle inequalit...
xmetgt0 23711 The distance function of a...
metgt0 23712 The distance function of a...
metn0 23713 A metric space is nonempty...
xmetres2 23714 Restriction of an extended...
metreslem 23715 Lemma for ~ metres . (Con...
metres2 23716 Lemma for ~ metres . (Con...
xmetres 23717 A restriction of an extend...
metres 23718 A restriction of a metric ...
0met 23719 The empty metric. (Contri...
prdsdsf 23720 The product metric is a fu...
prdsxmetlem 23721 The product metric is an e...
prdsxmet 23722 The product metric is an e...
prdsmet 23723 The product metric is a me...
ressprdsds 23724 Restriction of a product m...
resspwsds 23725 Restriction of a power met...
imasdsf1olem 23726 Lemma for ~ imasdsf1o . (...
imasdsf1o 23727 The distance function is t...
imasf1oxmet 23728 The image of an extended m...
imasf1omet 23729 The image of a metric is a...
xpsdsfn 23730 Closure of the metric in a...
xpsdsfn2 23731 Closure of the metric in a...
xpsxmetlem 23732 Lemma for ~ xpsxmet . (Co...
xpsxmet 23733 A product metric of extend...
xpsdsval 23734 Value of the metric in a b...
xpsmet 23735 The direct product of two ...
blfvalps 23736 The value of the ball func...
blfval 23737 The value of the ball func...
blvalps 23738 The ball around a point ` ...
blval 23739 The ball around a point ` ...
elblps 23740 Membership in a ball. (Co...
elbl 23741 Membership in a ball. (Co...
elbl2ps 23742 Membership in a ball. (Co...
elbl2 23743 Membership in a ball. (Co...
elbl3ps 23744 Membership in a ball, with...
elbl3 23745 Membership in a ball, with...
blcomps 23746 Commute the arguments to t...
blcom 23747 Commute the arguments to t...
xblpnfps 23748 The infinity ball in an ex...
xblpnf 23749 The infinity ball in an ex...
blpnf 23750 The infinity ball in a sta...
bldisj 23751 Two balls are disjoint if ...
blgt0 23752 A nonempty ball implies th...
bl2in 23753 Two balls are disjoint if ...
xblss2ps 23754 One ball is contained in a...
xblss2 23755 One ball is contained in a...
blss2ps 23756 One ball is contained in a...
blss2 23757 One ball is contained in a...
blhalf 23758 A ball of radius ` R / 2 `...
blfps 23759 Mapping of a ball. (Contr...
blf 23760 Mapping of a ball. (Contr...
blrnps 23761 Membership in the range of...
blrn 23762 Membership in the range of...
xblcntrps 23763 A ball contains its center...
xblcntr 23764 A ball contains its center...
blcntrps 23765 A ball contains its center...
blcntr 23766 A ball contains its center...
xbln0 23767 A ball is nonempty iff the...
bln0 23768 A ball is not empty. (Con...
blelrnps 23769 A ball belongs to the set ...
blelrn 23770 A ball belongs to the set ...
blssm 23771 A ball is a subset of the ...
unirnblps 23772 The union of the set of ba...
unirnbl 23773 The union of the set of ba...
blin 23774 The intersection of two ba...
ssblps 23775 The size of a ball increas...
ssbl 23776 The size of a ball increas...
blssps 23777 Any point ` P ` in a ball ...
blss 23778 Any point ` P ` in a ball ...
blssexps 23779 Two ways to express the ex...
blssex 23780 Two ways to express the ex...
ssblex 23781 A nested ball exists whose...
blin2 23782 Given any two balls and a ...
blbas 23783 The balls of a metric spac...
blres 23784 A ball in a restricted met...
xmeterval 23785 Value of the "finitely sep...
xmeter 23786 The "finitely separated" r...
xmetec 23787 The equivalence classes un...
blssec 23788 A ball centered at ` P ` i...
blpnfctr 23789 The infinity ball in an ex...
xmetresbl 23790 An extended metric restric...
mopnval 23791 An open set is a subset of...
mopntopon 23792 The set of open sets of a ...
mopntop 23793 The set of open sets of a ...
mopnuni 23794 The union of all open sets...
elmopn 23795 The defining property of a...
mopnfss 23796 The family of open sets of...
mopnm 23797 The base set of a metric s...
elmopn2 23798 A defining property of an ...
mopnss 23799 An open set of a metric sp...
isxms 23800 Express the predicate " ` ...
isxms2 23801 Express the predicate " ` ...
isms 23802 Express the predicate " ` ...
isms2 23803 Express the predicate " ` ...
xmstopn 23804 The topology component of ...
mstopn 23805 The topology component of ...
xmstps 23806 An extended metric space i...
msxms 23807 A metric space is an exten...
mstps 23808 A metric space is a topolo...
xmsxmet 23809 The distance function, sui...
msmet 23810 The distance function, sui...
msf 23811 The distance function of a...
xmsxmet2 23812 The distance function, sui...
msmet2 23813 The distance function, sui...
mscl 23814 Closure of the distance fu...
xmscl 23815 Closure of the distance fu...
xmsge0 23816 The distance function in a...
xmseq0 23817 The distance between two p...
xmssym 23818 The distance function in a...
xmstri2 23819 Triangle inequality for th...
mstri2 23820 Triangle inequality for th...
xmstri 23821 Triangle inequality for th...
mstri 23822 Triangle inequality for th...
xmstri3 23823 Triangle inequality for th...
mstri3 23824 Triangle inequality for th...
msrtri 23825 Reverse triangle inequalit...
xmspropd 23826 Property deduction for an ...
mspropd 23827 Property deduction for a m...
setsmsbas 23828 The base set of a construc...
setsmsbasOLD 23829 Obsolete proof of ~ setsms...
setsmsds 23830 The distance function of a...
setsmsdsOLD 23831 Obsolete proof of ~ setsms...
setsmstset 23832 The topology of a construc...
setsmstopn 23833 The topology of a construc...
setsxms 23834 The constructed metric spa...
setsms 23835 The constructed metric spa...
tmsval 23836 For any metric there is an...
tmslem 23837 Lemma for ~ tmsbas , ~ tms...
tmslemOLD 23838 Obsolete version of ~ tmsl...
tmsbas 23839 The base set of a construc...
tmsds 23840 The metric of a constructe...
tmstopn 23841 The topology of a construc...
tmsxms 23842 The constructed metric spa...
tmsms 23843 The constructed metric spa...
imasf1obl 23844 The image of a metric spac...
imasf1oxms 23845 The image of a metric spac...
imasf1oms 23846 The image of a metric spac...
prdsbl 23847 A ball in the product metr...
mopni 23848 An open set of a metric sp...
mopni2 23849 An open set of a metric sp...
mopni3 23850 An open set of a metric sp...
blssopn 23851 The balls of a metric spac...
unimopn 23852 The union of a collection ...
mopnin 23853 The intersection of two op...
mopn0 23854 The empty set is an open s...
rnblopn 23855 A ball of a metric space i...
blopn 23856 A ball of a metric space i...
neibl 23857 The neighborhoods around a...
blnei 23858 A ball around a point is a...
lpbl 23859 Every ball around a limit ...
blsscls2 23860 A smaller closed ball is c...
blcld 23861 A "closed ball" in a metri...
blcls 23862 The closure of an open bal...
blsscls 23863 If two concentric balls ha...
metss 23864 Two ways of saying that me...
metequiv 23865 Two ways of saying that tw...
metequiv2 23866 If there is a sequence of ...
metss2lem 23867 Lemma for ~ metss2 . (Con...
metss2 23868 If the metric ` D ` is "st...
comet 23869 The composition of an exte...
stdbdmetval 23870 Value of the standard boun...
stdbdxmet 23871 The standard bounded metri...
stdbdmet 23872 The standard bounded metri...
stdbdbl 23873 The standard bounded metri...
stdbdmopn 23874 The standard bounded metri...
mopnex 23875 The topology generated by ...
methaus 23876 The topology generated by ...
met1stc 23877 The topology generated by ...
met2ndci 23878 A separable metric space (...
met2ndc 23879 A metric space is second-c...
metrest 23880 Two alternate formulations...
ressxms 23881 The restriction of a metri...
ressms 23882 The restriction of a metri...
prdsmslem1 23883 Lemma for ~ prdsms . The ...
prdsxmslem1 23884 Lemma for ~ prdsms . The ...
prdsxmslem2 23885 Lemma for ~ prdsxms . The...
prdsxms 23886 The indexed product struct...
prdsms 23887 The indexed product struct...
pwsxms 23888 A power of an extended met...
pwsms 23889 A power of a metric space ...
xpsxms 23890 A binary product of metric...
xpsms 23891 A binary product of metric...
tmsxps 23892 Express the product of two...
tmsxpsmopn 23893 Express the product of two...
tmsxpsval 23894 Value of the product of tw...
tmsxpsval2 23895 Value of the product of tw...
metcnp3 23896 Two ways to express that `...
metcnp 23897 Two ways to say a mapping ...
metcnp2 23898 Two ways to say a mapping ...
metcn 23899 Two ways to say a mapping ...
metcnpi 23900 Epsilon-delta property of ...
metcnpi2 23901 Epsilon-delta property of ...
metcnpi3 23902 Epsilon-delta property of ...
txmetcnp 23903 Continuity of a binary ope...
txmetcn 23904 Continuity of a binary ope...
metuval 23905 Value of the uniform struc...
metustel 23906 Define a filter base ` F `...
metustss 23907 Range of the elements of t...
metustrel 23908 Elements of the filter bas...
metustto 23909 Any two elements of the fi...
metustid 23910 The identity diagonal is i...
metustsym 23911 Elements of the filter bas...
metustexhalf 23912 For any element ` A ` of t...
metustfbas 23913 The filter base generated ...
metust 23914 The uniform structure gene...
cfilucfil 23915 Given a metric ` D ` and a...
metuust 23916 The uniform structure gene...
cfilucfil2 23917 Given a metric ` D ` and a...
blval2 23918 The ball around a point ` ...
elbl4 23919 Membership in a ball, alte...
metuel 23920 Elementhood in the uniform...
metuel2 23921 Elementhood in the uniform...
metustbl 23922 The "section" image of an ...
psmetutop 23923 The topology induced by a ...
xmetutop 23924 The topology induced by a ...
xmsusp 23925 If the uniform set of a me...
restmetu 23926 The uniform structure gene...
metucn 23927 Uniform continuity in metr...
dscmet 23928 The discrete metric on any...
dscopn 23929 The discrete metric genera...
nrmmetd 23930 Show that a group norm gen...
abvmet 23931 An absolute value ` F ` ge...
nmfval 23944 The value of the norm func...
nmval 23945 The value of the norm as t...
nmfval0 23946 The value of the norm func...
nmfval2 23947 The value of the norm func...
nmval2 23948 The value of the norm on a...
nmf2 23949 The norm on a metric group...
nmpropd 23950 Weak property deduction fo...
nmpropd2 23951 Strong property deduction ...
isngp 23952 The property of being a no...
isngp2 23953 The property of being a no...
isngp3 23954 The property of being a no...
ngpgrp 23955 A normed group is a group....
ngpms 23956 A normed group is a metric...
ngpxms 23957 A normed group is an exten...
ngptps 23958 A normed group is a topolo...
ngpmet 23959 The (induced) metric of a ...
ngpds 23960 Value of the distance func...
ngpdsr 23961 Value of the distance func...
ngpds2 23962 Write the distance between...
ngpds2r 23963 Write the distance between...
ngpds3 23964 Write the distance between...
ngpds3r 23965 Write the distance between...
ngprcan 23966 Cancel right addition insi...
ngplcan 23967 Cancel left addition insid...
isngp4 23968 Express the property of be...
ngpinvds 23969 Two elements are the same ...
ngpsubcan 23970 Cancel right subtraction i...
nmf 23971 The norm on a normed group...
nmcl 23972 The norm of a normed group...
nmge0 23973 The norm of a normed group...
nmeq0 23974 The identity is the only e...
nmne0 23975 The norm of a nonzero elem...
nmrpcl 23976 The norm of a nonzero elem...
nminv 23977 The norm of a negated elem...
nmmtri 23978 The triangle inequality fo...
nmsub 23979 The norm of the difference...
nmrtri 23980 Reverse triangle inequalit...
nm2dif 23981 Inequality for the differe...
nmtri 23982 The triangle inequality fo...
nmtri2 23983 Triangle inequality for th...
ngpi 23984 The properties of a normed...
nm0 23985 Norm of the identity eleme...
nmgt0 23986 The norm of a nonzero elem...
sgrim 23987 The induced metric on a su...
sgrimval 23988 The induced metric on a su...
subgnm 23989 The norm in a subgroup. (...
subgnm2 23990 A substructure assigns the...
subgngp 23991 A normed group restricted ...
ngptgp 23992 A normed abelian group is ...
ngppropd 23993 Property deduction for a n...
reldmtng 23994 The function ` toNrmGrp ` ...
tngval 23995 Value of the function whic...
tnglem 23996 Lemma for ~ tngbas and sim...
tnglemOLD 23997 Obsolete version of ~ tngl...
tngbas 23998 The base set of a structur...
tngbasOLD 23999 Obsolete proof of ~ tngbas...
tngplusg 24000 The group addition of a st...
tngplusgOLD 24001 Obsolete proof of ~ tngplu...
tng0 24002 The group identity of a st...
tngmulr 24003 The ring multiplication of...
tngmulrOLD 24004 Obsolete proof of ~ tngmul...
tngsca 24005 The scalar ring of a struc...
tngscaOLD 24006 Obsolete proof of ~ tngsca...
tngvsca 24007 The scalar multiplication ...
tngvscaOLD 24008 Obsolete proof of ~ tngvsc...
tngip 24009 The inner product operatio...
tngipOLD 24010 Obsolete proof of ~ tngip ...
tngds 24011 The metric function of a s...
tngdsOLD 24012 Obsolete proof of ~ tngds ...
tngtset 24013 The topology generated by ...
tngtopn 24014 The topology generated by ...
tngnm 24015 The topology generated by ...
tngngp2 24016 A norm turns a group into ...
tngngpd 24017 Derive the axioms for a no...
tngngp 24018 Derive the axioms for a no...
tnggrpr 24019 If a structure equipped wi...
tngngp3 24020 Alternate definition of a ...
nrmtngdist 24021 The augmentation of a norm...
nrmtngnrm 24022 The augmentation of a norm...
tngngpim 24023 The induced metric of a no...
isnrg 24024 A normed ring is a ring wi...
nrgabv 24025 The norm of a normed ring ...
nrgngp 24026 A normed ring is a normed ...
nrgring 24027 A normed ring is a ring. ...
nmmul 24028 The norm of a product in a...
nrgdsdi 24029 Distribute a distance calc...
nrgdsdir 24030 Distribute a distance calc...
nm1 24031 The norm of one in a nonze...
unitnmn0 24032 The norm of a unit is nonz...
nminvr 24033 The norm of an inverse in ...
nmdvr 24034 The norm of a division in ...
nrgdomn 24035 A nonzero normed ring is a...
nrgtgp 24036 A normed ring is a topolog...
subrgnrg 24037 A normed ring restricted t...
tngnrg 24038 Given any absolute value o...
isnlm 24039 A normed (left) module is ...
nmvs 24040 Defining property of a nor...
nlmngp 24041 A normed module is a norme...
nlmlmod 24042 A normed module is a left ...
nlmnrg 24043 The scalar component of a ...
nlmngp2 24044 The scalar component of a ...
nlmdsdi 24045 Distribute a distance calc...
nlmdsdir 24046 Distribute a distance calc...
nlmmul0or 24047 If a scalar product is zer...
sranlm 24048 The subring algebra over a...
nlmvscnlem2 24049 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 24050 Lemma for ~ nlmvscn . (Co...
nlmvscn 24051 The scalar multiplication ...
rlmnlm 24052 The ring module over a nor...
rlmnm 24053 The norm function in the r...
nrgtrg 24054 A normed ring is a topolog...
nrginvrcnlem 24055 Lemma for ~ nrginvrcn . C...
nrginvrcn 24056 The ring inverse function ...
nrgtdrg 24057 A normed division ring is ...
nlmtlm 24058 A normed module is a topol...
isnvc 24059 A normed vector space is j...
nvcnlm 24060 A normed vector space is a...
nvclvec 24061 A normed vector space is a...
nvclmod 24062 A normed vector space is a...
isnvc2 24063 A normed vector space is j...
nvctvc 24064 A normed vector space is a...
lssnlm 24065 A subspace of a normed mod...
lssnvc 24066 A subspace of a normed vec...
rlmnvc 24067 The ring module over a nor...
ngpocelbl 24068 Membership of an off-cente...
nmoffn 24075 The function producing ope...
reldmnghm 24076 Lemma for normed group hom...
reldmnmhm 24077 Lemma for module homomorph...
nmofval 24078 Value of the operator norm...
nmoval 24079 Value of the operator norm...
nmogelb 24080 Property of the operator n...
nmolb 24081 Any upper bound on the val...
nmolb2d 24082 Any upper bound on the val...
nmof 24083 The operator norm is a fun...
nmocl 24084 The operator norm of an op...
nmoge0 24085 The operator norm of an op...
nghmfval 24086 A normed group homomorphis...
isnghm 24087 A normed group homomorphis...
isnghm2 24088 A normed group homomorphis...
isnghm3 24089 A normed group homomorphis...
bddnghm 24090 A bounded group homomorphi...
nghmcl 24091 A normed group homomorphis...
nmoi 24092 The operator norm achieves...
nmoix 24093 The operator norm is a bou...
nmoi2 24094 The operator norm is a bou...
nmoleub 24095 The operator norm, defined...
nghmrcl1 24096 Reverse closure for a norm...
nghmrcl2 24097 Reverse closure for a norm...
nghmghm 24098 A normed group homomorphis...
nmo0 24099 The operator norm of the z...
nmoeq0 24100 The operator norm is zero ...
nmoco 24101 An upper bound on the oper...
nghmco 24102 The composition of normed ...
nmotri 24103 Triangle inequality for th...
nghmplusg 24104 The sum of two bounded lin...
0nghm 24105 The zero operator is a nor...
nmoid 24106 The operator norm of the i...
idnghm 24107 The identity operator is a...
nmods 24108 Upper bound for the distan...
nghmcn 24109 A normed group homomorphis...
isnmhm 24110 A normed module homomorphi...
nmhmrcl1 24111 Reverse closure for a norm...
nmhmrcl2 24112 Reverse closure for a norm...
nmhmlmhm 24113 A normed module homomorphi...
nmhmnghm 24114 A normed module homomorphi...
nmhmghm 24115 A normed module homomorphi...
isnmhm2 24116 A normed module homomorphi...
nmhmcl 24117 A normed module homomorphi...
idnmhm 24118 The identity operator is a...
0nmhm 24119 The zero operator is a bou...
nmhmco 24120 The composition of bounded...
nmhmplusg 24121 The sum of two bounded lin...
qtopbaslem 24122 The set of open intervals ...
qtopbas 24123 The set of open intervals ...
retopbas 24124 A basis for the standard t...
retop 24125 The standard topology on t...
uniretop 24126 The underlying set of the ...
retopon 24127 The standard topology on t...
retps 24128 The standard topological s...
iooretop 24129 Open intervals are open se...
icccld 24130 Closed intervals are close...
icopnfcld 24131 Right-unbounded closed int...
iocmnfcld 24132 Left-unbounded closed inte...
qdensere 24133 ` QQ ` is dense in the sta...
cnmetdval 24134 Value of the distance func...
cnmet 24135 The absolute value metric ...
cnxmet 24136 The absolute value metric ...
cnbl0 24137 Two ways to write the open...
cnblcld 24138 Two ways to write the clos...
cnfldms 24139 The complex number field i...
cnfldxms 24140 The complex number field i...
cnfldtps 24141 The complex number field i...
cnfldnm 24142 The norm of the field of c...
cnngp 24143 The complex numbers form a...
cnnrg 24144 The complex numbers form a...
cnfldtopn 24145 The topology of the comple...
cnfldtopon 24146 The topology of the comple...
cnfldtop 24147 The topology of the comple...
cnfldhaus 24148 The topology of the comple...
unicntop 24149 The underlying set of the ...
cnopn 24150 The set of complex numbers...
zringnrg 24151 The ring of integers is a ...
remetdval 24152 Value of the distance func...
remet 24153 The absolute value metric ...
rexmet 24154 The absolute value metric ...
bl2ioo 24155 A ball in terms of an open...
ioo2bl 24156 An open interval of reals ...
ioo2blex 24157 An open interval of reals ...
blssioo 24158 The balls of the standard ...
tgioo 24159 The topology generated by ...
qdensere2 24160 ` QQ ` is dense in ` RR ` ...
blcvx 24161 An open ball in the comple...
rehaus 24162 The standard topology on t...
tgqioo 24163 The topology generated by ...
re2ndc 24164 The standard topology on t...
resubmet 24165 The subspace topology indu...
tgioo2 24166 The standard topology on t...
rerest 24167 The subspace topology indu...
tgioo3 24168 The standard topology on t...
xrtgioo 24169 The topology on the extend...
xrrest 24170 The subspace topology indu...
xrrest2 24171 The subspace topology indu...
xrsxmet 24172 The metric on the extended...
xrsdsre 24173 The metric on the extended...
xrsblre 24174 Any ball of the metric of ...
xrsmopn 24175 The metric on the extended...
zcld 24176 The integers are a closed ...
recld2 24177 The real numbers are a clo...
zcld2 24178 The integers are a closed ...
zdis 24179 The integers are a discret...
sszcld 24180 Every subset of the intege...
reperflem 24181 A subset of the real numbe...
reperf 24182 The real numbers are a per...
cnperf 24183 The complex numbers are a ...
iccntr 24184 The interior of a closed i...
icccmplem1 24185 Lemma for ~ icccmp . (Con...
icccmplem2 24186 Lemma for ~ icccmp . (Con...
icccmplem3 24187 Lemma for ~ icccmp . (Con...
icccmp 24188 A closed interval in ` RR ...
reconnlem1 24189 Lemma for ~ reconn . Conn...
reconnlem2 24190 Lemma for ~ reconn . (Con...
reconn 24191 A subset of the reals is c...
retopconn 24192 Corollary of ~ reconn . T...
iccconn 24193 A closed interval is conne...
opnreen 24194 Every nonempty open set is...
rectbntr0 24195 A countable subset of the ...
xrge0gsumle 24196 A finite sum in the nonneg...
xrge0tsms 24197 Any finite or infinite sum...
xrge0tsms2 24198 Any finite or infinite sum...
metdcnlem 24199 The metric function of a m...
xmetdcn2 24200 The metric function of an ...
xmetdcn 24201 The metric function of an ...
metdcn2 24202 The metric function of a m...
metdcn 24203 The metric function of a m...
msdcn 24204 The metric function of a m...
cnmpt1ds 24205 Continuity of the metric f...
cnmpt2ds 24206 Continuity of the metric f...
nmcn 24207 The norm of a normed group...
ngnmcncn 24208 The norm of a normed group...
abscn 24209 The absolute value functio...
metdsval 24210 Value of the "distance to ...
metdsf 24211 The distance from a point ...
metdsge 24212 The distance from the poin...
metds0 24213 If a point is in a set, it...
metdstri 24214 A generalization of the tr...
metdsle 24215 The distance from a point ...
metdsre 24216 The distance from a point ...
metdseq0 24217 The distance from a point ...
metdscnlem 24218 Lemma for ~ metdscn . (Co...
metdscn 24219 The function ` F ` which g...
metdscn2 24220 The function ` F ` which g...
metnrmlem1a 24221 Lemma for ~ metnrm . (Con...
metnrmlem1 24222 Lemma for ~ metnrm . (Con...
metnrmlem2 24223 Lemma for ~ metnrm . (Con...
metnrmlem3 24224 Lemma for ~ metnrm . (Con...
metnrm 24225 A metric space is normal. ...
metreg 24226 A metric space is regular....
addcnlem 24227 Lemma for ~ addcn , ~ subc...
addcn 24228 Complex number addition is...
subcn 24229 Complex number subtraction...
mulcn 24230 Complex number multiplicat...
divcn 24231 Complex number division is...
cnfldtgp 24232 The complex numbers form a...
fsumcn 24233 A finite sum of functions ...
fsum2cn 24234 Version of ~ fsumcn for tw...
expcn 24235 The power function on comp...
divccn 24236 Division by a nonzero cons...
sqcn 24237 The square function on com...
iitopon 24242 The unit interval is a top...
iitop 24243 The unit interval is a top...
iiuni 24244 The base set of the unit i...
dfii2 24245 Alternate definition of th...
dfii3 24246 Alternate definition of th...
dfii4 24247 Alternate definition of th...
dfii5 24248 The unit interval expresse...
iicmp 24249 The unit interval is compa...
iiconn 24250 The unit interval is conne...
cncfval 24251 The value of the continuou...
elcncf 24252 Membership in the set of c...
elcncf2 24253 Version of ~ elcncf with a...
cncfrss 24254 Reverse closure of the con...
cncfrss2 24255 Reverse closure of the con...
cncff 24256 A continuous complex funct...
cncfi 24257 Defining property of a con...
elcncf1di 24258 Membership in the set of c...
elcncf1ii 24259 Membership in the set of c...
rescncf 24260 A continuous complex funct...
cncfcdm 24261 Change the codomain of a c...
cncfss 24262 The set of continuous func...
climcncf 24263 Image of a limit under a c...
abscncf 24264 Absolute value is continuo...
recncf 24265 Real part is continuous. ...
imcncf 24266 Imaginary part is continuo...
cjcncf 24267 Complex conjugate is conti...
mulc1cncf 24268 Multiplication by a consta...
divccncf 24269 Division by a constant is ...
cncfco 24270 The composition of two con...
cncfcompt2 24271 Composition of continuous ...
cncfmet 24272 Relate complex function co...
cncfcn 24273 Relate complex function co...
cncfcn1 24274 Relate complex function co...
cncfmptc 24275 A constant function is a c...
cncfmptid 24276 The identity function is a...
cncfmpt1f 24277 Composition of continuous ...
cncfmpt2f 24278 Composition of continuous ...
cncfmpt2ss 24279 Composition of continuous ...
addccncf 24280 Adding a constant is a con...
idcncf 24281 The identity function is a...
sub1cncf 24282 Subtracting a constant is ...
sub2cncf 24283 Subtraction from a constan...
cdivcncf 24284 Division with a constant n...
negcncf 24285 The negative function is c...
negfcncf 24286 The negative of a continuo...
abscncfALT 24287 Absolute value is continuo...
cncfcnvcn 24288 Rewrite ~ cmphaushmeo for ...
expcncf 24289 The power function on comp...
cnmptre 24290 Lemma for ~ iirevcn and re...
cnmpopc 24291 Piecewise definition of a ...
iirev 24292 Reverse the unit interval....
iirevcn 24293 The reversion function is ...
iihalf1 24294 Map the first half of ` II...
iihalf1cn 24295 The first half function is...
iihalf2 24296 Map the second half of ` I...
iihalf2cn 24297 The second half function i...
elii1 24298 Divide the unit interval i...
elii2 24299 Divide the unit interval i...
iimulcl 24300 The unit interval is close...
iimulcn 24301 Multiplication is a contin...
icoopnst 24302 A half-open interval start...
iocopnst 24303 A half-open interval endin...
icchmeo 24304 The natural bijection from...
icopnfcnv 24305 Define a bijection from ` ...
icopnfhmeo 24306 The defined bijection from...
iccpnfcnv 24307 Define a bijection from ` ...
iccpnfhmeo 24308 The defined bijection from...
xrhmeo 24309 The bijection from ` [ -u ...
xrhmph 24310 The extended reals are hom...
xrcmp 24311 The topology of the extend...
xrconn 24312 The topology of the extend...
icccvx 24313 A linear combination of tw...
oprpiece1res1 24314 Restriction to the first p...
oprpiece1res2 24315 Restriction to the second ...
cnrehmeo 24316 The canonical bijection fr...
cnheiborlem 24317 Lemma for ~ cnheibor . (C...
cnheibor 24318 Heine-Borel theorem for co...
cnllycmp 24319 The topology on the comple...
rellycmp 24320 The topology on the reals ...
bndth 24321 The Boundedness Theorem. ...
evth 24322 The Extreme Value Theorem....
evth2 24323 The Extreme Value Theorem,...
lebnumlem1 24324 Lemma for ~ lebnum . The ...
lebnumlem2 24325 Lemma for ~ lebnum . As a...
lebnumlem3 24326 Lemma for ~ lebnum . By t...
lebnum 24327 The Lebesgue number lemma,...
xlebnum 24328 Generalize ~ lebnum to ext...
lebnumii 24329 Specialize the Lebesgue nu...
ishtpy 24335 Membership in the class of...
htpycn 24336 A homotopy is a continuous...
htpyi 24337 A homotopy evaluated at it...
ishtpyd 24338 Deduction for membership i...
htpycom 24339 Given a homotopy from ` F ...
htpyid 24340 A homotopy from a function...
htpyco1 24341 Compose a homotopy with a ...
htpyco2 24342 Compose a homotopy with a ...
htpycc 24343 Concatenate two homotopies...
isphtpy 24344 Membership in the class of...
phtpyhtpy 24345 A path homotopy is a homot...
phtpycn 24346 A path homotopy is a conti...
phtpyi 24347 Membership in the class of...
phtpy01 24348 Two path-homotopic paths h...
isphtpyd 24349 Deduction for membership i...
isphtpy2d 24350 Deduction for membership i...
phtpycom 24351 Given a homotopy from ` F ...
phtpyid 24352 A homotopy from a path to ...
phtpyco2 24353 Compose a path homotopy wi...
phtpycc 24354 Concatenate two path homot...
phtpcrel 24356 The path homotopy relation...
isphtpc 24357 The relation "is path homo...
phtpcer 24358 Path homotopy is an equiva...
phtpc01 24359 Path homotopic paths have ...
reparphti 24360 Lemma for ~ reparpht . (C...
reparpht 24361 Reparametrization lemma. ...
phtpcco2 24362 Compose a path homotopy wi...
pcofval 24373 The value of the path conc...
pcoval 24374 The concatenation of two p...
pcovalg 24375 Evaluate the concatenation...
pcoval1 24376 Evaluate the concatenation...
pco0 24377 The starting point of a pa...
pco1 24378 The ending point of a path...
pcoval2 24379 Evaluate the concatenation...
pcocn 24380 The concatenation of two p...
copco 24381 The composition of a conca...
pcohtpylem 24382 Lemma for ~ pcohtpy . (Co...
pcohtpy 24383 Homotopy invariance of pat...
pcoptcl 24384 A constant function is a p...
pcopt 24385 Concatenation with a point...
pcopt2 24386 Concatenation with a point...
pcoass 24387 Order of concatenation doe...
pcorevcl 24388 Closure for a reversed pat...
pcorevlem 24389 Lemma for ~ pcorev . Prov...
pcorev 24390 Concatenation with the rev...
pcorev2 24391 Concatenation with the rev...
pcophtb 24392 The path homotopy equivale...
om1val 24393 The definition of the loop...
om1bas 24394 The base set of the loop s...
om1elbas 24395 Elementhood in the base se...
om1addcl 24396 Closure of the group opera...
om1plusg 24397 The group operation (which...
om1tset 24398 The topology of the loop s...
om1opn 24399 The topology of the loop s...
pi1val 24400 The definition of the fund...
pi1bas 24401 The base set of the fundam...
pi1blem 24402 Lemma for ~ pi1buni . (Co...
pi1buni 24403 Another way to write the l...
pi1bas2 24404 The base set of the fundam...
pi1eluni 24405 Elementhood in the base se...
pi1bas3 24406 The base set of the fundam...
pi1cpbl 24407 The group operation, loop ...
elpi1 24408 The elements of the fundam...
elpi1i 24409 The elements of the fundam...
pi1addf 24410 The group operation of ` p...
pi1addval 24411 The concatenation of two p...
pi1grplem 24412 Lemma for ~ pi1grp . (Con...
pi1grp 24413 The fundamental group is a...
pi1id 24414 The identity element of th...
pi1inv 24415 An inverse in the fundamen...
pi1xfrf 24416 Functionality of the loop ...
pi1xfrval 24417 The value of the loop tran...
pi1xfr 24418 Given a path ` F ` and its...
pi1xfrcnvlem 24419 Given a path ` F ` between...
pi1xfrcnv 24420 Given a path ` F ` between...
pi1xfrgim 24421 The mapping ` G ` between ...
pi1cof 24422 Functionality of the loop ...
pi1coval 24423 The value of the loop tran...
pi1coghm 24424 The mapping ` G ` between ...
isclm 24427 A subcomplex module is a l...
clmsca 24428 The ring of scalars ` F ` ...
clmsubrg 24429 The base set of the ring o...
clmlmod 24430 A subcomplex module is a l...
clmgrp 24431 A subcomplex module is an ...
clmabl 24432 A subcomplex module is an ...
clmring 24433 The scalar ring of a subco...
clmfgrp 24434 The scalar ring of a subco...
clm0 24435 The zero of the scalar rin...
clm1 24436 The identity of the scalar...
clmadd 24437 The addition of the scalar...
clmmul 24438 The multiplication of the ...
clmcj 24439 The conjugation of the sca...
isclmi 24440 Reverse direction of ~ isc...
clmzss 24441 The scalar ring of a subco...
clmsscn 24442 The scalar ring of a subco...
clmsub 24443 Subtraction in the scalar ...
clmneg 24444 Negation in the scalar rin...
clmneg1 24445 Minus one is in the scalar...
clmabs 24446 Norm in the scalar ring of...
clmacl 24447 Closure of ring addition f...
clmmcl 24448 Closure of ring multiplica...
clmsubcl 24449 Closure of ring subtractio...
lmhmclm 24450 The domain of a linear ope...
clmvscl 24451 Closure of scalar product ...
clmvsass 24452 Associative law for scalar...
clmvscom 24453 Commutative law for the sc...
clmvsdir 24454 Distributive law for scala...
clmvsdi 24455 Distributive law for scala...
clmvs1 24456 Scalar product with ring u...
clmvs2 24457 A vector plus itself is tw...
clm0vs 24458 Zero times a vector is the...
clmopfne 24459 The (functionalized) opera...
isclmp 24460 The predicate "is a subcom...
isclmi0 24461 Properties that determine ...
clmvneg1 24462 Minus 1 times a vector is ...
clmvsneg 24463 Multiplication of a vector...
clmmulg 24464 The group multiple functio...
clmsubdir 24465 Scalar multiplication dist...
clmpm1dir 24466 Subtractive distributive l...
clmnegneg 24467 Double negative of a vecto...
clmnegsubdi2 24468 Distribution of negative o...
clmsub4 24469 Rearrangement of 4 terms i...
clmvsrinv 24470 A vector minus itself. (C...
clmvslinv 24471 Minus a vector plus itself...
clmvsubval 24472 Value of vector subtractio...
clmvsubval2 24473 Value of vector subtractio...
clmvz 24474 Two ways to express the ne...
zlmclm 24475 The ` ZZ ` -module operati...
clmzlmvsca 24476 The scalar product of a su...
nmoleub2lem 24477 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 24478 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 24479 Lemma for ~ nmoleub2a and ...
nmoleub2a 24480 The operator norm is the s...
nmoleub2b 24481 The operator norm is the s...
nmoleub3 24482 The operator norm is the s...
nmhmcn 24483 A linear operator over a n...
cmodscexp 24484 The powers of ` _i ` belon...
cmodscmulexp 24485 The scalar product of a ve...
cvslvec 24488 A subcomplex vector space ...
cvsclm 24489 A subcomplex vector space ...
iscvs 24490 A subcomplex vector space ...
iscvsp 24491 The predicate "is a subcom...
iscvsi 24492 Properties that determine ...
cvsi 24493 The properties of a subcom...
cvsunit 24494 Unit group of the scalar r...
cvsdiv 24495 Division of the scalar rin...
cvsdivcl 24496 The scalar field of a subc...
cvsmuleqdivd 24497 An equality involving rati...
cvsdiveqd 24498 An equality involving rati...
cnlmodlem1 24499 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 24500 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 24501 Lemma 3 for ~ cnlmod . (C...
cnlmod4 24502 Lemma 4 for ~ cnlmod . (C...
cnlmod 24503 The set of complex numbers...
cnstrcvs 24504 The set of complex numbers...
cnrbas 24505 The set of complex numbers...
cnrlmod 24506 The complex left module of...
cnrlvec 24507 The complex left module of...
cncvs 24508 The complex left module of...
recvs 24509 The field of the real numb...
recvsOLD 24510 Obsolete version of ~ recv...
qcvs 24511 The field of rational numb...
zclmncvs 24512 The ring of integers as le...
isncvsngp 24513 A normed subcomplex vector...
isncvsngpd 24514 Properties that determine ...
ncvsi 24515 The properties of a normed...
ncvsprp 24516 Proportionality property o...
ncvsge0 24517 The norm of a scalar produ...
ncvsm1 24518 The norm of the opposite o...
ncvsdif 24519 The norm of the difference...
ncvspi 24520 The norm of a vector plus ...
ncvs1 24521 From any nonzero vector of...
cnrnvc 24522 The module of complex numb...
cnncvs 24523 The module of complex numb...
cnnm 24524 The norm of the normed sub...
ncvspds 24525 Value of the distance func...
cnindmet 24526 The metric induced on the ...
cnncvsaddassdemo 24527 Derive the associative law...
cnncvsmulassdemo 24528 Derive the associative law...
cnncvsabsnegdemo 24529 Derive the absolute value ...
iscph 24534 A subcomplex pre-Hilbert s...
cphphl 24535 A subcomplex pre-Hilbert s...
cphnlm 24536 A subcomplex pre-Hilbert s...
cphngp 24537 A subcomplex pre-Hilbert s...
cphlmod 24538 A subcomplex pre-Hilbert s...
cphlvec 24539 A subcomplex pre-Hilbert s...
cphnvc 24540 A subcomplex pre-Hilbert s...
cphsubrglem 24541 Lemma for ~ cphsubrg . (C...
cphreccllem 24542 Lemma for ~ cphreccl . (C...
cphsca 24543 A subcomplex pre-Hilbert s...
cphsubrg 24544 The scalar field of a subc...
cphreccl 24545 The scalar field of a subc...
cphdivcl 24546 The scalar field of a subc...
cphcjcl 24547 The scalar field of a subc...
cphsqrtcl 24548 The scalar field of a subc...
cphabscl 24549 The scalar field of a subc...
cphsqrtcl2 24550 The scalar field of a subc...
cphsqrtcl3 24551 If the scalar field of a s...
cphqss 24552 The scalar field of a subc...
cphclm 24553 A subcomplex pre-Hilbert s...
cphnmvs 24554 Norm of a scalar product. ...
cphipcl 24555 An inner product is a memb...
cphnmfval 24556 The value of the norm in a...
cphnm 24557 The square of the norm is ...
nmsq 24558 The square of the norm is ...
cphnmf 24559 The norm of a vector is a ...
cphnmcl 24560 The norm of a vector is a ...
reipcl 24561 An inner product of an ele...
ipge0 24562 The inner product in a sub...
cphipcj 24563 Conjugate of an inner prod...
cphipipcj 24564 An inner product times its...
cphorthcom 24565 Orthogonality (meaning inn...
cphip0l 24566 Inner product with a zero ...
cphip0r 24567 Inner product with a zero ...
cphipeq0 24568 The inner product of a vec...
cphdir 24569 Distributive law for inner...
cphdi 24570 Distributive law for inner...
cph2di 24571 Distributive law for inner...
cphsubdir 24572 Distributive law for inner...
cphsubdi 24573 Distributive law for inner...
cph2subdi 24574 Distributive law for inner...
cphass 24575 Associative law for inner ...
cphassr 24576 "Associative" law for seco...
cph2ass 24577 Move scalar multiplication...
cphassi 24578 Associative law for the fi...
cphassir 24579 "Associative" law for the ...
cphpyth 24580 The pythagorean theorem fo...
tcphex 24581 Lemma for ~ tcphbas and si...
tcphval 24582 Define a function to augme...
tcphbas 24583 The base set of a subcompl...
tchplusg 24584 The addition operation of ...
tcphsub 24585 The subtraction operation ...
tcphmulr 24586 The ring operation of a su...
tcphsca 24587 The scalar field of a subc...
tcphvsca 24588 The scalar multiplication ...
tcphip 24589 The inner product of a sub...
tcphtopn 24590 The topology of a subcompl...
tcphphl 24591 Augmentation of a subcompl...
tchnmfval 24592 The norm of a subcomplex p...
tcphnmval 24593 The norm of a subcomplex p...
cphtcphnm 24594 The norm of a norm-augment...
tcphds 24595 The distance of a pre-Hilb...
phclm 24596 A pre-Hilbert space whose ...
tcphcphlem3 24597 Lemma for ~ tcphcph : real...
ipcau2 24598 The Cauchy-Schwarz inequal...
tcphcphlem1 24599 Lemma for ~ tcphcph : the ...
tcphcphlem2 24600 Lemma for ~ tcphcph : homo...
tcphcph 24601 The standard definition of...
ipcau 24602 The Cauchy-Schwarz inequal...
nmparlem 24603 Lemma for ~ nmpar . (Cont...
nmpar 24604 A subcomplex pre-Hilbert s...
cphipval2 24605 Value of the inner product...
4cphipval2 24606 Four times the inner produ...
cphipval 24607 Value of the inner product...
ipcnlem2 24608 The inner product operatio...
ipcnlem1 24609 The inner product operatio...
ipcn 24610 The inner product operatio...
cnmpt1ip 24611 Continuity of inner produc...
cnmpt2ip 24612 Continuity of inner produc...
csscld 24613 A "closed subspace" in a s...
clsocv 24614 The orthogonal complement ...
cphsscph 24615 A subspace of a subcomplex...
lmmbr 24622 Express the binary relatio...
lmmbr2 24623 Express the binary relatio...
lmmbr3 24624 Express the binary relatio...
lmmcvg 24625 Convergence property of a ...
lmmbrf 24626 Express the binary relatio...
lmnn 24627 A condition that implies c...
cfilfval 24628 The set of Cauchy filters ...
iscfil 24629 The property of being a Ca...
iscfil2 24630 The property of being a Ca...
cfilfil 24631 A Cauchy filter is a filte...
cfili 24632 Property of a Cauchy filte...
cfil3i 24633 A Cauchy filter contains b...
cfilss 24634 A filter finer than a Cauc...
fgcfil 24635 The Cauchy filter conditio...
fmcfil 24636 The Cauchy filter conditio...
iscfil3 24637 A filter is Cauchy iff it ...
cfilfcls 24638 Similar to ultrafilters ( ...
caufval 24639 The set of Cauchy sequence...
iscau 24640 Express the property " ` F...
iscau2 24641 Express the property " ` F...
iscau3 24642 Express the Cauchy sequenc...
iscau4 24643 Express the property " ` F...
iscauf 24644 Express the property " ` F...
caun0 24645 A metric with a Cauchy seq...
caufpm 24646 Inclusion of a Cauchy sequ...
caucfil 24647 A Cauchy sequence predicat...
iscmet 24648 The property " ` D ` is a ...
cmetcvg 24649 The convergence of a Cauch...
cmetmet 24650 A complete metric space is...
cmetmeti 24651 A complete metric space is...
cmetcaulem 24652 Lemma for ~ cmetcau . (Co...
cmetcau 24653 The convergence of a Cauch...
iscmet3lem3 24654 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 24655 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 24656 Lemma for ~ iscmet3 . (Co...
iscmet3 24657 The property " ` D ` is a ...
iscmet2 24658 A metric ` D ` is complete...
cfilresi 24659 A Cauchy filter on a metri...
cfilres 24660 Cauchy filter on a metric ...
caussi 24661 Cauchy sequence on a metri...
causs 24662 Cauchy sequence on a metri...
equivcfil 24663 If the metric ` D ` is "st...
equivcau 24664 If the metric ` D ` is "st...
lmle 24665 If the distance from each ...
nglmle 24666 If the norm of each member...
lmclim 24667 Relate a limit on the metr...
lmclimf 24668 Relate a limit on the metr...
metelcls 24669 A point belongs to the clo...
metcld 24670 A subset of a metric space...
metcld2 24671 A subset of a metric space...
caubl 24672 Sufficient condition to en...
caublcls 24673 The convergent point of a ...
metcnp4 24674 Two ways to say a mapping ...
metcn4 24675 Two ways to say a mapping ...
iscmet3i 24676 Properties that determine ...
lmcau 24677 Every convergent sequence ...
flimcfil 24678 Every convergent filter in...
metsscmetcld 24679 A complete subspace of a m...
cmetss 24680 A subspace of a complete m...
equivcmet 24681 If two metrics are strongl...
relcmpcmet 24682 If ` D ` is a metric space...
cmpcmet 24683 A compact metric space is ...
cfilucfil3 24684 Given a metric ` D ` and a...
cfilucfil4 24685 Given a metric ` D ` and a...
cncmet 24686 The set of complex numbers...
recmet 24687 The real numbers are a com...
bcthlem1 24688 Lemma for ~ bcth . Substi...
bcthlem2 24689 Lemma for ~ bcth . The ba...
bcthlem3 24690 Lemma for ~ bcth . The li...
bcthlem4 24691 Lemma for ~ bcth . Given ...
bcthlem5 24692 Lemma for ~ bcth . The pr...
bcth 24693 Baire's Category Theorem. ...
bcth2 24694 Baire's Category Theorem, ...
bcth3 24695 Baire's Category Theorem, ...
isbn 24702 A Banach space is a normed...
bnsca 24703 The scalar field of a Bana...
bnnvc 24704 A Banach space is a normed...
bnnlm 24705 A Banach space is a normed...
bnngp 24706 A Banach space is a normed...
bnlmod 24707 A Banach space is a left m...
bncms 24708 A Banach space is a comple...
iscms 24709 A complete metric space is...
cmscmet 24710 The induced metric on a co...
bncmet 24711 The induced metric on Bana...
cmsms 24712 A complete metric space is...
cmspropd 24713 Property deduction for a c...
cmssmscld 24714 The restriction of a metri...
cmsss 24715 The restriction of a compl...
lssbn 24716 A subspace of a Banach spa...
cmetcusp1 24717 If the uniform set of a co...
cmetcusp 24718 The uniform space generate...
cncms 24719 The field of complex numbe...
cnflduss 24720 The uniform structure of t...
cnfldcusp 24721 The field of complex numbe...
resscdrg 24722 The real numbers are a sub...
cncdrg 24723 The only complete subfield...
srabn 24724 The subring algebra over a...
rlmbn 24725 The ring module over a com...
ishl 24726 The predicate "is a subcom...
hlbn 24727 Every subcomplex Hilbert s...
hlcph 24728 Every subcomplex Hilbert s...
hlphl 24729 Every subcomplex Hilbert s...
hlcms 24730 Every subcomplex Hilbert s...
hlprlem 24731 Lemma for ~ hlpr . (Contr...
hlress 24732 The scalar field of a subc...
hlpr 24733 The scalar field of a subc...
ishl2 24734 A Hilbert space is a compl...
cphssphl 24735 A Banach subspace of a sub...
cmslssbn 24736 A complete linear subspace...
cmscsscms 24737 A closed subspace of a com...
bncssbn 24738 A closed subspace of a Ban...
cssbn 24739 A complete subspace of a n...
csschl 24740 A complete subspace of a c...
cmslsschl 24741 A complete linear subspace...
chlcsschl 24742 A closed subspace of a sub...
retopn 24743 The topology of the real n...
recms 24744 The real numbers form a co...
reust 24745 The Uniform structure of t...
recusp 24746 The real numbers form a co...
rrxval 24751 Value of the generalized E...
rrxbase 24752 The base of the generalize...
rrxprds 24753 Expand the definition of t...
rrxip 24754 The inner product of the g...
rrxnm 24755 The norm of the generalize...
rrxcph 24756 Generalized Euclidean real...
rrxds 24757 The distance over generali...
rrxvsca 24758 The scalar product over ge...
rrxplusgvscavalb 24759 The result of the addition...
rrxsca 24760 The field of real numbers ...
rrx0 24761 The zero ("origin") in a g...
rrx0el 24762 The zero ("origin") in a g...
csbren 24763 Cauchy-Schwarz-Bunjakovsky...
trirn 24764 Triangle inequality in R^n...
rrxf 24765 Euclidean vectors as funct...
rrxfsupp 24766 Euclidean vectors are of f...
rrxsuppss 24767 Support of Euclidean vecto...
rrxmvallem 24768 Support of the function us...
rrxmval 24769 The value of the Euclidean...
rrxmfval 24770 The value of the Euclidean...
rrxmetlem 24771 Lemma for ~ rrxmet . (Con...
rrxmet 24772 Euclidean space is a metri...
rrxdstprj1 24773 The distance between two p...
rrxbasefi 24774 The base of the generalize...
rrxdsfi 24775 The distance over generali...
rrxmetfi 24776 Euclidean space is a metri...
rrxdsfival 24777 The value of the Euclidean...
ehlval 24778 Value of the Euclidean spa...
ehlbase 24779 The base of the Euclidean ...
ehl0base 24780 The base of the Euclidean ...
ehl0 24781 The Euclidean space of dim...
ehleudis 24782 The Euclidean distance fun...
ehleudisval 24783 The value of the Euclidean...
ehl1eudis 24784 The Euclidean distance fun...
ehl1eudisval 24785 The value of the Euclidean...
ehl2eudis 24786 The Euclidean distance fun...
ehl2eudisval 24787 The value of the Euclidean...
minveclem1 24788 Lemma for ~ minvec . The ...
minveclem4c 24789 Lemma for ~ minvec . The ...
minveclem2 24790 Lemma for ~ minvec . Any ...
minveclem3a 24791 Lemma for ~ minvec . ` D `...
minveclem3b 24792 Lemma for ~ minvec . The ...
minveclem3 24793 Lemma for ~ minvec . The ...
minveclem4a 24794 Lemma for ~ minvec . ` F `...
minveclem4b 24795 Lemma for ~ minvec . The ...
minveclem4 24796 Lemma for ~ minvec . The ...
minveclem5 24797 Lemma for ~ minvec . Disc...
minveclem6 24798 Lemma for ~ minvec . Any ...
minveclem7 24799 Lemma for ~ minvec . Sinc...
minvec 24800 Minimizing vector theorem,...
pjthlem1 24801 Lemma for ~ pjth . (Contr...
pjthlem2 24802 Lemma for ~ pjth . (Contr...
pjth 24803 Projection Theorem: Any H...
pjth2 24804 Projection Theorem with ab...
cldcss 24805 Corollary of the Projectio...
cldcss2 24806 Corollary of the Projectio...
hlhil 24807 Corollary of the Projectio...
addcncf 24808 The addition of two contin...
subcncf 24809 The addition of two contin...
mulcncf 24810 The multiplication of two ...
divcncf 24811 The quotient of two contin...
pmltpclem1 24812 Lemma for ~ pmltpc . (Con...
pmltpclem2 24813 Lemma for ~ pmltpc . (Con...
pmltpc 24814 Any function on the reals ...
ivthlem1 24815 Lemma for ~ ivth . The se...
ivthlem2 24816 Lemma for ~ ivth . Show t...
ivthlem3 24817 Lemma for ~ ivth , the int...
ivth 24818 The intermediate value the...
ivth2 24819 The intermediate value the...
ivthle 24820 The intermediate value the...
ivthle2 24821 The intermediate value the...
ivthicc 24822 The interval between any t...
evthicc 24823 Specialization of the Extr...
evthicc2 24824 Combine ~ ivthicc with ~ e...
cniccbdd 24825 A continuous function on a...
ovolfcl 24830 Closure for the interval e...
ovolfioo 24831 Unpack the interval coveri...
ovolficc 24832 Unpack the interval coveri...
ovolficcss 24833 Any (closed) interval cove...
ovolfsval 24834 The value of the interval ...
ovolfsf 24835 Closure for the interval l...
ovolsf 24836 Closure for the partial su...
ovolval 24837 The value of the outer mea...
elovolmlem 24838 Lemma for ~ elovolm and re...
elovolm 24839 Elementhood in the set ` M...
elovolmr 24840 Sufficient condition for e...
ovolmge0 24841 The set ` M ` is composed ...
ovolcl 24842 The volume of a set is an ...
ovollb 24843 The outer volume is a lowe...
ovolgelb 24844 The outer volume is the gr...
ovolge0 24845 The volume of a set is alw...
ovolf 24846 The domain and codomain of...
ovollecl 24847 If an outer volume is boun...
ovolsslem 24848 Lemma for ~ ovolss . (Con...
ovolss 24849 The volume of a set is mon...
ovolsscl 24850 If a set is contained in a...
ovolssnul 24851 A subset of a nullset is n...
ovollb2lem 24852 Lemma for ~ ovollb2 . (Co...
ovollb2 24853 It is often more convenien...
ovolctb 24854 The volume of a denumerabl...
ovolq 24855 The rational numbers have ...
ovolctb2 24856 The volume of a countable ...
ovol0 24857 The empty set has 0 outer ...
ovolfi 24858 A finite set has 0 outer L...
ovolsn 24859 A singleton has 0 outer Le...
ovolunlem1a 24860 Lemma for ~ ovolun . (Con...
ovolunlem1 24861 Lemma for ~ ovolun . (Con...
ovolunlem2 24862 Lemma for ~ ovolun . (Con...
ovolun 24863 The Lebesgue outer measure...
ovolunnul 24864 Adding a nullset does not ...
ovolfiniun 24865 The Lebesgue outer measure...
ovoliunlem1 24866 Lemma for ~ ovoliun . (Co...
ovoliunlem2 24867 Lemma for ~ ovoliun . (Co...
ovoliunlem3 24868 Lemma for ~ ovoliun . (Co...
ovoliun 24869 The Lebesgue outer measure...
ovoliun2 24870 The Lebesgue outer measure...
ovoliunnul 24871 A countable union of nulls...
shft2rab 24872 If ` B ` is a shift of ` A...
ovolshftlem1 24873 Lemma for ~ ovolshft . (C...
ovolshftlem2 24874 Lemma for ~ ovolshft . (C...
ovolshft 24875 The Lebesgue outer measure...
sca2rab 24876 If ` B ` is a scale of ` A...
ovolscalem1 24877 Lemma for ~ ovolsca . (Co...
ovolscalem2 24878 Lemma for ~ ovolshft . (C...
ovolsca 24879 The Lebesgue outer measure...
ovolicc1 24880 The measure of a closed in...
ovolicc2lem1 24881 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 24882 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 24883 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 24884 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 24885 Lemma for ~ ovolicc2 . (C...
ovolicc2 24886 The measure of a closed in...
ovolicc 24887 The measure of a closed in...
ovolicopnf 24888 The measure of a right-unb...
ovolre 24889 The measure of the real nu...
ismbl 24890 The predicate " ` A ` is L...
ismbl2 24891 From ~ ovolun , it suffice...
volres 24892 A self-referencing abbrevi...
volf 24893 The domain and codomain of...
mblvol 24894 The volume of a measurable...
mblss 24895 A measurable set is a subs...
mblsplit 24896 The defining property of m...
volss 24897 The Lebesgue measure is mo...
cmmbl 24898 The complement of a measur...
nulmbl 24899 A nullset is measurable. ...
nulmbl2 24900 A set of outer measure zer...
unmbl 24901 A union of measurable sets...
shftmbl 24902 A shift of a measurable se...
0mbl 24903 The empty set is measurabl...
rembl 24904 The set of all real number...
unidmvol 24905 The union of the Lebesgue ...
inmbl 24906 An intersection of measura...
difmbl 24907 A difference of measurable...
finiunmbl 24908 A finite union of measurab...
volun 24909 The Lebesgue measure funct...
volinun 24910 Addition of non-disjoint s...
volfiniun 24911 The volume of a disjoint f...
iundisj 24912 Rewrite a countable union ...
iundisj2 24913 A disjoint union is disjoi...
voliunlem1 24914 Lemma for ~ voliun . (Con...
voliunlem2 24915 Lemma for ~ voliun . (Con...
voliunlem3 24916 Lemma for ~ voliun . (Con...
iunmbl 24917 The measurable sets are cl...
voliun 24918 The Lebesgue measure funct...
volsuplem 24919 Lemma for ~ volsup . (Con...
volsup 24920 The volume of the limit of...
iunmbl2 24921 The measurable sets are cl...
ioombl1lem1 24922 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 24923 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 24924 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 24925 Lemma for ~ ioombl1 . (Co...
ioombl1 24926 An open right-unbounded in...
icombl1 24927 A closed unbounded-above i...
icombl 24928 A closed-below, open-above...
ioombl 24929 An open real interval is m...
iccmbl 24930 A closed real interval is ...
iccvolcl 24931 A closed real interval has...
ovolioo 24932 The measure of an open int...
volioo 24933 The measure of an open int...
ioovolcl 24934 An open real interval has ...
ovolfs2 24935 Alternative expression for...
ioorcl2 24936 An open interval with fini...
ioorf 24937 Define a function from ope...
ioorval 24938 Define a function from ope...
ioorinv2 24939 The function ` F ` is an "...
ioorinv 24940 The function ` F ` is an "...
ioorcl 24941 The function ` F ` does no...
uniiccdif 24942 A union of closed interval...
uniioovol 24943 A disjoint union of open i...
uniiccvol 24944 An almost-disjoint union o...
uniioombllem1 24945 Lemma for ~ uniioombl . (...
uniioombllem2a 24946 Lemma for ~ uniioombl . (...
uniioombllem2 24947 Lemma for ~ uniioombl . (...
uniioombllem3a 24948 Lemma for ~ uniioombl . (...
uniioombllem3 24949 Lemma for ~ uniioombl . (...
uniioombllem4 24950 Lemma for ~ uniioombl . (...
uniioombllem5 24951 Lemma for ~ uniioombl . (...
uniioombllem6 24952 Lemma for ~ uniioombl . (...
uniioombl 24953 A disjoint union of open i...
uniiccmbl 24954 An almost-disjoint union o...
dyadf 24955 The function ` F ` returns...
dyadval 24956 Value of the dyadic ration...
dyadovol 24957 Volume of a dyadic rationa...
dyadss 24958 Two closed dyadic rational...
dyaddisjlem 24959 Lemma for ~ dyaddisj . (C...
dyaddisj 24960 Two closed dyadic rational...
dyadmaxlem 24961 Lemma for ~ dyadmax . (Co...
dyadmax 24962 Any nonempty set of dyadic...
dyadmbllem 24963 Lemma for ~ dyadmbl . (Co...
dyadmbl 24964 Any union of dyadic ration...
opnmbllem 24965 Lemma for ~ opnmbl . (Con...
opnmbl 24966 All open sets are measurab...
opnmblALT 24967 All open sets are measurab...
subopnmbl 24968 Sets which are open in a m...
volsup2 24969 The volume of ` A ` is the...
volcn 24970 The function formed by res...
volivth 24971 The Intermediate Value The...
vitalilem1 24972 Lemma for ~ vitali . (Con...
vitalilem2 24973 Lemma for ~ vitali . (Con...
vitalilem3 24974 Lemma for ~ vitali . (Con...
vitalilem4 24975 Lemma for ~ vitali . (Con...
vitalilem5 24976 Lemma for ~ vitali . (Con...
vitali 24977 If the reals can be well-o...
ismbf1 24988 The predicate " ` F ` is a...
mbff 24989 A measurable function is a...
mbfdm 24990 The domain of a measurable...
mbfconstlem 24991 Lemma for ~ mbfconst and r...
ismbf 24992 The predicate " ` F ` is a...
ismbfcn 24993 A complex function is meas...
mbfima 24994 Definitional property of a...
mbfimaicc 24995 The preimage of any closed...
mbfimasn 24996 The preimage of a point un...
mbfconst 24997 A constant function is mea...
mbf0 24998 The empty function is meas...
mbfid 24999 The identity function is m...
mbfmptcl 25000 Lemma for the ` MblFn ` pr...
mbfdm2 25001 The domain of a measurable...
ismbfcn2 25002 A complex function is meas...
ismbfd 25003 Deduction to prove measura...
ismbf2d 25004 Deduction to prove measura...
mbfeqalem1 25005 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 25006 Lemma for ~ mbfeqa . (Con...
mbfeqa 25007 If two functions are equal...
mbfres 25008 The restriction of a measu...
mbfres2 25009 Measurability of a piecewi...
mbfss 25010 Change the domain of a mea...
mbfmulc2lem 25011 Multiplication by a consta...
mbfmulc2re 25012 Multiplication by a consta...
mbfmax 25013 The maximum of two functio...
mbfneg 25014 The negative of a measurab...
mbfpos 25015 The positive part of a mea...
mbfposr 25016 Converse to ~ mbfpos . (C...
mbfposb 25017 A function is measurable i...
ismbf3d 25018 Simplified form of ~ ismbf...
mbfimaopnlem 25019 Lemma for ~ mbfimaopn . (...
mbfimaopn 25020 The preimage of any open s...
mbfimaopn2 25021 The preimage of any set op...
cncombf 25022 The composition of a conti...
cnmbf 25023 A continuous function is m...
mbfaddlem 25024 The sum of two measurable ...
mbfadd 25025 The sum of two measurable ...
mbfsub 25026 The difference of two meas...
mbfmulc2 25027 A complex constant times a...
mbfsup 25028 The supremum of a sequence...
mbfinf 25029 The infimum of a sequence ...
mbflimsup 25030 The limit supremum of a se...
mbflimlem 25031 The pointwise limit of a s...
mbflim 25032 The pointwise limit of a s...
0pval 25035 The zero function evaluate...
0plef 25036 Two ways to say that the f...
0pledm 25037 Adjust the domain of the l...
isi1f 25038 The predicate " ` F ` is a...
i1fmbf 25039 Simple functions are measu...
i1ff 25040 A simple function is a fun...
i1frn 25041 A simple function has fini...
i1fima 25042 Any preimage of a simple f...
i1fima2 25043 Any preimage of a simple f...
i1fima2sn 25044 Preimage of a singleton. ...
i1fd 25045 A simplified set of assump...
i1f0rn 25046 Any simple function takes ...
itg1val 25047 The value of the integral ...
itg1val2 25048 The value of the integral ...
itg1cl 25049 Closure of the integral on...
itg1ge0 25050 Closure of the integral on...
i1f0 25051 The zero function is simpl...
itg10 25052 The zero function has zero...
i1f1lem 25053 Lemma for ~ i1f1 and ~ itg...
i1f1 25054 Base case simple functions...
itg11 25055 The integral of an indicat...
itg1addlem1 25056 Decompose a preimage, whic...
i1faddlem 25057 Decompose the preimage of ...
i1fmullem 25058 Decompose the preimage of ...
i1fadd 25059 The sum of two simple func...
i1fmul 25060 The pointwise product of t...
itg1addlem2 25061 Lemma for ~ itg1add . The...
itg1addlem3 25062 Lemma for ~ itg1add . (Co...
itg1addlem4 25063 Lemma for ~ itg1add . (Co...
itg1addlem4OLD 25064 Obsolete version of ~ itg1...
itg1addlem5 25065 Lemma for ~ itg1add . (Co...
itg1add 25066 The integral of a sum of s...
i1fmulclem 25067 Decompose the preimage of ...
i1fmulc 25068 A nonnegative constant tim...
itg1mulc 25069 The integral of a constant...
i1fres 25070 The "restriction" of a sim...
i1fpos 25071 The positive part of a sim...
i1fposd 25072 Deduction form of ~ i1fpos...
i1fsub 25073 The difference of two simp...
itg1sub 25074 The integral of a differen...
itg10a 25075 The integral of a simple f...
itg1ge0a 25076 The integral of an almost ...
itg1lea 25077 Approximate version of ~ i...
itg1le 25078 If one simple function dom...
itg1climres 25079 Restricting the simple fun...
mbfi1fseqlem1 25080 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 25081 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 25082 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 25083 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 25084 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 25085 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 25086 A characterization of meas...
mbfi1flimlem 25087 Lemma for ~ mbfi1flim . (...
mbfi1flim 25088 Any real measurable functi...
mbfmullem2 25089 Lemma for ~ mbfmul . (Con...
mbfmullem 25090 Lemma for ~ mbfmul . (Con...
mbfmul 25091 The product of two measura...
itg2lcl 25092 The set of lower sums is a...
itg2val 25093 Value of the integral on n...
itg2l 25094 Elementhood in the set ` L...
itg2lr 25095 Sufficient condition for e...
xrge0f 25096 A real function is a nonne...
itg2cl 25097 The integral of a nonnegat...
itg2ub 25098 The integral of a nonnegat...
itg2leub 25099 Any upper bound on the int...
itg2ge0 25100 The integral of a nonnegat...
itg2itg1 25101 The integral of a nonnegat...
itg20 25102 The integral of the zero f...
itg2lecl 25103 If an ` S.2 ` integral is ...
itg2le 25104 If one function dominates ...
itg2const 25105 Integral of a constant fun...
itg2const2 25106 When the base set of a con...
itg2seq 25107 Definitional property of t...
itg2uba 25108 Approximate version of ~ i...
itg2lea 25109 Approximate version of ~ i...
itg2eqa 25110 Approximate equality of in...
itg2mulclem 25111 Lemma for ~ itg2mulc . (C...
itg2mulc 25112 The integral of a nonnegat...
itg2splitlem 25113 Lemma for ~ itg2split . (...
itg2split 25114 The ` S.2 ` integral split...
itg2monolem1 25115 Lemma for ~ itg2mono . We...
itg2monolem2 25116 Lemma for ~ itg2mono . (C...
itg2monolem3 25117 Lemma for ~ itg2mono . (C...
itg2mono 25118 The Monotone Convergence T...
itg2i1fseqle 25119 Subject to the conditions ...
itg2i1fseq 25120 Subject to the conditions ...
itg2i1fseq2 25121 In an extension to the res...
itg2i1fseq3 25122 Special case of ~ itg2i1fs...
itg2addlem 25123 Lemma for ~ itg2add . (Co...
itg2add 25124 The ` S.2 ` integral is li...
itg2gt0 25125 If the function ` F ` is s...
itg2cnlem1 25126 Lemma for ~ itgcn . (Cont...
itg2cnlem2 25127 Lemma for ~ itgcn . (Cont...
itg2cn 25128 A sort of absolute continu...
ibllem 25129 Conditioned equality theor...
isibl 25130 The predicate " ` F ` is i...
isibl2 25131 The predicate " ` F ` is i...
iblmbf 25132 An integrable function is ...
iblitg 25133 If a function is integrabl...
dfitg 25134 Evaluate the class substit...
itgex 25135 An integral is a set. (Co...
itgeq1f 25136 Equality theorem for an in...
itgeq1 25137 Equality theorem for an in...
nfitg1 25138 Bound-variable hypothesis ...
nfitg 25139 Bound-variable hypothesis ...
cbvitg 25140 Change bound variable in a...
cbvitgv 25141 Change bound variable in a...
itgeq2 25142 Equality theorem for an in...
itgresr 25143 The domain of an integral ...
itg0 25144 The integral of anything o...
itgz 25145 The integral of zero on an...
itgeq2dv 25146 Equality theorem for an in...
itgmpt 25147 Change bound variable in a...
itgcl 25148 The integral of an integra...
itgvallem 25149 Substitution lemma. (Cont...
itgvallem3 25150 Lemma for ~ itgposval and ...
ibl0 25151 The zero function is integ...
iblcnlem1 25152 Lemma for ~ iblcnlem . (C...
iblcnlem 25153 Expand out the universal q...
itgcnlem 25154 Expand out the sum in ~ df...
iblrelem 25155 Integrability of a real fu...
iblposlem 25156 Lemma for ~ iblpos . (Con...
iblpos 25157 Integrability of a nonnega...
iblre 25158 Integrability of a real fu...
itgrevallem1 25159 Lemma for ~ itgposval and ...
itgposval 25160 The integral of a nonnegat...
itgreval 25161 Decompose the integral of ...
itgrecl 25162 Real closure of an integra...
iblcn 25163 Integrability of a complex...
itgcnval 25164 Decompose the integral of ...
itgre 25165 Real part of an integral. ...
itgim 25166 Imaginary part of an integ...
iblneg 25167 The negative of an integra...
itgneg 25168 Negation of an integral. ...
iblss 25169 A subset of an integrable ...
iblss2 25170 Change the domain of an in...
itgitg2 25171 Transfer an integral using...
i1fibl 25172 A simple function is integ...
itgitg1 25173 Transfer an integral using...
itgle 25174 Monotonicity of an integra...
itgge0 25175 The integral of a positive...
itgss 25176 Expand the set of an integ...
itgss2 25177 Expand the set of an integ...
itgeqa 25178 Approximate equality of in...
itgss3 25179 Expand the set of an integ...
itgioo 25180 Equality of integrals on o...
itgless 25181 Expand the integral of a n...
iblconst 25182 A constant function is int...
itgconst 25183 Integral of a constant fun...
ibladdlem 25184 Lemma for ~ ibladd . (Con...
ibladd 25185 Add two integrals over the...
iblsub 25186 Subtract two integrals ove...
itgaddlem1 25187 Lemma for ~ itgadd . (Con...
itgaddlem2 25188 Lemma for ~ itgadd . (Con...
itgadd 25189 Add two integrals over the...
itgsub 25190 Subtract two integrals ove...
itgfsum 25191 Take a finite sum of integ...
iblabslem 25192 Lemma for ~ iblabs . (Con...
iblabs 25193 The absolute value of an i...
iblabsr 25194 A measurable function is i...
iblmulc2 25195 Multiply an integral by a ...
itgmulc2lem1 25196 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 25197 Lemma for ~ itgmulc2 : rea...
itgmulc2 25198 Multiply an integral by a ...
itgabs 25199 The triangle inequality fo...
itgsplit 25200 The ` S. ` integral splits...
itgspliticc 25201 The ` S. ` integral splits...
itgsplitioo 25202 The ` S. ` integral splits...
bddmulibl 25203 A bounded function times a...
bddibl 25204 A bounded function is inte...
cniccibl 25205 A continuous function on a...
bddiblnc 25206 Choice-free proof of ~ bdd...
cnicciblnc 25207 Choice-free proof of ~ cni...
itggt0 25208 The integral of a strictly...
itgcn 25209 Transfer ~ itg2cn to the f...
ditgeq1 25212 Equality theorem for the d...
ditgeq2 25213 Equality theorem for the d...
ditgeq3 25214 Equality theorem for the d...
ditgeq3dv 25215 Equality theorem for the d...
ditgex 25216 A directed integral is a s...
ditg0 25217 Value of the directed inte...
cbvditg 25218 Change bound variable in a...
cbvditgv 25219 Change bound variable in a...
ditgpos 25220 Value of the directed inte...
ditgneg 25221 Value of the directed inte...
ditgcl 25222 Closure of a directed inte...
ditgswap 25223 Reverse a directed integra...
ditgsplitlem 25224 Lemma for ~ ditgsplit . (...
ditgsplit 25225 This theorem is the raison...
reldv 25234 The derivative function is...
limcvallem 25235 Lemma for ~ ellimc . (Con...
limcfval 25236 Value and set bounds on th...
ellimc 25237 Value of the limit predica...
limcrcl 25238 Reverse closure for the li...
limccl 25239 Closure of the limit opera...
limcdif 25240 It suffices to consider fu...
ellimc2 25241 Write the definition of a ...
limcnlp 25242 If ` B ` is not a limit po...
ellimc3 25243 Write the epsilon-delta de...
limcflflem 25244 Lemma for ~ limcflf . (Co...
limcflf 25245 The limit operator can be ...
limcmo 25246 If ` B ` is a limit point ...
limcmpt 25247 Express the limit operator...
limcmpt2 25248 Express the limit operator...
limcresi 25249 Any limit of ` F ` is also...
limcres 25250 If ` B ` is an interior po...
cnplimc 25251 A function is continuous a...
cnlimc 25252 ` F ` is a continuous func...
cnlimci 25253 If ` F ` is a continuous f...
cnmptlimc 25254 If ` F ` is a continuous f...
limccnp 25255 If the limit of ` F ` at `...
limccnp2 25256 The image of a convergent ...
limcco 25257 Composition of two limits....
limciun 25258 A point is a limit of ` F ...
limcun 25259 A point is a limit of ` F ...
dvlem 25260 Closure for a difference q...
dvfval 25261 Value and set bounds on th...
eldv 25262 The differentiable predica...
dvcl 25263 The derivative function ta...
dvbssntr 25264 The set of differentiable ...
dvbss 25265 The set of differentiable ...
dvbsss 25266 The set of differentiable ...
perfdvf 25267 The derivative is a functi...
recnprss 25268 Both ` RR ` and ` CC ` are...
recnperf 25269 Both ` RR ` and ` CC ` are...
dvfg 25270 Explicitly write out the f...
dvf 25271 The derivative is a functi...
dvfcn 25272 The derivative is a functi...
dvreslem 25273 Lemma for ~ dvres . (Cont...
dvres2lem 25274 Lemma for ~ dvres2 . (Con...
dvres 25275 Restriction of a derivativ...
dvres2 25276 Restriction of the base se...
dvres3 25277 Restriction of a complex d...
dvres3a 25278 Restriction of a complex d...
dvidlem 25279 Lemma for ~ dvid and ~ dvc...
dvmptresicc 25280 Derivative of a function r...
dvconst 25281 Derivative of a constant f...
dvid 25282 Derivative of the identity...
dvcnp 25283 The difference quotient is...
dvcnp2 25284 A function is continuous a...
dvcn 25285 A differentiable function ...
dvnfval 25286 Value of the iterated deri...
dvnff 25287 The iterated derivative is...
dvn0 25288 Zero times iterated deriva...
dvnp1 25289 Successor iterated derivat...
dvn1 25290 One times iterated derivat...
dvnf 25291 The N-times derivative is ...
dvnbss 25292 The set of N-times differe...
dvnadd 25293 The ` N ` -th derivative o...
dvn2bss 25294 An N-times differentiable ...
dvnres 25295 Multiple derivative versio...
cpnfval 25296 Condition for n-times cont...
fncpn 25297 The ` C^n ` object is a fu...
elcpn 25298 Condition for n-times cont...
cpnord 25299 ` C^n ` conditions are ord...
cpncn 25300 A ` C^n ` function is cont...
cpnres 25301 The restriction of a ` C^n...
dvaddbr 25302 The sum rule for derivativ...
dvmulbr 25303 The product rule for deriv...
dvadd 25304 The sum rule for derivativ...
dvmul 25305 The product rule for deriv...
dvaddf 25306 The sum rule for everywher...
dvmulf 25307 The product rule for every...
dvcmul 25308 The product rule when one ...
dvcmulf 25309 The product rule when one ...
dvcobr 25310 The chain rule for derivat...
dvco 25311 The chain rule for derivat...
dvcof 25312 The chain rule for everywh...
dvcjbr 25313 The derivative of the conj...
dvcj 25314 The derivative of the conj...
dvfre 25315 The derivative of a real f...
dvnfre 25316 The ` N ` -th derivative o...
dvexp 25317 Derivative of a power func...
dvexp2 25318 Derivative of an exponenti...
dvrec 25319 Derivative of the reciproc...
dvmptres3 25320 Function-builder for deriv...
dvmptid 25321 Function-builder for deriv...
dvmptc 25322 Function-builder for deriv...
dvmptcl 25323 Closure lemma for ~ dvmptc...
dvmptadd 25324 Function-builder for deriv...
dvmptmul 25325 Function-builder for deriv...
dvmptres2 25326 Function-builder for deriv...
dvmptres 25327 Function-builder for deriv...
dvmptcmul 25328 Function-builder for deriv...
dvmptdivc 25329 Function-builder for deriv...
dvmptneg 25330 Function-builder for deriv...
dvmptsub 25331 Function-builder for deriv...
dvmptcj 25332 Function-builder for deriv...
dvmptre 25333 Function-builder for deriv...
dvmptim 25334 Function-builder for deriv...
dvmptntr 25335 Function-builder for deriv...
dvmptco 25336 Function-builder for deriv...
dvrecg 25337 Derivative of the reciproc...
dvmptdiv 25338 Function-builder for deriv...
dvmptfsum 25339 Function-builder for deriv...
dvcnvlem 25340 Lemma for ~ dvcnvre . (Co...
dvcnv 25341 A weak version of ~ dvcnvr...
dvexp3 25342 Derivative of an exponenti...
dveflem 25343 Derivative of the exponent...
dvef 25344 Derivative of the exponent...
dvsincos 25345 Derivative of the sine and...
dvsin 25346 Derivative of the sine fun...
dvcos 25347 Derivative of the cosine f...
dvferm1lem 25348 Lemma for ~ dvferm . (Con...
dvferm1 25349 One-sided version of ~ dvf...
dvferm2lem 25350 Lemma for ~ dvferm . (Con...
dvferm2 25351 One-sided version of ~ dvf...
dvferm 25352 Fermat's theorem on statio...
rollelem 25353 Lemma for ~ rolle . (Cont...
rolle 25354 Rolle's theorem. If ` F `...
cmvth 25355 Cauchy's Mean Value Theore...
mvth 25356 The Mean Value Theorem. I...
dvlip 25357 A function with derivative...
dvlipcn 25358 A complex function with de...
dvlip2 25359 Combine the results of ~ d...
c1liplem1 25360 Lemma for ~ c1lip1 . (Con...
c1lip1 25361 C^1 functions are Lipschit...
c1lip2 25362 C^1 functions are Lipschit...
c1lip3 25363 C^1 functions are Lipschit...
dveq0 25364 If a continuous function h...
dv11cn 25365 Two functions defined on a...
dvgt0lem1 25366 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25367 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25368 A function on a closed int...
dvlt0 25369 A function on a closed int...
dvge0 25370 A function on a closed int...
dvle 25371 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25372 Lemma for ~ dvivth . (Con...
dvivthlem2 25373 Lemma for ~ dvivth . (Con...
dvivth 25374 Darboux' theorem, or the i...
dvne0 25375 A function on a closed int...
dvne0f1 25376 A function on a closed int...
lhop1lem 25377 Lemma for ~ lhop1 . (Cont...
lhop1 25378 L'Hôpital's Rule for...
lhop2 25379 L'Hôpital's Rule for...
lhop 25380 L'Hôpital's Rule. I...
dvcnvrelem1 25381 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25382 Lemma for ~ dvcnvre . (Co...
dvcnvre 25383 The derivative rule for in...
dvcvx 25384 A real function with stric...
dvfsumle 25385 Compare a finite sum to an...
dvfsumge 25386 Compare a finite sum to an...
dvfsumabs 25387 Compare a finite sum to an...
dvmptrecl 25388 Real closure of a derivati...
dvfsumrlimf 25389 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25390 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25391 Lemma for ~ dvfsumrlim . ...
dvfsumlem3 25392 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25393 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25394 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25395 Compare a finite sum to an...
dvfsumrlim2 25396 Compare a finite sum to an...
dvfsumrlim3 25397 Conjoin the statements of ...
dvfsum2 25398 The reverse of ~ dvfsumrli...
ftc1lem1 25399 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 25400 Lemma for ~ ftc1 . (Contr...
ftc1a 25401 The Fundamental Theorem of...
ftc1lem3 25402 Lemma for ~ ftc1 . (Contr...
ftc1lem4 25403 Lemma for ~ ftc1 . (Contr...
ftc1lem5 25404 Lemma for ~ ftc1 . (Contr...
ftc1lem6 25405 Lemma for ~ ftc1 . (Contr...
ftc1 25406 The Fundamental Theorem of...
ftc1cn 25407 Strengthen the assumptions...
ftc2 25408 The Fundamental Theorem of...
ftc2ditglem 25409 Lemma for ~ ftc2ditg . (C...
ftc2ditg 25410 Directed integral analogue...
itgparts 25411 Integration by parts. If ...
itgsubstlem 25412 Lemma for ~ itgsubst . (C...
itgsubst 25413 Integration by ` u ` -subs...
itgpowd 25414 The integral of a monomial...
reldmmdeg 25419 Multivariate degree is a b...
tdeglem1 25420 Functionality of the total...
tdeglem1OLD 25421 Obsolete version of ~ tdeg...
tdeglem3 25422 Additivity of the total de...
tdeglem3OLD 25423 Obsolete version of ~ tdeg...
tdeglem4 25424 There is only one multi-in...
tdeglem4OLD 25425 Obsolete version of ~ tdeg...
tdeglem2 25426 Simplification of total de...
mdegfval 25427 Value of the multivariate ...
mdegval 25428 Value of the multivariate ...
mdegleb 25429 Property of being of limit...
mdeglt 25430 If there is an upper limit...
mdegldg 25431 A nonzero polynomial has s...
mdegxrcl 25432 Closure of polynomial degr...
mdegxrf 25433 Functionality of polynomia...
mdegcl 25434 Sharp closure for multivar...
mdeg0 25435 Degree of the zero polynom...
mdegnn0cl 25436 Degree of a nonzero polyno...
degltlem1 25437 Theorem on arithmetic of e...
degltp1le 25438 Theorem on arithmetic of e...
mdegaddle 25439 The degree of a sum is at ...
mdegvscale 25440 The degree of a scalar mul...
mdegvsca 25441 The degree of a scalar mul...
mdegle0 25442 A polynomial has nonpositi...
mdegmullem 25443 Lemma for ~ mdegmulle2 . ...
mdegmulle2 25444 The multivariate degree of...
deg1fval 25445 Relate univariate polynomi...
deg1xrf 25446 Functionality of univariat...
deg1xrcl 25447 Closure of univariate poly...
deg1cl 25448 Sharp closure of univariat...
mdegpropd 25449 Property deduction for pol...
deg1fvi 25450 Univariate polynomial degr...
deg1propd 25451 Property deduction for pol...
deg1z 25452 Degree of the zero univari...
deg1nn0cl 25453 Degree of a nonzero univar...
deg1n0ima 25454 Degree image of a set of p...
deg1nn0clb 25455 A polynomial is nonzero if...
deg1lt0 25456 A polynomial is zero iff i...
deg1ldg 25457 A nonzero univariate polyn...
deg1ldgn 25458 An index at which a polyno...
deg1ldgdomn 25459 A nonzero univariate polyn...
deg1leb 25460 Property of being of limit...
deg1val 25461 Value of the univariate de...
deg1lt 25462 If the degree of a univari...
deg1ge 25463 Conversely, a nonzero coef...
coe1mul3 25464 The coefficient vector of ...
coe1mul4 25465 Value of the "leading" coe...
deg1addle 25466 The degree of a sum is at ...
deg1addle2 25467 If both factors have degre...
deg1add 25468 Exact degree of a sum of t...
deg1vscale 25469 The degree of a scalar tim...
deg1vsca 25470 The degree of a scalar tim...
deg1invg 25471 The degree of the negated ...
deg1suble 25472 The degree of a difference...
deg1sub 25473 Exact degree of a differen...
deg1mulle2 25474 Produce a bound on the pro...
deg1sublt 25475 Subtraction of two polynom...
deg1le0 25476 A polynomial has nonpositi...
deg1sclle 25477 A scalar polynomial has no...
deg1scl 25478 A nonzero scalar polynomia...
deg1mul2 25479 Degree of multiplication o...
deg1mul3 25480 Degree of multiplication o...
deg1mul3le 25481 Degree of multiplication o...
deg1tmle 25482 Limiting degree of a polyn...
deg1tm 25483 Exact degree of a polynomi...
deg1pwle 25484 Limiting degree of a varia...
deg1pw 25485 Exact degree of a variable...
ply1nz 25486 Univariate polynomials ove...
ply1nzb 25487 Univariate polynomials are...
ply1domn 25488 Corollary of ~ deg1mul2 : ...
ply1idom 25489 The ring of univariate pol...
ply1divmo 25500 Uniqueness of a quotient i...
ply1divex 25501 Lemma for ~ ply1divalg : e...
ply1divalg 25502 The division algorithm for...
ply1divalg2 25503 Reverse the order of multi...
uc1pval 25504 Value of the set of unitic...
isuc1p 25505 Being a unitic polynomial....
mon1pval 25506 Value of the set of monic ...
ismon1p 25507 Being a monic polynomial. ...
uc1pcl 25508 Unitic polynomials are pol...
mon1pcl 25509 Monic polynomials are poly...
uc1pn0 25510 Unitic polynomials are not...
mon1pn0 25511 Monic polynomials are not ...
uc1pdeg 25512 Unitic polynomials have no...
uc1pldg 25513 Unitic polynomials have un...
mon1pldg 25514 Unitic polynomials have on...
mon1puc1p 25515 Monic polynomials are unit...
uc1pmon1p 25516 Make a unitic polynomial m...
deg1submon1p 25517 The difference of two moni...
q1pval 25518 Value of the univariate po...
q1peqb 25519 Characterizing property of...
q1pcl 25520 Closure of the quotient by...
r1pval 25521 Value of the polynomial re...
r1pcl 25522 Closure of remainder follo...
r1pdeglt 25523 The remainder has a degree...
r1pid 25524 Express the original polyn...
dvdsq1p 25525 Divisibility in a polynomi...
dvdsr1p 25526 Divisibility in a polynomi...
ply1remlem 25527 A term of the form ` x - N...
ply1rem 25528 The polynomial remainder t...
facth1 25529 The factor theorem and its...
fta1glem1 25530 Lemma for ~ fta1g . (Cont...
fta1glem2 25531 Lemma for ~ fta1g . (Cont...
fta1g 25532 The one-sided fundamental ...
fta1blem 25533 Lemma for ~ fta1b . (Cont...
fta1b 25534 The assumption that ` R ` ...
drnguc1p 25535 Over a division ring, all ...
ig1peu 25536 There is a unique monic po...
ig1pval 25537 Substitutions for the poly...
ig1pval2 25538 Generator of the zero idea...
ig1pval3 25539 Characterizing properties ...
ig1pcl 25540 The monic generator of an ...
ig1pdvds 25541 The monic generator of an ...
ig1prsp 25542 Any ideal of polynomials o...
ply1lpir 25543 The ring of polynomials ov...
ply1pid 25544 The polynomials over a fie...
plyco0 25553 Two ways to say that a fun...
plyval 25554 Value of the polynomial se...
plybss 25555 Reverse closure of the par...
elply 25556 Definition of a polynomial...
elply2 25557 The coefficient function c...
plyun0 25558 The set of polynomials is ...
plyf 25559 The polynomial is a functi...
plyss 25560 The polynomial set functio...
plyssc 25561 Every polynomial ring is c...
elplyr 25562 Sufficient condition for e...
elplyd 25563 Sufficient condition for e...
ply1termlem 25564 Lemma for ~ ply1term . (C...
ply1term 25565 A one-term polynomial. (C...
plypow 25566 A power is a polynomial. ...
plyconst 25567 A constant function is a p...
ne0p 25568 A test to show that a poly...
ply0 25569 The zero function is a pol...
plyid 25570 The identity function is a...
plyeq0lem 25571 Lemma for ~ plyeq0 . If `...
plyeq0 25572 If a polynomial is zero at...
plypf1 25573 Write the set of complex p...
plyaddlem1 25574 Derive the coefficient fun...
plymullem1 25575 Derive the coefficient fun...
plyaddlem 25576 Lemma for ~ plyadd . (Con...
plymullem 25577 Lemma for ~ plymul . (Con...
plyadd 25578 The sum of two polynomials...
plymul 25579 The product of two polynom...
plysub 25580 The difference of two poly...
plyaddcl 25581 The sum of two polynomials...
plymulcl 25582 The product of two polynom...
plysubcl 25583 The difference of two poly...
coeval 25584 Value of the coefficient f...
coeeulem 25585 Lemma for ~ coeeu . (Cont...
coeeu 25586 Uniqueness of the coeffici...
coelem 25587 Lemma for properties of th...
coeeq 25588 If ` A ` satisfies the pro...
dgrval 25589 Value of the degree functi...
dgrlem 25590 Lemma for ~ dgrcl and simi...
coef 25591 The domain and codomain of...
coef2 25592 The domain and codomain of...
coef3 25593 The domain and codomain of...
dgrcl 25594 The degree of any polynomi...
dgrub 25595 If the ` M ` -th coefficie...
dgrub2 25596 All the coefficients above...
dgrlb 25597 If all the coefficients ab...
coeidlem 25598 Lemma for ~ coeid . (Cont...
coeid 25599 Reconstruct a polynomial a...
coeid2 25600 Reconstruct a polynomial a...
coeid3 25601 Reconstruct a polynomial a...
plyco 25602 The composition of two pol...
coeeq2 25603 Compute the coefficient fu...
dgrle 25604 Given an explicit expressi...
dgreq 25605 If the highest term in a p...
0dgr 25606 A constant function has de...
0dgrb 25607 A function has degree zero...
dgrnznn 25608 A nonzero polynomial with ...
coefv0 25609 The result of evaluating a...
coeaddlem 25610 Lemma for ~ coeadd and ~ d...
coemullem 25611 Lemma for ~ coemul and ~ d...
coeadd 25612 The coefficient function o...
coemul 25613 A coefficient of a product...
coe11 25614 The coefficient function i...
coemulhi 25615 The leading coefficient of...
coemulc 25616 The coefficient function i...
coe0 25617 The coefficients of the ze...
coesub 25618 The coefficient function o...
coe1termlem 25619 The coefficient function o...
coe1term 25620 The coefficient function o...
dgr1term 25621 The degree of a monomial. ...
plycn 25622 A polynomial is a continuo...
dgr0 25623 The degree of the zero pol...
coeidp 25624 The coefficients of the id...
dgrid 25625 The degree of the identity...
dgreq0 25626 The leading coefficient of...
dgrlt 25627 Two ways to say that the d...
dgradd 25628 The degree of a sum of pol...
dgradd2 25629 The degree of a sum of pol...
dgrmul2 25630 The degree of a product of...
dgrmul 25631 The degree of a product of...
dgrmulc 25632 Scalar multiplication by a...
dgrsub 25633 The degree of a difference...
dgrcolem1 25634 The degree of a compositio...
dgrcolem2 25635 Lemma for ~ dgrco . (Cont...
dgrco 25636 The degree of a compositio...
plycjlem 25637 Lemma for ~ plycj and ~ co...
plycj 25638 The double conjugation of ...
coecj 25639 Double conjugation of a po...
plyrecj 25640 A polynomial with real coe...
plymul0or 25641 Polynomial multiplication ...
ofmulrt 25642 The set of roots of a prod...
plyreres 25643 Real-coefficient polynomia...
dvply1 25644 Derivative of a polynomial...
dvply2g 25645 The derivative of a polyno...
dvply2 25646 The derivative of a polyno...
dvnply2 25647 Polynomials have polynomia...
dvnply 25648 Polynomials have polynomia...
plycpn 25649 Polynomials are smooth. (...
quotval 25652 Value of the quotient func...
plydivlem1 25653 Lemma for ~ plydivalg . (...
plydivlem2 25654 Lemma for ~ plydivalg . (...
plydivlem3 25655 Lemma for ~ plydivex . Ba...
plydivlem4 25656 Lemma for ~ plydivex . In...
plydivex 25657 Lemma for ~ plydivalg . (...
plydiveu 25658 Lemma for ~ plydivalg . (...
plydivalg 25659 The division algorithm on ...
quotlem 25660 Lemma for properties of th...
quotcl 25661 The quotient of two polyno...
quotcl2 25662 Closure of the quotient fu...
quotdgr 25663 Remainder property of the ...
plyremlem 25664 Closure of a linear factor...
plyrem 25665 The polynomial remainder t...
facth 25666 The factor theorem. If a ...
fta1lem 25667 Lemma for ~ fta1 . (Contr...
fta1 25668 The easy direction of the ...
quotcan 25669 Exact division with a mult...
vieta1lem1 25670 Lemma for ~ vieta1 . (Con...
vieta1lem2 25671 Lemma for ~ vieta1 : induc...
vieta1 25672 The first-order Vieta's fo...
plyexmo 25673 An infinite set of values ...
elaa 25676 Elementhood in the set of ...
aacn 25677 An algebraic number is a c...
aasscn 25678 The algebraic numbers are ...
elqaalem1 25679 Lemma for ~ elqaa . The f...
elqaalem2 25680 Lemma for ~ elqaa . (Cont...
elqaalem3 25681 Lemma for ~ elqaa . (Cont...
elqaa 25682 The set of numbers generat...
qaa 25683 Every rational number is a...
qssaa 25684 The rational numbers are c...
iaa 25685 The imaginary unit is alge...
aareccl 25686 The reciprocal of an algeb...
aacjcl 25687 The conjugate of an algebr...
aannenlem1 25688 Lemma for ~ aannen . (Con...
aannenlem2 25689 Lemma for ~ aannen . (Con...
aannenlem3 25690 The algebraic numbers are ...
aannen 25691 The algebraic numbers are ...
aalioulem1 25692 Lemma for ~ aaliou . An i...
aalioulem2 25693 Lemma for ~ aaliou . (Con...
aalioulem3 25694 Lemma for ~ aaliou . (Con...
aalioulem4 25695 Lemma for ~ aaliou . (Con...
aalioulem5 25696 Lemma for ~ aaliou . (Con...
aalioulem6 25697 Lemma for ~ aaliou . (Con...
aaliou 25698 Liouville's theorem on dio...
geolim3 25699 Geometric series convergen...
aaliou2 25700 Liouville's approximation ...
aaliou2b 25701 Liouville's approximation ...
aaliou3lem1 25702 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 25703 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 25704 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 25705 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 25706 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 25707 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 25708 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 25709 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 25710 Example of a "Liouville nu...
aaliou3 25711 Example of a "Liouville nu...
taylfvallem1 25716 Lemma for ~ taylfval . (C...
taylfvallem 25717 Lemma for ~ taylfval . (C...
taylfval 25718 Define the Taylor polynomi...
eltayl 25719 Value of the Taylor series...
taylf 25720 The Taylor series defines ...
tayl0 25721 The Taylor series is alway...
taylplem1 25722 Lemma for ~ taylpfval and ...
taylplem2 25723 Lemma for ~ taylpfval and ...
taylpfval 25724 Define the Taylor polynomi...
taylpf 25725 The Taylor polynomial is a...
taylpval 25726 Value of the Taylor polyno...
taylply2 25727 The Taylor polynomial is a...
taylply 25728 The Taylor polynomial is a...
dvtaylp 25729 The derivative of the Tayl...
dvntaylp 25730 The ` M ` -th derivative o...
dvntaylp0 25731 The first ` N ` derivative...
taylthlem1 25732 Lemma for ~ taylth . This...
taylthlem2 25733 Lemma for ~ taylth . (Con...
taylth 25734 Taylor's theorem. The Tay...
ulmrel 25737 The uniform limit relation...
ulmscl 25738 Closure of the base set in...
ulmval 25739 Express the predicate: Th...
ulmcl 25740 Closure of a uniform limit...
ulmf 25741 Closure of a uniform limit...
ulmpm 25742 Closure of a uniform limit...
ulmf2 25743 Closure of a uniform limit...
ulm2 25744 Simplify ~ ulmval when ` F...
ulmi 25745 The uniform limit property...
ulmclm 25746 A uniform limit of functio...
ulmres 25747 A sequence of functions co...
ulmshftlem 25748 Lemma for ~ ulmshft . (Co...
ulmshft 25749 A sequence of functions co...
ulm0 25750 Every function converges u...
ulmuni 25751 A sequence of functions un...
ulmdm 25752 Two ways to express that a...
ulmcaulem 25753 Lemma for ~ ulmcau and ~ u...
ulmcau 25754 A sequence of functions co...
ulmcau2 25755 A sequence of functions co...
ulmss 25756 A uniform limit of functio...
ulmbdd 25757 A uniform limit of bounded...
ulmcn 25758 A uniform limit of continu...
ulmdvlem1 25759 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 25760 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 25761 Lemma for ~ ulmdv . (Cont...
ulmdv 25762 If ` F ` is a sequence of ...
mtest 25763 The Weierstrass M-test. I...
mtestbdd 25764 Given the hypotheses of th...
mbfulm 25765 A uniform limit of measura...
iblulm 25766 A uniform limit of integra...
itgulm 25767 A uniform limit of integra...
itgulm2 25768 A uniform limit of integra...
pserval 25769 Value of the function ` G ...
pserval2 25770 Value of the function ` G ...
psergf 25771 The sequence of terms in t...
radcnvlem1 25772 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 25773 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 25774 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 25775 Zero is always a convergen...
radcnvcl 25776 The radius of convergence ...
radcnvlt1 25777 If ` X ` is within the ope...
radcnvlt2 25778 If ` X ` is within the ope...
radcnvle 25779 If ` X ` is a convergent p...
dvradcnv 25780 The radius of convergence ...
pserulm 25781 If ` S ` is a region conta...
psercn2 25782 Since by ~ pserulm the ser...
psercnlem2 25783 Lemma for ~ psercn . (Con...
psercnlem1 25784 Lemma for ~ psercn . (Con...
psercn 25785 An infinite series converg...
pserdvlem1 25786 Lemma for ~ pserdv . (Con...
pserdvlem2 25787 Lemma for ~ pserdv . (Con...
pserdv 25788 The derivative of a power ...
pserdv2 25789 The derivative of a power ...
abelthlem1 25790 Lemma for ~ abelth . (Con...
abelthlem2 25791 Lemma for ~ abelth . The ...
abelthlem3 25792 Lemma for ~ abelth . (Con...
abelthlem4 25793 Lemma for ~ abelth . (Con...
abelthlem5 25794 Lemma for ~ abelth . (Con...
abelthlem6 25795 Lemma for ~ abelth . (Con...
abelthlem7a 25796 Lemma for ~ abelth . (Con...
abelthlem7 25797 Lemma for ~ abelth . (Con...
abelthlem8 25798 Lemma for ~ abelth . (Con...
abelthlem9 25799 Lemma for ~ abelth . By a...
abelth 25800 Abel's theorem. If the po...
abelth2 25801 Abel's theorem, restricted...
efcn 25802 The exponential function i...
sincn 25803 Sine is continuous. (Cont...
coscn 25804 Cosine is continuous. (Co...
reeff1olem 25805 Lemma for ~ reeff1o . (Co...
reeff1o 25806 The real exponential funct...
reefiso 25807 The exponential function o...
efcvx 25808 The exponential function o...
reefgim 25809 The exponential function i...
pilem1 25810 Lemma for ~ pire , ~ pigt2...
pilem2 25811 Lemma for ~ pire , ~ pigt2...
pilem3 25812 Lemma for ~ pire , ~ pigt2...
pigt2lt4 25813 ` _pi ` is between 2 and 4...
sinpi 25814 The sine of ` _pi ` is 0. ...
pire 25815 ` _pi ` is a real number. ...
picn 25816 ` _pi ` is a complex numbe...
pipos 25817 ` _pi ` is positive. (Con...
pirp 25818 ` _pi ` is a positive real...
negpicn 25819 ` -u _pi ` is a real numbe...
sinhalfpilem 25820 Lemma for ~ sinhalfpi and ...
halfpire 25821 ` _pi / 2 ` is real. (Con...
neghalfpire 25822 ` -u _pi / 2 ` is real. (...
neghalfpirx 25823 ` -u _pi / 2 ` is an exten...
pidiv2halves 25824 Adding ` _pi / 2 ` to itse...
sinhalfpi 25825 The sine of ` _pi / 2 ` is...
coshalfpi 25826 The cosine of ` _pi / 2 ` ...
cosneghalfpi 25827 The cosine of ` -u _pi / 2...
efhalfpi 25828 The exponential of ` _i _p...
cospi 25829 The cosine of ` _pi ` is `...
efipi 25830 The exponential of ` _i x....
eulerid 25831 Euler's identity. (Contri...
sin2pi 25832 The sine of ` 2 _pi ` is 0...
cos2pi 25833 The cosine of ` 2 _pi ` is...
ef2pi 25834 The exponential of ` 2 _pi...
ef2kpi 25835 If ` K ` is an integer, th...
efper 25836 The exponential function i...
sinperlem 25837 Lemma for ~ sinper and ~ c...
sinper 25838 The sine function is perio...
cosper 25839 The cosine function is per...
sin2kpi 25840 If ` K ` is an integer, th...
cos2kpi 25841 If ` K ` is an integer, th...
sin2pim 25842 Sine of a number subtracte...
cos2pim 25843 Cosine of a number subtrac...
sinmpi 25844 Sine of a number less ` _p...
cosmpi 25845 Cosine of a number less ` ...
sinppi 25846 Sine of a number plus ` _p...
cosppi 25847 Cosine of a number plus ` ...
efimpi 25848 The exponential function a...
sinhalfpip 25849 The sine of ` _pi / 2 ` pl...
sinhalfpim 25850 The sine of ` _pi / 2 ` mi...
coshalfpip 25851 The cosine of ` _pi / 2 ` ...
coshalfpim 25852 The cosine of ` _pi / 2 ` ...
ptolemy 25853 Ptolemy's Theorem. This t...
sincosq1lem 25854 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 25855 The signs of the sine and ...
sincosq2sgn 25856 The signs of the sine and ...
sincosq3sgn 25857 The signs of the sine and ...
sincosq4sgn 25858 The signs of the sine and ...
coseq00topi 25859 Location of the zeroes of ...
coseq0negpitopi 25860 Location of the zeroes of ...
tanrpcl 25861 Positive real closure of t...
tangtx 25862 The tangent function is gr...
tanabsge 25863 The tangent function is gr...
sinq12gt0 25864 The sine of a number stric...
sinq12ge0 25865 The sine of a number betwe...
sinq34lt0t 25866 The sine of a number stric...
cosq14gt0 25867 The cosine of a number str...
cosq14ge0 25868 The cosine of a number bet...
sincosq1eq 25869 Complementarity of the sin...
sincos4thpi 25870 The sine and cosine of ` _...
tan4thpi 25871 The tangent of ` _pi / 4 `...
sincos6thpi 25872 The sine and cosine of ` _...
sincos3rdpi 25873 The sine and cosine of ` _...
pigt3 25874 ` _pi ` is greater than 3....
pige3 25875 ` _pi ` is greater than or...
pige3ALT 25876 Alternate proof of ~ pige3...
abssinper 25877 The absolute value of sine...
sinkpi 25878 The sine of an integer mul...
coskpi 25879 The absolute value of the ...
sineq0 25880 A complex number whose sin...
coseq1 25881 A complex number whose cos...
cos02pilt1 25882 Cosine is less than one be...
cosq34lt1 25883 Cosine is less than one in...
efeq1 25884 A complex number whose exp...
cosne0 25885 The cosine function has no...
cosordlem 25886 Lemma for ~ cosord . (Con...
cosord 25887 Cosine is decreasing over ...
cos0pilt1 25888 Cosine is between minus on...
cos11 25889 Cosine is one-to-one over ...
sinord 25890 Sine is increasing over th...
recosf1o 25891 The cosine function is a b...
resinf1o 25892 The sine function is a bij...
tanord1 25893 The tangent function is st...
tanord 25894 The tangent function is st...
tanregt0 25895 The real part of the tange...
negpitopissre 25896 The interval ` ( -u _pi (,...
efgh 25897 The exponential function o...
efif1olem1 25898 Lemma for ~ efif1o . (Con...
efif1olem2 25899 Lemma for ~ efif1o . (Con...
efif1olem3 25900 Lemma for ~ efif1o . (Con...
efif1olem4 25901 The exponential function o...
efif1o 25902 The exponential function o...
efifo 25903 The exponential function o...
eff1olem 25904 The exponential function m...
eff1o 25905 The exponential function m...
efabl 25906 The image of a subgroup of...
efsubm 25907 The image of a subgroup of...
circgrp 25908 The circle group ` T ` is ...
circsubm 25909 The circle group ` T ` is ...
logrn 25914 The range of the natural l...
ellogrn 25915 Write out the property ` A...
dflog2 25916 The natural logarithm func...
relogrn 25917 The range of the natural l...
logrncn 25918 The range of the natural l...
eff1o2 25919 The exponential function r...
logf1o 25920 The natural logarithm func...
dfrelog 25921 The natural logarithm func...
relogf1o 25922 The natural logarithm func...
logrncl 25923 Closure of the natural log...
logcl 25924 Closure of the natural log...
logimcl 25925 Closure of the imaginary p...
logcld 25926 The logarithm of a nonzero...
logimcld 25927 The imaginary part of the ...
logimclad 25928 The imaginary part of the ...
abslogimle 25929 The imaginary part of the ...
logrnaddcl 25930 The range of the natural l...
relogcl 25931 Closure of the natural log...
eflog 25932 Relationship between the n...
logeq0im1 25933 If the logarithm of a numb...
logccne0 25934 The logarithm isn't 0 if i...
logne0 25935 Logarithm of a non-1 posit...
reeflog 25936 Relationship between the n...
logef 25937 Relationship between the n...
relogef 25938 Relationship between the n...
logeftb 25939 Relationship between the n...
relogeftb 25940 Relationship between the n...
log1 25941 The natural logarithm of `...
loge 25942 The natural logarithm of `...
logneg 25943 The natural logarithm of a...
logm1 25944 The natural logarithm of n...
lognegb 25945 If a number has imaginary ...
relogoprlem 25946 Lemma for ~ relogmul and ~...
relogmul 25947 The natural logarithm of t...
relogdiv 25948 The natural logarithm of t...
explog 25949 Exponentiation of a nonzer...
reexplog 25950 Exponentiation of a positi...
relogexp 25951 The natural logarithm of p...
relog 25952 Real part of a logarithm. ...
relogiso 25953 The natural logarithm func...
reloggim 25954 The natural logarithm is a...
logltb 25955 The natural logarithm func...
logfac 25956 The logarithm of a factori...
eflogeq 25957 Solve an equation involvin...
logleb 25958 Natural logarithm preserve...
rplogcl 25959 Closure of the logarithm f...
logge0 25960 The logarithm of a number ...
logcj 25961 The natural logarithm dist...
efiarg 25962 The exponential of the "ar...
cosargd 25963 The cosine of the argument...
cosarg0d 25964 The cosine of the argument...
argregt0 25965 Closure of the argument of...
argrege0 25966 Closure of the argument of...
argimgt0 25967 Closure of the argument of...
argimlt0 25968 Closure of the argument of...
logimul 25969 Multiplying a number by ` ...
logneg2 25970 The logarithm of the negat...
logmul2 25971 Generalization of ~ relogm...
logdiv2 25972 Generalization of ~ relogd...
abslogle 25973 Bound on the magnitude of ...
tanarg 25974 The basic relation between...
logdivlti 25975 The ` log x / x ` function...
logdivlt 25976 The ` log x / x ` function...
logdivle 25977 The ` log x / x ` function...
relogcld 25978 Closure of the natural log...
reeflogd 25979 Relationship between the n...
relogmuld 25980 The natural logarithm of t...
relogdivd 25981 The natural logarithm of t...
logled 25982 Natural logarithm preserve...
relogefd 25983 Relationship between the n...
rplogcld 25984 Closure of the logarithm f...
logge0d 25985 The logarithm of a number ...
logge0b 25986 The logarithm of a number ...
loggt0b 25987 The logarithm of a number ...
logle1b 25988 The logarithm of a number ...
loglt1b 25989 The logarithm of a number ...
divlogrlim 25990 The inverse logarithm func...
logno1 25991 The logarithm function is ...
dvrelog 25992 The derivative of the real...
relogcn 25993 The real logarithm functio...
ellogdm 25994 Elementhood in the "contin...
logdmn0 25995 A number in the continuous...
logdmnrp 25996 A number in the continuous...
logdmss 25997 The continuity domain of `...
logcnlem2 25998 Lemma for ~ logcn . (Cont...
logcnlem3 25999 Lemma for ~ logcn . (Cont...
logcnlem4 26000 Lemma for ~ logcn . (Cont...
logcnlem5 26001 Lemma for ~ logcn . (Cont...
logcn 26002 The logarithm function is ...
dvloglem 26003 Lemma for ~ dvlog . (Cont...
logdmopn 26004 The "continuous domain" of...
logf1o2 26005 The logarithm maps its con...
dvlog 26006 The derivative of the comp...
dvlog2lem 26007 Lemma for ~ dvlog2 . (Con...
dvlog2 26008 The derivative of the comp...
advlog 26009 The antiderivative of the ...
advlogexp 26010 The antiderivative of a po...
efopnlem1 26011 Lemma for ~ efopn . (Cont...
efopnlem2 26012 Lemma for ~ efopn . (Cont...
efopn 26013 The exponential map is an ...
logtayllem 26014 Lemma for ~ logtayl . (Co...
logtayl 26015 The Taylor series for ` -u...
logtaylsum 26016 The Taylor series for ` -u...
logtayl2 26017 Power series expression fo...
logccv 26018 The natural logarithm func...
cxpval 26019 Value of the complex power...
cxpef 26020 Value of the complex power...
0cxp 26021 Value of the complex power...
cxpexpz 26022 Relate the complex power f...
cxpexp 26023 Relate the complex power f...
logcxp 26024 Logarithm of a complex pow...
cxp0 26025 Value of the complex power...
cxp1 26026 Value of the complex power...
1cxp 26027 Value of the complex power...
ecxp 26028 Write the exponential func...
cxpcl 26029 Closure of the complex pow...
recxpcl 26030 Real closure of the comple...
rpcxpcl 26031 Positive real closure of t...
cxpne0 26032 Complex exponentiation is ...
cxpeq0 26033 Complex exponentiation is ...
cxpadd 26034 Sum of exponents law for c...
cxpp1 26035 Value of a nonzero complex...
cxpneg 26036 Value of a complex number ...
cxpsub 26037 Exponent subtraction law f...
cxpge0 26038 Nonnegative exponentiation...
mulcxplem 26039 Lemma for ~ mulcxp . (Con...
mulcxp 26040 Complex exponentiation of ...
cxprec 26041 Complex exponentiation of ...
divcxp 26042 Complex exponentiation of ...
cxpmul 26043 Product of exponents law f...
cxpmul2 26044 Product of exponents law f...
cxproot 26045 The complex power function...
cxpmul2z 26046 Generalize ~ cxpmul2 to ne...
abscxp 26047 Absolute value of a power,...
abscxp2 26048 Absolute value of a power,...
cxplt 26049 Ordering property for comp...
cxple 26050 Ordering property for comp...
cxplea 26051 Ordering property for comp...
cxple2 26052 Ordering property for comp...
cxplt2 26053 Ordering property for comp...
cxple2a 26054 Ordering property for comp...
cxplt3 26055 Ordering property for comp...
cxple3 26056 Ordering property for comp...
cxpsqrtlem 26057 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 26058 The complex exponential fu...
logsqrt 26059 Logarithm of a square root...
cxp0d 26060 Value of the complex power...
cxp1d 26061 Value of the complex power...
1cxpd 26062 Value of the complex power...
cxpcld 26063 Closure of the complex pow...
cxpmul2d 26064 Product of exponents law f...
0cxpd 26065 Value of the complex power...
cxpexpzd 26066 Relate the complex power f...
cxpefd 26067 Value of the complex power...
cxpne0d 26068 Complex exponentiation is ...
cxpp1d 26069 Value of a nonzero complex...
cxpnegd 26070 Value of a complex number ...
cxpmul2zd 26071 Generalize ~ cxpmul2 to ne...
cxpaddd 26072 Sum of exponents law for c...
cxpsubd 26073 Exponent subtraction law f...
cxpltd 26074 Ordering property for comp...
cxpled 26075 Ordering property for comp...
cxplead 26076 Ordering property for comp...
divcxpd 26077 Complex exponentiation of ...
recxpcld 26078 Positive real closure of t...
cxpge0d 26079 Nonnegative exponentiation...
cxple2ad 26080 Ordering property for comp...
cxplt2d 26081 Ordering property for comp...
cxple2d 26082 Ordering property for comp...
mulcxpd 26083 Complex exponentiation of ...
cxpsqrtth 26084 Square root theorem over t...
2irrexpq 26085 There exist irrational num...
cxprecd 26086 Complex exponentiation of ...
rpcxpcld 26087 Positive real closure of t...
logcxpd 26088 Logarithm of a complex pow...
cxplt3d 26089 Ordering property for comp...
cxple3d 26090 Ordering property for comp...
cxpmuld 26091 Product of exponents law f...
cxpcom 26092 Commutative law for real e...
dvcxp1 26093 The derivative of a comple...
dvcxp2 26094 The derivative of a comple...
dvsqrt 26095 The derivative of the real...
dvcncxp1 26096 Derivative of complex powe...
dvcnsqrt 26097 Derivative of square root ...
cxpcn 26098 Domain of continuity of th...
cxpcn2 26099 Continuity of the complex ...
cxpcn3lem 26100 Lemma for ~ cxpcn3 . (Con...
cxpcn3 26101 Extend continuity of the c...
resqrtcn 26102 Continuity of the real squ...
sqrtcn 26103 Continuity of the square r...
cxpaddlelem 26104 Lemma for ~ cxpaddle . (C...
cxpaddle 26105 Ordering property for comp...
abscxpbnd 26106 Bound on the absolute valu...
root1id 26107 Property of an ` N ` -th r...
root1eq1 26108 The only powers of an ` N ...
root1cj 26109 Within the ` N ` -th roots...
cxpeq 26110 Solve an equation involvin...
loglesqrt 26111 An upper bound on the loga...
logreclem 26112 Symmetry of the natural lo...
logrec 26113 Logarithm of a reciprocal ...
logbval 26116 Define the value of the ` ...
logbcl 26117 General logarithm closure....
logbid1 26118 General logarithm is 1 whe...
logb1 26119 The logarithm of ` 1 ` to ...
elogb 26120 The general logarithm of a...
logbchbase 26121 Change of base for logarit...
relogbval 26122 Value of the general logar...
relogbcl 26123 Closure of the general log...
relogbzcl 26124 Closure of the general log...
relogbreexp 26125 Power law for the general ...
relogbzexp 26126 Power law for the general ...
relogbmul 26127 The logarithm of the produ...
relogbmulexp 26128 The logarithm of the produ...
relogbdiv 26129 The logarithm of the quoti...
relogbexp 26130 Identity law for general l...
nnlogbexp 26131 Identity law for general l...
logbrec 26132 Logarithm of a reciprocal ...
logbleb 26133 The general logarithm func...
logblt 26134 The general logarithm func...
relogbcxp 26135 Identity law for the gener...
cxplogb 26136 Identity law for the gener...
relogbcxpb 26137 The logarithm is the inver...
logbmpt 26138 The general logarithm to a...
logbf 26139 The general logarithm to a...
logbfval 26140 The general logarithm of a...
relogbf 26141 The general logarithm to a...
logblog 26142 The general logarithm to t...
logbgt0b 26143 The logarithm of a positiv...
logbgcd1irr 26144 The logarithm of an intege...
2logb9irr 26145 Example for ~ logbgcd1irr ...
logbprmirr 26146 The logarithm of a prime t...
2logb3irr 26147 Example for ~ logbprmirr ....
2logb9irrALT 26148 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 26149 The square root of two to ...
2irrexpqALT 26150 Alternate proof of ~ 2irre...
angval 26151 Define the angle function,...
angcan 26152 Cancel a constant multipli...
angneg 26153 Cancel a negative sign in ...
angvald 26154 The (signed) angle between...
angcld 26155 The (signed) angle between...
angrteqvd 26156 Two vectors are at a right...
cosangneg2d 26157 The cosine of the angle be...
angrtmuld 26158 Perpendicularity of two ve...
ang180lem1 26159 Lemma for ~ ang180 . Show...
ang180lem2 26160 Lemma for ~ ang180 . Show...
ang180lem3 26161 Lemma for ~ ang180 . Sinc...
ang180lem4 26162 Lemma for ~ ang180 . Redu...
ang180lem5 26163 Lemma for ~ ang180 : Redu...
ang180 26164 The sum of angles ` m A B ...
lawcoslem1 26165 Lemma for ~ lawcos . Here...
lawcos 26166 Law of cosines (also known...
pythag 26167 Pythagorean theorem. Give...
isosctrlem1 26168 Lemma for ~ isosctr . (Co...
isosctrlem2 26169 Lemma for ~ isosctr . Cor...
isosctrlem3 26170 Lemma for ~ isosctr . Cor...
isosctr 26171 Isosceles triangle theorem...
ssscongptld 26172 If two triangles have equa...
affineequiv 26173 Equivalence between two wa...
affineequiv2 26174 Equivalence between two wa...
affineequiv3 26175 Equivalence between two wa...
affineequiv4 26176 Equivalence between two wa...
affineequivne 26177 Equivalence between two wa...
angpieqvdlem 26178 Equivalence used in the pr...
angpieqvdlem2 26179 Equivalence used in ~ angp...
angpined 26180 If the angle at ABC is ` _...
angpieqvd 26181 The angle ABC is ` _pi ` i...
chordthmlem 26182 If ` M ` is the midpoint o...
chordthmlem2 26183 If M is the midpoint of AB...
chordthmlem3 26184 If M is the midpoint of AB...
chordthmlem4 26185 If P is on the segment AB ...
chordthmlem5 26186 If P is on the segment AB ...
chordthm 26187 The intersecting chords th...
heron 26188 Heron's formula gives the ...
quad2 26189 The quadratic equation, wi...
quad 26190 The quadratic equation. (...
1cubrlem 26191 The cube roots of unity. ...
1cubr 26192 The cube roots of unity. ...
dcubic1lem 26193 Lemma for ~ dcubic1 and ~ ...
dcubic2 26194 Reverse direction of ~ dcu...
dcubic1 26195 Forward direction of ~ dcu...
dcubic 26196 Solutions to the depressed...
mcubic 26197 Solutions to a monic cubic...
cubic2 26198 The solution to the genera...
cubic 26199 The cubic equation, which ...
binom4 26200 Work out a quartic binomia...
dquartlem1 26201 Lemma for ~ dquart . (Con...
dquartlem2 26202 Lemma for ~ dquart . (Con...
dquart 26203 Solve a depressed quartic ...
quart1cl 26204 Closure lemmas for ~ quart...
quart1lem 26205 Lemma for ~ quart1 . (Con...
quart1 26206 Depress a quartic equation...
quartlem1 26207 Lemma for ~ quart . (Cont...
quartlem2 26208 Closure lemmas for ~ quart...
quartlem3 26209 Closure lemmas for ~ quart...
quartlem4 26210 Closure lemmas for ~ quart...
quart 26211 The quartic equation, writ...
asinlem 26218 The argument to the logari...
asinlem2 26219 The argument to the logari...
asinlem3a 26220 Lemma for ~ asinlem3 . (C...
asinlem3 26221 The argument to the logari...
asinf 26222 Domain and codomain of the...
asincl 26223 Closure for the arcsin fun...
acosf 26224 Domain and codoamin of the...
acoscl 26225 Closure for the arccos fun...
atandm 26226 Since the property is a li...
atandm2 26227 This form of ~ atandm is a...
atandm3 26228 A compact form of ~ atandm...
atandm4 26229 A compact form of ~ atandm...
atanf 26230 Domain and codoamin of the...
atancl 26231 Closure for the arctan fun...
asinval 26232 Value of the arcsin functi...
acosval 26233 Value of the arccos functi...
atanval 26234 Value of the arctan functi...
atanre 26235 A real number is in the do...
asinneg 26236 The arcsine function is od...
acosneg 26237 The negative symmetry rela...
efiasin 26238 The exponential of the arc...
sinasin 26239 The arcsine function is an...
cosacos 26240 The arccosine function is ...
asinsinlem 26241 Lemma for ~ asinsin . (Co...
asinsin 26242 The arcsine function compo...
acoscos 26243 The arccosine function is ...
asin1 26244 The arcsine of ` 1 ` is ` ...
acos1 26245 The arccosine of ` 1 ` is ...
reasinsin 26246 The arcsine function compo...
asinsinb 26247 Relationship between sine ...
acoscosb 26248 Relationship between cosin...
asinbnd 26249 The arcsine function has r...
acosbnd 26250 The arccosine function has...
asinrebnd 26251 Bounds on the arcsine func...
asinrecl 26252 The arcsine function is re...
acosrecl 26253 The arccosine function is ...
cosasin 26254 The cosine of the arcsine ...
sinacos 26255 The sine of the arccosine ...
atandmneg 26256 The domain of the arctange...
atanneg 26257 The arctangent function is...
atan0 26258 The arctangent of zero is ...
atandmcj 26259 The arctangent function di...
atancj 26260 The arctangent function di...
atanrecl 26261 The arctangent function is...
efiatan 26262 Value of the exponential o...
atanlogaddlem 26263 Lemma for ~ atanlogadd . ...
atanlogadd 26264 The rule ` sqrt ( z w ) = ...
atanlogsublem 26265 Lemma for ~ atanlogsub . ...
atanlogsub 26266 A variation on ~ atanlogad...
efiatan2 26267 Value of the exponential o...
2efiatan 26268 Value of the exponential o...
tanatan 26269 The arctangent function is...
atandmtan 26270 The tangent function has r...
cosatan 26271 The cosine of an arctangen...
cosatanne0 26272 The arctangent function ha...
atantan 26273 The arctangent function is...
atantanb 26274 Relationship between tange...
atanbndlem 26275 Lemma for ~ atanbnd . (Co...
atanbnd 26276 The arctangent function is...
atanord 26277 The arctangent function is...
atan1 26278 The arctangent of ` 1 ` is...
bndatandm 26279 A point in the open unit d...
atans 26280 The "domain of continuity"...
atans2 26281 It suffices to show that `...
atansopn 26282 The domain of continuity o...
atansssdm 26283 The domain of continuity o...
ressatans 26284 The real number line is a ...
dvatan 26285 The derivative of the arct...
atancn 26286 The arctangent is a contin...
atantayl 26287 The Taylor series for ` ar...
atantayl2 26288 The Taylor series for ` ar...
atantayl3 26289 The Taylor series for ` ar...
leibpilem1 26290 Lemma for ~ leibpi . (Con...
leibpilem2 26291 The Leibniz formula for ` ...
leibpi 26292 The Leibniz formula for ` ...
leibpisum 26293 The Leibniz formula for ` ...
log2cnv 26294 Using the Taylor series fo...
log2tlbnd 26295 Bound the error term in th...
log2ublem1 26296 Lemma for ~ log2ub . The ...
log2ublem2 26297 Lemma for ~ log2ub . (Con...
log2ublem3 26298 Lemma for ~ log2ub . In d...
log2ub 26299 ` log 2 ` is less than ` 2...
log2le1 26300 ` log 2 ` is less than ` 1...
birthdaylem1 26301 Lemma for ~ birthday . (C...
birthdaylem2 26302 For general ` N ` and ` K ...
birthdaylem3 26303 For general ` N ` and ` K ...
birthday 26304 The Birthday Problem. The...
dmarea 26307 The domain of the area fun...
areambl 26308 The fibers of a measurable...
areass 26309 A measurable region is a s...
dfarea 26310 Rewrite ~ df-area self-ref...
areaf 26311 Area measurement is a func...
areacl 26312 The area of a measurable r...
areage0 26313 The area of a measurable r...
areaval 26314 The area of a measurable r...
rlimcnp 26315 Relate a limit of a real-v...
rlimcnp2 26316 Relate a limit of a real-v...
rlimcnp3 26317 Relate a limit of a real-v...
xrlimcnp 26318 Relate a limit of a real-v...
efrlim 26319 The limit of the sequence ...
dfef2 26320 The limit of the sequence ...
cxplim 26321 A power to a negative expo...
sqrtlim 26322 The inverse square root fu...
rlimcxp 26323 Any power to a positive ex...
o1cxp 26324 An eventually bounded func...
cxp2limlem 26325 A linear factor grows slow...
cxp2lim 26326 Any power grows slower tha...
cxploglim 26327 The logarithm grows slower...
cxploglim2 26328 Every power of the logarit...
divsqrtsumlem 26329 Lemma for ~ divsqrsum and ...
divsqrsumf 26330 The function ` F ` used in...
divsqrsum 26331 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26332 A bound on the distance of...
divsqrtsumo1 26333 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26334 Closure of a 0-1 linear co...
scvxcvx 26335 A strictly convex function...
jensenlem1 26336 Lemma for ~ jensen . (Con...
jensenlem2 26337 Lemma for ~ jensen . (Con...
jensen 26338 Jensen's inequality, a fin...
amgmlem 26339 Lemma for ~ amgm . (Contr...
amgm 26340 Inequality of arithmetic a...
logdifbnd 26343 Bound on the difference of...
logdiflbnd 26344 Lower bound on the differe...
emcllem1 26345 Lemma for ~ emcl . The se...
emcllem2 26346 Lemma for ~ emcl . ` F ` i...
emcllem3 26347 Lemma for ~ emcl . The fu...
emcllem4 26348 Lemma for ~ emcl . The di...
emcllem5 26349 Lemma for ~ emcl . The pa...
emcllem6 26350 Lemma for ~ emcl . By the...
emcllem7 26351 Lemma for ~ emcl and ~ har...
emcl 26352 Closure and bounds for the...
harmonicbnd 26353 A bound on the harmonic se...
harmonicbnd2 26354 A bound on the harmonic se...
emre 26355 The Euler-Mascheroni const...
emgt0 26356 The Euler-Mascheroni const...
harmonicbnd3 26357 A bound on the harmonic se...
harmoniclbnd 26358 A bound on the harmonic se...
harmonicubnd 26359 A bound on the harmonic se...
harmonicbnd4 26360 The asymptotic behavior of...
fsumharmonic 26361 Bound a finite sum based o...
zetacvg 26364 The zeta series is converg...
eldmgm 26371 Elementhood in the set of ...
dmgmaddn0 26372 If ` A ` is not a nonposit...
dmlogdmgm 26373 If ` A ` is in the continu...
rpdmgm 26374 A positive real number is ...
dmgmn0 26375 If ` A ` is not a nonposit...
dmgmaddnn0 26376 If ` A ` is not a nonposit...
dmgmdivn0 26377 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26378 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26379 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26380 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26381 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26382 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26383 The series ` G ` is unifor...
lgamgulm 26384 The series ` G ` is unifor...
lgamgulm2 26385 Rewrite the limit of the s...
lgambdd 26386 The log-Gamma function is ...
lgamucov 26387 The ` U ` regions used in ...
lgamucov2 26388 The ` U ` regions used in ...
lgamcvglem 26389 Lemma for ~ lgamf and ~ lg...
lgamcl 26390 The log-Gamma function is ...
lgamf 26391 The log-Gamma function is ...
gamf 26392 The Gamma function is a co...
gamcl 26393 The exponential of the log...
eflgam 26394 The exponential of the log...
gamne0 26395 The Gamma function is neve...
igamval 26396 Value of the inverse Gamma...
igamz 26397 Value of the inverse Gamma...
igamgam 26398 Value of the inverse Gamma...
igamlgam 26399 Value of the inverse Gamma...
igamf 26400 Closure of the inverse Gam...
igamcl 26401 Closure of the inverse Gam...
gamigam 26402 The Gamma function is the ...
lgamcvg 26403 The series ` G ` converges...
lgamcvg2 26404 The series ` G ` converges...
gamcvg 26405 The pointwise exponential ...
lgamp1 26406 The functional equation of...
gamp1 26407 The functional equation of...
gamcvg2lem 26408 Lemma for ~ gamcvg2 . (Co...
gamcvg2 26409 An infinite product expres...
regamcl 26410 The Gamma function is real...
relgamcl 26411 The log-Gamma function is ...
rpgamcl 26412 The log-Gamma function is ...
lgam1 26413 The log-Gamma function at ...
gam1 26414 The log-Gamma function at ...
facgam 26415 The Gamma function general...
gamfac 26416 The Gamma function general...
wilthlem1 26417 The only elements that are...
wilthlem2 26418 Lemma for ~ wilth : induct...
wilthlem3 26419 Lemma for ~ wilth . Here ...
wilth 26420 Wilson's theorem. A numbe...
wilthimp 26421 The forward implication of...
ftalem1 26422 Lemma for ~ fta : "growth...
ftalem2 26423 Lemma for ~ fta . There e...
ftalem3 26424 Lemma for ~ fta . There e...
ftalem4 26425 Lemma for ~ fta : Closure...
ftalem5 26426 Lemma for ~ fta : Main pr...
ftalem6 26427 Lemma for ~ fta : Dischar...
ftalem7 26428 Lemma for ~ fta . Shift t...
fta 26429 The Fundamental Theorem of...
basellem1 26430 Lemma for ~ basel . Closu...
basellem2 26431 Lemma for ~ basel . Show ...
basellem3 26432 Lemma for ~ basel . Using...
basellem4 26433 Lemma for ~ basel . By ~ ...
basellem5 26434 Lemma for ~ basel . Using...
basellem6 26435 Lemma for ~ basel . The f...
basellem7 26436 Lemma for ~ basel . The f...
basellem8 26437 Lemma for ~ basel . The f...
basellem9 26438 Lemma for ~ basel . Since...
basel 26439 The sum of the inverse squ...
efnnfsumcl 26452 Finite sum closure in the ...
ppisval 26453 The set of primes less tha...
ppisval2 26454 The set of primes less tha...
ppifi 26455 The set of primes less tha...
prmdvdsfi 26456 The set of prime divisors ...
chtf 26457 Domain and codoamin of the...
chtcl 26458 Real closure of the Chebys...
chtval 26459 Value of the Chebyshev fun...
efchtcl 26460 The Chebyshev function is ...
chtge0 26461 The Chebyshev function is ...
vmaval 26462 Value of the von Mangoldt ...
isppw 26463 Two ways to say that ` A `...
isppw2 26464 Two ways to say that ` A `...
vmappw 26465 Value of the von Mangoldt ...
vmaprm 26466 Value of the von Mangoldt ...
vmacl 26467 Closure for the von Mangol...
vmaf 26468 Functionality of the von M...
efvmacl 26469 The von Mangoldt is closed...
vmage0 26470 The von Mangoldt function ...
chpval 26471 Value of the second Chebys...
chpf 26472 Functionality of the secon...
chpcl 26473 Closure for the second Che...
efchpcl 26474 The second Chebyshev funct...
chpge0 26475 The second Chebyshev funct...
ppival 26476 Value of the prime-countin...
ppival2 26477 Value of the prime-countin...
ppival2g 26478 Value of the prime-countin...
ppif 26479 Domain and codomain of the...
ppicl 26480 Real closure of the prime-...
muval 26481 The value of the Möbi...
muval1 26482 The value of the Möbi...
muval2 26483 The value of the Möbi...
isnsqf 26484 Two ways to say that a num...
issqf 26485 Two ways to say that a num...
sqfpc 26486 The prime count of a squar...
dvdssqf 26487 A divisor of a squarefree ...
sqf11 26488 A squarefree number is com...
muf 26489 The Möbius function i...
mucl 26490 Closure of the Möbius...
sgmval 26491 The value of the divisor f...
sgmval2 26492 The value of the divisor f...
0sgm 26493 The value of the sum-of-di...
sgmf 26494 The divisor function is a ...
sgmcl 26495 Closure of the divisor fun...
sgmnncl 26496 Closure of the divisor fun...
mule1 26497 The Möbius function t...
chtfl 26498 The Chebyshev function doe...
chpfl 26499 The second Chebyshev funct...
ppiprm 26500 The prime-counting functio...
ppinprm 26501 The prime-counting functio...
chtprm 26502 The Chebyshev function at ...
chtnprm 26503 The Chebyshev function at ...
chpp1 26504 The second Chebyshev funct...
chtwordi 26505 The Chebyshev function is ...
chpwordi 26506 The second Chebyshev funct...
chtdif 26507 The difference of the Cheb...
efchtdvds 26508 The exponentiated Chebyshe...
ppifl 26509 The prime-counting functio...
ppip1le 26510 The prime-counting functio...
ppiwordi 26511 The prime-counting functio...
ppidif 26512 The difference of the prim...
ppi1 26513 The prime-counting functio...
cht1 26514 The Chebyshev function at ...
vma1 26515 The von Mangoldt function ...
chp1 26516 The second Chebyshev funct...
ppi1i 26517 Inference form of ~ ppiprm...
ppi2i 26518 Inference form of ~ ppinpr...
ppi2 26519 The prime-counting functio...
ppi3 26520 The prime-counting functio...
cht2 26521 The Chebyshev function at ...
cht3 26522 The Chebyshev function at ...
ppinncl 26523 Closure of the prime-count...
chtrpcl 26524 Closure of the Chebyshev f...
ppieq0 26525 The prime-counting functio...
ppiltx 26526 The prime-counting functio...
prmorcht 26527 Relate the primorial (prod...
mumullem1 26528 Lemma for ~ mumul . A mul...
mumullem2 26529 Lemma for ~ mumul . The p...
mumul 26530 The Möbius function i...
sqff1o 26531 There is a bijection from ...
fsumdvdsdiaglem 26532 A "diagonal commutation" o...
fsumdvdsdiag 26533 A "diagonal commutation" o...
fsumdvdscom 26534 A double commutation of di...
dvdsppwf1o 26535 A bijection from the divis...
dvdsflf1o 26536 A bijection from the numbe...
dvdsflsumcom 26537 A sum commutation from ` s...
fsumfldivdiaglem 26538 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 26539 The right-hand side of ~ d...
musum 26540 The sum of the Möbius...
musumsum 26541 Evaluate a collapsing sum ...
muinv 26542 The Möbius inversion ...
dvdsmulf1o 26543 If ` M ` and ` N ` are two...
fsumdvdsmul 26544 Product of two divisor sum...
sgmppw 26545 The value of the divisor f...
0sgmppw 26546 A prime power ` P ^ K ` ha...
1sgmprm 26547 The sum of divisors for a ...
1sgm2ppw 26548 The sum of the divisors of...
sgmmul 26549 The divisor function for f...
ppiublem1 26550 Lemma for ~ ppiub . (Cont...
ppiublem2 26551 A prime greater than ` 3 `...
ppiub 26552 An upper bound on the prim...
vmalelog 26553 The von Mangoldt function ...
chtlepsi 26554 The first Chebyshev functi...
chprpcl 26555 Closure of the second Cheb...
chpeq0 26556 The second Chebyshev funct...
chteq0 26557 The first Chebyshev functi...
chtleppi 26558 Upper bound on the ` theta...
chtublem 26559 Lemma for ~ chtub . (Cont...
chtub 26560 An upper bound on the Cheb...
fsumvma 26561 Rewrite a sum over the von...
fsumvma2 26562 Apply ~ fsumvma for the co...
pclogsum 26563 The logarithmic analogue o...
vmasum 26564 The sum of the von Mangold...
logfac2 26565 Another expression for the...
chpval2 26566 Express the second Chebysh...
chpchtsum 26567 The second Chebyshev funct...
chpub 26568 An upper bound on the seco...
logfacubnd 26569 A simple upper bound on th...
logfaclbnd 26570 A lower bound on the logar...
logfacbnd3 26571 Show the stronger statemen...
logfacrlim 26572 Combine the estimates ~ lo...
logexprlim 26573 The sum ` sum_ n <_ x , lo...
logfacrlim2 26574 Write out ~ logfacrlim as ...
mersenne 26575 A Mersenne prime is a prim...
perfect1 26576 Euclid's contribution to t...
perfectlem1 26577 Lemma for ~ perfect . (Co...
perfectlem2 26578 Lemma for ~ perfect . (Co...
perfect 26579 The Euclid-Euler theorem, ...
dchrval 26582 Value of the group of Diri...
dchrbas 26583 Base set of the group of D...
dchrelbas 26584 A Dirichlet character is a...
dchrelbas2 26585 A Dirichlet character is a...
dchrelbas3 26586 A Dirichlet character is a...
dchrelbasd 26587 A Dirichlet character is a...
dchrrcl 26588 Reverse closure for a Diri...
dchrmhm 26589 A Dirichlet character is a...
dchrf 26590 A Dirichlet character is a...
dchrelbas4 26591 A Dirichlet character is a...
dchrzrh1 26592 Value of a Dirichlet chara...
dchrzrhcl 26593 A Dirichlet character take...
dchrzrhmul 26594 A Dirichlet character is c...
dchrplusg 26595 Group operation on the gro...
dchrmul 26596 Group operation on the gro...
dchrmulcl 26597 Closure of the group opera...
dchrn0 26598 A Dirichlet character is n...
dchr1cl 26599 Closure of the principal D...
dchrmulid2 26600 Left identity for the prin...
dchrinvcl 26601 Closure of the group inver...
dchrabl 26602 The set of Dirichlet chara...
dchrfi 26603 The group of Dirichlet cha...
dchrghm 26604 A Dirichlet character rest...
dchr1 26605 Value of the principal Dir...
dchreq 26606 A Dirichlet character is d...
dchrresb 26607 A Dirichlet character is d...
dchrabs 26608 A Dirichlet character take...
dchrinv 26609 The inverse of a Dirichlet...
dchrabs2 26610 A Dirichlet character take...
dchr1re 26611 The principal Dirichlet ch...
dchrptlem1 26612 Lemma for ~ dchrpt . (Con...
dchrptlem2 26613 Lemma for ~ dchrpt . (Con...
dchrptlem3 26614 Lemma for ~ dchrpt . (Con...
dchrpt 26615 For any element other than...
dchrsum2 26616 An orthogonality relation ...
dchrsum 26617 An orthogonality relation ...
sumdchr2 26618 Lemma for ~ sumdchr . (Co...
dchrhash 26619 There are exactly ` phi ( ...
sumdchr 26620 An orthogonality relation ...
dchr2sum 26621 An orthogonality relation ...
sum2dchr 26622 An orthogonality relation ...
bcctr 26623 Value of the central binom...
pcbcctr 26624 Prime count of a central b...
bcmono 26625 The binomial coefficient i...
bcmax 26626 The binomial coefficient t...
bcp1ctr 26627 Ratio of two central binom...
bclbnd 26628 A bound on the binomial co...
efexple 26629 Convert a bound on a power...
bpos1lem 26630 Lemma for ~ bpos1 . (Cont...
bpos1 26631 Bertrand's postulate, chec...
bposlem1 26632 An upper bound on the prim...
bposlem2 26633 There are no odd primes in...
bposlem3 26634 Lemma for ~ bpos . Since ...
bposlem4 26635 Lemma for ~ bpos . (Contr...
bposlem5 26636 Lemma for ~ bpos . Bound ...
bposlem6 26637 Lemma for ~ bpos . By usi...
bposlem7 26638 Lemma for ~ bpos . The fu...
bposlem8 26639 Lemma for ~ bpos . Evalua...
bposlem9 26640 Lemma for ~ bpos . Derive...
bpos 26641 Bertrand's postulate: ther...
zabsle1 26644 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 26645 When ` a ` is coprime to t...
lgslem2 26646 The set ` Z ` of all integ...
lgslem3 26647 The set ` Z ` of all integ...
lgslem4 26648 Lemma for ~ lgsfcl2 . (Co...
lgsval 26649 Value of the Legendre symb...
lgsfval 26650 Value of the function ` F ...
lgsfcl2 26651 The function ` F ` is clos...
lgscllem 26652 The Legendre symbol is an ...
lgsfcl 26653 Closure of the function ` ...
lgsfle1 26654 The function ` F ` has mag...
lgsval2lem 26655 Lemma for ~ lgsval2 . (Co...
lgsval4lem 26656 Lemma for ~ lgsval4 . (Co...
lgscl2 26657 The Legendre symbol is an ...
lgs0 26658 The Legendre symbol when t...
lgscl 26659 The Legendre symbol is an ...
lgsle1 26660 The Legendre symbol has ab...
lgsval2 26661 The Legendre symbol at a p...
lgs2 26662 The Legendre symbol at ` 2...
lgsval3 26663 The Legendre symbol at an ...
lgsvalmod 26664 The Legendre symbol is equ...
lgsval4 26665 Restate ~ lgsval for nonze...
lgsfcl3 26666 Closure of the function ` ...
lgsval4a 26667 Same as ~ lgsval4 for posi...
lgscl1 26668 The value of the Legendre ...
lgsneg 26669 The Legendre symbol is eit...
lgsneg1 26670 The Legendre symbol for no...
lgsmod 26671 The Legendre (Jacobi) symb...
lgsdilem 26672 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 26673 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 26674 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 26675 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 26676 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 26677 Lemma for ~ lgsdir2 . (Co...
lgsdir2 26678 The Legendre symbol is com...
lgsdirprm 26679 The Legendre symbol is com...
lgsdir 26680 The Legendre symbol is com...
lgsdilem2 26681 Lemma for ~ lgsdi . (Cont...
lgsdi 26682 The Legendre symbol is com...
lgsne0 26683 The Legendre symbol is non...
lgsabs1 26684 The Legendre symbol is non...
lgssq 26685 The Legendre symbol at a s...
lgssq2 26686 The Legendre symbol at a s...
lgsprme0 26687 The Legendre symbol at any...
