| Metamath Proof Explorer |
This is the Unicode version. Change to GIF version |
||
| Ref | Description |
| idi 1 | (_Note_: This inference r... |
| a1ii 2 | (_Note_: This inference r... |
| mp2 9 | A double modus ponens infe... |
| mp2b 10 | A double modus ponens infe... |
| a1i 11 | Inference introducing an a... |
| 2a1i 12 | Inference introducing two ... |
| mp1i 13 | Inference detaching an ant... |
| a2i 14 | Inference distributing an ... |
| mpd 15 | A modus ponens deduction. ... |
| imim2i 16 | Inference adding common an... |
| syl 17 | An inference version of th... |
| 3syl 18 | Inference chaining two syl... |
| 4syl 19 | Inference chaining three s... |
| mpi 20 | A nested modus ponens infe... |
| mpisyl 21 | A syllogism combined with ... |
| id 22 | Principle of identity. Th... |
| idALT 23 | Alternate proof of ~ id . ... |
| idd 24 | Principle of identity ~ id... |
| a1d 25 | Deduction introducing an e... |
| 2a1d 26 | Deduction introducing two ... |
| a1i13 27 | Add two antecedents to a w... |
| 2a1 28 | A double form of ~ ax-1 . ... |
| a2d 29 | Deduction distributing an ... |
| sylcom 30 | Syllogism inference with c... |
| syl5com 31 | Syllogism inference with c... |
| com12 32 | Inference that swaps (comm... |
| syl11 33 | A syllogism inference. Co... |
| syl5 34 | A syllogism rule of infere... |
| syl6 35 | A syllogism rule of infere... |
| syl56 36 | Combine ~ syl5 and ~ syl6 ... |
| syl6com 37 | Syllogism inference with c... |
| mpcom 38 | Modus ponens inference wit... |
| syli 39 | Syllogism inference with c... |
| syl2im 40 | Replace two antecedents. ... |
| syl2imc 41 | A commuted version of ~ sy... |
| pm2.27 42 | This theorem, sometimes ca... |
| mpdd 43 | A nested modus ponens dedu... |
| mpid 44 | A nested modus ponens dedu... |
| mpdi 45 | A nested modus ponens dedu... |
| mpii 46 | A doubly nested modus pone... |
| syld 47 | Syllogism deduction. Dedu... |
| syldc 48 | Syllogism deduction. Comm... |
| mp2d 49 | A double modus ponens dedu... |
| a1dd 50 | Double deduction introduci... |
| 2a1dd 51 | Double deduction introduci... |
| pm2.43i 52 | Inference absorbing redund... |
| pm2.43d 53 | Deduction absorbing redund... |
| pm2.43a 54 | Inference absorbing redund... |
| pm2.43b 55 | Inference absorbing redund... |
| pm2.43 56 | Absorption of redundant an... |
| imim2d 57 | Deduction adding nested an... |
| imim2 58 | A closed form of syllogism... |
| embantd 59 | Deduction embedding an ant... |
| 3syld 60 | Triple syllogism deduction... |
| sylsyld 61 | A double syllogism inferen... |
| imim12i 62 | Inference joining two impl... |
| imim1i 63 | Inference adding common co... |
| imim3i 64 | Inference adding three nes... |
| sylc 65 | A syllogism inference comb... |
| syl3c 66 | A syllogism inference comb... |
| syl6mpi 67 | A syllogism inference. (C... |
| mpsyl 68 | Modus ponens combined with... |
| mpsylsyld 69 | Modus ponens combined with... |
| syl6c 70 | Inference combining ~ syl6... |
| syl6ci 71 | A syllogism inference comb... |
| syldd 72 | Nested syllogism deduction... |
| syl5d 73 | A nested syllogism deducti... |
| syl7 74 | A syllogism rule of infere... |
| syl6d 75 | A nested syllogism deducti... |
| syl8 76 | A syllogism rule of infere... |
| syl9 77 | A nested syllogism inferen... |
| syl9r 78 | A nested syllogism inferen... |
| syl10 79 | A nested syllogism inferen... |
| a1ddd 80 | Triple deduction introduci... |
| imim12d 81 | Deduction combining antece... |
| imim1d 82 | Deduction adding nested co... |
| imim1 83 | A closed form of syllogism... |
| pm2.83 84 | Theorem *2.83 of [Whitehea... |
| peirceroll 85 | Over minimal implicational... |
| com23 86 | Commutation of antecedents... |
| com3r 87 | Commutation of antecedents... |
| com13 88 | Commutation of antecedents... |
| com3l 89 | Commutation of antecedents... |
| pm2.04 90 | Swap antecedents. Theorem... |
| com34 91 | Commutation of antecedents... |
| com4l 92 | Commutation of antecedents... |
| com4t 93 | Commutation of antecedents... |
| com4r 94 | Commutation of antecedents... |
| com24 95 | Commutation of antecedents... |
| com14 96 | Commutation of antecedents... |
| com45 97 | Commutation of antecedents... |
| com35 98 | Commutation of antecedents... |
| com25 99 | Commutation of antecedents... |
| com5l 100 | Commutation of antecedents... |
| com15 101 | Commutation of antecedents... |
| com52l 102 | Commutation of antecedents... |
| com52r 103 | Commutation of antecedents... |
| com5r 104 | Commutation of antecedents... |
| imim12 105 | Closed form of ~ imim12i a... |
| jarr 106 | Elimination of a nested an... |
| jarri 107 | Inference associated with ... |
| pm2.86d 108 | Deduction associated with ... |
| pm2.86 109 | Converse of Axiom ~ ax-2 .... |
| pm2.86i 110 | Inference associated with ... |
| loolin 111 | The Linearity Axiom of the... |
| loowoz 112 | An alternate for the Linea... |
| con4 113 | Alias for ~ ax-3 to be use... |
| con4i 114 | Inference associated with ... |
| con4d 115 | Deduction associated with ... |
| mt4 116 | The rule of modus tollens.... |
| mt4d 117 | Modus tollens deduction. ... |
| mt4i 118 | Modus tollens inference. ... |
| pm2.21i 119 | A contradiction implies an... |
| pm2.24ii 120 | A contradiction implies an... |
| pm2.21d 121 | A contradiction implies an... |
| pm2.21ddALT 122 | Alternate proof of ~ pm2.2... |
| pm2.21 123 | From a wff and its negatio... |
| pm2.24 124 | Theorem *2.24 of [Whitehea... |
| jarl 125 | Elimination of a nested an... |
| jarli 126 | Inference associated with ... |
| pm2.18d 127 | Deduction form of the Clav... |
| pm2.18 128 | Clavius law, or "consequen... |
| pm2.18i 129 | Inference associated with ... |
| notnotr 130 | Double negation eliminatio... |
| notnotri 131 | Inference associated with ... |
| notnotriALT 132 | Alternate proof of ~ notno... |
| notnotrd 133 | Deduction associated with ... |
| con2d 134 | A contraposition deduction... |
| con2 135 | Contraposition. Theorem *... |
| mt2d 136 | Modus tollens deduction. ... |
| mt2i 137 | Modus tollens inference. ... |
| nsyl3 138 | A negated syllogism infere... |
| con2i 139 | A contraposition inference... |
| nsyl 140 | A negated syllogism infere... |
| nsyl2 141 | A negated syllogism infere... |
| notnot 142 | Double negation introducti... |
| notnoti 143 | Inference associated with ... |
| notnotd 144 | Deduction associated with ... |
| con1d 145 | A contraposition deduction... |
| con1 146 | Contraposition. Theorem *... |
| con1i 147 | A contraposition inference... |
| mt3d 148 | Modus tollens deduction. ... |
| mt3i 149 | Modus tollens inference. ... |
| pm2.24i 150 | Inference associated with ... |
| pm2.24d 151 | Deduction form of ~ pm2.24... |
| con3d 152 | A contraposition deduction... |
| con3 153 | Contraposition. Theorem *... |
| con3i 154 | A contraposition inference... |
| con3rr3 155 | Rotate through consequent ... |
| nsyld 156 | A negated syllogism deduct... |
| nsyli 157 | A negated syllogism infere... |
| nsyl4 158 | A negated syllogism infere... |
| nsyl5 159 | A negated syllogism infere... |
| pm3.2im 160 | Theorem *3.2 of [Whitehead... |
| jc 161 | Deduction joining the cons... |
| jcn 162 | Theorem joining the conseq... |
| jcnd 163 | Deduction joining the cons... |
| impi 164 | An importation inference. ... |
| expi 165 | An exportation inference. ... |
| simprim 166 | Simplification. Similar t... |
| simplim 167 | Simplification. Similar t... |
| pm2.5g 168 | General instance of Theore... |
| pm2.5 169 | Theorem *2.5 of [Whitehead... |
| conax1 170 | Contrapositive of ~ ax-1 .... |
| conax1k 171 | Weakening of ~ conax1 . G... |
| pm2.51 172 | Theorem *2.51 of [Whitehea... |
| pm2.52 173 | Theorem *2.52 of [Whitehea... |
| pm2.521g 174 | A general instance of Theo... |
| pm2.521g2 175 | A general instance of Theo... |
| pm2.521 176 | Theorem *2.521 of [Whitehe... |
| expt 177 | Exportation theorem ~ pm3.... |
| impt 178 | Importation theorem ~ pm3.... |
| pm2.61d 179 | Deduction eliminating an a... |
| pm2.61d1 180 | Inference eliminating an a... |
| pm2.61d2 181 | Inference eliminating an a... |
| pm2.61i 182 | Inference eliminating an a... |
| pm2.61ii 183 | Inference eliminating two ... |
| pm2.61nii 184 | Inference eliminating two ... |
| pm2.61iii 185 | Inference eliminating thre... |
| ja 186 | Inference joining the ante... |
| jad 187 | Deduction form of ~ ja . ... |
| pm2.01 188 | Weak Clavius law. If a fo... |
| pm2.01i 189 | Inference associated with ... |
| pm2.01d 190 | Deduction based on reducti... |
| pm2.6 191 | Theorem *2.6 of [Whitehead... |
| pm2.61 192 | Theorem *2.61 of [Whitehea... |
| pm2.65 193 | Theorem *2.65 of [Whitehea... |
| pm2.65i 194 | Inference for proof by con... |
| pm2.21dd 195 | A contradiction implies an... |
| pm2.65d 196 | Deduction for proof by con... |
| mto 197 | The rule of modus tollens.... |
| mtod 198 | Modus tollens deduction. ... |
| mtoi 199 | Modus tollens inference. ... |
| mt2 200 | A rule similar to modus to... |
| mt3 201 | A rule similar to modus to... |
| peirce 202 | Peirce's axiom. A non-int... |
| looinv 203 | The Inversion Axiom of the... |
| bijust0 204 | A self-implication (see ~ ... |
| bijust 205 | Theorem used to justify th... |
| impbi 208 | Property of the biconditio... |
| impbii 209 | Infer an equivalence from ... |
| impbidd 210 | Deduce an equivalence from... |
| impbid21d 211 | Deduce an equivalence from... |
| impbid 212 | Deduce an equivalence from... |
| dfbi1 213 | Relate the biconditional c... |
| dfbi1ALT 214 | Alternate proof of ~ dfbi1... |
| biimp 215 | Property of the biconditio... |
| biimpi 216 | Infer an implication from ... |
| sylbi 217 | A mixed syllogism inferenc... |
| sylib 218 | A mixed syllogism inferenc... |
| sylbb 219 | A mixed syllogism inferenc... |
| biimpr 220 | Property of the biconditio... |
| bicom1 221 | Commutative law for the bi... |
| bicom 222 | Commutative law for the bi... |
| bicomd 223 | Commute two sides of a bic... |
| bicomi 224 | Inference from commutative... |
| impbid1 225 | Infer an equivalence from ... |
| impbid2 226 | Infer an equivalence from ... |
| impcon4bid 227 | A variation on ~ impbid wi... |
| biimpri 228 | Infer a converse implicati... |
| biimpd 229 | Deduce an implication from... |
| mpbi 230 | An inference from a bicond... |
| mpbir 231 | An inference from a bicond... |
| mpbid 232 | A deduction from a bicondi... |
| mpbii 233 | An inference from a nested... |
| sylibr 234 | A mixed syllogism inferenc... |
| sylbir 235 | A mixed syllogism inferenc... |
| sylbbr 236 | A mixed syllogism inferenc... |
| sylbb1 237 | A mixed syllogism inferenc... |
| sylbb2 238 | A mixed syllogism inferenc... |
| sylibd 239 | A syllogism deduction. (C... |
| sylbid 240 | A syllogism deduction. (C... |
| mpbidi 241 | A deduction from a bicondi... |
| biimtrid 242 | A mixed syllogism inferenc... |
| biimtrrid 243 | A mixed syllogism inferenc... |
| imbitrid 244 | A mixed syllogism inferenc... |
| syl5ibcom 245 | A mixed syllogism inferenc... |
| imbitrrid 246 | A mixed syllogism inferenc... |
| syl5ibrcom 247 | A mixed syllogism inferenc... |
| biimprd 248 | Deduce a converse implicat... |
| biimpcd 249 | Deduce a commuted implicat... |
| biimprcd 250 | Deduce a converse commuted... |
| imbitrdi 251 | A mixed syllogism inferenc... |
| imbitrrdi 252 | A mixed syllogism inferenc... |
| biimtrdi 253 | A mixed syllogism inferenc... |
| biimtrrdi 254 | A mixed syllogism inferenc... |
| syl7bi 255 | A mixed syllogism inferenc... |
| syl8ib 256 | A syllogism rule of infere... |
| mpbird 257 | A deduction from a bicondi... |
| mpbiri 258 | An inference from a nested... |
| sylibrd 259 | A syllogism deduction. (C... |
| sylbird 260 | A syllogism deduction. (C... |
| biid 261 | Principle of identity for ... |
| biidd 262 | Principle of identity with... |
| pm5.1im 263 | Two propositions are equiv... |
| 2th 264 | Two truths are equivalent.... |
| 2thd 265 | Two truths are equivalent.... |
| monothetic 266 | Two self-implications (see... |
| ibi 267 | Inference that converts a ... |
| ibir 268 | Inference that converts a ... |
| ibd 269 | Deduction that converts a ... |
| pm5.74 270 | Distribution of implicatio... |
| pm5.74i 271 | Distribution of implicatio... |
| pm5.74ri 272 | Distribution of implicatio... |
| pm5.74d 273 | Distribution of implicatio... |
| pm5.74rd 274 | Distribution of implicatio... |
| bitri 275 | An inference from transiti... |
| bitr2i 276 | An inference from transiti... |
| bitr3i 277 | An inference from transiti... |
| bitr4i 278 | An inference from transiti... |
| bitrd 279 | Deduction form of ~ bitri ... |
| bitr2d 280 | Deduction form of ~ bitr2i... |
| bitr3d 281 | Deduction form of ~ bitr3i... |
| bitr4d 282 | Deduction form of ~ bitr4i... |
| bitrid 283 | A syllogism inference from... |
| bitr2id 284 | A syllogism inference from... |
| bitr3id 285 | A syllogism inference from... |
| bitr3di 286 | A syllogism inference from... |
| bitrdi 287 | A syllogism inference from... |
| bitr2di 288 | A syllogism inference from... |
| bitr4di 289 | A syllogism inference from... |
| bitr4id 290 | A syllogism inference from... |
| 3imtr3i 291 | A mixed syllogism inferenc... |
| 3imtr4i 292 | A mixed syllogism inferenc... |
| 3imtr3d 293 | More general version of ~ ... |
| 3imtr4d 294 | More general version of ~ ... |
| 3imtr3g 295 | More general version of ~ ... |
| 3imtr4g 296 | More general version of ~ ... |
| 3bitri 297 | A chained inference from t... |
| 3bitrri 298 | A chained inference from t... |
| 3bitr2i 299 | A chained inference from t... |
| 3bitr2ri 300 | A chained inference from t... |
| 3bitr3i 301 | A chained inference from t... |
| 3bitr3ri 302 | A chained inference from t... |
| 3bitr4i 303 | A chained inference from t... |
| 3bitr4ri 304 | A chained inference from t... |
| 3bitrd 305 | Deduction from transitivit... |
| 3bitrrd 306 | Deduction from transitivit... |
| 3bitr2d 307 | Deduction from transitivit... |
| 3bitr2rd 308 | Deduction from transitivit... |
| 3bitr3d 309 | Deduction from transitivit... |
| 3bitr3rd 310 | Deduction from transitivit... |
| 3bitr4d 311 | Deduction from transitivit... |
| 3bitr4rd 312 | Deduction from transitivit... |
| 3bitr3g 313 | More general version of ~ ... |
| 3bitr4g 314 | More general version of ~ ... |
| notnotb 315 | Double negation. Theorem ... |
| con34b 316 | A biconditional form of co... |
| con4bid 317 | A contraposition deduction... |
| notbid 318 | Deduction negating both si... |
| notbi 319 | Contraposition. Theorem *... |
| notbii 320 | Negate both sides of a log... |
| con4bii 321 | A contraposition inference... |
| mtbi 322 | An inference from a bicond... |
| mtbir 323 | An inference from a bicond... |
| mtbid 324 | A deduction from a bicondi... |
| mtbird 325 | A deduction from a bicondi... |
| mtbii 326 | An inference from a bicond... |
| mtbiri 327 | An inference from a bicond... |
| sylnib 328 | A mixed syllogism inferenc... |
| sylnibr 329 | A mixed syllogism inferenc... |
| sylnbi 330 | A mixed syllogism inferenc... |
| sylnbir 331 | A mixed syllogism inferenc... |
| xchnxbi 332 | Replacement of a subexpres... |
| xchnxbir 333 | Replacement of a subexpres... |
| xchbinx 334 | Replacement of a subexpres... |
| xchbinxr 335 | Replacement of a subexpres... |
| imbi2i 336 | Introduce an antecedent to... |
| bibi2i 337 | Inference adding a bicondi... |
| bibi1i 338 | Inference adding a bicondi... |
| bibi12i 339 | The equivalence of two equ... |
| imbi2d 340 | Deduction adding an antece... |
| imbi1d 341 | Deduction adding a consequ... |
| bibi2d 342 | Deduction adding a bicondi... |
| bibi1d 343 | Deduction adding a bicondi... |
| imbi12d 344 | Deduction joining two equi... |
| bibi12d 345 | Deduction joining two equi... |
| imbi12 346 | Closed form of ~ imbi12i .... |
| imbi1 347 | Theorem *4.84 of [Whitehea... |
| imbi2 348 | Theorem *4.85 of [Whitehea... |
| imbi1i 349 | Introduce a consequent to ... |
| imbi12i 350 | Join two logical equivalen... |
| bibi1 351 | Theorem *4.86 of [Whitehea... |
| bitr3 352 | Closed nested implication ... |
| con2bi 353 | Contraposition. Theorem *... |
| con2bid 354 | A contraposition deduction... |
| con1bid 355 | A contraposition deduction... |
| con1bii 356 | A contraposition inference... |
| con2bii 357 | A contraposition inference... |
| con1b 358 | Contraposition. Bidirecti... |
| con2b 359 | Contraposition. Bidirecti... |
| biimt 360 | A wff is equivalent to its... |
| pm5.5 361 | Theorem *5.5 of [Whitehead... |
| a1bi 362 | Inference introducing a th... |
| mt2bi 363 | A false consequent falsifi... |
| mtt 364 | Modus-tollens-like theorem... |
| imnot 365 | If a proposition is false,... |
| pm5.501 366 | Theorem *5.501 of [Whitehe... |
| ibib 367 | Implication in terms of im... |
| ibibr 368 | Implication in terms of im... |
| tbt 369 | A wff is equivalent to its... |
| nbn2 370 | The negation of a wff is e... |
| bibif 371 | Transfer negation via an e... |
| nbn 372 | The negation of a wff is e... |
| nbn3 373 | Transfer falsehood via equ... |
| pm5.21im 374 | Two propositions are equiv... |
| 2false 375 | Two falsehoods are equival... |
| 2falsed 376 | Two falsehoods are equival... |
| pm5.21ni 377 | Two propositions implying ... |
| pm5.21nii 378 | Eliminate an antecedent im... |
| pm5.21ndd 379 | Eliminate an antecedent im... |
| bija 380 | Combine antecedents into a... |
| pm5.18 381 | Theorem *5.18 of [Whitehea... |
| xor3 382 | Two ways to express "exclu... |
| nbbn 383 | Move negation outside of b... |
| biass 384 | Associative law for the bi... |
| biluk 385 | Lukasiewicz's shortest axi... |
| pm5.19 386 | Theorem *5.19 of [Whitehea... |
| bi2.04 387 | Logical equivalence of com... |
| pm5.4 388 | Antecedent absorption impl... |
| imdi 389 | Distributive law for impli... |
| pm5.41 390 | Theorem *5.41 of [Whitehea... |
| imbibi 391 | The antecedent of one side... |
| pm4.8 392 | Theorem *4.8 of [Whitehead... |
| pm4.81 393 | A formula is equivalent to... |
| imim21b 394 | Simplify an implication be... |
| pm4.63 397 | Theorem *4.63 of [Whitehea... |
| pm4.67 398 | Theorem *4.67 of [Whitehea... |
| imnan 399 | Express an implication in ... |
| imnani 400 | Infer an implication from ... |
| iman 401 | Implication in terms of co... |
| pm3.24 402 | Law of noncontradiction. ... |
| annim 403 | Express a conjunction in t... |
| pm4.61 404 | Theorem *4.61 of [Whitehea... |
| pm4.65 405 | Theorem *4.65 of [Whitehea... |
| imp 406 | Importation inference. (C... |
| impcom 407 | Importation inference with... |
| con3dimp 408 | Variant of ~ con3d with im... |
| mpnanrd 409 | Eliminate the right side o... |
| impd 410 | Importation deduction. (C... |
| impcomd 411 | Importation deduction with... |
| ex 412 | Exportation inference. (T... |
| expcom 413 | Exportation inference with... |
| expdcom 414 | Commuted form of ~ expd . ... |
| expd 415 | Exportation deduction. (C... |
| expcomd 416 | Deduction form of ~ expcom... |
| imp31 417 | An importation inference. ... |
| imp32 418 | An importation inference. ... |
| exp31 419 | An exportation inference. ... |
| exp32 420 | An exportation inference. ... |
| imp4b 421 | An importation inference. ... |
| imp4a 422 | An importation inference. ... |
| imp4c 423 | An importation inference. ... |
| imp4d 424 | An importation inference. ... |
| imp41 425 | An importation inference. ... |
| imp42 426 | An importation inference. ... |
| imp43 427 | An importation inference. ... |
| imp44 428 | An importation inference. ... |
| imp45 429 | An importation inference. ... |
| exp4b 430 | An exportation inference. ... |
| exp4a 431 | An exportation inference. ... |
| exp4c 432 | An exportation inference. ... |
| exp4d 433 | An exportation inference. ... |
| exp41 434 | An exportation inference. ... |
| exp42 435 | An exportation inference. ... |
| exp43 436 | An exportation inference. ... |
| exp44 437 | An exportation inference. ... |
| exp45 438 | An exportation inference. ... |
| imp5d 439 | An importation inference. ... |
| imp5a 440 | An importation inference. ... |
| imp5g 441 | An importation inference. ... |
| imp55 442 | An importation inference. ... |
| imp511 443 | An importation inference. ... |
| exp5c 444 | An exportation inference. ... |
| exp5j 445 | An exportation inference. ... |
| exp5l 446 | An exportation inference. ... |
| exp53 447 | An exportation inference. ... |
| pm3.3 448 | Theorem *3.3 (Exp) of [Whi... |
| pm3.31 449 | Theorem *3.31 (Imp) of [Wh... |
| impexp 450 | Import-export theorem. Pa... |
| impancom 451 | Mixed importation/commutat... |
| expdimp 452 | A deduction version of exp... |
| expimpd 453 | Exportation followed by a ... |
| impr 454 | Import a wff into a right ... |
| impl 455 | Export a wff from a left c... |
| expr 456 | Export a wff from a right ... |
| expl 457 | Export a wff from a left c... |
| ancoms 458 | Inference commuting conjun... |
| pm3.22 459 | Theorem *3.22 of [Whitehea... |
| ancom 460 | Commutative law for conjun... |
| ancomd 461 | Commutation of conjuncts i... |
| biancomi 462 | Commuting conjunction in a... |
| biancomd 463 | Commuting conjunction in a... |
| ancomst 464 | Closed form of ~ ancoms . ... |
| ancomsd 465 | Deduction commuting conjun... |
| anasss 466 | Associative law for conjun... |
| anassrs 467 | Associative law for conjun... |
| anass 468 | Associative law for conjun... |
| pm3.2 469 | Join antecedents with conj... |
| pm3.2i 470 | Infer conjunction of premi... |
| pm3.21 471 | Join antecedents with conj... |
| pm3.43i 472 | Nested conjunction of ante... |
| pm3.43 473 | Theorem *3.43 (Comp) of [W... |
| dfbi2 474 | A theorem similar to the s... |
| dfbi 475 | Definition ~ df-bi rewritt... |
| biimpa 476 | Importation inference from... |
| biimpar 477 | Importation inference from... |
| biimpac 478 | Importation inference from... |
| biimparc 479 | Importation inference from... |
| adantr 480 | Inference adding a conjunc... |
| adantl 481 | Inference adding a conjunc... |
| simpl 482 | Elimination of a conjunct.... |
| simpli 483 | Inference eliminating a co... |
| simpr 484 | Elimination of a conjunct.... |
| simpri 485 | Inference eliminating a co... |
| intnan 486 | Introduction of conjunct i... |
| intnanr 487 | Introduction of conjunct i... |
| intnand 488 | Introduction of conjunct i... |
| intnanrd 489 | Introduction of conjunct i... |
| adantld 490 | Deduction adding a conjunc... |
| adantrd 491 | Deduction adding a conjunc... |
| pm3.41 492 | Theorem *3.41 of [Whitehea... |
| pm3.42 493 | Theorem *3.42 of [Whitehea... |
| simpld 494 | Deduction eliminating a co... |
| simprd 495 | Deduction eliminating a co... |
| simprbi 496 | Deduction eliminating a co... |
| simplbi 497 | Deduction eliminating a co... |
| simprbda 498 | Deduction eliminating a co... |
| simplbda 499 | Deduction eliminating a co... |
| simplbi2 500 | Deduction eliminating a co... |
| simplbi2comt 501 | Closed form of ~ simplbi2c... |
| simplbi2com 502 | A deduction eliminating a ... |
| simpl2im 503 | Implication from an elimin... |
| simplbiim 504 | Implication from an elimin... |
| impel 505 | An inference for implicati... |
| mpan9 506 | Modus ponens conjoining di... |
| sylan9 507 | Nested syllogism inference... |
| sylan9r 508 | Nested syllogism inference... |
| sylan9bb 509 | Nested syllogism inference... |
| sylan9bbr 510 | Nested syllogism inference... |
| jca 511 | Deduce conjunction of the ... |
| jcad 512 | Deduction conjoining the c... |
| jca2 513 | Inference conjoining the c... |
| jca31 514 | Join three consequents. (... |
| jca32 515 | Join three consequents. (... |
| jcai 516 | Deduction replacing implic... |
| jcab 517 | Distributive law for impli... |
| pm4.76 518 | Theorem *4.76 of [Whitehea... |
| jctil 519 | Inference conjoining a the... |
| jctir 520 | Inference conjoining a the... |
| jccir 521 | Inference conjoining a con... |
| jccil 522 | Inference conjoining a con... |
| jctl 523 | Inference conjoining a the... |
| jctr 524 | Inference conjoining a the... |
| jctild 525 | Deduction conjoining a the... |
| jctird 526 | Deduction conjoining a the... |
| iba 527 | Introduction of antecedent... |
| ibar 528 | Introduction of antecedent... |
| biantru 529 | A wff is equivalent to its... |
| biantrur 530 | A wff is equivalent to its... |
| biantrud 531 | A wff is equivalent to its... |
| biantrurd 532 | A wff is equivalent to its... |
| bianfi 533 | A wff conjoined with false... |
| bianfd 534 | A wff conjoined with false... |
| baib 535 | Move conjunction outside o... |
| baibr 536 | Move conjunction outside o... |
| rbaibr 537 | Move conjunction outside o... |
| rbaib 538 | Move conjunction outside o... |
| baibd 539 | Move conjunction outside o... |
| rbaibd 540 | Move conjunction outside o... |
| bianabs 541 | Absorb a hypothesis into t... |
| pm5.44 542 | Theorem *5.44 of [Whitehea... |
| pm5.42 543 | Theorem *5.42 of [Whitehea... |
| ancl 544 | Conjoin antecedent to left... |
| anclb 545 | Conjoin antecedent to left... |
| ancr 546 | Conjoin antecedent to righ... |
| ancrb 547 | Conjoin antecedent to righ... |
| ancli 548 | Deduction conjoining antec... |
| ancri 549 | Deduction conjoining antec... |
| ancld 550 | Deduction conjoining antec... |
| ancrd 551 | Deduction conjoining antec... |
| impac 552 | Importation with conjuncti... |
| anc2l 553 | Conjoin antecedent to left... |
| anc2r 554 | Conjoin antecedent to righ... |
| anc2li 555 | Deduction conjoining antec... |
| anc2ri 556 | Deduction conjoining antec... |
| pm4.71 557 | Implication in terms of bi... |
| pm4.71r 558 | Implication in terms of bi... |
| pm4.71i 559 | Inference converting an im... |
| pm4.71ri 560 | Inference converting an im... |
| pm4.71d 561 | Deduction converting an im... |
| pm4.71rd 562 | Deduction converting an im... |
| pm4.24 563 | Theorem *4.24 of [Whitehea... |
| anidm 564 | Idempotent law for conjunc... |
| anidmdbi 565 | Conjunction idempotence wi... |
| anidms 566 | Inference from idempotent ... |
| imdistan 567 | Distribution of implicatio... |
| imdistani 568 | Distribution of implicatio... |
| imdistanri 569 | Distribution of implicatio... |
| imdistand 570 | Distribution of implicatio... |
| imdistanda 571 | Distribution of implicatio... |
| pm5.3 572 | Theorem *5.3 of [Whitehead... |
| pm5.32 573 | Distribution of implicatio... |
| pm5.32i 574 | Distribution of implicatio... |
| pm5.32ri 575 | Distribution of implicatio... |
| bianim 576 | Exchanging conjunction in ... |
| pm5.32d 577 | Distribution of implicatio... |
| pm5.32rd 578 | Distribution of implicatio... |
| pm5.32da 579 | Distribution of implicatio... |
| sylan 580 | A syllogism inference. (C... |
| sylanb 581 | A syllogism inference. (C... |
| sylanbr 582 | A syllogism inference. (C... |
| sylanbrc 583 | Syllogism inference. (Con... |
| syl2anc 584 | Syllogism inference combin... |
| syl2anc2 585 | Double syllogism inference... |
| sylancl 586 | Syllogism inference combin... |
| sylancr 587 | Syllogism inference combin... |
| sylancom 588 | Syllogism inference with c... |
| sylanblc 589 | Syllogism inference combin... |
| sylanblrc 590 | Syllogism inference combin... |
| syldan 591 | A syllogism deduction with... |
| sylbida 592 | A syllogism deduction. (C... |
| sylan2 593 | A syllogism inference. (C... |
| sylan2b 594 | A syllogism inference. (C... |
| sylan2br 595 | A syllogism inference. (C... |
| syl2an 596 | A double syllogism inferen... |
| syl2anr 597 | A double syllogism inferen... |
| syl2anb 598 | A double syllogism inferen... |
| syl2anbr 599 | A double syllogism inferen... |
| sylancb 600 | A syllogism inference comb... |
| sylancbr 601 | A syllogism inference comb... |
| syldanl 602 | A syllogism deduction with... |
| syland 603 | A syllogism deduction. (C... |
| sylani 604 | A syllogism inference. (C... |
| sylan2d 605 | A syllogism deduction. (C... |
| sylan2i 606 | A syllogism inference. (C... |
| syl2ani 607 | A syllogism inference. (C... |
| syl2and 608 | A syllogism deduction. (C... |
| anim12d 609 | Conjoin antecedents and co... |
| anim12d1 610 | Variant of ~ anim12d where... |
| anim1d 611 | Add a conjunct to right of... |
| anim2d 612 | Add a conjunct to left of ... |
| anim12i 613 | Conjoin antecedents and co... |
| anim12ci 614 | Variant of ~ anim12i with ... |
| anim1i 615 | Introduce conjunct to both... |
| anim1ci 616 | Introduce conjunct to both... |
| anim2i 617 | Introduce conjunct to both... |
| anim12ii 618 | Conjoin antecedents and co... |
| anim12dan 619 | Conjoin antecedents and co... |
| im2anan9 620 | Deduction joining nested i... |
| im2anan9r 621 | Deduction joining nested i... |
| pm3.45 622 | Theorem *3.45 (Fact) of [W... |
| anbi2i 623 | Introduce a left conjunct ... |
| anbi1i 624 | Introduce a right conjunct... |
| anbi2ci 625 | Variant of ~ anbi2i with c... |
| anbi1ci 626 | Variant of ~ anbi1i with c... |
| bianbi 627 | Exchanging conjunction in ... |
| anbi12i 628 | Conjoin both sides of two ... |
| anbi12ci 629 | Variant of ~ anbi12i with ... |
| anbi2d 630 | Deduction adding a left co... |
| anbi1d 631 | Deduction adding a right c... |
| anbi12d 632 | Deduction joining two equi... |
| anbi1 633 | Introduce a right conjunct... |
| anbi2 634 | Introduce a left conjunct ... |
| anbi1cd 635 | Introduce a proposition as... |
| an2anr 636 | Double commutation in conj... |
| pm4.38 637 | Theorem *4.38 of [Whitehea... |
| bi2anan9 638 | Deduction joining two equi... |
| bi2anan9r 639 | Deduction joining two equi... |
| bi2bian9 640 | Deduction joining two bico... |
| anbiim 641 | Adding biconditional when ... |
| bianass 642 | An inference to merge two ... |
| bianassc 643 | An inference to merge two ... |
| an21 644 | Swap two conjuncts. (Cont... |
| an12 645 | Swap two conjuncts. Note ... |
| an32 646 | A rearrangement of conjunc... |
| an13 647 | A rearrangement of conjunc... |
| an31 648 | A rearrangement of conjunc... |
| an12s 649 | Swap two conjuncts in ante... |
| ancom2s 650 | Inference commuting a nest... |
| an13s 651 | Swap two conjuncts in ante... |
| an32s 652 | Swap two conjuncts in ante... |
| ancom1s 653 | Inference commuting a nest... |
| an31s 654 | Swap two conjuncts in ante... |
| anass1rs 655 | Commutative-associative la... |
| an4 656 | Rearrangement of 4 conjunc... |
| an42 657 | Rearrangement of 4 conjunc... |
| an43 658 | Rearrangement of 4 conjunc... |
| an3 659 | A rearrangement of conjunc... |
| an4s 660 | Inference rearranging 4 co... |
| an42s 661 | Inference rearranging 4 co... |
| anabs1 662 | Absorption into embedded c... |
| anabs5 663 | Absorption into embedded c... |
| anabs7 664 | Absorption into embedded c... |
| anabsan 665 | Absorption of antecedent w... |
| anabss1 666 | Absorption of antecedent i... |
| anabss4 667 | Absorption of antecedent i... |
| anabss5 668 | Absorption of antecedent i... |
| anabsi5 669 | Absorption of antecedent i... |
| anabsi6 670 | Absorption of antecedent i... |
| anabsi7 671 | Absorption of antecedent i... |
| anabsi8 672 | Absorption of antecedent i... |
| anabss7 673 | Absorption of antecedent i... |
| anabsan2 674 | Absorption of antecedent w... |
| anabss3 675 | Absorption of antecedent i... |
| anandi 676 | Distribution of conjunctio... |
| anandir 677 | Distribution of conjunctio... |
| anandis 678 | Inference that undistribut... |
| anandirs 679 | Inference that undistribut... |
| sylanl1 680 | A syllogism inference. (C... |
| sylanl2 681 | A syllogism inference. (C... |
| sylanr1 682 | A syllogism inference. (C... |
| sylanr2 683 | A syllogism inference. (C... |
| syl6an 684 | A syllogism deduction comb... |
| syl2an2r 685 | ~ syl2anr with antecedents... |
| syl2an2 686 | ~ syl2an with antecedents ... |
| mpdan 687 | An inference based on modu... |
| mpancom 688 | An inference based on modu... |
| mpidan 689 | A deduction which "stacks"... |
| mpan 690 | An inference based on modu... |
| mpan2 691 | An inference based on modu... |
| mp2an 692 | An inference based on modu... |
| mp4an 693 | An inference based on modu... |
| mpan2d 694 | A deduction based on modus... |
| mpand 695 | A deduction based on modus... |
| mpani 696 | An inference based on modu... |
| mpan2i 697 | An inference based on modu... |
| mp2ani 698 | An inference based on modu... |
| mp2and 699 | A deduction based on modus... |
| mpanl1 700 | An inference based on modu... |
| mpanl2 701 | An inference based on modu... |
| mpanl12 702 | An inference based on modu... |
| mpanr1 703 | An inference based on modu... |
| mpanr2 704 | An inference based on modu... |
| mpanr12 705 | An inference based on modu... |
| mpanlr1 706 | An inference based on modu... |
| mpbirand 707 | Detach truth from conjunct... |
| mpbiran2d 708 | Detach truth from conjunct... |
| mpbiran 709 | Detach truth from conjunct... |
| mpbiran2 710 | Detach truth from conjunct... |
| mpbir2an 711 | Detach a conjunction of tr... |
| mpbi2and 712 | Detach a conjunction of tr... |
| mpbir2and 713 | Detach a conjunction of tr... |
| adantll 714 | Deduction adding a conjunc... |
| adantlr 715 | Deduction adding a conjunc... |
| adantrl 716 | Deduction adding a conjunc... |
| adantrr 717 | Deduction adding a conjunc... |
| adantlll 718 | Deduction adding a conjunc... |
| adantllr 719 | Deduction adding a conjunc... |
| adantlrl 720 | Deduction adding a conjunc... |
| adantlrr 721 | Deduction adding a conjunc... |
| adantrll 722 | Deduction adding a conjunc... |
| adantrlr 723 | Deduction adding a conjunc... |
| adantrrl 724 | Deduction adding a conjunc... |
| adantrrr 725 | Deduction adding a conjunc... |
| ad2antrr 726 | Deduction adding two conju... |
| ad2antlr 727 | Deduction adding two conju... |
| ad2antrl 728 | Deduction adding two conju... |
| ad2antll 729 | Deduction adding conjuncts... |
| ad3antrrr 730 | Deduction adding three con... |
| ad3antlr 731 | Deduction adding three con... |
| ad4antr 732 | Deduction adding 4 conjunc... |
| ad4antlr 733 | Deduction adding 4 conjunc... |
| ad5antr 734 | Deduction adding 5 conjunc... |
| ad5antlr 735 | Deduction adding 5 conjunc... |
| ad6antr 736 | Deduction adding 6 conjunc... |
| ad6antlr 737 | Deduction adding 6 conjunc... |
| ad7antr 738 | Deduction adding 7 conjunc... |
| ad7antlr 739 | Deduction adding 7 conjunc... |
| ad8antr 740 | Deduction adding 8 conjunc... |
| ad8antlr 741 | Deduction adding 8 conjunc... |
| ad9antr 742 | Deduction adding 9 conjunc... |
| ad9antlr 743 | Deduction adding 9 conjunc... |
| ad10antr 744 | Deduction adding 10 conjun... |
| ad10antlr 745 | Deduction adding 10 conjun... |
| ad2ant2l 746 | Deduction adding two conju... |
| ad2ant2r 747 | Deduction adding two conju... |
| ad2ant2lr 748 | Deduction adding two conju... |
| ad2ant2rl 749 | Deduction adding two conju... |
| adantl3r 750 | Deduction adding 1 conjunc... |
| ad4ant13 751 | Deduction adding conjuncts... |
| ad4ant14 752 | Deduction adding conjuncts... |
| ad4ant23 753 | Deduction adding conjuncts... |
| ad4ant24 754 | Deduction adding conjuncts... |
| adantl4r 755 | Deduction adding 1 conjunc... |
| ad5ant13 756 | Deduction adding conjuncts... |
| ad5ant14 757 | Deduction adding conjuncts... |
| ad5ant15 758 | Deduction adding conjuncts... |
| ad5ant23 759 | Deduction adding conjuncts... |
| ad5ant24 760 | Deduction adding conjuncts... |
| ad5ant25 761 | Deduction adding conjuncts... |
| adantl5r 762 | Deduction adding 1 conjunc... |
| adantl6r 763 | Deduction adding 1 conjunc... |
| pm3.33 764 | Theorem *3.33 (Syll) of [W... |
| pm3.34 765 | Theorem *3.34 (Syll) of [W... |
| simpll 766 | Simplification of a conjun... |
| simplld 767 | Deduction form of ~ simpll... |
| simplr 768 | Simplification of a conjun... |
| simplrd 769 | Deduction eliminating a do... |
| simprl 770 | Simplification of a conjun... |
| simprld 771 | Deduction eliminating a do... |
| simprr 772 | Simplification of a conjun... |
| simprrd 773 | Deduction form of ~ simprr... |
| simplll 774 | Simplification of a conjun... |
| simpllr 775 | Simplification of a conjun... |
| simplrl 776 | Simplification of a conjun... |
| simplrr 777 | Simplification of a conjun... |
| simprll 778 | Simplification of a conjun... |
| simprlr 779 | Simplification of a conjun... |
| simprrl 780 | Simplification of a conjun... |
| simprrr 781 | Simplification of a conjun... |
| simp-4l 782 | Simplification of a conjun... |
| simp-4r 783 | Simplification of a conjun... |
| simp-5l 784 | Simplification of a conjun... |
| simp-5r 785 | Simplification of a conjun... |
| simp-6l 786 | Simplification of a conjun... |
| simp-6r 787 | Simplification of a conjun... |
| simp-7l 788 | Simplification of a conjun... |
| simp-7r 789 | Simplification of a conjun... |
| simp-8l 790 | Simplification of a conjun... |
| simp-8r 791 | Simplification of a conjun... |
| simp-9l 792 | Simplification of a conjun... |
| simp-9r 793 | Simplification of a conjun... |
| simp-10l 794 | Simplification of a conjun... |
| simp-10r 795 | Simplification of a conjun... |
| simp-11l 796 | Simplification of a conjun... |
| simp-11r 797 | Simplification of a conjun... |
| pm2.01da 798 | Deduction based on reducti... |
| pm2.18da 799 | Deduction based on reducti... |
| impbida 800 | Deduce an equivalence from... |
| pm5.21nd 801 | Eliminate an antecedent im... |
| pm3.35 802 | Conjunctive detachment. T... |
| pm5.74da 803 | Distribution of implicatio... |
| bitr 804 | Theorem *4.22 of [Whitehea... |
| biantr 805 | A transitive law of equiva... |
| pm4.14 806 | Theorem *4.14 of [Whitehea... |
| pm3.37 807 | Theorem *3.37 (Transp) of ... |
| anim12 808 | Conjoin antecedents and co... |
| pm3.4 809 | Conjunction implies implic... |
| exbiri 810 | Inference form of ~ exbir ... |
| pm2.61ian 811 | Elimination of an antecede... |
| pm2.61dan 812 | Elimination of an antecede... |
| pm2.61ddan 813 | Elimination of two anteced... |
| pm2.61dda 814 | Elimination of two anteced... |
| mtand 815 | A modus tollens deduction.... |
| pm2.65da 816 | Deduction for proof by con... |
| condan 817 | Proof by contradiction. (... |
| biadan 818 | An implication is equivale... |
| biadani 819 | Inference associated with ... |
| biadaniALT 820 | Alternate proof of ~ biada... |
| biadanii 821 | Inference associated with ... |
| biadanid 822 | Deduction associated with ... |
| pm5.1 823 | Two propositions are equiv... |
| pm5.21 824 | Two propositions are equiv... |
| pm5.35 825 | Theorem *5.35 of [Whitehea... |
| abai 826 | Introduce one conjunct as ... |
| pm4.45im 827 | Conjunction with implicati... |
| impimprbi 828 | An implication and its rev... |
| nan 829 | Theorem to move a conjunct... |
| pm5.31 830 | Theorem *5.31 of [Whitehea... |
| pm5.31r 831 | Variant of ~ pm5.31 . (Co... |
| pm4.15 832 | Theorem *4.15 of [Whitehea... |
| pm5.36 833 | Theorem *5.36 of [Whitehea... |
| annotanannot 834 | A conjunction with a negat... |
| pm5.33 835 | Theorem *5.33 of [Whitehea... |
| syl12anc 836 | Syllogism combined with co... |
| syl21anc 837 | Syllogism combined with co... |
| syl22anc 838 | Syllogism combined with co... |
| bibiad 839 | Eliminate an hypothesis ` ... |
| syl1111anc 840 | Four-hypothesis eliminatio... |
| syldbl2 841 | Stacked hypotheseis implie... |
| mpsyl4anc 842 | An elimination deduction. ... |
| pm4.87 843 | Theorem *4.87 of [Whitehea... |
| bimsc1 844 | Removal of conjunct from o... |
| a2and 845 | Deduction distributing a c... |
| animpimp2impd 846 | Deduction deriving nested ... |
| pm4.64 849 | Theorem *4.64 of [Whitehea... |
| pm4.66 850 | Theorem *4.66 of [Whitehea... |
| pm2.53 851 | Theorem *2.53 of [Whitehea... |
| pm2.54 852 | Theorem *2.54 of [Whitehea... |
| imor 853 | Implication in terms of di... |
| imori 854 | Infer disjunction from imp... |
| imorri 855 | Infer implication from dis... |
| pm4.62 856 | Theorem *4.62 of [Whitehea... |
| jaoi 857 | Inference disjoining the a... |
| jao1i 858 | Add a disjunct in the ante... |
| jaod 859 | Deduction disjoining the a... |
| mpjaod 860 | Eliminate a disjunction in... |
| ori 861 | Infer implication from dis... |
| orri 862 | Infer disjunction from imp... |
| orrd 863 | Deduce disjunction from im... |
| ord 864 | Deduce implication from di... |
| orci 865 | Deduction introducing a di... |
| olci 866 | Deduction introducing a di... |
| orc 867 | Introduction of a disjunct... |
| olc 868 | Introduction of a disjunct... |
| pm1.4 869 | Axiom *1.4 of [WhiteheadRu... |
| orcom 870 | Commutative law for disjun... |
| orcomd 871 | Commutation of disjuncts i... |
| orcoms 872 | Commutation of disjuncts i... |
| orcd 873 | Deduction introducing a di... |
| olcd 874 | Deduction introducing a di... |
| orcs 875 | Deduction eliminating disj... |
| olcs 876 | Deduction eliminating disj... |
| olcnd 877 | A lemma for Conjunctive No... |
| orcnd 878 | A lemma for Conjunctive No... |
| mtord 879 | A modus tollens deduction ... |
| pm3.2ni 880 | Infer negated disjunction ... |
| pm2.45 881 | Theorem *2.45 of [Whitehea... |
| pm2.46 882 | Theorem *2.46 of [Whitehea... |
| pm2.47 883 | Theorem *2.47 of [Whitehea... |
| pm2.48 884 | Theorem *2.48 of [Whitehea... |
| pm2.49 885 | Theorem *2.49 of [Whitehea... |
| norbi 886 | If neither of two proposit... |
| nbior 887 | If two propositions are no... |
| orel1 888 | Elimination of disjunction... |
| pm2.25 889 | Theorem *2.25 of [Whitehea... |
| orel2 890 | Elimination of disjunction... |
| pm2.67-2 891 | Slight generalization of T... |
| pm2.67 892 | Theorem *2.67 of [Whitehea... |
| curryax 893 | A non-intuitionistic posit... |
| exmid 894 | Law of excluded middle, al... |
| exmidd 895 | Law of excluded middle in ... |
| pm2.1 896 | Theorem *2.1 of [Whitehead... |
| pm2.13 897 | Theorem *2.13 of [Whitehea... |
| pm2.621 898 | Theorem *2.621 of [Whitehe... |
| pm2.62 899 | Theorem *2.62 of [Whitehea... |
| pm2.68 900 | Theorem *2.68 of [Whitehea... |
| dfor2 901 | Logical 'or' expressed in ... |
| pm2.07 902 | Theorem *2.07 of [Whitehea... |
| pm1.2 903 | Axiom *1.2 of [WhiteheadRu... |
| oridm 904 | Idempotent law for disjunc... |
| pm4.25 905 | Theorem *4.25 of [Whitehea... |
| pm2.4 906 | Theorem *2.4 of [Whitehead... |
| pm2.41 907 | Theorem *2.41 of [Whitehea... |
| orim12i 908 | Disjoin antecedents and co... |
| orim1i 909 | Introduce disjunct to both... |
| orim2i 910 | Introduce disjunct to both... |
| orim12dALT 911 | Alternate proof of ~ orim1... |
| orbi2i 912 | Inference adding a left di... |
| orbi1i 913 | Inference adding a right d... |
| orbi12i 914 | Infer the disjunction of t... |
| orbi2d 915 | Deduction adding a left di... |
| orbi1d 916 | Deduction adding a right d... |
| orbi1 917 | Theorem *4.37 of [Whitehea... |
| orbi12d 918 | Deduction joining two equi... |
| pm1.5 919 | Axiom *1.5 (Assoc) of [Whi... |
| or12 920 | Swap two disjuncts. (Cont... |
| orass 921 | Associative law for disjun... |
| pm2.31 922 | Theorem *2.31 of [Whitehea... |
| pm2.32 923 | Theorem *2.32 of [Whitehea... |
| pm2.3 924 | Theorem *2.3 of [Whitehead... |
| or32 925 | A rearrangement of disjunc... |
| or4 926 | Rearrangement of 4 disjunc... |
| or42 927 | Rearrangement of 4 disjunc... |
| orordi 928 | Distribution of disjunctio... |
| orordir 929 | Distribution of disjunctio... |
| orimdi 930 | Disjunction distributes ov... |
| pm2.76 931 | Theorem *2.76 of [Whitehea... |
| pm2.85 932 | Theorem *2.85 of [Whitehea... |
| pm2.75 933 | Theorem *2.75 of [Whitehea... |
| pm4.78 934 | Implication distributes ov... |
| biort 935 | A disjunction with a true ... |
| biorf 936 | A wff is equivalent to its... |
| biortn 937 | A wff is equivalent to its... |
| biorfi 938 | The dual of ~ biorf is not... |
| biorfri 939 | A wff is equivalent to its... |
| biorfriOLD 940 | Obsolete version of ~ bior... |
| pm2.26 941 | Theorem *2.26 of [Whitehea... |
| pm2.63 942 | Theorem *2.63 of [Whitehea... |
| pm2.64 943 | Theorem *2.64 of [Whitehea... |
| pm2.42 944 | Theorem *2.42 of [Whitehea... |
| pm5.11g 945 | A general instance of Theo... |
| pm5.11 946 | Theorem *5.11 of [Whitehea... |
| pm5.12 947 | Theorem *5.12 of [Whitehea... |
| pm5.14 948 | Theorem *5.14 of [Whitehea... |
| pm5.13 949 | Theorem *5.13 of [Whitehea... |
| pm5.55 950 | Theorem *5.55 of [Whitehea... |
| pm4.72 951 | Implication in terms of bi... |
| imimorb 952 | Simplify an implication be... |
| oibabs 953 | Absorption of disjunction ... |
| orbidi 954 | Disjunction distributes ov... |
| pm5.7 955 | Disjunction distributes ov... |
| jaao 956 | Inference conjoining and d... |
| jaoa 957 | Inference disjoining and c... |
| jaoian 958 | Inference disjoining the a... |
| jaodan 959 | Deduction disjoining the a... |
| mpjaodan 960 | Eliminate a disjunction in... |
| pm3.44 961 | Theorem *3.44 of [Whitehea... |
| jao 962 | Disjunction of antecedents... |
| jaob 963 | Disjunction of antecedents... |
| pm4.77 964 | Theorem *4.77 of [Whitehea... |
| pm3.48 965 | Theorem *3.48 of [Whitehea... |
| orim12d 966 | Disjoin antecedents and co... |
| orim1d 967 | Disjoin antecedents and co... |
| orim2d 968 | Disjoin antecedents and co... |
| orim2 969 | Axiom *1.6 (Sum) of [White... |
| pm2.38 970 | Theorem *2.38 of [Whitehea... |
| pm2.36 971 | Theorem *2.36 of [Whitehea... |
| pm2.37 972 | Theorem *2.37 of [Whitehea... |
| pm2.81 973 | Theorem *2.81 of [Whitehea... |
| pm2.8 974 | Theorem *2.8 of [Whitehead... |
| pm2.73 975 | Theorem *2.73 of [Whitehea... |
| pm2.74 976 | Theorem *2.74 of [Whitehea... |
| pm2.82 977 | Theorem *2.82 of [Whitehea... |
| pm4.39 978 | Theorem *4.39 of [Whitehea... |
| animorl 979 | Conjunction implies disjun... |
| animorr 980 | Conjunction implies disjun... |
| animorlr 981 | Conjunction implies disjun... |
| animorrl 982 | Conjunction implies disjun... |
| ianor 983 | Negated conjunction in ter... |
| anor 984 | Conjunction in terms of di... |
| ioran 985 | Negated disjunction in ter... |
| pm4.52 986 | Theorem *4.52 of [Whitehea... |
| pm4.53 987 | Theorem *4.53 of [Whitehea... |
| pm4.54 988 | Theorem *4.54 of [Whitehea... |
| pm4.55 989 | Theorem *4.55 of [Whitehea... |
| pm4.56 990 | Theorem *4.56 of [Whitehea... |
| oran 991 | Disjunction in terms of co... |
| pm4.57 992 | Theorem *4.57 of [Whitehea... |
| pm3.1 993 | Theorem *3.1 of [Whitehead... |
| pm3.11 994 | Theorem *3.11 of [Whitehea... |
| pm3.12 995 | Theorem *3.12 of [Whitehea... |
| pm3.13 996 | Theorem *3.13 of [Whitehea... |
| pm3.14 997 | Theorem *3.14 of [Whitehea... |
| pm4.44 998 | Theorem *4.44 of [Whitehea... |
| pm4.45 999 | Theorem *4.45 of [Whitehea... |
| orabs 1000 | Absorption of redundant in... |
| oranabs 1001 | Absorb a disjunct into a c... |
| pm5.61 1002 | Theorem *5.61 of [Whitehea... |
| pm5.6 1003 | Conjunction in antecedent ... |
| orcanai 1004 | Change disjunction in cons... |
| pm4.79 1005 | Theorem *4.79 of [Whitehea... |
| pm5.53 1006 | Theorem *5.53 of [Whitehea... |
| ordi 1007 | Distributive law for disju... |
| ordir 1008 | Distributive law for disju... |
| andi 1009 | Distributive law for conju... |
| andir 1010 | Distributive law for conju... |
| orddi 1011 | Double distributive law fo... |
| anddi 1012 | Double distributive law fo... |
| pm5.17 1013 | Theorem *5.17 of [Whitehea... |
| pm5.15 1014 | Theorem *5.15 of [Whitehea... |
| pm5.16 1015 | Theorem *5.16 of [Whitehea... |
| xor 1016 | Two ways to express exclus... |
| nbi2 1017 | Two ways to express "exclu... |
| xordi 1018 | Conjunction distributes ov... |
| pm5.54 1019 | Theorem *5.54 of [Whitehea... |
| pm5.62 1020 | Theorem *5.62 of [Whitehea... |
| pm5.63 1021 | Theorem *5.63 of [Whitehea... |
| niabn 1022 | Miscellaneous inference re... |
| ninba 1023 | Miscellaneous inference re... |
| pm4.43 1024 | Theorem *4.43 of [Whitehea... |
| pm4.82 1025 | Theorem *4.82 of [Whitehea... |
| pm4.83 1026 | Theorem *4.83 of [Whitehea... |
| pclem6 1027 | Negation inferred from emb... |
| bigolden 1028 | Dijkstra-Scholten's Golden... |
| pm5.71 1029 | Theorem *5.71 of [Whitehea... |
| pm5.75 1030 | Theorem *5.75 of [Whitehea... |
| ecase2d 1031 | Deduction for elimination ... |
| ecase3 1032 | Inference for elimination ... |
| ecase 1033 | Inference for elimination ... |
| ecase3d 1034 | Deduction for elimination ... |
| ecased 1035 | Deduction for elimination ... |
| ecase3ad 1036 | Deduction for elimination ... |
| ccase 1037 | Inference for combining ca... |
| ccased 1038 | Deduction for combining ca... |
| ccase2 1039 | Inference for combining ca... |
| 4cases 1040 | Inference eliminating two ... |
| 4casesdan 1041 | Deduction eliminating two ... |
| cases 1042 | Case disjunction according... |
| dedlem0a 1043 | Lemma for an alternate ver... |
| dedlem0b 1044 | Lemma for an alternate ver... |
| dedlema 1045 | Lemma for weak deduction t... |
| dedlemb 1046 | Lemma for weak deduction t... |
| cases2 1047 | Case disjunction according... |
| cases2ALT 1048 | Alternate proof of ~ cases... |
| dfbi3 1049 | An alternate definition of... |
| pm5.24 1050 | Theorem *5.24 of [Whitehea... |
| 4exmid 1051 | The disjunction of the fou... |
| consensus 1052 | The consensus theorem. Th... |
| pm4.42 1053 | Theorem *4.42 of [Whitehea... |
| prlem1 1054 | A specialized lemma for se... |
| prlem2 1055 | A specialized lemma for se... |
| oplem1 1056 | A specialized lemma for se... |
| dn1 1057 | A single axiom for Boolean... |
| bianir 1058 | A closed form of ~ mpbir ,... |
| jaoi2 1059 | Inference removing a negat... |
| jaoi3 1060 | Inference separating a dis... |
| ornld 1061 | Selecting one statement fr... |
| dfifp2 1064 | Alternate definition of th... |
| dfifp3 1065 | Alternate definition of th... |
| dfifp4 1066 | Alternate definition of th... |
| dfifp5 1067 | Alternate definition of th... |
| dfifp6 1068 | Alternate definition of th... |
| dfifp7 1069 | Alternate definition of th... |
| ifpdfbi 1070 | Define the biconditional a... |
| anifp 1071 | The conditional operator i... |
| ifpor 1072 | The conditional operator i... |
| ifpn 1073 | Conditional operator for t... |
| ifptru 1074 | Value of the conditional o... |
| ifpfal 1075 | Value of the conditional o... |
| ifpid 1076 | Value of the conditional o... |
| casesifp 1077 | Version of ~ cases express... |
| ifpbi123d 1078 | Equivalence deduction for ... |
| ifpbi23d 1079 | Equivalence deduction for ... |
| ifpimpda 1080 | Separation of the values o... |
| 1fpid3 1081 | The value of the condition... |
| elimh 1082 | Hypothesis builder for the... |
| dedt 1083 | The weak deduction theorem... |
| con3ALT 1084 | Proof of ~ con3 from its a... |
| 3orass 1089 | Associative law for triple... |
| 3orel1 1090 | Partial elimination of a t... |
| 3orrot 1091 | Rotation law for triple di... |
| 3orcoma 1092 | Commutation law for triple... |
| 3orcomb 1093 | Commutation law for triple... |
| 3anass 1094 | Associative law for triple... |
| 3anan12 1095 | Convert triple conjunction... |
| 3anan32 1096 | Convert triple conjunction... |
| 3ancoma 1097 | Commutation law for triple... |
| 3ancomb 1098 | Commutation law for triple... |
| 3anrot 1099 | Rotation law for triple co... |
| 3anrev 1100 | Reversal law for triple co... |
| anandi3 1101 | Distribution of triple con... |
| anandi3r 1102 | Distribution of triple con... |
| 3anidm 1103 | Idempotent law for conjunc... |
| 3an4anass 1104 | Associative law for four c... |
| 3ioran 1105 | Negated triple disjunction... |
| 3ianor 1106 | Negated triple conjunction... |
| 3anor 1107 | Triple conjunction express... |
| 3oran 1108 | Triple disjunction in term... |
| 3impa 1109 | Importation from double to... |
| 3imp 1110 | Importation inference. (C... |
| 3imp31 1111 | The importation inference ... |
| 3imp231 1112 | Importation inference. (C... |
| 3imp21 1113 | The importation inference ... |
| 3impb 1114 | Importation from double to... |
| bi23imp13 1115 | ~ 3imp with middle implica... |
| 3impib 1116 | Importation to triple conj... |
| 3impia 1117 | Importation to triple conj... |
| 3expa 1118 | Exportation from triple to... |
| 3exp 1119 | Exportation inference. (C... |
| 3expb 1120 | Exportation from triple to... |
| 3expia 1121 | Exportation from triple co... |
| 3expib 1122 | Exportation from triple co... |
| 3com12 1123 | Commutation in antecedent.... |
| 3com13 1124 | Commutation in antecedent.... |
| 3comr 1125 | Commutation in antecedent.... |
| 3com23 1126 | Commutation in antecedent.... |
| 3coml 1127 | Commutation in antecedent.... |
| 3jca 1128 | Join consequents with conj... |
| 3jcad 1129 | Deduction conjoining the c... |
| 3adant1 1130 | Deduction adding a conjunc... |
| 3adant2 1131 | Deduction adding a conjunc... |
| 3adant3 1132 | Deduction adding a conjunc... |
| 3ad2ant1 1133 | Deduction adding conjuncts... |
| 3ad2ant2 1134 | Deduction adding conjuncts... |
| 3ad2ant3 1135 | Deduction adding conjuncts... |
| simp1 1136 | Simplification of triple c... |
| simp2 1137 | Simplification of triple c... |
| simp3 1138 | Simplification of triple c... |
| simp1i 1139 | Infer a conjunct from a tr... |
| simp2i 1140 | Infer a conjunct from a tr... |
| simp3i 1141 | Infer a conjunct from a tr... |
| simp1d 1142 | Deduce a conjunct from a t... |
| simp2d 1143 | Deduce a conjunct from a t... |
| simp3d 1144 | Deduce a conjunct from a t... |
| simp1bi 1145 | Deduce a conjunct from a t... |
| simp2bi 1146 | Deduce a conjunct from a t... |
| simp3bi 1147 | Deduce a conjunct from a t... |
| 3simpa 1148 | Simplification of triple c... |
| 3simpb 1149 | Simplification of triple c... |
| 3simpc 1150 | Simplification of triple c... |
| 3anim123i 1151 | Join antecedents and conse... |
| 3anim1i 1152 | Add two conjuncts to antec... |
| 3anim2i 1153 | Add two conjuncts to antec... |
| 3anim3i 1154 | Add two conjuncts to antec... |
| 3anbi123i 1155 | Join 3 biconditionals with... |
| 3orbi123i 1156 | Join 3 biconditionals with... |
| 3anbi1i 1157 | Inference adding two conju... |
| 3anbi2i 1158 | Inference adding two conju... |
| 3anbi3i 1159 | Inference adding two conju... |
| syl3an 1160 | A triple syllogism inferen... |
| syl3anb 1161 | A triple syllogism inferen... |
| syl3anbr 1162 | A triple syllogism inferen... |
| syl3an1 1163 | A syllogism inference. (C... |
| syl3an2 1164 | A syllogism inference. (C... |
| syl3an3 1165 | A syllogism inference. (C... |
| syl3an132 1166 | ~ syl2an with antecedents ... |
| 3adantl1 1167 | Deduction adding a conjunc... |
| 3adantl2 1168 | Deduction adding a conjunc... |
| 3adantl3 1169 | Deduction adding a conjunc... |
| 3adantr1 1170 | Deduction adding a conjunc... |
| 3adantr2 1171 | Deduction adding a conjunc... |
| 3adantr3 1172 | Deduction adding a conjunc... |
| ad4ant123 1173 | Deduction adding conjuncts... |
| ad4ant124 1174 | Deduction adding conjuncts... |
| ad4ant134 1175 | Deduction adding conjuncts... |
| ad4ant234 1176 | Deduction adding conjuncts... |
| 3adant1l 1177 | Deduction adding a conjunc... |
| 3adant1r 1178 | Deduction adding a conjunc... |
| 3adant2l 1179 | Deduction adding a conjunc... |
| 3adant2r 1180 | Deduction adding a conjunc... |
| 3adant3l 1181 | Deduction adding a conjunc... |
| 3adant3r 1182 | Deduction adding a conjunc... |
| 3adant3r1 1183 | Deduction adding a conjunc... |
| 3adant3r2 1184 | Deduction adding a conjunc... |
| 3adant3r3 1185 | Deduction adding a conjunc... |
| 3ad2antl1 1186 | Deduction adding conjuncts... |
| 3ad2antl2 1187 | Deduction adding conjuncts... |
| 3ad2antl3 1188 | Deduction adding conjuncts... |
| 3ad2antr1 1189 | Deduction adding conjuncts... |
| 3ad2antr2 1190 | Deduction adding conjuncts... |
| 3ad2antr3 1191 | Deduction adding conjuncts... |
| simpl1 1192 | Simplification of conjunct... |
| simpl2 1193 | Simplification of conjunct... |
| simpl3 1194 | Simplification of conjunct... |
| simpr1 1195 | Simplification of conjunct... |
| simpr2 1196 | Simplification of conjunct... |
| simpr3 1197 | Simplification of conjunct... |
| simp1l 1198 | Simplification of triple c... |
| simp1r 1199 | Simplification of triple c... |
| simp2l 1200 | Simplification of triple c... |
| simp2r 1201 | Simplification of triple c... |
| simp3l 1202 | Simplification of triple c... |
| simp3r 1203 | Simplification of triple c... |
| simp11 1204 | Simplification of doubly t... |
| simp12 1205 | Simplification of doubly t... |
| simp13 1206 | Simplification of doubly t... |
| simp21 1207 | Simplification of doubly t... |
| simp22 1208 | Simplification of doubly t... |
| simp23 1209 | Simplification of doubly t... |
| simp31 1210 | Simplification of doubly t... |
| simp32 1211 | Simplification of doubly t... |
| simp33 1212 | Simplification of doubly t... |
| simpll1 1213 | Simplification of conjunct... |
| simpll2 1214 | Simplification of conjunct... |
| simpll3 1215 | Simplification of conjunct... |
| simplr1 1216 | Simplification of conjunct... |
| simplr2 1217 | Simplification of conjunct... |
| simplr3 1218 | Simplification of conjunct... |
| simprl1 1219 | Simplification of conjunct... |
| simprl2 1220 | Simplification of conjunct... |
| simprl3 1221 | Simplification of conjunct... |
| simprr1 1222 | Simplification of conjunct... |
| simprr2 1223 | Simplification of conjunct... |
| simprr3 1224 | Simplification of conjunct... |
| simpl1l 1225 | Simplification of conjunct... |
| simpl1r 1226 | Simplification of conjunct... |
| simpl2l 1227 | Simplification of conjunct... |
| simpl2r 1228 | Simplification of conjunct... |
| simpl3l 1229 | Simplification of conjunct... |
| simpl3r 1230 | Simplification of conjunct... |
| simpr1l 1231 | Simplification of conjunct... |
| simpr1r 1232 | Simplification of conjunct... |
| simpr2l 1233 | Simplification of conjunct... |
| simpr2r 1234 | Simplification of conjunct... |
| simpr3l 1235 | Simplification of conjunct... |
| simpr3r 1236 | Simplification of conjunct... |
| simp1ll 1237 | Simplification of conjunct... |
| simp1lr 1238 | Simplification of conjunct... |
| simp1rl 1239 | Simplification of conjunct... |
| simp1rr 1240 | Simplification of conjunct... |
| simp2ll 1241 | Simplification of conjunct... |
| simp2lr 1242 | Simplification of conjunct... |
| simp2rl 1243 | Simplification of conjunct... |
| simp2rr 1244 | Simplification of conjunct... |
| simp3ll 1245 | Simplification of conjunct... |
| simp3lr 1246 | Simplification of conjunct... |
| simp3rl 1247 | Simplification of conjunct... |
| simp3rr 1248 | Simplification of conjunct... |
| simpl11 1249 | Simplification of conjunct... |
| simpl12 1250 | Simplification of conjunct... |
| simpl13 1251 | Simplification of conjunct... |
| simpl21 1252 | Simplification of conjunct... |
| simpl22 1253 | Simplification of conjunct... |
| simpl23 1254 | Simplification of conjunct... |
| simpl31 1255 | Simplification of conjunct... |
| simpl32 1256 | Simplification of conjunct... |
| simpl33 1257 | Simplification of conjunct... |
| simpr11 1258 | Simplification of conjunct... |
| simpr12 1259 | Simplification of conjunct... |
| simpr13 1260 | Simplification of conjunct... |
| simpr21 1261 | Simplification of conjunct... |
| simpr22 1262 | Simplification of conjunct... |
| simpr23 1263 | Simplification of conjunct... |
| simpr31 1264 | Simplification of conjunct... |
| simpr32 1265 | Simplification of conjunct... |
| simpr33 1266 | Simplification of conjunct... |
| simp1l1 1267 | Simplification of conjunct... |
| simp1l2 1268 | Simplification of conjunct... |
| simp1l3 1269 | Simplification of conjunct... |
| simp1r1 1270 | Simplification of conjunct... |
| simp1r2 1271 | Simplification of conjunct... |
| simp1r3 1272 | Simplification of conjunct... |
| simp2l1 1273 | Simplification of conjunct... |
| simp2l2 1274 | Simplification of conjunct... |
| simp2l3 1275 | Simplification of conjunct... |
| simp2r1 1276 | Simplification of conjunct... |
| simp2r2 1277 | Simplification of conjunct... |
| simp2r3 1278 | Simplification of conjunct... |
| simp3l1 1279 | Simplification of conjunct... |
| simp3l2 1280 | Simplification of conjunct... |
| simp3l3 1281 | Simplification of conjunct... |
| simp3r1 1282 | Simplification of conjunct... |
| simp3r2 1283 | Simplification of conjunct... |
| simp3r3 1284 | Simplification of conjunct... |
| simp11l 1285 | Simplification of conjunct... |
| simp11r 1286 | Simplification of conjunct... |
| simp12l 1287 | Simplification of conjunct... |
| simp12r 1288 | Simplification of conjunct... |
| simp13l 1289 | Simplification of conjunct... |
| simp13r 1290 | Simplification of conjunct... |
| simp21l 1291 | Simplification of conjunct... |
| simp21r 1292 | Simplification of conjunct... |
| simp22l 1293 | Simplification of conjunct... |
| simp22r 1294 | Simplification of conjunct... |
| simp23l 1295 | Simplification of conjunct... |
| simp23r 1296 | Simplification of conjunct... |
| simp31l 1297 | Simplification of conjunct... |
| simp31r 1298 | Simplification of conjunct... |
| simp32l 1299 | Simplification of conjunct... |
| simp32r 1300 | Simplification of conjunct... |
| simp33l 1301 | Simplification of conjunct... |
| simp33r 1302 | Simplification of conjunct... |
| simp111 1303 | Simplification of conjunct... |
| simp112 1304 | Simplification of conjunct... |
| simp113 1305 | Simplification of conjunct... |
| simp121 1306 | Simplification of conjunct... |
| simp122 1307 | Simplification of conjunct... |
| simp123 1308 | Simplification of conjunct... |
| simp131 1309 | Simplification of conjunct... |
| simp132 1310 | Simplification of conjunct... |
| simp133 1311 | Simplification of conjunct... |
| simp211 1312 | Simplification of conjunct... |
| simp212 1313 | Simplification of conjunct... |
| simp213 1314 | Simplification of conjunct... |
| simp221 1315 | Simplification of conjunct... |
| simp222 1316 | Simplification of conjunct... |
| simp223 1317 | Simplification of conjunct... |
| simp231 1318 | Simplification of conjunct... |
| simp232 1319 | Simplification of conjunct... |
| simp233 1320 | Simplification of conjunct... |
| simp311 1321 | Simplification of conjunct... |
| simp312 1322 | Simplification of conjunct... |
| simp313 1323 | Simplification of conjunct... |
| simp321 1324 | Simplification of conjunct... |
| simp322 1325 | Simplification of conjunct... |
| simp323 1326 | Simplification of conjunct... |
| simp331 1327 | Simplification of conjunct... |
| simp332 1328 | Simplification of conjunct... |
| simp333 1329 | Simplification of conjunct... |
| 3anibar 1330 | Remove a hypothesis from t... |
| 3mix1 1331 | Introduction in triple dis... |
| 3mix2 1332 | Introduction in triple dis... |
| 3mix3 1333 | Introduction in triple dis... |
| 3mix1i 1334 | Introduction in triple dis... |
| 3mix2i 1335 | Introduction in triple dis... |
| 3mix3i 1336 | Introduction in triple dis... |
| 3mix1d 1337 | Deduction introducing trip... |
| 3mix2d 1338 | Deduction introducing trip... |
| 3mix3d 1339 | Deduction introducing trip... |
| 3pm3.2i 1340 | Infer conjunction of premi... |
| pm3.2an3 1341 | Version of ~ pm3.2 for a t... |
| mpbir3an 1342 | Detach a conjunction of tr... |
| mpbir3and 1343 | Detach a conjunction of tr... |
| syl3anbrc 1344 | Syllogism inference. (Con... |
| syl21anbrc 1345 | Syllogism inference. (Con... |
| 3imp3i2an 1346 | An elimination deduction. ... |
| ex3 1347 | Apply ~ ex to a hypothesis... |
| 3imp1 1348 | Importation to left triple... |
| 3impd 1349 | Importation deduction for ... |
| 3imp2 1350 | Importation to right tripl... |
| 3impdi 1351 | Importation inference (und... |
| 3impdir 1352 | Importation inference (und... |
| 3exp1 1353 | Exportation from left trip... |
| 3expd 1354 | Exportation deduction for ... |
| 3exp2 1355 | Exportation from right tri... |
| exp5o 1356 | A triple exportation infer... |
| exp516 1357 | A triple exportation infer... |
| exp520 1358 | A triple exportation infer... |
| 3impexp 1359 | Version of ~ impexp for a ... |
| 3an1rs 1360 | Swap conjuncts. (Contribu... |
| 3anassrs 1361 | Associative law for conjun... |
| 4anpull2 1362 | An equivalence of two four... |
| ad5ant245 1363 | Deduction adding conjuncts... |
| ad5ant234 1364 | Deduction adding conjuncts... |
| ad5ant235 1365 | Deduction adding conjuncts... |
| ad5ant123 1366 | Deduction adding conjuncts... |
| ad5ant124 1367 | Deduction adding conjuncts... |
| ad5ant125 1368 | Deduction adding conjuncts... |
| ad5ant134 1369 | Deduction adding conjuncts... |
| ad5ant135 1370 | Deduction adding conjuncts... |
| ad5ant145 1371 | Deduction adding conjuncts... |
| ad5ant2345 1372 | Deduction adding conjuncts... |
| syl3anc 1373 | Syllogism combined with co... |
| syl13anc 1374 | Syllogism combined with co... |
| syl31anc 1375 | Syllogism combined with co... |
| syl112anc 1376 | Syllogism combined with co... |
| syl121anc 1377 | Syllogism combined with co... |
| syl211anc 1378 | Syllogism combined with co... |
| syl23anc 1379 | Syllogism combined with co... |
| syl32anc 1380 | Syllogism combined with co... |
| syl122anc 1381 | Syllogism combined with co... |
| syl212anc 1382 | Syllogism combined with co... |
| syl221anc 1383 | Syllogism combined with co... |
| syl113anc 1384 | Syllogism combined with co... |
| syl131anc 1385 | Syllogism combined with co... |
| syl311anc 1386 | Syllogism combined with co... |
| syl33anc 1387 | Syllogism combined with co... |
| syl222anc 1388 | Syllogism combined with co... |
| syl123anc 1389 | Syllogism combined with co... |
| syl132anc 1390 | Syllogism combined with co... |
| syl213anc 1391 | Syllogism combined with co... |
| syl231anc 1392 | Syllogism combined with co... |
| syl312anc 1393 | Syllogism combined with co... |
| syl321anc 1394 | Syllogism combined with co... |
| syl133anc 1395 | Syllogism combined with co... |
| syl313anc 1396 | Syllogism combined with co... |
| syl331anc 1397 | Syllogism combined with co... |
| syl223anc 1398 | Syllogism combined with co... |
| syl232anc 1399 | Syllogism combined with co... |
| syl322anc 1400 | Syllogism combined with co... |
| syl233anc 1401 | Syllogism combined with co... |
| syl323anc 1402 | Syllogism combined with co... |
| syl332anc 1403 | Syllogism combined with co... |
| syl333anc 1404 | A syllogism inference comb... |
| syl3an1b 1405 | A syllogism inference. (C... |
| syl3an2b 1406 | A syllogism inference. (C... |
| syl3an3b 1407 | A syllogism inference. (C... |
| syl3an1br 1408 | A syllogism inference. (C... |
| syl3an2br 1409 | A syllogism inference. (C... |
| syl3an3br 1410 | A syllogism inference. (C... |
| syld3an3 1411 | A syllogism inference. (C... |
| syld3an1 1412 | A syllogism inference. (C... |
| syld3an2 1413 | A syllogism inference. (C... |
| syl3anl1 1414 | A syllogism inference. (C... |
| syl3anl2 1415 | A syllogism inference. (C... |
| syl3anl3 1416 | A syllogism inference. (C... |
| syl3anl 1417 | A triple syllogism inferen... |
| syl3anr1 1418 | A syllogism inference. (C... |
| syl3anr2 1419 | A syllogism inference. (C... |
| syl3anr3 1420 | A syllogism inference. (C... |
| 3anidm12 1421 | Inference from idempotent ... |
| 3anidm13 1422 | Inference from idempotent ... |
| 3anidm23 1423 | Inference from idempotent ... |
| syl2an3an 1424 | ~ syl3an with antecedents ... |
| syl2an23an 1425 | Deduction related to ~ syl... |
| 3ori 1426 | Infer implication from tri... |
| 3jao 1427 | Disjunction of three antec... |
| 3jaob 1428 | Disjunction of three antec... |
| 3jaobOLD 1429 | Obsolete version of ~ 3jao... |
| 3jaoi 1430 | Disjunction of three antec... |
| 3jaod 1431 | Disjunction of three antec... |
| 3jaoian 1432 | Disjunction of three antec... |
| 3jaodan 1433 | Disjunction of three antec... |
| mpjao3dan 1434 | Eliminate a three-way disj... |
| 3jaao 1435 | Inference conjoining and d... |
| syl3an9b 1436 | Nested syllogism inference... |
| 3orbi123d 1437 | Deduction joining 3 equiva... |
| 3anbi123d 1438 | Deduction joining 3 equiva... |
| 3anbi12d 1439 | Deduction conjoining and a... |
| 3anbi13d 1440 | Deduction conjoining and a... |
| 3anbi23d 1441 | Deduction conjoining and a... |
| 3anbi1d 1442 | Deduction adding conjuncts... |
| 3anbi2d 1443 | Deduction adding conjuncts... |
| 3anbi3d 1444 | Deduction adding conjuncts... |
| 3anim123d 1445 | Deduction joining 3 implic... |
| 3orim123d 1446 | Deduction joining 3 implic... |
| an6 1447 | Rearrangement of 6 conjunc... |
| 3an6 1448 | Analogue of ~ an4 for trip... |
| 3or6 1449 | Analogue of ~ or4 for trip... |
| mp3an1 1450 | An inference based on modu... |
| mp3an2 1451 | An inference based on modu... |
| mp3an3 1452 | An inference based on modu... |
| mp3an12 1453 | An inference based on modu... |
| mp3an13 1454 | An inference based on modu... |
| mp3an23 1455 | An inference based on modu... |
| mp3an1i 1456 | An inference based on modu... |
| mp3anl1 1457 | An inference based on modu... |
| mp3anl2 1458 | An inference based on modu... |
| mp3anl3 1459 | An inference based on modu... |
| mp3anr1 1460 | An inference based on modu... |
| mp3anr2 1461 | An inference based on modu... |
| mp3anr3 1462 | An inference based on modu... |
| mp3an 1463 | An inference based on modu... |
| mpd3an3 1464 | An inference based on modu... |
| mpd3an23 1465 | An inference based on modu... |
| mp3and 1466 | A deduction based on modus... |
| mp3an12i 1467 | ~ mp3an with antecedents i... |
| mp3an2i 1468 | ~ mp3an with antecedents i... |
| mp3an3an 1469 | ~ mp3an with antecedents i... |
| mp3an2ani 1470 | An elimination deduction. ... |
| biimp3a 1471 | Infer implication from a l... |
| biimp3ar 1472 | Infer implication from a l... |
| 3anandis 1473 | Inference that undistribut... |
| 3anandirs 1474 | Inference that undistribut... |
| ecase23d 1475 | Deduction for elimination ... |
| 3ecase 1476 | Inference for elimination ... |
| 3bior1fd 1477 | A disjunction is equivalen... |
| 3bior1fand 1478 | A disjunction is equivalen... |
| 3bior2fd 1479 | A wff is equivalent to its... |
| 3biant1d 1480 | A conjunction is equivalen... |
| intn3an1d 1481 | Introduction of a triple c... |
| intn3an2d 1482 | Introduction of a triple c... |
| intn3an3d 1483 | Introduction of a triple c... |
| an3andi 1484 | Distribution of conjunctio... |
| an33rean 1485 | Rearrange a 9-fold conjunc... |
| 3orel2 1486 | Partial elimination of a t... |
| 3orel2OLD 1487 | Obsolete version of ~ 3ore... |
| 3orel3 1488 | Partial elimination of a t... |
| 3orel13 1489 | Elimination of two disjunc... |
| 3pm3.2ni 1490 | Triple negated disjunction... |
| an42ds 1491 | Inference exchanging the l... |
| nanan 1494 | Conjunction in terms of al... |
| dfnan2 1495 | Alternative denial in term... |
| nanor 1496 | Alternative denial in term... |
| nancom 1497 | Alternative denial is comm... |
| nannan 1498 | Nested alternative denials... |
| nanim 1499 | Implication in terms of al... |
| nannot 1500 | Negation in terms of alter... |
| nanbi 1501 | Biconditional in terms of ... |
| nanbi1 1502 | Introduce a right anti-con... |
| nanbi2 1503 | Introduce a left anti-conj... |
| nanbi12 1504 | Join two logical equivalen... |
| nanbi1i 1505 | Introduce a right anti-con... |
| nanbi2i 1506 | Introduce a left anti-conj... |
| nanbi12i 1507 | Join two logical equivalen... |
| nanbi1d 1508 | Introduce a right anti-con... |
| nanbi2d 1509 | Introduce a left anti-conj... |
| nanbi12d 1510 | Join two logical equivalen... |
| nanass 1511 | A characterization of when... |
| xnor 1514 | Two ways to write XNOR (ex... |
| xorcom 1515 | The connector ` \/_ ` is c... |
| xorass 1516 | The connector ` \/_ ` is a... |
| excxor 1517 | This tautology shows that ... |
| xor2 1518 | Two ways to express "exclu... |
| xoror 1519 | Exclusive disjunction impl... |
| xornan 1520 | Exclusive disjunction impl... |
| xornan2 1521 | XOR implies NAND (written ... |
| xorneg2 1522 | The connector ` \/_ ` is n... |
| xorneg1 1523 | The connector ` \/_ ` is n... |
| xorneg 1524 | The connector ` \/_ ` is u... |
| xorbi12i 1525 | Equality property for excl... |
| xorbi12d 1526 | Equality property for excl... |
| anxordi 1527 | Conjunction distributes ov... |
| xorexmid 1528 | Exclusive-or variant of th... |
| norcom 1531 | The connector ` -\/ ` is c... |
| nornot 1532 | ` -. ` is expressible via ... |
| noran 1533 | ` /\ ` is expressible via ... |
| noror 1534 | ` \/ ` is expressible via ... |
| norasslem1 1535 | This lemma shows the equiv... |
| norasslem2 1536 | This lemma specializes ~ b... |
| norasslem3 1537 | This lemma specializes ~ b... |
| norass 1538 | A characterization of when... |
| trujust 1543 | Soundness justification th... |
| tru 1545 | The truth value ` T. ` is ... |
| dftru2 1546 | An alternate definition of... |
| trut 1547 | A proposition is equivalen... |
| mptru 1548 | Eliminate ` T. ` as an ant... |
| tbtru 1549 | A proposition is equivalen... |
| bitru 1550 | A theorem is equivalent to... |
| trud 1551 | Anything implies ` T. ` . ... |
| truan 1552 | True can be removed from a... |
| fal 1555 | The truth value ` F. ` is ... |
| nbfal 1556 | The negation of a proposit... |
| bifal 1557 | A contradiction is equival... |
| falim 1558 | The truth value ` F. ` imp... |
| falimd 1559 | The truth value ` F. ` imp... |
| dfnot 1560 | Given falsum ` F. ` , we c... |
| inegd 1561 | Negation introduction rule... |
| efald 1562 | Deduction based on reducti... |
| pm2.21fal 1563 | If a wff and its negation ... |
| truimtru 1564 | A ` -> ` identity. (Contr... |
| truimfal 1565 | A ` -> ` identity. (Contr... |
| falimtru 1566 | A ` -> ` identity. (Contr... |
| falimfal 1567 | A ` -> ` identity. (Contr... |
| nottru 1568 | A ` -. ` identity. (Contr... |
| notfal 1569 | A ` -. ` identity. (Contr... |
| trubitru 1570 | A ` <-> ` identity. (Cont... |
| falbitru 1571 | A ` <-> ` identity. (Cont... |
| trubifal 1572 | A ` <-> ` identity. (Cont... |
| falbifal 1573 | A ` <-> ` identity. (Cont... |
| truantru 1574 | A ` /\ ` identity. (Contr... |
| truanfal 1575 | A ` /\ ` identity. (Contr... |
| falantru 1576 | A ` /\ ` identity. (Contr... |
| falanfal 1577 | A ` /\ ` identity. (Contr... |
| truortru 1578 | A ` \/ ` identity. (Contr... |
| truorfal 1579 | A ` \/ ` identity. (Contr... |
| falortru 1580 | A ` \/ ` identity. (Contr... |
| falorfal 1581 | A ` \/ ` identity. (Contr... |
| trunantru 1582 | A ` -/\ ` identity. (Cont... |
| trunanfal 1583 | A ` -/\ ` identity. (Cont... |
| falnantru 1584 | A ` -/\ ` identity. (Cont... |
| falnanfal 1585 | A ` -/\ ` identity. (Cont... |
| truxortru 1586 | A ` \/_ ` identity. (Cont... |
| truxorfal 1587 | A ` \/_ ` identity. (Cont... |
| falxortru 1588 | A ` \/_ ` identity. (Cont... |
| falxorfal 1589 | A ` \/_ ` identity. (Cont... |
| trunortru 1590 | A ` -\/ ` identity. (Cont... |
| trunorfal 1591 | A ` -\/ ` identity. (Cont... |
| falnortru 1592 | A ` -\/ ` identity. (Cont... |
| falnorfal 1593 | A ` -\/ ` identity. (Cont... |
| hadbi123d 1596 | Equality theorem for the a... |
| hadbi123i 1597 | Equality theorem for the a... |
| hadass 1598 | Associative law for the ad... |
| hadbi 1599 | The adder sum is the same ... |
| hadcoma 1600 | Commutative law for the ad... |
| hadcomb 1601 | Commutative law for the ad... |
| hadrot 1602 | Rotation law for the adder... |
| hadnot 1603 | The adder sum distributes ... |
| had1 1604 | If the first input is true... |
| had0 1605 | If the first input is fals... |
| hadifp 1606 | The value of the adder sum... |
| cador 1609 | The adder carry in disjunc... |
| cadan 1610 | The adder carry in conjunc... |
| cadbi123d 1611 | Equality theorem for the a... |
| cadbi123i 1612 | Equality theorem for the a... |
| cadcoma 1613 | Commutative law for the ad... |
| cadcomb 1614 | Commutative law for the ad... |
| cadrot 1615 | Rotation law for the adder... |
| cadnot 1616 | The adder carry distribute... |
| cad11 1617 | If (at least) two inputs a... |
| cad1 1618 | If one input is true, then... |
| cad0 1619 | If one input is false, the... |
| cadifp 1620 | The value of the carry is,... |
| cadtru 1621 | The adder carry is true as... |
| minimp 1622 | A single axiom for minimal... |
| minimp-syllsimp 1623 | Derivation of Syll-Simp ( ... |
| minimp-ax1 1624 | Derivation of ~ ax-1 from ... |
| minimp-ax2c 1625 | Derivation of a commuted f... |
| minimp-ax2 1626 | Derivation of ~ ax-2 from ... |
| minimp-pm2.43 1627 | Derivation of ~ pm2.43 (al... |
| impsingle 1628 | The shortest single axiom ... |
| impsingle-step4 1629 | Derivation of impsingle-st... |
| impsingle-step8 1630 | Derivation of impsingle-st... |
| impsingle-ax1 1631 | Derivation of impsingle-ax... |
| impsingle-step15 1632 | Derivation of impsingle-st... |
| impsingle-step18 1633 | Derivation of impsingle-st... |
| impsingle-step19 1634 | Derivation of impsingle-st... |
| impsingle-step20 1635 | Derivation of impsingle-st... |
| impsingle-step21 1636 | Derivation of impsingle-st... |
| impsingle-step22 1637 | Derivation of impsingle-st... |
| impsingle-step25 1638 | Derivation of impsingle-st... |
| impsingle-imim1 1639 | Derivation of impsingle-im... |
| impsingle-peirce 1640 | Derivation of impsingle-pe... |
| tarski-bernays-ax2 1641 | Derivation of ~ ax-2 from ... |
| meredith 1642 | Carew Meredith's sole axio... |
| merlem1 1643 | Step 3 of Meredith's proof... |
| merlem2 1644 | Step 4 of Meredith's proof... |
| merlem3 1645 | Step 7 of Meredith's proof... |
| merlem4 1646 | Step 8 of Meredith's proof... |
| merlem5 1647 | Step 11 of Meredith's proo... |
| merlem6 1648 | Step 12 of Meredith's proo... |
| merlem7 1649 | Between steps 14 and 15 of... |
| merlem8 1650 | Step 15 of Meredith's proo... |
| merlem9 1651 | Step 18 of Meredith's proo... |
| merlem10 1652 | Step 19 of Meredith's proo... |
| merlem11 1653 | Step 20 of Meredith's proo... |
| merlem12 1654 | Step 28 of Meredith's proo... |
| merlem13 1655 | Step 35 of Meredith's proo... |
| luk-1 1656 | 1 of 3 axioms for proposit... |
| luk-2 1657 | 2 of 3 axioms for proposit... |
| luk-3 1658 | 3 of 3 axioms for proposit... |
| luklem1 1659 | Used to rederive standard ... |
| luklem2 1660 | Used to rederive standard ... |
| luklem3 1661 | Used to rederive standard ... |
| luklem4 1662 | Used to rederive standard ... |
| luklem5 1663 | Used to rederive standard ... |
| luklem6 1664 | Used to rederive standard ... |
| luklem7 1665 | Used to rederive standard ... |
| luklem8 1666 | Used to rederive standard ... |
| ax1 1667 | Standard propositional axi... |
| ax2 1668 | Standard propositional axi... |
| ax3 1669 | Standard propositional axi... |
| nic-dfim 1670 | This theorem "defines" imp... |
| nic-dfneg 1671 | This theorem "defines" neg... |
| nic-mp 1672 | Derive Nicod's rule of mod... |
| nic-mpALT 1673 | A direct proof of ~ nic-mp... |
| nic-ax 1674 | Nicod's axiom derived from... |
| nic-axALT 1675 | A direct proof of ~ nic-ax... |
| nic-imp 1676 | Inference for ~ nic-mp usi... |
| nic-idlem1 1677 | Lemma for ~ nic-id . (Con... |
| nic-idlem2 1678 | Lemma for ~ nic-id . Infe... |
| nic-id 1679 | Theorem ~ id expressed wit... |
| nic-swap 1680 | The connector ` -/\ ` is s... |
| nic-isw1 1681 | Inference version of ~ nic... |
| nic-isw2 1682 | Inference for swapping nes... |
| nic-iimp1 1683 | Inference version of ~ nic... |
| nic-iimp2 1684 | Inference version of ~ nic... |
| nic-idel 1685 | Inference to remove the tr... |
| nic-ich 1686 | Chained inference. (Contr... |
| nic-idbl 1687 | Double the terms. Since d... |
| nic-bijust 1688 | Biconditional justificatio... |
| nic-bi1 1689 | Inference to extract one s... |
| nic-bi2 1690 | Inference to extract the o... |
| nic-stdmp 1691 | Derive the standard modus ... |
| nic-luk1 1692 | Proof of ~ luk-1 from ~ ni... |
| nic-luk2 1693 | Proof of ~ luk-2 from ~ ni... |
| nic-luk3 1694 | Proof of ~ luk-3 from ~ ni... |
| lukshef-ax1 1695 | This alternative axiom for... |
| lukshefth1 1696 | Lemma for ~ renicax . (Co... |
| lukshefth2 1697 | Lemma for ~ renicax . (Co... |
| renicax 1698 | A rederivation of ~ nic-ax... |
| tbw-bijust 1699 | Justification for ~ tbw-ne... |
| tbw-negdf 1700 | The definition of negation... |
| tbw-ax1 1701 | The first of four axioms i... |
| tbw-ax2 1702 | The second of four axioms ... |
| tbw-ax3 1703 | The third of four axioms i... |
| tbw-ax4 1704 | The fourth of four axioms ... |
| tbwsyl 1705 | Used to rederive the Lukas... |
| tbwlem1 1706 | Used to rederive the Lukas... |
| tbwlem2 1707 | Used to rederive the Lukas... |
| tbwlem3 1708 | Used to rederive the Lukas... |
| tbwlem4 1709 | Used to rederive the Lukas... |
| tbwlem5 1710 | Used to rederive the Lukas... |
| re1luk1 1711 | ~ luk-1 derived from the T... |
| re1luk2 1712 | ~ luk-2 derived from the T... |
| re1luk3 1713 | ~ luk-3 derived from the T... |
| merco1 1714 | A single axiom for proposi... |
| merco1lem1 1715 | Used to rederive the Tarsk... |
| retbwax4 1716 | ~ tbw-ax4 rederived from ~... |
| retbwax2 1717 | ~ tbw-ax2 rederived from ~... |
| merco1lem2 1718 | Used to rederive the Tarsk... |
| merco1lem3 1719 | Used to rederive the Tarsk... |
| merco1lem4 1720 | Used to rederive the Tarsk... |
| merco1lem5 1721 | Used to rederive the Tarsk... |
| merco1lem6 1722 | Used to rederive the Tarsk... |
| merco1lem7 1723 | Used to rederive the Tarsk... |
| retbwax3 1724 | ~ tbw-ax3 rederived from ~... |
| merco1lem8 1725 | Used to rederive the Tarsk... |
| merco1lem9 1726 | Used to rederive the Tarsk... |
| merco1lem10 1727 | Used to rederive the Tarsk... |
| merco1lem11 1728 | Used to rederive the Tarsk... |
| merco1lem12 1729 | Used to rederive the Tarsk... |
| merco1lem13 1730 | Used to rederive the Tarsk... |
| merco1lem14 1731 | Used to rederive the Tarsk... |
| merco1lem15 1732 | Used to rederive the Tarsk... |
| merco1lem16 1733 | Used to rederive the Tarsk... |
| merco1lem17 1734 | Used to rederive the Tarsk... |
| merco1lem18 1735 | Used to rederive the Tarsk... |
| retbwax1 1736 | ~ tbw-ax1 rederived from ~... |
| merco2 1737 | A single axiom for proposi... |
| mercolem1 1738 | Used to rederive the Tarsk... |
| mercolem2 1739 | Used to rederive the Tarsk... |
| mercolem3 1740 | Used to rederive the Tarsk... |
| mercolem4 1741 | Used to rederive the Tarsk... |
| mercolem5 1742 | Used to rederive the Tarsk... |
| mercolem6 1743 | Used to rederive the Tarsk... |
| mercolem7 1744 | Used to rederive the Tarsk... |
| mercolem8 1745 | Used to rederive the Tarsk... |
| re1tbw1 1746 | ~ tbw-ax1 rederived from ~... |
| re1tbw2 1747 | ~ tbw-ax2 rederived from ~... |
| re1tbw3 1748 | ~ tbw-ax3 rederived from ~... |
| re1tbw4 1749 | ~ tbw-ax4 rederived from ~... |
| rb-bijust 1750 | Justification for ~ rb-imd... |
| rb-imdf 1751 | The definition of implicat... |
| anmp 1752 | Modus ponens for ` { \/ , ... |
| rb-ax1 1753 | The first of four axioms i... |
| rb-ax2 1754 | The second of four axioms ... |
| rb-ax3 1755 | The third of four axioms i... |
| rb-ax4 1756 | The fourth of four axioms ... |
| rbsyl 1757 | Used to rederive the Lukas... |
| rblem1 1758 | Used to rederive the Lukas... |
| rblem2 1759 | Used to rederive the Lukas... |
| rblem3 1760 | Used to rederive the Lukas... |
| rblem4 1761 | Used to rederive the Lukas... |
| rblem5 1762 | Used to rederive the Lukas... |
| rblem6 1763 | Used to rederive the Lukas... |
| rblem7 1764 | Used to rederive the Lukas... |
| re1axmp 1765 | ~ ax-mp derived from Russe... |
| re2luk1 1766 | ~ luk-1 derived from Russe... |
| re2luk2 1767 | ~ luk-2 derived from Russe... |
| re2luk3 1768 | ~ luk-3 derived from Russe... |
| mptnan 1769 | Modus ponendo tollens 1, o... |
| mptxor 1770 | Modus ponendo tollens 2, o... |
| mtpor 1771 | Modus tollendo ponens (inc... |
| mtpxor 1772 | Modus tollendo ponens (ori... |
| stoic1a 1773 | Stoic logic Thema 1 (part ... |
| stoic1b 1774 | Stoic logic Thema 1 (part ... |
| stoic2a 1775 | Stoic logic Thema 2 versio... |
| stoic2b 1776 | Stoic logic Thema 2 versio... |
| stoic3 1777 | Stoic logic Thema 3. Stat... |
| stoic4a 1778 | Stoic logic Thema 4 versio... |
| stoic4b 1779 | Stoic logic Thema 4 versio... |
| alnex 1782 | Universal quantification o... |
| eximal 1783 | An equivalence between an ... |
| nf2 1786 | Alternate definition of no... |
| nf3 1787 | Alternate definition of no... |
| nf4 1788 | Alternate definition of no... |
| nfi 1789 | Deduce that ` x ` is not f... |
| nfri 1790 | Consequence of the definit... |
| nfd 1791 | Deduce that ` x ` is not f... |
| nfrd 1792 | Consequence of the definit... |
| nftht 1793 | Closed form of ~ nfth . (... |
| nfntht 1794 | Closed form of ~ nfnth . ... |
| nfntht2 1795 | Closed form of ~ nfnth . ... |
| gen2 1797 | Generalization applied twi... |
| mpg 1798 | Modus ponens combined with... |
| mpgbi 1799 | Modus ponens on biconditio... |
| mpgbir 1800 | Modus ponens on biconditio... |
| nex 1801 | Generalization rule for ne... |
| nfth 1802 | No variable is (effectivel... |
| nfnth 1803 | No variable is (effectivel... |
| hbth 1804 | No variable is (effectivel... |
| nftru 1805 | The true constant has no f... |
| nffal 1806 | The false constant has no ... |
| sptruw 1807 | Version of ~ sp when ` ph ... |
| altru 1808 | For all sets, ` T. ` is tr... |
| alfal 1809 | For all sets, ` -. F. ` is... |
| alim 1811 | Restatement of Axiom ~ ax-... |
| alimi 1812 | Inference quantifying both... |
| 2alimi 1813 | Inference doubly quantifyi... |
| ala1 1814 | Add an antecedent in a uni... |
| al2im 1815 | Closed form of ~ al2imi . ... |
| al2imi 1816 | Inference quantifying ante... |
| alanimi 1817 | Variant of ~ al2imi with c... |
| alimdh 1818 | Deduction form of Theorem ... |
| albi 1819 | Theorem 19.15 of [Margaris... |
| albii 1820 | Inference adding universal... |
| 2albii 1821 | Inference adding two unive... |
| 3albii 1822 | Inference adding three uni... |
| sylgt 1823 | Closed form of ~ sylg . (... |
| sylg 1824 | A syllogism combined with ... |
| alrimih 1825 | Inference form of Theorem ... |
| hbxfrbi 1826 | A utility lemma to transfe... |
| alex 1827 | Universal quantifier in te... |
| exnal 1828 | Existential quantification... |
| 2nalexn 1829 | Part of theorem *11.5 in [... |
| 2exnaln 1830 | Theorem *11.22 in [Whitehe... |
| 2nexaln 1831 | Theorem *11.25 in [Whitehe... |
| alimex 1832 | An equivalence between an ... |
| aleximi 1833 | A variant of ~ al2imi : in... |
| alexbii 1834 | Biconditional form of ~ al... |
| exim 1835 | Theorem 19.22 of [Margaris... |
| eximi 1836 | Inference adding existenti... |
| 2eximi 1837 | Inference adding two exist... |
| eximii 1838 | Inference associated with ... |
| exa1 1839 | Add an antecedent in an ex... |
| 19.38 1840 | Theorem 19.38 of [Margaris... |
| 19.38a 1841 | Under a nonfreeness hypoth... |
| 19.38b 1842 | Under a nonfreeness hypoth... |
| imnang 1843 | Quantified implication in ... |
| alinexa 1844 | A transformation of quanti... |
| exnalimn 1845 | Existential quantification... |
| alexn 1846 | A relationship between two... |
| 2exnexn 1847 | Theorem *11.51 in [Whitehe... |
| exbi 1848 | Theorem 19.18 of [Margaris... |
| exbii 1849 | Inference adding existenti... |
| 2exbii 1850 | Inference adding two exist... |
| 3exbii 1851 | Inference adding three exi... |
| nfbiit 1852 | Equivalence theorem for th... |
| nfbii 1853 | Equality theorem for the n... |
| nfxfr 1854 | A utility lemma to transfe... |
| nfxfrd 1855 | A utility lemma to transfe... |
| nfnbi 1856 | A variable is nonfree in a... |
| nfnt 1857 | If a variable is nonfree i... |
| nfn 1858 | Inference associated with ... |
| nfnd 1859 | Deduction associated with ... |
| exanali 1860 | A transformation of quanti... |
| 2exanali 1861 | Theorem *11.521 in [Whiteh... |
| exancom 1862 | Commutation of conjunction... |
| exan 1863 | Place a conjunct in the sc... |
| alrimdh 1864 | Deduction form of Theorem ... |
| eximdh 1865 | Deduction from Theorem 19.... |
| nexdh 1866 | Deduction for generalizati... |
| albidh 1867 | Formula-building rule for ... |
| exbidh 1868 | Formula-building rule for ... |
| exsimpl 1869 | Simplification of an exist... |
| exsimpr 1870 | Simplification of an exist... |
| 19.26 1871 | Theorem 19.26 of [Margaris... |
| 19.26-2 1872 | Theorem ~ 19.26 with two q... |
| 19.26-3an 1873 | Theorem ~ 19.26 with tripl... |
| 19.29 1874 | Theorem 19.29 of [Margaris... |
| 19.29r 1875 | Variation of ~ 19.29 . (C... |
| 19.29r2 1876 | Variation of ~ 19.29r with... |
| 19.29x 1877 | Variation of ~ 19.29 with ... |
| 19.35 1878 | Theorem 19.35 of [Margaris... |
| 19.35i 1879 | Inference associated with ... |
| 19.35ri 1880 | Inference associated with ... |
| 19.25 1881 | Theorem 19.25 of [Margaris... |
| 19.30 1882 | Theorem 19.30 of [Margaris... |
| 19.43 1883 | Theorem 19.43 of [Margaris... |
| 19.43OLD 1884 | Obsolete proof of ~ 19.43 ... |
| 19.33 1885 | Theorem 19.33 of [Margaris... |
| 19.33b 1886 | The antecedent provides a ... |
| 19.40 1887 | Theorem 19.40 of [Margaris... |
| 19.40-2 1888 | Theorem *11.42 in [Whitehe... |
| 19.40b 1889 | The antecedent provides a ... |
| albiim 1890 | Split a biconditional and ... |
| 2albiim 1891 | Split a biconditional and ... |
| exintrbi 1892 | Add/remove a conjunct in t... |
| exintr 1893 | Introduce a conjunct in th... |
| alsyl 1894 | Universally quantified and... |
| nfimd 1895 | If in a context ` x ` is n... |
| nfimt 1896 | Closed form of ~ nfim and ... |
| nfim 1897 | If ` x ` is not free in ` ... |
| nfand 1898 | If in a context ` x ` is n... |
| nf3and 1899 | Deduction form of bound-va... |
| nfan 1900 | If ` x ` is not free in ` ... |
| nfnan 1901 | If ` x ` is not free in ` ... |
| nf3an 1902 | If ` x ` is not free in ` ... |
| nfbid 1903 | If in a context ` x ` is n... |
| nfbi 1904 | If ` x ` is not free in ` ... |
| nfor 1905 | If ` x ` is not free in ` ... |
| nf3or 1906 | If ` x ` is not free in ` ... |
| empty 1907 | Two characterizations of t... |
| emptyex 1908 | On the empty domain, any e... |
| emptyal 1909 | On the empty domain, any u... |
| emptynf 1910 | On the empty domain, any v... |
| ax5d 1912 | Version of ~ ax-5 with ant... |
| ax5e 1913 | A rephrasing of ~ ax-5 usi... |
| ax5ea 1914 | If a formula holds for som... |
| nfv 1915 | If ` x ` is not present in... |
| nfvd 1916 | ~ nfv with antecedent. Us... |
| alimdv 1917 | Deduction form of Theorem ... |
| eximdv 1918 | Deduction form of Theorem ... |
| 2alimdv 1919 | Deduction form of Theorem ... |
| 2eximdv 1920 | Deduction form of Theorem ... |
| albidv 1921 | Formula-building rule for ... |
| exbidv 1922 | Formula-building rule for ... |
| nfbidv 1923 | An equality theorem for no... |
| 2albidv 1924 | Formula-building rule for ... |
| 2exbidv 1925 | Formula-building rule for ... |
| 3exbidv 1926 | Formula-building rule for ... |
| 4exbidv 1927 | Formula-building rule for ... |
| alrimiv 1928 | Inference form of Theorem ... |
| alrimivv 1929 | Inference form of Theorem ... |
| alrimdv 1930 | Deduction form of Theorem ... |
| exlimiv 1931 | Inference form of Theorem ... |
| exlimiiv 1932 | Inference (Rule C) associa... |
| exlimivv 1933 | Inference form of Theorem ... |
| exlimdv 1934 | Deduction form of Theorem ... |
| exlimdvv 1935 | Deduction form of Theorem ... |
| exlimddv 1936 | Existential elimination ru... |
| nexdv 1937 | Deduction for generalizati... |
| 2ax5 1938 | Quantification of two vari... |
| stdpc5v 1939 | Version of ~ stdpc5 with a... |
| 19.21v 1940 | Version of ~ 19.21 with a ... |
| 19.32v 1941 | Version of ~ 19.32 with a ... |
| 19.31v 1942 | Version of ~ 19.31 with a ... |
| 19.23v 1943 | Version of ~ 19.23 with a ... |
| 19.23vv 1944 | Theorem ~ 19.23v extended ... |
| pm11.53v 1945 | Version of ~ pm11.53 with ... |
| 19.36imv 1946 | One direction of ~ 19.36v ... |
| 19.36iv 1947 | Inference associated with ... |
| 19.37imv 1948 | One direction of ~ 19.37v ... |
| 19.37iv 1949 | Inference associated with ... |
| 19.41v 1950 | Version of ~ 19.41 with a ... |
| 19.41vv 1951 | Version of ~ 19.41 with tw... |
| 19.41vvv 1952 | Version of ~ 19.41 with th... |
| 19.41vvvv 1953 | Version of ~ 19.41 with fo... |
| 19.42v 1954 | Version of ~ 19.42 with a ... |
| exdistr 1955 | Distribution of existentia... |
| exdistrv 1956 | Distribute a pair of exist... |
| 4exdistrv 1957 | Distribute two pairs of ex... |
| 19.42vv 1958 | Version of ~ 19.42 with tw... |
| exdistr2 1959 | Distribution of existentia... |
| 19.42vvv 1960 | Version of ~ 19.42 with th... |
| 3exdistr 1961 | Distribution of existentia... |
| 4exdistr 1962 | Distribution of existentia... |
| weq 1963 | Extend wff definition to i... |
| speimfw 1964 | Specialization, with addit... |
| speimfwALT 1965 | Alternate proof of ~ speim... |
| spimfw 1966 | Specialization, with addit... |
| ax12i 1967 | Inference that has ~ ax-12... |
| ax6v 1969 | Axiom B7 of [Tarski] p. 75... |
| ax6ev 1970 | At least one individual ex... |
| spimw 1971 | Specialization. Lemma 8 o... |
| spimew 1972 | Existential introduction, ... |
| speiv 1973 | Inference from existential... |
| speivw 1974 | Version of ~ spei with a d... |
| exgen 1975 | Rule of existential genera... |
| extru 1976 | There exists a variable su... |
| 19.2 1977 | Theorem 19.2 of [Margaris]... |
| 19.2d 1978 | Deduction associated with ... |
| 19.8w 1979 | Weak version of ~ 19.8a an... |
| spnfw 1980 | Weak version of ~ sp . Us... |
| spfalw 1981 | Version of ~ sp when ` ph ... |
| spvw 1982 | Version of ~ sp when ` x `... |
| 19.3v 1983 | Version of ~ 19.3 with a d... |
| 19.8v 1984 | Version of ~ 19.8a with a ... |
| 19.9v 1985 | Version of ~ 19.9 with a d... |
| spimevw 1986 | Existential introduction, ... |
| spimvw 1987 | A weak form of specializat... |
| spsv 1988 | Generalization of antecede... |
| spvv 1989 | Specialization, using impl... |
| chvarvv 1990 | Implicit substitution of `... |
| 19.39 1991 | Theorem 19.39 of [Margaris... |
| 19.24 1992 | Theorem 19.24 of [Margaris... |
| 19.34 1993 | Theorem 19.34 of [Margaris... |
| 19.36v 1994 | Version of ~ 19.36 with a ... |
| 19.12vvv 1995 | Version of ~ 19.12vv with ... |
| 19.27v 1996 | Version of ~ 19.27 with a ... |
| 19.28v 1997 | Version of ~ 19.28 with a ... |
| 19.37v 1998 | Version of ~ 19.37 with a ... |
| 19.44v 1999 | Version of ~ 19.44 with a ... |
| 19.45v 2000 | Version of ~ 19.45 with a ... |
| equs4v 2001 | Version of ~ equs4 with a ... |
| alequexv 2002 | Version of ~ equs4v with i... |
| exsbim 2003 | One direction of the equiv... |
| equsv 2004 | If a formula does not cont... |
| equsalvw 2005 | Version of ~ equsalv with ... |
| equsexvw 2006 | Version of ~ equsexv with ... |
| cbvaliw 2007 | Change bound variable. Us... |
| cbvalivw 2008 | Change bound variable. Us... |
| ax7v 2010 | Weakened version of ~ ax-7... |
| ax7v1 2011 | First of two weakened vers... |
| ax7v2 2012 | Second of two weakened ver... |
| equid 2013 | Identity law for equality.... |
| nfequid 2014 | Bound-variable hypothesis ... |
| equcomiv 2015 | Weaker form of ~ equcomi w... |
| ax6evr 2016 | A commuted form of ~ ax6ev... |
| ax7 2017 | Proof of ~ ax-7 from ~ ax7... |
| equcomi 2018 | Commutative law for equali... |
| equcom 2019 | Commutative law for equali... |
| equcomd 2020 | Deduction form of ~ equcom... |
| equcoms 2021 | An inference commuting equ... |
| equtr 2022 | A transitive law for equal... |
| equtrr 2023 | A transitive law for equal... |
| equeuclr 2024 | Commuted version of ~ eque... |
| equeucl 2025 | Equality is a left-Euclide... |
| equequ1 2026 | An equivalence law for equ... |
| equequ2 2027 | An equivalence law for equ... |
| equtr2 2028 | Equality is a left-Euclide... |
| stdpc6 2029 | One of the two equality ax... |
| equvinv 2030 | A variable introduction la... |
| equvinva 2031 | A modified version of the ... |
| equvelv 2032 | A biconditional form of ~ ... |
| ax13b 2033 | An equivalence between two... |
| spfw 2034 | Weak version of ~ sp . Us... |
| spw 2035 | Weak version of the specia... |
| cbvalw 2036 | Change bound variable. Us... |
| cbvalvw 2037 | Change bound variable. Us... |
| cbvexvw 2038 | Change bound variable. Us... |
| cbvaldvaw 2039 | Rule used to change the bo... |
| cbvexdvaw 2040 | Rule used to change the bo... |
| cbval2vw 2041 | Rule used to change bound ... |
| cbvex2vw 2042 | Rule used to change bound ... |
| cbvex4vw 2043 | Rule used to change bound ... |
| alcomimw 2044 | Weak version of ~ ax-11 . ... |
| excomimw 2045 | Weak version of ~ excomim ... |
| alcomw 2046 | Weak version of ~ alcom an... |
| excomw 2047 | Weak version of ~ excom an... |
| hbn1fw 2048 | Weak version of ~ ax-10 fr... |
| hbn1w 2049 | Weak version of ~ hbn1 . ... |
| hba1w 2050 | Weak version of ~ hba1 . ... |
| hbe1w 2051 | Weak version of ~ hbe1 . ... |
| hbalw 2052 | Weak version of ~ hbal . ... |
| 19.8aw 2053 | If a formula is true, then... |
| exexw 2054 | Existential quantification... |
| spaev 2055 | A special instance of ~ sp... |
| cbvaev 2056 | Change bound variable in a... |
| aevlem0 2057 | Lemma for ~ aevlem . Inst... |
| aevlem 2058 | Lemma for ~ aev and ~ axc1... |
| aeveq 2059 | The antecedent ` A. x x = ... |
| aev 2060 | A "distinctor elimination"... |
| aev2 2061 | A version of ~ aev with tw... |
| hbaev 2062 | All variables are effectiv... |
| naev 2063 | If some set variables can ... |
| naev2 2064 | Generalization of ~ hbnaev... |
| hbnaev 2065 | Any variable is free in ` ... |
| sbjust 2066 | Justification theorem for ... |
| sbt 2069 | A substitution into a theo... |
| sbtru 2070 | The result of substituting... |
| stdpc4 2071 | The specialization axiom o... |
| sbtALT 2072 | Alternate proof of ~ sbt ,... |
| 2stdpc4 2073 | A double specialization us... |
| sbi1 2074 | Distribute substitution ov... |
| spsbim 2075 | Distribute substitution ov... |
| spsbbi 2076 | Biconditional property for... |
| sbimi 2077 | Distribute substitution ov... |
| sb2imi 2078 | Distribute substitution ov... |
| sbbii 2079 | Infer substitution into bo... |
| 2sbbii 2080 | Infer double substitution ... |
| sbimdv 2081 | Deduction substituting bot... |
| sbbidv 2082 | Deduction substituting bot... |
| sban 2083 | Conjunction inside and out... |
| sb3an 2084 | Threefold conjunction insi... |
| spsbe 2085 | Existential generalization... |
| sbequ 2086 | Equality property for subs... |
| sbequi 2087 | An equality theorem for su... |
| sb6 2088 | Alternate definition of su... |
| 2sb6 2089 | Equivalence for double sub... |
| sb1v 2090 | One direction of ~ sb5 , p... |
| sbv 2091 | Substitution for a variabl... |
| sbcom4 2092 | Commutativity law for subs... |
| pm11.07 2093 | Axiom *11.07 in [Whitehead... |
| sbrimvw 2094 | Substitution in an implica... |
| sbbiiev 2095 | An equivalence of substitu... |
| sbievw 2096 | Conversion of implicit sub... |
| sbievwOLD 2097 | Obsolete version of ~ sbie... |
| sbiedvw 2098 | Conversion of implicit sub... |
| 2sbievw 2099 | Conversion of double impli... |
| sbcom3vv 2100 | Substituting ` y ` for ` x... |
| sbievw2 2101 | ~ sbievw applied twice, av... |
| sbco2vv 2102 | A composition law for subs... |
| cbvsbv 2103 | Change the bound variable ... |
| sbco4lem 2104 | Lemma for ~ sbco4 . It re... |
| sbco4 2105 | Two ways of exchanging two... |
| equsb3 2106 | Substitution in an equalit... |
| equsb3r 2107 | Substitution applied to th... |
| equsb1v 2108 | Substitution applied to an... |
| nsb 2109 | Any substitution in an alw... |
| sbn1 2110 | One direction of ~ sbn , u... |
| wel 2112 | Extend wff definition to i... |
| ax8v 2114 | Weakened version of ~ ax-8... |
| ax8v1 2115 | First of two weakened vers... |
| ax8v2 2116 | Second of two weakened ver... |
| ax8 2117 | Proof of ~ ax-8 from ~ ax8... |
| elequ1 2118 | An identity law for the no... |
| elsb1 2119 | Substitution for the first... |
| cleljust 2120 | When the class variables i... |
| ax9v 2122 | Weakened version of ~ ax-9... |
| ax9v1 2123 | First of two weakened vers... |
| ax9v2 2124 | Second of two weakened ver... |
| ax9 2125 | Proof of ~ ax-9 from ~ ax9... |
| elequ2 2126 | An identity law for the no... |
| elequ2g 2127 | A form of ~ elequ2 with a ... |
| elsb2 2128 | Substitution for the secon... |
| elequ12 2129 | An identity law for the no... |
| ru0 2130 | The FOL statement used in ... |
| ax6dgen 2131 | Tarski's system uses the w... |
| ax10w 2132 | Weak version of ~ ax-10 fr... |
| ax11w 2133 | Weak version of ~ ax-11 fr... |
| ax11dgen 2134 | Degenerate instance of ~ a... |
| ax12wlem 2135 | Lemma for weak version of ... |
| ax12w 2136 | Weak version of ~ ax-12 fr... |
| ax12dgen 2137 | Degenerate instance of ~ a... |
| ax12wdemo 2138 | Example of an application ... |
| ax13w 2139 | Weak version (principal in... |
| ax13dgen1 2140 | Degenerate instance of ~ a... |
| ax13dgen2 2141 | Degenerate instance of ~ a... |
| ax13dgen3 2142 | Degenerate instance of ~ a... |
| ax13dgen4 2143 | Degenerate instance of ~ a... |
| hbn1 2145 | Alias for ~ ax-10 to be us... |
| hbe1 2146 | The setvar ` x ` is not fr... |
| hbe1a 2147 | Dual statement of ~ hbe1 .... |
| nf5-1 2148 | One direction of ~ nf5 can... |
| nf5i 2149 | Deduce that ` x ` is not f... |
| nf5dh 2150 | Deduce that ` x ` is not f... |
| nf5dv 2151 | Apply the definition of no... |
| nfnaew 2152 | All variables are effectiv... |
| nfe1 2153 | The setvar ` x ` is not fr... |
| nfa1 2154 | The setvar ` x ` is not fr... |
| nfna1 2155 | A convenience theorem part... |
| nfia1 2156 | Lemma 23 of [Monk2] p. 114... |
| nfnf1 2157 | The setvar ` x ` is not fr... |
| modal5 2158 | The analogue in our predic... |
| nfs1v 2159 | The setvar ` x ` is not fr... |
| alcoms 2161 | Swap quantifiers in an ant... |
| alcom 2162 | Theorem 19.5 of [Margaris]... |
| alrot3 2163 | Theorem *11.21 in [Whitehe... |
| alrot4 2164 | Rotate four universal quan... |
| excom 2165 | Theorem 19.11 of [Margaris... |
| excomim 2166 | One direction of Theorem 1... |
| excom13 2167 | Swap 1st and 3rd existenti... |
| exrot3 2168 | Rotate existential quantif... |
| exrot4 2169 | Rotate existential quantif... |
| hbal 2170 | If ` x ` is not free in ` ... |
| hbald 2171 | Deduction form of bound-va... |
| sbal 2172 | Move universal quantifier ... |
| sbalv 2173 | Quantify with new variable... |
| hbsbw 2174 | If ` z ` is not free in ` ... |
| hbsbwOLD 2175 | Obsolete version of ~ hbsb... |
| sbcom2 2176 | Commutativity law for subs... |
| sbco4lemOLD 2177 | Obsolete version of ~ sbco... |
| sbco4OLD 2178 | Obsolete version of ~ sbco... |
| nfa2 2179 | Lemma 24 of [Monk2] p. 114... |
| ax12v 2181 | This is essentially Axiom ... |
| ax12v2 2182 | It is possible to remove a... |
| ax12ev2 2183 | Version of ~ ax12v2 rewrit... |
| 19.8a 2184 | If a wff is true, it is tr... |
| 19.8ad 2185 | If a wff is true, it is tr... |
| sp 2186 | Specialization. A univers... |
| spi 2187 | Inference rule of universa... |
| sps 2188 | Generalization of antecede... |
| 2sp 2189 | A double specialization (s... |
| spsd 2190 | Deduction generalizing ant... |
| 19.2g 2191 | Theorem 19.2 of [Margaris]... |
| 19.21bi 2192 | Inference form of ~ 19.21 ... |
| 19.21bbi 2193 | Inference removing two uni... |
| 19.23bi 2194 | Inference form of Theorem ... |
| nexr 2195 | Inference associated with ... |
| qexmid 2196 | Quantified excluded middle... |
| nf5r 2197 | Consequence of the definit... |
| nf5ri 2198 | Consequence of the definit... |
| nf5rd 2199 | Consequence of the definit... |
| spimedv 2200 | Deduction version of ~ spi... |
| spimefv 2201 | Version of ~ spime with a ... |
| nfim1 2202 | A closed form of ~ nfim . ... |
| nfan1 2203 | A closed form of ~ nfan . ... |
| 19.3t 2204 | Closed form of ~ 19.3 and ... |
| 19.3 2205 | A wff may be quantified wi... |
| 19.9d 2206 | A deduction version of one... |
| 19.9t 2207 | Closed form of ~ 19.9 and ... |
| 19.9 2208 | A wff may be existentially... |
| 19.21t 2209 | Closed form of Theorem 19.... |
| 19.21 2210 | Theorem 19.21 of [Margaris... |
| stdpc5 2211 | An axiom scheme of standar... |
| 19.21-2 2212 | Version of ~ 19.21 with tw... |
| 19.23t 2213 | Closed form of Theorem 19.... |
| 19.23 2214 | Theorem 19.23 of [Margaris... |
| alimd 2215 | Deduction form of Theorem ... |
| alrimi 2216 | Inference form of Theorem ... |
| alrimdd 2217 | Deduction form of Theorem ... |
| alrimd 2218 | Deduction form of Theorem ... |
| eximd 2219 | Deduction form of Theorem ... |
| exlimi 2220 | Inference associated with ... |
| exlimd 2221 | Deduction form of Theorem ... |
| exlimimdd 2222 | Existential elimination ru... |
| exlimdd 2223 | Existential elimination ru... |
| nexd 2224 | Deduction for generalizati... |
| albid 2225 | Formula-building rule for ... |
| exbid 2226 | Formula-building rule for ... |
| nfbidf 2227 | An equality theorem for ef... |
| 19.16 2228 | Theorem 19.16 of [Margaris... |
| 19.17 2229 | Theorem 19.17 of [Margaris... |
| 19.27 2230 | Theorem 19.27 of [Margaris... |
| 19.28 2231 | Theorem 19.28 of [Margaris... |
| 19.19 2232 | Theorem 19.19 of [Margaris... |
| 19.36 2233 | Theorem 19.36 of [Margaris... |
| 19.36i 2234 | Inference associated with ... |
| 19.37 2235 | Theorem 19.37 of [Margaris... |
| 19.32 2236 | Theorem 19.32 of [Margaris... |
| 19.31 2237 | Theorem 19.31 of [Margaris... |
| 19.41 2238 | Theorem 19.41 of [Margaris... |
| 19.42 2239 | Theorem 19.42 of [Margaris... |
| 19.44 2240 | Theorem 19.44 of [Margaris... |
| 19.45 2241 | Theorem 19.45 of [Margaris... |
| spimfv 2242 | Specialization, using impl... |
| chvarfv 2243 | Implicit substitution of `... |
| cbv3v2 2244 | Version of ~ cbv3 with two... |
| sbalex 2245 | Equivalence of two ways to... |
| sbalexOLD 2246 | Obsolete version of ~ sbal... |
| sb4av 2247 | Version of ~ sb4a with a d... |
| sbimd 2248 | Deduction substituting bot... |
| sbbid 2249 | Deduction substituting bot... |
| 2sbbid 2250 | Deduction doubly substitut... |
| sbequ1 2251 | An equality theorem for su... |
| sbequ2 2252 | An equality theorem for su... |
| stdpc7 2253 | One of the two equality ax... |
| sbequ12 2254 | An equality theorem for su... |
| sbequ12r 2255 | An equality theorem for su... |
| sbelx 2256 | Elimination of substitutio... |
| sbequ12a 2257 | An equality theorem for su... |
| sbid 2258 | An identity theorem for su... |
| sbcov 2259 | A composition law for subs... |
| sbcovOLD 2260 | Obsolete version of ~ sbco... |
| sb6a 2261 | Equivalence for substituti... |
| sbid2vw 2262 | Reverting substitution yie... |
| axc16g 2263 | Generalization of ~ axc16 ... |
| axc16 2264 | Proof of older axiom ~ ax-... |
| axc16gb 2265 | Biconditional strengthenin... |
| axc16nf 2266 | If ~ dtru is false, then t... |
| axc11v 2267 | Version of ~ axc11 with a ... |
| axc11rv 2268 | Version of ~ axc11r with a... |
| drsb2 2269 | Formula-building lemma for... |
| equsalv 2270 | An equivalence related to ... |
| equsexv 2271 | An equivalence related to ... |
| sbft 2272 | Substitution has no effect... |
| sbf 2273 | Substitution for a variabl... |
| sbf2 2274 | Substitution has no effect... |
| sbh 2275 | Substitution for a variabl... |
| hbs1 2276 | The setvar ` x ` is not fr... |
| nfs1f 2277 | If ` x ` is not free in ` ... |
| sb5 2278 | Alternate definition of su... |
| equs5av 2279 | A property related to subs... |
| 2sb5 2280 | Equivalence for double sub... |
| dfsb7 2281 | An alternate definition of... |
| sbn 2282 | Negation inside and outsid... |
| sbex 2283 | Move existential quantifie... |
| nf5 2284 | Alternate definition of ~ ... |
| nf6 2285 | An alternate definition of... |
| nf5d 2286 | Deduce that ` x ` is not f... |
| nf5di 2287 | Since the converse holds b... |
| 19.9h 2288 | A wff may be existentially... |
| 19.21h 2289 | Theorem 19.21 of [Margaris... |
| 19.23h 2290 | Theorem 19.23 of [Margaris... |
| exlimih 2291 | Inference associated with ... |
| exlimdh 2292 | Deduction form of Theorem ... |
| equsalhw 2293 | Version of ~ equsalh with ... |
| equsexhv 2294 | An equivalence related to ... |
| hba1 2295 | The setvar ` x ` is not fr... |
| hbnt 2296 | Closed theorem version of ... |
| hbn 2297 | If ` x ` is not free in ` ... |
| hbnd 2298 | Deduction form of bound-va... |
| hbim1 2299 | A closed form of ~ hbim . ... |
| hbimd 2300 | Deduction form of bound-va... |
| hbim 2301 | If ` x ` is not free in ` ... |
| hban 2302 | If ` x ` is not free in ` ... |
| hb3an 2303 | If ` x ` is not free in ` ... |
| sbi2 2304 | Introduction of implicatio... |
| sbim 2305 | Implication inside and out... |
| sbrim 2306 | Substitution in an implica... |
| sblim 2307 | Substitution in an implica... |
| sbor 2308 | Disjunction inside and out... |
| sbbi 2309 | Equivalence inside and out... |
| sblbis 2310 | Introduce left bicondition... |
| sbrbis 2311 | Introduce right biconditio... |
| sbrbif 2312 | Introduce right biconditio... |
| sbnf 2313 | Move nonfree predicate in ... |
| sbnfOLD 2314 | Obsolete version of ~ sbnf... |
| sbiev 2315 | Conversion of implicit sub... |
| sbievOLD 2316 | Obsolete version of ~ sbie... |
| sbiedw 2317 | Conversion of implicit sub... |
| axc7 2318 | Show that the original axi... |
| axc7e 2319 | Abbreviated version of ~ a... |
| modal-b 2320 | The analogue in our predic... |
| 19.9ht 2321 | A closed version of ~ 19.9... |
| axc4 2322 | Show that the original axi... |
| axc4i 2323 | Inference version of ~ axc... |
| nfal 2324 | If ` x ` is not free in ` ... |
| nfex 2325 | If ` x ` is not free in ` ... |
| hbex 2326 | If ` x ` is not free in ` ... |
| nfnf 2327 | If ` x ` is not free in ` ... |
| 19.12 2328 | Theorem 19.12 of [Margaris... |
| nfald 2329 | Deduction form of ~ nfal .... |
| nfexd 2330 | If ` x ` is not free in ` ... |
| nfsbv 2331 | If ` z ` is not free in ` ... |
| sbco2v 2332 | A composition law for subs... |
| aaan 2333 | Distribute universal quant... |
| eeor 2334 | Distribute existential qua... |
| cbv3v 2335 | Rule used to change bound ... |
| cbv1v 2336 | Rule used to change bound ... |
| cbv2w 2337 | Rule used to change bound ... |
| cbvaldw 2338 | Deduction used to change b... |
| cbvexdw 2339 | Deduction used to change b... |
| cbv3hv 2340 | Rule used to change bound ... |
| cbvalv1 2341 | Rule used to change bound ... |
| cbvexv1 2342 | Rule used to change bound ... |
| cbval2v 2343 | Rule used to change bound ... |
| cbvex2v 2344 | Rule used to change bound ... |
| dvelimhw 2345 | Proof of ~ dvelimh without... |
| pm11.53 2346 | Theorem *11.53 in [Whitehe... |
| 19.12vv 2347 | Special case of ~ 19.12 wh... |
| eean 2348 | Distribute existential qua... |
| eeanv 2349 | Distribute a pair of exist... |
| eeeanv 2350 | Distribute three existenti... |
| ee4anv 2351 | Distribute two pairs of ex... |
| ee4anvOLD 2352 | Obsolete version of ~ ee4a... |
| sb8v 2353 | Substitution of variable i... |
| sb8f 2354 | Substitution of variable i... |
| sb8ef 2355 | Substitution of variable i... |
| 2sb8ef 2356 | An equivalent expression f... |
| sb6rfv 2357 | Reversed substitution. Ve... |
| sbnf2 2358 | Two ways of expressing " `... |
| exsb 2359 | An equivalent expression f... |
| 2exsb 2360 | An equivalent expression f... |
| sbbib 2361 | Reversal of substitution. ... |
| sbbibvv 2362 | Reversal of substitution. ... |
| cbvsbvf 2363 | Change the bound variable ... |
| cleljustALT 2364 | Alternate proof of ~ clelj... |
| cleljustALT2 2365 | Alternate proof of ~ clelj... |
| equs5aALT 2366 | Alternate proof of ~ equs5... |
| equs5eALT 2367 | Alternate proof of ~ equs5... |
| axc11r 2368 | Same as ~ axc11 but with r... |
| dral1v 2369 | Formula-building lemma for... |
| drex1v 2370 | Formula-building lemma for... |
| drnf1v 2371 | Formula-building lemma for... |
| ax13v 2373 | A weaker version of ~ ax-1... |
| ax13lem1 2374 | A version of ~ ax13v with ... |
| ax13 2375 | Derive ~ ax-13 from ~ ax13... |
| ax13lem2 2376 | Lemma for ~ nfeqf2 . This... |
| nfeqf2 2377 | An equation between setvar... |
| dveeq2 2378 | Quantifier introduction wh... |
| nfeqf1 2379 | An equation between setvar... |
| dveeq1 2380 | Quantifier introduction wh... |
| nfeqf 2381 | A variable is effectively ... |
| axc9 2382 | Derive set.mm's original ~... |
| ax6e 2383 | At least one individual ex... |
| ax6 2384 | Theorem showing that ~ ax-... |
| axc10 2385 | Show that the original axi... |
| spimt 2386 | Closed theorem form of ~ s... |
| spim 2387 | Specialization, using impl... |
| spimed 2388 | Deduction version of ~ spi... |
| spime 2389 | Existential introduction, ... |
| spimv 2390 | A version of ~ spim with a... |
| spimvALT 2391 | Alternate proof of ~ spimv... |
| spimev 2392 | Distinct-variable version ... |
| spv 2393 | Specialization, using impl... |
| spei 2394 | Inference from existential... |
| chvar 2395 | Implicit substitution of `... |
| chvarv 2396 | Implicit substitution of `... |
| cbv3 2397 | Rule used to change bound ... |
| cbval 2398 | Rule used to change bound ... |
| cbvex 2399 | Rule used to change bound ... |
| cbvalv 2400 | Rule used to change bound ... |
| cbvexv 2401 | Rule used to change bound ... |
| cbv1 2402 | Rule used to change bound ... |
| cbv2 2403 | Rule used to change bound ... |
| cbv3h 2404 | Rule used to change bound ... |
| cbv1h 2405 | Rule used to change bound ... |
| cbv2h 2406 | Rule used to change bound ... |
| cbvald 2407 | Deduction used to change b... |
| cbvexd 2408 | Deduction used to change b... |
| cbvaldva 2409 | Rule used to change the bo... |
| cbvexdva 2410 | Rule used to change the bo... |
| cbval2 2411 | Rule used to change bound ... |
| cbvex2 2412 | Rule used to change bound ... |
| cbval2vv 2413 | Rule used to change bound ... |
| cbvex2vv 2414 | Rule used to change bound ... |
| cbvex4v 2415 | Rule used to change bound ... |
| equs4 2416 | Lemma used in proofs of im... |
| equsal 2417 | An equivalence related to ... |
| equsex 2418 | An equivalence related to ... |
| equsexALT 2419 | Alternate proof of ~ equse... |
| equsalh 2420 | An equivalence related to ... |
| equsexh 2421 | An equivalence related to ... |
| axc15 2422 | Derivation of set.mm's ori... |
| ax12 2423 | Rederivation of Axiom ~ ax... |
| ax12b 2424 | A bidirectional version of... |
| ax13ALT 2425 | Alternate proof of ~ ax13 ... |
| axc11n 2426 | Derive set.mm's original ~... |
| aecom 2427 | Commutation law for identi... |
| aecoms 2428 | A commutation rule for ide... |
| naecoms 2429 | A commutation rule for dis... |
| axc11 2430 | Show that ~ ax-c11 can be ... |
| hbae 2431 | All variables are effectiv... |
| hbnae 2432 | All variables are effectiv... |
| nfae 2433 | All variables are effectiv... |
| nfnae 2434 | All variables are effectiv... |
| hbnaes 2435 | Rule that applies ~ hbnae ... |
| axc16i 2436 | Inference with ~ axc16 as ... |
| axc16nfALT 2437 | Alternate proof of ~ axc16... |
| dral2 2438 | Formula-building lemma for... |
| dral1 2439 | Formula-building lemma for... |
| dral1ALT 2440 | Alternate proof of ~ dral1... |
| drex1 2441 | Formula-building lemma for... |
| drex2 2442 | Formula-building lemma for... |
| drnf1 2443 | Formula-building lemma for... |
| drnf2 2444 | Formula-building lemma for... |
| nfald2 2445 | Variation on ~ nfald which... |
| nfexd2 2446 | Variation on ~ nfexd which... |
| exdistrf 2447 | Distribution of existentia... |
| dvelimf 2448 | Version of ~ dvelimv witho... |
| dvelimdf 2449 | Deduction form of ~ dvelim... |
| dvelimh 2450 | Version of ~ dvelim withou... |
| dvelim 2451 | This theorem can be used t... |
| dvelimv 2452 | Similar to ~ dvelim with f... |
| dvelimnf 2453 | Version of ~ dvelim using ... |
| dveeq2ALT 2454 | Alternate proof of ~ dveeq... |
| equvini 2455 | A variable introduction la... |
| equvel 2456 | A variable elimination law... |
| equs5a 2457 | A property related to subs... |
| equs5e 2458 | A property related to subs... |
| equs45f 2459 | Two ways of expressing sub... |
| equs5 2460 | Lemma used in proofs of su... |
| dveel1 2461 | Quantifier introduction wh... |
| dveel2 2462 | Quantifier introduction wh... |
| axc14 2463 | Axiom ~ ax-c14 is redundan... |
| sb6x 2464 | Equivalence involving subs... |
| sbequ5 2465 | Substitution does not chan... |
| sbequ6 2466 | Substitution does not chan... |
| sb5rf 2467 | Reversed substitution. Us... |
| sb6rf 2468 | Reversed substitution. Fo... |
| ax12vALT 2469 | Alternate proof of ~ ax12v... |
| 2ax6elem 2470 | We can always find values ... |
| 2ax6e 2471 | We can always find values ... |
| 2sb5rf 2472 | Reversed double substituti... |
| 2sb6rf 2473 | Reversed double substituti... |
| sbel2x 2474 | Elimination of double subs... |
| sb4b 2475 | Simplified definition of s... |
| sb3b 2476 | Simplified definition of s... |
| sb3 2477 | One direction of a simplif... |
| sb1 2478 | One direction of a simplif... |
| sb2 2479 | One direction of a simplif... |
| sb4a 2480 | A version of one implicati... |
| dfsb1 2481 | Alternate definition of su... |
| hbsb2 2482 | Bound-variable hypothesis ... |
| nfsb2 2483 | Bound-variable hypothesis ... |
| hbsb2a 2484 | Special case of a bound-va... |
| sb4e 2485 | One direction of a simplif... |
| hbsb2e 2486 | Special case of a bound-va... |
| hbsb3 2487 | If ` y ` is not free in ` ... |
| nfs1 2488 | If ` y ` is not free in ` ... |
| axc16ALT 2489 | Alternate proof of ~ axc16... |
| axc16gALT 2490 | Alternate proof of ~ axc16... |
| equsb1 2491 | Substitution applied to an... |
| equsb2 2492 | Substitution applied to an... |
| dfsb2 2493 | An alternate definition of... |
| dfsb3 2494 | An alternate definition of... |
| drsb1 2495 | Formula-building lemma for... |
| sb2ae 2496 | In the case of two success... |
| sb6f 2497 | Equivalence for substituti... |
| sb5f 2498 | Equivalence for substituti... |
| nfsb4t 2499 | A variable not free in a p... |
| nfsb4 2500 | A variable not free in a p... |
| sbequ8 2501 | Elimination of equality fr... |
| sbie 2502 | Conversion of implicit sub... |
| sbied 2503 | Conversion of implicit sub... |
| sbiedv 2504 | Conversion of implicit sub... |
| 2sbiev 2505 | Conversion of double impli... |
| sbcom3 2506 | Substituting ` y ` for ` x... |
| sbco 2507 | A composition law for subs... |
| sbid2 2508 | An identity law for substi... |
| sbid2v 2509 | An identity law for substi... |
| sbidm 2510 | An idempotent law for subs... |
| sbco2 2511 | A composition law for subs... |
| sbco2d 2512 | A composition law for subs... |
| sbco3 2513 | A composition law for subs... |
| sbcom 2514 | A commutativity law for su... |
| sbtrt 2515 | Partially closed form of ~... |
| sbtr 2516 | A partial converse to ~ sb... |
| sb8 2517 | Substitution of variable i... |
| sb8e 2518 | Substitution of variable i... |
| sb9 2519 | Commutation of quantificat... |
| sb9i 2520 | Commutation of quantificat... |
| sbhb 2521 | Two ways of expressing " `... |
| nfsbd 2522 | Deduction version of ~ nfs... |
| nfsb 2523 | If ` z ` is not free in ` ... |
| hbsb 2524 | If ` z ` is not free in ` ... |
| sb7f 2525 | This version of ~ dfsb7 do... |
| sb7h 2526 | This version of ~ dfsb7 do... |
| sb10f 2527 | Hao Wang's identity axiom ... |
| sbal1 2528 | Check out ~ sbal for a ver... |
| sbal2 2529 | Move quantifier in and out... |
| 2sb8e 2530 | An equivalent expression f... |
| dfmoeu 2531 | An elementary proof of ~ m... |
| dfeumo 2532 | An elementary proof showin... |
| mojust 2534 | Soundness justification th... |
| nexmo 2536 | Nonexistence implies uniqu... |
| exmo 2537 | Any proposition holds for ... |
| moabs 2538 | Absorption of existence co... |
| moim 2539 | The at-most-one quantifier... |
| moimi 2540 | The at-most-one quantifier... |
| moimdv 2541 | The at-most-one quantifier... |
| mobi 2542 | Equivalence theorem for th... |
| mobii 2543 | Formula-building rule for ... |
| mobidv 2544 | Formula-building rule for ... |
| mobid 2545 | Formula-building rule for ... |
| moa1 2546 | If an implication holds fo... |
| moan 2547 | "At most one" is still the... |
| moani 2548 | "At most one" is still tru... |
| moor 2549 | "At most one" is still the... |
| mooran1 2550 | "At most one" imports disj... |
| mooran2 2551 | "At most one" exports disj... |
| nfmo1 2552 | Bound-variable hypothesis ... |
| nfmod2 2553 | Bound-variable hypothesis ... |
| nfmodv 2554 | Bound-variable hypothesis ... |
| nfmov 2555 | Bound-variable hypothesis ... |
| nfmod 2556 | Bound-variable hypothesis ... |
| nfmo 2557 | Bound-variable hypothesis ... |
| mof 2558 | Version of ~ df-mo with di... |
| mo3 2559 | Alternate definition of th... |
| mo 2560 | Equivalent definitions of ... |
| mo4 2561 | At-most-one quantifier exp... |
| mo4f 2562 | At-most-one quantifier exp... |
| eu3v 2565 | An alternate way to expres... |
| eujust 2566 | Soundness justification th... |
| eujustALT 2567 | Alternate proof of ~ eujus... |
| eu6lem 2568 | Lemma of ~ eu6im . A diss... |
| eu6 2569 | Alternate definition of th... |
| eu6im 2570 | One direction of ~ eu6 nee... |
| euf 2571 | Version of ~ eu6 with disj... |
| euex 2572 | Existential uniqueness imp... |
| eumo 2573 | Existential uniqueness imp... |
| eumoi 2574 | Uniqueness inferred from e... |
| exmoeub 2575 | Existence implies that uni... |
| exmoeu 2576 | Existence is equivalent to... |
| moeuex 2577 | Uniqueness implies that ex... |
| moeu 2578 | Uniqueness is equivalent t... |
| eubi 2579 | Equivalence theorem for th... |
| eubii 2580 | Introduce unique existenti... |
| eubidv 2581 | Formula-building rule for ... |
| eubid 2582 | Formula-building rule for ... |
| nfeu1 2583 | Bound-variable hypothesis ... |
| nfeu1ALT 2584 | Alternate proof of ~ nfeu1... |
| nfeud2 2585 | Bound-variable hypothesis ... |
| nfeudw 2586 | Bound-variable hypothesis ... |
| nfeud 2587 | Bound-variable hypothesis ... |
| nfeuw 2588 | Bound-variable hypothesis ... |
| nfeu 2589 | Bound-variable hypothesis ... |
| dfeu 2590 | Rederive ~ df-eu from the ... |
| dfmo 2591 | Rederive ~ df-mo from the ... |
| euequ 2592 | There exists a unique set ... |
| sb8eulem 2593 | Lemma. Factor out the com... |
| sb8euv 2594 | Variable substitution in u... |
| sb8eu 2595 | Variable substitution in u... |
| sb8mo 2596 | Variable substitution for ... |
| cbvmovw 2597 | Change bound variable. Us... |
| cbvmow 2598 | Rule used to change bound ... |
| cbvmo 2599 | Rule used to change bound ... |
| cbveuvw 2600 | Change bound variable. Us... |
| cbveuw 2601 | Version of ~ cbveu with a ... |
| cbveu 2602 | Rule used to change bound ... |
| cbveuALT 2603 | Alternative proof of ~ cbv... |
| eu2 2604 | An alternate way of defini... |
| eu1 2605 | An alternate way to expres... |
| euor 2606 | Introduce a disjunct into ... |
| euorv 2607 | Introduce a disjunct into ... |
| euor2 2608 | Introduce or eliminate a d... |
| sbmo 2609 | Substitution into an at-mo... |
| eu4 2610 | Uniqueness using implicit ... |
| euimmo 2611 | Existential uniqueness imp... |
| euim 2612 | Add unique existential qua... |
| moanimlem 2613 | Factor out the common proo... |
| moanimv 2614 | Introduction of a conjunct... |
| moanim 2615 | Introduction of a conjunct... |
| euan 2616 | Introduction of a conjunct... |
| moanmo 2617 | Nested at-most-one quantif... |
| moaneu 2618 | Nested at-most-one and uni... |
| euanv 2619 | Introduction of a conjunct... |
| mopick 2620 | "At most one" picks a vari... |
| moexexlem 2621 | Factor out the proof skele... |
| 2moexv 2622 | Double quantification with... |
| moexexvw 2623 | "At most one" double quant... |
| 2moswapv 2624 | A condition allowing to sw... |
| 2euswapv 2625 | A condition allowing to sw... |
| 2euexv 2626 | Double quantification with... |
| 2exeuv 2627 | Double existential uniquen... |
| eupick 2628 | Existential uniqueness "pi... |
| eupicka 2629 | Version of ~ eupick with c... |
| eupickb 2630 | Existential uniqueness "pi... |
| eupickbi 2631 | Theorem *14.26 in [Whitehe... |
| mopick2 2632 | "At most one" can show the... |
| moexex 2633 | "At most one" double quant... |
| moexexv 2634 | "At most one" double quant... |
| 2moex 2635 | Double quantification with... |
| 2euex 2636 | Double quantification with... |
| 2eumo 2637 | Nested unique existential ... |
| 2eu2ex 2638 | Double existential uniquen... |
| 2moswap 2639 | A condition allowing to sw... |
| 2euswap 2640 | A condition allowing to sw... |
| 2exeu 2641 | Double existential uniquen... |
| 2mo2 2642 | Two ways of expressing "th... |
| 2mo 2643 | Two ways of expressing "th... |
| 2mos 2644 | Double "there exists at mo... |
| 2mosOLD 2645 | Obsolete version of ~ 2mos... |
| 2eu1 2646 | Double existential uniquen... |
| 2eu1v 2647 | Double existential uniquen... |
| 2eu2 2648 | Double existential uniquen... |
| 2eu3 2649 | Double existential uniquen... |
| 2eu4 2650 | This theorem provides us w... |
| 2eu5 2651 | An alternate definition of... |
| 2eu6 2652 | Two equivalent expressions... |
| 2eu7 2653 | Two equivalent expressions... |
| 2eu8 2654 | Two equivalent expressions... |
| euae 2655 | Two ways to express "exact... |
| exists1 2656 | Two ways to express "exact... |
| exists2 2657 | A condition implying that ... |
| barbara 2658 | "Barbara", one of the fund... |
| celarent 2659 | "Celarent", one of the syl... |
| darii 2660 | "Darii", one of the syllog... |
| dariiALT 2661 | Alternate proof of ~ darii... |
| ferio 2662 | "Ferio" ("Ferioque"), one ... |
| barbarilem 2663 | Lemma for ~ barbari and th... |
| barbari 2664 | "Barbari", one of the syll... |
| barbariALT 2665 | Alternate proof of ~ barba... |
| celaront 2666 | "Celaront", one of the syl... |
| cesare 2667 | "Cesare", one of the syllo... |
| camestres 2668 | "Camestres", one of the sy... |
| festino 2669 | "Festino", one of the syll... |
| festinoALT 2670 | Alternate proof of ~ festi... |
| baroco 2671 | "Baroco", one of the syllo... |
| barocoALT 2672 | Alternate proof of ~ festi... |
| cesaro 2673 | "Cesaro", one of the syllo... |
| camestros 2674 | "Camestros", one of the sy... |
| datisi 2675 | "Datisi", one of the syllo... |
| disamis 2676 | "Disamis", one of the syll... |
| ferison 2677 | "Ferison", one of the syll... |
| bocardo 2678 | "Bocardo", one of the syll... |
| darapti 2679 | "Darapti", one of the syll... |
| daraptiALT 2680 | Alternate proof of ~ darap... |
| felapton 2681 | "Felapton", one of the syl... |
| calemes 2682 | "Calemes", one of the syll... |
| dimatis 2683 | "Dimatis", one of the syll... |
| fresison 2684 | "Fresison", one of the syl... |
| calemos 2685 | "Calemos", one of the syll... |
| fesapo 2686 | "Fesapo", one of the syllo... |
| bamalip 2687 | "Bamalip", one of the syll... |
| axia1 2688 | Left 'and' elimination (in... |
| axia2 2689 | Right 'and' elimination (i... |
| axia3 2690 | 'And' introduction (intuit... |
| axin1 2691 | 'Not' introduction (intuit... |
| axin2 2692 | 'Not' elimination (intuiti... |
| axio 2693 | Definition of 'or' (intuit... |
| axi4 2694 | Specialization (intuitioni... |
| axi5r 2695 | Converse of ~ axc4 (intuit... |
| axial 2696 | The setvar ` x ` is not fr... |
| axie1 2697 | The setvar ` x ` is not fr... |
| axie2 2698 | A key property of existent... |
| axi9 2699 | Axiom of existence (intuit... |
| axi10 2700 | Axiom of Quantifier Substi... |
| axi12 2701 | Axiom of Quantifier Introd... |
| axbnd 2702 | Axiom of Bundling (intuiti... |
| axexte 2704 | The axiom of extensionalit... |
| axextg 2705 | A generalization of the ax... |
| axextb 2706 | A bidirectional version of... |
| axextmo 2707 | There exists at most one s... |
| nulmo 2708 | There exists at most one e... |
| eleq1ab 2711 | Extension (in the sense of... |
| cleljustab 2712 | Extension of ~ cleljust fr... |
| abid 2713 | Simplification of class ab... |
| vexwt 2714 | A standard theorem of pred... |
| vexw 2715 | If ` ph ` is a theorem, th... |
| vextru 2716 | Every setvar is a member o... |
| nfsab1 2717 | Bound-variable hypothesis ... |
| hbab1 2718 | Bound-variable hypothesis ... |
| hbab 2719 | Bound-variable hypothesis ... |
| hbabg 2720 | Bound-variable hypothesis ... |
| nfsab 2721 | Bound-variable hypothesis ... |
| nfsabg 2722 | Bound-variable hypothesis ... |
| dfcleq 2724 | The defining characterizat... |
| cvjust 2725 | Every set is a class. Pro... |
| ax9ALT 2726 | Proof of ~ ax-9 from Tarsk... |
| eleq2w2 2727 | A weaker version of ~ eleq... |
| eqriv 2728 | Infer equality of classes ... |
| eqrdv 2729 | Deduce equality of classes... |
| eqrdav 2730 | Deduce equality of classes... |
| eqid 2731 | Law of identity (reflexivi... |
| eqidd 2732 | Class identity law with an... |
| eqeq1d 2733 | Deduction from equality to... |
| eqeq1dALT 2734 | Alternate proof of ~ eqeq1... |
| eqeq1 2735 | Equality implies equivalen... |
| eqeq1i 2736 | Inference from equality to... |
| eqcomd 2737 | Deduction from commutative... |
| eqcom 2738 | Commutative law for class ... |
| eqcoms 2739 | Inference applying commuta... |
| eqcomi 2740 | Inference from commutative... |
| neqcomd 2741 | Commute an inequality. (C... |
| eqeq2d 2742 | Deduction from equality to... |
| eqeq2 2743 | Equality implies equivalen... |
| eqeq2i 2744 | Inference from equality to... |
| eqeqan12d 2745 | A useful inference for sub... |
| eqeqan12rd 2746 | A useful inference for sub... |
| eqeq12d 2747 | A useful inference for sub... |
| eqeq12 2748 | Equality relationship amon... |
| eqeq12i 2749 | A useful inference for sub... |
| eqeqan12dALT 2750 | Alternate proof of ~ eqeqa... |
| eqtr 2751 | Transitive law for class e... |
| eqtr2 2752 | A transitive law for class... |
| eqtr3 2753 | A transitive law for class... |
| eqtri 2754 | An equality transitivity i... |
| eqtr2i 2755 | An equality transitivity i... |
| eqtr3i 2756 | An equality transitivity i... |
| eqtr4i 2757 | An equality transitivity i... |
| 3eqtri 2758 | An inference from three ch... |
| 3eqtrri 2759 | An inference from three ch... |
| 3eqtr2i 2760 | An inference from three ch... |
| 3eqtr2ri 2761 | An inference from three ch... |
| 3eqtr3i 2762 | An inference from three ch... |
| 3eqtr3ri 2763 | An inference from three ch... |
| 3eqtr4i 2764 | An inference from three ch... |
| 3eqtr4ri 2765 | An inference from three ch... |
| eqtrd 2766 | An equality transitivity d... |
| eqtr2d 2767 | An equality transitivity d... |
| eqtr3d 2768 | An equality transitivity e... |
| eqtr4d 2769 | An equality transitivity e... |
| 3eqtrd 2770 | A deduction from three cha... |
| 3eqtrrd 2771 | A deduction from three cha... |
| 3eqtr2d 2772 | A deduction from three cha... |
| 3eqtr2rd 2773 | A deduction from three cha... |
| 3eqtr3d 2774 | A deduction from three cha... |
| 3eqtr3rd 2775 | A deduction from three cha... |
| 3eqtr4d 2776 | A deduction from three cha... |
| 3eqtr4rd 2777 | A deduction from three cha... |
| eqtrid 2778 | An equality transitivity d... |
| eqtr2id 2779 | An equality transitivity d... |
| eqtr3id 2780 | An equality transitivity d... |
| eqtr3di 2781 | An equality transitivity d... |
| eqtrdi 2782 | An equality transitivity d... |
| eqtr2di 2783 | An equality transitivity d... |
| eqtr4di 2784 | An equality transitivity d... |
| eqtr4id 2785 | An equality transitivity d... |
| sylan9eq 2786 | An equality transitivity d... |
| sylan9req 2787 | An equality transitivity d... |
| sylan9eqr 2788 | An equality transitivity d... |
| 3eqtr3g 2789 | A chained equality inferen... |
| 3eqtr3a 2790 | A chained equality inferen... |
| 3eqtr4g 2791 | A chained equality inferen... |
| 3eqtr4a 2792 | A chained equality inferen... |
| eq2tri 2793 | A compound transitive infe... |
| iseqsetvlem 2794 | Lemma for ~ iseqsetv-cleq ... |
| iseqsetv-cleq 2795 | Alternate proof of ~ iseqs... |
| abbi 2796 | Equivalent formulas yield ... |
| abbidv 2797 | Equivalent wff's yield equ... |
| abbii 2798 | Equivalent wff's yield equ... |
| abbid 2799 | Equivalent wff's yield equ... |
| abbib 2800 | Equal class abstractions r... |
| cbvabv 2801 | Rule used to change bound ... |
| cbvabw 2802 | Rule used to change bound ... |
| cbvab 2803 | Rule used to change bound ... |
| eqabbw 2804 | Version of ~ eqabb using i... |
| eqabcbw 2805 | Version of ~ eqabcb using ... |
| dfclel 2807 | Characterization of the el... |
| elex2 2808 | If a class contains anothe... |
| issettru 2809 | Weak version of ~ isset . ... |
| iseqsetv-clel 2810 | Alternate proof of ~ iseqs... |
| issetlem 2811 | Lemma for ~ elisset and ~ ... |
| elissetv 2812 | An element of a class exis... |
| elisset 2813 | An element of a class exis... |
| eleq1w 2814 | Weaker version of ~ eleq1 ... |
| eleq2w 2815 | Weaker version of ~ eleq2 ... |
| eleq1d 2816 | Deduction from equality to... |
| eleq2d 2817 | Deduction from equality to... |
| eleq2dALT 2818 | Alternate proof of ~ eleq2... |
| eleq1 2819 | Equality implies equivalen... |
| eleq2 2820 | Equality implies equivalen... |
| eleq12 2821 | Equality implies equivalen... |
| eleq1i 2822 | Inference from equality to... |
| eleq2i 2823 | Inference from equality to... |
| eleq12i 2824 | Inference from equality to... |
| eleq12d 2825 | Deduction from equality to... |
| eleq1a 2826 | A transitive-type law rela... |
| eqeltri 2827 | Substitution of equal clas... |
| eqeltrri 2828 | Substitution of equal clas... |
| eleqtri 2829 | Substitution of equal clas... |
| eleqtrri 2830 | Substitution of equal clas... |
| eqeltrd 2831 | Substitution of equal clas... |
| eqeltrrd 2832 | Deduction that substitutes... |
| eleqtrd 2833 | Deduction that substitutes... |
| eleqtrrd 2834 | Deduction that substitutes... |
| eqeltrid 2835 | A membership and equality ... |
| eqeltrrid 2836 | A membership and equality ... |
| eleqtrid 2837 | A membership and equality ... |
| eleqtrrid 2838 | A membership and equality ... |
| eqeltrdi 2839 | A membership and equality ... |
| eqeltrrdi 2840 | A membership and equality ... |
| eleqtrdi 2841 | A membership and equality ... |
| eleqtrrdi 2842 | A membership and equality ... |
| 3eltr3i 2843 | Substitution of equal clas... |
| 3eltr4i 2844 | Substitution of equal clas... |
| 3eltr3d 2845 | Substitution of equal clas... |
| 3eltr4d 2846 | Substitution of equal clas... |
| 3eltr3g 2847 | Substitution of equal clas... |
| 3eltr4g 2848 | Substitution of equal clas... |
| eleq2s 2849 | Substitution of equal clas... |
| eqneltri 2850 | If a class is not an eleme... |
| eqneltrd 2851 | If a class is not an eleme... |
| eqneltrrd 2852 | If a class is not an eleme... |
| neleqtrd 2853 | If a class is not an eleme... |
| neleqtrrd 2854 | If a class is not an eleme... |
| nelneq 2855 | A way of showing two class... |
| nelneq2 2856 | A way of showing two class... |
| eqsb1 2857 | Substitution for the left-... |
| clelsb1 2858 | Substitution for the first... |
| clelsb2 2859 | Substitution for the secon... |
| cleqh 2860 | Establish equality between... |
| hbxfreq 2861 | A utility lemma to transfe... |
| hblem 2862 | Change the free variable o... |
| hblemg 2863 | Change the free variable o... |
| eqabdv 2864 | Deduction from a wff to a ... |
| eqabcdv 2865 | Deduction from a wff to a ... |
| eqabi 2866 | Equality of a class variab... |
| abid1 2867 | Every class is equal to a ... |
| abid2 2868 | A simplification of class ... |
| eqab 2869 | One direction of ~ eqabb i... |
| eqabb 2870 | Equality of a class variab... |
| eqabbOLD 2871 | Obsolete version of ~ eqab... |
| eqabcb 2872 | Equality of a class variab... |
| eqabrd 2873 | Equality of a class variab... |
| eqabri 2874 | Equality of a class variab... |
| eqabcri 2875 | Equality of a class variab... |
| clelab 2876 | Membership of a class vari... |
| clabel 2877 | Membership of a class abst... |
| sbab 2878 | The right-hand side of the... |
| nfcjust 2880 | Justification theorem for ... |
| nfci 2882 | Deduce that a class ` A ` ... |
| nfcii 2883 | Deduce that a class ` A ` ... |
| nfcr 2884 | Consequence of the not-fre... |
| nfcrALT 2885 | Alternate version of ~ nfc... |
| nfcri 2886 | Consequence of the not-fre... |
| nfcd 2887 | Deduce that a class ` A ` ... |
| nfcrd 2888 | Consequence of the not-fre... |
| nfcrii 2889 | Consequence of the not-fre... |
| nfceqdf 2890 | An equality theorem for ef... |
| nfceqi 2891 | Equality theorem for class... |
| nfcxfr 2892 | A utility lemma to transfe... |
| nfcxfrd 2893 | A utility lemma to transfe... |
| nfcv 2894 | If ` x ` is disjoint from ... |
| nfcvd 2895 | If ` x ` is disjoint from ... |
| nfab1 2896 | Bound-variable hypothesis ... |
| nfnfc1 2897 | The setvar ` x ` is bound ... |
| clelsb1fw 2898 | Substitution for the first... |
| clelsb1f 2899 | Substitution for the first... |
| nfab 2900 | Bound-variable hypothesis ... |
| nfabg 2901 | Bound-variable hypothesis ... |
| nfaba1 2902 | Bound-variable hypothesis ... |
| nfaba1OLD 2903 | Obsolete version of ~ nfab... |
| nfaba1g 2904 | Bound-variable hypothesis ... |
| nfeqd 2905 | Hypothesis builder for equ... |
| nfeld 2906 | Hypothesis builder for ele... |
| nfnfc 2907 | Hypothesis builder for ` F... |
| nfeq 2908 | Hypothesis builder for equ... |
| nfel 2909 | Hypothesis builder for ele... |
| nfeq1 2910 | Hypothesis builder for equ... |
| nfel1 2911 | Hypothesis builder for ele... |
| nfeq2 2912 | Hypothesis builder for equ... |
| nfel2 2913 | Hypothesis builder for ele... |
| drnfc1 2914 | Formula-building lemma for... |
| drnfc2 2915 | Formula-building lemma for... |
| nfabdw 2916 | Bound-variable hypothesis ... |
| nfabd 2917 | Bound-variable hypothesis ... |
| nfabd2 2918 | Bound-variable hypothesis ... |
| dvelimdc 2919 | Deduction form of ~ dvelim... |
| dvelimc 2920 | Version of ~ dvelim for cl... |
| nfcvf 2921 | If ` x ` and ` y ` are dis... |
| nfcvf2 2922 | If ` x ` and ` y ` are dis... |
| cleqf 2923 | Establish equality between... |
| eqabf 2924 | Equality of a class variab... |
| abid2f 2925 | A simplification of class ... |
| abid2fOLD 2926 | Obsolete version of ~ abid... |
| sbabel 2927 | Theorem to move a substitu... |
| neii 2930 | Inference associated with ... |
| neir 2931 | Inference associated with ... |
| nne 2932 | Negation of inequality. (... |
| neneqd 2933 | Deduction eliminating ineq... |
| neneq 2934 | From inequality to non-equ... |
| neqned 2935 | If it is not the case that... |
| neqne 2936 | From non-equality to inequ... |
| neirr 2937 | No class is unequal to its... |
| exmidne 2938 | Excluded middle with equal... |
| eqneqall 2939 | A contradiction concerning... |
| nonconne 2940 | Law of noncontradiction wi... |
| necon3ad 2941 | Contrapositive law deducti... |
| necon3bd 2942 | Contrapositive law deducti... |
| necon2ad 2943 | Contrapositive inference f... |
| necon2bd 2944 | Contrapositive inference f... |
| necon1ad 2945 | Contrapositive deduction f... |
| necon1bd 2946 | Contrapositive deduction f... |
| necon4ad 2947 | Contrapositive inference f... |
| necon4bd 2948 | Contrapositive inference f... |
| necon3d 2949 | Contrapositive law deducti... |
| necon1d 2950 | Contrapositive law deducti... |
| necon2d 2951 | Contrapositive inference f... |
| necon4d 2952 | Contrapositive inference f... |
| necon3ai 2953 | Contrapositive inference f... |
| necon3bi 2954 | Contrapositive inference f... |
| necon1ai 2955 | Contrapositive inference f... |
| necon1bi 2956 | Contrapositive inference f... |
| necon2ai 2957 | Contrapositive inference f... |
| necon2bi 2958 | Contrapositive inference f... |
| necon4ai 2959 | Contrapositive inference f... |
| necon3i 2960 | Contrapositive inference f... |
| necon1i 2961 | Contrapositive inference f... |
| necon2i 2962 | Contrapositive inference f... |
| necon4i 2963 | Contrapositive inference f... |
| necon3abid 2964 | Deduction from equality to... |
| necon3bbid 2965 | Deduction from equality to... |
| necon1abid 2966 | Contrapositive deduction f... |
| necon1bbid 2967 | Contrapositive inference f... |
| necon4abid 2968 | Contrapositive law deducti... |
| necon4bbid 2969 | Contrapositive law deducti... |
| necon2abid 2970 | Contrapositive deduction f... |
| necon2bbid 2971 | Contrapositive deduction f... |
| necon3bid 2972 | Deduction from equality to... |
| necon4bid 2973 | Contrapositive law deducti... |
| necon3abii 2974 | Deduction from equality to... |
| necon3bbii 2975 | Deduction from equality to... |
| necon1abii 2976 | Contrapositive inference f... |
| necon1bbii 2977 | Contrapositive inference f... |
| necon2abii 2978 | Contrapositive inference f... |
| necon2bbii 2979 | Contrapositive inference f... |
| necon3bii 2980 | Inference from equality to... |
| necom 2981 | Commutation of inequality.... |
| necomi 2982 | Inference from commutative... |
| necomd 2983 | Deduction from commutative... |
| nesym 2984 | Characterization of inequa... |
| nesymi 2985 | Inference associated with ... |
| nesymir 2986 | Inference associated with ... |
| neeq1d 2987 | Deduction for inequality. ... |
| neeq2d 2988 | Deduction for inequality. ... |
| neeq12d 2989 | Deduction for inequality. ... |
| neeq1 2990 | Equality theorem for inequ... |
| neeq2 2991 | Equality theorem for inequ... |
| neeq1i 2992 | Inference for inequality. ... |
| neeq2i 2993 | Inference for inequality. ... |
| neeq12i 2994 | Inference for inequality. ... |
| eqnetrd 2995 | Substitution of equal clas... |
| eqnetrrd 2996 | Substitution of equal clas... |
| neeqtrd 2997 | Substitution of equal clas... |
| eqnetri 2998 | Substitution of equal clas... |
| eqnetrri 2999 | Substitution of equal clas... |
| neeqtri 3000 | Substitution of equal clas... |
| neeqtrri 3001 | Substitution of equal clas... |
| neeqtrrd 3002 | Substitution of equal clas... |
| eqnetrrid 3003 | A chained equality inferen... |
| 3netr3d 3004 | Substitution of equality i... |
| 3netr4d 3005 | Substitution of equality i... |
| 3netr3g 3006 | Substitution of equality i... |
| 3netr4g 3007 | Substitution of equality i... |
| nebi 3008 | Contraposition law for ine... |
| pm13.18 3009 | Theorem *13.18 in [Whitehe... |
| pm13.181 3010 | Theorem *13.181 in [Whiteh... |
| pm2.61ine 3011 | Inference eliminating an i... |
| pm2.21ddne 3012 | A contradiction implies an... |
| pm2.61ne 3013 | Deduction eliminating an i... |
| pm2.61dne 3014 | Deduction eliminating an i... |
| pm2.61dane 3015 | Deduction eliminating an i... |
| pm2.61da2ne 3016 | Deduction eliminating two ... |
| pm2.61da3ne 3017 | Deduction eliminating thre... |
| pm2.61iine 3018 | Equality version of ~ pm2.... |
| mteqand 3019 | A modus tollens deduction ... |
| neor 3020 | Logical OR with an equalit... |
| neanior 3021 | A De Morgan's law for ineq... |
| ne3anior 3022 | A De Morgan's law for ineq... |
| neorian 3023 | A De Morgan's law for ineq... |
| nemtbir 3024 | An inference from an inequ... |
| nelne1 3025 | Two classes are different ... |
| nelne2 3026 | Two classes are different ... |
| nelelne 3027 | Two classes are different ... |
| neneor 3028 | If two classes are differe... |
| nfne 3029 | Bound-variable hypothesis ... |
| nfned 3030 | Bound-variable hypothesis ... |
| nabbib 3031 | Not equivalent wff's corre... |
| neli 3034 | Inference associated with ... |
| nelir 3035 | Inference associated with ... |
| nelcon3d 3036 | Contrapositive law deducti... |
| neleq12d 3037 | Equality theorem for negat... |
| neleq1 3038 | Equality theorem for negat... |
| neleq2 3039 | Equality theorem for negat... |
| nfnel 3040 | Bound-variable hypothesis ... |
| nfneld 3041 | Bound-variable hypothesis ... |
| nnel 3042 | Negation of negated member... |
| elnelne1 3043 | Two classes are different ... |
| elnelne2 3044 | Two classes are different ... |
| pm2.24nel 3045 | A contradiction concerning... |
| pm2.61danel 3046 | Deduction eliminating an e... |
| rgen 3049 | Generalization rule for re... |
| ralel 3050 | All elements of a class ar... |
| rgenw 3051 | Generalization rule for re... |
| rgen2w 3052 | Generalization rule for re... |
| mprg 3053 | Modus ponens combined with... |
| mprgbir 3054 | Modus ponens on biconditio... |
| raln 3055 | Restricted universally qua... |
| ralnex 3058 | Relationship between restr... |
| dfrex2 3059 | Relationship between restr... |
| nrex 3060 | Inference adding restricte... |
| alral 3061 | Universal quantification i... |
| rexex 3062 | Restricted existence impli... |
| rextru 3063 | Two ways of expressing tha... |
| ralimi2 3064 | Inference quantifying both... |
| reximi2 3065 | Inference quantifying both... |
| ralimia 3066 | Inference quantifying both... |
| reximia 3067 | Inference quantifying both... |
| ralimiaa 3068 | Inference quantifying both... |
| ralimi 3069 | Inference quantifying both... |
| reximi 3070 | Inference quantifying both... |
| ral2imi 3071 | Inference quantifying ante... |
| ralim 3072 | Distribution of restricted... |
| rexim 3073 | Theorem 19.22 of [Margaris... |
| ralbii2 3074 | Inference adding different... |
| rexbii2 3075 | Inference adding different... |
| ralbiia 3076 | Inference adding restricte... |
| rexbiia 3077 | Inference adding restricte... |
| ralbii 3078 | Inference adding restricte... |
| rexbii 3079 | Inference adding restricte... |
| ralanid 3080 | Cancellation law for restr... |
| rexanid 3081 | Cancellation law for restr... |
| ralcom3 3082 | A commutation law for rest... |
| dfral2 3083 | Relationship between restr... |
| rexnal 3084 | Relationship between restr... |
| ralinexa 3085 | A transformation of restri... |
| rexanali 3086 | A transformation of restri... |
| ralbi 3087 | Distribute a restricted un... |
| rexbi 3088 | Distribute restricted quan... |
| ralrexbid 3089 | Formula-building rule for ... |
| r19.35 3090 | Restricted quantifier vers... |
| r19.26m 3091 | Version of ~ 19.26 and ~ r... |
| r19.26 3092 | Restricted quantifier vers... |
| r19.26-3 3093 | Version of ~ r19.26 with t... |
| ralbiim 3094 | Split a biconditional and ... |
| r19.29 3095 | Restricted quantifier vers... |
| r19.29r 3096 | Restricted quantifier vers... |
| r19.29imd 3097 | Theorem 19.29 of [Margaris... |
| r19.40 3098 | Restricted quantifier vers... |
| r19.30 3099 | Restricted quantifier vers... |
| r19.43 3100 | Restricted quantifier vers... |
| 3r19.43 3101 | Restricted quantifier vers... |
| 2ralimi 3102 | Inference quantifying both... |
| 3ralimi 3103 | Inference quantifying both... |
| 4ralimi 3104 | Inference quantifying both... |
| 5ralimi 3105 | Inference quantifying both... |
| 6ralimi 3106 | Inference quantifying both... |
| 2ralbii 3107 | Inference adding two restr... |
| 2rexbii 3108 | Inference adding two restr... |
| 3ralbii 3109 | Inference adding three res... |
| 4ralbii 3110 | Inference adding four rest... |
| 2ralbiim 3111 | Split a biconditional and ... |
| ralnex2 3112 | Relationship between two r... |
| ralnex3 3113 | Relationship between three... |
| rexnal2 3114 | Relationship between two r... |
| rexnal3 3115 | Relationship between three... |
| nrexralim 3116 | Negation of a complex pred... |
| r19.26-2 3117 | Restricted quantifier vers... |
| 2r19.29 3118 | Theorem ~ r19.29 with two ... |
| r19.29d2r 3119 | Theorem 19.29 of [Margaris... |
| r2allem 3120 | Lemma factoring out common... |
| r2exlem 3121 | Lemma factoring out common... |
| hbralrimi 3122 | Inference from Theorem 19.... |
| ralrimiv 3123 | Inference from Theorem 19.... |
| ralrimiva 3124 | Inference from Theorem 19.... |
| rexlimiva 3125 | Inference from Theorem 19.... |
| rexlimiv 3126 | Inference from Theorem 19.... |
| nrexdv 3127 | Deduction adding restricte... |
| ralrimivw 3128 | Inference from Theorem 19.... |
| rexlimivw 3129 | Weaker version of ~ rexlim... |
| ralrimdv 3130 | Inference from Theorem 19.... |
| rexlimdv 3131 | Inference from Theorem 19.... |
| ralrimdva 3132 | Inference from Theorem 19.... |
| rexlimdva 3133 | Inference from Theorem 19.... |
| rexlimdvaa 3134 | Inference from Theorem 19.... |
| rexlimdva2 3135 | Inference from Theorem 19.... |
| r19.29an 3136 | A commonly used pattern in... |
| rexlimdv3a 3137 | Inference from Theorem 19.... |
| rexlimdvw 3138 | Inference from Theorem 19.... |
| rexlimddv 3139 | Restricted existential eli... |
| r19.29a 3140 | A commonly used pattern in... |
| ralimdv2 3141 | Inference quantifying both... |
| reximdv2 3142 | Deduction quantifying both... |
| reximdvai 3143 | Deduction quantifying both... |
| ralimdva 3144 | Deduction quantifying both... |
| reximdva 3145 | Deduction quantifying both... |
| ralimdv 3146 | Deduction quantifying both... |
| reximdv 3147 | Deduction from Theorem 19.... |
| reximddv 3148 | Deduction from Theorem 19.... |
| reximddv3 3149 | Deduction from Theorem 19.... |
| reximssdv 3150 | Derivation of a restricted... |
| ralbidv2 3151 | Formula-building rule for ... |
| rexbidv2 3152 | Formula-building rule for ... |
| ralbidva 3153 | Formula-building rule for ... |
| rexbidva 3154 | Formula-building rule for ... |
| ralbidv 3155 | Formula-building rule for ... |
| rexbidv 3156 | Formula-building rule for ... |
| r19.21v 3157 | Restricted quantifier vers... |
| r19.37v 3158 | Restricted quantifier vers... |
| r19.23v 3159 | Restricted quantifier vers... |
| r19.36v 3160 | Restricted quantifier vers... |
| r19.27v 3161 | Restricted quantitifer ver... |
| r19.41v 3162 | Restricted quantifier vers... |
| r19.28v 3163 | Restricted quantifier vers... |
| r19.42v 3164 | Restricted quantifier vers... |
| r19.32v 3165 | Restricted quantifier vers... |
| r19.45v 3166 | Restricted quantifier vers... |
| r19.44v 3167 | One direction of a restric... |
| r2al 3168 | Double restricted universa... |
| r2ex 3169 | Double restricted existent... |
| r3al 3170 | Triple restricted universa... |
| r3ex 3171 | Triple existential quantif... |
| rgen2 3172 | Generalization rule for re... |
| ralrimivv 3173 | Inference from Theorem 19.... |
| rexlimivv 3174 | Inference from Theorem 19.... |
| ralrimivva 3175 | Inference from Theorem 19.... |
| ralrimdvv 3176 | Inference from Theorem 19.... |
| rgen3 3177 | Generalization rule for re... |
| ralrimivvva 3178 | Inference from Theorem 19.... |
| ralimdvva 3179 | Deduction doubly quantifyi... |
| reximdvva 3180 | Deduction doubly quantifyi... |
| ralimdvv 3181 | Deduction doubly quantifyi... |
| ralimdvvOLD 3182 | Obsolete version of ~ rali... |
| ralimd4v 3183 | Deduction quadrupally quan... |
| ralimd4vOLD 3184 | Obsolete version of ~ rali... |
| ralimd6v 3185 | Deduction sextupally quant... |
| ralimd6vOLD 3186 | Obsolete version of ~ rali... |
| ralrimdvva 3187 | Inference from Theorem 19.... |
| rexlimdvv 3188 | Inference from Theorem 19.... |
| rexlimdvva 3189 | Inference from Theorem 19.... |
| rexlimdvvva 3190 | Inference from Theorem 19.... |
| reximddv2 3191 | Double deduction from Theo... |
| r19.29vva 3192 | A commonly used pattern ba... |
| 2rexbiia 3193 | Inference adding two restr... |
| 2ralbidva 3194 | Formula-building rule for ... |
| 2rexbidva 3195 | Formula-building rule for ... |
| 2ralbidv 3196 | Formula-building rule for ... |
| 2rexbidv 3197 | Formula-building rule for ... |
| rexralbidv 3198 | Formula-building rule for ... |
| 3ralbidv 3199 | Formula-building rule for ... |
| 4ralbidv 3200 | Formula-building rule for ... |
| 6ralbidv 3201 | Formula-building rule for ... |
| r19.41vv 3202 | Version of ~ r19.41v with ... |
| reeanlem 3203 | Lemma factoring out common... |
| reeanv 3204 | Rearrange restricted exist... |
| 3reeanv 3205 | Rearrange three restricted... |
| 2ralor 3206 | Distribute restricted univ... |
| risset 3207 | Two ways to say " ` A ` be... |
| nelb 3208 | A definition of ` -. A e. ... |
| rspw 3209 | Restricted specialization.... |
| cbvralvw 3210 | Change the bound variable ... |
| cbvrexvw 3211 | Change the bound variable ... |
| cbvraldva 3212 | Rule used to change the bo... |
| cbvrexdva 3213 | Rule used to change the bo... |
| cbvral2vw 3214 | Change bound variables of ... |
| cbvrex2vw 3215 | Change bound variables of ... |
| cbvral3vw 3216 | Change bound variables of ... |
| cbvral4vw 3217 | Change bound variables of ... |
| cbvral6vw 3218 | Change bound variables of ... |
| cbvral8vw 3219 | Change bound variables of ... |
| rsp 3220 | Restricted specialization.... |
| rspa 3221 | Restricted specialization.... |
| rspe 3222 | Restricted specialization.... |
| rspec 3223 | Specialization rule for re... |
| r19.21bi 3224 | Inference from Theorem 19.... |
| r19.21be 3225 | Inference from Theorem 19.... |
| r19.21t 3226 | Restricted quantifier vers... |
| r19.21 3227 | Restricted quantifier vers... |
| r19.23t 3228 | Closed theorem form of ~ r... |
| r19.23 3229 | Restricted quantifier vers... |
| ralrimi 3230 | Inference from Theorem 19.... |
| ralrimia 3231 | Inference from Theorem 19.... |
| rexlimi 3232 | Restricted quantifier vers... |
| ralimdaa 3233 | Deduction quantifying both... |
| reximdai 3234 | Deduction from Theorem 19.... |
| r19.37 3235 | Restricted quantifier vers... |
| r19.41 3236 | Restricted quantifier vers... |
| ralrimd 3237 | Inference from Theorem 19.... |
| rexlimd2 3238 | Version of ~ rexlimd with ... |
| rexlimd 3239 | Deduction form of ~ rexlim... |
| r19.29af2 3240 | A commonly used pattern ba... |
| r19.29af 3241 | A commonly used pattern ba... |
| reximd2a 3242 | Deduction quantifying both... |
| ralbida 3243 | Formula-building rule for ... |
| rexbida 3244 | Formula-building rule for ... |
| ralbid 3245 | Formula-building rule for ... |
| rexbid 3246 | Formula-building rule for ... |
| rexbidvALT 3247 | Alternate proof of ~ rexbi... |
| rexbidvaALT 3248 | Alternate proof of ~ rexbi... |
| rsp2 3249 | Restricted specialization,... |
| rsp2e 3250 | Restricted specialization.... |
| rspec2 3251 | Specialization rule for re... |
| rspec3 3252 | Specialization rule for re... |
| r2alf 3253 | Double restricted universa... |
| r2exf 3254 | Double restricted existent... |
| 2ralbida 3255 | Formula-building rule for ... |
| nfra1 3256 | The setvar ` x ` is not fr... |
| nfre1 3257 | The setvar ` x ` is not fr... |
| ralcom4 3258 | Commutation of restricted ... |
| rexcom4 3259 | Commutation of restricted ... |
| ralcom 3260 | Commutation of restricted ... |
| rexcom 3261 | Commutation of restricted ... |
| rexcom4a 3262 | Specialized existential co... |
| ralrot3 3263 | Rotate three restricted un... |
| ralcom13 3264 | Swap first and third restr... |
| rexcom13 3265 | Swap first and third restr... |
| rexrot4 3266 | Rotate four restricted exi... |
| 2ex2rexrot 3267 | Rotate two existential qua... |
| nfra2w 3268 | Similar to Lemma 24 of [Mo... |
| hbra1 3269 | The setvar ` x ` is not fr... |
| ralcomf 3270 | Commutation of restricted ... |
| rexcomf 3271 | Commutation of restricted ... |
| cbvralfw 3272 | Rule used to change bound ... |
| cbvrexfw 3273 | Rule used to change bound ... |
| cbvralw 3274 | Rule used to change bound ... |
| cbvrexw 3275 | Rule used to change bound ... |
| hbral 3276 | Bound-variable hypothesis ... |
| nfraldw 3277 | Deduction version of ~ nfr... |
| nfrexdw 3278 | Deduction version of ~ nfr... |
| nfralw 3279 | Bound-variable hypothesis ... |
| nfrexw 3280 | Bound-variable hypothesis ... |
| r19.12 3281 | Restricted quantifier vers... |
| reean 3282 | Rearrange restricted exist... |
| cbvralsvw 3283 | Change bound variable by u... |
| cbvrexsvw 3284 | Change bound variable by u... |
| cbvralsvwOLD 3285 | Obsolete version of ~ cbvr... |
| cbvralsvwOLDOLD 3286 | Obsolete version of ~ cbvr... |
| cbvrexsvwOLD 3287 | Obsolete version of ~ cbvr... |
| rexeq 3288 | Equality theorem for restr... |
| raleq 3289 | Equality theorem for restr... |
| raleqi 3290 | Equality inference for res... |
| rexeqi 3291 | Equality inference for res... |
| raleqdv 3292 | Equality deduction for res... |
| rexeqdv 3293 | Equality deduction for res... |
| raleqtrdv 3294 | Substitution of equal clas... |
| rexeqtrdv 3295 | Substitution of equal clas... |
| raleqtrrdv 3296 | Substitution of equal clas... |
| rexeqtrrdv 3297 | Substitution of equal clas... |
| raleqbidva 3298 | Equality deduction for res... |
| rexeqbidva 3299 | Equality deduction for res... |
| raleqbidvv 3300 | Version of ~ raleqbidv wit... |
| raleqbidvvOLD 3301 | Obsolete version of ~ rale... |
| rexeqbidvv 3302 | Version of ~ rexeqbidv wit... |
| rexeqbidvvOLD 3303 | Obsolete version of ~ rexe... |
| raleqbi1dv 3304 | Equality deduction for res... |
| rexeqbi1dv 3305 | Equality deduction for res... |
| raleqOLD 3306 | Obsolete version of ~ rale... |
| rexeqOLD 3307 | Obsolete version of ~ rale... |
| raleleq 3308 | All elements of a class ar... |
| raleleqOLD 3309 | Obsolete version of ~ rale... |
| raleqbii 3310 | Equality deduction for res... |
| rexeqbii 3311 | Equality deduction for res... |
| raleqbidv 3312 | Equality deduction for res... |
| rexeqbidv 3313 | Equality deduction for res... |
| cbvraldva2 3314 | Rule used to change the bo... |
| cbvrexdva2 3315 | Rule used to change the bo... |
| cbvraldvaOLD 3316 | Obsolete version of ~ cbvr... |
| cbvrexdvaOLD 3317 | Obsolete version of ~ cbvr... |
| sbralie 3318 | Implicit to explicit subst... |
| sbralieALT 3319 | Alternative shorter proof ... |
| sbralieOLD 3320 | Obsolete version of ~ sbra... |
| raleqf 3321 | Equality theorem for restr... |
| rexeqf 3322 | Equality theorem for restr... |
| rexeqfOLD 3323 | Obsolete version of ~ rexe... |
| raleqbid 3324 | Equality deduction for res... |
| rexeqbid 3325 | Equality deduction for res... |
| cbvralf 3326 | Rule used to change bound ... |
| cbvrexf 3327 | Rule used to change bound ... |
| cbvral 3328 | Rule used to change bound ... |
| cbvrex 3329 | Rule used to change bound ... |
| cbvralv 3330 | Change the bound variable ... |
| cbvrexv 3331 | Change the bound variable ... |
| cbvralsv 3332 | Change bound variable by u... |
| cbvrexsv 3333 | Change bound variable by u... |
| cbvral2v 3334 | Change bound variables of ... |
| cbvrex2v 3335 | Change bound variables of ... |
| cbvral3v 3336 | Change bound variables of ... |
| rgen2a 3337 | Generalization rule for re... |
| nfrald 3338 | Deduction version of ~ nfr... |
| nfrexd 3339 | Deduction version of ~ nfr... |
| nfral 3340 | Bound-variable hypothesis ... |
| nfrex 3341 | Bound-variable hypothesis ... |
| nfra2 3342 | Similar to Lemma 24 of [Mo... |
| ralcom2 3343 | Commutation of restricted ... |
| reu5 3348 | Restricted uniqueness in t... |
| reurmo 3349 | Restricted existential uni... |
| reurex 3350 | Restricted unique existenc... |
| mormo 3351 | Unrestricted "at most one"... |
| rmobiia 3352 | Formula-building rule for ... |
| reubiia 3353 | Formula-building rule for ... |
| rmobii 3354 | Formula-building rule for ... |
| reubii 3355 | Formula-building rule for ... |
| rmoanid 3356 | Cancellation law for restr... |
| reuanid 3357 | Cancellation law for restr... |
| 2reu2rex 3358 | Double restricted existent... |
| rmobidva 3359 | Formula-building rule for ... |
| reubidva 3360 | Formula-building rule for ... |
| rmobidv 3361 | Formula-building rule for ... |
| reubidv 3362 | Formula-building rule for ... |
| reueubd 3363 | Restricted existential uni... |
| rmo5 3364 | Restricted "at most one" i... |
| nrexrmo 3365 | Nonexistence implies restr... |
| moel 3366 | "At most one" element in a... |
| cbvrmovw 3367 | Change the bound variable ... |
| cbvreuvw 3368 | Change the bound variable ... |
| rmobida 3369 | Formula-building rule for ... |
| reubida 3370 | Formula-building rule for ... |
| cbvrmow 3371 | Change the bound variable ... |
| cbvreuw 3372 | Change the bound variable ... |
| nfrmo1 3373 | The setvar ` x ` is not fr... |
| nfreu1 3374 | The setvar ` x ` is not fr... |
| nfrmow 3375 | Bound-variable hypothesis ... |
| nfreuw 3376 | Bound-variable hypothesis ... |
| rmoeq1 3377 | Equality theorem for restr... |
| reueq1 3378 | Equality theorem for restr... |
| rmoeq1OLD 3379 | Obsolete version of ~ rmoe... |
| reueq1OLD 3380 | Obsolete version of ~ reue... |
| rmoeqd 3381 | Equality deduction for res... |
| reueqd 3382 | Equality deduction for res... |
| reueqdv 3383 | Formula-building rule for ... |
| reueqbidv 3384 | Formula-building rule for ... |
| rmoeq1f 3385 | Equality theorem for restr... |
| reueq1f 3386 | Equality theorem for restr... |
| cbvreu 3387 | Change the bound variable ... |
| cbvrmo 3388 | Change the bound variable ... |
| cbvrmov 3389 | Change the bound variable ... |
| cbvreuv 3390 | Change the bound variable ... |
| nfrmod 3391 | Deduction version of ~ nfr... |
| nfreud 3392 | Deduction version of ~ nfr... |
| nfrmo 3393 | Bound-variable hypothesis ... |
| nfreu 3394 | Bound-variable hypothesis ... |
| rabbidva2 3397 | Equivalent wff's yield equ... |
| rabbia2 3398 | Equivalent wff's yield equ... |
| rabbiia 3399 | Equivalent formulas yield ... |
| rabbii 3400 | Equivalent wff's correspon... |
| rabbidva 3401 | Equivalent wff's yield equ... |
| rabbidv 3402 | Equivalent wff's yield equ... |
| rabbieq 3403 | Equivalent wff's correspon... |
| rabswap 3404 | Swap with a membership rel... |
| cbvrabv 3405 | Rule to change the bound v... |
| rabeqcda 3406 | When ` ps ` is always true... |
| rabeqc 3407 | A restricted class abstrac... |
| rabeqi 3408 | Equality theorem for restr... |
| rabeq 3409 | Equality theorem for restr... |
| rabeqdv 3410 | Equality of restricted cla... |
| rabeqbidva 3411 | Equality of restricted cla... |
| rabeqbidvaOLD 3412 | Obsolete version of ~ rabe... |
| rabeqbidv 3413 | Equality of restricted cla... |
| rabrabi 3414 | Abstract builder restricte... |
| nfrab1 3415 | The abstraction variable i... |
| rabid 3416 | An "identity" law of concr... |
| rabidim1 3417 | Membership in a restricted... |
| reqabi 3418 | Inference from equality of... |
| rabrab 3419 | Abstract builder restricte... |
| rabbida4 3420 | Version of ~ rabbidva2 wit... |
| rabbida 3421 | Equivalent wff's yield equ... |
| rabbid 3422 | Version of ~ rabbidv with ... |
| rabeqd 3423 | Deduction form of ~ rabeq ... |
| rabeqbida 3424 | Version of ~ rabeqbidva wi... |
| rabbi 3425 | Equivalent wff's correspon... |
| rabid2f 3426 | An "identity" law for rest... |
| rabid2im 3427 | One direction of ~ rabid2 ... |
| rabid2 3428 | An "identity" law for rest... |
| rabeqf 3429 | Equality theorem for restr... |
| cbvrabw 3430 | Rule to change the bound v... |
| cbvrabwOLD 3431 | Obsolete version of ~ cbvr... |
| nfrabw 3432 | A variable not free in a w... |
| rabbidaOLD 3433 | Obsolete version of ~ rabb... |
| nfrab 3434 | A variable not free in a w... |
| cbvrab 3435 | Rule to change the bound v... |
| vjust 3437 | Justification theorem for ... |
| dfv2 3439 | Alternate definition of th... |
| vex 3440 | All setvar variables are s... |
| elv 3441 | If a proposition is implie... |
| elvd 3442 | If a proposition is implie... |
| el2v 3443 | If a proposition is implie... |
| el3v 3444 | If a proposition is implie... |
| el3v3 3445 | If a proposition is implie... |
| eqv 3446 | The universe contains ever... |
| eqvf 3447 | The universe contains ever... |
| abv 3448 | The class of sets verifyin... |
| abvALT 3449 | Alternate proof of ~ abv ,... |
| isset 3450 | Two ways to express that "... |
| cbvexeqsetf 3451 | The expression ` E. x x = ... |
| issetft 3452 | Closed theorem form of ~ i... |
| issetf 3453 | A version of ~ isset that ... |
| isseti 3454 | A way to say " ` A ` is a ... |
| issetri 3455 | A way to say " ` A ` is a ... |
| eqvisset 3456 | A class equal to a variabl... |
| elex 3457 | If a class is a member of ... |
| elexOLD 3458 | Obsolete version of ~ elex... |
| elexi 3459 | If a class is a member of ... |
| elexd 3460 | If a class is a member of ... |
| elex22 3461 | If two classes each contai... |
| prcnel 3462 | A proper class doesn't bel... |
| ralv 3463 | A universal quantifier res... |
| rexv 3464 | An existential quantifier ... |
| reuv 3465 | A unique existential quant... |
| rmov 3466 | An at-most-one quantifier ... |
| rabab 3467 | A class abstraction restri... |
| rexcom4b 3468 | Specialized existential co... |
| ceqsal1t 3469 | One direction of ~ ceqsalt... |
| ceqsalt 3470 | Closed theorem version of ... |
| ceqsralt 3471 | Restricted quantifier vers... |
| ceqsalg 3472 | A representation of explic... |
| ceqsalgALT 3473 | Alternate proof of ~ ceqsa... |
| ceqsal 3474 | A representation of explic... |
| ceqsalALT 3475 | A representation of explic... |
| ceqsalv 3476 | A representation of explic... |
| ceqsralv 3477 | Restricted quantifier vers... |
| gencl 3478 | Implicit substitution for ... |
| 2gencl 3479 | Implicit substitution for ... |
| 3gencl 3480 | Implicit substitution for ... |
| cgsexg 3481 | Implicit substitution infe... |
| cgsex2g 3482 | Implicit substitution infe... |
| cgsex4g 3483 | An implicit substitution i... |
| cgsex4gOLD 3484 | Obsolete version of ~ cgse... |
| ceqsex 3485 | Elimination of an existent... |
| ceqsexv 3486 | Elimination of an existent... |
| ceqsexv2d 3487 | Elimination of an existent... |
| ceqsexv2dOLD 3488 | Obsolete version of ~ ceqs... |
| ceqsex2 3489 | Elimination of two existen... |
| ceqsex2v 3490 | Elimination of two existen... |
| ceqsex3v 3491 | Elimination of three exist... |
| ceqsex4v 3492 | Elimination of four existe... |
| ceqsex6v 3493 | Elimination of six existen... |
| ceqsex8v 3494 | Elimination of eight exist... |
| gencbvex 3495 | Change of bound variable u... |
| gencbvex2 3496 | Restatement of ~ gencbvex ... |
| gencbval 3497 | Change of bound variable u... |
| sbhypf 3498 | Introduce an explicit subs... |
| spcimgft 3499 | Closed theorem form of ~ s... |
| spcimgfi1 3500 | A closed version of ~ spci... |
| spcimgfi1OLD 3501 | Obsolete version of ~ spci... |
| spcgft 3502 | A closed version of ~ spcg... |
| spcimgf 3503 | Rule of specialization, us... |
| spcimegf 3504 | Existential specialization... |
| vtoclgft 3505 | Closed theorem form of ~ v... |
| vtocleg 3506 | Implicit substitution of a... |
| vtoclg 3507 | Implicit substitution of a... |
| vtocle 3508 | Implicit substitution of a... |
| vtocleOLD 3509 | Obsolete version of ~ vtoc... |
| vtoclbg 3510 | Implicit substitution of a... |
| vtocl 3511 | Implicit substitution of a... |
| vtoclOLD 3512 | Obsolete version of ~ vtoc... |
| vtocldf 3513 | Implicit substitution of a... |
| vtocld 3514 | Implicit substitution of a... |
| vtocl2d 3515 | Implicit substitution of t... |
| vtoclef 3516 | Implicit substitution of a... |
| vtoclf 3517 | Implicit substitution of a... |
| vtocl2 3518 | Implicit substitution of c... |
| vtocl3 3519 | Implicit substitution of c... |
| vtoclb 3520 | Implicit substitution of a... |
| vtoclgf 3521 | Implicit substitution of a... |
| vtoclg1f 3522 | Version of ~ vtoclgf with ... |
| vtocl2gf 3523 | Implicit substitution of a... |
| vtocl3gf 3524 | Implicit substitution of a... |
| vtocl2g 3525 | Implicit substitution of 2... |
| vtocl3g 3526 | Implicit substitution of a... |
| vtoclgaf 3527 | Implicit substitution of a... |
| vtoclga 3528 | Implicit substitution of a... |
| vtocl2ga 3529 | Implicit substitution of 2... |
| vtocl2gaf 3530 | Implicit substitution of 2... |
| vtocl2gafOLD 3531 | Obsolete version of ~ vtoc... |
| vtocl3gaf 3532 | Implicit substitution of 3... |
| vtocl3gafOLD 3533 | Obsolete version of ~ vtoc... |
| vtocl3ga 3534 | Implicit substitution of 3... |
| vtocl3gaOLD 3535 | Obsolete version of ~ vtoc... |
| vtocl4g 3536 | Implicit substitution of 4... |
| vtocl4ga 3537 | Implicit substitution of 4... |
| vtocl4gaOLD 3538 | Obsolete version of ~ vtoc... |
| vtoclegft 3539 | Implicit substitution of a... |
| vtoclri 3540 | Implicit substitution of a... |
| spcgf 3541 | Rule of specialization, us... |
| spcegf 3542 | Existential specialization... |
| spcimdv 3543 | Restricted specialization,... |
| spcdv 3544 | Rule of specialization, us... |
| spcimedv 3545 | Restricted existential spe... |
| spcgv 3546 | Rule of specialization, us... |
| spcegv 3547 | Existential specialization... |
| spcedv 3548 | Existential specialization... |
| spc2egv 3549 | Existential specialization... |
| spc2gv 3550 | Specialization with two qu... |
| spc2ed 3551 | Existential specialization... |
| spc2d 3552 | Specialization with 2 quan... |
| spc3egv 3553 | Existential specialization... |
| spc3gv 3554 | Specialization with three ... |
| spcv 3555 | Rule of specialization, us... |
| spcev 3556 | Existential specialization... |
| spc2ev 3557 | Existential specialization... |
| rspct 3558 | A closed version of ~ rspc... |
| rspcdf 3559 | Restricted specialization,... |
| rspc 3560 | Restricted specialization,... |
| rspce 3561 | Restricted existential spe... |
| rspcimdv 3562 | Restricted specialization,... |
| rspcimedv 3563 | Restricted existential spe... |
| rspcdv 3564 | Restricted specialization,... |
| rspcedv 3565 | Restricted existential spe... |
| rspcebdv 3566 | Restricted existential spe... |
| rspcdv2 3567 | Restricted specialization,... |
| rspcv 3568 | Restricted specialization,... |
| rspccv 3569 | Restricted specialization,... |
| rspcva 3570 | Restricted specialization,... |
| rspccva 3571 | Restricted specialization,... |
| rspcev 3572 | Restricted existential spe... |
| rspcdva 3573 | Restricted specialization,... |
| rspcedvd 3574 | Restricted existential spe... |
| rspcedvdw 3575 | Version of ~ rspcedvd wher... |
| rspceb2dv 3576 | Restricted existential spe... |
| rspcime 3577 | Prove a restricted existen... |
| rspceaimv 3578 | Restricted existential spe... |
| rspcedeq1vd 3579 | Restricted existential spe... |
| rspcedeq2vd 3580 | Restricted existential spe... |
| rspc2 3581 | Restricted specialization ... |
| rspc2gv 3582 | Restricted specialization ... |
| rspc2v 3583 | 2-variable restricted spec... |
| rspc2va 3584 | 2-variable restricted spec... |
| rspc2ev 3585 | 2-variable restricted exis... |
| 2rspcedvdw 3586 | Double application of ~ rs... |
| rspc2dv 3587 | 2-variable restricted spec... |
| rspc3v 3588 | 3-variable restricted spec... |
| rspc3ev 3589 | 3-variable restricted exis... |
| 3rspcedvdw 3590 | Triple application of ~ rs... |
| rspc3dv 3591 | 3-variable restricted spec... |
| rspc4v 3592 | 4-variable restricted spec... |
| rspc6v 3593 | 6-variable restricted spec... |
| rspc8v 3594 | 8-variable restricted spec... |
| rspceeqv 3595 | Restricted existential spe... |
| ralxpxfr2d 3596 | Transfer a universal quant... |
| rexraleqim 3597 | Statement following from e... |
| eqvincg 3598 | A variable introduction la... |
| eqvinc 3599 | A variable introduction la... |
| eqvincf 3600 | A variable introduction la... |
| alexeqg 3601 | Two ways to express substi... |
| ceqex 3602 | Equality implies equivalen... |
| ceqsexg 3603 | A representation of explic... |
| ceqsexgv 3604 | Elimination of an existent... |
| ceqsrexv 3605 | Elimination of a restricte... |
| ceqsrexbv 3606 | Elimination of a restricte... |
| ceqsralbv 3607 | Elimination of a restricte... |
| ceqsrex2v 3608 | Elimination of a restricte... |
| clel2g 3609 | Alternate definition of me... |
| clel2 3610 | Alternate definition of me... |
| clel3g 3611 | Alternate definition of me... |
| clel3 3612 | Alternate definition of me... |
| clel4g 3613 | Alternate definition of me... |
| clel4 3614 | Alternate definition of me... |
| clel5 3615 | Alternate definition of cl... |
| pm13.183 3616 | Compare theorem *13.183 in... |
| rr19.3v 3617 | Restricted quantifier vers... |
| rr19.28v 3618 | Restricted quantifier vers... |
| elab6g 3619 | Membership in a class abst... |
| elabd2 3620 | Membership in a class abst... |
| elabd3 3621 | Membership in a class abst... |
| elabgt 3622 | Membership in a class abst... |
| elabgtOLD 3623 | Obsolete version of ~ elab... |
| elabgtOLDOLD 3624 | Obsolete version of ~ elab... |
| elabgf 3625 | Membership in a class abst... |
| elabf 3626 | Membership in a class abst... |
| elabg 3627 | Membership in a class abst... |
| elabgw 3628 | Membership in a class abst... |
| elab2gw 3629 | Membership in a class abst... |
| elab 3630 | Membership in a class abst... |
| elab2g 3631 | Membership in a class abst... |
| elabd 3632 | Explicit demonstration the... |
| elab2 3633 | Membership in a class abst... |
| elab4g 3634 | Membership in a class abst... |
| elab3gf 3635 | Membership in a class abst... |
| elab3g 3636 | Membership in a class abst... |
| elab3 3637 | Membership in a class abst... |
| elrabi 3638 | Implication for the member... |
| elrabf 3639 | Membership in a restricted... |
| rabtru 3640 | Abstract builder using the... |
| elrab3t 3641 | Membership in a restricted... |
| elrab 3642 | Membership in a restricted... |
| elrab3 3643 | Membership in a restricted... |
| elrabd 3644 | Membership in a restricted... |
| elrab2 3645 | Membership in a restricted... |
| elrab2w 3646 | Membership in a restricted... |
| ralab 3647 | Universal quantification o... |
| ralrab 3648 | Universal quantification o... |
| rexab 3649 | Existential quantification... |
| rexrab 3650 | Existential quantification... |
| ralab2 3651 | Universal quantification o... |
| ralrab2 3652 | Universal quantification o... |
| rexab2 3653 | Existential quantification... |
| rexrab2 3654 | Existential quantification... |
| reurab 3655 | Restricted existential uni... |
| abidnf 3656 | Identity used to create cl... |
| dedhb 3657 | A deduction theorem for co... |
| class2seteq 3658 | Writing a set as a class a... |
| nelrdva 3659 | Deduce negative membership... |
| eqeu 3660 | A condition which implies ... |
| moeq 3661 | There exists at most one s... |
| eueq 3662 | A class is a set if and on... |
| eueqi 3663 | There exists a unique set ... |
| eueq2 3664 | Equality has existential u... |
| eueq3 3665 | Equality has existential u... |
| moeq3 3666 | "At most one" property of ... |
| mosub 3667 | "At most one" remains true... |
| mo2icl 3668 | Theorem for inferring "at ... |
| mob2 3669 | Consequence of "at most on... |
| moi2 3670 | Consequence of "at most on... |
| mob 3671 | Equality implied by "at mo... |
| moi 3672 | Equality implied by "at mo... |
| morex 3673 | Derive membership from uni... |
| euxfr2w 3674 | Transfer existential uniqu... |
| euxfrw 3675 | Transfer existential uniqu... |
| euxfr2 3676 | Transfer existential uniqu... |
| euxfr 3677 | Transfer existential uniqu... |
| euind 3678 | Existential uniqueness via... |
| reu2 3679 | A way to express restricte... |
| reu6 3680 | A way to express restricte... |
| reu3 3681 | A way to express restricte... |
| reu6i 3682 | A condition which implies ... |
| eqreu 3683 | A condition which implies ... |
| rmo4 3684 | Restricted "at most one" u... |
| reu4 3685 | Restricted uniqueness usin... |
| reu7 3686 | Restricted uniqueness usin... |
| reu8 3687 | Restricted uniqueness usin... |
| rmo3f 3688 | Restricted "at most one" u... |
| rmo4f 3689 | Restricted "at most one" u... |
| reu2eqd 3690 | Deduce equality from restr... |
| reueq 3691 | Equality has existential u... |
| rmoeq 3692 | Equality's restricted exis... |
| rmoan 3693 | Restricted "at most one" s... |
| rmoim 3694 | Restricted "at most one" i... |
| rmoimia 3695 | Restricted "at most one" i... |
| rmoimi 3696 | Restricted "at most one" i... |
| rmoimi2 3697 | Restricted "at most one" i... |
| 2reu5a 3698 | Double restricted existent... |
| reuimrmo 3699 | Restricted uniqueness impl... |
| 2reuswap 3700 | A condition allowing swap ... |
| 2reuswap2 3701 | A condition allowing swap ... |
| reuxfrd 3702 | Transfer existential uniqu... |
| reuxfr 3703 | Transfer existential uniqu... |
| reuxfr1d 3704 | Transfer existential uniqu... |
| reuxfr1ds 3705 | Transfer existential uniqu... |
| reuxfr1 3706 | Transfer existential uniqu... |
| reuind 3707 | Existential uniqueness via... |
| 2rmorex 3708 | Double restricted quantifi... |
| 2reu5lem1 3709 | Lemma for ~ 2reu5 . Note ... |
| 2reu5lem2 3710 | Lemma for ~ 2reu5 . (Cont... |
| 2reu5lem3 3711 | Lemma for ~ 2reu5 . This ... |
| 2reu5 3712 | Double restricted existent... |
| 2reurmo 3713 | Double restricted quantifi... |
| 2reurex 3714 | Double restricted quantifi... |
| 2rmoswap 3715 | A condition allowing to sw... |
| 2rexreu 3716 | Double restricted existent... |
| cdeqi 3719 | Deduce conditional equalit... |
| cdeqri 3720 | Property of conditional eq... |
| cdeqth 3721 | Deduce conditional equalit... |
| cdeqnot 3722 | Distribute conditional equ... |
| cdeqal 3723 | Distribute conditional equ... |
| cdeqab 3724 | Distribute conditional equ... |
| cdeqal1 3725 | Distribute conditional equ... |
| cdeqab1 3726 | Distribute conditional equ... |
| cdeqim 3727 | Distribute conditional equ... |
| cdeqcv 3728 | Conditional equality for s... |
| cdeqeq 3729 | Distribute conditional equ... |
| cdeqel 3730 | Distribute conditional equ... |
| nfcdeq 3731 | If we have a conditional e... |
| nfccdeq 3732 | Variation of ~ nfcdeq for ... |
| rru 3733 | Relative version of Russel... |
| ru 3734 | Russell's Paradox. Propos... |
| ruOLD 3735 | Obsolete version of ~ ru a... |
| dfsbcq 3738 | Proper substitution of a c... |
| dfsbcq2 3739 | This theorem, which is sim... |
| sbsbc 3740 | Show that ~ df-sb and ~ df... |
| sbceq1d 3741 | Equality theorem for class... |
| sbceq1dd 3742 | Equality theorem for class... |
| sbceqbid 3743 | Equality theorem for class... |
| sbc8g 3744 | This is the closest we can... |
| sbc2or 3745 | The disjunction of two equ... |
| sbcex 3746 | By our definition of prope... |
| sbceq1a 3747 | Equality theorem for class... |
| sbceq2a 3748 | Equality theorem for class... |
| spsbc 3749 | Specialization: if a formu... |
| spsbcd 3750 | Specialization: if a formu... |
| sbcth 3751 | A substitution into a theo... |
| sbcthdv 3752 | Deduction version of ~ sbc... |
| sbcid 3753 | An identity theorem for su... |
| nfsbc1d 3754 | Deduction version of ~ nfs... |
| nfsbc1 3755 | Bound-variable hypothesis ... |
| nfsbc1v 3756 | Bound-variable hypothesis ... |
| nfsbcdw 3757 | Deduction version of ~ nfs... |
| nfsbcw 3758 | Bound-variable hypothesis ... |
| sbccow 3759 | A composition law for clas... |