1lgs 26688 The Legendre symbol at ` 1...
lgs1 26689 The Legendre symbol at ` 1...
lgsmodeq 26690 The Legendre (Jacobi) symb...
lgsmulsqcoprm 26691 The Legendre (Jacobi) symb...
lgsdirnn0 26692 Variation on ~ lgsdir vali...
lgsdinn0 26693 Variation on ~ lgsdi valid...
lgsqrlem1 26694 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 26695 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 26696 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 26697 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 26698 Lemma for ~ lgsqr . (Cont...
lgsqr 26699 The Legendre symbol for od...
lgsqrmod 26700 If the Legendre symbol of ...
lgsqrmodndvds 26701 If the Legendre symbol of ...
lgsdchrval 26702 The Legendre symbol functi...
lgsdchr 26703 The Legendre symbol functi...
gausslemma2dlem0a 26704 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 26705 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 26706 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 26707 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 26708 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 26709 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 26710 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 26711 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 26712 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 26713 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 26714 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 26715 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 26716 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 26717 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 26718 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 26719 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 26720 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 26721 Lemma 7 for ~ gausslemma2d...
gausslemma2d 26722 Gauss' Lemma (see also the...
lgseisenlem1 26723 Lemma for ~ lgseisen . If...
lgseisenlem2 26724 Lemma for ~ lgseisen . Th...
lgseisenlem3 26725 Lemma for ~ lgseisen . (C...
lgseisenlem4 26726 Lemma for ~ lgseisen . Th...
lgseisen 26727 Eisenstein's lemma, an exp...
lgsquadlem1 26728 Lemma for ~ lgsquad . Cou...
lgsquadlem2 26729 Lemma for ~ lgsquad . Cou...
lgsquadlem3 26730 Lemma for ~ lgsquad . (Co...
lgsquad 26731 The Law of Quadratic Recip...
lgsquad2lem1 26732 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 26733 Lemma for ~ lgsquad2 . (C...
lgsquad2 26734 Extend ~ lgsquad to coprim...
lgsquad3 26735 Extend ~ lgsquad2 to integ...
m1lgs 26736 The first supplement to th...
2lgslem1a1 26737 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 26738 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 26739 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 26740 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 26741 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 26742 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 26743 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 26744 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 26745 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 26746 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 26747 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 26748 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 26749 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 26750 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 26751 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 26752 Lemma 3 for ~ 2lgs . (Con...
2lgs2 26753 The Legendre symbol for ` ...
2lgslem4 26754 Lemma 4 for ~ 2lgs : speci...
2lgs 26755 The second supplement to t...
2lgsoddprmlem1 26756 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 26757 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 26758 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 26759 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 26760 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 26761 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 26762 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 26763 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 26764 The second supplement to t...
2sqlem1 26765 Lemma for ~ 2sq . (Contri...
2sqlem2 26766 Lemma for ~ 2sq . (Contri...
mul2sq 26767 Fibonacci's identity (actu...
2sqlem3 26768 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 26769 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 26770 Lemma for ~ 2sq . If a nu...
2sqlem6 26771 Lemma for ~ 2sq . If a nu...
2sqlem7 26772 Lemma for ~ 2sq . (Contri...
2sqlem8a 26773 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 26774 Lemma for ~ 2sq . (Contri...
2sqlem9 26775 Lemma for ~ 2sq . (Contri...
2sqlem10 26776 Lemma for ~ 2sq . Every f...
2sqlem11 26777 Lemma for ~ 2sq . (Contri...
2sq 26778 All primes of the form ` 4...
2sqblem 26779 Lemma for ~ 2sqb . (Contr...
2sqb 26780 The converse to ~ 2sq . (...
2sq2 26781 ` 2 ` is the sum of square...
2sqn0 26782 If the sum of two squares ...
2sqcoprm 26783 If the sum of two squares ...
2sqmod 26784 Given two decompositions o...
2sqmo 26785 There exists at most one d...
2sqnn0 26786 All primes of the form ` 4...
2sqnn 26787 All primes of the form ` 4...
addsq2reu 26788 For each complex number ` ...
addsqn2reu 26789 For each complex number ` ...
addsqrexnreu 26790 For each complex number, t...
addsqnreup 26791 There is no unique decompo...
addsq2nreurex 26792 For each complex number ` ...
addsqn2reurex2 26793 For each complex number ` ...
2sqreulem1 26794 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 26795 Lemma for ~ 2sqreult . (C...
2sqreultblem 26796 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 26797 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 26798 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 26799 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 26800 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 26801 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 26802 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 26803 Lemma 2 for ~ 2sqreunn . ...
2sqreu 26804 There exists a unique deco...
2sqreunn 26805 There exists a unique deco...
2sqreult 26806 There exists a unique deco...
2sqreultb 26807 There exists a unique deco...
2sqreunnlt 26808 There exists a unique deco...
2sqreunnltb 26809 There exists a unique deco...
2sqreuop 26810 There exists a unique deco...
2sqreuopnn 26811 There exists a unique deco...
2sqreuoplt 26812 There exists a unique deco...
2sqreuopltb 26813 There exists a unique deco...
2sqreuopnnlt 26814 There exists a unique deco...
2sqreuopnnltb 26815 There exists a unique deco...
2sqreuopb 26816 There exists a unique deco...
chebbnd1lem1 26817 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 26818 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 26819 Lemma for ~ chebbnd1 : get...
chebbnd1 26820 The Chebyshev bound: The ...
chtppilimlem1 26821 Lemma for ~ chtppilim . (...
chtppilimlem2 26822 Lemma for ~ chtppilim . (...
chtppilim 26823 The ` theta ` function is ...
chto1ub 26824 The ` theta ` function is ...
chebbnd2 26825 The Chebyshev bound, part ...
chto1lb 26826 The ` theta ` function is ...
chpchtlim 26827 The ` psi ` and ` theta ` ...
chpo1ub 26828 The ` psi ` function is up...
chpo1ubb 26829 The ` psi ` function is up...
vmadivsum 26830 The sum of the von Mangold...
vmadivsumb 26831 Give a total bound on the ...
rplogsumlem1 26832 Lemma for ~ rplogsum . (C...
rplogsumlem2 26833 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 26834 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 26835 Lemma for ~ rpvmasum . Ca...
dchrisumlema 26836 Lemma for ~ dchrisum . Le...
dchrisumlem1 26837 Lemma for ~ dchrisum . Le...
dchrisumlem2 26838 Lemma for ~ dchrisum . Le...
dchrisumlem3 26839 Lemma for ~ dchrisum . Le...
dchrisum 26840 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 26841 Lemma for ~ dchrmusum and ...
dchrmusum2 26842 The sum of the Möbius...
dchrvmasumlem1 26843 An alternative expression ...
dchrvmasum2lem 26844 Give an expression for ` l...
dchrvmasum2if 26845 Combine the results of ~ d...
dchrvmasumlem2 26846 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 26847 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 26848 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 26849 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 26850 Lemma for ~ dchrvmasum . ...
dchrvmasumif 26851 An asymptotic approximatio...
dchrvmaeq0 26852 The set ` W ` is the colle...
dchrisum0fval 26853 Value of the function ` F ...
dchrisum0fmul 26854 The function ` F ` , the d...
dchrisum0ff 26855 The function ` F ` is a re...
dchrisum0flblem1 26856 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 26857 Lemma for ~ dchrisum0flb ....
dchrisum0flb 26858 The divisor sum of a real ...
dchrisum0fno1 26859 The sum ` sum_ k <_ x , F ...
rpvmasum2 26860 A partial result along the...
dchrisum0re 26861 Suppose ` X ` is a non-pri...
dchrisum0lema 26862 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 26863 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 26864 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 26865 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 26866 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 26867 Lemma for ~ dchrisum0 . (...
dchrisum0 26868 The sum ` sum_ n e. NN , X...
dchrisumn0 26869 The sum ` sum_ n e. NN , X...
dchrmusumlem 26870 The sum of the Möbius...
dchrvmasumlem 26871 The sum of the Möbius...
dchrmusum 26872 The sum of the Möbius...
dchrvmasum 26873 The sum of the von Mangold...
rpvmasum 26874 The sum of the von Mangold...
rplogsum 26875 The sum of ` log p / p ` o...
dirith2 26876 Dirichlet's theorem: there...
dirith 26877 Dirichlet's theorem: there...
mudivsum 26878 Asymptotic formula for ` s...
mulogsumlem 26879 Lemma for ~ mulogsum . (C...
mulogsum 26880 Asymptotic formula for ...
logdivsum 26881 Asymptotic analysis of ...
mulog2sumlem1 26882 Asymptotic formula for ...
mulog2sumlem2 26883 Lemma for ~ mulog2sum . (...
mulog2sumlem3 26884 Lemma for ~ mulog2sum . (...
mulog2sum 26885 Asymptotic formula for ...
vmalogdivsum2 26886 The sum ` sum_ n <_ x , La...
vmalogdivsum 26887 The sum ` sum_ n <_ x , La...
2vmadivsumlem 26888 Lemma for ~ 2vmadivsum . ...
2vmadivsum 26889 The sum ` sum_ m n <_ x , ...
logsqvma 26890 A formula for ` log ^ 2 ( ...
logsqvma2 26891 The Möbius inverse of...
log2sumbnd 26892 Bound on the difference be...
selberglem1 26893 Lemma for ~ selberg . Est...
selberglem2 26894 Lemma for ~ selberg . (Co...
selberglem3 26895 Lemma for ~ selberg . Est...
selberg 26896 Selberg's symmetry formula...
selbergb 26897 Convert eventual boundedne...
selberg2lem 26898 Lemma for ~ selberg2 . Eq...
selberg2 26899 Selberg's symmetry formula...
selberg2b 26900 Convert eventual boundedne...
chpdifbndlem1 26901 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 26902 Lemma for ~ chpdifbnd . (...
chpdifbnd 26903 A bound on the difference ...
logdivbnd 26904 A bound on a sum of logs, ...
selberg3lem1 26905 Introduce a log weighting ...
selberg3lem2 26906 Lemma for ~ selberg3 . Eq...
selberg3 26907 Introduce a log weighting ...
selberg4lem1 26908 Lemma for ~ selberg4 . Eq...
selberg4 26909 The Selberg symmetry formu...
pntrval 26910 Define the residual of the...
pntrf 26911 Functionality of the resid...
pntrmax 26912 There is a bound on the re...
pntrsumo1 26913 A bound on a sum over ` R ...
pntrsumbnd 26914 A bound on a sum over ` R ...
pntrsumbnd2 26915 A bound on a sum over ` R ...
selbergr 26916 Selberg's symmetry formula...
selberg3r 26917 Selberg's symmetry formula...
selberg4r 26918 Selberg's symmetry formula...
selberg34r 26919 The sum of ~ selberg3r and...
pntsval 26920 Define the "Selberg functi...
pntsf 26921 Functionality of the Selbe...
selbergs 26922 Selberg's symmetry formula...
selbergsb 26923 Selberg's symmetry formula...
pntsval2 26924 The Selberg function can b...
pntrlog2bndlem1 26925 The sum of ~ selberg3r and...
pntrlog2bndlem2 26926 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 26927 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 26928 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 26929 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 26930 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 26931 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 26932 A bound on ` R ( x ) log ^...
pntpbnd1a 26933 Lemma for ~ pntpbnd . (Co...
pntpbnd1 26934 Lemma for ~ pntpbnd . (Co...
pntpbnd2 26935 Lemma for ~ pntpbnd . (Co...
pntpbnd 26936 Lemma for ~ pnt . Establi...
pntibndlem1 26937 Lemma for ~ pntibnd . (Co...
pntibndlem2a 26938 Lemma for ~ pntibndlem2 . ...
pntibndlem2 26939 Lemma for ~ pntibnd . The...
pntibndlem3 26940 Lemma for ~ pntibnd . Pac...
pntibnd 26941 Lemma for ~ pnt . Establi...
pntlemd 26942 Lemma for ~ pnt . Closure...
pntlemc 26943 Lemma for ~ pnt . Closure...
pntlema 26944 Lemma for ~ pnt . Closure...
pntlemb 26945 Lemma for ~ pnt . Unpack ...
pntlemg 26946 Lemma for ~ pnt . Closure...
pntlemh 26947 Lemma for ~ pnt . Bounds ...
pntlemn 26948 Lemma for ~ pnt . The "na...
pntlemq 26949 Lemma for ~ pntlemj . (Co...
pntlemr 26950 Lemma for ~ pntlemj . (Co...
pntlemj 26951 Lemma for ~ pnt . The ind...
pntlemi 26952 Lemma for ~ pnt . Elimina...
pntlemf 26953 Lemma for ~ pnt . Add up ...
pntlemk 26954 Lemma for ~ pnt . Evaluat...
pntlemo 26955 Lemma for ~ pnt . Combine...
pntleme 26956 Lemma for ~ pnt . Package...
pntlem3 26957 Lemma for ~ pnt . Equatio...
pntlemp 26958 Lemma for ~ pnt . Wrappin...
pntleml 26959 Lemma for ~ pnt . Equatio...
pnt3 26960 The Prime Number Theorem, ...
pnt2 26961 The Prime Number Theorem, ...
pnt 26962 The Prime Number Theorem: ...
abvcxp 26963 Raising an absolute value ...
padicfval 26964 Value of the p-adic absolu...
padicval 26965 Value of the p-adic absolu...
ostth2lem1 26966 Lemma for ~ ostth2 , altho...
qrngbas 26967 The base set of the field ...
qdrng 26968 The rationals form a divis...
qrng0 26969 The zero element of the fi...
qrng1 26970 The unity element of the f...
qrngneg 26971 The additive inverse in th...
qrngdiv 26972 The division operation in ...
qabvle 26973 By using induction on ` N ...
qabvexp 26974 Induct the product rule ~ ...
ostthlem1 26975 Lemma for ~ ostth . If tw...
ostthlem2 26976 Lemma for ~ ostth . Refin...
qabsabv 26977 The regular absolute value...
padicabv 26978 The p-adic absolute value ...
padicabvf 26979 The p-adic absolute value ...
padicabvcxp 26980 All positive powers of the...
ostth1 26981 - Lemma for ~ ostth : triv...
ostth2lem2 26982 Lemma for ~ ostth2 . (Con...
ostth2lem3 26983 Lemma for ~ ostth2 . (Con...
ostth2lem4 26984 Lemma for ~ ostth2 . (Con...
ostth2 26985 - Lemma for ~ ostth : regu...
ostth3 26986 - Lemma for ~ ostth : p-ad...
ostth 26987 Ostrowski's theorem, which...
elno 26994 Membership in the surreals...
sltval 26995 The value of the surreal l...
bdayval 26996 The value of the birthday ...
nofun 26997 A surreal is a function. ...
nodmon 26998 The domain of a surreal is...
norn 26999 The range of a surreal is ...
nofnbday 27000 A surreal is a function ov...
nodmord 27001 The domain of a surreal ha...
elno2 27002 An alternative condition f...
elno3 27003 Another condition for memb...
sltval2 27004 Alternate expression for s...
nofv 27005 The function value of a su...
nosgnn0 27006 ` (/) ` is not a surreal s...
nosgnn0i 27007 If ` X ` is a surreal sign...
noreson 27008 The restriction of a surre...
sltintdifex 27009 If ` A
sltres 27010 If the restrictions of two...
noxp1o 27011 The Cartesian product of a...
noseponlem 27012 Lemma for ~ nosepon . Con...
nosepon 27013 Given two unequal surreals...
noextend 27014 Extending a surreal by one...
noextendseq 27015 Extend a surreal by a sequ...
noextenddif 27016 Calculate the place where ...
noextendlt 27017 Extending a surreal with a...
noextendgt 27018 Extending a surreal with a...
nolesgn2o 27019 Given ` A ` less-than or e...
nolesgn2ores 27020 Given ` A ` less-than or e...
nogesgn1o 27021 Given ` A ` greater than o...
nogesgn1ores 27022 Given ` A ` greater than o...
sltsolem1 27023 Lemma for ~ sltso . The "...
sltso 27024 Less-than totally orders t...
bdayfo 27025 The birthday function maps...
fvnobday 27026 The value of a surreal at ...
nosepnelem 27027 Lemma for ~ nosepne . (Co...
nosepne 27028 The value of two non-equal...
nosep1o 27029 If the value of a surreal ...
nosep2o 27030 If the value of a surreal ...
nosepdmlem 27031 Lemma for ~ nosepdm . (Co...
nosepdm 27032 The first place two surrea...
nosepeq 27033 The values of two surreals...
nosepssdm 27034 Given two non-equal surrea...
nodenselem4 27035 Lemma for ~ nodense . Sho...
nodenselem5 27036 Lemma for ~ nodense . If ...
nodenselem6 27037 The restriction of a surre...
nodenselem7 27038 Lemma for ~ nodense . ` A ...
nodenselem8 27039 Lemma for ~ nodense . Giv...
nodense 27040 Given two distinct surreal...
bdayimaon 27041 Lemma for full-eta propert...
nolt02olem 27042 Lemma for ~ nolt02o . If ...
nolt02o 27043 Given ` A ` less-than ` B ...
nogt01o 27044 Given ` A ` greater than `...
noresle 27045 Restriction law for surrea...
nomaxmo 27046 A class of surreals has at...
nominmo 27047 A class of surreals has at...
nosupprefixmo 27048 In any class of surreals, ...
noinfprefixmo 27049 In any class of surreals, ...
nosupcbv 27050 Lemma to change bound vari...
nosupno 27051 The next several theorems ...
nosupdm 27052 The domain of the surreal ...
nosupbday 27053 Birthday bounding law for ...
nosupfv 27054 The value of surreal supre...
nosupres 27055 A restriction law for surr...
nosupbnd1lem1 27056 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 27057 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 27058 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 27059 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 27060 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 27061 Lemma for ~ nosupbnd1 . E...
nosupbnd1 27062 Bounding law from below fo...
nosupbnd2lem1 27063 Bounding law from above wh...
nosupbnd2 27064 Bounding law from above fo...
noinfcbv 27065 Change bound variables for...
noinfno 27066 The next several theorems ...
noinfdm 27067 Next, we calculate the dom...
noinfbday 27068 Birthday bounding law for ...
noinffv 27069 The value of surreal infim...
noinfres 27070 The restriction of surreal...
noinfbnd1lem1 27071 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 27072 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 27073 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 27074 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 27075 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 27076 Lemma for ~ noinfbnd1 . E...
noinfbnd1 27077 Bounding law from above fo...
noinfbnd2lem1 27078 Bounding law from below wh...
noinfbnd2 27079 Bounding law from below fo...
nosupinfsep 27080 Given two sets of surreals...
noetasuplem1 27081 Lemma for ~ noeta . Estab...
noetasuplem2 27082 Lemma for ~ noeta . The r...
noetasuplem3 27083 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 27084 Lemma for ~ noeta . When ...
noetainflem1 27085 Lemma for ~ noeta . Estab...
noetainflem2 27086 Lemma for ~ noeta . The r...
noetainflem3 27087 Lemma for ~ noeta . ` W ` ...
noetainflem4 27088 Lemma for ~ noeta . If ` ...
noetalem1 27089 Lemma for ~ noeta . Eithe...
noetalem2 27090 Lemma for ~ noeta . The f...
noeta 27091 The full-eta axiom for the...
sltirr 27094 Surreal less-than is irref...
slttr 27095 Surreal less-than is trans...
sltasym 27096 Surreal less-than is asymm...
sltlin 27097 Surreal less-than obeys tr...
slttrieq2 27098 Trichotomy law for surreal...
slttrine 27099 Trichotomy law for surreal...
slenlt 27100 Surreal less-than or equal...
sltnle 27101 Surreal less-than in terms...
sleloe 27102 Surreal less-than or equal...
sletri3 27103 Trichotomy law for surreal...
sltletr 27104 Surreal transitive law. (...
slelttr 27105 Surreal transitive law. (...
sletr 27106 Surreal transitive law. (...
slttrd 27107 Surreal less-than is trans...
sltletrd 27108 Surreal less-than is trans...
slelttrd 27109 Surreal less-than is trans...
sletrd 27110 Surreal less-than or equal...
slerflex 27111 Surreal less-than or equal...
bdayfun 27112 The birthday function is a...
bdayfn 27113 The birthday function is a...
bdaydm 27114 The birthday function's do...
bdayrn 27115 The birthday function's ra...
bdayelon 27116 The value of the birthday ...
nocvxminlem 27117 Lemma for ~ nocvxmin . Gi...
nocvxmin 27118 Given a nonempty convex cl...
noprc 27119 The surreal numbers are a ...
noeta2 27124 A version of ~ noeta with ...
brsslt 27125 Binary relation form of th...
ssltex1 27126 The first argument of surr...
ssltex2 27127 The second argument of sur...
ssltss1 27128 The first argument of surr...
ssltss2 27129 The second argument of sur...
ssltsep 27130 The separation property of...
ssltd 27131 Deduce surreal set less-th...
ssltsepc 27132 Two elements of separated ...
ssltsepcd 27133 Two elements of separated ...
sssslt1 27134 Relation between surreal s...
sssslt2 27135 Relation between surreal s...
nulsslt 27136 The empty set is less-than...
nulssgt 27137 The empty set is greater t...
conway 27138 Conway's Simplicity Theore...
scutval 27139 The value of the surreal c...
scutcut 27140 Cut properties of the surr...
scutcl 27141 Closure law for surreal cu...
scutcld 27142 Closure law for surreal cu...
scutbday 27143 The birthday of the surrea...
eqscut 27144 Condition for equality to ...
eqscut2 27145 Condition for equality to ...
sslttr 27146 Transitive law for surreal...
ssltun1 27147 Union law for surreal set ...
ssltun2 27148 Union law for surreal set ...
scutun12 27149 Union law for surreal cuts...
dmscut 27150 The domain of the surreal ...
scutf 27151 Functionality statement fo...
etasslt 27152 A restatement of ~ noeta u...
etasslt2 27153 A version of ~ etasslt wit...
scutbdaybnd 27154 An upper bound on the birt...
scutbdaybnd2 27155 An upper bound on the birt...
scutbdaybnd2lim 27156 An upper bound on the birt...
scutbdaylt 27157 If a surreal lies in a gap...
slerec 27158 A comparison law for surre...
sltrec 27159 A comparison law for surre...
ssltdisj 27160 If ` A ` preceeds ` B ` , ...
0sno 27165 Surreal zero is a surreal....
1sno 27166 Surreal one is a surreal. ...
bday0s 27167 Calculate the birthday of ...
0slt1s 27168 Surreal zero is less than ...
bday0b 27169 The only surreal with birt...
bday1s 27170 The birthday of surreal on...
cuteq0 27171 Condition for a surreal cu...
madeval 27182 The value of the made by f...
madeval2 27183 Alternative characterizati...
oldval 27184 The value of the old optio...
newval 27185 The value of the new optio...
madef 27186 The made function is a fun...
oldf 27187 The older function is a fu...
newf 27188 The new function is a func...
old0 27189 No surreal is older than `...
madessno 27190 Made sets are surreals. (...
oldssno 27191 Old sets are surreals. (C...
newssno 27192 New sets are surreals. (C...
leftval 27193 The value of the left opti...
rightval 27194 The value of the right opt...
leftf 27195 The functionality of the l...
rightf 27196 The functionality of the r...
elmade 27197 Membership in the made fun...
elmade2 27198 Membership in the made fun...
elold 27199 Membership in an old set. ...
ssltleft 27200 A surreal is greater than ...
ssltright 27201 A surreal is less than its...
lltropt 27202 The left options of a surr...
made0 27203 The only surreal made on d...
new0 27204 The only surreal new on da...
old1 27205 The only surreal older tha...
madess 27206 If ` A ` is less than or e...
oldssmade 27207 The older-than set is a su...
leftssold 27208 The left options are a sub...
rightssold 27209 The right options are a su...
leftssno 27210 The left set of a surreal ...
rightssno 27211 The right set of a surreal...
madecut 27212 Given a section that is a ...
madeun 27213 The made set is the union ...
madeoldsuc 27214 The made set is the old se...
oldsuc 27215 The value of the old set a...
oldlim 27216 The value of the old set a...
madebdayim 27217 If a surreal is a member o...
oldbdayim 27218 If ` X ` is in the old set...
oldirr 27219 No surreal is a member of ...
leftirr 27220 No surreal is a member of ...
rightirr 27221 No surreal is a member of ...
left0s 27222 The left set of ` 0s ` is ...
right0s 27223 The right set of ` 0s ` is...
left1s 27224 The left set of ` 1s ` is ...
right1s 27225 The right set of ` 1s ` is...
lrold 27226 The union of the left and ...
madebdaylemold 27227 Lemma for ~ madebday . If...
madebdaylemlrcut 27228 Lemma for ~ madebday . If...
madebday 27229 A surreal is part of the s...
oldbday 27230 A surreal is part of the s...
newbday 27231 A surreal is an element of...
lrcut 27232 A surreal is equal to the ...
scutfo 27233 The surreal cut function i...
sltn0 27234 If ` X ` is less than ` Y ...
lruneq 27235 If two surreals share a bi...
sltlpss 27236 If two surreals share a bi...
cofsslt 27237 If every element of ` A ` ...
coinitsslt 27238 If ` B ` is coinitial with...
cofcut1 27239 If ` C ` is cofinal with `...
cofcut1d 27240 If ` C ` is cofinal with `...
cofcut2 27241 If ` A ` and ` C ` are mut...
cofcut2d 27242 If ` A ` and ` C ` are mut...
cofcutr 27243 If ` X ` is the cut of ` A...
cofcutr1d 27244 If ` X ` is the cut of ` A...
cofcutr2d 27245 If ` X ` is the cut of ` A...
cofcutrtime 27246 If ` X ` is the cut of ` A...
cofcutrtime1d 27247 If ` X ` is a timely cut o...
cofcutrtime2d 27248 If ` X ` is a timely cut o...
lrrecval 27251 The next step in the devel...
lrrecval2 27252 Next, we establish an alte...
lrrecpo 27253 Now, we establish that ` R...
lrrecse 27254 Next, we show that ` R ` i...
lrrecfr 27255 Now we show that ` R ` is ...
lrrecpred 27256 Finally, we calculate the ...
noinds 27257 Induction principle for a ...
norecfn 27258 Surreal recursion over one...
norecov 27259 Calculate the value of the...
noxpordpo 27262 To get through most of the...
noxpordfr 27263 Next we establish the foun...
noxpordse 27264 Next we establish the set-...
noxpordpred 27265 Next we calculate the pred...
no2indslem 27266 Double induction on surrea...
no2inds 27267 Double induction on surrea...
norec2fn 27268 The double-recursion opera...
norec2ov 27269 The value of the double-re...
no3inds 27270 Triple induction over surr...
addsfn 27273 Surreal addition is a func...
addsval 27274 The value of surreal addit...
addsval2 27275 The value of surreal addit...
addsid1 27276 Surreal addition to zero i...
addsid1d 27277 Surreal addition to zero i...
addscom 27278 Surreal addition commutes....
addscomd 27279 Surreal addition commutes....
addsid2 27280 Surreal addition to zero i...
addsproplem1 27281 Lemma for surreal addition...
addsproplem2 27282 Lemma for surreal addition...
addsproplem3 27283 Lemma for surreal addition...
addsproplem4 27284 Lemma for surreal addition...
addsproplem5 27285 Lemma for surreal addition...
addsproplem6 27286 Lemma for surreal addition...
addsproplem7 27287 Lemma for surreal addition...
addsprop 27288 Inductively show that surr...
addscut 27289 Demonstrate the cut proper...
addscld 27290 Surreal numbers are closed...
addscl 27291 Surreal numbers are closed...
addsf 27292 Function statement for sur...
addsfo 27293 Surreal addition is onto. ...
sltadd1im 27294 Surreal less-than is prese...
sltadd2im 27295 Surreal less-than is prese...
sleadd1im 27296 Surreal less-than or equal...
sleadd2im 27297 Surreal less-than or equal...
sleadd1 27298 Addition to both sides of ...
sleadd2 27299 Addition to both sides of ...
sltadd2 27300 Addition to both sides of ...
sltadd1 27301 Addition to both sides of ...
addscan2 27302 Cancellation law for surre...
addscan1 27303 Cancellation law for surre...
sleadd1d 27304 Addition to both sides of ...
sleadd2d 27305 Addition to both sides of ...
sltadd2d 27306 Addition to both sides of ...
sltadd1d 27307 Addition to both sides of ...
addscan2d 27308 Cancellation law for surre...
addscan1d 27309 Cancellation law for surre...
addsunif 27310 Uniformity theorem for sur...
addsasslem1 27311 Lemma for addition associa...
addsasslem2 27312 Lemma for addition associa...
addsass 27313 Surreal addition is associ...
addsassd 27314 Surreal addition is associ...
adds32d 27315 Commutative/associative la...
adds4d 27316 Rearrangement of four term...
adds42d 27317 Rearrangement of four term...
negsfn 27322 Surreal negation is a func...
subsfn 27323 Surreal subtraction is a f...
negsval 27324 The value of the surreal n...
negs0s 27325 Negative surreal zero is s...
negsproplem1 27326 Lemma for surreal negation...
negsproplem2 27327 Lemma for surreal negation...
negsproplem3 27328 Lemma for surreal negation...
negsproplem4 27329 Lemma for surreal negation...
negsproplem5 27330 Lemma for surreal negation...
negsproplem6 27331 Lemma for surreal negation...
negsproplem7 27332 Lemma for surreal negation...
negsprop 27333 Show closure and ordering ...
negscl 27334 The surreals are closed un...
negscld 27335 The surreals are closed un...
sltnegim 27336 The forward direction of t...
negscut 27337 The cut properties of surr...
negscut2 27338 The cut that defines surre...
negsid 27339 Surreal addition of a numb...
negsidd 27340 Surreal addition of a numb...
negsex 27341 Every surreal has a negati...
negnegs 27342 A surreal is equal to the ...
sltneg 27343 Negative of both sides of ...
sleneg 27344 Negative of both sides of ...
negs11 27345 Surreal negation is one-to...
negsdi 27346 Distribution of surreal ne...
negsf 27347 Function statement for sur...
negsfo 27348 Function statement for sur...
negsf1o 27349 Surreal negation is a bije...
negsunif 27350 Uniformity property for su...
subsval 27351 The value of surreal subtr...
subsvald 27352 The value of surreal subtr...
subscl 27353 Closure law for surreal su...
subscld 27354 Closure law for surreal su...
subsid1 27355 Identity law for subtracti...
subsid 27356 Subtraction of a surreal f...
subadds 27357 Relationship between addit...
subaddsd 27358 Relationship between addit...
pncans 27359 Cancellation law for surre...
pncan3s 27360 Subtraction and addition o...
npcans 27361 Cancellation law for surre...
sltsub1 27362 Subtraction from both side...
sltsub2 27363 Subtraction from both side...
sltsub1d 27364 Subtraction from both side...
sltsub2d 27365 Subtraction from both side...
negsubsdi2d 27366 Distribution of negative o...
addsubsassd 27367 Associative-type law for s...
sltsubsubbd 27368 Equivalence for the surrea...
itvndx 27379 Index value of the Interva...
lngndx 27380 Index value of the "line" ...
itvid 27381 Utility theorem: index-ind...
lngid 27382 Utility theorem: index-ind...
slotsinbpsd 27383 The slots ` Base ` , ` +g ...
slotslnbpsd 27384 The slots ` Base ` , ` +g ...
lngndxnitvndx 27385 The slot for the line is n...
trkgstr 27386 Functionality of a Tarski ...
trkgbas 27387 The base set of a Tarski g...
trkgdist 27388 The measure of a distance ...
trkgitv 27389 The congruence relation in...
istrkgc 27396 Property of being a Tarski...
istrkgb 27397 Property of being a Tarski...
istrkgcb 27398 Property of being a Tarski...
istrkge 27399 Property of fulfilling Euc...
istrkgl 27400 Building lines from the se...
istrkgld 27401 Property of fulfilling the...
istrkg2ld 27402 Property of fulfilling the...
istrkg3ld 27403 Property of fulfilling the...
axtgcgrrflx 27404 Axiom of reflexivity of co...
axtgcgrid 27405 Axiom of identity of congr...
axtgsegcon 27406 Axiom of segment construct...
axtg5seg 27407 Five segments axiom, Axiom...
axtgbtwnid 27408 Identity of Betweenness. ...
axtgpasch 27409 Axiom of (Inner) Pasch, Ax...
axtgcont1 27410 Axiom of Continuity. Axio...
axtgcont 27411 Axiom of Continuity. Axio...
axtglowdim2 27412 Lower dimension axiom for ...
axtgupdim2 27413 Upper dimension axiom for ...
axtgeucl 27414 Euclid's Axiom. Axiom A10...
tgjustf 27415 Given any function ` F ` ,...
tgjustr 27416 Given any equivalence rela...
tgjustc1 27417 A justification for using ...
tgjustc2 27418 A justification for using ...
tgcgrcomimp 27419 Congruence commutes on the...
tgcgrcomr 27420 Congruence commutes on the...
tgcgrcoml 27421 Congruence commutes on the...
tgcgrcomlr 27422 Congruence commutes on bot...
tgcgreqb 27423 Congruence and equality. ...
tgcgreq 27424 Congruence and equality. ...
tgcgrneq 27425 Congruence and equality. ...
tgcgrtriv 27426 Degenerate segments are co...
tgcgrextend 27427 Link congruence over a pai...
tgsegconeq 27428 Two points that satisfy th...
tgbtwntriv2 27429 Betweenness always holds f...
tgbtwncom 27430 Betweenness commutes. The...
tgbtwncomb 27431 Betweenness commutes, bico...
tgbtwnne 27432 Betweenness and inequality...
tgbtwntriv1 27433 Betweenness always holds f...
tgbtwnswapid 27434 If you can swap the first ...
tgbtwnintr 27435 Inner transitivity law for...
tgbtwnexch3 27436 Exchange the first endpoin...
tgbtwnouttr2 27437 Outer transitivity law for...
tgbtwnexch2 27438 Exchange the outer point o...
tgbtwnouttr 27439 Outer transitivity law for...
tgbtwnexch 27440 Outer transitivity law for...
tgtrisegint 27441 A line segment between two...
tglowdim1 27442 Lower dimension axiom for ...
tglowdim1i 27443 Lower dimension axiom for ...
tgldimor 27444 Excluded-middle like state...
tgldim0eq 27445 In dimension zero, any two...
tgldim0itv 27446 In dimension zero, any two...
tgldim0cgr 27447 In dimension zero, any two...
tgbtwndiff 27448 There is always a ` c ` di...
tgdim01 27449 In geometries of dimension...
tgifscgr 27450 Inner five segment congrue...
tgcgrsub 27451 Removing identical parts f...
iscgrg 27454 The congruence property fo...
iscgrgd 27455 The property for two seque...
iscgrglt 27456 The property for two seque...
trgcgrg 27457 The property for two trian...
trgcgr 27458 Triangle congruence. (Con...
ercgrg 27459 The shape congruence relat...
tgcgrxfr 27460 A line segment can be divi...
cgr3id 27461 Reflexivity law for three-...
cgr3simp1 27462 Deduce segment congruence ...
cgr3simp2 27463 Deduce segment congruence ...
cgr3simp3 27464 Deduce segment congruence ...
cgr3swap12 27465 Permutation law for three-...
cgr3swap23 27466 Permutation law for three-...
cgr3swap13 27467 Permutation law for three-...
cgr3rotr 27468 Permutation law for three-...
cgr3rotl 27469 Permutation law for three-...
trgcgrcom 27470 Commutative law for three-...
cgr3tr 27471 Transitivity law for three...
tgbtwnxfr 27472 A condition for extending ...
tgcgr4 27473 Two quadrilaterals to be c...
isismt 27476 Property of being an isome...
ismot 27477 Property of being an isome...
motcgr 27478 Property of a motion: dist...
idmot 27479 The identity is a motion. ...
motf1o 27480 Motions are bijections. (...
motcl 27481 Closure of motions. (Cont...
motco 27482 The composition of two mot...
cnvmot 27483 The converse of a motion i...
motplusg 27484 The operation for motions ...
motgrp 27485 The motions of a geometry ...
motcgrg 27486 Property of a motion: dist...
motcgr3 27487 Property of a motion: dist...
tglng 27488 Lines of a Tarski Geometry...
tglnfn 27489 Lines as functions. (Cont...
tglnunirn 27490 Lines are sets of points. ...
tglnpt 27491 Lines are sets of points. ...
tglngne 27492 It takes two different poi...
tglngval 27493 The line going through poi...
tglnssp 27494 Lines are subset of the ge...
tgellng 27495 Property of lying on the l...
tgcolg 27496 We choose the notation ` (...
btwncolg1 27497 Betweenness implies coline...
btwncolg2 27498 Betweenness implies coline...
btwncolg3 27499 Betweenness implies coline...
colcom 27500 Swapping the points defini...
colrot1 27501 Rotating the points defini...
colrot2 27502 Rotating the points defini...
ncolcom 27503 Swapping non-colinear poin...
ncolrot1 27504 Rotating non-colinear poin...
ncolrot2 27505 Rotating non-colinear poin...
tgdim01ln 27506 In geometries of dimension...
ncoltgdim2 27507 If there are three non-col...
lnxfr 27508 Transfer law for colineari...
lnext 27509 Extend a line with a missi...
tgfscgr 27510 Congruence law for the gen...
lncgr 27511 Congruence rule for lines....
lnid 27512 Identity law for points on...
tgidinside 27513 Law for finding a point in...
tgbtwnconn1lem1 27514 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 27515 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 27516 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 27517 Connectivity law for betwe...
tgbtwnconn2 27518 Another connectivity law f...
tgbtwnconn3 27519 Inner connectivity law for...
tgbtwnconnln3 27520 Derive colinearity from be...
tgbtwnconn22 27521 Double connectivity law fo...
tgbtwnconnln1 27522 Derive colinearity from be...
tgbtwnconnln2 27523 Derive colinearity from be...
legval 27526 Value of the less-than rel...
legov 27527 Value of the less-than rel...
legov2 27528 An equivalent definition o...
legid 27529 Reflexivity of the less-th...
btwnleg 27530 Betweenness implies less-t...
legtrd 27531 Transitivity of the less-t...
legtri3 27532 Equality from the less-tha...
legtrid 27533 Trichotomy law for the les...
leg0 27534 Degenerated (zero-length) ...
legeq 27535 Deduce equality from "less...
legbtwn 27536 Deduce betweenness from "l...
tgcgrsub2 27537 Removing identical parts f...
ltgseg 27538 The set ` E ` denotes the ...
ltgov 27539 Strict "shorter than" geom...
legov3 27540 An equivalent definition o...
legso 27541 The "shorter than" relatio...
ishlg 27544 Rays : Definition 6.1 of ...
hlcomb 27545 The half-line relation com...
hlcomd 27546 The half-line relation com...
hlne1 27547 The half-line relation imp...
hlne2 27548 The half-line relation imp...
hlln 27549 The half-line relation imp...
hleqnid 27550 The endpoint does not belo...
hlid 27551 The half-line relation is ...
hltr 27552 The half-line relation is ...
hlbtwn 27553 Betweenness is a sufficien...
btwnhl1 27554 Deduce half-line from betw...
btwnhl2 27555 Deduce half-line from betw...
btwnhl 27556 Swap betweenness for a hal...
lnhl 27557 Either a point ` C ` on th...
hlcgrex 27558 Construct a point on a hal...
hlcgreulem 27559 Lemma for ~ hlcgreu . (Co...
hlcgreu 27560 The point constructed in ~...
btwnlng1 27561 Betweenness implies coline...
btwnlng2 27562 Betweenness implies coline...
btwnlng3 27563 Betweenness implies coline...
lncom 27564 Swapping the points defini...
lnrot1 27565 Rotating the points defini...
lnrot2 27566 Rotating the points defini...
ncolne1 27567 Non-colinear points are di...
ncolne2 27568 Non-colinear points are di...
tgisline 27569 The property of being a pr...
tglnne 27570 It takes two different poi...
tglndim0 27571 There are no lines in dime...
tgelrnln 27572 The property of being a pr...
tglineeltr 27573 Transitivity law for lines...
tglineelsb2 27574 If ` S ` lies on PQ , then...
tglinerflx1 27575 Reflexivity law for line m...
tglinerflx2 27576 Reflexivity law for line m...
tglinecom 27577 Commutativity law for line...
tglinethru 27578 If ` A ` is a line contain...
tghilberti1 27579 There is a line through an...
tghilberti2 27580 There is at most one line ...
tglinethrueu 27581 There is a unique line goi...
tglnne0 27582 A line ` A ` has at least ...
tglnpt2 27583 Find a second point on a l...
tglineintmo 27584 Two distinct lines interse...
tglineineq 27585 Two distinct lines interse...
tglineneq 27586 Given three non-colinear p...
tglineinteq 27587 Two distinct lines interse...
ncolncol 27588 Deduce non-colinearity fro...
coltr 27589 A transitivity law for col...
coltr3 27590 A transitivity law for col...
colline 27591 Three points are colinear ...
tglowdim2l 27592 Reformulation of the lower...
tglowdim2ln 27593 There is always one point ...
mirreu3 27596 Existential uniqueness of ...
mirval 27597 Value of the point inversi...
mirfv 27598 Value of the point inversi...
mircgr 27599 Property of the image by t...
mirbtwn 27600 Property of the image by t...
ismir 27601 Property of the image by t...
mirf 27602 Point inversion as functio...
mircl 27603 Closure of the point inver...
mirmir 27604 The point inversion functi...
mircom 27605 Variation on ~ mirmir . (...
mirreu 27606 Any point has a unique ant...
mireq 27607 Equality deduction for poi...
mirinv 27608 The only invariant point o...
mirne 27609 Mirror of non-center point...
mircinv 27610 The center point is invari...
mirf1o 27611 The point inversion functi...
miriso 27612 The point inversion functi...
mirbtwni 27613 Point inversion preserves ...
mirbtwnb 27614 Point inversion preserves ...
mircgrs 27615 Point inversion preserves ...
mirmir2 27616 Point inversion of a point...
mirmot 27617 Point investion is a motio...
mirln 27618 If two points are on the s...
mirln2 27619 If a point and its mirror ...
mirconn 27620 Point inversion of connect...
mirhl 27621 If two points ` X ` and ` ...
mirbtwnhl 27622 If the center of the point...
mirhl2 27623 Deduce half-line relation ...
mircgrextend 27624 Link congruence over a pai...
mirtrcgr 27625 Point inversion of one poi...
mirauto 27626 Point inversion preserves ...
miduniq 27627 Uniqueness of the middle p...
miduniq1 27628 Uniqueness of the middle p...
miduniq2 27629 If two point inversions co...
colmid 27630 Colinearity and equidistan...
symquadlem 27631 Lemma of the symetrial qua...
krippenlem 27632 Lemma for ~ krippen . We ...
krippen 27633 Krippenlemma (German for c...
midexlem 27634 Lemma for the existence of...
israg 27639 Property for 3 points A, B...
ragcom 27640 Commutative rule for right...
ragcol 27641 The right angle property i...
ragmir 27642 Right angle property is pr...
mirrag 27643 Right angle is conserved b...
ragtrivb 27644 Trivial right angle. Theo...
ragflat2 27645 Deduce equality from two r...
ragflat 27646 Deduce equality from two r...
ragtriva 27647 Trivial right angle. Theo...
ragflat3 27648 Right angle and colinearit...
ragcgr 27649 Right angle and colinearit...
motrag 27650 Right angles are preserved...
ragncol 27651 Right angle implies non-co...
perpln1 27652 Derive a line from perpend...
perpln2 27653 Derive a line from perpend...
isperp 27654 Property for 2 lines A, B ...
perpcom 27655 The "perpendicular" relati...
perpneq 27656 Two perpendicular lines ar...
isperp2 27657 Property for 2 lines A, B,...
isperp2d 27658 One direction of ~ isperp2...
ragperp 27659 Deduce that two lines are ...
footexALT 27660 Alternative version of ~ f...
footexlem1 27661 Lemma for ~ footex . (Con...
footexlem2 27662 Lemma for ~ footex . (Con...
footex 27663 From a point ` C ` outside...
foot 27664 From a point ` C ` outside...
footne 27665 Uniqueness of the foot poi...
footeq 27666 Uniqueness of the foot poi...
hlperpnel 27667 A point on a half-line whi...
perprag 27668 Deduce a right angle from ...
perpdragALT 27669 Deduce a right angle from ...
perpdrag 27670 Deduce a right angle from ...
colperp 27671 Deduce a perpendicularity ...
colperpexlem1 27672 Lemma for ~ colperp . Fir...
colperpexlem2 27673 Lemma for ~ colperpex . S...
colperpexlem3 27674 Lemma for ~ colperpex . C...
colperpex 27675 In dimension 2 and above, ...
mideulem2 27676 Lemma for ~ opphllem , whi...
opphllem 27677 Lemma 8.24 of [Schwabhause...
mideulem 27678 Lemma for ~ mideu . We ca...
midex 27679 Existence of the midpoint,...
mideu 27680 Existence and uniqueness o...
islnopp 27681 The property for two point...
islnoppd 27682 Deduce that ` A ` and ` B ...
oppne1 27683 Points lying on opposite s...
oppne2 27684 Points lying on opposite s...
oppne3 27685 Points lying on opposite s...
oppcom 27686 Commutativity rule for "op...
opptgdim2 27687 If two points opposite to ...
oppnid 27688 The "opposite to a line" r...
opphllem1 27689 Lemma for ~ opphl . (Cont...
opphllem2 27690 Lemma for ~ opphl . Lemma...
opphllem3 27691 Lemma for ~ opphl : We as...
opphllem4 27692 Lemma for ~ opphl . (Cont...
opphllem5 27693 Second part of Lemma 9.4 o...
opphllem6 27694 First part of Lemma 9.4 of...
oppperpex 27695 Restating ~ colperpex usin...
opphl 27696 If two points ` A ` and ` ...
outpasch 27697 Axiom of Pasch, outer form...
hlpasch 27698 An application of the axio...
ishpg 27701 Value of the half-plane re...
hpgbr 27702 Half-planes : property for...
hpgne1 27703 Points on the open half pl...
hpgne2 27704 Points on the open half pl...
lnopp2hpgb 27705 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 27706 If two points lie on the o...
hpgerlem 27707 Lemma for the proof that t...
hpgid 27708 The half-plane relation is...
hpgcom 27709 The half-plane relation co...
hpgtr 27710 The half-plane relation is...
colopp 27711 Opposite sides of a line f...
colhp 27712 Half-plane relation for co...
hphl 27713 If two points are on the s...
midf 27718 Midpoint as a function. (...
midcl 27719 Closure of the midpoint. ...
ismidb 27720 Property of the midpoint. ...
midbtwn 27721 Betweenness of midpoint. ...
midcgr 27722 Congruence of midpoint. (...
midid 27723 Midpoint of a null segment...
midcom 27724 Commutativity rule for the...
mirmid 27725 Point inversion preserves ...
lmieu 27726 Uniqueness of the line mir...
lmif 27727 Line mirror as a function....
lmicl 27728 Closure of the line mirror...
islmib 27729 Property of the line mirro...
lmicom 27730 The line mirroring functio...
lmilmi 27731 Line mirroring is an invol...
lmireu 27732 Any point has a unique ant...
lmieq 27733 Equality deduction for lin...
lmiinv 27734 The invariants of the line...
lmicinv 27735 The mirroring line is an i...
lmimid 27736 If we have a right angle, ...
lmif1o 27737 The line mirroring functio...
lmiisolem 27738 Lemma for ~ lmiiso . (Con...
lmiiso 27739 The line mirroring functio...
lmimot 27740 Line mirroring is a motion...
hypcgrlem1 27741 Lemma for ~ hypcgr , case ...
hypcgrlem2 27742 Lemma for ~ hypcgr , case ...
hypcgr 27743 If the catheti of two righ...
lmiopp 27744 Line mirroring produces po...
lnperpex 27745 Existence of a perpendicul...
trgcopy 27746 Triangle construction: a c...
trgcopyeulem 27747 Lemma for ~ trgcopyeu . (...
trgcopyeu 27748 Triangle construction: a c...
iscgra 27751 Property for two angles AB...
iscgra1 27752 A special version of ~ isc...
iscgrad 27753 Sufficient conditions for ...
cgrane1 27754 Angles imply inequality. ...
cgrane2 27755 Angles imply inequality. ...
cgrane3 27756 Angles imply inequality. ...
cgrane4 27757 Angles imply inequality. ...
cgrahl1 27758 Angle congruence is indepe...
cgrahl2 27759 Angle congruence is indepe...
cgracgr 27760 First direction of proposi...
cgraid 27761 Angle congruence is reflex...
cgraswap 27762 Swap rays in a congruence ...
cgrcgra 27763 Triangle congruence implie...
cgracom 27764 Angle congruence commutes....
cgratr 27765 Angle congruence is transi...
flatcgra 27766 Flat angles are congruent....
cgraswaplr 27767 Swap both side of angle co...
cgrabtwn 27768 Angle congruence preserves...
cgrahl 27769 Angle congruence preserves...
cgracol 27770 Angle congruence preserves...
cgrancol 27771 Angle congruence preserves...
dfcgra2 27772 This is the full statement...
sacgr 27773 Supplementary angles of co...
oacgr 27774 Vertical angle theorem. V...
acopy 27775 Angle construction. Theor...
acopyeu 27776 Angle construction. Theor...
isinag 27780 Property for point ` X ` t...
isinagd 27781 Sufficient conditions for ...
inagflat 27782 Any point lies in a flat a...
inagswap 27783 Swap the order of the half...
inagne1 27784 Deduce inequality from the...
inagne2 27785 Deduce inequality from the...
inagne3 27786 Deduce inequality from the...
inaghl 27787 The "point lie in angle" r...
isleag 27789 Geometrical "less than" pr...
isleagd 27790 Sufficient condition for "...
leagne1 27791 Deduce inequality from the...
leagne2 27792 Deduce inequality from the...
leagne3 27793 Deduce inequality from the...
leagne4 27794 Deduce inequality from the...
cgrg3col4 27795 Lemma 11.28 of [Schwabhaus...
tgsas1 27796 First congruence theorem: ...
tgsas 27797 First congruence theorem: ...
tgsas2 27798 First congruence theorem: ...
tgsas3 27799 First congruence theorem: ...
tgasa1 27800 Second congruence theorem:...
tgasa 27801 Second congruence theorem:...
tgsss1 27802 Third congruence theorem: ...
tgsss2 27803 Third congruence theorem: ...
tgsss3 27804 Third congruence theorem: ...
dfcgrg2 27805 Congruence for two triangl...
isoas 27806 Congruence theorem for iso...
iseqlg 27809 Property of a triangle bei...
iseqlgd 27810 Condition for a triangle t...
f1otrgds 27811 Convenient lemma for ~ f1o...
f1otrgitv 27812 Convenient lemma for ~ f1o...
f1otrg 27813 A bijection between bases ...
f1otrge 27814 A bijection between bases ...
ttgval 27817 Define a function to augme...
ttgvalOLD 27818 Obsolete proof of ~ ttgval...
ttglem 27819 Lemma for ~ ttgbas , ~ ttg...
ttglemOLD 27820 Obsolete version of ~ ttgl...
ttgbas 27821 The base set of a subcompl...
ttgbasOLD 27822 Obsolete proof of ~ ttgbas...
ttgplusg 27823 The addition operation of ...
ttgplusgOLD 27824 Obsolete proof of ~ ttgplu...
ttgsub 27825 The subtraction operation ...
ttgvsca 27826 The scalar product of a su...
ttgvscaOLD 27827 Obsolete proof of ~ ttgvsc...
ttgds 27828 The metric of a subcomplex...
ttgdsOLD 27829 Obsolete proof of ~ ttgds ...
ttgitvval 27830 Betweenness for a subcompl...
ttgelitv 27831 Betweenness for a subcompl...
ttgbtwnid 27832 Any subcomplex module equi...
ttgcontlem1 27833 Lemma for % ttgcont . (Co...
xmstrkgc 27834 Any metric space fulfills ...
cchhllem 27835 Lemma for chlbas and chlvs...
cchhllemOLD 27836 Obsolete version of ~ cchh...
elee 27843 Membership in a Euclidean ...
mptelee 27844 A condition for a mapping ...
eleenn 27845 If ` A ` is in ` ( EE `` N...
eleei 27846 The forward direction of ~...
eedimeq 27847 A point belongs to at most...
brbtwn 27848 The binary relation form o...
brcgr 27849 The binary relation form o...
fveere 27850 The function value of a po...
fveecn 27851 The function value of a po...
eqeefv 27852 Two points are equal iff t...
eqeelen 27853 Two points are equal iff t...
brbtwn2 27854 Alternate characterization...
colinearalglem1 27855 Lemma for ~ colinearalg . ...
colinearalglem2 27856 Lemma for ~ colinearalg . ...
colinearalglem3 27857 Lemma for ~ colinearalg . ...
colinearalglem4 27858 Lemma for ~ colinearalg . ...
colinearalg 27859 An algebraic characterizat...
eleesub 27860 Membership of a subtractio...
eleesubd 27861 Membership of a subtractio...
axdimuniq 27862 The unique dimension axiom...
axcgrrflx 27863 ` A ` is as far from ` B `...
axcgrtr 27864 Congruence is transitive. ...
axcgrid 27865 If there is no distance be...
axsegconlem1 27866 Lemma for ~ axsegcon . Ha...
axsegconlem2 27867 Lemma for ~ axsegcon . Sh...
axsegconlem3 27868 Lemma for ~ axsegcon . Sh...
axsegconlem4 27869 Lemma for ~ axsegcon . Sh...
axsegconlem5 27870 Lemma for ~ axsegcon . Sh...
axsegconlem6 27871 Lemma for ~ axsegcon . Sh...
axsegconlem7 27872 Lemma for ~ axsegcon . Sh...
axsegconlem8 27873 Lemma for ~ axsegcon . Sh...
axsegconlem9 27874 Lemma for ~ axsegcon . Sh...
axsegconlem10 27875 Lemma for ~ axsegcon . Sh...
axsegcon 27876 Any segment ` A B ` can be...
ax5seglem1 27877 Lemma for ~ ax5seg . Rexp...
ax5seglem2 27878 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 27879 Lemma for ~ ax5seg . (Con...
ax5seglem3 27880 Lemma for ~ ax5seg . Comb...
ax5seglem4 27881 Lemma for ~ ax5seg . Give...
ax5seglem5 27882 Lemma for ~ ax5seg . If `...
ax5seglem6 27883 Lemma for ~ ax5seg . Give...
ax5seglem7 27884 Lemma for ~ ax5seg . An a...
ax5seglem8 27885 Lemma for ~ ax5seg . Use ...
ax5seglem9 27886 Lemma for ~ ax5seg . Take...
ax5seg 27887 The five segment axiom. T...
axbtwnid 27888 Points are indivisible. T...
axpaschlem 27889 Lemma for ~ axpasch . Set...
axpasch 27890 The inner Pasch axiom. Ta...
axlowdimlem1 27891 Lemma for ~ axlowdim . Es...
axlowdimlem2 27892 Lemma for ~ axlowdim . Sh...
axlowdimlem3 27893 Lemma for ~ axlowdim . Se...
axlowdimlem4 27894 Lemma for ~ axlowdim . Se...
axlowdimlem5 27895 Lemma for ~ axlowdim . Sh...
axlowdimlem6 27896 Lemma for ~ axlowdim . Sh...
axlowdimlem7 27897 Lemma for ~ axlowdim . Se...
axlowdimlem8 27898 Lemma for ~ axlowdim . Ca...
axlowdimlem9 27899 Lemma for ~ axlowdim . Ca...
axlowdimlem10 27900 Lemma for ~ axlowdim . Se...
axlowdimlem11 27901 Lemma for ~ axlowdim . Ca...
axlowdimlem12 27902 Lemma for ~ axlowdim . Ca...
axlowdimlem13 27903 Lemma for ~ axlowdim . Es...
axlowdimlem14 27904 Lemma for ~ axlowdim . Ta...
axlowdimlem15 27905 Lemma for ~ axlowdim . Se...
axlowdimlem16 27906 Lemma for ~ axlowdim . Se...
axlowdimlem17 27907 Lemma for ~ axlowdim . Es...
axlowdim1 27908 The lower dimension axiom ...
axlowdim2 27909 The lower two-dimensional ...
axlowdim 27910 The general lower dimensio...
axeuclidlem 27911 Lemma for ~ axeuclid . Ha...
axeuclid 27912 Euclid's axiom. Take an a...
axcontlem1 27913 Lemma for ~ axcont . Chan...
axcontlem2 27914 Lemma for ~ axcont . The ...
axcontlem3 27915 Lemma for ~ axcont . Give...
axcontlem4 27916 Lemma for ~ axcont . Give...
axcontlem5 27917 Lemma for ~ axcont . Comp...
axcontlem6 27918 Lemma for ~ axcont . Stat...
axcontlem7 27919 Lemma for ~ axcont . Give...
axcontlem8 27920 Lemma for ~ axcont . A po...
axcontlem9 27921 Lemma for ~ axcont . Give...
axcontlem10 27922 Lemma for ~ axcont . Give...
axcontlem11 27923 Lemma for ~ axcont . Elim...
axcontlem12 27924 Lemma for ~ axcont . Elim...
axcont 27925 The axiom of continuity. ...
eengv 27928 The value of the Euclidean...
eengstr 27929 The Euclidean geometry as ...
eengbas 27930 The Base of the Euclidean ...
ebtwntg 27931 The betweenness relation u...
ecgrtg 27932 The congruence relation us...
elntg 27933 The line definition in the...
elntg2 27934 The line definition in the...
eengtrkg 27935 The geometry structure for...
eengtrkge 27936 The geometry structure for...
edgfid 27939 Utility theorem: index-ind...
edgfndx 27940 Index value of the ~ df-ed...
edgfndxnn 27941 The index value of the edg...
edgfndxid 27942 The value of the edge func...
edgfndxidOLD 27943 Obsolete version of ~ edgf...
basendxltedgfndx 27944 The index value of the ` B...
baseltedgfOLD 27945 Obsolete proof of ~ basend...
basendxnedgfndx 27946 The slots ` Base ` and ` ....
vtxval 27951 The set of vertices of a g...
iedgval 27952 The set of indexed edges o...
1vgrex 27953 A graph with at least one ...
opvtxval 27954 The set of vertices of a g...
opvtxfv 27955 The set of vertices of a g...
opvtxov 27956 The set of vertices of a g...
opiedgval 27957 The set of indexed edges o...
opiedgfv 27958 The set of indexed edges o...
opiedgov 27959 The set of indexed edges o...
opvtxfvi 27960 The set of vertices of a g...
opiedgfvi 27961 The set of indexed edges o...
funvtxdmge2val 27962 The set of vertices of an ...
funiedgdmge2val 27963 The set of indexed edges o...
funvtxdm2val 27964 The set of vertices of an ...
funiedgdm2val 27965 The set of indexed edges o...
funvtxval0 27966 The set of vertices of an ...
basvtxval 27967 The set of vertices of a g...
edgfiedgval 27968 The set of indexed edges o...
funvtxval 27969 The set of vertices of a g...
funiedgval 27970 The set of indexed edges o...
structvtxvallem 27971 Lemma for ~ structvtxval a...
structvtxval 27972 The set of vertices of an ...
structiedg0val 27973 The set of indexed edges o...
structgrssvtxlem 27974 Lemma for ~ structgrssvtx ...
structgrssvtx 27975 The set of vertices of a g...
structgrssiedg 27976 The set of indexed edges o...
struct2grstr 27977 A graph represented as an ...
struct2grvtx 27978 The set of vertices of a g...
struct2griedg 27979 The set of indexed edges o...
graop 27980 Any representation of a gr...
grastruct 27981 Any representation of a gr...
gropd 27982 If any representation of a...
grstructd 27983 If any representation of a...
gropeld 27984 If any representation of a...
grstructeld 27985 If any representation of a...
setsvtx 27986 The vertices of a structur...
setsiedg 27987 The (indexed) edges of a s...
snstrvtxval 27988 The set of vertices of a g...
snstriedgval 27989 The set of indexed edges o...
vtxval0 27990 Degenerated case 1 for ver...
iedgval0 27991 Degenerated case 1 for edg...
vtxvalsnop 27992 Degenerated case 2 for ver...
iedgvalsnop 27993 Degenerated case 2 for edg...
vtxval3sn 27994 Degenerated case 3 for ver...
iedgval3sn 27995 Degenerated case 3 for edg...
vtxvalprc 27996 Degenerated case 4 for ver...
iedgvalprc 27997 Degenerated case 4 for edg...
edgval 28000 The edges of a graph. (Co...
iedgedg 28001 An indexed edge is an edge...
edgopval 28002 The edges of a graph repre...
edgov 28003 The edges of a graph repre...
edgstruct 28004 The edges of a graph repre...
edgiedgb 28005 A set is an edge iff it is...
edg0iedg0 28006 There is no edge in a grap...
isuhgr 28011 The predicate "is an undir...
isushgr 28012 The predicate "is an undir...
uhgrf 28013 The edge function of an un...
ushgrf 28014 The edge function of an un...
uhgrss 28015 An edge is a subset of ver...
uhgreq12g 28016 If two sets have the same ...
uhgrfun 28017 The edge function of an un...
uhgrn0 28018 An edge is a nonempty subs...
lpvtx 28019 The endpoints of a loop (w...
ushgruhgr 28020 An undirected simple hyper...
isuhgrop 28021 The property of being an u...
uhgr0e 28022 The empty graph, with vert...
uhgr0vb 28023 The null graph, with no ve...
uhgr0 28024 The null graph represented...
uhgrun 28025 The union ` U ` of two (un...
uhgrunop 28026 The union of two (undirect...
ushgrun 28027 The union ` U ` of two (un...
ushgrunop 28028 The union of two (undirect...
uhgrstrrepe 28029 Replacing (or adding) the ...
incistruhgr 28030 An _incidence structure_ `...
isupgr 28035 The property of being an u...
wrdupgr 28036 The property of being an u...
upgrf 28037 The edge function of an un...
upgrfn 28038 The edge function of an un...
upgrss 28039 An edge is a subset of ver...
upgrn0 28040 An edge is a nonempty subs...
upgrle 28041 An edge of an undirected p...
upgrfi 28042 An edge is a finite subset...
upgrex 28043 An edge is an unordered pa...
upgrbi 28044 Show that an unordered pai...
upgrop 28045 A pseudograph represented ...
isumgr 28046 The property of being an u...
isumgrs 28047 The simplified property of...
wrdumgr 28048 The property of being an u...
umgrf 28049 The edge function of an un...
umgrfn 28050 The edge function of an un...
umgredg2 28051 An edge of a multigraph ha...
umgrbi 28052 Show that an unordered pai...
upgruhgr 28053 An undirected pseudograph ...
umgrupgr 28054 An undirected multigraph i...
umgruhgr 28055 An undirected multigraph i...
upgrle2 28056 An edge of an undirected p...
umgrnloopv 28057 In a multigraph, there is ...
umgredgprv 28058 In a multigraph, an edge i...
umgrnloop 28059 In a multigraph, there is ...
umgrnloop0 28060 A multigraph has no loops....
umgr0e 28061 The empty graph, with vert...
upgr0e 28062 The empty graph, with vert...
upgr1elem 28063 Lemma for ~ upgr1e and ~ u...
upgr1e 28064 A pseudograph with one edg...
upgr0eop 28065 The empty graph, with vert...
upgr1eop 28066 A pseudograph with one edg...
upgr0eopALT 28067 Alternate proof of ~ upgr0...
upgr1eopALT 28068 Alternate proof of ~ upgr1...
upgrun 28069 The union ` U ` of two pse...
upgrunop 28070 The union of two pseudogra...
umgrun 28071 The union ` U ` of two mul...
umgrunop 28072 The union of two multigrap...
umgrislfupgrlem 28073 Lemma for ~ umgrislfupgr a...
umgrislfupgr 28074 A multigraph is a loop-fre...
lfgredgge2 28075 An edge of a loop-free gra...
lfgrnloop 28076 A loop-free graph has no l...
uhgredgiedgb 28077 In a hypergraph, a set is ...
uhgriedg0edg0 28078 A hypergraph has no edges ...
uhgredgn0 28079 An edge of a hypergraph is...
edguhgr 28080 An edge of a hypergraph is...
uhgredgrnv 28081 An edge of a hypergraph co...
uhgredgss 28082 The set of edges of a hype...
upgredgss 28083 The set of edges of a pseu...
umgredgss 28084 The set of edges of a mult...
edgupgr 28085 Properties of an edge of a...
edgumgr 28086 Properties of an edge of a...
uhgrvtxedgiedgb 28087 In a hypergraph, a vertex ...
upgredg 28088 For each edge in a pseudog...
umgredg 28089 For each edge in a multigr...
upgrpredgv 28090 An edge of a pseudograph a...
umgrpredgv 28091 An edge of a multigraph al...
upgredg2vtx 28092 For a vertex incident to a...
upgredgpr 28093 If a proper pair (of verti...
edglnl 28094 The edges incident with a ...
numedglnl 28095 The number of edges incide...
umgredgne 28096 An edge of a multigraph al...
umgrnloop2 28097 A multigraph has no loops....
umgredgnlp 28098 An edge of a multigraph is...
isuspgr 28103 The property of being a si...
isusgr 28104 The property of being a si...
uspgrf 28105 The edge function of a sim...
usgrf 28106 The edge function of a sim...
isusgrs 28107 The property of being a si...
usgrfs 28108 The edge function of a sim...
usgrfun 28109 The edge function of a sim...
usgredgss 28110 The set of edges of a simp...
edgusgr 28111 An edge of a simple graph ...
isuspgrop 28112 The property of being an u...
isusgrop 28113 The property of being an u...
usgrop 28114 A simple graph represented...
isausgr 28115 The property of an unorder...
ausgrusgrb 28116 The equivalence of the def...
usgrausgri 28117 A simple graph represented...
ausgrumgri 28118 If an alternatively define...
ausgrusgri 28119 The equivalence of the def...
usgrausgrb 28120 The equivalence of the def...
usgredgop 28121 An edge of a simple graph ...
usgrf1o 28122 The edge function of a sim...
usgrf1 28123 The edge function of a sim...
uspgrf1oedg 28124 The edge function of a sim...
usgrss 28125 An edge is a subset of ver...
uspgrushgr 28126 A simple pseudograph is an...
uspgrupgr 28127 A simple pseudograph is an...
uspgrupgrushgr 28128 A graph is a simple pseudo...
usgruspgr 28129 A simple graph is a simple...
usgrumgr 28130 A simple graph is an undir...
usgrumgruspgr 28131 A graph is a simple graph ...
usgruspgrb 28132 A class is a simple graph ...
usgrupgr 28133 A simple graph is an undir...
usgruhgr 28134 A simple graph is an undir...
usgrislfuspgr 28135 A simple graph is a loop-f...
uspgrun 28136 The union ` U ` of two sim...
uspgrunop 28137 The union of two simple ps...
usgrun 28138 The union ` U ` of two sim...
usgrunop 28139 The union of two simple gr...
usgredg2 28140 The value of the "edge fun...
usgredg2ALT 28141 Alternate proof of ~ usgre...
usgredgprv 28142 In a simple graph, an edge...
usgredgprvALT 28143 Alternate proof of ~ usgre...
usgredgppr 28144 An edge of a simple graph ...
usgrpredgv 28145 An edge of a simple graph ...
edgssv2 28146 An edge of a simple graph ...
usgredg 28147 For each edge in a simple ...
usgrnloopv 28148 In a simple graph, there i...
usgrnloopvALT 28149 Alternate proof of ~ usgrn...
usgrnloop 28150 In a simple graph, there i...
usgrnloopALT 28151 Alternate proof of ~ usgrn...
usgrnloop0 28152 A simple graph has no loop...
usgrnloop0ALT 28153 Alternate proof of ~ usgrn...
usgredgne 28154 An edge of a simple graph ...
usgrf1oedg 28155 The edge function of a sim...
uhgr2edg 28156 If a vertex is adjacent to...
umgr2edg 28157 If a vertex is adjacent to...
usgr2edg 28158 If a vertex is adjacent to...
umgr2edg1 28159 If a vertex is adjacent to...
usgr2edg1 28160 If a vertex is adjacent to...
umgrvad2edg 28161 If a vertex is adjacent to...
umgr2edgneu 28162 If a vertex is adjacent to...
usgrsizedg 28163 In a simple graph, the siz...
usgredg3 28164 The value of the "edge fun...
usgredg4 28165 For a vertex incident to a...
usgredgreu 28166 For a vertex incident to a...
usgredg2vtx 28167 For a vertex incident to a...
uspgredg2vtxeu 28168 For a vertex incident to a...
usgredg2vtxeu 28169 For a vertex incident to a...
usgredg2vtxeuALT 28170 Alternate proof of ~ usgre...
uspgredg2vlem 28171 Lemma for ~ uspgredg2v . ...
uspgredg2v 28172 In a simple pseudograph, t...
usgredg2vlem1 28173 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 28174 Lemma 2 for ~ usgredg2v . ...
usgredg2v 28175 In a simple graph, the map...
usgriedgleord 28176 Alternate version of ~ usg...
ushgredgedg 28177 In a simple hypergraph the...
usgredgedg 28178 In a simple graph there is...
ushgredgedgloop 28179 In a simple hypergraph the...
uspgredgleord 28180 In a simple pseudograph th...
usgredgleord 28181 In a simple graph the numb...
usgredgleordALT 28182 Alternate proof for ~ usgr...
usgrstrrepe 28183 Replacing (or adding) the ...
usgr0e 28184 The empty graph, with vert...
usgr0vb 28185 The null graph, with no ve...
uhgr0v0e 28186 The null graph, with no ve...
uhgr0vsize0 28187 The size of a hypergraph w...
uhgr0edgfi 28188 A graph of order 0 (i.e. w...
usgr0v 28189 The null graph, with no ve...
uhgr0vusgr 28190 The null graph, with no ve...
usgr0 28191 The null graph represented...
uspgr1e 28192 A simple pseudograph with ...
usgr1e 28193 A simple graph with one ed...
usgr0eop 28194 The empty graph, with vert...
uspgr1eop 28195 A simple pseudograph with ...
uspgr1ewop 28196 A simple pseudograph with ...
uspgr1v1eop 28197 A simple pseudograph with ...
usgr1eop 28198 A simple graph with (at le...
uspgr2v1e2w 28199 A simple pseudograph with ...
usgr2v1e2w 28200 A simple graph with two ve...
edg0usgr 28201 A class without edges is a...
lfuhgr1v0e 28202 A loop-free hypergraph wit...
usgr1vr 28203 A simple graph with one ve...
usgr1v 28204 A class with one (or no) v...
usgr1v0edg 28205 A class with one (or no) v...
usgrexmpldifpr 28206 Lemma for ~ usgrexmpledg :...
usgrexmplef 28207 Lemma for ~ usgrexmpl . (...
usgrexmpllem 28208 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 28209 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 28210 The edges ` { 0 , 1 } , { ...
usgrexmpl 28211 ` G ` is a simple graph of...
griedg0prc 28212 The class of empty graphs ...
griedg0ssusgr 28213 The class of all simple gr...
usgrprc 28214 The class of simple graphs...
relsubgr 28217 The class of the subgraph ...
subgrv 28218 If a class is a subgraph o...
issubgr 28219 The property of a set to b...
issubgr2 28220 The property of a set to b...
subgrprop 28221 The properties of a subgra...
subgrprop2 28222 The properties of a subgra...
uhgrissubgr 28223 The property of a hypergra...
subgrprop3 28224 The properties of a subgra...
egrsubgr 28225 An empty graph consisting ...
0grsubgr 28226 The null graph (represente...
0uhgrsubgr 28227 The null graph (as hypergr...
uhgrsubgrself 28228 A hypergraph is a subgraph...
subgrfun 28229 The edge function of a sub...
subgruhgrfun 28230 The edge function of a sub...
subgreldmiedg 28231 An element of the domain o...
subgruhgredgd 28232 An edge of a subgraph of a...
subumgredg2 28233 An edge of a subgraph of a...
subuhgr 28234 A subgraph of a hypergraph...
subupgr 28235 A subgraph of a pseudograp...
subumgr 28236 A subgraph of a multigraph...
subusgr 28237 A subgraph of a simple gra...
uhgrspansubgrlem 28238 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 28239 A spanning subgraph ` S ` ...
uhgrspan 28240 A spanning subgraph ` S ` ...
upgrspan 28241 A spanning subgraph ` S ` ...
umgrspan 28242 A spanning subgraph ` S ` ...
usgrspan 28243 A spanning subgraph ` S ` ...
uhgrspanop 28244 A spanning subgraph of a h...
upgrspanop 28245 A spanning subgraph of a p...
umgrspanop 28246 A spanning subgraph of a m...
usgrspanop 28247 A spanning subgraph of a s...
uhgrspan1lem1 28248 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 28249 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 28250 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 28251 The induced subgraph ` S `...
upgrreslem 28252 Lemma for ~ upgrres . (Co...
umgrreslem 28253 Lemma for ~ umgrres and ~ ...
upgrres 28254 A subgraph obtained by rem...
umgrres 28255 A subgraph obtained by rem...
usgrres 28256 A subgraph obtained by rem...
upgrres1lem1 28257 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 28258 Lemma for ~ umgrres1 . (C...
upgrres1lem2 28259 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 28260 Lemma 3 for ~ upgrres1 . ...
upgrres1 28261 A pseudograph obtained by ...
umgrres1 28262 A multigraph obtained by r...
usgrres1 28263 Restricting a simple graph...
isfusgr 28266 The property of being a fi...
fusgrvtxfi 28267 A finite simple graph has ...
isfusgrf1 28268 The property of being a fi...
isfusgrcl 28269 The property of being a fi...
fusgrusgr 28270 A finite simple graph is a...
opfusgr 28271 A finite simple graph repr...
usgredgffibi 28272 The number of edges in a s...
fusgredgfi 28273 In a finite simple graph t...
usgr1v0e 28274 The size of a (finite) sim...
usgrfilem 28275 In a finite simple graph, ...
fusgrfisbase 28276 Induction base for ~ fusgr...
fusgrfisstep 28277 Induction step in ~ fusgrf...
fusgrfis 28278 A finite simple graph is o...
fusgrfupgrfs 28279 A finite simple graph is a...
nbgrprc0 28282 The set of neighbors is em...
nbgrcl 28283 If a class ` X ` has at le...
nbgrval 28284 The set of neighbors of a ...
dfnbgr2 28285 Alternate definition of th...
dfnbgr3 28286 Alternate definition of th...
nbgrnvtx0 28287 If a class ` X ` is not a ...
nbgrel 28288 Characterization of a neig...
nbgrisvtx 28289 Every neighbor ` N ` of a ...
nbgrssvtx 28290 The neighbors of a vertex ...
nbuhgr 28291 The set of neighbors of a ...
nbupgr 28292 The set of neighbors of a ...
nbupgrel 28293 A neighbor of a vertex in ...
nbumgrvtx 28294 The set of neighbors of a ...
nbumgr 28295 The set of neighbors of an...
nbusgrvtx 28296 The set of neighbors of a ...
nbusgr 28297 The set of neighbors of an...
nbgr2vtx1edg 28298 If a graph has two vertice...
nbuhgr2vtx1edgblem 28299 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 28300 If a hypergraph has two ve...
nbusgreledg 28301 A class/vertex is a neighb...
uhgrnbgr0nb 28302 A vertex which is not endp...
nbgr0vtxlem 28303 Lemma for ~ nbgr0vtx and ~...
nbgr0vtx 28304 In a null graph (with no v...
nbgr0edg 28305 In an empty graph (with no...
nbgr1vtx 28306 In a graph with one vertex...
nbgrnself 28307 A vertex in a graph is not...
nbgrnself2 28308 A class ` X ` is not a nei...
nbgrssovtx 28309 The neighbors of a vertex ...
nbgrssvwo2 28310 The neighbors of a vertex ...
nbgrsym 28311 In a graph, the neighborho...
nbupgrres 28312 The neighborhood of a vert...
usgrnbcnvfv 28313 Applying the edge function...
nbusgredgeu 28314 For each neighbor of a ver...
edgnbusgreu 28315 For each edge incident to ...
nbusgredgeu0 28316 For each neighbor of a ver...
nbusgrf1o0 28317 The mapping of neighbors o...
nbusgrf1o1 28318 The set of neighbors of a ...
nbusgrf1o 28319 The set of neighbors of a ...
nbedgusgr 28320 The number of neighbors of...
edgusgrnbfin 28321 The number of neighbors of...
nbusgrfi 28322 The class of neighbors of ...
nbfiusgrfi 28323 The class of neighbors of ...
hashnbusgrnn0 28324 The number of neighbors of...
nbfusgrlevtxm1 28325 The number of neighbors of...
nbfusgrlevtxm2 28326 If there is a vertex which...
nbusgrvtxm1 28327 If the number of neighbors...
nb3grprlem1 28328 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 28329 Lemma 2 for ~ nb3grpr . (...
nb3grpr 28330 The neighbors of a vertex ...
nb3grpr2 28331 The neighbors of a vertex ...
nb3gr2nb 28332 If the neighbors of two ve...
uvtxval 28335 The set of all universal v...
uvtxel 28336 A universal vertex, i.e. a...
uvtxisvtx 28337 A universal vertex is a ve...
uvtxssvtx 28338 The set of the universal v...
vtxnbuvtx 28339 A universal vertex has all...
uvtxnbgrss 28340 A universal vertex has all...
uvtxnbgrvtx 28341 A universal vertex is neig...
uvtx0 28342 There is no universal vert...
isuvtx 28343 The set of all universal v...
uvtxel1 28344 Characterization of a univ...
uvtx01vtx 28345 If a graph/class has no ed...
uvtx2vtx1edg 28346 If a graph has two vertice...
uvtx2vtx1edgb 28347 If a hypergraph has two ve...
uvtxnbgr 28348 A universal vertex has all...
uvtxnbgrb 28349 A vertex is universal iff ...
uvtxusgr 28350 The set of all universal v...
uvtxusgrel 28351 A universal vertex, i.e. a...
uvtxnm1nbgr 28352 A universal vertex has ` n...
nbusgrvtxm1uvtx 28353 If the number of neighbors...
uvtxnbvtxm1 28354 A universal vertex has ` n...
nbupgruvtxres 28355 The neighborhood of a univ...
uvtxupgrres 28356 A universal vertex is univ...
cplgruvtxb 28361 A graph ` G ` is complete ...
prcliscplgr 28362 A proper class (representi...
iscplgr 28363 The property of being a co...
iscplgrnb 28364 A graph is complete iff al...
iscplgredg 28365 A graph ` G ` is complete ...
iscusgr 28366 The property of being a co...
cusgrusgr 28367 A complete simple graph is...
cusgrcplgr 28368 A complete simple graph is...
iscusgrvtx 28369 A simple graph is complete...
cusgruvtxb 28370 A simple graph is complete...
iscusgredg 28371 A simple graph is complete...
cusgredg 28372 In a complete simple graph...
cplgr0 28373 The null graph (with no ve...
cusgr0 28374 The null graph (with no ve...
cplgr0v 28375 A null graph (with no vert...
cusgr0v 28376 A graph with no vertices a...
cplgr1vlem 28377 Lemma for ~ cplgr1v and ~ ...
cplgr1v 28378 A graph with one vertex is...
cusgr1v 28379 A graph with one vertex an...
cplgr2v 28380 An undirected hypergraph w...
cplgr2vpr 28381 An undirected hypergraph w...
nbcplgr 28382 In a complete graph, each ...
cplgr3v 28383 A pseudograph with three (...
cusgr3vnbpr 28384 The neighbors of a vertex ...
cplgrop 28385 A complete graph represent...
cusgrop 28386 A complete simple graph re...
cusgrexilem1 28387 Lemma 1 for ~ cusgrexi . ...
usgrexilem 28388 Lemma for ~ usgrexi . (Co...
usgrexi 28389 An arbitrary set regarded ...
cusgrexilem2 28390 Lemma 2 for ~ cusgrexi . ...
cusgrexi 28391 An arbitrary set ` V ` reg...
cusgrexg 28392 For each set there is a se...
structtousgr 28393 Any (extensible) structure...
structtocusgr 28394 Any (extensible) structure...
cffldtocusgr 28395 The field of complex numbe...
cusgrres 28396 Restricting a complete sim...
cusgrsizeindb0 28397 Base case of the induction...
cusgrsizeindb1 28398 Base case of the induction...
cusgrsizeindslem 28399 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 28400 Part 1 of induction step i...
cusgrsize2inds 28401 Induction step in ~ cusgrs...
cusgrsize 28402 The size of a finite compl...
cusgrfilem1 28403 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 28404 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 28405 Lemma 3 for ~ cusgrfi . (...
cusgrfi 28406 If the size of a complete ...
usgredgsscusgredg 28407 A simple graph is a subgra...
usgrsscusgr 28408 A simple graph is a subgra...
sizusglecusglem1 28409 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 28410 Lemma 2 for ~ sizusglecusg...
sizusglecusg 28411 The size of a simple graph...
fusgrmaxsize 28412 The maximum size of a fini...
vtxdgfval 28415 The value of the vertex de...
vtxdgval 28416 The degree of a vertex. (...
vtxdgfival 28417 The degree of a vertex for...
vtxdgop 28418 The vertex degree expresse...
vtxdgf 28419 The vertex degree function...
vtxdgelxnn0 28420 The degree of a vertex is ...
vtxdg0v 28421 The degree of a vertex in ...
vtxdg0e 28422 The degree of a vertex in ...
vtxdgfisnn0 28423 The degree of a vertex in ...
vtxdgfisf 28424 The vertex degree function...
vtxdeqd 28425 Equality theorem for the v...
vtxduhgr0e 28426 The degree of a vertex in ...
vtxdlfuhgr1v 28427 The degree of the vertex i...
vdumgr0 28428 A vertex in a multigraph h...
vtxdun 28429 The degree of a vertex in ...
vtxdfiun 28430 The degree of a vertex in ...
vtxduhgrun 28431 The degree of a vertex in ...
vtxduhgrfiun 28432 The degree of a vertex in ...
vtxdlfgrval 28433 The value of the vertex de...
vtxdumgrval 28434 The value of the vertex de...
vtxdusgrval 28435 The value of the vertex de...
vtxd0nedgb 28436 A vertex has degree 0 iff ...
vtxdushgrfvedglem 28437 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 28438 The value of the vertex de...
vtxdusgrfvedg 28439 The value of the vertex de...
vtxduhgr0nedg 28440 If a vertex in a hypergrap...
vtxdumgr0nedg 28441 If a vertex in a multigrap...
vtxduhgr0edgnel 28442 A vertex in a hypergraph h...
vtxdusgr0edgnel 28443 A vertex in a simple graph...
vtxdusgr0edgnelALT 28444 Alternate proof of ~ vtxdu...
vtxdgfusgrf 28445 The vertex degree function...
vtxdgfusgr 28446 In a finite simple graph, ...
fusgrn0degnn0 28447 In a nonempty, finite grap...
1loopgruspgr 28448 A graph with one edge whic...
1loopgredg 28449 The set of edges in a grap...
1loopgrnb0 28450 In a graph (simple pseudog...
1loopgrvd2 28451 The vertex degree of a one...
1loopgrvd0 28452 The vertex degree of a one...
1hevtxdg0 28453 The vertex degree of verte...
1hevtxdg1 28454 The vertex degree of verte...
1hegrvtxdg1 28455 The vertex degree of a gra...
1hegrvtxdg1r 28456 The vertex degree of a gra...
1egrvtxdg1 28457 The vertex degree of a one...
1egrvtxdg1r 28458 The vertex degree of a one...
1egrvtxdg0 28459 The vertex degree of a one...
p1evtxdeqlem 28460 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 28461 If an edge ` E ` which doe...
p1evtxdp1 28462 If an edge ` E ` (not bein...
uspgrloopvtx 28463 The set of vertices in a g...
uspgrloopvtxel 28464 A vertex in a graph (simpl...
uspgrloopiedg 28465 The set of edges in a grap...
uspgrloopedg 28466 The set of edges in a grap...
uspgrloopnb0 28467 In a graph (simple pseudog...
uspgrloopvd2 28468 The vertex degree of a one...
umgr2v2evtx 28469 The set of vertices in a m...
umgr2v2evtxel 28470 A vertex in a multigraph w...
umgr2v2eiedg 28471 The edge function in a mul...
umgr2v2eedg 28472 The set of edges in a mult...
umgr2v2e 28473 A multigraph with two edge...
umgr2v2enb1 28474 In a multigraph with two e...
umgr2v2evd2 28475 In a multigraph with two e...
hashnbusgrvd 28476 In a simple graph, the num...
usgruvtxvdb 28477 In a finite simple graph w...
vdiscusgrb 28478 A finite simple graph with...
vdiscusgr 28479 In a finite complete simpl...
vtxdusgradjvtx 28480 The degree of a vertex in ...
usgrvd0nedg 28481 If a vertex in a simple gr...
uhgrvd00 28482 If every vertex in a hyper...
usgrvd00 28483 If every vertex in a simpl...
vdegp1ai 28484 The induction step for a v...
vdegp1bi 28485 The induction step for a v...
vdegp1ci 28486 The induction step for a v...
vtxdginducedm1lem1 28487 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 28488 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 28489 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 28490 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 28491 The degree of a vertex ` v...
vtxdginducedm1fi 28492 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 28493 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 28494 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 28495 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 28496 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 28497 Induction step of ~ finsum...
finsumvtxdg2size 28498 The sum of the degrees of ...
fusgr1th 28499 The sum of the degrees of ...
finsumvtxdgeven 28500 The sum of the degrees of ...
vtxdgoddnumeven 28501 The number of vertices of ...
fusgrvtxdgonume 28502 The number of vertices of ...
isrgr 28507 The property of a class be...
rgrprop 28508 The properties of a k-regu...
isrusgr 28509 The property of being a k-...
rusgrprop 28510 The properties of a k-regu...
rusgrrgr 28511 A k-regular simple graph i...
rusgrusgr 28512 A k-regular simple graph i...
finrusgrfusgr 28513 A finite regular simple gr...
isrusgr0 28514 The property of being a k-...
rusgrprop0 28515 The properties of a k-regu...
usgreqdrusgr 28516 If all vertices in a simpl...
fusgrregdegfi 28517 In a nonempty finite simpl...
fusgrn0eqdrusgr 28518 If all vertices in a nonem...
frusgrnn0 28519 In a nonempty finite k-reg...
0edg0rgr 28520 A graph is 0-regular if it...
uhgr0edg0rgr 28521 A hypergraph is 0-regular ...
uhgr0edg0rgrb 28522 A hypergraph is 0-regular ...
usgr0edg0rusgr 28523 A simple graph is 0-regula...
0vtxrgr 28524 A null graph (with no vert...
0vtxrusgr 28525 A graph with no vertices a...
0uhgrrusgr 28526 The null graph as hypergra...
0grrusgr 28527 The null graph represented...
0grrgr 28528 The null graph represented...
cusgrrusgr 28529 A complete simple graph wi...
cusgrm1rusgr 28530 A finite simple graph with...
rusgrpropnb 28531 The properties of a k-regu...
rusgrpropedg 28532 The properties of a k-regu...
rusgrpropadjvtx 28533 The properties of a k-regu...
rusgrnumwrdl2 28534 In a k-regular simple grap...
rusgr1vtxlem 28535 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 28536 If a k-regular simple grap...
rgrusgrprc 28537 The class of 0-regular sim...
rusgrprc 28538 The class of 0-regular sim...
rgrprc 28539 The class of 0-regular gra...
rgrprcx 28540 The class of 0-regular gra...
rgrx0ndm 28541 0 is not in the domain of ...
rgrx0nd 28542 The potentially alternativ...
ewlksfval 28549 The set of s-walks of edge...
isewlk 28550 Conditions for a function ...
ewlkprop 28551 Properties of an s-walk of...
ewlkinedg 28552 The intersection (common v...
ewlkle 28553 An s-walk of edges is also...
upgrewlkle2 28554 In a pseudograph, there is...
wkslem1 28555 Lemma 1 for walks to subst...
wkslem2 28556 Lemma 2 for walks to subst...
wksfval 28557 The set of walks (in an un...
iswlk 28558 Properties of a pair of fu...
wlkprop 28559 Properties of a walk. (Co...
wlkv 28560 The classes involved in a ...
iswlkg 28561 Generalization of ~ iswlk ...
wlkf 28562 The mapping enumerating th...
wlkcl 28563 A walk has length ` # ( F ...
wlkp 28564 The mapping enumerating th...
wlkpwrd 28565 The sequence of vertices o...
wlklenvp1 28566 The number of vertices of ...
wksv 28567 The class of walks is a se...
wksvOLD 28568 Obsolete version of ~ wksv...
wlkn0 28569 The sequence of vertices o...
wlklenvm1 28570 The number of edges of a w...
ifpsnprss 28571 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 28572 Each pair of adjacent vert...
wlkvtxiedg 28573 The vertices of a walk are...
relwlk 28574 The set ` ( Walks `` G ) `...
wlkvv 28575 If there is at least one w...
wlkop 28576 A walk is an ordered pair....
wlkcpr 28577 A walk as class with two c...
wlk2f 28578 If there is a walk ` W ` t...
wlkcomp 28579 A walk expressed by proper...
wlkcompim 28580 Implications for the prope...
wlkelwrd 28581 The components of a walk a...
wlkeq 28582 Conditions for two walks (...
edginwlk 28583 The value of the edge func...
upgredginwlk 28584 The value of the edge func...
iedginwlk 28585 The value of the edge func...
wlkl1loop 28586 A walk of length 1 from a ...
wlk1walk 28587 A walk is a 1-walk "on the...
wlk1ewlk 28588 A walk is an s-walk "on th...
upgriswlk 28589 Properties of a pair of fu...
upgrwlkedg 28590 The edges of a walk in a p...
upgrwlkcompim 28591 Implications for the prope...
wlkvtxedg 28592 The vertices of a walk are...
upgrwlkvtxedg 28593 The pairs of connected ver...
uspgr2wlkeq 28594 Conditions for two walks w...
uspgr2wlkeq2 28595 Conditions for two walks w...
uspgr2wlkeqi 28596 Conditions for two walks w...
umgrwlknloop 28597 In a multigraph, each walk...
wlkResOLD 28598 Obsolete version of ~ opab...
wlkv0 28599 If there is a walk in the ...
g0wlk0 28600 There is no walk in a null...
0wlk0 28601 There is no walk for the e...
wlk0prc 28602 There is no walk in a null...
wlklenvclwlk 28603 The number of vertices in ...
wlkson 28604 The set of walks between t...
iswlkon 28605 Properties of a pair of fu...
wlkonprop 28606 Properties of a walk betwe...
wlkpvtx 28607 A walk connects vertices. ...
wlkepvtx 28608 The endpoints of a walk ar...
wlkoniswlk 28609 A walk between two vertice...
wlkonwlk 28610 A walk is a walk between i...
wlkonwlk1l 28611 A walk is a walk from its ...
wlksoneq1eq2 28612 Two walks with identical s...
wlkonl1iedg 28613 If there is a walk between...
wlkon2n0 28614 The length of a walk betwe...
2wlklem 28615 Lemma for theorems for wal...
upgr2wlk 28616 Properties of a pair of fu...
wlkreslem 28617 Lemma for ~ wlkres . (Con...
wlkres 28618 The restriction ` <. H , Q...
redwlklem 28619 Lemma for ~ redwlk . (Con...
redwlk 28620 A walk ending at the last ...
wlkp1lem1 28621 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 28622 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 28623 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 28624 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 28625 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 28626 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 28627 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 28628 Lemma for ~ wlkp1 . (Cont...
wlkp1 28629 Append one path segment (e...
wlkdlem1 28630 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 28631 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 28632 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 28633 Lemma 4 for ~ wlkd . (Con...
wlkd 28634 Two words representing a w...
lfgrwlkprop 28635 Two adjacent vertices in a...
lfgriswlk 28636 Conditions for a pair of f...
lfgrwlknloop 28637 In a loop-free graph, each...
reltrls 28642 The set ` ( Trails `` G ) ...
trlsfval 28643 The set of trails (in an u...
istrl 28644 Conditions for a pair of c...
trliswlk 28645 A trail is a walk. (Contr...
trlf1 28646 The enumeration ` F ` of a...
trlreslem 28647 Lemma for ~ trlres . Form...
trlres 28648 The restriction ` <. H , Q...
upgrtrls 28649 The set of trails in a pse...
upgristrl 28650 Properties of a pair of fu...
upgrf1istrl 28651 Properties of a pair of a ...
wksonproplem 28652 Lemma for theorems for pro...
wksonproplemOLD 28653 Obsolete version of ~ wkso...
trlsonfval 28654 The set of trails between ...
istrlson 28655 Properties of a pair of fu...
trlsonprop 28656 Properties of a trail betw...
trlsonistrl 28657 A trail between two vertic...
trlsonwlkon 28658 A trail between two vertic...
trlontrl 28659 A trail is a trail between...
relpths 28668 The set ` ( Paths `` G ) `...
pthsfval 28669 The set of paths (in an un...
spthsfval 28670 The set of simple paths (i...
ispth 28671 Conditions for a pair of c...
isspth 28672 Conditions for a pair of c...
pthistrl 28673 A path is a trail (in an u...
spthispth 28674 A simple path is a path (i...
pthiswlk 28675 A path is a walk (in an un...
spthiswlk 28676 A simple path is a walk (i...
pthdivtx 28677 The inner vertices of a pa...
pthdadjvtx 28678 The adjacent vertices of a...
2pthnloop 28679 A path of length at least ...
upgr2pthnlp 28680 A path of length at least ...
spthdifv 28681 The vertices of a simple p...
spthdep 28682 A simple path (at least of...
pthdepisspth 28683 A path with different star...
upgrwlkdvdelem 28684 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 28685 In a pseudograph, all edge...
upgrspthswlk 28686 The set of simple paths in...
upgrwlkdvspth 28687 A walk consisting of diffe...
pthsonfval 28688 The set of paths between t...
spthson 28689 The set of simple paths be...
ispthson 28690 Properties of a pair of fu...
isspthson 28691 Properties of a pair of fu...
pthsonprop 28692 Properties of a path betwe...
spthonprop 28693 Properties of a simple pat...
pthonispth 28694 A path between two vertice...
pthontrlon 28695 A path between two vertice...
pthonpth 28696 A path is a path between i...
isspthonpth 28697 A pair of functions is a s...
spthonisspth 28698 A simple path between to v...
spthonpthon 28699 A simple path between two ...
spthonepeq 28700 The endpoints of a simple ...
uhgrwkspthlem1 28701 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 28702 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 28703 Any walk of length 1 betwe...
usgr2wlkneq 28704 The vertices and edges are...
usgr2wlkspthlem1 28705 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 28706 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 28707 In a simple graph, any wal...
usgr2trlncl 28708 In a simple graph, any tra...
usgr2trlspth 28709 In a simple graph, any tra...
usgr2pthspth 28710 In a simple graph, any pat...
usgr2pthlem 28711 Lemma for ~ usgr2pth . (C...
usgr2pth 28712 In a simple graph, there i...
usgr2pth0 28713 In a simply graph, there i...
pthdlem1 28714 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 28715 Lemma for ~ pthdlem2 . (C...
pthdlem2 28716 Lemma 2 for ~ pthd . (Con...
pthd 28717 Two words representing a t...
clwlks 28720 The set of closed walks (i...
isclwlk 28721 A pair of functions repres...
clwlkiswlk 28722 A closed walk is a walk (i...
clwlkwlk 28723 Closed walks are walks (in...
clwlkswks 28724 Closed walks are walks (in...
isclwlke 28725 Properties of a pair of fu...
isclwlkupgr 28726 Properties of a pair of fu...
clwlkcomp 28727 A closed walk expressed by...
clwlkcompim 28728 Implications for the prope...
upgrclwlkcompim 28729 Implications for the prope...
clwlkcompbp 28730 Basic properties of the co...
clwlkl1loop 28731 A closed walk of length 1 ...
crcts 28736 The set of circuits (in an...
cycls 28737 The set of cycles (in an u...
iscrct 28738 Sufficient and necessary c...
iscycl 28739 Sufficient and necessary c...
crctprop 28740 The properties of a circui...
cyclprop 28741 The properties of a cycle:...
crctisclwlk 28742 A circuit is a closed walk...
crctistrl 28743 A circuit is a trail. (Co...
crctiswlk 28744 A circuit is a walk. (Con...
cyclispth 28745 A cycle is a path. (Contr...
cycliswlk 28746 A cycle is a walk. (Contr...
cycliscrct 28747 A cycle is a circuit. (Co...
cyclnspth 28748 A (non-trivial) cycle is n...
cyclispthon 28749 A cycle is a path starting...
lfgrn1cycl 28750 In a loop-free graph there...
usgr2trlncrct 28751 In a simple graph, any tra...
umgrn1cycl 28752 In a multigraph graph (wit...
uspgrn2crct 28753 In a simple pseudograph th...
usgrn2cycl 28754 In a simple graph there ar...
crctcshwlkn0lem1 28755 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 28756 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 28757 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 28758 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 28759 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 28760 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 28761 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 28762 Lemma for ~ crctcsh . (Co...
crctcshlem2 28763 Lemma for ~ crctcsh . (Co...
crctcshlem3 28764 Lemma for ~ crctcsh . (Co...
crctcshlem4 28765 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 28766 Cyclically shifting the in...
crctcshwlk 28767 Cyclically shifting the in...
crctcshtrl 28768 Cyclically shifting the in...
crctcsh 28769 Cyclically shifting the in...
wwlks 28780 The set of walks (in an un...
iswwlks 28781 A word over the set of ver...
wwlksn 28782 The set of walks (in an un...
iswwlksn 28783 A word over the set of ver...
wwlksnprcl 28784 Derivation of the length o...
iswwlksnx 28785 Properties of a word to re...
wwlkbp 28786 Basic properties of a walk...
wwlknbp 28787 Basic properties of a walk...
wwlknp 28788 Properties of a set being ...
wwlknbp1 28789 Other basic properties of ...
wwlknvtx 28790 The symbols of a word ` W ...
wwlknllvtx 28791 If a word ` W ` represents...
wwlknlsw 28792 If a word represents a wal...
wspthsn 28793 The set of simple paths of...
iswspthn 28794 An element of the set of s...
wspthnp 28795 Properties of a set being ...
wwlksnon 28796 The set of walks of a fixe...
wspthsnon 28797 The set of simple paths of...
iswwlksnon 28798 The set of walks of a fixe...
wwlksnon0 28799 Sufficient conditions for ...
wwlksonvtx 28800 If a word ` W ` represents...
iswspthsnon 28801 The set of simple paths of...
wwlknon 28802 An element of the set of w...
wspthnon 28803 An element of the set of s...
wspthnonp 28804 Properties of a set being ...
wspthneq1eq2 28805 Two simple paths with iden...
wwlksn0s 28806 The set of all walks as wo...
wwlkssswrd 28807 Walks (represented by word...
wwlksn0 28808 A walk of length 0 is repr...
0enwwlksnge1 28809 In graphs without edges, t...
wwlkswwlksn 28810 A walk of a fixed length a...
wwlkssswwlksn 28811 The walks of a fixed lengt...
wlkiswwlks1 28812 The sequence of vertices i...
wlklnwwlkln1 28813 The sequence of vertices i...
wlkiswwlks2lem1 28814 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 28815 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 28816 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 28817 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 28818 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 28819 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 28820 A walk as word corresponds...
wlkiswwlks 28821 A walk as word corresponds...
wlkiswwlksupgr2 28822 A walk as word corresponds...
wlkiswwlkupgr 28823 A walk as word corresponds...
wlkswwlksf1o 28824 The mapping of (ordinary) ...
wlkswwlksen 28825 The set of walks as words ...
wwlksm1edg 28826 Removing the trailing edge...
wlklnwwlkln2lem 28827 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 28828 A walk of length ` N ` as ...
wlklnwwlkn 28829 A walk of length ` N ` as ...
wlklnwwlklnupgr2 28830 A walk of length ` N ` as ...
wlklnwwlknupgr 28831 A walk of length ` N ` as ...
wlknewwlksn 28832 If a walk in a pseudograph...
wlknwwlksnbij 28833 The mapping ` ( t e. T |->...
wlknwwlksnen 28834 In a simple pseudograph, t...
wlknwwlksneqs 28835 The set of walks of a fixe...
wwlkseq 28836 Equality of two walks (as ...
wwlksnred 28837 Reduction of a walk (as wo...
wwlksnext 28838 Extension of a walk (as wo...
wwlksnextbi 28839 Extension of a walk (as wo...
wwlksnredwwlkn 28840 For each walk (as word) of...
wwlksnredwwlkn0 28841 For each walk (as word) of...
wwlksnextwrd 28842 Lemma for ~ wwlksnextbij ....
wwlksnextfun 28843 Lemma for ~ wwlksnextbij ....
wwlksnextinj 28844 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 28845 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 28846 Lemma for ~ wwlksnextbij ....
wwlksnextbij 28847 There is a bijection betwe...
wwlksnexthasheq 28848 The number of the extensio...
disjxwwlksn 28849 Sets of walks (as words) e...
wwlksnndef 28850 Conditions for ` WWalksN `...
wwlksnfi 28851 The number of walks repres...
wlksnfi 28852 The number of walks of fix...
wlksnwwlknvbij 28853 There is a bijection betwe...
wwlksnextproplem1 28854 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 28855 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 28856 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 28857 Adding additional properti...
disjxwwlkn 28858 Sets of walks (as words) e...
hashwwlksnext 28859 Number of walks (as words)...
wwlksnwwlksnon 28860 A walk of fixed length is ...
wspthsnwspthsnon 28861 A simple path of fixed len...
wspthsnonn0vne 28862 If the set of simple paths...
wspthsswwlkn 28863 The set of simple paths of...
wspthnfi 28864 In a finite graph, the set...
wwlksnonfi 28865 In a finite graph, the set...
wspthsswwlknon 28866 The set of simple paths of...
wspthnonfi 28867 In a finite graph, the set...
wspniunwspnon 28868 The set of nonempty simple...
wspn0 28869 If there are no vertices, ...
2wlkdlem1 28870 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 28871 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 28872 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 28873 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 28874 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 28875 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 28876 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 28877 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 28878 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 28879 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 28880 Lemma 10 for ~ 3wlkd . (C...
2wlkd 28881 Construction of a walk fro...
2wlkond 28882 A walk of length 2 from on...
2trld 28883 Construction of a trail fr...
2trlond 28884 A trail of length 2 from o...
2pthd 28885 A path of length 2 from on...
2spthd 28886 A simple path of length 2 ...
2pthond 28887 A simple path of length 2 ...
2pthon3v 28888 For a vertex adjacent to t...
umgr2adedgwlklem 28889 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 28890 In a multigraph, two adjac...
umgr2adedgwlkon 28891 In a multigraph, two adjac...
umgr2adedgwlkonALT 28892 Alternate proof for ~ umgr...
umgr2adedgspth 28893 In a multigraph, two adjac...
umgr2wlk 28894 In a multigraph, there is ...
umgr2wlkon 28895 For each pair of adjacent ...
elwwlks2s3 28896 A walk of length 2 as word...
midwwlks2s3 28897 There is a vertex between ...
wwlks2onv 28898 If a length 3 string repre...
elwwlks2ons3im 28899 A walk as word of length 2...
elwwlks2ons3 28900 For each walk of length 2 ...
s3wwlks2on 28901 A length 3 string which re...
umgrwwlks2on 28902 A walk of length 2 between...
wwlks2onsym 28903 There is a walk of length ...
elwwlks2on 28904 A walk of length 2 between...
elwspths2on 28905 A simple path of length 2 ...
wpthswwlks2on 28906 For two different vertices...
2wspdisj 28907 All simple paths of length...
2wspiundisj 28908 All simple paths of length...
usgr2wspthons3 28909 A simple path of length 2 ...
usgr2wspthon 28910 A simple path of length 2 ...
elwwlks2 28911 A walk of length 2 between...
elwspths2spth 28912 A simple path of length 2 ...
rusgrnumwwlkl1 28913 In a k-regular graph, ther...
rusgrnumwwlkslem 28914 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 28915 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 28916 Induction base 0 for ~ rus...
rusgrnumwwlkb1 28917 Induction base 1 for ~ rus...
rusgr0edg 28918 Special case for graphs wi...
rusgrnumwwlks 28919 Induction step for ~ rusgr...
rusgrnumwwlk 28920 In a ` K `-regular graph, ...
rusgrnumwwlkg 28921 In a ` K `-regular graph, ...
rusgrnumwlkg 28922 In a k-regular graph, the ...
clwwlknclwwlkdif 28923 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 28924 In a ` K `-regular graph, ...
clwwlk 28927 The set of closed walks (i...
isclwwlk 28928 Properties of a word to re...
clwwlkbp 28929 Basic properties of a clos...
clwwlkgt0 28930 There is no empty closed w...
clwwlksswrd 28931 Closed walks (represented ...
clwwlk1loop 28932 A closed walk of length 1 ...
clwwlkccatlem 28933 Lemma for ~ clwwlkccat : i...
clwwlkccat 28934 The concatenation of two w...
umgrclwwlkge2 28935 A closed walk in a multigr...
clwlkclwwlklem2a1 28936 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 28937 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 28938 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 28939 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 28940 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 28941 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 28942 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 28943 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 28944 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 28945 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 28946 A closed walk as word of l...
clwlkclwwlk2 28947 A closed walk corresponds ...
clwlkclwwlkflem 28948 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 28949 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 28950 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 28951 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 28952 ` F ` is a function from t...
clwlkclwwlkfo 28953 ` F ` is a function from t...
clwlkclwwlkf1 28954 ` F ` is a one-to-one func...
clwlkclwwlkf1o 28955 ` F ` is a bijection betwe...
clwlkclwwlken 28956 The set of the nonempty cl...
clwwisshclwwslemlem 28957 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 28958 Lemma for ~ clwwisshclwws ...
clwwisshclwws 28959 Cyclically shifting a clos...
clwwisshclwwsn 28960 Cyclically shifting a clos...
erclwwlkrel 28961 ` .~ ` is a relation. (Co...
erclwwlkeq 28962 Two classes are equivalent...
erclwwlkeqlen 28963 If two classes are equival...
erclwwlkref 28964 ` .~ ` is a reflexive rela...
erclwwlksym 28965 ` .~ ` is a symmetric rela...
erclwwlktr 28966 ` .~ ` is a transitive rel...
erclwwlk 28967 ` .~ ` is an equivalence r...
clwwlkn 28970 The set of closed walks of...
isclwwlkn 28971 A word over the set of ver...
clwwlkn0 28972 There is no closed walk of...
clwwlkneq0 28973 Sufficient conditions for ...
clwwlkclwwlkn 28974 A closed walk of a fixed l...
clwwlksclwwlkn 28975 The closed walks of a fixe...
clwwlknlen 28976 The length of a word repre...
clwwlknnn 28977 The length of a closed wal...
clwwlknwrd 28978 A closed walk of a fixed l...
clwwlknbp 28979 Basic properties of a clos...
isclwwlknx 28980 Characterization of a word...
clwwlknp 28981 Properties of a set being ...
clwwlknwwlksn 28982 A word representing a clos...
clwwlknlbonbgr1 28983 The last but one vertex in...
clwwlkinwwlk 28984 If the initial vertex of a...
clwwlkn1 28985 A closed walk of length 1 ...
loopclwwlkn1b 28986 The singleton word consist...
clwwlkn1loopb 28987 A word represents a closed...
clwwlkn2 28988 A closed walk of length 2 ...
clwwlknfi 28989 If there is only a finite ...
clwwlkel 28990 Obtaining a closed walk (a...
clwwlkf 28991 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 28992 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 28993 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 28994 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 28995 F is a 1-1 onto function, ...
clwwlken 28996 The set of closed walks of...
clwwlknwwlkncl 28997 Obtaining a closed walk (a...
clwwlkwwlksb 28998 A nonempty word over verti...
clwwlknwwlksnb 28999 A word over vertices repre...
clwwlkext2edg 29000 If a word concatenated wit...
wwlksext2clwwlk 29001 If a word represents a wal...
wwlksubclwwlk 29002 Any prefix of a word repre...
clwwnisshclwwsn 29003 Cyclically shifting a clos...
eleclclwwlknlem1 29004 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 29005 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 29006 The set of cyclical shifts...
clwwlknccat 29007 The concatenation of two w...
umgr2cwwk2dif 29008 If a word represents a clo...
umgr2cwwkdifex 29009 If a word represents a clo...
erclwwlknrel 29010 ` .~ ` is a relation. (Co...
erclwwlkneq 29011 Two classes are equivalent...
erclwwlkneqlen 29012 If two classes are equival...
erclwwlknref 29013 ` .~ ` is a reflexive rela...
erclwwlknsym 29014 ` .~ ` is a symmetric rela...
erclwwlkntr 29015 ` .~ ` is a transitive rel...
erclwwlkn 29016 ` .~ ` is an equivalence r...
qerclwwlknfi 29017 The quotient set of the se...
hashclwwlkn0 29018 The number of closed walks...
eclclwwlkn1 29019 An equivalence class accor...
eleclclwwlkn 29020 A member of an equivalence...
hashecclwwlkn1 29021 The size of every equivale...
umgrhashecclwwlk 29022 The size of every equivale...
fusgrhashclwwlkn 29023 The size of the set of clo...
clwwlkndivn 29024 The size of the set of clo...
clwlknf1oclwwlknlem1 29025 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 29026 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 29027 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 29028 There is a one-to-one onto...
clwlkssizeeq 29029 The size of the set of clo...
clwlksndivn 29030 The size of the set of clo...
clwwlknonmpo 29033 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 29034 The set of closed walks on...
isclwwlknon 29035 A word over the set of ver...
clwwlk0on0 29036 There is no word over the ...
clwwlknon0 29037 Sufficient conditions for ...
clwwlknonfin 29038 In a finite graph ` G ` , ...
clwwlknonel 29039 Characterization of a word...
clwwlknonccat 29040 The concatenation of two w...
clwwlknon1 29041 The set of closed walks on...
clwwlknon1loop 29042 If there is a loop at vert...
clwwlknon1nloop 29043 If there is no loop at ver...
clwwlknon1sn 29044 The set of (closed) walks ...
clwwlknon1le1 29045 There is at most one (clos...
clwwlknon2 29046 The set of closed walks on...
clwwlknon2x 29047 The set of closed walks on...
s2elclwwlknon2 29048 Sufficient conditions of a...
clwwlknon2num 29049 In a ` K `-regular graph `...
clwwlknonwwlknonb 29050 A word over vertices repre...
clwwlknonex2lem1 29051 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 29052 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 29053 Extending a closed walk ` ...
clwwlknonex2e 29054 Extending a closed walk ` ...
clwwlknondisj 29055 The sets of closed walks o...
clwwlknun 29056 The set of closed walks of...
clwwlkvbij 29057 There is a bijection betwe...
0ewlk 29058 The empty set (empty seque...
1ewlk 29059 A sequence of 1 edge is an...
0wlk 29060 A pair of an empty set (of...
is0wlk 29061 A pair of an empty set (of...
0wlkonlem1 29062 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 29063 Lemma 2 for ~ 0wlkon and ~...
0wlkon 29064 A walk of length 0 from a ...
0wlkons1 29065 A walk of length 0 from a ...
0trl 29066 A pair of an empty set (of...
is0trl 29067 A pair of an empty set (of...
0trlon 29068 A trail of length 0 from a...
0pth 29069 A pair of an empty set (of...
0spth 29070 A pair of an empty set (of...
0pthon 29071 A path of length 0 from a ...
0pthon1 29072 A path of length 0 from a ...
0pthonv 29073 For each vertex there is a...
0clwlk 29074 A pair of an empty set (of...
0clwlkv 29075 Any vertex (more precisely...
0clwlk0 29076 There is no closed walk in...
0crct 29077 A pair of an empty set (of...
0cycl 29078 A pair of an empty set (of...
1pthdlem1 29079 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 29080 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 29081 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 29082 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 29083 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 29084 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 29085 In a graph with two vertic...
1trld 29086 In a graph with two vertic...
1pthd 29087 In a graph with two vertic...
1pthond 29088 In a graph with two vertic...
upgr1wlkdlem1 29089 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 29090 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 29091 In a pseudograph with two ...
upgr1trld 29092 In a pseudograph with two ...
upgr1pthd 29093 In a pseudograph with two ...
upgr1pthond 29094 In a pseudograph with two ...
lppthon 29095 A loop (which is an edge a...
lp1cycl 29096 A loop (which is an edge a...
1pthon2v 29097 For each pair of adjacent ...
1pthon2ve 29098 For each pair of adjacent ...
wlk2v2elem1 29099 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 29100 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 29101 In a graph with two vertic...
ntrl2v2e 29102 A walk which is not a trai...
3wlkdlem1 29103 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 29104 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 29105 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 29106 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 29107 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 29108 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 29109 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 29110 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 29111 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 29112 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 29113 Lemma 10 for ~ 3wlkd . (C...
3wlkd 29114 Construction of a walk fro...
3wlkond 29115 A walk of length 3 from on...
3trld 29116 Construction of a trail fr...
3trlond 29117 A trail of length 3 from o...
3pthd 29118 A path of length 3 from on...
3pthond 29119 A path of length 3 from on...
3spthd 29120 A simple path of length 3 ...
3spthond 29121 A simple path of length 3 ...
3cycld 29122 Construction of a 3-cycle ...
3cyclpd 29123 Construction of a 3-cycle ...
upgr3v3e3cycl 29124 If there is a cycle of len...
uhgr3cyclexlem 29125 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 29126 If there are three differe...
umgr3cyclex 29127 If there are three (differ...
umgr3v3e3cycl 29128 If and only if there is a ...
upgr4cycl4dv4e 29129 If there is a cycle of len...
dfconngr1 29132 Alternative definition of ...
isconngr 29133 The property of being a co...
isconngr1 29134 The property of being a co...
cusconngr 29135 A complete hypergraph is c...
0conngr 29136 A graph without vertices i...
0vconngr 29137 A graph without vertices i...
1conngr 29138 A graph with (at most) one...
conngrv2edg 29139 A vertex in a connected gr...
vdn0conngrumgrv2 29140 A vertex in a connected mu...
releupth 29143 The set ` ( EulerPaths `` ...
eupths 29144 The Eulerian paths on the ...
iseupth 29145 The property " ` <. F , P ...
iseupthf1o 29146 The property " ` <. F , P ...
eupthi 29147 Properties of an Eulerian ...
eupthf1o 29148 The ` F ` function in an E...
eupthfi 29149 Any graph with an Eulerian...
eupthseg 29150 The ` N ` -th edge in an e...
upgriseupth 29151 The property " ` <. F , P ...
upgreupthi 29152 Properties of an Eulerian ...
upgreupthseg 29153 The ` N ` -th edge in an e...
eupthcl 29154 An Eulerian path has lengt...
eupthistrl 29155 An Eulerian path is a trai...
eupthiswlk 29156 An Eulerian path is a walk...
eupthpf 29157 The ` P ` function in an E...
eupth0 29158 There is an Eulerian path ...
eupthres 29159 The restriction ` <. H , Q...
eupthp1 29160 Append one path segment to...
eupth2eucrct 29161 Append one path segment to...
eupth2lem1 29162 Lemma for ~ eupth2 . (Con...
eupth2lem2 29163 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 29164 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 29165 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 29166 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 29167 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 29168 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 29169 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 29170 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 29171 Formerly part of proof of ...
eupth2lem3lem1 29172 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 29173 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 29174 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 29175 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 29176 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 29177 Formerly part of proof of ...
eupth2lem3lem7 29178 Lemma for ~ eupth2lem3 : ...
eupthvdres 29179 Formerly part of proof of ...
eupth2lem3 29180 Lemma for ~ eupth2 . (Con...
eupth2lemb 29181 Lemma for ~ eupth2 (induct...
eupth2lems 29182 Lemma for ~ eupth2 (induct...
eupth2 29183 The only vertices of odd d...
eulerpathpr 29184 A graph with an Eulerian p...
eulerpath 29185 A pseudograph with an Eule...
eulercrct 29186 A pseudograph with an Eule...
eucrctshift 29187 Cyclically shifting the in...
eucrct2eupth1 29188 Removing one edge ` ( I ``...
eucrct2eupth 29189 Removing one edge ` ( I ``...
konigsbergvtx 29190 The set of vertices of the...
konigsbergiedg 29191 The indexed edges of the K...
konigsbergiedgw 29192 The indexed edges of the K...
konigsbergssiedgwpr 29193 Each subset of the indexed...
konigsbergssiedgw 29194 Each subset of the indexed...
konigsbergumgr 29195 The Königsberg graph ...
konigsberglem1 29196 Lemma 1 for ~ konigsberg :...
konigsberglem2 29197 Lemma 2 for ~ konigsberg :...
konigsberglem3 29198 Lemma 3 for ~ konigsberg :...
konigsberglem4 29199 Lemma 4 for ~ konigsberg :...
konigsberglem5 29200 Lemma 5 for ~ konigsberg :...
konigsberg 29201 The Königsberg Bridge...
isfrgr 29204 The property of being a fr...
frgrusgr 29205 A friendship graph is a si...
frgr0v 29206 Any null graph (set with n...
frgr0vb 29207 Any null graph (without ve...
frgruhgr0v 29208 Any null graph (without ve...
frgr0 29209 The null graph (graph with...
frcond1 29210 The friendship condition: ...
frcond2 29211 The friendship condition: ...
frgreu 29212 Variant of ~ frcond2 : An...
frcond3 29213 The friendship condition, ...
frcond4 29214 The friendship condition, ...
frgr1v 29215 Any graph with (at most) o...
nfrgr2v 29216 Any graph with two (differ...
frgr3vlem1 29217 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 29218 Lemma 2 for ~ frgr3v . (C...
frgr3v 29219 Any graph with three verti...
1vwmgr 29220 Every graph with one verte...
3vfriswmgrlem 29221 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 29222 Every friendship graph wit...
1to2vfriswmgr 29223 Every friendship graph wit...
1to3vfriswmgr 29224 Every friendship graph wit...
1to3vfriendship 29225 The friendship theorem for...
2pthfrgrrn 29226 Between any two (different...
2pthfrgrrn2 29227 Between any two (different...
2pthfrgr 29228 Between any two (different...
3cyclfrgrrn1 29229 Every vertex in a friendsh...
3cyclfrgrrn 29230 Every vertex in a friendsh...
3cyclfrgrrn2 29231 Every vertex in a friendsh...
3cyclfrgr 29232 Every vertex in a friendsh...
4cycl2v2nb 29233 In a (maybe degenerate) 4-...
4cycl2vnunb 29234 In a 4-cycle, two distinct...
n4cyclfrgr 29235 There is no 4-cycle in a f...
4cyclusnfrgr 29236 A graph with a 4-cycle is ...
frgrnbnb 29237 If two neighbors ` U ` and...
frgrconngr 29238 A friendship graph is conn...
vdgn0frgrv2 29239 A vertex in a friendship g...
vdgn1frgrv2 29240 Any vertex in a friendship...
vdgn1frgrv3 29241 Any vertex in a friendship...
vdgfrgrgt2 29242 Any vertex in a friendship...
frgrncvvdeqlem1 29243 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 29244 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 29245 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 29246 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 29247 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 29248 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 29249 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 29250 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 29251 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 29252 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 29253 In a friendship graph, two...
frgrwopreglem4a 29254 In a friendship graph any ...
frgrwopreglem5a 29255 If a friendship graph has ...
frgrwopreglem1 29256 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 29257 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 29258 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 29259 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 29260 According to statement 5 i...
frgrwopregbsn 29261 According to statement 5 i...
frgrwopreg1 29262 According to statement 5 i...
frgrwopreg2 29263 According to statement 5 i...
frgrwopreglem5lem 29264 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 29265 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 29266 Alternate direct proof of ...
frgrwopreg 29267 In a friendship graph ther...
frgrregorufr0 29268 In a friendship graph ther...
frgrregorufr 29269 If there is a vertex havin...
frgrregorufrg 29270 If there is a vertex havin...
frgr2wwlkeu 29271 For two different vertices...
frgr2wwlkn0 29272 In a friendship graph, the...
frgr2wwlk1 29273 In a friendship graph, the...
frgr2wsp1 29274 In a friendship graph, the...
frgr2wwlkeqm 29275 If there is a (simple) pat...
frgrhash2wsp 29276 The number of simple paths...
fusgreg2wsplem 29277 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 29278 The set of paths of length...
fusgreghash2wspv 29279 According to statement 7 i...
fusgreg2wsp 29280 In a finite simple graph, ...
2wspmdisj 29281 The sets of paths of lengt...
fusgreghash2wsp 29282 In a finite k-regular grap...
frrusgrord0lem 29283 Lemma for ~ frrusgrord0 . ...
frrusgrord0 29284 If a nonempty finite frien...
frrusgrord 29285 If a nonempty finite frien...
numclwwlk2lem1lem 29286 Lemma for ~ numclwwlk2lem1...
2clwwlklem 29287 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 29288 If the initial vertex of a...
clwwnonrepclwwnon 29289 If the initial vertex of a...
2clwwlk2clwwlklem 29290 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 29291 Value of operation ` C ` ,...
2clwwlk2 29292 The set ` ( X C 2 ) ` of d...
2clwwlkel 29293 Characterization of an ele...
2clwwlk2clwwlk 29294 An element of the value of...
numclwwlk1lem2foalem 29295 Lemma for ~ numclwwlk1lem2...
extwwlkfab 29296 The set ` ( X C N ) ` of d...
extwwlkfabel 29297 Characterization of an ele...
numclwwlk1lem2foa 29298 Going forth and back from ...
numclwwlk1lem2f 29299 ` T ` is a function, mappi...
numclwwlk1lem2fv 29300 Value of the function ` T ...
numclwwlk1lem2f1 29301 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 29302 ` T ` is an onto function....
numclwwlk1lem2f1o 29303 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 29304 The set of double loops of...
numclwwlk1 29305 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 29306 ` F ` is a bijection betwe...
clwwlknonclwlknonen 29307 The sets of the two repres...
dlwwlknondlwlknonf1olem1 29308 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 29309 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 29310 The sets of the two repres...
wlkl0 29311 There is exactly one walk ...
clwlknon2num 29312 There are k walks of lengt...
numclwlk1lem1 29313 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 29314 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 29315 Statement 9 in [Huneke] p....
numclwwlkovh0 29316 Value of operation ` H ` ,...
numclwwlkovh 29317 Value of operation ` H ` ,...
numclwwlkovq 29318 Value of operation ` Q ` ,...
numclwwlkqhash 29319 In a ` K `-regular graph, ...
numclwwlk2lem1 29320 In a friendship graph, for...
numclwlk2lem2f 29321 ` R ` is a function mappin...
numclwlk2lem2fv 29322 Value of the function ` R ...
numclwlk2lem2f1o 29323 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 29324 In a friendship graph, the...
numclwwlk2 29325 Statement 10 in [Huneke] p...
numclwwlk3lem1 29326 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 29327 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 29328 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 29329 Statement 12 in [Huneke] p...
numclwwlk4 29330 The total number of closed...
numclwwlk5lem 29331 Lemma for ~ numclwwlk5 . ...
numclwwlk5 29332 Statement 13 in [Huneke] p...
numclwwlk7lem 29333 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 29334 For a prime divisor ` P ` ...
numclwwlk7 29335 Statement 14 in [Huneke] p...
numclwwlk8 29336 The size of the set of clo...
frgrreggt1 29337 If a finite nonempty frien...
frgrreg 29338 If a finite nonempty frien...
frgrregord013 29339 If a finite friendship gra...
frgrregord13 29340 If a nonempty finite frien...
frgrogt3nreg 29341 If a finite friendship gra...
friendshipgt3 29342 The friendship theorem for...
friendship 29343 The friendship theorem: I...
conventions 29344

H...

conventions-labels 29345

...

conventions-comments 29346

...

natded 29347 Here are typical n...
ex-natded5.2 29348 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 29349 A more efficient proof of ...
ex-natded5.2i 29350 The same as ~ ex-natded5.2...
ex-natded5.3 29351 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 29352 A more efficient proof of ...
ex-natded5.3i 29353 The same as ~ ex-natded5.3...
ex-natded5.5 29354 Theorem 5.5 of [Clemente] ...
ex-natded5.7 29355 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 29356 A more efficient proof of ...
ex-natded5.8 29357 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 29358 A more efficient proof of ...
ex-natded5.13 29359 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 29360 A more efficient proof of ...
ex-natded9.20 29361 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 29362 A more efficient proof of ...
ex-natded9.26 29363 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 29364 A more efficient proof of ...
ex-or 29365 Example for ~ df-or . Exa...
ex-an 29366 Example for ~ df-an . Exa...
ex-dif 29367 Example for ~ df-dif . Ex...
ex-un 29368 Example for ~ df-un . Exa...
ex-in 29369 Example for ~ df-in . Exa...
ex-uni 29370 Example for ~ df-uni . Ex...
ex-ss 29371 Example for ~ df-ss . Exa...
ex-pss 29372 Example for ~ df-pss . Ex...
ex-pw 29373 Example for ~ df-pw . Exa...
ex-pr 29374 Example for ~ df-pr . (Co...
ex-br 29375 Example for ~ df-br . Exa...
ex-opab 29376 Example for ~ df-opab . E...
ex-eprel 29377 Example for ~ df-eprel . ...
ex-id 29378 Example for ~ df-id . Exa...
ex-po 29379 Example for ~ df-po . Exa...
ex-xp 29380 Example for ~ df-xp . Exa...
ex-cnv 29381 Example for ~ df-cnv . Ex...
ex-co 29382 Example for ~ df-co . Exa...
ex-dm 29383 Example for ~ df-dm . Exa...
ex-rn 29384 Example for ~ df-rn . Exa...
ex-res 29385 Example for ~ df-res . Ex...
ex-ima 29386 Example for ~ df-ima . Ex...
ex-fv 29387 Example for ~ df-fv . Exa...
ex-1st 29388 Example for ~ df-1st . Ex...
ex-2nd 29389 Example for ~ df-2nd . Ex...
1kp2ke3k 29390 Example for ~ df-dec , 100...
ex-fl 29391 Example for ~ df-fl . Exa...
ex-ceil 29392 Example for ~ df-ceil . (...
ex-mod 29393 Example for ~ df-mod . (C...
ex-exp 29394 Example for ~ df-exp . (C...
ex-fac 29395 Example for ~ df-fac . (C...
ex-bc 29396 Example for ~ df-bc . (Co...
ex-hash 29397 Example for ~ df-hash . (...
ex-sqrt 29398 Example for ~ df-sqrt . (...
ex-abs 29399 Example for ~ df-abs . (C...
ex-dvds 29400 Example for ~ df-dvds : 3 ...
ex-gcd 29401 Example for ~ df-gcd . (C...
ex-lcm 29402 Example for ~ df-lcm . (C...
ex-prmo 29403 Example for ~ df-prmo : ` ...
aevdemo 29404 Proof illustrating the com...
ex-ind-dvds 29405 Example of a proof by indu...
ex-fpar 29406 Formalized example provide...
avril1 29407 Poisson d'Avril's Theorem....
2bornot2b 29408 The law of excluded middle...
helloworld 29409 The classic "Hello world" ...
1p1e2apr1 29410 One plus one equals two. ...
eqid1 29411 Law of identity (reflexivi...
1div0apr 29412 Division by zero is forbid...
topnfbey 29413 Nothing seems to be imposs...
9p10ne21 29414 9 + 10 is not equal to 21....
9p10ne21fool 29415 9 + 10 equals 21. This as...
isplig 29418 The predicate "is a planar...
ispligb 29419 The predicate "is a planar...
tncp 29420 In any planar incidence ge...
l2p 29421 For any line in a planar i...
lpni 29422 For any line in a planar i...
nsnlplig 29423 There is no "one-point lin...
nsnlpligALT 29424 Alternate version of ~ nsn...
n0lplig 29425 There is no "empty line" i...
n0lpligALT 29426 Alternate version of ~ n0l...
eulplig 29427 Through two distinct point...
pliguhgr 29428 Any planar incidence geome...
dummylink 29429 Alias for ~ a1ii that may ...
id1 29430 Alias for ~ idALT that may...
isgrpo 29439 The predicate "is a group ...
isgrpoi 29440 Properties that determine ...
grpofo 29441 A group operation maps ont...
grpocl 29442 Closure law for a group op...
grpolidinv 29443 A group has a left identit...
grpon0 29444 The base set of a group is...
grpoass 29445 A group operation is assoc...
grpoidinvlem1 29446 Lemma for ~ grpoidinv . (...
grpoidinvlem2 29447 Lemma for ~ grpoidinv . (...
grpoidinvlem3 29448 Lemma for ~ grpoidinv . (...
grpoidinvlem4 29449 Lemma for ~ grpoidinv . (...
grpoidinv 29450 A group has a left and rig...
grpoideu 29451 The left identity element ...
grporndm 29452 A group's range in terms o...
0ngrp 29453 The empty set is not a gro...
gidval 29454 The value of the identity ...
grpoidval 29455 Lemma for ~ grpoidcl and o...
grpoidcl 29456 The identity element of a ...
grpoidinv2 29457 A group's properties using...
grpolid 29458 The identity element of a ...
grporid 29459 The identity element of a ...
grporcan 29460 Right cancellation law for...
grpoinveu 29461 The left inverse element o...
grpoid 29462 Two ways of saying that an...
grporn 29463 The range of a group opera...
grpoinvfval 29464 The inverse function of a ...
grpoinvval 29465 The inverse of a group ele...
grpoinvcl 29466 A group element's inverse ...
grpoinv 29467 The properties of a group ...
grpolinv 29468 The left inverse of a grou...
grporinv 29469 The right inverse of a gro...
grpoinvid1 29470 The inverse of a group ele...
grpoinvid2 29471 The inverse of a group ele...
grpolcan 29472 Left cancellation law for ...
grpo2inv 29473 Double inverse law for gro...
grpoinvf 29474 Mapping of the inverse fun...
grpoinvop 29475 The inverse of the group o...
grpodivfval 29476 Group division (or subtrac...
grpodivval 29477 Group division (or subtrac...
grpodivinv 29478 Group division by an inver...
grpoinvdiv 29479 Inverse of a group divisio...
grpodivf 29480 Mapping for group division...
grpodivcl 29481 Closure of group division ...
grpodivdiv 29482 Double group division. (C...
grpomuldivass 29483 Associative-type law for m...
grpodivid 29484 Division of a group member...
grponpcan 29485 Cancellation law for group...
isablo 29488 The predicate "is an Abeli...
ablogrpo 29489 An Abelian group operation...
ablocom 29490 An Abelian group operation...
ablo32 29491 Commutative/associative la...
ablo4 29492 Commutative/associative la...
isabloi 29493 Properties that determine ...
ablomuldiv 29494 Law for group multiplicati...
ablodivdiv 29495 Law for double group divis...
ablodivdiv4 29496 Law for double group divis...
ablodiv32 29497 Swap the second and third ...
ablonncan 29498 Cancellation law for group...
ablonnncan1 29499 Cancellation law for group...
vcrel 29502 The class of all complex v...
vciOLD 29503 Obsolete version of ~ cvsi...
vcsm 29504 Functionality of th scalar...
vccl 29505 Closure of the scalar prod...
vcidOLD 29506 Identity element for the s...
vcdi 29507 Distributive law for the s...
vcdir 29508 Distributive law for the s...
vcass 29509 Associative law for the sc...
vc2OLD 29510 A vector plus itself is tw...
vcablo 29511 Vector addition is an Abel...
vcgrp 29512 Vector addition is a group...
vclcan 29513 Left cancellation law for ...
vczcl 29514 The zero vector is a vecto...
vc0rid 29515 The zero vector is a right...
vc0 29516 Zero times a vector is the...
vcz 29517 Anything times the zero ve...
vcm 29518 Minus 1 times a vector is ...
isvclem 29519 Lemma for ~ isvcOLD . (Co...
vcex 29520 The components of a comple...
isvcOLD 29521 The predicate "is a comple...
isvciOLD 29522 Properties that determine ...
cnaddabloOLD 29523 Obsolete version of ~ cnad...
cnidOLD 29524 Obsolete version of ~ cnad...
cncvcOLD 29525 Obsolete version of ~ cncv...
nvss 29535 Structure of the class of ...
nvvcop 29536 A normed complex vector sp...
nvrel 29544 The class of all normed co...
vafval 29545 Value of the function for ...
bafval 29546 Value of the function for ...
smfval 29547 Value of the function for ...
0vfval 29548 Value of the function for ...
nmcvfval 29549 Value of the norm function...
nvop2 29550 A normed complex vector sp...
nvvop 29551 The vector space component...
isnvlem 29552 Lemma for ~ isnv . (Contr...
nvex 29553 The components of a normed...
isnv 29554 The predicate "is a normed...
isnvi 29555 Properties that determine ...
nvi 29556 The properties of a normed...
nvvc 29557 The vector space component...
nvablo 29558 The vector addition operat...
nvgrp 29559 The vector addition operat...
nvgf 29560 Mapping for the vector add...
nvsf 29561 Mapping for the scalar mul...
nvgcl 29562 Closure law for the vector...
nvcom 29563 The vector addition (group...
nvass 29564 The vector addition (group...
nvadd32 29565 Commutative/associative la...
nvrcan 29566 Right cancellation law for...
nvadd4 29567 Rearrangement of 4 terms i...
nvscl 29568 Closure law for the scalar...
nvsid 29569 Identity element for the s...
nvsass 29570 Associative law for the sc...
nvscom 29571 Commutative law for the sc...
nvdi 29572 Distributive law for the s...
nvdir 29573 Distributive law for the s...
nv2 29574 A vector plus itself is tw...
vsfval 29575 Value of the function for ...
nvzcl 29576 Closure law for the zero v...
nv0rid 29577 The zero vector is a right...
nv0lid 29578 The zero vector is a left ...
nv0 29579 Zero times a vector is the...
nvsz 29580 Anything times the zero ve...
nvinv 29581 Minus 1 times a vector is ...
nvinvfval 29582 Function for the negative ...
nvm 29583 Vector subtraction in term...
nvmval 29584 Value of vector subtractio...
nvmval2 29585 Value of vector subtractio...
nvmfval 29586 Value of the function for ...
nvmf 29587 Mapping for the vector sub...
nvmcl 29588 Closure law for the vector...
nvnnncan1 29589 Cancellation law for vecto...
nvmdi 29590 Distributive law for scala...
nvnegneg 29591 Double negative of a vecto...
nvmul0or 29592 If a scalar product is zer...
nvrinv 29593 A vector minus itself. (C...
nvlinv 29594 Minus a vector plus itself...
nvpncan2 29595 Cancellation law for vecto...
nvpncan 29596 Cancellation law for vecto...
nvaddsub 29597 Commutative/associative la...
nvnpcan 29598 Cancellation law for a nor...
nvaddsub4 29599 Rearrangement of 4 terms i...
nvmeq0 29600 The difference between two...
nvmid 29601 A vector minus itself is t...
nvf 29602 Mapping for the norm funct...
nvcl 29603 The norm of a normed compl...
nvcli 29604 The norm of a normed compl...
nvs 29605 Proportionality property o...
nvsge0 29606 The norm of a scalar produ...
nvm1 29607 The norm of the negative o...
nvdif 29608 The norm of the difference...
nvpi 29609 The norm of a vector plus ...
nvz0 29610 The norm of a zero vector ...
nvz 29611 The norm of a vector is ze...
nvtri 29612 Triangle inequality for th...
nvmtri 29613 Triangle inequality for th...
nvabs 29614 Norm difference property o...
nvge0 29615 The norm of a normed compl...
nvgt0 29616 A nonzero norm is positive...
nv1 29617 From any nonzero vector, c...
nvop 29618 A complex inner product sp...
cnnv 29619 The set of complex numbers...
cnnvg 29620 The vector addition (group...
cnnvba 29621 The base set of the normed...
cnnvs 29622 The scalar product operati...
cnnvnm 29623 The norm operation of the ...
cnnvm 29624 The vector subtraction ope...
elimnv 29625 Hypothesis elimination lem...
elimnvu 29626 Hypothesis elimination lem...
imsval 29627 Value of the induced metri...
imsdval 29628 Value of the induced metri...
imsdval2 29629 Value of the distance func...
nvnd 29630 The norm of a normed compl...
imsdf 29631 Mapping for the induced me...
imsmetlem 29632 Lemma for ~ imsmet . (Con...
imsmet 29633 The induced metric of a no...
imsxmet 29634 The induced metric of a no...
cnims 29635 The metric induced on the ...
vacn 29636 Vector addition is jointly...
nmcvcn 29637 The norm of a normed compl...
nmcnc 29638 The norm of a normed compl...
smcnlem 29639 Lemma for ~ smcn . (Contr...
smcn 29640 Scalar multiplication is j...
vmcn 29641 Vector subtraction is join...
dipfval 29644 The inner product function...
ipval 29645 Value of the inner product...
ipval2lem2 29646 Lemma for ~ ipval3 . (Con...
ipval2lem3 29647 Lemma for ~ ipval3 . (Con...
ipval2lem4 29648 Lemma for ~ ipval3 . (Con...
ipval2 29649 Expansion of the inner pro...
4ipval2 29650 Four times the inner produ...
ipval3 29651 Expansion of the inner pro...
ipidsq 29652 The inner product of a vec...
ipnm 29653 Norm expressed in terms of...
dipcl 29654 An inner product is a comp...
ipf 29655 Mapping for the inner prod...
dipcj 29656 The complex conjugate of a...
ipipcj 29657 An inner product times its...
diporthcom 29658 Orthogonality (meaning inn...
dip0r 29659 Inner product with a zero ...
dip0l 29660 Inner product with a zero ...
ipz 29661 The inner product of a vec...
dipcn 29662 Inner product is jointly c...
sspval 29665 The set of all subspaces o...
isssp 29666 The predicate "is a subspa...
sspid 29667 A normed complex vector sp...
sspnv 29668 A subspace is a normed com...
sspba 29669 The base set of a subspace...
sspg 29670 Vector addition on a subsp...
sspgval 29671 Vector addition on a subsp...
ssps 29672 Scalar multiplication on a...
sspsval 29673 Scalar multiplication on a...
sspmlem 29674 Lemma for ~ sspm and other...
sspmval 29675 Vector addition on a subsp...
sspm 29676 Vector subtraction on a su...
sspz 29677 The zero vector of a subsp...
sspn 29678 The norm on a subspace is ...
sspnval 29679 The norm on a subspace in ...
sspimsval 29680 The induced metric on a su...
sspims 29681 The induced metric on a su...
lnoval 29694 The set of linear operator...
islno 29695 The predicate "is a linear...
lnolin 29696 Basic linearity property o...
lnof 29697 A linear operator is a map...
lno0 29698 The value of a linear oper...
lnocoi 29699 The composition of two lin...
lnoadd 29700 Addition property of a lin...
lnosub 29701 Subtraction property of a ...
lnomul 29702 Scalar multiplication prop...
nvo00 29703 Two ways to express a zero...
nmoofval 29704 The operator norm function...
nmooval 29705 The operator norm function...
nmosetre 29706 The set in the supremum of...
nmosetn0 29707 The set in the supremum of...
nmoxr 29708 The norm of an operator is...
nmooge0 29709 The norm of an operator is...
nmorepnf 29710 The norm of an operator is...
nmoreltpnf 29711 The norm of any operator i...
nmogtmnf 29712 The norm of an operator is...
nmoolb 29713 A lower bound for an opera...
nmoubi 29714 An upper bound for an oper...
nmoub3i 29715 An upper bound for an oper...
nmoub2i 29716 An upper bound for an oper...
nmobndi 29717 Two ways to express that a...
nmounbi 29718 Two ways two express that ...
nmounbseqi 29719 An unbounded operator dete...
nmounbseqiALT 29720 Alternate shorter proof of...
nmobndseqi 29721 A bounded sequence determi...
nmobndseqiALT 29722 Alternate shorter proof of...
bloval 29723 The class of bounded linea...
isblo 29724 The predicate "is a bounde...
isblo2 29725 The predicate "is a bounde...
bloln 29726 A bounded operator is a li...
blof 29727 A bounded operator is an o...
nmblore 29728 The norm of a bounded oper...
0ofval 29729 The zero operator between ...
0oval 29730 Value of the zero operator...
0oo 29731 The zero operator is an op...
0lno 29732 The zero operator is linea...
nmoo0 29733 The operator norm of the z...
0blo 29734 The zero operator is a bou...
nmlno0lem 29735 Lemma for ~ nmlno0i . (Co...
nmlno0i 29736 The norm of a linear opera...
nmlno0 29737 The norm of a linear opera...
nmlnoubi 29738 An upper bound for the ope...
nmlnogt0 29739 The norm of a nonzero line...
lnon0 29740 The domain of a nonzero li...
nmblolbii 29741 A lower bound for the norm...
nmblolbi 29742 A lower bound for the norm...
isblo3i 29743 The predicate "is a bounde...
blo3i 29744 Properties that determine ...
blometi 29745 Upper bound for the distan...
blocnilem 29746 Lemma for ~ blocni and ~ l...
blocni 29747 A linear operator is conti...
lnocni 29748 If a linear operator is co...
blocn 29749 A linear operator is conti...
blocn2 29750 A bounded linear operator ...
ajfval 29751 The adjoint function. (Co...
hmoval 29752 The set of Hermitian (self...
ishmo 29753 The predicate "is a hermit...
phnv 29756 Every complex inner produc...
phrel 29757 The class of all complex i...
phnvi 29758 Every complex inner produc...
isphg 29759 The predicate "is a comple...
phop 29760 A complex inner product sp...
cncph 29761 The set of complex numbers...
elimph 29762 Hypothesis elimination lem...
elimphu 29763 Hypothesis elimination lem...
isph 29764 The predicate "is an inner...
phpar2 29765 The parallelogram law for ...
phpar 29766 The parallelogram law for ...
ip0i 29767 A slight variant of Equati...
ip1ilem 29768 Lemma for ~ ip1i . (Contr...
ip1i 29769 Equation 6.47 of [Ponnusam...
ip2i 29770 Equation 6.48 of [Ponnusam...
ipdirilem 29771 Lemma for ~ ipdiri . (Con...
ipdiri 29772 Distributive law for inner...
ipasslem1 29773 Lemma for ~ ipassi . Show...
ipasslem2 29774 Lemma for ~ ipassi . Show...
ipasslem3 29775 Lemma for ~ ipassi . Show...
ipasslem4 29776 Lemma for ~ ipassi . Show...
ipasslem5 29777 Lemma for ~ ipassi . Show...
ipasslem7 29778 Lemma for ~ ipassi . Show...
ipasslem8 29779 Lemma for ~ ipassi . By ~...
ipasslem9 29780 Lemma for ~ ipassi . Conc...
ipasslem10 29781 Lemma for ~ ipassi . Show...
ipasslem11 29782 Lemma for ~ ipassi . Show...
ipassi 29783 Associative law for inner ...
dipdir 29784 Distributive law for inner...
dipdi 29785 Distributive law for inner...
ip2dii 29786 Inner product of two sums....
dipass 29787 Associative law for inner ...
dipassr 29788 "Associative" law for seco...
dipassr2 29789 "Associative" law for inne...
dipsubdir 29790 Distributive law for inner...
dipsubdi 29791 Distributive law for inner...
pythi 29792 The Pythagorean theorem fo...
siilem1 29793 Lemma for ~ sii . (Contri...
siilem2 29794 Lemma for ~ sii . (Contri...
siii 29795 Inference from ~ sii . (C...
sii 29796 Obsolete version of ~ ipca...
ipblnfi 29797 A function ` F ` generated...
ip2eqi 29798 Two vectors are equal iff ...
phoeqi 29799 A condition implying that ...
ajmoi 29800 Every operator has at most...
ajfuni 29801 The adjoint function is a ...
ajfun 29802 The adjoint function is a ...
ajval 29803 Value of the adjoint funct...
iscbn 29806 A complex Banach space is ...
cbncms 29807 The induced metric on comp...
bnnv 29808 Every complex Banach space...
bnrel 29809 The class of all complex B...
bnsscmcl 29810 A subspace of a Banach spa...
cnbn 29811 The set of complex numbers...
ubthlem1 29812 Lemma for ~ ubth . The fu...
ubthlem2 29813 Lemma for ~ ubth . Given ...
ubthlem3 29814 Lemma for ~ ubth . Prove ...
ubth 29815 Uniform Boundedness Theore...
minvecolem1 29816 Lemma for ~ minveco . The...
minvecolem2 29817 Lemma for ~ minveco . Any...
minvecolem3 29818 Lemma for ~ minveco . The...
minvecolem4a 29819 Lemma for ~ minveco . ` F ...
minvecolem4b 29820 Lemma for ~ minveco . The...
minvecolem4c 29821 Lemma for ~ minveco . The...
minvecolem4 29822 Lemma for ~ minveco . The...
minvecolem5 29823 Lemma for ~ minveco . Dis...
minvecolem6 29824 Lemma for ~ minveco . Any...
minvecolem7 29825 Lemma for ~ minveco . Sin...
minveco 29826 Minimizing vector theorem,...
ishlo 29829 The predicate "is a comple...
hlobn 29830 Every complex Hilbert spac...
hlph 29831 Every complex Hilbert spac...
hlrel 29832 The class of all complex H...
hlnv 29833 Every complex Hilbert spac...
hlnvi 29834 Every complex Hilbert spac...
hlvc 29835 Every complex Hilbert spac...
hlcmet 29836 The induced metric on a co...
hlmet 29837 The induced metric on a co...
hlpar2 29838 The parallelogram law sati...
hlpar 29839 The parallelogram law sati...
hlex 29840 The base set of a Hilbert ...
hladdf 29841 Mapping for Hilbert space ...
hlcom 29842 Hilbert space vector addit...
hlass 29843 Hilbert space vector addit...
hl0cl 29844 The Hilbert space zero vec...
hladdid 29845 Hilbert space addition wit...
hlmulf 29846 Mapping for Hilbert space ...
hlmulid 29847 Hilbert space scalar multi...
hlmulass 29848 Hilbert space scalar multi...
hldi 29849 Hilbert space scalar multi...
hldir 29850 Hilbert space scalar multi...
hlmul0 29851 Hilbert space scalar multi...
hlipf 29852 Mapping for Hilbert space ...
hlipcj 29853 Conjugate law for Hilbert ...
hlipdir 29854 Distributive law for Hilbe...
hlipass 29855 Associative law for Hilber...
hlipgt0 29856 The inner product of a Hil...
hlcompl 29857 Completeness of a Hilbert ...
cnchl 29858 The set of complex numbers...
htthlem 29859 Lemma for ~ htth . The co...
htth 29860 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 29916 The group (addition) opera...
h2hsm 29917 The scalar product operati...
h2hnm 29918 The norm function of Hilbe...
h2hvs 29919 The vector subtraction ope...
h2hmetdval 29920 Value of the distance func...
h2hcau 29921 The Cauchy sequences of Hi...
h2hlm 29922 The limit sequences of Hil...
axhilex-zf 29923 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 29924 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 29925 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 29926 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 29927 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 29928 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 29929 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 29930 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 29931 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 29932 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 29933 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 29934 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 29935 Derive Axiom ~ ax-hfi from...
axhis1-zf 29936 Derive Axiom ~ ax-his1 fro...
axhis2-zf 29937 Derive Axiom ~ ax-his2 fro...
axhis3-zf 29938 Derive Axiom ~ ax-his3 fro...
axhis4-zf 29939 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 29940 Derive Axiom ~ ax-hcompl f...
hvmulex 29953 The Hilbert space scalar p...
hvaddcl 29954 Closure of vector addition...
hvmulcl 29955 Closure of scalar multipli...
hvmulcli 29956 Closure inference for scal...
hvsubf 29957 Mapping domain and codomai...
hvsubval 29958 Value of vector subtractio...
hvsubcl 29959 Closure of vector subtract...
hvaddcli 29960 Closure of vector addition...
hvcomi 29961 Commutation of vector addi...
hvsubvali 29962 Value of vector subtractio...
hvsubcli 29963 Closure of vector subtract...
ifhvhv0 29964 Prove ` if ( A e. ~H , A ,...
hvaddid2 29965 Addition with the zero vec...
hvmul0 29966 Scalar multiplication with...
hvmul0or 29967 If a scalar product is zer...
hvsubid 29968 Subtraction of a vector fr...
hvnegid 29969 Addition of negative of a ...
hv2neg 29970 Two ways to express the ne...
hvaddid2i 29971 Addition with the zero vec...
hvnegidi 29972 Addition of negative of a ...
hv2negi 29973 Two ways to express the ne...
hvm1neg 29974 Convert minus one times a ...
hvaddsubval 29975 Value of vector addition i...
hvadd32 29976 Commutative/associative la...
hvadd12 29977 Commutative/associative la...
hvadd4 29978 Hilbert vector space addit...
hvsub4 29979 Hilbert vector space addit...
hvaddsub12 29980 Commutative/associative la...
hvpncan 29981 Addition/subtraction cance...
hvpncan2 29982 Addition/subtraction cance...
hvaddsubass 29983 Associativity of sum and d...
hvpncan3 29984 Subtraction and addition o...
hvmulcom 29985 Scalar multiplication comm...
hvsubass 29986 Hilbert vector space assoc...
hvsub32 29987 Hilbert vector space commu...
hvmulassi 29988 Scalar multiplication asso...
hvmulcomi 29989 Scalar multiplication comm...
hvmul2negi 29990 Double negative in scalar ...
hvsubdistr1 29991 Scalar multiplication dist...
hvsubdistr2 29992 Scalar multiplication dist...
hvdistr1i 29993 Scalar multiplication dist...
hvsubdistr1i 29994 Scalar multiplication dist...
hvassi 29995 Hilbert vector space assoc...
hvadd32i 29996 Hilbert vector space commu...
hvsubassi 29997 Hilbert vector space assoc...
hvsub32i 29998 Hilbert vector space commu...
hvadd12i 29999 Hilbert vector space commu...
hvadd4i 30000 Hilbert vector space addit...
hvsubsub4i 30001 Hilbert vector space addit...
hvsubsub4 30002 Hilbert vector space addit...
hv2times 30003 Two times a vector. (Cont...
hvnegdii 30004 Distribution of negative o...
hvsubeq0i 30005 If the difference between ...
hvsubcan2i 30006 Vector cancellation law. ...
hvaddcani 30007 Cancellation law for vecto...
hvsubaddi 30008 Relationship between vecto...
hvnegdi 30009 Distribution of negative o...
hvsubeq0 30010 If the difference between ...
hvaddeq0 30011 If the sum of two vectors ...
hvaddcan 30012 Cancellation law for vecto...
hvaddcan2 30013 Cancellation law for vecto...
hvmulcan 30014 Cancellation law for scala...
hvmulcan2 30015 Cancellation law for scala...
hvsubcan 30016 Cancellation law for vecto...
hvsubcan2 30017 Cancellation law for vecto...
hvsub0 30018 Subtraction of a zero vect...
hvsubadd 30019 Relationship between vecto...
hvaddsub4 30020 Hilbert vector space addit...
hicl 30022 Closure of inner product. ...
hicli 30023 Closure inference for inne...
his5 30028 Associative law for inner ...
his52 30029 Associative law for inner ...
his35 30030 Move scalar multiplication...
his35i 30031 Move scalar multiplication...
his7 30032 Distributive law for inner...
hiassdi 30033 Distributive/associative l...
his2sub 30034 Distributive law for inner...
his2sub2 30035 Distributive law for inner...
hire 30036 A necessary and sufficient...
hiidrcl 30037 Real closure of inner prod...
hi01 30038 Inner product with the 0 v...
hi02 30039 Inner product with the 0 v...
hiidge0 30040 Inner product with self is...
his6 30041 Zero inner product with se...
his1i 30042 Conjugate law for inner pr...
abshicom 30043 Commuted inner products ha...
hial0 30044 A vector whose inner produ...
hial02 30045 A vector whose inner produ...
hisubcomi 30046 Two vector subtractions si...
hi2eq 30047 Lemma used to prove equali...
hial2eq 30048 Two vectors whose inner pr...
hial2eq2 30049 Two vectors whose inner pr...
orthcom 30050 Orthogonality commutes. (...
normlem0 30051 Lemma used to derive prope...
normlem1 30052 Lemma used to derive prope...
normlem2 30053 Lemma used to derive prope...
normlem3 30054 Lemma used to derive prope...
normlem4 30055 Lemma used to derive prope...
normlem5 30056 Lemma used to derive prope...
normlem6 30057 Lemma used to derive prope...
normlem7 30058 Lemma used to derive prope...
normlem8 30059 Lemma used to derive prope...
normlem9 30060 Lemma used to derive prope...
normlem7tALT 30061 Lemma used to derive prope...
bcseqi 30062 Equality case of Bunjakova...
normlem9at 30063 Lemma used to derive prope...
dfhnorm2 30064 Alternate definition of th...
normf 30065 The norm function maps fro...
normval 30066 The value of the norm of a...
normcl 30067 Real closure of the norm o...
normge0 30068 The norm of a vector is no...
normgt0 30069 The norm of nonzero vector...
norm0 30070 The norm of a zero vector....
norm-i 30071 Theorem 3.3(i) of [Beran] ...
normne0 30072 A norm is nonzero iff its ...
normcli 30073 Real closure of the norm o...
normsqi 30074 The square of a norm. (Co...
norm-i-i 30075 Theorem 3.3(i) of [Beran] ...
normsq 30076 The square of a norm. (Co...
normsub0i 30077 Two vectors are equal iff ...
normsub0 30078 Two vectors are equal iff ...
norm-ii-i 30079 Triangle inequality for no...
norm-ii 30080 Triangle inequality for no...
norm-iii-i 30081 Theorem 3.3(iii) of [Beran...
norm-iii 30082 Theorem 3.3(iii) of [Beran...
normsubi 30083 Negative doesn't change th...
normpythi 30084 Analogy to Pythagorean the...
normsub 30085 Swapping order of subtract...
normneg 30086 The norm of a vector equal...
normpyth 30087 Analogy to Pythagorean the...
normpyc 30088 Corollary to Pythagorean t...
norm3difi 30089 Norm of differences around...
norm3adifii 30090 Norm of differences around...
norm3lem 30091 Lemma involving norm of di...
norm3dif 30092 Norm of differences around...
norm3dif2 30093 Norm of differences around...
norm3lemt 30094 Lemma involving norm of di...
norm3adifi 30095 Norm of differences around...
normpari 30096 Parallelogram law for norm...
normpar 30097 Parallelogram law for norm...
normpar2i 30098 Corollary of parallelogram...
polid2i 30099 Generalized polarization i...
polidi 30100 Polarization identity. Re...
polid 30101 Polarization identity. Re...
hilablo 30102 Hilbert space vector addit...
hilid 30103 The group identity element...
hilvc 30104 Hilbert space is a complex...
hilnormi 30105 Hilbert space norm in term...
hilhhi 30106 Deduce the structure of Hi...
hhnv 30107 Hilbert space is a normed ...
hhva 30108 The group (addition) opera...
hhba 30109 The base set of Hilbert sp...
hh0v 30110 The zero vector of Hilbert...
hhsm 30111 The scalar product operati...
hhvs 30112 The vector subtraction ope...
hhnm 30113 The norm function of Hilbe...
hhims 30114 The induced metric of Hilb...
hhims2 30115 Hilbert space distance met...
hhmet 30116 The induced metric of Hilb...
hhxmet 30117 The induced metric of Hilb...
hhmetdval 30118 Value of the distance func...
hhip 30119 The inner product operatio...
hhph 30120 The Hilbert space of the H...
bcsiALT 30121 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 30122 Bunjakovaskij-Cauchy-Schwa...
bcs 30123 Bunjakovaskij-Cauchy-Schwa...
bcs2 30124 Corollary of the Bunjakova...
bcs3 30125 Corollary of the Bunjakova...
hcau 30126 Member of the set of Cauch...
hcauseq 30127 A Cauchy sequences on a Hi...
hcaucvg 30128 A Cauchy sequence on a Hil...
seq1hcau 30129 A sequence on a Hilbert sp...
hlimi 30130 Express the predicate: Th...
hlimseqi 30131 A sequence with a limit on...
hlimveci 30132 Closure of the limit of a ...
hlimconvi 30133 Convergence of a sequence ...
hlim2 30134 The limit of a sequence on...
hlimadd 30135 Limit of the sum of two se...
hilmet 30136 The Hilbert space norm det...
hilxmet 30137 The Hilbert space norm det...
hilmetdval 30138 Value of the distance func...
hilims 30139 Hilbert space distance met...
hhcau 30140 The Cauchy sequences of Hi...
hhlm 30141 The limit sequences of Hil...
hhcmpl 30142 Lemma used for derivation ...
hilcompl 30143 Lemma used for derivation ...
hhcms 30145 The Hilbert space induced ...
hhhl 30146 The Hilbert space structur...
hilcms 30147 The Hilbert space norm det...
hilhl 30148 The Hilbert space of the H...
issh 30150 Subspace ` H ` of a Hilber...
issh2 30151 Subspace ` H ` of a Hilber...
shss 30152 A subspace is a subset of ...
shel 30153 A member of a subspace of ...
shex 30154 The set of subspaces of a ...
shssii 30155 A closed subspace of a Hil...
sheli 30156 A member of a subspace of ...
shelii 30157 A member of a subspace of ...
sh0 30158 The zero vector belongs to...
shaddcl 30159 Closure of vector addition...
shmulcl 30160 Closure of vector scalar m...
issh3 30161 Subspace ` H ` of a Hilber...
shsubcl 30162 Closure of vector subtract...
isch 30164 Closed subspace ` H ` of a...
isch2 30165 Closed subspace ` H ` of a...
chsh 30166 A closed subspace is a sub...
chsssh 30167 Closed subspaces are subsp...
chex 30168 The set of closed subspace...
chshii 30169 A closed subspace is a sub...
ch0 30170 The zero vector belongs to...
chss 30171 A closed subspace of a Hil...
chel 30172 A member of a closed subsp...
chssii 30173 A closed subspace of a Hil...
cheli 30174 A member of a closed subsp...
chelii 30175 A member of a closed subsp...
chlimi 30176 The limit property of a cl...
hlim0 30177 The zero sequence in Hilbe...
hlimcaui 30178 If a sequence in Hilbert s...
hlimf 30179 Function-like behavior of ...
hlimuni 30180 A Hilbert space sequence c...
hlimreui 30181 The limit of a Hilbert spa...
hlimeui 30182 The limit of a Hilbert spa...
isch3 30183 A Hilbert subspace is clos...
chcompl 30184 Completeness of a closed s...
helch 30185 The Hilbert lattice one (w...
ifchhv 30186 Prove ` if ( A e. CH , A ,...
helsh 30187 Hilbert space is a subspac...
shsspwh 30188 Subspaces are subsets of H...
chsspwh 30189 Closed subspaces are subse...
hsn0elch 30190 The zero subspace belongs ...
norm1 30191 From any nonzero Hilbert s...
norm1exi 30192 A normalized vector exists...
norm1hex 30193 A normalized vector can ex...
elch0 30196 Membership in zero for clo...
h0elch 30197 The zero subspace is a clo...
h0elsh 30198 The zero subspace is a sub...
hhssva 30199 The vector addition operat...
hhsssm 30200 The scalar multiplication ...
hhssnm 30201 The norm operation on a su...
issubgoilem 30202 Lemma for ~ hhssabloilem ....
hhssabloilem 30203 Lemma for ~ hhssabloi . F...
hhssabloi 30204 Abelian group property of ...
hhssablo 30205 Abelian group property of ...
hhssnv 30206 Normed complex vector spac...
hhssnvt 30207 Normed complex vector spac...
hhsst 30208 A member of ` SH ` is a su...
hhshsslem1 30209 Lemma for ~ hhsssh . (Con...
hhshsslem2 30210 Lemma for ~ hhsssh . (Con...
hhsssh 30211 The predicate " ` H ` is a...
hhsssh2 30212 The predicate " ` H ` is a...
hhssba 30213 The base set of a subspace...
hhssvs 30214 The vector subtraction ope...
hhssvsf 30215 Mapping of the vector subt...
hhssims 30216 Induced metric of a subspa...
hhssims2 30217 Induced metric of a subspa...
hhssmet 30218 Induced metric of a subspa...
hhssmetdval 30219 Value of the distance func...
hhsscms 30220 The induced metric of a cl...
hhssbnOLD 30221 Obsolete version of ~ cssb...
ocval 30222 Value of orthogonal comple...
ocel 30223 Membership in orthogonal c...
shocel 30224 Membership in orthogonal c...
ocsh 30225 The orthogonal complement ...
shocsh 30226 The orthogonal complement ...
ocss 30227 An orthogonal complement i...
shocss 30228 An orthogonal complement i...
occon 30229 Contraposition law for ort...
occon2 30230 Double contraposition for ...
occon2i 30231 Double contraposition for ...
oc0 30232 The zero vector belongs to...
ocorth 30233 Members of a subset and it...
shocorth 30234 Members of a subspace and ...
ococss 30235 Inclusion in complement of...
shococss 30236 Inclusion in complement of...
shorth 30237 Members of orthogonal subs...
ocin 30238 Intersection of a Hilbert ...
occon3 30239 Hilbert lattice contraposi...
ocnel 30240 A nonzero vector in the co...
chocvali 30241 Value of the orthogonal co...
shuni 30242 Two subspaces with trivial...
chocunii 30243 Lemma for uniqueness part ...
pjhthmo 30244 Projection Theorem, unique...
occllem 30245 Lemma for ~ occl . (Contr...
occl 30246 Closure of complement of H...
shoccl 30247 Closure of complement of H...
choccl 30248 Closure of complement of H...
choccli 30249 Closure of ` CH ` orthocom...
shsval 30254 Value of subspace sum of t...
shsss 30255 The subspace sum is a subs...
shsel 30256 Membership in the subspace...
shsel3 30257 Membership in the subspace...
shseli 30258 Membership in subspace sum...
shscli 30259 Closure of subspace sum. ...
shscl 30260 Closure of subspace sum. ...
shscom 30261 Commutative law for subspa...
shsva 30262 Vector sum belongs to subs...
shsel1 30263 A subspace sum contains a ...
shsel2 30264 A subspace sum contains a ...
shsvs 30265 Vector subtraction belongs...
shsub1 30266 Subspace sum is an upper b...
shsub2 30267 Subspace sum is an upper b...
choc0 30268 The orthocomplement of the...
choc1 30269 The orthocomplement of the...
chocnul 30270 Orthogonal complement of t...
shintcli 30271 Closure of intersection of...
shintcl 30272 The intersection of a none...
chintcli 30273 The intersection of a none...
chintcl 30274 The intersection (infimum)...
spanval 30275 Value of the linear span o...
hsupval 30276 Value of supremum of set o...
chsupval 30277 The value of the supremum ...
spancl 30278 The span of a subset of Hi...
elspancl 30279 A member of a span is a ve...
shsupcl 30280 Closure of the subspace su...
hsupcl 30281 Closure of supremum of set...
chsupcl 30282 Closure of supremum of sub...
hsupss 30283 Subset relation for suprem...
chsupss 30284 Subset relation for suprem...
hsupunss 30285 The union of a set of Hilb...
chsupunss 30286 The union of a set of clos...
spanss2 30287 A subset of Hilbert space ...
shsupunss 30288 The union of a set of subs...
spanid 30289 A subspace of Hilbert spac...
spanss 30290 Ordering relationship for ...
spanssoc 30291 The span of a subset of Hi...
sshjval 30292 Value of join for subsets ...
shjval 30293 Value of join in ` SH ` . ...
chjval 30294 Value of join in ` CH ` . ...
chjvali 30295 Value of join in ` CH ` . ...
sshjval3 30296 Value of join for subsets ...
sshjcl 30297 Closure of join for subset...
shjcl 30298 Closure of join in ` SH ` ...
chjcl 30299 Closure of join in ` CH ` ...
shjcom 30300 Commutative law for Hilber...
shless 30301 Subset implies subset of s...
shlej1 30302 Add disjunct to both sides...
shlej2 30303 Add disjunct to both sides...
shincli 30304 Closure of intersection of...
shscomi 30305 Commutative law for subspa...
shsvai 30306 Vector sum belongs to subs...
shsel1i 30307 A subspace sum contains a ...
shsel2i 30308 A subspace sum contains a ...
shsvsi 30309 Vector subtraction belongs...
shunssi 30310 Union is smaller than subs...
shunssji 30311 Union is smaller than Hilb...
shsleji 30312 Subspace sum is smaller th...
shjcomi 30313 Commutative law for join i...
shsub1i 30314 Subspace sum is an upper b...
shsub2i 30315 Subspace sum is an upper b...
shub1i 30316 Hilbert lattice join is an...
shjcli 30317 Closure of ` CH ` join. (...
shjshcli 30318 ` SH ` closure of join. (...
shlessi 30319 Subset implies subset of s...
shlej1i 30320 Add disjunct to both sides...
shlej2i 30321 Add disjunct to both sides...
shslej 30322 Subspace sum is smaller th...
shincl 30323 Closure of intersection of...
shub1 30324 Hilbert lattice join is an...
shub2 30325 A subspace is a subset of ...
shsidmi 30326 Idempotent law for Hilbert...
shslubi 30327 The least upper bound law ...
shlesb1i 30328 Hilbert lattice ordering i...
shsval2i 30329 An alternate way to expres...
shsval3i 30330 An alternate way to expres...
shmodsi 30331 The modular law holds for ...
shmodi 30332 The modular law is implied...
pjhthlem1 30333 Lemma for ~ pjhth . (Cont...
pjhthlem2 30334 Lemma for ~ pjhth . (Cont...
pjhth 30335 Projection Theorem: Any H...
pjhtheu 30336 Projection Theorem: Any H...
pjhfval 30338 The value of the projectio...
pjhval 30339 Value of a projection. (C...
pjpreeq 30340 Equality with a projection...
pjeq 30341 Equality with a projection...
axpjcl 30342 Closure of a projection in...
pjhcl 30343 Closure of a projection in...
omlsilem 30344 Lemma for orthomodular law...
omlsii 30345 Subspace inference form of...
omlsi 30346 Subspace form of orthomodu...
ococi 30347 Complement of complement o...
ococ 30348 Complement of complement o...
dfch2 30349 Alternate definition of th...
ococin 30350 The double complement is t...
hsupval2 30351 Alternate definition of su...
chsupval2 30352 The value of the supremum ...
sshjval2 30353 Value of join in the set o...
chsupid 30354 A subspace is the supremum...
chsupsn 30355 Value of supremum of subse...
shlub 30356 Hilbert lattice join is th...
shlubi 30357 Hilbert lattice join is th...
pjhtheu2 30358 Uniqueness of ` y ` for th...
pjcli 30359 Closure of a projection in...
pjhcli 30360 Closure of a projection in...
pjpjpre 30361 Decomposition of a vector ...
axpjpj 30362 Decomposition of a vector ...
pjclii 30363 Closure of a projection in...
pjhclii 30364 Closure of a projection in...
pjpj0i 30365 Decomposition of a vector ...
pjpji 30366 Decomposition of a vector ...
pjpjhth 30367 Projection Theorem: Any H...
pjpjhthi 30368 Projection Theorem: Any H...
pjop 30369 Orthocomplement projection...
pjpo 30370 Projection in terms of ort...
pjopi 30371 Orthocomplement projection...
pjpoi 30372 Projection in terms of ort...
pjoc1i 30373 Projection of a vector in ...
pjchi 30374 Projection of a vector in ...
pjoccl 30375 The part of a vector that ...
pjoc1 30376 Projection of a vector in ...
pjomli 30377 Subspace form of orthomodu...
pjoml 30378 Subspace form of orthomodu...
pjococi 30379 Proof of orthocomplement t...
pjoc2i 30380 Projection of a vector in ...
pjoc2 30381 Projection of a vector in ...
sh0le 30382 The zero subspace is the s...
ch0le 30383 The zero subspace is the s...
shle0 30384 No subspace is smaller tha...
chle0 30385 No Hilbert lattice element...
chnlen0 30386 A Hilbert lattice element ...
ch0pss 30387 The zero subspace is a pro...
orthin 30388 The intersection of orthog...
ssjo 30389 The lattice join of a subs...
shne0i 30390 A nonzero subspace has a n...
shs0i 30391 Hilbert subspace sum with ...
shs00i 30392 Two subspaces are zero iff...
ch0lei 30393 The closed subspace zero i...
chle0i 30394 No Hilbert closed subspace...
chne0i 30395 A nonzero closed subspace ...
chocini 30396 Intersection of a closed s...
chj0i 30397 Join with lattice zero in ...
chm1i 30398 Meet with lattice one in `...
chjcli 30399 Closure of ` CH ` join. (...
chsleji 30400 Subspace sum is smaller th...
chseli 30401 Membership in subspace sum...
chincli 30402 Closure of Hilbert lattice...
chsscon3i 30403 Hilbert lattice contraposi...
chsscon1i 30404 Hilbert lattice contraposi...
chsscon2i 30405 Hilbert lattice contraposi...
chcon2i 30406 Hilbert lattice contraposi...
chcon1i 30407 Hilbert lattice contraposi...
chcon3i 30408 Hilbert lattice contraposi...
chunssji 30409 Union is smaller than ` CH...
chjcomi 30410 Commutative law for join i...
chub1i 30411 ` CH ` join is an upper bo...
chub2i 30412 ` CH ` join is an upper bo...
chlubi 30413 Hilbert lattice join is th...
chlubii 30414 Hilbert lattice join is th...
chlej1i 30415 Add join to both sides of ...
chlej2i 30416 Add join to both sides of ...
chlej12i 30417 Add join to both sides of ...
chlejb1i 30418 Hilbert lattice ordering i...
chdmm1i 30419 De Morgan's law for meet i...
chdmm2i 30420 De Morgan's law for meet i...
chdmm3i 30421 De Morgan's law for meet i...
chdmm4i 30422 De Morgan's law for meet i...
chdmj1i 30423 De Morgan's law for join i...
chdmj2i 30424 De Morgan's law for join i...
chdmj3i 30425 De Morgan's law for join i...
chdmj4i 30426 De Morgan's law for join i...
chnlei 30427 Equivalent expressions for...
chjassi 30428 Associative law for Hilber...
chj00i 30429 Two Hilbert lattice elemen...
chjoi 30430 The join of a closed subsp...
chj1i 30431 Join with Hilbert lattice ...
chm0i 30432 Meet with Hilbert lattice ...
chm0 30433 Meet with Hilbert lattice ...
shjshsi 30434 Hilbert lattice join equal...
shjshseli 30435 A closed subspace sum equa...
chne0 30436 A nonzero closed subspace ...
chocin 30437 Intersection of a closed s...
chssoc 30438 A closed subspace less tha...
chj0 30439 Join with Hilbert lattice ...
chslej 30440 Subspace sum is smaller th...
chincl 30441 Closure of Hilbert lattice...
chsscon3 30442 Hilbert lattice contraposi...
chsscon1 30443 Hilbert lattice contraposi...
chsscon2 30444 Hilbert lattice contraposi...
chpsscon3 30445 Hilbert lattice contraposi...
chpsscon1 30446 Hilbert lattice contraposi...
chpsscon2 30447 Hilbert lattice contraposi...
chjcom 30448 Commutative law for Hilber...
chub1 30449 Hilbert lattice join is gr...
chub2 30450 Hilbert lattice join is gr...
chlub 30451 Hilbert lattice join is th...
chlej1 30452 Add join to both sides of ...
chlej2 30453 Add join to both sides of ...
chlejb1 30454 Hilbert lattice ordering i...
chlejb2 30455 Hilbert lattice ordering i...
chnle 30456 Equivalent expressions for...
chjo 30457 The join of a closed subsp...
chabs1 30458 Hilbert lattice absorption...
chabs2 30459 Hilbert lattice absorption...
chabs1i 30460 Hilbert lattice absorption...
chabs2i 30461 Hilbert lattice absorption...
chjidm 30462 Idempotent law for Hilbert...
chjidmi 30463 Idempotent law for Hilbert...
chj12i 30464 A rearrangement of Hilbert...
chj4i 30465 Rearrangement of the join ...
chjjdiri 30466 Hilbert lattice join distr...
chdmm1 30467 De Morgan's law for meet i...
chdmm2 30468 De Morgan's law for meet i...
chdmm3 30469 De Morgan's law for meet i...
chdmm4 30470 De Morgan's law for meet i...
chdmj1 30471 De Morgan's law for join i...
chdmj2 30472 De Morgan's law for join i...
chdmj3 30473 De Morgan's law for join i...
chdmj4 30474 De Morgan's law for join i...
chjass 30475 Associative law for Hilber...
chj12 30476 A rearrangement of Hilbert...
chj4 30477 Rearrangement of the join ...
ledii 30478 An ortholattice is distrib...
lediri 30479 An ortholattice is distrib...
lejdii 30480 An ortholattice is distrib...
lejdiri 30481 An ortholattice is distrib...
ledi 30482 An ortholattice is distrib...
spansn0 30483 The span of the singleton ...
span0 30484 The span of the empty set ...
elspani 30485 Membership in the span of ...
spanuni 30486 The span of a union is the...
spanun 30487 The span of a union is the...
sshhococi 30488 The join of two Hilbert sp...
hne0 30489 Hilbert space has a nonzer...
chsup0 30490 The supremum of the empty ...
h1deoi 30491 Membership in orthocomplem...
h1dei 30492 Membership in 1-dimensiona...
h1did 30493 A generating vector belong...
h1dn0 30494 A nonzero vector generates...
h1de2i 30495 Membership in 1-dimensiona...
h1de2bi 30496 Membership in 1-dimensiona...
h1de2ctlem 30497 Lemma for ~ h1de2ci . (Co...
h1de2ci 30498 Membership in 1-dimensiona...
spansni 30499 The span of a singleton in...
elspansni 30500 Membership in the span of ...
spansn 30501 The span of a singleton in...
spansnch 30502 The span of a Hilbert spac...
spansnsh 30503 The span of a Hilbert spac...
spansnchi 30504 The span of a singleton in...
spansnid 30505 A vector belongs to the sp...
spansnmul 30506 A scalar product with a ve...
elspansncl 30507 A member of a span of a si...
elspansn 30508 Membership in the span of ...
elspansn2 30509 Membership in the span of ...
spansncol 30510 The singletons of collinea...
spansneleqi 30511 Membership relation implie...
spansneleq 30512 Membership relation that i...
spansnss 30513 The span of the singleton ...
elspansn3 30514 A member of the span of th...
elspansn4 30515 A span membership conditio...
elspansn5 30516 A vector belonging to both...
spansnss2 30517 The span of the singleton ...
normcan 30518 Cancellation-type law that...
pjspansn 30519 A projection on the span o...
spansnpji 30520 A subset of Hilbert space ...
spanunsni 30521 The span of the union of a...
spanpr 30522 The span of a pair of vect...
h1datomi 30523 A 1-dimensional subspace i...
h1datom 30524 A 1-dimensional subspace i...
cmbr 30526 Binary relation expressing...
pjoml2i 30527 Variation of orthomodular ...
pjoml3i 30528 Variation of orthomodular ...
pjoml4i 30529 Variation of orthomodular ...
pjoml5i 30530 The orthomodular law. Rem...
pjoml6i 30531 An equivalent of the ortho...
cmbri 30532 Binary relation expressing...
cmcmlem 30533 Commutation is symmetric. ...
cmcmi 30534 Commutation is symmetric. ...
cmcm2i 30535 Commutation with orthocomp...
cmcm3i 30536 Commutation with orthocomp...
cmcm4i 30537 Commutation with orthocomp...
cmbr2i 30538 Alternate definition of th...
cmcmii 30539 Commutation is symmetric. ...
cmcm2ii 30540 Commutation with orthocomp...
cmcm3ii 30541 Commutation with orthocomp...
cmbr3i 30542 Alternate definition for t...
cmbr4i 30543 Alternate definition for t...
lecmi 30544 Comparable Hilbert lattice...
lecmii 30545 Comparable Hilbert lattice...
cmj1i 30546 A Hilbert lattice element ...
cmj2i 30547 A Hilbert lattice element ...
cmm1i 30548 A Hilbert lattice element ...
cmm2i 30549 A Hilbert lattice element ...
cmbr3 30550 Alternate definition for t...
cm0 30551 The zero Hilbert lattice e...
cmidi 30552 The commutes relation is r...
pjoml2 30553 Variation of orthomodular ...
pjoml3 30554 Variation of orthomodular ...
pjoml5 30555 The orthomodular law. Rem...
cmcm 30556 Commutation is symmetric. ...
cmcm3 30557 Commutation with orthocomp...
cmcm2 30558 Commutation with orthocomp...
lecm 30559 Comparable Hilbert lattice...
fh1 30560 Foulis-Holland Theorem. I...
fh2 30561 Foulis-Holland Theorem. I...
cm2j 30562 A lattice element that com...
fh1i 30563 Foulis-Holland Theorem. I...
fh2i 30564 Foulis-Holland Theorem. I...
fh3i 30565 Variation of the Foulis-Ho...
fh4i 30566 Variation of the Foulis-Ho...
cm2ji 30567 A lattice element that com...
cm2mi 30568 A lattice element that com...
qlax1i 30569 One of the equations showi...
qlax2i 30570 One of the equations showi...
qlax3i 30571 One of the equations showi...
qlax4i 30572 One of the equations showi...
qlax5i 30573 One of the equations showi...
qlaxr1i 30574 One of the conditions show...
qlaxr2i 30575 One of the conditions show...
qlaxr4i 30576 One of the conditions show...
qlaxr5i 30577 One of the conditions show...
qlaxr3i 30578 A variation of the orthomo...
chscllem1 30579 Lemma for ~ chscl . (Cont...
chscllem2 30580 Lemma for ~ chscl . (Cont...
chscllem3 30581 Lemma for ~ chscl . (Cont...
chscllem4 30582 Lemma for ~ chscl . (Cont...
chscl 30583 The subspace sum of two cl...
osumi 30584 If two closed subspaces of...
osumcori 30585 Corollary of ~ osumi . (C...
osumcor2i 30586 Corollary of ~ osumi , sho...
osum 30587 If two closed subspaces of...
spansnji 30588 The subspace sum of a clos...
spansnj 30589 The subspace sum of a clos...
spansnscl 30590 The subspace sum of a clos...
sumspansn 30591 The sum of two vectors bel...
spansnm0i 30592 The meet of different one-...
nonbooli 30593 A Hilbert lattice with two...
spansncvi 30594 Hilbert space has the cove...
spansncv 30595 Hilbert space has the cove...
5oalem1 30596 Lemma for orthoarguesian l...
5oalem2 30597 Lemma for orthoarguesian l...
5oalem3 30598 Lemma for orthoarguesian l...
5oalem4 30599 Lemma for orthoarguesian l...
5oalem5 30600 Lemma for orthoarguesian l...
5oalem6 30601 Lemma for orthoarguesian l...
5oalem7 30602 Lemma for orthoarguesian l...
5oai 30603 Orthoarguesian law 5OA. Th...
3oalem1 30604 Lemma for 3OA (weak) ortho...
3oalem2 30605 Lemma for 3OA (weak) ortho...
3oalem3 30606 Lemma for 3OA (weak) ortho...
3oalem4 30607 Lemma for 3OA (weak) ortho...
3oalem5 30608 Lemma for 3OA (weak) ortho...
3oalem6 30609 Lemma for 3OA (weak) ortho...
3oai 30610 3OA (weak) orthoarguesian ...
pjorthi 30611 Projection components on o...
pjch1 30612 Property of identity proje...
pjo 30613 The orthogonal projection....
pjcompi 30614 Component of a projection....
pjidmi 30615 A projection is idempotent...
pjadjii 30616 A projection is self-adjoi...
pjaddii 30617 Projection of vector sum i...
pjinormii 30618 The inner product of a pro...
pjmulii 30619 Projection of (scalar) pro...
pjsubii 30620 Projection of vector diffe...
pjsslem 30621 Lemma for subset relations...
pjss2i 30622 Subset relationship for pr...
pjssmii 30623 Projection meet property. ...
pjssge0ii 30624 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 30625 Theorem 4.5(v)<->(vi) of [...
pjcji 30626 The projection on a subspa...
pjadji 30627 A projection is self-adjoi...
pjaddi 30628 Projection of vector sum i...
pjinormi 30629 The inner product of a pro...
pjsubi 30630 Projection of vector diffe...
pjmuli 30631 Projection of scalar produ...
pjige0i 30632 The inner product of a pro...
pjige0 30633 The inner product of a pro...
pjcjt2 30634 The projection on a subspa...
pj0i 30635 The projection of the zero...
pjch 30636 Projection of a vector in ...
pjid 30637 The projection of a vector...
pjvec 30638 The set of vectors belongi...
pjocvec 30639 The set of vectors belongi...
pjocini 30640 Membership of projection i...
pjini 30641 Membership of projection i...
pjjsi 30642 A sufficient condition for...
pjfni 30643 Functionality of a project...
pjrni 30644 The range of a projection....
pjfoi 30645 A projection maps onto its...
pjfi 30646 The mapping of a projectio...
pjvi 30647 The value of a projection ...
pjhfo 30648 A projection maps onto its...
pjrn 30649 The range of a projection....
pjhf 30650 The mapping of a projectio...
pjfn 30651 Functionality of a project...
pjsumi 30652 The projection on a subspa...
pj11i 30653 One-to-one correspondence ...
pjdsi 30654 Vector decomposition into ...
pjds3i 30655 Vector decomposition into ...
pj11 30656 One-to-one correspondence ...
pjmfn 30657 Functionality of the proje...
pjmf1 30658 The projector function map...
pjoi0 30659 The inner product of proje...
pjoi0i 30660 The inner product of proje...
pjopythi 30661 Pythagorean theorem for pr...
pjopyth 30662 Pythagorean theorem for pr...
pjnormi 30663 The norm of the projection...
pjpythi 30664 Pythagorean theorem for pr...
pjneli 30665 If a vector does not belon...
pjnorm 30666 The norm of the projection...
pjpyth 30667 Pythagorean theorem for pr...
pjnel 30668 If a vector does not belon...
pjnorm2 30669 A vector belongs to the su...
mayete3i 30670 Mayet's equation E_3. Par...
mayetes3i 30671 Mayet's equation E^*_3, de...
hosmval 30677 Value of the sum of two Hi...
hommval 30678 Value of the scalar produc...
hodmval 30679 Value of the difference of...
hfsmval 30680 Value of the sum of two Hi...
hfmmval 30681 Value of the scalar produc...
hosval 30682 Value of the sum of two Hi...
homval 30683 Value of the scalar produc...
hodval 30684 Value of the difference of...
hfsval 30685 Value of the sum of two Hi...
hfmval 30686 Value of the scalar produc...
hoscl 30687 Closure of the sum of two ...
homcl 30688 Closure of the scalar prod...
hodcl 30689 Closure of the difference ...
ho0val 30692 Value of the zero Hilbert ...
ho0f 30693 Functionality of the zero ...
df0op2 30694 Alternate definition of Hi...
dfiop2 30695 Alternate definition of Hi...
hoif 30696 Functionality of the Hilbe...
hoival 30697 The value of the Hilbert s...
hoico1 30698 Composition with the Hilbe...
hoico2 30699 Composition with the Hilbe...
hoaddcl 30700 The sum of Hilbert space o...
homulcl 30701 The scalar product of a Hi...
hoeq 30702 Equality of Hilbert space ...
hoeqi 30703 Equality of Hilbert space ...
hoscli 30704 Closure of Hilbert space o...
hodcli 30705 Closure of Hilbert space o...
hocoi 30706 Composition of Hilbert spa...
hococli 30707 Closure of composition of ...
hocofi 30708 Mapping of composition of ...
hocofni 30709 Functionality of compositi...
hoaddcli 30710 Mapping of sum of Hilbert ...
hosubcli 30711 Mapping of difference of H...
hoaddfni 30712 Functionality of sum of Hi...
hosubfni 30713 Functionality of differenc...
hoaddcomi 30714 Commutativity of sum of Hi...
hosubcl 30715 Mapping of difference of H...
hoaddcom 30716 Commutativity of sum of Hi...
hodsi 30717 Relationship between Hilbe...
hoaddassi 30718 Associativity of sum of Hi...
hoadd12i 30719 Commutative/associative la...
hoadd32i 30720 Commutative/associative la...
hocadddiri 30721 Distributive law for Hilbe...
hocsubdiri 30722 Distributive law for Hilbe...
ho2coi 30723 Double composition of Hilb...
hoaddass 30724 Associativity of sum of Hi...
hoadd32 30725 Commutative/associative la...
hoadd4 30726 Rearrangement of 4 terms i...
hocsubdir 30727 Distributive law for Hilbe...
hoaddid1i 30728 Sum of a Hilbert space ope...
hodidi 30729 Difference of a Hilbert sp...
ho0coi 30730 Composition of the zero op...
hoid1i 30731 Composition of Hilbert spa...
hoid1ri 30732 Composition of Hilbert spa...
hoaddid1 30733 Sum of a Hilbert space ope...
hodid 30734 Difference of a Hilbert sp...
hon0 30735 A Hilbert space operator i...
hodseqi 30736 Subtraction and addition o...
ho0subi 30737 Subtraction of Hilbert spa...
honegsubi 30738 Relationship between Hilbe...
ho0sub 30739 Subtraction of Hilbert spa...
hosubid1 30740 The zero operator subtract...
honegsub 30741 Relationship between Hilbe...
homulid2 30742 An operator equals its sca...
homco1 30743 Associative law for scalar...
homulass 30744 Scalar product associative...
hoadddi 30745 Scalar product distributiv...
hoadddir 30746 Scalar product reverse dis...
homul12 30747 Swap first and second fact...
honegneg 30748 Double negative of a Hilbe...
hosubneg 30749 Relationship between opera...
hosubdi 30750 Scalar product distributiv...
honegdi 30751 Distribution of negative o...
honegsubdi 30752 Distribution of negative o...
honegsubdi2 30753 Distribution of negative o...
hosubsub2 30754 Law for double subtraction...
hosub4 30755 Rearrangement of 4 terms i...
hosubadd4 30756 Rearrangement of 4 terms i...
hoaddsubass 30757 Associative-type law for a...
hoaddsub 30758 Law for operator addition ...
hosubsub 30759 Law for double subtraction...
hosubsub4 30760 Law for double subtraction...
ho2times 30761 Two times a Hilbert space ...
hoaddsubassi 30762 Associativity of sum and d...
hoaddsubi 30763 Law for sum and difference...
hosd1i 30764 Hilbert space operator sum...
hosd2i 30765 Hilbert space operator sum...
hopncani 30766 Hilbert space operator can...
honpcani 30767 Hilbert space operator can...
hosubeq0i 30768 If the difference between ...
honpncani 30769 Hilbert space operator can...
ho01i 30770 A condition implying that ...
ho02i 30771 A condition implying that ...
hoeq1 30772 A condition implying that ...
hoeq2 30773 A condition implying that ...
adjmo 30774 Every Hilbert space operat...
adjsym 30775 Symmetry property of an ad...
eigrei 30776 A necessary and sufficient...
eigre 30777 A necessary and sufficient...
eigposi 30778 A sufficient condition (fi...
eigorthi 30779 A necessary and sufficient...
eigorth 30780 A necessary and sufficient...
nmopval 30798 Value of the norm of a Hil...
elcnop 30799 Property defining a contin...
ellnop 30800 Property defining a linear...
lnopf 30801 A linear Hilbert space ope...
elbdop 30802 Property defining a bounde...
bdopln 30803 A bounded linear Hilbert s...
bdopf 30804 A bounded linear Hilbert s...
nmopsetretALT 30805 The set in the supremum of...
nmopsetretHIL 30806 The set in the supremum of...
nmopsetn0 30807 The set in the supremum of...
nmopxr 30808 The norm of a Hilbert spac...
nmoprepnf 30809 The norm of a Hilbert spac...
nmopgtmnf 30810 The norm of a Hilbert spac...
nmopreltpnf 30811 The norm of a Hilbert spac...
nmopre 30812 The norm of a bounded oper...
elbdop2 30813 Property defining a bounde...
elunop 30814 Property defining a unitar...
elhmop 30815 Property defining a Hermit...
hmopf 30816 A Hermitian operator is a ...
hmopex 30817 The class of Hermitian ope...
nmfnval 30818 Value of the norm of a Hil...
nmfnsetre 30819 The set in the supremum of...
nmfnsetn0 30820 The set in the supremum of...
nmfnxr 30821 The norm of any Hilbert sp...
nmfnrepnf 30822 The norm of a Hilbert spac...
nlfnval 30823 Value of the null space of...
elcnfn 30824 Property defining a contin...
ellnfn 30825 Property defining a linear...
lnfnf 30826 A linear Hilbert space fun...
dfadj2 30827 Alternate definition of th...
funadj 30828 Functionality of the adjoi...
dmadjss 30829 The domain of the adjoint ...
dmadjop 30830 A member of the domain of ...
adjeu 30831 Elementhood in the domain ...
adjval 30832 Value of the adjoint funct...
adjval2 30833 Value of the adjoint funct...
cnvadj 30834 The adjoint function equal...
funcnvadj 30835 The converse of the adjoin...
adj1o 30836 The adjoint function maps ...
dmadjrn 30837 The adjoint of an operator...
eigvecval 30838 The set of eigenvectors of...
eigvalfval 30839 The eigenvalues of eigenve...
specval 30840 The value of the spectrum ...
speccl 30841 The spectrum of an operato...
hhlnoi 30842 The linear operators of Hi...
hhnmoi 30843 The norm of an operator in...
hhbloi 30844 A bounded linear operator ...
hh0oi 30845 The zero operator in Hilbe...
hhcno 30846 The continuous operators o...
hhcnf 30847 The continuous functionals...
dmadjrnb 30848 The adjoint of an operator...
nmoplb 30849 A lower bound for an opera...
nmopub 30850 An upper bound for an oper...
nmopub2tALT 30851 An upper bound for an oper...
nmopub2tHIL 30852 An upper bound for an oper...
nmopge0 30853 The norm of any Hilbert sp...
nmopgt0 30854 A linear Hilbert space ope...
cnopc 30855 Basic continuity property ...
lnopl 30856 Basic linearity property o...
unop 30857 Basic inner product proper...
unopf1o 30858 A unitary operator in Hilb...
unopnorm 30859 A unitary operator is idem...
cnvunop 30860 The inverse (converse) of ...
unopadj 30861 The inverse (converse) of ...
unoplin 30862 A unitary operator is line...
counop 30863 The composition of two uni...
hmop 30864 Basic inner product proper...
hmopre 30865 The inner product of the v...
nmfnlb 30866 A lower bound for a functi...
nmfnleub 30867 An upper bound for the nor...
nmfnleub2 30868 An upper bound for the nor...
nmfnge0 30869 The norm of any Hilbert sp...
elnlfn 30870 Membership in the null spa...
elnlfn2 30871 Membership in the null spa...
cnfnc 30872 Basic continuity property ...
lnfnl 30873 Basic linearity property o...
adjcl 30874 Closure of the adjoint of ...
adj1 30875 Property of an adjoint Hil...
adj2 30876 Property of an adjoint Hil...
adjeq 30877 A property that determines...
adjadj 30878 Double adjoint. Theorem 3...
adjvalval 30879 Value of the value of the ...
unopadj2 30880 The adjoint of a unitary o...
hmopadj 30881 A Hermitian operator is se...
hmdmadj 30882 Every Hermitian operator h...
hmopadj2 30883 An operator is Hermitian i...
hmoplin 30884 A Hermitian operator is li...
brafval 30885 The bra of a vector, expre...
braval 30886 A bra-ket juxtaposition, e...
braadd 30887 Linearity property of bra ...
bramul 30888 Linearity property of bra ...
brafn 30889 The bra function is a func...
bralnfn 30890 The Dirac bra function is ...
bracl 30891 Closure of the bra functio...
bra0 30892 The Dirac bra of the zero ...
brafnmul 30893 Anti-linearity property of...
kbfval 30894 The outer product of two v...
kbop 30895 The outer product of two v...
kbval 30896 The value of the operator ...
kbmul 30897 Multiplication property of...
kbpj 30898 If a vector ` A ` has norm...
eleigvec 30899 Membership in the set of e...
eleigvec2 30900 Membership in the set of e...
eleigveccl 30901 Closure of an eigenvector ...
eigvalval 30902 The eigenvalue of an eigen...
eigvalcl 30903 An eigenvalue is a complex...
eigvec1 30904 Property of an eigenvector...
eighmre 30905 The eigenvalues of a Hermi...
eighmorth 30906 Eigenvectors of a Hermitia...
nmopnegi 30907 Value of the norm of the n...
lnop0 30908 The value of a linear Hilb...
lnopmul 30909 Multiplicative property of...
lnopli 30910 Basic scalar product prope...
lnopfi 30911 A linear Hilbert space ope...
lnop0i 30912 The value of a linear Hilb...
lnopaddi 30913 Additive property of a lin...
lnopmuli 30914 Multiplicative property of...
lnopaddmuli 30915 Sum/product property of a ...
lnopsubi 30916 Subtraction property for a...
lnopsubmuli 30917 Subtraction/product proper...
lnopmulsubi 30918 Product/subtraction proper...
homco2 30919 Move a scalar product out ...
idunop 30920 The identity function (res...
0cnop 30921 The identically zero funct...
0cnfn 30922 The identically zero funct...
idcnop 30923 The identity function (res...
idhmop 30924 The Hilbert space identity...
0hmop 30925 The identically zero funct...
0lnop 30926 The identically zero funct...
0lnfn 30927 The identically zero funct...
nmop0 30928 The norm of the zero opera...
nmfn0 30929 The norm of the identicall...
hmopbdoptHIL 30930 A Hermitian operator is a ...
hoddii 30931 Distributive law for Hilbe...
hoddi 30932 Distributive law for Hilbe...
nmop0h 30933 The norm of any operator o...
idlnop 30934 The identity function (res...
0bdop 30935 The identically zero opera...
adj0 30936 Adjoint of the zero operat...
nmlnop0iALT 30937 A linear operator with a z...
nmlnop0iHIL 30938 A linear operator with a z...
nmlnopgt0i 30939 A linear Hilbert space ope...
nmlnop0 30940 A linear operator with a z...
nmlnopne0 30941 A linear operator with a n...
lnopmi 30942 The scalar product of a li...
lnophsi 30943 The sum of two linear oper...
lnophdi 30944 The difference of two line...
lnopcoi 30945 The composition of two lin...
lnopco0i 30946 The composition of a linea...
lnopeq0lem1 30947 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 30948 Lemma for ~ lnopeq0i . (C...
lnopeq0i 30949 A condition implying that ...
lnopeqi 30950 Two linear Hilbert space o...
lnopeq 30951 Two linear Hilbert space o...
lnopunilem1 30952 Lemma for ~ lnopunii . (C...
lnopunilem2 30953 Lemma for ~ lnopunii . (C...
lnopunii 30954 If a linear operator (whos...
elunop2 30955 An operator is unitary iff...
nmopun 30956 Norm of a unitary Hilbert ...
unopbd 30957 A unitary operator is a bo...
lnophmlem1 30958 Lemma for ~ lnophmi . (Co...
lnophmlem2 30959 Lemma for ~ lnophmi . (Co...
lnophmi 30960 A linear operator is Hermi...
lnophm 30961 A linear operator is Hermi...
hmops 30962 The sum of two Hermitian o...
hmopm 30963 The scalar product of a He...
hmopd 30964 The difference of two Herm...
hmopco 30965 The composition of two com...
nmbdoplbi 30966 A lower bound for the norm...
nmbdoplb 30967 A lower bound for the norm...
nmcexi 30968 Lemma for ~ nmcopexi and ~...
nmcopexi 30969 The norm of a continuous l...
nmcoplbi 30970 A lower bound for the norm...
nmcopex 30971 The norm of a continuous l...
nmcoplb 30972 A lower bound for the norm...
nmophmi 30973 The norm of the scalar pro...
bdophmi 30974 The scalar product of a bo...
lnconi 30975 Lemma for ~ lnopconi and ~...
lnopconi 30976 A condition equivalent to ...
lnopcon 30977 A condition equivalent to ...
lnopcnbd 30978 A linear operator is conti...
lncnopbd 30979 A continuous linear operat...
lncnbd 30980 A continuous linear operat...
lnopcnre 30981 A linear operator is conti...
lnfnli 30982 Basic property of a linear...
lnfnfi 30983 A linear Hilbert space fun...
lnfn0i 30984 The value of a linear Hilb...
lnfnaddi 30985 Additive property of a lin...
lnfnmuli 30986 Multiplicative property of...
lnfnaddmuli 30987 Sum/product property of a ...
lnfnsubi 30988 Subtraction property for a...
lnfn0 30989 The value of a linear Hilb...
lnfnmul 30990 Multiplicative property of...
nmbdfnlbi 30991 A lower bound for the norm...
nmbdfnlb 30992 A lower bound for the norm...
nmcfnexi 30993 The norm of a continuous l...
nmcfnlbi 30994 A lower bound for the norm...
nmcfnex 30995 The norm of a continuous l...
nmcfnlb 30996 A lower bound of the norm ...
lnfnconi 30997 A condition equivalent to ...
lnfncon 30998 A condition equivalent to ...
lnfncnbd 30999 A linear functional is con...
imaelshi 31000 The image of a subspace un...
rnelshi 31001 The range of a linear oper...
nlelshi 31002 The null space of a linear...
nlelchi 31003 The null space of a contin...
riesz3i 31004 A continuous linear functi...
riesz4i 31005 A continuous linear functi...
riesz4 31006 A continuous linear functi...
riesz1 31007 Part 1 of the Riesz repres...
riesz2 31008 Part 2 of the Riesz repres...
cnlnadjlem1 31009 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 31010 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 31011 Lemma for ~ cnlnadji . By...
cnlnadjlem4 31012 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 31013 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 31014 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 31015 Lemma for ~ cnlnadji . He...
cnlnadjlem8 31016 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 31017 Lemma for ~ cnlnadji . ` F...
cnlnadji 31018 Every continuous linear op...
cnlnadjeui 31019 Every continuous linear op...
cnlnadjeu 31020 Every continuous linear op...
cnlnadj 31021 Every continuous linear op...
cnlnssadj 31022 Every continuous linear Hi...
bdopssadj 31023 Every bounded linear Hilbe...
bdopadj 31024 Every bounded linear Hilbe...
adjbdln 31025 The adjoint of a bounded l...
adjbdlnb 31026 An operator is bounded and...
adjbd1o 31027 The mapping of adjoints of...
adjlnop 31028 The adjoint of an operator...
adjsslnop 31029 Every operator with an adj...
nmopadjlei 31030 Property of the norm of an...
nmopadjlem 31031 Lemma for ~ nmopadji . (C...
nmopadji 31032 Property of the norm of an...
adjeq0 31033 An operator is zero iff it...
adjmul 31034 The adjoint of the scalar ...
adjadd 31035 The adjoint of the sum of ...
nmoptrii 31036 Triangle inequality for th...
nmopcoi 31037 Upper bound for the norm o...
bdophsi 31038 The sum of two bounded lin...
bdophdi 31039 The difference between two...
bdopcoi 31040 The composition of two bou...
nmoptri2i 31041 Triangle-type inequality f...
adjcoi 31042 The adjoint of a compositi...
nmopcoadji 31043 The norm of an operator co...
nmopcoadj2i 31044 The norm of an operator co...
nmopcoadj0i 31045 An operator composed with ...
unierri 31046 If we approximate a chain ...
branmfn 31047 The norm of the bra functi...
brabn 31048 The bra of a vector is a b...
rnbra 31049 The set of bras equals the...
bra11 31050 The bra function maps vect...
bracnln 31051 A bra is a continuous line...
cnvbraval 31052 Value of the converse of t...
cnvbracl 31053 Closure of the converse of...
cnvbrabra 31054 The converse bra of the br...
bracnvbra 31055 The bra of the converse br...
bracnlnval 31056 The vector that a continuo...
cnvbramul 31057 Multiplication property of...
kbass1 31058 Dirac bra-ket associative ...
kbass2 31059 Dirac bra-ket associative ...
kbass3 31060 Dirac bra-ket associative ...
kbass4 31061 Dirac bra-ket associative ...
kbass5 31062 Dirac bra-ket associative ...
kbass6 31063 Dirac bra-ket associative ...
leopg 31064 Ordering relation for posi...
leop 31065 Ordering relation for oper...
leop2 31066 Ordering relation for oper...
leop3 31067 Operator ordering in terms...
leoppos 31068 Binary relation defining a...
leoprf2 31069 The ordering relation for ...
leoprf 31070 The ordering relation for ...
leopsq 31071 The square of a Hermitian ...
0leop 31072 The zero operator is a pos...
idleop 31073 The identity operator is a...
leopadd 31074 The sum of two positive op...
leopmuli 31075 The scalar product of a no...
leopmul 31076 The scalar product of a po...
leopmul2i 31077 Scalar product applied to ...
leoptri 31078 The positive operator orde...
leoptr 31079 The positive operator orde...
leopnmid 31080 A bounded Hermitian operat...
nmopleid 31081 A nonzero, bounded Hermiti...
opsqrlem1 31082 Lemma for opsqri . (Contr...
opsqrlem2 31083 Lemma for opsqri . ` F `` ...
opsqrlem3 31084 Lemma for opsqri . (Contr...
opsqrlem4 31085 Lemma for opsqri . (Contr...
opsqrlem5 31086 Lemma for opsqri . (Contr...
opsqrlem6 31087 Lemma for opsqri . (Contr...
pjhmopi 31088 A projector is a Hermitian...
pjlnopi 31089 A projector is a linear op...
pjnmopi 31090 The operator norm of a pro...
pjbdlni 31091 A projector is a bounded l...
pjhmop 31092 A projection is a Hermitia...
hmopidmchi 31093 An idempotent Hermitian op...
hmopidmpji 31094 An idempotent Hermitian op...
hmopidmch 31095 An idempotent Hermitian op...
hmopidmpj 31096 An idempotent Hermitian op...
pjsdii 31097 Distributive law for Hilbe...
pjddii 31098 Distributive law for Hilbe...
pjsdi2i 31099 Chained distributive law f...
pjcoi 31100 Composition of projections...
pjcocli 31101 Closure of composition of ...
pjcohcli 31102 Closure of composition of ...
pjadjcoi 31103 Adjoint of composition of ...
pjcofni 31104 Functionality of compositi...
pjss1coi 31105 Subset relationship for pr...
pjss2coi 31106 Subset relationship for pr...
pjssmi 31107 Projection meet property. ...
pjssge0i 31108 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 31109 Theorem 4.5(v)<->(vi) of [...
pjnormssi 31110 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 31111 Composition of projections...
pjscji 31112 The projection of orthogon...
pjssumi 31113 The projection on a subspa...
pjssposi 31114 Projector ordering can be ...
pjordi 31115 The definition of projecto...
pjssdif2i 31116 The projection subspace of...
pjssdif1i 31117 A necessary and sufficient...
pjimai 31118 The image of a projection....
pjidmcoi 31119 A projection is idempotent...
pjoccoi 31120 Composition of projections...
pjtoi 31121 Subspace sum of projection...
pjoci 31122 Projection of orthocomplem...
pjidmco 31123 A projection operator is i...
dfpjop 31124 Definition of projection o...
pjhmopidm 31125 Two ways to express the se...
elpjidm 31126 A projection operator is i...
elpjhmop 31127 A projection operator is H...
0leopj 31128 A projector is a positive ...
pjadj2 31129 A projector is self-adjoin...
pjadj3 31130 A projector is self-adjoin...
elpjch 31131 Reconstruction of the subs...
elpjrn 31132 Reconstruction of the subs...
pjinvari 31133 A closed subspace ` H ` wi...
pjin1i 31134 Lemma for Theorem 1.22 of ...
pjin2i 31135 Lemma for Theorem 1.22 of ...
pjin3i 31136 Lemma for Theorem 1.22 of ...
pjclem1 31137 Lemma for projection commu...
pjclem2 31138 Lemma for projection commu...
pjclem3 31139 Lemma for projection commu...
pjclem4a 31140 Lemma for projection commu...
pjclem4 31141 Lemma for projection commu...
pjci 31142 Two subspaces commute iff ...
pjcmul1i 31143 A necessary and sufficient...
pjcmul2i 31144 The projection subspace of...
pjcohocli 31145 Closure of composition of ...
pjadj2coi 31146 Adjoint of double composit...
pj2cocli 31147 Closure of double composit...
pj3lem1 31148 Lemma for projection tripl...
pj3si 31149 Stronger projection triple...
pj3i 31150 Projection triplet theorem...
pj3cor1i 31151 Projection triplet corolla...
pjs14i 31152 Theorem S-14 of Watanabe, ...
isst 31155 Property of a state. (Con...
ishst 31156 Property of a complex Hilb...
sticl 31157 ` [ 0 , 1 ] ` closure of t...
stcl 31158 Real closure of the value ...
hstcl 31159 Closure of the value of a ...
hst1a 31160 Unit value of a Hilbert-sp...
hstel2 31161 Properties of a Hilbert-sp...
hstorth 31162 Orthogonality property of ...
hstosum 31163 Orthogonal sum property of...
hstoc 31164 Sum of a Hilbert-space-val...
hstnmoc 31165 Sum of norms of a Hilbert-...
stge0 31166 The value of a state is no...
stle1 31167 The value of a state is le...
hstle1 31168 The norm of the value of a...
hst1h 31169 The norm of a Hilbert-spac...
hst0h 31170 The norm of a Hilbert-spac...
hstpyth 31171 Pythagorean property of a ...
hstle 31172 Ordering property of a Hil...
hstles 31173 Ordering property of a Hil...
hstoh 31174 A Hilbert-space-valued sta...
hst0 31175 A Hilbert-space-valued sta...
sthil 31176 The value of a state at th...
stj 31177 The value of a state on a ...
sto1i 31178 The state of a subspace pl...
sto2i 31179 The state of the orthocomp...
stge1i 31180 If a state is greater than...
stle0i 31181 If a state is less than or...
stlei 31182 Ordering law for states. ...
stlesi 31183 Ordering law for states. ...
stji1i 31184 Join of components of Sasa...
stm1i 31185 State of component of unit...
stm1ri 31186 State of component of unit...
stm1addi 31187 Sum of states whose meet i...
staddi 31188 If the sum of 2 states is ...
stm1add3i 31189 Sum of states whose meet i...
stadd3i 31190 If the sum of 3 states is ...
st0 31191 The state of the zero subs...
strlem1 31192 Lemma for strong state the...
strlem2 31193 Lemma for strong state the...
strlem3a 31194 Lemma for strong state the...
strlem3 31195 Lemma for strong state the...
strlem4 31196 Lemma for strong state the...
strlem5 31197 Lemma for strong state the...
strlem6 31198 Lemma for strong state the...
stri 31199 Strong state theorem. The...
strb 31200 Strong state theorem (bidi...
hstrlem2 31201 Lemma for strong set of CH...
hstrlem3a 31202 Lemma for strong set of CH...
hstrlem3 31203 Lemma for strong set of CH...
hstrlem4 31204 Lemma for strong set of CH...
hstrlem5 31205 Lemma for strong set of CH...
hstrlem6 31206 Lemma for strong set of CH...
hstri 31207 Hilbert space admits a str...
hstrbi 31208 Strong CH-state theorem (b...
largei 31209 A Hilbert lattice admits a...
jplem1 31210 Lemma for Jauch-Piron theo...
jplem2 31211 Lemma for Jauch-Piron theo...
jpi 31212 The function ` S ` , that ...
golem1 31213 Lemma for Godowski's equat...
golem2 31214 Lemma for Godowski's equat...
goeqi 31215 Godowski's equation, shown...
stcltr1i 31216 Property of a strong class...
stcltr2i 31217 Property of a strong class...
stcltrlem1 31218 Lemma for strong classical...
stcltrlem2 31219 Lemma for strong classical...
stcltrthi 31220 Theorem for classically st...
cvbr 31224 Binary relation expressing...
cvbr2 31225 Binary relation expressing...
cvcon3 31226 Contraposition law for the...
cvpss 31227 The covers relation implie...
cvnbtwn 31228 The covers relation implie...
cvnbtwn2 31229 The covers relation implie...
cvnbtwn3 31230 The covers relation implie...
cvnbtwn4 31231 The covers relation implie...
cvnsym 31232 The covers relation is not...
cvnref 31233 The covers relation is not...
cvntr 31234 The covers relation is not...
spansncv2 31235 Hilbert space has the cove...
mdbr 31236 Binary relation expressing...
mdi 31237 Consequence of the modular...
mdbr2 31238 Binary relation expressing...
mdbr3 31239 Binary relation expressing...
mdbr4 31240 Binary relation expressing...
dmdbr 31241 Binary relation expressing...
dmdmd 31242 The dual modular pair prop...
mddmd 31243 The modular pair property ...
dmdi 31244 Consequence of the dual mo...
dmdbr2 31245 Binary relation expressing...
dmdi2 31246 Consequence of the dual mo...
dmdbr3 31247 Binary relation expressing...
dmdbr4 31248 Binary relation expressing...
dmdi4 31249 Consequence of the dual mo...
dmdbr5 31250 Binary relation expressing...
mddmd2 31251 Relationship between modul...
mdsl0 31252 A sublattice condition tha...
ssmd1 31253 Ordering implies the modul...
ssmd2 31254 Ordering implies the modul...
ssdmd1 31255 Ordering implies the dual ...
ssdmd2 31256 Ordering implies the dual ...
dmdsl3 31257 Sublattice mapping for a d...
mdsl3 31258 Sublattice mapping for a m...
mdslle1i 31259 Order preservation of the ...
mdslle2i 31260 Order preservation of the ...
mdslj1i 31261 Join preservation of the o...
mdslj2i 31262 Meet preservation of the r...
mdsl1i 31263 If the modular pair proper...
mdsl2i 31264 If the modular pair proper...
mdsl2bi 31265 If the modular pair proper...
cvmdi 31266 The covering property impl...
mdslmd1lem1 31267 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 31268 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 31269 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 31270 Lemma for ~ mdslmd1i . (C...
mdslmd1i 31271 Preservation of the modula...
mdslmd2i 31272 Preservation of the modula...
mdsldmd1i 31273 Preservation of the dual m...
mdslmd3i 31274 Modular pair conditions th...
mdslmd4i 31275 Modular pair condition tha...
csmdsymi 31276 Cross-symmetry implies M-s...
mdexchi 31277 An exchange lemma for modu...
cvmd 31278 The covering property impl...
cvdmd 31279 The covering property impl...
ela 31281 Atoms in a Hilbert lattice...
elat2 31282 Expanded membership relati...
elatcv0 31283 A Hilbert lattice element ...
atcv0 31284 An atom covers the zero su...
atssch 31285 Atoms are a subset of the ...
atelch 31286 An atom is a Hilbert latti...
atne0 31287 An atom is not the Hilbert...
atss 31288 A lattice element smaller ...
atsseq 31289 Two atoms in a subset rela...
atcveq0 31290 A Hilbert lattice element ...
h1da 31291 A 1-dimensional subspace i...
spansna 31292 The span of the singleton ...
sh1dle 31293 A 1-dimensional subspace i...
ch1dle 31294 A 1-dimensional subspace i...
atom1d 31295 The 1-dimensional subspace...
superpos 31296 Superposition Principle. ...
chcv1 31297 The Hilbert lattice has th...
chcv2 31298 The Hilbert lattice has th...
chjatom 31299 The join of a closed subsp...
shatomici 31300 The lattice of Hilbert sub...
hatomici 31301 The Hilbert lattice is ato...
hatomic 31302 A Hilbert lattice is atomi...
shatomistici 31303 The lattice of Hilbert sub...
hatomistici 31304 ` CH ` is atomistic, i.e. ...
chpssati 31305 Two Hilbert lattice elemen...
chrelati 31306 The Hilbert lattice is rel...
chrelat2i 31307 A consequence of relative ...
cvati 31308 If a Hilbert lattice eleme...
cvbr4i 31309 An alternate way to expres...
cvexchlem 31310 Lemma for ~ cvexchi . (Co...
cvexchi 31311 The Hilbert lattice satisf...
chrelat2 31312 A consequence of relative ...
chrelat3 31313 A consequence of relative ...
chrelat3i 31314 A consequence of the relat...
chrelat4i 31315 A consequence of relative ...
cvexch 31316 The Hilbert lattice satisf...
cvp 31317 The Hilbert lattice satisf...
atnssm0 31318 The meet of a Hilbert latt...
atnemeq0 31319 The meet of distinct atoms...
atssma 31320 The meet with an atom's su...
atcv0eq 31321 Two atoms covering the zer...
atcv1 31322 Two atoms covering the zer...
atexch 31323 The Hilbert lattice satisf...
atomli 31324 An assertion holding in at...
atoml2i 31325 An assertion holding in at...
atordi 31326 An ordering law for a Hilb...
atcvatlem 31327 Lemma for ~ atcvati . (Co...
atcvati 31328 A nonzero Hilbert lattice ...
atcvat2i 31329 A Hilbert lattice element ...
atord 31330 An ordering law for a Hilb...
atcvat2 31331 A Hilbert lattice element ...
chirredlem1 31332 Lemma for ~ chirredi . (C...
chirredlem2 31333 Lemma for ~ chirredi . (C...
chirredlem3 31334 Lemma for ~ chirredi . (C...
chirredlem4 31335 Lemma for ~ chirredi . (C...
chirredi 31336 The Hilbert lattice is irr...
chirred 31337 The Hilbert lattice is irr...
atcvat3i 31338 A condition implying that ...
atcvat4i 31339 A condition implying exist...
atdmd 31340 Two Hilbert lattice elemen...
atmd 31341 Two Hilbert lattice elemen...
atmd2 31342 Two Hilbert lattice elemen...
atabsi 31343 Absorption of an incompara...
atabs2i 31344 Absorption of an incompara...
mdsymlem1 31345 Lemma for ~ mdsymi . (Con...
mdsymlem2 31346 Lemma for ~ mdsymi . (Con...
mdsymlem3 31347 Lemma for ~ mdsymi . (Con...
mdsymlem4 31348 Lemma for ~ mdsymi . This...
mdsymlem5 31349 Lemma for ~ mdsymi . (Con...
mdsymlem6 31350 Lemma for ~ mdsymi . This...
mdsymlem7 31351 Lemma for ~ mdsymi . Lemm...
mdsymlem8 31352 Lemma for ~ mdsymi . Lemm...
mdsymi 31353 M-symmetry of the Hilbert ...
mdsym 31354 M-symmetry of the Hilbert ...
dmdsym 31355 Dual M-symmetry of the Hil...
atdmd2 31356 Two Hilbert lattice elemen...
sumdmdii 31357 If the subspace sum of two...
cmmdi 31358 Commuting subspaces form a...
cmdmdi 31359 Commuting subspaces form a...
sumdmdlem 31360 Lemma for ~ sumdmdi . The...
sumdmdlem2 31361 Lemma for ~ sumdmdi . (Co...
sumdmdi 31362 The subspace sum of two Hi...
dmdbr4ati 31363 Dual modular pair property...
dmdbr5ati 31364 Dual modular pair property...
dmdbr6ati 31365 Dual modular pair property...
dmdbr7ati 31366 Dual modular pair property...
mdoc1i 31367 Orthocomplements form a mo...
mdoc2i 31368 Orthocomplements form a mo...
dmdoc1i 31369 Orthocomplements form a du...
dmdoc2i 31370 Orthocomplements form a du...
mdcompli 31371 A condition equivalent to ...
dmdcompli 31372 A condition equivalent to ...
mddmdin0i 31373 If dual modular implies mo...
cdjreui 31374 A member of the sum of dis...
cdj1i 31375 Two ways to express " ` A ...
cdj3lem1 31376 A property of " ` A ` and ...
cdj3lem2 31377 Lemma for ~ cdj3i . Value...
cdj3lem2a 31378 Lemma for ~ cdj3i . Closu...
cdj3lem2b 31379 Lemma for ~ cdj3i . The f...
cdj3lem3 31380 Lemma for ~ cdj3i . Value...
cdj3lem3a 31381 Lemma for ~ cdj3i . Closu...
cdj3lem3b 31382 Lemma for ~ cdj3i . The s...
cdj3i 31383 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 31384 (_This theorem is a dummy ...
sa-abvi 31385 A theorem about the univer...
xfree 31386 A partial converse to ~ 19...
xfree2 31387 A partial converse to ~ 19...
addltmulALT 31388 A proof readability experi...
bian1d 31389 Adding a superfluous conju...
or3di 31390 Distributive law for disju...
or3dir 31391 Distributive law for disju...
3o1cs 31392 Deduction eliminating disj...
3o2cs 31393 Deduction eliminating disj...
3o3cs 31394 Deduction eliminating disj...
13an22anass 31395 Associative law for four c...
sbc2iedf 31396 Conversion of implicit sub...
rspc2daf 31397 Double restricted speciali...
ralcom4f 31398 Commutation of restricted ...
rexcom4f 31399 Commutation of restricted ...
19.9d2rf 31400 A deduction version of one...
19.9d2r 31401 A deduction version of one...
r19.29ffa 31402 A commonly used pattern ba...
eqtrb 31403 A transposition of equalit...
opsbc2ie 31404 Conversion of implicit sub...
opreu2reuALT 31405 Correspondence between uni...
2reucom 31408 Double restricted existent...
2reu2rex1 31409 Double restricted existent...
2reureurex 31410 Double restricted existent...
2reu2reu2 31411 Double restricted existent...
opreu2reu1 31412 Equivalent definition of t...
sq2reunnltb 31413 There exists a unique deco...
addsqnot2reu 31414 For each complex number ` ...
sbceqbidf 31415 Equality theorem for class...
sbcies 31416 A special version of class...
mo5f 31417 Alternate definition of "a...
nmo 31418 Negation of "at most one"....
reuxfrdf 31419 Transfer existential uniqu...
rexunirn 31420 Restricted existential qua...
rmoxfrd 31421 Transfer "at most one" res...
rmoun 31422 "At most one" restricted e...
rmounid 31423 A case where an "at most o...
riotaeqbidva 31424 Equivalent wff's yield equ...
dmrab 31425 Domain of a restricted cla...
difrab2 31426 Difference of two restrict...
rabexgfGS 31427 Separation Scheme in terms...
rabsnel 31428 Truth implied by equality ...
rabeqsnd 31429 Conditions for a restricte...
eqrrabd 31430 Deduce equality with a res...
foresf1o 31431 From a surjective function...
rabfodom 31432 Domination relation for re...
abrexdomjm 31433 An indexed set is dominate...
abrexdom2jm 31434 An indexed set is dominate...
abrexexd 31435 Existence of a class abstr...
elabreximd 31436 Class substitution in an i...
elabreximdv 31437 Class substitution in an i...
abrexss 31438 A necessary condition for ...
elunsn 31439 Elementhood to a union wit...
nelun 31440 Negated membership for a u...
snsssng 31441 If a singleton is a subset...
inin 31442 Intersection with an inter...
inindif 31443 See ~ inundif . (Contribu...
difininv 31444 Condition for the intersec...
difeq 31445 Rewriting an equation with...
eqdif 31446 If both set differences of...
indifbi 31447 Two ways to express equali...
diffib 31448 Case where ~ diffi is a bi...
difxp1ss 31449 Difference law for Cartesi...
difxp2ss 31450 Difference law for Cartesi...
undifr 31451 Union of complementary par...
indifundif 31452 A remarkable equation with...
elpwincl1 31453 Closure of intersection wi...
elpwdifcl 31454 Closure of class differenc...
elpwiuncl 31455 Closure of indexed union w...
eqsnd 31456 Deduce that a set is a sin...
elpreq 31457 Equality wihin a pair. (C...
nelpr 31458 A set ` A ` not in a pair ...
inpr0 31459 Rewrite an empty intersect...
neldifpr1 31460 The first element of a pai...
neldifpr2 31461 The second element of a pa...
unidifsnel 31462 The other element of a pai...
unidifsnne 31463 The other element of a pai...
ifeqeqx 31464 An equality theorem tailor...
elimifd 31465 Elimination of a condition...
elim2if 31466 Elimination of two conditi...
elim2ifim 31467 Elimination of two conditi...
ifeq3da 31468 Given an expression ` C ` ...
uniinn0 31469 Sufficient and necessary c...
uniin1 31470 Union of intersection. Ge...
uniin2 31471 Union of intersection. Ge...
difuncomp 31472 Express a class difference...
elpwunicl 31473 Closure of a set union wit...
cbviunf 31474 Rule used to change the bo...
iuneq12daf 31475 Equality deduction for ind...
iunin1f 31476 Indexed union of intersect...
ssiun3 31477 Subset equivalence for an ...
ssiun2sf 31478 Subset relationship for an...
iuninc 31479 The union of an increasing...
iundifdifd 31480 The intersection of a set ...
iundifdif 31481 The intersection of a set ...
iunrdx 31482 Re-index an indexed union....
iunpreima 31483 Preimage of an indexed uni...
iunrnmptss 31484 A subset relation for an i...
iunxunsn 31485 Appending a set to an inde...
iunxunpr 31486 Appending two sets to an i...
iinabrex 31487 Rewriting an indexed inter...
disjnf 31488 In case ` x ` is not free ...
cbvdisjf 31489 Change bound variables in ...
disjss1f 31490 A subset of a disjoint col...
disjeq1f 31491 Equality theorem for disjo...
disjxun0 31492 Simplify a disjoint union....
disjdifprg 31493 A trivial partition into a...
disjdifprg2 31494 A trivial partition of a s...
disji2f 31495 Property of a disjoint col...
disjif 31496 Property of a disjoint col...
disjorf 31497 Two ways to say that a col...
disjorsf 31498 Two ways to say that a col...
disjif2 31499 Property of a disjoint col...
disjabrex 31500 Rewriting a disjoint colle...
disjabrexf 31501 Rewriting a disjoint colle...
disjpreima 31502 A preimage of a disjoint s...
disjrnmpt 31503 Rewriting a disjoint colle...
disjin 31504 If a collection is disjoin...
disjin2 31505 If a collection is disjoin...
disjxpin 31506 Derive a disjunction over ...
iundisjf 31507 Rewrite a countable union ...
iundisj2f 31508 A disjoint union is disjoi...
disjrdx 31509 Re-index a disjunct collec...
disjex 31510 Two ways to say that two c...
disjexc 31511 A variant of ~ disjex , ap...
disjunsn 31512 Append an element to a dis...
disjun0 31513 Adding the empty element p...
disjiunel 31514 A set of elements B of a d...
disjuniel 31515 A set of elements B of a d...
xpdisjres 31516 Restriction of a constant ...
opeldifid 31517 Ordered pair elementhood o...
difres 31518 Case when class difference...
imadifxp 31519 Image of the difference wi...
relfi 31520 A relation (set) is finite...
reldisjun 31521 Split a relation into two ...
0res 31522 Restriction of the empty f...
funresdm1 31523 Restriction of a disjoint ...
fnunres1 31524 Restriction of a disjoint ...
fcoinver 31525 Build an equivalence relat...
fcoinvbr 31526 Binary relation for the eq...
brabgaf 31527 The law of concretion for ...
brelg 31528 Two things in a binary rel...
br8d 31529 Substitution for an eight-...
opabdm 31530 Domain of an ordered-pair ...
opabrn 31531 Range of an ordered-pair c...
opabssi 31532 Sufficient condition for a...
opabid2ss 31533 One direction of ~ opabid2...
ssrelf 31534 A subclass relationship de...
eqrelrd2 31535 A version of ~ eqrelrdv2 w...
erbr3b 31536 Biconditional for equivale...
iunsnima 31537 Image of a singleton by an...
iunsnima2 31538 Version of ~ iunsnima with...
ac6sf2 31539 Alternate version of ~ ac6...
fnresin 31540 Restriction of a function ...
f1o3d 31541 Describe an implicit one-t...
eldmne0 31542 A function of nonempty dom...
f1rnen 31543 Equinumerosity of the rang...
rinvf1o 31544 Sufficient conditions for ...
fresf1o 31545 Conditions for a restricti...
nfpconfp 31546 The set of fixed points of...
fmptco1f1o 31547 The action of composing (t...
cofmpt2 31548 Express composition of a m...
f1mptrn 31549 Express injection for a ma...
dfimafnf 31550 Alternate definition of th...
funimass4f 31551 Membership relation for th...
elimampt 31552 Membership in the image of...
suppss2f 31553 Show that the support of a...
fovcld 31554 Closure law for an operati...
ofrn 31555 The range of the function ...
ofrn2 31556 The range of the function ...
off2 31557 The function operation pro...
ofresid 31558 Applying an operation rest...
fimarab 31559 Expressing the image of a ...
unipreima 31560 Preimage of a class union....
opfv 31561 Value of a function produc...
xppreima 31562 The preimage of a Cartesia...
2ndimaxp 31563 Image of a cartesian produ...
djussxp2 31564 Stronger version of ~ djus...
2ndresdju 31565 The ` 2nd ` function restr...
2ndresdjuf1o 31566 The ` 2nd ` function restr...
xppreima2 31567 The preimage of a Cartesia...
abfmpunirn 31568 Membership in a union of a...
rabfmpunirn 31569 Membership in a union of a...
abfmpeld 31570 Membership in an element o...
abfmpel 31571 Membership in an element o...
fmptdF 31572 Domain and codomain of the...
fmptcof2 31573 Composition of two functio...
fcomptf 31574 Express composition of two...
acunirnmpt 31575 Axiom of choice for the un...
acunirnmpt2 31576 Axiom of choice for the un...
acunirnmpt2f 31577 Axiom of choice for the un...
aciunf1lem 31578 Choice in an index union. ...
aciunf1 31579 Choice in an index union. ...
ofoprabco 31580 Function operation as a co...
ofpreima 31581 Express the preimage of a ...
ofpreima2 31582 Express the preimage of a ...
funcnvmpt 31583 Condition for a function i...
funcnv5mpt 31584 Two ways to say that a fun...
funcnv4mpt 31585 Two ways to say that a fun...
preimane 31586 Different elements have di...
fnpreimac 31587 Choose a set ` x ` contain...
fgreu 31588 Exactly one point of a fun...
fcnvgreu 31589 If the converse of a relat...
rnmposs 31590 The range of an operation ...
mptssALT 31591 Deduce subset relation of ...
dfcnv2 31592 Alternative definition of ...
fnimatp 31593 The image of an unordered ...
fnunres2 31594 Restriction of a disjoint ...
rnexd 31595 The range of a set is a se...
imaexd 31596 The image of a set is a se...
mpomptxf 31597 Express a two-argument fun...
suppovss 31598 A bound for the support of...
fvdifsupp 31599 Function value is zero out...
fmptssfisupp 31600 The restriction of a mappi...
suppiniseg 31601 Relation between the suppo...
fsuppinisegfi 31602 The initial segment ` ( ``...
fressupp 31603 The restriction of a funct...
fdifsuppconst 31604 A function is a zero const...
ressupprn 31605 The range of a function re...
supppreima 31606 Express the support of a f...
fsupprnfi 31607 Finite support implies fin...
cosnopne 31608 Composition of two ordered...
cosnop 31609 Composition of two ordered...
cnvprop 31610 Converse of a pair of orde...
brprop 31611 Binary relation for a pair...
mptprop 31612 Rewrite pairs of ordered p...
coprprop 31613 Composition of two pairs o...
gtiso 31614 Two ways to write a strict...
isoun 31615 Infer an isomorphism from ...
disjdsct 31616 A disjoint collection is d...
df1stres 31617 Definition for a restricti...
df2ndres 31618 Definition for a restricti...
1stpreimas 31619 The preimage of a singleto...
1stpreima 31620 The preimage by ` 1st ` is...
2ndpreima 31621 The preimage by ` 2nd ` is...
curry2ima 31622 The image of a curried fun...
preiman0 31623 The preimage of a nonempty...
intimafv 31624 The intersection of an ima...
ecref 31625 All elements are in their ...
supssd 31626 Inequality deduction for s...
infssd 31627 Inequality deduction for i...
imafi2 31628 The image by a finite set ...
unifi3 31629 If a union is finite, then...
snct 31630 A singleton is countable. ...
prct 31631 An unordered pair is count...
mpocti 31632 An operation is countable ...
abrexct 31633 An image set of a countabl...
mptctf 31634 A countable mapping set is...
abrexctf 31635 An image set of a countabl...
padct 31636 Index a countable set with...
cnvoprabOLD 31637 The converse of a class ab...
f1od2 31638 Sufficient condition for a...
fcobij 31639 Composing functions with a...
fcobijfs 31640 Composing finitely support...
suppss3 31641 Deduce a function's suppor...
fsuppcurry1 31642 Finite support of a currie...
fsuppcurry2 31643 Finite support of a currie...
offinsupp1 31644 Finite support for a funct...
ffs2 31645 Rewrite a function's suppo...
ffsrn 31646 The range of a finitely su...
resf1o 31647 Restriction of functions t...
maprnin 31648 Restricting the range of t...
fpwrelmapffslem 31649 Lemma for ~ fpwrelmapffs ....
fpwrelmap 31650 Define a canonical mapping...
fpwrelmapffs 31651 Define a canonical mapping...
creq0 31652 The real representation of...
1nei 31653 The imaginary unit ` _i ` ...
1neg1t1neg1 31654 An integer unit times itse...
nnmulge 31655 Multiplying by a positive ...
lt2addrd 31656 If the right-hand side of ...
xrlelttric 31657 Trichotomy law for extende...
xaddeq0 31658 Two extended reals which a...
xrinfm 31659 The extended real numbers ...
le2halvesd 31660 A sum is less than the who...
xraddge02 31661 A number is less than or e...
xrge0addge 31662 A number is less than or e...
xlt2addrd 31663 If the right-hand side of ...
xrsupssd 31664 Inequality deduction for s...
xrge0infss 31665 Any subset of nonnegative ...
xrge0infssd 31666 Inequality deduction for i...
xrge0addcld 31667 Nonnegative extended reals...
xrge0subcld 31668 Condition for closure of n...
infxrge0lb 31669 A member of a set of nonne...
infxrge0glb 31670 The infimum of a set of no...
infxrge0gelb 31671 The infimum of a set of no...
xrofsup 31672 The supremum is preserved ...
supxrnemnf 31673 The supremum of a nonempty...
xnn0gt0 31674 Nonzero extended nonnegati...
xnn01gt 31675 An extended nonnegative in...
nn0xmulclb 31676 Finite multiplication in t...
joiniooico 31677 Disjoint joining an open i...
ubico 31678 A right-open interval does...
xeqlelt 31679 Equality in terms of 'less...
eliccelico 31680 Relate elementhood to a cl...
elicoelioo 31681 Relate elementhood to a cl...
iocinioc2 31682 Intersection between two o...
xrdifh 31683 Class difference of a half...
iocinif 31684 Relate intersection of two...
difioo 31685 The difference between two...
difico 31686 The difference between two...
uzssico 31687 Upper integer sets are a s...
fz2ssnn0 31688 A finite set of sequential...
nndiffz1 31689 Upper set of the positive ...
ssnnssfz 31690 For any finite subset of `...
fzne1 31691 Elementhood in a finite se...
fzm1ne1 31692 Elementhood of an integer ...
fzspl 31693 Split the last element of ...
fzdif2 31694 Split the last element of ...
fzodif2 31695 Split the last element of ...
fzodif1 31696 Set difference of two half...
fzsplit3 31697 Split a finite interval of...
bcm1n 31698 The proportion of one bino...
iundisjfi 31699 Rewrite a countable union ...
iundisj2fi 31700 A disjoint union is disjoi...
iundisjcnt 31701 Rewrite a countable union ...
iundisj2cnt 31702 A countable disjoint union...
fzone1 31703 Elementhood in a half-open...
fzom1ne1 31704 Elementhood in a half-open...
f1ocnt 31705 Given a countable set ` A ...
fz1nnct 31706 NN and integer ranges star...
fz1nntr 31707 NN and integer ranges star...
hashunif 31708 The cardinality of a disjo...
hashxpe 31709 The size of the Cartesian ...
hashgt1 31710 Restate "set contains at l...
dvdszzq 31711 Divisibility for an intege...
prmdvdsbc 31712 Condition for a prime numb...
numdenneg 31713 Numerator and denominator ...
divnumden2 31714 Calculate the reduced form...
nnindf 31715 Principle of Mathematical ...
nn0min 31716 Extracting the minimum pos...
subne0nn 31717 A nonnegative difference i...
ltesubnnd 31718 Subtracting an integer num...
fprodeq02 31719 If one of the factors is z...
pr01ssre 31720 The range of the indicator...
fprodex01 31721 A product of factors equal...
prodpr 31722 A product over a pair is t...
prodtp 31723 A product over a triple is...
fsumub 31724 An upper bound for a term ...
fsumiunle 31725 Upper bound for a sum of n...
dfdec100 31726 Split the hundreds from a ...
dp2eq1 31729 Equality theorem for the d...
dp2eq2 31730 Equality theorem for the d...
dp2eq1i 31731 Equality theorem for the d...
dp2eq2i 31732 Equality theorem for the d...
dp2eq12i 31733 Equality theorem for the d...
dp20u 31734 Add a zero in the tenths (...
dp20h 31735 Add a zero in the unit pla...
dp2cl 31736 Closure for the decimal fr...
dp2clq 31737 Closure for a decimal frac...
rpdp2cl 31738 Closure for a decimal frac...
rpdp2cl2 31739 Closure for a decimal frac...
dp2lt10 31740 Decimal fraction builds re...
dp2lt 31741 Comparing two decimal frac...
dp2ltsuc 31742 Comparing a decimal fracti...
dp2ltc 31743 Comparing two decimal expa...
dpval 31746 Define the value of the de...
dpcl 31747 Prove that the closure of ...
dpfrac1 31748 Prove a simple equivalence...
dpval2 31749 Value of the decimal point...
dpval3 31750 Value of the decimal point...
dpmul10 31751 Multiply by 10 a decimal e...
decdiv10 31752 Divide a decimal number by...
dpmul100 31753 Multiply by 100 a decimal ...
dp3mul10 31754 Multiply by 10 a decimal e...
dpmul1000 31755 Multiply by 1000 a decimal...
dpval3rp 31756 Value of the decimal point...
dp0u 31757 Add a zero in the tenths p...
dp0h 31758 Remove a zero in the units...
rpdpcl 31759 Closure of the decimal poi...
dplt 31760 Comparing two decimal expa...
dplti 31761 Comparing a decimal expans...
dpgti 31762 Comparing a decimal expans...
dpltc 31763 Comparing two decimal inte...
dpexpp1 31764 Add one zero to the mantis...
0dp2dp 31765 Multiply by 10 a decimal e...
dpadd2 31766 Addition with one decimal,...
dpadd 31767 Addition with one decimal....
dpadd3 31768 Addition with two decimals...
dpmul 31769 Multiplication with one de...
dpmul4 31770 An upper bound to multipli...
threehalves 31771 Example theorem demonstrat...
1mhdrd 31772 Example theorem demonstrat...
xdivval 31775 Value of division: the (un...
xrecex 31776 Existence of reciprocal of...
xmulcand 31777 Cancellation law for exten...
xreceu 31778 Existential uniqueness of ...
xdivcld 31779 Closure law for the extend...
xdivcl 31780 Closure law for the extend...
xdivmul 31781 Relationship between divis...
rexdiv 31782 The extended real division...
xdivrec 31783 Relationship between divis...
xdivid 31784 A number divided by itself...
xdiv0 31785 Division into zero is zero...
xdiv0rp 31786 Division into zero is zero...
eliccioo 31787 Membership in a closed int...
elxrge02 31788 Elementhood in the set of ...
xdivpnfrp 31789 Plus infinity divided by a...
rpxdivcld 31790 Closure law for extended d...
xrpxdivcld 31791 Closure law for extended d...
wrdfd 31792 A word is a zero-based seq...
wrdres 31793 Condition for the restrict...
wrdsplex 31794 Existence of a split of a ...
pfx1s2 31795 The prefix of length 1 of ...
pfxrn2 31796 The range of a prefix of a...
pfxrn3 31797 Express the range of a pre...
pfxf1 31798 Condition for a prefix to ...
s1f1 31799 Conditions for a length 1 ...
s2rn 31800 Range of a length 2 string...
s2f1 31801 Conditions for a length 2 ...
s3rn 31802 Range of a length 3 string...
s3f1 31803 Conditions for a length 3 ...
s3clhash 31804 Closure of the words of le...
ccatf1 31805 Conditions for a concatena...
pfxlsw2ccat 31806 Reconstruct a word from it...
wrdt2ind 31807 Perform an induction over ...
swrdrn2 31808 The range of a subword is ...
swrdrn3 31809 Express the range of a sub...
swrdf1 31810 Condition for a subword to...
swrdrndisj 31811 Condition for the range of...
splfv3 31812 Symbols to the right of a ...
1cshid 31813 Cyclically shifting a sing...
cshw1s2 31814 Cyclically shifting a leng...
cshwrnid 31815 Cyclically shifting a word...
cshf1o 31816 Condition for the cyclic s...
ressplusf 31817 The group operation functi...
ressnm 31818 The norm in a restricted s...
abvpropd2 31819 Weaker version of ~ abvpro...
oppgle 31820 less-than relation of an o...
oppgleOLD 31821 Obsolete version of ~ oppg...
oppglt 31822 less-than relation of an o...
ressprs 31823 The restriction of a prose...
oduprs 31824 Being a proset is a self-d...
posrasymb 31825 A poset ordering is asymet...
resspos 31826 The restriction of a Poset...
resstos 31827 The restriction of a Toset...
odutos 31828 Being a toset is a self-du...
tlt2 31829 In a Toset, two elements m...
tlt3 31830 In a Toset, two elements m...
trleile 31831 In a Toset, two elements m...
toslublem 31832 Lemma for ~ toslub and ~ x...
toslub 31833 In a toset, the lowest upp...
tosglblem 31834 Lemma for ~ tosglb and ~ x...
tosglb 31835 Same theorem as ~ toslub ,...
clatp0cl 31836 The poset zero of a comple...
clatp1cl 31837 The poset one of a complet...
mntoval 31842 Operation value of the mon...
ismnt 31843 Express the statement " ` ...
ismntd 31844 Property of being a monoto...
mntf 31845 A monotone function is a f...
mgcoval 31846 Operation value of the mon...
mgcval 31847 Monotone Galois connection...
mgcf1 31848 The lower adjoint ` F ` of...
mgcf2 31849 The upper adjoint ` G ` of...
mgccole1 31850 An inequality for the kern...
mgccole2 31851 Inequality for the closure...
mgcmnt1 31852 The lower adjoint ` F ` of...
mgcmnt2 31853 The upper adjoint ` G ` of...
mgcmntco 31854 A Galois connection like s...
dfmgc2lem 31855 Lemma for dfmgc2, backward...
dfmgc2 31856 Alternate definition of th...
mgcmnt1d 31857 Galois connection implies ...
mgcmnt2d 31858 Galois connection implies ...
mgccnv 31859 The inverse Galois connect...
pwrssmgc 31860 Given a function ` F ` , e...
mgcf1olem1 31861 Property of a Galois conne...
mgcf1olem2 31862 Property of a Galois conne...
mgcf1o 31863 Given a Galois connection,...
xrs0 31866 The zero of the extended r...
xrslt 31867 The "strictly less than" r...
xrsinvgval 31868 The inversion operation in...
xrsmulgzz 31869 The "multiple" function in...
xrstos 31870 The extended real numbers ...
xrsclat 31871 The extended real numbers ...
xrsp0 31872 The poset 0 of the extende...
xrsp1 31873 The poset 1 of the extende...
ressmulgnn 31874 Values for the group multi...
ressmulgnn0 31875 Values for the group multi...
xrge0base 31876 The base of the extended n...
xrge00 31877 The zero of the extended n...
xrge0plusg 31878 The additive law of the ex...
xrge0le 31879 The "less than or equal to...
xrge0mulgnn0 31880 The group multiple functio...
xrge0addass 31881 Associativity of extended ...
xrge0addgt0 31882 The sum of nonnegative and...
xrge0adddir 31883 Right-distributivity of ex...
xrge0adddi 31884 Left-distributivity of ext...
xrge0npcan 31885 Extended nonnegative real ...
fsumrp0cl 31886 Closure of a finite sum of...
abliso 31887 The image of an Abelian gr...
gsumsubg 31888 The group sum in a subgrou...
gsumsra 31889 The group sum in a subring...
gsummpt2co 31890 Split a finite sum into a ...
gsummpt2d 31891 Express a finite sum over ...
lmodvslmhm 31892 Scalar multiplication in a...
gsumvsmul1 31893 Pull a scalar multiplicati...
gsummptres 31894 Extend a finite group sum ...
gsummptres2 31895 Extend a finite group sum ...
gsumzresunsn 31896 Append an element to a fin...
gsumpart 31897 Express a group sum as a d...
gsumhashmul 31898 Express a group sum by gro...
xrge0tsmsd 31899 Any finite or infinite sum...
xrge0tsmsbi 31900 Any limit of a finite or i...
xrge0tsmseq 31901 Any limit of a finite or i...
cntzun 31902 The centralizer of a union...
cntzsnid 31903 The centralizer of the ide...
cntrcrng 31904 The center of a ring is a ...
isomnd 31909 A (left) ordered monoid is...
isogrp 31910 A (left-)ordered group is ...
ogrpgrp 31911 A left-ordered group is a ...
omndmnd 31912 A left-ordered monoid is a...
omndtos 31913 A left-ordered monoid is a...
omndadd 31914 In an ordered monoid, the ...
omndaddr 31915 In a right ordered monoid,...
omndadd2d 31916 In a commutative left orde...
omndadd2rd 31917 In a left- and right- orde...
submomnd 31918 A submonoid of an ordered ...
xrge0omnd 31919 The nonnegative extended r...
omndmul2 31920 In an ordered monoid, the ...
omndmul3 31921 In an ordered monoid, the ...
omndmul 31922 In a commutative ordered m...
ogrpinv0le 31923 In an ordered group, the o...
ogrpsub 31924 In an ordered group, the o...
ogrpaddlt 31925 In an ordered group, stric...
ogrpaddltbi 31926 In a right ordered group, ...
ogrpaddltrd 31927 In a right ordered group, ...
ogrpaddltrbid 31928 In a right ordered group, ...
ogrpsublt 31929 In an ordered group, stric...
ogrpinv0lt 31930 In an ordered group, the o...
ogrpinvlt 31931 In an ordered group, the o...
gsumle 31932 A finite sum in an ordered...
symgfcoeu 31933 Uniqueness property of per...
symgcom 31934 Two permutations ` X ` and...
symgcom2 31935 Two permutations ` X ` and...
symgcntz 31936 All elements of a (finite)...
odpmco 31937 The composition of two odd...
symgsubg 31938 The value of the group sub...
pmtrprfv2 31939 In a transposition of two ...
pmtrcnel 31940 Composing a permutation ` ...
pmtrcnel2 31941 Variation on ~ pmtrcnel . ...
pmtrcnelor 31942 Composing a permutation ` ...
pmtridf1o 31943 Transpositions of ` X ` an...
pmtridfv1 31944 Value at X of the transpos...
pmtridfv2 31945 Value at Y of the transpos...
psgnid 31946 Permutation sign of the id...
psgndmfi 31947 For a finite base set, the...
pmtrto1cl 31948 Useful lemma for the follo...
psgnfzto1stlem 31949 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 31950 Value of our permutation `...
fzto1st1 31951 Special case where the per...
fzto1st 31952 The function moving one el...
fzto1stinvn 31953 Value of the inverse of ou...
psgnfzto1st 31954 The permutation sign for m...
tocycval 31957 Value of the cycle builder...
tocycfv 31958 Function value of a permut...
tocycfvres1 31959 A cyclic permutation is a ...
tocycfvres2 31960 A cyclic permutation is th...
cycpmfvlem 31961 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 31962 Value of a cycle function ...
cycpmfv2 31963 Value of a cycle function ...
cycpmfv3 31964 Values outside of the orbi...
cycpmcl 31965 Cyclic permutations are pe...
tocycf 31966 The permutation cycle buil...
tocyc01 31967 Permutation cycles built f...
cycpm2tr 31968 A cyclic permutation of 2 ...
cycpm2cl 31969 Closure for the 2-cycles. ...
cyc2fv1 31970 Function value of a 2-cycl...
cyc2fv2 31971 Function value of a 2-cycl...
trsp2cyc 31972 Exhibit the word a transpo...
cycpmco2f1 31973 The word U used in ~ cycpm...
cycpmco2rn 31974 The orbit of the compositi...
cycpmco2lem1 31975 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 31976 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 31977 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 31978 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 31979 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 31980 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 31981 Lemma for ~ cycpmco2 . (C...
cycpmco2 31982 The composition of a cycli...
cyc2fvx 31983 Function value of a 2-cycl...
cycpm3cl 31984 Closure of the 3-cycles in...
cycpm3cl2 31985 Closure of the 3-cycles in...
cyc3fv1 31986 Function value of a 3-cycl...
cyc3fv2 31987 Function value of a 3-cycl...
cyc3fv3 31988 Function value of a 3-cycl...
cyc3co2 31989 Represent a 3-cycle as a c...
cycpmconjvlem 31990 Lemma for ~ cycpmconjv . ...
cycpmconjv 31991 A formula for computing co...
cycpmrn 31992 The range of the word used...
tocyccntz 31993 All elements of a (finite)...
evpmval 31994 Value of the set of even p...
cnmsgn0g 31995 The neutral element of the...
evpmsubg 31996 The alternating group is a...
evpmid 31997 The identity is an even pe...
altgnsg 31998 The alternating group ` ( ...
cyc3evpm 31999 3-Cycles are even permutat...
cyc3genpmlem 32000 Lemma for ~ cyc3genpm . (...
cyc3genpm 32001 The alternating group ` A ...
cycpmgcl 32002 Cyclic permutations are pe...
cycpmconjslem1 32003 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 32004 Lemma for ~ cycpmconjs . ...
cycpmconjs 32005 All cycles of the same len...
cyc3conja 32006 All 3-cycles are conjugate...
sgnsv 32009 The sign mapping. (Contri...
sgnsval 32010 The sign value. (Contribu...
sgnsf 32011 The sign function. (Contr...
inftmrel 32016 The infinitesimal relation...
isinftm 32017 Express ` x ` is infinites...
isarchi 32018 Express the predicate " ` ...
pnfinf 32019 Plus infinity is an infini...
xrnarchi 32020 The completed real line is...
isarchi2 32021 Alternative way to express...
submarchi 32022 A submonoid is archimedean...
isarchi3 32023 This is the usual definiti...
archirng 32024 Property of Archimedean or...
archirngz 32025 Property of Archimedean le...
archiexdiv 32026 In an Archimedean group, g...
archiabllem1a 32027 Lemma for ~ archiabl : In...
archiabllem1b 32028 Lemma for ~ archiabl . (C...
archiabllem1 32029 Archimedean ordered groups...
archiabllem2a 32030 Lemma for ~ archiabl , whi...
archiabllem2c 32031 Lemma for ~ archiabl . (C...
archiabllem2b 32032 Lemma for ~ archiabl . (C...
archiabllem2 32033 Archimedean ordered groups...
archiabl 32034 Archimedean left- and righ...
isslmd 32037 The predicate "is a semimo...
slmdlema 32038 Lemma for properties of a ...
lmodslmd 32039 Left semimodules generaliz...
slmdcmn 32040 A semimodule is a commutat...
slmdmnd 32041 A semimodule is a monoid. ...
slmdsrg 32042 The scalar component of a ...
slmdbn0 32043 The base set of a semimodu...
slmdacl 32044 Closure of ring addition f...
slmdmcl 32045 Closure of ring multiplica...
slmdsn0 32046 The set of scalars in a se...
slmdvacl 32047 Closure of vector addition...
slmdass 32048 Semiring left module vecto...
slmdvscl 32049 Closure of scalar product ...
slmdvsdi 32050 Distributive law for scala...
slmdvsdir 32051 Distributive law for scala...
slmdvsass 32052 Associative law for scalar...
slmd0cl 32053 The ring zero in a semimod...
slmd1cl 32054 The ring unity in a semiri...
slmdvs1 32055 Scalar product with ring u...
slmd0vcl 32056 The zero vector is a vecto...
slmd0vlid 32057 Left identity law for the ...
slmd0vrid 32058 Right identity law for the...
slmd0vs 32059 Zero times a vector is the...
slmdvs0 32060 Anything times the zero ve...
gsumvsca1 32061 Scalar product of a finite...
gsumvsca2 32062 Scalar product of a finite...
prmsimpcyc 32063 A group of prime order is ...
0ringsubrg 32064 A subring of a zero ring i...
rngurd 32065 Deduce the unity element o...
dvdschrmulg 32066 In a ring, any multiple of...
freshmansdream 32067 For a prime number ` P ` ,...
frobrhm 32068 In a commutative ring with...
ress1r 32069 ` 1r ` is unaffected by re...
dvrdir 32070 Distributive law for the d...
rdivmuldivd 32071 Multiplication of two rati...
ringinvval 32072 The ring inverse expressed...
dvrcan5 32073 Cancellation law for commo...
subrgchr 32074 If ` A ` is a subring of `...
rmfsupp2 32075 A mapping of a multiplicat...
sdrgdvcl 32076 A sub-division-ring is clo...
sdrginvcl 32077 A sub-division-ring is clo...
primefldchr 32078 The characteristic of a pr...
fldgenval 32081 Value of the field generat...
fldgenssid 32082 The field generated by a s...
fldgensdrg 32083 A generated subfield is a ...
fldgenss 32084 Generated subfields preser...
fldgenidfld 32085 The subfield generated by ...
fldgenid 32086 The subfield of a field ` ...
fldgenfld 32087 A generated subfield is a ...
primefldgen1 32088 The prime field of a divis...
1fldgenq 32089 The field of rational numb...
isorng 32094 An ordered ring is a ring ...
orngring 32095 An ordered ring is a ring....
orngogrp 32096 An ordered ring is an orde...
isofld 32097 An ordered field is a fiel...
orngmul 32098 In an ordered ring, the or...
orngsqr 32099 In an ordered ring, all sq...
ornglmulle 32100 In an ordered ring, multip...
orngrmulle 32101 In an ordered ring, multip...
ornglmullt 32102 In an ordered ring, multip...
orngrmullt 32103 In an ordered ring, multip...
orngmullt 32104 In an ordered ring, the st...
ofldfld 32105 An ordered field is a fiel...
ofldtos 32106 An ordered field is a tota...
orng0le1 32107 In an ordered ring, the ri...
ofldlt1 32108 In an ordered field, the r...
ofldchr 32109 The characteristic of an o...
suborng 32110 Every subring of an ordere...
subofld 32111 Every subfield of an order...
isarchiofld 32112 Axiom of Archimedes : a ch...
rhmdvd 32113 A ring homomorphism preser...
kerunit 32114 If a unit element lies in ...
reldmresv 32117 The scalar restriction is ...
resvval 32118 Value of structure restric...
resvid2 32119 General behavior of trivia...
resvval2 32120 Value of nontrivial struct...
resvsca 32121 Base set of a structure re...
resvlem 32122 Other elements of a scalar...
resvlemOLD 32123 Obsolete version of ~ resv...
resvbas 32124 ` Base ` is unaffected by ...
resvbasOLD 32125 Obsolete proof of ~ resvba...
resvplusg 32126 ` +g ` is unaffected by sc...
resvplusgOLD 32127 Obsolete proof of ~ resvpl...
resvvsca 32128 ` .s ` is unaffected by sc...
resvvscaOLD 32129 Obsolete proof of ~ resvvs...
resvmulr 32130 ` .r ` is unaffected by sc...
resvmulrOLD 32131 Obsolete proof of ~ resvmu...
resv0g 32132 ` 0g ` is unaffected by sc...
resv1r 32133 ` 1r ` is unaffected by sc...
resvcmn 32134 Scalar restriction preserv...
gzcrng 32135 The gaussian integers form...
reofld 32136 The real numbers form an o...
nn0omnd 32137 The nonnegative integers f...
rearchi 32138 The field of the real numb...
nn0archi 32139 The monoid of the nonnegat...
xrge0slmod 32140 The extended nonnegative r...
qusker 32141 The kernel of a quotient m...
eqgvscpbl 32142 The left coset equivalence...
qusvscpbl 32143 The quotient map distribut...
qusscaval 32144 Value of the scalar multip...
imaslmod 32145 The image structure of a l...
quslmod 32146 If ` G ` is a submodule in...
quslmhm 32147 If ` G ` is a submodule of...
ecxpid 32148 The equivalence class of a...
eqg0el 32149 Equivalence class of a quo...
qsxpid 32150 The quotient set of a cart...
qusxpid 32151 The Group quotient equival...
qustriv 32152 The quotient of a group ` ...
qustrivr 32153 Converse of ~ qustriv . (...
fermltlchr 32154 A generalization of Fermat...
znfermltl 32155 Fermat's little theorem in...
islinds5 32156 A set is linearly independ...
ellspds 32157 Variation on ~ ellspd . (...
0ellsp 32158 Zero is in all spans. (Co...
0nellinds 32159 The group identity cannot ...
rspsnel 32160 Membership in a principal ...
rspsnid 32161 A principal ideal contains...
elrsp 32162 Write the elements of a ri...
rspidlid 32163 The ideal span of an ideal...
pidlnz 32164 A principal ideal generate...
lbslsp 32165 Any element of a left modu...
lindssn 32166 Any singleton of a nonzero...
lindflbs 32167 Conditions for an independ...
linds2eq 32168 Deduce equality of element...
lindfpropd 32169 Property deduction for lin...
lindspropd 32170 Property deduction for lin...
elgrplsmsn 32171 Membership in a sumset wit...
lsmsnorb 32172 The sumset of a group with...
lsmsnorb2 32173 The sumset of a single ele...
elringlsm 32174 Membership in a product of...
elringlsmd 32175 Membership in a product of...
ringlsmss 32176 Closure of the product of ...
ringlsmss1 32177 The product of an ideal ` ...
ringlsmss2 32178 The product with an ideal ...
lsmsnpridl 32179 The product of the ring wi...
lsmsnidl 32180 The product of the ring wi...
lsmidllsp 32181 The sum of two ideals is t...
lsmidl 32182 The sum of two ideals is a...
lsmssass 32183 Group sum is associative, ...
grplsm0l 32184 Sumset with the identity s...
grplsmid 32185 The direct sum of an eleme...
quslsm 32186 Express the image by the q...
qusima 32187 The image of a subgroup by...
nsgqus0 32188 A normal subgroup ` N ` is...
nsgmgclem 32189 Lemma for ~ nsgmgc . (Con...
nsgmgc 32190 There is a monotone Galois...
nsgqusf1olem1 32191 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 32192 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 32193 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 32194 The canonical projection h...
ghmquskerlem1 32195 Lemma for ~ ghmqusker (Con...
ghmquskerco 32196 In the case of theorem ~ g...
ghmquskerlem2 32197 Lemma for ~ ghmqusker . (...
ghmqusker 32198 A surjective group homomor...
intlidl 32199 The intersection of a none...
rhmpreimaidl 32200 The preimage of an ideal b...
kerlidl 32201 The kernel of a ring homom...
0ringidl 32202 The zero ideal is the only...
elrspunidl 32203 Elementhood to the span of...
lidlincl 32204 Ideals are closed under in...
idlinsubrg 32205 The intersection between a...
rhmimaidl 32206 The image of an ideal ` I ...
prmidlval 32209 The class of prime ideals ...
isprmidl 32210 The predicate "is a prime ...
prmidlnr 32211 A prime ideal is a proper ...
prmidl 32212 The main property of a pri...
prmidl2 32213 A condition that shows an ...
idlmulssprm 32214 Let ` P ` be a prime ideal...
pridln1 32215 A proper ideal cannot cont...
prmidlidl 32216 A prime ideal is an ideal....
prmidlssidl 32217 Prime ideals as a subset o...
lidlnsg 32218 An ideal is a normal subgr...
cringm4 32219 Commutative/associative la...
isprmidlc 32220 The predicate "is prime id...
prmidlc 32221 Property of a prime ideal ...
0ringprmidl 32222 The trivial ring does not ...
prmidl0 32223 The zero ideal of a commut...
rhmpreimaprmidl 32224 The preimage of a prime id...
qsidomlem1 32225 If the quotient ring of a ...
qsidomlem2 32226 A quotient by a prime idea...
qsidom 32227 An ideal ` I ` in the comm...
mxidlval 32230 The set of maximal ideals ...
ismxidl 32231 The predicate "is a maxima...
mxidlidl 32232 A maximal ideal is an idea...
mxidlnr 32233 A maximal ideal is proper....
mxidlmax 32234 A maximal ideal is a maxim...
mxidln1 32235 One is not contained in an...
mxidlnzr 32236 A ring with a maximal idea...
mxidlprm 32237 Every maximal ideal is pri...
ssmxidllem 32238 The set ` P ` used in the ...
ssmxidl 32239 Let ` R ` be a ring, and l...
krull 32240 Krull's theorem: Any nonz...
mxidlnzrb 32241 A ring is nonzero if and o...
idlsrgstr 32244 A constructed semiring of ...
idlsrgval 32245 Lemma for ~ idlsrgbas thro...
idlsrgbas 32246 Baae of the ideals of a ri...
idlsrgplusg 32247 Additive operation of the ...
idlsrg0g 32248 The zero ideal is the addi...
idlsrgmulr 32249 Multiplicative operation o...
idlsrgtset 32250 Topology component of the ...
idlsrgmulrval 32251 Value of the ring multipli...
idlsrgmulrcl 32252 Ideals of a ring ` R ` are...
idlsrgmulrss1 32253 In a commutative ring, the...
idlsrgmulrss2 32254 The product of two ideals ...
idlsrgmulrssin 32255 In a commutative ring, the...
idlsrgmnd 32256 The ideals of a ring form ...
idlsrgcmnd 32257 The ideals of a ring form ...
isufd 32260 The property of being a Un...
rprmval 32261 The prime elements of a ri...
isrprm 32262 Property for ` P ` to be a...
asclmulg 32263 Apply group multiplication...
0ringmon1p 32264 There are no monic polynom...
fply1 32265 Conditions for a function ...
ply1scleq 32266 Equality of a constant pol...
evls1fn 32267 Functionality of the subri...
evls1scafv 32268 Value of the univariate po...
evls1expd 32269 Univariate polynomial eval...
evls1varpwval 32270 Univariate polynomial eval...
evls1fpws 32271 Evaluation of a univariate...
ressply1evl 32272 Evaluation of a univariate...
evls1addd 32273 Univariate polynomial eval...
evls1muld 32274 Univariate polynomial eval...
ressdeg1 32275 The degree of a univariate...
ply1ascl0 32276 The zero scalar as a polyn...
ressply10g 32277 A restricted polynomial al...
ressply1mon1p 32278 The monic polynomials of a...
ressply1invg 32279 An element of a restricted...
ressply1sub 32280 A restricted polynomial al...
asclply1subcl 32281 Closure of the algebra sca...
ply1chr 32282 The characteristic of a po...
ply1fermltlchr 32283 Fermat's little theorem fo...
ply1fermltl 32284 Fermat's little theorem fo...
sra1r 32285 The unity element of a sub...
sraring 32286 Condition for a subring al...
sradrng 32287 Condition for a subring al...
srasubrg 32288 A subring of the original ...
sralvec 32289 Given a sub division ring ...
srafldlvec 32290 Given a subfield ` F ` of ...
drgext0g 32291 The additive neutral eleme...
drgextvsca 32292 The scalar multiplication ...
drgext0gsca 32293 The additive neutral eleme...
drgextsubrg 32294 The scalar field is a subr...
drgextlsp 32295 The scalar field is a subs...
drgextgsum 32296 Group sum in a division ri...
lvecdimfi 32297 Finite version of ~ lvecdi...
dimval 32300 The dimension of a vector ...
dimvalfi 32301 The dimension of a vector ...
dimcl 32302 Closure of the vector spac...
lvecdim0i 32303 A vector space of dimensio...
lvecdim0 32304 A vector space of dimensio...
lssdimle 32305 The dimension of a linear ...
dimpropd 32306 If two structures have the...
rgmoddim 32307 The left vector space indu...
frlmdim 32308 Dimension of a free left m...
tnglvec 32309 Augmenting a structure wit...
tngdim 32310 Dimension of a left vector...
rrxdim 32311 Dimension of the generaliz...
matdim 32312 Dimension of the space of ...
lbslsat 32313 A nonzero vector ` X ` is ...
lsatdim 32314 A line, spanned by a nonze...
drngdimgt0 32315 The dimension of a vector ...
lmhmlvec2 32316 A homomorphism of left vec...
kerlmhm 32317 The kernel of a vector spa...
imlmhm 32318 The image of a vector spac...
lindsunlem 32319 Lemma for ~ lindsun . (Co...
lindsun 32320 Condition for the union of...
lbsdiflsp0 32321 The linear spans of two di...
dimkerim 32322 Given a linear map ` F ` b...
qusdimsum 32323 Let ` W ` be a vector spac...
fedgmullem1 32324 Lemma for ~ fedgmul . (Co...
fedgmullem2 32325 Lemma for ~ fedgmul . (Co...
fedgmul 32326 The multiplicativity formu...
relfldext 32335 The field extension is a r...
brfldext 32336 The field extension relati...
ccfldextrr 32337 The field of the complex n...
fldextfld1 32338 A field extension is only ...
fldextfld2 32339 A field extension is only ...
fldextsubrg 32340 Field extension implies a ...
fldextress 32341 Field extension implies a ...
brfinext 32342 The finite field extension...
extdgval 32343 Value of the field extensi...
fldextsralvec 32344 The subring algebra associ...
extdgcl 32345 Closure of the field exten...
extdggt0 32346 Degrees of field extension...
fldexttr 32347 Field extension is a trans...
fldextid 32348 The field extension relati...
extdgid 32349 A trivial field extension ...
extdgmul 32350 The multiplicativity formu...
finexttrb 32351 The extension ` E ` of ` K...
extdg1id 32352 If the degree of the exten...
extdg1b 32353 The degree of the extensio...
fldextchr 32354 The characteristic of a su...
ccfldsrarelvec 32355 The subring algebra of the...
ccfldextdgrr 32356 The degree of the field ex...
irngval 32359 The elements of a field ` ...
elirng 32360 Property for an element ` ...
irngss 32361 All elements of a subring ...
irngssv 32362 An integral element is an ...
0ringirng 32363 A zero ring ` R ` has no i...
irngnzply1lem 32364 In the case of a field ` E...
irngnzply1 32365 In the case of a field ` E...
evls1maprhm 32368 The function ` F ` mapping...
ply1annidllem 32369 Write the set ` Q ` of pol...
ply1annidl 32370 The set ` Q ` of polynomia...
ply1annig1p 32371 The ideal ` Q ` of polynom...
minplyval 32372 Expand the value of the mi...
ply1annprmidl 32373 The set ` Q ` of polynomia...
smatfval 32376 Value of the submatrix. (...
smatrcl 32377 Closure of the rectangular...
smatlem 32378 Lemma for the next theorem...
smattl 32379 Entries of a submatrix, to...
smattr 32380 Entries of a submatrix, to...
smatbl 32381 Entries of a submatrix, bo...
smatbr 32382 Entries of a submatrix, bo...
smatcl 32383 Closure of the square subm...
matmpo 32384 Write a square matrix as a...
1smat1 32385 The submatrix of the ident...
submat1n 32386 One case where the submatr...
submatres 32387 Special case where the sub...
submateqlem1 32388 Lemma for ~ submateq . (C...
submateqlem2 32389 Lemma for ~ submateq . (C...
submateq 32390 Sufficient condition for t...
submatminr1 32391 If we take a submatrix by ...
lmatval 32394 Value of the literal matri...
lmatfval 32395 Entries of a literal matri...
lmatfvlem 32396 Useful lemma to extract li...
lmatcl 32397 Closure of the literal mat...
lmat22lem 32398 Lemma for ~ lmat22e11 and ...
lmat22e11 32399 Entry of a 2x2 literal mat...
lmat22e12 32400 Entry of a 2x2 literal mat...
lmat22e21 32401 Entry of a 2x2 literal mat...
lmat22e22 32402 Entry of a 2x2 literal mat...
lmat22det 32403 The determinant of a liter...
mdetpmtr1 32404 The determinant of a matri...
mdetpmtr2 32405 The determinant of a matri...
mdetpmtr12 32406 The determinant of a matri...
mdetlap1 32407 A Laplace expansion of the...
madjusmdetlem1 32408 Lemma for ~ madjusmdet . ...
madjusmdetlem2 32409 Lemma for ~ madjusmdet . ...
madjusmdetlem3 32410 Lemma for ~ madjusmdet . ...
madjusmdetlem4 32411 Lemma for ~ madjusmdet . ...
madjusmdet 32412 Express the cofactor of th...
mdetlap 32413 Laplace expansion of the d...
ist0cld 32414 The predicate "is a T_0 sp...
txomap 32415 Given two open maps ` F ` ...
qtopt1 32416 If every equivalence class...
qtophaus 32417 If an open map's graph in ...
circtopn 32418 The topology of the unit c...
circcn 32419 The function gluing the re...
reff 32420 For any cover refinement, ...
locfinreflem 32421 A locally finite refinemen...
locfinref 32422 A locally finite refinemen...
iscref 32425 The property that every op...
crefeq 32426 Equality theorem for the "...
creftop 32427 A space where every open c...
crefi 32428 The property that every op...
crefdf 32429 A formulation of ~ crefi e...
crefss 32430 The "every open cover has ...
cmpcref 32431 Equivalent definition of c...
cmpfiref 32432 Every open cover of a Comp...
ldlfcntref 32435 Every open cover of a Lind...
ispcmp 32438 The predicate "is a paraco...
cmppcmp 32439 Every compact space is par...
dispcmp 32440 Every discrete space is pa...
pcmplfin 32441 Given a paracompact topolo...
pcmplfinf 32442 Given a paracompact topolo...
rspecval 32445 Value of the spectrum of t...
rspecbas 32446 The prime ideals form the ...
rspectset 32447 Topology component of the ...
rspectopn 32448 The topology component of ...
zarcls0 32449 The closure of the identit...
zarcls1 32450 The unit ideal ` B ` is th...
zarclsun 32451 The union of two closed se...
zarclsiin 32452 In a Zariski topology, the...
zarclsint 32453 The intersection of a fami...
zarclssn 32454 The closed points of Zaris...
zarcls 32455 The open sets of the Zaris...
zartopn 32456 The Zariski topology is a ...
zartop 32457 The Zariski topology is a ...
zartopon 32458 The points of the Zariski ...
zar0ring 32459 The Zariski Topology of th...
zart0 32460 The Zariski topology is T_...
zarmxt1 32461 The Zariski topology restr...
zarcmplem 32462 Lemma for ~ zarcmp . (Con...
zarcmp 32463 The Zariski topology is co...
rspectps 32464 The spectrum of a ring ` R...
rhmpreimacnlem 32465 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 32466 The function mapping a pri...
metidval 32471 Value of the metric identi...
metidss 32472 As a relation, the metric ...
metidv 32473 ` A ` and ` B ` identify b...
metideq 32474 Basic property of the metr...
metider 32475 The metric identification ...
pstmval 32476 Value of the metric induce...
pstmfval 32477 Function value of the metr...
pstmxmet 32478 The metric induced by a ps...
hauseqcn 32479 In a Hausdorff topology, t...
elunitge0 32480 An element of the closed u...
unitssxrge0 32481 The closed unit interval i...
unitdivcld 32482 Necessary conditions for a...
iistmd 32483 The closed unit interval f...
unicls 32484 The union of the closed se...
tpr2tp 32485 The usual topology on ` ( ...
tpr2uni 32486 The usual topology on ` ( ...
xpinpreima 32487 Rewrite the cartesian prod...
xpinpreima2 32488 Rewrite the cartesian prod...
sqsscirc1 32489 The complex square of side...
sqsscirc2 32490 The complex square of side...
cnre2csqlem 32491 Lemma for ~ cnre2csqima . ...
cnre2csqima 32492 Image of a centered square...
tpr2rico 32493 For any point of an open s...
cnvordtrestixx 32494 The restriction of the 'gr...
prsdm 32495 Domain of the relation of ...
prsrn 32496 Range of the relation of a...
prsss 32497 Relation of a subproset. ...
prsssdm 32498 Domain of a subproset rela...
ordtprsval 32499 Value of the order topolog...
ordtprsuni 32500 Value of the order topolog...
ordtcnvNEW 32501 The order dual generates t...
ordtrestNEW 32502 The subspace topology of a...
ordtrest2NEWlem 32503 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 32504 An interval-closed set ` A...
ordtconnlem1 32505 Connectedness in the order...
ordtconn 32506 Connectedness in the order...
mndpluscn 32507 A mapping that is both a h...
mhmhmeotmd 32508 Deduce a Topological Monoi...
rmulccn 32509 Multiplication by a real c...
raddcn 32510 Addition in the real numbe...
xrmulc1cn 32511 The operation multiplying ...
fmcncfil 32512 The image of a Cauchy filt...
xrge0hmph 32513 The extended nonnegative r...
xrge0iifcnv 32514 Define a bijection from ` ...
xrge0iifcv 32515 The defined function's val...
xrge0iifiso 32516 The defined bijection from...
xrge0iifhmeo 32517 Expose a homeomorphism fro...
xrge0iifhom 32518 The defined function from ...
xrge0iif1 32519 Condition for the defined ...
xrge0iifmhm 32520 The defined function from ...
xrge0pluscn 32521 The addition operation of ...
xrge0mulc1cn 32522 The operation multiplying ...
xrge0tps 32523 The extended nonnegative r...
xrge0topn 32524 The topology of the extend...
xrge0haus 32525 The topology of the extend...
xrge0tmd 32526 The extended nonnegative r...
xrge0tmdALT 32527 Alternate proof of ~ xrge0...
lmlim 32528 Relate a limit in a given ...
lmlimxrge0 32529 Relate a limit in the nonn...
rge0scvg 32530 Implication of convergence...
fsumcvg4 32531 A serie with finite suppor...
pnfneige0 32532 A neighborhood of ` +oo ` ...
lmxrge0 32533 Express "sequence ` F ` co...
lmdvg 32534 If a monotonic sequence of...
lmdvglim 32535 If a monotonic real number...
pl1cn 32536 A univariate polynomial is...
zringnm 32539 The norm (function) for a ...
zzsnm 32540 The norm of the ring of th...
zlm0 32541 Zero of a ` ZZ ` -module. ...
zlm1 32542 Unity element of a ` ZZ ` ...
zlmds 32543 Distance in a ` ZZ ` -modu...
zlmdsOLD 32544 Obsolete proof of ~ zlmds ...
zlmtset 32545 Topology in a ` ZZ ` -modu...
zlmtsetOLD 32546 Obsolete proof of ~ zlmtse...
zlmnm 32547 Norm of a ` ZZ ` -module (...
zhmnrg 32548 The ` ZZ ` -module built f...
nmmulg 32549 The norm of a group produc...
zrhnm 32550 The norm of the image by `...
cnzh 32551 The ` ZZ ` -module of ` CC...
rezh 32552 The ` ZZ ` -module of ` RR...
qqhval 32555 Value of the canonical hom...
zrhf1ker 32556 The kernel of the homomorp...
zrhchr 32557 The kernel of the homomorp...
zrhker 32558 The kernel of the homomorp...
zrhunitpreima 32559 The preimage by ` ZRHom ` ...
elzrhunit 32560 Condition for the image by...
elzdif0 32561 Lemma for ~ qqhval2 . (Co...
qqhval2lem 32562 Lemma for ~ qqhval2 . (Co...
qqhval2 32563 Value of the canonical hom...
qqhvval 32564 Value of the canonical hom...
qqh0 32565 The image of ` 0 ` by the ...
qqh1 32566 The image of ` 1 ` by the ...
qqhf 32567 ` QQHom ` as a function. ...
qqhvq 32568 The image of a quotient by...
qqhghm 32569 The ` QQHom ` homomorphism...
qqhrhm 32570 The ` QQHom ` homomorphism...
qqhnm 32571 The norm of the image by `...
qqhcn 32572 The ` QQHom ` homomorphism...
qqhucn 32573 The ` QQHom ` homomorphism...
rrhval 32577 Value of the canonical hom...
rrhcn 32578 If the topology of ` R ` i...
rrhf 32579 If the topology of ` R ` i...
isrrext 32581 Express the property " ` R...
rrextnrg 32582 An extension of ` RR ` is ...
rrextdrg 32583 An extension of ` RR ` is ...
rrextnlm 32584 The norm of an extension o...
rrextchr 32585 The ring characteristic of...
rrextcusp 32586 An extension of ` RR ` is ...
rrexttps 32587 An extension of ` RR ` is ...
rrexthaus 32588 The topology of an extensi...
rrextust 32589 The uniformity of an exten...
rerrext 32590 The field of the real numb...
cnrrext 32591 The field of the complex n...
qqtopn 32592 The topology of the field ...
rrhfe 32593 If ` R ` is an extension o...
rrhcne 32594 If ` R ` is an extension o...
rrhqima 32595 The ` RRHom ` homomorphism...
rrh0 32596 The image of ` 0 ` by the ...
xrhval 32599 The value of the embedding...
zrhre 32600 The ` ZRHom ` homomorphism...
qqhre 32601 The ` QQHom ` homomorphism...
rrhre 32602 The ` RRHom ` homomorphism...
relmntop 32605 Manifold is a relation. (...
ismntoplly 32606 Property of being a manifo...
ismntop 32607 Property of being a manifo...
nexple 32608 A lower bound for an expon...
indv 32611 Value of the indicator fun...
indval 32612 Value of the indicator fun...
indval2 32613 Alternate value of the ind...
indf 32614 An indicator function as a...
indfval 32615 Value of the indicator fun...
ind1 32616 Value of the indicator fun...
ind0 32617 Value of the indicator fun...
ind1a 32618 Value of the indicator fun...
indpi1 32619 Preimage of the singleton ...
indsum 32620 Finite sum of a product wi...
indsumin 32621 Finite sum of a product wi...
prodindf 32622 The product of indicators ...
indf1o 32623 The bijection between a po...
indpreima 32624 A function with range ` { ...
indf1ofs 32625 The bijection between fini...
esumex 32628 An extended sum is a set b...
esumcl 32629 Closure for extended sum i...
esumeq12dvaf 32630 Equality deduction for ext...
esumeq12dva 32631 Equality deduction for ext...
esumeq12d 32632 Equality deduction for ext...
esumeq1 32633 Equality theorem for an ex...
esumeq1d 32634 Equality theorem for an ex...
esumeq2 32635 Equality theorem for exten...
esumeq2d 32636 Equality deduction for ext...
esumeq2dv 32637 Equality deduction for ext...
esumeq2sdv 32638 Equality deduction for ext...
nfesum1 32639 Bound-variable hypothesis ...
nfesum2 32640 Bound-variable hypothesis ...
cbvesum 32641 Change bound variable in a...
cbvesumv 32642 Change bound variable in a...
esumid 32643 Identify the extended sum ...
esumgsum 32644 A finite extended sum is t...
esumval 32645 Develop the value of the e...
esumel 32646 The extended sum is a limi...
esumnul 32647 Extended sum over the empt...
esum0 32648 Extended sum of zero. (Co...
esumf1o 32649 Re-index an extended sum u...
esumc 32650 Convert from the collectio...
esumrnmpt 32651 Rewrite an extended sum in...
esumsplit 32652 Split an extended sum into...
esummono 32653 Extended sum is monotonic....
esumpad 32654 Extend an extended sum by ...
esumpad2 32655 Remove zeroes from an exte...
esumadd 32656 Addition of infinite sums....
esumle 32657 If all of the terms of an ...
gsumesum 32658 Relate a group sum on ` ( ...
esumlub 32659 The extended sum is the lo...
esumaddf 32660 Addition of infinite sums....
esumlef 32661 If all of the terms of an ...
esumcst 32662 The extended sum of a cons...
esumsnf 32663 The extended sum of a sing...
esumsn 32664 The extended sum of a sing...
esumpr 32665 Extended sum over a pair. ...
esumpr2 32666 Extended sum over a pair, ...
esumrnmpt2 32667 Rewrite an extended sum in...
esumfzf 32668 Formulating a partial exte...
esumfsup 32669 Formulating an extended su...
esumfsupre 32670 Formulating an extended su...
esumss 32671 Change the index set to a ...
esumpinfval 32672 The value of the extended ...
esumpfinvallem 32673 Lemma for ~ esumpfinval . ...
esumpfinval 32674 The value of the extended ...
esumpfinvalf 32675 Same as ~ esumpfinval , mi...
esumpinfsum 32676 The value of the extended ...
esumpcvgval 32677 The value of the extended ...
esumpmono 32678 The partial sums in an ext...
esumcocn 32679 Lemma for ~ esummulc2 and ...
esummulc1 32680 An extended sum multiplied...
esummulc2 32681 An extended sum multiplied...
esumdivc 32682 An extended sum divided by...
hashf2 32683 Lemma for ~ hasheuni . (C...
hasheuni 32684 The cardinality of a disjo...
esumcvg 32685 The sequence of partial su...
esumcvg2 32686 Simpler version of ~ esumc...
esumcvgsum 32687 The value of the extended ...
esumsup 32688 Express an extended sum as...
esumgect 32689 "Send ` n ` to ` +oo ` " i...
esumcvgre 32690 All terms of a converging ...
esum2dlem 32691 Lemma for ~ esum2d (finite...
esum2d 32692 Write a double extended su...
esumiun 32693 Sum over a nonnecessarily ...
ofceq 32696 Equality theorem for funct...
ofcfval 32697 Value of an operation appl...
ofcval 32698 Evaluate a function/consta...
ofcfn 32699 The function operation pro...
ofcfeqd2 32700 Equality theorem for funct...
ofcfval3 32701 General value of ` ( F oFC...
ofcf 32702 The function/constant oper...
ofcfval2 32703 The function operation exp...
ofcfval4 32704 The function/constant oper...
ofcc 32705 Left operation by a consta...
ofcof 32706 Relate function operation ...
sigaex 32709 Lemma for ~ issiga and ~ i...
sigaval 32710 The set of sigma-algebra w...
issiga 32711 An alternative definition ...
isrnsiga 32712 The property of being a si...
0elsiga 32713 A sigma-algebra contains t...
baselsiga 32714 A sigma-algebra contains i...
sigasspw 32715 A sigma-algebra is a set o...
sigaclcu 32716 A sigma-algebra is closed ...
sigaclcuni 32717 A sigma-algebra is closed ...
sigaclfu 32718 A sigma-algebra is closed ...
sigaclcu2 32719 A sigma-algebra is closed ...
sigaclfu2 32720 A sigma-algebra is closed ...
sigaclcu3 32721 A sigma-algebra is closed ...
issgon 32722 Property of being a sigma-...
sgon 32723 A sigma-algebra is a sigma...
elsigass 32724 An element of a sigma-alge...
elrnsiga 32725 Dropping the base informat...
isrnsigau 32726 The property of being a si...
unielsiga 32727 A sigma-algebra contains i...
dmvlsiga 32728 Lebesgue-measurable subset...
pwsiga 32729 Any power set forms a sigm...
prsiga 32730 The smallest possible sigm...
sigaclci 32731 A sigma-algebra is closed ...
difelsiga 32732 A sigma-algebra is closed ...
unelsiga 32733 A sigma-algebra is closed ...
inelsiga 32734 A sigma-algebra is closed ...
sigainb 32735 Building a sigma-algebra f...
insiga 32736 The intersection of a coll...
sigagenval 32739 Value of the generated sig...
sigagensiga 32740 A generated sigma-algebra ...
sgsiga 32741 A generated sigma-algebra ...
unisg 32742 The sigma-algebra generate...
dmsigagen 32743 A sigma-algebra can be gen...
sssigagen 32744 A set is a subset of the s...
sssigagen2 32745 A subset of the generating...
elsigagen 32746 Any element of a set is al...
elsigagen2 32747 Any countable union of ele...
sigagenss 32748 The generated sigma-algebr...
sigagenss2 32749 Sufficient condition for i...
sigagenid 32750 The sigma-algebra generate...
ispisys 32751 The property of being a pi...
ispisys2 32752 The property of being a pi...
inelpisys 32753 Pi-systems are closed unde...
sigapisys 32754 All sigma-algebras are pi-...
isldsys 32755 The property of being a la...
pwldsys 32756 The power set of the unive...
unelldsys 32757 Lambda-systems are closed ...
sigaldsys 32758 All sigma-algebras are lam...
ldsysgenld 32759 The intersection of all la...
sigapildsyslem 32760 Lemma for ~ sigapildsys . ...
sigapildsys 32761 Sigma-algebra are exactly ...
ldgenpisyslem1 32762 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 32763 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 32764 Lemma for ~ ldgenpisys . ...
ldgenpisys 32765 The lambda system ` E ` ge...
dynkin 32766 Dynkin's lambda-pi theorem...
isros 32767 The property of being a ri...
rossspw 32768 A ring of sets is a collec...
0elros 32769 A ring of sets contains th...
unelros 32770 A ring of sets is closed u...
difelros 32771 A ring of sets is closed u...
inelros 32772 A ring of sets is closed u...
fiunelros 32773 A ring of sets is closed u...
issros 32774 The property of being a se...
srossspw 32775 A semiring of sets is a co...