| nfsbcd 3760 | Deduction version of ~ nfs... |
| nfsbc 3761 | Bound-variable hypothesis ... |
| sbcco 3762 | A composition law for clas... |
| sbcco2 3763 | A composition law for clas... |
| sbc5 3764 | An equivalence for class s... |
| sbc5ALT 3765 | Alternate proof of ~ sbc5 ... |
| sbc6g 3766 | An equivalence for class s... |
| sbc6 3767 | An equivalence for class s... |
| sbc7 3768 | An equivalence for class s... |
| cbvsbcw 3769 | Change bound variables in ... |
| cbvsbcvw 3770 | Change the bound variable ... |
| cbvsbc 3771 | Change bound variables in ... |
| cbvsbcv 3772 | Change the bound variable ... |
| sbciegft 3773 | Conversion of implicit sub... |
| sbciegftOLD 3774 | Obsolete version of ~ sbci... |
| sbciegf 3775 | Conversion of implicit sub... |
| sbcieg 3776 | Conversion of implicit sub... |
| sbcie2g 3777 | Conversion of implicit sub... |
| sbcie 3778 | Conversion of implicit sub... |
| sbciedf 3779 | Conversion of implicit sub... |
| sbcied 3780 | Conversion of implicit sub... |
| sbcied2 3781 | Conversion of implicit sub... |
| elrabsf 3782 | Membership in a restricted... |
| eqsbc1 3783 | Substitution for the left-... |
| sbcng 3784 | Move negation in and out o... |
| sbcimg 3785 | Distribution of class subs... |
| sbcan 3786 | Distribution of class subs... |
| sbcor 3787 | Distribution of class subs... |
| sbcbig 3788 | Distribution of class subs... |
| sbcn1 3789 | Move negation in and out o... |
| sbcim1 3790 | Distribution of class subs... |
| sbcbid 3791 | Formula-building deduction... |
| sbcbidv 3792 | Formula-building deduction... |
| sbcbii 3793 | Formula-building inference... |
| sbcbi1 3794 | Distribution of class subs... |
| sbcbi2 3795 | Substituting into equivale... |
| sbcal 3796 | Move universal quantifier ... |
| sbcex2 3797 | Move existential quantifie... |
| sbceqal 3798 | Class version of one impli... |
| sbeqalb 3799 | Theorem *14.121 in [Whiteh... |
| eqsbc2 3800 | Substitution for the right... |
| sbc3an 3801 | Distribution of class subs... |
| sbcel1v 3802 | Class substitution into a ... |
| sbcel2gv 3803 | Class substitution into a ... |
| sbcel21v 3804 | Class substitution into a ... |
| sbcimdv 3805 | Substitution analogue of T... |
| sbctt 3806 | Substitution for a variabl... |
| sbcgf 3807 | Substitution for a variabl... |
| sbc19.21g 3808 | Substitution for a variabl... |
| sbcg 3809 | Substitution for a variabl... |
| sbcgfi 3810 | Substitution for a variabl... |
| sbc2iegf 3811 | Conversion of implicit sub... |
| sbc2ie 3812 | Conversion of implicit sub... |
| sbc2iedv 3813 | Conversion of implicit sub... |
| sbc3ie 3814 | Conversion of implicit sub... |
| sbccomlem 3815 | Lemma for ~ sbccom . (Con... |
| sbccomlemOLD 3816 | Obsolete version of ~ sbcc... |
| sbccom 3817 | Commutative law for double... |
| sbcralt 3818 | Interchange class substitu... |
| sbcrext 3819 | Interchange class substitu... |
| sbcralg 3820 | Interchange class substitu... |
| sbcrex 3821 | Interchange class substitu... |
| sbcreu 3822 | Interchange class substitu... |
| reu8nf 3823 | Restricted uniqueness usin... |
| sbcabel 3824 | Interchange class substitu... |
| rspsbc 3825 | Restricted quantifier vers... |
| rspsbca 3826 | Restricted quantifier vers... |
| rspesbca 3827 | Existence form of ~ rspsbc... |
| spesbc 3828 | Existence form of ~ spsbc ... |
| spesbcd 3829 | form of ~ spsbc . (Contri... |
| sbcth2 3830 | A substitution into a theo... |
| ra4v 3831 | Version of ~ ra4 with a di... |
| ra4 3832 | Restricted quantifier vers... |
| rmo2 3833 | Alternate definition of re... |
| rmo2i 3834 | Condition implying restric... |
| rmo3 3835 | Restricted "at most one" u... |
| rmob 3836 | Consequence of "at most on... |
| rmoi 3837 | Consequence of "at most on... |
| rmob2 3838 | Consequence of "restricted... |
| rmoi2 3839 | Consequence of "restricted... |
| rmoanim 3840 | Introduction of a conjunct... |
| rmoanimALT 3841 | Alternate proof of ~ rmoan... |
| reuan 3842 | Introduction of a conjunct... |
| 2reu1 3843 | Double restricted existent... |
| 2reu2 3844 | Double restricted existent... |
| csb2 3847 | Alternate expression for t... |
| csbeq1 3848 | Analogue of ~ dfsbcq for p... |
| csbeq1d 3849 | Equality deduction for pro... |
| csbeq2 3850 | Substituting into equivale... |
| csbeq2d 3851 | Formula-building deduction... |
| csbeq2dv 3852 | Formula-building deduction... |
| csbeq2i 3853 | Formula-building inference... |
| csbeq12dv 3854 | Formula-building inference... |
| cbvcsbw 3855 | Change bound variables in ... |
| cbvcsb 3856 | Change bound variables in ... |
| cbvcsbv 3857 | Change the bound variable ... |
| csbid 3858 | Analogue of ~ sbid for pro... |
| csbeq1a 3859 | Equality theorem for prope... |
| csbcow 3860 | Composition law for chaine... |
| csbco 3861 | Composition law for chaine... |
| csbtt 3862 | Substitution doesn't affec... |
| csbconstgf 3863 | Substitution doesn't affec... |
| csbconstg 3864 | Substitution doesn't affec... |
| csbgfi 3865 | Substitution for a variabl... |
| csbconstgi 3866 | The proper substitution of... |
| nfcsb1d 3867 | Bound-variable hypothesis ... |
| nfcsb1 3868 | Bound-variable hypothesis ... |
| nfcsb1v 3869 | Bound-variable hypothesis ... |
| nfcsbd 3870 | Deduction version of ~ nfc... |
| nfcsbw 3871 | Bound-variable hypothesis ... |
| nfcsb 3872 | Bound-variable hypothesis ... |
| csbhypf 3873 | Introduce an explicit subs... |
| csbiebt 3874 | Conversion of implicit sub... |
| csbiedf 3875 | Conversion of implicit sub... |
| csbieb 3876 | Bidirectional conversion b... |
| csbiebg 3877 | Bidirectional conversion b... |
| csbiegf 3878 | Conversion of implicit sub... |
| csbief 3879 | Conversion of implicit sub... |
| csbie 3880 | Conversion of implicit sub... |
| csbied 3881 | Conversion of implicit sub... |
| csbied2 3882 | Conversion of implicit sub... |
| csbie2t 3883 | Conversion of implicit sub... |
| csbie2 3884 | Conversion of implicit sub... |
| csbie2g 3885 | Conversion of implicit sub... |
| cbvrabcsfw 3886 | Version of ~ cbvrabcsf wit... |
| cbvralcsf 3887 | A more general version of ... |
| cbvrexcsf 3888 | A more general version of ... |
| cbvreucsf 3889 | A more general version of ... |
| cbvrabcsf 3890 | A more general version of ... |
| cbvralv2 3891 | Rule used to change the bo... |
| cbvrexv2 3892 | Rule used to change the bo... |
| rspc2vd 3893 | Deduction version of 2-var... |
| difjust 3899 | Soundness justification th... |
| unjust 3901 | Soundness justification th... |
| injust 3903 | Soundness justification th... |
| dfin5 3905 | Alternate definition for t... |
| dfdif2 3906 | Alternate definition of cl... |
| eldif 3907 | Expansion of membership in... |
| eldifd 3908 | If a class is in one class... |
| eldifad 3909 | If a class is in the diffe... |
| eldifbd 3910 | If a class is in the diffe... |
| elneeldif 3911 | The elements of a set diff... |
| velcomp 3912 | Characterization of setvar... |
| elin 3913 | Expansion of membership in... |
| dfss2 3915 | Alternate definition of th... |
| dfss 3916 | Variant of subclass defini... |
| dfss3 3918 | Alternate definition of su... |
| dfss6 3919 | Alternate definition of su... |
| dfssf 3920 | Equivalence for subclass r... |
| dfss3f 3921 | Equivalence for subclass r... |
| nfss 3922 | If ` x ` is not free in ` ... |
| ssel 3923 | Membership relationships f... |
| ssel2 3924 | Membership relationships f... |
| sseli 3925 | Membership implication fro... |
| sselii 3926 | Membership inference from ... |
| sselid 3927 | Membership inference from ... |
| sseld 3928 | Membership deduction from ... |
| sselda 3929 | Membership deduction from ... |
| sseldd 3930 | Membership inference from ... |
| ssneld 3931 | If a class is not in anoth... |
| ssneldd 3932 | If an element is not in a ... |
| ssriv 3933 | Inference based on subclas... |
| ssrd 3934 | Deduction based on subclas... |
| ssrdv 3935 | Deduction based on subclas... |
| sstr2 3936 | Transitivity of subclass r... |
| sstr2OLD 3937 | Obsolete version of ~ sstr... |
| sstr 3938 | Transitivity of subclass r... |
| sstri 3939 | Subclass transitivity infe... |
| sstrd 3940 | Subclass transitivity dedu... |
| sstrid 3941 | Subclass transitivity dedu... |
| sstrdi 3942 | Subclass transitivity dedu... |
| sylan9ss 3943 | A subclass transitivity de... |
| sylan9ssr 3944 | A subclass transitivity de... |
| eqss 3945 | The subclass relationship ... |
| eqssi 3946 | Infer equality from two su... |
| eqssd 3947 | Equality deduction from tw... |
| sssseq 3948 | If a class is a subclass o... |
| eqrd 3949 | Deduce equality of classes... |
| eqri 3950 | Infer equality of classes ... |
| eqelssd 3951 | Equality deduction from su... |
| ssid 3952 | Any class is a subclass of... |
| ssidd 3953 | Weakening of ~ ssid . (Co... |
| ssv 3954 | Any class is a subclass of... |
| sseq1 3955 | Equality theorem for subcl... |
| sseq2 3956 | Equality theorem for the s... |
| sseq12 3957 | Equality theorem for the s... |
| sseq1i 3958 | An equality inference for ... |
| sseq2i 3959 | An equality inference for ... |
| sseq12i 3960 | An equality inference for ... |
| sseq1d 3961 | An equality deduction for ... |
| sseq2d 3962 | An equality deduction for ... |
| sseq12d 3963 | An equality deduction for ... |
| eqsstrd 3964 | Substitution of equality i... |
| eqsstrrd 3965 | Substitution of equality i... |
| sseqtrd 3966 | Substitution of equality i... |
| sseqtrrd 3967 | Substitution of equality i... |
| eqsstrid 3968 | A chained subclass and equ... |
| eqsstrrid 3969 | A chained subclass and equ... |
| sseqtrdi 3970 | A chained subclass and equ... |
| sseqtrrdi 3971 | A chained subclass and equ... |
| sseqtrid 3972 | Subclass transitivity dedu... |
| sseqtrrid 3973 | Subclass transitivity dedu... |
| eqsstrdi 3974 | A chained subclass and equ... |
| eqsstrrdi 3975 | A chained subclass and equ... |
| eqsstri 3976 | Substitution of equality i... |
| eqsstrri 3977 | Substitution of equality i... |
| sseqtri 3978 | Substitution of equality i... |
| sseqtrri 3979 | Substitution of equality i... |
| 3sstr3i 3980 | Substitution of equality i... |
| 3sstr4i 3981 | Substitution of equality i... |
| 3sstr3g 3982 | Substitution of equality i... |
| 3sstr4g 3983 | Substitution of equality i... |
| 3sstr3d 3984 | Substitution of equality i... |
| 3sstr4d 3985 | Substitution of equality i... |
| eqimssd 3986 | Equality implies inclusion... |
| eqimsscd 3987 | Equality implies inclusion... |
| eqimss 3988 | Equality implies inclusion... |
| eqimss2 3989 | Equality implies inclusion... |
| eqimssi 3990 | Infer subclass relationshi... |
| eqimss2i 3991 | Infer subclass relationshi... |
| nssne1 3992 | Two classes are different ... |
| nssne2 3993 | Two classes are different ... |
| nss 3994 | Negation of subclass relat... |
| nelss 3995 | Demonstrate by witnesses t... |
| ssrexf 3996 | Restricted existential qua... |
| ssrmof 3997 | "At most one" existential ... |
| ssralv 3998 | Quantification restricted ... |
| ssrexv 3999 | Existential quantification... |
| ss2ralv 4000 | Two quantifications restri... |
| ss2rexv 4001 | Two existential quantifica... |
| ssralvOLD 4002 | Obsolete version of ~ ssra... |
| ssrexvOLD 4003 | Obsolete version of ~ ssre... |
| ralss 4004 | Restricted universal quant... |
| rexss 4005 | Restricted existential qua... |
| ralssOLD 4006 | Obsolete version of ~ rals... |
| rexssOLD 4007 | Obsolete version of ~ rexs... |
| ss2ab 4008 | Class abstractions in a su... |
| abss 4009 | Class abstraction in a sub... |
| ssab 4010 | Subclass of a class abstra... |
| ssabral 4011 | The relation for a subclas... |
| ss2abdv 4012 | Deduction of abstraction s... |
| ss2abi 4013 | Inference of abstraction s... |
| abssdv 4014 | Deduction of abstraction s... |
| abssi 4015 | Inference of abstraction s... |
| ss2rab 4016 | Restricted abstraction cla... |
| rabss 4017 | Restricted class abstracti... |
| ssrab 4018 | Subclass of a restricted c... |
| ssrabdv 4019 | Subclass of a restricted c... |
| rabssdv 4020 | Subclass of a restricted c... |
| ss2rabdv 4021 | Deduction of restricted ab... |
| ss2rabdvOLD 4022 | Obsolete version of ~ ss2r... |
| ss2rabi 4023 | Inference of restricted ab... |
| rabss2 4024 | Subclass law for restricte... |
| rabss2OLD 4025 | Obsolete version of ~ ss2r... |
| ssab2 4026 | Subclass relation for the ... |
| ssrab2 4027 | Subclass relation for a re... |
| rabss3d 4028 | Subclass law for restricte... |
| ssrab3 4029 | Subclass relation for a re... |
| rabssrabd 4030 | Subclass of a restricted c... |
| ssrabeq 4031 | If the restricting class o... |
| rabssab 4032 | A restricted class is a su... |
| eqrrabd 4033 | Deduce equality with a res... |
| uniiunlem 4034 | A subset relationship usef... |
| dfpss2 4035 | Alternate definition of pr... |
| dfpss3 4036 | Alternate definition of pr... |
| psseq1 4037 | Equality theorem for prope... |
| psseq2 4038 | Equality theorem for prope... |
| psseq1i 4039 | An equality inference for ... |
| psseq2i 4040 | An equality inference for ... |
| psseq12i 4041 | An equality inference for ... |
| psseq1d 4042 | An equality deduction for ... |
| psseq2d 4043 | An equality deduction for ... |
| psseq12d 4044 | An equality deduction for ... |
| pssss 4045 | A proper subclass is a sub... |
| pssne 4046 | Two classes in a proper su... |
| pssssd 4047 | Deduce subclass from prope... |
| pssned 4048 | Proper subclasses are uneq... |
| sspss 4049 | Subclass in terms of prope... |
| pssirr 4050 | Proper subclass is irrefle... |
| pssn2lp 4051 | Proper subclass has no 2-c... |
| sspsstri 4052 | Two ways of stating tricho... |
| ssnpss 4053 | Partial trichotomy law for... |
| psstr 4054 | Transitive law for proper ... |
| sspsstr 4055 | Transitive law for subclas... |
| psssstr 4056 | Transitive law for subclas... |
| psstrd 4057 | Proper subclass inclusion ... |
| sspsstrd 4058 | Transitivity involving sub... |
| psssstrd 4059 | Transitivity involving sub... |
| npss 4060 | A class is not a proper su... |
| ssnelpss 4061 | A subclass missing a membe... |
| ssnelpssd 4062 | Subclass inclusion with on... |
| ssexnelpss 4063 | If there is an element of ... |
| dfdif3 4064 | Alternate definition of cl... |
| dfdif3OLD 4065 | Obsolete version of ~ dfdi... |
| difeq1 4066 | Equality theorem for class... |
| difeq2 4067 | Equality theorem for class... |
| difeq12 4068 | Equality theorem for class... |
| difeq1i 4069 | Inference adding differenc... |
| difeq2i 4070 | Inference adding differenc... |
| difeq12i 4071 | Equality inference for cla... |
| difeq1d 4072 | Deduction adding differenc... |
| difeq2d 4073 | Deduction adding differenc... |
| difeq12d 4074 | Equality deduction for cla... |
| difeqri 4075 | Inference from membership ... |
| nfdif 4076 | Bound-variable hypothesis ... |
| nfdifOLD 4077 | Obsolete version of ~ nfdi... |
| eldifi 4078 | Implication of membership ... |
| eldifn 4079 | Implication of membership ... |
| elndif 4080 | A set does not belong to a... |
| neldif 4081 | Implication of membership ... |
| difdif 4082 | Double class difference. ... |
| difss 4083 | Subclass relationship for ... |
| difssd 4084 | A difference of two classe... |
| difss2 4085 | If a class is contained in... |
| difss2d 4086 | If a class is contained in... |
| ssdifss 4087 | Preservation of a subclass... |
| ddif 4088 | Double complement under un... |
| ssconb 4089 | Contraposition law for sub... |
| sscon 4090 | Contraposition law for sub... |
| ssdif 4091 | Difference law for subsets... |
| ssdifd 4092 | If ` A ` is contained in `... |
| sscond 4093 | If ` A ` is contained in `... |
| ssdifssd 4094 | If ` A ` is contained in `... |
| ssdif2d 4095 | If ` A ` is contained in `... |
| raldifb 4096 | Restricted universal quant... |
| rexdifi 4097 | Restricted existential qua... |
| complss 4098 | Complementation reverses i... |
| compleq 4099 | Two classes are equal if a... |
| elun 4100 | Expansion of membership in... |
| elunnel1 4101 | A member of a union that i... |
| elunnel2 4102 | A member of a union that i... |
| uneqri 4103 | Inference from membership ... |
| unidm 4104 | Idempotent law for union o... |
| uncom 4105 | Commutative law for union ... |
| equncom 4106 | If a class equals the unio... |
| equncomi 4107 | Inference form of ~ equnco... |
| uneq1 4108 | Equality theorem for the u... |
| uneq2 4109 | Equality theorem for the u... |
| uneq12 4110 | Equality theorem for the u... |
| uneq1i 4111 | Inference adding union to ... |
| uneq2i 4112 | Inference adding union to ... |
| uneq12i 4113 | Equality inference for the... |
| uneq1d 4114 | Deduction adding union to ... |
| uneq2d 4115 | Deduction adding union to ... |
| uneq12d 4116 | Equality deduction for the... |
| nfun 4117 | Bound-variable hypothesis ... |
| nfunOLD 4118 | Obsolete version of ~ nfun... |
| unass 4119 | Associative law for union ... |
| un12 4120 | A rearrangement of union. ... |
| un23 4121 | A rearrangement of union. ... |
| un4 4122 | A rearrangement of the uni... |
| unundi 4123 | Union distributes over its... |
| unundir 4124 | Union distributes over its... |
| ssun1 4125 | Subclass relationship for ... |
| ssun2 4126 | Subclass relationship for ... |
| ssun3 4127 | Subclass law for union of ... |
| ssun4 4128 | Subclass law for union of ... |
| elun1 4129 | Membership law for union o... |
| elun2 4130 | Membership law for union o... |
| elunant 4131 | A statement is true for ev... |
| unss1 4132 | Subclass law for union of ... |
| ssequn1 4133 | A relationship between sub... |
| unss2 4134 | Subclass law for union of ... |
| unss12 4135 | Subclass law for union of ... |
| ssequn2 4136 | A relationship between sub... |
| unss 4137 | The union of two subclasse... |
| unssi 4138 | An inference showing the u... |
| unssd 4139 | A deduction showing the un... |
| unssad 4140 | If ` ( A u. B ) ` is conta... |
| unssbd 4141 | If ` ( A u. B ) ` is conta... |
| ssun 4142 | A condition that implies i... |
| rexun 4143 | Restricted existential qua... |
| ralunb 4144 | Restricted quantification ... |
| ralun 4145 | Restricted quantification ... |
| elini 4146 | Membership in an intersect... |
| elind 4147 | Deduce membership in an in... |
| elinel1 4148 | Membership in an intersect... |
| elinel2 4149 | Membership in an intersect... |
| elin2 4150 | Membership in a class defi... |
| elin1d 4151 | Elementhood in the first s... |
| elin2d 4152 | Elementhood in the first s... |
| elin3 4153 | Membership in a class defi... |
| nel1nelin 4154 | Membership in an intersect... |
| nel2nelin 4155 | Membership in an intersect... |
| incom 4156 | Commutative law for inters... |
| ineqcom 4157 | Two ways of expressing tha... |
| ineqcomi 4158 | Two ways of expressing tha... |
| ineqri 4159 | Inference from membership ... |
| ineq1 4160 | Equality theorem for inter... |
| ineq2 4161 | Equality theorem for inter... |
| ineq12 4162 | Equality theorem for inter... |
| ineq1i 4163 | Equality inference for int... |
| ineq2i 4164 | Equality inference for int... |
| ineq12i 4165 | Equality inference for int... |
| ineq1d 4166 | Equality deduction for int... |
| ineq2d 4167 | Equality deduction for int... |
| ineq12d 4168 | Equality deduction for int... |
| ineqan12d 4169 | Equality deduction for int... |
| sseqin2 4170 | A relationship between sub... |
| nfin 4171 | Bound-variable hypothesis ... |
| nfinOLD 4172 | Obsolete version of ~ nfin... |
| rabbi2dva 4173 | Deduction from a wff to a ... |
| inidm 4174 | Idempotent law for interse... |
| inass 4175 | Associative law for inters... |
| in12 4176 | A rearrangement of interse... |
| in32 4177 | A rearrangement of interse... |
| in13 4178 | A rearrangement of interse... |
| in31 4179 | A rearrangement of interse... |
| inrot 4180 | Rotate the intersection of... |
| in4 4181 | Rearrangement of intersect... |
| inindi 4182 | Intersection distributes o... |
| inindir 4183 | Intersection distributes o... |
| inss1 4184 | The intersection of two cl... |
| inss2 4185 | The intersection of two cl... |
| ssin 4186 | Subclass of intersection. ... |
| ssini 4187 | An inference showing that ... |
| ssind 4188 | A deduction showing that a... |
| ssrin 4189 | Add right intersection to ... |
| sslin 4190 | Add left intersection to s... |
| ssrind 4191 | Add right intersection to ... |
| ss2in 4192 | Intersection of subclasses... |
| ssinss1 4193 | Intersection preserves sub... |
| ssinss1d 4194 | Intersection preserves sub... |
| inss 4195 | Inclusion of an intersecti... |
| ralin 4196 | Restricted universal quant... |
| rexin 4197 | Restricted existential qua... |
| dfss7 4198 | Alternate definition of su... |
| symdifcom 4201 | Symmetric difference commu... |
| symdifeq1 4202 | Equality theorem for symme... |
| symdifeq2 4203 | Equality theorem for symme... |
| nfsymdif 4204 | Hypothesis builder for sym... |
| elsymdif 4205 | Membership in a symmetric ... |
| dfsymdif4 4206 | Alternate definition of th... |
| elsymdifxor 4207 | Membership in a symmetric ... |
| dfsymdif2 4208 | Alternate definition of th... |
| symdifass 4209 | Symmetric difference is as... |
| difsssymdif 4210 | The symmetric difference c... |
| difsymssdifssd 4211 | If the symmetric differenc... |
| unabs 4212 | Absorption law for union. ... |
| inabs 4213 | Absorption law for interse... |
| nssinpss 4214 | Negation of subclass expre... |
| nsspssun 4215 | Negation of subclass expre... |
| dfss4 4216 | Subclass defined in terms ... |
| dfun2 4217 | An alternate definition of... |
| dfin2 4218 | An alternate definition of... |
| difin 4219 | Difference with intersecti... |
| ssdifim 4220 | Implication of a class dif... |
| ssdifsym 4221 | Symmetric class difference... |
| dfss5 4222 | Alternate definition of su... |
| dfun3 4223 | Union defined in terms of ... |
| dfin3 4224 | Intersection defined in te... |
| dfin4 4225 | Alternate definition of th... |
| invdif 4226 | Intersection with universa... |
| indif 4227 | Intersection with class di... |
| indif2 4228 | Bring an intersection in a... |
| indif1 4229 | Bring an intersection in a... |
| indifcom 4230 | Commutation law for inters... |
| indi 4231 | Distributive law for inter... |
| undi 4232 | Distributive law for union... |
| indir 4233 | Distributive law for inter... |
| undir 4234 | Distributive law for union... |
| unineq 4235 | Infer equality from equali... |
| uneqin 4236 | Equality of union and inte... |
| difundi 4237 | Distributive law for class... |
| difundir 4238 | Distributive law for class... |
| difindi 4239 | Distributive law for class... |
| difindir 4240 | Distributive law for class... |
| indifdi 4241 | Distribute intersection ov... |
| indifdir 4242 | Distribute intersection ov... |
| difdif2 4243 | Class difference by a clas... |
| undm 4244 | De Morgan's law for union.... |
| indm 4245 | De Morgan's law for inters... |
| difun1 4246 | A relationship involving d... |
| undif3 4247 | An equality involving clas... |
| difin2 4248 | Represent a class differen... |
| dif32 4249 | Swap second and third argu... |
| difabs 4250 | Absorption-like law for cl... |
| sscon34b 4251 | Relative complementation r... |
| rcompleq 4252 | Two subclasses are equal i... |
| dfsymdif3 4253 | Alternate definition of th... |
| unabw 4254 | Union of two class abstrac... |
| unab 4255 | Union of two class abstrac... |
| inab 4256 | Intersection of two class ... |
| difab 4257 | Difference of two class ab... |
| abanssl 4258 | A class abstraction with a... |
| abanssr 4259 | A class abstraction with a... |
| notabw 4260 | A class abstraction define... |
| notab 4261 | A class abstraction define... |
| unrab 4262 | Union of two restricted cl... |
| inrab 4263 | Intersection of two restri... |
| inrab2 4264 | Intersection with a restri... |
| difrab 4265 | Difference of two restrict... |
| dfrab3 4266 | Alternate definition of re... |
| dfrab2 4267 | Alternate definition of re... |
| rabdif 4268 | Move difference in and out... |
| notrab 4269 | Complementation of restric... |
| dfrab3ss 4270 | Restricted class abstracti... |
| rabun2 4271 | Abstraction restricted to ... |
| reuun2 4272 | Transfer uniqueness to a s... |
| reuss2 4273 | Transfer uniqueness to a s... |
| reuss 4274 | Transfer uniqueness to a s... |
| reuun1 4275 | Transfer uniqueness to a s... |
| reupick 4276 | Restricted uniqueness "pic... |
| reupick3 4277 | Restricted uniqueness "pic... |
| reupick2 4278 | Restricted uniqueness "pic... |
| euelss 4279 | Transfer uniqueness of an ... |
| dfnul4 4282 | Alternate definition of th... |
| dfnul2 4283 | Alternate definition of th... |
| dfnul3 4284 | Alternate definition of th... |
| noel 4285 | The empty set has no eleme... |
| nel02 4286 | The empty set has no eleme... |
| n0i 4287 | If a class has elements, t... |
| ne0i 4288 | If a class has elements, t... |
| ne0d 4289 | Deduction form of ~ ne0i .... |
| n0ii 4290 | If a class has elements, t... |
| ne0ii 4291 | If a class has elements, t... |
| vn0 4292 | The universal class is not... |
| vn0ALT 4293 | Alternate proof of ~ vn0 .... |
| eq0f 4294 | A class is equal to the em... |
| neq0f 4295 | A class is not empty if an... |
| n0f 4296 | A class is nonempty if and... |
| eq0 4297 | A class is equal to the em... |
| eq0ALT 4298 | Alternate proof of ~ eq0 .... |
| neq0 4299 | A class is not empty if an... |
| n0 4300 | A class is nonempty if and... |
| nel0 4301 | From the general negation ... |
| reximdva0 4302 | Restricted existence deduc... |
| rspn0 4303 | Specialization for restric... |
| n0rex 4304 | There is an element in a n... |
| ssn0rex 4305 | There is an element in a c... |
| n0moeu 4306 | A case of equivalence of "... |
| rex0 4307 | Vacuous restricted existen... |
| reu0 4308 | Vacuous restricted uniquen... |
| rmo0 4309 | Vacuous restricted at-most... |
| 0el 4310 | Membership of the empty se... |
| n0el 4311 | Negated membership of the ... |
| eqeuel 4312 | A condition which implies ... |
| ssdif0 4313 | Subclass expressed in term... |
| difn0 4314 | If the difference of two s... |
| pssdifn0 4315 | A proper subclass has a no... |
| pssdif 4316 | A proper subclass has a no... |
| ndisj 4317 | Express that an intersecti... |
| inn0f 4318 | A nonempty intersection. ... |
| inn0 4319 | A nonempty intersection. ... |
| difin0ss 4320 | Difference, intersection, ... |
| inssdif0 4321 | Intersection, subclass, an... |
| inindif 4322 | The intersection and class... |
| difid 4323 | The difference between a c... |
| difidALT 4324 | Alternate proof of ~ difid... |
| dif0 4325 | The difference between a c... |
| ab0w 4326 | The class of sets verifyin... |
| ab0 4327 | The class of sets verifyin... |
| ab0ALT 4328 | Alternate proof of ~ ab0 ,... |
| dfnf5 4329 | Characterization of nonfre... |
| ab0orv 4330 | The class abstraction defi... |
| ab0orvALT 4331 | Alternate proof of ~ ab0or... |
| abn0 4332 | Nonempty class abstraction... |
| rab0 4333 | Any restricted class abstr... |
| rabeq0w 4334 | Condition for a restricted... |
| rabeq0 4335 | Condition for a restricted... |
| rabn0 4336 | Nonempty restricted class ... |
| rabxm 4337 | Law of excluded middle, in... |
| rabnc 4338 | Law of noncontradiction, i... |
| elneldisj 4339 | The set of elements ` s ` ... |
| elnelun 4340 | The union of the set of el... |
| un0 4341 | The union of a class with ... |
| in0 4342 | The intersection of a clas... |
| 0un 4343 | The union of the empty set... |
| 0in 4344 | The intersection of the em... |
| inv1 4345 | The intersection of a clas... |
| unv 4346 | The union of a class with ... |
| 0ss 4347 | The null set is a subset o... |
| ss0b 4348 | Any subset of the empty se... |
| ss0 4349 | Any subset of the empty se... |
| sseq0 4350 | A subclass of an empty cla... |
| ssn0 4351 | A class with a nonempty su... |
| 0dif 4352 | The difference between the... |
| abf 4353 | A class abstraction determ... |
| eq0rdv 4354 | Deduction for equality to ... |
| eq0rdvALT 4355 | Alternate proof of ~ eq0rd... |
| csbprc 4356 | The proper substitution of... |
| csb0 4357 | The proper substitution of... |
| sbcel12 4358 | Distribute proper substitu... |
| sbceqg 4359 | Distribute proper substitu... |
| sbceqi 4360 | Distribution of class subs... |
| sbcnel12g 4361 | Distribute proper substitu... |
| sbcne12 4362 | Distribute proper substitu... |
| sbcel1g 4363 | Move proper substitution i... |
| sbceq1g 4364 | Move proper substitution t... |
| sbcel2 4365 | Move proper substitution i... |
| sbceq2g 4366 | Move proper substitution t... |
| csbcom 4367 | Commutative law for double... |
| sbcnestgfw 4368 | Nest the composition of tw... |
| csbnestgfw 4369 | Nest the composition of tw... |
| sbcnestgw 4370 | Nest the composition of tw... |
| csbnestgw 4371 | Nest the composition of tw... |
| sbcco3gw 4372 | Composition of two substit... |
| sbcnestgf 4373 | Nest the composition of tw... |
| csbnestgf 4374 | Nest the composition of tw... |
| sbcnestg 4375 | Nest the composition of tw... |
| csbnestg 4376 | Nest the composition of tw... |
| sbcco3g 4377 | Composition of two substit... |
| csbco3g 4378 | Composition of two class s... |
| csbnest1g 4379 | Nest the composition of tw... |
| csbidm 4380 | Idempotent law for class s... |
| csbvarg 4381 | The proper substitution of... |
| csbvargi 4382 | The proper substitution of... |
| sbccsb 4383 | Substitution into a wff ex... |
| sbccsb2 4384 | Substitution into a wff ex... |
| rspcsbela 4385 | Special case related to ~ ... |
| sbnfc2 4386 | Two ways of expressing " `... |
| csbab 4387 | Move substitution into a c... |
| csbun 4388 | Distribution of class subs... |
| csbin 4389 | Distribute proper substitu... |
| csbie2df 4390 | Conversion of implicit sub... |
| 2nreu 4391 | If there are two different... |
| un00 4392 | Two classes are empty iff ... |
| vss 4393 | Only the universal class h... |
| 0pss 4394 | The null set is a proper s... |
| npss0 4395 | No set is a proper subset ... |
| pssv 4396 | Any non-universal class is... |
| disj 4397 | Two ways of saying that tw... |
| disjr 4398 | Two ways of saying that tw... |
| disj1 4399 | Two ways of saying that tw... |
| reldisj 4400 | Two ways of saying that tw... |
| disj3 4401 | Two ways of saying that tw... |
| disjne 4402 | Members of disjoint sets a... |
| disjeq0 4403 | Two disjoint sets are equa... |
| disjel 4404 | A set can't belong to both... |
| disj2 4405 | Two ways of saying that tw... |
| disj4 4406 | Two ways of saying that tw... |
| ssdisj 4407 | Intersection with a subcla... |
| disjpss 4408 | A class is a proper subset... |
| undisj1 4409 | The union of disjoint clas... |
| undisj2 4410 | The union of disjoint clas... |
| ssindif0 4411 | Subclass expressed in term... |
| inelcm 4412 | The intersection of classe... |
| minel 4413 | A minimum element of a cla... |
| undif4 4414 | Distribute union over diff... |
| disjssun 4415 | Subset relation for disjoi... |
| vdif0 4416 | Universal class equality i... |
| difrab0eq 4417 | If the difference between ... |
| pssnel 4418 | A proper subclass has a me... |
| disjdif 4419 | A class and its relative c... |
| disjdifr 4420 | A class and its relative c... |
| difin0 4421 | The difference of a class ... |
| unvdif 4422 | The union of a class and i... |
| undif1 4423 | Absorption of difference b... |
| undif2 4424 | Absorption of difference b... |
| undifabs 4425 | Absorption of difference b... |
| inundif 4426 | The intersection and class... |
| disjdif2 4427 | The difference of a class ... |
| difun2 4428 | Absorption of union by dif... |
| undif 4429 | Union of complementary par... |
| undifr 4430 | Union of complementary par... |
| undifrOLD 4431 | Obsolete version of ~ undi... |
| undif5 4432 | An equality involving clas... |
| ssdifin0 4433 | A subset of a difference d... |
| ssdifeq0 4434 | A class is a subclass of i... |
| ssundif 4435 | A condition equivalent to ... |
| difcom 4436 | Swap the arguments of a cl... |
| pssdifcom1 4437 | Two ways to express overla... |
| pssdifcom2 4438 | Two ways to express non-co... |
| difdifdir 4439 | Distributive law for class... |
| uneqdifeq 4440 | Two ways to say that ` A `... |
| raldifeq 4441 | Equality theorem for restr... |
| r19.2z 4442 | Theorem 19.2 of [Margaris]... |
| r19.2zb 4443 | A response to the notion t... |
| r19.3rz 4444 | Restricted quantification ... |
| r19.28z 4445 | Restricted quantifier vers... |
| r19.3rzv 4446 | Restricted quantification ... |
| r19.9rzv 4447 | Restricted quantification ... |
| r19.28zv 4448 | Restricted quantifier vers... |
| r19.37zv 4449 | Restricted quantifier vers... |
| r19.45zv 4450 | Restricted version of Theo... |
| r19.44zv 4451 | Restricted version of Theo... |
| r19.27z 4452 | Restricted quantifier vers... |
| r19.27zv 4453 | Restricted quantifier vers... |
| r19.36zv 4454 | Restricted quantifier vers... |
| ralidmw 4455 | Idempotent law for restric... |
| rzal 4456 | Vacuous quantification is ... |
| rzalALT 4457 | Alternate proof of ~ rzal ... |
| rexn0 4458 | Restricted existential qua... |
| ralidm 4459 | Idempotent law for restric... |
| ral0 4460 | Vacuous universal quantifi... |
| ralf0 4461 | The quantification of a fa... |
| ralnralall 4462 | A contradiction concerning... |
| falseral0 4463 | A false statement can only... |
| raaan 4464 | Rearrange restricted quant... |
| raaanv 4465 | Rearrange restricted quant... |
| sbss 4466 | Set substitution into the ... |
| sbcssg 4467 | Distribute proper substitu... |
| raaan2 4468 | Rearrange restricted quant... |
| 2reu4lem 4469 | Lemma for ~ 2reu4 . (Cont... |
| 2reu4 4470 | Definition of double restr... |
| csbdif 4471 | Distribution of class subs... |
| dfif2 4474 | An alternate definition of... |
| dfif6 4475 | An alternate definition of... |
| ifeq1 4476 | Equality theorem for condi... |
| ifeq2 4477 | Equality theorem for condi... |
| iftrue 4478 | Value of the conditional o... |
| iftruei 4479 | Inference associated with ... |
| iftrued 4480 | Value of the conditional o... |
| iffalse 4481 | Value of the conditional o... |
| iffalsei 4482 | Inference associated with ... |
| iffalsed 4483 | Value of the conditional o... |
| ifnefalse 4484 | When values are unequal, b... |
| iftrueb 4485 | When the branches are not ... |
| ifsb 4486 | Distribute a function over... |
| dfif3 4487 | Alternate definition of th... |
| dfif4 4488 | Alternate definition of th... |
| dfif5 4489 | Alternate definition of th... |
| ifssun 4490 | A conditional class is inc... |
| ifeq12 4491 | Equality theorem for condi... |
| ifeq1d 4492 | Equality deduction for con... |
| ifeq2d 4493 | Equality deduction for con... |
| ifeq12d 4494 | Equality deduction for con... |
| ifbi 4495 | Equivalence theorem for co... |
| ifbid 4496 | Equivalence deduction for ... |
| ifbieq1d 4497 | Equivalence/equality deduc... |
| ifbieq2i 4498 | Equivalence/equality infer... |
| ifbieq2d 4499 | Equivalence/equality deduc... |
| ifbieq12i 4500 | Equivalence deduction for ... |
| ifbieq12d 4501 | Equivalence deduction for ... |
| nfifd 4502 | Deduction form of ~ nfif .... |
| nfif 4503 | Bound-variable hypothesis ... |
| ifeq1da 4504 | Conditional equality. (Co... |
| ifeq2da 4505 | Conditional equality. (Co... |
| ifeq12da 4506 | Equivalence deduction for ... |
| ifbieq12d2 4507 | Equivalence deduction for ... |
| ifclda 4508 | Conditional closure. (Con... |
| ifeqda 4509 | Separation of the values o... |
| elimif 4510 | Elimination of a condition... |
| ifbothda 4511 | A wff ` th ` containing a ... |
| ifboth 4512 | A wff ` th ` containing a ... |
| ifid 4513 | Identical true and false a... |
| eqif 4514 | Expansion of an equality w... |
| ifval 4515 | Another expression of the ... |
| elif 4516 | Membership in a conditiona... |
| ifel 4517 | Membership of a conditiona... |
| ifcl 4518 | Membership (closure) of a ... |
| ifcld 4519 | Membership (closure) of a ... |
| ifcli 4520 | Inference associated with ... |
| ifexd 4521 | Existence of the condition... |
| ifexg 4522 | Existence of the condition... |
| ifex 4523 | Existence of the condition... |
| ifeqor 4524 | The possible values of a c... |
| ifnot 4525 | Negating the first argumen... |
| ifan 4526 | Rewrite a conjunction in a... |
| ifor 4527 | Rewrite a disjunction in a... |
| 2if2 4528 | Resolve two nested conditi... |
| ifcomnan 4529 | Commute the conditions in ... |
| csbif 4530 | Distribute proper substitu... |
| dedth 4531 | Weak deduction theorem tha... |
| dedth2h 4532 | Weak deduction theorem eli... |
| dedth3h 4533 | Weak deduction theorem eli... |
| dedth4h 4534 | Weak deduction theorem eli... |
| dedth2v 4535 | Weak deduction theorem for... |
| dedth3v 4536 | Weak deduction theorem for... |
| dedth4v 4537 | Weak deduction theorem for... |
| elimhyp 4538 | Eliminate a hypothesis con... |
| elimhyp2v 4539 | Eliminate a hypothesis con... |
| elimhyp3v 4540 | Eliminate a hypothesis con... |
| elimhyp4v 4541 | Eliminate a hypothesis con... |
| elimel 4542 | Eliminate a membership hyp... |
| elimdhyp 4543 | Version of ~ elimhyp where... |
| keephyp 4544 | Transform a hypothesis ` p... |
| keephyp2v 4545 | Keep a hypothesis containi... |
| keephyp3v 4546 | Keep a hypothesis containi... |
| pwjust 4548 | Soundness justification th... |
| elpwg 4550 | Membership in a power clas... |
| elpw 4551 | Membership in a power clas... |
| velpw 4552 | Setvar variable membership... |
| elpwd 4553 | Membership in a power clas... |
| elpwi 4554 | Subset relation implied by... |
| elpwb 4555 | Characterization of the el... |
| elpwid 4556 | An element of a power clas... |
| elelpwi 4557 | If ` A ` belongs to a part... |
| sspw 4558 | The powerclass preserves i... |
| sspwi 4559 | The powerclass preserves i... |
| sspwd 4560 | The powerclass preserves i... |
| pweq 4561 | Equality theorem for power... |
| pweqALT 4562 | Alternate proof of ~ pweq ... |
| pweqi 4563 | Equality inference for pow... |
| pweqd 4564 | Equality deduction for pow... |
| pwunss 4565 | The power class of the uni... |
| nfpw 4566 | Bound-variable hypothesis ... |
| pwidg 4567 | A set is an element of its... |
| pwidb 4568 | A class is an element of i... |
| pwid 4569 | A set is a member of its p... |
| pwss 4570 | Subclass relationship for ... |
| pwundif 4571 | Break up the power class o... |
| snjust 4572 | Soundness justification th... |
| sneq 4583 | Equality theorem for singl... |
| sneqi 4584 | Equality inference for sin... |
| sneqd 4585 | Equality deduction for sin... |
| dfsn2 4586 | Alternate definition of si... |
| elsng 4587 | There is exactly one eleme... |
| elsn 4588 | There is exactly one eleme... |
| velsn 4589 | There is only one element ... |
| elsni 4590 | There is at most one eleme... |
| elsnd 4591 | There is at most one eleme... |
| rabsneq 4592 | Equality of class abstract... |
| absn 4593 | Condition for a class abst... |
| dfpr2 4594 | Alternate definition of a ... |
| dfsn2ALT 4595 | Alternate definition of si... |
| elprg 4596 | A member of a pair of clas... |
| elpri 4597 | If a class is an element o... |
| elpr 4598 | A member of a pair of clas... |
| elpr2g 4599 | A member of a pair of sets... |
| elpr2 4600 | A member of a pair of sets... |
| elprn1 4601 | A member of an unordered p... |
| elprn2 4602 | A member of an unordered p... |
| nelpr2 4603 | If a class is not an eleme... |
| nelpr1 4604 | If a class is not an eleme... |
| nelpri 4605 | If an element doesn't matc... |
| prneli 4606 | If an element doesn't matc... |
| nelprd 4607 | If an element doesn't matc... |
| eldifpr 4608 | Membership in a set with t... |
| rexdifpr 4609 | Restricted existential qua... |
| snidg 4610 | A set is a member of its s... |
| snidb 4611 | A class is a set iff it is... |
| snid 4612 | A set is a member of its s... |
| vsnid 4613 | A setvar variable is a mem... |
| elsn2g 4614 | There is exactly one eleme... |
| elsn2 4615 | There is exactly one eleme... |
| nelsn 4616 | If a class is not equal to... |
| rabeqsn 4617 | Conditions for a restricte... |
| rabsssn 4618 | Conditions for a restricte... |
| rabeqsnd 4619 | Conditions for a restricte... |
| ralsnsg 4620 | Substitution expressed in ... |
| rexsns 4621 | Restricted existential qua... |
| rexsngf 4622 | Restricted existential qua... |
| ralsngf 4623 | Restricted universal quant... |
| reusngf 4624 | Restricted existential uni... |
| ralsng 4625 | Substitution expressed in ... |
| rexsng 4626 | Restricted existential qua... |
| reusng 4627 | Restricted existential uni... |
| 2ralsng 4628 | Substitution expressed in ... |
| rexreusng 4629 | Restricted existential uni... |
| exsnrex 4630 | There is a set being the e... |
| ralsn 4631 | Convert a universal quanti... |
| rexsn 4632 | Convert an existential qua... |
| elunsn 4633 | Elementhood in a union wit... |
| elpwunsn 4634 | Membership in an extension... |
| eqoreldif 4635 | An element of a set is eit... |
| eltpg 4636 | Members of an unordered tr... |
| eldiftp 4637 | Membership in a set with t... |
| eltpi 4638 | A member of an unordered t... |
| eltp 4639 | A member of an unordered t... |
| el7g 4640 | Members of a set with seve... |
| dftp2 4641 | Alternate definition of un... |
| nfpr 4642 | Bound-variable hypothesis ... |
| ifpr 4643 | Membership of a conditiona... |
| ralprgf 4644 | Convert a restricted unive... |
| rexprgf 4645 | Convert a restricted exist... |
| ralprg 4646 | Convert a restricted unive... |
| rexprg 4647 | Convert a restricted exist... |
| raltpg 4648 | Convert a restricted unive... |
| rextpg 4649 | Convert a restricted exist... |
| ralpr 4650 | Convert a restricted unive... |
| rexpr 4651 | Convert a restricted exist... |
| reuprg0 4652 | Convert a restricted exist... |
| reuprg 4653 | Convert a restricted exist... |
| reurexprg 4654 | Convert a restricted exist... |
| raltp 4655 | Convert a universal quanti... |
| rextp 4656 | Convert an existential qua... |
| nfsn 4657 | Bound-variable hypothesis ... |
| csbsng 4658 | Distribute proper substitu... |
| csbprg 4659 | Distribute proper substitu... |
| elinsn 4660 | If the intersection of two... |
| disjsn 4661 | Intersection with the sing... |
| disjsn2 4662 | Two distinct singletons ar... |
| disjpr2 4663 | Two completely distinct un... |
| disjprsn 4664 | The disjoint intersection ... |
| disjtpsn 4665 | The disjoint intersection ... |
| disjtp2 4666 | Two completely distinct un... |
| snprc 4667 | The singleton of a proper ... |
| snnzb 4668 | A singleton is nonempty if... |
| rmosn 4669 | A restricted at-most-one q... |
| r19.12sn 4670 | Special case of ~ r19.12 w... |
| rabsn 4671 | Condition where a restrict... |
| rabsnifsb 4672 | A restricted class abstrac... |
| rabsnif 4673 | A restricted class abstrac... |
| rabrsn 4674 | A restricted class abstrac... |
| euabsn2 4675 | Another way to express exi... |
| euabsn 4676 | Another way to express exi... |
| reusn 4677 | A way to express restricte... |
| absneu 4678 | Restricted existential uni... |
| rabsneu 4679 | Restricted existential uni... |
| eusn 4680 | Two ways to express " ` A ... |
| rabsnt 4681 | Truth implied by equality ... |
| prcom 4682 | Commutative law for unorde... |
| preq1 4683 | Equality theorem for unord... |
| preq2 4684 | Equality theorem for unord... |
| preq12 4685 | Equality theorem for unord... |
| preq1i 4686 | Equality inference for uno... |
| preq2i 4687 | Equality inference for uno... |
| preq12i 4688 | Equality inference for uno... |
| preq1d 4689 | Equality deduction for uno... |
| preq2d 4690 | Equality deduction for uno... |
| preq12d 4691 | Equality deduction for uno... |
| tpeq1 4692 | Equality theorem for unord... |
| tpeq2 4693 | Equality theorem for unord... |
| tpeq3 4694 | Equality theorem for unord... |
| tpeq1d 4695 | Equality theorem for unord... |
| tpeq2d 4696 | Equality theorem for unord... |
| tpeq3d 4697 | Equality theorem for unord... |
| tpeq123d 4698 | Equality theorem for unord... |
| tprot 4699 | Rotation of the elements o... |
| tpcoma 4700 | Swap 1st and 2nd members o... |
| tpcomb 4701 | Swap 2nd and 3rd members o... |
| tpass 4702 | Split off the first elemen... |
| qdass 4703 | Two ways to write an unord... |
| qdassr 4704 | Two ways to write an unord... |
| tpidm12 4705 | Unordered triple ` { A , A... |
| tpidm13 4706 | Unordered triple ` { A , B... |
| tpidm23 4707 | Unordered triple ` { A , B... |
| tpidm 4708 | Unordered triple ` { A , A... |
| tppreq3 4709 | An unordered triple is an ... |
| prid1g 4710 | An unordered pair contains... |
| prid2g 4711 | An unordered pair contains... |
| prid1 4712 | An unordered pair contains... |
| prid2 4713 | An unordered pair contains... |
| ifpprsnss 4714 | An unordered pair is a sin... |
| prprc1 4715 | A proper class vanishes in... |
| prprc2 4716 | A proper class vanishes in... |
| prprc 4717 | An unordered pair containi... |
| tpid1 4718 | One of the three elements ... |
| tpid1g 4719 | Closed theorem form of ~ t... |
| tpid2 4720 | One of the three elements ... |
| tpid2g 4721 | Closed theorem form of ~ t... |
| tpid3g 4722 | Closed theorem form of ~ t... |
| tpid3 4723 | One of the three elements ... |
| snnzg 4724 | The singleton of a set is ... |
| snn0d 4725 | The singleton of a set is ... |
| snnz 4726 | The singleton of a set is ... |
| prnz 4727 | A pair containing a set is... |
| prnzg 4728 | A pair containing a set is... |
| tpnz 4729 | An unordered triple contai... |
| tpnzd 4730 | An unordered triple contai... |
| raltpd 4731 | Convert a universal quanti... |
| snssb 4732 | Characterization of the in... |
| snssg 4733 | The singleton formed on a ... |
| snss 4734 | The singleton of an elemen... |
| eldifsn 4735 | Membership in a set with a... |
| eldifsnd 4736 | Membership in a set with a... |
| ssdifsn 4737 | Subset of a set with an el... |
| elpwdifsn 4738 | A subset of a set is an el... |
| eldifsni 4739 | Membership in a set with a... |
| eldifsnneq 4740 | An element of a difference... |
| neldifsn 4741 | The class ` A ` is not in ... |
| neldifsnd 4742 | The class ` A ` is not in ... |
| rexdifsn 4743 | Restricted existential qua... |
| raldifsni 4744 | Rearrangement of a propert... |
| raldifsnb 4745 | Restricted universal quant... |
| eldifvsn 4746 | A set is an element of the... |
| difsn 4747 | An element not in a set ca... |
| difprsnss 4748 | Removal of a singleton fro... |
| difprsn1 4749 | Removal of a singleton fro... |
| difprsn2 4750 | Removal of a singleton fro... |
| diftpsn3 4751 | Removal of a singleton fro... |
| difpr 4752 | Removing two elements as p... |
| tpprceq3 4753 | An unordered triple is an ... |
| tppreqb 4754 | An unordered triple is an ... |
| difsnb 4755 | ` ( B \ { A } ) ` equals `... |
| difsnpss 4756 | ` ( B \ { A } ) ` is a pro... |
| snssi 4757 | The singleton of an elemen... |
| snssd 4758 | The singleton of an elemen... |
| difsnid 4759 | If we remove a single elem... |
| eldifeldifsn 4760 | An element of a difference... |
| pw0 4761 | Compute the power set of t... |
| pwpw0 4762 | Compute the power set of t... |
| snsspr1 4763 | A singleton is a subset of... |
| snsspr2 4764 | A singleton is a subset of... |
| snsstp1 4765 | A singleton is a subset of... |
| snsstp2 4766 | A singleton is a subset of... |
| snsstp3 4767 | A singleton is a subset of... |
| prssg 4768 | A pair of elements of a cl... |
| prss 4769 | A pair of elements of a cl... |
| prssi 4770 | A pair of elements of a cl... |
| prssd 4771 | Deduction version of ~ prs... |
| prsspwg 4772 | An unordered pair belongs ... |
| ssprss 4773 | A pair as subset of a pair... |
| ssprsseq 4774 | A proper pair is a subset ... |
| sssn 4775 | The subsets of a singleton... |
| ssunsn2 4776 | The property of being sand... |
| ssunsn 4777 | Possible values for a set ... |
| eqsn 4778 | Two ways to express that a... |
| eqsnd 4779 | Deduce that a set is a sin... |
| eqsndOLD 4780 | Obsolete version of ~ eqsn... |
| issn 4781 | A sufficient condition for... |
| n0snor2el 4782 | A nonempty set is either a... |
| ssunpr 4783 | Possible values for a set ... |
| sspr 4784 | The subsets of a pair. (C... |
| sstp 4785 | The subsets of an unordere... |
| tpss 4786 | An unordered triple of ele... |
| tpssi 4787 | An unordered triple of ele... |
| sneqrg 4788 | Closed form of ~ sneqr . ... |
| sneqr 4789 | If the singletons of two s... |
| snsssn 4790 | If a singleton is a subset... |
| mosneq 4791 | There exists at most one s... |
| sneqbg 4792 | Two singletons of sets are... |
| snsspw 4793 | The singleton of a class i... |
| prsspw 4794 | An unordered pair belongs ... |
| preq1b 4795 | Biconditional equality lem... |
| preq2b 4796 | Biconditional equality lem... |
| preqr1 4797 | Reverse equality lemma for... |
| preqr2 4798 | Reverse equality lemma for... |
| preq12b 4799 | Equality relationship for ... |
| opthpr 4800 | An unordered pair has the ... |
| preqr1g 4801 | Reverse equality lemma for... |
| preq12bg 4802 | Closed form of ~ preq12b .... |
| prneimg 4803 | Two pairs are not equal if... |
| prneimg2 4804 | Two pairs are not equal if... |
| prnebg 4805 | A (proper) pair is not equ... |
| pr1eqbg 4806 | A (proper) pair is equal t... |
| pr1nebg 4807 | A (proper) pair is not equ... |
| preqsnd 4808 | Equivalence for a pair equ... |
| prnesn 4809 | A proper unordered pair is... |
| prneprprc 4810 | A proper unordered pair is... |
| preqsn 4811 | Equivalence for a pair equ... |
| preq12nebg 4812 | Equality relationship for ... |
| prel12g 4813 | Equality of two unordered ... |
| opthprneg 4814 | An unordered pair has the ... |
| elpreqprlem 4815 | Lemma for ~ elpreqpr . (C... |
| elpreqpr 4816 | Equality and membership ru... |
| elpreqprb 4817 | A set is an element of an ... |
| elpr2elpr 4818 | For an element ` A ` of an... |
| dfopif 4819 | Rewrite ~ df-op using ` if... |
| dfopg 4820 | Value of the ordered pair ... |
| dfop 4821 | Value of an ordered pair w... |
| opeq1 4822 | Equality theorem for order... |
| opeq2 4823 | Equality theorem for order... |
| opeq12 4824 | Equality theorem for order... |
| opeq1i 4825 | Equality inference for ord... |
| opeq2i 4826 | Equality inference for ord... |
| opeq12i 4827 | Equality inference for ord... |
| opeq1d 4828 | Equality deduction for ord... |
| opeq2d 4829 | Equality deduction for ord... |
| opeq12d 4830 | Equality deduction for ord... |
| oteq1 4831 | Equality theorem for order... |
| oteq2 4832 | Equality theorem for order... |
| oteq3 4833 | Equality theorem for order... |
| oteq1d 4834 | Equality deduction for ord... |
| oteq2d 4835 | Equality deduction for ord... |
| oteq3d 4836 | Equality deduction for ord... |
| oteq123d 4837 | Equality deduction for ord... |
| nfop 4838 | Bound-variable hypothesis ... |
| nfopd 4839 | Deduction version of bound... |
| csbopg 4840 | Distribution of class subs... |
| opidg 4841 | The ordered pair ` <. A , ... |
| opid 4842 | The ordered pair ` <. A , ... |
| ralunsn 4843 | Restricted quantification ... |
| 2ralunsn 4844 | Double restricted quantifi... |
| opprc 4845 | Expansion of an ordered pa... |
| opprc1 4846 | Expansion of an ordered pa... |
| opprc2 4847 | Expansion of an ordered pa... |
| oprcl 4848 | If an ordered pair has an ... |
| pwsn 4849 | The power set of a singlet... |
| pwpr 4850 | The power set of an unorde... |
| pwtp 4851 | The power set of an unorde... |
| pwpwpw0 4852 | Compute the power set of t... |
| pwv 4853 | The power class of the uni... |
| prproe 4854 | For an element of a proper... |
| 3elpr2eq 4855 | If there are three element... |
| dfuni2 4858 | Alternate definition of cl... |
| eluni 4859 | Membership in class union.... |
| eluni2 4860 | Membership in class union.... |
| elunii 4861 | Membership in class union.... |
| nfunid 4862 | Deduction version of ~ nfu... |
| nfuni 4863 | Bound-variable hypothesis ... |
| uniss 4864 | Subclass relationship for ... |
| unissi 4865 | Subclass relationship for ... |
| unissd 4866 | Subclass relationship for ... |
| unieq 4867 | Equality theorem for class... |
| unieqi 4868 | Inference of equality of t... |
| unieqd 4869 | Deduction of equality of t... |
| eluniab 4870 | Membership in union of a c... |
| elunirab 4871 | Membership in union of a c... |
| uniprg 4872 | The union of a pair is the... |
| unipr 4873 | The union of a pair is the... |
| unisng 4874 | A set equals the union of ... |
| unisn 4875 | A set equals the union of ... |
| unisnv 4876 | A set equals the union of ... |
| unisn3 4877 | Union of a singleton in th... |
| dfnfc2 4878 | An alternative statement o... |
| uniun 4879 | The class union of the uni... |
| uniin 4880 | The class union of the int... |
| ssuni 4881 | Subclass relationship for ... |
| uni0b 4882 | The union of a set is empt... |
| uni0c 4883 | The union of a set is empt... |
| uni0 4884 | The union of the empty set... |
| uni0OLD 4885 | Obsolete version of ~ uni0... |
| csbuni 4886 | Distribute proper substitu... |
| elssuni 4887 | An element of a class is a... |
| unissel 4888 | Condition turning a subcla... |
| unissb 4889 | Relationship involving mem... |
| uniss2 4890 | A subclass condition on th... |
| unidif 4891 | If the difference ` A \ B ... |
| ssunieq 4892 | Relationship implying unio... |
| unimax 4893 | Any member of a class is t... |
| pwuni 4894 | A class is a subclass of t... |
| dfint2 4897 | Alternate definition of cl... |
| inteq 4898 | Equality law for intersect... |
| inteqi 4899 | Equality inference for cla... |
| inteqd 4900 | Equality deduction for cla... |
| elint 4901 | Membership in class inters... |
| elint2 4902 | Membership in class inters... |
| elintg 4903 | Membership in class inters... |
| elinti 4904 | Membership in class inters... |
| nfint 4905 | Bound-variable hypothesis ... |
| elintabg 4906 | Two ways of saying a set i... |
| elintab 4907 | Membership in the intersec... |
| elintrab 4908 | Membership in the intersec... |
| elintrabg 4909 | Membership in the intersec... |
| int0 4910 | The intersection of the em... |
| intss1 4911 | An element of a class incl... |
| ssint 4912 | Subclass of a class inters... |
| ssintab 4913 | Subclass of the intersecti... |
| ssintub 4914 | Subclass of the least uppe... |
| ssmin 4915 | Subclass of the minimum va... |
| intmin 4916 | Any member of a class is t... |
| intss 4917 | Intersection of subclasses... |
| intssuni 4918 | The intersection of a none... |
| ssintrab 4919 | Subclass of the intersecti... |
| unissint 4920 | If the union of a class is... |
| intssuni2 4921 | Subclass relationship for ... |
| intminss 4922 | Under subset ordering, the... |
| intmin2 4923 | Any set is the smallest of... |
| intmin3 4924 | Under subset ordering, the... |
| intmin4 4925 | Elimination of a conjunct ... |
| intab 4926 | The intersection of a spec... |
| int0el 4927 | The intersection of a clas... |
| intun 4928 | The class intersection of ... |
| intprg 4929 | The intersection of a pair... |
| intpr 4930 | The intersection of a pair... |
| intsng 4931 | Intersection of a singleto... |
| intsn 4932 | The intersection of a sing... |
| uniintsn 4933 | Two ways to express " ` A ... |
| uniintab 4934 | The union and the intersec... |
| intunsn 4935 | Theorem joining a singleto... |
| rint0 4936 | Relative intersection of a... |
| elrint 4937 | Membership in a restricted... |
| elrint2 4938 | Membership in a restricted... |
| eliun 4943 | Membership in indexed unio... |
| eliin 4944 | Membership in indexed inte... |
| eliuni 4945 | Membership in an indexed u... |
| eliund 4946 | Membership in indexed unio... |
| iuncom 4947 | Commutation of indexed uni... |
| iuncom4 4948 | Commutation of union with ... |
| iunconst 4949 | Indexed union of a constan... |
| iinconst 4950 | Indexed intersection of a ... |
| iuneqconst 4951 | Indexed union of identical... |
| iuniin 4952 | Law combining indexed unio... |
| iinssiun 4953 | An indexed intersection is... |
| iunss1 4954 | Subclass theorem for index... |
| iinss1 4955 | Subclass theorem for index... |
| iuneq1 4956 | Equality theorem for index... |
| iineq1 4957 | Equality theorem for index... |
| ss2iun 4958 | Subclass theorem for index... |
| iuneq2 4959 | Equality theorem for index... |
| iineq2 4960 | Equality theorem for index... |
| iuneq2i 4961 | Equality inference for ind... |
| iineq2i 4962 | Equality inference for ind... |
| iineq2d 4963 | Equality deduction for ind... |
| iuneq2dv 4964 | Equality deduction for ind... |
| iineq2dv 4965 | Equality deduction for ind... |
| iuneq12df 4966 | Equality deduction for ind... |
| iuneq1d 4967 | Equality theorem for index... |
| iuneq12dOLD 4968 | Obsolete version of ~ iune... |
| iuneq12d 4969 | Equality deduction for ind... |
| iuneq2d 4970 | Equality deduction for ind... |
| nfiun 4971 | Bound-variable hypothesis ... |
| nfiin 4972 | Bound-variable hypothesis ... |
| nfiung 4973 | Bound-variable hypothesis ... |
| nfiing 4974 | Bound-variable hypothesis ... |
| nfiu1 4975 | Bound-variable hypothesis ... |
| nfiu1OLD 4976 | Obsolete version of ~ nfiu... |
| nfii1 4977 | Bound-variable hypothesis ... |
| dfiun2g 4978 | Alternate definition of in... |
| dfiin2g 4979 | Alternate definition of in... |
| dfiun2 4980 | Alternate definition of in... |
| dfiin2 4981 | Alternate definition of in... |
| dfiunv2 4982 | Define double indexed unio... |
| cbviun 4983 | Rule used to change the bo... |
| cbviin 4984 | Change bound variables in ... |
| cbviung 4985 | Rule used to change the bo... |
| cbviing 4986 | Change bound variables in ... |
| cbviunv 4987 | Rule used to change the bo... |
| cbviinv 4988 | Change bound variables in ... |
| cbviunvg 4989 | Rule used to change the bo... |
| cbviinvg 4990 | Change bound variables in ... |
| iunssf 4991 | Subset theorem for an inde... |
| iunss 4992 | Subset theorem for an inde... |
| ssiun 4993 | Subset implication for an ... |
| ssiun2 4994 | Identity law for subset of... |
| ssiun2s 4995 | Subset relationship for an... |
| iunss2 4996 | A subclass condition on th... |
| iunssd 4997 | Subset theorem for an inde... |
| iunab 4998 | The indexed union of a cla... |
| iunrab 4999 | The indexed union of a res... |
| iunxdif2 5000 | Indexed union with a class... |
| ssiinf 5001 | Subset theorem for an inde... |
| ssiin 5002 | Subset theorem for an inde... |
| iinss 5003 | Subset implication for an ... |
| iinss2 5004 | An indexed intersection is... |
| uniiun 5005 | Class union in terms of in... |
| intiin 5006 | Class intersection in term... |
| iunid 5007 | An indexed union of single... |
| iun0 5008 | An indexed union of the em... |
| 0iun 5009 | An empty indexed union is ... |
| 0iin 5010 | An empty indexed intersect... |
| viin 5011 | Indexed intersection with ... |
| iunsn 5012 | Indexed union of a singlet... |
| iunn0 5013 | There is a nonempty class ... |
| iinab 5014 | Indexed intersection of a ... |
| iinrab 5015 | Indexed intersection of a ... |
| iinrab2 5016 | Indexed intersection of a ... |
| iunin2 5017 | Indexed union of intersect... |
| iunin1 5018 | Indexed union of intersect... |
| iinun2 5019 | Indexed intersection of un... |
| iundif2 5020 | Indexed union of class dif... |
| iindif1 5021 | Indexed intersection of cl... |
| 2iunin 5022 | Rearrange indexed unions o... |
| iindif2 5023 | Indexed intersection of cl... |
| iinin2 5024 | Indexed intersection of in... |
| iinin1 5025 | Indexed intersection of in... |
| iinvdif 5026 | The indexed intersection o... |
| elriin 5027 | Elementhood in a relative ... |
| riin0 5028 | Relative intersection of a... |
| riinn0 5029 | Relative intersection of a... |
| riinrab 5030 | Relative intersection of a... |
| symdif0 5031 | Symmetric difference with ... |
| symdifv 5032 | The symmetric difference w... |
| symdifid 5033 | The symmetric difference o... |
| iinxsng 5034 | A singleton index picks ou... |
| iinxprg 5035 | Indexed intersection with ... |
| iunxsng 5036 | A singleton index picks ou... |
| iunxsn 5037 | A singleton index picks ou... |
| iunxsngf 5038 | A singleton index picks ou... |
| iunun 5039 | Separate a union in an ind... |
| iunxun 5040 | Separate a union in the in... |
| iunxdif3 5041 | An indexed union where som... |
| iunxprg 5042 | A pair index picks out two... |
| iunxiun 5043 | Separate an indexed union ... |
| iinuni 5044 | A relationship involving u... |
| iununi 5045 | A relationship involving u... |
| sspwuni 5046 | Subclass relationship for ... |
| pwssb 5047 | Two ways to express a coll... |
| elpwpw 5048 | Characterization of the el... |
| pwpwab 5049 | The double power class wri... |
| pwpwssunieq 5050 | The class of sets whose un... |
| elpwuni 5051 | Relationship for power cla... |
| iinpw 5052 | The power class of an inte... |
| iunpwss 5053 | Inclusion of an indexed un... |
| intss2 5054 | A nonempty intersection of... |
| rintn0 5055 | Relative intersection of a... |
| dfdisj2 5058 | Alternate definition for d... |
| disjss2 5059 | If each element of a colle... |
| disjeq2 5060 | Equality theorem for disjo... |
| disjeq2dv 5061 | Equality deduction for dis... |
| disjss1 5062 | A subset of a disjoint col... |
| disjeq1 5063 | Equality theorem for disjo... |
| disjeq1d 5064 | Equality theorem for disjo... |
| disjeq12d 5065 | Equality theorem for disjo... |
| cbvdisj 5066 | Change bound variables in ... |
| cbvdisjv 5067 | Change bound variables in ... |
| nfdisjw 5068 | Bound-variable hypothesis ... |
| nfdisj 5069 | Bound-variable hypothesis ... |
| nfdisj1 5070 | Bound-variable hypothesis ... |
| disjor 5071 | Two ways to say that a col... |
| disjors 5072 | Two ways to say that a col... |
| disji2 5073 | Property of a disjoint col... |
| disji 5074 | Property of a disjoint col... |
| invdisj 5075 | If there is a function ` C... |
| invdisjrab 5076 | The restricted class abstr... |
| disjiun 5077 | A disjoint collection yiel... |
| disjord 5078 | Conditions for a collectio... |
| disjiunb 5079 | Two ways to say that a col... |
| disjiund 5080 | Conditions for a collectio... |
| sndisj 5081 | Any collection of singleto... |
| 0disj 5082 | Any collection of empty se... |
| disjxsn 5083 | A singleton collection is ... |
| disjx0 5084 | An empty collection is dis... |
| disjprg 5085 | A pair collection is disjo... |
| disjxiun 5086 | An indexed union of a disj... |
| disjxun 5087 | The union of two disjoint ... |
| disjss3 5088 | Expand a disjoint collecti... |
| breq 5091 | Equality theorem for binar... |
| breq1 5092 | Equality theorem for a bin... |
| breq2 5093 | Equality theorem for a bin... |
| breq12 5094 | Equality theorem for a bin... |
| breqi 5095 | Equality inference for bin... |
| breq1i 5096 | Equality inference for a b... |
| breq2i 5097 | Equality inference for a b... |
| breq12i 5098 | Equality inference for a b... |
| breq1d 5099 | Equality deduction for a b... |
| breqd 5100 | Equality deduction for a b... |
| breq2d 5101 | Equality deduction for a b... |
| breq12d 5102 | Equality deduction for a b... |
| breq123d 5103 | Equality deduction for a b... |
| breqdi 5104 | Equality deduction for a b... |
| breqan12d 5105 | Equality deduction for a b... |
| breqan12rd 5106 | Equality deduction for a b... |
| eqnbrtrd 5107 | Substitution of equal clas... |
| nbrne1 5108 | Two classes are different ... |
| nbrne2 5109 | Two classes are different ... |
| eqbrtri 5110 | Substitution of equal clas... |
| eqbrtrd 5111 | Substitution of equal clas... |
| eqbrtrri 5112 | Substitution of equal clas... |
| eqbrtrrd 5113 | Substitution of equal clas... |
| breqtri 5114 | Substitution of equal clas... |
| breqtrd 5115 | Substitution of equal clas... |
| breqtrri 5116 | Substitution of equal clas... |
| breqtrrd 5117 | Substitution of equal clas... |
| 3brtr3i 5118 | Substitution of equality i... |
| 3brtr4i 5119 | Substitution of equality i... |
| 3brtr3d 5120 | Substitution of equality i... |
| 3brtr4d 5121 | Substitution of equality i... |
| 3brtr3g 5122 | Substitution of equality i... |
| 3brtr4g 5123 | Substitution of equality i... |
| eqbrtrid 5124 | A chained equality inferen... |
| eqbrtrrid 5125 | A chained equality inferen... |
| breqtrid 5126 | A chained equality inferen... |
| breqtrrid 5127 | A chained equality inferen... |
| eqbrtrdi 5128 | A chained equality inferen... |
| eqbrtrrdi 5129 | A chained equality inferen... |
| breqtrdi 5130 | A chained equality inferen... |
| breqtrrdi 5131 | A chained equality inferen... |
| ssbrd 5132 | Deduction from a subclass ... |
| ssbr 5133 | Implication from a subclas... |
| ssbri 5134 | Inference from a subclass ... |
| nfbrd 5135 | Deduction version of bound... |
| nfbr 5136 | Bound-variable hypothesis ... |
| brab1 5137 | Relationship between a bin... |
| br0 5138 | The empty binary relation ... |
| brne0 5139 | If two sets are in a binar... |
| brun 5140 | The union of two binary re... |
| brin 5141 | The intersection of two re... |
| brdif 5142 | The difference of two bina... |
| sbcbr123 5143 | Move substitution in and o... |
| sbcbr 5144 | Move substitution in and o... |
| sbcbr12g 5145 | Move substitution in and o... |
| sbcbr1g 5146 | Move substitution in and o... |
| sbcbr2g 5147 | Move substitution in and o... |
| brsymdif 5148 | Characterization of the sy... |
| brralrspcev 5149 | Restricted existential spe... |
| brimralrspcev 5150 | Restricted existential spe... |
| opabss 5153 | The collection of ordered ... |
| opabbid 5154 | Equivalent wff's yield equ... |
| opabbidv 5155 | Equivalent wff's yield equ... |
| opabbii 5156 | Equivalent wff's yield equ... |
| nfopabd 5157 | Bound-variable hypothesis ... |
| nfopab 5158 | Bound-variable hypothesis ... |
| nfopab1 5159 | The first abstraction vari... |
| nfopab2 5160 | The second abstraction var... |
| cbvopab 5161 | Rule used to change bound ... |
| cbvopabv 5162 | Rule used to change bound ... |
| cbvopab1 5163 | Change first bound variabl... |
| cbvopab1g 5164 | Change first bound variabl... |
| cbvopab2 5165 | Change second bound variab... |
| cbvopab1s 5166 | Change first bound variabl... |
| cbvopab1v 5167 | Rule used to change the fi... |
| cbvopab2v 5168 | Rule used to change the se... |
| unopab 5169 | Union of two ordered pair ... |
| mpteq12da 5172 | An equality inference for ... |
| mpteq12df 5173 | An equality inference for ... |
| mpteq12f 5174 | An equality theorem for th... |
| mpteq12dva 5175 | An equality inference for ... |
| mpteq12dv 5176 | An equality inference for ... |
| mpteq12 5177 | An equality theorem for th... |
| mpteq1 5178 | An equality theorem for th... |
| mpteq1d 5179 | An equality theorem for th... |
| mpteq1i 5180 | An equality theorem for th... |
| mpteq2da 5181 | Slightly more general equa... |
| mpteq2dva 5182 | Slightly more general equa... |
| mpteq2dv 5183 | An equality inference for ... |
| mpteq2ia 5184 | An equality inference for ... |
| mpteq2i 5185 | An equality inference for ... |
| mpteq12i 5186 | An equality inference for ... |
| nfmpt 5187 | Bound-variable hypothesis ... |
| nfmpt1 5188 | Bound-variable hypothesis ... |
| cbvmptf 5189 | Rule to change the bound v... |
| cbvmptfg 5190 | Rule to change the bound v... |
| cbvmpt 5191 | Rule to change the bound v... |
| cbvmptg 5192 | Rule to change the bound v... |
| cbvmptv 5193 | Rule to change the bound v... |
| cbvmptvg 5194 | Rule to change the bound v... |
| mptv 5195 | Function with universal do... |
| dftr2 5198 | An alternate way of defini... |
| dftr2c 5199 | Variant of ~ dftr2 with co... |
| dftr5 5200 | An alternate way of defini... |
| dftr3 5201 | An alternate way of defini... |
| dftr4 5202 | An alternate way of defini... |
| treq 5203 | Equality theorem for the t... |
| trel 5204 | In a transitive class, the... |
| trel3 5205 | In a transitive class, the... |
| trss 5206 | An element of a transitive... |
| trin 5207 | The intersection of transi... |
| tr0 5208 | The empty set is transitiv... |
| trv 5209 | The universe is transitive... |
| triun 5210 | An indexed union of a clas... |
| truni 5211 | The union of a class of tr... |
| triin 5212 | An indexed intersection of... |
| trint 5213 | The intersection of a clas... |
| trintss 5214 | Any nonempty transitive cl... |
| axrep1 5216 | The version of the Axiom o... |
| axreplem 5217 | Lemma for ~ axrep2 and ~ a... |
| axrep2 5218 | Axiom of Replacement expre... |
| axrep3 5219 | Axiom of Replacement sligh... |
| axrep4v 5220 | Version of ~ axrep4 with a... |
| axrep4 5221 | A more traditional version... |
| axrep4OLD 5222 | Obsolete version of ~ axre... |
| axrep5 5223 | Axiom of Replacement (simi... |
| axrep6 5224 | A condensed form of ~ ax-r... |
| axrep6OLD 5225 | Obsolete version of ~ axre... |
| axrep6g 5226 | ~ axrep6 in class notation... |
| zfrepclf 5227 | An inference based on the ... |
| zfrep3cl 5228 | An inference based on the ... |
| zfrep4 5229 | A version of Replacement u... |
| axsepgfromrep 5230 | A more general version ~ a... |
| axsep 5231 | Axiom scheme of separation... |
| axsepg 5233 | A more general version of ... |
| zfauscl 5234 | Separation Scheme (Aussond... |
| sepexlem 5235 | Lemma for ~ sepex . Use ~... |
| sepex 5236 | Convert implication to equ... |
| sepexi 5237 | Convert implication to equ... |
| bm1.3iiOLD 5238 | Obsolete version of ~ sepe... |
| ax6vsep 5239 | Derive ~ ax6v (a weakened ... |
| axnulALT 5240 | Alternate proof of ~ axnul... |
| axnul 5241 | The Null Set Axiom of ZF s... |
| 0ex 5243 | The Null Set Axiom of ZF s... |
| al0ssb 5244 | The empty set is the uniqu... |
| sseliALT 5245 | Alternate proof of ~ sseli... |
| csbexg 5246 | The existence of proper su... |
| csbex 5247 | The existence of proper su... |
| unisn2 5248 | A version of ~ unisn witho... |
| nalset 5249 | No set contains all sets. ... |
| vnex 5250 | The universal class does n... |
| vprc 5251 | The universal class is not... |
| nvel 5252 | The universal class does n... |
| inex1 5253 | Separation Scheme (Aussond... |
| inex2 5254 | Separation Scheme (Aussond... |
| inex1g 5255 | Closed-form, generalized S... |
| inex2g 5256 | Sufficient condition for a... |
| ssex 5257 | The subset of a set is als... |
| ssexi 5258 | The subset of a set is als... |
| ssexg 5259 | The subset of a set is als... |
| ssexd 5260 | A subclass of a set is a s... |
| abexd 5261 | Conditions for a class abs... |
| abex 5262 | Conditions for a class abs... |
| prcssprc 5263 | The superclass of a proper... |
| sselpwd 5264 | Elementhood to a power set... |
| difexg 5265 | Existence of a difference.... |
| difexi 5266 | Existence of a difference,... |
| difexd 5267 | Existence of a difference.... |
| zfausab 5268 | Separation Scheme (Aussond... |
| elpw2g 5269 | Membership in a power clas... |
| elpw2 5270 | Membership in a power clas... |
| elpwi2 5271 | Membership in a power clas... |
| rabelpw 5272 | A restricted class abstrac... |
| rabexg 5273 | Separation Scheme in terms... |
| rabexgOLD 5274 | Obsolete version of ~ rabe... |
| rabex 5275 | Separation Scheme in terms... |
| rabexd 5276 | Separation Scheme in terms... |
| rabex2 5277 | Separation Scheme in terms... |
| rab2ex 5278 | A class abstraction based ... |
| elssabg 5279 | Membership in a class abst... |
| intex 5280 | The intersection of a none... |
| intnex 5281 | If a class intersection is... |
| intexab 5282 | The intersection of a none... |
| intexrab 5283 | The intersection of a none... |
| iinexg 5284 | The existence of a class i... |
| intabs 5285 | Absorption of a redundant ... |
| inuni 5286 | The intersection of a unio... |
| axpweq 5287 | Two equivalent ways to exp... |
| pwnss 5288 | The power set of a set is ... |
| pwne 5289 | No set equals its power se... |
| difelpw 5290 | A difference is an element... |
| class2set 5291 | The class of elements of `... |
| 0elpw 5292 | Every power class contains... |
| pwne0 5293 | A power class is never emp... |
| 0nep0 5294 | The empty set and its powe... |
| 0inp0 5295 | Something cannot be equal ... |
| unidif0 5296 | The removal of the empty s... |
| eqsnuniex 5297 | If a class is equal to the... |
| iin0 5298 | An indexed intersection of... |
| notzfaus 5299 | In the Separation Scheme ~... |
| intv 5300 | The intersection of the un... |
| zfpow 5302 | Axiom of Power Sets expres... |
| axpow2 5303 | A variant of the Axiom of ... |
| axpow3 5304 | A variant of the Axiom of ... |
| elALT2 5305 | Alternate proof of ~ el us... |
| dtruALT2 5306 | Alternate proof of ~ dtru ... |
| dtrucor 5307 | Corollary of ~ dtru . Thi... |
| dtrucor2 5308 | The theorem form of the de... |
| dvdemo1 5309 | Demonstration of a theorem... |
| dvdemo2 5310 | Demonstration of a theorem... |
| nfnid 5311 | A setvar variable is not f... |
| nfcvb 5312 | The "distinctor" expressio... |
| vpwex 5313 | Power set axiom: the power... |
| pwexg 5314 | Power set axiom expressed ... |
| pwexd 5315 | Deduction version of the p... |
| pwex 5316 | Power set axiom expressed ... |
| pwel 5317 | Quantitative version of ~ ... |
| abssexg 5318 | Existence of a class of su... |
| snexALT 5319 | Alternate proof of ~ snex ... |
| p0ex 5320 | The power set of the empty... |
| p0exALT 5321 | Alternate proof of ~ p0ex ... |
| pp0ex 5322 | The power set of the power... |
| ord3ex 5323 | The ordinal number 3 is a ... |
| dtruALT 5324 | Alternate proof of ~ dtru ... |
| axc16b 5325 | This theorem shows that Ax... |
| eunex 5326 | Existential uniqueness imp... |
| eusv1 5327 | Two ways to express single... |
| eusvnf 5328 | Even if ` x ` is free in `... |
| eusvnfb 5329 | Two ways to say that ` A (... |
| eusv2i 5330 | Two ways to express single... |
| eusv2nf 5331 | Two ways to express single... |
| eusv2 5332 | Two ways to express single... |
| reusv1 5333 | Two ways to express single... |
| reusv2lem1 5334 | Lemma for ~ reusv2 . (Con... |
| reusv2lem2 5335 | Lemma for ~ reusv2 . (Con... |
| reusv2lem3 5336 | Lemma for ~ reusv2 . (Con... |
| reusv2lem4 5337 | Lemma for ~ reusv2 . (Con... |
| reusv2lem5 5338 | Lemma for ~ reusv2 . (Con... |
| reusv2 5339 | Two ways to express single... |
| reusv3i 5340 | Two ways of expressing exi... |
| reusv3 5341 | Two ways to express single... |
| eusv4 5342 | Two ways to express single... |
| alxfr 5343 | Transfer universal quantif... |
| ralxfrd 5344 | Transfer universal quantif... |
| rexxfrd 5345 | Transfer existential quant... |
| ralxfr2d 5346 | Transfer universal quantif... |
| rexxfr2d 5347 | Transfer existential quant... |
| ralxfrd2 5348 | Transfer universal quantif... |
| rexxfrd2 5349 | Transfer existence from a ... |
| ralxfr 5350 | Transfer universal quantif... |
| ralxfrALT 5351 | Alternate proof of ~ ralxf... |
| rexxfr 5352 | Transfer existence from a ... |
| rabxfrd 5353 | Membership in a restricted... |
| rabxfr 5354 | Membership in a restricted... |
| reuhypd 5355 | A theorem useful for elimi... |
| reuhyp 5356 | A theorem useful for elimi... |
| zfpair 5357 | The Axiom of Pairing of Ze... |
| axprALT 5358 | Alternate proof of ~ axpr ... |
| axprlem1 5359 | Lemma for ~ axpr . There ... |
| axprlem2 5360 | Lemma for ~ axpr . There ... |
| axprlem3 5361 | Lemma for ~ axpr . Elimin... |
| axprlem4 5362 | Lemma for ~ axpr . If an ... |
| axpr 5363 | Unabbreviated version of t... |
| axprlem3OLD 5364 | Obsolete version of ~ axpr... |
| axprlem4OLD 5365 | Obsolete version of ~ axpr... |
| axprlem5OLD 5366 | Obsolete version of ~ axpr... |
| axprOLD 5367 | Obsolete version of ~ axpr... |
| zfpair2 5369 | Derive the abbreviated ver... |
| vsnex 5370 | A singleton built on a set... |
| snexg 5371 | A singleton built on a set... |
| snex 5372 | A singleton is a set. The... |
| prex 5373 | The Axiom of Pairing using... |
| exel 5374 | There exist two sets, one ... |
| exexneq 5375 | There exist two different ... |
| exneq 5376 | Given any set (the " ` y `... |
| dtru 5377 | Given any set (the " ` y `... |
| el 5378 | Any set is an element of s... |
| sels 5379 | If a class is a set, then ... |
| selsALT 5380 | Alternate proof of ~ sels ... |
| elALT 5381 | Alternate proof of ~ el , ... |
| snelpwg 5382 | A singleton of a set is a ... |
| snelpwi 5383 | If a set is a member of a ... |
| snelpw 5384 | A singleton of a set is a ... |
| prelpw 5385 | An unordered pair of two s... |
| prelpwi 5386 | If two sets are members of... |
| rext 5387 | A theorem similar to exten... |
| sspwb 5388 | The powerclass constructio... |
| unipw 5389 | A class equals the union o... |
| univ 5390 | The union of the universe ... |
| pwtr 5391 | A class is transitive iff ... |
| ssextss 5392 | An extensionality-like pri... |
| ssext 5393 | An extensionality-like pri... |
| nssss 5394 | Negation of subclass relat... |
| pweqb 5395 | Classes are equal if and o... |
| intidg 5396 | The intersection of all se... |
| moabex 5397 | "At most one" existence im... |
| rmorabex 5398 | Restricted "at most one" e... |
| euabex 5399 | The abstraction of a wff w... |
| nnullss 5400 | A nonempty class (even if ... |
| exss 5401 | Restricted existence in a ... |
| opex 5402 | An ordered pair of classes... |
| otex 5403 | An ordered triple of class... |
| elopg 5404 | Characterization of the el... |
| elop 5405 | Characterization of the el... |
| opi1 5406 | One of the two elements in... |
| opi2 5407 | One of the two elements of... |
| opeluu 5408 | Each member of an ordered ... |
| op1stb 5409 | Extract the first member o... |
| brv 5410 | Two classes are always in ... |
| opnz 5411 | An ordered pair is nonempt... |
| opnzi 5412 | An ordered pair is nonempt... |
| opth1 5413 | Equality of the first memb... |
| opth 5414 | The ordered pair theorem. ... |
| opthg 5415 | Ordered pair theorem. ` C ... |
| opth1g 5416 | Equality of the first memb... |
| opthg2 5417 | Ordered pair theorem. (Co... |
| opth2 5418 | Ordered pair theorem. (Co... |
| opthneg 5419 | Two ordered pairs are not ... |
| opthne 5420 | Two ordered pairs are not ... |
| otth2 5421 | Ordered triple theorem, wi... |
| otth 5422 | Ordered triple theorem. (... |
| otthg 5423 | Ordered triple theorem, cl... |
| otthne 5424 | Contrapositive of the orde... |
| eqvinop 5425 | A variable introduction la... |
| sbcop1 5426 | The proper substitution of... |
| sbcop 5427 | The proper substitution of... |
| copsexgw 5428 | Version of ~ copsexg with ... |
| copsexg 5429 | Substitution of class ` A ... |
| copsex2t 5430 | Closed theorem form of ~ c... |
| copsex2g 5431 | Implicit substitution infe... |
| copsex2dv 5432 | Implicit substitution dedu... |
| copsex4g 5433 | An implicit substitution i... |
| 0nelop 5434 | A property of ordered pair... |
| opwo0id 5435 | An ordered pair is equal t... |
| opeqex 5436 | Equivalence of existence i... |
| oteqex2 5437 | Equivalence of existence i... |
| oteqex 5438 | Equivalence of existence i... |
| opcom 5439 | An ordered pair commutes i... |
| moop2 5440 | "At most one" property of ... |
| opeqsng 5441 | Equivalence for an ordered... |
| opeqsn 5442 | Equivalence for an ordered... |
| opeqpr 5443 | Equivalence for an ordered... |
| snopeqop 5444 | Equivalence for an ordered... |
| propeqop 5445 | Equivalence for an ordered... |
| propssopi 5446 | If a pair of ordered pairs... |
| snopeqopsnid 5447 | Equivalence for an ordered... |
| mosubopt 5448 | "At most one" remains true... |
| mosubop 5449 | "At most one" remains true... |
| euop2 5450 | Transfer existential uniqu... |
| euotd 5451 | Prove existential uniquene... |
| opthwiener 5452 | Justification theorem for ... |
| uniop 5453 | The union of an ordered pa... |
| uniopel 5454 | Ordered pair membership is... |
| opthhausdorff 5455 | Justification theorem for ... |
| opthhausdorff0 5456 | Justification theorem for ... |
| otsndisj 5457 | The singletons consisting ... |
| otiunsndisj 5458 | The union of singletons co... |
| iunopeqop 5459 | Implication of an ordered ... |
| brsnop 5460 | Binary relation for an ord... |
| brtp 5461 | A necessary and sufficient... |
| opabidw 5462 | The law of concretion. Sp... |
| opabid 5463 | The law of concretion. Sp... |
| elopabw 5464 | Membership in a class abst... |
| elopab 5465 | Membership in a class abst... |
| rexopabb 5466 | Restricted existential qua... |
| vopelopabsb 5467 | The law of concretion in t... |
| opelopabsb 5468 | The law of concretion in t... |
| brabsb 5469 | The law of concretion in t... |
| opelopabt 5470 | Closed theorem form of ~ o... |
| opelopabga 5471 | The law of concretion. Th... |
| brabga 5472 | The law of concretion for ... |
| opelopab2a 5473 | Ordered pair membership in... |
| opelopaba 5474 | The law of concretion. Th... |
| braba 5475 | The law of concretion for ... |
| opelopabg 5476 | The law of concretion. Th... |
| brabg 5477 | The law of concretion for ... |
| opelopabgf 5478 | The law of concretion. Th... |
| opelopab2 5479 | Ordered pair membership in... |
| opelopab 5480 | The law of concretion. Th... |
| brab 5481 | The law of concretion for ... |
| opelopabaf 5482 | The law of concretion. Th... |
| opelopabf 5483 | The law of concretion. Th... |
| ssopab2 5484 | Equivalence of ordered pai... |
| ssopab2bw 5485 | Equivalence of ordered pai... |
| eqopab2bw 5486 | Equivalence of ordered pai... |
| ssopab2b 5487 | Equivalence of ordered pai... |
| ssopab2i 5488 | Inference of ordered pair ... |
| ssopab2dv 5489 | Inference of ordered pair ... |
| eqopab2b 5490 | Equivalence of ordered pai... |
| opabn0 5491 | Nonempty ordered pair clas... |
| opab0 5492 | Empty ordered pair class a... |
| csbopab 5493 | Move substitution into a c... |
| csbopabgALT 5494 | Move substitution into a c... |
| csbmpt12 5495 | Move substitution into a m... |
| csbmpt2 5496 | Move substitution into the... |
| iunopab 5497 | Move indexed union inside ... |
| elopabr 5498 | Membership in an ordered-p... |
| elopabran 5499 | Membership in an ordered-p... |
| rbropapd 5500 | Properties of a pair in an... |
| rbropap 5501 | Properties of a pair in a ... |
| 2rbropap 5502 | Properties of a pair in a ... |
| 0nelopab 5503 | The empty set is never an ... |
| brabv 5504 | If two classes are in a re... |
| pwin 5505 | The power class of the int... |
| pwssun 5506 | The power class of the uni... |
| pwun 5507 | The power class of the uni... |
| dfid4 5510 | The identity function expr... |
| dfid2 5511 | Alternate definition of th... |
| dfid3 5512 | A stronger version of ~ df... |
| epelg 5515 | The membership relation an... |
| epeli 5516 | The membership relation an... |
| epel 5517 | The membership relation an... |
| 0sn0ep 5518 | An example for the members... |
| epn0 5519 | The membership relation is... |
| poss 5524 | Subset theorem for the par... |
| poeq1 5525 | Equality theorem for parti... |
| poeq2 5526 | Equality theorem for parti... |
| poeq12d 5527 | Equality deduction for par... |
| nfpo 5528 | Bound-variable hypothesis ... |
| nfso 5529 | Bound-variable hypothesis ... |
| pocl 5530 | Characteristic properties ... |
| ispod 5531 | Sufficient conditions for ... |
| swopolem 5532 | Perform the substitutions ... |
| swopo 5533 | A strict weak order is a p... |
| poirr 5534 | A partial order is irrefle... |
| potr 5535 | A partial order is a trans... |
| po2nr 5536 | A partial order has no 2-c... |
| po3nr 5537 | A partial order has no 3-c... |
| po2ne 5538 | Two sets related by a part... |
| po0 5539 | Any relation is a partial ... |
| pofun 5540 | The inverse image of a par... |
| sopo 5541 | A strict linear order is a... |
| soss 5542 | Subset theorem for the str... |
| soeq1 5543 | Equality theorem for the s... |
| soeq2 5544 | Equality theorem for the s... |
| soeq12d 5545 | Equality deduction for tot... |
| sonr 5546 | A strict order relation is... |
| sotr 5547 | A strict order relation is... |
| sotrd 5548 | Transitivity law for stric... |
| solin 5549 | A strict order relation is... |
| so2nr 5550 | A strict order relation ha... |
| so3nr 5551 | A strict order relation ha... |
| sotric 5552 | A strict order relation sa... |
| sotrieq 5553 | Trichotomy law for strict ... |
| sotrieq2 5554 | Trichotomy law for strict ... |
| soasym 5555 | Asymmetry law for strict o... |
| sotr2 5556 | A transitivity relation. ... |
| issod 5557 | An irreflexive, transitive... |
| issoi 5558 | An irreflexive, transitive... |
| isso2i 5559 | Deduce strict ordering fro... |
| so0 5560 | Any relation is a strict o... |
| somo 5561 | A totally ordered set has ... |
| sotrine 5562 | Trichotomy law for strict ... |
| sotr3 5563 | Transitivity law for stric... |
| dffr6 5570 | Alternate definition of ~ ... |
| frd 5571 | A nonempty subset of an ` ... |
| fri 5572 | A nonempty subset of an ` ... |
| seex 5573 | The ` R ` -preimage of an ... |
| exse 5574 | Any relation on a set is s... |
| dffr2 5575 | Alternate definition of we... |
| dffr2ALT 5576 | Alternate proof of ~ dffr2... |
| frc 5577 | Property of well-founded r... |
| frss 5578 | Subset theorem for the wel... |
| sess1 5579 | Subset theorem for the set... |
| sess2 5580 | Subset theorem for the set... |
| freq1 5581 | Equality theorem for the w... |
| freq2 5582 | Equality theorem for the w... |
| freq12d 5583 | Equality deduction for wel... |
| seeq1 5584 | Equality theorem for the s... |
| seeq2 5585 | Equality theorem for the s... |
| seeq12d 5586 | Equality deduction for the... |
| nffr 5587 | Bound-variable hypothesis ... |
| nfse 5588 | Bound-variable hypothesis ... |
| nfwe 5589 | Bound-variable hypothesis ... |
| frirr 5590 | A well-founded relation is... |
| fr2nr 5591 | A well-founded relation ha... |
| fr0 5592 | Any relation is well-found... |
| frminex 5593 | If an element of a well-fo... |
| efrirr 5594 | A well-founded class does ... |
| efrn2lp 5595 | A well-founded class conta... |
| epse 5596 | The membership relation is... |
| tz7.2 5597 | Similar to Theorem 7.2 of ... |
| dfepfr 5598 | An alternate way of saying... |
| epfrc 5599 | A subset of a well-founded... |
| wess 5600 | Subset theorem for the wel... |
| weeq1 5601 | Equality theorem for the w... |
| weeq2 5602 | Equality theorem for the w... |
| weeq12d 5603 | Equality deduction for wel... |
| wefr 5604 | A well-ordering is well-fo... |
| weso 5605 | A well-ordering is a stric... |
| wecmpep 5606 | The elements of a class we... |
| wetrep 5607 | On a class well-ordered by... |
| wefrc 5608 | A nonempty subclass of a c... |
| we0 5609 | Any relation is a well-ord... |
| wereu 5610 | A nonempty subset of an ` ... |
| wereu2 5611 | A nonempty subclass of an ... |
| xpeq1 5628 | Equality theorem for Carte... |
| xpss12 5629 | Subset theorem for Cartesi... |
| xpss 5630 | A Cartesian product is inc... |
| inxpssres 5631 | Intersection with a Cartes... |
| relxp 5632 | A Cartesian product is a r... |
| xpss1 5633 | Subset relation for Cartes... |
| xpss2 5634 | Subset relation for Cartes... |
| xpeq2 5635 | Equality theorem for Carte... |
| elxpi 5636 | Membership in a Cartesian ... |
| elxp 5637 | Membership in a Cartesian ... |
| elxp2 5638 | Membership in a Cartesian ... |
| xpeq12 5639 | Equality theorem for Carte... |
| xpeq1i 5640 | Equality inference for Car... |
| xpeq2i 5641 | Equality inference for Car... |
| xpeq12i 5642 | Equality inference for Car... |
| xpeq1d 5643 | Equality deduction for Car... |
| xpeq2d 5644 | Equality deduction for Car... |
| xpeq12d 5645 | Equality deduction for Car... |
| sqxpeqd 5646 | Equality deduction for a C... |
| nfxp 5647 | Bound-variable hypothesis ... |
| 0nelxp 5648 | The empty set is not a mem... |
| 0nelelxp 5649 | A member of a Cartesian pr... |
| opelxp 5650 | Ordered pair membership in... |
| opelxpi 5651 | Ordered pair membership in... |
| opelxpii 5652 | Ordered pair membership in... |
| opelxpd 5653 | Ordered pair membership in... |
| opelvv 5654 | Ordered pair membership in... |
| opelvvg 5655 | Ordered pair membership in... |
| opelxp1 5656 | The first member of an ord... |
| opelxp2 5657 | The second member of an or... |
| otelxp 5658 | Ordered triple membership ... |
| otelxp1 5659 | The first member of an ord... |
| otel3xp 5660 | An ordered triple is an el... |
| opabssxpd 5661 | An ordered-pair class abst... |
| rabxp 5662 | Class abstraction restrict... |
| brxp 5663 | Binary relation on a Carte... |
| pwvrel 5664 | A set is a binary relation... |
| pwvabrel 5665 | The powerclass of the cart... |
| brrelex12 5666 | Two classes related by a b... |
| brrelex1 5667 | If two classes are related... |
| brrelex2 5668 | If two classes are related... |
| brrelex12i 5669 | Two classes that are relat... |
| brrelex1i 5670 | The first argument of a bi... |
| brrelex2i 5671 | The second argument of a b... |
| nprrel12 5672 | Proper classes are not rel... |
| nprrel 5673 | No proper class is related... |
| 0nelrel0 5674 | A binary relation does not... |
| 0nelrel 5675 | A binary relation does not... |
| fconstmpt 5676 | Representation of a consta... |
| vtoclr 5677 | Variable to class conversi... |
| opthprc 5678 | Justification theorem for ... |
| brel 5679 | Two things in a binary rel... |
| elxp3 5680 | Membership in a Cartesian ... |
| opeliunxp 5681 | Membership in a union of C... |
| opeliun2xp 5682 | Membership of an ordered p... |
| xpundi 5683 | Distributive law for Carte... |
| xpundir 5684 | Distributive law for Carte... |
| xpiundi 5685 | Distributive law for Carte... |
| xpiundir 5686 | Distributive law for Carte... |
| iunxpconst 5687 | Membership in a union of C... |
| xpun 5688 | The Cartesian product of t... |
| elvv 5689 | Membership in universal cl... |
| elvvv 5690 | Membership in universal cl... |
| elvvuni 5691 | An ordered pair contains i... |
| brinxp2 5692 | Intersection of binary rel... |
| brinxp 5693 | Intersection of binary rel... |
| opelinxp 5694 | Ordered pair element in an... |
| poinxp 5695 | Intersection of partial or... |
| soinxp 5696 | Intersection of total orde... |
| frinxp 5697 | Intersection of well-found... |
| seinxp 5698 | Intersection of set-like r... |
| weinxp 5699 | Intersection of well-order... |
| posn 5700 | Partial ordering of a sing... |
| sosn 5701 | Strict ordering on a singl... |
| frsn 5702 | Founded relation on a sing... |
| wesn 5703 | Well-ordering of a singlet... |
| elopaelxp 5704 | Membership in an ordered-p... |
| bropaex12 5705 | Two classes related by an ... |
| opabssxp 5706 | An abstraction relation is... |
| brab2a 5707 | The law of concretion for ... |
| optocl 5708 | Implicit substitution of c... |
| optoclOLD 5709 | Obsolete version of ~ opto... |
| 2optocl 5710 | Implicit substitution of c... |
| 3optocl 5711 | Implicit substitution of c... |
| opbrop 5712 | Ordered pair membership in... |
| 0xp 5713 | The Cartesian product with... |
| xp0 5714 | The Cartesian product with... |
| csbxp 5715 | Distribute proper substitu... |
| releq 5716 | Equality theorem for the r... |
| releqi 5717 | Equality inference for the... |
| releqd 5718 | Equality deduction for the... |
| nfrel 5719 | Bound-variable hypothesis ... |
| sbcrel 5720 | Distribute proper substitu... |
| relss 5721 | Subclass theorem for relat... |
| ssrel 5722 | A subclass relationship de... |
| eqrel 5723 | Extensionality principle f... |
| ssrel2 5724 | A subclass relationship de... |
| ssrel3 5725 | Subclass relation in anoth... |
| relssi 5726 | Inference from subclass pr... |
| relssdv 5727 | Deduction from subclass pr... |
| eqrelriv 5728 | Inference from extensional... |
| eqrelriiv 5729 | Inference from extensional... |
| eqbrriv 5730 | Inference from extensional... |
| eqrelrdv 5731 | Deduce equality of relatio... |
| eqbrrdv 5732 | Deduction from extensional... |
| eqbrrdiv 5733 | Deduction from extensional... |
| eqrelrdv2 5734 | A version of ~ eqrelrdv . ... |
| ssrelrel 5735 | A subclass relationship de... |
| eqrelrel 5736 | Extensionality principle f... |
| elrel 5737 | A member of a relation is ... |
| rel0 5738 | The empty set is a relatio... |
| nrelv 5739 | The universal class is not... |
| relsng 5740 | A singleton is a relation ... |
| relsnb 5741 | An at-most-singleton is a ... |
| relsnopg 5742 | A singleton of an ordered ... |
| relsn 5743 | A singleton is a relation ... |
| relsnop 5744 | A singleton of an ordered ... |
| copsex2gb 5745 | Implicit substitution infe... |
| copsex2ga 5746 | Implicit substitution infe... |
| elopaba 5747 | Membership in an ordered-p... |
| xpsspw 5748 | A Cartesian product is inc... |
| unixpss 5749 | The double class union of ... |
| relun 5750 | The union of two relations... |
| relin1 5751 | The intersection with a re... |
| relin2 5752 | The intersection with a re... |
| relinxp 5753 | Intersection with a Cartes... |
| reldif 5754 | A difference cutting down ... |
| reliun 5755 | An indexed union is a rela... |
| reliin 5756 | An indexed intersection is... |
| reluni 5757 | The union of a class is a ... |
| relint 5758 | The intersection of a clas... |
| relopabiv 5759 | A class of ordered pairs i... |
| relopabv 5760 | A class of ordered pairs i... |
| relopabi 5761 | A class of ordered pairs i... |
| relopabiALT 5762 | Alternate proof of ~ relop... |
| relopab 5763 | A class of ordered pairs i... |
| mptrel 5764 | The maps-to notation alway... |
| reli 5765 | The identity relation is a... |
| rele 5766 | The membership relation is... |
| opabid2 5767 | A relation expressed as an... |
| inopab 5768 | Intersection of two ordere... |
| difopab 5769 | Difference of two ordered-... |
| inxp 5770 | Intersection of two Cartes... |
| inxpOLD 5771 | Obsolete version of ~ inxp... |
| xpindi 5772 | Distributive law for Carte... |
| xpindir 5773 | Distributive law for Carte... |
| xpiindi 5774 | Distributive law for Carte... |
| xpriindi 5775 | Distributive law for Carte... |
| eliunxp 5776 | Membership in a union of C... |
| opeliunxp2 5777 | Membership in a union of C... |
| raliunxp 5778 | Write a double restricted ... |
| rexiunxp 5779 | Write a double restricted ... |
| ralxp 5780 | Universal quantification r... |
| rexxp 5781 | Existential quantification... |
| exopxfr 5782 | Transfer ordered-pair exis... |
| exopxfr2 5783 | Transfer ordered-pair exis... |
| djussxp 5784 | Disjoint union is a subset... |
| ralxpf 5785 | Version of ~ ralxp with bo... |
| rexxpf 5786 | Version of ~ rexxp with bo... |
| iunxpf 5787 | Indexed union on a Cartesi... |
| opabbi2dv 5788 | Deduce equality of a relat... |
| relop 5789 | A necessary and sufficient... |
| ideqg 5790 | For sets, the identity rel... |
| ideq 5791 | For sets, the identity rel... |
| ididg 5792 | A set is identical to itse... |
| issetid 5793 | Two ways of expressing set... |
| coss1 5794 | Subclass theorem for compo... |
| coss2 5795 | Subclass theorem for compo... |
| coeq1 5796 | Equality theorem for compo... |
| coeq2 5797 | Equality theorem for compo... |
| coeq1i 5798 | Equality inference for com... |
| coeq2i 5799 | Equality inference for com... |
| coeq1d 5800 | Equality deduction for com... |
| coeq2d 5801 | Equality deduction for com... |
| coeq12i 5802 | Equality inference for com... |
| coeq12d 5803 | Equality deduction for com... |
| nfco 5804 | Bound-variable hypothesis ... |
| brcog 5805 | Ordered pair membership in... |
| opelco2g 5806 | Ordered pair membership in... |
| brcogw 5807 | Ordered pair membership in... |
| eqbrrdva 5808 | Deduction from extensional... |
| brco 5809 | Binary relation on a compo... |
| opelco 5810 | Ordered pair membership in... |
| cnvss 5811 | Subset theorem for convers... |
| cnveq 5812 | Equality theorem for conve... |
| cnveqi 5813 | Equality inference for con... |
| cnveqd 5814 | Equality deduction for con... |
| elcnv 5815 | Membership in a converse r... |
| elcnv2 5816 | Membership in a converse r... |
| nfcnv 5817 | Bound-variable hypothesis ... |
| brcnvg 5818 | The converse of a binary r... |
| opelcnvg 5819 | Ordered-pair membership in... |
| opelcnv 5820 | Ordered-pair membership in... |
| brcnv 5821 | The converse of a binary r... |
| csbcnv 5822 | Move class substitution in... |
| csbcnvgALT 5823 | Move class substitution in... |
| cnvco 5824 | Distributive law of conver... |
| cnvuni 5825 | The converse of a class un... |
| dfdm3 5826 | Alternate definition of do... |
| dfrn2 5827 | Alternate definition of ra... |
| dfrn3 5828 | Alternate definition of ra... |
| elrn2g 5829 | Membership in a range. (C... |
| elrng 5830 | Membership in a range. (C... |
| elrn2 5831 | Membership in a range. (C... |
| elrn 5832 | Membership in a range. (C... |
| ssrelrn 5833 | If a relation is a subset ... |
| dfdm4 5834 | Alternate definition of do... |
| dfdmf 5835 | Definition of domain, usin... |
| csbdm 5836 | Distribute proper substitu... |
| eldmg 5837 | Domain membership. Theore... |
| eldm2g 5838 | Domain membership. Theore... |
| eldm 5839 | Membership in a domain. T... |
| eldm2 5840 | Membership in a domain. T... |
| dmss 5841 | Subset theorem for domain.... |
| dmeq 5842 | Equality theorem for domai... |
| dmeqi 5843 | Equality inference for dom... |
| dmeqd 5844 | Equality deduction for dom... |
| opeldmd 5845 | Membership of first of an ... |
| opeldm 5846 | Membership of first of an ... |
| breldm 5847 | Membership of first of a b... |
| breldmg 5848 | Membership of first of a b... |
| dmun 5849 | The domain of a union is t... |
| dmin 5850 | The domain of an intersect... |
| breldmd 5851 | Membership of first of a b... |
| dmiun 5852 | The domain of an indexed u... |
| dmuni 5853 | The domain of a union. Pa... |
| dmopab 5854 | The domain of a class of o... |
| dmopabelb 5855 | A set is an element of the... |
| dmopab2rex 5856 | The domain of an ordered p... |
| dmopabss 5857 | Upper bound for the domain... |
| dmopab3 5858 | The domain of a restricted... |
| dm0 5859 | The domain of the empty se... |
| dmi 5860 | The domain of the identity... |
| dmv 5861 | The domain of the universe... |
| dmep 5862 | The domain of the membersh... |
| dm0rn0 5863 | An empty domain is equival... |
| dm0rn0OLD 5864 | Obsolete version of ~ dm0r... |
| rn0 5865 | The range of the empty set... |
| rnep 5866 | The range of the membershi... |
| reldm0 5867 | A relation is empty iff it... |
| dmxp 5868 | The domain of a Cartesian ... |
| dmxpid 5869 | The domain of a Cartesian ... |
| dmxpin 5870 | The domain of the intersec... |
| xpid11 5871 | The Cartesian square is a ... |
| dmcnvcnv 5872 | The domain of the double c... |
| rncnvcnv 5873 | The range of the double co... |
| elreldm 5874 | The first member of an ord... |
| rneq 5875 | Equality theorem for range... |
| rneqi 5876 | Equality inference for ran... |
| rneqd 5877 | Equality deduction for ran... |
| rnss 5878 | Subset theorem for range. ... |
| rnssi 5879 | Subclass inference for ran... |
| brelrng 5880 | The second argument of a b... |
| brelrn 5881 | The second argument of a b... |
| opelrn 5882 | Membership of second membe... |
| releldm 5883 | The first argument of a bi... |
| relelrn 5884 | The second argument of a b... |
| releldmb 5885 | Membership in a domain. (... |
| relelrnb 5886 | Membership in a range. (C... |
| releldmi 5887 | The first argument of a bi... |
| relelrni 5888 | The second argument of a b... |
| dfrnf 5889 | Definition of range, using... |
| nfdm 5890 | Bound-variable hypothesis ... |
| nfrn 5891 | Bound-variable hypothesis ... |
| dmiin 5892 | Domain of an intersection.... |
| rnopab 5893 | The range of a class of or... |
| rnopabss 5894 | Upper bound for the range ... |
| rnopab3 5895 | The range of a restricted ... |
| rnmpt 5896 | The range of a function in... |
| elrnmpt 5897 | The range of a function in... |
| elrnmpt1s 5898 | Elementhood in an image se... |
| elrnmpt1 5899 | Elementhood in an image se... |
| elrnmptg 5900 | Membership in the range of... |
| elrnmpti 5901 | Membership in the range of... |
| elrnmptd 5902 | The range of a function in... |
| elrnmpt1d 5903 | Elementhood in an image se... |
| elrnmptdv 5904 | Elementhood in the range o... |
| elrnmpt2d 5905 | Elementhood in the range o... |
| dfiun3g 5906 | Alternate definition of in... |
| dfiin3g 5907 | Alternate definition of in... |
| dfiun3 5908 | Alternate definition of in... |
| dfiin3 5909 | Alternate definition of in... |
| riinint 5910 | Express a relative indexed... |
| relrn0 5911 | A relation is empty iff it... |
| dmrnssfld 5912 | The domain and range of a ... |
| dmcoss 5913 | Domain of a composition. ... |
| dmcossOLD 5914 | Obsolete version of ~ dmco... |
| rncoss 5915 | Range of a composition. (... |
| dmcosseq 5916 | Domain of a composition. ... |
| dmcosseqOLD 5917 | Obsolete version of ~ dmco... |
| dmcosseqOLDOLD 5918 | Obsolete version of ~ dmco... |
| dmcoeq 5919 | Domain of a composition. ... |
| rncoeq 5920 | Range of a composition. (... |
| reseq1 5921 | Equality theorem for restr... |
| reseq2 5922 | Equality theorem for restr... |
| reseq1i 5923 | Equality inference for res... |
| reseq2i 5924 | Equality inference for res... |
| reseq12i 5925 | Equality inference for res... |
| reseq1d 5926 | Equality deduction for res... |
| reseq2d 5927 | Equality deduction for res... |
| reseq12d 5928 | Equality deduction for res... |
| nfres 5929 | Bound-variable hypothesis ... |
| csbres 5930 | Distribute proper substitu... |
| res0 5931 | A restriction to the empty... |
| dfres3 5932 | Alternate definition of re... |
| opelres 5933 | Ordered pair elementhood i... |
| brres 5934 | Binary relation on a restr... |
| opelresi 5935 | Ordered pair membership in... |
| brresi 5936 | Binary relation on a restr... |
| opres 5937 | Ordered pair membership in... |
| resieq 5938 | A restricted identity rela... |
| opelidres 5939 | ` <. A , A >. ` belongs to... |
| resres 5940 | The restriction of a restr... |
| resundi 5941 | Distributive law for restr... |
| resundir 5942 | Distributive law for restr... |
| resindi 5943 | Class restriction distribu... |
| resindir 5944 | Class restriction distribu... |
| inres 5945 | Move intersection into cla... |
| resdifcom 5946 | Commutative law for restri... |
| resiun1 5947 | Distribution of restrictio... |
| resiun2 5948 | Distribution of restrictio... |
| resss 5949 | A class includes its restr... |
| rescom 5950 | Commutative law for restri... |
| ssres 5951 | Subclass theorem for restr... |
| ssres2 5952 | Subclass theorem for restr... |
| relres 5953 | A restriction is a relatio... |
| resabs1 5954 | Absorption law for restric... |
| resabs1i 5955 | Absorption law for restric... |
| resabs1d 5956 | Absorption law for restric... |
| resabs2 5957 | Absorption law for restric... |
| residm 5958 | Idempotent law for restric... |
| dmresss 5959 | The domain of a restrictio... |
| dmres 5960 | The domain of a restrictio... |
| ssdmres 5961 | A domain restricted to a s... |
| dmresexg 5962 | The domain of a restrictio... |
| resima 5963 | A restriction to an image.... |
| resima2 5964 | Image under a restricted c... |
| rnresss 5965 | The range of a restriction... |
| xpssres 5966 | Restriction of a constant ... |
| elinxp 5967 | Membership in an intersect... |
| elres 5968 | Membership in a restrictio... |
| elsnres 5969 | Membership in restriction ... |
| relssres 5970 | Simplification law for res... |
| dmressnsn 5971 | The domain of a restrictio... |
| eldmressnsn 5972 | The element of the domain ... |
| eldmeldmressn 5973 | An element of the domain (... |
| resdm 5974 | A relation restricted to i... |
| resexg 5975 | The restriction of a set i... |
| resexd 5976 | The restriction of a set i... |
| resex 5977 | The restriction of a set i... |
| resindm 5978 | When restricting a relatio... |
| resdmdfsn 5979 | Restricting a relation to ... |
| reldisjun 5980 | Split a relation into two ... |
| relresdm1 5981 | Restriction of a disjoint ... |
| resopab 5982 | Restriction of a class abs... |
| iss 5983 | A subclass of the identity... |
| resopab2 5984 | Restriction of a class abs... |
| resmpt 5985 | Restriction of the mapping... |
| resmpt3 5986 | Unconditional restriction ... |
| resmptf 5987 | Restriction of the mapping... |
| resmptd 5988 | Restriction of the mapping... |
| dfres2 5989 | Alternate definition of th... |
| mptss 5990 | Sufficient condition for i... |
| elimampt 5991 | Membership in the image of... |
| elidinxp 5992 | Characterization of the el... |
| elidinxpid 5993 | Characterization of the el... |
| elrid 5994 | Characterization of the el... |
| idinxpres 5995 | The intersection of the id... |
| idinxpresid 5996 | The intersection of the id... |
| idssxp 5997 | A diagonal set as a subset... |
| opabresid 5998 | The restricted identity re... |
| mptresid 5999 | The restricted identity re... |
| dmresi 6000 | The domain of a restricted... |
| restidsing 6001 | Restriction of the identit... |
| iresn0n0 6002 | The identity function rest... |
| imaeq1 6003 | Equality theorem for image... |
| imaeq2 6004 | Equality theorem for image... |
| imaeq1i 6005 | Equality theorem for image... |
| imaeq2i 6006 | Equality theorem for image... |
| imaeq1d 6007 | Equality theorem for image... |
| imaeq2d 6008 | Equality theorem for image... |
| imaeq12d 6009 | Equality theorem for image... |
| dfima2 6010 | Alternate definition of im... |
| dfima3 6011 | Alternate definition of im... |
| elimag 6012 | Membership in an image. T... |
| elima 6013 | Membership in an image. T... |
| elima2 6014 | Membership in an image. T... |
| elima3 6015 | Membership in an image. T... |
| nfima 6016 | Bound-variable hypothesis ... |
| nfimad 6017 | Deduction version of bound... |
| imadmrn 6018 | The image of the domain of... |
| imassrn 6019 | The image of a class is a ... |
| mptima 6020 | Image of a function in map... |
| mptimass 6021 | Image of a function in map... |
| imai 6022 | Image under the identity r... |
| rnresi 6023 | The range of the restricte... |
| resiima 6024 | The image of a restriction... |
| ima0 6025 | Image of the empty set. T... |
| 0ima 6026 | Image under the empty rela... |
| csbima12 6027 | Move class substitution in... |
| imadisj 6028 | A class whose image under ... |
| imadisjlnd 6029 | Deduction form of one nega... |
| cnvimass 6030 | A preimage under any class... |
| cnvimarndm 6031 | The preimage of the range ... |
| imasng 6032 | The image of a singleton. ... |
| relimasn 6033 | The image of a singleton. ... |
| elrelimasn 6034 | Elementhood in the image o... |
| elimasng1 6035 | Membership in an image of ... |
| elimasn1 6036 | Membership in an image of ... |
| elimasng 6037 | Membership in an image of ... |
| elimasn 6038 | Membership in an image of ... |
| elimasni 6039 | Membership in an image of ... |
| args 6040 | Two ways to express the cl... |
| elinisegg 6041 | Membership in the inverse ... |
| eliniseg 6042 | Membership in the inverse ... |
| epin 6043 | Any set is equal to its pr... |
| epini 6044 | Any set is equal to its pr... |
| iniseg 6045 | An idiom that signifies an... |
| inisegn0 6046 | Nonemptiness of an initial... |
| dffr3 6047 | Alternate definition of we... |
| dfse2 6048 | Alternate definition of se... |
| imass1 6049 | Subset theorem for image. ... |
| imass2 6050 | Subset theorem for image. ... |
| ndmima 6051 | The image of a singleton o... |
| relcnv 6052 | A converse is a relation. ... |
| relbrcnvg 6053 | When ` R ` is a relation, ... |
| eliniseg2 6054 | Eliminate the class existe... |
| relbrcnv 6055 | When ` R ` is a relation, ... |
| relco 6056 | A composition is a relatio... |
| cotrg 6057 | Two ways of saying that th... |
| cotr 6058 | Two ways of saying a relat... |
| idrefALT 6059 | Alternate proof of ~ idref... |
| cnvsym 6060 | Two ways of saying a relat... |
| intasym 6061 | Two ways of saying a relat... |
| asymref 6062 | Two ways of saying a relat... |
| asymref2 6063 | Two ways of saying a relat... |
| intirr 6064 | Two ways of saying a relat... |
| brcodir 6065 | Two ways of saying that tw... |
| codir 6066 | Two ways of saying a relat... |
| qfto 6067 | A quantifier-free way of e... |
| xpidtr 6068 | A Cartesian square is a tr... |
| trin2 6069 | The intersection of two tr... |
| poirr2 6070 | A partial order is irrefle... |
| trinxp 6071 | The relation induced by a ... |
| soirri 6072 | A strict order relation is... |
| sotri 6073 | A strict order relation is... |
| son2lpi 6074 | A strict order relation ha... |
| sotri2 6075 | A transitivity relation. ... |
| sotri3 6076 | A transitivity relation. ... |
| poleloe 6077 | Express "less than or equa... |
| poltletr 6078 | Transitive law for general... |
| somin1 6079 | Property of a minimum in a... |
| somincom 6080 | Commutativity of minimum i... |
| somin2 6081 | Property of a minimum in a... |
| soltmin 6082 | Being less than a minimum,... |
| cnvopab 6083 | The converse of a class ab... |
| cnvopabOLD 6084 | Obsolete version of ~ cnvo... |
| mptcnv 6085 | The converse of a mapping ... |
| cnv0 6086 | The converse of the empty ... |
| cnv0OLD 6087 | Obsolete version of ~ cnv0... |
| cnvi 6088 | The converse of the identi... |
| cnvun 6089 | The converse of a union is... |
| cnvdif 6090 | Distributive law for conve... |
| cnvin 6091 | Distributive law for conve... |
| rnun 6092 | Distributive law for range... |
| rnin 6093 | The range of an intersecti... |
| rniun 6094 | The range of an indexed un... |
| rnuni 6095 | The range of a union. Par... |
| imaundi 6096 | Distributive law for image... |
| imaundir 6097 | The image of a union. (Co... |
| imadifssran 6098 | Condition for the range of... |
| cnvimassrndm 6099 | The preimage of a superset... |
| dminss 6100 | An upper bound for interse... |
| imainss 6101 | An upper bound for interse... |
| inimass 6102 | The image of an intersecti... |
| inimasn 6103 | The intersection of the im... |
| cnvxp 6104 | The converse of a Cartesia... |
| xp0OLD 6105 | Obsolete version of ~ xp0 ... |
| xpnz 6106 | The Cartesian product of n... |
| xpeq0 6107 | At least one member of an ... |
| xpdisj1 6108 | Cartesian products with di... |
| xpdisj2 6109 | Cartesian products with di... |
| xpsndisj 6110 | Cartesian products with tw... |
| difxp 6111 | Difference of Cartesian pr... |
| difxp1 6112 | Difference law for Cartesi... |
| difxp2 6113 | Difference law for Cartesi... |
| djudisj 6114 | Disjoint unions with disjo... |
| xpdifid 6115 | The set of distinct couple... |
| resdisj 6116 | A double restriction to di... |
| rnxp 6117 | The range of a Cartesian p... |
| dmxpss 6118 | The domain of a Cartesian ... |
| rnxpss 6119 | The range of a Cartesian p... |
| rnxpid 6120 | The range of a Cartesian s... |
| ssxpb 6121 | A Cartesian product subcla... |
| xp11 6122 | The Cartesian product of n... |
| xpcan 6123 | Cancellation law for Carte... |
| xpcan2 6124 | Cancellation law for Carte... |
| ssrnres 6125 | Two ways to express surjec... |
| rninxp 6126 | Two ways to express surjec... |
| dminxp 6127 | Two ways to express totali... |
| imainrect 6128 | Image by a restricted and ... |
| xpima 6129 | Direct image by a Cartesia... |
| xpima1 6130 | Direct image by a Cartesia... |
| xpima2 6131 | Direct image by a Cartesia... |
| xpimasn 6132 | Direct image of a singleto... |
| sossfld 6133 | The base set of a strict o... |
| sofld 6134 | The base set of a nonempty... |
| cnvcnv3 6135 | The set of all ordered pai... |
| dfrel2 6136 | Alternate definition of re... |
| dfrel4v 6137 | A relation can be expresse... |
| dfrel4 6138 | A relation can be expresse... |
| cnvcnv 6139 | The double converse of a c... |
| cnvcnv2 6140 | The double converse of a c... |
| cnvcnvss 6141 | The double converse of a c... |
| cnvrescnv 6142 | Two ways to express the co... |
| cnveqb 6143 | Equality theorem for conve... |
| cnveq0 6144 | A relation empty iff its c... |
| dfrel3 6145 | Alternate definition of re... |
| elid 6146 | Characterization of the el... |
| dmresv 6147 | The domain of a universal ... |
| rnresv 6148 | The range of a universal r... |
| dfrn4 6149 | Range defined in terms of ... |
| csbrn 6150 | Distribute proper substitu... |
| rescnvcnv 6151 | The restriction of the dou... |
| cnvcnvres 6152 | The double converse of the... |
| imacnvcnv 6153 | The image of the double co... |
| dmsnn0 6154 | The domain of a singleton ... |
| rnsnn0 6155 | The range of a singleton i... |
| dmsn0 6156 | The domain of the singleto... |
| cnvsn0 6157 | The converse of the single... |
| dmsn0el 6158 | The domain of a singleton ... |
| relsn2 6159 | A singleton is a relation ... |
| dmsnopg 6160 | The domain of a singleton ... |
| dmsnopss 6161 | The domain of a singleton ... |
| dmpropg 6162 | The domain of an unordered... |
| dmsnop 6163 | The domain of a singleton ... |
| dmprop 6164 | The domain of an unordered... |
| dmtpop 6165 | The domain of an unordered... |
| cnvcnvsn 6166 | Double converse of a singl... |
| dmsnsnsn 6167 | The domain of the singleto... |
| rnsnopg 6168 | The range of a singleton o... |
| rnpropg 6169 | The range of a pair of ord... |
| cnvsng 6170 | Converse of a singleton of... |
| rnsnop 6171 | The range of a singleton o... |
| op1sta 6172 | Extract the first member o... |
| cnvsn 6173 | Converse of a singleton of... |
| op2ndb 6174 | Extract the second member ... |
| op2nda 6175 | Extract the second member ... |
| opswap 6176 | Swap the members of an ord... |
| cnvresima 6177 | An image under the convers... |
| resdm2 6178 | A class restricted to its ... |
| resdmres 6179 | Restriction to the domain ... |
| resresdm 6180 | A restriction by an arbitr... |
| imadmres 6181 | The image of the domain of... |
| resdmss 6182 | Subset relationship for th... |
| resdifdi 6183 | Distributive law for restr... |
| resdifdir 6184 | Distributive law for restr... |
| mptpreima 6185 | The preimage of a function... |
| mptiniseg 6186 | Converse singleton image o... |
| dmmpt 6187 | The domain of the mapping ... |
| dmmptss 6188 | The domain of a mapping is... |
| dmmptg 6189 | The domain of the mapping ... |
| rnmpt0f 6190 | The range of a function in... |
| rnmptn0 6191 | The range of a function in... |
| dfco2 6192 | Alternate definition of a ... |
| dfco2a 6193 | Generalization of ~ dfco2 ... |
| coundi 6194 | Class composition distribu... |
| coundir 6195 | Class composition distribu... |
| cores 6196 | Restricted first member of... |
| resco 6197 | Associative law for the re... |
| imaco 6198 | Image of the composition o... |
| rnco 6199 | The range of the compositi... |
| rncoOLD 6200 | Obsolete version of ~ rnco... |
| rnco2 6201 | The range of the compositi... |
| dmco 6202 | The domain of a compositio... |
| coeq0 6203 | A composition of two relat... |
| coiun 6204 | Composition with an indexe... |
| cocnvcnv1 6205 | A composition is not affec... |
| cocnvcnv2 6206 | A composition is not affec... |
| cores2 6207 | Absorption of a reverse (p... |
| co02 6208 | Composition with the empty... |
| co01 6209 | Composition with the empty... |
| coi1 6210 | Composition with the ident... |
| coi2 6211 | Composition with the ident... |
| coires1 6212 | Composition with a restric... |
| coass 6213 | Associative law for class ... |
| relcnvtrg 6214 | General form of ~ relcnvtr... |
| relcnvtr 6215 | A relation is transitive i... |
| relssdmrn 6216 | A relation is included in ... |
| resssxp 6217 | If the ` R ` -image of a c... |
| cnvssrndm 6218 | The converse is a subset o... |
| cossxp 6219 | Composition as a subset of... |
| relrelss 6220 | Two ways to describe the s... |
| unielrel 6221 | The membership relation fo... |
| relfld 6222 | The double union of a rela... |
| relresfld 6223 | Restriction of a relation ... |
| relcoi2 6224 | Composition with the ident... |
| relcoi1 6225 | Composition with the ident... |
| unidmrn 6226 | The double union of the co... |
| relcnvfld 6227 | if ` R ` is a relation, it... |
| dfdm2 6228 | Alternate definition of do... |
| unixp 6229 | The double class union of ... |
| unixp0 6230 | A Cartesian product is emp... |
| unixpid 6231 | Field of a Cartesian squar... |
| ressn 6232 | Restriction of a class to ... |
| cnviin 6233 | The converse of an interse... |
| cnvpo 6234 | The converse of a partial ... |
| cnvso 6235 | The converse of a strict o... |
| xpco 6236 | Composition of two Cartesi... |
| xpcoid 6237 | Composition of two Cartesi... |
| elsnxp 6238 | Membership in a Cartesian ... |
| reu3op 6239 | There is a unique ordered ... |
| reuop 6240 | There is a unique ordered ... |
| opreu2reurex 6241 | There is a unique ordered ... |
| opreu2reu 6242 | If there is a unique order... |
| dfpo2 6243 | Quantifier-free definition... |
| csbcog 6244 | Distribute proper substitu... |
| snres0 6245 | Condition for restriction ... |
| imaindm 6246 | The image is unaffected by... |
| predeq123 6249 | Equality theorem for the p... |
| predeq1 6250 | Equality theorem for the p... |
| predeq2 6251 | Equality theorem for the p... |
| predeq3 6252 | Equality theorem for the p... |
| nfpred 6253 | Bound-variable hypothesis ... |
| csbpredg 6254 | Move class substitution in... |
| predpredss 6255 | If ` A ` is a subset of ` ... |
| predss 6256 | The predecessor class of `... |
| sspred 6257 | Another subset/predecessor... |
| dfpred2 6258 | An alternate definition of... |
| dfpred3 6259 | An alternate definition of... |
| dfpred3g 6260 | An alternate definition of... |
| elpredgg 6261 | Membership in a predecesso... |
| elpredg 6262 | Membership in a predecesso... |
| elpredimg 6263 | Membership in a predecesso... |
| elpredim 6264 | Membership in a predecesso... |
| elpred 6265 | Membership in a predecesso... |
| predexg 6266 | The predecessor class exis... |
| dffr4 6267 | Alternate definition of we... |
| predel 6268 | Membership in the predeces... |
| predtrss 6269 | If ` R ` is transitive ove... |
| predpo 6270 | Property of the predecesso... |
| predso 6271 | Property of the predecesso... |
| setlikespec 6272 | If ` R ` is set-like in ` ... |
| predidm 6273 | Idempotent law for the pre... |
| predin 6274 | Intersection law for prede... |
| predun 6275 | Union law for predecessor ... |
| preddif 6276 | Difference law for predece... |
| predep 6277 | The predecessor under the ... |
| trpred 6278 | The class of predecessors ... |
| preddowncl 6279 | A property of classes that... |
| predpoirr 6280 | Given a partial ordering, ... |
| predfrirr 6281 | Given a well-founded relat... |
| pred0 6282 | The predecessor class over... |
| dfse3 6283 | Alternate definition of se... |
| predrelss 6284 | Subset carries from relati... |
| predprc 6285 | The predecessor of a prope... |
| predres 6286 | Predecessor class is unaff... |
| frpomin 6287 | Every nonempty (possibly p... |
| frpomin2 6288 | Every nonempty (possibly p... |
| frpoind 6289 | The principle of well-foun... |
| frpoinsg 6290 | Well-Founded Induction Sch... |
| frpoins2fg 6291 | Well-Founded Induction sch... |
| frpoins2g 6292 | Well-Founded Induction sch... |
| frpoins3g 6293 | Well-Founded Induction sch... |
| tz6.26 6294 | All nonempty subclasses of... |
| tz6.26i 6295 | All nonempty subclasses of... |
| wfi 6296 | The Principle of Well-Orde... |
| wfii 6297 | The Principle of Well-Orde... |
| wfisg 6298 | Well-Ordered Induction Sch... |
| wfis 6299 | Well-Ordered Induction Sch... |
| wfis2fg 6300 | Well-Ordered Induction Sch... |
| wfis2f 6301 | Well-Ordered Induction sch... |
| wfis2g 6302 | Well-Ordered Induction Sch... |
| wfis2 6303 | Well-Ordered Induction sch... |
| wfis3 6304 | Well-Ordered Induction sch... |
| ordeq 6313 | Equality theorem for the o... |
| elong 6314 | An ordinal number is an or... |
| elon 6315 | An ordinal number is an or... |
| eloni 6316 | An ordinal number has the ... |
| elon2 6317 | An ordinal number is an or... |
| limeq 6318 | Equality theorem for the l... |
| ordwe 6319 | Membership well-orders eve... |
| ordtr 6320 | An ordinal class is transi... |
| ordfr 6321 | Membership is well-founded... |
| ordelss 6322 | An element of an ordinal c... |
| trssord 6323 | A transitive subclass of a... |
| ordirr 6324 | No ordinal class is a memb... |
| nordeq 6325 | A member of an ordinal cla... |
| ordn2lp 6326 | An ordinal class cannot be... |
| tz7.5 6327 | A nonempty subclass of an ... |
| ordelord 6328 | An element of an ordinal c... |
| tron 6329 | The class of all ordinal n... |
| ordelon 6330 | An element of an ordinal c... |
| onelon 6331 | An element of an ordinal n... |
| tz7.7 6332 | A transitive class belongs... |
| ordelssne 6333 | For ordinal classes, membe... |
| ordelpss 6334 | For ordinal classes, membe... |
| ordsseleq 6335 | For ordinal classes, inclu... |
| ordin 6336 | The intersection of two or... |
| onin 6337 | The intersection of two or... |
| ordtri3or 6338 | A trichotomy law for ordin... |
| ordtri1 6339 | A trichotomy law for ordin... |
| ontri1 6340 | A trichotomy law for ordin... |
| ordtri2 6341 | A trichotomy law for ordin... |
| ordtri3 6342 | A trichotomy law for ordin... |
| ordtri4 6343 | A trichotomy law for ordin... |
| orddisj 6344 | An ordinal class and its s... |
| onfr 6345 | The ordinal class is well-... |
| onelpss 6346 | Relationship between membe... |
| onsseleq 6347 | Relationship between subse... |
| onelss 6348 | An element of an ordinal n... |
| oneltri 6349 | The elementhood relation o... |
| ordtr1 6350 | Transitive law for ordinal... |
| ordtr2 6351 | Transitive law for ordinal... |
| ordtr3 6352 | Transitive law for ordinal... |
| ontr1 6353 | Transitive law for ordinal... |
| ontr2 6354 | Transitive law for ordinal... |
| onelssex 6355 | Ordinal less than is equiv... |
| ordunidif 6356 | The union of an ordinal st... |
| ordintdif 6357 | If ` B ` is smaller than `... |
| onintss 6358 | If a property is true for ... |
| oneqmini 6359 | A way to show that an ordi... |
| ord0 6360 | The empty set is an ordina... |
| 0elon 6361 | The empty set is an ordina... |
| ord0eln0 6362 | A nonempty ordinal contain... |
| on0eln0 6363 | An ordinal number contains... |
| dflim2 6364 | An alternate definition of... |
| inton 6365 | The intersection of the cl... |
| nlim0 6366 | The empty set is not a lim... |
| limord 6367 | A limit ordinal is ordinal... |
| limuni 6368 | A limit ordinal is its own... |
| limuni2 6369 | The union of a limit ordin... |
| 0ellim 6370 | A limit ordinal contains t... |
| limelon 6371 | A limit ordinal class that... |
| onn0 6372 | The class of all ordinal n... |
| suceqd 6373 | Deduction associated with ... |
| suceq 6374 | Equality of successors. (... |
| elsuci 6375 | Membership in a successor.... |
| elsucg 6376 | Membership in a successor.... |
| elsuc2g 6377 | Variant of membership in a... |
| elsuc 6378 | Membership in a successor.... |
| elsuc2 6379 | Membership in a successor.... |
| nfsuc 6380 | Bound-variable hypothesis ... |
| elelsuc 6381 | Membership in a successor.... |
| sucel 6382 | Membership of a successor ... |
| suc0 6383 | The successor of the empty... |
| sucprc 6384 | A proper class is its own ... |
| unisucs 6385 | The union of the successor... |
| unisucg 6386 | A transitive class is equa... |
| unisuc 6387 | A transitive class is equa... |
| sssucid 6388 | A class is included in its... |
| sucidg 6389 | Part of Proposition 7.23 o... |
| sucid 6390 | A set belongs to its succe... |
| nsuceq0 6391 | No successor is empty. (C... |
| eqelsuc 6392 | A set belongs to the succe... |
| iunsuc 6393 | Inductive definition for t... |
| suctr 6394 | The successor of a transit... |
| trsuc 6395 | A set whose successor belo... |
| trsucss 6396 | A member of the successor ... |
| ordsssuc 6397 | An ordinal is a subset of ... |
| onsssuc 6398 | A subset of an ordinal num... |
| ordsssuc2 6399 | An ordinal subset of an or... |
| onmindif 6400 | When its successor is subt... |
| ordnbtwn 6401 | There is no set between an... |
| onnbtwn 6402 | There is no set between an... |
| sucssel 6403 | A set whose successor is a... |
| orddif 6404 | Ordinal derived from its s... |
| orduniss 6405 | An ordinal class includes ... |
| ordtri2or 6406 | A trichotomy law for ordin... |
| ordtri2or2 6407 | A trichotomy law for ordin... |
| ordtri2or3 6408 | A consequence of total ord... |
| ordelinel 6409 | The intersection of two or... |
| ordssun 6410 | Property of a subclass of ... |
| ordequn 6411 | The maximum (i.e. union) o... |
| ordun 6412 | The maximum (i.e., union) ... |
| onunel 6413 | The union of two ordinals ... |
| ordunisssuc 6414 | A subclass relationship fo... |
| suc11 6415 | The successor operation be... |
| onun2 6416 | The union of two ordinals ... |
| ontr 6417 | An ordinal number is a tra... |
| onunisuc 6418 | An ordinal number is equal... |
| onordi 6419 | An ordinal number is an or... |
| onirri 6420 | An ordinal number is not a... |
| oneli 6421 | A member of an ordinal num... |
| onelssi 6422 | A member of an ordinal num... |
| onssneli 6423 | An ordering law for ordina... |
| onssnel2i 6424 | An ordering law for ordina... |
| onelini 6425 | An element of an ordinal n... |
| oneluni 6426 | An ordinal number equals i... |
| onunisuci 6427 | An ordinal number is equal... |
| onsseli 6428 | Subset is equivalent to me... |
| onun2i 6429 | The union of two ordinal n... |
| unizlim 6430 | An ordinal equal to its ow... |
| on0eqel 6431 | An ordinal number either e... |
| snsn0non 6432 | The singleton of the singl... |
| onxpdisj 6433 | Ordinal numbers and ordere... |
| onnev 6434 | The class of ordinal numbe... |
| iotajust 6436 | Soundness justification th... |
| dfiota2 6438 | Alternate definition for d... |
| nfiota1 6439 | Bound-variable hypothesis ... |
| nfiotadw 6440 | Deduction version of ~ nfi... |
| nfiotaw 6441 | Bound-variable hypothesis ... |
| nfiotad 6442 | Deduction version of ~ nfi... |
| nfiota 6443 | Bound-variable hypothesis ... |
| cbviotaw 6444 | Change bound variables in ... |
| cbviotavw 6445 | Change bound variables in ... |
| cbviota 6446 | Change bound variables in ... |
| cbviotav 6447 | Change bound variables in ... |
| sb8iota 6448 | Variable substitution in d... |
| iotaeq 6449 | Equality theorem for descr... |
| iotabi 6450 | Equivalence theorem for de... |
| uniabio 6451 | Part of Theorem 8.17 in [Q... |
| iotaval2 6452 | Version of ~ iotaval using... |
| iotauni2 6453 | Version of ~ iotauni using... |
| iotanul2 6454 | Version of ~ iotanul using... |
| iotaval 6455 | Theorem 8.19 in [Quine] p.... |
| iotassuni 6456 | The ` iota ` class is a su... |
| iotaex 6457 | Theorem 8.23 in [Quine] p.... |
| iotauni 6458 | Equivalence between two di... |
| iotaint 6459 | Equivalence between two di... |
| iota1 6460 | Property of iota. (Contri... |
| iotanul 6461 | Theorem 8.22 in [Quine] p.... |
| iota4 6462 | Theorem *14.22 in [Whitehe... |
| iota4an 6463 | Theorem *14.23 in [Whitehe... |
| iota5 6464 | A method for computing iot... |
| iotabidv 6465 | Formula-building deduction... |
| iotabii 6466 | Formula-building deduction... |
| iotacl 6467 | Membership law for descrip... |
| iota2df 6468 | A condition that allows to... |
| iota2d 6469 | A condition that allows to... |
| iota2 6470 | The unique element such th... |
| iotan0 6471 | Representation of "the uni... |
| sniota 6472 | A class abstraction with a... |
| dfiota4 6473 | The ` iota ` operation usi... |
| csbiota 6474 | Class substitution within ... |
| dffun2 6491 | Alternate definition of a ... |
| dffun6 6492 | Alternate definition of a ... |
| dffun3 6493 | Alternate definition of fu... |
| dffun4 6494 | Alternate definition of a ... |
| dffun5 6495 | Alternate definition of fu... |
| dffun6f 6496 | Definition of function, us... |
| funmo 6497 | A function has at most one... |
| funrel 6498 | A function is a relation. ... |
| 0nelfun 6499 | A function does not contai... |
| funss 6500 | Subclass theorem for funct... |
| funeq 6501 | Equality theorem for funct... |
| funeqi 6502 | Equality inference for the... |
| funeqd 6503 | Equality deduction for the... |
| nffun 6504 | Bound-variable hypothesis ... |
| sbcfung 6505 | Distribute proper substitu... |
| funeu 6506 | There is exactly one value... |
| funeu2 6507 | There is exactly one value... |
| dffun7 6508 | Alternate definition of a ... |
| dffun8 6509 | Alternate definition of a ... |
| dffun9 6510 | Alternate definition of a ... |
| funfn 6511 | A class is a function if a... |
| funfnd 6512 | A function is a function o... |
| funi 6513 | The identity relation is a... |
| nfunv 6514 | The universal class is not... |
| funopg 6515 | A Kuratowski ordered pair ... |
| funopab 6516 | A class of ordered pairs i... |
| funopabeq 6517 | A class of ordered pairs o... |
| funopab4 6518 | A class of ordered pairs o... |
| funmpt 6519 | A function in maps-to nota... |
| funmpt2 6520 | Functionality of a class g... |
| funco 6521 | The composition of two fun... |
| funresfunco 6522 | Composition of two functio... |
| funres 6523 | A restriction of a functio... |
| funresd 6524 | A restriction of a functio... |
| funssres 6525 | The restriction of a funct... |
| fun2ssres 6526 | Equality of restrictions o... |
| funun 6527 | The union of functions wit... |
| fununmo 6528 | If the union of classes is... |
| fununfun 6529 | If the union of classes is... |
| fundif 6530 | A function with removed el... |
| funcnvsn 6531 | The converse singleton of ... |
| funsng 6532 | A singleton of an ordered ... |
| fnsng 6533 | Functionality and domain o... |
| funsn 6534 | A singleton of an ordered ... |
| funprg 6535 | A set of two pairs is a fu... |
| funtpg 6536 | A set of three pairs is a ... |
| funpr 6537 | A function with a domain o... |
| funtp 6538 | A function with a domain o... |
| fnsn 6539 | Functionality and domain o... |
| fnprg 6540 | Function with a domain of ... |
| fntpg 6541 | Function with a domain of ... |
| fntp 6542 | A function with a domain o... |
| funcnvpr 6543 | The converse pair of order... |
| funcnvtp 6544 | The converse triple of ord... |
| funcnvqp 6545 | The converse quadruple of ... |
| fun0 6546 | The empty set is a functio... |
| funcnv0 6547 | The converse of the empty ... |
| funcnvcnv 6548 | The double converse of a f... |
| funcnv2 6549 | A simpler equivalence for ... |
| funcnv 6550 | The converse of a class is... |
| funcnv3 6551 | A condition showing a clas... |
| fun2cnv 6552 | The double converse of a c... |
| svrelfun 6553 | A single-valued relation i... |
| fncnv 6554 | Single-rootedness (see ~ f... |
| fun11 6555 | Two ways of stating that `... |
| fununi 6556 | The union of a chain (with... |
| funin 6557 | The intersection with a fu... |
| funres11 6558 | The restriction of a one-t... |
| funcnvres 6559 | The converse of a restrict... |
| cnvresid 6560 | Converse of a restricted i... |
| funcnvres2 6561 | The converse of a restrict... |
| funimacnv 6562 | The image of the preimage ... |
| funimass1 6563 | A kind of contraposition l... |
| funimass2 6564 | A kind of contraposition l... |
| imadif 6565 | The image of a difference ... |
| imain 6566 | The image of an intersecti... |
| f1imadifssran 6567 | Condition for the range of... |
| funimaexg 6568 | Axiom of Replacement using... |
| funimaex 6569 | The image of a set under a... |
| isarep1 6570 | Part of a study of the Axi... |
| isarep2 6571 | Part of a study of the Axi... |
| fneq1 6572 | Equality theorem for funct... |
| fneq2 6573 | Equality theorem for funct... |
| fneq1d 6574 | Equality deduction for fun... |
| fneq2d 6575 | Equality deduction for fun... |
| fneq12d 6576 | Equality deduction for fun... |
| fneq12 6577 | Equality theorem for funct... |
| fneq1i 6578 | Equality inference for fun... |
| fneq2i 6579 | Equality inference for fun... |
| nffn 6580 | Bound-variable hypothesis ... |
| fnfun 6581 | A function with domain is ... |
| fnfund 6582 | A function with domain is ... |
| fnrel 6583 | A function with domain is ... |
| fndm 6584 | The domain of a function. ... |
| fndmi 6585 | The domain of a function. ... |
| fndmd 6586 | The domain of a function. ... |
| funfni 6587 | Inference to convert a fun... |
| fndmu 6588 | A function has a unique do... |
| fnbr 6589 | The first argument of bina... |
| fnop 6590 | The first argument of an o... |
| fneu 6591 | There is exactly one value... |
| fneu2 6592 | There is exactly one value... |
| fnunres1 6593 | Restriction of a disjoint ... |
| fnunres2 6594 | Restriction of a disjoint ... |
| fnun 6595 | The union of two functions... |
| fnund 6596 | The union of two functions... |
| fnunop 6597 | Extension of a function wi... |
| fncofn 6598 | Composition of a function ... |
| fnco 6599 | Composition of two functio... |
| fnresdm 6600 | A function does not change... |
| fnresdisj 6601 | A function restricted to a... |
| 2elresin 6602 | Membership in two function... |
| fnssresb 6603 | Restriction of a function ... |
| fnssres 6604 | Restriction of a function ... |
| fnssresd 6605 | Restriction of a function ... |
| fnresin1 6606 | Restriction of a function'... |
| fnresin2 6607 | Restriction of a function'... |
| fnres 6608 | An equivalence for functio... |
| idfn 6609 | The identity relation is a... |
| fnresi 6610 | The restricted identity re... |
| fnima 6611 | The image of a function's ... |
| fn0 6612 | A function with empty doma... |
| fnimadisj 6613 | A class that is disjoint w... |
| fnimaeq0 6614 | Images under a function ne... |
| dfmpt3 6615 | Alternate definition for t... |
| mptfnf 6616 | The maps-to notation defin... |
| fnmptf 6617 | The maps-to notation defin... |
| fnopabg 6618 | Functionality and domain o... |
| fnopab 6619 | Functionality and domain o... |
| mptfng 6620 | The maps-to notation defin... |
| fnmpt 6621 | The maps-to notation defin... |
| fnmptd 6622 | The maps-to notation defin... |
| mpt0 6623 | A mapping operation with e... |
| fnmpti 6624 | Functionality and domain o... |
| dmmpti 6625 | Domain of the mapping oper... |
| dmmptd 6626 | The domain of the mapping ... |
| mptun 6627 | Union of mappings which ar... |
| partfun 6628 | Rewrite a function defined... |
| feq1 6629 | Equality theorem for funct... |
| feq2 6630 | Equality theorem for funct... |
| feq3 6631 | Equality theorem for funct... |
| feq23 6632 | Equality theorem for funct... |
| feq1d 6633 | Equality deduction for fun... |
| feq1dd 6634 | Equality deduction for fun... |
| feq2d 6635 | Equality deduction for fun... |
| feq3d 6636 | Equality deduction for fun... |
| feq2dd 6637 | Equality deduction for fun... |
| feq3dd 6638 | Equality deduction for fun... |
| feq12d 6639 | Equality deduction for fun... |
| feq123d 6640 | Equality deduction for fun... |
| feq123 6641 | Equality theorem for funct... |
| feq1i 6642 | Equality inference for fun... |
| feq2i 6643 | Equality inference for fun... |
| feq12i 6644 | Equality inference for fun... |
| feq23i 6645 | Equality inference for fun... |
| feq23d 6646 | Equality deduction for fun... |
| nff 6647 | Bound-variable hypothesis ... |
| sbcfng 6648 | Distribute proper substitu... |
| sbcfg 6649 | Distribute proper substitu... |
| elimf 6650 | Eliminate a mapping hypoth... |
| ffn 6651 | A mapping is a function wi... |
| ffnd 6652 | A mapping is a function wi... |
| dffn2 6653 | Any function is a mapping ... |
| ffun 6654 | A mapping is a function. ... |
| ffund 6655 | A mapping is a function, d... |
| frel 6656 | A mapping is a relation. ... |
| freld 6657 | A mapping is a relation. ... |
| frn 6658 | The range of a mapping. (... |
| frnd 6659 | Deduction form of ~ frn . ... |
| fdm 6660 | The domain of a mapping. ... |
| fdmd 6661 | Deduction form of ~ fdm . ... |
| fdmi 6662 | Inference associated with ... |
| dffn3 6663 | A function maps to its ran... |
| ffrn 6664 | A function maps to its ran... |
| ffrnb 6665 | Characterization of a func... |
| ffrnbd 6666 | A function maps to its ran... |
| fss 6667 | Expanding the codomain of ... |
| fssd 6668 | Expanding the codomain of ... |
| fssdmd 6669 | Expressing that a class is... |
| fssdm 6670 | Expressing that a class is... |
| fimass 6671 | The image of a class under... |
| fimassd 6672 | The image of a class is a ... |
| fimacnv 6673 | The preimage of the codoma... |
| fcof 6674 | Composition of a function ... |
| fco 6675 | Composition of two functio... |
| fcod 6676 | Composition of two mapping... |
| fco2 6677 | Functionality of a composi... |
| fssxp 6678 | A mapping is a class of or... |
| funssxp 6679 | Two ways of specifying a p... |
| ffdm 6680 | A mapping is a partial fun... |
| ffdmd 6681 | The domain of a function. ... |
| fdmrn 6682 | A different way to write `... |
| funcofd 6683 | Composition of two functio... |
| opelf 6684 | The members of an ordered ... |
| fun 6685 | The union of two functions... |
| fun2 6686 | The union of two functions... |
| fun2d 6687 | The union of functions wit... |
| fnfco 6688 | Composition of two functio... |
| fssres 6689 | Restriction of a function ... |
| fssresd 6690 | Restriction of a function ... |
| fssres2 6691 | Restriction of a restricte... |
| fresin 6692 | An identity for the mappin... |
| resasplit 6693 | If two functions agree on ... |
| fresaun 6694 | The union of two functions... |
| fresaunres2 6695 | From the union of two func... |
| fresaunres1 6696 | From the union of two func... |
| fcoi1 6697 | Composition of a mapping a... |
| fcoi2 6698 | Composition of restricted ... |
| feu 6699 | There is exactly one value... |
| fcnvres 6700 | The converse of a restrict... |
| fimacnvdisj 6701 | The preimage of a class di... |
| fint 6702 | Function into an intersect... |
| fin 6703 | Mapping into an intersecti... |
| f0 6704 | The empty function. (Cont... |
| f00 6705 | A class is a function with... |
| f0bi 6706 | A function with empty doma... |
| f0dom0 6707 | A function is empty iff it... |
| f0rn0 6708 | If there is no element in ... |
| fconst 6709 | A Cartesian product with a... |
| fconstg 6710 | A Cartesian product with a... |
| fnconstg 6711 | A Cartesian product with a... |
| fconst6g 6712 | Constant function with loo... |
| fconst6 6713 | A constant function as a m... |
| f1eq1 6714 | Equality theorem for one-t... |
| f1eq2 6715 | Equality theorem for one-t... |
| f1eq3 6716 | Equality theorem for one-t... |
| nff1 6717 | Bound-variable hypothesis ... |
| dff12 6718 | Alternate definition of a ... |
| f1f 6719 | A one-to-one mapping is a ... |
| f1fn 6720 | A one-to-one mapping is a ... |
| f1fun 6721 | A one-to-one mapping is a ... |
| f1rel 6722 | A one-to-one onto mapping ... |
| f1dm 6723 | The domain of a one-to-one... |
| f1ss 6724 | A function that is one-to-... |
| f1ssr 6725 | A function that is one-to-... |
| f1ssres 6726 | A function that is one-to-... |
| f1resf1 6727 | The restriction of an inje... |
| f1cnvcnv 6728 | Two ways to express that a... |
| f1cof1 6729 | Composition of two one-to-... |
| f1co 6730 | Composition of one-to-one ... |
| foeq1 6731 | Equality theorem for onto ... |
| foeq2 6732 | Equality theorem for onto ... |
| foeq3 6733 | Equality theorem for onto ... |
| nffo 6734 | Bound-variable hypothesis ... |
| fof 6735 | An onto mapping is a mappi... |
| fofun 6736 | An onto mapping is a funct... |
| fofn 6737 | An onto mapping is a funct... |
| forn 6738 | The codomain of an onto fu... |
| dffo2 6739 | Alternate definition of an... |
| foima 6740 | The image of the domain of... |
| dffn4 6741 | A function maps onto its r... |
| funforn 6742 | A function maps its domain... |
| fodmrnu 6743 | An onto function has uniqu... |
| fimadmfo 6744 | A function is a function o... |
| fores 6745 | Restriction of an onto fun... |
| fimadmfoALT 6746 | Alternate proof of ~ fimad... |
| focnvimacdmdm 6747 | The preimage of the codoma... |
| focofo 6748 | Composition of onto functi... |
| foco 6749 | Composition of onto functi... |
| foconst 6750 | A nonzero constant functio... |
| f1oeq1 6751 | Equality theorem for one-t... |
| f1oeq2 6752 | Equality theorem for one-t... |
| f1oeq3 6753 | Equality theorem for one-t... |
| f1oeq23 6754 | Equality theorem for one-t... |
| f1eq123d 6755 | Equality deduction for one... |
| foeq123d 6756 | Equality deduction for ont... |
| f1oeq123d 6757 | Equality deduction for one... |
| f1oeq1d 6758 | Equality deduction for one... |
| f1oeq2d 6759 | Equality deduction for one... |
| f1oeq3d 6760 | Equality deduction for one... |
| nff1o 6761 | Bound-variable hypothesis ... |
| f1of1 6762 | A one-to-one onto mapping ... |
| f1of 6763 | A one-to-one onto mapping ... |
| f1ofn 6764 | A one-to-one onto mapping ... |
| f1ofun 6765 | A one-to-one onto mapping ... |
| f1orel 6766 | A one-to-one onto mapping ... |
| f1odm 6767 | The domain of a one-to-one... |
| dff1o2 6768 | Alternate definition of on... |
| dff1o3 6769 | Alternate definition of on... |
| f1ofo 6770 | A one-to-one onto function... |
| dff1o4 6771 | Alternate definition of on... |
| dff1o5 6772 | Alternate definition of on... |
| f1orn 6773 | A one-to-one function maps... |
| f1f1orn 6774 | A one-to-one function maps... |
| f1ocnv 6775 | The converse of a one-to-o... |
| f1ocnvb 6776 | A relation is a one-to-one... |
| f1ores 6777 | The restriction of a one-t... |
| f1orescnv 6778 | The converse of a one-to-o... |
| f1imacnv 6779 | Preimage of an image. (Co... |
| foimacnv 6780 | A reverse version of ~ f1i... |
| foun 6781 | The union of two onto func... |
| f1oun 6782 | The union of two one-to-on... |
| f1un 6783 | The union of two one-to-on... |
| resdif 6784 | The restriction of a one-t... |
| resin 6785 | The restriction of a one-t... |
| f1oco 6786 | Composition of one-to-one ... |
| f1cnv 6787 | The converse of an injecti... |
| funcocnv2 6788 | Composition with the conve... |
| fococnv2 6789 | The composition of an onto... |
| f1ococnv2 6790 | The composition of a one-t... |
| f1cocnv2 6791 | Composition of an injectiv... |
| f1ococnv1 6792 | The composition of a one-t... |
| f1cocnv1 6793 | Composition of an injectiv... |
| funcoeqres 6794 | Express a constraint on a ... |
| f1ssf1 6795 | A subset of an injective f... |
| f10 6796 | The empty set maps one-to-... |
| f10d 6797 | The empty set maps one-to-... |
| f1o00 6798 | One-to-one onto mapping of... |
| fo00 6799 | Onto mapping of the empty ... |
| f1o0 6800 | One-to-one onto mapping of... |
| f1oi 6801 | A restriction of the ident... |
| f1ovi 6802 | The identity relation is a... |
| f1osn 6803 | A singleton of an ordered ... |
| f1osng 6804 | A singleton of an ordered ... |
| f1sng 6805 | A singleton of an ordered ... |
| fsnd 6806 | A singleton of an ordered ... |
| f1oprswap 6807 | A two-element swap is a bi... |
| f1oprg 6808 | An unordered pair of order... |
| tz6.12-2 6809 | Function value when ` F ` ... |
| tz6.12-2OLD 6810 | Obsolete version of ~ tz6.... |
| fveu 6811 | The value of a function at... |
| brprcneu 6812 | If ` A ` is a proper class... |
| brprcneuALT 6813 | Alternate proof of ~ brprc... |
| fvprc 6814 | A function's value at a pr... |
| fvprcALT 6815 | Alternate proof of ~ fvprc... |
| rnfvprc 6816 | The range of a function va... |
| fv2 6817 | Alternate definition of fu... |
| dffv3 6818 | A definition of function v... |
| dffv4 6819 | The previous definition of... |
| elfv 6820 | Membership in a function v... |
| fveq1 6821 | Equality theorem for funct... |
| fveq2 6822 | Equality theorem for funct... |
| fveq1i 6823 | Equality inference for fun... |
| fveq1d 6824 | Equality deduction for fun... |
| fveq2i 6825 | Equality inference for fun... |
| fveq2d 6826 | Equality deduction for fun... |
| 2fveq3 6827 | Equality theorem for neste... |
| fveq12i 6828 | Equality deduction for fun... |
| fveq12d 6829 | Equality deduction for fun... |
| fveqeq2d 6830 | Equality deduction for fun... |
| fveqeq2 6831 | Equality deduction for fun... |
| nffv 6832 | Bound-variable hypothesis ... |
| nffvmpt1 6833 | Bound-variable hypothesis ... |
| nffvd 6834 | Deduction version of bound... |
| fvex 6835 | The value of a class exist... |
| fvexi 6836 | The value of a class exist... |
| fvexd 6837 | The value of a class exist... |
| fvif 6838 | Move a conditional outside... |
| iffv 6839 | Move a conditional outside... |
| fv3 6840 | Alternate definition of th... |
| fvres 6841 | The value of a restricted ... |
| fvresd 6842 | The value of a restricted ... |
| funssfv 6843 | The value of a member of t... |
| tz6.12c 6844 | Corollary of Theorem 6.12(... |
| tz6.12-1 6845 | Function value. Theorem 6... |
| tz6.12 6846 | Function value. Theorem 6... |
| tz6.12f 6847 | Function value, using boun... |
| tz6.12i 6848 | Corollary of Theorem 6.12(... |
| fvbr0 6849 | Two possibilities for the ... |
| fvrn0 6850 | A function value is a memb... |
| fvn0fvelrn 6851 | If the value of a function... |
| elfvunirn 6852 | A function value is a subs... |
| fvssunirn 6853 | The result of a function v... |
| ndmfv 6854 | The value of a class outsi... |
| ndmfvrcl 6855 | Reverse closure law for fu... |
| elfvdm 6856 | If a function value has a ... |
| elfvex 6857 | If a function value has a ... |
| elfvexd 6858 | If a function value has a ... |
| eliman0 6859 | A nonempty function value ... |
| nfvres 6860 | The value of a non-member ... |
| nfunsn 6861 | If the restriction of a cl... |
| fvfundmfvn0 6862 | If the "value of a class" ... |
| 0fv 6863 | Function value of the empt... |
| fv2prc 6864 | A function value of a func... |
| elfv2ex 6865 | If a function value of a f... |
| fveqres 6866 | Equal values imply equal v... |
| csbfv12 6867 | Move class substitution in... |
| csbfv2g 6868 | Move class substitution in... |
| csbfv 6869 | Substitution for a functio... |
| funbrfv 6870 | The second argument of a b... |
| funopfv 6871 | The second element in an o... |
| fnbrfvb 6872 | Equivalence of function va... |
| fnopfvb 6873 | Equivalence of function va... |
| fvelima2 6874 | Function value in an image... |
| funbrfvb 6875 | Equivalence of function va... |
| funopfvb 6876 | Equivalence of function va... |
| fnbrfvb2 6877 | Version of ~ fnbrfvb for f... |
| fdmeu 6878 | There is exactly one codom... |
| funbrfv2b 6879 | Function value in terms of... |
| dffn5 6880 | Representation of a functi... |
| fnrnfv 6881 | The range of a function ex... |
| fvelrnb 6882 | A member of a function's r... |
| foelcdmi 6883 | A member of a surjective f... |
| dfimafn 6884 | Alternate definition of th... |
| dfimafn2 6885 | Alternate definition of th... |
| funimass4 6886 | Membership relation for th... |
| fvelima 6887 | Function value in an image... |
| funimassd 6888 | Sufficient condition for t... |
| fvelimad 6889 | Function value in an image... |
| feqmptd 6890 | Deduction form of ~ dffn5 ... |
| feqresmpt 6891 | Express a restricted funct... |
| feqmptdf 6892 | Deduction form of ~ dffn5f... |
| dffn5f 6893 | Representation of a functi... |
| fvelimab 6894 | Function value in an image... |
| fvelimabd 6895 | Deduction form of ~ fvelim... |
| fimarab 6896 | Expressing the image of a ... |
| unima 6897 | Image of a union. (Contri... |
| fvi 6898 | The value of the identity ... |
| fviss 6899 | The value of the identity ... |
| fniinfv 6900 | The indexed intersection o... |
| fnsnfv 6901 | Singleton of function valu... |
| opabiotafun 6902 | Define a function whose va... |
| opabiotadm 6903 | Define a function whose va... |
| opabiota 6904 | Define a function whose va... |
| fnimapr 6905 | The image of a pair under ... |
| fnimatpd 6906 | The image of an unordered ... |
| ssimaex 6907 | The existence of a subimag... |
| ssimaexg 6908 | The existence of a subimag... |
| funfv 6909 | A simplified expression fo... |
| funfv2 6910 | The value of a function. ... |
| funfv2f 6911 | The value of a function. ... |
| fvun 6912 | Value of the union of two ... |
| fvun1 6913 | The value of a union when ... |
| fvun2 6914 | The value of a union when ... |
| fvun1d 6915 | The value of a union when ... |
| fvun2d 6916 | The value of a union when ... |
| dffv2 6917 | Alternate definition of fu... |
| dmfco 6918 | Domains of a function comp... |
| fvco2 6919 | Value of a function compos... |
| fvco 6920 | Value of a function compos... |
| fvco3 6921 | Value of a function compos... |
| fvco3d 6922 | Value of a function compos... |
| fvco4i 6923 | Conditions for a compositi... |
| fvopab3g 6924 | Value of a function given ... |
| fvopab3ig 6925 | Value of a function given ... |
| brfvopabrbr 6926 | The binary relation of a f... |
| fvmptg 6927 | Value of a function given ... |
| fvmpti 6928 | Value of a function given ... |
| fvmpt 6929 | Value of a function given ... |
| fvmpt2f 6930 | Value of a function given ... |
| fvtresfn 6931 | Functionality of a tuple-r... |
| fvmpts 6932 | Value of a function given ... |
| fvmpt3 6933 | Value of a function given ... |
| fvmpt3i 6934 | Value of a function given ... |
| fvmptdf 6935 | Deduction version of ~ fvm... |
| fvmptd 6936 | Deduction version of ~ fvm... |
| fvmptd2 6937 | Deduction version of ~ fvm... |
| mptrcl 6938 | Reverse closure for a mapp... |
| fvmpt2i 6939 | Value of a function given ... |
| fvmpt2 6940 | Value of a function given ... |
| fvmptss 6941 | If all the values of the m... |
| fvmpt2d 6942 | Deduction version of ~ fvm... |
| fvmptex 6943 | Express a function ` F ` w... |
| fvmptd3f 6944 | Alternate deduction versio... |
| fvmptd2f 6945 | Alternate deduction versio... |
| fvmptdv 6946 | Alternate deduction versio... |
| fvmptdv2 6947 | Alternate deduction versio... |
| mpteqb 6948 | Bidirectional equality the... |
| fvmptt 6949 | Closed theorem form of ~ f... |
| fvmptf 6950 | Value of a function given ... |
| fvmptnf 6951 | The value of a function gi... |
| fvmptd3 6952 | Deduction version of ~ fvm... |
| fvmptd4 6953 | Deduction version of ~ fvm... |
| fvmptn 6954 | This somewhat non-intuitiv... |
| fvmptss2 6955 | A mapping always evaluates... |
| elfvmptrab1w 6956 | Implications for the value... |
| elfvmptrab1 6957 | Implications for the value... |
| elfvmptrab 6958 | Implications for the value... |
| fvopab4ndm 6959 | Value of a function given ... |
| fvmptndm 6960 | Value of a function given ... |
| fvmptrabfv 6961 | Value of a function mappin... |
| fvopab5 6962 | The value of a function th... |
| fvopab6 6963 | Value of a function given ... |
| eqfnfv 6964 | Equality of functions is d... |
| eqfnfv2 6965 | Equality of functions is d... |
| eqfnfv3 6966 | Derive equality of functio... |
| eqfnfvd 6967 | Deduction for equality of ... |
| eqfnfv2f 6968 | Equality of functions is d... |
| eqfunfv 6969 | Equality of functions is d... |
| eqfnun 6970 | Two functions on ` A u. B ... |
| fvreseq0 6971 | Equality of restricted fun... |
| fvreseq1 6972 | Equality of a function res... |
| fvreseq 6973 | Equality of restricted fun... |
| fnmptfvd 6974 | A function with a given do... |
| fndmdif 6975 | Two ways to express the lo... |
| fndmdifcom 6976 | The difference set between... |
| fndmdifeq0 6977 | The difference set of two ... |
| fndmin 6978 | Two ways to express the lo... |
| fneqeql 6979 | Two functions are equal if... |
| fneqeql2 6980 | Two functions are equal if... |
| fnreseql 6981 | Two functions are equal on... |
| chfnrn 6982 | The range of a choice func... |
| funfvop 6983 | Ordered pair with function... |
| funfvbrb 6984 | Two ways to say that ` A `... |
| fvimacnvi 6985 | A member of a preimage is ... |
| fvimacnv 6986 | The argument of a function... |
| funimass3 6987 | A kind of contraposition l... |
| funimass5 6988 | A subclass of a preimage i... |
| funconstss 6989 | Two ways of specifying tha... |
| fvimacnvALT 6990 | Alternate proof of ~ fvima... |
| elpreima 6991 | Membership in the preimage... |
| elpreimad 6992 | Membership in the preimage... |
| fniniseg 6993 | Membership in the preimage... |
| fncnvima2 6994 | Inverse images under funct... |
| fniniseg2 6995 | Inverse point images under... |
| unpreima 6996 | Preimage of a union. (Con... |
| inpreima 6997 | Preimage of an intersectio... |
| difpreima 6998 | Preimage of a difference. ... |
| respreima 6999 | The preimage of a restrict... |
| cnvimainrn 7000 | The preimage of the inters... |
| sspreima 7001 | The preimage of a subset i... |
| iinpreima 7002 | Preimage of an intersectio... |
| intpreima 7003 | Preimage of an intersectio... |
| fimacnvinrn 7004 | Taking the converse image ... |
| fimacnvinrn2 7005 | Taking the converse image ... |
| rescnvimafod 7006 | The restriction of a funct... |
| fvn0ssdmfun 7007 | If a class' function value... |
| fnopfv 7008 | Ordered pair with function... |
| fvelrn 7009 | A function's value belongs... |
| nelrnfvne 7010 | A function value cannot be... |
| fveqdmss 7011 | If the empty set is not co... |
| fveqressseq 7012 | If the empty set is not co... |
| fnfvelrn 7013 | A function's value belongs... |
| ffvelcdm 7014 | A function's value belongs... |
| fnfvelrnd 7015 | A function's value belongs... |
| ffvelcdmi 7016 | A function's value belongs... |
| ffvelcdmda 7017 | A function's value belongs... |
| ffvelcdmd 7018 | A function's value belongs... |
| feldmfvelcdm 7019 | A class is an element of t... |
| rexrn 7020 | Restricted existential qua... |
| ralrn 7021 | Restricted universal quant... |
| elrnrexdm 7022 | For any element in the ran... |
| elrnrexdmb 7023 | For any element in the ran... |
| eldmrexrn 7024 | For any element in the dom... |
| eldmrexrnb 7025 | For any element in the dom... |
| fvcofneq 7026 | The values of two function... |
| ralrnmptw 7027 | A restricted quantifier ov... |
| rexrnmptw 7028 | A restricted quantifier ov... |
| ralrnmpt 7029 | A restricted quantifier ov... |
| rexrnmpt 7030 | A restricted quantifier ov... |
| f0cli 7031 | Unconditional closure of a... |
| dff2 7032 | Alternate definition of a ... |
| dff3 7033 | Alternate definition of a ... |
| dff4 7034 | Alternate definition of a ... |
| dffo3 7035 | An onto mapping expressed ... |
| dffo4 7036 | Alternate definition of an... |
| dffo5 7037 | Alternate definition of an... |
| exfo 7038 | A relation equivalent to t... |
| dffo3f 7039 | An onto mapping expressed ... |
| foelrn 7040 | Property of a surjective f... |
| foelrnf 7041 | Property of a surjective f... |
| foco2 7042 | If a composition of two fu... |
| fmpt 7043 | Functionality of the mappi... |
| f1ompt 7044 | Express bijection for a ma... |
| fmpti 7045 | Functionality of the mappi... |
| fvmptelcdm 7046 | The value of a function at... |
| fmptd 7047 | Domain and codomain of the... |
| fmpttd 7048 | Version of ~ fmptd with in... |
| fmpt3d 7049 | Domain and codomain of the... |
| fmptdf 7050 | A version of ~ fmptd using... |
| fompt 7051 | Express being onto for a m... |
| ffnfv 7052 | A function maps to a class... |
| ffnfvf 7053 | A function maps to a class... |
| fnfvrnss 7054 | An upper bound for range d... |
| fcdmssb 7055 | A function is a function i... |
| rnmptss 7056 | The range of an operation ... |
| fmpt2d 7057 | Domain and codomain of the... |
| ffvresb 7058 | A necessary and sufficient... |
| fssrescdmd 7059 | Restriction of a function ... |
| f1oresrab 7060 | Build a bijection between ... |
| f1ossf1o 7061 | Restricting a bijection, w... |
| fmptco 7062 | Composition of two functio... |
| fmptcof 7063 | Version of ~ fmptco where ... |
| fmptcos 7064 | Composition of two functio... |
| cofmpt 7065 | Express composition of a m... |
| fcompt 7066 | Express composition of two... |
| fcoconst 7067 | Composition with a constan... |
| fsn 7068 | A function maps a singleto... |
| fsn2 7069 | A function that maps a sin... |
| fsng 7070 | A function maps a singleto... |
| fsn2g 7071 | A function that maps a sin... |
| xpsng 7072 | The Cartesian product of t... |
| xpprsng 7073 | The Cartesian product of a... |
| xpsn 7074 | The Cartesian product of t... |
| f1o2sn 7075 | A singleton consisting in ... |
| residpr 7076 | Restriction of the identit... |
| dfmpt 7077 | Alternate definition for t... |
| fnasrn 7078 | A function expressed as th... |
| idref 7079 | Two ways to state that a r... |
| funiun 7080 | A function is a union of s... |
| funopsn 7081 | If a function is an ordere... |
| funop 7082 | An ordered pair is a funct... |
| funopdmsn 7083 | The domain of a function w... |
| funsndifnop 7084 | A singleton of an ordered ... |
| funsneqopb 7085 | A singleton of an ordered ... |
| ressnop0 7086 | If ` A ` is not in ` C ` ,... |
| fpr 7087 | A function with a domain o... |
| fprg 7088 | A function with a domain o... |
| ftpg 7089 | A function with a domain o... |
| ftp 7090 | A function with a domain o... |
| fnressn 7091 | A function restricted to a... |
| funressn 7092 | A function restricted to a... |
| fressnfv 7093 | The value of a function re... |
| fvrnressn 7094 | If the value of a function... |
| fvressn 7095 | The value of a function re... |
| fvconst 7096 | The value of a constant fu... |
| fnsnr 7097 | If a class belongs to a fu... |
| fnsnbg 7098 | A function's domain is a s... |
| fnsnb 7099 | A function whose domain is... |
| fnsnbOLD 7100 | Obsolete version of ~ fnsn... |
| fmptsn 7101 | Express a singleton functi... |
| fmptsng 7102 | Express a singleton functi... |
| fmptsnd 7103 | Express a singleton functi... |
| fmptap 7104 | Append an additional value... |
| fmptapd 7105 | Append an additional value... |
| fmptpr 7106 | Express a pair function in... |
| fvresi 7107 | The value of a restricted ... |
| fninfp 7108 | Express the class of fixed... |
| fnelfp 7109 | Property of a fixed point ... |
| fndifnfp 7110 | Express the class of non-f... |
| fnelnfp 7111 | Property of a non-fixed po... |
| fnnfpeq0 7112 | A function is the identity... |
| fvunsn 7113 | Remove an ordered pair not... |
| fvsng 7114 | The value of a singleton o... |
| fvsn 7115 | The value of a singleton o... |
| fvsnun1 7116 | The value of a function wi... |
| fvsnun2 7117 | The value of a function wi... |
| fnsnsplit 7118 | Split a function into a si... |
| fsnunf 7119 | Adjoining a point to a fun... |
| fsnunf2 7120 | Adjoining a point to a pun... |
| fsnunfv 7121 | Recover the added point fr... |
| fsnunres 7122 | Recover the original funct... |
| funresdfunsn 7123 | Restricting a function to ... |
| fvpr1g 7124 | The value of a function wi... |
| fvpr2g 7125 | The value of a function wi... |
| fvpr1 7126 | The value of a function wi... |
| fvpr2 7127 | The value of a function wi... |
| fprb 7128 | A condition for functionho... |
| fvtp1 7129 | The first value of a funct... |
| fvtp2 7130 | The second value of a func... |
| fvtp3 7131 | The third value of a funct... |
| fvtp1g 7132 | The value of a function wi... |
| fvtp2g 7133 | The value of a function wi... |
| fvtp3g 7134 | The value of a function wi... |
| tpres 7135 | An unordered triple of ord... |
| fvconst2g 7136 | The value of a constant fu... |
| fconst2g 7137 | A constant function expres... |
| fvconst2 7138 | The value of a constant fu... |
| fconst2 7139 | A constant function expres... |
| fconst5 7140 | Two ways to express that a... |
| rnmptc 7141 | Range of a constant functi... |
| fnprb 7142 | A function whose domain ha... |
| fntpb 7143 | A function whose domain ha... |
| fnpr2g 7144 | A function whose domain ha... |
| fpr2g 7145 | A function that maps a pai... |
| fconstfv 7146 | A constant function expres... |
| fconst3 7147 | Two ways to express a cons... |
| fconst4 7148 | Two ways to express a cons... |
| resfunexg 7149 | The restriction of a funct... |
| resiexd 7150 | The restriction of the ide... |
| fnex 7151 | If the domain of a functio... |
| fnexd 7152 | If the domain of a functio... |
| funex 7153 | If the domain of a functio... |
| opabex 7154 | Existence of a function ex... |
| mptexg 7155 | If the domain of a functio... |
| mptexgf 7156 | If the domain of a functio... |
| mptex 7157 | If the domain of a functio... |
| mptexd 7158 | If the domain of a functio... |
| mptrabex 7159 | If the domain of a functio... |
| fex 7160 | If the domain of a mapping... |
| fexd 7161 | If the domain of a mapping... |
| mptfvmpt 7162 | A function in maps-to nota... |
| eufnfv 7163 | A function is uniquely det... |
| funfvima 7164 | A function's value in a pr... |
| funfvima2 7165 | A function's value in an i... |
| funfvima2d 7166 | A function's value in a pr... |
| fnfvima 7167 | The function value of an o... |
| fnfvimad 7168 | A function's value belongs... |
| resfvresima 7169 | The value of the function ... |
| funfvima3 7170 | A class including a functi... |
| ralima 7171 | Universal quantification u... |
| rexima 7172 | Existential quantification... |
| reximaOLD 7173 | Obsolete version of ~ rexi... |
| ralimaOLD 7174 | Obsolete version of ~ rali... |
| fvclss 7175 | Upper bound for the class ... |
| elabrex 7176 | Elementhood in an image se... |
| elabrexg 7177 | Elementhood in an image se... |
| abrexco 7178 | Composition of two image m... |
| imaiun 7179 | The image of an indexed un... |
| imauni 7180 | The image of a union is th... |
| fniunfv 7181 | The indexed union of a fun... |
| funiunfv 7182 | The indexed union of a fun... |
| funiunfvf 7183 | The indexed union of a fun... |
| eluniima 7184 | Membership in the union of... |
| elunirn 7185 | Membership in the union of... |
| elunirnALT 7186 | Alternate proof of ~ eluni... |
| fnunirn 7187 | Membership in a union of s... |
| dff13 7188 | A one-to-one function in t... |
| dff13f 7189 | A one-to-one function in t... |
| f1veqaeq 7190 | If the values of a one-to-... |
| f1cofveqaeq 7191 | If the values of a composi... |
| f1cofveqaeqALT 7192 | Alternate proof of ~ f1cof... |
| dff14i 7193 | A one-to-one function maps... |
| 2f1fvneq 7194 | If two one-to-one function... |
| f1mpt 7195 | Express injection for a ma... |
| f1fveq 7196 | Equality of function value... |
| f1elima 7197 | Membership in the image of... |
| f1imass 7198 | Taking images under a one-... |
| f1imaeq 7199 | Taking images under a one-... |
| f1imapss 7200 | Taking images under a one-... |
| fpropnf1 7201 | A function, given by an un... |
| f1dom3fv3dif 7202 | The function values for a ... |
| f1dom3el3dif 7203 | The codomain of a 1-1 func... |
| dff14a 7204 | A one-to-one function in t... |
| dff14b 7205 | A one-to-one function in t... |
| f1ounsn 7206 | Extension of a bijection b... |
| f12dfv 7207 | A one-to-one function with... |
| f13dfv 7208 | A one-to-one function with... |
| dff1o6 7209 | A one-to-one onto function... |
| f1ocnvfv1 7210 | The converse value of the ... |
| f1ocnvfv2 7211 | The value of the converse ... |
| f1ocnvfv 7212 | Relationship between the v... |
| f1ocnvfvb 7213 | Relationship between the v... |
| nvof1o 7214 | An involution is a bijecti... |
| nvocnv 7215 | The converse of an involut... |
| f1cdmsn 7216 | If a one-to-one function w... |
| fsnex 7217 | Relate a function with a s... |
| f1prex 7218 | Relate a one-to-one functi... |
| f1ocnvdm 7219 | The value of the converse ... |
| f1ocnvfvrneq 7220 | If the values of a one-to-... |
| fcof1 7221 | An application is injectiv... |
| fcofo 7222 | An application is surjecti... |
| cbvfo 7223 | Change bound variable betw... |
| cbvexfo 7224 | Change bound variable betw... |
| cocan1 7225 | An injection is left-cance... |
| cocan2 7226 | A surjection is right-canc... |
| fcof1oinvd 7227 | Show that a function is th... |
| fcof1od 7228 | A function is bijective if... |
| 2fcoidinvd 7229 | Show that a function is th... |
| fcof1o 7230 | Show that two functions ar... |
| 2fvcoidd 7231 | Show that the composition ... |
| 2fvidf1od 7232 | A function is bijective if... |
| 2fvidinvd 7233 | Show that two functions ar... |
| foeqcnvco 7234 | Condition for function equ... |
| f1eqcocnv 7235 | Condition for function equ... |
| fveqf1o 7236 | Given a bijection ` F ` , ... |
| f1ocoima 7237 | The composition of two bij... |
| nf1const 7238 | A constant function from a... |
| nf1oconst 7239 | A constant function from a... |
| f1ofvswap 7240 | Swapping two values in a b... |
| fvf1pr 7241 | Values of a one-to-one fun... |
| fliftrel 7242 | ` F ` , a function lift, i... |
| fliftel 7243 | Elementhood in the relatio... |
| fliftel1 7244 | Elementhood in the relatio... |
| fliftcnv 7245 | Converse of the relation `... |
| fliftfun 7246 | The function ` F ` is the ... |
| fliftfund 7247 | The function ` F ` is the ... |
| fliftfuns 7248 | The function ` F ` is the ... |
| fliftf 7249 | The domain and range of th... |
| fliftval 7250 | The value of the function ... |
| isoeq1 7251 | Equality theorem for isomo... |
| isoeq2 7252 | Equality theorem for isomo... |
| isoeq3 7253 | Equality theorem for isomo... |
| isoeq4 7254 | Equality theorem for isomo... |
| isoeq5 7255 | Equality theorem for isomo... |
| nfiso 7256 | Bound-variable hypothesis ... |
| isof1o 7257 | An isomorphism is a one-to... |
| isof1oidb 7258 | A function is a bijection ... |
| isof1oopb 7259 | A function is a bijection ... |
| isorel 7260 | An isomorphism connects bi... |
| soisores 7261 | Express the condition of i... |
| soisoi 7262 | Infer isomorphism from one... |
| isoid 7263 | Identity law for isomorphi... |
| isocnv 7264 | Converse law for isomorphi... |
| isocnv2 7265 | Converse law for isomorphi... |
| isocnv3 7266 | Complementation law for is... |
| isores2 7267 | An isomorphism from one we... |
| isores1 7268 | An isomorphism from one we... |
| isores3 7269 | Induced isomorphism on a s... |
| isotr 7270 | Composition (transitive) l... |
| isomin 7271 | Isomorphisms preserve mini... |
| isoini 7272 | Isomorphisms preserve init... |
| isoini2 7273 | Isomorphisms are isomorphi... |
| isofrlem 7274 | Lemma for ~ isofr . (Cont... |
| isoselem 7275 | Lemma for ~ isose . (Cont... |
| isofr 7276 | An isomorphism preserves w... |
| isose 7277 | An isomorphism preserves s... |
| isofr2 7278 | A weak form of ~ isofr tha... |
| isopolem 7279 | Lemma for ~ isopo . (Cont... |
| isopo 7280 | An isomorphism preserves t... |
| isosolem 7281 | Lemma for ~ isoso . (Cont... |
| isoso 7282 | An isomorphism preserves t... |
| isowe 7283 | An isomorphism preserves t... |
| isowe2 7284 | A weak form of ~ isowe tha... |
| f1oiso 7285 | Any one-to-one onto functi... |
| f1oiso2 7286 | Any one-to-one onto functi... |
| f1owe 7287 | Well-ordering of isomorphi... |
| weniso 7288 | A set-like well-ordering h... |
| weisoeq 7289 | Thus, there is at most one... |
| weisoeq2 7290 | Thus, there is at most one... |
| knatar 7291 | The Knaster-Tarski theorem... |
| fvresval 7292 | The value of a restricted ... |
| funeldmb 7293 | If ` (/) ` is not part of ... |
| eqfunresadj 7294 | Law for adjoining an eleme... |
| eqfunressuc 7295 | Law for equality of restri... |
| fnssintima 7296 | Condition for subset of an... |
| imaeqsexvOLD 7297 | Obsolete version of ~ rexi... |
| imaeqsalvOLD 7298 | Obsolete version of ~ rali... |
| fnimasnd 7299 | The image of a function by... |
| canth 7300 | No set ` A ` is equinumero... |
| ncanth 7301 | Cantor's theorem fails for... |
| riotaeqdv 7304 | Formula-building deduction... |
| riotabidv 7305 | Formula-building deduction... |
| riotaeqbidv 7306 | Equality deduction for res... |
| riotaex 7307 | Restricted iota is a set. ... |
| riotav 7308 | An iota restricted to the ... |
| riotauni 7309 | Restricted iota in terms o... |
| nfriota1 7310 | The abstraction variable i... |
| nfriotadw 7311 | Deduction version of ~ nfr... |
| cbvriotaw 7312 | Change bound variable in a... |
| cbvriotavw 7313 | Change bound variable in a... |
| nfriotad 7314 | Deduction version of ~ nfr... |
| nfriota 7315 | A variable not free in a w... |
| cbvriota 7316 | Change bound variable in a... |
| cbvriotav 7317 | Change bound variable in a... |
| csbriota 7318 | Interchange class substitu... |
| riotacl2 7319 | Membership law for "the un... |
| riotacl 7320 | Closure of restricted iota... |
| riotasbc 7321 | Substitution law for descr... |
| riotabidva 7322 | Equivalent wff's yield equ... |
| riotabiia 7323 | Equivalent wff's yield equ... |
| riota1 7324 | Property of restricted iot... |
| riota1a 7325 | Property of iota. (Contri... |
| riota2df 7326 | A deduction version of ~ r... |
| riota2f 7327 | This theorem shows a condi... |
| riota2 7328 | This theorem shows a condi... |
| riotaeqimp 7329 | If two restricted iota des... |
| riotaprop 7330 | Properties of a restricted... |
| riota5f 7331 | A method for computing res... |
| riota5 7332 | A method for computing res... |
| riotass2 7333 | Restriction of a unique el... |
| riotass 7334 | Restriction of a unique el... |
| moriotass 7335 | Restriction of a unique el... |
| snriota 7336 | A restricted class abstrac... |
| riotaxfrd 7337 | Change the variable ` x ` ... |
| eusvobj2 7338 | Specify the same property ... |
| eusvobj1 7339 | Specify the same object in... |
| f1ofveu 7340 | There is one domain elemen... |
| f1ocnvfv3 7341 | Value of the converse of a... |
| riotaund 7342 | Restricted iota equals the... |
| riotassuni 7343 | The restricted iota class ... |
| riotaclb 7344 | Bidirectional closure of r... |
| riotarab 7345 | Restricted iota of a restr... |
| oveq 7352 | Equality theorem for opera... |
| oveq1 7353 | Equality theorem for opera... |
| oveq2 7354 | Equality theorem for opera... |
| oveq12 7355 | Equality theorem for opera... |
| oveq1i 7356 | Equality inference for ope... |
| oveq2i 7357 | Equality inference for ope... |
| oveq12i 7358 | Equality inference for ope... |
| oveqi 7359 | Equality inference for ope... |
| oveq123i 7360 | Equality inference for ope... |
| oveq1d 7361 | Equality deduction for ope... |
| oveq2d 7362 | Equality deduction for ope... |
| oveqd 7363 | Equality deduction for ope... |
| oveq12d 7364 | Equality deduction for ope... |
| oveqan12d 7365 | Equality deduction for ope... |
| oveqan12rd 7366 | Equality deduction for ope... |
| oveq123d 7367 | Equality deduction for ope... |
| fvoveq1d 7368 | Equality deduction for nes... |
| fvoveq1 7369 | Equality theorem for neste... |
| ovanraleqv 7370 | Equality theorem for a con... |
| imbrov2fvoveq 7371 | Equality theorem for neste... |
| ovrspc2v 7372 | If an operation value is a... |
| oveqrspc2v 7373 | Restricted specialization ... |
| oveqdr 7374 | Equality of two operations... |
| nfovd 7375 | Deduction version of bound... |
| nfov 7376 | Bound-variable hypothesis ... |
| oprabidw 7377 | The law of concretion. Sp... |
| oprabid 7378 | The law of concretion. Sp... |
| ovex 7379 | The result of an operation... |
| ovexi 7380 | The result of an operation... |
| ovexd 7381 | The result of an operation... |
| ovssunirn 7382 | The result of an operation... |
| 0ov 7383 | Operation value of the emp... |
| ovprc 7384 | The value of an operation ... |
| ovprc1 7385 | The value of an operation ... |
| ovprc2 7386 | The value of an operation ... |
| ovrcl 7387 | Reverse closure for an ope... |
| elfvov1 7388 | Utility theorem: reverse c... |
| elfvov2 7389 | Utility theorem: reverse c... |
| csbov123 7390 | Move class substitution in... |
| csbov 7391 | Move class substitution in... |
| csbov12g 7392 | Move class substitution in... |
| csbov1g 7393 | Move class substitution in... |
| csbov2g 7394 | Move class substitution in... |
| rspceov 7395 | A frequently used special ... |
| elovimad 7396 | Elementhood of the image s... |
| fnbrovb 7397 | Value of a binary operatio... |
| fnotovb 7398 | Equivalence of operation v... |
| opabbrex 7399 | A collection of ordered pa... |
| opabresex2 7400 | Restrictions of a collecti... |
| fvmptopab 7401 | The function value of a ma... |
| f1opr 7402 | Condition for an operation... |
| brfvopab 7403 | The classes involved in a ... |
| dfoprab2 7404 | Class abstraction for oper... |
| reloprab 7405 | An operation class abstrac... |
| oprabv 7406 | If a pair and a class are ... |
| nfoprab1 7407 | The abstraction variables ... |
| nfoprab2 7408 | The abstraction variables ... |
| nfoprab3 7409 | The abstraction variables ... |
| nfoprab 7410 | Bound-variable hypothesis ... |
| oprabbid 7411 | Equivalent wff's yield equ... |
| oprabbidv 7412 | Equivalent wff's yield equ... |
| oprabbii 7413 | Equivalent wff's yield equ... |
| ssoprab2 7414 | Equivalence of ordered pai... |
| ssoprab2b 7415 | Equivalence of ordered pai... |
| eqoprab2bw 7416 | Equivalence of ordered pai... |
| eqoprab2b 7417 | Equivalence of ordered pai... |
| mpoeq123 7418 | An equality theorem for th... |
| mpoeq12 7419 | An equality theorem for th... |
| mpoeq123dva 7420 | An equality deduction for ... |
| mpoeq123dv 7421 | An equality deduction for ... |
| mpoeq123i 7422 | An equality inference for ... |
| mpoeq3dva 7423 | Slightly more general equa... |
| mpoeq3ia 7424 | An equality inference for ... |
| mpoeq3dv 7425 | An equality deduction for ... |
| nfmpo1 7426 | Bound-variable hypothesis ... |
| nfmpo2 7427 | Bound-variable hypothesis ... |
| nfmpo 7428 | Bound-variable hypothesis ... |
| 0mpo0 7429 | A mapping operation with e... |
| mpo0v 7430 | A mapping operation with e... |
| mpo0 7431 | A mapping operation with e... |
| oprab4 7432 | Two ways to state the doma... |
| cbvoprab1 7433 | Rule used to change first ... |
| cbvoprab2 7434 | Change the second bound va... |
| cbvoprab12 7435 | Rule used to change first ... |
| cbvoprab12v 7436 | Rule used to change first ... |
| cbvoprab3 7437 | Rule used to change the th... |
| cbvoprab3v 7438 | Rule used to change the th... |
| cbvmpox 7439 | Rule to change the bound v... |
| cbvmpo 7440 | Rule to change the bound v... |
| cbvmpov 7441 | Rule to change the bound v... |
| elimdelov 7442 | Eliminate a hypothesis whi... |
| brif1 7443 | Move a relation inside and... |
| ovif 7444 | Move a conditional outside... |
| ovif2 7445 | Move a conditional outside... |
| ovif12 7446 | Move a conditional outside... |
| ifov 7447 | Move a conditional outside... |
| ifmpt2v 7448 | Move a conditional inside ... |
| dmoprab 7449 | The domain of an operation... |
| dmoprabss 7450 | The domain of an operation... |
| rnoprab 7451 | The range of an operation ... |
| rnoprab2 7452 | The range of a restricted ... |
| reldmoprab 7453 | The domain of an operation... |
| oprabss 7454 | Structure of an operation ... |
| eloprabga 7455 | The law of concretion for ... |
| eloprabg 7456 | The law of concretion for ... |
| ssoprab2i 7457 | Inference of operation cla... |
| mpov 7458 | Operation with universal d... |
| mpomptx 7459 | Express a two-argument fun... |
| mpompt 7460 | Express a two-argument fun... |
| mpodifsnif 7461 | A mapping with two argumen... |
| mposnif 7462 | A mapping with two argumen... |
| fconstmpo 7463 | Representation of a consta... |
| resoprab 7464 | Restriction of an operatio... |
| resoprab2 7465 | Restriction of an operator... |
| resmpo 7466 | Restriction of the mapping... |
| funoprabg 7467 | "At most one" is a suffici... |
| funoprab 7468 | "At most one" is a suffici... |
| fnoprabg 7469 | Functionality and domain o... |
| mpofun 7470 | The maps-to notation for a... |
| fnoprab 7471 | Functionality and domain o... |
| ffnov 7472 | An operation maps to a cla... |
| fovcld 7473 | Closure law for an operati... |
| fovcl 7474 | Closure law for an operati... |
| eqfnov 7475 | Equality of two operations... |
| eqfnov2 7476 | Two operators with the sam... |
| fnov 7477 | Representation of a functi... |
| mpo2eqb 7478 | Bidirectional equality the... |
| rnmpo 7479 | The range of an operation ... |
| reldmmpo 7480 | The domain of an operation... |
| elrnmpog 7481 | Membership in the range of... |
| elrnmpo 7482 | Membership in the range of... |
| elimampo 7483 | Membership in the image of... |
| elrnmpores 7484 | Membership in the range of... |
| ralrnmpo 7485 | A restricted quantifier ov... |
| rexrnmpo 7486 | A restricted quantifier ov... |
| ovid 7487 | The value of an operation ... |
| ovidig 7488 | The value of an operation ... |
| ovidi 7489 | The value of an operation ... |
| ov 7490 | The value of an operation ... |
| ovigg 7491 | The value of an operation ... |
| ovig 7492 | The value of an operation ... |
| ovmpt4g 7493 | Value of a function given ... |
| ovmpos 7494 | Value of a function given ... |
| ov2gf 7495 | The value of an operation ... |
| ovmpodxf 7496 | Value of an operation give... |
| ovmpodx 7497 | Value of an operation give... |
| ovmpod 7498 | Value of an operation give... |
| ovmpox 7499 | The value of an operation ... |
| ovmpoga 7500 | Value of an operation give... |
| ovmpoa 7501 | Value of an operation give... |
| ovmpodf 7502 | Alternate deduction versio... |
| ovmpodv 7503 | Alternate deduction versio... |
| ovmpodv2 7504 | Alternate deduction versio... |
| ovmpog 7505 | Value of an operation give... |
| ovmpo 7506 | Value of an operation give... |
| ovmpot 7507 | The value of an operation ... |
| fvmpopr2d 7508 | Value of an operation give... |
| ov3 7509 | The value of an operation ... |
| ov6g 7510 | The value of an operation ... |
| ovg 7511 | The value of an operation ... |
| ovres 7512 | The value of a restricted ... |
| ovresd 7513 | Lemma for converting metri... |
| oprres 7514 | The restriction of an oper... |
| oprssov 7515 | The value of a member of t... |
| fovcdm 7516 | An operation's value belon... |
| fovcdmda 7517 | An operation's value belon... |
| fovcdmd 7518 | An operation's value belon... |
| fnrnov 7519 | The range of an operation ... |
| foov 7520 | An onto mapping of an oper... |
| fnovrn 7521 | An operation's value belon... |
| ovelrn 7522 | A member of an operation's... |
| funimassov 7523 | Membership relation for th... |
| ovelimab 7524 | Operation value in an imag... |
| ovima0 7525 | An operation value is a me... |
| ovconst2 7526 | The value of a constant op... |
| oprssdm 7527 | Domain of closure of an op... |
| nssdmovg 7528 | The value of an operation ... |
| ndmovg 7529 | The value of an operation ... |
| ndmov 7530 | The value of an operation ... |
| ndmovcl 7531 | The closure of an operatio... |
| ndmovrcl 7532 | Reverse closure law, when ... |
| ndmovcom 7533 | Any operation is commutati... |