0elsros 32776 A semiring of sets contain...
inelsros 32777 A semiring of sets is clos...
diffiunisros 32778 In semiring of sets, compl...
rossros 32779 Rings of sets are semiring...
brsiga 32782 The Borel Algebra on real ...
brsigarn 32783 The Borel Algebra is a sig...
brsigasspwrn 32784 The Borel Algebra is a set...
unibrsiga 32785 The union of the Borel Alg...
cldssbrsiga 32786 A Borel Algebra contains a...
sxval 32789 Value of the product sigma...
sxsiga 32790 A product sigma-algebra is...
sxsigon 32791 A product sigma-algebra is...
sxuni 32792 The base set of a product ...
elsx 32793 The cartesian product of t...
measbase 32796 The base set of a measure ...
measval 32797 The value of the ` measure...
ismeas 32798 The property of being a me...
isrnmeas 32799 The property of being a me...
dmmeas 32800 The domain of a measure is...
measbasedom 32801 The base set of a measure ...
measfrge0 32802 A measure is a function ov...
measfn 32803 A measure is a function on...
measvxrge0 32804 The values of a measure ar...
measvnul 32805 The measure of the empty s...
measge0 32806 A measure is nonnegative. ...
measle0 32807 If the measure of a given ...
measvun 32808 The measure of a countable...
measxun2 32809 The measure the union of t...
measun 32810 The measure the union of t...
measvunilem 32811 Lemma for ~ measvuni . (C...
measvunilem0 32812 Lemma for ~ measvuni . (C...
measvuni 32813 The measure of a countable...
measssd 32814 A measure is monotone with...
measunl 32815 A measure is sub-additive ...
measiuns 32816 The measure of the union o...
measiun 32817 A measure is sub-additive....
meascnbl 32818 A measure is continuous fr...
measinblem 32819 Lemma for ~ measinb . (Co...
measinb 32820 Building a measure restric...
measres 32821 Building a measure restric...
measinb2 32822 Building a measure restric...
measdivcst 32823 Division of a measure by a...
measdivcstALTV 32824 Alternate version of ~ mea...
cntmeas 32825 The Counting measure is a ...
pwcntmeas 32826 The counting measure is a ...
cntnevol 32827 Counting and Lebesgue meas...
voliune 32828 The Lebesgue measure funct...
volfiniune 32829 The Lebesgue measure funct...
volmeas 32830 The Lebesgue measure is a ...
ddeval1 32833 Value of the delta measure...
ddeval0 32834 Value of the delta measure...
ddemeas 32835 The Dirac delta measure is...
relae 32839 'almost everywhere' is a r...
brae 32840 'almost everywhere' relati...
braew 32841 'almost everywhere' relati...
truae 32842 A truth holds almost every...
aean 32843 A conjunction holds almost...
faeval 32845 Value of the 'almost every...
relfae 32846 The 'almost everywhere' bu...
brfae 32847 'almost everywhere' relati...
ismbfm 32850 The predicate " ` F ` is a...
elunirnmbfm 32851 The property of being a me...
mbfmfun 32852 A measurable function is a...
mbfmf 32853 A measurable function as a...
isanmbfmOLD 32854 Obsolete version of ~ isan...
mbfmcnvima 32855 The preimage by a measurab...
isanmbfm 32856 The predicate to be a meas...
mbfmbfmOLD 32857 A measurable function to a...
mbfmbfm 32858 A measurable function to a...
mbfmcst 32859 A constant function is mea...
1stmbfm 32860 The first projection map i...
2ndmbfm 32861 The second projection map ...
imambfm 32862 If the sigma-algebra in th...
cnmbfm 32863 A continuous function is m...
mbfmco 32864 The composition of two mea...
mbfmco2 32865 The pair building of two m...
mbfmvolf 32866 Measurable functions with ...
elmbfmvol2 32867 Measurable functions with ...
mbfmcnt 32868 All functions are measurab...
br2base 32869 The base set for the gener...
dya2ub 32870 An upper bound for a dyadi...
sxbrsigalem0 32871 The closed half-spaces of ...
sxbrsigalem3 32872 The sigma-algebra generate...
dya2iocival 32873 The function ` I ` returns...
dya2iocress 32874 Dyadic intervals are subse...
dya2iocbrsiga 32875 Dyadic intervals are Borel...
dya2icobrsiga 32876 Dyadic intervals are Borel...
dya2icoseg 32877 For any point and any clos...
dya2icoseg2 32878 For any point and any open...
dya2iocrfn 32879 The function returning dya...
dya2iocct 32880 The dyadic rectangle set i...
dya2iocnrect 32881 For any point of an open r...
dya2iocnei 32882 For any point of an open s...
dya2iocuni 32883 Every open set of ` ( RR X...
dya2iocucvr 32884 The dyadic rectangular set...
sxbrsigalem1 32885 The Borel algebra on ` ( R...
sxbrsigalem2 32886 The sigma-algebra generate...
sxbrsigalem4 32887 The Borel algebra on ` ( R...
sxbrsigalem5 32888 First direction for ~ sxbr...
sxbrsigalem6 32889 First direction for ~ sxbr...
sxbrsiga 32890 The product sigma-algebra ...
omsval 32893 Value of the function mapp...
omsfval 32894 Value of the outer measure...
omscl 32895 A closure lemma for the co...
omsf 32896 A constructed outer measur...
oms0 32897 A constructed outer measur...
omsmon 32898 A constructed outer measur...
omssubaddlem 32899 For any small margin ` E `...
omssubadd 32900 A constructed outer measur...
carsgval 32903 Value of the Caratheodory ...
carsgcl 32904 Closure of the Caratheodor...
elcarsg 32905 Property of being a Carath...
baselcarsg 32906 The universe set, ` O ` , ...
0elcarsg 32907 The empty set is Caratheod...
carsguni 32908 The union of all Caratheod...
elcarsgss 32909 Caratheodory measurable se...
difelcarsg 32910 The Caratheodory measurabl...
inelcarsg 32911 The Caratheodory measurabl...
unelcarsg 32912 The Caratheodory-measurabl...
difelcarsg2 32913 The Caratheodory-measurabl...
carsgmon 32914 Utility lemma: Apply mono...
carsgsigalem 32915 Lemma for the following th...
fiunelcarsg 32916 The Caratheodory measurabl...
carsgclctunlem1 32917 Lemma for ~ carsgclctun . ...
carsggect 32918 The outer measure is count...
carsgclctunlem2 32919 Lemma for ~ carsgclctun . ...
carsgclctunlem3 32920 Lemma for ~ carsgclctun . ...
carsgclctun 32921 The Caratheodory measurabl...
carsgsiga 32922 The Caratheodory measurabl...
omsmeas 32923 The restriction of a const...
pmeasmono 32924 This theorem's hypotheses ...
pmeasadd 32925 A premeasure on a ring of ...
itgeq12dv 32926 Equality theorem for an in...
sitgval 32932 Value of the simple functi...
issibf 32933 The predicate " ` F ` is a...
sibf0 32934 The constant zero function...
sibfmbl 32935 A simple function is measu...
sibff 32936 A simple function is a fun...
sibfrn 32937 A simple function has fini...
sibfima 32938 Any preimage of a singleto...
sibfinima 32939 The measure of the interse...
sibfof 32940 Applying function operatio...
sitgfval 32941 Value of the Bochner integ...
sitgclg 32942 Closure of the Bochner int...
sitgclbn 32943 Closure of the Bochner int...
sitgclcn 32944 Closure of the Bochner int...
sitgclre 32945 Closure of the Bochner int...
sitg0 32946 The integral of the consta...
sitgf 32947 The integral for simple fu...
sitgaddlemb 32948 Lemma for * sitgadd . (Co...
sitmval 32949 Value of the simple functi...
sitmfval 32950 Value of the integral dist...
sitmcl 32951 Closure of the integral di...
sitmf 32952 The integral metric as a f...
oddpwdc 32954 Lemma for ~ eulerpart . T...
oddpwdcv 32955 Lemma for ~ eulerpart : va...
eulerpartlemsv1 32956 Lemma for ~ eulerpart . V...
eulerpartlemelr 32957 Lemma for ~ eulerpart . (...
eulerpartlemsv2 32958 Lemma for ~ eulerpart . V...
eulerpartlemsf 32959 Lemma for ~ eulerpart . (...
eulerpartlems 32960 Lemma for ~ eulerpart . (...
eulerpartlemsv3 32961 Lemma for ~ eulerpart . V...
eulerpartlemgc 32962 Lemma for ~ eulerpart . (...
eulerpartleme 32963 Lemma for ~ eulerpart . (...
eulerpartlemv 32964 Lemma for ~ eulerpart . (...
eulerpartlemo 32965 Lemma for ~ eulerpart : ` ...
eulerpartlemd 32966 Lemma for ~ eulerpart : ` ...
eulerpartlem1 32967 Lemma for ~ eulerpart . (...
eulerpartlemb 32968 Lemma for ~ eulerpart . T...
eulerpartlemt0 32969 Lemma for ~ eulerpart . (...
eulerpartlemf 32970 Lemma for ~ eulerpart : O...
eulerpartlemt 32971 Lemma for ~ eulerpart . (...
eulerpartgbij 32972 Lemma for ~ eulerpart : T...
eulerpartlemgv 32973 Lemma for ~ eulerpart : va...
eulerpartlemr 32974 Lemma for ~ eulerpart . (...
eulerpartlemmf 32975 Lemma for ~ eulerpart . (...
eulerpartlemgvv 32976 Lemma for ~ eulerpart : va...
eulerpartlemgu 32977 Lemma for ~ eulerpart : R...
eulerpartlemgh 32978 Lemma for ~ eulerpart : T...
eulerpartlemgf 32979 Lemma for ~ eulerpart : I...
eulerpartlemgs2 32980 Lemma for ~ eulerpart : T...
eulerpartlemn 32981 Lemma for ~ eulerpart . (...
eulerpart 32982 Euler's theorem on partiti...
subiwrd 32985 Lemma for ~ sseqp1 . (Con...
subiwrdlen 32986 Length of a subword of an ...
iwrdsplit 32987 Lemma for ~ sseqp1 . (Con...
sseqval 32988 Value of the strong sequen...
sseqfv1 32989 Value of the strong sequen...
sseqfn 32990 A strong recursive sequenc...
sseqmw 32991 Lemma for ~ sseqf amd ~ ss...
sseqf 32992 A strong recursive sequenc...
sseqfres 32993 The first elements in the ...
sseqfv2 32994 Value of the strong sequen...
sseqp1 32995 Value of the strong sequen...
fiblem 32998 Lemma for ~ fib0 , ~ fib1 ...
fib0 32999 Value of the Fibonacci seq...
fib1 33000 Value of the Fibonacci seq...
fibp1 33001 Value of the Fibonacci seq...
fib2 33002 Value of the Fibonacci seq...
fib3 33003 Value of the Fibonacci seq...
fib4 33004 Value of the Fibonacci seq...
fib5 33005 Value of the Fibonacci seq...
fib6 33006 Value of the Fibonacci seq...
elprob 33009 The property of being a pr...
domprobmeas 33010 A probability measure is a...
domprobsiga 33011 The domain of a probabilit...
probtot 33012 The probability of the uni...
prob01 33013 A probability is an elemen...
probnul 33014 The probability of the emp...
unveldomd 33015 The universe is an element...
unveldom 33016 The universe is an element...
nuleldmp 33017 The empty set is an elemen...
probcun 33018 The probability of the uni...
probun 33019 The probability of the uni...
probdif 33020 The probability of the dif...
probinc 33021 A probability law is incre...
probdsb 33022 The probability of the com...
probmeasd 33023 A probability measure is a...
probvalrnd 33024 The value of a probability...
probtotrnd 33025 The probability of the uni...
totprobd 33026 Law of total probability, ...
totprob 33027 Law of total probability. ...
probfinmeasb 33028 Build a probability measur...
probfinmeasbALTV 33029 Alternate version of ~ pro...
probmeasb 33030 Build a probability from a...
cndprobval 33033 The value of the condition...
cndprobin 33034 An identity linking condit...
cndprob01 33035 The conditional probabilit...
cndprobtot 33036 The conditional probabilit...
cndprobnul 33037 The conditional probabilit...
cndprobprob 33038 The conditional probabilit...
bayesth 33039 Bayes Theorem. (Contribut...
rrvmbfm 33042 A real-valued random varia...
isrrvv 33043 Elementhood to the set of ...
rrvvf 33044 A real-valued random varia...
rrvfn 33045 A real-valued random varia...
rrvdm 33046 The domain of a random var...
rrvrnss 33047 The range of a random vari...
rrvf2 33048 A real-valued random varia...
rrvdmss 33049 The domain of a random var...
rrvfinvima 33050 For a real-value random va...
0rrv 33051 The constant function equa...
rrvadd 33052 The sum of two random vari...
rrvmulc 33053 A random variable multipli...
rrvsum 33054 An indexed sum of random v...
orvcval 33057 Value of the preimage mapp...
orvcval2 33058 Another way to express the...
elorvc 33059 Elementhood of a preimage....
orvcval4 33060 The value of the preimage ...
orvcoel 33061 If the relation produces o...
orvccel 33062 If the relation produces c...
elorrvc 33063 Elementhood of a preimage ...
orrvcval4 33064 The value of the preimage ...
orrvcoel 33065 If the relation produces o...
orrvccel 33066 If the relation produces c...
orvcgteel 33067 Preimage maps produced by ...
orvcelval 33068 Preimage maps produced by ...
orvcelel 33069 Preimage maps produced by ...
dstrvval 33070 The value of the distribut...
dstrvprob 33071 The distribution of a rand...
orvclteel 33072 Preimage maps produced by ...
dstfrvel 33073 Elementhood of preimage ma...
dstfrvunirn 33074 The limit of all preimage ...
orvclteinc 33075 Preimage maps produced by ...
dstfrvinc 33076 A cumulative distribution ...
dstfrvclim1 33077 The limit of the cumulativ...
coinfliplem 33078 Division in the extended r...
coinflipprob 33079 The ` P ` we defined for c...
coinflipspace 33080 The space of our coin-flip...
coinflipuniv 33081 The universe of our coin-f...
coinfliprv 33082 The ` X ` we defined for c...
coinflippv 33083 The probability of heads i...
coinflippvt 33084 The probability of tails i...
ballotlemoex 33085 ` O ` is a set. (Contribu...
ballotlem1 33086 The size of the universe i...
ballotlemelo 33087 Elementhood in ` O ` . (C...
ballotlem2 33088 The probability that the f...
ballotlemfval 33089 The value of ` F ` . (Con...
ballotlemfelz 33090 ` ( F `` C ) ` has values ...
ballotlemfp1 33091 If the ` J ` th ballot is ...
ballotlemfc0 33092 ` F ` takes value 0 betwee...
ballotlemfcc 33093 ` F ` takes value 0 betwee...
ballotlemfmpn 33094 ` ( F `` C ) ` finishes co...
ballotlemfval0 33095 ` ( F `` C ) ` always star...
ballotleme 33096 Elements of ` E ` . (Cont...
ballotlemodife 33097 Elements of ` ( O \ E ) ` ...
ballotlem4 33098 If the first pick is a vot...
ballotlem5 33099 If A is not ahead througho...
ballotlemi 33100 Value of ` I ` for a given...
ballotlemiex 33101 Properties of ` ( I `` C )...
ballotlemi1 33102 The first tie cannot be re...
ballotlemii 33103 The first tie cannot be re...
ballotlemsup 33104 The set of zeroes of ` F `...
ballotlemimin 33105 ` ( I `` C ) ` is the firs...
ballotlemic 33106 If the first vote is for B...
ballotlem1c 33107 If the first vote is for A...
ballotlemsval 33108 Value of ` S ` . (Contrib...
ballotlemsv 33109 Value of ` S ` evaluated a...
ballotlemsgt1 33110 ` S ` maps values less tha...
ballotlemsdom 33111 Domain of ` S ` for a give...
ballotlemsel1i 33112 The range ` ( 1 ... ( I ``...
ballotlemsf1o 33113 The defined ` S ` is a bij...
ballotlemsi 33114 The image by ` S ` of the ...
ballotlemsima 33115 The image by ` S ` of an i...
ballotlemieq 33116 If two countings share the...
ballotlemrval 33117 Value of ` R ` . (Contrib...
ballotlemscr 33118 The image of ` ( R `` C ) ...
ballotlemrv 33119 Value of ` R ` evaluated a...
ballotlemrv1 33120 Value of ` R ` before the ...
ballotlemrv2 33121 Value of ` R ` after the t...
ballotlemro 33122 Range of ` R ` is included...
ballotlemgval 33123 Expand the value of ` .^ `...
ballotlemgun 33124 A property of the defined ...
ballotlemfg 33125 Express the value of ` ( F...
ballotlemfrc 33126 Express the value of ` ( F...
ballotlemfrci 33127 Reverse counting preserves...
ballotlemfrceq 33128 Value of ` F ` for a rever...
ballotlemfrcn0 33129 Value of ` F ` for a rever...
ballotlemrc 33130 Range of ` R ` . (Contrib...
ballotlemirc 33131 Applying ` R ` does not ch...
ballotlemrinv0 33132 Lemma for ~ ballotlemrinv ...
ballotlemrinv 33133 ` R ` is its own inverse :...
ballotlem1ri 33134 When the vote on the first...
ballotlem7 33135 ` R ` is a bijection betwe...
ballotlem8 33136 There are as many counting...
ballotth 33137 Bertrand's ballot problem ...
sgncl 33138 Closure of the signum. (C...
sgnclre 33139 Closure of the signum. (C...
sgnneg 33140 Negation of the signum. (...
sgn3da 33141 A conditional containing a...
sgnmul 33142 Signum of a product. (Con...
sgnmulrp2 33143 Multiplication by a positi...
sgnsub 33144 Subtraction of a number of...
sgnnbi 33145 Negative signum. (Contrib...
sgnpbi 33146 Positive signum. (Contrib...
sgn0bi 33147 Zero signum. (Contributed...
sgnsgn 33148 Signum is idempotent. (Co...
sgnmulsgn 33149 If two real numbers are of...
sgnmulsgp 33150 If two real numbers are of...
fzssfzo 33151 Condition for an integer i...
gsumncl 33152 Closure of a group sum in ...
gsumnunsn 33153 Closure of a group sum in ...
ccatmulgnn0dir 33154 Concatenation of words fol...
ofcccat 33155 Letterwise operations on w...
ofcs1 33156 Letterwise operations on a...
ofcs2 33157 Letterwise operations on a...
plymul02 33158 Product of a polynomial wi...
plymulx0 33159 Coefficients of a polynomi...
plymulx 33160 Coefficients of a polynomi...
plyrecld 33161 Closure of a polynomial wi...
signsplypnf 33162 The quotient of a polynomi...
signsply0 33163 Lemma for the rule of sign...
signspval 33164 The value of the skipping ...
signsw0glem 33165 Neutral element property o...
signswbase 33166 The base of ` W ` is the u...
signswplusg 33167 The operation of ` W ` . ...
signsw0g 33168 The neutral element of ` W...
signswmnd 33169 ` W ` is a monoid structur...
signswrid 33170 The zero-skipping operatio...
signswlid 33171 The zero-skipping operatio...
signswn0 33172 The zero-skipping operatio...
signswch 33173 The zero-skipping operatio...
signslema 33174 Computational part of ~~? ...
signstfv 33175 Value of the zero-skipping...
signstfval 33176 Value of the zero-skipping...
signstcl 33177 Closure of the zero skippi...
signstf 33178 The zero skipping sign wor...
signstlen 33179 Length of the zero skippin...
signstf0 33180 Sign of a single letter wo...
signstfvn 33181 Zero-skipping sign in a wo...
signsvtn0 33182 If the last letter is nonz...
signstfvp 33183 Zero-skipping sign in a wo...
signstfvneq0 33184 In case the first letter i...
signstfvcl 33185 Closure of the zero skippi...
signstfvc 33186 Zero-skipping sign in a wo...
signstres 33187 Restriction of a zero skip...
signstfveq0a 33188 Lemma for ~ signstfveq0 . ...
signstfveq0 33189 In case the last letter is...
signsvvfval 33190 The value of ` V ` , which...
signsvvf 33191 ` V ` is a function. (Con...
signsvf0 33192 There is no change of sign...
signsvf1 33193 In a single-letter word, w...
signsvfn 33194 Number of changes in a wor...
signsvtp 33195 Adding a letter of the sam...
signsvtn 33196 Adding a letter of a diffe...
signsvfpn 33197 Adding a letter of the sam...
signsvfnn 33198 Adding a letter of a diffe...
signlem0 33199 Adding a zero as the highe...
signshf 33200 ` H ` , corresponding to t...
signshwrd 33201 ` H ` , corresponding to t...
signshlen 33202 Length of ` H ` , correspo...
signshnz 33203 ` H ` is not the empty wor...
efcld 33204 Closure law for the expone...
iblidicc 33205 The identity function is i...
rpsqrtcn 33206 Continuity of the real pos...
divsqrtid 33207 A real number divided by i...
cxpcncf1 33208 The power function on comp...
efmul2picn 33209 Multiplying by ` ( _i x. (...
fct2relem 33210 Lemma for ~ ftc2re . (Con...
ftc2re 33211 The Fundamental Theorem of...
fdvposlt 33212 Functions with a positive ...
fdvneggt 33213 Functions with a negative ...
fdvposle 33214 Functions with a nonnegati...
fdvnegge 33215 Functions with a nonpositi...
prodfzo03 33216 A product of three factors...
actfunsnf1o 33217 The action ` F ` of extend...
actfunsnrndisj 33218 The action ` F ` of extend...
itgexpif 33219 The basis for the circle m...
fsum2dsub 33220 Lemma for ~ breprexp - Re-...
reprval 33223 Value of the representatio...
repr0 33224 There is exactly one repre...
reprf 33225 Members of the representat...
reprsum 33226 Sums of values of the memb...
reprle 33227 Upper bound to the terms i...
reprsuc 33228 Express the representation...
reprfi 33229 Bounded representations ar...
reprss 33230 Representations with terms...
reprinrn 33231 Representations with term ...
reprlt 33232 There are no representatio...
hashreprin 33233 Express a sum of represent...
reprgt 33234 There are no representatio...
reprinfz1 33235 For the representation of ...
reprfi2 33236 Corollary of ~ reprinfz1 ....
reprfz1 33237 Corollary of ~ reprinfz1 ....
hashrepr 33238 Develop the number of repr...
reprpmtf1o 33239 Transposing ` 0 ` and ` X ...
reprdifc 33240 Express the representation...
chpvalz 33241 Value of the second Chebys...
chtvalz 33242 Value of the Chebyshev fun...
breprexplema 33243 Lemma for ~ breprexp (indu...
breprexplemb 33244 Lemma for ~ breprexp (clos...
breprexplemc 33245 Lemma for ~ breprexp (indu...
breprexp 33246 Express the ` S ` th power...
breprexpnat 33247 Express the ` S ` th power...
vtsval 33250 Value of the Vinogradov tr...
vtscl 33251 Closure of the Vinogradov ...
vtsprod 33252 Express the Vinogradov tri...
circlemeth 33253 The Hardy, Littlewood and ...
circlemethnat 33254 The Hardy, Littlewood and ...
circlevma 33255 The Circle Method, where t...
circlemethhgt 33256 The circle method, where t...
hgt750lemc 33260 An upper bound to the summ...
hgt750lemd 33261 An upper bound to the summ...
hgt749d 33262 A deduction version of ~ a...
logdivsqrle 33263 Conditions for ` ( ( log `...
hgt750lem 33264 Lemma for ~ tgoldbachgtd ....
hgt750lem2 33265 Decimal multiplication gal...
hgt750lemf 33266 Lemma for the statement 7....
hgt750lemg 33267 Lemma for the statement 7....
oddprm2 33268 Two ways to write the set ...
hgt750lemb 33269 An upper bound on the cont...
hgt750lema 33270 An upper bound on the cont...
hgt750leme 33271 An upper bound on the cont...
tgoldbachgnn 33272 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 33273 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 33274 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 33275 Odd integers greater than ...
tgoldbachgt 33276 Odd integers greater than ...
istrkg2d 33279 Property of fulfilling dim...
axtglowdim2ALTV 33280 Alternate version of ~ axt...
axtgupdim2ALTV 33281 Alternate version of ~ axt...
afsval 33284 Value of the AFS relation ...
brafs 33285 Binary relation form of th...
tg5segofs 33286 Rephrase ~ axtg5seg using ...
lpadval 33289 Value of the ` leftpad ` f...
lpadlem1 33290 Lemma for the ` leftpad ` ...
lpadlem3 33291 Lemma for ~ lpadlen1 . (C...
lpadlen1 33292 Length of a left-padded wo...
lpadlem2 33293 Lemma for the ` leftpad ` ...
lpadlen2 33294 Length of a left-padded wo...
lpadmax 33295 Length of a left-padded wo...
lpadleft 33296 The contents of prefix of ...
lpadright 33297 The suffix of a left-padde...
bnj170 33310 ` /\ ` -manipulation. (Co...
bnj240 33311 ` /\ ` -manipulation. (Co...
bnj248 33312 ` /\ ` -manipulation. (Co...
bnj250 33313 ` /\ ` -manipulation. (Co...
bnj251 33314 ` /\ ` -manipulation. (Co...
bnj252 33315 ` /\ ` -manipulation. (Co...
bnj253 33316 ` /\ ` -manipulation. (Co...
bnj255 33317 ` /\ ` -manipulation. (Co...
bnj256 33318 ` /\ ` -manipulation. (Co...
bnj257 33319 ` /\ ` -manipulation. (Co...
bnj258 33320 ` /\ ` -manipulation. (Co...
bnj268 33321 ` /\ ` -manipulation. (Co...
bnj290 33322 ` /\ ` -manipulation. (Co...
bnj291 33323 ` /\ ` -manipulation. (Co...
bnj312 33324 ` /\ ` -manipulation. (Co...
bnj334 33325 ` /\ ` -manipulation. (Co...
bnj345 33326 ` /\ ` -manipulation. (Co...
bnj422 33327 ` /\ ` -manipulation. (Co...
bnj432 33328 ` /\ ` -manipulation. (Co...
bnj446 33329 ` /\ ` -manipulation. (Co...
bnj23 33330 First-order logic and set ...
bnj31 33331 First-order logic and set ...
bnj62 33332 First-order logic and set ...
bnj89 33333 First-order logic and set ...
bnj90 33334 First-order logic and set ...
bnj101 33335 First-order logic and set ...
bnj105 33336 First-order logic and set ...
bnj115 33337 First-order logic and set ...
bnj132 33338 First-order logic and set ...
bnj133 33339 First-order logic and set ...
bnj156 33340 First-order logic and set ...
bnj158 33341 First-order logic and set ...
bnj168 33342 First-order logic and set ...
bnj206 33343 First-order logic and set ...
bnj216 33344 First-order logic and set ...
bnj219 33345 First-order logic and set ...
bnj226 33346 First-order logic and set ...
bnj228 33347 First-order logic and set ...
bnj519 33348 First-order logic and set ...
bnj524 33349 First-order logic and set ...
bnj525 33350 First-order logic and set ...
bnj534 33351 First-order logic and set ...
bnj538 33352 First-order logic and set ...
bnj529 33353 First-order logic and set ...
bnj551 33354 First-order logic and set ...
bnj563 33355 First-order logic and set ...
bnj564 33356 First-order logic and set ...
bnj593 33357 First-order logic and set ...
bnj596 33358 First-order logic and set ...
bnj610 33359 Pass from equality ( ` x =...
bnj642 33360 ` /\ ` -manipulation. (Co...
bnj643 33361 ` /\ ` -manipulation. (Co...
bnj645 33362 ` /\ ` -manipulation. (Co...
bnj658 33363 ` /\ ` -manipulation. (Co...
bnj667 33364 ` /\ ` -manipulation. (Co...
bnj705 33365 ` /\ ` -manipulation. (Co...
bnj706 33366 ` /\ ` -manipulation. (Co...
bnj707 33367 ` /\ ` -manipulation. (Co...
bnj708 33368 ` /\ ` -manipulation. (Co...
bnj721 33369 ` /\ ` -manipulation. (Co...
bnj832 33370 ` /\ ` -manipulation. (Co...
bnj835 33371 ` /\ ` -manipulation. (Co...
bnj836 33372 ` /\ ` -manipulation. (Co...
bnj837 33373 ` /\ ` -manipulation. (Co...
bnj769 33374 ` /\ ` -manipulation. (Co...
bnj770 33375 ` /\ ` -manipulation. (Co...
bnj771 33376 ` /\ ` -manipulation. (Co...
bnj887 33377 ` /\ ` -manipulation. (Co...
bnj918 33378 First-order logic and set ...
bnj919 33379 First-order logic and set ...
bnj923 33380 First-order logic and set ...
bnj927 33381 First-order logic and set ...
bnj931 33382 First-order logic and set ...
bnj937 33383 First-order logic and set ...
bnj941 33384 First-order logic and set ...
bnj945 33385 Technical lemma for ~ bnj6...
bnj946 33386 First-order logic and set ...
bnj951 33387 ` /\ ` -manipulation. (Co...
bnj956 33388 First-order logic and set ...
bnj976 33389 First-order logic and set ...
bnj982 33390 First-order logic and set ...
bnj1019 33391 First-order logic and set ...
bnj1023 33392 First-order logic and set ...
bnj1095 33393 First-order logic and set ...
bnj1096 33394 First-order logic and set ...
bnj1098 33395 First-order logic and set ...
bnj1101 33396 First-order logic and set ...
bnj1113 33397 First-order logic and set ...
bnj1109 33398 First-order logic and set ...
bnj1131 33399 First-order logic and set ...
bnj1138 33400 First-order logic and set ...
bnj1142 33401 First-order logic and set ...
bnj1143 33402 First-order logic and set ...
bnj1146 33403 First-order logic and set ...
bnj1149 33404 First-order logic and set ...
bnj1185 33405 First-order logic and set ...
bnj1196 33406 First-order logic and set ...
bnj1198 33407 First-order logic and set ...
bnj1209 33408 First-order logic and set ...
bnj1211 33409 First-order logic and set ...
bnj1213 33410 First-order logic and set ...
bnj1212 33411 First-order logic and set ...
bnj1219 33412 First-order logic and set ...
bnj1224 33413 First-order logic and set ...
bnj1230 33414 First-order logic and set ...
bnj1232 33415 First-order logic and set ...
bnj1235 33416 First-order logic and set ...
bnj1239 33417 First-order logic and set ...
bnj1238 33418 First-order logic and set ...
bnj1241 33419 First-order logic and set ...
bnj1247 33420 First-order logic and set ...
bnj1254 33421 First-order logic and set ...
bnj1262 33422 First-order logic and set ...
bnj1266 33423 First-order logic and set ...
bnj1265 33424 First-order logic and set ...
bnj1275 33425 First-order logic and set ...
bnj1276 33426 First-order logic and set ...
bnj1292 33427 First-order logic and set ...
bnj1293 33428 First-order logic and set ...
bnj1294 33429 First-order logic and set ...
bnj1299 33430 First-order logic and set ...
bnj1304 33431 First-order logic and set ...
bnj1316 33432 First-order logic and set ...
bnj1317 33433 First-order logic and set ...
bnj1322 33434 First-order logic and set ...
bnj1340 33435 First-order logic and set ...
bnj1345 33436 First-order logic and set ...
bnj1350 33437 First-order logic and set ...
bnj1351 33438 First-order logic and set ...
bnj1352 33439 First-order logic and set ...
bnj1361 33440 First-order logic and set ...
bnj1366 33441 First-order logic and set ...
bnj1379 33442 First-order logic and set ...
bnj1383 33443 First-order logic and set ...
bnj1385 33444 First-order logic and set ...
bnj1386 33445 First-order logic and set ...
bnj1397 33446 First-order logic and set ...
bnj1400 33447 First-order logic and set ...
bnj1405 33448 First-order logic and set ...
bnj1422 33449 First-order logic and set ...
bnj1424 33450 First-order logic and set ...
bnj1436 33451 First-order logic and set ...
bnj1441 33452 First-order logic and set ...
bnj1441g 33453 First-order logic and set ...
bnj1454 33454 First-order logic and set ...
bnj1459 33455 First-order logic and set ...
bnj1464 33456 Conversion of implicit sub...
bnj1465 33457 First-order logic and set ...
bnj1468 33458 Conversion of implicit sub...
bnj1476 33459 First-order logic and set ...
bnj1502 33460 First-order logic and set ...
bnj1503 33461 First-order logic and set ...
bnj1517 33462 First-order logic and set ...
bnj1521 33463 First-order logic and set ...
bnj1533 33464 First-order logic and set ...
bnj1534 33465 First-order logic and set ...
bnj1536 33466 First-order logic and set ...
bnj1538 33467 First-order logic and set ...
bnj1541 33468 First-order logic and set ...
bnj1542 33469 First-order logic and set ...
bnj110 33470 Well-founded induction res...
bnj157 33471 Well-founded induction res...
bnj66 33472 Technical lemma for ~ bnj6...
bnj91 33473 First-order logic and set ...
bnj92 33474 First-order logic and set ...
bnj93 33475 Technical lemma for ~ bnj9...
bnj95 33476 Technical lemma for ~ bnj1...
bnj96 33477 Technical lemma for ~ bnj1...
bnj97 33478 Technical lemma for ~ bnj1...
bnj98 33479 Technical lemma for ~ bnj1...
bnj106 33480 First-order logic and set ...
bnj118 33481 First-order logic and set ...
bnj121 33482 First-order logic and set ...
bnj124 33483 Technical lemma for ~ bnj1...
bnj125 33484 Technical lemma for ~ bnj1...
bnj126 33485 Technical lemma for ~ bnj1...
bnj130 33486 Technical lemma for ~ bnj1...
bnj149 33487 Technical lemma for ~ bnj1...
bnj150 33488 Technical lemma for ~ bnj1...
bnj151 33489 Technical lemma for ~ bnj1...
bnj154 33490 Technical lemma for ~ bnj1...
bnj155 33491 Technical lemma for ~ bnj1...
bnj153 33492 Technical lemma for ~ bnj8...
bnj207 33493 Technical lemma for ~ bnj8...
bnj213 33494 First-order logic and set ...
bnj222 33495 Technical lemma for ~ bnj2...
bnj229 33496 Technical lemma for ~ bnj5...
bnj517 33497 Technical lemma for ~ bnj5...
bnj518 33498 Technical lemma for ~ bnj8...
bnj523 33499 Technical lemma for ~ bnj8...
bnj526 33500 Technical lemma for ~ bnj8...
bnj528 33501 Technical lemma for ~ bnj8...
bnj535 33502 Technical lemma for ~ bnj8...
bnj539 33503 Technical lemma for ~ bnj8...
bnj540 33504 Technical lemma for ~ bnj8...
bnj543 33505 Technical lemma for ~ bnj8...
bnj544 33506 Technical lemma for ~ bnj8...
bnj545 33507 Technical lemma for ~ bnj8...
bnj546 33508 Technical lemma for ~ bnj8...
bnj548 33509 Technical lemma for ~ bnj8...
bnj553 33510 Technical lemma for ~ bnj8...
bnj554 33511 Technical lemma for ~ bnj8...
bnj556 33512 Technical lemma for ~ bnj8...
bnj557 33513 Technical lemma for ~ bnj8...
bnj558 33514 Technical lemma for ~ bnj8...
bnj561 33515 Technical lemma for ~ bnj8...
bnj562 33516 Technical lemma for ~ bnj8...
bnj570 33517 Technical lemma for ~ bnj8...
bnj571 33518 Technical lemma for ~ bnj8...
bnj605 33519 Technical lemma. This lem...
bnj581 33520 Technical lemma for ~ bnj5...
bnj589 33521 Technical lemma for ~ bnj8...
bnj590 33522 Technical lemma for ~ bnj8...
bnj591 33523 Technical lemma for ~ bnj8...
bnj594 33524 Technical lemma for ~ bnj8...
bnj580 33525 Technical lemma for ~ bnj5...
bnj579 33526 Technical lemma for ~ bnj8...
bnj602 33527 Equality theorem for the `...
bnj607 33528 Technical lemma for ~ bnj8...
bnj609 33529 Technical lemma for ~ bnj8...
bnj611 33530 Technical lemma for ~ bnj8...
bnj600 33531 Technical lemma for ~ bnj8...
bnj601 33532 Technical lemma for ~ bnj8...
bnj852 33533 Technical lemma for ~ bnj6...
bnj864 33534 Technical lemma for ~ bnj6...
bnj865 33535 Technical lemma for ~ bnj6...
bnj873 33536 Technical lemma for ~ bnj6...
bnj849 33537 Technical lemma for ~ bnj6...
bnj882 33538 Definition (using hypothes...
bnj18eq1 33539 Equality theorem for trans...
bnj893 33540 Property of ` _trCl ` . U...
bnj900 33541 Technical lemma for ~ bnj6...
bnj906 33542 Property of ` _trCl ` . (...
bnj908 33543 Technical lemma for ~ bnj6...
bnj911 33544 Technical lemma for ~ bnj6...
bnj916 33545 Technical lemma for ~ bnj6...
bnj917 33546 Technical lemma for ~ bnj6...
bnj934 33547 Technical lemma for ~ bnj6...
bnj929 33548 Technical lemma for ~ bnj6...
bnj938 33549 Technical lemma for ~ bnj6...
bnj944 33550 Technical lemma for ~ bnj6...
bnj953 33551 Technical lemma for ~ bnj6...
bnj958 33552 Technical lemma for ~ bnj6...
bnj1000 33553 Technical lemma for ~ bnj8...
bnj965 33554 Technical lemma for ~ bnj8...
bnj964 33555 Technical lemma for ~ bnj6...
bnj966 33556 Technical lemma for ~ bnj6...
bnj967 33557 Technical lemma for ~ bnj6...
bnj969 33558 Technical lemma for ~ bnj6...
bnj970 33559 Technical lemma for ~ bnj6...
bnj910 33560 Technical lemma for ~ bnj6...
bnj978 33561 Technical lemma for ~ bnj6...
bnj981 33562 Technical lemma for ~ bnj6...
bnj983 33563 Technical lemma for ~ bnj6...
bnj984 33564 Technical lemma for ~ bnj6...
bnj985v 33565 Version of ~ bnj985 with a...
bnj985 33566 Technical lemma for ~ bnj6...
bnj986 33567 Technical lemma for ~ bnj6...
bnj996 33568 Technical lemma for ~ bnj6...
bnj998 33569 Technical lemma for ~ bnj6...
bnj999 33570 Technical lemma for ~ bnj6...
bnj1001 33571 Technical lemma for ~ bnj6...
bnj1006 33572 Technical lemma for ~ bnj6...
bnj1014 33573 Technical lemma for ~ bnj6...
bnj1015 33574 Technical lemma for ~ bnj6...
bnj1018g 33575 Version of ~ bnj1018 with ...
bnj1018 33576 Technical lemma for ~ bnj6...
bnj1020 33577 Technical lemma for ~ bnj6...
bnj1021 33578 Technical lemma for ~ bnj6...
bnj907 33579 Technical lemma for ~ bnj6...
bnj1029 33580 Property of ` _trCl ` . (...
bnj1033 33581 Technical lemma for ~ bnj6...
bnj1034 33582 Technical lemma for ~ bnj6...
bnj1039 33583 Technical lemma for ~ bnj6...
bnj1040 33584 Technical lemma for ~ bnj6...
bnj1047 33585 Technical lemma for ~ bnj6...
bnj1049 33586 Technical lemma for ~ bnj6...
bnj1052 33587 Technical lemma for ~ bnj6...
bnj1053 33588 Technical lemma for ~ bnj6...
bnj1071 33589 Technical lemma for ~ bnj6...
bnj1083 33590 Technical lemma for ~ bnj6...
bnj1090 33591 Technical lemma for ~ bnj6...
bnj1093 33592 Technical lemma for ~ bnj6...
bnj1097 33593 Technical lemma for ~ bnj6...
bnj1110 33594 Technical lemma for ~ bnj6...
bnj1112 33595 Technical lemma for ~ bnj6...
bnj1118 33596 Technical lemma for ~ bnj6...
bnj1121 33597 Technical lemma for ~ bnj6...
bnj1123 33598 Technical lemma for ~ bnj6...
bnj1030 33599 Technical lemma for ~ bnj6...
bnj1124 33600 Property of ` _trCl ` . (...
bnj1133 33601 Technical lemma for ~ bnj6...
bnj1128 33602 Technical lemma for ~ bnj6...
bnj1127 33603 Property of ` _trCl ` . (...
bnj1125 33604 Property of ` _trCl ` . (...
bnj1145 33605 Technical lemma for ~ bnj6...
bnj1147 33606 Property of ` _trCl ` . (...
bnj1137 33607 Property of ` _trCl ` . (...
bnj1148 33608 Property of ` _pred ` . (...
bnj1136 33609 Technical lemma for ~ bnj6...
bnj1152 33610 Technical lemma for ~ bnj6...
bnj1154 33611 Property of ` Fr ` . (Con...
bnj1171 33612 Technical lemma for ~ bnj6...
bnj1172 33613 Technical lemma for ~ bnj6...
bnj1173 33614 Technical lemma for ~ bnj6...
bnj1174 33615 Technical lemma for ~ bnj6...
bnj1175 33616 Technical lemma for ~ bnj6...
bnj1176 33617 Technical lemma for ~ bnj6...
bnj1177 33618 Technical lemma for ~ bnj6...
bnj1186 33619 Technical lemma for ~ bnj6...
bnj1190 33620 Technical lemma for ~ bnj6...
bnj1189 33621 Technical lemma for ~ bnj6...
bnj69 33622 Existence of a minimal ele...
bnj1228 33623 Existence of a minimal ele...
bnj1204 33624 Well-founded induction. T...
bnj1234 33625 Technical lemma for ~ bnj6...
bnj1245 33626 Technical lemma for ~ bnj6...
bnj1256 33627 Technical lemma for ~ bnj6...
bnj1259 33628 Technical lemma for ~ bnj6...
bnj1253 33629 Technical lemma for ~ bnj6...
bnj1279 33630 Technical lemma for ~ bnj6...
bnj1286 33631 Technical lemma for ~ bnj6...
bnj1280 33632 Technical lemma for ~ bnj6...
bnj1296 33633 Technical lemma for ~ bnj6...
bnj1309 33634 Technical lemma for ~ bnj6...
bnj1307 33635 Technical lemma for ~ bnj6...
bnj1311 33636 Technical lemma for ~ bnj6...
bnj1318 33637 Technical lemma for ~ bnj6...
bnj1326 33638 Technical lemma for ~ bnj6...
bnj1321 33639 Technical lemma for ~ bnj6...
bnj1364 33640 Property of ` _FrSe ` . (...
bnj1371 33641 Technical lemma for ~ bnj6...
bnj1373 33642 Technical lemma for ~ bnj6...
bnj1374 33643 Technical lemma for ~ bnj6...
bnj1384 33644 Technical lemma for ~ bnj6...
bnj1388 33645 Technical lemma for ~ bnj6...
bnj1398 33646 Technical lemma for ~ bnj6...
bnj1413 33647 Property of ` _trCl ` . (...
bnj1408 33648 Technical lemma for ~ bnj1...
bnj1414 33649 Property of ` _trCl ` . (...
bnj1415 33650 Technical lemma for ~ bnj6...
bnj1416 33651 Technical lemma for ~ bnj6...
bnj1418 33652 Property of ` _pred ` . (...
bnj1417 33653 Technical lemma for ~ bnj6...
bnj1421 33654 Technical lemma for ~ bnj6...
bnj1444 33655 Technical lemma for ~ bnj6...
bnj1445 33656 Technical lemma for ~ bnj6...
bnj1446 33657 Technical lemma for ~ bnj6...
bnj1447 33658 Technical lemma for ~ bnj6...
bnj1448 33659 Technical lemma for ~ bnj6...
bnj1449 33660 Technical lemma for ~ bnj6...
bnj1442 33661 Technical lemma for ~ bnj6...
bnj1450 33662 Technical lemma for ~ bnj6...
bnj1423 33663 Technical lemma for ~ bnj6...
bnj1452 33664 Technical lemma for ~ bnj6...
bnj1466 33665 Technical lemma for ~ bnj6...
bnj1467 33666 Technical lemma for ~ bnj6...
bnj1463 33667 Technical lemma for ~ bnj6...
bnj1489 33668 Technical lemma for ~ bnj6...
bnj1491 33669 Technical lemma for ~ bnj6...
bnj1312 33670 Technical lemma for ~ bnj6...
bnj1493 33671 Technical lemma for ~ bnj6...
bnj1497 33672 Technical lemma for ~ bnj6...
bnj1498 33673 Technical lemma for ~ bnj6...
bnj60 33674 Well-founded recursion, pa...
bnj1514 33675 Technical lemma for ~ bnj1...
bnj1518 33676 Technical lemma for ~ bnj1...
bnj1519 33677 Technical lemma for ~ bnj1...
bnj1520 33678 Technical lemma for ~ bnj1...
bnj1501 33679 Technical lemma for ~ bnj1...
bnj1500 33680 Well-founded recursion, pa...
bnj1525 33681 Technical lemma for ~ bnj1...
bnj1529 33682 Technical lemma for ~ bnj1...
bnj1523 33683 Technical lemma for ~ bnj1...
bnj1522 33684 Well-founded recursion, pa...
exdifsn 33685 There exists an element in...
srcmpltd 33686 If a statement is true for...
prsrcmpltd 33687 If a statement is true for...
dff15 33688 A one-to-one function in t...
f1resveqaeq 33689 If a function restricted t...
f1resrcmplf1dlem 33690 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 33691 If a function's restrictio...
funen1cnv 33692 If a function is equinumer...
fnrelpredd 33693 A function that preserves ...
cardpred 33694 The cardinality function p...
nummin 33695 Every nonempty class of nu...
fineqvrep 33696 If the Axiom of Infinity i...
fineqvpow 33697 If the Axiom of Infinity i...
fineqvac 33698 If the Axiom of Infinity i...
fineqvacALT 33699 Shorter proof of ~ fineqva...
zltp1ne 33700 Integer ordering relation....
nnltp1ne 33701 Positive integer ordering ...
nn0ltp1ne 33702 Nonnegative integer orderi...
0nn0m1nnn0 33703 A number is zero if and on...
f1resfz0f1d 33704 If a function with a seque...
fisshasheq 33705 A finite set is equal to i...
hashfundm 33706 The size of a set function...
hashf1dmrn 33707 The size of the domain of ...
hashf1dmcdm 33708 The size of the domain of ...
revpfxsfxrev 33709 The reverse of a prefix of...
swrdrevpfx 33710 A subword expressed in ter...
lfuhgr 33711 A hypergraph is loop-free ...
lfuhgr2 33712 A hypergraph is loop-free ...
lfuhgr3 33713 A hypergraph is loop-free ...
cplgredgex 33714 Any two (distinct) vertice...
cusgredgex 33715 Any two (distinct) vertice...
cusgredgex2 33716 Any two distinct vertices ...
pfxwlk 33717 A prefix of a walk is a wa...
revwlk 33718 The reverse of a walk is a...
revwlkb 33719 Two words represent a walk...
swrdwlk 33720 Two matching subwords of a...
pthhashvtx 33721 A graph containing a path ...
pthisspthorcycl 33722 A path is either a simple ...
spthcycl 33723 A walk is a trivial path i...
usgrgt2cycl 33724 A non-trivial cycle in a s...
usgrcyclgt2v 33725 A simple graph with a non-...
subgrwlk 33726 If a walk exists in a subg...
subgrtrl 33727 If a trail exists in a sub...
subgrpth 33728 If a path exists in a subg...
subgrcycl 33729 If a cycle exists in a sub...
cusgr3cyclex 33730 Every complete simple grap...
loop1cycl 33731 A hypergraph has a cycle o...
2cycld 33732 Construction of a 2-cycle ...
2cycl2d 33733 Construction of a 2-cycle ...
umgr2cycllem 33734 Lemma for ~ umgr2cycl . (...
umgr2cycl 33735 A multigraph with two dist...
dfacycgr1 33738 An alternate definition of...
isacycgr 33739 The property of being an a...
isacycgr1 33740 The property of being an a...
acycgrcycl 33741 Any cycle in an acyclic gr...
acycgr0v 33742 A null graph (with no vert...
acycgr1v 33743 A multigraph with one vert...
acycgr2v 33744 A simple graph with two ve...
prclisacycgr 33745 A proper class (representi...
acycgrislfgr 33746 An acyclic hypergraph is a...
upgracycumgr 33747 An acyclic pseudograph is ...
umgracycusgr 33748 An acyclic multigraph is a...
upgracycusgr 33749 An acyclic pseudograph is ...
cusgracyclt3v 33750 A complete simple graph is...
pthacycspth 33751 A path in an acyclic graph...
acycgrsubgr 33752 The subgraph of an acyclic...
quartfull 33759 The quartic equation, writ...
deranglem 33760 Lemma for derangements. (...
derangval 33761 Define the derangement fun...
derangf 33762 The derangement number is ...
derang0 33763 The derangement number of ...
derangsn 33764 The derangement number of ...
derangenlem 33765 One half of ~ derangen . ...
derangen 33766 The derangement number is ...
subfacval 33767 The subfactorial is define...
derangen2 33768 Write the derangement numb...
subfacf 33769 The subfactorial is a func...
subfaclefac 33770 The subfactorial is less t...
subfac0 33771 The subfactorial at zero. ...
subfac1 33772 The subfactorial at one. ...
subfacp1lem1 33773 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 33774 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 33775 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 33776 Lemma for ~ subfacp1 . In...
subfacp1lem4 33777 Lemma for ~ subfacp1 . Th...
subfacp1lem5 33778 Lemma for ~ subfacp1 . In...
subfacp1lem6 33779 Lemma for ~ subfacp1 . By...
subfacp1 33780 A two-term recurrence for ...
subfacval2 33781 A closed-form expression f...
subfaclim 33782 The subfactorial converges...
subfacval3 33783 Another closed form expres...
derangfmla 33784 The derangements formula, ...
erdszelem1 33785 Lemma for ~ erdsze . (Con...
erdszelem2 33786 Lemma for ~ erdsze . (Con...
erdszelem3 33787 Lemma for ~ erdsze . (Con...
erdszelem4 33788 Lemma for ~ erdsze . (Con...
erdszelem5 33789 Lemma for ~ erdsze . (Con...
erdszelem6 33790 Lemma for ~ erdsze . (Con...
erdszelem7 33791 Lemma for ~ erdsze . (Con...
erdszelem8 33792 Lemma for ~ erdsze . (Con...
erdszelem9 33793 Lemma for ~ erdsze . (Con...
erdszelem10 33794 Lemma for ~ erdsze . (Con...
erdszelem11 33795 Lemma for ~ erdsze . (Con...
erdsze 33796 The Erdős-Szekeres th...
erdsze2lem1 33797 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 33798 Lemma for ~ erdsze2 . (Co...
erdsze2 33799 Generalize the statement o...
kur14lem1 33800 Lemma for ~ kur14 . (Cont...
kur14lem2 33801 Lemma for ~ kur14 . Write...
kur14lem3 33802 Lemma for ~ kur14 . A clo...
kur14lem4 33803 Lemma for ~ kur14 . Compl...
kur14lem5 33804 Lemma for ~ kur14 . Closu...
kur14lem6 33805 Lemma for ~ kur14 . If ` ...
kur14lem7 33806 Lemma for ~ kur14 : main p...
kur14lem8 33807 Lemma for ~ kur14 . Show ...
kur14lem9 33808 Lemma for ~ kur14 . Since...
kur14lem10 33809 Lemma for ~ kur14 . Disch...
kur14 33810 Kuratowski's closure-compl...
ispconn 33817 The property of being a pa...
pconncn 33818 The property of being a pa...
pconntop 33819 A simply connected space i...
issconn 33820 The property of being a si...
sconnpconn 33821 A simply connected space i...
sconntop 33822 A simply connected space i...
sconnpht 33823 A closed path in a simply ...
cnpconn 33824 An image of a path-connect...
pconnconn 33825 A path-connected space is ...
txpconn 33826 The topological product of...
ptpconn 33827 The topological product of...
indispconn 33828 The indiscrete topology (o...
connpconn 33829 A connected and locally pa...
qtoppconn 33830 A quotient of a path-conne...
pconnpi1 33831 All fundamental groups in ...
sconnpht2 33832 Any two paths in a simply ...
sconnpi1 33833 A path-connected topologic...
txsconnlem 33834 Lemma for ~ txsconn . (Co...
txsconn 33835 The topological product of...
cvxpconn 33836 A convex subset of the com...
cvxsconn 33837 A convex subset of the com...
blsconn 33838 An open ball in the comple...
cnllysconn 33839 The topology of the comple...
resconn 33840 A subset of ` RR ` is simp...
ioosconn 33841 An open interval is simply...
iccsconn 33842 A closed interval is simpl...
retopsconn 33843 The real numbers are simpl...
iccllysconn 33844 A closed interval is local...
rellysconn 33845 The real numbers are local...
iisconn 33846 The unit interval is simpl...
iillysconn 33847 The unit interval is local...
iinllyconn 33848 The unit interval is local...
fncvm 33851 Lemma for covering maps. ...
cvmscbv 33852 Change bound variables in ...
iscvm 33853 The property of being a co...
cvmtop1 33854 Reverse closure for a cove...
cvmtop2 33855 Reverse closure for a cove...
cvmcn 33856 A covering map is a contin...
cvmcov 33857 Property of a covering map...
cvmsrcl 33858 Reverse closure for an eve...
cvmsi 33859 One direction of ~ cvmsval...
cvmsval 33860 Elementhood in the set ` S...
cvmsss 33861 An even covering is a subs...
cvmsn0 33862 An even covering is nonemp...
cvmsuni 33863 An even covering of ` U ` ...
cvmsdisj 33864 An even covering of ` U ` ...
cvmshmeo 33865 Every element of an even c...
cvmsf1o 33866 ` F ` , localized to an el...
cvmscld 33867 The sets of an even coveri...
cvmsss2 33868 An open subset of an evenl...
cvmcov2 33869 The covering map property ...
cvmseu 33870 Every element in ` U. T ` ...
cvmsiota 33871 Identify the unique elemen...
cvmopnlem 33872 Lemma for ~ cvmopn . (Con...
cvmfolem 33873 Lemma for ~ cvmfo . (Cont...
cvmopn 33874 A covering map is an open ...
cvmliftmolem1 33875 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 33876 Lemma for ~ cvmliftmo . (...
cvmliftmoi 33877 A lift of a continuous fun...
cvmliftmo 33878 A lift of a continuous fun...
cvmliftlem1 33879 Lemma for ~ cvmlift . In ...
cvmliftlem2 33880 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 33881 Lemma for ~ cvmlift . Sin...
cvmliftlem4 33882 Lemma for ~ cvmlift . The...
cvmliftlem5 33883 Lemma for ~ cvmlift . Def...
cvmliftlem6 33884 Lemma for ~ cvmlift . Ind...
cvmliftlem7 33885 Lemma for ~ cvmlift . Pro...
cvmliftlem8 33886 Lemma for ~ cvmlift . The...
cvmliftlem9 33887 Lemma for ~ cvmlift . The...
cvmliftlem10 33888 Lemma for ~ cvmlift . The...
cvmliftlem11 33889 Lemma for ~ cvmlift . (Co...
cvmliftlem13 33890 Lemma for ~ cvmlift . The...
cvmliftlem14 33891 Lemma for ~ cvmlift . Put...
cvmliftlem15 33892 Lemma for ~ cvmlift . Dis...
cvmlift 33893 One of the important prope...
cvmfo 33894 A covering map is an onto ...
cvmliftiota 33895 Write out a function ` H `...
cvmlift2lem1 33896 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 33897 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 33898 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 33899 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 33900 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 33901 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 33902 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 33903 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 33904 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 33905 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 33906 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 33907 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 33908 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 33909 Lemma for ~ cvmlift2 . (C...
cvmlift2 33910 A two-dimensional version ...
cvmliftphtlem 33911 Lemma for ~ cvmliftpht . ...
cvmliftpht 33912 If ` G ` and ` H ` are pat...
cvmlift3lem1 33913 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 33914 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 33915 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 33916 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 33917 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 33918 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 33919 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 33920 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 33921 Lemma for ~ cvmlift2 . (C...
cvmlift3 33922 A general version of ~ cvm...
snmlff 33923 The function ` F ` from ~ ...
snmlfval 33924 The function ` F ` from ~ ...
snmlval 33925 The property " ` A ` is si...
snmlflim 33926 If ` A ` is simply normal,...
goel 33941 A "Godel-set of membership...
goelel3xp 33942 A "Godel-set of membership...
goeleq12bg 33943 Two "Godel-set of membersh...
gonafv 33944 The "Godel-set for the She...
goaleq12d 33945 Equality of the "Godel-set...
gonanegoal 33946 The Godel-set for the Shef...
satf 33947 The satisfaction predicate...
satfsucom 33948 The satisfaction predicate...
satfn 33949 The satisfaction predicate...
satom 33950 The satisfaction predicate...
satfvsucom 33951 The satisfaction predicate...
satfv0 33952 The value of the satisfact...
satfvsuclem1 33953 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 33954 Lemma 2 for ~ satfvsuc . ...
satfvsuc 33955 The value of the satisfact...
satfv1lem 33956 Lemma for ~ satfv1 . (Con...
satfv1 33957 The value of the satisfact...
satfsschain 33958 The binary relation of a s...
satfvsucsuc 33959 The satisfaction predicate...
satfbrsuc 33960 The binary relation of a s...
satfrel 33961 The value of the satisfact...
satfdmlem 33962 Lemma for ~ satfdm . (Con...
satfdm 33963 The domain of the satisfac...
satfrnmapom 33964 The range of the satisfact...
satfv0fun 33965 The value of the satisfact...
satf0 33966 The satisfaction predicate...
satf0sucom 33967 The satisfaction predicate...
satf00 33968 The value of the satisfact...
satf0suclem 33969 Lemma for ~ satf0suc , ~ s...
satf0suc 33970 The value of the satisfact...
satf0op 33971 An element of a value of t...
satf0n0 33972 The value of the satisfact...
sat1el2xp 33973 The first component of an ...
fmlafv 33974 The valid Godel formulas o...
fmla 33975 The set of all valid Godel...
fmla0 33976 The valid Godel formulas o...
fmla0xp 33977 The valid Godel formulas o...
fmlasuc0 33978 The valid Godel formulas o...
fmlafvel 33979 A class is a valid Godel f...
fmlasuc 33980 The valid Godel formulas o...
fmla1 33981 The valid Godel formulas o...
isfmlasuc 33982 The characterization of a ...
fmlasssuc 33983 The Godel formulas of heig...
fmlaomn0 33984 The empty set is not a God...
fmlan0 33985 The empty set is not a God...
gonan0 33986 The "Godel-set of NAND" is...
goaln0 33987 The "Godel-set of universa...
gonarlem 33988 Lemma for ~ gonar (inducti...
gonar 33989 If the "Godel-set of NAND"...
goalrlem 33990 Lemma for ~ goalr (inducti...
goalr 33991 If the "Godel-set of unive...
fmla0disjsuc 33992 The set of valid Godel for...
fmlasucdisj 33993 The valid Godel formulas o...
satfdmfmla 33994 The domain of the satisfac...
satffunlem 33995 Lemma for ~ satffunlem1lem...
satffunlem1lem1 33996 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 33997 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 33998 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 33999 The domain of an ordered p...
satffunlem2lem2 34000 Lemma 2 for ~ satffunlem2 ...
satffunlem1 34001 Lemma 1 for ~ satffun : in...
satffunlem2 34002 Lemma 2 for ~ satffun : in...
satffun 34003 The value of the satisfact...
satff 34004 The satisfaction predicate...
satfun 34005 The satisfaction predicate...
satfvel 34006 An element of the value of...
satfv0fvfmla0 34007 The value of the satisfact...
satefv 34008 The simplified satisfactio...
sate0 34009 The simplified satisfactio...
satef 34010 The simplified satisfactio...
sate0fv0 34011 A simplified satisfaction ...
satefvfmla0 34012 The simplified satisfactio...
sategoelfvb 34013 Characterization of a valu...
sategoelfv 34014 Condition of a valuation `...
ex-sategoelel 34015 Example of a valuation of ...
ex-sategoel 34016 Instance of ~ sategoelfv f...
satfv1fvfmla1 34017 The value of the satisfact...
2goelgoanfmla1 34018 Two Godel-sets of membersh...
satefvfmla1 34019 The simplified satisfactio...
ex-sategoelelomsuc 34020 Example of a valuation of ...
ex-sategoelel12 34021 Example of a valuation of ...
prv 34022 The "proves" relation on a...
elnanelprv 34023 The wff ` ( A e. B -/\ B e...
prv0 34024 Every wff encoded as ` U `...
prv1n 34025 No wff encoded as a Godel-...
mvtval 34094 The set of variable typeco...
mrexval 34095 The set of "raw expression...
mexval 34096 The set of expressions, wh...
mexval2 34097 The set of expressions, wh...
mdvval 34098 The set of disjoint variab...
mvrsval 34099 The set of variables in an...
mvrsfpw 34100 The set of variables in an...
mrsubffval 34101 The substitution of some v...
mrsubfval 34102 The substitution of some v...
mrsubval 34103 The substitution of some v...
mrsubcv 34104 The value of a substituted...
mrsubvr 34105 The value of a substituted...
mrsubff 34106 A substitution is a functi...
mrsubrn 34107 Although it is defined for...
mrsubff1 34108 When restricted to complet...
mrsubff1o 34109 When restricted to complet...
mrsub0 34110 The value of the substitut...
mrsubf 34111 A substitution is a functi...
mrsubccat 34112 Substitution distributes o...
mrsubcn 34113 A substitution does not ch...
elmrsubrn 34114 Characterization of the su...
mrsubco 34115 The composition of two sub...
mrsubvrs 34116 The set of variables in a ...
msubffval 34117 A substitution applied to ...
msubfval 34118 A substitution applied to ...
msubval 34119 A substitution applied to ...
msubrsub 34120 A substitution applied to ...
msubty 34121 The type of a substituted ...
elmsubrn 34122 Characterization of substi...
msubrn 34123 Although it is defined for...
msubff 34124 A substitution is a functi...
msubco 34125 The composition of two sub...
msubf 34126 A substitution is a functi...
mvhfval 34127 Value of the function mapp...
mvhval 34128 Value of the function mapp...
mpstval 34129 A pre-statement is an orde...
elmpst 34130 Property of being a pre-st...
msrfval 34131 Value of the reduct of a p...
msrval 34132 Value of the reduct of a p...
mpstssv 34133 A pre-statement is an orde...
mpst123 34134 Decompose a pre-statement ...
mpstrcl 34135 The elements of a pre-stat...
msrf 34136 The reduct of a pre-statem...
msrrcl 34137 If ` X ` and ` Y ` have th...
mstaval 34138 Value of the set of statem...
msrid 34139 The reduct of a statement ...
msrfo 34140 The reduct of a pre-statem...
mstapst 34141 A statement is a pre-state...
elmsta 34142 Property of being a statem...
ismfs 34143 A formal system is a tuple...
mfsdisj 34144 The constants and variable...
mtyf2 34145 The type function maps var...
mtyf 34146 The type function maps var...
mvtss 34147 The set of variable typeco...
maxsta 34148 An axiom is a statement. ...
mvtinf 34149 Each variable typecode has...
msubff1 34150 When restricted to complet...
msubff1o 34151 When restricted to complet...
mvhf 34152 The function mapping varia...
mvhf1 34153 The function mapping varia...
msubvrs 34154 The set of variables in a ...
mclsrcl 34155 Reverse closure for the cl...
mclsssvlem 34156 Lemma for ~ mclsssv . (Co...
mclsval 34157 The function mapping varia...
mclsssv 34158 The closure of a set of ex...
ssmclslem 34159 Lemma for ~ ssmcls . (Con...
vhmcls 34160 All variable hypotheses ar...
ssmcls 34161 The original expressions a...
ss2mcls 34162 The closure is monotonic u...
mclsax 34163 The closure is closed unde...
mclsind 34164 Induction theorem for clos...
mppspstlem 34165 Lemma for ~ mppspst . (Co...
mppsval 34166 Definition of a provable p...
elmpps 34167 Definition of a provable p...
mppspst 34168 A provable pre-statement i...
mthmval 34169 A theorem is a pre-stateme...
elmthm 34170 A theorem is a pre-stateme...
mthmi 34171 A statement whose reduct i...
mthmsta 34172 A theorem is a pre-stateme...
mppsthm 34173 A provable pre-statement i...
mthmblem 34174 Lemma for ~ mthmb . (Cont...
mthmb 34175 If two statements have the...
mthmpps 34176 Given a theorem, there is ...
mclsppslem 34177 The closure is closed unde...
mclspps 34178 The closure is closed unde...
problem1 34253 Practice problem 1. Clues...
problem2 34254 Practice problem 2. Clues...
problem3 34255 Practice problem 3. Clues...
problem4 34256 Practice problem 4. Clues...
problem5 34257 Practice problem 5. Clues...
quad3 34258 Variant of quadratic equat...
climuzcnv 34259 Utility lemma to convert b...
sinccvglem 34260 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 34261 ` ( ( sin `` x ) / x ) ~~>...
circum 34262 The circumference of a cir...
elfzm12 34263 Membership in a curtailed ...
nn0seqcvg 34264 A strictly-decreasing nonn...
lediv2aALT 34265 Division of both sides of ...
abs2sqlei 34266 The absolute values of two...
abs2sqlti 34267 The absolute values of two...
abs2sqle 34268 The absolute values of two...
abs2sqlt 34269 The absolute values of two...
abs2difi 34270 Difference of absolute val...
abs2difabsi 34271 Absolute value of differen...
axextprim 34272 ~ ax-ext without distinct ...
axrepprim 34273 ~ ax-rep without distinct ...
axunprim 34274 ~ ax-un without distinct v...
axpowprim 34275 ~ ax-pow without distinct ...
axregprim 34276 ~ ax-reg without distinct ...
axinfprim 34277 ~ ax-inf without distinct ...
axacprim 34278 ~ ax-ac without distinct v...
untelirr 34279 We call a class "untanged"...
untuni 34280 The union of a class is un...
untsucf 34281 If a class is untangled, t...
unt0 34282 The null set is untangled....
untint 34283 If there is an untangled e...
efrunt 34284 If ` A ` is well-founded b...
untangtr 34285 A transitive class is unta...
3jaodd 34286 Double deduction form of ~...
3orit 34287 Closed form of ~ 3ori . (...
biimpexp 34288 A biconditional in the ant...
nepss 34289 Two classes are unequal if...
3ccased 34290 Triple disjunction form of...
dfso3 34291 Expansion of the definitio...
brtpid1 34292 A binary relation involvin...
brtpid2 34293 A binary relation involvin...
brtpid3 34294 A binary relation involvin...
iota5f 34295 A method for computing iot...
jath 34296 Closed form of ~ ja . Pro...
xpab 34297 Cartesian product of two c...
nnuni 34298 The union of a finite ordi...
rspc4v 34299 4-variable restricted spec...
sqdivzi 34300 Distribution of square ove...
supfz 34301 The supremum of a finite s...
inffz 34302 The infimum of a finite se...
fz0n 34303 The sequence ` ( 0 ... ( N...
shftvalg 34304 Value of a sequence shifte...
divcnvlin 34305 Limit of the ratio of two ...
climlec3 34306 Comparison of a constant t...
logi 34307 Calculate the logarithm of...
iexpire 34308 ` _i ` raised to itself is...
bcneg1 34309 The binomial coefficent ov...
bcm1nt 34310 The proportion of one bion...
bcprod 34311 A product identity for bin...
bccolsum 34312 A column-sum rule for bino...
iprodefisumlem 34313 Lemma for ~ iprodefisum . ...
iprodefisum 34314 Applying the exponential f...
iprodgam 34315 An infinite product versio...
faclimlem1 34316 Lemma for ~ faclim . Clos...
faclimlem2 34317 Lemma for ~ faclim . Show...
faclimlem3 34318 Lemma for ~ faclim . Alge...
faclim 34319 An infinite product expres...
iprodfac 34320 An infinite product expres...
faclim2 34321 Another factorial limit du...
gcd32 34322 Swap the second and third ...
gcdabsorb 34323 Absorption law for gcd. (...
dftr6 34324 A potential definition of ...
coep 34325 Composition with the membe...
coepr 34326 Composition with the conve...
dffr5 34327 A quantifier-free definiti...
dfso2 34328 Quantifier-free definition...
br8 34329 Substitution for an eight-...
br6 34330 Substitution for a six-pla...
br4 34331 Substitution for a four-pl...
cnvco1 34332 Another distributive law o...
cnvco2 34333 Another distributive law o...
eldm3 34334 Quantifier-free definition...
elrn3 34335 Quantifier-free definition...
pocnv 34336 The converse of a partial ...
socnv 34337 The converse of a strict o...
sotrd 34338 Transitivity law for stric...
elintfv 34339 Membership in an intersect...
funpsstri 34340 A condition for subset tri...
fundmpss 34341 If a class ` F ` is a prop...
funsseq 34342 Given two functions with e...
fununiq 34343 The uniqueness condition o...
funbreq 34344 An equality condition for ...
br1steq 34345 Uniqueness condition for t...
br2ndeq 34346 Uniqueness condition for t...
dfdm5 34347 Definition of domain in te...
dfrn5 34348 Definition of range in ter...
opelco3 34349 Alternate way of saying th...
elima4 34350 Quantifier-free expression...
fv1stcnv 34351 The value of the converse ...
fv2ndcnv 34352 The value of the converse ...
setinds 34353 Principle of set induction...
setinds2f 34354 ` _E ` induction schema, u...
setinds2 34355 ` _E ` induction schema, u...
elpotr 34356 A class of transitive sets...
dford5reg 34357 Given ~ ax-reg , an ordina...
dfon2lem1 34358 Lemma for ~ dfon2 . (Cont...
dfon2lem2 34359 Lemma for ~ dfon2 . (Cont...
dfon2lem3 34360 Lemma for ~ dfon2 . All s...
dfon2lem4 34361 Lemma for ~ dfon2 . If tw...
dfon2lem5 34362 Lemma for ~ dfon2 . Two s...
dfon2lem6 34363 Lemma for ~ dfon2 . A tra...
dfon2lem7 34364 Lemma for ~ dfon2 . All e...
dfon2lem8 34365 Lemma for ~ dfon2 . The i...
dfon2lem9 34366 Lemma for ~ dfon2 . A cla...
dfon2 34367 ` On ` consists of all set...
rdgprc0 34368 The value of the recursive...
rdgprc 34369 The value of the recursive...
dfrdg2 34370 Alternate definition of th...
dfrdg3 34371 Generalization of ~ dfrdg2...
axextdfeq 34372 A version of ~ ax-ext for ...
ax8dfeq 34373 A version of ~ ax-8 for us...
axextdist 34374 ~ ax-ext with distinctors ...
axextbdist 34375 ~ axextb with distinctors ...
19.12b 34376 Version of ~ 19.12vv with ...
exnel 34377 There is always a set not ...
distel 34378 Distinctors in terms of me...
axextndbi 34379 ~ axextnd as a bicondition...
hbntg 34380 A more general form of ~ h...
hbimtg 34381 A more general and closed ...
hbaltg 34382 A more general and closed ...
hbng 34383 A more general form of ~ h...
hbimg 34384 A more general form of ~ h...
wsuceq123 34389 Equality theorem for well-...
wsuceq1 34390 Equality theorem for well-...
wsuceq2 34391 Equality theorem for well-...
wsuceq3 34392 Equality theorem for well-...
nfwsuc 34393 Bound-variable hypothesis ...
wlimeq12 34394 Equality theorem for the l...
wlimeq1 34395 Equality theorem for the l...
wlimeq2 34396 Equality theorem for the l...
nfwlim 34397 Bound-variable hypothesis ...
elwlim 34398 Membership in the limit cl...
wzel 34399 The zero of a well-founded...
wsuclem 34400 Lemma for the supremum pro...
wsucex 34401 Existence theorem for well...
wsuccl 34402 If ` X ` is a set with an ...
wsuclb 34403 A well-founded successor i...
wlimss 34404 The class of limit points ...
mulsfn 34407 Surreal multiplication is ...
mulsval 34408 The value of surreal multi...
muls01 34409 Surreal multiplication by ...
muls02 34410 Surreal multiplication by ...
mulsid1 34411 Surreal one is an identity...
mulsid2 34412 Surreal one is an identity...
mulsproplem1 34413 Lemma for surreal multipli...
mulsproplem2 34414 Lemma for surreal multipli...
txpss3v 34463 A tail Cartesian product i...
txprel 34464 A tail Cartesian product i...
brtxp 34465 Characterize a ternary rel...
brtxp2 34466 The binary relation over a...
dfpprod2 34467 Expanded definition of par...
pprodcnveq 34468 A converse law for paralle...
pprodss4v 34469 The parallel product is a ...
brpprod 34470 Characterize a quaternary ...
brpprod3a 34471 Condition for parallel pro...
brpprod3b 34472 Condition for parallel pro...
relsset 34473 The subset class is a bina...
brsset 34474 For sets, the ` SSet ` bin...
idsset 34475 ` _I ` is equal to the int...
eltrans 34476 Membership in the class of...
dfon3 34477 A quantifier-free definiti...
dfon4 34478 Another quantifier-free de...
brtxpsd 34479 Expansion of a common form...
brtxpsd2 34480 Another common abbreviatio...
brtxpsd3 34481 A third common abbreviatio...
relbigcup 34482 The ` Bigcup ` relationshi...
brbigcup 34483 Binary relation over ` Big...
dfbigcup2 34484 ` Bigcup ` using maps-to n...
fobigcup 34485 ` Bigcup ` maps the univer...
fnbigcup 34486 ` Bigcup ` is a function o...
fvbigcup 34487 For sets, ` Bigcup ` yield...
elfix 34488 Membership in the fixpoint...
elfix2 34489 Alternative membership in ...
dffix2 34490 The fixpoints of a class i...
fixssdm 34491 The fixpoints of a class a...
fixssrn 34492 The fixpoints of a class a...
fixcnv 34493 The fixpoints of a class a...
fixun 34494 The fixpoint operator dist...
ellimits 34495 Membership in the class of...
limitssson 34496 The class of all limit ord...
dfom5b 34497 A quantifier-free definiti...
sscoid 34498 A condition for subset and...
dffun10 34499 Another potential definiti...
elfuns 34500 Membership in the class of...
elfunsg 34501 Closed form of ~ elfuns . ...
brsingle 34502 The binary relation form o...
elsingles 34503 Membership in the class of...
fnsingle 34504 The singleton relationship...
fvsingle 34505 The value of the singleton...
dfsingles2 34506 Alternate definition of th...
snelsingles 34507 A singleton is a member of...
dfiota3 34508 A definition of iota using...
dffv5 34509 Another quantifier-free de...
unisnif 34510 Express union of singleton...
brimage 34511 Binary relation form of th...
brimageg 34512 Closed form of ~ brimage ....
funimage 34513 ` Image A ` is a function....
fnimage 34514 ` Image R ` is a function ...
imageval 34515 The image functor in maps-...
fvimage 34516 Value of the image functor...
brcart 34517 Binary relation form of th...
brdomain 34518 Binary relation form of th...
brrange 34519 Binary relation form of th...
brdomaing 34520 Closed form of ~ brdomain ...
brrangeg 34521 Closed form of ~ brrange ....
brimg 34522 Binary relation form of th...
brapply 34523 Binary relation form of th...
brcup 34524 Binary relation form of th...
brcap 34525 Binary relation form of th...
brsuccf 34526 Binary relation form of th...
funpartlem 34527 Lemma for ~ funpartfun . ...
funpartfun 34528 The functional part of ` F...
funpartss 34529 The functional part of ` F...
funpartfv 34530 The function value of the ...
fullfunfnv 34531 The full functional part o...
fullfunfv 34532 The function value of the ...
brfullfun 34533 A binary relation form con...
brrestrict 34534 Binary relation form of th...
dfrecs2 34535 A quantifier-free definiti...
dfrdg4 34536 A quantifier-free definiti...
dfint3 34537 Quantifier-free definition...
imagesset 34538 The Image functor applied ...
brub 34539 Binary relation form of th...
brlb 34540 Binary relation form of th...
altopex 34545 Alternative ordered pairs ...
altopthsn 34546 Two alternate ordered pair...
altopeq12 34547 Equality for alternate ord...
altopeq1 34548 Equality for alternate ord...
altopeq2 34549 Equality for alternate ord...
altopth1 34550 Equality of the first memb...
altopth2 34551 Equality of the second mem...
altopthg 34552 Alternate ordered pair the...
altopthbg 34553 Alternate ordered pair the...
altopth 34554 The alternate ordered pair...
altopthb 34555 Alternate ordered pair the...
altopthc 34556 Alternate ordered pair the...
altopthd 34557 Alternate ordered pair the...
altxpeq1 34558 Equality for alternate Car...
altxpeq2 34559 Equality for alternate Car...
elaltxp 34560 Membership in alternate Ca...
altopelaltxp 34561 Alternate ordered pair mem...
altxpsspw 34562 An inclusion rule for alte...
altxpexg 34563 The alternate Cartesian pr...
rankaltopb 34564 Compute the rank of an alt...
nfaltop 34565 Bound-variable hypothesis ...
sbcaltop 34566 Distribution of class subs...
cgrrflx2d 34569 Deduction form of ~ axcgrr...
cgrtr4d 34570 Deduction form of ~ axcgrt...
cgrtr4and 34571 Deduction form of ~ axcgrt...
cgrrflx 34572 Reflexivity law for congru...
cgrrflxd 34573 Deduction form of ~ cgrrfl...
cgrcomim 34574 Congruence commutes on the...
cgrcom 34575 Congruence commutes betwee...
cgrcomand 34576 Deduction form of ~ cgrcom...
cgrtr 34577 Transitivity law for congr...
cgrtrand 34578 Deduction form of ~ cgrtr ...
cgrtr3 34579 Transitivity law for congr...
cgrtr3and 34580 Deduction form of ~ cgrtr3...
cgrcoml 34581 Congruence commutes on the...
cgrcomr 34582 Congruence commutes on the...
cgrcomlr 34583 Congruence commutes on bot...
cgrcomland 34584 Deduction form of ~ cgrcom...
cgrcomrand 34585 Deduction form of ~ cgrcom...
cgrcomlrand 34586 Deduction form of ~ cgrcom...
cgrtriv 34587 Degenerate segments are co...
cgrid2 34588 Identity law for congruenc...
cgrdegen 34589 Two congruent segments are...
brofs 34590 Binary relation form of th...
5segofs 34591 Rephrase ~ ax5seg using th...
ofscom 34592 The outer five segment pre...
cgrextend 34593 Link congruence over a pai...
cgrextendand 34594 Deduction form of ~ cgrext...
segconeq 34595 Two points that satisfy th...
segconeu 34596 Existential uniqueness ver...
btwntriv2 34597 Betweenness always holds f...
btwncomim 34598 Betweenness commutes. Imp...
btwncom 34599 Betweenness commutes. (Co...
btwncomand 34600 Deduction form of ~ btwnco...
btwntriv1 34601 Betweenness always holds f...
btwnswapid 34602 If you can swap the first ...
btwnswapid2 34603 If you can swap arguments ...
btwnintr 34604 Inner transitivity law for...
btwnexch3 34605 Exchange the first endpoin...
btwnexch3and 34606 Deduction form of ~ btwnex...
btwnouttr2 34607 Outer transitivity law for...
btwnexch2 34608 Exchange the outer point o...
btwnouttr 34609 Outer transitivity law for...
btwnexch 34610 Outer transitivity law for...
btwnexchand 34611 Deduction form of ~ btwnex...
btwndiff 34612 There is always a ` c ` di...
trisegint 34613 A line segment between two...
funtransport 34616 The ` TransportTo ` relati...
fvtransport 34617 Calculate the value of the...
transportcl 34618 Closure law for segment tr...
transportprops 34619 Calculate the defining pro...
brifs 34628 Binary relation form of th...
ifscgr 34629 Inner five segment congrue...
cgrsub 34630 Removing identical parts f...
brcgr3 34631 Binary relation form of th...
cgr3permute3 34632 Permutation law for three-...
cgr3permute1 34633 Permutation law for three-...
cgr3permute2 34634 Permutation law for three-...
cgr3permute4 34635 Permutation law for three-...
cgr3permute5 34636 Permutation law for three-...
cgr3tr4 34637 Transitivity law for three...
cgr3com 34638 Commutativity law for thre...
cgr3rflx 34639 Identity law for three-pla...
cgrxfr 34640 A line segment can be divi...
btwnxfr 34641 A condition for extending ...
colinrel 34642 Colinearity is a relations...
brcolinear2 34643 Alternate colinearity bina...
brcolinear 34644 The binary relation form o...
colinearex 34645 The colinear predicate exi...
colineardim1 34646 If ` A ` is colinear with ...
colinearperm1 34647 Permutation law for coline...
colinearperm3 34648 Permutation law for coline...
colinearperm2 34649 Permutation law for coline...
colinearperm4 34650 Permutation law for coline...
colinearperm5 34651 Permutation law for coline...
colineartriv1 34652 Trivial case of colinearit...
colineartriv2 34653 Trivial case of colinearit...
btwncolinear1 34654 Betweenness implies coline...
btwncolinear2 34655 Betweenness implies coline...
btwncolinear3 34656 Betweenness implies coline...
btwncolinear4 34657 Betweenness implies coline...
btwncolinear5 34658 Betweenness implies coline...
btwncolinear6 34659 Betweenness implies coline...
colinearxfr 34660 Transfer law for colineari...
lineext 34661 Extend a line with a missi...
brofs2 34662 Change some conditions for...
brifs2 34663 Change some conditions for...
brfs 34664 Binary relation form of th...
fscgr 34665 Congruence law for the gen...
linecgr 34666 Congruence rule for lines....
linecgrand 34667 Deduction form of ~ linecg...
lineid 34668 Identity law for points on...
idinside 34669 Law for finding a point in...
endofsegid 34670 If ` A ` , ` B ` , and ` C...
endofsegidand 34671 Deduction form of ~ endofs...
btwnconn1lem1 34672 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 34673 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 34674 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 34675 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 34676 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 34677 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 34678 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 34679 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 34680 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 34681 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 34682 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 34683 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 34684 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 34685 Lemma for ~ btwnconn1 . F...
btwnconn1 34686 Connectitivy law for betwe...
btwnconn2 34687 Another connectivity law f...
btwnconn3 34688 Inner connectivity law for...
midofsegid 34689 If two points fall in the ...
segcon2 34690 Generalization of ~ axsegc...
brsegle 34693 Binary relation form of th...
brsegle2 34694 Alternate characterization...
seglecgr12im 34695 Substitution law for segme...
seglecgr12 34696 Substitution law for segme...
seglerflx 34697 Segment comparison is refl...
seglemin 34698 Any segment is at least as...
segletr 34699 Segment less than is trans...
segleantisym 34700 Antisymmetry law for segme...
seglelin 34701 Linearity law for segment ...
btwnsegle 34702 If ` B ` falls between ` A...
colinbtwnle 34703 Given three colinear point...
broutsideof 34706 Binary relation form of ` ...
broutsideof2 34707 Alternate form of ` Outsid...
outsidene1 34708 Outsideness implies inequa...
outsidene2 34709 Outsideness implies inequa...
btwnoutside 34710 A principle linking outsid...
broutsideof3 34711 Characterization of outsid...
outsideofrflx 34712 Reflexivity of outsideness...
outsideofcom 34713 Commutativity law for outs...
outsideoftr 34714 Transitivity law for outsi...
outsideofeq 34715 Uniqueness law for ` Outsi...
outsideofeu 34716 Given a nondegenerate ray,...
outsidele 34717 Relate ` OutsideOf ` to ` ...
outsideofcol 34718 Outside of implies colinea...
funray 34725 Show that the ` Ray ` rela...
fvray 34726 Calculate the value of the...
funline 34727 Show that the ` Line ` rel...
linedegen 34728 When ` Line ` is applied w...
fvline 34729 Calculate the value of the...
liness 34730 A line is a subset of the ...
fvline2 34731 Alternate definition of a ...
lineunray 34732 A line is composed of a po...
lineelsb2 34733 If ` S ` lies on ` P Q ` ,...
linerflx1 34734 Reflexivity law for line m...
linecom 34735 Commutativity law for line...
linerflx2 34736 Reflexivity law for line m...
ellines 34737 Membership in the set of a...
linethru 34738 If ` A ` is a line contain...
hilbert1.1 34739 There is a line through an...
hilbert1.2 34740 There is at most one line ...
linethrueu 34741 There is a unique line goi...
lineintmo 34742 Two distinct lines interse...
fwddifval 34747 Calculate the value of the...
fwddifnval 34748 The value of the forward d...
fwddifn0 34749 The value of the n-iterate...
fwddifnp1 34750 The value of the n-iterate...
rankung 34751 The rank of the union of t...
ranksng 34752 The rank of a singleton. ...
rankelg 34753 The membership relation is...
rankpwg 34754 The rank of a power set. ...
rank0 34755 The rank of the empty set ...
rankeq1o 34756 The only set with rank ` 1...
elhf 34759 Membership in the heredita...
elhf2 34760 Alternate form of membersh...
elhf2g 34761 Hereditarily finiteness vi...
0hf 34762 The empty set is a heredit...
hfun 34763 The union of two HF sets i...
hfsn 34764 The singleton of an HF set...
hfadj 34765 Adjoining one HF element t...
hfelhf 34766 Any member of an HF set is...
hftr 34767 The class of all hereditar...
hfext 34768 Extensionality for HF sets...
hfuni 34769 The union of an HF set is ...
hfpw 34770 The power class of an HF s...
hfninf 34771 ` _om ` is not hereditaril...
a1i14 34772 Add two antecedents to a w...
a1i24 34773 Add two antecedents to a w...
exp5d 34774 An exportation inference. ...
exp5g 34775 An exportation inference. ...
exp5k 34776 An exportation inference. ...
exp56 34777 An exportation inference. ...
exp58 34778 An exportation inference. ...
exp510 34779 An exportation inference. ...
exp511 34780 An exportation inference. ...
exp512 34781 An exportation inference. ...
3com12d 34782 Commutation in consequent....
imp5p 34783 A triple importation infer...
imp5q 34784 A triple importation infer...
ecase13d 34785 Deduction for elimination ...
subtr 34786 Transitivity of implicit s...
subtr2 34787 Transitivity of implicit s...
trer 34788 A relation intersected wit...
elicc3 34789 An equivalent membership c...
finminlem 34790 A useful lemma about finit...
gtinf 34791 Any number greater than an...
opnrebl 34792 A set is open in the stand...
opnrebl2 34793 A set is open in the stand...
nn0prpwlem 34794 Lemma for ~ nn0prpw . Use...
nn0prpw 34795 Two nonnegative integers a...
topbnd 34796 Two equivalent expressions...
opnbnd 34797 A set is open iff it is di...
cldbnd 34798 A set is closed iff it con...
ntruni 34799 A union of interiors is a ...
clsun 34800 A pairwise union of closur...
clsint2 34801 The closure of an intersec...
opnregcld 34802 A set is regularly closed ...
cldregopn 34803 A set if regularly open if...
neiin 34804 Two neighborhoods intersec...
hmeoclda 34805 Homeomorphisms preserve cl...
hmeocldb 34806 Homeomorphisms preserve cl...
ivthALT 34807 An alternate proof of the ...
fnerel 34810 Fineness is a relation. (...
isfne 34811 The predicate " ` B ` is f...
isfne4 34812 The predicate " ` B ` is f...
isfne4b 34813 A condition for a topology...
isfne2 34814 The predicate " ` B ` is f...
isfne3 34815 The predicate " ` B ` is f...
fnebas 34816 A finer cover covers the s...
fnetg 34817 A finer cover generates a ...
fnessex 34818 If ` B ` is finer than ` A...
fneuni 34819 If ` B ` is finer than ` A...
fneint 34820 If a cover is finer than a...
fness 34821 A cover is finer than its ...
fneref 34822 Reflexivity of the finenes...
fnetr 34823 Transitivity of the finene...
fneval 34824 Two covers are finer than ...
fneer 34825 Fineness intersected with ...
topfne 34826 Fineness for covers corres...
topfneec 34827 A cover is equivalent to a...
topfneec2 34828 A topology is precisely id...
fnessref 34829 A cover is finer iff it ha...
refssfne 34830 A cover is a refinement if...
neibastop1 34831 A collection of neighborho...
neibastop2lem 34832 Lemma for ~ neibastop2 . ...
neibastop2 34833 In the topology generated ...
neibastop3 34834 The topology generated by ...
topmtcl 34835 The meet of a collection o...
topmeet 34836 Two equivalent formulation...
topjoin 34837 Two equivalent formulation...
fnemeet1 34838 The meet of a collection o...
fnemeet2 34839 The meet of equivalence cl...
fnejoin1 34840 Join of equivalence classe...
fnejoin2 34841 Join of equivalence classe...
fgmin 34842 Minimality property of a g...
neifg 34843 The neighborhood filter of...
tailfval 34844 The tail function for a di...
tailval 34845 The tail of an element in ...
eltail 34846 An element of a tail. (Co...
tailf 34847 The tail function of a dir...
tailini 34848 A tail contains its initia...
tailfb 34849 The collection of tails of...
filnetlem1 34850 Lemma for ~ filnet . Chan...
filnetlem2 34851 Lemma for ~ filnet . The ...
filnetlem3 34852 Lemma for ~ filnet . (Con...
filnetlem4 34853 Lemma for ~ filnet . (Con...
filnet 34854 A filter has the same conv...
tb-ax1 34855 The first of three axioms ...
tb-ax2 34856 The second of three axioms...
tb-ax3 34857 The third of three axioms ...
tbsyl 34858 The weak syllogism from Ta...
re1ax2lem 34859 Lemma for ~ re1ax2 . (Con...
re1ax2 34860 ~ ax-2 rederived from the ...
naim1 34861 Constructor theorem for ` ...
naim2 34862 Constructor theorem for ` ...
naim1i 34863 Constructor rule for ` -/\...
naim2i 34864 Constructor rule for ` -/\...
naim12i 34865 Constructor rule for ` -/\...
nabi1i 34866 Constructor rule for ` -/\...
nabi2i 34867 Constructor rule for ` -/\...
nabi12i 34868 Constructor rule for ` -/\...
df3nandALT1 34871 The double nand expressed ...
df3nandALT2 34872 The double nand expressed ...
andnand1 34873 Double and in terms of dou...
imnand2 34874 An ` -> ` nand relation. ...
nalfal 34875 Not all sets hold ` F. ` a...
nexntru 34876 There does not exist a set...
nexfal 34877 There does not exist a set...
neufal 34878 There does not exist exact...
neutru 34879 There does not exist exact...
nmotru 34880 There does not exist at mo...
mofal 34881 There exist at most one se...
nrmo 34882 "At most one" restricted e...
meran1 34883 A single axiom for proposi...
meran2 34884 A single axiom for proposi...
meran3 34885 A single axiom for proposi...
waj-ax 34886 A single axiom for proposi...
lukshef-ax2 34887 A single axiom for proposi...
arg-ax 34888 A single axiom for proposi...
negsym1 34889 In the paper "On Variable ...
imsym1 34890 A symmetry with ` -> ` . ...
bisym1 34891 A symmetry with ` <-> ` . ...
consym1 34892 A symmetry with ` /\ ` . ...
dissym1 34893 A symmetry with ` \/ ` . ...
nandsym1 34894 A symmetry with ` -/\ ` . ...
unisym1 34895 A symmetry with ` A. ` . ...
exisym1 34896 A symmetry with ` E. ` . ...
unqsym1 34897 A symmetry with ` E! ` . ...
amosym1 34898 A symmetry with ` E* ` . ...
subsym1 34899 A symmetry with ` [ x / y ...
ontopbas 34900 An ordinal number is a top...
onsstopbas 34901 The class of ordinal numbe...
onpsstopbas 34902 The class of ordinal numbe...
ontgval 34903 The topology generated fro...
ontgsucval 34904 The topology generated fro...
onsuctop 34905 A successor ordinal number...
onsuctopon 34906 One of the topologies on a...
ordtoplem 34907 Membership of the class of...
ordtop 34908 An ordinal is a topology i...
onsucconni 34909 A successor ordinal number...
onsucconn 34910 A successor ordinal number...
ordtopconn 34911 An ordinal topology is con...
onintopssconn 34912 An ordinal topology is con...
onsuct0 34913 A successor ordinal number...
ordtopt0 34914 An ordinal topology is T_0...
onsucsuccmpi 34915 The successor of a success...
onsucsuccmp 34916 The successor of a success...
limsucncmpi 34917 The successor of a limit o...
limsucncmp 34918 The successor of a limit o...
ordcmp 34919 An ordinal topology is com...
ssoninhaus 34920 The ordinal topologies ` 1...
onint1 34921 The ordinal T_1 spaces are...
oninhaus 34922 The ordinal Hausdorff spac...
fveleq 34923 Please add description her...
findfvcl 34924 Please add description her...
findreccl 34925 Please add description her...
findabrcl 34926 Please add description her...
nnssi2 34927 Convert a theorem for real...
nnssi3 34928 Convert a theorem for real...
nndivsub 34929 Please add description her...
nndivlub 34930 A factor of a positive int...
ee7.2aOLD 34933 Lemma for Euclid's Element...
dnival 34934 Value of the "distance to ...
dnicld1 34935 Closure theorem for the "d...
dnicld2 34936 Closure theorem for the "d...
dnif 34937 The "distance to nearest i...
dnizeq0 34938 The distance to nearest in...
dnizphlfeqhlf 34939 The distance to nearest in...
rddif2 34940 Variant of ~ rddif . (Con...
dnibndlem1 34941 Lemma for ~ dnibnd . (Con...
dnibndlem2 34942 Lemma for ~ dnibnd . (Con...
dnibndlem3 34943 Lemma for ~ dnibnd . (Con...
dnibndlem4 34944 Lemma for ~ dnibnd . (Con...
dnibndlem5 34945 Lemma for ~ dnibnd . (Con...
dnibndlem6 34946 Lemma for ~ dnibnd . (Con...
dnibndlem7 34947 Lemma for ~ dnibnd . (Con...
dnibndlem8 34948 Lemma for ~ dnibnd . (Con...
dnibndlem9 34949 Lemma for ~ dnibnd . (Con...
dnibndlem10 34950 Lemma for ~ dnibnd . (Con...
dnibndlem11 34951 Lemma for ~ dnibnd . (Con...
dnibndlem12 34952 Lemma for ~ dnibnd . (Con...
dnibndlem13 34953 Lemma for ~ dnibnd . (Con...
dnibnd 34954 The "distance to nearest i...
dnicn 34955 The "distance to nearest i...
knoppcnlem1 34956 Lemma for ~ knoppcn . (Co...
knoppcnlem2 34957 Lemma for ~ knoppcn . (Co...
knoppcnlem3 34958 Lemma for ~ knoppcn . (Co...
knoppcnlem4 34959 Lemma for ~ knoppcn . (Co...
knoppcnlem5 34960 Lemma for ~ knoppcn . (Co...
knoppcnlem6 34961 Lemma for ~ knoppcn . (Co...
knoppcnlem7 34962 Lemma for ~ knoppcn . (Co...
knoppcnlem8 34963 Lemma for ~ knoppcn . (Co...
knoppcnlem9 34964 Lemma for ~ knoppcn . (Co...
knoppcnlem10 34965 Lemma for ~ knoppcn . (Co...
knoppcnlem11 34966 Lemma for ~ knoppcn . (Co...
knoppcn 34967 The continuous nowhere dif...
knoppcld 34968 Closure theorem for Knopp'...
unblimceq0lem 34969 Lemma for ~ unblimceq0 . ...
unblimceq0 34970 If ` F ` is unbounded near...
unbdqndv1 34971 If the difference quotient...
unbdqndv2lem1 34972 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 34973 Lemma for ~ unbdqndv2 . (...
unbdqndv2 34974 Variant of ~ unbdqndv1 wit...
knoppndvlem1 34975 Lemma for ~ knoppndv . (C...
knoppndvlem2 34976 Lemma for ~ knoppndv . (C...
knoppndvlem3 34977 Lemma for ~ knoppndv . (C...
knoppndvlem4 34978 Lemma for ~ knoppndv . (C...
knoppndvlem5 34979 Lemma for ~ knoppndv . (C...
knoppndvlem6 34980 Lemma for ~ knoppndv . (C...
knoppndvlem7 34981 Lemma for ~ knoppndv . (C...
knoppndvlem8 34982 Lemma for ~ knoppndv . (C...
knoppndvlem9 34983 Lemma for ~ knoppndv . (C...
knoppndvlem10 34984 Lemma for ~ knoppndv . (C...
knoppndvlem11 34985 Lemma for ~ knoppndv . (C...
knoppndvlem12 34986 Lemma for ~ knoppndv . (C...
knoppndvlem13 34987 Lemma for ~ knoppndv . (C...
knoppndvlem14 34988 Lemma for ~ knoppndv . (C...
knoppndvlem15 34989 Lemma for ~ knoppndv . (C...
knoppndvlem16 34990 Lemma for ~ knoppndv . (C...
knoppndvlem17 34991 Lemma for ~ knoppndv . (C...
knoppndvlem18 34992 Lemma for ~ knoppndv . (C...
knoppndvlem19 34993 Lemma for ~ knoppndv . (C...
knoppndvlem20 34994 Lemma for ~ knoppndv . (C...
knoppndvlem21 34995 Lemma for ~ knoppndv . (C...
knoppndvlem22 34996 Lemma for ~ knoppndv . (C...
knoppndv 34997 The continuous nowhere dif...
knoppf 34998 Knopp's function is a func...
knoppcn2 34999 Variant of ~ knoppcn with ...
cnndvlem1 35000 Lemma for ~ cnndv . (Cont...
cnndvlem2 35001 Lemma for ~ cnndv . (Cont...
cnndv 35002 There exists a continuous ...
bj-mp2c 35003 A double modus ponens infe...
bj-mp2d 35004 A double modus ponens infe...
bj-0 35005 A syntactic theorem. See ...
bj-1 35006 In this proof, the use of ...
bj-a1k 35007 Weakening of ~ ax-1 . As ...
bj-poni 35008 Inference associated with ...
bj-nnclav 35009 When ` F. ` is substituted...
bj-nnclavi 35010 Inference associated with ...
bj-nnclavc 35011 Commuted form of ~ bj-nncl...
bj-nnclavci 35012 Inference associated with ...
bj-jarrii 35013 Inference associated with ...
bj-imim21 35014 The propositional function...
bj-imim21i 35015 Inference associated with ...
bj-peircestab 35016 Over minimal implicational...
bj-stabpeirce 35017 This minimal implicational...
bj-syl66ib 35018 A mixed syllogism inferenc...
bj-orim2 35019 Proof of ~ orim2 from the ...
bj-currypeirce 35020 Curry's axiom ~ curryax (a...
bj-peircecurry 35021 Peirce's axiom ~ peirce im...
bj-animbi 35022 Conjunction in terms of im...
bj-currypara 35023 Curry's paradox. Note tha...
bj-con2com 35024 A commuted form of the con...
bj-con2comi 35025 Inference associated with ...
bj-pm2.01i 35026 Inference associated with ...
bj-nimn 35027 If a formula is true, then...
bj-nimni 35028 Inference associated with ...
bj-peircei 35029 Inference associated with ...
bj-looinvi 35030 Inference associated with ...
bj-looinvii 35031 Inference associated with ...
bj-mt2bi 35032 Version of ~ mt2 where the...
bj-ntrufal 35033 The negation of a theorem ...
bj-fal 35034 Shortening of ~ fal using ...
bj-jaoi1 35035 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 35036 Shortens ~ consensus (110>...
bj-dfbi4 35037 Alternate definition of th...
bj-dfbi5 35038 Alternate definition of th...
bj-dfbi6 35039 Alternate definition of th...
bj-bijust0ALT 35040 Alternate proof of ~ bijus...
bj-bijust00 35041 A self-implication does no...
bj-consensus 35042 Version of ~ consensus exp...
bj-consensusALT 35043 Alternate proof of ~ bj-co...
bj-df-ifc 35044 Candidate definition for t...
bj-dfif 35045 Alternate definition of th...
bj-ififc 35046 A biconditional connecting...
bj-imbi12 35047 Uncurried (imported) form ...
bj-biorfi 35048 This should be labeled "bi...
bj-falor 35049 Dual of ~ truan (which has...
bj-falor2 35050 Dual of ~ truan . (Contri...
bj-bibibi 35051 A property of the bicondit...
bj-imn3ani 35052 Duplication of ~ bnj1224 ....
bj-andnotim 35053 Two ways of expressing a c...
bj-bi3ant 35054 This used to be in the mai...
bj-bisym 35055 This used to be in the mai...
bj-bixor 35056 Equivalence of two ternary...
bj-axdd2 35057 This implication, proved u...
bj-axd2d 35058 This implication, proved u...
bj-axtd 35059 This implication, proved f...
bj-gl4 35060 In a normal modal logic, t...
bj-axc4 35061 Over minimal calculus, the...
prvlem1 35066 An elementary property of ...
prvlem2 35067 An elementary property of ...
bj-babygodel 35068 See the section header com...
bj-babylob 35069 See the section header com...
bj-godellob 35070 Proof of Gödel's theo...
bj-genr 35071 Generalization rule on the...
bj-genl 35072 Generalization rule on the...
bj-genan 35073 Generalization rule on a c...
bj-mpgs 35074 From a closed form theorem...
bj-2alim 35075 Closed form of ~ 2alimi . ...
bj-2exim 35076 Closed form of ~ 2eximi . ...
bj-alanim 35077 Closed form of ~ alanimi ....
bj-2albi 35078 Closed form of ~ 2albii . ...
bj-notalbii 35079 Equivalence of universal q...
bj-2exbi 35080 Closed form of ~ 2exbii . ...
bj-3exbi 35081 Closed form of ~ 3exbii . ...
bj-sylgt2 35082 Uncurried (imported) form ...
bj-alrimg 35083 The general form of the *a...
bj-alrimd 35084 A slightly more general ~ ...
bj-sylget 35085 Dual statement of ~ sylgt ...
bj-sylget2 35086 Uncurried (imported) form ...
bj-exlimg 35087 The general form of the *e...
bj-sylge 35088 Dual statement of ~ sylg (...
bj-exlimd 35089 A slightly more general ~ ...
bj-nfimexal 35090 A weak from of nonfreeness...
bj-alexim 35091 Closed form of ~ aleximi ....
bj-nexdh 35092 Closed form of ~ nexdh (ac...
bj-nexdh2 35093 Uncurried (imported) form ...
bj-hbxfrbi 35094 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 35095 Version of ~ bj-hbxfrbi wi...
bj-exalim 35096 Distribute quantifiers ove...
bj-exalimi 35097 An inference for distribut...
bj-exalims 35098 Distributing quantifiers o...
bj-exalimsi 35099 An inference for distribut...
bj-ax12ig 35100 A lemma used to prove a we...
bj-ax12i 35101 A weakening of ~ bj-ax12ig...
bj-nfimt 35102 Closed form of ~ nfim and ...
bj-cbvalimt 35103 A lemma in closed form use...
bj-cbveximt 35104 A lemma in closed form use...
bj-eximALT 35105 Alternate proof of ~ exim ...
bj-aleximiALT 35106 Alternate proof of ~ alexi...
bj-eximcom 35107 A commuted form of ~ exim ...
bj-ax12wlem 35108 A lemma used to prove a we...
bj-cbvalim 35109 A lemma used to prove ~ bj...
bj-cbvexim 35110 A lemma used to prove ~ bj...
bj-cbvalimi 35111 An equality-free general i...
bj-cbveximi 35112 An equality-free general i...
bj-cbval 35113 Changing a bound variable ...
bj-cbvex 35114 Changing a bound variable ...
bj-ssbeq 35117 Substitution in an equalit...
bj-ssblem1 35118 A lemma for the definiens ...
bj-ssblem2 35119 An instance of ~ ax-11 pro...
bj-ax12v 35120 A weaker form of ~ ax-12 a...
bj-ax12 35121 Remove a DV condition from...
bj-ax12ssb 35122 Axiom ~ bj-ax12 expressed ...
bj-19.41al 35123 Special case of ~ 19.41 pr...
bj-equsexval 35124 Special case of ~ equsexv ...
bj-subst 35125 Proof of ~ sbalex from cor...
bj-ssbid2 35126 A special case of ~ sbequ2...
bj-ssbid2ALT 35127 Alternate proof of ~ bj-ss...
bj-ssbid1 35128 A special case of ~ sbequ1...
bj-ssbid1ALT 35129 Alternate proof of ~ bj-ss...
bj-ax6elem1 35130 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 35131 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 35132 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 35133 Closed form of ~ spimvw . ...
bj-spnfw 35134 Theorem close to a closed ...
bj-cbvexiw 35135 Change bound variable. Th...
bj-cbvexivw 35136 Change bound variable. Th...
bj-modald 35137 A short form of the axiom ...
bj-denot 35138 A weakening of ~ ax-6 and ...
bj-eqs 35139 A lemma for substitutions,...
bj-cbvexw 35140 Change bound variable. Th...
bj-ax12w 35141 The general statement that...
bj-ax89 35142 A theorem which could be u...
bj-elequ12 35143 An identity law for the no...
bj-cleljusti 35144 One direction of ~ cleljus...
bj-alcomexcom 35145 Commutation of two existen...
bj-hbalt 35146 Closed form of ~ hbal . W...
axc11n11 35147 Proof of ~ axc11n from { ~...
axc11n11r 35148 Proof of ~ axc11n from { ~...
bj-axc16g16 35149 Proof of ~ axc16g from { ~...
bj-ax12v3 35150 A weak version of ~ ax-12 ...
bj-ax12v3ALT 35151 Alternate proof of ~ bj-ax...
bj-sb 35152 A weak variant of ~ sbid2 ...
bj-modalbe 35153 The predicate-calculus ver...
bj-spst 35154 Closed form of ~ sps . On...
bj-19.21bit 35155 Closed form of ~ 19.21bi ....
bj-19.23bit 35156 Closed form of ~ 19.23bi ....
bj-nexrt 35157 Closed form of ~ nexr . C...
bj-alrim 35158 Closed form of ~ alrimi . ...
bj-alrim2 35159 Uncurried (imported) form ...
bj-nfdt0 35160 A theorem close to a close...
bj-nfdt 35161 Closed form of ~ nf5d and ...
bj-nexdt 35162 Closed form of ~ nexd . (...
bj-nexdvt 35163 Closed form of ~ nexdv . ...
bj-alexbiex 35164 Adding a second quantifier...
bj-exexbiex 35165 Adding a second quantifier...
bj-alalbial 35166 Adding a second quantifier...
bj-exalbial 35167 Adding a second quantifier...
bj-19.9htbi 35168 Strengthening ~ 19.9ht by ...
bj-hbntbi 35169 Strengthening ~ hbnt by re...
bj-biexal1 35170 A general FOL biconditiona...
bj-biexal2 35171 When ` ph ` is substituted...
bj-biexal3 35172 When ` ph ` is substituted...
bj-bialal 35173 When ` ph ` is substituted...
bj-biexex 35174 When ` ph ` is substituted...
bj-hbext 35175 Closed form of ~ hbex . (...
bj-nfalt 35176 Closed form of ~ nfal . (...
bj-nfext 35177 Closed form of ~ nfex . (...
bj-eeanvw 35178 Version of ~ exdistrv with...
bj-modal4 35179 First-order logic form of ...
bj-modal4e 35180 First-order logic form of ...
bj-modalb 35181 A short form of the axiom ...
bj-wnf1 35182 When ` ph ` is substituted...
bj-wnf2 35183 When ` ph ` is substituted...
bj-wnfanf 35184 When ` ph ` is substituted...
bj-wnfenf 35185 When ` ph ` is substituted...
bj-substax12 35186 Equivalent form of the axi...
bj-substw 35187 Weak form of the LHS of ~ ...
bj-nnfbi 35190 If two formulas are equiva...
bj-nnfbd 35191 If two formulas are equiva...
bj-nnfbii 35192 If two formulas are equiva...
bj-nnfa 35193 Nonfreeness implies the eq...
bj-nnfad 35194 Nonfreeness implies the eq...
bj-nnfai 35195 Nonfreeness implies the eq...
bj-nnfe 35196 Nonfreeness implies the eq...
bj-nnfed 35197 Nonfreeness implies the eq...
bj-nnfei 35198 Nonfreeness implies the eq...
bj-nnfea 35199 Nonfreeness implies the eq...
bj-nnfead 35200 Nonfreeness implies the eq...
bj-nnfeai 35201 Nonfreeness implies the eq...
bj-dfnnf2 35202 Alternate definition of ~ ...
bj-nnfnfTEMP 35203 New nonfreeness implies ol...
bj-wnfnf 35204 When ` ph ` is substituted...
bj-nnfnt 35205 A variable is nonfree in a...
bj-nnftht 35206 A variable is nonfree in a...
bj-nnfth 35207 A variable is nonfree in a...
bj-nnfnth 35208 A variable is nonfree in t...
bj-nnfim1 35209 A consequence of nonfreene...
bj-nnfim2 35210 A consequence of nonfreene...
bj-nnfim 35211 Nonfreeness in the anteced...
bj-nnfimd 35212 Nonfreeness in the anteced...
bj-nnfan 35213 Nonfreeness in both conjun...
bj-nnfand 35214 Nonfreeness in both conjun...
bj-nnfor 35215 Nonfreeness in both disjun...
bj-nnford 35216 Nonfreeness in both disjun...
bj-nnfbit 35217 Nonfreeness in both sides ...
bj-nnfbid 35218 Nonfreeness in both sides ...
bj-nnfv 35219 A non-occurring variable i...
bj-nnf-alrim 35220 Proof of the closed form o...
bj-nnf-exlim 35221 Proof of the closed form o...
bj-dfnnf3 35222 Alternate definition of no...
bj-nfnnfTEMP 35223 New nonfreeness is equival...
bj-nnfa1 35224 See ~ nfa1 . (Contributed...
bj-nnfe1 35225 See ~ nfe1 . (Contributed...
bj-19.12 35226 See ~ 19.12 . Could be la...
bj-nnflemaa 35227 One of four lemmas for non...
bj-nnflemee 35228 One of four lemmas for non...
bj-nnflemae 35229 One of four lemmas for non...
bj-nnflemea 35230 One of four lemmas for non...
bj-nnfalt 35231 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 35232 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 35233 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 35234 Statement ~ 19.21t proved ...
bj-19.23t 35235 Statement ~ 19.23t proved ...
bj-19.36im 35236 One direction of ~ 19.36 f...
bj-19.37im 35237 One direction of ~ 19.37 f...
bj-19.42t 35238 Closed form of ~ 19.42 fro...
bj-19.41t 35239 Closed form of ~ 19.41 fro...
bj-sbft 35240 Version of ~ sbft using ` ...
bj-pm11.53vw 35241 Version of ~ pm11.53v with...
bj-pm11.53v 35242 Version of ~ pm11.53v with...
bj-pm11.53a 35243 A variant of ~ pm11.53v . ...
bj-equsvt 35244 A variant of ~ equsv . (C...
bj-equsalvwd 35245 Variant of ~ equsalvw . (...
bj-equsexvwd 35246 Variant of ~ equsexvw . (...
bj-sbievwd 35247 Variant of ~ sbievw . (Co...
bj-axc10 35248 Alternate proof of ~ axc10...
bj-alequex 35249 A fol lemma. See ~ aleque...
bj-spimt2 35250 A step in the proof of ~ s...
bj-cbv3ta 35251 Closed form of ~ cbv3 . (...
bj-cbv3tb 35252 Closed form of ~ cbv3 . (...
bj-hbsb3t 35253 A theorem close to a close...
bj-hbsb3 35254 Shorter proof of ~ hbsb3 ....
bj-nfs1t 35255 A theorem close to a close...
bj-nfs1t2 35256 A theorem close to a close...
bj-nfs1 35257 Shorter proof of ~ nfs1 (t...
bj-axc10v 35258 Version of ~ axc10 with a ...
bj-spimtv 35259 Version of ~ spimt with a ...
bj-cbv3hv2 35260 Version of ~ cbv3h with tw...
bj-cbv1hv 35261 Version of ~ cbv1h with a ...
bj-cbv2hv 35262 Version of ~ cbv2h with a ...
bj-cbv2v 35263 Version of ~ cbv2 with a d...
bj-cbvaldv 35264 Version of ~ cbvald with a...
bj-cbvexdv 35265 Version of ~ cbvexd with a...
bj-cbval2vv 35266 Version of ~ cbval2vv with...
bj-cbvex2vv 35267 Version of ~ cbvex2vv with...
bj-cbvaldvav 35268 Version of ~ cbvaldva with...
bj-cbvexdvav 35269 Version of ~ cbvexdva with...
bj-cbvex4vv 35270 Version of ~ cbvex4v with ...
bj-equsalhv 35271 Version of ~ equsalh with ...
bj-axc11nv 35272 Version of ~ axc11n with a...
bj-aecomsv 35273 Version of ~ aecoms with a...
bj-axc11v 35274 Version of ~ axc11 with a ...
bj-drnf2v 35275 Version of ~ drnf2 with a ...
bj-equs45fv 35276 Version of ~ equs45f with ...
bj-hbs1 35277 Version of ~ hbsb2 with a ...
bj-nfs1v 35278 Version of ~ nfsb2 with a ...
bj-hbsb2av 35279 Version of ~ hbsb2a with a...
bj-hbsb3v 35280 Version of ~ hbsb3 with a ...
bj-nfsab1 35281 Remove dependency on ~ ax-...
bj-dtrucor2v 35282 Version of ~ dtrucor2 with...
bj-hbaeb2 35283 Biconditional version of a...
bj-hbaeb 35284 Biconditional version of ~...
bj-hbnaeb 35285 Biconditional version of ~...
bj-dvv 35286 A special instance of ~ bj...
bj-equsal1t 35287 Duplication of ~ wl-equsal...
bj-equsal1ti 35288 Inference associated with ...
bj-equsal1 35289 One direction of ~ equsal ...
bj-equsal2 35290 One direction of ~ equsal ...
bj-equsal 35291 Shorter proof of ~ equsal ...
stdpc5t 35292 Closed form of ~ stdpc5 . ...
bj-stdpc5 35293 More direct proof of ~ std...
2stdpc5 35294 A double ~ stdpc5 (one dir...
bj-19.21t0 35295 Proof of ~ 19.21t from ~ s...
exlimii 35296 Inference associated with ...
ax11-pm 35297 Proof of ~ ax-11 similar t...
ax6er 35298 Commuted form of ~ ax6e . ...
exlimiieq1 35299 Inferring a theorem when i...
exlimiieq2 35300 Inferring a theorem when i...
ax11-pm2 35301 Proof of ~ ax-11 from the ...
bj-sbsb 35302 Biconditional showing two ...
bj-dfsb2 35303 Alternate (dual) definitio...
bj-sbf3 35304 Substitution has no effect...
bj-sbf4 35305 Substitution has no effect...
bj-sbnf 35306 Move nonfree predicate in ...
bj-eu3f 35307 Version of ~ eu3v where th...
bj-sblem1 35308 Lemma for substitution. (...
bj-sblem2 35309 Lemma for substitution. (...
bj-sblem 35310 Lemma for substitution. (...
bj-sbievw1 35311 Lemma for substitution. (...
bj-sbievw2 35312 Lemma for substitution. (...
bj-sbievw 35313 Lemma for substitution. C...
bj-sbievv 35314 Version of ~ sbie with a s...
bj-moeub 35315 Uniqueness is equivalent t...
bj-sbidmOLD 35316 Obsolete proof of ~ sbidm ...
bj-dvelimdv 35317 Deduction form of ~ dvelim...
bj-dvelimdv1 35318 Curried (exported) form of...
bj-dvelimv 35319 A version of ~ dvelim usin...
bj-nfeel2 35320 Nonfreeness in a membershi...
bj-axc14nf 35321 Proof of a version of ~ ax...
bj-axc14 35322 Alternate proof of ~ axc14...
mobidvALT 35323 Alternate proof of ~ mobid...
sbn1ALT 35324 Alternate proof of ~ sbn1 ...
eliminable1 35325 A theorem used to prove th...
eliminable2a 35326 A theorem used to prove th...
eliminable2b 35327 A theorem used to prove th...
eliminable2c 35328 A theorem used to prove th...
eliminable3a 35329 A theorem used to prove th...
eliminable3b 35330 A theorem used to prove th...
eliminable-velab 35331 A theorem used to prove th...
eliminable-veqab 35332 A theorem used to prove th...
eliminable-abeqv 35333 A theorem used to prove th...
eliminable-abeqab 35334 A theorem used to prove th...
eliminable-abelv 35335 A theorem used to prove th...
eliminable-abelab 35336 A theorem used to prove th...
bj-denoteslem 35337 Lemma for ~ bj-denotes . ...
bj-denotes 35338 This would be the justific...
bj-issettru 35339 Weak version of ~ isset wi...
bj-elabtru 35340 This is as close as we can...
bj-issetwt 35341 Closed form of ~ bj-issetw...
bj-issetw 35342 The closest one can get to...
bj-elissetALT 35343 Alternate proof of ~ eliss...
bj-issetiv 35344 Version of ~ bj-isseti wit...
bj-isseti 35345 Version of ~ isseti with a...
bj-ralvw 35346 A weak version of ~ ralv n...
bj-rexvw 35347 A weak version of ~ rexv n...
bj-rababw 35348 A weak version of ~ rabab ...
bj-rexcom4bv 35349 Version of ~ rexcom4b and ...
bj-rexcom4b 35350 Remove from ~ rexcom4b dep...
bj-ceqsalt0 35351 The FOL content of ~ ceqsa...
bj-ceqsalt1 35352 The FOL content of ~ ceqsa...
bj-ceqsalt 35353 Remove from ~ ceqsalt depe...
bj-ceqsaltv 35354 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 35355 The FOL content of ~ ceqsa...
bj-ceqsalg 35356 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 35357 Alternate proof of ~ bj-ce...
bj-ceqsalgv 35358 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 35359 Alternate proof of ~ bj-ce...
bj-ceqsal 35360 Remove from ~ ceqsal depen...
bj-ceqsalv 35361 Remove from ~ ceqsalv depe...
bj-spcimdv 35362 Remove from ~ spcimdv depe...
bj-spcimdvv 35363 Remove from ~ spcimdv depe...
elelb 35364 Equivalence between two co...
bj-pwvrelb 35365 Characterization of the el...
bj-nfcsym 35366 The nonfreeness quantifier...
bj-sbeqALT 35367 Substitution in an equalit...
bj-sbeq 35368 Distribute proper substitu...
bj-sbceqgALT 35369 Distribute proper substitu...
bj-csbsnlem 35370 Lemma for ~ bj-csbsn (in t...
bj-csbsn 35371 Substitution in a singleto...
bj-sbel1 35372 Version of ~ sbcel1g when ...
bj-abv 35373 The class of sets verifyin...
bj-abvALT 35374 Alternate version of ~ bj-...
bj-ab0 35375 The class of sets verifyin...
bj-abf 35376 Shorter proof of ~ abf (wh...
bj-csbprc 35377 More direct proof of ~ csb...
bj-exlimvmpi 35378 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 35379 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 35380 Lemma for theorems of the ...
bj-exlimmpbir 35381 Lemma for theorems of the ...
bj-vtoclf 35382 Remove dependency on ~ ax-...
bj-vtocl 35383 Remove dependency on ~ ax-...
bj-vtoclg1f1 35384 The FOL content of ~ vtocl...
bj-vtoclg1f 35385 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 35386 Version of ~ bj-vtoclg1f w...
bj-vtoclg 35387 A version of ~ vtoclg with...
bj-rabbida2 35388 Version of ~ rabbidva2 wit...
bj-rabeqd 35389 Deduction form of ~ rabeq ...
bj-rabeqbid 35390 Version of ~ rabeqbidv wit...
bj-rabeqbida 35391 Version of ~ rabeqbidva wi...
bj-seex 35392 Version of ~ seex with a d...
bj-nfcf 35393 Version of ~ df-nfc with a...
bj-zfauscl 35394 General version of ~ zfaus...
bj-elabd2ALT 35395 Alternate proof of ~ elabd...
bj-unrab 35396 Generalization of ~ unrab ...
bj-inrab 35397 Generalization of ~ inrab ...
bj-inrab2 35398 Shorter proof of ~ inrab ....
bj-inrab3 35399 Generalization of ~ dfrab3...
bj-rabtr 35400 Restricted class abstracti...
bj-rabtrALT 35401 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 35402 Proof of ~ bj-rabtr found ...
bj-gabss 35405 Inclusion of generalized c...
bj-gabssd 35406 Inclusion of generalized c...
bj-gabeqd 35407 Equality of generalized cl...
bj-gabeqis 35408 Equality of generalized cl...
bj-elgab 35409 Elements of a generalized ...
bj-gabima 35410 Generalized class abstract...
bj-ru0 35413 The FOL part of Russell's ...
bj-ru1 35414 A version of Russell's par...
bj-ru 35415 Remove dependency on ~ ax-...
currysetlem 35416 Lemma for ~ currysetlem , ...
curryset 35417 Curry's paradox in set the...
currysetlem1 35418 Lemma for ~ currysetALT . ...
currysetlem2 35419 Lemma for ~ currysetALT . ...
currysetlem3 35420 Lemma for ~ currysetALT . ...
currysetALT 35421 Alternate proof of ~ curry...
bj-n0i 35422 Inference associated with ...
bj-disjsn01 35423 Disjointness of the single...
bj-0nel1 35424 The empty set does not bel...
bj-1nel0 35425 ` 1o ` does not belong to ...
bj-xpimasn 35426 The image of a singleton, ...
bj-xpima1sn 35427 The image of a singleton b...
bj-xpima1snALT 35428 Alternate proof of ~ bj-xp...
bj-xpima2sn 35429 The image of a singleton b...
bj-xpnzex 35430 If the first factor of a p...
bj-xpexg2 35431 Curried (exported) form of...
bj-xpnzexb 35432 If the first factor of a p...
bj-cleq 35433 Substitution property for ...
bj-snsetex 35434 The class of sets "whose s...
bj-clexab 35435 Sethood of certain classes...
bj-sngleq 35438 Substitution property for ...
bj-elsngl 35439 Characterization of the el...
bj-snglc 35440 Characterization of the el...
bj-snglss 35441 The singletonization of a ...
bj-0nelsngl 35442 The empty set is not a mem...
bj-snglinv 35443 Inverse of singletonizatio...
bj-snglex 35444 A class is a set if and on...
bj-tageq 35447 Substitution property for ...
bj-eltag 35448 Characterization of the el...
bj-0eltag 35449 The empty set belongs to t...
bj-tagn0 35450 The tagging of a class is ...
bj-tagss 35451 The tagging of a class is ...
bj-snglsstag 35452 The singletonization is in...
bj-sngltagi 35453 The singletonization is in...
bj-sngltag 35454 The singletonization and t...
bj-tagci 35455 Characterization of the el...
bj-tagcg 35456 Characterization of the el...
bj-taginv 35457 Inverse of tagging. (Cont...
bj-tagex 35458 A class is a set if and on...
bj-xtageq 35459 The products of a given cl...
bj-xtagex 35460 The product of a set and t...
bj-projeq 35463 Substitution property for ...
bj-projeq2 35464 Substitution property for ...
bj-projun 35465 The class projection on a ...
bj-projex 35466 Sethood of the class proje...
bj-projval 35467 Value of the class project...
bj-1upleq 35470 Substitution property for ...
bj-pr1eq 35473 Substitution property for ...
bj-pr1un 35474 The first projection prese...
bj-pr1val 35475 Value of the first project...
bj-pr11val 35476 Value of the first project...
bj-pr1ex 35477 Sethood of the first proje...
bj-1uplth 35478 The characteristic propert...
bj-1uplex 35479 A monuple is a set if and ...
bj-1upln0 35480 A monuple is nonempty. (C...
bj-2upleq 35483 Substitution property for ...
bj-pr21val 35484 Value of the first project...
bj-pr2eq 35487 Substitution property for ...
bj-pr2un 35488 The second projection pres...
bj-pr2val 35489 Value of the second projec...
bj-pr22val 35490 Value of the second projec...
bj-pr2ex 35491 Sethood of the second proj...
bj-2uplth 35492 The characteristic propert...
bj-2uplex 35493 A couple is a set if and o...
bj-2upln0 35494 A couple is nonempty. (Co...
bj-2upln1upl 35495 A couple is never equal to...
bj-rcleqf 35496 Relative version of ~ cleq...
bj-rcleq 35497 Relative version of ~ dfcl...
bj-reabeq 35498 Relative form of ~ eqab . ...
bj-disj2r 35499 Relative version of ~ ssdi...
bj-sscon 35500 Contraposition law for rel...
bj-abex 35501 Two ways of stating that t...
bj-clex 35502 Two ways of stating that a...
bj-axsn 35503 Two ways of stating the ax...
bj-snexg 35505 A singleton built on a set...
bj-snex 35506 A singleton is a set. See...
bj-axbun 35507 Two ways of stating the ax...
bj-unexg 35509 Existence of binary unions...
bj-prexg 35510 Existence of unordered pai...
bj-prex 35511 Existence of unordered pai...
bj-axadj 35512 Two ways of stating the ax...
bj-adjg1 35514 Existence of the result of...
bj-snfromadj 35515 Singleton from adjunction ...
bj-prfromadj 35516 Unordered pair from adjunc...
bj-adjfrombun 35517 Adjunction from singleton ...
eleq2w2ALT 35518 Alternate proof of ~ eleq2...
bj-clel3gALT 35519 Alternate proof of ~ clel3...
bj-pw0ALT 35520 Alternate proof of ~ pw0 ....
bj-sselpwuni 35521 Quantitative version of ~ ...
bj-unirel 35522 Quantitative version of ~ ...
bj-elpwg 35523 If the intersection of two...
bj-velpwALT 35524 This theorem ~ bj-velpwALT...
bj-elpwgALT 35525 Alternate proof of ~ elpwg...
bj-vjust 35526 Justification theorem for ...
bj-nul 35527 Two formulations of the ax...
bj-nuliota 35528 Definition of the empty se...
bj-nuliotaALT 35529 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 35530 Alternate proof of ~ vtocl...
bj-elsn12g 35531 Join of ~ elsng and ~ elsn...
bj-elsnb 35532 Biconditional version of ~...
bj-pwcfsdom 35533 Remove hypothesis from ~ p...
bj-grur1 35534 Remove hypothesis from ~ g...
bj-bm1.3ii 35535 The extension of a predica...
bj-dfid2ALT 35536 Alternate version of ~ dfi...
bj-0nelopab 35537 The empty set is never an ...
bj-brrelex12ALT 35538 Two classes related by a b...
bj-epelg 35539 The membership relation an...
bj-epelb 35540 Two classes are related by...
bj-nsnid 35541 A set does not contain the...
bj-rdg0gALT 35542 Alternate proof of ~ rdg0g...
bj-evaleq 35543 Equality theorem for the `...
bj-evalfun 35544 The evaluation at a class ...
bj-evalfn 35545 The evaluation at a class ...
bj-evalval 35546 Value of the evaluation at...
bj-evalid 35547 The evaluation at a set of...
bj-ndxarg 35548 Proof of ~ ndxarg from ~ b...
bj-evalidval 35549 Closed general form of ~ s...
bj-rest00 35552 An elementwise intersectio...
bj-restsn 35553 An elementwise intersectio...
bj-restsnss 35554 Special case of ~ bj-rests...
bj-restsnss2 35555 Special case of ~ bj-rests...
bj-restsn0 35556 An elementwise intersectio...
bj-restsn10 35557 Special case of ~ bj-rests...
bj-restsnid 35558 The elementwise intersecti...
bj-rest10 35559 An elementwise intersectio...
bj-rest10b 35560 Alternate version of ~ bj-...
bj-restn0 35561 An elementwise intersectio...
bj-restn0b 35562 Alternate version of ~ bj-...
bj-restpw 35563 The elementwise intersecti...
bj-rest0 35564 An elementwise intersectio...
bj-restb 35565 An elementwise intersectio...
bj-restv 35566 An elementwise intersectio...
bj-resta 35567 An elementwise intersectio...
bj-restuni 35568 The union of an elementwis...
bj-restuni2 35569 The union of an elementwis...
bj-restreg 35570 A reformulation of the axi...
bj-raldifsn 35571 All elements in a set sati...
bj-0int 35572 If ` A ` is a collection o...
bj-mooreset 35573 A Moore collection is a se...
bj-ismoore 35576 Characterization of Moore ...
bj-ismoored0 35577 Necessary condition to be ...
bj-ismoored 35578 Necessary condition to be ...
bj-ismoored2 35579 Necessary condition to be ...
bj-ismooredr 35580 Sufficient condition to be...
bj-ismooredr2 35581 Sufficient condition to be...
bj-discrmoore 35582 The powerclass ` ~P A ` is...
bj-0nmoore 35583 The empty set is not a Moo...
bj-snmoore 35584 A singleton is a Moore col...
bj-snmooreb 35585 A singleton is a Moore col...
bj-prmoore 35586 A pair formed of two neste...
bj-0nelmpt 35587 The empty set is not an el...
bj-mptval 35588 Value of a function given ...
bj-dfmpoa 35589 An equivalent definition o...
bj-mpomptALT 35590 Alternate proof of ~ mpomp...
setsstrset 35607 Relation between ~ df-sets...
bj-nfald 35608 Variant of ~ nfald . (Con...
bj-nfexd 35609 Variant of ~ nfexd . (Con...
copsex2d 35610 Implicit substitution dedu...
copsex2b 35611 Biconditional form of ~ co...
opelopabd 35612 Membership of an ordere pa...
opelopabb 35613 Membership of an ordered p...
opelopabbv 35614 Membership of an ordered p...
bj-opelrelex 35615 The coordinates of an orde...
bj-opelresdm 35616 If an ordered pair is in a...
bj-brresdm 35617 If two classes are related...
brabd0 35618 Expressing that two sets a...
brabd 35619 Expressing that two sets a...
bj-brab2a1 35620 "Unbounded" version of ~ b...
bj-opabssvv 35621 A variant of ~ relopabiv (...
bj-funidres 35622 The restricted identity re...
bj-opelidb 35623 Characterization of the or...
bj-opelidb1 35624 Characterization of the or...
bj-inexeqex 35625 Lemma for ~ bj-opelid (but...
bj-elsn0 35626 If the intersection of two...
bj-opelid 35627 Characterization of the or...
bj-ideqg 35628 Characterization of the cl...
bj-ideqgALT 35629 Alternate proof of ~ bj-id...
bj-ideqb 35630 Characterization of classe...
bj-idres 35631 Alternate expression for t...
bj-opelidres 35632 Characterization of the or...
bj-idreseq 35633 Sufficient condition for t...
bj-idreseqb 35634 Characterization for two c...
bj-ideqg1 35635 For sets, the identity rel...
bj-ideqg1ALT 35636 Alternate proof of bj-ideq...
bj-opelidb1ALT 35637 Characterization of the co...
bj-elid3 35638 Characterization of the co...
bj-elid4 35639 Characterization of the el...
bj-elid5 35640 Characterization of the el...
bj-elid6 35641 Characterization of the el...
bj-elid7 35642 Characterization of the el...
bj-diagval 35645 Value of the functionalize...
bj-diagval2 35646 Value of the functionalize...
bj-eldiag 35647 Characterization of the el...
bj-eldiag2 35648 Characterization of the el...
bj-imdirvallem 35651 Lemma for ~ bj-imdirval an...
bj-imdirval 35652 Value of the functionalize...
bj-imdirval2lem 35653 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 35654 Value of the functionalize...
bj-imdirval3 35655 Value of the functionalize...
bj-imdiridlem 35656 Lemma for ~ bj-imdirid and...
bj-imdirid 35657 Functorial property of the...
bj-opelopabid 35658 Membership in an ordered-p...
bj-opabco 35659 Composition of ordered-pai...
bj-xpcossxp 35660 The composition of two Car...
bj-imdirco 35661 Functorial property of the...
bj-iminvval 35664 Value of the functionalize...
bj-iminvval2 35665 Value of the functionalize...
bj-iminvid 35666 Functorial property of the...
bj-inftyexpitaufo 35673 The function ` inftyexpita...
bj-inftyexpitaudisj 35676 An element of the circle a...
bj-inftyexpiinv 35679 Utility theorem for the in...
bj-inftyexpiinj 35680 Injectivity of the paramet...
bj-inftyexpidisj 35681 An element of the circle a...
bj-ccinftydisj 35684 The circle at infinity is ...
bj-elccinfty 35685 A lemma for infinite exten...
bj-ccssccbar 35688 Complex numbers are extend...
bj-ccinftyssccbar 35689 Infinite extended complex ...
bj-pinftyccb 35692 The class ` pinfty ` is an...
bj-pinftynrr 35693 The extended complex numbe...
bj-minftyccb 35696 The class ` minfty ` is an...
bj-minftynrr 35697 The extended complex numbe...
bj-pinftynminfty 35698 The extended complex numbe...
bj-rrhatsscchat 35707 The real projective line i...
bj-imafv 35722 If the direct image of a s...
bj-funun 35723 Value of a function expres...
bj-fununsn1 35724 Value of a function expres...
bj-fununsn2 35725 Value of a function expres...
bj-fvsnun1 35726 The value of a function wi...
bj-fvsnun2 35727 The value of a function wi...
bj-fvmptunsn1 35728 Value of a function expres...
bj-fvmptunsn2 35729 Value of a function expres...
bj-iomnnom 35730 The canonical bijection fr...
bj-smgrpssmgm 35739 Semigroups are magmas. (C...
bj-smgrpssmgmel 35740 Semigroups are magmas (ele...
bj-mndsssmgrp 35741 Monoids are semigroups. (...
bj-mndsssmgrpel 35742 Monoids are semigroups (el...
bj-cmnssmnd 35743 Commutative monoids are mo...
bj-cmnssmndel 35744 Commutative monoids are mo...
bj-grpssmnd 35745 Groups are monoids. (Cont...
bj-grpssmndel 35746 Groups are monoids (elemen...
bj-ablssgrp 35747 Abelian groups are groups....
bj-ablssgrpel 35748 Abelian groups are groups ...
bj-ablsscmn 35749 Abelian groups are commuta...
bj-ablsscmnel 35750 Abelian groups are commuta...
bj-modssabl 35751 (The additive groups of) m...
bj-vecssmod 35752 Vector spaces are modules....
bj-vecssmodel 35753 Vector spaces are modules ...
bj-finsumval0 35756 Value of a finite sum. (C...
bj-fvimacnv0 35757 Variant of ~ fvimacnv wher...
bj-isvec 35758 The predicate "is a vector...
bj-fldssdrng 35759 Fields are division rings....
bj-flddrng 35760 Fields are division rings ...
bj-rrdrg 35761 The field of real numbers ...
bj-isclm 35762 The predicate "is a subcom...
bj-isrvec 35765 The predicate "is a real v...
bj-rvecmod 35766 Real vector spaces are mod...
bj-rvecssmod 35767 Real vector spaces are mod...
bj-rvecrr 35768 The field of scalars of a ...
bj-isrvecd 35769 The predicate "is a real v...
bj-rvecvec 35770 Real vector spaces are vec...
bj-isrvec2 35771 The predicate "is a real v...
bj-rvecssvec 35772 Real vector spaces are vec...
bj-rveccmod 35773 Real vector spaces are sub...
bj-rvecsscmod 35774 Real vector spaces are sub...
bj-rvecsscvec 35775 Real vector spaces are sub...
bj-rveccvec 35776 Real vector spaces are sub...
bj-rvecssabl 35777 (The additive groups of) r...
bj-rvecabl 35778 (The additive groups of) r...
bj-subcom 35779 A consequence of commutati...
bj-lineqi 35780 Solution of a (scalar) lin...
bj-bary1lem 35781 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 35782 Lemma for bj-bary1: comput...
bj-bary1 35783 Barycentric coordinates in...
bj-endval 35786 Value of the monoid of end...
bj-endbase 35787 Base set of the monoid of ...
bj-endcomp 35788 Composition law of the mon...
bj-endmnd 35789 The monoid of endomorphism...
taupilem3 35790 Lemma for tau-related theo...
taupilemrplb 35791 A set of positive reals ha...
taupilem1 35792 Lemma for ~ taupi . A pos...
taupilem2 35793 Lemma for ~ taupi . The s...
taupi 35794 Relationship between ` _ta...
dfgcd3 35795 Alternate definition of th...
irrdifflemf 35796 Lemma for ~ irrdiff . The...
irrdiff 35797 The irrationals are exactl...
iccioo01 35798 The closed unit interval i...
csbrecsg 35799 Move class substitution in...
csbrdgg 35800 Move class substitution in...
csboprabg 35801 Move class substitution in...
csbmpo123 35802 Move class substitution in...
con1bii2 35803 A contraposition inference...
con2bii2 35804 A contraposition inference...
vtoclefex 35805 Implicit substitution of a...
rnmptsn 35806 The range of a function ma...
f1omptsnlem 35807 This is the core of the pr...
f1omptsn 35808 A function mapping to sing...
mptsnunlem 35809 This is the core of the pr...
mptsnun 35810 A class ` B ` is equal to ...
dissneqlem 35811 This is the core of the pr...
dissneq 35812 Any topology that contains...
exlimim 35813 Closed form of ~ exlimimd ...
exlimimd 35814 Existential elimination ru...
exellim 35815 Closed form of ~ exellimdd...
exellimddv 35816 Eliminate an antecedent wh...
topdifinfindis 35817 Part of Exercise 3 of [Mun...
topdifinffinlem 35818 This is the core of the pr...
topdifinffin 35819 Part of Exercise 3 of [Mun...
topdifinf 35820 Part of Exercise 3 of [Mun...
topdifinfeq 35821 Two different ways of defi...
icorempo 35822 Closed-below, open-above i...
icoreresf 35823 Closed-below, open-above i...
icoreval 35824 Value of the closed-below,...
icoreelrnab 35825 Elementhood in the set of ...
isbasisrelowllem1 35826 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 35827 Lemma for ~ isbasisrelowl ...
icoreclin 35828 The set of closed-below, o...
isbasisrelowl 35829 The set of all closed-belo...
icoreunrn 35830 The union of all closed-be...
istoprelowl 35831 The set of all closed-belo...
icoreelrn 35832 A class abstraction which ...
iooelexlt 35833 An element of an open inte...
relowlssretop 35834 The lower limit topology o...
relowlpssretop 35835 The lower limit topology o...
sucneqond 35836 Inequality of an ordinal s...
sucneqoni 35837 Inequality of an ordinal s...
onsucuni3 35838 If an ordinal number has a...
1oequni2o 35839 The ordinal number ` 1o ` ...
rdgsucuni 35840 If an ordinal number has a...
rdgeqoa 35841 If a recursive function wi...
elxp8 35842 Membership in a Cartesian ...
cbveud 35843 Deduction used to change b...
cbvreud 35844 Deduction used to change b...
difunieq 35845 The difference of unions i...
inunissunidif 35846 Theorem about subsets of t...
rdgellim 35847 Elementhood in a recursive...
rdglimss 35848 A recursive definition at ...
rdgssun 35849 In a recursive definition ...
exrecfnlem 35850 Lemma for ~ exrecfn . (Co...
exrecfn 35851 Theorem about the existenc...
exrecfnpw 35852 For any base set, a set wh...
finorwe 35853 If the Axiom of Infinity i...
dffinxpf 35856 This theorem is the same a...
finxpeq1 35857 Equality theorem for Carte...
finxpeq2 35858 Equality theorem for Carte...
csbfinxpg 35859 Distribute proper substitu...
finxpreclem1 35860 Lemma for ` ^^ ` recursion...
finxpreclem2 35861 Lemma for ` ^^ ` recursion...
finxp0 35862 The value of Cartesian exp...
finxp1o 35863 The value of Cartesian exp...
finxpreclem3 35864 Lemma for ` ^^ ` recursion...
finxpreclem4 35865 Lemma for ` ^^ ` recursion...
finxpreclem5 35866 Lemma for ` ^^ ` recursion...
finxpreclem6 35867 Lemma for ` ^^ ` recursion...
finxpsuclem 35868 Lemma for ~ finxpsuc . (C...
finxpsuc 35869 The value of Cartesian exp...
finxp2o 35870 The value of Cartesian exp...
finxp3o 35871 The value of Cartesian exp...
finxpnom 35872 Cartesian exponentiation w...
finxp00 35873 Cartesian exponentiation o...
iunctb2 35874 Using the axiom of countab...
domalom 35875 A class which dominates ev...
isinf2 35876 The converse of ~ isinf . ...
ctbssinf 35877 Using the axiom of choice,...
ralssiun 35878 The index set of an indexe...
nlpineqsn 35879 For every point ` p ` of a...
nlpfvineqsn 35880 Given a subset ` A ` of ` ...
fvineqsnf1 35881 A theorem about functions ...
fvineqsneu 35882 A theorem about functions ...
fvineqsneq 35883 A theorem about functions ...
pibp16 35884 Property P000016 of pi-bas...
pibp19 35885 Property P000019 of pi-bas...
pibp21 35886 Property P000021 of pi-bas...
pibt1 35887 Theorem T000001 of pi-base...
pibt2 35888 Theorem T000002 of pi-base...
wl-section-prop 35889 Intuitionistic logic is no...
wl-section-boot 35893 In this section, I provide...
wl-luk-imim1i 35894 Inference adding common co...
wl-luk-syl 35895 An inference version of th...
wl-luk-imtrid 35896 A syllogism rule of infere...
wl-luk-pm2.18d 35897 Deduction based on reducti...
wl-luk-con4i 35898 Inference rule. Copy of ~...
wl-luk-pm2.24i 35899 Inference rule. Copy of ~...
wl-luk-a1i 35900 Inference rule. Copy of ~...
wl-luk-mpi 35901 A nested modus ponens infe...
wl-luk-imim2i 35902 Inference adding common an...
wl-luk-imtrdi 35903 A syllogism rule of infere...
wl-luk-ax3 35904 ~ ax-3 proved from Lukasie...
wl-luk-ax1 35905 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 35906 This theorem, called "Asse...
wl-luk-com12 35907 Inference that swaps (comm...
wl-luk-pm2.21 35908 From a wff and its negatio...
wl-luk-con1i 35909 A contraposition inference...
wl-luk-ja 35910 Inference joining the ante...
wl-luk-imim2 35911 A closed form of syllogism...
wl-luk-a1d 35912 Deduction introducing an e...
wl-luk-ax2 35913 ~ ax-2 proved from Lukasie...
wl-luk-id 35914 Principle of identity. Th...
wl-luk-notnotr 35915 Converse of double negatio...
wl-luk-pm2.04 35916 Swap antecedents. Theorem...
wl-section-impchain 35917 An implication like ` ( ps...
wl-impchain-mp-x 35918 This series of theorems pr...
wl-impchain-mp-0 35919 This theorem is the start ...
wl-impchain-mp-1 35920 This theorem is in fact a ...
wl-impchain-mp-2 35921 This theorem is in fact a ...
wl-impchain-com-1.x 35922 It is often convenient to ...
wl-impchain-com-1.1 35923 A degenerate form of antec...
wl-impchain-com-1.2 35924 This theorem is in fact a ...
wl-impchain-com-1.3 35925 This theorem is in fact a ...
wl-impchain-com-1.4 35926 This theorem is in fact a ...
wl-impchain-com-n.m 35927 This series of theorems al...
wl-impchain-com-2.3 35928 This theorem is in fact a ...
wl-impchain-com-2.4 35929 This theorem is in fact a ...
wl-impchain-com-3.2.1 35930 This theorem is in fact a ...
wl-impchain-a1-x 35931 If an implication chain is...
wl-impchain-a1-1 35932 Inference rule, a copy of ...
wl-impchain-a1-2 35933 Inference rule, a copy of ...
wl-impchain-a1-3 35934 Inference rule, a copy of ...
wl-ifp-ncond1 35935 If one case of an ` if- ` ...
wl-ifp-ncond2 35936 If one case of an ` if- ` ...
wl-ifpimpr 35937 If one case of an ` if- ` ...
wl-ifp4impr 35938 If one case of an ` if- ` ...
wl-df-3xor 35939 Alternative definition of ...
wl-df3xor2 35940 Alternative definition of ...
wl-df3xor3 35941 Alternative form of ~ wl-d...
wl-3xortru 35942 If the first input is true...
wl-3xorfal 35943 If the first input is fals...
wl-3xorbi 35944 Triple xor can be replaced...
wl-3xorbi2 35945 Alternative form of ~ wl-3...
wl-3xorbi123d 35946 Equivalence theorem for tr...
wl-3xorbi123i 35947 Equivalence theorem for tr...
wl-3xorrot 35948 Rotation law for triple xo...
wl-3xorcoma 35949 Commutative law for triple...
wl-3xorcomb 35950 Commutative law for triple...
wl-3xornot1 35951 Flipping the first input f...
wl-3xornot 35952 Triple xor distributes ove...
wl-1xor 35953 In the recursive scheme ...
wl-2xor 35954 In the recursive scheme ...
wl-df-3mintru2 35955 Alternative definition of ...
wl-df2-3mintru2 35956 The adder carry in disjunc...
wl-df3-3mintru2 35957 The adder carry in conjunc...
wl-df4-3mintru2 35958 An alternative definition ...
wl-1mintru1 35959 Using the recursion formul...
wl-1mintru2 35960 Using the recursion formul...
wl-2mintru1 35961 Using the recursion formul...
wl-2mintru2 35962 Using the recursion formul...
wl-df3maxtru1 35963 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 35965 A version of ~ ax-wl-13v w...
wl-mps 35966 Replacing a nested consequ...
wl-syls1 35967 Replacing a nested consequ...
wl-syls2 35968 Replacing a nested anteced...
wl-embant 35969 A true wff can always be a...
wl-orel12 35970 In a conjunctive normal fo...
wl-cases2-dnf 35971 A particular instance of ~...
wl-cbvmotv 35972 Change bound variable. Us...
wl-moteq 35973 Change bound variable. Us...
wl-motae 35974 Change bound variable. Us...
wl-moae 35975 Two ways to express "at mo...
wl-euae 35976 Two ways to express "exact...
wl-nax6im 35977 The following series of th...
wl-hbae1 35978 This specialization of ~ h...
wl-naevhba1v 35979 An instance of ~ hbn1w app...
wl-spae 35980 Prove an instance of ~ sp ...
wl-speqv 35981 Under the assumption ` -. ...
wl-19.8eqv 35982 Under the assumption ` -. ...
wl-19.2reqv 35983 Under the assumption ` -. ...
wl-nfalv 35984 If ` x ` is not present in...
wl-nfimf1 35985 An antecedent is irrelevan...
wl-nfae1 35986 Unlike ~ nfae , this speci...
wl-nfnae1 35987 Unlike ~ nfnae , this spec...
wl-aetr 35988 A transitive law for varia...
wl-axc11r 35989 Same as ~ axc11r , but usi...
wl-dral1d 35990 A version of ~ dral1 with ...
wl-cbvalnaed 35991 ~ wl-cbvalnae with a conte...
wl-cbvalnae 35992 A more general version of ...
wl-exeq 35993 The semantics of ` E. x y ...
wl-aleq 35994 The semantics of ` A. x y ...
wl-nfeqfb 35995 Extend ~ nfeqf to an equiv...
wl-nfs1t 35996 If ` y ` is not free in ` ...
wl-equsalvw 35997 Version of ~ equsalv with ...
wl-equsald 35998 Deduction version of ~ equ...
wl-equsal 35999 A useful equivalence relat...
wl-equsal1t 36000 The expression ` x = y ` i...
wl-equsalcom 36001 This simple equivalence ea...
wl-equsal1i 36002 The antecedent ` x = y ` i...
wl-sb6rft 36003 A specialization of ~ wl-e...
wl-cbvalsbi 36004 Change bounded variables i...
wl-sbrimt 36005 Substitution with a variab...
wl-sblimt 36006 Substitution with a variab...
wl-sb8t 36007 Substitution of variable i...
wl-sb8et 36008 Substitution of variable i...
wl-sbhbt 36009 Closed form of ~ sbhb . C...
wl-sbnf1 36010 Two ways expressing that `...
wl-equsb3 36011 ~ equsb3 with a distinctor...
wl-equsb4 36012 Substitution applied to an...
wl-2sb6d 36013 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 36014 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 36015 Lemma used to prove ~ wl-s...
wl-sbcom2d 36016 Version of ~ sbcom2 with a...
wl-sbalnae 36017 A theorem used in eliminat...
wl-sbal1 36018 A theorem used in eliminat...
wl-sbal2 36019 Move quantifier in and out...
wl-2spsbbi 36020 ~ spsbbi applied twice. (...
wl-lem-exsb 36021 This theorem provides a ba...
wl-lem-nexmo 36022 This theorem provides a ba...
wl-lem-moexsb 36023 The antecedent ` A. x ( ph...
wl-alanbii 36024 This theorem extends ~ ala...
wl-mo2df 36025 Version of ~ mof with a co...
wl-mo2tf 36026 Closed form of ~ mof with ...
wl-eudf 36027 Version of ~ eu6 with a co...
wl-eutf 36028 Closed form of ~ eu6 with ...
wl-euequf 36029 ~ euequ proved with a dist...
wl-mo2t 36030 Closed form of ~ mof . (C...
wl-mo3t 36031 Closed form of ~ mo3 . (C...
wl-sb8eut 36032 Substitution of variable i...
wl-sb8mot 36033 Substitution of variable i...
wl-issetft 36034 A closed form of ~ issetf ...
wl-axc11rc11 36035 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 36037 A transitive law for varia...
wl-ax11-lem2 36038 Lemma. (Contributed by Wo...
wl-ax11-lem3 36039 Lemma. (Contributed by Wo...
wl-ax11-lem4 36040 Lemma. (Contributed by Wo...
wl-ax11-lem5 36041 Lemma. (Contributed by Wo...
wl-ax11-lem6 36042 Lemma. (Contributed by Wo...
wl-ax11-lem7 36043 Lemma. (Contributed by Wo...
wl-ax11-lem8 36044 Lemma. (Contributed by Wo...
wl-ax11-lem9 36045 The easy part when ` x ` c...
wl-ax11-lem10 36046 We now have prepared every...
wl-clabv 36047 Variant of ~ df-clab , whe...
wl-dfclab 36048 Rederive ~ df-clab from ~ ...
wl-clabtv 36049 Using class abstraction in...
wl-clabt 36050 Using class abstraction in...
rabiun 36051 Abstraction restricted to ...
iundif1 36052 Indexed union of class dif...
imadifss 36053 The difference of images i...
cureq 36054 Equality theorem for curry...
unceq 36055 Equality theorem for uncur...
curf 36056 Functional property of cur...
uncf 36057 Functional property of unc...
curfv 36058 Value of currying. (Contr...
uncov 36059 Value of uncurrying. (Con...
curunc 36060 Currying of uncurrying. (...
unccur 36061 Uncurrying of currying. (...
phpreu 36062 Theorem related to pigeonh...
finixpnum 36063 A finite Cartesian product...
fin2solem 36064 Lemma for ~ fin2so . (Con...
fin2so 36065 Any totally ordered Tarski...
ltflcei 36066 Theorem to move the floor ...
leceifl 36067 Theorem to move the floor ...
sin2h 36068 Half-angle rule for sine. ...
cos2h 36069 Half-angle rule for cosine...
tan2h 36070 Half-angle rule for tangen...
lindsadd 36071 In a vector space, the uni...
lindsdom 36072 A linearly independent set...
lindsenlbs 36073 A maximal linearly indepen...
matunitlindflem1 36074 One direction of ~ matunit...
matunitlindflem2 36075 One direction of ~ matunit...
matunitlindf 36076 A matrix over a field is i...
ptrest 36077 Expressing a restriction o...
ptrecube 36078 Any point in an open set o...
poimirlem1 36079 Lemma for ~ poimir - the v...
poimirlem2 36080 Lemma for ~ poimir - conse...
poimirlem3 36081 Lemma for ~ poimir to add ...
poimirlem4 36082 Lemma for ~ poimir connect...
poimirlem5 36083 Lemma for ~ poimir to esta...
poimirlem6 36084 Lemma for ~ poimir establi...
poimirlem7 36085 Lemma for ~ poimir , simil...
poimirlem8 36086 Lemma for ~ poimir , estab...
poimirlem9 36087 Lemma for ~ poimir , estab...
poimirlem10 36088 Lemma for ~ poimir establi...
poimirlem11 36089 Lemma for ~ poimir connect...
poimirlem12 36090 Lemma for ~ poimir connect...
poimirlem13 36091 Lemma for ~ poimir - for a...
poimirlem14 36092 Lemma for ~ poimir - for a...
poimirlem15 36093 Lemma for ~ poimir , that ...
poimirlem16 36094 Lemma for ~ poimir establi...
poimirlem17 36095 Lemma for ~ poimir establi...
poimirlem18 36096 Lemma for ~ poimir stating...
poimirlem19 36097 Lemma for ~ poimir establi...
poimirlem20 36098 Lemma for ~ poimir establi...
poimirlem21 36099 Lemma for ~ poimir stating...
poimirlem22 36100 Lemma for ~ poimir , that ...
poimirlem23 36101 Lemma for ~ poimir , two w...
poimirlem24 36102 Lemma for ~ poimir , two w...
poimirlem25 36103 Lemma for ~ poimir stating...
poimirlem26 36104 Lemma for ~ poimir showing...
poimirlem27 36105 Lemma for ~ poimir showing...
poimirlem28 36106 Lemma for ~ poimir , a var...
poimirlem29 36107 Lemma for ~ poimir connect...
poimirlem30 36108 Lemma for ~ poimir combini...
poimirlem31 36109 Lemma for ~ poimir , assig...
poimirlem32 36110 Lemma for ~ poimir , combi...
poimir 36111 Poincare-Miranda theorem. ...
broucube 36112 Brouwer - or as Kulpa call...
heicant 36113 Heine-Cantor theorem: a co...
opnmbllem0 36114 Lemma for ~ ismblfin ; cou...
mblfinlem1 36115 Lemma for ~ ismblfin , ord...
mblfinlem2 36116 Lemma for ~ ismblfin , eff...
mblfinlem3 36117 The difference between two...
mblfinlem4 36118 Backward direction of ~ is...
ismblfin 36119 Measurability in terms of ...
ovoliunnfl 36120 ~ ovoliun is incompatible ...
ex-ovoliunnfl 36121 Demonstration of ~ ovoliun...
voliunnfl 36122 ~ voliun is incompatible w...
volsupnfl 36123 ~ volsup is incompatible w...
mbfresfi 36124 Measurability of a piecewi...
mbfposadd 36125 If the sum of two measurab...
cnambfre 36126 A real-valued, a.e. contin...
dvtanlem 36127 Lemma for ~ dvtan - the do...
dvtan 36128 Derivative of tangent. (C...
itg2addnclem 36129 An alternate expression fo...
itg2addnclem2 36130 Lemma for ~ itg2addnc . T...
itg2addnclem3 36131 Lemma incomprehensible in ...
itg2addnc 36132 Alternate proof of ~ itg2a...
itg2gt0cn 36133 ~ itg2gt0 holds on functio...
ibladdnclem 36134 Lemma for ~ ibladdnc ; cf ...
ibladdnc 36135 Choice-free analogue of ~ ...
itgaddnclem1 36136 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 36137 Lemma for ~ itgaddnc ; cf....
itgaddnc 36138 Choice-free analogue of ~ ...
iblsubnc 36139 Choice-free analogue of ~ ...
itgsubnc 36140 Choice-free analogue of ~ ...
iblabsnclem 36141 Lemma for ~ iblabsnc ; cf....
iblabsnc 36142 Choice-free analogue of ~ ...
iblmulc2nc 36143 Choice-free analogue of ~ ...
itgmulc2nclem1 36144 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 36145 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 36146 Choice-free analogue of ~ ...
itgabsnc 36147 Choice-free analogue of ~ ...
itggt0cn 36148 ~ itggt0 holds for continu...
ftc1cnnclem 36149 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 36150 Choice-free proof of ~ ftc...
ftc1anclem1 36151 Lemma for ~ ftc1anc - the ...
ftc1anclem2 36152 Lemma for ~ ftc1anc - rest...
ftc1anclem3 36153 Lemma for ~ ftc1anc - the ...
ftc1anclem4 36154 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 36155 Lemma for ~ ftc1anc , the ...
ftc1anclem6 36156 Lemma for ~ ftc1anc - cons...
ftc1anclem7 36157 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 36158 Lemma for ~ ftc1anc . (Co...
ftc1anc 36159 ~ ftc1a holds for function...
ftc2nc 36160 Choice-free proof of ~ ftc...
asindmre 36161 Real part of domain of dif...
dvasin 36162 Derivative of arcsine. (C...
dvacos 36163 Derivative of arccosine. ...
dvreasin 36164 Real derivative of arcsine...
dvreacos 36165 Real derivative of arccosi...
areacirclem1 36166 Antiderivative of cross-se...
areacirclem2 36167 Endpoint-inclusive continu...
areacirclem3 36168 Integrability of cross-sec...
areacirclem4 36169 Endpoint-inclusive continu...
areacirclem5 36170 Finding the cross-section ...
areacirc 36171 The area of a circle of ra...
unirep 36172 Define a quantity whose de...
cover2 36173 Two ways of expressing the...
cover2g 36174 Two ways of expressing the...
brabg2 36175 Relation by a binary relat...
opelopab3 36176 Ordered pair membership in...
cocanfo 36177 Cancellation of a surjecti...
brresi2 36178 Restriction of a binary re...
fnopabeqd 36179 Equality deduction for fun...
fvopabf4g 36180 Function value of an opera...
eqfnun 36181 Two functions on ` A u. B ...
fnopabco 36182 Composition of a function ...
opropabco 36183 Composition of an operator...
cocnv 36184 Composition with a functio...
f1ocan1fv 36185 Cancel a composition by a ...
f1ocan2fv 36186 Cancel a composition by th...
inixp 36187 Intersection of Cartesian ...
upixp 36188 Universal property of the ...
abrexdom 36189 An indexed set is dominate...
abrexdom2 36190 An indexed set is dominate...
ac6gf 36191 Axiom of Choice. (Contrib...
indexa 36192 If for every element of an...
indexdom 36193 If for every element of an...
frinfm 36194 A subset of a well-founded...
welb 36195 A nonempty subset of a wel...
supex2g 36196 Existence of supremum. (C...
supclt 36197 Closure of supremum. (Con...
supubt 36198 Upper bound property of su...
filbcmb 36199 Combine a finite set of lo...
fzmul 36200 Membership of a product in...
sdclem2 36201 Lemma for ~ sdc . (Contri...
sdclem1 36202 Lemma for ~ sdc . (Contri...
sdc 36203 Strong dependent choice. ...
fdc 36204 Finite version of dependen...
fdc1 36205 Variant of ~ fdc with no s...
seqpo 36206 Two ways to say that a seq...
incsequz 36207 An increasing sequence of ...
incsequz2 36208 An increasing sequence of ...
nnubfi 36209 A bounded above set of pos...
nninfnub 36210 An infinite set of positiv...
subspopn 36211 An open set is open in the...
neificl 36212 Neighborhoods are closed u...
lpss2 36213 Limit points of a subset a...
metf1o 36214 Use a bijection with a met...
blssp 36215 A ball in the subspace met...
mettrifi 36216 Generalized triangle inequ...
lmclim2 36217 A sequence in a metric spa...
geomcau 36218 If the distance between co...
caures 36219 The restriction of a Cauch...
caushft 36220 A shifted Cauchy sequence ...
constcncf 36221 A constant function is a c...
cnres2 36222 The restriction of a conti...
cnresima 36223 A continuous function is c...
cncfres 36224 A continuous function on c...
istotbnd 36228 The predicate "is a totall...
istotbnd2 36229 The predicate "is a totall...
istotbnd3 36230 A metric space is totally ...
totbndmet 36231 The predicate "totally bou...
0totbnd 36232 The metric (there is only ...
sstotbnd2 36233 Condition for a subset of ...
sstotbnd 36234 Condition for a subset of ...
sstotbnd3 36235 Use a net that is not nece...
totbndss 36236 A subset of a totally boun...
equivtotbnd 36237 If the metric ` M ` is "st...
isbnd 36239 The predicate "is a bounde...
bndmet 36240 A bounded metric space is ...
isbndx 36241 A "bounded extended metric...
isbnd2 36242 The predicate "is a bounde...
isbnd3 36243 A metric space is bounded ...
isbnd3b 36244 A metric space is bounded ...
bndss 36245 A subset of a bounded metr...
blbnd 36246 A ball is bounded. (Contr...
ssbnd 36247 A subset of a metric space...
totbndbnd 36248 A totally bounded metric s...
equivbnd 36249 If the metric ` M ` is "st...
bnd2lem 36250 Lemma for ~ equivbnd2 and ...
equivbnd2 36251 If balls are totally bound...
prdsbnd 36252 The product metric over fi...
prdstotbnd 36253 The product metric over fi...
prdsbnd2 36254 If balls are totally bound...
cntotbnd 36255 A subset of the complex nu...
cnpwstotbnd 36256 A subset of ` A ^ I ` , wh...
ismtyval 36259 The set of isometries betw...
isismty 36260 The condition "is an isome...
ismtycnv 36261 The inverse of an isometry...
ismtyima 36262 The image of a ball under ...
ismtyhmeolem 36263 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 36264 An isometry is a homeomorp...
ismtybndlem 36265 Lemma for ~ ismtybnd . (C...
ismtybnd 36266 Isometries preserve bounde...
ismtyres 36267 A restriction of an isomet...
heibor1lem 36268 Lemma for ~ heibor1 . A c...
heibor1 36269 One half of ~ heibor , tha...
heiborlem1 36270 Lemma for ~ heibor . We w...
heiborlem2 36271 Lemma for ~ heibor . Subs...
heiborlem3 36272 Lemma for ~ heibor . Usin...
heiborlem4 36273 Lemma for ~ heibor . Usin...
heiborlem5 36274 Lemma for ~ heibor . The ...
heiborlem6 36275 Lemma for ~ heibor . Sinc...
heiborlem7 36276 Lemma for ~ heibor . Sinc...
heiborlem8 36277 Lemma for ~ heibor . The ...
heiborlem9 36278 Lemma for ~ heibor . Disc...
heiborlem10 36279 Lemma for ~ heibor . The ...
heibor 36280 Generalized Heine-Borel Th...
bfplem1 36281 Lemma for ~ bfp . The seq...
bfplem2 36282 Lemma for ~ bfp . Using t...
bfp 36283 Banach fixed point theorem...
rrnval 36286 The n-dimensional Euclidea...
rrnmval 36287 The value of the Euclidean...
rrnmet 36288 Euclidean space is a metri...
rrndstprj1 36289 The distance between two p...
rrndstprj2 36290 Bound on the distance betw...
rrncmslem 36291 Lemma for ~ rrncms . (Con...
rrncms 36292 Euclidean space is complet...
repwsmet 36293 The supremum metric on ` R...
rrnequiv 36294 The supremum metric on ` R...
rrntotbnd 36295 A set in Euclidean space i...
rrnheibor 36296 Heine-Borel theorem for Eu...
ismrer1 36297 An isometry between ` RR `...
reheibor 36298 Heine-Borel theorem for re...
iccbnd 36299 A closed interval in ` RR ...
icccmpALT 36300 A closed interval in ` RR ...
isass 36305 The predicate "is an assoc...
isexid 36306 The predicate ` G ` has a ...
ismgmOLD 36309 Obsolete version of ~ ismg...
clmgmOLD 36310 Obsolete version of ~ mgmc...
opidonOLD 36311 Obsolete version of ~ mndp...
rngopidOLD 36312 Obsolete version of ~ mndp...
opidon2OLD 36313 Obsolete version of ~ mndp...
isexid2 36314 If ` G e. ( Magma i^i ExId...
exidu1 36315 Uniqueness of the left and...
idrval 36316 The value of the identity ...
iorlid 36317 A magma right and left ide...
cmpidelt 36318 A magma right and left ide...
smgrpismgmOLD 36321 Obsolete version of ~ sgrp...
issmgrpOLD 36322 Obsolete version of ~ issg...
smgrpmgm 36323 A semigroup is a magma. (...
smgrpassOLD 36324 Obsolete version of ~ sgrp...
mndoissmgrpOLD 36327 Obsolete version of ~ mnds...
mndoisexid 36328 A monoid has an identity e...
mndoismgmOLD 36329 Obsolete version of ~ mndm...
mndomgmid 36330 A monoid is a magma with a...
ismndo 36331 The predicate "is a monoid...
ismndo1 36332 The predicate "is a monoid...
ismndo2 36333 The predicate "is a monoid...
grpomndo 36334 A group is a monoid. (Con...
exidcl 36335 Closure of the binary oper...
exidreslem 36336 Lemma for ~ exidres and ~ ...
exidres 36337 The restriction of a binar...
exidresid 36338 The restriction of a binar...
ablo4pnp 36339 A commutative/associative ...
grpoeqdivid 36340 Two group elements are equ...
grposnOLD 36341 The group operation for th...
elghomlem1OLD 36344 Obsolete as of 15-Mar-2020...
elghomlem2OLD 36345 Obsolete as of 15-Mar-2020...
elghomOLD 36346 Obsolete version of ~ isgh...
ghomlinOLD 36347 Obsolete version of ~ ghml...
ghomidOLD 36348 Obsolete version of ~ ghmi...
ghomf 36349 Mapping property of a grou...
ghomco 36350 The composition of two gro...
ghomdiv 36351 Group homomorphisms preser...
grpokerinj 36352 A group homomorphism is in...
relrngo 36355 The class of all unital ri...
isrngo 36356 The predicate "is a (unita...
isrngod 36357 Conditions that determine ...
rngoi 36358 The properties of a unital...
rngosm 36359 Functionality of the multi...
rngocl 36360 Closure of the multiplicat...
rngoid 36361 The multiplication operati...
rngoideu 36362 The unity element of a rin...
rngodi 36363 Distributive law for the m...
rngodir 36364 Distributive law for the m...
rngoass 36365 Associative law for the mu...
rngo2 36366 A ring element plus itself...
rngoablo 36367 A ring's addition operatio...
rngoablo2 36368 In a unital ring the addit...
rngogrpo 36369 A ring's addition operatio...
rngone0 36370 The base set of a ring is ...
rngogcl 36371 Closure law for the additi...
rngocom 36372 The addition operation of ...
rngoaass 36373 The addition operation of ...
rngoa32 36374 The addition operation of ...
rngoa4 36375 Rearrangement of 4 terms i...
rngorcan 36376 Right cancellation law for...
rngolcan 36377 Left cancellation law for ...
rngo0cl 36378 A ring has an additive ide...
rngo0rid 36379 The additive identity of a...
rngo0lid 36380 The additive identity of a...
rngolz 36381 The zero of a unital ring ...
rngorz 36382 The zero of a unital ring ...
rngosn3 36383 Obsolete as of 25-Jan-2020...
rngosn4 36384 Obsolete as of 25-Jan-2020...
rngosn6 36385 Obsolete as of 25-Jan-2020...
rngonegcl 36386 A ring is closed under neg...
rngoaddneg1 36387 Adding the negative in a r...
rngoaddneg2 36388 Adding the negative in a r...
rngosub 36389 Subtraction in a ring, in ...
rngmgmbs4 36390 The range of an internal o...
rngodm1dm2 36391 In a unital ring the domai...
rngorn1 36392 In a unital ring the range...
rngorn1eq 36393 In a unital ring the range...
rngomndo 36394 In a unital ring the multi...
rngoidmlem 36395 The unity element of a rin...
rngolidm 36396 The unity element of a rin...
rngoridm 36397 The unity element of a rin...
rngo1cl 36398 The unity element of a rin...
rngoueqz 36399 Obsolete as of 23-Jan-2020...
rngonegmn1l 36400 Negation in a ring is the ...
rngonegmn1r 36401 Negation in a ring is the ...
rngoneglmul 36402 Negation of a product in a...
rngonegrmul 36403 Negation of a product in a...
rngosubdi 36404 Ring multiplication distri...
rngosubdir 36405 Ring multiplication distri...
zerdivemp1x 36406 In a unital ring a left in...
isdivrngo 36409 The predicate "is a divisi...
drngoi 36410 The properties of a divisi...
gidsn 36411 Obsolete as of 23-Jan-2020...
zrdivrng 36412 The zero ring is not a div...
dvrunz 36413 In a division ring the rin...
isgrpda 36414 Properties that determine ...
isdrngo1 36415 The predicate "is a divisi...
divrngcl 36416 The product of two nonzero...
isdrngo2 36417 A division ring is a ring ...
isdrngo3 36418 A division ring is a ring ...
rngohomval 36423 The set of ring homomorphi...
isrngohom 36424 The predicate "is a ring h...
rngohomf 36425 A ring homomorphism is a f...
rngohomcl 36426 Closure law for a ring hom...
rngohom1 36427 A ring homomorphism preser...
rngohomadd 36428 Ring homomorphisms preserv...
rngohommul 36429 Ring homomorphisms preserv...
rngogrphom 36430 A ring homomorphism is a g...
rngohom0 36431 A ring homomorphism preser...
rngohomsub 36432 Ring homomorphisms preserv...
rngohomco 36433 The composition of two rin...
rngokerinj 36434 A ring homomorphism is inj...
rngoisoval 36436 The set of ring isomorphis...
isrngoiso 36437 The predicate "is a ring i...
rngoiso1o 36438 A ring isomorphism is a bi...
rngoisohom 36439 A ring isomorphism is a ri...
rngoisocnv 36440 The inverse of a ring isom...
rngoisoco 36441 The composition of two rin...
isriscg 36443 The ring isomorphism relat...
isrisc 36444 The ring isomorphism relat...
risc 36445 The ring isomorphism relat...
risci 36446 Determine that two rings a...
riscer 36447 Ring isomorphism is an equ...
iscom2 36454 A device to add commutativ...
iscrngo 36455 The predicate "is a commut...
iscrngo2 36456 The predicate "is a commut...
iscringd 36457 Conditions that determine ...
flddivrng 36458 A field is a division ring...
crngorngo 36459 A commutative ring is a ri...
crngocom 36460 The multiplication operati...
crngm23 36461 Commutative/associative la...
crngm4 36462 Commutative/associative la...
fldcrngo 36463 A field is a commutative r...
isfld2 36464 The predicate "is a field"...
crngohomfo 36465 The image of a homomorphis...
idlval 36472 The class of ideals of a r...
isidl 36473 The predicate "is an ideal...
isidlc 36474 The predicate "is an ideal...
idlss 36475 An ideal of ` R ` is a sub...
idlcl 36476 An element of an ideal is ...
idl0cl 36477 An ideal contains ` 0 ` . ...
idladdcl 36478 An ideal is closed under a...
idllmulcl 36479 An ideal is closed under m...
idlrmulcl 36480 An ideal is closed under m...
idlnegcl 36481 An ideal is closed under n...
idlsubcl 36482 An ideal is closed under s...
rngoidl 36483 A ring ` R ` is an ` R ` i...
0idl 36484 The set containing only ` ...
1idl 36485 Two ways of expressing the...
0rngo 36486 In a ring, ` 0 = 1 ` iff t...
divrngidl 36487 The only ideals in a divis...
intidl 36488 The intersection of a none...
inidl 36489 The intersection of two id...
unichnidl 36490 The union of a nonempty ch...
keridl 36491 The kernel of a ring homom...
pridlval 36492 The class of prime ideals ...
ispridl 36493 The predicate "is a prime ...
pridlidl 36494 A prime ideal is an ideal....
pridlnr 36495 A prime ideal is a proper ...
pridl 36496 The main property of a pri...
ispridl2 36497 A condition that shows an ...
maxidlval 36498 The set of maximal ideals ...
ismaxidl 36499 The predicate "is a maxima...
maxidlidl 36500 A maximal ideal is an idea...
maxidlnr 36501 A maximal ideal is proper....
maxidlmax 36502 A maximal ideal is a maxim...
maxidln1 36503 One is not contained in an...
maxidln0 36504 A ring with a maximal idea...
isprrngo 36509 The predicate "is a prime ...
prrngorngo 36510 A prime ring is a ring. (...
smprngopr 36511 A simple ring (one whose o...
divrngpr 36512 A division ring is a prime...
isdmn 36513 The predicate "is a domain...
isdmn2 36514 The predicate "is a domain...
dmncrng 36515 A domain is a commutative ...
dmnrngo 36516 A domain is a ring. (Cont...
flddmn 36517 A field is a domain. (Con...
igenval 36520 The ideal generated by a s...
igenss 36521 A set is a subset of the i...
igenidl 36522 The ideal generated by a s...
igenmin 36523 The ideal generated by a s...
igenidl2 36524 The ideal generated by an ...
igenval2 36525 The ideal generated by a s...
prnc 36526 A principal ideal (an idea...
isfldidl 36527 Determine if a ring is a f...
isfldidl2 36528 Determine if a ring is a f...
ispridlc 36529 The predicate "is a prime ...
pridlc 36530 Property of a prime ideal ...
pridlc2 36531 Property of a prime ideal ...
pridlc3 36532 Property of a prime ideal ...
isdmn3 36533 The predicate "is a domain...
dmnnzd 36534 A domain has no zero-divis...
dmncan1 36535 Cancellation law for domai...
dmncan2 36536 Cancellation law for domai...
efald2 36537 A proof by contradiction. ...
notbinot1 36538 Simplification rule of neg...
bicontr 36539 Biconditional of its own n...
impor 36540 An equivalent formula for ...
orfa 36541 The falsum ` F. ` can be r...
notbinot2 36542 Commutation rule between n...
biimpor 36543 A rewriting rule for bicon...
orfa1 36544 Add a contradicting disjun...
orfa2 36545 Remove a contradicting dis...
bifald 36546 Infer the equivalence to a...
orsild 36547 A lemma for not-or-not eli...
orsird 36548 A lemma for not-or-not eli...
cnf1dd 36549 A lemma for Conjunctive No...
cnf2dd 36550 A lemma for Conjunctive No...
cnfn1dd 36551 A lemma for Conjunctive No...
cnfn2dd 36552 A lemma for Conjunctive No...
or32dd 36553 A rearrangement of disjunc...
notornotel1 36554 A lemma for not-or-not eli...
notornotel2 36555 A lemma for not-or-not eli...
contrd 36556 A proof by contradiction, ...
an12i 36557 An inference from commutin...
exmid2 36558 An excluded middle law. (...
selconj 36559 An inference for selecting...
truconj 36560 Add true as a conjunct. (...
orel 36561 An inference for disjuncti...
negel 36562 An inference for negation ...
botel 36563 An inference for bottom el...
tradd 36564 Add top ad a conjunct. (C...
gm-sbtru 36565 Substitution does not chan...
sbfal 36566 Substitution does not chan...
sbcani 36567 Distribution of class subs...
sbcori 36568 Distribution of class subs...
sbcimi 36569 Distribution of class subs...
sbcni 36570 Move class substitution in...
sbali 36571 Discard class substitution...
sbexi 36572 Discard class substitution...
sbcalf 36573 Move universal quantifier ...
sbcexf 36574 Move existential quantifie...
sbcalfi 36575 Move universal quantifier ...
sbcexfi 36576 Move existential quantifie...
spsbcdi 36577 A lemma for eliminating a ...
alrimii 36578 A lemma for introducing a ...
spesbcdi 36579 A lemma for introducing an...
exlimddvf 36580 A lemma for eliminating an...
exlimddvfi 36581 A lemma for eliminating an...
sbceq1ddi 36582 A lemma for eliminating in...
sbccom2lem 36583 Lemma for ~ sbccom2 . (Co...
sbccom2 36584 Commutative law for double...
sbccom2f 36585 Commutative law for double...
sbccom2fi 36586 Commutative law for double...
csbcom2fi 36587 Commutative law for double...
fald 36588 Refutation of falsity, in ...
tsim1 36589 A Tseitin axiom for logica...
tsim2 36590 A Tseitin axiom for logica...
tsim3 36591 A Tseitin axiom for logica...
tsbi1 36592 A Tseitin axiom for logica...
tsbi2 36593 A Tseitin axiom for logica...
tsbi3 36594 A Tseitin axiom for logica...
tsbi4 36595 A Tseitin axiom for logica...
tsxo1 36596 A Tseitin axiom for logica...
tsxo2 36597 A Tseitin axiom for logica...
tsxo3 36598 A Tseitin axiom for logica...
tsxo4 36599 A Tseitin axiom for logica...
tsan1 36600 A Tseitin axiom for logica...
tsan2 36601 A Tseitin axiom for logica...
tsan3 36602 A Tseitin axiom for logica...
tsna1 36603 A Tseitin axiom for logica...
tsna2 36604 A Tseitin axiom for logica...
tsna3 36605 A Tseitin axiom for logica...
tsor1 36606 A Tseitin axiom for logica...
tsor2 36607 A Tseitin axiom for logica...
tsor3 36608 A Tseitin axiom for logica...
ts3an1 36609 A Tseitin axiom for triple...
ts3an2 36610 A Tseitin axiom for triple...
ts3an3 36611 A Tseitin axiom for triple...
ts3or1 36612 A Tseitin axiom for triple...
ts3or2 36613 A Tseitin axiom for triple...
ts3or3 36614 A Tseitin axiom for triple...
iuneq2f 36615 Equality deduction for ind...
rabeq12f 36616 Equality deduction for res...
csbeq12 36617 Equality deduction for sub...
sbeqi 36618 Equality deduction for sub...
ralbi12f 36619 Equality deduction for res...
oprabbi 36620 Equality deduction for cla...
mpobi123f 36621 Equality deduction for map...
iuneq12f 36622 Equality deduction for ind...
iineq12f 36623 Equality deduction for ind...
opabbi 36624 Equality deduction for cla...
mptbi12f 36625 Equality deduction for map...
orcomdd 36626 Commutativity of logic dis...
scottexf 36627 A version of ~ scottex wit...
scott0f 36628 A version of ~ scott0 with...
scottn0f 36629 A version of ~ scott0f wit...
ac6s3f 36630 Generalization of the Axio...
ac6s6 36631 Generalization of the Axio...
ac6s6f 36632 Generalization of the Axio...
el2v1 36676 New way ( ~ elv , and the ...
el3v 36677 New way ( ~ elv , and the ...
el3v1 36678 New way ( ~ elv , and the ...
el3v2 36679 New way ( ~ elv , and the ...
el3v3 36680 New way ( ~ elv , and the ...
el3v12 36681 New way ( ~ elv , and the ...
el3v13 36682 New way ( ~ elv , and the ...
el3v23 36683 New way ( ~ elv , and the ...
anan 36684 Multiple commutations in c...
triantru3 36685 A wff is equivalent to its...
bianbi 36686 Exchanging conjunction in ...
bianim 36687 Exchanging conjunction in ...
biorfd 36688 A wff is equivalent to its...
eqbrtr 36689 Substitution of equal clas...
eqbrb 36690 Substitution of equal clas...
eqeltr 36691 Substitution of equal clas...
eqelb 36692 Substitution of equal clas...
eqeqan2d 36693 Implication of introducing...
suceqsneq 36694 One-to-one relationship be...
sucdifsn2 36695 Absorption of union with a...
sucdifsn 36696 The difference between the...
disjresin 36697 The restriction to a disjo...
disjresdisj 36698 The intersection of restri...
disjresdif 36699 The difference between res...
disjresundif 36700 Lemma for ~ ressucdifsn2 ....
ressucdifsn2 36701 The difference between res...
ressucdifsn 36702 The difference between res...
inres2 36703 Two ways of expressing the...
coideq 36704 Equality theorem for compo...
nexmo1 36705 If there is no case where ...
ralin 36706 Restricted universal quant...
r2alan 36707 Double restricted universa...
3ralbii 36708 Inference adding three res...
ssrabi 36709 Inference of restricted ab...
rabbieq 36710 Equivalent wff's correspon...
rabimbieq 36711 Restricted equivalent wff'...
abeqin 36712 Intersection with class ab...
abeqinbi 36713 Intersection with class ab...
rabeqel 36714 Class element of a restric...
eqrelf 36715 The equality connective be...
br1cnvinxp 36716 Binary relation on the con...
releleccnv 36717 Elementhood in a converse ...
releccnveq 36718 Equality of converse ` R `...
opelvvdif 36719 Negated elementhood of ord...
vvdifopab 36720 Ordered-pair class abstrac...
brvdif 36721 Binary relation with unive...
brvdif2 36722 Binary relation with unive...
brvvdif 36723 Binary relation with the c...
brvbrvvdif 36724 Binary relation with the c...
brcnvep 36725 The converse of the binary...
elecALTV 36726 Elementhood in the ` R ` -...
brcnvepres 36727 Restricted converse epsilo...
brres2 36728 Binary relation on a restr...
br1cnvres 36729 Binary relation on the con...
eldmres 36730 Elementhood in the domain ...
elrnres 36731 Element of the range of a ...
eldmressnALTV 36732 Element of the domain of a...
elrnressn 36733 Element of the range of a ...
eldm4 36734 Elementhood in a domain. ...
eldmres2 36735 Elementhood in the domain ...
eceq1i 36736 Equality theorem for ` C `...
elecres 36737 Elementhood in the restric...
ecres 36738 Restricted coset of ` B ` ...
ecres2 36739 The restricted coset of ` ...
eccnvepres 36740 Restricted converse epsilo...
eleccnvep 36741 Elementhood in the convers...
eccnvep 36742 The converse epsilon coset...
extep 36743 Property of epsilon relati...
disjeccnvep 36744 Property of the epsilon re...
eccnvepres2 36745 The restricted converse ep...
eccnvepres3 36746 Condition for a restricted...
eldmqsres 36747 Elementhood in a restricte...
eldmqsres2 36748 Elementhood in a restricte...
qsss1 36749 Subclass theorem for quoti...
qseq1i 36750 Equality theorem for quoti...
qseq1d 36751 Equality theorem for quoti...
brinxprnres 36752 Binary relation on a restr...
inxprnres 36753 Restriction of a class as ...
dfres4 36754 Alternate definition of th...
exan3 36755 Equivalent expressions wit...
exanres 36756 Equivalent expressions wit...
exanres3 36757 Equivalent expressions wit...
exanres2 36758 Equivalent expressions wit...
cnvepres 36759 Restricted converse epsilo...
eqrel2 36760 Equality of relations. (C...
rncnv 36761 Range of converse is the d...
dfdm6 36762 Alternate definition of do...
dfrn6 36763 Alternate definition of ra...
rncnvepres 36764 The range of the restricte...
dmecd 36765 Equality of the coset of `...
dmec2d 36766 Equality of the coset of `...
brid 36767 Property of the identity b...
ideq2 36768 For sets, the identity bin...
idresssidinxp 36769 Condition for the identity...
idreseqidinxp 36770 Condition for the identity...
extid 36771 Property of identity relat...
inxpss 36772 Two ways to say that an in...
idinxpss 36773 Two ways to say that an in...
ref5 36774 Two ways to say that an in...
inxpss3 36775 Two ways to say that an in...
inxpss2 36776 Two ways to say that inter...
inxpssidinxp 36777 Two ways to say that inter...
idinxpssinxp 36778 Two ways to say that inter...
idinxpssinxp2 36779 Identity intersection with...
idinxpssinxp3 36780 Identity intersection with...
idinxpssinxp4 36781 Identity intersection with...
relcnveq3 36782 Two ways of saying a relat...
relcnveq 36783 Two ways of saying a relat...
relcnveq2 36784 Two ways of saying a relat...
relcnveq4 36785 Two ways of saying a relat...
qsresid 36786 Simplification of a specia...
n0elqs 36787 Two ways of expressing tha...
n0elqs2 36788 Two ways of expressing tha...
ecex2 36789 Condition for a coset to b...
uniqsALTV 36790 The union of a quotient se...
imaexALTV 36791 Existence of an image of a...
ecexALTV 36792 Existence of a coset, like...
rnresequniqs 36793 The range of a restriction...
n0el2 36794 Two ways of expressing tha...
cnvepresex 36795 Sethood condition for the ...
eccnvepex 36796 The converse epsilon coset...
cnvepimaex 36797 The image of converse epsi...
cnvepima 36798 The image of converse epsi...
inex3 36799 Sufficient condition for t...
inxpex 36800 Sufficient condition for a...
eqres 36801 Converting a class constan...
brrabga 36802 The law of concretion for ...
brcnvrabga 36803 The law of concretion for ...
opideq 36804 Equality conditions for or...
iss2 36805 A subclass of the identity...
eldmcnv 36806 Elementhood in a domain of...
dfrel5 36807 Alternate definition of th...
dfrel6 36808 Alternate definition of th...
cnvresrn 36809 Converse restricted to ran...
relssinxpdmrn 36810 Subset of restriction, spe...
cnvref4 36811 Two ways to say that a rel...
cnvref5 36812 Two ways to say that a rel...
ecin0 36813 Two ways of saying that th...
ecinn0 36814 Two ways of saying that th...
ineleq 36815 Equivalence of restricted ...
inecmo 36816 Equivalence of a double re...
inecmo2 36817 Equivalence of a double re...
ineccnvmo 36818 Equivalence of a double re...
alrmomorn 36819 Equivalence of an "at most...
alrmomodm 36820 Equivalence of an "at most...
ineccnvmo2 36821 Equivalence of a double un...
inecmo3 36822 Equivalence of a double un...
moeu2 36823 Uniqueness is equivalent t...
mopickr 36824 "At most one" picks a vari...
moantr 36825 Sufficient condition for t...
brabidgaw 36826 The law of concretion for ...
brabidga 36827 The law of concretion for ...
inxp2 36828 Intersection with a Cartes...
opabf 36829 A class abstraction of a c...
ec0 36830 The empty-coset of a class...
0qs 36831 Quotient set with the empt...
brcnvin 36832 Intersection with a conver...
xrnss3v 36834 A range Cartesian product ...
xrnrel 36835 A range Cartesian product ...
brxrn 36836 Characterize a ternary rel...
brxrn2 36837 A characterization of the ...
dfxrn2 36838 Alternate definition of th...
xrneq1 36839 Equality theorem for the r...
xrneq1i 36840 Equality theorem for the r...
xrneq1d 36841 Equality theorem for the r...
xrneq2 36842 Equality theorem for the r...
xrneq2i 36843 Equality theorem for the r...
xrneq2d 36844 Equality theorem for the r...
xrneq12 36845 Equality theorem for the r...
xrneq12i 36846 Equality theorem for the r...
xrneq12d 36847 Equality theorem for the r...
elecxrn 36848 Elementhood in the ` ( R |...
ecxrn 36849 The ` ( R |X. S ) ` -coset...
disjressuc2 36850 Double restricted quantifi...
disjecxrn 36851 Two ways of saying that ` ...
disjecxrncnvep 36852 Two ways of saying that co...
disjsuc2 36853 Double restricted quantifi...
xrninxp 36854 Intersection of a range Ca...
xrninxp2 36855 Intersection of a range Ca...
xrninxpex 36856 Sufficient condition for t...
inxpxrn 36857 Two ways to express the in...
br1cnvxrn2 36858 The converse of a binary r...
elec1cnvxrn2 36859 Elementhood in the convers...
rnxrn 36860 Range of the range Cartesi...
rnxrnres 36861 Range of a range Cartesian...
rnxrncnvepres 36862 Range of a range Cartesian...
rnxrnidres 36863 Range of a range Cartesian...
xrnres 36864 Two ways to express restri...
xrnres2 36865 Two ways to express restri...
xrnres3 36866 Two ways to express restri...
xrnres4 36867 Two ways to express restri...
xrnresex 36868 Sufficient condition for a...
xrnidresex 36869 Sufficient condition for a...
xrncnvepresex 36870 Sufficient condition for a...
brin2 36871 Binary relation on an inte...
brin3 36872 Binary relation on an inte...
dfcoss2 36875 Alternate definition of th...
dfcoss3 36876 Alternate definition of th...
dfcoss4 36877 Alternate definition of th...
cosscnv 36878 Class of cosets by the con...
coss1cnvres 36879 Class of cosets by the con...
coss2cnvepres 36880 Special case of ~ coss1cnv...
cossex 36881 If ` A ` is a set then the...
cosscnvex 36882 If ` A ` is a set then the...
1cosscnvepresex 36883 Sufficient condition for a...
1cossxrncnvepresex 36884 Sufficient condition for a...
relcoss 36885 Cosets by ` R ` is a relat...
relcoels 36886 Coelements on ` A ` is a r...
cossss 36887 Subclass theorem for the c...
cosseq 36888 Equality theorem for the c...
cosseqi 36889 Equality theorem for the c...
cosseqd 36890 Equality theorem for the c...
1cossres 36891 The class of cosets by a r...
dfcoels 36892 Alternate definition of th...
brcoss 36893 ` A ` and ` B ` are cosets...
brcoss2 36894 Alternate form of the ` A ...
brcoss3 36895 Alternate form of the ` A ...
brcosscnvcoss 36896 For sets, the ` A ` and ` ...
brcoels 36897 ` B ` and ` C ` are coelem...
cocossss 36898 Two ways of saying that co...
cnvcosseq 36899 The converse of cosets by ...
br2coss 36900 Cosets by ` ,~ R ` binary ...
br1cossres 36901 ` B ` and ` C ` are cosets...
br1cossres2 36902 ` B ` and ` C ` are cosets...
brressn 36903 Binary relation on a restr...
ressn2 36904 A class ' R ' restricted t...
refressn 36905 Any class ' R ' restricted...
antisymressn 36906 Every class ' R ' restrict...
trressn 36907 Any class ' R ' restricted...
relbrcoss 36908 ` A ` and ` B ` are cosets...
br1cossinres 36909 ` B ` and ` C ` are cosets...
br1cossxrnres 36910 ` <. B , C >. ` and ` <. D...
br1cossinidres 36911 ` B ` and ` C ` are cosets...
br1cossincnvepres 36912 ` B ` and ` C ` are cosets...
br1cossxrnidres 36913 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 36914 ` <. B , C >. ` and ` <. D...
dmcoss3 36915 The domain of cosets is th...
dmcoss2 36916 The domain of cosets is th...
rncossdmcoss 36917 The range of cosets is the...
dm1cosscnvepres 36918 The domain of cosets of th...
dmcoels 36919 The domain of coelements i...
eldmcoss 36920 Elementhood in the domain ...
eldmcoss2 36921 Elementhood in the domain ...
eldm1cossres 36922 Elementhood in the domain ...
eldm1cossres2 36923 Elementhood in the domain ...
refrelcosslem 36924 Lemma for the left side of...
refrelcoss3 36925 The class of cosets by ` R...
refrelcoss2 36926 The class of cosets by ` R...
symrelcoss3 36927 The class of cosets by ` R...
symrelcoss2 36928 The class of cosets by ` R...
cossssid 36929 Equivalent expressions for...
cossssid2 36930 Equivalent expressions for...
cossssid3 36931 Equivalent expressions for...
cossssid4 36932 Equivalent expressions for...
cossssid5 36933 Equivalent expressions for...
brcosscnv 36934 ` A ` and ` B ` are cosets...
brcosscnv2 36935 ` A ` and ` B ` are cosets...
br1cosscnvxrn 36936 ` A ` and ` B ` are cosets...
1cosscnvxrn 36937 Cosets by the converse ran...
cosscnvssid3 36938 Equivalent expressions for...
cosscnvssid4 36939 Equivalent expressions for...
cosscnvssid5 36940 Equivalent expressions for...
coss0 36941 Cosets by the empty set ar...
cossid 36942 Cosets by the identity rel...
cosscnvid 36943 Cosets by the converse ide...
trcoss 36944 Sufficient condition for t...
eleccossin 36945 Two ways of saying that th...
trcoss2 36946 Equivalent expressions for...
elrels2 36948 The element of the relatio...
elrelsrel 36949 The element of the relatio...
elrelsrelim 36950 The element of the relatio...
elrels5 36951 Equivalent expressions for...
elrels6 36952 Equivalent expressions for...
elrelscnveq3 36953 Two ways of saying a relat...
elrelscnveq 36954 Two ways of saying a relat...
elrelscnveq2 36955 Two ways of saying a relat...
elrelscnveq4 36956 Two ways of saying a relat...
cnvelrels 36957 The converse of a set is a...
cosselrels 36958 Cosets of sets are element...
cosscnvelrels 36959 Cosets of converse sets ar...
dfssr2 36961 Alternate definition of th...
relssr 36962 The subset relation is a r...
brssr 36963 The subset relation and su...
brssrid 36964 Any set is a subset of its...
issetssr 36965 Two ways of expressing set...
brssrres 36966 Restricted subset binary r...
br1cnvssrres 36967 Restricted converse subset...
brcnvssr 36968 The converse of a subset r...
brcnvssrid 36969 Any set is a converse subs...
br1cossxrncnvssrres 36970 ` <. B , C >. ` and ` <. D...
extssr 36971 Property of subset relatio...
dfrefrels2 36975 Alternate definition of th...
dfrefrels3 36976 Alternate definition of th...
dfrefrel2 36977 Alternate definition of th...
dfrefrel3 36978 Alternate definition of th...
dfrefrel5 36979 Alternate definition of th...
elrefrels2 36980 Element of the class of re...
elrefrels3 36981 Element of the class of re...
elrefrelsrel 36982 For sets, being an element...
refreleq 36983 Equality theorem for refle...
refrelid 36984 Identity relation is refle...
refrelcoss 36985 The class of cosets by ` R...
refrelressn 36986 Any class ' R ' restricted...
dfcnvrefrels2 36990 Alternate definition of th...
dfcnvrefrels3 36991 Alternate definition of th...
dfcnvrefrel2 36992 Alternate definition of th...
dfcnvrefrel3 36993 Alternate definition of th...
dfcnvrefrel4 36994 Alternate definition of th...
dfcnvrefrel5 36995 Alternate definition of th...
elcnvrefrels2 36996 Element of the class of co...
elcnvrefrels3 36997 Element of the class of co...
elcnvrefrelsrel 36998 For sets, being an element...
cnvrefrelcoss2 36999 Necessary and sufficient c...
cosselcnvrefrels2 37000 Necessary and sufficient c...
cosselcnvrefrels3 37001 Necessary and sufficient c...
cosselcnvrefrels4 37002 Necessary and sufficient c...
cosselcnvrefrels5 37003 Necessary and sufficient c...
dfsymrels2 37007 Alternate definition of th...
dfsymrels3 37008 Alternate definition of th...
dfsymrels4 37009 Alternate definition of th...
dfsymrels5 37010 Alternate definition of th...
dfsymrel2 37011 Alternate definition of th...
dfsymrel3 37012 Alternate definition of th...
dfsymrel4 37013 Alternate definition of th...
dfsymrel5 37014 Alternate definition of th...
elsymrels2 37015 Element of the class of sy...
elsymrels3 37016 Element of the class of sy...
elsymrels4 37017 Element of the class of sy...
elsymrels5 37018 Element of the class of sy...
elsymrelsrel 37019 For sets, being an element...
symreleq 37020 Equality theorem for symme...
symrelim 37021 Symmetric relation implies...
symrelcoss 37022 The class of cosets by ` R...
idsymrel 37023 The identity relation is s...
epnsymrel 37024 The membership (epsilon) r...
symrefref2 37025 Symmetry is a sufficient c...
symrefref3 37026 Symmetry is a sufficient c...
refsymrels2 37027 Elements of the class of r...
refsymrels3 37028 Elements of the class of r...
refsymrel2 37029 A relation which is reflex...
refsymrel3 37030 A relation which is reflex...
elrefsymrels2 37031 Elements of the class of r...
elrefsymrels3 37032 Elements of the class of r...
elrefsymrelsrel 37033 For sets, being an element...
dftrrels2 37037 Alternate definition of th...
dftrrels3 37038 Alternate definition of th...
dftrrel2 37039 Alternate definition of th...
dftrrel3 37040 Alternate definition of th...
eltrrels2 37041 Element of the class of tr...
eltrrels3 37042 Element of the class of tr...
eltrrelsrel 37043 For sets, being an element...
trreleq 37044 Equality theorem for the t...
trrelressn 37045 Any class ' R ' restricted...
dfeqvrels2 37050 Alternate definition of th...
dfeqvrels3 37051 Alternate definition of th...
dfeqvrel2 37052 Alternate definition of th...
dfeqvrel3 37053 Alternate definition of th...
eleqvrels2 37054 Element of the class of eq...
eleqvrels3 37055 Element of the class of eq...
eleqvrelsrel 37056 For sets, being an element...
elcoeleqvrels 37057 Elementhood in the coeleme...
elcoeleqvrelsrel 37058 For sets, being an element...
eqvrelrel 37059 An equivalence relation is...
eqvrelrefrel 37060 An equivalence relation is...
eqvrelsymrel 37061 An equivalence relation is...
eqvreltrrel 37062 An equivalence relation is...
eqvrelim 37063 Equivalence relation impli...
eqvreleq 37064 Equality theorem for equiv...
eqvreleqi 37065 Equality theorem for equiv...
eqvreleqd 37066 Equality theorem for equiv...
eqvrelsym 37067 An equivalence relation is...
eqvrelsymb 37068 An equivalence relation is...
eqvreltr 37069 An equivalence relation is...
eqvreltrd 37070 A transitivity relation fo...
eqvreltr4d 37071 A transitivity relation fo...
eqvrelref 37072 An equivalence relation is...
eqvrelth 37073 Basic property of equivale...
eqvrelcl 37074 Elementhood in the field o...
eqvrelthi 37075 Basic property of equivale...
eqvreldisj 37076 Equivalence classes do not...
qsdisjALTV 37077 Elements of a quotient set...
eqvrelqsel 37078 If an element of a quotien...
eqvrelcoss 37079 Two ways to express equiva...
eqvrelcoss3 37080 Two ways to express equiva...
eqvrelcoss2 37081 Two ways to express equiva...
eqvrelcoss4 37082 Two ways to express equiva...
dfcoeleqvrels 37083 Alternate definition of th...
dfcoeleqvrel 37084 Alternate definition of th...
brredunds 37088 Binary relation on the cla...
brredundsredund 37089 For sets, binary relation ...
redundss3 37090 Implication of redundancy ...
redundeq1 37091 Equivalence of redundancy ...
redundpim3 37092 Implication of redundancy ...
redundpbi1 37093 Equivalence of redundancy ...
refrelsredund4 37094 The naive version of the c...
refrelsredund2 37095 The naive version of the c...
refrelsredund3 37096 The naive version of the c...
refrelredund4 37097 The naive version of the d...
refrelredund2 37098 The naive version of the d...
refrelredund3 37099 The naive version of the d...
dmqseq 37102 Equality theorem for domai...
dmqseqi 37103 Equality theorem for domai...
dmqseqd 37104 Equality theorem for domai...
dmqseqeq1 37105 Equality theorem for domai...
dmqseqeq1i 37106 Equality theorem for domai...
dmqseqeq1d 37107 Equality theorem for domai...
brdmqss 37108 The domain quotient binary...
brdmqssqs 37109 If ` A ` and ` R ` are set...
n0eldmqs 37110 The empty set is not an el...
n0eldmqseq 37111 The empty set is not an el...
n0elim 37112 Implication of that the em...
n0el3 37113 Two ways of expressing tha...
cnvepresdmqss 37114 The domain quotient binary...
cnvepresdmqs 37115 The domain quotient predic...
unidmqs 37116 The range of a relation is...
unidmqseq 37117 The union of the domain qu...
dmqseqim 37118 If the domain quotient of ...
dmqseqim2 37119 Lemma for ~ erimeq2 . (Co...
releldmqs 37120 Elementhood in the domain ...
eldmqs1cossres 37121 Elementhood in the domain ...
releldmqscoss 37122 Elementhood in the domain ...
dmqscoelseq 37123 Two ways to express the eq...
dmqs1cosscnvepreseq 37124 Two ways to express the eq...
brers 37129 Binary equivalence relatio...
dferALTV2 37130 Equivalence relation with ...
erALTVeq1 37131 Equality theorem for equiv...
erALTVeq1i 37132 Equality theorem for equiv...
erALTVeq1d 37133 Equality theorem for equiv...
dfcomember 37134 Alternate definition of th...
dfcomember2 37135 Alternate definition of th...
dfcomember3 37136 Alternate definition of th...
eqvreldmqs 37137 Two ways to express comemb...
eqvreldmqs2 37138 Two ways to express comemb...
brerser 37139 Binary equivalence relatio...
erimeq2 37140 Equivalence relation on it...
erimeq 37141 Equivalence relation on it...
dffunsALTV 37145 Alternate definition of th...
dffunsALTV2 37146 Alternate definition of th...
dffunsALTV3 37147 Alternate definition of th...
dffunsALTV4 37148 Alternate definition of th...
dffunsALTV5 37149 Alternate definition of th...
dffunALTV2 37150 Alternate definition of th...
dffunALTV3 37151 Alternate definition of th...
dffunALTV4 37152 Alternate definition of th...
dffunALTV5 37153 Alternate definition of th...
elfunsALTV 37154 Elementhood in the class o...
elfunsALTV2 37155 Elementhood in the class o...
elfunsALTV3 37156 Elementhood in the class o...
elfunsALTV4 37157 Elementhood in the class o...
elfunsALTV5 37158 Elementhood in the class o...
elfunsALTVfunALTV 37159 The element of the class o...
funALTVfun 37160 Our definition of the func...
funALTVss 37161 Subclass theorem for funct...
funALTVeq 37162 Equality theorem for funct...
funALTVeqi 37163 Equality inference for the...
funALTVeqd 37164 Equality deduction for the...
dfdisjs 37170 Alternate definition of th...
dfdisjs2 37171 Alternate definition of th...
dfdisjs3 37172 Alternate definition of th...
dfdisjs4 37173 Alternate definition of th...
dfdisjs5 37174 Alternate definition of th...
dfdisjALTV 37175 Alternate definition of th...
dfdisjALTV2 37176 Alternate definition of th...
dfdisjALTV3 37177 Alternate definition of th...
dfdisjALTV4 37178 Alternate definition of th...
dfdisjALTV5 37179 Alternate definition of th...
dfeldisj2 37180 Alternate definition of th...
dfeldisj3 37181 Alternate definition of th...
dfeldisj4 37182 Alternate definition of th...
dfeldisj5 37183 Alternate definition of th...
eldisjs 37184 Elementhood in the class o...
eldisjs2 37185 Elementhood in the class o...
eldisjs3 37186 Elementhood in the class o...
eldisjs4 37187 Elementhood in the class o...
eldisjs5 37188 Elementhood in the class o...
eldisjsdisj 37189 The element of the class o...
eleldisjs 37190 Elementhood in the disjoin...
eleldisjseldisj 37191 The element of the disjoin...
disjrel 37192 Disjoint relation is a rel...
disjss 37193 Subclass theorem for disjo...
disjssi 37194 Subclass theorem for disjo...
disjssd 37195 Subclass theorem for disjo...
disjeq 37196 Equality theorem for disjo...
disjeqi 37197 Equality theorem for disjo...
disjeqd 37198 Equality theorem for disjo...
disjdmqseqeq1 37199 Lemma for the equality the...
eldisjss 37200 Subclass theorem for disjo...
eldisjssi 37201 Subclass theorem for disjo...
eldisjssd 37202 Subclass theorem for disjo...
eldisjeq 37203 Equality theorem for disjo...
eldisjeqi 37204 Equality theorem for disjo...
eldisjeqd 37205 Equality theorem for disjo...
disjres 37206 Disjoint restriction. (Co...
eldisjn0elb 37207 Two forms of disjoint elem...
disjxrn 37208 Two ways of saying that a ...
disjxrnres5 37209 Disjoint range Cartesian p...
disjorimxrn 37210 Disjointness condition for...
disjimxrn 37211 Disjointness condition for...
disjimres 37212 Disjointness condition for...
disjimin 37213 Disjointness condition for...
disjiminres 37214 Disjointness condition for...
disjimxrnres 37215 Disjointness condition for...
disjALTV0 37216 The null class is disjoint...
disjALTVid 37217 The class of identity rela...
disjALTVidres 37218 The class of identity rela...
disjALTVinidres 37219 The intersection with rest...
disjALTVxrnidres 37220 The class of range Cartesi...
disjsuc 37221 Disjoint range Cartesian p...
dfantisymrel4 37223 Alternate definition of th...
dfantisymrel5 37224 Alternate definition of th...
antisymrelres 37225 (Contributed by Peter Mazs...
antisymrelressn 37226 (Contributed by Peter Mazs...
dfpart2 37231 Alternate definition of th...
dfmembpart2 37232 Alternate definition of th...
brparts 37233 Binary partitions relation...
brparts2 37234 Binary partitions relation...
brpartspart 37235 Binary partition and the p...
parteq1 37236 Equality theorem for parti...
parteq2 37237 Equality theorem for parti...
parteq12 37238 Equality theorem for parti...
parteq1i 37239 Equality theorem for parti...
parteq1d 37240 Equality theorem for parti...
partsuc2 37241 Property of the partition....
partsuc 37242 Property of the partition....
disjim 37243 The "Divide et Aequivalere...
disjimi 37244 Every disjoint relation ge...
detlem 37245 If a relation is disjoint,...
eldisjim 37246 If the elements of ` A ` a...
eldisjim2 37247 Alternate form of ~ eldisj...
eqvrel0 37248 The null class is an equiv...
det0 37249 The cosets by the null cla...
eqvrelcoss0 37250 The cosets by the null cla...
eqvrelid 37251 The identity relation is a...
eqvrel1cossidres 37252 The cosets by a restricted...
eqvrel1cossinidres 37253 The cosets by an intersect...
eqvrel1cossxrnidres 37254 The cosets by a range Cart...
detid 37255 The cosets by the identity...
eqvrelcossid 37256 The cosets by the identity...
detidres 37257 The cosets by the restrict...
detinidres 37258 The cosets by the intersec...
detxrnidres 37259 The cosets by the range Ca...
disjlem14 37260 Lemma for ~ disjdmqseq , ~...
disjlem17 37261 Lemma for ~ disjdmqseq , ~...
disjlem18 37262 Lemma for ~ disjdmqseq , ~...
disjlem19 37263 Lemma for ~ disjdmqseq , ~...
disjdmqsss 37264 Lemma for ~ disjdmqseq via...
disjdmqscossss 37265 Lemma for ~ disjdmqseq via...
disjdmqs 37266 If a relation is disjoint,...
disjdmqseq 37267 If a relation is disjoint,...
eldisjn0el 37268 Special case of ~ disjdmqs...
partim2 37269 Disjoint relation on its n...
partim 37270 Partition implies equivale...
partimeq 37271 Partition implies that the...
eldisjlem19 37272 Special case of ~ disjlem1...
membpartlem19 37273 Together with ~ disjlem19 ...
petlem 37274 If you can prove that the ...
petlemi 37275 If you can prove disjointn...
pet02 37276 Class ` A ` is a partition...
pet0 37277 Class ` A ` is a partition...
petid2 37278 Class ` A ` is a partition...
petid 37279 A class is a partition by ...
petidres2 37280 Class ` A ` is a partition...
petidres 37281 A class is a partition by ...
petinidres2 37282 Class ` A ` is a partition...
petinidres 37283 A class is a partition by ...
petxrnidres2 37284 Class ` A ` is a partition...
petxrnidres 37285 A class is a partition by ...
eqvreldisj1 37286 The elements of the quotie...
eqvreldisj2 37287 The elements of the quotie...
eqvreldisj3 37288 The elements of the quotie...
eqvreldisj4 37289 Intersection with the conv...
eqvreldisj5 37290 Range Cartesian product wi...
eqvrelqseqdisj2 37291 Implication of ~ eqvreldis...
fences3 37292 Implication of ~ eqvrelqse...
eqvrelqseqdisj3 37293 Implication of ~ eqvreldis...
eqvrelqseqdisj4 37294 Lemma for ~ petincnvepres2...
eqvrelqseqdisj5 37295 Lemma for the Partition-Eq...
mainer 37296 The Main Theorem of Equiva...
partimcomember 37297 Partition with general ` R...
mpet3 37298 Member Partition-Equivalen...
cpet2 37299 The conventional form of t...
cpet 37300 The conventional form of M...
mpet 37301 Member Partition-Equivalen...
mpet2 37302 Member Partition-Equivalen...
mpets2 37303 Member Partition-Equivalen...
mpets 37304 Member Partition-Equivalen...
mainpart 37305 Partition with general ` R...
fences 37306 The Theorem of Fences by E...
fences2 37307 The Theorem of Fences by E...
mainer2 37308 The Main Theorem of Equiva...
mainerim 37309 Every equivalence relation...
petincnvepres2 37310 A partition-equivalence th...
petincnvepres 37311 The shortest form of a par...
pet2 37312 Partition-Equivalence Theo...
pet 37313 Partition-Equivalence Theo...
pets 37314 Partition-Equivalence Theo...
prtlem60 37315 Lemma for ~ prter3 . (Con...
bicomdd 37316 Commute two sides of a bic...
jca2r 37317 Inference conjoining the c...
jca3 37318 Inference conjoining the c...
prtlem70 37319 Lemma for ~ prter3 : a rea...
ibdr 37320 Reverse of ~ ibd . (Contr...
prtlem100 37321 Lemma for ~ prter3 . (Con...
prtlem5 37322 Lemma for ~ prter1 , ~ prt...
prtlem80 37323 Lemma for ~ prter2 . (Con...
brabsb2 37324 A closed form of ~ brabsb ...
eqbrrdv2 37325 Other version of ~ eqbrrdi...
prtlem9 37326 Lemma for ~ prter3 . (Con...
prtlem10 37327 Lemma for ~ prter3 . (Con...
prtlem11 37328 Lemma for ~ prter2 . (Con...
prtlem12 37329 Lemma for ~ prtex and ~ pr...
prtlem13 37330 Lemma for ~ prter1 , ~ prt...
prtlem16 37331 Lemma for ~ prtex , ~ prte...
prtlem400 37332 Lemma for ~ prter2 and als...
erprt 37335 The quotient set of an equ...
prtlem14 37336 Lemma for ~ prter1 , ~ prt...
prtlem15 37337 Lemma for ~ prter1 and ~ p...
prtlem17 37338 Lemma for ~ prter2 . (Con...
prtlem18 37339 Lemma for ~ prter2 . (Con...
prtlem19 37340 Lemma for ~ prter2 . (Con...
prter1 37341 Every partition generates ...
prtex 37342 The equivalence relation g...
prter2 37343 The quotient set of the eq...
prter3 37344 For every partition there ...
axc5 37355 This theorem repeats ~ sp ...
ax4fromc4 37356 Rederivation of Axiom ~ ax...
ax10fromc7 37357 Rederivation of Axiom ~ ax...
ax6fromc10 37358 Rederivation of Axiom ~ ax...
hba1-o 37359 The setvar ` x ` is not fr...
axc4i-o 37360 Inference version of ~ ax-...
equid1 37361 Proof of ~ equid from our ...
equcomi1 37362 Proof of ~ equcomi from ~ ...
aecom-o 37363 Commutation law for identi...
aecoms-o 37364 A commutation rule for ide...
hbae-o 37365 All variables are effectiv...
dral1-o 37366 Formula-building lemma for...
ax12fromc15 37367 Rederivation of Axiom ~ ax...
ax13fromc9 37368 Derive ~ ax-13 from ~ ax-c...
ax5ALT 37369 Axiom to quantify a variab...
sps-o 37370 Generalization of antecede...
hbequid 37371 Bound-variable hypothesis ...
nfequid-o 37372 Bound-variable hypothesis ...
axc5c7 37373 Proof of a single axiom th...
axc5c7toc5 37374 Rederivation of ~ ax-c5 fr...
axc5c7toc7 37375 Rederivation of ~ ax-c7 fr...
axc711 37376 Proof of a single axiom th...
nfa1-o 37377 ` x ` is not free in ` A. ...
axc711toc7 37378 Rederivation of ~ ax-c7 fr...
axc711to11 37379 Rederivation of ~ ax-11 fr...
axc5c711 37380 Proof of a single axiom th...
axc5c711toc5 37381 Rederivation of ~ ax-c5 fr...
axc5c711toc7 37382 Rederivation of ~ ax-c7 fr...
axc5c711to11 37383 Rederivation of ~ ax-11 fr...
equidqe 37384 ~ equid with existential q...
axc5sp1 37385 A special case of ~ ax-c5 ...
equidq 37386 ~ equid with universal qua...
equid1ALT 37387 Alternate proof of ~ equid...
axc11nfromc11 37388 Rederivation of ~ ax-c11n ...
naecoms-o 37389 A commutation rule for dis...
hbnae-o 37390 All variables are effectiv...
dvelimf-o 37391 Proof of ~ dvelimh that us...
dral2-o 37392 Formula-building lemma for...
aev-o 37393 A "distinctor elimination"...
ax5eq 37394 Theorem to add distinct qu...
dveeq2-o 37395 Quantifier introduction wh...
axc16g-o 37396 A generalization of Axiom ...
dveeq1-o 37397 Quantifier introduction wh...
dveeq1-o16 37398 Version of ~ dveeq1 using ...
ax5el 37399 Theorem to add distinct qu...
axc11n-16 37400 This theorem shows that, g...
dveel2ALT 37401 Alternate proof of ~ dveel...
ax12f 37402 Basis step for constructin...
ax12eq 37403 Basis step for constructin...
ax12el 37404 Basis step for constructin...
ax12indn 37405 Induction step for constru...
ax12indi 37406 Induction step for constru...
ax12indalem 37407 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 37408 Alternate proof of ~ ax12i...
ax12inda2 37409 Induction step for constru...
ax12inda 37410 Induction step for constru...
ax12v2-o 37411 Rederivation of ~ ax-c15 f...
ax12a2-o 37412 Derive ~ ax-c15 from a hyp...
axc11-o 37413 Show that ~ ax-c11 can be ...
fsumshftd 37414 Index shift of a finite su...
riotaclbgBAD 37416 Closure of restricted iota...
riotaclbBAD 37417 Closure of restricted iota...
riotasvd 37418 Deduction version of ~ rio...
riotasv2d 37419 Value of description binde...
riotasv2s 37420 The value of description b...
riotasv 37421 Value of description binde...
riotasv3d 37422 A property ` ch ` holding ...
elimhyps 37423 A version of ~ elimhyp usi...
dedths 37424 A version of weak deductio...
renegclALT 37425 Closure law for negative o...
elimhyps2 37426 Generalization of ~ elimhy...
dedths2 37427 Generalization of ~ dedths...
nfcxfrdf 37428 A utility lemma to transfe...
nfded 37429 A deduction theorem that c...
nfded2 37430 A deduction theorem that c...
nfunidALT2 37431 Deduction version of ~ nfu...
nfunidALT 37432 Deduction version of ~ nfu...
nfopdALT 37433 Deduction version of bound...
cnaddcom 37434 Recover the commutative la...
toycom 37435 Show the commutative law f...
lshpset 37440 The set of all hyperplanes...
islshp 37441 The predicate "is a hyperp...
islshpsm 37442 Hyperplane properties expr...
lshplss 37443 A hyperplane is a subspace...
lshpne 37444 A hyperplane is not equal ...
lshpnel 37445 A hyperplane's generating ...
lshpnelb 37446 The subspace sum of a hype...
lshpnel2N 37447 Condition that determines ...
lshpne0 37448 The member of the span in ...
lshpdisj 37449 A hyperplane and the span ...
lshpcmp 37450 If two hyperplanes are com...
lshpinN 37451 The intersection of two di...
lsatset 37452 The set of all 1-dim subsp...
islsat 37453 The predicate "is a 1-dim ...
lsatlspsn2 37454 The span of a nonzero sing...
lsatlspsn 37455 The span of a nonzero sing...
islsati 37456 A 1-dim subspace (atom) (o...
lsateln0 37457 A 1-dim subspace (atom) (o...
lsatlss 37458 The set of 1-dim subspaces...
lsatlssel 37459 An atom is a subspace. (C...
lsatssv 37460 An atom is a set of vector...
lsatn0 37461 A 1-dim subspace (atom) of...
lsatspn0 37462 The span of a vector is an...
lsator0sp 37463 The span of a vector is ei...
lsatssn0 37464 A subspace (or any class) ...
lsatcmp 37465 If two atoms are comparabl...
lsatcmp2 37466 If an atom is included in ...
lsatel 37467 A nonzero vector in an ato...
lsatelbN 37468 A nonzero vector in an ato...
lsat2el 37469 Two atoms sharing a nonzer...
lsmsat 37470 Convert comparison of atom...
lsatfixedN 37471 Show equality with the spa...
lsmsatcv 37472 Subspace sum has the cover...
lssatomic 37473 The lattice of subspaces i...
lssats 37474 The lattice of subspaces i...
lpssat 37475 Two subspaces in a proper ...
lrelat 37476 Subspaces are relatively a...
lssatle 37477 The ordering of two subspa...
lssat 37478 Two subspaces in a proper ...
islshpat 37479 Hyperplane properties expr...
lcvfbr 37482 The covers relation for a ...
lcvbr 37483 The covers relation for a ...
lcvbr2 37484 The covers relation for a ...
lcvbr3 37485 The covers relation for a ...
lcvpss 37486 The covers relation implie...
lcvnbtwn 37487 The covers relation implie...
lcvntr 37488 The covers relation is not...
lcvnbtwn2 37489 The covers relation implie...
lcvnbtwn3 37490 The covers relation implie...
lsmcv2 37491 Subspace sum has the cover...
lcvat 37492 If a subspace covers anoth...
lsatcv0 37493 An atom covers the zero su...
lsatcveq0 37494 A subspace covered by an a...
lsat0cv 37495 A subspace is an atom iff ...
lcvexchlem1 37496 Lemma for ~ lcvexch . (Co...
lcvexchlem2 37497 Lemma for ~ lcvexch . (Co...
lcvexchlem3 37498 Lemma for ~ lcvexch . (Co...
lcvexchlem4 37499 Lemma for ~ lcvexch . (Co...
lcvexchlem5 37500 Lemma for ~ lcvexch . (Co...
lcvexch 37501 Subspaces satisfy the exch...
lcvp 37502 Covering property of Defin...
lcv1 37503 Covering property of a sub...
lcv2 37504 Covering property of a sub...
lsatexch 37505 The atom exchange property...
lsatnle 37506 The meet of a subspace and...
lsatnem0 37507 The meet of distinct atoms...
lsatexch1 37508 The atom exch1ange propert...
lsatcv0eq 37509 If the sum of two atoms co...
lsatcv1 37510 Two atoms covering the zer...
lsatcvatlem 37511 Lemma for ~ lsatcvat . (C...
lsatcvat 37512 A nonzero subspace less th...
lsatcvat2 37513 A subspace covered by the ...
lsatcvat3 37514 A condition implying that ...
islshpcv 37515 Hyperplane properties expr...
l1cvpat 37516 A subspace covered by the ...
l1cvat 37517 Create an atom under an el...
lshpat 37518 Create an atom under a hyp...
lflset 37521 The set of linear function...
islfl 37522 The predicate "is a linear...
lfli 37523 Property of a linear funct...
islfld 37524 Properties that determine ...
lflf 37525 A linear functional is a f...
lflcl 37526 A linear functional value ...
lfl0 37527 A linear functional is zer...
lfladd 37528 Property of a linear funct...
lflsub 37529 Property of a linear funct...
lflmul 37530 Property of a linear funct...
lfl0f 37531 The zero function is a fun...
lfl1 37532 A nonzero functional has a...
lfladdcl 37533 Closure of addition of two...
lfladdcom 37534 Commutativity of functiona...
lfladdass 37535 Associativity of functiona...
lfladd0l 37536 Functional addition with t...
lflnegcl 37537 Closure of the negative of...
lflnegl 37538 A functional plus its nega...
lflvscl 37539 Closure of a scalar produc...
lflvsdi1 37540 Distributive law for (righ...
lflvsdi2 37541 Reverse distributive law f...
lflvsdi2a 37542 Reverse distributive law f...
lflvsass 37543 Associative law for (right...
lfl0sc 37544 The (right vector space) s...
lflsc0N 37545 The scalar product with th...
lfl1sc 37546 The (right vector space) s...
lkrfval 37549 The kernel of a functional...
lkrval 37550 Value of the kernel of a f...
ellkr 37551 Membership in the kernel o...
lkrval2 37552 Value of the kernel of a f...
ellkr2 37553 Membership in the kernel o...
lkrcl 37554 A member of the kernel of ...
lkrf0 37555 The value of a functional ...
lkr0f 37556 The kernel of the zero fun...
lkrlss 37557 The kernel of a linear fun...
lkrssv 37558 The kernel of a linear fun...
lkrsc 37559 The kernel of a nonzero sc...
lkrscss 37560 The kernel of a scalar pro...
eqlkr 37561 Two functionals with the s...
eqlkr2 37562 Two functionals with the s...
eqlkr3 37563 Two functionals with the s...
lkrlsp 37564 The subspace sum of a kern...
lkrlsp2 37565 The subspace sum of a kern...
lkrlsp3 37566 The subspace sum of a kern...
lkrshp 37567 The kernel of a nonzero fu...
lkrshp3 37568 The kernels of nonzero fun...
lkrshpor 37569 The kernel of a functional...
lkrshp4 37570 A kernel is a hyperplane i...
lshpsmreu 37571 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 37572 Lemma for ~ lshpkrex . Th...
lshpkrlem2 37573 Lemma for ~ lshpkrex . Th...
lshpkrlem3 37574 Lemma for ~ lshpkrex . De...
lshpkrlem4 37575 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 37576 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 37577 Lemma for ~ lshpkrex . Sh...
lshpkrcl 37578 The set ` G ` defined by h...
lshpkr 37579 The kernel of functional `...
lshpkrex 37580 There exists a functional ...
lshpset2N 37581 The set of all hyperplanes...
islshpkrN 37582 The predicate "is a hyperp...
lfl1dim 37583 Equivalent expressions for...
lfl1dim2N 37584 Equivalent expressions for...
ldualset 37587 Define the (left) dual of ...
ldualvbase 37588 The vectors of a dual spac...
ldualelvbase 37589 Utility theorem for conver...
ldualfvadd 37590 Vector addition in the dua...
ldualvadd 37591 Vector addition in the dua...
ldualvaddcl 37592 The value of vector additi...
ldualvaddval 37593 The value of the value of ...
ldualsca 37594 The ring of scalars of the...
ldualsbase 37595 Base set of scalar ring fo...
ldualsaddN 37596 Scalar addition for the du...
ldualsmul 37597 Scalar multiplication for ...
ldualfvs 37598 Scalar product operation f...
ldualvs 37599 Scalar product operation v...
ldualvsval 37600 Value of scalar product op...
ldualvscl 37601 The scalar product operati...
ldualvaddcom 37602 Commutative law for vector...
ldualvsass 37603 Associative law for scalar...
ldualvsass2 37604 Associative law for scalar...
ldualvsdi1 37605 Distributive law for scala...
ldualvsdi2 37606 Reverse distributive law f...
ldualgrplem 37607 Lemma for ~ ldualgrp . (C...
ldualgrp 37608 The dual of a vector space...
ldual0 37609 The zero scalar of the dua...
ldual1 37610 The unit scalar of the dua...
ldualneg 37611 The negative of a scalar o...
ldual0v 37612 The zero vector of the dua...
ldual0vcl 37613 The dual zero vector is a ...
lduallmodlem 37614 Lemma for ~ lduallmod . (...
lduallmod 37615 The dual of a left module ...
lduallvec 37616 The dual of a left vector ...
ldualvsub 37617 The value of vector subtra...
ldualvsubcl 37618 Closure of vector subtract...
ldualvsubval 37619 The value of the value of ...
ldualssvscl 37620 Closure of scalar product ...
ldualssvsubcl 37621 Closure of vector subtract...
ldual0vs 37622 Scalar zero times a functi...
lkr0f2 37623 The kernel of the zero fun...
lduallkr3 37624 The kernels of nonzero fun...
lkrpssN 37625 Proper subset relation bet...
lkrin 37626 Intersection of the kernel...
eqlkr4 37627 Two functionals with the s...
ldual1dim 37628 Equivalent expressions for...
ldualkrsc 37629 The kernel of a nonzero sc...
lkrss 37630 The kernel of a scalar pro...
lkrss2N 37631 Two functionals with kerne...
lkreqN 37632 Proportional functionals h...
lkrlspeqN 37633 Condition for colinear fun...
isopos 37642 The predicate "is an ortho...
opposet 37643 Every orthoposet is a pose...
oposlem 37644 Lemma for orthoposet prope...
op01dm 37645 Conditions necessary for z...
op0cl 37646 An orthoposet has a zero e...
op1cl 37647 An orthoposet has a unity ...
op0le 37648 Orthoposet zero is less th...
ople0 37649 An element less than or eq...
opnlen0 37650 An element not less than a...
lub0N 37651 The least upper bound of t...
opltn0 37652 A lattice element greater ...
ople1 37653 Any element is less than t...
op1le 37654 If the orthoposet unity is...
glb0N 37655 The greatest lower bound o...
opoccl 37656 Closure of orthocomplement...
opococ 37657 Double negative law for or...
opcon3b 37658 Contraposition law for ort...
opcon2b 37659 Orthocomplement contraposi...
opcon1b 37660 Orthocomplement contraposi...
oplecon3 37661 Contraposition law for ort...
oplecon3b 37662 Contraposition law for ort...
oplecon1b 37663 Contraposition law for str...
opoc1 37664 Orthocomplement of orthopo...
opoc0 37665 Orthocomplement of orthopo...
opltcon3b 37666 Contraposition law for str...
opltcon1b 37667 Contraposition law for str...
opltcon2b 37668 Contraposition law for str...
opexmid 37669 Law of excluded middle for...
opnoncon 37670 Law of contradiction for o...
riotaocN 37671 The orthocomplement of the...
cmtfvalN 37672 Value of commutes relation...
cmtvalN 37673 Equivalence for commutes r...
isolat 37674 The predicate "is an ortho...
ollat 37675 An ortholattice is a latti...
olop 37676 An ortholattice is an orth...
olposN 37677 An ortholattice is a poset...
isolatiN 37678 Properties that determine ...
oldmm1 37679 De Morgan's law for meet i...
oldmm2 37680 De Morgan's law for meet i...
oldmm3N 37681 De Morgan's law for meet i...
oldmm4 37682 De Morgan's law for meet i...
oldmj1 37683 De Morgan's law for join i...
oldmj2 37684 De Morgan's law for join i...
oldmj3 37685 De Morgan's law for join i...
oldmj4 37686 De Morgan's law for join i...
olj01 37687 An ortholattice element jo...
olj02 37688 An ortholattice element jo...
olm11 37689 The meet of an ortholattic...
olm12 37690 The meet of an ortholattic...
latmassOLD 37691 Ortholattice meet is assoc...
latm12 37692 A rearrangement of lattice...
latm32 37693 A rearrangement of lattice...
latmrot 37694 Rotate lattice meet of 3 c...
latm4 37695 Rearrangement of lattice m...
latmmdiN 37696 Lattice meet distributes o...
latmmdir 37697 Lattice meet distributes o...
olm01 37698 Meet with lattice zero is ...
olm02 37699 Meet with lattice zero is ...
isoml 37700 The predicate "is an ortho...
isomliN 37701 Properties that determine ...
omlol 37702 An orthomodular lattice is...
omlop 37703 An orthomodular lattice is...
omllat 37704 An orthomodular lattice is...
omllaw 37705 The orthomodular law. (Co...
omllaw2N 37706 Variation of orthomodular ...
omllaw3 37707 Orthomodular law equivalen...
omllaw4 37708 Orthomodular law equivalen...
omllaw5N 37709 The orthomodular law. Rem...
cmtcomlemN 37710 Lemma for ~ cmtcomN . ( ~...
cmtcomN 37711 Commutation is symmetric. ...
cmt2N 37712 Commutation with orthocomp...
cmt3N 37713 Commutation with orthocomp...
cmt4N 37714 Commutation with orthocomp...
cmtbr2N 37715 Alternate definition of th...
cmtbr3N 37716 Alternate definition for t...
cmtbr4N 37717 Alternate definition for t...
lecmtN 37718 Ordered elements commute. ...
cmtidN 37719 Any element commutes with ...
omlfh1N 37720 Foulis-Holland Theorem, pa...
omlfh3N 37721 Foulis-Holland Theorem, pa...
omlmod1i2N 37722 Analogue of modular law ~ ...
omlspjN 37723 Contraction of a Sasaki pr...
cvrfval 37730 Value of covers relation "...
cvrval 37731 Binary relation expressing...
cvrlt 37732 The covers relation implie...
cvrnbtwn 37733 There is no element betwee...
ncvr1 37734 No element covers the latt...
cvrletrN 37735 Property of an element abo...
cvrval2 37736 Binary relation expressing...
cvrnbtwn2 37737 The covers relation implie...
cvrnbtwn3 37738 The covers relation implie...
cvrcon3b 37739 Contraposition law for the...
cvrle 37740 The covers relation implie...
cvrnbtwn4 37741 The covers relation implie...
cvrnle 37742 The covers relation implie...
cvrne 37743 The covers relation implie...
cvrnrefN 37744 The covers relation is not...
cvrcmp 37745 If two lattice elements th...
cvrcmp2 37746 If two lattice elements co...
pats 37747 The set of atoms in a pose...
isat 37748 The predicate "is an atom"...
isat2 37749 The predicate "is an atom"...
atcvr0 37750 An atom covers zero. ( ~ ...
atbase 37751 An atom is a member of the...
atssbase 37752 The set of atoms is a subs...
0ltat 37753 An atom is greater than ze...
leatb 37754 A poset element less than ...
leat 37755 A poset element less than ...
leat2 37756 A nonzero poset element le...
leat3 37757 A poset element less than ...
meetat 37758 The meet of any element wi...
meetat2 37759 The meet of any element wi...
isatl 37761 The predicate "is an atomi...
atllat 37762 An atomic lattice is a lat...
atlpos 37763 An atomic lattice is a pos...
atl0dm 37764 Condition necessary for ze...
atl0cl 37765 An atomic lattice has a ze...
atl0le 37766 Orthoposet zero is less th...
atlle0 37767 An element less than or eq...
atlltn0 37768 A lattice element greater ...
isat3 37769 The predicate "is an atom"...
atn0 37770 An atom is not zero. ( ~ ...
atnle0 37771 An atom is not less than o...
atlen0 37772 A lattice element is nonze...
atcmp 37773 If two atoms are comparabl...
atncmp 37774 Frequently-used variation ...
atnlt 37775 Two atoms cannot satisfy t...
atcvreq0 37776 An element covered by an a...
atncvrN 37777 Two atoms cannot satisfy t...
atlex 37778 Every nonzero element of a...
atnle 37779 Two ways of expressing "an...
atnem0 37780 The meet of distinct atoms...
atlatmstc 37781 An atomic, complete, ortho...
atlatle 37782 The ordering of two Hilber...
atlrelat1 37783 An atomistic lattice with ...
iscvlat 37785 The predicate "is an atomi...
iscvlat2N 37786 The predicate "is an atomi...
cvlatl 37787 An atomic lattice with the...
cvllat 37788 An atomic lattice with the...
cvlposN 37789 An atomic lattice with the...
cvlexch1 37790 An atomic covering lattice...
cvlexch2 37791 An atomic covering lattice...
cvlexchb1 37792 An atomic covering lattice...
cvlexchb2 37793 An atomic covering lattice...
cvlexch3 37794 An atomic covering lattice...
cvlexch4N 37795 An atomic covering lattice...
cvlatexchb1 37796 A version of ~ cvlexchb1 f...
cvlatexchb2 37797 A version of ~ cvlexchb2 f...
cvlatexch1 37798 Atom exchange property. (...
cvlatexch2 37799 Atom exchange property. (...
cvlatexch3 37800 Atom exchange property. (...
cvlcvr1 37801 The covering property. Pr...
cvlcvrp 37802 A Hilbert lattice satisfie...
cvlatcvr1 37803 An atom is covered by its ...
cvlatcvr2 37804 An atom is covered by its ...
cvlsupr2 37805 Two equivalent ways of exp...
cvlsupr3 37806 Two equivalent ways of exp...
cvlsupr4 37807 Consequence of superpositi...
cvlsupr5 37808 Consequence of superpositi...
cvlsupr6 37809 Consequence of superpositi...
cvlsupr7 37810 Consequence of superpositi...
cvlsupr8 37811 Consequence of superpositi...
ishlat1 37814 The predicate "is a Hilber...
ishlat2 37815 The predicate "is a Hilber...
ishlat3N 37816 The predicate "is a Hilber...
ishlatiN 37817 Properties that determine ...
hlomcmcv 37818 A Hilbert lattice is ortho...
hloml 37819 A Hilbert lattice is ortho...
hlclat 37820 A Hilbert lattice is compl...
hlcvl 37821 A Hilbert lattice is an at...
hlatl 37822 A Hilbert lattice is atomi...
hlol 37823 A Hilbert lattice is an or...
hlop 37824 A Hilbert lattice is an or...
hllat 37825 A Hilbert lattice is a lat...
hllatd 37826 Deduction form of ~ hllat ...
hlomcmat 37827 A Hilbert lattice is ortho...
hlpos 37828 A Hilbert lattice is a pos...
hlatjcl 37829 Closure of join operation....
hlatjcom 37830 Commutatitivity of join op...
hlatjidm 37831 Idempotence of join operat...
hlatjass 37832 Lattice join is associativ...
hlatj12 37833 Swap 1st and 2nd members o...
hlatj32 37834 Swap 2nd and 3rd members o...
hlatjrot 37835 Rotate lattice join of 3 c...
hlatj4 37836 Rearrangement of lattice j...
hlatlej1 37837 A join's first argument is...
hlatlej2 37838 A join's second argument i...
glbconN 37839 De Morgan's law for GLB an...
glbconNOLD 37840 Obsolete version of ~ glbc...
glbconxN 37841 De Morgan's law for GLB an...
atnlej1 37842 If an atom is not less tha...
atnlej2 37843 If an atom is not less tha...
hlsuprexch 37844 A Hilbert lattice has the ...
hlexch1 37845 A Hilbert lattice has the ...
hlexch2 37846 A Hilbert lattice has the ...
hlexchb1 37847 A Hilbert lattice has the ...
hlexchb2 37848 A Hilbert lattice has the ...
hlsupr 37849 A Hilbert lattice has the ...
hlsupr2 37850 A Hilbert lattice has the ...
hlhgt4 37851 A Hilbert lattice has a he...
hlhgt2 37852 A Hilbert lattice has a he...
hl0lt1N 37853 Lattice 0 is less than lat...
hlexch3 37854 A Hilbert lattice has the ...
hlexch4N 37855 A Hilbert lattice has the ...
hlatexchb1 37856 A version of ~ hlexchb1 fo...
hlatexchb2 37857 A version of ~ hlexchb2 fo...
hlatexch1 37858 Atom exchange property. (...
hlatexch2 37859 Atom exchange property. (...
hlatmstcOLDN 37860 An atomic, complete, ortho...
hlatle 37861 The ordering of two Hilber...
hlateq 37862 The equality of two Hilber...
hlrelat1 37863 An atomistic lattice with ...
hlrelat5N 37864 An atomistic lattice with ...
hlrelat 37865 A Hilbert lattice is relat...
hlrelat2 37866 A consequence of relative ...
exatleN 37867 A condition for an atom to...
hl2at 37868 A Hilbert lattice has at l...
atex 37869 At least one atom exists. ...
intnatN 37870 If the intersection with a...
2llnne2N 37871 Condition implying that tw...
2llnneN 37872 Condition implying that tw...
cvr1 37873 A Hilbert lattice has the ...
cvr2N 37874 Less-than and covers equiv...
hlrelat3 37875 The Hilbert lattice is rel...
cvrval3 37876 Binary relation expressing...
cvrval4N 37877 Binary relation expressing...
cvrval5 37878 Binary relation expressing...
cvrp 37879 A Hilbert lattice satisfie...
atcvr1 37880 An atom is covered by its ...
atcvr2 37881 An atom is covered by its ...
cvrexchlem 37882 Lemma for ~ cvrexch . ( ~...
cvrexch 37883 A Hilbert lattice satisfie...
cvratlem 37884 Lemma for ~ cvrat . ( ~ a...
cvrat 37885 A nonzero Hilbert lattice ...
ltltncvr 37886 A chained strong ordering ...
ltcvrntr 37887 Non-transitive condition f...
cvrntr 37888 The covers relation is not...
atcvr0eq 37889 The covers relation is not...
lnnat 37890 A line (the join of two di...
atcvrj0 37891 Two atoms covering the zer...
cvrat2 37892 A Hilbert lattice element ...
atcvrneN 37893 Inequality derived from at...
atcvrj1 37894 Condition for an atom to b...
atcvrj2b 37895 Condition for an atom to b...
atcvrj2 37896 Condition for an atom to b...
atleneN 37897 Inequality derived from at...
atltcvr 37898 An equivalence of less-tha...
atle 37899 Any nonzero element has an...
atlt 37900 Two atoms are unequal iff ...
atlelt 37901 Transfer less-than relatio...
2atlt 37902 Given an atom less than an...
atexchcvrN 37903 Atom exchange property. V...
atexchltN 37904 Atom exchange property. V...
cvrat3 37905 A condition implying that ...
cvrat4 37906 A condition implying exist...
cvrat42 37907 Commuted version of ~ cvra...
2atjm 37908 The meet of a line (expres...
atbtwn 37909 Property of a 3rd atom ` R...
atbtwnexOLDN 37910 There exists a 3rd atom ` ...
atbtwnex 37911 Given atoms ` P ` in ` X `...
3noncolr2 37912 Two ways to express 3 non-...
3noncolr1N 37913 Two ways to express 3 non-...
hlatcon3 37914 Atom exchange combined wit...
hlatcon2 37915 Atom exchange combined wit...
4noncolr3 37916 A way to express 4 non-col...
4noncolr2 37917 A way to express 4 non-col...
4noncolr1 37918 A way to express 4 non-col...
athgt 37919 A Hilbert lattice, whose h...
3dim0 37920 There exists a 3-dimension...
3dimlem1 37921 Lemma for ~ 3dim1 . (Cont...
3dimlem2 37922 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 37923 Lemma for ~ 3dim3 . (Cont...
3dimlem3 37924 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 37925 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 37926 Lemma for ~ 3dim3 . (Cont...
3dimlem4 37927 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 37928 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 37929 Lemma for ~ 3dim1 . (Cont...
3dim1 37930 Construct a 3-dimensional ...
3dim2 37931 Construct 2 new layers on ...
3dim3 37932 Construct a new layer on t...
2dim 37933 Generate a height-3 elemen...
1dimN 37934 An atom is covered by a he...
1cvrco 37935 The orthocomplement of an ...
1cvratex 37936 There exists an atom less ...
1cvratlt 37937 An atom less than or equal...
1cvrjat 37938 An element covered by the ...
1cvrat 37939 Create an atom under an el...
ps-1 37940 The join of two atoms ` R ...
ps-2 37941 Lattice analogue for the p...
2atjlej 37942 Two atoms are different if...
hlatexch3N 37943 Rearrange join of atoms in...
hlatexch4 37944 Exchange 2 atoms. (Contri...
ps-2b 37945 Variation of projective ge...
3atlem1 37946 Lemma for ~ 3at . (Contri...
3atlem2 37947 Lemma for ~ 3at . (Contri...
3atlem3 37948 Lemma for ~ 3at . (Contri...
3atlem4 37949 Lemma for ~ 3at . (Contri...
3atlem5 37950 Lemma for ~ 3at . (Contri...
3atlem6 37951 Lemma for ~ 3at . (Contri...
3atlem7 37952 Lemma for ~ 3at . (Contri...
3at 37953 Any three non-colinear ato...
llnset 37968 The set of lattice lines i...
islln 37969 The predicate "is a lattic...
islln4 37970 The predicate "is a lattic...
llni 37971 Condition implying a latti...
llnbase 37972 A lattice line is a lattic...
islln3 37973 The predicate "is a lattic...
islln2 37974 The predicate "is a lattic...
llni2 37975 The join of two different ...
llnnleat 37976 An atom cannot majorize a ...
llnneat 37977 A lattice line is not an a...
2atneat 37978 The join of two distinct a...
llnn0 37979 A lattice line is nonzero....
islln2a 37980 The predicate "is a lattic...
llnle 37981 Any element greater than 0...
atcvrlln2 37982 An atom under a line is co...
atcvrlln 37983 An element covering an ato...
llnexatN 37984 Given an atom on a line, t...
llncmp 37985 If two lattice lines are c...
llnnlt 37986 Two lattice lines cannot s...
2llnmat 37987 Two intersecting lines int...
2at0mat0 37988 Special case of ~ 2atmat0 ...
2atmat0 37989 The meet of two unequal li...
2atm 37990 An atom majorized by two d...
ps-2c 37991 Variation of projective ge...
lplnset 37992 The set of lattice planes ...
islpln 37993 The predicate "is a lattic...
islpln4 37994 The predicate "is a lattic...
lplni 37995 Condition implying a latti...
islpln3 37996 The predicate "is a lattic...
lplnbase 37997 A lattice plane is a latti...
islpln5 37998 The predicate "is a lattic...
islpln2 37999 The predicate "is a lattic...
lplni2 38000 The join of 3 different at...
lvolex3N 38001 There is an atom outside o...
llnmlplnN 38002 The intersection of a line...
lplnle 38003 Any element greater than 0...
lplnnle2at 38004 A lattice line (or atom) c...
lplnnleat 38005 A lattice plane cannot maj...
lplnnlelln 38006 A lattice plane is not les...
2atnelpln 38007 The join of two atoms is n...
lplnneat 38008 No lattice plane is an ato...
lplnnelln 38009 No lattice plane is a latt...
lplnn0N 38010 A lattice plane is nonzero...
islpln2a 38011 The predicate "is a lattic...
islpln2ah 38012 The predicate "is a lattic...
lplnriaN 38013 Property of a lattice plan...
lplnribN 38014 Property of a lattice plan...
lplnric 38015 Property of a lattice plan...
lplnri1 38016 Property of a lattice plan...
lplnri2N 38017 Property of a lattice plan...
lplnri3N 38018 Property of a lattice plan...
lplnllnneN 38019 Two lattice lines defined ...
llncvrlpln2 38020 A lattice line under a lat...
llncvrlpln 38021 An element covering a latt...
2lplnmN 38022 If the join of two lattice...
2llnmj 38023 The meet of two lattice li...
2atmat 38024 The meet of two intersecti...
lplncmp 38025 If two lattice planes are ...
lplnexatN 38026 Given a lattice line on a ...
lplnexllnN 38027 Given an atom on a lattice...
lplnnlt 38028 Two lattice planes cannot ...
2llnjaN 38029 The join of two different ...
2llnjN 38030 The join of two different ...
2llnm2N 38031 The meet of two different ...
2llnm3N 38032 Two lattice lines in a lat...
2llnm4 38033 Two lattice lines that maj...
2llnmeqat 38034 An atom equals the interse...
lvolset 38035 The set of 3-dim lattice v...
islvol 38036 The predicate "is a 3-dim ...
islvol4 38037 The predicate "is a 3-dim ...
lvoli 38038 Condition implying a 3-dim...
islvol3 38039 The predicate "is a 3-dim ...
lvoli3 38040 Condition implying a 3-dim...
lvolbase 38041 A 3-dim lattice volume is ...
islvol5 38042 The predicate "is a 3-dim ...
islvol2 38043 The predicate "is a 3-dim ...
lvoli2 38044 The join of 4 different at...
lvolnle3at 38045 A lattice plane (or lattic...
lvolnleat 38046 An atom cannot majorize a ...
lvolnlelln 38047 A lattice line cannot majo...
lvolnlelpln 38048 A lattice plane cannot maj...
3atnelvolN 38049 The join of 3 atoms is not...
2atnelvolN 38050 The join of two atoms is n...
lvolneatN 38051 No lattice volume is an at...
lvolnelln 38052 No lattice volume is a lat...
lvolnelpln 38053 No lattice volume is a lat...
lvoln0N 38054 A lattice volume is nonzer...
islvol2aN 38055 The predicate "is a lattic...
4atlem0a 38056 Lemma for ~ 4at . (Contri...
4atlem0ae 38057 Lemma for ~ 4at . (Contri...
4atlem0be 38058 Lemma for ~ 4at . (Contri...
4atlem3 38059 Lemma for ~ 4at . Break i...
4atlem3a 38060 Lemma for ~ 4at . Break i...
4atlem3b 38061 Lemma for ~ 4at . Break i...
4atlem4a 38062 Lemma for ~ 4at . Frequen...
4atlem4b 38063 Lemma for ~ 4at . Frequen...
4atlem4c 38064 Lemma for ~ 4at . Frequen...
4atlem4d 38065 Lemma for ~ 4at . Frequen...
4atlem9 38066 Lemma for ~ 4at . Substit...
4atlem10a 38067 Lemma for ~ 4at . Substit...
4atlem10b 38068 Lemma for ~ 4at . Substit...
4atlem10 38069 Lemma for ~ 4at . Combine...
4atlem11a 38070 Lemma for ~ 4at . Substit...
4atlem11b 38071 Lemma for ~ 4at . Substit...
4atlem11 38072 Lemma for ~ 4at . Combine...
4atlem12a 38073 Lemma for ~ 4at . Substit...
4atlem12b 38074 Lemma for ~ 4at . Substit...
4atlem12 38075 Lemma for ~ 4at . Combine...
4at 38076 Four atoms determine a lat...
4at2 38077 Four atoms determine a lat...
lplncvrlvol2 38078 A lattice line under a lat...
lplncvrlvol 38079 An element covering a latt...
lvolcmp 38080 If two lattice planes are ...
lvolnltN 38081 Two lattice volumes cannot...
2lplnja 38082 The join of two different ...
2lplnj 38083 The join of two different ...
2lplnm2N 38084 The meet of two different ...
2lplnmj 38085 The meet of two lattice pl...
dalemkehl 38086 Lemma for ~ dath . Freque...
dalemkelat 38087 Lemma for ~ dath . Freque...
dalemkeop 38088 Lemma for ~ dath . Freque...
dalempea 38089 Lemma for ~ dath . Freque...
dalemqea 38090 Lemma for ~ dath . Freque...
dalemrea 38091 Lemma for ~ dath . Freque...
dalemsea 38092 Lemma for ~ dath . Freque...
dalemtea 38093 Lemma for ~ dath . Freque...
dalemuea 38094 Lemma for ~ dath . Freque...
dalemyeo 38095 Lemma for ~ dath . Freque...
dalemzeo 38096 Lemma for ~ dath . Freque...
dalemclpjs 38097 Lemma for ~ dath . Freque...
dalemclqjt 38098 Lemma for ~ dath . Freque...
dalemclrju 38099 Lemma for ~ dath . Freque...
dalem-clpjq 38100 Lemma for ~ dath . Freque...
dalemceb 38101 Lemma for ~ dath . Freque...
dalempeb 38102 Lemma for ~ dath . Freque...
dalemqeb 38103 Lemma for ~ dath . Freque...
dalemreb 38104 Lemma for ~ dath . Freque...
dalemseb 38105 Lemma for ~ dath . Freque...
dalemteb 38106 Lemma for ~ dath . Freque...
dalemueb 38107 Lemma for ~ dath . Freque...
dalempjqeb 38108 Lemma for ~ dath . Freque...
dalemsjteb 38109 Lemma for ~ dath . Freque...
dalemtjueb 38110 Lemma for ~ dath . Freque...
dalemqrprot 38111 Lemma for ~ dath . Freque...
dalemyeb 38112 Lemma for ~ dath . Freque...
dalemcnes 38113 Lemma for ~ dath . Freque...
dalempnes 38114 Lemma for ~ dath . Freque...
dalemqnet 38115 Lemma for ~ dath . Freque...
dalempjsen 38116 Lemma for ~ dath . Freque...
dalemply 38117 Lemma for ~ dath . Freque...
dalemsly 38118 Lemma for ~ dath . Freque...
dalemswapyz 38119 Lemma for ~ dath . Swap t...
dalemrot 38120 Lemma for ~ dath . Rotate...
dalemrotyz 38121 Lemma for ~ dath . Rotate...
dalem1 38122 Lemma for ~ dath . Show t...
dalemcea 38123 Lemma for ~ dath . Freque...
dalem2 38124 Lemma for ~ dath . Show t...
dalemdea 38125 Lemma for ~ dath . Freque...
dalemeea 38126 Lemma for ~ dath . Freque...
dalem3 38127 Lemma for ~ dalemdnee . (...
dalem4 38128 Lemma for ~ dalemdnee . (...
dalemdnee 38129 Lemma for ~ dath . Axis o...
dalem5 38130 Lemma for ~ dath . Atom `...
dalem6 38131 Lemma for ~ dath . Analog...
dalem7 38132 Lemma for ~ dath . Analog...
dalem8 38133 Lemma for ~ dath . Plane ...
dalem-cly 38134 Lemma for ~ dalem9 . Cent...
dalem9 38135 Lemma for ~ dath . Since ...
dalem10 38136 Lemma for ~ dath . Atom `...
dalem11 38137 Lemma for ~ dath . Analog...
dalem12 38138 Lemma for ~ dath . Analog...
dalem13 38139 Lemma for ~ dalem14 . (Co...
dalem14 38140 Lemma for ~ dath . Planes...
dalem15 38141 Lemma for ~ dath . The ax...
dalem16 38142 Lemma for ~ dath . The at...
dalem17 38143 Lemma for ~ dath . When p...
dalem18 38144 Lemma for ~ dath . Show t...
dalem19 38145 Lemma for ~ dath . Show t...
dalemccea 38146 Lemma for ~ dath . Freque...
dalemddea 38147 Lemma for ~ dath . Freque...
dalem-ccly 38148 Lemma for ~ dath . Freque...
dalem-ddly 38149 Lemma for ~ dath . Freque...
dalemccnedd 38150 Lemma for ~ dath . Freque...
dalemclccjdd 38151 Lemma for ~ dath . Freque...
dalemcceb 38152 Lemma for ~ dath . Freque...
dalemswapyzps 38153 Lemma for ~ dath . Swap t...
dalemrotps 38154 Lemma for ~ dath . Rotate...
dalemcjden 38155 Lemma for ~ dath . Show t...
dalem20 38156 Lemma for ~ dath . Show t...
dalem21 38157 Lemma for ~ dath . Show t...
dalem22 38158 Lemma for ~ dath . Show t...
dalem23 38159 Lemma for ~ dath . Show t...
dalem24 38160 Lemma for ~ dath . Show t...
dalem25 38161 Lemma for ~ dath . Show t...
dalem27 38162 Lemma for ~ dath . Show t...
dalem28 38163 Lemma for ~ dath . Lemma ...
dalem29 38164 Lemma for ~ dath . Analog...
dalem30 38165 Lemma for ~ dath . Analog...
dalem31N 38166 Lemma for ~ dath . Analog...
dalem32 38167 Lemma for ~ dath . Analog...
dalem33 38168 Lemma for ~ dath . Analog...
dalem34 38169 Lemma for ~ dath . Analog...
dalem35 38170 Lemma for ~ dath . Analog...
dalem36 38171 Lemma for ~ dath . Analog...
dalem37 38172 Lemma for ~ dath . Analog...
dalem38 38173 Lemma for ~ dath . Plane ...
dalem39 38174 Lemma for ~ dath . Auxili...
dalem40 38175 Lemma for ~ dath . Analog...
dalem41 38176 Lemma for ~ dath . (Contr...
dalem42 38177 Lemma for ~ dath . Auxili...
dalem43 38178 Lemma for ~ dath . Planes...
dalem44 38179 Lemma for ~ dath . Dummy ...
dalem45 38180 Lemma for ~ dath . Dummy ...
dalem46 38181 Lemma for ~ dath . Analog...
dalem47 38182 Lemma for ~ dath . Analog...
dalem48 38183 Lemma for ~ dath . Analog...
dalem49 38184 Lemma for ~ dath . Analog...
dalem50 38185 Lemma for ~ dath . Analog...
dalem51 38186 Lemma for ~ dath . Constr...
dalem52 38187 Lemma for ~ dath . Lines ...
dalem53 38188 Lemma for ~ dath . The au...
dalem54 38189 Lemma for ~ dath . Line `...
dalem55 38190 Lemma for ~ dath . Lines ...
dalem56 38191 Lemma for ~ dath . Analog...
dalem57 38192 Lemma for ~ dath . Axis o...
dalem58 38193 Lemma for ~ dath . Analog...
dalem59 38194 Lemma for ~ dath . Analog...
dalem60 38195 Lemma for ~ dath . ` B ` i...
dalem61 38196 Lemma for ~ dath . Show t...
dalem62 38197 Lemma for ~ dath . Elimin...
dalem63 38198 Lemma for ~ dath . Combin...
dath 38199 Desargues's theorem of pro...
dath2 38200 Version of Desargues's the...
lineset 38201 The set of lines in a Hilb...
isline 38202 The predicate "is a line"....
islinei 38203 Condition implying "is a l...
pointsetN 38204 The set of points in a Hil...
ispointN 38205 The predicate "is a point"...
atpointN 38206 The singleton of an atom i...
psubspset 38207 The set of projective subs...
ispsubsp 38208 The predicate "is a projec...
ispsubsp2 38209 The predicate "is a projec...
psubspi 38210 Property of a projective s...
psubspi2N 38211 Property of a projective s...
0psubN 38212 The empty set is a project...
snatpsubN 38213 The singleton of an atom i...
pointpsubN 38214 A point (singleton of an a...
linepsubN 38215 A line is a projective sub...
atpsubN 38216 The set of all atoms is a ...
psubssat 38217 A projective subspace cons...
psubatN 38218 A member of a projective s...
pmapfval 38219 The projective map of a Hi...
pmapval 38220 Value of the projective ma...
elpmap 38221 Member of a projective map...
pmapssat 38222 The projective map of a Hi...
pmapssbaN 38223 A weakening of ~ pmapssat ...
pmaple 38224 The projective map of a Hi...
pmap11 38225 The projective map of a Hi...
pmapat 38226 The projective map of an a...
elpmapat 38227 Member of the projective m...
pmap0 38228 Value of the projective ma...
pmapeq0 38229 A projective map value is ...
pmap1N 38230 Value of the projective ma...
pmapsub 38231 The projective map of a Hi...
pmapglbx 38232 The projective map of the ...
pmapglb 38233 The projective map of the ...
pmapglb2N 38234 The projective map of the ...
pmapglb2xN 38235 The projective map of the ...
pmapmeet 38236 The projective map of a me...
isline2 38237 Definition of line in term...
linepmap 38238 A line described with a pr...
isline3 38239 Definition of line in term...
isline4N 38240 Definition of line in term...
lneq2at 38241 A line equals the join of ...
lnatexN 38242 There is an atom in a line...
lnjatN 38243 Given an atom in a line, t...
lncvrelatN 38244 A lattice element covered ...
lncvrat 38245 A line covers the atoms it...
lncmp 38246 If two lines are comparabl...
2lnat 38247 Two intersecting lines int...
2atm2atN 38248 Two joins with a common at...
2llnma1b 38249 Generalization of ~ 2llnma...
2llnma1 38250 Two different intersecting...
2llnma3r 38251 Two different intersecting...
2llnma2 38252 Two different intersecting...
2llnma2rN 38253 Two different intersecting...
cdlema1N 38254 A condition for required f...
cdlema2N 38255 A condition for required f...
cdlemblem 38256 Lemma for ~ cdlemb . (Con...
cdlemb 38257 Given two atoms not less t...
paddfval 38260 Projective subspace sum op...
paddval 38261 Projective subspace sum op...
elpadd 38262 Member of a projective sub...
elpaddn0 38263 Member of projective subsp...
paddvaln0N 38264 Projective subspace sum op...
elpaddri 38265 Condition implying members...
elpaddatriN 38266 Condition implying members...
elpaddat 38267 Membership in a projective...
elpaddatiN 38268 Consequence of membership ...
elpadd2at 38269 Membership in a projective...
elpadd2at2 38270 Membership in a projective...
paddunssN 38271 Projective subspace sum in...
elpadd0 38272 Member of projective subsp...
paddval0 38273 Projective subspace sum wi...
padd01 38274 Projective subspace sum wi...
padd02 38275 Projective subspace sum wi...
paddcom 38276 Projective subspace sum co...
paddssat 38277 A projective subspace sum ...
sspadd1 38278 A projective subspace sum ...
sspadd2 38279 A projective subspace sum ...
paddss1 38280 Subset law for projective ...
paddss2 38281 Subset law for projective ...
paddss12 38282 Subset law for projective ...
paddasslem1 38283 Lemma for ~ paddass . (Co...
paddasslem2 38284 Lemma for ~ paddass . (Co...
paddasslem3 38285 Lemma for ~ paddass . Res...
paddasslem4 38286 Lemma for ~ paddass . Com...
paddasslem5 38287 Lemma for ~ paddass . Sho...
paddasslem6 38288 Lemma for ~ paddass . (Co...
paddasslem7 38289 Lemma for ~ paddass . Com...
paddasslem8 38290 Lemma for ~ paddass . (Co...
paddasslem9 38291 Lemma for ~ paddass . Com...
paddasslem10 38292 Lemma for ~ paddass . Use...
paddasslem11 38293 Lemma for ~ paddass . The...
paddasslem12 38294 Lemma for ~ paddass . The...
paddasslem13 38295 Lemma for ~ paddass . The...
paddasslem14 38296 Lemma for ~ paddass . Rem...
paddasslem15 38297 Lemma for ~ paddass . Use...
paddasslem16 38298 Lemma for ~ paddass . Use...
paddasslem17 38299 Lemma for ~ paddass . The...
paddasslem18 38300 Lemma for ~ paddass . Com...
paddass 38301 Projective subspace sum is...
padd12N 38302 Commutative/associative la...
padd4N 38303 Rearrangement of 4 terms i...
paddidm 38304 Projective subspace sum is...
paddclN 38305 The projective sum of two ...
paddssw1 38306 Subset law for projective ...
paddssw2 38307 Subset law for projective ...
paddss 38308 Subset law for projective ...
pmodlem1 38309 Lemma for ~ pmod1i . (Con...
pmodlem2 38310 Lemma for ~ pmod1i . (Con...
pmod1i 38311 The modular law holds in a...
pmod2iN 38312 Dual of the modular law. ...
pmodN 38313 The modular law for projec...
pmodl42N 38314 Lemma derived from modular...
pmapjoin 38315 The projective map of the ...
pmapjat1 38316 The projective map of the ...
pmapjat2 38317 The projective map of the ...
pmapjlln1 38318 The projective map of the ...
hlmod1i 38319 A version of the modular l...
atmod1i1 38320 Version of modular law ~ p...
atmod1i1m 38321 Version of modular law ~ p...
atmod1i2 38322 Version of modular law ~ p...
llnmod1i2 38323 Version of modular law ~ p...
atmod2i1 38324 Version of modular law ~ p...
atmod2i2 38325 Version of modular law ~ p...
llnmod2i2 38326 Version of modular law ~ p...
atmod3i1 38327 Version of modular law tha...
atmod3i2 38328 Version of modular law tha...
atmod4i1 38329 Version of modular law tha...
atmod4i2 38330 Version of modular law tha...
llnexchb2lem 38331 Lemma for ~ llnexchb2 . (...
llnexchb2 38332 Line exchange property (co...
llnexch2N 38333 Line exchange property (co...
dalawlem1 38334 Lemma for ~ dalaw . Speci...
dalawlem2 38335 Lemma for ~ dalaw . Utili...
dalawlem3 38336 Lemma for ~ dalaw . First...
dalawlem4 38337 Lemma for ~ dalaw . Secon...
dalawlem5 38338 Lemma for ~ dalaw . Speci...
dalawlem6 38339 Lemma for ~ dalaw . First...
dalawlem7 38340 Lemma for ~ dalaw . Secon...
dalawlem8 38341 Lemma for ~ dalaw . Speci...
dalawlem9 38342 Lemma for ~ dalaw . Speci...
dalawlem10 38343 Lemma for ~ dalaw . Combi...
dalawlem11 38344 Lemma for ~ dalaw . First...
dalawlem12 38345 Lemma for ~ dalaw . Secon...
dalawlem13 38346 Lemma for ~ dalaw . Speci...
dalawlem14 38347 Lemma for ~ dalaw . Combi...
dalawlem15 38348 Lemma for ~ dalaw . Swap ...
dalaw 38349 Desargues's law, derived f...
pclfvalN 38352 The projective subspace cl...
pclvalN 38353 Value of the projective su...
pclclN 38354 Closure of the projective ...
elpclN 38355 Membership in the projecti...
elpcliN 38356 Implication of membership ...
pclssN 38357 Ordering is preserved by s...
pclssidN 38358 A set of atoms is included...
pclidN 38359 The projective subspace cl...
pclbtwnN 38360 A projective subspace sand...
pclunN 38361 The projective subspace cl...
pclun2N 38362 The projective subspace cl...
pclfinN 38363 The projective subspace cl...
pclcmpatN 38364 The set of projective subs...
polfvalN 38367 The projective subspace po...
polvalN 38368 Value of the projective su...
polval2N 38369 Alternate expression for v...
polsubN 38370 The polarity of a set of a...
polssatN 38371 The polarity of a set of a...
pol0N 38372 The polarity of the empty ...
pol1N 38373 The polarity of the whole ...
2pol0N 38374 The closed subspace closur...
polpmapN 38375 The polarity of a projecti...
2polpmapN 38376 Double polarity of a proje...
2polvalN 38377 Value of double polarity. ...
2polssN 38378 A set of atoms is a subset...
3polN 38379 Triple polarity cancels to...
polcon3N 38380 Contraposition law for pol...
2polcon4bN 38381 Contraposition law for pol...
polcon2N 38382 Contraposition law for pol...
polcon2bN 38383 Contraposition law for pol...
pclss2polN 38384 The projective subspace cl...
pcl0N 38385 The projective subspace cl...
pcl0bN 38386 The projective subspace cl...
pmaplubN 38387 The LUB of a projective ma...
sspmaplubN 38388 A set of atoms is a subset...
2pmaplubN 38389 Double projective map of a...
paddunN 38390 The closure of the project...
poldmj1N 38391 De Morgan's law for polari...
pmapj2N 38392 The projective map of the ...
pmapocjN 38393 The projective map of the ...
polatN 38394 The polarity of the single...
2polatN 38395 Double polarity of the sin...
pnonsingN 38396 The intersection of a set ...
psubclsetN 38399 The set of closed projecti...
ispsubclN 38400 The predicate "is a closed...
psubcliN 38401 Property of a closed proje...
psubcli2N 38402 Property of a closed proje...
psubclsubN 38403 A closed projective subspa...
psubclssatN 38404 A closed projective subspa...
pmapidclN 38405 Projective map of the LUB ...
0psubclN 38406 The empty set is a closed ...
1psubclN 38407 The set of all atoms is a ...
atpsubclN 38408 A point (singleton of an a...
pmapsubclN 38409 A projective map value is ...
ispsubcl2N 38410 Alternate predicate for "i...
psubclinN 38411 The intersection of two cl...
paddatclN 38412 The projective sum of a cl...
pclfinclN 38413 The projective subspace cl...
linepsubclN 38414 A line is a closed project...
polsubclN 38415 A polarity is a closed pro...
poml4N 38416 Orthomodular law for proje...
poml5N 38417 Orthomodular law for proje...
poml6N 38418 Orthomodular law for proje...
osumcllem1N 38419 Lemma for ~ osumclN . (Co...
osumcllem2N 38420 Lemma for ~ osumclN . (Co...
osumcllem3N 38421 Lemma for ~ osumclN . (Co...
osumcllem4N 38422 Lemma for ~ osumclN . (Co...
osumcllem5N 38423 Lemma for ~ osumclN . (Co...
osumcllem6N 38424 Lemma for ~ osumclN . Use...
osumcllem7N 38425 Lemma for ~ osumclN . (Co...
osumcllem8N 38426 Lemma for ~ osumclN . (Co...
osumcllem9N 38427 Lemma for ~ osumclN . (Co...
osumcllem10N 38428 Lemma for ~ osumclN . Con...
osumcllem11N 38429 Lemma for ~ osumclN . (Co...
osumclN 38430 Closure of orthogonal sum....
pmapojoinN 38431 For orthogonal elements, p...
pexmidN 38432 Excluded middle law for cl...
pexmidlem1N 38433 Lemma for ~ pexmidN . Hol...
pexmidlem2N 38434 Lemma for ~ pexmidN . (Co...
pexmidlem3N 38435 Lemma for ~ pexmidN . Use...
pexmidlem4N 38436 Lemma for ~ pexmidN . (Co...
pexmidlem5N 38437 Lemma for ~ pexmidN . (Co...
pexmidlem6N 38438 Lemma for ~ pexmidN . (Co...
pexmidlem7N 38439 Lemma for ~ pexmidN . Con...
pexmidlem8N 38440 Lemma for ~ pexmidN . The...
pexmidALTN 38441 Excluded middle law for cl...
pl42lem1N 38442 Lemma for ~ pl42N . (Cont...
pl42lem2N 38443 Lemma for ~ pl42N . (Cont...
pl42lem3N 38444 Lemma for ~ pl42N . (Cont...
pl42lem4N 38445 Lemma for ~ pl42N . (Cont...
pl42N 38446 Law holding in a Hilbert l...
watfvalN 38455 The W atoms function. (Co...
watvalN 38456 Value of the W atoms funct...
iswatN 38457 The predicate "is a W atom...
lhpset 38458 The set of co-atoms (latti...
islhp 38459 The predicate "is a co-ato...
islhp2 38460 The predicate "is a co-ato...
lhpbase 38461 A co-atom is a member of t...
lhp1cvr 38462 The lattice unity covers a...
lhplt 38463 An atom under a co-atom is...
lhp2lt 38464 The join of two atoms unde...
lhpexlt 38465 There exists an atom less ...
lhp0lt 38466 A co-atom is greater than ...
lhpn0 38467 A co-atom is nonzero. TOD...
lhpexle 38468 There exists an atom under...
lhpexnle 38469 There exists an atom not u...
lhpexle1lem 38470 Lemma for ~ lhpexle1 and o...
lhpexle1 38471 There exists an atom under...
lhpexle2lem 38472 Lemma for ~ lhpexle2 . (C...
lhpexle2 38473 There exists atom under a ...
lhpexle3lem 38474 There exists atom under a ...
lhpexle3 38475 There exists atom under a ...
lhpex2leN 38476 There exist at least two d...
lhpoc 38477 The orthocomplement of a c...
lhpoc2N 38478 The orthocomplement of an ...
lhpocnle 38479 The orthocomplement of a c...
lhpocat 38480 The orthocomplement of a c...
lhpocnel 38481 The orthocomplement of a c...
lhpocnel2 38482 The orthocomplement of a c...
lhpjat1 38483 The join of a co-atom (hyp...
lhpjat2 38484 The join of a co-atom (hyp...
lhpj1 38485 The join of a co-atom (hyp...
lhpmcvr 38486 The meet of a lattice hype...
lhpmcvr2 38487 Alternate way to express t...
lhpmcvr3 38488 Specialization of ~ lhpmcv...
lhpmcvr4N 38489 Specialization of ~ lhpmcv...
lhpmcvr5N 38490 Specialization of ~ lhpmcv...
lhpmcvr6N 38491 Specialization of ~ lhpmcv...
lhpm0atN 38492 If the meet of a lattice h...
lhpmat 38493 An element covered by the ...
lhpmatb 38494 An element covered by the ...
lhp2at0 38495 Join and meet with differe...
lhp2atnle 38496 Inequality for 2 different...
lhp2atne 38497 Inequality for joins with ...
lhp2at0nle 38498 Inequality for 2 different...
lhp2at0ne 38499 Inequality for joins with ...
lhpelim 38500 Eliminate an atom not unde...
lhpmod2i2 38501 Modular law for hyperplane...
lhpmod6i1 38502 Modular law for hyperplane...
lhprelat3N 38503 The Hilbert lattice is rel...
cdlemb2 38504 Given two atoms not under ...
lhple 38505 Property of a lattice elem...
lhpat 38506 Create an atom under a co-...
lhpat4N 38507 Property of an atom under ...
lhpat2 38508 Create an atom under a co-...
lhpat3 38509 There is only one atom und...
4atexlemk 38510 Lemma for ~ 4atexlem7 . (...
4atexlemw 38511 Lemma for ~ 4atexlem7 . (...
4atexlempw 38512 Lemma for ~ 4atexlem7 . (...
4atexlemp 38513 Lemma for ~ 4atexlem7 . (...
4atexlemq 38514 Lemma for ~ 4atexlem7 . (...
4atexlems 38515 Lemma for ~ 4atexlem7 . (...
4atexlemt 38516 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 38517 Lemma for ~ 4atexlem7 . (...
4atexlempnq 38518 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 38519 Lemma for ~ 4atexlem7 . (...
4atexlemkl 38520 Lemma for ~ 4atexlem7 . (...
4atexlemkc 38521 Lemma for ~ 4atexlem7 . (...
4atexlemwb 38522 Lemma for ~ 4atexlem7 . (...
4atexlempsb 38523 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 38524 Lemma for ~ 4atexlem7 . (...
4atexlempns 38525 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 38526 Lemma for ~ 4atexlem7 . S...
4atexlemu 38527 Lemma for ~ 4atexlem7 . (...
4atexlemv 38528 Lemma for ~ 4atexlem7 . (...
4atexlemunv 38529 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 38530 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 38531 Lemma for ~ 4atexlem7 . (...
4atexlemc 38532 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 38533 Lemma for ~ 4atexlem7 . (...
4atexlemex2 38534 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 38535 Lemma for ~ 4atexlem7 . (...
4atexlemex4 38536 Lemma for ~ 4atexlem7 . S...
4atexlemex6 38537 Lemma for ~ 4atexlem7 . (...
4atexlem7 38538 Whenever there are at leas...
4atex 38539 Whenever there are at leas...
4atex2 38540 More general version of ~ ...
4atex2-0aOLDN 38541 Same as ~ 4atex2 except th...
4atex2-0bOLDN 38542 Same as ~ 4atex2 except th...
4atex2-0cOLDN 38543 Same as ~ 4atex2 except th...