| ndmovass 7534 | Any operation is associati... |
| ndmovdistr 7535 | Any operation is distribut... |
| ndmovord 7536 | Elimination of redundant a... |
| ndmovordi 7537 | Elimination of redundant a... |
| caovclg 7538 | Convert an operation closu... |
| caovcld 7539 | Convert an operation closu... |
| caovcl 7540 | Convert an operation closu... |
| caovcomg 7541 | Convert an operation commu... |
| caovcomd 7542 | Convert an operation commu... |
| caovcom 7543 | Convert an operation commu... |
| caovassg 7544 | Convert an operation assoc... |
| caovassd 7545 | Convert an operation assoc... |
| caovass 7546 | Convert an operation assoc... |
| caovcang 7547 | Convert an operation cance... |
| caovcand 7548 | Convert an operation cance... |
| caovcanrd 7549 | Commute the arguments of a... |
| caovcan 7550 | Convert an operation cance... |
| caovordig 7551 | Convert an operation order... |
| caovordid 7552 | Convert an operation order... |
| caovordg 7553 | Convert an operation order... |
| caovordd 7554 | Convert an operation order... |
| caovord2d 7555 | Operation ordering law wit... |
| caovord3d 7556 | Ordering law. (Contribute... |
| caovord 7557 | Convert an operation order... |
| caovord2 7558 | Operation ordering law wit... |
| caovord3 7559 | Ordering law. (Contribute... |
| caovdig 7560 | Convert an operation distr... |
| caovdid 7561 | Convert an operation distr... |
| caovdir2d 7562 | Convert an operation distr... |
| caovdirg 7563 | Convert an operation rever... |
| caovdird 7564 | Convert an operation distr... |
| caovdi 7565 | Convert an operation distr... |
| caov32d 7566 | Rearrange arguments in a c... |
| caov12d 7567 | Rearrange arguments in a c... |
| caov31d 7568 | Rearrange arguments in a c... |
| caov13d 7569 | Rearrange arguments in a c... |
| caov4d 7570 | Rearrange arguments in a c... |
| caov411d 7571 | Rearrange arguments in a c... |
| caov42d 7572 | Rearrange arguments in a c... |
| caov32 7573 | Rearrange arguments in a c... |
| caov12 7574 | Rearrange arguments in a c... |
| caov31 7575 | Rearrange arguments in a c... |
| caov13 7576 | Rearrange arguments in a c... |
| caov4 7577 | Rearrange arguments in a c... |
| caov411 7578 | Rearrange arguments in a c... |
| caov42 7579 | Rearrange arguments in a c... |
| caovdir 7580 | Reverse distributive law. ... |
| caovdilem 7581 | Lemma used by real number ... |
| caovlem2 7582 | Lemma used in real number ... |
| caovmo 7583 | Uniqueness of inverse elem... |
| imaeqexov 7584 | Substitute an operation va... |
| imaeqalov 7585 | Substitute an operation va... |
| mpondm0 7586 | The value of an operation ... |
| elmpocl 7587 | If a two-parameter class i... |
| elmpocl1 7588 | If a two-parameter class i... |
| elmpocl2 7589 | If a two-parameter class i... |
| elovmpod 7590 | Utility lemma for two-para... |
| elovmpo 7591 | Utility lemma for two-para... |
| elovmporab 7592 | Implications for the value... |
| elovmporab1w 7593 | Implications for the value... |
| elovmporab1 7594 | Implications for the value... |
| 2mpo0 7595 | If the operation value of ... |
| relmptopab 7596 | Any function to sets of or... |
| f1ocnvd 7597 | Describe an implicit one-t... |
| f1od 7598 | Describe an implicit one-t... |
| f1ocnv2d 7599 | Describe an implicit one-t... |
| f1o2d 7600 | Describe an implicit one-t... |
| f1opw2 7601 | A one-to-one mapping induc... |
| f1opw 7602 | A one-to-one mapping induc... |
| elovmpt3imp 7603 | If the value of a function... |
| ovmpt3rab1 7604 | The value of an operation ... |
| ovmpt3rabdm 7605 | If the value of a function... |
| elovmpt3rab1 7606 | Implications for the value... |
| elovmpt3rab 7607 | Implications for the value... |
| ofeqd 7612 | Equality theorem for funct... |
| ofeq 7613 | Equality theorem for funct... |
| ofreq 7614 | Equality theorem for funct... |
| ofexg 7615 | A function operation restr... |
| nfof 7616 | Hypothesis builder for fun... |
| nfofr 7617 | Hypothesis builder for fun... |
| ofrfvalg 7618 | Value of a relation applie... |
| offval 7619 | Value of an operation appl... |
| ofrfval 7620 | Value of a relation applie... |
| ofval 7621 | Evaluate a function operat... |
| ofrval 7622 | Exhibit a function relatio... |
| offn 7623 | The function operation pro... |
| offun 7624 | The function operation pro... |
| offval2f 7625 | The function operation exp... |
| ofmresval 7626 | Value of a restriction of ... |
| fnfvof 7627 | Function value of a pointw... |
| off 7628 | The function operation pro... |
| ofres 7629 | Restrict the operands of a... |
| offval2 7630 | The function operation exp... |
| ofrfval2 7631 | The function relation acti... |
| offvalfv 7632 | The function operation exp... |
| ofmpteq 7633 | Value of a pointwise opera... |
| coof 7634 | The composition of a _homo... |
| ofco 7635 | The composition of a funct... |
| offveq 7636 | Convert an identity of the... |
| offveqb 7637 | Equivalent expressions for... |
| ofc1 7638 | Left operation by a consta... |
| ofc2 7639 | Right operation by a const... |
| ofc12 7640 | Function operation on two ... |
| caofref 7641 | Transfer a reflexive law t... |
| caofinvl 7642 | Transfer a left inverse la... |
| caofid0l 7643 | Transfer a left identity l... |
| caofid0r 7644 | Transfer a right identity ... |
| caofid1 7645 | Transfer a right absorptio... |
| caofid2 7646 | Transfer a right absorptio... |
| caofcom 7647 | Transfer a commutative law... |
| caofidlcan 7648 | Transfer a cancellation/id... |
| caofrss 7649 | Transfer a relation subset... |
| caofass 7650 | Transfer an associative la... |
| caoftrn 7651 | Transfer a transitivity la... |
| caofdi 7652 | Transfer a distributive la... |
| caofdir 7653 | Transfer a reverse distrib... |
| caonncan 7654 | Transfer ~ nncan -shaped l... |
| relrpss 7657 | The proper subset relation... |
| brrpssg 7658 | The proper subset relation... |
| brrpss 7659 | The proper subset relation... |
| porpss 7660 | Every class is partially o... |
| sorpss 7661 | Express strict ordering un... |
| sorpssi 7662 | Property of a chain of set... |
| sorpssun 7663 | A chain of sets is closed ... |
| sorpssin 7664 | A chain of sets is closed ... |
| sorpssuni 7665 | In a chain of sets, a maxi... |
| sorpssint 7666 | In a chain of sets, a mini... |
| sorpsscmpl 7667 | The componentwise compleme... |
| zfun 7669 | Axiom of Union expressed w... |
| axun2 7670 | A variant of the Axiom of ... |
| uniex2 7671 | The Axiom of Union using t... |
| vuniex 7672 | The union of a setvar is a... |
| uniexg 7673 | The ZF Axiom of Union in c... |
| uniex 7674 | The Axiom of Union in clas... |
| uniexd 7675 | Deduction version of the Z... |
| unexg 7676 | The union of two sets is a... |
| unex 7677 | The union of two sets is a... |
| unexOLD 7678 | Obsolete version of ~ unex... |
| tpex 7679 | An unordered triple of cla... |
| unexb 7680 | Existence of union is equi... |
| unexbOLD 7681 | Obsolete version of ~ unex... |
| unexgOLD 7682 | Obsolete version of ~ unex... |
| xpexg 7683 | The Cartesian product of t... |
| xpexd 7684 | The Cartesian product of t... |
| 3xpexg 7685 | The Cartesian product of t... |
| xpex 7686 | The Cartesian product of t... |
| unexd 7687 | The union of two sets is a... |
| sqxpexg 7688 | The Cartesian square of a ... |
| abnexg 7689 | Sufficient condition for a... |
| abnex 7690 | Sufficient condition for a... |
| snnex 7691 | The class of all singleton... |
| pwnex 7692 | The class of all power set... |
| difex2 7693 | If the subtrahend of a cla... |
| difsnexi 7694 | If the difference of a cla... |
| uniuni 7695 | Expression for double unio... |
| uniexr 7696 | Converse of the Axiom of U... |
| uniexb 7697 | The Axiom of Union and its... |
| pwexr 7698 | Converse of the Axiom of P... |
| pwexb 7699 | The Axiom of Power Sets an... |
| elpwpwel 7700 | A class belongs to a doubl... |
| eldifpw 7701 | Membership in a power clas... |
| elpwun 7702 | Membership in the power cl... |
| pwuncl 7703 | Power classes are closed u... |
| iunpw 7704 | An indexed union of a powe... |
| fr3nr 7705 | A well-founded relation ha... |
| epne3 7706 | A well-founded class conta... |
| dfwe2 7707 | Alternate definition of we... |
| epweon 7708 | The membership relation we... |
| epweonALT 7709 | Alternate proof of ~ epweo... |
| ordon 7710 | The class of all ordinal n... |
| onprc 7711 | No set contains all ordina... |
| ssorduni 7712 | The union of a class of or... |
| ssonuni 7713 | The union of a set of ordi... |
| ssonunii 7714 | The union of a set of ordi... |
| ordeleqon 7715 | A way to express the ordin... |
| ordsson 7716 | Any ordinal class is a sub... |
| dford5 7717 | A class is ordinal iff it ... |
| onss 7718 | An ordinal number is a sub... |
| predon 7719 | The predecessor of an ordi... |
| ssonprc 7720 | Two ways of saying a class... |
| onuni 7721 | The union of an ordinal nu... |
| orduni 7722 | The union of an ordinal cl... |
| onint 7723 | The intersection (infimum)... |
| onint0 7724 | The intersection of a clas... |
| onssmin 7725 | A nonempty class of ordina... |
| onminesb 7726 | If a property is true for ... |
| onminsb 7727 | If a property is true for ... |
| oninton 7728 | The intersection of a none... |
| onintrab 7729 | The intersection of a clas... |
| onintrab2 7730 | An existence condition equ... |
| onnmin 7731 | No member of a set of ordi... |
| onnminsb 7732 | An ordinal number smaller ... |
| oneqmin 7733 | A way to show that an ordi... |
| uniordint 7734 | The union of a set of ordi... |
| onminex 7735 | If a wff is true for an or... |
| sucon 7736 | The class of all ordinal n... |
| sucexb 7737 | A successor exists iff its... |
| sucexg 7738 | The successor of a set is ... |
| sucex 7739 | The successor of a set is ... |
| onmindif2 7740 | The minimum of a class of ... |
| ordsuci 7741 | The successor of an ordina... |
| sucexeloni 7742 | If the successor of an ord... |
| onsuc 7743 | The successor of an ordina... |
| ordsuc 7744 | A class is ordinal if and ... |
| ordpwsuc 7745 | The collection of ordinals... |
| onpwsuc 7746 | The collection of ordinal ... |
| onsucb 7747 | A class is an ordinal numb... |
| ordsucss 7748 | The successor of an elemen... |
| onpsssuc 7749 | An ordinal number is a pro... |
| ordelsuc 7750 | A set belongs to an ordina... |
| onsucmin 7751 | The successor of an ordina... |
| ordsucelsuc 7752 | Membership is inherited by... |
| ordsucsssuc 7753 | The subclass relationship ... |
| ordsucuniel 7754 | Given an element ` A ` of ... |
| ordsucun 7755 | The successor of the maxim... |
| ordunpr 7756 | The maximum of two ordinal... |
| ordunel 7757 | The maximum of two ordinal... |
| onsucuni 7758 | A class of ordinal numbers... |
| ordsucuni 7759 | An ordinal class is a subc... |
| orduniorsuc 7760 | An ordinal class is either... |
| unon 7761 | The class of all ordinal n... |
| ordunisuc 7762 | An ordinal class is equal ... |
| orduniss2 7763 | The union of the ordinal s... |
| onsucuni2 7764 | A successor ordinal is the... |
| 0elsuc 7765 | The successor of an ordina... |
| limon 7766 | The class of ordinal numbe... |
| onuniorsuc 7767 | An ordinal number is eithe... |
| onssi 7768 | An ordinal number is a sub... |
| onsuci 7769 | The successor of an ordina... |
| onuninsuci 7770 | An ordinal is equal to its... |
| onsucssi 7771 | A set belongs to an ordina... |
| nlimsucg 7772 | A successor is not a limit... |
| orduninsuc 7773 | An ordinal class is equal ... |
| ordunisuc2 7774 | An ordinal equal to its un... |
| ordzsl 7775 | An ordinal is zero, a succ... |
| onzsl 7776 | An ordinal number is zero,... |
| dflim3 7777 | An alternate definition of... |
| dflim4 7778 | An alternate definition of... |
| limsuc 7779 | The successor of a member ... |
| limsssuc 7780 | A class includes a limit o... |
| nlimon 7781 | Two ways to express the cl... |
| limuni3 7782 | The union of a nonempty cl... |
| tfi 7783 | The Principle of Transfini... |
| tfisg 7784 | A closed form of ~ tfis . ... |
| tfis 7785 | Transfinite Induction Sche... |
| tfis2f 7786 | Transfinite Induction Sche... |
| tfis2 7787 | Transfinite Induction Sche... |
| tfis3 7788 | Transfinite Induction Sche... |
| tfisi 7789 | A transfinite induction sc... |
| tfinds 7790 | Principle of Transfinite I... |
| tfindsg 7791 | Transfinite Induction (inf... |
| tfindsg2 7792 | Transfinite Induction (inf... |
| tfindes 7793 | Transfinite Induction with... |
| tfinds2 7794 | Transfinite Induction (inf... |
| tfinds3 7795 | Principle of Transfinite I... |
| dfom2 7798 | An alternate definition of... |
| elom 7799 | Membership in omega. The ... |
| omsson 7800 | Omega is a subset of ` On ... |
| limomss 7801 | The class of natural numbe... |
| nnon 7802 | A natural number is an ord... |
| nnoni 7803 | A natural number is an ord... |
| nnord 7804 | A natural number is ordina... |
| trom 7805 | The class of finite ordina... |
| ordom 7806 | The class of finite ordina... |
| elnn 7807 | A member of a natural numb... |
| omon 7808 | The class of natural numbe... |
| omelon2 7809 | Omega is an ordinal number... |
| nnlim 7810 | A natural number is not a ... |
| omssnlim 7811 | The class of natural numbe... |
| limom 7812 | Omega is a limit ordinal. ... |
| peano2b 7813 | A class belongs to omega i... |
| nnsuc 7814 | A nonzero natural number i... |
| omsucne 7815 | A natural number is not th... |
| ssnlim 7816 | An ordinal subclass of non... |
| omsinds 7817 | Strong (or "total") induct... |
| omun 7818 | The union of two finite or... |
| peano1 7819 | Zero is a natural number. ... |
| peano2 7820 | The successor of any natur... |
| peano3 7821 | The successor of any natur... |
| peano4 7822 | Two natural numbers are eq... |
| peano5 7823 | The induction postulate: a... |
| nn0suc 7824 | A natural number is either... |
| find 7825 | The Principle of Finite In... |
| finds 7826 | Principle of Finite Induct... |
| findsg 7827 | Principle of Finite Induct... |
| finds2 7828 | Principle of Finite Induct... |
| finds1 7829 | Principle of Finite Induct... |
| findes 7830 | Finite induction with expl... |
| dmexg 7831 | The domain of a set is a s... |
| rnexg 7832 | The range of a set is a se... |
| dmexd 7833 | The domain of a set is a s... |
| fndmexd 7834 | If a function is a set, it... |
| dmfex 7835 | If a mapping is a set, its... |
| fndmexb 7836 | The domain of a function i... |
| fdmexb 7837 | The domain of a function i... |
| dmfexALT 7838 | Alternate proof of ~ dmfex... |
| dmex 7839 | The domain of a set is a s... |
| rnex 7840 | The range of a set is a se... |
| iprc 7841 | The identity function is a... |
| resiexg 7842 | The existence of a restric... |
| imaexg 7843 | The image of a set is a se... |
| imaex 7844 | The image of a set is a se... |
| rnexd 7845 | The range of a set is a se... |
| imaexd 7846 | The image of a set is a se... |
| exse2 7847 | Any set relation is set-li... |
| xpexr 7848 | If a Cartesian product is ... |
| xpexr2 7849 | If a nonempty Cartesian pr... |
| xpexcnv 7850 | A condition where the conv... |
| soex 7851 | If the relation in a stric... |
| elxp4 7852 | Membership in a Cartesian ... |
| elxp5 7853 | Membership in a Cartesian ... |
| cnvexg 7854 | The converse of a set is a... |
| cnvex 7855 | The converse of a set is a... |
| relcnvexb 7856 | A relation is a set iff it... |
| f1oexrnex 7857 | If the range of a 1-1 onto... |
| f1oexbi 7858 | There is a one-to-one onto... |
| coexg 7859 | The composition of two set... |
| coex 7860 | The composition of two set... |
| coexd 7861 | The composition of two set... |
| funcnvuni 7862 | The union of a chain (with... |
| fun11uni 7863 | The union of a chain (with... |
| resf1extb 7864 | Extension of an injection ... |
| resf1ext2b 7865 | Extension of an injection ... |
| fex2 7866 | A function with bounded do... |
| fabexd 7867 | Existence of a set of func... |
| fabexg 7868 | Existence of a set of func... |
| fabexgOLD 7869 | Obsolete version of ~ fabe... |
| fabex 7870 | Existence of a set of func... |
| mapex 7871 | The class of all functions... |
| f1oabexg 7872 | The class of all 1-1-onto ... |
| f1oabexgOLD 7873 | Obsolete version of ~ f1oa... |
| fiunlem 7874 | Lemma for ~ fiun and ~ f1i... |
| fiun 7875 | The union of a chain (with... |
| f1iun 7876 | The union of a chain (with... |
| fviunfun 7877 | The function value of an i... |
| ffoss 7878 | Relationship between a map... |
| f11o 7879 | Relationship between one-t... |
| resfunexgALT 7880 | Alternate proof of ~ resfu... |
| cofunexg 7881 | Existence of a composition... |
| cofunex2g 7882 | Existence of a composition... |
| fnexALT 7883 | Alternate proof of ~ fnex ... |
| funexw 7884 | Weak version of ~ funex th... |
| mptexw 7885 | Weak version of ~ mptex th... |
| funrnex 7886 | If the domain of a functio... |
| zfrep6 7887 | A version of the Axiom of ... |
| focdmex 7888 | If the domain of an onto f... |
| f1dmex 7889 | If the codomain of a one-t... |
| f1ovv 7890 | The codomain/range of a 1-... |
| fvclex 7891 | Existence of the class of ... |
| fvresex 7892 | Existence of the class of ... |
| abrexexg 7893 | Existence of a class abstr... |
| abrexex 7894 | Existence of a class abstr... |
| iunexg 7895 | The existence of an indexe... |
| abrexex2g 7896 | Existence of an existentia... |
| opabex3d 7897 | Existence of an ordered pa... |
| opabex3rd 7898 | Existence of an ordered pa... |
| opabex3 7899 | Existence of an ordered pa... |
| iunex 7900 | The existence of an indexe... |
| abrexex2 7901 | Existence of an existentia... |
| abexssex 7902 | Existence of a class abstr... |
| abexex 7903 | A condition where a class ... |
| f1oweALT 7904 | Alternate proof of ~ f1owe... |
| wemoiso 7905 | Thus, there is at most one... |
| wemoiso2 7906 | Thus, there is at most one... |
| oprabexd 7907 | Existence of an operator a... |
| oprabex 7908 | Existence of an operation ... |
| oprabex3 7909 | Existence of an operation ... |
| oprabrexex2 7910 | Existence of an existentia... |
| ab2rexex 7911 | Existence of a class abstr... |
| ab2rexex2 7912 | Existence of an existentia... |
| xpexgALT 7913 | Alternate proof of ~ xpexg... |
| offval3 7914 | General value of ` ( F oF ... |
| offres 7915 | Pointwise combination comm... |
| ofmres 7916 | Equivalent expressions for... |
| ofmresex 7917 | Existence of a restriction... |
| mptcnfimad 7918 | The converse of a mapping ... |
| 1stval 7923 | The value of the function ... |
| 2ndval 7924 | The value of the function ... |
| 1stnpr 7925 | Value of the first-member ... |
| 2ndnpr 7926 | Value of the second-member... |
| 1st0 7927 | The value of the first-mem... |
| 2nd0 7928 | The value of the second-me... |
| op1st 7929 | Extract the first member o... |
| op2nd 7930 | Extract the second member ... |
| op1std 7931 | Extract the first member o... |
| op2ndd 7932 | Extract the second member ... |
| op1stg 7933 | Extract the first member o... |
| op2ndg 7934 | Extract the second member ... |
| ot1stg 7935 | Extract the first member o... |
| ot2ndg 7936 | Extract the second member ... |
| ot3rdg 7937 | Extract the third member o... |
| 1stval2 7938 | Alternate value of the fun... |
| 2ndval2 7939 | Alternate value of the fun... |
| oteqimp 7940 | The components of an order... |
| fo1st 7941 | The ` 1st ` function maps ... |
| fo2nd 7942 | The ` 2nd ` function maps ... |
| br1steqg 7943 | Uniqueness condition for t... |
| br2ndeqg 7944 | Uniqueness condition for t... |
| f1stres 7945 | Mapping of a restriction o... |
| f2ndres 7946 | Mapping of a restriction o... |
| fo1stres 7947 | Onto mapping of a restrict... |
| fo2ndres 7948 | Onto mapping of a restrict... |
| 1st2val 7949 | Value of an alternate defi... |
| 2nd2val 7950 | Value of an alternate defi... |
| 1stcof 7951 | Composition of the first m... |
| 2ndcof 7952 | Composition of the second ... |
| xp1st 7953 | Location of the first elem... |
| xp2nd 7954 | Location of the second ele... |
| elxp6 7955 | Membership in a Cartesian ... |
| elxp7 7956 | Membership in a Cartesian ... |
| eqopi 7957 | Equality with an ordered p... |
| xp2 7958 | Representation of Cartesia... |
| unielxp 7959 | The membership relation fo... |
| 1st2nd2 7960 | Reconstruction of a member... |
| 1st2ndb 7961 | Reconstruction of an order... |
| xpopth 7962 | An ordered pair theorem fo... |
| eqop 7963 | Two ways to express equali... |
| eqop2 7964 | Two ways to express equali... |
| op1steq 7965 | Two ways of expressing tha... |
| opreuopreu 7966 | There is a unique ordered ... |
| el2xptp 7967 | A member of a nested Carte... |
| el2xptp0 7968 | A member of a nested Carte... |
| el2xpss 7969 | Version of ~ elrel for tri... |
| 2nd1st 7970 | Swap the members of an ord... |
| 1st2nd 7971 | Reconstruction of a member... |
| 1stdm 7972 | The first ordered pair com... |
| 2ndrn 7973 | The second ordered pair co... |
| 1st2ndbr 7974 | Express an element of a re... |
| releldm2 7975 | Two ways of expressing mem... |
| reldm 7976 | An expression for the doma... |
| releldmdifi 7977 | One way of expressing memb... |
| funfv1st2nd 7978 | The function value for the... |
| funelss 7979 | If the first component of ... |
| funeldmdif 7980 | Two ways of expressing mem... |
| sbcopeq1a 7981 | Equality theorem for subst... |
| csbopeq1a 7982 | Equality theorem for subst... |
| sbcoteq1a 7983 | Equality theorem for subst... |
| dfopab2 7984 | A way to define an ordered... |
| dfoprab3s 7985 | A way to define an operati... |
| dfoprab3 7986 | Operation class abstractio... |
| dfoprab4 7987 | Operation class abstractio... |
| dfoprab4f 7988 | Operation class abstractio... |
| opabex2 7989 | Condition for an operation... |
| opabn1stprc 7990 | An ordered-pair class abst... |
| opiota 7991 | The property of a uniquely... |
| cnvoprab 7992 | The converse of a class ab... |
| dfxp3 7993 | Define the Cartesian produ... |
| elopabi 7994 | A consequence of membershi... |
| eloprabi 7995 | A consequence of membershi... |
| mpomptsx 7996 | Express a two-argument fun... |
| mpompts 7997 | Express a two-argument fun... |
| dmmpossx 7998 | The domain of a mapping is... |
| fmpox 7999 | Functionality, domain and ... |
| fmpo 8000 | Functionality, domain and ... |
| fnmpo 8001 | Functionality and domain o... |
| fnmpoi 8002 | Functionality and domain o... |
| dmmpo 8003 | Domain of a class given by... |
| ovmpoelrn 8004 | An operation's value belon... |
| dmmpoga 8005 | Domain of an operation giv... |
| dmmpog 8006 | Domain of an operation giv... |
| mpoexxg 8007 | Existence of an operation ... |
| mpoexg 8008 | Existence of an operation ... |
| mpoexga 8009 | If the domain of an operat... |
| mpoexw 8010 | Weak version of ~ mpoex th... |
| mpoex 8011 | If the domain of an operat... |
| mptmpoopabbrd 8012 | The operation value of a f... |
| mptmpoopabbrdOLD 8013 | Obsolete version of ~ mptm... |
| mptmpoopabovd 8014 | The operation value of a f... |
| el2mpocsbcl 8015 | If the operation value of ... |
| el2mpocl 8016 | If the operation value of ... |
| fnmpoovd 8017 | A function with a Cartesia... |
| offval22 8018 | The function operation exp... |
| brovpreldm 8019 | If a binary relation holds... |
| bropopvvv 8020 | If a binary relation holds... |
| bropfvvvvlem 8021 | Lemma for ~ bropfvvvv . (... |
| bropfvvvv 8022 | If a binary relation holds... |
| ovmptss 8023 | If all the values of the m... |
| relmpoopab 8024 | Any function to sets of or... |
| fmpoco 8025 | Composition of two functio... |
| oprabco 8026 | Composition of a function ... |
| oprab2co 8027 | Composition of operator ab... |
| df1st2 8028 | An alternate possible defi... |
| df2nd2 8029 | An alternate possible defi... |
| 1stconst 8030 | The mapping of a restricti... |
| 2ndconst 8031 | The mapping of a restricti... |
| dfmpo 8032 | Alternate definition for t... |
| mposn 8033 | An operation (in maps-to n... |
| curry1 8034 | Composition with ` ``' ( 2... |
| curry1val 8035 | The value of a curried fun... |
| curry1f 8036 | Functionality of a curried... |
| curry2 8037 | Composition with ` ``' ( 1... |
| curry2f 8038 | Functionality of a curried... |
| curry2val 8039 | The value of a curried fun... |
| cnvf1olem 8040 | Lemma for ~ cnvf1o . (Con... |
| cnvf1o 8041 | Describe a function that m... |
| fparlem1 8042 | Lemma for ~ fpar . (Contr... |
| fparlem2 8043 | Lemma for ~ fpar . (Contr... |
| fparlem3 8044 | Lemma for ~ fpar . (Contr... |
| fparlem4 8045 | Lemma for ~ fpar . (Contr... |
| fpar 8046 | Merge two functions in par... |
| fsplit 8047 | A function that can be use... |
| fsplitfpar 8048 | Merge two functions with a... |
| offsplitfpar 8049 | Express the function opera... |
| f2ndf 8050 | The ` 2nd ` (second compon... |
| fo2ndf 8051 | The ` 2nd ` (second compon... |
| f1o2ndf1 8052 | The ` 2nd ` (second compon... |
| opco1 8053 | Value of an operation prec... |
| opco2 8054 | Value of an operation prec... |
| opco1i 8055 | Inference form of ~ opco1 ... |
| frxp 8056 | A lexicographical ordering... |
| xporderlem 8057 | Lemma for lexicographical ... |
| poxp 8058 | A lexicographical ordering... |
| soxp 8059 | A lexicographical ordering... |
| wexp 8060 | A lexicographical ordering... |
| fnwelem 8061 | Lemma for ~ fnwe . (Contr... |
| fnwe 8062 | A variant on lexicographic... |
| fnse 8063 | Condition for the well-ord... |
| fvproj 8064 | Value of a function on ord... |
| fimaproj 8065 | Image of a cartesian produ... |
| ralxpes 8066 | A version of ~ ralxp with ... |
| ralxp3f 8067 | Restricted for all over a ... |
| ralxp3 8068 | Restricted for all over a ... |
| ralxp3es 8069 | Restricted for-all over a ... |
| frpoins3xpg 8070 | Special case of founded pa... |
| frpoins3xp3g 8071 | Special case of founded pa... |
| xpord2lem 8072 | Lemma for Cartesian produc... |
| poxp2 8073 | Another way of partially o... |
| frxp2 8074 | Another way of giving a we... |
| xpord2pred 8075 | Calculate the predecessor ... |
| sexp2 8076 | Condition for the relation... |
| xpord2indlem 8077 | Induction over the Cartesi... |
| xpord2ind 8078 | Induction over the Cartesi... |
| xpord3lem 8079 | Lemma for triple ordering.... |
| poxp3 8080 | Triple Cartesian product p... |
| frxp3 8081 | Give well-foundedness over... |
| xpord3pred 8082 | Calculate the predecsessor... |
| sexp3 8083 | Show that the triple order... |
| xpord3inddlem 8084 | Induction over the triple ... |
| xpord3indd 8085 | Induction over the triple ... |
| xpord3ind 8086 | Induction over the triple ... |
| orderseqlem 8087 | Lemma for ~ poseq and ~ so... |
| poseq 8088 | A partial ordering of ordi... |
| soseq 8089 | A linear ordering of ordin... |
| suppval 8092 | The value of the operation... |
| supp0prc 8093 | The support of a class is ... |
| suppvalbr 8094 | The value of the operation... |
| supp0 8095 | The support of the empty s... |
| suppval1 8096 | The value of the operation... |
| suppvalfng 8097 | The value of the operation... |
| suppvalfn 8098 | The value of the operation... |
| elsuppfng 8099 | An element of the support ... |
| elsuppfn 8100 | An element of the support ... |
| fvdifsupp 8101 | Function value is zero out... |
| cnvimadfsn 8102 | The support of functions "... |
| suppimacnvss 8103 | The support of functions "... |
| suppimacnv 8104 | Support sets of functions ... |
| fsuppeq 8105 | Two ways of writing the su... |
| fsuppeqg 8106 | Version of ~ fsuppeq avoid... |
| suppssdm 8107 | The support of a function ... |
| suppsnop 8108 | The support of a singleton... |
| snopsuppss 8109 | The support of a singleton... |
| fvn0elsupp 8110 | If the function value for ... |
| fvn0elsuppb 8111 | The function value for a g... |
| rexsupp 8112 | Existential quantification... |
| ressuppss 8113 | The support of the restric... |
| suppun 8114 | The support of a class/fun... |
| ressuppssdif 8115 | The support of the restric... |
| mptsuppdifd 8116 | The support of a function ... |
| mptsuppd 8117 | The support of a function ... |
| extmptsuppeq 8118 | The support of an extended... |
| suppfnss 8119 | The support of a function ... |
| funsssuppss 8120 | The support of a function ... |
| fnsuppres 8121 | Two ways to express restri... |
| fnsuppeq0 8122 | The support of a function ... |
| fczsupp0 8123 | The support of a constant ... |
| suppss 8124 | Show that the support of a... |
| suppssr 8125 | A function is zero outside... |
| suppssrg 8126 | A function is zero outside... |
| suppssov1 8127 | Formula building theorem f... |
| suppssov2 8128 | Formula building theorem f... |
| suppssof1 8129 | Formula building theorem f... |
| suppss2 8130 | Show that the support of a... |
| suppsssn 8131 | Show that the support of a... |
| suppssfv 8132 | Formula building theorem f... |
| suppofssd 8133 | Condition for the support ... |
| suppofss1d 8134 | Condition for the support ... |
| suppofss2d 8135 | Condition for the support ... |
| suppco 8136 | The support of the composi... |
| suppcoss 8137 | The support of the composi... |
| supp0cosupp0 8138 | The support of the composi... |
| imacosupp 8139 | The image of the support o... |
| opeliunxp2f 8140 | Membership in a union of C... |
| mpoxeldm 8141 | If there is an element of ... |
| mpoxneldm 8142 | If the first argument of a... |
| mpoxopn0yelv 8143 | If there is an element of ... |
| mpoxopynvov0g 8144 | If the second argument of ... |
| mpoxopxnop0 8145 | If the first argument of a... |
| mpoxopx0ov0 8146 | If the first argument of a... |
| mpoxopxprcov0 8147 | If the components of the f... |
| mpoxopynvov0 8148 | If the second argument of ... |
| mpoxopoveq 8149 | Value of an operation give... |
| mpoxopovel 8150 | Element of the value of an... |
| mpoxopoveqd 8151 | Value of an operation give... |
| brovex 8152 | A binary relation of the v... |
| brovmpoex 8153 | A binary relation of the v... |
| sprmpod 8154 | The extension of a binary ... |
| tposss 8157 | Subset theorem for transpo... |
| tposeq 8158 | Equality theorem for trans... |
| tposeqd 8159 | Equality theorem for trans... |
| tposssxp 8160 | The transposition is a sub... |
| reltpos 8161 | The transposition is a rel... |
| brtpos2 8162 | Value of the transposition... |
| brtpos0 8163 | The behavior of ` tpos ` w... |
| reldmtpos 8164 | Necessary and sufficient c... |
| brtpos 8165 | The transposition swaps ar... |
| ottpos 8166 | The transposition swaps th... |
| relbrtpos 8167 | The transposition swaps ar... |
| dmtpos 8168 | The domain of ` tpos F ` w... |
| rntpos 8169 | The range of ` tpos F ` wh... |
| tposexg 8170 | The transposition of a set... |
| ovtpos 8171 | The transposition swaps th... |
| tposfun 8172 | The transposition of a fun... |
| dftpos2 8173 | Alternate definition of ` ... |
| dftpos3 8174 | Alternate definition of ` ... |
| dftpos4 8175 | Alternate definition of ` ... |
| tpostpos 8176 | Value of the double transp... |
| tpostpos2 8177 | Value of the double transp... |
| tposfn2 8178 | The domain of a transposit... |
| tposfo2 8179 | Condition for a surjective... |
| tposf2 8180 | The domain and codomain of... |
| tposf12 8181 | Condition for an injective... |
| tposf1o2 8182 | Condition of a bijective t... |
| tposfo 8183 | The domain and codomain/ra... |
| tposf 8184 | The domain and codomain of... |
| tposfn 8185 | Functionality of a transpo... |
| tpos0 8186 | Transposition of the empty... |
| tposco 8187 | Transposition of a composi... |
| tpossym 8188 | Two ways to say a function... |
| tposeqi 8189 | Equality theorem for trans... |
| tposex 8190 | A transposition is a set. ... |
| nftpos 8191 | Hypothesis builder for tra... |
| tposoprab 8192 | Transposition of a class o... |
| tposmpo 8193 | Transposition of a two-arg... |
| tposconst 8194 | The transposition of a con... |
| mpocurryd 8199 | The currying of an operati... |
| mpocurryvald 8200 | The value of a curried ope... |
| fvmpocurryd 8201 | The value of the value of ... |
| pwuninel2 8204 | Proof of ~ pwuninel under ... |
| pwuninel 8205 | The powerclass of the unio... |
| undefval 8206 | Value of the undefined val... |
| undefnel2 8207 | The undefined value genera... |
| undefnel 8208 | The undefined value genera... |
| undefne0 8209 | The undefined value genera... |
| frecseq123 8212 | Equality theorem for the w... |
| nffrecs 8213 | Bound-variable hypothesis ... |
| csbfrecsg 8214 | Move class substitution in... |
| fpr3g 8215 | Functions defined by well-... |
| frrlem1 8216 | Lemma for well-founded rec... |
| frrlem2 8217 | Lemma for well-founded rec... |
| frrlem3 8218 | Lemma for well-founded rec... |
| frrlem4 8219 | Lemma for well-founded rec... |
| frrlem5 8220 | Lemma for well-founded rec... |
| frrlem6 8221 | Lemma for well-founded rec... |
| frrlem7 8222 | Lemma for well-founded rec... |
| frrlem8 8223 | Lemma for well-founded rec... |
| frrlem9 8224 | Lemma for well-founded rec... |
| frrlem10 8225 | Lemma for well-founded rec... |
| frrlem11 8226 | Lemma for well-founded rec... |
| frrlem12 8227 | Lemma for well-founded rec... |
| frrlem13 8228 | Lemma for well-founded rec... |
| frrlem14 8229 | Lemma for well-founded rec... |
| fprlem1 8230 | Lemma for well-founded rec... |
| fprlem2 8231 | Lemma for well-founded rec... |
| fpr2a 8232 | Weak version of ~ fpr2 whi... |
| fpr1 8233 | Law of well-founded recurs... |
| fpr2 8234 | Law of well-founded recurs... |
| fpr3 8235 | Law of well-founded recurs... |
| frrrel 8236 | Show without using the axi... |
| frrdmss 8237 | Show without using the axi... |
| frrdmcl 8238 | Show without using the axi... |
| fprfung 8239 | A "function" defined by we... |
| fprresex 8240 | The restriction of a funct... |
| wrecseq123 8243 | General equality theorem f... |
| nfwrecs 8244 | Bound-variable hypothesis ... |
| wrecseq1 8245 | Equality theorem for the w... |
| wrecseq2 8246 | Equality theorem for the w... |
| wrecseq3 8247 | Equality theorem for the w... |
| csbwrecsg 8248 | Move class substitution in... |
| wfr3g 8249 | Functions defined by well-... |
| wfrrel 8250 | The well-ordered recursion... |
| wfrdmss 8251 | The domain of the well-ord... |
| wfrdmcl 8252 | The predecessor class of a... |
| wfrfun 8253 | The "function" generated b... |
| wfrresex 8254 | Show without using the axi... |
| wfr2a 8255 | A weak version of ~ wfr2 w... |
| wfr1 8256 | The Principle of Well-Orde... |
| wfr2 8257 | The Principle of Well-Orde... |
| wfr3 8258 | The principle of Well-Orde... |
| iunon 8259 | The indexed union of a set... |
| iinon 8260 | The nonempty indexed inter... |
| onfununi 8261 | A property of functions on... |
| onovuni 8262 | A variant of ~ onfununi fo... |
| onoviun 8263 | A variant of ~ onovuni wit... |
| onnseq 8264 | There are no length ` _om ... |
| dfsmo2 8267 | Alternate definition of a ... |
| issmo 8268 | Conditions for which ` A `... |
| issmo2 8269 | Alternate definition of a ... |
| smoeq 8270 | Equality theorem for stric... |
| smodm 8271 | The domain of a strictly m... |
| smores 8272 | A strictly monotone functi... |
| smores3 8273 | A strictly monotone functi... |
| smores2 8274 | A strictly monotone ordina... |
| smodm2 8275 | The domain of a strictly m... |
| smofvon2 8276 | The function values of a s... |
| iordsmo 8277 | The identity relation rest... |
| smo0 8278 | The null set is a strictly... |
| smofvon 8279 | If ` B ` is a strictly mon... |
| smoel 8280 | If ` x ` is less than ` y ... |
| smoiun 8281 | The value of a strictly mo... |
| smoiso 8282 | If ` F ` is an isomorphism... |
| smoel2 8283 | A strictly monotone ordina... |
| smo11 8284 | A strictly monotone ordina... |
| smoord 8285 | A strictly monotone ordina... |
| smoword 8286 | A strictly monotone ordina... |
| smogt 8287 | A strictly monotone ordina... |
| smocdmdom 8288 | The codomain of a strictly... |
| smoiso2 8289 | The strictly monotone ordi... |
| dfrecs3 8292 | The old definition of tran... |
| recseq 8293 | Equality theorem for ` rec... |
| nfrecs 8294 | Bound-variable hypothesis ... |
| tfrlem1 8295 | A technical lemma for tran... |
| tfrlem3a 8296 | Lemma for transfinite recu... |
| tfrlem3 8297 | Lemma for transfinite recu... |
| tfrlem4 8298 | Lemma for transfinite recu... |
| tfrlem5 8299 | Lemma for transfinite recu... |
| recsfval 8300 | Lemma for transfinite recu... |
| tfrlem6 8301 | Lemma for transfinite recu... |
| tfrlem7 8302 | Lemma for transfinite recu... |
| tfrlem8 8303 | Lemma for transfinite recu... |
| tfrlem9 8304 | Lemma for transfinite recu... |
| tfrlem9a 8305 | Lemma for transfinite recu... |
| tfrlem10 8306 | Lemma for transfinite recu... |
| tfrlem11 8307 | Lemma for transfinite recu... |
| tfrlem12 8308 | Lemma for transfinite recu... |
| tfrlem13 8309 | Lemma for transfinite recu... |
| tfrlem14 8310 | Lemma for transfinite recu... |
| tfrlem15 8311 | Lemma for transfinite recu... |
| tfrlem16 8312 | Lemma for finite recursion... |
| tfr1a 8313 | A weak version of ~ tfr1 w... |
| tfr2a 8314 | A weak version of ~ tfr2 w... |
| tfr2b 8315 | Without assuming ~ ax-rep ... |
| tfr1 8316 | Principle of Transfinite R... |
| tfr2 8317 | Principle of Transfinite R... |
| tfr3 8318 | Principle of Transfinite R... |
| tfr1ALT 8319 | Alternate proof of ~ tfr1 ... |
| tfr2ALT 8320 | Alternate proof of ~ tfr2 ... |
| tfr3ALT 8321 | Alternate proof of ~ tfr3 ... |
| recsfnon 8322 | Strong transfinite recursi... |
| recsval 8323 | Strong transfinite recursi... |
| tz7.44lem1 8324 | The ordered pair abstracti... |
| tz7.44-1 8325 | The value of ` F ` at ` (/... |
| tz7.44-2 8326 | The value of ` F ` at a su... |
| tz7.44-3 8327 | The value of ` F ` at a li... |
| rdgeq1 8330 | Equality theorem for the r... |
| rdgeq2 8331 | Equality theorem for the r... |
| rdgeq12 8332 | Equality theorem for the r... |
| nfrdg 8333 | Bound-variable hypothesis ... |
| rdglem1 8334 | Lemma used with the recurs... |
| rdgfun 8335 | The recursive definition g... |
| rdgdmlim 8336 | The domain of the recursiv... |
| rdgfnon 8337 | The recursive definition g... |
| rdgvalg 8338 | Value of the recursive def... |
| rdgval 8339 | Value of the recursive def... |
| rdg0 8340 | The initial value of the r... |
| rdgseg 8341 | The initial segments of th... |
| rdgsucg 8342 | The value of the recursive... |
| rdgsuc 8343 | The value of the recursive... |
| rdglimg 8344 | The value of the recursive... |
| rdglim 8345 | The value of the recursive... |
| rdg0g 8346 | The initial value of the r... |
| rdgsucmptf 8347 | The value of the recursive... |
| rdgsucmptnf 8348 | The value of the recursive... |
| rdgsucmpt2 8349 | This version of ~ rdgsucmp... |
| rdgsucmpt 8350 | The value of the recursive... |
| rdglim2 8351 | The value of the recursive... |
| rdglim2a 8352 | The value of the recursive... |
| rdg0n 8353 | If ` A ` is a proper class... |
| frfnom 8354 | The function generated by ... |
| fr0g 8355 | The initial value resultin... |
| frsuc 8356 | The successor value result... |
| frsucmpt 8357 | The successor value result... |
| frsucmptn 8358 | The value of the finite re... |
| frsucmpt2 8359 | The successor value result... |
| tz7.48lem 8360 | A way of showing an ordina... |
| tz7.48-2 8361 | Proposition 7.48(2) of [Ta... |
| tz7.48-1 8362 | Proposition 7.48(1) of [Ta... |
| tz7.48-3 8363 | Proposition 7.48(3) of [Ta... |
| tz7.49 8364 | Proposition 7.49 of [Takeu... |
| tz7.49c 8365 | Corollary of Proposition 7... |
| seqomlem0 8368 | Lemma for ` seqom ` . Cha... |
| seqomlem1 8369 | Lemma for ` seqom ` . The... |
| seqomlem2 8370 | Lemma for ` seqom ` . (Co... |
| seqomlem3 8371 | Lemma for ` seqom ` . (Co... |
| seqomlem4 8372 | Lemma for ` seqom ` . (Co... |
| seqomeq12 8373 | Equality theorem for ` seq... |
| fnseqom 8374 | An index-aware recursive d... |
| seqom0g 8375 | Value of an index-aware re... |
| seqomsuc 8376 | Value of an index-aware re... |
| omsucelsucb 8377 | Membership is inherited by... |
| df1o2 8392 | Expanded value of the ordi... |
| df2o3 8393 | Expanded value of the ordi... |
| df2o2 8394 | Expanded value of the ordi... |
| 1oex 8395 | Ordinal 1 is a set. (Cont... |
| 2oex 8396 | ` 2o ` is a set. (Contrib... |
| 1on 8397 | Ordinal 1 is an ordinal nu... |
| 2on 8398 | Ordinal 2 is an ordinal nu... |
| 2on0 8399 | Ordinal two is not zero. ... |
| ord3 8400 | Ordinal 3 is an ordinal cl... |
| 3on 8401 | Ordinal 3 is an ordinal nu... |
| 4on 8402 | Ordinal 4 is an ordinal nu... |
| 1n0 8403 | Ordinal one is not equal t... |
| nlim1 8404 | 1 is not a limit ordinal. ... |
| nlim2 8405 | 2 is not a limit ordinal. ... |
| xp01disj 8406 | Cartesian products with th... |
| xp01disjl 8407 | Cartesian products with th... |
| ordgt0ge1 8408 | Two ways to express that a... |
| ordge1n0 8409 | An ordinal greater than or... |
| el1o 8410 | Membership in ordinal one.... |
| ord1eln01 8411 | An ordinal that is not 0 o... |
| ord2eln012 8412 | An ordinal that is not 0, ... |
| 1ellim 8413 | A limit ordinal contains 1... |
| 2ellim 8414 | A limit ordinal contains 2... |
| dif1o 8415 | Two ways to say that ` A `... |
| ondif1 8416 | Two ways to say that ` A `... |
| ondif2 8417 | Two ways to say that ` A `... |
| 2oconcl 8418 | Closure of the pair swappi... |
| 0lt1o 8419 | Ordinal zero is less than ... |
| dif20el 8420 | An ordinal greater than on... |
| 0we1 8421 | The empty set is a well-or... |
| brwitnlem 8422 | Lemma for relations which ... |
| fnoa 8423 | Functionality and domain o... |
| fnom 8424 | Functionality and domain o... |
| fnoe 8425 | Functionality and domain o... |
| oav 8426 | Value of ordinal addition.... |
| omv 8427 | Value of ordinal multiplic... |
| oe0lem 8428 | A helper lemma for ~ oe0 a... |
| oev 8429 | Value of ordinal exponenti... |
| oevn0 8430 | Value of ordinal exponenti... |
| oa0 8431 | Addition with zero. Propo... |
| om0 8432 | Ordinal multiplication wit... |
| oe0m 8433 | Value of zero raised to an... |
| om0x 8434 | Ordinal multiplication wit... |
| oe0m0 8435 | Ordinal exponentiation wit... |
| oe0m1 8436 | Ordinal exponentiation wit... |
| oe0 8437 | Ordinal exponentiation wit... |
| oev2 8438 | Alternate value of ordinal... |
| oasuc 8439 | Addition with successor. ... |
| oesuclem 8440 | Lemma for ~ oesuc . (Cont... |
| omsuc 8441 | Multiplication with succes... |
| oesuc 8442 | Ordinal exponentiation wit... |
| onasuc 8443 | Addition with successor. ... |
| onmsuc 8444 | Multiplication with succes... |
| onesuc 8445 | Exponentiation with a succ... |
| oa1suc 8446 | Addition with 1 is same as... |
| oalim 8447 | Ordinal addition with a li... |
| omlim 8448 | Ordinal multiplication wit... |
| oelim 8449 | Ordinal exponentiation wit... |
| oacl 8450 | Closure law for ordinal ad... |
| omcl 8451 | Closure law for ordinal mu... |
| oecl 8452 | Closure law for ordinal ex... |
| oa0r 8453 | Ordinal addition with zero... |
| om0r 8454 | Ordinal multiplication wit... |
| o1p1e2 8455 | 1 + 1 = 2 for ordinal numb... |
| o2p2e4 8456 | 2 + 2 = 4 for ordinal numb... |
| om1 8457 | Ordinal multiplication wit... |
| om1r 8458 | Ordinal multiplication wit... |
| oe1 8459 | Ordinal exponentiation wit... |
| oe1m 8460 | Ordinal exponentiation wit... |
| oaordi 8461 | Ordering property of ordin... |
| oaord 8462 | Ordering property of ordin... |
| oacan 8463 | Left cancellation law for ... |
| oaword 8464 | Weak ordering property of ... |
| oawordri 8465 | Weak ordering property of ... |
| oaord1 8466 | An ordinal is less than it... |
| oaword1 8467 | An ordinal is less than or... |
| oaword2 8468 | An ordinal is less than or... |
| oawordeulem 8469 | Lemma for ~ oawordex . (C... |
| oawordeu 8470 | Existence theorem for weak... |
| oawordexr 8471 | Existence theorem for weak... |
| oawordex 8472 | Existence theorem for weak... |
| oaordex 8473 | Existence theorem for orde... |
| oa00 8474 | An ordinal sum is zero iff... |
| oalimcl 8475 | The ordinal sum with a lim... |
| oaass 8476 | Ordinal addition is associ... |
| oarec 8477 | Recursive definition of or... |
| oaf1o 8478 | Left addition by a constan... |
| oacomf1olem 8479 | Lemma for ~ oacomf1o . (C... |
| oacomf1o 8480 | Define a bijection from ` ... |
| omordi 8481 | Ordering property of ordin... |
| omord2 8482 | Ordering property of ordin... |
| omord 8483 | Ordering property of ordin... |
| omcan 8484 | Left cancellation law for ... |
| omword 8485 | Weak ordering property of ... |
| omwordi 8486 | Weak ordering property of ... |
| omwordri 8487 | Weak ordering property of ... |
| omword1 8488 | An ordinal is less than or... |
| omword2 8489 | An ordinal is less than or... |
| om00 8490 | The product of two ordinal... |
| om00el 8491 | The product of two nonzero... |
| omordlim 8492 | Ordering involving the pro... |
| omlimcl 8493 | The product of any nonzero... |
| odi 8494 | Distributive law for ordin... |
| omass 8495 | Multiplication of ordinal ... |
| oneo 8496 | If an ordinal number is ev... |
| omeulem1 8497 | Lemma for ~ omeu : existen... |
| omeulem2 8498 | Lemma for ~ omeu : uniquen... |
| omopth2 8499 | An ordered pair-like theor... |
| omeu 8500 | The division algorithm for... |
| oen0 8501 | Ordinal exponentiation wit... |
| oeordi 8502 | Ordering law for ordinal e... |
| oeord 8503 | Ordering property of ordin... |
| oecan 8504 | Left cancellation law for ... |
| oeword 8505 | Weak ordering property of ... |
| oewordi 8506 | Weak ordering property of ... |
| oewordri 8507 | Weak ordering property of ... |
| oeworde 8508 | Ordinal exponentiation com... |
| oeordsuc 8509 | Ordering property of ordin... |
| oelim2 8510 | Ordinal exponentiation wit... |
| oeoalem 8511 | Lemma for ~ oeoa . (Contr... |
| oeoa 8512 | Sum of exponents law for o... |
| oeoelem 8513 | Lemma for ~ oeoe . (Contr... |
| oeoe 8514 | Product of exponents law f... |
| oelimcl 8515 | The ordinal exponential wi... |
| oeeulem 8516 | Lemma for ~ oeeu . (Contr... |
| oeeui 8517 | The division algorithm for... |
| oeeu 8518 | The division algorithm for... |
| nna0 8519 | Addition with zero. Theor... |
| nnm0 8520 | Multiplication with zero. ... |
| nnasuc 8521 | Addition with successor. ... |
| nnmsuc 8522 | Multiplication with succes... |
| nnesuc 8523 | Exponentiation with a succ... |
| nna0r 8524 | Addition to zero. Remark ... |
| nnm0r 8525 | Multiplication with zero. ... |
| nnacl 8526 | Closure of addition of nat... |
| nnmcl 8527 | Closure of multiplication ... |
| nnecl 8528 | Closure of exponentiation ... |
| nnacli 8529 | ` _om ` is closed under ad... |
| nnmcli 8530 | ` _om ` is closed under mu... |
| nnarcl 8531 | Reverse closure law for ad... |
| nnacom 8532 | Addition of natural number... |
| nnaordi 8533 | Ordering property of addit... |
| nnaord 8534 | Ordering property of addit... |
| nnaordr 8535 | Ordering property of addit... |
| nnawordi 8536 | Adding to both sides of an... |
| nnaass 8537 | Addition of natural number... |
| nndi 8538 | Distributive law for natur... |
| nnmass 8539 | Multiplication of natural ... |
| nnmsucr 8540 | Multiplication with succes... |
| nnmcom 8541 | Multiplication of natural ... |
| nnaword 8542 | Weak ordering property of ... |
| nnacan 8543 | Cancellation law for addit... |
| nnaword1 8544 | Weak ordering property of ... |
| nnaword2 8545 | Weak ordering property of ... |
| nnmordi 8546 | Ordering property of multi... |
| nnmord 8547 | Ordering property of multi... |
| nnmword 8548 | Weak ordering property of ... |
| nnmcan 8549 | Cancellation law for multi... |
| nnmwordi 8550 | Weak ordering property of ... |
| nnmwordri 8551 | Weak ordering property of ... |
| nnawordex 8552 | Equivalence for weak order... |
| nnaordex 8553 | Equivalence for ordering. ... |
| nnaordex2 8554 | Equivalence for ordering. ... |
| 1onn 8555 | The ordinal 1 is a natural... |
| 1onnALT 8556 | Shorter proof of ~ 1onn us... |
| 2onn 8557 | The ordinal 2 is a natural... |
| 2onnALT 8558 | Shorter proof of ~ 2onn us... |
| 3onn 8559 | The ordinal 3 is a natural... |
| 4onn 8560 | The ordinal 4 is a natural... |
| 1one2o 8561 | Ordinal one is not ordinal... |
| oaabslem 8562 | Lemma for ~ oaabs . (Cont... |
| oaabs 8563 | Ordinal addition absorbs a... |
| oaabs2 8564 | The absorption law ~ oaabs... |
| omabslem 8565 | Lemma for ~ omabs . (Cont... |
| omabs 8566 | Ordinal multiplication is ... |
| nnm1 8567 | Multiply an element of ` _... |
| nnm2 8568 | Multiply an element of ` _... |
| nn2m 8569 | Multiply an element of ` _... |
| nnneo 8570 | If a natural number is eve... |
| nneob 8571 | A natural number is even i... |
| omsmolem 8572 | Lemma for ~ omsmo . (Cont... |
| omsmo 8573 | A strictly monotonic ordin... |
| omopthlem1 8574 | Lemma for ~ omopthi . (Co... |
| omopthlem2 8575 | Lemma for ~ omopthi . (Co... |
| omopthi 8576 | An ordered pair theorem fo... |
| omopth 8577 | An ordered pair theorem fo... |
| nnasmo 8578 | There is at most one left ... |
| eldifsucnn 8579 | Condition for membership i... |
| on2recsfn 8582 | Show that double recursion... |
| on2recsov 8583 | Calculate the value of the... |
| on2ind 8584 | Double induction over ordi... |
| on3ind 8585 | Triple induction over ordi... |
| coflton 8586 | Cofinality theorem for ord... |
| cofon1 8587 | Cofinality theorem for ord... |
| cofon2 8588 | Cofinality theorem for ord... |
| cofonr 8589 | Inverse cofinality law for... |
| naddfn 8590 | Natural addition is a func... |
| naddcllem 8591 | Lemma for ordinal addition... |
| naddcl 8592 | Closure law for natural ad... |
| naddov 8593 | The value of natural addit... |
| naddov2 8594 | Alternate expression for n... |
| naddov3 8595 | Alternate expression for n... |
| naddf 8596 | Function statement for nat... |
| naddcom 8597 | Natural addition commutes.... |
| naddrid 8598 | Ordinal zero is the additi... |
| naddlid 8599 | Ordinal zero is the additi... |
| naddssim 8600 | Ordinal less-than-or-equal... |
| naddelim 8601 | Ordinal less-than is prese... |
| naddel1 8602 | Ordinal less-than is not a... |
| naddel2 8603 | Ordinal less-than is not a... |
| naddss1 8604 | Ordinal less-than-or-equal... |
| naddss2 8605 | Ordinal less-than-or-equal... |
| naddword1 8606 | Weak-ordering principle fo... |
| naddword2 8607 | Weak-ordering principle fo... |
| naddunif 8608 | Uniformity theorem for nat... |
| naddasslem1 8609 | Lemma for ~ naddass . Exp... |
| naddasslem2 8610 | Lemma for ~ naddass . Exp... |
| naddass 8611 | Natural ordinal addition i... |
| nadd32 8612 | Commutative/associative la... |
| nadd4 8613 | Rearragement of terms in a... |
| nadd42 8614 | Rearragement of terms in a... |
| naddel12 8615 | Natural addition to both s... |
| naddsuc2 8616 | Natural addition with succ... |
| naddoa 8617 | Natural addition of a natu... |
| omnaddcl 8618 | The naturals are closed un... |
| dfer2 8623 | Alternate definition of eq... |
| dfec2 8625 | Alternate definition of ` ... |
| ecexg 8626 | An equivalence class modul... |
| ecexr 8627 | A nonempty equivalence cla... |
| ereq1 8629 | Equality theorem for equiv... |
| ereq2 8630 | Equality theorem for equiv... |
| errel 8631 | An equivalence relation is... |
| erdm 8632 | The domain of an equivalen... |
| ercl 8633 | Elementhood in the field o... |
| ersym 8634 | An equivalence relation is... |
| ercl2 8635 | Elementhood in the field o... |
| ersymb 8636 | An equivalence relation is... |
| ertr 8637 | An equivalence relation is... |
| ertrd 8638 | A transitivity relation fo... |
| ertr2d 8639 | A transitivity relation fo... |
| ertr3d 8640 | A transitivity relation fo... |
| ertr4d 8641 | A transitivity relation fo... |
| erref 8642 | An equivalence relation is... |
| ercnv 8643 | The converse of an equival... |
| errn 8644 | The range and domain of an... |
| erssxp 8645 | An equivalence relation is... |
| erex 8646 | An equivalence relation is... |
| erexb 8647 | An equivalence relation is... |
| iserd 8648 | A reflexive, symmetric, tr... |
| iseri 8649 | A reflexive, symmetric, tr... |
| iseriALT 8650 | Alternate proof of ~ iseri... |
| brinxper 8651 | Conditions for a reflexive... |
| brdifun 8652 | Evaluate the incomparabili... |
| swoer 8653 | Incomparability under a st... |
| swoord1 8654 | The incomparability equiva... |
| swoord2 8655 | The incomparability equiva... |
| swoso 8656 | If the incomparability rel... |
| eqerlem 8657 | Lemma for ~ eqer . (Contr... |
| eqer 8658 | Equivalence relation invol... |
| ider 8659 | The identity relation is a... |
| 0er 8660 | The empty set is an equiva... |
| eceq1 8661 | Equality theorem for equiv... |
| eceq1d 8662 | Equality theorem for equiv... |
| eceq2 8663 | Equality theorem for equiv... |
| eceq2i 8664 | Equality theorem for the `... |
| eceq2d 8665 | Equality theorem for the `... |
| elecg 8666 | Membership in an equivalen... |
| ecref 8667 | All elements are in their ... |
| elec 8668 | Membership in an equivalen... |
| relelec 8669 | Membership in an equivalen... |
| elecres 8670 | Elementhood in the restric... |
| elecreseq 8671 | The restricted coset of ` ... |
| elecex 8672 | Condition for a coset to b... |
| ecss 8673 | An equivalence class is a ... |
| ecdmn0 8674 | A representative of a none... |
| ereldm 8675 | Equality of equivalence cl... |
| erth 8676 | Basic property of equivale... |
| erth2 8677 | Basic property of equivale... |
| erthi 8678 | Basic property of equivale... |
| erdisj 8679 | Equivalence classes do not... |
| ecidsn 8680 | An equivalence class modul... |
| qseq1 8681 | Equality theorem for quoti... |
| qseq2 8682 | Equality theorem for quoti... |
| qseq2i 8683 | Equality theorem for quoti... |
| qseq1d 8684 | Equality theorem for quoti... |
| qseq2d 8685 | Equality theorem for quoti... |
| qseq12 8686 | Equality theorem for quoti... |
| 0qs 8687 | Quotient set with the empt... |
| elqsg 8688 | Closed form of ~ elqs . (... |
| elqs 8689 | Membership in a quotient s... |
| elqsi 8690 | Membership in a quotient s... |
| elqsecl 8691 | Membership in a quotient s... |
| ecelqs 8692 | Membership of an equivalen... |
| ecelqsw 8693 | Membership of an equivalen... |
| ecelqsi 8694 | Membership of an equivalen... |
| ecopqsi 8695 | "Closure" law for equivale... |
| qsexg 8696 | A quotient set exists. (C... |
| qsex 8697 | A quotient set exists. (C... |
| uniqs 8698 | The union of a quotient se... |
| uniqsw 8699 | The union of a quotient se... |
| qsss 8700 | A quotient set is a set of... |
| uniqs2 8701 | The union of a quotient se... |
| snec 8702 | The singleton of an equiva... |
| ecqs 8703 | Equivalence class in terms... |
| ecid 8704 | A set is equal to its cose... |
| qsid 8705 | A set is equal to its quot... |
| ectocld 8706 | Implicit substitution of c... |
| ectocl 8707 | Implicit substitution of c... |
| elqsn0 8708 | A quotient set does not co... |
| ecelqsdm 8709 | Membership of an equivalen... |
| ecelqsdmb 8710 | ` R ` -coset of ` B ` in a... |
| eceldmqs 8711 | ` R ` -coset in its domain... |
| xpider 8712 | A Cartesian square is an e... |
| iiner 8713 | The intersection of a none... |
| riiner 8714 | The relative intersection ... |
| erinxp 8715 | A restricted equivalence r... |
| ecinxp 8716 | Restrict the relation in a... |
| qsinxp 8717 | Restrict the equivalence r... |
| qsdisj 8718 | Members of a quotient set ... |
| qsdisj2 8719 | A quotient set is a disjoi... |
| qsel 8720 | If an element of a quotien... |
| uniinqs 8721 | Class union distributes ov... |
| qliftlem 8722 | Lemma for theorems about a... |
| qliftrel 8723 | ` F ` , a function lift, i... |
| qliftel 8724 | Elementhood in the relatio... |
| qliftel1 8725 | Elementhood in the relatio... |
| qliftfun 8726 | The function ` F ` is the ... |
| qliftfund 8727 | The function ` F ` is the ... |
| qliftfuns 8728 | The function ` F ` is the ... |
| qliftf 8729 | The domain and codomain of... |
| qliftval 8730 | The value of the function ... |
| ecoptocl 8731 | Implicit substitution of c... |
| 2ecoptocl 8732 | Implicit substitution of c... |
| 3ecoptocl 8733 | Implicit substitution of c... |
| brecop 8734 | Binary relation on a quoti... |
| brecop2 8735 | Binary relation on a quoti... |
| eroveu 8736 | Lemma for ~ erov and ~ ero... |
| erovlem 8737 | Lemma for ~ erov and ~ ero... |
| erov 8738 | The value of an operation ... |
| eroprf 8739 | Functionality of an operat... |
| erov2 8740 | The value of an operation ... |
| eroprf2 8741 | Functionality of an operat... |
| ecopoveq 8742 | This is the first of sever... |
| ecopovsym 8743 | Assuming the operation ` F... |
| ecopovtrn 8744 | Assuming that operation ` ... |
| ecopover 8745 | Assuming that operation ` ... |
| eceqoveq 8746 | Equality of equivalence re... |
| ecovcom 8747 | Lemma used to transfer a c... |
| ecovass 8748 | Lemma used to transfer an ... |
| ecovdi 8749 | Lemma used to transfer a d... |
| mapprc 8754 | When ` A ` is a proper cla... |
| pmex 8755 | The class of all partial f... |
| mapexOLD 8756 | Obsolete version of ~ mape... |
| fnmap 8757 | Set exponentiation has a u... |
| fnpm 8758 | Partial function exponenti... |
| reldmmap 8759 | Set exponentiation is a we... |
| mapvalg 8760 | The value of set exponenti... |
| pmvalg 8761 | The value of the partial m... |
| mapval 8762 | The value of set exponenti... |
| elmapg 8763 | Membership relation for se... |
| elmapd 8764 | Deduction form of ~ elmapg... |
| elmapdd 8765 | Deduction associated with ... |
| mapdm0 8766 | The empty set is the only ... |
| elpmg 8767 | The predicate "is a partia... |
| elpm2g 8768 | The predicate "is a partia... |
| elpm2r 8769 | Sufficient condition for b... |
| elpmi 8770 | A partial function is a fu... |
| pmfun 8771 | A partial function is a fu... |
| elmapex 8772 | Eliminate antecedent for m... |
| elmapi 8773 | A mapping is a function, f... |
| mapfset 8774 | If ` B ` is a set, the val... |
| mapssfset 8775 | The value of the set expon... |
| mapfoss 8776 | The value of the set expon... |
| fsetsspwxp 8777 | The class of all functions... |
| fset0 8778 | The set of functions from ... |
| fsetdmprc0 8779 | The set of functions with ... |
| fsetex 8780 | The set of functions betwe... |
| f1setex 8781 | The set of injections betw... |
| fosetex 8782 | The set of surjections bet... |
| f1osetex 8783 | The set of bijections betw... |
| fsetfcdm 8784 | The class of functions wit... |
| fsetfocdm 8785 | The class of functions wit... |
| fsetprcnex 8786 | The class of all functions... |
| fsetcdmex 8787 | The class of all functions... |
| fsetexb 8788 | The class of all functions... |
| elmapfn 8789 | A mapping is a function wi... |
| elmapfun 8790 | A mapping is always a func... |
| elmapssres 8791 | A restricted mapping is a ... |
| fpmg 8792 | A total function is a part... |
| pmss12g 8793 | Subset relation for the se... |
| pmresg 8794 | Elementhood of a restricte... |
| elmap 8795 | Membership relation for se... |
| mapval2 8796 | Alternate expression for t... |
| elpm 8797 | The predicate "is a partia... |
| elpm2 8798 | The predicate "is a partia... |
| fpm 8799 | A total function is a part... |
| mapsspm 8800 | Set exponentiation is a su... |
| pmsspw 8801 | Partial maps are a subset ... |
| mapsspw 8802 | Set exponentiation is a su... |
| mapfvd 8803 | The value of a function th... |
| elmapresaun 8804 | ~ fresaun transposed to ma... |
| fvmptmap 8805 | Special case of ~ fvmpt fo... |
| map0e 8806 | Set exponentiation with an... |
| map0b 8807 | Set exponentiation with an... |
| map0g 8808 | Set exponentiation is empt... |
| 0map0sn0 8809 | The set of mappings of the... |
| mapsnd 8810 | The value of set exponenti... |
| map0 8811 | Set exponentiation is empt... |
| mapsn 8812 | The value of set exponenti... |
| mapss 8813 | Subset inheritance for set... |
| fdiagfn 8814 | Functionality of the diago... |
| fvdiagfn 8815 | Functionality of the diago... |
| mapsnconst 8816 | Every singleton map is a c... |
| mapsncnv 8817 | Expression for the inverse... |
| mapsnf1o2 8818 | Explicit bijection between... |
| mapsnf1o3 8819 | Explicit bijection in the ... |
| ralxpmap 8820 | Quantification over functi... |
| dfixp 8823 | Eliminate the expression `... |
| ixpsnval 8824 | The value of an infinite C... |
| elixp2 8825 | Membership in an infinite ... |
| fvixp 8826 | Projection of a factor of ... |
| ixpfn 8827 | A nuple is a function. (C... |
| elixp 8828 | Membership in an infinite ... |
| elixpconst 8829 | Membership in an infinite ... |
| ixpconstg 8830 | Infinite Cartesian product... |
| ixpconst 8831 | Infinite Cartesian product... |
| ixpeq1 8832 | Equality theorem for infin... |
| ixpeq1d 8833 | Equality theorem for infin... |
| ss2ixp 8834 | Subclass theorem for infin... |
| ixpeq2 8835 | Equality theorem for infin... |
| ixpeq2dva 8836 | Equality theorem for infin... |
| ixpeq2dv 8837 | Equality theorem for infin... |
| cbvixp 8838 | Change bound variable in a... |
| cbvixpv 8839 | Change bound variable in a... |
| nfixpw 8840 | Bound-variable hypothesis ... |
| nfixp 8841 | Bound-variable hypothesis ... |
| nfixp1 8842 | The index variable in an i... |
| ixpprc 8843 | A cartesian product of pro... |
| ixpf 8844 | A member of an infinite Ca... |
| uniixp 8845 | The union of an infinite C... |
| ixpexg 8846 | The existence of an infini... |
| ixpin 8847 | The intersection of two in... |
| ixpiin 8848 | The indexed intersection o... |
| ixpint 8849 | The intersection of a coll... |
| ixp0x 8850 | An infinite Cartesian prod... |
| ixpssmap2g 8851 | An infinite Cartesian prod... |
| ixpssmapg 8852 | An infinite Cartesian prod... |
| 0elixp 8853 | Membership of the empty se... |
| ixpn0 8854 | The infinite Cartesian pro... |
| ixp0 8855 | The infinite Cartesian pro... |
| ixpssmap 8856 | An infinite Cartesian prod... |
| resixp 8857 | Restriction of an element ... |
| undifixp 8858 | Union of two projections o... |
| mptelixpg 8859 | Condition for an explicit ... |
| resixpfo 8860 | Restriction of elements of... |
| elixpsn 8861 | Membership in a class of s... |
| ixpsnf1o 8862 | A bijection between a clas... |
| mapsnf1o 8863 | A bijection between a set ... |
| boxriin 8864 | A rectangular subset of a ... |
| boxcutc 8865 | The relative complement of... |
| relen 8874 | Equinumerosity is a relati... |
| reldom 8875 | Dominance is a relation. ... |
| relsdom 8876 | Strict dominance is a rela... |
| encv 8877 | If two classes are equinum... |
| breng 8878 | Equinumerosity relation. ... |
| bren 8879 | Equinumerosity relation. ... |
| brdom2g 8880 | Dominance relation. This ... |
| brdomg 8881 | Dominance relation. (Cont... |
| brdomi 8882 | Dominance relation. (Cont... |
| brdom 8883 | Dominance relation. (Cont... |
| domen 8884 | Dominance in terms of equi... |
| domeng 8885 | Dominance in terms of equi... |
| ctex 8886 | A countable set is a set. ... |
| f1oen4g 8887 | The domain and range of a ... |
| f1dom4g 8888 | The domain of a one-to-one... |
| f1oen3g 8889 | The domain and range of a ... |
| f1dom3g 8890 | The domain of a one-to-one... |
| f1oen2g 8891 | The domain and range of a ... |
| f1dom2g 8892 | The domain of a one-to-one... |
| f1oeng 8893 | The domain and range of a ... |
| f1domg 8894 | The domain of a one-to-one... |
| f1oen 8895 | The domain and range of a ... |
| f1dom 8896 | The domain of a one-to-one... |
| brsdom 8897 | Strict dominance relation,... |
| isfi 8898 | Express " ` A ` is finite"... |
| enssdom 8899 | Equinumerosity implies dom... |
| dfdom2 8900 | Alternate definition of do... |
| endom 8901 | Equinumerosity implies dom... |
| sdomdom 8902 | Strict dominance implies d... |
| sdomnen 8903 | Strict dominance implies n... |
| brdom2 8904 | Dominance in terms of stri... |
| bren2 8905 | Equinumerosity expressed i... |
| enrefg 8906 | Equinumerosity is reflexiv... |
| enref 8907 | Equinumerosity is reflexiv... |
| eqeng 8908 | Equality implies equinumer... |
| domrefg 8909 | Dominance is reflexive. (... |
| en2d 8910 | Equinumerosity inference f... |
| en3d 8911 | Equinumerosity inference f... |
| en2i 8912 | Equinumerosity inference f... |
| en3i 8913 | Equinumerosity inference f... |
| dom2lem 8914 | A mapping (first hypothesi... |
| dom2d 8915 | A mapping (first hypothesi... |
| dom3d 8916 | A mapping (first hypothesi... |
| dom2 8917 | A mapping (first hypothesi... |
| dom3 8918 | A mapping (first hypothesi... |
| idssen 8919 | Equality implies equinumer... |
| domssl 8920 | If ` A ` is a subset of ` ... |
| domssr 8921 | If ` C ` is a superset of ... |
| ssdomg 8922 | A set dominates its subset... |
| ener 8923 | Equinumerosity is an equiv... |
| ensymb 8924 | Symmetry of equinumerosity... |
| ensym 8925 | Symmetry of equinumerosity... |
| ensymi 8926 | Symmetry of equinumerosity... |
| ensymd 8927 | Symmetry of equinumerosity... |
| entr 8928 | Transitivity of equinumero... |
| domtr 8929 | Transitivity of dominance ... |
| entri 8930 | A chained equinumerosity i... |
| entr2i 8931 | A chained equinumerosity i... |
| entr3i 8932 | A chained equinumerosity i... |
| entr4i 8933 | A chained equinumerosity i... |
| endomtr 8934 | Transitivity of equinumero... |
| domentr 8935 | Transitivity of dominance ... |
| f1imaeng 8936 | If a function is one-to-on... |
| f1imaen2g 8937 | If a function is one-to-on... |
| f1imaen3g 8938 | If a set function is one-t... |
| f1imaen 8939 | If a function is one-to-on... |
| en0 8940 | The empty set is equinumer... |
| en0ALT 8941 | Shorter proof of ~ en0 , d... |
| en0r 8942 | The empty set is equinumer... |
| ensn1 8943 | A singleton is equinumerou... |
| ensn1g 8944 | A singleton is equinumerou... |
| enpr1g 8945 | ` { A , A } ` has only one... |
| en1 8946 | A set is equinumerous to o... |
| en1b 8947 | A set is equinumerous to o... |
| reuen1 8948 | Two ways to express "exact... |
| euen1 8949 | Two ways to express "exact... |
| euen1b 8950 | Two ways to express " ` A ... |
| en1uniel 8951 | A singleton contains its s... |
| 2dom 8952 | A set that dominates ordin... |
| fundmen 8953 | A function is equinumerous... |
| fundmeng 8954 | A function is equinumerous... |
| cnven 8955 | A relational set is equinu... |
| cnvct 8956 | If a set is countable, so ... |
| fndmeng 8957 | A function is equinumerate... |
| mapsnend 8958 | Set exponentiation to a si... |
| mapsnen 8959 | Set exponentiation to a si... |
| snmapen 8960 | Set exponentiation: a sing... |
| snmapen1 8961 | Set exponentiation: a sing... |
| map1 8962 | Set exponentiation: ordina... |
| en2sn 8963 | Two singletons are equinum... |
| 0fi 8964 | The empty set is finite. ... |
| snfi 8965 | A singleton is finite. (C... |
| fiprc 8966 | The class of finite sets i... |
| unen 8967 | Equinumerosity of union of... |
| enrefnn 8968 | Equinumerosity is reflexiv... |
| en2prd 8969 | Two proper unordered pairs... |
| enpr2d 8970 | A pair with distinct eleme... |
| ssct 8971 | Any subset of a countable ... |
| difsnen 8972 | All decrements of a set ar... |
| domdifsn 8973 | Dominance over a set with ... |
| xpsnen 8974 | A set is equinumerous to i... |
| xpsneng 8975 | A set is equinumerous to i... |
| xp1en 8976 | One times a cardinal numbe... |
| endisj 8977 | Any two sets are equinumer... |
| undom 8978 | Dominance law for union. ... |
| xpcomf1o 8979 | The canonical bijection fr... |
| xpcomco 8980 | Composition with the bijec... |
| xpcomen 8981 | Commutative law for equinu... |
| xpcomeng 8982 | Commutative law for equinu... |
| xpsnen2g 8983 | A set is equinumerous to i... |
| xpassen 8984 | Associative law for equinu... |
| xpdom2 8985 | Dominance law for Cartesia... |
| xpdom2g 8986 | Dominance law for Cartesia... |
| xpdom1g 8987 | Dominance law for Cartesia... |
| xpdom3 8988 | A set is dominated by its ... |
| xpdom1 8989 | Dominance law for Cartesia... |
| domunsncan 8990 | A singleton cancellation l... |
| omxpenlem 8991 | Lemma for ~ omxpen . (Con... |
| omxpen 8992 | The cardinal and ordinal p... |
| omf1o 8993 | Construct an explicit bije... |
| pw2f1olem 8994 | Lemma for ~ pw2f1o . (Con... |
| pw2f1o 8995 | The power set of a set is ... |
| pw2eng 8996 | The power set of a set is ... |
| pw2en 8997 | The power set of a set is ... |
| fopwdom 8998 | Covering implies injection... |
| enfixsn 8999 | Given two equipollent sets... |
| sbthlem1 9000 | Lemma for ~ sbth . (Contr... |
| sbthlem2 9001 | Lemma for ~ sbth . (Contr... |
| sbthlem3 9002 | Lemma for ~ sbth . (Contr... |
| sbthlem4 9003 | Lemma for ~ sbth . (Contr... |
| sbthlem5 9004 | Lemma for ~ sbth . (Contr... |
| sbthlem6 9005 | Lemma for ~ sbth . (Contr... |
| sbthlem7 9006 | Lemma for ~ sbth . (Contr... |
| sbthlem8 9007 | Lemma for ~ sbth . (Contr... |
| sbthlem9 9008 | Lemma for ~ sbth . (Contr... |
| sbthlem10 9009 | Lemma for ~ sbth . (Contr... |
| sbth 9010 | Schroeder-Bernstein Theore... |
| sbthb 9011 | Schroeder-Bernstein Theore... |
| sbthcl 9012 | Schroeder-Bernstein Theore... |
| dfsdom2 9013 | Alternate definition of st... |
| brsdom2 9014 | Alternate definition of st... |
| sdomnsym 9015 | Strict dominance is asymme... |
| domnsym 9016 | Theorem 22(i) of [Suppes] ... |
| 0domg 9017 | Any set dominates the empt... |
| dom0 9018 | A set dominated by the emp... |
| 0sdomg 9019 | A set strictly dominates t... |
| 0dom 9020 | Any set dominates the empt... |
| 0sdom 9021 | A set strictly dominates t... |
| sdom0 9022 | The empty set does not str... |
| sdomdomtr 9023 | Transitivity of strict dom... |
| sdomentr 9024 | Transitivity of strict dom... |
| domsdomtr 9025 | Transitivity of dominance ... |
| ensdomtr 9026 | Transitivity of equinumero... |
| sdomirr 9027 | Strict dominance is irrefl... |
| sdomtr 9028 | Strict dominance is transi... |
| sdomn2lp 9029 | Strict dominance has no 2-... |
| enen1 9030 | Equality-like theorem for ... |
| enen2 9031 | Equality-like theorem for ... |
| domen1 9032 | Equality-like theorem for ... |
| domen2 9033 | Equality-like theorem for ... |
| sdomen1 9034 | Equality-like theorem for ... |
| sdomen2 9035 | Equality-like theorem for ... |
| domtriord 9036 | Dominance is trichotomous ... |
| sdomel 9037 | For ordinals, strict domin... |
| sdomdif 9038 | The difference of a set fr... |
| onsdominel 9039 | An ordinal with more eleme... |
| domunsn 9040 | Dominance over a set with ... |
| fodomr 9041 | There exists a mapping fro... |
| pwdom 9042 | Injection of sets implies ... |
| canth2 9043 | Cantor's Theorem. No set ... |
| canth2g 9044 | Cantor's theorem with the ... |
| 2pwuninel 9045 | The power set of the power... |
| 2pwne 9046 | No set equals the power se... |
| disjen 9047 | A stronger form of ~ pwuni... |
| disjenex 9048 | Existence version of ~ dis... |
| domss2 9049 | A corollary of ~ disjenex ... |
| domssex2 9050 | A corollary of ~ disjenex ... |
| domssex 9051 | Weakening of ~ domssex2 to... |
| xpf1o 9052 | Construct a bijection on a... |
| xpen 9053 | Equinumerosity law for Car... |
| mapen 9054 | Two set exponentiations ar... |
| mapdom1 9055 | Order-preserving property ... |
| mapxpen 9056 | Equinumerosity law for dou... |
| xpmapenlem 9057 | Lemma for ~ xpmapen . (Co... |
| xpmapen 9058 | Equinumerosity law for set... |
| mapunen 9059 | Equinumerosity law for set... |
| map2xp 9060 | A cardinal power with expo... |
| mapdom2 9061 | Order-preserving property ... |
| mapdom3 9062 | Set exponentiation dominat... |
| pwen 9063 | If two sets are equinumero... |
| ssenen 9064 | Equinumerosity of equinume... |
| limenpsi 9065 | A limit ordinal is equinum... |
| limensuci 9066 | A limit ordinal is equinum... |
| limensuc 9067 | A limit ordinal is equinum... |
| infensuc 9068 | Any infinite ordinal is eq... |
| dif1enlem 9069 | Lemma for ~ rexdif1en and ... |
| rexdif1en 9070 | If a set is equinumerous t... |
| dif1en 9071 | If a set ` A ` is equinume... |
| dif1ennn 9072 | If a set ` A ` is equinume... |
| findcard 9073 | Schema for induction on th... |
| findcard2 9074 | Schema for induction on th... |
| findcard2s 9075 | Variation of ~ findcard2 r... |
| findcard2d 9076 | Deduction version of ~ fin... |
| nnfi 9077 | Natural numbers are finite... |
| pssnn 9078 | A proper subset of a natur... |
| ssnnfi 9079 | A subset of a natural numb... |
| unfi 9080 | The union of two finite se... |
| unfid 9081 | The union of two finite se... |
| ssfi 9082 | A subset of a finite set i... |
| ssfiALT 9083 | Shorter proof of ~ ssfi us... |
| diffi 9084 | If ` A ` is finite, ` ( A ... |
| cnvfi 9085 | If a set is finite, its co... |
| pwssfi 9086 | Every element of the power... |
| fnfi 9087 | A version of ~ fnex for fi... |
| f1oenfi 9088 | If the domain of a one-to-... |
| f1oenfirn 9089 | If the range of a one-to-o... |
| f1domfi 9090 | If the codomain of a one-t... |
| f1domfi2 9091 | If the domain of a one-to-... |
| enreffi 9092 | Equinumerosity is reflexiv... |
| ensymfib 9093 | Symmetry of equinumerosity... |
| entrfil 9094 | Transitivity of equinumero... |
| enfii 9095 | A set equinumerous to a fi... |
| enfi 9096 | Equinumerous sets have the... |
| enfiALT 9097 | Shorter proof of ~ enfi us... |
| domfi 9098 | A set dominated by a finit... |
| entrfi 9099 | Transitivity of equinumero... |
| entrfir 9100 | Transitivity of equinumero... |
| domtrfil 9101 | Transitivity of dominance ... |
| domtrfi 9102 | Transitivity of dominance ... |
| domtrfir 9103 | Transitivity of dominance ... |
| f1imaenfi 9104 | If a function is one-to-on... |
| ssdomfi 9105 | A finite set dominates its... |
| ssdomfi2 9106 | A set dominates its finite... |
| sbthfilem 9107 | Lemma for ~ sbthfi . (Con... |
| sbthfi 9108 | Schroeder-Bernstein Theore... |
| domnsymfi 9109 | If a set dominates a finit... |
| sdomdomtrfi 9110 | Transitivity of strict dom... |
| domsdomtrfi 9111 | Transitivity of dominance ... |
| sucdom2 9112 | Strict dominance of a set ... |
| phplem1 9113 | Lemma for Pigeonhole Princ... |
| phplem2 9114 | Lemma for Pigeonhole Princ... |
| nneneq 9115 | Two equinumerous natural n... |
| php 9116 | Pigeonhole Principle. A n... |
| php2 9117 | Corollary of Pigeonhole Pr... |
| php3 9118 | Corollary of Pigeonhole Pr... |
| php4 9119 | Corollary of the Pigeonhol... |
| php5 9120 | Corollary of the Pigeonhol... |
| phpeqd 9121 | Corollary of the Pigeonhol... |
| nndomog 9122 | Cardinal ordering agrees w... |
| onomeneq 9123 | An ordinal number equinume... |
| onfin 9124 | An ordinal number is finit... |
| onfin2 9125 | A set is a natural number ... |
| nndomo 9126 | Cardinal ordering agrees w... |
| nnsdomo 9127 | Cardinal ordering agrees w... |
| sucdom 9128 | Strict dominance of a set ... |
| snnen2o 9129 | A singleton ` { A } ` is n... |
| 0sdom1dom 9130 | Strict dominance over 0 is... |
| 0sdom1domALT 9131 | Alternate proof of ~ 0sdom... |
| 1sdom2 9132 | Ordinal 1 is strictly domi... |
| 1sdom2ALT 9133 | Alternate proof of ~ 1sdom... |
| sdom1 9134 | A set has less than one me... |
| modom 9135 | Two ways to express "at mo... |
| modom2 9136 | Two ways to express "at mo... |
| rex2dom 9137 | A set that has at least 2 ... |
| 1sdom2dom 9138 | Strict dominance over 1 is... |
| 1sdom 9139 | A set that strictly domina... |
| unxpdomlem1 9140 | Lemma for ~ unxpdom . (Tr... |
| unxpdomlem2 9141 | Lemma for ~ unxpdom . (Co... |
| unxpdomlem3 9142 | Lemma for ~ unxpdom . (Co... |
| unxpdom 9143 | Cartesian product dominate... |
| unxpdom2 9144 | Corollary of ~ unxpdom . ... |
| sucxpdom 9145 | Cartesian product dominate... |
| pssinf 9146 | A set equinumerous to a pr... |
| fisseneq 9147 | A finite set is equal to i... |
| ominf 9148 | The set of natural numbers... |
| isinf 9149 | Any set that is not finite... |
| fineqvlem 9150 | Lemma for ~ fineqv . (Con... |
| fineqv 9151 | If the Axiom of Infinity i... |
| xpfir 9152 | The components of a nonemp... |
| ssfid 9153 | A subset of a finite set i... |
| infi 9154 | The intersection of two se... |
| rabfi 9155 | A restricted class built f... |
| finresfin 9156 | The restriction of a finit... |
| f1finf1o 9157 | Any injection from one fin... |
| nfielex 9158 | If a class is not finite, ... |
| en1eqsn 9159 | A set with one element is ... |
| en1eqsnbi 9160 | A set containing an elemen... |
| dif1ennnALT 9161 | Alternate proof of ~ dif1e... |
| enp1ilem 9162 | Lemma for uses of ~ enp1i ... |
| enp1i 9163 | Proof induction for ~ en2 ... |
| en2 9164 | A set equinumerous to ordi... |
| en3 9165 | A set equinumerous to ordi... |
| en4 9166 | A set equinumerous to ordi... |
| findcard3 9167 | Schema for strong inductio... |
| ac6sfi 9168 | A version of ~ ac6s for fi... |
| frfi 9169 | A partial order is well-fo... |
| fimax2g 9170 | A finite set has a maximum... |
| fimaxg 9171 | A finite set has a maximum... |
| fisupg 9172 | Lemma showing existence an... |
| wofi 9173 | A total order on a finite ... |
| ordunifi 9174 | The maximum of a finite co... |
| nnunifi 9175 | The union (supremum) of a ... |
| unblem1 9176 | Lemma for ~ unbnn . After... |
| unblem2 9177 | Lemma for ~ unbnn . The v... |
| unblem3 9178 | Lemma for ~ unbnn . The v... |
| unblem4 9179 | Lemma for ~ unbnn . The f... |
| unbnn 9180 | Any unbounded subset of na... |
| unbnn2 9181 | Version of ~ unbnn that do... |
| isfinite2 9182 | Any set strictly dominated... |
| nnsdomg 9183 | Omega strictly dominates a... |
| isfiniteg 9184 | A set is finite iff it is ... |
| infsdomnn 9185 | An infinite set strictly d... |
| infn0 9186 | An infinite set is not emp... |
| infn0ALT 9187 | Shorter proof of ~ infn0 u... |
| fin2inf 9188 | This (useless) theorem, wh... |
| unfilem1 9189 | Lemma for proving that the... |
| unfilem2 9190 | Lemma for proving that the... |
| unfilem3 9191 | Lemma for proving that the... |
| unfir 9192 | If a union is finite, the ... |
| unfib 9193 | A union is finite if and o... |
| unfi2 9194 | The union of two finite se... |
| difinf 9195 | An infinite set ` A ` minu... |
| fodomfi 9196 | An onto function implies d... |
| fofi 9197 | If an onto function has a ... |
| f1fi 9198 | If a 1-to-1 function has a... |
| imafi 9199 | Images of finite sets are ... |
| imafiOLD 9200 | Obsolete version of ~ imaf... |
| pwfir 9201 | If the power set of a set ... |
| pwfilem 9202 | Lemma for ~ pwfi . (Contr... |
| pwfi 9203 | The power set of a finite ... |
| xpfi 9204 | The Cartesian product of t... |
| 3xpfi 9205 | The Cartesian product of t... |
| domunfican 9206 | A finite set union cancell... |
| infcntss 9207 | Every infinite set has a d... |
| prfi 9208 | An unordered pair is finit... |
| prfiALT 9209 | Shorter proof of ~ prfi us... |
| tpfi 9210 | An unordered triple is fin... |
| fiint 9211 | Equivalent ways of stating... |
| fodomfir 9212 | There exists a mapping fro... |
| fodomfib 9213 | Equivalence of an onto map... |
| fodomfiOLD 9214 | Obsolete version of ~ fodo... |
| fodomfibOLD 9215 | Obsolete version of ~ fodo... |
| fofinf1o 9216 | Any surjection from one fi... |
| rneqdmfinf1o 9217 | Any function from a finite... |
| fidomdm 9218 | Any finite set dominates i... |
| dmfi 9219 | The domain of a finite set... |
| fundmfibi 9220 | A function is finite if an... |
| resfnfinfin 9221 | The restriction of a funct... |
| residfi 9222 | A restricted identity func... |
| cnvfiALT 9223 | Shorter proof of ~ cnvfi u... |
| rnfi 9224 | The range of a finite set ... |
| f1dmvrnfibi 9225 | A one-to-one function whos... |
| f1vrnfibi 9226 | A one-to-one function whic... |
| iunfi 9227 | The finite union of finite... |
| unifi 9228 | The finite union of finite... |
| unifi2 9229 | The finite union of finite... |
| infssuni 9230 | If an infinite set ` A ` i... |
| unirnffid 9231 | The union of the range of ... |
| mapfi 9232 | Set exponentiation of fini... |
| ixpfi 9233 | A Cartesian product of fin... |
| ixpfi2 9234 | A Cartesian product of fin... |
| mptfi 9235 | A finite mapping set is fi... |
| abrexfi 9236 | An image set from a finite... |
| cnvimamptfin 9237 | A preimage of a mapping wi... |
| elfpw 9238 | Membership in a class of f... |
| unifpw 9239 | A set is the union of its ... |
| f1opwfi 9240 | A one-to-one mapping induc... |
| fissuni 9241 | A finite subset of a union... |
| fipreima 9242 | Given a finite subset ` A ... |
| finsschain 9243 | A finite subset of the uni... |
| indexfi 9244 | If for every element of a ... |
| relfsupp 9247 | The property of a function... |
| relprcnfsupp 9248 | A proper class is never fi... |
| isfsupp 9249 | The property of a class to... |
| isfsuppd 9250 | Deduction form of ~ isfsup... |
| funisfsupp 9251 | The property of a function... |
| fsuppimp 9252 | Implications of a class be... |
| fsuppimpd 9253 | A finitely supported funct... |
| fsuppfund 9254 | A finitely supported funct... |
| fisuppfi 9255 | A function on a finite set... |
| fidmfisupp 9256 | A function with a finite d... |
| finnzfsuppd 9257 | If a function is zero outs... |
| fdmfisuppfi 9258 | The support of a function ... |
| fdmfifsupp 9259 | A function with a finite d... |
| fsuppmptdm 9260 | A mapping with a finite do... |
| fndmfisuppfi 9261 | The support of a function ... |
| fndmfifsupp 9262 | A function with a finite d... |
| suppeqfsuppbi 9263 | If two functions have the ... |
| suppssfifsupp 9264 | If the support of a functi... |
| fsuppsssupp 9265 | If the support of a functi... |
| fsuppsssuppgd 9266 | If the support of a functi... |
| fsuppss 9267 | A subset of a finitely sup... |
| fsuppssov1 9268 | Formula building theorem f... |
| fsuppxpfi 9269 | The cartesian product of t... |
| fczfsuppd 9270 | A constant function with v... |
| fsuppun 9271 | The union of two finitely ... |
| fsuppunfi 9272 | The union of the support o... |
| fsuppunbi 9273 | If the union of two classe... |
| 0fsupp 9274 | The empty set is a finitel... |
| snopfsupp 9275 | A singleton containing an ... |
| funsnfsupp 9276 | Finite support for a funct... |
| fsuppres 9277 | The restriction of a finit... |
| fmptssfisupp 9278 | The restriction of a mappi... |
| ressuppfi 9279 | If the support of the rest... |
| resfsupp 9280 | If the restriction of a fu... |
| resfifsupp 9281 | The restriction of a funct... |
| ffsuppbi 9282 | Two ways of saying that a ... |
| fsuppmptif 9283 | A function mapping an argu... |
| sniffsupp 9284 | A function mapping all but... |
| fsuppcolem 9285 | Lemma for ~ fsuppco . For... |
| fsuppco 9286 | The composition of a 1-1 f... |
| fsuppco2 9287 | The composition of a funct... |
| fsuppcor 9288 | The composition of a funct... |
| mapfienlem1 9289 | Lemma 1 for ~ mapfien . (... |
| mapfienlem2 9290 | Lemma 2 for ~ mapfien . (... |
| mapfienlem3 9291 | Lemma 3 for ~ mapfien . (... |
| mapfien 9292 | A bijection of the base se... |
| mapfien2 9293 | Equinumerousity relation f... |
| fival 9296 | The set of all the finite ... |
| elfi 9297 | Specific properties of an ... |
| elfi2 9298 | The empty intersection nee... |
| elfir 9299 | Sufficient condition for a... |
| intrnfi 9300 | Sufficient condition for t... |
| iinfi 9301 | An indexed intersection of... |
| inelfi 9302 | The intersection of two se... |
| ssfii 9303 | Any element of a set ` A `... |
| fi0 9304 | The set of finite intersec... |
| fieq0 9305 | A set is empty iff the cla... |
| fiin 9306 | The elements of ` ( fi `` ... |
| dffi2 9307 | The set of finite intersec... |
| fiss 9308 | Subset relationship for fu... |
| inficl 9309 | A set which is closed unde... |
| fipwuni 9310 | The set of finite intersec... |
| fisn 9311 | A singleton is closed unde... |
| fiuni 9312 | The union of the finite in... |
| fipwss 9313 | If a set is a family of su... |
| elfiun 9314 | A finite intersection of e... |
| dffi3 9315 | The set of finite intersec... |
| fifo 9316 | Describe a surjection from... |
| marypha1lem 9317 | Core induction for Philip ... |
| marypha1 9318 | (Philip) Hall's marriage t... |
| marypha2lem1 9319 | Lemma for ~ marypha2 . Pr... |
| marypha2lem2 9320 | Lemma for ~ marypha2 . Pr... |
| marypha2lem3 9321 | Lemma for ~ marypha2 . Pr... |
| marypha2lem4 9322 | Lemma for ~ marypha2 . Pr... |
| marypha2 9323 | Version of ~ marypha1 usin... |
| dfsup2 9328 | Quantifier-free definition... |
| supeq1 9329 | Equality theorem for supre... |
| supeq1d 9330 | Equality deduction for sup... |
| supeq1i 9331 | Equality inference for sup... |
| supeq2 9332 | Equality theorem for supre... |
| supeq3 9333 | Equality theorem for supre... |
| supeq123d 9334 | Equality deduction for sup... |
| nfsup 9335 | Hypothesis builder for sup... |
| supmo 9336 | Any class ` B ` has at mos... |
| supexd 9337 | A supremum is a set. (Con... |
| supeu 9338 | A supremum is unique. Sim... |
| supval2 9339 | Alternate expression for t... |
| eqsup 9340 | Sufficient condition for a... |
| eqsupd 9341 | Sufficient condition for a... |
| supcl 9342 | A supremum belongs to its ... |
| supub 9343 | A supremum is an upper bou... |
| suplub 9344 | A supremum is the least up... |
| suplub2 9345 | Bidirectional form of ~ su... |
| supnub 9346 | An upper bound is not less... |
| supssd 9347 | Inequality deduction for s... |
| supex 9348 | A supremum is a set. (Con... |
| sup00 9349 | The supremum under an empt... |
| sup0riota 9350 | The supremum of an empty s... |
| sup0 9351 | The supremum of an empty s... |
| supmax 9352 | The greatest element of a ... |
| fisup2g 9353 | A finite set satisfies the... |
| fisupcl 9354 | A nonempty finite set cont... |
| supgtoreq 9355 | The supremum of a finite s... |
| suppr 9356 | The supremum of a pair. (... |
| supsn 9357 | The supremum of a singleto... |
| supisolem 9358 | Lemma for ~ supiso . (Con... |
| supisoex 9359 | Lemma for ~ supiso . (Con... |
| supiso 9360 | Image of a supremum under ... |
| infeq1 9361 | Equality theorem for infim... |
| infeq1d 9362 | Equality deduction for inf... |
| infeq1i 9363 | Equality inference for inf... |
| infeq2 9364 | Equality theorem for infim... |
| infeq3 9365 | Equality theorem for infim... |
| infeq123d 9366 | Equality deduction for inf... |
| nfinf 9367 | Hypothesis builder for inf... |
| infexd 9368 | An infimum is a set. (Con... |
| eqinf 9369 | Sufficient condition for a... |
| eqinfd 9370 | Sufficient condition for a... |
| infval 9371 | Alternate expression for t... |
| infcllem 9372 | Lemma for ~ infcl , ~ infl... |
| infcl 9373 | An infimum belongs to its ... |
| inflb 9374 | An infimum is a lower boun... |
| infglb 9375 | An infimum is the greatest... |
| infglbb 9376 | Bidirectional form of ~ in... |
| infnlb 9377 | A lower bound is not great... |
| infssd 9378 | Inequality deduction for i... |
| infex 9379 | An infimum is a set. (Con... |
| infmin 9380 | The smallest element of a ... |
| infmo 9381 | Any class ` B ` has at mos... |
| infeu 9382 | An infimum is unique. (Co... |
| fimin2g 9383 | A finite set has a minimum... |
| fiming 9384 | A finite set has a minimum... |
| fiinfg 9385 | Lemma showing existence an... |
| fiinf2g 9386 | A finite set satisfies the... |
| fiinfcl 9387 | A nonempty finite set cont... |
| infltoreq 9388 | The infimum of a finite se... |
| infpr 9389 | The infimum of a pair. (C... |
| infsupprpr 9390 | The infimum of a proper pa... |
| infsn 9391 | The infimum of a singleton... |
| inf00 9392 | The infimum regarding an e... |
| infempty 9393 | The infimum of an empty se... |
| infiso 9394 | Image of an infimum under ... |
| dfoi 9397 | Rewrite ~ df-oi with abbre... |
| oieq1 9398 | Equality theorem for ordin... |
| oieq2 9399 | Equality theorem for ordin... |
| nfoi 9400 | Hypothesis builder for ord... |
| ordiso2 9401 | Generalize ~ ordiso to pro... |
| ordiso 9402 | Order-isomorphic ordinal n... |
| ordtypecbv 9403 | Lemma for ~ ordtype . (Co... |
| ordtypelem1 9404 | Lemma for ~ ordtype . (Co... |
| ordtypelem2 9405 | Lemma for ~ ordtype . (Co... |
| ordtypelem3 9406 | Lemma for ~ ordtype . (Co... |
| ordtypelem4 9407 | Lemma for ~ ordtype . (Co... |
| ordtypelem5 9408 | Lemma for ~ ordtype . (Co... |
| ordtypelem6 9409 | Lemma for ~ ordtype . (Co... |
| ordtypelem7 9410 | Lemma for ~ ordtype . ` ra... |
| ordtypelem8 9411 | Lemma for ~ ordtype . (Co... |
| ordtypelem9 9412 | Lemma for ~ ordtype . Eit... |
| ordtypelem10 9413 | Lemma for ~ ordtype . Usi... |
| oi0 9414 | Definition of the ordinal ... |
| oicl 9415 | The order type of the well... |
| oif 9416 | The order isomorphism of t... |
| oiiso2 9417 | The order isomorphism of t... |
| ordtype 9418 | For any set-like well-orde... |
| oiiniseg 9419 | ` ran F ` is an initial se... |
| ordtype2 9420 | For any set-like well-orde... |
| oiexg 9421 | The order isomorphism on a... |
| oion 9422 | The order type of the well... |
| oiiso 9423 | The order isomorphism of t... |
| oien 9424 | The order type of a well-o... |
| oieu 9425 | Uniqueness of the unique o... |
| oismo 9426 | When ` A ` is a subclass o... |
| oiid 9427 | The order type of an ordin... |
| hartogslem1 9428 | Lemma for ~ hartogs . (Co... |
| hartogslem2 9429 | Lemma for ~ hartogs . (Co... |
| hartogs 9430 | The class of ordinals domi... |
| wofib 9431 | The only sets which are we... |
| wemaplem1 9432 | Value of the lexicographic... |
| wemaplem2 9433 | Lemma for ~ wemapso . Tra... |
| wemaplem3 9434 | Lemma for ~ wemapso . Tra... |
| wemappo 9435 | Construct lexicographic or... |
| wemapsolem 9436 | Lemma for ~ wemapso . (Co... |
| wemapso 9437 | Construct lexicographic or... |
| wemapso2lem 9438 | Lemma for ~ wemapso2 . (C... |
| wemapso2 9439 | An alternative to having a... |
| card2on 9440 | The alternate definition o... |
| card2inf 9441 | The alternate definition o... |
| harf 9444 | Functionality of the Harto... |
| harcl 9445 | Values of the Hartogs func... |
| harval 9446 | Function value of the Hart... |
| elharval 9447 | The Hartogs number of a se... |
| harndom 9448 | The Hartogs number of a se... |
| harword 9449 | Weak ordering property of ... |
| relwdom 9452 | Weak dominance is a relati... |
| brwdom 9453 | Property of weak dominance... |
| brwdomi 9454 | Property of weak dominance... |
| brwdomn0 9455 | Weak dominance over nonemp... |
| 0wdom 9456 | Any set weakly dominates t... |
| fowdom 9457 | An onto function implies w... |
| wdomref 9458 | Reflexivity of weak domina... |
| brwdom2 9459 | Alternate characterization... |
| domwdom 9460 | Weak dominance is implied ... |
| wdomtr 9461 | Transitivity of weak domin... |
| wdomen1 9462 | Equality-like theorem for ... |
| wdomen2 9463 | Equality-like theorem for ... |
| wdompwdom 9464 | Weak dominance strengthens... |
| canthwdom 9465 | Cantor's Theorem, stated u... |
| wdom2d 9466 | Deduce weak dominance from... |
| wdomd 9467 | Deduce weak dominance from... |
| brwdom3 9468 | Condition for weak dominan... |
| brwdom3i 9469 | Weak dominance implies exi... |
| unwdomg 9470 | Weak dominance of a (disjo... |
| xpwdomg 9471 | Weak dominance of a Cartes... |
| wdomima2g 9472 | A set is weakly dominant o... |
| wdomimag 9473 | A set is weakly dominant o... |
| unxpwdom2 9474 | Lemma for ~ unxpwdom . (C... |
| unxpwdom 9475 | If a Cartesian product is ... |
| ixpiunwdom 9476 | Describe an onto function ... |
| harwdom 9477 | The value of the Hartogs f... |
| axreg2 9479 | Axiom of Regularity expres... |
| zfregcl 9480 | The Axiom of Regularity wi... |
| zfregclOLD 9481 | Obsolete version of ~ zfre... |
| zfreg 9482 | The Axiom of Regularity us... |
| elirrv 9483 | The membership relation is... |
| elirrvOLD 9484 | Obsolete version of ~ elir... |
| elirr 9485 | No class is a member of it... |
| elneq 9486 | A class is not equal to an... |
| nelaneq 9487 | A class is not an element ... |
| nelaneqOLD 9488 | Obsolete version of ~ nela... |
| epinid0 9489 | The membership relation an... |
| sucprcreg 9490 | A class is equal to its su... |
| ruv 9491 | The Russell class is equal... |
| ruALT 9492 | Alternate proof of ~ ru , ... |
| disjcsn 9493 | A class is disjoint from i... |
| zfregfr 9494 | The membership relation is... |
| elirrvALT 9495 | Alternate proof of ~ elirr... |
| en2lp 9496 | No class has 2-cycle membe... |
| elnanel 9497 | Two classes are not elemen... |
| cnvepnep 9498 | The membership (epsilon) r... |
| epnsym 9499 | The membership (epsilon) r... |
| elnotel 9500 | A class cannot be an eleme... |
| elnel 9501 | A class cannot be an eleme... |
| en3lplem1 9502 | Lemma for ~ en3lp . (Cont... |
| en3lplem2 9503 | Lemma for ~ en3lp . (Cont... |
| en3lp 9504 | No class has 3-cycle membe... |
| preleqg 9505 | Equality of two unordered ... |
| preleq 9506 | Equality of two unordered ... |
| preleqALT 9507 | Alternate proof of ~ prele... |
| opthreg 9508 | Theorem for alternate repr... |
| suc11reg 9509 | The successor operation be... |
| dford2 9510 | Assuming ~ ax-reg , an ord... |
| inf0 9511 | Existence of ` _om ` impli... |
| inf1 9512 | Variation of Axiom of Infi... |
| inf2 9513 | Variation of Axiom of Infi... |
| inf3lema 9514 | Lemma for our Axiom of Inf... |
| inf3lemb 9515 | Lemma for our Axiom of Inf... |
| inf3lemc 9516 | Lemma for our Axiom of Inf... |
| inf3lemd 9517 | Lemma for our Axiom of Inf... |
| inf3lem1 9518 | Lemma for our Axiom of Inf... |
| inf3lem2 9519 | Lemma for our Axiom of Inf... |
| inf3lem3 9520 | Lemma for our Axiom of Inf... |
| inf3lem4 9521 | Lemma for our Axiom of Inf... |
| inf3lem5 9522 | Lemma for our Axiom of Inf... |
| inf3lem6 9523 | Lemma for our Axiom of Inf... |
| inf3lem7 9524 | Lemma for our Axiom of Inf... |
| inf3 9525 | Our Axiom of Infinity ~ ax... |
| infeq5i 9526 | Half of ~ infeq5 . (Contr... |
| infeq5 9527 | The statement "there exist... |
| zfinf 9529 | Axiom of Infinity expresse... |
| axinf2 9530 | A standard version of Axio... |
| zfinf2 9532 | A standard version of the ... |
| omex 9533 | The existence of omega (th... |
| axinf 9534 | The first version of the A... |
| inf5 9535 | The statement "there exist... |
| omelon 9536 | Omega is an ordinal number... |
| dfom3 9537 | The class of natural numbe... |
| elom3 9538 | A simplification of ~ elom... |
| dfom4 9539 | A simplification of ~ df-o... |
| dfom5 9540 | ` _om ` is the smallest li... |
| oancom 9541 | Ordinal addition is not co... |
| isfinite 9542 | A set is finite iff it is ... |
| fict 9543 | A finite set is countable ... |
| nnsdom 9544 | A natural number is strict... |
| omenps 9545 | Omega is equinumerous to a... |
| omensuc 9546 | The set of natural numbers... |
| infdifsn 9547 | Removing a singleton from ... |
| infdiffi 9548 | Removing a finite set from... |
| unbnn3 9549 | Any unbounded subset of na... |
| noinfep 9550 | Using the Axiom of Regular... |
| cantnffval 9553 | The value of the Cantor no... |
| cantnfdm 9554 | The domain of the Cantor n... |
| cantnfvalf 9555 | Lemma for ~ cantnf . The ... |
| cantnfs 9556 | Elementhood in the set of ... |
| cantnfcl 9557 | Basic properties of the or... |
| cantnfval 9558 | The value of the Cantor no... |
| cantnfval2 9559 | Alternate expression for t... |
| cantnfsuc 9560 | The value of the recursive... |
| cantnfle 9561 | A lower bound on the ` CNF... |
| cantnflt 9562 | An upper bound on the part... |
| cantnflt2 9563 | An upper bound on the ` CN... |
| cantnff 9564 | The ` CNF ` function is a ... |
| cantnf0 9565 | The value of the zero func... |
| cantnfrescl 9566 | A function is finitely sup... |
| cantnfres 9567 | The ` CNF ` function respe... |
| cantnfp1lem1 9568 | Lemma for ~ cantnfp1 . (C... |
| cantnfp1lem2 9569 | Lemma for ~ cantnfp1 . (C... |
| cantnfp1lem3 9570 | Lemma for ~ cantnfp1 . (C... |
| cantnfp1 9571 | If ` F ` is created by add... |
| oemapso 9572 | The relation ` T ` is a st... |
| oemapval 9573 | Value of the relation ` T ... |
| oemapvali 9574 | If ` F < G ` , then there ... |
| cantnflem1a 9575 | Lemma for ~ cantnf . (Con... |
| cantnflem1b 9576 | Lemma for ~ cantnf . (Con... |
| cantnflem1c 9577 | Lemma for ~ cantnf . (Con... |
| cantnflem1d 9578 | Lemma for ~ cantnf . (Con... |
| cantnflem1 9579 | Lemma for ~ cantnf . This... |
| cantnflem2 9580 | Lemma for ~ cantnf . (Con... |
| cantnflem3 9581 | Lemma for ~ cantnf . Here... |
| cantnflem4 9582 | Lemma for ~ cantnf . Comp... |
| cantnf 9583 | The Cantor Normal Form the... |
| oemapwe 9584 | The lexicographic order on... |
| cantnffval2 9585 | An alternate definition of... |
| cantnff1o 9586 | Simplify the isomorphism o... |
| wemapwe 9587 | Construct lexicographic or... |
| oef1o 9588 | A bijection of the base se... |
| cnfcomlem 9589 | Lemma for ~ cnfcom . (Con... |
| cnfcom 9590 | Any ordinal ` B ` is equin... |
| cnfcom2lem 9591 | Lemma for ~ cnfcom2 . (Co... |
| cnfcom2 9592 | Any nonzero ordinal ` B ` ... |
| cnfcom3lem 9593 | Lemma for ~ cnfcom3 . (Co... |
| cnfcom3 9594 | Any infinite ordinal ` B `... |
| cnfcom3clem 9595 | Lemma for ~ cnfcom3c . (C... |
| cnfcom3c 9596 | Wrap the construction of ~... |
| ttrcleq 9599 | Equality theorem for trans... |
| nfttrcld 9600 | Bound variable hypothesis ... |
| nfttrcl 9601 | Bound variable hypothesis ... |
| relttrcl 9602 | The transitive closure of ... |
| brttrcl 9603 | Characterization of elemen... |
| brttrcl2 9604 | Characterization of elemen... |
| ssttrcl 9605 | If ` R ` is a relation, th... |
| ttrcltr 9606 | The transitive closure of ... |
| ttrclresv 9607 | The transitive closure of ... |
| ttrclco 9608 | Composition law for the tr... |
| cottrcl 9609 | Composition law for the tr... |
| ttrclss 9610 | If ` R ` is a subclass of ... |
| dmttrcl 9611 | The domain of a transitive... |
| rnttrcl 9612 | The range of a transitive ... |
| ttrclexg 9613 | If ` R ` is a set, then so... |
| dfttrcl2 9614 | When ` R ` is a set and a ... |
| ttrclselem1 9615 | Lemma for ~ ttrclse . Sho... |
| ttrclselem2 9616 | Lemma for ~ ttrclse . Sho... |
| ttrclse 9617 | If ` R ` is set-like over ... |
| trcl 9618 | For any set ` A ` , show t... |
| tz9.1 9619 | Every set has a transitive... |
| tz9.1c 9620 | Alternate expression for t... |
| epfrs 9621 | The strong form of the Axi... |
| zfregs 9622 | The strong form of the Axi... |
| zfregs2 9623 | Alternate strong form of t... |
| tcvalg 9626 | Value of the transitive cl... |
| tcid 9627 | Defining property of the t... |
| tctr 9628 | Defining property of the t... |
| tcmin 9629 | Defining property of the t... |
| tc2 9630 | A variant of the definitio... |
| tcsni 9631 | The transitive closure of ... |
| tcss 9632 | The transitive closure fun... |
| tcel 9633 | The transitive closure fun... |
| tcidm 9634 | The transitive closure fun... |
| tc0 9635 | The transitive closure of ... |
| tc00 9636 | The transitive closure is ... |
| setind 9637 | Set (epsilon) induction. ... |
| setind2 9638 | Set (epsilon) induction, s... |
| setinds 9639 | Principle of set induction... |
| setinds2f 9640 | ` _E ` induction schema, u... |
| setinds2 9641 | ` _E ` induction schema, u... |
| frmin 9642 | Every (possibly proper) su... |
| frind 9643 | A subclass of a well-found... |
| frinsg 9644 | Well-Founded Induction Sch... |
| frins 9645 | Well-Founded Induction Sch... |
| frins2f 9646 | Well-Founded Induction sch... |
| frins2 9647 | Well-Founded Induction sch... |
| frins3 9648 | Well-Founded Induction sch... |
| frr3g 9649 | Functions defined by well-... |
| frrlem15 9650 | Lemma for general well-fou... |
| frrlem16 9651 | Lemma for general well-fou... |
| frr1 9652 | Law of general well-founde... |
| frr2 9653 | Law of general well-founde... |
| frr3 9654 | Law of general well-founde... |
| r1funlim 9659 | The cumulative hierarchy o... |
| r1fnon 9660 | The cumulative hierarchy o... |
| r10 9661 | Value of the cumulative hi... |
| r1sucg 9662 | Value of the cumulative hi... |
| r1suc 9663 | Value of the cumulative hi... |
| r1limg 9664 | Value of the cumulative hi... |
| r1lim 9665 | Value of the cumulative hi... |
| r1fin 9666 | The first ` _om ` levels o... |
| r1sdom 9667 | Each stage in the cumulati... |
| r111 9668 | The cumulative hierarchy i... |
| r1tr 9669 | The cumulative hierarchy o... |
| r1tr2 9670 | The union of a cumulative ... |
| r1ordg 9671 | Ordering relation for the ... |
| r1ord3g 9672 | Ordering relation for the ... |
| r1ord 9673 | Ordering relation for the ... |
| r1ord2 9674 | Ordering relation for the ... |
| r1ord3 9675 | Ordering relation for the ... |
| r1sssuc 9676 | The value of the cumulativ... |
| r1pwss 9677 | Each set of the cumulative... |
| r1sscl 9678 | Each set of the cumulative... |
| r1val1 9679 | The value of the cumulativ... |
| tz9.12lem1 9680 | Lemma for ~ tz9.12 . (Con... |
| tz9.12lem2 9681 | Lemma for ~ tz9.12 . (Con... |
| tz9.12lem3 9682 | Lemma for ~ tz9.12 . (Con... |
| tz9.12 9683 | A set is well-founded if a... |
| tz9.13 9684 | Every set is well-founded,... |
| tz9.13g 9685 | Every set is well-founded,... |
| rankwflemb 9686 | Two ways of saying a set i... |
| rankf 9687 | The domain and codomain of... |
| rankon 9688 | The rank of a set is an or... |
| r1elwf 9689 | Any member of the cumulati... |
| rankvalb 9690 | Value of the rank function... |
| rankr1ai 9691 | One direction of ~ rankr1a... |
| rankvaln 9692 | Value of the rank function... |
| rankidb 9693 | Identity law for the rank ... |
| rankdmr1 9694 | A rank is a member of the ... |
| rankr1ag 9695 | A version of ~ rankr1a tha... |
| rankr1bg 9696 | A relationship between ran... |
| r1rankidb 9697 | Any set is a subset of the... |
| r1elssi 9698 | The range of the ` R1 ` fu... |
| r1elss 9699 | The range of the ` R1 ` fu... |
| pwwf 9700 | A power set is well-founde... |
| sswf 9701 | A subset of a well-founded... |
| snwf 9702 | A singleton is well-founde... |
| unwf 9703 | A binary union is well-fou... |
| prwf 9704 | An unordered pair is well-... |
| opwf 9705 | An ordered pair is well-fo... |
| unir1 9706 | The cumulative hierarchy o... |
| jech9.3 9707 | Every set belongs to some ... |
| rankwflem 9708 | Every set is well-founded,... |
| rankval 9709 | Value of the rank function... |
| rankvalg 9710 | Value of the rank function... |
| rankval2 9711 | Value of an alternate defi... |
| uniwf 9712 | A union is well-founded if... |
| rankr1clem 9713 | Lemma for ~ rankr1c . (Co... |
| rankr1c 9714 | A relationship between the... |
| rankidn 9715 | A relationship between the... |
| rankpwi 9716 | The rank of a power set. ... |
| rankelb 9717 | The membership relation is... |
| wfelirr 9718 | A well-founded set is not ... |
| rankval3b 9719 | The value of the rank func... |
| ranksnb 9720 | The rank of a singleton. ... |
| rankonidlem 9721 | Lemma for ~ rankonid . (C... |
| rankonid 9722 | The rank of an ordinal num... |
| onwf 9723 | The ordinals are all well-... |
| onssr1 9724 | Initial segments of the or... |
| rankr1g 9725 | A relationship between the... |
| rankid 9726 | Identity law for the rank ... |
| rankr1 9727 | A relationship between the... |
| ssrankr1 9728 | A relationship between an ... |
| rankr1a 9729 | A relationship between ran... |
| r1val2 9730 | The value of the cumulativ... |
| r1val3 9731 | The value of the cumulativ... |
| rankel 9732 | The membership relation is... |
| rankval3 9733 | The value of the rank func... |
| bndrank 9734 | Any class whose elements h... |
| unbndrank 9735 | The elements of a proper c... |
| rankpw 9736 | The rank of a power set. ... |
| ranklim 9737 | The rank of a set belongs ... |
| r1pw 9738 | A stronger property of ` R... |
| r1pwALT 9739 | Alternate shorter proof of... |
| r1pwcl 9740 | The cumulative hierarchy o... |
| rankssb 9741 | The subset relation is inh... |
| rankss 9742 | The subset relation is inh... |
| rankunb 9743 | The rank of the union of t... |
| rankprb 9744 | The rank of an unordered p... |
| rankopb 9745 | The rank of an ordered pai... |
| rankuni2b 9746 | The value of the rank func... |
| ranksn 9747 | The rank of a singleton. ... |
| rankuni2 9748 | The rank of a union. Part... |
| rankun 9749 | The rank of the union of t... |
| rankpr 9750 | The rank of an unordered p... |
| rankop 9751 | The rank of an ordered pai... |
| r1rankid 9752 | Any set is a subset of the... |
| rankeq0b 9753 | A set is empty iff its ran... |
| rankeq0 9754 | A set is empty iff its ran... |
| rankr1id 9755 | The rank of the hierarchy ... |
| rankuni 9756 | The rank of a union. Part... |
| rankr1b 9757 | A relationship between ran... |
| ranksuc 9758 | The rank of a successor. ... |
| rankuniss 9759 | Upper bound of the rank of... |
| rankval4 9760 | The rank of a set is the s... |
| rankbnd 9761 | The rank of a set is bound... |
| rankbnd2 9762 | The rank of a set is bound... |
| rankc1 9763 | A relationship that can be... |
| rankc2 9764 | A relationship that can be... |
| rankelun 9765 | Rank membership is inherit... |
| rankelpr 9766 | Rank membership is inherit... |
| rankelop 9767 | Rank membership is inherit... |
| rankxpl 9768 | A lower bound on the rank ... |
| rankxpu 9769 | An upper bound on the rank... |
| rankfu 9770 | An upper bound on the rank... |
| rankmapu 9771 | An upper bound on the rank... |
| rankxplim 9772 | The rank of a Cartesian pr... |
| rankxplim2 9773 | If the rank of a Cartesian... |
| rankxplim3 9774 | The rank of a Cartesian pr... |
| rankxpsuc 9775 | The rank of a Cartesian pr... |
| tcwf 9776 | The transitive closure fun... |
| tcrank 9777 | This theorem expresses two... |
| scottex 9778 | Scott's trick collects all... |
| scott0 9779 | Scott's trick collects all... |
| scottexs 9780 | Theorem scheme version of ... |
| scott0s 9781 | Theorem scheme version of ... |
| cplem1 9782 | Lemma for the Collection P... |
| cplem2 9783 | Lemma for the Collection P... |
| cp 9784 | Collection Principle. Thi... |
| bnd 9785 | A very strong generalizati... |
| bnd2 9786 | A variant of the Boundedne... |
| kardex 9787 | The collection of all sets... |
| karden 9788 | If we allow the Axiom of R... |
| htalem 9789 | Lemma for defining an emul... |
| hta 9790 | A ZFC emulation of Hilbert... |
| djueq12 9797 | Equality theorem for disjo... |
| djueq1 9798 | Equality theorem for disjo... |
| djueq2 9799 | Equality theorem for disjo... |
| nfdju 9800 | Bound-variable hypothesis ... |
| djuex 9801 | The disjoint union of sets... |
| djuexb 9802 | The disjoint union of two ... |
| djulcl 9803 | Left closure of disjoint u... |
| djurcl 9804 | Right closure of disjoint ... |
| djulf1o 9805 | The left injection functio... |
| djurf1o 9806 | The right injection functi... |
| inlresf 9807 | The left injection restric... |
| inlresf1 9808 | The left injection restric... |
| inrresf 9809 | The right injection restri... |
| inrresf1 9810 | The right injection restri... |
| djuin 9811 | The images of any classes ... |
| djur 9812 | A member of a disjoint uni... |
| djuss 9813 | A disjoint union is a subc... |
| djuunxp 9814 | The union of a disjoint un... |
| djuexALT 9815 | Alternate proof of ~ djuex... |
| eldju1st 9816 | The first component of an ... |
| eldju2ndl 9817 | The second component of an... |
| eldju2ndr 9818 | The second component of an... |
| djuun 9819 | The disjoint union of two ... |
| 1stinl 9820 | The first component of the... |
| 2ndinl 9821 | The second component of th... |
| 1stinr 9822 | The first component of the... |
| 2ndinr 9823 | The second component of th... |
| updjudhf 9824 | The mapping of an element ... |
| updjudhcoinlf 9825 | The composition of the map... |
| updjudhcoinrg 9826 | The composition of the map... |
| updjud 9827 | Universal property of the ... |
| cardf2 9836 | The cardinality function i... |
| cardon 9837 | The cardinal number of a s... |
| isnum2 9838 | A way to express well-orde... |
| isnumi 9839 | A set equinumerous to an o... |
| ennum 9840 | Equinumerous sets are equi... |
| finnum 9841 | Every finite set is numera... |
| onenon 9842 | Every ordinal number is nu... |
| tskwe 9843 | A Tarski set is well-order... |
| xpnum 9844 | The cartesian product of n... |
| cardval3 9845 | An alternate definition of... |
| cardid2 9846 | Any numerable set is equin... |
| isnum3 9847 | A set is numerable iff it ... |
| oncardval 9848 | The value of the cardinal ... |
| oncardid 9849 | Any ordinal number is equi... |
| cardonle 9850 | The cardinal of an ordinal... |
| card0 9851 | The cardinality of the emp... |
| cardidm 9852 | The cardinality function i... |
| oncard 9853 | A set is a cardinal number... |
| ficardom 9854 | The cardinal number of a f... |
| ficardid 9855 | A finite set is equinumero... |
| cardnn 9856 | The cardinality of a natur... |
| cardnueq0 9857 | The empty set is the only ... |
| cardne 9858 | No member of a cardinal nu... |
| carden2a 9859 | If two sets have equal non... |
| carden2b 9860 | If two sets are equinumero... |
| card1 9861 | A set has cardinality one ... |
| cardsn 9862 | A singleton has cardinalit... |
| carddomi2 9863 | Two sets have the dominanc... |
| sdomsdomcardi 9864 | A set strictly dominates i... |
| cardlim 9865 | An infinite cardinal is a ... |
| cardsdomelir 9866 | A cardinal strictly domina... |
| cardsdomel 9867 | A cardinal strictly domina... |
| iscard 9868 | Two ways to express the pr... |
| iscard2 9869 | Two ways to express the pr... |
| carddom2 9870 | Two numerable sets have th... |
| harcard 9871 | The class of ordinal numbe... |
| cardprclem 9872 | Lemma for ~ cardprc . (Co... |
| cardprc 9873 | The class of all cardinal ... |
| carduni 9874 | The union of a set of card... |
| cardiun 9875 | The indexed union of a set... |
| cardennn 9876 | If ` A ` is equinumerous t... |
| cardsucinf 9877 | The cardinality of the suc... |
| cardsucnn 9878 | The cardinality of the suc... |
| cardom 9879 | The set of natural numbers... |
| carden2 9880 | Two numerable sets are equ... |
| cardsdom2 9881 | A numerable set is strictl... |
| domtri2 9882 | Trichotomy of dominance fo... |
| nnsdomel 9883 | Strict dominance and eleme... |
| cardval2 9884 | An alternate version of th... |
| isinffi 9885 | An infinite set contains s... |
| fidomtri 9886 | Trichotomy of dominance wi... |
| fidomtri2 9887 | Trichotomy of dominance wi... |
| harsdom 9888 | The Hartogs number of a we... |
| onsdom 9889 | Any well-orderable set is ... |
| harval2 9890 | An alternate expression fo... |
| harsucnn 9891 | The next cardinal after a ... |
| cardmin2 9892 | The smallest ordinal that ... |
| pm54.43lem 9893 | In Theorem *54.43 of [Whit... |
| pm54.43 9894 | Theorem *54.43 of [Whitehe... |
| enpr2 9895 | An unordered pair with dis... |
| pr2ne 9896 | If an unordered pair has t... |
| prdom2 9897 | An unordered pair has at m... |
| en2eqpr 9898 | Building a set with two el... |
| en2eleq 9899 | Express a set of pair card... |
| en2other2 9900 | Taking the other element t... |
| dif1card 9901 | The cardinality of a nonem... |
| leweon 9902 | Lexicographical order is a... |
| r0weon 9903 | A set-like well-ordering o... |
| infxpenlem 9904 | Lemma for ~ infxpen . (Co... |
| infxpen 9905 | Every infinite ordinal is ... |
| xpomen 9906 | The Cartesian product of o... |
| xpct 9907 | The cartesian product of t... |
| infxpidm2 9908 | Every infinite well-ordera... |
| infxpenc 9909 | A canonical version of ~ i... |
| infxpenc2lem1 9910 | Lemma for ~ infxpenc2 . (... |
| infxpenc2lem2 9911 | Lemma for ~ infxpenc2 . (... |
| infxpenc2lem3 9912 | Lemma for ~ infxpenc2 . (... |
| infxpenc2 9913 | Existence form of ~ infxpe... |
| iunmapdisj 9914 | The union ` U_ n e. C ( A ... |
| fseqenlem1 9915 | Lemma for ~ fseqen . (Con... |
| fseqenlem2 9916 | Lemma for ~ fseqen . (Con... |
| fseqdom 9917 | One half of ~ fseqen . (C... |
| fseqen 9918 | A set that is equinumerous... |
| infpwfidom 9919 | The collection of finite s... |
| dfac8alem 9920 | Lemma for ~ dfac8a . If t... |
| dfac8a 9921 | Numeration theorem: every ... |
| dfac8b 9922 | The well-ordering theorem:... |
| dfac8clem 9923 | Lemma for ~ dfac8c . (Con... |
| dfac8c 9924 | If the union of a set is w... |
| ac10ct 9925 | A proof of the well-orderi... |
| ween 9926 | A set is numerable iff it ... |
| ac5num 9927 | A version of ~ ac5b with t... |
| ondomen 9928 | If a set is dominated by a... |
| numdom 9929 | A set dominated by a numer... |
| ssnum 9930 | A subset of a numerable se... |
| onssnum 9931 | All subsets of the ordinal... |
| indcardi 9932 | Indirect strong induction ... |
| acnrcl 9933 | Reverse closure for the ch... |
| acneq 9934 | Equality theorem for the c... |
| isacn 9935 | The property of being a ch... |
| acni 9936 | The property of being a ch... |
| acni2 9937 | The property of being a ch... |
| acni3 9938 | The property of being a ch... |
| acnlem 9939 | Construct a mapping satisf... |
| numacn 9940 | A well-orderable set has c... |
| finacn 9941 | Every set has finite choic... |
| acndom 9942 | A set with long choice seq... |
| acnnum 9943 | A set ` X ` which has choi... |
| acnen 9944 | The class of choice sets o... |
| acndom2 9945 | A set smaller than one wit... |
| acnen2 9946 | The class of sets with cho... |
| fodomacn 9947 | A version of ~ fodom that ... |
| fodomnum 9948 | A version of ~ fodom that ... |
| fonum 9949 | A surjection maps numerabl... |
| numwdom 9950 | A surjection maps numerabl... |
| fodomfi2 9951 | Onto functions define domi... |
| wdomfil 9952 | Weak dominance agrees with... |
| infpwfien 9953 | Any infinite well-orderabl... |
| inffien 9954 | The set of finite intersec... |
| wdomnumr 9955 | Weak dominance agrees with... |
| alephfnon 9956 | The aleph function is a fu... |
| aleph0 9957 | The first infinite cardina... |
| alephlim 9958 | Value of the aleph functio... |
| alephsuc 9959 | Value of the aleph functio... |
| alephon 9960 | An aleph is an ordinal num... |
| alephcard 9961 | Every aleph is a cardinal ... |
| alephnbtwn 9962 | No cardinal can be sandwic... |
| alephnbtwn2 9963 | No set has equinumerosity ... |
| alephordilem1 9964 | Lemma for ~ alephordi . (... |
| alephordi 9965 | Strict ordering property o... |
| alephord 9966 | Ordering property of the a... |
| alephord2 9967 | Ordering property of the a... |
| alephord2i 9968 | Ordering property of the a... |
| alephord3 9969 | Ordering property of the a... |
| alephsucdom 9970 | A set dominated by an alep... |
| alephsuc2 9971 | An alternate representatio... |
| alephdom 9972 | Relationship between inclu... |
| alephgeom 9973 | Every aleph is greater tha... |
| alephislim 9974 | Every aleph is a limit ord... |
| aleph11 9975 | The aleph function is one-... |
| alephf1 9976 | The aleph function is a on... |
| alephsdom 9977 | If an ordinal is smaller t... |
| alephdom2 9978 | A dominated initial ordina... |
| alephle 9979 | The argument of the aleph ... |
| cardaleph 9980 | Given any transfinite card... |
| cardalephex 9981 | Every transfinite cardinal... |
| infenaleph 9982 | An infinite numerable set ... |
| isinfcard 9983 | Two ways to express the pr... |
| iscard3 9984 | Two ways to express the pr... |
| cardnum 9985 | Two ways to express the cl... |
| alephinit 9986 | An infinite initial ordina... |
| carduniima 9987 | The union of the image of ... |
| cardinfima 9988 | If a mapping to cardinals ... |
| alephiso 9989 | Aleph is an order isomorph... |
| alephprc 9990 | The class of all transfini... |
| alephsson 9991 | The class of transfinite c... |
| unialeph 9992 | The union of the class of ... |
| alephsmo 9993 | The aleph function is stri... |
| alephf1ALT 9994 | Alternate proof of ~ aleph... |
| alephfplem1 9995 | Lemma for ~ alephfp . (Co... |
| alephfplem2 9996 | Lemma for ~ alephfp . (Co... |
| alephfplem3 9997 | Lemma for ~ alephfp . (Co... |
| alephfplem4 9998 | Lemma for ~ alephfp . (Co... |
| alephfp 9999 | The aleph function has a f... |
| alephfp2 10000 | The aleph function has at ... |
| alephval3 10001 | An alternate way to expres... |
| alephsucpw2 10002 | The power set of an aleph ... |
| mappwen 10003 | Power rule for cardinal ar... |
| finnisoeu 10004 | A finite totally ordered s... |
| iunfictbso 10005 | Countability of a countabl... |
| aceq1 10008 | Equivalence of two version... |
| aceq0 10009 | Equivalence of two version... |
| aceq2 10010 | Equivalence of two version... |
| aceq3lem 10011 | Lemma for ~ dfac3 . (Cont... |
| dfac3 10012 | Equivalence of two version... |
| dfac4 10013 | Equivalence of two version... |
| dfac5lem1 10014 | Lemma for ~ dfac5 . (Cont... |
| dfac5lem2 10015 | Lemma for ~ dfac5 . (Cont... |
| dfac5lem3 10016 | Lemma for ~ dfac5 . (Cont... |
| dfac5lem4 10017 | Lemma for ~ dfac5 . (Cont... |
| dfac5lem5 10018 | Lemma for ~ dfac5 . (Cont... |
| dfac5lem4OLD 10019 | Obsolete version of ~ dfac... |
| dfac5 10020 | Equivalence of two version... |
| dfac2a 10021 | Our Axiom of Choice (in th... |
| dfac2b 10022 | Axiom of Choice (first for... |
| dfac2 10023 | Axiom of Choice (first for... |
| dfac7 10024 | Equivalence of the Axiom o... |
| dfac0 10025 | Equivalence of two version... |
| dfac1 10026 | Equivalence of two version... |
| dfac8 10027 | A proof of the equivalency... |
| dfac9 10028 | Equivalence of the axiom o... |
| dfac10 10029 | Axiom of Choice equivalent... |
| dfac10c 10030 | Axiom of Choice equivalent... |
| dfac10b 10031 | Axiom of Choice equivalent... |
| acacni 10032 | A choice equivalent: every... |
| dfacacn 10033 | A choice equivalent: every... |
| dfac13 10034 | The axiom of choice holds ... |
| dfac12lem1 10035 | Lemma for ~ dfac12 . (Con... |
| dfac12lem2 10036 | Lemma for ~ dfac12 . (Con... |
| dfac12lem3 10037 | Lemma for ~ dfac12 . (Con... |
| dfac12r 10038 | The axiom of choice holds ... |
| dfac12k 10039 | Equivalence of ~ dfac12 an... |
| dfac12a 10040 | The axiom of choice holds ... |
| dfac12 10041 | The axiom of choice holds ... |
| kmlem1 10042 | Lemma for 5-quantifier AC ... |
| kmlem2 10043 | Lemma for 5-quantifier AC ... |
| kmlem3 10044 | Lemma for 5-quantifier AC ... |
| kmlem4 10045 | Lemma for 5-quantifier AC ... |
| kmlem5 10046 | Lemma for 5-quantifier AC ... |
| kmlem6 10047 | Lemma for 5-quantifier AC ... |
| kmlem7 10048 | Lemma for 5-quantifier AC ... |
| kmlem8 10049 | Lemma for 5-quantifier AC ... |
| kmlem9 10050 | Lemma for 5-quantifier AC ... |
| kmlem10 10051 | Lemma for 5-quantifier AC ... |
| kmlem11 10052 | Lemma for 5-quantifier AC ... |
| kmlem12 10053 | Lemma for 5-quantifier AC ... |
| kmlem13 10054 | Lemma for 5-quantifier AC ... |
| kmlem14 10055 | Lemma for 5-quantifier AC ... |
| kmlem15 10056 | Lemma for 5-quantifier AC ... |
| kmlem16 10057 | Lemma for 5-quantifier AC ... |
| dfackm 10058 | Equivalence of the Axiom o... |
| undjudom 10059 | Cardinal addition dominate... |
| endjudisj 10060 | Equinumerosity of a disjoi... |
| djuen 10061 | Disjoint unions of equinum... |
| djuenun 10062 | Disjoint union is equinume... |
| dju1en 10063 | Cardinal addition with car... |
| dju1dif 10064 | Adding and subtracting one... |
| dju1p1e2 10065 | 1+1=2 for cardinal number ... |
| dju1p1e2ALT 10066 | Alternate proof of ~ dju1p... |
| dju0en 10067 | Cardinal addition with car... |
| xp2dju 10068 | Two times a cardinal numbe... |
| djucomen 10069 | Commutative law for cardin... |
| djuassen 10070 | Associative law for cardin... |
| xpdjuen 10071 | Cardinal multiplication di... |
| mapdjuen 10072 | Sum of exponents law for c... |
| pwdjuen 10073 | Sum of exponents law for c... |
| djudom1 10074 | Ordering law for cardinal ... |
| djudom2 10075 | Ordering law for cardinal ... |
| djudoml 10076 | A set is dominated by its ... |
| djuxpdom 10077 | Cartesian product dominate... |
| djufi 10078 | The disjoint union of two ... |
| cdainflem 10079 | Any partition of omega int... |
| djuinf 10080 | A set is infinite iff the ... |
| infdju1 10081 | An infinite set is equinum... |
| pwdju1 10082 | The sum of a powerset with... |
| pwdjuidm 10083 | If the natural numbers inj... |
| djulepw 10084 | If ` A ` is idempotent und... |
| onadju 10085 | The cardinal and ordinal s... |
| cardadju 10086 | The cardinal sum is equinu... |
| djunum 10087 | The disjoint union of two ... |
| unnum 10088 | The union of two numerable... |
| nnadju 10089 | The cardinal and ordinal s... |
| nnadjuALT 10090 | Shorter proof of ~ nnadju ... |
| ficardadju 10091 | The disjoint union of fini... |
| ficardun 10092 | The cardinality of the uni... |
| ficardun2 10093 | The cardinality of the uni... |
| pwsdompw 10094 | Lemma for ~ domtriom . Th... |
| unctb 10095 | The union of two countable... |
| infdjuabs 10096 | Absorption law for additio... |
| infunabs 10097 | An infinite set is equinum... |
| infdju 10098 | The sum of two cardinal nu... |
| infdif 10099 | The cardinality of an infi... |
| infdif2 10100 | Cardinality ordering for a... |
| infxpdom 10101 | Dominance law for multipli... |
| infxpabs 10102 | Absorption law for multipl... |
| infunsdom1 10103 | The union of two sets that... |
| infunsdom 10104 | The union of two sets that... |
| infxp 10105 | Absorption law for multipl... |
| pwdjudom 10106 | A property of dominance ov... |
| infpss 10107 | Every infinite set has an ... |
| infmap2 10108 | An exponentiation law for ... |
| ackbij2lem1 10109 | Lemma for ~ ackbij2 . (Co... |
| ackbij1lem1 10110 | Lemma for ~ ackbij2 . (Co... |
| ackbij1lem2 10111 | Lemma for ~ ackbij2 . (Co... |
| ackbij1lem3 10112 | Lemma for ~ ackbij2 . (Co... |
| ackbij1lem4 10113 | Lemma for ~ ackbij2 . (Co... |
| ackbij1lem5 10114 | Lemma for ~ ackbij2 . (Co... |
| ackbij1lem6 10115 | Lemma for ~ ackbij2 . (Co... |
| ackbij1lem7 10116 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem8 10117 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem9 10118 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem10 10119 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem11 10120 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem12 10121 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem13 10122 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem14 10123 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem15 10124 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem16 10125 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem17 10126 | Lemma for ~ ackbij1 . (Co... |
| ackbij1lem18 10127 | Lemma for ~ ackbij1 . (Co... |
| ackbij1 10128 | The Ackermann bijection, p... |
| ackbij1b 10129 | The Ackermann bijection, p... |
| ackbij2lem2 10130 | Lemma for ~ ackbij2 . (Co... |
| ackbij2lem3 10131 | Lemma for ~ ackbij2 . (Co... |
| ackbij2lem4 10132 | Lemma for ~ ackbij2 . (Co... |
| ackbij2 10133 | The Ackermann bijection, p... |
| r1om 10134 | The set of hereditarily fi... |
| fictb 10135 | A set is countable iff its... |
| cflem 10136 | A lemma used to simplify c... |
| cflemOLD 10137 | Obsolete version of ~ cfle... |
| cfval 10138 | Value of the cofinality fu... |
| cff 10139 | Cofinality is a function o... |
| cfub 10140 | An upper bound on cofinali... |
| cflm 10141 | Value of the cofinality fu... |
| cf0 10142 | Value of the cofinality fu... |
| cardcf 10143 | Cofinality is a cardinal n... |
| cflecard 10144 | Cofinality is bounded by t... |
| cfle 10145 | Cofinality is bounded by i... |
| cfon 10146 | The cofinality of any set ... |
| cfeq0 10147 | Only the ordinal zero has ... |
| cfsuc 10148 | Value of the cofinality fu... |
| cff1 10149 | There is always a map from... |
| cfflb 10150 | If there is a cofinal map ... |
| cfval2 10151 | Another expression for the... |
| coflim 10152 | A simpler expression for t... |
| cflim3 10153 | Another expression for the... |
| cflim2 10154 | The cofinality function is... |
| cfom 10155 | Value of the cofinality fu... |
| cfss 10156 | There is a cofinal subset ... |
| cfslb 10157 | Any cofinal subset of ` A ... |
| cfslbn 10158 | Any subset of ` A ` smalle... |
| cfslb2n 10159 | Any small collection of sm... |
| cofsmo 10160 | Any cofinal map implies th... |
| cfsmolem 10161 | Lemma for ~ cfsmo . (Cont... |
| cfsmo 10162 | The map in ~ cff1 can be a... |
| cfcoflem 10163 | Lemma for ~ cfcof , showin... |
| coftr 10164 | If there is a cofinal map ... |
| cfcof 10165 | If there is a cofinal map ... |
| cfidm 10166 | The cofinality function is... |
| alephsing 10167 | The cofinality of a limit ... |
| sornom 10168 | The range of a single-step... |
| isfin1a 10183 | Definition of a Ia-finite ... |
| fin1ai 10184 | Property of a Ia-finite se... |
| isfin2 10185 | Definition of a II-finite ... |
| fin2i 10186 | Property of a II-finite se... |
| isfin3 10187 | Definition of a III-finite... |
| isfin4 10188 | Definition of a IV-finite ... |
| fin4i 10189 | Infer that a set is IV-inf... |
| isfin5 10190 | Definition of a V-finite s... |
| isfin6 10191 | Definition of a VI-finite ... |
| isfin7 10192 | Definition of a VII-finite... |
| sdom2en01 10193 | A set with less than two e... |
| infpssrlem1 10194 | Lemma for ~ infpssr . (Co... |
| infpssrlem2 10195 | Lemma for ~ infpssr . (Co... |
| infpssrlem3 10196 | Lemma for ~ infpssr . (Co... |
| infpssrlem4 10197 | Lemma for ~ infpssr . (Co... |
| infpssrlem5 10198 | Lemma for ~ infpssr . (Co... |
| infpssr 10199 | Dedekind infinity implies ... |
| fin4en1 10200 | Dedekind finite is a cardi... |
| ssfin4 10201 | Dedekind finite sets have ... |
| domfin4 10202 | A set dominated by a Dedek... |
| ominf4 10203 | ` _om ` is Dedekind infini... |
| infpssALT 10204 | Alternate proof of ~ infps... |
| isfin4-2 10205 | Alternate definition of IV... |
| isfin4p1 10206 | Alternate definition of IV... |
| fin23lem7 10207 | Lemma for ~ isfin2-2 . Th... |
| fin23lem11 10208 | Lemma for ~ isfin2-2 . (C... |
| fin2i2 10209 | A II-finite set contains m... |
| isfin2-2 10210 | ` Fin2 ` expressed in term... |
| ssfin2 10211 | A subset of a II-finite se... |
| enfin2i 10212 | II-finiteness is a cardina... |
| fin23lem24 10213 | Lemma for ~ fin23 . In a ... |
| fincssdom 10214 | In a chain of finite sets,... |
| fin23lem25 10215 | Lemma for ~ fin23 . In a ... |
| fin23lem26 10216 | Lemma for ~ fin23lem22 . ... |
| fin23lem23 10217 | Lemma for ~ fin23lem22 . ... |
| fin23lem22 10218 | Lemma for ~ fin23 but coul... |
| fin23lem27 10219 | The mapping constructed in... |
| isfin3ds 10220 | Property of a III-finite s... |
| ssfin3ds 10221 | A subset of a III-finite s... |
| fin23lem12 10222 | The beginning of the proof... |
| fin23lem13 10223 | Lemma for ~ fin23 . Each ... |
| fin23lem14 10224 | Lemma for ~ fin23 . ` U ` ... |
| fin23lem15 10225 | Lemma for ~ fin23 . ` U ` ... |
| fin23lem16 10226 | Lemma for ~ fin23 . ` U ` ... |
| fin23lem19 10227 | Lemma for ~ fin23 . The f... |
| fin23lem20 10228 | Lemma for ~ fin23 . ` X ` ... |
| fin23lem17 10229 | Lemma for ~ fin23 . By ? ... |
| fin23lem21 10230 | Lemma for ~ fin23 . ` X ` ... |
| fin23lem28 10231 | Lemma for ~ fin23 . The r... |
| fin23lem29 10232 | Lemma for ~ fin23 . The r... |
| fin23lem30 10233 | Lemma for ~ fin23 . The r... |
| fin23lem31 10234 | Lemma for ~ fin23 . The r... |
| fin23lem32 10235 | Lemma for ~ fin23 . Wrap ... |
| fin23lem33 10236 | Lemma for ~ fin23 . Disch... |
| fin23lem34 10237 | Lemma for ~ fin23 . Estab... |
| fin23lem35 10238 | Lemma for ~ fin23 . Stric... |
| fin23lem36 10239 | Lemma for ~ fin23 . Weak ... |
| fin23lem38 10240 | Lemma for ~ fin23 . The c... |
| fin23lem39 10241 | Lemma for ~ fin23 . Thus,... |
| fin23lem40 10242 | Lemma for ~ fin23 . ` Fin2... |
| fin23lem41 10243 | Lemma for ~ fin23 . A set... |
| isf32lem1 10244 | Lemma for ~ isfin3-2 . De... |
| isf32lem2 10245 | Lemma for ~ isfin3-2 . No... |
| isf32lem3 10246 | Lemma for ~ isfin3-2 . Be... |
| isf32lem4 10247 | Lemma for ~ isfin3-2 . Be... |
| isf32lem5 10248 | Lemma for ~ isfin3-2 . Th... |
| isf32lem6 10249 | Lemma for ~ isfin3-2 . Ea... |
| isf32lem7 10250 | Lemma for ~ isfin3-2 . Di... |
| isf32lem8 10251 | Lemma for ~ isfin3-2 . K ... |
| isf32lem9 10252 | Lemma for ~ isfin3-2 . Co... |
| isf32lem10 10253 | Lemma for isfin3-2 . Writ... |
| isf32lem11 10254 | Lemma for ~ isfin3-2 . Re... |
| isf32lem12 10255 | Lemma for ~ isfin3-2 . (C... |
| isfin32i 10256 | One half of ~ isfin3-2 . ... |
| isf33lem 10257 | Lemma for ~ isfin3-3 . (C... |
| isfin3-2 10258 | Weakly Dedekind-infinite s... |
| isfin3-3 10259 | Weakly Dedekind-infinite s... |
| fin33i 10260 | Inference from ~ isfin3-3 ... |
| compsscnvlem 10261 | Lemma for ~ compsscnv . (... |
| compsscnv 10262 | Complementation on a power... |
| isf34lem1 10263 | Lemma for ~ isfin3-4 . (C... |
| isf34lem2 10264 | Lemma for ~ isfin3-4 . (C... |
| compssiso 10265 | Complementation is an anti... |
| isf34lem3 10266 | Lemma for ~ isfin3-4 . (C... |
| compss 10267 | Express image under of the... |
| isf34lem4 10268 | Lemma for ~ isfin3-4 . (C... |
| isf34lem5 10269 | Lemma for ~ isfin3-4 . (C... |
| isf34lem7 10270 | Lemma for ~ isfin3-4 . (C... |
| isf34lem6 10271 | Lemma for ~ isfin3-4 . (C... |
| fin34i 10272 | Inference from ~ isfin3-4 ... |
| isfin3-4 10273 | Weakly Dedekind-infinite s... |
| fin11a 10274 | Every I-finite set is Ia-f... |
| enfin1ai 10275 | Ia-finiteness is a cardina... |
| isfin1-2 10276 | A set is finite in the usu... |
| isfin1-3 10277 | A set is I-finite iff ever... |
| isfin1-4 10278 | A set is I-finite iff ever... |
| dffin1-5 10279 | Compact quantifier-free ve... |
| fin23 10280 | Every II-finite set (every... |
| fin34 10281 | Every III-finite set is IV... |
| isfin5-2 10282 | Alternate definition of V-... |
| fin45 10283 | Every IV-finite set is V-f... |
| fin56 10284 | Every V-finite set is VI-f... |
| fin17 10285 | Every I-finite set is VII-... |
| fin67 10286 | Every VI-finite set is VII... |
| isfin7-2 10287 | A set is VII-finite iff it... |
| fin71num 10288 | A well-orderable set is VI... |
| dffin7-2 10289 | Class form of ~ isfin7-2 .... |
| dfacfin7 10290 | Axiom of Choice equivalent... |
| fin1a2lem1 10291 | Lemma for ~ fin1a2 . (Con... |
| fin1a2lem2 10292 | Lemma for ~ fin1a2 . The ... |
| fin1a2lem3 10293 | Lemma for ~ fin1a2 . (Con... |
| fin1a2lem4 10294 | Lemma for ~ fin1a2 . (Con... |
| fin1a2lem5 10295 | Lemma for ~ fin1a2 . (Con... |
| fin1a2lem6 10296 | Lemma for ~ fin1a2 . Esta... |
| fin1a2lem7 10297 | Lemma for ~ fin1a2 . Spli... |
| fin1a2lem8 10298 | Lemma for ~ fin1a2 . Spli... |
| fin1a2lem9 10299 | Lemma for ~ fin1a2 . In a... |
| fin1a2lem10 10300 | Lemma for ~ fin1a2 . A no... |
| fin1a2lem11 10301 | Lemma for ~ fin1a2 . (Con... |
| fin1a2lem12 10302 | Lemma for ~ fin1a2 . (Con... |
| fin1a2lem13 10303 | Lemma for ~ fin1a2 . (Con... |
| fin12 10304 | Weak theorem which skips I... |
| fin1a2s 10305 | An II-infinite set can hav... |
| fin1a2 10306 | Every Ia-finite set is II-... |
| itunifval 10307 | Function value of iterated... |
| itunifn 10308 | Functionality of the itera... |
| ituni0 10309 | A zero-fold iterated union... |
| itunisuc 10310 | Successor iterated union. ... |
| itunitc1 10311 | Each union iterate is a me... |
| itunitc 10312 | The union of all union ite... |
| ituniiun 10313 | Unwrap an iterated union f... |
| hsmexlem7 10314 | Lemma for ~ hsmex . Prope... |
| hsmexlem8 10315 | Lemma for ~ hsmex . Prope... |
| hsmexlem9 10316 | Lemma for ~ hsmex . Prope... |
| hsmexlem1 10317 | Lemma for ~ hsmex . Bound... |
| hsmexlem2 10318 | Lemma for ~ hsmex . Bound... |
| hsmexlem3 10319 | Lemma for ~ hsmex . Clear... |
| hsmexlem4 10320 | Lemma for ~ hsmex . The c... |
| hsmexlem5 10321 | Lemma for ~ hsmex . Combi... |
| hsmexlem6 10322 | Lemma for ~ hsmex . (Cont... |
| hsmex 10323 | The collection of heredita... |
| hsmex2 10324 | The set of hereditary size... |
| hsmex3 10325 | The set of hereditary size... |
| axcc2lem 10327 | Lemma for ~ axcc2 . (Cont... |
| axcc2 10328 | A possibly more useful ver... |
| axcc3 10329 | A possibly more useful ver... |
| axcc4 10330 | A version of ~ axcc3 that ... |
| acncc 10331 | An ~ ax-cc equivalent: eve... |
| axcc4dom 10332 | Relax the constraint on ~ ... |
| domtriomlem 10333 | Lemma for ~ domtriom . (C... |
| domtriom 10334 | Trichotomy of equinumerosi... |
| fin41 10335 | Under countable choice, th... |
| dominf 10336 | A nonempty set that is a s... |
| dcomex 10338 | The Axiom of Dependent Cho... |
| axdc2lem 10339 | Lemma for ~ axdc2 . We co... |
| axdc2 10340 | An apparent strengthening ... |
| axdc3lem 10341 | The class ` S ` of finite ... |
| axdc3lem2 10342 | Lemma for ~ axdc3 . We ha... |
| axdc3lem3 10343 | Simple substitution lemma ... |
| axdc3lem4 10344 | Lemma for ~ axdc3 . We ha... |
| axdc3 10345 | Dependent Choice. Axiom D... |
| axdc4lem 10346 | Lemma for ~ axdc4 . (Cont... |
| axdc4 10347 | A more general version of ... |
| axcclem 10348 | Lemma for ~ axcc . (Contr... |
| axcc 10349 | Although CC can be proven ... |
| zfac 10351 | Axiom of Choice expressed ... |
| ac2 10352 | Axiom of Choice equivalent... |
| ac3 10353 | Axiom of Choice using abbr... |
| axac3 10355 | This theorem asserts that ... |
| ackm 10356 | A remarkable equivalent to... |
| axac2 10357 | Derive ~ ax-ac2 from ~ ax-... |
| axac 10358 | Derive ~ ax-ac from ~ ax-a... |
| axaci 10359 | Apply a choice equivalent.... |
| cardeqv 10360 | All sets are well-orderabl... |
| numth3 10361 | All sets are well-orderabl... |
| numth2 10362 | Numeration theorem: any se... |
| numth 10363 | Numeration theorem: every ... |
| ac7 10364 | An Axiom of Choice equival... |
| ac7g 10365 | An Axiom of Choice equival... |
| ac4 10366 | Equivalent of Axiom of Cho... |
| ac4c 10367 | Equivalent of Axiom of Cho... |
| ac5 10368 | An Axiom of Choice equival... |
| ac5b 10369 | Equivalent of Axiom of Cho... |
| ac6num 10370 | A version of ~ ac6 which t... |
| ac6 10371 | Equivalent of Axiom of Cho... |
| ac6c4 10372 | Equivalent of Axiom of Cho... |
| ac6c5 10373 | Equivalent of Axiom of Cho... |
| ac9 10374 | An Axiom of Choice equival... |
| ac6s 10375 | Equivalent of Axiom of Cho... |
| ac6n 10376 | Equivalent of Axiom of Cho... |
| ac6s2 10377 | Generalization of the Axio... |
| ac6s3 10378 | Generalization of the Axio... |
| ac6sg 10379 | ~ ac6s with sethood as ant... |
| ac6sf 10380 | Version of ~ ac6 with boun... |
| ac6s4 10381 | Generalization of the Axio... |
| ac6s5 10382 | Generalization of the Axio... |
| ac8 10383 | An Axiom of Choice equival... |
| ac9s 10384 | An Axiom of Choice equival... |
| numthcor 10385 | Any set is strictly domina... |
| weth 10386 | Well-ordering theorem: any... |
| zorn2lem1 10387 | Lemma for ~ zorn2 . (Cont... |
| zorn2lem2 10388 | Lemma for ~ zorn2 . (Cont... |
| zorn2lem3 10389 | Lemma for ~ zorn2 . (Cont... |
| zorn2lem4 10390 | Lemma for ~ zorn2 . (Cont... |
| zorn2lem5 10391 | Lemma for ~ zorn2 . (Cont... |
| zorn2lem6 10392 | Lemma for ~ zorn2 . (Cont... |
| zorn2lem7 10393 | Lemma for ~ zorn2 . (Cont... |
| zorn2g 10394 | Zorn's Lemma of [Monk1] p.... |
| zorng 10395 | Zorn's Lemma. If the unio... |
| zornn0g 10396 | Variant of Zorn's lemma ~ ... |
| zorn2 10397 | Zorn's Lemma of [Monk1] p.... |
| zorn 10398 | Zorn's Lemma. If the unio... |
| zornn0 10399 | Variant of Zorn's lemma ~ ... |
| ttukeylem1 10400 | Lemma for ~ ttukey . Expa... |
| ttukeylem2 10401 | Lemma for ~ ttukey . A pr... |
| ttukeylem3 10402 | Lemma for ~ ttukey . (Con... |
| ttukeylem4 10403 | Lemma for ~ ttukey . (Con... |
| ttukeylem5 10404 | Lemma for ~ ttukey . The ... |
| ttukeylem6 10405 | Lemma for ~ ttukey . (Con... |
| ttukeylem7 10406 | Lemma for ~ ttukey . (Con... |
| ttukey2g 10407 | The Teichmüller-Tukey... |
| ttukeyg 10408 | The Teichmüller-Tukey... |
| ttukey 10409 | The Teichmüller-Tukey... |
| axdclem 10410 | Lemma for ~ axdc . (Contr... |
| axdclem2 10411 | Lemma for ~ axdc . Using ... |
| axdc 10412 | This theorem derives ~ ax-... |
| fodomg 10413 | An onto function implies d... |
| fodom 10414 | An onto function implies d... |
| dmct 10415 | The domain of a countable ... |
| rnct 10416 | The range of a countable s... |
| fodomb 10417 | Equivalence of an onto map... |
| wdomac 10418 | When assuming AC, weak and... |
| brdom3 10419 | Equivalence to a dominance... |
| brdom5 10420 | An equivalence to a domina... |
| brdom4 10421 | An equivalence to a domina... |
| brdom7disj 10422 | An equivalence to a domina... |
| brdom6disj 10423 | An equivalence to a domina... |
| fin71ac 10424 | Once we allow AC, the "str... |
| imadomg 10425 | An image of a function und... |
| fimact 10426 | The image by a function of... |
| fnrndomg 10427 | The range of a function is... |
| fnct 10428 | If the domain of a functio... |
| mptct 10429 | A countable mapping set is... |
| iunfo 10430 | Existence of an onto funct... |
| iundom2g 10431 | An upper bound for the car... |
| iundomg 10432 | An upper bound for the car... |
| iundom 10433 | An upper bound for the car... |
| unidom 10434 | An upper bound for the car... |
| uniimadom 10435 | An upper bound for the car... |
| uniimadomf 10436 | An upper bound for the car... |
| cardval 10437 | The value of the cardinal ... |
| cardid 10438 | Any set is equinumerous to... |
| cardidg 10439 | Any set is equinumerous to... |
| cardidd 10440 | Any set is equinumerous to... |
| cardf 10441 | The cardinality function i... |
| carden 10442 | Two sets are equinumerous ... |
| cardeq0 10443 | Only the empty set has car... |
| unsnen 10444 | Equinumerosity of a set wi... |
| carddom 10445 | Two sets have the dominanc... |
| cardsdom 10446 | Two sets have the strict d... |
| domtri 10447 | Trichotomy law for dominan... |
| entric 10448 | Trichotomy of equinumerosi... |
| entri2 10449 | Trichotomy of dominance an... |
| entri3 10450 | Trichotomy of dominance. ... |
| sdomsdomcard 10451 | A set strictly dominates i... |
| canth3 10452 | Cantor's theorem in terms ... |
| infxpidm 10453 | Every infinite class is eq... |
| ondomon 10454 | The class of ordinals domi... |
| cardmin 10455 | The smallest ordinal that ... |
| ficard 10456 | A set is finite iff its ca... |
| infinf 10457 | Equivalence between two in... |
| unirnfdomd 10458 | The union of the range of ... |
| konigthlem 10459 | Lemma for ~ konigth . (Co... |
| konigth 10460 | Konig's Theorem. If ` m (... |
| alephsucpw 10461 | The power set of an aleph ... |
| aleph1 10462 | The set exponentiation of ... |
| alephval2 10463 | An alternate way to expres... |
| dominfac 10464 | A nonempty set that is a s... |
| iunctb 10465 | The countable union of cou... |
| unictb 10466 | The countable union of cou... |
| infmap 10467 | An exponentiation law for ... |
| alephadd 10468 | The sum of two alephs is t... |
| alephmul 10469 | The product of two alephs ... |
| alephexp1 10470 | An exponentiation law for ... |
| alephsuc3 10471 | An alternate representatio... |
| alephexp2 10472 | An expression equinumerous... |
| alephreg 10473 | A successor aleph is regul... |
| pwcfsdom 10474 | A corollary of Konig's The... |
| cfpwsdom 10475 | A corollary of Konig's The... |
| alephom 10476 | From ~ canth2 , we know th... |
| smobeth 10477 | The beth function is stric... |
| nd1 10478 | A lemma for proving condit... |
| nd2 10479 | A lemma for proving condit... |
| nd3 10480 | A lemma for proving condit... |
| nd4 10481 | A lemma for proving condit... |
| axextnd 10482 | A version of the Axiom of ... |
| axrepndlem1 10483 | Lemma for the Axiom of Rep... |
| axrepndlem2 10484 | Lemma for the Axiom of Rep... |
| axrepnd 10485 | A version of the Axiom of ... |
| axunndlem1 10486 | Lemma for the Axiom of Uni... |
| axunnd 10487 | A version of the Axiom of ... |
| axpowndlem1 10488 | Lemma for the Axiom of Pow... |
| axpowndlem2 10489 | Lemma for the Axiom of Pow... |
| axpowndlem3 10490 | Lemma for the Axiom of Pow... |
| axpowndlem4 10491 | Lemma for the Axiom of Pow... |
| axpownd 10492 | A version of the Axiom of ... |
| axregndlem1 10493 | Lemma for the Axiom of Reg... |
| axregndlem2 10494 | Lemma for the Axiom of Reg... |
| axregnd 10495 | A version of the Axiom of ... |
| axinfndlem1 10496 | Lemma for the Axiom of Inf... |
| axinfnd 10497 | A version of the Axiom of ... |
| axacndlem1 10498 | Lemma for the Axiom of Cho... |
| axacndlem2 10499 | Lemma for the Axiom of Cho... |
| axacndlem3 10500 | Lemma for the Axiom of Cho... |
| axacndlem4 10501 | Lemma for the Axiom of Cho... |
| axacndlem5 10502 | Lemma for the Axiom of Cho... |
| axacnd 10503 | A version of the Axiom of ... |
| zfcndext 10504 | Axiom of Extensionality ~ ... |
| zfcndrep 10505 | Axiom of Replacement ~ ax-... |
| zfcndun 10506 | Axiom of Union ~ ax-un , r... |
| zfcndpow 10507 | Axiom of Power Sets ~ ax-p... |
| zfcndreg 10508 | Axiom of Regularity ~ ax-r... |
| zfcndinf 10509 | Axiom of Infinity ~ ax-inf... |
| zfcndac 10510 | Axiom of Choice ~ ax-ac , ... |
| elgch 10513 | Elementhood in the collect... |
| fingch 10514 | A finite set is a GCH-set.... |
| gchi 10515 | The only GCH-sets which ha... |
| gchen1 10516 | If ` A <_ B < ~P A ` , and... |
| gchen2 10517 | If ` A < B <_ ~P A ` , and... |
| gchor 10518 | If ` A <_ B <_ ~P A ` , an... |
| engch 10519 | The property of being a GC... |
| gchdomtri 10520 | Under certain conditions, ... |
| fpwwe2cbv 10521 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem1 10522 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem2 10523 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem3 10524 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem4 10525 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem5 10526 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem6 10527 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem7 10528 | Lemma for ~ fpwwe2 . Show... |
| fpwwe2lem8 10529 | Lemma for ~ fpwwe2 . Give... |
| fpwwe2lem9 10530 | Lemma for ~ fpwwe2 . Give... |
| fpwwe2lem10 10531 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem11 10532 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2lem12 10533 | Lemma for ~ fpwwe2 . (Con... |
| fpwwe2 10534 | Given any function ` F ` f... |
| fpwwecbv 10535 | Lemma for ~ fpwwe . (Cont... |
| fpwwelem 10536 | Lemma for ~ fpwwe . (Cont... |
| fpwwe 10537 | Given any function ` F ` f... |
| canth4 10538 | An "effective" form of Can... |
| canthnumlem 10539 | Lemma for ~ canthnum . (C... |
| canthnum 10540 | The set of well-orderable ... |
| canthwelem 10541 | Lemma for ~ canthwe . (Co... |
| canthwe 10542 | The set of well-orders of ... |
| canthp1lem1 10543 | Lemma for ~ canthp1 . (Co... |
| canthp1lem2 10544 | Lemma for ~ canthp1 . (Co... |
| canthp1 10545 | A slightly stronger form o... |
| finngch 10546 | The exclusion of finite se... |
| gchdju1 10547 | An infinite GCH-set is ide... |
| gchinf 10548 | An infinite GCH-set is Ded... |
| pwfseqlem1 10549 | Lemma for ~ pwfseq . Deri... |
| pwfseqlem2 10550 | Lemma for ~ pwfseq . (Con... |
| pwfseqlem3 10551 | Lemma for ~ pwfseq . Usin... |
| pwfseqlem4a 10552 | Lemma for ~ pwfseqlem4 . ... |
| pwfseqlem4 10553 | Lemma for ~ pwfseq . Deri... |
| pwfseqlem5 10554 | Lemma for ~ pwfseq . Alth... |
| pwfseq 10555 | The powerset of a Dedekind... |
| pwxpndom2 10556 | The powerset of a Dedekind... |
| pwxpndom 10557 | The powerset of a Dedekind... |
| pwdjundom 10558 | The powerset of a Dedekind... |
| gchdjuidm 10559 | An infinite GCH-set is ide... |
| gchxpidm 10560 | An infinite GCH-set is ide... |
| gchpwdom 10561 | A relationship between dom... |
| gchaleph 10562 | If ` ( aleph `` A ) ` is a... |
| gchaleph2 10563 | If ` ( aleph `` A ) ` and ... |
| hargch 10564 | If ` A + ~~ ~P A ` , then ... |
| alephgch 10565 | If ` ( aleph `` suc A ) ` ... |
| gch2 10566 | It is sufficient to requir... |
| gch3 10567 | An equivalent formulation ... |
| gch-kn 10568 | The equivalence of two ver... |
| gchaclem 10569 | Lemma for ~ gchac (obsolet... |
| gchhar 10570 | A "local" form of ~ gchac ... |
| gchacg 10571 | A "local" form of ~ gchac ... |
| gchac 10572 | The Generalized Continuum ... |
| elwina 10577 | Conditions of weak inacces... |
| elina 10578 | Conditions of strong inacc... |
| winaon 10579 | A weakly inaccessible card... |
| inawinalem 10580 | Lemma for ~ inawina . (Co... |
| inawina 10581 | Every strongly inaccessibl... |
| omina 10582 | ` _om ` is a strongly inac... |
| winacard 10583 | A weakly inaccessible card... |
| winainflem 10584 | A weakly inaccessible card... |
| winainf 10585 | A weakly inaccessible card... |
| winalim 10586 | A weakly inaccessible card... |
| winalim2 10587 | A nontrivial weakly inacce... |
| winafp 10588 | A nontrivial weakly inacce... |
| winafpi 10589 | This theorem, which states... |
| gchina 10590 | Assuming the GCH, weakly a... |
| iswun 10595 | Properties of a weak unive... |
| wuntr 10596 | A weak universe is transit... |
| wununi 10597 | A weak universe is closed ... |
| wunpw 10598 | A weak universe is closed ... |
| wunelss 10599 | The elements of a weak uni... |
| wunpr 10600 | A weak universe is closed ... |
| wunun 10601 | A weak universe is closed ... |
| wuntp 10602 | A weak universe is closed ... |
| wunss 10603 | A weak universe is closed ... |
| wunin 10604 | A weak universe is closed ... |
| wundif 10605 | A weak universe is closed ... |
| wunint 10606 | A weak universe is closed ... |
| wunsn 10607 | A weak universe is closed ... |
| wunsuc 10608 | A weak universe is closed ... |
| wun0 10609 | A weak universe contains t... |
| wunr1om 10610 | A weak universe is infinit... |
| wunom 10611 | A weak universe contains a... |
| wunfi 10612 | A weak universe contains a... |
| wunop 10613 | A weak universe is closed ... |
| wunot 10614 | A weak universe is closed ... |
| wunxp 10615 | A weak universe is closed ... |
| wunpm 10616 | A weak universe is closed ... |
| wunmap 10617 | A weak universe is closed ... |
| wunf 10618 | A weak universe is closed ... |
| wundm 10619 | A weak universe is closed ... |
| wunrn 10620 | A weak universe is closed ... |
| wuncnv 10621 | A weak universe is closed ... |
| wunres 10622 | A weak universe is closed ... |
| wunfv 10623 | A weak universe is closed ... |
| wunco 10624 | A weak universe is closed ... |
| wuntpos 10625 | A weak universe is closed ... |
| intwun 10626 | The intersection of a coll... |
| r1limwun 10627 | Each limit stage in the cu... |
| r1wunlim 10628 | The weak universes in the ... |
| wunex2 10629 | Construct a weak universe ... |
| wunex 10630 | Construct a weak universe ... |
| uniwun 10631 | Every set is contained in ... |
| wunex3 10632 | Construct a weak universe ... |
| wuncval 10633 | Value of the weak universe... |
| wuncid 10634 | The weak universe closure ... |
| wunccl 10635 | The weak universe closure ... |
| wuncss 10636 | The weak universe closure ... |
| wuncidm 10637 | The weak universe closure ... |
| wuncval2 10638 | Our earlier expression for... |
| eltskg 10641 | Properties of a Tarski cla... |
| eltsk2g 10642 | Properties of a Tarski cla... |
| tskpwss 10643 | First axiom of a Tarski cl... |
| tskpw 10644 | Second axiom of a Tarski c... |
| tsken 10645 | Third axiom of a Tarski cl... |
| 0tsk 10646 | The empty set is a (transi... |
| tsksdom 10647 | An element of a Tarski cla... |
| tskssel 10648 | A part of a Tarski class s... |
| tskss 10649 | The subsets of an element ... |
| tskin 10650 | The intersection of two el... |
| tsksn 10651 | A singleton of an element ... |
| tsktrss 10652 | A transitive element of a ... |
| tsksuc 10653 | If an element of a Tarski ... |
| tsk0 10654 | A nonempty Tarski class co... |
| tsk1 10655 | One is an element of a non... |
| tsk2 10656 | Two is an element of a non... |
| 2domtsk 10657 | If a Tarski class is not e... |
| tskr1om 10658 | A nonempty Tarski class is... |
| tskr1om2 10659 | A nonempty Tarski class co... |
| tskinf 10660 | A nonempty Tarski class is... |
| tskpr 10661 | If ` A ` and ` B ` are mem... |
| tskop 10662 | If ` A ` and ` B ` are mem... |
| tskxpss 10663 | A Cartesian product of two... |
| tskwe2 10664 | A Tarski class is well-ord... |
| inttsk 10665 | The intersection of a coll... |
| inar1 10666 | ` ( R1 `` A ) ` for ` A ` ... |
| r1omALT 10667 | Alternate proof of ~ r1om ... |
| rankcf 10668 | Any set must be at least a... |
| inatsk 10669 | ` ( R1 `` A ) ` for ` A ` ... |
| r1omtsk 10670 | The set of hereditarily fi... |
| tskord 10671 | A Tarski class contains al... |
| tskcard 10672 | An even more direct relati... |
| r1tskina 10673 | There is a direct relation... |
| tskuni 10674 | The union of an element of... |
| tskwun 10675 | A nonempty transitive Tars... |
| tskint 10676 | The intersection of an ele... |
| tskun 10677 | The union of two elements ... |
| tskxp 10678 | The Cartesian product of t... |
| tskmap 10679 | Set exponentiation is an e... |
| tskurn 10680 | A transitive Tarski class ... |
| elgrug 10683 | Properties of a Grothendie... |
| grutr 10684 | A Grothendieck universe is... |
| gruelss 10685 | A Grothendieck universe is... |
| grupw 10686 | A Grothendieck universe co... |
| gruss 10687 | Any subset of an element o... |
| grupr 10688 | A Grothendieck universe co... |
| gruurn 10689 | A Grothendieck universe co... |
| gruiun 10690 | If ` B ( x ) ` is a family... |
| gruuni 10691 | A Grothendieck universe co... |
| grurn 10692 | A Grothendieck universe co... |
| gruima 10693 | A Grothendieck universe co... |
| gruel 10694 | Any element of an element ... |
| grusn 10695 | A Grothendieck universe co... |
| gruop 10696 | A Grothendieck universe co... |
| gruun 10697 | A Grothendieck universe co... |
| gruxp 10698 | A Grothendieck universe co... |
| grumap 10699 | A Grothendieck universe co... |
| gruixp 10700 | A Grothendieck universe co... |
| gruiin 10701 | A Grothendieck universe co... |
| gruf 10702 | A Grothendieck universe co... |
| gruen 10703 | A Grothendieck universe co... |
| gruwun 10704 | A nonempty Grothendieck un... |
| intgru 10705 | The intersection of a fami... |
| ingru 10706 | The intersection of a univ... |
| wfgru 10707 | The wellfounded part of a ... |
| grudomon 10708 | Each ordinal that is compa... |
| gruina 10709 | If a Grothendieck universe... |
| grur1a 10710 | A characterization of Grot... |
| grur1 10711 | A characterization of Grot... |
| grutsk1 10712 | Grothendieck universes are... |
| grutsk 10713 | Grothendieck universes are... |
| axgroth5 10715 | The Tarski-Grothendieck ax... |
| axgroth2 10716 | Alternate version of the T... |
| grothpw 10717 | Derive the Axiom of Power ... |
| grothpwex 10718 | Derive the Axiom of Power ... |
| axgroth6 10719 | The Tarski-Grothendieck ax... |
| grothomex 10720 | The Tarski-Grothendieck Ax... |
| grothac 10721 | The Tarski-Grothendieck Ax... |
| axgroth3 10722 | Alternate version of the T... |
| axgroth4 10723 | Alternate version of the T... |
| grothprimlem 10724 | Lemma for ~ grothprim . E... |
| grothprim 10725 | The Tarski-Grothendieck Ax... |
| grothtsk 10726 | The Tarski-Grothendieck Ax... |
| inaprc 10727 | An equivalent to the Tarsk... |
| tskmval 10730 | Value of our tarski map. ... |
| tskmid 10731 | The set ` A ` is an elemen... |
| tskmcl 10732 | A Tarski class that contai... |
| sstskm 10733 | Being a part of ` ( tarski... |
| eltskm 10734 | Belonging to ` ( tarskiMap... |
| elni 10767 | Membership in the class of... |
| elni2 10768 | Membership in the class of... |
| pinn 10769 | A positive integer is a na... |
| pion 10770 | A positive integer is an o... |
| piord 10771 | A positive integer is ordi... |
| niex 10772 | The class of positive inte... |
| 0npi 10773 | The empty set is not a pos... |
| 1pi 10774 | Ordinal 'one' is a positiv... |
| addpiord 10775 | Positive integer addition ... |
| mulpiord 10776 | Positive integer multiplic... |
| mulidpi 10777 | 1 is an identity element f... |
| ltpiord 10778 | Positive integer 'less tha... |
| ltsopi 10779 | Positive integer 'less tha... |
| ltrelpi 10780 | Positive integer 'less tha... |
| dmaddpi 10781 | Domain of addition on posi... |
| dmmulpi 10782 | Domain of multiplication o... |
| addclpi 10783 | Closure of addition of pos... |
| mulclpi 10784 | Closure of multiplication ... |
| addcompi 10785 | Addition of positive integ... |
| addasspi 10786 | Addition of positive integ... |
| mulcompi 10787 | Multiplication of positive... |
| mulasspi 10788 | Multiplication of positive... |
| distrpi 10789 | Multiplication of positive... |
| addcanpi 10790 | Addition cancellation law ... |
| mulcanpi 10791 | Multiplication cancellatio... |
| addnidpi 10792 | There is no identity eleme... |
| ltexpi 10793 | Ordering on positive integ... |
| ltapi 10794 | Ordering property of addit... |
| ltmpi 10795 | Ordering property of multi... |
| 1lt2pi 10796 | One is less than two (one ... |
| nlt1pi 10797 | No positive integer is les... |
| indpi 10798 | Principle of Finite Induct... |
| enqbreq 10810 | Equivalence relation for p... |
| enqbreq2 10811 | Equivalence relation for p... |
| enqer 10812 | The equivalence relation f... |
| enqex 10813 | The equivalence relation f... |
| nqex 10814 | The class of positive frac... |
| 0nnq 10815 | The empty set is not a pos... |
| elpqn 10816 | Each positive fraction is ... |
| ltrelnq 10817 | Positive fraction 'less th... |
| pinq 10818 | The representatives of pos... |
| 1nq 10819 | The positive fraction 'one... |
| nqereu 10820 | There is a unique element ... |
| nqerf 10821 | Corollary of ~ nqereu : th... |
| nqercl 10822 | Corollary of ~ nqereu : cl... |
| nqerrel 10823 | Any member of ` ( N. X. N.... |
| nqerid 10824 | Corollary of ~ nqereu : th... |
| enqeq 10825 | Corollary of ~ nqereu : if... |
| nqereq 10826 | The function ` /Q ` acts a... |
| addpipq2 10827 | Addition of positive fract... |
| addpipq 10828 | Addition of positive fract... |
| addpqnq 10829 | Addition of positive fract... |
| mulpipq2 10830 | Multiplication of positive... |
| mulpipq 10831 | Multiplication of positive... |
| mulpqnq 10832 | Multiplication of positive... |
| ordpipq 10833 | Ordering of positive fract... |
| ordpinq 10834 | Ordering of positive fract... |
| addpqf 10835 | Closure of addition on pos... |
| addclnq 10836 | Closure of addition on pos... |
| mulpqf 10837 | Closure of multiplication ... |
| mulclnq 10838 | Closure of multiplication ... |
| addnqf 10839 | Domain of addition on posi... |
| mulnqf 10840 | Domain of multiplication o... |
| addcompq 10841 | Addition of positive fract... |
| addcomnq 10842 | Addition of positive fract... |
| mulcompq 10843 | Multiplication of positive... |
| mulcomnq 10844 | Multiplication of positive... |
| adderpqlem 10845 | Lemma for ~ adderpq . (Co... |
| mulerpqlem 10846 | Lemma for ~ mulerpq . (Co... |
| adderpq 10847 | Addition is compatible wit... |
| mulerpq 10848 | Multiplication is compatib... |
| addassnq 10849 | Addition of positive fract... |
| mulassnq 10850 | Multiplication of positive... |
| mulcanenq 10851 | Lemma for distributive law... |
| distrnq 10852 | Multiplication of positive... |
| 1nqenq 10853 | The equivalence class of r... |
| mulidnq 10854 | Multiplication identity el... |
| recmulnq 10855 | Relationship between recip... |
| recidnq 10856 | A positive fraction times ... |
| recclnq 10857 | Closure law for positive f... |
| recrecnq 10858 | Reciprocal of reciprocal o... |
| dmrecnq 10859 | Domain of reciprocal on po... |
| ltsonq 10860 | 'Less than' is a strict or... |
| lterpq 10861 | Compatibility of ordering ... |
| ltanq 10862 | Ordering property of addit... |
| ltmnq 10863 | Ordering property of multi... |
| 1lt2nq 10864 | One is less than two (one ... |
| ltaddnq 10865 | The sum of two fractions i... |
| ltexnq 10866 | Ordering on positive fract... |
| halfnq 10867 | One-half of any positive f... |
| nsmallnq 10868 | The is no smallest positiv... |
| ltbtwnnq 10869 | There exists a number betw... |
| ltrnq 10870 | Ordering property of recip... |
| archnq 10871 | For any fraction, there is... |
| npex 10877 | The class of positive real... |
| elnp 10878 | Membership in positive rea... |
| elnpi 10879 | Membership in positive rea... |
| prn0 10880 | A positive real is not emp... |
| prpssnq 10881 | A positive real is a subse... |
| elprnq 10882 | A positive real is a set o... |
| 0npr 10883 | The empty set is not a pos... |
| prcdnq 10884 | A positive real is closed ... |
| prub 10885 | A positive fraction not in... |
| prnmax 10886 | A positive real has no lar... |
| npomex 10887 | A simplifying observation,... |
| prnmadd 10888 | A positive real has no lar... |
| ltrelpr 10889 | Positive real 'less than' ... |
| genpv 10890 | Value of general operation... |
| genpelv 10891 | Membership in value of gen... |
| genpprecl 10892 | Pre-closure law for genera... |
| genpdm 10893 | Domain of general operatio... |
| genpn0 10894 | The result of an operation... |
| genpss 10895 | The result of an operation... |
| genpnnp 10896 | The result of an operation... |
| genpcd 10897 | Downward closure of an ope... |
| genpnmax 10898 | An operation on positive r... |
| genpcl 10899 | Closure of an operation on... |
| genpass 10900 | Associativity of an operat... |
| plpv 10901 | Value of addition on posit... |
| mpv 10902 | Value of multiplication on... |
| dmplp 10903 | Domain of addition on posi... |
| dmmp 10904 | Domain of multiplication o... |
| nqpr 10905 | The canonical embedding of... |
| 1pr 10906 | The positive real number '... |
| addclprlem1 10907 | Lemma to prove downward cl... |
| addclprlem2 10908 | Lemma to prove downward cl... |
| addclpr 10909 | Closure of addition on pos... |
| mulclprlem 10910 | Lemma to prove downward cl... |
| mulclpr 10911 | Closure of multiplication ... |
| addcompr 10912 | Addition of positive reals... |
| addasspr 10913 | Addition of positive reals... |
| mulcompr 10914 | Multiplication of positive... |
| mulasspr 10915 | Multiplication of positive... |
| distrlem1pr 10916 | Lemma for distributive law... |
| distrlem4pr 10917 | Lemma for distributive law... |
| distrlem5pr 10918 | Lemma for distributive law... |
| distrpr 10919 | Multiplication of positive... |
| 1idpr 10920 | 1 is an identity element f... |
| ltprord 10921 | Positive real 'less than' ... |
| psslinpr 10922 | Proper subset is a linear ... |
| ltsopr 10923 | Positive real 'less than' ... |
| prlem934 10924 | Lemma 9-3.4 of [Gleason] p... |
| ltaddpr 10925 | The sum of two positive re... |
| ltaddpr2 10926 | The sum of two positive re... |
| ltexprlem1 10927 | Lemma for Proposition 9-3.... |
| ltexprlem2 10928 | Lemma for Proposition 9-3.... |
| ltexprlem3 10929 | Lemma for Proposition 9-3.... |
| ltexprlem4 10930 | Lemma for Proposition 9-3.... |
| ltexprlem5 10931 | Lemma for Proposition 9-3.... |
| ltexprlem6 10932 | Lemma for Proposition 9-3.... |
| ltexprlem7 10933 | Lemma for Proposition 9-3.... |
| ltexpri 10934 | Proposition 9-3.5(iv) of [... |
| ltaprlem 10935 | Lemma for Proposition 9-3.... |
| ltapr 10936 | Ordering property of addit... |
| addcanpr 10937 | Addition cancellation law ... |
| prlem936 10938 | Lemma 9-3.6 of [Gleason] p... |
| reclem2pr 10939 | Lemma for Proposition 9-3.... |
| reclem3pr 10940 | Lemma for Proposition 9-3.... |
| reclem4pr 10941 | Lemma for Proposition 9-3.... |
| recexpr 10942 | The reciprocal of a positi... |
| suplem1pr 10943 | The union of a nonempty, b... |
| suplem2pr 10944 | The union of a set of posi... |
| supexpr 10945 | The union of a nonempty, b... |
| enrer 10954 | The equivalence relation f... |
| nrex1 10955 | The class of signed reals ... |
| enrbreq 10956 | Equivalence relation for s... |
| enreceq 10957 | Equivalence class equality... |
| enrex 10958 | The equivalence relation f... |
| ltrelsr 10959 | Signed real 'less than' is... |
| addcmpblnr 10960 | Lemma showing compatibilit... |
| mulcmpblnrlem 10961 | Lemma used in lemma showin... |
| mulcmpblnr 10962 | Lemma showing compatibilit... |
| prsrlem1 10963 | Decomposing signed reals i... |
| addsrmo 10964 | There is at most one resul... |
| mulsrmo 10965 | There is at most one resul... |
| addsrpr 10966 | Addition of signed reals i... |
| mulsrpr 10967 | Multiplication of signed r... |
| ltsrpr 10968 | Ordering of signed reals i... |
| gt0srpr 10969 | Greater than zero in terms... |
| 0nsr 10970 | The empty set is not a sig... |
| 0r 10971 | The constant ` 0R ` is a s... |
| 1sr 10972 | The constant ` 1R ` is a s... |
| m1r 10973 | The constant ` -1R ` is a ... |
| addclsr 10974 | Closure of addition on sig... |
| mulclsr 10975 | Closure of multiplication ... |
| dmaddsr 10976 | Domain of addition on sign... |
| dmmulsr 10977 | Domain of multiplication o... |
| addcomsr 10978 | Addition of signed reals i... |
| addasssr 10979 | Addition of signed reals i... |
| mulcomsr 10980 | Multiplication of signed r... |
| mulasssr 10981 | Multiplication of signed r... |
| distrsr 10982 | Multiplication of signed r... |
| m1p1sr 10983 | Minus one plus one is zero... |
| m1m1sr 10984 | Minus one times minus one ... |
| ltsosr 10985 | Signed real 'less than' is... |
| 0lt1sr 10986 | 0 is less than 1 for signe... |
| 1ne0sr 10987 | 1 and 0 are distinct for s... |
| 0idsr 10988 | The signed real number 0 i... |
| 1idsr 10989 | 1 is an identity element f... |
| 00sr 10990 | A signed real times 0 is 0... |
| ltasr 10991 | Ordering property of addit... |
| pn0sr 10992 | A signed real plus its neg... |
| negexsr 10993 | Existence of negative sign... |
| recexsrlem 10994 | The reciprocal of a positi... |
| addgt0sr 10995 | The sum of two positive si... |
| mulgt0sr 10996 | The product of two positiv... |
| sqgt0sr 10997 | The square of a nonzero si... |
| recexsr 10998 | The reciprocal of a nonzer... |
| mappsrpr 10999 | Mapping from positive sign... |
| ltpsrpr 11000 | Mapping of order from posi... |
| map2psrpr 11001 | Equivalence for positive s... |
| supsrlem 11002 | Lemma for supremum theorem... |
| supsr 11003 | A nonempty, bounded set of... |
| opelcn 11020 | Ordered pair membership in... |
| opelreal 11021 | Ordered pair membership in... |
| elreal 11022 | Membership in class of rea... |
| elreal2 11023 | Ordered pair membership in... |
| 0ncn 11024 | The empty set is not a com... |
| ltrelre 11025 | 'Less than' is a relation ... |
| addcnsr 11026 | Addition of complex number... |
| mulcnsr 11027 | Multiplication of complex ... |
| eqresr 11028 | Equality of real numbers i... |
| addresr 11029 | Addition of real numbers i... |
| mulresr 11030 | Multiplication of real num... |
| ltresr 11031 | Ordering of real subset of... |
| ltresr2 11032 | Ordering of real subset of... |
| dfcnqs 11033 | Technical trick to permit ... |
| addcnsrec 11034 | Technical trick to permit ... |
| mulcnsrec 11035 | Technical trick to permit ... |
| axaddf 11036 | Addition is an operation o... |
| axmulf 11037 | Multiplication is an opera... |
| axcnex 11038 | The complex numbers form a... |
| axresscn 11039 | The real numbers are a sub... |
| ax1cn 11040 | 1 is a complex number. Ax... |
| axicn 11041 | ` _i ` is a complex number... |
| axaddcl 11042 | Closure law for addition o... |
| axaddrcl 11043 | Closure law for addition i... |
| axmulcl 11044 | Closure law for multiplica... |
| axmulrcl 11045 | Closure law for multiplica... |
| axmulcom 11046 | Multiplication of complex ... |
| axaddass 11047 | Addition of complex number... |
| axmulass 11048 | Multiplication of complex ... |
| axdistr 11049 | Distributive law for compl... |
| axi2m1 11050 | i-squared equals -1 (expre... |
| ax1ne0 11051 | 1 and 0 are distinct. Axi... |
| ax1rid 11052 | ` 1 ` is an identity eleme... |
| axrnegex 11053 | Existence of negative of r... |
| axrrecex 11054 | Existence of reciprocal of... |
| axcnre 11055 | A complex number can be ex... |
| axpre-lttri 11056 | Ordering on reals satisfie... |
| axpre-lttrn 11057 | Ordering on reals is trans... |
| axpre-ltadd 11058 | Ordering property of addit... |
| axpre-mulgt0 11059 | The product of two positiv... |
| axpre-sup 11060 | A nonempty, bounded-above ... |
| wuncn 11061 | A weak universe containing... |
| cnex 11087 | Alias for ~ ax-cnex . See... |
| addcl 11088 | Alias for ~ ax-addcl , for... |
| readdcl 11089 | Alias for ~ ax-addrcl , fo... |
| mulcl 11090 | Alias for ~ ax-mulcl , for... |
| remulcl 11091 | Alias for ~ ax-mulrcl , fo... |
| mulcom 11092 | Alias for ~ ax-mulcom , fo... |
| addass 11093 | Alias for ~ ax-addass , fo... |
| mulass 11094 | Alias for ~ ax-mulass , fo... |
| adddi 11095 | Alias for ~ ax-distr , for... |
| recn 11096 | A real number is a complex... |
| reex 11097 | The real numbers form a se... |
| reelprrecn 11098 | Reals are a subset of the ... |
| cnelprrecn 11099 | Complex numbers are a subs... |
| mpoaddf 11100 | Addition is an operation o... |
| mpomulf 11101 | Multiplication is an opera... |
| elimne0 11102 | Hypothesis for weak deduct... |
| adddir 11103 | Distributive law for compl... |
| 0cn 11104 | Zero is a complex number. ... |
| 0cnd 11105 | Zero is a complex number, ... |
| c0ex 11106 | Zero is a set. (Contribut... |
| 1cnd 11107 | One is a complex number, d... |
| 1ex 11108 | One is a set. (Contribute... |
| cnre 11109 | Alias for ~ ax-cnre , for ... |
| mulrid 11110 | The number 1 is an identit... |
| mullid 11111 | Identity law for multiplic... |
| 1re 11112 | The number 1 is real. Thi... |
| 1red 11113 | The number 1 is real, dedu... |
| 0re 11114 | The number 0 is real. Rem... |
| 0red 11115 | The number 0 is real, dedu... |
| mulridi 11116 | Identity law for multiplic... |
| mullidi 11117 | Identity law for multiplic... |
| addcli 11118 | Closure law for addition. ... |
| mulcli 11119 | Closure law for multiplica... |
| mulcomi 11120 | Commutative law for multip... |
| mulcomli 11121 | Commutative law for multip... |
| addassi 11122 | Associative law for additi... |
| mulassi 11123 | Associative law for multip... |
| adddii 11124 | Distributive law (left-dis... |
| adddiri 11125 | Distributive law (right-di... |
| recni 11126 | A real number is a complex... |
| readdcli 11127 | Closure law for addition o... |
| remulcli 11128 | Closure law for multiplica... |
| mulridd 11129 | Identity law for multiplic... |
| mullidd 11130 | Identity law for multiplic... |
| addcld 11131 | Closure law for addition. ... |
| mulcld 11132 | Closure law for multiplica... |
| mulcomd 11133 | Commutative law for multip... |
| addassd 11134 | Associative law for additi... |
| mulassd 11135 | Associative law for multip... |
| adddid 11136 | Distributive law (left-dis... |
| adddird 11137 | Distributive law (right-di... |
| adddirp1d 11138 | Distributive law, plus 1 v... |
| joinlmuladdmuld 11139 | Join AB+CB into (A+C) on L... |
| recnd 11140 | Deduction from real number... |
| readdcld 11141 | Closure law for addition o... |
| remulcld 11142 | Closure law for multiplica... |
| pnfnre 11153 | Plus infinity is not a rea... |
| pnfnre2 11154 | Plus infinity is not a rea... |
| mnfnre 11155 | Minus infinity is not a re... |
| ressxr 11156 | The standard reals are a s... |
| rexpssxrxp 11157 | The Cartesian product of s... |
| rexr 11158 | A standard real is an exte... |
| 0xr 11159 | Zero is an extended real. ... |
| renepnf 11160 | No (finite) real equals pl... |
| renemnf 11161 | No real equals minus infin... |
| rexrd 11162 | A standard real is an exte... |
| renepnfd 11163 | No (finite) real equals pl... |
| renemnfd 11164 | No real equals minus infin... |
| pnfex 11165 | Plus infinity exists. (Co... |
| pnfxr 11166 | Plus infinity belongs to t... |
| pnfnemnf 11167 | Plus and minus infinity ar... |
| mnfnepnf 11168 | Minus and plus infinity ar... |
| mnfxr 11169 | Minus infinity belongs to ... |
| rexri 11170 | A standard real is an exte... |
| 1xr 11171 | ` 1 ` is an extended real ... |
| renfdisj 11172 | The reals and the infiniti... |
| ltrelxr 11173 | "Less than" is a relation ... |
| ltrel 11174 | "Less than" is a relation.... |
| lerelxr 11175 | "Less than or equal to" is... |
| lerel 11176 | "Less than or equal to" is... |
| xrlenlt 11177 | "Less than or equal to" ex... |
| xrlenltd 11178 | "Less than or equal to" ex... |
| xrltnle 11179 | "Less than" expressed in t... |
| xrltnled 11180 | 'Less than' in terms of 'l... |
| xrnltled 11181 | "Not less than" implies "l... |
| ssxr 11182 | The three (non-exclusive) ... |
| ltxrlt 11183 | The standard less-than ` <... |
| axlttri 11184 | Ordering on reals satisfie... |
| axlttrn 11185 | Ordering on reals is trans... |
| axltadd 11186 | Ordering property of addit... |
| axmulgt0 11187 | The product of two positiv... |
| axsup 11188 | A nonempty, bounded-above ... |
| lttr 11189 | Alias for ~ axlttrn , for ... |
| mulgt0 11190 | The product of two positiv... |
| lenlt 11191 | 'Less than or equal to' ex... |
| ltnle 11192 | 'Less than' expressed in t... |
| ltso 11193 | 'Less than' is a strict or... |
| gtso 11194 | 'Greater than' is a strict... |
| lttri2 11195 | Consequence of trichotomy.... |
| lttri3 11196 | Trichotomy law for 'less t... |
| lttri4 11197 | Trichotomy law for 'less t... |
| letri3 11198 | Trichotomy law. (Contribu... |
| leloe 11199 | 'Less than or equal to' ex... |
| eqlelt 11200 | Equality in terms of 'less... |
| ltle 11201 | 'Less than' implies 'less ... |
| leltne 11202 | 'Less than or equal to' im... |
| lelttr 11203 | Transitive law. (Contribu... |
| leltletr 11204 | Transitive law, weaker for... |
| ltletr 11205 | Transitive law. (Contribu... |
| ltleletr 11206 | Transitive law, weaker for... |
| letr 11207 | Transitive law. (Contribu... |
| ltnr 11208 | 'Less than' is irreflexive... |
| leid 11209 | 'Less than or equal to' is... |
| ltne 11210 | 'Less than' implies not eq... |
| ltnsym 11211 | 'Less than' is not symmetr... |
| ltnsym2 11212 | 'Less than' is antisymmetr... |
| letric 11213 | Trichotomy law. (Contribu... |
| ltlen 11214 | 'Less than' expressed in t... |
| eqle 11215 | Equality implies 'less tha... |
| eqled 11216 | Equality implies 'less tha... |
| ltadd2 11217 | Addition to both sides of ... |
| ne0gt0 11218 | A nonzero nonnegative numb... |
| lecasei 11219 | Ordering elimination by ca... |
| lelttric 11220 | Trichotomy law. (Contribu... |
| ltlecasei 11221 | Ordering elimination by ca... |
| ltnri 11222 | 'Less than' is irreflexive... |
| eqlei 11223 | Equality implies 'less tha... |
| eqlei2 11224 | Equality implies 'less tha... |
| gtneii 11225 | 'Less than' implies not eq... |
| ltneii 11226 | 'Greater than' implies not... |
| lttri2i 11227 | Consequence of trichotomy.... |
| lttri3i 11228 | Consequence of trichotomy.... |
| letri3i 11229 | Consequence of trichotomy.... |
| leloei 11230 | 'Less than or equal to' in... |
| ltleni 11231 | 'Less than' expressed in t... |
| ltnsymi 11232 | 'Less than' is not symmetr... |
| lenlti 11233 | 'Less than or equal to' in... |
| ltnlei 11234 | 'Less than' in terms of 'l... |
| ltlei 11235 | 'Less than' implies 'less ... |
| ltleii 11236 | 'Less than' implies 'less ... |
| ltnei 11237 | 'Less than' implies not eq... |
| letrii 11238 | Trichotomy law for 'less t... |
| lttri 11239 | 'Less than' is transitive.... |
| lelttri 11240 | 'Less than or equal to', '... |
| ltletri 11241 | 'Less than', 'less than or... |
| letri 11242 | 'Less than or equal to' is... |
| le2tri3i 11243 | Extended trichotomy law fo... |
| ltadd2i 11244 | Addition to both sides of ... |
| mulgt0i 11245 | The product of two positiv... |
| mulgt0ii 11246 | The product of two positiv... |
| ltnrd 11247 | 'Less than' is irreflexive... |
| gtned 11248 | 'Less than' implies not eq... |
| ltned 11249 | 'Greater than' implies not... |
| ne0gt0d 11250 | A nonzero nonnegative numb... |
| lttrid 11251 | Ordering on reals satisfie... |
| lttri2d 11252 | Consequence of trichotomy.... |
| lttri3d 11253 | Consequence of trichotomy.... |
| lttri4d 11254 | Trichotomy law for 'less t... |
| letri3d 11255 | Consequence of trichotomy.... |
| leloed 11256 | 'Less than or equal to' in... |
| eqleltd 11257 | Equality in terms of 'less... |
| ltlend 11258 | 'Less than' expressed in t... |
| lenltd 11259 | 'Less than or equal to' in... |
| ltnled 11260 | 'Less than' in terms of 'l... |
| ltled 11261 | 'Less than' implies 'less ... |
| ltnsymd 11262 | 'Less than' implies 'less ... |
| nltled 11263 | 'Not less than ' implies '... |
| lensymd 11264 | 'Less than or equal to' im... |
| letrid 11265 | Trichotomy law for 'less t... |
| leltned 11266 | 'Less than or equal to' im... |
| leneltd 11267 | 'Less than or equal to' an... |
| mulgt0d 11268 | The product of two positiv... |
| ltadd2d 11269 | Addition to both sides of ... |
| letrd 11270 | Transitive law deduction f... |
| lelttrd 11271 | Transitive law deduction f... |
| ltadd2dd 11272 | Addition to both sides of ... |
| ltletrd 11273 | Transitive law deduction f... |
| lttrd 11274 | Transitive law deduction f... |
| lelttrdi 11275 | If a number is less than a... |
| dedekind 11276 | The Dedekind cut theorem. ... |
| dedekindle 11277 | The Dedekind cut theorem, ... |
| mul12 11278 | Commutative/associative la... |
| mul32 11279 | Commutative/associative la... |
| mul31 11280 | Commutative/associative la... |
| mul4 11281 | Rearrangement of 4 factors... |
| mul4r 11282 | Rearrangement of 4 factors... |
| muladd11 11283 | A simple product of sums e... |
| 1p1times 11284 | Two times a number. (Cont... |
| peano2cn 11285 | A theorem for complex numb... |
| peano2re 11286 | A theorem for reals analog... |
| readdcan 11287 | Cancellation law for addit... |
| 00id 11288 | ` 0 ` is its own additive ... |
| mul02lem1 11289 | Lemma for ~ mul02 . If an... |
| mul02lem2 11290 | Lemma for ~ mul02 . Zero ... |
| mul02 11291 | Multiplication by ` 0 ` . ... |
| mul01 11292 | Multiplication by ` 0 ` . ... |
| addrid 11293 | ` 0 ` is an additive ident... |
| cnegex 11294 | Existence of the negative ... |
| cnegex2 11295 | Existence of a left invers... |
| addlid 11296 | ` 0 ` is a left identity f... |
| addcan 11297 | Cancellation law for addit... |
| addcan2 11298 | Cancellation law for addit... |
| addcom 11299 | Addition commutes. This u... |
| addridi 11300 | ` 0 ` is an additive ident... |
| addlidi 11301 | ` 0 ` is a left identity f... |
| mul02i 11302 | Multiplication by 0. Theo... |
| mul01i 11303 | Multiplication by ` 0 ` . ... |
| addcomi 11304 | Addition commutes. Based ... |
| addcomli 11305 | Addition commutes. (Contr... |
| addcani 11306 | Cancellation law for addit... |
| addcan2i 11307 | Cancellation law for addit... |
| mul12i 11308 | Commutative/associative la... |
| mul32i 11309 | Commutative/associative la... |
| mul4i 11310 | Rearrangement of 4 factors... |
| mul02d 11311 | Multiplication by 0. Theo... |
| mul01d 11312 | Multiplication by ` 0 ` . ... |
| addridd 11313 | ` 0 ` is an additive ident... |
| addlidd 11314 | ` 0 ` is a left identity f... |
| addcomd 11315 | Addition commutes. Based ... |
| addcand 11316 | Cancellation law for addit... |
| addcan2d 11317 | Cancellation law for addit... |
| addcanad 11318 | Cancelling a term on the l... |
| addcan2ad 11319 | Cancelling a term on the r... |
| addneintrd 11320 | Introducing a term on the ... |
| addneintr2d 11321 | Introducing a term on the ... |
| mul12d 11322 | Commutative/associative la... |
| mul32d 11323 | Commutative/associative la... |
| mul31d 11324 | Commutative/associative la... |
| mul4d 11325 | Rearrangement of 4 factors... |
| muladd11r 11326 | A simple product of sums e... |
| comraddd 11327 | Commute RHS addition, in d... |
| comraddi 11328 | Commute RHS addition. See... |
| ltaddneg 11329 | Adding a negative number t... |
| ltaddnegr 11330 | Adding a negative number t... |
| add12 11331 | Commutative/associative la... |
| add32 11332 | Commutative/associative la... |
| add32r 11333 | Commutative/associative la... |
| add4 11334 | Rearrangement of 4 terms i... |
| add42 11335 | Rearrangement of 4 terms i... |
| add12i 11336 | Commutative/associative la... |
| add32i 11337 | Commutative/associative la... |
| add4i 11338 | Rearrangement of 4 terms i... |
| add42i 11339 | Rearrangement of 4 terms i... |
| add12d 11340 | Commutative/associative la... |
| add32d 11341 | Commutative/associative la... |
| add4d 11342 | Rearrangement of 4 terms i... |
| add42d 11343 | Rearrangement of 4 terms i... |
| 0cnALT 11348 | Alternate proof of ~ 0cn w... |
| 0cnALT2 11349 | Alternate proof of ~ 0cnAL... |
| negeu 11350 | Existential uniqueness of ... |
| subval 11351 | Value of subtraction, whic... |
| negeq 11352 | Equality theorem for negat... |
| negeqi 11353 | Equality inference for neg... |
| negeqd 11354 | Equality deduction for neg... |
| nfnegd 11355 | Deduction version of ~ nfn... |
| nfneg 11356 | Bound-variable hypothesis ... |
| csbnegg 11357 | Move class substitution in... |
| negex 11358 | A negative is a set. (Con... |
| subcl 11359 | Closure law for subtractio... |
| negcl 11360 | Closure law for negative. ... |
| negicn 11361 | ` -u _i ` is a complex num... |
| subf 11362 | Subtraction is an operatio... |
| subadd 11363 | Relationship between subtr... |
| subadd2 11364 | Relationship between subtr... |
| subsub23 11365 | Swap subtrahend and result... |
| pncan 11366 | Cancellation law for subtr... |
| pncan2 11367 | Cancellation law for subtr... |
| pncan3 11368 | Subtraction and addition o... |
| npcan 11369 | Cancellation law for subtr... |
| addsubass 11370 | Associative-type law for a... |
| addsub 11371 | Law for addition and subtr... |
| subadd23 11372 | Commutative/associative la... |
| addsub12 11373 | Commutative/associative la... |
| 2addsub 11374 | Law for subtraction and ad... |
| addsubeq4 11375 | Relation between sums and ... |
| pncan3oi 11376 | Subtraction and addition o... |
| mvrraddi 11377 | Move the right term in a s... |
| mvrladdi 11378 | Move the left term in a su... |
| mvlladdi 11379 | Move the left term in a su... |
| subid 11380 | Subtraction of a number fr... |
| subid1 11381 | Identity law for subtracti... |
| npncan 11382 | Cancellation law for subtr... |
| nppcan 11383 | Cancellation law for subtr... |
| nnpcan 11384 | Cancellation law for subtr... |
| nppcan3 11385 | Cancellation law for subtr... |
| subcan2 11386 | Cancellation law for subtr... |
| subeq0 11387 | If the difference between ... |
| npncan2 11388 | Cancellation law for subtr... |
| subsub2 11389 | Law for double subtraction... |