4atex3 38544 More general version of ~ ...
lautset 38545 The set of lattice automor...
islaut 38546 The predicate "is a lattic...
lautle 38547 Less-than or equal propert...
laut1o 38548 A lattice automorphism is ...
laut11 38549 One-to-one property of a l...
lautcl 38550 A lattice automorphism val...
lautcnvclN 38551 Reverse closure of a latti...
lautcnvle 38552 Less-than or equal propert...
lautcnv 38553 The converse of a lattice ...
lautlt 38554 Less-than property of a la...
lautcvr 38555 Covering property of a lat...
lautj 38556 Meet property of a lattice...
lautm 38557 Meet property of a lattice...
lauteq 38558 A lattice automorphism arg...
idlaut 38559 The identity function is a...
lautco 38560 The composition of two lat...
pautsetN 38561 The set of projective auto...
ispautN 38562 The predicate "is a projec...
ldilfset 38571 The mapping from fiducial ...
ldilset 38572 The set of lattice dilatio...
isldil 38573 The predicate "is a lattic...
ldillaut 38574 A lattice dilation is an a...
ldil1o 38575 A lattice dilation is a on...
ldilval 38576 Value of a lattice dilatio...
idldil 38577 The identity function is a...
ldilcnv 38578 The converse of a lattice ...
ldilco 38579 The composition of two lat...
ltrnfset 38580 The set of all lattice tra...
ltrnset 38581 The set of lattice transla...
isltrn 38582 The predicate "is a lattic...
isltrn2N 38583 The predicate "is a lattic...
ltrnu 38584 Uniqueness property of a l...
ltrnldil 38585 A lattice translation is a...
ltrnlaut 38586 A lattice translation is a...
ltrn1o 38587 A lattice translation is a...
ltrncl 38588 Closure of a lattice trans...
ltrn11 38589 One-to-one property of a l...
ltrncnvnid 38590 If a translation is differ...
ltrncoidN 38591 Two translations are equal...
ltrnle 38592 Less-than or equal propert...
ltrncnvleN 38593 Less-than or equal propert...
ltrnm 38594 Lattice translation of a m...
ltrnj 38595 Lattice translation of a m...
ltrncvr 38596 Covering property of a lat...
ltrnval1 38597 Value of a lattice transla...
ltrnid 38598 A lattice translation is t...
ltrnnid 38599 If a lattice translation i...
ltrnatb 38600 The lattice translation of...
ltrncnvatb 38601 The converse of the lattic...
ltrnel 38602 The lattice translation of...
ltrnat 38603 The lattice translation of...
ltrncnvat 38604 The converse of the lattic...
ltrncnvel 38605 The converse of the lattic...
ltrncoelN 38606 Composition of lattice tra...
ltrncoat 38607 Composition of lattice tra...
ltrncoval 38608 Two ways to express value ...
ltrncnv 38609 The converse of a lattice ...
ltrn11at 38610 Frequently used one-to-one...
ltrneq2 38611 The equality of two transl...
ltrneq 38612 The equality of two transl...
idltrn 38613 The identity function is a...
ltrnmw 38614 Property of lattice transl...
dilfsetN 38615 The mapping from fiducial ...
dilsetN 38616 The set of dilations for a...
isdilN 38617 The predicate "is a dilati...
trnfsetN 38618 The mapping from fiducial ...
trnsetN 38619 The set of translations fo...
istrnN 38620 The predicate "is a transl...
trlfset 38623 The set of all traces of l...
trlset 38624 The set of traces of latti...
trlval 38625 The value of the trace of ...
trlval2 38626 The value of the trace of ...
trlcl 38627 Closure of the trace of a ...
trlcnv 38628 The trace of the converse ...
trljat1 38629 The value of a translation...
trljat2 38630 The value of a translation...
trljat3 38631 The value of a translation...
trlat 38632 If an atom differs from it...
trl0 38633 If an atom not under the f...
trlator0 38634 The trace of a lattice tra...
trlatn0 38635 The trace of a lattice tra...
trlnidat 38636 The trace of a lattice tra...
ltrnnidn 38637 If a lattice translation i...
ltrnideq 38638 Property of the identity l...
trlid0 38639 The trace of the identity ...
trlnidatb 38640 A lattice translation is n...
trlid0b 38641 A lattice translation is t...
trlnid 38642 Different translations wit...
ltrn2ateq 38643 Property of the equality o...
ltrnateq 38644 If any atom (under ` W ` )...
ltrnatneq 38645 If any atom (under ` W ` )...
ltrnatlw 38646 If the value of an atom eq...
trlle 38647 The trace of a lattice tra...
trlne 38648 The trace of a lattice tra...
trlnle 38649 The atom not under the fid...
trlval3 38650 The value of the trace of ...
trlval4 38651 The value of the trace of ...
trlval5 38652 The value of the trace of ...
arglem1N 38653 Lemma for Desargues's law....
cdlemc1 38654 Part of proof of Lemma C i...
cdlemc2 38655 Part of proof of Lemma C i...
cdlemc3 38656 Part of proof of Lemma C i...
cdlemc4 38657 Part of proof of Lemma C i...
cdlemc5 38658 Lemma for ~ cdlemc . (Con...
cdlemc6 38659 Lemma for ~ cdlemc . (Con...
cdlemc 38660 Lemma C in [Crawley] p. 11...
cdlemd1 38661 Part of proof of Lemma D i...
cdlemd2 38662 Part of proof of Lemma D i...
cdlemd3 38663 Part of proof of Lemma D i...
cdlemd4 38664 Part of proof of Lemma D i...
cdlemd5 38665 Part of proof of Lemma D i...
cdlemd6 38666 Part of proof of Lemma D i...
cdlemd7 38667 Part of proof of Lemma D i...
cdlemd8 38668 Part of proof of Lemma D i...
cdlemd9 38669 Part of proof of Lemma D i...
cdlemd 38670 If two translations agree ...
ltrneq3 38671 Two translations agree at ...
cdleme00a 38672 Part of proof of Lemma E i...
cdleme0aa 38673 Part of proof of Lemma E i...
cdleme0a 38674 Part of proof of Lemma E i...
cdleme0b 38675 Part of proof of Lemma E i...
cdleme0c 38676 Part of proof of Lemma E i...
cdleme0cp 38677 Part of proof of Lemma E i...
cdleme0cq 38678 Part of proof of Lemma E i...
cdleme0dN 38679 Part of proof of Lemma E i...
cdleme0e 38680 Part of proof of Lemma E i...
cdleme0fN 38681 Part of proof of Lemma E i...
cdleme0gN 38682 Part of proof of Lemma E i...
cdlemeulpq 38683 Part of proof of Lemma E i...
cdleme01N 38684 Part of proof of Lemma E i...
cdleme02N 38685 Part of proof of Lemma E i...
cdleme0ex1N 38686 Part of proof of Lemma E i...
cdleme0ex2N 38687 Part of proof of Lemma E i...
cdleme0moN 38688 Part of proof of Lemma E i...
cdleme1b 38689 Part of proof of Lemma E i...
cdleme1 38690 Part of proof of Lemma E i...
cdleme2 38691 Part of proof of Lemma E i...
cdleme3b 38692 Part of proof of Lemma E i...
cdleme3c 38693 Part of proof of Lemma E i...
cdleme3d 38694 Part of proof of Lemma E i...
cdleme3e 38695 Part of proof of Lemma E i...
cdleme3fN 38696 Part of proof of Lemma E i...
cdleme3g 38697 Part of proof of Lemma E i...
cdleme3h 38698 Part of proof of Lemma E i...
cdleme3fa 38699 Part of proof of Lemma E i...
cdleme3 38700 Part of proof of Lemma E i...
cdleme4 38701 Part of proof of Lemma E i...
cdleme4a 38702 Part of proof of Lemma E i...
cdleme5 38703 Part of proof of Lemma E i...
cdleme6 38704 Part of proof of Lemma E i...
cdleme7aa 38705 Part of proof of Lemma E i...
cdleme7a 38706 Part of proof of Lemma E i...
cdleme7b 38707 Part of proof of Lemma E i...
cdleme7c 38708 Part of proof of Lemma E i...
cdleme7d 38709 Part of proof of Lemma E i...
cdleme7e 38710 Part of proof of Lemma E i...
cdleme7ga 38711 Part of proof of Lemma E i...
cdleme7 38712 Part of proof of Lemma E i...
cdleme8 38713 Part of proof of Lemma E i...
cdleme9a 38714 Part of proof of Lemma E i...
cdleme9b 38715 Utility lemma for Lemma E ...
cdleme9 38716 Part of proof of Lemma E i...
cdleme10 38717 Part of proof of Lemma E i...
cdleme8tN 38718 Part of proof of Lemma E i...
cdleme9taN 38719 Part of proof of Lemma E i...
cdleme9tN 38720 Part of proof of Lemma E i...
cdleme10tN 38721 Part of proof of Lemma E i...
cdleme16aN 38722 Part of proof of Lemma E i...
cdleme11a 38723 Part of proof of Lemma E i...
cdleme11c 38724 Part of proof of Lemma E i...
cdleme11dN 38725 Part of proof of Lemma E i...
cdleme11e 38726 Part of proof of Lemma E i...
cdleme11fN 38727 Part of proof of Lemma E i...
cdleme11g 38728 Part of proof of Lemma E i...
cdleme11h 38729 Part of proof of Lemma E i...
cdleme11j 38730 Part of proof of Lemma E i...
cdleme11k 38731 Part of proof of Lemma E i...
cdleme11l 38732 Part of proof of Lemma E i...
cdleme11 38733 Part of proof of Lemma E i...
cdleme12 38734 Part of proof of Lemma E i...
cdleme13 38735 Part of proof of Lemma E i...
cdleme14 38736 Part of proof of Lemma E i...
cdleme15a 38737 Part of proof of Lemma E i...
cdleme15b 38738 Part of proof of Lemma E i...
cdleme15c 38739 Part of proof of Lemma E i...
cdleme15d 38740 Part of proof of Lemma E i...
cdleme15 38741 Part of proof of Lemma E i...
cdleme16b 38742 Part of proof of Lemma E i...
cdleme16c 38743 Part of proof of Lemma E i...
cdleme16d 38744 Part of proof of Lemma E i...
cdleme16e 38745 Part of proof of Lemma E i...
cdleme16f 38746 Part of proof of Lemma E i...
cdleme16g 38747 Part of proof of Lemma E i...
cdleme16 38748 Part of proof of Lemma E i...
cdleme17a 38749 Part of proof of Lemma E i...
cdleme17b 38750 Lemma leading to ~ cdleme1...
cdleme17c 38751 Part of proof of Lemma E i...
cdleme17d1 38752 Part of proof of Lemma E i...
cdleme0nex 38753 Part of proof of Lemma E i...
cdleme18a 38754 Part of proof of Lemma E i...
cdleme18b 38755 Part of proof of Lemma E i...
cdleme18c 38756 Part of proof of Lemma E i...
cdleme22gb 38757 Utility lemma for Lemma E ...
cdleme18d 38758 Part of proof of Lemma E i...
cdlemesner 38759 Part of proof of Lemma E i...
cdlemedb 38760 Part of proof of Lemma E i...
cdlemeda 38761 Part of proof of Lemma E i...
cdlemednpq 38762 Part of proof of Lemma E i...
cdlemednuN 38763 Part of proof of Lemma E i...
cdleme20zN 38764 Part of proof of Lemma E i...
cdleme20y 38765 Part of proof of Lemma E i...
cdleme19a 38766 Part of proof of Lemma E i...
cdleme19b 38767 Part of proof of Lemma E i...
cdleme19c 38768 Part of proof of Lemma E i...
cdleme19d 38769 Part of proof of Lemma E i...
cdleme19e 38770 Part of proof of Lemma E i...
cdleme19f 38771 Part of proof of Lemma E i...
cdleme20aN 38772 Part of proof of Lemma E i...
cdleme20bN 38773 Part of proof of Lemma E i...
cdleme20c 38774 Part of proof of Lemma E i...
cdleme20d 38775 Part of proof of Lemma E i...
cdleme20e 38776 Part of proof of Lemma E i...
cdleme20f 38777 Part of proof of Lemma E i...
cdleme20g 38778 Part of proof of Lemma E i...
cdleme20h 38779 Part of proof of Lemma E i...
cdleme20i 38780 Part of proof of Lemma E i...
cdleme20j 38781 Part of proof of Lemma E i...
cdleme20k 38782 Part of proof of Lemma E i...
cdleme20l1 38783 Part of proof of Lemma E i...
cdleme20l2 38784 Part of proof of Lemma E i...
cdleme20l 38785 Part of proof of Lemma E i...
cdleme20m 38786 Part of proof of Lemma E i...
cdleme20 38787 Combine ~ cdleme19f and ~ ...
cdleme21a 38788 Part of proof of Lemma E i...
cdleme21b 38789 Part of proof of Lemma E i...
cdleme21c 38790 Part of proof of Lemma E i...
cdleme21at 38791 Part of proof of Lemma E i...
cdleme21ct 38792 Part of proof of Lemma E i...
cdleme21d 38793 Part of proof of Lemma E i...
cdleme21e 38794 Part of proof of Lemma E i...
cdleme21f 38795 Part of proof of Lemma E i...
cdleme21g 38796 Part of proof of Lemma E i...
cdleme21h 38797 Part of proof of Lemma E i...
cdleme21i 38798 Part of proof of Lemma E i...
cdleme21j 38799 Combine ~ cdleme20 and ~ c...
cdleme21 38800 Part of proof of Lemma E i...
cdleme21k 38801 Eliminate ` S =/= T ` cond...
cdleme22aa 38802 Part of proof of Lemma E i...
cdleme22a 38803 Part of proof of Lemma E i...
cdleme22b 38804 Part of proof of Lemma E i...
cdleme22cN 38805 Part of proof of Lemma E i...
cdleme22d 38806 Part of proof of Lemma E i...
cdleme22e 38807 Part of proof of Lemma E i...
cdleme22eALTN 38808 Part of proof of Lemma E i...
cdleme22f 38809 Part of proof of Lemma E i...
cdleme22f2 38810 Part of proof of Lemma E i...
cdleme22g 38811 Part of proof of Lemma E i...
cdleme23a 38812 Part of proof of Lemma E i...
cdleme23b 38813 Part of proof of Lemma E i...
cdleme23c 38814 Part of proof of Lemma E i...
cdleme24 38815 Quantified version of ~ cd...
cdleme25a 38816 Lemma for ~ cdleme25b . (...
cdleme25b 38817 Transform ~ cdleme24 . TO...
cdleme25c 38818 Transform ~ cdleme25b . (...
cdleme25dN 38819 Transform ~ cdleme25c . (...
cdleme25cl 38820 Show closure of the unique...
cdleme25cv 38821 Change bound variables in ...
cdleme26e 38822 Part of proof of Lemma E i...
cdleme26ee 38823 Part of proof of Lemma E i...
cdleme26eALTN 38824 Part of proof of Lemma E i...
cdleme26fALTN 38825 Part of proof of Lemma E i...
cdleme26f 38826 Part of proof of Lemma E i...
cdleme26f2ALTN 38827 Part of proof of Lemma E i...
cdleme26f2 38828 Part of proof of Lemma E i...
cdleme27cl 38829 Part of proof of Lemma E i...
cdleme27a 38830 Part of proof of Lemma E i...
cdleme27b 38831 Lemma for ~ cdleme27N . (...
cdleme27N 38832 Part of proof of Lemma E i...
cdleme28a 38833 Lemma for ~ cdleme25b . T...
cdleme28b 38834 Lemma for ~ cdleme25b . T...
cdleme28c 38835 Part of proof of Lemma E i...
cdleme28 38836 Quantified version of ~ cd...
cdleme29ex 38837 Lemma for ~ cdleme29b . (...
cdleme29b 38838 Transform ~ cdleme28 . (C...
cdleme29c 38839 Transform ~ cdleme28b . (...
cdleme29cl 38840 Show closure of the unique...
cdleme30a 38841 Part of proof of Lemma E i...
cdleme31so 38842 Part of proof of Lemma E i...
cdleme31sn 38843 Part of proof of Lemma E i...
cdleme31sn1 38844 Part of proof of Lemma E i...
cdleme31se 38845 Part of proof of Lemma D i...
cdleme31se2 38846 Part of proof of Lemma D i...
cdleme31sc 38847 Part of proof of Lemma E i...
cdleme31sde 38848 Part of proof of Lemma D i...
cdleme31snd 38849 Part of proof of Lemma D i...
cdleme31sdnN 38850 Part of proof of Lemma E i...
cdleme31sn1c 38851 Part of proof of Lemma E i...
cdleme31sn2 38852 Part of proof of Lemma E i...
cdleme31fv 38853 Part of proof of Lemma E i...
cdleme31fv1 38854 Part of proof of Lemma E i...
cdleme31fv1s 38855 Part of proof of Lemma E i...
cdleme31fv2 38856 Part of proof of Lemma E i...
cdleme31id 38857 Part of proof of Lemma E i...
cdlemefrs29pre00 38858 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 38859 TODO fix comment. (Contri...
cdlemefrs29bpre1 38860 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 38861 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 38862 TODO: NOT USED? Show clo...
cdlemefrs32fva 38863 Part of proof of Lemma E i...
cdlemefrs32fva1 38864 Part of proof of Lemma E i...
cdlemefr29exN 38865 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 38866 Part of proof of Lemma E i...
cdlemefr32sn2aw 38867 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 38868 Show closure of ` [_ R / s...
cdlemefr29bpre0N 38869 TODO fix comment. (Contri...
cdlemefr29clN 38870 Show closure of the unique...
cdleme43frv1snN 38871 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 38872 Part of proof of Lemma E i...
cdlemefr32fva1 38873 Part of proof of Lemma E i...
cdlemefr31fv1 38874 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 38875 FIX COMMENT. TODO: see if ...
cdlemefs27cl 38876 Part of proof of Lemma E i...
cdlemefs32sn1aw 38877 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 38878 Show closure of ` [_ R / s...
cdlemefs29bpre0N 38879 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 38880 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 38881 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 38882 Show closure of the unique...
cdleme43fsv1snlem 38883 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 38884 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 38885 Part of proof of Lemma E i...
cdlemefs32fva1 38886 Part of proof of Lemma E i...
cdlemefs31fv1 38887 Value of ` ( F `` R ) ` wh...
cdlemefr44 38888 Value of f(r) when r is an...
cdlemefs44 38889 Value of f_s(r) when r is ...
cdlemefr45 38890 Value of f(r) when r is an...
cdlemefr45e 38891 Explicit expansion of ~ cd...
cdlemefs45 38892 Value of f_s(r) when r is ...
cdlemefs45ee 38893 Explicit expansion of ~ cd...
cdlemefs45eN 38894 Explicit expansion of ~ cd...
cdleme32sn1awN 38895 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 38896 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 38897 Show that ` [_ R / s ]_ N ...
cdleme32snaw 38898 Show that ` [_ R / s ]_ N ...
cdleme32snb 38899 Show closure of ` [_ R / s...
cdleme32fva 38900 Part of proof of Lemma D i...
cdleme32fva1 38901 Part of proof of Lemma D i...
cdleme32fvaw 38902 Show that ` ( F `` R ) ` i...
cdleme32fvcl 38903 Part of proof of Lemma D i...
cdleme32a 38904 Part of proof of Lemma D i...
cdleme32b 38905 Part of proof of Lemma D i...
cdleme32c 38906 Part of proof of Lemma D i...
cdleme32d 38907 Part of proof of Lemma D i...
cdleme32e 38908 Part of proof of Lemma D i...
cdleme32f 38909 Part of proof of Lemma D i...
cdleme32le 38910 Part of proof of Lemma D i...
cdleme35a 38911 Part of proof of Lemma E i...
cdleme35fnpq 38912 Part of proof of Lemma E i...
cdleme35b 38913 Part of proof of Lemma E i...
cdleme35c 38914 Part of proof of Lemma E i...
cdleme35d 38915 Part of proof of Lemma E i...
cdleme35e 38916 Part of proof of Lemma E i...
cdleme35f 38917 Part of proof of Lemma E i...
cdleme35g 38918 Part of proof of Lemma E i...
cdleme35h 38919 Part of proof of Lemma E i...
cdleme35h2 38920 Part of proof of Lemma E i...
cdleme35sn2aw 38921 Part of proof of Lemma E i...
cdleme35sn3a 38922 Part of proof of Lemma E i...
cdleme36a 38923 Part of proof of Lemma E i...
cdleme36m 38924 Part of proof of Lemma E i...
cdleme37m 38925 Part of proof of Lemma E i...
cdleme38m 38926 Part of proof of Lemma E i...
cdleme38n 38927 Part of proof of Lemma E i...
cdleme39a 38928 Part of proof of Lemma E i...
cdleme39n 38929 Part of proof of Lemma E i...
cdleme40m 38930 Part of proof of Lemma E i...
cdleme40n 38931 Part of proof of Lemma E i...
cdleme40v 38932 Part of proof of Lemma E i...
cdleme40w 38933 Part of proof of Lemma E i...
cdleme42a 38934 Part of proof of Lemma E i...
cdleme42c 38935 Part of proof of Lemma E i...
cdleme42d 38936 Part of proof of Lemma E i...
cdleme41sn3aw 38937 Part of proof of Lemma E i...
cdleme41sn4aw 38938 Part of proof of Lemma E i...
cdleme41snaw 38939 Part of proof of Lemma E i...
cdleme41fva11 38940 Part of proof of Lemma E i...
cdleme42b 38941 Part of proof of Lemma E i...
cdleme42e 38942 Part of proof of Lemma E i...
cdleme42f 38943 Part of proof of Lemma E i...
cdleme42g 38944 Part of proof of Lemma E i...
cdleme42h 38945 Part of proof of Lemma E i...
cdleme42i 38946 Part of proof of Lemma E i...
cdleme42k 38947 Part of proof of Lemma E i...
cdleme42ke 38948 Part of proof of Lemma E i...
cdleme42keg 38949 Part of proof of Lemma E i...
cdleme42mN 38950 Part of proof of Lemma E i...
cdleme42mgN 38951 Part of proof of Lemma E i...
cdleme43aN 38952 Part of proof of Lemma E i...
cdleme43bN 38953 Lemma for Lemma E in [Craw...
cdleme43cN 38954 Part of proof of Lemma E i...
cdleme43dN 38955 Part of proof of Lemma E i...
cdleme46f2g2 38956 Conversion for ` G ` to re...
cdleme46f2g1 38957 Conversion for ` G ` to re...
cdleme17d2 38958 Part of proof of Lemma E i...
cdleme17d3 38959 TODO: FIX COMMENT. (Contr...
cdleme17d4 38960 TODO: FIX COMMENT. (Contr...
cdleme17d 38961 Part of proof of Lemma E i...
cdleme48fv 38962 Part of proof of Lemma D i...
cdleme48fvg 38963 Remove ` P =/= Q ` conditi...
cdleme46fvaw 38964 Show that ` ( F `` R ) ` i...
cdleme48bw 38965 TODO: fix comment. TODO: ...
cdleme48b 38966 TODO: fix comment. (Contr...
cdleme46frvlpq 38967 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 38968 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 38969 TODO: fix comment. (Contr...
cdleme4gfv 38970 Part of proof of Lemma D i...
cdlemeg47b 38971 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 38972 Value of g_s(r) when r is ...
cdlemeg47rv2 38973 Value of g_s(r) when r is ...
cdlemeg49le 38974 Part of proof of Lemma D i...
cdlemeg46bOLDN 38975 TODO FIX COMMENT. (Contrib...
cdlemeg46c 38976 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 38977 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 38978 Value of g_s(r) when r is ...
cdlemeg46fvaw 38979 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 38980 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 38981 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 38982 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 38983 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 38984 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 38985 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 38986 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 38987 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 38988 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 38989 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 38990 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 38991 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 38992 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 38993 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 38994 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 38995 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 38996 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 38997 TODO FIX COMMENT p. 116 pe...
cdleme48d 38998 TODO: fix comment. (Contr...
cdleme48gfv1 38999 TODO: fix comment. (Contr...
cdleme48gfv 39000 TODO: fix comment. (Contr...
cdleme48fgv 39001 TODO: fix comment. (Contr...
cdlemeg49lebilem 39002 Part of proof of Lemma D i...
cdleme50lebi 39003 Part of proof of Lemma D i...
cdleme50eq 39004 Part of proof of Lemma D i...
cdleme50f 39005 Part of proof of Lemma D i...
cdleme50f1 39006 Part of proof of Lemma D i...
cdleme50rnlem 39007 Part of proof of Lemma D i...
cdleme50rn 39008 Part of proof of Lemma D i...
cdleme50f1o 39009 Part of proof of Lemma D i...
cdleme50laut 39010 Part of proof of Lemma D i...
cdleme50ldil 39011 Part of proof of Lemma D i...
cdleme50trn1 39012 Part of proof that ` F ` i...
cdleme50trn2a 39013 Part of proof that ` F ` i...
cdleme50trn2 39014 Part of proof that ` F ` i...
cdleme50trn12 39015 Part of proof that ` F ` i...
cdleme50trn3 39016 Part of proof that ` F ` i...
cdleme50trn123 39017 Part of proof that ` F ` i...
cdleme51finvfvN 39018 Part of proof of Lemma E i...
cdleme51finvN 39019 Part of proof of Lemma E i...
cdleme50ltrn 39020 Part of proof of Lemma E i...
cdleme51finvtrN 39021 Part of proof of Lemma E i...
cdleme50ex 39022 Part of Lemma E in [Crawle...
cdleme 39023 Lemma E in [Crawley] p. 11...
cdlemf1 39024 Part of Lemma F in [Crawle...
cdlemf2 39025 Part of Lemma F in [Crawle...
cdlemf 39026 Lemma F in [Crawley] p. 11...
cdlemfnid 39027 ~ cdlemf with additional c...
cdlemftr3 39028 Special case of ~ cdlemf s...
cdlemftr2 39029 Special case of ~ cdlemf s...
cdlemftr1 39030 Part of proof of Lemma G o...
cdlemftr0 39031 Special case of ~ cdlemf s...
trlord 39032 The ordering of two Hilber...
cdlemg1a 39033 Shorter expression for ` G...
cdlemg1b2 39034 This theorem can be used t...
cdlemg1idlemN 39035 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 39036 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 39037 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 39038 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 39039 This theorem can be used t...
cdlemg1idN 39040 Version of ~ cdleme31id wi...
ltrniotafvawN 39041 Version of ~ cdleme46fvaw ...
ltrniotacl 39042 Version of ~ cdleme50ltrn ...
ltrniotacnvN 39043 Version of ~ cdleme51finvt...
ltrniotaval 39044 Value of the unique transl...
ltrniotacnvval 39045 Converse value of the uniq...
ltrniotaidvalN 39046 Value of the unique transl...
ltrniotavalbN 39047 Value of the unique transl...
cdlemeiota 39048 A translation is uniquely ...
cdlemg1ci2 39049 Any function of the form o...
cdlemg1cN 39050 Any translation belongs to...
cdlemg1cex 39051 Any translation is one of ...
cdlemg2cN 39052 Any translation belongs to...
cdlemg2dN 39053 This theorem can be used t...
cdlemg2cex 39054 Any translation is one of ...
cdlemg2ce 39055 Utility theorem to elimina...
cdlemg2jlemOLDN 39056 Part of proof of Lemma E i...
cdlemg2fvlem 39057 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 39058 ~ cdleme42keg with simpler...
cdlemg2idN 39059 Version of ~ cdleme31id wi...
cdlemg3a 39060 Part of proof of Lemma G i...
cdlemg2jOLDN 39061 TODO: Replace this with ~...
cdlemg2fv 39062 Value of a translation in ...
cdlemg2fv2 39063 Value of a translation in ...
cdlemg2k 39064 ~ cdleme42keg with simpler...
cdlemg2kq 39065 ~ cdlemg2k with ` P ` and ...
cdlemg2l 39066 TODO: FIX COMMENT. (Contr...
cdlemg2m 39067 TODO: FIX COMMENT. (Contr...
cdlemg5 39068 TODO: Is there a simpler ...
cdlemb3 39069 Given two atoms not under ...
cdlemg7fvbwN 39070 Properties of a translatio...
cdlemg4a 39071 TODO: FIX COMMENT If fg(p...
cdlemg4b1 39072 TODO: FIX COMMENT. (Contr...
cdlemg4b2 39073 TODO: FIX COMMENT. (Contr...
cdlemg4b12 39074 TODO: FIX COMMENT. (Contr...
cdlemg4c 39075 TODO: FIX COMMENT. (Contr...
cdlemg4d 39076 TODO: FIX COMMENT. (Contr...
cdlemg4e 39077 TODO: FIX COMMENT. (Contr...
cdlemg4f 39078 TODO: FIX COMMENT. (Contr...
cdlemg4g 39079 TODO: FIX COMMENT. (Contr...
cdlemg4 39080 TODO: FIX COMMENT. (Contr...
cdlemg6a 39081 TODO: FIX COMMENT. TODO: ...
cdlemg6b 39082 TODO: FIX COMMENT. TODO: ...
cdlemg6c 39083 TODO: FIX COMMENT. (Contr...
cdlemg6d 39084 TODO: FIX COMMENT. (Contr...
cdlemg6e 39085 TODO: FIX COMMENT. (Contr...
cdlemg6 39086 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 39087 Value of a translation com...
cdlemg7aN 39088 TODO: FIX COMMENT. (Contr...
cdlemg7N 39089 TODO: FIX COMMENT. (Contr...
cdlemg8a 39090 TODO: FIX COMMENT. (Contr...
cdlemg8b 39091 TODO: FIX COMMENT. (Contr...
cdlemg8c 39092 TODO: FIX COMMENT. (Contr...
cdlemg8d 39093 TODO: FIX COMMENT. (Contr...
cdlemg8 39094 TODO: FIX COMMENT. (Contr...
cdlemg9a 39095 TODO: FIX COMMENT. (Contr...
cdlemg9b 39096 The triples ` <. P , ( F `...
cdlemg9 39097 The triples ` <. P , ( F `...
cdlemg10b 39098 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 39099 TODO: FIX COMMENT. TODO: ...
cdlemg11a 39100 TODO: FIX COMMENT. (Contr...
cdlemg11aq 39101 TODO: FIX COMMENT. TODO: ...
cdlemg10c 39102 TODO: FIX COMMENT. TODO: ...
cdlemg10a 39103 TODO: FIX COMMENT. (Contr...
cdlemg10 39104 TODO: FIX COMMENT. (Contr...
cdlemg11b 39105 TODO: FIX COMMENT. (Contr...
cdlemg12a 39106 TODO: FIX COMMENT. (Contr...
cdlemg12b 39107 The triples ` <. P , ( F `...
cdlemg12c 39108 The triples ` <. P , ( F `...
cdlemg12d 39109 TODO: FIX COMMENT. (Contr...
cdlemg12e 39110 TODO: FIX COMMENT. (Contr...
cdlemg12f 39111 TODO: FIX COMMENT. (Contr...
cdlemg12g 39112 TODO: FIX COMMENT. TODO: ...
cdlemg12 39113 TODO: FIX COMMENT. (Contr...
cdlemg13a 39114 TODO: FIX COMMENT. (Contr...
cdlemg13 39115 TODO: FIX COMMENT. (Contr...
cdlemg14f 39116 TODO: FIX COMMENT. (Contr...
cdlemg14g 39117 TODO: FIX COMMENT. (Contr...
cdlemg15a 39118 Eliminate the ` ( F `` P )...
cdlemg15 39119 Eliminate the ` ( (...
cdlemg16 39120 Part of proof of Lemma G o...
cdlemg16ALTN 39121 This version of ~ cdlemg16...
cdlemg16z 39122 Eliminate ` ( ( F `...
cdlemg16zz 39123 Eliminate ` P =/= Q ` from...
cdlemg17a 39124 TODO: FIX COMMENT. (Contr...
cdlemg17b 39125 Part of proof of Lemma G i...
cdlemg17dN 39126 TODO: fix comment. (Contr...
cdlemg17dALTN 39127 Same as ~ cdlemg17dN with ...
cdlemg17e 39128 TODO: fix comment. (Contr...
cdlemg17f 39129 TODO: fix comment. (Contr...
cdlemg17g 39130 TODO: fix comment. (Contr...
cdlemg17h 39131 TODO: fix comment. (Contr...
cdlemg17i 39132 TODO: fix comment. (Contr...
cdlemg17ir 39133 TODO: fix comment. (Contr...
cdlemg17j 39134 TODO: fix comment. (Contr...
cdlemg17pq 39135 Utility theorem for swappi...
cdlemg17bq 39136 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 39137 ~ cdlemg17i with ` P ` and...
cdlemg17irq 39138 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 39139 ~ cdlemg17j with ` P ` and...
cdlemg17 39140 Part of Lemma G of [Crawle...
cdlemg18a 39141 Show two lines are differe...
cdlemg18b 39142 Lemma for ~ cdlemg18c . T...
cdlemg18c 39143 Show two lines intersect a...
cdlemg18d 39144 Show two lines intersect a...
cdlemg18 39145 Show two lines intersect a...
cdlemg19a 39146 Show two lines intersect a...
cdlemg19 39147 Show two lines intersect a...
cdlemg20 39148 Show two lines intersect a...
cdlemg21 39149 Version of cdlemg19 with `...
cdlemg22 39150 ~ cdlemg21 with ` ( F `` P...
cdlemg24 39151 Combine ~ cdlemg16z and ~ ...
cdlemg37 39152 Use ~ cdlemg8 to eliminate...
cdlemg25zz 39153 ~ cdlemg16zz restated for ...
cdlemg26zz 39154 ~ cdlemg16zz restated for ...
cdlemg27a 39155 For use with case when ` (...
cdlemg28a 39156 Part of proof of Lemma G o...
cdlemg31b0N 39157 TODO: Fix comment. (Cont...
cdlemg31b0a 39158 TODO: Fix comment. (Cont...
cdlemg27b 39159 TODO: Fix comment. (Cont...
cdlemg31a 39160 TODO: fix comment. (Contr...
cdlemg31b 39161 TODO: fix comment. (Contr...
cdlemg31c 39162 Show that when ` N ` is an...
cdlemg31d 39163 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 39164 TODO: Fix comment. (Cont...
cdlemg33c0 39165 TODO: Fix comment. (Cont...
cdlemg28b 39166 Part of proof of Lemma G o...
cdlemg28 39167 Part of proof of Lemma G o...
cdlemg29 39168 Eliminate ` ( F `` P ) =/=...
cdlemg33a 39169 TODO: Fix comment. (Cont...
cdlemg33b 39170 TODO: Fix comment. (Cont...
cdlemg33c 39171 TODO: Fix comment. (Cont...
cdlemg33d 39172 TODO: Fix comment. (Cont...
cdlemg33e 39173 TODO: Fix comment. (Cont...
cdlemg33 39174 Combine ~ cdlemg33b , ~ cd...
cdlemg34 39175 Use cdlemg33 to eliminate ...
cdlemg35 39176 TODO: Fix comment. TODO:...
cdlemg36 39177 Use cdlemg35 to eliminate ...
cdlemg38 39178 Use ~ cdlemg37 to eliminat...
cdlemg39 39179 Eliminate ` =/= ` conditio...
cdlemg40 39180 Eliminate ` P =/= Q ` cond...
cdlemg41 39181 Convert ~ cdlemg40 to func...
ltrnco 39182 The composition of two tra...
trlcocnv 39183 Swap the arguments of the ...
trlcoabs 39184 Absorption into a composit...
trlcoabs2N 39185 Absorption of the trace of...
trlcoat 39186 The trace of a composition...
trlcocnvat 39187 Commonly used special case...
trlconid 39188 The composition of two dif...
trlcolem 39189 Lemma for ~ trlco . (Cont...
trlco 39190 The trace of a composition...
trlcone 39191 If two translations have d...
cdlemg42 39192 Part of proof of Lemma G o...
cdlemg43 39193 Part of proof of Lemma G o...
cdlemg44a 39194 Part of proof of Lemma G o...
cdlemg44b 39195 Eliminate ` ( F `` P ) =/=...
cdlemg44 39196 Part of proof of Lemma G o...
cdlemg47a 39197 TODO: fix comment. TODO: ...
cdlemg46 39198 Part of proof of Lemma G o...
cdlemg47 39199 Part of proof of Lemma G o...
cdlemg48 39200 Eliminate ` h ` from ~ cdl...
ltrncom 39201 Composition is commutative...
ltrnco4 39202 Rearrange a composition of...
trljco 39203 Trace joined with trace of...
trljco2 39204 Trace joined with trace of...
tgrpfset 39207 The translation group maps...
tgrpset 39208 The translation group for ...
tgrpbase 39209 The base set of the transl...
tgrpopr 39210 The group operation of the...
tgrpov 39211 The group operation value ...
tgrpgrplem 39212 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 39213 The translation group is a...
tgrpabl 39214 The translation group is a...
tendofset 39221 The set of all trace-prese...
tendoset 39222 The set of trace-preservin...
istendo 39223 The predicate "is a trace-...
tendotp 39224 Trace-preserving property ...
istendod 39225 Deduce the predicate "is a...
tendof 39226 Functionality of a trace-p...
tendoeq1 39227 Condition determining equa...
tendovalco 39228 Value of composition of tr...
tendocoval 39229 Value of composition of en...
tendocl 39230 Closure of a trace-preserv...
tendoco2 39231 Distribution of compositio...
tendoidcl 39232 The identity is a trace-pr...
tendo1mul 39233 Multiplicative identity mu...
tendo1mulr 39234 Multiplicative identity mu...
tendococl 39235 The composition of two tra...
tendoid 39236 The identity value of a tr...
tendoeq2 39237 Condition determining equa...
tendoplcbv 39238 Define sum operation for t...
tendopl 39239 Value of endomorphism sum ...
tendopl2 39240 Value of result of endomor...
tendoplcl2 39241 Value of result of endomor...
tendoplco2 39242 Value of result of endomor...
tendopltp 39243 Trace-preserving property ...
tendoplcl 39244 Endomorphism sum is a trac...
tendoplcom 39245 The endomorphism sum opera...
tendoplass 39246 The endomorphism sum opera...
tendodi1 39247 Endomorphism composition d...
tendodi2 39248 Endomorphism composition d...
tendo0cbv 39249 Define additive identity f...
tendo02 39250 Value of additive identity...
tendo0co2 39251 The additive identity trac...
tendo0tp 39252 Trace-preserving property ...
tendo0cl 39253 The additive identity is a...
tendo0pl 39254 Property of the additive i...
tendo0plr 39255 Property of the additive i...
tendoicbv 39256 Define inverse function fo...
tendoi 39257 Value of inverse endomorph...
tendoi2 39258 Value of additive inverse ...
tendoicl 39259 Closure of the additive in...
tendoipl 39260 Property of the additive i...
tendoipl2 39261 Property of the additive i...
erngfset 39262 The division rings on trac...
erngset 39263 The division ring on trace...
erngbase 39264 The base set of the divisi...
erngfplus 39265 Ring addition operation. ...
erngplus 39266 Ring addition operation. ...
erngplus2 39267 Ring addition operation. ...
erngfmul 39268 Ring multiplication operat...
erngmul 39269 Ring addition operation. ...
erngfset-rN 39270 The division rings on trac...
erngset-rN 39271 The division ring on trace...
erngbase-rN 39272 The base set of the divisi...
erngfplus-rN 39273 Ring addition operation. ...
erngplus-rN 39274 Ring addition operation. ...
erngplus2-rN 39275 Ring addition operation. ...
erngfmul-rN 39276 Ring multiplication operat...
erngmul-rN 39277 Ring addition operation. ...
cdlemh1 39278 Part of proof of Lemma H o...
cdlemh2 39279 Part of proof of Lemma H o...
cdlemh 39280 Lemma H of [Crawley] p. 11...
cdlemi1 39281 Part of proof of Lemma I o...
cdlemi2 39282 Part of proof of Lemma I o...
cdlemi 39283 Lemma I of [Crawley] p. 11...
cdlemj1 39284 Part of proof of Lemma J o...
cdlemj2 39285 Part of proof of Lemma J o...
cdlemj3 39286 Part of proof of Lemma J o...
tendocan 39287 Cancellation law: if the v...
tendoid0 39288 A trace-preserving endomor...
tendo0mul 39289 Additive identity multipli...
tendo0mulr 39290 Additive identity multipli...
tendo1ne0 39291 The identity (unity) is no...
tendoconid 39292 The composition (product) ...
tendotr 39293 The trace of the value of ...
cdlemk1 39294 Part of proof of Lemma K o...
cdlemk2 39295 Part of proof of Lemma K o...
cdlemk3 39296 Part of proof of Lemma K o...
cdlemk4 39297 Part of proof of Lemma K o...
cdlemk5a 39298 Part of proof of Lemma K o...
cdlemk5 39299 Part of proof of Lemma K o...
cdlemk6 39300 Part of proof of Lemma K o...
cdlemk8 39301 Part of proof of Lemma K o...
cdlemk9 39302 Part of proof of Lemma K o...
cdlemk9bN 39303 Part of proof of Lemma K o...
cdlemki 39304 Part of proof of Lemma K o...
cdlemkvcl 39305 Part of proof of Lemma K o...
cdlemk10 39306 Part of proof of Lemma K o...
cdlemksv 39307 Part of proof of Lemma K o...
cdlemksel 39308 Part of proof of Lemma K o...
cdlemksat 39309 Part of proof of Lemma K o...
cdlemksv2 39310 Part of proof of Lemma K o...
cdlemk7 39311 Part of proof of Lemma K o...
cdlemk11 39312 Part of proof of Lemma K o...
cdlemk12 39313 Part of proof of Lemma K o...
cdlemkoatnle 39314 Utility lemma. (Contribut...
cdlemk13 39315 Part of proof of Lemma K o...
cdlemkole 39316 Utility lemma. (Contribut...
cdlemk14 39317 Part of proof of Lemma K o...
cdlemk15 39318 Part of proof of Lemma K o...
cdlemk16a 39319 Part of proof of Lemma K o...
cdlemk16 39320 Part of proof of Lemma K o...
cdlemk17 39321 Part of proof of Lemma K o...
cdlemk1u 39322 Part of proof of Lemma K o...
cdlemk5auN 39323 Part of proof of Lemma K o...
cdlemk5u 39324 Part of proof of Lemma K o...
cdlemk6u 39325 Part of proof of Lemma K o...
cdlemkj 39326 Part of proof of Lemma K o...
cdlemkuvN 39327 Part of proof of Lemma K o...
cdlemkuel 39328 Part of proof of Lemma K o...
cdlemkuat 39329 Part of proof of Lemma K o...
cdlemkuv2 39330 Part of proof of Lemma K o...
cdlemk18 39331 Part of proof of Lemma K o...
cdlemk19 39332 Part of proof of Lemma K o...
cdlemk7u 39333 Part of proof of Lemma K o...
cdlemk11u 39334 Part of proof of Lemma K o...
cdlemk12u 39335 Part of proof of Lemma K o...
cdlemk21N 39336 Part of proof of Lemma K o...
cdlemk20 39337 Part of proof of Lemma K o...
cdlemkoatnle-2N 39338 Utility lemma. (Contribut...
cdlemk13-2N 39339 Part of proof of Lemma K o...
cdlemkole-2N 39340 Utility lemma. (Contribut...
cdlemk14-2N 39341 Part of proof of Lemma K o...
cdlemk15-2N 39342 Part of proof of Lemma K o...
cdlemk16-2N 39343 Part of proof of Lemma K o...
cdlemk17-2N 39344 Part of proof of Lemma K o...
cdlemkj-2N 39345 Part of proof of Lemma K o...
cdlemkuv-2N 39346 Part of proof of Lemma K o...
cdlemkuel-2N 39347 Part of proof of Lemma K o...
cdlemkuv2-2 39348 Part of proof of Lemma K o...
cdlemk18-2N 39349 Part of proof of Lemma K o...
cdlemk19-2N 39350 Part of proof of Lemma K o...
cdlemk7u-2N 39351 Part of proof of Lemma K o...
cdlemk11u-2N 39352 Part of proof of Lemma K o...
cdlemk12u-2N 39353 Part of proof of Lemma K o...
cdlemk21-2N 39354 Part of proof of Lemma K o...
cdlemk20-2N 39355 Part of proof of Lemma K o...
cdlemk22 39356 Part of proof of Lemma K o...
cdlemk30 39357 Part of proof of Lemma K o...
cdlemkuu 39358 Convert between function a...
cdlemk31 39359 Part of proof of Lemma K o...
cdlemk32 39360 Part of proof of Lemma K o...
cdlemkuel-3 39361 Part of proof of Lemma K o...
cdlemkuv2-3N 39362 Part of proof of Lemma K o...
cdlemk18-3N 39363 Part of proof of Lemma K o...
cdlemk22-3 39364 Part of proof of Lemma K o...
cdlemk23-3 39365 Part of proof of Lemma K o...
cdlemk24-3 39366 Part of proof of Lemma K o...
cdlemk25-3 39367 Part of proof of Lemma K o...
cdlemk26b-3 39368 Part of proof of Lemma K o...
cdlemk26-3 39369 Part of proof of Lemma K o...
cdlemk27-3 39370 Part of proof of Lemma K o...
cdlemk28-3 39371 Part of proof of Lemma K o...
cdlemk33N 39372 Part of proof of Lemma K o...
cdlemk34 39373 Part of proof of Lemma K o...
cdlemk29-3 39374 Part of proof of Lemma K o...
cdlemk35 39375 Part of proof of Lemma K o...
cdlemk36 39376 Part of proof of Lemma K o...
cdlemk37 39377 Part of proof of Lemma K o...
cdlemk38 39378 Part of proof of Lemma K o...
cdlemk39 39379 Part of proof of Lemma K o...
cdlemk40 39380 TODO: fix comment. (Contr...
cdlemk40t 39381 TODO: fix comment. (Contr...
cdlemk40f 39382 TODO: fix comment. (Contr...
cdlemk41 39383 Part of proof of Lemma K o...
cdlemkfid1N 39384 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 39385 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 39386 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 39387 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 39388 TODO: is this useful or sh...
cdlemky 39389 Part of proof of Lemma K o...
cdlemkyu 39390 Convert between function a...
cdlemkyuu 39391 ~ cdlemkyu with some hypot...
cdlemk11ta 39392 Part of proof of Lemma K o...
cdlemk19ylem 39393 Lemma for ~ cdlemk19y . (...
cdlemk11tb 39394 Part of proof of Lemma K o...
cdlemk19y 39395 ~ cdlemk19 with simpler hy...
cdlemkid3N 39396 Lemma for ~ cdlemkid . (C...
cdlemkid4 39397 Lemma for ~ cdlemkid . (C...
cdlemkid5 39398 Lemma for ~ cdlemkid . (C...
cdlemkid 39399 The value of the tau funct...
cdlemk35s 39400 Substitution version of ~ ...
cdlemk35s-id 39401 Substitution version of ~ ...
cdlemk39s 39402 Substitution version of ~ ...
cdlemk39s-id 39403 Substitution version of ~ ...
cdlemk42 39404 Part of proof of Lemma K o...
cdlemk19xlem 39405 Lemma for ~ cdlemk19x . (...
cdlemk19x 39406 ~ cdlemk19 with simpler hy...
cdlemk42yN 39407 Part of proof of Lemma K o...
cdlemk11tc 39408 Part of proof of Lemma K o...
cdlemk11t 39409 Part of proof of Lemma K o...
cdlemk45 39410 Part of proof of Lemma K o...
cdlemk46 39411 Part of proof of Lemma K o...
cdlemk47 39412 Part of proof of Lemma K o...
cdlemk48 39413 Part of proof of Lemma K o...
cdlemk49 39414 Part of proof of Lemma K o...
cdlemk50 39415 Part of proof of Lemma K o...
cdlemk51 39416 Part of proof of Lemma K o...
cdlemk52 39417 Part of proof of Lemma K o...
cdlemk53a 39418 Lemma for ~ cdlemk53 . (C...
cdlemk53b 39419 Lemma for ~ cdlemk53 . (C...
cdlemk53 39420 Part of proof of Lemma K o...
cdlemk54 39421 Part of proof of Lemma K o...
cdlemk55a 39422 Lemma for ~ cdlemk55 . (C...
cdlemk55b 39423 Lemma for ~ cdlemk55 . (C...
cdlemk55 39424 Part of proof of Lemma K o...
cdlemkyyN 39425 Part of proof of Lemma K o...
cdlemk43N 39426 Part of proof of Lemma K o...
cdlemk35u 39427 Substitution version of ~ ...
cdlemk55u1 39428 Lemma for ~ cdlemk55u . (...
cdlemk55u 39429 Part of proof of Lemma K o...
cdlemk39u1 39430 Lemma for ~ cdlemk39u . (...
cdlemk39u 39431 Part of proof of Lemma K o...
cdlemk19u1 39432 ~ cdlemk19 with simpler hy...
cdlemk19u 39433 Part of Lemma K of [Crawle...
cdlemk56 39434 Part of Lemma K of [Crawle...
cdlemk19w 39435 Use a fixed element to eli...
cdlemk56w 39436 Use a fixed element to eli...
cdlemk 39437 Lemma K of [Crawley] p. 11...
tendoex 39438 Generalization of Lemma K ...
cdleml1N 39439 Part of proof of Lemma L o...
cdleml2N 39440 Part of proof of Lemma L o...
cdleml3N 39441 Part of proof of Lemma L o...
cdleml4N 39442 Part of proof of Lemma L o...
cdleml5N 39443 Part of proof of Lemma L o...
cdleml6 39444 Part of proof of Lemma L o...
cdleml7 39445 Part of proof of Lemma L o...
cdleml8 39446 Part of proof of Lemma L o...
cdleml9 39447 Part of proof of Lemma L o...
dva1dim 39448 Two expressions for the 1-...
dvhb1dimN 39449 Two expressions for the 1-...
erng1lem 39450 Value of the endomorphism ...
erngdvlem1 39451 Lemma for ~ eringring . (...
erngdvlem2N 39452 Lemma for ~ eringring . (...
erngdvlem3 39453 Lemma for ~ eringring . (...
erngdvlem4 39454 Lemma for ~ erngdv . (Con...
eringring 39455 An endomorphism ring is a ...
erngdv 39456 An endomorphism ring is a ...
erng0g 39457 The division ring zero of ...
erng1r 39458 The division ring unity of...
erngdvlem1-rN 39459 Lemma for ~ eringring . (...
erngdvlem2-rN 39460 Lemma for ~ eringring . (...
erngdvlem3-rN 39461 Lemma for ~ eringring . (...
erngdvlem4-rN 39462 Lemma for ~ erngdv . (Con...
erngring-rN 39463 An endomorphism ring is a ...
erngdv-rN 39464 An endomorphism ring is a ...
dvafset 39467 The constructed partial ve...
dvaset 39468 The constructed partial ve...
dvasca 39469 The ring base set of the c...
dvabase 39470 The ring base set of the c...
dvafplusg 39471 Ring addition operation fo...
dvaplusg 39472 Ring addition operation fo...
dvaplusgv 39473 Ring addition operation fo...
dvafmulr 39474 Ring multiplication operat...
dvamulr 39475 Ring multiplication operat...
dvavbase 39476 The vectors (vector base s...
dvafvadd 39477 The vector sum operation f...
dvavadd 39478 Ring addition operation fo...
dvafvsca 39479 Ring addition operation fo...
dvavsca 39480 Ring addition operation fo...
tendospcl 39481 Closure of endomorphism sc...
tendospass 39482 Associative law for endomo...
tendospdi1 39483 Forward distributive law f...
tendocnv 39484 Converse of a trace-preser...
tendospdi2 39485 Reverse distributive law f...
tendospcanN 39486 Cancellation law for trace...
dvaabl 39487 The constructed partial ve...
dvalveclem 39488 Lemma for ~ dvalvec . (Co...
dvalvec 39489 The constructed partial ve...
dva0g 39490 The zero vector of partial...
diaffval 39493 The partial isomorphism A ...
diafval 39494 The partial isomorphism A ...
diaval 39495 The partial isomorphism A ...
diaelval 39496 Member of the partial isom...
diafn 39497 Functionality and domain o...
diadm 39498 Domain of the partial isom...
diaeldm 39499 Member of domain of the pa...
diadmclN 39500 A member of domain of the ...
diadmleN 39501 A member of domain of the ...
dian0 39502 The value of the partial i...
dia0eldmN 39503 The lattice zero belongs t...
dia1eldmN 39504 The fiducial hyperplane (t...
diass 39505 The value of the partial i...
diael 39506 A member of the value of t...
diatrl 39507 Trace of a member of the p...
diaelrnN 39508 Any value of the partial i...
dialss 39509 The value of partial isomo...
diaord 39510 The partial isomorphism A ...
dia11N 39511 The partial isomorphism A ...
diaf11N 39512 The partial isomorphism A ...
diaclN 39513 Closure of partial isomorp...
diacnvclN 39514 Closure of partial isomorp...
dia0 39515 The value of the partial i...
dia1N 39516 The value of the partial i...
dia1elN 39517 The largest subspace in th...
diaglbN 39518 Partial isomorphism A of a...
diameetN 39519 Partial isomorphism A of a...
diainN 39520 Inverse partial isomorphis...
diaintclN 39521 The intersection of partia...
diasslssN 39522 The partial isomorphism A ...
diassdvaN 39523 The partial isomorphism A ...
dia1dim 39524 Two expressions for the 1-...
dia1dim2 39525 Two expressions for a 1-di...
dia1dimid 39526 A vector (translation) bel...
dia2dimlem1 39527 Lemma for ~ dia2dim . Sho...
dia2dimlem2 39528 Lemma for ~ dia2dim . Def...
dia2dimlem3 39529 Lemma for ~ dia2dim . Def...
dia2dimlem4 39530 Lemma for ~ dia2dim . Sho...
dia2dimlem5 39531 Lemma for ~ dia2dim . The...
dia2dimlem6 39532 Lemma for ~ dia2dim . Eli...
dia2dimlem7 39533 Lemma for ~ dia2dim . Eli...
dia2dimlem8 39534 Lemma for ~ dia2dim . Eli...
dia2dimlem9 39535 Lemma for ~ dia2dim . Eli...
dia2dimlem10 39536 Lemma for ~ dia2dim . Con...
dia2dimlem11 39537 Lemma for ~ dia2dim . Con...
dia2dimlem12 39538 Lemma for ~ dia2dim . Obt...
dia2dimlem13 39539 Lemma for ~ dia2dim . Eli...
dia2dim 39540 A two-dimensional subspace...
dvhfset 39543 The constructed full vecto...
dvhset 39544 The constructed full vecto...
dvhsca 39545 The ring of scalars of the...
dvhbase 39546 The ring base set of the c...
dvhfplusr 39547 Ring addition operation fo...
dvhfmulr 39548 Ring multiplication operat...
dvhmulr 39549 Ring multiplication operat...
dvhvbase 39550 The vectors (vector base s...
dvhelvbasei 39551 Vector membership in the c...
dvhvaddcbv 39552 Change bound variables to ...
dvhvaddval 39553 The vector sum operation f...
dvhfvadd 39554 The vector sum operation f...
dvhvadd 39555 The vector sum operation f...
dvhopvadd 39556 The vector sum operation f...
dvhopvadd2 39557 The vector sum operation f...
dvhvaddcl 39558 Closure of the vector sum ...
dvhvaddcomN 39559 Commutativity of vector su...
dvhvaddass 39560 Associativity of vector su...
dvhvscacbv 39561 Change bound variables to ...
dvhvscaval 39562 The scalar product operati...
dvhfvsca 39563 Scalar product operation f...
dvhvsca 39564 Scalar product operation f...
dvhopvsca 39565 Scalar product operation f...
dvhvscacl 39566 Closure of the scalar prod...
tendoinvcl 39567 Closure of multiplicative ...
tendolinv 39568 Left multiplicative invers...
tendorinv 39569 Right multiplicative inver...
dvhgrp 39570 The full vector space ` U ...
dvhlveclem 39571 Lemma for ~ dvhlvec . TOD...
dvhlvec 39572 The full vector space ` U ...
dvhlmod 39573 The full vector space ` U ...
dvh0g 39574 The zero vector of vector ...
dvheveccl 39575 Properties of a unit vecto...
dvhopclN 39576 Closure of a ` DVecH ` vec...
dvhopaddN 39577 Sum of ` DVecH ` vectors e...
dvhopspN 39578 Scalar product of ` DVecH ...
dvhopN 39579 Decompose a ` DVecH ` vect...
dvhopellsm 39580 Ordered pair membership in...
cdlemm10N 39581 The image of the map ` G `...
docaffvalN 39584 Subspace orthocomplement f...
docafvalN 39585 Subspace orthocomplement f...
docavalN 39586 Subspace orthocomplement f...
docaclN 39587 Closure of subspace orthoc...
diaocN 39588 Value of partial isomorphi...
doca2N 39589 Double orthocomplement of ...
doca3N 39590 Double orthocomplement of ...
dvadiaN 39591 Any closed subspace is a m...
diarnN 39592 Partial isomorphism A maps...
diaf1oN 39593 The partial isomorphism A ...
djaffvalN 39596 Subspace join for ` DVecA ...
djafvalN 39597 Subspace join for ` DVecA ...
djavalN 39598 Subspace join for ` DVecA ...
djaclN 39599 Closure of subspace join f...
djajN 39600 Transfer lattice join to `...
dibffval 39603 The partial isomorphism B ...
dibfval 39604 The partial isomorphism B ...
dibval 39605 The partial isomorphism B ...
dibopelvalN 39606 Member of the partial isom...
dibval2 39607 Value of the partial isomo...
dibopelval2 39608 Member of the partial isom...
dibval3N 39609 Value of the partial isomo...
dibelval3 39610 Member of the partial isom...
dibopelval3 39611 Member of the partial isom...
dibelval1st 39612 Membership in value of the...
dibelval1st1 39613 Membership in value of the...
dibelval1st2N 39614 Membership in value of the...
dibelval2nd 39615 Membership in value of the...
dibn0 39616 The value of the partial i...
dibfna 39617 Functionality and domain o...
dibdiadm 39618 Domain of the partial isom...
dibfnN 39619 Functionality and domain o...
dibdmN 39620 Domain of the partial isom...
dibeldmN 39621 Member of domain of the pa...
dibord 39622 The isomorphism B for a la...
dib11N 39623 The isomorphism B for a la...
dibf11N 39624 The partial isomorphism A ...
dibclN 39625 Closure of partial isomorp...
dibvalrel 39626 The value of partial isomo...
dib0 39627 The value of partial isomo...
dib1dim 39628 Two expressions for the 1-...
dibglbN 39629 Partial isomorphism B of a...
dibintclN 39630 The intersection of partia...
dib1dim2 39631 Two expressions for a 1-di...
dibss 39632 The partial isomorphism B ...
diblss 39633 The value of partial isomo...
diblsmopel 39634 Membership in subspace sum...
dicffval 39637 The partial isomorphism C ...
dicfval 39638 The partial isomorphism C ...
dicval 39639 The partial isomorphism C ...
dicopelval 39640 Membership in value of the...
dicelvalN 39641 Membership in value of the...
dicval2 39642 The partial isomorphism C ...
dicelval3 39643 Member of the partial isom...
dicopelval2 39644 Membership in value of the...
dicelval2N 39645 Membership in value of the...
dicfnN 39646 Functionality and domain o...
dicdmN 39647 Domain of the partial isom...
dicvalrelN 39648 The value of partial isomo...
dicssdvh 39649 The partial isomorphism C ...
dicelval1sta 39650 Membership in value of the...
dicelval1stN 39651 Membership in value of the...
dicelval2nd 39652 Membership in value of the...
dicvaddcl 39653 Membership in value of the...
dicvscacl 39654 Membership in value of the...
dicn0 39655 The value of the partial i...
diclss 39656 The value of partial isomo...
diclspsn 39657 The value of isomorphism C...
cdlemn2 39658 Part of proof of Lemma N o...
cdlemn2a 39659 Part of proof of Lemma N o...
cdlemn3 39660 Part of proof of Lemma N o...
cdlemn4 39661 Part of proof of Lemma N o...
cdlemn4a 39662 Part of proof of Lemma N o...
cdlemn5pre 39663 Part of proof of Lemma N o...
cdlemn5 39664 Part of proof of Lemma N o...
cdlemn6 39665 Part of proof of Lemma N o...
cdlemn7 39666 Part of proof of Lemma N o...
cdlemn8 39667 Part of proof of Lemma N o...
cdlemn9 39668 Part of proof of Lemma N o...
cdlemn10 39669 Part of proof of Lemma N o...
cdlemn11a 39670 Part of proof of Lemma N o...
cdlemn11b 39671 Part of proof of Lemma N o...
cdlemn11c 39672 Part of proof of Lemma N o...
cdlemn11pre 39673 Part of proof of Lemma N o...
cdlemn11 39674 Part of proof of Lemma N o...
cdlemn 39675 Lemma N of [Crawley] p. 12...
dihordlem6 39676 Part of proof of Lemma N o...
dihordlem7 39677 Part of proof of Lemma N o...
dihordlem7b 39678 Part of proof of Lemma N o...
dihjustlem 39679 Part of proof after Lemma ...
dihjust 39680 Part of proof after Lemma ...
dihord1 39681 Part of proof after Lemma ...
dihord2a 39682 Part of proof after Lemma ...
dihord2b 39683 Part of proof after Lemma ...
dihord2cN 39684 Part of proof after Lemma ...
dihord11b 39685 Part of proof after Lemma ...
dihord10 39686 Part of proof after Lemma ...
dihord11c 39687 Part of proof after Lemma ...
dihord2pre 39688 Part of proof after Lemma ...
dihord2pre2 39689 Part of proof after Lemma ...
dihord2 39690 Part of proof after Lemma ...
dihffval 39693 The isomorphism H for a la...
dihfval 39694 Isomorphism H for a lattic...
dihval 39695 Value of isomorphism H for...
dihvalc 39696 Value of isomorphism H for...
dihlsscpre 39697 Closure of isomorphism H f...
dihvalcqpre 39698 Value of isomorphism H for...
dihvalcq 39699 Value of isomorphism H for...
dihvalb 39700 Value of isomorphism H for...
dihopelvalbN 39701 Ordered pair member of the...
dihvalcqat 39702 Value of isomorphism H for...
dih1dimb 39703 Two expressions for a 1-di...
dih1dimb2 39704 Isomorphism H at an atom u...
dih1dimc 39705 Isomorphism H at an atom n...
dib2dim 39706 Extend ~ dia2dim to partia...
dih2dimb 39707 Extend ~ dib2dim to isomor...
dih2dimbALTN 39708 Extend ~ dia2dim to isomor...
dihopelvalcqat 39709 Ordered pair member of the...
dihvalcq2 39710 Value of isomorphism H for...
dihopelvalcpre 39711 Member of value of isomorp...
dihopelvalc 39712 Member of value of isomorp...
dihlss 39713 The value of isomorphism H...
dihss 39714 The value of isomorphism H...
dihssxp 39715 An isomorphism H value is ...
dihopcl 39716 Closure of an ordered pair...
xihopellsmN 39717 Ordered pair membership in...
dihopellsm 39718 Ordered pair membership in...
dihord6apre 39719 Part of proof that isomorp...
dihord3 39720 The isomorphism H for a la...
dihord4 39721 The isomorphism H for a la...
dihord5b 39722 Part of proof that isomorp...
dihord6b 39723 Part of proof that isomorp...
dihord6a 39724 Part of proof that isomorp...
dihord5apre 39725 Part of proof that isomorp...
dihord5a 39726 Part of proof that isomorp...
dihord 39727 The isomorphism H is order...
dih11 39728 The isomorphism H is one-t...
dihf11lem 39729 Functionality of the isomo...
dihf11 39730 The isomorphism H for a la...
dihfn 39731 Functionality and domain o...
dihdm 39732 Domain of isomorphism H. (...
dihcl 39733 Closure of isomorphism H. ...
dihcnvcl 39734 Closure of isomorphism H c...
dihcnvid1 39735 The converse isomorphism o...
dihcnvid2 39736 The isomorphism of a conve...
dihcnvord 39737 Ordering property for conv...
dihcnv11 39738 The converse of isomorphis...
dihsslss 39739 The isomorphism H maps to ...
dihrnlss 39740 The isomorphism H maps to ...
dihrnss 39741 The isomorphism H maps to ...
dihvalrel 39742 The value of isomorphism H...
dih0 39743 The value of isomorphism H...
dih0bN 39744 A lattice element is zero ...
dih0vbN 39745 A vector is zero iff its s...
dih0cnv 39746 The isomorphism H converse...
dih0rn 39747 The zero subspace belongs ...
dih0sb 39748 A subspace is zero iff the...
dih1 39749 The value of isomorphism H...
dih1rn 39750 The full vector space belo...
dih1cnv 39751 The isomorphism H converse...
dihwN 39752 Value of isomorphism H at ...
dihmeetlem1N 39753 Isomorphism H of a conjunc...
dihglblem5apreN 39754 A conjunction property of ...
dihglblem5aN 39755 A conjunction property of ...
dihglblem2aN 39756 Lemma for isomorphism H of...
dihglblem2N 39757 The GLB of a set of lattic...
dihglblem3N 39758 Isomorphism H of a lattice...
dihglblem3aN 39759 Isomorphism H of a lattice...
dihglblem4 39760 Isomorphism H of a lattice...
dihglblem5 39761 Isomorphism H of a lattice...
dihmeetlem2N 39762 Isomorphism H of a conjunc...
dihglbcpreN 39763 Isomorphism H of a lattice...
dihglbcN 39764 Isomorphism H of a lattice...
dihmeetcN 39765 Isomorphism H of a lattice...
dihmeetbN 39766 Isomorphism H of a lattice...
dihmeetbclemN 39767 Lemma for isomorphism H of...
dihmeetlem3N 39768 Lemma for isomorphism H of...
dihmeetlem4preN 39769 Lemma for isomorphism H of...
dihmeetlem4N 39770 Lemma for isomorphism H of...
dihmeetlem5 39771 Part of proof that isomorp...
dihmeetlem6 39772 Lemma for isomorphism H of...
dihmeetlem7N 39773 Lemma for isomorphism H of...
dihjatc1 39774 Lemma for isomorphism H of...
dihjatc2N 39775 Isomorphism H of join with...
dihjatc3 39776 Isomorphism H of join with...
dihmeetlem8N 39777 Lemma for isomorphism H of...
dihmeetlem9N 39778 Lemma for isomorphism H of...
dihmeetlem10N 39779 Lemma for isomorphism H of...
dihmeetlem11N 39780 Lemma for isomorphism H of...
dihmeetlem12N 39781 Lemma for isomorphism H of...
dihmeetlem13N 39782 Lemma for isomorphism H of...
dihmeetlem14N 39783 Lemma for isomorphism H of...
dihmeetlem15N 39784 Lemma for isomorphism H of...
dihmeetlem16N 39785 Lemma for isomorphism H of...
dihmeetlem17N 39786 Lemma for isomorphism H of...
dihmeetlem18N 39787 Lemma for isomorphism H of...
dihmeetlem19N 39788 Lemma for isomorphism H of...
dihmeetlem20N 39789 Lemma for isomorphism H of...
dihmeetALTN 39790 Isomorphism H of a lattice...
dih1dimatlem0 39791 Lemma for ~ dih1dimat . (...
dih1dimatlem 39792 Lemma for ~ dih1dimat . (...
dih1dimat 39793 Any 1-dimensional subspace...
dihlsprn 39794 The span of a vector belon...
dihlspsnssN 39795 A subspace included in a 1...
dihlspsnat 39796 The inverse isomorphism H ...
dihatlat 39797 The isomorphism H of an at...
dihat 39798 There exists at least one ...
dihpN 39799 The value of isomorphism H...
dihlatat 39800 The reverse isomorphism H ...
dihatexv 39801 There is a nonzero vector ...
dihatexv2 39802 There is a nonzero vector ...
dihglblem6 39803 Isomorphism H of a lattice...
dihglb 39804 Isomorphism H of a lattice...
dihglb2 39805 Isomorphism H of a lattice...
dihmeet 39806 Isomorphism H of a lattice...
dihintcl 39807 The intersection of closed...
dihmeetcl 39808 Closure of closed subspace...
dihmeet2 39809 Reverse isomorphism H of a...
dochffval 39812 Subspace orthocomplement f...
dochfval 39813 Subspace orthocomplement f...
dochval 39814 Subspace orthocomplement f...
dochval2 39815 Subspace orthocomplement f...
dochcl 39816 Closure of subspace orthoc...
dochlss 39817 A subspace orthocomplement...
dochssv 39818 A subspace orthocomplement...
dochfN 39819 Domain and codomain of the...
dochvalr 39820 Orthocomplement of a close...
doch0 39821 Orthocomplement of the zer...
doch1 39822 Orthocomplement of the uni...
dochoc0 39823 The zero subspace is close...
dochoc1 39824 The unit subspace (all vec...
dochvalr2 39825 Orthocomplement of a close...
dochvalr3 39826 Orthocomplement of a close...
doch2val2 39827 Double orthocomplement for...
dochss 39828 Subset law for orthocomple...
dochocss 39829 Double negative law for or...
dochoc 39830 Double negative law for or...
dochsscl 39831 If a set of vectors is inc...
dochoccl 39832 A set of vectors is closed...
dochord 39833 Ordering law for orthocomp...
dochord2N 39834 Ordering law for orthocomp...
dochord3 39835 Ordering law for orthocomp...
doch11 39836 Orthocomplement is one-to-...
dochsordN 39837 Strict ordering law for or...
dochn0nv 39838 An orthocomplement is nonz...
dihoml4c 39839 Version of ~ dihoml4 with ...
dihoml4 39840 Orthomodular law for const...
dochspss 39841 The span of a set of vecto...
dochocsp 39842 The span of an orthocomple...
dochspocN 39843 The span of an orthocomple...
dochocsn 39844 The double orthocomplement...
dochsncom 39845 Swap vectors in an orthoco...
dochsat 39846 The double orthocomplement...
dochshpncl 39847 If a hyperplane is not clo...
dochlkr 39848 Equivalent conditions for ...
dochkrshp 39849 The closure of a kernel is...
dochkrshp2 39850 Properties of the closure ...
dochkrshp3 39851 Properties of the closure ...
dochkrshp4 39852 Properties of the closure ...
dochdmj1 39853 De Morgan-like law for sub...
dochnoncon 39854 Law of noncontradiction. ...
dochnel2 39855 A nonzero member of a subs...
dochnel 39856 A nonzero vector doesn't b...
djhffval 39859 Subspace join for ` DVecH ...
djhfval 39860 Subspace join for ` DVecH ...
djhval 39861 Subspace join for ` DVecH ...
djhval2 39862 Value of subspace join for...
djhcl 39863 Closure of subspace join f...
djhlj 39864 Transfer lattice join to `...
djhljjN 39865 Lattice join in terms of `...
djhjlj 39866 ` DVecH ` vector space clo...
djhj 39867 ` DVecH ` vector space clo...
djhcom 39868 Subspace join commutes. (...
djhspss 39869 Subspace span of union is ...
djhsumss 39870 Subspace sum is a subset o...
dihsumssj 39871 The subspace sum of two is...
djhunssN 39872 Subspace union is a subset...
dochdmm1 39873 De Morgan-like law for clo...
djhexmid 39874 Excluded middle property o...
djh01 39875 Closed subspace join with ...
djh02 39876 Closed subspace join with ...
djhlsmcl 39877 A closed subspace sum equa...
djhcvat42 39878 A covering property. ( ~ ...
dihjatb 39879 Isomorphism H of lattice j...
dihjatc 39880 Isomorphism H of lattice j...
dihjatcclem1 39881 Lemma for isomorphism H of...
dihjatcclem2 39882 Lemma for isomorphism H of...
dihjatcclem3 39883 Lemma for ~ dihjatcc . (C...
dihjatcclem4 39884 Lemma for isomorphism H of...
dihjatcc 39885 Isomorphism H of lattice j...
dihjat 39886 Isomorphism H of lattice j...
dihprrnlem1N 39887 Lemma for ~ dihprrn , show...
dihprrnlem2 39888 Lemma for ~ dihprrn . (Co...
dihprrn 39889 The span of a vector pair ...
djhlsmat 39890 The sum of two subspace at...
dihjat1lem 39891 Subspace sum of a closed s...
dihjat1 39892 Subspace sum of a closed s...
dihsmsprn 39893 Subspace sum of a closed s...
dihjat2 39894 The subspace sum of a clos...
dihjat3 39895 Isomorphism H of lattice j...
dihjat4 39896 Transfer the subspace sum ...
dihjat6 39897 Transfer the subspace sum ...
dihsmsnrn 39898 The subspace sum of two si...
dihsmatrn 39899 The subspace sum of a clos...
dihjat5N 39900 Transfer lattice join with...
dvh4dimat 39901 There is an atom that is o...
dvh3dimatN 39902 There is an atom that is o...
dvh2dimatN 39903 Given an atom, there exist...
dvh1dimat 39904 There exists an atom. (Co...
dvh1dim 39905 There exists a nonzero vec...
dvh4dimlem 39906 Lemma for ~ dvh4dimN . (C...
dvhdimlem 39907 Lemma for ~ dvh2dim and ~ ...
dvh2dim 39908 There is a vector that is ...
dvh3dim 39909 There is a vector that is ...
dvh4dimN 39910 There is a vector that is ...
dvh3dim2 39911 There is a vector that is ...
dvh3dim3N 39912 There is a vector that is ...
dochsnnz 39913 The orthocomplement of a s...
dochsatshp 39914 The orthocomplement of a s...
dochsatshpb 39915 The orthocomplement of a s...
dochsnshp 39916 The orthocomplement of a n...
dochshpsat 39917 A hyperplane is closed iff...
dochkrsat 39918 The orthocomplement of a k...
dochkrsat2 39919 The orthocomplement of a k...
dochsat0 39920 The orthocomplement of a k...
dochkrsm 39921 The subspace sum of a clos...
dochexmidat 39922 Special case of excluded m...
dochexmidlem1 39923 Lemma for ~ dochexmid . H...
dochexmidlem2 39924 Lemma for ~ dochexmid . (...
dochexmidlem3 39925 Lemma for ~ dochexmid . U...
dochexmidlem4 39926 Lemma for ~ dochexmid . (...
dochexmidlem5 39927 Lemma for ~ dochexmid . (...
dochexmidlem6 39928 Lemma for ~ dochexmid . (...
dochexmidlem7 39929 Lemma for ~ dochexmid . C...
dochexmidlem8 39930 Lemma for ~ dochexmid . T...
dochexmid 39931 Excluded middle law for cl...
dochsnkrlem1 39932 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 39933 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 39934 Lemma for ~ dochsnkr . (C...
dochsnkr 39935 A (closed) kernel expresse...
dochsnkr2 39936 Kernel of the explicit fun...
dochsnkr2cl 39937 The ` X ` determining func...
dochflcl 39938 Closure of the explicit fu...
dochfl1 39939 The value of the explicit ...
dochfln0 39940 The value of a functional ...
dochkr1 39941 A nonzero functional has a...
dochkr1OLDN 39942 A nonzero functional has a...
lpolsetN 39945 The set of polarities of a...
islpolN 39946 The predicate "is a polari...
islpoldN 39947 Properties that determine ...
lpolfN 39948 Functionality of a polarit...
lpolvN 39949 The polarity of the whole ...
lpolconN 39950 Contraposition property of...
lpolsatN 39951 The polarity of an atomic ...
lpolpolsatN 39952 Property of a polarity. (...
dochpolN 39953 The subspace orthocompleme...
lcfl1lem 39954 Property of a functional w...
lcfl1 39955 Property of a functional w...
lcfl2 39956 Property of a functional w...
lcfl3 39957 Property of a functional w...
lcfl4N 39958 Property of a functional w...
lcfl5 39959 Property of a functional w...
lcfl5a 39960 Property of a functional w...
lcfl6lem 39961 Lemma for ~ lcfl6 . A fun...
lcfl7lem 39962 Lemma for ~ lcfl7N . If t...
lcfl6 39963 Property of a functional w...
lcfl7N 39964 Property of a functional w...
lcfl8 39965 Property of a functional w...
lcfl8a 39966 Property of a functional w...
lcfl8b 39967 Property of a nonzero func...
lcfl9a 39968 Property implying that a f...
lclkrlem1 39969 The set of functionals hav...
lclkrlem2a 39970 Lemma for ~ lclkr . Use ~...
lclkrlem2b 39971 Lemma for ~ lclkr . (Cont...
lclkrlem2c 39972 Lemma for ~ lclkr . (Cont...
lclkrlem2d 39973 Lemma for ~ lclkr . (Cont...
lclkrlem2e 39974 Lemma for ~ lclkr . The k...
lclkrlem2f 39975 Lemma for ~ lclkr . Const...
lclkrlem2g 39976 Lemma for ~ lclkr . Compa...
lclkrlem2h 39977 Lemma for ~ lclkr . Elimi...
lclkrlem2i 39978 Lemma for ~ lclkr . Elimi...
lclkrlem2j 39979 Lemma for ~ lclkr . Kerne...
lclkrlem2k 39980 Lemma for ~ lclkr . Kerne...
lclkrlem2l 39981 Lemma for ~ lclkr . Elimi...
lclkrlem2m 39982 Lemma for ~ lclkr . Const...
lclkrlem2n 39983 Lemma for ~ lclkr . (Cont...
lclkrlem2o 39984 Lemma for ~ lclkr . When ...
lclkrlem2p 39985 Lemma for ~ lclkr . When ...
lclkrlem2q 39986 Lemma for ~ lclkr . The s...
lclkrlem2r 39987 Lemma for ~ lclkr . When ...
lclkrlem2s 39988 Lemma for ~ lclkr . Thus,...
lclkrlem2t 39989 Lemma for ~ lclkr . We el...
lclkrlem2u 39990 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 39991 Lemma for ~ lclkr . When ...
lclkrlem2w 39992 Lemma for ~ lclkr . This ...
lclkrlem2x 39993 Lemma for ~ lclkr . Elimi...
lclkrlem2y 39994 Lemma for ~ lclkr . Resta...
lclkrlem2 39995 The set of functionals hav...
lclkr 39996 The set of functionals wit...
lcfls1lem 39997 Property of a functional w...
lcfls1N 39998 Property of a functional w...
lcfls1c 39999 Property of a functional w...
lclkrslem1 40000 The set of functionals hav...
lclkrslem2 40001 The set of functionals hav...
lclkrs 40002 The set of functionals hav...
lclkrs2 40003 The set of functionals wit...
lcfrvalsnN 40004 Reconstruction from the du...
lcfrlem1 40005 Lemma for ~ lcfr . Note t...
lcfrlem2 40006 Lemma for ~ lcfr . (Contr...
lcfrlem3 40007 Lemma for ~ lcfr . (Contr...
lcfrlem4 40008 Lemma for ~ lcfr . (Contr...
lcfrlem5 40009 Lemma for ~ lcfr . The se...
lcfrlem6 40010 Lemma for ~ lcfr . Closur...
lcfrlem7 40011 Lemma for ~ lcfr . Closur...
lcfrlem8 40012 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 40013 Lemma for ~ lcf1o . (This...
lcf1o 40014 Define a function ` J ` th...
lcfrlem10 40015 Lemma for ~ lcfr . (Contr...
lcfrlem11 40016 Lemma for ~ lcfr . (Contr...
lcfrlem12N 40017 Lemma for ~ lcfr . (Contr...
lcfrlem13 40018 Lemma for ~ lcfr . (Contr...
lcfrlem14 40019 Lemma for ~ lcfr . (Contr...
lcfrlem15 40020 Lemma for ~ lcfr . (Contr...
lcfrlem16 40021 Lemma for ~ lcfr . (Contr...
lcfrlem17 40022 Lemma for ~ lcfr . Condit...
lcfrlem18 40023 Lemma for ~ lcfr . (Contr...
lcfrlem19 40024 Lemma for ~ lcfr . (Contr...
lcfrlem20 40025 Lemma for ~ lcfr . (Contr...
lcfrlem21 40026 Lemma for ~ lcfr . (Contr...
lcfrlem22 40027 Lemma for ~ lcfr . (Contr...
lcfrlem23 40028 Lemma for ~ lcfr . TODO: ...
lcfrlem24 40029 Lemma for ~ lcfr . (Contr...
lcfrlem25 40030 Lemma for ~ lcfr . Specia...
lcfrlem26 40031 Lemma for ~ lcfr . Specia...
lcfrlem27 40032 Lemma for ~ lcfr . Specia...
lcfrlem28 40033 Lemma for ~ lcfr . TODO: ...
lcfrlem29 40034 Lemma for ~ lcfr . (Contr...
lcfrlem30 40035 Lemma for ~ lcfr . (Contr...
lcfrlem31 40036 Lemma for ~ lcfr . (Contr...
lcfrlem32 40037 Lemma for ~ lcfr . (Contr...
lcfrlem33 40038 Lemma for ~ lcfr . (Contr...
lcfrlem34 40039 Lemma for ~ lcfr . (Contr...
lcfrlem35 40040 Lemma for ~ lcfr . (Contr...
lcfrlem36 40041 Lemma for ~ lcfr . (Contr...
lcfrlem37 40042 Lemma for ~ lcfr . (Contr...
lcfrlem38 40043 Lemma for ~ lcfr . Combin...
lcfrlem39 40044 Lemma for ~ lcfr . Elimin...
lcfrlem40 40045 Lemma for ~ lcfr . Elimin...
lcfrlem41 40046 Lemma for ~ lcfr . Elimin...
lcfrlem42 40047 Lemma for ~ lcfr . Elimin...
lcfr 40048 Reconstruction of a subspa...
lcdfval 40051 Dual vector space of funct...
lcdval 40052 Dual vector space of funct...
lcdval2 40053 Dual vector space of funct...
lcdlvec 40054 The dual vector space of f...
lcdlmod 40055 The dual vector space of f...
lcdvbase 40056 Vector base set of a dual ...
lcdvbasess 40057 The vector base set of the...
lcdvbaselfl 40058 A vector in the base set o...
lcdvbasecl 40059 Closure of the value of a ...
lcdvadd 40060 Vector addition for the cl...
lcdvaddval 40061 The value of the value of ...
lcdsca 40062 The ring of scalars of the...
lcdsbase 40063 Base set of scalar ring fo...
lcdsadd 40064 Scalar addition for the cl...
lcdsmul 40065 Scalar multiplication for ...
lcdvs 40066 Scalar product for the clo...
lcdvsval 40067 Value of scalar product op...
lcdvscl 40068 The scalar product operati...
lcdlssvscl 40069 Closure of scalar product ...
lcdvsass 40070 Associative law for scalar...
lcd0 40071 The zero scalar of the clo...
lcd1 40072 The unit scalar of the clo...
lcdneg 40073 The unit scalar of the clo...
lcd0v 40074 The zero functional in the...
lcd0v2 40075 The zero functional in the...
lcd0vvalN 40076 Value of the zero function...
lcd0vcl 40077 Closure of the zero functi...
lcd0vs 40078 A scalar zero times a func...
lcdvs0N 40079 A scalar times the zero fu...
lcdvsub 40080 The value of vector subtra...
lcdvsubval 40081 The value of the value of ...
lcdlss 40082 Subspaces of a dual vector...
lcdlss2N 40083 Subspaces of a dual vector...
lcdlsp 40084 Span in the set of functio...
lcdlkreqN 40085 Colinear functionals have ...
lcdlkreq2N 40086 Colinear functionals have ...
mapdffval 40089 Projectivity from vector s...
mapdfval 40090 Projectivity from vector s...
mapdval 40091 Value of projectivity from...
mapdvalc 40092 Value of projectivity from...
mapdval2N 40093 Value of projectivity from...
mapdval3N 40094 Value of projectivity from...
mapdval4N 40095 Value of projectivity from...
mapdval5N 40096 Value of projectivity from...
mapdordlem1a 40097 Lemma for ~ mapdord . (Co...
mapdordlem1bN 40098 Lemma for ~ mapdord . (Co...
mapdordlem1 40099 Lemma for ~ mapdord . (Co...
mapdordlem2 40100 Lemma for ~ mapdord . Ord...
mapdord 40101 Ordering property of the m...
mapd11 40102 The map defined by ~ df-ma...
mapddlssN 40103 The mapping of a subspace ...
mapdsn 40104 Value of the map defined b...
mapdsn2 40105 Value of the map defined b...
mapdsn3 40106 Value of the map defined b...
mapd1dim2lem1N 40107 Value of the map defined b...
mapdrvallem2 40108 Lemma for ~ mapdrval . TO...
mapdrvallem3 40109 Lemma for ~ mapdrval . (C...
mapdrval 40110 Given a dual subspace ` R ...
mapd1o 40111 The map defined by ~ df-ma...
mapdrn 40112 Range of the map defined b...
mapdunirnN 40113 Union of the range of the ...
mapdrn2 40114 Range of the map defined b...
mapdcnvcl 40115 Closure of the converse of...
mapdcl 40116 Closure the value of the m...
mapdcnvid1N 40117 Converse of the value of t...
mapdsord 40118 Strong ordering property o...
mapdcl2 40119 The mapping of a subspace ...
mapdcnvid2 40120 Value of the converse of t...
mapdcnvordN 40121 Ordering property of the c...
mapdcnv11N 40122 The converse of the map de...
mapdcv 40123 Covering property of the c...
mapdincl 40124 Closure of dual subspace i...
mapdin 40125 Subspace intersection is p...
mapdlsmcl 40126 Closure of dual subspace s...
mapdlsm 40127 Subspace sum is preserved ...
mapd0 40128 Projectivity map of the ze...
mapdcnvatN 40129 Atoms are preserved by the...
mapdat 40130 Atoms are preserved by the...
mapdspex 40131 The map of a span equals t...
mapdn0 40132 Transfer nonzero property ...
mapdncol 40133 Transfer non-colinearity f...
mapdindp 40134 Transfer (part of) vector ...
mapdpglem1 40135 Lemma for ~ mapdpg . Baer...
mapdpglem2 40136 Lemma for ~ mapdpg . Baer...
mapdpglem2a 40137 Lemma for ~ mapdpg . (Con...
mapdpglem3 40138 Lemma for ~ mapdpg . Baer...
mapdpglem4N 40139 Lemma for ~ mapdpg . (Con...
mapdpglem5N 40140 Lemma for ~ mapdpg . (Con...
mapdpglem6 40141 Lemma for ~ mapdpg . Baer...
mapdpglem8 40142 Lemma for ~ mapdpg . Baer...
mapdpglem9 40143 Lemma for ~ mapdpg . Baer...
mapdpglem10 40144 Lemma for ~ mapdpg . Baer...
mapdpglem11 40145 Lemma for ~ mapdpg . (Con...
mapdpglem12 40146 Lemma for ~ mapdpg . TODO...
mapdpglem13 40147 Lemma for ~ mapdpg . (Con...
mapdpglem14 40148 Lemma for ~ mapdpg . (Con...
mapdpglem15 40149 Lemma for ~ mapdpg . (Con...
mapdpglem16 40150 Lemma for ~ mapdpg . Baer...
mapdpglem17N 40151 Lemma for ~ mapdpg . Baer...
mapdpglem18 40152 Lemma for ~ mapdpg . Baer...
mapdpglem19 40153 Lemma for ~ mapdpg . Baer...
mapdpglem20 40154 Lemma for ~ mapdpg . Baer...
mapdpglem21 40155 Lemma for ~ mapdpg . (Con...
mapdpglem22 40156 Lemma for ~ mapdpg . Baer...
mapdpglem23 40157 Lemma for ~ mapdpg . Baer...
mapdpglem30a 40158 Lemma for ~ mapdpg . (Con...
mapdpglem30b 40159 Lemma for ~ mapdpg . (Con...
mapdpglem25 40160 Lemma for ~ mapdpg . Baer...
mapdpglem26 40161 Lemma for ~ mapdpg . Baer...
mapdpglem27 40162 Lemma for ~ mapdpg . Baer...
mapdpglem29 40163 Lemma for ~ mapdpg . Baer...
mapdpglem28 40164 Lemma for ~ mapdpg . Baer...
mapdpglem30 40165 Lemma for ~ mapdpg . Baer...
mapdpglem31 40166 Lemma for ~ mapdpg . Baer...
mapdpglem24 40167 Lemma for ~ mapdpg . Exis...
mapdpglem32 40168 Lemma for ~ mapdpg . Uniq...
mapdpg 40169 Part 1 of proof of the fir...
baerlem3lem1 40170 Lemma for ~ baerlem3 . (C...
baerlem5alem1 40171 Lemma for ~ baerlem5a . (...
baerlem5blem1 40172 Lemma for ~ baerlem5b . (...
baerlem3lem2 40173 Lemma for ~ baerlem3 . (C...
baerlem5alem2 40174 Lemma for ~ baerlem5a . (...
baerlem5blem2 40175 Lemma for ~ baerlem5b . (...
baerlem3 40176 An equality that holds whe...
baerlem5a 40177 An equality that holds whe...
baerlem5b 40178 An equality that holds whe...
baerlem5amN 40179 An equality that holds whe...
baerlem5bmN 40180 An equality that holds whe...
baerlem5abmN 40181 An equality that holds whe...
mapdindp0 40182 Vector independence lemma....
mapdindp1 40183 Vector independence lemma....
mapdindp2 40184 Vector independence lemma....
mapdindp3 40185 Vector independence lemma....
mapdindp4 40186 Vector independence lemma....
mapdhval 40187 Lemmma for ~~? mapdh . (C...
mapdhval0 40188 Lemmma for ~~? mapdh . (C...
mapdhval2 40189 Lemmma for ~~? mapdh . (C...
mapdhcl 40190 Lemmma for ~~? mapdh . (C...
mapdheq 40191 Lemmma for ~~? mapdh . Th...
mapdheq2 40192 Lemmma for ~~? mapdh . On...
mapdheq2biN 40193 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 40194 Lemma for ~ mapdheq4 . Pa...
mapdheq4 40195 Lemma for ~~? mapdh . Par...
mapdh6lem1N 40196 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 40197 Lemma for ~ mapdh6N . Par...
mapdh6aN 40198 Lemma for ~ mapdh6N . Par...
mapdh6b0N 40199 Lemmma for ~ mapdh6N . (C...
mapdh6bN 40200 Lemmma for ~ mapdh6N . (C...
mapdh6cN 40201 Lemmma for ~ mapdh6N . (C...
mapdh6dN 40202 Lemmma for ~ mapdh6N . (C...
mapdh6eN 40203 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 40204 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 40205 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 40206 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 40207 Lemmma for ~ mapdh6N . El...
mapdh6jN 40208 Lemmma for ~ mapdh6N . El...
mapdh6kN 40209 Lemmma for ~ mapdh6N . El...
mapdh6N 40210 Part (6) of [Baer] p. 47 l...
mapdh7eN 40211 Part (7) of [Baer] p. 48 l...
mapdh7cN 40212 Part (7) of [Baer] p. 48 l...
mapdh7dN 40213 Part (7) of [Baer] p. 48 l...
mapdh7fN 40214 Part (7) of [Baer] p. 48 l...
mapdh75e 40215 Part (7) of [Baer] p. 48 l...
mapdh75cN 40216 Part (7) of [Baer] p. 48 l...
mapdh75d 40217 Part (7) of [Baer] p. 48 l...
mapdh75fN 40218 Part (7) of [Baer] p. 48 l...
hvmapffval 40221 Map from nonzero vectors t...
hvmapfval 40222 Map from nonzero vectors t...
hvmapval 40223 Value of map from nonzero ...
hvmapvalvalN 40224 Value of value of map (i.e...
hvmapidN 40225 The value of the vector to...
hvmap1o 40226 The vector to functional m...
hvmapclN 40227 Closure of the vector to f...
hvmap1o2 40228 The vector to functional m...
hvmapcl2 40229 Closure of the vector to f...
hvmaplfl 40230 The vector to functional m...
hvmaplkr 40231 Kernel of the vector to fu...
mapdhvmap 40232 Relationship between ` map...
lspindp5 40233 Obtain an independent vect...
hdmaplem1 40234 Lemma to convert a frequen...
hdmaplem2N 40235 Lemma to convert a frequen...
hdmaplem3 40236 Lemma to convert a frequen...
hdmaplem4 40237 Lemma to convert a frequen...
mapdh8a 40238 Part of Part (8) in [Baer]...
mapdh8aa 40239 Part of Part (8) in [Baer]...
mapdh8ab 40240 Part of Part (8) in [Baer]...
mapdh8ac 40241 Part of Part (8) in [Baer]...
mapdh8ad 40242 Part of Part (8) in [Baer]...
mapdh8b 40243 Part of Part (8) in [Baer]...
mapdh8c 40244 Part of Part (8) in [Baer]...
mapdh8d0N 40245 Part of Part (8) in [Baer]...
mapdh8d 40246 Part of Part (8) in [Baer]...
mapdh8e 40247 Part of Part (8) in [Baer]...
mapdh8g 40248 Part of Part (8) in [Baer]...
mapdh8i 40249 Part of Part (8) in [Baer]...
mapdh8j 40250 Part of Part (8) in [Baer]...
mapdh8 40251 Part (8) in [Baer] p. 48. ...
mapdh9a 40252 Lemma for part (9) in [Bae...
mapdh9aOLDN 40253 Lemma for part (9) in [Bae...
hdmap1ffval 40258 Preliminary map from vecto...
hdmap1fval 40259 Preliminary map from vecto...
hdmap1vallem 40260 Value of preliminary map f...
hdmap1val 40261 Value of preliminary map f...
hdmap1val0 40262 Value of preliminary map f...
hdmap1val2 40263 Value of preliminary map f...
hdmap1eq 40264 The defining equation for ...
hdmap1cbv 40265 Frequently used lemma to c...
hdmap1valc 40266 Connect the value of the p...
hdmap1cl 40267 Convert closure theorem ~ ...
hdmap1eq2 40268 Convert ~ mapdheq2 to use ...
hdmap1eq4N 40269 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 40270 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 40271 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 40272 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 40273 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 40274 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 40275 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 40276 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 40277 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 40278 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 40279 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 40280 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 40281 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 40282 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 40283 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 40284 Part (6) of [Baer] p. 47 l...
hdmap1eulem 40285 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 40286 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 40287 Convert ~ mapdh9a to use t...
hdmap1euOLDN 40288 Convert ~ mapdh9aOLDN to u...
hdmapffval 40289 Map from vectors to functi...
hdmapfval 40290 Map from vectors to functi...
hdmapval 40291 Value of map from vectors ...
hdmapfnN 40292 Functionality of map from ...
hdmapcl 40293 Closure of map from vector...
hdmapval2lem 40294 Lemma for ~ hdmapval2 . (...
hdmapval2 40295 Value of map from vectors ...
hdmapval0 40296 Value of map from vectors ...
hdmapeveclem 40297 Lemma for ~ hdmapevec . T...
hdmapevec 40298 Value of map from vectors ...
hdmapevec2 40299 The inner product of the r...
hdmapval3lemN 40300 Value of map from vectors ...
hdmapval3N 40301 Value of map from vectors ...
hdmap10lem 40302 Lemma for ~ hdmap10 . (Co...
hdmap10 40303 Part 10 in [Baer] p. 48 li...
hdmap11lem1 40304 Lemma for ~ hdmapadd . (C...
hdmap11lem2 40305 Lemma for ~ hdmapadd . (C...
hdmapadd 40306 Part 11 in [Baer] p. 48 li...
hdmapeq0 40307 Part of proof of part 12 i...
hdmapnzcl 40308 Nonzero vector closure of ...
hdmapneg 40309 Part of proof of part 12 i...
hdmapsub 40310 Part of proof of part 12 i...
hdmap11 40311 Part of proof of part 12 i...
hdmaprnlem1N 40312 Part of proof of part 12 i...
hdmaprnlem3N 40313 Part of proof of part 12 i...
hdmaprnlem3uN 40314 Part of proof of part 12 i...
hdmaprnlem4tN 40315 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 40316 Part of proof of part 12 i...
hdmaprnlem6N 40317 Part of proof of part 12 i...
hdmaprnlem7N 40318 Part of proof of part 12 i...
hdmaprnlem8N 40319 Part of proof of part 12 i...
hdmaprnlem9N 40320 Part of proof of part 12 i...
hdmaprnlem3eN 40321 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 40322 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 40323 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 40324 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 40325 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 40326 Lemma for ~ hdmaprnN . In...
hdmaprnN 40327 Part of proof of part 12 i...
hdmapf1oN 40328 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 40329 Prior to part 14 in [Baer]...
hdmap14lem2a 40330 Prior to part 14 in [Baer]...
hdmap14lem1 40331 Prior to part 14 in [Baer]...
hdmap14lem2N 40332 Prior to part 14 in [Baer]...
hdmap14lem3 40333 Prior to part 14 in [Baer]...
hdmap14lem4a 40334 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 40335 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 40336 Case where ` F ` is zero. ...
hdmap14lem7 40337 Combine cases of ` F ` . ...
hdmap14lem8 40338 Part of proof of part 14 i...
hdmap14lem9 40339 Part of proof of part 14 i...
hdmap14lem10 40340 Part of proof of part 14 i...
hdmap14lem11 40341 Part of proof of part 14 i...
hdmap14lem12 40342 Lemma for proof of part 14...
hdmap14lem13 40343 Lemma for proof of part 14...
hdmap14lem14 40344 Part of proof of part 14 i...
hdmap14lem15 40345 Part of proof of part 14 i...
hgmapffval 40348 Map from the scalar divisi...
hgmapfval 40349 Map from the scalar divisi...
hgmapval 40350 Value of map from the scal...
hgmapfnN 40351 Functionality of scalar si...
hgmapcl 40352 Closure of scalar sigma ma...
hgmapdcl 40353 Closure of the vector spac...
hgmapvs 40354 Part 15 of [Baer] p. 50 li...
hgmapval0 40355 Value of the scalar sigma ...
hgmapval1 40356 Value of the scalar sigma ...
hgmapadd 40357 Part 15 of [Baer] p. 50 li...
hgmapmul 40358 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 40359 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 40360 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 40361 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 40362 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 40363 Lemma for ~ hgmaprnN . El...
hgmaprnN 40364 Part of proof of part 16 i...
hgmap11 40365 The scalar sigma map is on...
hgmapf1oN 40366 The scalar sigma map is a ...
hgmapeq0 40367 The scalar sigma map is ze...
hdmapipcl 40368 The inner product (Hermiti...
hdmapln1 40369 Linearity property that wi...
hdmaplna1 40370 Additive property of first...
hdmaplns1 40371 Subtraction property of fi...
hdmaplnm1 40372 Multiplicative property of...
hdmaplna2 40373 Additive property of secon...
hdmapglnm2 40374 g-linear property of secon...
hdmapgln2 40375 g-linear property that wil...
hdmaplkr 40376 Kernel of the vector to du...
hdmapellkr 40377 Membership in the kernel (...
hdmapip0 40378 Zero property that will be...
hdmapip1 40379 Construct a proportional v...
hdmapip0com 40380 Commutation property of Ba...
hdmapinvlem1 40381 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 40382 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 40383 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 40384 Part 1.1 of Proposition 1 ...
hdmapglem5 40385 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 40386 Involution property of sca...
hgmapvvlem2 40387 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 40388 Lemma for ~ hgmapvv . Eli...
hgmapvv 40389 Value of a double involuti...
hdmapglem7a 40390 Lemma for ~ hdmapg . (Con...
hdmapglem7b 40391 Lemma for ~ hdmapg . (Con...
hdmapglem7 40392 Lemma for ~ hdmapg . Line...
hdmapg 40393 Apply the scalar sigma fun...
hdmapoc 40394 Express our constructed or...
hlhilset 40397 The final Hilbert space co...
hlhilsca 40398 The scalar of the final co...
hlhilbase 40399 The base set of the final ...
hlhilplus 40400 The vector addition for th...
hlhilslem 40401 Lemma for ~ hlhilsbase etc...
hlhilslemOLD 40402 Obsolete version of ~ hlhi...
hlhilsbase 40403 The scalar base set of the...
hlhilsbaseOLD 40404 Obsolete version of ~ hlhi...
hlhilsplus 40405 Scalar addition for the fi...
hlhilsplusOLD 40406 Obsolete version of ~ hlhi...
hlhilsmul 40407 Scalar multiplication for ...
hlhilsmulOLD 40408 Obsolete version of ~ hlhi...
hlhilsbase2 40409 The scalar base set of the...
hlhilsplus2 40410 Scalar addition for the fi...
hlhilsmul2 40411 Scalar multiplication for ...
hlhils0 40412 The scalar ring zero for t...
hlhils1N 40413 The scalar ring unity for ...
hlhilvsca 40414 The scalar product for the...
hlhilip 40415 Inner product operation fo...
hlhilipval 40416 Value of inner product ope...
hlhilnvl 40417 The involution operation o...
hlhillvec 40418 The final constructed Hilb...
hlhildrng 40419 The star division ring for...
hlhilsrnglem 40420 Lemma for ~ hlhilsrng . (...
hlhilsrng 40421 The star division ring for...
hlhil0 40422 The zero vector for the fi...
hlhillsm 40423 The vector sum operation f...
hlhilocv 40424 The orthocomplement for th...
hlhillcs 40425 The closed subspaces of th...
hlhilphllem 40426 Lemma for ~ hlhil . (Cont...
hlhilhillem 40427 Lemma for ~ hlhil . (Cont...
hlathil 40428 Construction of a Hilbert ...
leexp1ad 40429 Weak base ordering relatio...
relogbcld 40430 Closure of the general log...
relogbexpd 40431 Identity law for general l...
relogbzexpd 40432 Power law for the general ...
logblebd 40433 The general logarithm is m...
uzindd 40434 Induction on the upper int...
fzadd2d 40435 Membership of a sum in a f...
zltlem1d 40436 Integer ordering relation,...
zltp1led 40437 Integer ordering relation,...
fzne2d 40438 Elementhood in a finite se...
eqfnfv2d2 40439 Equality of functions is d...
fzsplitnd 40440 Split a finite interval of...
fzsplitnr 40441 Split a finite interval of...
addassnni 40442 Associative law for additi...
addcomnni 40443 Commutative law for additi...
mulassnni 40444 Associative law for multip...
mulcomnni 40445 Commutative law for multip...
gcdcomnni 40446 Commutative law for gcd. ...
gcdnegnni 40447 Negation invariance for gc...
neggcdnni 40448 Negation invariance for gc...
bccl2d 40449 Closure of the binomial co...
recbothd 40450 Take reciprocal on both si...
gcdmultiplei 40451 The GCD of a multiple of a...
gcdaddmzz2nni 40452 Adding a multiple of one o...
gcdaddmzz2nncomi 40453 Adding a multiple of one o...
gcdnncli 40454 Closure of the gcd operato...
muldvds1d 40455 If a product divides an in...
muldvds2d 40456 If a product divides an in...
nndivdvdsd 40457 A positive integer divides...
nnproddivdvdsd 40458 A product of natural numbe...
coprmdvds2d 40459 If an integer is divisible...
12gcd5e1 40460 The gcd of 12 and 5 is 1. ...
60gcd6e6 40461 The gcd of 60 and 6 is 6. ...
60gcd7e1 40462 The gcd of 60 and 7 is 1. ...
420gcd8e4 40463 The gcd of 420 and 8 is 4....
lcmeprodgcdi 40464 Calculate the least common...
12lcm5e60 40465 The lcm of 12 and 5 is 60....
60lcm6e60 40466 The lcm of 60 and 6 is 60....
60lcm7e420 40467 The lcm of 60 and 7 is 420...
420lcm8e840 40468 The lcm of 420 and 8 is 84...
lcmfunnnd 40469 Useful equation to calcula...
lcm1un 40470 Least common multiple of n...
lcm2un 40471 Least common multiple of n...
lcm3un 40472 Least common multiple of n...
lcm4un 40473 Least common multiple of n...
lcm5un 40474 Least common multiple of n...
lcm6un 40475 Least common multiple of n...
lcm7un 40476 Least common multiple of n...
lcm8un 40477 Least common multiple of n...
3factsumint1 40478 Move constants out of inte...
3factsumint2 40479 Move constants out of inte...
3factsumint3 40480 Move constants out of inte...
3factsumint4 40481 Move constants out of inte...
3factsumint 40482 Helpful equation for lcm i...
resopunitintvd 40483 Restrict continuous functi...
resclunitintvd 40484 Restrict continuous functi...
resdvopclptsd 40485 Restrict derivative on uni...
lcmineqlem1 40486 Part of lcm inequality lem...
lcmineqlem2 40487 Part of lcm inequality lem...
lcmineqlem3 40488 Part of lcm inequality lem...
lcmineqlem4 40489 Part of lcm inequality lem...
lcmineqlem5 40490 Technical lemma for recipr...
lcmineqlem6 40491 Part of lcm inequality lem...
lcmineqlem7 40492 Derivative of 1-x for chai...
lcmineqlem8 40493 Derivative of (1-x)^(N-M)....
lcmineqlem9 40494 (1-x)^(N-M) is continuous....
lcmineqlem10 40495 Induction step of ~ lcmine...
lcmineqlem11 40496 Induction step, continuati...
lcmineqlem12 40497 Base case for induction. ...
lcmineqlem13 40498 Induction proof for lcm in...
lcmineqlem14 40499 Technical lemma for inequa...
lcmineqlem15 40500 F times the least common m...
lcmineqlem16 40501 Technical divisibility lem...
lcmineqlem17 40502 Inequality of 2^{2n}. (Co...
lcmineqlem18 40503 Technical lemma to shift f...
lcmineqlem19 40504 Dividing implies inequalit...
lcmineqlem20 40505 Inequality for lcm lemma. ...
lcmineqlem21 40506 The lcm inequality lemma w...
lcmineqlem22 40507 The lcm inequality lemma w...
lcmineqlem23 40508 Penultimate step to the lc...
lcmineqlem 40509 The least common multiple ...
3exp7 40510 3 to the power of 7 equals...
3lexlogpow5ineq1 40511 First inequality in inequa...
3lexlogpow5ineq2 40512 Second inequality in inequ...
3lexlogpow5ineq4 40513 Sharper logarithm inequali...
3lexlogpow5ineq3 40514 Combined inequality chain ...
3lexlogpow2ineq1 40515 Result for bound in AKS in...
3lexlogpow2ineq2 40516 Result for bound in AKS in...
3lexlogpow5ineq5 40517 Result for bound in AKS in...
intlewftc 40518 Inequality inference by in...
aks4d1lem1 40519 Technical lemma to reduce ...
aks4d1p1p1 40520 Exponential law for finite...
dvrelog2 40521 The derivative of the loga...
dvrelog3 40522 The derivative of the loga...
dvrelog2b 40523 Derivative of the binary l...
0nonelalab 40524 Technical lemma for open i...
dvrelogpow2b 40525 Derivative of the power of...
aks4d1p1p3 40526 Bound of a ceiling of the ...
aks4d1p1p2 40527 Rewrite ` A ` in more suit...
aks4d1p1p4 40528 Technical step for inequal...
dvle2 40529 Collapsed ~ dvle . (Contr...
aks4d1p1p6 40530 Inequality lift to differe...
aks4d1p1p7 40531 Bound of intermediary of i...
aks4d1p1p5 40532 Show inequality for existe...
aks4d1p1 40533 Show inequality for existe...
aks4d1p2 40534 Technical lemma for existe...
aks4d1p3 40535 There exists a small enoug...
aks4d1p4 40536 There exists a small enoug...
aks4d1p5 40537 Show that ` N ` and ` R ` ...
aks4d1p6 40538 The maximal prime power ex...
aks4d1p7d1 40539 Technical step in AKS lemm...
aks4d1p7 40540 Technical step in AKS lemm...
aks4d1p8d1 40541 If a prime divides one num...
aks4d1p8d2 40542 Any prime power dividing a...
aks4d1p8d3 40543 The remainder of a divisio...
aks4d1p8 40544 Show that ` N ` and ` R ` ...
aks4d1p9 40545 Show that the order is bou...
aks4d1 40546 Lemma 4.1 from ~ https://w...
fldhmf1 40547 A field homomorphism is in...
aks6d1c2p1 40548 In the AKS-theorem the sub...
aks6d1c2p2 40549 Injective condition for co...
5bc2eq10 40550 The value of 5 choose 2. ...
facp2 40551 The factorial of a success...
2np3bcnp1 40552 Part of induction step for...
2ap1caineq 40553 Inequality for Theorem 6.6...
sticksstones1 40554 Different strictly monoton...
sticksstones2 40555 The range function on stri...
sticksstones3 40556 The range function on stri...
sticksstones4 40557 Equinumerosity lemma for s...
sticksstones5 40558 Count the number of strict...
sticksstones6 40559 Function induces an order ...
sticksstones7 40560 Closure property of sticks...
sticksstones8 40561 Establish mapping between ...
sticksstones9 40562 Establish mapping between ...
sticksstones10 40563 Establish mapping between ...
sticksstones11 40564 Establish bijective mappin...
sticksstones12a 40565 Establish bijective mappin...
sticksstones12 40566 Establish bijective mappin...
sticksstones13 40567 Establish bijective mappin...
sticksstones14 40568 Sticks and stones with def...
sticksstones15 40569 Sticks and stones with alm...
sticksstones16 40570 Sticks and stones with col...
sticksstones17 40571 Extend sticks and stones t...
sticksstones18 40572 Extend sticks and stones t...
sticksstones19 40573 Extend sticks and stones t...
sticksstones20 40574 Lift sticks and stones to ...
sticksstones21 40575 Lift sticks and stones to ...
sticksstones22 40576 Non-exhaustive sticks and ...
metakunt1 40577 A is an endomapping. (Con...
metakunt2 40578 A is an endomapping. (Con...
metakunt3 40579 Value of A. (Contributed b...
metakunt4 40580 Value of A. (Contributed b...
metakunt5 40581 C is the left inverse for ...
metakunt6 40582 C is the left inverse for ...
metakunt7 40583 C is the left inverse for ...
metakunt8 40584 C is the left inverse for ...
metakunt9 40585 C is the left inverse for ...
metakunt10 40586 C is the right inverse for...
metakunt11 40587 C is the right inverse for...
metakunt12 40588 C is the right inverse for...
metakunt13 40589 C is the right inverse for...
metakunt14 40590 A is a primitive permutati...
metakunt15 40591 Construction of another pe...
metakunt16 40592 Construction of another pe...
metakunt17 40593 The union of three disjoin...
metakunt18 40594 Disjoint domains and codom...
metakunt19 40595 Domains on restrictions of...
metakunt20 40596 Show that B coincides on t...
metakunt21 40597 Show that B coincides on t...
metakunt22 40598 Show that B coincides on t...
metakunt23 40599 B coincides on the union o...
metakunt24 40600 Technical condition such t...
metakunt25 40601 B is a permutation. (Cont...
metakunt26 40602 Construction of one soluti...
metakunt27 40603 Construction of one soluti...
metakunt28 40604 Construction of one soluti...
metakunt29 40605 Construction of one soluti...
metakunt30 40606 Construction of one soluti...
metakunt31 40607 Construction of one soluti...
metakunt32 40608 Construction of one soluti...
metakunt33 40609 Construction of one soluti...
metakunt34 40610 ` D ` is a permutation. (...
andiff 40611 Adding biconditional when ...
fac2xp3 40612 Factorial of 2x+3, sublemm...
prodsplit 40613 Product split into two fac...
2xp3dxp2ge1d 40614 2x+3 is greater than or eq...
factwoffsmonot 40615 A factorial with offset is...
bicomdALT 40616 Alternate proof of ~ bicom...
elabgw 40617 Membership in a class abst...
elab2gw 40618 Membership in a class abst...
elrab2w 40619 Membership in a restricted...
ruvALT 40620 Alternate proof of ~ ruv w...
sn-wcdeq 40621 Alternative to ~ wcdeq and...
acos1half 40622 The arccosine of ` 1 / 2 `...
isdomn5 40623 The right conjunct in the ...
isdomn4 40624 A ring is a domain iff it ...
ioin9i8 40625 Miscellaneous inference cr...
jaodd 40626 Double deduction form of ~...
syl3an12 40627 A double syllogism inferen...
sbtd 40628 A true statement is true u...
sbor2 40629 One direction of ~ sbor , ...
19.9dev 40630 ~ 19.9d in the case of an ...
rspcedvdw 40631 Version of ~ rspcedvd wher...
2rspcedvdw 40632 Double application of ~ rs...
3rspcedvdw 40633 Triple application of ~ rs...
3rspcedvd 40634 Triple application of ~ rs...
eqimssd 40635 Equality implies inclusion...
rabdif 40636 Move difference in and out...
sn-axrep5v 40637 A condensed form of ~ axre...
sn-axprlem3 40638 ~ axprlem3 using only Tars...
sn-exelALT 40639 Alternate proof of ~ exel ...
ss2ab1 40640 Class abstractions in a su...
ssabdv 40641 Deduction of abstraction s...
sn-iotalem 40642 An unused lemma showing th...
sn-iotalemcor 40643 Corollary of ~ sn-iotalem ...
abbi1sn 40644 Originally part of ~ uniab...
brif1 40645 Move a relation inside and...
brif2 40646 Move a relation inside and...
brif12 40647 Move a relation inside and...
pssexg 40648 The proper subset of a set...
pssn0 40649 A proper superset is nonem...
psspwb 40650 Classes are proper subclas...
xppss12 40651 Proper subset theorem for ...
coexd 40652 The composition of two set...
elpwbi 40653 Membership in a power set,...
opelxpii 40654 Ordered pair membership in...
imaopab 40655 The image of a class of or...
fnsnbt 40656 A function's domain is a s...
fnimasnd 40657 The image of a function by...
fvmptd4 40658 Deduction version of ~ fvm...
ofun 40659 A function operation of un...
dfqs2 40660 Alternate definition of qu...
dfqs3 40661 Alternate definition of qu...
qseq12d 40662 Equality theorem for quoti...
qsalrel 40663 The quotient set is equal ...
elmapdd 40664 Deduction associated with ...
isfsuppd 40665 Deduction form of ~ isfsup...
fzosumm1 40666 Separate out the last term...
ccatcan2d 40667 Cancellation law for conca...
ressbasssg 40668 The base set of a restrict...
ressbasss2 40669 The base set of a restrict...
nelsubginvcld 40670 The inverse of a non-subgr...
nelsubgcld 40671 A non-subgroup-member plus...
nelsubgsubcld 40672 A non-subgroup-member minu...
rnasclg 40673 The set of injected scalar...
frlmfielbas 40674 The vectors of a finite fr...
frlmfzwrd 40675 A vector of a module with ...
frlmfzowrd 40676 A vector of a module with ...
frlmfzolen 40677 The dimension of a vector ...
frlmfzowrdb 40678 The vectors of a module wi...
frlmfzoccat 40679 The concatenation of two v...
frlmvscadiccat 40680 Scalar multiplication dist...
sn-grplidd 40681 The identity element of a ...
sn-grpridd 40682 The identity element of a ...
grpassd 40683 A group operation is assoc...
grplinvd 40684 The left inverse of a grou...
sn-grprinvd 40685 The right inverse of a gro...
grpasscan2d 40686 An associative cancellatio...
grpcominv1 40687 If two elements commute, t...
grpcominv2 40688 If two elements commute, t...
finsubmsubg 40689 A submonoid of a finite gr...
ringassd 40690 Associative law for multip...
ringlidmd 40691 The unity element of a rin...
ringridmd 40692 The unity element of a rin...
resrhm2b 40693 Restriction of the codomai...
rncrhmcl 40694 The range of a commutative...
rimcnv 40695 The converse of a ring iso...
rimco 40696 The composition of ring is...
brrici 40697 Prove isomorphic by an exp...
ricsym 40698 Ring isomorphism is symmet...
rictr 40699 Ring isomorphism is transi...
riccrng1 40700 Ring isomorphism preserves...
riccrng 40701 A ring is commutative if a...
drnginvrn0d 40702 A multiplicative inverse i...
drnginvrld 40703 Property of the multiplica...
drnginvrrd 40704 Property of the multiplica...
drngmulcanad 40705 Cancellation of a nonzero ...
drngmulcan2ad 40706 Cancellation of a nonzero ...
drnginvmuld 40707 Inverse of a nonzero produ...
flddrngd 40708 A field is a division ring...
lmodgrpd 40709 A left module is a group. ...
lvecgrp 40710 A vector space is a group....
lveclmodd 40711 A vector space is a left m...
lvecgrpd 40712 A vector space is a group....
lvecring 40713 The scalar component of a ...
lmhmlvec 40714 The property for modules t...
frlm0vald 40715 All coordinates of the zer...
frlmsnic 40716 Given a free module with a...
uvccl 40717 A unit vector is a vector....
uvcn0 40718 A unit vector is nonzero. ...
pwselbasr 40719 The reverse direction of ~...
pwsgprod 40720 Finite products in a power...
mplringd 40721 The polynomial ring is a r...
mplcrngd 40722 The polynomial ring is a c...
mplsubrgcl 40723 An element of a polynomial...
mhmcompl 40724 The composition of a monoi...
rhmmpllem1 40725 Lemma for ~ rhmmpl . A su...
rhmmpllem2 40726 Lemma for ~ rhmmpl . A su...
mhmcoaddmpl 40727 Show that the ring homomor...
rhmcomulmpl 40728 Show that the ring homomor...
rhmmpl 40729 Provide a ring homomorphis...
mplascl0 40730 The zero scalar as a polyn...
evl0 40731 The zero polynomial evalua...
evlsval3 40732 Give a formula for the pol...
evlsvval 40733 Give a formula for the eva...
evlsscaval 40734 Polynomial evaluation buil...
evlsvarval 40735 Polynomial evaluation buil...
evlsbagval 40736 Polynomial evaluation buil...
evlsexpval 40737 Polynomial evaluation buil...
evlsaddval 40738 Polynomial evaluation buil...
evlsmulval 40739 Polynomial evaluation buil...
evlsevl 40740 Evaluation in a subring is...
evladdval 40741 Polynomial evaluation buil...
selvcllem1 40742 ` T ` is an associative al...
selvcllem2 40743 ` D ` is a ring homomorphi...
selvcllem3 40744 The third argument passed ...
selvcllemh 40745 Apply the third argument (...
selvcllem4 40746 The fourth argument passed...
selvcllem5 40747 The fifth argument passed ...
selvcl 40748 Closure of the "variable s...
selvval2 40749 Value of the "variable sel...
selvadd 40750 The "variable selection" f...
fsuppind 40751 Induction on functions ` F...
fsuppssindlem1 40752 Lemma for ~ fsuppssind . ...
fsuppssindlem2 40753 Lemma for ~ fsuppssind . ...
fsuppssind 40754 Induction on functions ` F...
mhpind 40755 The homogeneous polynomial...
mhphflem 40756 Lemma for ~ mhphf . Add s...
mhphf 40757 A homogeneous polynomial d...
mhphf2 40758 A homogeneous polynomial d...
mhphf3 40759 A homogeneous polynomial d...
mhphf4 40760 A homogeneous polynomial d...
c0exALT 40761 Alternate proof of ~ c0ex ...
0cnALT3 40762 Alternate proof of ~ 0cn u...
elre0re 40763 Specialized version of ~ 0...
1t1e1ALT 40764 Alternate proof of ~ 1t1e1...
remulcan2d 40765 ~ mulcan2d for real number...
readdid1addid2d 40766 Given some real number ` B...
sn-1ne2 40767 A proof of ~ 1ne2 without ...
nnn1suc 40768 A positive integer that is...
nnadd1com 40769 Addition with 1 is commuta...
nnaddcom 40770 Addition is commutative fo...
nnaddcomli 40771 Version of ~ addcomli for ...
nnadddir 40772 Right-distributivity for n...
nnmul1com 40773 Multiplication with 1 is c...
nnmulcom 40774 Multiplication is commutat...
mvrrsubd 40775 Move a subtraction in the ...
laddrotrd 40776 Rotate the variables right...
raddcom12d 40777 Swap the first two variabl...
lsubrotld 40778 Rotate the variables left ...
lsubcom23d 40779 Swap the second and third ...
addsubeq4com 40780 Relation between sums and ...
sqsumi 40781 A sum squared. (Contribut...
negn0nposznnd 40782 Lemma for ~ dffltz . (Con...
sqmid3api 40783 Value of the square of the...
decaddcom 40784 Commute ones place in addi...
sqn5i 40785 The square of a number end...
sqn5ii 40786 The square of a number end...
decpmulnc 40787 Partial products algorithm...
decpmul 40788 Partial products algorithm...
sqdeccom12 40789 The square of a number in ...
sq3deccom12 40790 Variant of ~ sqdeccom12 wi...
235t711 40791 Calculate a product by lon...
ex-decpmul 40792 Example usage of ~ decpmul...
oexpreposd 40793 Lemma for ~ dffltz . TODO...
ltexp1d 40794 ~ ltmul1d for exponentiati...
ltexp1dd 40795 Raising both sides of 'les...
exp11nnd 40796 ~ sq11d for positive real ...
exp11d 40797 ~ exp11nnd for nonzero int...
0dvds0 40798 0 divides 0. (Contributed...
absdvdsabsb 40799 Divisibility is invariant ...
dvdsexpim 40800 ~ dvdssqim generalized to ...
gcdnn0id 40801 The ` gcd ` of a nonnegati...
gcdle1d 40802 The greatest common diviso...
gcdle2d 40803 The greatest common diviso...
dvdsexpad 40804 Deduction associated with ...
nn0rppwr 40805 If ` A ` and ` B ` are rel...
expgcd 40806 Exponentiation distributes...
nn0expgcd 40807 Exponentiation distributes...
zexpgcd 40808 Exponentiation distributes...
numdenexp 40809 ~ numdensq extended to non...
numexp 40810 ~ numsq extended to nonneg...
denexp 40811 ~ densq extended to nonneg...
dvdsexpnn 40812 ~ dvdssqlem generalized to...
dvdsexpnn0 40813 ~ dvdsexpnn generalized to...
dvdsexpb 40814 ~ dvdssq generalized to po...
posqsqznn 40815 When a positive rational s...
cxpgt0d 40816 A positive real raised to ...
zrtelqelz 40817 ~ zsqrtelqelz generalized ...
zrtdvds 40818 A positive integer root di...
rtprmirr 40819 The root of a prime number...
resubval 40822 Value of real subtraction,...
renegeulemv 40823 Lemma for ~ renegeu and si...
renegeulem 40824 Lemma for ~ renegeu and si...
renegeu 40825 Existential uniqueness of ...
rernegcl 40826 Closure law for negative r...
renegadd 40827 Relationship between real ...
renegid 40828 Addition of a real number ...
reneg0addid2 40829 Negative zero is a left ad...
resubeulem1 40830 Lemma for ~ resubeu . A v...
resubeulem2 40831 Lemma for ~ resubeu . A v...
resubeu 40832 Existential uniqueness of ...
rersubcl 40833 Closure for real subtracti...
resubadd 40834 Relation between real subt...
resubaddd 40835 Relationship between subtr...
resubf 40836 Real subtraction is an ope...
repncan2 40837 Addition and subtraction o...
repncan3 40838 Addition and subtraction o...
readdsub 40839 Law for addition and subtr...
reladdrsub 40840 Move LHS of a sum into RHS...
reltsub1 40841 Subtraction from both side...
reltsubadd2 40842 'Less than' relationship b...
resubcan2 40843 Cancellation law for real ...
resubsub4 40844 Law for double subtraction...
rennncan2 40845 Cancellation law for real ...
renpncan3 40846 Cancellation law for real ...
repnpcan 40847 Cancellation law for addit...
reppncan 40848 Cancellation law for mixed...
resubidaddid1lem 40849 Lemma for ~ resubidaddid1 ...
resubidaddid1 40850 Any real number subtracted...
resubdi 40851 Distribution of multiplica...
re1m1e0m0 40852 Equality of two left-addit...
sn-00idlem1 40853 Lemma for ~ sn-00id . (Co...
sn-00idlem2 40854 Lemma for ~ sn-00id . (Co...
sn-00idlem3 40855 Lemma for ~ sn-00id . (Co...
sn-00id 40856 ~ 00id proven without ~ ax...
re0m0e0 40857 Real number version of ~ 0...
readdid2 40858 Real number version of ~ a...
sn-addid2 40859 ~ addid2 without ~ ax-mulc...
remul02 40860 Real number version of ~ m...
sn-0ne2 40861 ~ 0ne2 without ~ ax-mulcom...
remul01 40862 Real number version of ~ m...
resubid 40863 Subtraction of a real numb...
readdid1 40864 Real number version of ~ a...
resubid1 40865 Real number version of ~ s...
renegneg 40866 A real number is equal to ...
readdcan2 40867 Commuted version of ~ read...
renegid2 40868 Commuted version of ~ rene...
remulneg2d 40869 Product with negative is n...
sn-it0e0 40870 Proof of ~ it0e0 without ~...
sn-negex12 40871 A combination of ~ cnegex ...
sn-negex 40872 Proof of ~ cnegex without ...
sn-negex2 40873 Proof of ~ cnegex2 without...
sn-addcand 40874 ~ addcand without ~ ax-mul...
sn-addid1 40875 ~ addid1 without ~ ax-mulc...
sn-addcan2d 40876 ~ addcan2d without ~ ax-mu...
reixi 40877 ~ ixi without ~ ax-mulcom ...
rei4 40878 ~ i4 without ~ ax-mulcom ....
sn-addid0 40879 A number that sums to itse...
sn-mul01 40880 ~ mul01 without ~ ax-mulco...
sn-subeu 40881 ~ negeu without ~ ax-mulco...
sn-subcl 40882 ~ subcl without ~ ax-mulco...
sn-subf 40883 ~ subf without ~ ax-mulcom...
resubeqsub 40884 Equivalence between real s...
subresre 40885 Subtraction restricted to ...
addinvcom 40886 A number commutes with its...
remulinvcom 40887 A left multiplicative inve...
remulid2 40888 Commuted version of ~ ax-1...
sn-1ticom 40889 Lemma for ~ sn-mulid2 and ...
sn-mulid2 40890 ~ mulid2 without ~ ax-mulc...
it1ei 40891 ` 1 ` is a multiplicative ...
ipiiie0 40892 The multiplicative inverse...
remulcand 40893 Commuted version of ~ remu...
sn-0tie0 40894 Lemma for ~ sn-mul02 . Co...
sn-mul02 40895 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 40896 ~ ltaddpos without ~ ax-mu...
sn-ltaddneg 40897 ~ ltaddneg without ~ ax-mu...
reposdif 40898 Comparison of two numbers ...
relt0neg1 40899 Comparison of a real and i...
relt0neg2 40900 Comparison of a real and i...
sn-addlt0d 40901 The sum of negative number...
sn-addgt0d 40902 The sum of positive number...
sn-nnne0 40903 ~ nnne0 without ~ ax-mulco...
reelznn0nn 40904 ~ elznn0nn restated using ...
nn0addcom 40905 Addition is commutative fo...
zaddcomlem 40906 Lemma for ~ zaddcom . (Co...
zaddcom 40907 Addition is commutative fo...
renegmulnnass 40908 Move multiplication by a n...
nn0mulcom 40909 Multiplication is commutat...
zmulcomlem 40910 Lemma for ~ zmulcom . (Co...
zmulcom 40911 Multiplication is commutat...
mulgt0con1dlem 40912 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 40913 Counterpart to ~ mulgt0con...
mulgt0con2d 40914 Lemma for ~ mulgt0b2d and ...
mulgt0b2d 40915 Biconditional, deductive f...
sn-ltmul2d 40916 ~ ltmul2d without ~ ax-mul...
sn-0lt1 40917 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 40918 ~ ltp1 without ~ ax-mulcom...
reneg1lt0 40919 Lemma for ~ sn-inelr . (C...
sn-inelr 40920 ~ inelr without ~ ax-mulco...
itrere 40921 ` _i ` times a real is rea...
retire 40922 Commuted version of ~ itre...
cnreeu 40923 The reals in the expressio...
sn-sup2 40924 ~ sup2 with exactly the sa...
prjspval 40927 Value of the projective sp...
prjsprel 40928 Utility theorem regarding ...
prjspertr 40929 The relation in ` PrjSp ` ...
prjsperref 40930 The relation in ` PrjSp ` ...
prjspersym 40931 The relation in ` PrjSp ` ...
prjsper 40932 The relation used to defin...
prjspreln0 40933 Two nonzero vectors are eq...
prjspvs 40934 A nonzero multiple of a ve...
prjsprellsp 40935 Two vectors are equivalent...
prjspeclsp 40936 The vectors equivalent to ...
prjspval2 40937 Alternate definition of pr...
prjspnval 40940 Value of the n-dimensional...
prjspnerlem 40941 A lemma showing that the e...
prjspnval2 40942 Value of the n-dimensional...
prjspner 40943 The relation used to defin...
prjspnvs 40944 A nonzero multiple of a ve...
prjspnssbas 40945 A projective point spans a...
prjspnn0 40946 A projective point is none...
0prjspnlem 40947 Lemma for ~ 0prjspn . The...
prjspnfv01 40948 Any vector is equivalent t...
prjspner01 40949 Any vector is equivalent t...
prjspner1 40950 Two vectors whose zeroth c...
0prjspnrel 40951 In the zero-dimensional pr...
0prjspn 40952 A zero-dimensional project...
prjcrvfval 40955 Value of the projective cu...
prjcrvval 40956 Value of the projective cu...
prjcrv0 40957 The "curve" (zero set) cor...
dffltz 40958 Fermat's Last Theorem (FLT...
fltmul 40959 A counterexample to FLT st...
fltdiv 40960 A counterexample to FLT st...
flt0 40961 A counterexample for FLT d...
fltdvdsabdvdsc 40962 Any factor of both ` A ` a...
fltabcoprmex 40963 A counterexample to FLT im...
fltaccoprm 40964 A counterexample to FLT wi...
fltbccoprm 40965 A counterexample to FLT wi...
fltabcoprm 40966 A counterexample to FLT wi...
infdesc 40967 Infinite descent. The hyp...
fltne 40968 If a counterexample to FLT...
flt4lem 40969 Raising a number to the fo...
flt4lem1 40970 Satisfy the antecedent use...
flt4lem2 40971 If ` A ` is even, ` B ` is...
flt4lem3 40972 Equivalent to ~ pythagtrip...
flt4lem4 40973 If the product of two copr...
flt4lem5 40974 In the context of the lemm...
flt4lem5elem 40975 Version of ~ fltaccoprm an...
flt4lem5a 40976 Part 1 of Equation 1 of ...
flt4lem5b 40977 Part 2 of Equation 1 of ...
flt4lem5c 40978 Part 2 of Equation 2 of ...
flt4lem5d 40979 Part 3 of Equation 2 of ...
flt4lem5e 40980 Satisfy the hypotheses of ...
flt4lem5f 40981 Final equation of ~...
flt4lem6 40982 Remove shared factors in a...
flt4lem7 40983 Convert ~ flt4lem5f into a...
nna4b4nsq 40984 Strengthening of Fermat's ...
fltltc 40985 ` ( C ^ N ) ` is the large...
fltnltalem 40986 Lemma for ~ fltnlta . A l...
fltnlta 40987 In a Fermat counterexample...
binom2d 40988 Deduction form of binom2. ...
cu3addd 40989 Cube of sum of three numbe...
sqnegd 40990 The square of the negative...
negexpidd 40991 The sum of a real number t...
rexlimdv3d 40992 An extended version of ~ r...
3cubeslem1 40993 Lemma for ~ 3cubes . (Con...
3cubeslem2 40994 Lemma for ~ 3cubes . Used...
3cubeslem3l 40995 Lemma for ~ 3cubes . (Con...
3cubeslem3r 40996 Lemma for ~ 3cubes . (Con...
3cubeslem3 40997 Lemma for ~ 3cubes . (Con...
3cubeslem4 40998 Lemma for ~ 3cubes . This...
3cubes 40999 Every rational number is a...
rntrclfvOAI 41000 The range of the transitiv...
moxfr 41001 Transfer at-most-one betwe...
imaiinfv 41002 Indexed intersection of an...
elrfi 41003 Elementhood in a set of re...
elrfirn 41004 Elementhood in a set of re...
elrfirn2 41005 Elementhood in a set of re...
cmpfiiin 41006 In a compact topology, a s...
ismrcd1 41007 Any function from the subs...
ismrcd2 41008 Second half of ~ ismrcd1 ....
istopclsd 41009 A closure function which s...
ismrc 41010 A function is a Moore clos...
isnacs 41013 Expand definition of Noeth...
nacsfg 41014 In a Noetherian-type closu...
isnacs2 41015 Express Noetherian-type cl...
mrefg2 41016 Slight variation on finite...
mrefg3 41017 Slight variation on finite...
nacsacs 41018 A closure system of Noethe...
isnacs3 41019 A choice-free order equiva...
incssnn0 41020 Transitivity induction of ...
nacsfix 41021 An increasing sequence of ...
constmap 41022 A constant (represented wi...
mapco2g 41023 Renaming indices in a tupl...
mapco2 41024 Post-composition (renaming...
mapfzcons 41025 Extending a one-based mapp...
mapfzcons1 41026 Recover prefix mapping fro...
mapfzcons1cl 41027 A nonempty mapping has a p...
mapfzcons2 41028 Recover added element from...
mptfcl 41029 Interpret range of a maps-...
mzpclval 41034 Substitution lemma for ` m...
elmzpcl 41035 Double substitution lemma ...
mzpclall 41036 The set of all functions w...
mzpcln0 41037 Corollary of ~ mzpclall : ...
mzpcl1 41038 Defining property 1 of a p...
mzpcl2 41039 Defining property 2 of a p...
mzpcl34 41040 Defining properties 3 and ...
mzpval 41041 Value of the ` mzPoly ` fu...
dmmzp 41042 ` mzPoly ` is defined for ...
mzpincl 41043 Polynomial closedness is a...
mzpconst 41044 Constant functions are pol...
mzpf 41045 A polynomial function is a...
mzpproj 41046 A projection function is p...
mzpadd 41047 The pointwise sum of two p...
mzpmul 41048 The pointwise product of t...
mzpconstmpt 41049 A constant function expres...
mzpaddmpt 41050 Sum of polynomial function...
mzpmulmpt 41051 Product of polynomial func...
mzpsubmpt 41052 The difference of two poly...
mzpnegmpt 41053 Negation of a polynomial f...
mzpexpmpt 41054 Raise a polynomial functio...
mzpindd 41055 "Structural" induction to ...
mzpmfp 41056 Relationship between multi...
mzpsubst 41057 Substituting polynomials f...
mzprename 41058 Simplified version of ~ mz...
mzpresrename 41059 A polynomial is a polynomi...
mzpcompact2lem 41060 Lemma for ~ mzpcompact2 . ...
mzpcompact2 41061 Polynomials are finitary o...
coeq0i 41062 ~ coeq0 but without explic...
fzsplit1nn0 41063 Split a finite 1-based set...
eldiophb 41066 Initial expression of Diop...
eldioph 41067 Condition for a set to be ...
diophrw 41068 Renaming and adding unused...
eldioph2lem1 41069 Lemma for ~ eldioph2 . Co...
eldioph2lem2 41070 Lemma for ~ eldioph2 . Co...
eldioph2 41071 Construct a Diophantine se...
eldioph2b 41072 While Diophantine sets wer...
eldiophelnn0 41073 Remove antecedent on ` B `...
eldioph3b 41074 Define Diophantine sets in...
eldioph3 41075 Inference version of ~ eld...
ellz1 41076 Membership in a lower set ...
lzunuz 41077 The union of a lower set o...
fz1eqin 41078 Express a one-based finite...
lzenom 41079 Lower integers are countab...
elmapresaunres2 41080 ~ fresaunres2 transposed t...
diophin 41081 If two sets are Diophantin...
diophun 41082 If two sets are Diophantin...
eldiophss 41083 Diophantine sets are sets ...
diophrex 41084 Projecting a Diophantine s...
eq0rabdioph 41085 This is the first of a num...
eqrabdioph 41086 Diophantine set builder fo...
0dioph 41087 The null set is Diophantin...
vdioph 41088 The "universal" set (as la...
anrabdioph 41089 Diophantine set builder fo...
orrabdioph 41090 Diophantine set builder fo...
3anrabdioph 41091 Diophantine set builder fo...
3orrabdioph 41092 Diophantine set builder fo...
2sbcrex 41093 Exchange an existential qu...
sbcrexgOLD 41094 Interchange class substitu...
2sbcrexOLD 41095 Exchange an existential qu...
sbc2rex 41096 Exchange a substitution wi...
sbc2rexgOLD 41097 Exchange a substitution wi...
sbc4rex 41098 Exchange a substitution wi...
sbc4rexgOLD 41099 Exchange a substitution wi...
sbcrot3 41100 Rotate a sequence of three...
sbcrot5 41101 Rotate a sequence of five ...
sbccomieg 41102 Commute two explicit subst...
rexrabdioph 41103 Diophantine set builder fo...
rexfrabdioph 41104 Diophantine set builder fo...
2rexfrabdioph 41105 Diophantine set builder fo...
3rexfrabdioph 41106 Diophantine set builder fo...
4rexfrabdioph 41107 Diophantine set builder fo...
6rexfrabdioph 41108 Diophantine set builder fo...
7rexfrabdioph 41109 Diophantine set builder fo...
rabdiophlem1 41110 Lemma for arithmetic dioph...
rabdiophlem2 41111 Lemma for arithmetic dioph...
elnn0rabdioph 41112 Diophantine set builder fo...
rexzrexnn0 41113 Rewrite an existential qua...
lerabdioph 41114 Diophantine set builder fo...
eluzrabdioph 41115 Diophantine set builder fo...
elnnrabdioph 41116 Diophantine set builder fo...
ltrabdioph 41117 Diophantine set builder fo...
nerabdioph 41118 Diophantine set builder fo...
dvdsrabdioph 41119 Divisibility is a Diophant...
eldioph4b 41120 Membership in ` Dioph ` ex...
eldioph4i 41121 Forward-only version of ~ ...
diophren 41122 Change variables in a Diop...
rabrenfdioph 41123 Change variable numbers in...
rabren3dioph 41124 Change variable numbers in...
fphpd 41125 Pigeonhole principle expre...
fphpdo 41126 Pigeonhole principle for s...
ctbnfien 41127 An infinite subset of a co...
fiphp3d 41128 Infinite pigeonhole princi...
rencldnfilem 41129 Lemma for ~ rencldnfi . (...
rencldnfi 41130 A set of real numbers whic...
irrapxlem1 41131 Lemma for ~ irrapx1 . Div...
irrapxlem2 41132 Lemma for ~ irrapx1 . Two...
irrapxlem3 41133 Lemma for ~ irrapx1 . By ...
irrapxlem4 41134 Lemma for ~ irrapx1 . Eli...
irrapxlem5 41135 Lemma for ~ irrapx1 . Swi...
irrapxlem6 41136 Lemma for ~ irrapx1 . Exp...
irrapx1 41137 Dirichlet's approximation ...
pellexlem1 41138 Lemma for ~ pellex . Arit...
pellexlem2 41139 Lemma for ~ pellex . Arit...
pellexlem3 41140 Lemma for ~ pellex . To e...
pellexlem4 41141 Lemma for ~ pellex . Invo...
pellexlem5 41142 Lemma for ~ pellex . Invo...
pellexlem6 41143 Lemma for ~ pellex . Doin...
pellex 41144 Every Pell equation has a ...
pell1qrval 41155 Value of the set of first-...
elpell1qr 41156 Membership in a first-quad...
pell14qrval 41157 Value of the set of positi...
elpell14qr 41158 Membership in the set of p...
pell1234qrval 41159 Value of the set of genera...
elpell1234qr 41160 Membership in the set of g...
pell1234qrre 41161 General Pell solutions are...
pell1234qrne0 41162 No solution to a Pell equa...
pell1234qrreccl 41163 General solutions of the P...
pell1234qrmulcl 41164 General solutions of the P...
pell14qrss1234 41165 A positive Pell solution i...
pell14qrre 41166 A positive Pell solution i...
pell14qrne0 41167 A positive Pell solution i...
pell14qrgt0 41168 A positive Pell solution i...
pell14qrrp 41169 A positive Pell solution i...
pell1234qrdich 41170 A general Pell solution is...
elpell14qr2 41171 A number is a positive Pel...
pell14qrmulcl 41172 Positive Pell solutions ar...
pell14qrreccl 41173 Positive Pell solutions ar...
pell14qrdivcl 41174 Positive Pell solutions ar...
pell14qrexpclnn0 41175 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 41176 Positive Pell solutions ar...
pell1qrss14 41177 First-quadrant Pell soluti...
pell14qrdich 41178 A positive Pell solution i...
pell1qrge1 41179 A Pell solution in the fir...
pell1qr1 41180 1 is a Pell solution and i...
elpell1qr2 41181 The first quadrant solutio...
pell1qrgaplem 41182 Lemma for ~ pell1qrgap . ...
pell1qrgap 41183 First-quadrant Pell soluti...
pell14qrgap 41184 Positive Pell solutions ar...
pell14qrgapw 41185 Positive Pell solutions ar...
pellqrexplicit 41186 Condition for a calculated...
infmrgelbi 41187 Any lower bound of a nonem...
pellqrex 41188 There is a nontrivial solu...
pellfundval 41189 Value of the fundamental s...
pellfundre 41190 The fundamental solution o...
pellfundge 41191 Lower bound on the fundame...
pellfundgt1 41192 Weak lower bound on the Pe...
pellfundlb 41193 A nontrivial first quadran...
pellfundglb 41194 If a real is larger than t...
pellfundex 41195 The fundamental solution a...
pellfund14gap 41196 There are no solutions bet...
pellfundrp 41197 The fundamental Pell solut...
pellfundne1 41198 The fundamental Pell solut...
reglogcl 41199 General logarithm is a rea...
reglogltb 41200 General logarithm preserve...
reglogleb 41201 General logarithm preserve...
reglogmul 41202 Multiplication law for gen...
reglogexp 41203 Power law for general log....
reglogbas 41204 General log of the base is...
reglog1 41205 General log of 1 is 0. (C...
reglogexpbas 41206 General log of a power of ...
pellfund14 41207 Every positive Pell soluti...
pellfund14b 41208 The positive Pell solution...
rmxfval 41213 Value of the X sequence. ...
rmyfval 41214 Value of the Y sequence. ...
rmspecsqrtnq 41215 The discriminant used to d...
rmspecnonsq 41216 The discriminant used to d...
qirropth 41217 This lemma implements the ...
rmspecfund 41218 The base of exponent used ...
rmxyelqirr 41219 The solutions used to cons...
rmxyelqirrOLD 41220 Obsolete version of ~ rmxy...
rmxypairf1o 41221 The function used to extra...
rmxyelxp 41222 Lemma for ~ frmx and ~ frm...
frmx 41223 The X sequence is a nonneg...
frmy 41224 The Y sequence is an integ...
rmxyval 41225 Main definition of the X a...
rmspecpos 41226 The discriminant used to d...
rmxycomplete 41227 The X and Y sequences take...
rmxynorm 41228 The X and Y sequences defi...
rmbaserp 41229 The base of exponentiation...
rmxyneg 41230 Negation law for X and Y s...
rmxyadd 41231 Addition formula for X and...
rmxy1 41232 Value of the X and Y seque...
rmxy0 41233 Value of the X and Y seque...
rmxneg 41234 Negation law (even functio...
rmx0 41235 Value of X sequence at 0. ...
rmx1 41236 Value of X sequence at 1. ...
rmxadd 41237 Addition formula for X seq...
rmyneg 41238 Negation formula for Y seq...
rmy0 41239 Value of Y sequence at 0. ...
rmy1 41240 Value of Y sequence at 1. ...
rmyadd 41241 Addition formula for Y seq...
rmxp1 41242 Special addition-of-1 form...
rmyp1 41243 Special addition of 1 form...
rmxm1 41244 Subtraction of 1 formula f...
rmym1 41245 Subtraction of 1 formula f...
rmxluc 41246 The X sequence is a Lucas ...
rmyluc 41247 The Y sequence is a Lucas ...
rmyluc2 41248 Lucas sequence property of...
rmxdbl 41249 "Double-angle formula" for...
rmydbl 41250 "Double-angle formula" for...
monotuz 41251 A function defined on an u...
monotoddzzfi 41252 A function which is odd an...
monotoddzz 41253 A function (given implicit...
oddcomabszz 41254 An odd function which take...
2nn0ind 41255 Induction on nonnegative i...
zindbi 41256 Inductively transfer a pro...
rmxypos 41257 For all nonnegative indice...
ltrmynn0 41258 The Y-sequence is strictly...
ltrmxnn0 41259 The X-sequence is strictly...
lermxnn0 41260 The X-sequence is monotoni...
rmxnn 41261 The X-sequence is defined ...
ltrmy 41262 The Y-sequence is strictly...
rmyeq0 41263 Y is zero only at zero. (...
rmyeq 41264 Y is one-to-one. (Contrib...
lermy 41265 Y is monotonic (non-strict...
rmynn 41266 ` rmY ` is positive for po...
rmynn0 41267 ` rmY ` is nonnegative for...
rmyabs 41268 ` rmY ` commutes with ` ab...
jm2.24nn 41269 X(n) is strictly greater t...
jm2.17a 41270 First half of lemma 2.17 o...
jm2.17b 41271 Weak form of the second ha...
jm2.17c 41272 Second half of lemma 2.17 ...
jm2.24 41273 Lemma 2.24 of [JonesMatija...
rmygeid 41274 Y(n) increases faster than...
congtr 41275 A wff of the form ` A || (...
congadd 41276 If two pairs of numbers ar...
congmul 41277 If two pairs of numbers ar...
congsym 41278 Congruence mod ` A ` is a ...
congneg 41279 If two integers are congru...
congsub 41280 If two pairs of numbers ar...
congid 41281 Every integer is congruent...
mzpcong 41282 Polynomials commute with c...
congrep 41283 Every integer is congruent...
congabseq 41284 If two integers are congru...
acongid 41285 A wff like that in this th...
acongsym 41286 Symmetry of alternating co...
acongneg2 41287 Negate right side of alter...
acongtr 41288 Transitivity of alternatin...
acongeq12d 41289 Substitution deduction for...
acongrep 41290 Every integer is alternati...
fzmaxdif 41291 Bound on the difference be...
fzneg 41292 Reflection of a finite ran...
acongeq 41293 Two numbers in the fundame...
dvdsacongtr 41294 Alternating congruence pas...
coprmdvdsb 41295 Multiplication by a coprim...
modabsdifz 41296 Divisibility in terms of m...
dvdsabsmod0 41297 Divisibility in terms of m...
jm2.18 41298 Theorem 2.18 of [JonesMati...
jm2.19lem1 41299 Lemma for ~ jm2.19 . X an...
jm2.19lem2 41300 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 41301 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 41302 Lemma for ~ jm2.19 . Exte...
jm2.19 41303 Lemma 2.19 of [JonesMatija...
jm2.21 41304 Lemma for ~ jm2.20nn . Ex...
jm2.22 41305 Lemma for ~ jm2.20nn . Ap...
jm2.23 41306 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 41307 Lemma 2.20 of [JonesMatija...
jm2.25lem1 41308 Lemma for ~ jm2.26 . (Con...
jm2.25 41309 Lemma for ~ jm2.26 . Rema...
jm2.26a 41310 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 41311 Lemma for ~ jm2.26 . Use ...
jm2.26 41312 Lemma 2.26 of [JonesMatija...
jm2.15nn0 41313 Lemma 2.15 of [JonesMatija...
jm2.16nn0 41314 Lemma 2.16 of [JonesMatija...
jm2.27a 41315 Lemma for ~ jm2.27 . Reve...
jm2.27b 41316 Lemma for ~ jm2.27 . Expa...
jm2.27c 41317 Lemma for ~ jm2.27 . Forw...
jm2.27 41318 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 41319 Lemma for ~ rmydioph . Su...
jm2.27dlem2 41320 Lemma for ~ rmydioph . Th...
jm2.27dlem3 41321 Lemma for ~ rmydioph . In...
jm2.27dlem4 41322 Lemma for ~ rmydioph . In...
jm2.27dlem5 41323 Lemma for ~ rmydioph . Us...
rmydioph 41324 ~ jm2.27 restated in terms...
rmxdiophlem 41325 X can be expressed in term...
rmxdioph 41326 X is a Diophantine functio...
jm3.1lem1 41327 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 41328 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 41329 Lemma for ~ jm3.1 . (Cont...
jm3.1 41330 Diophantine expression for...
expdiophlem1 41331 Lemma for ~ expdioph . Fu...
expdiophlem2 41332 Lemma for ~ expdioph . Ex...
expdioph 41333 The exponential function i...
setindtr 41334 Set induction for sets con...
setindtrs 41335 Set induction scheme witho...
dford3lem1 41336 Lemma for ~ dford3 . (Con...
dford3lem2 41337 Lemma for ~ dford3 . (Con...
dford3 41338 Ordinals are precisely the...
dford4 41339 ~ dford3 expressed in prim...
wopprc 41340 Unrelated: Wiener pairs t...
rpnnen3lem 41341 Lemma for ~ rpnnen3 . (Co...
rpnnen3 41342 Dedekind cut injection of ...
axac10 41343 Characterization of choice...
harinf 41344 The Hartogs number of an i...
wdom2d2 41345 Deduction for weak dominan...
ttac 41346 Tarski's theorem about cho...
pw2f1ocnv 41347 Define a bijection between...
pw2f1o2 41348 Define a bijection between...
pw2f1o2val 41349 Function value of the ~ pw...
pw2f1o2val2 41350 Membership in a mapped set...
soeq12d 41351 Equality deduction for tot...
freq12d 41352 Equality deduction for fou...
weeq12d 41353 Equality deduction for wel...
limsuc2 41354 Limit ordinals in the sens...
wepwsolem 41355 Transfer an ordering on ch...
wepwso 41356 A well-ordering induces a ...
dnnumch1 41357 Define an enumeration of a...
dnnumch2 41358 Define an enumeration (wea...
dnnumch3lem 41359 Value of the ordinal injec...
dnnumch3 41360 Define an injection from a...
dnwech 41361 Define a well-ordering fro...
fnwe2val 41362 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 41363 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 41364 Lemma for ~ fnwe2 . An el...
fnwe2lem3 41365 Lemma for ~ fnwe2 . Trich...
fnwe2 41366 A well-ordering can be con...
aomclem1 41367 Lemma for ~ dfac11 . This...
aomclem2 41368 Lemma for ~ dfac11 . Succ...
aomclem3 41369 Lemma for ~ dfac11 . Succ...
aomclem4 41370 Lemma for ~ dfac11 . Limi...
aomclem5 41371 Lemma for ~ dfac11 . Comb...
aomclem6 41372 Lemma for ~ dfac11 . Tran...
aomclem7 41373 Lemma for ~ dfac11 . ` ( R...
aomclem8 41374 Lemma for ~ dfac11 . Perf...
dfac11 41375 The right-hand side of thi...
kelac1 41376 Kelley's choice, basic for...
kelac2lem 41377 Lemma for ~ kelac2 and ~ d...
kelac2 41378 Kelley's choice, most comm...
dfac21 41379 Tychonoff's theorem is a c...
islmodfg 41382 Property of a finitely gen...
islssfg 41383 Property of a finitely gen...
islssfg2 41384 Property of a finitely gen...
islssfgi 41385 Finitely spanned subspaces...
fglmod 41386 Finitely generated left mo...
lsmfgcl 41387 The sum of two finitely ge...
islnm 41390 Property of being a Noethe...
islnm2 41391 Property of being a Noethe...
lnmlmod 41392 A Noetherian left module i...
lnmlssfg 41393 A submodule of Noetherian ...
lnmlsslnm 41394 All submodules of a Noethe...
lnmfg 41395 A Noetherian left module i...
kercvrlsm 41396 The domain of a linear fun...
lmhmfgima 41397 A homomorphism maps finite...
lnmepi 41398 Epimorphic images of Noeth...
lmhmfgsplit 41399 If the kernel and range of...
lmhmlnmsplit 41400 If the kernel and range of...
lnmlmic 41401 Noetherian is an invariant...
pwssplit4 41402 Splitting for structure po...
filnm 41403 Finite left modules are No...
pwslnmlem0 41404 Zeroeth powers are Noether...
pwslnmlem1 41405 First powers are Noetheria...
pwslnmlem2 41406 A sum of powers is Noether...
pwslnm 41407 Finite powers of Noetheria...
unxpwdom3 41408 Weaker version of ~ unxpwd...
pwfi2f1o 41409 The ~ pw2f1o bijection rel...
pwfi2en 41410 Finitely supported indicat...
frlmpwfi 41411 Formal linear combinations...
gicabl 41412 Being Abelian is a group i...
imasgim 41413 A relabeling of the elemen...
isnumbasgrplem1 41414 A set which is equipollent...
harn0 41415 The Hartogs number of a se...
numinfctb 41416 A numerable infinite set c...
isnumbasgrplem2 41417 If the (to be thought of a...
isnumbasgrplem3 41418 Every nonempty numerable s...
isnumbasabl 41419 A set is numerable iff it ...
isnumbasgrp 41420 A set is numerable iff it ...
dfacbasgrp 41421 A choice equivalent in abs...
islnr 41424 Property of a left-Noether...
lnrring 41425 Left-Noetherian rings are ...
lnrlnm 41426 Left-Noetherian rings have...
islnr2 41427 Property of being a left-N...
islnr3 41428 Relate left-Noetherian rin...
lnr2i 41429 Given an ideal in a left-N...
lpirlnr 41430 Left principal ideal rings...
lnrfrlm 41431 Finite-dimensional free mo...
lnrfg 41432 Finitely-generated modules...
lnrfgtr 41433 A submodule of a finitely ...
hbtlem1 41436 Value of the leading coeff...
hbtlem2 41437 Leading coefficient ideals...
hbtlem7 41438 Functionality of leading c...
hbtlem4 41439 The leading ideal function...
hbtlem3 41440 The leading ideal function...
hbtlem5 41441 The leading ideal function...
hbtlem6 41442 There is a finite set of p...
hbt 41443 The Hilbert Basis Theorem ...
dgrsub2 41448 Subtracting two polynomial...
elmnc 41449 Property of a monic polyno...
mncply 41450 A monic polynomial is a po...
mnccoe 41451 A monic polynomial has lea...
mncn0 41452 A monic polynomial is not ...
dgraaval 41457 Value of the degree functi...
dgraalem 41458 Properties of the degree o...
dgraacl 41459 Closure of the degree func...
dgraaf 41460 Degree function on algebra...
dgraaub 41461 Upper bound on degree of a...
dgraa0p 41462 A rational polynomial of d...
mpaaeu 41463 An algebraic number has ex...
mpaaval 41464 Value of the minimal polyn...
mpaalem 41465 Properties of the minimal ...
mpaacl 41466 Minimal polynomial is a po...
mpaadgr 41467 Minimal polynomial has deg...
mpaaroot 41468 The minimal polynomial of ...
mpaamn 41469 Minimal polynomial is moni...
itgoval 41474 Value of the integral-over...
aaitgo 41475 The standard algebraic num...
itgoss 41476 An integral element is int...
itgocn 41477 All integral elements are ...
cnsrexpcl 41478 Exponentiation is closed i...
fsumcnsrcl 41479 Finite sums are closed in ...
cnsrplycl 41480 Polynomials are closed in ...
rgspnval 41481 Value of the ring-span of ...
rgspncl 41482 The ring-span of a set is ...
rgspnssid 41483 The ring-span of a set con...
rgspnmin 41484 The ring-span is contained...
rgspnid 41485 The span of a subring is i...
rngunsnply 41486 Adjoining one element to a...
flcidc 41487 Finite linear combinations...
algstr 41490 Lemma to shorten proofs of...
algbase 41491 The base set of a construc...
algaddg 41492 The additive operation of ...
algmulr 41493 The multiplicative operati...
algsca 41494 The set of scalars of a co...
algvsca 41495 The scalar product operati...
mendval 41496 Value of the module endomo...
mendbas 41497 Base set of the module end...
mendplusgfval 41498 Addition in the module end...
mendplusg 41499 A specific addition in the...
mendmulrfval 41500 Multiplication in the modu...
mendmulr 41501 A specific multiplication ...
mendsca 41502 The module endomorphism al...
mendvscafval 41503 Scalar multiplication in t...
mendvsca 41504 A specific scalar multipli...
mendring 41505 The module endomorphism al...
mendlmod 41506 The module endomorphism al...
mendassa 41507 The module endomorphism al...
idomrootle 41508 No element of an integral ...
idomodle 41509 Limit on the number of ` N...
fiuneneq 41510 Two finite sets of equal s...
idomsubgmo 41511 The units of an integral d...
proot1mul 41512 Any primitive ` N ` -th ro...
proot1hash 41513 If an integral domain has ...
proot1ex 41514 The complex field has prim...
isdomn3 41517 Nonzero elements form a mu...
mon1pid 41518 Monicity and degree of the...
mon1psubm 41519 Monic polynomials are a mu...
deg1mhm 41520 Homomorphic property of th...
cytpfn 41521 Functionality of the cyclo...
cytpval 41522 Substitutions for the Nth ...
fgraphopab 41523 Express a function as a su...
fgraphxp 41524 Express a function as a su...
hausgraph 41525 The graph of a continuous ...
r1sssucd 41530 Deductive form of ~ r1sssu...
iocunico 41531 Split an open interval int...
iocinico 41532 The intersection of two se...
iocmbl 41533 An open-below, closed-abov...
cnioobibld 41534 A bounded, continuous func...
arearect 41535 The area of a rectangle wh...
areaquad 41536 The area of a quadrilatera...
uniel 41537 Two ways to say a union is...
unielss 41538 Two ways to say the union ...
unielid 41539 Two ways to say the union ...
ssunib 41540 Two ways to say a class is...
rp-intrabeq 41541 Equality theorem for supre...
rp-unirabeq 41542 Equality theorem for infim...
onmaxnelsup 41543 Two ways to say the maximu...
onsupneqmaxlim0 41544 If the supremum of a class...
onsupcl2 41545 The supremum of a set of o...
onuniintrab 41546 The union of a set of ordi...
onintunirab 41547 The intersection of a non-...
onsupnmax 41548 If the union of a class of...
onsupuni 41549 The supremum of a set of o...
onsupuni2 41550 The supremum of a set of o...
onsupintrab 41551 The supremum of a set of o...
onsupintrab2 41552 The supremum of a set of o...
onsupcl3 41553 The supremum of a set of o...
onsupex3 41554 The supremum of a set of o...
onuniintrab2 41555 The union of a set of ordi...
oninfint 41556 The infimum of a non-empty...
oninfunirab 41557 The infimum of a non-empty...
oninfcl2 41558 The infimum of a non-empty...
onsupmaxb 41559 The union of a class of or...
onexgt 41560 For any ordinal, there is ...
onexomgt 41561 For any ordinal, there is ...
omlimcl2 41562 The product of a limit ord...
onexlimgt 41563 For any ordinal, there is ...
onexoegt 41564 For any ordinal, there is ...
oninfex2 41565 The infimum of a non-empty...
onsupeqmax 41566 Condition when the supremu...
onsupeqnmax 41567 Condition when the supremu...
onsuplub 41568 The supremum of a set of o...
onsupnub 41569 An upper bound of a set of...
onfisupcl 41570 Sufficient condition when ...
onelord 41571 Every element of a ordinal...
onepsuc 41572 Every ordinal is less than...
epsoon 41573 The ordinals are strictly ...
epirron 41574 The strict order on the or...
oneptr 41575 The strict order on the or...
oneltr 41576 The elementhood relation o...
oneptri 41577 The strict, complete (line...
oneltri 41578 The elementhood relation o...
ordeldif 41579 Membership in the differen...
ordeldifsucon 41580 Membership in the differen...
ordeldif1o 41581 Membership in the differen...
ordne0gt0 41582 Ordinal zero is less than ...
ondif1i 41583 Ordinal zero is less than ...
onsucelab 41584 The successor of every ord...
dflim6 41585 A limit ordinal is a non-z...
limnsuc 41586 A limit ordinal is not an ...
onsucss 41587 If one ordinal is less tha...
ordnexbtwnsuc 41588 For any distinct pair of o...
orddif0suc 41589 For any distinct pair of o...
onsucf1lem 41590 For ordinals, the successo...
onsucf1olem 41591 The successor operation is...
onsucrn 41592 The successor operation is...
onsucf1o 41593 The successor operation is...
dflim7 41594 A limit ordinal is a non-z...
onov0suclim 41595 Compactly express rules fo...
oa0suclim 41596 Closed form expression of ...
om0suclim 41597 Closed form expression of ...
oe0suclim 41598 Closed form expression of ...
oaomoecl 41599 The operations of addition...
onsupsucismax 41600 If the union of a set of o...
onsssupeqcond 41601 If for every element of a ...
limexissup 41602 An ordinal which is a limi...
limiun 41603 A limit ordinal is the uni...
limexissupab 41604 An ordinal which is a limi...
om1om1r 41605 Ordinal one is both a left...
oe0rif 41606 Ordinal zero raised to any...
oasubex 41607 While subtraction can't be...
nnamecl 41608 Natural numbers are closed...
onsucwordi 41609 The successor operation pr...
oalim2cl 41610 The ordinal sum of any ord...
oaltublim 41611 Given ` C ` is a limit ord...
oaordi3 41612 Ordinal addition of the sa...
oaord3 41613 When the same ordinal is a...
1oaomeqom 41614 Ordinal one plus omega is ...
oaordnrex 41615 When omega is added on the...
oaordnr 41616 When the same ordinal is a...
omge1 41617 Any non-zero ordinal produ...
omge2 41618 Any non-zero ordinal produ...
omlim2 41619 The non-zero product with ...
omord2lim 41620 Given a limit ordinal, the...
omord2i 41621 Ordinal multiplication of ...
omord2com 41622 When the same non-zero ord...
2omomeqom 41623 Ordinal two times omega is...
omnord1ex 41624 When omega is multiplied o...
omnord1 41625 When the same non-zero ord...
oege1 41626 Any non-zero ordinal power...
oege2 41627 Any power of an ordinal at...
rp-oelim2 41628 The power of an ordinal at...
oeord2lim 41629 Given a limit ordinal, the...
oeord2i 41630 Ordinal exponentiation of ...
oeord2com 41631 When the same base at leas...
nnoeomeqom 41632 Any natural number at leas...
df3o2 41633 Ordinal 3 is the unordered...
df3o3 41634 Ordinal 3, fully expanded....
oenord1ex 41635 When ordinals two and thre...
oenord1 41636 When two ordinals (both at...
oaomoencom 41637 Ordinal addition, multipli...
oenassex 41638 Ordinal two raised to two ...
oenass 41639 Ordinal exponentiation is ...
cantnftermord 41640 For terms of the form of a...
cantnfub 41641 Given a finite number of t...
cantnfub2 41642 Given a finite number of t...
bropabg 41643 Equivalence for two classe...
cantnfresb 41644 A Cantor normal form which...
cantnf2 41645 For every ordinal, ` A ` ,...
oawordex2 41646 If ` C ` is between ` A ` ...
nnawordexg 41647 If an ordinal, ` B ` , is ...
succlg 41648 Closure law for ordinal su...
dflim5 41649 A limit ordinal is either ...
oacl2g 41650 Closure law for ordinal ad...
omabs2 41651 Ordinal multiplication by ...
omcl2 41652 Closure law for ordinal mu...
omcl3g 41653 Closure law for ordinal mu...
ofoafg 41654 Addition operator for func...
ofoaf 41655 Addition operator for func...
ofoafo 41656 Addition operator for func...
ofoacl 41657 Closure law for component ...
ofoaid1 41658 Identity law for component...
ofoaid2 41659 Identity law for component...
ofoaass 41660 Component-wise addition of...
ofoacom 41661 Component-wise addition of...
naddcnff 41662 Addition operator for Cant...
naddcnffn 41663 Addition operator for Cant...
naddcnffo 41664 Addition of Cantor normal ...
naddcnfcl 41665 Closure law for component-...
naddcnfcom 41666 Component-wise ordinal add...
naddcnfid1 41667 Identity law for component...
naddcnfid2 41668 Identity law for component...
naddcnfass 41669 Component-wise addition of...
abeqabi 41670 Generalized condition for ...
abpr 41671 Condition for a class abst...
abtp 41672 Condition for a class abst...
ralopabb 41673 Restricted universal quant...
fpwfvss 41674 Functions into a powerset ...
sdomne0 41675 A class that strictly domi...
sdomne0d 41676 A class that strictly domi...
safesnsupfiss 41677 If ` B ` is a finite subse...
safesnsupfiub 41678 If ` B ` is a finite subse...
safesnsupfidom1o 41679 If ` B ` is a finite subse...
safesnsupfilb 41680 If ` B ` is a finite subse...
isoeq145d 41681 Equality deduction for iso...
resisoeq45d 41682 Equality deduction for equ...
negslem1 41683 An equivalence between ide...
nvocnvb 41684 Equivalence to saying the ...
rp-brsslt 41685 Binary relation form of a ...
nla0002 41686 Extending a linear order t...
nla0003 41687 Extending a linear order t...
nla0001 41688 Extending a linear order t...
faosnf0.11b 41689 ` B ` is called a non-limi...
dfno2 41690 A surreal number, in the f...
onnog 41691 Every ordinal maps to a su...
onnobdayg 41692 Every ordinal maps to a su...
bdaybndex 41693 Bounds formed from the bir...
bdaybndbday 41694 Bounds formed from the bir...
onno 41695 Every ordinal maps to a su...
onnoi 41696 Every ordinal maps to a su...
0no 41697 Ordinal zero maps to a sur...
1no 41698 Ordinal one maps to a surr...
2no 41699 Ordinal two maps to a surr...
3no 41700 Ordinal three maps to a su...
4no 41701 Ordinal four maps to a sur...
fnimafnex 41702 The functional image of a ...
nlimsuc 41703 A successor is not a limit...
nlim1NEW 41704 1 is not a limit ordinal. ...
nlim2NEW 41705 2 is not a limit ordinal. ...
nlim3 41706 3 is not a limit ordinal. ...
nlim4 41707 4 is not a limit ordinal. ...
oa1un 41708 Given ` A e. On ` , let ` ...
oa1cl 41709 ` A +o 1o ` is in ` On ` ....
0finon 41710 0 is a finite ordinal. Se...
1finon 41711 1 is a finite ordinal. Se...
2finon 41712 2 is a finite ordinal. Se...
3finon 41713 3 is a finite ordinal. Se...
4finon 41714 4 is a finite ordinal. Se...
finona1cl 41715 The finite ordinals are cl...
finonex 41716 The finite ordinals are a ...
fzunt 41717 Union of two adjacent fini...
fzuntd 41718 Union of two adjacent fini...
fzunt1d 41719 Union of two overlapping f...
fzuntgd 41720 Union of two adjacent or o...
ifpan123g 41721 Conjunction of conditional...
ifpan23 41722 Conjunction of conditional...
ifpdfor2 41723 Define or in terms of cond...
ifporcor 41724 Corollary of commutation o...
ifpdfan2 41725 Define and with conditiona...
ifpancor 41726 Corollary of commutation o...
ifpdfor 41727 Define or in terms of cond...
ifpdfan 41728 Define and with conditiona...
ifpbi2 41729 Equivalence theorem for co...
ifpbi3 41730 Equivalence theorem for co...
ifpim1 41731 Restate implication as con...
ifpnot 41732 Restate negated wff as con...
ifpid2 41733 Restate wff as conditional...
ifpim2 41734 Restate implication as con...
ifpbi23 41735 Equivalence theorem for co...
ifpbiidcor 41736 Restatement of ~ biid . (...
ifpbicor 41737 Corollary of commutation o...
ifpxorcor 41738 Corollary of commutation o...
ifpbi1 41739 Equivalence theorem for co...
ifpnot23 41740 Negation of conditional lo...
ifpnotnotb 41741 Factor conditional logic o...
ifpnorcor 41742 Corollary of commutation o...
ifpnancor 41743 Corollary of commutation o...
ifpnot23b 41744 Negation of conditional lo...
ifpbiidcor2 41745 Restatement of ~ biid . (...
ifpnot23c 41746 Negation of conditional lo...
ifpnot23d 41747 Negation of conditional lo...
ifpdfnan 41748 Define nand as conditional...
ifpdfxor 41749 Define xor as conditional ...
ifpbi12 41750 Equivalence theorem for co...
ifpbi13 41751 Equivalence theorem for co...
ifpbi123 41752 Equivalence theorem for co...
ifpidg 41753 Restate wff as conditional...
ifpid3g 41754 Restate wff as conditional...
ifpid2g 41755 Restate wff as conditional...
ifpid1g 41756 Restate wff as conditional...
ifpim23g 41757 Restate implication as con...
ifpim3 41758 Restate implication as con...
ifpnim1 41759 Restate negated implicatio...
ifpim4 41760 Restate implication as con...
ifpnim2 41761 Restate negated implicatio...
ifpim123g 41762 Implication of conditional...
ifpim1g 41763 Implication of conditional...
ifp1bi 41764 Substitute the first eleme...
ifpbi1b 41765 When the first variable is...
ifpimimb 41766 Factor conditional logic o...
ifpororb 41767 Factor conditional logic o...
ifpananb 41768 Factor conditional logic o...
ifpnannanb 41769 Factor conditional logic o...
ifpor123g 41770 Disjunction of conditional...
ifpimim 41771 Consequnce of implication....
ifpbibib 41772 Factor conditional logic o...
ifpxorxorb 41773 Factor conditional logic o...
rp-fakeimass 41774 A special case where impli...
rp-fakeanorass 41775 A special case where a mix...
rp-fakeoranass 41776 A special case where a mix...
rp-fakeinunass 41777 A special case where a mix...
rp-fakeuninass 41778 A special case where a mix...
rp-isfinite5 41779 A set is said to be finite...
rp-isfinite6 41780 A set is said to be finite...
intabssd 41781 When for each element ` y ...
eu0 41782 There is only one empty se...
epelon2 41783 Over the ordinal numbers, ...
ontric3g 41784 For all ` x , y e. On ` , ...
dfsucon 41785 ` A ` is called a successo...
snen1g 41786 A singleton is equinumerou...
snen1el 41787 A singleton is equinumerou...
sn1dom 41788 A singleton is dominated b...
pr2dom 41789 An unordered pair is domin...
tr3dom 41790 An unordered triple is dom...
ensucne0 41791 A class equinumerous to a ...
ensucne0OLD 41792 A class equinumerous to a ...
dfom6 41793 Let ` _om ` be defined to ...
infordmin 41794 ` _om ` is the smallest in...
iscard4 41795 Two ways to express the pr...
minregex 41796 Given any cardinal number ...
minregex2 41797 Given any cardinal number ...
iscard5 41798 Two ways to express the pr...
elrncard 41799 Let us define a cardinal n...
harval3 41800 ` ( har `` A ) ` is the le...
harval3on 41801 For any ordinal number ` A...
omssrncard 41802 All natural numbers are ca...
0iscard 41803 0 is a cardinal number. (...
1iscard 41804 1 is a cardinal number. (...
omiscard 41805 ` _om ` is a cardinal numb...
sucomisnotcard 41806 ` _om +o 1o ` is not a car...
nna1iscard 41807 For any natural number, th...
har2o 41808 The least cardinal greater...
en2pr 41809 A class is equinumerous to...
pr2cv 41810 If an unordered pair is eq...
pr2el1 41811 If an unordered pair is eq...
pr2cv1 41812 If an unordered pair is eq...
pr2el2 41813 If an unordered pair is eq...
pr2cv2 41814 If an unordered pair is eq...
pren2 41815 An unordered pair is equin...
pr2eldif1 41816 If an unordered pair is eq...
pr2eldif2 41817 If an unordered pair is eq...
pren2d 41818 A pair of two distinct set...
aleph1min 41819 ` ( aleph `` 1o ) ` is the...
alephiso2 41820 ` aleph ` is a strictly or...
alephiso3 41821 ` aleph ` is a strictly or...
pwelg 41822 The powerclass is an eleme...
pwinfig 41823 The powerclass of an infin...
pwinfi2 41824 The powerclass of an infin...
pwinfi3 41825 The powerclass of an infin...
pwinfi 41826 The powerclass of an infin...
fipjust 41827 A definition of the finite...
cllem0 41828 The class of all sets with...
superficl 41829 The class of all supersets...
superuncl 41830 The class of all supersets...
ssficl 41831 The class of all subsets o...
ssuncl 41832 The class of all subsets o...
ssdifcl 41833 The class of all subsets o...
sssymdifcl 41834 The class of all subsets o...
fiinfi 41835 If two classes have the fi...
rababg 41836 Condition when restricted ...
elinintab 41837 Two ways of saying a set i...
elmapintrab 41838 Two ways to say a set is a...
elinintrab 41839 Two ways of saying a set i...
inintabss 41840 Upper bound on intersectio...
inintabd 41841 Value of the intersection ...
xpinintabd 41842 Value of the intersection ...
relintabex 41843 If the intersection of a c...
elcnvcnvintab 41844 Two ways of saying a set i...
relintab 41845 Value of the intersection ...
nonrel 41846 A non-relation is equal to...
elnonrel 41847 Only an ordered pair where...
cnvssb 41848 Subclass theorem for conve...
relnonrel 41849 The non-relation part of a...
cnvnonrel 41850 The converse of the non-re...
brnonrel 41851 A non-relation cannot rela...
dmnonrel 41852 The domain of the non-rela...
rnnonrel 41853 The range of the non-relat...
resnonrel 41854 A restriction of the non-r...
imanonrel 41855 An image under the non-rel...
cononrel1 41856 Composition with the non-r...
cononrel2 41857 Composition with the non-r...
elmapintab 41858 Two ways to say a set is a...
fvnonrel 41859 The function value of any ...
elinlem 41860 Two ways to say a set is a...
elcnvcnvlem 41861 Two ways to say a set is a...
cnvcnvintabd 41862 Value of the relationship ...
elcnvlem 41863 Two ways to say a set is a...
elcnvintab 41864 Two ways of saying a set i...
cnvintabd 41865 Value of the converse of t...
undmrnresiss 41866 Two ways of saying the ide...
reflexg 41867 Two ways of saying a relat...
cnvssco 41868 A condition weaker than re...
refimssco 41869 Reflexive relations are su...
cleq2lem 41870 Equality implies bijection...
cbvcllem 41871 Change of bound variable i...
clublem 41872 If a superset ` Y ` of ` X...
clss2lem 41873 The closure of a property ...
dfid7 41874 Definition of identity rel...
mptrcllem 41875 Show two versions of a clo...
cotrintab 41876 The intersection of a clas...
rclexi 41877 The reflexive closure of a...
rtrclexlem 41878 Existence of relation impl...
rtrclex 41879 The reflexive-transitive c...
trclubgNEW 41880 If a relation exists then ...
trclubNEW 41881 If a relation exists then ...
trclexi 41882 The transitive closure of ...
rtrclexi 41883 The reflexive-transitive c...
clrellem 41884 When the property ` ps ` h...
clcnvlem 41885 When ` A ` , an upper boun...
cnvtrucl0 41886 The converse of the trivia...
cnvrcl0 41887 The converse of the reflex...
cnvtrcl0 41888 The converse of the transi...
dmtrcl 41889 The domain of the transiti...
rntrcl 41890 The range of the transitiv...
dfrtrcl5 41891 Definition of reflexive-tr...
trcleq2lemRP 41892 Equality implies bijection...
sqrtcvallem1 41893 Two ways of saying a compl...
reabsifneg 41894 Alternate expression for t...
reabsifnpos 41895 Alternate expression for t...
reabsifpos 41896 Alternate expression for t...
reabsifnneg 41897 Alternate expression for t...
reabssgn 41898 Alternate expression for t...
sqrtcvallem2 41899 Equivalent to saying that ...
sqrtcvallem3 41900 Equivalent to saying that ...
sqrtcvallem4 41901 Equivalent to saying that ...
sqrtcvallem5 41902 Equivalent to saying that ...
sqrtcval 41903 Explicit formula for the c...
sqrtcval2 41904 Explicit formula for the c...
resqrtval 41905 Real part of the complex s...
imsqrtval 41906 Imaginary part of the comp...
resqrtvalex 41907 Example for ~ resqrtval . ...
imsqrtvalex 41908 Example for ~ imsqrtval . ...
al3im 41909 Version of ~ ax-4 for a ne...
intima0 41910 Two ways of expressing the...
elimaint 41911 Element of image of inters...
cnviun 41912 Converse of indexed union....
imaiun1 41913 The image of an indexed un...
coiun1 41914 Composition with an indexe...
elintima 41915 Element of intersection of...
intimass 41916 The image under the inters...
intimass2 41917 The image under the inters...
intimag 41918 Requirement for the image ...
intimasn 41919 Two ways to express the im...
intimasn2 41920 Two ways to express the im...
ss2iundf 41921 Subclass theorem for index...
ss2iundv 41922 Subclass theorem for index...
cbviuneq12df 41923 Rule used to change the bo...
cbviuneq12dv 41924 Rule used to change the bo...
conrel1d 41925 Deduction about compositio...
conrel2d 41926 Deduction about compositio...
trrelind 41927 The intersection of transi...
xpintrreld 41928 The intersection of a tran...
restrreld 41929 The restriction of a trans...
trrelsuperreldg 41930 Concrete construction of a...
trficl 41931 The class of all transitiv...
cnvtrrel 41932 The converse of a transiti...
trrelsuperrel2dg 41933 Concrete construction of a...
dfrcl2 41936 Reflexive closure of a rel...
dfrcl3 41937 Reflexive closure of a rel...
dfrcl4 41938 Reflexive closure of a rel...
relexp2 41939 A set operated on by the r...
relexpnul 41940 If the domain and range of...
eliunov2 41941 Membership in the indexed ...
eltrclrec 41942 Membership in the indexed ...
elrtrclrec 41943 Membership in the indexed ...
briunov2 41944 Two classes related by the...
brmptiunrelexpd 41945 If two elements are connec...
fvmptiunrelexplb0d 41946 If the indexed union range...
fvmptiunrelexplb0da 41947 If the indexed union range...
fvmptiunrelexplb1d 41948 If the indexed union range...
brfvid 41949 If two elements are connec...
brfvidRP 41950 If two elements are connec...
fvilbd 41951 A set is a subset of its i...
fvilbdRP 41952 A set is a subset of its i...
brfvrcld 41953 If two elements are connec...
brfvrcld2 41954 If two elements are connec...
fvrcllb0d 41955 A restriction of the ident...
fvrcllb0da 41956 A restriction of the ident...
fvrcllb1d 41957 A set is a subset of its i...
brtrclrec 41958 Two classes related by the...
brrtrclrec 41959 Two classes related by the...
briunov2uz 41960 Two classes related by the...
eliunov2uz 41961 Membership in the indexed ...
ov2ssiunov2 41962 Any particular operator va...
relexp0eq 41963 The zeroth power of relati...
iunrelexp0 41964 Simplification of zeroth p...
relexpxpnnidm 41965 Any positive power of a Ca...
relexpiidm 41966 Any power of any restricti...
relexpss1d 41967 The relational power of a ...
comptiunov2i 41968 The composition two indexe...
corclrcl 41969 The reflexive closure is i...
iunrelexpmin1 41970 The indexed union of relat...
relexpmulnn 41971 With exponents limited to ...
relexpmulg 41972 With ordered exponents, th...
trclrelexplem 41973 The union of relational po...
iunrelexpmin2 41974 The indexed union of relat...
relexp01min 41975 With exponents limited to ...
relexp1idm 41976 Repeated raising a relatio...
relexp0idm 41977 Repeated raising a relatio...
relexp0a 41978 Absorption law for zeroth ...
relexpxpmin 41979 The composition of powers ...
relexpaddss 41980 The composition of two pow...
iunrelexpuztr 41981 The indexed union of relat...
dftrcl3 41982 Transitive closure of a re...
brfvtrcld 41983 If two elements are connec...
fvtrcllb1d 41984 A set is a subset of its i...
trclfvcom 41985 The transitive closure of ...
cnvtrclfv 41986 The converse of the transi...
cotrcltrcl 41987 The transitive closure is ...
trclimalb2 41988 Lower bound for image unde...
brtrclfv2 41989 Two ways to indicate two e...
trclfvdecomr 41990 The transitive closure of ...
trclfvdecoml 41991 The transitive closure of ...
dmtrclfvRP 41992 The domain of the transiti...
rntrclfvRP 41993 The range of the transitiv...
rntrclfv 41994 The range of the transitiv...
dfrtrcl3 41995 Reflexive-transitive closu...
brfvrtrcld 41996 If two elements are connec...
fvrtrcllb0d 41997 A restriction of the ident...
fvrtrcllb0da 41998 A restriction of the ident...
fvrtrcllb1d 41999 A set is a subset of its i...
dfrtrcl4 42000 Reflexive-transitive closu...
corcltrcl 42001 The composition of the ref...
cortrcltrcl 42002 Composition with the refle...
corclrtrcl 42003 Composition with the refle...
cotrclrcl 42004 The composition of the ref...
cortrclrcl 42005 Composition with the refle...
cotrclrtrcl 42006 Composition with the refle...
cortrclrtrcl 42007 The reflexive-transitive c...
frege77d 42008 If the images of both ` { ...
frege81d 42009 If the image of ` U ` is a...
frege83d 42010 If the image of the union ...
frege96d 42011 If ` C ` follows ` A ` in ...
frege87d 42012 If the images of both ` { ...
frege91d 42013 If ` B ` follows ` A ` in ...
frege97d 42014 If ` A ` contains all elem...
frege98d 42015 If ` C ` follows ` A ` and...
frege102d 42016 If either ` A ` and ` C ` ...
frege106d 42017 If ` B ` follows ` A ` in ...
frege108d 42018 If either ` A ` and ` C ` ...
frege109d 42019 If ` A ` contains all elem...
frege114d 42020 If either ` R ` relates ` ...
frege111d 42021 If either ` A ` and ` C ` ...
frege122d 42022 If ` F ` is a function, ` ...
frege124d 42023 If ` F ` is a function, ` ...
frege126d 42024 If ` F ` is a function, ` ...
frege129d 42025 If ` F ` is a function and...
frege131d 42026 If ` F ` is a function and...
frege133d 42027 If ` F ` is a function and...
dfxor4 42028 Express exclusive-or in te...
dfxor5 42029 Express exclusive-or in te...
df3or2 42030 Express triple-or in terms...
df3an2 42031 Express triple-and in term...
nev 42032 Express that not every set...
0pssin 42033 Express that an intersecti...
dfhe2 42036 The property of relation `...
dfhe3 42037 The property of relation `...
heeq12 42038 Equality law for relations...
heeq1 42039 Equality law for relations...
heeq2 42040 Equality law for relations...
sbcheg 42041 Distribute proper substitu...
hess 42042 Subclass law for relations...
xphe 42043 Any Cartesian product is h...
0he 42044 The empty relation is here...
0heALT 42045 The empty relation is here...
he0 42046 Any relation is hereditary...
unhe1 42047 The union of two relations...
snhesn 42048 Any singleton is hereditar...
idhe 42049 The identity relation is h...
psshepw 42050 The relation between sets ...
sshepw 42051 The relation between sets ...
rp-simp2-frege 42054 Simplification of triple c...
rp-simp2 42055 Simplification of triple c...
rp-frege3g 42056 Add antecedent to ~ ax-fre...
frege3 42057 Add antecedent to ~ ax-fre...
rp-misc1-frege 42058 Double-use of ~ ax-frege2 ...
rp-frege24 42059 Introducing an embedded an...
rp-frege4g 42060 Deduction related to distr...
frege4 42061 Special case of closed for...
frege5 42062 A closed form of ~ syl . ...
rp-7frege 42063 Distribute antecedent and ...
rp-4frege 42064 Elimination of a nested an...
rp-6frege 42065 Elimination of a nested an...
rp-8frege 42066 Eliminate antecedent when ...
rp-frege25 42067 Closed form for ~ a1dd . ...
frege6 42068 A closed form of ~ imim2d ...
axfrege8 42069 Swap antecedents. Identic...
frege7 42070 A closed form of ~ syl6 . ...
frege26 42072 Identical to ~ idd . Prop...
frege27 42073 We cannot (at the same tim...
frege9 42074 Closed form of ~ syl with ...
frege12 42075 A closed form of ~ com23 ....
frege11 42076 Elimination of a nested an...
frege24 42077 Closed form for ~ a1d . D...
frege16 42078 A closed form of ~ com34 ....
frege25 42079 Closed form for ~ a1dd . ...
frege18 42080 Closed form of a syllogism...
frege22 42081 A closed form of ~ com45 ....
frege10 42082 Result commuting anteceden...
frege17 42083 A closed form of ~ com3l ....
frege13 42084 A closed form of ~ com3r ....
frege14 42085 Closed form of a deduction...
frege19 42086 A closed form of ~ syl6 . ...
frege23 42087 Syllogism followed by rota...
frege15 42088 A closed form of ~ com4r ....
frege21 42089 Replace antecedent in ante...
frege20 42090 A closed form of ~ syl8 . ...
axfrege28 42091 Contraposition. Identical...
frege29 42093 Closed form of ~ con3d . ...
frege30 42094 Commuted, closed form of ~...
axfrege31 42095 Identical to ~ notnotr . ...
frege32 42097 Deduce ~ con1 from ~ con3 ...
frege33 42098 If ` ph ` or ` ps ` takes ...
frege34 42099 If as a consequence of the...
frege35 42100 Commuted, closed form of ~...
frege36 42101 The case in which ` ps ` i...
frege37 42102 If ` ch ` is a necessary c...
frege38 42103 Identical to ~ pm2.21 . P...
frege39 42104 Syllogism between ~ pm2.18...
frege40 42105 Anything implies ~ pm2.18 ...
axfrege41 42106 Identical to ~ notnot . A...
frege42 42108 Not not ~ id . Propositio...
frege43 42109 If there is a choice only ...
frege44 42110 Similar to a commuted ~ pm...
frege45 42111 Deduce ~ pm2.6 from ~ con1...
frege46 42112 If ` ps ` holds when ` ph ...
frege47 42113 Deduce consequence follows...
frege48 42114 Closed form of syllogism w...
frege49 42115 Closed form of deduction w...
frege50 42116 Closed form of ~ jaoi . P...
frege51 42117 Compare with ~ jaod . Pro...
axfrege52a 42118 Justification for ~ ax-fre...
frege52aid 42120 The case when the content ...
frege53aid 42121 Specialization of ~ frege5...
frege53a 42122 Lemma for ~ frege55a . Pr...
axfrege54a 42123 Justification for ~ ax-fre...
frege54cor0a 42125 Synonym for logical equiva...
frege54cor1a 42126 Reflexive equality. (Cont...
frege55aid 42127 Lemma for ~ frege57aid . ...
frege55lem1a 42128 Necessary deduction regard...
frege55lem2a 42129 Core proof of Proposition ...
frege55a 42130 Proposition 55 of [Frege18...
frege55cor1a 42131 Proposition 55 of [Frege18...
frege56aid 42132 Lemma for ~ frege57aid . ...
frege56a 42133 Proposition 56 of [Frege18...
frege57aid 42134 This is the all imporant f...
frege57a 42135 Analogue of ~ frege57aid ....
axfrege58a 42136 Identical to ~ anifp . Ju...
frege58acor 42138 Lemma for ~ frege59a . (C...
frege59a 42139 A kind of Aristotelian inf...
frege60a 42140 Swap antecedents of ~ ax-f...
frege61a 42141 Lemma for ~ frege65a . Pr...
frege62a 42142 A kind of Aristotelian inf...
frege63a 42143 Proposition 63 of [Frege18...
frege64a 42144 Lemma for ~ frege65a . Pr...
frege65a 42145 A kind of Aristotelian inf...
frege66a 42146 Swap antecedents of ~ freg...
frege67a 42147 Lemma for ~ frege68a . Pr...
frege68a 42148 Combination of applying a ...
axfrege52c 42149 Justification for ~ ax-fre...
frege52b 42151 The case when the content ...
frege53b 42152 Lemma for frege102 (via ~ ...
axfrege54c 42153 Reflexive equality of clas...
frege54b 42155 Reflexive equality of sets...
frege54cor1b 42156 Reflexive equality. (Cont...
frege55lem1b 42157 Necessary deduction regard...
frege55lem2b 42158 Lemma for ~ frege55b . Co...
frege55b 42159 Lemma for ~ frege57b . Pr...
frege56b 42160 Lemma for ~ frege57b . Pr...
frege57b 42161 Analogue of ~ frege57aid ....
axfrege58b 42162 If ` A. x ph ` is affirmed...
frege58bid 42164 If ` A. x ph ` is affirmed...
frege58bcor 42165 Lemma for ~ frege59b . (C...
frege59b 42166 A kind of Aristotelian inf...
frege60b 42167 Swap antecedents of ~ ax-f...
frege61b 42168 Lemma for ~ frege65b . Pr...
frege62b 42169 A kind of Aristotelian inf...
frege63b 42170 Lemma for ~ frege91 . Pro...
frege64b 42171 Lemma for ~ frege65b . Pr...
frege65b 42172 A kind of Aristotelian inf...
frege66b 42173 Swap antecedents of ~ freg...
frege67b 42174 Lemma for ~ frege68b . Pr...
frege68b 42175 Combination of applying a ...
frege53c 42176 Proposition 53 of [Frege18...
frege54cor1c 42177 Reflexive equality. (Cont...
frege55lem1c 42178 Necessary deduction regard...
frege55lem2c 42179 Core proof of Proposition ...
frege55c 42180 Proposition 55 of [Frege18...
frege56c 42181 Lemma for ~ frege57c . Pr...
frege57c 42182 Swap order of implication ...
frege58c 42183 Principle related to ~ sp ...
frege59c 42184 A kind of Aristotelian inf...
frege60c 42185 Swap antecedents of ~ freg...
frege61c 42186 Lemma for ~ frege65c . Pr...
frege62c 42187 A kind of Aristotelian inf...
frege63c 42188 Analogue of ~ frege63b . ...
frege64c 42189 Lemma for ~ frege65c . Pr...
frege65c 42190 A kind of Aristotelian inf...
frege66c 42191 Swap antecedents of ~ freg...
frege67c 42192 Lemma for ~ frege68c . Pr...
frege68c 42193 Combination of applying a ...
dffrege69 42194 If from the proposition th...
frege70 42195 Lemma for ~ frege72 . Pro...
frege71 42196 Lemma for ~ frege72 . Pro...
frege72 42197 If property ` A ` is hered...
frege73 42198 Lemma for ~ frege87 . Pro...
frege74 42199 If ` X ` has a property ` ...
frege75 42200 If from the proposition th...
dffrege76 42201 If from the two propositio...
frege77 42202 If ` Y ` follows ` X ` in ...
frege78 42203 Commuted form of of ~ freg...
frege79 42204 Distributed form of ~ freg...
frege80 42205 Add additional condition t...
frege81 42206 If ` X ` has a property ` ...
frege82 42207 Closed-form deduction base...
frege83 42208 Apply commuted form of ~ f...
frege84 42209 Commuted form of ~ frege81...
frege85 42210 Commuted form of ~ frege77...
frege86 42211 Conclusion about element o...
frege87 42212 If ` Z ` is a result of an...
frege88 42213 Commuted form of ~ frege87...
frege89 42214 One direction of ~ dffrege...
frege90 42215 Add antecedent to ~ frege8...
frege91 42216 Every result of an applica...
frege92 42217 Inference from ~ frege91 ....
frege93 42218 Necessary condition for tw...
frege94 42219 Looking one past a pair re...
frege95 42220 Looking one past a pair re...
frege96 42221 Every result of an applica...
frege97 42222 The property of following ...
frege98 42223 If ` Y ` follows ` X ` and...
dffrege99 42224 If ` Z ` is identical with...
frege100 42225 One direction of ~ dffrege...
frege101 42226 Lemma for ~ frege102 . Pr...
frege102 42227 If ` Z ` belongs to the ` ...
frege103 42228 Proposition 103 of [Frege1...
frege104 42229 Proposition 104 of [Frege1...
frege105 42230 Proposition 105 of [Frege1...
frege106 42231 Whatever follows ` X ` in ...
frege107 42232 Proposition 107 of [Frege1...
frege108 42233 If ` Y ` belongs to the ` ...
frege109 42234 The property of belonging ...
frege110 42235 Proposition 110 of [Frege1...
frege111 42236 If ` Y ` belongs to the ` ...
frege112 42237 Identity implies belonging...
frege113 42238 Proposition 113 of [Frege1...
frege114 42239 If ` X ` belongs to the ` ...
dffrege115 42240 If from the circumstance t...
frege116 42241 One direction of ~ dffrege...
frege117 42242 Lemma for ~ frege118 . Pr...
frege118 42243 Simplified application of ...
frege119 42244 Lemma for ~ frege120 . Pr...
frege120 42245 Simplified application of ...
frege121 42246 Lemma for ~ frege122 . Pr...
frege122 42247 If ` X ` is a result of an...
frege123 42248 Lemma for ~ frege124 . Pr...
frege124 42249 If ` X ` is a result of an...
frege125 42250 Lemma for ~ frege126 . Pr...
frege126 42251 If ` M ` follows ` Y ` in ...
frege127 42252 Communte antecedents of ~ ...
frege128 42253 Lemma for ~ frege129 . Pr...
frege129 42254 If the procedure ` R ` is ...
frege130 42255 Lemma for ~ frege131 . Pr...
frege131 42256 If the procedure ` R ` is ...
frege132 42257 Lemma for ~ frege133 . Pr...
frege133 42258 If the procedure ` R ` is ...
enrelmap 42259 The set of all possible re...
enrelmapr 42260 The set of all possible re...
enmappw 42261 The set of all mappings fr...
enmappwid 42262 The set of all mappings fr...
rfovd 42263 Value of the operator, ` (...
rfovfvd 42264 Value of the operator, ` (...
rfovfvfvd 42265 Value of the operator, ` (...
rfovcnvf1od 42266 Properties of the operator...
rfovcnvd 42267 Value of the converse of t...
rfovf1od 42268 The value of the operator,...
rfovcnvfvd 42269 Value of the converse of t...
fsovd 42270 Value of the operator, ` (...
fsovrfovd 42271 The operator which gives a...
fsovfvd 42272 Value of the operator, ` (...
fsovfvfvd 42273 Value of the operator, ` (...
fsovfd 42274 The operator, ` ( A O B ) ...
fsovcnvlem 42275 The ` O ` operator, which ...
fsovcnvd 42276 The value of the converse ...
fsovcnvfvd 42277 The value of the converse ...
fsovf1od 42278 The value of ` ( A O B ) `...
dssmapfvd 42279 Value of the duality opera...
dssmapfv2d 42280 Value of the duality opera...
dssmapfv3d 42281 Value of the duality opera...
dssmapnvod 42282 For any base set ` B ` the...
dssmapf1od 42283 For any base set ` B ` the...
dssmap2d 42284 For any base set ` B ` the...
or3or 42285 Decompose disjunction into...
andi3or 42286 Distribute over triple dis...
uneqsn 42287 If a union of classes is e...
brfvimex 42288 If a binary relation holds...
brovmptimex 42289 If a binary relation holds...
brovmptimex1 42290 If a binary relation holds...
brovmptimex2 42291 If a binary relation holds...
brcoffn 42292 Conditions allowing the de...
brcofffn 42293 Conditions allowing the de...
brco2f1o 42294 Conditions allowing the de...
brco3f1o 42295 Conditions allowing the de...
ntrclsbex 42296 If (pseudo-)interior and (...
ntrclsrcomplex 42297 The relative complement of...
neik0imk0p 42298 Kuratowski's K0 axiom impl...
ntrk2imkb 42299 If an interior function is...
ntrkbimka 42300 If the interiors of disjoi...
ntrk0kbimka 42301 If the interiors of disjoi...
clsk3nimkb 42302 If the base set is not emp...
clsk1indlem0 42303 The ansatz closure functio...
clsk1indlem2 42304 The ansatz closure functio...
clsk1indlem3 42305 The ansatz closure functio...
clsk1indlem4 42306 The ansatz closure functio...
clsk1indlem1 42307 The ansatz closure functio...
clsk1independent 42308 For generalized closure fu...
neik0pk1imk0 42309 Kuratowski's K0' and K1 ax...
isotone1 42310 Two different ways to say ...
isotone2 42311 Two different ways to say ...
ntrk1k3eqk13 42312 An interior function is bo...
ntrclsf1o 42313 If (pseudo-)interior and (...
ntrclsnvobr 42314 If (pseudo-)interior and (...
ntrclsiex 42315 If (pseudo-)interior and (...
ntrclskex 42316 If (pseudo-)interior and (...
ntrclsfv1 42317 If (pseudo-)interior and (...
ntrclsfv2 42318 If (pseudo-)interior and (...
ntrclselnel1 42319 If (pseudo-)interior and (...
ntrclselnel2 42320 If (pseudo-)interior and (...
ntrclsfv 42321 The value of the interior ...
ntrclsfveq1 42322 If interior and closure fu...
ntrclsfveq2 42323 If interior and closure fu...
ntrclsfveq 42324 If interior and closure fu...
ntrclsss 42325 If interior and closure fu...
ntrclsneine0lem 42326 If (pseudo-)interior and (...
ntrclsneine0 42327 If (pseudo-)interior and (...
ntrclscls00 42328 If (pseudo-)interior and (...
ntrclsiso 42329 If (pseudo-)interior and (...
ntrclsk2 42330 An interior function is co...
ntrclskb 42331 The interiors of disjoint ...
ntrclsk3 42332 The intersection of interi...
ntrclsk13 42333 The interior of the inters...
ntrclsk4 42334 Idempotence of the interio...
ntrneibex 42335 If (pseudo-)interior and (...
ntrneircomplex 42336 The relative complement of...
ntrneif1o 42337 If (pseudo-)interior and (...
ntrneiiex 42338 If (pseudo-)interior and (...
ntrneinex 42339 If (pseudo-)interior and (...
ntrneicnv 42340 If (pseudo-)interior and (...
ntrneifv1 42341 If (pseudo-)interior and (...
ntrneifv2 42342 If (pseudo-)interior and (...
ntrneiel 42343 If (pseudo-)interior and (...
ntrneifv3 42344 The value of the neighbors...
ntrneineine0lem 42345 If (pseudo-)interior and (...
ntrneineine1lem 42346 If (pseudo-)interior and (...
ntrneifv4 42347 The value of the interior ...
ntrneiel2 42348 Membership in iterated int...
ntrneineine0 42349 If (pseudo-)interior and (...
ntrneineine1 42350 If (pseudo-)interior and (...
ntrneicls00 42351 If (pseudo-)interior and (...
ntrneicls11 42352 If (pseudo-)interior and (...
ntrneiiso 42353 If (pseudo-)interior and (...
ntrneik2 42354 An interior function is co...
ntrneix2 42355 An interior (closure) func...
ntrneikb 42356 The interiors of disjoint ...
ntrneixb 42357 The interiors (closures) o...
ntrneik3 42358 The intersection of interi...
ntrneix3 42359 The closure of the union o...
ntrneik13 42360 The interior of the inters...
ntrneix13 42361 The closure of the union o...
ntrneik4w 42362 Idempotence of the interio...
ntrneik4 42363 Idempotence of the interio...
clsneibex 42364 If (pseudo-)closure and (p...
clsneircomplex 42365 The relative complement of...
clsneif1o 42366 If a (pseudo-)closure func...
clsneicnv 42367 If a (pseudo-)closure func...
clsneikex 42368 If closure and neighborhoo...
clsneinex 42369 If closure and neighborhoo...
clsneiel1 42370 If a (pseudo-)closure func...
clsneiel2 42371 If a (pseudo-)closure func...
clsneifv3 42372 Value of the neighborhoods...
clsneifv4 42373 Value of the closure (inte...
neicvgbex 42374 If (pseudo-)neighborhood a...
neicvgrcomplex 42375 The relative complement of...
neicvgf1o 42376 If neighborhood and conver...
neicvgnvo 42377 If neighborhood and conver...
neicvgnvor 42378 If neighborhood and conver...
neicvgmex 42379 If the neighborhoods and c...
neicvgnex 42380 If the neighborhoods and c...
neicvgel1 42381 A subset being an element ...
neicvgel2 42382 The complement of a subset...
neicvgfv 42383 The value of the neighborh...
ntrrn 42384 The range of the interior ...
ntrf 42385 The interior function of a...
ntrf2 42386 The interior function is a...
ntrelmap 42387 The interior function is a...
clsf2 42388 The closure function is a ...
clselmap 42389 The closure function is a ...
dssmapntrcls 42390 The interior and closure o...
dssmapclsntr 42391 The closure and interior o...
gneispa 42392 Each point ` p ` of the ne...
gneispb 42393 Given a neighborhood ` N `...
gneispace2 42394 The predicate that ` F ` i...
gneispace3 42395 The predicate that ` F ` i...
gneispace 42396 The predicate that ` F ` i...
gneispacef 42397 A generic neighborhood spa...
gneispacef2 42398 A generic neighborhood spa...
gneispacefun 42399 A generic neighborhood spa...
gneispacern 42400 A generic neighborhood spa...
gneispacern2 42401 A generic neighborhood spa...
gneispace0nelrn 42402 A generic neighborhood spa...
gneispace0nelrn2 42403 A generic neighborhood spa...
gneispace0nelrn3 42404 A generic neighborhood spa...
gneispaceel 42405 Every neighborhood of a po...
gneispaceel2 42406 Every neighborhood of a po...
gneispacess 42407 All supersets of a neighbo...
gneispacess2 42408 All supersets of a neighbo...
k0004lem1 42409 Application of ~ ssin to r...
k0004lem2 42410 A mapping with a particula...
k0004lem3 42411 When the value of a mappin...
k0004val 42412 The topological simplex of...
k0004ss1 42413 The topological simplex of...
k0004ss2 42414 The topological simplex of...
k0004ss3 42415 The topological simplex of...
k0004val0 42416 The topological simplex of...
inductionexd 42417 Simple induction example. ...
wwlemuld 42418 Natural deduction form of ...
leeq1d 42419 Specialization of ~ breq1d...
leeq2d 42420 Specialization of ~ breq2d...
absmulrposd 42421 Specialization of absmuld ...
imadisjld 42422 Natural dduction form of o...
imadisjlnd 42423 Natural deduction form of ...
wnefimgd 42424 The image of a mapping fro...
fco2d 42425 Natural deduction form of ...
wfximgfd 42426 The value of a function on...
extoimad 42427 If |f(x)| <= C for all x t...
imo72b2lem0 42428 Lemma for ~ imo72b2 . (Co...
suprleubrd 42429 Natural deduction form of ...
imo72b2lem2 42430 Lemma for ~ imo72b2 . (Co...
suprlubrd 42431 Natural deduction form of ...
imo72b2lem1 42432 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 42433 'Less than or equal to' re...
lemuldiv4d 42434 'Less than or equal to' re...
imo72b2 42435 IMO 1972 B2. (14th Intern...
int-addcomd 42436 AdditionCommutativity gene...
int-addassocd 42437 AdditionAssociativity gene...
int-addsimpd 42438 AdditionSimplification gen...
int-mulcomd 42439 MultiplicationCommutativit...
int-mulassocd 42440 MultiplicationAssociativit...
int-mulsimpd 42441 MultiplicationSimplificati...
int-leftdistd 42442 AdditionMultiplicationLeft...
int-rightdistd 42443 AdditionMultiplicationRigh...
int-sqdefd 42444 SquareDefinition generator...
int-mul11d 42445 First MultiplicationOne ge...
int-mul12d 42446 Second MultiplicationOne g...
int-add01d 42447 First AdditionZero generat...
int-add02d 42448 Second AdditionZero genera...
int-sqgeq0d 42449 SquareGEQZero generator ru...
int-eqprincd 42450 PrincipleOfEquality genera...
int-eqtransd 42451 EqualityTransitivity gener...
int-eqmvtd 42452 EquMoveTerm generator rule...
int-eqineqd 42453 EquivalenceImpliesDoubleIn...
int-ineqmvtd 42454 IneqMoveTerm generator rul...
int-ineq1stprincd 42455 FirstPrincipleOfInequality...
int-ineq2ndprincd 42456 SecondPrincipleOfInequalit...
int-ineqtransd 42457 InequalityTransitivity gen...
unitadd 42458 Theorem used in conjunctio...
gsumws3 42459 Valuation of a length 3 wo...
gsumws4 42460 Valuation of a length 4 wo...
amgm2d 42461 Arithmetic-geometric mean ...
amgm3d 42462 Arithmetic-geometric mean ...
amgm4d 42463 Arithmetic-geometric mean ...
spALT 42464 ~ sp can be proven from th...
elnelneqd 42465 Two classes are not equal ...
elnelneq2d 42466 Two classes are not equal ...
rr-spce 42467 Prove an existential. (Co...
rexlimdvaacbv 42468 Unpack a restricted existe...
rexlimddvcbvw 42469 Unpack a restricted existe...
rexlimddvcbv 42470 Unpack a restricted existe...
rr-elrnmpt3d 42471 Elementhood in an image se...
finnzfsuppd 42472 If a function is zero outs...
rr-phpd 42473 Equivalent of ~ php withou...
suceqd 42474 Deduction associated with ...
tfindsd 42475 Deduction associated with ...
mnringvald 42478 Value of the monoid ring f...
mnringnmulrd 42479 Components of a monoid rin...
mnringnmulrdOLD 42480 Obsolete version of ~ mnri...
mnringbased 42481 The base set of a monoid r...
mnringbasedOLD 42482 Obsolete version of ~ mnri...
mnringbaserd 42483 The base set of a monoid r...
mnringelbased 42484 Membership in the base set...
mnringbasefd 42485 Elements of a monoid ring ...
mnringbasefsuppd 42486 Elements of a monoid ring ...
mnringaddgd 42487 The additive operation of ...
mnringaddgdOLD 42488 Obsolete version of ~ mnri...
mnring0gd 42489 The additive identity of a...
mnring0g2d 42490 The additive identity of a...
mnringmulrd 42491 The ring product of a mono...
mnringscad 42492 The scalar ring of a monoi...
mnringscadOLD 42493 Obsolete version of ~ mnri...
mnringvscad 42494 The scalar product of a mo...
mnringvscadOLD 42495 Obsolete version of ~ mnri...
mnringlmodd 42496 Monoid rings are left modu...
mnringmulrvald 42497 Value of multiplication in...
mnringmulrcld 42498 Monoid rings are closed un...
gru0eld 42499 A nonempty Grothendieck un...
grusucd 42500 Grothendieck universes are...
r1rankcld 42501 Any rank of the cumulative...
grur1cld 42502 Grothendieck universes are...
grurankcld 42503 Grothendieck universes are...
grurankrcld 42504 If a Grothendieck universe...
scotteqd 42507 Equality theorem for the S...
scotteq 42508 Closed form of ~ scotteqd ...
nfscott 42509 Bound-variable hypothesis ...
scottabf 42510 Value of the Scott operati...
scottab 42511 Value of the Scott operati...
scottabes 42512 Value of the Scott operati...
scottss 42513 Scott's trick produces a s...
elscottab 42514 An element of the output o...
scottex2 42515 ~ scottex expressed using ...
scotteld 42516 The Scott operation sends ...
scottelrankd 42517 Property of a Scott's tric...
scottrankd 42518 Rank of a nonempty Scott's...
gruscottcld 42519 If a Grothendieck universe...
dfcoll2 42522 Alternate definition of th...
colleq12d 42523 Equality theorem for the c...
colleq1 42524 Equality theorem for the c...
colleq2 42525 Equality theorem for the c...
nfcoll 42526 Bound-variable hypothesis ...
collexd 42527 The output of the collecti...
cpcolld 42528 Property of the collection...
cpcoll2d 42529 ~ cpcolld with an extra ex...
grucollcld 42530 A Grothendieck universe co...
ismnu 42531 The hypothesis of this the...
mnuop123d 42532 Operations of a minimal un...
mnussd 42533 Minimal universes are clos...
mnuss2d 42534 ~ mnussd with arguments pr...
mnu0eld 42535 A nonempty minimal univers...
mnuop23d 42536 Second and third operation...
mnupwd 42537 Minimal universes are clos...
mnusnd 42538 Minimal universes are clos...
mnuprssd 42539 A minimal universe contain...
mnuprss2d 42540 Special case of ~ mnuprssd...
mnuop3d 42541 Third operation of a minim...
mnuprdlem1 42542 Lemma for ~ mnuprd . (Con...
mnuprdlem2 42543 Lemma for ~ mnuprd . (Con...
mnuprdlem3 42544 Lemma for ~ mnuprd . (Con...
mnuprdlem4 42545 Lemma for ~ mnuprd . Gene...
mnuprd 42546 Minimal universes are clos...
mnuunid 42547 Minimal universes are clos...
mnuund 42548 Minimal universes are clos...
mnutrcld 42549 Minimal universes contain ...
mnutrd 42550 Minimal universes are tran...
mnurndlem1 42551 Lemma for ~ mnurnd . (Con...
mnurndlem2 42552 Lemma for ~ mnurnd . Dedu...
mnurnd 42553 Minimal universes contain ...
mnugrud 42554 Minimal universes are Grot...
grumnudlem 42555 Lemma for ~ grumnud . (Co...
grumnud 42556 Grothendieck universes are...
grumnueq 42557 The class of Grothendieck ...
expandan 42558 Expand conjunction to prim...
expandexn 42559 Expand an existential quan...
expandral 42560 Expand a restricted univer...
expandrexn 42561 Expand a restricted existe...
expandrex 42562 Expand a restricted existe...
expanduniss 42563 Expand ` U. A C_ B ` to pr...
ismnuprim 42564 Express the predicate on `...
rr-grothprimbi 42565 Express "every set is cont...
inagrud 42566 Inaccessible levels of the...
inaex 42567 Assuming the Tarski-Grothe...
gruex 42568 Assuming the Tarski-Grothe...
rr-groth 42569 An equivalent of ~ ax-grot...
rr-grothprim 42570 An equivalent of ~ ax-grot...
ismnushort 42571 Express the predicate on `...
dfuniv2 42572 Alternative definition of ...
rr-grothshortbi 42573 Express "every set is cont...
rr-grothshort 42574 A shorter equivalent of ~ ...
nanorxor 42575 'nand' is equivalent to th...
undisjrab 42576 Union of two disjoint rest...
iso0 42577 The empty set is an ` R , ...
ssrecnpr 42578 ` RR ` is a subset of both...
seff 42579 Let set ` S ` be the real ...
sblpnf 42580 The infinity ball in the a...
prmunb2 42581 The primes are unbounded. ...
dvgrat 42582 Ratio test for divergence ...
cvgdvgrat 42583 Ratio test for convergence...
radcnvrat 42584 Let ` L ` be the limit, if...
reldvds 42585 The divides relation is in...
nznngen 42586 All positive integers in t...
nzss 42587 The set of multiples of _m...
nzin 42588 The intersection of the se...
nzprmdif 42589 Subtract one prime's multi...
hashnzfz 42590 Special case of ~ hashdvds...
hashnzfz2 42591 Special case of ~ hashnzfz...
hashnzfzclim 42592 As the upper bound ` K ` o...
caofcan 42593 Transfer a cancellation la...
ofsubid 42594 Function analogue of ~ sub...
ofmul12 42595 Function analogue of ~ mul...
ofdivrec 42596 Function analogue of ~ div...
ofdivcan4 42597 Function analogue of ~ div...
ofdivdiv2 42598 Function analogue of ~ div...
lhe4.4ex1a 42599 Example of the Fundamental...
dvsconst 42600 Derivative of a constant f...
dvsid 42601 Derivative of the identity...
dvsef 42602 Derivative of the exponent...
expgrowthi 42603 Exponential growth and dec...
dvconstbi 42604 The derivative of a functi...
expgrowth 42605 Exponential growth and dec...
bccval 42608 Value of the generalized b...
bcccl 42609 Closure of the generalized...
bcc0 42610 The generalized binomial c...
bccp1k 42611 Generalized binomial coeff...
bccm1k 42612 Generalized binomial coeff...
bccn0 42613 Generalized binomial coeff...
bccn1 42614 Generalized binomial coeff...
bccbc 42615 The binomial coefficient a...
uzmptshftfval 42616 When ` F ` is a maps-to fu...
dvradcnv2 42617 The radius of convergence ...
binomcxplemwb 42618 Lemma for ~ binomcxp . Th...
binomcxplemnn0 42619 Lemma for ~ binomcxp . Wh...
binomcxplemrat 42620 Lemma for ~ binomcxp . As...
binomcxplemfrat 42621 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 42622 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 42623 Lemma for ~ binomcxp . By...
binomcxplemcvg 42624 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 42625 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 42626 Lemma for ~ binomcxp . Wh...
binomcxp 42627 Generalize the binomial th...
pm10.12 42628 Theorem *10.12 in [Whitehe...
pm10.14 42629 Theorem *10.14 in [Whitehe...
pm10.251 42630 Theorem *10.251 in [Whiteh...
pm10.252 42631 Theorem *10.252 in [Whiteh...
pm10.253 42632 Theorem *10.253 in [Whiteh...
albitr 42633 Theorem *10.301 in [Whiteh...
pm10.42 42634 Theorem *10.42 in [Whitehe...
pm10.52 42635 Theorem *10.52 in [Whitehe...
pm10.53 42636 Theorem *10.53 in [Whitehe...
pm10.541 42637 Theorem *10.541 in [Whiteh...
pm10.542 42638 Theorem *10.542 in [Whiteh...
pm10.55 42639 Theorem *10.55 in [Whitehe...
pm10.56 42640 Theorem *10.56 in [Whitehe...
pm10.57 42641 Theorem *10.57 in [Whitehe...
2alanimi 42642 Removes two universal quan...
2al2imi 42643 Removes two universal quan...
pm11.11 42644 Theorem *11.11 in [Whitehe...
pm11.12 42645 Theorem *11.12 in [Whitehe...
19.21vv 42646 Compare Theorem *11.3 in [...
2alim 42647 Theorem *11.32 in [Whitehe...
2albi 42648 Theorem *11.33 in [Whitehe...
2exim 42649 Theorem *11.34 in [Whitehe...
2exbi 42650 Theorem *11.341 in [Whiteh...
spsbce-2 42651 Theorem *11.36 in [Whitehe...
19.33-2 42652 Theorem *11.421 in [Whiteh...
19.36vv 42653 Theorem *11.43 in [Whitehe...
19.31vv 42654 Theorem *11.44 in [Whitehe...
19.37vv 42655 Theorem *11.46 in [Whitehe...
19.28vv 42656 Theorem *11.47 in [Whitehe...
pm11.52 42657 Theorem *11.52 in [Whitehe...
aaanv 42658 Theorem *11.56 in [Whitehe...
pm11.57 42659 Theorem *11.57 in [Whitehe...
pm11.58 42660 Theorem *11.58 in [Whitehe...
pm11.59 42661 Theorem *11.59 in [Whitehe...
pm11.6 42662 Theorem *11.6 in [Whitehea...
pm11.61 42663 Theorem *11.61 in [Whitehe...
pm11.62 42664 Theorem *11.62 in [Whitehe...
pm11.63 42665 Theorem *11.63 in [Whitehe...
pm11.7 42666 Theorem *11.7 in [Whitehea...
pm11.71 42667 Theorem *11.71 in [Whitehe...
sbeqal1 42668 If ` x = y ` always implie...
sbeqal1i 42669 Suppose you know ` x = y `...
sbeqal2i 42670 If ` x = y ` implies ` x =...
axc5c4c711 42671 Proof of a theorem that ca...
axc5c4c711toc5 42672 Rederivation of ~ sp from ...
axc5c4c711toc4 42673 Rederivation of ~ axc4 fro...
axc5c4c711toc7 42674 Rederivation of ~ axc7 fro...
axc5c4c711to11 42675 Rederivation of ~ ax-11 fr...
axc11next 42676 This theorem shows that, g...
pm13.13a 42677 One result of theorem *13....
pm13.13b 42678 Theorem *13.13 in [Whitehe...
pm13.14 42679 Theorem *13.14 in [Whitehe...
pm13.192 42680 Theorem *13.192 in [Whiteh...
pm13.193 42681 Theorem *13.193 in [Whiteh...
pm13.194 42682 Theorem *13.194 in [Whiteh...
pm13.195 42683 Theorem *13.195 in [Whiteh...
pm13.196a 42684 Theorem *13.196 in [Whiteh...
2sbc6g 42685 Theorem *13.21 in [Whitehe...
2sbc5g 42686 Theorem *13.22 in [Whitehe...
iotain 42687 Equivalence between two di...
iotaexeu 42688 The iota class exists. Th...
iotasbc 42689 Definition *14.01 in [Whit...
iotasbc2 42690 Theorem *14.111 in [Whiteh...
pm14.12 42691 Theorem *14.12 in [Whitehe...
pm14.122a 42692 Theorem *14.122 in [Whiteh...
pm14.122b 42693 Theorem *14.122 in [Whiteh...
pm14.122c 42694 Theorem *14.122 in [Whiteh...
pm14.123a 42695 Theorem *14.123 in [Whiteh...
pm14.123b 42696 Theorem *14.123 in [Whiteh...
pm14.123c 42697 Theorem *14.123 in [Whiteh...
pm14.18 42698 Theorem *14.18 in [Whitehe...
iotaequ 42699 Theorem *14.2 in [Whitehea...
iotavalb 42700 Theorem *14.202 in [Whiteh...
iotasbc5 42701 Theorem *14.205 in [Whiteh...
pm14.24 42702 Theorem *14.24 in [Whitehe...
iotavalsb 42703 Theorem *14.242 in [Whiteh...
sbiota1 42704 Theorem *14.25 in [Whitehe...
sbaniota 42705 Theorem *14.26 in [Whitehe...
eubiOLD 42706 Obsolete proof of ~ eubi a...
iotasbcq 42707 Theorem *14.272 in [Whiteh...
elnev 42708 Any set that contains one ...
rusbcALT 42709 A version of Russell's par...
compeq 42710 Equality between two ways ...
compne 42711 The complement of ` A ` is...
compab 42712 Two ways of saying "the co...
conss2 42713 Contrapositive law for sub...
conss1 42714 Contrapositive law for sub...
ralbidar 42715 More general form of ~ ral...
rexbidar 42716 More general form of ~ rex...
dropab1 42717 Theorem to aid use of the ...
dropab2 42718 Theorem to aid use of the ...
ipo0 42719 If the identity relation p...
ifr0 42720 A class that is founded by...
ordpss 42721 ~ ordelpss with an anteced...
fvsb 42722 Explicit substitution of a...
fveqsb 42723 Implicit substitution of a...
xpexb 42724 A Cartesian product exists...
trelpss 42725 An element of a transitive...
addcomgi 42726 Generalization of commutat...
addrval 42736 Value of the operation of ...
subrval 42737 Value of the operation of ...
mulvval 42738 Value of the operation of ...
addrfv 42739 Vector addition at a value...
subrfv 42740 Vector subtraction at a va...
mulvfv 42741 Scalar multiplication at a...
addrfn 42742 Vector addition produces a...
subrfn 42743 Vector subtraction produce...
mulvfn 42744 Scalar multiplication prod...
addrcom 42745 Vector addition is commuta...
idiALT 42749 Placeholder for ~ idi . T...
exbir 42750 Exportation implication al...
3impexpbicom 42751 Version of ~ 3impexp where...
3impexpbicomi 42752 Inference associated with ...
bi1imp 42753 Importation inference simi...
bi2imp 42754 Importation inference simi...
bi3impb 42755 Similar to ~ 3impb with im...
bi3impa 42756 Similar to ~ 3impa with im...
bi23impib 42757 ~ 3impib with the inner im...
bi13impib 42758 ~ 3impib with the outer im...
bi123impib 42759 ~ 3impib with the implicat...
bi13impia 42760 ~ 3impia with the outer im...
bi123impia 42761 ~ 3impia with the implicat...
bi33imp12 42762 ~ 3imp with innermost impl...
bi23imp13 42763 ~ 3imp with middle implica...
bi13imp23 42764 ~ 3imp with outermost impl...
bi13imp2 42765 Similar to ~ 3imp except t...
bi12imp3 42766 Similar to ~ 3imp except a...
bi23imp1 42767 Similar to ~ 3imp except a...
bi123imp0 42768 Similar to ~ 3imp except a...
4animp1 42769 A single hypothesis unific...
4an31 42770 A rearrangement of conjunc...
4an4132 42771 A rearrangement of conjunc...
expcomdg 42772 Biconditional form of ~ ex...
iidn3 42773 ~ idn3 without virtual ded...
ee222 42774 ~ e222 without virtual ded...
ee3bir 42775 Right-biconditional form o...
ee13 42776 ~ e13 without virtual dedu...
ee121 42777 ~ e121 without virtual ded...
ee122 42778 ~ e122 without virtual ded...
ee333 42779 ~ e333 without virtual ded...
ee323 42780 ~ e323 without virtual ded...
3ornot23 42781 If the second and third di...
orbi1r 42782 ~ orbi1 with order of disj...
3orbi123 42783 ~ pm4.39 with a 3-conjunct...
syl5imp 42784 Closed form of ~ syl5 . D...
impexpd 42785 The following User's Proof...
com3rgbi 42786 The following User's Proof...
impexpdcom 42787 The following User's Proof...
ee1111 42788 Non-virtual deduction form...
pm2.43bgbi 42789 Logical equivalence of a 2...
pm2.43cbi 42790 Logical equivalence of a 3...
ee233 42791 Non-virtual deduction form...
imbi13 42792 Join three logical equival...
ee33 42793 Non-virtual deduction form...
con5 42794 Biconditional contrapositi...
con5i 42795 Inference form of ~ con5 ....
exlimexi 42796 Inference similar to Theor...
sb5ALT 42797 Equivalence for substituti...
eexinst01 42798 ~ exinst01 without virtual...
eexinst11 42799 ~ exinst11 without virtual...
vk15.4j 42800 Excercise 4j of Unit 15 of...
notnotrALT 42801 Converse of double negatio...
con3ALT2 42802 Contraposition. Alternate...
ssralv2 42803 Quantification restricted ...
sbc3or 42804 ~ sbcor with a 3-disjuncts...
alrim3con13v 42805 Closed form of ~ alrimi wi...
rspsbc2 42806 ~ rspsbc with two quantify...
sbcoreleleq 42807 Substitution of a setvar v...
tratrb 42808 If a class is transitive a...
ordelordALT 42809 An element of an ordinal c...
sbcim2g 42810 Distribution of class subs...
sbcbi 42811 Implication form of ~ sbcb...
trsbc 42812 Formula-building inference...
truniALT 42813 The union of a class of tr...
onfrALTlem5 42814 Lemma for ~ onfrALT . (Co...
onfrALTlem4 42815 Lemma for ~ onfrALT . (Co...
onfrALTlem3 42816 Lemma for ~ onfrALT . (Co...
ggen31 42817 ~ gen31 without virtual de...
onfrALTlem2 42818 Lemma for ~ onfrALT . (Co...
cbvexsv 42819 A theorem pertaining to th...
onfrALTlem1 42820 Lemma for ~ onfrALT . (Co...
onfrALT 42821 The membership relation is...
19.41rg 42822 Closed form of right-to-le...
opelopab4 42823 Ordered pair membership in...
2pm13.193 42824 ~ pm13.193 for two variabl...
hbntal 42825 A closed form of ~ hbn . ~...
hbimpg 42826 A closed form of ~ hbim . ...
hbalg 42827 Closed form of ~ hbal . D...
hbexg 42828 Closed form of ~ nfex . D...
ax6e2eq 42829 Alternate form of ~ ax6e f...
ax6e2nd 42830 If at least two sets exist...
ax6e2ndeq 42831 "At least two sets exist" ...
2sb5nd 42832 Equivalence for double sub...
2uasbanh 42833 Distribute the unabbreviat...
2uasban 42834 Distribute the unabbreviat...
e2ebind 42835 Absorption of an existenti...
elpwgded 42836 ~ elpwgdedVD in convention...
trelded 42837 Deduction form of ~ trel ....
jaoded 42838 Deduction form of ~ jao . ...
sbtT 42839 A substitution into a theo...
not12an2impnot1 42840 If a double conjunction is...
in1 42843 Inference form of ~ df-vd1...
iin1 42844 ~ in1 without virtual dedu...
dfvd1ir 42845 Inference form of ~ df-vd1...
idn1 42846 Virtual deduction identity...
dfvd1imp 42847 Left-to-right part of defi...
dfvd1impr 42848 Right-to-left part of defi...
dfvd2 42851 Definition of a 2-hypothes...
dfvd2an 42854 Definition of a 2-hypothes...
dfvd2ani 42855 Inference form of ~ dfvd2a...
dfvd2anir 42856 Right-to-left inference fo...
dfvd2i 42857 Inference form of ~ dfvd2 ...
dfvd2ir 42858 Right-to-left inference fo...
dfvd3 42863 Definition of a 3-hypothes...
dfvd3i 42864 Inference form of ~ dfvd3 ...
dfvd3ir 42865 Right-to-left inference fo...
dfvd3an 42866 Definition of a 3-hypothes...
dfvd3ani 42867 Inference form of ~ dfvd3a...
dfvd3anir 42868 Right-to-left inference fo...
vd01 42869 A virtual hypothesis virtu...
vd02 42870 Two virtual hypotheses vir...
vd03 42871 A theorem is virtually inf...
vd12 42872 A virtual deduction with 1...
vd13 42873 A virtual deduction with 1...
vd23 42874 A virtual deduction with 2...
dfvd2imp 42875 The virtual deduction form...
dfvd2impr 42876 A 2-antecedent nested impl...
in2 42877 The virtual deduction intr...
int2 42878 The virtual deduction intr...
iin2 42879 ~ in2 without virtual dedu...
in2an 42880 The virtual deduction intr...
in3 42881 The virtual deduction intr...
iin3 42882 ~ in3 without virtual dedu...
in3an 42883 The virtual deduction intr...
int3 42884 The virtual deduction intr...
idn2 42885 Virtual deduction identity...
iden2 42886 Virtual deduction identity...
idn3 42887 Virtual deduction identity...
gen11 42888 Virtual deduction generali...
gen11nv 42889 Virtual deduction generali...
gen12 42890 Virtual deduction generali...
gen21 42891 Virtual deduction generali...
gen21nv 42892 Virtual deduction form of ...
gen31 42893 Virtual deduction generali...
gen22 42894 Virtual deduction generali...
ggen22 42895 ~ gen22 without virtual de...
exinst 42896 Existential Instantiation....
exinst01 42897 Existential Instantiation....
exinst11 42898 Existential Instantiation....
e1a 42899 A Virtual deduction elimin...
el1 42900 A Virtual deduction elimin...
e1bi 42901 Biconditional form of ~ e1...
e1bir 42902 Right biconditional form o...
e2 42903 A virtual deduction elimin...
e2bi 42904 Biconditional form of ~ e2...
e2bir 42905 Right biconditional form o...
ee223 42906 ~ e223 without virtual ded...
e223 42907 A virtual deduction elimin...
e222 42908 A virtual deduction elimin...
e220 42909 A virtual deduction elimin...
ee220 42910 ~ e220 without virtual ded...
e202 42911 A virtual deduction elimin...
ee202 42912 ~ e202 without virtual ded...
e022 42913 A virtual deduction elimin...
ee022 42914 ~ e022 without virtual ded...
e002 42915 A virtual deduction elimin...
ee002 42916 ~ e002 without virtual ded...
e020 42917 A virtual deduction elimin...
ee020 42918 ~ e020 without virtual ded...
e200 42919 A virtual deduction elimin...
ee200 42920 ~ e200 without virtual ded...
e221 42921 A virtual deduction elimin...
ee221 42922 ~ e221 without virtual ded...
e212 42923 A virtual deduction elimin...
ee212 42924 ~ e212 without virtual ded...
e122 42925 A virtual deduction elimin...
e112 42926 A virtual deduction elimin...
ee112 42927 ~ e112 without virtual ded...
e121 42928 A virtual deduction elimin...
e211 42929 A virtual deduction elimin...
ee211 42930 ~ e211 without virtual ded...
e210 42931 A virtual deduction elimin...
ee210 42932 ~ e210 without virtual ded...
e201 42933 A virtual deduction elimin...
ee201 42934 ~ e201 without virtual ded...
e120 42935 A virtual deduction elimin...
ee120 42936 Virtual deduction rule ~ e...
e021 42937 A virtual deduction elimin...
ee021 42938 ~ e021 without virtual ded...
e012 42939 A virtual deduction elimin...
ee012 42940 ~ e012 without virtual ded...
e102 42941 A virtual deduction elimin...
ee102 42942 ~ e102 without virtual ded...
e22 42943 A virtual deduction elimin...
e22an 42944 Conjunction form of ~ e22 ...
ee22an 42945 ~ e22an without virtual de...
e111 42946 A virtual deduction elimin...
e1111 42947 A virtual deduction elimin...
e110 42948 A virtual deduction elimin...
ee110 42949 ~ e110 without virtual ded...
e101 42950 A virtual deduction elimin...
ee101 42951 ~ e101 without virtual ded...
e011 42952 A virtual deduction elimin...
ee011 42953 ~ e011 without virtual ded...
e100 42954 A virtual deduction elimin...
ee100 42955 ~ e100 without virtual ded...
e010 42956 A virtual deduction elimin...
ee010 42957 ~ e010 without virtual ded...
e001 42958 A virtual deduction elimin...
ee001 42959 ~ e001 without virtual ded...
e11 42960 A virtual deduction elimin...
e11an 42961 Conjunction form of ~ e11 ...
ee11an 42962 ~ e11an without virtual de...
e01 42963 A virtual deduction elimin...
e01an 42964 Conjunction form of ~ e01 ...
ee01an 42965 ~ e01an without virtual de...
e10 42966 A virtual deduction elimin...
e10an 42967 Conjunction form of ~ e10 ...
ee10an 42968 ~ e10an without virtual de...
e02 42969 A virtual deduction elimin...
e02an 42970 Conjunction form of ~ e02 ...
ee02an 42971 ~ e02an without virtual de...
eel021old 42972 ~ el021old without virtual...
el021old 42973 A virtual deduction elimin...
eel132 42974 ~ syl2an with antecedents ...
eel000cT 42975 An elimination deduction. ...
eel0TT 42976 An elimination deduction. ...
eelT00 42977 An elimination deduction. ...
eelTTT 42978 An elimination deduction. ...
eelT11 42979 An elimination deduction. ...
eelT1 42980 Syllogism inference combin...
eelT12 42981 An elimination deduction. ...
eelTT1 42982 An elimination deduction. ...
eelT01 42983 An elimination deduction. ...
eel0T1 42984 An elimination deduction. ...
eel12131 42985 An elimination deduction. ...
eel2131 42986 ~ syl2an with antecedents ...
eel3132 42987 ~ syl2an with antecedents ...
eel0321old 42988 ~ el0321old without virtua...
el0321old 42989 A virtual deduction elimin...
eel2122old 42990 ~ el2122old without virtua...
el2122old 42991 A virtual deduction elimin...
eel0000 42992 Elimination rule similar t...
eel00001 42993 An elimination deduction. ...
eel00000 42994 Elimination rule similar ~...
eel11111 42995 Five-hypothesis eliminatio...
e12 42996 A virtual deduction elimin...
e12an 42997 Conjunction form of ~ e12 ...
el12 42998 Virtual deduction form of ...
e20 42999 A virtual deduction elimin...
e20an 43000 Conjunction form of ~ e20 ...
ee20an 43001 ~ e20an without virtual de...
e21 43002 A virtual deduction elimin...
e21an 43003 Conjunction form of ~ e21 ...
ee21an 43004 ~ e21an without virtual de...
e333 43005 A virtual deduction elimin...
e33 43006 A virtual deduction elimin...
e33an 43007 Conjunction form of ~ e33 ...
ee33an 43008 ~ e33an without virtual de...
e3 43009 Meta-connective form of ~ ...
e3bi 43010 Biconditional form of ~ e3...
e3bir 43011 Right biconditional form o...
e03 43012 A virtual deduction elimin...
ee03 43013 ~ e03 without virtual dedu...
e03an 43014 Conjunction form of ~ e03 ...
ee03an 43015 Conjunction form of ~ ee03...
e30 43016 A virtual deduction elimin...
ee30 43017 ~ e30 without virtual dedu...
e30an 43018 A virtual deduction elimin...
ee30an 43019 Conjunction form of ~ ee30...
e13 43020 A virtual deduction elimin...
e13an 43021 A virtual deduction elimin...
ee13an 43022 ~ e13an without virtual de...
e31 43023 A virtual deduction elimin...
ee31 43024 ~ e31 without virtual dedu...
e31an 43025 A virtual deduction elimin...
ee31an 43026 ~ e31an without virtual de...
e23 43027 A virtual deduction elimin...
e23an 43028 A virtual deduction elimin...
ee23an 43029 ~ e23an without virtual de...
e32 43030 A virtual deduction elimin...
ee32 43031 ~ e32 without virtual dedu...
e32an 43032 A virtual deduction elimin...
ee32an 43033 ~ e33an without virtual de...
e123 43034 A virtual deduction elimin...
ee123 43035 ~ e123 without virtual ded...
el123 43036 A virtual deduction elimin...
e233 43037 A virtual deduction elimin...
e323 43038 A virtual deduction elimin...
e000 43039 A virtual deduction elimin...
e00 43040 Elimination rule identical...
e00an 43041 Elimination rule identical...
eel00cT 43042 An elimination deduction. ...
eelTT 43043 An elimination deduction. ...
e0a 43044 Elimination rule identical...
eelT 43045 An elimination deduction. ...
eel0cT 43046 An elimination deduction. ...
eelT0 43047 An elimination deduction. ...
e0bi 43048 Elimination rule identical...
e0bir 43049 Elimination rule identical...
uun0.1 43050 Convention notation form o...
un0.1 43051 ` T. ` is the constant tru...
uunT1 43052 A deduction unionizing a n...
uunT1p1 43053 A deduction unionizing a n...
uunT21 43054 A deduction unionizing a n...
uun121 43055 A deduction unionizing a n...
uun121p1 43056 A deduction unionizing a n...
uun132 43057 A deduction unionizing a n...
uun132p1 43058 A deduction unionizing a n...
anabss7p1 43059 A deduction unionizing a n...
un10 43060 A unionizing deduction. (...
un01 43061 A unionizing deduction. (...
un2122 43062 A deduction unionizing a n...
uun2131 43063 A deduction unionizing a n...
uun2131p1 43064 A deduction unionizing a n...
uunTT1 43065 A deduction unionizing a n...
uunTT1p1 43066 A deduction unionizing a n...
uunTT1p2 43067 A deduction unionizing a n...
uunT11 43068 A deduction unionizing a n...
uunT11p1 43069 A deduction unionizing a n...
uunT11p2 43070 A deduction unionizing a n...
uunT12 43071 A deduction unionizing a n...
uunT12p1 43072 A deduction unionizing a n...
uunT12p2 43073 A deduction unionizing a n...
uunT12p3 43074 A deduction unionizing a n...
uunT12p4 43075 A deduction unionizing a n...
uunT12p5 43076 A deduction unionizing a n...
uun111 43077 A deduction unionizing a n...
3anidm12p1 43078 A deduction unionizing a n...
3anidm12p2 43079 A deduction unionizing a n...
uun123 43080 A deduction unionizing a n...
uun123p1 43081 A deduction unionizing a n...
uun123p2 43082 A deduction unionizing a n...
uun123p3 43083 A deduction unionizing a n...
uun123p4 43084 A deduction unionizing a n...
uun2221 43085 A deduction unionizing a n...
uun2221p1 43086 A deduction unionizing a n...
uun2221p2 43087 A deduction unionizing a n...
3impdirp1 43088 A deduction unionizing a n...
3impcombi 43089 A 1-hypothesis proposition...
trsspwALT 43090 Virtual deduction proof of...
trsspwALT2 43091 Virtual deduction proof of...
trsspwALT3 43092 Short predicate calculus p...
sspwtr 43093 Virtual deduction proof of...
sspwtrALT 43094 Virtual deduction proof of...
sspwtrALT2 43095 Short predicate calculus p...
pwtrVD 43096 Virtual deduction proof of...
pwtrrVD 43097 Virtual deduction proof of...
suctrALT 43098 The successor of a transit...
snssiALTVD 43099 Virtual deduction proof of...
snssiALT 43100 If a class is an element o...
snsslVD 43101 Virtual deduction proof of...
snssl 43102 If a singleton is a subcla...
snelpwrVD 43103 Virtual deduction proof of...
unipwrVD 43104 Virtual deduction proof of...
unipwr 43105 A class is a subclass of t...
sstrALT2VD 43106 Virtual deduction proof of...
sstrALT2 43107 Virtual deduction proof of...
suctrALT2VD 43108 Virtual deduction proof of...
suctrALT2 43109 Virtual deduction proof of...
elex2VD 43110 Virtual deduction proof of...
elex22VD 43111 Virtual deduction proof of...
eqsbc2VD 43112 Virtual deduction proof of...
zfregs2VD 43113 Virtual deduction proof of...
tpid3gVD 43114 Virtual deduction proof of...
en3lplem1VD 43115 Virtual deduction proof of...
en3lplem2VD 43116 Virtual deduction proof of...
en3lpVD 43117 Virtual deduction proof of...
simplbi2VD 43118 Virtual deduction proof of...
3ornot23VD 43119 Virtual deduction proof of...
orbi1rVD 43120 Virtual deduction proof of...
bitr3VD 43121 Virtual deduction proof of...
3orbi123VD 43122 Virtual deduction proof of...
sbc3orgVD 43123 Virtual deduction proof of...
19.21a3con13vVD 43124 Virtual deduction proof of...
exbirVD 43125 Virtual deduction proof of...
exbiriVD 43126 Virtual deduction proof of...
rspsbc2VD 43127 Virtual deduction proof of...
3impexpVD 43128 Virtual deduction proof of...
3impexpbicomVD 43129 Virtual deduction proof of...
3impexpbicomiVD 43130 Virtual deduction proof of...
sbcoreleleqVD 43131 Virtual deduction proof of...
hbra2VD 43132 Virtual deduction proof of...
tratrbVD 43133 Virtual deduction proof of...
al2imVD 43134 Virtual deduction proof of...
syl5impVD 43135 Virtual deduction proof of...
idiVD 43136 Virtual deduction proof of...
ancomstVD 43137 Closed form of ~ ancoms . ...
ssralv2VD 43138 Quantification restricted ...
ordelordALTVD 43139 An element of an ordinal c...
equncomVD 43140 If a class equals the unio...
equncomiVD 43141 Inference form of ~ equnco...
sucidALTVD 43142 A set belongs to its succe...
sucidALT 43143 A set belongs to its succe...
sucidVD 43144 A set belongs to its succe...
imbi12VD 43145 Implication form of ~ imbi...
imbi13VD 43146 Join three logical equival...
sbcim2gVD 43147 Distribution of class subs...
sbcbiVD 43148 Implication form of ~ sbcb...
trsbcVD 43149 Formula-building inference...
truniALTVD 43150 The union of a class of tr...
ee33VD 43151 Non-virtual deduction form...
trintALTVD 43152 The intersection of a clas...
trintALT 43153 The intersection of a clas...
undif3VD 43154 The first equality of Exer...
sbcssgVD 43155 Virtual deduction proof of...
csbingVD 43156 Virtual deduction proof of...
onfrALTlem5VD 43157 Virtual deduction proof of...
onfrALTlem4VD 43158 Virtual deduction proof of...
onfrALTlem3VD 43159 Virtual deduction proof of...
simplbi2comtVD 43160 Virtual deduction proof of...
onfrALTlem2VD 43161 Virtual deduction proof of...
onfrALTlem1VD 43162 Virtual deduction proof of...
onfrALTVD 43163 Virtual deduction proof of...
csbeq2gVD 43164 Virtual deduction proof of...
csbsngVD 43165 Virtual deduction proof of...
csbxpgVD 43166 Virtual deduction proof of...
csbresgVD 43167 Virtual deduction proof of...
csbrngVD 43168 Virtual deduction proof of...
csbima12gALTVD 43169 Virtual deduction proof of...
csbunigVD 43170 Virtual deduction proof of...
csbfv12gALTVD 43171 Virtual deduction proof of...
con5VD 43172 Virtual deduction proof of...
relopabVD 43173 Virtual deduction proof of...
19.41rgVD 43174 Virtual deduction proof of...
2pm13.193VD 43175 Virtual deduction proof of...
hbimpgVD 43176 Virtual deduction proof of...
hbalgVD 43177 Virtual deduction proof of...
hbexgVD 43178 Virtual deduction proof of...
ax6e2eqVD 43179 The following User's Proof...
ax6e2ndVD 43180 The following User's Proof...
ax6e2ndeqVD 43181 The following User's Proof...
2sb5ndVD 43182 The following User's Proof...
2uasbanhVD 43183 The following User's Proof...
e2ebindVD 43184 The following User's Proof...
sb5ALTVD 43185 The following User's Proof...
vk15.4jVD 43186 The following User's Proof...
notnotrALTVD 43187 The following User's Proof...
con3ALTVD 43188 The following User's Proof...
elpwgdedVD 43189 Membership in a power clas...
sspwimp 43190 If a class is a subclass o...
sspwimpVD 43191 The following User's Proof...
sspwimpcf 43192 If a class is a subclass o...
sspwimpcfVD 43193 The following User's Proof...
suctrALTcf 43194 The sucessor of a transiti...
suctrALTcfVD 43195 The following User's Proof...
suctrALT3 43196 The successor of a transit...
sspwimpALT 43197 If a class is a subclass o...
unisnALT 43198 A set equals the union of ...
notnotrALT2 43199 Converse of double negatio...
sspwimpALT2 43200 If a class is a subclass o...
e2ebindALT 43201 Absorption of an existenti...
ax6e2ndALT 43202 If at least two sets exist...
ax6e2ndeqALT 43203 "At least two sets exist" ...
2sb5ndALT 43204 Equivalence for double sub...
chordthmALT 43205 The intersecting chords th...
isosctrlem1ALT 43206 Lemma for ~ isosctr . Thi...
iunconnlem2 43207 The indexed union of conne...
iunconnALT 43208 The indexed union of conne...
sineq0ALT 43209 A complex number whose sin...
evth2f 43210 A version of ~ evth2 using...
elunif 43211 A version of ~ eluni using...
rzalf 43212 A version of ~ rzal using ...
fvelrnbf 43213 A version of ~ fvelrnb usi...
rfcnpre1 43214 If F is a continuous funct...
ubelsupr 43215 If U belongs to A and U is...
fsumcnf 43216 A finite sum of functions ...
mulltgt0 43217 The product of a negative ...
rspcegf 43218 A version of ~ rspcev usin...
rabexgf 43219 A version of ~ rabexg usin...
fcnre 43220 A function continuous with...
sumsnd 43221 A sum of a singleton is th...
evthf 43222 A version of ~ evth using ...
cnfex 43223 The class of continuous fu...
fnchoice 43224 For a finite set, a choice...
refsumcn 43225 A finite sum of continuous...
rfcnpre2 43226 If ` F ` is a continuous f...
cncmpmax 43227 When the hypothesis for th...
rfcnpre3 43228 If F is a continuous funct...
rfcnpre4 43229 If F is a continuous funct...
sumpair 43230 Sum of two distinct comple...
rfcnnnub 43231 Given a real continuous fu...
refsum2cnlem1 43232 This is the core Lemma for...
refsum2cn 43233 The sum of two continuus r...
adantlllr 43234 Deduction adding a conjunc...
3adantlr3 43235 Deduction adding a conjunc...
3adantll2 43236 Deduction adding a conjunc...
3adantll3 43237 Deduction adding a conjunc...
ssnel 43238 If not element of a set, t...
elabrexg 43239 Elementhood in an image se...
sncldre 43240 A singleton is closed w.r....
n0p 43241 A polynomial with a nonzer...
pm2.65ni 43242 Inference rule for proof b...
pwssfi 43243 Every element of the power...
iuneq2df 43244 Equality deduction for ind...
nnfoctb 43245 There exists a mapping fro...
ssinss1d 43246 Intersection preserves sub...
elpwinss 43247 An element of the powerset...
unidmex 43248 If ` F ` is a set, then ` ...
ndisj2 43249 A non-disjointness conditi...
zenom 43250 The set of integer numbers...
uzwo4 43251 Well-ordering principle: a...
unisn0 43252 The union of the singleton...
ssin0 43253 If two classes are disjoin...
inabs3 43254 Absorption law for interse...
pwpwuni 43255 Relationship between power...
disjiun2 43256 In a disjoint collection, ...
0pwfi 43257 The empty set is in any po...
ssinss2d 43258 Intersection preserves sub...
zct 43259 The set of integer numbers...
pwfin0 43260 A finite set always belong...
uzct 43261 An upper integer set is co...
iunxsnf 43262 A singleton index picks ou...
fiiuncl 43263 If a set is closed under t...
iunp1 43264 The addition of the next s...
fiunicl 43265 If a set is closed under t...
ixpeq2d 43266 Equality theorem for infin...
disjxp1 43267 The sets of a cartesian pr...
disjsnxp 43268 The sets in the cartesian ...
eliind 43269 Membership in indexed inte...
rspcef 43270 Restricted existential spe...
inn0f 43271 A nonempty intersection. ...
ixpssmapc 43272 An infinite Cartesian prod...
inn0 43273 A nonempty intersection. ...
elintd 43274 Membership in class inters...
ssdf 43275 A sufficient condition for...
brneqtrd 43276 Substitution of equal clas...
ssnct 43277 A set containing an uncoun...
ssuniint 43278 Sufficient condition for b...
elintdv 43279 Membership in class inters...
ssd 43280 A sufficient condition for...
ralimralim 43281 Introducing any antecedent...
snelmap 43282 Membership of the element ...
xrnmnfpnf 43283 An extended real that is n...
nelrnmpt 43284 Non-membership in the rang...
iuneq1i 43285 Equality theorem for index...
nssrex 43286 Negation of subclass relat...
ssinc 43287 Inclusion relation for a m...
ssdec 43288 Inclusion relation for a m...
elixpconstg 43289 Membership in an infinite ...
iineq1d 43290 Equality theorem for index...
metpsmet 43291 A metric is a pseudometric...
ixpssixp 43292 Subclass theorem for infin...
ballss3 43293 A sufficient condition for...
iunincfi 43294 Given a sequence of increa...
nsstr 43295 If it's not a subclass, it...
rexanuz3 43296 Combine two different uppe...
cbvmpo2 43297 Rule to change the second ...
cbvmpo1 43298 Rule to change the first b...
eliuniin 43299 Indexed union of indexed i...
ssabf 43300 Subclass of a class abstra...
pssnssi 43301 A proper subclass does not...
rabidim2 43302 Membership in a restricted...
eluni2f 43303 Membership in class union....
eliin2f 43304 Membership in indexed inte...
nssd 43305 Negation of subclass relat...
iineq12dv 43306 Equality deduction for ind...
supxrcld 43307 The supremum of an arbitra...
elrestd 43308 A sufficient condition for...
eliuniincex 43309 Counterexample to show tha...
eliincex 43310 Counterexample to show tha...
eliinid 43311 Membership in an indexed i...
abssf 43312 Class abstraction in a sub...
supxrubd 43313 A member of a set of exten...
ssrabf 43314 Subclass of a restricted c...
ssrabdf 43315 Subclass of a restricted c...
eliin2 43316 Membership in indexed inte...
ssrab2f 43317 Subclass relation for a re...
restuni3 43318 The underlying set of a su...
rabssf 43319 Restricted class abstracti...
eliuniin2 43320 Indexed union of indexed i...
restuni4 43321 The underlying set of a su...
restuni6 43322 The underlying set of a su...
restuni5 43323 The underlying set of a su...
unirestss 43324 The union of an elementwis...
iniin1 43325 Indexed intersection of in...
iniin2 43326 Indexed intersection of in...
cbvrabv2 43327 A more general version of ...
cbvrabv2w 43328 A more general version of ...
iinssiin 43329 Subset implication for an ...
eliind2 43330 Membership in indexed inte...
iinssd 43331 Subset implication for an ...
rabbida2 43332 Equivalent wff's yield equ...
iinexd 43333 The existence of an indexe...
rabexf 43334 Separation Scheme in terms...
rabbida3 43335 Equivalent wff's yield equ...
r19.36vf 43336 Restricted quantifier vers...
raleqd 43337 Equality deduction for res...
iinssf 43338 Subset implication for an ...
iinssdf 43339 Subset implication for an ...
resabs2i 43340 Absorption law for restric...
ssdf2 43341 A sufficient condition for...
rabssd 43342 Restricted class abstracti...
rexnegd 43343 Minus a real number. (Con...
rexlimd3 43344 * Inference from Theorem 1...
resabs1i 43345 Absorption law for restric...
nel1nelin 43346 Membership in an intersect...
nel2nelin 43347 Membership in an intersect...
nel1nelini 43348 Membership in an intersect...
nel2nelini 43349 Membership in an intersect...
eliunid 43350 Membership in indexed unio...
reximddv3 43351 Deduction from Theorem 19....
reximdd 43352 Deduction from Theorem 19....
unfid 43353 The union of two finite se...
inopnd 43354 The intersection of two op...
ss2rabdf 43355 Deduction of restricted ab...
restopn3 43356 If ` A ` is open, then ` A...
restopnssd 43357 A topology restricted to a...
restsubel 43358 A subset belongs in the sp...
toprestsubel 43359 A subset is open in the to...
rabidd 43360 An "identity" law of concr...
iunssdf 43361 Subset theorem for an inde...
iinss2d 43362 Subset implication for an ...
r19.3rzf 43363 Restricted quantification ...
r19.28zf 43364 Restricted quantifier vers...
iindif2f 43365 Indexed intersection of cl...
ralfal 43366 Two ways of expressing emp...
archd 43367 Archimedean property of re...
eliund 43368 Membership in indexed unio...
nimnbi 43369 If an implication is false...
nimnbi2 43370 If an implication is false...
notbicom 43371 Commutative law for the ne...
rexeqif 43372 Equality inference for res...
rspced 43373 Restricted existential spe...
feq1dd 43374 Equality deduction for fun...
fnresdmss 43375 A function does not change...
fmptsnxp 43376 Maps-to notation and Carte...
fvmpt2bd 43377 Value of a function given ...
rnmptfi 43378 The range of a function wi...
fresin2 43379 Restriction of a function ...
ffi 43380 A function with finite dom...
suprnmpt 43381 An explicit bound for the ...
rnffi 43382 The range of a function wi...
mptelpm 43383 A function in maps-to nota...
rnmptpr 43384 Range of a function define...
resmpti 43385 Restriction of the mapping...
founiiun 43386 Union expressed as an inde...
rnresun 43387 Distribution law for range...
dffo3f 43388 An onto mapping expressed ...
elrnmptf 43389 The range of a function in...
rnmptssrn 43390 Inclusion relation for two...
disjf1 43391 A 1 to 1 mapping built fro...
rnsnf 43392 The range of a function wh...
wessf1ornlem 43393 Given a function ` F ` on ...
wessf1orn 43394 Given a function ` F ` on ...
foelrnf 43395 Property of a surjective f...
nelrnres 43396 If ` A ` is not in the ran...
disjrnmpt2 43397 Disjointness of the range ...
elrnmpt1sf 43398 Elementhood in an image se...
founiiun0 43399 Union expressed as an inde...
disjf1o 43400 A bijection built from dis...
fompt 43401 Express being onto for a m...
disjinfi 43402 Only a finite number of di...
fvovco 43403 Value of the composition o...
ssnnf1octb 43404 There exists a bijection b...
nnf1oxpnn 43405 There is a bijection betwe...
rnmptssd 43406 The range of a function gi...
projf1o 43407 A biijection from a set to...
fvmap 43408 Function value for a membe...
fvixp2 43409 Projection of a factor of ...
fidmfisupp 43410 A function with a finite d...
choicefi 43411 For a finite set, a choice...
mpct 43412 The exponentiation of a co...
cnmetcoval 43413 Value of the distance func...
fcomptss 43414 Express composition of two...
elmapsnd 43415 Membership in a set expone...
mapss2 43416 Subset inheritance for set...
fsneq 43417 Equality condition for two...
difmap 43418 Difference of two sets exp...
unirnmap 43419 Given a subset of a set ex...
inmap 43420 Intersection of two sets e...
fcoss 43421 Composition of two mapping...
fsneqrn 43422 Equality condition for two...
difmapsn 43423 Difference of two sets exp...
mapssbi 43424 Subset inheritance for set...
unirnmapsn 43425 Equality theorem for a sub...
iunmapss 43426 The indexed union of set e...
ssmapsn 43427 A subset ` C ` of a set ex...
iunmapsn 43428 The indexed union of set e...
absfico 43429 Mapping domain and codomai...
icof 43430 The set of left-closed rig...
elpmrn 43431 The range of a partial fun...
imaexi 43432 The image of a set is a se...
axccdom 43433 Relax the constraint on ax...
dmmptdff 43434 The domain of the mapping ...
dmmptdf 43435 The domain of the mapping ...
elpmi2 43436 The domain of a partial fu...
dmrelrnrel 43437 A relation preserving func...
fvcod 43438 Value of a function compos...
elrnmpoid 43439 Membership in the range of...
axccd 43440 An alternative version of ...
axccd2 43441 An alternative version of ...
funimassd 43442 Sufficient condition for t...
fimassd 43443 The image of a class is a ...
feqresmptf 43444 Express a restricted funct...
elrnmpt1d 43445 Elementhood in an image se...
dmresss 43446 The domain of a restrictio...
dmmptssf 43447 The domain of a mapping is...
dmmptdf2 43448 The domain of the mapping ...
dmuz 43449 Domain of the upper intege...
fmptd2f 43450 Domain and codomain of the...
mpteq1df 43451 An equality theorem for th...
mpteq1dfOLD 43452 Obsolete version of ~ mpte...
mptexf 43453 If the domain of a functio...
fvmpt4 43454 Value of a function given ...
fmptf 43455 Functionality of the mappi...
resimass 43456 The image of a restriction...
mptssid 43457 The mapping operation expr...
mptfnd 43458 The maps-to notation defin...
mpteq12daOLD 43459 Obsolete version of ~ mpte...
rnmptlb 43460 Boundness below of the ran...
rnmptbddlem 43461 Boundness of the range of ...
rnmptbdd 43462 Boundness of the range of ...
mptima2 43463 Image of a function in map...
funimaeq 43464 Membership relation for th...
rnmptssf 43465 The range of a function gi...
rnmptbd2lem 43466 Boundness below of the ran...
rnmptbd2 43467 Boundness below of the ran...
infnsuprnmpt 43468 The indexed infimum of rea...
suprclrnmpt 43469 Closure of the indexed sup...
suprubrnmpt2 43470 A member of a nonempty ind...
suprubrnmpt 43471 A member of a nonempty ind...
rnmptssdf 43472 The range of a function gi...
rnmptbdlem 43473 Boundness above of the ran...
rnmptbd 43474 Boundness above of the ran...
rnmptss2 43475 The range of a function gi...
elmptima 43476 The image of a function in...
ralrnmpt3 43477 A restricted quantifier ov...
fvelima2 43478 Function value in an image...
rnmptssbi 43479 The range of a function gi...
imass2d 43480 Subset theorem for image. ...
imassmpt 43481 Membership relation for th...
fpmd 43482 A total function is a part...
fconst7 43483 An alternative way to expr...
fnmptif 43484 Functionality and domain o...
dmmptif 43485 Domain of the mapping oper...
mpteq2dfa 43486 Slightly more general equa...
dmmpt1 43487 The domain of the mapping ...
fmptff 43488 Functionality of the mappi...
fvmptelcdmf 43489 The value of a function at...
fmptdff 43490 A version of ~ fmptd using...
fvmpt2df 43491 Deduction version of ~ fvm...
rn1st 43492 The range of a function wi...
rnmptssff 43493 The range of a function gi...
rnmptssdff 43494 The range of a function gi...
fvmpt4d 43495 Value of a function given ...
sub2times 43496 Subtracting from a number,...
nnxrd 43497 A natural number is an ext...
nnxr 43498 A natural number is an ext...
abssubrp 43499 The distance of two distin...
elfzfzo 43500 Relationship between membe...
oddfl 43501 Odd number representation ...
abscosbd 43502 Bound for the absolute val...
mul13d 43503 Commutative/associative la...
negpilt0 43504 Negative ` _pi ` is negati...
dstregt0 43505 A complex number ` A ` tha...
subadd4b 43506 Rearrangement of 4 terms i...
xrlttri5d 43507 Not equal and not larger i...
neglt 43508 The negative of a positive...
zltlesub 43509 If an integer ` N ` is les...
divlt0gt0d 43510 The ratio of a negative nu...
subsub23d 43511 Swap subtrahend and result...
2timesgt 43512 Double of a positive real ...
reopn 43513 The reals are open with re...
sub31 43514 Swap the first and third t...
nnne1ge2 43515 A positive integer which i...
lefldiveq 43516 A closed enough, smaller r...
negsubdi3d 43517 Distribution of negative o...
ltdiv2dd 43518 Division of a positive num...
abssinbd 43519 Bound for the absolute val...
halffl 43520 Floor of ` ( 1 / 2 ) ` . ...
monoords 43521 Ordering relation for a st...
hashssle 43522 The size of a subset of a ...
lttri5d 43523 Not equal and not larger i...
fzisoeu 43524 A finite ordered set has a...
lt3addmuld 43525 If three real numbers are ...
absnpncan2d 43526 Triangular inequality, com...
fperiodmullem 43527 A function with period ` T...
fperiodmul 43528 A function with period T i...
upbdrech 43529 Choice of an upper bound f...
lt4addmuld 43530 If four real numbers are l...
absnpncan3d 43531 Triangular inequality, com...
upbdrech2 43532 Choice of an upper bound f...
ssfiunibd 43533 A finite union of bounded ...
fzdifsuc2 43534 Remove a successor from th...
fzsscn 43535 A finite sequence of integ...
divcan8d 43536 A cancellation law for div...
dmmcand 43537 Cancellation law for divis...
fzssre 43538 A finite sequence of integ...
bccld 43539 A binomial coefficient, in...
leadd12dd 43540 Addition to both sides of ...
fzssnn0 43541 A finite set of sequential...
xreqle 43542 Equality implies 'less tha...
xaddid2d 43543 ` 0 ` is a left identity f...
xadd0ge 43544 A number is less than or e...
elfzolem1 43545 A member in a half-open in...
xrgtned 43546 'Greater than' implies not...
xrleneltd 43547 'Less than or equal to' an...
xaddcomd 43548 The extended real addition...
supxrre3 43549 The supremum of a nonempty...
uzfissfz 43550 For any finite subset of t...
xleadd2d 43551 Addition of extended reals...
suprltrp 43552 The supremum of a nonempty...
xleadd1d 43553 Addition of extended reals...
xreqled 43554 Equality implies 'less tha...
xrgepnfd 43555 An extended real greater t...
xrge0nemnfd 43556 A nonnegative extended rea...
supxrgere 43557 If a real number can be ap...
iuneqfzuzlem 43558 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 43559 If two unions indexed by u...
xle2addd 43560 Adding both side of two in...
supxrgelem 43561 If an extended real number...
supxrge 43562 If an extended real number...
suplesup 43563 If any element of ` A ` ca...
infxrglb 43564 The infimum of a set of ex...
xadd0ge2 43565 A number is less than or e...
nepnfltpnf 43566 An extended real that is n...
ltadd12dd 43567 Addition to both sides of ...
nemnftgtmnft 43568 An extended real that is n...
xrgtso 43569 'Greater than' is a strict...
rpex 43570 The positive reals form a ...
xrge0ge0 43571 A nonnegative extended rea...
xrssre 43572 A subset of extended reals...
ssuzfz 43573 A finite subset of the upp...
absfun 43574 The absolute value is a fu...
infrpge 43575 The infimum of a nonempty,...
xrlexaddrp 43576 If an extended real number...
supsubc 43577 The supremum function dist...
xralrple2 43578 Show that ` A ` is less th...
nnuzdisj 43579 The first ` N ` elements o...
ltdivgt1 43580 Divsion by a number greate...
xrltned 43581 'Less than' implies not eq...
nnsplit 43582 Express the set of positiv...
divdiv3d 43583 Division into a fraction. ...
abslt2sqd 43584 Comparison of the square o...
qenom 43585 The set of rational number...
qct 43586 The set of rational number...
xrltnled 43587 'Less than' in terms of 'l...
lenlteq 43588 'less than or equal to' bu...
xrred 43589 An extended real that is n...
rr2sscn2 43590 The cartesian square of ` ...
infxr 43591 The infimum of a set of ex...
infxrunb2 43592 The infimum of an unbounde...
infxrbnd2 43593 The infimum of a bounded-b...
infleinflem1 43594 Lemma for ~ infleinf , cas...
infleinflem2 43595 Lemma for ~ infleinf , whe...
infleinf 43596 If any element of ` B ` ca...
xralrple4 43597 Show that ` A ` is less th...
xralrple3 43598 Show that ` A ` is less th...
eluzelzd 43599 A member of an upper set o...
suplesup2 43600 If any element of ` A ` is...
recnnltrp 43601 ` N ` is a natural number ...
nnn0 43602 The set of positive intege...
fzct 43603 A finite set of sequential...
rpgtrecnn 43604 Any positive real number i...
fzossuz 43605 A half-open integer interv...
infxrrefi 43606 The real and extended real...
xrralrecnnle 43607 Show that ` A ` is less th...
fzoct 43608 A finite set of sequential...
frexr 43609 A function taking real val...
nnrecrp 43610 The reciprocal of a positi...
reclt0d 43611 The reciprocal of a negati...
lt0neg1dd 43612 If a number is negative, i...
mnfled 43613 Minus infinity is less tha...
infxrcld 43614 The infimum of an arbitrar...
xrralrecnnge 43615 Show that ` A ` is less th...
reclt0 43616 The reciprocal of a negati...
ltmulneg 43617 Multiplying by a negative ...
allbutfi 43618 For all but finitely many....
ltdiv23neg 43619 Swap denominator with othe...
xreqnltd 43620 A consequence of trichotom...
mnfnre2 43621 Minus infinity is not a re...
zssxr 43622 The integers are a subset ...
fisupclrnmpt 43623 A nonempty finite indexed ...
supxrunb3 43624 The supremum of an unbound...
elfzod 43625 Membership in a half-open ...
fimaxre4 43626 A nonempty finite set of r...
ren0 43627 The set of reals is nonemp...
eluzelz2 43628 A member of an upper set o...
resabs2d 43629 Absorption law for restric...
uzid2 43630 Membership of the least me...
supxrleubrnmpt 43631 The supremum of a nonempty...
uzssre2 43632 An upper set of integers i...
uzssd 43633 Subset relationship for tw...
eluzd 43634 Membership in an upper set...
infxrlbrnmpt2 43635 A member of a nonempty ind...
xrre4 43636 An extended real is real i...
uz0 43637 The upper integers functio...
eluzelz2d 43638 A member of an upper set o...
infleinf2 43639 If any element in ` B ` is...
unb2ltle 43640 "Unbounded below" expresse...
uzidd2 43641 Membership of the least me...
uzssd2 43642 Subset relationship for tw...
rexabslelem 43643 An indexed set of absolute...
rexabsle 43644 An indexed set of absolute...
allbutfiinf 43645 Given a "for all but finit...
supxrrernmpt 43646 The real and extended real...
suprleubrnmpt 43647 The supremum of a nonempty...
infrnmptle 43648 An indexed infimum of exte...
infxrunb3 43649 The infimum of an unbounde...
uzn0d 43650 The upper integers are all...
uzssd3 43651 Subset relationship for tw...
rexabsle2 43652 An indexed set of absolute...
infxrunb3rnmpt 43653 The infimum of an unbounde...
supxrre3rnmpt 43654 The indexed supremum of a ...
uzublem 43655 A set of reals, indexed by...
uzub 43656 A set of reals, indexed by...
ssrexr 43657 A subset of the reals is a...
supxrmnf2 43658 Removing minus infinity fr...
supxrcli 43659 The supremum of an arbitra...
uzid3 43660 Membership of the least me...
infxrlesupxr 43661 The supremum of a nonempty...
xnegeqd 43662 Equality of two extended n...
xnegrecl 43663 The extended real negative...
xnegnegi 43664 Extended real version of ~...
xnegeqi 43665 Equality of two extended n...
nfxnegd 43666 Deduction version of ~ nfx...
xnegnegd 43667 Extended real version of ~...
uzred 43668 An upper integer is a real...
xnegcli 43669 Closure of extended real n...
supminfrnmpt 43670 The indexed supremum of a ...
infxrpnf 43671 Adding plus infinity to a ...
infxrrnmptcl 43672 The infimum of an arbitrar...
leneg2d 43673 Negative of one side of 'l...
supxrltinfxr 43674 The supremum of the empty ...
max1d 43675 A number is less than or e...
supxrleubrnmptf 43676 The supremum of a nonempty...
nleltd 43677 'Not less than or equal to...
zxrd 43678 An integer is an extended ...
infxrgelbrnmpt 43679 The infimum of an indexed ...
rphalfltd 43680 Half of a positive real is...
uzssz2 43681 An upper set of integers i...
leneg3d 43682 Negative of one side of 'l...
max2d 43683 A number is less than or e...
uzn0bi 43684 The upper integers functio...
xnegrecl2 43685 If the extended real negat...
nfxneg 43686 Bound-variable hypothesis ...
uzxrd 43687 An upper integer is an ext...
infxrpnf2 43688 Removing plus infinity fro...
supminfxr 43689 The extended real suprema ...
infrpgernmpt 43690 The infimum of a nonempty,...
xnegre 43691 An extended real is real i...
xnegrecl2d 43692 If the extended real negat...
uzxr 43693 An upper integer is an ext...
supminfxr2 43694 The extended real suprema ...
xnegred 43695 An extended real is real i...
supminfxrrnmpt 43696 The indexed supremum of a ...
min1d 43697 The minimum of two numbers...
min2d 43698 The minimum of two numbers...
pnfged 43699 Plus infinity is an upper ...
xrnpnfmnf 43700 An extended real that is n...
uzsscn 43701 An upper set of integers i...
absimnre 43702 The absolute value of the ...
uzsscn2 43703 An upper set of integers i...
xrtgcntopre 43704 The standard topologies on...
absimlere 43705 The absolute value of the ...
rpssxr 43706 The positive reals are a s...
monoordxrv 43707 Ordering relation for a mo...
monoordxr 43708 Ordering relation for a mo...
monoord2xrv 43709 Ordering relation for a mo...
monoord2xr 43710 Ordering relation for a mo...
xrpnf 43711 An extended real is plus i...
xlenegcon1 43712 Extended real version of ~...
xlenegcon2 43713 Extended real version of ~...
pimxrneun 43714 The preimage of a set of e...
caucvgbf 43715 A function is convergent i...
cvgcau 43716 A convergent function is C...
cvgcaule 43717 A convergent function is C...
rexanuz2nf 43718 A simple counterexample re...
gtnelioc 43719 A real number larger than ...
ioossioc 43720 An open interval is a subs...
ioondisj2 43721 A condition for two open i...
ioondisj1 43722 A condition for two open i...
ioogtlb 43723 An element of a closed int...
evthiccabs 43724 Extreme Value Theorem on y...
ltnelicc 43725 A real number smaller than...
eliood 43726 Membership in an open real...
iooabslt 43727 An upper bound for the dis...
gtnelicc 43728 A real number greater than...
iooinlbub 43729 An open interval has empty...
iocgtlb 43730 An element of a left-open ...
iocleub 43731 An element of a left-open ...
eliccd 43732 Membership in a closed rea...
eliccre 43733 A member of a closed inter...
eliooshift 43734 Element of an open interva...
eliocd 43735 Membership in a left-open ...
icoltub 43736 An element of a left-close...
eliocre 43737 A member of a left-open ri...
iooltub 43738 An element of an open inte...
ioontr 43739 The interior of an interva...
snunioo1 43740 The closure of one end of ...
lbioc 43741 A left-open right-closed i...
ioomidp 43742 The midpoint is an element...
iccdifioo 43743 If the open inverval is re...
iccdifprioo 43744 An open interval is the cl...
ioossioobi 43745 Biconditional form of ~ io...
iccshift 43746 A closed interval shifted ...
iccsuble 43747 An upper bound to the dist...
iocopn 43748 A left-open right-closed i...
eliccelioc 43749 Membership in a closed int...
iooshift 43750 An open interval shifted b...
iccintsng 43751 Intersection of two adiace...
icoiccdif 43752 Left-closed right-open int...
icoopn 43753 A left-closed right-open i...
icoub 43754 A left-closed, right-open ...
eliccxrd 43755 Membership in a closed rea...
pnfel0pnf 43756 ` +oo ` is a nonnegative e...
eliccnelico 43757 An element of a closed int...
eliccelicod 43758 A member of a closed inter...
ge0xrre 43759 A nonnegative extended rea...
ge0lere 43760 A nonnegative extended Rea...
elicores 43761 Membership in a left-close...
inficc 43762 The infimum of a nonempty ...
qinioo 43763 The rational numbers are d...
lenelioc 43764 A real number smaller than...
ioonct 43765 A nonempty open interval i...
xrgtnelicc 43766 A real number greater than...
iccdificc 43767 The difference of two clos...
iocnct 43768 A nonempty left-open, righ...
iccnct 43769 A closed interval, with mo...
iooiinicc 43770 A closed interval expresse...
iccgelbd 43771 An element of a closed int...
iooltubd 43772 An element of an open inte...
icoltubd 43773 An element of a left-close...
qelioo 43774 The rational numbers are d...
tgqioo2 43775 Every open set of reals is...
iccleubd 43776 An element of a closed int...
elioored 43777 A member of an open interv...
ioogtlbd 43778 An element of a closed int...
ioofun 43779 ` (,) ` is a function. (C...
icomnfinre 43780 A left-closed, right-open,...
sqrlearg 43781 The square compared with i...
ressiocsup 43782 If the supremum belongs to...
ressioosup 43783 If the supremum does not b...
iooiinioc 43784 A left-open, right-closed ...
ressiooinf 43785 If the infimum does not be...
icogelbd 43786 An element of a left-close...
iocleubd 43787 An element of a left-open ...
uzinico 43788 An upper interval of integ...
preimaiocmnf 43789 Preimage of a right-closed...
uzinico2 43790 An upper interval of integ...
uzinico3 43791 An upper interval of integ...
icossico2 43792 Condition for a closed-bel...
dmico 43793 The domain of the closed-b...
ndmico 43794 The closed-below, open-abo...
uzubioo 43795 The upper integers are unb...
uzubico 43796 The upper integers are unb...
uzubioo2 43797 The upper integers are unb...
uzubico2 43798 The upper integers are unb...
iocgtlbd 43799 An element of a left-open ...
xrtgioo2 43800 The topology on the extend...
tgioo4 43801 The standard topology on t...
fsummulc1f 43802 Closure of a finite sum of...
fsumnncl 43803 Closure of a nonempty, fin...
fsumge0cl 43804 The finite sum of nonnegat...
fsumf1of 43805 Re-index a finite sum usin...
fsumiunss 43806 Sum over a disjoint indexe...
fsumreclf 43807 Closure of a finite sum of...
fsumlessf 43808 A shorter sum of nonnegati...
fsumsupp0 43809 Finite sum of function val...
fsumsermpt 43810 A finite sum expressed in ...
fmul01 43811 Multiplying a finite numbe...
fmulcl 43812 If ' Y ' is closed under t...
fmuldfeqlem1 43813 induction step for the pro...
fmuldfeq 43814 X and Z are two equivalent...
fmul01lt1lem1 43815 Given a finite multiplicat...
fmul01lt1lem2 43816 Given a finite multiplicat...
fmul01lt1 43817 Given a finite multiplicat...
cncfmptss 43818 A continuous complex funct...
rrpsscn 43819 The positive reals are a s...
mulc1cncfg 43820 A version of ~ mulc1cncf u...
infrglb 43821 The infimum of a nonempty ...
expcnfg 43822 If ` F ` is a complex cont...
prodeq2ad 43823 Equality deduction for pro...
fprodsplit1 43824 Separate out a term in a f...
fprodexp 43825 Positive integer exponenti...
fprodabs2 43826 The absolute value of a fi...
fprod0 43827 A finite product with a ze...
mccllem 43828 * Induction step for ~ mcc...
mccl 43829 A multinomial coefficient,...
fprodcnlem 43830 A finite product of functi...
fprodcn 43831 A finite product of functi...
clim1fr1 43832 A class of sequences of fr...
isumneg 43833 Negation of a converging s...
climrec 43834 Limit of the reciprocal of...
climmulf 43835 A version of ~ climmul usi...
climexp 43836 The limit of natural power...
climinf 43837 A bounded monotonic noninc...
climsuselem1 43838 The subsequence index ` I ...
climsuse 43839 A subsequence ` G ` of a c...
climrecf 43840 A version of ~ climrec usi...
climneg 43841 Complex limit of the negat...
climinff 43842 A version of ~ climinf usi...
climdivf 43843 Limit of the ratio of two ...
climreeq 43844 If ` F ` is a real functio...
ellimciota 43845 An explicit value for the ...
climaddf 43846 A version of ~ climadd usi...
mullimc 43847 Limit of the product of tw...
ellimcabssub0 43848 An equivalent condition fo...
limcdm0 43849 If a function has empty do...
islptre 43850 An equivalence condition f...
limccog 43851 Limit of the composition o...
limciccioolb 43852 The limit of a function at...
climf 43853 Express the predicate: Th...
mullimcf 43854 Limit of the multiplicatio...
constlimc 43855 Limit of constant function...
rexlim2d 43856 Inference removing two res...
idlimc 43857 Limit of the identity func...
divcnvg 43858 The sequence of reciprocal...
limcperiod 43859 If ` F ` is a periodic fun...
limcrecl 43860 If ` F ` is a real-valued ...
sumnnodd 43861 A series indexed by ` NN `...
lptioo2 43862 The upper bound of an open...
lptioo1 43863 The lower bound of an open...
elprn1 43864 A member of an unordered p...
elprn2 43865 A member of an unordered p...
limcmptdm 43866 The domain of a maps-to fu...
clim2f 43867 Express the predicate: Th...
limcicciooub 43868 The limit of a function at...
ltmod 43869 A sufficient condition for...
islpcn 43870 A characterization for a l...
lptre2pt 43871 If a set in the real line ...
limsupre 43872 If a sequence is bounded, ...
limcresiooub 43873 The left limit doesn't cha...
limcresioolb 43874 The right limit doesn't ch...
limcleqr 43875 If the left and the right ...
lptioo2cn 43876 The upper bound of an open...
lptioo1cn 43877 The lower bound of an open...
neglimc 43878 Limit of the negative func...
addlimc 43879 Sum of two limits. (Contr...
0ellimcdiv 43880 If the numerator converges...
clim2cf 43881 Express the predicate ` F ...
limclner 43882 For a limit point, both fr...
sublimc 43883 Subtraction of two limits....
reclimc 43884 Limit of the reciprocal of...
clim0cf 43885 Express the predicate ` F ...
limclr 43886 For a limit point, both fr...
divlimc 43887 Limit of the quotient of t...
expfac 43888 Factorial grows faster tha...
climconstmpt 43889 A constant sequence conver...
climresmpt 43890 A function restricted to u...
climsubmpt 43891 Limit of the difference of...
climsubc2mpt 43892 Limit of the difference of...
climsubc1mpt 43893 Limit of the difference of...
fnlimfv 43894 The value of the limit fun...
climreclf 43895 The limit of a convergent ...
climeldmeq 43896 Two functions that are eve...
climf2 43897 Express the predicate: Th...
fnlimcnv 43898 The sequence of function v...
climeldmeqmpt 43899 Two functions that are eve...
climfveq 43900 Two functions that are eve...
clim2f2 43901 Express the predicate: Th...
climfveqmpt 43902 Two functions that are eve...
climd 43903 Express the predicate: Th...
clim2d 43904 The limit of complex numbe...
fnlimfvre 43905 The limit function of real...
allbutfifvre 43906 Given a sequence of real-v...
climleltrp 43907 The limit of complex numbe...
fnlimfvre2 43908 The limit function of real...
fnlimf 43909 The limit function of real...
fnlimabslt 43910 A sequence of function val...
climfveqf 43911 Two functions that are eve...
climmptf 43912 Exhibit a function ` G ` w...
climfveqmpt3 43913 Two functions that are eve...
climeldmeqf 43914 Two functions that are eve...
climreclmpt 43915 The limit of B convergent ...
limsupref 43916 If a sequence is bounded, ...
limsupbnd1f 43917 If a sequence is eventuall...
climbddf 43918 A converging sequence of c...
climeqf 43919 Two functions that are eve...
climeldmeqmpt3 43920 Two functions that are eve...
limsupcld 43921 Closure of the superior li...
climfv 43922 The limit of a convergent ...
limsupval3 43923 The superior limit of an i...
climfveqmpt2 43924 Two functions that are eve...
limsup0 43925 The superior limit of the ...
climeldmeqmpt2 43926 Two functions that are eve...
limsupresre 43927 The supremum limit of a fu...
climeqmpt 43928 Two functions that are eve...
climfvd 43929 The limit of a convergent ...
limsuplesup 43930 An upper bound for the sup...
limsupresico 43931 The superior limit doesn't...
limsuppnfdlem 43932 If the restriction of a fu...
limsuppnfd 43933 If the restriction of a fu...
limsupresuz 43934 If the real part of the do...
limsupub 43935 If the limsup is not ` +oo...
limsupres 43936 The superior limit of a re...
climinf2lem 43937 A convergent, nonincreasin...
climinf2 43938 A convergent, nonincreasin...
limsupvaluz 43939 The superior limit, when t...
limsupresuz2 43940 If the domain of a functio...
limsuppnflem 43941 If the restriction of a fu...
limsuppnf 43942 If the restriction of a fu...
limsupubuzlem 43943 If the limsup is not ` +oo...
limsupubuz 43944 For a real-valued function...
climinf2mpt 43945 A bounded below, monotonic...
climinfmpt 43946 A bounded below, monotonic...
climinf3 43947 A convergent, nonincreasin...
limsupvaluzmpt 43948 The superior limit, when t...
limsupequzmpt2 43949 Two functions that are eve...
limsupubuzmpt 43950 If the limsup is not ` +oo...
limsupmnflem 43951 The superior limit of a fu...
limsupmnf 43952 The superior limit of a fu...
limsupequzlem 43953 Two functions that are eve...
limsupequz 43954 Two functions that are eve...
limsupre2lem 43955 Given a function on the ex...
limsupre2 43956 Given a function on the ex...
limsupmnfuzlem 43957 The superior limit of a fu...
limsupmnfuz 43958 The superior limit of a fu...
limsupequzmptlem 43959 Two functions that are eve...
limsupequzmpt 43960 Two functions that are eve...
limsupre2mpt 43961 Given a function on the ex...
limsupequzmptf 43962 Two functions that are eve...
limsupre3lem 43963 Given a function on the ex...
limsupre3 43964 Given a function on the ex...
limsupre3mpt 43965 Given a function on the ex...
limsupre3uzlem 43966 Given a function on the ex...
limsupre3uz 43967 Given a function on the ex...
limsupreuz 43968 Given a function on the re...
limsupvaluz2 43969 The superior limit, when t...
limsupreuzmpt 43970 Given a function on the re...
supcnvlimsup 43971 If a function on a set of ...
supcnvlimsupmpt 43972 If a function on a set of ...
0cnv 43973 If ` (/) ` is a complex nu...
climuzlem 43974 Express the predicate: Th...
climuz 43975 Express the predicate: Th...
lmbr3v 43976 Express the binary relatio...
climisp 43977 If a sequence converges to...
lmbr3 43978 Express the binary relatio...
climrescn 43979 A sequence converging w.r....
climxrrelem 43980 If a sequence ranging over...
climxrre 43981 If a sequence ranging over...
limsuplt2 43984 The defining property of t...
liminfgord 43985 Ordering property of the i...
limsupvald 43986 The superior limit of a se...
limsupresicompt 43987 The superior limit doesn't...
limsupcli 43988 Closure of the superior li...
liminfgf 43989 Closure of the inferior li...
liminfval 43990 The inferior limit of a se...
climlimsup 43991 A sequence of real numbers...
limsupge 43992 The defining property of t...
liminfgval 43993 Value of the inferior limi...
liminfcl 43994 Closure of the inferior li...
liminfvald 43995 The inferior limit of a se...
liminfval5 43996 The inferior limit of an i...
limsupresxr 43997 The superior limit of a fu...
liminfresxr 43998 The inferior limit of a fu...
liminfval2 43999 The superior limit, relati...
climlimsupcex 44000 Counterexample for ~ climl...
liminfcld 44001 Closure of the inferior li...
liminfresico 44002 The inferior limit doesn't...
limsup10exlem 44003 The range of the given fun...
limsup10ex 44004 The superior limit of a fu...
liminf10ex 44005 The inferior limit of a fu...
liminflelimsuplem 44006 The superior limit is grea...
liminflelimsup 44007 The superior limit is grea...
limsupgtlem 44008 For any positive real, the...
limsupgt 44009 Given a sequence of real n...
liminfresre 44010 The inferior limit of a fu...
liminfresicompt 44011 The inferior limit doesn't...
liminfltlimsupex 44012 An example where the ` lim...
liminfgelimsup 44013 The inferior limit is grea...
liminfvalxr 44014 Alternate definition of ` ...
liminfresuz 44015 If the real part of the do...
liminflelimsupuz 44016 The superior limit is grea...
liminfvalxrmpt 44017 Alternate definition of ` ...
liminfresuz2 44018 If the domain of a functio...
liminfgelimsupuz 44019 The inferior limit is grea...
liminfval4 44020 Alternate definition of ` ...
liminfval3 44021 Alternate definition of ` ...
liminfequzmpt2 44022 Two functions that are eve...
liminfvaluz 44023 Alternate definition of ` ...
liminf0 44024 The inferior limit of the ...
limsupval4 44025 Alternate definition of ` ...
liminfvaluz2 44026 Alternate definition of ` ...
liminfvaluz3 44027 Alternate definition of ` ...
liminflelimsupcex 44028 A counterexample for ~ lim...
limsupvaluz3 44029 Alternate definition of ` ...
liminfvaluz4 44030 Alternate definition of ` ...
limsupvaluz4 44031 Alternate definition of ` ...
climliminflimsupd 44032 If a sequence of real numb...
liminfreuzlem 44033 Given a function on the re...
liminfreuz 44034 Given a function on the re...
liminfltlem 44035 Given a sequence of real n...
liminflt 44036 Given a sequence of real n...
climliminf 44037 A sequence of real numbers...
liminflimsupclim 44038 A sequence of real numbers...
climliminflimsup 44039 A sequence of real numbers...
climliminflimsup2 44040 A sequence of real numbers...
climliminflimsup3 44041 A sequence of real numbers...
climliminflimsup4 44042 A sequence of real numbers...
limsupub2 44043 A extended real valued fun...
limsupubuz2 44044 A sequence with values in ...
xlimpnfxnegmnf 44045 A sequence converges to ` ...
liminflbuz2 44046 A sequence with values in ...
liminfpnfuz 44047 The inferior limit of a fu...
liminflimsupxrre 44048 A sequence with values in ...
xlimrel 44051 The limit on extended real...
xlimres 44052 A function converges iff i...
xlimcl 44053 The limit of a sequence of...
rexlimddv2 44054 Restricted existential eli...
xlimclim 44055 Given a sequence of reals,...
xlimconst 44056 A constant sequence conver...
climxlim 44057 A converging sequence in t...
xlimbr 44058 Express the binary relatio...
fuzxrpmcn 44059 A function mapping from an...
cnrefiisplem 44060 Lemma for ~ cnrefiisp (som...
cnrefiisp 44061 A non-real, complex number...
xlimxrre 44062 If a sequence ranging over...
xlimmnfvlem1 44063 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 44064 Lemma for ~ xlimmnf : the ...
xlimmnfv 44065 A function converges to mi...
xlimconst2 44066 A sequence that eventually...
xlimpnfvlem1 44067 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 44068 Lemma for ~ xlimpnfv : the...
xlimpnfv 44069 A function converges to pl...
xlimclim2lem 44070 Lemma for ~ xlimclim2 . H...
xlimclim2 44071 Given a sequence of extend...
xlimmnf 44072 A function converges to mi...
xlimpnf 44073 A function converges to pl...
xlimmnfmpt 44074 A function converges to pl...
xlimpnfmpt 44075 A function converges to pl...
climxlim2lem 44076 In this lemma for ~ climxl...
climxlim2 44077 A sequence of extended rea...
dfxlim2v 44078 An alternative definition ...
dfxlim2 44079 An alternative definition ...
climresd 44080 A function restricted to u...
climresdm 44081 A real function converges ...
dmclimxlim 44082 A real valued sequence tha...
xlimmnflimsup2 44083 A sequence of extended rea...
xlimuni 44084 An infinite sequence conve...
xlimclimdm 44085 A sequence of extended rea...
xlimfun 44086 The convergence relation o...
xlimmnflimsup 44087 If a sequence of extended ...
xlimdm 44088 Two ways to express that a...
xlimpnfxnegmnf2 44089 A sequence converges to ` ...
xlimresdm 44090 A function converges in th...
xlimpnfliminf 44091 If a sequence of extended ...
xlimpnfliminf2 44092 A sequence of extended rea...
xlimliminflimsup 44093 A sequence of extended rea...
xlimlimsupleliminf 44094 A sequence of extended rea...
coseq0 44095 A complex number whose cos...
sinmulcos 44096 Multiplication formula for...
coskpi2 44097 The cosine of an integer m...
cosnegpi 44098 The cosine of negative ` _...
sinaover2ne0 44099 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 44100 The cosine of an integer m...
mulcncff 44101 The multiplication of two ...
cncfmptssg 44102 A continuous complex funct...
constcncfg 44103 A constant function is a c...
idcncfg 44104 The identity function is a...
cncfshift 44105 A periodic continuous func...
resincncf 44106 ` sin ` restricted to real...
addccncf2 44107 Adding a constant is a con...