| nncan 11390 | Cancellation law for subtr... |
| subsub 11391 | Law for double subtraction... |
| nppcan2 11392 | Cancellation law for subtr... |
| subsub3 11393 | Law for double subtraction... |
| subsub4 11394 | Law for double subtraction... |
| sub32 11395 | Swap the second and third ... |
| nnncan 11396 | Cancellation law for subtr... |
| nnncan1 11397 | Cancellation law for subtr... |
| nnncan2 11398 | Cancellation law for subtr... |
| npncan3 11399 | Cancellation law for subtr... |
| pnpcan 11400 | Cancellation law for mixed... |
| pnpcan2 11401 | Cancellation law for mixed... |
| pnncan 11402 | Cancellation law for mixed... |
| ppncan 11403 | Cancellation law for mixed... |
| addsub4 11404 | Rearrangement of 4 terms i... |
| subadd4 11405 | Rearrangement of 4 terms i... |
| sub4 11406 | Rearrangement of 4 terms i... |
| neg0 11407 | Minus 0 equals 0. (Contri... |
| negid 11408 | Addition of a number and i... |
| negsub 11409 | Relationship between subtr... |
| subneg 11410 | Relationship between subtr... |
| negneg 11411 | A number is equal to the n... |
| neg11 11412 | Negative is one-to-one. (... |
| negcon1 11413 | Negative contraposition la... |
| negcon2 11414 | Negative contraposition la... |
| negeq0 11415 | A number is zero iff its n... |
| subcan 11416 | Cancellation law for subtr... |
| negsubdi 11417 | Distribution of negative o... |
| negdi 11418 | Distribution of negative o... |
| negdi2 11419 | Distribution of negative o... |
| negsubdi2 11420 | Distribution of negative o... |
| neg2sub 11421 | Relationship between subtr... |
| renegcli 11422 | Closure law for negative o... |
| resubcli 11423 | Closure law for subtractio... |
| renegcl 11424 | Closure law for negative o... |
| resubcl 11425 | Closure law for subtractio... |
| negreb 11426 | The negative of a real is ... |
| peano2cnm 11427 | "Reverse" second Peano pos... |
| peano2rem 11428 | "Reverse" second Peano pos... |
| negcli 11429 | Closure law for negative. ... |
| negidi 11430 | Addition of a number and i... |
| negnegi 11431 | A number is equal to the n... |
| subidi 11432 | Subtraction of a number fr... |
| subid1i 11433 | Identity law for subtracti... |
| negne0bi 11434 | A number is nonzero iff it... |
| negrebi 11435 | The negative of a real is ... |
| negne0i 11436 | The negative of a nonzero ... |
| subcli 11437 | Closure law for subtractio... |
| pncan3i 11438 | Subtraction and addition o... |
| negsubi 11439 | Relationship between subtr... |
| subnegi 11440 | Relationship between subtr... |
| subeq0i 11441 | If the difference between ... |
| neg11i 11442 | Negative is one-to-one. (... |
| negcon1i 11443 | Negative contraposition la... |
| negcon2i 11444 | Negative contraposition la... |
| negdii 11445 | Distribution of negative o... |
| negsubdii 11446 | Distribution of negative o... |
| negsubdi2i 11447 | Distribution of negative o... |
| subaddi 11448 | Relationship between subtr... |
| subadd2i 11449 | Relationship between subtr... |
| subaddrii 11450 | Relationship between subtr... |
| subsub23i 11451 | Swap subtrahend and result... |
| addsubassi 11452 | Associative-type law for s... |
| addsubi 11453 | Law for subtraction and ad... |
| subcani 11454 | Cancellation law for subtr... |
| subcan2i 11455 | Cancellation law for subtr... |
| pnncani 11456 | Cancellation law for mixed... |
| addsub4i 11457 | Rearrangement of 4 terms i... |
| 0reALT 11458 | Alternate proof of ~ 0re .... |
| negcld 11459 | Closure law for negative. ... |
| subidd 11460 | Subtraction of a number fr... |
| subid1d 11461 | Identity law for subtracti... |
| negidd 11462 | Addition of a number and i... |
| negnegd 11463 | A number is equal to the n... |
| negeq0d 11464 | A number is zero iff its n... |
| negne0bd 11465 | A number is nonzero iff it... |
| negcon1d 11466 | Contraposition law for una... |
| negcon1ad 11467 | Contraposition law for una... |
| neg11ad 11468 | The negatives of two compl... |
| negned 11469 | If two complex numbers are... |
| negne0d 11470 | The negative of a nonzero ... |
| negrebd 11471 | The negative of a real is ... |
| subcld 11472 | Closure law for subtractio... |
| pncand 11473 | Cancellation law for subtr... |
| pncan2d 11474 | Cancellation law for subtr... |
| pncan3d 11475 | Subtraction and addition o... |
| npcand 11476 | Cancellation law for subtr... |
| nncand 11477 | Cancellation law for subtr... |
| negsubd 11478 | Relationship between subtr... |
| subnegd 11479 | Relationship between subtr... |
| subeq0d 11480 | If the difference between ... |
| subne0d 11481 | Two unequal numbers have n... |
| subeq0ad 11482 | The difference of two comp... |
| subne0ad 11483 | If the difference of two c... |
| neg11d 11484 | If the difference between ... |
| negdid 11485 | Distribution of negative o... |
| negdi2d 11486 | Distribution of negative o... |
| negsubdid 11487 | Distribution of negative o... |
| negsubdi2d 11488 | Distribution of negative o... |
| neg2subd 11489 | Relationship between subtr... |
| subaddd 11490 | Relationship between subtr... |
| subadd2d 11491 | Relationship between subtr... |
| addsubassd 11492 | Associative-type law for s... |
| addsubd 11493 | Law for subtraction and ad... |
| subadd23d 11494 | Commutative/associative la... |
| addsub12d 11495 | Commutative/associative la... |
| npncand 11496 | Cancellation law for subtr... |
| nppcand 11497 | Cancellation law for subtr... |
| nppcan2d 11498 | Cancellation law for subtr... |
| nppcan3d 11499 | Cancellation law for subtr... |
| subsubd 11500 | Law for double subtraction... |
| subsub2d 11501 | Law for double subtraction... |
| subsub3d 11502 | Law for double subtraction... |
| subsub4d 11503 | Law for double subtraction... |
| sub32d 11504 | Swap the second and third ... |
| nnncand 11505 | Cancellation law for subtr... |
| nnncan1d 11506 | Cancellation law for subtr... |
| nnncan2d 11507 | Cancellation law for subtr... |
| npncan3d 11508 | Cancellation law for subtr... |
| pnpcand 11509 | Cancellation law for mixed... |
| pnpcan2d 11510 | Cancellation law for mixed... |
| pnncand 11511 | Cancellation law for mixed... |
| ppncand 11512 | Cancellation law for mixed... |
| subcand 11513 | Cancellation law for subtr... |
| subcan2d 11514 | Cancellation law for subtr... |
| subcanad 11515 | Cancellation law for subtr... |
| subneintrd 11516 | Introducing subtraction on... |
| subcan2ad 11517 | Cancellation law for subtr... |
| subneintr2d 11518 | Introducing subtraction on... |
| addsub4d 11519 | Rearrangement of 4 terms i... |
| subadd4d 11520 | Rearrangement of 4 terms i... |
| sub4d 11521 | Rearrangement of 4 terms i... |
| 2addsubd 11522 | Law for subtraction and ad... |
| addsubeq4d 11523 | Relation between sums and ... |
| subsubadd23 11524 | Swap the second and the th... |
| addsubsub23 11525 | Swap the second and the th... |
| subeqxfrd 11526 | Transfer two terms of a su... |
| mvlraddd 11527 | Move the right term in a s... |
| mvlladdd 11528 | Move the left term in a su... |
| mvrraddd 11529 | Move the right term in a s... |
| mvrladdd 11530 | Move the left term in a su... |
| assraddsubd 11531 | Associate RHS addition-sub... |
| subaddeqd 11532 | Transfer two terms of a su... |
| addlsub 11533 | Left-subtraction: Subtrac... |
| addrsub 11534 | Right-subtraction: Subtra... |
| subexsub 11535 | A subtraction law: Exchan... |
| addid0 11536 | If adding a number to a an... |
| addn0nid 11537 | Adding a nonzero number to... |
| pnpncand 11538 | Addition/subtraction cance... |
| subeqrev 11539 | Reverse the order of subtr... |
| addeq0 11540 | Two complex numbers add up... |
| pncan1 11541 | Cancellation law for addit... |
| npcan1 11542 | Cancellation law for subtr... |
| subeq0bd 11543 | If two complex numbers are... |
| renegcld 11544 | Closure law for negative o... |
| resubcld 11545 | Closure law for subtractio... |
| negn0 11546 | The image under negation o... |
| negf1o 11547 | Negation is an isomorphism... |
| kcnktkm1cn 11548 | k times k minus 1 is a com... |
| muladd 11549 | Product of two sums. (Con... |
| subdi 11550 | Distribution of multiplica... |
| subdir 11551 | Distribution of multiplica... |
| ine0 11552 | The imaginary unit ` _i ` ... |
| mulneg1 11553 | Product with negative is n... |
| mulneg2 11554 | The product with a negativ... |
| mulneg12 11555 | Swap the negative sign in ... |
| mul2neg 11556 | Product of two negatives. ... |
| submul2 11557 | Convert a subtraction to a... |
| mulm1 11558 | Product with minus one is ... |
| addneg1mul 11559 | Addition with product with... |
| mulsub 11560 | Product of two differences... |
| mulsub2 11561 | Swap the order of subtract... |
| mulm1i 11562 | Product with minus one is ... |
| mulneg1i 11563 | Product with negative is n... |
| mulneg2i 11564 | Product with negative is n... |
| mul2negi 11565 | Product of two negatives. ... |
| subdii 11566 | Distribution of multiplica... |
| subdiri 11567 | Distribution of multiplica... |
| muladdi 11568 | Product of two sums. (Con... |
| mulm1d 11569 | Product with minus one is ... |
| mulneg1d 11570 | Product with negative is n... |
| mulneg2d 11571 | Product with negative is n... |
| mul2negd 11572 | Product of two negatives. ... |
| subdid 11573 | Distribution of multiplica... |
| subdird 11574 | Distribution of multiplica... |
| muladdd 11575 | Product of two sums. (Con... |
| mulsubd 11576 | Product of two differences... |
| muls1d 11577 | Multiplication by one minu... |
| mulsubfacd 11578 | Multiplication followed by... |
| addmulsub 11579 | The product of a sum and a... |
| subaddmulsub 11580 | The difference with a prod... |
| mulsubaddmulsub 11581 | A special difference of a ... |
| gt0ne0 11582 | Positive implies nonzero. ... |
| lt0ne0 11583 | A number which is less tha... |
| ltadd1 11584 | Addition to both sides of ... |
| leadd1 11585 | Addition to both sides of ... |
| leadd2 11586 | Addition to both sides of ... |
| ltsubadd 11587 | 'Less than' relationship b... |
| ltsubadd2 11588 | 'Less than' relationship b... |
| lesubadd 11589 | 'Less than or equal to' re... |
| lesubadd2 11590 | 'Less than or equal to' re... |
| ltaddsub 11591 | 'Less than' relationship b... |
| ltaddsub2 11592 | 'Less than' relationship b... |
| leaddsub 11593 | 'Less than or equal to' re... |
| leaddsub2 11594 | 'Less than or equal to' re... |
| suble 11595 | Swap subtrahends in an ine... |
| lesub 11596 | Swap subtrahends in an ine... |
| ltsub23 11597 | 'Less than' relationship b... |
| ltsub13 11598 | 'Less than' relationship b... |
| le2add 11599 | Adding both sides of two '... |
| ltleadd 11600 | Adding both sides of two o... |
| leltadd 11601 | Adding both sides of two o... |
| lt2add 11602 | Adding both sides of two '... |
| addgt0 11603 | The sum of 2 positive numb... |
| addgegt0 11604 | The sum of nonnegative and... |
| addgtge0 11605 | The sum of nonnegative and... |
| addge0 11606 | The sum of 2 nonnegative n... |
| ltaddpos 11607 | Adding a positive number t... |
| ltaddpos2 11608 | Adding a positive number t... |
| ltsubpos 11609 | Subtracting a positive num... |
| posdif 11610 | Comparison of two numbers ... |
| lesub1 11611 | Subtraction from both side... |
| lesub2 11612 | Subtraction of both sides ... |
| ltsub1 11613 | Subtraction from both side... |
| ltsub2 11614 | Subtraction of both sides ... |
| lt2sub 11615 | Subtracting both sides of ... |
| le2sub 11616 | Subtracting both sides of ... |
| ltneg 11617 | Negative of both sides of ... |
| ltnegcon1 11618 | Contraposition of negative... |
| ltnegcon2 11619 | Contraposition of negative... |
| leneg 11620 | Negative of both sides of ... |
| lenegcon1 11621 | Contraposition of negative... |
| lenegcon2 11622 | Contraposition of negative... |
| lt0neg1 11623 | Comparison of a number and... |
| lt0neg2 11624 | Comparison of a number and... |
| le0neg1 11625 | Comparison of a number and... |
| le0neg2 11626 | Comparison of a number and... |
| addge01 11627 | A number is less than or e... |
| addge02 11628 | A number is less than or e... |
| add20 11629 | Two nonnegative numbers ar... |
| subge0 11630 | Nonnegative subtraction. ... |
| suble0 11631 | Nonpositive subtraction. ... |
| leaddle0 11632 | The sum of a real number a... |
| subge02 11633 | Nonnegative subtraction. ... |
| lesub0 11634 | Lemma to show a nonnegativ... |
| mulge0 11635 | The product of two nonnega... |
| mullt0 11636 | The product of two negativ... |
| msqgt0 11637 | A nonzero square is positi... |
| msqge0 11638 | A square is nonnegative. ... |
| 0lt1 11639 | 0 is less than 1. Theorem... |
| 0le1 11640 | 0 is less than or equal to... |
| relin01 11641 | An interval law for less t... |
| ltordlem 11642 | Lemma for ~ ltord1 . (Con... |
| ltord1 11643 | Infer an ordering relation... |
| leord1 11644 | Infer an ordering relation... |
| eqord1 11645 | A strictly increasing real... |
| ltord2 11646 | Infer an ordering relation... |
| leord2 11647 | Infer an ordering relation... |
| eqord2 11648 | A strictly decreasing real... |
| wloglei 11649 | Form of ~ wlogle where bot... |
| wlogle 11650 | If the predicate ` ch ( x ... |
| leidi 11651 | 'Less than or equal to' is... |
| gt0ne0i 11652 | Positive means nonzero (us... |
| gt0ne0ii 11653 | Positive implies nonzero. ... |
| msqgt0i 11654 | A nonzero square is positi... |
| msqge0i 11655 | A square is nonnegative. ... |
| addgt0i 11656 | Addition of 2 positive num... |
| addge0i 11657 | Addition of 2 nonnegative ... |
| addgegt0i 11658 | Addition of nonnegative an... |
| addgt0ii 11659 | Addition of 2 positive num... |
| add20i 11660 | Two nonnegative numbers ar... |
| ltnegi 11661 | Negative of both sides of ... |
| lenegi 11662 | Negative of both sides of ... |
| ltnegcon2i 11663 | Contraposition of negative... |
| mulge0i 11664 | The product of two nonnega... |
| lesub0i 11665 | Lemma to show a nonnegativ... |
| ltaddposi 11666 | Adding a positive number t... |
| posdifi 11667 | Comparison of two numbers ... |
| ltnegcon1i 11668 | Contraposition of negative... |
| lenegcon1i 11669 | Contraposition of negative... |
| subge0i 11670 | Nonnegative subtraction. ... |
| ltadd1i 11671 | Addition to both sides of ... |
| leadd1i 11672 | Addition to both sides of ... |
| leadd2i 11673 | Addition to both sides of ... |
| ltsubaddi 11674 | 'Less than' relationship b... |
| lesubaddi 11675 | 'Less than or equal to' re... |
| ltsubadd2i 11676 | 'Less than' relationship b... |
| lesubadd2i 11677 | 'Less than or equal to' re... |
| ltaddsubi 11678 | 'Less than' relationship b... |
| lt2addi 11679 | Adding both side of two in... |
| le2addi 11680 | Adding both side of two in... |
| gt0ne0d 11681 | Positive implies nonzero. ... |
| lt0ne0d 11682 | Something less than zero i... |
| leidd 11683 | 'Less than or equal to' is... |
| msqgt0d 11684 | A nonzero square is positi... |
| msqge0d 11685 | A square is nonnegative. ... |
| lt0neg1d 11686 | Comparison of a number and... |
| lt0neg2d 11687 | Comparison of a number and... |
| le0neg1d 11688 | Comparison of a number and... |
| le0neg2d 11689 | Comparison of a number and... |
| addgegt0d 11690 | Addition of nonnegative an... |
| addgtge0d 11691 | Addition of positive and n... |
| addgt0d 11692 | Addition of 2 positive num... |
| addge0d 11693 | Addition of 2 nonnegative ... |
| mulge0d 11694 | The product of two nonnega... |
| ltnegd 11695 | Negative of both sides of ... |
| lenegd 11696 | Negative of both sides of ... |
| ltnegcon1d 11697 | Contraposition of negative... |
| ltnegcon2d 11698 | Contraposition of negative... |
| lenegcon1d 11699 | Contraposition of negative... |
| lenegcon2d 11700 | Contraposition of negative... |
| ltaddposd 11701 | Adding a positive number t... |
| ltaddpos2d 11702 | Adding a positive number t... |
| ltsubposd 11703 | Subtracting a positive num... |
| posdifd 11704 | Comparison of two numbers ... |
| addge01d 11705 | A number is less than or e... |
| addge02d 11706 | A number is less than or e... |
| subge0d 11707 | Nonnegative subtraction. ... |
| suble0d 11708 | Nonpositive subtraction. ... |
| subge02d 11709 | Nonnegative subtraction. ... |
| ltadd1d 11710 | Addition to both sides of ... |
| leadd1d 11711 | Addition to both sides of ... |
| leadd2d 11712 | Addition to both sides of ... |
| ltsubaddd 11713 | 'Less than' relationship b... |
| lesubaddd 11714 | 'Less than or equal to' re... |
| ltsubadd2d 11715 | 'Less than' relationship b... |
| lesubadd2d 11716 | 'Less than or equal to' re... |
| ltaddsubd 11717 | 'Less than' relationship b... |
| ltaddsub2d 11718 | 'Less than' relationship b... |
| leaddsub2d 11719 | 'Less than or equal to' re... |
| subled 11720 | Swap subtrahends in an ine... |
| lesubd 11721 | Swap subtrahends in an ine... |
| ltsub23d 11722 | 'Less than' relationship b... |
| ltsub13d 11723 | 'Less than' relationship b... |
| lesub1d 11724 | Subtraction from both side... |
| lesub2d 11725 | Subtraction of both sides ... |
| ltsub1d 11726 | Subtraction from both side... |
| ltsub2d 11727 | Subtraction of both sides ... |
| ltadd1dd 11728 | Addition to both sides of ... |
| ltsub1dd 11729 | Subtraction from both side... |
| ltsub2dd 11730 | Subtraction of both sides ... |
| leadd1dd 11731 | Addition to both sides of ... |
| leadd2dd 11732 | Addition to both sides of ... |
| lesub1dd 11733 | Subtraction from both side... |
| lesub2dd 11734 | Subtraction of both sides ... |
| lesub3d 11735 | The result of subtracting ... |
| le2addd 11736 | Adding both side of two in... |
| le2subd 11737 | Subtracting both sides of ... |
| ltleaddd 11738 | Adding both sides of two o... |
| leltaddd 11739 | Adding both sides of two o... |
| lt2addd 11740 | Adding both side of two in... |
| lt2subd 11741 | Subtracting both sides of ... |
| possumd 11742 | Condition for a positive s... |
| sublt0d 11743 | When a subtraction gives a... |
| ltaddsublt 11744 | Addition and subtraction o... |
| 1le1 11745 | One is less than or equal ... |
| ixi 11746 | ` _i ` times itself is min... |
| recextlem1 11747 | Lemma for ~ recex . (Cont... |
| recextlem2 11748 | Lemma for ~ recex . (Cont... |
| recex 11749 | Existence of reciprocal of... |
| mulcand 11750 | Cancellation law for multi... |
| mulcan2d 11751 | Cancellation law for multi... |
| mulcanad 11752 | Cancellation of a nonzero ... |
| mulcan2ad 11753 | Cancellation of a nonzero ... |
| mulcan 11754 | Cancellation law for multi... |
| mulcan2 11755 | Cancellation law for multi... |
| mulcani 11756 | Cancellation law for multi... |
| mul0or 11757 | If a product is zero, one ... |
| mulne0b 11758 | The product of two nonzero... |
| mulne0 11759 | The product of two nonzero... |
| mulne0i 11760 | The product of two nonzero... |
| muleqadd 11761 | Property of numbers whose ... |
| receu 11762 | Existential uniqueness of ... |
| mulnzcnf 11763 | Multiplication maps nonzer... |
| mul0ori 11764 | If a product is zero, one ... |
| mul0ord 11765 | If a product is zero, one ... |
| msq0i 11766 | A number is zero iff its s... |
| msq0d 11767 | A number is zero iff its s... |
| mulne0bd 11768 | The product of two nonzero... |
| mulne0d 11769 | The product of two nonzero... |
| mulcan1g 11770 | A generalized form of the ... |
| mulcan2g 11771 | A generalized form of the ... |
| mulne0bad 11772 | A factor of a nonzero comp... |
| mulne0bbd 11773 | A factor of a nonzero comp... |
| 1div0 11776 | You can't divide by zero, ... |
| 1div0OLD 11777 | Obsolete version of ~ 1div... |
| divval 11778 | Value of division: if ` A ... |
| divmul 11779 | Relationship between divis... |
| divmul2 11780 | Relationship between divis... |
| divmul3 11781 | Relationship between divis... |
| divcl 11782 | Closure law for division. ... |
| reccl 11783 | Closure law for reciprocal... |
| divcan2 11784 | A cancellation law for div... |
| divcan1 11785 | A cancellation law for div... |
| diveq0 11786 | A ratio is zero iff the nu... |
| divne0b 11787 | The ratio of nonzero numbe... |
| divne0 11788 | The ratio of nonzero numbe... |
| recne0 11789 | The reciprocal of a nonzer... |
| recid 11790 | Multiplication of a number... |
| recid2 11791 | Multiplication of a number... |
| divrec 11792 | Relationship between divis... |
| divrec2 11793 | Relationship between divis... |
| divass 11794 | An associative law for div... |
| div23 11795 | A commutative/associative ... |
| div32 11796 | A commutative/associative ... |
| div13 11797 | A commutative/associative ... |
| div12 11798 | A commutative/associative ... |
| divmulass 11799 | An associative law for div... |
| divmulasscom 11800 | An associative/commutative... |
| divdir 11801 | Distribution of division o... |
| divcan3 11802 | A cancellation law for div... |
| divcan4 11803 | A cancellation law for div... |
| div11 11804 | One-to-one relationship fo... |
| div11OLD 11805 | Obsolete version of ~ div1... |
| diveq1 11806 | Equality in terms of unit ... |
| divid 11807 | A number divided by itself... |
| dividOLD 11808 | Obsolete version of ~ divi... |
| div0 11809 | Division into zero is zero... |
| div0OLD 11810 | Obsolete version of ~ div0... |
| div1 11811 | A number divided by 1 is i... |
| 1div1e1 11812 | 1 divided by 1 is 1. (Con... |
| divneg 11813 | Move negative sign inside ... |
| muldivdir 11814 | Distribution of division o... |
| divsubdir 11815 | Distribution of division o... |
| subdivcomb1 11816 | Bring a term in a subtract... |
| subdivcomb2 11817 | Bring a term in a subtract... |
| recrec 11818 | A number is equal to the r... |
| rec11 11819 | Reciprocal is one-to-one. ... |
| rec11r 11820 | Mutual reciprocals. (Cont... |
| divmuldiv 11821 | Multiplication of two rati... |
| divdivdiv 11822 | Division of two ratios. T... |
| divcan5 11823 | Cancellation of common fac... |
| divmul13 11824 | Swap the denominators in t... |
| divmul24 11825 | Swap the numerators in the... |
| divmuleq 11826 | Cross-multiply in an equal... |
| recdiv 11827 | The reciprocal of a ratio.... |
| divcan6 11828 | Cancellation of inverted f... |
| divdiv32 11829 | Swap denominators in a div... |
| divcan7 11830 | Cancel equal divisors in a... |
| dmdcan 11831 | Cancellation law for divis... |
| divdiv1 11832 | Division into a fraction. ... |
| divdiv2 11833 | Division by a fraction. (... |
| recdiv2 11834 | Division into a reciprocal... |
| ddcan 11835 | Cancellation in a double d... |
| divadddiv 11836 | Addition of two ratios. T... |
| divsubdiv 11837 | Subtraction of two ratios.... |
| conjmul 11838 | Two numbers whose reciproc... |
| rereccl 11839 | Closure law for reciprocal... |
| redivcl 11840 | Closure law for division o... |
| eqneg 11841 | A number equal to its nega... |
| eqnegd 11842 | A complex number equals it... |
| eqnegad 11843 | If a complex number equals... |
| div2neg 11844 | Quotient of two negatives.... |
| divneg2 11845 | Move negative sign inside ... |
| recclzi 11846 | Closure law for reciprocal... |
| recne0zi 11847 | The reciprocal of a nonzer... |
| recidzi 11848 | Multiplication of a number... |
| div1i 11849 | A number divided by 1 is i... |
| eqnegi 11850 | A number equal to its nega... |
| reccli 11851 | Closure law for reciprocal... |
| recidi 11852 | Multiplication of a number... |
| recreci 11853 | A number is equal to the r... |
| dividi 11854 | A number divided by itself... |
| div0i 11855 | Division into zero is zero... |
| divclzi 11856 | Closure law for division. ... |
| divcan1zi 11857 | A cancellation law for div... |
| divcan2zi 11858 | A cancellation law for div... |
| divreczi 11859 | Relationship between divis... |
| divcan3zi 11860 | A cancellation law for div... |
| divcan4zi 11861 | A cancellation law for div... |
| rec11i 11862 | Reciprocal is one-to-one. ... |
| divcli 11863 | Closure law for division. ... |
| divcan2i 11864 | A cancellation law for div... |
| divcan1i 11865 | A cancellation law for div... |
| divreci 11866 | Relationship between divis... |
| divcan3i 11867 | A cancellation law for div... |
| divcan4i 11868 | A cancellation law for div... |
| divne0i 11869 | The ratio of nonzero numbe... |
| rec11ii 11870 | Reciprocal is one-to-one. ... |
| divasszi 11871 | An associative law for div... |
| divmulzi 11872 | Relationship between divis... |
| divdirzi 11873 | Distribution of division o... |
| divdiv23zi 11874 | Swap denominators in a div... |
| divmuli 11875 | Relationship between divis... |
| divdiv32i 11876 | Swap denominators in a div... |
| divassi 11877 | An associative law for div... |
| divdiri 11878 | Distribution of division o... |
| div23i 11879 | A commutative/associative ... |
| div11i 11880 | One-to-one relationship fo... |
| divmuldivi 11881 | Multiplication of two rati... |
| divmul13i 11882 | Swap denominators of two r... |
| divadddivi 11883 | Addition of two ratios. T... |
| divdivdivi 11884 | Division of two ratios. T... |
| rerecclzi 11885 | Closure law for reciprocal... |
| rereccli 11886 | Closure law for reciprocal... |
| redivclzi 11887 | Closure law for division o... |
| redivcli 11888 | Closure law for division o... |
| div1d 11889 | A number divided by 1 is i... |
| reccld 11890 | Closure law for reciprocal... |
| recne0d 11891 | The reciprocal of a nonzer... |
| recidd 11892 | Multiplication of a number... |
| recid2d 11893 | Multiplication of a number... |
| recrecd 11894 | A number is equal to the r... |
| dividd 11895 | A number divided by itself... |
| div0d 11896 | Division into zero is zero... |
| divcld 11897 | Closure law for division. ... |
| divcan1d 11898 | A cancellation law for div... |
| divcan2d 11899 | A cancellation law for div... |
| divrecd 11900 | Relationship between divis... |
| divrec2d 11901 | Relationship between divis... |
| divcan3d 11902 | A cancellation law for div... |
| divcan4d 11903 | A cancellation law for div... |
| diveq0d 11904 | A ratio is zero iff the nu... |
| diveq1d 11905 | Equality in terms of unit ... |
| diveq1ad 11906 | The quotient of two comple... |
| diveq0ad 11907 | A fraction of complex numb... |
| divne1d 11908 | If two complex numbers are... |
| divne0bd 11909 | A ratio is zero iff the nu... |
| divnegd 11910 | Move negative sign inside ... |
| divneg2d 11911 | Move negative sign inside ... |
| div2negd 11912 | Quotient of two negatives.... |
| divne0d 11913 | The ratio of nonzero numbe... |
| recdivd 11914 | The reciprocal of a ratio.... |
| recdiv2d 11915 | Division into a reciprocal... |
| divcan6d 11916 | Cancellation of inverted f... |
| ddcand 11917 | Cancellation in a double d... |
| rec11d 11918 | Reciprocal is one-to-one. ... |
| divmuld 11919 | Relationship between divis... |
| div32d 11920 | A commutative/associative ... |
| div13d 11921 | A commutative/associative ... |
| divdiv32d 11922 | Swap denominators in a div... |
| divcan5d 11923 | Cancellation of common fac... |
| divcan5rd 11924 | Cancellation of common fac... |
| divcan7d 11925 | Cancel equal divisors in a... |
| dmdcand 11926 | Cancellation law for divis... |
| dmdcan2d 11927 | Cancellation law for divis... |
| divdiv1d 11928 | Division into a fraction. ... |
| divdiv2d 11929 | Division by a fraction. (... |
| divmul2d 11930 | Relationship between divis... |
| divmul3d 11931 | Relationship between divis... |
| divassd 11932 | An associative law for div... |
| div12d 11933 | A commutative/associative ... |
| div23d 11934 | A commutative/associative ... |
| divdird 11935 | Distribution of division o... |
| divsubdird 11936 | Distribution of division o... |
| div11d 11937 | One-to-one relationship fo... |
| divmuldivd 11938 | Multiplication of two rati... |
| divmul13d 11939 | Swap denominators of two r... |
| divmul24d 11940 | Swap the numerators in the... |
| divadddivd 11941 | Addition of two ratios. T... |
| divsubdivd 11942 | Subtraction of two ratios.... |
| divmuleqd 11943 | Cross-multiply in an equal... |
| divdivdivd 11944 | Division of two ratios. T... |
| diveq1bd 11945 | If two complex numbers are... |
| div2sub 11946 | Swap the order of subtract... |
| div2subd 11947 | Swap subtrahend and minuen... |
| rereccld 11948 | Closure law for reciprocal... |
| redivcld 11949 | Closure law for division o... |
| subrecd 11950 | Subtraction of reciprocals... |
| subrec 11951 | Subtraction of reciprocals... |
| subreci 11952 | Subtraction of reciprocals... |
| mvllmuld 11953 | Move the left term in a pr... |
| mvllmuli 11954 | Move the left term in a pr... |
| ldiv 11955 | Left-division. (Contribut... |
| rdiv 11956 | Right-division. (Contribu... |
| mdiv 11957 | A division law. (Contribu... |
| lineq 11958 | Solution of a (scalar) lin... |
| elimgt0 11959 | Hypothesis for weak deduct... |
| elimge0 11960 | Hypothesis for weak deduct... |
| ltp1 11961 | A number is less than itse... |
| lep1 11962 | A number is less than or e... |
| ltm1 11963 | A number minus 1 is less t... |
| lem1 11964 | A number minus 1 is less t... |
| letrp1 11965 | A transitive property of '... |
| p1le 11966 | A transitive property of p... |
| recgt0 11967 | The reciprocal of a positi... |
| prodgt0 11968 | Infer that a multiplicand ... |
| prodgt02 11969 | Infer that a multiplier is... |
| ltmul1a 11970 | Lemma for ~ ltmul1 . Mult... |
| ltmul1 11971 | Multiplication of both sid... |
| ltmul2 11972 | Multiplication of both sid... |
| lemul1 11973 | Multiplication of both sid... |
| lemul2 11974 | Multiplication of both sid... |
| lemul1a 11975 | Multiplication of both sid... |
| lemul2a 11976 | Multiplication of both sid... |
| ltmul12a 11977 | Comparison of product of t... |
| lemul12b 11978 | Comparison of product of t... |
| lemul12a 11979 | Comparison of product of t... |
| mulgt1OLD 11980 | Obsolete version of ~ mulg... |
| ltmulgt11 11981 | Multiplication by a number... |
| ltmulgt12 11982 | Multiplication by a number... |
| mulgt1 11983 | The product of two numbers... |
| lemulge11 11984 | Multiplication by a number... |
| lemulge12 11985 | Multiplication by a number... |
| ltdiv1 11986 | Division of both sides of ... |
| lediv1 11987 | Division of both sides of ... |
| gt0div 11988 | Division of a positive num... |
| ge0div 11989 | Division of a nonnegative ... |
| divgt0 11990 | The ratio of two positive ... |
| divge0 11991 | The ratio of nonnegative a... |
| mulge0b 11992 | A condition for multiplica... |
| mulle0b 11993 | A condition for multiplica... |
| mulsuble0b 11994 | A condition for multiplica... |
| ltmuldiv 11995 | 'Less than' relationship b... |
| ltmuldiv2 11996 | 'Less than' relationship b... |
| ltdivmul 11997 | 'Less than' relationship b... |
| ledivmul 11998 | 'Less than or equal to' re... |
| ltdivmul2 11999 | 'Less than' relationship b... |
| lt2mul2div 12000 | 'Less than' relationship b... |
| ledivmul2 12001 | 'Less than or equal to' re... |
| lemuldiv 12002 | 'Less than or equal' relat... |
| lemuldiv2 12003 | 'Less than or equal' relat... |
| ltrec 12004 | The reciprocal of both sid... |
| lerec 12005 | The reciprocal of both sid... |
| lt2msq1 12006 | Lemma for ~ lt2msq . (Con... |
| lt2msq 12007 | Two nonnegative numbers co... |
| ltdiv2 12008 | Division of a positive num... |
| ltrec1 12009 | Reciprocal swap in a 'less... |
| lerec2 12010 | Reciprocal swap in a 'less... |
| ledivdiv 12011 | Invert ratios of positive ... |
| lediv2 12012 | Division of a positive num... |
| ltdiv23 12013 | Swap denominator with othe... |
| lediv23 12014 | Swap denominator with othe... |
| lediv12a 12015 | Comparison of ratio of two... |
| lediv2a 12016 | Division of both sides of ... |
| reclt1 12017 | The reciprocal of a positi... |
| recgt1 12018 | The reciprocal of a positi... |
| recgt1i 12019 | The reciprocal of a number... |
| recp1lt1 12020 | Construct a number less th... |
| recreclt 12021 | Given a positive number ` ... |
| le2msq 12022 | The square function on non... |
| msq11 12023 | The square of a nonnegativ... |
| ledivp1 12024 | "Less than or equal to" an... |
| squeeze0 12025 | If a nonnegative number is... |
| ltp1i 12026 | A number is less than itse... |
| recgt0i 12027 | The reciprocal of a positi... |
| recgt0ii 12028 | The reciprocal of a positi... |
| prodgt0i 12029 | Infer that a multiplicand ... |
| divgt0i 12030 | The ratio of two positive ... |
| divge0i 12031 | The ratio of nonnegative a... |
| ltreci 12032 | The reciprocal of both sid... |
| lereci 12033 | The reciprocal of both sid... |
| lt2msqi 12034 | The square function on non... |
| le2msqi 12035 | The square function on non... |
| msq11i 12036 | The square of a nonnegativ... |
| divgt0i2i 12037 | The ratio of two positive ... |
| ltrecii 12038 | The reciprocal of both sid... |
| divgt0ii 12039 | The ratio of two positive ... |
| ltmul1i 12040 | Multiplication of both sid... |
| ltdiv1i 12041 | Division of both sides of ... |
| ltmuldivi 12042 | 'Less than' relationship b... |
| ltmul2i 12043 | Multiplication of both sid... |
| lemul1i 12044 | Multiplication of both sid... |
| lemul2i 12045 | Multiplication of both sid... |
| ltdiv23i 12046 | Swap denominator with othe... |
| ledivp1i 12047 | "Less than or equal to" an... |
| ltdivp1i 12048 | Less-than and division rel... |
| ltdiv23ii 12049 | Swap denominator with othe... |
| ltmul1ii 12050 | Multiplication of both sid... |
| ltdiv1ii 12051 | Division of both sides of ... |
| ltp1d 12052 | A number is less than itse... |
| lep1d 12053 | A number is less than or e... |
| ltm1d 12054 | A number minus 1 is less t... |
| lem1d 12055 | A number minus 1 is less t... |
| recgt0d 12056 | The reciprocal of a positi... |
| divgt0d 12057 | The ratio of two positive ... |
| mulgt1d 12058 | The product of two numbers... |
| lemulge11d 12059 | Multiplication by a number... |
| lemulge12d 12060 | Multiplication by a number... |
| lemul1ad 12061 | Multiplication of both sid... |
| lemul2ad 12062 | Multiplication of both sid... |
| ltmul12ad 12063 | Comparison of product of t... |
| lemul12ad 12064 | Comparison of product of t... |
| lemul12bd 12065 | Comparison of product of t... |
| fimaxre 12066 | A finite set of real numbe... |
| fimaxre2 12067 | A nonempty finite set of r... |
| fimaxre3 12068 | A nonempty finite set of r... |
| fiminre 12069 | A nonempty finite set of r... |
| fiminre2 12070 | A nonempty finite set of r... |
| negfi 12071 | The negation of a finite s... |
| lbreu 12072 | If a set of reals contains... |
| lbcl 12073 | If a set of reals contains... |
| lble 12074 | If a set of reals contains... |
| lbinf 12075 | If a set of reals contains... |
| lbinfcl 12076 | If a set of reals contains... |
| lbinfle 12077 | If a set of reals contains... |
| sup2 12078 | A nonempty, bounded-above ... |
| sup3 12079 | A version of the completen... |
| infm3lem 12080 | Lemma for ~ infm3 . (Cont... |
| infm3 12081 | The completeness axiom for... |
| suprcl 12082 | Closure of supremum of a n... |
| suprub 12083 | A member of a nonempty bou... |
| suprubd 12084 | Natural deduction form of ... |
| suprcld 12085 | Natural deduction form of ... |
| suprlub 12086 | The supremum of a nonempty... |
| suprnub 12087 | An upper bound is not less... |
| suprleub 12088 | The supremum of a nonempty... |
| supaddc 12089 | The supremum function dist... |
| supadd 12090 | The supremum function dist... |
| supmul1 12091 | The supremum function dist... |
| supmullem1 12092 | Lemma for ~ supmul . (Con... |
| supmullem2 12093 | Lemma for ~ supmul . (Con... |
| supmul 12094 | The supremum function dist... |
| sup3ii 12095 | A version of the completen... |
| suprclii 12096 | Closure of supremum of a n... |
| suprubii 12097 | A member of a nonempty bou... |
| suprlubii 12098 | The supremum of a nonempty... |
| suprnubii 12099 | An upper bound is not less... |
| suprleubii 12100 | The supremum of a nonempty... |
| riotaneg 12101 | The negative of the unique... |
| negiso 12102 | Negation is an order anti-... |
| dfinfre 12103 | The infimum of a set of re... |
| infrecl 12104 | Closure of infimum of a no... |
| infrenegsup 12105 | The infimum of a set of re... |
| infregelb 12106 | Any lower bound of a nonem... |
| infrelb 12107 | If a nonempty set of real ... |
| infrefilb 12108 | The infimum of a finite se... |
| supfirege 12109 | The supremum of a finite s... |
| neg1cn 12110 | -1 is a complex number. (... |
| neg1rr 12111 | -1 is a real number. (Con... |
| neg1ne0 12112 | -1 is nonzero. (Contribut... |
| neg1lt0 12113 | -1 is less than 0. (Contr... |
| negneg1e1 12114 | ` -u -u 1 ` is 1. (Contri... |
| inelr 12115 | The imaginary unit ` _i ` ... |
| rimul 12116 | A real number times the im... |
| cru 12117 | The representation of comp... |
| crne0 12118 | The real representation of... |
| creur 12119 | The real part of a complex... |
| creui 12120 | The imaginary part of a co... |
| cju 12121 | The complex conjugate of a... |
| ofsubeq0 12122 | Function analogue of ~ sub... |
| ofnegsub 12123 | Function analogue of ~ neg... |
| ofsubge0 12124 | Function analogue of ~ sub... |
| nnexALT 12127 | Alternate proof of ~ nnex ... |
| peano5nni 12128 | Peano's inductive postulat... |
| nnssre 12129 | The positive integers are ... |
| nnsscn 12130 | The positive integers are ... |
| nnex 12131 | The set of positive intege... |
| nnre 12132 | A positive integer is a re... |
| nncn 12133 | A positive integer is a co... |
| nnrei 12134 | A positive integer is a re... |
| nncni 12135 | A positive integer is a co... |
| 1nn 12136 | Peano postulate: 1 is a po... |
| peano2nn 12137 | Peano postulate: a success... |
| dfnn2 12138 | Alternate definition of th... |
| dfnn3 12139 | Alternate definition of th... |
| nnred 12140 | A positive integer is a re... |
| nncnd 12141 | A positive integer is a co... |
| peano2nnd 12142 | Peano postulate: a success... |
| nnind 12143 | Principle of Mathematical ... |
| nnindALT 12144 | Principle of Mathematical ... |
| nnindd 12145 | Principle of Mathematical ... |
| nn1m1nn 12146 | Every positive integer is ... |
| nn1suc 12147 | If a statement holds for 1... |
| nnaddcl 12148 | Closure of addition of pos... |
| nnmulcl 12149 | Closure of multiplication ... |
| nnmulcli 12150 | Closure of multiplication ... |
| nnmtmip 12151 | "Minus times minus is plus... |
| nn2ge 12152 | There exists a positive in... |
| nnge1 12153 | A positive integer is one ... |
| nngt1ne1 12154 | A positive integer is grea... |
| nnle1eq1 12155 | A positive integer is less... |
| nngt0 12156 | A positive integer is posi... |
| nnnlt1 12157 | A positive integer is not ... |
| nnnle0 12158 | A positive integer is not ... |
| nnne0 12159 | A positive integer is nonz... |
| nnneneg 12160 | No positive integer is equ... |
| 0nnn 12161 | Zero is not a positive int... |
| 0nnnALT 12162 | Alternate proof of ~ 0nnn ... |
| nnne0ALT 12163 | Alternate version of ~ nnn... |
| nngt0i 12164 | A positive integer is posi... |
| nnne0i 12165 | A positive integer is nonz... |
| nndivre 12166 | The quotient of a real and... |
| nnrecre 12167 | The reciprocal of a positi... |
| nnrecgt0 12168 | The reciprocal of a positi... |
| nnsub 12169 | Subtraction of positive in... |
| nnsubi 12170 | Subtraction of positive in... |
| nndiv 12171 | Two ways to express " ` A ... |
| nndivtr 12172 | Transitive property of div... |
| nnge1d 12173 | A positive integer is one ... |
| nngt0d 12174 | A positive integer is posi... |
| nnne0d 12175 | A positive integer is nonz... |
| nnrecred 12176 | The reciprocal of a positi... |
| nnaddcld 12177 | Closure of addition of pos... |
| nnmulcld 12178 | Closure of multiplication ... |
| nndivred 12179 | A positive integer is one ... |
| 0ne1 12196 | Zero is different from one... |
| 1m1e0 12197 | One minus one equals zero.... |
| 2nn 12198 | 2 is a positive integer. ... |
| 2re 12199 | The number 2 is real. (Co... |
| 2cn 12200 | The number 2 is a complex ... |
| 2cnALT 12201 | Alternate proof of ~ 2cn .... |
| 2ex 12202 | The number 2 is a set. (C... |
| 2cnd 12203 | The number 2 is a complex ... |
| 3nn 12204 | 3 is a positive integer. ... |
| 3re 12205 | The number 3 is real. (Co... |
| 3cn 12206 | The number 3 is a complex ... |
| 3ex 12207 | The number 3 is a set. (C... |
| 4nn 12208 | 4 is a positive integer. ... |
| 4re 12209 | The number 4 is real. (Co... |
| 4cn 12210 | The number 4 is a complex ... |
| 5nn 12211 | 5 is a positive integer. ... |
| 5re 12212 | The number 5 is real. (Co... |
| 5cn 12213 | The number 5 is a complex ... |
| 6nn 12214 | 6 is a positive integer. ... |
| 6re 12215 | The number 6 is real. (Co... |
| 6cn 12216 | The number 6 is a complex ... |
| 7nn 12217 | 7 is a positive integer. ... |
| 7re 12218 | The number 7 is real. (Co... |
| 7cn 12219 | The number 7 is a complex ... |
| 8nn 12220 | 8 is a positive integer. ... |
| 8re 12221 | The number 8 is real. (Co... |
| 8cn 12222 | The number 8 is a complex ... |
| 9nn 12223 | 9 is a positive integer. ... |
| 9re 12224 | The number 9 is real. (Co... |
| 9cn 12225 | The number 9 is a complex ... |
| 0le0 12226 | Zero is nonnegative. (Con... |
| 0le2 12227 | The number 0 is less than ... |
| 2pos 12228 | The number 2 is positive. ... |
| 2ne0 12229 | The number 2 is nonzero. ... |
| 3pos 12230 | The number 3 is positive. ... |
| 3ne0 12231 | The number 3 is nonzero. ... |
| 4pos 12232 | The number 4 is positive. ... |
| 4ne0 12233 | The number 4 is nonzero. ... |
| 5pos 12234 | The number 5 is positive. ... |
| 6pos 12235 | The number 6 is positive. ... |
| 7pos 12236 | The number 7 is positive. ... |
| 8pos 12237 | The number 8 is positive. ... |
| 9pos 12238 | The number 9 is positive. ... |
| 1pneg1e0 12239 | ` 1 + -u 1 ` is 0. (Contr... |
| 0m0e0 12240 | 0 minus 0 equals 0. (Cont... |
| 1m0e1 12241 | 1 - 0 = 1. (Contributed b... |
| 0p1e1 12242 | 0 + 1 = 1. (Contributed b... |
| fv0p1e1 12243 | Function value at ` N + 1 ... |
| 1p0e1 12244 | 1 + 0 = 1. (Contributed b... |
| 1p1e2 12245 | 1 + 1 = 2. (Contributed b... |
| 2m1e1 12246 | 2 - 1 = 1. The result is ... |
| 1e2m1 12247 | 1 = 2 - 1. (Contributed b... |
| 3m1e2 12248 | 3 - 1 = 2. (Contributed b... |
| 4m1e3 12249 | 4 - 1 = 3. (Contributed b... |
| 5m1e4 12250 | 5 - 1 = 4. (Contributed b... |
| 6m1e5 12251 | 6 - 1 = 5. (Contributed b... |
| 7m1e6 12252 | 7 - 1 = 6. (Contributed b... |
| 8m1e7 12253 | 8 - 1 = 7. (Contributed b... |
| 9m1e8 12254 | 9 - 1 = 8. (Contributed b... |
| 2p2e4 12255 | Two plus two equals four. ... |
| 2times 12256 | Two times a number. (Cont... |
| times2 12257 | A number times 2. (Contri... |
| 2timesi 12258 | Two times a number. (Cont... |
| times2i 12259 | A number times 2. (Contri... |
| 2txmxeqx 12260 | Two times a complex number... |
| 2div2e1 12261 | 2 divided by 2 is 1. (Con... |
| 2p1e3 12262 | 2 + 1 = 3. (Contributed b... |
| 1p2e3 12263 | 1 + 2 = 3. For a shorter ... |
| 1p2e3ALT 12264 | Alternate proof of ~ 1p2e3... |
| 3p1e4 12265 | 3 + 1 = 4. (Contributed b... |
| 4p1e5 12266 | 4 + 1 = 5. (Contributed b... |
| 5p1e6 12267 | 5 + 1 = 6. (Contributed b... |
| 6p1e7 12268 | 6 + 1 = 7. (Contributed b... |
| 7p1e8 12269 | 7 + 1 = 8. (Contributed b... |
| 8p1e9 12270 | 8 + 1 = 9. (Contributed b... |
| 3p2e5 12271 | 3 + 2 = 5. (Contributed b... |
| 3p3e6 12272 | 3 + 3 = 6. (Contributed b... |
| 4p2e6 12273 | 4 + 2 = 6. (Contributed b... |
| 4p3e7 12274 | 4 + 3 = 7. (Contributed b... |
| 4p4e8 12275 | 4 + 4 = 8. (Contributed b... |
| 5p2e7 12276 | 5 + 2 = 7. (Contributed b... |
| 5p3e8 12277 | 5 + 3 = 8. (Contributed b... |
| 5p4e9 12278 | 5 + 4 = 9. (Contributed b... |
| 6p2e8 12279 | 6 + 2 = 8. (Contributed b... |
| 6p3e9 12280 | 6 + 3 = 9. (Contributed b... |
| 7p2e9 12281 | 7 + 2 = 9. (Contributed b... |
| 1t1e1 12282 | 1 times 1 equals 1. (Cont... |
| 2t1e2 12283 | 2 times 1 equals 2. (Cont... |
| 2t2e4 12284 | 2 times 2 equals 4. (Cont... |
| 3t1e3 12285 | 3 times 1 equals 3. (Cont... |
| 3t2e6 12286 | 3 times 2 equals 6. (Cont... |
| 3t3e9 12287 | 3 times 3 equals 9. (Cont... |
| 4t2e8 12288 | 4 times 2 equals 8. (Cont... |
| 2t0e0 12289 | 2 times 0 equals 0. (Cont... |
| 4d2e2 12290 | One half of four is two. ... |
| 1lt2 12291 | 1 is less than 2. (Contri... |
| 2lt3 12292 | 2 is less than 3. (Contri... |
| 1lt3 12293 | 1 is less than 3. (Contri... |
| 3lt4 12294 | 3 is less than 4. (Contri... |
| 2lt4 12295 | 2 is less than 4. (Contri... |
| 1lt4 12296 | 1 is less than 4. (Contri... |
| 4lt5 12297 | 4 is less than 5. (Contri... |
| 3lt5 12298 | 3 is less than 5. (Contri... |
| 2lt5 12299 | 2 is less than 5. (Contri... |
| 1lt5 12300 | 1 is less than 5. (Contri... |
| 5lt6 12301 | 5 is less than 6. (Contri... |
| 4lt6 12302 | 4 is less than 6. (Contri... |
| 3lt6 12303 | 3 is less than 6. (Contri... |
| 2lt6 12304 | 2 is less than 6. (Contri... |
| 1lt6 12305 | 1 is less than 6. (Contri... |
| 6lt7 12306 | 6 is less than 7. (Contri... |
| 5lt7 12307 | 5 is less than 7. (Contri... |
| 4lt7 12308 | 4 is less than 7. (Contri... |
| 3lt7 12309 | 3 is less than 7. (Contri... |
| 2lt7 12310 | 2 is less than 7. (Contri... |
| 1lt7 12311 | 1 is less than 7. (Contri... |
| 7lt8 12312 | 7 is less than 8. (Contri... |
| 6lt8 12313 | 6 is less than 8. (Contri... |
| 5lt8 12314 | 5 is less than 8. (Contri... |
| 4lt8 12315 | 4 is less than 8. (Contri... |
| 3lt8 12316 | 3 is less than 8. (Contri... |
| 2lt8 12317 | 2 is less than 8. (Contri... |
| 1lt8 12318 | 1 is less than 8. (Contri... |
| 8lt9 12319 | 8 is less than 9. (Contri... |
| 7lt9 12320 | 7 is less than 9. (Contri... |
| 6lt9 12321 | 6 is less than 9. (Contri... |
| 5lt9 12322 | 5 is less than 9. (Contri... |
| 4lt9 12323 | 4 is less than 9. (Contri... |
| 3lt9 12324 | 3 is less than 9. (Contri... |
| 2lt9 12325 | 2 is less than 9. (Contri... |
| 1lt9 12326 | 1 is less than 9. (Contri... |
| 0ne2 12327 | 0 is not equal to 2. (Con... |
| 1ne2 12328 | 1 is not equal to 2. (Con... |
| 1le2 12329 | 1 is less than or equal to... |
| 2cnne0 12330 | 2 is a nonzero complex num... |
| 2rene0 12331 | 2 is a nonzero real number... |
| 1le3 12332 | 1 is less than or equal to... |
| neg1mulneg1e1 12333 | ` -u 1 x. -u 1 ` is 1. (C... |
| halfre 12334 | One-half is real. (Contri... |
| halfcn 12335 | One-half is a complex numb... |
| halfgt0 12336 | One-half is greater than z... |
| halfge0 12337 | One-half is not negative. ... |
| halflt1 12338 | One-half is less than one.... |
| 2halves 12339 | Two halves make a whole. ... |
| 1mhlfehlf 12340 | Prove that 1 - 1/2 = 1/2. ... |
| 8th4div3 12341 | An eighth of four thirds i... |
| halfthird 12342 | Half minus a third. (Cont... |
| halfpm6th 12343 | One half plus or minus one... |
| it0e0 12344 | i times 0 equals 0. (Cont... |
| 2mulicn 12345 | ` ( 2 x. _i ) e. CC ` . (... |
| 2muline0 12346 | ` ( 2 x. _i ) =/= 0 ` . (... |
| halfcl 12347 | Closure of half of a numbe... |
| rehalfcl 12348 | Real closure of half. (Co... |
| half0 12349 | Half of a number is zero i... |
| halfpos2 12350 | A number is positive iff i... |
| halfpos 12351 | A positive number is great... |
| halfnneg2 12352 | A number is nonnegative if... |
| halfaddsubcl 12353 | Closure of half-sum and ha... |
| halfaddsub 12354 | Sum and difference of half... |
| subhalfhalf 12355 | Subtracting the half of a ... |
| lt2halves 12356 | A sum is less than the who... |
| addltmul 12357 | Sum is less than product f... |
| nominpos 12358 | There is no smallest posit... |
| avglt1 12359 | Ordering property for aver... |
| avglt2 12360 | Ordering property for aver... |
| avgle1 12361 | Ordering property for aver... |
| avgle2 12362 | Ordering property for aver... |
| avgle 12363 | The average of two numbers... |
| 2timesd 12364 | Two times a number. (Cont... |
| times2d 12365 | A number times 2. (Contri... |
| halfcld 12366 | Closure of half of a numbe... |
| 2halvesd 12367 | Two halves make a whole. ... |
| rehalfcld 12368 | Real closure of half. (Co... |
| lt2halvesd 12369 | A sum is less than the who... |
| rehalfcli 12370 | Half a real number is real... |
| lt2addmuld 12371 | If two real numbers are le... |
| add1p1 12372 | Adding two times 1 to a nu... |
| sub1m1 12373 | Subtracting two times 1 fr... |
| cnm2m1cnm3 12374 | Subtracting 2 and afterwar... |
| xp1d2m1eqxm1d2 12375 | A complex number increased... |
| div4p1lem1div2 12376 | An integer greater than 5,... |
| nnunb 12377 | The set of positive intege... |
| arch 12378 | Archimedean property of re... |
| nnrecl 12379 | There exists a positive in... |
| bndndx 12380 | A bounded real sequence ` ... |
| elnn0 12383 | Nonnegative integers expre... |
| nnssnn0 12384 | Positive naturals are a su... |
| nn0ssre 12385 | Nonnegative integers are a... |
| nn0sscn 12386 | Nonnegative integers are a... |
| nn0ex 12387 | The set of nonnegative int... |
| nnnn0 12388 | A positive integer is a no... |
| nnnn0i 12389 | A positive integer is a no... |
| nn0re 12390 | A nonnegative integer is a... |
| nn0cn 12391 | A nonnegative integer is a... |
| nn0rei 12392 | A nonnegative integer is a... |
| nn0cni 12393 | A nonnegative integer is a... |
| dfn2 12394 | The set of positive intege... |
| elnnne0 12395 | The positive integer prope... |
| 0nn0 12396 | 0 is a nonnegative integer... |
| 1nn0 12397 | 1 is a nonnegative integer... |
| 2nn0 12398 | 2 is a nonnegative integer... |
| 3nn0 12399 | 3 is a nonnegative integer... |
| 4nn0 12400 | 4 is a nonnegative integer... |
| 5nn0 12401 | 5 is a nonnegative integer... |
| 6nn0 12402 | 6 is a nonnegative integer... |
| 7nn0 12403 | 7 is a nonnegative integer... |
| 8nn0 12404 | 8 is a nonnegative integer... |
| 9nn0 12405 | 9 is a nonnegative integer... |
| nn0ge0 12406 | A nonnegative integer is g... |
| nn0nlt0 12407 | A nonnegative integer is n... |
| nn0ge0i 12408 | Nonnegative integers are n... |
| nn0le0eq0 12409 | A nonnegative integer is l... |
| nn0p1gt0 12410 | A nonnegative integer incr... |
| nnnn0addcl 12411 | A positive integer plus a ... |
| nn0nnaddcl 12412 | A nonnegative integer plus... |
| 0mnnnnn0 12413 | The result of subtracting ... |
| un0addcl 12414 | If ` S ` is closed under a... |
| un0mulcl 12415 | If ` S ` is closed under m... |
| nn0addcl 12416 | Closure of addition of non... |
| nn0mulcl 12417 | Closure of multiplication ... |
| nn0addcli 12418 | Closure of addition of non... |
| nn0mulcli 12419 | Closure of multiplication ... |
| nn0p1nn 12420 | A nonnegative integer plus... |
| peano2nn0 12421 | Second Peano postulate for... |
| nnm1nn0 12422 | A positive integer minus 1... |
| elnn0nn 12423 | The nonnegative integer pr... |
| elnnnn0 12424 | The positive integer prope... |
| elnnnn0b 12425 | The positive integer prope... |
| elnnnn0c 12426 | The positive integer prope... |
| nn0addge1 12427 | A number is less than or e... |
| nn0addge2 12428 | A number is less than or e... |
| nn0addge1i 12429 | A number is less than or e... |
| nn0addge2i 12430 | A number is less than or e... |
| nn0sub 12431 | Subtraction of nonnegative... |
| ltsubnn0 12432 | Subtracting a nonnegative ... |
| nn0negleid 12433 | A nonnegative integer is g... |
| difgtsumgt 12434 | If the difference of a rea... |
| nn0le2x 12435 | A nonnegative integer is l... |
| nn0le2xi 12436 | A nonnegative integer is l... |
| nn0lele2xi 12437 | 'Less than or equal to' im... |
| fcdmnn0supp 12438 | Two ways to write the supp... |
| fcdmnn0fsupp 12439 | A function into ` NN0 ` is... |
| fcdmnn0suppg 12440 | Version of ~ fcdmnn0supp a... |
| fcdmnn0fsuppg 12441 | Version of ~ fcdmnn0fsupp ... |
| nnnn0d 12442 | A positive integer is a no... |
| nn0red 12443 | A nonnegative integer is a... |
| nn0cnd 12444 | A nonnegative integer is a... |
| nn0ge0d 12445 | A nonnegative integer is g... |
| nn0addcld 12446 | Closure of addition of non... |
| nn0mulcld 12447 | Closure of multiplication ... |
| nn0readdcl 12448 | Closure law for addition o... |
| nn0n0n1ge2 12449 | A nonnegative integer whic... |
| nn0n0n1ge2b 12450 | A nonnegative integer is n... |
| nn0ge2m1nn 12451 | If a nonnegative integer i... |
| nn0ge2m1nn0 12452 | If a nonnegative integer i... |
| nn0nndivcl 12453 | Closure law for dividing o... |
| elxnn0 12456 | An extended nonnegative in... |
| nn0ssxnn0 12457 | The standard nonnegative i... |
| nn0xnn0 12458 | A standard nonnegative int... |
| xnn0xr 12459 | An extended nonnegative in... |
| 0xnn0 12460 | Zero is an extended nonneg... |
| pnf0xnn0 12461 | Positive infinity is an ex... |
| nn0nepnf 12462 | No standard nonnegative in... |
| nn0xnn0d 12463 | A standard nonnegative int... |
| nn0nepnfd 12464 | No standard nonnegative in... |
| xnn0nemnf 12465 | No extended nonnegative in... |
| xnn0xrnemnf 12466 | The extended nonnegative i... |
| xnn0nnn0pnf 12467 | An extended nonnegative in... |
| elz 12470 | Membership in the set of i... |
| nnnegz 12471 | The negative of a positive... |
| zre 12472 | An integer is a real. (Co... |
| zcn 12473 | An integer is a complex nu... |
| zrei 12474 | An integer is a real numbe... |
| zssre 12475 | The integers are a subset ... |
| zsscn 12476 | The integers are a subset ... |
| zex 12477 | The set of integers exists... |
| elnnz 12478 | Positive integer property ... |
| 0z 12479 | Zero is an integer. (Cont... |
| 0zd 12480 | Zero is an integer, deduct... |
| elnn0z 12481 | Nonnegative integer proper... |
| elznn0nn 12482 | Integer property expressed... |
| elznn0 12483 | Integer property expressed... |
| elznn 12484 | Integer property expressed... |
| zle0orge1 12485 | There is no integer in the... |
| elz2 12486 | Membership in the set of i... |
| dfz2 12487 | Alternative definition of ... |
| zexALT 12488 | Alternate proof of ~ zex .... |
| nnz 12489 | A positive integer is an i... |
| nnssz 12490 | Positive integers are a su... |
| nn0ssz 12491 | Nonnegative integers are a... |
| nnzOLD 12492 | Obsolete version of ~ nnz ... |
| nn0z 12493 | A nonnegative integer is a... |
| nn0zd 12494 | A nonnegative integer is a... |
| nnzd 12495 | A positive integer is an i... |
| nnzi 12496 | A positive integer is an i... |
| nn0zi 12497 | A nonnegative integer is a... |
| elnnz1 12498 | Positive integer property ... |
| znnnlt1 12499 | An integer is not a positi... |
| nnzrab 12500 | Positive integers expresse... |
| nn0zrab 12501 | Nonnegative integers expre... |
| 1z 12502 | One is an integer. (Contr... |
| 1zzd 12503 | One is an integer, deducti... |
| 2z 12504 | 2 is an integer. (Contrib... |
| 3z 12505 | 3 is an integer. (Contrib... |
| 4z 12506 | 4 is an integer. (Contrib... |
| znegcl 12507 | Closure law for negative i... |
| neg1z 12508 | -1 is an integer. (Contri... |
| znegclb 12509 | A complex number is an int... |
| nn0negz 12510 | The negative of a nonnegat... |
| nn0negzi 12511 | The negative of a nonnegat... |
| zaddcl 12512 | Closure of addition of int... |
| peano2z 12513 | Second Peano postulate gen... |
| zsubcl 12514 | Closure of subtraction of ... |
| peano2zm 12515 | "Reverse" second Peano pos... |
| zletr 12516 | Transitive law of ordering... |
| zrevaddcl 12517 | Reverse closure law for ad... |
| znnsub 12518 | The positive difference of... |
| znn0sub 12519 | The nonnegative difference... |
| nzadd 12520 | The sum of a real number n... |
| zmulcl 12521 | Closure of multiplication ... |
| zltp1le 12522 | Integer ordering relation.... |
| zleltp1 12523 | Integer ordering relation.... |
| zlem1lt 12524 | Integer ordering relation.... |
| zltlem1 12525 | Integer ordering relation.... |
| zltlem1d 12526 | Integer ordering relation,... |
| zgt0ge1 12527 | An integer greater than ` ... |
| nnleltp1 12528 | Positive integer ordering ... |
| nnltp1le 12529 | Positive integer ordering ... |
| nnaddm1cl 12530 | Closure of addition of pos... |
| nn0ltp1le 12531 | Nonnegative integer orderi... |
| nn0leltp1 12532 | Nonnegative integer orderi... |
| nn0ltlem1 12533 | Nonnegative integer orderi... |
| nn0sub2 12534 | Subtraction of nonnegative... |
| nn0lt10b 12535 | A nonnegative integer less... |
| nn0lt2 12536 | A nonnegative integer less... |
| nn0le2is012 12537 | A nonnegative integer whic... |
| nn0lem1lt 12538 | Nonnegative integer orderi... |
| nnlem1lt 12539 | Positive integer ordering ... |
| nnltlem1 12540 | Positive integer ordering ... |
| nnm1ge0 12541 | A positive integer decreas... |
| nn0ge0div 12542 | Division of a nonnegative ... |
| zdiv 12543 | Two ways to express " ` M ... |
| zdivadd 12544 | Property of divisibility: ... |
| zdivmul 12545 | Property of divisibility: ... |
| zextle 12546 | An extensionality-like pro... |
| zextlt 12547 | An extensionality-like pro... |
| recnz 12548 | The reciprocal of a number... |
| btwnnz 12549 | A number between an intege... |
| gtndiv 12550 | A larger number does not d... |
| halfnz 12551 | One-half is not an integer... |
| 3halfnz 12552 | Three halves is not an int... |
| suprzcl 12553 | The supremum of a bounded-... |
| prime 12554 | Two ways to express " ` A ... |
| msqznn 12555 | The square of a nonzero in... |
| zneo 12556 | No even integer equals an ... |
| nneo 12557 | A positive integer is even... |
| nneoi 12558 | A positive integer is even... |
| zeo 12559 | An integer is even or odd.... |
| zeo2 12560 | An integer is even or odd ... |
| peano2uz2 12561 | Second Peano postulate for... |
| peano5uzi 12562 | Peano's inductive postulat... |
| peano5uzti 12563 | Peano's inductive postulat... |
| dfuzi 12564 | An expression for the uppe... |
| uzind 12565 | Induction on the upper int... |
| uzind2 12566 | Induction on the upper int... |
| uzind3 12567 | Induction on the upper int... |
| nn0ind 12568 | Principle of Mathematical ... |
| nn0indALT 12569 | Principle of Mathematical ... |
| nn0indd 12570 | Principle of Mathematical ... |
| fzind 12571 | Induction on the integers ... |
| fnn0ind 12572 | Induction on the integers ... |
| nn0ind-raph 12573 | Principle of Mathematical ... |
| zindd 12574 | Principle of Mathematical ... |
| fzindd 12575 | Induction on the integers ... |
| btwnz 12576 | Any real number can be san... |
| zred 12577 | An integer is a real numbe... |
| zcnd 12578 | An integer is a complex nu... |
| znegcld 12579 | Closure law for negative i... |
| peano2zd 12580 | Deduction from second Pean... |
| zaddcld 12581 | Closure of addition of int... |
| zsubcld 12582 | Closure of subtraction of ... |
| zmulcld 12583 | Closure of multiplication ... |
| znnn0nn 12584 | The negative of a negative... |
| zadd2cl 12585 | Increasing an integer by 2... |
| zriotaneg 12586 | The negative of the unique... |
| suprfinzcl 12587 | The supremum of a nonempty... |
| 9p1e10 12590 | 9 + 1 = 10. (Contributed ... |
| dfdec10 12591 | Version of the definition ... |
| decex 12592 | A decimal number is a set.... |
| deceq1 12593 | Equality theorem for the d... |
| deceq2 12594 | Equality theorem for the d... |
| deceq1i 12595 | Equality theorem for the d... |
| deceq2i 12596 | Equality theorem for the d... |
| deceq12i 12597 | Equality theorem for the d... |
| numnncl 12598 | Closure for a numeral (wit... |
| num0u 12599 | Add a zero in the units pl... |
| num0h 12600 | Add a zero in the higher p... |
| numcl 12601 | Closure for a decimal inte... |
| numsuc 12602 | The successor of a decimal... |
| deccl 12603 | Closure for a numeral. (C... |
| 10nn 12604 | 10 is a positive integer. ... |
| 10pos 12605 | The number 10 is positive.... |
| 10nn0 12606 | 10 is a nonnegative intege... |
| 10re 12607 | The number 10 is real. (C... |
| decnncl 12608 | Closure for a numeral. (C... |
| dec0u 12609 | Add a zero in the units pl... |
| dec0h 12610 | Add a zero in the higher p... |
| numnncl2 12611 | Closure for a decimal inte... |
| decnncl2 12612 | Closure for a decimal inte... |
| numlt 12613 | Comparing two decimal inte... |
| numltc 12614 | Comparing two decimal inte... |
| le9lt10 12615 | A "decimal digit" (i.e. a ... |
| declt 12616 | Comparing two decimal inte... |
| decltc 12617 | Comparing two decimal inte... |
| declth 12618 | Comparing two decimal inte... |
| decsuc 12619 | The successor of a decimal... |
| 3declth 12620 | Comparing two decimal inte... |
| 3decltc 12621 | Comparing two decimal inte... |
| decle 12622 | Comparing two decimal inte... |
| decleh 12623 | Comparing two decimal inte... |
| declei 12624 | Comparing a digit to a dec... |
| numlti 12625 | Comparing a digit to a dec... |
| declti 12626 | Comparing a digit to a dec... |
| decltdi 12627 | Comparing a digit to a dec... |
| numsucc 12628 | The successor of a decimal... |
| decsucc 12629 | The successor of a decimal... |
| 1e0p1 12630 | The successor of zero. (C... |
| dec10p 12631 | Ten plus an integer. (Con... |
| numma 12632 | Perform a multiply-add of ... |
| nummac 12633 | Perform a multiply-add of ... |
| numma2c 12634 | Perform a multiply-add of ... |
| numadd 12635 | Add two decimal integers `... |
| numaddc 12636 | Add two decimal integers `... |
| nummul1c 12637 | The product of a decimal i... |
| nummul2c 12638 | The product of a decimal i... |
| decma 12639 | Perform a multiply-add of ... |
| decmac 12640 | Perform a multiply-add of ... |
| decma2c 12641 | Perform a multiply-add of ... |
| decadd 12642 | Add two numerals ` M ` and... |
| decaddc 12643 | Add two numerals ` M ` and... |
| decaddc2 12644 | Add two numerals ` M ` and... |
| decrmanc 12645 | Perform a multiply-add of ... |
| decrmac 12646 | Perform a multiply-add of ... |
| decaddm10 12647 | The sum of two multiples o... |
| decaddi 12648 | Add two numerals ` M ` and... |
| decaddci 12649 | Add two numerals ` M ` and... |
| decaddci2 12650 | Add two numerals ` M ` and... |
| decsubi 12651 | Difference between a numer... |
| decmul1 12652 | The product of a numeral w... |
| decmul1c 12653 | The product of a numeral w... |
| decmul2c 12654 | The product of a numeral w... |
| decmulnc 12655 | The product of a numeral w... |
| 11multnc 12656 | The product of 11 (as nume... |
| decmul10add 12657 | A multiplication of a numb... |
| 6p5lem 12658 | Lemma for ~ 6p5e11 and rel... |
| 5p5e10 12659 | 5 + 5 = 10. (Contributed ... |
| 6p4e10 12660 | 6 + 4 = 10. (Contributed ... |
| 6p5e11 12661 | 6 + 5 = 11. (Contributed ... |
| 6p6e12 12662 | 6 + 6 = 12. (Contributed ... |
| 7p3e10 12663 | 7 + 3 = 10. (Contributed ... |
| 7p4e11 12664 | 7 + 4 = 11. (Contributed ... |
| 7p5e12 12665 | 7 + 5 = 12. (Contributed ... |
| 7p6e13 12666 | 7 + 6 = 13. (Contributed ... |
| 7p7e14 12667 | 7 + 7 = 14. (Contributed ... |
| 8p2e10 12668 | 8 + 2 = 10. (Contributed ... |
| 8p3e11 12669 | 8 + 3 = 11. (Contributed ... |
| 8p4e12 12670 | 8 + 4 = 12. (Contributed ... |
| 8p5e13 12671 | 8 + 5 = 13. (Contributed ... |
| 8p6e14 12672 | 8 + 6 = 14. (Contributed ... |
| 8p7e15 12673 | 8 + 7 = 15. (Contributed ... |
| 8p8e16 12674 | 8 + 8 = 16. (Contributed ... |
| 9p2e11 12675 | 9 + 2 = 11. (Contributed ... |
| 9p3e12 12676 | 9 + 3 = 12. (Contributed ... |
| 9p4e13 12677 | 9 + 4 = 13. (Contributed ... |
| 9p5e14 12678 | 9 + 5 = 14. (Contributed ... |
| 9p6e15 12679 | 9 + 6 = 15. (Contributed ... |
| 9p7e16 12680 | 9 + 7 = 16. (Contributed ... |
| 9p8e17 12681 | 9 + 8 = 17. (Contributed ... |
| 9p9e18 12682 | 9 + 9 = 18. (Contributed ... |
| 10p10e20 12683 | 10 + 10 = 20. (Contribute... |
| 10m1e9 12684 | 10 - 1 = 9. (Contributed ... |
| 4t3lem 12685 | Lemma for ~ 4t3e12 and rel... |
| 4t3e12 12686 | 4 times 3 equals 12. (Con... |
| 4t4e16 12687 | 4 times 4 equals 16. (Con... |
| 5t2e10 12688 | 5 times 2 equals 10. (Con... |
| 5t3e15 12689 | 5 times 3 equals 15. (Con... |
| 5t4e20 12690 | 5 times 4 equals 20. (Con... |
| 5t5e25 12691 | 5 times 5 equals 25. (Con... |
| 6t2e12 12692 | 6 times 2 equals 12. (Con... |
| 6t3e18 12693 | 6 times 3 equals 18. (Con... |
| 6t4e24 12694 | 6 times 4 equals 24. (Con... |
| 6t5e30 12695 | 6 times 5 equals 30. (Con... |
| 6t6e36 12696 | 6 times 6 equals 36. (Con... |
| 7t2e14 12697 | 7 times 2 equals 14. (Con... |
| 7t3e21 12698 | 7 times 3 equals 21. (Con... |
| 7t4e28 12699 | 7 times 4 equals 28. (Con... |
| 7t5e35 12700 | 7 times 5 equals 35. (Con... |
| 7t6e42 12701 | 7 times 6 equals 42. (Con... |
| 7t7e49 12702 | 7 times 7 equals 49. (Con... |
| 8t2e16 12703 | 8 times 2 equals 16. (Con... |
| 8t3e24 12704 | 8 times 3 equals 24. (Con... |
| 8t4e32 12705 | 8 times 4 equals 32. (Con... |
| 8t5e40 12706 | 8 times 5 equals 40. (Con... |
| 8t6e48 12707 | 8 times 6 equals 48. (Con... |
| 8t7e56 12708 | 8 times 7 equals 56. (Con... |
| 8t8e64 12709 | 8 times 8 equals 64. (Con... |
| 9t2e18 12710 | 9 times 2 equals 18. (Con... |
| 9t3e27 12711 | 9 times 3 equals 27. (Con... |
| 9t4e36 12712 | 9 times 4 equals 36. (Con... |
| 9t5e45 12713 | 9 times 5 equals 45. (Con... |
| 9t6e54 12714 | 9 times 6 equals 54. (Con... |
| 9t7e63 12715 | 9 times 7 equals 63. (Con... |
| 9t8e72 12716 | 9 times 8 equals 72. (Con... |
| 9t9e81 12717 | 9 times 9 equals 81. (Con... |
| 9t11e99 12718 | 9 times 11 equals 99. (Co... |
| 9lt10 12719 | 9 is less than 10. (Contr... |
| 8lt10 12720 | 8 is less than 10. (Contr... |
| 7lt10 12721 | 7 is less than 10. (Contr... |
| 6lt10 12722 | 6 is less than 10. (Contr... |
| 5lt10 12723 | 5 is less than 10. (Contr... |
| 4lt10 12724 | 4 is less than 10. (Contr... |
| 3lt10 12725 | 3 is less than 10. (Contr... |
| 2lt10 12726 | 2 is less than 10. (Contr... |
| 1lt10 12727 | 1 is less than 10. (Contr... |
| decbin0 12728 | Decompose base 4 into base... |
| decbin2 12729 | Decompose base 4 into base... |
| decbin3 12730 | Decompose base 4 into base... |
| 5recm6rec 12731 | One fifth minus one sixth.... |
| uzval 12734 | The value of the upper int... |
| uzf 12735 | The domain and codomain of... |
| eluz1 12736 | Membership in the upper se... |
| eluzel2 12737 | Implication of membership ... |
| eluz2 12738 | Membership in an upper set... |
| eluzmn 12739 | Membership in an earlier u... |
| eluz1i 12740 | Membership in an upper set... |
| eluzuzle 12741 | An integer in an upper set... |
| eluzelz 12742 | A member of an upper set o... |
| eluzelre 12743 | A member of an upper set o... |
| eluzelcn 12744 | A member of an upper set o... |
| eluzle 12745 | Implication of membership ... |
| eluz 12746 | Membership in an upper set... |
| uzid 12747 | Membership of the least me... |
| uzidd 12748 | Membership of the least me... |
| uzn0 12749 | The upper integers are all... |
| uztrn 12750 | Transitive law for sets of... |
| uztrn2 12751 | Transitive law for sets of... |
| uzneg 12752 | Contraposition law for upp... |
| uzssz 12753 | An upper set of integers i... |
| uzssre 12754 | An upper set of integers i... |
| uzss 12755 | Subset relationship for tw... |
| uztric 12756 | Totality of the ordering r... |
| uz11 12757 | The upper integers functio... |
| eluzp1m1 12758 | Membership in the next upp... |
| eluzp1l 12759 | Strict ordering implied by... |
| eluzp1p1 12760 | Membership in the next upp... |
| eluzadd 12761 | Membership in a later uppe... |
| eluzsub 12762 | Membership in an earlier u... |
| eluzaddi 12763 | Membership in a later uppe... |
| eluzaddiOLD 12764 | Obsolete version of ~ eluz... |
| eluzsubi 12765 | Membership in an earlier u... |
| eluzsubiOLD 12766 | Obsolete version of ~ eluz... |
| eluzaddOLD 12767 | Obsolete version of ~ eluz... |
| eluzsubOLD 12768 | Obsolete version of ~ eluz... |
| subeluzsub 12769 | Membership of a difference... |
| uzm1 12770 | Choices for an element of ... |
| uznn0sub 12771 | The nonnegative difference... |
| uzin 12772 | Intersection of two upper ... |
| uzp1 12773 | Choices for an element of ... |
| nn0uz 12774 | Nonnegative integers expre... |
| nnuz 12775 | Positive integers expresse... |
| elnnuz 12776 | A positive integer express... |
| elnn0uz 12777 | A nonnegative integer expr... |
| 1eluzge0 12778 | 1 is an integer greater th... |
| 2eluzge0 12779 | 2 is an integer greater th... |
| 2eluzge1 12780 | 2 is an integer greater th... |
| 5eluz3 12781 | 5 is an integer greater th... |
| uzuzle23 12782 | An integer greater than or... |
| uzuzle24 12783 | An integer greater than or... |
| uzuzle34 12784 | An integer greater than or... |
| uzuzle35 12785 | An integer greater than or... |
| eluz2nn 12786 | An integer greater than or... |
| eluz3nn 12787 | An integer greater than or... |
| eluz4nn 12788 | An integer greater than or... |
| eluz5nn 12789 | An integer greater than or... |
| eluzge2nn0 12790 | If an integer is greater t... |
| eluz2n0 12791 | An integer greater than or... |
| uz3m2nn 12792 | An integer greater than or... |
| uznnssnn 12793 | The upper integers startin... |
| raluz 12794 | Restricted universal quant... |
| raluz2 12795 | Restricted universal quant... |
| rexuz 12796 | Restricted existential qua... |
| rexuz2 12797 | Restricted existential qua... |
| 2rexuz 12798 | Double existential quantif... |
| peano2uz 12799 | Second Peano postulate for... |
| peano2uzs 12800 | Second Peano postulate for... |
| peano2uzr 12801 | Reversed second Peano axio... |
| uzaddcl 12802 | Addition closure law for a... |
| nn0pzuz 12803 | The sum of a nonnegative i... |
| uzind4 12804 | Induction on the upper set... |
| uzind4ALT 12805 | Induction on the upper set... |
| uzind4s 12806 | Induction on the upper set... |
| uzind4s2 12807 | Induction on the upper set... |
| uzind4i 12808 | Induction on the upper int... |
| uzwo 12809 | Well-ordering principle: a... |
| uzwo2 12810 | Well-ordering principle: a... |
| nnwo 12811 | Well-ordering principle: a... |
| nnwof 12812 | Well-ordering principle: a... |
| nnwos 12813 | Well-ordering principle: a... |
| indstr 12814 | Strong Mathematical Induct... |
| eluznn0 12815 | Membership in a nonnegativ... |
| eluznn 12816 | Membership in a positive u... |
| eluz2b1 12817 | Two ways to say "an intege... |
| eluz2gt1 12818 | An integer greater than or... |
| eluz2b2 12819 | Two ways to say "an intege... |
| eluz2b3 12820 | Two ways to say "an intege... |
| uz2m1nn 12821 | One less than an integer g... |
| 1nuz2 12822 | 1 is not in ` ( ZZ>= `` 2 ... |
| elnn1uz2 12823 | A positive integer is eith... |
| uz2mulcl 12824 | Closure of multiplication ... |
| indstr2 12825 | Strong Mathematical Induct... |
| uzinfi 12826 | Extract the lower bound of... |
| nninf 12827 | The infimum of the set of ... |
| nn0inf 12828 | The infimum of the set of ... |
| infssuzle 12829 | The infimum of a subset of... |
| infssuzcl 12830 | The infimum of a subset of... |
| ublbneg 12831 | The image under negation o... |
| eqreznegel 12832 | Two ways to express the im... |
| supminf 12833 | The supremum of a bounded-... |
| lbzbi 12834 | If a set of reals is bound... |
| zsupss 12835 | Any nonempty bounded subse... |
| suprzcl2 12836 | The supremum of a bounded-... |
| suprzub 12837 | The supremum of a bounded-... |
| uzsupss 12838 | Any bounded subset of an u... |
| nn01to3 12839 | A (nonnegative) integer be... |
| nn0ge2m1nnALT 12840 | Alternate proof of ~ nn0ge... |
| uzwo3 12841 | Well-ordering principle: a... |
| zmin 12842 | There is a unique smallest... |
| zmax 12843 | There is a unique largest ... |
| zbtwnre 12844 | There is a unique integer ... |
| rebtwnz 12845 | There is a unique greatest... |
| elq 12848 | Membership in the set of r... |
| qmulz 12849 | If ` A ` is rational, then... |
| znq 12850 | The ratio of an integer an... |
| qre 12851 | A rational number is a rea... |
| zq 12852 | An integer is a rational n... |
| qred 12853 | A rational number is a rea... |
| zssq 12854 | The integers are a subset ... |
| nn0ssq 12855 | The nonnegative integers a... |
| nnssq 12856 | The positive integers are ... |
| qssre 12857 | The rationals are a subset... |
| qsscn 12858 | The rationals are a subset... |
| qex 12859 | The set of rational number... |
| nnq 12860 | A positive integer is rati... |
| qcn 12861 | A rational number is a com... |
| qexALT 12862 | Alternate proof of ~ qex .... |
| qaddcl 12863 | Closure of addition of rat... |
| qnegcl 12864 | Closure law for the negati... |
| qmulcl 12865 | Closure of multiplication ... |
| qsubcl 12866 | Closure of subtraction of ... |
| qreccl 12867 | Closure of reciprocal of r... |
| qdivcl 12868 | Closure of division of rat... |
| qrevaddcl 12869 | Reverse closure law for ad... |
| nnrecq 12870 | The reciprocal of a positi... |
| irradd 12871 | The sum of an irrational n... |
| irrmul 12872 | The product of an irration... |
| elpq 12873 | A positive rational is the... |
| elpqb 12874 | A class is a positive rati... |
| rpnnen1lem2 12875 | Lemma for ~ rpnnen1 . (Co... |
| rpnnen1lem1 12876 | Lemma for ~ rpnnen1 . (Co... |
| rpnnen1lem3 12877 | Lemma for ~ rpnnen1 . (Co... |
| rpnnen1lem4 12878 | Lemma for ~ rpnnen1 . (Co... |
| rpnnen1lem5 12879 | Lemma for ~ rpnnen1 . (Co... |
| rpnnen1lem6 12880 | Lemma for ~ rpnnen1 . (Co... |
| rpnnen1 12881 | One half of ~ rpnnen , whe... |
| reexALT 12882 | Alternate proof of ~ reex ... |
| cnref1o 12883 | There is a natural one-to-... |
| cnexALT 12884 | The set of complex numbers... |
| xrex 12885 | The set of extended reals ... |
| mpoaddex 12886 | The addition operation is ... |
| addex 12887 | The addition operation is ... |
| mpomulex 12888 | The multiplication operati... |
| mulex 12889 | The multiplication operati... |
| elrp 12892 | Membership in the set of p... |
| elrpii 12893 | Membership in the set of p... |
| 1rp 12894 | 1 is a positive real. (Co... |
| 2rp 12895 | 2 is a positive real. (Co... |
| 3rp 12896 | 3 is a positive real. (Co... |
| 5rp 12897 | 5 is a positive real. (Co... |
| rpssre 12898 | The positive reals are a s... |
| rpre 12899 | A positive real is a real.... |
| rpxr 12900 | A positive real is an exte... |
| rpcn 12901 | A positive real is a compl... |
| nnrp 12902 | A positive integer is a po... |
| rpgt0 12903 | A positive real is greater... |
| rpge0 12904 | A positive real is greater... |
| rpregt0 12905 | A positive real is a posit... |
| rprege0 12906 | A positive real is a nonne... |
| rpne0 12907 | A positive real is nonzero... |
| rprene0 12908 | A positive real is a nonze... |
| rpcnne0 12909 | A positive real is a nonze... |
| neglt 12910 | The negative of a positive... |
| rpcndif0 12911 | A positive real number is ... |
| ralrp 12912 | Quantification over positi... |
| rexrp 12913 | Quantification over positi... |
| rpaddcl 12914 | Closure law for addition o... |
| rpmulcl 12915 | Closure law for multiplica... |
| rpmtmip 12916 | "Minus times minus is plus... |
| rpdivcl 12917 | Closure law for division o... |
| rpreccl 12918 | Closure law for reciprocat... |
| rphalfcl 12919 | Closure law for half of a ... |
| rpgecl 12920 | A number greater than or e... |
| rphalflt 12921 | Half of a positive real is... |
| rerpdivcl 12922 | Closure law for division o... |
| ge0p1rp 12923 | A nonnegative number plus ... |
| rpneg 12924 | Either a nonzero real or i... |
| negelrp 12925 | Elementhood of a negation ... |
| negelrpd 12926 | The negation of a negative... |
| 0nrp 12927 | Zero is not a positive rea... |
| ltsubrp 12928 | Subtracting a positive rea... |
| ltaddrp 12929 | Adding a positive number t... |
| difrp 12930 | Two ways to say one number... |
| elrpd 12931 | Membership in the set of p... |
| nnrpd 12932 | A positive integer is a po... |
| zgt1rpn0n1 12933 | An integer greater than 1 ... |
| rpred 12934 | A positive real is a real.... |
| rpxrd 12935 | A positive real is an exte... |
| rpcnd 12936 | A positive real is a compl... |
| rpgt0d 12937 | A positive real is greater... |
| rpge0d 12938 | A positive real is greater... |
| rpne0d 12939 | A positive real is nonzero... |
| rpregt0d 12940 | A positive real is real an... |
| rprege0d 12941 | A positive real is real an... |
| rprene0d 12942 | A positive real is a nonze... |
| rpcnne0d 12943 | A positive real is a nonze... |
| rpreccld 12944 | Closure law for reciprocat... |
| rprecred 12945 | Closure law for reciprocat... |
| rphalfcld 12946 | Closure law for half of a ... |
| reclt1d 12947 | The reciprocal of a positi... |
| recgt1d 12948 | The reciprocal of a positi... |
| rpaddcld 12949 | Closure law for addition o... |
| rpmulcld 12950 | Closure law for multiplica... |
| rpdivcld 12951 | Closure law for division o... |
| ltrecd 12952 | The reciprocal of both sid... |
| lerecd 12953 | The reciprocal of both sid... |
| ltrec1d 12954 | Reciprocal swap in a 'less... |
| lerec2d 12955 | Reciprocal swap in a 'less... |
| lediv2ad 12956 | Division of both sides of ... |
| ltdiv2d 12957 | Division of a positive num... |
| lediv2d 12958 | Division of a positive num... |
| ledivdivd 12959 | Invert ratios of positive ... |
| divge1 12960 | The ratio of a number over... |
| divlt1lt 12961 | A real number divided by a... |
| divle1le 12962 | A real number divided by a... |
| ledivge1le 12963 | If a number is less than o... |
| ge0p1rpd 12964 | A nonnegative number plus ... |
| rerpdivcld 12965 | Closure law for division o... |
| ltsubrpd 12966 | Subtracting a positive rea... |
| ltaddrpd 12967 | Adding a positive number t... |
| ltaddrp2d 12968 | Adding a positive number t... |
| ltmulgt11d 12969 | Multiplication by a number... |
| ltmulgt12d 12970 | Multiplication by a number... |
| gt0divd 12971 | Division of a positive num... |
| ge0divd 12972 | Division of a nonnegative ... |
| rpgecld 12973 | A number greater than or e... |
| divge0d 12974 | The ratio of nonnegative a... |
| ltmul1d 12975 | The ratio of nonnegative a... |
| ltmul2d 12976 | Multiplication of both sid... |
| lemul1d 12977 | Multiplication of both sid... |
| lemul2d 12978 | Multiplication of both sid... |
| ltdiv1d 12979 | Division of both sides of ... |
| lediv1d 12980 | Division of both sides of ... |
| ltmuldivd 12981 | 'Less than' relationship b... |
| ltmuldiv2d 12982 | 'Less than' relationship b... |
| lemuldivd 12983 | 'Less than or equal to' re... |
| lemuldiv2d 12984 | 'Less than or equal to' re... |
| ltdivmuld 12985 | 'Less than' relationship b... |
| ltdivmul2d 12986 | 'Less than' relationship b... |
| ledivmuld 12987 | 'Less than or equal to' re... |
| ledivmul2d 12988 | 'Less than or equal to' re... |
| ltmul1dd 12989 | The ratio of nonnegative a... |
| ltmul2dd 12990 | Multiplication of both sid... |
| ltdiv1dd 12991 | Division of both sides of ... |
| lediv1dd 12992 | Division of both sides of ... |
| lediv12ad 12993 | Comparison of ratio of two... |
| mul2lt0rlt0 12994 | If the result of a multipl... |
| mul2lt0rgt0 12995 | If the result of a multipl... |
| mul2lt0llt0 12996 | If the result of a multipl... |
| mul2lt0lgt0 12997 | If the result of a multipl... |
| mul2lt0bi 12998 | If the result of a multipl... |
| prodge0rd 12999 | Infer that a multiplicand ... |
| prodge0ld 13000 | Infer that a multiplier is... |
| ltdiv23d 13001 | Swap denominator with othe... |
| lediv23d 13002 | Swap denominator with othe... |
| lt2mul2divd 13003 | The ratio of nonnegative a... |
| nnledivrp 13004 | Division of a positive int... |
| nn0ledivnn 13005 | Division of a nonnegative ... |
| addlelt 13006 | If the sum of a real numbe... |
| ge2halflem1 13007 | Half of an integer greater... |
| ltxr 13014 | The 'less than' binary rel... |
| elxr 13015 | Membership in the set of e... |
| xrnemnf 13016 | An extended real other tha... |
| xrnepnf 13017 | An extended real other tha... |
| xrltnr 13018 | The extended real 'less th... |
| ltpnf 13019 | Any (finite) real is less ... |
| ltpnfd 13020 | Any (finite) real is less ... |
| 0ltpnf 13021 | Zero is less than plus inf... |
| mnflt 13022 | Minus infinity is less tha... |
| mnfltd 13023 | Minus infinity is less tha... |
| mnflt0 13024 | Minus infinity is less tha... |
| mnfltpnf 13025 | Minus infinity is less tha... |
| mnfltxr 13026 | Minus infinity is less tha... |
| pnfnlt 13027 | No extended real is greate... |
| nltmnf 13028 | No extended real is less t... |
| pnfge 13029 | Plus infinity is an upper ... |
| pnfged 13030 | Plus infinity is an upper ... |
| xnn0n0n1ge2b 13031 | An extended nonnegative in... |
| 0lepnf 13032 | 0 less than or equal to po... |
| xnn0ge0 13033 | An extended nonnegative in... |
| mnfle 13034 | Minus infinity is less tha... |
| mnfled 13035 | Minus infinity is less tha... |
| xrltnsym 13036 | Ordering on the extended r... |
| xrltnsym2 13037 | 'Less than' is antisymmetr... |
| xrlttri 13038 | Ordering on the extended r... |
| xrlttr 13039 | Ordering on the extended r... |
| xrltso 13040 | 'Less than' is a strict or... |
| xrlttri2 13041 | Trichotomy law for 'less t... |
| xrlttri3 13042 | Trichotomy law for 'less t... |
| xrleloe 13043 | 'Less than or equal' expre... |
| xrleltne 13044 | 'Less than or equal to' im... |
| xrltlen 13045 | 'Less than' expressed in t... |
| dfle2 13046 | Alternative definition of ... |
| dflt2 13047 | Alternative definition of ... |
| xrltle 13048 | 'Less than' implies 'less ... |
| xrltled 13049 | 'Less than' implies 'less ... |
| xrleid 13050 | 'Less than or equal to' is... |
| xrleidd 13051 | 'Less than or equal to' is... |
| xrletri 13052 | Trichotomy law for extende... |
| xrletri3 13053 | Trichotomy law for extende... |
| xrletrid 13054 | Trichotomy law for extende... |
| xrlelttr 13055 | Transitive law for orderin... |
| xrltletr 13056 | Transitive law for orderin... |
| xrletr 13057 | Transitive law for orderin... |
| xrlttrd 13058 | Transitive law for orderin... |
| xrlelttrd 13059 | Transitive law for orderin... |
| xrltletrd 13060 | Transitive law for orderin... |
| xrletrd 13061 | Transitive law for orderin... |
| xrltne 13062 | 'Less than' implies not eq... |
| nltpnft 13063 | An extended real is not le... |
| xgepnf 13064 | An extended real which is ... |
| ngtmnft 13065 | An extended real is not gr... |
| xlemnf 13066 | An extended real which is ... |
| xrrebnd 13067 | An extended real is real i... |
| xrre 13068 | A way of proving that an e... |
| xrre2 13069 | An extended real between t... |
| xrre3 13070 | A way of proving that an e... |
| ge0gtmnf 13071 | A nonnegative extended rea... |
| ge0nemnf 13072 | A nonnegative extended rea... |
| xrrege0 13073 | A nonnegative extended rea... |
| xrmax1 13074 | An extended real is less t... |
| xrmax2 13075 | An extended real is less t... |
| xrmin1 13076 | The minimum of two extende... |
| xrmin2 13077 | The minimum of two extende... |
| xrmaxeq 13078 | The maximum of two extende... |
| xrmineq 13079 | The minimum of two extende... |
| xrmaxlt 13080 | Two ways of saying the max... |
| xrltmin 13081 | Two ways of saying an exte... |
| xrmaxle 13082 | Two ways of saying the max... |
| xrlemin 13083 | Two ways of saying a numbe... |
| max1 13084 | A number is less than or e... |
| max1ALT 13085 | A number is less than or e... |
| max2 13086 | A number is less than or e... |
| 2resupmax 13087 | The supremum of two real n... |
| min1 13088 | The minimum of two numbers... |
| min2 13089 | The minimum of two numbers... |
| maxle 13090 | Two ways of saying the max... |
| lemin 13091 | Two ways of saying a numbe... |
| maxlt 13092 | Two ways of saying the max... |
| ltmin 13093 | Two ways of saying a numbe... |
| lemaxle 13094 | A real number which is les... |
| max0sub 13095 | Decompose a real number in... |
| ifle 13096 | An if statement transforms... |
| z2ge 13097 | There exists an integer gr... |
| qbtwnre 13098 | The rational numbers are d... |
| qbtwnxr 13099 | The rational numbers are d... |
| qsqueeze 13100 | If a nonnegative real is l... |
| qextltlem 13101 | Lemma for ~ qextlt and qex... |
| qextlt 13102 | An extensionality-like pro... |
| qextle 13103 | An extensionality-like pro... |
| xralrple 13104 | Show that ` A ` is less th... |
| alrple 13105 | Show that ` A ` is less th... |
| xnegeq 13106 | Equality of two extended n... |
| xnegex 13107 | A negative extended real e... |
| xnegpnf 13108 | Minus ` +oo ` . Remark of... |
| xnegmnf 13109 | Minus ` -oo ` . Remark of... |
| rexneg 13110 | Minus a real number. Rema... |
| xneg0 13111 | The negative of zero. (Co... |
| xnegcl 13112 | Closure of extended real n... |
| xnegneg 13113 | Extended real version of ~... |
| xneg11 13114 | Extended real version of ~... |
| xltnegi 13115 | Forward direction of ~ xlt... |
| xltneg 13116 | Extended real version of ~... |
| xleneg 13117 | Extended real version of ~... |
| xlt0neg1 13118 | Extended real version of ~... |
| xlt0neg2 13119 | Extended real version of ~... |
| xle0neg1 13120 | Extended real version of ~... |
| xle0neg2 13121 | Extended real version of ~... |
| xaddval 13122 | Value of the extended real... |
| xaddf 13123 | The extended real addition... |
| xmulval 13124 | Value of the extended real... |
| xaddpnf1 13125 | Addition of positive infin... |
| xaddpnf2 13126 | Addition of positive infin... |
| xaddmnf1 13127 | Addition of negative infin... |
| xaddmnf2 13128 | Addition of negative infin... |
| pnfaddmnf 13129 | Addition of positive and n... |
| mnfaddpnf 13130 | Addition of negative and p... |
| rexadd 13131 | The extended real addition... |
| rexsub 13132 | Extended real subtraction ... |
| rexaddd 13133 | The extended real addition... |
| xnn0xaddcl 13134 | The extended nonnegative i... |
| xaddnemnf 13135 | Closure of extended real a... |
| xaddnepnf 13136 | Closure of extended real a... |
| xnegid 13137 | Extended real version of ~... |
| xaddcl 13138 | The extended real addition... |
| xaddcom 13139 | The extended real addition... |
| xaddrid 13140 | Extended real version of ~... |
| xaddlid 13141 | Extended real version of ~... |
| xaddridd 13142 | ` 0 ` is a right identity ... |
| xnn0lem1lt 13143 | Extended nonnegative integ... |
| xnn0lenn0nn0 13144 | An extended nonnegative in... |
| xnn0le2is012 13145 | An extended nonnegative in... |
| xnn0xadd0 13146 | The sum of two extended no... |
| xnegdi 13147 | Extended real version of ~... |
| xaddass 13148 | Associativity of extended ... |
| xaddass2 13149 | Associativity of extended ... |
| xpncan 13150 | Extended real version of ~... |
| xnpcan 13151 | Extended real version of ~... |
| xleadd1a 13152 | Extended real version of ~... |
| xleadd2a 13153 | Commuted form of ~ xleadd1... |
| xleadd1 13154 | Weakened version of ~ xlea... |
| xltadd1 13155 | Extended real version of ~... |
| xltadd2 13156 | Extended real version of ~... |
| xaddge0 13157 | The sum of nonnegative ext... |
| xle2add 13158 | Extended real version of ~... |
| xlt2add 13159 | Extended real version of ~... |
| xsubge0 13160 | Extended real version of ~... |
| xposdif 13161 | Extended real version of ~... |
| xlesubadd 13162 | Under certain conditions, ... |
| xmullem 13163 | Lemma for ~ rexmul . (Con... |
| xmullem2 13164 | Lemma for ~ xmulneg1 . (C... |
| xmulcom 13165 | Extended real multiplicati... |
| xmul01 13166 | Extended real version of ~... |
| xmul02 13167 | Extended real version of ~... |
| xmulneg1 13168 | Extended real version of ~... |
| xmulneg2 13169 | Extended real version of ~... |
| rexmul 13170 | The extended real multipli... |
| xmulf 13171 | The extended real multipli... |
| xmulcl 13172 | Closure of extended real m... |
| xmulpnf1 13173 | Multiplication by plus inf... |
| xmulpnf2 13174 | Multiplication by plus inf... |
| xmulmnf1 13175 | Multiplication by minus in... |
| xmulmnf2 13176 | Multiplication by minus in... |
| xmulpnf1n 13177 | Multiplication by plus inf... |
| xmulrid 13178 | Extended real version of ~... |
| xmullid 13179 | Extended real version of ~... |
| xmulm1 13180 | Extended real version of ~... |
| xmulasslem2 13181 | Lemma for ~ xmulass . (Co... |
| xmulgt0 13182 | Extended real version of ~... |
| xmulge0 13183 | Extended real version of ~... |
| xmulasslem 13184 | Lemma for ~ xmulass . (Co... |
| xmulasslem3 13185 | Lemma for ~ xmulass . (Co... |
| xmulass 13186 | Associativity of the exten... |
| xlemul1a 13187 | Extended real version of ~... |
| xlemul2a 13188 | Extended real version of ~... |
| xlemul1 13189 | Extended real version of ~... |
| xlemul2 13190 | Extended real version of ~... |
| xltmul1 13191 | Extended real version of ~... |
| xltmul2 13192 | Extended real version of ~... |
| xadddilem 13193 | Lemma for ~ xadddi . (Con... |
| xadddi 13194 | Distributive property for ... |
| xadddir 13195 | Commuted version of ~ xadd... |
| xadddi2 13196 | The assumption that the mu... |
| xadddi2r 13197 | Commuted version of ~ xadd... |
| x2times 13198 | Extended real version of ~... |
| xnegcld 13199 | Closure of extended real n... |
| xaddcld 13200 | The extended real addition... |
| xmulcld 13201 | Closure of extended real m... |
| xadd4d 13202 | Rearrangement of 4 terms i... |
| xnn0add4d 13203 | Rearrangement of 4 terms i... |
| xrsupexmnf 13204 | Adding minus infinity to a... |
| xrinfmexpnf 13205 | Adding plus infinity to a ... |
| xrsupsslem 13206 | Lemma for ~ xrsupss . (Co... |
| xrinfmsslem 13207 | Lemma for ~ xrinfmss . (C... |
| xrsupss 13208 | Any subset of extended rea... |
| xrinfmss 13209 | Any subset of extended rea... |
| xrinfmss2 13210 | Any subset of extended rea... |
| xrub 13211 | By quantifying only over r... |
| supxr 13212 | The supremum of a set of e... |
| supxr2 13213 | The supremum of a set of e... |
| supxrcl 13214 | The supremum of an arbitra... |
| supxrun 13215 | The supremum of the union ... |
| supxrmnf 13216 | Adding minus infinity to a... |
| supxrpnf 13217 | The supremum of a set of e... |
| supxrunb1 13218 | The supremum of an unbound... |
| supxrunb2 13219 | The supremum of an unbound... |
| supxrbnd1 13220 | The supremum of a bounded-... |
| supxrbnd2 13221 | The supremum of a bounded-... |
| xrsup0 13222 | The supremum of an empty s... |
| supxrub 13223 | A member of a set of exten... |
| supxrlub 13224 | The supremum of a set of e... |
| supxrleub 13225 | The supremum of a set of e... |
| supxrre 13226 | The real and extended real... |
| supxrbnd 13227 | The supremum of a bounded-... |
| supxrgtmnf 13228 | The supremum of a nonempty... |
| supxrre1 13229 | The supremum of a nonempty... |
| supxrre2 13230 | The supremum of a nonempty... |
| supxrss 13231 | Smaller sets of extended r... |
| xrsupssd 13232 | Inequality deduction for s... |
| infxrcl 13233 | The infimum of an arbitrar... |
| infxrlb 13234 | A member of a set of exten... |
| infxrgelb 13235 | The infimum of a set of ex... |
| infxrre 13236 | The real and extended real... |
| infxrmnf 13237 | The infinimum of a set of ... |
| xrinf0 13238 | The infimum of the empty s... |
| infxrss 13239 | Larger sets of extended re... |
| reltre 13240 | For all real numbers there... |
| rpltrp 13241 | For all positive real numb... |
| reltxrnmnf 13242 | For all extended real numb... |
| infmremnf 13243 | The infimum of the reals i... |
| infmrp1 13244 | The infimum of the positiv... |
| ixxval 13253 | Value of the interval func... |
| elixx1 13254 | Membership in an interval ... |
| ixxf 13255 | The set of intervals of ex... |
| ixxex 13256 | The set of intervals of ex... |
| ixxssxr 13257 | The set of intervals of ex... |
| elixx3g 13258 | Membership in a set of ope... |
| ixxssixx 13259 | An interval is a subset of... |
| ixxdisj 13260 | Split an interval into dis... |
| ixxun 13261 | Split an interval into two... |
| ixxin 13262 | Intersection of two interv... |
| ixxss1 13263 | Subset relationship for in... |
| ixxss2 13264 | Subset relationship for in... |
| ixxss12 13265 | Subset relationship for in... |
| ixxub 13266 | Extract the upper bound of... |
| ixxlb 13267 | Extract the lower bound of... |
| iooex 13268 | The set of open intervals ... |
| iooval 13269 | Value of the open interval... |
| ioo0 13270 | An empty open interval of ... |
| ioon0 13271 | An open interval of extend... |
| ndmioo 13272 | The open interval function... |
| iooid 13273 | An open interval with iden... |
| elioo3g 13274 | Membership in a set of ope... |
| elioore 13275 | A member of an open interv... |
| lbioo 13276 | An open interval does not ... |
| ubioo 13277 | An open interval does not ... |
| iooval2 13278 | Value of the open interval... |
| iooin 13279 | Intersection of two open i... |
| iooss1 13280 | Subset relationship for op... |
| iooss2 13281 | Subset relationship for op... |
| iocval 13282 | Value of the open-below, c... |
| icoval 13283 | Value of the closed-below,... |
| iccval 13284 | Value of the closed interv... |
| elioo1 13285 | Membership in an open inte... |
| elioo2 13286 | Membership in an open inte... |
| elioc1 13287 | Membership in an open-belo... |
| elico1 13288 | Membership in a closed-bel... |
| elicc1 13289 | Membership in a closed int... |
| iccid 13290 | A closed interval with ide... |
| ico0 13291 | An empty open interval of ... |
| ioc0 13292 | An empty open interval of ... |
| icc0 13293 | An empty closed interval o... |
| dfrp2 13294 | Alternate definition of th... |
| elicod 13295 | Membership in a left-close... |
| icogelb 13296 | An element of a left-close... |
| icogelbd 13297 | An element of a left-close... |
| elicore 13298 | A member of a left-closed ... |
| ubioc1 13299 | The upper bound belongs to... |
| lbico1 13300 | The lower bound belongs to... |
| iccleub 13301 | An element of a closed int... |
| iccgelb 13302 | An element of a closed int... |
| elioo5 13303 | Membership in an open inte... |
| eliooxr 13304 | A nonempty open interval s... |
| eliooord 13305 | Ordering implied by a memb... |
| elioo4g 13306 | Membership in an open inte... |
| ioossre 13307 | An open interval is a set ... |
| ioosscn 13308 | An open interval is a set ... |
| elioc2 13309 | Membership in an open-belo... |
| elico2 13310 | Membership in a closed-bel... |
| elicc2 13311 | Membership in a closed rea... |
| elicc2i 13312 | Inference for membership i... |
| elicc4 13313 | Membership in a closed rea... |
| iccss 13314 | Condition for a closed int... |
| iccssioo 13315 | Condition for a closed int... |
| icossico 13316 | Condition for a closed-bel... |
| iccss2 13317 | Condition for a closed int... |
| iccssico 13318 | Condition for a closed int... |
| iccssioo2 13319 | Condition for a closed int... |
| iccssico2 13320 | Condition for a closed int... |
| icossico2d 13321 | Condition for a closed-bel... |
| ioomax 13322 | The open interval from min... |
| iccmax 13323 | The closed interval from m... |
| ioopos 13324 | The set of positive reals ... |
| ioorp 13325 | The set of positive reals ... |
| iooshf 13326 | Shift the arguments of the... |
| iocssre 13327 | A closed-above interval wi... |
| icossre 13328 | A closed-below interval wi... |
| iccssre 13329 | A closed real interval is ... |
| iccssxr 13330 | A closed interval is a set... |
| iocssxr 13331 | An open-below, closed-abov... |
| icossxr 13332 | A closed-below, open-above... |
| ioossicc 13333 | An open interval is a subs... |
| iccssred 13334 | A closed real interval is ... |
| eliccxr 13335 | A member of a closed inter... |
| icossicc 13336 | A closed-below, open-above... |
| iocssicc 13337 | A closed-above, open-below... |
| ioossico 13338 | An open interval is a subs... |
| iocssioo 13339 | Condition for a closed int... |
| icossioo 13340 | Condition for a closed int... |
| ioossioo 13341 | Condition for an open inte... |
| iccsupr 13342 | A nonempty subset of a clo... |
| elioopnf 13343 | Membership in an unbounded... |
| elioomnf 13344 | Membership in an unbounded... |
| elicopnf 13345 | Membership in a closed unb... |
| repos 13346 | Two ways of saying that a ... |
| ioof 13347 | The set of open intervals ... |
| iccf 13348 | The set of closed interval... |
| unirnioo 13349 | The union of the range of ... |
| dfioo2 13350 | Alternate definition of th... |
| ioorebas 13351 | Open intervals are element... |
| xrge0neqmnf 13352 | A nonnegative extended rea... |
| xrge0nre 13353 | An extended real which is ... |
| elrege0 13354 | The predicate "is a nonneg... |
| nn0rp0 13355 | A nonnegative integer is a... |
| rge0ssre 13356 | Nonnegative real numbers a... |
| elxrge0 13357 | Elementhood in the set of ... |
| 0e0icopnf 13358 | 0 is a member of ` ( 0 [,)... |
| 0e0iccpnf 13359 | 0 is a member of ` ( 0 [,]... |
| ge0addcl 13360 | The nonnegative reals are ... |
| ge0mulcl 13361 | The nonnegative reals are ... |
| ge0xaddcl 13362 | The nonnegative reals are ... |
| ge0xmulcl 13363 | The nonnegative extended r... |
| lbicc2 13364 | The lower bound of a close... |
| ubicc2 13365 | The upper bound of a close... |
| elicc01 13366 | Membership in the closed r... |
| elunitrn 13367 | The closed unit interval i... |
| elunitcn 13368 | The closed unit interval i... |
| 0elunit 13369 | Zero is an element of the ... |
| 1elunit 13370 | One is an element of the c... |
| iooneg 13371 | Membership in a negated op... |
| iccneg 13372 | Membership in a negated cl... |
| icoshft 13373 | A shifted real is a member... |
| icoshftf1o 13374 | Shifting a closed-below, o... |
| icoun 13375 | The union of two adjacent ... |
| icodisj 13376 | Adjacent left-closed right... |
| ioounsn 13377 | The union of an open inter... |
| snunioo 13378 | The closure of one end of ... |
| snunico 13379 | The closure of the open en... |
| snunioc 13380 | The closure of the open en... |
| prunioo 13381 | The closure of an open rea... |
| ioodisj 13382 | If the upper bound of one ... |
| ioojoin 13383 | Join two open intervals to... |
| difreicc 13384 | The class difference of ` ... |
| iccsplit 13385 | Split a closed interval in... |
| iccshftr 13386 | Membership in a shifted in... |
| iccshftri 13387 | Membership in a shifted in... |
| iccshftl 13388 | Membership in a shifted in... |
| iccshftli 13389 | Membership in a shifted in... |
| iccdil 13390 | Membership in a dilated in... |
| iccdili 13391 | Membership in a dilated in... |
| icccntr 13392 | Membership in a contracted... |
| icccntri 13393 | Membership in a contracted... |
| divelunit 13394 | A condition for a ratio to... |
| lincmb01cmp 13395 | A linear combination of tw... |
| iccf1o 13396 | Describe a bijection from ... |
| iccen 13397 | Any nontrivial closed inte... |
| xov1plusxeqvd 13398 | A complex number ` X ` is ... |
| unitssre 13399 | ` ( 0 [,] 1 ) ` is a subse... |
| unitsscn 13400 | The closed unit interval i... |
| supicc 13401 | Supremum of a bounded set ... |
| supiccub 13402 | The supremum of a bounded ... |
| supicclub 13403 | The supremum of a bounded ... |
| supicclub2 13404 | The supremum of a bounded ... |
| zltaddlt1le 13405 | The sum of an integer and ... |
| xnn0xrge0 13406 | An extended nonnegative in... |
| fzval 13409 | The value of a finite set ... |
| fzval2 13410 | An alternative way of expr... |
| fzf 13411 | Establish the domain and c... |
| elfz1 13412 | Membership in a finite set... |
| elfz 13413 | Membership in a finite set... |
| elfz2 13414 | Membership in a finite set... |
| elfzd 13415 | Membership in a finite set... |
| elfz5 13416 | Membership in a finite set... |
| elfz4 13417 | Membership in a finite set... |
| elfzuzb 13418 | Membership in a finite set... |
| eluzfz 13419 | Membership in a finite set... |
| elfzuz 13420 | A member of a finite set o... |
| elfzuz3 13421 | Membership in a finite set... |
| elfzel2 13422 | Membership in a finite set... |
| elfzel1 13423 | Membership in a finite set... |
| elfzelz 13424 | A member of a finite set o... |
| elfzelzd 13425 | A member of a finite set o... |
| fzssz 13426 | A finite sequence of integ... |
| elfzle1 13427 | A member of a finite set o... |
| elfzle2 13428 | A member of a finite set o... |
| elfzuz2 13429 | Implication of membership ... |
| elfzle3 13430 | Membership in a finite set... |
| eluzfz1 13431 | Membership in a finite set... |
| eluzfz2 13432 | Membership in a finite set... |
| eluzfz2b 13433 | Membership in a finite set... |
| elfz3 13434 | Membership in a finite set... |
| elfz1eq 13435 | Membership in a finite set... |
| elfzubelfz 13436 | If there is a member in a ... |
| peano2fzr 13437 | A Peano-postulate-like the... |
| fzn0 13438 | Properties of a finite int... |
| fz0 13439 | A finite set of sequential... |
| fzn 13440 | A finite set of sequential... |
| fzen 13441 | A shifted finite set of se... |
| fz1n 13442 | A 1-based finite set of se... |
| 0nelfz1 13443 | 0 is not an element of a f... |
| 0fz1 13444 | Two ways to say a finite 1... |
| fz10 13445 | There are no integers betw... |
| uzsubsubfz 13446 | Membership of an integer g... |
| uzsubsubfz1 13447 | Membership of an integer g... |
| ige3m2fz 13448 | Membership of an integer g... |
| fzsplit2 13449 | Split a finite interval of... |
| fzsplit 13450 | Split a finite interval of... |
| fzdisj 13451 | Condition for two finite i... |
| fz01en 13452 | 0-based and 1-based finite... |
| elfznn 13453 | A member of a finite set o... |
| elfz1end 13454 | A nonempty finite range of... |
| fz1ssnn 13455 | A finite set of positive i... |
| fznn0sub 13456 | Subtraction closure for a ... |
| fzmmmeqm 13457 | Subtracting the difference... |
| fzaddel 13458 | Membership of a sum in a f... |
| fzadd2 13459 | Membership of a sum in a f... |
| fzsubel 13460 | Membership of a difference... |
| fzopth 13461 | A finite set of sequential... |
| fzass4 13462 | Two ways to express a nond... |
| fzss1 13463 | Subset relationship for fi... |
| fzss2 13464 | Subset relationship for fi... |
| fzssuz 13465 | A finite set of sequential... |
| fzsn 13466 | A finite interval of integ... |
| fzssp1 13467 | Subset relationship for fi... |
| fzssnn 13468 | Finite sets of sequential ... |
| ssfzunsnext 13469 | A subset of a finite seque... |
| ssfzunsn 13470 | A subset of a finite seque... |
| fzsuc 13471 | Join a successor to the en... |
| fzpred 13472 | Join a predecessor to the ... |
| fzpreddisj 13473 | A finite set of sequential... |
| elfzp1 13474 | Append an element to a fin... |
| fzp1ss 13475 | Subset relationship for fi... |
| fzelp1 13476 | Membership in a set of seq... |
| fzp1elp1 13477 | Add one to an element of a... |
| fznatpl1 13478 | Shift membership in a fini... |
| fzpr 13479 | A finite interval of integ... |
| fztp 13480 | A finite interval of integ... |
| fz12pr 13481 | An integer range between 1... |
| fzsuc2 13482 | Join a successor to the en... |
| fzp1disj 13483 | ` ( M ... ( N + 1 ) ) ` is... |
| fzdifsuc 13484 | Remove a successor from th... |
| fzprval 13485 | Two ways of defining the f... |
| fztpval 13486 | Two ways of defining the f... |
| fzrev 13487 | Reversal of start and end ... |
| fzrev2 13488 | Reversal of start and end ... |
| fzrev2i 13489 | Reversal of start and end ... |
| fzrev3 13490 | The "complement" of a memb... |
| fzrev3i 13491 | The "complement" of a memb... |
| fznn 13492 | Finite set of sequential i... |
| elfz1b 13493 | Membership in a 1-based fi... |
| elfz1uz 13494 | Membership in a 1-based fi... |
| elfzm11 13495 | Membership in a finite set... |
| uzsplit 13496 | Express an upper integer s... |
| uzdisj 13497 | The first ` N ` elements o... |
| fseq1p1m1 13498 | Add/remove an item to/from... |
| fseq1m1p1 13499 | Add/remove an item to/from... |
| fz1sbc 13500 | Quantification over a one-... |
| elfzp1b 13501 | An integer is a member of ... |
| elfzm1b 13502 | An integer is a member of ... |
| elfzp12 13503 | Options for membership in ... |
| fzne1 13504 | Elementhood in a finite se... |
| fzdif1 13505 | Split the first element of... |
| fz0dif1 13506 | Split the first element of... |
| fzm1 13507 | Choices for an element of ... |
| fzneuz 13508 | No finite set of sequentia... |
| fznuz 13509 | Disjointness of the upper ... |
| uznfz 13510 | Disjointness of the upper ... |
| fzp1nel 13511 | One plus the upper bound o... |
| fzrevral 13512 | Reversal of scanning order... |
| fzrevral2 13513 | Reversal of scanning order... |
| fzrevral3 13514 | Reversal of scanning order... |
| fzshftral 13515 | Shift the scanning order i... |
| ige2m1fz1 13516 | Membership of an integer g... |
| ige2m1fz 13517 | Membership in a 0-based fi... |
| elfz2nn0 13518 | Membership in a finite set... |
| fznn0 13519 | Characterization of a fini... |
| elfznn0 13520 | A member of a finite set o... |
| elfz3nn0 13521 | The upper bound of a nonem... |
| fz0ssnn0 13522 | Finite sets of sequential ... |
| fz1ssfz0 13523 | Subset relationship for fi... |
| 0elfz 13524 | 0 is an element of a finit... |
| nn0fz0 13525 | A nonnegative integer is a... |
| elfz0add 13526 | An element of a finite set... |
| fz0sn 13527 | An integer range from 0 to... |
| fz0tp 13528 | An integer range from 0 to... |
| fz0to3un2pr 13529 | An integer range from 0 to... |
| fz0to4untppr 13530 | An integer range from 0 to... |
| fz0to5un2tp 13531 | An integer range from 0 to... |
| elfz0ubfz0 13532 | An element of a finite set... |
| elfz0fzfz0 13533 | A member of a finite set o... |
| fz0fzelfz0 13534 | If a member of a finite se... |
| fznn0sub2 13535 | Subtraction closure for a ... |
| uzsubfz0 13536 | Membership of an integer g... |
| fz0fzdiffz0 13537 | The difference of an integ... |
| elfzmlbm 13538 | Subtracting the lower boun... |
| elfzmlbp 13539 | Subtracting the lower boun... |
| fzctr 13540 | Lemma for theorems about t... |
| difelfzle 13541 | The difference of two inte... |
| difelfznle 13542 | The difference of two inte... |
| nn0split 13543 | Express the set of nonnega... |
| nn0disj 13544 | The first ` N + 1 ` elemen... |
| fz0sn0fz1 13545 | A finite set of sequential... |
| fvffz0 13546 | The function value of a fu... |
| 1fv 13547 | A function on a singleton.... |
| 4fvwrd4 13548 | The first four function va... |
| 2ffzeq 13549 | Two functions over 0-based... |
| preduz 13550 | The value of the predecess... |
| prednn 13551 | The value of the predecess... |
| prednn0 13552 | The value of the predecess... |
| predfz 13553 | Calculate the predecessor ... |
| fzof 13556 | Functionality of the half-... |
| elfzoel1 13557 | Reverse closure for half-o... |
| elfzoel2 13558 | Reverse closure for half-o... |
| elfzoelz 13559 | Reverse closure for half-o... |
| fzoval 13560 | Value of the half-open int... |
| elfzo 13561 | Membership in a half-open ... |
| elfzo2 13562 | Membership in a half-open ... |
| elfzouz 13563 | Membership in a half-open ... |
| nelfzo 13564 | An integer not being a mem... |
| fzolb 13565 | The left endpoint of a hal... |
| fzolb2 13566 | The left endpoint of a hal... |
| elfzole1 13567 | A member in a half-open in... |
| elfzolt2 13568 | A member in a half-open in... |
| elfzolt3 13569 | Membership in a half-open ... |
| elfzolt2b 13570 | A member in a half-open in... |
| elfzolt3b 13571 | Membership in a half-open ... |
| elfzop1le2 13572 | A member in a half-open in... |
| fzonel 13573 | A half-open range does not... |
| elfzouz2 13574 | The upper bound of a half-... |
| elfzofz 13575 | A half-open range is conta... |
| elfzo3 13576 | Express membership in a ha... |
| fzon0 13577 | A half-open integer interv... |
| fzossfz 13578 | A half-open range is conta... |
| fzossz 13579 | A half-open integer interv... |
| fzon 13580 | A half-open set of sequent... |
| fzo0n 13581 | A half-open range of nonne... |
| fzonlt0 13582 | A half-open integer range ... |
| fzo0 13583 | Half-open sets with equal ... |
| fzonnsub 13584 | If ` K < N ` then ` N - K ... |
| fzonnsub2 13585 | If ` M < N ` then ` N - M ... |
| fzoss1 13586 | Subset relationship for ha... |
| fzoss2 13587 | Subset relationship for ha... |
| fzossrbm1 13588 | Subset of a half-open rang... |
| fzo0ss1 13589 | Subset relationship for ha... |
| fzossnn0 13590 | A half-open integer range ... |
| fzospliti 13591 | One direction of splitting... |
| fzosplit 13592 | Split a half-open integer ... |
| fzodisj 13593 | Abutting half-open integer... |
| fzouzsplit 13594 | Split an upper integer set... |
| fzouzdisj 13595 | A half-open integer range ... |
| fzoun 13596 | A half-open integer range ... |
| fzodisjsn 13597 | A half-open integer range ... |
| prinfzo0 13598 | The intersection of a half... |
| lbfzo0 13599 | An integer is strictly gre... |
| elfzo0 13600 | Membership in a half-open ... |
| elfzo0z 13601 | Membership in a half-open ... |
| nn0p1elfzo 13602 | A nonnegative integer incr... |
| elfzo0le 13603 | A member in a half-open ra... |
| elfzolem1 13604 | A member in a half-open in... |
| elfzo0subge1 13605 | The difference of the uppe... |
| elfzo0suble 13606 | The difference of the uppe... |
| elfzonn0 13607 | A member of a half-open ra... |
| fzonmapblen 13608 | The result of subtracting ... |
| fzofzim 13609 | If a nonnegative integer i... |
| fz1fzo0m1 13610 | Translation of one between... |
| fzossnn 13611 | Half-open integer ranges s... |
| elfzo1 13612 | Membership in a half-open ... |
| fzo1lb 13613 | 1 is the left endpoint of ... |
| 1elfzo1 13614 | 1 is in a half-open range ... |
| fzo1fzo0n0 13615 | An integer between 1 and a... |
| fzo0n0 13616 | A half-open integer range ... |
| fzoaddel 13617 | Translate membership in a ... |
| fzo0addel 13618 | Translate membership in a ... |
| fzo0addelr 13619 | Translate membership in a ... |
| fzoaddel2 13620 | Translate membership in a ... |
| elfzoextl 13621 | Membership of an integer i... |
| elfzoext 13622 | Membership of an integer i... |
| elincfzoext 13623 | Membership of an increased... |
| fzosubel 13624 | Translate membership in a ... |
| fzosubel2 13625 | Membership in a translated... |
| fzosubel3 13626 | Membership in a translated... |
| eluzgtdifelfzo 13627 | Membership of the differen... |
| ige2m2fzo 13628 | Membership of an integer g... |
| fzocatel 13629 | Translate membership in a ... |
| ubmelfzo 13630 | If an integer in a 1-based... |
| elfzodifsumelfzo 13631 | If an integer is in a half... |
| elfzom1elp1fzo 13632 | Membership of an integer i... |
| elfzom1elfzo 13633 | Membership in a half-open ... |
| fzval3 13634 | Expressing a closed intege... |
| fz0add1fz1 13635 | Translate membership in a ... |
| fzosn 13636 | Expressing a singleton as ... |
| elfzomin 13637 | Membership of an integer i... |
| zpnn0elfzo 13638 | Membership of an integer i... |
| zpnn0elfzo1 13639 | Membership of an integer i... |
| fzosplitsnm1 13640 | Removing a singleton from ... |
| elfzonlteqm1 13641 | If an element of a half-op... |
| fzonn0p1 13642 | A nonnegative integer is a... |
| fzossfzop1 13643 | A half-open range of nonne... |
| fzonn0p1p1 13644 | If a nonnegative integer i... |
| elfzom1p1elfzo 13645 | Increasing an element of a... |
| fzo0ssnn0 13646 | Half-open integer ranges s... |
| fzo01 13647 | Expressing the singleton o... |
| fzo12sn 13648 | A 1-based half-open intege... |
| fzo13pr 13649 | A 1-based half-open intege... |
| fzo0to2pr 13650 | A half-open integer range ... |
| fz01pr 13651 | An integer range between 0... |
| fzo0to3tp 13652 | A half-open integer range ... |
| fzo0to42pr 13653 | A half-open integer range ... |
| fzo1to4tp 13654 | A half-open integer range ... |
| fzo0sn0fzo1 13655 | A half-open range of nonne... |
| elfzo0l 13656 | A member of a half-open ra... |
| fzoend 13657 | The endpoint of a half-ope... |
| fzo0end 13658 | The endpoint of a zero-bas... |
| ssfzo12 13659 | Subset relationship for ha... |
| ssfzoulel 13660 | If a half-open integer ran... |
| ssfzo12bi 13661 | Subset relationship for ha... |
| fzoopth 13662 | A half-open integer range ... |
| ubmelm1fzo 13663 | The result of subtracting ... |
| fzofzp1 13664 | If a point is in a half-op... |
| fzofzp1b 13665 | If a point is in a half-op... |
| elfzom1b 13666 | An integer is a member of ... |
| elfzom1elp1fzo1 13667 | Membership of a nonnegativ... |
| elfzo1elm1fzo0 13668 | Membership of a positive i... |
| elfzonelfzo 13669 | If an element of a half-op... |
| elfzodif0 13670 | If an integer ` M ` is in ... |
| fzonfzoufzol 13671 | If an element of a half-op... |
| elfzomelpfzo 13672 | An integer increased by an... |
| elfznelfzo 13673 | A value in a finite set of... |
| elfznelfzob 13674 | A value in a finite set of... |
| peano2fzor 13675 | A Peano-postulate-like the... |
| fzosplitsn 13676 | Extending a half-open rang... |
| fzosplitpr 13677 | Extending a half-open inte... |
| fzosplitprm1 13678 | Extending a half-open inte... |
| fzosplitsni 13679 | Membership in a half-open ... |
| fzisfzounsn 13680 | A finite interval of integ... |
| elfzr 13681 | A member of a finite inter... |
| elfzlmr 13682 | A member of a finite inter... |
| elfz0lmr 13683 | A member of a finite inter... |
| fzone1 13684 | Elementhood in a half-open... |
| fzom1ne1 13685 | Elementhood in a half-open... |
| fzostep1 13686 | Two possibilities for a nu... |
| fzoshftral 13687 | Shift the scanning order i... |
| fzind2 13688 | Induction on the integers ... |
| fvinim0ffz 13689 | The function values for th... |
| injresinjlem 13690 | Lemma for ~ injresinj . (... |
| injresinj 13691 | A function whose restricti... |
| subfzo0 13692 | The difference between two... |
| fvf1tp 13693 | Values of a one-to-one fun... |
| flval 13698 | Value of the floor (greate... |
| flcl 13699 | The floor (greatest intege... |
| reflcl 13700 | The floor (greatest intege... |
| fllelt 13701 | A basic property of the fl... |
| flcld 13702 | The floor (greatest intege... |
| flle 13703 | A basic property of the fl... |
| flltp1 13704 | A basic property of the fl... |
| fllep1 13705 | A basic property of the fl... |
| fraclt1 13706 | The fractional part of a r... |
| fracle1 13707 | The fractional part of a r... |
| fracge0 13708 | The fractional part of a r... |
| flge 13709 | The floor function value i... |
| fllt 13710 | The floor function value i... |
| flflp1 13711 | Move floor function betwee... |
| flid 13712 | An integer is its own floo... |
| flidm 13713 | The floor function is idem... |
| flidz 13714 | A real number equals its f... |
| flltnz 13715 | The floor of a non-integer... |
| flwordi 13716 | Ordering relation for the ... |
| flword2 13717 | Ordering relation for the ... |
| flval2 13718 | An alternate way to define... |
| flval3 13719 | An alternate way to define... |
| flbi 13720 | A condition equivalent to ... |
| flbi2 13721 | A condition equivalent to ... |
| adddivflid 13722 | The floor of a sum of an i... |
| ico01fl0 13723 | The floor of a real number... |
| flge0nn0 13724 | The floor of a number grea... |
| flge1nn 13725 | The floor of a number grea... |
| fldivnn0 13726 | The floor function of a di... |
| refldivcl 13727 | The floor function of a di... |
| divfl0 13728 | The floor of a fraction is... |
| fladdz 13729 | An integer can be moved in... |
| flzadd 13730 | An integer can be moved in... |
| flmulnn0 13731 | Move a nonnegative integer... |
| btwnzge0 13732 | A real bounded between an ... |
| 2tnp1ge0ge0 13733 | Two times an integer plus ... |
| flhalf 13734 | Ordering relation for the ... |
| fldivle 13735 | The floor function of a di... |
| fldivnn0le 13736 | The floor function of a di... |
| flltdivnn0lt 13737 | The floor function of a di... |
| ltdifltdiv 13738 | If the dividend of a divis... |
| fldiv4p1lem1div2 13739 | The floor of an integer eq... |
| fldiv4lem1div2uz2 13740 | The floor of an integer gr... |
| fldiv4lem1div2 13741 | The floor of a positive in... |
| ceilval 13742 | The value of the ceiling f... |
| dfceil2 13743 | Alternative definition of ... |
| ceilval2 13744 | The value of the ceiling f... |
| ceicl 13745 | The ceiling function retur... |
| ceilcl 13746 | Closure of the ceiling fun... |
| ceilcld 13747 | Closure of the ceiling fun... |
| ceige 13748 | The ceiling of a real numb... |
| ceilge 13749 | The ceiling of a real numb... |
| ceilged 13750 | The ceiling of a real numb... |
| ceim1l 13751 | One less than the ceiling ... |
| ceilm1lt 13752 | One less than the ceiling ... |
| ceile 13753 | The ceiling of a real numb... |
| ceille 13754 | The ceiling of a real numb... |
| ceilid 13755 | An integer is its own ceil... |
| ceilidz 13756 | A real number equals its c... |
| flleceil 13757 | The floor of a real number... |
| fleqceilz 13758 | A real number is an intege... |
| quoremz 13759 | Quotient and remainder of ... |
| quoremnn0 13760 | Quotient and remainder of ... |
| quoremnn0ALT 13761 | Alternate proof of ~ quore... |
| intfrac2 13762 | Decompose a real into inte... |
| intfracq 13763 | Decompose a rational numbe... |
| fldiv 13764 | Cancellation of the embedd... |
| fldiv2 13765 | Cancellation of an embedde... |
| fznnfl 13766 | Finite set of sequential i... |
| uzsup 13767 | An upper set of integers i... |
| ioopnfsup 13768 | An upper set of reals is u... |
| icopnfsup 13769 | An upper set of reals is u... |
| rpsup 13770 | The positive reals are unb... |
| resup 13771 | The real numbers are unbou... |
| xrsup 13772 | The extended real numbers ... |
| modval 13775 | The value of the modulo op... |
| modvalr 13776 | The value of the modulo op... |
| modcl 13777 | Closure law for the modulo... |
| flpmodeq 13778 | Partition of a division in... |
| modcld 13779 | Closure law for the modulo... |
| mod0 13780 | ` A mod B ` is zero iff ` ... |
| mulmod0 13781 | The product of an integer ... |
| negmod0 13782 | ` A ` is divisible by ` B ... |
| modge0 13783 | The modulo operation is no... |
| modlt 13784 | The modulo operation is le... |
| modelico 13785 | Modular reduction produces... |
| moddiffl 13786 | Value of the modulo operat... |
| moddifz 13787 | The modulo operation diffe... |
| modfrac 13788 | The fractional part of a n... |
| flmod 13789 | The floor function express... |
| intfrac 13790 | Break a number into its in... |
| zmod10 13791 | An integer modulo 1 is 0. ... |
| zmod1congr 13792 | Two arbitrary integers are... |
| modmulnn 13793 | Move a positive integer in... |
| modvalp1 13794 | The value of the modulo op... |
| zmodcl 13795 | Closure law for the modulo... |
| zmodcld 13796 | Closure law for the modulo... |
| zmodfz 13797 | An integer mod ` B ` lies ... |
| zmodfzo 13798 | An integer mod ` B ` lies ... |
| zmodfzp1 13799 | An integer mod ` B ` lies ... |
| modid 13800 | Identity law for modulo. ... |
| modid0 13801 | A positive real number mod... |
| modid2 13802 | Identity law for modulo. ... |
| zmodid2 13803 | Identity law for modulo re... |
| zmodidfzo 13804 | Identity law for modulo re... |
| zmodidfzoimp 13805 | Identity law for modulo re... |
| 0mod 13806 | Special case: 0 modulo a p... |
| 1mod 13807 | Special case: 1 modulo a r... |
| modabs 13808 | Absorption law for modulo.... |
| modabs2 13809 | Absorption law for modulo.... |
| modcyc 13810 | The modulo operation is pe... |
| modcyc2 13811 | The modulo operation is pe... |
| modadd1 13812 | Addition property of the m... |
| modaddb 13813 | Addition property of the m... |
| modaddid 13814 | The sums of two nonnegativ... |
| modaddabs 13815 | Absorption law for modulo.... |
| modaddmod 13816 | The sum of a real number m... |
| muladdmodid 13817 | The sum of a positive real... |
| mulp1mod1 13818 | The product of an integer ... |
| muladdmod 13819 | A real number is the sum o... |
| modmuladd 13820 | Decomposition of an intege... |
| modmuladdim 13821 | Implication of a decomposi... |
| modmuladdnn0 13822 | Implication of a decomposi... |
| negmod 13823 | The negation of a number m... |
| m1modnnsub1 13824 | Minus one modulo a positiv... |
| m1modge3gt1 13825 | Minus one modulo an intege... |
| addmodid 13826 | The sum of a positive inte... |
| addmodidr 13827 | The sum of a positive inte... |
| modadd2mod 13828 | The sum of a real number m... |
| modm1p1mod0 13829 | If a real number modulo a ... |
| modltm1p1mod 13830 | If a real number modulo a ... |
| modmul1 13831 | Multiplication property of... |
| modmul12d 13832 | Multiplication property of... |
| modnegd 13833 | Negation property of the m... |
| modadd12d 13834 | Additive property of the m... |
| modsub12d 13835 | Subtraction property of th... |
| modsubmod 13836 | The difference of a real n... |
| modsubmodmod 13837 | The difference of a real n... |
| 2txmodxeq0 13838 | Two times a positive real ... |
| 2submod 13839 | If a real number is betwee... |
| modifeq2int 13840 | If a nonnegative integer i... |
| modaddmodup 13841 | The sum of an integer modu... |
| modaddmodlo 13842 | The sum of an integer modu... |
| modmulmod 13843 | The product of a real numb... |
| modmulmodr 13844 | The product of an integer ... |
| modaddmulmod 13845 | The sum of a real number a... |
| moddi 13846 | Distribute multiplication ... |
| modsubdir 13847 | Distribute the modulo oper... |
| modeqmodmin 13848 | A real number equals the d... |
| modirr 13849 | A number modulo an irratio... |
| modfzo0difsn 13850 | For a number within a half... |
| modsumfzodifsn 13851 | The sum of a number within... |
| modlteq 13852 | Two nonnegative integers l... |
| addmodlteq 13853 | Two nonnegative integers l... |
| om2uz0i 13854 | The mapping ` G ` is a one... |
| om2uzsuci 13855 | The value of ` G ` (see ~ ... |
| om2uzuzi 13856 | The value ` G ` (see ~ om2... |
| om2uzlti 13857 | Less-than relation for ` G... |
| om2uzlt2i 13858 | The mapping ` G ` (see ~ o... |
| om2uzrani 13859 | Range of ` G ` (see ~ om2u... |
| om2uzf1oi 13860 | ` G ` (see ~ om2uz0i ) is ... |
| om2uzisoi 13861 | ` G ` (see ~ om2uz0i ) is ... |
| om2uzoi 13862 | An alternative definition ... |
| om2uzrdg 13863 | A helper lemma for the val... |
| uzrdglem 13864 | A helper lemma for the val... |
| uzrdgfni 13865 | The recursive definition g... |
| uzrdg0i 13866 | Initial value of a recursi... |
| uzrdgsuci 13867 | Successor value of a recur... |
| ltweuz 13868 | ` < ` is a well-founded re... |
| ltwenn 13869 | Less than well-orders the ... |
| ltwefz 13870 | Less than well-orders a se... |
| uzenom 13871 | An upper integer set is de... |
| uzinf 13872 | An upper integer set is in... |
| nnnfi 13873 | The set of positive intege... |
| uzrdgxfr 13874 | Transfer the value of the ... |
| fzennn 13875 | The cardinality of a finit... |
| fzen2 13876 | The cardinality of a finit... |
| cardfz 13877 | The cardinality of a finit... |
| hashgf1o 13878 | ` G ` maps ` _om ` one-to-... |
| fzfi 13879 | A finite interval of integ... |
| fzfid 13880 | Commonly used special case... |
| fzofi 13881 | Half-open integer sets are... |
| fsequb 13882 | The values of a finite rea... |
| fsequb2 13883 | The values of a finite rea... |
| fseqsupcl 13884 | The values of a finite rea... |
| fseqsupubi 13885 | The values of a finite rea... |
| nn0ennn 13886 | The nonnegative integers a... |
| nnenom 13887 | The set of positive intege... |
| nnct 13888 | ` NN ` is countable. (Con... |
| uzindi 13889 | Indirect strong induction ... |
| axdc4uzlem 13890 | Lemma for ~ axdc4uz . (Co... |
| axdc4uz 13891 | A version of ~ axdc4 that ... |
| ssnn0fi 13892 | A subset of the nonnegativ... |
| rabssnn0fi 13893 | A subset of the nonnegativ... |
| uzsinds 13894 | Strong (or "total") induct... |
| nnsinds 13895 | Strong (or "total") induct... |
| nn0sinds 13896 | Strong (or "total") induct... |
| fsuppmapnn0fiublem 13897 | Lemma for ~ fsuppmapnn0fiu... |
| fsuppmapnn0fiub 13898 | If all functions of a fini... |
| fsuppmapnn0fiubex 13899 | If all functions of a fini... |
| fsuppmapnn0fiub0 13900 | If all functions of a fini... |
| suppssfz 13901 | Condition for a function o... |
| fsuppmapnn0ub 13902 | If a function over the non... |
| fsuppmapnn0fz 13903 | If a function over the non... |
| mptnn0fsupp 13904 | A mapping from the nonnega... |
| mptnn0fsuppd 13905 | A mapping from the nonnega... |
| mptnn0fsuppr 13906 | A finitely supported mappi... |
| f13idfv 13907 | A one-to-one function with... |
| seqex 13910 | Existence of the sequence ... |
| seqeq1 13911 | Equality theorem for the s... |
| seqeq2 13912 | Equality theorem for the s... |
| seqeq3 13913 | Equality theorem for the s... |
| seqeq1d 13914 | Equality deduction for the... |
| seqeq2d 13915 | Equality deduction for the... |
| seqeq3d 13916 | Equality deduction for the... |
| seqeq123d 13917 | Equality deduction for the... |
| nfseq 13918 | Hypothesis builder for the... |
| seqval 13919 | Value of the sequence buil... |
| seqfn 13920 | The sequence builder funct... |
| seq1 13921 | Value of the sequence buil... |
| seq1i 13922 | Value of the sequence buil... |
| seqp1 13923 | Value of the sequence buil... |
| seqexw 13924 | Weak version of ~ seqex th... |
| seqp1d 13925 | Value of the sequence buil... |
| seqm1 13926 | Value of the sequence buil... |
| seqcl2 13927 | Closure properties of the ... |
| seqf2 13928 | Range of the recursive seq... |
| seqcl 13929 | Closure properties of the ... |
| seqf 13930 | Range of the recursive seq... |
| seqfveq2 13931 | Equality of sequences. (C... |
| seqfeq2 13932 | Equality of sequences. (C... |
| seqfveq 13933 | Equality of sequences. (C... |
| seqfeq 13934 | Equality of sequences. (C... |
| seqshft2 13935 | Shifting the index set of ... |
| seqres 13936 | Restricting its characteri... |
| serf 13937 | An infinite series of comp... |
| serfre 13938 | An infinite series of real... |
| monoord 13939 | Ordering relation for a mo... |
| monoord2 13940 | Ordering relation for a mo... |
| sermono 13941 | The partial sums in an inf... |
| seqsplit 13942 | Split a sequence into two ... |
| seq1p 13943 | Removing the first term fr... |
| seqcaopr3 13944 | Lemma for ~ seqcaopr2 . (... |
| seqcaopr2 13945 | The sum of two infinite se... |
| seqcaopr 13946 | The sum of two infinite se... |
| seqf1olem2a 13947 | Lemma for ~ seqf1o . (Con... |
| seqf1olem1 13948 | Lemma for ~ seqf1o . (Con... |
| seqf1olem2 13949 | Lemma for ~ seqf1o . (Con... |
| seqf1o 13950 | Rearrange a sum via an arb... |
| seradd 13951 | The sum of two infinite se... |
| sersub 13952 | The difference of two infi... |
| seqid3 13953 | A sequence that consists e... |
| seqid 13954 | Discarding the first few t... |
| seqid2 13955 | The last few partial sums ... |
| seqhomo 13956 | Apply a homomorphism to a ... |
| seqz 13957 | If the operation ` .+ ` ha... |
| seqfeq4 13958 | Equality of series under d... |
| seqfeq3 13959 | Equality of series under d... |
| seqdistr 13960 | The distributive property ... |
| ser0 13961 | The value of the partial s... |
| ser0f 13962 | A zero-valued infinite ser... |
| serge0 13963 | A finite sum of nonnegativ... |
| serle 13964 | Comparison of partial sums... |
| ser1const 13965 | Value of the partial serie... |
| seqof 13966 | Distribute function operat... |
| seqof2 13967 | Distribute function operat... |
| expval 13970 | Value of exponentiation to... |
| expnnval 13971 | Value of exponentiation to... |
| exp0 13972 | Value of a complex number ... |
| 0exp0e1 13973 | The zeroth power of zero e... |
| exp1 13974 | Value of a complex number ... |
| expp1 13975 | Value of a complex number ... |
| expneg 13976 | Value of a complex number ... |
| expneg2 13977 | Value of a complex number ... |
| expn1 13978 | A complex number raised to... |
| expcllem 13979 | Lemma for proving nonnegat... |
| expcl2lem 13980 | Lemma for proving integer ... |
| nnexpcl 13981 | Closure of exponentiation ... |
| nn0expcl 13982 | Closure of exponentiation ... |
| zexpcl 13983 | Closure of exponentiation ... |
| qexpcl 13984 | Closure of exponentiation ... |
| reexpcl 13985 | Closure of exponentiation ... |
| expcl 13986 | Closure law for nonnegativ... |
| rpexpcl 13987 | Closure law for integer ex... |
| qexpclz 13988 | Closure of integer exponen... |
| reexpclz 13989 | Closure of integer exponen... |
| expclzlem 13990 | Lemma for ~ expclz . (Con... |
| expclz 13991 | Closure law for integer ex... |
| m1expcl2 13992 | Closure of integer exponen... |
| m1expcl 13993 | Closure of exponentiation ... |
| zexpcld 13994 | Closure of exponentiation ... |
| nn0expcli 13995 | Closure of exponentiation ... |
| nn0sqcl 13996 | The square of a nonnegativ... |
| expm1t 13997 | Exponentiation in terms of... |
| 1exp 13998 | Value of 1 raised to an in... |
| expeq0 13999 | A positive integer power i... |
| expne0 14000 | A positive integer power i... |
| expne0i 14001 | An integer power is nonzer... |
| expgt0 14002 | A positive real raised to ... |
| expnegz 14003 | Value of a nonzero complex... |
| 0exp 14004 | Value of zero raised to a ... |
| expge0 14005 | A nonnegative real raised ... |
| expge1 14006 | A real greater than or equ... |
| expgt1 14007 | A real greater than 1 rais... |
| mulexp 14008 | Nonnegative integer expone... |
| mulexpz 14009 | Integer exponentiation of ... |
| exprec 14010 | Integer exponentiation of ... |
| expadd 14011 | Sum of exponents law for n... |
| expaddzlem 14012 | Lemma for ~ expaddz . (Co... |
| expaddz 14013 | Sum of exponents law for i... |
| expmul 14014 | Product of exponents law f... |
| expmulz 14015 | Product of exponents law f... |
| m1expeven 14016 | Exponentiation of negative... |
| expsub 14017 | Exponent subtraction law f... |
| expp1z 14018 | Value of a nonzero complex... |
| expm1 14019 | Value of a nonzero complex... |
| expdiv 14020 | Nonnegative integer expone... |
| sqval 14021 | Value of the square of a c... |
| sqneg 14022 | The square of the negative... |
| sqnegd 14023 | The square of the negative... |
| sqsubswap 14024 | Swap the order of subtract... |
| sqcl 14025 | Closure of square. (Contr... |
| sqmul 14026 | Distribution of squaring o... |
| sqeq0 14027 | A complex number is zero i... |
| sqdiv 14028 | Distribution of squaring o... |
| sqdivid 14029 | The square of a nonzero co... |
| sqne0 14030 | A complex number is nonzer... |
| resqcl 14031 | Closure of squaring in rea... |
| resqcld 14032 | Closure of squaring in rea... |
| sqgt0 14033 | The square of a nonzero re... |
| sqn0rp 14034 | The square of a nonzero re... |
| nnsqcl 14035 | The positive naturals are ... |
| zsqcl 14036 | Integers are closed under ... |
| qsqcl 14037 | The square of a rational i... |
| sq11 14038 | The square function is one... |
| nn0sq11 14039 | The square function is one... |
| lt2sq 14040 | The square function is inc... |
| le2sq 14041 | The square function is non... |
| le2sq2 14042 | The square function is non... |
| sqge0 14043 | The square of a real is no... |
| sqge0d 14044 | The square of a real is no... |
| zsqcl2 14045 | The square of an integer i... |
| 0expd 14046 | Value of zero raised to a ... |
| exp0d 14047 | Value of a complex number ... |
| exp1d 14048 | Value of a complex number ... |
| expeq0d 14049 | If a positive integer powe... |
| sqvald 14050 | Value of square. Inferenc... |
| sqcld 14051 | Closure of square. (Contr... |
| sqeq0d 14052 | A number is zero iff its s... |
| expcld 14053 | Closure law for nonnegativ... |
| expp1d 14054 | Value of a complex number ... |
| expaddd 14055 | Sum of exponents law for n... |
| expmuld 14056 | Product of exponents law f... |
| sqrecd 14057 | Square of reciprocal is re... |
| expclzd 14058 | Closure law for integer ex... |
| expne0d 14059 | A nonnegative integer powe... |
| expnegd 14060 | Value of a nonzero complex... |
| exprecd 14061 | An integer power of a reci... |
| expp1zd 14062 | Value of a nonzero complex... |
| expm1d 14063 | Value of a nonzero complex... |
| expsubd 14064 | Exponent subtraction law f... |
| sqmuld 14065 | Distribution of squaring o... |
| sqdivd 14066 | Distribution of squaring o... |
| expdivd 14067 | Nonnegative integer expone... |
| mulexpd 14068 | Nonnegative integer expone... |
| znsqcld 14069 | The square of a nonzero in... |
| reexpcld 14070 | Closure of exponentiation ... |
| expge0d 14071 | A nonnegative real raised ... |
| expge1d 14072 | A real greater than or equ... |
| ltexp2a 14073 | Exponent ordering relation... |
| expmordi 14074 | Base ordering relationship... |
| rpexpmord 14075 | Base ordering relationship... |
| expcan 14076 | Cancellation law for integ... |
| ltexp2 14077 | Strict ordering law for ex... |
| leexp2 14078 | Ordering law for exponenti... |
| leexp2a 14079 | Weak ordering relationship... |
| ltexp2r 14080 | The integer powers of a fi... |
| leexp2r 14081 | Weak ordering relationship... |
| leexp1a 14082 | Weak base ordering relatio... |
| leexp1ad 14083 | Weak base ordering relatio... |
| exple1 14084 | A real between 0 and 1 inc... |
| expubnd 14085 | An upper bound on ` A ^ N ... |
| sumsqeq0 14086 | The sum of two squres of r... |
| sqvali 14087 | Value of square. Inferenc... |
| sqcli 14088 | Closure of square. (Contr... |
| sqeq0i 14089 | A complex number is zero i... |
| sqrecii 14090 | The square of a reciprocal... |
| sqmuli 14091 | Distribution of squaring o... |
| sqdivi 14092 | Distribution of squaring o... |
| resqcli 14093 | Closure of square in reals... |
| sqgt0i 14094 | The square of a nonzero re... |
| sqge0i 14095 | The square of a real is no... |
| lt2sqi 14096 | The square function on non... |
| le2sqi 14097 | The square function on non... |
| sq11i 14098 | The square function is one... |
| sq0 14099 | The square of 0 is 0. (Co... |
| sq0i 14100 | If a number is zero, then ... |
| sq0id 14101 | If a number is zero, then ... |
| sq1 14102 | The square of 1 is 1. (Co... |
| neg1sqe1 14103 | The square of ` -u 1 ` is ... |
| sq2 14104 | The square of 2 is 4. (Co... |
| sq3 14105 | The square of 3 is 9. (Co... |
| sq4e2t8 14106 | The square of 4 is 2 times... |
| cu2 14107 | The cube of 2 is 8. (Cont... |
| irec 14108 | The reciprocal of ` _i ` .... |
| i2 14109 | ` _i ` squared. (Contribu... |
| i3 14110 | ` _i ` cubed. (Contribute... |
| i4 14111 | ` _i ` to the fourth power... |
| nnlesq 14112 | A positive integer is less... |
| zzlesq 14113 | An integer is less than or... |
| iexpcyc 14114 | Taking ` _i ` to the ` K `... |
| expnass 14115 | A counterexample showing t... |
| sqlecan 14116 | Cancel one factor of a squ... |
| subsq 14117 | Factor the difference of t... |
| subsq2 14118 | Express the difference of ... |
| binom2i 14119 | The square of a binomial. ... |
| subsqi 14120 | Factor the difference of t... |
| sqeqori 14121 | The squares of two complex... |
| subsq0i 14122 | The two solutions to the d... |
| sqeqor 14123 | The squares of two complex... |
| binom2 14124 | The square of a binomial. ... |
| binom2d 14125 | Deduction form of ~ binom2... |
| binom21 14126 | Special case of ~ binom2 w... |
| binom2sub 14127 | Expand the square of a sub... |
| binom2sub1 14128 | Special case of ~ binom2su... |
| binom2subi 14129 | Expand the square of a sub... |
| mulbinom2 14130 | The square of a binomial w... |
| binom3 14131 | The cube of a binomial. (... |
| sq01 14132 | If a complex number equals... |
| zesq 14133 | An integer is even iff its... |
| nnesq 14134 | A positive integer is even... |
| crreczi 14135 | Reciprocal of a complex nu... |
| bernneq 14136 | Bernoulli's inequality, du... |
| bernneq2 14137 | Variation of Bernoulli's i... |
| bernneq3 14138 | A corollary of ~ bernneq .... |
| expnbnd 14139 | Exponentiation with a base... |
| expnlbnd 14140 | The reciprocal of exponent... |
| expnlbnd2 14141 | The reciprocal of exponent... |
| expmulnbnd 14142 | Exponentiation with a base... |
| digit2 14143 | Two ways to express the ` ... |
| digit1 14144 | Two ways to express the ` ... |
| modexp 14145 | Exponentiation property of... |
| discr1 14146 | A nonnegative quadratic fo... |
| discr 14147 | If a quadratic polynomial ... |
| expnngt1 14148 | If an integer power with a... |
| expnngt1b 14149 | An integer power with an i... |
| sqoddm1div8 14150 | A squared odd number minus... |
| nnsqcld 14151 | The naturals are closed un... |
| nnexpcld 14152 | Closure of exponentiation ... |
| nn0expcld 14153 | Closure of exponentiation ... |
| rpexpcld 14154 | Closure law for exponentia... |
| ltexp2rd 14155 | The power of a positive nu... |
| reexpclzd 14156 | Closure of exponentiation ... |
| sqgt0d 14157 | The square of a nonzero re... |
| ltexp2d 14158 | Ordering relationship for ... |
| leexp2d 14159 | Ordering law for exponenti... |
| expcand 14160 | Ordering relationship for ... |
| leexp2ad 14161 | Ordering relationship for ... |
| leexp2rd 14162 | Ordering relationship for ... |
| lt2sqd 14163 | The square function on non... |
| le2sqd 14164 | The square function on non... |
| sq11d 14165 | The square function is one... |
| ltexp1d 14166 | Elevating to a positive po... |
| ltexp1dd 14167 | Raising both sides of 'les... |
| exp11nnd 14168 | The function elevating non... |
| mulsubdivbinom2 14169 | The square of a binomial w... |
| muldivbinom2 14170 | The square of a binomial w... |
| sq10 14171 | The square of 10 is 100. ... |
| sq10e99m1 14172 | The square of 10 is 99 plu... |
| 3dec 14173 | A "decimal constructor" wh... |
| nn0le2msqi 14174 | The square function on non... |
| nn0opthlem1 14175 | A rather pretty lemma for ... |
| nn0opthlem2 14176 | Lemma for ~ nn0opthi . (C... |
| nn0opthi 14177 | An ordered pair theorem fo... |
| nn0opth2i 14178 | An ordered pair theorem fo... |
| nn0opth2 14179 | An ordered pair theorem fo... |
| facnn 14182 | Value of the factorial fun... |
| fac0 14183 | The factorial of 0. (Cont... |
| fac1 14184 | The factorial of 1. (Cont... |
| facp1 14185 | The factorial of a success... |
| fac2 14186 | The factorial of 2. (Cont... |
| fac3 14187 | The factorial of 3. (Cont... |
| fac4 14188 | The factorial of 4. (Cont... |
| facnn2 14189 | Value of the factorial fun... |
| faccl 14190 | Closure of the factorial f... |
| faccld 14191 | Closure of the factorial f... |
| facmapnn 14192 | The factorial function res... |
| facne0 14193 | The factorial function is ... |
| facdiv 14194 | A positive integer divides... |
| facndiv 14195 | No positive integer (great... |
| facwordi 14196 | Ordering property of facto... |
| faclbnd 14197 | A lower bound for the fact... |
| faclbnd2 14198 | A lower bound for the fact... |
| faclbnd3 14199 | A lower bound for the fact... |
| faclbnd4lem1 14200 | Lemma for ~ faclbnd4 . Pr... |
| faclbnd4lem2 14201 | Lemma for ~ faclbnd4 . Us... |
| faclbnd4lem3 14202 | Lemma for ~ faclbnd4 . Th... |
| faclbnd4lem4 14203 | Lemma for ~ faclbnd4 . Pr... |
| faclbnd4 14204 | Variant of ~ faclbnd5 prov... |
| faclbnd5 14205 | The factorial function gro... |
| faclbnd6 14206 | Geometric lower bound for ... |
| facubnd 14207 | An upper bound for the fac... |
| facavg 14208 | The product of two factori... |
| bcval 14211 | Value of the binomial coef... |
| bcval2 14212 | Value of the binomial coef... |
| bcval3 14213 | Value of the binomial coef... |
| bcval4 14214 | Value of the binomial coef... |
| bcrpcl 14215 | Closure of the binomial co... |
| bccmpl 14216 | "Complementing" its second... |
| bcn0 14217 | ` N ` choose 0 is 1. Rema... |
| bc0k 14218 | The binomial coefficient "... |
| bcnn 14219 | ` N ` choose ` N ` is 1. ... |
| bcn1 14220 | Binomial coefficient: ` N ... |
| bcnp1n 14221 | Binomial coefficient: ` N ... |
| bcm1k 14222 | The proportion of one bino... |
| bcp1n 14223 | The proportion of one bino... |
| bcp1nk 14224 | The proportion of one bino... |
| bcval5 14225 | Write out the top and bott... |
| bcn2 14226 | Binomial coefficient: ` N ... |
| bcp1m1 14227 | Compute the binomial coeff... |
| bcpasc 14228 | Pascal's rule for the bino... |
| bccl 14229 | A binomial coefficient, in... |
| bccl2 14230 | A binomial coefficient, in... |
| bcn2m1 14231 | Compute the binomial coeff... |
| bcn2p1 14232 | Compute the binomial coeff... |
| permnn 14233 | The number of permutations... |
| bcnm1 14234 | The binomial coefficient o... |
| 4bc3eq4 14235 | The value of four choose t... |
| 4bc2eq6 14236 | The value of four choose t... |
| hashkf 14239 | The finite part of the siz... |
| hashgval 14240 | The value of the ` # ` fun... |
| hashginv 14241 | The converse of ` G ` maps... |
| hashinf 14242 | The value of the ` # ` fun... |
| hashbnd 14243 | If ` A ` has size bounded ... |
| hashfxnn0 14244 | The size function is a fun... |
| hashf 14245 | The size function maps all... |
| hashxnn0 14246 | The value of the hash func... |
| hashresfn 14247 | Restriction of the domain ... |
| dmhashres 14248 | Restriction of the domain ... |
| hashnn0pnf 14249 | The value of the hash func... |
| hashnnn0genn0 14250 | If the size of a set is no... |
| hashnemnf 14251 | The size of a set is never... |
| hashv01gt1 14252 | The size of a set is eithe... |
| hashfz1 14253 | The set ` ( 1 ... N ) ` ha... |
| hashen 14254 | Two finite sets have the s... |
| hasheni 14255 | Equinumerous sets have the... |
| hasheqf1o 14256 | The size of two finite set... |
| fiinfnf1o 14257 | There is no bijection betw... |
| hasheqf1oi 14258 | The size of two sets is eq... |
| hashf1rn 14259 | The size of a finite set w... |
| hasheqf1od 14260 | The size of two sets is eq... |
| fz1eqb 14261 | Two possibly-empty 1-based... |
| hashcard 14262 | The size function of the c... |
| hashcl 14263 | Closure of the ` # ` funct... |
| hashxrcl 14264 | Extended real closure of t... |
| hashclb 14265 | Reverse closure of the ` #... |
| nfile 14266 | The size of any infinite s... |
| hashvnfin 14267 | A set of finite size is a ... |
| hashnfinnn0 14268 | The size of an infinite se... |
| isfinite4 14269 | A finite set is equinumero... |
| hasheq0 14270 | Two ways of saying a set i... |
| hashneq0 14271 | Two ways of saying a set i... |
| hashgt0n0 14272 | If the size of a set is gr... |
| hashnncl 14273 | Positive natural closure o... |
| hash0 14274 | The empty set has size zer... |
| hashelne0d 14275 | A set with an element has ... |
| hashsng 14276 | The size of a singleton. ... |
| hashen1 14277 | A set has size 1 if and on... |
| hash1elsn 14278 | A set of size 1 with a kno... |
| hashrabrsn 14279 | The size of a restricted c... |
| hashrabsn01 14280 | The size of a restricted c... |
| hashrabsn1 14281 | If the size of a restricte... |
| hashfn 14282 | A function is equinumerous... |
| fseq1hash 14283 | The value of the size func... |
| hashgadd 14284 | ` G ` maps ordinal additio... |
| hashgval2 14285 | A short expression for the... |
| hashdom 14286 | Dominance relation for the... |
| hashdomi 14287 | Non-strict order relation ... |
| hashsdom 14288 | Strict dominance relation ... |
| hashun 14289 | The size of the union of d... |
| hashun2 14290 | The size of the union of f... |
| hashun3 14291 | The size of the union of f... |
| hashinfxadd 14292 | The extended real addition... |
| hashunx 14293 | The size of the union of d... |
| hashge0 14294 | The cardinality of a set i... |
| hashgt0 14295 | The cardinality of a nonem... |
| hashge1 14296 | The cardinality of a nonem... |
| 1elfz0hash 14297 | 1 is an element of the fin... |
| hashnn0n0nn 14298 | If a nonnegative integer i... |
| hashunsng 14299 | The size of the union of a... |
| hashunsngx 14300 | The size of the union of a... |
| hashunsnggt 14301 | The size of a set is great... |
| hashprg 14302 | The size of an unordered p... |
| elprchashprn2 14303 | If one element of an unord... |
| hashprb 14304 | The size of an unordered p... |
| hashprdifel 14305 | The elements of an unorder... |
| prhash2ex 14306 | There is (at least) one se... |
| hashle00 14307 | If the size of a set is le... |
| hashgt0elex 14308 | If the size of a set is gr... |
| hashgt0elexb 14309 | The size of a set is great... |
| hashp1i 14310 | Size of a finite ordinal. ... |
| hash1 14311 | Size of a finite ordinal. ... |
| hash2 14312 | Size of a finite ordinal. ... |
| hash3 14313 | Size of a finite ordinal. ... |
| hash4 14314 | Size of a finite ordinal. ... |
| pr0hash2ex 14315 | There is (at least) one se... |
| hashss 14316 | The size of a subset is le... |
| prsshashgt1 14317 | The size of a superset of ... |
| hashin 14318 | The size of the intersecti... |
| hashssdif 14319 | The size of the difference... |
| hashdif 14320 | The size of the difference... |
| hashdifsn 14321 | The size of the difference... |
| hashdifpr 14322 | The size of the difference... |
| hashsn01 14323 | The size of a singleton is... |
| hashsnle1 14324 | The size of a singleton is... |
| hashsnlei 14325 | Get an upper bound on a co... |
| hash1snb 14326 | The size of a set is 1 if ... |
| euhash1 14327 | The size of a set is 1 in ... |
| hash1n0 14328 | If the size of a set is 1 ... |
| hashgt12el 14329 | In a set with more than on... |
| hashgt12el2 14330 | In a set with more than on... |
| hashgt23el 14331 | A set with more than two e... |
| hashunlei 14332 | Get an upper bound on a co... |
| hashsslei 14333 | Get an upper bound on a co... |
| hashfz 14334 | Value of the numeric cardi... |
| fzsdom2 14335 | Condition for finite range... |
| hashfzo 14336 | Cardinality of a half-open... |
| hashfzo0 14337 | Cardinality of a half-open... |
| hashfzp1 14338 | Value of the numeric cardi... |
| hashfz0 14339 | Value of the numeric cardi... |
| hashxplem 14340 | Lemma for ~ hashxp . (Con... |
| hashxp 14341 | The size of the Cartesian ... |
| hashmap 14342 | The size of the set expone... |
| hashpw 14343 | The size of the power set ... |
| hashfun 14344 | A finite set is a function... |
| hashres 14345 | The number of elements of ... |
| hashreshashfun 14346 | The number of elements of ... |
| hashimarn 14347 | The size of the image of a... |
| hashimarni 14348 | If the size of the image o... |
| hashfundm 14349 | The size of a set function... |
| hashf1dmrn 14350 | The size of the domain of ... |
| hashf1dmcdm 14351 | The size of the domain of ... |
| resunimafz0 14352 | TODO-AV: Revise using ` F... |
| fnfz0hash 14353 | The size of a function on ... |
| ffz0hash 14354 | The size of a function on ... |
| fnfz0hashnn0 14355 | The size of a function on ... |
| ffzo0hash 14356 | The size of a function on ... |
| fnfzo0hash 14357 | The size of a function on ... |
| fnfzo0hashnn0 14358 | The value of the size func... |
| hashbclem 14359 | Lemma for ~ hashbc : induc... |
| hashbc 14360 | The binomial coefficient c... |
| hashfacen 14361 | The number of bijections b... |
| hashf1lem1 14362 | Lemma for ~ hashf1 . (Con... |
| hashf1lem2 14363 | Lemma for ~ hashf1 . (Con... |
| hashf1 14364 | The permutation number ` |... |
| hashfac 14365 | A factorial counts the num... |
| leiso 14366 | Two ways to write a strict... |
| leisorel 14367 | Version of ~ isorel for st... |
| fz1isolem 14368 | Lemma for ~ fz1iso . (Con... |
| fz1iso 14369 | Any finite ordered set has... |
| ishashinf 14370 | Any set that is not finite... |
| seqcoll 14371 | The function ` F ` contain... |
| seqcoll2 14372 | The function ` F ` contain... |
| phphashd 14373 | Corollary of the Pigeonhol... |
| phphashrd 14374 | Corollary of the Pigeonhol... |
| hashprlei 14375 | An unordered pair has at m... |
| hash2pr 14376 | A set of size two is an un... |
| hash2prde 14377 | A set of size two is an un... |
| hash2exprb 14378 | A set of size two is an un... |
| hash2prb 14379 | A set of size two is a pro... |
| prprrab 14380 | The set of proper pairs of... |
| nehash2 14381 | The cardinality of a set w... |
| hash2prd 14382 | A set of size two is an un... |
| hash2pwpr 14383 | If the size of a subset of... |
| hashle2pr 14384 | A nonempty set of size les... |
| hashle2prv 14385 | A nonempty subset of a pow... |
| pr2pwpr 14386 | The set of subsets of a pa... |
| hashge2el2dif 14387 | A set with size at least 2... |
| hashge2el2difr 14388 | A set with at least 2 diff... |
| hashge2el2difb 14389 | A set has size at least 2 ... |
| hashdmpropge2 14390 | The size of the domain of ... |
| hashtplei 14391 | An unordered triple has at... |
| hashtpg 14392 | The size of an unordered t... |
| hash7g 14393 | The size of an unordered s... |
| hashge3el3dif 14394 | A set with size at least 3... |
| elss2prb 14395 | An element of the set of s... |
| hash2sspr 14396 | A subset of size two is an... |
| exprelprel 14397 | If there is an element of ... |
| hash3tr 14398 | A set of size three is an ... |
| hash1to3 14399 | If the size of a set is be... |
| hash3tpde 14400 | A set of size three is an ... |
| hash3tpexb 14401 | A set of size three is an ... |
| hash3tpb 14402 | A set of size three is a p... |
| tpf1ofv0 14403 | The value of a one-to-one ... |
| tpf1ofv1 14404 | The value of a one-to-one ... |
| tpf1ofv2 14405 | The value of a one-to-one ... |
| tpf 14406 | A function into a (proper)... |
| tpfo 14407 | A function onto a (proper)... |
| tpf1o 14408 | A bijection onto a (proper... |
| fundmge2nop0 14409 | A function with a domain c... |
| fundmge2nop 14410 | A function with a domain c... |
| fun2dmnop0 14411 | A function with a domain c... |
| fun2dmnop 14412 | A function with a domain c... |
| hashdifsnp1 14413 | If the size of a set is a ... |
| fi1uzind 14414 | Properties of an ordered p... |
| brfi1uzind 14415 | Properties of a binary rel... |
| brfi1ind 14416 | Properties of a binary rel... |
| brfi1indALT 14417 | Alternate proof of ~ brfi1... |
| opfi1uzind 14418 | Properties of an ordered p... |
| opfi1ind 14419 | Properties of an ordered p... |
| iswrd 14422 | Property of being a word o... |
| wrdval 14423 | Value of the set of words ... |
| iswrdi 14424 | A zero-based sequence is a... |
| wrdf 14425 | A word is a zero-based seq... |
| wrdfd 14426 | A word is a zero-based seq... |
| iswrdb 14427 | A word over an alphabet is... |
| wrddm 14428 | The indices of a word (i.e... |
| sswrd 14429 | The set of words respects ... |
| snopiswrd 14430 | A singleton of an ordered ... |
| wrdexg 14431 | The set of words over a se... |
| wrdexb 14432 | The set of words over a se... |
| wrdexi 14433 | The set of words over a se... |
| wrdsymbcl 14434 | A symbol within a word ove... |
| wrdfn 14435 | A word is a function with ... |
| wrdv 14436 | A word over an alphabet is... |
| wrdlndm 14437 | The length of a word is no... |
| iswrdsymb 14438 | An arbitrary word is a wor... |
| wrdfin 14439 | A word is a finite set. (... |
| lencl 14440 | The length of a word is a ... |
| lennncl 14441 | The length of a nonempty w... |
| wrdffz 14442 | A word is a function from ... |
| wrdeq 14443 | Equality theorem for the s... |
| wrdeqi 14444 | Equality theorem for the s... |
| iswrddm0 14445 | A function with empty doma... |
| wrd0 14446 | The empty set is a word (t... |
| 0wrd0 14447 | The empty word is the only... |
| ffz0iswrd 14448 | A sequence with zero-based... |
| wrdsymb 14449 | A word is a word over the ... |
| nfwrd 14450 | Hypothesis builder for ` W... |
| csbwrdg 14451 | Class substitution for the... |
| wrdnval 14452 | Words of a fixed length ar... |
| wrdmap 14453 | Words as a mapping. (Cont... |
| hashwrdn 14454 | If there is only a finite ... |
| wrdnfi 14455 | If there is only a finite ... |
| wrdsymb0 14456 | A symbol at a position "ou... |
| wrdlenge1n0 14457 | A word with length at leas... |
| len0nnbi 14458 | The length of a word is a ... |
| wrdlenge2n0 14459 | A word with length at leas... |
| wrdsymb1 14460 | The first symbol of a none... |
| wrdlen1 14461 | A word of length 1 starts ... |
| fstwrdne 14462 | The first symbol of a none... |
| fstwrdne0 14463 | The first symbol of a none... |
| eqwrd 14464 | Two words are equal iff th... |
| elovmpowrd 14465 | Implications for the value... |
| elovmptnn0wrd 14466 | Implications for the value... |
| wrdred1 14467 | A word truncated by a symb... |
| wrdred1hash 14468 | The length of a word trunc... |
| lsw 14471 | Extract the last symbol of... |
| lsw0 14472 | The last symbol of an empt... |
| lsw0g 14473 | The last symbol of an empt... |
| lsw1 14474 | The last symbol of a word ... |
| lswcl 14475 | Closure of the last symbol... |
| lswlgt0cl 14476 | The last symbol of a nonem... |
| ccatfn 14479 | The concatenation operator... |
| ccatfval 14480 | Value of the concatenation... |
| ccatcl 14481 | The concatenation of two w... |
| ccatlen 14482 | The length of a concatenat... |
| ccat0 14483 | The concatenation of two w... |
| ccatval1 14484 | Value of a symbol in the l... |
| ccatval2 14485 | Value of a symbol in the r... |
| ccatval3 14486 | Value of a symbol in the r... |
| elfzelfzccat 14487 | An element of a finite set... |
| ccatvalfn 14488 | The concatenation of two w... |
| ccatdmss 14489 | The domain of a concatenat... |
| ccatsymb 14490 | The symbol at a given posi... |
| ccatfv0 14491 | The first symbol of a conc... |
| ccatval1lsw 14492 | The last symbol of the lef... |
| ccatval21sw 14493 | The first symbol of the ri... |
| ccatlid 14494 | Concatenation of a word by... |
| ccatrid 14495 | Concatenation of a word by... |
| ccatass 14496 | Associative law for concat... |
| ccatrn 14497 | The range of a concatenate... |
| ccatidid 14498 | Concatenation of the empty... |
| lswccatn0lsw 14499 | The last symbol of a word ... |
| lswccat0lsw 14500 | The last symbol of a word ... |
| ccatalpha 14501 | A concatenation of two arb... |
| ccatrcl1 14502 | Reverse closure of a conca... |
| ids1 14505 | Identity function protecti... |
| s1val 14506 | Value of a singleton word.... |
| s1rn 14507 | The range of a singleton w... |
| s1eq 14508 | Equality theorem for a sin... |
| s1eqd 14509 | Equality theorem for a sin... |
| s1cl 14510 | A singleton word is a word... |
| s1cld 14511 | A singleton word is a word... |
| s1prc 14512 | Value of a singleton word ... |
| s1cli 14513 | A singleton word is a word... |
| s1len 14514 | Length of a singleton word... |
| s1nz 14515 | A singleton word is not th... |
| s1dm 14516 | The domain of a singleton ... |
| s1dmALT 14517 | Alternate version of ~ s1d... |
| s1fv 14518 | Sole symbol of a singleton... |
| lsws1 14519 | The last symbol of a singl... |
| eqs1 14520 | A word of length 1 is a si... |
| wrdl1exs1 14521 | A word of length 1 is a si... |
| wrdl1s1 14522 | A word of length 1 is a si... |
| s111 14523 | The singleton word functio... |
| ccatws1cl 14524 | The concatenation of a wor... |
| ccatws1clv 14525 | The concatenation of a wor... |
| ccat2s1cl 14526 | The concatenation of two s... |
| ccats1alpha 14527 | A concatenation of a word ... |
| ccatws1len 14528 | The length of the concaten... |
| ccatws1lenp1b 14529 | The length of a word is ` ... |
| wrdlenccats1lenm1 14530 | The length of a word is th... |
| ccat2s1len 14531 | The length of the concaten... |
| ccatw2s1cl 14532 | The concatenation of a wor... |
| ccatw2s1len 14533 | The length of the concaten... |
| ccats1val1 14534 | Value of a symbol in the l... |
| ccats1val2 14535 | Value of the symbol concat... |
| ccat1st1st 14536 | The first symbol of a word... |
| ccat2s1p1 14537 | Extract the first of two c... |
| ccat2s1p2 14538 | Extract the second of two ... |
| ccatw2s1ass 14539 | Associative law for a conc... |
| ccatws1n0 14540 | The concatenation of a wor... |
| ccatws1ls 14541 | The last symbol of the con... |
| lswccats1 14542 | The last symbol of a word ... |
| lswccats1fst 14543 | The last symbol of a nonem... |
| ccatw2s1p1 14544 | Extract the symbol of the ... |
| ccatw2s1p2 14545 | Extract the second of two ... |
| ccat2s1fvw 14546 | Extract a symbol of a word... |
| ccat2s1fst 14547 | The first symbol of the co... |
| swrdnznd 14550 | The value of a subword ope... |
| swrdval 14551 | Value of a subword. (Cont... |
| swrd00 14552 | A zero length substring. ... |
| swrdcl 14553 | Closure of the subword ext... |
| swrdval2 14554 | Value of the subword extra... |
| swrdlen 14555 | Length of an extracted sub... |
| swrdfv 14556 | A symbol in an extracted s... |
| swrdfv0 14557 | The first symbol in an ext... |
| swrdf 14558 | A subword of a word is a f... |
| swrdvalfn 14559 | Value of the subword extra... |
| swrdrn 14560 | The range of a subword of ... |
| swrdlend 14561 | The value of the subword e... |
| swrdnd 14562 | The value of the subword e... |
| swrdnd2 14563 | Value of the subword extra... |
| swrdnnn0nd 14564 | The value of a subword ope... |
| swrdnd0 14565 | The value of a subword ope... |
| swrd0 14566 | A subword of an empty set ... |
| swrdrlen 14567 | Length of a right-anchored... |
| swrdlen2 14568 | Length of an extracted sub... |
| swrdfv2 14569 | A symbol in an extracted s... |
| swrdwrdsymb 14570 | A subword is a word over t... |
| swrdsb0eq 14571 | Two subwords with the same... |
| swrdsbslen 14572 | Two subwords with the same... |
| swrdspsleq 14573 | Two words have a common su... |
| swrds1 14574 | Extract a single symbol fr... |
| swrdlsw 14575 | Extract the last single sy... |
| ccatswrd 14576 | Joining two adjacent subwo... |
| swrdccat2 14577 | Recover the right half of ... |
| pfxnndmnd 14580 | The value of a prefix oper... |
| pfxval 14581 | Value of a prefix operatio... |
| pfx00 14582 | The zero length prefix is ... |
| pfx0 14583 | A prefix of an empty set i... |
| pfxval0 14584 | Value of a prefix operatio... |
| pfxcl 14585 | Closure of the prefix extr... |
| pfxmpt 14586 | Value of the prefix extrac... |
| pfxres 14587 | Value of the prefix extrac... |
| pfxf 14588 | A prefix of a word is a fu... |
| pfxfn 14589 | Value of the prefix extrac... |
| pfxfv 14590 | A symbol in a prefix of a ... |
| pfxlen 14591 | Length of a prefix. (Cont... |
| pfxid 14592 | A word is a prefix of itse... |
| pfxrn 14593 | The range of a prefix of a... |
| pfxn0 14594 | A prefix consisting of at ... |
| pfxnd 14595 | The value of a prefix oper... |
| pfxnd0 14596 | The value of a prefix oper... |
| pfxwrdsymb 14597 | A prefix of a word is a wo... |
| addlenpfx 14598 | The sum of the lengths of ... |
| pfxfv0 14599 | The first symbol of a pref... |
| pfxtrcfv 14600 | A symbol in a word truncat... |
| pfxtrcfv0 14601 | The first symbol in a word... |
| pfxfvlsw 14602 | The last symbol in a nonem... |
| pfxeq 14603 | The prefixes of two words ... |
| pfxtrcfvl 14604 | The last symbol in a word ... |
| pfxsuffeqwrdeq 14605 | Two words are equal if and... |
| pfxsuff1eqwrdeq 14606 | Two (nonempty) words are e... |
| disjwrdpfx 14607 | Sets of words are disjoint... |
| ccatpfx 14608 | Concatenating a prefix wit... |
| pfxccat1 14609 | Recover the left half of a... |
| pfx1 14610 | The prefix of length one o... |
| swrdswrdlem 14611 | Lemma for ~ swrdswrd . (C... |
| swrdswrd 14612 | A subword of a subword is ... |
| pfxswrd 14613 | A prefix of a subword is a... |
| swrdpfx 14614 | A subword of a prefix is a... |
| pfxpfx 14615 | A prefix of a prefix is a ... |
| pfxpfxid 14616 | A prefix of a prefix with ... |
| pfxcctswrd 14617 | The concatenation of the p... |
| lenpfxcctswrd 14618 | The length of the concaten... |
| lenrevpfxcctswrd 14619 | The length of the concaten... |
| pfxlswccat 14620 | Reconstruct a nonempty wor... |
| ccats1pfxeq 14621 | The last symbol of a word ... |
| ccats1pfxeqrex 14622 | There exists a symbol such... |
| ccatopth 14623 | An ~ opth -like theorem fo... |
| ccatopth2 14624 | An ~ opth -like theorem fo... |
| ccatlcan 14625 | Concatenation of words is ... |
| ccatrcan 14626 | Concatenation of words is ... |
| wrdeqs1cat 14627 | Decompose a nonempty word ... |
| cats1un 14628 | Express a word with an ext... |
| wrdind 14629 | Perform induction over the... |
| wrd2ind 14630 | Perform induction over the... |
| swrdccatfn 14631 | The subword of a concatena... |
| swrdccatin1 14632 | The subword of a concatena... |
| pfxccatin12lem4 14633 | Lemma 4 for ~ pfxccatin12 ... |
| pfxccatin12lem2a 14634 | Lemma for ~ pfxccatin12lem... |
| pfxccatin12lem1 14635 | Lemma 1 for ~ pfxccatin12 ... |
| swrdccatin2 14636 | The subword of a concatena... |
| pfxccatin12lem2c 14637 | Lemma for ~ pfxccatin12lem... |
| pfxccatin12lem2 14638 | Lemma 2 for ~ pfxccatin12 ... |
| pfxccatin12lem3 14639 | Lemma 3 for ~ pfxccatin12 ... |
| pfxccatin12 14640 | The subword of a concatena... |
| pfxccat3 14641 | The subword of a concatena... |
| swrdccat 14642 | The subword of a concatena... |
| pfxccatpfx1 14643 | A prefix of a concatenatio... |
| pfxccatpfx2 14644 | A prefix of a concatenatio... |
| pfxccat3a 14645 | A prefix of a concatenatio... |
| swrdccat3blem 14646 | Lemma for ~ swrdccat3b . ... |
| swrdccat3b 14647 | A suffix of a concatenatio... |
| pfxccatid 14648 | A prefix of a concatenatio... |
| ccats1pfxeqbi 14649 | A word is a prefix of a wo... |
| swrdccatin1d 14650 | The subword of a concatena... |
| swrdccatin2d 14651 | The subword of a concatena... |
| pfxccatin12d 14652 | The subword of a concatena... |
| reuccatpfxs1lem 14653 | Lemma for ~ reuccatpfxs1 .... |
| reuccatpfxs1 14654 | There is a unique word hav... |
| reuccatpfxs1v 14655 | There is a unique word hav... |
| splval 14658 | Value of the substring rep... |
| splcl 14659 | Closure of the substring r... |
| splid 14660 | Splicing a subword for the... |
| spllen 14661 | The length of a splice. (... |
| splfv1 14662 | Symbols to the left of a s... |
| splfv2a 14663 | Symbols within the replace... |
| splval2 14664 | Value of a splice, assumin... |
| revval 14667 | Value of the word reversin... |
| revcl 14668 | The reverse of a word is a... |
| revlen 14669 | The reverse of a word has ... |
| revfv 14670 | Reverse of a word at a poi... |
| rev0 14671 | The empty word is its own ... |
| revs1 14672 | Singleton words are their ... |
| revccat 14673 | Antiautomorphic property o... |
| revrev 14674 | Reversal is an involution ... |
| reps 14677 | Construct a function mappi... |
| repsundef 14678 | A function mapping a half-... |
| repsconst 14679 | Construct a function mappi... |
| repsf 14680 | The constructed function m... |
| repswsymb 14681 | The symbols of a "repeated... |
| repsw 14682 | A function mapping a half-... |
| repswlen 14683 | The length of a "repeated ... |
| repsw0 14684 | The "repeated symbol word"... |
| repsdf2 14685 | Alternative definition of ... |
| repswsymball 14686 | All the symbols of a "repe... |
| repswsymballbi 14687 | A word is a "repeated symb... |
| repswfsts 14688 | The first symbol of a none... |
| repswlsw 14689 | The last symbol of a nonem... |
| repsw1 14690 | The "repeated symbol word"... |
| repswswrd 14691 | A subword of a "repeated s... |
| repswpfx 14692 | A prefix of a repeated sym... |
| repswccat 14693 | The concatenation of two "... |
| repswrevw 14694 | The reverse of a "repeated... |
| cshfn 14697 | Perform a cyclical shift f... |
| cshword 14698 | Perform a cyclical shift f... |
| cshnz 14699 | A cyclical shift is the em... |
| 0csh0 14700 | Cyclically shifting an emp... |
| cshw0 14701 | A word cyclically shifted ... |
| cshwmodn 14702 | Cyclically shifting a word... |
| cshwsublen 14703 | Cyclically shifting a word... |
| cshwn 14704 | A word cyclically shifted ... |
| cshwcl 14705 | A cyclically shifted word ... |
| cshwlen 14706 | The length of a cyclically... |
| cshwf 14707 | A cyclically shifted word ... |
| cshwfn 14708 | A cyclically shifted word ... |
| cshwrn 14709 | The range of a cyclically ... |
| cshwidxmod 14710 | The symbol at a given inde... |
| cshwidxmodr 14711 | The symbol at a given inde... |
| cshwidx0mod 14712 | The symbol at index 0 of a... |
| cshwidx0 14713 | The symbol at index 0 of a... |
| cshwidxm1 14714 | The symbol at index ((n-N)... |
| cshwidxm 14715 | The symbol at index (n-N) ... |
| cshwidxn 14716 | The symbol at index (n-1) ... |
| cshf1 14717 | Cyclically shifting a word... |
| cshinj 14718 | If a word is injectiv (reg... |
| repswcshw 14719 | A cyclically shifted "repe... |
| 2cshw 14720 | Cyclically shifting a word... |
| 2cshwid 14721 | Cyclically shifting a word... |
| lswcshw 14722 | The last symbol of a word ... |
| 2cshwcom 14723 | Cyclically shifting a word... |
| cshwleneq 14724 | If the results of cyclical... |
| 3cshw 14725 | Cyclically shifting a word... |
| cshweqdif2 14726 | If cyclically shifting two... |
| cshweqdifid 14727 | If cyclically shifting a w... |
| cshweqrep 14728 | If cyclically shifting a w... |
| cshw1 14729 | If cyclically shifting a w... |
| cshw1repsw 14730 | If cyclically shifting a w... |
| cshwsexa 14731 | The class of (different!) ... |
| 2cshwcshw 14732 | If a word is a cyclically ... |
| scshwfzeqfzo 14733 | For a nonempty word the se... |
| cshwcshid 14734 | A cyclically shifted word ... |
| cshwcsh2id 14735 | A cyclically shifted word ... |
| cshimadifsn 14736 | The image of a cyclically ... |
| cshimadifsn0 14737 | The image of a cyclically ... |
| wrdco 14738 | Mapping a word by a functi... |
| lenco 14739 | Length of a mapped word is... |
| s1co 14740 | Mapping of a singleton wor... |
| revco 14741 | Mapping of words (i.e., a ... |
| ccatco 14742 | Mapping of words commutes ... |
| cshco 14743 | Mapping of words commutes ... |
| swrdco 14744 | Mapping of words commutes ... |
| pfxco 14745 | Mapping of words commutes ... |
| lswco 14746 | Mapping of (nonempty) word... |
| repsco 14747 | Mapping of words commutes ... |
| cats1cld 14762 | Closure of concatenation w... |
| cats1co 14763 | Closure of concatenation w... |
| cats1cli 14764 | Closure of concatenation w... |
| cats1fvn 14765 | The last symbol of a conca... |
| cats1fv 14766 | A symbol other than the la... |
| cats1len 14767 | The length of concatenatio... |
| cats1cat 14768 | Closure of concatenation w... |
| cats2cat 14769 | Closure of concatenation o... |
| s2eqd 14770 | Equality theorem for a dou... |
| s3eqd 14771 | Equality theorem for a len... |
| s4eqd 14772 | Equality theorem for a len... |
| s5eqd 14773 | Equality theorem for a len... |
| s6eqd 14774 | Equality theorem for a len... |
| s7eqd 14775 | Equality theorem for a len... |
| s8eqd 14776 | Equality theorem for a len... |
| s3eq2 14777 | Equality theorem for a len... |
| s2cld 14778 | A doubleton word is a word... |
| s3cld 14779 | A length 3 string is a wor... |
| s4cld 14780 | A length 4 string is a wor... |
| s5cld 14781 | A length 5 string is a wor... |
| s6cld 14782 | A length 6 string is a wor... |
| s7cld 14783 | A length 7 string is a wor... |
| s8cld 14784 | A length 8 string is a wor... |
| s2cl 14785 | A doubleton word is a word... |
| s3cl 14786 | A length 3 string is a wor... |
| s2cli 14787 | A doubleton word is a word... |
| s3cli 14788 | A length 3 string is a wor... |
| s4cli 14789 | A length 4 string is a wor... |
| s5cli 14790 | A length 5 string is a wor... |
| s6cli 14791 | A length 6 string is a wor... |
| s7cli 14792 | A length 7 string is a wor... |
| s8cli 14793 | A length 8 string is a wor... |
| s2fv0 14794 | Extract the first symbol f... |
| s2fv1 14795 | Extract the second symbol ... |
| s2len 14796 | The length of a doubleton ... |
| s2dm 14797 | The domain of a doubleton ... |
| s3fv0 14798 | Extract the first symbol f... |
| s3fv1 14799 | Extract the second symbol ... |
| s3fv2 14800 | Extract the third symbol f... |
| s3len 14801 | The length of a length 3 s... |
| s4fv0 14802 | Extract the first symbol f... |
| s4fv1 14803 | Extract the second symbol ... |
| s4fv2 14804 | Extract the third symbol f... |
| s4fv3 14805 | Extract the fourth symbol ... |
| s4len 14806 | The length of a length 4 s... |
| s5len 14807 | The length of a length 5 s... |
| s6len 14808 | The length of a length 6 s... |
| s7len 14809 | The length of a length 7 s... |
| s8len 14810 | The length of a length 8 s... |
| lsws2 14811 | The last symbol of a doubl... |
| lsws3 14812 | The last symbol of a 3 let... |
| lsws4 14813 | The last symbol of a 4 let... |
| s2prop 14814 | A length 2 word is an unor... |
| s2dmALT 14815 | Alternate version of ~ s2d... |
| s3tpop 14816 | A length 3 word is an unor... |
| s4prop 14817 | A length 4 word is a union... |
| s3fn 14818 | A length 3 word is a funct... |
| funcnvs1 14819 | The converse of a singleto... |
| funcnvs2 14820 | The converse of a length 2... |
| funcnvs3 14821 | The converse of a length 3... |
| funcnvs4 14822 | The converse of a length 4... |
| s2f1o 14823 | A length 2 word with mutua... |
| f1oun2prg 14824 | A union of unordered pairs... |
| s4f1o 14825 | A length 4 word with mutua... |
| s4dom 14826 | The domain of a length 4 w... |
| s2co 14827 | Mapping a doubleton word b... |
| s3co 14828 | Mapping a length 3 string ... |
| s0s1 14829 | Concatenation of fixed len... |
| s1s2 14830 | Concatenation of fixed len... |
| s1s3 14831 | Concatenation of fixed len... |
| s1s4 14832 | Concatenation of fixed len... |
| s1s5 14833 | Concatenation of fixed len... |
| s1s6 14834 | Concatenation of fixed len... |
| s1s7 14835 | Concatenation of fixed len... |
| s2s2 14836 | Concatenation of fixed len... |
| s4s2 14837 | Concatenation of fixed len... |
| s4s3 14838 | Concatenation of fixed len... |
| s4s4 14839 | Concatenation of fixed len... |
| s3s4 14840 | Concatenation of fixed len... |
| s2s5 14841 | Concatenation of fixed len... |
| s5s2 14842 | Concatenation of fixed len... |
| s2eq2s1eq 14843 | Two length 2 words are equ... |
| s2eq2seq 14844 | Two length 2 words are equ... |
| s3eqs2s1eq 14845 | Two length 3 words are equ... |
| s3eq3seq 14846 | Two length 3 words are equ... |
| swrds2 14847 | Extract two adjacent symbo... |
| swrds2m 14848 | Extract two adjacent symbo... |
| wrdlen2i 14849 | Implications of a word of ... |
| wrd2pr2op 14850 | A word of length two repre... |
| wrdlen2 14851 | A word of length two. (Co... |
| wrdlen2s2 14852 | A word of length two as do... |
| wrdl2exs2 14853 | A word of length two is a ... |
| pfx2 14854 | A prefix of length two. (... |
| wrd3tpop 14855 | A word of length three rep... |
| wrdlen3s3 14856 | A word of length three as ... |
| repsw2 14857 | The "repeated symbol word"... |
| repsw3 14858 | The "repeated symbol word"... |
| swrd2lsw 14859 | Extract the last two symbo... |
| 2swrd2eqwrdeq 14860 | Two words of length at lea... |
| ccatw2s1ccatws2 14861 | The concatenation of a wor... |
| ccat2s1fvwALT 14862 | Alternate proof of ~ ccat2... |
| wwlktovf 14863 | Lemma 1 for ~ wrd2f1tovbij... |
| wwlktovf1 14864 | Lemma 2 for ~ wrd2f1tovbij... |
| wwlktovfo 14865 | Lemma 3 for ~ wrd2f1tovbij... |
| wwlktovf1o 14866 | Lemma 4 for ~ wrd2f1tovbij... |
| wrd2f1tovbij 14867 | There is a bijection betwe... |
| eqwrds3 14868 | A word is equal with a len... |
| wrdl3s3 14869 | A word of length 3 is a le... |
| s2rn 14870 | Range of a length 2 string... |
| s3rn 14871 | Range of a length 3 string... |
| s7rn 14872 | Range of a length 7 string... |
| s7f1o 14873 | A length 7 word with mutua... |
| s3sndisj 14874 | The singletons consisting ... |
| s3iunsndisj 14875 | The union of singletons co... |
| ofccat 14876 | Letterwise operations on w... |
| ofs1 14877 | Letterwise operations on a... |
| ofs2 14878 | Letterwise operations on a... |
| coss12d 14879 | Subset deduction for compo... |
| trrelssd 14880 | The composition of subclas... |
| xpcogend 14881 | The most interesting case ... |
| xpcoidgend 14882 | If two classes are not dis... |
| cotr2g 14883 | Two ways of saying that th... |
| cotr2 14884 | Two ways of saying a relat... |
| cotr3 14885 | Two ways of saying a relat... |
| coemptyd 14886 | Deduction about compositio... |
| xptrrel 14887 | The cross product is alway... |
| 0trrel 14888 | The empty class is a trans... |
| cleq1lem 14889 | Equality implies bijection... |
| cleq1 14890 | Equality of relations impl... |
| clsslem 14891 | The closure of a subclass ... |
| trcleq1 14896 | Equality of relations impl... |
| trclsslem 14897 | The transitive closure (as... |
| trcleq2lem 14898 | Equality implies bijection... |
| cvbtrcl 14899 | Change of bound variable i... |
| trcleq12lem 14900 | Equality implies bijection... |
| trclexlem 14901 | Existence of relation impl... |
| trclublem 14902 | If a relation exists then ... |
| trclubi 14903 | The Cartesian product of t... |
| trclubgi 14904 | The union with the Cartesi... |
| trclub 14905 | The Cartesian product of t... |
| trclubg 14906 | The union with the Cartesi... |
| trclfv 14907 | The transitive closure of ... |
| brintclab 14908 | Two ways to express a bina... |
| brtrclfv 14909 | Two ways of expressing the... |
| brcnvtrclfv 14910 | Two ways of expressing the... |
| brtrclfvcnv 14911 | Two ways of expressing the... |
| brcnvtrclfvcnv 14912 | Two ways of expressing the... |
| trclfvss 14913 | The transitive closure (as... |
| trclfvub 14914 | The transitive closure of ... |
| trclfvlb 14915 | The transitive closure of ... |
| trclfvcotr 14916 | The transitive closure of ... |
| trclfvlb2 14917 | The transitive closure of ... |
| trclfvlb3 14918 | The transitive closure of ... |
| cotrtrclfv 14919 | The transitive closure of ... |
| trclidm 14920 | The transitive closure of ... |
| trclun 14921 | Transitive closure of a un... |
| trclfvg 14922 | The value of the transitiv... |
| trclfvcotrg 14923 | The value of the transitiv... |
| reltrclfv 14924 | The transitive closure of ... |
| dmtrclfv 14925 | The domain of the transiti... |
| reldmrelexp 14928 | The domain of the repeated... |
| relexp0g 14929 | A relation composed zero t... |
| relexp0 14930 | A relation composed zero t... |
| relexp0d 14931 | A relation composed zero t... |
| relexpsucnnr 14932 | A reduction for relation e... |
| relexp1g 14933 | A relation composed once i... |
| dfid5 14934 | Identity relation is equal... |
| dfid6 14935 | Identity relation expresse... |
| relexp1d 14936 | A relation composed once i... |
| relexpsucnnl 14937 | A reduction for relation e... |
| relexpsucl 14938 | A reduction for relation e... |
| relexpsucr 14939 | A reduction for relation e... |
| relexpsucrd 14940 | A reduction for relation e... |
| relexpsucld 14941 | A reduction for relation e... |
| relexpcnv 14942 | Commutation of converse an... |
| relexpcnvd 14943 | Commutation of converse an... |
| relexp0rel 14944 | The exponentiation of a cl... |
| relexprelg 14945 | The exponentiation of a cl... |
| relexprel 14946 | The exponentiation of a re... |
| relexpreld 14947 | The exponentiation of a re... |
| relexpnndm 14948 | The domain of an exponenti... |
| relexpdmg 14949 | The domain of an exponenti... |
| relexpdm 14950 | The domain of an exponenti... |
| relexpdmd 14951 | The domain of an exponenti... |
| relexpnnrn 14952 | The range of an exponentia... |
| relexprng 14953 | The range of an exponentia... |
| relexprn 14954 | The range of an exponentia... |
| relexprnd 14955 | The range of an exponentia... |
| relexpfld 14956 | The field of an exponentia... |
| relexpfldd 14957 | The field of an exponentia... |
| relexpaddnn 14958 | Relation composition becom... |
| relexpuzrel 14959 | The exponentiation of a cl... |
| relexpaddg 14960 | Relation composition becom... |
| relexpaddd 14961 | Relation composition becom... |
| rtrclreclem1 14964 | The reflexive, transitive ... |
| dfrtrclrec2 14965 | If two elements are connec... |
| rtrclreclem2 14966 | The reflexive, transitive ... |
| rtrclreclem3 14967 | The reflexive, transitive ... |
| rtrclreclem4 14968 | The reflexive, transitive ... |
| dfrtrcl2 14969 | The two definitions ` t* `... |
| relexpindlem 14970 | Principle of transitive in... |
| relexpind 14971 | Principle of transitive in... |
| rtrclind 14972 | Principle of transitive in... |
| shftlem 14975 | Two ways to write a shifte... |
| shftuz 14976 | A shift of the upper integ... |
| shftfval 14977 | The value of the sequence ... |
| shftdm 14978 | Domain of a relation shift... |
| shftfib 14979 | Value of a fiber of the re... |
| shftfn 14980 | Functionality and domain o... |
| shftval 14981 | Value of a sequence shifte... |
| shftval2 14982 | Value of a sequence shifte... |
| shftval3 14983 | Value of a sequence shifte... |
| shftval4 14984 | Value of a sequence shifte... |
| shftval5 14985 | Value of a shifted sequenc... |
| shftf 14986 | Functionality of a shifted... |
| 2shfti 14987 | Composite shift operations... |
| shftidt2 14988 | Identity law for the shift... |
| shftidt 14989 | Identity law for the shift... |
| shftcan1 14990 | Cancellation law for the s... |
| shftcan2 14991 | Cancellation law for the s... |
| seqshft 14992 | Shifting the index set of ... |
| sgnval 14995 | Value of the signum functi... |
| sgn0 14996 | The signum of 0 is 0. (Co... |
| sgnp 14997 | The signum of a positive e... |
| sgnrrp 14998 | The signum of a positive r... |
| sgn1 14999 | The signum of 1 is 1. (Co... |
| sgnpnf 15000 | The signum of ` +oo ` is 1... |
| sgnn 15001 | The signum of a negative e... |
| sgnmnf 15002 | The signum of ` -oo ` is -... |
| cjval 15009 | The value of the conjugate... |
| cjth 15010 | The defining property of t... |
| cjf 15011 | Domain and codomain of the... |
| cjcl 15012 | The conjugate of a complex... |
| reval 15013 | The value of the real part... |
| imval 15014 | The value of the imaginary... |
| imre 15015 | The imaginary part of a co... |
| reim 15016 | The real part of a complex... |
| recl 15017 | The real part of a complex... |
| imcl 15018 | The imaginary part of a co... |
| ref 15019 | Domain and codomain of the... |
| imf 15020 | Domain and codomain of the... |
| crre 15021 | The real part of a complex... |
| crim 15022 | The real part of a complex... |
| replim 15023 | Reconstruct a complex numb... |
| remim 15024 | Value of the conjugate of ... |
| reim0 15025 | The imaginary part of a re... |
| reim0b 15026 | A number is real iff its i... |
| rereb 15027 | A number is real iff it eq... |
| mulre 15028 | A product with a nonzero r... |
| rere 15029 | A real number equals its r... |
| cjreb 15030 | A number is real iff it eq... |
| recj 15031 | Real part of a complex con... |
| reneg 15032 | Real part of negative. (C... |
| readd 15033 | Real part distributes over... |
| resub 15034 | Real part distributes over... |
| remullem 15035 | Lemma for ~ remul , ~ immu... |
| remul 15036 | Real part of a product. (... |
| remul2 15037 | Real part of a product. (... |
| rediv 15038 | Real part of a division. ... |
| imcj 15039 | Imaginary part of a comple... |
| imneg 15040 | The imaginary part of a ne... |
| imadd 15041 | Imaginary part distributes... |
| imsub 15042 | Imaginary part distributes... |
| immul 15043 | Imaginary part of a produc... |
| immul2 15044 | Imaginary part of a produc... |
| imdiv 15045 | Imaginary part of a divisi... |
| cjre 15046 | A real number equals its c... |
| cjcj 15047 | The conjugate of the conju... |
| cjadd 15048 | Complex conjugate distribu... |
| cjmul 15049 | Complex conjugate distribu... |
| ipcnval 15050 | Standard inner product on ... |
| cjmulrcl 15051 | A complex number times its... |
| cjmulval 15052 | A complex number times its... |
| cjmulge0 15053 | A complex number times its... |
| cjneg 15054 | Complex conjugate of negat... |
| addcj 15055 | A number plus its conjugat... |
| cjsub 15056 | Complex conjugate distribu... |
| cjexp 15057 | Complex conjugate of posit... |
| imval2 15058 | The imaginary part of a nu... |
| re0 15059 | The real part of zero. (C... |
| im0 15060 | The imaginary part of zero... |
| re1 15061 | The real part of one. (Co... |
| im1 15062 | The imaginary part of one.... |
| rei 15063 | The real part of ` _i ` . ... |
| imi 15064 | The imaginary part of ` _i... |
| cj0 15065 | The conjugate of zero. (C... |
| cji 15066 | The complex conjugate of t... |
| cjreim 15067 | The conjugate of a represe... |
| cjreim2 15068 | The conjugate of the repre... |
| cj11 15069 | Complex conjugate is a one... |
| cjne0 15070 | A number is nonzero iff it... |
| cjdiv 15071 | Complex conjugate distribu... |
| cnrecnv 15072 | The inverse to the canonic... |
| sqeqd 15073 | A deduction for showing tw... |
| recli 15074 | The real part of a complex... |
| imcli 15075 | The imaginary part of a co... |
| cjcli 15076 | Closure law for complex co... |
| replimi 15077 | Construct a complex number... |
| cjcji 15078 | The conjugate of the conju... |
| reim0bi 15079 | A number is real iff its i... |
| rerebi 15080 | A real number equals its r... |
| cjrebi 15081 | A number is real iff it eq... |
| recji 15082 | Real part of a complex con... |
| imcji 15083 | Imaginary part of a comple... |
| cjmulrcli 15084 | A complex number times its... |
| cjmulvali 15085 | A complex number times its... |
| cjmulge0i 15086 | A complex number times its... |
| renegi 15087 | Real part of negative. (C... |
| imnegi 15088 | Imaginary part of negative... |
| cjnegi 15089 | Complex conjugate of negat... |
| addcji 15090 | A number plus its conjugat... |
| readdi 15091 | Real part distributes over... |
| imaddi 15092 | Imaginary part distributes... |
| remuli 15093 | Real part of a product. (... |
| immuli 15094 | Imaginary part of a produc... |
| cjaddi 15095 | Complex conjugate distribu... |
| cjmuli 15096 | Complex conjugate distribu... |
| ipcni 15097 | Standard inner product on ... |
| cjdivi 15098 | Complex conjugate distribu... |
| crrei 15099 | The real part of a complex... |
| crimi 15100 | The imaginary part of a co... |
| recld 15101 | The real part of a complex... |
| imcld 15102 | The imaginary part of a co... |
| cjcld 15103 | Closure law for complex co... |
| replimd 15104 | Construct a complex number... |
| remimd 15105 | Value of the conjugate of ... |
| cjcjd 15106 | The conjugate of the conju... |
| reim0bd 15107 | A number is real iff its i... |
| rerebd 15108 | A real number equals its r... |
| cjrebd 15109 | A number is real iff it eq... |
| cjne0d 15110 | A number is nonzero iff it... |
| recjd 15111 | Real part of a complex con... |
| imcjd 15112 | Imaginary part of a comple... |
| cjmulrcld 15113 | A complex number times its... |
| cjmulvald 15114 | A complex number times its... |
| cjmulge0d 15115 | A complex number times its... |
| renegd 15116 | Real part of negative. (C... |
| imnegd 15117 | Imaginary part of negative... |
| cjnegd 15118 | Complex conjugate of negat... |
| addcjd 15119 | A number plus its conjugat... |
| cjexpd 15120 | Complex conjugate of posit... |
| readdd 15121 | Real part distributes over... |
| imaddd 15122 | Imaginary part distributes... |
| resubd 15123 | Real part distributes over... |
| imsubd 15124 | Imaginary part distributes... |
| remuld 15125 | Real part of a product. (... |
| immuld 15126 | Imaginary part of a produc... |
| cjaddd 15127 | Complex conjugate distribu... |
| cjmuld 15128 | Complex conjugate distribu... |
| ipcnd 15129 | Standard inner product on ... |
| cjdivd 15130 | Complex conjugate distribu... |
| rered 15131 | A real number equals its r... |
| reim0d 15132 | The imaginary part of a re... |
| cjred 15133 | A real number equals its c... |
| remul2d 15134 | Real part of a product. (... |
| immul2d 15135 | Imaginary part of a produc... |
| redivd 15136 | Real part of a division. ... |
| imdivd 15137 | Imaginary part of a divisi... |
| crred 15138 | The real part of a complex... |
| crimd 15139 | The imaginary part of a co... |
| sqrtval 15144 | Value of square root funct... |
| absval 15145 | The absolute value (modulu... |
| rennim 15146 | A real number does not lie... |
| cnpart 15147 | The specification of restr... |
| sqrt0 15148 | The square root of zero is... |
| 01sqrexlem1 15149 | Lemma for ~ 01sqrex . (Co... |
| 01sqrexlem2 15150 | Lemma for ~ 01sqrex . (Co... |
| 01sqrexlem3 15151 | Lemma for ~ 01sqrex . (Co... |
| 01sqrexlem4 15152 | Lemma for ~ 01sqrex . (Co... |
| 01sqrexlem5 15153 | Lemma for ~ 01sqrex . (Co... |
| 01sqrexlem6 15154 | Lemma for ~ 01sqrex . (Co... |
| 01sqrexlem7 15155 | Lemma for ~ 01sqrex . (Co... |
| 01sqrex 15156 | Existence of a square root... |
| resqrex 15157 | Existence of a square root... |
| sqrmo 15158 | Uniqueness for the square ... |
| resqreu 15159 | Existence and uniqueness f... |
| resqrtcl 15160 | Closure of the square root... |
| resqrtthlem 15161 | Lemma for ~ resqrtth . (C... |
| resqrtth 15162 | Square root theorem over t... |
| remsqsqrt 15163 | Square of square root. (C... |
| sqrtge0 15164 | The square root function i... |
| sqrtgt0 15165 | The square root function i... |
| sqrtmul 15166 | Square root distributes ov... |
| sqrtle 15167 | Square root is monotonic. ... |
| sqrtlt 15168 | Square root is strictly mo... |
| sqrt11 15169 | The square root function i... |
| sqrt00 15170 | A square root is zero iff ... |
| rpsqrtcl 15171 | The square root of a posit... |
| sqrtdiv 15172 | Square root distributes ov... |
| sqrtneglem 15173 | The square root of a negat... |
| sqrtneg 15174 | The square root of a negat... |
| sqrtsq2 15175 | Relationship between squar... |
| sqrtsq 15176 | Square root of square. (C... |
| sqrtmsq 15177 | Square root of square. (C... |
| sqrt1 15178 | The square root of 1 is 1.... |
| sqrt4 15179 | The square root of 4 is 2.... |
| sqrt9 15180 | The square root of 9 is 3.... |
| sqrt2gt1lt2 15181 | The square root of 2 is bo... |
| sqrtm1 15182 | The imaginary unit is the ... |
| nn0sqeq1 15183 | A natural number with squa... |
| absneg 15184 | Absolute value of the nega... |
| abscl 15185 | Real closure of absolute v... |
| abscj 15186 | The absolute value of a nu... |
| absvalsq 15187 | Square of value of absolut... |
| absvalsq2 15188 | Square of value of absolut... |
| sqabsadd 15189 | Square of absolute value o... |
| sqabssub 15190 | Square of absolute value o... |
| absval2 15191 | Value of absolute value fu... |
| abs0 15192 | The absolute value of 0. ... |
| absi 15193 | The absolute value of the ... |
| absge0 15194 | Absolute value is nonnegat... |
| absrpcl 15195 | The absolute value of a no... |
| abs00 15196 | The absolute value of a nu... |
| abs00ad 15197 | A complex number is zero i... |
| abs00bd 15198 | If a complex number is zer... |
| absreimsq 15199 | Square of the absolute val... |
| absreim 15200 | Absolute value of a number... |
| absmul 15201 | Absolute value distributes... |
| absdiv 15202 | Absolute value distributes... |
| absid 15203 | A nonnegative number is it... |
| abs1 15204 | The absolute value of one ... |
| absnid 15205 | For a negative number, its... |
| leabs 15206 | A real number is less than... |
| absor 15207 | The absolute value of a re... |
| absre 15208 | Absolute value of a real n... |
| absresq 15209 | Square of the absolute val... |
| absmod0 15210 | ` A ` is divisible by ` B ... |
| absexp 15211 | Absolute value of positive... |
| absexpz 15212 | Absolute value of integer ... |
| abssq 15213 | Square can be moved in and... |
| sqabs 15214 | The squares of two reals a... |
| absrele 15215 | The absolute value of a co... |
| absimle 15216 | The absolute value of a co... |
| max0add 15217 | The sum of the positive an... |
| absz 15218 | A real number is an intege... |
| nn0abscl 15219 | The absolute value of an i... |
| zabscl 15220 | The absolute value of an i... |
| zabs0b 15221 | An integer has an absolute... |
| abslt 15222 | Absolute value and 'less t... |
| absle 15223 | Absolute value and 'less t... |
| abssubne0 15224 | If the absolute value of a... |
| absdiflt 15225 | The absolute value of a di... |
| absdifle 15226 | The absolute value of a di... |
| elicc4abs 15227 | Membership in a symmetric ... |
| lenegsq 15228 | Comparison to a nonnegativ... |
| releabs 15229 | The real part of a number ... |
| recval 15230 | Reciprocal expressed with ... |
| absidm 15231 | The absolute value functio... |
| absgt0 15232 | The absolute value of a no... |
| nnabscl 15233 | The absolute value of a no... |
| abssub 15234 | Swapping order of subtract... |
| abssubge0 15235 | Absolute value of a nonneg... |
| abssuble0 15236 | Absolute value of a nonpos... |
| absmax 15237 | The maximum of two numbers... |
| abstri 15238 | Triangle inequality for ab... |
| abs3dif 15239 | Absolute value of differen... |
| abs2dif 15240 | Difference of absolute val... |
| abs2dif2 15241 | Difference of absolute val... |
| abs2difabs 15242 | Absolute value of differen... |
| abs1m 15243 | For any complex number, th... |
| recan 15244 | Cancellation law involving... |
| absf 15245 | Mapping domain and codomai... |
| abs3lem 15246 | Lemma involving absolute v... |
| abslem2 15247 | Lemma involving absolute v... |
| rddif 15248 | The difference between a r... |
| absrdbnd 15249 | Bound on the absolute valu... |
| fzomaxdiflem 15250 | Lemma for ~ fzomaxdif . (... |
| fzomaxdif 15251 | A bound on the separation ... |
| uzin2 15252 | The upper integers are clo... |
| rexanuz 15253 | Combine two different uppe... |
| rexanre 15254 | Combine two different uppe... |
| rexfiuz 15255 | Combine finitely many diff... |
| rexuz3 15256 | Restrict the base of the u... |
| rexanuz2 15257 | Combine two different uppe... |
| r19.29uz 15258 | A version of ~ 19.29 for u... |
| r19.2uz 15259 | A version of ~ r19.2z for ... |
| rexuzre 15260 | Convert an upper real quan... |
| rexico 15261 | Restrict the base of an up... |
| cau3lem 15262 | Lemma for ~ cau3 . (Contr... |
| cau3 15263 | Convert between three-quan... |
| cau4 15264 | Change the base of a Cauch... |
| caubnd2 15265 | A Cauchy sequence of compl... |
| caubnd 15266 | A Cauchy sequence of compl... |
| sqreulem 15267 | Lemma for ~ sqreu : write ... |
| sqreu 15268 | Existence and uniqueness f... |
| sqrtcl 15269 | Closure of the square root... |
| sqrtthlem 15270 | Lemma for ~ sqrtth . (Con... |
| sqrtf 15271 | Mapping domain and codomai... |
| sqrtth 15272 | Square root theorem over t... |
| sqrtrege0 15273 | The square root function m... |
| eqsqrtor 15274 | Solve an equation containi... |
| eqsqrtd 15275 | A deduction for showing th... |
| eqsqrt2d 15276 | A deduction for showing th... |
| amgm2 15277 | Arithmetic-geometric mean ... |
| sqrtthi 15278 | Square root theorem. Theo... |
| sqrtcli 15279 | The square root of a nonne... |
| sqrtgt0i 15280 | The square root of a posit... |
| sqrtmsqi 15281 | Square root of square. (C... |
| sqrtsqi 15282 | Square root of square. (C... |
| sqsqrti 15283 | Square of square root. (C... |
| sqrtge0i 15284 | The square root of a nonne... |
| absidi 15285 | A nonnegative number is it... |
| absnidi 15286 | A negative number is the n... |
| leabsi 15287 | A real number is less than... |
| absori 15288 | The absolute value of a re... |
| absrei 15289 | Absolute value of a real n... |
| sqrtpclii 15290 | The square root of a posit... |
| sqrtgt0ii 15291 | The square root of a posit... |
| sqrt11i 15292 | The square root function i... |
| sqrtmuli 15293 | Square root distributes ov... |
| sqrtmulii 15294 | Square root distributes ov... |
| sqrtmsq2i 15295 | Relationship between squar... |
| sqrtlei 15296 | Square root is monotonic. ... |
| sqrtlti 15297 | Square root is strictly mo... |
| abslti 15298 | Absolute value and 'less t... |
| abslei 15299 | Absolute value and 'less t... |
| cnsqrt00 15300 | A square root of a complex... |
| absvalsqi 15301 | Square of value of absolut... |
| absvalsq2i 15302 | Square of value of absolut... |
| abscli 15303 | Real closure of absolute v... |
| absge0i 15304 | Absolute value is nonnegat... |
| absval2i 15305 | Value of absolute value fu... |
| abs00i 15306 | The absolute value of a nu... |
| absgt0i 15307 | The absolute value of a no... |
| absnegi 15308 | Absolute value of negative... |
| abscji 15309 | The absolute value of a nu... |
| releabsi 15310 | The real part of a number ... |
| abssubi 15311 | Swapping order of subtract... |
| absmuli 15312 | Absolute value distributes... |
| sqabsaddi 15313 | Square of absolute value o... |
| sqabssubi 15314 | Square of absolute value o... |
| absdivzi 15315 | Absolute value distributes... |
| abstrii 15316 | Triangle inequality for ab... |
| abs3difi 15317 | Absolute value of differen... |
| abs3lemi 15318 | Lemma involving absolute v... |
| rpsqrtcld 15319 | The square root of a posit... |
| sqrtgt0d 15320 | The square root of a posit... |
| absnidd 15321 | A negative number is the n... |
| leabsd 15322 | A real number is less than... |
| absord 15323 | The absolute value of a re... |
| absred 15324 | Absolute value of a real n... |
| resqrtcld 15325 | The square root of a nonne... |
| sqrtmsqd 15326 | Square root of square. (C... |
| sqrtsqd 15327 | Square root of square. (C... |
| sqrtge0d 15328 | The square root of a nonne... |
| sqrtnegd 15329 | The square root of a negat... |
| absidd 15330 | A nonnegative number is it... |
| sqrtdivd 15331 | Square root distributes ov... |
| sqrtmuld 15332 | Square root distributes ov... |
| sqrtsq2d 15333 | Relationship between squar... |
| sqrtled 15334 | Square root is monotonic. ... |
| sqrtltd 15335 | Square root is strictly mo... |
| sqr11d 15336 | The square root function i... |
| nn0absid 15337 | A nonnegative integer is i... |
| nn0absidi 15338 | A nonnegative integer is i... |
| absltd 15339 | Absolute value and 'less t... |
| absled 15340 | Absolute value and 'less t... |
| abssubge0d 15341 | Absolute value of a nonneg... |
| abssuble0d 15342 | Absolute value of a nonpos... |
| absdifltd 15343 | The absolute value of a di... |
| absdifled 15344 | The absolute value of a di... |
| icodiamlt 15345 | Two elements in a half-ope... |
| abscld 15346 | Real closure of absolute v... |
| sqrtcld 15347 | Closure of the square root... |
| sqrtrege0d 15348 | The real part of the squar... |
| sqsqrtd 15349 | Square root theorem. Theo... |
| msqsqrtd 15350 | Square root theorem. Theo... |
| sqr00d 15351 | A square root is zero iff ... |
| absvalsqd 15352 | Square of value of absolut... |
| absvalsq2d 15353 | Square of value of absolut... |
| absge0d 15354 | Absolute value is nonnegat... |
| absval2d 15355 | Value of absolute value fu... |
| abs00d 15356 | The absolute value of a nu... |
| absne0d 15357 | The absolute value of a nu... |
| absrpcld 15358 | The absolute value of a no... |
| absnegd 15359 | Absolute value of negative... |
| abscjd 15360 | The absolute value of a nu... |
| releabsd 15361 | The real part of a number ... |
| absexpd 15362 | Absolute value of positive... |
| abssubd 15363 | Swapping order of subtract... |
| absmuld 15364 | Absolute value distributes... |
| absdivd 15365 | Absolute value distributes... |
| abstrid 15366 | Triangle inequality for ab... |
| abs2difd 15367 | Difference of absolute val... |
| abs2dif2d 15368 | Difference of absolute val... |
| abs2difabsd 15369 | Absolute value of differen... |
| abs3difd 15370 | Absolute value of differen... |
| abs3lemd 15371 | Lemma involving absolute v... |
| reusq0 15372 | A complex number is the sq... |
| bhmafibid1cn 15373 | The Brahmagupta-Fibonacci ... |
| bhmafibid2cn 15374 | The Brahmagupta-Fibonacci ... |
| bhmafibid1 15375 | The Brahmagupta-Fibonacci ... |
| bhmafibid2 15376 | The Brahmagupta-Fibonacci ... |
| limsupgord 15379 | Ordering property of the s... |
| limsupcl 15380 | Closure of the superior li... |
| limsupval 15381 | The superior limit of an i... |
| limsupgf 15382 | Closure of the superior li... |
| limsupgval 15383 | Value of the superior limi... |
| limsupgle 15384 | The defining property of t... |
| limsuple 15385 | The defining property of t... |
| limsuplt 15386 | The defining property of t... |
| limsupval2 15387 | The superior limit, relati... |
| limsupgre 15388 | If a sequence of real numb... |
| limsupbnd1 15389 | If a sequence is eventuall... |
| limsupbnd2 15390 | If a sequence is eventuall... |
| climrel 15399 | The limit relation is a re... |
| rlimrel 15400 | The limit relation is a re... |
| clim 15401 | Express the predicate: Th... |
| rlim 15402 | Express the predicate: Th... |
| rlim2 15403 | Rewrite ~ rlim for a mappi... |
| rlim2lt 15404 | Use strictly less-than in ... |
| rlim3 15405 | Restrict the range of the ... |
| climcl 15406 | Closure of the limit of a ... |
| rlimpm 15407 | Closure of a function with... |
| rlimf 15408 | Closure of a function with... |
| rlimss 15409 | Domain closure of a functi... |
| rlimcl 15410 | Closure of the limit of a ... |
| clim2 15411 | Express the predicate: Th... |
| clim2c 15412 | Express the predicate ` F ... |
| clim0 15413 | Express the predicate ` F ... |
| clim0c 15414 | Express the predicate ` F ... |
| rlim0 15415 | Express the predicate ` B ... |
| rlim0lt 15416 | Use strictly less-than in ... |
| climi 15417 | Convergence of a sequence ... |
| climi2 15418 | Convergence of a sequence ... |
| climi0 15419 | Convergence of a sequence ... |
| rlimi 15420 | Convergence at infinity of... |
| rlimi2 15421 | Convergence at infinity of... |
| ello1 15422 | Elementhood in the set of ... |
| ello12 15423 | Elementhood in the set of ... |
| ello12r 15424 | Sufficient condition for e... |
| lo1f 15425 | An eventually upper bounde... |
| lo1dm 15426 | An eventually upper bounde... |
| lo1bdd 15427 | The defining property of a... |
| ello1mpt 15428 | Elementhood in the set of ... |
| ello1mpt2 15429 | Elementhood in the set of ... |
| ello1d 15430 | Sufficient condition for e... |
| lo1bdd2 15431 | If an eventually bounded f... |
| lo1bddrp 15432 | Refine ~ o1bdd2 to give a ... |
| elo1 15433 | Elementhood in the set of ... |
| elo12 15434 | Elementhood in the set of ... |
| elo12r 15435 | Sufficient condition for e... |
| o1f 15436 | An eventually bounded func... |
| o1dm 15437 | An eventually bounded func... |
| o1bdd 15438 | The defining property of a... |
| lo1o1 15439 | A function is eventually b... |
| lo1o12 15440 | A function is eventually b... |
| elo1mpt 15441 | Elementhood in the set of ... |
| elo1mpt2 15442 | Elementhood in the set of ... |
| elo1d 15443 | Sufficient condition for e... |
| o1lo1 15444 | A real function is eventua... |
| o1lo12 15445 | A lower bounded real funct... |
| o1lo1d 15446 | A real eventually bounded ... |
| icco1 15447 | Derive eventual boundednes... |
| o1bdd2 15448 | If an eventually bounded f... |
| o1bddrp 15449 | Refine ~ o1bdd2 to give a ... |
| climconst 15450 | An (eventually) constant s... |
| rlimconst 15451 | A constant sequence conver... |
| rlimclim1 15452 | Forward direction of ~ rli... |
| rlimclim 15453 | A sequence on an upper int... |
| climrlim2 15454 | Produce a real limit from ... |
| climconst2 15455 | A constant sequence conver... |
| climz 15456 | The zero sequence converge... |
| rlimuni 15457 | A real function whose doma... |
| rlimdm 15458 | Two ways to express that a... |
| climuni 15459 | An infinite sequence of co... |
| fclim 15460 | The limit relation is func... |
| climdm 15461 | Two ways to express that a... |
| climeu 15462 | An infinite sequence of co... |
| climreu 15463 | An infinite sequence of co... |
| climmo 15464 | An infinite sequence of co... |
| rlimres 15465 | The restriction of a funct... |
| lo1res 15466 | The restriction of an even... |
| o1res 15467 | The restriction of an even... |
| rlimres2 15468 | The restriction of a funct... |
| lo1res2 15469 | The restriction of a funct... |
| o1res2 15470 | The restriction of a funct... |
| lo1resb 15471 | The restriction of a funct... |
| rlimresb 15472 | The restriction of a funct... |
| o1resb 15473 | The restriction of a funct... |
| climeq 15474 | Two functions that are eve... |
| lo1eq 15475 | Two functions that are eve... |
| rlimeq 15476 | Two functions that are eve... |
| o1eq 15477 | Two functions that are eve... |
| climmpt 15478 | Exhibit a function ` G ` w... |
| 2clim 15479 | If two sequences converge ... |
| climmpt2 15480 | Relate an integer limit on... |
| climshftlem 15481 | A shifted function converg... |
| climres 15482 | A function restricted to u... |
| climshft 15483 | A shifted function converg... |
| serclim0 15484 | The zero series converges ... |
| rlimcld2 15485 | If ` D ` is a closed set i... |
| rlimrege0 15486 | The limit of a sequence of... |
| rlimrecl 15487 | The limit of a real sequen... |
| rlimge0 15488 | The limit of a sequence of... |
| climshft2 15489 | A shifted function converg... |
| climrecl 15490 | The limit of a convergent ... |
| climge0 15491 | A nonnegative sequence con... |
| climabs0 15492 | Convergence to zero of the... |
| o1co 15493 | Sufficient condition for t... |
| o1compt 15494 | Sufficient condition for t... |
| rlimcn1 15495 | Image of a limit under a c... |
| rlimcn1b 15496 | Image of a limit under a c... |
| rlimcn3 15497 | Image of a limit under a c... |
| rlimcn2 15498 | Image of a limit under a c... |
| climcn1 15499 | Image of a limit under a c... |
| climcn2 15500 | Image of a limit under a c... |
| addcn2 15501 | Complex number addition is... |
| subcn2 15502 | Complex number subtraction... |
| mulcn2 15503 | Complex number multiplicat... |
| reccn2 15504 | The reciprocal function is... |
| cn1lem 15505 | A sufficient condition for... |
| abscn2 15506 | The absolute value functio... |
| cjcn2 15507 | The complex conjugate func... |
| recn2 15508 | The real part function is ... |
| imcn2 15509 | The imaginary part functio... |
| climcn1lem 15510 | The limit of a continuous ... |
| climabs 15511 | Limit of the absolute valu... |
| climcj 15512 | Limit of the complex conju... |
| climre 15513 | Limit of the real part of ... |
| climim 15514 | Limit of the imaginary par... |
| rlimmptrcl 15515 | Reverse closure for a real... |
| rlimabs 15516 | Limit of the absolute valu... |
| rlimcj 15517 | Limit of the complex conju... |
| rlimre 15518 | Limit of the real part of ... |
| rlimim 15519 | Limit of the imaginary par... |
| o1of2 15520 | Show that a binary operati... |
| o1add 15521 | The sum of two eventually ... |
| o1mul 15522 | The product of two eventua... |
| o1sub 15523 | The difference of two even... |
| rlimo1 15524 | Any function with a finite... |
| rlimdmo1 15525 | A convergent function is e... |
| o1rlimmul 15526 | The product of an eventual... |
| o1const 15527 | A constant function is eve... |
| lo1const 15528 | A constant function is eve... |
| lo1mptrcl 15529 | Reverse closure for an eve... |
| o1mptrcl 15530 | Reverse closure for an eve... |
| o1add2 15531 | The sum of two eventually ... |
| o1mul2 15532 | The product of two eventua... |
| o1sub2 15533 | The product of two eventua... |
| lo1add 15534 | The sum of two eventually ... |
| lo1mul 15535 | The product of an eventual... |
| lo1mul2 15536 | The product of an eventual... |
| o1dif 15537 | If the difference of two f... |
| lo1sub 15538 | The difference of an event... |
| climadd 15539 | Limit of the sum of two co... |
| climmul 15540 | Limit of the product of tw... |
| climsub 15541 | Limit of the difference of... |
| climaddc1 15542 | Limit of a constant ` C ` ... |
| climaddc2 15543 | Limit of a constant ` C ` ... |
| climmulc2 15544 | Limit of a sequence multip... |
| climsubc1 15545 | Limit of a constant ` C ` ... |
| climsubc2 15546 | Limit of a constant ` C ` ... |
| climle 15547 | Comparison of the limits o... |
| climsqz 15548 | Convergence of a sequence ... |
| climsqz2 15549 | Convergence of a sequence ... |
| rlimadd 15550 | Limit of the sum of two co... |
| rlimsub 15551 | Limit of the difference of... |
| rlimmul 15552 | Limit of the product of tw... |
| rlimdiv 15553 | Limit of the quotient of t... |
| rlimneg 15554 | Limit of the negative of a... |
| rlimle 15555 | Comparison of the limits o... |
| rlimsqzlem 15556 | Lemma for ~ rlimsqz and ~ ... |
| rlimsqz 15557 | Convergence of a sequence ... |
| rlimsqz2 15558 | Convergence of a sequence ... |
| lo1le 15559 | Transfer eventual upper bo... |
| o1le 15560 | Transfer eventual boundedn... |
| rlimno1 15561 | A function whose inverse c... |
| clim2ser 15562 | The limit of an infinite s... |
| clim2ser2 15563 | The limit of an infinite s... |
| iserex 15564 | An infinite series converg... |
| isermulc2 15565 | Multiplication of an infin... |
| climlec2 15566 | Comparison of a constant t... |
| iserle 15567 | Comparison of the limits o... |
| iserge0 15568 | The limit of an infinite s... |
| climub 15569 | The limit of a monotonic s... |
| climserle 15570 | The partial sums of a conv... |
| isershft 15571 | Index shift of the limit o... |
| isercolllem1 15572 | Lemma for ~ isercoll . (C... |
| isercolllem2 15573 | Lemma for ~ isercoll . (C... |
| isercolllem3 15574 | Lemma for ~ isercoll . (C... |
| isercoll 15575 | Rearrange an infinite seri... |
| isercoll2 15576 | Generalize ~ isercoll so t... |
| climsup 15577 | A bounded monotonic sequen... |
| climcau 15578 | A converging sequence of c... |
| climbdd 15579 | A converging sequence of c... |
| caucvgrlem 15580 | Lemma for ~ caurcvgr . (C... |
| caurcvgr 15581 | A Cauchy sequence of real ... |
| caucvgrlem2 15582 | Lemma for ~ caucvgr . (Co... |
| caucvgr 15583 | A Cauchy sequence of compl... |
| caurcvg 15584 | A Cauchy sequence of real ... |
| caurcvg2 15585 | A Cauchy sequence of real ... |
| caucvg 15586 | A Cauchy sequence of compl... |
| caucvgb 15587 | A function is convergent i... |
| serf0 15588 | If an infinite series conv... |
| iseraltlem1 15589 | Lemma for ~ iseralt . A d... |
| iseraltlem2 15590 | Lemma for ~ iseralt . The... |
| iseraltlem3 15591 | Lemma for ~ iseralt . Fro... |
| iseralt 15592 | The alternating series tes... |
| sumex 15595 | A sum is a set. (Contribu... |
| sumeq1 15596 | Equality theorem for a sum... |
| nfsum1 15597 | Bound-variable hypothesis ... |
| nfsum 15598 | Bound-variable hypothesis ... |
| sumeq2w 15599 | Equality theorem for sum, ... |
| sumeq2ii 15600 | Equality theorem for sum, ... |
| sumeq2 15601 | Equality theorem for sum. ... |
| cbvsum 15602 | Change bound variable in a... |
| cbvsumv 15603 | Change bound variable in a... |
| sumeq1i 15604 | Equality inference for sum... |
| sumeq2i 15605 | Equality inference for sum... |
| sumeq12i 15606 | Equality inference for sum... |
| sumeq1d 15607 | Equality deduction for sum... |
| sumeq2d 15608 | Equality deduction for sum... |
| sumeq2dv 15609 | Equality deduction for sum... |
| sumeq2sdv 15610 | Equality deduction for sum... |
| sumeq2sdvOLD 15611 | Obsolete version of ~ sume... |
| 2sumeq2dv 15612 | Equality deduction for dou... |
| sumeq12dv 15613 | Equality deduction for sum... |
| sumeq12rdv 15614 | Equality deduction for sum... |
| sum2id 15615 | The second class argument ... |
| sumfc 15616 | A lemma to facilitate conv... |
| fz1f1o 15617 | A lemma for working with f... |
| sumrblem 15618 | Lemma for ~ sumrb . (Cont... |
| fsumcvg 15619 | The sequence of partial su... |
| sumrb 15620 | Rebase the starting point ... |
| summolem3 15621 | Lemma for ~ summo . (Cont... |
| summolem2a 15622 | Lemma for ~ summo . (Cont... |
| summolem2 15623 | Lemma for ~ summo . (Cont... |
| summo 15624 | A sum has at most one limi... |
| zsum 15625 | Series sum with index set ... |
| isum 15626 | Series sum with an upper i... |
| fsum 15627 | The value of a sum over a ... |
| sum0 15628 | Any sum over the empty set... |
| sumz 15629 | Any sum of zero over a sum... |
| fsumf1o 15630 | Re-index a finite sum usin... |
| sumss 15631 | Change the index set to a ... |
| fsumss 15632 | Change the index set to a ... |
| sumss2 15633 | Change the index set of a ... |
| fsumcvg2 15634 | The sequence of partial su... |
| fsumsers 15635 | Special case of series sum... |
| fsumcvg3 15636 | A finite sum is convergent... |
| fsumser 15637 | A finite sum expressed in ... |
| fsumcl2lem 15638 | - Lemma for finite sum clo... |
| fsumcllem 15639 | - Lemma for finite sum clo... |
| fsumcl 15640 | Closure of a finite sum of... |
| fsumrecl 15641 | Closure of a finite sum of... |
| fsumzcl 15642 | Closure of a finite sum of... |
| fsumnn0cl 15643 | Closure of a finite sum of... |
| fsumrpcl 15644 | Closure of a finite sum of... |
| fsumclf 15645 | Closure of a finite sum of... |
| fsumzcl2 15646 | A finite sum with integer ... |
| fsumadd 15647 | The sum of two finite sums... |
| fsumsplit 15648 | Split a sum into two parts... |
| fsumsplitf 15649 | Split a sum into two parts... |
| sumsnf 15650 | A sum of a singleton is th... |
| fsumsplitsn 15651 | Separate out a term in a f... |
| fsumsplit1 15652 | Separate out a term in a f... |
| sumsn 15653 | A sum of a singleton is th... |
| fsum1 15654 | The finite sum of ` A ( k ... |
| sumpr 15655 | A sum over a pair is the s... |
| sumtp 15656 | A sum over a triple is the... |
| sumsns 15657 | A sum of a singleton is th... |
| fsumm1 15658 | Separate out the last term... |
| fzosump1 15659 | Separate out the last term... |
| fsum1p 15660 | Separate out the first ter... |
| fsummsnunz 15661 | A finite sum all of whose ... |
| fsumsplitsnun 15662 | Separate out a term in a f... |
| fsump1 15663 | The addition of the next t... |
| isumclim 15664 | An infinite sum equals the... |
| isumclim2 15665 | A converging series conver... |
| isumclim3 15666 | The sequence of partial fi... |
| sumnul 15667 | The sum of a non-convergen... |
| isumcl 15668 | The sum of a converging in... |
| isummulc2 15669 | An infinite sum multiplied... |
| isummulc1 15670 | An infinite sum multiplied... |
| isumdivc 15671 | An infinite sum divided by... |
| isumrecl 15672 | The sum of a converging in... |
| isumge0 15673 | An infinite sum of nonnega... |
| isumadd 15674 | Addition of infinite sums.... |
| sumsplit 15675 | Split a sum into two parts... |
| fsump1i 15676 | Optimized version of ~ fsu... |
| fsum2dlem 15677 | Lemma for ~ fsum2d - induc... |
| fsum2d 15678 | Write a double sum as a su... |
| fsumxp 15679 | Combine two sums into a si... |
| fsumcnv 15680 | Transform a region of summ... |
| fsumcom2 15681 | Interchange order of summa... |
| fsumcom 15682 | Interchange order of summa... |
| fsum0diaglem 15683 | Lemma for ~ fsum0diag . (... |
| fsum0diag 15684 | Two ways to express "the s... |
| mptfzshft 15685 | 1-1 onto function in maps-... |
| fsumrev 15686 | Reversal of a finite sum. ... |
| fsumshft 15687 | Index shift of a finite su... |
| fsumshftm 15688 | Negative index shift of a ... |
| fsumrev2 15689 | Reversal of a finite sum. ... |
| fsum0diag2 15690 | Two ways to express "the s... |
| fsummulc2 15691 | A finite sum multiplied by... |
| fsummulc1 15692 | A finite sum multiplied by... |
| fsumdivc 15693 | A finite sum divided by a ... |
| fsumneg 15694 | Negation of a finite sum. ... |
| fsumsub 15695 | Split a finite sum over a ... |
| fsum2mul 15696 | Separate the nested sum of... |
| fsumconst 15697 | The sum of constant terms ... |
| fsumdifsnconst 15698 | The sum of constant terms ... |
| modfsummodslem1 15699 | Lemma 1 for ~ modfsummods ... |
| modfsummods 15700 | Induction step for ~ modfs... |
| modfsummod 15701 | A finite sum modulo a posi... |
| fsumge0 15702 | If all of the terms of a f... |
| fsumless 15703 | A shorter sum of nonnegati... |
| fsumge1 15704 | A sum of nonnegative numbe... |
| fsum00 15705 | A sum of nonnegative numbe... |
| fsumle 15706 | If all of the terms of fin... |
| fsumlt 15707 | If every term in one finit... |
| fsumabs 15708 | Generalized triangle inequ... |
| telfsumo 15709 | Sum of a telescoping serie... |
| telfsumo2 15710 | Sum of a telescoping serie... |
| telfsum 15711 | Sum of a telescoping serie... |
| telfsum2 15712 | Sum of a telescoping serie... |
| fsumparts 15713 | Summation by parts. (Cont... |
| fsumrelem 15714 | Lemma for ~ fsumre , ~ fsu... |
| fsumre 15715 | The real part of a sum. (... |
| fsumim 15716 | The imaginary part of a su... |
| fsumcj 15717 | The complex conjugate of a... |
| fsumrlim 15718 | Limit of a finite sum of c... |
| fsumo1 15719 | The finite sum of eventual... |
| o1fsum 15720 | If ` A ( k ) ` is O(1), th... |
| seqabs 15721 | Generalized triangle inequ... |
| iserabs 15722 | Generalized triangle inequ... |
| cvgcmp 15723 | A comparison test for conv... |
| cvgcmpub 15724 | An upper bound for the lim... |
| cvgcmpce 15725 | A comparison test for conv... |
| abscvgcvg 15726 | An absolutely convergent s... |
| climfsum 15727 | Limit of a finite sum of c... |
| fsumiun 15728 | Sum over a disjoint indexe... |
| hashiun 15729 | The cardinality of a disjo... |
| hash2iun 15730 | The cardinality of a neste... |
| hash2iun1dif1 15731 | The cardinality of a neste... |
| hashrabrex 15732 | The number of elements in ... |
| hashuni 15733 | The cardinality of a disjo... |
| qshash 15734 | The cardinality of a set w... |
| ackbijnn 15735 | Translate the Ackermann bi... |
| binomlem 15736 | Lemma for ~ binom (binomia... |
| binom 15737 | The binomial theorem: ` ( ... |
| binom1p 15738 | Special case of the binomi... |
| binom11 15739 | Special case of the binomi... |
| binom1dif 15740 | A summation for the differ... |
| bcxmaslem1 15741 | Lemma for ~ bcxmas . (Con... |
| bcxmas 15742 | Parallel summation (Christ... |
| incexclem 15743 | Lemma for ~ incexc . (Con... |
| incexc 15744 | The inclusion/exclusion pr... |
| incexc2 15745 | The inclusion/exclusion pr... |
| isumshft 15746 | Index shift of an infinite... |
| isumsplit 15747 | Split off the first ` N ` ... |
| isum1p 15748 | The infinite sum of a conv... |
| isumnn0nn 15749 | Sum from 0 to infinity in ... |
| isumrpcl 15750 | The infinite sum of positi... |
| isumle 15751 | Comparison of two infinite... |
| isumless 15752 | A finite sum of nonnegativ... |
| isumsup2 15753 | An infinite sum of nonnega... |
| isumsup 15754 | An infinite sum of nonnega... |
| isumltss 15755 | A partial sum of a series ... |
| climcndslem1 15756 | Lemma for ~ climcnds : bou... |
| climcndslem2 15757 | Lemma for ~ climcnds : bou... |
| climcnds 15758 | The Cauchy condensation te... |
| divrcnv 15759 | The sequence of reciprocal... |
| divcnv 15760 | The sequence of reciprocal... |
| flo1 15761 | The floor function satisfi... |
| divcnvshft 15762 | Limit of a ratio function.... |
| supcvg 15763 | Extract a sequence ` f ` i... |
| infcvgaux1i 15764 | Auxiliary theorem for appl... |
| infcvgaux2i 15765 | Auxiliary theorem for appl... |
| harmonic 15766 | The harmonic series ` H ` ... |
| arisum 15767 | Arithmetic series sum of t... |
| arisum2 15768 | Arithmetic series sum of t... |
| trireciplem 15769 | Lemma for ~ trirecip . Sh... |
| trirecip 15770 | The sum of the reciprocals... |
| expcnv 15771 | A sequence of powers of a ... |
| explecnv 15772 | A sequence of terms conver... |
| geoserg 15773 | The value of the finite ge... |
| geoser 15774 | The value of the finite ge... |
| pwdif 15775 | The difference of two numb... |
| pwm1geoser 15776 | The n-th power of a number... |
| geolim 15777 | The partial sums in the in... |
| geolim2 15778 | The partial sums in the ge... |
| georeclim 15779 | The limit of a geometric s... |
| geo2sum 15780 | The value of the finite ge... |
| geo2sum2 15781 | The value of the finite ge... |
| geo2lim 15782 | The value of the infinite ... |
| geomulcvg 15783 | The geometric series conve... |
| geoisum 15784 | The infinite sum of ` 1 + ... |
| geoisumr 15785 | The infinite sum of recipr... |
| geoisum1 15786 | The infinite sum of ` A ^ ... |
| geoisum1c 15787 | The infinite sum of ` A x.... |
| 0.999... 15788 | The recurring decimal 0.99... |
| geoihalfsum 15789 | Prove that the infinite ge... |
| cvgrat 15790 | Ratio test for convergence... |
| mertenslem1 15791 | Lemma for ~ mertens . (Co... |
| mertenslem2 15792 | Lemma for ~ mertens . (Co... |
| mertens 15793 | Mertens' theorem. If ` A ... |
| prodf 15794 | An infinite product of com... |
| clim2prod 15795 | The limit of an infinite p... |
| clim2div 15796 | The limit of an infinite p... |
| prodfmul 15797 | The product of two infinit... |
| prodf1 15798 | The value of the partial p... |
| prodf1f 15799 | A one-valued infinite prod... |
| prodfclim1 15800 | The constant one product c... |
| prodfn0 15801 | No term of a nonzero infin... |
| prodfrec 15802 | The reciprocal of an infin... |
| prodfdiv 15803 | The quotient of two infini... |
| ntrivcvg 15804 | A non-trivially converging... |
| ntrivcvgn0 15805 | A product that converges t... |
| ntrivcvgfvn0 15806 | Any value of a product seq... |
| ntrivcvgtail 15807 | A tail of a non-trivially ... |
| ntrivcvgmullem 15808 | Lemma for ~ ntrivcvgmul . ... |
| ntrivcvgmul 15809 | The product of two non-tri... |
| prodex 15812 | A product is a set. (Cont... |
| prodeq1f 15813 | Equality theorem for a pro... |
| prodeq1 15814 | Equality theorem for a pro... |
| nfcprod1 15815 | Bound-variable hypothesis ... |
| nfcprod 15816 | Bound-variable hypothesis ... |
| prodeq2w 15817 | Equality theorem for produ... |
| prodeq2ii 15818 | Equality theorem for produ... |
| prodeq2 15819 | Equality theorem for produ... |
| cbvprod 15820 | Change bound variable in a... |
| cbvprodv 15821 | Change bound variable in a... |
| cbvprodi 15822 | Change bound variable in a... |
| prodeq1i 15823 | Equality inference for pro... |
| prodeq1iOLD 15824 | Obsolete version of ~ prod... |
| prodeq2i 15825 | Equality inference for pro... |
| prodeq12i 15826 | Equality inference for pro... |
| prodeq1d 15827 | Equality deduction for pro... |
| prodeq2d 15828 | Equality deduction for pro... |
| prodeq2dv 15829 | Equality deduction for pro... |
| prodeq2sdv 15830 | Equality deduction for pro... |
| prodeq2sdvOLD 15831 | Obsolete version of ~ prod... |
| 2cprodeq2dv 15832 | Equality deduction for dou... |
| prodeq12dv 15833 | Equality deduction for pro... |
| prodeq12rdv 15834 | Equality deduction for pro... |
| prod2id 15835 | The second class argument ... |
| prodrblem 15836 | Lemma for ~ prodrb . (Con... |
| fprodcvg 15837 | The sequence of partial pr... |
| prodrblem2 15838 | Lemma for ~ prodrb . (Con... |
| prodrb 15839 | Rebase the starting point ... |
| prodmolem3 15840 | Lemma for ~ prodmo . (Con... |
| prodmolem2a 15841 | Lemma for ~ prodmo . (Con... |
| prodmolem2 15842 | Lemma for ~ prodmo . (Con... |
| prodmo 15843 | A product has at most one ... |
| zprod 15844 | Series product with index ... |
| iprod 15845 | Series product with an upp... |
| zprodn0 15846 | Nonzero series product wit... |
| iprodn0 15847 | Nonzero series product wit... |
| fprod 15848 | The value of a product ove... |
| fprodntriv 15849 | A non-triviality lemma for... |
| prod0 15850 | A product over the empty s... |
| prod1 15851 | Any product of one over a ... |
| prodfc 15852 | A lemma to facilitate conv... |
| fprodf1o 15853 | Re-index a finite product ... |
| prodss 15854 | Change the index set to a ... |
| fprodss 15855 | Change the index set to a ... |
| fprodser 15856 | A finite product expressed... |
| fprodcl2lem 15857 | Finite product closure lem... |
| fprodcllem 15858 | Finite product closure lem... |
| fprodcl 15859 | Closure of a finite produc... |
| fprodrecl 15860 | Closure of a finite produc... |
| fprodzcl 15861 | Closure of a finite produc... |
| fprodnncl 15862 | Closure of a finite produc... |
| fprodrpcl 15863 | Closure of a finite produc... |
| fprodnn0cl 15864 | Closure of a finite produc... |
| fprodcllemf 15865 | Finite product closure lem... |
| fprodreclf 15866 | Closure of a finite produc... |
| fprodmul 15867 | The product of two finite ... |
| fproddiv 15868 | The quotient of two finite... |
| prodsn 15869 | A product of a singleton i... |
| fprod1 15870 | A finite product of only o... |
| prodsnf 15871 | A product of a singleton i... |
| climprod1 15872 | The limit of a product ove... |
| fprodsplit 15873 | Split a finite product int... |
| fprodm1 15874 | Separate out the last term... |
| fprod1p 15875 | Separate out the first ter... |
| fprodp1 15876 | Multiply in the last term ... |
| fprodm1s 15877 | Separate out the last term... |
| fprodp1s 15878 | Multiply in the last term ... |
| prodsns 15879 | A product of the singleton... |
| fprodfac 15880 | Factorial using product no... |
| fprodabs 15881 | The absolute value of a fi... |
| fprodeq0 15882 | Any finite product contain... |
| fprodshft 15883 | Shift the index of a finit... |
| fprodrev 15884 | Reversal of a finite produ... |
| fprodconst 15885 | The product of constant te... |
| fprodn0 15886 | A finite product of nonzer... |
| fprod2dlem 15887 | Lemma for ~ fprod2d - indu... |
| fprod2d 15888 | Write a double product as ... |
| fprodxp 15889 | Combine two products into ... |
| fprodcnv 15890 | Transform a product region... |
| fprodcom2 15891 | Interchange order of multi... |
| fprodcom 15892 | Interchange product order.... |
| fprod0diag 15893 | Two ways to express "the p... |
| fproddivf 15894 | The quotient of two finite... |
| fprodsplitf 15895 | Split a finite product int... |
| fprodsplitsn 15896 | Separate out a term in a f... |
| fprodsplit1f 15897 | Separate out a term in a f... |
| fprodn0f 15898 | A finite product of nonzer... |
| fprodclf 15899 | Closure of a finite produc... |
| fprodge0 15900 | If all the terms of a fini... |
| fprodeq0g 15901 | Any finite product contain... |
| fprodge1 15902 | If all of the terms of a f... |
| fprodle 15903 | If all the terms of two fi... |
| fprodmodd 15904 | If all factors of two fini... |
| iprodclim 15905 | An infinite product equals... |
| iprodclim2 15906 | A converging product conve... |
| iprodclim3 15907 | The sequence of partial fi... |
| iprodcl 15908 | The product of a non-trivi... |
| iprodrecl 15909 | The product of a non-trivi... |
| iprodmul 15910 | Multiplication of infinite... |
| risefacval 15915 | The value of the rising fa... |
| fallfacval 15916 | The value of the falling f... |
| risefacval2 15917 | One-based value of rising ... |
| fallfacval2 15918 | One-based value of falling... |
| fallfacval3 15919 | A product representation o... |
| risefaccllem 15920 | Lemma for rising factorial... |
| fallfaccllem 15921 | Lemma for falling factoria... |
| risefaccl 15922 | Closure law for rising fac... |
| fallfaccl 15923 | Closure law for falling fa... |
| rerisefaccl 15924 | Closure law for rising fac... |
| refallfaccl 15925 | Closure law for falling fa... |
| nnrisefaccl 15926 | Closure law for rising fac... |
| zrisefaccl 15927 | Closure law for rising fac... |
| zfallfaccl 15928 | Closure law for falling fa... |
| nn0risefaccl 15929 | Closure law for rising fac... |
| rprisefaccl 15930 | Closure law for rising fac... |
| risefallfac 15931 | A relationship between ris... |
| fallrisefac 15932 | A relationship between fal... |
| risefall0lem 15933 | Lemma for ~ risefac0 and ~... |
| risefac0 15934 | The value of the rising fa... |
| fallfac0 15935 | The value of the falling f... |
| risefacp1 15936 | The value of the rising fa... |
| fallfacp1 15937 | The value of the falling f... |
| risefacp1d 15938 | The value of the rising fa... |
| fallfacp1d 15939 | The value of the falling f... |
| risefac1 15940 | The value of rising factor... |
| fallfac1 15941 | The value of falling facto... |
| risefacfac 15942 | Relate rising factorial to... |
| fallfacfwd 15943 | The forward difference of ... |
| 0fallfac 15944 | The value of the zero fall... |
| 0risefac 15945 | The value of the zero risi... |
| binomfallfaclem1 15946 | Lemma for ~ binomfallfac .... |
| binomfallfaclem2 15947 | Lemma for ~ binomfallfac .... |
| binomfallfac 15948 | A version of the binomial ... |
| binomrisefac 15949 | A version of the binomial ... |
| fallfacval4 15950 | Represent the falling fact... |
| bcfallfac 15951 | Binomial coefficient in te... |
| fallfacfac 15952 | Relate falling factorial t... |
| bpolylem 15955 | Lemma for ~ bpolyval . (C... |
| bpolyval 15956 | The value of the Bernoulli... |
| bpoly0 15957 | The value of the Bernoulli... |
| bpoly1 15958 | The value of the Bernoulli... |
| bpolycl 15959 | Closure law for Bernoulli ... |
| bpolysum 15960 | A sum for Bernoulli polyno... |
| bpolydiflem 15961 | Lemma for ~ bpolydif . (C... |
| bpolydif 15962 | Calculate the difference b... |
| fsumkthpow 15963 | A closed-form expression f... |
| bpoly2 15964 | The Bernoulli polynomials ... |
| bpoly3 15965 | The Bernoulli polynomials ... |
| bpoly4 15966 | The Bernoulli polynomials ... |
| fsumcube 15967 | Express the sum of cubes i... |
| eftcl 15980 | Closure of a term in the s... |
| reeftcl 15981 | The terms of the series ex... |
| eftabs 15982 | The absolute value of a te... |
| eftval 15983 | The value of a term in the... |
| efcllem 15984 | Lemma for ~ efcl . The se... |
| ef0lem 15985 | The series defining the ex... |
| efval 15986 | Value of the exponential f... |
| esum 15987 | Value of Euler's constant ... |
| eff 15988 | Domain and codomain of the... |
| efcl 15989 | Closure law for the expone... |
| efcld 15990 | Closure law for the expone... |
| efval2 15991 | Value of the exponential f... |
| efcvg 15992 | The series that defines th... |
| efcvgfsum 15993 | Exponential function conve... |
| reefcl 15994 | The exponential function i... |
| reefcld 15995 | The exponential function i... |
| ere 15996 | Euler's constant ` _e ` = ... |
| ege2le3 15997 | Lemma for ~ egt2lt3 . (Co... |
| ef0 15998 | Value of the exponential f... |
| efcj 15999 | The exponential of a compl... |
| efaddlem 16000 | Lemma for ~ efadd (exponen... |
| efadd 16001 | Sum of exponents law for e... |
| fprodefsum 16002 | Move the exponential funct... |
| efcan 16003 | Cancellation law for expon... |
| efne0d 16004 | The exponential of a compl... |
| efne0 16005 | The exponential of a compl... |
| efne0OLD 16006 | Obsolete version of ~ efne... |
| efneg 16007 | The exponential of the opp... |
| eff2 16008 | The exponential function m... |
| efsub 16009 | Difference of exponents la... |
| efexp 16010 | The exponential of an inte... |
| efzval 16011 | Value of the exponential f... |
| efgt0 16012 | The exponential of a real ... |
| rpefcl 16013 | The exponential of a real ... |
| rpefcld 16014 | The exponential of a real ... |
| eftlcvg 16015 | The tail series of the exp... |
| eftlcl 16016 | Closure of the sum of an i... |
| reeftlcl 16017 | Closure of the sum of an i... |
| eftlub 16018 | An upper bound on the abso... |
| efsep 16019 | Separate out the next term... |
| effsumlt 16020 | The partial sums of the se... |
| eft0val 16021 | The value of the first ter... |
| ef4p 16022 | Separate out the first fou... |
| efgt1p2 16023 | The exponential of a posit... |
| efgt1p 16024 | The exponential of a posit... |
| efgt1 16025 | The exponential of a posit... |
| eflt 16026 | The exponential function o... |
| efle 16027 | The exponential function o... |
| reef11 16028 | The exponential function o... |
| reeff1 16029 | The exponential function m... |
| eflegeo 16030 | The exponential function o... |
| sinval 16031 | Value of the sine function... |
| cosval 16032 | Value of the cosine functi... |
| sinf 16033 | Domain and codomain of the... |
| cosf 16034 | Domain and codomain of the... |
| sincl 16035 | Closure of the sine functi... |
| coscl 16036 | Closure of the cosine func... |
| tanval 16037 | Value of the tangent funct... |
| tancl 16038 | The closure of the tangent... |
| sincld 16039 | Closure of the sine functi... |
| coscld 16040 | Closure of the cosine func... |
| tancld 16041 | Closure of the tangent fun... |
| tanval2 16042 | Express the tangent functi... |
| tanval3 16043 | Express the tangent functi... |
| resinval 16044 | The sine of a real number ... |
| recosval 16045 | The cosine of a real numbe... |
| efi4p 16046 | Separate out the first fou... |
| resin4p 16047 | Separate out the first fou... |
| recos4p 16048 | Separate out the first fou... |
| resincl 16049 | The sine of a real number ... |
| recoscl 16050 | The cosine of a real numbe... |
| retancl 16051 | The closure of the tangent... |
| resincld 16052 | Closure of the sine functi... |
| recoscld 16053 | Closure of the cosine func... |
| retancld 16054 | Closure of the tangent fun... |
| sinneg 16055 | The sine of a negative is ... |
| cosneg 16056 | The cosines of a number an... |
| tanneg 16057 | The tangent of a negative ... |
| sin0 16058 | Value of the sine function... |
| cos0 16059 | Value of the cosine functi... |
| tan0 16060 | The value of the tangent f... |
| efival 16061 | The exponential function i... |
| efmival 16062 | The exponential function i... |
| sinhval 16063 | Value of the hyperbolic si... |
| coshval 16064 | Value of the hyperbolic co... |
| resinhcl 16065 | The hyperbolic sine of a r... |
| rpcoshcl 16066 | The hyperbolic cosine of a... |
| recoshcl 16067 | The hyperbolic cosine of a... |
| retanhcl 16068 | The hyperbolic tangent of ... |
| tanhlt1 16069 | The hyperbolic tangent of ... |
| tanhbnd 16070 | The hyperbolic tangent of ... |
| efeul 16071 | Eulerian representation of... |
| efieq 16072 | The exponentials of two im... |
| sinadd 16073 | Addition formula for sine.... |
| cosadd 16074 | Addition formula for cosin... |
| tanaddlem 16075 | A useful intermediate step... |
| tanadd 16076 | Addition formula for tange... |
| sinsub 16077 | Sine of difference. (Cont... |
| cossub 16078 | Cosine of difference. (Co... |
| addsin 16079 | Sum of sines. (Contribute... |
| subsin 16080 | Difference of sines. (Con... |
| sinmul 16081 | Product of sines can be re... |
| cosmul 16082 | Product of cosines can be ... |
| addcos 16083 | Sum of cosines. (Contribu... |
| subcos 16084 | Difference of cosines. (C... |
| sincossq 16085 | Sine squared plus cosine s... |
| sin2t 16086 | Double-angle formula for s... |
| cos2t 16087 | Double-angle formula for c... |
| cos2tsin 16088 | Double-angle formula for c... |
| sinbnd 16089 | The sine of a real number ... |
| cosbnd 16090 | The cosine of a real numbe... |
| sinbnd2 16091 | The sine of a real number ... |
| cosbnd2 16092 | The cosine of a real numbe... |
| ef01bndlem 16093 | Lemma for ~ sin01bnd and ~... |
| sin01bnd 16094 | Bounds on the sine of a po... |
| cos01bnd 16095 | Bounds on the cosine of a ... |
| cos1bnd 16096 | Bounds on the cosine of 1.... |
| cos2bnd 16097 | Bounds on the cosine of 2.... |
| sinltx 16098 | The sine of a positive rea... |
| sin01gt0 16099 | The sine of a positive rea... |
| cos01gt0 16100 | The cosine of a positive r... |
| sin02gt0 16101 | The sine of a positive rea... |
| sincos1sgn 16102 | The signs of the sine and ... |
| sincos2sgn 16103 | The signs of the sine and ... |
| sin4lt0 16104 | The sine of 4 is negative.... |
| absefi 16105 | The absolute value of the ... |
| absef 16106 | The absolute value of the ... |
| absefib 16107 | A complex number is real i... |
| efieq1re 16108 | A number whose imaginary e... |
| demoivre 16109 | De Moivre's Formula. Proo... |
| demoivreALT 16110 | Alternate proof of ~ demoi... |
| eirrlem 16113 | Lemma for ~ eirr . (Contr... |
| eirr 16114 | ` _e ` is irrational. (Co... |
| egt2lt3 16115 | Euler's constant ` _e ` = ... |
| epos 16116 | Euler's constant ` _e ` is... |
| epr 16117 | Euler's constant ` _e ` is... |
| ene0 16118 | ` _e ` is not 0. (Contrib... |
| ene1 16119 | ` _e ` is not 1. (Contrib... |
| xpnnen 16120 | The Cartesian product of t... |
| znnen 16121 | The set of integers and th... |
| qnnen 16122 | The rational numbers are c... |
| rpnnen2lem1 16123 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem2 16124 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem3 16125 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem4 16126 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem5 16127 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem6 16128 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem7 16129 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem8 16130 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem9 16131 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem10 16132 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem11 16133 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2lem12 16134 | Lemma for ~ rpnnen2 . (Co... |
| rpnnen2 16135 | The other half of ~ rpnnen... |
| rpnnen 16136 | The cardinality of the con... |
| rexpen 16137 | The real numbers are equin... |
| cpnnen 16138 | The complex numbers are eq... |
| rucALT 16139 | Alternate proof of ~ ruc .... |
| ruclem1 16140 | Lemma for ~ ruc (the reals... |
| ruclem2 16141 | Lemma for ~ ruc . Orderin... |
| ruclem3 16142 | Lemma for ~ ruc . The con... |
| ruclem4 16143 | Lemma for ~ ruc . Initial... |
| ruclem6 16144 | Lemma for ~ ruc . Domain ... |
| ruclem7 16145 | Lemma for ~ ruc . Success... |
| ruclem8 16146 | Lemma for ~ ruc . The int... |
| ruclem9 16147 | Lemma for ~ ruc . The fir... |
| ruclem10 16148 | Lemma for ~ ruc . Every f... |
| ruclem11 16149 | Lemma for ~ ruc . Closure... |
| ruclem12 16150 | Lemma for ~ ruc . The sup... |
| ruclem13 16151 | Lemma for ~ ruc . There i... |
| ruc 16152 | The set of positive intege... |
| resdomq 16153 | The set of rationals is st... |
| aleph1re 16154 | There are at least aleph-o... |
| aleph1irr 16155 | There are at least aleph-o... |
| cnso 16156 | The complex numbers can be... |
| sqrt2irrlem 16157 | Lemma for ~ sqrt2irr . Th... |
| sqrt2irr 16158 | The square root of 2 is ir... |
| sqrt2re 16159 | The square root of 2 exist... |
| sqrt2irr0 16160 | The square root of 2 is an... |
| nthruc 16161 | The sequence ` NN ` , ` ZZ... |
| nthruz 16162 | The sequence ` NN ` , ` NN... |
| divides 16165 | Define the divides relatio... |
| dvdsval2 16166 | One nonzero integer divide... |
| dvdsval3 16167 | One nonzero integer divide... |
| dvdszrcl 16168 | Reverse closure for the di... |
| dvdsmod0 16169 | If a positive integer divi... |
| p1modz1 16170 | If a number greater than 1... |
| dvdsmodexp 16171 | If a positive integer divi... |
| nndivdvds 16172 | Strong form of ~ dvdsval2 ... |
| nndivides 16173 | Definition of the divides ... |
| moddvds 16174 | Two ways to say ` A == B `... |
| modm1div 16175 | An integer greater than on... |
| addmulmodb 16176 | An integer plus a product ... |
| dvds0lem 16177 | A lemma to assist theorems... |
| dvds1lem 16178 | A lemma to assist theorems... |
| dvds2lem 16179 | A lemma to assist theorems... |
| iddvds 16180 | An integer divides itself.... |
| 1dvds 16181 | 1 divides any integer. Th... |
| dvds0 16182 | Any integer divides 0. Th... |
| negdvdsb 16183 | An integer divides another... |
| dvdsnegb 16184 | An integer divides another... |
| absdvdsb 16185 | An integer divides another... |
| dvdsabsb 16186 | An integer divides another... |
| 0dvds 16187 | Only 0 is divisible by 0. ... |
| dvdsmul1 16188 | An integer divides a multi... |
| dvdsmul2 16189 | An integer divides a multi... |
| iddvdsexp 16190 | An integer divides a posit... |
| muldvds1 16191 | If a product divides an in... |
| muldvds2 16192 | If a product divides an in... |
| dvdscmul 16193 | Multiplication by a consta... |
| dvdsmulc 16194 | Multiplication by a consta... |
| dvdscmulr 16195 | Cancellation law for the d... |
| dvdsmulcr 16196 | Cancellation law for the d... |
| summodnegmod 16197 | The sum of two integers mo... |
| difmod0 16198 | The difference of two inte... |
| modmulconst 16199 | Constant multiplication in... |
| dvds2ln 16200 | If an integer divides each... |
| dvds2add 16201 | If an integer divides each... |
| dvds2sub 16202 | If an integer divides each... |
| dvds2addd 16203 | Deduction form of ~ dvds2a... |
| dvds2subd 16204 | Deduction form of ~ dvds2s... |
| dvdstr 16205 | The divides relation is tr... |
| dvdstrd 16206 | The divides relation is tr... |
| dvdsmultr1 16207 | If an integer divides anot... |
| dvdsmultr1d 16208 | Deduction form of ~ dvdsmu... |
| dvdsmultr2 16209 | If an integer divides anot... |
| dvdsmultr2d 16210 | Deduction form of ~ dvdsmu... |
| ordvdsmul 16211 | If an integer divides eith... |
| dvdssub2 16212 | If an integer divides a di... |
| dvdsadd 16213 | An integer divides another... |
| dvdsaddr 16214 | An integer divides another... |
| dvdssub 16215 | An integer divides another... |
| dvdssubr 16216 | An integer divides another... |
| dvdsadd2b 16217 | Adding a multiple of the b... |
| dvdsaddre2b 16218 | Adding a multiple of the b... |
| fsumdvds 16219 | If every term in a sum is ... |
| dvdslelem 16220 | Lemma for ~ dvdsle . (Con... |
| dvdsle 16221 | The divisors of a positive... |
| dvdsleabs 16222 | The divisors of a nonzero ... |
| dvdsleabs2 16223 | Transfer divisibility to a... |
| dvdsabseq 16224 | If two integers divide eac... |
| dvdseq 16225 | If two nonnegative integer... |
| divconjdvds 16226 | If a nonzero integer ` M `... |
| dvdsdivcl 16227 | The complement of a diviso... |
| dvdsflip 16228 | An involution of the divis... |
| dvdsssfz1 16229 | The set of divisors of a n... |
| dvds1 16230 | The only nonnegative integ... |
| alzdvds 16231 | Only 0 is divisible by all... |
| dvdsext 16232 | Poset extensionality for d... |
| fzm1ndvds 16233 | No number between ` 1 ` an... |
| fzo0dvdseq 16234 | Zero is the only one of th... |
| fzocongeq 16235 | Two different elements of ... |
| addmodlteqALT 16236 | Two nonnegative integers l... |
| dvdsfac 16237 | A positive integer divides... |
| dvdsexp2im 16238 | If an integer divides anot... |
| dvdsexp 16239 | A power divides a power wi... |
| dvdsmod 16240 | Any number ` K ` whose mod... |
| mulmoddvds 16241 | If an integer is divisible... |
| 3dvds 16242 | A rule for divisibility by... |
| 3dvdsdec 16243 | A decimal number is divisi... |
| 3dvds2dec 16244 | A decimal number is divisi... |
| fprodfvdvdsd 16245 | A finite product of intege... |
| fproddvdsd 16246 | A finite product of intege... |
| evenelz 16247 | An even number is an integ... |
| zeo3 16248 | An integer is even or odd.... |
| zeo4 16249 | An integer is even or odd ... |
| zeneo 16250 | No even integer equals an ... |
| odd2np1lem 16251 | Lemma for ~ odd2np1 . (Co... |
| odd2np1 16252 | An integer is odd iff it i... |
| even2n 16253 | An integer is even iff it ... |
| oddm1even 16254 | An integer is odd iff its ... |
| oddp1even 16255 | An integer is odd iff its ... |
| oexpneg 16256 | The exponential of the neg... |
| mod2eq0even 16257 | An integer is 0 modulo 2 i... |
| mod2eq1n2dvds 16258 | An integer is 1 modulo 2 i... |
| oddnn02np1 16259 | A nonnegative integer is o... |
| oddge22np1 16260 | An integer greater than on... |
| evennn02n 16261 | A nonnegative integer is e... |
| evennn2n 16262 | A positive integer is even... |
| 2tp1odd 16263 | A number which is twice an... |
| mulsucdiv2z 16264 | An integer multiplied with... |
| sqoddm1div8z 16265 | A squared odd number minus... |
| 2teven 16266 | A number which is twice an... |
| zeo5 16267 | An integer is either even ... |
| evend2 16268 | An integer is even iff its... |
| oddp1d2 16269 | An integer is odd iff its ... |
| zob 16270 | Alternate characterization... |
| oddm1d2 16271 | An integer is odd iff its ... |
| ltoddhalfle 16272 | An integer is less than ha... |
| halfleoddlt 16273 | An integer is greater than... |
| opoe 16274 | The sum of two odds is eve... |
| omoe 16275 | The difference of two odds... |
| opeo 16276 | The sum of an odd and an e... |
| omeo 16277 | The difference of an odd a... |
| z0even 16278 | 2 divides 0. That means 0... |
| n2dvds1 16279 | 2 does not divide 1. That... |
| n2dvdsm1 16280 | 2 does not divide -1. Tha... |
| z2even 16281 | 2 divides 2. That means 2... |
| n2dvds3 16282 | 2 does not divide 3. That... |
| z4even 16283 | 2 divides 4. That means 4... |
| 4dvdseven 16284 | An integer which is divisi... |
| m1expe 16285 | Exponentiation of -1 by an... |
| m1expo 16286 | Exponentiation of -1 by an... |
| m1exp1 16287 | Exponentiation of negative... |
| nn0enne 16288 | A positive integer is an e... |
| nn0ehalf 16289 | The half of an even nonneg... |
| nnehalf 16290 | The half of an even positi... |
| nn0onn 16291 | An odd nonnegative integer... |
| nn0o1gt2 16292 | An odd nonnegative integer... |
| nno 16293 | An alternate characterizat... |
| nn0o 16294 | An alternate characterizat... |
| nn0ob 16295 | Alternate characterization... |
| nn0oddm1d2 16296 | A positive integer is odd ... |
| nnoddm1d2 16297 | A positive integer is odd ... |
| sumeven 16298 | If every term in a sum is ... |
| sumodd 16299 | If every term in a sum is ... |
| evensumodd 16300 | If every term in a sum wit... |
| oddsumodd 16301 | If every term in a sum wit... |
| pwp1fsum 16302 | The n-th power of a number... |
| oddpwp1fsum 16303 | An odd power of a number i... |
| divalglem0 16304 | Lemma for ~ divalg . (Con... |
| divalglem1 16305 | Lemma for ~ divalg . (Con... |
| divalglem2 16306 | Lemma for ~ divalg . (Con... |
| divalglem4 16307 | Lemma for ~ divalg . (Con... |
| divalglem5 16308 | Lemma for ~ divalg . (Con... |
| divalglem6 16309 | Lemma for ~ divalg . (Con... |
| divalglem7 16310 | Lemma for ~ divalg . (Con... |
| divalglem8 16311 | Lemma for ~ divalg . (Con... |
| divalglem9 16312 | Lemma for ~ divalg . (Con... |
| divalglem10 16313 | Lemma for ~ divalg . (Con... |
| divalg 16314 | The division algorithm (th... |
| divalgb 16315 | Express the division algor... |
| divalg2 16316 | The division algorithm (th... |
| divalgmod 16317 | The result of the ` mod ` ... |
| divalgmodcl 16318 | The result of the ` mod ` ... |
| modremain 16319 | The result of the modulo o... |
| ndvdssub 16320 | Corollary of the division ... |
| ndvdsadd 16321 | Corollary of the division ... |
| ndvdsp1 16322 | Special case of ~ ndvdsadd... |
| ndvdsi 16323 | A quick test for non-divis... |
| 5ndvds3 16324 | 5 does not divide 3. (Con... |
| 5ndvds6 16325 | 5 does not divide 6. (Con... |
| flodddiv4 16326 | The floor of an odd intege... |
| fldivndvdslt 16327 | The floor of an integer di... |
| flodddiv4lt 16328 | The floor of an odd number... |
| flodddiv4t2lthalf 16329 | The floor of an odd number... |
| bitsfval 16334 | Expand the definition of t... |
| bitsval 16335 | Expand the definition of t... |
| bitsval2 16336 | Expand the definition of t... |
| bitsss 16337 | The set of bits of an inte... |
| bitsf 16338 | The ` bits ` function is a... |
| bits0 16339 | Value of the zeroth bit. ... |
| bits0e 16340 | The zeroth bit of an even ... |
| bits0o 16341 | The zeroth bit of an odd n... |
| bitsp1 16342 | The ` M + 1 ` -th bit of `... |
| bitsp1e 16343 | The ` M + 1 ` -th bit of `... |
| bitsp1o 16344 | The ` M + 1 ` -th bit of `... |
| bitsfzolem 16345 | Lemma for ~ bitsfzo . (Co... |
| bitsfzo 16346 | The bits of a number are a... |
| bitsmod 16347 | Truncating the bit sequenc... |
| bitsfi 16348 | Every number is associated... |
| bitscmp 16349 | The bit complement of ` N ... |
| 0bits 16350 | The bits of zero. (Contri... |
| m1bits 16351 | The bits of negative one. ... |
| bitsinv1lem 16352 | Lemma for ~ bitsinv1 . (C... |
| bitsinv1 16353 | There is an explicit inver... |
| bitsinv2 16354 | There is an explicit inver... |
| bitsf1ocnv 16355 | The ` bits ` function rest... |
| bitsf1o 16356 | The ` bits ` function rest... |
| bitsf1 16357 | The ` bits ` function is a... |
| 2ebits 16358 | The bits of a power of two... |
| bitsinv 16359 | The inverse of the ` bits ... |
| bitsinvp1 16360 | Recursive definition of th... |
| sadadd2lem2 16361 | The core of the proof of ~... |
| sadfval 16363 | Define the addition of two... |
| sadcf 16364 | The carry sequence is a se... |
| sadc0 16365 | The initial element of the... |
| sadcp1 16366 | The carry sequence (which ... |
| sadval 16367 | The full adder sequence is... |
| sadcaddlem 16368 | Lemma for ~ sadcadd . (Co... |
| sadcadd 16369 | Non-recursive definition o... |
| sadadd2lem 16370 | Lemma for ~ sadadd2 . (Co... |
| sadadd2 16371 | Sum of initial segments of... |
| sadadd3 16372 | Sum of initial segments of... |
| sadcl 16373 | The sum of two sequences i... |
| sadcom 16374 | The adder sequence functio... |
| saddisjlem 16375 | Lemma for ~ sadadd . (Con... |
| saddisj 16376 | The sum of disjoint sequen... |
| sadaddlem 16377 | Lemma for ~ sadadd . (Con... |
| sadadd 16378 | For sequences that corresp... |
| sadid1 16379 | The adder sequence functio... |
| sadid2 16380 | The adder sequence functio... |
| sadasslem 16381 | Lemma for ~ sadass . (Con... |
| sadass 16382 | Sequence addition is assoc... |
| sadeq 16383 | Any element of a sequence ... |
| bitsres 16384 | Restrict the bits of a num... |
| bitsuz 16385 | The bits of a number are a... |
| bitsshft 16386 | Shifting a bit sequence to... |
| smufval 16388 | The multiplication of two ... |
| smupf 16389 | The sequence of partial su... |
| smup0 16390 | The initial element of the... |
| smupp1 16391 | The initial element of the... |
| smuval 16392 | Define the addition of two... |
| smuval2 16393 | The partial sum sequence s... |
| smupvallem 16394 | If ` A ` only has elements... |
| smucl 16395 | The product of two sequenc... |
| smu01lem 16396 | Lemma for ~ smu01 and ~ sm... |
| smu01 16397 | Multiplication of a sequen... |
| smu02 16398 | Multiplication of a sequen... |
| smupval 16399 | Rewrite the elements of th... |
| smup1 16400 | Rewrite ~ smupp1 using onl... |
| smueqlem 16401 | Any element of a sequence ... |
| smueq 16402 | Any element of a sequence ... |
| smumullem 16403 | Lemma for ~ smumul . (Con... |
| smumul 16404 | For sequences that corresp... |
| gcdval 16407 | The value of the ` gcd ` o... |
| gcd0val 16408 | The value, by convention, ... |
| gcdn0val 16409 | The value of the ` gcd ` o... |
| gcdcllem1 16410 | Lemma for ~ gcdn0cl , ~ gc... |
| gcdcllem2 16411 | Lemma for ~ gcdn0cl , ~ gc... |
| gcdcllem3 16412 | Lemma for ~ gcdn0cl , ~ gc... |
| gcdn0cl 16413 | Closure of the ` gcd ` ope... |
| gcddvds 16414 | The gcd of two integers di... |
| dvdslegcd 16415 | An integer which divides b... |
| nndvdslegcd 16416 | A positive integer which d... |
| gcdcl 16417 | Closure of the ` gcd ` ope... |
| gcdnncl 16418 | Closure of the ` gcd ` ope... |
| gcdcld 16419 | Closure of the ` gcd ` ope... |
| gcd2n0cl 16420 | Closure of the ` gcd ` ope... |
| zeqzmulgcd 16421 | An integer is the product ... |
| divgcdz 16422 | An integer divided by the ... |
| gcdf 16423 | Domain and codomain of the... |
| gcdcom 16424 | The ` gcd ` operator is co... |
| gcdcomd 16425 | The ` gcd ` operator is co... |
| divgcdnn 16426 | A positive integer divided... |
| divgcdnnr 16427 | A positive integer divided... |
| gcdeq0 16428 | The gcd of two integers is... |
| gcdn0gt0 16429 | The gcd of two integers is... |
| gcd0id 16430 | The gcd of 0 and an intege... |
| gcdid0 16431 | The gcd of an integer and ... |
| nn0gcdid0 16432 | The gcd of a nonnegative i... |
| gcdneg 16433 | Negating one operand of th... |
| neggcd 16434 | Negating one operand of th... |
| gcdaddmlem 16435 | Lemma for ~ gcdaddm . (Co... |
| gcdaddm 16436 | Adding a multiple of one o... |
| gcdadd 16437 | The GCD of two numbers is ... |
| gcdid 16438 | The gcd of a number and it... |
| gcd1 16439 | The gcd of a number with 1... |
| gcdabs1 16440 | ` gcd ` of the absolute va... |
| gcdabs2 16441 | ` gcd ` of the absolute va... |
| gcdabs 16442 | The gcd of two integers is... |
| modgcd 16443 | The gcd remains unchanged ... |
| 1gcd 16444 | The GCD of one and an inte... |
| gcdmultipled 16445 | The greatest common diviso... |
| gcdmultiplez 16446 | The GCD of a multiple of a... |
| gcdmultiple 16447 | The GCD of a multiple of a... |
| dvdsgcdidd 16448 | The greatest common diviso... |
| 6gcd4e2 16449 | The greatest common diviso... |
| bezoutlem1 16450 | Lemma for ~ bezout . (Con... |
| bezoutlem2 16451 | Lemma for ~ bezout . (Con... |
| bezoutlem3 16452 | Lemma for ~ bezout . (Con... |
| bezoutlem4 16453 | Lemma for ~ bezout . (Con... |
| bezout 16454 | Bézout's identity: ... |
| dvdsgcd 16455 | An integer which divides e... |
| dvdsgcdb 16456 | Biconditional form of ~ dv... |
| dfgcd2 16457 | Alternate definition of th... |
| gcdass 16458 | Associative law for ` gcd ... |
| mulgcd 16459 | Distribute multiplication ... |
| absmulgcd 16460 | Distribute absolute value ... |
| mulgcdr 16461 | Reverse distribution law f... |
| gcddiv 16462 | Division law for GCD. (Con... |
| gcdzeq 16463 | A positive integer ` A ` i... |
| gcdeq 16464 | ` A ` is equal to its gcd ... |
| dvdssqim 16465 | Unidirectional form of ~ d... |
| dvdsexpim 16466 | If two numbers are divisib... |
| dvdsmulgcd 16467 | A divisibility equivalent ... |
| rpmulgcd 16468 | If ` K ` and ` M ` are rel... |
| rplpwr 16469 | If ` A ` and ` B ` are rel... |
| rprpwr 16470 | If ` A ` and ` B ` are rel... |
| rppwr 16471 | If ` A ` and ` B ` are rel... |
| nn0rppwr 16472 | If ` A ` and ` B ` are rel... |
| sqgcd 16473 | Square distributes over gc... |
| expgcd 16474 | Exponentiation distributes... |
| nn0expgcd 16475 | Exponentiation distributes... |
| zexpgcd 16476 | Exponentiation distributes... |
| dvdssqlem 16477 | Lemma for ~ dvdssq . (Con... |
| dvdssq 16478 | Two numbers are divisible ... |
| bezoutr 16479 | Partial converse to ~ bezo... |
| bezoutr1 16480 | Converse of ~ bezout for w... |
| nn0seqcvgd 16481 | A strictly-decreasing nonn... |
| seq1st 16482 | A sequence whose iteration... |
| algr0 16483 | The value of the algorithm... |
| algrf 16484 | An algorithm is a step fun... |
| algrp1 16485 | The value of the algorithm... |
| alginv 16486 | If ` I ` is an invariant o... |
| algcvg 16487 | One way to prove that an a... |
| algcvgblem 16488 | Lemma for ~ algcvgb . (Co... |
| algcvgb 16489 | Two ways of expressing tha... |
| algcvga 16490 | The countdown function ` C... |
| algfx 16491 | If ` F ` reaches a fixed p... |
| eucalgval2 16492 | The value of the step func... |
| eucalgval 16493 | Euclid's Algorithm ~ eucal... |
| eucalgf 16494 | Domain and codomain of the... |
| eucalginv 16495 | The invariant of the step ... |
| eucalglt 16496 | The second member of the s... |
| eucalgcvga 16497 | Once Euclid's Algorithm ha... |
| eucalg 16498 | Euclid's Algorithm compute... |
| lcmval 16503 | Value of the ` lcm ` opera... |
| lcmcom 16504 | The ` lcm ` operator is co... |
| lcm0val 16505 | The value, by convention, ... |
| lcmn0val 16506 | The value of the ` lcm ` o... |
| lcmcllem 16507 | Lemma for ~ lcmn0cl and ~ ... |
| lcmn0cl 16508 | Closure of the ` lcm ` ope... |
| dvdslcm 16509 | The lcm of two integers is... |
| lcmledvds 16510 | A positive integer which b... |
| lcmeq0 16511 | The lcm of two integers is... |
| lcmcl 16512 | Closure of the ` lcm ` ope... |
| gcddvdslcm 16513 | The greatest common diviso... |
| lcmneg 16514 | Negating one operand of th... |
| neglcm 16515 | Negating one operand of th... |
| lcmabs 16516 | The lcm of two integers is... |
| lcmgcdlem 16517 | Lemma for ~ lcmgcd and ~ l... |
| lcmgcd 16518 | The product of two numbers... |
| lcmdvds 16519 | The lcm of two integers di... |
| lcmid 16520 | The lcm of an integer and ... |
| lcm1 16521 | The lcm of an integer and ... |
| lcmgcdnn 16522 | The product of two positiv... |
| lcmgcdeq 16523 | Two integers' absolute val... |
| lcmdvdsb 16524 | Biconditional form of ~ lc... |
| lcmass 16525 | Associative law for ` lcm ... |
| 3lcm2e6woprm 16526 | The least common multiple ... |
| 6lcm4e12 16527 | The least common multiple ... |
| absproddvds 16528 | The absolute value of the ... |
| absprodnn 16529 | The absolute value of the ... |
| fissn0dvds 16530 | For each finite subset of ... |
| fissn0dvdsn0 16531 | For each finite subset of ... |
| lcmfval 16532 | Value of the ` _lcm ` func... |
| lcmf0val 16533 | The value, by convention, ... |
| lcmfn0val 16534 | The value of the ` _lcm ` ... |
| lcmfnnval 16535 | The value of the ` _lcm ` ... |
| lcmfcllem 16536 | Lemma for ~ lcmfn0cl and ~... |
| lcmfn0cl 16537 | Closure of the ` _lcm ` fu... |
| lcmfpr 16538 | The value of the ` _lcm ` ... |
| lcmfcl 16539 | Closure of the ` _lcm ` fu... |
| lcmfnncl 16540 | Closure of the ` _lcm ` fu... |
| lcmfeq0b 16541 | The least common multiple ... |
| dvdslcmf 16542 | The least common multiple ... |
| lcmfledvds 16543 | A positive integer which i... |
| lcmf 16544 | Characterization of the le... |
| lcmf0 16545 | The least common multiple ... |
| lcmfsn 16546 | The least common multiple ... |
| lcmftp 16547 | The least common multiple ... |
| lcmfunsnlem1 16548 | Lemma for ~ lcmfdvds and ~... |
| lcmfunsnlem2lem1 16549 | Lemma 1 for ~ lcmfunsnlem2... |
| lcmfunsnlem2lem2 16550 | Lemma 2 for ~ lcmfunsnlem2... |
| lcmfunsnlem2 16551 | Lemma for ~ lcmfunsn and ~... |
| lcmfunsnlem 16552 | Lemma for ~ lcmfdvds and ~... |
| lcmfdvds 16553 | The least common multiple ... |
| lcmfdvdsb 16554 | Biconditional form of ~ lc... |
| lcmfunsn 16555 | The ` _lcm ` function for ... |
| lcmfun 16556 | The ` _lcm ` function for ... |
| lcmfass 16557 | Associative law for the ` ... |
| lcmf2a3a4e12 16558 | The least common multiple ... |
| lcmflefac 16559 | The least common multiple ... |
| coprmgcdb 16560 | Two positive integers are ... |
| ncoprmgcdne1b 16561 | Two positive integers are ... |
| ncoprmgcdgt1b 16562 | Two positive integers are ... |
| coprmdvds1 16563 | If two positive integers a... |
| coprmdvds 16564 | Euclid's Lemma (see ProofW... |
| coprmdvds2 16565 | If an integer is divisible... |
| mulgcddvds 16566 | One half of ~ rpmulgcd2 , ... |
| rpmulgcd2 16567 | If ` M ` is relatively pri... |
| qredeq 16568 | Two equal reduced fraction... |
| qredeu 16569 | Every rational number has ... |
| rpmul 16570 | If ` K ` is relatively pri... |
| rpdvds 16571 | If ` K ` is relatively pri... |
| coprmprod 16572 | The product of the element... |
| coprmproddvdslem 16573 | Lemma for ~ coprmproddvds ... |
| coprmproddvds 16574 | If a positive integer is d... |
| congr 16575 | Definition of congruence b... |
| divgcdcoprm0 16576 | Integers divided by gcd ar... |
| divgcdcoprmex 16577 | Integers divided by gcd ar... |
| cncongr1 16578 | One direction of the bicon... |
| cncongr2 16579 | The other direction of the... |
| cncongr 16580 | Cancellability of Congruen... |
| cncongrcoprm 16581 | Corollary 1 of Cancellabil... |
| isprm 16584 | The predicate "is a prime ... |
| prmnn 16585 | A prime number is a positi... |
| prmz 16586 | A prime number is an integ... |
| prmssnn 16587 | The prime numbers are a su... |
| prmex 16588 | The set of prime numbers e... |
| 0nprm 16589 | 0 is not a prime number. ... |
| 1nprm 16590 | 1 is not a prime number. ... |
| 1idssfct 16591 | The positive divisors of a... |
| isprm2lem 16592 | Lemma for ~ isprm2 . (Con... |
| isprm2 16593 | The predicate "is a prime ... |
| isprm3 16594 | The predicate "is a prime ... |
| isprm4 16595 | The predicate "is a prime ... |
| prmind2 16596 | A variation on ~ prmind as... |
| prmind 16597 | Perform induction over the... |
| dvdsprime 16598 | If ` M ` divides a prime, ... |
| nprm 16599 | A product of two integers ... |
| nprmi 16600 | An inference for composite... |
| dvdsnprmd 16601 | If a number is divisible b... |
| prm2orodd 16602 | A prime number is either 2... |
| 2prm 16603 | 2 is a prime number. (Con... |
| 2mulprm 16604 | A multiple of two is prime... |
| 3prm 16605 | 3 is a prime number. (Con... |
| 4nprm 16606 | 4 is not a prime number. ... |
| prmuz2 16607 | A prime number is an integ... |
| prmgt1 16608 | A prime number is an integ... |
| prmm2nn0 16609 | Subtracting 2 from a prime... |
| oddprmgt2 16610 | An odd prime is greater th... |
| oddprmge3 16611 | An odd prime is greater th... |
| ge2nprmge4 16612 | A composite integer greate... |
| sqnprm 16613 | A square is never prime. ... |
| dvdsprm 16614 | An integer greater than or... |
| exprmfct 16615 | Every integer greater than... |
| prmdvdsfz 16616 | Each integer greater than ... |
| nprmdvds1 16617 | No prime number divides 1.... |
| isprm5 16618 | One need only check prime ... |
| isprm7 16619 | One need only check prime ... |
| maxprmfct 16620 | The set of prime factors o... |
| divgcdodd 16621 | Either ` A / ( A gcd B ) `... |
| coprm 16622 | A prime number either divi... |
| prmrp 16623 | Unequal prime numbers are ... |
| euclemma 16624 | Euclid's lemma. A prime n... |
| isprm6 16625 | A number is prime iff it s... |
| prmdvdsexp 16626 | A prime divides a positive... |
| prmdvdsexpb 16627 | A prime divides a positive... |
| prmdvdsexpr 16628 | If a prime divides a nonne... |
| prmdvdssq 16629 | Condition for a prime divi... |
| prmexpb 16630 | Two positive prime powers ... |
| prmfac1 16631 | The factorial of a number ... |
| dvdszzq 16632 | Divisibility for an intege... |
| rpexp 16633 | If two numbers ` A ` and `... |
| rpexp1i 16634 | Relative primality passes ... |
| rpexp12i 16635 | Relative primality passes ... |
| prmndvdsfaclt 16636 | A prime number does not di... |
| prmdvdsbc 16637 | Condition for a prime numb... |
| prmdvdsncoprmbd 16638 | Two positive integers are ... |
| ncoprmlnprm 16639 | If two positive integers a... |
| cncongrprm 16640 | Corollary 2 of Cancellabil... |
| isevengcd2 16641 | The predicate "is an even ... |
| isoddgcd1 16642 | The predicate "is an odd n... |
| 3lcm2e6 16643 | The least common multiple ... |
| qnumval 16648 | Value of the canonical num... |
| qdenval 16649 | Value of the canonical den... |
| qnumdencl 16650 | Lemma for ~ qnumcl and ~ q... |
| qnumcl 16651 | The canonical numerator of... |
| qdencl 16652 | The canonical denominator ... |
| fnum 16653 | Canonical numerator define... |
| fden 16654 | Canonical denominator defi... |
| qnumdenbi 16655 | Two numbers are the canoni... |
| qnumdencoprm 16656 | The canonical representati... |
| qeqnumdivden 16657 | Recover a rational number ... |
| qmuldeneqnum 16658 | Multiplying a rational by ... |
| divnumden 16659 | Calculate the reduced form... |
| divdenle 16660 | Reducing a quotient never ... |
| qnumgt0 16661 | A rational is positive iff... |
| qgt0numnn 16662 | A rational is positive iff... |
| nn0gcdsq 16663 | Squaring commutes with GCD... |
| zgcdsq 16664 | ~ nn0gcdsq extended to int... |
| numdensq 16665 | Squaring a rational square... |
| numsq 16666 | Square commutes with canon... |
| densq 16667 | Square commutes with canon... |
| qden1elz 16668 | A rational is an integer i... |
| zsqrtelqelz 16669 | If an integer has a ration... |
| nonsq 16670 | Any integer strictly betwe... |
| numdenexp 16671 | Elevating a rational numbe... |
| numexp 16672 | Elevating to a nonnegative... |
| denexp 16673 | Elevating to a nonnegative... |
| phival 16678 | Value of the Euler ` phi `... |
| phicl2 16679 | Bounds and closure for the... |
| phicl 16680 | Closure for the value of t... |
| phibndlem 16681 | Lemma for ~ phibnd . (Con... |
| phibnd 16682 | A slightly tighter bound o... |
| phicld 16683 | Closure for the value of t... |
| phi1 16684 | Value of the Euler ` phi `... |
| dfphi2 16685 | Alternate definition of th... |
| hashdvds 16686 | The number of numbers in a... |
| phiprmpw 16687 | Value of the Euler ` phi `... |
| phiprm 16688 | Value of the Euler ` phi `... |
| crth 16689 | The Chinese Remainder Theo... |
| phimullem 16690 | Lemma for ~ phimul . (Con... |
| phimul 16691 | The Euler ` phi ` function... |
| eulerthlem1 16692 | Lemma for ~ eulerth . (Co... |
| eulerthlem2 16693 | Lemma for ~ eulerth . (Co... |
| eulerth 16694 | Euler's theorem, a general... |
| fermltl 16695 | Fermat's little theorem. ... |
| prmdiv 16696 | Show an explicit expressio... |
| prmdiveq 16697 | The modular inverse of ` A... |
| prmdivdiv 16698 | The (modular) inverse of t... |
| hashgcdlem 16699 | A correspondence between e... |
| dvdsfi 16700 | A natural number has finit... |
| hashgcdeq 16701 | Number of initial positive... |
| phisum 16702 | The divisor sum identity o... |
| odzval 16703 | Value of the order functio... |
| odzcllem 16704 | - Lemma for ~ odzcl , show... |
| odzcl 16705 | The order of a group eleme... |
| odzid 16706 | Any element raised to the ... |
| odzdvds 16707 | The only powers of ` A ` t... |
| odzphi 16708 | The order of any group ele... |
| modprm1div 16709 | A prime number divides an ... |
| m1dvdsndvds 16710 | If an integer minus 1 is d... |
| modprminv 16711 | Show an explicit expressio... |
| modprminveq 16712 | The modular inverse of ` A... |
| vfermltl 16713 | Variant of Fermat's little... |
| vfermltlALT 16714 | Alternate proof of ~ vferm... |
| powm2modprm 16715 | If an integer minus 1 is d... |
| reumodprminv 16716 | For any prime number and f... |
| modprm0 16717 | For two positive integers ... |
| nnnn0modprm0 16718 | For a positive integer and... |
| modprmn0modprm0 16719 | For an integer not being 0... |
| coprimeprodsq 16720 | If three numbers are copri... |
| coprimeprodsq2 16721 | If three numbers are copri... |
| oddprm 16722 | A prime not equal to ` 2 `... |
| nnoddn2prm 16723 | A prime not equal to ` 2 `... |
| oddn2prm 16724 | A prime not equal to ` 2 `... |
| nnoddn2prmb 16725 | A number is a prime number... |
| prm23lt5 16726 | A prime less than 5 is eit... |
| prm23ge5 16727 | A prime is either 2 or 3 o... |
| pythagtriplem1 16728 | Lemma for ~ pythagtrip . ... |
| pythagtriplem2 16729 | Lemma for ~ pythagtrip . ... |
| pythagtriplem3 16730 | Lemma for ~ pythagtrip . ... |
| pythagtriplem4 16731 | Lemma for ~ pythagtrip . ... |
| pythagtriplem10 16732 | Lemma for ~ pythagtrip . ... |
| pythagtriplem6 16733 | Lemma for ~ pythagtrip . ... |
| pythagtriplem7 16734 | Lemma for ~ pythagtrip . ... |
| pythagtriplem8 16735 | Lemma for ~ pythagtrip . ... |
| pythagtriplem9 16736 | Lemma for ~ pythagtrip . ... |
| pythagtriplem11 16737 | Lemma for ~ pythagtrip . ... |
| pythagtriplem12 16738 | Lemma for ~ pythagtrip . ... |
| pythagtriplem13 16739 | Lemma for ~ pythagtrip . ... |
| pythagtriplem14 16740 | Lemma for ~ pythagtrip . ... |
| pythagtriplem15 16741 | Lemma for ~ pythagtrip . ... |
| pythagtriplem16 16742 | Lemma for ~ pythagtrip . ... |
| pythagtriplem17 16743 | Lemma for ~ pythagtrip . ... |
| pythagtriplem18 16744 | Lemma for ~ pythagtrip . ... |
| pythagtriplem19 16745 | Lemma for ~ pythagtrip . ... |
| pythagtrip 16746 | Parameterize the Pythagore... |
| iserodd 16747 | Collect the odd terms in a... |
| pclem 16750 | - Lemma for the prime powe... |
| pcprecl 16751 | Closure of the prime power... |
| pcprendvds 16752 | Non-divisibility property ... |
| pcprendvds2 16753 | Non-divisibility property ... |
| pcpre1 16754 | Value of the prime power p... |
| pcpremul 16755 | Multiplicative property of... |
| pcval 16756 | The value of the prime pow... |
| pceulem 16757 | Lemma for ~ pceu . (Contr... |
| pceu 16758 | Uniqueness for the prime p... |
| pczpre 16759 | Connect the prime count pr... |
| pczcl 16760 | Closure of the prime power... |
| pccl 16761 | Closure of the prime power... |
| pccld 16762 | Closure of the prime power... |
| pcmul 16763 | Multiplication property of... |
| pcdiv 16764 | Division property of the p... |
| pcqmul 16765 | Multiplication property of... |
| pc0 16766 | The value of the prime pow... |
| pc1 16767 | Value of the prime count f... |
| pcqcl 16768 | Closure of the general pri... |
| pcqdiv 16769 | Division property of the p... |
| pcrec 16770 | Prime power of a reciproca... |
| pcexp 16771 | Prime power of an exponent... |
| pcxnn0cl 16772 | Extended nonnegative integ... |
| pcxcl 16773 | Extended real closure of t... |
| pcge0 16774 | The prime count of an inte... |
| pczdvds 16775 | Defining property of the p... |
| pcdvds 16776 | Defining property of the p... |
| pczndvds 16777 | Defining property of the p... |
| pcndvds 16778 | Defining property of the p... |
| pczndvds2 16779 | The remainder after dividi... |
| pcndvds2 16780 | The remainder after dividi... |
| pcdvdsb 16781 | ` P ^ A ` divides ` N ` if... |
| pcelnn 16782 | There are a positive numbe... |
| pceq0 16783 | There are zero powers of a... |
| pcidlem 16784 | The prime count of a prime... |
| pcid 16785 | The prime count of a prime... |
| pcneg 16786 | The prime count of a negat... |
| pcabs 16787 | The prime count of an abso... |
| pcdvdstr 16788 | The prime count increases ... |
| pcgcd1 16789 | The prime count of a GCD i... |
| pcgcd 16790 | The prime count of a GCD i... |
| pc2dvds 16791 | A characterization of divi... |
| pc11 16792 | The prime count function, ... |
| pcz 16793 | The prime count function c... |
| pcprmpw2 16794 | Self-referential expressio... |
| pcprmpw 16795 | Self-referential expressio... |
| dvdsprmpweq 16796 | If a positive integer divi... |
| dvdsprmpweqnn 16797 | If an integer greater than... |
| dvdsprmpweqle 16798 | If a positive integer divi... |
| difsqpwdvds 16799 | If the difference of two s... |
| pcaddlem 16800 | Lemma for ~ pcadd . The o... |
| pcadd 16801 | An inequality for the prim... |
| pcadd2 16802 | The inequality of ~ pcadd ... |
| pcmptcl 16803 | Closure for the prime powe... |
| pcmpt 16804 | Construct a function with ... |
| pcmpt2 16805 | Dividing two prime count m... |
| pcmptdvds 16806 | The partial products of th... |
| pcprod 16807 | The product of the primes ... |
| sumhash 16808 | The sum of 1 over a set is... |
| fldivp1 16809 | The difference between the... |
| pcfaclem 16810 | Lemma for ~ pcfac . (Cont... |
| pcfac 16811 | Calculate the prime count ... |
| pcbc 16812 | Calculate the prime count ... |
| qexpz 16813 | If a power of a rational n... |
| expnprm 16814 | A second or higher power o... |
| oddprmdvds 16815 | Every positive integer whi... |
| prmpwdvds 16816 | A relation involving divis... |
| pockthlem 16817 | Lemma for ~ pockthg . (Co... |
| pockthg 16818 | The generalized Pocklingto... |
| pockthi 16819 | Pocklington's theorem, whi... |
| unbenlem 16820 | Lemma for ~ unben . (Cont... |
| unben 16821 | An unbounded set of positi... |
| infpnlem1 16822 | Lemma for ~ infpn . The s... |
| infpnlem2 16823 | Lemma for ~ infpn . For a... |
| infpn 16824 | There exist infinitely man... |
| infpn2 16825 | There exist infinitely man... |
| prmunb 16826 | The primes are unbounded. ... |
| prminf 16827 | There are an infinite numb... |
| prmreclem1 16828 | Lemma for ~ prmrec . Prop... |
| prmreclem2 16829 | Lemma for ~ prmrec . Ther... |
| prmreclem3 16830 | Lemma for ~ prmrec . The ... |
| prmreclem4 16831 | Lemma for ~ prmrec . Show... |
| prmreclem5 16832 | Lemma for ~ prmrec . Here... |
| prmreclem6 16833 | Lemma for ~ prmrec . If t... |
| prmrec 16834 | The sum of the reciprocals... |
| 1arithlem1 16835 | Lemma for ~ 1arith . (Con... |
| 1arithlem2 16836 | Lemma for ~ 1arith . (Con... |
| 1arithlem3 16837 | Lemma for ~ 1arith . (Con... |
| 1arithlem4 16838 | Lemma for ~ 1arith . (Con... |
| 1arith 16839 | Fundamental theorem of ari... |
| 1arith2 16840 | Fundamental theorem of ari... |
| elgz 16843 | Elementhood in the gaussia... |
| gzcn 16844 | A gaussian integer is a co... |
| zgz 16845 | An integer is a gaussian i... |
| igz 16846 | ` _i ` is a gaussian integ... |
| gznegcl 16847 | The gaussian integers are ... |
| gzcjcl 16848 | The gaussian integers are ... |
| gzaddcl 16849 | The gaussian integers are ... |
| gzmulcl 16850 | The gaussian integers are ... |
| gzreim 16851 | Construct a gaussian integ... |
| gzsubcl 16852 | The gaussian integers are ... |
| gzabssqcl 16853 | The squared norm of a gaus... |
| 4sqlem5 16854 | Lemma for ~ 4sq . (Contri... |
| 4sqlem6 16855 | Lemma for ~ 4sq . (Contri... |
| 4sqlem7 16856 | Lemma for ~ 4sq . (Contri... |
| 4sqlem8 16857 | Lemma for ~ 4sq . (Contri... |
| 4sqlem9 16858 | Lemma for ~ 4sq . (Contri... |
| 4sqlem10 16859 | Lemma for ~ 4sq . (Contri... |
| 4sqlem1 16860 | Lemma for ~ 4sq . The set... |
| 4sqlem2 16861 | Lemma for ~ 4sq . Change ... |
| 4sqlem3 16862 | Lemma for ~ 4sq . Suffici... |
| 4sqlem4a 16863 | Lemma for ~ 4sqlem4 . (Co... |
| 4sqlem4 16864 | Lemma for ~ 4sq . We can ... |
| mul4sqlem 16865 | Lemma for ~ mul4sq : algeb... |
| mul4sq 16866 | Euler's four-square identi... |
| 4sqlem11 16867 | Lemma for ~ 4sq . Use the... |
| 4sqlem12 16868 | Lemma for ~ 4sq . For any... |
| 4sqlem13 16869 | Lemma for ~ 4sq . (Contri... |
| 4sqlem14 16870 | Lemma for ~ 4sq . (Contri... |
| 4sqlem15 16871 | Lemma for ~ 4sq . (Contri... |
| 4sqlem16 16872 | Lemma for ~ 4sq . (Contri... |
| 4sqlem17 16873 | Lemma for ~ 4sq . (Contri... |
| 4sqlem18 16874 | Lemma for ~ 4sq . Inducti... |
| 4sqlem19 16875 | Lemma for ~ 4sq . The pro... |
| 4sq 16876 | Lagrange's four-square the... |
| vdwapfval 16883 | Define the arithmetic prog... |
| vdwapf 16884 | The arithmetic progression... |
| vdwapval 16885 | Value of the arithmetic pr... |
| vdwapun 16886 | Remove the first element o... |
| vdwapid1 16887 | The first element of an ar... |
| vdwap0 16888 | Value of a length-1 arithm... |
| vdwap1 16889 | Value of a length-1 arithm... |
| vdwmc 16890 | The predicate " The ` <. R... |
| vdwmc2 16891 | Expand out the definition ... |
| vdwpc 16892 | The predicate " The colori... |
| vdwlem1 16893 | Lemma for ~ vdw . (Contri... |
| vdwlem2 16894 | Lemma for ~ vdw . (Contri... |
| vdwlem3 16895 | Lemma for ~ vdw . (Contri... |
| vdwlem4 16896 | Lemma for ~ vdw . (Contri... |
| vdwlem5 16897 | Lemma for ~ vdw . (Contri... |
| vdwlem6 16898 | Lemma for ~ vdw . (Contri... |
| vdwlem7 16899 | Lemma for ~ vdw . (Contri... |
| vdwlem8 16900 | Lemma for ~ vdw . (Contri... |
| vdwlem9 16901 | Lemma for ~ vdw . (Contri... |
| vdwlem10 16902 | Lemma for ~ vdw . Set up ... |
| vdwlem11 16903 | Lemma for ~ vdw . (Contri... |
| vdwlem12 16904 | Lemma for ~ vdw . ` K = 2 ... |
| vdwlem13 16905 | Lemma for ~ vdw . Main in... |
| vdw 16906 | Van der Waerden's theorem.... |
| vdwnnlem1 16907 | Corollary of ~ vdw , and l... |
| vdwnnlem2 16908 | Lemma for ~ vdwnn . The s... |
| vdwnnlem3 16909 | Lemma for ~ vdwnn . (Cont... |
| vdwnn 16910 | Van der Waerden's theorem,... |
| ramtlecl 16912 | The set ` T ` of numbers w... |
| hashbcval 16914 | Value of the "binomial set... |
| hashbccl 16915 | The binomial set is a fini... |
| hashbcss 16916 | Subset relation for the bi... |
| hashbc0 16917 | The set of subsets of size... |
| hashbc2 16918 | The size of the binomial s... |
| 0hashbc 16919 | There are no subsets of th... |
| ramval 16920 | The value of the Ramsey nu... |
| ramcl2lem 16921 | Lemma for extended real cl... |
| ramtcl 16922 | The Ramsey number has the ... |
| ramtcl2 16923 | The Ramsey number is an in... |
| ramtub 16924 | The Ramsey number is a low... |
| ramub 16925 | The Ramsey number is a low... |
| ramub2 16926 | It is sufficient to check ... |
| rami 16927 | The defining property of a... |
| ramcl2 16928 | The Ramsey number is eithe... |
| ramxrcl 16929 | The Ramsey number is an ex... |
| ramubcl 16930 | If the Ramsey number is up... |
| ramlb 16931 | Establish a lower bound on... |
| 0ram 16932 | The Ramsey number when ` M... |
| 0ram2 16933 | The Ramsey number when ` M... |
| ram0 16934 | The Ramsey number when ` R... |
| 0ramcl 16935 | Lemma for ~ ramcl : Exist... |
| ramz2 16936 | The Ramsey number when ` F... |
| ramz 16937 | The Ramsey number when ` F... |
| ramub1lem1 16938 | Lemma for ~ ramub1 . (Con... |
| ramub1lem2 16939 | Lemma for ~ ramub1 . (Con... |
| ramub1 16940 | Inductive step for Ramsey'... |
| ramcl 16941 | Ramsey's theorem: the Rams... |
| ramsey 16942 | Ramsey's theorem with the ... |
| prmoval 16945 | Value of the primorial fun... |
| prmocl 16946 | Closure of the primorial f... |
| prmone0 16947 | The primorial function is ... |
| prmo0 16948 | The primorial of 0. (Cont... |
| prmo1 16949 | The primorial of 1. (Cont... |
| prmop1 16950 | The primorial of a success... |
| prmonn2 16951 | Value of the primorial fun... |
| prmo2 16952 | The primorial of 2. (Cont... |
| prmo3 16953 | The primorial of 3. (Cont... |
| prmdvdsprmo 16954 | The primorial of a number ... |
| prmdvdsprmop 16955 | The primorial of a number ... |
| fvprmselelfz 16956 | The value of the prime sel... |
| fvprmselgcd1 16957 | The greatest common diviso... |
| prmolefac 16958 | The primorial of a positiv... |
| prmodvdslcmf 16959 | The primorial of a nonnega... |
| prmolelcmf 16960 | The primorial of a positiv... |
| prmgaplem1 16961 | Lemma for ~ prmgap : The ... |
| prmgaplem2 16962 | Lemma for ~ prmgap : The ... |
| prmgaplcmlem1 16963 | Lemma for ~ prmgaplcm : T... |
| prmgaplcmlem2 16964 | Lemma for ~ prmgaplcm : T... |
| prmgaplem3 16965 | Lemma for ~ prmgap . (Con... |
| prmgaplem4 16966 | Lemma for ~ prmgap . (Con... |
| prmgaplem5 16967 | Lemma for ~ prmgap : for e... |
| prmgaplem6 16968 | Lemma for ~ prmgap : for e... |
| prmgaplem7 16969 | Lemma for ~ prmgap . (Con... |
| prmgaplem8 16970 | Lemma for ~ prmgap . (Con... |
| prmgap 16971 | The prime gap theorem: for... |
| prmgaplcm 16972 | Alternate proof of ~ prmga... |
| prmgapprmolem 16973 | Lemma for ~ prmgapprmo : ... |
| prmgapprmo 16974 | Alternate proof of ~ prmga... |
| dec2dvds 16975 | Divisibility by two is obv... |
| dec5dvds 16976 | Divisibility by five is ob... |
| dec5dvds2 16977 | Divisibility by five is ob... |
| dec5nprm 16978 | A decimal number greater t... |
| dec2nprm 16979 | A decimal number greater t... |
| modxai 16980 | Add exponents in a power m... |
| mod2xi 16981 | Double exponents in a powe... |
| modxp1i 16982 | Add one to an exponent in ... |
| mod2xnegi 16983 | Version of ~ mod2xi with a... |
| modsubi 16984 | Subtract from within a mod... |
| gcdi 16985 | Calculate a GCD via Euclid... |
| gcdmodi 16986 | Calculate a GCD via Euclid... |
| numexp0 16987 | Calculate an integer power... |
| numexp1 16988 | Calculate an integer power... |
| numexpp1 16989 | Calculate an integer power... |
| numexp2x 16990 | Double an integer power. ... |
| decsplit0b 16991 | Split a decimal number int... |
| decsplit0 16992 | Split a decimal number int... |
| decsplit1 16993 | Split a decimal number int... |
| decsplit 16994 | Split a decimal number int... |
| karatsuba 16995 | The Karatsuba multiplicati... |
| 2exp4 16996 | Two to the fourth power is... |
| 2exp5 16997 | Two to the fifth power is ... |
| 2exp6 16998 | Two to the sixth power is ... |
| 2exp7 16999 | Two to the seventh power i... |
| 2exp8 17000 | Two to the eighth power is... |
| 2exp11 17001 | Two to the eleventh power ... |
| 2exp16 17002 | Two to the sixteenth power... |
| 3exp3 17003 | Three to the third power i... |
| 2expltfac 17004 | The factorial grows faster... |
| cshwsidrepsw 17005 | If cyclically shifting a w... |
| cshwsidrepswmod0 17006 | If cyclically shifting a w... |
| cshwshashlem1 17007 | If cyclically shifting a w... |
| cshwshashlem2 17008 | If cyclically shifting a w... |
| cshwshashlem3 17009 | If cyclically shifting a w... |
| cshwsdisj 17010 | The singletons resulting b... |
| cshwsiun 17011 | The set of (different!) wo... |
| cshwsex 17012 | The class of (different!) ... |
| cshws0 17013 | The size of the set of (di... |
| cshwrepswhash1 17014 | The size of the set of (di... |
| cshwshashnsame 17015 | If a word (not consisting ... |
| cshwshash 17016 | If a word has a length bei... |
| prmlem0 17017 | Lemma for ~ prmlem1 and ~ ... |
| prmlem1a 17018 | A quick proof skeleton to ... |
| prmlem1 17019 | A quick proof skeleton to ... |
| 5prm 17020 | 5 is a prime number. (Con... |
| 6nprm 17021 | 6 is not a prime number. ... |
| 7prm 17022 | 7 is a prime number. (Con... |
| 8nprm 17023 | 8 is not a prime number. ... |
| 9nprm 17024 | 9 is not a prime number. ... |
| 10nprm 17025 | 10 is not a prime number. ... |
| 11prm 17026 | 11 is a prime number. (Co... |
| 13prm 17027 | 13 is a prime number. (Co... |
| 17prm 17028 | 17 is a prime number. (Co... |
| 19prm 17029 | 19 is a prime number. (Co... |
| 23prm 17030 | 23 is a prime number. (Co... |
| prmlem2 17031 | Our last proving session g... |
| 37prm 17032 | 37 is a prime number. (Co... |
| 43prm 17033 | 43 is a prime number. (Co... |
| 83prm 17034 | 83 is a prime number. (Co... |
| 139prm 17035 | 139 is a prime number. (C... |
| 163prm 17036 | 163 is a prime number. (C... |
| 317prm 17037 | 317 is a prime number. (C... |
| 631prm 17038 | 631 is a prime number. (C... |
| prmo4 17039 | The primorial of 4. (Cont... |
| prmo5 17040 | The primorial of 5. (Cont... |
| prmo6 17041 | The primorial of 6. (Cont... |
| 1259lem1 17042 | Lemma for ~ 1259prm . Cal... |
| 1259lem2 17043 | Lemma for ~ 1259prm . Cal... |
| 1259lem3 17044 | Lemma for ~ 1259prm . Cal... |
| 1259lem4 17045 | Lemma for ~ 1259prm . Cal... |
| 1259lem5 17046 | Lemma for ~ 1259prm . Cal... |
| 1259prm 17047 | 1259 is a prime number. (... |
| 2503lem1 17048 | Lemma for ~ 2503prm . Cal... |
| 2503lem2 17049 | Lemma for ~ 2503prm . Cal... |
| 2503lem3 17050 | Lemma for ~ 2503prm . Cal... |
| 2503prm 17051 | 2503 is a prime number. (... |
| 4001lem1 17052 | Lemma for ~ 4001prm . Cal... |
| 4001lem2 17053 | Lemma for ~ 4001prm . Cal... |
| 4001lem3 17054 | Lemma for ~ 4001prm . Cal... |
| 4001lem4 17055 | Lemma for ~ 4001prm . Cal... |
| 4001prm 17056 | 4001 is a prime number. (... |
| brstruct 17059 | The structure relation is ... |
| isstruct2 17060 | The property of being a st... |
| structex 17061 | A structure is a set. (Co... |
| structn0fun 17062 | A structure without the em... |
| isstruct 17063 | The property of being a st... |
| structcnvcnv 17064 | Two ways to express the re... |
| structfung 17065 | The converse of the conver... |
| structfun 17066 | Convert between two kinds ... |
| structfn 17067 | Convert between two kinds ... |
| strleun 17068 | Combine two structures int... |
| strle1 17069 | Make a structure from a si... |
| strle2 17070 | Make a structure from a pa... |
| strle3 17071 | Make a structure from a tr... |
| sbcie2s 17072 | A special version of class... |
| sbcie3s 17073 | A special version of class... |
| reldmsets 17076 | The structure override ope... |
| setsvalg 17077 | Value of the structure rep... |
| setsval 17078 | Value of the structure rep... |
| fvsetsid 17079 | The value of the structure... |
| fsets 17080 | The structure replacement ... |
| setsdm 17081 | The domain of a structure ... |
| setsfun 17082 | A structure with replaceme... |
| setsfun0 17083 | A structure with replaceme... |
| setsn0fun 17084 | The value of the structure... |
| setsstruct2 17085 | An extensible structure wi... |
| setsexstruct2 17086 | An extensible structure wi... |
| setsstruct 17087 | An extensible structure wi... |
| wunsets 17088 | Closure of structure repla... |
| setsres 17089 | The structure replacement ... |
| setsabs 17090 | Replacing the same compone... |
| setscom 17091 | Different components can b... |
| sloteq 17094 | Equality theorem for the `... |
| slotfn 17095 | A slot is a function on se... |
| strfvnd 17096 | Deduction version of ~ str... |
| strfvn 17097 | Value of a structure compo... |
| strfvss 17098 | A structure component extr... |
| wunstr 17099 | Closure of a structure ind... |
| str0 17100 | All components of the empt... |
| strfvi 17101 | Structure slot extractors ... |
| fveqprc 17102 | Lemma for showing the equa... |
| oveqprc 17103 | Lemma for showing the equa... |
| wunndx 17106 | Closure of the index extra... |
| ndxarg 17107 | Get the numeric argument f... |
| ndxid 17108 | A structure component extr... |
| strndxid 17109 | The value of a structure c... |
| setsidvald 17110 | Value of the structure rep... |
| strfvd 17111 | Deduction version of ~ str... |
| strfv2d 17112 | Deduction version of ~ str... |
| strfv2 17113 | A variation on ~ strfv to ... |
| strfv 17114 | Extract a structure compon... |
| strfv3 17115 | Variant on ~ strfv for lar... |
| strssd 17116 | Deduction version of ~ str... |
| strss 17117 | Propagate component extrac... |
| setsid 17118 | Value of the structure rep... |
| setsnid 17119 | Value of the structure rep... |
| baseval 17122 | Value of the base set extr... |
| baseid 17123 | Utility theorem: index-ind... |
| basfn 17124 | The base set extractor is ... |
| base0 17125 | The base set of the empty ... |
| elbasfv 17126 | Utility theorem: reverse c... |
| elbasov 17127 | Utility theorem: reverse c... |
| strov2rcl 17128 | Partial reverse closure fo... |
| basendx 17129 | Index value of the base se... |
| basendxnn 17130 | The index value of the bas... |
| basndxelwund 17131 | The index of the base set ... |
| basprssdmsets 17132 | The pair of the base index... |
| opelstrbas 17133 | The base set of a structur... |
| 1strstr 17134 | A constructed one-slot str... |
| 1strbas 17135 | The base set of a construc... |
| 1strwunbndx 17136 | A constructed one-slot str... |
| 1strwun 17137 | A constructed one-slot str... |
| 2strstr 17138 | A constructed two-slot str... |
| 2strbas 17139 | The base set of a construc... |
| 2strop 17140 | The other slot of a constr... |
| reldmress 17143 | The structure restriction ... |
| ressval 17144 | Value of structure restric... |
| ressid2 17145 | General behavior of trivia... |
| ressval2 17146 | Value of nontrivial struct... |
| ressbas 17147 | Base set of a structure re... |
| ressbasssg 17148 | The base set of a restrict... |
| ressbas2 17149 | Base set of a structure re... |
| ressbasss 17150 | The base set of a restrict... |
| ressbasssOLD 17151 | Obsolete version of ~ ress... |
| ressbasss2 17152 | The base set of a restrict... |
| resseqnbas 17153 | The components of an exten... |
| ress0 17154 | All restrictions of the nu... |
| ressid 17155 | Behavior of trivial restri... |
| ressinbas 17156 | Restriction only cares abo... |
| ressval3d 17157 | Value of structure restric... |
| ressress 17158 | Restriction composition la... |
| ressabs 17159 | Restriction absorption law... |
| wunress 17160 | Closure of structure restr... |
| plusgndx 17187 | Index value of the ~ df-pl... |
| plusgid 17188 | Utility theorem: index-ind... |
| plusgndxnn 17189 | The index of the slot for ... |
| basendxltplusgndx 17190 | The index of the slot for ... |
| basendxnplusgndx 17191 | The slot for the base set ... |
| grpstr 17192 | A constructed group is a s... |
| grpbase 17193 | The base set of a construc... |
| grpplusg 17194 | The operation of a constru... |
| ressplusg 17195 | ` +g ` is unaffected by re... |
| grpbasex 17196 | The base of an explicitly ... |
| grpplusgx 17197 | The operation of an explic... |
| mulrndx 17198 | Index value of the ~ df-mu... |
| mulridx 17199 | Utility theorem: index-ind... |
| basendxnmulrndx 17200 | The slot for the base set ... |
| plusgndxnmulrndx 17201 | The slot for the group (ad... |
| rngstr 17202 | A constructed ring is a st... |
| rngbase 17203 | The base set of a construc... |
| rngplusg 17204 | The additive operation of ... |
| rngmulr 17205 | The multiplicative operati... |
| starvndx 17206 | Index value of the ~ df-st... |
| starvid 17207 | Utility theorem: index-ind... |
| starvndxnbasendx 17208 | The slot for the involutio... |
| starvndxnplusgndx 17209 | The slot for the involutio... |
| starvndxnmulrndx 17210 | The slot for the involutio... |
| ressmulr 17211 | ` .r ` is unaffected by re... |
| ressstarv 17212 | ` *r ` is unaffected by re... |
| srngstr 17213 | A constructed star ring is... |
| srngbase 17214 | The base set of a construc... |
| srngplusg 17215 | The addition operation of ... |
| srngmulr 17216 | The multiplication operati... |
| srnginvl 17217 | The involution function of... |
| scandx 17218 | Index value of the ~ df-sc... |
| scaid 17219 | Utility theorem: index-ind... |
| scandxnbasendx 17220 | The slot for the scalar is... |
| scandxnplusgndx 17221 | The slot for the scalar fi... |
| scandxnmulrndx 17222 | The slot for the scalar fi... |
| vscandx 17223 | Index value of the ~ df-vs... |
| vscaid 17224 | Utility theorem: index-ind... |
| vscandxnbasendx 17225 | The slot for the scalar pr... |
| vscandxnplusgndx 17226 | The slot for the scalar pr... |
| vscandxnmulrndx 17227 | The slot for the scalar pr... |
| vscandxnscandx 17228 | The slot for the scalar pr... |
| lmodstr 17229 | A constructed left module ... |
| lmodbase 17230 | The base set of a construc... |
| lmodplusg 17231 | The additive operation of ... |
| lmodsca 17232 | The set of scalars of a co... |
| lmodvsca 17233 | The scalar product operati... |
| ipndx 17234 | Index value of the ~ df-ip... |
| ipid 17235 | Utility theorem: index-ind... |
| ipndxnbasendx 17236 | The slot for the inner pro... |
| ipndxnplusgndx 17237 | The slot for the inner pro... |
| ipndxnmulrndx 17238 | The slot for the inner pro... |
| slotsdifipndx 17239 | The slot for the scalar is... |
| ipsstr 17240 | Lemma to shorten proofs of... |
| ipsbase 17241 | The base set of a construc... |
| ipsaddg 17242 | The additive operation of ... |
| ipsmulr 17243 | The multiplicative operati... |
| ipssca 17244 | The set of scalars of a co... |
| ipsvsca 17245 | The scalar product operati... |
| ipsip 17246 | The multiplicative operati... |
| resssca 17247 | ` Scalar ` is unaffected b... |
| ressvsca 17248 | ` .s ` is unaffected by re... |
| ressip 17249 | The inner product is unaff... |
| phlstr 17250 | A constructed pre-Hilbert ... |
| phlbase 17251 | The base set of a construc... |
| phlplusg 17252 | The additive operation of ... |
| phlsca 17253 | The ring of scalars of a c... |
| phlvsca 17254 | The scalar product operati... |
| phlip 17255 | The inner product (Hermiti... |
| tsetndx 17256 | Index value of the ~ df-ts... |
| tsetid 17257 | Utility theorem: index-ind... |
| tsetndxnn 17258 | The index of the slot for ... |
| basendxlttsetndx 17259 | The index of the slot for ... |
| tsetndxnbasendx 17260 | The slot for the topology ... |
| tsetndxnplusgndx 17261 | The slot for the topology ... |
| tsetndxnmulrndx 17262 | The slot for the topology ... |
| tsetndxnstarvndx 17263 | The slot for the topology ... |
| slotstnscsi 17264 | The slots ` Scalar ` , ` .... |
| topgrpstr 17265 | A constructed topological ... |
| topgrpbas 17266 | The base set of a construc... |
| topgrpplusg 17267 | The additive operation of ... |
| topgrptset 17268 | The topology of a construc... |
| resstset 17269 | ` TopSet ` is unaffected b... |
| plendx 17270 | Index value of the ~ df-pl... |
| pleid 17271 | Utility theorem: self-refe... |
| plendxnn 17272 | The index value of the ord... |
| basendxltplendx 17273 | The index value of the ` B... |
| plendxnbasendx 17274 | The slot for the order is ... |
| plendxnplusgndx 17275 | The slot for the "less tha... |
| plendxnmulrndx 17276 | The slot for the "less tha... |
| plendxnscandx 17277 | The slot for the "less tha... |
| plendxnvscandx 17278 | The slot for the "less tha... |
| slotsdifplendx 17279 | The index of the slot for ... |
| otpsstr 17280 | Functionality of a topolog... |
| otpsbas 17281 | The base set of a topologi... |
| otpstset 17282 | The open sets of a topolog... |
| otpsle 17283 | The order of a topological... |
| ressle 17284 | ` le ` is unaffected by re... |
| ocndx 17285 | Index value of the ~ df-oc... |
| ocid 17286 | Utility theorem: index-ind... |
| basendxnocndx 17287 | The slot for the orthocomp... |
| plendxnocndx 17288 | The slot for the orthocomp... |
| dsndx 17289 | Index value of the ~ df-ds... |
| dsid 17290 | Utility theorem: index-ind... |
| dsndxnn 17291 | The index of the slot for ... |
| basendxltdsndx 17292 | The index of the slot for ... |
| dsndxnbasendx 17293 | The slot for the distance ... |
| dsndxnplusgndx 17294 | The slot for the distance ... |
| dsndxnmulrndx 17295 | The slot for the distance ... |
| slotsdnscsi 17296 | The slots ` Scalar ` , ` .... |
| dsndxntsetndx 17297 | The slot for the distance ... |
| slotsdifdsndx 17298 | The index of the slot for ... |
| unifndx 17299 | Index value of the ~ df-un... |
| unifid 17300 | Utility theorem: index-ind... |
| unifndxnn 17301 | The index of the slot for ... |
| basendxltunifndx 17302 | The index of the slot for ... |
| unifndxnbasendx 17303 | The slot for the uniform s... |
| unifndxntsetndx 17304 | The slot for the uniform s... |
| slotsdifunifndx 17305 | The index of the slot for ... |
| ressunif 17306 | ` UnifSet ` is unaffected ... |
| odrngstr 17307 | Functionality of an ordere... |
| odrngbas 17308 | The base set of an ordered... |
| odrngplusg 17309 | The addition operation of ... |
| odrngmulr 17310 | The multiplication operati... |
| odrngtset 17311 | The open sets of an ordere... |
| odrngle 17312 | The order of an ordered me... |
| odrngds 17313 | The metric of an ordered m... |
| ressds 17314 | ` dist ` is unaffected by ... |
| homndx 17315 | Index value of the ~ df-ho... |
| homid 17316 | Utility theorem: index-ind... |
| ccondx 17317 | Index value of the ~ df-cc... |
| ccoid 17318 | Utility theorem: index-ind... |
| slotsbhcdif 17319 | The slots ` Base ` , ` Hom... |
| slotsdifplendx2 17320 | The index of the slot for ... |
| slotsdifocndx 17321 | The index of the slot for ... |
| resshom 17322 | ` Hom ` is unaffected by r... |
| ressco 17323 | ` comp ` is unaffected by ... |
| restfn 17328 | The subspace topology oper... |
| topnfn 17329 | The topology extractor fun... |
| restval 17330 | The subspace topology indu... |
| elrest 17331 | The predicate "is an open ... |
| elrestr 17332 | Sufficient condition for b... |
| 0rest 17333 | Value of the structure res... |
| restid2 17334 | The subspace topology over... |
| restsspw 17335 | The subspace topology is a... |
| firest 17336 | The finite intersections o... |
| restid 17337 | The subspace topology of t... |
| topnval 17338 | Value of the topology extr... |
| topnid 17339 | Value of the topology extr... |
| topnpropd 17340 | The topology extractor fun... |
| reldmprds 17352 | The structure product is a... |
| prdsbasex 17354 | Lemma for structure produc... |
| imasvalstr 17355 | An image structure value i... |
| prdsvalstr 17356 | Structure product value is... |
| prdsbaslem 17357 | Lemma for ~ prdsbas and si... |
| prdsvallem 17358 | Lemma for ~ prdsval . (Co... |
| prdsval 17359 | Value of the structure pro... |
| prdssca 17360 | Scalar ring of a structure... |
| prdsbas 17361 | Base set of a structure pr... |
| prdsplusg 17362 | Addition in a structure pr... |
| prdsmulr 17363 | Multiplication in a struct... |
| prdsvsca 17364 | Scalar multiplication in a... |
| prdsip 17365 | Inner product in a structu... |
| prdsle 17366 | Structure product weak ord... |
| prdsless 17367 | Closure of the order relat... |
| prdsds 17368 | Structure product distance... |
| prdsdsfn 17369 | Structure product distance... |
| prdstset 17370 | Structure product topology... |
| prdshom 17371 | Structure product hom-sets... |
| prdsco 17372 | Structure product composit... |
| prdsbas2 17373 | The base set of a structur... |
| prdsbasmpt 17374 | A constructed tuple is a p... |
| prdsbasfn 17375 | Points in the structure pr... |
| prdsbasprj 17376 | Each point in a structure ... |
| prdsplusgval 17377 | Value of a componentwise s... |
| prdsplusgfval 17378 | Value of a structure produ... |
| prdsmulrval 17379 | Value of a componentwise r... |
| prdsmulrfval 17380 | Value of a structure produ... |
| prdsleval 17381 | Value of the product order... |
| prdsdsval 17382 | Value of the metric in a s... |
| prdsvscaval 17383 | Scalar multiplication in a... |
| prdsvscafval 17384 | Scalar multiplication of a... |
| prdsbas3 17385 | The base set of an indexed... |
| prdsbasmpt2 17386 | A constructed tuple is a p... |
| prdsbascl 17387 | An element of the base has... |
| prdsdsval2 17388 | Value of the metric in a s... |
| prdsdsval3 17389 | Value of the metric in a s... |
| pwsval 17390 | Value of a structure power... |
| pwsbas 17391 | Base set of a structure po... |
| pwselbasb 17392 | Membership in the base set... |
| pwselbas 17393 | An element of a structure ... |
| pwsplusgval 17394 | Value of addition in a str... |
| pwsmulrval 17395 | Value of multiplication in... |
| pwsle 17396 | Ordering in a structure po... |
| pwsleval 17397 | Ordering in a structure po... |
| pwsvscafval 17398 | Scalar multiplication in a... |
| pwsvscaval 17399 | Scalar multiplication of a... |
| pwssca 17400 | The ring of scalars of a s... |
| pwsdiagel 17401 | Membership of diagonal ele... |
| pwssnf1o 17402 | Triviality of singleton po... |
| imasval 17415 | Value of an image structur... |
| imasbas 17416 | The base set of an image s... |
| imasds 17417 | The distance function of a... |
| imasdsfn 17418 | The distance function is a... |
| imasdsval 17419 | The distance function of a... |
| imasdsval2 17420 | The distance function of a... |
| imasplusg 17421 | The group operation in an ... |
| imasmulr 17422 | The ring multiplication in... |
| imassca 17423 | The scalar field of an ima... |
| imasvsca 17424 | The scalar multiplication ... |
| imasip 17425 | The inner product of an im... |
| imastset 17426 | The topology of an image s... |
| imasle 17427 | The ordering of an image s... |
| f1ocpbllem 17428 | Lemma for ~ f1ocpbl . (Co... |
| f1ocpbl 17429 | An injection is compatible... |
| f1ovscpbl 17430 | An injection is compatible... |
| f1olecpbl 17431 | An injection is compatible... |
| imasaddfnlem 17432 | The image structure operat... |
| imasaddvallem 17433 | The operation of an image ... |
| imasaddflem 17434 | The image set operations a... |
| imasaddfn 17435 | The image structure's grou... |
| imasaddval 17436 | The value of an image stru... |
| imasaddf 17437 | The image structure's grou... |
| imasmulfn 17438 | The image structure's ring... |
| imasmulval 17439 | The value of an image stru... |
| imasmulf 17440 | The image structure's ring... |
| imasvscafn 17441 | The image structure's scal... |
| imasvscaval 17442 | The value of an image stru... |
| imasvscaf 17443 | The image structure's scal... |
| imasless 17444 | The order relation defined... |
| imasleval 17445 | The value of the image str... |
| qusval 17446 | Value of a quotient struct... |
| quslem 17447 | The function in ~ qusval i... |
| qusin 17448 | Restrict the equivalence r... |
| qusbas 17449 | Base set of a quotient str... |
| quss 17450 | The scalar field of a quot... |
| divsfval 17451 | Value of the function in ~... |
| ercpbllem 17452 | Lemma for ~ ercpbl . (Con... |
| ercpbl 17453 | Translate the function com... |
| erlecpbl 17454 | Translate the relation com... |
| qusaddvallem 17455 | Value of an operation defi... |
| qusaddflem 17456 | The operation of a quotien... |
| qusaddval 17457 | The addition in a quotient... |
| qusaddf 17458 | The addition in a quotient... |
| qusmulval 17459 | The multiplication in a qu... |
| qusmulf 17460 | The multiplication in a qu... |
| fnpr2o 17461 | Function with a domain of ... |
| fnpr2ob 17462 | Biconditional version of ~... |
| fvpr0o 17463 | The value of a function wi... |
| fvpr1o 17464 | The value of a function wi... |
| fvprif 17465 | The value of the pair func... |
| xpsfrnel 17466 | Elementhood in the target ... |
| xpsfeq 17467 | A function on ` 2o ` is de... |
| xpsfrnel2 17468 | Elementhood in the target ... |
| xpscf 17469 | Equivalent condition for t... |
| xpsfval 17470 | The value of the function ... |
| xpsff1o 17471 | The function appearing in ... |
| xpsfrn 17472 | A short expression for the... |
| xpsff1o2 17473 | The function appearing in ... |
| xpsval 17474 | Value of the binary struct... |
| xpsrnbas 17475 | The indexed structure prod... |
| xpsbas 17476 | The base set of the binary... |
| xpsaddlem 17477 | Lemma for ~ xpsadd and ~ x... |
| xpsadd 17478 | Value of the addition oper... |
| xpsmul 17479 | Value of the multiplicatio... |
| xpssca 17480 | Value of the scalar field ... |
| xpsvsca 17481 | Value of the scalar multip... |
| xpsless 17482 | Closure of the ordering in... |
| xpsle 17483 | Value of the ordering in a... |
| ismre 17492 | Property of being a Moore ... |
| fnmre 17493 | The Moore collection gener... |
| mresspw 17494 | A Moore collection is a su... |
| mress 17495 | A Moore-closed subset is a... |
| mre1cl 17496 | In any Moore collection th... |
| mreintcl 17497 | A nonempty collection of c... |
| mreiincl 17498 | A nonempty indexed interse... |
| mrerintcl 17499 | The relative intersection ... |
| mreriincl 17500 | The relative intersection ... |
| mreincl 17501 | Two closed sets have a clo... |
| mreuni 17502 | Since the entire base set ... |
| mreunirn 17503 | Two ways to express the no... |
| ismred 17504 | Properties that determine ... |
| ismred2 17505 | Properties that determine ... |
| mremre 17506 | The Moore collections of s... |
| submre 17507 | The subcollection of a clo... |
| xrsle 17508 | The ordering of the extend... |
| xrge0le 17509 | The "less than or equal to... |
| xrsbas 17510 | The base set of the extend... |
| xrge0base 17511 | The base of the extended n... |
| mrcflem 17512 | The domain and codomain of... |
| fnmrc 17513 | Moore-closure is a well-be... |
| mrcfval 17514 | Value of the function expr... |
| mrcf 17515 | The Moore closure is a fun... |
| mrcval 17516 | Evaluation of the Moore cl... |
| mrccl 17517 | The Moore closure of a set... |
| mrcsncl 17518 | The Moore closure of a sin... |
| mrcid 17519 | The closure of a closed se... |
| mrcssv 17520 | The closure of a set is a ... |
| mrcidb 17521 | A set is closed iff it is ... |
| mrcss 17522 | Closure preserves subset o... |
| mrcssid 17523 | The closure of a set is a ... |
| mrcidb2 17524 | A set is closed iff it con... |
| mrcidm 17525 | The closure operation is i... |
| mrcsscl 17526 | The closure is the minimal... |
| mrcuni 17527 | Idempotence of closure und... |
| mrcun 17528 | Idempotence of closure und... |
| mrcssvd 17529 | The Moore closure of a set... |
| mrcssd 17530 | Moore closure preserves su... |
| mrcssidd 17531 | A set is contained in its ... |
| mrcidmd 17532 | Moore closure is idempoten... |
| mressmrcd 17533 | In a Moore system, if a se... |
| submrc 17534 | In a closure system which ... |
| mrieqvlemd 17535 | In a Moore system, if ` Y ... |
| mrisval 17536 | Value of the set of indepe... |
| ismri 17537 | Criterion for a set to be ... |
| ismri2 17538 | Criterion for a subset of ... |
| ismri2d 17539 | Criterion for a subset of ... |
| ismri2dd 17540 | Definition of independence... |
| mriss 17541 | An independent set of a Mo... |
| mrissd 17542 | An independent set of a Mo... |
| ismri2dad 17543 | Consequence of a set in a ... |
| mrieqvd 17544 | In a Moore system, a set i... |
| mrieqv2d 17545 | In a Moore system, a set i... |
| mrissmrcd 17546 | In a Moore system, if an i... |
| mrissmrid 17547 | In a Moore system, subsets... |
| mreexd 17548 | In a Moore system, the clo... |
| mreexmrid 17549 | In a Moore system whose cl... |
| mreexexlemd 17550 | This lemma is used to gene... |
| mreexexlem2d 17551 | Used in ~ mreexexlem4d to ... |
| mreexexlem3d 17552 | Base case of the induction... |
| mreexexlem4d 17553 | Induction step of the indu... |
| mreexexd 17554 | Exchange-type theorem. In... |
| mreexdomd 17555 | In a Moore system whose cl... |
| mreexfidimd 17556 | In a Moore system whose cl... |
| isacs 17557 | A set is an algebraic clos... |
| acsmre 17558 | Algebraic closure systems ... |
| isacs2 17559 | In the definition of an al... |
| acsfiel 17560 | A set is closed in an alge... |
| acsfiel2 17561 | A set is closed in an alge... |
| acsmred 17562 | An algebraic closure syste... |
| isacs1i 17563 | A closure system determine... |
| mreacs 17564 | Algebraicity is a composab... |
| acsfn 17565 | Algebraicity of a conditio... |
| acsfn0 17566 | Algebraicity of a point cl... |
| acsfn1 17567 | Algebraicity of a one-argu... |
| acsfn1c 17568 | Algebraicity of a one-argu... |
| acsfn2 17569 | Algebraicity of a two-argu... |
| iscat 17578 | The predicate "is a catego... |
| iscatd 17579 | Properties that determine ... |
| catidex 17580 | Each object in a category ... |
| catideu 17581 | Each object in a category ... |
| cidfval 17582 | Each object in a category ... |
| cidval 17583 | Each object in a category ... |
| cidffn 17584 | The identity arrow constru... |
| cidfn 17585 | The identity arrow operato... |
| catidd 17586 | Deduce the identity arrow ... |
| iscatd2 17587 | Version of ~ iscatd with a... |
| catidcl 17588 | Each object in a category ... |
| catlid 17589 | Left identity property of ... |
| catrid 17590 | Right identity property of... |
| catcocl 17591 | Closure of a composition a... |
| catass 17592 | Associativity of compositi... |
| catcone0 17593 | Composition of non-empty h... |
| 0catg 17594 | Any structure with an empt... |
| 0cat 17595 | The empty set is a categor... |
| homffval 17596 | Value of the functionalize... |
| fnhomeqhomf 17597 | If the Hom-set operation i... |
| homfval 17598 | Value of the functionalize... |
| homffn 17599 | The functionalized Hom-set... |
| homfeq 17600 | Condition for two categori... |
| homfeqd 17601 | If two structures have the... |
| homfeqbas 17602 | Deduce equality of base se... |
| homfeqval 17603 | Value of the functionalize... |
| comfffval 17604 | Value of the functionalize... |
| comffval 17605 | Value of the functionalize... |
| comfval 17606 | Value of the functionalize... |
| comfffval2 17607 | Value of the functionalize... |
| comffval2 17608 | Value of the functionalize... |
| comfval2 17609 | Value of the functionalize... |
| comfffn 17610 | The functionalized composi... |
| comffn 17611 | The functionalized composi... |
| comfeq 17612 | Condition for two categori... |
| comfeqd 17613 | Condition for two categori... |
| comfeqval 17614 | Equality of two compositio... |
| catpropd 17615 | Two structures with the sa... |
| cidpropd 17616 | Two structures with the sa... |
| oppcval 17619 | Value of the opposite cate... |
| oppchomfval 17620 | Hom-sets of the opposite c... |
| oppchom 17621 | Hom-sets of the opposite c... |
| oppccofval 17622 | Composition in the opposit... |
| oppcco 17623 | Composition in the opposit... |
| oppcbas 17624 | Base set of an opposite ca... |
| oppccatid 17625 | Lemma for ~ oppccat . (Co... |
| oppchomf 17626 | Hom-sets of the opposite c... |
| oppcid 17627 | Identity function of an op... |
| oppccat 17628 | An opposite category is a ... |
| 2oppcbas 17629 | The double opposite catego... |
| 2oppchomf 17630 | The double opposite catego... |
| 2oppccomf 17631 | The double opposite catego... |
| oppchomfpropd 17632 | If two categories have the... |
| oppccomfpropd 17633 | If two categories have the... |
| oppccatf 17634 | ` oppCat ` restricted to `... |
| monfval 17639 | Definition of a monomorphi... |
| ismon 17640 | Definition of a monomorphi... |
| ismon2 17641 | Write out the monomorphism... |
| monhom 17642 | A monomorphism is a morphi... |
| moni 17643 | Property of a monomorphism... |
| monpropd 17644 | If two categories have the... |
| oppcmon 17645 | A monomorphism in the oppo... |
| oppcepi 17646 | An epimorphism in the oppo... |
| isepi 17647 | Definition of an epimorphi... |
| isepi2 17648 | Write out the epimorphism ... |
| epihom 17649 | An epimorphism is a morphi... |
| epii 17650 | Property of an epimorphism... |
| sectffval 17657 | Value of the section opera... |
| sectfval 17658 | Value of the section relat... |
| sectss 17659 | The section relation is a ... |
| issect 17660 | The property " ` F ` is a ... |
| issect2 17661 | Property of being a sectio... |
| sectcan 17662 | If ` G ` is a section of `... |
| sectco 17663 | Composition of two section... |
| isofval 17664 | Function value of the func... |
| invffval 17665 | Value of the inverse relat... |
| invfval 17666 | Value of the inverse relat... |
| isinv 17667 | Value of the inverse relat... |
| invss 17668 | The inverse relation is a ... |
| invsym 17669 | The inverse relation is sy... |
| invsym2 17670 | The inverse relation is sy... |
| invfun 17671 | The inverse relation is a ... |
| isoval 17672 | The isomorphisms are the d... |
| inviso1 17673 | If ` G ` is an inverse to ... |
| inviso2 17674 | If ` G ` is an inverse to ... |
| invf 17675 | The inverse relation is a ... |
| invf1o 17676 | The inverse relation is a ... |
| invinv 17677 | The inverse of the inverse... |
| invco 17678 | The composition of two iso... |
| dfiso2 17679 | Alternate definition of an... |
| dfiso3 17680 | Alternate definition of an... |
| inveq 17681 | If there are two inverses ... |
| isofn 17682 | The function value of the ... |
| isohom 17683 | An isomorphism is a homomo... |
| isoco 17684 | The composition of two iso... |
| oppcsect 17685 | A section in the opposite ... |
| oppcsect2 17686 | A section in the opposite ... |
| oppcinv 17687 | An inverse in the opposite... |
| oppciso 17688 | An isomorphism in the oppo... |
| sectmon 17689 | If ` F ` is a section of `... |
| monsect 17690 | If ` F ` is a monomorphism... |
| sectepi 17691 | If ` F ` is a section of `... |
| episect 17692 | If ` F ` is an epimorphism... |
| sectid 17693 | The identity is a section ... |
| invid 17694 | The inverse of the identit... |
| idiso 17695 | The identity is an isomorp... |
| idinv 17696 | The inverse of the identit... |
| invisoinvl 17697 | The inverse of an isomorph... |
| invisoinvr 17698 | The inverse of an isomorph... |
| invcoisoid 17699 | The inverse of an isomorph... |
| isocoinvid 17700 | The inverse of an isomorph... |
| rcaninv 17701 | Right cancellation of an i... |
| cicfval 17704 | The set of isomorphic obje... |
| brcic 17705 | The relation "is isomorphi... |
| cic 17706 | Objects ` X ` and ` Y ` in... |
| brcici 17707 | Prove that two objects are... |
| cicref 17708 | Isomorphism is reflexive. ... |
| ciclcl 17709 | Isomorphism implies the le... |
| cicrcl 17710 | Isomorphism implies the ri... |
| cicsym 17711 | Isomorphism is symmetric. ... |
| cictr 17712 | Isomorphism is transitive.... |
| cicer 17713 | Isomorphism is an equivale... |
| sscrel 17720 | The subcategory subset rel... |
| brssc 17721 | The subcategory subset rel... |
| sscpwex 17722 | An analogue of ~ pwex for ... |
| subcrcl 17723 | Reverse closure for the su... |
| sscfn1 17724 | The subcategory subset rel... |
| sscfn2 17725 | The subcategory subset rel... |
| ssclem 17726 | Lemma for ~ ssc1 and simil... |
| isssc 17727 | Value of the subcategory s... |
| ssc1 17728 | Infer subset relation on o... |
| ssc2 17729 | Infer subset relation on m... |
| sscres 17730 | Any function restricted to... |
| sscid 17731 | The subcategory subset rel... |
| ssctr 17732 | The subcategory subset rel... |
| ssceq 17733 | The subcategory subset rel... |
| rescval 17734 | Value of the category rest... |
| rescval2 17735 | Value of the category rest... |
| rescbas 17736 | Base set of the category r... |
| reschom 17737 | Hom-sets of the category r... |
| reschomf 17738 | Hom-sets of the category r... |
| rescco 17739 | Composition in the categor... |
| rescabs 17740 | Restriction absorption law... |
| rescabs2 17741 | Restriction absorption law... |
| issubc 17742 | Elementhood in the set of ... |
| issubc2 17743 | Elementhood in the set of ... |
| 0ssc 17744 | For any category ` C ` , t... |
| 0subcat 17745 | For any category ` C ` , t... |
| catsubcat 17746 | For any category ` C ` , `... |
| subcssc 17747 | An element in the set of s... |
| subcfn 17748 | An element in the set of s... |
| subcss1 17749 | The objects of a subcatego... |
| subcss2 17750 | The morphisms of a subcate... |
| subcidcl 17751 | The identity of the origin... |
| subccocl 17752 | A subcategory is closed un... |
| subccatid 17753 | A subcategory is a categor... |
| subcid 17754 | The identity in a subcateg... |
| subccat 17755 | A subcategory is a categor... |
| issubc3 17756 | Alternate definition of a ... |
| fullsubc 17757 | The full subcategory gener... |
| fullresc 17758 | The category formed by str... |
| resscat 17759 | A category restricted to a... |
| subsubc 17760 | A subcategory of a subcate... |
| relfunc 17769 | The set of functors is a r... |
| funcrcl 17770 | Reverse closure for a func... |
| isfunc 17771 | Value of the set of functo... |
| isfuncd 17772 | Deduce that an operation i... |
| funcf1 17773 | The object part of a funct... |
| funcixp 17774 | The morphism part of a fun... |
| funcf2 17775 | The morphism part of a fun... |
| funcfn2 17776 | The morphism part of a fun... |
| funcid 17777 | A functor maps each identi... |
| funcco 17778 | A functor maps composition... |
| funcsect 17779 | The image of a section und... |
| funcinv 17780 | The image of an inverse un... |
| funciso 17781 | The image of an isomorphis... |
| funcoppc 17782 | A functor on categories yi... |
| idfuval 17783 | Value of the identity func... |
| idfu2nd 17784 | Value of the morphism part... |
| idfu2 17785 | Value of the morphism part... |
| idfu1st 17786 | Value of the object part o... |
| idfu1 17787 | Value of the object part o... |
| idfucl 17788 | The identity functor is a ... |
| cofuval 17789 | Value of the composition o... |
| cofu1st 17790 | Value of the object part o... |
| cofu1 17791 | Value of the object part o... |
| cofu2nd 17792 | Value of the morphism part... |
| cofu2 17793 | Value of the morphism part... |
| cofuval2 17794 | Value of the composition o... |
| cofucl 17795 | The composition of two fun... |
| cofuass 17796 | Functor composition is ass... |
| cofulid 17797 | The identity functor is a ... |
| cofurid 17798 | The identity functor is a ... |
| resfval 17799 | Value of the functor restr... |
| resfval2 17800 | Value of the functor restr... |
| resf1st 17801 | Value of the functor restr... |
| resf2nd 17802 | Value of the functor restr... |
| funcres 17803 | A functor restricted to a ... |
| funcres2b 17804 | Condition for a functor to... |
| funcres2 17805 | A functor into a restricte... |
| idfusubc0 17806 | The identity functor for a... |
| idfusubc 17807 | The identity functor for a... |
| wunfunc 17808 | A weak universe is closed ... |
| funcpropd 17809 | If two categories have the... |
| funcres2c 17810 | Condition for a functor to... |
| fullfunc 17815 | A full functor is a functo... |
| fthfunc 17816 | A faithful functor is a fu... |
| relfull 17817 | The set of full functors i... |
| relfth 17818 | The set of faithful functo... |
| isfull 17819 | Value of the set of full f... |
| isfull2 17820 | Equivalent condition for a... |
| fullfo 17821 | The morphism map of a full... |
| fulli 17822 | The morphism map of a full... |
| isfth 17823 | Value of the set of faithf... |
| isfth2 17824 | Equivalent condition for a... |
| isffth2 17825 | A fully faithful functor i... |
| fthf1 17826 | The morphism map of a fait... |
| fthi 17827 | The morphism map of a fait... |
| ffthf1o 17828 | The morphism map of a full... |
| fullpropd 17829 | If two categories have the... |
| fthpropd 17830 | If two categories have the... |
| fulloppc 17831 | The opposite functor of a ... |
| fthoppc 17832 | The opposite functor of a ... |
| ffthoppc 17833 | The opposite functor of a ... |
| fthsect 17834 | A faithful functor reflect... |
| fthinv 17835 | A faithful functor reflect... |
| fthmon 17836 | A faithful functor reflect... |
| fthepi 17837 | A faithful functor reflect... |
| ffthiso 17838 | A fully faithful functor r... |
| fthres2b 17839 | Condition for a faithful f... |
| fthres2c 17840 | Condition for a faithful f... |
| fthres2 17841 | A faithful functor into a ... |
| idffth 17842 | The identity functor is a ... |
| cofull 17843 | The composition of two ful... |
| cofth 17844 | The composition of two fai... |
| coffth 17845 | The composition of two ful... |
| rescfth 17846 | The inclusion functor from... |
| ressffth 17847 | The inclusion functor from... |
| fullres2c 17848 | Condition for a full funct... |
| ffthres2c 17849 | Condition for a fully fait... |
| inclfusubc 17850 | The "inclusion functor" fr... |
| fnfuc 17855 | The ` FuncCat ` operation ... |
| natfval 17856 | Value of the function givi... |
| isnat 17857 | Property of being a natura... |
| isnat2 17858 | Property of being a natura... |
| natffn 17859 | The natural transformation... |
| natrcl 17860 | Reverse closure for a natu... |
| nat1st2nd 17861 | Rewrite the natural transf... |
| natixp 17862 | A natural transformation i... |
| natcl 17863 | A component of a natural t... |
| natfn 17864 | A natural transformation i... |
| nati 17865 | Naturality property of a n... |
| wunnat 17866 | A weak universe is closed ... |
| catstr 17867 | A category structure is a ... |
| fucval 17868 | Value of the functor categ... |
| fuccofval 17869 | Value of the functor categ... |
| fucbas 17870 | The objects of the functor... |
| fuchom 17871 | The morphisms in the funct... |
| fucco 17872 | Value of the composition o... |
| fuccoval 17873 | Value of the functor categ... |
| fuccocl 17874 | The composition of two nat... |
| fucidcl 17875 | The identity natural trans... |
| fuclid 17876 | Left identity of natural t... |
| fucrid 17877 | Right identity of natural ... |
| fucass 17878 | Associativity of natural t... |
| fuccatid 17879 | The functor category is a ... |
| fuccat 17880 | The functor category is a ... |
| fucid 17881 | The identity morphism in t... |
| fucsect 17882 | Two natural transformation... |
| fucinv 17883 | Two natural transformation... |
| invfuc 17884 | If ` V ( x ) ` is an inver... |
| fuciso 17885 | A natural transformation i... |
| natpropd 17886 | If two categories have the... |
| fucpropd 17887 | If two categories have the... |
| initofn 17894 | ` InitO ` is a function on... |
| termofn 17895 | ` TermO ` is a function on... |
| zeroofn 17896 | ` ZeroO ` is a function on... |
| initorcl 17897 | Reverse closure for an ini... |
| termorcl 17898 | Reverse closure for a term... |
| zeroorcl 17899 | Reverse closure for a zero... |
| initoval 17900 | The value of the initial o... |
| termoval 17901 | The value of the terminal ... |
| zerooval 17902 | The value of the zero obje... |
| isinito 17903 | The predicate "is an initi... |
| istermo 17904 | The predicate "is a termin... |
| iszeroo 17905 | The predicate "is a zero o... |
| isinitoi 17906 | Implication of a class bei... |
| istermoi 17907 | Implication of a class bei... |
| initoid 17908 | For an initial object, the... |
| termoid 17909 | For a terminal object, the... |
| dfinito2 17910 | An initial object is a ter... |
| dftermo2 17911 | A terminal object is an in... |
| dfinito3 17912 | An alternate definition of... |
| dftermo3 17913 | An alternate definition of... |
| initoo 17914 | An initial object is an ob... |
| termoo 17915 | A terminal object is an ob... |
| iszeroi 17916 | Implication of a class bei... |
| 2initoinv 17917 | Morphisms between two init... |
| initoeu1 17918 | Initial objects are essent... |
| initoeu1w 17919 | Initial objects are essent... |
| initoeu2lem0 17920 | Lemma 0 for ~ initoeu2 . ... |
| initoeu2lem1 17921 | Lemma 1 for ~ initoeu2 . ... |
| initoeu2lem2 17922 | Lemma 2 for ~ initoeu2 . ... |
| initoeu2 17923 | Initial objects are essent... |
| 2termoinv 17924 | Morphisms between two term... |
| termoeu1 17925 | Terminal objects are essen... |
| termoeu1w 17926 | Terminal objects are essen... |
| homarcl 17935 | Reverse closure for an arr... |
| homafval 17936 | Value of the disjointified... |
| homaf 17937 | Functionality of the disjo... |
| homaval 17938 | Value of the disjointified... |
| elhoma 17939 | Value of the disjointified... |
| elhomai 17940 | Produce an arrow from a mo... |
| elhomai2 17941 | Produce an arrow from a mo... |
| homarcl2 17942 | Reverse closure for the do... |
| homarel 17943 | An arrow is an ordered pai... |
| homa1 17944 | The first component of an ... |
| homahom2 17945 | The second component of an... |
| homahom 17946 | The second component of an... |
| homadm 17947 | The domain of an arrow wit... |
| homacd 17948 | The codomain of an arrow w... |
| homadmcd 17949 | Decompose an arrow into do... |
| arwval 17950 | The set of arrows is the u... |
| arwrcl 17951 | The first component of an ... |
| arwhoma 17952 | An arrow is contained in t... |
| homarw 17953 | A hom-set is a subset of t... |
| arwdm 17954 | The domain of an arrow is ... |
| arwcd 17955 | The codomain of an arrow i... |
| dmaf 17956 | The domain function is a f... |
| cdaf 17957 | The codomain function is a... |
| arwhom 17958 | The second component of an... |
| arwdmcd 17959 | Decompose an arrow into do... |
| idafval 17964 | Value of the identity arro... |
| idaval 17965 | Value of the identity arro... |
| ida2 17966 | Morphism part of the ident... |
| idahom 17967 | Domain and codomain of the... |
| idadm 17968 | Domain of the identity arr... |
| idacd 17969 | Codomain of the identity a... |
| idaf 17970 | The identity arrow functio... |
| coafval 17971 | The value of the compositi... |
| eldmcoa 17972 | A pair ` <. G , F >. ` is ... |
| dmcoass 17973 | The domain of composition ... |
| homdmcoa 17974 | If ` F : X --> Y ` and ` G... |
| coaval 17975 | Value of composition for c... |
| coa2 17976 | The morphism part of arrow... |
| coahom 17977 | The composition of two com... |
| coapm 17978 | Composition of arrows is a... |
| arwlid 17979 | Left identity of a categor... |
| arwrid 17980 | Right identity of a catego... |
| arwass 17981 | Associativity of compositi... |
| setcval 17984 | Value of the category of s... |
| setcbas 17985 | Set of objects of the cate... |
| setchomfval 17986 | Set of arrows of the categ... |
| setchom 17987 | Set of arrows of the categ... |
| elsetchom 17988 | A morphism of sets is a fu... |
| setccofval 17989 | Composition in the categor... |
| setcco 17990 | Composition in the categor... |
| setccatid 17991 | Lemma for ~ setccat . (Co... |
| setccat 17992 | The category of sets is a ... |
| setcid 17993 | The identity arrow in the ... |
| setcmon 17994 | A monomorphism of sets is ... |
| setcepi 17995 | An epimorphism of sets is ... |
| setcsect 17996 | A section in the category ... |
| setcinv 17997 | An inverse in the category... |
| setciso 17998 | An isomorphism in the cate... |
| resssetc 17999 | The restriction of the cat... |
| funcsetcres2 18000 | A functor into a smaller c... |
| setc2obas 18001 | ` (/) ` and ` 1o ` are dis... |
| setc2ohom 18002 | ` ( SetCat `` 2o ) ` is a ... |
| cat1lem 18003 | The category of sets in a ... |
| cat1 18004 | The definition of category... |
| catcval 18007 | Value of the category of c... |
| catcbas 18008 | Set of objects of the cate... |
| catchomfval 18009 | Set of arrows of the categ... |
| catchom 18010 | Set of arrows of the categ... |
| catccofval 18011 | Composition in the categor... |
| catcco 18012 | Composition in the categor... |
| catccatid 18013 | Lemma for ~ catccat . (Co... |
| catcid 18014 | The identity arrow in the ... |
| catccat 18015 | The category of categories... |
| resscatc 18016 | The restriction of the cat... |
| catcisolem 18017 | Lemma for ~ catciso . (Co... |
| catciso 18018 | A functor is an isomorphis... |
| catcbascl 18019 | An element of the base set... |
| catcslotelcl 18020 | A slot entry of an element... |
| catcbaselcl 18021 | The base set of an element... |
| catchomcl 18022 | The Hom-set of an element ... |
| catcccocl 18023 | The composition operation ... |
| catcoppccl 18024 | The category of categories... |
| catcfuccl 18025 | The category of categories... |
| fncnvimaeqv 18026 | The inverse images of the ... |
| bascnvimaeqv 18027 | The inverse image of the u... |
| estrcval 18030 | Value of the category of e... |
| estrcbas 18031 | Set of objects of the cate... |
| estrchomfval 18032 | Set of morphisms ("arrows"... |
| estrchom 18033 | The morphisms between exte... |
| elestrchom 18034 | A morphism between extensi... |
| estrccofval 18035 | Composition in the categor... |
| estrcco 18036 | Composition in the categor... |
| estrcbasbas 18037 | An element of the base set... |
| estrccatid 18038 | Lemma for ~ estrccat . (C... |
| estrccat 18039 | The category of extensible... |
| estrcid 18040 | The identity arrow in the ... |
| estrchomfn 18041 | The Hom-set operation in t... |
| estrchomfeqhom 18042 | The functionalized Hom-set... |
| estrreslem1 18043 | Lemma 1 for ~ estrres . (... |
| estrreslem2 18044 | Lemma 2 for ~ estrres . (... |
| estrres 18045 | Any restriction of a categ... |
| funcestrcsetclem1 18046 | Lemma 1 for ~ funcestrcset... |
| funcestrcsetclem2 18047 | Lemma 2 for ~ funcestrcset... |
| funcestrcsetclem3 18048 | Lemma 3 for ~ funcestrcset... |
| funcestrcsetclem4 18049 | Lemma 4 for ~ funcestrcset... |
| funcestrcsetclem5 18050 | Lemma 5 for ~ funcestrcset... |
| funcestrcsetclem6 18051 | Lemma 6 for ~ funcestrcset... |
| funcestrcsetclem7 18052 | Lemma 7 for ~ funcestrcset... |
| funcestrcsetclem8 18053 | Lemma 8 for ~ funcestrcset... |
| funcestrcsetclem9 18054 | Lemma 9 for ~ funcestrcset... |
| funcestrcsetc 18055 | The "natural forgetful fun... |
| fthestrcsetc 18056 | The "natural forgetful fun... |
| fullestrcsetc 18057 | The "natural forgetful fun... |
| equivestrcsetc 18058 | The "natural forgetful fun... |
| setc1strwun 18059 | A constructed one-slot str... |
| funcsetcestrclem1 18060 | Lemma 1 for ~ funcsetcestr... |
| funcsetcestrclem2 18061 | Lemma 2 for ~ funcsetcestr... |
| funcsetcestrclem3 18062 | Lemma 3 for ~ funcsetcestr... |
| embedsetcestrclem 18063 | Lemma for ~ embedsetcestrc... |
| funcsetcestrclem4 18064 | Lemma 4 for ~ funcsetcestr... |
| funcsetcestrclem5 18065 | Lemma 5 for ~ funcsetcestr... |
| funcsetcestrclem6 18066 | Lemma 6 for ~ funcsetcestr... |
| funcsetcestrclem7 18067 | Lemma 7 for ~ funcsetcestr... |
| funcsetcestrclem8 18068 | Lemma 8 for ~ funcsetcestr... |
| funcsetcestrclem9 18069 | Lemma 9 for ~ funcsetcestr... |
| funcsetcestrc 18070 | The "embedding functor" fr... |
| fthsetcestrc 18071 | The "embedding functor" fr... |
| fullsetcestrc 18072 | The "embedding functor" fr... |
| embedsetcestrc 18073 | The "embedding functor" fr... |
| fnxpc 18082 | The binary product of cate... |
| xpcval 18083 | Value of the binary produc... |
| xpcbas 18084 | Set of objects of the bina... |
| xpchomfval 18085 | Set of morphisms of the bi... |
| xpchom 18086 | Set of morphisms of the bi... |
| relxpchom 18087 | A hom-set in the binary pr... |
| xpccofval 18088 | Value of composition in th... |
| xpcco 18089 | Value of composition in th... |
| xpcco1st 18090 | Value of composition in th... |
| xpcco2nd 18091 | Value of composition in th... |
| xpchom2 18092 | Value of the set of morphi... |
| xpcco2 18093 | Value of composition in th... |
| xpccatid 18094 | The product of two categor... |
| xpcid 18095 | The identity morphism in t... |
| xpccat 18096 | The product of two categor... |
| 1stfval 18097 | Value of the first project... |
| 1stf1 18098 | Value of the first project... |
| 1stf2 18099 | Value of the first project... |
| 2ndfval 18100 | Value of the first project... |
| 2ndf1 18101 | Value of the first project... |
| 2ndf2 18102 | Value of the first project... |
| 1stfcl 18103 | The first projection funct... |
| 2ndfcl 18104 | The second projection func... |
| prfval 18105 | Value of the pairing funct... |
| prf1 18106 | Value of the pairing funct... |
| prf2fval 18107 | Value of the pairing funct... |
| prf2 18108 | Value of the pairing funct... |
| prfcl 18109 | The pairing of functors ` ... |
| prf1st 18110 | Cancellation of pairing wi... |
| prf2nd 18111 | Cancellation of pairing wi... |
| 1st2ndprf 18112 | Break a functor into a pro... |
| catcxpccl 18113 | The category of categories... |
| xpcpropd 18114 | If two categories have the... |
| evlfval 18123 | Value of the evaluation fu... |
| evlf2 18124 | Value of the evaluation fu... |
| evlf2val 18125 | Value of the evaluation na... |
| evlf1 18126 | Value of the evaluation fu... |
| evlfcllem 18127 | Lemma for ~ evlfcl . (Con... |
| evlfcl 18128 | The evaluation functor is ... |
| curfval 18129 | Value of the curry functor... |
| curf1fval 18130 | Value of the object part o... |
| curf1 18131 | Value of the object part o... |
| curf11 18132 | Value of the double evalua... |
| curf12 18133 | The partially evaluated cu... |
| curf1cl 18134 | The partially evaluated cu... |
| curf2 18135 | Value of the curry functor... |
| curf2val 18136 | Value of a component of th... |
| curf2cl 18137 | The curry functor at a mor... |
| curfcl 18138 | The curry functor of a fun... |
| curfpropd 18139 | If two categories have the... |
| uncfval 18140 | Value of the uncurry funct... |
| uncfcl 18141 | The uncurry operation take... |
| uncf1 18142 | Value of the uncurry funct... |
| uncf2 18143 | Value of the uncurry funct... |
| curfuncf 18144 | Cancellation of curry with... |
| uncfcurf 18145 | Cancellation of uncurry wi... |
| diagval 18146 | Define the diagonal functo... |
| diagcl 18147 | The diagonal functor is a ... |
| diag1cl 18148 | The constant functor of ` ... |
| diag11 18149 | Value of the constant func... |
| diag12 18150 | Value of the constant func... |
| diag2 18151 | Value of the diagonal func... |
| diag2cl 18152 | The diagonal functor at a ... |
| curf2ndf 18153 | As shown in ~ diagval , th... |
| hofval 18158 | Value of the Hom functor, ... |
| hof1fval 18159 | The object part of the Hom... |
| hof1 18160 | The object part of the Hom... |
| hof2fval 18161 | The morphism part of the H... |
| hof2val 18162 | The morphism part of the H... |
| hof2 18163 | The morphism part of the H... |
| hofcllem 18164 | Lemma for ~ hofcl . (Cont... |
| hofcl 18165 | Closure of the Hom functor... |
| oppchofcl 18166 | Closure of the opposite Ho... |
| yonval 18167 | Value of the Yoneda embedd... |
| yoncl 18168 | The Yoneda embedding is a ... |
| yon1cl 18169 | The Yoneda embedding at an... |
| yon11 18170 | Value of the Yoneda embedd... |
| yon12 18171 | Value of the Yoneda embedd... |
| yon2 18172 | Value of the Yoneda embedd... |
| hofpropd 18173 | If two categories have the... |
| yonpropd 18174 | If two categories have the... |
| oppcyon 18175 | Value of the opposite Yone... |
| oyoncl 18176 | The opposite Yoneda embedd... |
| oyon1cl 18177 | The opposite Yoneda embedd... |
| yonedalem1 18178 | Lemma for ~ yoneda . (Con... |
| yonedalem21 18179 | Lemma for ~ yoneda . (Con... |
| yonedalem3a 18180 | Lemma for ~ yoneda . (Con... |
| yonedalem4a 18181 | Lemma for ~ yoneda . (Con... |
| yonedalem4b 18182 | Lemma for ~ yoneda . (Con... |
| yonedalem4c 18183 | Lemma for ~ yoneda . (Con... |
| yonedalem22 18184 | Lemma for ~ yoneda . (Con... |
| yonedalem3b 18185 | Lemma for ~ yoneda . (Con... |
| yonedalem3 18186 | Lemma for ~ yoneda . (Con... |
| yonedainv 18187 | The Yoneda Lemma with expl... |
| yonffthlem 18188 | Lemma for ~ yonffth . (Co... |
| yoneda 18189 | The Yoneda Lemma. There i... |
| yonffth 18190 | The Yoneda Lemma. The Yon... |
| yoniso 18191 | If the codomain is recover... |
| oduval 18194 | Value of an order dual str... |
| oduleval 18195 | Value of the less-equal re... |
| oduleg 18196 | Truth of the less-equal re... |
| odubas 18197 | Base set of an order dual ... |
| isprs 18202 | Property of being a preord... |
| prslem 18203 | Lemma for ~ prsref and ~ p... |
| prsref 18204 | "Less than or equal to" is... |
| prstr 18205 | "Less than or equal to" is... |
| oduprs 18206 | Being a proset is a self-d... |
| isdrs 18207 | Property of being a direct... |
| drsdir 18208 | Direction of a directed se... |
| drsprs 18209 | A directed set is a proset... |
| drsbn0 18210 | The base of a directed set... |
| drsdirfi 18211 | Any _finite_ number of ele... |
| isdrs2 18212 | Directed sets may be defin... |
| ispos 18220 | The predicate "is a poset"... |
| ispos2 18221 | A poset is an antisymmetri... |
| posprs 18222 | A poset is a proset. (Con... |
| posi 18223 | Lemma for poset properties... |
| posref 18224 | A poset ordering is reflex... |
| posasymb 18225 | A poset ordering is asymme... |
| postr 18226 | A poset ordering is transi... |
| 0pos 18227 | Technical lemma to simplif... |
| isposd 18228 | Properties that determine ... |
| isposi 18229 | Properties that determine ... |
| isposix 18230 | Properties that determine ... |
| pospropd 18231 | Posethood is determined on... |
| odupos 18232 | Being a poset is a self-du... |
| oduposb 18233 | Being a poset is a self-du... |
| pltfval 18235 | Value of the less-than rel... |
| pltval 18236 | Less-than relation. ( ~ d... |
| pltle 18237 | "Less than" implies "less ... |
| pltne 18238 | The "less than" relation i... |
| pltirr 18239 | The "less than" relation i... |
| pleval2i 18240 | One direction of ~ pleval2... |
| pleval2 18241 | "Less than or equal to" in... |
| pltnle 18242 | "Less than" implies not co... |
| pltval3 18243 | Alternate expression for t... |
| pltnlt 18244 | The less-than relation imp... |
| pltn2lp 18245 | The less-than relation has... |
| plttr 18246 | The less-than relation is ... |
| pltletr 18247 | Transitive law for chained... |
| plelttr 18248 | Transitive law for chained... |
| pospo 18249 | Write a poset structure in... |
| lubfval 18254 | Value of the least upper b... |
| lubdm 18255 | Domain of the least upper ... |
| lubfun 18256 | The LUB is a function. (C... |
| lubeldm 18257 | Member of the domain of th... |
| lubelss 18258 | A member of the domain of ... |
| lubeu 18259 | Unique existence proper of... |
| lubval 18260 | Value of the least upper b... |
| lubcl 18261 | The least upper bound func... |
| lubprop 18262 | Properties of greatest low... |
| luble 18263 | The greatest lower bound i... |
| lublecllem 18264 | Lemma for ~ lublecl and ~ ... |
| lublecl 18265 | The set of all elements le... |
| lubid 18266 | The LUB of elements less t... |
| glbfval 18267 | Value of the greatest lowe... |
| glbdm 18268 | Domain of the greatest low... |
| glbfun 18269 | The GLB is a function. (C... |
| glbeldm 18270 | Member of the domain of th... |
| glbelss 18271 | A member of the domain of ... |
| glbeu 18272 | Unique existence proper of... |
| glbval 18273 | Value of the greatest lowe... |
| glbcl 18274 | The least upper bound func... |
| glbprop 18275 | Properties of greatest low... |
| glble 18276 | The greatest lower bound i... |
| joinfval 18277 | Value of join function for... |
| joinfval2 18278 | Value of join function for... |
| joindm 18279 | Domain of join function fo... |
| joindef 18280 | Two ways to say that a joi... |
| joinval 18281 | Join value. Since both si... |
| joincl 18282 | Closure of join of element... |
| joindmss 18283 | Subset property of domain ... |
| joinval2lem 18284 | Lemma for ~ joinval2 and ~... |
| joinval2 18285 | Value of join for a poset ... |
| joineu 18286 | Uniqueness of join of elem... |
| joinlem 18287 | Lemma for join properties.... |
| lejoin1 18288 | A join's first argument is... |
| lejoin2 18289 | A join's second argument i... |
| joinle 18290 | A join is less than or equ... |
| meetfval 18291 | Value of meet function for... |
| meetfval2 18292 | Value of meet function for... |
| meetdm 18293 | Domain of meet function fo... |
| meetdef 18294 | Two ways to say that a mee... |
| meetval 18295 | Meet value. Since both si... |
| meetcl 18296 | Closure of meet of element... |
| meetdmss 18297 | Subset property of domain ... |
| meetval2lem 18298 | Lemma for ~ meetval2 and ~... |
| meetval2 18299 | Value of meet for a poset ... |
| meeteu 18300 | Uniqueness of meet of elem... |
| meetlem 18301 | Lemma for meet properties.... |
| lemeet1 18302 | A meet's first argument is... |
| lemeet2 18303 | A meet's second argument i... |
| meetle 18304 | A meet is less than or equ... |
| joincomALT 18305 | The join of a poset is com... |
| joincom 18306 | The join of a poset is com... |
| meetcomALT 18307 | The meet of a poset is com... |
| meetcom 18308 | The meet of a poset is com... |
| join0 18309 | Lemma for ~ odumeet . (Co... |
| meet0 18310 | Lemma for ~ odujoin . (Co... |
| odulub 18311 | Least upper bounds in a du... |
| odujoin 18312 | Joins in a dual order are ... |
| oduglb 18313 | Greatest lower bounds in a... |
| odumeet 18314 | Meets in a dual order are ... |
| poslubmo 18315 | Least upper bounds in a po... |
| posglbmo 18316 | Greatest lower bounds in a... |
| poslubd 18317 | Properties which determine... |
| poslubdg 18318 | Properties which determine... |
| posglbdg 18319 | Properties which determine... |
| istos 18322 | The predicate "is a toset"... |
| tosso 18323 | Write the totally ordered ... |
| tospos 18324 | A Toset is a Poset. (Cont... |
| tleile 18325 | In a Toset, any two elemen... |
| tltnle 18326 | In a Toset, "less than" is... |
| p0val 18331 | Value of poset zero. (Con... |
| p1val 18332 | Value of poset zero. (Con... |
| p0le 18333 | Any element is less than o... |
| ple1 18334 | Any element is less than o... |
| resspos 18335 | The restriction of a Poset... |
| resstos 18336 | The restriction of a Toset... |
| islat 18339 | The predicate "is a lattic... |
| odulatb 18340 | Being a lattice is self-du... |
| odulat 18341 | Being a lattice is self-du... |
| latcl2 18342 | The join and meet of any t... |
| latlem 18343 | Lemma for lattice properti... |
| latpos 18344 | A lattice is a poset. (Co... |
| latjcl 18345 | Closure of join operation ... |
| latmcl 18346 | Closure of meet operation ... |
| latref 18347 | A lattice ordering is refl... |
| latasymb 18348 | A lattice ordering is asym... |
| latasym 18349 | A lattice ordering is asym... |
| lattr 18350 | A lattice ordering is tran... |
| latasymd 18351 | Deduce equality from latti... |
| lattrd 18352 | A lattice ordering is tran... |
| latjcom 18353 | The join of a lattice comm... |
| latlej1 18354 | A join's first argument is... |
| latlej2 18355 | A join's second argument i... |
| latjle12 18356 | A join is less than or equ... |
| latleeqj1 18357 | "Less than or equal to" in... |
| latleeqj2 18358 | "Less than or equal to" in... |
| latjlej1 18359 | Add join to both sides of ... |
| latjlej2 18360 | Add join to both sides of ... |
| latjlej12 18361 | Add join to both sides of ... |
| latnlej 18362 | An idiom to express that a... |
| latnlej1l 18363 | An idiom to express that a... |
| latnlej1r 18364 | An idiom to express that a... |
| latnlej2 18365 | An idiom to express that a... |
| latnlej2l 18366 | An idiom to express that a... |
| latnlej2r 18367 | An idiom to express that a... |
| latjidm 18368 | Lattice join is idempotent... |
| latmcom 18369 | The join of a lattice comm... |
| latmle1 18370 | A meet is less than or equ... |
| latmle2 18371 | A meet is less than or equ... |
| latlem12 18372 | An element is less than or... |
| latleeqm1 18373 | "Less than or equal to" in... |
| latleeqm2 18374 | "Less than or equal to" in... |
| latmlem1 18375 | Add meet to both sides of ... |
| latmlem2 18376 | Add meet to both sides of ... |
| latmlem12 18377 | Add join to both sides of ... |
| latnlemlt 18378 | Negation of "less than or ... |
| latnle 18379 | Equivalent expressions for... |
| latmidm 18380 | Lattice meet is idempotent... |
| latabs1 18381 | Lattice absorption law. F... |
| latabs2 18382 | Lattice absorption law. F... |
| latledi 18383 | An ortholattice is distrib... |
| latmlej11 18384 | Ordering of a meet and joi... |
| latmlej12 18385 | Ordering of a meet and joi... |
| latmlej21 18386 | Ordering of a meet and joi... |
| latmlej22 18387 | Ordering of a meet and joi... |
| lubsn 18388 | The least upper bound of a... |
| latjass 18389 | Lattice join is associativ... |
| latj12 18390 | Swap 1st and 2nd members o... |
| latj32 18391 | Swap 2nd and 3rd members o... |
| latj13 18392 | Swap 1st and 3rd members o... |
| latj31 18393 | Swap 2nd and 3rd members o... |
| latjrot 18394 | Rotate lattice join of 3 c... |
| latj4 18395 | Rearrangement of lattice j... |
| latj4rot 18396 | Rotate lattice join of 4 c... |
| latjjdi 18397 | Lattice join distributes o... |
| latjjdir 18398 | Lattice join distributes o... |
| mod1ile 18399 | The weak direction of the ... |
| mod2ile 18400 | The weak direction of the ... |
| latmass 18401 | Lattice meet is associativ... |
| latdisdlem 18402 | Lemma for ~ latdisd . (Co... |
| latdisd 18403 | In a lattice, joins distri... |
| isclat 18406 | The predicate "is a comple... |
| clatpos 18407 | A complete lattice is a po... |
| clatlem 18408 | Lemma for properties of a ... |
| clatlubcl 18409 | Any subset of the base set... |
| clatlubcl2 18410 | Any subset of the base set... |
| clatglbcl 18411 | Any subset of the base set... |
| clatglbcl2 18412 | Any subset of the base set... |
| oduclatb 18413 | Being a complete lattice i... |
| clatl 18414 | A complete lattice is a la... |
| isglbd 18415 | Properties that determine ... |
| lublem 18416 | Lemma for the least upper ... |
| lubub 18417 | The LUB of a complete latt... |
| lubl 18418 | The LUB of a complete latt... |
| lubss 18419 | Subset law for least upper... |
| lubel 18420 | An element of a set is les... |
| lubun 18421 | The LUB of a union. (Cont... |
| clatglb 18422 | Properties of greatest low... |
| clatglble 18423 | The greatest lower bound i... |
| clatleglb 18424 | Two ways of expressing "le... |
| clatglbss 18425 | Subset law for greatest lo... |
| isdlat 18428 | Property of being a distri... |
| dlatmjdi 18429 | In a distributive lattice,... |
| dlatl 18430 | A distributive lattice is ... |
| odudlatb 18431 | The dual of a distributive... |
| dlatjmdi 18432 | In a distributive lattice,... |
| ipostr 18435 | The structure of ~ df-ipo ... |
| ipoval 18436 | Value of the inclusion pos... |
| ipobas 18437 | Base set of the inclusion ... |
| ipolerval 18438 | Relation of the inclusion ... |
| ipotset 18439 | Topology of the inclusion ... |
| ipole 18440 | Weak order condition of th... |
| ipolt 18441 | Strict order condition of ... |
| ipopos 18442 | The inclusion poset on a f... |
| isipodrs 18443 | Condition for a family of ... |
| ipodrscl 18444 | Direction by inclusion as ... |
| ipodrsfi 18445 | Finite upper bound propert... |
| fpwipodrs 18446 | The finite subsets of any ... |
| ipodrsima 18447 | The monotone image of a di... |
| isacs3lem 18448 | An algebraic closure syste... |
| acsdrsel 18449 | An algebraic closure syste... |
| isacs4lem 18450 | In a closure system in whi... |
| isacs5lem 18451 | If closure commutes with d... |
| acsdrscl 18452 | In an algebraic closure sy... |
| acsficl 18453 | A closure in an algebraic ... |
| isacs5 18454 | A closure system is algebr... |
| isacs4 18455 | A closure system is algebr... |
| isacs3 18456 | A closure system is algebr... |
| acsficld 18457 | In an algebraic closure sy... |
| acsficl2d 18458 | In an algebraic closure sy... |
| acsfiindd 18459 | In an algebraic closure sy... |
| acsmapd 18460 | In an algebraic closure sy... |
| acsmap2d 18461 | In an algebraic closure sy... |
| acsinfd 18462 | In an algebraic closure sy... |
| acsdomd 18463 | In an algebraic closure sy... |
| acsinfdimd 18464 | In an algebraic closure sy... |
| acsexdimd 18465 | In an algebraic closure sy... |
| mrelatglb 18466 | Greatest lower bounds in a... |
| mrelatglb0 18467 | The empty intersection in ... |
| mrelatlub 18468 | Least upper bounds in a Mo... |
| mreclatBAD 18469 | A Moore space is a complet... |
| isps 18474 | The predicate "is a poset"... |
| psrel 18475 | A poset is a relation. (C... |
| psref2 18476 | A poset is antisymmetric a... |
| pstr2 18477 | A poset is transitive. (C... |
| pslem 18478 | Lemma for ~ psref and othe... |
| psdmrn 18479 | The domain and range of a ... |
| psref 18480 | A poset is reflexive. (Co... |
| psrn 18481 | The range of a poset equal... |
| psasym 18482 | A poset is antisymmetric. ... |
| pstr 18483 | A poset is transitive. (C... |
| cnvps 18484 | The converse of a poset is... |
| cnvpsb 18485 | The converse of a poset is... |
| psss 18486 | Any subset of a partially ... |
| psssdm2 18487 | Field of a subposet. (Con... |
| psssdm 18488 | Field of a subposet. (Con... |
| istsr 18489 | The predicate is a toset. ... |
| istsr2 18490 | The predicate is a toset. ... |
| tsrlin 18491 | A toset is a linear order.... |
| tsrlemax 18492 | Two ways of saying a numbe... |
| tsrps 18493 | A toset is a poset. (Cont... |
| cnvtsr 18494 | The converse of a toset is... |
| tsrss 18495 | Any subset of a totally or... |
| ledm 18496 | The domain of ` <_ ` is ` ... |
| lern 18497 | The range of ` <_ ` is ` R... |
| lefld 18498 | The field of the 'less or ... |
| letsr 18499 | The "less than or equal to... |
| isdir 18504 | A condition for a relation... |
| reldir 18505 | A direction is a relation.... |
| dirdm 18506 | A direction's domain is eq... |
| dirref 18507 | A direction is reflexive. ... |
| dirtr 18508 | A direction is transitive.... |
| dirge 18509 | For any two elements of a ... |
| tsrdir 18510 | A totally ordered set is a... |
| ischn 18513 | Property of being a chain.... |
| chnwrd 18514 | A chain is an ordered sequ... |
| chnltm1 18515 | Basic property of a chain.... |
| pfxchn 18516 | A prefix of a chain is sti... |
| nfchnd 18517 | Bound-variable hypothesis ... |
| chneq1 18518 | Equality theorem for chain... |
| chneq2 18519 | Equality theorem for chain... |
| chneq12 18520 | Equality theorem for chain... |
| chnrss 18521 | Chains under a relation ar... |
| chndss 18522 | Chains with an alphabet ar... |
| chnrdss 18523 | Subset theorem for chains.... |
| chnexg 18524 | Chains with a set given fo... |
| nulchn 18525 | Empty set is an increasing... |
| s1chn 18526 | A singleton word is always... |
| chnind 18527 | Induction over a chain. S... |
| chnub 18528 | In a chain, the last eleme... |
| chnlt 18529 | Compare any two elements i... |
| chnso 18530 | A chain induces a total or... |
| chnccats1 18531 | Extend a chain with a sing... |
| chnccat 18532 | Concatenate two chains. (... |
| chnrev 18533 | Reverse of a chain is chai... |
| chnflenfi 18534 | There is a finite number o... |
| chnf 18535 | A chain is a zero-based fi... |
| chnpof1 18536 | A chain under relation whi... |
| chnpoadomd 18537 | A chain under relation whi... |
| chnpolleha 18538 | A chain under relation whi... |
| chnpolfz 18539 | Provided that chain's rela... |
| chnfi 18540 | There is a finite number o... |
| chninf 18541 | There is an infinite numbe... |
| chnfibg 18542 | Given a partial order, the... |
| ex-chn1 18543 | Example: a doubleton of tw... |
| ex-chn2 18544 | Example: sequence <" ZZ NN... |
| ismgm 18549 | The predicate "is a magma"... |
| ismgmn0 18550 | The predicate "is a magma"... |
| mgmcl 18551 | Closure of the operation o... |
| isnmgm 18552 | A condition for a structur... |
| mgmsscl 18553 | If the base set of a magma... |
| plusffval 18554 | The group addition operati... |
| plusfval 18555 | The group addition operati... |
| plusfeq 18556 | If the addition operation ... |
| plusffn 18557 | The group addition operati... |
| mgmplusf 18558 | The group addition functio... |
| mgmpropd 18559 | If two structures have the... |
| ismgmd 18560 | Deduce a magma from its pr... |
| issstrmgm 18561 | Characterize a substructur... |
| intopsn 18562 | The internal operation for... |
| mgmb1mgm1 18563 | The only magma with a base... |
| mgm0 18564 | Any set with an empty base... |
| mgm0b 18565 | The structure with an empt... |
| mgm1 18566 | The structure with one ele... |
| opifismgm 18567 | A structure with a group a... |
| mgmidmo 18568 | A two-sided identity eleme... |
| grpidval 18569 | The value of the identity ... |
| grpidpropd 18570 | If two structures have the... |
| fn0g 18571 | The group zero extractor i... |
| 0g0 18572 | The identity element funct... |
| ismgmid 18573 | The identity element of a ... |
| mgmidcl 18574 | The identity element of a ... |
| mgmlrid 18575 | The identity element of a ... |
| ismgmid2 18576 | Show that a given element ... |
| lidrideqd 18577 | If there is a left and rig... |
| lidrididd 18578 | If there is a left and rig... |
| grpidd 18579 | Deduce the identity elemen... |
| mgmidsssn0 18580 | Property of the set of ide... |
| grpinvalem 18581 | Lemma for ~ grpinva . (Co... |
| grpinva 18582 | Deduce right inverse from ... |
| grprida 18583 | Deduce right identity from... |
| gsumvalx 18584 | Expand out the substitutio... |
| gsumval 18585 | Expand out the substitutio... |
| gsumpropd 18586 | The group sum depends only... |
| gsumpropd2lem 18587 | Lemma for ~ gsumpropd2 . ... |
| gsumpropd2 18588 | A stronger version of ~ gs... |
| gsummgmpropd 18589 | A stronger version of ~ gs... |
| gsumress 18590 | The group sum in a substru... |
| gsumval1 18591 | Value of the group sum ope... |
| gsum0 18592 | Value of the empty group s... |
| gsumval2a 18593 | Value of the group sum ope... |
| gsumval2 18594 | Value of the group sum ope... |
| gsumsplit1r 18595 | Splitting off the rightmos... |
| gsumprval 18596 | Value of the group sum ope... |
| gsumpr12val 18597 | Value of the group sum ope... |
| mgmhmrcl 18602 | Reverse closure of a magma... |
| submgmrcl 18603 | Reverse closure for submag... |
| ismgmhm 18604 | Property of a magma homomo... |
| mgmhmf 18605 | A magma homomorphism is a ... |
| mgmhmpropd 18606 | Magma homomorphism depends... |
| mgmhmlin 18607 | A magma homomorphism prese... |
| mgmhmf1o 18608 | A magma homomorphism is bi... |
| idmgmhm 18609 | The identity homomorphism ... |
| issubmgm 18610 | Expand definition of a sub... |
| issubmgm2 18611 | Submagmas are subsets that... |
| rabsubmgmd 18612 | Deduction for proving that... |
| submgmss 18613 | Submagmas are subsets of t... |
| submgmid 18614 | Every magma is trivially a... |
| submgmcl 18615 | Submagmas are closed under... |
| submgmmgm 18616 | Submagmas are themselves m... |
| submgmbas 18617 | The base set of a submagma... |
| subsubmgm 18618 | A submagma of a submagma i... |
| resmgmhm 18619 | Restriction of a magma hom... |
| resmgmhm2 18620 | One direction of ~ resmgmh... |
| resmgmhm2b 18621 | Restriction of the codomai... |
| mgmhmco 18622 | The composition of magma h... |
| mgmhmima 18623 | The homomorphic image of a... |
| mgmhmeql 18624 | The equalizer of two magma... |
| submgmacs 18625 | Submagmas are an algebraic... |
| issgrp 18628 | The predicate "is a semigr... |
| issgrpv 18629 | The predicate "is a semigr... |
| issgrpn0 18630 | The predicate "is a semigr... |
| isnsgrp 18631 | A condition for a structur... |
| sgrpmgm 18632 | A semigroup is a magma. (... |
| sgrpass 18633 | A semigroup operation is a... |
| sgrpcl 18634 | Closure of the operation o... |
| sgrp0 18635 | Any set with an empty base... |
| sgrp0b 18636 | The structure with an empt... |
| sgrp1 18637 | The structure with one ele... |
| issgrpd 18638 | Deduce a semigroup from it... |
| sgrppropd 18639 | If two structures are sets... |
| prdsplusgsgrpcl 18640 | Structure product pointwis... |
| prdssgrpd 18641 | The product of a family of... |
| ismnddef 18644 | The predicate "is a monoid... |
| ismnd 18645 | The predicate "is a monoid... |
| isnmnd 18646 | A condition for a structur... |
| sgrpidmnd 18647 | A semigroup with an identi... |
| mndsgrp 18648 | A monoid is a semigroup. ... |
| mndmgm 18649 | A monoid is a magma. (Con... |
| mndcl 18650 | Closure of the operation o... |
| mndass 18651 | A monoid operation is asso... |
| mndid 18652 | A monoid has a two-sided i... |
| mndideu 18653 | The two-sided identity ele... |
| mnd32g 18654 | Commutative/associative la... |
| mnd12g 18655 | Commutative/associative la... |
| mnd4g 18656 | Commutative/associative la... |
| mndidcl 18657 | The identity element of a ... |
| mndbn0 18658 | The base set of a monoid i... |
| hashfinmndnn 18659 | A finite monoid has positi... |
| mndplusf 18660 | The group addition operati... |
| mndlrid 18661 | A monoid's identity elemen... |
| mndlid 18662 | The identity element of a ... |
| mndrid 18663 | The identity element of a ... |
| ismndd 18664 | Deduce a monoid from its p... |
| mndpfo 18665 | The addition operation of ... |
| mndfo 18666 | The addition operation of ... |
| mndpropd 18667 | If two structures have the... |
| mndprop 18668 | If two structures have the... |
| issubmnd 18669 | Characterize a submonoid b... |
| ress0g 18670 | ` 0g ` is unaffected by re... |
| submnd0 18671 | The zero of a submonoid is... |
| mndinvmod 18672 | Uniqueness of an inverse e... |
| mndpsuppss 18673 | The support of a mapping o... |
| mndpsuppfi 18674 | The support of a mapping o... |
| mndpfsupp 18675 | A mapping of a scalar mult... |
| prdsplusgcl 18676 | Structure product pointwis... |
| prdsidlem 18677 | Characterization of identi... |
| prdsmndd 18678 | The product of a family of... |
| prds0g 18679 | The identity in a product ... |
| pwsmnd 18680 | The structure power of a m... |
| pws0g 18681 | The identity in a structur... |
| imasmnd2 18682 | The image structure of a m... |
| imasmnd 18683 | The image structure of a m... |
| imasmndf1 18684 | The image of a monoid unde... |
| xpsmnd 18685 | The binary product of mono... |
| xpsmnd0 18686 | The identity element of a ... |
| mnd1 18687 | The (smallest) structure r... |
| mnd1id 18688 | The singleton element of a... |
| ismhm 18693 | Property of a monoid homom... |
| ismhmd 18694 | Deduction version of ~ ism... |
| mhmrcl1 18695 | Reverse closure of a monoi... |
| mhmrcl2 18696 | Reverse closure of a monoi... |
| mhmf 18697 | A monoid homomorphism is a... |
| ismhm0 18698 | Property of a monoid homom... |
| mhmismgmhm 18699 | Each monoid homomorphism i... |
| mhmpropd 18700 | Monoid homomorphism depend... |
| mhmlin 18701 | A monoid homomorphism comm... |
| mhm0 18702 | A monoid homomorphism pres... |
| idmhm 18703 | The identity homomorphism ... |
| mhmf1o 18704 | A monoid homomorphism is b... |
| mndvcl 18705 | Tuple-wise additive closur... |
| mndvass 18706 | Tuple-wise associativity i... |
| mndvlid 18707 | Tuple-wise left identity i... |
| mndvrid 18708 | Tuple-wise right identity ... |
| mhmvlin 18709 | Tuple extension of monoid ... |
| submrcl 18710 | Reverse closure for submon... |
| issubm 18711 | Expand definition of a sub... |
| issubm2 18712 | Submonoids are subsets tha... |
| issubmndb 18713 | The submonoid predicate. ... |
| issubmd 18714 | Deduction for proving a su... |
| mndissubm 18715 | If the base set of a monoi... |
| resmndismnd 18716 | If the base set of a monoi... |
| submss 18717 | Submonoids are subsets of ... |
| submid 18718 | Every monoid is trivially ... |
| subm0cl 18719 | Submonoids contain zero. ... |
| submcl 18720 | Submonoids are closed unde... |
| submmnd 18721 | Submonoids are themselves ... |
| submbas 18722 | The base set of a submonoi... |
| subm0 18723 | Submonoids have the same i... |
| subsubm 18724 | A submonoid of a submonoid... |
| 0subm 18725 | The zero submonoid of an a... |
| insubm 18726 | The intersection of two su... |
| 0mhm 18727 | The constant zero linear f... |
| resmhm 18728 | Restriction of a monoid ho... |
| resmhm2 18729 | One direction of ~ resmhm2... |
| resmhm2b 18730 | Restriction of the codomai... |
| mhmco 18731 | The composition of monoid ... |
| mhmimalem 18732 | Lemma for ~ mhmima and sim... |
| mhmima 18733 | The homomorphic image of a... |
| mhmeql 18734 | The equalizer of two monoi... |
| submacs 18735 | Submonoids are an algebrai... |
| mndind 18736 | Induction in a monoid. In... |
| prdspjmhm 18737 | A projection from a produc... |
| pwspjmhm 18738 | A projection from a struct... |
| pwsdiagmhm 18739 | Diagonal monoid homomorphi... |
| pwsco1mhm 18740 | Right composition with a f... |
| pwsco2mhm 18741 | Left composition with a mo... |
| gsumvallem2 18742 | Lemma for properties of th... |
| gsumsubm 18743 | Evaluate a group sum in a ... |
| gsumz 18744 | Value of a group sum over ... |
| gsumwsubmcl 18745 | Closure of the composite i... |
| gsumws1 18746 | A singleton composite reco... |
| gsumwcl 18747 | Closure of the composite o... |
| gsumsgrpccat 18748 | Homomorphic property of no... |
| gsumccat 18749 | Homomorphic property of co... |
| gsumws2 18750 | Valuation of a pair in a m... |
| gsumccatsn 18751 | Homomorphic property of co... |
| gsumspl 18752 | The primary purpose of the... |
| gsumwmhm 18753 | Behavior of homomorphisms ... |
| gsumwspan 18754 | The submonoid generated by... |
| frmdval 18759 | Value of the free monoid c... |
| frmdbas 18760 | The base set of a free mon... |
| frmdelbas 18761 | An element of the base set... |
| frmdplusg 18762 | The monoid operation of a ... |
| frmdadd 18763 | Value of the monoid operat... |
| vrmdfval 18764 | The canonical injection fr... |
| vrmdval 18765 | The value of the generatin... |
| vrmdf 18766 | The mapping from the index... |
| frmdmnd 18767 | A free monoid is a monoid.... |
| frmd0 18768 | The identity of the free m... |
| frmdsssubm 18769 | The set of words taking va... |
| frmdgsum 18770 | Any word in a free monoid ... |
| frmdss2 18771 | A subset of generators is ... |
| frmdup1 18772 | Any assignment of the gene... |
| frmdup2 18773 | The evaluation map has the... |
| frmdup3lem 18774 | Lemma for ~ frmdup3 . (Co... |
| frmdup3 18775 | Universal property of the ... |
| efmnd 18778 | The monoid of endofunction... |
| efmndbas 18779 | The base set of the monoid... |
| efmndbasabf 18780 | The base set of the monoid... |
| elefmndbas 18781 | Two ways of saying a funct... |
| elefmndbas2 18782 | Two ways of saying a funct... |
| efmndbasf 18783 | Elements in the monoid of ... |
| efmndhash 18784 | The monoid of endofunction... |
| efmndbasfi 18785 | The monoid of endofunction... |
| efmndfv 18786 | The function value of an e... |
| efmndtset 18787 | The topology of the monoid... |
| efmndplusg 18788 | The group operation of a m... |
| efmndov 18789 | The value of the group ope... |
| efmndcl 18790 | The group operation of the... |
| efmndtopn 18791 | The topology of the monoid... |
| symggrplem 18792 | Lemma for ~ symggrp and ~ ... |
| efmndmgm 18793 | The monoid of endofunction... |
| efmndsgrp 18794 | The monoid of endofunction... |
| ielefmnd 18795 | The identity function rest... |
| efmndid 18796 | The identity function rest... |
| efmndmnd 18797 | The monoid of endofunction... |
| efmnd0nmnd 18798 | Even the monoid of endofun... |
| efmndbas0 18799 | The base set of the monoid... |
| efmnd1hash 18800 | The monoid of endofunction... |
| efmnd1bas 18801 | The monoid of endofunction... |
| efmnd2hash 18802 | The monoid of endofunction... |
| submefmnd 18803 | If the base set of a monoi... |
| sursubmefmnd 18804 | The set of surjective endo... |
| injsubmefmnd 18805 | The set of injective endof... |
| idressubmefmnd 18806 | The singleton containing o... |
| idresefmnd 18807 | The structure with the sin... |
| smndex1ibas 18808 | The modulo function ` I ` ... |
| smndex1iidm 18809 | The modulo function ` I ` ... |
| smndex1gbas 18810 | The constant functions ` (... |
| smndex1gid 18811 | The composition of a const... |
| smndex1igid 18812 | The composition of the mod... |
| smndex1basss 18813 | The modulo function ` I ` ... |
| smndex1bas 18814 | The base set of the monoid... |
| smndex1mgm 18815 | The monoid of endofunction... |
| smndex1sgrp 18816 | The monoid of endofunction... |
| smndex1mndlem 18817 | Lemma for ~ smndex1mnd and... |
| smndex1mnd 18818 | The monoid of endofunction... |
| smndex1id 18819 | The modulo function ` I ` ... |
| smndex1n0mnd 18820 | The identity of the monoid... |
| nsmndex1 18821 | The base set ` B ` of the ... |
| smndex2dbas 18822 | The doubling function ` D ... |
| smndex2dnrinv 18823 | The doubling function ` D ... |
| smndex2hbas 18824 | The halving functions ` H ... |
| smndex2dlinvh 18825 | The halving functions ` H ... |
| mgm2nsgrplem1 18826 | Lemma 1 for ~ mgm2nsgrp : ... |
| mgm2nsgrplem2 18827 | Lemma 2 for ~ mgm2nsgrp . ... |
| mgm2nsgrplem3 18828 | Lemma 3 for ~ mgm2nsgrp . ... |
| mgm2nsgrplem4 18829 | Lemma 4 for ~ mgm2nsgrp : ... |
| mgm2nsgrp 18830 | A small magma (with two el... |
| sgrp2nmndlem1 18831 | Lemma 1 for ~ sgrp2nmnd : ... |
| sgrp2nmndlem2 18832 | Lemma 2 for ~ sgrp2nmnd . ... |
| sgrp2nmndlem3 18833 | Lemma 3 for ~ sgrp2nmnd . ... |
| sgrp2rid2 18834 | A small semigroup (with tw... |
| sgrp2rid2ex 18835 | A small semigroup (with tw... |
| sgrp2nmndlem4 18836 | Lemma 4 for ~ sgrp2nmnd : ... |
| sgrp2nmndlem5 18837 | Lemma 5 for ~ sgrp2nmnd : ... |
| sgrp2nmnd 18838 | A small semigroup (with tw... |
| mgmnsgrpex 18839 | There is a magma which is ... |
| sgrpnmndex 18840 | There is a semigroup which... |
| sgrpssmgm 18841 | The class of all semigroup... |
| mndsssgrp 18842 | The class of all monoids i... |
| pwmndgplus 18843 | The operation of the monoi... |
| pwmndid 18844 | The identity of the monoid... |
| pwmnd 18845 | The power set of a class `... |
| isgrp 18852 | The predicate "is a group"... |
| grpmnd 18853 | A group is a monoid. (Con... |
| grpcl 18854 | Closure of the operation o... |
| grpass 18855 | A group operation is assoc... |
| grpinvex 18856 | Every member of a group ha... |
| grpideu 18857 | The two-sided identity ele... |
| grpassd 18858 | A group operation is assoc... |
| grpmndd 18859 | A group is a monoid. (Con... |
| grpcld 18860 | Closure of the operation o... |
| grpplusf 18861 | The group addition operati... |
| grpplusfo 18862 | The group addition operati... |
| resgrpplusfrn 18863 | The underlying set of a gr... |
| grppropd 18864 | If two structures have the... |
| grpprop 18865 | If two structures have the... |
| grppropstr 18866 | Generalize a specific 2-el... |
| grpss 18867 | Show that a structure exte... |
| isgrpd2e 18868 | Deduce a group from its pr... |
| isgrpd2 18869 | Deduce a group from its pr... |
| isgrpde 18870 | Deduce a group from its pr... |
| isgrpd 18871 | Deduce a group from its pr... |
| isgrpi 18872 | Properties that determine ... |
| grpsgrp 18873 | A group is a semigroup. (... |
| grpmgmd 18874 | A group is a magma, deduct... |
| dfgrp2 18875 | Alternate definition of a ... |
| dfgrp2e 18876 | Alternate definition of a ... |
| isgrpix 18877 | Properties that determine ... |
| grpidcl 18878 | The identity element of a ... |
| grpbn0 18879 | The base set of a group is... |
| grplid 18880 | The identity element of a ... |
| grprid 18881 | The identity element of a ... |
| grplidd 18882 | The identity element of a ... |
| grpridd 18883 | The identity element of a ... |
| grpn0 18884 | A group is not empty. (Co... |
| hashfingrpnn 18885 | A finite group has positiv... |
| grprcan 18886 | Right cancellation law for... |
| grpinveu 18887 | The left inverse element o... |
| grpid 18888 | Two ways of saying that an... |
| isgrpid2 18889 | Properties showing that an... |
| grpidd2 18890 | Deduce the identity elemen... |
| grpinvfval 18891 | The inverse function of a ... |
| grpinvfvalALT 18892 | Shorter proof of ~ grpinvf... |
| grpinvval 18893 | The inverse of a group ele... |
| grpinvfn 18894 | Functionality of the group... |
| grpinvfvi 18895 | The group inverse function... |
| grpsubfval 18896 | Group subtraction (divisio... |
| grpsubfvalALT 18897 | Shorter proof of ~ grpsubf... |
| grpsubval 18898 | Group subtraction (divisio... |
| grpinvf 18899 | The group inversion operat... |
| grpinvcl 18900 | A group element's inverse ... |
| grpinvcld 18901 | A group element's inverse ... |
| grplinv 18902 | The left inverse of a grou... |
| grprinv 18903 | The right inverse of a gro... |
| grpinvid1 18904 | The inverse of a group ele... |
| grpinvid2 18905 | The inverse of a group ele... |
| isgrpinv 18906 | Properties showing that a ... |
| grplinvd 18907 | The left inverse of a grou... |
| grprinvd 18908 | The right inverse of a gro... |
| grplrinv 18909 | In a group, every member h... |
| grpidinv2 18910 | A group's properties using... |
| grpidinv 18911 | A group has a left and rig... |
| grpinvid 18912 | The inverse of the identit... |
| grplcan 18913 | Left cancellation law for ... |
| grpasscan1 18914 | An associative cancellatio... |
| grpasscan2 18915 | An associative cancellatio... |
| grpidrcan 18916 | If right adding an element... |
| grpidlcan 18917 | If left adding an element ... |
| grpinvinv 18918 | Double inverse law for gro... |
| grpinvcnv 18919 | The group inverse is its o... |
| grpinv11 18920 | The group inverse is one-t... |
| grpinv11OLD 18921 | Obsolete version of ~ grpi... |
| grpinvf1o 18922 | The group inverse is a one... |
| grpinvnz 18923 | The inverse of a nonzero g... |
| grpinvnzcl 18924 | The inverse of a nonzero g... |
| grpsubinv 18925 | Subtraction of an inverse.... |
| grplmulf1o 18926 | Left multiplication by a g... |
| grpraddf1o 18927 | Right addition by a group ... |
| grpinvpropd 18928 | If two structures have the... |
| grpidssd 18929 | If the base set of a group... |
| grpinvssd 18930 | If the base set of a group... |
| grpinvadd 18931 | The inverse of the group o... |
| grpsubf 18932 | Functionality of group sub... |
| grpsubcl 18933 | Closure of group subtracti... |
| grpsubrcan 18934 | Right cancellation law for... |
| grpinvsub 18935 | Inverse of a group subtrac... |
| grpinvval2 18936 | A ~ df-neg -like equation ... |
| grpsubid 18937 | Subtraction of a group ele... |
| grpsubid1 18938 | Subtraction of the identit... |
| grpsubeq0 18939 | If the difference between ... |
| grpsubadd0sub 18940 | Subtraction expressed as a... |
| grpsubadd 18941 | Relationship between group... |
| grpsubsub 18942 | Double group subtraction. ... |
| grpaddsubass 18943 | Associative-type law for g... |
| grppncan 18944 | Cancellation law for subtr... |
| grpnpcan 18945 | Cancellation law for subtr... |
| grpsubsub4 18946 | Double group subtraction (... |
| grppnpcan2 18947 | Cancellation law for mixed... |
| grpnpncan 18948 | Cancellation law for group... |
| grpnpncan0 18949 | Cancellation law for group... |
| grpnnncan2 18950 | Cancellation law for group... |
| dfgrp3lem 18951 | Lemma for ~ dfgrp3 . (Con... |
| dfgrp3 18952 | Alternate definition of a ... |
| dfgrp3e 18953 | Alternate definition of a ... |
| grplactfval 18954 | The left group action of e... |
| grplactval 18955 | The value of the left grou... |
| grplactcnv 18956 | The left group action of e... |
| grplactf1o 18957 | The left group action of e... |
| grpsubpropd 18958 | Weak property deduction fo... |
| grpsubpropd2 18959 | Strong property deduction ... |
| grp1 18960 | The (smallest) structure r... |
| grp1inv 18961 | The inverse function of th... |
| prdsinvlem 18962 | Characterization of invers... |
| prdsgrpd 18963 | The product of a family of... |
| prdsinvgd 18964 | Negation in a product of g... |
| pwsgrp 18965 | A structure power of a gro... |
| pwsinvg 18966 | Negation in a group power.... |
| pwssub 18967 | Subtraction in a group pow... |
| imasgrp2 18968 | The image structure of a g... |
| imasgrp 18969 | The image structure of a g... |
| imasgrpf1 18970 | The image of a group under... |
| qusgrp2 18971 | Prove that a quotient stru... |
| xpsgrp 18972 | The binary product of grou... |
| xpsinv 18973 | Value of the negation oper... |
| xpsgrpsub 18974 | Value of the subtraction o... |
| mhmlem 18975 | Lemma for ~ mhmmnd and ~ g... |
| mhmid 18976 | A surjective monoid morphi... |
| mhmmnd 18977 | The image of a monoid ` G ... |
| mhmfmhm 18978 | The function fulfilling th... |
| ghmgrp 18979 | The image of a group ` G `... |
| mulgfval 18982 | Group multiple (exponentia... |
| mulgfvalALT 18983 | Shorter proof of ~ mulgfva... |
| mulgval 18984 | Value of the group multipl... |
| mulgfn 18985 | Functionality of the group... |
| mulgfvi 18986 | The group multiple operati... |
| mulg0 18987 | Group multiple (exponentia... |
| mulgnn 18988 | Group multiple (exponentia... |
| ressmulgnn 18989 | Values for the group multi... |
| ressmulgnn0 18990 | Values for the group multi... |
| ressmulgnnd 18991 | Values for the group multi... |
| mulgnngsum 18992 | Group multiple (exponentia... |
| mulgnn0gsum 18993 | Group multiple (exponentia... |
| mulg1 18994 | Group multiple (exponentia... |
| mulgnnp1 18995 | Group multiple (exponentia... |
| mulg2 18996 | Group multiple (exponentia... |
| mulgnegnn 18997 | Group multiple (exponentia... |
| mulgnn0p1 18998 | Group multiple (exponentia... |
| mulgnnsubcl 18999 | Closure of the group multi... |
| mulgnn0subcl 19000 | Closure of the group multi... |
| mulgsubcl 19001 | Closure of the group multi... |
| mulgnncl 19002 | Closure of the group multi... |
| mulgnn0cl 19003 | Closure of the group multi... |
| mulgcl 19004 | Closure of the group multi... |
| mulgneg 19005 | Group multiple (exponentia... |
| mulgnegneg 19006 | The inverse of a negative ... |
| mulgm1 19007 | Group multiple (exponentia... |
| mulgnn0cld 19008 | Closure of the group multi... |
| mulgcld 19009 | Deduction associated with ... |
| mulgaddcomlem 19010 | Lemma for ~ mulgaddcom . ... |
| mulgaddcom 19011 | The group multiple operato... |
| mulginvcom 19012 | The group multiple operato... |
| mulginvinv 19013 | The group multiple operato... |
| mulgnn0z 19014 | A group multiple of the id... |
| mulgz 19015 | A group multiple of the id... |
| mulgnndir 19016 | Sum of group multiples, fo... |
| mulgnn0dir 19017 | Sum of group multiples, ge... |
| mulgdirlem 19018 | Lemma for ~ mulgdir . (Co... |
| mulgdir 19019 | Sum of group multiples, ge... |
| mulgp1 19020 | Group multiple (exponentia... |
| mulgneg2 19021 | Group multiple (exponentia... |
| mulgnnass 19022 | Product of group multiples... |
| mulgnn0ass 19023 | Product of group multiples... |
| mulgass 19024 | Product of group multiples... |
| mulgassr 19025 | Reversed product of group ... |
| mulgmodid 19026 | Casting out multiples of t... |
| mulgsubdir 19027 | Distribution of group mult... |
| mhmmulg 19028 | A homomorphism of monoids ... |
| mulgpropd 19029 | Two structures with the sa... |
| submmulgcl 19030 | Closure of the group multi... |
| submmulg 19031 | A group multiple is the sa... |
| pwsmulg 19032 | Value of a group multiple ... |
| issubg 19039 | The subgroup predicate. (... |
| subgss 19040 | A subgroup is a subset. (... |
| subgid 19041 | A group is a subgroup of i... |
| subggrp 19042 | A subgroup is a group. (C... |
| subgbas 19043 | The base of the restricted... |
| subgrcl 19044 | Reverse closure for the su... |
| subg0 19045 | A subgroup of a group must... |
| subginv 19046 | The inverse of an element ... |
| subg0cl 19047 | The group identity is an e... |
| subginvcl 19048 | The inverse of an element ... |
| subgcl 19049 | A subgroup is closed under... |
| subgsubcl 19050 | A subgroup is closed under... |
| subgsub 19051 | The subtraction of element... |
| subgmulgcl 19052 | Closure of the group multi... |
| subgmulg 19053 | A group multiple is the sa... |
| issubg2 19054 | Characterize the subgroups... |
| issubgrpd2 19055 | Prove a subgroup by closur... |
| issubgrpd 19056 | Prove a subgroup by closur... |
| issubg3 19057 | A subgroup is a symmetric ... |
| issubg4 19058 | A subgroup is a nonempty s... |
| grpissubg 19059 | If the base set of a group... |
| resgrpisgrp 19060 | If the base set of a group... |
| subgsubm 19061 | A subgroup is a submonoid.... |
| subsubg 19062 | A subgroup of a subgroup i... |
| subgint 19063 | The intersection of a none... |
| 0subg 19064 | The zero subgroup of an ar... |
| trivsubgd 19065 | The only subgroup of a tri... |
| trivsubgsnd 19066 | The only subgroup of a tri... |
| isnsg 19067 | Property of being a normal... |
| isnsg2 19068 | Weaken the condition of ~ ... |
| nsgbi 19069 | Defining property of a nor... |
| nsgsubg 19070 | A normal subgroup is a sub... |
| nsgconj 19071 | The conjugation of an elem... |
| isnsg3 19072 | A subgroup is normal iff t... |
| subgacs 19073 | Subgroups are an algebraic... |
| nsgacs 19074 | Normal subgroups form an a... |
| elnmz 19075 | Elementhood in the normali... |
| nmzbi 19076 | Defining property of the n... |
| nmzsubg 19077 | The normalizer N_G(S) of a... |
| ssnmz 19078 | A subgroup is a subset of ... |
| isnsg4 19079 | A subgroup is normal iff i... |
| nmznsg 19080 | Any subgroup is a normal s... |
| 0nsg 19081 | The zero subgroup is norma... |
| nsgid 19082 | The whole group is a norma... |
| 0idnsgd 19083 | The whole group and the ze... |
| trivnsgd 19084 | The only normal subgroup o... |
| triv1nsgd 19085 | A trivial group has exactl... |
| 1nsgtrivd 19086 | A group with exactly one n... |
| releqg 19087 | The left coset equivalence... |
| eqgfval 19088 | Value of the subgroup left... |
| eqgval 19089 | Value of the subgroup left... |
| eqger 19090 | The subgroup coset equival... |
| eqglact 19091 | A left coset can be expres... |
| eqgid 19092 | The left coset containing ... |
| eqgen 19093 | Each coset is equipotent t... |
| eqgcpbl 19094 | The subgroup coset equival... |
| eqg0el 19095 | Equivalence class of a quo... |
| quselbas 19096 | Membership in the base set... |
| quseccl0 19097 | Closure of the quotient ma... |
| qusgrp 19098 | If ` Y ` is a normal subgr... |
| quseccl 19099 | Closure of the quotient ma... |
| qusadd 19100 | Value of the group operati... |
| qus0 19101 | Value of the group identit... |
| qusinv 19102 | Value of the group inverse... |
| qussub 19103 | Value of the group subtrac... |
| ecqusaddd 19104 | Addition of equivalence cl... |
| ecqusaddcl 19105 | Closure of the addition in... |
| lagsubg2 19106 | Lagrange's theorem for fin... |
| lagsubg 19107 | Lagrange's theorem for Gro... |
| eqg0subg 19108 | The coset equivalence rela... |
| eqg0subgecsn 19109 | The equivalence classes mo... |
| qus0subgbas 19110 | The base set of a quotient... |
| qus0subgadd 19111 | The addition in a quotient... |
| cycsubmel 19112 | Characterization of an ele... |
| cycsubmcl 19113 | The set of nonnegative int... |
| cycsubm 19114 | The set of nonnegative int... |
| cyccom 19115 | Condition for an operation... |
| cycsubmcom 19116 | The operation of a monoid ... |
| cycsubggend 19117 | The cyclic subgroup genera... |
| cycsubgcl 19118 | The set of integer powers ... |
| cycsubgss 19119 | The cyclic subgroup genera... |
| cycsubg 19120 | The cyclic group generated... |
| cycsubgcld 19121 | The cyclic subgroup genera... |
| cycsubg2 19122 | The subgroup generated by ... |
| cycsubg2cl 19123 | Any multiple of an element... |
| reldmghm 19126 | Lemma for group homomorphi... |
| isghm 19127 | Property of being a homomo... |
| isghmOLD 19128 | Obsolete version of ~ isgh... |
| isghm3 19129 | Property of a group homomo... |
| ghmgrp1 19130 | A group homomorphism is on... |
| ghmgrp2 19131 | A group homomorphism is on... |
| ghmf 19132 | A group homomorphism is a ... |
| ghmlin 19133 | A homomorphism of groups i... |
| ghmid 19134 | A homomorphism of groups p... |
| ghminv 19135 | A homomorphism of groups p... |
| ghmsub 19136 | Linearity of subtraction t... |
| isghmd 19137 | Deduction for a group homo... |
| ghmmhm 19138 | A group homomorphism is a ... |
| ghmmhmb 19139 | Group homomorphisms and mo... |
| ghmmulg 19140 | A group homomorphism prese... |
| ghmrn 19141 | The range of a homomorphis... |
| 0ghm 19142 | The constant zero linear f... |
| idghm 19143 | The identity homomorphism ... |
| resghm 19144 | Restriction of a homomorph... |
| resghm2 19145 | One direction of ~ resghm2... |
| resghm2b 19146 | Restriction of the codomai... |
| ghmghmrn 19147 | A group homomorphism from ... |
| ghmco 19148 | The composition of group h... |
| ghmima 19149 | The image of a subgroup un... |
| ghmpreima 19150 | The inverse image of a sub... |
| ghmeql 19151 | The equalizer of two group... |
| ghmnsgima 19152 | The image of a normal subg... |
| ghmnsgpreima 19153 | The inverse image of a nor... |
| ghmker 19154 | The kernel of a homomorphi... |
| ghmeqker 19155 | Two source points map to t... |
| pwsdiagghm 19156 | Diagonal homomorphism into... |
| f1ghm0to0 19157 | If a group homomorphism ` ... |
| ghmf1 19158 | Two ways of saying a group... |
| kerf1ghm 19159 | A group homomorphism ` F `... |
| ghmf1o 19160 | A bijective group homomorp... |
| conjghm 19161 | Conjugation is an automorp... |
| conjsubg 19162 | A conjugated subgroup is a... |
| conjsubgen 19163 | A conjugated subgroup is e... |
| conjnmz 19164 | A subgroup is unchanged un... |
| conjnmzb 19165 | Alternative condition for ... |
| conjnsg 19166 | A normal subgroup is uncha... |
| qusghm 19167 | If ` Y ` is a normal subgr... |
| ghmpropd 19168 | Group homomorphism depends... |
| gimfn 19173 | The group isomorphism func... |
| isgim 19174 | An isomorphism of groups i... |
| gimf1o 19175 | An isomorphism of groups i... |
| gimghm 19176 | An isomorphism of groups i... |
| isgim2 19177 | A group isomorphism is a h... |
| subggim 19178 | Behavior of subgroups unde... |
| gimcnv 19179 | The converse of a group is... |
| gimco 19180 | The composition of group i... |
| gim0to0 19181 | A group isomorphism maps t... |
| brgic 19182 | The relation "is isomorphi... |
| brgici 19183 | Prove isomorphic by an exp... |
| gicref 19184 | Isomorphism is reflexive. ... |
| giclcl 19185 | Isomorphism implies the le... |
| gicrcl 19186 | Isomorphism implies the ri... |
| gicsym 19187 | Isomorphism is symmetric. ... |
| gictr 19188 | Isomorphism is transitive.... |
| gicer 19189 | Isomorphism is an equivale... |
| gicen 19190 | Isomorphic groups have equ... |
| gicsubgen 19191 | A less trivial example of ... |
| ghmqusnsglem1 19192 | Lemma for ~ ghmqusnsg . (... |
| ghmqusnsglem2 19193 | Lemma for ~ ghmqusnsg . (... |
| ghmqusnsg 19194 | The mapping ` H ` induced ... |
| ghmquskerlem1 19195 | Lemma for ~ ghmqusker . (... |
| ghmquskerco 19196 | In the case of theorem ~ g... |
| ghmquskerlem2 19197 | Lemma for ~ ghmqusker . (... |
| ghmquskerlem3 19198 | The mapping ` H ` induced ... |
| ghmqusker 19199 | A surjective group homomor... |
| gicqusker 19200 | The image ` H ` of a group... |
| isga 19203 | The predicate "is a (left)... |
| gagrp 19204 | The left argument of a gro... |
| gaset 19205 | The right argument of a gr... |
| gagrpid 19206 | The identity of the group ... |
| gaf 19207 | The mapping of the group a... |
| gafo 19208 | A group action is onto its... |
| gaass 19209 | An "associative" property ... |
| ga0 19210 | The action of a group on t... |
| gaid 19211 | The trivial action of a gr... |
| subgga 19212 | A subgroup acts on its par... |
| gass 19213 | A subset of a group action... |
| gasubg 19214 | The restriction of a group... |
| gaid2 19215 | A group operation is a lef... |
| galcan 19216 | The action of a particular... |
| gacan 19217 | Group inverses cancel in a... |
| gapm 19218 | The action of a particular... |
| gaorb 19219 | The orbit equivalence rela... |
| gaorber 19220 | The orbit equivalence rela... |
| gastacl 19221 | The stabilizer subgroup in... |
| gastacos 19222 | Write the coset relation f... |
| orbstafun 19223 | Existence and uniqueness f... |
| orbstaval 19224 | Value of the function at a... |
| orbsta 19225 | The Orbit-Stabilizer theor... |
| orbsta2 19226 | Relation between the size ... |
| cntrval 19231 | Substitute definition of t... |
| cntzfval 19232 | First level substitution f... |
| cntzval 19233 | Definition substitution fo... |
| elcntz 19234 | Elementhood in the central... |
| cntzel 19235 | Membership in a centralize... |
| cntzsnval 19236 | Special substitution for t... |
| elcntzsn 19237 | Value of the centralizer o... |
| sscntz 19238 | A centralizer expression f... |
| cntzrcl 19239 | Reverse closure for elemen... |
| cntzssv 19240 | The centralizer is uncondi... |
| cntzi 19241 | Membership in a centralize... |
| elcntr 19242 | Elementhood in the center ... |
| cntrss 19243 | The center is a subset of ... |
| cntri 19244 | Defining property of the c... |
| resscntz 19245 | Centralizer in a substruct... |
| cntzsgrpcl 19246 | Centralizers are closed un... |
| cntz2ss 19247 | Centralizers reverse the s... |
| cntzrec 19248 | Reciprocity relationship f... |
| cntziinsn 19249 | Express any centralizer as... |
| cntzsubm 19250 | Centralizers in a monoid a... |
| cntzsubg 19251 | Centralizers in a group ar... |
| cntzidss 19252 | If the elements of ` S ` c... |
| cntzmhm 19253 | Centralizers in a monoid a... |
| cntzmhm2 19254 | Centralizers in a monoid a... |
| cntrsubgnsg 19255 | A central subgroup is norm... |
| cntrnsg 19256 | The center of a group is a... |
| oppgval 19259 | Value of the opposite grou... |
| oppgplusfval 19260 | Value of the addition oper... |
| oppgplus 19261 | Value of the addition oper... |
| setsplusg 19262 | The other components of an... |
| oppgbas 19263 | Base set of an opposite gr... |
| oppgtset 19264 | Topology of an opposite gr... |
| oppgtopn 19265 | Topology of an opposite gr... |
| oppgmnd 19266 | The opposite of a monoid i... |
| oppgmndb 19267 | Bidirectional form of ~ op... |
| oppgid 19268 | Zero in a monoid is a symm... |
| oppggrp 19269 | The opposite of a group is... |
| oppggrpb 19270 | Bidirectional form of ~ op... |
| oppginv 19271 | Inverses in a group are a ... |
| invoppggim 19272 | The inverse is an antiauto... |
| oppggic 19273 | Every group is (naturally)... |
| oppgsubm 19274 | Being a submonoid is a sym... |
| oppgsubg 19275 | Being a subgroup is a symm... |
| oppgcntz 19276 | A centralizer in a group i... |
| oppgcntr 19277 | The center of a group is t... |
| gsumwrev 19278 | A sum in an opposite monoi... |
| oppgle 19279 | less-than relation of an o... |
| oppglt 19280 | less-than relation of an o... |
| symgval 19283 | The value of the symmetric... |
| symgbas 19284 | The base set of the symmet... |
| elsymgbas2 19285 | Two ways of saying a funct... |
| elsymgbas 19286 | Two ways of saying a funct... |
| symgbasf1o 19287 | Elements in the symmetric ... |
| symgbasf 19288 | A permutation (element of ... |
| symgbasmap 19289 | A permutation (element of ... |
| symghash 19290 | The symmetric group on ` n... |
| symgbasfi 19291 | The symmetric group on a f... |
| symgfv 19292 | The function value of a pe... |
| symgfvne 19293 | The function values of a p... |
| symgressbas 19294 | The symmetric group on ` A... |
| symgplusg 19295 | The group operation of a s... |
| symgov 19296 | The value of the group ope... |
| symgcl 19297 | The group operation of the... |
| idresperm 19298 | The identity function rest... |
| symgmov1 19299 | For a permutation of a set... |
| symgmov2 19300 | For a permutation of a set... |
| symgbas0 19301 | The base set of the symmet... |
| symg1hash 19302 | The symmetric group on a s... |
| symg1bas 19303 | The symmetric group on a s... |
| symg2hash 19304 | The symmetric group on a (... |
| symg2bas 19305 | The symmetric group on a p... |
| 0symgefmndeq 19306 | The symmetric group on the... |
| snsymgefmndeq 19307 | The symmetric group on a s... |
| symgpssefmnd 19308 | For a set ` A ` with more ... |
| symgvalstruct 19309 | The value of the symmetric... |
| symgsubmefmnd 19310 | The symmetric group on a s... |
| symgtset 19311 | The topology of the symmet... |
| symggrp 19312 | The symmetric group on a s... |
| symgid 19313 | The group identity element... |
| symginv 19314 | The group inverse in the s... |
| symgsubmefmndALT 19315 | The symmetric group on a s... |
| galactghm 19316 | The currying of a group ac... |
| lactghmga 19317 | The converse of ~ galactgh... |
| symgtopn 19318 | The topology of the symmet... |
| symgga 19319 | The symmetric group induce... |
| pgrpsubgsymgbi 19320 | Every permutation group is... |
| pgrpsubgsymg 19321 | Every permutation group is... |
| idressubgsymg 19322 | The singleton containing o... |
| idrespermg 19323 | The structure with the sin... |
| cayleylem1 19324 | Lemma for ~ cayley . (Con... |
| cayleylem2 19325 | Lemma for ~ cayley . (Con... |
| cayley 19326 | Cayley's Theorem (construc... |
| cayleyth 19327 | Cayley's Theorem (existenc... |
| symgfix2 19328 | If a permutation does not ... |
| symgextf 19329 | The extension of a permuta... |
| symgextfv 19330 | The function value of the ... |
| symgextfve 19331 | The function value of the ... |
| symgextf1lem 19332 | Lemma for ~ symgextf1 . (... |
| symgextf1 19333 | The extension of a permuta... |
| symgextfo 19334 | The extension of a permuta... |
| symgextf1o 19335 | The extension of a permuta... |
| symgextsymg 19336 | The extension of a permuta... |
| symgextres 19337 | The restriction of the ext... |
| gsumccatsymgsn 19338 | Homomorphic property of co... |
| gsmsymgrfixlem1 19339 | Lemma 1 for ~ gsmsymgrfix ... |
| gsmsymgrfix 19340 | The composition of permuta... |
| fvcosymgeq 19341 | The values of two composit... |
| gsmsymgreqlem1 19342 | Lemma 1 for ~ gsmsymgreq .... |
| gsmsymgreqlem2 19343 | Lemma 2 for ~ gsmsymgreq .... |
| gsmsymgreq 19344 | Two combination of permuta... |
| symgfixelq 19345 | A permutation of a set fix... |
| symgfixels 19346 | The restriction of a permu... |
| symgfixelsi 19347 | The restriction of a permu... |
| symgfixf 19348 | The mapping of a permutati... |
| symgfixf1 19349 | The mapping of a permutati... |
| symgfixfolem1 19350 | Lemma 1 for ~ symgfixfo . ... |
| symgfixfo 19351 | The mapping of a permutati... |
| symgfixf1o 19352 | The mapping of a permutati... |
| f1omvdmvd 19355 | A permutation of any class... |
| f1omvdcnv 19356 | A permutation and its inve... |
| mvdco 19357 | Composing two permutations... |
| f1omvdconj 19358 | Conjugation of a permutati... |
| f1otrspeq 19359 | A transposition is charact... |
| f1omvdco2 19360 | If exactly one of two perm... |
| f1omvdco3 19361 | If a point is moved by exa... |
| pmtrfval 19362 | The function generating tr... |
| pmtrval 19363 | A generated transposition,... |
| pmtrfv 19364 | General value of mapping a... |
| pmtrprfv 19365 | In a transposition of two ... |
| pmtrprfv3 19366 | In a transposition of two ... |
| pmtrf 19367 | Functionality of a transpo... |
| pmtrmvd 19368 | A transposition moves prec... |
| pmtrrn 19369 | Transposing two points giv... |
| pmtrfrn 19370 | A transposition (as a kind... |
| pmtrffv 19371 | Mapping of a point under a... |
| pmtrrn2 19372 | For any transposition ther... |
| pmtrfinv 19373 | A transposition function i... |
| pmtrfmvdn0 19374 | A transposition moves at l... |
| pmtrff1o 19375 | A transposition function i... |
| pmtrfcnv 19376 | A transposition function i... |
| pmtrfb 19377 | An intrinsic characterizat... |
| pmtrfconj 19378 | Any conjugate of a transpo... |
| symgsssg 19379 | The symmetric group has su... |
| symgfisg 19380 | The symmetric group has a ... |
| symgtrf 19381 | Transpositions are element... |
| symggen 19382 | The span of the transposit... |
| symggen2 19383 | A finite permutation group... |
| symgtrinv 19384 | To invert a permutation re... |
| pmtr3ncomlem1 19385 | Lemma 1 for ~ pmtr3ncom . ... |
| pmtr3ncomlem2 19386 | Lemma 2 for ~ pmtr3ncom . ... |
| pmtr3ncom 19387 | Transpositions over sets w... |
| pmtrdifellem1 19388 | Lemma 1 for ~ pmtrdifel . ... |
| pmtrdifellem2 19389 | Lemma 2 for ~ pmtrdifel . ... |
| pmtrdifellem3 19390 | Lemma 3 for ~ pmtrdifel . ... |
| pmtrdifellem4 19391 | Lemma 4 for ~ pmtrdifel . ... |
| pmtrdifel 19392 | A transposition of element... |
| pmtrdifwrdellem1 19393 | Lemma 1 for ~ pmtrdifwrdel... |
| pmtrdifwrdellem2 19394 | Lemma 2 for ~ pmtrdifwrdel... |
| pmtrdifwrdellem3 19395 | Lemma 3 for ~ pmtrdifwrdel... |
| pmtrdifwrdel2lem1 19396 | Lemma 1 for ~ pmtrdifwrdel... |
| pmtrdifwrdel 19397 | A sequence of transpositio... |
| pmtrdifwrdel2 19398 | A sequence of transpositio... |
| pmtrprfval 19399 | The transpositions on a pa... |
| pmtrprfvalrn 19400 | The range of the transposi... |
| psgnunilem1 19405 | Lemma for ~ psgnuni . Giv... |
| psgnunilem5 19406 | Lemma for ~ psgnuni . It ... |
| psgnunilem2 19407 | Lemma for ~ psgnuni . Ind... |
| psgnunilem3 19408 | Lemma for ~ psgnuni . Any... |
| psgnunilem4 19409 | Lemma for ~ psgnuni . An ... |
| m1expaddsub 19410 | Addition and subtraction o... |
| psgnuni 19411 | If the same permutation ca... |
| psgnfval 19412 | Function definition of the... |
| psgnfn 19413 | Functionality and domain o... |
| psgndmsubg 19414 | The finitary permutations ... |
| psgneldm 19415 | Property of being a finita... |
| psgneldm2 19416 | The finitary permutations ... |
| psgneldm2i 19417 | A sequence of transpositio... |
| psgneu 19418 | A finitary permutation has... |
| psgnval 19419 | Value of the permutation s... |
| psgnvali 19420 | A finitary permutation has... |
| psgnvalii 19421 | Any representation of a pe... |
| psgnpmtr 19422 | All transpositions are odd... |
| psgn0fv0 19423 | The permutation sign funct... |
| sygbasnfpfi 19424 | The class of non-fixed poi... |
| psgnfvalfi 19425 | Function definition of the... |
| psgnvalfi 19426 | Value of the permutation s... |
| psgnran 19427 | The range of the permutati... |
| gsmtrcl 19428 | The group sum of transposi... |
| psgnfitr 19429 | A permutation of a finite ... |
| psgnfieu 19430 | A permutation of a finite ... |
| pmtrsn 19431 | The value of the transposi... |
| psgnsn 19432 | The permutation sign funct... |
| psgnprfval 19433 | The permutation sign funct... |
| psgnprfval1 19434 | The permutation sign of th... |
| psgnprfval2 19435 | The permutation sign of th... |
| odfval 19444 | Value of the order functio... |
| odfvalALT 19445 | Shorter proof of ~ odfval ... |
| odval 19446 | Second substitution for th... |
| odlem1 19447 | The group element order is... |
| odcl 19448 | The order of a group eleme... |
| odf 19449 | Functionality of the group... |
| odid 19450 | Any element to the power o... |
| odlem2 19451 | Any positive annihilator o... |
| odmodnn0 19452 | Reduce the argument of a g... |
| mndodconglem 19453 | Lemma for ~ mndodcong . (... |
| mndodcong 19454 | If two multipliers are con... |
| mndodcongi 19455 | If two multipliers are con... |
| oddvdsnn0 19456 | The only multiples of ` A ... |
| odnncl 19457 | If a nonzero multiple of a... |
| odmod 19458 | Reduce the argument of a g... |
| oddvds 19459 | The only multiples of ` A ... |
| oddvdsi 19460 | Any group element is annih... |
| odcong 19461 | If two multipliers are con... |
| odeq 19462 | The ~ oddvds property uniq... |
| odval2 19463 | A non-conditional definiti... |
| odcld 19464 | The order of a group eleme... |
| odm1inv 19465 | The (order-1)th multiple o... |
| odmulgid 19466 | A relationship between the... |
| odmulg2 19467 | The order of a multiple di... |
| odmulg 19468 | Relationship between the o... |
| odmulgeq 19469 | A multiple of a point of f... |
| odbezout 19470 | If ` N ` is coprime to the... |
| od1 19471 | The order of the group ide... |
| odeq1 19472 | The group identity is the ... |
| odinv 19473 | The order of the inverse o... |
| odf1 19474 | The multiples of an elemen... |
| odinf 19475 | The multiples of an elemen... |
| dfod2 19476 | An alternative definition ... |
| odcl2 19477 | The order of an element of... |
| oddvds2 19478 | The order of an element of... |
| finodsubmsubg 19479 | A submonoid whose elements... |
| 0subgALT 19480 | A shorter proof of ~ 0subg... |
| submod 19481 | The order of an element is... |
| subgod 19482 | The order of an element is... |
| odsubdvds 19483 | The order of an element of... |
| odf1o1 19484 | An element with zero order... |
| odf1o2 19485 | An element with nonzero or... |
| odhash 19486 | An element of zero order g... |
| odhash2 19487 | If an element has nonzero ... |
| odhash3 19488 | An element which generates... |
| odngen 19489 | A cyclic subgroup of size ... |
| gexval 19490 | Value of the exponent of a... |
| gexlem1 19491 | The group element order is... |
| gexcl 19492 | The exponent of a group is... |
| gexid 19493 | Any element to the power o... |
| gexlem2 19494 | Any positive annihilator o... |
| gexdvdsi 19495 | Any group element is annih... |
| gexdvds 19496 | The only ` N ` that annihi... |
| gexdvds2 19497 | An integer divides the gro... |
| gexod 19498 | Any group element is annih... |
| gexcl3 19499 | If the order of every grou... |
| gexnnod 19500 | Every group element has fi... |
| gexcl2 19501 | The exponent of a finite g... |
| gexdvds3 19502 | The exponent of a finite g... |
| gex1 19503 | A group or monoid has expo... |
| ispgp 19504 | A group is a ` P ` -group ... |
| pgpprm 19505 | Reverse closure for the fi... |
| pgpgrp 19506 | Reverse closure for the se... |
| pgpfi1 19507 | A finite group with order ... |
| pgp0 19508 | The identity subgroup is a... |
| subgpgp 19509 | A subgroup of a p-group is... |
| sylow1lem1 19510 | Lemma for ~ sylow1 . The ... |
| sylow1lem2 19511 | Lemma for ~ sylow1 . The ... |
| sylow1lem3 19512 | Lemma for ~ sylow1 . One ... |
| sylow1lem4 19513 | Lemma for ~ sylow1 . The ... |
| sylow1lem5 19514 | Lemma for ~ sylow1 . Usin... |
| sylow1 19515 | Sylow's first theorem. If... |
| odcau 19516 | Cauchy's theorem for the o... |
| pgpfi 19517 | The converse to ~ pgpfi1 .... |
| pgpfi2 19518 | Alternate version of ~ pgp... |
| pgphash 19519 | The order of a p-group. (... |
| isslw 19520 | The property of being a Sy... |
| slwprm 19521 | Reverse closure for the fi... |
| slwsubg 19522 | A Sylow ` P ` -subgroup is... |
| slwispgp 19523 | Defining property of a Syl... |
| slwpss 19524 | A proper superset of a Syl... |
| slwpgp 19525 | A Sylow ` P ` -subgroup is... |
| pgpssslw 19526 | Every ` P ` -subgroup is c... |
| slwn0 19527 | Every finite group contain... |
| subgslw 19528 | A Sylow subgroup that is c... |
| sylow2alem1 19529 | Lemma for ~ sylow2a . An ... |
| sylow2alem2 19530 | Lemma for ~ sylow2a . All... |
| sylow2a 19531 | A named lemma of Sylow's s... |
| sylow2blem1 19532 | Lemma for ~ sylow2b . Eva... |
| sylow2blem2 19533 | Lemma for ~ sylow2b . Lef... |
| sylow2blem3 19534 | Sylow's second theorem. P... |
| sylow2b 19535 | Sylow's second theorem. A... |
| slwhash 19536 | A sylow subgroup has cardi... |
| fislw 19537 | The sylow subgroups of a f... |
| sylow2 19538 | Sylow's second theorem. S... |
| sylow3lem1 19539 | Lemma for ~ sylow3 , first... |
| sylow3lem2 19540 | Lemma for ~ sylow3 , first... |
| sylow3lem3 19541 | Lemma for ~ sylow3 , first... |
| sylow3lem4 19542 | Lemma for ~ sylow3 , first... |
| sylow3lem5 19543 | Lemma for ~ sylow3 , secon... |
| sylow3lem6 19544 | Lemma for ~ sylow3 , secon... |
| sylow3 19545 | Sylow's third theorem. Th... |
| lsmfval 19550 | The subgroup sum function ... |
| lsmvalx 19551 | Subspace sum value (for a ... |
| lsmelvalx 19552 | Subspace sum membership (f... |
| lsmelvalix 19553 | Subspace sum membership (f... |
| oppglsm 19554 | The subspace sum operation... |
| lsmssv 19555 | Subgroup sum is a subset o... |
| lsmless1x 19556 | Subset implies subgroup su... |
| lsmless2x 19557 | Subset implies subgroup su... |
| lsmub1x 19558 | Subgroup sum is an upper b... |
| lsmub2x 19559 | Subgroup sum is an upper b... |
| lsmval 19560 | Subgroup sum value (for a ... |
| lsmelval 19561 | Subgroup sum membership (f... |
| lsmelvali 19562 | Subgroup sum membership (f... |
| lsmelvalm 19563 | Subgroup sum membership an... |
| lsmelvalmi 19564 | Membership of vector subtr... |
| lsmsubm 19565 | The sum of two commuting s... |
| lsmsubg 19566 | The sum of two commuting s... |
| lsmcom2 19567 | Subgroup sum commutes. (C... |
| smndlsmidm 19568 | The direct product is idem... |
| lsmub1 19569 | Subgroup sum is an upper b... |
| lsmub2 19570 | Subgroup sum is an upper b... |
| lsmunss 19571 | Union of subgroups is a su... |
| lsmless1 19572 | Subset implies subgroup su... |
| lsmless2 19573 | Subset implies subgroup su... |
| lsmless12 19574 | Subset implies subgroup su... |
| lsmidm 19575 | Subgroup sum is idempotent... |
| lsmlub 19576 | The least upper bound prop... |
| lsmss1 19577 | Subgroup sum with a subset... |
| lsmss1b 19578 | Subgroup sum with a subset... |
| lsmss2 19579 | Subgroup sum with a subset... |
| lsmss2b 19580 | Subgroup sum with a subset... |
| lsmass 19581 | Subgroup sum is associativ... |
| mndlsmidm 19582 | Subgroup sum is idempotent... |
| lsm01 19583 | Subgroup sum with the zero... |
| lsm02 19584 | Subgroup sum with the zero... |
| subglsm 19585 | The subgroup sum evaluated... |
| lssnle 19586 | Equivalent expressions for... |
| lsmmod 19587 | The modular law holds for ... |
| lsmmod2 19588 | Modular law dual for subgr... |
| lsmpropd 19589 | If two structures have the... |
| cntzrecd 19590 | Commute the "subgroups com... |
| lsmcntz 19591 | The "subgroups commute" pr... |
| lsmcntzr 19592 | The "subgroups commute" pr... |
| lsmdisj 19593 | Disjointness from a subgro... |
| lsmdisj2 19594 | Association of the disjoin... |
| lsmdisj3 19595 | Association of the disjoin... |
| lsmdisjr 19596 | Disjointness from a subgro... |
| lsmdisj2r 19597 | Association of the disjoin... |
| lsmdisj3r 19598 | Association of the disjoin... |
| lsmdisj2a 19599 | Association of the disjoin... |
| lsmdisj2b 19600 | Association of the disjoin... |
| lsmdisj3a 19601 | Association of the disjoin... |
| lsmdisj3b 19602 | Association of the disjoin... |
| subgdisj1 19603 | Vectors belonging to disjo... |
| subgdisj2 19604 | Vectors belonging to disjo... |
| subgdisjb 19605 | Vectors belonging to disjo... |
| pj1fval 19606 | The left projection functi... |
| pj1val 19607 | The left projection functi... |
| pj1eu 19608 | Uniqueness of a left proje... |
| pj1f 19609 | The left projection functi... |
| pj2f 19610 | The right projection funct... |
| pj1id 19611 | Any element of a direct su... |
| pj1eq 19612 | Any element of a direct su... |
| pj1lid 19613 | The left projection functi... |
| pj1rid 19614 | The left projection functi... |
| pj1ghm 19615 | The left projection functi... |
| pj1ghm2 19616 | The left projection functi... |
| lsmhash 19617 | The order of the direct pr... |
| efgmval 19624 | Value of the formal invers... |
| efgmf 19625 | The formal inverse operati... |
| efgmnvl 19626 | The inversion function on ... |
| efgrcl 19627 | Lemma for ~ efgval . (Con... |
| efglem 19628 | Lemma for ~ efgval . (Con... |
| efgval 19629 | Value of the free group co... |
| efger 19630 | Value of the free group co... |
| efgi 19631 | Value of the free group co... |
| efgi0 19632 | Value of the free group co... |
| efgi1 19633 | Value of the free group co... |
| efgtf 19634 | Value of the free group co... |
| efgtval 19635 | Value of the extension fun... |
| efgval2 19636 | Value of the free group co... |
| efgi2 19637 | Value of the free group co... |
| efgtlen 19638 | Value of the free group co... |
| efginvrel2 19639 | The inverse of the reverse... |
| efginvrel1 19640 | The inverse of the reverse... |
| efgsf 19641 | Value of the auxiliary fun... |
| efgsdm 19642 | Elementhood in the domain ... |
| efgsval 19643 | Value of the auxiliary fun... |
| efgsdmi 19644 | Property of the last link ... |
| efgsval2 19645 | Value of the auxiliary fun... |
| efgsrel 19646 | The start and end of any e... |
| efgs1 19647 | A singleton of an irreduci... |
| efgs1b 19648 | Every extension sequence e... |
| efgsp1 19649 | If ` F ` is an extension s... |
| efgsres 19650 | An initial segment of an e... |
| efgsfo 19651 | For any word, there is a s... |
| efgredlema 19652 | The reduced word that form... |
| efgredlemf 19653 | Lemma for ~ efgredleme . ... |
| efgredlemg 19654 | Lemma for ~ efgred . (Con... |
| efgredleme 19655 | Lemma for ~ efgred . (Con... |
| efgredlemd 19656 | The reduced word that form... |
| efgredlemc 19657 | The reduced word that form... |
| efgredlemb 19658 | The reduced word that form... |
| efgredlem 19659 | The reduced word that form... |
| efgred 19660 | The reduced word that form... |
| efgrelexlema 19661 | If two words ` A , B ` are... |
| efgrelexlemb 19662 | If two words ` A , B ` are... |
| efgrelex 19663 | If two words ` A , B ` are... |
| efgredeu 19664 | There is a unique reduced ... |
| efgred2 19665 | Two extension sequences ha... |
| efgcpbllema 19666 | Lemma for ~ efgrelex . De... |
| efgcpbllemb 19667 | Lemma for ~ efgrelex . Sh... |
| efgcpbl 19668 | Two extension sequences ha... |
| efgcpbl2 19669 | Two extension sequences ha... |
| frgpval 19670 | Value of the free group co... |
| frgpcpbl 19671 | Compatibility of the group... |
| frgp0 19672 | The free group is a group.... |
| frgpeccl 19673 | Closure of the quotient ma... |
| frgpgrp 19674 | The free group is a group.... |
| frgpadd 19675 | Addition in the free group... |
| frgpinv 19676 | The inverse of an element ... |
| frgpmhm 19677 | The "natural map" from wor... |
| vrgpfval 19678 | The canonical injection fr... |
| vrgpval 19679 | The value of the generatin... |
| vrgpf 19680 | The mapping from the index... |
| vrgpinv 19681 | The inverse of a generatin... |
| frgpuptf 19682 | Any assignment of the gene... |
| frgpuptinv 19683 | Any assignment of the gene... |
| frgpuplem 19684 | Any assignment of the gene... |
| frgpupf 19685 | Any assignment of the gene... |
| frgpupval 19686 | Any assignment of the gene... |
| frgpup1 19687 | Any assignment of the gene... |
| frgpup2 19688 | The evaluation map has the... |
| frgpup3lem 19689 | The evaluation map has the... |
| frgpup3 19690 | Universal property of the ... |
| 0frgp 19691 | The free group on zero gen... |
| isabl 19696 | The predicate "is an Abeli... |
| ablgrp 19697 | An Abelian group is a grou... |
| ablgrpd 19698 | An Abelian group is a grou... |
| ablcmn 19699 | An Abelian group is a comm... |
| ablcmnd 19700 | An Abelian group is a comm... |
| iscmn 19701 | The predicate "is a commut... |
| isabl2 19702 | The predicate "is an Abeli... |
| cmnpropd 19703 | If two structures have the... |
| ablpropd 19704 | If two structures have the... |
| ablprop 19705 | If two structures have the... |
| iscmnd 19706 | Properties that determine ... |
| isabld 19707 | Properties that determine ... |
| isabli 19708 | Properties that determine ... |
| cmnmnd 19709 | A commutative monoid is a ... |
| cmncom 19710 | A commutative monoid is co... |
| ablcom 19711 | An Abelian group operation... |
| cmn32 19712 | Commutative/associative la... |
| cmn4 19713 | Commutative/associative la... |
| cmn12 19714 | Commutative/associative la... |
| abl32 19715 | Commutative/associative la... |
| cmnmndd 19716 | A commutative monoid is a ... |
| cmnbascntr 19717 | The base set of a commutat... |
| rinvmod 19718 | Uniqueness of a right inve... |
| ablinvadd 19719 | The inverse of an Abelian ... |
| ablsub2inv 19720 | Abelian group subtraction ... |
| ablsubadd 19721 | Relationship between Abeli... |
| ablsub4 19722 | Commutative/associative su... |
| abladdsub4 19723 | Abelian group addition/sub... |
| abladdsub 19724 | Associative-type law for g... |
| ablsubadd23 19725 | Commutative/associative la... |
| ablsubaddsub 19726 | Double subtraction and add... |
| ablpncan2 19727 | Cancellation law for subtr... |
| ablpncan3 19728 | A cancellation law for Abe... |
| ablsubsub 19729 | Law for double subtraction... |
| ablsubsub4 19730 | Law for double subtraction... |
| ablpnpcan 19731 | Cancellation law for mixed... |
| ablnncan 19732 | Cancellation law for group... |
| ablsub32 19733 | Swap the second and third ... |
| ablnnncan 19734 | Cancellation law for group... |
| ablnnncan1 19735 | Cancellation law for group... |
| ablsubsub23 19736 | Swap subtrahend and result... |
| mulgnn0di 19737 | Group multiple of a sum, f... |
| mulgdi 19738 | Group multiple of a sum. ... |
| mulgmhm 19739 | The map from ` x ` to ` n ... |
| mulgghm 19740 | The map from ` x ` to ` n ... |
| mulgsubdi 19741 | Group multiple of a differ... |
| ghmfghm 19742 | The function fulfilling th... |
| ghmcmn 19743 | The image of a commutative... |
| ghmabl 19744 | The image of an abelian gr... |
| invghm 19745 | The inversion map is a gro... |
| eqgabl 19746 | Value of the subgroup cose... |
| qusecsub 19747 | Two subgroup cosets are eq... |
| subgabl 19748 | A subgroup of an abelian g... |
| subcmn 19749 | A submonoid of a commutati... |
| submcmn 19750 | A submonoid of a commutati... |
| submcmn2 19751 | A submonoid is commutative... |
| cntzcmn 19752 | The centralizer of any sub... |
| cntzcmnss 19753 | Any subset in a commutativ... |
| cntrcmnd 19754 | The center of a monoid is ... |
| cntrabl 19755 | The center of a group is a... |
| cntzspan 19756 | If the generators commute,... |
| cntzcmnf 19757 | Discharge the centralizer ... |
| ghmplusg 19758 | The pointwise sum of two l... |
| ablnsg 19759 | Every subgroup of an abeli... |
| odadd1 19760 | The order of a product in ... |
| odadd2 19761 | The order of a product in ... |
| odadd 19762 | The order of a product is ... |
| gex2abl 19763 | A group with exponent 2 (o... |
| gexexlem 19764 | Lemma for ~ gexex . (Cont... |
| gexex 19765 | In an abelian group with f... |
| torsubg 19766 | The set of all elements of... |
| oddvdssubg 19767 | The set of all elements wh... |
| lsmcomx 19768 | Subgroup sum commutes (ext... |
| ablcntzd 19769 | All subgroups in an abelia... |
| lsmcom 19770 | Subgroup sum commutes. (C... |
| lsmsubg2 19771 | The sum of two subgroups i... |
| lsm4 19772 | Commutative/associative la... |
| prdscmnd 19773 | The product of a family of... |
| prdsabld 19774 | The product of a family of... |
| pwscmn 19775 | The structure power on a c... |
| pwsabl 19776 | The structure power on an ... |
| qusabl 19777 | If ` Y ` is a subgroup of ... |
| abl1 19778 | The (smallest) structure r... |
| abln0 19779 | Abelian groups (and theref... |
| cnaddablx 19780 | The complex numbers are an... |
| cnaddabl 19781 | The complex numbers are an... |
| cnaddid 19782 | The group identity element... |
| cnaddinv 19783 | Value of the group inverse... |
| zaddablx 19784 | The integers are an Abelia... |
| frgpnabllem1 19785 | Lemma for ~ frgpnabl . (C... |
| frgpnabllem2 19786 | Lemma for ~ frgpnabl . (C... |
| frgpnabl 19787 | The free group on two or m... |
| imasabl 19788 | The image structure of an ... |
| iscyg 19791 | Definition of a cyclic gro... |
| iscyggen 19792 | The property of being a cy... |
| iscyggen2 19793 | The property of being a cy... |
| iscyg2 19794 | A cyclic group is a group ... |
| cyggeninv 19795 | The inverse of a cyclic ge... |
| cyggenod 19796 | An element is the generato... |
| cyggenod2 19797 | In an infinite cyclic grou... |
| iscyg3 19798 | Definition of a cyclic gro... |
| iscygd 19799 | Definition of a cyclic gro... |
| iscygodd 19800 | Show that a group with an ... |
| cycsubmcmn 19801 | The set of nonnegative int... |
| cyggrp 19802 | A cyclic group is a group.... |
| cygabl 19803 | A cyclic group is abelian.... |
| cygctb 19804 | A cyclic group is countabl... |
| 0cyg 19805 | The trivial group is cycli... |
| prmcyg 19806 | A group with prime order i... |
| lt6abl 19807 | A group with fewer than ` ... |
| ghmcyg 19808 | The image of a cyclic grou... |
| cyggex2 19809 | The exponent of a cyclic g... |
| cyggex 19810 | The exponent of a finite c... |
| cyggexb 19811 | A finite abelian group is ... |
| giccyg 19812 | Cyclicity is a group prope... |
| cycsubgcyg 19813 | The cyclic subgroup genera... |
| cycsubgcyg2 19814 | The cyclic subgroup genera... |
| gsumval3a 19815 | Value of the group sum ope... |
| gsumval3eu 19816 | The group sum as defined i... |
| gsumval3lem1 19817 | Lemma 1 for ~ gsumval3 . ... |
| gsumval3lem2 19818 | Lemma 2 for ~ gsumval3 . ... |
| gsumval3 19819 | Value of the group sum ope... |
| gsumcllem 19820 | Lemma for ~ gsumcl and rel... |
| gsumzres 19821 | Extend a finite group sum ... |
| gsumzcl2 19822 | Closure of a finite group ... |
| gsumzcl 19823 | Closure of a finite group ... |
| gsumzf1o 19824 | Re-index a finite group su... |
| gsumres 19825 | Extend a finite group sum ... |
| gsumcl2 19826 | Closure of a finite group ... |
| gsumcl 19827 | Closure of a finite group ... |
| gsumf1o 19828 | Re-index a finite group su... |
| gsumreidx 19829 | Re-index a finite group su... |
| gsumzsubmcl 19830 | Closure of a group sum in ... |
| gsumsubmcl 19831 | Closure of a group sum in ... |
| gsumsubgcl 19832 | Closure of a group sum in ... |
| gsumzaddlem 19833 | The sum of two group sums.... |
| gsumzadd 19834 | The sum of two group sums.... |
| gsumadd 19835 | The sum of two group sums.... |
| gsummptfsadd 19836 | The sum of two group sums ... |
| gsummptfidmadd 19837 | The sum of two group sums ... |
| gsummptfidmadd2 19838 | The sum of two group sums ... |
| gsumzsplit 19839 | Split a group sum into two... |
| gsumsplit 19840 | Split a group sum into two... |
| gsumsplit2 19841 | Split a group sum into two... |
| gsummptfidmsplit 19842 | Split a group sum expresse... |
| gsummptfidmsplitres 19843 | Split a group sum expresse... |
| gsummptfzsplit 19844 | Split a group sum expresse... |
| gsummptfzsplitl 19845 | Split a group sum expresse... |
| gsumconst 19846 | Sum of a constant series. ... |
| gsumconstf 19847 | Sum of a constant series. ... |
| gsummptshft 19848 | Index shift of a finite gr... |
| gsumzmhm 19849 | Apply a group homomorphism... |
| gsummhm 19850 | Apply a group homomorphism... |
| gsummhm2 19851 | Apply a group homomorphism... |
| gsummptmhm 19852 | Apply a group homomorphism... |
| gsummulglem 19853 | Lemma for ~ gsummulg and ~... |
| gsummulg 19854 | Nonnegative multiple of a ... |
| gsummulgz 19855 | Integer multiple of a grou... |
| gsumzoppg 19856 | The opposite of a group su... |
| gsumzinv 19857 | Inverse of a group sum. (... |
| gsuminv 19858 | Inverse of a group sum. (... |
| gsummptfidminv 19859 | Inverse of a group sum exp... |
| gsumsub 19860 | The difference of two grou... |
| gsummptfssub 19861 | The difference of two grou... |
| gsummptfidmsub 19862 | The difference of two grou... |
| gsumsnfd 19863 | Group sum of a singleton, ... |
| gsumsnd 19864 | Group sum of a singleton, ... |
| gsumsnf 19865 | Group sum of a singleton, ... |
| gsumsn 19866 | Group sum of a singleton. ... |
| gsumpr 19867 | Group sum of a pair. (Con... |
| gsumzunsnd 19868 | Append an element to a fin... |
| gsumunsnfd 19869 | Append an element to a fin... |
| gsumunsnd 19870 | Append an element to a fin... |
| gsumunsnf 19871 | Append an element to a fin... |
| gsumunsn 19872 | Append an element to a fin... |
| gsumdifsnd 19873 | Extract a summand from a f... |
| gsumpt 19874 | Sum of a family that is no... |
| gsummptf1o 19875 | Re-index a finite group su... |
| gsummptun 19876 | Group sum of a disjoint un... |
| gsummpt1n0 19877 | If only one summand in a f... |
| gsummptif1n0 19878 | If only one summand in a f... |
| gsummptcl 19879 | Closure of a finite group ... |
| gsummptfif1o 19880 | Re-index a finite group su... |
| gsummptfzcl 19881 | Closure of a finite group ... |
| gsum2dlem1 19882 | Lemma 1 for ~ gsum2d . (C... |
| gsum2dlem2 19883 | Lemma for ~ gsum2d . (Con... |
| gsum2d 19884 | Write a sum over a two-dim... |
| gsum2d2lem 19885 | Lemma for ~ gsum2d2 : show... |
| gsum2d2 19886 | Write a group sum over a t... |
| gsumcom2 19887 | Two-dimensional commutatio... |
| gsumxp 19888 | Write a group sum over a c... |
| gsumcom 19889 | Commute the arguments of a... |
| gsumcom3 19890 | A commutative law for fini... |
| gsumcom3fi 19891 | A commutative law for fini... |
| gsumxp2 19892 | Write a group sum over a c... |
| prdsgsum 19893 | Finite commutative sums in... |
| pwsgsum 19894 | Finite commutative sums in... |
| fsfnn0gsumfsffz 19895 | Replacing a finitely suppo... |
| nn0gsumfz 19896 | Replacing a finitely suppo... |
| nn0gsumfz0 19897 | Replacing a finitely suppo... |
| gsummptnn0fz 19898 | A final group sum over a f... |
| gsummptnn0fzfv 19899 | A final group sum over a f... |
| telgsumfzslem 19900 | Lemma for ~ telgsumfzs (in... |
| telgsumfzs 19901 | Telescoping group sum rang... |
| telgsumfz 19902 | Telescoping group sum rang... |
| telgsumfz0s 19903 | Telescoping finite group s... |
| telgsumfz0 19904 | Telescoping finite group s... |
| telgsums 19905 | Telescoping finitely suppo... |
| telgsum 19906 | Telescoping finitely suppo... |
| reldmdprd 19911 | The domain of the internal... |
| dmdprd 19912 | The domain of definition o... |
| dmdprdd 19913 | Show that a given family i... |
| dprddomprc 19914 | A family of subgroups inde... |
| dprddomcld 19915 | If a family of subgroups i... |
| dprdval0prc 19916 | The internal direct produc... |
| dprdval 19917 | The value of the internal ... |
| eldprd 19918 | A class ` A ` is an intern... |
| dprdgrp 19919 | Reverse closure for the in... |
| dprdf 19920 | The function ` S ` is a fa... |
| dprdf2 19921 | The function ` S ` is a fa... |
| dprdcntz 19922 | The function ` S ` is a fa... |
| dprddisj 19923 | The function ` S ` is a fa... |
| dprdw 19924 | The property of being a fi... |
| dprdwd 19925 | A mapping being a finitely... |
| dprdff 19926 | A finitely supported funct... |
| dprdfcl 19927 | A finitely supported funct... |
| dprdffsupp 19928 | A finitely supported funct... |
| dprdfcntz 19929 | A function on the elements... |
| dprdssv 19930 | The internal direct produc... |
| dprdfid 19931 | A function mapping all but... |
| eldprdi 19932 | The domain of definition o... |
| dprdfinv 19933 | Take the inverse of a grou... |
| dprdfadd 19934 | Take the sum of group sums... |
| dprdfsub 19935 | Take the difference of gro... |
| dprdfeq0 19936 | The zero function is the o... |
| dprdf11 19937 | Two group sums over a dire... |
| dprdsubg 19938 | The internal direct produc... |
| dprdub 19939 | Each factor is a subset of... |
| dprdlub 19940 | The direct product is smal... |
| dprdspan 19941 | The direct product is the ... |
| dprdres 19942 | Restriction of a direct pr... |
| dprdss 19943 | Create a direct product by... |
| dprdz 19944 | A family consisting entire... |
| dprd0 19945 | The empty family is an int... |
| dprdf1o 19946 | Rearrange the index set of... |
| dprdf1 19947 | Rearrange the index set of... |
| subgdmdprd 19948 | A direct product in a subg... |
| subgdprd 19949 | A direct product in a subg... |
| dprdsn 19950 | A singleton family is an i... |
| dmdprdsplitlem 19951 | Lemma for ~ dmdprdsplit . ... |
| dprdcntz2 19952 | The function ` S ` is a fa... |
| dprddisj2 19953 | The function ` S ` is a fa... |
| dprd2dlem2 19954 | The direct product of a co... |
| dprd2dlem1 19955 | The direct product of a co... |
| dprd2da 19956 | The direct product of a co... |
| dprd2db 19957 | The direct product of a co... |
| dprd2d2 19958 | The direct product of a co... |
| dmdprdsplit2lem 19959 | Lemma for ~ dmdprdsplit . ... |
| dmdprdsplit2 19960 | The direct product splits ... |
| dmdprdsplit 19961 | The direct product splits ... |
| dprdsplit 19962 | The direct product is the ... |
| dmdprdpr 19963 | A singleton family is an i... |
| dprdpr 19964 | A singleton family is an i... |
| dpjlem 19965 | Lemma for theorems about d... |
| dpjcntz 19966 | The two subgroups that app... |
| dpjdisj 19967 | The two subgroups that app... |
| dpjlsm 19968 | The two subgroups that app... |
| dpjfval 19969 | Value of the direct produc... |
| dpjval 19970 | Value of the direct produc... |
| dpjf 19971 | The ` X ` -th index projec... |
| dpjidcl 19972 | The key property of projec... |
| dpjeq 19973 | Decompose a group sum into... |
| dpjid 19974 | The key property of projec... |
| dpjlid 19975 | The ` X ` -th index projec... |
| dpjrid 19976 | The ` Y ` -th index projec... |
| dpjghm 19977 | The direct product is the ... |
| dpjghm2 19978 | The direct product is the ... |
| ablfacrplem 19979 | Lemma for ~ ablfacrp2 . (... |
| ablfacrp 19980 | A finite abelian group who... |
| ablfacrp2 19981 | The factors ` K , L ` of ~... |
| ablfac1lem 19982 | Lemma for ~ ablfac1b . Sa... |
| ablfac1a 19983 | The factors of ~ ablfac1b ... |
| ablfac1b 19984 | Any abelian group is the d... |
| ablfac1c 19985 | The factors of ~ ablfac1b ... |
| ablfac1eulem 19986 | Lemma for ~ ablfac1eu . (... |
| ablfac1eu 19987 | The factorization of ~ abl... |
| pgpfac1lem1 19988 | Lemma for ~ pgpfac1 . (Co... |
| pgpfac1lem2 19989 | Lemma for ~ pgpfac1 . (Co... |
| pgpfac1lem3a 19990 | Lemma for ~ pgpfac1 . (Co... |
| pgpfac1lem3 19991 | Lemma for ~ pgpfac1 . (Co... |
| pgpfac1lem4 19992 | Lemma for ~ pgpfac1 . (Co... |
| pgpfac1lem5 19993 | Lemma for ~ pgpfac1 . (Co... |
| pgpfac1 19994 | Factorization of a finite ... |
| pgpfaclem1 19995 | Lemma for ~ pgpfac . (Con... |
| pgpfaclem2 19996 | Lemma for ~ pgpfac . (Con... |
| pgpfaclem3 19997 | Lemma for ~ pgpfac . (Con... |
| pgpfac 19998 | Full factorization of a fi... |
| ablfaclem1 19999 | Lemma for ~ ablfac . (Con... |
| ablfaclem2 20000 | Lemma for ~ ablfac . (Con... |
| ablfaclem3 20001 | Lemma for ~ ablfac . (Con... |
| ablfac 20002 | The Fundamental Theorem of... |
| ablfac2 20003 | Choose generators for each... |
| issimpg 20006 | The predicate "is a simple... |
| issimpgd 20007 | Deduce a simple group from... |
| simpggrp 20008 | A simple group is a group.... |
| simpggrpd 20009 | A simple group is a group.... |
| simpg2nsg 20010 | A simple group has two nor... |
| trivnsimpgd 20011 | Trivial groups are not sim... |
| simpgntrivd 20012 | Simple groups are nontrivi... |
| simpgnideld 20013 | A simple group contains a ... |
| simpgnsgd 20014 | The only normal subgroups ... |
| simpgnsgeqd 20015 | A normal subgroup of a sim... |
| 2nsgsimpgd 20016 | If any normal subgroup of ... |
| simpgnsgbid 20017 | A nontrivial group is simp... |
| ablsimpnosubgd 20018 | A subgroup of an abelian s... |
| ablsimpg1gend 20019 | An abelian simple group is... |
| ablsimpgcygd 20020 | An abelian simple group is... |
| ablsimpgfindlem1 20021 | Lemma for ~ ablsimpgfind .... |
| ablsimpgfindlem2 20022 | Lemma for ~ ablsimpgfind .... |
| cycsubggenodd 20023 | Relationship between the o... |
| ablsimpgfind 20024 | An abelian simple group is... |
| fincygsubgd 20025 | The subgroup referenced in... |
| fincygsubgodd 20026 | Calculate the order of a s... |
| fincygsubgodexd 20027 | A finite cyclic group has ... |
| prmgrpsimpgd 20028 | A group of prime order is ... |
| ablsimpgprmd 20029 | An abelian simple group ha... |
| ablsimpgd 20030 | An abelian group is simple... |
| isomnd 20035 | A (left) ordered monoid is... |
| isogrp 20036 | A (left-)ordered group is ... |
| ogrpgrp 20037 | A left-ordered group is a ... |
| omndmnd 20038 | A left-ordered monoid is a... |
| omndtos 20039 | A left-ordered monoid is a... |
| omndadd 20040 | In an ordered monoid, the ... |
| omndaddr 20041 | In a right ordered monoid,... |
| omndadd2d 20042 | In a commutative left orde... |
| omndadd2rd 20043 | In a left- and right- orde... |
| submomnd 20044 | A submonoid of an ordered ... |
| omndmul2 20045 | In an ordered monoid, the ... |
| omndmul3 20046 | In an ordered monoid, the ... |
| omndmul 20047 | In a commutative ordered m... |
| ogrpinv0le 20048 | In an ordered group, the o... |
| ogrpsub 20049 | In an ordered group, the o... |
| ogrpaddlt 20050 | In an ordered group, stric... |
| ogrpaddltbi 20051 | In a right ordered group, ... |
| ogrpaddltrd 20052 | In a right ordered group, ... |
| ogrpaddltrbid 20053 | In a right ordered group, ... |
| ogrpsublt 20054 | In an ordered group, stric... |
| ogrpinv0lt 20055 | In an ordered group, the o... |
| ogrpinvlt 20056 | In an ordered group, the o... |
| gsumle 20057 | A finite sum in an ordered... |
| fnmgp 20060 | The multiplicative group o... |
| mgpval 20061 | Value of the multiplicatio... |
| mgpplusg 20062 | Value of the group operati... |
| mgpbas 20063 | Base set of the multiplica... |
| mgpsca 20064 | The multiplication monoid ... |
| mgptset 20065 | Topology component of the ... |
| mgptopn 20066 | Topology of the multiplica... |
| mgpds 20067 | Distance function of the m... |
| mgpress 20068 | Subgroup commutes with the... |
| prdsmgp 20069 | The multiplicative monoid ... |
| isrng 20072 | The predicate "is a non-un... |
| rngabl 20073 | A non-unital ring is an (a... |
| rngmgp 20074 | A non-unital ring is a sem... |
| rngmgpf 20075 | Restricted functionality o... |
| rnggrp 20076 | A non-unital ring is a (ad... |
| rngass 20077 | Associative law for the mu... |
| rngdi 20078 | Distributive law for the m... |
| rngdir 20079 | Distributive law for the m... |
| rngacl 20080 | Closure of the addition op... |
| rng0cl 20081 | The zero element of a non-... |
| rngcl 20082 | Closure of the multiplicat... |
| rnglz 20083 | The zero of a non-unital r... |
| rngrz 20084 | The zero of a non-unital r... |
| rngmneg1 20085 | Negation of a product in a... |
| rngmneg2 20086 | Negation of a product in a... |
| rngm2neg 20087 | Double negation of a produ... |
| rngansg 20088 | Every additive subgroup of... |
| rngsubdi 20089 | Ring multiplication distri... |
| rngsubdir 20090 | Ring multiplication distri... |
| isrngd 20091 | Properties that determine ... |
| rngpropd 20092 | If two structures have the... |
| prdsmulrngcl 20093 | Closure of the multiplicat... |
| prdsrngd 20094 | A product of non-unital ri... |
| imasrng 20095 | The image structure of a n... |
| imasrngf1 20096 | The image of a non-unital ... |
| xpsrngd 20097 | A product of two non-unita... |
| qusrng 20098 | The quotient structure of ... |
| ringidval 20101 | The value of the unity ele... |
| dfur2 20102 | The multiplicative identit... |
| ringurd 20103 | Deduce the unity element o... |
| issrg 20106 | The predicate "is a semiri... |
| srgcmn 20107 | A semiring is a commutativ... |
| srgmnd 20108 | A semiring is a monoid. (... |
| srgmgp 20109 | A semiring is a monoid und... |
| srgdilem 20110 | Lemma for ~ srgdi and ~ sr... |
| srgcl 20111 | Closure of the multiplicat... |
| srgass 20112 | Associative law for the mu... |
| srgideu 20113 | The unity element of a sem... |
| srgfcl 20114 | Functionality of the multi... |
| srgdi 20115 | Distributive law for the m... |
| srgdir 20116 | Distributive law for the m... |
| srgidcl 20117 | The unity element of a sem... |
| srg0cl 20118 | The zero element of a semi... |
| srgidmlem 20119 | Lemma for ~ srglidm and ~ ... |
| srglidm 20120 | The unity element of a sem... |
| srgridm 20121 | The unity element of a sem... |
| issrgid 20122 | Properties showing that an... |
| srgacl 20123 | Closure of the addition op... |
| srgcom 20124 | Commutativity of the addit... |
| srgrz 20125 | The zero of a semiring is ... |
| srglz 20126 | The zero of a semiring is ... |
| srgisid 20127 | In a semiring, the only le... |
| o2timesd 20128 | An element of a ring-like ... |
| rglcom4d 20129 | Restricted commutativity o... |
| srgo2times 20130 | A semiring element plus it... |
| srgcom4lem 20131 | Lemma for ~ srgcom4 . Thi... |
| srgcom4 20132 | Restricted commutativity o... |
| srg1zr 20133 | The only semiring with a b... |
| srgen1zr 20134 | The only semiring with one... |
| srgmulgass 20135 | An associative property be... |
| srgpcomp 20136 | If two elements of a semir... |
| srgpcompp 20137 | If two elements of a semir... |
| srgpcomppsc 20138 | If two elements of a semir... |
| srglmhm 20139 | Left-multiplication in a s... |
| srgrmhm 20140 | Right-multiplication in a ... |
| srgsummulcr 20141 | A finite semiring sum mult... |
| sgsummulcl 20142 | A finite semiring sum mult... |
| srg1expzeq1 20143 | The exponentiation (by a n... |
| srgbinomlem1 20144 | Lemma 1 for ~ srgbinomlem ... |
| srgbinomlem2 20145 | Lemma 2 for ~ srgbinomlem ... |
| srgbinomlem3 20146 | Lemma 3 for ~ srgbinomlem ... |
| srgbinomlem4 20147 | Lemma 4 for ~ srgbinomlem ... |
| srgbinomlem 20148 | Lemma for ~ srgbinom . In... |
| srgbinom 20149 | The binomial theorem for c... |
| csrgbinom 20150 | The binomial theorem for c... |
| isring 20155 | The predicate "is a (unita... |
| ringgrp 20156 | A ring is a group. (Contr... |
| ringmgp 20157 | A ring is a monoid under m... |
| iscrng 20158 | A commutative ring is a ri... |
| crngmgp 20159 | A commutative ring's multi... |
| ringgrpd 20160 | A ring is a group. (Contr... |
| ringmnd 20161 | A ring is a monoid under a... |
| ringmgm 20162 | A ring is a magma. (Contr... |
| crngring 20163 | A commutative ring is a ri... |
| crngringd 20164 | A commutative ring is a ri... |
| crnggrpd 20165 | A commutative ring is a gr... |
| mgpf 20166 | Restricted functionality o... |
| ringdilem 20167 | Properties of a unital rin... |
| ringcl 20168 | Closure of the multiplicat... |
| crngcom 20169 | A commutative ring's multi... |
| iscrng2 20170 | A commutative ring is a ri... |
| ringass 20171 | Associative law for multip... |
| ringideu 20172 | The unity element of a rin... |
| crngcomd 20173 | Multiplication is commutat... |
| crngbascntr 20174 | The base set of a commutat... |
| ringassd 20175 | Associative law for multip... |
| crng12d 20176 | Commutative/associative la... |
| crng32d 20177 | Commutative/associative la... |
| ringcld 20178 | Closure of the multiplicat... |
| ringdi 20179 | Distributive law for the m... |
| ringdir 20180 | Distributive law for the m... |
| ringdid 20181 | Distributive law for the m... |
| ringdird 20182 | Distributive law for the m... |
| ringidcl 20183 | The unity element of a rin... |
| ringidcld 20184 | The unity element of a rin... |
| ring0cl 20185 | The zero element of a ring... |
| ringidmlem 20186 | Lemma for ~ ringlidm and ~... |
| ringlidm 20187 | The unity element of a rin... |
| ringridm 20188 | The unity element of a rin... |
| isringid 20189 | Properties showing that an... |
| ringlidmd 20190 | The unity element of a rin... |
| ringridmd 20191 | The unity element of a rin... |
| ringid 20192 | The multiplication operati... |
| ringo2times 20193 | A ring element plus itself... |
| ringadd2 20194 | A ring element plus itself... |
| ringidss 20195 | A subset of the multiplica... |
| ringacl 20196 | Closure of the addition op... |
| ringcomlem 20197 | Lemma for ~ ringcom . Thi... |
| ringcom 20198 | Commutativity of the addit... |
| ringabl 20199 | A ring is an Abelian group... |
| ringcmn 20200 | A ring is a commutative mo... |
| ringabld 20201 | A ring is an Abelian group... |
| ringcmnd 20202 | A ring is a commutative mo... |
| ringrng 20203 | A unital ring is a non-uni... |
| ringssrng 20204 | The unital rings are non-u... |
| isringrng 20205 | The predicate "is a unital... |
| ringpropd 20206 | If two structures have the... |
| crngpropd 20207 | If two structures have the... |
| ringprop 20208 | If two structures have the... |
| isringd 20209 | Properties that determine ... |
| iscrngd 20210 | Properties that determine ... |
| ringlz 20211 | The zero of a unital ring ... |
| ringrz 20212 | The zero of a unital ring ... |
| ringlzd 20213 | The zero of a unital ring ... |
| ringrzd 20214 | The zero of a unital ring ... |
| ringsrg 20215 | Any ring is also a semirin... |
| ring1eq0 20216 | If one and zero are equal,... |
| ring1ne0 20217 | If a ring has at least two... |
| ringinvnz1ne0 20218 | In a unital ring, a left i... |
| ringinvnzdiv 20219 | In a unital ring, a left i... |
| ringnegl 20220 | Negation in a ring is the ... |
| ringnegr 20221 | Negation in a ring is the ... |
| ringmneg1 20222 | Negation of a product in a... |
| ringmneg2 20223 | Negation of a product in a... |
| ringm2neg 20224 | Double negation of a produ... |
| ringsubdi 20225 | Ring multiplication distri... |
| ringsubdir 20226 | Ring multiplication distri... |
| mulgass2 20227 | An associative property be... |
| ring1 20228 | The (smallest) structure r... |
| ringn0 20229 | Rings exist. (Contributed... |
| ringlghm 20230 | Left-multiplication in a r... |
| ringrghm 20231 | Right-multiplication in a ... |
| gsummulc1OLD 20232 | Obsolete version of ~ gsum... |
| gsummulc2OLD 20233 | Obsolete version of ~ gsum... |
| gsummulc1 20234 | A finite ring sum multipli... |
| gsummulc2 20235 | A finite ring sum multipli... |
| gsummgp0 20236 | If one factor in a finite ... |
| gsumdixp 20237 | Distribute a binary produc... |
| prdsmulrcl 20238 | A structure product of rin... |
| prdsringd 20239 | A product of rings is a ri... |
| prdscrngd 20240 | A product of commutative r... |
| prds1 20241 | Value of the ring unity in... |
| pwsring 20242 | A structure power of a rin... |
| pws1 20243 | Value of the ring unity in... |
| pwscrng 20244 | A structure power of a com... |
| pwsmgp 20245 | The multiplicative group o... |
| pwspjmhmmgpd 20246 | The projection given by ~ ... |
| pwsexpg 20247 | Value of a group exponenti... |
| imasring 20248 | The image structure of a r... |
| imasringf1 20249 | The image of a ring under ... |
| xpsringd 20250 | A product of two rings is ... |
| xpsring1d 20251 | The multiplicative identit... |
| qusring2 20252 | The quotient structure of ... |
| crngbinom 20253 | The binomial theorem for c... |
| opprval 20256 | Value of the opposite ring... |
| opprmulfval 20257 | Value of the multiplicatio... |
| opprmul 20258 | Value of the multiplicatio... |
| crngoppr 20259 | In a commutative ring, the... |
| opprlem 20260 | Lemma for ~ opprbas and ~ ... |
| opprbas 20261 | Base set of an opposite ri... |
| oppradd 20262 | Addition operation of an o... |
| opprrng 20263 | An opposite non-unital rin... |
| opprrngb 20264 | A class is a non-unital ri... |
| opprring 20265 | An opposite ring is a ring... |
| opprringb 20266 | Bidirectional form of ~ op... |
| oppr0 20267 | Additive identity of an op... |
| oppr1 20268 | Multiplicative identity of... |
| opprneg 20269 | The negative function in a... |
| opprsubg 20270 | Being a subgroup is a symm... |
| mulgass3 20271 | An associative property be... |
| reldvdsr 20278 | The divides relation is a ... |
| dvdsrval 20279 | Value of the divides relat... |
| dvdsr 20280 | Value of the divides relat... |
| dvdsr2 20281 | Value of the divides relat... |
| dvdsrmul 20282 | A left-multiple of ` X ` i... |
| dvdsrcl 20283 | Closure of a dividing elem... |
| dvdsrcl2 20284 | Closure of a dividing elem... |
| dvdsrid 20285 | An element in a (unital) r... |
| dvdsrtr 20286 | Divisibility is transitive... |
| dvdsrmul1 20287 | The divisibility relation ... |
| dvdsrneg 20288 | An element divides its neg... |
| dvdsr01 20289 | In a ring, zero is divisib... |
| dvdsr02 20290 | Only zero is divisible by ... |
| isunit 20291 | Property of being a unit o... |
| 1unit 20292 | The multiplicative identit... |
| unitcl 20293 | A unit is an element of th... |
| unitss 20294 | The set of units is contai... |
| opprunit 20295 | Being a unit is a symmetri... |
| crngunit 20296 | Property of being a unit i... |
| dvdsunit 20297 | A divisor of a unit is a u... |
| unitmulcl 20298 | The product of units is a ... |
| unitmulclb 20299 | Reversal of ~ unitmulcl in... |
| unitgrpbas 20300 | The base set of the group ... |
| unitgrp 20301 | The group of units is a gr... |
| unitabl 20302 | The group of units of a co... |
| unitgrpid 20303 | The identity of the group ... |
| unitsubm 20304 | The group of units is a su... |
| invrfval 20307 | Multiplicative inverse fun... |
| unitinvcl 20308 | The inverse of a unit exis... |
| unitinvinv 20309 | The inverse of the inverse... |
| ringinvcl 20310 | The inverse of a unit is a... |
| unitlinv 20311 | A unit times its inverse i... |
| unitrinv 20312 | A unit times its inverse i... |
| 1rinv 20313 | The inverse of the ring un... |
| 0unit 20314 | The additive identity is a... |
| unitnegcl 20315 | The negative of a unit is ... |
| ringunitnzdiv 20316 | In a unitary ring, a unit ... |
| ring1nzdiv 20317 | In a unitary ring, the rin... |
| dvrfval 20320 | Division operation in a ri... |
| dvrval 20321 | Division operation in a ri... |
| dvrcl 20322 | Closure of division operat... |
| unitdvcl 20323 | The units are closed under... |
| dvrid 20324 | A ring element divided by ... |
| dvr1 20325 | A ring element divided by ... |
| dvrass 20326 | An associative law for div... |
| dvrcan1 20327 | A cancellation law for div... |
| dvrcan3 20328 | A cancellation law for div... |
| dvreq1 20329 | Equality in terms of ratio... |
| dvrdir 20330 | Distributive law for the d... |
| rdivmuldivd 20331 | Multiplication of two rati... |
| ringinvdv 20332 | Write the inverse function... |
| rngidpropd 20333 | The ring unity depends onl... |
| dvdsrpropd 20334 | The divisibility relation ... |
| unitpropd 20335 | The set of units depends o... |
| invrpropd 20336 | The ring inverse function ... |
| isirred 20337 | An irreducible element of ... |
| isnirred 20338 | The property of being a no... |
| isirred2 20339 | Expand out the class diffe... |
| opprirred 20340 | Irreducibility is symmetri... |
| irredn0 20341 | The additive identity is n... |
| irredcl 20342 | An irreducible element is ... |
| irrednu 20343 | An irreducible element is ... |
| irredn1 20344 | The multiplicative identit... |
| irredrmul 20345 | The product of an irreduci... |
| irredlmul 20346 | The product of a unit and ... |
| irredmul 20347 | If product of two elements... |
| irredneg 20348 | The negative of an irreduc... |
| irrednegb 20349 | An element is irreducible ... |
| rnghmrcl 20356 | Reverse closure of a non-u... |
| rnghmfn 20357 | The mapping of two non-uni... |
| rnghmval 20358 | The set of the non-unital ... |
| isrnghm 20359 | A function is a non-unital... |
| isrnghmmul 20360 | A function is a non-unital... |
| rnghmmgmhm 20361 | A non-unital ring homomorp... |
| rnghmval2 20362 | The non-unital ring homomo... |
| isrngim 20363 | An isomorphism of non-unit... |
| rngimrcl 20364 | Reverse closure for an iso... |
| rnghmghm 20365 | A non-unital ring homomorp... |
| rnghmf 20366 | A ring homomorphism is a f... |
| rnghmmul 20367 | A homomorphism of non-unit... |
| isrnghm2d 20368 | Demonstration of non-unita... |
| isrnghmd 20369 | Demonstration of non-unita... |
| rnghmf1o 20370 | A non-unital ring homomorp... |
| isrngim2 20371 | An isomorphism of non-unit... |
| rngimf1o 20372 | An isomorphism of non-unit... |
| rngimrnghm 20373 | An isomorphism of non-unit... |
| rngimcnv 20374 | The converse of an isomorp... |
| rnghmco 20375 | The composition of non-uni... |
| idrnghm 20376 | The identity homomorphism ... |
| c0mgm 20377 | The constant mapping to ze... |
| c0mhm 20378 | The constant mapping to ze... |
| c0ghm 20379 | The constant mapping to ze... |
| c0snmgmhm 20380 | The constant mapping to ze... |
| c0snmhm 20381 | The constant mapping to ze... |
| c0snghm 20382 | The constant mapping to ze... |
| rngisomfv1 20383 | If there is a non-unital r... |
| rngisom1 20384 | If there is a non-unital r... |
| rngisomring 20385 | If there is a non-unital r... |
| rngisomring1 20386 | If there is a non-unital r... |
| dfrhm2 20392 | The property of a ring hom... |
| rhmrcl1 20394 | Reverse closure of a ring ... |
| rhmrcl2 20395 | Reverse closure of a ring ... |
| isrhm 20396 | A function is a ring homom... |
| rhmmhm 20397 | A ring homomorphism is a h... |
| rhmisrnghm 20398 | Each unital ring homomorph... |
| rimrcl 20399 | Reverse closure for an iso... |
| isrim0 20400 | A ring isomorphism is a ho... |
| rhmghm 20401 | A ring homomorphism is an ... |
| rhmf 20402 | A ring homomorphism is a f... |
| rhmmul 20403 | A homomorphism of rings pr... |
| isrhm2d 20404 | Demonstration of ring homo... |
| isrhmd 20405 | Demonstration of ring homo... |
| rhm1 20406 | Ring homomorphisms are req... |
| idrhm 20407 | The identity homomorphism ... |
| rhmf1o 20408 | A ring homomorphism is bij... |
| isrim 20409 | An isomorphism of rings is... |
| rimf1o 20410 | An isomorphism of rings is... |
| rimrhm 20411 | A ring isomorphism is a ho... |
| rimgim 20412 | An isomorphism of rings is... |
| rimisrngim 20413 | Each unital ring isomorphi... |
| rhmfn 20414 | The mapping of two rings t... |
| rhmval 20415 | The ring homomorphisms bet... |
| rhmco 20416 | The composition of ring ho... |
| pwsco1rhm 20417 | Right composition with a f... |
| pwsco2rhm 20418 | Left composition with a ri... |
| brric 20419 | The relation "is isomorphi... |
| brrici 20420 | Prove isomorphic by an exp... |
| brric2 20421 | The relation "is isomorphi... |
| ricgic 20422 | If two rings are (ring) is... |
| rhmdvdsr 20423 | A ring homomorphism preser... |
| rhmopp 20424 | A ring homomorphism is als... |
| elrhmunit 20425 | Ring homomorphisms preserv... |
| rhmunitinv 20426 | Ring homomorphisms preserv... |
| isnzr 20429 | Property of a nonzero ring... |
| nzrnz 20430 | One and zero are different... |
| nzrring 20431 | A nonzero ring is a ring. ... |
| nzrringOLD 20432 | Obsolete version of ~ nzrr... |
| isnzr2 20433 | Equivalent characterizatio... |
| isnzr2hash 20434 | Equivalent characterizatio... |
| nzrpropd 20435 | If two structures have the... |
| opprnzrb 20436 | The opposite of a nonzero ... |
| opprnzr 20437 | The opposite of a nonzero ... |
| ringelnzr 20438 | A ring is nonzero if it ha... |
| nzrunit 20439 | A unit is nonzero in any n... |
| 0ringnnzr 20440 | A ring is a zero ring iff ... |
| 0ring 20441 | If a ring has only one ele... |
| 0ringdif 20442 | A zero ring is a ring whic... |
| 0ringbas 20443 | The base set of a zero rin... |
| 0ring01eq 20444 | In a ring with only one el... |
| 01eq0ring 20445 | If the zero and the identi... |
| 01eq0ringOLD 20446 | Obsolete version of ~ 01eq... |
| 0ring01eqbi 20447 | In a unital ring the zero ... |
| 0ring1eq0 20448 | In a zero ring, a ring whi... |
| c0rhm 20449 | The constant mapping to ze... |
| c0rnghm 20450 | The constant mapping to ze... |
| zrrnghm 20451 | The constant mapping to ze... |
| nrhmzr 20452 | There is no ring homomorph... |
| islring 20455 | The predicate "is a local ... |
| lringnzr 20456 | A local ring is a nonzero ... |
| lringring 20457 | A local ring is a ring. (... |
| lringnz 20458 | A local ring is a nonzero ... |
| lringuplu 20459 | If the sum of two elements... |
| issubrng 20462 | The subring of non-unital ... |
| subrngss 20463 | A subring is a subset. (C... |
| subrngid 20464 | Every non-unital ring is a... |
| subrngrng 20465 | A subring is a non-unital ... |
| subrngrcl 20466 | Reverse closure for a subr... |
| subrngsubg 20467 | A subring is a subgroup. ... |
| subrngringnsg 20468 | A subring is a normal subg... |
| subrngbas 20469 | Base set of a subring stru... |
| subrng0 20470 | A subring always has the s... |
| subrngacl 20471 | A subring is closed under ... |
| subrngmcl 20472 | A subring is closed under ... |
| issubrng2 20473 | Characterize the subrings ... |
| opprsubrng 20474 | Being a subring is a symme... |
| subrngint 20475 | The intersection of a none... |
| subrngin 20476 | The intersection of two su... |
| subrngmre 20477 | The subrings of a non-unit... |
| subsubrng 20478 | A subring of a subring is ... |
| subsubrng2 20479 | The set of subrings of a s... |
| rhmimasubrnglem 20480 | Lemma for ~ rhmimasubrng :... |
| rhmimasubrng 20481 | The homomorphic image of a... |
| cntzsubrng 20482 | Centralizers in a non-unit... |
| subrngpropd 20483 | If two structures have the... |
| issubrg 20486 | The subring predicate. (C... |
| subrgss 20487 | A subring is a subset. (C... |
| subrgid 20488 | Every ring is a subring of... |
| subrgring 20489 | A subring is a ring. (Con... |
| subrgcrng 20490 | A subring of a commutative... |
| subrgrcl 20491 | Reverse closure for a subr... |
| subrgsubg 20492 | A subring is a subgroup. ... |
| subrgsubrng 20493 | A subring of a unital ring... |
| subrg0 20494 | A subring always has the s... |
| subrg1cl 20495 | A subring contains the mul... |
| subrgbas 20496 | Base set of a subring stru... |
| subrg1 20497 | A subring always has the s... |
| subrgacl 20498 | A subring is closed under ... |
| subrgmcl 20499 | A subring is closed under ... |
| subrgsubm 20500 | A subring is a submonoid o... |
| subrgdvds 20501 | If an element divides anot... |
| subrguss 20502 | A unit of a subring is a u... |
| subrginv 20503 | A subring always has the s... |
| subrgdv 20504 | A subring always has the s... |
| subrgunit 20505 | An element of a ring is a ... |
| subrgugrp 20506 | The units of a subring for... |
| issubrg2 20507 | Characterize the subrings ... |
| opprsubrg 20508 | Being a subring is a symme... |
| subrgnzr 20509 | A subring of a nonzero rin... |
| subrgint 20510 | The intersection of a none... |
| subrgin 20511 | The intersection of two su... |
| subrgmre 20512 | The subrings of a ring are... |
| subsubrg 20513 | A subring of a subring is ... |
| subsubrg2 20514 | The set of subrings of a s... |
| issubrg3 20515 | A subring is an additive s... |
| resrhm 20516 | Restriction of a ring homo... |
| resrhm2b 20517 | Restriction of the codomai... |
| rhmeql 20518 | The equalizer of two ring ... |
| rhmima 20519 | The homomorphic image of a... |
| rnrhmsubrg 20520 | The range of a ring homomo... |
| cntzsubr 20521 | Centralizers in a ring are... |
| pwsdiagrhm 20522 | Diagonal homomorphism into... |
| subrgpropd 20523 | If two structures have the... |
| rhmpropd 20524 | Ring homomorphism depends ... |
| rgspnval 20527 | Value of the ring-span of ... |
| rgspncl 20528 | The ring-span of a set is ... |
| rgspnssid 20529 | The ring-span of a set con... |
| rgspnmin 20530 | The ring-span is contained... |
| rngcval 20533 | Value of the category of n... |
| rnghmresfn 20534 | The class of non-unital ri... |
| rnghmresel 20535 | An element of the non-unit... |
| rngcbas 20536 | Set of objects of the cate... |
| rngchomfval 20537 | Set of arrows of the categ... |
| rngchom 20538 | Set of arrows of the categ... |
| elrngchom 20539 | A morphism of non-unital r... |
| rngchomfeqhom 20540 | The functionalized Hom-set... |
| rngccofval 20541 | Composition in the categor... |
| rngcco 20542 | Composition in the categor... |
| dfrngc2 20543 | Alternate definition of th... |
| rnghmsscmap2 20544 | The non-unital ring homomo... |
| rnghmsscmap 20545 | The non-unital ring homomo... |
| rnghmsubcsetclem1 20546 | Lemma 1 for ~ rnghmsubcset... |
| rnghmsubcsetclem2 20547 | Lemma 2 for ~ rnghmsubcset... |
| rnghmsubcsetc 20548 | The non-unital ring homomo... |
| rngccat 20549 | The category of non-unital... |
| rngcid 20550 | The identity arrow in the ... |
| rngcsect 20551 | A section in the category ... |
| rngcinv 20552 | An inverse in the category... |
| rngciso 20553 | An isomorphism in the cate... |
| rngcifuestrc 20554 | The "inclusion functor" fr... |
| funcrngcsetc 20555 | The "natural forgetful fun... |
| funcrngcsetcALT 20556 | Alternate proof of ~ funcr... |
| zrinitorngc 20557 | The zero ring is an initia... |
| zrtermorngc 20558 | The zero ring is a termina... |
| zrzeroorngc 20559 | The zero ring is a zero ob... |
| ringcval 20562 | Value of the category of u... |
| rhmresfn 20563 | The class of unital ring h... |
| rhmresel 20564 | An element of the unital r... |
| ringcbas 20565 | Set of objects of the cate... |
| ringchomfval 20566 | Set of arrows of the categ... |
| ringchom 20567 | Set of arrows of the categ... |
| elringchom 20568 | A morphism of unital rings... |
| ringchomfeqhom 20569 | The functionalized Hom-set... |
| ringccofval 20570 | Composition in the categor... |
| ringcco 20571 | Composition in the categor... |
| dfringc2 20572 | Alternate definition of th... |
| rhmsscmap2 20573 | The unital ring homomorphi... |
| rhmsscmap 20574 | The unital ring homomorphi... |
| rhmsubcsetclem1 20575 | Lemma 1 for ~ rhmsubcsetc ... |
| rhmsubcsetclem2 20576 | Lemma 2 for ~ rhmsubcsetc ... |
| rhmsubcsetc 20577 | The unital ring homomorphi... |
| ringccat 20578 | The category of unital rin... |
| ringcid 20579 | The identity arrow in the ... |
| rhmsscrnghm 20580 | The unital ring homomorphi... |
| rhmsubcrngclem1 20581 | Lemma 1 for ~ rhmsubcrngc ... |
| rhmsubcrngclem2 20582 | Lemma 2 for ~ rhmsubcrngc ... |
| rhmsubcrngc 20583 | The unital ring homomorphi... |
| rngcresringcat 20584 | The restriction of the cat... |
| ringcsect 20585 | A section in the category ... |
| ringcinv 20586 | An inverse in the category... |
| ringciso 20587 | An isomorphism in the cate... |
| ringcbasbas 20588 | An element of the base set... |
| funcringcsetc 20589 | The "natural forgetful fun... |
| zrtermoringc 20590 | The zero ring is a termina... |
| zrninitoringc 20591 | The zero ring is not an in... |
| srhmsubclem1 20592 | Lemma 1 for ~ srhmsubc . ... |
| srhmsubclem2 20593 | Lemma 2 for ~ srhmsubc . ... |
| srhmsubclem3 20594 | Lemma 3 for ~ srhmsubc . ... |
| srhmsubc 20595 | According to ~ df-subc , t... |
| sringcat 20596 | The restriction of the cat... |
| crhmsubc 20597 | According to ~ df-subc , t... |
| cringcat 20598 | The restriction of the cat... |
| rngcrescrhm 20599 | The category of non-unital... |
| rhmsubclem1 20600 | Lemma 1 for ~ rhmsubc . (... |
| rhmsubclem2 20601 | Lemma 2 for ~ rhmsubc . (... |
| rhmsubclem3 20602 | Lemma 3 for ~ rhmsubc . (... |
| rhmsubclem4 20603 | Lemma 4 for ~ rhmsubc . (... |
| rhmsubc 20604 | According to ~ df-subc , t... |
| rhmsubccat 20605 | The restriction of the cat... |
| rrgval 20612 | Value of the set or left-r... |
| isrrg 20613 | Membership in the set of l... |
| rrgeq0i 20614 | Property of a left-regular... |
| rrgeq0 20615 | Left-multiplication by a l... |
| rrgsupp 20616 | Left multiplication by a l... |
| rrgss 20617 | Left-regular elements are ... |
| unitrrg 20618 | Units are regular elements... |
| rrgnz 20619 | In a nonzero ring, the zer... |
| isdomn 20620 | Expand definition of a dom... |
| domnnzr 20621 | A domain is a nonzero ring... |
| domnring 20622 | A domain is a ring. (Cont... |
| domneq0 20623 | In a domain, a product is ... |
| domnmuln0 20624 | In a domain, a product of ... |
| isdomn5 20625 | The equivalence between th... |
| isdomn2 20626 | A ring is a domain iff all... |
| isdomn2OLD 20627 | Obsolete version of ~ isdo... |
| domnrrg 20628 | In a domain, a nonzero ele... |
| isdomn6 20629 | A ring is a domain iff the... |
| isdomn3 20630 | Nonzero elements form a mu... |
| isdomn4 20631 | A ring is a domain iff it ... |
| opprdomnb 20632 | A class is a domain if and... |
| opprdomn 20633 | The opposite of a domain i... |
| isdomn4r 20634 | A ring is a domain iff it ... |
| domnlcanb 20635 | Left-cancellation law for ... |
| domnlcan 20636 | Left-cancellation law for ... |
| domnrcanb 20637 | Right-cancellation law for... |
| domnrcan 20638 | Right-cancellation law for... |
| domneq0r 20639 | Right multiplication by a ... |
| isidom 20640 | An integral domain is a co... |
| idomdomd 20641 | An integral domain is a do... |
| idomcringd 20642 | An integral domain is a co... |
| idomringd 20643 | An integral domain is a ri... |
| isdrng 20648 | The predicate "is a divisi... |
| drngunit 20649 | Elementhood in the set of ... |
| drngui 20650 | The set of units of a divi... |
| drngring 20651 | A division ring is a ring.... |
| drngringd 20652 | A division ring is a ring.... |
| drnggrpd 20653 | A division ring is a group... |
| drnggrp 20654 | A division ring is a group... |
| isfld 20655 | A field is a commutative d... |
| flddrngd 20656 | A field is a division ring... |
| fldcrngd 20657 | A field is a commutative r... |
| isdrng2 20658 | A division ring can equiva... |
| drngprop 20659 | If two structures have the... |
| drngmgp 20660 | A division ring contains a... |
| drngid 20661 | A division ring's unity is... |
| drngunz 20662 | A division ring's unity is... |
| drngnzr 20663 | A division ring is a nonze... |
| drngdomn 20664 | A division ring is a domai... |
| drngmcl 20665 | The product of two nonzero... |
| drngmclOLD 20666 | Obsolete version of ~ drng... |
| drngid2 20667 | Properties showing that an... |
| drnginvrcl 20668 | Closure of the multiplicat... |
| drnginvrn0 20669 | The multiplicative inverse... |
| drnginvrcld 20670 | Closure of the multiplicat... |
| drnginvrl 20671 | Property of the multiplica... |
| drnginvrr 20672 | Property of the multiplica... |
| drnginvrld 20673 | Property of the multiplica... |
| drnginvrrd 20674 | Property of the multiplica... |
| drngmul0or 20675 | A product is zero iff one ... |
| drngmul0orOLD 20676 | Obsolete version of ~ drng... |
| drngmulne0 20677 | A product is nonzero iff b... |
| drngmuleq0 20678 | An element is zero iff its... |
| opprdrng 20679 | The opposite of a division... |
| isdrngd 20680 | Properties that characteri... |
| isdrngrd 20681 | Properties that characteri... |
| isdrngdOLD 20682 | Obsolete version of ~ isdr... |
| isdrngrdOLD 20683 | Obsolete version of ~ isdr... |
| drngpropd 20684 | If two structures have the... |
| fldpropd 20685 | If two structures have the... |
| fldidom 20686 | A field is an integral dom... |
| fidomndrnglem 20687 | Lemma for ~ fidomndrng . ... |
| fidomndrng 20688 | A finite domain is a divis... |
| fiidomfld 20689 | A finite integral domain i... |
| rng1nnzr 20690 | The (smallest) structure r... |
| ring1zr 20691 | The only (unital) ring wit... |
| rngen1zr 20692 | The only (unital) ring wit... |
| ringen1zr 20693 | The only unital ring with ... |
| rng1nfld 20694 | The zero ring is not a fie... |
| issubdrg 20695 | Characterize the subfields... |
| drhmsubc 20696 | According to ~ df-subc , t... |
| drngcat 20697 | The restriction of the cat... |
| fldcat 20698 | The restriction of the cat... |
| fldc 20699 | The restriction of the cat... |
| fldhmsubc 20700 | According to ~ df-subc , t... |
| issdrg 20703 | Property of a division sub... |
| sdrgrcl 20704 | Reverse closure for a sub-... |
| sdrgdrng 20705 | A sub-division-ring is a d... |
| sdrgsubrg 20706 | A sub-division-ring is a s... |
| sdrgid 20707 | Every division ring is a d... |
| sdrgss 20708 | A division subring is a su... |
| sdrgbas 20709 | Base set of a sub-division... |
| issdrg2 20710 | Property of a division sub... |
| sdrgunit 20711 | A unit of a sub-division-r... |
| imadrhmcl 20712 | The image of a (nontrivial... |
| fldsdrgfld 20713 | A sub-division-ring of a f... |
| acsfn1p 20714 | Construction of a closure ... |
| subrgacs 20715 | Closure property of subrin... |
| sdrgacs 20716 | Closure property of divisi... |
| cntzsdrg 20717 | Centralizers in division r... |
| subdrgint 20718 | The intersection of a none... |
| sdrgint 20719 | The intersection of a none... |
| primefld 20720 | The smallest sub division ... |
| primefld0cl 20721 | The prime field contains t... |
| primefld1cl 20722 | The prime field contains t... |
| abvfval 20725 | Value of the set of absolu... |
| isabv 20726 | Elementhood in the set of ... |
| isabvd 20727 | Properties that determine ... |
| abvrcl 20728 | Reverse closure for the ab... |
| abvfge0 20729 | An absolute value is a fun... |
| abvf 20730 | An absolute value is a fun... |
| abvcl 20731 | An absolute value is a fun... |
| abvge0 20732 | The absolute value of a nu... |
| abveq0 20733 | The value of an absolute v... |
| abvne0 20734 | The absolute value of a no... |
| abvgt0 20735 | The absolute value of a no... |
| abvmul 20736 | An absolute value distribu... |
| abvtri 20737 | An absolute value satisfie... |
| abv0 20738 | The absolute value of zero... |
| abv1z 20739 | The absolute value of one ... |
| abv1 20740 | The absolute value of one ... |
| abvneg 20741 | The absolute value of a ne... |
| abvsubtri 20742 | An absolute value satisfie... |
| abvrec 20743 | The absolute value distrib... |
| abvdiv 20744 | The absolute value distrib... |
| abvdom 20745 | Any ring with an absolute ... |
| abvres 20746 | The restriction of an abso... |
| abvtrivd 20747 | The trivial absolute value... |
| abvtrivg 20748 | The trivial absolute value... |
| abvtriv 20749 | The trivial absolute value... |
| abvpropd 20750 | If two structures have the... |
| abvn0b 20751 | Another characterization o... |
| staffval 20756 | The functionalization of t... |
| stafval 20757 | The functionalization of t... |
| staffn 20758 | The functionalization is e... |
| issrng 20759 | The predicate "is a star r... |
| srngrhm 20760 | The involution function in... |
| srngring 20761 | A star ring is a ring. (C... |
| srngcnv 20762 | The involution function in... |
| srngf1o 20763 | The involution function in... |
| srngcl 20764 | The involution function in... |
| srngnvl 20765 | The involution function in... |
| srngadd 20766 | The involution function in... |
| srngmul 20767 | The involution function in... |
| srng1 20768 | The conjugate of the ring ... |
| srng0 20769 | The conjugate of the ring ... |
| issrngd 20770 | Properties that determine ... |
| idsrngd 20771 | A commutative ring is a st... |
| isorng 20776 | An ordered ring is a ring ... |
| orngring 20777 | An ordered ring is a ring.... |
| orngogrp 20778 | An ordered ring is an orde... |
| isofld 20779 | An ordered field is a fiel... |
| orngmul 20780 | In an ordered ring, the or... |
| orngsqr 20781 | In an ordered ring, all sq... |
| ornglmulle 20782 | In an ordered ring, multip... |
| orngrmulle 20783 | In an ordered ring, multip... |
| ornglmullt 20784 | In an ordered ring, multip... |
| orngrmullt 20785 | In an ordered ring, multip... |
| orngmullt 20786 | In an ordered ring, the st... |
| ofldfld 20787 | An ordered field is a fiel... |
| ofldtos 20788 | An ordered field is a tota... |
| orng0le1 20789 | In an ordered ring, the ri... |
| ofldlt1 20790 | In an ordered field, the r... |
| suborng 20791 | Every subring of an ordere... |
| subofld 20792 | Every subfield of an order... |
| islmod 20797 | The predicate "is a left m... |
| lmodlema 20798 | Lemma for properties of a ... |
| islmodd 20799 | Properties that determine ... |
| lmodgrp 20800 | A left module is a group. ... |
| lmodring 20801 | The scalar component of a ... |
| lmodfgrp 20802 | The scalar component of a ... |
| lmodgrpd 20803 | A left module is a group. ... |
| lmodbn0 20804 | The base set of a left mod... |
| lmodacl 20805 | Closure of ring addition f... |
| lmodmcl 20806 | Closure of ring multiplica... |
| lmodsn0 20807 | The set of scalars in a le... |
| lmodvacl 20808 | Closure of vector addition... |
| lmodass 20809 | Left module vector sum is ... |
| lmodlcan 20810 | Left cancellation law for ... |
| lmodvscl 20811 | Closure of scalar product ... |
| lmodvscld 20812 | Closure of scalar product ... |
| scaffval 20813 | The scalar multiplication ... |
| scafval 20814 | The scalar multiplication ... |
| scafeq 20815 | If the scalar multiplicati... |
| scaffn 20816 | The scalar multiplication ... |
| lmodscaf 20817 | The scalar multiplication ... |
| lmodvsdi 20818 | Distributive law for scala... |
| lmodvsdir 20819 | Distributive law for scala... |
| lmodvsass 20820 | Associative law for scalar... |
| lmod0cl 20821 | The ring zero in a left mo... |
| lmod1cl 20822 | The ring unity in a left m... |
| lmodvs1 20823 | Scalar product with the ri... |
| lmod0vcl 20824 | The zero vector is a vecto... |
| lmod0vlid 20825 | Left identity law for the ... |
| lmod0vrid 20826 | Right identity law for the... |
| lmod0vid 20827 | Identity equivalent to the... |
| lmod0vs 20828 | Zero times a vector is the... |
| lmodvs0 20829 | Anything times the zero ve... |
| lmodvsmmulgdi 20830 | Distributive law for a gro... |
| lmodfopnelem1 20831 | Lemma 1 for ~ lmodfopne . ... |
| lmodfopnelem2 20832 | Lemma 2 for ~ lmodfopne . ... |
| lmodfopne 20833 | The (functionalized) opera... |
| lcomf 20834 | A linear-combination sum i... |
| lcomfsupp 20835 | A linear-combination sum i... |
| lmodvnegcl 20836 | Closure of vector negative... |
| lmodvnegid 20837 | Addition of a vector with ... |
| lmodvneg1 20838 | Minus 1 times a vector is ... |
| lmodvsneg 20839 | Multiplication of a vector... |
| lmodvsubcl 20840 | Closure of vector subtract... |
| lmodcom 20841 | Left module vector sum is ... |
| lmodabl 20842 | A left module is an abelia... |
| lmodcmn 20843 | A left module is a commuta... |
| lmodnegadd 20844 | Distribute negation throug... |
| lmod4 20845 | Commutative/associative la... |
| lmodvsubadd 20846 | Relationship between vecto... |
| lmodvaddsub4 20847 | Vector addition/subtractio... |
| lmodvpncan 20848 | Addition/subtraction cance... |
| lmodvnpcan 20849 | Cancellation law for vecto... |
| lmodvsubval2 20850 | Value of vector subtractio... |
| lmodsubvs 20851 | Subtraction of a scalar pr... |
| lmodsubdi 20852 | Scalar multiplication dist... |
| lmodsubdir 20853 | Scalar multiplication dist... |
| lmodsubeq0 20854 | If the difference between ... |
| lmodsubid 20855 | Subtraction of a vector fr... |
| lmodvsghm 20856 | Scalar multiplication of t... |
| lmodprop2d 20857 | If two structures have the... |
| lmodpropd 20858 | If two structures have the... |
| gsumvsmul 20859 | Pull a scalar multiplicati... |
| mptscmfsupp0 20860 | A mapping to a scalar prod... |
| mptscmfsuppd 20861 | A function mapping to a sc... |
| rmodislmodlem 20862 | Lemma for ~ rmodislmod . ... |
| rmodislmod 20863 | The right module ` R ` ind... |
| lssset 20866 | The set of all (not necess... |
| islss 20867 | The predicate "is a subspa... |
| islssd 20868 | Properties that determine ... |
| lssss 20869 | A subspace is a set of vec... |
| lssel 20870 | A subspace member is a vec... |
| lss1 20871 | The set of vectors in a le... |
| lssuni 20872 | The union of all subspaces... |
| lssn0 20873 | A subspace is not empty. ... |
| 00lss 20874 | The empty structure has no... |
| lsscl 20875 | Closure property of a subs... |
| lssvacl 20876 | Closure of vector addition... |
| lssvsubcl 20877 | Closure of vector subtract... |
| lssvancl1 20878 | Non-closure: if one vector... |
| lssvancl2 20879 | Non-closure: if one vector... |
| lss0cl 20880 | The zero vector belongs to... |
| lsssn0 20881 | The singleton of the zero ... |
| lss0ss 20882 | The zero subspace is inclu... |
| lssle0 20883 | No subspace is smaller tha... |
| lssne0 20884 | A nonzero subspace has a n... |
| lssvneln0 20885 | A vector ` X ` which doesn... |
| lssneln0 20886 | A vector ` X ` which doesn... |
| lssssr 20887 | Conclude subspace ordering... |
| lssvscl 20888 | Closure of scalar product ... |
| lssvnegcl 20889 | Closure of negative vector... |
| lsssubg 20890 | All subspaces are subgroup... |
| lsssssubg 20891 | All subspaces are subgroup... |
| islss3 20892 | A linear subspace of a mod... |
| lsslmod 20893 | A submodule is a module. ... |
| lsslss 20894 | The subspaces of a subspac... |
| islss4 20895 | A linear subspace is a sub... |
| lss1d 20896 | One-dimensional subspace (... |
| lssintcl 20897 | The intersection of a none... |
| lssincl 20898 | The intersection of two su... |
| lssmre 20899 | The subspaces of a module ... |
| lssacs 20900 | Submodules are an algebrai... |
| prdsvscacl 20901 | Pointwise scalar multiplic... |
| prdslmodd 20902 | The product of a family of... |
| pwslmod 20903 | A structure power of a lef... |
| lspfval 20906 | The span function for a le... |
| lspf 20907 | The span function on a lef... |
| lspval 20908 | The span of a set of vecto... |
| lspcl 20909 | The span of a set of vecto... |
| lspsncl 20910 | The span of a singleton is... |
| lspprcl 20911 | The span of a pair is a su... |
| lsptpcl 20912 | The span of an unordered t... |
| lspsnsubg 20913 | The span of a singleton is... |
| 00lsp 20914 | ~ fvco4i lemma for linear ... |
| lspid 20915 | The span of a subspace is ... |
| lspssv 20916 | A span is a set of vectors... |
| lspss 20917 | Span preserves subset orde... |
| lspssid 20918 | A set of vectors is a subs... |
| lspidm 20919 | The span of a set of vecto... |
| lspun 20920 | The span of union is the s... |
| lspssp 20921 | If a set of vectors is a s... |
| mrclsp 20922 | Moore closure generalizes ... |
| lspsnss 20923 | The span of the singleton ... |
| ellspsn3 20924 | A member of the span of th... |
| lspprss 20925 | The span of a pair of vect... |
| lspsnid 20926 | A vector belongs to the sp... |
| ellspsn6 20927 | Relationship between a vec... |
| ellspsn5b 20928 | Relationship between a vec... |
| ellspsn5 20929 | Relationship between a vec... |
| lspprid1 20930 | A member of a pair of vect... |
| lspprid2 20931 | A member of a pair of vect... |
| lspprvacl 20932 | The sum of two vectors bel... |
| lssats2 20933 | A way to express atomistic... |
| ellspsni 20934 | A scalar product with a ve... |
| lspsn 20935 | Span of the singleton of a... |
| ellspsn 20936 | Member of span of the sing... |
| lspsnvsi 20937 | Span of a scalar product o... |
| lspsnss2 20938 | Comparable spans of single... |
| lspsnneg 20939 | Negation does not change t... |
| lspsnsub 20940 | Swapping subtraction order... |
| lspsn0 20941 | Span of the singleton of t... |
| lsp0 20942 | Span of the empty set. (C... |
| lspuni0 20943 | Union of the span of the e... |
| lspun0 20944 | The span of a union with t... |
| lspsneq0 20945 | Span of the singleton is t... |
| lspsneq0b 20946 | Equal singleton spans impl... |
| lmodindp1 20947 | Two independent (non-colin... |
| lsslsp 20948 | Spans in submodules corres... |
| lsslspOLD 20949 | Obsolete version of ~ lssl... |
| lss0v 20950 | The zero vector in a submo... |
| lsspropd 20951 | If two structures have the... |
| lsppropd 20952 | If two structures have the... |
| reldmlmhm 20959 | Lemma for module homomorph... |
| lmimfn 20960 | Lemma for module isomorphi... |
| islmhm 20961 | Property of being a homomo... |
| islmhm3 20962 | Property of a module homom... |
| lmhmlem 20963 | Non-quantified consequence... |
| lmhmsca 20964 | A homomorphism of left mod... |
| lmghm 20965 | A homomorphism of left mod... |
| lmhmlmod2 20966 | A homomorphism of left mod... |
| lmhmlmod1 20967 | A homomorphism of left mod... |
| lmhmf 20968 | A homomorphism of left mod... |
| lmhmlin 20969 | A homomorphism of left mod... |
| lmodvsinv 20970 | Multiplication of a vector... |
| lmodvsinv2 20971 | Multiplying a negated vect... |
| islmhm2 20972 | A one-equation proof of li... |
| islmhmd 20973 | Deduction for a module hom... |
| 0lmhm 20974 | The constant zero linear f... |
| idlmhm 20975 | The identity function on a... |
| invlmhm 20976 | The negative function on a... |
| lmhmco 20977 | The composition of two mod... |
| lmhmplusg 20978 | The pointwise sum of two l... |
| lmhmvsca 20979 | The pointwise scalar produ... |
| lmhmf1o 20980 | A bijective module homomor... |
| lmhmima 20981 | The image of a subspace un... |
| lmhmpreima 20982 | The inverse image of a sub... |
| lmhmlsp 20983 | Homomorphisms preserve spa... |
| lmhmrnlss 20984 | The range of a homomorphis... |
| lmhmkerlss 20985 | The kernel of a homomorphi... |
| reslmhm 20986 | Restriction of a homomorph... |
| reslmhm2 20987 | Expansion of the codomain ... |
| reslmhm2b 20988 | Expansion of the codomain ... |
| lmhmeql 20989 | The equalizer of two modul... |
| lspextmo 20990 | A linear function is compl... |
| pwsdiaglmhm 20991 | Diagonal homomorphism into... |
| pwssplit0 20992 | Splitting for structure po... |
| pwssplit1 20993 | Splitting for structure po... |
| pwssplit2 20994 | Splitting for structure po... |
| pwssplit3 20995 | Splitting for structure po... |
| islmim 20996 | An isomorphism of left mod... |
| lmimf1o 20997 | An isomorphism of left mod... |
| lmimlmhm 20998 | An isomorphism of modules ... |
| lmimgim 20999 | An isomorphism of modules ... |
| islmim2 21000 | An isomorphism of left mod... |
| lmimcnv 21001 | The converse of a bijectiv... |
| brlmic 21002 | The relation "is isomorphi... |
| brlmici 21003 | Prove isomorphic by an exp... |
| lmiclcl 21004 | Isomorphism implies the le... |
| lmicrcl 21005 | Isomorphism implies the ri... |
| lmicsym 21006 | Module isomorphism is symm... |
| lmhmpropd 21007 | Module homomorphism depend... |
| islbs 21010 | The predicate " ` B ` is a... |
| lbsss 21011 | A basis is a set of vector... |
| lbsel 21012 | An element of a basis is a... |
| lbssp 21013 | The span of a basis is the... |
| lbsind 21014 | A basis is linearly indepe... |
| lbsind2 21015 | A basis is linearly indepe... |
| lbspss 21016 | No proper subset of a basi... |
| lsmcl 21017 | The sum of two subspaces i... |
| lsmspsn 21018 | Member of subspace sum of ... |
| lsmelval2 21019 | Subspace sum membership in... |
| lsmsp 21020 | Subspace sum in terms of s... |
| lsmsp2 21021 | Subspace sum of spans of s... |
| lsmssspx 21022 | Subspace sum (in its exten... |
| lsmpr 21023 | The span of a pair of vect... |
| lsppreli 21024 | A vector expressed as a su... |
| lsmelpr 21025 | Two ways to say that a vec... |
| lsppr0 21026 | The span of a vector paire... |
| lsppr 21027 | Span of a pair of vectors.... |
| lspprel 21028 | Member of the span of a pa... |
| lspprabs 21029 | Absorption of vector sum i... |
| lspvadd 21030 | The span of a vector sum i... |
| lspsntri 21031 | Triangle-type inequality f... |
| lspsntrim 21032 | Triangle-type inequality f... |
| lbspropd 21033 | If two structures have the... |
| pj1lmhm 21034 | The left projection functi... |
| pj1lmhm2 21035 | The left projection functi... |
| islvec 21038 | The predicate "is a left v... |
| lvecdrng 21039 | The set of scalars of a le... |
| lveclmod 21040 | A left vector space is a l... |
| lveclmodd 21041 | A vector space is a left m... |
| lvecgrpd 21042 | A vector space is a group.... |
| lsslvec 21043 | A vector subspace is a vec... |
| lmhmlvec 21044 | The property for modules t... |
| lvecvs0or 21045 | If a scalar product is zer... |
| lvecvsn0 21046 | A scalar product is nonzer... |
| lssvs0or 21047 | If a scalar product belong... |
| lvecvscan 21048 | Cancellation law for scala... |
| lvecvscan2 21049 | Cancellation law for scala... |
| lvecinv 21050 | Invert coefficient of scal... |
| lspsnvs 21051 | A nonzero scalar product d... |
| lspsneleq 21052 | Membership relation that i... |
| lspsncmp 21053 | Comparable spans of nonzer... |
| lspsnne1 21054 | Two ways to express that v... |
| lspsnne2 21055 | Two ways to express that v... |
| lspsnnecom 21056 | Swap two vectors with diff... |
| lspabs2 21057 | Absorption law for span of... |
| lspabs3 21058 | Absorption law for span of... |
| lspsneq 21059 | Equal spans of singletons ... |
| lspsneu 21060 | Nonzero vectors with equal... |
| ellspsn4 21061 | A member of the span of th... |
| lspdisj 21062 | The span of a vector not i... |
| lspdisjb 21063 | A nonzero vector is not in... |
| lspdisj2 21064 | Unequal spans are disjoint... |
| lspfixed 21065 | Show membership in the spa... |
| lspexch 21066 | Exchange property for span... |
| lspexchn1 21067 | Exchange property for span... |
| lspexchn2 21068 | Exchange property for span... |
| lspindpi 21069 | Partial independence prope... |
| lspindp1 21070 | Alternate way to say 3 vec... |
| lspindp2l 21071 | Alternate way to say 3 vec... |
| lspindp2 21072 | Alternate way to say 3 vec... |
| lspindp3 21073 | Independence of 2 vectors ... |
| lspindp4 21074 | (Partial) independence of ... |
| lvecindp 21075 | Compute the ` X ` coeffici... |
| lvecindp2 21076 | Sums of independent vector... |
| lspsnsubn0 21077 | Unequal singleton spans im... |
| lsmcv 21078 | Subspace sum has the cover... |
| lspsolvlem 21079 | Lemma for ~ lspsolv . (Co... |
| lspsolv 21080 | If ` X ` is in the span of... |
| lssacsex 21081 | In a vector space, subspac... |
| lspsnat 21082 | There is no subspace stric... |
| lspsncv0 21083 | The span of a singleton co... |
| lsppratlem1 21084 | Lemma for ~ lspprat . Let... |
| lsppratlem2 21085 | Lemma for ~ lspprat . Sho... |
| lsppratlem3 21086 | Lemma for ~ lspprat . In ... |
| lsppratlem4 21087 | Lemma for ~ lspprat . In ... |
| lsppratlem5 21088 | Lemma for ~ lspprat . Com... |
| lsppratlem6 21089 | Lemma for ~ lspprat . Neg... |
| lspprat 21090 | A proper subspace of the s... |
| islbs2 21091 | An equivalent formulation ... |
| islbs3 21092 | An equivalent formulation ... |
| lbsacsbs 21093 | Being a basis in a vector ... |
| lvecdim 21094 | The dimension theorem for ... |
| lbsextlem1 21095 | Lemma for ~ lbsext . The ... |
| lbsextlem2 21096 | Lemma for ~ lbsext . Sinc... |
| lbsextlem3 21097 | Lemma for ~ lbsext . A ch... |
| lbsextlem4 21098 | Lemma for ~ lbsext . ~ lbs... |
| lbsextg 21099 | For any linearly independe... |
| lbsext 21100 | For any linearly independe... |
| lbsexg 21101 | Every vector space has a b... |
| lbsex 21102 | Every vector space has a b... |
| lvecprop2d 21103 | If two structures have the... |
| lvecpropd 21104 | If two structures have the... |
| sraval 21109 | Lemma for ~ srabase throug... |
| sralem 21110 | Lemma for ~ srabase and si... |
| srabase 21111 | Base set of a subring alge... |
| sraaddg 21112 | Additive operation of a su... |
| sramulr 21113 | Multiplicative operation o... |
| srasca 21114 | The set of scalars of a su... |
| sravsca 21115 | The scalar product operati... |
| sraip 21116 | The inner product operatio... |
| sratset 21117 | Topology component of a su... |
| sratopn 21118 | Topology component of a su... |
| srads 21119 | Distance function of a sub... |
| sraring 21120 | Condition for a subring al... |
| sralmod 21121 | The subring algebra is a l... |
| sralmod0 21122 | The subring module inherit... |
| issubrgd 21123 | Prove a subring by closure... |
| rlmfn 21124 | ` ringLMod ` is a function... |
| rlmval 21125 | Value of the ring module. ... |
| rlmval2 21126 | Value of the ring module e... |
| rlmbas 21127 | Base set of the ring modul... |
| rlmplusg 21128 | Vector addition in the rin... |
| rlm0 21129 | Zero vector in the ring mo... |
| rlmsub 21130 | Subtraction in the ring mo... |
| rlmmulr 21131 | Ring multiplication in the... |
| rlmsca 21132 | Scalars in the ring module... |
| rlmsca2 21133 | Scalars in the ring module... |
| rlmvsca 21134 | Scalar multiplication in t... |
| rlmtopn 21135 | Topology component of the ... |
| rlmds 21136 | Metric component of the ri... |
| rlmlmod 21137 | The ring module is a modul... |
| rlmlvec 21138 | The ring module over a div... |
| rlmlsm 21139 | Subgroup sum of the ring m... |
| rlmvneg 21140 | Vector negation in the rin... |
| rlmscaf 21141 | Functionalized scalar mult... |
| ixpsnbasval 21142 | The value of an infinite C... |
| lidlval 21147 | Value of the set of ring i... |
| rspval 21148 | Value of the ring span fun... |
| lidlss 21149 | An ideal is a subset of th... |
| lidlssbas 21150 | The base set of the restri... |
| lidlbas 21151 | A (left) ideal of a ring i... |
| islidl 21152 | Predicate of being a (left... |
| rnglidlmcl 21153 | A (left) ideal containing ... |
| rngridlmcl 21154 | A right ideal (which is a ... |
| dflidl2rng 21155 | Alternate (the usual textb... |
| isridlrng 21156 | A right ideal is a left id... |
| lidl0cl 21157 | An ideal contains 0. (Con... |
| lidlacl 21158 | An ideal is closed under a... |
| lidlnegcl 21159 | An ideal contains negative... |
| lidlsubg 21160 | An ideal is a subgroup of ... |
| lidlsubcl 21161 | An ideal is closed under s... |
| lidlmcl 21162 | An ideal is closed under l... |
| lidl1el 21163 | An ideal contains 1 iff it... |
| dflidl2 21164 | Alternate (the usual textb... |
| lidl0ALT 21165 | Alternate proof for ~ lidl... |
| rnglidl0 21166 | Every non-unital ring cont... |
| lidl0 21167 | Every ring contains a zero... |
| lidl1ALT 21168 | Alternate proof for ~ lidl... |
| rnglidl1 21169 | The base set of every non-... |
| lidl1 21170 | Every ring contains a unit... |
| lidlacs 21171 | The ideal system is an alg... |
| rspcl 21172 | The span of a set of ring ... |
| rspssid 21173 | The span of a set of ring ... |
| rsp1 21174 | The span of the identity e... |
| rsp0 21175 | The span of the zero eleme... |
| rspssp 21176 | The ideal span of a set of... |
| elrspsn 21177 | Membership in a principal ... |
| mrcrsp 21178 | Moore closure generalizes ... |
| lidlnz 21179 | A nonzero ideal contains a... |
| drngnidl 21180 | A division ring has only t... |
| lidlrsppropd 21181 | The left ideals and ring s... |
| rnglidlmmgm 21182 | The multiplicative group o... |
| rnglidlmsgrp 21183 | The multiplicative group o... |
| rnglidlrng 21184 | A (left) ideal of a non-un... |
| lidlnsg 21185 | An ideal is a normal subgr... |
| 2idlval 21188 | Definition of a two-sided ... |
| isridl 21189 | A right ideal is a left id... |
| 2idlelb 21190 | Membership in a two-sided ... |
| 2idllidld 21191 | A two-sided ideal is a lef... |
| 2idlridld 21192 | A two-sided ideal is a rig... |
| df2idl2rng 21193 | Alternate (the usual textb... |
| df2idl2 21194 | Alternate (the usual textb... |
| ridl0 21195 | Every ring contains a zero... |
| ridl1 21196 | Every ring contains a unit... |
| 2idl0 21197 | Every ring contains a zero... |
| 2idl1 21198 | Every ring contains a unit... |
| 2idlss 21199 | A two-sided ideal is a sub... |
| 2idlbas 21200 | The base set of a two-side... |
| 2idlelbas 21201 | The base set of a two-side... |
| rng2idlsubrng 21202 | A two-sided ideal of a non... |
| rng2idlnsg 21203 | A two-sided ideal of a non... |
| rng2idl0 21204 | The zero (additive identit... |
| rng2idlsubgsubrng 21205 | A two-sided ideal of a non... |
| rng2idlsubgnsg 21206 | A two-sided ideal of a non... |
| rng2idlsubg0 21207 | The zero (additive identit... |
| 2idlcpblrng 21208 | The coset equivalence rela... |
| 2idlcpbl 21209 | The coset equivalence rela... |
| qus2idrng 21210 | The quotient of a non-unit... |
| qus1 21211 | The multiplicative identit... |
| qusring 21212 | If ` S ` is a two-sided id... |
| qusrhm 21213 | If ` S ` is a two-sided id... |
| rhmpreimaidl 21214 | The preimage of an ideal b... |
| kerlidl 21215 | The kernel of a ring homom... |
| qusmul2idl 21216 | Value of the ring operatio... |
| crngridl 21217 | In a commutative ring, the... |
| crng2idl 21218 | In a commutative ring, a t... |
| qusmulrng 21219 | Value of the multiplicatio... |
| quscrng 21220 | The quotient of a commutat... |
| qusmulcrng 21221 | Value of the ring operatio... |
| rhmqusnsg 21222 | The mapping ` J ` induced ... |
| rngqiprng1elbas 21223 | The ring unity of a two-si... |
| rngqiprngghmlem1 21224 | Lemma 1 for ~ rngqiprngghm... |
| rngqiprngghmlem2 21225 | Lemma 2 for ~ rngqiprngghm... |
| rngqiprngghmlem3 21226 | Lemma 3 for ~ rngqiprngghm... |
| rngqiprngimfolem 21227 | Lemma for ~ rngqiprngimfo ... |
| rngqiprnglinlem1 21228 | Lemma 1 for ~ rngqiprnglin... |
| rngqiprnglinlem2 21229 | Lemma 2 for ~ rngqiprnglin... |
| rngqiprnglinlem3 21230 | Lemma 3 for ~ rngqiprnglin... |
| rngqiprngimf1lem 21231 | Lemma for ~ rngqiprngimf1 ... |
| rngqipbas 21232 | The base set of the produc... |
| rngqiprng 21233 | The product of the quotien... |
| rngqiprngimf 21234 | ` F ` is a function from (... |
| rngqiprngimfv 21235 | The value of the function ... |
| rngqiprngghm 21236 | ` F ` is a homomorphism of... |
| rngqiprngimf1 21237 | ` F ` is a one-to-one func... |
| rngqiprngimfo 21238 | ` F ` is a function from (... |
| rngqiprnglin 21239 | ` F ` is linear with respe... |
| rngqiprngho 21240 | ` F ` is a homomorphism of... |
| rngqiprngim 21241 | ` F ` is an isomorphism of... |
| rng2idl1cntr 21242 | The unity of a two-sided i... |
| rngringbdlem1 21243 | In a unital ring, the quot... |
| rngringbdlem2 21244 | A non-unital ring is unita... |
| rngringbd 21245 | A non-unital ring is unita... |
| ring2idlqus 21246 | For every unital ring ther... |
| ring2idlqusb 21247 | A non-unital ring is unita... |
| rngqiprngfulem1 21248 | Lemma 1 for ~ rngqiprngfu ... |
| rngqiprngfulem2 21249 | Lemma 2 for ~ rngqiprngfu ... |
| rngqiprngfulem3 21250 | Lemma 3 for ~ rngqiprngfu ... |
| rngqiprngfulem4 21251 | Lemma 4 for ~ rngqiprngfu ... |
| rngqiprngfulem5 21252 | Lemma 5 for ~ rngqiprngfu ... |
| rngqipring1 21253 | The ring unity of the prod... |
| rngqiprngfu 21254 | The function value of ` F ... |
| rngqiprngu 21255 | If a non-unital ring has a... |
| ring2idlqus1 21256 | If a non-unital ring has a... |
| lpival 21261 | Value of the set of princi... |
| islpidl 21262 | Property of being a princi... |
| lpi0 21263 | The zero ideal is always p... |
| lpi1 21264 | The unit ideal is always p... |
| islpir 21265 | Principal ideal rings are ... |
| lpiss 21266 | Principal ideals are a sub... |
| islpir2 21267 | Principal ideal rings are ... |
| lpirring 21268 | Principal ideal rings are ... |
| drnglpir 21269 | Division rings are princip... |
| rspsn 21270 | Membership in principal id... |
| lidldvgen 21271 | An element generates an id... |
| lpigen 21272 | An ideal is principal iff ... |
| cnfldstr 21293 | The field of complex numbe... |
| cnfldex 21294 | The field of complex numbe... |
| cnfldbas 21295 | The base set of the field ... |
| mpocnfldadd 21296 | The addition operation of ... |
| cnfldadd 21297 | The addition operation of ... |
| mpocnfldmul 21298 | The multiplication operati... |
| cnfldmul 21299 | The multiplication operati... |
| cnfldcj 21300 | The conjugation operation ... |
| cnfldtset 21301 | The topology component of ... |
| cnfldle 21302 | The ordering of the field ... |
| cnfldds 21303 | The metric of the field of... |
| cnfldunif 21304 | The uniform structure comp... |
| cnfldfun 21305 | The field of complex numbe... |
| cnfldfunALT 21306 | The field of complex numbe... |
| dfcnfldOLD 21307 | Obsolete version of ~ df-c... |
| cnfldstrOLD 21308 | Obsolete version of ~ cnfl... |
| cnfldexOLD 21309 | Obsolete version of ~ cnfl... |
| cnfldbasOLD 21310 | Obsolete version of ~ cnfl... |
| cnfldaddOLD 21311 | Obsolete version of ~ cnfl... |
| cnfldmulOLD 21312 | Obsolete version of ~ cnfl... |
| cnfldcjOLD 21313 | Obsolete version of ~ cnfl... |
| cnfldtsetOLD 21314 | Obsolete version of ~ cnfl... |
| cnfldleOLD 21315 | Obsolete version of ~ cnfl... |
| cnflddsOLD 21316 | Obsolete version of ~ cnfl... |
| cnfldunifOLD 21317 | Obsolete version of ~ cnfl... |
| cnfldfunOLD 21318 | Obsolete version of ~ cnfl... |
| cnfldfunALTOLD 21319 | Obsolete version of ~ cnfl... |
| xrsstr 21320 | The extended real structur... |
| xrsex 21321 | The extended real structur... |
| xrsadd 21322 | The addition operation of ... |
| xrsmul 21323 | The multiplication operati... |
| xrstset 21324 | The topology component of ... |
| cncrng 21325 | The complex numbers form a... |
| cncrngOLD 21326 | Obsolete version of ~ cncr... |
| cnring 21327 | The complex numbers form a... |
| xrsmcmn 21328 | The "multiplicative group"... |
| cnfld0 21329 | Zero is the zero element o... |
| cnfld1 21330 | One is the unity element o... |
| cnfld1OLD 21331 | Obsolete version of ~ cnfl... |
| cnfldneg 21332 | The additive inverse in th... |
| cnfldplusf 21333 | The functionalized additio... |
| cnfldsub 21334 | The subtraction operator i... |
| cndrng 21335 | The complex numbers form a... |
| cndrngOLD 21336 | Obsolete version of ~ cndr... |
| cnflddiv 21337 | The division operation in ... |
| cnflddivOLD 21338 | Obsolete version of ~ cnfl... |
| cnfldinv 21339 | The multiplicative inverse... |
| cnfldmulg 21340 | The group multiple functio... |
| cnfldexp 21341 | The exponentiation operato... |
| cnsrng 21342 | The complex numbers form a... |
| xrsmgm 21343 | The "additive group" of th... |
| xrsnsgrp 21344 | The "additive group" of th... |
| xrsmgmdifsgrp 21345 | The "additive group" of th... |
| xrsds 21346 | The metric of the extended... |
| xrsdsval 21347 | The metric of the extended... |
| xrsdsreval 21348 | The metric of the extended... |
| xrsdsreclblem 21349 | Lemma for ~ xrsdsreclb . ... |
| xrsdsreclb 21350 | The metric of the extended... |
| cnsubmlem 21351 | Lemma for ~ nn0subm and fr... |
| cnsubglem 21352 | Lemma for ~ resubdrg and f... |
| cnsubrglem 21353 | Lemma for ~ resubdrg and f... |
| cnsubrglemOLD 21354 | Obsolete version of ~ cnsu... |
| cnsubdrglem 21355 | Lemma for ~ resubdrg and f... |
| qsubdrg 21356 | The rational numbers form ... |
| zsubrg 21357 | The integers form a subrin... |
| gzsubrg 21358 | The gaussian integers form... |
| nn0subm 21359 | The nonnegative integers f... |
| rege0subm 21360 | The nonnegative reals form... |
| absabv 21361 | The regular absolute value... |
| zsssubrg 21362 | The integers are a subset ... |
| qsssubdrg 21363 | The rational numbers are a... |
| cnsubrg 21364 | There are no subrings of t... |
| cnmgpabl 21365 | The unit group of the comp... |
| cnmgpid 21366 | The group identity element... |
| cnmsubglem 21367 | Lemma for ~ rpmsubg and fr... |
| rpmsubg 21368 | The positive reals form a ... |
| gzrngunitlem 21369 | Lemma for ~ gzrngunit . (... |
| gzrngunit 21370 | The units on ` ZZ [ _i ] `... |
| gsumfsum 21371 | Relate a group sum on ` CC... |
| regsumfsum 21372 | Relate a group sum on ` ( ... |
| expmhm 21373 | Exponentiation is a monoid... |
| nn0srg 21374 | The nonnegative integers f... |
| rge0srg 21375 | The nonnegative real numbe... |
| xrge0plusg 21376 | The additive law of the ex... |
| xrs1mnd 21377 | The extended real numbers,... |
| xrs10 21378 | The zero of the extended r... |
| xrs1cmn 21379 | The extended real numbers ... |
| xrge0subm 21380 | The nonnegative extended r... |
| xrge0cmn 21381 | The nonnegative extended r... |
| xrge0omnd 21382 | The nonnegative extended r... |
| zringcrng 21385 | The ring of integers is a ... |
| zringring 21386 | The ring of integers is a ... |
| zringrng 21387 | The ring of integers is a ... |
| zringabl 21388 | The ring of integers is an... |
| zringgrp 21389 | The ring of integers is an... |
| zringbas 21390 | The integers are the base ... |
| zringplusg 21391 | The addition operation of ... |
| zringsub 21392 | The subtraction of element... |
| zringmulg 21393 | The multiplication (group ... |
| zringmulr 21394 | The multiplication operati... |
| zring0 21395 | The zero element of the ri... |
| zring1 21396 | The unity element of the r... |
| zringnzr 21397 | The ring of integers is a ... |
| dvdsrzring 21398 | Ring divisibility in the r... |
| zringlpirlem1 21399 | Lemma for ~ zringlpir . A... |
| zringlpirlem2 21400 | Lemma for ~ zringlpir . A... |
| zringlpirlem3 21401 | Lemma for ~ zringlpir . A... |
| zringinvg 21402 | The additive inverse of an... |
| zringunit 21403 | The units of ` ZZ ` are th... |
| zringlpir 21404 | The integers are a princip... |
| zringndrg 21405 | The integers are not a div... |
| zringcyg 21406 | The integers are a cyclic ... |
| zringsubgval 21407 | Subtraction in the ring of... |
| zringmpg 21408 | The multiplicative group o... |
| prmirredlem 21409 | A positive integer is irre... |
| dfprm2 21410 | The positive irreducible e... |
| prmirred 21411 | The irreducible elements o... |
| expghm 21412 | Exponentiation is a group ... |
| mulgghm2 21413 | The powers of a group elem... |
| mulgrhm 21414 | The powers of the element ... |
| mulgrhm2 21415 | The powers of the element ... |
| irinitoringc 21416 | The ring of integers is an... |
| nzerooringczr 21417 | There is no zero object in... |
| pzriprnglem1 21418 | Lemma 1 for ~ pzriprng : `... |
| pzriprnglem2 21419 | Lemma 2 for ~ pzriprng : ... |
| pzriprnglem3 21420 | Lemma 3 for ~ pzriprng : ... |
| pzriprnglem4 21421 | Lemma 4 for ~ pzriprng : `... |
| pzriprnglem5 21422 | Lemma 5 for ~ pzriprng : `... |
| pzriprnglem6 21423 | Lemma 6 for ~ pzriprng : `... |
| pzriprnglem7 21424 | Lemma 7 for ~ pzriprng : `... |
| pzriprnglem8 21425 | Lemma 8 for ~ pzriprng : `... |
| pzriprnglem9 21426 | Lemma 9 for ~ pzriprng : ... |
| pzriprnglem10 21427 | Lemma 10 for ~ pzriprng : ... |
| pzriprnglem11 21428 | Lemma 11 for ~ pzriprng : ... |
| pzriprnglem12 21429 | Lemma 12 for ~ pzriprng : ... |
| pzriprnglem13 21430 | Lemma 13 for ~ pzriprng : ... |
| pzriprnglem14 21431 | Lemma 14 for ~ pzriprng : ... |
| pzriprngALT 21432 | The non-unital ring ` ( ZZ... |
| pzriprng1ALT 21433 | The ring unity of the ring... |
| pzriprng 21434 | The non-unital ring ` ( ZZ... |
| pzriprng1 21435 | The ring unity of the ring... |
| zrhval 21444 | Define the unique homomorp... |
| zrhval2 21445 | Alternate value of the ` Z... |
| zrhmulg 21446 | Value of the ` ZRHom ` hom... |
| zrhrhmb 21447 | The ` ZRHom ` homomorphism... |
| zrhrhm 21448 | The ` ZRHom ` homomorphism... |
| zrh1 21449 | Interpretation of 1 in a r... |
| zrh0 21450 | Interpretation of 0 in a r... |
| zrhpropd 21451 | The ` ZZ ` ring homomorphi... |
| zlmval 21452 | Augment an abelian group w... |
| zlmlem 21453 | Lemma for ~ zlmbas and ~ z... |
| zlmbas 21454 | Base set of a ` ZZ ` -modu... |
| zlmplusg 21455 | Group operation of a ` ZZ ... |
| zlmmulr 21456 | Ring operation of a ` ZZ `... |
| zlmsca 21457 | Scalar ring of a ` ZZ ` -m... |
| zlmvsca 21458 | Scalar multiplication oper... |
| zlmlmod 21459 | The ` ZZ ` -module operati... |
| chrval 21460 | Definition substitution of... |
| chrcl 21461 | Closure of the characteris... |
| chrid 21462 | The canonical ` ZZ ` ring ... |
| chrdvds 21463 | The ` ZZ ` ring homomorphi... |
| chrcong 21464 | If two integers are congru... |
| dvdschrmulg 21465 | In a ring, any multiple of... |
| fermltlchr 21466 | A generalization of Fermat... |
| chrnzr 21467 | Nonzero rings are precisel... |
| chrrhm 21468 | The characteristic restric... |
| domnchr 21469 | The characteristic of a do... |
| znlidl 21470 | The set ` n ZZ ` is an ide... |
| zncrng2 21471 | Making a commutative ring ... |
| znval 21472 | The value of the ` Z/nZ ` ... |
| znle 21473 | The value of the ` Z/nZ ` ... |
| znval2 21474 | Self-referential expressio... |
| znbaslem 21475 | Lemma for ~ znbas . (Cont... |
| znbas2 21476 | The base set of ` Z/nZ ` i... |
| znadd 21477 | The additive structure of ... |
| znmul 21478 | The multiplicative structu... |
| znzrh 21479 | The ` ZZ ` ring homomorphi... |
| znbas 21480 | The base set of ` Z/nZ ` s... |
| zncrng 21481 | ` Z/nZ ` is a commutative ... |
| znzrh2 21482 | The ` ZZ ` ring homomorphi... |
| znzrhval 21483 | The ` ZZ ` ring homomorphi... |
| znzrhfo 21484 | The ` ZZ ` ring homomorphi... |
| zncyg 21485 | The group ` ZZ / n ZZ ` is... |
| zndvds 21486 | Express equality of equiva... |
| zndvds0 21487 | Special case of ~ zndvds w... |
| znf1o 21488 | The function ` F ` enumera... |
| zzngim 21489 | The ` ZZ ` ring homomorphi... |
| znle2 21490 | The ordering of the ` Z/nZ... |
| znleval 21491 | The ordering of the ` Z/nZ... |
| znleval2 21492 | The ordering of the ` Z/nZ... |
| zntoslem 21493 | Lemma for ~ zntos . (Cont... |
| zntos 21494 | The ` Z/nZ ` structure is ... |
| znhash 21495 | The ` Z/nZ ` structure has... |
| znfi 21496 | The ` Z/nZ ` structure is ... |
| znfld 21497 | The ` Z/nZ ` structure is ... |
| znidomb 21498 | The ` Z/nZ ` structure is ... |
| znchr 21499 | Cyclic rings are defined b... |
| znunit 21500 | The units of ` Z/nZ ` are ... |
| znunithash 21501 | The size of the unit group... |
| znrrg 21502 | The regular elements of ` ... |
| cygznlem1 21503 | Lemma for ~ cygzn . (Cont... |
| cygznlem2a 21504 | Lemma for ~ cygzn . (Cont... |
| cygznlem2 21505 | Lemma for ~ cygzn . (Cont... |
| cygznlem3 21506 | A cyclic group with ` n ` ... |
| cygzn 21507 | A cyclic group with ` n ` ... |
| cygth 21508 | The "fundamental theorem o... |
| cyggic 21509 | Cyclic groups are isomorph... |
| frgpcyg 21510 | A free group is cyclic iff... |
| freshmansdream 21511 | For a prime number ` P ` ,... |
| frobrhm 21512 | In a commutative ring with... |
| ofldchr 21513 | The characteristic of an o... |
| cnmsgnsubg 21514 | The signs form a multiplic... |
| cnmsgnbas 21515 | The base set of the sign s... |
| cnmsgngrp 21516 | The group of signs under m... |
| psgnghm 21517 | The sign is a homomorphism... |
| psgnghm2 21518 | The sign is a homomorphism... |
| psgninv 21519 | The sign of a permutation ... |
| psgnco 21520 | Multiplicativity of the pe... |
| zrhpsgnmhm 21521 | Embedding of permutation s... |
| zrhpsgninv 21522 | The embedded sign of a per... |
| evpmss 21523 | Even permutations are perm... |
| psgnevpmb 21524 | A class is an even permuta... |
| psgnodpm 21525 | A permutation which is odd... |
| psgnevpm 21526 | A permutation which is eve... |
| psgnodpmr 21527 | If a permutation has sign ... |
| zrhpsgnevpm 21528 | The sign of an even permut... |
| zrhpsgnodpm 21529 | The sign of an odd permuta... |
| cofipsgn 21530 | Composition of any class `... |
| zrhpsgnelbas 21531 | Embedding of permutation s... |
| zrhcopsgnelbas 21532 | Embedding of permutation s... |
| evpmodpmf1o 21533 | The function for performin... |
| pmtrodpm 21534 | A transposition is an odd ... |
| psgnfix1 21535 | A permutation of a finite ... |
| psgnfix2 21536 | A permutation of a finite ... |
| psgndiflemB 21537 | Lemma 1 for ~ psgndif . (... |
| psgndiflemA 21538 | Lemma 2 for ~ psgndif . (... |
| psgndif 21539 | Embedding of permutation s... |
| copsgndif 21540 | Embedding of permutation s... |
| rebase 21543 | The base of the field of r... |
| remulg 21544 | The multiplication (group ... |
| resubdrg 21545 | The real numbers form a di... |
| resubgval 21546 | Subtraction in the field o... |
| replusg 21547 | The addition operation of ... |
| remulr 21548 | The multiplication operati... |
| re0g 21549 | The zero element of the fi... |
| re1r 21550 | The unity element of the f... |
| rele2 21551 | The ordering relation of t... |
| relt 21552 | The ordering relation of t... |
| reds 21553 | The distance of the field ... |
| redvr 21554 | The division operation of ... |
| retos 21555 | The real numbers are a tot... |
| refld 21556 | The real numbers form a fi... |
| refldcj 21557 | The conjugation operation ... |
| resrng 21558 | The real numbers form a st... |
| regsumsupp 21559 | The group sum over the rea... |
| rzgrp 21560 | The quotient group ` RR / ... |
| isphl 21565 | The predicate "is a genera... |
| phllvec 21566 | A pre-Hilbert space is a l... |
| phllmod 21567 | A pre-Hilbert space is a l... |
| phlsrng 21568 | The scalar ring of a pre-H... |
| phllmhm 21569 | The inner product of a pre... |
| ipcl 21570 | Closure of the inner produ... |
| ipcj 21571 | Conjugate of an inner prod... |
| iporthcom 21572 | Orthogonality (meaning inn... |
| ip0l 21573 | Inner product with a zero ... |
| ip0r 21574 | Inner product with a zero ... |
| ipeq0 21575 | The inner product of a vec... |
| ipdir 21576 | Distributive law for inner... |
| ipdi 21577 | Distributive law for inner... |
| ip2di 21578 | Distributive law for inner... |
| ipsubdir 21579 | Distributive law for inner... |
| ipsubdi 21580 | Distributive law for inner... |
| ip2subdi 21581 | Distributive law for inner... |
| ipass 21582 | Associative law for inner ... |
| ipassr 21583 | "Associative" law for seco... |
| ipassr2 21584 | "Associative" law for inne... |
| ipffval 21585 | The inner product operatio... |
| ipfval 21586 | The inner product operatio... |
| ipfeq 21587 | If the inner product opera... |
| ipffn 21588 | The inner product operatio... |
| phlipf 21589 | The inner product operatio... |
| ip2eq 21590 | Two vectors are equal iff ... |
| isphld 21591 | Properties that determine ... |
| phlpropd 21592 | If two structures have the... |
| ssipeq 21593 | The inner product on a sub... |
| phssipval 21594 | The inner product on a sub... |
| phssip 21595 | The inner product (as a fu... |
| phlssphl 21596 | A subspace of an inner pro... |
| ocvfval 21603 | The orthocomplement operat... |
| ocvval 21604 | Value of the orthocompleme... |
| elocv 21605 | Elementhood in the orthoco... |
| ocvi 21606 | Property of a member of th... |
| ocvss 21607 | The orthocomplement of a s... |
| ocvocv 21608 | A set is contained in its ... |
| ocvlss 21609 | The orthocomplement of a s... |
| ocv2ss 21610 | Orthocomplements reverse s... |
| ocvin 21611 | An orthocomplement has tri... |
| ocvsscon 21612 | Two ways to say that ` S `... |
| ocvlsp 21613 | The orthocomplement of a l... |
| ocv0 21614 | The orthocomplement of the... |
| ocvz 21615 | The orthocomplement of the... |
| ocv1 21616 | The orthocomplement of the... |
| unocv 21617 | The orthocomplement of a u... |
| iunocv 21618 | The orthocomplement of an ... |
| cssval 21619 | The set of closed subspace... |
| iscss 21620 | The predicate "is a closed... |
| cssi 21621 | Property of a closed subsp... |
| cssss 21622 | A closed subspace is a sub... |
| iscss2 21623 | It is sufficient to prove ... |
| ocvcss 21624 | The orthocomplement of any... |
| cssincl 21625 | The zero subspace is a clo... |
| css0 21626 | The zero subspace is a clo... |
| css1 21627 | The whole space is a close... |
| csslss 21628 | A closed subspace of a pre... |
| lsmcss 21629 | A subset of a pre-Hilbert ... |
| cssmre 21630 | The closed subspaces of a ... |
| mrccss 21631 | The Moore closure correspo... |
| thlval 21632 | Value of the Hilbert latti... |
| thlbas 21633 | Base set of the Hilbert la... |
| thlle 21634 | Ordering on the Hilbert la... |
| thlleval 21635 | Ordering on the Hilbert la... |
| thloc 21636 | Orthocomplement on the Hil... |
| pjfval 21643 | The value of the projectio... |
| pjdm 21644 | A subspace is in the domai... |
| pjpm 21645 | The projection map is a pa... |
| pjfval2 21646 | Value of the projection ma... |
| pjval 21647 | Value of the projection ma... |
| pjdm2 21648 | A subspace is in the domai... |
| pjff 21649 | A projection is a linear o... |
| pjf 21650 | A projection is a function... |
| pjf2 21651 | A projection is a function... |
| pjfo 21652 | A projection is a surjecti... |
| pjcss 21653 | A projection subspace is a... |
| ocvpj 21654 | The orthocomplement of a p... |
| ishil 21655 | The predicate "is a Hilber... |
| ishil2 21656 | The predicate "is a Hilber... |
| isobs 21657 | The predicate "is an ortho... |
| obsip 21658 | The inner product of two e... |
| obsipid 21659 | A basis element has length... |
| obsrcl 21660 | Reverse closure for an ort... |
| obsss 21661 | An orthonormal basis is a ... |
| obsne0 21662 | A basis element is nonzero... |
| obsocv 21663 | An orthonormal basis has t... |
| obs2ocv 21664 | The double orthocomplement... |
| obselocv 21665 | A basis element is in the ... |
| obs2ss 21666 | A basis has no proper subs... |
| obslbs 21667 | An orthogonal basis is a l... |
| reldmdsmm 21670 | The direct sum is a well-b... |
| dsmmval 21671 | Value of the module direct... |
| dsmmbase 21672 | Base set of the module dir... |
| dsmmval2 21673 | Self-referential definitio... |
| dsmmbas2 21674 | Base set of the direct sum... |
| dsmmfi 21675 | For finite products, the d... |
| dsmmelbas 21676 | Membership in the finitely... |
| dsmm0cl 21677 | The all-zero vector is con... |
| dsmmacl 21678 | The finite hull is closed ... |
| prdsinvgd2 21679 | Negation of a single coord... |
| dsmmsubg 21680 | The finite hull of a produ... |
| dsmmlss 21681 | The finite hull of a produ... |
| dsmmlmod 21682 | The direct sum of a family... |
| frlmval 21685 | Value of the "free module"... |
| frlmlmod 21686 | The free module is a modul... |
| frlmpws 21687 | The free module as a restr... |
| frlmlss 21688 | The base set of the free m... |
| frlmpwsfi 21689 | The finite free module is ... |
| frlmsca 21690 | The ring of scalars of a f... |
| frlm0 21691 | Zero in a free module (rin... |
| frlmbas 21692 | Base set of the free modul... |
| frlmelbas 21693 | Membership in the base set... |
| frlmrcl 21694 | If a free module is inhabi... |
| frlmbasfsupp 21695 | Elements of the free modul... |
| frlmbasmap 21696 | Elements of the free modul... |
| frlmbasf 21697 | Elements of the free modul... |
| frlmlvec 21698 | The free module over a div... |
| frlmfibas 21699 | The base set of the finite... |
| elfrlmbasn0 21700 | If the dimension of a free... |
| frlmplusgval 21701 | Addition in a free module.... |
| frlmsubgval 21702 | Subtraction in a free modu... |
| frlmvscafval 21703 | Scalar multiplication in a... |
| frlmvplusgvalc 21704 | Coordinates of a sum with ... |
| frlmvscaval 21705 | Coordinates of a scalar mu... |
| frlmplusgvalb 21706 | Addition in a free module ... |
| frlmvscavalb 21707 | Scalar multiplication in a... |
| frlmvplusgscavalb 21708 | Addition combined with sca... |
| frlmgsum 21709 | Finite commutative sums in... |
| frlmsplit2 21710 | Restriction is homomorphic... |
| frlmsslss 21711 | A subset of a free module ... |
| frlmsslss2 21712 | A subset of a free module ... |
| frlmbas3 21713 | An element of the base set... |
| mpofrlmd 21714 | Elements of the free modul... |
| frlmip 21715 | The inner product of a fre... |
| frlmipval 21716 | The inner product of a fre... |
| frlmphllem 21717 | Lemma for ~ frlmphl . (Co... |
| frlmphl 21718 | Conditions for a free modu... |
| uvcfval 21721 | Value of the unit-vector g... |
| uvcval 21722 | Value of a single unit vec... |
| uvcvval 21723 | Value of a unit vector coo... |
| uvcvvcl 21724 | A coordinate of a unit vec... |
| uvcvvcl2 21725 | A unit vector coordinate i... |
| uvcvv1 21726 | The unit vector is one at ... |
| uvcvv0 21727 | The unit vector is zero at... |
| uvcff 21728 | Domain and codomain of the... |
| uvcf1 21729 | In a nonzero ring, each un... |
| uvcresum 21730 | Any element of a free modu... |
| frlmssuvc1 21731 | A scalar multiple of a uni... |
| frlmssuvc2 21732 | A nonzero scalar multiple ... |
| frlmsslsp 21733 | A subset of a free module ... |
| frlmlbs 21734 | The unit vectors comprise ... |
| frlmup1 21735 | Any assignment of unit vec... |
| frlmup2 21736 | The evaluation map has the... |
| frlmup3 21737 | The range of such an evalu... |
| frlmup4 21738 | Universal property of the ... |
| ellspd 21739 | The elements of the span o... |
| elfilspd 21740 | Simplified version of ~ el... |
| rellindf 21745 | The independent-family pre... |
| islinds 21746 | Property of an independent... |
| linds1 21747 | An independent set of vect... |
| linds2 21748 | An independent set of vect... |
| islindf 21749 | Property of an independent... |
| islinds2 21750 | Expanded property of an in... |
| islindf2 21751 | Property of an independent... |
| lindff 21752 | Functional property of a l... |
| lindfind 21753 | A linearly independent fam... |
| lindsind 21754 | A linearly independent set... |
| lindfind2 21755 | In a linearly independent ... |
| lindsind2 21756 | In a linearly independent ... |
| lindff1 21757 | A linearly independent fam... |
| lindfrn 21758 | The range of an independen... |
| f1lindf 21759 | Rearranging and deleting e... |
| lindfres 21760 | Any restriction of an inde... |
| lindsss 21761 | Any subset of an independe... |
| f1linds 21762 | A family constructed from ... |
| islindf3 21763 | In a nonzero ring, indepen... |
| lindfmm 21764 | Linear independence of a f... |
| lindsmm 21765 | Linear independence of a s... |
| lindsmm2 21766 | The monomorphic image of a... |
| lsslindf 21767 | Linear independence is unc... |
| lsslinds 21768 | Linear independence is unc... |
| islbs4 21769 | A basis is an independent ... |
| lbslinds 21770 | A basis is independent. (... |
| islinds3 21771 | A subset is linearly indep... |
| islinds4 21772 | A set is independent in a ... |
| lmimlbs 21773 | The isomorphic image of a ... |
| lmiclbs 21774 | Having a basis is an isomo... |
| islindf4 21775 | A family is independent if... |
| islindf5 21776 | A family is independent if... |
| indlcim 21777 | An independent, spanning f... |
| lbslcic 21778 | A module with a basis is i... |
| lmisfree 21779 | A module has a basis iff i... |
| lvecisfrlm 21780 | Every vector space is isom... |
| lmimco 21781 | The composition of two iso... |
| lmictra 21782 | Module isomorphism is tran... |
| uvcf1o 21783 | In a nonzero ring, the map... |
| uvcendim 21784 | In a nonzero ring, the num... |
| frlmisfrlm 21785 | A free module is isomorphi... |
| frlmiscvec 21786 | Every free module is isomo... |
| isassa 21793 | The properties of an assoc... |
| assalem 21794 | The properties of an assoc... |
| assaass 21795 | Left-associative property ... |
| assaassr 21796 | Right-associative property... |
| assalmod 21797 | An associative algebra is ... |
| assaring 21798 | An associative algebra is ... |
| assasca 21799 | The scalars of an associat... |
| assa2ass 21800 | Left- and right-associativ... |
| assa2ass2 21801 | Left- and right-associativ... |
| isassad 21802 | Sufficient condition for b... |
| issubassa3 21803 | A subring that is also a s... |
| issubassa 21804 | The subalgebras of an asso... |
| sraassab 21805 | A subring algebra is an as... |
| sraassa 21806 | The subring algebra over a... |
| sraassaOLD 21807 | Obsolete version of ~ sraa... |
| rlmassa 21808 | The ring module over a com... |
| assapropd 21809 | If two structures have the... |
| aspval 21810 | Value of the algebraic clo... |
| asplss 21811 | The algebraic span of a se... |
| aspid 21812 | The algebraic span of a su... |
| aspsubrg 21813 | The algebraic span of a se... |
| aspss 21814 | Span preserves subset orde... |
| aspssid 21815 | A set of vectors is a subs... |
| asclfval 21816 | Function value of the alge... |
| asclval 21817 | Value of a mapped algebra ... |
| asclfn 21818 | Unconditional functionalit... |
| asclf 21819 | The algebra scalar lifting... |
| asclghm 21820 | The algebra scalar lifting... |
| ascl0 21821 | The scalar 0 embedded into... |
| ascl1 21822 | The scalar 1 embedded into... |
| asclmul1 21823 | Left multiplication by a l... |
| asclmul2 21824 | Right multiplication by a ... |
| ascldimul 21825 | The algebra scalar lifting... |
| asclinvg 21826 | The group inverse (negatio... |
| asclrhm 21827 | The algebra scalar lifting... |
| rnascl 21828 | The set of lifted scalars ... |
| issubassa2 21829 | A subring of a unital alge... |
| rnasclsubrg 21830 | The scalar multiples of th... |
| rnasclmulcl 21831 | (Vector) multiplication is... |
| rnasclassa 21832 | The scalar multiples of th... |
| ressascl 21833 | The lifting of scalars is ... |
| asclpropd 21834 | If two structures have the... |
| aspval2 21835 | The algebraic closure is t... |
| assamulgscmlem1 21836 | Lemma 1 for ~ assamulgscm ... |
| assamulgscmlem2 21837 | Lemma for ~ assamulgscm (i... |
| assamulgscm 21838 | Exponentiation of a scalar... |
| asclmulg 21839 | Apply group multiplication... |
| zlmassa 21840 | The ` ZZ ` -module operati... |
| reldmpsr 21851 | The multivariate power ser... |
| psrval 21852 | Value of the multivariate ... |
| psrvalstr 21853 | The multivariate power ser... |
| psrbag 21854 | Elementhood in the set of ... |
| psrbagf 21855 | A finite bag is a function... |
| psrbagfsupp 21856 | Finite bags have finite su... |
| snifpsrbag 21857 | A bag containing one eleme... |
| fczpsrbag 21858 | The constant function equa... |
| psrbaglesupp 21859 | The support of a dominated... |
| psrbaglecl 21860 | The set of finite bags is ... |
| psrbagaddcl 21861 | The sum of two finite bags... |
| psrbagcon 21862 | The analogue of the statem... |
| psrbaglefi 21863 | There are finitely many ba... |
| psrbagconcl 21864 | The complement of a bag is... |
| psrbagleadd1 21865 | The analogue of " ` X <_ F... |
| psrbagconf1o 21866 | Bag complementation is a b... |
| gsumbagdiaglem 21867 | Lemma for ~ gsumbagdiag . ... |
| gsumbagdiag 21868 | Two-dimensional commutatio... |
| psrass1lem 21869 | A group sum commutation us... |
| psrbas 21870 | The base set of the multiv... |
| psrelbas 21871 | An element of the set of p... |
| psrelbasfun 21872 | An element of the set of p... |
| psrplusg 21873 | The addition operation of ... |
| psradd 21874 | The addition operation of ... |
| psraddcl 21875 | Closure of the power serie... |
| psraddclOLD 21876 | Obsolete version of ~ psra... |
| rhmpsrlem1 21877 | Lemma for ~ rhmpsr et al. ... |
| rhmpsrlem2 21878 | Lemma for ~ rhmpsr et al. ... |
| psrmulr 21879 | The multiplication operati... |
| psrmulfval 21880 | The multiplication operati... |
| psrmulval 21881 | The multiplication operati... |
| psrmulcllem 21882 | Closure of the power serie... |
| psrmulcl 21883 | Closure of the power serie... |
| psrsca 21884 | The scalar field of the mu... |
| psrvscafval 21885 | The scalar multiplication ... |
| psrvsca 21886 | The scalar multiplication ... |
| psrvscaval 21887 | The scalar multiplication ... |
| psrvscacl 21888 | Closure of the power serie... |
| psr0cl 21889 | The zero element of the ri... |
| psr0lid 21890 | The zero element of the ri... |
| psrnegcl 21891 | The negative function in t... |
| psrlinv 21892 | The negative function in t... |
| psrgrp 21893 | The ring of power series i... |
| psrgrpOLD 21894 | Obsolete version of ~ psrg... |
| psr0 21895 | The zero element of the ri... |
| psrneg 21896 | The negative function of t... |
| psrlmod 21897 | The ring of power series i... |
| psr1cl 21898 | The identity element of th... |
| psrlidm 21899 | The identity element of th... |
| psrridm 21900 | The identity element of th... |
| psrass1 21901 | Associative identity for t... |
| psrdi 21902 | Distributive law for the r... |
| psrdir 21903 | Distributive law for the r... |
| psrass23l 21904 | Associative identity for t... |
| psrcom 21905 | Commutative law for the ri... |
| psrass23 21906 | Associative identities for... |
| psrring 21907 | The ring of power series i... |
| psr1 21908 | The identity element of th... |
| psrcrng 21909 | The ring of power series i... |
| psrassa 21910 | The ring of power series i... |
| resspsrbas 21911 | A restricted power series ... |
| resspsradd 21912 | A restricted power series ... |
| resspsrmul 21913 | A restricted power series ... |
| resspsrvsca 21914 | A restricted power series ... |
| subrgpsr 21915 | A subring of the base ring... |
| psrascl 21916 | Value of the scalar inject... |
| psrasclcl 21917 | A scalar is lifted into a ... |
| mvrfval 21918 | Value of the generating el... |
| mvrval 21919 | Value of the generating el... |
| mvrval2 21920 | Value of the generating el... |
| mvrid 21921 | The ` X i ` -th coefficien... |
| mvrf 21922 | The power series variable ... |
| mvrf1 21923 | The power series variable ... |
| mvrcl2 21924 | A power series variable is... |
| reldmmpl 21925 | The multivariate polynomia... |
| mplval 21926 | Value of the set of multiv... |
| mplbas 21927 | Base set of the set of mul... |
| mplelbas 21928 | Property of being a polyno... |
| mvrcl 21929 | A power series variable is... |
| mvrf2 21930 | The power series/polynomia... |
| mplrcl 21931 | Reverse closure for the po... |
| mplelsfi 21932 | A polynomial treated as a ... |
| mplval2 21933 | Self-referential expressio... |
| mplbasss 21934 | The set of polynomials is ... |
| mplelf 21935 | A polynomial is defined as... |
| mplsubglem 21936 | If ` A ` is an ideal of se... |
| mpllsslem 21937 | If ` A ` is an ideal of su... |
| mplsubglem2 21938 | Lemma for ~ mplsubg and ~ ... |
| mplsubg 21939 | The set of polynomials is ... |
| mpllss 21940 | The set of polynomials is ... |
| mplsubrglem 21941 | Lemma for ~ mplsubrg . (C... |
| mplsubrg 21942 | The set of polynomials is ... |
| mpl0 21943 | The zero polynomial. (Con... |
| mplplusg 21944 | Value of addition in a pol... |
| mplmulr 21945 | Value of multiplication in... |
| mpladd 21946 | The addition operation on ... |
| mplneg 21947 | The negative function on m... |
| mplmul 21948 | The multiplication operati... |
| mpl1 21949 | The identity element of th... |
| mplsca 21950 | The scalar field of a mult... |
| mplvsca2 21951 | The scalar multiplication ... |
| mplvsca 21952 | The scalar multiplication ... |
| mplvscaval 21953 | The scalar multiplication ... |
| mplgrp 21954 | The polynomial ring is a g... |
| mpllmod 21955 | The polynomial ring is a l... |
| mplring 21956 | The polynomial ring is a r... |
| mpllvec 21957 | The polynomial ring is a v... |
| mplcrng 21958 | The polynomial ring is a c... |
| mplassa 21959 | The polynomial ring is an ... |
| mplringd 21960 | The polynomial ring is a r... |
| mpllmodd 21961 | The polynomial ring is a l... |
| ressmplbas2 21962 | The base set of a restrict... |
| ressmplbas 21963 | A restricted polynomial al... |
| ressmpladd 21964 | A restricted polynomial al... |
| ressmplmul 21965 | A restricted polynomial al... |
| ressmplvsca 21966 | A restricted power series ... |
| subrgmpl 21967 | A subring of the base ring... |
| subrgmvr 21968 | The variables in a subring... |
| subrgmvrf 21969 | The variables in a polynom... |
| mplmon 21970 | A monomial is a polynomial... |
| mplmonmul 21971 | The product of two monomia... |
| mplcoe1 21972 | Decompose a polynomial int... |
| mplcoe3 21973 | Decompose a monomial in on... |
| mplcoe5lem 21974 | Lemma for ~ mplcoe4 . (Co... |
| mplcoe5 21975 | Decompose a monomial into ... |
| mplcoe2 21976 | Decompose a monomial into ... |
| mplbas2 21977 | An alternative expression ... |
| ltbval 21978 | Value of the well-order on... |
| ltbwe 21979 | The finite bag order is a ... |
| reldmopsr 21980 | Lemma for ordered power se... |
| opsrval 21981 | The value of the "ordered ... |
| opsrle 21982 | An alternative expression ... |
| opsrval2 21983 | Self-referential expressio... |
| opsrbaslem 21984 | Get a component of the ord... |
| opsrbas 21985 | The base set of the ordere... |
| opsrplusg 21986 | The addition operation of ... |
| opsrmulr 21987 | The multiplication operati... |
| opsrvsca 21988 | The scalar product operati... |
| opsrsca 21989 | The scalar ring of the ord... |
| opsrtoslem1 21990 | Lemma for ~ opsrtos . (Co... |
| opsrtoslem2 21991 | Lemma for ~ opsrtos . (Co... |
| opsrtos 21992 | The ordered power series s... |
| opsrso 21993 | The ordered power series s... |
| opsrcrng 21994 | The ring of ordered power ... |
| opsrassa 21995 | The ring of ordered power ... |
| mplmon2 21996 | Express a scaled monomial.... |
| psrbag0 21997 | The empty bag is a bag. (... |
| psrbagsn 21998 | A singleton bag is a bag. ... |
| mplascl 21999 | Value of the scalar inject... |
| mplasclf 22000 | The scalar injection is a ... |
| subrgascl 22001 | The scalar injection funct... |
| subrgasclcl 22002 | The scalars in a polynomia... |
| mplmon2cl 22003 | A scaled monomial is a pol... |
| mplmon2mul 22004 | Product of scaled monomial... |
| mplind 22005 | Prove a property of polyno... |
| mplcoe4 22006 | Decompose a polynomial int... |
| evlslem4 22011 | The support of a tensor pr... |
| psrbagev1 22012 | A bag of multipliers provi... |
| psrbagev2 22013 | Closure of a sum using a b... |
| evlslem2 22014 | A linear function on the p... |
| evlslem3 22015 | Lemma for ~ evlseu . Poly... |
| evlslem6 22016 | Lemma for ~ evlseu . Fini... |
| evlslem1 22017 | Lemma for ~ evlseu , give ... |
| evlseu 22018 | For a given interpretation... |
| reldmevls 22019 | Well-behaved binary operat... |
| mpfrcl 22020 | Reverse closure for the se... |
| evlsval 22021 | Value of the polynomial ev... |
| evlsval2 22022 | Characterizing properties ... |
| evlsrhm 22023 | Polynomial evaluation is a... |
| evlssca 22024 | Polynomial evaluation maps... |
| evlsvar 22025 | Polynomial evaluation maps... |
| evlsgsumadd 22026 | Polynomial evaluation maps... |
| evlsgsummul 22027 | Polynomial evaluation maps... |
| evlspw 22028 | Polynomial evaluation for ... |
| evlsvarpw 22029 | Polynomial evaluation for ... |
| evlval 22030 | Value of the simple/same r... |
| evlrhm 22031 | The simple evaluation map ... |
| evlsscasrng 22032 | The evaluation of a scalar... |
| evlsca 22033 | Simple polynomial evaluati... |
| evlsvarsrng 22034 | The evaluation of the vari... |
| evlvar 22035 | Simple polynomial evaluati... |
| mpfconst 22036 | Constants are multivariate... |
| mpfproj 22037 | Projections are multivaria... |
| mpfsubrg 22038 | Polynomial functions are a... |
| mpff 22039 | Polynomial functions are f... |
| mpfaddcl 22040 | The sum of multivariate po... |
| mpfmulcl 22041 | The product of multivariat... |
| mpfind 22042 | Prove a property of polyno... |
| selvffval 22048 | Value of the "variable sel... |
| selvfval 22049 | Value of the "variable sel... |
| selvval 22050 | Value of the "variable sel... |
| reldmmhp 22052 | The domain of the homogene... |
| mhpfval 22053 | Value of the "homogeneous ... |
| mhpval 22054 | Value of the "homogeneous ... |
| ismhp 22055 | Property of being a homoge... |
| ismhp2 22056 | Deduce a homogeneous polyn... |
| ismhp3 22057 | A polynomial is homogeneou... |
| mhprcl 22058 | Reverse closure for homoge... |
| mhpmpl 22059 | A homogeneous polynomial i... |
| mhpdeg 22060 | All nonzero terms of a hom... |
| mhp0cl 22061 | The zero polynomial is hom... |
| mhpsclcl 22062 | A scalar (or constant) pol... |
| mhpvarcl 22063 | A power series variable is... |
| mhpmulcl 22064 | A product of homogeneous p... |
| mhppwdeg 22065 | Degree of a homogeneous po... |
| mhpaddcl 22066 | Homogeneous polynomials ar... |
| mhpinvcl 22067 | Homogeneous polynomials ar... |
| mhpsubg 22068 | Homogeneous polynomials fo... |
| mhpvscacl 22069 | Homogeneous polynomials ar... |
| mhplss 22070 | Homogeneous polynomials fo... |
| psdffval 22072 | Value of the power series ... |
| psdfval 22073 | Give a map between power s... |
| psdval 22074 | Evaluate the partial deriv... |
| psdcoef 22075 | Coefficient of a term of t... |
| psdcl 22076 | The derivative of a power ... |
| psdmplcl 22077 | The derivative of a polyno... |
| psdadd 22078 | The derivative of a sum is... |
| psdvsca 22079 | The derivative of a scaled... |
| psdmullem 22080 | Lemma for ~ psdmul . Tran... |
| psdmul 22081 | Product rule for power ser... |
| psd1 22082 | The derivative of one is z... |
| psdascl 22083 | The derivative of a consta... |
| psdmvr 22084 | The partial derivative of ... |
| psdpw 22085 | Power rule for partial der... |
| psr1baslem 22097 | The set of finite bags on ... |
| psr1val 22098 | Value of the ring of univa... |
| psr1crng 22099 | The ring of univariate pow... |
| psr1assa 22100 | The ring of univariate pow... |
| psr1tos 22101 | The ordered power series s... |
| psr1bas2 22102 | The base set of the ring o... |
| psr1bas 22103 | The base set of the ring o... |
| vr1val 22104 | The value of the generator... |
| vr1cl2 22105 | The variable ` X ` is a me... |
| ply1val 22106 | The value of the set of un... |
| ply1bas 22107 | The value of the base set ... |
| ply1basOLD 22108 | Obsolete version of ~ ply1... |
| ply1lss 22109 | Univariate polynomials for... |
| ply1subrg 22110 | Univariate polynomials for... |
| ply1crng 22111 | The ring of univariate pol... |
| ply1assa 22112 | The ring of univariate pol... |
| psr1bascl 22113 | A univariate power series ... |
| psr1basf 22114 | Univariate power series ba... |
| ply1basf 22115 | Univariate polynomial base... |
| ply1bascl 22116 | A univariate polynomial is... |
| ply1bascl2 22117 | A univariate polynomial is... |
| coe1fval 22118 | Value of the univariate po... |
| coe1fv 22119 | Value of an evaluated coef... |
| fvcoe1 22120 | Value of a multivariate co... |
| coe1fval3 22121 | Univariate power series co... |
| coe1f2 22122 | Functionality of univariat... |
| coe1fval2 22123 | Univariate polynomial coef... |
| coe1f 22124 | Functionality of univariat... |
| coe1fvalcl 22125 | A coefficient of a univari... |
| coe1sfi 22126 | Finite support of univaria... |
| coe1fsupp 22127 | The coefficient vector of ... |
| mptcoe1fsupp 22128 | A mapping involving coeffi... |
| coe1ae0 22129 | The coefficient vector of ... |
| vr1cl 22130 | The generator of a univari... |
| opsr0 22131 | Zero in the ordered power ... |
| opsr1 22132 | One in the ordered power s... |
| psr1plusg 22133 | Value of addition in a uni... |
| psr1vsca 22134 | Value of scalar multiplica... |
| psr1mulr 22135 | Value of multiplication in... |
| ply1plusg 22136 | Value of addition in a uni... |
| ply1vsca 22137 | Value of scalar multiplica... |
| ply1mulr 22138 | Value of multiplication in... |
| ply1ass23l 22139 | Associative identity with ... |
| ressply1bas2 22140 | The base set of a restrict... |
| ressply1bas 22141 | A restricted polynomial al... |
| ressply1add 22142 | A restricted polynomial al... |
| ressply1mul 22143 | A restricted polynomial al... |
| ressply1vsca 22144 | A restricted power series ... |
| subrgply1 22145 | A subring of the base ring... |
| gsumply1subr 22146 | Evaluate a group sum in a ... |
| psrbaspropd 22147 | Property deduction for pow... |
| psrplusgpropd 22148 | Property deduction for pow... |
| mplbaspropd 22149 | Property deduction for pol... |
| psropprmul 22150 | Reversing multiplication i... |
| ply1opprmul 22151 | Reversing multiplication i... |
| 00ply1bas 22152 | Lemma for ~ ply1basfvi and... |
| ply1basfvi 22153 | Protection compatibility o... |
| ply1plusgfvi 22154 | Protection compatibility o... |
| ply1baspropd 22155 | Property deduction for uni... |
| ply1plusgpropd 22156 | Property deduction for uni... |
| opsrring 22157 | Ordered power series form ... |
| opsrlmod 22158 | Ordered power series form ... |
| psr1ring 22159 | Univariate power series fo... |
| ply1ring 22160 | Univariate polynomials for... |
| psr1lmod 22161 | Univariate power series fo... |
| psr1sca 22162 | Scalars of a univariate po... |
| psr1sca2 22163 | Scalars of a univariate po... |
| ply1lmod 22164 | Univariate polynomials for... |
| ply1sca 22165 | Scalars of a univariate po... |
| ply1sca2 22166 | Scalars of a univariate po... |
| ply1ascl0 22167 | The zero scalar as a polyn... |
| ply1ascl1 22168 | The multiplicative identit... |
| ply1mpl0 22169 | The univariate polynomial ... |
| ply10s0 22170 | Zero times a univariate po... |
| ply1mpl1 22171 | The univariate polynomial ... |
| ply1ascl 22172 | The univariate polynomial ... |
| subrg1ascl 22173 | The scalar injection funct... |
| subrg1asclcl 22174 | The scalars in a polynomia... |
| subrgvr1 22175 | The variables in a subring... |
| subrgvr1cl 22176 | The variables in a polynom... |
| coe1z 22177 | The coefficient vector of ... |
| coe1add 22178 | The coefficient vector of ... |
| coe1addfv 22179 | A particular coefficient o... |
| coe1subfv 22180 | A particular coefficient o... |
| coe1mul2lem1 22181 | An equivalence for ~ coe1m... |
| coe1mul2lem2 22182 | An equivalence for ~ coe1m... |
| coe1mul2 22183 | The coefficient vector of ... |
| coe1mul 22184 | The coefficient vector of ... |
| ply1moncl 22185 | Closure of the expression ... |
| ply1tmcl 22186 | Closure of the expression ... |
| coe1tm 22187 | Coefficient vector of a po... |
| coe1tmfv1 22188 | Nonzero coefficient of a p... |
| coe1tmfv2 22189 | Zero coefficient of a poly... |
| coe1tmmul2 22190 | Coefficient vector of a po... |
| coe1tmmul 22191 | Coefficient vector of a po... |
| coe1tmmul2fv 22192 | Function value of a right-... |
| coe1pwmul 22193 | Coefficient vector of a po... |
| coe1pwmulfv 22194 | Function value of a right-... |
| ply1scltm 22195 | A scalar is a term with ze... |
| coe1sclmul 22196 | Coefficient vector of a po... |
| coe1sclmulfv 22197 | A single coefficient of a ... |
| coe1sclmul2 22198 | Coefficient vector of a po... |
| ply1sclf 22199 | A scalar polynomial is a p... |
| ply1sclcl 22200 | The value of the algebra s... |
| coe1scl 22201 | Coefficient vector of a sc... |
| ply1sclid 22202 | Recover the base scalar fr... |
| ply1sclf1 22203 | The polynomial scalar func... |
| ply1scl0 22204 | The zero scalar is zero. ... |
| ply1scl0OLD 22205 | Obsolete version of ~ ply1... |
| ply1scln0 22206 | Nonzero scalars create non... |
| ply1scl1 22207 | The one scalar is the unit... |
| ply1scl1OLD 22208 | Obsolete version of ~ ply1... |
| ply1idvr1 22209 | The identity of a polynomi... |
| ply1idvr1OLD 22210 | Obsolete version of ~ ply1... |
| cply1mul 22211 | The product of two constan... |
| ply1coefsupp 22212 | The decomposition of a uni... |
| ply1coe 22213 | Decompose a univariate pol... |
| eqcoe1ply1eq 22214 | Two polynomials over the s... |
| ply1coe1eq 22215 | Two polynomials over the s... |
| cply1coe0 22216 | All but the first coeffici... |
| cply1coe0bi 22217 | A polynomial is constant (... |
| coe1fzgsumdlem 22218 | Lemma for ~ coe1fzgsumd (i... |
| coe1fzgsumd 22219 | Value of an evaluated coef... |
| ply1scleq 22220 | Equality of a constant pol... |
| ply1chr 22221 | The characteristic of a po... |
| gsumsmonply1 22222 | A finite group sum of scal... |
| gsummoncoe1 22223 | A coefficient of the polyn... |
| gsumply1eq 22224 | Two univariate polynomials... |
| lply1binom 22225 | The binomial theorem for l... |
| lply1binomsc 22226 | The binomial theorem for l... |
| ply1fermltlchr 22227 | Fermat's little theorem fo... |
| reldmevls1 22232 | Well-behaved binary operat... |
| ply1frcl 22233 | Reverse closure for the se... |
| evls1fval 22234 | Value of the univariate po... |
| evls1val 22235 | Value of the univariate po... |
| evls1rhmlem 22236 | Lemma for ~ evl1rhm and ~ ... |
| evls1rhm 22237 | Polynomial evaluation is a... |
| evls1sca 22238 | Univariate polynomial eval... |
| evls1gsumadd 22239 | Univariate polynomial eval... |
| evls1gsummul 22240 | Univariate polynomial eval... |
| evls1pw 22241 | Univariate polynomial eval... |
| evls1varpw 22242 | Univariate polynomial eval... |
| evl1fval 22243 | Value of the simple/same r... |
| evl1val 22244 | Value of the simple/same r... |
| evl1fval1lem 22245 | Lemma for ~ evl1fval1 . (... |
| evl1fval1 22246 | Value of the simple/same r... |
| evl1rhm 22247 | Polynomial evaluation is a... |
| fveval1fvcl 22248 | The function value of the ... |
| evl1sca 22249 | Polynomial evaluation maps... |
| evl1scad 22250 | Polynomial evaluation buil... |
| evl1var 22251 | Polynomial evaluation maps... |
| evl1vard 22252 | Polynomial evaluation buil... |
| evls1var 22253 | Univariate polynomial eval... |
| evls1scasrng 22254 | The evaluation of a scalar... |
| evls1varsrng 22255 | The evaluation of the vari... |
| evl1addd 22256 | Polynomial evaluation buil... |
| evl1subd 22257 | Polynomial evaluation buil... |
| evl1muld 22258 | Polynomial evaluation buil... |
| evl1vsd 22259 | Polynomial evaluation buil... |
| evl1expd 22260 | Polynomial evaluation buil... |
| pf1const 22261 | Constants are polynomial f... |
| pf1id 22262 | The identity is a polynomi... |
| pf1subrg 22263 | Polynomial functions are a... |
| pf1rcl 22264 | Reverse closure for the se... |
| pf1f 22265 | Polynomial functions are f... |
| mpfpf1 22266 | Convert a multivariate pol... |
| pf1mpf 22267 | Convert a univariate polyn... |
| pf1addcl 22268 | The sum of multivariate po... |
| pf1mulcl 22269 | The product of multivariat... |
| pf1ind 22270 | Prove a property of polyno... |
| evl1gsumdlem 22271 | Lemma for ~ evl1gsumd (ind... |
| evl1gsumd 22272 | Polynomial evaluation buil... |
| evl1gsumadd 22273 | Univariate polynomial eval... |
| evl1gsumaddval 22274 | Value of a univariate poly... |
| evl1gsummul 22275 | Univariate polynomial eval... |
| evl1varpw 22276 | Univariate polynomial eval... |
| evl1varpwval 22277 | Value of a univariate poly... |
| evl1scvarpw 22278 | Univariate polynomial eval... |
| evl1scvarpwval 22279 | Value of a univariate poly... |
| evl1gsummon 22280 | Value of a univariate poly... |
| evls1scafv 22281 | Value of the univariate po... |
| evls1expd 22282 | Univariate polynomial eval... |
| evls1varpwval 22283 | Univariate polynomial eval... |
| evls1fpws 22284 | Evaluation of a univariate... |
| ressply1evl 22285 | Evaluation of a univariate... |
| evls1addd 22286 | Univariate polynomial eval... |
| evls1muld 22287 | Univariate polynomial eval... |
| evls1vsca 22288 | Univariate polynomial eval... |
| asclply1subcl 22289 | Closure of the algebra sca... |
| evls1fvcl 22290 | Variant of ~ fveval1fvcl f... |
| evls1maprhm 22291 | The function ` F ` mapping... |
| evls1maplmhm 22292 | The function ` F ` mapping... |
| evls1maprnss 22293 | The function ` F ` mapping... |
| evl1maprhm 22294 | The function ` F ` mapping... |
| mhmcompl 22295 | The composition of a monoi... |
| mhmcoaddmpl 22296 | Show that the ring homomor... |
| rhmcomulmpl 22297 | Show that the ring homomor... |
| rhmmpl 22298 | Provide a ring homomorphis... |
| ply1vscl 22299 | Closure of scalar multipli... |
| mhmcoply1 22300 | The composition of a monoi... |
| rhmply1 22301 | Provide a ring homomorphis... |
| rhmply1vr1 22302 | A ring homomorphism betwee... |
| rhmply1vsca 22303 | Apply a ring homomorphism ... |
| rhmply1mon 22304 | Apply a ring homomorphism ... |
| mamufval 22307 | Functional value of the ma... |
| mamuval 22308 | Multiplication of two matr... |
| mamufv 22309 | A cell in the multiplicati... |
| mamudm 22310 | The domain of the matrix m... |
| mamufacex 22311 | Every solution of the equa... |
| mamures 22312 | Rows in a matrix product a... |
| grpvlinv 22313 | Tuple-wise left inverse in... |
| grpvrinv 22314 | Tuple-wise right inverse i... |
| ringvcl 22315 | Tuple-wise multiplication ... |
| mamucl 22316 | Operation closure of matri... |
| mamuass 22317 | Matrix multiplication is a... |
| mamudi 22318 | Matrix multiplication dist... |
| mamudir 22319 | Matrix multiplication dist... |
| mamuvs1 22320 | Matrix multiplication dist... |
| mamuvs2 22321 | Matrix multiplication dist... |
| matbas0pc 22324 | There is no matrix with a ... |
| matbas0 22325 | There is no matrix for a n... |
| matval 22326 | Value of the matrix algebr... |
| matrcl 22327 | Reverse closure for the ma... |
| matbas 22328 | The matrix ring has the sa... |
| matplusg 22329 | The matrix ring has the sa... |
| matsca 22330 | The matrix ring has the sa... |
| matvsca 22331 | The matrix ring has the sa... |
| mat0 22332 | The matrix ring has the sa... |
| matinvg 22333 | The matrix ring has the sa... |
| mat0op 22334 | Value of a zero matrix as ... |
| matsca2 22335 | The scalars of the matrix ... |
| matbas2 22336 | The base set of the matrix... |
| matbas2i 22337 | A matrix is a function. (... |
| matbas2d 22338 | The base set of the matrix... |
| eqmat 22339 | Two square matrices of the... |
| matecl 22340 | Each entry (according to W... |
| matecld 22341 | Each entry (according to W... |
| matplusg2 22342 | Addition in the matrix rin... |
| matvsca2 22343 | Scalar multiplication in t... |
| matlmod 22344 | The matrix ring is a linea... |
| matgrp 22345 | The matrix ring is a group... |
| matvscl 22346 | Closure of the scalar mult... |
| matsubg 22347 | The matrix ring has the sa... |
| matplusgcell 22348 | Addition in the matrix rin... |
| matsubgcell 22349 | Subtraction in the matrix ... |
| matinvgcell 22350 | Additive inversion in the ... |
| matvscacell 22351 | Scalar multiplication in t... |
| matgsum 22352 | Finite commutative sums in... |
| matmulr 22353 | Multiplication in the matr... |
| mamumat1cl 22354 | The identity matrix (as op... |
| mat1comp 22355 | The components of the iden... |
| mamulid 22356 | The identity matrix (as op... |
| mamurid 22357 | The identity matrix (as op... |
| matring 22358 | Existence of the matrix ri... |
| matassa 22359 | Existence of the matrix al... |
| matmulcell 22360 | Multiplication in the matr... |
| mpomatmul 22361 | Multiplication of two N x ... |
| mat1 22362 | Value of an identity matri... |
| mat1ov 22363 | Entries of an identity mat... |
| mat1bas 22364 | The identity matrix is a m... |
| matsc 22365 | The identity matrix multip... |
| ofco2 22366 | Distribution law for the f... |
| oftpos 22367 | The transposition of the v... |
| mattposcl 22368 | The transpose of a square ... |
| mattpostpos 22369 | The transpose of the trans... |
| mattposvs 22370 | The transposition of a mat... |
| mattpos1 22371 | The transposition of the i... |
| tposmap 22372 | The transposition of an I ... |
| mamutpos 22373 | Behavior of transposes in ... |
| mattposm 22374 | Multiplying two transposed... |
| matgsumcl 22375 | Closure of a group sum ove... |
| madetsumid 22376 | The identity summand in th... |
| matepmcl 22377 | Each entry of a matrix wit... |
| matepm2cl 22378 | Each entry of a matrix wit... |
| madetsmelbas 22379 | A summand of the determina... |
| madetsmelbas2 22380 | A summand of the determina... |
| mat0dimbas0 22381 | The empty set is the one a... |
| mat0dim0 22382 | The zero of the algebra of... |
| mat0dimid 22383 | The identity of the algebr... |
| mat0dimscm 22384 | The scalar multiplication ... |
| mat0dimcrng 22385 | The algebra of matrices wi... |
| mat1dimelbas 22386 | A matrix with dimension 1 ... |
| mat1dimbas 22387 | A matrix with dimension 1 ... |
| mat1dim0 22388 | The zero of the algebra of... |
| mat1dimid 22389 | The identity of the algebr... |
| mat1dimscm 22390 | The scalar multiplication ... |
| mat1dimmul 22391 | The ring multiplication in... |
| mat1dimcrng 22392 | The algebra of matrices wi... |
| mat1f1o 22393 | There is a 1-1 function fr... |
| mat1rhmval 22394 | The value of the ring homo... |
| mat1rhmelval 22395 | The value of the ring homo... |
| mat1rhmcl 22396 | The value of the ring homo... |
| mat1f 22397 | There is a function from a... |
| mat1ghm 22398 | There is a group homomorph... |
| mat1mhm 22399 | There is a monoid homomorp... |
| mat1rhm 22400 | There is a ring homomorphi... |
| mat1rngiso 22401 | There is a ring isomorphis... |
| mat1ric 22402 | A ring is isomorphic to th... |
| dmatval 22407 | The set of ` N ` x ` N ` d... |
| dmatel 22408 | A ` N ` x ` N ` diagonal m... |
| dmatmat 22409 | An ` N ` x ` N ` diagonal ... |
| dmatid 22410 | The identity matrix is a d... |
| dmatelnd 22411 | An extradiagonal entry of ... |
| dmatmul 22412 | The product of two diagona... |
| dmatsubcl 22413 | The difference of two diag... |
| dmatsgrp 22414 | The set of diagonal matric... |
| dmatmulcl 22415 | The product of two diagona... |
| dmatsrng 22416 | The set of diagonal matric... |
| dmatcrng 22417 | The subring of diagonal ma... |
| dmatscmcl 22418 | The multiplication of a di... |
| scmatval 22419 | The set of ` N ` x ` N ` s... |
| scmatel 22420 | An ` N ` x ` N ` scalar ma... |
| scmatscmid 22421 | A scalar matrix can be exp... |
| scmatscmide 22422 | An entry of a scalar matri... |
| scmatscmiddistr 22423 | Distributive law for scala... |
| scmatmat 22424 | An ` N ` x ` N ` scalar ma... |
| scmate 22425 | An entry of an ` N ` x ` N... |
| scmatmats 22426 | The set of an ` N ` x ` N ... |
| scmateALT 22427 | Alternate proof of ~ scmat... |
| scmatscm 22428 | The multiplication of a ma... |
| scmatid 22429 | The identity matrix is a s... |
| scmatdmat 22430 | A scalar matrix is a diago... |
| scmataddcl 22431 | The sum of two scalar matr... |
| scmatsubcl 22432 | The difference of two scal... |
| scmatmulcl 22433 | The product of two scalar ... |
| scmatsgrp 22434 | The set of scalar matrices... |
| scmatsrng 22435 | The set of scalar matrices... |
| scmatcrng 22436 | The subring of scalar matr... |
| scmatsgrp1 22437 | The set of scalar matrices... |
| scmatsrng1 22438 | The set of scalar matrices... |
| smatvscl 22439 | Closure of the scalar mult... |
| scmatlss 22440 | The set of scalar matrices... |
| scmatstrbas 22441 | The set of scalar matrices... |
| scmatrhmval 22442 | The value of the ring homo... |
| scmatrhmcl 22443 | The value of the ring homo... |
| scmatf 22444 | There is a function from a... |
| scmatfo 22445 | There is a function from a... |
| scmatf1 22446 | There is a 1-1 function fr... |
| scmatf1o 22447 | There is a bijection betwe... |
| scmatghm 22448 | There is a group homomorph... |
| scmatmhm 22449 | There is a monoid homomorp... |
| scmatrhm 22450 | There is a ring homomorphi... |
| scmatrngiso 22451 | There is a ring isomorphis... |
| scmatric 22452 | A ring is isomorphic to ev... |
| mat0scmat 22453 | The empty matrix over a ri... |
| mat1scmat 22454 | A 1-dimensional matrix ove... |
| mvmulfval 22457 | Functional value of the ma... |
| mvmulval 22458 | Multiplication of a vector... |
| mvmulfv 22459 | A cell/element in the vect... |
| mavmulval 22460 | Multiplication of a vector... |
| mavmulfv 22461 | A cell/element in the vect... |
| mavmulcl 22462 | Multiplication of an NxN m... |
| 1mavmul 22463 | Multiplication of the iden... |
| mavmulass 22464 | Associativity of the multi... |
| mavmuldm 22465 | The domain of the matrix v... |
| mavmulsolcl 22466 | Every solution of the equa... |
| mavmul0 22467 | Multiplication of a 0-dime... |
| mavmul0g 22468 | The result of the 0-dimens... |
| mvmumamul1 22469 | The multiplication of an M... |
| mavmumamul1 22470 | The multiplication of an N... |
| marrepfval 22475 | First substitution for the... |
| marrepval0 22476 | Second substitution for th... |
| marrepval 22477 | Third substitution for the... |
| marrepeval 22478 | An entry of a matrix with ... |
| marrepcl 22479 | Closure of the row replace... |
| marepvfval 22480 | First substitution for the... |
| marepvval0 22481 | Second substitution for th... |
| marepvval 22482 | Third substitution for the... |
| marepveval 22483 | An entry of a matrix with ... |
| marepvcl 22484 | Closure of the column repl... |
| ma1repvcl 22485 | Closure of the column repl... |
| ma1repveval 22486 | An entry of an identity ma... |
| mulmarep1el 22487 | Element by element multipl... |
| mulmarep1gsum1 22488 | The sum of element by elem... |
| mulmarep1gsum2 22489 | The sum of element by elem... |
| 1marepvmarrepid 22490 | Replacing the ith row by 0... |
| submabas 22493 | Any subset of the index se... |
| submafval 22494 | First substitution for a s... |
| submaval0 22495 | Second substitution for a ... |
| submaval 22496 | Third substitution for a s... |
| submaeval 22497 | An entry of a submatrix of... |
| 1marepvsma1 22498 | The submatrix of the ident... |
| mdetfval 22501 | First substitution for the... |
| mdetleib 22502 | Full substitution of our d... |
| mdetleib2 22503 | Leibniz' formula can also ... |
| nfimdetndef 22504 | The determinant is not def... |
| mdetfval1 22505 | First substitution of an a... |
| mdetleib1 22506 | Full substitution of an al... |
| mdet0pr 22507 | The determinant function f... |
| mdet0f1o 22508 | The determinant function f... |
| mdet0fv0 22509 | The determinant of the emp... |
| mdetf 22510 | Functionality of the deter... |
| mdetcl 22511 | The determinant evaluates ... |
| m1detdiag 22512 | The determinant of a 1-dim... |
| mdetdiaglem 22513 | Lemma for ~ mdetdiag . Pr... |
| mdetdiag 22514 | The determinant of a diago... |
| mdetdiagid 22515 | The determinant of a diago... |
| mdet1 22516 | The determinant of the ide... |
| mdetrlin 22517 | The determinant function i... |
| mdetrsca 22518 | The determinant function i... |
| mdetrsca2 22519 | The determinant function i... |
| mdetr0 22520 | The determinant of a matri... |
| mdet0 22521 | The determinant of the zer... |
| mdetrlin2 22522 | The determinant function i... |
| mdetralt 22523 | The determinant function i... |
| mdetralt2 22524 | The determinant function i... |
| mdetero 22525 | The determinant function i... |
| mdettpos 22526 | Determinant is invariant u... |
| mdetunilem1 22527 | Lemma for ~ mdetuni . (Co... |
| mdetunilem2 22528 | Lemma for ~ mdetuni . (Co... |
| mdetunilem3 22529 | Lemma for ~ mdetuni . (Co... |
| mdetunilem4 22530 | Lemma for ~ mdetuni . (Co... |
| mdetunilem5 22531 | Lemma for ~ mdetuni . (Co... |
| mdetunilem6 22532 | Lemma for ~ mdetuni . (Co... |
| mdetunilem7 22533 | Lemma for ~ mdetuni . (Co... |
| mdetunilem8 22534 | Lemma for ~ mdetuni . (Co... |
| mdetunilem9 22535 | Lemma for ~ mdetuni . (Co... |
| mdetuni0 22536 | Lemma for ~ mdetuni . (Co... |
| mdetuni 22537 | According to the definitio... |
| mdetmul 22538 | Multiplicativity of the de... |
| m2detleiblem1 22539 | Lemma 1 for ~ m2detleib . ... |
| m2detleiblem5 22540 | Lemma 5 for ~ m2detleib . ... |
| m2detleiblem6 22541 | Lemma 6 for ~ m2detleib . ... |
| m2detleiblem7 22542 | Lemma 7 for ~ m2detleib . ... |
| m2detleiblem2 22543 | Lemma 2 for ~ m2detleib . ... |
| m2detleiblem3 22544 | Lemma 3 for ~ m2detleib . ... |
| m2detleiblem4 22545 | Lemma 4 for ~ m2detleib . ... |
| m2detleib 22546 | Leibniz' Formula for 2x2-m... |
| mndifsplit 22551 | Lemma for ~ maducoeval2 . ... |
| madufval 22552 | First substitution for the... |
| maduval 22553 | Second substitution for th... |
| maducoeval 22554 | An entry of the adjunct (c... |
| maducoeval2 22555 | An entry of the adjunct (c... |
| maduf 22556 | Creating the adjunct of ma... |
| madutpos 22557 | The adjuct of a transposed... |
| madugsum 22558 | The determinant of a matri... |
| madurid 22559 | Multiplying a matrix with ... |
| madulid 22560 | Multiplying the adjunct of... |
| minmar1fval 22561 | First substitution for the... |
| minmar1val0 22562 | Second substitution for th... |
| minmar1val 22563 | Third substitution for the... |
| minmar1eval 22564 | An entry of a matrix for a... |
| minmar1marrep 22565 | The minor matrix is a spec... |
| minmar1cl 22566 | Closure of the row replace... |
| maducoevalmin1 22567 | The coefficients of an adj... |
| symgmatr01lem 22568 | Lemma for ~ symgmatr01 . ... |
| symgmatr01 22569 | Applying a permutation tha... |
| gsummatr01lem1 22570 | Lemma A for ~ gsummatr01 .... |
| gsummatr01lem2 22571 | Lemma B for ~ gsummatr01 .... |
| gsummatr01lem3 22572 | Lemma 1 for ~ gsummatr01 .... |
| gsummatr01lem4 22573 | Lemma 2 for ~ gsummatr01 .... |
| gsummatr01 22574 | Lemma 1 for ~ smadiadetlem... |
| marep01ma 22575 | Replacing a row of a squar... |
| smadiadetlem0 22576 | Lemma 0 for ~ smadiadet : ... |
| smadiadetlem1 22577 | Lemma 1 for ~ smadiadet : ... |
| smadiadetlem1a 22578 | Lemma 1a for ~ smadiadet :... |
| smadiadetlem2 22579 | Lemma 2 for ~ smadiadet : ... |
| smadiadetlem3lem0 22580 | Lemma 0 for ~ smadiadetlem... |
| smadiadetlem3lem1 22581 | Lemma 1 for ~ smadiadetlem... |
| smadiadetlem3lem2 22582 | Lemma 2 for ~ smadiadetlem... |
| smadiadetlem3 22583 | Lemma 3 for ~ smadiadet . ... |
| smadiadetlem4 22584 | Lemma 4 for ~ smadiadet . ... |
| smadiadet 22585 | The determinant of a subma... |
| smadiadetglem1 22586 | Lemma 1 for ~ smadiadetg .... |
| smadiadetglem2 22587 | Lemma 2 for ~ smadiadetg .... |
| smadiadetg 22588 | The determinant of a squar... |
| smadiadetg0 22589 | Lemma for ~ smadiadetr : v... |
| smadiadetr 22590 | The determinant of a squar... |
| invrvald 22591 | If a matrix multiplied wit... |
| matinv 22592 | The inverse of a matrix is... |
| matunit 22593 | A matrix is a unit in the ... |
| slesolvec 22594 | Every solution of a system... |
| slesolinv 22595 | The solution of a system o... |
| slesolinvbi 22596 | The solution of a system o... |
| slesolex 22597 | Every system of linear equ... |
| cramerimplem1 22598 | Lemma 1 for ~ cramerimp : ... |
| cramerimplem2 22599 | Lemma 2 for ~ cramerimp : ... |
| cramerimplem3 22600 | Lemma 3 for ~ cramerimp : ... |
| cramerimp 22601 | One direction of Cramer's ... |
| cramerlem1 22602 | Lemma 1 for ~ cramer . (C... |
| cramerlem2 22603 | Lemma 2 for ~ cramer . (C... |
| cramerlem3 22604 | Lemma 3 for ~ cramer . (C... |
| cramer0 22605 | Special case of Cramer's r... |
| cramer 22606 | Cramer's rule. According ... |
| pmatring 22607 | The set of polynomial matr... |
| pmatlmod 22608 | The set of polynomial matr... |
| pmatassa 22609 | The set of polynomial matr... |
| pmat0op 22610 | The zero polynomial matrix... |
| pmat1op 22611 | The identity polynomial ma... |
| pmat1ovd 22612 | Entries of the identity po... |
| pmat0opsc 22613 | The zero polynomial matrix... |
| pmat1opsc 22614 | The identity polynomial ma... |
| pmat1ovscd 22615 | Entries of the identity po... |
| pmatcoe1fsupp 22616 | For a polynomial matrix th... |
| 1pmatscmul 22617 | The scalar product of the ... |
| cpmat 22624 | Value of the constructor o... |
| cpmatpmat 22625 | A constant polynomial matr... |
| cpmatel 22626 | Property of a constant pol... |
| cpmatelimp 22627 | Implication of a set being... |
| cpmatel2 22628 | Another property of a cons... |
| cpmatelimp2 22629 | Another implication of a s... |
| 1elcpmat 22630 | The identity of the ring o... |
| cpmatacl 22631 | The set of all constant po... |
| cpmatinvcl 22632 | The set of all constant po... |
| cpmatmcllem 22633 | Lemma for ~ cpmatmcl . (C... |
| cpmatmcl 22634 | The set of all constant po... |
| cpmatsubgpmat 22635 | The set of all constant po... |
| cpmatsrgpmat 22636 | The set of all constant po... |
| 0elcpmat 22637 | The zero of the ring of al... |
| mat2pmatfval 22638 | Value of the matrix transf... |
| mat2pmatval 22639 | The result of a matrix tra... |
| mat2pmatvalel 22640 | A (matrix) element of the ... |
| mat2pmatbas 22641 | The result of a matrix tra... |
| mat2pmatbas0 22642 | The result of a matrix tra... |
| mat2pmatf 22643 | The matrix transformation ... |
| mat2pmatf1 22644 | The matrix transformation ... |
| mat2pmatghm 22645 | The transformation of matr... |
| mat2pmatmul 22646 | The transformation of matr... |
| mat2pmat1 22647 | The transformation of the ... |
| mat2pmatmhm 22648 | The transformation of matr... |
| mat2pmatrhm 22649 | The transformation of matr... |
| mat2pmatlin 22650 | The transformation of matr... |
| 0mat2pmat 22651 | The transformed zero matri... |
| idmatidpmat 22652 | The transformed identity m... |
| d0mat2pmat 22653 | The transformed empty set ... |
| d1mat2pmat 22654 | The transformation of a ma... |
| mat2pmatscmxcl 22655 | A transformed matrix multi... |
| m2cpm 22656 | The result of a matrix tra... |
| m2cpmf 22657 | The matrix transformation ... |
| m2cpmf1 22658 | The matrix transformation ... |
| m2cpmghm 22659 | The transformation of matr... |
| m2cpmmhm 22660 | The transformation of matr... |
| m2cpmrhm 22661 | The transformation of matr... |
| m2pmfzmap 22662 | The transformed values of ... |
| m2pmfzgsumcl 22663 | Closure of the sum of scal... |
| cpm2mfval 22664 | Value of the inverse matri... |
| cpm2mval 22665 | The result of an inverse m... |
| cpm2mvalel 22666 | A (matrix) element of the ... |
| cpm2mf 22667 | The inverse matrix transfo... |
| m2cpminvid 22668 | The inverse transformation... |
| m2cpminvid2lem 22669 | Lemma for ~ m2cpminvid2 . ... |
| m2cpminvid2 22670 | The transformation applied... |
| m2cpmfo 22671 | The matrix transformation ... |
| m2cpmf1o 22672 | The matrix transformation ... |
| m2cpmrngiso 22673 | The transformation of matr... |
| matcpmric 22674 | The ring of matrices over ... |
| m2cpminv 22675 | The inverse matrix transfo... |
| m2cpminv0 22676 | The inverse matrix transfo... |
| decpmatval0 22679 | The matrix consisting of t... |
| decpmatval 22680 | The matrix consisting of t... |
| decpmate 22681 | An entry of the matrix con... |
| decpmatcl 22682 | Closure of the decompositi... |
| decpmataa0 22683 | The matrix consisting of t... |
| decpmatfsupp 22684 | The mapping to the matrice... |
| decpmatid 22685 | The matrix consisting of t... |
| decpmatmullem 22686 | Lemma for ~ decpmatmul . ... |
| decpmatmul 22687 | The matrix consisting of t... |
| decpmatmulsumfsupp 22688 | Lemma 0 for ~ pm2mpmhm . ... |
| pmatcollpw1lem1 22689 | Lemma 1 for ~ pmatcollpw1 ... |
| pmatcollpw1lem2 22690 | Lemma 2 for ~ pmatcollpw1 ... |
| pmatcollpw1 22691 | Write a polynomial matrix ... |
| pmatcollpw2lem 22692 | Lemma for ~ pmatcollpw2 . ... |
| pmatcollpw2 22693 | Write a polynomial matrix ... |
| monmatcollpw 22694 | The matrix consisting of t... |
| pmatcollpwlem 22695 | Lemma for ~ pmatcollpw . ... |
| pmatcollpw 22696 | Write a polynomial matrix ... |
| pmatcollpwfi 22697 | Write a polynomial matrix ... |
| pmatcollpw3lem 22698 | Lemma for ~ pmatcollpw3 an... |
| pmatcollpw3 22699 | Write a polynomial matrix ... |
| pmatcollpw3fi 22700 | Write a polynomial matrix ... |
| pmatcollpw3fi1lem1 22701 | Lemma 1 for ~ pmatcollpw3f... |
| pmatcollpw3fi1lem2 22702 | Lemma 2 for ~ pmatcollpw3f... |
| pmatcollpw3fi1 22703 | Write a polynomial matrix ... |
| pmatcollpwscmatlem1 22704 | Lemma 1 for ~ pmatcollpwsc... |
| pmatcollpwscmatlem2 22705 | Lemma 2 for ~ pmatcollpwsc... |
| pmatcollpwscmat 22706 | Write a scalar matrix over... |
| pm2mpf1lem 22709 | Lemma for ~ pm2mpf1 . (Co... |
| pm2mpval 22710 | Value of the transformatio... |
| pm2mpfval 22711 | A polynomial matrix transf... |
| pm2mpcl 22712 | The transformation of poly... |
| pm2mpf 22713 | The transformation of poly... |
| pm2mpf1 22714 | The transformation of poly... |
| pm2mpcoe1 22715 | A coefficient of the polyn... |
| idpm2idmp 22716 | The transformation of the ... |
| mptcoe1matfsupp 22717 | The mapping extracting the... |
| mply1topmatcllem 22718 | Lemma for ~ mply1topmatcl ... |
| mply1topmatval 22719 | A polynomial over matrices... |
| mply1topmatcl 22720 | A polynomial over matrices... |
| mp2pm2mplem1 22721 | Lemma 1 for ~ mp2pm2mp . ... |
| mp2pm2mplem2 22722 | Lemma 2 for ~ mp2pm2mp . ... |
| mp2pm2mplem3 22723 | Lemma 3 for ~ mp2pm2mp . ... |
| mp2pm2mplem4 22724 | Lemma 4 for ~ mp2pm2mp . ... |
| mp2pm2mplem5 22725 | Lemma 5 for ~ mp2pm2mp . ... |
| mp2pm2mp 22726 | A polynomial over matrices... |
| pm2mpghmlem2 22727 | Lemma 2 for ~ pm2mpghm . ... |
| pm2mpghmlem1 22728 | Lemma 1 for pm2mpghm . (C... |
| pm2mpfo 22729 | The transformation of poly... |
| pm2mpf1o 22730 | The transformation of poly... |
| pm2mpghm 22731 | The transformation of poly... |
| pm2mpgrpiso 22732 | The transformation of poly... |
| pm2mpmhmlem1 22733 | Lemma 1 for ~ pm2mpmhm . ... |
| pm2mpmhmlem2 22734 | Lemma 2 for ~ pm2mpmhm . ... |
| pm2mpmhm 22735 | The transformation of poly... |
| pm2mprhm 22736 | The transformation of poly... |
| pm2mprngiso 22737 | The transformation of poly... |
| pmmpric 22738 | The ring of polynomial mat... |
| monmat2matmon 22739 | The transformation of a po... |
| pm2mp 22740 | The transformation of a su... |
| chmatcl 22743 | Closure of the characteris... |
| chmatval 22744 | The entries of the charact... |
| chpmatfval 22745 | Value of the characteristi... |
| chpmatval 22746 | The characteristic polynom... |
| chpmatply1 22747 | The characteristic polynom... |
| chpmatval2 22748 | The characteristic polynom... |
| chpmat0d 22749 | The characteristic polynom... |
| chpmat1dlem 22750 | Lemma for ~ chpmat1d . (C... |
| chpmat1d 22751 | The characteristic polynom... |
| chpdmatlem0 22752 | Lemma 0 for ~ chpdmat . (... |
| chpdmatlem1 22753 | Lemma 1 for ~ chpdmat . (... |
| chpdmatlem2 22754 | Lemma 2 for ~ chpdmat . (... |
| chpdmatlem3 22755 | Lemma 3 for ~ chpdmat . (... |
| chpdmat 22756 | The characteristic polynom... |
| chpscmat 22757 | The characteristic polynom... |
| chpscmat0 22758 | The characteristic polynom... |
| chpscmatgsumbin 22759 | The characteristic polynom... |
| chpscmatgsummon 22760 | The characteristic polynom... |
| chp0mat 22761 | The characteristic polynom... |
| chpidmat 22762 | The characteristic polynom... |
| chmaidscmat 22763 | The characteristic polynom... |
| fvmptnn04if 22764 | The function values of a m... |
| fvmptnn04ifa 22765 | The function value of a ma... |
| fvmptnn04ifb 22766 | The function value of a ma... |
| fvmptnn04ifc 22767 | The function value of a ma... |
| fvmptnn04ifd 22768 | The function value of a ma... |
| chfacfisf 22769 | The "characteristic factor... |
| chfacfisfcpmat 22770 | The "characteristic factor... |
| chfacffsupp 22771 | The "characteristic factor... |
| chfacfscmulcl 22772 | Closure of a scaled value ... |
| chfacfscmul0 22773 | A scaled value of the "cha... |
| chfacfscmulfsupp 22774 | A mapping of scaled values... |
| chfacfscmulgsum 22775 | Breaking up a sum of value... |
| chfacfpmmulcl 22776 | Closure of the value of th... |
| chfacfpmmul0 22777 | The value of the "characte... |
| chfacfpmmulfsupp 22778 | A mapping of values of the... |
| chfacfpmmulgsum 22779 | Breaking up a sum of value... |
| chfacfpmmulgsum2 22780 | Breaking up a sum of value... |
| cayhamlem1 22781 | Lemma 1 for ~ cayleyhamilt... |
| cpmadurid 22782 | The right-hand fundamental... |
| cpmidgsum 22783 | Representation of the iden... |
| cpmidgsumm2pm 22784 | Representation of the iden... |
| cpmidpmatlem1 22785 | Lemma 1 for ~ cpmidpmat . ... |
| cpmidpmatlem2 22786 | Lemma 2 for ~ cpmidpmat . ... |
| cpmidpmatlem3 22787 | Lemma 3 for ~ cpmidpmat . ... |
| cpmidpmat 22788 | Representation of the iden... |
| cpmadugsumlemB 22789 | Lemma B for ~ cpmadugsum .... |
| cpmadugsumlemC 22790 | Lemma C for ~ cpmadugsum .... |
| cpmadugsumlemF 22791 | Lemma F for ~ cpmadugsum .... |
| cpmadugsumfi 22792 | The product of the charact... |
| cpmadugsum 22793 | The product of the charact... |
| cpmidgsum2 22794 | Representation of the iden... |
| cpmidg2sum 22795 | Equality of two sums repre... |
| cpmadumatpolylem1 22796 | Lemma 1 for ~ cpmadumatpol... |
| cpmadumatpolylem2 22797 | Lemma 2 for ~ cpmadumatpol... |
| cpmadumatpoly 22798 | The product of the charact... |
| cayhamlem2 22799 | Lemma for ~ cayhamlem3 . ... |
| chcoeffeqlem 22800 | Lemma for ~ chcoeffeq . (... |
| chcoeffeq 22801 | The coefficients of the ch... |
| cayhamlem3 22802 | Lemma for ~ cayhamlem4 . ... |
| cayhamlem4 22803 | Lemma for ~ cayleyhamilton... |
| cayleyhamilton0 22804 | The Cayley-Hamilton theore... |
| cayleyhamilton 22805 | The Cayley-Hamilton theore... |
| cayleyhamiltonALT 22806 | Alternate proof of ~ cayle... |
| cayleyhamilton1 22807 | The Cayley-Hamilton theore... |
| istopg 22810 | Express the predicate " ` ... |
| istop2g 22811 | Express the predicate " ` ... |
| uniopn 22812 | The union of a subset of a... |
| iunopn 22813 | The indexed union of a sub... |
| inopn 22814 | The intersection of two op... |
| fitop 22815 | A topology is closed under... |
| fiinopn 22816 | The intersection of a none... |
| iinopn 22817 | The intersection of a none... |
| unopn 22818 | The union of two open sets... |
| 0opn 22819 | The empty set is an open s... |
| 0ntop 22820 | The empty set is not a top... |
| topopn 22821 | The underlying set of a to... |
| eltopss 22822 | A member of a topology is ... |
| riinopn 22823 | A finite indexed relative ... |
| rintopn 22824 | A finite relative intersec... |
| istopon 22827 | Property of being a topolo... |
| topontop 22828 | A topology on a given base... |
| toponuni 22829 | The base set of a topology... |
| topontopi 22830 | A topology on a given base... |
| toponunii 22831 | The base set of a topology... |
| toptopon 22832 | Alternative definition of ... |
| toptopon2 22833 | A topology is the same thi... |
| topontopon 22834 | A topology on a set is a t... |
| funtopon 22835 | The class ` TopOn ` is a f... |
| toponrestid 22836 | Given a topology on a set,... |
| toponsspwpw 22837 | The set of topologies on a... |
| dmtopon 22838 | The domain of ` TopOn ` is... |
| fntopon 22839 | The class ` TopOn ` is a f... |
| toprntopon 22840 | A topology is the same thi... |
| toponmax 22841 | The base set of a topology... |
| toponss 22842 | A member of a topology is ... |
| toponcom 22843 | If ` K ` is a topology on ... |
| toponcomb 22844 | Biconditional form of ~ to... |
| topgele 22845 | The topologies over the sa... |
| topsn 22846 | The only topology on a sin... |
| istps 22849 | Express the predicate "is ... |
| istps2 22850 | Express the predicate "is ... |
| tpsuni 22851 | The base set of a topologi... |
| tpstop 22852 | The topology extractor on ... |
| tpspropd 22853 | A topological space depend... |
| tpsprop2d 22854 | A topological space depend... |
| topontopn 22855 | Express the predicate "is ... |
| tsettps 22856 | If the topology component ... |
| istpsi 22857 | Properties that determine ... |
| eltpsg 22858 | Properties that determine ... |
| eltpsi 22859 | Properties that determine ... |
| isbasisg 22862 | Express the predicate "the... |
| isbasis2g 22863 | Express the predicate "the... |
| isbasis3g 22864 | Express the predicate "the... |
| basis1 22865 | Property of a basis. (Con... |
| basis2 22866 | Property of a basis. (Con... |
| fiinbas 22867 | If a set is closed under f... |
| basdif0 22868 | A basis is not affected by... |
| baspartn 22869 | A disjoint system of sets ... |
| tgval 22870 | The topology generated by ... |
| tgval2 22871 | Definition of a topology g... |
| eltg 22872 | Membership in a topology g... |
| eltg2 22873 | Membership in a topology g... |
| eltg2b 22874 | Membership in a topology g... |
| eltg4i 22875 | An open set in a topology ... |
| eltg3i 22876 | The union of a set of basi... |
| eltg3 22877 | Membership in a topology g... |
| tgval3 22878 | Alternate expression for t... |
| tg1 22879 | Property of a member of a ... |
| tg2 22880 | Property of a member of a ... |
| bastg 22881 | A member of a basis is a s... |
| unitg 22882 | The topology generated by ... |
| tgss 22883 | Subset relation for genera... |
| tgcl 22884 | Show that a basis generate... |
| tgclb 22885 | The property ~ tgcl can be... |
| tgtopon 22886 | A basis generates a topolo... |
| topbas 22887 | A topology is its own basi... |
| tgtop 22888 | A topology is its own basi... |
| eltop 22889 | Membership in a topology, ... |
| eltop2 22890 | Membership in a topology. ... |
| eltop3 22891 | Membership in a topology. ... |
| fibas 22892 | A collection of finite int... |
| tgdom 22893 | A space has no more open s... |
| tgiun 22894 | The indexed union of a set... |
| tgidm 22895 | The topology generator fun... |
| bastop 22896 | Two ways to express that a... |
| tgtop11 22897 | The topology generation fu... |
| 0top 22898 | The singleton of the empty... |
| en1top 22899 | ` { (/) } ` is the only to... |
| en2top 22900 | If a topology has two elem... |
| tgss3 22901 | A criterion for determinin... |
| tgss2 22902 | A criterion for determinin... |
| basgen 22903 | Given a topology ` J ` , s... |
| basgen2 22904 | Given a topology ` J ` , s... |
| 2basgen 22905 | Conditions that determine ... |
| tgfiss 22906 | If a subbase is included i... |
| tgdif0 22907 | A generated topology is no... |
| bastop1 22908 | A subset of a topology is ... |
| bastop2 22909 | A version of ~ bastop1 tha... |
| distop 22910 | The discrete topology on a... |
| topnex 22911 | The class of all topologie... |
| distopon 22912 | The discrete topology on a... |
| sn0topon 22913 | The singleton of the empty... |
| sn0top 22914 | The singleton of the empty... |
| indislem 22915 | A lemma to eliminate some ... |
| indistopon 22916 | The indiscrete topology on... |
| indistop 22917 | The indiscrete topology on... |
| indisuni 22918 | The base set of the indisc... |
| fctop 22919 | The finite complement topo... |
| fctop2 22920 | The finite complement topo... |
| cctop 22921 | The countable complement t... |
| ppttop 22922 | The particular point topol... |
| pptbas 22923 | The particular point topol... |
| epttop 22924 | The excluded point topolog... |
| indistpsx 22925 | The indiscrete topology on... |
| indistps 22926 | The indiscrete topology on... |
| indistps2 22927 | The indiscrete topology on... |
| indistpsALT 22928 | The indiscrete topology on... |
| indistps2ALT 22929 | The indiscrete topology on... |
| distps 22930 | The discrete topology on a... |
| fncld 22937 | The closed-set generator i... |
| cldval 22938 | The set of closed sets of ... |
| ntrfval 22939 | The interior function on t... |
| clsfval 22940 | The closure function on th... |
| cldrcl 22941 | Reverse closure of the clo... |
| iscld 22942 | The predicate "the class `... |
| iscld2 22943 | A subset of the underlying... |
| cldss 22944 | A closed set is a subset o... |
| cldss2 22945 | The set of closed sets is ... |
| cldopn 22946 | The complement of a closed... |
| isopn2 22947 | A subset of the underlying... |
| opncld 22948 | The complement of an open ... |
| difopn 22949 | The difference of a closed... |
| topcld 22950 | The underlying set of a to... |
| ntrval 22951 | The interior of a subset o... |
| clsval 22952 | The closure of a subset of... |
| 0cld 22953 | The empty set is closed. ... |
| iincld 22954 | The indexed intersection o... |
| intcld 22955 | The intersection of a set ... |
| uncld 22956 | The union of two closed se... |
| cldcls 22957 | A closed subset equals its... |
| incld 22958 | The intersection of two cl... |
| riincld 22959 | An indexed relative inters... |
| iuncld 22960 | A finite indexed union of ... |
| unicld 22961 | A finite union of closed s... |
| clscld 22962 | The closure of a subset of... |
| clsf 22963 | The closure function is a ... |
| ntropn 22964 | The interior of a subset o... |
| clsval2 22965 | Express closure in terms o... |
| ntrval2 22966 | Interior expressed in term... |
| ntrdif 22967 | An interior of a complemen... |
| clsdif 22968 | A closure of a complement ... |
| clsss 22969 | Subset relationship for cl... |
| ntrss 22970 | Subset relationship for in... |
| sscls 22971 | A subset of a topology's u... |
| ntrss2 22972 | A subset includes its inte... |
| ssntr 22973 | An open subset of a set is... |
| clsss3 22974 | The closure of a subset of... |
| ntrss3 22975 | The interior of a subset o... |
| ntrin 22976 | A pairwise intersection of... |
| cmclsopn 22977 | The complement of a closur... |
| cmntrcld 22978 | The complement of an inter... |
| iscld3 22979 | A subset is closed iff it ... |
| iscld4 22980 | A subset is closed iff it ... |
| isopn3 22981 | A subset is open iff it eq... |
| clsidm 22982 | The closure operation is i... |
| ntridm 22983 | The interior operation is ... |
| clstop 22984 | The closure of a topology'... |
| ntrtop 22985 | The interior of a topology... |
| 0ntr 22986 | A subset with an empty int... |
| clsss2 22987 | If a subset is included in... |
| elcls 22988 | Membership in a closure. ... |
| elcls2 22989 | Membership in a closure. ... |
| clsndisj 22990 | Any open set containing a ... |
| ntrcls0 22991 | A subset whose closure has... |
| ntreq0 22992 | Two ways to say that a sub... |
| cldmre 22993 | The closed sets of a topol... |
| mrccls 22994 | Moore closure generalizes ... |
| cls0 22995 | The closure of the empty s... |
| ntr0 22996 | The interior of the empty ... |
| isopn3i 22997 | An open subset equals its ... |
| elcls3 22998 | Membership in a closure in... |
| opncldf1 22999 | A bijection useful for con... |
| opncldf2 23000 | The values of the open-clo... |
| opncldf3 23001 | The values of the converse... |
| isclo 23002 | A set ` A ` is clopen iff ... |
| isclo2 23003 | A set ` A ` is clopen iff ... |
| discld 23004 | The open sets of a discret... |
| sn0cld 23005 | The closed sets of the top... |
| indiscld 23006 | The closed sets of an indi... |
| mretopd 23007 | A Moore collection which i... |
| toponmre 23008 | The topologies over a give... |
| cldmreon 23009 | The closed sets of a topol... |
| iscldtop 23010 | A family is the closed set... |
| mreclatdemoBAD 23011 | The closed subspaces of a ... |
| neifval 23014 | Value of the neighborhood ... |
| neif 23015 | The neighborhood function ... |
| neiss2 23016 | A set with a neighborhood ... |
| neival 23017 | Value of the set of neighb... |
| isnei 23018 | The predicate "the class `... |
| neiint 23019 | An intuitive definition of... |
| isneip 23020 | The predicate "the class `... |
| neii1 23021 | A neighborhood is included... |
| neisspw 23022 | The neighborhoods of any s... |
| neii2 23023 | Property of a neighborhood... |
| neiss 23024 | Any neighborhood of a set ... |
| ssnei 23025 | A set is included in any o... |
| elnei 23026 | A point belongs to any of ... |
| 0nnei 23027 | The empty set is not a nei... |
| neips 23028 | A neighborhood of a set is... |
| opnneissb 23029 | An open set is a neighborh... |
| opnssneib 23030 | Any superset of an open se... |
| ssnei2 23031 | Any subset ` M ` of ` X ` ... |
| neindisj 23032 | Any neighborhood of an ele... |
| opnneiss 23033 | An open set is a neighborh... |
| opnneip 23034 | An open set is a neighborh... |
| opnnei 23035 | A set is open iff it is a ... |
| tpnei 23036 | The underlying set of a to... |
| neiuni 23037 | The union of the neighborh... |
| neindisj2 23038 | A point ` P ` belongs to t... |
| topssnei 23039 | A finer topology has more ... |
| innei 23040 | The intersection of two ne... |
| opnneiid 23041 | Only an open set is a neig... |
| neissex 23042 | For any neighborhood ` N `... |
| 0nei 23043 | The empty set is a neighbo... |
| neipeltop 23044 | Lemma for ~ neiptopreu . ... |
| neiptopuni 23045 | Lemma for ~ neiptopreu . ... |
| neiptoptop 23046 | Lemma for ~ neiptopreu . ... |
| neiptopnei 23047 | Lemma for ~ neiptopreu . ... |
| neiptopreu 23048 | If, to each element ` P ` ... |
| lpfval 23053 | The limit point function o... |
| lpval 23054 | The set of limit points of... |
| islp 23055 | The predicate "the class `... |
| lpsscls 23056 | The limit points of a subs... |
| lpss 23057 | The limit points of a subs... |
| lpdifsn 23058 | ` P ` is a limit point of ... |
| lpss3 23059 | Subset relationship for li... |
| islp2 23060 | The predicate " ` P ` is a... |
| islp3 23061 | The predicate " ` P ` is a... |
| maxlp 23062 | A point is a limit point o... |
| clslp 23063 | The closure of a subset of... |
| islpi 23064 | A point belonging to a set... |
| cldlp 23065 | A subset of a topological ... |
| isperf 23066 | Definition of a perfect sp... |
| isperf2 23067 | Definition of a perfect sp... |
| isperf3 23068 | A perfect space is a topol... |
| perflp 23069 | The limit points of a perf... |
| perfi 23070 | Property of a perfect spac... |
| perftop 23071 | A perfect space is a topol... |
| restrcl 23072 | Reverse closure for the su... |
| restbas 23073 | A subspace topology basis ... |
| tgrest 23074 | A subspace can be generate... |
| resttop 23075 | A subspace topology is a t... |
| resttopon 23076 | A subspace topology is a t... |
| restuni 23077 | The underlying set of a su... |
| stoig 23078 | The topological space buil... |
| restco 23079 | Composition of subspaces. ... |
| restabs 23080 | Equivalence of being a sub... |
| restin 23081 | When the subspace region i... |
| restuni2 23082 | The underlying set of a su... |
| resttopon2 23083 | The underlying set of a su... |
| rest0 23084 | The subspace topology indu... |
| restsn 23085 | The only subspace topology... |
| restsn2 23086 | The subspace topology indu... |
| restcld 23087 | A closed set of a subspace... |
| restcldi 23088 | A closed set is closed in ... |
| restcldr 23089 | A set which is closed in t... |
| restopnb 23090 | If ` B ` is an open subset... |
| ssrest 23091 | If ` K ` is a finer topolo... |
| restopn2 23092 | If ` A ` is open, then ` B... |
| restdis 23093 | A subspace of a discrete t... |
| restfpw 23094 | The restriction of the set... |
| neitr 23095 | The neighborhood of a trac... |
| restcls 23096 | A closure in a subspace to... |
| restntr 23097 | An interior in a subspace ... |
| restlp 23098 | The limit points of a subs... |
| restperf 23099 | Perfection of a subspace. ... |
| perfopn 23100 | An open subset of a perfec... |
| resstopn 23101 | The topology of a restrict... |
| resstps 23102 | A restricted topological s... |
| ordtbaslem 23103 | Lemma for ~ ordtbas . In ... |
| ordtval 23104 | Value of the order topolog... |
| ordtuni 23105 | Value of the order topolog... |
| ordtbas2 23106 | Lemma for ~ ordtbas . (Co... |
| ordtbas 23107 | In a total order, the fini... |
| ordttopon 23108 | Value of the order topolog... |
| ordtopn1 23109 | An upward ray ` ( P , +oo ... |
| ordtopn2 23110 | A downward ray ` ( -oo , P... |
| ordtopn3 23111 | An open interval ` ( A , B... |
| ordtcld1 23112 | A downward ray ` ( -oo , P... |
| ordtcld2 23113 | An upward ray ` [ P , +oo ... |
| ordtcld3 23114 | A closed interval ` [ A , ... |
| ordttop 23115 | The order topology is a to... |
| ordtcnv 23116 | The order dual generates t... |
| ordtrest 23117 | The subspace topology of a... |
| ordtrest2lem 23118 | Lemma for ~ ordtrest2 . (... |
| ordtrest2 23119 | An interval-closed set ` A... |
| letopon 23120 | The topology of the extend... |
| letop 23121 | The topology of the extend... |
| letopuni 23122 | The topology of the extend... |
| xrstopn 23123 | The topology component of ... |
| xrstps 23124 | The extended real number s... |
| leordtvallem1 23125 | Lemma for ~ leordtval . (... |
| leordtvallem2 23126 | Lemma for ~ leordtval . (... |
| leordtval2 23127 | The topology of the extend... |
| leordtval 23128 | The topology of the extend... |
| iccordt 23129 | A closed interval is close... |
| iocpnfordt 23130 | An unbounded above open in... |
| icomnfordt 23131 | An unbounded above open in... |
| iooordt 23132 | An open interval is open i... |
| reordt 23133 | The real numbers are an op... |
| lecldbas 23134 | The set of closed interval... |
| pnfnei 23135 | A neighborhood of ` +oo ` ... |
| mnfnei 23136 | A neighborhood of ` -oo ` ... |
| ordtrestixx 23137 | The restriction of the les... |
| ordtresticc 23138 | The restriction of the les... |
| lmrel 23145 | The topological space conv... |
| lmrcl 23146 | Reverse closure for the co... |
| lmfval 23147 | The relation "sequence ` f... |
| cnfval 23148 | The set of all continuous ... |
| cnpfval 23149 | The function mapping the p... |
| iscn 23150 | The predicate "the class `... |
| cnpval 23151 | The set of all functions f... |
| iscnp 23152 | The predicate "the class `... |
| iscn2 23153 | The predicate "the class `... |
| iscnp2 23154 | The predicate "the class `... |
| cntop1 23155 | Reverse closure for a cont... |
| cntop2 23156 | Reverse closure for a cont... |
| cnptop1 23157 | Reverse closure for a func... |
| cnptop2 23158 | Reverse closure for a func... |
| iscnp3 23159 | The predicate "the class `... |
| cnprcl 23160 | Reverse closure for a func... |
| cnf 23161 | A continuous function is a... |
| cnpf 23162 | A continuous function at p... |
| cnpcl 23163 | The value of a continuous ... |
| cnf2 23164 | A continuous function is a... |
| cnpf2 23165 | A continuous function at p... |
| cnprcl2 23166 | Reverse closure for a func... |
| tgcn 23167 | The continuity predicate w... |
| tgcnp 23168 | The "continuous at a point... |
| subbascn 23169 | The continuity predicate w... |
| ssidcn 23170 | The identity function is a... |
| cnpimaex 23171 | Property of a function con... |
| idcn 23172 | A restricted identity func... |
| lmbr 23173 | Express the binary relatio... |
| lmbr2 23174 | Express the binary relatio... |
| lmbrf 23175 | Express the binary relatio... |
| lmconst 23176 | A constant sequence conver... |
| lmcvg 23177 | Convergence property of a ... |
| iscnp4 23178 | The predicate "the class `... |
| cnpnei 23179 | A condition for continuity... |
| cnima 23180 | An open subset of the codo... |
| cnco 23181 | The composition of two con... |
| cnpco 23182 | The composition of a funct... |
| cnclima 23183 | A closed subset of the cod... |
| iscncl 23184 | A characterization of a co... |
| cncls2i 23185 | Property of the preimage o... |
| cnntri 23186 | Property of the preimage o... |
| cnclsi 23187 | Property of the image of a... |
| cncls2 23188 | Continuity in terms of clo... |
| cncls 23189 | Continuity in terms of clo... |
| cnntr 23190 | Continuity in terms of int... |
| cnss1 23191 | If the topology ` K ` is f... |
| cnss2 23192 | If the topology ` K ` is f... |
| cncnpi 23193 | A continuous function is c... |
| cnsscnp 23194 | The set of continuous func... |
| cncnp 23195 | A continuous function is c... |
| cncnp2 23196 | A continuous function is c... |
| cnnei 23197 | Continuity in terms of nei... |
| cnconst2 23198 | A constant function is con... |
| cnconst 23199 | A constant function is con... |
| cnrest 23200 | Continuity of a restrictio... |
| cnrest2 23201 | Equivalence of continuity ... |
| cnrest2r 23202 | Equivalence of continuity ... |
| cnpresti 23203 | One direction of ~ cnprest... |
| cnprest 23204 | Equivalence of continuity ... |
| cnprest2 23205 | Equivalence of point-conti... |
| cndis 23206 | Every function is continuo... |
| cnindis 23207 | Every function is continuo... |
| cnpdis 23208 | If ` A ` is an isolated po... |
| paste 23209 | Pasting lemma. If ` A ` a... |
| lmfpm 23210 | If ` F ` converges, then `... |
| lmfss 23211 | Inclusion of a function ha... |
| lmcl 23212 | Closure of a limit. (Cont... |
| lmss 23213 | Limit on a subspace. (Con... |
| sslm 23214 | A finer topology has fewer... |
| lmres 23215 | A function converges iff i... |
| lmff 23216 | If ` F ` converges, there ... |
| lmcls 23217 | Any convergent sequence of... |
| lmcld 23218 | Any convergent sequence of... |
| lmcnp 23219 | The image of a convergent ... |
| lmcn 23220 | The image of a convergent ... |
| ist0 23235 | The predicate "is a T_0 sp... |
| ist1 23236 | The predicate "is a T_1 sp... |
| ishaus 23237 | The predicate "is a Hausdo... |
| iscnrm 23238 | The property of being comp... |
| t0sep 23239 | Any two topologically indi... |
| t0dist 23240 | Any two distinct points in... |
| t1sncld 23241 | In a T_1 space, singletons... |
| t1ficld 23242 | In a T_1 space, finite set... |
| hausnei 23243 | Neighborhood property of a... |
| t0top 23244 | A T_0 space is a topologic... |
| t1top 23245 | A T_1 space is a topologic... |
| haustop 23246 | A Hausdorff space is a top... |
| isreg 23247 | The predicate "is a regula... |
| regtop 23248 | A regular space is a topol... |
| regsep 23249 | In a regular space, every ... |
| isnrm 23250 | The predicate "is a normal... |
| nrmtop 23251 | A normal space is a topolo... |
| cnrmtop 23252 | A completely normal space ... |
| iscnrm2 23253 | The property of being comp... |
| ispnrm 23254 | The property of being perf... |
| pnrmnrm 23255 | A perfectly normal space i... |
| pnrmtop 23256 | A perfectly normal space i... |
| pnrmcld 23257 | A closed set in a perfectl... |
| pnrmopn 23258 | An open set in a perfectly... |
| ist0-2 23259 | The predicate "is a T_0 sp... |
| ist0-3 23260 | The predicate "is a T_0 sp... |
| cnt0 23261 | The preimage of a T_0 topo... |
| ist1-2 23262 | An alternate characterizat... |
| t1t0 23263 | A T_1 space is a T_0 space... |
| ist1-3 23264 | A space is T_1 iff every p... |
| cnt1 23265 | The preimage of a T_1 topo... |
| ishaus2 23266 | Express the predicate " ` ... |
| haust1 23267 | A Hausdorff space is a T_1... |
| hausnei2 23268 | The Hausdorff condition st... |
| cnhaus 23269 | The preimage of a Hausdorf... |
| nrmsep3 23270 | In a normal space, given a... |
| nrmsep2 23271 | In a normal space, any two... |
| nrmsep 23272 | In a normal space, disjoin... |
| isnrm2 23273 | An alternate characterizat... |
| isnrm3 23274 | A topological space is nor... |
| cnrmi 23275 | A subspace of a completely... |
| cnrmnrm 23276 | A completely normal space ... |
| restcnrm 23277 | A subspace of a completely... |
| resthauslem 23278 | Lemma for ~ resthaus and s... |
| lpcls 23279 | The limit points of the cl... |
| perfcls 23280 | A subset of a perfect spac... |
| restt0 23281 | A subspace of a T_0 topolo... |
| restt1 23282 | A subspace of a T_1 topolo... |
| resthaus 23283 | A subspace of a Hausdorff ... |
| t1sep2 23284 | Any two points in a T_1 sp... |
| t1sep 23285 | Any two distinct points in... |
| sncld 23286 | A singleton is closed in a... |
| sshauslem 23287 | Lemma for ~ sshaus and sim... |
| sst0 23288 | A topology finer than a T_... |
| sst1 23289 | A topology finer than a T_... |
| sshaus 23290 | A topology finer than a Ha... |
| regsep2 23291 | In a regular space, a clos... |
| isreg2 23292 | A topological space is reg... |
| dnsconst 23293 | If a continuous mapping to... |
| ordtt1 23294 | The order topology is T_1 ... |
| lmmo 23295 | A sequence in a Hausdorff ... |
| lmfun 23296 | The convergence relation i... |
| dishaus 23297 | A discrete topology is Hau... |
| ordthauslem 23298 | Lemma for ~ ordthaus . (C... |
| ordthaus 23299 | The order topology of a to... |
| xrhaus 23300 | The topology of the extend... |
| iscmp 23303 | The predicate "is a compac... |
| cmpcov 23304 | An open cover of a compact... |
| cmpcov2 23305 | Rewrite ~ cmpcov for the c... |
| cmpcovf 23306 | Combine ~ cmpcov with ~ ac... |
| cncmp 23307 | Compactness is respected b... |
| fincmp 23308 | A finite topology is compa... |
| 0cmp 23309 | The singleton of the empty... |
| cmptop 23310 | A compact topology is a to... |
| rncmp 23311 | The image of a compact set... |
| imacmp 23312 | The image of a compact set... |
| discmp 23313 | A discrete topology is com... |
| cmpsublem 23314 | Lemma for ~ cmpsub . (Con... |
| cmpsub 23315 | Two equivalent ways of des... |
| tgcmp 23316 | A topology generated by a ... |
| cmpcld 23317 | A closed subset of a compa... |
| uncmp 23318 | The union of two compact s... |
| fiuncmp 23319 | A finite union of compact ... |
| sscmp 23320 | A subset of a compact topo... |
| hauscmplem 23321 | Lemma for ~ hauscmp . (Co... |
| hauscmp 23322 | A compact subspace of a T2... |
| cmpfi 23323 | If a topology is compact a... |
| cmpfii 23324 | In a compact topology, a s... |
| bwth 23325 | The glorious Bolzano-Weier... |
| isconn 23328 | The predicate ` J ` is a c... |
| isconn2 23329 | The predicate ` J ` is a c... |
| connclo 23330 | The only nonempty clopen s... |
| conndisj 23331 | If a topology is connected... |
| conntop 23332 | A connected topology is a ... |
| indisconn 23333 | The indiscrete topology (o... |
| dfconn2 23334 | An alternate definition of... |
| connsuba 23335 | Connectedness for a subspa... |
| connsub 23336 | Two equivalent ways of say... |
| cnconn 23337 | Connectedness is respected... |
| nconnsubb 23338 | Disconnectedness for a sub... |
| connsubclo 23339 | If a clopen set meets a co... |
| connima 23340 | The image of a connected s... |
| conncn 23341 | A continuous function from... |
| iunconnlem 23342 | Lemma for ~ iunconn . (Co... |
| iunconn 23343 | The indexed union of conne... |
| unconn 23344 | The union of two connected... |
| clsconn 23345 | The closure of a connected... |
| conncompid 23346 | The connected component co... |
| conncompconn 23347 | The connected component co... |
| conncompss 23348 | The connected component co... |
| conncompcld 23349 | The connected component co... |
| conncompclo 23350 | The connected component co... |
| t1connperf 23351 | A connected T_1 space is p... |
| is1stc 23356 | The predicate "is a first-... |
| is1stc2 23357 | An equivalent way of sayin... |
| 1stctop 23358 | A first-countable topology... |
| 1stcclb 23359 | A property of points in a ... |
| 1stcfb 23360 | For any point ` A ` in a f... |
| is2ndc 23361 | The property of being seco... |
| 2ndctop 23362 | A second-countable topolog... |
| 2ndci 23363 | A countable basis generate... |
| 2ndcsb 23364 | Having a countable subbase... |
| 2ndcredom 23365 | A second-countable space h... |
| 2ndc1stc 23366 | A second-countable space i... |
| 1stcrestlem 23367 | Lemma for ~ 1stcrest . (C... |
| 1stcrest 23368 | A subspace of a first-coun... |
| 2ndcrest 23369 | A subspace of a second-cou... |
| 2ndcctbss 23370 | If a topology is second-co... |
| 2ndcdisj 23371 | Any disjoint family of ope... |
| 2ndcdisj2 23372 | Any disjoint collection of... |
| 2ndcomap 23373 | A surjective continuous op... |
| 2ndcsep 23374 | A second-countable topolog... |
| dis2ndc 23375 | A discrete space is second... |
| 1stcelcls 23376 | A point belongs to the clo... |
| 1stccnp 23377 | A mapping is continuous at... |
| 1stccn 23378 | A mapping ` X --> Y ` , wh... |
| islly 23383 | The property of being a lo... |
| isnlly 23384 | The property of being an n... |
| llyeq 23385 | Equality theorem for the `... |
| nllyeq 23386 | Equality theorem for the `... |
| llytop 23387 | A locally ` A ` space is a... |
| nllytop 23388 | A locally ` A ` space is a... |
| llyi 23389 | The property of a locally ... |
| nllyi 23390 | The property of an n-local... |
| nlly2i 23391 | Eliminate the neighborhood... |
| llynlly 23392 | A locally ` A ` space is n... |
| llyssnlly 23393 | A locally ` A ` space is n... |
| llyss 23394 | The "locally" predicate re... |
| nllyss 23395 | The "n-locally" predicate ... |
| subislly 23396 | The property of a subspace... |
| restnlly 23397 | If the property ` A ` pass... |
| restlly 23398 | If the property ` A ` pass... |
| islly2 23399 | An alternative expression ... |
| llyrest 23400 | An open subspace of a loca... |
| nllyrest 23401 | An open subspace of an n-l... |
| loclly 23402 | If ` A ` is a local proper... |
| llyidm 23403 | Idempotence of the "locall... |
| nllyidm 23404 | Idempotence of the "n-loca... |
| toplly 23405 | A topology is locally a to... |
| topnlly 23406 | A topology is n-locally a ... |
| hauslly 23407 | A Hausdorff space is local... |
| hausnlly 23408 | A Hausdorff space is n-loc... |
| hausllycmp 23409 | A compact Hausdorff space ... |
| cldllycmp 23410 | A closed subspace of a loc... |
| lly1stc 23411 | First-countability is a lo... |
| dislly 23412 | The discrete space ` ~P X ... |
| disllycmp 23413 | A discrete space is locall... |
| dis1stc 23414 | A discrete space is first-... |
| hausmapdom 23415 | If ` X ` is a first-counta... |
| hauspwdom 23416 | Simplify the cardinal ` A ... |
| refrel 23423 | Refinement is a relation. ... |
| isref 23424 | The property of being a re... |
| refbas 23425 | A refinement covers the sa... |
| refssex 23426 | Every set in a refinement ... |
| ssref 23427 | A subcover is a refinement... |
| refref 23428 | Reflexivity of refinement.... |
| reftr 23429 | Refinement is transitive. ... |
| refun0 23430 | Adding the empty set prese... |
| isptfin 23431 | The statement "is a point-... |
| islocfin 23432 | The statement "is a locall... |
| finptfin 23433 | A finite cover is a point-... |
| ptfinfin 23434 | A point covered by a point... |
| finlocfin 23435 | A finite cover of a topolo... |
| locfintop 23436 | A locally finite cover cov... |
| locfinbas 23437 | A locally finite cover mus... |
| locfinnei 23438 | A point covered by a local... |
| lfinpfin 23439 | A locally finite cover is ... |
| lfinun 23440 | Adding a finite set preser... |
| locfincmp 23441 | For a compact space, the l... |
| unisngl 23442 | Taking the union of the se... |
| dissnref 23443 | The set of singletons is a... |
| dissnlocfin 23444 | The set of singletons is l... |
| locfindis 23445 | The locally finite covers ... |
| locfincf 23446 | A locally finite cover in ... |
| comppfsc 23447 | A space where every open c... |
| kgenval 23450 | Value of the compact gener... |
| elkgen 23451 | Value of the compact gener... |
| kgeni 23452 | Property of the open sets ... |
| kgentopon 23453 | The compact generator gene... |
| kgenuni 23454 | The base set of the compac... |
| kgenftop 23455 | The compact generator gene... |
| kgenf 23456 | The compact generator is a... |
| kgentop 23457 | A compactly generated spac... |
| kgenss 23458 | The compact generator gene... |
| kgenhaus 23459 | The compact generator gene... |
| kgencmp 23460 | The compact generator topo... |
| kgencmp2 23461 | The compact generator topo... |
| kgenidm 23462 | The compact generator is i... |
| iskgen2 23463 | A space is compactly gener... |
| iskgen3 23464 | Derive the usual definitio... |
| llycmpkgen2 23465 | A locally compact space is... |
| cmpkgen 23466 | A compact space is compact... |
| llycmpkgen 23467 | A locally compact space is... |
| 1stckgenlem 23468 | The one-point compactifica... |
| 1stckgen 23469 | A first-countable space is... |
| kgen2ss 23470 | The compact generator pres... |
| kgencn 23471 | A function from a compactl... |
| kgencn2 23472 | A function ` F : J --> K `... |
| kgencn3 23473 | The set of continuous func... |
| kgen2cn 23474 | A continuous function is a... |
| txval 23479 | Value of the binary topolo... |
| txuni2 23480 | The underlying set of the ... |
| txbasex 23481 | The basis for the product ... |
| txbas 23482 | The set of Cartesian produ... |
| eltx 23483 | A set in a product is open... |
| txtop 23484 | The product of two topolog... |
| ptval 23485 | The value of the product t... |
| ptpjpre1 23486 | The preimage of a projecti... |
| elpt 23487 | Elementhood in the bases o... |
| elptr 23488 | A basic open set in the pr... |
| elptr2 23489 | A basic open set in the pr... |
| ptbasid 23490 | The base set of the produc... |
| ptuni2 23491 | The base set for the produ... |
| ptbasin 23492 | The basis for a product to... |
| ptbasin2 23493 | The basis for a product to... |
| ptbas 23494 | The basis for a product to... |
| ptpjpre2 23495 | The basis for a product to... |
| ptbasfi 23496 | The basis for the product ... |
| pttop 23497 | The product topology is a ... |
| ptopn 23498 | A basic open set in the pr... |
| ptopn2 23499 | A sub-basic open set in th... |
| xkotf 23500 | Functionality of function ... |
| xkobval 23501 | Alternative expression for... |
| xkoval 23502 | Value of the compact-open ... |
| xkotop 23503 | The compact-open topology ... |
| xkoopn 23504 | A basic open set of the co... |
| txtopi 23505 | The product of two topolog... |
| txtopon 23506 | The underlying set of the ... |
| txuni 23507 | The underlying set of the ... |
| txunii 23508 | The underlying set of the ... |
| ptuni 23509 | The base set for the produ... |
| ptunimpt 23510 | Base set of a product topo... |
| pttopon 23511 | The base set for the produ... |
| pttoponconst 23512 | The base set for a product... |
| ptuniconst 23513 | The base set for a product... |
| xkouni 23514 | The base set of the compac... |
| xkotopon 23515 | The base set of the compac... |
| ptval2 23516 | The value of the product t... |
| txopn 23517 | The product of two open se... |
| txcld 23518 | The product of two closed ... |
| txcls 23519 | Closure of a rectangle in ... |
| txss12 23520 | Subset property of the top... |
| txbasval 23521 | It is sufficient to consid... |
| neitx 23522 | The Cartesian product of t... |
| txcnpi 23523 | Continuity of a two-argume... |
| tx1cn 23524 | Continuity of the first pr... |
| tx2cn 23525 | Continuity of the second p... |
| ptpjcn 23526 | Continuity of a projection... |
| ptpjopn 23527 | The projection map is an o... |
| ptcld 23528 | A closed box in the produc... |
| ptcldmpt 23529 | A closed box in the produc... |
| ptclsg 23530 | The closure of a box in th... |
| ptcls 23531 | The closure of a box in th... |
| dfac14lem 23532 | Lemma for ~ dfac14 . By e... |
| dfac14 23533 | Theorem ~ ptcls is an equi... |
| xkoccn 23534 | The "constant function" fu... |
| txcnp 23535 | If two functions are conti... |
| ptcnplem 23536 | Lemma for ~ ptcnp . (Cont... |
| ptcnp 23537 | If every projection of a f... |
| upxp 23538 | Universal property of the ... |
| txcnmpt 23539 | A map into the product of ... |
| uptx 23540 | Universal property of the ... |
| txcn 23541 | A map into the product of ... |
| ptcn 23542 | If every projection of a f... |
| prdstopn 23543 | Topology of a structure pr... |
| prdstps 23544 | A structure product of top... |
| pwstps 23545 | A structure power of a top... |
| txrest 23546 | The subspace of a topologi... |
| txdis 23547 | The topological product of... |
| txindislem 23548 | Lemma for ~ txindis . (Co... |
| txindis 23549 | The topological product of... |
| txdis1cn 23550 | A function is jointly cont... |
| txlly 23551 | If the property ` A ` is p... |
| txnlly 23552 | If the property ` A ` is p... |
| pthaus 23553 | The product of a collectio... |
| ptrescn 23554 | Restriction is a continuou... |
| txtube 23555 | The "tube lemma". If ` X ... |
| txcmplem1 23556 | Lemma for ~ txcmp . (Cont... |
| txcmplem2 23557 | Lemma for ~ txcmp . (Cont... |
| txcmp 23558 | The topological product of... |
| txcmpb 23559 | The topological product of... |
| hausdiag 23560 | A topology is Hausdorff if... |
| hauseqlcld 23561 | In a Hausdorff topology, t... |
| txhaus 23562 | The topological product of... |
| txlm 23563 | Two sequences converge iff... |
| lmcn2 23564 | The image of a convergent ... |
| tx1stc 23565 | The topological product of... |
| tx2ndc 23566 | The topological product of... |
| txkgen 23567 | The topological product of... |
| xkohaus 23568 | If the codomain space is H... |
| xkoptsub 23569 | The compact-open topology ... |
| xkopt 23570 | The compact-open topology ... |
| xkopjcn 23571 | Continuity of a projection... |
| xkoco1cn 23572 | If ` F ` is a continuous f... |
| xkoco2cn 23573 | If ` F ` is a continuous f... |
| xkococnlem 23574 | Continuity of the composit... |
| xkococn 23575 | Continuity of the composit... |
| cnmptid 23576 | The identity function is c... |
| cnmptc 23577 | A constant function is con... |
| cnmpt11 23578 | The composition of continu... |
| cnmpt11f 23579 | The composition of continu... |
| cnmpt1t 23580 | The composition of continu... |
| cnmpt12f 23581 | The composition of continu... |
| cnmpt12 23582 | The composition of continu... |
| cnmpt1st 23583 | The projection onto the fi... |
| cnmpt2nd 23584 | The projection onto the se... |
| cnmpt2c 23585 | A constant function is con... |
| cnmpt21 23586 | The composition of continu... |
| cnmpt21f 23587 | The composition of continu... |
| cnmpt2t 23588 | The composition of continu... |
| cnmpt22 23589 | The composition of continu... |
| cnmpt22f 23590 | The composition of continu... |
| cnmpt1res 23591 | The restriction of a conti... |
| cnmpt2res 23592 | The restriction of a conti... |
| cnmptcom 23593 | The argument converse of a... |
| cnmptkc 23594 | The curried first projecti... |
| cnmptkp 23595 | The evaluation of the inne... |
| cnmptk1 23596 | The composition of a curri... |
| cnmpt1k 23597 | The composition of a one-a... |
| cnmptkk 23598 | The composition of two cur... |
| xkofvcn 23599 | Joint continuity of the fu... |
| cnmptk1p 23600 | The evaluation of a currie... |
| cnmptk2 23601 | The uncurrying of a currie... |
| xkoinjcn 23602 | Continuity of "injection",... |
| cnmpt2k 23603 | The currying of a two-argu... |
| txconn 23604 | The topological product of... |
| imasnopn 23605 | If a relation graph is ope... |
| imasncld 23606 | If a relation graph is clo... |
| imasncls 23607 | If a relation graph is clo... |
| qtopval 23610 | Value of the quotient topo... |
| qtopval2 23611 | Value of the quotient topo... |
| elqtop 23612 | Value of the quotient topo... |
| qtopres 23613 | The quotient topology is u... |
| qtoptop2 23614 | The quotient topology is a... |
| qtoptop 23615 | The quotient topology is a... |
| elqtop2 23616 | Value of the quotient topo... |
| qtopuni 23617 | The base set of the quotie... |
| elqtop3 23618 | Value of the quotient topo... |
| qtoptopon 23619 | The base set of the quotie... |
| qtopid 23620 | A quotient map is a contin... |
| idqtop 23621 | The quotient topology indu... |
| qtopcmplem 23622 | Lemma for ~ qtopcmp and ~ ... |
| qtopcmp 23623 | A quotient of a compact sp... |
| qtopconn 23624 | A quotient of a connected ... |
| qtopkgen 23625 | A quotient of a compactly ... |
| basqtop 23626 | An injection maps bases to... |
| tgqtop 23627 | An injection maps generate... |
| qtopcld 23628 | The property of being a cl... |
| qtopcn 23629 | Universal property of a qu... |
| qtopss 23630 | A surjective continuous fu... |
| qtopeu 23631 | Universal property of the ... |
| qtoprest 23632 | If ` A ` is a saturated op... |
| qtopomap 23633 | If ` F ` is a surjective c... |
| qtopcmap 23634 | If ` F ` is a surjective c... |
| imastopn 23635 | The topology of an image s... |
| imastps 23636 | The image of a topological... |
| qustps 23637 | A quotient structure is a ... |
| kqfval 23638 | Value of the function appe... |
| kqfeq 23639 | Two points in the Kolmogor... |
| kqffn 23640 | The topological indistingu... |
| kqval 23641 | Value of the quotient topo... |
| kqtopon 23642 | The Kolmogorov quotient is... |
| kqid 23643 | The topological indistingu... |
| ist0-4 23644 | The topological indistingu... |
| kqfvima 23645 | When the image set is open... |
| kqsat 23646 | Any open set is saturated ... |
| kqdisj 23647 | A version of ~ imain for t... |
| kqcldsat 23648 | Any closed set is saturate... |
| kqopn 23649 | The topological indistingu... |
| kqcld 23650 | The topological indistingu... |
| kqt0lem 23651 | Lemma for ~ kqt0 . (Contr... |
| isr0 23652 | The property " ` J ` is an... |
| r0cld 23653 | The analogue of the T_1 ax... |
| regr1lem 23654 | Lemma for ~ regr1 . (Cont... |
| regr1lem2 23655 | A Kolmogorov quotient of a... |
| kqreglem1 23656 | A Kolmogorov quotient of a... |
| kqreglem2 23657 | If the Kolmogorov quotient... |
| kqnrmlem1 23658 | A Kolmogorov quotient of a... |
| kqnrmlem2 23659 | If the Kolmogorov quotient... |
| kqtop 23660 | The Kolmogorov quotient is... |
| kqt0 23661 | The Kolmogorov quotient is... |
| kqf 23662 | The Kolmogorov quotient is... |
| r0sep 23663 | The separation property of... |
| nrmr0reg 23664 | A normal R_0 space is also... |
| regr1 23665 | A regular space is R_1, wh... |
| kqreg 23666 | The Kolmogorov quotient of... |
| kqnrm 23667 | The Kolmogorov quotient of... |
| hmeofn 23672 | The set of homeomorphisms ... |
| hmeofval 23673 | The set of all the homeomo... |
| ishmeo 23674 | The predicate F is a homeo... |
| hmeocn 23675 | A homeomorphism is continu... |
| hmeocnvcn 23676 | The converse of a homeomor... |
| hmeocnv 23677 | The converse of a homeomor... |
| hmeof1o2 23678 | A homeomorphism is a 1-1-o... |
| hmeof1o 23679 | A homeomorphism is a 1-1-o... |
| hmeoima 23680 | The image of an open set b... |
| hmeoopn 23681 | Homeomorphisms preserve op... |
| hmeocld 23682 | Homeomorphisms preserve cl... |
| hmeocls 23683 | Homeomorphisms preserve cl... |
| hmeontr 23684 | Homeomorphisms preserve in... |
| hmeoimaf1o 23685 | The function mapping open ... |
| hmeores 23686 | The restriction of a homeo... |
| hmeoco 23687 | The composite of two homeo... |
| idhmeo 23688 | The identity function is a... |
| hmeocnvb 23689 | The converse of a homeomor... |
| hmeoqtop 23690 | A homeomorphism is a quoti... |
| hmph 23691 | Express the predicate ` J ... |
| hmphi 23692 | If there is a homeomorphis... |
| hmphtop 23693 | Reverse closure for the ho... |
| hmphtop1 23694 | The relation "being homeom... |
| hmphtop2 23695 | The relation "being homeom... |
| hmphref 23696 | "Is homeomorphic to" is re... |
| hmphsym 23697 | "Is homeomorphic to" is sy... |
| hmphtr 23698 | "Is homeomorphic to" is tr... |
| hmpher 23699 | "Is homeomorphic to" is an... |
| hmphen 23700 | Homeomorphisms preserve th... |
| hmphsymb 23701 | "Is homeomorphic to" is sy... |
| haushmphlem 23702 | Lemma for ~ haushmph and s... |
| cmphmph 23703 | Compactness is a topologic... |
| connhmph 23704 | Connectedness is a topolog... |
| t0hmph 23705 | T_0 is a topological prope... |
| t1hmph 23706 | T_1 is a topological prope... |
| haushmph 23707 | Hausdorff-ness is a topolo... |
| reghmph 23708 | Regularity is a topologica... |
| nrmhmph 23709 | Normality is a topological... |
| hmph0 23710 | A topology homeomorphic to... |
| hmphdis 23711 | Homeomorphisms preserve to... |
| hmphindis 23712 | Homeomorphisms preserve to... |
| indishmph 23713 | Equinumerous sets equipped... |
| hmphen2 23714 | Homeomorphisms preserve th... |
| cmphaushmeo 23715 | A continuous bijection fro... |
| ordthmeolem 23716 | Lemma for ~ ordthmeo . (C... |
| ordthmeo 23717 | An order isomorphism is a ... |
| txhmeo 23718 | Lift a pair of homeomorphi... |
| txswaphmeolem 23719 | Show inverse for the "swap... |
| txswaphmeo 23720 | There is a homeomorphism f... |
| pt1hmeo 23721 | The canonical homeomorphis... |
| ptuncnv 23722 | Exhibit the converse funct... |
| ptunhmeo 23723 | Define a homeomorphism fro... |
| xpstopnlem1 23724 | The function ` F ` used in... |
| xpstps 23725 | A binary product of topolo... |
| xpstopnlem2 23726 | Lemma for ~ xpstopn . (Co... |
| xpstopn 23727 | The topology on a binary p... |
| ptcmpfi 23728 | A topological product of f... |
| xkocnv 23729 | The inverse of the "curryi... |
| xkohmeo 23730 | The Exponential Law for to... |
| qtopf1 23731 | If a quotient map is injec... |
| qtophmeo 23732 | If two functions on a base... |
| t0kq 23733 | A topological space is T_0... |
| kqhmph 23734 | A topological space is T_0... |
| ist1-5lem 23735 | Lemma for ~ ist1-5 and sim... |
| t1r0 23736 | A T_1 space is R_0. That ... |
| ist1-5 23737 | A topological space is T_1... |
| ishaus3 23738 | A topological space is Hau... |
| nrmreg 23739 | A normal T_1 space is regu... |
| reghaus 23740 | A regular T_0 space is Hau... |
| nrmhaus 23741 | A T_1 normal space is Haus... |
| elmptrab 23742 | Membership in a one-parame... |
| elmptrab2 23743 | Membership in a one-parame... |
| isfbas 23744 | The predicate " ` F ` is a... |
| fbasne0 23745 | There are no empty filter ... |
| 0nelfb 23746 | No filter base contains th... |
| fbsspw 23747 | A filter base on a set is ... |
| fbelss 23748 | An element of the filter b... |
| fbdmn0 23749 | The domain of a filter bas... |
| isfbas2 23750 | The predicate " ` F ` is a... |
| fbasssin 23751 | A filter base contains sub... |
| fbssfi 23752 | A filter base contains sub... |
| fbssint 23753 | A filter base contains sub... |
| fbncp 23754 | A filter base does not con... |
| fbun 23755 | A necessary and sufficient... |
| fbfinnfr 23756 | No filter base containing ... |
| opnfbas 23757 | The collection of open sup... |
| trfbas2 23758 | Conditions for the trace o... |
| trfbas 23759 | Conditions for the trace o... |
| isfil 23762 | The predicate "is a filter... |
| filfbas 23763 | A filter is a filter base.... |
| 0nelfil 23764 | The empty set doesn't belo... |
| fileln0 23765 | An element of a filter is ... |
| filsspw 23766 | A filter is a subset of th... |
| filelss 23767 | An element of a filter is ... |
| filss 23768 | A filter is closed under t... |
| filin 23769 | A filter is closed under t... |
| filtop 23770 | The underlying set belongs... |
| isfil2 23771 | Derive the standard axioms... |
| isfildlem 23772 | Lemma for ~ isfild . (Con... |
| isfild 23773 | Sufficient condition for a... |
| filfi 23774 | A filter is closed under t... |
| filinn0 23775 | The intersection of two el... |
| filintn0 23776 | A filter has the finite in... |
| filn0 23777 | The empty set is not a fil... |
| infil 23778 | The intersection of two fi... |
| snfil 23779 | A singleton is a filter. ... |
| fbasweak 23780 | A filter base on any set i... |
| snfbas 23781 | Condition for a singleton ... |
| fsubbas 23782 | A condition for a set to g... |
| fbasfip 23783 | A filter base has the fini... |
| fbunfip 23784 | A helpful lemma for showin... |
| fgval 23785 | The filter generating clas... |
| elfg 23786 | A condition for elements o... |
| ssfg 23787 | A filter base is a subset ... |
| fgss 23788 | A bigger base generates a ... |
| fgss2 23789 | A condition for a filter t... |
| fgfil 23790 | A filter generates itself.... |
| elfilss 23791 | An element belongs to a fi... |
| filfinnfr 23792 | No filter containing a fin... |
| fgcl 23793 | A generated filter is a fi... |
| fgabs 23794 | Absorption law for filter ... |
| neifil 23795 | The neighborhoods of a non... |
| filunibas 23796 | Recover the base set from ... |
| filunirn 23797 | Two ways to express a filt... |
| filconn 23798 | A filter gives rise to a c... |
| fbasrn 23799 | Given a filter on a domain... |
| filuni 23800 | The union of a nonempty se... |
| trfil1 23801 | Conditions for the trace o... |
| trfil2 23802 | Conditions for the trace o... |
| trfil3 23803 | Conditions for the trace o... |
| trfilss 23804 | If ` A ` is a member of th... |
| fgtr 23805 | If ` A ` is a member of th... |
| trfg 23806 | The trace operation and th... |
| trnei 23807 | The trace, over a set ` A ... |
| cfinfil 23808 | Relative complements of th... |
| csdfil 23809 | The set of all elements wh... |
| supfil 23810 | The supersets of a nonempt... |
| zfbas 23811 | The set of upper sets of i... |
| uzrest 23812 | The restriction of the set... |
| uzfbas 23813 | The set of upper sets of i... |
| isufil 23818 | The property of being an u... |
| ufilfil 23819 | An ultrafilter is a filter... |
| ufilss 23820 | For any subset of the base... |
| ufilb 23821 | The complement is in an ul... |
| ufilmax 23822 | Any filter finer than an u... |
| isufil2 23823 | The maximal property of an... |
| ufprim 23824 | An ultrafilter is a prime ... |
| trufil 23825 | Conditions for the trace o... |
| filssufilg 23826 | A filter is contained in s... |
| filssufil 23827 | A filter is contained in s... |
| isufl 23828 | Define the (strong) ultraf... |
| ufli 23829 | Property of a set that sat... |
| numufl 23830 | Consequence of ~ filssufil... |
| fiufl 23831 | A finite set satisfies the... |
| acufl 23832 | The axiom of choice implie... |
| ssufl 23833 | If ` Y ` is a subset of ` ... |
| ufileu 23834 | If the ultrafilter contain... |
| filufint 23835 | A filter is equal to the i... |
| uffix 23836 | Lemma for ~ fixufil and ~ ... |
| fixufil 23837 | The condition describing a... |
| uffixfr 23838 | An ultrafilter is either f... |
| uffix2 23839 | A classification of fixed ... |
| uffixsn 23840 | The singleton of the gener... |
| ufildom1 23841 | An ultrafilter is generate... |
| uffinfix 23842 | An ultrafilter containing ... |
| cfinufil 23843 | An ultrafilter is free iff... |
| ufinffr 23844 | An infinite subset is cont... |
| ufilen 23845 | Any infinite set has an ul... |
| ufildr 23846 | An ultrafilter gives rise ... |
| fin1aufil 23847 | There are no definable fre... |
| fmval 23858 | Introduce a function that ... |
| fmfil 23859 | A mapping filter is a filt... |
| fmf 23860 | Pushing-forward via a func... |
| fmss 23861 | A finer filter produces a ... |
| elfm 23862 | An element of a mapping fi... |
| elfm2 23863 | An element of a mapping fi... |
| fmfg 23864 | The image filter of a filt... |
| elfm3 23865 | An alternate formulation o... |
| imaelfm 23866 | An image of a filter eleme... |
| rnelfmlem 23867 | Lemma for ~ rnelfm . (Con... |
| rnelfm 23868 | A condition for a filter t... |
| fmfnfmlem1 23869 | Lemma for ~ fmfnfm . (Con... |
| fmfnfmlem2 23870 | Lemma for ~ fmfnfm . (Con... |
| fmfnfmlem3 23871 | Lemma for ~ fmfnfm . (Con... |
| fmfnfmlem4 23872 | Lemma for ~ fmfnfm . (Con... |
| fmfnfm 23873 | A filter finer than an ima... |
| fmufil 23874 | An image filter of an ultr... |
| fmid 23875 | The filter map applied to ... |
| fmco 23876 | Composition of image filte... |
| ufldom 23877 | The ultrafilter lemma prop... |
| flimval 23878 | The set of limit points of... |
| elflim2 23879 | The predicate "is a limit ... |
| flimtop 23880 | Reverse closure for the li... |
| flimneiss 23881 | A filter contains the neig... |
| flimnei 23882 | A filter contains all of t... |
| flimelbas 23883 | A limit point of a filter ... |
| flimfil 23884 | Reverse closure for the li... |
| flimtopon 23885 | Reverse closure for the li... |
| elflim 23886 | The predicate "is a limit ... |
| flimss2 23887 | A limit point of a filter ... |
| flimss1 23888 | A limit point of a filter ... |
| neiflim 23889 | A point is a limit point o... |
| flimopn 23890 | The condition for being a ... |
| fbflim 23891 | A condition for a filter t... |
| fbflim2 23892 | A condition for a filter b... |
| flimclsi 23893 | The convergent points of a... |
| hausflimlem 23894 | If ` A ` and ` B ` are bot... |
| hausflimi 23895 | One direction of ~ hausfli... |
| hausflim 23896 | A condition for a topology... |
| flimcf 23897 | Fineness is properly chara... |
| flimrest 23898 | The set of limit points in... |
| flimclslem 23899 | Lemma for ~ flimcls . (Co... |
| flimcls 23900 | Closure in terms of filter... |
| flimsncls 23901 | If ` A ` is a limit point ... |
| hauspwpwf1 23902 | Lemma for ~ hauspwpwdom . ... |
| hauspwpwdom 23903 | If ` X ` is a Hausdorff sp... |
| flffval 23904 | Given a topology and a fil... |
| flfval 23905 | Given a function from a fi... |
| flfnei 23906 | The property of being a li... |
| flfneii 23907 | A neighborhood of a limit ... |
| isflf 23908 | The property of being a li... |
| flfelbas 23909 | A limit point of a functio... |
| flffbas 23910 | Limit points of a function... |
| flftg 23911 | Limit points of a function... |
| hausflf 23912 | If a function has its valu... |
| hausflf2 23913 | If a convergent function h... |
| cnpflfi 23914 | Forward direction of ~ cnp... |
| cnpflf2 23915 | ` F ` is continuous at poi... |
| cnpflf 23916 | Continuity of a function a... |
| cnflf 23917 | A function is continuous i... |
| cnflf2 23918 | A function is continuous i... |
| flfcnp 23919 | A continuous function pres... |
| lmflf 23920 | The topological limit rela... |
| txflf 23921 | Two sequences converge in ... |
| flfcnp2 23922 | The image of a convergent ... |
| fclsval 23923 | The set of all cluster poi... |
| isfcls 23924 | A cluster point of a filte... |
| fclsfil 23925 | Reverse closure for the cl... |
| fclstop 23926 | Reverse closure for the cl... |
| fclstopon 23927 | Reverse closure for the cl... |
| isfcls2 23928 | A cluster point of a filte... |
| fclsopn 23929 | Write the cluster point co... |
| fclsopni 23930 | An open neighborhood of a ... |
| fclselbas 23931 | A cluster point is in the ... |
| fclsneii 23932 | A neighborhood of a cluste... |
| fclssscls 23933 | The set of cluster points ... |
| fclsnei 23934 | Cluster points in terms of... |
| supnfcls 23935 | The filter of supersets of... |
| fclsbas 23936 | Cluster points in terms of... |
| fclsss1 23937 | A finer topology has fewer... |
| fclsss2 23938 | A finer filter has fewer c... |
| fclsrest 23939 | The set of cluster points ... |
| fclscf 23940 | Characterization of finene... |
| flimfcls 23941 | A limit point is a cluster... |
| fclsfnflim 23942 | A filter clusters at a poi... |
| flimfnfcls 23943 | A filter converges to a po... |
| fclscmpi 23944 | Forward direction of ~ fcl... |
| fclscmp 23945 | A space is compact iff eve... |
| uffclsflim 23946 | The cluster points of an u... |
| ufilcmp 23947 | A space is compact iff eve... |
| fcfval 23948 | The set of cluster points ... |
| isfcf 23949 | The property of being a cl... |
| fcfnei 23950 | The property of being a cl... |
| fcfelbas 23951 | A cluster point of a funct... |
| fcfneii 23952 | A neighborhood of a cluste... |
| flfssfcf 23953 | A limit point of a functio... |
| uffcfflf 23954 | If the domain filter is an... |
| cnpfcfi 23955 | Lemma for ~ cnpfcf . If a... |
| cnpfcf 23956 | A function ` F ` is contin... |
| cnfcf 23957 | Continuity of a function i... |
| flfcntr 23958 | A continuous function's va... |
| alexsublem 23959 | Lemma for ~ alexsub . (Co... |
| alexsub 23960 | The Alexander Subbase Theo... |
| alexsubb 23961 | Biconditional form of the ... |
| alexsubALTlem1 23962 | Lemma for ~ alexsubALT . ... |
| alexsubALTlem2 23963 | Lemma for ~ alexsubALT . ... |
| alexsubALTlem3 23964 | Lemma for ~ alexsubALT . ... |
| alexsubALTlem4 23965 | Lemma for ~ alexsubALT . ... |
| alexsubALT 23966 | The Alexander Subbase Theo... |
| ptcmplem1 23967 | Lemma for ~ ptcmp . (Cont... |
| ptcmplem2 23968 | Lemma for ~ ptcmp . (Cont... |
| ptcmplem3 23969 | Lemma for ~ ptcmp . (Cont... |
| ptcmplem4 23970 | Lemma for ~ ptcmp . (Cont... |
| ptcmplem5 23971 | Lemma for ~ ptcmp . (Cont... |
| ptcmpg 23972 | Tychonoff's theorem: The ... |
| ptcmp 23973 | Tychonoff's theorem: The ... |
| cnextval 23976 | The function applying cont... |
| cnextfval 23977 | The continuous extension o... |
| cnextrel 23978 | In the general case, a con... |
| cnextfun 23979 | If the target space is Hau... |
| cnextfvval 23980 | The value of the continuou... |
| cnextf 23981 | Extension by continuity. ... |
| cnextcn 23982 | Extension by continuity. ... |
| cnextfres1 23983 | ` F ` and its extension by... |
| cnextfres 23984 | ` F ` and its extension by... |
| istmd 23989 | The predicate "is a topolo... |
| tmdmnd 23990 | A topological monoid is a ... |
| tmdtps 23991 | A topological monoid is a ... |
| istgp 23992 | The predicate "is a topolo... |
| tgpgrp 23993 | A topological group is a g... |
| tgptmd 23994 | A topological group is a t... |
| tgptps 23995 | A topological group is a t... |
| tmdtopon 23996 | The topology of a topologi... |
| tgptopon 23997 | The topology of a topologi... |
| tmdcn 23998 | In a topological monoid, t... |
| tgpcn 23999 | In a topological group, th... |
| tgpinv 24000 | In a topological group, th... |
| grpinvhmeo 24001 | The inverse function in a ... |
| cnmpt1plusg 24002 | Continuity of the group su... |
| cnmpt2plusg 24003 | Continuity of the group su... |
| tmdcn2 24004 | Write out the definition o... |
| tgpsubcn 24005 | In a topological group, th... |
| istgp2 24006 | A group with a topology is... |
| tmdmulg 24007 | In a topological monoid, t... |
| tgpmulg 24008 | In a topological group, th... |
| tgpmulg2 24009 | In a topological monoid, t... |
| tmdgsum 24010 | In a topological monoid, t... |
| tmdgsum2 24011 | For any neighborhood ` U `... |
| oppgtmd 24012 | The opposite of a topologi... |
| oppgtgp 24013 | The opposite of a topologi... |
| distgp 24014 | Any group equipped with th... |
| indistgp 24015 | Any group equipped with th... |
| efmndtmd 24016 | The monoid of endofunction... |
| tmdlactcn 24017 | The left group action of e... |
| tgplacthmeo 24018 | The left group action of e... |
| submtmd 24019 | A submonoid of a topologic... |
| subgtgp 24020 | A subgroup of a topologica... |
| symgtgp 24021 | The symmetric group is a t... |
| subgntr 24022 | A subgroup of a topologica... |
| opnsubg 24023 | An open subgroup of a topo... |
| clssubg 24024 | The closure of a subgroup ... |
| clsnsg 24025 | The closure of a normal su... |
| cldsubg 24026 | A subgroup of finite index... |
| tgpconncompeqg 24027 | The connected component co... |
| tgpconncomp 24028 | The identity component, th... |
| tgpconncompss 24029 | The identity component is ... |
| ghmcnp 24030 | A group homomorphism on to... |
| snclseqg 24031 | The coset of the closure o... |
| tgphaus 24032 | A topological group is Hau... |
| tgpt1 24033 | Hausdorff and T1 are equiv... |
| tgpt0 24034 | Hausdorff and T0 are equiv... |
| qustgpopn 24035 | A quotient map in a topolo... |
| qustgplem 24036 | Lemma for ~ qustgp . (Con... |
| qustgp 24037 | The quotient of a topologi... |
| qustgphaus 24038 | The quotient of a topologi... |
| prdstmdd 24039 | The product of a family of... |
| prdstgpd 24040 | The product of a family of... |
| tsmsfbas 24043 | The collection of all sets... |
| tsmslem1 24044 | The finite partial sums of... |
| tsmsval2 24045 | Definition of the topologi... |
| tsmsval 24046 | Definition of the topologi... |
| tsmspropd 24047 | The group sum depends only... |
| eltsms 24048 | The property of being a su... |
| tsmsi 24049 | The property of being a su... |
| tsmscl 24050 | A sum in a topological gro... |
| haustsms 24051 | In a Hausdorff topological... |
| haustsms2 24052 | In a Hausdorff topological... |
| tsmscls 24053 | One half of ~ tgptsmscls ,... |
| tsmsgsum 24054 | The convergent points of a... |
| tsmsid 24055 | If a sum is finite, the us... |
| haustsmsid 24056 | In a Hausdorff topological... |
| tsms0 24057 | The sum of zero is zero. ... |
| tsmssubm 24058 | Evaluate an infinite group... |
| tsmsres 24059 | Extend an infinite group s... |
| tsmsf1o 24060 | Re-index an infinite group... |
| tsmsmhm 24061 | Apply a continuous group h... |
| tsmsadd 24062 | The sum of two infinite gr... |
| tsmsinv 24063 | Inverse of an infinite gro... |
| tsmssub 24064 | The difference of two infi... |
| tgptsmscls 24065 | A sum in a topological gro... |
| tgptsmscld 24066 | The set of limit points to... |
| tsmssplit 24067 | Split a topological group ... |
| tsmsxplem1 24068 | Lemma for ~ tsmsxp . (Con... |
| tsmsxplem2 24069 | Lemma for ~ tsmsxp . (Con... |
| tsmsxp 24070 | Write a sum over a two-dim... |
| istrg 24079 | Express the predicate " ` ... |
| trgtmd 24080 | The multiplicative monoid ... |
| istdrg 24081 | Express the predicate " ` ... |
| tdrgunit 24082 | The unit group of a topolo... |
| trgtgp 24083 | A topological ring is a to... |
| trgtmd2 24084 | A topological ring is a to... |
| trgtps 24085 | A topological ring is a to... |
| trgring 24086 | A topological ring is a ri... |
| trggrp 24087 | A topological ring is a gr... |
| tdrgtrg 24088 | A topological division rin... |
| tdrgdrng 24089 | A topological division rin... |
| tdrgring 24090 | A topological division rin... |
| tdrgtmd 24091 | A topological division rin... |
| tdrgtps 24092 | A topological division rin... |
| istdrg2 24093 | A topological-ring divisio... |
| mulrcn 24094 | The functionalization of t... |
| invrcn2 24095 | The multiplicative inverse... |
| invrcn 24096 | The multiplicative inverse... |
| cnmpt1mulr 24097 | Continuity of ring multipl... |
| cnmpt2mulr 24098 | Continuity of ring multipl... |
| dvrcn 24099 | The division function is c... |
| istlm 24100 | The predicate " ` W ` is a... |
| vscacn 24101 | The scalar multiplication ... |
| tlmtmd 24102 | A topological module is a ... |
| tlmtps 24103 | A topological module is a ... |
| tlmlmod 24104 | A topological module is a ... |
| tlmtrg 24105 | The scalar ring of a topol... |
| tlmscatps 24106 | The scalar ring of a topol... |
| istvc 24107 | A topological vector space... |
| tvctdrg 24108 | The scalar field of a topo... |
| cnmpt1vsca 24109 | Continuity of scalar multi... |
| cnmpt2vsca 24110 | Continuity of scalar multi... |
| tlmtgp 24111 | A topological vector space... |
| tvctlm 24112 | A topological vector space... |
| tvclmod 24113 | A topological vector space... |
| tvclvec 24114 | A topological vector space... |
| ustfn 24117 | The defined uniform struct... |
| ustval 24118 | The class of all uniform s... |
| isust 24119 | The predicate " ` U ` is a... |
| ustssxp 24120 | Entourages are subsets of ... |
| ustssel 24121 | A uniform structure is upw... |
| ustbasel 24122 | The full set is always an ... |
| ustincl 24123 | A uniform structure is clo... |
| ustdiag 24124 | The diagonal set is includ... |
| ustinvel 24125 | If ` V ` is an entourage, ... |
| ustexhalf 24126 | For each entourage ` V ` t... |
| ustrel 24127 | The elements of uniform st... |
| ustfilxp 24128 | A uniform structure on a n... |
| ustne0 24129 | A uniform structure cannot... |
| ustssco 24130 | In an uniform structure, a... |
| ustexsym 24131 | In an uniform structure, f... |
| ustex2sym 24132 | In an uniform structure, f... |
| ustex3sym 24133 | In an uniform structure, f... |
| ustref 24134 | Any element of the base se... |
| ust0 24135 | The unique uniform structu... |
| ustn0 24136 | The empty set is not an un... |
| ustund 24137 | If two intersecting sets `... |
| ustelimasn 24138 | Any point ` A ` is near en... |
| ustneism 24139 | For a point ` A ` in ` X `... |
| ustbas2 24140 | Second direction for ~ ust... |
| ustuni 24141 | The set union of a uniform... |
| ustbas 24142 | Recover the base of an uni... |
| ustimasn 24143 | Lemma for ~ ustuqtop . (C... |
| trust 24144 | The trace of a uniform str... |
| utopval 24147 | The topology induced by a ... |
| elutop 24148 | Open sets in the topology ... |
| utoptop 24149 | The topology induced by a ... |
| utopbas 24150 | The base of the topology i... |
| utoptopon 24151 | Topology induced by a unif... |
| restutop 24152 | Restriction of a topology ... |
| restutopopn 24153 | The restriction of the top... |
| ustuqtoplem 24154 | Lemma for ~ ustuqtop . (C... |
| ustuqtop0 24155 | Lemma for ~ ustuqtop . (C... |
| ustuqtop1 24156 | Lemma for ~ ustuqtop , sim... |
| ustuqtop2 24157 | Lemma for ~ ustuqtop . (C... |
| ustuqtop3 24158 | Lemma for ~ ustuqtop , sim... |
| ustuqtop4 24159 | Lemma for ~ ustuqtop . (C... |
| ustuqtop5 24160 | Lemma for ~ ustuqtop . (C... |
| ustuqtop 24161 | For a given uniform struct... |
| utopsnneiplem 24162 | The neighborhoods of a poi... |
| utopsnneip 24163 | The neighborhoods of a poi... |
| utopsnnei 24164 | Images of singletons by en... |
| utop2nei 24165 | For any symmetrical entour... |
| utop3cls 24166 | Relation between a topolog... |
| utopreg 24167 | All Hausdorff uniform spac... |
| ussval 24174 | The uniform structure on u... |
| ussid 24175 | In case the base of the ` ... |
| isusp 24176 | The predicate ` W ` is a u... |
| ressuss 24177 | Value of the uniform struc... |
| ressust 24178 | The uniform structure of a... |
| ressusp 24179 | The restriction of a unifo... |
| tusval 24180 | The value of the uniform s... |
| tuslem 24181 | Lemma for ~ tusbas , ~ tus... |
| tusbas 24182 | The base set of a construc... |
| tusunif 24183 | The uniform structure of a... |
| tususs 24184 | The uniform structure of a... |
| tustopn 24185 | The topology induced by a ... |
| tususp 24186 | A constructed uniform spac... |
| tustps 24187 | A constructed uniform spac... |
| uspreg 24188 | If a uniform space is Haus... |
| ucnval 24191 | The set of all uniformly c... |
| isucn 24192 | The predicate " ` F ` is a... |
| isucn2 24193 | The predicate " ` F ` is a... |
| ucnimalem 24194 | Reformulate the ` G ` func... |
| ucnima 24195 | An equivalent statement of... |
| ucnprima 24196 | The preimage by a uniforml... |
| iducn 24197 | The identity is uniformly ... |
| cstucnd 24198 | A constant function is uni... |
| ucncn 24199 | Uniform continuity implies... |
| iscfilu 24202 | The predicate " ` F ` is a... |
| cfilufbas 24203 | A Cauchy filter base is a ... |
| cfiluexsm 24204 | For a Cauchy filter base a... |
| fmucndlem 24205 | Lemma for ~ fmucnd . (Con... |
| fmucnd 24206 | The image of a Cauchy filt... |
| cfilufg 24207 | The filter generated by a ... |
| trcfilu 24208 | Condition for the trace of... |
| cfiluweak 24209 | A Cauchy filter base is al... |
| neipcfilu 24210 | In an uniform space, a nei... |
| iscusp 24213 | The predicate " ` W ` is a... |
| cuspusp 24214 | A complete uniform space i... |
| cuspcvg 24215 | In a complete uniform spac... |
| iscusp2 24216 | The predicate " ` W ` is a... |
| cnextucn 24217 | Extension by continuity. ... |
| ucnextcn 24218 | Extension by continuity. ... |
| ispsmet 24219 | Express the predicate " ` ... |
| psmetdmdm 24220 | Recover the base set from ... |
| psmetf 24221 | The distance function of a... |
| psmetcl 24222 | Closure of the distance fu... |
| psmet0 24223 | The distance function of a... |
| psmettri2 24224 | Triangle inequality for th... |
| psmetsym 24225 | The distance function of a... |
| psmettri 24226 | Triangle inequality for th... |
| psmetge0 24227 | The distance function of a... |
| psmetxrge0 24228 | The distance function of a... |
| psmetres2 24229 | Restriction of a pseudomet... |
| psmetlecl 24230 | Real closure of an extende... |
| distspace 24231 | A set ` X ` together with ... |
| ismet 24238 | Express the predicate " ` ... |
| isxmet 24239 | Express the predicate " ` ... |
| ismeti 24240 | Properties that determine ... |
| isxmetd 24241 | Properties that determine ... |
| isxmet2d 24242 | It is safe to only require... |
| metflem 24243 | Lemma for ~ metf and other... |
| xmetf 24244 | Mapping of the distance fu... |
| metf 24245 | Mapping of the distance fu... |
| xmetcl 24246 | Closure of the distance fu... |
| metcl 24247 | Closure of the distance fu... |
| ismet2 24248 | An extended metric is a me... |
| metxmet 24249 | A metric is an extended me... |
| xmetdmdm 24250 | Recover the base set from ... |
| metdmdm 24251 | Recover the base set from ... |
| xmetunirn 24252 | Two ways to express an ext... |
| xmeteq0 24253 | The value of an extended m... |
| meteq0 24254 | The value of a metric is z... |
| xmettri2 24255 | Triangle inequality for th... |
| mettri2 24256 | Triangle inequality for th... |
| xmet0 24257 | The distance function of a... |
| met0 24258 | The distance function of a... |
| xmetge0 24259 | The distance function of a... |
| metge0 24260 | The distance function of a... |
| xmetlecl 24261 | Real closure of an extende... |
| xmetsym 24262 | The distance function of a... |
| xmetpsmet 24263 | An extended metric is a ps... |
| xmettpos 24264 | The distance function of a... |
| metsym 24265 | The distance function of a... |
| xmettri 24266 | Triangle inequality for th... |
| mettri 24267 | Triangle inequality for th... |
| xmettri3 24268 | Triangle inequality for th... |
| mettri3 24269 | Triangle inequality for th... |
| xmetrtri 24270 | One half of the reverse tr... |
| xmetrtri2 24271 | The reverse triangle inequ... |
| metrtri 24272 | Reverse triangle inequalit... |
| xmetgt0 24273 | The distance function of a... |
| metgt0 24274 | The distance function of a... |
| metn0 24275 | A metric space is nonempty... |
| xmetres2 24276 | Restriction of an extended... |
| metreslem 24277 | Lemma for ~ metres . (Con... |
| metres2 24278 | Lemma for ~ metres . (Con... |
| xmetres 24279 | A restriction of an extend... |
| metres 24280 | A restriction of a metric ... |
| 0met 24281 | The empty metric. (Contri... |
| prdsdsf 24282 | The product metric is a fu... |
| prdsxmetlem 24283 | The product metric is an e... |
| prdsxmet 24284 | The product metric is an e... |
| prdsmet 24285 | The product metric is a me... |
| ressprdsds 24286 | Restriction of a product m... |
| resspwsds 24287 | Restriction of a power met... |
| imasdsf1olem 24288 | Lemma for ~ imasdsf1o . (... |
| imasdsf1o 24289 | The distance function is t... |
| imasf1oxmet 24290 | The image of an extended m... |
| imasf1omet 24291 | The image of a metric is a... |
| xpsdsfn 24292 | Closure of the metric in a... |
| xpsdsfn2 24293 | Closure of the metric in a... |
| xpsxmetlem 24294 | Lemma for ~ xpsxmet . (Co... |
| xpsxmet 24295 | A product metric of extend... |
| xpsdsval 24296 | Value of the metric in a b... |
| xpsmet 24297 | The direct product of two ... |
| blfvalps 24298 | The value of the ball func... |
| blfval 24299 | The value of the ball func... |
| blvalps 24300 | The ball around a point ` ... |
| blval 24301 | The ball around a point ` ... |
| elblps 24302 | Membership in a ball. (Co... |
| elbl 24303 | Membership in a ball. (Co... |
| elbl2ps 24304 | Membership in a ball. (Co... |
| elbl2 24305 | Membership in a ball. (Co... |
| elbl3ps 24306 | Membership in a ball, with... |
| elbl3 24307 | Membership in a ball, with... |
| blcomps 24308 | Commute the arguments to t... |
| blcom 24309 | Commute the arguments to t... |
| xblpnfps 24310 | The infinity ball in an ex... |
| xblpnf 24311 | The infinity ball in an ex... |
| blpnf 24312 | The infinity ball in a sta... |
| bldisj 24313 | Two balls are disjoint if ... |
| blgt0 24314 | A nonempty ball implies th... |
| bl2in 24315 | Two balls are disjoint if ... |
| xblss2ps 24316 | One ball is contained in a... |
| xblss2 24317 | One ball is contained in a... |
| blss2ps 24318 | One ball is contained in a... |
| blss2 24319 | One ball is contained in a... |
| blhalf 24320 | A ball of radius ` R / 2 `... |
| blfps 24321 | Mapping of a ball. (Contr... |
| blf 24322 | Mapping of a ball. (Contr... |
| blrnps 24323 | Membership in the range of... |
| blrn 24324 | Membership in the range of... |
| xblcntrps 24325 | A ball contains its center... |
| xblcntr 24326 | A ball contains its center... |
| blcntrps 24327 | A ball contains its center... |
| blcntr 24328 | A ball contains its center... |
| xbln0 24329 | A ball is nonempty iff the... |
| bln0 24330 | A ball is not empty. (Con... |
| blelrnps 24331 | A ball belongs to the set ... |
| blelrn 24332 | A ball belongs to the set ... |
| blssm 24333 | A ball is a subset of the ... |
| unirnblps 24334 | The union of the set of ba... |
| unirnbl 24335 | The union of the set of ba... |
| blin 24336 | The intersection of two ba... |
| ssblps 24337 | The size of a ball increas... |
| ssbl 24338 | The size of a ball increas... |
| blssps 24339 | Any point ` P ` in a ball ... |
| blss 24340 | Any point ` P ` in a ball ... |
| blssexps 24341 | Two ways to express the ex... |
| blssex 24342 | Two ways to express the ex... |
| ssblex 24343 | A nested ball exists whose... |
| blin2 24344 | Given any two balls and a ... |
| blbas 24345 | The balls of a metric spac... |
| blres 24346 | A ball in a restricted met... |
| xmeterval 24347 | Value of the "finitely sep... |
| xmeter 24348 | The "finitely separated" r... |
| xmetec 24349 | The equivalence classes un... |
| blssec 24350 | A ball centered at ` P ` i... |
| blpnfctr 24351 | The infinity ball in an ex... |
| xmetresbl 24352 | An extended metric restric... |
| mopnval 24353 | An open set is a subset of... |
| mopntopon 24354 | The set of open sets of a ... |
| mopntop 24355 | The set of open sets of a ... |
| mopnuni 24356 | The union of all open sets... |
| elmopn 24357 | The defining property of a... |
| mopnfss 24358 | The family of open sets of... |
| mopnm 24359 | The base set of a metric s... |
| elmopn2 24360 | A defining property of an ... |
| mopnss 24361 | An open set of a metric sp... |
| isxms 24362 | Express the predicate " ` ... |
| isxms2 24363 | Express the predicate " ` ... |
| isms 24364 | Express the predicate " ` ... |
| isms2 24365 | Express the predicate " ` ... |
| xmstopn 24366 | The topology component of ... |
| mstopn 24367 | The topology component of ... |
| xmstps 24368 | An extended metric space i... |
| msxms 24369 | A metric space is an exten... |
| mstps 24370 | A metric space is a topolo... |
| xmsxmet 24371 | The distance function, sui... |
| msmet 24372 | The distance function, sui... |
| msf 24373 | The distance function of a... |
| xmsxmet2 24374 | The distance function, sui... |
| msmet2 24375 | The distance function, sui... |
| mscl 24376 | Closure of the distance fu... |
| xmscl 24377 | Closure of the distance fu... |
| xmsge0 24378 | The distance function in a... |
| xmseq0 24379 | The distance between two p... |
| xmssym 24380 | The distance function in a... |
| xmstri2 24381 | Triangle inequality for th... |
| mstri2 24382 | Triangle inequality for th... |
| xmstri 24383 | Triangle inequality for th... |
| mstri 24384 | Triangle inequality for th... |
| xmstri3 24385 | Triangle inequality for th... |
| mstri3 24386 | Triangle inequality for th... |
| msrtri 24387 | Reverse triangle inequalit... |
| xmspropd 24388 | Property deduction for an ... |
| mspropd 24389 | Property deduction for a m... |
| setsmsbas 24390 | The base set of a construc... |
| setsmsds 24391 | The distance function of a... |
| setsmstset 24392 | The topology of a construc... |
| setsmstopn 24393 | The topology of a construc... |
| setsxms 24394 | The constructed metric spa... |
| setsms 24395 | The constructed metric spa... |
| tmsval 24396 | For any metric there is an... |
| tmslem 24397 | Lemma for ~ tmsbas , ~ tms... |
| tmsbas 24398 | The base set of a construc... |
| tmsds 24399 | The metric of a constructe... |
| tmstopn 24400 | The topology of a construc... |
| tmsxms 24401 | The constructed metric spa... |
| tmsms 24402 | The constructed metric spa... |
| imasf1obl 24403 | The image of a metric spac... |
| imasf1oxms 24404 | The image of a metric spac... |
| imasf1oms 24405 | The image of a metric spac... |
| prdsbl 24406 | A ball in the product metr... |
| mopni 24407 | An open set of a metric sp... |
| mopni2 24408 | An open set of a metric sp... |
| mopni3 24409 | An open set of a metric sp... |
| blssopn 24410 | The balls of a metric spac... |
| unimopn 24411 | The union of a collection ... |
| mopnin 24412 | The intersection of two op... |
| mopn0 24413 | The empty set is an open s... |
| rnblopn 24414 | A ball of a metric space i... |
| blopn 24415 | A ball of a metric space i... |
| neibl 24416 | The neighborhoods around a... |
| blnei 24417 | A ball around a point is a... |
| lpbl 24418 | Every ball around a limit ... |
| blsscls2 24419 | A smaller closed ball is c... |
| blcld 24420 | A "closed ball" in a metri... |
| blcls 24421 | The closure of an open bal... |
| blsscls 24422 | If two concentric balls ha... |
| metss 24423 | Two ways of saying that me... |
| metequiv 24424 | Two ways of saying that tw... |
| metequiv2 24425 | If there is a sequence of ... |
| metss2lem 24426 | Lemma for ~ metss2 . (Con... |
| metss2 24427 | If the metric ` D ` is "st... |
| comet 24428 | The composition of an exte... |
| stdbdmetval 24429 | Value of the standard boun... |
| stdbdxmet 24430 | The standard bounded metri... |
| stdbdmet 24431 | The standard bounded metri... |
| stdbdbl 24432 | The standard bounded metri... |
| stdbdmopn 24433 | The standard bounded metri... |
| mopnex 24434 | The topology generated by ... |
| methaus 24435 | The topology generated by ... |
| met1stc 24436 | The topology generated by ... |
| met2ndci 24437 | A separable metric space (... |
| met2ndc 24438 | A metric space is second-c... |
| metrest 24439 | Two alternate formulations... |
| ressxms 24440 | The restriction of a metri... |
| ressms 24441 | The restriction of a metri... |
| prdsmslem1 24442 | Lemma for ~ prdsms . The ... |
| prdsxmslem1 24443 | Lemma for ~ prdsms . The ... |
| prdsxmslem2 24444 | Lemma for ~ prdsxms . The... |
| prdsxms 24445 | The indexed product struct... |
| prdsms 24446 | The indexed product struct... |
| pwsxms 24447 | A power of an extended met... |
| pwsms 24448 | A power of a metric space ... |
| xpsxms 24449 | A binary product of metric... |
| xpsms 24450 | A binary product of metric... |
| tmsxps 24451 | Express the product of two... |
| tmsxpsmopn 24452 | Express the product of two... |
| tmsxpsval 24453 | Value of the product of tw... |
| tmsxpsval2 24454 | Value of the product of tw... |
| metcnp3 24455 | Two ways to express that `... |
| metcnp 24456 | Two ways to say a mapping ... |
| metcnp2 24457 | Two ways to say a mapping ... |
| metcn 24458 | Two ways to say a mapping ... |
| metcnpi 24459 | Epsilon-delta property of ... |
| metcnpi2 24460 | Epsilon-delta property of ... |
| metcnpi3 24461 | Epsilon-delta property of ... |
| txmetcnp 24462 | Continuity of a binary ope... |
| txmetcn 24463 | Continuity of a binary ope... |
| metuval 24464 | Value of the uniform struc... |
| metustel 24465 | Define a filter base ` F `... |
| metustss 24466 | Range of the elements of t... |
| metustrel 24467 | Elements of the filter bas... |
| metustto 24468 | Any two elements of the fi... |
| metustid 24469 | The identity diagonal is i... |
| metustsym 24470 | Elements of the filter bas... |
| metustexhalf 24471 | For any element ` A ` of t... |
| metustfbas 24472 | The filter base generated ... |
| metust 24473 | The uniform structure gene... |
| cfilucfil 24474 | Given a metric ` D ` and a... |
| metuust 24475 | The uniform structure gene... |
| cfilucfil2 24476 | Given a metric ` D ` and a... |
| blval2 24477 | The ball around a point ` ... |
| elbl4 24478 | Membership in a ball, alte... |
| metuel 24479 | Elementhood in the uniform... |
| metuel2 24480 | Elementhood in the uniform... |
| metustbl 24481 | The "section" image of an ... |
| psmetutop 24482 | The topology induced by a ... |
| xmetutop 24483 | The topology induced by a ... |
| xmsusp 24484 | If the uniform set of a me... |
| restmetu 24485 | The uniform structure gene... |
| metucn 24486 | Uniform continuity in metr... |
| dscmet 24487 | The discrete metric on any... |
| dscopn 24488 | The discrete metric genera... |
| nrmmetd 24489 | Show that a group norm gen... |
| abvmet 24490 | An absolute value ` F ` ge... |
| nmfval 24503 | The value of the norm func... |
| nmval 24504 | The value of the norm as t... |
| nmfval0 24505 | The value of the norm func... |
| nmfval2 24506 | The value of the norm func... |
| nmval2 24507 | The value of the norm on a... |
| nmf2 24508 | The norm on a metric group... |
| nmpropd 24509 | Weak property deduction fo... |
| nmpropd2 24510 | Strong property deduction ... |
| isngp 24511 | The property of being a no... |
| isngp2 24512 | The property of being a no... |
| isngp3 24513 | The property of being a no... |
| ngpgrp 24514 | A normed group is a group.... |
| ngpms 24515 | A normed group is a metric... |
| ngpxms 24516 | A normed group is an exten... |
| ngptps 24517 | A normed group is a topolo... |
| ngpmet 24518 | The (induced) metric of a ... |
| ngpds 24519 | Value of the distance func... |
| ngpdsr 24520 | Value of the distance func... |
| ngpds2 24521 | Write the distance between... |
| ngpds2r 24522 | Write the distance between... |
| ngpds3 24523 | Write the distance between... |
| ngpds3r 24524 | Write the distance between... |
| ngprcan 24525 | Cancel right addition insi... |
| ngplcan 24526 | Cancel left addition insid... |
| isngp4 24527 | Express the property of be... |
| ngpinvds 24528 | Two elements are the same ... |
| ngpsubcan 24529 | Cancel right subtraction i... |
| nmf 24530 | The norm on a normed group... |
| nmcl 24531 | The norm of a normed group... |
| nmge0 24532 | The norm of a normed group... |
| nmeq0 24533 | The identity is the only e... |
| nmne0 24534 | The norm of a nonzero elem... |
| nmrpcl 24535 | The norm of a nonzero elem... |
| nminv 24536 | The norm of a negated elem... |
| nmmtri 24537 | The triangle inequality fo... |
| nmsub 24538 | The norm of the difference... |
| nmrtri 24539 | Reverse triangle inequalit... |
| nm2dif 24540 | Inequality for the differe... |
| nmtri 24541 | The triangle inequality fo... |
| nmtri2 24542 | Triangle inequality for th... |
| ngpi 24543 | The properties of a normed... |
| nm0 24544 | Norm of the identity eleme... |
| nmgt0 24545 | The norm of a nonzero elem... |
| sgrim 24546 | The induced metric on a su... |
| sgrimval 24547 | The induced metric on a su... |
| subgnm 24548 | The norm in a subgroup. (... |
| subgnm2 24549 | A substructure assigns the... |
| subgngp 24550 | A normed group restricted ... |
| ngptgp 24551 | A normed abelian group is ... |
| ngppropd 24552 | Property deduction for a n... |
| reldmtng 24553 | The function ` toNrmGrp ` ... |
| tngval 24554 | Value of the function whic... |
| tnglem 24555 | Lemma for ~ tngbas and sim... |
| tngbas 24556 | The base set of a structur... |
| tngplusg 24557 | The group addition of a st... |
| tng0 24558 | The group identity of a st... |
| tngmulr 24559 | The ring multiplication of... |
| tngsca 24560 | The scalar ring of a struc... |
| tngvsca 24561 | The scalar multiplication ... |
| tngip 24562 | The inner product operatio... |
| tngds 24563 | The metric function of a s... |
| tngtset 24564 | The topology generated by ... |
| tngtopn 24565 | The topology generated by ... |
| tngnm 24566 | The topology generated by ... |
| tngngp2 24567 | A norm turns a group into ... |
| tngngpd 24568 | Derive the axioms for a no... |
| tngngp 24569 | Derive the axioms for a no... |
| tnggrpr 24570 | If a structure equipped wi... |
| tngngp3 24571 | Alternate definition of a ... |
| nrmtngdist 24572 | The augmentation of a norm... |
| nrmtngnrm 24573 | The augmentation of a norm... |
| tngngpim 24574 | The induced metric of a no... |
| isnrg 24575 | A normed ring is a ring wi... |
| nrgabv 24576 | The norm of a normed ring ... |
| nrgngp 24577 | A normed ring is a normed ... |
| nrgring 24578 | A normed ring is a ring. ... |
| nmmul 24579 | The norm of a product in a... |
| nrgdsdi 24580 | Distribute a distance calc... |
| nrgdsdir 24581 | Distribute a distance calc... |
| nm1 24582 | The norm of one in a nonze... |
| unitnmn0 24583 | The norm of a unit is nonz... |
| nminvr 24584 | The norm of an inverse in ... |
| nmdvr 24585 | The norm of a division in ... |
| nrgdomn 24586 | A nonzero normed ring is a... |
| nrgtgp 24587 | A normed ring is a topolog... |
| subrgnrg 24588 | A normed ring restricted t... |
| tngnrg 24589 | Given any absolute value o... |
| isnlm 24590 | A normed (left) module is ... |
| nmvs 24591 | Defining property of a nor... |
| nlmngp 24592 | A normed module is a norme... |
| nlmlmod 24593 | A normed module is a left ... |
| nlmnrg 24594 | The scalar component of a ... |
| nlmngp2 24595 | The scalar component of a ... |
| nlmdsdi 24596 | Distribute a distance calc... |
| nlmdsdir 24597 | Distribute a distance calc... |
| nlmmul0or 24598 | If a scalar product is zer... |
| sranlm 24599 | The subring algebra over a... |
| nlmvscnlem2 24600 | Lemma for ~ nlmvscn . Com... |
| nlmvscnlem1 24601 | Lemma for ~ nlmvscn . (Co... |
| nlmvscn 24602 | The scalar multiplication ... |
| rlmnlm 24603 | The ring module over a nor... |
| rlmnm 24604 | The norm function in the r... |
| nrgtrg 24605 | A normed ring is a topolog... |
| nrginvrcnlem 24606 | Lemma for ~ nrginvrcn . C... |
| nrginvrcn 24607 | The ring inverse function ... |
| nrgtdrg 24608 | A normed division ring is ... |
| nlmtlm 24609 | A normed module is a topol... |
| isnvc 24610 | A normed vector space is j... |
| nvcnlm 24611 | A normed vector space is a... |
| nvclvec 24612 | A normed vector space is a... |
| nvclmod 24613 | A normed vector space is a... |
| isnvc2 24614 | A normed vector space is j... |
| nvctvc 24615 | A normed vector space is a... |
| lssnlm 24616 | A subspace of a normed mod... |
| lssnvc 24617 | A subspace of a normed vec... |
| rlmnvc 24618 | The ring module over a nor... |
| ngpocelbl 24619 | Membership of an off-cente... |
| nmoffn 24626 | The function producing ope... |
| reldmnghm 24627 | Lemma for normed group hom... |
| reldmnmhm 24628 | Lemma for module homomorph... |
| nmofval 24629 | Value of the operator norm... |
| nmoval 24630 | Value of the operator norm... |
| nmogelb 24631 | Property of the operator n... |
| nmolb 24632 | Any upper bound on the val... |
| nmolb2d 24633 | Any upper bound on the val... |
| nmof 24634 | The operator norm is a fun... |
| nmocl 24635 | The operator norm of an op... |
| nmoge0 24636 | The operator norm of an op... |
| nghmfval 24637 | A normed group homomorphis... |
| isnghm 24638 | A normed group homomorphis... |
| isnghm2 24639 | A normed group homomorphis... |
| isnghm3 24640 | A normed group homomorphis... |
| bddnghm 24641 | A bounded group homomorphi... |
| nghmcl 24642 | A normed group homomorphis... |
| nmoi 24643 | The operator norm achieves... |
| nmoix 24644 | The operator norm is a bou... |
| nmoi2 24645 | The operator norm is a bou... |
| nmoleub 24646 | The operator norm, defined... |
| nghmrcl1 24647 | Reverse closure for a norm... |
| nghmrcl2 24648 | Reverse closure for a norm... |
| nghmghm 24649 | A normed group homomorphis... |
| nmo0 24650 | The operator norm of the z... |
| nmoeq0 24651 | The operator norm is zero ... |
| nmoco 24652 | An upper bound on the oper... |
| nghmco 24653 | The composition of normed ... |
| nmotri 24654 | Triangle inequality for th... |
| nghmplusg 24655 | The sum of two bounded lin... |
| 0nghm 24656 | The zero operator is a nor... |
| nmoid 24657 | The operator norm of the i... |
| idnghm 24658 | The identity operator is a... |
| nmods 24659 | Upper bound for the distan... |
| nghmcn 24660 | A normed group homomorphis... |
| isnmhm 24661 | A normed module homomorphi... |
| nmhmrcl1 24662 | Reverse closure for a norm... |
| nmhmrcl2 24663 | Reverse closure for a norm... |
| nmhmlmhm 24664 | A normed module homomorphi... |
| nmhmnghm 24665 | A normed module homomorphi... |
| nmhmghm 24666 | A normed module homomorphi... |
| isnmhm2 24667 | A normed module homomorphi... |
| nmhmcl 24668 | A normed module homomorphi... |
| idnmhm 24669 | The identity operator is a... |
| 0nmhm 24670 | The zero operator is a bou... |
| nmhmco 24671 | The composition of bounded... |
| nmhmplusg 24672 | The sum of two bounded lin... |
| qtopbaslem 24673 | The set of open intervals ... |
| qtopbas 24674 | The set of open intervals ... |
| retopbas 24675 | A basis for the standard t... |
| retop 24676 | The standard topology on t... |
| uniretop 24677 | The underlying set of the ... |
| retopon 24678 | The standard topology on t... |
| retps 24679 | The standard topological s... |
| iooretop 24680 | Open intervals are open se... |
| icccld 24681 | Closed intervals are close... |
| icopnfcld 24682 | Right-unbounded closed int... |
| iocmnfcld 24683 | Left-unbounded closed inte... |
| qdensere 24684 | ` QQ ` is dense in the sta... |
| cnmetdval 24685 | Value of the distance func... |
| cnmet 24686 | The absolute value metric ... |
| cnxmet 24687 | The absolute value metric ... |
| cnbl0 24688 | Two ways to write the open... |
| cnblcld 24689 | Two ways to write the clos... |
| cnfldms 24690 | The complex number field i... |
| cnfldxms 24691 | The complex number field i... |
| cnfldtps 24692 | The complex number field i... |
| cnfldnm 24693 | The norm of the field of c... |
| cnngp 24694 | The complex numbers form a... |
| cnnrg 24695 | The complex numbers form a... |
| cnfldtopn 24696 | The topology of the comple... |
| cnfldtopon 24697 | The topology of the comple... |
| cnfldtop 24698 | The topology of the comple... |
| cnfldhaus 24699 | The topology of the comple... |
| unicntop 24700 | The underlying set of the ... |
| cnopn 24701 | The set of complex numbers... |
| cnn0opn 24702 | The set of nonzero complex... |
| zringnrg 24703 | The ring of integers is a ... |
| remetdval 24704 | Value of the distance func... |
| remet 24705 | The absolute value metric ... |
| rexmet 24706 | The absolute value metric ... |
| bl2ioo 24707 | A ball in terms of an open... |
| ioo2bl 24708 | An open interval of reals ... |
| ioo2blex 24709 | An open interval of reals ... |
| blssioo 24710 | The balls of the standard ... |
| tgioo 24711 | The topology generated by ... |
| qdensere2 24712 | ` QQ ` is dense in ` RR ` ... |
| blcvx 24713 | An open ball in the comple... |
| rehaus 24714 | The standard topology on t... |
| tgqioo 24715 | The topology generated by ... |
| re2ndc 24716 | The standard topology on t... |
| resubmet 24717 | The subspace topology indu... |
| tgioo2 24718 | The standard topology on t... |
| rerest 24719 | The subspace topology indu... |
| tgioo4 24720 | The standard topology on t... |
| tgioo3 24721 | The standard topology on t... |
| xrtgioo 24722 | The topology on the extend... |
| xrrest 24723 | The subspace topology indu... |
| xrrest2 24724 | The subspace topology indu... |
| xrsxmet 24725 | The metric on the extended... |
| xrsdsre 24726 | The metric on the extended... |
| xrsblre 24727 | Any ball of the metric of ... |
| xrsmopn 24728 | The metric on the extended... |
| zcld 24729 | The integers are a closed ... |
| recld2 24730 | The real numbers are a clo... |
| zcld2 24731 | The integers are a closed ... |
| zdis 24732 | The integers are a discret... |
| sszcld 24733 | Every subset of the intege... |
| reperflem 24734 | A subset of the real numbe... |
| reperf 24735 | The real numbers are a per... |
| cnperf 24736 | The complex numbers are a ... |
| iccntr 24737 | The interior of a closed i... |
| icccmplem1 24738 | Lemma for ~ icccmp . (Con... |
| icccmplem2 24739 | Lemma for ~ icccmp . (Con... |
| icccmplem3 24740 | Lemma for ~ icccmp . (Con... |
| icccmp 24741 | A closed interval in ` RR ... |
| reconnlem1 24742 | Lemma for ~ reconn . Conn... |
| reconnlem2 24743 | Lemma for ~ reconn . (Con... |
| reconn 24744 | A subset of the reals is c... |
| retopconn 24745 | Corollary of ~ reconn . T... |
| iccconn 24746 | A closed interval is conne... |
| opnreen 24747 | Every nonempty open set is... |
| rectbntr0 24748 | A countable subset of the ... |
| xrge0gsumle 24749 | A finite sum in the nonneg... |
| xrge0tsms 24750 | Any finite or infinite sum... |
| xrge0tsms2 24751 | Any finite or infinite sum... |
| metdcnlem 24752 | The metric function of a m... |
| xmetdcn2 24753 | The metric function of an ... |
| xmetdcn 24754 | The metric function of an ... |
| metdcn2 24755 | The metric function of a m... |
| metdcn 24756 | The metric function of a m... |
| msdcn 24757 | The metric function of a m... |
| cnmpt1ds 24758 | Continuity of the metric f... |
| cnmpt2ds 24759 | Continuity of the metric f... |
| nmcn 24760 | The norm of a normed group... |
| ngnmcncn 24761 | The norm of a normed group... |
| abscn 24762 | The absolute value functio... |
| metdsval 24763 | Value of the "distance to ... |
| metdsf 24764 | The distance from a point ... |
| metdsge 24765 | The distance from the poin... |
| metds0 24766 | If a point is in a set, it... |
| metdstri 24767 | A generalization of the tr... |
| metdsle 24768 | The distance from a point ... |
| metdsre 24769 | The distance from a point ... |
| metdseq0 24770 | The distance from a point ... |
| metdscnlem 24771 | Lemma for ~ metdscn . (Co... |
| metdscn 24772 | The function ` F ` which g... |
| metdscn2 24773 | The function ` F ` which g... |
| metnrmlem1a 24774 | Lemma for ~ metnrm . (Con... |
| metnrmlem1 24775 | Lemma for ~ metnrm . (Con... |
| metnrmlem2 24776 | Lemma for ~ metnrm . (Con... |
| metnrmlem3 24777 | Lemma for ~ metnrm . (Con... |
| metnrm 24778 | A metric space is normal. ... |
| metreg 24779 | A metric space is regular.... |
| addcnlem 24780 | Lemma for ~ addcn , ~ subc... |
| addcn 24781 | Complex number addition is... |
| subcn 24782 | Complex number subtraction... |
| mulcn 24783 | Complex number multiplicat... |
| divcnOLD 24784 | Obsolete version of ~ divc... |
| mpomulcn 24785 | Complex number multiplicat... |
| divcn 24786 | Complex number division is... |
| cnfldtgp 24787 | The complex numbers form a... |
| fsumcn 24788 | A finite sum of functions ... |
| fsum2cn 24789 | Version of ~ fsumcn for tw... |
| expcn 24790 | The power function on comp... |
| divccn 24791 | Division by a nonzero cons... |
| expcnOLD 24792 | Obsolete version of ~ expc... |
| divccnOLD 24793 | Obsolete version of ~ divc... |
| sqcn 24794 | The square function on com... |
| iitopon 24799 | The unit interval is a top... |
| iitop 24800 | The unit interval is a top... |
| iiuni 24801 | The base set of the unit i... |
| dfii2 24802 | Alternate definition of th... |
| dfii3 24803 | Alternate definition of th... |
| dfii4 24804 | Alternate definition of th... |
| dfii5 24805 | The unit interval expresse... |
| iicmp 24806 | The unit interval is compa... |
| iiconn 24807 | The unit interval is conne... |
| cncfval 24808 | The value of the continuou... |
| elcncf 24809 | Membership in the set of c... |
| elcncf2 24810 | Version of ~ elcncf with a... |
| cncfrss 24811 | Reverse closure of the con... |
| cncfrss2 24812 | Reverse closure of the con... |
| cncff 24813 | A continuous complex funct... |
| cncfi 24814 | Defining property of a con... |
| elcncf1di 24815 | Membership in the set of c... |
| elcncf1ii 24816 | Membership in the set of c... |
| rescncf 24817 | A continuous complex funct... |
| cncfcdm 24818 | Change the codomain of a c... |
| cncfss 24819 | The set of continuous func... |
| climcncf 24820 | Image of a limit under a c... |
| abscncf 24821 | Absolute value is continuo... |
| recncf 24822 | Real part is continuous. ... |
| imcncf 24823 | Imaginary part is continuo... |
| cjcncf 24824 | Complex conjugate is conti... |
| mulc1cncf 24825 | Multiplication by a consta... |
| divccncf 24826 | Division by a constant is ... |
| cncfco 24827 | The composition of two con... |
| cncfcompt2 24828 | Composition of continuous ... |
| cncfmet 24829 | Relate complex function co... |
| cncfcn 24830 | Relate complex function co... |
| cncfcn1 24831 | Relate complex function co... |
| cncfmptc 24832 | A constant function is a c... |
| cncfmptid 24833 | The identity function is a... |
| cncfmpt1f 24834 | Composition of continuous ... |
| cncfmpt2f 24835 | Composition of continuous ... |
| cncfmpt2ss 24836 | Composition of continuous ... |
| addccncf 24837 | Adding a constant is a con... |
| idcncf 24838 | The identity function is a... |
| sub1cncf 24839 | Subtracting a constant is ... |
| sub2cncf 24840 | Subtraction from a constan... |
| cdivcncf 24841 | Division with a constant n... |
| negcncf 24842 | The negative function is c... |
| negcncfOLD 24843 | Obsolete version of ~ negc... |
| negfcncf 24844 | The negative of a continuo... |
| abscncfALT 24845 | Absolute value is continuo... |
| cncfcnvcn 24846 | Rewrite ~ cmphaushmeo for ... |
| expcncf 24847 | The power function on comp... |
| cnmptre 24848 | Lemma for ~ iirevcn and re... |
| cnmpopc 24849 | Piecewise definition of a ... |
| iirev 24850 | Reverse the unit interval.... |
| iirevcn 24851 | The reversion function is ... |
| iihalf1 24852 | Map the first half of ` II... |
| iihalf1cn 24853 | The first half function is... |
| iihalf1cnOLD 24854 | Obsolete version of ~ iiha... |
| iihalf2 24855 | Map the second half of ` I... |
| iihalf2cn 24856 | The second half function i... |
| iihalf2cnOLD 24857 | Obsolete version of ~ iiha... |
| elii1 24858 | Divide the unit interval i... |
| elii2 24859 | Divide the unit interval i... |
| iimulcl 24860 | The unit interval is close... |
| iimulcn 24861 | Multiplication is a contin... |
| iimulcnOLD 24862 | Obsolete version of ~ iimu... |
| icoopnst 24863 | A half-open interval start... |
| iocopnst 24864 | A half-open interval endin... |
| icchmeo 24865 | The natural bijection from... |
| icchmeoOLD 24866 | Obsolete version of ~ icch... |
| icopnfcnv 24867 | Define a bijection from ` ... |
| icopnfhmeo 24868 | The defined bijection from... |
| iccpnfcnv 24869 | Define a bijection from ` ... |
| iccpnfhmeo 24870 | The defined bijection from... |
| xrhmeo 24871 | The bijection from ` [ -u ... |
| xrhmph 24872 | The extended reals are hom... |
| xrcmp 24873 | The topology of the extend... |
| xrconn 24874 | The topology of the extend... |
| icccvx 24875 | A linear combination of tw... |
| oprpiece1res1 24876 | Restriction to the first p... |
| oprpiece1res2 24877 | Restriction to the second ... |
| cnrehmeo 24878 | The canonical bijection fr... |
| cnrehmeoOLD 24879 | Obsolete version of ~ cnre... |
| cnheiborlem 24880 | Lemma for ~ cnheibor . (C... |
| cnheibor 24881 | Heine-Borel theorem for co... |
| cnllycmp 24882 | The topology on the comple... |
| rellycmp 24883 | The topology on the reals ... |
| bndth 24884 | The Boundedness Theorem. ... |
| evth 24885 | The Extreme Value Theorem.... |
| evth2 24886 | The Extreme Value Theorem,... |
| lebnumlem1 24887 | Lemma for ~ lebnum . The ... |
| lebnumlem2 24888 | Lemma for ~ lebnum . As a... |
| lebnumlem3 24889 | Lemma for ~ lebnum . By t... |
| lebnum 24890 | The Lebesgue number lemma,... |
| xlebnum 24891 | Generalize ~ lebnum to ext... |
| lebnumii 24892 | Specialize the Lebesgue nu... |
| ishtpy 24898 | Membership in the class of... |
| htpycn 24899 | A homotopy is a continuous... |
| htpyi 24900 | A homotopy evaluated at it... |
| ishtpyd 24901 | Deduction for membership i... |
| htpycom 24902 | Given a homotopy from ` F ... |
| htpyid 24903 | A homotopy from a function... |
| htpyco1 24904 | Compose a homotopy with a ... |
| htpyco2 24905 | Compose a homotopy with a ... |
| htpycc 24906 | Concatenate two homotopies... |
| isphtpy 24907 | Membership in the class of... |
| phtpyhtpy 24908 | A path homotopy is a homot... |
| phtpycn 24909 | A path homotopy is a conti... |
| phtpyi 24910 | Membership in the class of... |
| phtpy01 24911 | Two path-homotopic paths h... |
| isphtpyd 24912 | Deduction for membership i... |
| isphtpy2d 24913 | Deduction for membership i... |
| phtpycom 24914 | Given a homotopy from ` F ... |
| phtpyid 24915 | A homotopy from a path to ... |
| phtpyco2 24916 | Compose a path homotopy wi... |
| phtpycc 24917 | Concatenate two path homot... |
| phtpcrel 24919 | The path homotopy relation... |
| isphtpc 24920 | The relation "is path homo... |
| phtpcer 24921 | Path homotopy is an equiva... |
| phtpc01 24922 | Path homotopic paths have ... |
| reparphti 24923 | Lemma for ~ reparpht . (C... |
| reparphtiOLD 24924 | Obsolete version of ~ repa... |
| reparpht 24925 | Reparametrization lemma. ... |
| phtpcco2 24926 | Compose a path homotopy wi... |
| pcofval 24937 | The value of the path conc... |
| pcoval 24938 | The concatenation of two p... |
| pcovalg 24939 | Evaluate the concatenation... |
| pcoval1 24940 | Evaluate the concatenation... |
| pco0 24941 | The starting point of a pa... |
| pco1 24942 | The ending point of a path... |
| pcoval2 24943 | Evaluate the concatenation... |
| pcocn 24944 | The concatenation of two p... |
| copco 24945 | The composition of a conca... |
| pcohtpylem 24946 | Lemma for ~ pcohtpy . (Co... |
| pcohtpy 24947 | Homotopy invariance of pat... |
| pcoptcl 24948 | A constant function is a p... |
| pcopt 24949 | Concatenation with a point... |
| pcopt2 24950 | Concatenation with a point... |
| pcoass 24951 | Order of concatenation doe... |
| pcorevcl 24952 | Closure for a reversed pat... |
| pcorevlem 24953 | Lemma for ~ pcorev . Prov... |
| pcorev 24954 | Concatenation with the rev... |
| pcorev2 24955 | Concatenation with the rev... |
| pcophtb 24956 | The path homotopy equivale... |
| om1val 24957 | The definition of the loop... |
| om1bas 24958 | The base set of the loop s... |
| om1elbas 24959 | Elementhood in the base se... |
| om1addcl 24960 | Closure of the group opera... |
| om1plusg 24961 | The group operation (which... |
| om1tset 24962 | The topology of the loop s... |
| om1opn 24963 | The topology of the loop s... |
| pi1val 24964 | The definition of the fund... |
| pi1bas 24965 | The base set of the fundam... |
| pi1blem 24966 | Lemma for ~ pi1buni . (Co... |
| pi1buni 24967 | Another way to write the l... |
| pi1bas2 24968 | The base set of the fundam... |
| pi1eluni 24969 | Elementhood in the base se... |
| pi1bas3 24970 | The base set of the fundam... |
| pi1cpbl 24971 | The group operation, loop ... |
| elpi1 24972 | The elements of the fundam... |
| elpi1i 24973 | The elements of the fundam... |
| pi1addf 24974 | The group operation of ` p... |
| pi1addval 24975 | The concatenation of two p... |
| pi1grplem 24976 | Lemma for ~ pi1grp . (Con... |
| pi1grp 24977 | The fundamental group is a... |
| pi1id 24978 | The identity element of th... |
| pi1inv 24979 | An inverse in the fundamen... |
| pi1xfrf 24980 | Functionality of the loop ... |
| pi1xfrval 24981 | The value of the loop tran... |
| pi1xfr 24982 | Given a path ` F ` and its... |
| pi1xfrcnvlem 24983 | Given a path ` F ` between... |
| pi1xfrcnv 24984 | Given a path ` F ` between... |
| pi1xfrgim 24985 | The mapping ` G ` between ... |
| pi1cof 24986 | Functionality of the loop ... |
| pi1coval 24987 | The value of the loop tran... |
| pi1coghm 24988 | The mapping ` G ` between ... |
| isclm 24991 | A subcomplex module is a l... |
| clmsca 24992 | The ring of scalars ` F ` ... |
| clmsubrg 24993 | The base set of the ring o... |
| clmlmod 24994 | A subcomplex module is a l... |
| clmgrp 24995 | A subcomplex module is an ... |
| clmabl 24996 | A subcomplex module is an ... |
| clmring 24997 | The scalar ring of a subco... |
| clmfgrp 24998 | The scalar ring of a subco... |
| clm0 24999 | The zero of the scalar rin... |
| clm1 25000 | The identity of the scalar... |
| clmadd 25001 | The addition of the scalar... |
| clmmul 25002 | The multiplication of the ... |
| clmcj 25003 | The conjugation of the sca... |
| isclmi 25004 | Reverse direction of ~ isc... |
| clmzss 25005 | The scalar ring of a subco... |
| clmsscn 25006 | The scalar ring of a subco... |
| clmsub 25007 | Subtraction in the scalar ... |
| clmneg 25008 | Negation in the scalar rin... |
| clmneg1 25009 | Minus one is in the scalar... |
| clmabs 25010 | Norm in the scalar ring of... |
| clmacl 25011 | Closure of ring addition f... |
| clmmcl 25012 | Closure of ring multiplica... |
| clmsubcl 25013 | Closure of ring subtractio... |
| lmhmclm 25014 | The domain of a linear ope... |
| clmvscl 25015 | Closure of scalar product ... |
| clmvsass 25016 | Associative law for scalar... |
| clmvscom 25017 | Commutative law for the sc... |
| clmvsdir 25018 | Distributive law for scala... |
| clmvsdi 25019 | Distributive law for scala... |
| clmvs1 25020 | Scalar product with ring u... |
| clmvs2 25021 | A vector plus itself is tw... |
| clm0vs 25022 | Zero times a vector is the... |
| clmopfne 25023 | The (functionalized) opera... |
| isclmp 25024 | The predicate "is a subcom... |
| isclmi0 25025 | Properties that determine ... |
| clmvneg1 25026 | Minus 1 times a vector is ... |
| clmvsneg 25027 | Multiplication of a vector... |
| clmmulg 25028 | The group multiple functio... |
| clmsubdir 25029 | Scalar multiplication dist... |
| clmpm1dir 25030 | Subtractive distributive l... |
| clmnegneg 25031 | Double negative of a vecto... |
| clmnegsubdi2 25032 | Distribution of negative o... |
| clmsub4 25033 | Rearrangement of 4 terms i... |
| clmvsrinv 25034 | A vector minus itself. (C... |
| clmvslinv 25035 | Minus a vector plus itself... |
| clmvsubval 25036 | Value of vector subtractio... |
| clmvsubval2 25037 | Value of vector subtractio... |
| clmvz 25038 | Two ways to express the ne... |
| zlmclm 25039 | The ` ZZ ` -module operati... |
| clmzlmvsca 25040 | The scalar product of a su... |
| nmoleub2lem 25041 | Lemma for ~ nmoleub2a and ... |
| nmoleub2lem3 25042 | Lemma for ~ nmoleub2a and ... |
| nmoleub2lem2 25043 | Lemma for ~ nmoleub2a and ... |
| nmoleub2a 25044 | The operator norm is the s... |
| nmoleub2b 25045 | The operator norm is the s... |
| nmoleub3 25046 | The operator norm is the s... |
| nmhmcn 25047 | A linear operator over a n... |
| cmodscexp 25048 | The powers of ` _i ` belon... |
| cmodscmulexp 25049 | The scalar product of a ve... |
| cvslvec 25052 | A subcomplex vector space ... |
| cvsclm 25053 | A subcomplex vector space ... |
| iscvs 25054 | A subcomplex vector space ... |
| iscvsp 25055 | The predicate "is a subcom... |
| iscvsi 25056 | Properties that determine ... |
| cvsi 25057 | The properties of a subcom... |
| cvsunit 25058 | Unit group of the scalar r... |
| cvsdiv 25059 | Division of the scalar rin... |
| cvsdivcl 25060 | The scalar field of a subc... |
| cvsmuleqdivd 25061 | An equality involving rati... |
| cvsdiveqd 25062 | An equality involving rati... |
| cnlmodlem1 25063 | Lemma 1 for ~ cnlmod . (C... |
| cnlmodlem2 25064 | Lemma 2 for ~ cnlmod . (C... |
| cnlmodlem3 25065 | Lemma 3 for ~ cnlmod . (C... |
| cnlmod4 25066 | Lemma 4 for ~ cnlmod . (C... |
| cnlmod 25067 | The set of complex numbers... |
| cnstrcvs 25068 | The set of complex numbers... |
| cnrbas 25069 | The set of complex numbers... |
| cnrlmod 25070 | The complex left module of... |
| cnrlvec 25071 | The complex left module of... |
| cncvs 25072 | The complex left module of... |
| recvs 25073 | The field of the real numb... |
| qcvs 25074 | The field of rational numb... |
| zclmncvs 25075 | The ring of integers as le... |
| isncvsngp 25076 | A normed subcomplex vector... |
| isncvsngpd 25077 | Properties that determine ... |
| ncvsi 25078 | The properties of a normed... |
| ncvsprp 25079 | Proportionality property o... |
| ncvsge0 25080 | The norm of a scalar produ... |
| ncvsm1 25081 | The norm of the opposite o... |
| ncvsdif 25082 | The norm of the difference... |
| ncvspi 25083 | The norm of a vector plus ... |
| ncvs1 25084 | From any nonzero vector of... |
| cnrnvc 25085 | The module of complex numb... |
| cnncvs 25086 | The module of complex numb... |
| cnnm 25087 | The norm of the normed sub... |
| ncvspds 25088 | Value of the distance func... |
| cnindmet 25089 | The metric induced on the ... |
| cnncvsaddassdemo 25090 | Derive the associative law... |
| cnncvsmulassdemo 25091 | Derive the associative law... |
| cnncvsabsnegdemo 25092 | Derive the absolute value ... |
| iscph 25097 | A subcomplex pre-Hilbert s... |
| cphphl 25098 | A subcomplex pre-Hilbert s... |
| cphnlm 25099 | A subcomplex pre-Hilbert s... |
| cphngp 25100 | A subcomplex pre-Hilbert s... |
| cphlmod 25101 | A subcomplex pre-Hilbert s... |
| cphlvec 25102 | A subcomplex pre-Hilbert s... |
| cphnvc 25103 | A subcomplex pre-Hilbert s... |
| cphsubrglem 25104 | Lemma for ~ cphsubrg . (C... |
| cphreccllem 25105 | Lemma for ~ cphreccl . (C... |
| cphsca 25106 | A subcomplex pre-Hilbert s... |
| cphsubrg 25107 | The scalar field of a subc... |
| cphreccl 25108 | The scalar field of a subc... |
| cphdivcl 25109 | The scalar field of a subc... |
| cphcjcl 25110 | The scalar field of a subc... |
| cphsqrtcl 25111 | The scalar field of a subc... |
| cphabscl 25112 | The scalar field of a subc... |
| cphsqrtcl2 25113 | The scalar field of a subc... |
| cphsqrtcl3 25114 | If the scalar field of a s... |
| cphqss 25115 | The scalar field of a subc... |
| cphclm 25116 | A subcomplex pre-Hilbert s... |
| cphnmvs 25117 | Norm of a scalar product. ... |
| cphipcl 25118 | An inner product is a memb... |
| cphnmfval 25119 | The value of the norm in a... |
| cphnm 25120 | The square of the norm is ... |
| nmsq 25121 | The square of the norm is ... |
| cphnmf 25122 | The norm of a vector is a ... |
| cphnmcl 25123 | The norm of a vector is a ... |
| reipcl 25124 | An inner product of an ele... |
| ipge0 25125 | The inner product in a sub... |
| cphipcj 25126 | Conjugate of an inner prod... |
| cphipipcj 25127 | An inner product times its... |
| cphorthcom 25128 | Orthogonality (meaning inn... |
| cphip0l 25129 | Inner product with a zero ... |
| cphip0r 25130 | Inner product with a zero ... |
| cphipeq0 25131 | The inner product of a vec... |
| cphdir 25132 | Distributive law for inner... |
| cphdi 25133 | Distributive law for inner... |
| cph2di 25134 | Distributive law for inner... |
| cphsubdir 25135 | Distributive law for inner... |
| cphsubdi 25136 | Distributive law for inner... |
| cph2subdi 25137 | Distributive law for inner... |
| cphass 25138 | Associative law for inner ... |
| cphassr 25139 | "Associative" law for seco... |
| cph2ass 25140 | Move scalar multiplication... |
| cphassi 25141 | Associative law for the fi... |
| cphassir 25142 | "Associative" law for the ... |
| cphpyth 25143 | The pythagorean theorem fo... |
| tcphex 25144 | Lemma for ~ tcphbas and si... |
| tcphval 25145 | Define a function to augme... |
| tcphbas 25146 | The base set of a subcompl... |
| tchplusg 25147 | The addition operation of ... |
| tcphsub 25148 | The subtraction operation ... |
| tcphmulr 25149 | The ring operation of a su... |
| tcphsca 25150 | The scalar field of a subc... |
| tcphvsca 25151 | The scalar multiplication ... |
| tcphip 25152 | The inner product of a sub... |
| tcphtopn 25153 | The topology of a subcompl... |
| tcphphl 25154 | Augmentation of a subcompl... |
| tchnmfval 25155 | The norm of a subcomplex p... |
| tcphnmval 25156 | The norm of a subcomplex p... |
| cphtcphnm 25157 | The norm of a norm-augment... |
| tcphds 25158 | The distance of a pre-Hilb... |
| phclm 25159 | A pre-Hilbert space whose ... |
| tcphcphlem3 25160 | Lemma for ~ tcphcph : real... |
| ipcau2 25161 | The Cauchy-Schwarz inequal... |
| tcphcphlem1 25162 | Lemma for ~ tcphcph : the ... |
| tcphcphlem2 25163 | Lemma for ~ tcphcph : homo... |
| tcphcph 25164 | The standard definition of... |
| ipcau 25165 | The Cauchy-Schwarz inequal... |
| nmparlem 25166 | Lemma for ~ nmpar . (Cont... |
| nmpar 25167 | A subcomplex pre-Hilbert s... |
| cphipval2 25168 | Value of the inner product... |
| 4cphipval2 25169 | Four times the inner produ... |
| cphipval 25170 | Value of the inner product... |
| ipcnlem2 25171 | The inner product operatio... |
| ipcnlem1 25172 | The inner product operatio... |
| ipcn 25173 | The inner product operatio... |
| cnmpt1ip 25174 | Continuity of inner produc... |
| cnmpt2ip 25175 | Continuity of inner produc... |
| csscld 25176 | A "closed subspace" in a s... |
| clsocv 25177 | The orthogonal complement ... |
| cphsscph 25178 | A subspace of a subcomplex... |
| lmmbr 25185 | Express the binary relatio... |
| lmmbr2 25186 | Express the binary relatio... |
| lmmbr3 25187 | Express the binary relatio... |
| lmmcvg 25188 | Convergence property of a ... |
| lmmbrf 25189 | Express the binary relatio... |
| lmnn 25190 | A condition that implies c... |
| cfilfval 25191 | The set of Cauchy filters ... |
| iscfil 25192 | The property of being a Ca... |
| iscfil2 25193 | The property of being a Ca... |
| cfilfil 25194 | A Cauchy filter is a filte... |
| cfili 25195 | Property of a Cauchy filte... |
| cfil3i 25196 | A Cauchy filter contains b... |
| cfilss 25197 | A filter finer than a Cauc... |
| fgcfil 25198 | The Cauchy filter conditio... |
| fmcfil 25199 | The Cauchy filter conditio... |
| iscfil3 25200 | A filter is Cauchy iff it ... |
| cfilfcls 25201 | Similar to ultrafilters ( ... |
| caufval 25202 | The set of Cauchy sequence... |
| iscau 25203 | Express the property " ` F... |
| iscau2 25204 | Express the property " ` F... |
| iscau3 25205 | Express the Cauchy sequenc... |
| iscau4 25206 | Express the property " ` F... |
| iscauf 25207 | Express the property " ` F... |
| caun0 25208 | A metric with a Cauchy seq... |
| caufpm 25209 | Inclusion of a Cauchy sequ... |
| caucfil 25210 | A Cauchy sequence predicat... |
| iscmet 25211 | The property " ` D ` is a ... |
| cmetcvg 25212 | The convergence of a Cauch... |
| cmetmet 25213 | A complete metric space is... |
| cmetmeti 25214 | A complete metric space is... |
| cmetcaulem 25215 | Lemma for ~ cmetcau . (Co... |
| cmetcau 25216 | The convergence of a Cauch... |
| iscmet3lem3 25217 | Lemma for ~ iscmet3 . (Co... |
| iscmet3lem1 25218 | Lemma for ~ iscmet3 . (Co... |
| iscmet3lem2 25219 | Lemma for ~ iscmet3 . (Co... |
| iscmet3 25220 | The property " ` D ` is a ... |
| iscmet2 25221 | A metric ` D ` is complete... |
| cfilresi 25222 | A Cauchy filter on a metri... |
| cfilres 25223 | Cauchy filter on a metric ... |
| caussi 25224 | Cauchy sequence on a metri... |
| causs 25225 | Cauchy sequence on a metri... |
| equivcfil 25226 | If the metric ` D ` is "st... |
| equivcau 25227 | If the metric ` D ` is "st... |
| lmle 25228 | If the distance from each ... |
| nglmle 25229 | If the norm of each member... |
| lmclim 25230 | Relate a limit on the metr... |
| lmclimf 25231 | Relate a limit on the metr... |
| metelcls 25232 | A point belongs to the clo... |
| metcld 25233 | A subset of a metric space... |
| metcld2 25234 | A subset of a metric space... |
| caubl 25235 | Sufficient condition to en... |
| caublcls 25236 | The convergent point of a ... |
| metcnp4 25237 | Two ways to say a mapping ... |
| metcn4 25238 | Two ways to say a mapping ... |
| iscmet3i 25239 | Properties that determine ... |
| lmcau 25240 | Every convergent sequence ... |
| flimcfil 25241 | Every convergent filter in... |
| metsscmetcld 25242 | A complete subspace of a m... |
| cmetss 25243 | A subspace of a complete m... |
| equivcmet 25244 | If two metrics are strongl... |
| relcmpcmet 25245 | If ` D ` is a metric space... |
| cmpcmet 25246 | A compact metric space is ... |
| cfilucfil3 25247 | Given a metric ` D ` and a... |
| cfilucfil4 25248 | Given a metric ` D ` and a... |
| cncmet 25249 | The set of complex numbers... |
| recmet 25250 | The real numbers are a com... |
| bcthlem1 25251 | Lemma for ~ bcth . Substi... |
| bcthlem2 25252 | Lemma for ~ bcth . The ba... |
| bcthlem3 25253 | Lemma for ~ bcth . The li... |
| bcthlem4 25254 | Lemma for ~ bcth . Given ... |
| bcthlem5 25255 | Lemma for ~ bcth . The pr... |
| bcth 25256 | Baire's Category Theorem. ... |
| bcth2 25257 | Baire's Category Theorem, ... |
| bcth3 25258 | Baire's Category Theorem, ... |
| isbn 25265 | A Banach space is a normed... |
| bnsca 25266 | The scalar field of a Bana... |
| bnnvc 25267 | A Banach space is a normed... |
| bnnlm 25268 | A Banach space is a normed... |
| bnngp 25269 | A Banach space is a normed... |
| bnlmod 25270 | A Banach space is a left m... |
| bncms 25271 | A Banach space is a comple... |
| iscms 25272 | A complete metric space is... |
| cmscmet 25273 | The induced metric on a co... |
| bncmet 25274 | The induced metric on Bana... |
| cmsms 25275 | A complete metric space is... |
| cmspropd 25276 | Property deduction for a c... |
| cmssmscld 25277 | The restriction of a metri... |
| cmsss 25278 | The restriction of a compl... |
| lssbn 25279 | A subspace of a Banach spa... |
| cmetcusp1 25280 | If the uniform set of a co... |
| cmetcusp 25281 | The uniform space generate... |
| cncms 25282 | The field of complex numbe... |
| cnflduss 25283 | The uniform structure of t... |
| cnfldcusp 25284 | The field of complex numbe... |
| resscdrg 25285 | The real numbers are a sub... |
| cncdrg 25286 | The only complete subfield... |
| srabn 25287 | The subring algebra over a... |
| rlmbn 25288 | The ring module over a com... |
| ishl 25289 | The predicate "is a subcom... |
| hlbn 25290 | Every subcomplex Hilbert s... |
| hlcph 25291 | Every subcomplex Hilbert s... |
| hlphl 25292 | Every subcomplex Hilbert s... |
| hlcms 25293 | Every subcomplex Hilbert s... |
| hlprlem 25294 | Lemma for ~ hlpr . (Contr... |
| hlress 25295 | The scalar field of a subc... |
| hlpr 25296 | The scalar field of a subc... |
| ishl2 25297 | A Hilbert space is a compl... |
| cphssphl 25298 | A Banach subspace of a sub... |
| cmslssbn 25299 | A complete linear subspace... |
| cmscsscms 25300 | A closed subspace of a com... |
| bncssbn 25301 | A closed subspace of a Ban... |
| cssbn 25302 | A complete subspace of a n... |
| csschl 25303 | A complete subspace of a c... |
| cmslsschl 25304 | A complete linear subspace... |
| chlcsschl 25305 | A closed subspace of a sub... |
| retopn 25306 | The topology of the real n... |
| recms 25307 | The real numbers form a co... |
| reust 25308 | The Uniform structure of t... |
| recusp 25309 | The real numbers form a co... |
| rrxval 25314 | Value of the generalized E... |
| rrxbase 25315 | The base of the generalize... |
| rrxprds 25316 | Expand the definition of t... |
| rrxip 25317 | The inner product of the g... |
| rrxnm 25318 | The norm of the generalize... |
| rrxcph 25319 | Generalized Euclidean real... |
| rrxds 25320 | The distance over generali... |
| rrxvsca 25321 | The scalar product over ge... |
| rrxplusgvscavalb 25322 | The result of the addition... |
| rrxsca 25323 | The field of real numbers ... |
| rrx0 25324 | The zero ("origin") in a g... |
| rrx0el 25325 | The zero ("origin") in a g... |
| csbren 25326 | Cauchy-Schwarz-Bunjakovsky... |
| trirn 25327 | Triangle inequality in R^n... |
| rrxf 25328 | Euclidean vectors as funct... |
| rrxfsupp 25329 | Euclidean vectors are of f... |
| rrxsuppss 25330 | Support of Euclidean vecto... |
| rrxmvallem 25331 | Support of the function us... |
| rrxmval 25332 | The value of the Euclidean... |
| rrxmfval 25333 | The value of the Euclidean... |
| rrxmetlem 25334 | Lemma for ~ rrxmet . (Con... |
| rrxmet 25335 | Euclidean space is a metri... |
| rrxdstprj1 25336 | The distance between two p... |
| rrxbasefi 25337 | The base of the generalize... |
| rrxdsfi 25338 | The distance over generali... |
| rrxmetfi 25339 | Euclidean space is a metri... |
| rrxdsfival 25340 | The value of the Euclidean... |
| ehlval 25341 | Value of the Euclidean spa... |
| ehlbase 25342 | The base of the Euclidean ... |
| ehl0base 25343 | The base of the Euclidean ... |
| ehl0 25344 | The Euclidean space of dim... |
| ehleudis 25345 | The Euclidean distance fun... |
| ehleudisval 25346 | The value of the Euclidean... |
| ehl1eudis 25347 | The Euclidean distance fun... |
| ehl1eudisval 25348 | The value of the Euclidean... |
| ehl2eudis 25349 | The Euclidean distance fun... |
| ehl2eudisval 25350 | The value of the Euclidean... |
| minveclem1 25351 | Lemma for ~ minvec . The ... |
| minveclem4c 25352 | Lemma for ~ minvec . The ... |
| minveclem2 25353 | Lemma for ~ minvec . Any ... |
| minveclem3a 25354 | Lemma for ~ minvec . ` D `... |
| minveclem3b 25355 | Lemma for ~ minvec . The ... |
| minveclem3 25356 | Lemma for ~ minvec . The ... |
| minveclem4a 25357 | Lemma for ~ minvec . ` F `... |
| minveclem4b 25358 | Lemma for ~ minvec . The ... |
| minveclem4 25359 | Lemma for ~ minvec . The ... |
| minveclem5 25360 | Lemma for ~ minvec . Disc... |
| minveclem6 25361 | Lemma for ~ minvec . Any ... |
| minveclem7 25362 | Lemma for ~ minvec . Sinc... |
| minvec 25363 | Minimizing vector theorem,... |
| pjthlem1 25364 | Lemma for ~ pjth . (Contr... |
| pjthlem2 25365 | Lemma for ~ pjth . (Contr... |
| pjth 25366 | Projection Theorem: Any H... |
| pjth2 25367 | Projection Theorem with ab... |
| cldcss 25368 | Corollary of the Projectio... |
| cldcss2 25369 | Corollary of the Projectio... |
| hlhil 25370 | Corollary of the Projectio... |
| addcncf 25371 | The addition of two contin... |
| subcncf 25372 | The subtraction of two con... |
| mulcncf 25373 | The multiplication of two ... |
| mulcncfOLD 25374 | Obsolete version of ~ mulc... |
| divcncf 25375 | The quotient of two contin... |
| pmltpclem1 25376 | Lemma for ~ pmltpc . (Con... |
| pmltpclem2 25377 | Lemma for ~ pmltpc . (Con... |
| pmltpc 25378 | Any function on the reals ... |
| ivthlem1 25379 | Lemma for ~ ivth . The se... |
| ivthlem2 25380 | Lemma for ~ ivth . Show t... |
| ivthlem3 25381 | Lemma for ~ ivth , the int... |
| ivth 25382 | The intermediate value the... |
| ivth2 25383 | The intermediate value the... |
| ivthle 25384 | The intermediate value the... |
| ivthle2 25385 | The intermediate value the... |
| ivthicc 25386 | The interval between any t... |
| evthicc 25387 | Specialization of the Extr... |
| evthicc2 25388 | Combine ~ ivthicc with ~ e... |
| cniccbdd 25389 | A continuous function on a... |
| ovolfcl 25394 | Closure for the interval e... |
| ovolfioo 25395 | Unpack the interval coveri... |
| ovolficc 25396 | Unpack the interval coveri... |
| ovolficcss 25397 | Any (closed) interval cove... |
| ovolfsval 25398 | The value of the interval ... |
| ovolfsf 25399 | Closure for the interval l... |
| ovolsf 25400 | Closure for the partial su... |
| ovolval 25401 | The value of the outer mea... |
| elovolmlem 25402 | Lemma for ~ elovolm and re... |
| elovolm 25403 | Elementhood in the set ` M... |
| elovolmr 25404 | Sufficient condition for e... |
| ovolmge0 25405 | The set ` M ` is composed ... |
| ovolcl 25406 | The volume of a set is an ... |
| ovollb 25407 | The outer volume is a lowe... |
| ovolgelb 25408 | The outer volume is the gr... |
| ovolge0 25409 | The volume of a set is alw... |
| ovolf 25410 | The domain and codomain of... |
| ovollecl 25411 | If an outer volume is boun... |
| ovolsslem 25412 | Lemma for ~ ovolss . (Con... |
| ovolss 25413 | The volume of a set is mon... |
| ovolsscl 25414 | If a set is contained in a... |
| ovolssnul 25415 | A subset of a nullset is n... |
| ovollb2lem 25416 | Lemma for ~ ovollb2 . (Co... |
| ovollb2 25417 | It is often more convenien... |
| ovolctb 25418 | The volume of a denumerabl... |
| ovolq 25419 | The rational numbers have ... |
| ovolctb2 25420 | The volume of a countable ... |
| ovol0 25421 | The empty set has 0 outer ... |
| ovolfi 25422 | A finite set has 0 outer L... |
| ovolsn 25423 | A singleton has 0 outer Le... |
| ovolunlem1a 25424 | Lemma for ~ ovolun . (Con... |
| ovolunlem1 25425 | Lemma for ~ ovolun . (Con... |
| ovolunlem2 25426 | Lemma for ~ ovolun . (Con... |
| ovolun 25427 | The Lebesgue outer measure... |
| ovolunnul 25428 | Adding a nullset does not ... |
| ovolfiniun 25429 | The Lebesgue outer measure... |
| ovoliunlem1 25430 | Lemma for ~ ovoliun . (Co... |
| ovoliunlem2 25431 | Lemma for ~ ovoliun . (Co... |
| ovoliunlem3 25432 | Lemma for ~ ovoliun . (Co... |
| ovoliun 25433 | The Lebesgue outer measure... |
| ovoliun2 25434 | The Lebesgue outer measure... |
| ovoliunnul 25435 | A countable union of nulls... |
| shft2rab 25436 | If ` B ` is a shift of ` A... |
| ovolshftlem1 25437 | Lemma for ~ ovolshft . (C... |
| ovolshftlem2 25438 | Lemma for ~ ovolshft . (C... |
| ovolshft 25439 | The Lebesgue outer measure... |
| sca2rab 25440 | If ` B ` is a scale of ` A... |
| ovolscalem1 25441 | Lemma for ~ ovolsca . (Co... |
| ovolscalem2 25442 | Lemma for ~ ovolshft . (C... |
| ovolsca 25443 | The Lebesgue outer measure... |
| ovolicc1 25444 | The measure of a closed in... |
| ovolicc2lem1 25445 | Lemma for ~ ovolicc2 . (C... |
| ovolicc2lem2 25446 | Lemma for ~ ovolicc2 . (C... |
| ovolicc2lem3 25447 | Lemma for ~ ovolicc2 . (C... |
| ovolicc2lem4 25448 | Lemma for ~ ovolicc2 . (C... |
| ovolicc2lem5 25449 | Lemma for ~ ovolicc2 . (C... |
| ovolicc2 25450 | The measure of a closed in... |
| ovolicc 25451 | The measure of a closed in... |
| ovolicopnf 25452 | The measure of a right-unb... |
| ovolre 25453 | The measure of the real nu... |
| ismbl 25454 | The predicate " ` A ` is L... |
| ismbl2 25455 | From ~ ovolun , it suffice... |
| volres 25456 | A self-referencing abbrevi... |
| volf 25457 | The domain and codomain of... |
| mblvol 25458 | The volume of a measurable... |
| mblss 25459 | A measurable set is a subs... |
| mblsplit 25460 | The defining property of m... |
| volss 25461 | The Lebesgue measure is mo... |
| cmmbl 25462 | The complement of a measur... |
| nulmbl 25463 | A nullset is measurable. ... |
| nulmbl2 25464 | A set of outer measure zer... |
| unmbl 25465 | A union of measurable sets... |
| shftmbl 25466 | A shift of a measurable se... |
| 0mbl 25467 | The empty set is measurabl... |
| rembl 25468 | The set of all real number... |
| unidmvol 25469 | The union of the Lebesgue ... |
| inmbl 25470 | An intersection of measura... |
| difmbl 25471 | A difference of measurable... |
| finiunmbl 25472 | A finite union of measurab... |
| volun 25473 | The Lebesgue measure funct... |
| volinun 25474 | Addition of non-disjoint s... |
| volfiniun 25475 | The volume of a disjoint f... |
| iundisj 25476 | Rewrite a countable union ... |
| iundisj2 25477 | A disjoint union is disjoi... |
| voliunlem1 25478 | Lemma for ~ voliun . (Con... |
| voliunlem2 25479 | Lemma for ~ voliun . (Con... |
| voliunlem3 25480 | Lemma for ~ voliun . (Con... |
| iunmbl 25481 | The measurable sets are cl... |
| voliun 25482 | The Lebesgue measure funct... |
| volsuplem 25483 | Lemma for ~ volsup . (Con... |
| volsup 25484 | The volume of the limit of... |
| iunmbl2 25485 | The measurable sets are cl... |
| ioombl1lem1 25486 | Lemma for ~ ioombl1 . (Co... |
| ioombl1lem2 25487 | Lemma for ~ ioombl1 . (Co... |
| ioombl1lem3 25488 | Lemma for ~ ioombl1 . (Co... |
| ioombl1lem4 25489 | Lemma for ~ ioombl1 . (Co... |
| ioombl1 25490 | An open right-unbounded in... |
| icombl1 25491 | A closed unbounded-above i... |
| icombl 25492 | A closed-below, open-above... |
| ioombl 25493 | An open real interval is m... |
| iccmbl 25494 | A closed real interval is ... |
| iccvolcl 25495 | A closed real interval has... |
| ovolioo 25496 | The measure of an open int... |
| volioo 25497 | The measure of an open int... |
| ioovolcl 25498 | An open real interval has ... |
| ovolfs2 25499 | Alternative expression for... |
| ioorcl2 25500 | An open interval with fini... |
| ioorf 25501 | Define a function from ope... |
| ioorval 25502 | Define a function from ope... |
| ioorinv2 25503 | The function ` F ` is an "... |
| ioorinv 25504 | The function ` F ` is an "... |
| ioorcl 25505 | The function ` F ` does no... |
| uniiccdif 25506 | A union of closed interval... |
| uniioovol 25507 | A disjoint union of open i... |
| uniiccvol 25508 | An almost-disjoint union o... |
| uniioombllem1 25509 | Lemma for ~ uniioombl . (... |
| uniioombllem2a 25510 | Lemma for ~ uniioombl . (... |
| uniioombllem2 25511 | Lemma for ~ uniioombl . (... |
| uniioombllem3a 25512 | Lemma for ~ uniioombl . (... |
| uniioombllem3 25513 | Lemma for ~ uniioombl . (... |
| uniioombllem4 25514 | Lemma for ~ uniioombl . (... |
| uniioombllem5 25515 | Lemma for ~ uniioombl . (... |
| uniioombllem6 25516 | Lemma for ~ uniioombl . (... |
| uniioombl 25517 | A disjoint union of open i... |
| uniiccmbl 25518 | An almost-disjoint union o... |
| dyadf 25519 | The function ` F ` returns... |
| dyadval 25520 | Value of the dyadic ration... |
| dyadovol 25521 | Volume of a dyadic rationa... |
| dyadss 25522 | Two closed dyadic rational... |
| dyaddisjlem 25523 | Lemma for ~ dyaddisj . (C... |
| dyaddisj 25524 | Two closed dyadic rational... |
| dyadmaxlem 25525 | Lemma for ~ dyadmax . (Co... |
| dyadmax 25526 | Any nonempty set of dyadic... |
| dyadmbllem 25527 | Lemma for ~ dyadmbl . (Co... |
| dyadmbl 25528 | Any union of dyadic ration... |
| opnmbllem 25529 | Lemma for ~ opnmbl . (Con... |
| opnmbl 25530 | All open sets are measurab... |
| opnmblALT 25531 | All open sets are measurab... |
| subopnmbl 25532 | Sets which are open in a m... |
| volsup2 25533 | The volume of ` A ` is the... |
| volcn 25534 | The function formed by res... |
| volivth 25535 | The Intermediate Value The... |
| vitalilem1 25536 | Lemma for ~ vitali . (Con... |
| vitalilem2 25537 | Lemma for ~ vitali . (Con... |
| vitalilem3 25538 | Lemma for ~ vitali . (Con... |
| vitalilem4 25539 | Lemma for ~ vitali . (Con... |
| vitalilem5 25540 | Lemma for ~ vitali . (Con... |
| vitali 25541 | If the reals can be well-o... |
| ismbf1 25552 | The predicate " ` F ` is a... |
| mbff 25553 | A measurable function is a... |
| mbfdm 25554 | The domain of a measurable... |
| mbfconstlem 25555 | Lemma for ~ mbfconst and r... |
| ismbf 25556 | The predicate " ` F ` is a... |
| ismbfcn 25557 | A complex function is meas... |
| mbfima 25558 | Definitional property of a... |
| mbfimaicc 25559 | The preimage of any closed... |
| mbfimasn 25560 | The preimage of a point un... |
| mbfconst 25561 | A constant function is mea... |
| mbf0 25562 | The empty function is meas... |
| mbfid 25563 | The identity function is m... |
| mbfmptcl 25564 | Lemma for the ` MblFn ` pr... |
| mbfdm2 25565 | The domain of a measurable... |
| ismbfcn2 25566 | A complex function is meas... |
| ismbfd 25567 | Deduction to prove measura... |
| ismbf2d 25568 | Deduction to prove measura... |
| mbfeqalem1 25569 | Lemma for ~ mbfeqalem2 . ... |
| mbfeqalem2 25570 | Lemma for ~ mbfeqa . (Con... |
| mbfeqa 25571 | If two functions are equal... |
| mbfres 25572 | The restriction of a measu... |
| mbfres2 25573 | Measurability of a piecewi... |
| mbfss 25574 | Change the domain of a mea... |
| mbfmulc2lem 25575 | Multiplication by a consta... |
| mbfmulc2re 25576 | Multiplication by a consta... |
| mbfmax 25577 | The maximum of two functio... |
| mbfneg 25578 | The negative of a measurab... |
| mbfpos 25579 | The positive part of a mea... |
| mbfposr 25580 | Converse to ~ mbfpos . (C... |
| mbfposb 25581 | A function is measurable i... |
| ismbf3d 25582 | Simplified form of ~ ismbf... |
| mbfimaopnlem 25583 | Lemma for ~ mbfimaopn . (... |
| mbfimaopn 25584 | The preimage of any open s... |
| mbfimaopn2 25585 | The preimage of any set op... |
| cncombf 25586 | The composition of a conti... |
| cnmbf 25587 | A continuous function is m... |
| mbfaddlem 25588 | The sum of two measurable ... |
| mbfadd 25589 | The sum of two measurable ... |
| mbfsub 25590 | The difference of two meas... |
| mbfmulc2 25591 | A complex constant times a... |
| mbfsup 25592 | The supremum of a sequence... |
| mbfinf 25593 | The infimum of a sequence ... |
| mbflimsup 25594 | The limit supremum of a se... |
| mbflimlem 25595 | The pointwise limit of a s... |
| mbflim 25596 | The pointwise limit of a s... |
| 0pval 25599 | The zero function evaluate... |
| 0plef 25600 | Two ways to say that the f... |
| 0pledm 25601 | Adjust the domain of the l... |
| isi1f 25602 | The predicate " ` F ` is a... |
| i1fmbf 25603 | Simple functions are measu... |
| i1ff 25604 | A simple function is a fun... |
| i1frn 25605 | A simple function has fini... |
| i1fima 25606 | Any preimage of a simple f... |
| i1fima2 25607 | Any preimage of a simple f... |
| i1fima2sn 25608 | Preimage of a singleton. ... |
| i1fd 25609 | A simplified set of assump... |
| i1f0rn 25610 | Any simple function takes ... |
| itg1val 25611 | The value of the integral ... |
| itg1val2 25612 | The value of the integral ... |
| itg1cl 25613 | Closure of the integral on... |
| itg1ge0 25614 | Closure of the integral on... |
| i1f0 25615 | The zero function is simpl... |
| itg10 25616 | The zero function has zero... |
| i1f1lem 25617 | Lemma for ~ i1f1 and ~ itg... |
| i1f1 25618 | Base case simple functions... |
| itg11 25619 | The integral of an indicat... |
| itg1addlem1 25620 | Decompose a preimage, whic... |
| i1faddlem 25621 | Decompose the preimage of ... |
| i1fmullem 25622 | Decompose the preimage of ... |
| i1fadd 25623 | The sum of two simple func... |
| i1fmul 25624 | The pointwise product of t... |
| itg1addlem2 25625 | Lemma for ~ itg1add . The... |
| itg1addlem3 25626 | Lemma for ~ itg1add . (Co... |
| itg1addlem4 25627 | Lemma for ~ itg1add . (Co... |
| itg1addlem5 25628 | Lemma for ~ itg1add . (Co... |
| itg1add 25629 | The integral of a sum of s... |
| i1fmulclem 25630 | Decompose the preimage of ... |
| i1fmulc 25631 | A nonnegative constant tim... |
| itg1mulc 25632 | The integral of a constant... |
| i1fres 25633 | The "restriction" of a sim... |
| i1fpos 25634 | The positive part of a sim... |
| i1fposd 25635 | Deduction form of ~ i1fpos... |
| i1fsub 25636 | The difference of two simp... |
| itg1sub 25637 | The integral of a differen... |
| itg10a 25638 | The integral of a simple f... |
| itg1ge0a 25639 | The integral of an almost ... |
| itg1lea 25640 | Approximate version of ~ i... |
| itg1le 25641 | If one simple function dom... |
| itg1climres 25642 | Restricting the simple fun... |
| mbfi1fseqlem1 25643 | Lemma for ~ mbfi1fseq . (... |
| mbfi1fseqlem2 25644 | Lemma for ~ mbfi1fseq . (... |
| mbfi1fseqlem3 25645 | Lemma for ~ mbfi1fseq . (... |
| mbfi1fseqlem4 25646 | Lemma for ~ mbfi1fseq . T... |
| mbfi1fseqlem5 25647 | Lemma for ~ mbfi1fseq . V... |
| mbfi1fseqlem6 25648 | Lemma for ~ mbfi1fseq . V... |
| mbfi1fseq 25649 | A characterization of meas... |
| mbfi1flimlem 25650 | Lemma for ~ mbfi1flim . (... |
| mbfi1flim 25651 | Any real measurable functi... |
| mbfmullem2 25652 | Lemma for ~ mbfmul . (Con... |
| mbfmullem 25653 | Lemma for ~ mbfmul . (Con... |
| mbfmul 25654 | The product of two measura... |
| itg2lcl 25655 | The set of lower sums is a... |
| itg2val 25656 | Value of the integral on n... |
| itg2l 25657 | Elementhood in the set ` L... |
| itg2lr 25658 | Sufficient condition for e... |
| xrge0f 25659 | A real function is a nonne... |
| itg2cl 25660 | The integral of a nonnegat... |
| itg2ub 25661 | The integral of a nonnegat... |
| itg2leub 25662 | Any upper bound on the int... |
| itg2ge0 25663 | The integral of a nonnegat... |
| itg2itg1 25664 | The integral of a nonnegat... |
| itg20 25665 | The integral of the zero f... |
| itg2lecl 25666 | If an ` S.2 ` integral is ... |
| itg2le 25667 | If one function dominates ... |
| itg2const 25668 | Integral of a constant fun... |
| itg2const2 25669 | When the base set of a con... |
| itg2seq 25670 | Definitional property of t... |
| itg2uba 25671 | Approximate version of ~ i... |
| itg2lea 25672 | Approximate version of ~ i... |
| itg2eqa 25673 | Approximate equality of in... |
| itg2mulclem 25674 | Lemma for ~ itg2mulc . (C... |
| itg2mulc 25675 | The integral of a nonnegat... |
| itg2splitlem 25676 | Lemma for ~ itg2split . (... |
| itg2split 25677 | The ` S.2 ` integral split... |
| itg2monolem1 25678 | Lemma for ~ itg2mono . We... |
| itg2monolem2 25679 | Lemma for ~ itg2mono . (C... |
| itg2monolem3 25680 | Lemma for ~ itg2mono . (C... |
| itg2mono 25681 | The Monotone Convergence T... |
| itg2i1fseqle 25682 | Subject to the conditions ... |
| itg2i1fseq 25683 | Subject to the conditions ... |
| itg2i1fseq2 25684 | In an extension to the res... |
| itg2i1fseq3 25685 | Special case of ~ itg2i1fs... |
| itg2addlem 25686 | Lemma for ~ itg2add . (Co... |
| itg2add 25687 | The ` S.2 ` integral is li... |
| itg2gt0 25688 | If the function ` F ` is s... |
| itg2cnlem1 25689 | Lemma for ~ itgcn . (Cont... |
| itg2cnlem2 25690 | Lemma for ~ itgcn . (Cont... |
| itg2cn 25691 | A sort of absolute continu... |
| ibllem 25692 | Conditioned equality theor... |
| isibl 25693 | The predicate " ` F ` is i... |
| isibl2 25694 | The predicate " ` F ` is i... |
| iblmbf 25695 | An integrable function is ... |
| iblitg 25696 | If a function is integrabl... |
| dfitg 25697 | Evaluate the class substit... |
| itgex 25698 | An integral is a set. (Co... |
| itgeq1f 25699 | Equality theorem for an in... |
| itgeq1fOLD 25700 | Obsolete version of ~ itge... |
| itgeq1 25701 | Equality theorem for an in... |
| nfitg1 25702 | Bound-variable hypothesis ... |
| nfitg 25703 | Bound-variable hypothesis ... |
| cbvitg 25704 | Change bound variable in a... |
| cbvitgv 25705 | Change bound variable in a... |
| itgeq2 25706 | Equality theorem for an in... |
| itgresr 25707 | The domain of an integral ... |
| itg0 25708 | The integral of anything o... |
| itgz 25709 | The integral of zero on an... |
| itgeq2dv 25710 | Equality theorem for an in... |
| itgmpt 25711 | Change bound variable in a... |
| itgcl 25712 | The integral of an integra... |
| itgvallem 25713 | Substitution lemma. (Cont... |
| itgvallem3 25714 | Lemma for ~ itgposval and ... |
| ibl0 25715 | The zero function is integ... |
| iblcnlem1 25716 | Lemma for ~ iblcnlem . (C... |
| iblcnlem 25717 | Expand out the universal q... |
| itgcnlem 25718 | Expand out the sum in ~ df... |
| iblrelem 25719 | Integrability of a real fu... |
| iblposlem 25720 | Lemma for ~ iblpos . (Con... |
| iblpos 25721 | Integrability of a nonnega... |
| iblre 25722 | Integrability of a real fu... |
| itgrevallem1 25723 | Lemma for ~ itgposval and ... |
| itgposval 25724 | The integral of a nonnegat... |
| itgreval 25725 | Decompose the integral of ... |
| itgrecl 25726 | Real closure of an integra... |
| iblcn 25727 | Integrability of a complex... |
| itgcnval 25728 | Decompose the integral of ... |
| itgre 25729 | Real part of an integral. ... |
| itgim 25730 | Imaginary part of an integ... |
| iblneg 25731 | The negative of an integra... |
| itgneg 25732 | Negation of an integral. ... |
| iblss 25733 | A subset of an integrable ... |
| iblss2 25734 | Change the domain of an in... |
| itgitg2 25735 | Transfer an integral using... |
| i1fibl 25736 | A simple function is integ... |
| itgitg1 25737 | Transfer an integral using... |
| itgle 25738 | Monotonicity of an integra... |
| itgge0 25739 | The integral of a positive... |
| itgss 25740 | Expand the set of an integ... |
| itgss2 25741 | Expand the set of an integ... |
| itgeqa 25742 | Approximate equality of in... |
| itgss3 25743 | Expand the set of an integ... |
| itgioo 25744 | Equality of integrals on o... |
| itgless 25745 | Expand the integral of a n... |
| iblconst 25746 | A constant function is int... |
| itgconst 25747 | Integral of a constant fun... |
| ibladdlem 25748 | Lemma for ~ ibladd . (Con... |
| ibladd 25749 | Add two integrals over the... |
| iblsub 25750 | Subtract two integrals ove... |
| itgaddlem1 25751 | Lemma for ~ itgadd . (Con... |
| itgaddlem2 25752 | Lemma for ~ itgadd . (Con... |
| itgadd 25753 | Add two integrals over the... |
| itgsub 25754 | Subtract two integrals ove... |
| itgfsum 25755 | Take a finite sum of integ... |
| iblabslem 25756 | Lemma for ~ iblabs . (Con... |
| iblabs 25757 | The absolute value of an i... |
| iblabsr 25758 | A measurable function is i... |
| iblmulc2 25759 | Multiply an integral by a ... |
| itgmulc2lem1 25760 | Lemma for ~ itgmulc2 : pos... |
| itgmulc2lem2 25761 | Lemma for ~ itgmulc2 : rea... |
| itgmulc2 25762 | Multiply an integral by a ... |
| itgabs 25763 | The triangle inequality fo... |
| itgsplit 25764 | The ` S. ` integral splits... |
| itgspliticc 25765 | The ` S. ` integral splits... |
| itgsplitioo 25766 | The ` S. ` integral splits... |
| bddmulibl 25767 | A bounded function times a... |
| bddibl 25768 | A bounded function is inte... |
| cniccibl 25769 | A continuous function on a... |
| bddiblnc 25770 | Choice-free proof of ~ bdd... |
| cnicciblnc 25771 | Choice-free proof of ~ cni... |
| itggt0 25772 | The integral of a strictly... |
| itgcn 25773 | Transfer ~ itg2cn to the f... |
| ditgeq1 25776 | Equality theorem for the d... |
| ditgeq2 25777 | Equality theorem for the d... |
| ditgeq3 25778 | Equality theorem for the d... |
| ditgeq3dv 25779 | Equality theorem for the d... |
| ditgex 25780 | A directed integral is a s... |
| ditg0 25781 | Value of the directed inte... |
| cbvditg 25782 | Change bound variable in a... |
| cbvditgv 25783 | Change bound variable in a... |
| ditgpos 25784 | Value of the directed inte... |
| ditgneg 25785 | Value of the directed inte... |
| ditgcl 25786 | Closure of a directed inte... |
| ditgswap 25787 | Reverse a directed integra... |
| ditgsplitlem 25788 | Lemma for ~ ditgsplit . (... |
| ditgsplit 25789 | This theorem is the raison... |
| reldv 25798 | The derivative function is... |
| limcvallem 25799 | Lemma for ~ ellimc . (Con... |
| limcfval 25800 | Value and set bounds on th... |
| ellimc 25801 | Value of the limit predica... |
| limcrcl 25802 | Reverse closure for the li... |
| limccl 25803 | Closure of the limit opera... |
| limcdif 25804 | It suffices to consider fu... |
| ellimc2 25805 | Write the definition of a ... |
| limcnlp 25806 | If ` B ` is not a limit po... |
| ellimc3 25807 | Write the epsilon-delta de... |
| limcflflem 25808 | Lemma for ~ limcflf . (Co... |
| limcflf 25809 | The limit operator can be ... |
| limcmo 25810 | If ` B ` is a limit point ... |
| limcmpt 25811 | Express the limit operator... |
| limcmpt2 25812 | Express the limit operator... |
| limcresi 25813 | Any limit of ` F ` is also... |
| limcres 25814 | If ` B ` is an interior po... |
| cnplimc 25815 | A function is continuous a... |
| cnlimc 25816 | ` F ` is a continuous func... |
| cnlimci 25817 | If ` F ` is a continuous f... |
| cnmptlimc 25818 | If ` F ` is a continuous f... |
| limccnp 25819 | If the limit of ` F ` at `... |
| limccnp2 25820 | The image of a convergent ... |
| limcco 25821 | Composition of two limits.... |
| limciun 25822 | A point is a limit of ` F ... |
| limcun 25823 | A point is a limit of ` F ... |
| dvlem 25824 | Closure for a difference q... |
| dvfval 25825 | Value and set bounds on th... |
| eldv 25826 | The differentiable predica... |
| dvcl 25827 | The derivative function ta... |
| dvbssntr 25828 | The set of differentiable ... |
| dvbss 25829 | The set of differentiable ... |
| dvbsss 25830 | The set of differentiable ... |
| perfdvf 25831 | The derivative is a functi... |
| recnprss 25832 | Both ` RR ` and ` CC ` are... |
| recnperf 25833 | Both ` RR ` and ` CC ` are... |
| dvfg 25834 | Explicitly write out the f... |
| dvf 25835 | The derivative is a functi... |
| dvfcn 25836 | The derivative is a functi... |
| dvreslem 25837 | Lemma for ~ dvres . (Cont... |
| dvres2lem 25838 | Lemma for ~ dvres2 . (Con... |
| dvres 25839 | Restriction of a derivativ... |
| dvres2 25840 | Restriction of the base se... |
| dvres3 25841 | Restriction of a complex d... |
| dvres3a 25842 | Restriction of a complex d... |
| dvidlem 25843 | Lemma for ~ dvid and ~ dvc... |
| dvmptresicc 25844 | Derivative of a function r... |
| dvconst 25845 | Derivative of a constant f... |
| dvid 25846 | Derivative of the identity... |
| dvcnp 25847 | The difference quotient is... |
| dvcnp2 25848 | A function is continuous a... |
| dvcnp2OLD 25849 | Obsolete version of ~ dvcn... |
| dvcn 25850 | A differentiable function ... |
| dvnfval 25851 | Value of the iterated deri... |
| dvnff 25852 | The iterated derivative is... |
| dvn0 25853 | Zero times iterated deriva... |
| dvnp1 25854 | Successor iterated derivat... |
| dvn1 25855 | One times iterated derivat... |
| dvnf 25856 | The N-times derivative is ... |
| dvnbss 25857 | The set of N-times differe... |
| dvnadd 25858 | The ` N ` -th derivative o... |
| dvn2bss 25859 | An N-times differentiable ... |
| dvnres 25860 | Multiple derivative versio... |
| cpnfval 25861 | Condition for n-times cont... |
| fncpn 25862 | The ` C^n ` object is a fu... |
| elcpn 25863 | Condition for n-times cont... |
| cpnord 25864 | ` C^n ` conditions are ord... |
| cpncn 25865 | A ` C^n ` function is cont... |
| cpnres 25866 | The restriction of a ` C^n... |
| dvaddbr 25867 | The sum rule for derivativ... |
| dvmulbr 25868 | The product rule for deriv... |
| dvmulbrOLD 25869 | Obsolete version of ~ dvmu... |
| dvadd 25870 | The sum rule for derivativ... |
| dvmul 25871 | The product rule for deriv... |
| dvaddf 25872 | The sum rule for everywher... |
| dvmulf 25873 | The product rule for every... |
| dvcmul 25874 | The product rule when one ... |
| dvcmulf 25875 | The product rule when one ... |
| dvcobr 25876 | The chain rule for derivat... |
| dvcobrOLD 25877 | Obsolete version of ~ dvco... |
| dvco 25878 | The chain rule for derivat... |
| dvcof 25879 | The chain rule for everywh... |
| dvcjbr 25880 | The derivative of the conj... |
| dvcj 25881 | The derivative of the conj... |
| dvfre 25882 | The derivative of a real f... |
| dvnfre 25883 | The ` N ` -th derivative o... |
| dvexp 25884 | Derivative of a power func... |
| dvexp2 25885 | Derivative of an exponenti... |
| dvrec 25886 | Derivative of the reciproc... |
| dvmptres3 25887 | Function-builder for deriv... |
| dvmptid 25888 | Function-builder for deriv... |
| dvmptc 25889 | Function-builder for deriv... |
| dvmptcl 25890 | Closure lemma for ~ dvmptc... |
| dvmptadd 25891 | Function-builder for deriv... |
| dvmptmul 25892 | Function-builder for deriv... |
| dvmptres2 25893 | Function-builder for deriv... |
| dvmptres 25894 | Function-builder for deriv... |
| dvmptcmul 25895 | Function-builder for deriv... |
| dvmptdivc 25896 | Function-builder for deriv... |
| dvmptneg 25897 | Function-builder for deriv... |
| dvmptsub 25898 | Function-builder for deriv... |
| dvmptcj 25899 | Function-builder for deriv... |
| dvmptre 25900 | Function-builder for deriv... |
| dvmptim 25901 | Function-builder for deriv... |
| dvmptntr 25902 | Function-builder for deriv... |
| dvmptco 25903 | Function-builder for deriv... |
| dvrecg 25904 | Derivative of the reciproc... |
| dvmptdiv 25905 | Function-builder for deriv... |
| dvmptfsum 25906 | Function-builder for deriv... |
| dvcnvlem 25907 | Lemma for ~ dvcnvre . (Co... |
| dvcnv 25908 | A weak version of ~ dvcnvr... |
| dvexp3 25909 | Derivative of an exponenti... |
| dveflem 25910 | Derivative of the exponent... |
| dvef 25911 | Derivative of the exponent... |
| dvsincos 25912 | Derivative of the sine and... |
| dvsin 25913 | Derivative of the sine fun... |
| dvcos 25914 | Derivative of the cosine f... |
| dvferm1lem 25915 | Lemma for ~ dvferm . (Con... |
| dvferm1 25916 | One-sided version of ~ dvf... |
| dvferm2lem 25917 | Lemma for ~ dvferm . (Con... |
| dvferm2 25918 | One-sided version of ~ dvf... |
| dvferm 25919 | Fermat's theorem on statio... |
| rollelem 25920 | Lemma for ~ rolle . (Cont... |
| rolle 25921 | Rolle's theorem. If ` F `... |
| cmvth 25922 | Cauchy's Mean Value Theore... |
| cmvthOLD 25923 | Obsolete version of ~ cmvt... |
| mvth 25924 | The Mean Value Theorem. I... |
| dvlip 25925 | A function with derivative... |
| dvlipcn 25926 | A complex function with de... |
| dvlip2 25927 | Combine the results of ~ d... |
| c1liplem1 25928 | Lemma for ~ c1lip1 . (Con... |
| c1lip1 25929 | C^1 functions are Lipschit... |
| c1lip2 25930 | C^1 functions are Lipschit... |
| c1lip3 25931 | C^1 functions are Lipschit... |
| dveq0 25932 | If a continuous function h... |
| dv11cn 25933 | Two functions defined on a... |
| dvgt0lem1 25934 | Lemma for ~ dvgt0 and ~ dv... |
| dvgt0lem2 25935 | Lemma for ~ dvgt0 and ~ dv... |
| dvgt0 25936 | A function on a closed int... |
| dvlt0 25937 | A function on a closed int... |
| dvge0 25938 | A function on a closed int... |
| dvle 25939 | If ` A ( x ) , C ( x ) ` a... |
| dvivthlem1 25940 | Lemma for ~ dvivth . (Con... |
| dvivthlem2 25941 | Lemma for ~ dvivth . (Con... |
| dvivth 25942 | Darboux' theorem, or the i... |
| dvne0 25943 | A function on a closed int... |
| dvne0f1 25944 | A function on a closed int... |
| lhop1lem 25945 | Lemma for ~ lhop1 . (Cont... |
| lhop1 25946 | L'Hôpital's Rule for... |
| lhop2 25947 | L'Hôpital's Rule for... |
| lhop 25948 | L'Hôpital's Rule. I... |
| dvcnvrelem1 25949 | Lemma for ~ dvcnvre . (Co... |
| dvcnvrelem2 25950 | Lemma for ~ dvcnvre . (Co... |
| dvcnvre 25951 | The derivative rule for in... |
| dvcvx 25952 | A real function with stric... |
| dvfsumle 25953 | Compare a finite sum to an... |
| dvfsumleOLD 25954 | Obsolete version of ~ dvfs... |
| dvfsumge 25955 | Compare a finite sum to an... |
| dvfsumabs 25956 | Compare a finite sum to an... |
| dvmptrecl 25957 | Real closure of a derivati... |
| dvfsumrlimf 25958 | Lemma for ~ dvfsumrlim . ... |
| dvfsumlem1 25959 | Lemma for ~ dvfsumrlim . ... |
| dvfsumlem2 25960 | Lemma for ~ dvfsumrlim . ... |
| dvfsumlem2OLD 25961 | Obsolete version of ~ dvfs... |
| dvfsumlem3 25962 | Lemma for ~ dvfsumrlim . ... |
| dvfsumlem4 25963 | Lemma for ~ dvfsumrlim . ... |
| dvfsumrlimge0 25964 | Lemma for ~ dvfsumrlim . ... |
| dvfsumrlim 25965 | Compare a finite sum to an... |
| dvfsumrlim2 25966 | Compare a finite sum to an... |
| dvfsumrlim3 25967 | Conjoin the statements of ... |
| dvfsum2 25968 | The reverse of ~ dvfsumrli... |
| ftc1lem1 25969 | Lemma for ~ ftc1a and ~ ft... |
| ftc1lem2 25970 | Lemma for ~ ftc1 . (Contr... |
| ftc1a 25971 | The Fundamental Theorem of... |
| ftc1lem3 25972 | Lemma for ~ ftc1 . (Contr... |
| ftc1lem4 25973 | Lemma for ~ ftc1 . (Contr... |
| ftc1lem5 25974 | Lemma for ~ ftc1 . (Contr... |
| ftc1lem6 25975 | Lemma for ~ ftc1 . (Contr... |
| ftc1 25976 | The Fundamental Theorem of... |
| ftc1cn 25977 | Strengthen the assumptions... |
| ftc2 25978 | The Fundamental Theorem of... |
| ftc2ditglem 25979 | Lemma for ~ ftc2ditg . (C... |
| ftc2ditg 25980 | Directed integral analogue... |
| itgparts 25981 | Integration by parts. If ... |
| itgsubstlem 25982 | Lemma for ~ itgsubst . (C... |
| itgsubst 25983 | Integration by ` u ` -subs... |
| itgpowd 25984 | The integral of a monomial... |
| reldmmdeg 25989 | Multivariate degree is a b... |
| tdeglem1 25990 | Functionality of the total... |
| tdeglem3 25991 | Additivity of the total de... |
| tdeglem4 25992 | There is only one multi-in... |
| tdeglem2 25993 | Simplification of total de... |
| mdegfval 25994 | Value of the multivariate ... |
| mdegval 25995 | Value of the multivariate ... |
| mdegleb 25996 | Property of being of limit... |
| mdeglt 25997 | If there is an upper limit... |
| mdegldg 25998 | A nonzero polynomial has s... |
| mdegxrcl 25999 | Closure of polynomial degr... |
| mdegxrf 26000 | Functionality of polynomia... |
| mdegcl 26001 | Sharp closure for multivar... |
| mdeg0 26002 | Degree of the zero polynom... |
| mdegnn0cl 26003 | Degree of a nonzero polyno... |
| degltlem1 26004 | Theorem on arithmetic of e... |
| degltp1le 26005 | Theorem on arithmetic of e... |
| mdegaddle 26006 | The degree of a sum is at ... |
| mdegvscale 26007 | The degree of a scalar mul... |
| mdegvsca 26008 | The degree of a scalar mul... |
| mdegle0 26009 | A polynomial has nonpositi... |
| mdegmullem 26010 | Lemma for ~ mdegmulle2 . ... |
| mdegmulle2 26011 | The multivariate degree of... |
| deg1fval 26012 | Relate univariate polynomi... |
| deg1xrf 26013 | Functionality of univariat... |
| deg1xrcl 26014 | Closure of univariate poly... |
| deg1cl 26015 | Sharp closure of univariat... |
| mdegpropd 26016 | Property deduction for pol... |
| deg1fvi 26017 | Univariate polynomial degr... |
| deg1propd 26018 | Property deduction for pol... |
| deg1z 26019 | Degree of the zero univari... |
| deg1nn0cl 26020 | Degree of a nonzero univar... |
| deg1n0ima 26021 | Degree image of a set of p... |
| deg1nn0clb 26022 | A polynomial is nonzero if... |
| deg1lt0 26023 | A polynomial is zero iff i... |
| deg1ldg 26024 | A nonzero univariate polyn... |
| deg1ldgn 26025 | An index at which a polyno... |
| deg1ldgdomn 26026 | A nonzero univariate polyn... |
| deg1leb 26027 | Property of being of limit... |
| deg1val 26028 | Value of the univariate de... |
| deg1lt 26029 | If the degree of a univari... |
| deg1ge 26030 | Conversely, a nonzero coef... |
| coe1mul3 26031 | The coefficient vector of ... |
| coe1mul4 26032 | Value of the "leading" coe... |
| deg1addle 26033 | The degree of a sum is at ... |
| deg1addle2 26034 | If both factors have degre... |
| deg1add 26035 | Exact degree of a sum of t... |
| deg1vscale 26036 | The degree of a scalar tim... |
| deg1vsca 26037 | The degree of a scalar tim... |
| deg1invg 26038 | The degree of the negated ... |
| deg1suble 26039 | The degree of a difference... |
| deg1sub 26040 | Exact degree of a differen... |
| deg1mulle2 26041 | Produce a bound on the pro... |
| deg1sublt 26042 | Subtraction of two polynom... |
| deg1le0 26043 | A polynomial has nonpositi... |
| deg1sclle 26044 | A scalar polynomial has no... |
| deg1scl 26045 | A nonzero scalar polynomia... |
| deg1mul2 26046 | Degree of multiplication o... |
| deg1mul 26047 | Degree of multiplication o... |
| deg1mul3 26048 | Degree of multiplication o... |
| deg1mul3le 26049 | Degree of multiplication o... |
| deg1tmle 26050 | Limiting degree of a polyn... |
| deg1tm 26051 | Exact degree of a polynomi... |
| deg1pwle 26052 | Limiting degree of a varia... |
| deg1pw 26053 | Exact degree of a variable... |
| ply1nz 26054 | Univariate polynomials ove... |
| ply1nzb 26055 | Univariate polynomials are... |
| ply1domn 26056 | Corollary of ~ deg1mul2 : ... |
| ply1idom 26057 | The ring of univariate pol... |
| ply1divmo 26068 | Uniqueness of a quotient i... |
| ply1divex 26069 | Lemma for ~ ply1divalg : e... |
| ply1divalg 26070 | The division algorithm for... |
| ply1divalg2 26071 | Reverse the order of multi... |
| uc1pval 26072 | Value of the set of unitic... |
| isuc1p 26073 | Being a unitic polynomial.... |
| mon1pval 26074 | Value of the set of monic ... |
| ismon1p 26075 | Being a monic polynomial. ... |
| uc1pcl 26076 | Unitic polynomials are pol... |
| mon1pcl 26077 | Monic polynomials are poly... |
| uc1pn0 26078 | Unitic polynomials are not... |
| mon1pn0 26079 | Monic polynomials are not ... |
| uc1pdeg 26080 | Unitic polynomials have no... |
| uc1pldg 26081 | Unitic polynomials have un... |
| mon1pldg 26082 | Unitic polynomials have on... |
| mon1puc1p 26083 | Monic polynomials are unit... |
| uc1pmon1p 26084 | Make a unitic polynomial m... |
| deg1submon1p 26085 | The difference of two moni... |
| mon1pid 26086 | Monicity and degree of the... |
| q1pval 26087 | Value of the univariate po... |
| q1peqb 26088 | Characterizing property of... |
| q1pcl 26089 | Closure of the quotient by... |
| r1pval 26090 | Value of the polynomial re... |
| r1pcl 26091 | Closure of remainder follo... |
| r1pdeglt 26092 | The remainder has a degree... |
| r1pid 26093 | Express the original polyn... |
| r1pid2 26094 | Identity law for polynomia... |
| dvdsq1p 26095 | Divisibility in a polynomi... |
| dvdsr1p 26096 | Divisibility in a polynomi... |
| ply1remlem 26097 | A term of the form ` x - N... |
| ply1rem 26098 | The polynomial remainder t... |
| facth1 26099 | The factor theorem and its... |
| fta1glem1 26100 | Lemma for ~ fta1g . (Cont... |
| fta1glem2 26101 | Lemma for ~ fta1g . (Cont... |
| fta1g 26102 | The one-sided fundamental ... |
| fta1blem 26103 | Lemma for ~ fta1b . (Cont... |
| fta1b 26104 | The assumption that ` R ` ... |
| idomrootle 26105 | No element of an integral ... |
| drnguc1p 26106 | Over a division ring, all ... |
| ig1peu 26107 | There is a unique monic po... |
| ig1pval 26108 | Substitutions for the poly... |
| ig1pval2 26109 | Generator of the zero idea... |
| ig1pval3 26110 | Characterizing properties ... |
| ig1pcl 26111 | The monic generator of an ... |
| ig1pdvds 26112 | The monic generator of an ... |
| ig1prsp 26113 | Any ideal of polynomials o... |
| ply1lpir 26114 | The ring of polynomials ov... |
| ply1pid 26115 | The polynomials over a fie... |
| plyco0 26124 | Two ways to say that a fun... |
| plyval 26125 | Value of the polynomial se... |
| plybss 26126 | Reverse closure of the par... |
| elply 26127 | Definition of a polynomial... |
| elply2 26128 | The coefficient function c... |
| plyun0 26129 | The set of polynomials is ... |
| plyf 26130 | A polynomial is a function... |
| plyss 26131 | The polynomial set functio... |
| plyssc 26132 | Every polynomial ring is c... |
| elplyr 26133 | Sufficient condition for e... |
| elplyd 26134 | Sufficient condition for e... |
| ply1termlem 26135 | Lemma for ~ ply1term . (C... |
| ply1term 26136 | A one-term polynomial. (C... |
| plypow 26137 | A power is a polynomial. ... |
| plyconst 26138 | A constant function is a p... |
| ne0p 26139 | A test to show that a poly... |
| ply0 26140 | The zero function is a pol... |
| plyid 26141 | The identity function is a... |
| plyeq0lem 26142 | Lemma for ~ plyeq0 . If `... |
| plyeq0 26143 | If a polynomial is zero at... |
| plypf1 26144 | Write the set of complex p... |
| plyaddlem1 26145 | Derive the coefficient fun... |
| plymullem1 26146 | Derive the coefficient fun... |
| plyaddlem 26147 | Lemma for ~ plyadd . (Con... |
| plymullem 26148 | Lemma for ~ plymul . (Con... |
| plyadd 26149 | The sum of two polynomials... |
| plymul 26150 | The product of two polynom... |
| plysub 26151 | The difference of two poly... |
| plyaddcl 26152 | The sum of two polynomials... |
| plymulcl 26153 | The product of two polynom... |
| plysubcl 26154 | The difference of two poly... |
| coeval 26155 | Value of the coefficient f... |
| coeeulem 26156 | Lemma for ~ coeeu . (Cont... |
| coeeu 26157 | Uniqueness of the coeffici... |
| coelem 26158 | Lemma for properties of th... |
| coeeq 26159 | If ` A ` satisfies the pro... |
| dgrval 26160 | Value of the degree functi... |
| dgrlem 26161 | Lemma for ~ dgrcl and simi... |
| coef 26162 | The domain and codomain of... |
| coef2 26163 | The domain and codomain of... |
| coef3 26164 | The domain and codomain of... |
| dgrcl 26165 | The degree of any polynomi... |
| dgrub 26166 | If the ` M ` -th coefficie... |
| dgrub2 26167 | All the coefficients above... |
| dgrlb 26168 | If all the coefficients ab... |
| coeidlem 26169 | Lemma for ~ coeid . (Cont... |
| coeid 26170 | Reconstruct a polynomial a... |
| coeid2 26171 | Reconstruct a polynomial a... |
| coeid3 26172 | Reconstruct a polynomial a... |
| plyco 26173 | The composition of two pol... |
| coeeq2 26174 | Compute the coefficient fu... |
| dgrle 26175 | Given an explicit expressi... |
| dgreq 26176 | If the highest term in a p... |
| 0dgr 26177 | A constant function has de... |
| 0dgrb 26178 | A function has degree zero... |
| dgrnznn 26179 | A nonzero polynomial with ... |
| coefv0 26180 | The result of evaluating a... |
| coeaddlem 26181 | Lemma for ~ coeadd and ~ d... |
| coemullem 26182 | Lemma for ~ coemul and ~ d... |
| coeadd 26183 | The coefficient function o... |
| coemul 26184 | A coefficient of a product... |
| coe11 26185 | The coefficient function i... |
| coemulhi 26186 | The leading coefficient of... |
| coemulc 26187 | The coefficient function i... |
| coe0 26188 | The coefficients of the ze... |
| coesub 26189 | The coefficient function o... |
| coe1termlem 26190 | The coefficient function o... |
| coe1term 26191 | The coefficient function o... |
| dgr1term 26192 | The degree of a monomial. ... |
| plycn 26193 | A polynomial is a continuo... |
| plycnOLD 26194 | Obsolete version of ~ plyc... |
| dgr0 26195 | The degree of the zero pol... |
| coeidp 26196 | The coefficients of the id... |
| dgrid 26197 | The degree of the identity... |
| dgreq0 26198 | The leading coefficient of... |
| dgrlt 26199 | Two ways to say that the d... |
| dgradd 26200 | The degree of a sum of pol... |
| dgradd2 26201 | The degree of a sum of pol... |
| dgrmul2 26202 | The degree of a product of... |
| dgrmul 26203 | The degree of a product of... |
| dgrmulc 26204 | Scalar multiplication by a... |
| dgrsub 26205 | The degree of a difference... |
| dgrcolem1 26206 | The degree of a compositio... |
| dgrcolem2 26207 | Lemma for ~ dgrco . (Cont... |
| dgrco 26208 | The degree of a compositio... |
| plycjlem 26209 | Lemma for ~ plycj and ~ co... |
| plycj 26210 | The double conjugation of ... |
| coecj 26211 | Double conjugation of a po... |
| plycjOLD 26212 | Obsolete version of ~ plyc... |
| coecjOLD 26213 | Obsolete version of ~ coec... |
| plyrecj 26214 | A polynomial with real coe... |
| plymul0or 26215 | Polynomial multiplication ... |
| ofmulrt 26216 | The set of roots of a prod... |
| plyreres 26217 | Real-coefficient polynomia... |
| dvply1 26218 | Derivative of a polynomial... |
| dvply2g 26219 | The derivative of a polyno... |
| dvply2gOLD 26220 | Obsolete version of ~ dvpl... |
| dvply2 26221 | The derivative of a polyno... |
| dvnply2 26222 | Polynomials have polynomia... |
| dvnply 26223 | Polynomials have polynomia... |
| plycpn 26224 | Polynomials are smooth. (... |
| quotval 26227 | Value of the quotient func... |
| plydivlem1 26228 | Lemma for ~ plydivalg . (... |
| plydivlem2 26229 | Lemma for ~ plydivalg . (... |
| plydivlem3 26230 | Lemma for ~ plydivex . Ba... |
| plydivlem4 26231 | Lemma for ~ plydivex . In... |
| plydivex 26232 | Lemma for ~ plydivalg . (... |
| plydiveu 26233 | Lemma for ~ plydivalg . (... |
| plydivalg 26234 | The division algorithm on ... |
| quotlem 26235 | Lemma for properties of th... |
| quotcl 26236 | The quotient of two polyno... |
| quotcl2 26237 | Closure of the quotient fu... |
| quotdgr 26238 | Remainder property of the ... |
| plyremlem 26239 | Closure of a linear factor... |
| plyrem 26240 | The polynomial remainder t... |
| facth 26241 | The factor theorem. If a ... |
| fta1lem 26242 | Lemma for ~ fta1 . (Contr... |
| fta1 26243 | The easy direction of the ... |
| quotcan 26244 | Exact division with a mult... |
| vieta1lem1 26245 | Lemma for ~ vieta1 . (Con... |
| vieta1lem2 26246 | Lemma for ~ vieta1 : induc... |
| vieta1 26247 | The first-order Vieta's fo... |
| plyexmo 26248 | An infinite set of values ... |
| elaa 26251 | Elementhood in the set of ... |
| aacn 26252 | An algebraic number is a c... |
| aasscn 26253 | The algebraic numbers are ... |
| elqaalem1 26254 | Lemma for ~ elqaa . The f... |
| elqaalem2 26255 | Lemma for ~ elqaa . (Cont... |
| elqaalem3 26256 | Lemma for ~ elqaa . (Cont... |
| elqaa 26257 | The set of numbers generat... |
| qaa 26258 | Every rational number is a... |
| qssaa 26259 | The rational numbers are c... |
| iaa 26260 | The imaginary unit is alge... |
| aareccl 26261 | The reciprocal of an algeb... |
| aacjcl 26262 | The conjugate of an algebr... |
| aannenlem1 26263 | Lemma for ~ aannen . (Con... |
| aannenlem2 26264 | Lemma for ~ aannen . (Con... |
| aannenlem3 26265 | The algebraic numbers are ... |
| aannen 26266 | The algebraic numbers are ... |
| aalioulem1 26267 | Lemma for ~ aaliou . An i... |
| aalioulem2 26268 | Lemma for ~ aaliou . (Con... |
| aalioulem3 26269 | Lemma for ~ aaliou . (Con... |
| aalioulem4 26270 | Lemma for ~ aaliou . (Con... |
| aalioulem5 26271 | Lemma for ~ aaliou . (Con... |
| aalioulem6 26272 | Lemma for ~ aaliou . (Con... |
| aaliou 26273 | Liouville's theorem on dio... |
| geolim3 26274 | Geometric series convergen... |
| aaliou2 26275 | Liouville's approximation ... |
| aaliou2b 26276 | Liouville's approximation ... |
| aaliou3lem1 26277 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem2 26278 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem3 26279 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem8 26280 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem4 26281 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem5 26282 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem6 26283 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem7 26284 | Lemma for ~ aaliou3 . (Co... |
| aaliou3lem9 26285 | Example of a "Liouville nu... |
| aaliou3 26286 | Example of a "Liouville nu... |
| taylfvallem1 26291 | Lemma for ~ taylfval . (C... |
| taylfvallem 26292 | Lemma for ~ taylfval . (C... |
| taylfval 26293 | Define the Taylor polynomi... |
| eltayl 26294 | Value of the Taylor series... |
| taylf 26295 | The Taylor series defines ... |
| tayl0 26296 | The Taylor series is alway... |
| taylplem1 26297 | Lemma for ~ taylpfval and ... |
| taylplem2 26298 | Lemma for ~ taylpfval and ... |
| taylpfval 26299 | Define the Taylor polynomi... |
| taylpf 26300 | The Taylor polynomial is a... |
| taylpval 26301 | Value of the Taylor polyno... |
| taylply2 26302 | The Taylor polynomial is a... |
| taylply2OLD 26303 | Obsolete version of ~ tayl... |
| taylply 26304 | The Taylor polynomial is a... |
| dvtaylp 26305 | The derivative of the Tayl... |
| dvntaylp 26306 | The ` M ` -th derivative o... |
| dvntaylp0 26307 | The first ` N ` derivative... |
| taylthlem1 26308 | Lemma for ~ taylth . This... |
| taylthlem2 26309 | Lemma for ~ taylth . (Con... |
| taylthlem2OLD 26310 | Obsolete version of ~ tayl... |
| taylth 26311 | Taylor's theorem. The Tay... |
| ulmrel 26314 | The uniform limit relation... |
| ulmscl 26315 | Closure of the base set in... |
| ulmval 26316 | Express the predicate: Th... |
| ulmcl 26317 | Closure of a uniform limit... |
| ulmf 26318 | Closure of a uniform limit... |
| ulmpm 26319 | Closure of a uniform limit... |
| ulmf2 26320 | Closure of a uniform limit... |
| ulm2 26321 | Simplify ~ ulmval when ` F... |
| ulmi 26322 | The uniform limit property... |
| ulmclm 26323 | A uniform limit of functio... |
| ulmres 26324 | A sequence of functions co... |
| ulmshftlem 26325 | Lemma for ~ ulmshft . (Co... |
| ulmshft 26326 | A sequence of functions co... |
| ulm0 26327 | Every function converges u... |
| ulmuni 26328 | A sequence of functions un... |
| ulmdm 26329 | Two ways to express that a... |
| ulmcaulem 26330 | Lemma for ~ ulmcau and ~ u... |
| ulmcau 26331 | A sequence of functions co... |
| ulmcau2 26332 | A sequence of functions co... |
| ulmss 26333 | A uniform limit of functio... |
| ulmbdd 26334 | A uniform limit of bounded... |
| ulmcn 26335 | A uniform limit of continu... |
| ulmdvlem1 26336 | Lemma for ~ ulmdv . (Cont... |
| ulmdvlem2 26337 | Lemma for ~ ulmdv . (Cont... |
| ulmdvlem3 26338 | Lemma for ~ ulmdv . (Cont... |
| ulmdv 26339 | If ` F ` is a sequence of ... |
| mtest 26340 | The Weierstrass M-test. I... |
| mtestbdd 26341 | Given the hypotheses of th... |
| mbfulm 26342 | A uniform limit of measura... |
| iblulm 26343 | A uniform limit of integra... |
| itgulm 26344 | A uniform limit of integra... |
| itgulm2 26345 | A uniform limit of integra... |
| pserval 26346 | Value of the function ` G ... |
| pserval2 26347 | Value of the function ` G ... |
| psergf 26348 | The sequence of terms in t... |
| radcnvlem1 26349 | Lemma for ~ radcnvlt1 , ~ ... |
| radcnvlem2 26350 | Lemma for ~ radcnvlt1 , ~ ... |
| radcnvlem3 26351 | Lemma for ~ radcnvlt1 , ~ ... |
| radcnv0 26352 | Zero is always a convergen... |
| radcnvcl 26353 | The radius of convergence ... |
| radcnvlt1 26354 | If ` X ` is within the ope... |
| radcnvlt2 26355 | If ` X ` is within the ope... |
| radcnvle 26356 | If ` X ` is a convergent p... |
| dvradcnv 26357 | The radius of convergence ... |
| pserulm 26358 | If ` S ` is a region conta... |
| psercn2 26359 | Since by ~ pserulm the ser... |
| psercn2OLD 26360 | Obsolete version of ~ pser... |
| psercnlem2 26361 | Lemma for ~ psercn . (Con... |
| psercnlem1 26362 | Lemma for ~ psercn . (Con... |
| psercn 26363 | An infinite series converg... |
| pserdvlem1 26364 | Lemma for ~ pserdv . (Con... |
| pserdvlem2 26365 | Lemma for ~ pserdv . (Con... |
| pserdv 26366 | The derivative of a power ... |
| pserdv2 26367 | The derivative of a power ... |
| abelthlem1 26368 | Lemma for ~ abelth . (Con... |
| abelthlem2 26369 | Lemma for ~ abelth . The ... |
| abelthlem3 26370 | Lemma for ~ abelth . (Con... |
| abelthlem4 26371 | Lemma for ~ abelth . (Con... |
| abelthlem5 26372 | Lemma for ~ abelth . (Con... |
| abelthlem6 26373 | Lemma for ~ abelth . (Con... |
| abelthlem7a 26374 | Lemma for ~ abelth . (Con... |
| abelthlem7 26375 | Lemma for ~ abelth . (Con... |
| abelthlem8 26376 | Lemma for ~ abelth . (Con... |
| abelthlem9 26377 | Lemma for ~ abelth . By a... |
| abelth 26378 | Abel's theorem. If the po... |
| abelth2 26379 | Abel's theorem, restricted... |
| efcn 26380 | The exponential function i... |
| sincn 26381 | Sine is continuous. (Cont... |
| coscn 26382 | Cosine is continuous. (Co... |
| reeff1olem 26383 | Lemma for ~ reeff1o . (Co... |
| reeff1o 26384 | The real exponential funct... |
| reefiso 26385 | The exponential function o... |
| efcvx 26386 | The exponential function o... |
| reefgim 26387 | The exponential function i... |
| pilem1 26388 | Lemma for ~ pire , ~ pigt2... |
| pilem2 26389 | Lemma for ~ pire , ~ pigt2... |
| pilem3 26390 | Lemma for ~ pire , ~ pigt2... |
| pigt2lt4 26391 | ` _pi ` is between 2 and 4... |
| sinpi 26392 | The sine of ` _pi ` is 0. ... |
| pire 26393 | ` _pi ` is a real number. ... |
| picn 26394 | ` _pi ` is a complex numbe... |
| pipos 26395 | ` _pi ` is positive. (Con... |
| pine0 26396 | ` _pi ` is nonzero. (Cont... |
| pirp 26397 | ` _pi ` is a positive real... |
| negpicn 26398 | ` -u _pi ` is a real numbe... |
| sinhalfpilem 26399 | Lemma for ~ sinhalfpi and ... |
| halfpire 26400 | ` _pi / 2 ` is real. (Con... |
| neghalfpire 26401 | ` -u _pi / 2 ` is real. (... |
| neghalfpirx 26402 | ` -u _pi / 2 ` is an exten... |
| pidiv2halves 26403 | Adding ` _pi / 2 ` to itse... |
| sinhalfpi 26404 | The sine of ` _pi / 2 ` is... |
| coshalfpi 26405 | The cosine of ` _pi / 2 ` ... |
| cosneghalfpi 26406 | The cosine of ` -u _pi / 2... |
| efhalfpi 26407 | The exponential of ` _i _p... |
| cospi 26408 | The cosine of ` _pi ` is `... |
| efipi 26409 | The exponential of ` _i x.... |
| eulerid 26410 | Euler's identity. (Contri... |
| sin2pi 26411 | The sine of ` 2 _pi ` is 0... |
| cos2pi 26412 | The cosine of ` 2 _pi ` is... |
| ef2pi 26413 | The exponential of ` 2 _pi... |
| ef2kpi 26414 | If ` K ` is an integer, th... |
| efper 26415 | The exponential function i... |
| sinperlem 26416 | Lemma for ~ sinper and ~ c... |
| sinper 26417 | The sine function is perio... |
| cosper 26418 | The cosine function is per... |
| sin2kpi 26419 | If ` K ` is an integer, th... |
| cos2kpi 26420 | If ` K ` is an integer, th... |
| sin2pim 26421 | Sine of a number subtracte... |
| cos2pim 26422 | Cosine of a number subtrac... |
| sinmpi 26423 | Sine of a number less ` _p... |
| cosmpi 26424 | Cosine of a number less ` ... |
| sinppi 26425 | Sine of a number plus ` _p... |
| cosppi 26426 | Cosine of a number plus ` ... |
| efimpi 26427 | The exponential function a... |
| sinhalfpip 26428 | The sine of ` _pi / 2 ` pl... |
| sinhalfpim 26429 | The sine of ` _pi / 2 ` mi... |
| coshalfpip 26430 | The cosine of ` _pi / 2 ` ... |
| coshalfpim 26431 | The cosine of ` _pi / 2 ` ... |
| ptolemy 26432 | Ptolemy's Theorem. This t... |
| sincosq1lem 26433 | Lemma for ~ sincosq1sgn . ... |
| sincosq1sgn 26434 | The signs of the sine and ... |
| sincosq2sgn 26435 | The signs of the sine and ... |
| sincosq3sgn 26436 | The signs of the sine and ... |
| sincosq4sgn 26437 | The signs of the sine and ... |
| coseq00topi 26438 | Location of the zeroes of ... |
| coseq0negpitopi 26439 | Location of the zeroes of ... |
| tanrpcl 26440 | Positive real closure of t... |
| tangtx 26441 | The tangent function is gr... |
| tanabsge 26442 | The tangent function is gr... |
| sinq12gt0 26443 | The sine of a number stric... |
| sinq12ge0 26444 | The sine of a number betwe... |
| sinq34lt0t 26445 | The sine of a number stric... |
| cosq14gt0 26446 | The cosine of a number str... |
| cosq14ge0 26447 | The cosine of a number bet... |
| sincosq1eq 26448 | Complementarity of the sin... |
| sincos4thpi 26449 | The sine and cosine of ` _... |
| tan4thpi 26450 | The tangent of ` _pi / 4 `... |
| tan4thpiOLD 26451 | Obsolete version of ~ tan4... |
| sincos6thpi 26452 | The sine and cosine of ` _... |
| sincos3rdpi 26453 | The sine and cosine of ` _... |
| pigt3 26454 | ` _pi ` is greater than 3.... |
| pige3 26455 | ` _pi ` is greater than or... |
| pige3ALT 26456 | Alternate proof of ~ pige3... |
| abssinper 26457 | The absolute value of sine... |
| sinkpi 26458 | The sine of an integer mul... |
| coskpi 26459 | The absolute value of the ... |
| sineq0 26460 | A complex number whose sin... |
| coseq1 26461 | A complex number whose cos... |
| cos02pilt1 26462 | Cosine is less than one be... |
| cosq34lt1 26463 | Cosine is less than one in... |
| efeq1 26464 | A complex number whose exp... |
| cosne0 26465 | The cosine function has no... |
| cosordlem 26466 | Lemma for ~ cosord . (Con... |
| cosord 26467 | Cosine is decreasing over ... |
| cos0pilt1 26468 | Cosine is between minus on... |
| cos11 26469 | Cosine is one-to-one over ... |
| sinord 26470 | Sine is increasing over th... |
| recosf1o 26471 | The cosine function is a b... |
| resinf1o 26472 | The sine function is a bij... |
| tanord1 26473 | The tangent function is st... |
| tanord 26474 | The tangent function is st... |
| tanregt0 26475 | The real part of the tange... |
| negpitopissre 26476 | The interval ` ( -u _pi (,... |
| efgh 26477 | The exponential function o... |
| efif1olem1 26478 | Lemma for ~ efif1o . (Con... |
| efif1olem2 26479 | Lemma for ~ efif1o . (Con... |
| efif1olem3 26480 | Lemma for ~ efif1o . (Con... |
| efif1olem4 26481 | The exponential function o... |
| efif1o 26482 | The exponential function o... |
| efifo 26483 | The exponential function o... |
| eff1olem 26484 | The exponential function m... |
| eff1o 26485 | The exponential function m... |
| efabl 26486 | The image of a subgroup of... |
| efsubm 26487 | The image of a subgroup of... |
| circgrp 26488 | The circle group ` T ` is ... |
| circsubm 26489 | The circle group ` T ` is ... |
| logrn 26494 | The range of the natural l... |
| ellogrn 26495 | Write out the property ` A... |
| dflog2 26496 | The natural logarithm func... |
| relogrn 26497 | The range of the natural l... |
| logrncn 26498 | The range of the natural l... |
| eff1o2 26499 | The exponential function r... |
| logf1o 26500 | The natural logarithm func... |
| dfrelog 26501 | The natural logarithm func... |
| relogf1o 26502 | The natural logarithm func... |
| logrncl 26503 | Closure of the natural log... |
| logcl 26504 | Closure of the natural log... |
| logimcl 26505 | Closure of the imaginary p... |
| logcld 26506 | The logarithm of a nonzero... |
| logimcld 26507 | The imaginary part of the ... |
| logimclad 26508 | The imaginary part of the ... |
| abslogimle 26509 | The imaginary part of the ... |
| logrnaddcl 26510 | The range of the natural l... |
| relogcl 26511 | Closure of the natural log... |
| eflog 26512 | Relationship between the n... |
| logeq0im1 26513 | If the logarithm of a numb... |
| logccne0 26514 | The logarithm isn't 0 if i... |
| logne0 26515 | Logarithm of a non-1 posit... |
| reeflog 26516 | Relationship between the n... |
| logef 26517 | Relationship between the n... |
| relogef 26518 | Relationship between the n... |
| logeftb 26519 | Relationship between the n... |
| relogeftb 26520 | Relationship between the n... |
| log1 26521 | The natural logarithm of `... |
| loge 26522 | The natural logarithm of `... |
| logi 26523 | The natural logarithm of `... |
| logneg 26524 | The natural logarithm of a... |
| logm1 26525 | The natural logarithm of n... |
| lognegb 26526 | If a number has imaginary ... |
| relogoprlem 26527 | Lemma for ~ relogmul and ~... |
| relogmul 26528 | The natural logarithm of t... |
| relogdiv 26529 | The natural logarithm of t... |
| explog 26530 | Exponentiation of a nonzer... |
| reexplog 26531 | Exponentiation of a positi... |
| relogexp 26532 | The natural logarithm of p... |
| relog 26533 | Real part of a logarithm. ... |
| relogiso 26534 | The natural logarithm func... |
| reloggim 26535 | The natural logarithm is a... |
| logltb 26536 | The natural logarithm func... |
| logfac 26537 | The logarithm of a factori... |
| eflogeq 26538 | Solve an equation involvin... |
| logleb 26539 | Natural logarithm preserve... |
| rplogcl 26540 | Closure of the logarithm f... |
| logge0 26541 | The logarithm of a number ... |
| logcj 26542 | The natural logarithm dist... |
| efiarg 26543 | The exponential of the "ar... |
| cosargd 26544 | The cosine of the argument... |
| cosarg0d 26545 | The cosine of the argument... |
| argregt0 26546 | Closure of the argument of... |
| argrege0 26547 | Closure of the argument of... |
| argimgt0 26548 | Closure of the argument of... |
| argimlt0 26549 | Closure of the argument of... |
| logimul 26550 | Multiplying a number by ` ... |
| logneg2 26551 | The logarithm of the negat... |
| logmul2 26552 | Generalization of ~ relogm... |
| logdiv2 26553 | Generalization of ~ relogd... |
| abslogle 26554 | Bound on the magnitude of ... |
| tanarg 26555 | The basic relation between... |
| logdivlti 26556 | The ` log x / x ` function... |
| logdivlt 26557 | The ` log x / x ` function... |
| logdivle 26558 | The ` log x / x ` function... |
| relogcld 26559 | Closure of the natural log... |
| reeflogd 26560 | Relationship between the n... |
| relogmuld 26561 | The natural logarithm of t... |
| relogdivd 26562 | The natural logarithm of t... |
| logled 26563 | Natural logarithm preserve... |
| relogefd 26564 | Relationship between the n... |
| rplogcld 26565 | Closure of the logarithm f... |
| logge0d 26566 | The logarithm of a number ... |
| logge0b 26567 | The logarithm of a number ... |
| loggt0b 26568 | The logarithm of a number ... |
| logle1b 26569 | The logarithm of a number ... |
| loglt1b 26570 | The logarithm of a number ... |
| divlogrlim 26571 | The inverse logarithm func... |
| logno1 26572 | The logarithm function is ... |
| dvrelog 26573 | The derivative of the real... |
| relogcn 26574 | The real logarithm functio... |
| ellogdm 26575 | Elementhood in the "contin... |
| logdmn0 26576 | A number in the continuous... |
| logdmnrp 26577 | A number in the continuous... |
| logdmss 26578 | The continuity domain of `... |
| logcnlem2 26579 | Lemma for ~ logcn . (Cont... |
| logcnlem3 26580 | Lemma for ~ logcn . (Cont... |
| logcnlem4 26581 | Lemma for ~ logcn . (Cont... |
| logcnlem5 26582 | Lemma for ~ logcn . (Cont... |
| logcn 26583 | The logarithm function is ... |
| dvloglem 26584 | Lemma for ~ dvlog . (Cont... |
| logdmopn 26585 | The "continuous domain" of... |
| logf1o2 26586 | The logarithm maps its con... |
| dvlog 26587 | The derivative of the comp... |
| dvlog2lem 26588 | Lemma for ~ dvlog2 . (Con... |
| dvlog2 26589 | The derivative of the comp... |
| advlog 26590 | The antiderivative of the ... |
| advlogexp 26591 | The antiderivative of a po... |
| efopnlem1 26592 | Lemma for ~ efopn . (Cont... |
| efopnlem2 26593 | Lemma for ~ efopn . (Cont... |
| efopn 26594 | The exponential map is an ... |
| logtayllem 26595 | Lemma for ~ logtayl . (Co... |
| logtayl 26596 | The Taylor series for ` -u... |
| logtaylsum 26597 | The Taylor series for ` -u... |
| logtayl2 26598 | Power series expression fo... |
| logccv 26599 | The natural logarithm func... |
| cxpval 26600 | Value of the complex power... |
| cxpef 26601 | Value of the complex power... |
| 0cxp 26602 | Value of the complex power... |
| cxpexpz 26603 | Relate the complex power f... |
| cxpexp 26604 | Relate the complex power f... |
| logcxp 26605 | Logarithm of a complex pow... |
| cxp0 26606 | Value of the complex power... |
| cxp1 26607 | Value of the complex power... |
| 1cxp 26608 | Value of the complex power... |
| ecxp 26609 | Write the exponential func... |
| cxpcl 26610 | Closure of the complex pow... |
| recxpcl 26611 | Real closure of the comple... |
| rpcxpcl 26612 | Positive real closure of t... |
| cxpne0 26613 | Complex exponentiation is ... |
| cxpeq0 26614 | Complex exponentiation is ... |
| cxpadd 26615 | Sum of exponents law for c... |
| cxpp1 26616 | Value of a nonzero complex... |
| cxpneg 26617 | Value of a complex number ... |
| cxpsub 26618 | Exponent subtraction law f... |
| cxpge0 26619 | Nonnegative exponentiation... |
| mulcxplem 26620 | Lemma for ~ mulcxp . (Con... |
| mulcxp 26621 | Complex exponentiation of ... |
| cxprec 26622 | Complex exponentiation of ... |
| divcxp 26623 | Complex exponentiation of ... |
| cxpmul 26624 | Product of exponents law f... |
| cxpmul2 26625 | Product of exponents law f... |
| cxproot 26626 | The complex power function... |
| cxpmul2z 26627 | Generalize ~ cxpmul2 to ne... |
| abscxp 26628 | Absolute value of a power,... |
| abscxp2 26629 | Absolute value of a power,... |
| cxplt 26630 | Ordering property for comp... |
| cxple 26631 | Ordering property for comp... |
| cxplea 26632 | Ordering property for comp... |
| cxple2 26633 | Ordering property for comp... |
| cxplt2 26634 | Ordering property for comp... |
| cxple2a 26635 | Ordering property for comp... |
| cxplt3 26636 | Ordering property for comp... |
| cxple3 26637 | Ordering property for comp... |
| cxpsqrtlem 26638 | Lemma for ~ cxpsqrt . (Co... |
| cxpsqrt 26639 | The complex exponential fu... |
| logsqrt 26640 | Logarithm of a square root... |
| cxp0d 26641 | Value of the complex power... |
| cxp1d 26642 | Value of the complex power... |
| 1cxpd 26643 | Value of the complex power... |
| cxpcld 26644 | Closure of the complex pow... |
| cxpmul2d 26645 | Product of exponents law f... |
| 0cxpd 26646 | Value of the complex power... |
| cxpexpzd 26647 | Relate the complex power f... |
| cxpefd 26648 | Value of the complex power... |
| cxpne0d 26649 | Complex exponentiation is ... |
| cxpp1d 26650 | Value of a nonzero complex... |
| cxpnegd 26651 | Value of a complex number ... |
| cxpmul2zd 26652 | Generalize ~ cxpmul2 to ne... |
| cxpaddd 26653 | Sum of exponents law for c... |
| cxpsubd 26654 | Exponent subtraction law f... |
| cxpltd 26655 | Ordering property for comp... |
| cxpled 26656 | Ordering property for comp... |
| cxplead 26657 | Ordering property for comp... |
| divcxpd 26658 | Complex exponentiation of ... |
| recxpcld 26659 | Positive real closure of t... |
| cxpge0d 26660 | Nonnegative exponentiation... |
| cxple2ad 26661 | Ordering property for comp... |
| cxplt2d 26662 | Ordering property for comp... |
| cxple2d 26663 | Ordering property for comp... |
| mulcxpd 26664 | Complex exponentiation of ... |
| recxpf1lem 26665 | Complex exponentiation on ... |
| cxpsqrtth 26666 | Square root theorem over t... |
| 2irrexpq 26667 | There exist irrational num... |
| cxprecd 26668 | Complex exponentiation of ... |
| rpcxpcld 26669 | Positive real closure of t... |
| logcxpd 26670 | Logarithm of a complex pow... |
| cxplt3d 26671 | Ordering property for comp... |
| cxple3d 26672 | Ordering property for comp... |
| cxpmuld 26673 | Product of exponents law f... |
| cxpgt0d 26674 | A positive real raised to ... |
| cxpcom 26675 | Commutative law for real e... |
| dvcxp1 26676 | The derivative of a comple... |
| dvcxp2 26677 | The derivative of a comple... |
| dvsqrt 26678 | The derivative of the real... |
| dvcncxp1 26679 | Derivative of complex powe... |
| dvcnsqrt 26680 | Derivative of square root ... |
| cxpcn 26681 | Domain of continuity of th... |
| cxpcnOLD 26682 | Obsolete version of ~ cxpc... |
| cxpcn2 26683 | Continuity of the complex ... |
| cxpcn3lem 26684 | Lemma for ~ cxpcn3 . (Con... |
| cxpcn3 26685 | Extend continuity of the c... |
| resqrtcn 26686 | Continuity of the real squ... |
| sqrtcn 26687 | Continuity of the square r... |
| cxpaddlelem 26688 | Lemma for ~ cxpaddle . (C... |
| cxpaddle 26689 | Ordering property for comp... |
| abscxpbnd 26690 | Bound on the absolute valu... |
| root1id 26691 | Property of an ` N ` -th r... |
| root1eq1 26692 | The only powers of an ` N ... |
| root1cj 26693 | Within the ` N ` -th roots... |
| cxpeq 26694 | Solve an equation involvin... |
| zrtelqelz 26695 | If the ` N ` -th root of a... |
| zrtdvds 26696 | A positive integer root di... |
| rtprmirr 26697 | The root of a prime number... |
| loglesqrt 26698 | An upper bound on the loga... |
| logreclem 26699 | Symmetry of the natural lo... |
| logrec 26700 | Logarithm of a reciprocal ... |
| logbval 26703 | Define the value of the ` ... |
| logbcl 26704 | General logarithm closure.... |
| logbid1 26705 | General logarithm is 1 whe... |
| logb1 26706 | The logarithm of ` 1 ` to ... |
| elogb 26707 | The general logarithm of a... |
| logbchbase 26708 | Change of base for logarit... |
| relogbval 26709 | Value of the general logar... |
| relogbcl 26710 | Closure of the general log... |
| relogbzcl 26711 | Closure of the general log... |
| relogbreexp 26712 | Power law for the general ... |
| relogbzexp 26713 | Power law for the general ... |
| relogbmul 26714 | The logarithm of the produ... |
| relogbmulexp 26715 | The logarithm of the produ... |
| relogbdiv 26716 | The logarithm of the quoti... |
| relogbexp 26717 | Identity law for general l... |
| nnlogbexp 26718 | Identity law for general l... |
| logbrec 26719 | Logarithm of a reciprocal ... |
| logbleb 26720 | The general logarithm func... |
| logblt 26721 | The general logarithm func... |
| relogbcxp 26722 | Identity law for the gener... |
| cxplogb 26723 | Identity law for the gener... |
| relogbcxpb 26724 | The logarithm is the inver... |
| logbmpt 26725 | The general logarithm to a... |
| logbf 26726 | The general logarithm to a... |
| logbfval 26727 | The general logarithm of a... |
| relogbf 26728 | The general logarithm to a... |
| logblog 26729 | The general logarithm to t... |
| logbgt0b 26730 | The logarithm of a positiv... |
| logbgcd1irr 26731 | The logarithm of an intege... |
| 2logb9irr 26732 | Example for ~ logbgcd1irr ... |
| logbprmirr 26733 | The logarithm of a prime t... |
| 2logb3irr 26734 | Example for ~ logbprmirr .... |
| 2logb9irrALT 26735 | Alternate proof of ~ 2logb... |
| sqrt2cxp2logb9e3 26736 | The square root of two to ... |
| 2irrexpqALT 26737 | Alternate proof of ~ 2irre... |
| angval 26738 | Define the angle function,... |
| angcan 26739 | Cancel a constant multipli... |
| angneg 26740 | Cancel a negative sign in ... |
| angvald 26741 | The (signed) angle between... |
| angcld 26742 | The (signed) angle between... |
| angrteqvd 26743 | Two vectors are at a right... |
| cosangneg2d 26744 | The cosine of the angle be... |
| angrtmuld 26745 | Perpendicularity of two ve... |
| ang180lem1 26746 | Lemma for ~ ang180 . Show... |
| ang180lem2 26747 | Lemma for ~ ang180 . Show... |
| ang180lem3 26748 | Lemma for ~ ang180 . Sinc... |
| ang180lem4 26749 | Lemma for ~ ang180 . Redu... |
| ang180lem5 26750 | Lemma for ~ ang180 : Redu... |
| ang180 26751 | The sum of angles ` m A B ... |
| lawcoslem1 26752 | Lemma for ~ lawcos . Here... |
| lawcos 26753 | Law of cosines (also known... |
| pythag 26754 | Pythagorean theorem. Give... |
| isosctrlem1 26755 | Lemma for ~ isosctr . (Co... |
| isosctrlem2 26756 | Lemma for ~ isosctr . Cor... |
| isosctrlem3 26757 | Lemma for ~ isosctr . Cor... |
| isosctr 26758 | Isosceles triangle theorem... |
| ssscongptld 26759 | If two triangles have equa... |
| affineequiv 26760 | Equivalence between two wa... |
| affineequiv2 26761 | Equivalence between two wa... |
| affineequiv3 26762 | Equivalence between two wa... |
| affineequiv4 26763 | Equivalence between two wa... |
| affineequivne 26764 | Equivalence between two wa... |
| angpieqvdlem 26765 | Equivalence used in the pr... |
| angpieqvdlem2 26766 | Equivalence used in ~ angp... |
| angpined 26767 | If the angle at ABC is ` _... |
| angpieqvd 26768 | The angle ABC is ` _pi ` i... |
| chordthmlem 26769 | If ` M ` is the midpoint o... |
| chordthmlem2 26770 | If M is the midpoint of AB... |
| chordthmlem3 26771 | If M is the midpoint of AB... |
| chordthmlem4 26772 | If P is on the segment AB ... |
| chordthmlem5 26773 | If P is on the segment AB ... |
| chordthm 26774 | The intersecting chords th... |
| heron 26775 | Heron's formula gives the ... |
| quad2 26776 | The quadratic equation, wi... |
| quad 26777 | The quadratic equation. (... |
| 1cubrlem 26778 | The cube roots of unity. ... |
| 1cubr 26779 | The cube roots of unity. ... |
| dcubic1lem 26780 | Lemma for ~ dcubic1 and ~ ... |
| dcubic2 26781 | Reverse direction of ~ dcu... |
| dcubic1 26782 | Forward direction of ~ dcu... |
| dcubic 26783 | Solutions to the depressed... |
| mcubic 26784 | Solutions to a monic cubic... |
| cubic2 26785 | The solution to the genera... |
| cubic 26786 | The cubic equation, which ... |
| binom4 26787 | Work out a quartic binomia... |
| dquartlem1 26788 | Lemma for ~ dquart . (Con... |
| dquartlem2 26789 | Lemma for ~ dquart . (Con... |
| dquart 26790 | Solve a depressed quartic ... |
| quart1cl 26791 | Closure lemmas for ~ quart... |
| quart1lem 26792 | Lemma for ~ quart1 . (Con... |
| quart1 26793 | Depress a quartic equation... |
| quartlem1 26794 | Lemma for ~ quart . (Cont... |
| quartlem2 26795 | Closure lemmas for ~ quart... |
| quartlem3 26796 | Closure lemmas for ~ quart... |
| quartlem4 26797 | Closure lemmas for ~ quart... |
| quart 26798 | The quartic equation, writ... |
| asinlem 26805 | The argument to the logari... |
| asinlem2 26806 | The argument to the logari... |
| asinlem3a 26807 | Lemma for ~ asinlem3 . (C... |
| asinlem3 26808 | The argument to the logari... |
| asinf 26809 | Domain and codomain of the... |
| asincl 26810 | Closure for the arcsin fun... |
| acosf 26811 | Domain and codoamin of the... |
| acoscl 26812 | Closure for the arccos fun... |
| atandm 26813 | Since the property is a li... |
| atandm2 26814 | This form of ~ atandm is a... |
| atandm3 26815 | A compact form of ~ atandm... |
| atandm4 26816 | A compact form of ~ atandm... |
| atanf 26817 | Domain and codoamin of the... |
| atancl 26818 | Closure for the arctan fun... |
| asinval 26819 | Value of the arcsin functi... |
| acosval 26820 | Value of the arccos functi... |
| atanval 26821 | Value of the arctan functi... |
| atanre 26822 | A real number is in the do... |
| asinneg 26823 | The arcsine function is od... |
| acosneg 26824 | The negative symmetry rela... |
| efiasin 26825 | The exponential of the arc... |
| sinasin 26826 | The arcsine function is an... |
| cosacos 26827 | The arccosine function is ... |
| asinsinlem 26828 | Lemma for ~ asinsin . (Co... |
| asinsin 26829 | The arcsine function compo... |
| acoscos 26830 | The arccosine function is ... |
| asin1 26831 | The arcsine of ` 1 ` is ` ... |
| acos1 26832 | The arccosine of ` 1 ` is ... |
| reasinsin 26833 | The arcsine function compo... |
| asinsinb 26834 | Relationship between sine ... |
| acoscosb 26835 | Relationship between cosin... |
| asinbnd 26836 | The arcsine function has r... |
| acosbnd 26837 | The arccosine function has... |
| asinrebnd 26838 | Bounds on the arcsine func... |
| asinrecl 26839 | The arcsine function is re... |
| acosrecl 26840 | The arccosine function is ... |
| cosasin 26841 | The cosine of the arcsine ... |
| sinacos 26842 | The sine of the arccosine ... |
| atandmneg 26843 | The domain of the arctange... |
| atanneg 26844 | The arctangent function is... |
| atan0 26845 | The arctangent of zero is ... |
| atandmcj 26846 | The arctangent function di... |
| atancj 26847 | The arctangent function di... |
| atanrecl 26848 | The arctangent function is... |
| efiatan 26849 | Value of the exponential o... |
| atanlogaddlem 26850 | Lemma for ~ atanlogadd . ... |
| atanlogadd 26851 | The rule ` sqrt ( z w ) = ... |
| atanlogsublem 26852 | Lemma for ~ atanlogsub . ... |
| atanlogsub 26853 | A variation on ~ atanlogad... |
| efiatan2 26854 | Value of the exponential o... |
| 2efiatan 26855 | Value of the exponential o... |
| tanatan 26856 | The arctangent function is... |
| atandmtan 26857 | The tangent function has r... |
| cosatan 26858 | The cosine of an arctangen... |
| cosatanne0 26859 | The arctangent function ha... |
| atantan 26860 | The arctangent function is... |
| atantanb 26861 | Relationship between tange... |
| atanbndlem 26862 | Lemma for ~ atanbnd . (Co... |
| atanbnd 26863 | The arctangent function is... |
| atanord 26864 | The arctangent function is... |
| atan1 26865 | The arctangent of ` 1 ` is... |
| bndatandm 26866 | A point in the open unit d... |
| atans 26867 | The "domain of continuity"... |
| atans2 26868 | It suffices to show that `... |
| atansopn 26869 | The domain of continuity o... |
| atansssdm 26870 | The domain of continuity o... |
| ressatans 26871 | The real number line is a ... |
| dvatan 26872 | The derivative of the arct... |
| atancn 26873 | The arctangent is a contin... |
| atantayl 26874 | The Taylor series for ` ar... |
| atantayl2 26875 | The Taylor series for ` ar... |
| atantayl3 26876 | The Taylor series for ` ar... |
| leibpilem1 26877 | Lemma for ~ leibpi . (Con... |
| leibpilem2 26878 | The Leibniz formula for ` ... |
| leibpi 26879 | The Leibniz formula for ` ... |
| leibpisum 26880 | The Leibniz formula for ` ... |
| log2cnv 26881 | Using the Taylor series fo... |
| log2tlbnd 26882 | Bound the error term in th... |
| log2ublem1 26883 | Lemma for ~ log2ub . The ... |
| log2ublem2 26884 | Lemma for ~ log2ub . (Con... |
| log2ublem3 26885 | Lemma for ~ log2ub . In d... |
| log2ub 26886 | ` log 2 ` is less than ` 2... |
| log2le1 26887 | ` log 2 ` is less than ` 1... |
| birthdaylem1 26888 | Lemma for ~ birthday . (C... |
| birthdaylem2 26889 | For general ` N ` and ` K ... |
| birthdaylem3 26890 | For general ` N ` and ` K ... |
| birthday 26891 | The Birthday Problem. The... |
| dmarea 26894 | The domain of the area fun... |
| areambl 26895 | The fibers of a measurable... |
| areass 26896 | A measurable region is a s... |
| dfarea 26897 | Rewrite ~ df-area self-ref... |
| areaf 26898 | Area measurement is a func... |
| areacl 26899 | The area of a measurable r... |
| areage0 26900 | The area of a measurable r... |
| areaval 26901 | The area of a measurable r... |
| rlimcnp 26902 | Relate a limit of a real-v... |
| rlimcnp2 26903 | Relate a limit of a real-v... |
| rlimcnp3 26904 | Relate a limit of a real-v... |
| xrlimcnp 26905 | Relate a limit of a real-v... |
| efrlim 26906 | The limit of the sequence ... |
| efrlimOLD 26907 | Obsolete version of ~ efrl... |
| dfef2 26908 | The limit of the sequence ... |
| cxplim 26909 | A power to a negative expo... |
| sqrtlim 26910 | The inverse square root fu... |
| rlimcxp 26911 | Any power to a positive ex... |
| o1cxp 26912 | An eventually bounded func... |
| cxp2limlem 26913 | A linear factor grows slow... |
| cxp2lim 26914 | Any power grows slower tha... |
| cxploglim 26915 | The logarithm grows slower... |
| cxploglim2 26916 | Every power of the logarit... |
| divsqrtsumlem 26917 | Lemma for ~ divsqrsum and ... |
| divsqrsumf 26918 | The function ` F ` used in... |
| divsqrsum 26919 | The sum ` sum_ n <_ x ( 1 ... |
| divsqrtsum2 26920 | A bound on the distance of... |
| divsqrtsumo1 26921 | The sum ` sum_ n <_ x ( 1 ... |
| cvxcl 26922 | Closure of a 0-1 linear co... |
| scvxcvx 26923 | A strictly convex function... |
| jensenlem1 26924 | Lemma for ~ jensen . (Con... |
| jensenlem2 26925 | Lemma for ~ jensen . (Con... |
| jensen 26926 | Jensen's inequality, a fin... |
| amgmlem 26927 | Lemma for ~ amgm . (Contr... |
| amgm 26928 | Inequality of arithmetic a... |
| logdifbnd 26931 | Bound on the difference of... |
| logdiflbnd 26932 | Lower bound on the differe... |
| emcllem1 26933 | Lemma for ~ emcl . The se... |
| emcllem2 26934 | Lemma for ~ emcl . ` F ` i... |
| emcllem3 26935 | Lemma for ~ emcl . The fu... |
| emcllem4 26936 | Lemma for ~ emcl . The di... |
| emcllem5 26937 | Lemma for ~ emcl . The pa... |
| emcllem6 26938 | Lemma for ~ emcl . By the... |
| emcllem7 26939 | Lemma for ~ emcl and ~ har... |
| emcl 26940 | Closure and bounds for the... |
| harmonicbnd 26941 | A bound on the harmonic se... |
| harmonicbnd2 26942 | A bound on the harmonic se... |
| emre 26943 | The Euler-Mascheroni const... |
| emgt0 26944 | The Euler-Mascheroni const... |
| harmonicbnd3 26945 | A bound on the harmonic se... |
| harmoniclbnd 26946 | A bound on the harmonic se... |
| harmonicubnd 26947 | A bound on the harmonic se... |
| harmonicbnd4 26948 | The asymptotic behavior of... |
| fsumharmonic 26949 | Bound a finite sum based o... |
| zetacvg 26952 | The zeta series is converg... |
| eldmgm 26959 | Elementhood in the set of ... |
| dmgmaddn0 26960 | If ` A ` is not a nonposit... |
| dmlogdmgm 26961 | If ` A ` is in the continu... |
| rpdmgm 26962 | A positive real number is ... |
| dmgmn0 26963 | If ` A ` is not a nonposit... |
| dmgmaddnn0 26964 | If ` A ` is not a nonposit... |
| dmgmdivn0 26965 | Lemma for ~ lgamf . (Cont... |
| lgamgulmlem1 26966 | Lemma for ~ lgamgulm . (C... |
| lgamgulmlem2 26967 | Lemma for ~ lgamgulm . (C... |
| lgamgulmlem3 26968 | Lemma for ~ lgamgulm . (C... |
| lgamgulmlem4 26969 | Lemma for ~ lgamgulm . (C... |
| lgamgulmlem5 26970 | Lemma for ~ lgamgulm . (C... |
| lgamgulmlem6 26971 | The series ` G ` is unifor... |
| lgamgulm 26972 | The series ` G ` is unifor... |
| lgamgulm2 26973 | Rewrite the limit of the s... |
| lgambdd 26974 | The log-Gamma function is ... |
| lgamucov 26975 | The ` U ` regions used in ... |
| lgamucov2 26976 | The ` U ` regions used in ... |
| lgamcvglem 26977 | Lemma for ~ lgamf and ~ lg... |
| lgamcl 26978 | The log-Gamma function is ... |
| lgamf 26979 | The log-Gamma function is ... |
| gamf 26980 | The Gamma function is a co... |
| gamcl 26981 | The exponential of the log... |
| eflgam 26982 | The exponential of the log... |
| gamne0 26983 | The Gamma function is neve... |
| igamval 26984 | Value of the inverse Gamma... |
| igamz 26985 | Value of the inverse Gamma... |
| igamgam 26986 | Value of the inverse Gamma... |
| igamlgam 26987 | Value of the inverse Gamma... |
| igamf 26988 | Closure of the inverse Gam... |
| igamcl 26989 | Closure of the inverse Gam... |
| gamigam 26990 | The Gamma function is the ... |
| lgamcvg 26991 | The series ` G ` converges... |
| lgamcvg2 26992 | The series ` G ` converges... |
| gamcvg 26993 | The pointwise exponential ... |
| lgamp1 26994 | The functional equation of... |
| gamp1 26995 | The functional equation of... |
| gamcvg2lem 26996 | Lemma for ~ gamcvg2 . (Co... |
| gamcvg2 26997 | An infinite product expres... |
| regamcl 26998 | The Gamma function is real... |
| relgamcl 26999 | The log-Gamma function is ... |
| rpgamcl 27000 | The log-Gamma function is ... |
| lgam1 27001 | The log-Gamma function at ... |
| gam1 27002 | The log-Gamma function at ... |
| facgam 27003 | The Gamma function general... |
| gamfac 27004 | The Gamma function general... |
| wilthlem1 27005 | The only elements that are... |
| wilthlem2 27006 | Lemma for ~ wilth : induct... |
| wilthlem3 27007 | Lemma for ~ wilth . Here ... |
| wilth 27008 | Wilson's theorem. A numbe... |
| wilthimp 27009 | The forward implication of... |
| ftalem1 27010 | Lemma for ~ fta : "growth... |
| ftalem2 27011 | Lemma for ~ fta . There e... |
| ftalem3 27012 | Lemma for ~ fta . There e... |
| ftalem4 27013 | Lemma for ~ fta : Closure... |
| ftalem5 27014 | Lemma for ~ fta : Main pr... |
| ftalem6 27015 | Lemma for ~ fta : Dischar... |
| ftalem7 27016 | Lemma for ~ fta . Shift t... |
| fta 27017 | The Fundamental Theorem of... |
| basellem1 27018 | Lemma for ~ basel . Closu... |
| basellem2 27019 | Lemma for ~ basel . Show ... |
| basellem3 27020 | Lemma for ~ basel . Using... |
| basellem4 27021 | Lemma for ~ basel . By ~ ... |
| basellem5 27022 | Lemma for ~ basel . Using... |
| basellem6 27023 | Lemma for ~ basel . The f... |
| basellem7 27024 | Lemma for ~ basel . The f... |
| basellem8 27025 | Lemma for ~ basel . The f... |
| basellem9 27026 | Lemma for ~ basel . Since... |
| basel 27027 | The sum of the inverse squ... |
| efnnfsumcl 27040 | Finite sum closure in the ... |
| ppisval 27041 | The set of primes less tha... |
| ppisval2 27042 | The set of primes less tha... |
| ppifi 27043 | The set of primes less tha... |
| prmdvdsfi 27044 | The set of prime divisors ... |
| chtf 27045 | Domain and codoamin of the... |
| chtcl 27046 | Real closure of the Chebys... |
| chtval 27047 | Value of the Chebyshev fun... |
| efchtcl 27048 | The Chebyshev function is ... |
| chtge0 27049 | The Chebyshev function is ... |
| vmaval 27050 | Value of the von Mangoldt ... |
| isppw 27051 | Two ways to say that ` A `... |
| isppw2 27052 | Two ways to say that ` A `... |
| vmappw 27053 | Value of the von Mangoldt ... |
| vmaprm 27054 | Value of the von Mangoldt ... |
| vmacl 27055 | Closure for the von Mangol... |
| vmaf 27056 | Functionality of the von M... |
| efvmacl 27057 | The von Mangoldt is closed... |
| vmage0 27058 | The von Mangoldt function ... |
| chpval 27059 | Value of the second Chebys... |
| chpf 27060 | Functionality of the secon... |
| chpcl 27061 | Closure for the second Che... |
| efchpcl 27062 | The second Chebyshev funct... |
| chpge0 27063 | The second Chebyshev funct... |
| ppival 27064 | Value of the prime-countin... |
| ppival2 27065 | Value of the prime-countin... |
| ppival2g 27066 | Value of the prime-countin... |
| ppif 27067 | Domain and codomain of the... |
| ppicl 27068 | Real closure of the prime-... |
| muval 27069 | The value of the Möbi... |
| muval1 27070 | The value of the Möbi... |
| muval2 27071 | The value of the Möbi... |
| isnsqf 27072 | Two ways to say that a num... |
| issqf 27073 | Two ways to say that a num... |
| sqfpc 27074 | The prime count of a squar... |
| dvdssqf 27075 | A divisor of a squarefree ... |
| sqf11 27076 | A squarefree number is com... |
| muf 27077 | The Möbius function i... |
| mucl 27078 | Closure of the Möbius... |
| sgmval 27079 | The value of the divisor f... |
| sgmval2 27080 | The value of the divisor f... |
| 0sgm 27081 | The value of the sum-of-di... |
| sgmf 27082 | The divisor function is a ... |
| sgmcl 27083 | Closure of the divisor fun... |
| sgmnncl 27084 | Closure of the divisor fun... |
| mule1 27085 | The Möbius function t... |
| chtfl 27086 | The Chebyshev function doe... |
| chpfl 27087 | The second Chebyshev funct... |
| ppiprm 27088 | The prime-counting functio... |
| ppinprm 27089 | The prime-counting functio... |
| chtprm 27090 | The Chebyshev function at ... |
| chtnprm 27091 | The Chebyshev function at ... |
| chpp1 27092 | The second Chebyshev funct... |
| chtwordi 27093 | The Chebyshev function is ... |
| chpwordi 27094 | The second Chebyshev funct... |
| chtdif 27095 | The difference of the Cheb... |
| efchtdvds 27096 | The exponentiated Chebyshe... |
| ppifl 27097 | The prime-counting functio... |
| ppip1le 27098 | The prime-counting functio... |
| ppiwordi 27099 | The prime-counting functio... |
| ppidif 27100 | The difference of the prim... |
| ppi1 27101 | The prime-counting functio... |
| cht1 27102 | The Chebyshev function at ... |
| vma1 27103 | The von Mangoldt function ... |
| chp1 27104 | The second Chebyshev funct... |
| ppi1i 27105 | Inference form of ~ ppiprm... |
| ppi2i 27106 | Inference form of ~ ppinpr... |
| ppi2 27107 | The prime-counting functio... |
| ppi3 27108 | The prime-counting functio... |
| cht2 27109 | The Chebyshev function at ... |
| cht3 27110 | The Chebyshev function at ... |
| ppinncl 27111 | Closure of the prime-count... |
| chtrpcl 27112 | Closure of the Chebyshev f... |
| ppieq0 27113 | The prime-counting functio... |
| ppiltx 27114 | The prime-counting functio... |
| prmorcht 27115 | Relate the primorial (prod... |
| mumullem1 27116 | Lemma for ~ mumul . A mul... |
| mumullem2 27117 | Lemma for ~ mumul . The p... |
| mumul 27118 | The Möbius function i... |
| sqff1o 27119 | There is a bijection from ... |
| fsumdvdsdiaglem 27120 | A "diagonal commutation" o... |
| fsumdvdsdiag 27121 | A "diagonal commutation" o... |
| fsumdvdscom 27122 | A double commutation of di... |
| dvdsppwf1o 27123 | A bijection between the di... |
| dvdsflf1o 27124 | A bijection from the numbe... |
| dvdsflsumcom 27125 | A sum commutation from ` s... |
| fsumfldivdiaglem 27126 | Lemma for ~ fsumfldivdiag ... |
| fsumfldivdiag 27127 | The right-hand side of ~ d... |
| musum 27128 | The sum of the Möbius... |
| musumsum 27129 | Evaluate a collapsing sum ... |
| muinv 27130 | The Möbius inversion ... |
| mpodvdsmulf1o 27131 | If ` M ` and ` N ` are two... |
| fsumdvdsmul 27132 | Product of two divisor sum... |
| dvdsmulf1o 27133 | If ` M ` and ` N ` are two... |
| fsumdvdsmulOLD 27134 | Obsolete version of ~ fsum... |
| sgmppw 27135 | The value of the divisor f... |
| 0sgmppw 27136 | A prime power ` P ^ K ` ha... |
| 1sgmprm 27137 | The sum of divisors for a ... |
| 1sgm2ppw 27138 | The sum of the divisors of... |
| sgmmul 27139 | The divisor function for f... |
| ppiublem1 27140 | Lemma for ~ ppiub . (Cont... |
| ppiublem2 27141 | A prime greater than ` 3 `... |
| ppiub 27142 | An upper bound on the prim... |
| vmalelog 27143 | The von Mangoldt function ... |
| chtlepsi 27144 | The first Chebyshev functi... |
| chprpcl 27145 | Closure of the second Cheb... |
| chpeq0 27146 | The second Chebyshev funct... |
| chteq0 27147 | The first Chebyshev functi... |
| chtleppi 27148 | Upper bound on the ` theta... |
| chtublem 27149 | Lemma for ~ chtub . (Cont... |
| chtub 27150 | An upper bound on the Cheb... |
| fsumvma 27151 | Rewrite a sum over the von... |
| fsumvma2 27152 | Apply ~ fsumvma for the co... |
| pclogsum 27153 | The logarithmic analogue o... |
| vmasum 27154 | The sum of the von Mangold... |
| logfac2 27155 | Another expression for the... |
| chpval2 27156 | Express the second Chebysh... |
| chpchtsum 27157 | The second Chebyshev funct... |
| chpub 27158 | An upper bound on the seco... |
| logfacubnd 27159 | A simple upper bound on th... |
| logfaclbnd 27160 | A lower bound on the logar... |
| logfacbnd3 27161 | Show the stronger statemen... |
| logfacrlim 27162 | Combine the estimates ~ lo... |
| logexprlim 27163 | The sum ` sum_ n <_ x , lo... |
| logfacrlim2 27164 | Write out ~ logfacrlim as ... |
| mersenne 27165 | A Mersenne prime is a prim... |
| perfect1 27166 | Euclid's contribution to t... |
| perfectlem1 27167 | Lemma for ~ perfect . (Co... |
| perfectlem2 27168 | Lemma for ~ perfect . (Co... |
| perfect 27169 | The Euclid-Euler theorem, ... |
| dchrval 27172 | Value of the group of Diri... |
| dchrbas 27173 | Base set of the group of D... |
| dchrelbas 27174 | A Dirichlet character is a... |
| dchrelbas2 27175 | A Dirichlet character is a... |
| dchrelbas3 27176 | A Dirichlet character is a... |
| dchrelbasd 27177 | A Dirichlet character is a... |
| dchrrcl 27178 | Reverse closure for a Diri... |
| dchrmhm 27179 | A Dirichlet character is a... |
| dchrf 27180 | A Dirichlet character is a... |
| dchrelbas4 27181 | A Dirichlet character is a... |
| dchrzrh1 27182 | Value of a Dirichlet chara... |
| dchrzrhcl 27183 | A Dirichlet character take... |
| dchrzrhmul 27184 | A Dirichlet character is c... |
| dchrplusg 27185 | Group operation on the gro... |
| dchrmul 27186 | Group operation on the gro... |
| dchrmulcl 27187 | Closure of the group opera... |
| dchrn0 27188 | A Dirichlet character is n... |
| dchr1cl 27189 | Closure of the principal D... |
| dchrmullid 27190 | Left identity for the prin... |
| dchrinvcl 27191 | Closure of the group inver... |
| dchrabl 27192 | The set of Dirichlet chara... |
| dchrfi 27193 | The group of Dirichlet cha... |
| dchrghm 27194 | A Dirichlet character rest... |
| dchr1 27195 | Value of the principal Dir... |
| dchreq 27196 | A Dirichlet character is d... |
| dchrresb 27197 | A Dirichlet character is d... |
| dchrabs 27198 | A Dirichlet character take... |
| dchrinv 27199 | The inverse of a Dirichlet... |
| dchrabs2 27200 | A Dirichlet character take... |
| dchr1re 27201 | The principal Dirichlet ch... |
| dchrptlem1 27202 | Lemma for ~ dchrpt . (Con... |
| dchrptlem2 27203 | Lemma for ~ dchrpt . (Con... |
| dchrptlem3 27204 | Lemma for ~ dchrpt . (Con... |
| dchrpt 27205 | For any element other than... |
| dchrsum2 27206 | An orthogonality relation ... |
| dchrsum 27207 | An orthogonality relation ... |
| sumdchr2 27208 | Lemma for ~ sumdchr . (Co... |
| dchrhash 27209 | There are exactly ` phi ( ... |
| sumdchr 27210 | An orthogonality relation ... |
| dchr2sum 27211 | An orthogonality relation ... |
| sum2dchr 27212 | An orthogonality relation ... |
| bcctr 27213 | Value of the central binom... |
| pcbcctr 27214 | Prime count of a central b... |
| bcmono 27215 | The binomial coefficient i... |
| bcmax 27216 | The binomial coefficient t... |
| bcp1ctr 27217 | Ratio of two central binom... |
| bclbnd 27218 | A bound on the binomial co... |
| efexple 27219 | Convert a bound on a power... |
| bpos1lem 27220 | Lemma for ~ bpos1 . (Cont... |
| bpos1 27221 | Bertrand's postulate, chec... |
| bposlem1 27222 | An upper bound on the prim... |
| bposlem2 27223 | There are no odd primes in... |
| bposlem3 27224 | Lemma for ~ bpos . Since ... |
| bposlem4 27225 | Lemma for ~ bpos . (Contr... |
| bposlem5 27226 | Lemma for ~ bpos . Bound ... |
| bposlem6 27227 | Lemma for ~ bpos . By usi... |
| bposlem7 27228 | Lemma for ~ bpos . The fu... |
| bposlem8 27229 | Lemma for ~ bpos . Evalua... |
| bposlem9 27230 | Lemma for ~ bpos . Derive... |
| bpos 27231 | Bertrand's postulate: ther... |
| zabsle1 27234 | ` { -u 1 , 0 , 1 } ` is th... |
| lgslem1 27235 | When ` a ` is coprime to t... |
| lgslem2 27236 | The set ` Z ` of all integ... |
| lgslem3 27237 | The set ` Z ` of all integ... |
| lgslem4 27238 | Lemma for ~ lgsfcl2 . (Co... |
| lgsval 27239 | Value of the Legendre symb... |
| lgsfval 27240 | Value of the function ` F ... |
| lgsfcl2 27241 | The function ` F ` is clos... |
| lgscllem 27242 | The Legendre symbol is an ... |
| lgsfcl 27243 | Closure of the function ` ... |
| lgsfle1 27244 | The function ` F ` has mag... |
| lgsval2lem 27245 | Lemma for ~ lgsval2 . (Co... |
| lgsval4lem 27246 | Lemma for ~ lgsval4 . (Co... |
| lgscl2 27247 | The Legendre symbol is an ... |
| lgs0 27248 | The Legendre symbol when t... |
| lgscl 27249 | The Legendre symbol is an ... |
| lgsle1 27250 | The Legendre symbol has ab... |
| lgsval2 27251 | The Legendre symbol at a p... |
| lgs2 27252 | The Legendre symbol at ` 2... |
| lgsval3 27253 | The Legendre symbol at an ... |
| lgsvalmod 27254 | The Legendre symbol is equ... |
| lgsval4 27255 | Restate ~ lgsval for nonze... |
| lgsfcl3 27256 | Closure of the function ` ... |
| lgsval4a 27257 | Same as ~ lgsval4 for posi... |
| lgscl1 27258 | The value of the Legendre ... |
| lgsneg 27259 | The Legendre symbol is eit... |
| lgsneg1 27260 | The Legendre symbol for no... |
| lgsmod 27261 | The Legendre (Jacobi) symb... |
| lgsdilem 27262 | Lemma for ~ lgsdi and ~ lg... |
| lgsdir2lem1 27263 | Lemma for ~ lgsdir2 . (Co... |
| lgsdir2lem2 27264 | Lemma for ~ lgsdir2 . (Co... |
| lgsdir2lem3 27265 | Lemma for ~ lgsdir2 . (Co... |
| lgsdir2lem4 27266 | Lemma for ~ lgsdir2 . (Co... |
| lgsdir2lem5 27267 | Lemma for ~ lgsdir2 . (Co... |
| lgsdir2 27268 | The Legendre symbol is com... |
| lgsdirprm 27269 | The Legendre symbol is com... |
| lgsdir 27270 | The Legendre symbol is com... |
| lgsdilem2 27271 | Lemma for ~ lgsdi . (Cont... |
| lgsdi 27272 | The Legendre symbol is com... |
| lgsne0 27273 | The Legendre symbol is non... |
| lgsabs1 27274 | The Legendre symbol is non... |
| lgssq 27275 | The Legendre symbol at a s... |
| lgssq2 27276 | The Legendre symbol at a s... |
| lgsprme0 27277 | The Legendre symbol at any... |
| 1lgs 27278 | The Legendre symbol at ` 1... |
| lgs1 27279 | The Legendre symbol at ` 1... |
| lgsmodeq 27280 | The Legendre (Jacobi) symb... |
| lgsmulsqcoprm 27281 | The Legendre (Jacobi) symb... |
| lgsdirnn0 27282 | Variation on ~ lgsdir vali... |
| lgsdinn0 27283 | Variation on ~ lgsdi valid... |
| lgsqrlem1 27284 | Lemma for ~ lgsqr . (Cont... |
| lgsqrlem2 27285 | Lemma for ~ lgsqr . (Cont... |
| lgsqrlem3 27286 | Lemma for ~ lgsqr . (Cont... |
| lgsqrlem4 27287 | Lemma for ~ lgsqr . (Cont... |
| lgsqrlem5 27288 | Lemma for ~ lgsqr . (Cont... |
| lgsqr 27289 | The Legendre symbol for od... |
| lgsqrmod 27290 | If the Legendre symbol of ... |
| lgsqrmodndvds 27291 | If the Legendre symbol of ... |
| lgsdchrval 27292 | The Legendre symbol functi... |
| lgsdchr 27293 | The Legendre symbol functi... |
| gausslemma2dlem0a 27294 | Auxiliary lemma 1 for ~ ga... |
| gausslemma2dlem0b 27295 | Auxiliary lemma 2 for ~ ga... |
| gausslemma2dlem0c 27296 | Auxiliary lemma 3 for ~ ga... |
| gausslemma2dlem0d 27297 | Auxiliary lemma 4 for ~ ga... |
| gausslemma2dlem0e 27298 | Auxiliary lemma 5 for ~ ga... |
| gausslemma2dlem0f 27299 | Auxiliary lemma 6 for ~ ga... |
| gausslemma2dlem0g 27300 | Auxiliary lemma 7 for ~ ga... |
| gausslemma2dlem0h 27301 | Auxiliary lemma 8 for ~ ga... |
| gausslemma2dlem0i 27302 | Auxiliary lemma 9 for ~ ga... |
| gausslemma2dlem1a 27303 | Lemma for ~ gausslemma2dle... |
| gausslemma2dlem1 27304 | Lemma 1 for ~ gausslemma2d... |
| gausslemma2dlem2 27305 | Lemma 2 for ~ gausslemma2d... |
| gausslemma2dlem3 27306 | Lemma 3 for ~ gausslemma2d... |
| gausslemma2dlem4 27307 | Lemma 4 for ~ gausslemma2d... |
| gausslemma2dlem5a 27308 | Lemma for ~ gausslemma2dle... |
| gausslemma2dlem5 27309 | Lemma 5 for ~ gausslemma2d... |
| gausslemma2dlem6 27310 | Lemma 6 for ~ gausslemma2d... |
| gausslemma2dlem7 27311 | Lemma 7 for ~ gausslemma2d... |
| gausslemma2d 27312 | Gauss' Lemma (see also the... |
| lgseisenlem1 27313 | Lemma for ~ lgseisen . If... |
| lgseisenlem2 27314 | Lemma for ~ lgseisen . Th... |
| lgseisenlem3 27315 | Lemma for ~ lgseisen . (C... |
| lgseisenlem4 27316 | Lemma for ~ lgseisen . (C... |
| lgseisen 27317 | Eisenstein's lemma, an exp... |
| lgsquadlem1 27318 | Lemma for ~ lgsquad . Cou... |
| lgsquadlem2 27319 | Lemma for ~ lgsquad . Cou... |
| lgsquadlem3 27320 | Lemma for ~ lgsquad . (Co... |
| lgsquad 27321 | The Law of Quadratic Recip... |
| lgsquad2lem1 27322 | Lemma for ~ lgsquad2 . (C... |
| lgsquad2lem2 27323 | Lemma for ~ lgsquad2 . (C... |
| lgsquad2 27324 | Extend ~ lgsquad to coprim... |
| lgsquad3 27325 | Extend ~ lgsquad2 to integ... |
| m1lgs 27326 | The first supplement to th... |
| 2lgslem1a1 27327 | Lemma 1 for ~ 2lgslem1a . ... |
| 2lgslem1a2 27328 | Lemma 2 for ~ 2lgslem1a . ... |
| 2lgslem1a 27329 | Lemma 1 for ~ 2lgslem1 . ... |
| 2lgslem1b 27330 | Lemma 2 for ~ 2lgslem1 . ... |
| 2lgslem1c 27331 | Lemma 3 for ~ 2lgslem1 . ... |
| 2lgslem1 27332 | Lemma 1 for ~ 2lgs . (Con... |
| 2lgslem2 27333 | Lemma 2 for ~ 2lgs . (Con... |
| 2lgslem3a 27334 | Lemma for ~ 2lgslem3a1 . ... |
| 2lgslem3b 27335 | Lemma for ~ 2lgslem3b1 . ... |
| 2lgslem3c 27336 | Lemma for ~ 2lgslem3c1 . ... |
| 2lgslem3d 27337 | Lemma for ~ 2lgslem3d1 . ... |
| 2lgslem3a1 27338 | Lemma 1 for ~ 2lgslem3 . ... |
| 2lgslem3b1 27339 | Lemma 2 for ~ 2lgslem3 . ... |
| 2lgslem3c1 27340 | Lemma 3 for ~ 2lgslem3 . ... |
| 2lgslem3d1 27341 | Lemma 4 for ~ 2lgslem3 . ... |
| 2lgslem3 27342 | Lemma 3 for ~ 2lgs . (Con... |
| 2lgs2 27343 | The Legendre symbol for ` ... |
| 2lgslem4 27344 | Lemma 4 for ~ 2lgs : speci... |
| 2lgs 27345 | The second supplement to t... |
| 2lgsoddprmlem1 27346 | Lemma 1 for ~ 2lgsoddprm .... |
| 2lgsoddprmlem2 27347 | Lemma 2 for ~ 2lgsoddprm .... |
| 2lgsoddprmlem3a 27348 | Lemma 1 for ~ 2lgsoddprmle... |
| 2lgsoddprmlem3b 27349 | Lemma 2 for ~ 2lgsoddprmle... |
| 2lgsoddprmlem3c 27350 | Lemma 3 for ~ 2lgsoddprmle... |
| 2lgsoddprmlem3d 27351 | Lemma 4 for ~ 2lgsoddprmle... |
| 2lgsoddprmlem3 27352 | Lemma 3 for ~ 2lgsoddprm .... |
| 2lgsoddprmlem4 27353 | Lemma 4 for ~ 2lgsoddprm .... |
| 2lgsoddprm 27354 | The second supplement to t... |
| 2sqlem1 27355 | Lemma for ~ 2sq . (Contri... |
| 2sqlem2 27356 | Lemma for ~ 2sq . (Contri... |
| mul2sq 27357 | Fibonacci's identity (actu... |
| 2sqlem3 27358 | Lemma for ~ 2sqlem5 . (Co... |
| 2sqlem4 27359 | Lemma for ~ 2sqlem5 . (Co... |
| 2sqlem5 27360 | Lemma for ~ 2sq . If a nu... |
| 2sqlem6 27361 | Lemma for ~ 2sq . If a nu... |
| 2sqlem7 27362 | Lemma for ~ 2sq . (Contri... |
| 2sqlem8a 27363 | Lemma for ~ 2sqlem8 . (Co... |
| 2sqlem8 27364 | Lemma for ~ 2sq . (Contri... |
| 2sqlem9 27365 | Lemma for ~ 2sq . (Contri... |
| 2sqlem10 27366 | Lemma for ~ 2sq . Every f... |
| 2sqlem11 27367 | Lemma for ~ 2sq . (Contri... |
| 2sq 27368 | All primes of the form ` 4... |
| 2sqblem 27369 | Lemma for ~ 2sqb . (Contr... |
| 2sqb 27370 | The converse to ~ 2sq . (... |
| 2sq2 27371 | ` 2 ` is the sum of square... |
| 2sqn0 27372 | If the sum of two squares ... |
| 2sqcoprm 27373 | If the sum of two squares ... |
| 2sqmod 27374 | Given two decompositions o... |
| 2sqmo 27375 | There exists at most one d... |
| 2sqnn0 27376 | All primes of the form ` 4... |
| 2sqnn 27377 | All primes of the form ` 4... |
| addsq2reu 27378 | For each complex number ` ... |
| addsqn2reu 27379 | For each complex number ` ... |
| addsqrexnreu 27380 | For each complex number, t... |
| addsqnreup 27381 | There is no unique decompo... |
| addsq2nreurex 27382 | For each complex number ` ... |
| addsqn2reurex2 27383 | For each complex number ` ... |
| 2sqreulem1 27384 | Lemma 1 for ~ 2sqreu . (C... |
| 2sqreultlem 27385 | Lemma for ~ 2sqreult . (C... |
| 2sqreultblem 27386 | Lemma for ~ 2sqreultb . (... |
| 2sqreunnlem1 27387 | Lemma 1 for ~ 2sqreunn . ... |
| 2sqreunnltlem 27388 | Lemma for ~ 2sqreunnlt . ... |
| 2sqreunnltblem 27389 | Lemma for ~ 2sqreunnltb . ... |
| 2sqreulem2 27390 | Lemma 2 for ~ 2sqreu etc. ... |
| 2sqreulem3 27391 | Lemma 3 for ~ 2sqreu etc. ... |
| 2sqreulem4 27392 | Lemma 4 for ~ 2sqreu et. ... |
| 2sqreunnlem2 27393 | Lemma 2 for ~ 2sqreunn . ... |
| 2sqreu 27394 | There exists a unique deco... |
| 2sqreunn 27395 | There exists a unique deco... |
| 2sqreult 27396 | There exists a unique deco... |
| 2sqreultb 27397 | There exists a unique deco... |
| 2sqreunnlt 27398 | There exists a unique deco... |
| 2sqreunnltb 27399 | There exists a unique deco... |
| 2sqreuop 27400 | There exists a unique deco... |
| 2sqreuopnn 27401 | There exists a unique deco... |
| 2sqreuoplt 27402 | There exists a unique deco... |
| 2sqreuopltb 27403 | There exists a unique deco... |
| 2sqreuopnnlt 27404 | There exists a unique deco... |
| 2sqreuopnnltb 27405 | There exists a unique deco... |
| 2sqreuopb 27406 | There exists a unique deco... |
| chebbnd1lem1 27407 | Lemma for ~ chebbnd1 : sho... |
| chebbnd1lem2 27408 | Lemma for ~ chebbnd1 : Sh... |
| chebbnd1lem3 27409 | Lemma for ~ chebbnd1 : get... |
| chebbnd1 27410 | The Chebyshev bound: The ... |
| chtppilimlem1 27411 | Lemma for ~ chtppilim . (... |
| chtppilimlem2 27412 | Lemma for ~ chtppilim . (... |
| chtppilim 27413 | The ` theta ` function is ... |
| chto1ub 27414 | The ` theta ` function is ... |
| chebbnd2 27415 | The Chebyshev bound, part ... |
| chto1lb 27416 | The ` theta ` function is ... |
| chpchtlim 27417 | The ` psi ` and ` theta ` ... |
| chpo1ub 27418 | The ` psi ` function is up... |
| chpo1ubb 27419 | The ` psi ` function is up... |
| vmadivsum 27420 | The sum of the von Mangold... |
| vmadivsumb 27421 | Give a total bound on the ... |
| rplogsumlem1 27422 | Lemma for ~ rplogsum . (C... |
| rplogsumlem2 27423 | Lemma for ~ rplogsum . Eq... |
| dchrisum0lem1a 27424 | Lemma for ~ dchrisum0lem1 ... |
| rpvmasumlem 27425 | Lemma for ~ rpvmasum . Ca... |
| dchrisumlema 27426 | Lemma for ~ dchrisum . Le... |
| dchrisumlem1 27427 | Lemma for ~ dchrisum . Le... |
| dchrisumlem2 27428 | Lemma for ~ dchrisum . Le... |
| dchrisumlem3 27429 | Lemma for ~ dchrisum . Le... |
| dchrisum 27430 | If ` n e. [ M , +oo ) |-> ... |
| dchrmusumlema 27431 | Lemma for ~ dchrmusum and ... |
| dchrmusum2 27432 | The sum of the Möbius... |
| dchrvmasumlem1 27433 | An alternative expression ... |
| dchrvmasum2lem 27434 | Give an expression for ` l... |
| dchrvmasum2if 27435 | Combine the results of ~ d... |
| dchrvmasumlem2 27436 | Lemma for ~ dchrvmasum . ... |
| dchrvmasumlem3 27437 | Lemma for ~ dchrvmasum . ... |
| dchrvmasumlema 27438 | Lemma for ~ dchrvmasum and... |
| dchrvmasumiflem1 27439 | Lemma for ~ dchrvmasumif .... |
| dchrvmasumiflem2 27440 | Lemma for ~ dchrvmasum . ... |
| dchrvmasumif 27441 | An asymptotic approximatio... |
| dchrvmaeq0 27442 | The set ` W ` is the colle... |
| dchrisum0fval 27443 | Value of the function ` F ... |
| dchrisum0fmul 27444 | The function ` F ` , the d... |
| dchrisum0ff 27445 | The function ` F ` is a re... |
| dchrisum0flblem1 27446 | Lemma for ~ dchrisum0flb .... |
| dchrisum0flblem2 27447 | Lemma for ~ dchrisum0flb .... |
| dchrisum0flb 27448 | The divisor sum of a real ... |
| dchrisum0fno1 27449 | The sum ` sum_ k <_ x , F ... |
| rpvmasum2 27450 | A partial result along the... |
| dchrisum0re 27451 | Suppose ` X ` is a non-pri... |
| dchrisum0lema 27452 | Lemma for ~ dchrisum0 . A... |
| dchrisum0lem1b 27453 | Lemma for ~ dchrisum0lem1 ... |
| dchrisum0lem1 27454 | Lemma for ~ dchrisum0 . (... |
| dchrisum0lem2a 27455 | Lemma for ~ dchrisum0 . (... |
| dchrisum0lem2 27456 | Lemma for ~ dchrisum0 . (... |
| dchrisum0lem3 27457 | Lemma for ~ dchrisum0 . (... |
| dchrisum0 27458 | The sum ` sum_ n e. NN , X... |
| dchrisumn0 27459 | The sum ` sum_ n e. NN , X... |
| dchrmusumlem 27460 | The sum of the Möbius... |
| dchrvmasumlem 27461 | The sum of the Möbius... |
| dchrmusum 27462 | The sum of the Möbius... |
| dchrvmasum 27463 | The sum of the von Mangold... |
| rpvmasum 27464 | The sum of the von Mangold... |
| rplogsum 27465 | The sum of ` log p / p ` o... |
| dirith2 27466 | Dirichlet's theorem: there... |
| dirith 27467 | Dirichlet's theorem: there... |
| mudivsum 27468 | Asymptotic formula for ` s... |
| mulogsumlem 27469 | Lemma for ~ mulogsum . (C... |
| mulogsum 27470 | Asymptotic formula for ... |
| logdivsum 27471 | Asymptotic analysis of ... |
| mulog2sumlem1 27472 | Asymptotic formula for ... |
| mulog2sumlem2 27473 | Lemma for ~ mulog2sum . (... |
| mulog2sumlem3 27474 | Lemma for ~ mulog2sum . (... |
| mulog2sum 27475 | Asymptotic formula for ... |
| vmalogdivsum2 27476 | The sum ` sum_ n <_ x , La... |
| vmalogdivsum 27477 | The sum ` sum_ n <_ x , La... |
| 2vmadivsumlem 27478 | Lemma for ~ 2vmadivsum . ... |
| 2vmadivsum 27479 | The sum ` sum_ m n <_ x , ... |
| logsqvma 27480 | A formula for ` log ^ 2 ( ... |
| logsqvma2 27481 | The Möbius inverse of... |
| log2sumbnd 27482 | Bound on the difference be... |
| selberglem1 27483 | Lemma for ~ selberg . Est... |
| selberglem2 27484 | Lemma for ~ selberg . (Co... |
| selberglem3 27485 | Lemma for ~ selberg . Est... |
| selberg 27486 | Selberg's symmetry formula... |
| selbergb 27487 | Convert eventual boundedne... |
| selberg2lem 27488 | Lemma for ~ selberg2 . Eq... |
| selberg2 27489 | Selberg's symmetry formula... |
| selberg2b 27490 | Convert eventual boundedne... |
| chpdifbndlem1 27491 | Lemma for ~ chpdifbnd . (... |
| chpdifbndlem2 27492 | Lemma for ~ chpdifbnd . (... |
| chpdifbnd 27493 | A bound on the difference ... |
| logdivbnd 27494 | A bound on a sum of logs, ... |
| selberg3lem1 27495 | Introduce a log weighting ... |
| selberg3lem2 27496 | Lemma for ~ selberg3 . Eq... |
| selberg3 27497 | Introduce a log weighting ... |
| selberg4lem1 27498 | Lemma for ~ selberg4 . Eq... |
| selberg4 27499 | The Selberg symmetry formu... |
| pntrval 27500 | Define the residual of the... |
| pntrf 27501 | Functionality of the resid... |
| pntrmax 27502 | There is a bound on the re... |
| pntrsumo1 27503 | A bound on a sum over ` R ... |
| pntrsumbnd 27504 | A bound on a sum over ` R ... |
| pntrsumbnd2 27505 | A bound on a sum over ` R ... |
| selbergr 27506 | Selberg's symmetry formula... |
| selberg3r 27507 | Selberg's symmetry formula... |
| selberg4r 27508 | Selberg's symmetry formula... |
| selberg34r 27509 | The sum of ~ selberg3r and... |
| pntsval 27510 | Define the "Selberg functi... |
| pntsf 27511 | Functionality of the Selbe... |
| selbergs 27512 | Selberg's symmetry formula... |
| selbergsb 27513 | Selberg's symmetry formula... |
| pntsval2 27514 | The Selberg function can b... |
| pntrlog2bndlem1 27515 | The sum of ~ selberg3r and... |
| pntrlog2bndlem2 27516 | Lemma for ~ pntrlog2bnd . ... |
| pntrlog2bndlem3 27517 | Lemma for ~ pntrlog2bnd . ... |
| pntrlog2bndlem4 27518 | Lemma for ~ pntrlog2bnd . ... |
| pntrlog2bndlem5 27519 | Lemma for ~ pntrlog2bnd . ... |
| pntrlog2bndlem6a 27520 | Lemma for ~ pntrlog2bndlem... |
| pntrlog2bndlem6 27521 | Lemma for ~ pntrlog2bnd . ... |
| pntrlog2bnd 27522 | A bound on ` R ( x ) log ^... |
| pntpbnd1a 27523 | Lemma for ~ pntpbnd . (Co... |
| pntpbnd1 27524 | Lemma for ~ pntpbnd . (Co... |
| pntpbnd2 27525 | Lemma for ~ pntpbnd . (Co... |
| pntpbnd 27526 | Lemma for ~ pnt . Establi... |
| pntibndlem1 27527 | Lemma for ~ pntibnd . (Co... |
| pntibndlem2a 27528 | Lemma for ~ pntibndlem2 . ... |
| pntibndlem2 27529 | Lemma for ~ pntibnd . The... |
| pntibndlem3 27530 | Lemma for ~ pntibnd . Pac... |
| pntibnd 27531 | Lemma for ~ pnt . Establi... |
| pntlemd 27532 | Lemma for ~ pnt . Closure... |
| pntlemc 27533 | Lemma for ~ pnt . Closure... |
| pntlema 27534 | Lemma for ~ pnt . Closure... |
| pntlemb 27535 | Lemma for ~ pnt . Unpack ... |
| pntlemg 27536 | Lemma for ~ pnt . Closure... |
| pntlemh 27537 | Lemma for ~ pnt . Bounds ... |
| pntlemn 27538 | Lemma for ~ pnt . The "na... |
| pntlemq 27539 | Lemma for ~ pntlemj . (Co... |
| pntlemr 27540 | Lemma for ~ pntlemj . (Co... |
| pntlemj 27541 | Lemma for ~ pnt . The ind... |
| pntlemi 27542 | Lemma for ~ pnt . Elimina... |
| pntlemf 27543 | Lemma for ~ pnt . Add up ... |
| pntlemk 27544 | Lemma for ~ pnt . Evaluat... |
| pntlemo 27545 | Lemma for ~ pnt . Combine... |
| pntleme 27546 | Lemma for ~ pnt . Package... |
| pntlem3 27547 | Lemma for ~ pnt . Equatio... |
| pntlemp 27548 | Lemma for ~ pnt . Wrappin... |
| pntleml 27549 | Lemma for ~ pnt . Equatio... |
| pnt3 27550 | The Prime Number Theorem, ... |
| pnt2 27551 | The Prime Number Theorem, ... |
| pnt 27552 | The Prime Number Theorem: ... |
| abvcxp 27553 | Raising an absolute value ... |
| padicfval 27554 | Value of the p-adic absolu... |
| padicval 27555 | Value of the p-adic absolu... |
| ostth2lem1 27556 | Lemma for ~ ostth2 , altho... |
| qrngbas 27557 | The base set of the field ... |
| qdrng 27558 | The rationals form a divis... |
| qrng0 27559 | The zero element of the fi... |
| qrng1 27560 | The unity element of the f... |
| qrngneg 27561 | The additive inverse in th... |
| qrngdiv 27562 | The division operation in ... |
| qabvle 27563 | By using induction on ` N ... |
| qabvexp 27564 | Induct the product rule ~ ... |
| ostthlem1 27565 | Lemma for ~ ostth . If tw... |
| ostthlem2 27566 | Lemma for ~ ostth . Refin... |
| qabsabv 27567 | The regular absolute value... |
| padicabv 27568 | The p-adic absolute value ... |
| padicabvf 27569 | The p-adic absolute value ... |
| padicabvcxp 27570 | All positive powers of the... |
| ostth1 27571 | - Lemma for ~ ostth : triv... |
| ostth2lem2 27572 | Lemma for ~ ostth2 . (Con... |
| ostth2lem3 27573 | Lemma for ~ ostth2 . (Con... |
| ostth2lem4 27574 | Lemma for ~ ostth2 . (Con... |
| ostth2 27575 | - Lemma for ~ ostth : regu... |
| ostth3 27576 | - Lemma for ~ ostth : p-ad... |
| ostth 27577 | Ostrowski's theorem, which... |
| elno 27584 | Membership in the surreals... |
| elnoOLD 27585 | Obsolete version of ~ elno... |
| sltval 27586 | The value of the surreal l... |
| bdayval 27587 | The value of the birthday ... |
| nofun 27588 | A surreal is a function. ... |
| nodmon 27589 | The domain of a surreal is... |
| norn 27590 | The range of a surreal is ... |
| nofnbday 27591 | A surreal is a function ov... |
| nodmord 27592 | The domain of a surreal ha... |
| elno2 27593 | An alternative condition f... |
| elno3 27594 | Another condition for memb... |
| sltval2 27595 | Alternate expression for s... |
| nofv 27596 | The function value of a su... |
| nosgnn0 27597 | ` (/) ` is not a surreal s... |
| nosgnn0i 27598 | If ` X ` is a surreal sign... |
| noreson 27599 | The restriction of a surre... |
| sltintdifex 27600 |
If ` A |
| sltres 27601 | If the restrictions of two... |
| noxp1o 27602 | The Cartesian product of a... |
| noseponlem 27603 | Lemma for ~ nosepon . Con... |
| nosepon 27604 | Given two unequal surreals... |
| noextend 27605 | Extending a surreal by one... |
| noextendseq 27606 | Extend a surreal by a sequ... |
| noextenddif 27607 | Calculate the place where ... |
| noextendlt 27608 | Extending a surreal with a... |
| noextendgt 27609 | Extending a surreal with a... |
| nolesgn2o 27610 | Given ` A ` less-than or e... |
| nolesgn2ores 27611 | Given ` A ` less-than or e... |
| nogesgn1o 27612 | Given ` A ` greater than o... |
| nogesgn1ores 27613 | Given ` A ` greater than o... |
| sltsolem1 27614 | Lemma for ~ sltso . The "... |
| sltso 27615 | Less-than totally orders t... |
| bdayfo 27616 | The birthday function maps... |
| fvnobday 27617 | The value of a surreal at ... |
| nosepnelem 27618 | Lemma for ~ nosepne . (Co... |
| nosepne 27619 | The value of two non-equal... |
| nosep1o 27620 | If the value of a surreal ... |
| nosep2o 27621 | If the value of a surreal ... |
| nosepdmlem 27622 | Lemma for ~ nosepdm . (Co... |
| nosepdm 27623 | The first place two surrea... |
| nosepeq 27624 | The values of two surreals... |
| nosepssdm 27625 | Given two non-equal surrea... |
| nodenselem4 27626 | Lemma for ~ nodense . Sho... |
| nodenselem5 27627 | Lemma for ~ nodense . If ... |
| nodenselem6 27628 | The restriction of a surre... |
| nodenselem7 27629 | Lemma for ~ nodense . ` A ... |
| nodenselem8 27630 | Lemma for ~ nodense . Giv... |
| nodense 27631 | Given two distinct surreal... |
| bdayimaon 27632 | Lemma for full-eta propert... |
| nolt02olem 27633 | Lemma for ~ nolt02o . If ... |
| nolt02o 27634 | Given ` A ` less-than ` B ... |
| nogt01o 27635 | Given ` A ` greater than `... |
| noresle 27636 | Restriction law for surrea... |
| nomaxmo 27637 | A class of surreals has at... |
| nominmo 27638 | A class of surreals has at... |
| nosupprefixmo 27639 | In any class of surreals, ... |
| noinfprefixmo 27640 | In any class of surreals, ... |
| nosupcbv 27641 | Lemma to change bound vari... |
| nosupno 27642 | The next several theorems ... |
| nosupdm 27643 | The domain of the surreal ... |
| nosupbday 27644 | Birthday bounding law for ... |
| nosupfv 27645 | The value of surreal supre... |
| nosupres 27646 | A restriction law for surr... |
| nosupbnd1lem1 27647 | Lemma for ~ nosupbnd1 . E... |
| nosupbnd1lem2 27648 | Lemma for ~ nosupbnd1 . W... |
| nosupbnd1lem3 27649 | Lemma for ~ nosupbnd1 . I... |
| nosupbnd1lem4 27650 | Lemma for ~ nosupbnd1 . I... |
| nosupbnd1lem5 27651 | Lemma for ~ nosupbnd1 . I... |
| nosupbnd1lem6 27652 | Lemma for ~ nosupbnd1 . E... |
| nosupbnd1 27653 | Bounding law from below fo... |
| nosupbnd2lem1 27654 | Bounding law from above wh... |
| nosupbnd2 27655 | Bounding law from above fo... |
| noinfcbv 27656 | Change bound variables for... |
| noinfno 27657 | The next several theorems ... |
| noinfdm 27658 | Next, we calculate the dom... |
| noinfbday 27659 | Birthday bounding law for ... |
| noinffv 27660 | The value of surreal infim... |
| noinfres 27661 | The restriction of surreal... |
| noinfbnd1lem1 27662 | Lemma for ~ noinfbnd1 . E... |
| noinfbnd1lem2 27663 | Lemma for ~ noinfbnd1 . W... |
| noinfbnd1lem3 27664 | Lemma for ~ noinfbnd1 . I... |
| noinfbnd1lem4 27665 | Lemma for ~ noinfbnd1 . I... |
| noinfbnd1lem5 27666 | Lemma for ~ noinfbnd1 . I... |
| noinfbnd1lem6 27667 | Lemma for ~ noinfbnd1 . E... |
| noinfbnd1 27668 | Bounding law from above fo... |
| noinfbnd2lem1 27669 | Bounding law from below wh... |
| noinfbnd2 27670 | Bounding law from below fo... |
| nosupinfsep 27671 | Given two sets of surreals... |
| noetasuplem1 27672 | Lemma for ~ noeta . Estab... |
| noetasuplem2 27673 | Lemma for ~ noeta . The r... |
| noetasuplem3 27674 | Lemma for ~ noeta . ` Z ` ... |
| noetasuplem4 27675 | Lemma for ~ noeta . When ... |
| noetainflem1 27676 | Lemma for ~ noeta . Estab... |
| noetainflem2 27677 | Lemma for ~ noeta . The r... |
| noetainflem3 27678 | Lemma for ~ noeta . ` W ` ... |
| noetainflem4 27679 | Lemma for ~ noeta . If ` ... |
| noetalem1 27680 | Lemma for ~ noeta . Eithe... |
| noetalem2 27681 | Lemma for ~ noeta . The f... |
| noeta 27682 | The full-eta axiom for the... |
| sltirr 27685 | Surreal less-than is irref... |
| slttr 27686 | Surreal less-than is trans... |
| sltasym 27687 | Surreal less-than is asymm... |
| sltlin 27688 | Surreal less-than obeys tr... |
| slttrieq2 27689 | Trichotomy law for surreal... |
| slttrine 27690 | Trichotomy law for surreal... |
| slenlt 27691 | Surreal less-than or equal... |
| sltnle 27692 | Surreal less-than in terms... |
| sleloe 27693 | Surreal less-than or equal... |
| sletri3 27694 | Trichotomy law for surreal... |
| sltletr 27695 | Surreal transitive law. (... |
| slelttr 27696 | Surreal transitive law. (... |
| sletr 27697 | Surreal transitive law. (... |
| slttrd 27698 | Surreal less-than is trans... |
| sltletrd 27699 | Surreal less-than is trans... |
| slelttrd 27700 | Surreal less-than is trans... |
| sletrd 27701 | Surreal less-than or equal... |
| slerflex 27702 | Surreal less-than or equal... |
| sletric 27703 | Surreal trichotomy law. (... |
| maxs1 27704 | A surreal is less than or ... |
| maxs2 27705 | A surreal is less than or ... |
| mins1 27706 | The minimum of two surreal... |
| mins2 27707 | The minimum of two surreal... |
| sltled 27708 | Surreal less-than implies ... |
| sltne 27709 | Surreal less-than implies ... |
| sltlend 27710 | Surreal less-than in terms... |
| bdayfun 27711 | The birthday function is a... |
| bdayfn 27712 | The birthday function is a... |
| bdaydm 27713 | The birthday function's do... |
| bdayrn 27714 | The birthday function's ra... |
| bdayelon 27715 | The value of the birthday ... |
| nobdaymin 27716 | Any non-empty class of sur... |
| nocvxminlem 27717 | Lemma for ~ nocvxmin . Gi... |
| nocvxmin 27718 | Given a nonempty convex cl... |
| noprc 27719 | The surreal numbers are a ... |
| noeta2 27724 | A version of ~ noeta with ... |
| brsslt 27725 | Binary relation form of th... |
| ssltex1 27726 | The first argument of surr... |
| ssltex2 27727 | The second argument of sur... |
| ssltss1 27728 | The first argument of surr... |
| ssltss2 27729 | The second argument of sur... |
| ssltsep 27730 | The separation property of... |
| ssltd 27731 | Deduce surreal set less-th... |
| ssltsnb 27732 | Surreal set less-than of t... |
| ssltsn 27733 | Surreal set less-than of t... |
| ssltsepc 27734 | Two elements of separated ... |
| ssltsepcd 27735 | Two elements of separated ... |
| sssslt1 27736 | Relation between surreal s... |
| sssslt2 27737 | Relation between surreal s... |
| nulsslt 27738 | The empty set is less-than... |
| nulssgt 27739 | The empty set is greater t... |
| conway 27740 | Conway's Simplicity Theore... |
| scutval 27741 | The value of the surreal c... |
| scutcut 27742 | Cut properties of the surr... |
| scutcl 27743 | Closure law for surreal cu... |
| scutcld 27744 | Closure law for surreal cu... |
| scutbday 27745 | The birthday of the surrea... |
| eqscut 27746 | Condition for equality to ... |
| eqscut2 27747 | Condition for equality to ... |
| sslttr 27748 | Transitive law for surreal... |
| ssltun1 27749 | Union law for surreal set ... |
| ssltun2 27750 | Union law for surreal set ... |
| scutun12 27751 | Union law for surreal cuts... |
| dmscut 27752 | The domain of the surreal ... |
| scutf 27753 | Functionality statement fo... |
| etasslt 27754 | A restatement of ~ noeta u... |
| etasslt2 27755 | A version of ~ etasslt wit... |
| scutbdaybnd 27756 | An upper bound on the birt... |
| scutbdaybnd2 27757 | An upper bound on the birt... |
| scutbdaybnd2lim 27758 | An upper bound on the birt... |
| scutbdaylt 27759 | If a surreal lies in a gap... |
| slerec 27760 | A comparison law for surre... |
| slerecd 27761 | A comparison law for surre... |
| sltrec 27762 | A comparison law for surre... |
| sltrecd 27763 | A comparison law for surre... |
| ssltdisj 27764 | If ` A ` preceeds ` B ` , ... |
| eqscut3 27765 | A variant of the simplicit... |
| 0sno 27770 | Surreal zero is a surreal.... |
| 1sno 27771 | Surreal one is a surreal. ... |
| bday0s 27772 | Calculate the birthday of ... |
| 0slt1s 27773 | Surreal zero is less than ... |
| bday0b 27774 | The only surreal with birt... |
| bday1s 27775 | The birthday of surreal on... |
| cuteq0 27776 | Condition for a surreal cu... |
| cutneg 27777 | The simplest number greate... |
| cuteq1 27778 | Condition for a surreal cu... |
| sgt0ne0 27779 | A positive surreal is not ... |
| sgt0ne0d 27780 | A positive surreal is not ... |
| 1sne0s 27781 | Surreal zero does not equa... |
| rightpos 27782 | A surreal is non-negative ... |
| madeval 27793 | The value of the made by f... |
| madeval2 27794 | Alternative characterizati... |
| oldval 27795 | The value of the old optio... |
| newval 27796 | The value of the new optio... |
| madef 27797 | The made function is a fun... |
| oldf 27798 | The older function is a fu... |
| newf 27799 | The new function is a func... |
| old0 27800 | No surreal is older than `... |
| madessno 27801 | Made sets are surreals. (... |
| oldssno 27802 | Old sets are surreals. (C... |
| newssno 27803 | New sets are surreals. (C... |
| leftval 27804 | The value of the left opti... |
| rightval 27805 | The value of the right opt... |
| elleft 27806 | Membership in the left set... |
| elright 27807 | Membership in the right se... |
| leftlt 27808 | A member of a surreal's le... |
| rightgt 27809 | A member of a surreal's ri... |
| leftf 27810 | The functionality of the l... |
| rightf 27811 | The functionality of the r... |
| elmade 27812 | Membership in the made fun... |
| elmade2 27813 | Membership in the made fun... |
| elold 27814 | Membership in an old set. ... |
| ssltleft 27815 | A surreal is greater than ... |
| ssltright 27816 | A surreal is less than its... |
| lltropt 27817 | The left options of a surr... |
| made0 27818 | The only surreal made on d... |
| new0 27819 | The only surreal new on da... |
| old1 27820 | The only surreal older tha... |
| madess 27821 | If ` A ` is less than or e... |
| oldssmade 27822 | The older-than set is a su... |
| oldss 27823 | If ` A ` is less than or e... |
| leftssold 27824 | The left options are a sub... |
| rightssold 27825 | The right options are a su... |
| leftssno 27826 | The left set of a surreal ... |
| rightssno 27827 | The right set of a surreal... |
| madecut 27828 | Given a section that is a ... |
| madeun 27829 | The made set is the union ... |
| madeoldsuc 27830 | The made set is the old se... |
| oldsuc 27831 | The value of the old set a... |
| oldlim 27832 | The value of the old set a... |
| madebdayim 27833 | If a surreal is a member o... |
| oldbdayim 27834 | If ` X ` is in the old set... |
| oldirr 27835 | No surreal is a member of ... |
| leftirr 27836 | No surreal is a member of ... |
| rightirr 27837 | No surreal is a member of ... |
| left0s 27838 | The left set of ` 0s ` is ... |
| right0s 27839 | The right set of ` 0s ` is... |
| left1s 27840 | The left set of ` 1s ` is ... |
| right1s 27841 | The right set of ` 1s ` is... |
| lrold 27842 | The union of the left and ... |
| madebdaylemold 27843 | Lemma for ~ madebday . If... |
| madebdaylemlrcut 27844 | Lemma for ~ madebday . If... |
| madebday 27845 | A surreal is part of the s... |
| oldbday 27846 | A surreal is part of the s... |
| newbday 27847 | A surreal is an element of... |
| newbdayim 27848 | One direction of the bicon... |
| lrcut 27849 | A surreal is equal to the ... |
| scutfo 27850 | The surreal cut function i... |
| sltn0 27851 | If ` X ` is less than ` Y ... |
| lruneq 27852 | If two surreals share a bi... |
| sltlpss 27853 | If two surreals share a bi... |
| slelss 27854 | If two surreals ` A ` and ... |
| 0elold 27855 | Zero is in the old set of ... |
| 0elleft 27856 | Zero is in the left set of... |
| 0elright 27857 | Zero is in the right set o... |
| madefi 27858 | The made set of an ordinal... |
| oldfi 27859 | The old set of an ordinal ... |
| bdayiun 27860 | The birthday of a surreal ... |
| bdayle 27861 | A condition for bounding a... |
| cofsslt 27862 | If every element of ` A ` ... |
| coinitsslt 27863 | If ` B ` is coinitial with... |
| cofcut1 27864 | If ` C ` is cofinal with `... |
| cofcut1d 27865 | If ` C ` is cofinal with `... |
| cofcut2 27866 | If ` A ` and ` C ` are mut... |
| cofcut2d 27867 | If ` A ` and ` C ` are mut... |
| cofcutr 27868 | If ` X ` is the cut of ` A... |
| cofcutr1d 27869 | If ` X ` is the cut of ` A... |
| cofcutr2d 27870 | If ` X ` is the cut of ` A... |
| cofcutrtime 27871 | If ` X ` is the cut of ` A... |
| cofcutrtime1d 27872 | If ` X ` is a timely cut o... |
| cofcutrtime2d 27873 | If ` X ` is a timely cut o... |
| cofss 27874 | Cofinality for a subset. ... |
| coiniss 27875 | Coinitiality for a subset.... |
| cutlt 27876 | Eliminating all elements b... |
| cutpos 27877 | Reduce the elements of a c... |
| cutmax 27878 | If ` A ` has a maximum, th... |
| cutmin 27879 | If ` B ` has a minimum, th... |
| lrrecval 27882 | The next step in the devel... |
| lrrecval2 27883 | Next, we establish an alte... |
| lrrecpo 27884 | Now, we establish that ` R... |
| lrrecse 27885 | Next, we show that ` R ` i... |
| lrrecfr 27886 | Now we show that ` R ` is ... |
| lrrecpred 27887 | Finally, we calculate the ... |
| noinds 27888 | Induction principle for a ... |
| norecfn 27889 | Surreal recursion over one... |
| norecov 27890 | Calculate the value of the... |
| noxpordpo 27893 | To get through most of the... |
| noxpordfr 27894 | Next we establish the foun... |
| noxpordse 27895 | Next we establish the set-... |
| noxpordpred 27896 | Next we calculate the pred... |
| no2indslem 27897 | Double induction on surrea... |
| no2inds 27898 | Double induction on surrea... |
| norec2fn 27899 | The double-recursion opera... |
| norec2ov 27900 | The value of the double-re... |
| no3inds 27901 | Triple induction over surr... |
| addsfn 27904 | Surreal addition is a func... |
| addsval 27905 | The value of surreal addit... |
| addsval2 27906 | The value of surreal addit... |
| addsrid 27907 | Surreal addition to zero i... |
| addsridd 27908 | Surreal addition to zero i... |
| addscom 27909 | Surreal addition commutes.... |
| addscomd 27910 | Surreal addition commutes.... |
| addslid 27911 | Surreal addition to zero i... |
| addsproplem1 27912 | Lemma for surreal addition... |
| addsproplem2 27913 | Lemma for surreal addition... |
| addsproplem3 27914 | Lemma for surreal addition... |
| addsproplem4 27915 | Lemma for surreal addition... |
| addsproplem5 27916 | Lemma for surreal addition... |
| addsproplem6 27917 | Lemma for surreal addition... |
| addsproplem7 27918 | Lemma for surreal addition... |
| addsprop 27919 | Inductively show that surr... |
| addscutlem 27920 | Lemma for ~ addscut . Sho... |
| addscut 27921 | Demonstrate the cut proper... |
| addscut2 27922 | Show that the cut involved... |
| addscld 27923 | Surreal numbers are closed... |
| addscl 27924 | Surreal numbers are closed... |
| addsf 27925 | Function statement for sur... |
| addsfo 27926 | Surreal addition is onto. ... |
| peano2no 27927 | A theorem for surreals tha... |
| sltadd1im 27928 | Surreal less-than is prese... |
| sltadd2im 27929 | Surreal less-than is prese... |
| sleadd1im 27930 | Surreal less-than or equal... |
| sleadd2im 27931 | Surreal less-than or equal... |
| sleadd1 27932 | Addition to both sides of ... |
| sleadd2 27933 | Addition to both sides of ... |
| sltadd2 27934 | Addition to both sides of ... |
| sltadd1 27935 | Addition to both sides of ... |
| addscan2 27936 | Cancellation law for surre... |
| addscan1 27937 | Cancellation law for surre... |
| sleadd1d 27938 | Addition to both sides of ... |
| sleadd2d 27939 | Addition to both sides of ... |
| sltadd2d 27940 | Addition to both sides of ... |
| sltadd1d 27941 | Addition to both sides of ... |
| addscan2d 27942 | Cancellation law for surre... |
| addscan1d 27943 | Cancellation law for surre... |
| addsuniflem 27944 | Lemma for ~ addsunif . St... |
| addsunif 27945 | Uniformity theorem for sur... |
| addsasslem1 27946 | Lemma for addition associa... |
| addsasslem2 27947 | Lemma for addition associa... |
| addsass 27948 | Surreal addition is associ... |
| addsassd 27949 | Surreal addition is associ... |
| adds32d 27950 | Commutative/associative la... |
| adds12d 27951 | Commutative/associative la... |
| adds4d 27952 | Rearrangement of four term... |
| adds42d 27953 | Rearrangement of four term... |
| sltaddpos1d 27954 | Addition of a positive num... |
| sltaddpos2d 27955 | Addition of a positive num... |
| slt2addd 27956 | Adding both sides of two s... |
| addsgt0d 27957 | The sum of two positive su... |
| sltp1d 27958 | A surreal is less than its... |
| addsbdaylem 27959 | Lemma for ~ addsbday . (C... |
| addsbday 27960 | The birthday of the sum of... |
| negsfn 27965 | Surreal negation is a func... |
| subsfn 27966 | Surreal subtraction is a f... |
| negsval 27967 | The value of the surreal n... |
| negs0s 27968 | Negative surreal zero is s... |
| negs1s 27969 | An expression for negative... |
| negsproplem1 27970 | Lemma for surreal negation... |
| negsproplem2 27971 | Lemma for surreal negation... |
| negsproplem3 27972 | Lemma for surreal negation... |
| negsproplem4 27973 | Lemma for surreal negation... |
| negsproplem5 27974 | Lemma for surreal negation... |
| negsproplem6 27975 | Lemma for surreal negation... |
| negsproplem7 27976 | Lemma for surreal negation... |
| negsprop 27977 | Show closure and ordering ... |
| negscl 27978 | The surreals are closed un... |
| negscld 27979 | The surreals are closed un... |
| sltnegim 27980 | The forward direction of t... |
| negscut 27981 | The cut properties of surr... |
| negscut2 27982 | The cut that defines surre... |
| negsid 27983 | Surreal addition of a numb... |
| negsidd 27984 | Surreal addition of a numb... |
| negsex 27985 | Every surreal has a negati... |
| negnegs 27986 | A surreal is equal to the ... |
| sltneg 27987 | Negative of both sides of ... |
| sleneg 27988 | Negative of both sides of ... |
| sltnegd 27989 | Negative of both sides of ... |
| slenegd 27990 | Negative of both sides of ... |
| negs11 27991 | Surreal negation is one-to... |
| negsdi 27992 | Distribution of surreal ne... |
| slt0neg2d 27993 | Comparison of a surreal an... |
| negsf 27994 | Function statement for sur... |
| negsfo 27995 | Function statement for sur... |
| negsf1o 27996 | Surreal negation is a bije... |
| negsunif 27997 | Uniformity property for su... |
| negsbdaylem 27998 | Lemma for ~ negsbday . Bo... |
| negsbday 27999 | Negation of a surreal numb... |
| subsval 28000 | The value of surreal subtr... |
| subsvald 28001 | The value of surreal subtr... |
| subscl 28002 | Closure law for surreal su... |
| subscld 28003 | Closure law for surreal su... |
| subsf 28004 | Function statement for sur... |
| subsfo 28005 | Surreal subtraction is an ... |
| negsval2 28006 | Surreal negation in terms ... |
| negsval2d 28007 | Surreal negation in terms ... |
| subsid1 28008 | Identity law for subtracti... |
| subsid 28009 | Subtraction of a surreal f... |
| subadds 28010 | Relationship between addit... |
| subaddsd 28011 | Relationship between addit... |
| pncans 28012 | Cancellation law for surre... |
| pncan3s 28013 | Subtraction and addition o... |
| pncan2s 28014 | Cancellation law for surre... |
| npcans 28015 | Cancellation law for surre... |
| sltsub1 28016 | Subtraction from both side... |
| sltsub2 28017 | Subtraction from both side... |
| sltsub1d 28018 | Subtraction from both side... |
| sltsub2d 28019 | Subtraction from both side... |
| negsubsdi2d 28020 | Distribution of negative o... |
| addsubsassd 28021 | Associative-type law for s... |
| addsubsd 28022 | Law for surreal addition a... |
| sltsubsubbd 28023 | Equivalence for the surrea... |
| sltsubsub2bd 28024 | Equivalence for the surrea... |
| sltsubsub3bd 28025 | Equivalence for the surrea... |
| slesubsubbd 28026 | Equivalence for the surrea... |
| slesubsub2bd 28027 | Equivalence for the surrea... |
| slesubsub3bd 28028 | Equivalence for the surrea... |
| sltsubaddd 28029 | Surreal less-than relation... |
| sltsubadd2d 28030 | Surreal less-than relation... |
| sltaddsubd 28031 | Surreal less-than relation... |
| sltaddsub2d 28032 | Surreal less-than relation... |
| slesubaddd 28033 | Surreal less-than or equal... |
| subsubs4d 28034 | Law for double surreal sub... |
| subsubs2d 28035 | Law for double surreal sub... |
| nncansd 28036 | Cancellation law for surre... |
| posdifsd 28037 | Comparison of two surreals... |
| sltsubposd 28038 | Subtraction of a positive ... |
| subsge0d 28039 | Non-negative subtraction. ... |
| addsubs4d 28040 | Rearrangement of four term... |
| sltm1d 28041 | A surreal is greater than ... |
| subscan1d 28042 | Cancellation law for surre... |
| subscan2d 28043 | Cancellation law for surre... |
| subseq0d 28044 | The difference between two... |
| mulsfn 28047 | Surreal multiplication is ... |
| mulsval 28048 | The value of surreal multi... |
| mulsval2lem 28049 | Lemma for ~ mulsval2 . Ch... |
| mulsval2 28050 | The value of surreal multi... |
| muls01 28051 | Surreal multiplication by ... |
| mulsrid 28052 | Surreal one is a right ide... |
| mulsridd 28053 | Surreal one is a right ide... |
| mulsproplemcbv 28054 | Lemma for surreal multipli... |
| mulsproplem1 28055 | Lemma for surreal multipli... |
| mulsproplem2 28056 | Lemma for surreal multipli... |
| mulsproplem3 28057 | Lemma for surreal multipli... |
| mulsproplem4 28058 | Lemma for surreal multipli... |
| mulsproplem5 28059 | Lemma for surreal multipli... |
| mulsproplem6 28060 | Lemma for surreal multipli... |
| mulsproplem7 28061 | Lemma for surreal multipli... |
| mulsproplem8 28062 | Lemma for surreal multipli... |
| mulsproplem9 28063 | Lemma for surreal multipli... |
| mulsproplem10 28064 | Lemma for surreal multipli... |
| mulsproplem11 28065 | Lemma for surreal multipli... |
| mulsproplem12 28066 | Lemma for surreal multipli... |
| mulsproplem13 28067 | Lemma for surreal multipli... |
| mulsproplem14 28068 | Lemma for surreal multipli... |
| mulsprop 28069 | Surreals are closed under ... |
| mulscutlem 28070 | Lemma for ~ mulscut . Sta... |
| mulscut 28071 | Show the cut properties of... |
| mulscut2 28072 | Show that the cut involved... |
| mulscl 28073 | The surreals are closed un... |
| mulscld 28074 | The surreals are closed un... |
| sltmul 28075 | An ordering relationship f... |
| sltmuld 28076 | An ordering relationship f... |
| slemuld 28077 | An ordering relationship f... |
| mulscom 28078 | Surreal multiplication com... |
| mulscomd 28079 | Surreal multiplication com... |
| muls02 28080 | Surreal multiplication by ... |
| mulslid 28081 | Surreal one is a left iden... |
| mulslidd 28082 | Surreal one is a left iden... |
| mulsgt0 28083 | The product of two positiv... |
| mulsgt0d 28084 | The product of two positiv... |
| mulsge0d 28085 | The product of two non-neg... |
| ssltmul1 28086 | One surreal set less-than ... |
| ssltmul2 28087 | One surreal set less-than ... |
| mulsuniflem 28088 | Lemma for ~ mulsunif . St... |
| mulsunif 28089 | Surreal multiplication has... |
| addsdilem1 28090 | Lemma for surreal distribu... |
| addsdilem2 28091 | Lemma for surreal distribu... |
| addsdilem3 28092 | Lemma for ~ addsdi . Show... |
| addsdilem4 28093 | Lemma for ~ addsdi . Show... |
| addsdi 28094 | Distributive law for surre... |
| addsdid 28095 | Distributive law for surre... |
| addsdird 28096 | Distributive law for surre... |
| subsdid 28097 | Distribution of surreal mu... |
| subsdird 28098 | Distribution of surreal mu... |
| mulnegs1d 28099 | Product with negative is n... |
| mulnegs2d 28100 | Product with negative is n... |
| mul2negsd 28101 | Surreal product of two neg... |
| mulsasslem1 28102 | Lemma for ~ mulsass . Exp... |
| mulsasslem2 28103 | Lemma for ~ mulsass . Exp... |
| mulsasslem3 28104 | Lemma for ~ mulsass . Dem... |
| mulsass 28105 | Associative law for surrea... |
| mulsassd 28106 | Associative law for surrea... |
| muls4d 28107 | Rearrangement of four surr... |
| mulsunif2lem 28108 | Lemma for ~ mulsunif2 . S... |
| mulsunif2 28109 | Alternate expression for s... |
| sltmul2 28110 | Multiplication of both sid... |
| sltmul2d 28111 | Multiplication of both sid... |
| sltmul1d 28112 | Multiplication of both sid... |
| slemul2d 28113 | Multiplication of both sid... |
| slemul1d 28114 | Multiplication of both sid... |
| sltmulneg1d 28115 | Multiplication of both sid... |
| sltmulneg2d 28116 | Multiplication of both sid... |
| mulscan2dlem 28117 | Lemma for ~ mulscan2d . C... |
| mulscan2d 28118 | Cancellation of surreal mu... |
| mulscan1d 28119 | Cancellation of surreal mu... |
| muls12d 28120 | Commutative/associative la... |
| slemul1ad 28121 | Multiplication of both sid... |
| sltmul12ad 28122 | Comparison of the product ... |
| divsmo 28123 | Uniqueness of surreal inve... |
| muls0ord 28124 | If a surreal product is ze... |
| mulsne0bd 28125 | The product of two non-zer... |
| divsval 28128 | The value of surreal divis... |
| norecdiv 28129 | If a surreal has a recipro... |
| noreceuw 28130 | If a surreal has a recipro... |
| recsne0 28131 | If a surreal has a recipro... |
| divsmulw 28132 | Relationship between surre... |
| divsmulwd 28133 | Relationship between surre... |
| divsclw 28134 | Weak division closure law.... |
| divsclwd 28135 | Weak division closure law.... |
| divscan2wd 28136 | A weak cancellation law fo... |
| divscan1wd 28137 | A weak cancellation law fo... |
| sltdivmulwd 28138 | Surreal less-than relation... |
| sltdivmul2wd 28139 | Surreal less-than relation... |
| sltmuldivwd 28140 | Surreal less-than relation... |
| sltmuldiv2wd 28141 | Surreal less-than relation... |
| divsasswd 28142 | An associative law for sur... |
| divs1 28143 | A surreal divided by one i... |
| precsexlemcbv 28144 | Lemma for surreal reciproc... |
| precsexlem1 28145 | Lemma for surreal reciproc... |
| precsexlem2 28146 | Lemma for surreal reciproc... |
| precsexlem3 28147 | Lemma for surreal reciproc... |
| precsexlem4 28148 | Lemma for surreal reciproc... |
| precsexlem5 28149 | Lemma for surreal reciproc... |
| precsexlem6 28150 | Lemma for surreal reciproc... |
| precsexlem7 28151 | Lemma for surreal reciproc... |
| precsexlem8 28152 | Lemma for surreal reciproc... |
| precsexlem9 28153 | Lemma for surreal reciproc... |
| precsexlem10 28154 | Lemma for surreal reciproc... |
| precsexlem11 28155 | Lemma for surreal reciproc... |
| precsex 28156 | Every positive surreal has... |
| recsex 28157 | A non-zero surreal has a r... |
| recsexd 28158 | A non-zero surreal has a r... |
| divsmul 28159 | Relationship between surre... |
| divsmuld 28160 | Relationship between surre... |
| divscl 28161 | Surreal division closure l... |
| divscld 28162 | Surreal division closure l... |
| divscan2d 28163 | A cancellation law for sur... |
| divscan1d 28164 | A cancellation law for sur... |
| sltdivmuld 28165 | Surreal less-than relation... |
| sltdivmul2d 28166 | Surreal less-than relation... |
| sltmuldivd 28167 | Surreal less-than relation... |
| sltmuldiv2d 28168 | Surreal less-than relation... |
| divsassd 28169 | An associative law for sur... |
| divmuldivsd 28170 | Multiplication of two surr... |
| divdivs1d 28171 | Surreal division into a fr... |
| divsrecd 28172 | Relationship between surre... |
| divsdird 28173 | Distribution of surreal di... |
| divscan3d 28174 | A cancellation law for sur... |
| abssval 28177 | The value of surreal absol... |
| absscl 28178 | Closure law for surreal ab... |
| abssid 28179 | The absolute value of a no... |
| abs0s 28180 | The absolute value of surr... |
| abssnid 28181 | For a negative surreal, it... |
| absmuls 28182 | Surreal absolute value dis... |
| abssge0 28183 | The absolute value of a su... |
| abssor 28184 | The absolute value of a su... |
| abssneg 28185 | Surreal absolute value of ... |
| sleabs 28186 | A surreal is less than or ... |
| absslt 28187 | Surreal absolute value and... |
| elons 28190 | Membership in the class of... |
| onssno 28191 | The surreal ordinals are a... |
| onsno 28192 | A surreal ordinal is a sur... |
| 0ons 28193 | Surreal zero is a surreal ... |
| 1ons 28194 | Surreal one is a surreal o... |
| elons2 28195 | A surreal is ordinal iff i... |
| elons2d 28196 | The cut of any set of surr... |
| onsleft 28197 | The left set of a surreal ... |
| sltonold 28198 | The class of ordinals less... |
| sltonex 28199 | The class of ordinals less... |
| onscutleft 28200 | A surreal ordinal is equal... |
| onscutlt 28201 | A surreal ordinal is the s... |
| bday11on 28202 | The birthday function is o... |
| onnolt 28203 | If a surreal ordinal is le... |
| onslt 28204 | Less-than is the same as b... |
| onsiso 28205 | The birthday function rest... |
| onswe 28206 | Surreal less-than well-ord... |
| onsse 28207 | Surreal less-than is set-l... |
| onsis 28208 | Transfinite induction sche... |
| bdayon 28209 | The birthday of a surreal ... |
| onaddscl 28210 | The surreal ordinals are c... |
| onmulscl 28211 | The surreal ordinals are c... |
| peano2ons 28212 | The successor of a surreal... |
| seqsex 28215 | Existence of the surreal s... |
| seqseq123d 28216 | Equality deduction for the... |
| nfseqs 28217 | Hypothesis builder for the... |
| seqsval 28218 | The value of the surreal s... |
| noseqex 28219 | The next several theorems ... |
| noseq0 28220 | The surreal ` A ` is a mem... |
| noseqp1 28221 | One plus an element of ` Z... |
| noseqind 28222 | Peano's inductive postulat... |
| noseqinds 28223 | Induction schema for surre... |
| noseqssno 28224 | A surreal sequence is a su... |
| noseqno 28225 | An element of a surreal se... |
| om2noseq0 28226 | The mapping ` G ` is a one... |
| om2noseqsuc 28227 | The value of ` G ` at a su... |
| om2noseqfo 28228 | Function statement for ` G... |
| om2noseqlt 28229 | Surreal less-than relation... |
| om2noseqlt2 28230 | The mapping ` G ` preserve... |
| om2noseqf1o 28231 | ` G ` is a bijection. (Co... |
| om2noseqiso 28232 | ` G ` is an isomorphism fr... |
| om2noseqoi 28233 | An alternative definition ... |
| om2noseqrdg 28234 | A helper lemma for the val... |
| noseqrdglem 28235 | A helper lemma for the val... |
| noseqrdgfn 28236 | The recursive definition g... |
| noseqrdg0 28237 | Initial value of a recursi... |
| noseqrdgsuc 28238 | Successor value of a recur... |
| seqsfn 28239 | The surreal sequence build... |
| seqs1 28240 | The value of the surreal s... |
| seqsp1 28241 | The value of the surreal s... |
| n0sex 28246 | The set of all non-negativ... |
| nnsex 28247 | The set of all positive su... |
| peano5n0s 28248 | Peano's inductive postulat... |
| n0ssno 28249 | The non-negative surreal i... |
| nnssn0s 28250 | The positive surreal integ... |
| nnssno 28251 | The positive surreal integ... |
| n0sno 28252 | A non-negative surreal int... |
| nnsno 28253 | A positive surreal integer... |
| n0snod 28254 | A non-negative surreal int... |
| nnsnod 28255 | A positive surreal integer... |
| nnn0s 28256 | A positive surreal integer... |
| nnn0sd 28257 | A positive surreal integer... |
| 0n0s 28258 | Peano postulate: ` 0s ` is... |
| peano2n0s 28259 | Peano postulate: the succe... |
| dfn0s2 28260 | Alternate definition of th... |
| n0sind 28261 | Principle of Mathematical ... |
| n0scut 28262 | A cut form for non-negativ... |
| n0scut2 28263 | A cut form for the success... |
| n0ons 28264 | A surreal natural is a sur... |
| nnne0s 28265 | A surreal positive integer... |
| n0sge0 28266 | A non-negative integer is ... |
| nnsgt0 28267 | A positive integer is grea... |
| elnns 28268 | Membership in the positive... |
| elnns2 28269 | A positive surreal integer... |
| n0s0suc 28270 | A non-negative surreal int... |
| nnsge1 28271 | A positive surreal integer... |
| n0addscl 28272 | The non-negative surreal i... |
| n0mulscl 28273 | The non-negative surreal i... |
| nnaddscl 28274 | The positive surreal integ... |
| nnmulscl 28275 | The positive surreal integ... |
| 1n0s 28276 | Surreal one is a non-negat... |
| 1nns 28277 | Surreal one is a positive ... |
| peano2nns 28278 | Peano postulate for positi... |
| nnsrecgt0d 28279 | The reciprocal of a positi... |
| n0sbday 28280 | A non-negative surreal int... |
| n0ssold 28281 | The non-negative surreal i... |
| n0sfincut 28282 | The simplest number greate... |
| onsfi 28283 | A surreal ordinal with a f... |
| onltn0s 28284 | A surreal ordinal that is ... |
| n0cutlt 28285 | A non-negative surreal int... |
| seqn0sfn 28286 | The surreal sequence build... |
| eln0s 28287 | A non-negative surreal int... |
| n0s0m1 28288 | Every non-negative surreal... |
| n0subs 28289 | Subtraction of non-negativ... |
| n0subs2 28290 | Subtraction of non-negativ... |
| n0sltp1le 28291 | Non-negative surreal order... |
| n0sleltp1 28292 | Non-negative surreal order... |
| n0slem1lt 28293 | Non-negative surreal order... |
| bdayn0p1 28294 | The birthday of ` A +s 1s ... |
| bdayn0sf1o 28295 | The birthday function rest... |
| n0p1nns 28296 | One plus a non-negative su... |
| dfnns2 28297 | Alternate definition of th... |
| nnsind 28298 | Principle of Mathematical ... |
| nn1m1nns 28299 | Every positive surreal int... |
| nnm1n0s 28300 | A positive surreal integer... |
| eucliddivs 28301 | Euclid's division lemma fo... |
| zsex 28304 | The surreal integers form ... |
| zssno 28305 | The surreal integers are a... |
| zno 28306 | A surreal integer is a sur... |
| znod 28307 | A surreal integer is a sur... |
| elzs 28308 | Membership in the set of s... |
| nnzsubs 28309 | The difference of two surr... |
| nnzs 28310 | A positive surreal integer... |
| nnzsd 28311 | A positive surreal integer... |
| 0zs 28312 | Zero is a surreal integer.... |
| n0zs 28313 | A non-negative surreal int... |
| n0zsd 28314 | A non-negative surreal int... |
| 1zs 28315 | One is a surreal integer. ... |
| znegscl 28316 | The surreal integers are c... |
| znegscld 28317 | The surreal integers are c... |
| zaddscl 28318 | The surreal integers are c... |
| zaddscld 28319 | The surreal integers are c... |
| zsubscld 28320 | The surreal integers are c... |
| zmulscld 28321 | The surreal integers are c... |
| elzn0s 28322 | A surreal integer is a sur... |
| elzs2 28323 | A surreal integer is eithe... |
| eln0zs 28324 | Non-negative surreal integ... |
| elnnzs 28325 | Positive surreal integer p... |
| elznns 28326 | Surreal integer property e... |
| zn0subs 28327 | The non-negative differenc... |
| peano5uzs 28328 | Peano's inductive postulat... |
| uzsind 28329 | Induction on the upper sur... |
| zsbday 28330 | A surreal integer has a fi... |
| zscut 28331 | A cut expression for surre... |
| zsoring 28332 | The surreal integers form ... |
| 1p1e2s 28339 | One plus one is two. Surr... |
| no2times 28340 | Version of ~ 2times for su... |
| 2nns 28341 | Surreal two is a surreal n... |
| 2sno 28342 | Surreal two is a surreal n... |
| 2ne0s 28343 | Surreal two is non-zero. ... |
| n0seo 28344 | A non-negative surreal int... |
| zseo 28345 | A surreal integer is eithe... |
| twocut 28346 | Two times the cut of zero ... |
| nohalf 28347 | An explicit expression for... |
| expsval 28348 | The value of surreal expon... |
| expsnnval 28349 | Value of surreal exponenti... |
| exps0 28350 | Surreal exponentiation to ... |
| exps1 28351 | Surreal exponentiation to ... |
| expsp1 28352 | Value of a surreal number ... |
| expscllem 28353 | Lemma for proving non-nega... |
| expscl 28354 | Closure law for surreal ex... |
| n0expscl 28355 | Closure law for non-negati... |
| nnexpscl 28356 | Closure law for positive s... |
| zexpscl 28357 | Closure law for surreal in... |
| expadds 28358 | Sum of exponents law for s... |
| expsne0 28359 | A non-negative surreal int... |
| expsgt0 28360 | A non-negative surreal int... |
| pw2recs 28361 | Any power of two has a mul... |
| pw2divscld 28362 | Division closure for power... |
| pw2divsmuld 28363 | Relationship between surre... |
| pw2divscan3d 28364 | Cancellation law for surre... |
| pw2divscan2d 28365 | A cancellation law for sur... |
| pw2divsassd 28366 | An associative law for div... |
| pw2divscan4d 28367 | Cancellation law for divis... |
| pw2gt0divsd 28368 | Division of a positive sur... |
| pw2ge0divsd 28369 | Divison of a non-negative ... |
| pw2divsrecd 28370 | Relationship between surre... |
| pw2divsdird 28371 | Distribution of surreal di... |
| pw2divsnegd 28372 | Move negative sign inside ... |
| pw2sltdivmuld 28373 | Surreal less-than relation... |
| pw2sltmuldiv2d 28374 | Surreal less-than relation... |
| pw2sltdiv1d 28375 | Surreal less-than relation... |
| avgslt1d 28376 | Ordering property for aver... |
| avgslt2d 28377 | Ordering property for aver... |
| halfcut 28378 | Relate the cut of twice of... |
| addhalfcut 28379 | The cut of a surreal non-n... |
| pw2cut 28380 | Extend ~ halfcut to arbitr... |
| pw2cutp1 28381 | Simplify ~ pw2cut in the c... |
| pw2cut2 28382 | Cut expression for powers ... |
| elzs12 28383 | Membership in the dyadic f... |
| zs12ex 28384 | The class of dyadic fracti... |
| zzs12 28385 | A surreal integer is a dya... |
| zs12no 28386 | A dyadic is a surreal. (C... |
| zs12addscl 28387 | The dyadics are closed und... |
| zs12negscl 28388 | The dyadics are closed und... |
| zs12subscl 28389 | The dyadics are closed und... |
| zs12half 28390 | Half of a dyadic is a dyad... |
| zs12negsclb 28391 | A surreal is a dyadic frac... |
| zs12zodd 28392 | A dyadic fraction is eithe... |
| zs12ge0 28393 | An expression for non-nega... |
| zs12bday 28394 | A dyadic fraction has a fi... |
| elreno 28397 | Membership in the set of s... |
| recut 28398 | The cut involved in defini... |
| 0reno 28399 | Surreal zero is a surreal ... |
| renegscl 28400 | The surreal reals are clos... |
| readdscl 28401 | The surreal reals are clos... |
| remulscllem1 28402 | Lemma for ~ remulscl . Sp... |
| remulscllem2 28403 | Lemma for ~ remulscl . Bo... |
| remulscl 28404 | The surreal reals are clos... |
| itvndx 28415 | Index value of the Interva... |
| lngndx 28416 | Index value of the "line" ... |
| itvid 28417 | Utility theorem: index-ind... |
| lngid 28418 | Utility theorem: index-ind... |
| slotsinbpsd 28419 | The slots ` Base ` , ` +g ... |
| slotslnbpsd 28420 | The slots ` Base ` , ` +g ... |
| lngndxnitvndx 28421 | The slot for the line is n... |
| trkgstr 28422 | Functionality of a Tarski ... |
| trkgbas 28423 | The base set of a Tarski g... |
| trkgdist 28424 | The measure of a distance ... |
| trkgitv 28425 | The congruence relation in... |
| istrkgc 28432 | Property of being a Tarski... |
| istrkgb 28433 | Property of being a Tarski... |
| istrkgcb 28434 | Property of being a Tarski... |
| istrkge 28435 | Property of fulfilling Euc... |
| istrkgl 28436 | Building lines from the se... |
| istrkgld 28437 | Property of fulfilling the... |
| istrkg2ld 28438 | Property of fulfilling the... |
| istrkg3ld 28439 | Property of fulfilling the... |
| axtgcgrrflx 28440 | Axiom of reflexivity of co... |
| axtgcgrid 28441 | Axiom of identity of congr... |
| axtgsegcon 28442 | Axiom of segment construct... |
| axtg5seg 28443 | Five segments axiom, Axiom... |
| axtgbtwnid 28444 | Identity of Betweenness. ... |
| axtgpasch 28445 | Axiom of (Inner) Pasch, Ax... |
| axtgcont1 28446 | Axiom of Continuity. Axio... |
| axtgcont 28447 | Axiom of Continuity. Axio... |
| axtglowdim2 28448 | Lower dimension axiom for ... |
| axtgupdim2 28449 | Upper dimension axiom for ... |
| axtgeucl 28450 | Euclid's Axiom. Axiom A10... |
| tgjustf 28451 | Given any function ` F ` ,... |
| tgjustr 28452 | Given any equivalence rela... |
| tgjustc1 28453 | A justification for using ... |
| tgjustc2 28454 | A justification for using ... |
| tgcgrcomimp 28455 | Congruence commutes on the... |
| tgcgrcomr 28456 | Congruence commutes on the... |
| tgcgrcoml 28457 | Congruence commutes on the... |
| tgcgrcomlr 28458 | Congruence commutes on bot... |
| tgcgreqb 28459 | Congruence and equality. ... |
| tgcgreq 28460 | Congruence and equality. ... |
| tgcgrneq 28461 | Congruence and equality. ... |
| tgcgrtriv 28462 | Degenerate segments are co... |
| tgcgrextend 28463 | Link congruence over a pai... |
| tgsegconeq 28464 | Two points that satisfy th... |
| tgbtwntriv2 28465 | Betweenness always holds f... |
| tgbtwncom 28466 | Betweenness commutes. The... |
| tgbtwncomb 28467 | Betweenness commutes, bico... |
| tgbtwnne 28468 | Betweenness and inequality... |
| tgbtwntriv1 28469 | Betweenness always holds f... |
| tgbtwnswapid 28470 | If you can swap the first ... |
| tgbtwnintr 28471 | Inner transitivity law for... |
| tgbtwnexch3 28472 | Exchange the first endpoin... |
| tgbtwnouttr2 28473 | Outer transitivity law for... |
| tgbtwnexch2 28474 | Exchange the outer point o... |
| tgbtwnouttr 28475 | Outer transitivity law for... |
| tgbtwnexch 28476 | Outer transitivity law for... |
| tgtrisegint 28477 | A line segment between two... |
| tglowdim1 28478 | Lower dimension axiom for ... |
| tglowdim1i 28479 | Lower dimension axiom for ... |
| tgldimor 28480 | Excluded-middle like state... |
| tgldim0eq 28481 | In dimension zero, any two... |
| tgldim0itv 28482 | In dimension zero, any two... |
| tgldim0cgr 28483 | In dimension zero, any two... |
| tgbtwndiff 28484 | There is always a ` c ` di... |
| tgdim01 28485 | In geometries of dimension... |
| tgifscgr 28486 | Inner five segment congrue... |
| tgcgrsub 28487 | Removing identical parts f... |
| iscgrg 28490 | The congruence property fo... |
| iscgrgd 28491 | The property for two seque... |
| iscgrglt 28492 | The property for two seque... |
| trgcgrg 28493 | The property for two trian... |
| trgcgr 28494 | Triangle congruence. (Con... |
| ercgrg 28495 | The shape congruence relat... |
| tgcgrxfr 28496 | A line segment can be divi... |
| cgr3id 28497 | Reflexivity law for three-... |
| cgr3simp1 28498 | Deduce segment congruence ... |
| cgr3simp2 28499 | Deduce segment congruence ... |
| cgr3simp3 28500 | Deduce segment congruence ... |
| cgr3swap12 28501 | Permutation law for three-... |
| cgr3swap23 28502 | Permutation law for three-... |
| cgr3swap13 28503 | Permutation law for three-... |
| cgr3rotr 28504 | Permutation law for three-... |
| cgr3rotl 28505 | Permutation law for three-... |
| trgcgrcom 28506 | Commutative law for three-... |
| cgr3tr 28507 | Transitivity law for three... |
| tgbtwnxfr 28508 | A condition for extending ... |
| tgcgr4 28509 | Two quadrilaterals to be c... |
| isismt 28512 | Property of being an isome... |
| ismot 28513 | Property of being an isome... |
| motcgr 28514 | Property of a motion: dist... |
| idmot 28515 | The identity is a motion. ... |
| motf1o 28516 | Motions are bijections. (... |
| motcl 28517 | Closure of motions. (Cont... |
| motco 28518 | The composition of two mot... |
| cnvmot 28519 | The converse of a motion i... |
| motplusg 28520 | The operation for motions ... |
| motgrp 28521 | The motions of a geometry ... |
| motcgrg 28522 | Property of a motion: dist... |
| motcgr3 28523 | Property of a motion: dist... |
| tglng 28524 | Lines of a Tarski Geometry... |
| tglnfn 28525 | Lines as functions. (Cont... |
| tglnunirn 28526 | Lines are sets of points. ... |
| tglnpt 28527 | Lines are sets of points. ... |
| tglngne 28528 | It takes two different poi... |
| tglngval 28529 | The line going through poi... |
| tglnssp 28530 | Lines are subset of the ge... |
| tgellng 28531 | Property of lying on the l... |
| tgcolg 28532 | We choose the notation ` (... |
| btwncolg1 28533 | Betweenness implies coline... |
| btwncolg2 28534 | Betweenness implies coline... |
| btwncolg3 28535 | Betweenness implies coline... |
| colcom 28536 | Swapping the points defini... |
| colrot1 28537 | Rotating the points defini... |
| colrot2 28538 | Rotating the points defini... |
| ncolcom 28539 | Swapping non-colinear poin... |
| ncolrot1 28540 | Rotating non-colinear poin... |
| ncolrot2 28541 | Rotating non-colinear poin... |
| tgdim01ln 28542 | In geometries of dimension... |
| ncoltgdim2 28543 | If there are three non-col... |
| lnxfr 28544 | Transfer law for colineari... |
| lnext 28545 | Extend a line with a missi... |
| tgfscgr 28546 | Congruence law for the gen... |
| lncgr 28547 | Congruence rule for lines.... |
| lnid 28548 | Identity law for points on... |
| tgidinside 28549 | Law for finding a point in... |
| tgbtwnconn1lem1 28550 | Lemma for ~ tgbtwnconn1 . ... |
| tgbtwnconn1lem2 28551 | Lemma for ~ tgbtwnconn1 . ... |
| tgbtwnconn1lem3 28552 | Lemma for ~ tgbtwnconn1 . ... |
| tgbtwnconn1 28553 | Connectivity law for betwe... |
| tgbtwnconn2 28554 | Another connectivity law f... |
| tgbtwnconn3 28555 | Inner connectivity law for... |
| tgbtwnconnln3 28556 | Derive colinearity from be... |
| tgbtwnconn22 28557 | Double connectivity law fo... |
| tgbtwnconnln1 28558 | Derive colinearity from be... |
| tgbtwnconnln2 28559 | Derive colinearity from be... |
| legval 28562 | Value of the less-than rel... |
| legov 28563 | Value of the less-than rel... |
| legov2 28564 | An equivalent definition o... |
| legid 28565 | Reflexivity of the less-th... |
| btwnleg 28566 | Betweenness implies less-t... |
| legtrd 28567 | Transitivity of the less-t... |
| legtri3 28568 | Equality from the less-tha... |
| legtrid 28569 | Trichotomy law for the les... |
| leg0 28570 | Degenerated (zero-length) ... |
| legeq 28571 | Deduce equality from "less... |
| legbtwn 28572 | Deduce betweenness from "l... |
| tgcgrsub2 28573 | Removing identical parts f... |
| ltgseg 28574 | The set ` E ` denotes the ... |
| ltgov 28575 | Strict "shorter than" geom... |
| legov3 28576 | An equivalent definition o... |
| legso 28577 | The "shorter than" relatio... |
| ishlg 28580 | Rays : Definition 6.1 of ... |
| hlcomb 28581 | The half-line relation com... |
| hlcomd 28582 | The half-line relation com... |
| hlne1 28583 | The half-line relation imp... |
| hlne2 28584 | The half-line relation imp... |
| hlln 28585 | The half-line relation imp... |
| hleqnid 28586 | The endpoint does not belo... |
| hlid 28587 | The half-line relation is ... |
| hltr 28588 | The half-line relation is ... |
| hlbtwn 28589 | Betweenness is a sufficien... |
| btwnhl1 28590 | Deduce half-line from betw... |
| btwnhl2 28591 | Deduce half-line from betw... |
| btwnhl 28592 | Swap betweenness for a hal... |
| lnhl 28593 | Either a point ` C ` on th... |
| hlcgrex 28594 | Construct a point on a hal... |
| hlcgreulem 28595 | Lemma for ~ hlcgreu . (Co... |
| hlcgreu 28596 | The point constructed in ~... |
| btwnlng1 28597 | Betweenness implies coline... |
| btwnlng2 28598 | Betweenness implies coline... |
| btwnlng3 28599 | Betweenness implies coline... |
| lncom 28600 | Swapping the points defini... |
| lnrot1 28601 | Rotating the points defini... |
| lnrot2 28602 | Rotating the points defini... |
| ncolne1 28603 | Non-colinear points are di... |
| ncolne2 28604 | Non-colinear points are di... |
| tgisline 28605 | The property of being a pr... |
| tglnne 28606 | It takes two different poi... |
| tglndim0 28607 | There are no lines in dime... |
| tgelrnln 28608 | The property of being a pr... |
| tglineeltr 28609 | Transitivity law for lines... |
| tglineelsb2 28610 | If ` S ` lies on PQ , then... |
| tglinerflx1 28611 | Reflexivity law for line m... |
| tglinerflx2 28612 | Reflexivity law for line m... |
| tglinecom 28613 | Commutativity law for line... |
| tglinethru 28614 | If ` A ` is a line contain... |
| tghilberti1 28615 | There is a line through an... |
| tghilberti2 28616 | There is at most one line ... |
| tglinethrueu 28617 | There is a unique line goi... |
| tglnne0 28618 | A line ` A ` has at least ... |
| tglnpt2 28619 | Find a second point on a l... |
| tglineintmo 28620 | Two distinct lines interse... |
| tglineineq 28621 | Two distinct lines interse... |
| tglineneq 28622 | Given three non-colinear p... |
| tglineinteq 28623 | Two distinct lines interse... |
| ncolncol 28624 | Deduce non-colinearity fro... |
| coltr 28625 | A transitivity law for col... |
| coltr3 28626 | A transitivity law for col... |
| colline 28627 | Three points are colinear ... |
| tglowdim2l 28628 | Reformulation of the lower... |
| tglowdim2ln 28629 | There is always one point ... |
| mirreu3 28632 | Existential uniqueness of ... |
| mirval 28633 | Value of the point inversi... |
| mirfv 28634 | Value of the point inversi... |
| mircgr 28635 | Property of the image by t... |
| mirbtwn 28636 | Property of the image by t... |
| ismir 28637 | Property of the image by t... |
| mirf 28638 | Point inversion as functio... |
| mircl 28639 | Closure of the point inver... |
| mirmir 28640 | The point inversion functi... |
| mircom 28641 | Variation on ~ mirmir . (... |
| mirreu 28642 | Any point has a unique ant... |
| mireq 28643 | Equality deduction for poi... |
| mirinv 28644 | The only invariant point o... |
| mirne 28645 | Mirror of non-center point... |
| mircinv 28646 | The center point is invari... |
| mirf1o 28647 | The point inversion functi... |
| miriso 28648 | The point inversion functi... |
| mirbtwni 28649 | Point inversion preserves ... |
| mirbtwnb 28650 | Point inversion preserves ... |
| mircgrs 28651 | Point inversion preserves ... |
| mirmir2 28652 | Point inversion of a point... |
| mirmot 28653 | Point investion is a motio... |
| mirln 28654 | If two points are on the s... |
| mirln2 28655 | If a point and its mirror ... |
| mirconn 28656 | Point inversion of connect... |
| mirhl 28657 | If two points ` X ` and ` ... |
| mirbtwnhl 28658 | If the center of the point... |
| mirhl2 28659 | Deduce half-line relation ... |
| mircgrextend 28660 | Link congruence over a pai... |
| mirtrcgr 28661 | Point inversion of one poi... |
| mirauto 28662 | Point inversion preserves ... |
| miduniq 28663 | Uniqueness of the middle p... |
| miduniq1 28664 | Uniqueness of the middle p... |
| miduniq2 28665 | If two point inversions co... |
| colmid 28666 | Colinearity and equidistan... |
| symquadlem 28667 | Lemma of the symetrial qua... |
| krippenlem 28668 | Lemma for ~ krippen . We ... |
| krippen 28669 | Krippenlemma (German for c... |
| midexlem 28670 | Lemma for the existence of... |
| israg 28675 | Property for 3 points A, B... |
| ragcom 28676 | Commutative rule for right... |
| ragcol 28677 | The right angle property i... |
| ragmir 28678 | Right angle property is pr... |
| mirrag 28679 | Right angle is conserved b... |
| ragtrivb 28680 | Trivial right angle. Theo... |
| ragflat2 28681 | Deduce equality from two r... |
| ragflat 28682 | Deduce equality from two r... |
| ragtriva 28683 | Trivial right angle. Theo... |
| ragflat3 28684 | Right angle and colinearit... |
| ragcgr 28685 | Right angle and colinearit... |
| motrag 28686 | Right angles are preserved... |
| ragncol 28687 | Right angle implies non-co... |
| perpln1 28688 | Derive a line from perpend... |
| perpln2 28689 | Derive a line from perpend... |
| isperp 28690 | Property for 2 lines A, B ... |
| perpcom 28691 | The "perpendicular" relati... |
| perpneq 28692 | Two perpendicular lines ar... |
| isperp2 28693 | Property for 2 lines A, B,... |
| isperp2d 28694 | One direction of ~ isperp2... |
| ragperp 28695 | Deduce that two lines are ... |
| footexALT 28696 | Alternative version of ~ f... |
| footexlem1 28697 | Lemma for ~ footex . (Con... |
| footexlem2 28698 | Lemma for ~ footex . (Con... |
| footex 28699 | From a point ` C ` outside... |
| foot 28700 | From a point ` C ` outside... |
| footne 28701 | Uniqueness of the foot poi... |
| footeq 28702 | Uniqueness of the foot poi... |
| hlperpnel 28703 | A point on a half-line whi... |
| perprag 28704 | Deduce a right angle from ... |
| perpdragALT 28705 | Deduce a right angle from ... |
| perpdrag 28706 | Deduce a right angle from ... |
| colperp 28707 | Deduce a perpendicularity ... |
| colperpexlem1 28708 | Lemma for ~ colperp . Fir... |
| colperpexlem2 28709 | Lemma for ~ colperpex . S... |
| colperpexlem3 28710 | Lemma for ~ colperpex . C... |
| colperpex 28711 | In dimension 2 and above, ... |
| mideulem2 28712 | Lemma for ~ opphllem , whi... |
| opphllem 28713 | Lemma 8.24 of [Schwabhause... |
| mideulem 28714 | Lemma for ~ mideu . We ca... |
| midex 28715 | Existence of the midpoint,... |
| mideu 28716 | Existence and uniqueness o... |
| islnopp 28717 | The property for two point... |
| islnoppd 28718 | Deduce that ` A ` and ` B ... |
| oppne1 28719 | Points lying on opposite s... |
| oppne2 28720 | Points lying on opposite s... |
| oppne3 28721 | Points lying on opposite s... |
| oppcom 28722 | Commutativity rule for "op... |
| opptgdim2 28723 | If two points opposite to ... |
| oppnid 28724 | The "opposite to a line" r... |
| opphllem1 28725 | Lemma for ~ opphl . (Cont... |
| opphllem2 28726 | Lemma for ~ opphl . Lemma... |
| opphllem3 28727 | Lemma for ~ opphl : We as... |
| opphllem4 28728 | Lemma for ~ opphl . (Cont... |
| opphllem5 28729 | Second part of Lemma 9.4 o... |
| opphllem6 28730 | First part of Lemma 9.4 of... |
| oppperpex 28731 | Restating ~ colperpex usin... |
| opphl 28732 | If two points ` A ` and ` ... |
| outpasch 28733 | Axiom of Pasch, outer form... |
| hlpasch 28734 | An application of the axio... |
| ishpg 28737 | Value of the half-plane re... |
| hpgbr 28738 | Half-planes : property for... |
| hpgne1 28739 | Points on the open half pl... |
| hpgne2 28740 | Points on the open half pl... |
| lnopp2hpgb 28741 | Theorem 9.8 of [Schwabhaus... |
| lnoppnhpg 28742 | If two points lie on the o... |
| hpgerlem 28743 | Lemma for the proof that t... |
| hpgid 28744 | The half-plane relation is... |
| hpgcom 28745 | The half-plane relation co... |
| hpgtr 28746 | The half-plane relation is... |
| colopp 28747 | Opposite sides of a line f... |
| colhp 28748 | Half-plane relation for co... |
| hphl 28749 | If two points are on the s... |
| midf 28754 | Midpoint as a function. (... |
| midcl 28755 | Closure of the midpoint. ... |
| ismidb 28756 | Property of the midpoint. ... |
| midbtwn 28757 | Betweenness of midpoint. ... |
| midcgr 28758 | Congruence of midpoint. (... |
| midid 28759 | Midpoint of a null segment... |
| midcom 28760 | Commutativity rule for the... |
| mirmid 28761 | Point inversion preserves ... |
| lmieu 28762 | Uniqueness of the line mir... |
| lmif 28763 | Line mirror as a function.... |
| lmicl 28764 | Closure of the line mirror... |
| islmib 28765 | Property of the line mirro... |
| lmicom 28766 | The line mirroring functio... |
| lmilmi 28767 | Line mirroring is an invol... |
| lmireu 28768 | Any point has a unique ant... |
| lmieq 28769 | Equality deduction for lin... |
| lmiinv 28770 | The invariants of the line... |
| lmicinv 28771 | The mirroring line is an i... |
| lmimid 28772 | If we have a right angle, ... |
| lmif1o 28773 | The line mirroring functio... |
| lmiisolem 28774 | Lemma for ~ lmiiso . (Con... |
| lmiiso 28775 | The line mirroring functio... |
| lmimot 28776 | Line mirroring is a motion... |
| hypcgrlem1 28777 | Lemma for ~ hypcgr , case ... |
| hypcgrlem2 28778 | Lemma for ~ hypcgr , case ... |
| hypcgr 28779 | If the catheti of two righ... |
| lmiopp 28780 | Line mirroring produces po... |
| lnperpex 28781 | Existence of a perpendicul... |
| trgcopy 28782 | Triangle construction: a c... |
| trgcopyeulem 28783 | Lemma for ~ trgcopyeu . (... |
| trgcopyeu 28784 | Triangle construction: a c... |
| iscgra 28787 | Property for two angles AB... |
| iscgra1 28788 | A special version of ~ isc... |
| iscgrad 28789 | Sufficient conditions for ... |
| cgrane1 28790 | Angles imply inequality. ... |
| cgrane2 28791 | Angles imply inequality. ... |
| cgrane3 28792 | Angles imply inequality. ... |
| cgrane4 28793 | Angles imply inequality. ... |
| cgrahl1 28794 | Angle congruence is indepe... |
| cgrahl2 28795 | Angle congruence is indepe... |
| cgracgr 28796 | First direction of proposi... |
| cgraid 28797 | Angle congruence is reflex... |
| cgraswap 28798 | Swap rays in a congruence ... |
| cgrcgra 28799 | Triangle congruence implie... |
| cgracom 28800 | Angle congruence commutes.... |
| cgratr 28801 | Angle congruence is transi... |
| flatcgra 28802 | Flat angles are congruent.... |
| cgraswaplr 28803 | Swap both side of angle co... |
| cgrabtwn 28804 | Angle congruence preserves... |
| cgrahl 28805 | Angle congruence preserves... |
| cgracol 28806 | Angle congruence preserves... |
| cgrancol 28807 | Angle congruence preserves... |
| dfcgra2 28808 | This is the full statement... |
| sacgr 28809 | Supplementary angles of co... |
| oacgr 28810 | Vertical angle theorem. V... |
| acopy 28811 | Angle construction. Theor... |
| acopyeu 28812 | Angle construction. Theor... |
| isinag 28816 | Property for point ` X ` t... |
| isinagd 28817 | Sufficient conditions for ... |
| inagflat 28818 | Any point lies in a flat a... |
| inagswap 28819 | Swap the order of the half... |
| inagne1 28820 | Deduce inequality from the... |
| inagne2 28821 | Deduce inequality from the... |
| inagne3 28822 | Deduce inequality from the... |
| inaghl 28823 | The "point lie in angle" r... |
| isleag 28825 | Geometrical "less than" pr... |
| isleagd 28826 | Sufficient condition for "... |
| leagne1 28827 | Deduce inequality from the... |
| leagne2 28828 | Deduce inequality from the... |
| leagne3 28829 | Deduce inequality from the... |
| leagne4 28830 | Deduce inequality from the... |
| cgrg3col4 28831 | Lemma 11.28 of [Schwabhaus... |
| tgsas1 28832 | First congruence theorem: ... |
| tgsas 28833 | First congruence theorem: ... |
| tgsas2 28834 | First congruence theorem: ... |
| tgsas3 28835 | First congruence theorem: ... |
| tgasa1 28836 | Second congruence theorem:... |
| tgasa 28837 | Second congruence theorem:... |
| tgsss1 28838 | Third congruence theorem: ... |
| tgsss2 28839 | Third congruence theorem: ... |
| tgsss3 28840 | Third congruence theorem: ... |
| dfcgrg2 28841 | Congruence for two triangl... |
| isoas 28842 | Congruence theorem for iso... |
| iseqlg 28845 | Property of a triangle bei... |
| iseqlgd 28846 | Condition for a triangle t... |
| f1otrgds 28847 | Convenient lemma for ~ f1o... |
| f1otrgitv 28848 | Convenient lemma for ~ f1o... |
| f1otrg 28849 | A bijection between bases ... |
| f1otrge 28850 | A bijection between bases ... |
| ttgval 28853 | Define a function to augme... |
| ttglem 28854 | Lemma for ~ ttgbas , ~ ttg... |
| ttgbas 28855 | The base set of a subcompl... |
| ttgplusg 28856 | The addition operation of ... |
| ttgsub 28857 | The subtraction operation ... |
| ttgvsca 28858 | The scalar product of a su... |
| ttgds 28859 | The metric of a subcomplex... |
| ttgitvval 28860 | Betweenness for a subcompl... |
| ttgelitv 28861 | Betweenness for a subcompl... |
| ttgbtwnid 28862 | Any subcomplex module equi... |
| ttgcontlem1 28863 | Lemma for % ttgcont . (Co... |
| xmstrkgc 28864 | Any metric space fulfills ... |
| cchhllem 28865 | Lemma for chlbas and chlvs... |
| elee 28872 | Membership in a Euclidean ... |
| mptelee 28873 | A condition for a mapping ... |
| eleenn 28874 | If ` A ` is in ` ( EE `` N... |
| eleei 28875 | The forward direction of ~... |
| eedimeq 28876 | A point belongs to at most... |
| brbtwn 28877 | The binary relation form o... |
| brcgr 28878 | The binary relation form o... |
| fveere 28879 | The function value of a po... |
| fveecn 28880 | The function value of a po... |
| eqeefv 28881 | Two points are equal iff t... |
| eqeelen 28882 | Two points are equal iff t... |
| brbtwn2 28883 | Alternate characterization... |
| colinearalglem1 28884 | Lemma for ~ colinearalg . ... |
| colinearalglem2 28885 | Lemma for ~ colinearalg . ... |
| colinearalglem3 28886 | Lemma for ~ colinearalg . ... |
| colinearalglem4 28887 | Lemma for ~ colinearalg . ... |
| colinearalg 28888 | An algebraic characterizat... |
| eleesub 28889 | Membership of a subtractio... |
| eleesubd 28890 | Membership of a subtractio... |
| axdimuniq 28891 | The unique dimension axiom... |
| axcgrrflx 28892 | ` A ` is as far from ` B `... |
| axcgrtr 28893 | Congruence is transitive. ... |
| axcgrid 28894 | If there is no distance be... |
| axsegconlem1 28895 | Lemma for ~ axsegcon . Ha... |
| axsegconlem2 28896 | Lemma for ~ axsegcon . Sh... |
| axsegconlem3 28897 | Lemma for ~ axsegcon . Sh... |
| axsegconlem4 28898 | Lemma for ~ axsegcon . Sh... |
| axsegconlem5 28899 | Lemma for ~ axsegcon . Sh... |
| axsegconlem6 28900 | Lemma for ~ axsegcon . Sh... |
| axsegconlem7 28901 | Lemma for ~ axsegcon . Sh... |
| axsegconlem8 28902 | Lemma for ~ axsegcon . Sh... |
| axsegconlem9 28903 | Lemma for ~ axsegcon . Sh... |
| axsegconlem10 28904 | Lemma for ~ axsegcon . Sh... |
| axsegcon 28905 | Any segment ` A B ` can be... |
| ax5seglem1 28906 | Lemma for ~ ax5seg . Rexp... |
| ax5seglem2 28907 | Lemma for ~ ax5seg . Rexp... |
| ax5seglem3a 28908 | Lemma for ~ ax5seg . (Con... |
| ax5seglem3 28909 | Lemma for ~ ax5seg . Comb... |
| ax5seglem4 28910 | Lemma for ~ ax5seg . Give... |
| ax5seglem5 28911 | Lemma for ~ ax5seg . If `... |
| ax5seglem6 28912 | Lemma for ~ ax5seg . Give... |
| ax5seglem7 28913 | Lemma for ~ ax5seg . An a... |
| ax5seglem8 28914 | Lemma for ~ ax5seg . Use ... |
| ax5seglem9 28915 | Lemma for ~ ax5seg . Take... |
| ax5seg 28916 | The five segment axiom. T... |
| axbtwnid 28917 | Points are indivisible. T... |
| axpaschlem 28918 | Lemma for ~ axpasch . Set... |
| axpasch 28919 | The inner Pasch axiom. Ta... |
| axlowdimlem1 28920 | Lemma for ~ axlowdim . Es... |
| axlowdimlem2 28921 | Lemma for ~ axlowdim . Sh... |
| axlowdimlem3 28922 | Lemma for ~ axlowdim . Se... |
| axlowdimlem4 28923 | Lemma for ~ axlowdim . Se... |
| axlowdimlem5 28924 | Lemma for ~ axlowdim . Sh... |
| axlowdimlem6 28925 | Lemma for ~ axlowdim . Sh... |
| axlowdimlem7 28926 | Lemma for ~ axlowdim . Se... |
| axlowdimlem8 28927 | Lemma for ~ axlowdim . Ca... |
| axlowdimlem9 28928 | Lemma for ~ axlowdim . Ca... |
| axlowdimlem10 28929 | Lemma for ~ axlowdim . Se... |
| axlowdimlem11 28930 | Lemma for ~ axlowdim . Ca... |
| axlowdimlem12 28931 | Lemma for ~ axlowdim . Ca... |
| axlowdimlem13 28932 | Lemma for ~ axlowdim . Es... |
| axlowdimlem14 28933 | Lemma for ~ axlowdim . Ta... |
| axlowdimlem15 28934 | Lemma for ~ axlowdim . Se... |
| axlowdimlem16 28935 | Lemma for ~ axlowdim . Se... |
| axlowdimlem17 28936 | Lemma for ~ axlowdim . Es... |
| axlowdim1 28937 | The lower dimension axiom ... |
| axlowdim2 28938 | The lower two-dimensional ... |
| axlowdim 28939 | The general lower dimensio... |
| axeuclidlem 28940 | Lemma for ~ axeuclid . Ha... |
| axeuclid 28941 | Euclid's axiom. Take an a... |
| axcontlem1 28942 | Lemma for ~ axcont . Chan... |
| axcontlem2 28943 | Lemma for ~ axcont . The ... |
| axcontlem3 28944 | Lemma for ~ axcont . Give... |
| axcontlem4 28945 | Lemma for ~ axcont . Give... |
| axcontlem5 28946 | Lemma for ~ axcont . Comp... |
| axcontlem6 28947 | Lemma for ~ axcont . Stat... |
| axcontlem7 28948 | Lemma for ~ axcont . Give... |
| axcontlem8 28949 | Lemma for ~ axcont . A po... |
| axcontlem9 28950 | Lemma for ~ axcont . Give... |
| axcontlem10 28951 | Lemma for ~ axcont . Give... |
| axcontlem11 28952 | Lemma for ~ axcont . Elim... |
| axcontlem12 28953 | Lemma for ~ axcont . Elim... |
| axcont 28954 | The axiom of continuity. ... |
| eengv 28957 | The value of the Euclidean... |
| eengstr 28958 | The Euclidean geometry as ... |
| eengbas 28959 | The Base of the Euclidean ... |
| ebtwntg 28960 | The betweenness relation u... |
| ecgrtg 28961 | The congruence relation us... |
| elntg 28962 | The line definition in the... |
| elntg2 28963 | The line definition in the... |
| eengtrkg 28964 | The geometry structure for... |
| eengtrkge 28965 | The geometry structure for... |
| edgfid 28968 | Utility theorem: index-ind... |
| edgfndx 28969 | Index value of the ~ df-ed... |
| edgfndxnn 28970 | The index value of the edg... |
| edgfndxid 28971 | The value of the edge func... |
| basendxltedgfndx 28972 | The index value of the ` B... |
| basendxnedgfndx 28973 | The slots ` Base ` and ` .... |
| vtxval 28978 | The set of vertices of a g... |
| iedgval 28979 | The set of indexed edges o... |
| 1vgrex 28980 | A graph with at least one ... |
| opvtxval 28981 | The set of vertices of a g... |
| opvtxfv 28982 | The set of vertices of a g... |
| opvtxov 28983 | The set of vertices of a g... |
| opiedgval 28984 | The set of indexed edges o... |
| opiedgfv 28985 | The set of indexed edges o... |
| opiedgov 28986 | The set of indexed edges o... |
| opvtxfvi 28987 | The set of vertices of a g... |
| opiedgfvi 28988 | The set of indexed edges o... |
| funvtxdmge2val 28989 | The set of vertices of an ... |
| funiedgdmge2val 28990 | The set of indexed edges o... |
| funvtxdm2val 28991 | The set of vertices of an ... |
| funiedgdm2val 28992 | The set of indexed edges o... |
| funvtxval0 28993 | The set of vertices of an ... |
| basvtxval 28994 | The set of vertices of a g... |
| edgfiedgval 28995 | The set of indexed edges o... |
| funvtxval 28996 | The set of vertices of a g... |
| funiedgval 28997 | The set of indexed edges o... |
| structvtxvallem 28998 | Lemma for ~ structvtxval a... |
| structvtxval 28999 | The set of vertices of an ... |
| structiedg0val 29000 | The set of indexed edges o... |
| structgrssvtxlem 29001 | Lemma for ~ structgrssvtx ... |
| structgrssvtx 29002 | The set of vertices of a g... |
| structgrssiedg 29003 | The set of indexed edges o... |
| struct2grstr 29004 | A graph represented as an ... |
| struct2grvtx 29005 | The set of vertices of a g... |
| struct2griedg 29006 | The set of indexed edges o... |
| graop 29007 | Any representation of a gr... |
| grastruct 29008 | Any representation of a gr... |
| gropd 29009 | If any representation of a... |
| grstructd 29010 | If any representation of a... |
| gropeld 29011 | If any representation of a... |
| grstructeld 29012 | If any representation of a... |
| setsvtx 29013 | The vertices of a structur... |
| setsiedg 29014 | The (indexed) edges of a s... |
| snstrvtxval 29015 | The set of vertices of a g... |
| snstriedgval 29016 | The set of indexed edges o... |
| vtxval0 29017 | Degenerated case 1 for ver... |
| iedgval0 29018 | Degenerated case 1 for edg... |
| vtxvalsnop 29019 | Degenerated case 2 for ver... |
| iedgvalsnop 29020 | Degenerated case 2 for edg... |
| vtxval3sn 29021 | Degenerated case 3 for ver... |
| iedgval3sn 29022 | Degenerated case 3 for edg... |
| vtxvalprc 29023 | Degenerated case 4 for ver... |
| iedgvalprc 29024 | Degenerated case 4 for edg... |
| edgval 29027 | The edges of a graph. (Co... |
| iedgedg 29028 | An indexed edge is an edge... |
| edgopval 29029 | The edges of a graph repre... |
| edgov 29030 | The edges of a graph repre... |
| edgstruct 29031 | The edges of a graph repre... |
| edgiedgb 29032 | A set is an edge iff it is... |
| edg0iedg0 29033 | There is no edge in a grap... |
| isuhgr 29038 | The predicate "is an undir... |
| isushgr 29039 | The predicate "is an undir... |
| uhgrf 29040 | The edge function of an un... |
| ushgrf 29041 | The edge function of an un... |
| uhgrss 29042 | An edge is a subset of ver... |
| uhgreq12g 29043 | If two sets have the same ... |
| uhgrfun 29044 | The edge function of an un... |
| uhgrn0 29045 | An edge is a nonempty subs... |
| lpvtx 29046 | The endpoints of a loop (w... |
| ushgruhgr 29047 | An undirected simple hyper... |
| isuhgrop 29048 | The property of being an u... |
| uhgr0e 29049 | The empty graph, with vert... |
| uhgr0vb 29050 | The null graph, with no ve... |
| uhgr0 29051 | The null graph represented... |
| uhgrun 29052 | The union ` U ` of two (un... |
| uhgrunop 29053 | The union of two (undirect... |
| ushgrun 29054 | The union ` U ` of two (un... |
| ushgrunop 29055 | The union of two (undirect... |
| uhgrstrrepe 29056 | Replacing (or adding) the ... |
| incistruhgr 29057 | An _incidence structure_ `... |
| isupgr 29062 | The property of being an u... |
| wrdupgr 29063 | The property of being an u... |
| upgrf 29064 | The edge function of an un... |
| upgrfn 29065 | The edge function of an un... |
| upgrss 29066 | An edge is a subset of ver... |
| upgrn0 29067 | An edge is a nonempty subs... |
| upgrle 29068 | An edge of an undirected p... |
| upgrfi 29069 | An edge is a finite subset... |
| upgrex 29070 | An edge is an unordered pa... |
| upgrbi 29071 | Show that an unordered pai... |
| upgrop 29072 | A pseudograph represented ... |
| isumgr 29073 | The property of being an u... |
| isumgrs 29074 | The simplified property of... |
| wrdumgr 29075 | The property of being an u... |
| umgrf 29076 | The edge function of an un... |
| umgrfn 29077 | The edge function of an un... |
| umgredg2 29078 | An edge of a multigraph ha... |
| umgrbi 29079 | Show that an unordered pai... |
| upgruhgr 29080 | An undirected pseudograph ... |
| umgrupgr 29081 | An undirected multigraph i... |
| umgruhgr 29082 | An undirected multigraph i... |
| upgrle2 29083 | An edge of an undirected p... |
| umgrnloopv 29084 | In a multigraph, there is ... |
| umgredgprv 29085 | In a multigraph, an edge i... |
| umgrnloop 29086 | In a multigraph, there is ... |
| umgrnloop0 29087 | A multigraph has no loops.... |
| umgr0e 29088 | The empty graph, with vert... |
| upgr0e 29089 | The empty graph, with vert... |
| upgr1elem 29090 | Lemma for ~ upgr1e and ~ u... |
| upgr1e 29091 | A pseudograph with one edg... |
| upgr0eop 29092 | The empty graph, with vert... |
| upgr1eop 29093 | A pseudograph with one edg... |
| upgr0eopALT 29094 | Alternate proof of ~ upgr0... |
| upgr1eopALT 29095 | Alternate proof of ~ upgr1... |
| upgrun 29096 | The union ` U ` of two pse... |
| upgrunop 29097 | The union of two pseudogra... |
| umgrun 29098 | The union ` U ` of two mul... |
| umgrunop 29099 | The union of two multigrap... |
| umgrislfupgrlem 29100 | Lemma for ~ umgrislfupgr a... |
| umgrislfupgr 29101 | A multigraph is a loop-fre... |
| lfgredgge2 29102 | An edge of a loop-free gra... |
| lfgrnloop 29103 | A loop-free graph has no l... |
| uhgredgiedgb 29104 | In a hypergraph, a set is ... |
| uhgriedg0edg0 29105 | A hypergraph has no edges ... |
| uhgredgn0 29106 | An edge of a hypergraph is... |
| edguhgr 29107 | An edge of a hypergraph is... |
| uhgredgrnv 29108 | An edge of a hypergraph co... |
| uhgredgss 29109 | The set of edges of a hype... |
| upgredgss 29110 | The set of edges of a pseu... |
| umgredgss 29111 | The set of edges of a mult... |
| edgupgr 29112 | Properties of an edge of a... |
| edgumgr 29113 | Properties of an edge of a... |
| uhgrvtxedgiedgb 29114 | In a hypergraph, a vertex ... |
| upgredg 29115 | For each edge in a pseudog... |
| umgredg 29116 | For each edge in a multigr... |
| upgrpredgv 29117 | An edge of a pseudograph a... |
| umgrpredgv 29118 | An edge of a multigraph al... |
| upgredg2vtx 29119 | For a vertex incident to a... |
| upgredgpr 29120 | If a proper pair (of verti... |
| edglnl 29121 | The edges incident with a ... |
| numedglnl 29122 | The number of edges incide... |
| umgredgne 29123 | An edge of a multigraph al... |
| umgrnloop2 29124 | A multigraph has no loops.... |
| umgredgnlp 29125 | An edge of a multigraph is... |
| isuspgr 29130 | The property of being a si... |
| isusgr 29131 | The property of being a si... |
| uspgrf 29132 | The edge function of a sim... |
| usgrf 29133 | The edge function of a sim... |
| isusgrs 29134 | The property of being a si... |
| usgrfs 29135 | The edge function of a sim... |
| usgrfun 29136 | The edge function of a sim... |
| usgredgss 29137 | The set of edges of a simp... |
| edgusgr 29138 | An edge of a simple graph ... |
| isuspgrop 29139 | The property of being an u... |
| isusgrop 29140 | The property of being an u... |
| usgrop 29141 | A simple graph represented... |
| isausgr 29142 | The property of an ordered... |
| ausgrusgrb 29143 | The equivalence of the def... |
| usgrausgri 29144 | A simple graph represented... |
| ausgrumgri 29145 | If an alternatively define... |
| ausgrusgri 29146 | The equivalence of the def... |
| usgrausgrb 29147 | The equivalence of the def... |
| usgredgop 29148 | An edge of a simple graph ... |
| usgrf1o 29149 | The edge function of a sim... |
| usgrf1 29150 | The edge function of a sim... |
| uspgrf1oedg 29151 | The edge function of a sim... |
| usgrss 29152 | An edge is a subset of ver... |
| uspgredgiedg 29153 | In a simple pseudograph, f... |
| uspgriedgedg 29154 | In a simple pseudograph, f... |
| uspgrushgr 29155 | A simple pseudograph is an... |
| uspgrupgr 29156 | A simple pseudograph is an... |
| uspgrupgrushgr 29157 | A graph is a simple pseudo... |
| usgruspgr 29158 | A simple graph is a simple... |
| usgrumgr 29159 | A simple graph is an undir... |
| usgrumgruspgr 29160 | A graph is a simple graph ... |
| usgruspgrb 29161 | A class is a simple graph ... |
| uspgruhgr 29162 | An undirected simple pseud... |
| usgrupgr 29163 | A simple graph is an undir... |
| usgruhgr 29164 | A simple graph is an undir... |
| usgrislfuspgr 29165 | A simple graph is a loop-f... |
| uspgrun 29166 | The union ` U ` of two sim... |
| uspgrunop 29167 | The union of two simple ps... |
| usgrun 29168 | The union ` U ` of two sim... |
| usgrunop 29169 | The union of two simple gr... |
| usgredg2 29170 | The value of the "edge fun... |
| usgredg2ALT 29171 | Alternate proof of ~ usgre... |
| usgredgprv 29172 | In a simple graph, an edge... |
| usgredgprvALT 29173 | Alternate proof of ~ usgre... |
| usgredgppr 29174 | An edge of a simple graph ... |
| usgrpredgv 29175 | An edge of a simple graph ... |
| edgssv2 29176 | An edge of a simple graph ... |
| usgredg 29177 | For each edge in a simple ... |
| usgrnloopv 29178 | In a simple graph, there i... |
| usgrnloopvALT 29179 | Alternate proof of ~ usgrn... |
| usgrnloop 29180 | In a simple graph, there i... |
| usgrnloopALT 29181 | Alternate proof of ~ usgrn... |
| usgrnloop0 29182 | A simple graph has no loop... |
| usgrnloop0ALT 29183 | Alternate proof of ~ usgrn... |
| usgredgne 29184 | An edge of a simple graph ... |
| usgrf1oedg 29185 | The edge function of a sim... |
| uhgr2edg 29186 | If a vertex is adjacent to... |
| umgr2edg 29187 | If a vertex is adjacent to... |
| usgr2edg 29188 | If a vertex is adjacent to... |
| umgr2edg1 29189 | If a vertex is adjacent to... |
| usgr2edg1 29190 | If a vertex is adjacent to... |
| umgrvad2edg 29191 | If a vertex is adjacent to... |
| umgr2edgneu 29192 | If a vertex is adjacent to... |
| usgrsizedg 29193 | In a simple graph, the siz... |
| usgredg3 29194 | The value of the "edge fun... |
| usgredg4 29195 | For a vertex incident to a... |
| usgredgreu 29196 | For a vertex incident to a... |
| usgredg2vtx 29197 | For a vertex incident to a... |
| uspgredg2vtxeu 29198 | For a vertex incident to a... |
| usgredg2vtxeu 29199 | For a vertex incident to a... |
| usgredg2vtxeuALT 29200 | Alternate proof of ~ usgre... |
| uspgredg2vlem 29201 | Lemma for ~ uspgredg2v . ... |
| uspgredg2v 29202 | In a simple pseudograph, t... |
| usgredg2vlem1 29203 | Lemma 1 for ~ usgredg2v . ... |
| usgredg2vlem2 29204 | Lemma 2 for ~ usgredg2v . ... |
| usgredg2v 29205 | In a simple graph, the map... |
| usgriedgleord 29206 | Alternate version of ~ usg... |
| ushgredgedg 29207 | In a simple hypergraph the... |
| usgredgedg 29208 | In a simple graph there is... |
| ushgredgedgloop 29209 | In a simple hypergraph the... |
| uspgredgleord 29210 | In a simple pseudograph th... |
| usgredgleord 29211 | In a simple graph the numb... |
| usgredgleordALT 29212 | Alternate proof for ~ usgr... |
| usgrstrrepe 29213 | Replacing (or adding) the ... |
| usgr0e 29214 | The empty graph, with vert... |
| usgr0vb 29215 | The null graph, with no ve... |
| uhgr0v0e 29216 | The null graph, with no ve... |
| uhgr0vsize0 29217 | The size of a hypergraph w... |
| uhgr0edgfi 29218 | A graph of order 0 (i.e. w... |
| usgr0v 29219 | The null graph, with no ve... |
| uhgr0vusgr 29220 | The null graph, with no ve... |
| usgr0 29221 | The null graph represented... |
| uspgr1e 29222 | A simple pseudograph with ... |
| usgr1e 29223 | A simple graph with one ed... |
| usgr0eop 29224 | The empty graph, with vert... |
| uspgr1eop 29225 | A simple pseudograph with ... |
| uspgr1ewop 29226 | A simple pseudograph with ... |
| uspgr1v1eop 29227 | A simple pseudograph with ... |
| usgr1eop 29228 | A simple graph with (at le... |
| uspgr2v1e2w 29229 | A simple pseudograph with ... |
| usgr2v1e2w 29230 | A simple graph with two ve... |
| edg0usgr 29231 | A class without edges is a... |
| lfuhgr1v0e 29232 | A loop-free hypergraph wit... |
| usgr1vr 29233 | A simple graph with one ve... |
| usgr1v 29234 | A class with one (or no) v... |
| usgr1v0edg 29235 | A class with one (or no) v... |
| usgrexmpldifpr 29236 | Lemma for ~ usgrexmpledg :... |
| usgrexmplef 29237 | Lemma for ~ usgrexmpl . (... |
| usgrexmpllem 29238 | Lemma for ~ usgrexmpl . (... |
| usgrexmplvtx 29239 | The vertices ` 0 , 1 , 2 ,... |
| usgrexmpledg 29240 | The edges ` { 0 , 1 } , { ... |
| usgrexmpl 29241 | ` G ` is a simple graph of... |
| griedg0prc 29242 | The class of empty graphs ... |
| griedg0ssusgr 29243 | The class of all simple gr... |
| usgrprc 29244 | The class of simple graphs... |
| relsubgr 29247 | The class of the subgraph ... |
| subgrv 29248 | If a class is a subgraph o... |
| issubgr 29249 | The property of a set to b... |
| issubgr2 29250 | The property of a set to b... |
| subgrprop 29251 | The properties of a subgra... |
| subgrprop2 29252 | The properties of a subgra... |
| uhgrissubgr 29253 | The property of a hypergra... |
| subgrprop3 29254 | The properties of a subgra... |
| egrsubgr 29255 | An empty graph consisting ... |
| 0grsubgr 29256 | The null graph (represente... |
| 0uhgrsubgr 29257 | The null graph (as hypergr... |
| uhgrsubgrself 29258 | A hypergraph is a subgraph... |
| subgrfun 29259 | The edge function of a sub... |
| subgruhgrfun 29260 | The edge function of a sub... |
| subgreldmiedg 29261 | An element of the domain o... |
| subgruhgredgd 29262 | An edge of a subgraph of a... |
| subumgredg2 29263 | An edge of a subgraph of a... |
| subuhgr 29264 | A subgraph of a hypergraph... |
| subupgr 29265 | A subgraph of a pseudograp... |
| subumgr 29266 | A subgraph of a multigraph... |
| subusgr 29267 | A subgraph of a simple gra... |
| uhgrspansubgrlem 29268 | Lemma for ~ uhgrspansubgr ... |
| uhgrspansubgr 29269 | A spanning subgraph ` S ` ... |
| uhgrspan 29270 | A spanning subgraph ` S ` ... |
| upgrspan 29271 | A spanning subgraph ` S ` ... |
| umgrspan 29272 | A spanning subgraph ` S ` ... |
| usgrspan 29273 | A spanning subgraph ` S ` ... |
| uhgrspanop 29274 | A spanning subgraph of a h... |
| upgrspanop 29275 | A spanning subgraph of a p... |
| umgrspanop 29276 | A spanning subgraph of a m... |
| usgrspanop 29277 | A spanning subgraph of a s... |
| uhgrspan1lem1 29278 | Lemma 1 for ~ uhgrspan1 . ... |
| uhgrspan1lem2 29279 | Lemma 2 for ~ uhgrspan1 . ... |
| uhgrspan1lem3 29280 | Lemma 3 for ~ uhgrspan1 . ... |
| uhgrspan1 29281 | The induced subgraph ` S `... |
| upgrreslem 29282 | Lemma for ~ upgrres . (Co... |
| umgrreslem 29283 | Lemma for ~ umgrres and ~ ... |
| upgrres 29284 | A subgraph obtained by rem... |
| umgrres 29285 | A subgraph obtained by rem... |
| usgrres 29286 | A subgraph obtained by rem... |
| upgrres1lem1 29287 | Lemma 1 for ~ upgrres1 . ... |
| umgrres1lem 29288 | Lemma for ~ umgrres1 . (C... |
| upgrres1lem2 29289 | Lemma 2 for ~ upgrres1 . ... |
| upgrres1lem3 29290 | Lemma 3 for ~ upgrres1 . ... |
| upgrres1 29291 | A pseudograph obtained by ... |
| umgrres1 29292 | A multigraph obtained by r... |
| usgrres1 29293 | Restricting a simple graph... |
| isfusgr 29296 | The property of being a fi... |
| fusgrvtxfi 29297 | A finite simple graph has ... |
| isfusgrf1 29298 | The property of being a fi... |
| isfusgrcl 29299 | The property of being a fi... |
| fusgrusgr 29300 | A finite simple graph is a... |
| opfusgr 29301 | A finite simple graph repr... |
| usgredgffibi 29302 | The number of edges in a s... |
| fusgredgfi 29303 | In a finite simple graph t... |
| usgr1v0e 29304 | The size of a (finite) sim... |
| usgrfilem 29305 | In a finite simple graph, ... |
| fusgrfisbase 29306 | Induction base for ~ fusgr... |
| fusgrfisstep 29307 | Induction step in ~ fusgrf... |
| fusgrfis 29308 | A finite simple graph is o... |
| fusgrfupgrfs 29309 | A finite simple graph is a... |
| nbgrprc0 29312 | The set of neighbors is em... |
| nbgrcl 29313 | If a class ` X ` has at le... |
| nbgrval 29314 | The set of neighbors of a ... |
| dfnbgr2 29315 | Alternate definition of th... |
| dfnbgr3 29316 | Alternate definition of th... |
| nbgrnvtx0 29317 | If a class ` X ` is not a ... |
| nbgrel 29318 | Characterization of a neig... |
| nbgrisvtx 29319 | Every neighbor ` N ` of a ... |
| nbgrssvtx 29320 | The neighbors of a vertex ... |
| nbuhgr 29321 | The set of neighbors of a ... |
| nbupgr 29322 | The set of neighbors of a ... |
| nbupgrel 29323 | A neighbor of a vertex in ... |
| nbumgrvtx 29324 | The set of neighbors of a ... |
| nbumgr 29325 | The set of neighbors of an... |
| nbusgrvtx 29326 | The set of neighbors of a ... |
| nbusgr 29327 | The set of neighbors of an... |
| nbgr2vtx1edg 29328 | If a graph has two vertice... |
| nbuhgr2vtx1edgblem 29329 | Lemma for ~ nbuhgr2vtx1edg... |
| nbuhgr2vtx1edgb 29330 | If a hypergraph has two ve... |
| nbusgreledg 29331 | A class/vertex is a neighb... |
| uhgrnbgr0nb 29332 | A vertex which is not endp... |
| nbgr0vtx 29333 | In a null graph (with no v... |
| nbgr0edglem 29334 | Lemma for ~ nbgr0edg and ~... |
| nbgr0edg 29335 | In an empty graph (with no... |
| nbgr1vtx 29336 | In a graph with one vertex... |
| nbgrnself 29337 | A vertex in a graph is not... |
| nbgrnself2 29338 | A class ` X ` is not a nei... |
| nbgrssovtx 29339 | The neighbors of a vertex ... |
| nbgrssvwo2 29340 | The neighbors of a vertex ... |
| nbgrsym 29341 | In a graph, the neighborho... |
| nbupgrres 29342 | The neighborhood of a vert... |
| usgrnbcnvfv 29343 | Applying the edge function... |
| nbusgredgeu 29344 | For each neighbor of a ver... |
| edgnbusgreu 29345 | For each edge incident to ... |
| nbusgredgeu0 29346 | For each neighbor of a ver... |
| nbusgrf1o0 29347 | The mapping of neighbors o... |
| nbusgrf1o1 29348 | The set of neighbors of a ... |
| nbusgrf1o 29349 | The set of neighbors of a ... |
| nbedgusgr 29350 | The number of neighbors of... |
| edgusgrnbfin 29351 | The number of neighbors of... |
| nbusgrfi 29352 | The class of neighbors of ... |
| nbfiusgrfi 29353 | The class of neighbors of ... |
| hashnbusgrnn0 29354 | The number of neighbors of... |
| nbfusgrlevtxm1 29355 | The number of neighbors of... |
| nbfusgrlevtxm2 29356 | If there is a vertex which... |
| nbusgrvtxm1 29357 | If the number of neighbors... |
| nb3grprlem1 29358 | Lemma 1 for ~ nb3grpr . (... |
| nb3grprlem2 29359 | Lemma 2 for ~ nb3grpr . (... |
| nb3grpr 29360 | The neighbors of a vertex ... |
| nb3grpr2 29361 | The neighbors of a vertex ... |
| nb3gr2nb 29362 | If the neighbors of two ve... |
| uvtxval 29365 | The set of all universal v... |
| uvtxel 29366 | A universal vertex, i.e. a... |
| uvtxisvtx 29367 | A universal vertex is a ve... |
| uvtxssvtx 29368 | The set of the universal v... |
| vtxnbuvtx 29369 | A universal vertex has all... |
| uvtxnbgrss 29370 | A universal vertex has all... |
| uvtxnbgrvtx 29371 | A universal vertex is neig... |
| uvtx0 29372 | There is no universal vert... |
| isuvtx 29373 | The set of all universal v... |
| uvtxel1 29374 | Characterization of a univ... |
| uvtx01vtx 29375 | If a graph/class has no ed... |
| uvtx2vtx1edg 29376 | If a graph has two vertice... |
| uvtx2vtx1edgb 29377 | If a hypergraph has two ve... |
| uvtxnbgr 29378 | A universal vertex has all... |
| uvtxnbgrb 29379 | A vertex is universal iff ... |
| uvtxusgr 29380 | The set of all universal v... |
| uvtxusgrel 29381 | A universal vertex, i.e. a... |
| uvtxnm1nbgr 29382 | A universal vertex has ` n... |
| nbusgrvtxm1uvtx 29383 | If the number of neighbors... |
| uvtxnbvtxm1 29384 | A universal vertex has ` n... |
| nbupgruvtxres 29385 | The neighborhood of a univ... |
| uvtxupgrres 29386 | A universal vertex is univ... |
| cplgruvtxb 29391 | A graph ` G ` is complete ... |
| prcliscplgr 29392 | A proper class (representi... |
| iscplgr 29393 | The property of being a co... |
| iscplgrnb 29394 | A graph is complete iff al... |
| iscplgredg 29395 | A graph ` G ` is complete ... |
| iscusgr 29396 | The property of being a co... |
| cusgrusgr 29397 | A complete simple graph is... |
| cusgrcplgr 29398 | A complete simple graph is... |
| iscusgrvtx 29399 | A simple graph is complete... |
| cusgruvtxb 29400 | A simple graph is complete... |
| iscusgredg 29401 | A simple graph is complete... |
| cusgredg 29402 | In a complete simple graph... |
| cplgr0 29403 | The null graph (with no ve... |
| cusgr0 29404 | The null graph (with no ve... |
| cplgr0v 29405 | A null graph (with no vert... |
| cusgr0v 29406 | A graph with no vertices a... |
| cplgr1vlem 29407 | Lemma for ~ cplgr1v and ~ ... |
| cplgr1v 29408 | A graph with one vertex is... |
| cusgr1v 29409 | A graph with one vertex an... |
| cplgr2v 29410 | An undirected hypergraph w... |
| cplgr2vpr 29411 | An undirected hypergraph w... |
| nbcplgr 29412 | In a complete graph, each ... |
| cplgr3v 29413 | A pseudograph with three (... |
| cusgr3vnbpr 29414 | The neighbors of a vertex ... |
| cplgrop 29415 | A complete graph represent... |
| cusgrop 29416 | A complete simple graph re... |
| cusgrexilem1 29417 | Lemma 1 for ~ cusgrexi . ... |
| usgrexilem 29418 | Lemma for ~ usgrexi . (Co... |
| usgrexi 29419 | An arbitrary set regarded ... |
| cusgrexilem2 29420 | Lemma 2 for ~ cusgrexi . ... |
| cusgrexi 29421 | An arbitrary set ` V ` reg... |
| cusgrexg 29422 | For each set there is a se... |
| structtousgr 29423 | Any (extensible) structure... |
| structtocusgr 29424 | Any (extensible) structure... |
| cffldtocusgr 29425 | The field of complex numbe... |
| cffldtocusgrOLD 29426 | Obsolete version of ~ cffl... |
| cusgrres 29427 | Restricting a complete sim... |
| cusgrsizeindb0 29428 | Base case of the induction... |
| cusgrsizeindb1 29429 | Base case of the induction... |
| cusgrsizeindslem 29430 | Lemma for ~ cusgrsizeinds ... |
| cusgrsizeinds 29431 | Part 1 of induction step i... |
| cusgrsize2inds 29432 | Induction step in ~ cusgrs... |
| cusgrsize 29433 | The size of a finite compl... |
| cusgrfilem1 29434 | Lemma 1 for ~ cusgrfi . (... |
| cusgrfilem2 29435 | Lemma 2 for ~ cusgrfi . (... |
| cusgrfilem3 29436 | Lemma 3 for ~ cusgrfi . (... |
| cusgrfi 29437 | If the size of a complete ... |
| usgredgsscusgredg 29438 | A simple graph is a subgra... |
| usgrsscusgr 29439 | A simple graph is a subgra... |
| sizusglecusglem1 29440 | Lemma 1 for ~ sizusglecusg... |
| sizusglecusglem2 29441 | Lemma 2 for ~ sizusglecusg... |
| sizusglecusg 29442 | The size of a simple graph... |
| fusgrmaxsize 29443 | The maximum size of a fini... |
| vtxdgfval 29446 | The value of the vertex de... |
| vtxdgval 29447 | The degree of a vertex. (... |
| vtxdgfival 29448 | The degree of a vertex for... |
| vtxdgop 29449 | The vertex degree expresse... |
| vtxdgf 29450 | The vertex degree function... |
| vtxdgelxnn0 29451 | The degree of a vertex is ... |
| vtxdg0v 29452 | The degree of a vertex in ... |
| vtxdg0e 29453 | The degree of a vertex in ... |
| vtxdgfisnn0 29454 | The degree of a vertex in ... |
| vtxdgfisf 29455 | The vertex degree function... |
| vtxdeqd 29456 | Equality theorem for the v... |
| vtxduhgr0e 29457 | The degree of a vertex in ... |
| vtxdlfuhgr1v 29458 | The degree of the vertex i... |
| vdumgr0 29459 | A vertex in a multigraph h... |
| vtxdun 29460 | The degree of a vertex in ... |
| vtxdfiun 29461 | The degree of a vertex in ... |
| vtxduhgrun 29462 | The degree of a vertex in ... |
| vtxduhgrfiun 29463 | The degree of a vertex in ... |
| vtxdlfgrval 29464 | The value of the vertex de... |
| vtxdumgrval 29465 | The value of the vertex de... |
| vtxdusgrval 29466 | The value of the vertex de... |
| vtxd0nedgb 29467 | A vertex has degree 0 iff ... |
| vtxdushgrfvedglem 29468 | Lemma for ~ vtxdushgrfvedg... |
| vtxdushgrfvedg 29469 | The value of the vertex de... |
| vtxdusgrfvedg 29470 | The value of the vertex de... |
| vtxduhgr0nedg 29471 | If a vertex in a hypergrap... |
| vtxdumgr0nedg 29472 | If a vertex in a multigrap... |
| vtxduhgr0edgnel 29473 | A vertex in a hypergraph h... |
| vtxdusgr0edgnel 29474 | A vertex in a simple graph... |
| vtxdusgr0edgnelALT 29475 | Alternate proof of ~ vtxdu... |
| vtxdgfusgrf 29476 | The vertex degree function... |
| vtxdgfusgr 29477 | In a finite simple graph, ... |
| fusgrn0degnn0 29478 | In a nonempty, finite grap... |
| 1loopgruspgr 29479 | A graph with one edge whic... |
| 1loopgredg 29480 | The set of edges in a grap... |
| 1loopgrnb0 29481 | In a graph (simple pseudog... |
| 1loopgrvd2 29482 | The vertex degree of a one... |
| 1loopgrvd0 29483 | The vertex degree of a one... |
| 1hevtxdg0 29484 | The vertex degree of verte... |
| 1hevtxdg1 29485 | The vertex degree of verte... |
| 1hegrvtxdg1 29486 | The vertex degree of a gra... |
| 1hegrvtxdg1r 29487 | The vertex degree of a gra... |
| 1egrvtxdg1 29488 | The vertex degree of a one... |
| 1egrvtxdg1r 29489 | The vertex degree of a one... |
| 1egrvtxdg0 29490 | The vertex degree of a one... |
| p1evtxdeqlem 29491 | Lemma for ~ p1evtxdeq and ... |
| p1evtxdeq 29492 | If an edge ` E ` which doe... |
| p1evtxdp1 29493 | If an edge ` E ` (not bein... |
| uspgrloopvtx 29494 | The set of vertices in a g... |
| uspgrloopvtxel 29495 | A vertex in a graph (simpl... |
| uspgrloopiedg 29496 | The set of edges in a grap... |
| uspgrloopedg 29497 | The set of edges in a grap... |
| uspgrloopnb0 29498 | In a graph (simple pseudog... |
| uspgrloopvd2 29499 | The vertex degree of a one... |
| umgr2v2evtx 29500 | The set of vertices in a m... |
| umgr2v2evtxel 29501 | A vertex in a multigraph w... |
| umgr2v2eiedg 29502 | The edge function in a mul... |
| umgr2v2eedg 29503 | The set of edges in a mult... |
| umgr2v2e 29504 | A multigraph with two edge... |
| umgr2v2enb1 29505 | In a multigraph with two e... |
| umgr2v2evd2 29506 | In a multigraph with two e... |
| hashnbusgrvd 29507 | In a simple graph, the num... |
| usgruvtxvdb 29508 | In a finite simple graph w... |
| vdiscusgrb 29509 | A finite simple graph with... |
| vdiscusgr 29510 | In a finite complete simpl... |
| vtxdusgradjvtx 29511 | The degree of a vertex in ... |
| usgrvd0nedg 29512 | If a vertex in a simple gr... |
| uhgrvd00 29513 | If every vertex in a hyper... |
| usgrvd00 29514 | If every vertex in a simpl... |
| vdegp1ai 29515 | The induction step for a v... |
| vdegp1bi 29516 | The induction step for a v... |
| vdegp1ci 29517 | The induction step for a v... |
| vtxdginducedm1lem1 29518 | Lemma 1 for ~ vtxdginduced... |
| vtxdginducedm1lem2 29519 | Lemma 2 for ~ vtxdginduced... |
| vtxdginducedm1lem3 29520 | Lemma 3 for ~ vtxdginduced... |
| vtxdginducedm1lem4 29521 | Lemma 4 for ~ vtxdginduced... |
| vtxdginducedm1 29522 | The degree of a vertex ` v... |
| vtxdginducedm1fi 29523 | The degree of a vertex ` v... |
| finsumvtxdg2ssteplem1 29524 | Lemma for ~ finsumvtxdg2ss... |
| finsumvtxdg2ssteplem2 29525 | Lemma for ~ finsumvtxdg2ss... |
| finsumvtxdg2ssteplem3 29526 | Lemma for ~ finsumvtxdg2ss... |
| finsumvtxdg2ssteplem4 29527 | Lemma for ~ finsumvtxdg2ss... |
| finsumvtxdg2sstep 29528 | Induction step of ~ finsum... |
| finsumvtxdg2size 29529 | The sum of the degrees of ... |
| fusgr1th 29530 | The sum of the degrees of ... |
| finsumvtxdgeven 29531 | The sum of the degrees of ... |
| vtxdgoddnumeven 29532 | The number of vertices of ... |
| fusgrvtxdgonume 29533 | The number of vertices of ... |
| isrgr 29538 | The property of a class be... |
| rgrprop 29539 | The properties of a k-regu... |
| isrusgr 29540 | The property of being a k-... |
| rusgrprop 29541 | The properties of a k-regu... |
| rusgrrgr 29542 | A k-regular simple graph i... |
| rusgrusgr 29543 | A k-regular simple graph i... |
| finrusgrfusgr 29544 | A finite regular simple gr... |
| isrusgr0 29545 | The property of being a k-... |
| rusgrprop0 29546 | The properties of a k-regu... |
| usgreqdrusgr 29547 | If all vertices in a simpl... |
| fusgrregdegfi 29548 | In a nonempty finite simpl... |
| fusgrn0eqdrusgr 29549 | If all vertices in a nonem... |
| frusgrnn0 29550 | In a nonempty finite k-reg... |
| 0edg0rgr 29551 | A graph is 0-regular if it... |
| uhgr0edg0rgr 29552 | A hypergraph is 0-regular ... |
| uhgr0edg0rgrb 29553 | A hypergraph is 0-regular ... |
| usgr0edg0rusgr 29554 | A simple graph is 0-regula... |
| 0vtxrgr 29555 | A null graph (with no vert... |
| 0vtxrusgr 29556 | A graph with no vertices a... |
| 0uhgrrusgr 29557 | The null graph as hypergra... |
| 0grrusgr 29558 | The null graph represented... |
| 0grrgr 29559 | The null graph represented... |
| cusgrrusgr 29560 | A complete simple graph wi... |
| cusgrm1rusgr 29561 | A finite simple graph with... |
| rusgrpropnb 29562 | The properties of a k-regu... |
| rusgrpropedg 29563 | The properties of a k-regu... |
| rusgrpropadjvtx 29564 | The properties of a k-regu... |
| rusgrnumwrdl2 29565 | In a k-regular simple grap... |
| rusgr1vtxlem 29566 | Lemma for ~ rusgr1vtx . (... |
| rusgr1vtx 29567 | If a k-regular simple grap... |
| rgrusgrprc 29568 | The class of 0-regular sim... |
| rusgrprc 29569 | The class of 0-regular sim... |
| rgrprc 29570 | The class of 0-regular gra... |
| rgrprcx 29571 | The class of 0-regular gra... |
| rgrx0ndm 29572 | 0 is not in the domain of ... |
| rgrx0nd 29573 | The potentially alternativ... |
| ewlksfval 29580 | The set of s-walks of edge... |
| isewlk 29581 | Conditions for a function ... |
| ewlkprop 29582 | Properties of an s-walk of... |
| ewlkinedg 29583 | The intersection (common v... |
| ewlkle 29584 | An s-walk of edges is also... |
| upgrewlkle2 29585 | In a pseudograph, there is... |
| wkslem1 29586 | Lemma 1 for walks to subst... |
| wkslem2 29587 | Lemma 2 for walks to subst... |
| wksfval 29588 | The set of walks (in an un... |
| iswlk 29589 | Properties of a pair of fu... |
| wlkprop 29590 | Properties of a walk. (Co... |
| wlkv 29591 | The classes involved in a ... |
| iswlkg 29592 | Generalization of ~ iswlk ... |
| wlkf 29593 | The mapping enumerating th... |
| wlkcl 29594 | A walk has length ` # ( F ... |
| wlkp 29595 | The mapping enumerating th... |
| wlkpwrd 29596 | The sequence of vertices o... |
| wlklenvp1 29597 | The number of vertices of ... |
| wksv 29598 | The class of walks is a se... |
| wlkn0 29599 | The sequence of vertices o... |
| wlklenvm1 29600 | The number of edges of a w... |
| ifpsnprss 29601 | Lemma for ~ wlkvtxeledg : ... |
| wlkvtxeledg 29602 | Each pair of adjacent vert... |
| wlkvtxiedg 29603 | The vertices of a walk are... |
| relwlk 29604 | The set ` ( Walks `` G ) `... |
| wlkvv 29605 | If there is at least one w... |
| wlkop 29606 | A walk is an ordered pair.... |
| wlkcpr 29607 | A walk as class with two c... |
| wlk2f 29608 | If there is a walk ` W ` t... |
| wlkcomp 29609 | A walk expressed by proper... |
| wlkcompim 29610 | Implications for the prope... |
| wlkelwrd 29611 | The components of a walk a... |
| wlkeq 29612 | Conditions for two walks (... |
| edginwlk 29613 | The value of the edge func... |
| upgredginwlk 29614 | The value of the edge func... |
| iedginwlk 29615 | The value of the edge func... |
| wlkl1loop 29616 | A walk of length 1 from a ... |
| wlk1walk 29617 | A walk is a 1-walk "on the... |
| wlk1ewlk 29618 | A walk is an s-walk "on th... |
| upgriswlk 29619 | Properties of a pair of fu... |
| upgrwlkedg 29620 | The edges of a walk in a p... |
| upgrwlkcompim 29621 | Implications for the prope... |
| wlkvtxedg 29622 | The vertices of a walk are... |
| upgrwlkvtxedg 29623 | The pairs of connected ver... |
| uspgr2wlkeq 29624 | Conditions for two walks w... |
| uspgr2wlkeq2 29625 | Conditions for two walks w... |
| uspgr2wlkeqi 29626 | Conditions for two walks w... |
| umgrwlknloop 29627 | In a multigraph, each walk... |
| wlkv0 29628 | If there is a walk in the ... |
| g0wlk0 29629 | There is no walk in a null... |
| 0wlk0 29630 | There is no walk for the e... |
| wlk0prc 29631 | There is no walk in a null... |
| wlklenvclwlk 29632 | The number of vertices in ... |
| wlkson 29633 | The set of walks between t... |
| iswlkon 29634 | Properties of a pair of fu... |
| wlkonprop 29635 | Properties of a walk betwe... |
| wlkpvtx 29636 | A walk connects vertices. ... |
| wlkepvtx 29637 | The endpoints of a walk ar... |
| wlkoniswlk 29638 | A walk between two vertice... |
| wlkonwlk 29639 | A walk is a walk between i... |
| wlkonwlk1l 29640 | A walk is a walk from its ... |
| wlksoneq1eq2 29641 | Two walks with identical s... |
| wlkonl1iedg 29642 | If there is a walk between... |
| wlkon2n0 29643 | The length of a walk betwe... |
| 2wlklem 29644 | Lemma for theorems for wal... |
| upgr2wlk 29645 | Properties of a pair of fu... |
| wlkreslem 29646 | Lemma for ~ wlkres . (Con... |
| wlkres 29647 | The restriction ` <. H , Q... |
| redwlklem 29648 | Lemma for ~ redwlk . (Con... |
| redwlk 29649 | A walk ending at the last ... |
| wlkp1lem1 29650 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1lem2 29651 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1lem3 29652 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1lem4 29653 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1lem5 29654 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1lem6 29655 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1lem7 29656 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1lem8 29657 | Lemma for ~ wlkp1 . (Cont... |
| wlkp1 29658 | Append one path segment (e... |
| wlkdlem1 29659 | Lemma 1 for ~ wlkd . (Con... |
| wlkdlem2 29660 | Lemma 2 for ~ wlkd . (Con... |
| wlkdlem3 29661 | Lemma 3 for ~ wlkd . (Con... |
| wlkdlem4 29662 | Lemma 4 for ~ wlkd . (Con... |
| wlkd 29663 | Two words representing a w... |
| lfgrwlkprop 29664 | Two adjacent vertices in a... |
| lfgriswlk 29665 | Conditions for a pair of f... |
| lfgrwlknloop 29666 | In a loop-free graph, each... |
| reltrls 29671 | The set ` ( Trails `` G ) ... |
| trlsfval 29672 | The set of trails (in an u... |
| istrl 29673 | Conditions for a pair of c... |
| trliswlk 29674 | A trail is a walk. (Contr... |
| trlf1 29675 | The enumeration ` F ` of a... |
| trlreslem 29676 | Lemma for ~ trlres . Form... |
| trlres 29677 | The restriction ` <. H , Q... |
| upgrtrls 29678 | The set of trails in a pse... |
| upgristrl 29679 | Properties of a pair of fu... |
| upgrf1istrl 29680 | Properties of a pair of a ... |
| wksonproplem 29681 | Lemma for theorems for pro... |
| trlsonfval 29682 | The set of trails between ... |
| istrlson 29683 | Properties of a pair of fu... |
| trlsonprop 29684 | Properties of a trail betw... |
| trlsonistrl 29685 | A trail between two vertic... |
| trlsonwlkon 29686 | A trail between two vertic... |
| trlontrl 29687 | A trail is a trail between... |
| relpths 29696 | The set ` ( Paths `` G ) `... |
| pthsfval 29697 | The set of paths (in an un... |
| spthsfval 29698 | The set of simple paths (i... |
| ispth 29699 | Conditions for a pair of c... |
| isspth 29700 | Conditions for a pair of c... |
| pthistrl 29701 | A path is a trail (in an u... |
| spthispth 29702 | A simple path is a path (i... |
| pthiswlk 29703 | A path is a walk (in an un... |
| spthiswlk 29704 | A simple path is a walk (i... |
| pthdivtx 29705 | The inner vertices of a pa... |
| pthdadjvtx 29706 | The adjacent vertices of a... |
| dfpth2 29707 | Alternate definition for a... |
| pthdifv 29708 | The vertices of a path are... |
| 2pthnloop 29709 | A path of length at least ... |
| upgr2pthnlp 29710 | A path of length at least ... |
| spthdifv 29711 | The vertices of a simple p... |
| spthdep 29712 | A simple path (at least of... |
| pthdepisspth 29713 | A path with different star... |
| upgrwlkdvdelem 29714 | Lemma for ~ upgrwlkdvde . ... |
| upgrwlkdvde 29715 | In a pseudograph, all edge... |
| upgrspthswlk 29716 | The set of simple paths in... |
| upgrwlkdvspth 29717 | A walk consisting of diffe... |
| pthsonfval 29718 | The set of paths between t... |
| spthson 29719 | The set of simple paths be... |
| ispthson 29720 | Properties of a pair of fu... |
| isspthson 29721 | Properties of a pair of fu... |
| pthsonprop 29722 | Properties of a path betwe... |
| spthonprop 29723 | Properties of a simple pat... |
| pthonispth 29724 | A path between two vertice... |
| pthontrlon 29725 | A path between two vertice... |
| pthonpth 29726 | A path is a path between i... |
| isspthonpth 29727 | A pair of functions is a s... |
| spthonisspth 29728 | A simple path between to v... |
| spthonpthon 29729 | A simple path between two ... |
| spthonepeq 29730 | The endpoints of a simple ... |
| uhgrwkspthlem1 29731 | Lemma 1 for ~ uhgrwkspth .... |
| uhgrwkspthlem2 29732 | Lemma 2 for ~ uhgrwkspth .... |
| uhgrwkspth 29733 | Any walk of length 1 betwe... |
| usgr2wlkneq 29734 | The vertices and edges are... |
| usgr2wlkspthlem1 29735 | Lemma 1 for ~ usgr2wlkspth... |
| usgr2wlkspthlem2 29736 | Lemma 2 for ~ usgr2wlkspth... |
| usgr2wlkspth 29737 | In a simple graph, any wal... |
| usgr2trlncl 29738 | In a simple graph, any tra... |
| usgr2trlspth 29739 | In a simple graph, any tra... |
| usgr2pthspth 29740 | In a simple graph, any pat... |
| usgr2pthlem 29741 | Lemma for ~ usgr2pth . (C... |
| usgr2pth 29742 | In a simple graph, there i... |
| usgr2pth0 29743 | In a simply graph, there i... |
| pthdlem1 29744 | Lemma 1 for ~ pthd . (Con... |
| pthdlem2lem 29745 | Lemma for ~ pthdlem2 . (C... |
| pthdlem2 29746 | Lemma 2 for ~ pthd . (Con... |
| pthd 29747 | Two words representing a t... |
| clwlks 29750 | The set of closed walks (i... |
| isclwlk 29751 | A pair of functions repres... |
| clwlkiswlk 29752 | A closed walk is a walk (i... |
| clwlkwlk 29753 | Closed walks are walks (in... |
| clwlkswks 29754 | Closed walks are walks (in... |
| isclwlke 29755 | Properties of a pair of fu... |
| isclwlkupgr 29756 | Properties of a pair of fu... |
| clwlkcomp 29757 | A closed walk expressed by... |
| clwlkcompim 29758 | Implications for the prope... |
| upgrclwlkcompim 29759 | Implications for the prope... |
| clwlkcompbp 29760 | Basic properties of the co... |
| clwlkl1loop 29761 | A closed walk of length 1 ... |
| crcts 29766 | The set of circuits (in an... |
| cycls 29767 | The set of cycles (in an u... |
| iscrct 29768 | Sufficient and necessary c... |
| iscycl 29769 | Sufficient and necessary c... |
| crctprop 29770 | The properties of a circui... |
| cyclprop 29771 | The properties of a cycle:... |
| crctisclwlk 29772 | A circuit is a closed walk... |
| crctistrl 29773 | A circuit is a trail. (Co... |
| crctiswlk 29774 | A circuit is a walk. (Con... |
| cyclispth 29775 | A cycle is a path. (Contr... |
| cycliswlk 29776 | A cycle is a walk. (Contr... |
| cycliscrct 29777 | A cycle is a circuit. (Co... |
| cyclnumvtx 29778 | The number of vertices of ... |
| cyclnspth 29779 | A (non-trivial) cycle is n... |
| pthisspthorcycl 29780 | A path is either a simple ... |
| pthspthcyc 29781 | A pair ` <. F , P >. ` rep... |
| cyclispthon 29782 | A cycle is a path starting... |
| lfgrn1cycl 29783 | In a loop-free graph there... |
| usgr2trlncrct 29784 | In a simple graph, any tra... |
| umgrn1cycl 29785 | In a multigraph graph (wit... |
| uspgrn2crct 29786 | In a simple pseudograph th... |
| usgrn2cycl 29787 | In a simple graph there ar... |
| crctcshwlkn0lem1 29788 | Lemma for ~ crctcshwlkn0 .... |
| crctcshwlkn0lem2 29789 | Lemma for ~ crctcshwlkn0 .... |
| crctcshwlkn0lem3 29790 | Lemma for ~ crctcshwlkn0 .... |
| crctcshwlkn0lem4 29791 | Lemma for ~ crctcshwlkn0 .... |
| crctcshwlkn0lem5 29792 | Lemma for ~ crctcshwlkn0 .... |
| crctcshwlkn0lem6 29793 | Lemma for ~ crctcshwlkn0 .... |
| crctcshwlkn0lem7 29794 | Lemma for ~ crctcshwlkn0 .... |
| crctcshlem1 29795 | Lemma for ~ crctcsh . (Co... |
| crctcshlem2 29796 | Lemma for ~ crctcsh . (Co... |
| crctcshlem3 29797 | Lemma for ~ crctcsh . (Co... |
| crctcshlem4 29798 | Lemma for ~ crctcsh . (Co... |
| crctcshwlkn0 29799 | Cyclically shifting the in... |
| crctcshwlk 29800 | Cyclically shifting the in... |
| crctcshtrl 29801 | Cyclically shifting the in... |
| crctcsh 29802 | Cyclically shifting the in... |
| wwlks 29813 | The set of walks (in an un... |
| iswwlks 29814 | A word over the set of ver... |
| wwlksn 29815 | The set of walks (in an un... |
| iswwlksn 29816 | A word over the set of ver... |
| wwlksnprcl 29817 | Derivation of the length o... |
| iswwlksnx 29818 | Properties of a word to re... |
| wwlkbp 29819 | Basic properties of a walk... |
| wwlknbp 29820 | Basic properties of a walk... |
| wwlknp 29821 | Properties of a set being ... |
| wwlknbp1 29822 | Other basic properties of ... |
| wwlknvtx 29823 | The symbols of a word ` W ... |
| wwlknllvtx 29824 | If a word ` W ` represents... |
| wwlknlsw 29825 | If a word represents a wal... |
| wspthsn 29826 | The set of simple paths of... |
| iswspthn 29827 | An element of the set of s... |
| wspthnp 29828 | Properties of a set being ... |
| wwlksnon 29829 | The set of walks of a fixe... |
| wspthsnon 29830 | The set of simple paths of... |
| iswwlksnon 29831 | The set of walks of a fixe... |
| wwlksnon0 29832 | Sufficient conditions for ... |
| wwlksonvtx 29833 | If a word ` W ` represents... |
| iswspthsnon 29834 | The set of simple paths of... |
| wwlknon 29835 | An element of the set of w... |
| wspthnon 29836 | An element of the set of s... |
| wspthnonp 29837 | Properties of a set being ... |
| wspthneq1eq2 29838 | Two simple paths with iden... |
| wwlksn0s 29839 | The set of all walks as wo... |
| wwlkssswrd 29840 | Walks (represented by word... |
| wwlksn0 29841 | A walk of length 0 is repr... |
| 0enwwlksnge1 29842 | In graphs without edges, t... |
| wwlkswwlksn 29843 | A walk of a fixed length a... |
| wwlkssswwlksn 29844 | The walks of a fixed lengt... |
| wlkiswwlks1 29845 | The sequence of vertices i... |
| wlklnwwlkln1 29846 | The sequence of vertices i... |
| wlkiswwlks2lem1 29847 | Lemma 1 for ~ wlkiswwlks2 ... |
| wlkiswwlks2lem2 29848 | Lemma 2 for ~ wlkiswwlks2 ... |
| wlkiswwlks2lem3 29849 | Lemma 3 for ~ wlkiswwlks2 ... |
| wlkiswwlks2lem4 29850 | Lemma 4 for ~ wlkiswwlks2 ... |
| wlkiswwlks2lem5 29851 | Lemma 5 for ~ wlkiswwlks2 ... |
| wlkiswwlks2lem6 29852 | Lemma 6 for ~ wlkiswwlks2 ... |
| wlkiswwlks2 29853 | A walk as word corresponds... |
| wlkiswwlks 29854 | A walk as word corresponds... |
| wlkiswwlksupgr2 29855 | A walk as word corresponds... |
| wlkiswwlkupgr 29856 | A walk as word corresponds... |
| wlkswwlksf1o 29857 | The mapping of (ordinary) ... |
| wlkswwlksen 29858 | The set of walks as words ... |
| wwlksm1edg 29859 | Removing the trailing edge... |
| wlklnwwlkln2lem 29860 | Lemma for ~ wlklnwwlkln2 a... |
| wlklnwwlkln2 29861 | A walk of length ` N ` as ... |
| wlklnwwlkn 29862 | A walk of length ` N ` as ... |
| wlklnwwlklnupgr2 29863 | A walk of length ` N ` as ... |
| wlklnwwlknupgr 29864 | A walk of length ` N ` as ... |
| wlknewwlksn 29865 | If a walk in a pseudograph... |
| wlknwwlksnbij 29866 | The mapping ` ( t e. T |->... |
| wlknwwlksnen 29867 | In a simple pseudograph, t... |
| wlknwwlksneqs 29868 | The set of walks of a fixe... |
| wwlkseq 29869 | Equality of two walks (as ... |
| wwlksnred 29870 | Reduction of a walk (as wo... |
| wwlksnext 29871 | Extension of a walk (as wo... |
| wwlksnextbi 29872 | Extension of a walk (as wo... |
| wwlksnredwwlkn 29873 | For each walk (as word) of... |
| wwlksnredwwlkn0 29874 | For each walk (as word) of... |
| wwlksnextwrd 29875 | Lemma for ~ wwlksnextbij .... |
| wwlksnextfun 29876 | Lemma for ~ wwlksnextbij .... |
| wwlksnextinj 29877 | Lemma for ~ wwlksnextbij .... |
| wwlksnextsurj 29878 | Lemma for ~ wwlksnextbij .... |
| wwlksnextbij0 29879 | Lemma for ~ wwlksnextbij .... |
| wwlksnextbij 29880 | There is a bijection betwe... |
| wwlksnexthasheq 29881 | The number of the extensio... |
| disjxwwlksn 29882 | Sets of walks (as words) e... |
| wwlksnndef 29883 | Conditions for ` WWalksN `... |
| wwlksnfi 29884 | The number of walks repres... |
| wlksnfi 29885 | The number of walks of fix... |
| wlksnwwlknvbij 29886 | There is a bijection betwe... |
| wwlksnextproplem1 29887 | Lemma 1 for ~ wwlksnextpro... |
| wwlksnextproplem2 29888 | Lemma 2 for ~ wwlksnextpro... |
| wwlksnextproplem3 29889 | Lemma 3 for ~ wwlksnextpro... |
| wwlksnextprop 29890 | Adding additional properti... |
| disjxwwlkn 29891 | Sets of walks (as words) e... |
| hashwwlksnext 29892 | Number of walks (as words)... |
| wwlksnwwlksnon 29893 | A walk of fixed length is ... |
| wspthsnwspthsnon 29894 | A simple path of fixed len... |
| wspthsnonn0vne 29895 | If the set of simple paths... |
| wspthsswwlkn 29896 | The set of simple paths of... |
| wspthnfi 29897 | In a finite graph, the set... |
| wwlksnonfi 29898 | In a finite graph, the set... |
| wspthsswwlknon 29899 | The set of simple paths of... |
| wspthnonfi 29900 | In a finite graph, the set... |
| wspniunwspnon 29901 | The set of nonempty simple... |
| wspn0 29902 | If there are no vertices, ... |
| 2wlkdlem1 29903 | Lemma 1 for ~ 2wlkd . (Co... |
| 2wlkdlem2 29904 | Lemma 2 for ~ 2wlkd . (Co... |
| 2wlkdlem3 29905 | Lemma 3 for ~ 2wlkd . (Co... |
| 2wlkdlem4 29906 | Lemma 4 for ~ 2wlkd . (Co... |
| 2wlkdlem5 29907 | Lemma 5 for ~ 2wlkd . (Co... |
| 2pthdlem1 29908 | Lemma 1 for ~ 2pthd . (Co... |
| 2wlkdlem6 29909 | Lemma 6 for ~ 2wlkd . (Co... |
| 2wlkdlem7 29910 | Lemma 7 for ~ 2wlkd . (Co... |
| 2wlkdlem8 29911 | Lemma 8 for ~ 2wlkd . (Co... |
| 2wlkdlem9 29912 | Lemma 9 for ~ 2wlkd . (Co... |
| 2wlkdlem10 29913 | Lemma 10 for ~ 3wlkd . (C... |
| 2wlkd 29914 | Construction of a walk fro... |
| 2wlkond 29915 | A walk of length 2 from on... |
| 2trld 29916 | Construction of a trail fr... |
| 2trlond 29917 | A trail of length 2 from o... |
| 2pthd 29918 | A path of length 2 from on... |
| 2spthd 29919 | A simple path of length 2 ... |
| 2pthond 29920 | A simple path of length 2 ... |
| 2pthon3v 29921 | For a vertex adjacent to t... |
| umgr2adedgwlklem 29922 | Lemma for ~ umgr2adedgwlk ... |
| umgr2adedgwlk 29923 | In a multigraph, two adjac... |
| umgr2adedgwlkon 29924 | In a multigraph, two adjac... |
| umgr2adedgwlkonALT 29925 | Alternate proof for ~ umgr... |
| umgr2adedgspth 29926 | In a multigraph, two adjac... |
| umgr2wlk 29927 | In a multigraph, there is ... |
| umgr2wlkon 29928 | For each pair of adjacent ... |
| elwwlks2s3 29929 | A walk of length 2 as word... |
| midwwlks2s3 29930 | There is a vertex between ... |
| wwlks2onv 29931 | If a length 3 string repre... |
| elwwlks2ons3im 29932 | A walk as word of length 2... |
| elwwlks2ons3 29933 | For each walk of length 2 ... |
| s3wwlks2on 29934 | A length 3 string which re... |
| sps3wwlks2on 29935 | A length 3 string which re... |
| usgrwwlks2on 29936 | A walk of length 2 between... |
| umgrwwlks2on 29937 | A walk of length 2 between... |
| wwlks2onsym 29938 | There is a walk of length ... |
| elwwlks2on 29939 | A walk of length 2 between... |
| elwspths2on 29940 | A simple path of length 2 ... |
| elwspths2onw 29941 | A simple path of length 2 ... |
| wpthswwlks2on 29942 | For two different vertices... |
| 2wspdisj 29943 | All simple paths of length... |
| 2wspiundisj 29944 | All simple paths of length... |
| usgr2wspthons3 29945 | A simple path of length 2 ... |
| usgr2wspthon 29946 | A simple path of length 2 ... |
| elwwlks2 29947 | A walk of length 2 between... |
| elwspths2spth 29948 | A simple path of length 2 ... |
| rusgrnumwwlkl1 29949 | In a k-regular graph, ther... |
| rusgrnumwwlkslem 29950 | Lemma for ~ rusgrnumwwlks ... |
| rusgrnumwwlklem 29951 | Lemma for ~ rusgrnumwwlk e... |
| rusgrnumwwlkb0 29952 | Induction base 0 for ~ rus... |
| rusgrnumwwlkb1 29953 | Induction base 1 for ~ rus... |
| rusgr0edg 29954 | Special case for graphs wi... |
| rusgrnumwwlks 29955 | Induction step for ~ rusgr... |
| rusgrnumwwlk 29956 | In a ` K `-regular graph, ... |
| rusgrnumwwlkg 29957 | In a ` K `-regular graph, ... |
| rusgrnumwlkg 29958 | In a k-regular graph, the ... |
| clwwlknclwwlkdif 29959 | The set ` A ` of walks of ... |
| clwwlknclwwlkdifnum 29960 | In a ` K `-regular graph, ... |
| clwwlk 29963 | The set of closed walks (i... |
| isclwwlk 29964 | Properties of a word to re... |
| clwwlkbp 29965 | Basic properties of a clos... |
| clwwlkgt0 29966 | There is no empty closed w... |
| clwwlksswrd 29967 | Closed walks (represented ... |
| clwwlk1loop 29968 | A closed walk of length 1 ... |
| clwwlkccatlem 29969 | Lemma for ~ clwwlkccat : i... |
| clwwlkccat 29970 | The concatenation of two w... |
| umgrclwwlkge2 29971 | A closed walk in a multigr... |
| clwlkclwwlklem2a1 29972 | Lemma 1 for ~ clwlkclwwlkl... |
| clwlkclwwlklem2a2 29973 | Lemma 2 for ~ clwlkclwwlkl... |
| clwlkclwwlklem2a3 29974 | Lemma 3 for ~ clwlkclwwlkl... |
| clwlkclwwlklem2fv1 29975 | Lemma 4a for ~ clwlkclwwlk... |
| clwlkclwwlklem2fv2 29976 | Lemma 4b for ~ clwlkclwwlk... |
| clwlkclwwlklem2a4 29977 | Lemma 4 for ~ clwlkclwwlkl... |
| clwlkclwwlklem2a 29978 | Lemma for ~ clwlkclwwlklem... |
| clwlkclwwlklem1 29979 | Lemma 1 for ~ clwlkclwwlk ... |
| clwlkclwwlklem2 29980 | Lemma 2 for ~ clwlkclwwlk ... |
| clwlkclwwlklem3 29981 | Lemma 3 for ~ clwlkclwwlk ... |
| clwlkclwwlk 29982 | A closed walk as word of l... |
| clwlkclwwlk2 29983 | A closed walk corresponds ... |
| clwlkclwwlkflem 29984 | Lemma for ~ clwlkclwwlkf .... |
| clwlkclwwlkf1lem2 29985 | Lemma 2 for ~ clwlkclwwlkf... |
| clwlkclwwlkf1lem3 29986 | Lemma 3 for ~ clwlkclwwlkf... |
| clwlkclwwlkfolem 29987 | Lemma for ~ clwlkclwwlkfo ... |
| clwlkclwwlkf 29988 | ` F ` is a function from t... |
| clwlkclwwlkfo 29989 | ` F ` is a function from t... |
| clwlkclwwlkf1 29990 | ` F ` is a one-to-one func... |
| clwlkclwwlkf1o 29991 | ` F ` is a bijection betwe... |
| clwlkclwwlken 29992 | The set of the nonempty cl... |
| clwwisshclwwslemlem 29993 | Lemma for ~ clwwisshclwwsl... |
| clwwisshclwwslem 29994 | Lemma for ~ clwwisshclwws ... |
| clwwisshclwws 29995 | Cyclically shifting a clos... |
| clwwisshclwwsn 29996 | Cyclically shifting a clos... |
| erclwwlkrel 29997 | ` .~ ` is a relation. (Co... |
| erclwwlkeq 29998 | Two classes are equivalent... |
| erclwwlkeqlen 29999 | If two classes are equival... |
| erclwwlkref 30000 | ` .~ ` is a reflexive rela... |
| erclwwlksym 30001 | ` .~ ` is a symmetric rela... |
| erclwwlktr 30002 | ` .~ ` is a transitive rel... |
| erclwwlk 30003 | ` .~ ` is an equivalence r... |
| clwwlkn 30006 | The set of closed walks of... |
| isclwwlkn 30007 | A word over the set of ver... |
| clwwlkn0 30008 | There is no closed walk of... |
| clwwlkneq0 30009 | Sufficient conditions for ... |
| clwwlkclwwlkn 30010 | A closed walk of a fixed l... |
| clwwlksclwwlkn 30011 | The closed walks of a fixe... |
| clwwlknlen 30012 | The length of a word repre... |
| clwwlknnn 30013 | The length of a closed wal... |
| clwwlknwrd 30014 | A closed walk of a fixed l... |
| clwwlknbp 30015 | Basic properties of a clos... |
| isclwwlknx 30016 | Characterization of a word... |
| clwwlknp 30017 | Properties of a set being ... |
| clwwlknwwlksn 30018 | A word representing a clos... |
| clwwlknlbonbgr1 30019 | The last but one vertex in... |
| clwwlkinwwlk 30020 | If the initial vertex of a... |
| clwwlkn1 30021 | A closed walk of length 1 ... |
| loopclwwlkn1b 30022 | The singleton word consist... |
| clwwlkn1loopb 30023 | A word represents a closed... |
| clwwlkn2 30024 | A closed walk of length 2 ... |
| clwwlknfi 30025 | If there is only a finite ... |
| clwwlkel 30026 | Obtaining a closed walk (a... |
| clwwlkf 30027 | Lemma 1 for ~ clwwlkf1o : ... |
| clwwlkfv 30028 | Lemma 2 for ~ clwwlkf1o : ... |
| clwwlkf1 30029 | Lemma 3 for ~ clwwlkf1o : ... |
| clwwlkfo 30030 | Lemma 4 for ~ clwwlkf1o : ... |
| clwwlkf1o 30031 | F is a 1-1 onto function, ... |
| clwwlken 30032 | The set of closed walks of... |
| clwwlknwwlkncl 30033 | Obtaining a closed walk (a... |
| clwwlkwwlksb 30034 | A nonempty word over verti... |
| clwwlknwwlksnb 30035 | A word over vertices repre... |
| clwwlkext2edg 30036 | If a word concatenated wit... |
| wwlksext2clwwlk 30037 | If a word represents a wal... |
| wwlksubclwwlk 30038 | Any prefix of a word repre... |
| clwwnisshclwwsn 30039 | Cyclically shifting a clos... |
| eleclclwwlknlem1 30040 | Lemma 1 for ~ eleclclwwlkn... |
| eleclclwwlknlem2 30041 | Lemma 2 for ~ eleclclwwlkn... |
| clwwlknscsh 30042 | The set of cyclical shifts... |
| clwwlknccat 30043 | The concatenation of two w... |
| umgr2cwwk2dif 30044 | If a word represents a clo... |
| umgr2cwwkdifex 30045 | If a word represents a clo... |
| erclwwlknrel 30046 | ` .~ ` is a relation. (Co... |
| erclwwlkneq 30047 | Two classes are equivalent... |
| erclwwlkneqlen 30048 | If two classes are equival... |
| erclwwlknref 30049 | ` .~ ` is a reflexive rela... |
| erclwwlknsym 30050 | ` .~ ` is a symmetric rela... |
| erclwwlkntr 30051 | ` .~ ` is a transitive rel... |
| erclwwlkn 30052 | ` .~ ` is an equivalence r... |
| qerclwwlknfi 30053 | The quotient set of the se... |
| hashclwwlkn0 30054 | The number of closed walks... |
| eclclwwlkn1 30055 | An equivalence class accor... |
| eleclclwwlkn 30056 | A member of an equivalence... |
| hashecclwwlkn1 30057 | The size of every equivale... |
| umgrhashecclwwlk 30058 | The size of every equivale... |
| fusgrhashclwwlkn 30059 | The size of the set of clo... |
| clwwlkndivn 30060 | The size of the set of clo... |
| clwlknf1oclwwlknlem1 30061 | Lemma 1 for ~ clwlknf1oclw... |
| clwlknf1oclwwlknlem2 30062 | Lemma 2 for