0cnf 44108 The empty set is a continu...
fsumcncf 44109 The finite sum of continuo...
cncfperiod 44110 A periodic continuous func...
subcncff 44111 The subtraction of two con...
negcncfg 44112 The opposite of a continuo...
cnfdmsn 44113 A function with a singleto...
cncfcompt 44114 Composition of continuous ...
addcncff 44115 The sum of two continuous ...
ioccncflimc 44116 Limit at the upper bound o...
cncfuni 44117 A complex function on a su...
icccncfext 44118 A continuous function on a...
cncficcgt0 44119 A the absolute value of a ...
icocncflimc 44120 Limit at the lower bound, ...
cncfdmsn 44121 A complex function with a ...
divcncff 44122 The quotient of two contin...
cncfshiftioo 44123 A periodic continuous func...
cncfiooicclem1 44124 A continuous function ` F ...
cncfiooicc 44125 A continuous function ` F ...
cncfiooiccre 44126 A continuous function ` F ...
cncfioobdlem 44127 ` G ` actually extends ` F...
cncfioobd 44128 A continuous function ` F ...
jumpncnp 44129 Jump discontinuity or disc...
cxpcncf2 44130 The complex power function...
fprodcncf 44131 The finite product of cont...
add1cncf 44132 Addition to a constant is ...
add2cncf 44133 Addition to a constant is ...
sub1cncfd 44134 Subtracting a constant is ...
sub2cncfd 44135 Subtraction from a constan...
fprodsub2cncf 44136 ` F ` is continuous. (Con...
fprodadd2cncf 44137 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 44138 The sequence ` S ` of fini...
fprodsubrecnncnv 44139 The sequence ` S ` of fini...
fprodaddrecnncnvlem 44140 The sequence ` S ` of fini...
fprodaddrecnncnv 44141 The sequence ` S ` of fini...
dvsinexp 44142 The derivative of sin^N . ...
dvcosre 44143 The real derivative of the...
dvsinax 44144 Derivative exercise: the d...
dvsubf 44145 The subtraction rule for e...
dvmptconst 44146 Function-builder for deriv...
dvcnre 44147 From complex differentiati...
dvmptidg 44148 Function-builder for deriv...
dvresntr 44149 Function-builder for deriv...
fperdvper 44150 The derivative of a period...
dvasinbx 44151 Derivative exercise: the d...
dvresioo 44152 Restriction of a derivativ...
dvdivf 44153 The quotient rule for ever...
dvdivbd 44154 A sufficient condition for...
dvsubcncf 44155 A sufficient condition for...
dvmulcncf 44156 A sufficient condition for...
dvcosax 44157 Derivative exercise: the d...
dvdivcncf 44158 A sufficient condition for...
dvbdfbdioolem1 44159 Given a function with boun...
dvbdfbdioolem2 44160 A function on an open inte...
dvbdfbdioo 44161 A function on an open inte...
ioodvbdlimc1lem1 44162 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 44163 Limit at the lower bound o...
ioodvbdlimc1 44164 A real function with bound...
ioodvbdlimc2lem 44165 Limit at the upper bound o...
ioodvbdlimc2 44166 A real function with bound...
dvdmsscn 44167 ` X ` is a subset of ` CC ...
dvmptmulf 44168 Function-builder for deriv...
dvnmptdivc 44169 Function-builder for itera...
dvdsn1add 44170 If ` K ` divides ` N ` but...
dvxpaek 44171 Derivative of the polynomi...
dvnmptconst 44172 The ` N ` -th derivative o...
dvnxpaek 44173 The ` n ` -th derivative o...
dvnmul 44174 Function-builder for the `...
dvmptfprodlem 44175 Induction step for ~ dvmpt...
dvmptfprod 44176 Function-builder for deriv...
dvnprodlem1 44177 ` D ` is bijective. (Cont...
dvnprodlem2 44178 Induction step for ~ dvnpr...
dvnprodlem3 44179 The multinomial formula fo...
dvnprod 44180 The multinomial formula fo...
itgsin0pilem1 44181 Calculation of the integra...
ibliccsinexp 44182 sin^n on a closed interval...
itgsin0pi 44183 Calculation of the integra...
iblioosinexp 44184 sin^n on an open integral ...
itgsinexplem1 44185 Integration by parts is ap...
itgsinexp 44186 A recursive formula for th...
iblconstmpt 44187 A constant function is int...
itgeq1d 44188 Equality theorem for an in...
mbfres2cn 44189 Measurability of a piecewi...
vol0 44190 The measure of the empty s...
ditgeqiooicc 44191 A function ` F ` on an ope...
volge0 44192 The volume of a set is alw...
cnbdibl 44193 A continuous bounded funct...
snmbl 44194 A singleton is measurable....
ditgeq3d 44195 Equality theorem for the d...
iblempty 44196 The empty function is inte...
iblsplit 44197 The union of two integrabl...
volsn 44198 A singleton has 0 Lebesgue...
itgvol0 44199 If the domani is negligibl...
itgcoscmulx 44200 Exercise: the integral of ...
iblsplitf 44201 A version of ~ iblsplit us...
ibliooicc 44202 If a function is integrabl...
volioc 44203 The measure of a left-open...
iblspltprt 44204 If a function is integrabl...
itgsincmulx 44205 Exercise: the integral of ...
itgsubsticclem 44206 lemma for ~ itgsubsticc . ...
itgsubsticc 44207 Integration by u-substitut...
itgioocnicc 44208 The integral of a piecewis...
iblcncfioo 44209 A continuous function ` F ...
itgspltprt 44210 The ` S. ` integral splits...
itgiccshift 44211 The integral of a function...
itgperiod 44212 The integral of a periodic...
itgsbtaddcnst 44213 Integral substitution, add...
volico 44214 The measure of left-closed...
sublevolico 44215 The Lebesgue measure of a ...
dmvolss 44216 Lebesgue measurable sets a...
ismbl3 44217 The predicate " ` A ` is L...
volioof 44218 The function that assigns ...
ovolsplit 44219 The Lebesgue outer measure...
fvvolioof 44220 The function value of the ...
volioore 44221 The measure of an open int...
fvvolicof 44222 The function value of the ...
voliooico 44223 An open interval and a lef...
ismbl4 44224 The predicate " ` A ` is L...
volioofmpt 44225 ` ( ( vol o. (,) ) o. F ) ...
volicoff 44226 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 44227 The Lebesgue measure of op...
volicofmpt 44228 ` ( ( vol o. [,) ) o. F ) ...
volicc 44229 The Lebesgue measure of a ...
voliccico 44230 A closed interval and a le...
mbfdmssre 44231 The domain of a measurable...
stoweidlem1 44232 Lemma for ~ stoweid . Thi...
stoweidlem2 44233 lemma for ~ stoweid : here...
stoweidlem3 44234 Lemma for ~ stoweid : if `...
stoweidlem4 44235 Lemma for ~ stoweid : a cl...
stoweidlem5 44236 There exists a δ as ...
stoweidlem6 44237 Lemma for ~ stoweid : two ...
stoweidlem7 44238 This lemma is used to prov...
stoweidlem8 44239 Lemma for ~ stoweid : two ...
stoweidlem9 44240 Lemma for ~ stoweid : here...
stoweidlem10 44241 Lemma for ~ stoweid . Thi...
stoweidlem11 44242 This lemma is used to prov...
stoweidlem12 44243 Lemma for ~ stoweid . Thi...
stoweidlem13 44244 Lemma for ~ stoweid . Thi...
stoweidlem14 44245 There exists a ` k ` as in...
stoweidlem15 44246 This lemma is used to prov...
stoweidlem16 44247 Lemma for ~ stoweid . The...
stoweidlem17 44248 This lemma proves that the...
stoweidlem18 44249 This theorem proves Lemma ...
stoweidlem19 44250 If a set of real functions...
stoweidlem20 44251 If a set A of real functio...
stoweidlem21 44252 Once the Stone Weierstrass...
stoweidlem22 44253 If a set of real functions...
stoweidlem23 44254 This lemma is used to prov...
stoweidlem24 44255 This lemma proves that for...
stoweidlem25 44256 This lemma proves that for...
stoweidlem26 44257 This lemma is used to prov...
stoweidlem27 44258 This lemma is used to prov...
stoweidlem28 44259 There exists a δ as ...
stoweidlem29 44260 When the hypothesis for th...
stoweidlem30 44261 This lemma is used to prov...
stoweidlem31 44262 This lemma is used to prov...
stoweidlem32 44263 If a set A of real functio...
stoweidlem33 44264 If a set of real functions...
stoweidlem34 44265 This lemma proves that for...
stoweidlem35 44266 This lemma is used to prov...
stoweidlem36 44267 This lemma is used to prov...
stoweidlem37 44268 This lemma is used to prov...
stoweidlem38 44269 This lemma is used to prov...
stoweidlem39 44270 This lemma is used to prov...
stoweidlem40 44271 This lemma proves that q_n...
stoweidlem41 44272 This lemma is used to prov...
stoweidlem42 44273 This lemma is used to prov...
stoweidlem43 44274 This lemma is used to prov...
stoweidlem44 44275 This lemma is used to prov...
stoweidlem45 44276 This lemma proves that, gi...
stoweidlem46 44277 This lemma proves that set...
stoweidlem47 44278 Subtracting a constant fro...
stoweidlem48 44279 This lemma is used to prov...
stoweidlem49 44280 There exists a function q_...
stoweidlem50 44281 This lemma proves that set...
stoweidlem51 44282 There exists a function x ...
stoweidlem52 44283 There exists a neighborhoo...
stoweidlem53 44284 This lemma is used to prov...
stoweidlem54 44285 There exists a function ` ...
stoweidlem55 44286 This lemma proves the exis...
stoweidlem56 44287 This theorem proves Lemma ...
stoweidlem57 44288 There exists a function x ...
stoweidlem58 44289 This theorem proves Lemma ...
stoweidlem59 44290 This lemma proves that the...
stoweidlem60 44291 This lemma proves that the...
stoweidlem61 44292 This lemma proves that the...
stoweidlem62 44293 This theorem proves the St...
stoweid 44294 This theorem proves the St...
stowei 44295 This theorem proves the St...
wallispilem1 44296 ` I ` is monotone: increas...
wallispilem2 44297 A first set of properties ...
wallispilem3 44298 I maps to real values. (C...
wallispilem4 44299 ` F ` maps to explicit exp...
wallispilem5 44300 The sequence ` H ` converg...
wallispi 44301 Wallis' formula for π :...
wallispi2lem1 44302 An intermediate step betwe...
wallispi2lem2 44303 Two expressions are proven...
wallispi2 44304 An alternative version of ...
stirlinglem1 44305 A simple limit of fraction...
stirlinglem2 44306 ` A ` maps to positive rea...
stirlinglem3 44307 Long but simple algebraic ...
stirlinglem4 44308 Algebraic manipulation of ...
stirlinglem5 44309 If ` T ` is between ` 0 ` ...
stirlinglem6 44310 A series that converges to...
stirlinglem7 44311 Algebraic manipulation of ...
stirlinglem8 44312 If ` A ` converges to ` C ...
stirlinglem9 44313 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 44314 A bound for any B(N)-B(N +...
stirlinglem11 44315 ` B ` is decreasing. (Con...
stirlinglem12 44316 The sequence ` B ` is boun...
stirlinglem13 44317 ` B ` is decreasing and ha...
stirlinglem14 44318 The sequence ` A ` converg...
stirlinglem15 44319 The Stirling's formula is ...
stirling 44320 Stirling's approximation f...
stirlingr 44321 Stirling's approximation f...
dirkerval 44322 The N_th Dirichlet Kernel....
dirker2re 44323 The Dirichlet Kernel value...
dirkerdenne0 44324 The Dirichlet Kernel denom...
dirkerval2 44325 The N_th Dirichlet Kernel ...
dirkerre 44326 The Dirichlet Kernel at an...
dirkerper 44327 the Dirichlet Kernel has p...
dirkerf 44328 For any natural number ` N...
dirkertrigeqlem1 44329 Sum of an even number of a...
dirkertrigeqlem2 44330 Trigonomic equality lemma ...
dirkertrigeqlem3 44331 Trigonometric equality lem...
dirkertrigeq 44332 Trigonometric equality for...
dirkeritg 44333 The definite integral of t...
dirkercncflem1 44334 If ` Y ` is a multiple of ...
dirkercncflem2 44335 Lemma used to prove that t...
dirkercncflem3 44336 The Dirichlet Kernel is co...
dirkercncflem4 44337 The Dirichlet Kernel is co...
dirkercncf 44338 For any natural number ` N...
fourierdlem1 44339 A partition interval is a ...
fourierdlem2 44340 Membership in a partition....
fourierdlem3 44341 Membership in a partition....
fourierdlem4 44342 ` E ` is a function that m...
fourierdlem5 44343 ` S ` is a function. (Con...
fourierdlem6 44344 ` X ` is in the periodic p...
fourierdlem7 44345 The difference between the...
fourierdlem8 44346 A partition interval is a ...
fourierdlem9 44347 ` H ` is a complex functio...
fourierdlem10 44348 Condition on the bounds of...
fourierdlem11 44349 If there is a partition, t...
fourierdlem12 44350 A point of a partition is ...
fourierdlem13 44351 Value of ` V ` in terms of...
fourierdlem14 44352 Given the partition ` V ` ...
fourierdlem15 44353 The range of the partition...
fourierdlem16 44354 The coefficients of the fo...
fourierdlem17 44355 The defined ` L ` is actua...
fourierdlem18 44356 The function ` S ` is cont...
fourierdlem19 44357 If two elements of ` D ` h...
fourierdlem20 44358 Every interval in the part...
fourierdlem21 44359 The coefficients of the fo...
fourierdlem22 44360 The coefficients of the fo...
fourierdlem23 44361 If ` F ` is continuous and...
fourierdlem24 44362 A sufficient condition for...
fourierdlem25 44363 If ` C ` is not in the ran...
fourierdlem26 44364 Periodic image of a point ...
fourierdlem27 44365 A partition open interval ...
fourierdlem28 44366 Derivative of ` ( F `` ( X...
fourierdlem29 44367 Explicit function value fo...
fourierdlem30 44368 Sum of three small pieces ...
fourierdlem31 44369 If ` A ` is finite and for...
fourierdlem32 44370 Limit of a continuous func...
fourierdlem33 44371 Limit of a continuous func...
fourierdlem34 44372 A partition is one to one....
fourierdlem35 44373 There is a single point in...
fourierdlem36 44374 ` F ` is an isomorphism. ...
fourierdlem37 44375 ` I ` is a function that m...
fourierdlem38 44376 The function ` F ` is cont...
fourierdlem39 44377 Integration by parts of ...
fourierdlem40 44378 ` H ` is a continuous func...
fourierdlem41 44379 Lemma used to prove that e...
fourierdlem42 44380 The set of points in a mov...
fourierdlem43 44381 ` K ` is a real function. ...
fourierdlem44 44382 A condition for having ` (...
fourierdlem46 44383 The function ` F ` has a l...
fourierdlem47 44384 For ` r ` large enough, th...
fourierdlem48 44385 The given periodic functio...
fourierdlem49 44386 The given periodic functio...
fourierdlem50 44387 Continuity of ` O ` and it...
fourierdlem51 44388 ` X ` is in the periodic p...
fourierdlem52 44389 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 44390 The limit of ` F ( s ) ` a...
fourierdlem54 44391 Given a partition ` Q ` an...
fourierdlem55 44392 ` U ` is a real function. ...
fourierdlem56 44393 Derivative of the ` K ` fu...
fourierdlem57 44394 The derivative of ` O ` . ...
fourierdlem58 44395 The derivative of ` K ` is...
fourierdlem59 44396 The derivative of ` H ` is...
fourierdlem60 44397 Given a differentiable fun...
fourierdlem61 44398 Given a differentiable fun...
fourierdlem62 44399 The function ` K ` is cont...
fourierdlem63 44400 The upper bound of interva...
fourierdlem64 44401 The partition ` V ` is fin...
fourierdlem65 44402 The distance of two adjace...
fourierdlem66 44403 Value of the ` G ` functio...
fourierdlem67 44404 ` G ` is a function. (Con...
fourierdlem68 44405 The derivative of ` O ` is...
fourierdlem69 44406 A piecewise continuous fun...
fourierdlem70 44407 A piecewise continuous fun...
fourierdlem71 44408 A periodic piecewise conti...
fourierdlem72 44409 The derivative of ` O ` is...
fourierdlem73 44410 A version of the Riemann L...
fourierdlem74 44411 Given a piecewise smooth f...
fourierdlem75 44412 Given a piecewise smooth f...
fourierdlem76 44413 Continuity of ` O ` and it...
fourierdlem77 44414 If ` H ` is bounded, then ...
fourierdlem78 44415 ` G ` is continuous when r...
fourierdlem79 44416 ` E ` projects every inter...
fourierdlem80 44417 The derivative of ` O ` is...
fourierdlem81 44418 The integral of a piecewis...
fourierdlem82 44419 Integral by substitution, ...
fourierdlem83 44420 The fourier partial sum fo...
fourierdlem84 44421 If ` F ` is piecewise coni...
fourierdlem85 44422 Limit of the function ` G ...
fourierdlem86 44423 Continuity of ` O ` and it...
fourierdlem87 44424 The integral of ` G ` goes...
fourierdlem88 44425 Given a piecewise continuo...
fourierdlem89 44426 Given a piecewise continuo...
fourierdlem90 44427 Given a piecewise continuo...
fourierdlem91 44428 Given a piecewise continuo...
fourierdlem92 44429 The integral of a piecewis...
fourierdlem93 44430 Integral by substitution (...
fourierdlem94 44431 For a piecewise smooth fun...
fourierdlem95 44432 Algebraic manipulation of ...
fourierdlem96 44433 limit for ` F ` at the low...
fourierdlem97 44434 ` F ` is continuous on the...
fourierdlem98 44435 ` F ` is continuous on the...
fourierdlem99 44436 limit for ` F ` at the upp...
fourierdlem100 44437 A piecewise continuous fun...
fourierdlem101 44438 Integral by substitution f...
fourierdlem102 44439 For a piecewise smooth fun...
fourierdlem103 44440 The half lower part of the...
fourierdlem104 44441 The half upper part of the...
fourierdlem105 44442 A piecewise continuous fun...
fourierdlem106 44443 For a piecewise smooth fun...
fourierdlem107 44444 The integral of a piecewis...
fourierdlem108 44445 The integral of a piecewis...
fourierdlem109 44446 The integral of a piecewis...
fourierdlem110 44447 The integral of a piecewis...
fourierdlem111 44448 The fourier partial sum fo...
fourierdlem112 44449 Here abbreviations (local ...
fourierdlem113 44450 Fourier series convergence...
fourierdlem114 44451 Fourier series convergence...
fourierdlem115 44452 Fourier serier convergence...
fourierd 44453 Fourier series convergence...
fourierclimd 44454 Fourier series convergence...
fourierclim 44455 Fourier series convergence...
fourier 44456 Fourier series convergence...
fouriercnp 44457 If ` F ` is continuous at ...
fourier2 44458 Fourier series convergence...
sqwvfoura 44459 Fourier coefficients for t...
sqwvfourb 44460 Fourier series ` B ` coeff...
fourierswlem 44461 The Fourier series for the...
fouriersw 44462 Fourier series convergence...
fouriercn 44463 If the derivative of ` F `...
elaa2lem 44464 Elementhood in the set of ...
elaa2 44465 Elementhood in the set of ...
etransclem1 44466 ` H ` is a function. (Con...
etransclem2 44467 Derivative of ` G ` . (Co...
etransclem3 44468 The given ` if ` term is a...
etransclem4 44469 ` F ` expressed as a finit...
etransclem5 44470 A change of bound variable...
etransclem6 44471 A change of bound variable...
etransclem7 44472 The given product is an in...
etransclem8 44473 ` F ` is a function. (Con...
etransclem9 44474 If ` K ` divides ` N ` but...
etransclem10 44475 The given ` if ` term is a...
etransclem11 44476 A change of bound variable...
etransclem12 44477 ` C ` applied to ` N ` . ...
etransclem13 44478 ` F ` applied to ` Y ` . ...
etransclem14 44479 Value of the term ` T ` , ...
etransclem15 44480 Value of the term ` T ` , ...
etransclem16 44481 Every element in the range...
etransclem17 44482 The ` N ` -th derivative o...
etransclem18 44483 The given function is inte...
etransclem19 44484 The ` N ` -th derivative o...
etransclem20 44485 ` H ` is smooth. (Contrib...
etransclem21 44486 The ` N ` -th derivative o...
etransclem22 44487 The ` N ` -th derivative o...
etransclem23 44488 This is the claim proof in...
etransclem24 44489 ` P ` divides the I -th de...
etransclem25 44490 ` P ` factorial divides th...
etransclem26 44491 Every term in the sum of t...
etransclem27 44492 The ` N ` -th derivative o...
etransclem28 44493 ` ( P - 1 ) ` factorial di...
etransclem29 44494 The ` N ` -th derivative o...
etransclem30 44495 The ` N ` -th derivative o...
etransclem31 44496 The ` N ` -th derivative o...
etransclem32 44497 This is the proof for the ...
etransclem33 44498 ` F ` is smooth. (Contrib...
etransclem34 44499 The ` N ` -th derivative o...
etransclem35 44500 ` P ` does not divide the ...
etransclem36 44501 The ` N ` -th derivative o...
etransclem37 44502 ` ( P - 1 ) ` factorial di...
etransclem38 44503 ` P ` divides the I -th de...
etransclem39 44504 ` G ` is a function. (Con...
etransclem40 44505 The ` N ` -th derivative o...
etransclem41 44506 ` P ` does not divide the ...
etransclem42 44507 The ` N ` -th derivative o...
etransclem43 44508 ` G ` is a continuous func...
etransclem44 44509 The given finite sum is no...
etransclem45 44510 ` K ` is an integer. (Con...
etransclem46 44511 This is the proof for equa...
etransclem47 44512 ` _e ` is transcendental. ...
etransclem48 44513 ` _e ` is transcendental. ...
etransc 44514 ` _e ` is transcendental. ...
rrxtopn 44515 The topology of the genera...
rrxngp 44516 Generalized Euclidean real...
rrxtps 44517 Generalized Euclidean real...
rrxtopnfi 44518 The topology of the n-dime...
rrxtopon 44519 The topology on generalize...
rrxtop 44520 The topology on generalize...
rrndistlt 44521 Given two points in the sp...
rrxtoponfi 44522 The topology on n-dimensio...
rrxunitopnfi 44523 The base set of the standa...
rrxtopn0 44524 The topology of the zero-d...
qndenserrnbllem 44525 n-dimensional rational num...
qndenserrnbl 44526 n-dimensional rational num...
rrxtopn0b 44527 The topology of the zero-d...
qndenserrnopnlem 44528 n-dimensional rational num...
qndenserrnopn 44529 n-dimensional rational num...
qndenserrn 44530 n-dimensional rational num...
rrxsnicc 44531 A multidimensional singlet...
rrnprjdstle 44532 The distance between two p...
rrndsmet 44533 ` D ` is a metric for the ...
rrndsxmet 44534 ` D ` is an extended metri...
ioorrnopnlem 44535 The a point in an indexed ...
ioorrnopn 44536 The indexed product of ope...
ioorrnopnxrlem 44537 Given a point ` F ` that b...
ioorrnopnxr 44538 The indexed product of ope...
issal 44545 Express the predicate " ` ...
pwsal 44546 The power set of a given s...
salunicl 44547 SAlg sigma-algebra is clos...
saluncl 44548 The union of two sets in a...
prsal 44549 The pair of the empty set ...
saldifcl 44550 The complement of an eleme...
0sal 44551 The empty set belongs to e...
salgenval 44552 The sigma-algebra generate...
saliunclf 44553 SAlg sigma-algebra is clos...
saliuncl 44554 SAlg sigma-algebra is clos...
salincl 44555 The intersection of two se...
saluni 44556 A set is an element of any...
saliinclf 44557 SAlg sigma-algebra is clos...
saliincl 44558 SAlg sigma-algebra is clos...
saldifcl2 44559 The difference of two elem...
intsaluni 44560 The union of an arbitrary ...
intsal 44561 The arbitrary intersection...
salgenn0 44562 The set used in the defini...
salgencl 44563 ` SalGen ` actually genera...
issald 44564 Sufficient condition to pr...
salexct 44565 An example of nontrivial s...
sssalgen 44566 A set is a subset of the s...
salgenss 44567 The sigma-algebra generate...
salgenuni 44568 The base set of the sigma-...
issalgend 44569 One side of ~ dfsalgen2 . ...
salexct2 44570 An example of a subset tha...
unisalgen 44571 The union of a set belongs...
dfsalgen2 44572 Alternate characterization...
salexct3 44573 An example of a sigma-alge...
salgencntex 44574 This counterexample shows ...
salgensscntex 44575 This counterexample shows ...
issalnnd 44576 Sufficient condition to pr...
dmvolsal 44577 Lebesgue measurable sets f...
saldifcld 44578 The complement of an eleme...
saluncld 44579 The union of two sets in a...
salgencld 44580 ` SalGen ` actually genera...
0sald 44581 The empty set belongs to e...
iooborel 44582 An open interval is a Bore...
salincld 44583 The intersection of two se...
salunid 44584 A set is an element of any...
unisalgen2 44585 The union of a set belongs...
bor1sal 44586 The Borel sigma-algebra on...
iocborel 44587 A left-open, right-closed ...
subsaliuncllem 44588 A subspace sigma-algebra i...
subsaliuncl 44589 A subspace sigma-algebra i...
subsalsal 44590 A subspace sigma-algebra i...
subsaluni 44591 A set belongs to the subsp...
salrestss 44592 A sigma-algebra restricted...
sge0rnre 44595 When ` sum^ ` is applied t...
fge0icoicc 44596 If ` F ` maps to nonnegati...
sge0val 44597 The value of the sum of no...
fge0npnf 44598 If ` F ` maps to nonnegati...
sge0rnn0 44599 The range used in the defi...
sge0vald 44600 The value of the sum of no...
fge0iccico 44601 A range of nonnegative ext...
gsumge0cl 44602 Closure of group sum, for ...
sge0reval 44603 Value of the sum of nonneg...
sge0pnfval 44604 If a term in the sum of no...
fge0iccre 44605 A range of nonnegative ext...
sge0z 44606 Any nonnegative extended s...
sge00 44607 The sum of nonnegative ext...
fsumlesge0 44608 Every finite subsum of non...
sge0revalmpt 44609 Value of the sum of nonneg...
sge0sn 44610 A sum of a nonnegative ext...
sge0tsms 44611 ` sum^ ` applied to a nonn...
sge0cl 44612 The arbitrary sum of nonne...
sge0f1o 44613 Re-index a nonnegative ext...
sge0snmpt 44614 A sum of a nonnegative ext...
sge0ge0 44615 The sum of nonnegative ext...
sge0xrcl 44616 The arbitrary sum of nonne...
sge0repnf 44617 The of nonnegative extende...
sge0fsum 44618 The arbitrary sum of a fin...
sge0rern 44619 If the sum of nonnegative ...
sge0supre 44620 If the arbitrary sum of no...
sge0fsummpt 44621 The arbitrary sum of a fin...
sge0sup 44622 The arbitrary sum of nonne...
sge0less 44623 A shorter sum of nonnegati...
sge0rnbnd 44624 The range used in the defi...
sge0pr 44625 Sum of a pair of nonnegati...
sge0gerp 44626 The arbitrary sum of nonne...
sge0pnffigt 44627 If the sum of nonnegative ...
sge0ssre 44628 If a sum of nonnegative ex...
sge0lefi 44629 A sum of nonnegative exten...
sge0lessmpt 44630 A shorter sum of nonnegati...
sge0ltfirp 44631 If the sum of nonnegative ...
sge0prle 44632 The sum of a pair of nonne...
sge0gerpmpt 44633 The arbitrary sum of nonne...
sge0resrnlem 44634 The sum of nonnegative ext...
sge0resrn 44635 The sum of nonnegative ext...
sge0ssrempt 44636 If a sum of nonnegative ex...
sge0resplit 44637 ` sum^ ` splits into two p...
sge0le 44638 If all of the terms of sum...
sge0ltfirpmpt 44639 If the extended sum of non...
sge0split 44640 Split a sum of nonnegative...
sge0lempt 44641 If all of the terms of sum...
sge0splitmpt 44642 Split a sum of nonnegative...
sge0ss 44643 Change the index set to a ...
sge0iunmptlemfi 44644 Sum of nonnegative extende...
sge0p1 44645 The addition of the next t...
sge0iunmptlemre 44646 Sum of nonnegative extende...
sge0fodjrnlem 44647 Re-index a nonnegative ext...
sge0fodjrn 44648 Re-index a nonnegative ext...
sge0iunmpt 44649 Sum of nonnegative extende...
sge0iun 44650 Sum of nonnegative extende...
sge0nemnf 44651 The generalized sum of non...
sge0rpcpnf 44652 The sum of an infinite num...
sge0rernmpt 44653 If the sum of nonnegative ...
sge0lefimpt 44654 A sum of nonnegative exten...
nn0ssge0 44655 Nonnegative integers are n...
sge0clmpt 44656 The generalized sum of non...
sge0ltfirpmpt2 44657 If the extended sum of non...
sge0isum 44658 If a series of nonnegative...
sge0xrclmpt 44659 The generalized sum of non...
sge0xp 44660 Combine two generalized su...
sge0isummpt 44661 If a series of nonnegative...
sge0ad2en 44662 The value of the infinite ...
sge0isummpt2 44663 If a series of nonnegative...
sge0xaddlem1 44664 The extended addition of t...
sge0xaddlem2 44665 The extended addition of t...
sge0xadd 44666 The extended addition of t...
sge0fsummptf 44667 The generalized sum of a f...
sge0snmptf 44668 A sum of a nonnegative ext...
sge0ge0mpt 44669 The sum of nonnegative ext...
sge0repnfmpt 44670 The of nonnegative extende...
sge0pnffigtmpt 44671 If the generalized sum of ...
sge0splitsn 44672 Separate out a term in a g...
sge0pnffsumgt 44673 If the sum of nonnegative ...
sge0gtfsumgt 44674 If the generalized sum of ...
sge0uzfsumgt 44675 If a real number is smalle...
sge0pnfmpt 44676 If a term in the sum of no...
sge0seq 44677 A series of nonnegative re...
sge0reuz 44678 Value of the generalized s...
sge0reuzb 44679 Value of the generalized s...
ismea 44682 Express the predicate " ` ...
dmmeasal 44683 The domain of a measure is...
meaf 44684 A measure is a function th...
mea0 44685 The measure of the empty s...
nnfoctbdjlem 44686 There exists a mapping fro...
nnfoctbdj 44687 There exists a mapping fro...
meadjuni 44688 The measure of the disjoin...
meacl 44689 The measure of a set is a ...
iundjiunlem 44690 The sets in the sequence `...
iundjiun 44691 Given a sequence ` E ` of ...
meaxrcl 44692 The measure of a set is an...
meadjun 44693 The measure of the union o...
meassle 44694 The measure of a set is gr...
meaunle 44695 The measure of the union o...
meadjiunlem 44696 The sum of nonnegative ext...
meadjiun 44697 The measure of the disjoin...
ismeannd 44698 Sufficient condition to pr...
meaiunlelem 44699 The measure of the union o...
meaiunle 44700 The measure of the union o...
psmeasurelem 44701 ` M ` applied to a disjoin...
psmeasure 44702 Point supported measure, R...
voliunsge0lem 44703 The Lebesgue measure funct...
voliunsge0 44704 The Lebesgue measure funct...
volmea 44705 The Lebeasgue measure on t...
meage0 44706 If the measure of a measur...
meadjunre 44707 The measure of the union o...
meassre 44708 If the measure of a measur...
meale0eq0 44709 A measure that is less tha...
meadif 44710 The measure of the differe...
meaiuninclem 44711 Measures are continuous fr...
meaiuninc 44712 Measures are continuous fr...
meaiuninc2 44713 Measures are continuous fr...
meaiunincf 44714 Measures are continuous fr...
meaiuninc3v 44715 Measures are continuous fr...
meaiuninc3 44716 Measures are continuous fr...
meaiininclem 44717 Measures are continuous fr...
meaiininc 44718 Measures are continuous fr...
meaiininc2 44719 Measures are continuous fr...
caragenval 44724 The sigma-algebra generate...
isome 44725 Express the predicate " ` ...
caragenel 44726 Membership in the Caratheo...
omef 44727 An outer measure is a func...
ome0 44728 The outer measure of the e...
omessle 44729 The outer measure of a set...
omedm 44730 The domain of an outer mea...
caragensplit 44731 If ` E ` is in the set gen...
caragenelss 44732 An element of the Caratheo...
carageneld 44733 Membership in the Caratheo...
omecl 44734 The outer measure of a set...
caragenss 44735 The sigma-algebra generate...
omeunile 44736 The outer measure of the u...
caragen0 44737 The empty set belongs to a...
omexrcl 44738 The outer measure of a set...
caragenunidm 44739 The base set of an outer m...
caragensspw 44740 The sigma-algebra generate...
omessre 44741 If the outer measure of a ...
caragenuni 44742 The base set of the sigma-...
caragenuncllem 44743 The Caratheodory's constru...
caragenuncl 44744 The Caratheodory's constru...
caragendifcl 44745 The Caratheodory's constru...
caragenfiiuncl 44746 The Caratheodory's constru...
omeunle 44747 The outer measure of the u...
omeiunle 44748 The outer measure of the i...
omelesplit 44749 The outer measure of a set...
omeiunltfirp 44750 If the outer measure of a ...
omeiunlempt 44751 The outer measure of the i...
carageniuncllem1 44752 The outer measure of ` A i...
carageniuncllem2 44753 The Caratheodory's constru...
carageniuncl 44754 The Caratheodory's constru...
caragenunicl 44755 The Caratheodory's constru...
caragensal 44756 Caratheodory's method gene...
caratheodorylem1 44757 Lemma used to prove that C...
caratheodorylem2 44758 Caratheodory's constructio...
caratheodory 44759 Caratheodory's constructio...
0ome 44760 The map that assigns 0 to ...
isomenndlem 44761 ` O ` is sub-additive w.r....
isomennd 44762 Sufficient condition to pr...
caragenel2d 44763 Membership in the Caratheo...
omege0 44764 If the outer measure of a ...
omess0 44765 If the outer measure of a ...
caragencmpl 44766 A measure built with the C...
vonval 44771 Value of the Lebesgue meas...
ovnval 44772 Value of the Lebesgue oute...
elhoi 44773 Membership in a multidimen...
icoresmbl 44774 A closed-below, open-above...
hoissre 44775 The projection of a half-o...
ovnval2 44776 Value of the Lebesgue oute...
volicorecl 44777 The Lebesgue measure of a ...
hoiprodcl 44778 The pre-measure of half-op...
hoicvr 44779 ` I ` is a countable set o...
hoissrrn 44780 A half-open interval is a ...
ovn0val 44781 The Lebesgue outer measure...
ovnn0val 44782 The value of a (multidimen...
ovnval2b 44783 Value of the Lebesgue oute...
volicorescl 44784 The Lebesgue measure of a ...
ovnprodcl 44785 The product used in the de...
hoiprodcl2 44786 The pre-measure of half-op...
hoicvrrex 44787 Any subset of the multidim...
ovnsupge0 44788 The set used in the defini...
ovnlecvr 44789 Given a subset of multidim...
ovnpnfelsup 44790 ` +oo ` is an element of t...
ovnsslelem 44791 The (multidimensional, non...
ovnssle 44792 The (multidimensional) Leb...
ovnlerp 44793 The Lebesgue outer measure...
ovnf 44794 The Lebesgue outer measure...
ovncvrrp 44795 The Lebesgue outer measure...
ovn0lem 44796 For any finite dimension, ...
ovn0 44797 For any finite dimension, ...
ovncl 44798 The Lebesgue outer measure...
ovn02 44799 For the zero-dimensional s...
ovnxrcl 44800 The Lebesgue outer measure...
ovnsubaddlem1 44801 The Lebesgue outer measure...
ovnsubaddlem2 44802 ` ( voln* `` X ) ` is suba...
ovnsubadd 44803 ` ( voln* `` X ) ` is suba...
ovnome 44804 ` ( voln* `` X ) ` is an o...
vonmea 44805 ` ( voln `` X ) ` is a mea...
volicon0 44806 The measure of a nonempty ...
hsphoif 44807 ` H ` is a function (that ...
hoidmvval 44808 The dimensional volume of ...
hoissrrn2 44809 A half-open interval is a ...
hsphoival 44810 ` H ` is a function (that ...
hoiprodcl3 44811 The pre-measure of half-op...
volicore 44812 The Lebesgue measure of a ...
hoidmvcl 44813 The dimensional volume of ...
hoidmv0val 44814 The dimensional volume of ...
hoidmvn0val 44815 The dimensional volume of ...
hsphoidmvle2 44816 The dimensional volume of ...
hsphoidmvle 44817 The dimensional volume of ...
hoidmvval0 44818 The dimensional volume of ...
hoiprodp1 44819 The dimensional volume of ...
sge0hsphoire 44820 If the generalized sum of ...
hoidmvval0b 44821 The dimensional volume of ...
hoidmv1lelem1 44822 The supremum of ` U ` belo...
hoidmv1lelem2 44823 This is the contradiction ...
hoidmv1lelem3 44824 The dimensional volume of ...
hoidmv1le 44825 The dimensional volume of ...
hoidmvlelem1 44826 The supremum of ` U ` belo...
hoidmvlelem2 44827 This is the contradiction ...
hoidmvlelem3 44828 This is the contradiction ...
hoidmvlelem4 44829 The dimensional volume of ...
hoidmvlelem5 44830 The dimensional volume of ...
hoidmvle 44831 The dimensional volume of ...
ovnhoilem1 44832 The Lebesgue outer measure...
ovnhoilem2 44833 The Lebesgue outer measure...
ovnhoi 44834 The Lebesgue outer measure...
dmovn 44835 The domain of the Lebesgue...
hoicoto2 44836 The half-open interval exp...
dmvon 44837 Lebesgue measurable n-dime...
hoi2toco 44838 The half-open interval exp...
hoidifhspval 44839 ` D ` is a function that r...
hspval 44840 The value of the half-spac...
ovnlecvr2 44841 Given a subset of multidim...
ovncvr2 44842 ` B ` and ` T ` are the le...
dmovnsal 44843 The domain of the Lebesgue...
unidmovn 44844 Base set of the n-dimensio...
rrnmbl 44845 The set of n-dimensional R...
hoidifhspval2 44846 ` D ` is a function that r...
hspdifhsp 44847 A n-dimensional half-open ...
unidmvon 44848 Base set of the n-dimensio...
hoidifhspf 44849 ` D ` is a function that r...
hoidifhspval3 44850 ` D ` is a function that r...
hoidifhspdmvle 44851 The dimensional volume of ...
voncmpl 44852 The Lebesgue measure is co...
hoiqssbllem1 44853 The center of the n-dimens...
hoiqssbllem2 44854 The center of the n-dimens...
hoiqssbllem3 44855 A n-dimensional ball conta...
hoiqssbl 44856 A n-dimensional ball conta...
hspmbllem1 44857 Any half-space of the n-di...
hspmbllem2 44858 Any half-space of the n-di...
hspmbllem3 44859 Any half-space of the n-di...
hspmbl 44860 Any half-space of the n-di...
hoimbllem 44861 Any n-dimensional half-ope...
hoimbl 44862 Any n-dimensional half-ope...
opnvonmbllem1 44863 The half-open interval exp...
opnvonmbllem2 44864 An open subset of the n-di...
opnvonmbl 44865 An open subset of the n-di...
opnssborel 44866 Open sets of a generalized...
borelmbl 44867 All Borel subsets of the n...
volicorege0 44868 The Lebesgue measure of a ...
isvonmbl 44869 The predicate " ` A ` is m...
mblvon 44870 The n-dimensional Lebesgue...
vonmblss 44871 n-dimensional Lebesgue mea...
volico2 44872 The measure of left-closed...
vonmblss2 44873 n-dimensional Lebesgue mea...
ovolval2lem 44874 The value of the Lebesgue ...
ovolval2 44875 The value of the Lebesgue ...
ovnsubadd2lem 44876 ` ( voln* `` X ) ` is suba...
ovnsubadd2 44877 ` ( voln* `` X ) ` is suba...
ovolval3 44878 The value of the Lebesgue ...
ovnsplit 44879 The n-dimensional Lebesgue...
ovolval4lem1 44880 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 44881 The value of the Lebesgue ...
ovolval4 44882 The value of the Lebesgue ...
ovolval5lem1 44883 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 44884 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 44885 The value of the Lebesgue ...
ovolval5 44886 The value of the Lebesgue ...
ovnovollem1 44887 if ` F ` is a cover of ` B...
ovnovollem2 44888 if ` I ` is a cover of ` (...
ovnovollem3 44889 The 1-dimensional Lebesgue...
ovnovol 44890 The 1-dimensional Lebesgue...
vonvolmbllem 44891 If a subset ` B ` of real ...
vonvolmbl 44892 A subset of Real numbers i...
vonvol 44893 The 1-dimensional Lebesgue...
vonvolmbl2 44894 A subset ` X ` of the spac...
vonvol2 44895 The 1-dimensional Lebesgue...
hoimbl2 44896 Any n-dimensional half-ope...
voncl 44897 The Lebesgue measure of a ...
vonhoi 44898 The Lebesgue outer measure...
vonxrcl 44899 The Lebesgue measure of a ...
ioosshoi 44900 A n-dimensional open inter...
vonn0hoi 44901 The Lebesgue outer measure...
von0val 44902 The Lebesgue measure (for ...
vonhoire 44903 The Lebesgue measure of a ...
iinhoiicclem 44904 A n-dimensional closed int...
iinhoiicc 44905 A n-dimensional closed int...
iunhoiioolem 44906 A n-dimensional open inter...
iunhoiioo 44907 A n-dimensional open inter...
ioovonmbl 44908 Any n-dimensional open int...
iccvonmbllem 44909 Any n-dimensional closed i...
iccvonmbl 44910 Any n-dimensional closed i...
vonioolem1 44911 The sequence of the measur...
vonioolem2 44912 The n-dimensional Lebesgue...
vonioo 44913 The n-dimensional Lebesgue...
vonicclem1 44914 The sequence of the measur...
vonicclem2 44915 The n-dimensional Lebesgue...
vonicc 44916 The n-dimensional Lebesgue...
snvonmbl 44917 A n-dimensional singleton ...
vonn0ioo 44918 The n-dimensional Lebesgue...
vonn0icc 44919 The n-dimensional Lebesgue...
ctvonmbl 44920 Any n-dimensional countabl...
vonn0ioo2 44921 The n-dimensional Lebesgue...
vonsn 44922 The n-dimensional Lebesgue...
vonn0icc2 44923 The n-dimensional Lebesgue...
vonct 44924 The n-dimensional Lebesgue...
vitali2 44925 There are non-measurable s...
pimltmnf2f 44928 Given a real-valued functi...
pimltmnf2 44929 Given a real-valued functi...
preimagelt 44930 The preimage of a right-op...
preimalegt 44931 The preimage of a left-ope...
pimconstlt0 44932 Given a constant function,...
pimconstlt1 44933 Given a constant function,...
pimltpnff 44934 Given a real-valued functi...
pimltpnf 44935 Given a real-valued functi...
pimgtpnf2f 44936 Given a real-valued functi...
pimgtpnf2 44937 Given a real-valued functi...
salpreimagelt 44938 If all the preimages of le...
pimrecltpos 44939 The preimage of an unbound...
salpreimalegt 44940 If all the preimages of ri...
pimiooltgt 44941 The preimage of an open in...
preimaicomnf 44942 Preimage of an open interv...
pimltpnf2f 44943 Given a real-valued functi...
pimltpnf2 44944 Given a real-valued functi...
pimgtmnf2 44945 Given a real-valued functi...
pimdecfgtioc 44946 Given a nonincreasing func...
pimincfltioc 44947 Given a nondecreasing func...
pimdecfgtioo 44948 Given a nondecreasing func...
pimincfltioo 44949 Given a nondecreasing func...
preimaioomnf 44950 Preimage of an open interv...
preimageiingt 44951 A preimage of a left-close...
preimaleiinlt 44952 A preimage of a left-open,...
pimgtmnff 44953 Given a real-valued functi...
pimgtmnf 44954 Given a real-valued functi...
pimrecltneg 44955 The preimage of an unbound...
salpreimagtge 44956 If all the preimages of le...
salpreimaltle 44957 If all the preimages of ri...
issmflem 44958 The predicate " ` F ` is a...
issmf 44959 The predicate " ` F ` is a...
salpreimalelt 44960 If all the preimages of ri...
salpreimagtlt 44961 If all the preimages of le...
smfpreimalt 44962 Given a function measurabl...
smff 44963 A function measurable w.r....
smfdmss 44964 The domain of a function m...
issmff 44965 The predicate " ` F ` is a...
issmfd 44966 A sufficient condition for...
smfpreimaltf 44967 Given a function measurabl...
issmfdf 44968 A sufficient condition for...
sssmf 44969 The restriction of a sigma...
mbfresmf 44970 A real-valued measurable f...
cnfsmf 44971 A continuous function is m...
incsmflem 44972 A nondecreasing function i...
incsmf 44973 A real-valued, nondecreasi...
smfsssmf 44974 If a function is measurabl...
issmflelem 44975 The predicate " ` F ` is a...
issmfle 44976 The predicate " ` F ` is a...
smfpimltmpt 44977 Given a function measurabl...
smfpimltxr 44978 Given a function measurabl...
issmfdmpt 44979 A sufficient condition for...
smfconst 44980 Given a sigma-algebra over...
sssmfmpt 44981 The restriction of a sigma...
cnfrrnsmf 44982 A function, continuous fro...
smfid 44983 The identity function is B...
bormflebmf 44984 A Borel measurable functio...
smfpreimale 44985 Given a function measurabl...
issmfgtlem 44986 The predicate " ` F ` is a...
issmfgt 44987 The predicate " ` F ` is a...
issmfled 44988 A sufficient condition for...
smfpimltxrmptf 44989 Given a function measurabl...
smfpimltxrmpt 44990 Given a function measurabl...
smfmbfcex 44991 A constant function, with ...
issmfgtd 44992 A sufficient condition for...
smfpreimagt 44993 Given a function measurabl...
smfaddlem1 44994 Given the sum of two funct...
smfaddlem2 44995 The sum of two sigma-measu...
smfadd 44996 The sum of two sigma-measu...
decsmflem 44997 A nonincreasing function i...
decsmf 44998 A real-valued, nonincreasi...
smfpreimagtf 44999 Given a function measurabl...
issmfgelem 45000 The predicate " ` F ` is a...
issmfge 45001 The predicate " ` F ` is a...
smflimlem1 45002 Lemma for the proof that t...
smflimlem2 45003 Lemma for the proof that t...
smflimlem3 45004 The limit of sigma-measura...
smflimlem4 45005 Lemma for the proof that t...
smflimlem5 45006 Lemma for the proof that t...
smflimlem6 45007 Lemma for the proof that t...
smflim 45008 The limit of sigma-measura...
nsssmfmbflem 45009 The sigma-measurable funct...
nsssmfmbf 45010 The sigma-measurable funct...
smfpimgtxr 45011 Given a function measurabl...
smfpimgtmpt 45012 Given a function measurabl...
smfpreimage 45013 Given a function measurabl...
mbfpsssmf 45014 Real-valued measurable fun...
smfpimgtxrmptf 45015 Given a function measurabl...
smfpimgtxrmpt 45016 Given a function measurabl...
smfpimioompt 45017 Given a function measurabl...
smfpimioo 45018 Given a function measurabl...
smfresal 45019 Given a sigma-measurable f...
smfrec 45020 The reciprocal of a sigma-...
smfres 45021 The restriction of sigma-m...
smfmullem1 45022 The multiplication of two ...
smfmullem2 45023 The multiplication of two ...
smfmullem3 45024 The multiplication of two ...
smfmullem4 45025 The multiplication of two ...
smfmul 45026 The multiplication of two ...
smfmulc1 45027 A sigma-measurable functio...
smfdiv 45028 The fraction of two sigma-...
smfpimbor1lem1 45029 Every open set belongs to ...
smfpimbor1lem2 45030 Given a sigma-measurable f...
smfpimbor1 45031 Given a sigma-measurable f...
smf2id 45032 Twice the identity functio...
smfco 45033 The composition of a Borel...
smfneg 45034 The negative of a sigma-me...
smffmptf 45035 A function measurable w.r....
smffmpt 45036 A function measurable w.r....
smflim2 45037 The limit of a sequence of...
smfpimcclem 45038 Lemma for ~ smfpimcc given...
smfpimcc 45039 Given a countable set of s...
issmfle2d 45040 A sufficient condition for...
smflimmpt 45041 The limit of a sequence of...
smfsuplem1 45042 The supremum of a countabl...
smfsuplem2 45043 The supremum of a countabl...
smfsuplem3 45044 The supremum of a countabl...
smfsup 45045 The supremum of a countabl...
smfsupmpt 45046 The supremum of a countabl...
smfsupxr 45047 The supremum of a countabl...
smfinflem 45048 The infimum of a countable...
smfinf 45049 The infimum of a countable...
smfinfmpt 45050 The infimum of a countable...
smflimsuplem1 45051 If ` H ` converges, the ` ...
smflimsuplem2 45052 The superior limit of a se...
smflimsuplem3 45053 The limit of the ` ( H `` ...
smflimsuplem4 45054 If ` H ` converges, the ` ...
smflimsuplem5 45055 ` H ` converges to the sup...
smflimsuplem6 45056 The superior limit of a se...
smflimsuplem7 45057 The superior limit of a se...
smflimsuplem8 45058 The superior limit of a se...
smflimsup 45059 The superior limit of a se...
smflimsupmpt 45060 The superior limit of a se...
smfliminflem 45061 The inferior limit of a co...
smfliminf 45062 The inferior limit of a co...
smfliminfmpt 45063 The inferior limit of a co...
adddmmbl 45064 If two functions have doma...
adddmmbl2 45065 If two functions have doma...
muldmmbl 45066 If two functions have doma...
muldmmbl2 45067 If two functions have doma...
smfdmmblpimne 45068 If a measurable function w...
smfdivdmmbl 45069 If a functions and a sigma...
smfpimne 45070 Given a function measurabl...
smfpimne2 45071 Given a function measurabl...
smfdivdmmbl2 45072 If a functions and a sigma...
fsupdm 45073 The domain of the sup func...
fsupdm2 45074 The domain of the sup func...
smfsupdmmbllem 45075 If a countable set of sigm...
smfsupdmmbl 45076 If a countable set of sigm...
finfdm 45077 The domain of the inf func...
finfdm2 45078 The domain of the inf func...
smfinfdmmbllem 45079 If a countable set of sigm...
smfinfdmmbl 45080 If a countable set of sigm...
sigarval 45081 Define the signed area by ...
sigarim 45082 Signed area takes value in...
sigarac 45083 Signed area is anticommuta...
sigaraf 45084 Signed area is additive by...
sigarmf 45085 Signed area is additive (w...
sigaras 45086 Signed area is additive by...
sigarms 45087 Signed area is additive (w...
sigarls 45088 Signed area is linear by t...
sigarid 45089 Signed area of a flat para...
sigarexp 45090 Expand the signed area for...
sigarperm 45091 Signed area ` ( A - C ) G ...
sigardiv 45092 If signed area between vec...
sigarimcd 45093 Signed area takes value in...
sigariz 45094 If signed area is zero, th...
sigarcol 45095 Given three points ` A ` ,...
sharhght 45096 Let ` A B C ` be a triangl...
sigaradd 45097 Subtracting (double) area ...
cevathlem1 45098 Ceva's theorem first lemma...
cevathlem2 45099 Ceva's theorem second lemm...
cevath 45100 Ceva's theorem. Let ` A B...
simpcntrab 45101 The center of a simple gro...
et-ltneverrefl 45102 Less-than class is never r...
et-equeucl 45103 Alternative proof that equ...
et-sqrtnegnre 45104 The square root of a negat...
natlocalincr 45105 Global monotonicity on hal...
natglobalincr 45106 Local monotonicity on half...
upwordnul 45109 Empty set is an increasing...
upwordisword 45110 Any increasing sequence is...
singoutnword 45111 Singleton with character o...
singoutnupword 45112 Singleton with character o...
upwordsing 45113 Singleton is an increasing...
upwordsseti 45114 Strictly increasing sequen...
tworepnotupword 45115 Concatenation of identical...
upwrdfi 45116 There is a finite number o...
hirstL-ax3 45117 The third axiom of a syste...
ax3h 45118 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 45119 A closed form showing (a i...
aibandbiaiaiffb 45120 A closed form showing (a i...
notatnand 45121 Do not use. Use intnanr i...
aistia 45122 Given a is equivalent to `...
aisfina 45123 Given a is equivalent to `...
bothtbothsame 45124 Given both a, b are equiva...
bothfbothsame 45125 Given both a, b are equiva...
aiffbbtat 45126 Given a is equivalent to b...
aisbbisfaisf 45127 Given a is equivalent to b...
axorbtnotaiffb 45128 Given a is exclusive to b,...
aiffnbandciffatnotciffb 45129 Given a is equivalent to (...
axorbciffatcxorb 45130 Given a is equivalent to (...
aibnbna 45131 Given a implies b, (not b)...
aibnbaif 45132 Given a implies b, not b, ...
aiffbtbat 45133 Given a is equivalent to b...
astbstanbst 45134 Given a is equivalent to T...
aistbistaandb 45135 Given a is equivalent to T...
aisbnaxb 45136 Given a is equivalent to b...
atbiffatnnb 45137 If a implies b, then a imp...
bisaiaisb 45138 Application of bicom1 with...
atbiffatnnbalt 45139 If a implies b, then a imp...
abnotbtaxb 45140 Assuming a, not b, there e...
abnotataxb 45141 Assuming not a, b, there e...
conimpf 45142 Assuming a, not b, and a i...
conimpfalt 45143 Assuming a, not b, and a i...
aistbisfiaxb 45144 Given a is equivalent to T...
aisfbistiaxb 45145 Given a is equivalent to F...
aifftbifffaibif 45146 Given a is equivalent to T...
aifftbifffaibifff 45147 Given a is equivalent to T...
atnaiana 45148 Given a, it is not the cas...
ainaiaandna 45149 Given a, a implies it is n...
abcdta 45150 Given (((a and b) and c) a...
abcdtb 45151 Given (((a and b) and c) a...
abcdtc 45152 Given (((a and b) and c) a...
abcdtd 45153 Given (((a and b) and c) a...
abciffcbatnabciffncba 45154 Operands in a biconditiona...
abciffcbatnabciffncbai 45155 Operands in a biconditiona...
nabctnabc 45156 not ( a -> ( b /\ c ) ) we...
jabtaib 45157 For when pm3.4 lacks a pm3...
onenotinotbothi 45158 From one negated implicati...
twonotinotbothi 45159 From these two negated imp...
clifte 45160 show d is the same as an i...
cliftet 45161 show d is the same as an i...
clifteta 45162 show d is the same as an i...
cliftetb 45163 show d is the same as an i...
confun 45164 Given the hypotheses there...
confun2 45165 Confun simplified to two p...
confun3 45166 Confun's more complex form...
confun4 45167 An attempt at derivative. ...
confun5 45168 An attempt at derivative. ...
plcofph 45169 Given, a,b and a "definiti...
pldofph 45170 Given, a,b c, d, "definiti...
plvcofph 45171 Given, a,b,d, and "definit...
plvcofphax 45172 Given, a,b,d, and "definit...
plvofpos 45173 rh is derivable because ON...
mdandyv0 45174 Given the equivalences set...
mdandyv1 45175 Given the equivalences set...
mdandyv2 45176 Given the equivalences set...
mdandyv3 45177 Given the equivalences set...
mdandyv4 45178 Given the equivalences set...
mdandyv5 45179 Given the equivalences set...
mdandyv6 45180 Given the equivalences set...
mdandyv7 45181 Given the equivalences set...
mdandyv8 45182 Given the equivalences set...
mdandyv9 45183 Given the equivalences set...
mdandyv10 45184 Given the equivalences set...
mdandyv11 45185 Given the equivalences set...
mdandyv12 45186 Given the equivalences set...
mdandyv13 45187 Given the equivalences set...
mdandyv14 45188 Given the equivalences set...
mdandyv15 45189 Given the equivalences set...
mdandyvr0 45190 Given the equivalences set...
mdandyvr1 45191 Given the equivalences set...
mdandyvr2 45192 Given the equivalences set...
mdandyvr3 45193 Given the equivalences set...
mdandyvr4 45194 Given the equivalences set...
mdandyvr5 45195 Given the equivalences set...
mdandyvr6 45196 Given the equivalences set...
mdandyvr7 45197 Given the equivalences set...
mdandyvr8 45198 Given the equivalences set...
mdandyvr9 45199 Given the equivalences set...
mdandyvr10 45200 Given the equivalences set...
mdandyvr11 45201 Given the equivalences set...
mdandyvr12 45202 Given the equivalences set...
mdandyvr13 45203 Given the equivalences set...
mdandyvr14 45204 Given the equivalences set...
mdandyvr15 45205 Given the equivalences set...
mdandyvrx0 45206 Given the exclusivities se...
mdandyvrx1 45207 Given the exclusivities se...
mdandyvrx2 45208 Given the exclusivities se...
mdandyvrx3 45209 Given the exclusivities se...
mdandyvrx4 45210 Given the exclusivities se...
mdandyvrx5 45211 Given the exclusivities se...
mdandyvrx6 45212 Given the exclusivities se...
mdandyvrx7 45213 Given the exclusivities se...
mdandyvrx8 45214 Given the exclusivities se...
mdandyvrx9 45215 Given the exclusivities se...
mdandyvrx10 45216 Given the exclusivities se...
mdandyvrx11 45217 Given the exclusivities se...
mdandyvrx12 45218 Given the exclusivities se...
mdandyvrx13 45219 Given the exclusivities se...
mdandyvrx14 45220 Given the exclusivities se...
mdandyvrx15 45221 Given the exclusivities se...
H15NH16TH15IH16 45222 Given 15 hypotheses and a ...
dandysum2p2e4 45223 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 45224 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 45225 Replacement of a nested an...
adh-minim 45226 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 45227 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 45228 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 45229 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 45230 Fourth lemma for the deriv...
adh-minim-ax1 45231 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 45232 Fifth lemma for the deriva...
adh-minim-ax2-lem6 45233 Sixth lemma for the deriva...
adh-minim-ax2c 45234 Derivation of a commuted f...
adh-minim-ax2 45235 Derivation of ~ ax-2 from ...
adh-minim-idALT 45236 Derivation of ~ id (reflex...
adh-minim-pm2.43 45237 Derivation of ~ pm2.43 Whi...
adh-minimp 45238 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 45239 First lemma for the deriva...
adh-minimp-jarr-lem2 45240 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 45241 Third lemma for the deriva...
adh-minimp-sylsimp 45242 Derivation of ~ jarr (also...
adh-minimp-ax1 45243 Derivation of ~ ax-1 from ...
adh-minimp-imim1 45244 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 45245 Derivation of a commuted f...
adh-minimp-ax2-lem4 45246 Fourth lemma for the deriv...
adh-minimp-ax2 45247 Derivation of ~ ax-2 from ...
adh-minimp-idALT 45248 Derivation of ~ id (reflex...
adh-minimp-pm2.43 45249 Derivation of ~ pm2.43 Whi...
eusnsn 45250 There is a unique element ...
absnsb 45251 If the class abstraction `...
euabsneu 45252 Another way to express exi...
elprneb 45253 An element of a proper uno...
oppr 45254 Equality for ordered pairs...
opprb 45255 Equality for unordered pai...
or2expropbilem1 45256 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 45257 Lemma 2 for ~ or2expropbi ...
or2expropbi 45258 If two classes are strictl...
eubrv 45259 If there is a unique set w...
eubrdm 45260 If there is a unique set w...
eldmressn 45261 Element of the domain of a...
iota0def 45262 Example for a defined iota...
iota0ndef 45263 Example for an undefined i...
fveqvfvv 45264 If a function's value at a...
fnresfnco 45265 Composition of two functio...
funcoressn 45266 A composition restricted t...
funressnfv 45267 A restriction to a singlet...
funressndmfvrn 45268 The value of a function ` ...
funressnvmo 45269 A function restricted to a...
funressnmo 45270 A function restricted to a...
funressneu 45271 There is exactly one value...
fresfo 45272 Conditions for a restricti...
fsetsniunop 45273 The class of all functions...
fsetabsnop 45274 The class of all functions...
fsetsnf 45275 The mapping of an element ...
fsetsnf1 45276 The mapping of an element ...
fsetsnfo 45277 The mapping of an element ...
fsetsnf1o 45278 The mapping of an element ...
fsetsnprcnex 45279 The class of all functions...
cfsetssfset 45280 The class of constant func...
cfsetsnfsetfv 45281 The function value of the ...
cfsetsnfsetf 45282 The mapping of the class o...
cfsetsnfsetf1 45283 The mapping of the class o...
cfsetsnfsetfo 45284 The mapping of the class o...
cfsetsnfsetf1o 45285 The mapping of the class o...
fsetprcnexALT 45286 First version of proof for...
fcoreslem1 45287 Lemma 1 for ~ fcores . (C...
fcoreslem2 45288 Lemma 2 for ~ fcores . (C...
fcoreslem3 45289 Lemma 3 for ~ fcores . (C...
fcoreslem4 45290 Lemma 4 for ~ fcores . (C...
fcores 45291 Every composite function `...
fcoresf1lem 45292 Lemma for ~ fcoresf1 . (C...
fcoresf1 45293 If a composition is inject...
fcoresf1b 45294 A composition is injective...
fcoresfo 45295 If a composition is surjec...
fcoresfob 45296 A composition is surjectiv...
fcoresf1ob 45297 A composition is bijective...
f1cof1blem 45298 Lemma for ~ f1cof1b and ~ ...
f1cof1b 45299 If the range of ` F ` equa...
funfocofob 45300 If the domain of a functio...
fnfocofob 45301 If the domain of a functio...
focofob 45302 If the domain of a functio...
f1ocof1ob 45303 If the range of ` F ` equa...
f1ocof1ob2 45304 If the range of ` F ` equa...
aiotajust 45306 Soundness justification th...
dfaiota2 45308 Alternate definition of th...
reuabaiotaiota 45309 The iota and the alternate...
reuaiotaiota 45310 The iota and the alternate...
aiotaexb 45311 The alternate iota over a ...
aiotavb 45312 The alternate iota over a ...
aiotaint 45313 This is to ~ df-aiota what...
dfaiota3 45314 Alternate definition of ` ...
iotan0aiotaex 45315 If the iota over a wff ` p...
aiotaexaiotaiota 45316 The alternate iota over a ...
aiotaval 45317 Theorem 8.19 in [Quine] p....
aiota0def 45318 Example for a defined alte...
aiota0ndef 45319 Example for an undefined a...
r19.32 45320 Theorem 19.32 of [Margaris...
rexsb 45321 An equivalent expression f...
rexrsb 45322 An equivalent expression f...
2rexsb 45323 An equivalent expression f...
2rexrsb 45324 An equivalent expression f...
cbvral2 45325 Change bound variables of ...
cbvrex2 45326 Change bound variables of ...
ralndv1 45327 Example for a theorem abou...
ralndv2 45328 Second example for a theor...
reuf1odnf 45329 There is exactly one eleme...
reuf1od 45330 There is exactly one eleme...
euoreqb 45331 There is a set which is eq...
2reu3 45332 Double restricted existent...
2reu7 45333 Two equivalent expressions...
2reu8 45334 Two equivalent expressions...
2reu8i 45335 Implication of a double re...
2reuimp0 45336 Implication of a double re...
2reuimp 45337 Implication of a double re...
ralbinrald 45344 Elemination of a restricte...
nvelim 45345 If a class is the universa...
alneu 45346 If a statement holds for a...
eu2ndop1stv 45347 If there is a unique secon...
dfateq12d 45348 Equality deduction for "de...
nfdfat 45349 Bound-variable hypothesis ...
dfdfat2 45350 Alternate definition of th...
fundmdfat 45351 A function is defined at a...
dfatprc 45352 A function is not defined ...
dfatelrn 45353 The value of a function ` ...
dfafv2 45354 Alternative definition of ...
afveq12d 45355 Equality deduction for fun...
afveq1 45356 Equality theorem for funct...
afveq2 45357 Equality theorem for funct...
nfafv 45358 Bound-variable hypothesis ...
csbafv12g 45359 Move class substitution in...
afvfundmfveq 45360 If a class is a function r...
afvnfundmuv 45361 If a set is not in the dom...
ndmafv 45362 The value of a class outsi...
afvvdm 45363 If the function value of a...
nfunsnafv 45364 If the restriction of a cl...
afvvfunressn 45365 If the function value of a...
afvprc 45366 A function's value at a pr...
afvvv 45367 If a function's value at a...
afvpcfv0 45368 If the value of the altern...
afvnufveq 45369 The value of the alternati...
afvvfveq 45370 The value of the alternati...
afv0fv0 45371 If the value of the altern...
afvfvn0fveq 45372 If the function's value at...
afv0nbfvbi 45373 The function's value at an...
afvfv0bi 45374 The function's value at an...
afveu 45375 The value of a function at...
fnbrafvb 45376 Equivalence of function va...
fnopafvb 45377 Equivalence of function va...
funbrafvb 45378 Equivalence of function va...
funopafvb 45379 Equivalence of function va...
funbrafv 45380 The second argument of a b...
funbrafv2b 45381 Function value in terms of...
dfafn5a 45382 Representation of a functi...
dfafn5b 45383 Representation of a functi...
fnrnafv 45384 The range of a function ex...
afvelrnb 45385 A member of a function's r...
afvelrnb0 45386 A member of a function's r...
dfaimafn 45387 Alternate definition of th...
dfaimafn2 45388 Alternate definition of th...
afvelima 45389 Function value in an image...
afvelrn 45390 A function's value belongs...
fnafvelrn 45391 A function's value belongs...
fafvelcdm 45392 A function's value belongs...
ffnafv 45393 A function maps to a class...
afvres 45394 The value of a restricted ...
tz6.12-afv 45395 Function value. Theorem 6...
tz6.12-1-afv 45396 Function value (Theorem 6....
dmfcoafv 45397 Domains of a function comp...
afvco2 45398 Value of a function compos...
rlimdmafv 45399 Two ways to express that a...
aoveq123d 45400 Equality deduction for ope...
nfaov 45401 Bound-variable hypothesis ...
csbaovg 45402 Move class substitution in...
aovfundmoveq 45403 If a class is a function r...
aovnfundmuv 45404 If an ordered pair is not ...
ndmaov 45405 The value of an operation ...
ndmaovg 45406 The value of an operation ...
aovvdm 45407 If the operation value of ...
nfunsnaov 45408 If the restriction of a cl...
aovvfunressn 45409 If the operation value of ...
aovprc 45410 The value of an operation ...
aovrcl 45411 Reverse closure for an ope...
aovpcov0 45412 If the alternative value o...
aovnuoveq 45413 The alternative value of t...
aovvoveq 45414 The alternative value of t...
aov0ov0 45415 If the alternative value o...
aovovn0oveq 45416 If the operation's value a...
aov0nbovbi 45417 The operation's value on a...
aovov0bi 45418 The operation's value on a...
rspceaov 45419 A frequently used special ...
fnotaovb 45420 Equivalence of operation v...
ffnaov 45421 An operation maps to a cla...
faovcl 45422 Closure law for an operati...
aovmpt4g 45423 Value of a function given ...
aoprssdm 45424 Domain of closure of an op...
ndmaovcl 45425 The "closure" of an operat...
ndmaovrcl 45426 Reverse closure law, in co...
ndmaovcom 45427 Any operation is commutati...
ndmaovass 45428 Any operation is associati...
ndmaovdistr 45429 Any operation is distribut...
dfatafv2iota 45432 If a function is defined a...
ndfatafv2 45433 The alternate function val...
ndfatafv2undef 45434 The alternate function val...
dfatafv2ex 45435 The alternate function val...
afv2ex 45436 The alternate function val...
afv2eq12d 45437 Equality deduction for fun...
afv2eq1 45438 Equality theorem for funct...
afv2eq2 45439 Equality theorem for funct...
nfafv2 45440 Bound-variable hypothesis ...
csbafv212g 45441 Move class substitution in...
fexafv2ex 45442 The alternate function val...
ndfatafv2nrn 45443 The alternate function val...
ndmafv2nrn 45444 The value of a class outsi...
funressndmafv2rn 45445 The alternate function val...
afv2ndefb 45446 Two ways to say that an al...
nfunsnafv2 45447 If the restriction of a cl...
afv2prc 45448 A function's value at a pr...
dfatafv2rnb 45449 The alternate function val...
afv2orxorb 45450 If a set is in the range o...
dmafv2rnb 45451 The alternate function val...
fundmafv2rnb 45452 The alternate function val...
afv2elrn 45453 An alternate function valu...
afv20defat 45454 If the alternate function ...
fnafv2elrn 45455 An alternate function valu...
fafv2elcdm 45456 An alternate function valu...
fafv2elrnb 45457 An alternate function valu...
fcdmvafv2v 45458 If the codomain of a funct...
tz6.12-2-afv2 45459 Function value when ` F ` ...
afv2eu 45460 The value of a function at...
afv2res 45461 The value of a restricted ...
tz6.12-afv2 45462 Function value (Theorem 6....
tz6.12-1-afv2 45463 Function value (Theorem 6....
tz6.12c-afv2 45464 Corollary of Theorem 6.12(...
tz6.12i-afv2 45465 Corollary of Theorem 6.12(...
funressnbrafv2 45466 The second argument of a b...
dfatbrafv2b 45467 Equivalence of function va...
dfatopafv2b 45468 Equivalence of function va...
funbrafv2 45469 The second argument of a b...
fnbrafv2b 45470 Equivalence of function va...
fnopafv2b 45471 Equivalence of function va...
funbrafv22b 45472 Equivalence of function va...
funopafv2b 45473 Equivalence of function va...
dfatsnafv2 45474 Singleton of function valu...
dfafv23 45475 A definition of function v...
dfatdmfcoafv2 45476 Domain of a function compo...
dfatcolem 45477 Lemma for ~ dfatco . (Con...
dfatco 45478 The predicate "defined at"...
afv2co2 45479 Value of a function compos...
rlimdmafv2 45480 Two ways to express that a...
dfafv22 45481 Alternate definition of ` ...
afv2ndeffv0 45482 If the alternate function ...
dfatafv2eqfv 45483 If a function is defined a...
afv2rnfveq 45484 If the alternate function ...
afv20fv0 45485 If the alternate function ...
afv2fvn0fveq 45486 If the function's value at...
afv2fv0 45487 If the function's value at...
afv2fv0b 45488 The function's value at an...
afv2fv0xorb 45489 If a set is in the range o...
an4com24 45490 Rearrangement of 4 conjunc...
3an4ancom24 45491 Commutative law for a conj...
4an21 45492 Rearrangement of 4 conjunc...
dfnelbr2 45495 Alternate definition of th...
nelbr 45496 The binary relation of a s...
nelbrim 45497 If a set is related to ano...
nelbrnel 45498 A set is related to anothe...
nelbrnelim 45499 If a set is related to ano...
ralralimp 45500 Selecting one of two alter...
otiunsndisjX 45501 The union of singletons co...
fvifeq 45502 Equality of function value...
rnfdmpr 45503 The range of a one-to-one ...
imarnf1pr 45504 The image of the range of ...
funop1 45505 A function is an ordered p...
fun2dmnopgexmpl 45506 A function with a domain c...
opabresex0d 45507 A collection of ordered pa...
opabbrfex0d 45508 A collection of ordered pa...
opabresexd 45509 A collection of ordered pa...
opabbrfexd 45510 A collection of ordered pa...
f1oresf1orab 45511 Build a bijection by restr...
f1oresf1o 45512 Build a bijection by restr...
f1oresf1o2 45513 Build a bijection by restr...
fvmptrab 45514 Value of a function mappin...
fvmptrabdm 45515 Value of a function mappin...
cnambpcma 45516 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 45517 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 45518 The sum of two complex num...
leaddsuble 45519 Addition and subtraction o...
2leaddle2 45520 If two real numbers are le...
ltnltne 45521 Variant of trichotomy law ...
p1lep2 45522 A real number increasd by ...
ltsubsubaddltsub 45523 If the result of subtracti...
zm1nn 45524 An integer minus 1 is posi...
readdcnnred 45525 The sum of a real number a...
resubcnnred 45526 The difference of a real n...
recnmulnred 45527 The product of a real numb...
cndivrenred 45528 The quotient of an imagina...
sqrtnegnre 45529 The square root of a negat...
nn0resubcl 45530 Closure law for subtractio...
zgeltp1eq 45531 If an integer is between a...
1t10e1p1e11 45532 11 is 1 times 10 to the po...
deccarry 45533 Add 1 to a 2 digit number ...
eluzge0nn0 45534 If an integer is greater t...
nltle2tri 45535 Negated extended trichotom...
ssfz12 45536 Subset relationship for fi...
elfz2z 45537 Membership of an integer i...
2elfz3nn0 45538 If there are two elements ...
fz0addcom 45539 The addition of two member...
2elfz2melfz 45540 If the sum of two integers...
fz0addge0 45541 The sum of two integers in...
elfzlble 45542 Membership of an integer i...
elfzelfzlble 45543 Membership of an element o...
fzopred 45544 Join a predecessor to the ...
fzopredsuc 45545 Join a predecessor and a s...
1fzopredsuc 45546 Join 0 and a successor to ...
el1fzopredsuc 45547 An element of an open inte...
subsubelfzo0 45548 Subtracting a difference f...
fzoopth 45549 A half-open integer range ...
2ffzoeq 45550 Two functions over a half-...
m1mod0mod1 45551 An integer decreased by 1 ...
elmod2 45552 An integer modulo 2 is eit...
smonoord 45553 Ordering relation for a st...
fsummsndifre 45554 A finite sum with one of i...
fsumsplitsndif 45555 Separate out a term in a f...
fsummmodsndifre 45556 A finite sum of summands m...
fsummmodsnunz 45557 A finite sum of summands m...
setsidel 45558 The injected slot is an el...
setsnidel 45559 The injected slot is an el...
setsv 45560 The value of the structure...
preimafvsnel 45561 The preimage of a function...
preimafvn0 45562 The preimage of a function...
uniimafveqt 45563 The union of the image of ...
uniimaprimaeqfv 45564 The union of the image of ...
setpreimafvex 45565 The class ` P ` of all pre...
elsetpreimafvb 45566 The characterization of an...
elsetpreimafv 45567 An element of the class ` ...
elsetpreimafvssdm 45568 An element of the class ` ...
fvelsetpreimafv 45569 There is an element in a p...
preimafvelsetpreimafv 45570 The preimage of a function...
preimafvsspwdm 45571 The class ` P ` of all pre...
0nelsetpreimafv 45572 The empty set is not an el...
elsetpreimafvbi 45573 An element of the preimage...
elsetpreimafveqfv 45574 The elements of the preima...
eqfvelsetpreimafv 45575 If an element of the domai...
elsetpreimafvrab 45576 An element of the preimage...
imaelsetpreimafv 45577 The image of an element of...
uniimaelsetpreimafv 45578 The union of the image of ...
elsetpreimafveq 45579 If two preimages of functi...
fundcmpsurinjlem1 45580 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 45581 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 45582 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 45583 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 45584 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 45585 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 45586 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 45587 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 45588 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 45589 Every function ` F : A -->...
fundcmpsurinjpreimafv 45590 Every function ` F : A -->...
fundcmpsurinj 45591 Every function ` F : A -->...
fundcmpsurbijinj 45592 Every function ` F : A -->...
fundcmpsurinjimaid 45593 Every function ` F : A -->...
fundcmpsurinjALT 45594 Alternate proof of ~ fundc...
iccpval 45597 Partition consisting of a ...
iccpart 45598 A special partition. Corr...
iccpartimp 45599 Implications for a class b...
iccpartres 45600 The restriction of a parti...
iccpartxr 45601 If there is a partition, t...
iccpartgtprec 45602 If there is a partition, t...
iccpartipre 45603 If there is a partition, t...
iccpartiltu 45604 If there is a partition, t...
iccpartigtl 45605 If there is a partition, t...
iccpartlt 45606 If there is a partition, t...
iccpartltu 45607 If there is a partition, t...
iccpartgtl 45608 If there is a partition, t...
iccpartgt 45609 If there is a partition, t...
iccpartleu 45610 If there is a partition, t...
iccpartgel 45611 If there is a partition, t...
iccpartrn 45612 If there is a partition, t...
iccpartf 45613 The range of the partition...
iccpartel 45614 If there is a partition, t...
iccelpart 45615 An element of any partitio...
iccpartiun 45616 A half-open interval of ex...
icceuelpartlem 45617 Lemma for ~ icceuelpart . ...
icceuelpart 45618 An element of a partitione...
iccpartdisj 45619 The segments of a partitio...
iccpartnel 45620 A point of a partition is ...
fargshiftfv 45621 If a class is a function, ...
fargshiftf 45622 If a class is a function, ...
fargshiftf1 45623 If a function is 1-1, then...
fargshiftfo 45624 If a function is onto, the...
fargshiftfva 45625 The values of a shifted fu...
lswn0 45626 The last symbol of a not e...
nfich1 45629 The first interchangeable ...
nfich2 45630 The second interchangeable...
ichv 45631 Setvar variables are inter...
ichf 45632 Setvar variables are inter...
ichid 45633 A setvar variable is alway...
icht 45634 A theorem is interchangeab...
ichbidv 45635 Formula building rule for ...
ichcircshi 45636 The setvar variables are i...
ichan 45637 If two setvar variables ar...
ichn 45638 Negation does not affect i...
ichim 45639 Formula building rule for ...
dfich2 45640 Alternate definition of th...
ichcom 45641 The interchangeability of ...
ichbi12i 45642 Equivalence for interchang...
icheqid 45643 In an equality for the sam...
icheq 45644 In an equality of setvar v...
ichnfimlem 45645 Lemma for ~ ichnfim : A s...
ichnfim 45646 If in an interchangeabilit...
ichnfb 45647 If ` x ` and ` y ` are int...
ichal 45648 Move a universal quantifie...
ich2al 45649 Two setvar variables are a...
ich2ex 45650 Two setvar variables are a...
ichexmpl1 45651 Example for interchangeabl...
ichexmpl2 45652 Example for interchangeabl...
ich2exprop 45653 If the setvar variables ar...
ichnreuop 45654 If the setvar variables ar...
ichreuopeq 45655 If the setvar variables ar...
sprid 45656 Two identical representati...
elsprel 45657 An unordered pair is an el...
spr0nelg 45658 The empty set is not an el...
sprval 45661 The set of all unordered p...
sprvalpw 45662 The set of all unordered p...
sprssspr 45663 The set of all unordered p...
spr0el 45664 The empty set is not an un...
sprvalpwn0 45665 The set of all unordered p...
sprel 45666 An element of the set of a...
prssspr 45667 An element of a subset of ...
prelspr 45668 An unordered pair of eleme...
prsprel 45669 The elements of a pair fro...
prsssprel 45670 The elements of a pair fro...
sprvalpwle2 45671 The set of all unordered p...
sprsymrelfvlem 45672 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 45673 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 45674 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 45675 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 45676 The value of the function ...
sprsymrelf 45677 The mapping ` F ` is a fun...
sprsymrelf1 45678 The mapping ` F ` is a one...
sprsymrelfo 45679 The mapping ` F ` is a fun...
sprsymrelf1o 45680 The mapping ` F ` is a bij...
sprbisymrel 45681 There is a bijection betwe...
sprsymrelen 45682 The class ` P ` of subsets...
prpair 45683 Characterization of a prop...
prproropf1olem0 45684 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 45685 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 45686 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 45687 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 45688 Lemma 4 for ~ prproropf1o ...
prproropf1o 45689 There is a bijection betwe...
prproropen 45690 The set of proper pairs an...
prproropreud 45691 There is exactly one order...
pairreueq 45692 Two equivalent representat...
paireqne 45693 Two sets are not equal iff...
prprval 45696 The set of all proper unor...
prprvalpw 45697 The set of all proper unor...
prprelb 45698 An element of the set of a...
prprelprb 45699 A set is an element of the...
prprspr2 45700 The set of all proper unor...
prprsprreu 45701 There is a unique proper u...
prprreueq 45702 There is a unique proper u...
sbcpr 45703 The proper substitution of...
reupr 45704 There is a unique unordere...
reuprpr 45705 There is a unique proper u...
poprelb 45706 Equality for unordered pai...
2exopprim 45707 The existence of an ordere...
reuopreuprim 45708 There is a unique unordere...
fmtno 45711 The ` N ` th Fermat number...
fmtnoge3 45712 Each Fermat number is grea...
fmtnonn 45713 Each Fermat number is a po...
fmtnom1nn 45714 A Fermat number minus one ...
fmtnoodd 45715 Each Fermat number is odd....
fmtnorn 45716 A Fermat number is a funct...
fmtnof1 45717 The enumeration of the Fer...
fmtnoinf 45718 The set of Fermat numbers ...
fmtnorec1 45719 The first recurrence relat...
sqrtpwpw2p 45720 The floor of the square ro...
fmtnosqrt 45721 The floor of the square ro...
fmtno0 45722 The ` 0 ` th Fermat number...
fmtno1 45723 The ` 1 ` st Fermat number...
fmtnorec2lem 45724 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 45725 The second recurrence rela...
fmtnodvds 45726 Any Fermat number divides ...
goldbachthlem1 45727 Lemma 1 for ~ goldbachth ....
goldbachthlem2 45728 Lemma 2 for ~ goldbachth ....
goldbachth 45729 Goldbach's theorem: Two d...
fmtnorec3 45730 The third recurrence relat...
fmtnorec4 45731 The fourth recurrence rela...
fmtno2 45732 The ` 2 ` nd Fermat number...
fmtno3 45733 The ` 3 ` rd Fermat number...
fmtno4 45734 The ` 4 ` th Fermat number...
fmtno5lem1 45735 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 45736 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 45737 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 45738 Lemma 4 for ~ fmtno5 . (C...
fmtno5 45739 The ` 5 ` th Fermat number...
fmtno0prm 45740 The ` 0 ` th Fermat number...
fmtno1prm 45741 The ` 1 ` st Fermat number...
fmtno2prm 45742 The ` 2 ` nd Fermat number...
257prm 45743 257 is a prime number (the...
fmtno3prm 45744 The ` 3 ` rd Fermat number...
odz2prm2pw 45745 Any power of two is coprim...
fmtnoprmfac1lem 45746 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 45747 Divisor of Fermat number (...
fmtnoprmfac2lem1 45748 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 45749 Divisor of Fermat number (...
fmtnofac2lem 45750 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 45751 Divisor of Fermat number (...
fmtnofac1 45752 Divisor of Fermat number (...
fmtno4sqrt 45753 The floor of the square ro...
fmtno4prmfac 45754 If P was a (prime) factor ...
fmtno4prmfac193 45755 If P was a (prime) factor ...
fmtno4nprmfac193 45756 193 is not a (prime) facto...
fmtno4prm 45757 The ` 4 `-th Fermat number...
65537prm 45758 65537 is a prime number (t...
fmtnofz04prm 45759 The first five Fermat numb...
fmtnole4prm 45760 The first five Fermat numb...
fmtno5faclem1 45761 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 45762 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 45763 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 45764 The factorisation of the `...
fmtno5nprm 45765 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 45766 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 45767 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 45768 The mapping of a Fermat nu...
prmdvdsfmtnof1 45769 The mapping of a Fermat nu...
prminf2 45770 The set of prime numbers i...
2pwp1prm 45771 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 45772 Every prime number of the ...
m2prm 45773 The second Mersenne number...
m3prm 45774 The third Mersenne number ...
flsqrt 45775 A condition equivalent to ...
flsqrt5 45776 The floor of the square ro...
3ndvds4 45777 3 does not divide 4. (Con...
139prmALT 45778 139 is a prime number. In...
31prm 45779 31 is a prime number. In ...
m5prm 45780 The fifth Mersenne number ...
127prm 45781 127 is a prime number. (C...
m7prm 45782 The seventh Mersenne numbe...
m11nprm 45783 The eleventh Mersenne numb...
mod42tp1mod8 45784 If a number is ` 3 ` modul...
sfprmdvdsmersenne 45785 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 45786 If ` P ` is a Sophie Germa...
lighneallem1 45787 Lemma 1 for ~ lighneal . ...
lighneallem2 45788 Lemma 2 for ~ lighneal . ...
lighneallem3 45789 Lemma 3 for ~ lighneal . ...
lighneallem4a 45790 Lemma 1 for ~ lighneallem4...
lighneallem4b 45791 Lemma 2 for ~ lighneallem4...
lighneallem4 45792 Lemma 3 for ~ lighneal . ...
lighneal 45793 If a power of a prime ` P ...
modexp2m1d 45794 The square of an integer w...
proththdlem 45795 Lemma for ~ proththd . (C...
proththd 45796 Proth's theorem (1878). I...
5tcu2e40 45797 5 times the cube of 2 is 4...
3exp4mod41 45798 3 to the fourth power is -...
41prothprmlem1 45799 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 45800 Lemma 2 for ~ 41prothprm ....
41prothprm 45801 41 is a _Proth prime_. (C...
quad1 45802 A condition for a quadrati...
requad01 45803 A condition for a quadrati...
requad1 45804 A condition for a quadrati...
requad2 45805 A condition for a quadrati...
iseven 45810 The predicate "is an even ...
isodd 45811 The predicate "is an odd n...
evenz 45812 An even number is an integ...
oddz 45813 An odd number is an intege...
evendiv2z 45814 The result of dividing an ...
oddp1div2z 45815 The result of dividing an ...
oddm1div2z 45816 The result of dividing an ...
isodd2 45817 The predicate "is an odd n...
dfodd2 45818 Alternate definition for o...
dfodd6 45819 Alternate definition for o...
dfeven4 45820 Alternate definition for e...
evenm1odd 45821 The predecessor of an even...
evenp1odd 45822 The successor of an even n...
oddp1eveni 45823 The successor of an odd nu...
oddm1eveni 45824 The predecessor of an odd ...
evennodd 45825 An even number is not an o...
oddneven 45826 An odd number is not an ev...
enege 45827 The negative of an even nu...
onego 45828 The negative of an odd num...
m1expevenALTV 45829 Exponentiation of -1 by an...
m1expoddALTV 45830 Exponentiation of -1 by an...
dfeven2 45831 Alternate definition for e...
dfodd3 45832 Alternate definition for o...
iseven2 45833 The predicate "is an even ...
isodd3 45834 The predicate "is an odd n...
2dvdseven 45835 2 divides an even number. ...
m2even 45836 A multiple of 2 is an even...
2ndvdsodd 45837 2 does not divide an odd n...
2dvdsoddp1 45838 2 divides an odd number in...
2dvdsoddm1 45839 2 divides an odd number de...
dfeven3 45840 Alternate definition for e...
dfodd4 45841 Alternate definition for o...
dfodd5 45842 Alternate definition for o...
zefldiv2ALTV 45843 The floor of an even numbe...
zofldiv2ALTV 45844 The floor of an odd numer ...
oddflALTV 45845 Odd number representation ...
iseven5 45846 The predicate "is an even ...
isodd7 45847 The predicate "is an odd n...
dfeven5 45848 Alternate definition for e...
dfodd7 45849 Alternate definition for o...
gcd2odd1 45850 The greatest common diviso...
zneoALTV 45851 No even integer equals an ...
zeoALTV 45852 An integer is even or odd....
zeo2ALTV 45853 An integer is even or odd ...
nneoALTV 45854 A positive integer is even...
nneoiALTV 45855 A positive integer is even...
odd2np1ALTV 45856 An integer is odd iff it i...
oddm1evenALTV 45857 An integer is odd iff its ...
oddp1evenALTV 45858 An integer is odd iff its ...
oexpnegALTV 45859 The exponential of the neg...
oexpnegnz 45860 The exponential of the neg...
bits0ALTV 45861 Value of the zeroth bit. ...
bits0eALTV 45862 The zeroth bit of an even ...
bits0oALTV 45863 The zeroth bit of an odd n...
divgcdoddALTV 45864 Either ` A / ( A gcd B ) `...
opoeALTV 45865 The sum of two odds is eve...
opeoALTV 45866 The sum of an odd and an e...
omoeALTV 45867 The difference of two odds...
omeoALTV 45868 The difference of an odd a...
oddprmALTV 45869 A prime not equal to ` 2 `...
0evenALTV 45870 0 is an even number. (Con...
0noddALTV 45871 0 is not an odd number. (...
1oddALTV 45872 1 is an odd number. (Cont...
1nevenALTV 45873 1 is not an even number. ...
2evenALTV 45874 2 is an even number. (Con...
2noddALTV 45875 2 is not an odd number. (...
nn0o1gt2ALTV 45876 An odd nonnegative integer...
nnoALTV 45877 An alternate characterizat...
nn0oALTV 45878 An alternate characterizat...
nn0e 45879 An alternate characterizat...
nneven 45880 An alternate characterizat...
nn0onn0exALTV 45881 For each odd nonnegative i...
nn0enn0exALTV 45882 For each even nonnegative ...
nnennexALTV 45883 For each even positive int...
nnpw2evenALTV 45884 2 to the power of a positi...
epoo 45885 The sum of an even and an ...
emoo 45886 The difference of an even ...
epee 45887 The sum of two even number...
emee 45888 The difference of two even...
evensumeven 45889 If a summand is even, the ...
3odd 45890 3 is an odd number. (Cont...
4even 45891 4 is an even number. (Con...
5odd 45892 5 is an odd number. (Cont...
6even 45893 6 is an even number. (Con...
7odd 45894 7 is an odd number. (Cont...
8even 45895 8 is an even number. (Con...
evenprm2 45896 A prime number is even iff...
oddprmne2 45897 Every prime number not bei...
oddprmuzge3 45898 A prime number which is od...
evenltle 45899 If an even number is great...
odd2prm2 45900 If an odd number is the su...
even3prm2 45901 If an even number is the s...
mogoldbblem 45902 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 45903 Lemma for ~ perfectALTV . ...
perfectALTVlem2 45904 Lemma for ~ perfectALTV . ...
perfectALTV 45905 The Euclid-Euler theorem, ...
fppr 45908 The set of Fermat pseudopr...
fpprmod 45909 The set of Fermat pseudopr...
fpprel 45910 A Fermat pseudoprime to th...
fpprbasnn 45911 The base of a Fermat pseud...
fpprnn 45912 A Fermat pseudoprime to th...
fppr2odd 45913 A Fermat pseudoprime to th...
11t31e341 45914 341 is the product of 11 a...
2exp340mod341 45915 Eight to the eighth power ...
341fppr2 45916 341 is the (smallest) _Pou...
4fppr1 45917 4 is the (smallest) Fermat...
8exp8mod9 45918 Eight to the eighth power ...
9fppr8 45919 9 is the (smallest) Fermat...
dfwppr 45920 Alternate definition of a ...
fpprwppr 45921 A Fermat pseudoprime to th...
fpprwpprb 45922 An integer ` X ` which is ...
fpprel2 45923 An alternate definition fo...
nfermltl8rev 45924 Fermat's little theorem wi...
nfermltl2rev 45925 Fermat's little theorem wi...
nfermltlrev 45926 Fermat's little theorem re...
isgbe 45933 The predicate "is an even ...
isgbow 45934 The predicate "is a weak o...
isgbo 45935 The predicate "is an odd G...
gbeeven 45936 An even Goldbach number is...
gbowodd 45937 A weak odd Goldbach number...
gbogbow 45938 A (strong) odd Goldbach nu...
gboodd 45939 An odd Goldbach number is ...
gbepos 45940 Any even Goldbach number i...
gbowpos 45941 Any weak odd Goldbach numb...
gbopos 45942 Any odd Goldbach number is...
gbegt5 45943 Any even Goldbach number i...
gbowgt5 45944 Any weak odd Goldbach numb...
gbowge7 45945 Any weak odd Goldbach numb...
gboge9 45946 Any odd Goldbach number is...
gbege6 45947 Any even Goldbach number i...
gbpart6 45948 The Goldbach partition of ...
gbpart7 45949 The (weak) Goldbach partit...
gbpart8 45950 The Goldbach partition of ...
gbpart9 45951 The (strong) Goldbach part...
gbpart11 45952 The (strong) Goldbach part...
6gbe 45953 6 is an even Goldbach numb...
7gbow 45954 7 is a weak odd Goldbach n...
8gbe 45955 8 is an even Goldbach numb...
9gbo 45956 9 is an odd Goldbach numbe...
11gbo 45957 11 is an odd Goldbach numb...
stgoldbwt 45958 If the strong ternary Gold...
sbgoldbwt 45959 If the strong binary Goldb...
sbgoldbst 45960 If the strong binary Goldb...
sbgoldbaltlem1 45961 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 45962 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 45963 An alternate (related to t...
sbgoldbb 45964 If the strong binary Goldb...
sgoldbeven3prm 45965 If the binary Goldbach con...
sbgoldbm 45966 If the strong binary Goldb...
mogoldbb 45967 If the modern version of t...
sbgoldbmb 45968 The strong binary Goldbach...
sbgoldbo 45969 If the strong binary Goldb...
nnsum3primes4 45970 4 is the sum of at most 3 ...
nnsum4primes4 45971 4 is the sum of at most 4 ...
nnsum3primesprm 45972 Every prime is "the sum of...
nnsum4primesprm 45973 Every prime is "the sum of...
nnsum3primesgbe 45974 Any even Goldbach number i...
nnsum4primesgbe 45975 Any even Goldbach number i...
nnsum3primesle9 45976 Every integer greater than...
nnsum4primesle9 45977 Every integer greater than...
nnsum4primesodd 45978 If the (weak) ternary Gold...
nnsum4primesoddALTV 45979 If the (strong) ternary Go...
evengpop3 45980 If the (weak) ternary Gold...
evengpoap3 45981 If the (strong) ternary Go...
nnsum4primeseven 45982 If the (weak) ternary Gold...
nnsum4primesevenALTV 45983 If the (strong) ternary Go...
wtgoldbnnsum4prm 45984 If the (weak) ternary Gold...
stgoldbnnsum4prm 45985 If the (strong) ternary Go...
bgoldbnnsum3prm 45986 If the binary Goldbach con...
bgoldbtbndlem1 45987 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 45988 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 45989 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 45990 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 45991 If the binary Goldbach con...
tgoldbachgtALTV 45994 Variant of Thierry Arnoux'...
bgoldbachlt 45995 The binary Goldbach conjec...
tgblthelfgott 45997 The ternary Goldbach conje...
tgoldbachlt 45998 The ternary Goldbach conje...
tgoldbach 45999 The ternary Goldbach conje...
isomgrrel 46004 The isomorphy relation for...
isomgr 46005 The isomorphy relation for...
isisomgr 46006 Implications of two graphs...
isomgreqve 46007 A set is isomorphic to a h...
isomushgr 46008 The isomorphy relation for...
isomuspgrlem1 46009 Lemma 1 for ~ isomuspgr . ...
isomuspgrlem2a 46010 Lemma 1 for ~ isomuspgrlem...
isomuspgrlem2b 46011 Lemma 2 for ~ isomuspgrlem...
isomuspgrlem2c 46012 Lemma 3 for ~ isomuspgrlem...
isomuspgrlem2d 46013 Lemma 4 for ~ isomuspgrlem...
isomuspgrlem2e 46014 Lemma 5 for ~ isomuspgrlem...
isomuspgrlem2 46015 Lemma 2 for ~ isomuspgr . ...
isomuspgr 46016 The isomorphy relation for...
isomgrref 46017 The isomorphy relation is ...
isomgrsym 46018 The isomorphy relation is ...
isomgrsymb 46019 The isomorphy relation is ...
isomgrtrlem 46020 Lemma for ~ isomgrtr . (C...
isomgrtr 46021 The isomorphy relation is ...
strisomgrop 46022 A graph represented as an ...
ushrisomgr 46023 A simple hypergraph (with ...
1hegrlfgr 46024 A graph ` G ` with one hyp...
upwlksfval 46027 The set of simple walks (i...
isupwlk 46028 Properties of a pair of fu...
isupwlkg 46029 Generalization of ~ isupwl...
upwlkbprop 46030 Basic properties of a simp...
upwlkwlk 46031 A simple walk is a walk. ...
upgrwlkupwlk 46032 In a pseudograph, a walk i...
upgrwlkupwlkb 46033 In a pseudograph, the defi...
upgrisupwlkALT 46034 Alternate proof of ~ upgri...
upgredgssspr 46035 The set of edges of a pseu...
uspgropssxp 46036 The set ` G ` of "simple p...
uspgrsprfv 46037 The value of the function ...
uspgrsprf 46038 The mapping ` F ` is a fun...
uspgrsprf1 46039 The mapping ` F ` is a one...
uspgrsprfo 46040 The mapping ` F ` is a fun...
uspgrsprf1o 46041 The mapping ` F ` is a bij...
uspgrex 46042 The class ` G ` of all "si...
uspgrbispr 46043 There is a bijection betwe...
uspgrspren 46044 The set ` G ` of the "simp...
uspgrymrelen 46045 The set ` G ` of the "simp...
uspgrbisymrel 46046 There is a bijection betwe...
uspgrbisymrelALT 46047 Alternate proof of ~ uspgr...
ovn0dmfun 46048 If a class operation value...
xpsnopab 46049 A Cartesian product with a...
xpiun 46050 A Cartesian product expres...
ovn0ssdmfun 46051 If a class' operation valu...
fnxpdmdm 46052 The domain of the domain o...
cnfldsrngbas 46053 The base set of a subring ...
cnfldsrngadd 46054 The group addition operati...
cnfldsrngmul 46055 The ring multiplication op...
plusfreseq 46056 If the empty set is not co...
mgmplusfreseq 46057 If the empty set is not co...
0mgm 46058 A set with an empty base s...
mgmpropd 46059 If two structures have the...
ismgmd 46060 Deduce a magma from its pr...
mgmhmrcl 46065 Reverse closure of a magma...
submgmrcl 46066 Reverse closure for submag...
ismgmhm 46067 Property of a magma homomo...
mgmhmf 46068 A magma homomorphism is a ...
mgmhmpropd 46069 Magma homomorphism depends...
mgmhmlin 46070 A magma homomorphism prese...
mgmhmf1o 46071 A magma homomorphism is bi...
idmgmhm 46072 The identity homomorphism ...
issubmgm 46073 Expand definition of a sub...
issubmgm2 46074 Submagmas are subsets that...
rabsubmgmd 46075 Deduction for proving that...
submgmss 46076 Submagmas are subsets of t...
submgmid 46077 Every magma is trivially a...
submgmcl 46078 Submagmas are closed under...
submgmmgm 46079 Submagmas are themselves m...
submgmbas 46080 The base set of a submagma...
subsubmgm 46081 A submagma of a submagma i...
resmgmhm 46082 Restriction of a magma hom...
resmgmhm2 46083 One direction of ~ resmgmh...
resmgmhm2b 46084 Restriction of the codomai...
mgmhmco 46085 The composition of magma h...
mgmhmima 46086 The homomorphic image of a...
mgmhmeql 46087 The equalizer of two magma...
submgmacs 46088 Submagmas are an algebraic...
ismhm0 46089 Property of a monoid homom...
mhmismgmhm 46090 Each monoid homomorphism i...
opmpoismgm 46091 A structure with a group a...
copissgrp 46092 A structure with a constan...
copisnmnd 46093 A structure with a constan...
0nodd 46094 0 is not an odd integer. ...
1odd 46095 1 is an odd integer. (Con...
2nodd 46096 2 is not an odd integer. ...
oddibas 46097 Lemma 1 for ~ oddinmgm : ...
oddiadd 46098 Lemma 2 for ~ oddinmgm : ...
oddinmgm 46099 The structure of all odd i...
nnsgrpmgm 46100 The structure of positive ...
nnsgrp 46101 The structure of positive ...
nnsgrpnmnd 46102 The structure of positive ...
nn0mnd 46103 The set of nonnegative int...
gsumsplit2f 46104 Split a group sum into two...
gsumdifsndf 46105 Extract a summand from a f...
gsumfsupp 46106 A group sum of a family ca...
iscllaw 46113 The predicate "is a closed...
iscomlaw 46114 The predicate "is a commut...
clcllaw 46115 Closure of a closed operat...
isasslaw 46116 The predicate "is an assoc...
asslawass 46117 Associativity of an associ...
mgmplusgiopALT 46118 Slot 2 (group operation) o...
sgrpplusgaopALT 46119 Slot 2 (group operation) o...
intopval 46126 The internal (binary) oper...
intop 46127 An internal (binary) opera...
clintopval 46128 The closed (internal binar...
assintopval 46129 The associative (closed in...
assintopmap 46130 The associative (closed in...
isclintop 46131 The predicate "is a closed...
clintop 46132 A closed (internal binary)...
assintop 46133 An associative (closed int...
isassintop 46134 The predicate "is an assoc...
clintopcllaw 46135 The closure law holds for ...
assintopcllaw 46136 The closure low holds for ...
assintopasslaw 46137 The associative low holds ...
assintopass 46138 An associative (closed int...
ismgmALT 46147 The predicate "is a magma"...
iscmgmALT 46148 The predicate "is a commut...
issgrpALT 46149 The predicate "is a semigr...
iscsgrpALT 46150 The predicate "is a commut...
mgm2mgm 46151 Equivalence of the two def...
sgrp2sgrp 46152 Equivalence of the two def...
idfusubc0 46153 The identity functor for a...
idfusubc 46154 The identity functor for a...
inclfusubc 46155 The "inclusion functor" fr...
lmod0rng 46156 If the scalar ring of a mo...
nzrneg1ne0 46157 The additive inverse of th...
0ringdif 46158 A zero ring is a ring whic...
0ringbas 46159 The base set of a zero rin...
0ring1eq0 46160 In a zero ring, a ring whi...
nrhmzr 46161 There is no ring homomorph...
isrng 46164 The predicate "is a non-un...
rngabl 46165 A non-unital ring is an (a...
rngmgp 46166 A non-unital ring is a sem...
ringrng 46167 A unital ring is a non-uni...
ringssrng 46168 The unital rings are non-u...
isringrng 46169 The predicate "is a unital...
rngdir 46170 Distributive law for the m...
rngcl 46171 Closure of the multiplicat...
rnglz 46172 The zero of a non-unital r...
rnghmrcl 46177 Reverse closure of a non-u...
rnghmfn 46178 The mapping of two non-uni...
rnghmval 46179 The set of the non-unital ...
isrnghm 46180 A function is a non-unital...
isrnghmmul 46181 A function is a non-unital...
rnghmmgmhm 46182 A non-unital ring homomorp...
rnghmval2 46183 The non-unital ring homomo...
isrngisom 46184 An isomorphism of non-unit...
rngimrcl 46185 Reverse closure for an iso...
rnghmghm 46186 A non-unital ring homomorp...
rnghmf 46187 A ring homomorphism is a f...
rnghmmul 46188 A homomorphism of non-unit...
isrnghm2d 46189 Demonstration of non-unita...
isrnghmd 46190 Demonstration of non-unita...
rnghmf1o 46191 A non-unital ring homomorp...
isrngim 46192 An isomorphism of non-unit...
rngimf1o 46193 An isomorphism of non-unit...
rngimrnghm 46194 An isomorphism of non-unit...
rnghmco 46195 The composition of non-uni...
idrnghm 46196 The identity homomorphism ...
c0mgm 46197 The constant mapping to ze...
c0mhm 46198 The constant mapping to ze...
c0ghm 46199 The constant mapping to ze...
c0rhm 46200 The constant mapping to ze...
c0rnghm 46201 The constant mapping to ze...
c0snmgmhm 46202 The constant mapping to ze...
c0snmhm 46203 The constant mapping to ze...
c0snghm 46204 The constant mapping to ze...
zrrnghm 46205 The constant mapping to ze...
rhmfn 46206 The mapping of two rings t...
rhmval 46207 The ring homomorphisms bet...
rhmisrnghm 46208 Each unital ring homomorph...
lidldomn1 46209 If a (left) ideal (which i...
lidlssbas 46210 The base set of the restri...
lidlbas 46211 A (left) ideal of a ring i...
lidlabl 46212 A (left) ideal of a ring i...
lidlmmgm 46213 The multiplicative group o...
lidlmsgrp 46214 The multiplicative group o...
lidlrng 46215 A (left) ideal of a ring i...
zlidlring 46216 The zero (left) ideal of a...
uzlidlring 46217 Only the zero (left) ideal...
lidldomnnring 46218 A (left) ideal of a domain...
0even 46219 0 is an even integer. (Co...
1neven 46220 1 is not an even integer. ...
2even 46221 2 is an even integer. (Co...
2zlidl 46222 The even integers are a (l...
2zrng 46223 The ring of integers restr...
2zrngbas 46224 The base set of R is the s...
2zrngadd 46225 The group addition operati...
2zrng0 46226 The additive identity of R...
2zrngamgm 46227 R is an (additive) magma. ...
2zrngasgrp 46228 R is an (additive) semigro...
2zrngamnd 46229 R is an (additive) monoid....
2zrngacmnd 46230 R is a commutative (additi...
2zrngagrp 46231 R is an (additive) group. ...
2zrngaabl 46232 R is an (additive) abelian...
2zrngmul 46233 The ring multiplication op...
2zrngmmgm 46234 R is a (multiplicative) ma...
2zrngmsgrp 46235 R is a (multiplicative) se...
2zrngALT 46236 The ring of integers restr...
2zrngnmlid 46237 R has no multiplicative (l...
2zrngnmrid 46238 R has no multiplicative (r...
2zrngnmlid2 46239 R has no multiplicative (l...
2zrngnring 46240 R is not a unital ring. (...
cznrnglem 46241 Lemma for ~ cznrng : The ...
cznabel 46242 The ring constructed from ...
cznrng 46243 The ring constructed from ...
cznnring 46244 The ring constructed from ...
rngcvalALTV 46249 Value of the category of n...
rngcval 46250 Value of the category of n...
rnghmresfn 46251 The class of non-unital ri...
rnghmresel 46252 An element of the non-unit...
rngcbas 46253 Set of objects of the cate...
rngchomfval 46254 Set of arrows of the categ...
rngchom 46255 Set of arrows of the categ...
elrngchom 46256 A morphism of non-unital r...
rngchomfeqhom 46257 The functionalized Hom-set...
rngccofval 46258 Composition in the categor...
rngcco 46259 Composition in the categor...
dfrngc2 46260 Alternate definition of th...
rnghmsscmap2 46261 The non-unital ring homomo...
rnghmsscmap 46262 The non-unital ring homomo...
rnghmsubcsetclem1 46263 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 46264 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 46265 The non-unital ring homomo...
rngccat 46266 The category of non-unital...
rngcid 46267 The identity arrow in the ...
rngcsect 46268 A section in the category ...
rngcinv 46269 An inverse in the category...
rngciso 46270 An isomorphism in the cate...
rngcbasALTV 46271 Set of objects of the cate...
rngchomfvalALTV 46272 Set of arrows of the categ...
rngchomALTV 46273 Set of arrows of the categ...
elrngchomALTV 46274 A morphism of non-unital r...
rngccofvalALTV 46275 Composition in the categor...
rngccoALTV 46276 Composition in the categor...
rngccatidALTV 46277 Lemma for ~ rngccatALTV . ...
rngccatALTV 46278 The category of non-unital...
rngcidALTV 46279 The identity arrow in the ...
rngcsectALTV 46280 A section in the category ...
rngcinvALTV 46281 An inverse in the category...
rngcisoALTV 46282 An isomorphism in the cate...
rngchomffvalALTV 46283 The value of the functiona...
rngchomrnghmresALTV 46284 The value of the functiona...
rngcifuestrc 46285 The "inclusion functor" fr...
funcrngcsetc 46286 The "natural forgetful fun...
funcrngcsetcALT 46287 Alternate proof of ~ funcr...
zrinitorngc 46288 The zero ring is an initia...
zrtermorngc 46289 The zero ring is a termina...
zrzeroorngc 46290 The zero ring is a zero ob...
ringcvalALTV 46295 Value of the category of r...
ringcval 46296 Value of the category of u...
rhmresfn 46297 The class of unital ring h...
rhmresel 46298 An element of the unital r...
ringcbas 46299 Set of objects of the cate...
ringchomfval 46300 Set of arrows of the categ...
ringchom 46301 Set of arrows of the categ...
elringchom 46302 A morphism of unital rings...
ringchomfeqhom 46303 The functionalized Hom-set...
ringccofval 46304 Composition in the categor...
ringcco 46305 Composition in the categor...
dfringc2 46306 Alternate definition of th...
rhmsscmap2 46307 The unital ring homomorphi...
rhmsscmap 46308 The unital ring homomorphi...
rhmsubcsetclem1 46309 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 46310 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 46311 The unital ring homomorphi...
ringccat 46312 The category of unital rin...
ringcid 46313 The identity arrow in the ...
rhmsscrnghm 46314 The unital ring homomorphi...
rhmsubcrngclem1 46315 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 46316 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 46317 The unital ring homomorphi...
rngcresringcat 46318 The restriction of the cat...
ringcsect 46319 A section in the category ...
ringcinv 46320 An inverse in the category...
ringciso 46321 An isomorphism in the cate...
ringcbasbas 46322 An element of the base set...
funcringcsetc 46323 The "natural forgetful fun...
funcringcsetcALTV2lem1 46324 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 46325 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 46326 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 46327 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 46328 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 46329 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 46330 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 46331 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 46332 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 46333 The "natural forgetful fun...
ringcbasALTV 46334 Set of objects of the cate...
ringchomfvalALTV 46335 Set of arrows of the categ...
ringchomALTV 46336 Set of arrows of the categ...
elringchomALTV 46337 A morphism of rings is a f...
ringccofvalALTV 46338 Composition in the categor...
ringccoALTV 46339 Composition in the categor...
ringccatidALTV 46340 Lemma for ~ ringccatALTV ....
ringccatALTV 46341 The category of rings is a...
ringcidALTV 46342 The identity arrow in the ...
ringcsectALTV 46343 A section in the category ...
ringcinvALTV 46344 An inverse in the category...
ringcisoALTV 46345 An isomorphism in the cate...
ringcbasbasALTV 46346 An element of the base set...
funcringcsetclem1ALTV 46347 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 46348 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 46349 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 46350 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 46351 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 46352 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 46353 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 46354 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 46355 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 46356 The "natural forgetful fun...
irinitoringc 46357 The ring of integers is an...
zrtermoringc 46358 The zero ring is a termina...
zrninitoringc 46359 The zero ring is not an in...
nzerooringczr 46360 There is no zero object in...
srhmsubclem1 46361 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 46362 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 46363 Lemma 3 for ~ srhmsubc . ...
srhmsubc 46364 According to ~ df-subc , t...
sringcat 46365 The restriction of the cat...
crhmsubc 46366 According to ~ df-subc , t...
cringcat 46367 The restriction of the cat...
drhmsubc 46368 According to ~ df-subc , t...
drngcat 46369 The restriction of the cat...
fldcat 46370 The restriction of the cat...
fldc 46371 The restriction of the cat...
fldhmsubc 46372 According to ~ df-subc , t...
rngcrescrhm 46373 The category of non-unital...
rhmsubclem1 46374 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 46375 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 46376 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 46377 Lemma 4 for ~ rhmsubc . (...
rhmsubc 46378 According to ~ df-subc , t...
rhmsubccat 46379 The restriction of the cat...
srhmsubcALTVlem1 46380 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 46381 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 46382 According to ~ df-subc , t...
sringcatALTV 46383 The restriction of the cat...
crhmsubcALTV 46384 According to ~ df-subc , t...
cringcatALTV 46385 The restriction of the cat...
drhmsubcALTV 46386 According to ~ df-subc , t...
drngcatALTV 46387 The restriction of the cat...
fldcatALTV 46388 The restriction of the cat...
fldcALTV 46389 The restriction of the cat...
fldhmsubcALTV 46390 According to ~ df-subc , t...
rngcrescrhmALTV 46391 The category of non-unital...
rhmsubcALTVlem1 46392 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 46393 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 46394 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 46395 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 46396 According to ~ df-subc , t...
rhmsubcALTVcat 46397 The restriction of the cat...
opeliun2xp 46398 Membership of an ordered p...
eliunxp2 46399 Membership in a union of C...
mpomptx2 46400 Express a two-argument fun...
cbvmpox2 46401 Rule to change the bound v...
dmmpossx2 46402 The domain of a mapping is...
mpoexxg2 46403 Existence of an operation ...
ovmpordxf 46404 Value of an operation give...
ovmpordx 46405 Value of an operation give...
ovmpox2 46406 The value of an operation ...
fdmdifeqresdif 46407 The restriction of a condi...
offvalfv 46408 The function operation exp...
ofaddmndmap 46409 The function operation app...
mapsnop 46410 A singleton of an ordered ...
fprmappr 46411 A function with a domain o...
mapprop 46412 An unordered pair containi...
ztprmneprm 46413 A prime is not an integer ...
2t6m3t4e0 46414 2 times 6 minus 3 times 4 ...
ssnn0ssfz 46415 For any finite subset of `...
nn0sumltlt 46416 If the sum of two nonnegat...
bcpascm1 46417 Pascal's rule for the bino...
altgsumbc 46418 The sum of binomial coeffi...
altgsumbcALT 46419 Alternate proof of ~ altgs...
zlmodzxzlmod 46420 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 46421 An element of the (base se...
zlmodzxz0 46422 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 46423 The scalar multiplication ...
zlmodzxzadd 46424 The addition of the ` ZZ `...
zlmodzxzsubm 46425 The subtraction of the ` Z...
zlmodzxzsub 46426 The subtraction of the ` Z...
mgpsumunsn 46427 Extract a summand/factor f...
mgpsumz 46428 If the group sum for the m...
mgpsumn 46429 If the group sum for the m...
exple2lt6 46430 A nonnegative integer to t...
pgrple2abl 46431 Every symmetric group on a...
pgrpgt2nabl 46432 Every symmetric group on a...
invginvrid 46433 Identity for a multiplicat...
rmsupp0 46434 The support of a mapping o...
domnmsuppn0 46435 The support of a mapping o...
rmsuppss 46436 The support of a mapping o...
mndpsuppss 46437 The support of a mapping o...
scmsuppss 46438 The support of a mapping o...
rmsuppfi 46439 The support of a mapping o...
rmfsupp 46440 A mapping of a multiplicat...
mndpsuppfi 46441 The support of a mapping o...
mndpfsupp 46442 A mapping of a scalar mult...
scmsuppfi 46443 The support of a mapping o...
scmfsupp 46444 A mapping of a scalar mult...
suppmptcfin 46445 The support of a mapping w...
mptcfsupp 46446 A mapping with value 0 exc...
fsuppmptdmf 46447 A mapping with a finite do...
lmodvsmdi 46448 Multiple distributive law ...
gsumlsscl 46449 Closure of a group sum in ...
assaascl0 46450 The scalar 0 embedded into...
assaascl1 46451 The scalar 1 embedded into...
ply1vr1smo 46452 The variable in a polynomi...
ply1ass23l 46453 Associative identity with ...
ply1sclrmsm 46454 The ring multiplication of...
coe1id 46455 Coefficient vector of the ...
coe1sclmulval 46456 The value of the coefficie...
ply1mulgsumlem1 46457 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 46458 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 46459 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 46460 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 46461 The product of two polynom...
evl1at0 46462 Polynomial evaluation for ...
evl1at1 46463 Polynomial evaluation for ...
linply1 46464 A term of the form ` x - C...
lineval 46465 A term of the form ` x - C...
linevalexample 46466 The polynomial ` x - 3 ` o...
dmatALTval 46471 The algebra of ` N ` x ` N...
dmatALTbas 46472 The base set of the algebr...
dmatALTbasel 46473 An element of the base set...
dmatbas 46474 The set of all ` N ` x ` N...
lincop 46479 A linear combination as op...
lincval 46480 The value of a linear comb...
dflinc2 46481 Alternative definition of ...
lcoop 46482 A linear combination as op...
lcoval 46483 The value of a linear comb...
lincfsuppcl 46484 A linear combination of ve...
linccl 46485 A linear combination of ve...
lincval0 46486 The value of an empty line...
lincvalsng 46487 The linear combination ove...
lincvalsn 46488 The linear combination ove...
lincvalpr 46489 The linear combination ove...
lincval1 46490 The linear combination ove...
lcosn0 46491 Properties of a linear com...
lincvalsc0 46492 The linear combination whe...
lcoc0 46493 Properties of a linear com...
linc0scn0 46494 If a set contains the zero...
lincdifsn 46495 A vector is a linear combi...
linc1 46496 A vector is a linear combi...
lincellss 46497 A linear combination of a ...
lco0 46498 The set of empty linear co...
lcoel0 46499 The zero vector is always ...
lincsum 46500 The sum of two linear comb...
lincscm 46501 A linear combinations mult...
lincsumcl 46502 The sum of two linear comb...
lincscmcl 46503 The multiplication of a li...
lincsumscmcl 46504 The sum of a linear combin...
lincolss 46505 According to the statement...
ellcoellss 46506 Every linear combination o...
lcoss 46507 A set of vectors of a modu...
lspsslco 46508 Lemma for ~ lspeqlco . (C...
lcosslsp 46509 Lemma for ~ lspeqlco . (C...
lspeqlco 46510 Equivalence of a _span_ of...
rellininds 46514 The class defining the rel...
linindsv 46516 The classes of the module ...
islininds 46517 The property of being a li...
linindsi 46518 The implications of being ...
linindslinci 46519 The implications of being ...
islinindfis 46520 The property of being a li...
islinindfiss 46521 The property of being a li...
linindscl 46522 A linearly independent set...
lindepsnlininds 46523 A linearly dependent subse...
islindeps 46524 The property of being a li...
lincext1 46525 Property 1 of an extension...
lincext2 46526 Property 2 of an extension...
lincext3 46527 Property 3 of an extension...
lindslinindsimp1 46528 Implication 1 for ~ lindsl...
lindslinindimp2lem1 46529 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 46530 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 46531 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 46532 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 46533 Lemma 5 for ~ lindslininds...
lindslinindsimp2 46534 Implication 2 for ~ lindsl...
lindslininds 46535 Equivalence of definitions...
linds0 46536 The empty set is always a ...
el0ldep 46537 A set containing the zero ...
el0ldepsnzr 46538 A set containing the zero ...
lindsrng01 46539 Any subset of a module is ...
lindszr 46540 Any subset of a module ove...
snlindsntorlem 46541 Lemma for ~ snlindsntor . ...
snlindsntor 46542 A singleton is linearly in...
ldepsprlem 46543 Lemma for ~ ldepspr . (Co...
ldepspr 46544 If a vector is a scalar mu...
lincresunit3lem3 46545 Lemma 3 for ~ lincresunit3...
lincresunitlem1 46546 Lemma 1 for properties of ...
lincresunitlem2 46547 Lemma for properties of a ...
lincresunit1 46548 Property 1 of a specially ...
lincresunit2 46549 Property 2 of a specially ...
lincresunit3lem1 46550 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 46551 Lemma 2 for ~ lincresunit3...
lincresunit3 46552 Property 3 of a specially ...
lincreslvec3 46553 Property 3 of a specially ...
islindeps2 46554 Conditions for being a lin...
islininds2 46555 Implication of being a lin...
isldepslvec2 46556 Alternative definition of ...
lindssnlvec 46557 A singleton not containing...
lmod1lem1 46558 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 46559 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 46560 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 46561 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 46562 Lemma 5 for ~ lmod1 . (Co...
lmod1 46563 The (smallest) structure r...
lmod1zr 46564 The (smallest) structure r...
lmod1zrnlvec 46565 There is a (left) module (...
lmodn0 46566 Left modules exist. (Cont...
zlmodzxzequa 46567 Example of an equation wit...
zlmodzxznm 46568 Example of a linearly depe...
zlmodzxzldeplem 46569 A and B are not equal. (C...
zlmodzxzequap 46570 Example of an equation wit...
zlmodzxzldeplem1 46571 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 46572 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 46573 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 46574 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 46575 { A , B } is a linearly de...
ldepsnlinclem1 46576 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 46577 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 46578 The class of all (left) ve...
ldepsnlinc 46579 The reverse implication of...
ldepslinc 46580 For (left) vector spaces, ...
suppdm 46581 If the range of a function...
eluz2cnn0n1 46582 An integer greater than 1 ...
divge1b 46583 The ratio of a real number...
divgt1b 46584 The ratio of a real number...
ltsubaddb 46585 Equivalence for the "less ...
ltsubsubb 46586 Equivalence for the "less ...
ltsubadd2b 46587 Equivalence for the "less ...
divsub1dir 46588 Distribution of division o...
expnegico01 46589 An integer greater than 1 ...
elfzolborelfzop1 46590 An element of a half-open ...
pw2m1lepw2m1 46591 2 to the power of a positi...
zgtp1leeq 46592 If an integer is between a...
flsubz 46593 An integer can be moved in...
fldivmod 46594 Expressing the floor of a ...
mod0mul 46595 If an integer is 0 modulo ...
modn0mul 46596 If an integer is not 0 mod...
m1modmmod 46597 An integer decreased by 1 ...
difmodm1lt 46598 The difference between an ...
nn0onn0ex 46599 For each odd nonnegative i...
nn0enn0ex 46600 For each even nonnegative ...
nnennex 46601 For each even positive int...
nneop 46602 A positive integer is even...
nneom 46603 A positive integer is even...
nn0eo 46604 A nonnegative integer is e...
nnpw2even 46605 2 to the power of a positi...
zefldiv2 46606 The floor of an even integ...
zofldiv2 46607 The floor of an odd intege...
nn0ofldiv2 46608 The floor of an odd nonneg...
flnn0div2ge 46609 The floor of a positive in...
flnn0ohalf 46610 The floor of the half of a...
logcxp0 46611 Logarithm of a complex pow...
regt1loggt0 46612 The natural logarithm for ...
fdivval 46615 The quotient of two functi...
fdivmpt 46616 The quotient of two functi...
fdivmptf 46617 The quotient of two functi...
refdivmptf 46618 The quotient of two functi...
fdivpm 46619 The quotient of two functi...
refdivpm 46620 The quotient of two functi...
fdivmptfv 46621 The function value of a qu...
refdivmptfv 46622 The function value of a qu...
bigoval 46625 Set of functions of order ...
elbigofrcl 46626 Reverse closure of the "bi...
elbigo 46627 Properties of a function o...
elbigo2 46628 Properties of a function o...
elbigo2r 46629 Sufficient condition for a...
elbigof 46630 A function of order G(x) i...
elbigodm 46631 The domain of a function o...
elbigoimp 46632 The defining property of a...
elbigolo1 46633 A function (into the posit...
rege1logbrege0 46634 The general logarithm, wit...
rege1logbzge0 46635 The general logarithm, wit...
fllogbd 46636 A real number is between t...
relogbmulbexp 46637 The logarithm of the produ...
relogbdivb 46638 The logarithm of the quoti...
logbge0b 46639 The logarithm of a number ...
logblt1b 46640 The logarithm of a number ...
fldivexpfllog2 46641 The floor of a positive re...
nnlog2ge0lt1 46642 A positive integer is 1 if...
logbpw2m1 46643 The floor of the binary lo...
fllog2 46644 The floor of the binary lo...
blenval 46647 The binary length of an in...
blen0 46648 The binary length of 0. (...
blenn0 46649 The binary length of a "nu...
blenre 46650 The binary length of a pos...
blennn 46651 The binary length of a pos...
blennnelnn 46652 The binary length of a pos...
blennn0elnn 46653 The binary length of a non...
blenpw2 46654 The binary length of a pow...
blenpw2m1 46655 The binary length of a pow...
nnpw2blen 46656 A positive integer is betw...
nnpw2blenfzo 46657 A positive integer is betw...
nnpw2blenfzo2 46658 A positive integer is eith...
nnpw2pmod 46659 Every positive integer can...
blen1 46660 The binary length of 1. (...
blen2 46661 The binary length of 2. (...
nnpw2p 46662 Every positive integer can...
nnpw2pb 46663 A number is a positive int...
blen1b 46664 The binary length of a non...
blennnt2 46665 The binary length of a pos...
nnolog2flm1 46666 The floor of the binary lo...
blennn0em1 46667 The binary length of the h...
blennngt2o2 46668 The binary length of an od...
blengt1fldiv2p1 46669 The binary length of an in...
blennn0e2 46670 The binary length of an ev...
digfval 46673 Operation to obtain the ` ...
digval 46674 The ` K ` th digit of a no...
digvalnn0 46675 The ` K ` th digit of a no...
nn0digval 46676 The ` K ` th digit of a no...
dignn0fr 46677 The digits of the fraction...
dignn0ldlem 46678 Lemma for ~ dignnld . (Co...
dignnld 46679 The leading digits of a po...
dig2nn0ld 46680 The leading digits of a po...
dig2nn1st 46681 The first (relevant) digit...
dig0 46682 All digits of 0 are 0. (C...
digexp 46683 The ` K ` th digit of a po...
dig1 46684 All but one digits of 1 ar...
0dig1 46685 The ` 0 ` th digit of 1 is...
0dig2pr01 46686 The integers 0 and 1 corre...
dig2nn0 46687 A digit of a nonnegative i...
0dig2nn0e 46688 The last bit of an even in...
0dig2nn0o 46689 The last bit of an odd int...
dig2bits 46690 The ` K ` th digit of a no...
dignn0flhalflem1 46691 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 46692 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 46693 The digits of the half of ...
dignn0flhalf 46694 The digits of the rounded ...
nn0sumshdiglemA 46695 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 46696 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 46697 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 46698 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 46699 A nonnegative integer can ...
nn0mulfsum 46700 Trivial algorithm to calcu...
nn0mullong 46701 Standard algorithm (also k...
naryfval 46704 The set of the n-ary (endo...
naryfvalixp 46705 The set of the n-ary (endo...
naryfvalel 46706 An n-ary (endo)function on...
naryrcl 46707 Reverse closure for n-ary ...
naryfvalelfv 46708 The value of an n-ary (end...
naryfvalelwrdf 46709 An n-ary (endo)function on...
0aryfvalel 46710 A nullary (endo)function o...
0aryfvalelfv 46711 The value of a nullary (en...
1aryfvalel 46712 A unary (endo)function on ...
fv1arycl 46713 Closure of a unary (endo)f...
1arympt1 46714 A unary (endo)function in ...
1arympt1fv 46715 The value of a unary (endo...
1arymaptfv 46716 The value of the mapping o...
1arymaptf 46717 The mapping of unary (endo...
1arymaptf1 46718 The mapping of unary (endo...
1arymaptfo 46719 The mapping of unary (endo...
1arymaptf1o 46720 The mapping of unary (endo...
1aryenef 46721 The set of unary (endo)fun...
1aryenefmnd 46722 The set of unary (endo)fun...
2aryfvalel 46723 A binary (endo)function on...
fv2arycl 46724 Closure of a binary (endo)...
2arympt 46725 A binary (endo)function in...
2arymptfv 46726 The value of a binary (end...
2arymaptfv 46727 The value of the mapping o...
2arymaptf 46728 The mapping of binary (end...
2arymaptf1 46729 The mapping of binary (end...
2arymaptfo 46730 The mapping of binary (end...
2arymaptf1o 46731 The mapping of binary (end...
2aryenef 46732 The set of binary (endo)fu...
itcoval 46737 The value of the function ...
itcoval0 46738 A function iterated zero t...
itcoval1 46739 A function iterated once. ...
itcoval2 46740 A function iterated twice....
itcoval3 46741 A function iterated three ...
itcoval0mpt 46742 A mapping iterated zero ti...
itcovalsuc 46743 The value of the function ...
itcovalsucov 46744 The value of the function ...
itcovalendof 46745 The n-th iterate of an end...
itcovalpclem1 46746 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 46747 Lemma 2 for ~ itcovalpc : ...
itcovalpc 46748 The value of the function ...
itcovalt2lem2lem1 46749 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 46750 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 46751 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 46752 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 46753 The value of the function ...
ackvalsuc1mpt 46754 The Ackermann function at ...
ackvalsuc1 46755 The Ackermann function at ...
ackval0 46756 The Ackermann function at ...
ackval1 46757 The Ackermann function at ...
ackval2 46758 The Ackermann function at ...
ackval3 46759 The Ackermann function at ...
ackendofnn0 46760 The Ackermann function at ...
ackfnnn0 46761 The Ackermann function at ...
ackval0val 46762 The Ackermann function at ...
ackvalsuc0val 46763 The Ackermann function at ...
ackvalsucsucval 46764 The Ackermann function at ...
ackval0012 46765 The Ackermann function at ...
ackval1012 46766 The Ackermann function at ...
ackval2012 46767 The Ackermann function at ...
ackval3012 46768 The Ackermann function at ...
ackval40 46769 The Ackermann function at ...
ackval41a 46770 The Ackermann function at ...
ackval41 46771 The Ackermann function at ...
ackval42 46772 The Ackermann function at ...
ackval42a 46773 The Ackermann function at ...
ackval50 46774 The Ackermann function at ...
fv1prop 46775 The function value of unor...
fv2prop 46776 The function value of unor...
submuladdmuld 46777 Transformation of a sum of...
affinecomb1 46778 Combination of two real af...
affinecomb2 46779 Combination of two real af...
affineid 46780 Identity of an affine comb...
1subrec1sub 46781 Subtract the reciprocal of...
resum2sqcl 46782 The sum of two squares of ...
resum2sqgt0 46783 The sum of the square of a...
resum2sqrp 46784 The sum of the square of a...
resum2sqorgt0 46785 The sum of the square of t...
reorelicc 46786 Membership in and outside ...
rrx2pxel 46787 The x-coordinate of a poin...
rrx2pyel 46788 The y-coordinate of a poin...
prelrrx2 46789 An unordered pair of order...
prelrrx2b 46790 An unordered pair of order...
rrx2pnecoorneor 46791 If two different points ` ...
rrx2pnedifcoorneor 46792 If two different points ` ...
rrx2pnedifcoorneorr 46793 If two different points ` ...
rrx2xpref1o 46794 There is a bijection betwe...
rrx2xpreen 46795 The set of points in the t...
rrx2plord 46796 The lexicographical orderi...
rrx2plord1 46797 The lexicographical orderi...
rrx2plord2 46798 The lexicographical orderi...
rrx2plordisom 46799 The set of points in the t...
rrx2plordso 46800 The lexicographical orderi...
ehl2eudisval0 46801 The Euclidean distance of ...
ehl2eudis0lt 46802 An upper bound of the Eucl...
lines 46807 The lines passing through ...
line 46808 The line passing through t...
rrxlines 46809 Definition of lines passin...
rrxline 46810 The line passing through t...
rrxlinesc 46811 Definition of lines passin...
rrxlinec 46812 The line passing through t...
eenglngeehlnmlem1 46813 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 46814 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 46815 The line definition in the...
rrx2line 46816 The line passing through t...
rrx2vlinest 46817 The vertical line passing ...
rrx2linest 46818 The line passing through t...
rrx2linesl 46819 The line passing through t...
rrx2linest2 46820 The line passing through t...
elrrx2linest2 46821 The line passing through t...
spheres 46822 The spheres for given cent...
sphere 46823 A sphere with center ` X `...
rrxsphere 46824 The sphere with center ` M...
2sphere 46825 The sphere with center ` M...
2sphere0 46826 The sphere around the orig...
line2ylem 46827 Lemma for ~ line2y . This...
line2 46828 Example for a line ` G ` p...
line2xlem 46829 Lemma for ~ line2x . This...
line2x 46830 Example for a horizontal l...
line2y 46831 Example for a vertical lin...
itsclc0lem1 46832 Lemma for theorems about i...
itsclc0lem2 46833 Lemma for theorems about i...
itsclc0lem3 46834 Lemma for theorems about i...
itscnhlc0yqe 46835 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 46836 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 46837 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 46838 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 46839 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 46840 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 46841 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 46842 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 46843 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 46844 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 46845 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 46846 Lemma for ~ itsclc0 . Sol...
itsclc0 46847 The intersection points of...
itsclc0b 46848 The intersection points of...
itsclinecirc0 46849 The intersection points of...
itsclinecirc0b 46850 The intersection points of...
itsclinecirc0in 46851 The intersection points of...
itsclquadb 46852 Quadratic equation for the...
itsclquadeu 46853 Quadratic equation for the...
2itscplem1 46854 Lemma 1 for ~ 2itscp . (C...
2itscplem2 46855 Lemma 2 for ~ 2itscp . (C...
2itscplem3 46856 Lemma D for ~ 2itscp . (C...
2itscp 46857 A condition for a quadrati...
itscnhlinecirc02plem1 46858 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 46859 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 46860 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 46861 Intersection of a nonhoriz...
inlinecirc02plem 46862 Lemma for ~ inlinecirc02p ...
inlinecirc02p 46863 Intersection of a line wit...
inlinecirc02preu 46864 Intersection of a line wit...
pm4.71da 46865 Deduction converting a bic...
logic1 46866 Distribution of implicatio...
logic1a 46867 Variant of ~ logic1 . (Co...
logic2 46868 Variant of ~ logic1 . (Co...
pm5.32dav 46869 Distribution of implicatio...
pm5.32dra 46870 Reverse distribution of im...
exp12bd 46871 The import-export theorem ...
mpbiran3d 46872 Equivalence with a conjunc...
mpbiran4d 46873 Equivalence with a conjunc...
dtrucor3 46874 An example of how ~ ax-5 w...
ralbidb 46875 Formula-building rule for ...
ralbidc 46876 Formula-building rule for ...
r19.41dv 46877 A complex deduction form o...
rspceb2dv 46878 Restricted existential spe...
rmotru 46879 Two ways of expressing "at...
reutru 46880 Two ways of expressing "ex...
reutruALT 46881 Alternate proof for ~ reut...
ssdisjd 46882 Subset preserves disjointn...
ssdisjdr 46883 Subset preserves disjointn...
disjdifb 46884 Relative complement is ant...
predisj 46885 Preimages of disjoint sets...
vsn 46886 The singleton of the unive...
mosn 46887 "At most one" element in a...
mo0 46888 "At most one" element in a...
mosssn 46889 "At most one" element in a...
mo0sn 46890 Two ways of expressing "at...
mosssn2 46891 Two ways of expressing "at...
unilbss 46892 Superclass of the greatest...
inpw 46893 Two ways of expressing a c...
mof0 46894 There is at most one funct...
mof02 46895 A variant of ~ mof0 . (Co...
mof0ALT 46896 Alternate proof for ~ mof0...
eufsnlem 46897 There is exactly one funct...
eufsn 46898 There is exactly one funct...
eufsn2 46899 There is exactly one funct...
mofsn 46900 There is at most one funct...
mofsn2 46901 There is at most one funct...
mofsssn 46902 There is at most one funct...
mofmo 46903 There is at most one funct...
mofeu 46904 The uniqueness of a functi...
elfvne0 46905 If a function value has a ...
fdomne0 46906 A function with non-empty ...
f1sn2g 46907 A function that maps a sin...
f102g 46908 A function that maps the e...
f1mo 46909 A function that maps a set...
f002 46910 A function with an empty c...
map0cor 46911 A function exists iff an e...
fvconstr 46912 Two ways of expressing ` A...
fvconstrn0 46913 Two ways of expressing ` A...
fvconstr2 46914 Two ways of expressing ` A...
fvconst0ci 46915 A constant function's valu...
fvconstdomi 46916 A constant function's valu...
f1omo 46917 There is at most one eleme...
f1omoALT 46918 There is at most one eleme...
iccin 46919 Intersection of two closed...
iccdisj2 46920 If the upper bound of one ...
iccdisj 46921 If the upper bound of one ...
mreuniss 46922 The union of a collection ...
clduni 46923 The union of closed sets i...
opncldeqv 46924 Conditions on open sets ar...
opndisj 46925 Two ways of saying that tw...
clddisj 46926 Two ways of saying that tw...
neircl 46927 Reverse closure of the nei...
opnneilem 46928 Lemma factoring out common...
opnneir 46929 If something is true for a...
opnneirv 46930 A variant of ~ opnneir wit...
opnneilv 46931 The converse of ~ opnneir ...
opnneil 46932 A variant of ~ opnneilv . ...
opnneieqv 46933 The equivalence between ne...
opnneieqvv 46934 The equivalence between ne...
restcls2lem 46935 A closed set in a subspace...
restcls2 46936 A closed set in a subspace...
restclsseplem 46937 Lemma for ~ restclssep . ...
restclssep 46938 Two disjoint closed sets i...
cnneiima 46939 Given a continuous functio...
iooii 46940 Open intervals are open se...
icccldii 46941 Closed intervals are close...
i0oii 46942 ` ( 0 [,) A ) ` is open in...
io1ii 46943 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 46944 Lemma for ~ sepnsepo . (C...
sepnsepolem2 46945 Open neighborhood and neig...
sepnsepo 46946 Open neighborhood and neig...
sepdisj 46947 Separated sets are disjoin...
seposep 46948 If two sets are separated ...
sepcsepo 46949 If two sets are separated ...
sepfsepc 46950 If two sets are separated ...
seppsepf 46951 If two sets are precisely ...
seppcld 46952 If two sets are precisely ...
isnrm4 46953 A topological space is nor...
dfnrm2 46954 A topological space is nor...
dfnrm3 46955 A topological space is nor...
iscnrm3lem1 46956 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 46957 Lemma for ~ iscnrm3 provin...
iscnrm3lem3 46958 Lemma for ~ iscnrm3lem4 . ...
iscnrm3lem4 46959 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 46960 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 46961 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 46962 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 46963 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 46964 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 46965 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 46966 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 46967 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 46968 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 46969 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 46970 Lemma for ~ iscnrm3r . Di...
iscnrm3r 46971 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 46972 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 46973 Lemma for ~ iscnrm3l . If...
iscnrm3l 46974 Lemma for ~ iscnrm3 . Giv...
iscnrm3 46975 A completely normal topolo...
iscnrm3v 46976 A topology is completely n...
iscnrm4 46977 A completely normal topolo...
isprsd 46978 Property of being a preord...
lubeldm2 46979 Member of the domain of th...
glbeldm2 46980 Member of the domain of th...
lubeldm2d 46981 Member of the domain of th...
glbeldm2d 46982 Member of the domain of th...
lubsscl 46983 If a subset of ` S ` conta...
glbsscl 46984 If a subset of ` S ` conta...
lubprlem 46985 Lemma for ~ lubprdm and ~ ...
lubprdm 46986 The set of two comparable ...
lubpr 46987 The LUB of the set of two ...
glbprlem 46988 Lemma for ~ glbprdm and ~ ...
glbprdm 46989 The set of two comparable ...
glbpr 46990 The GLB of the set of two ...
joindm2 46991 The join of any two elemen...
joindm3 46992 The join of any two elemen...
meetdm2 46993 The meet of any two elemen...
meetdm3 46994 The meet of any two elemen...
posjidm 46995 Poset join is idempotent. ...
posmidm 46996 Poset meet is idempotent. ...
toslat 46997 A toset is a lattice. (Co...
isclatd 46998 The predicate "is a comple...
intubeu 46999 Existential uniqueness of ...
unilbeu 47000 Existential uniqueness of ...
ipolublem 47001 Lemma for ~ ipolubdm and ~...
ipolubdm 47002 The domain of the LUB of t...
ipolub 47003 The LUB of the inclusion p...
ipoglblem 47004 Lemma for ~ ipoglbdm and ~...
ipoglbdm 47005 The domain of the GLB of t...
ipoglb 47006 The GLB of the inclusion p...
ipolub0 47007 The LUB of the empty set i...
ipolub00 47008 The LUB of the empty set i...
ipoglb0 47009 The GLB of the empty set i...
mrelatlubALT 47010 Least upper bounds in a Mo...
mrelatglbALT 47011 Greatest lower bounds in a...
mreclat 47012 A Moore space is a complet...
topclat 47013 A topology is a complete l...
toplatglb0 47014 The empty intersection in ...
toplatlub 47015 Least upper bounds in a to...
toplatglb 47016 Greatest lower bounds in a...
toplatjoin 47017 Joins in a topology are re...
toplatmeet 47018 Meets in a topology are re...
topdlat 47019 A topology is a distributi...
catprslem 47020 Lemma for ~ catprs . (Con...
catprs 47021 A preorder can be extracte...
catprs2 47022 A category equipped with t...
catprsc 47023 A construction of the preo...
catprsc2 47024 An alternate construction ...
endmndlem 47025 A diagonal hom-set in a ca...
idmon 47026 An identity arrow, or an i...
idepi 47027 An identity arrow, or an i...
funcf2lem 47028 A utility theorem for prov...
isthinc 47031 The predicate "is a thin c...
isthinc2 47032 A thin category is a categ...
isthinc3 47033 A thin category is a categ...
thincc 47034 A thin category is a categ...
thinccd 47035 A thin category is a categ...
thincssc 47036 A thin category is a categ...
isthincd2lem1 47037 Lemma for ~ isthincd2 and ...
thincmo2 47038 Morphisms in the same hom-...
thincmo 47039 There is at most one morph...
thincmoALT 47040 Alternate proof for ~ thin...
thincmod 47041 At most one morphism in ea...
thincn0eu 47042 In a thin category, a hom-...
thincid 47043 In a thin category, a morp...
thincmon 47044 In a thin category, all mo...
thincepi 47045 In a thin category, all mo...
isthincd2lem2 47046 Lemma for ~ isthincd2 . (...
isthincd 47047 The predicate "is a thin c...
isthincd2 47048 The predicate " ` C ` is a...
oppcthin 47049 The opposite category of a...
subthinc 47050 A subcategory of a thin ca...
functhinclem1 47051 Lemma for ~ functhinc . G...
functhinclem2 47052 Lemma for ~ functhinc . (...
functhinclem3 47053 Lemma for ~ functhinc . T...
functhinclem4 47054 Lemma for ~ functhinc . O...
functhinc 47055 A functor to a thin catego...
fullthinc 47056 A functor to a thin catego...
fullthinc2 47057 A full functor to a thin c...
thincfth 47058 A functor from a thin cate...
thincciso 47059 Two thin categories are is...
0thincg 47060 Any structure with an empt...
0thinc 47061 The empty category (see ~ ...
indthinc 47062 An indiscrete category in ...
indthincALT 47063 An alternate proof for ~ i...
prsthinc 47064 Preordered sets as categor...
setcthin 47065 A category of sets all of ...
setc2othin 47066 The category ` ( SetCat ``...
thincsect 47067 In a thin category, one mo...
thincsect2 47068 In a thin category, ` F ` ...
thincinv 47069 In a thin category, ` F ` ...
thinciso 47070 In a thin category, ` F : ...
thinccic 47071 In a thin category, two ob...
prstcval 47074 Lemma for ~ prstcnidlem an...
prstcnidlem 47075 Lemma for ~ prstcnid and ~...
prstcnid 47076 Components other than ` Ho...
prstcbas 47077 The base set is unchanged....
prstcleval 47078 Value of the less-than-or-...
prstclevalOLD 47079 Obsolete proof of ~ prstcl...
prstcle 47080 Value of the less-than-or-...
prstcocval 47081 Orthocomplementation is un...
prstcocvalOLD 47082 Obsolete proof of ~ prstco...
prstcoc 47083 Orthocomplementation is un...
prstchomval 47084 Hom-sets of the constructe...
prstcprs 47085 The category is a preorder...
prstcthin 47086 The preordered set is equi...
prstchom 47087 Hom-sets of the constructe...
prstchom2 47088 Hom-sets of the constructe...
prstchom2ALT 47089 Hom-sets of the constructe...
postcpos 47090 The converted category is ...
postcposALT 47091 Alternate proof for ~ post...
postc 47092 The converted category is ...
mndtcval 47095 Value of the category buil...
mndtcbasval 47096 The base set of the catego...
mndtcbas 47097 The category built from a ...
mndtcob 47098 Lemma for ~ mndtchom and ~...
mndtcbas2 47099 Two objects in a category ...
mndtchom 47100 The only hom-set of the ca...
mndtcco 47101 The composition of the cat...
mndtcco2 47102 The composition of the cat...
mndtccatid 47103 Lemma for ~ mndtccat and ~...
mndtccat 47104 The function value is a ca...
mndtcid 47105 The identity morphism, or ...
grptcmon 47106 All morphisms in a categor...
grptcepi 47107 All morphisms in a categor...
nfintd 47108 Bound-variable hypothesis ...
nfiund 47109 Bound-variable hypothesis ...
nfiundg 47110 Bound-variable hypothesis ...
iunord 47111 The indexed union of a col...
iunordi 47112 The indexed union of a col...
spd 47113 Specialization deduction, ...
spcdvw 47114 A version of ~ spcdv where...
tfis2d 47115 Transfinite Induction Sche...
bnd2d 47116 Deduction form of ~ bnd2 ....
dffun3f 47117 Alternate definition of fu...
setrecseq 47120 Equality theorem for set r...
nfsetrecs 47121 Bound-variable hypothesis ...
setrec1lem1 47122 Lemma for ~ setrec1 . Thi...
setrec1lem2 47123 Lemma for ~ setrec1 . If ...
setrec1lem3 47124 Lemma for ~ setrec1 . If ...
setrec1lem4 47125 Lemma for ~ setrec1 . If ...
setrec1 47126 This is the first of two f...
setrec2fun 47127 This is the second of two ...
setrec2lem1 47128 Lemma for ~ setrec2 . The...
setrec2lem2 47129 Lemma for ~ setrec2 . The...
setrec2 47130 This is the second of two ...
setrec2v 47131 Version of ~ setrec2 with ...
setrec2mpt 47132 Version of ~ setrec2 where...
setis 47133 Version of ~ setrec2 expre...
elsetrecslem 47134 Lemma for ~ elsetrecs . A...
elsetrecs 47135 A set ` A ` is an element ...
setrecsss 47136 The ` setrecs ` operator r...
setrecsres 47137 A recursively generated cl...
vsetrec 47138 Construct ` _V ` using set...
0setrec 47139 If a function sends the em...
onsetreclem1 47140 Lemma for ~ onsetrec . (C...
onsetreclem2 47141 Lemma for ~ onsetrec . (C...
onsetreclem3 47142 Lemma for ~ onsetrec . (C...
onsetrec 47143 Construct ` On ` using set...
elpglem1 47146 Lemma for ~ elpg . (Contr...
elpglem2 47147 Lemma for ~ elpg . (Contr...
elpglem3 47148 Lemma for ~ elpg . (Contr...
elpg 47149 Membership in the class of...
pgindlem 47150 Lemma for ~ pgind . (Cont...
pgindnf 47151 Version of ~ pgind with ex...
pgind 47152 Induction on partizan game...
sbidd 47153 An identity theorem for su...
sbidd-misc 47154 An identity theorem for su...
gte-lte 47159 Simple relationship betwee...
gt-lt 47160 Simple relationship betwee...
gte-lteh 47161 Relationship between ` <_ ...
gt-lth 47162 Relationship between ` < `...
ex-gt 47163 Simple example of ` > ` , ...
ex-gte 47164 Simple example of ` >_ ` ,...
sinhval-named 47171 Value of the named sinh fu...
coshval-named 47172 Value of the named cosh fu...
tanhval-named 47173 Value of the named tanh fu...
sinh-conventional 47174 Conventional definition of...
sinhpcosh 47175 Prove that ` ( sinh `` A )...
secval 47182 Value of the secant functi...
cscval 47183 Value of the cosecant func...
cotval 47184 Value of the cotangent fun...
seccl 47185 The closure of the secant ...
csccl 47186 The closure of the cosecan...
cotcl 47187 The closure of the cotange...
reseccl 47188 The closure of the secant ...
recsccl 47189 The closure of the cosecan...
recotcl 47190 The closure of the cotange...
recsec 47191 The reciprocal of secant i...
reccsc 47192 The reciprocal of cosecant...
reccot 47193 The reciprocal of cotangen...
rectan 47194 The reciprocal of tangent ...
sec0 47195 The value of the secant fu...
onetansqsecsq 47196 Prove the tangent squared ...
cotsqcscsq 47197 Prove the tangent squared ...
ifnmfalse 47198 If A is not a member of B,...
logb2aval 47199 Define the value of the ` ...
comraddi 47206 Commute RHS addition. See...
mvlraddi 47207 Move the right term in a s...
mvrladdi 47208 Move the left term in a su...
assraddsubi 47209 Associate RHS addition-sub...
joinlmuladdmuli 47210 Join AB+CB into (A+C) on L...
joinlmulsubmuld 47211 Join AB-CB into (A-C) on L...
joinlmulsubmuli 47212 Join AB-CB into (A-C) on L...
mvlrmuld 47213 Move the right term in a p...
mvlrmuli 47214 Move the right term in a p...
i2linesi 47215 Solve for the intersection...
i2linesd 47216 Solve for the intersection...
alimp-surprise 47217 Demonstrate that when usin...
alimp-no-surprise 47218 There is no "surprise" in ...
empty-surprise 47219 Demonstrate that when usin...
empty-surprise2 47220 "Prove" that false is true...
eximp-surprise 47221 Show what implication insi...
eximp-surprise2 47222 Show that "there exists" w...
alsconv 47227 There is an equivalence be...
alsi1d 47228 Deduction rule: Given "al...
alsi2d 47229 Deduction rule: Given "al...
alsc1d 47230 Deduction rule: Given "al...
alsc2d 47231 Deduction rule: Given "al...
alscn0d 47232 Deduction rule: Given "al...
alsi-no-surprise 47233 Demonstrate that there is ...
5m4e1 47234 Prove that 5 - 4 = 1. (Co...
2p2ne5 47235 Prove that ` 2 + 2 =/= 5 `...
resolution 47236 Resolution rule. This is ...
testable 47237 In classical logic all wff...
aacllem 47238 Lemma for other theorems a...
amgmwlem 47239 Weighted version of ~ amgm...
amgmlemALT 47240 Alternate proof of ~ amgml...
amgmw2d 47241 Weighted arithmetic-geomet...
young2d 47242 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator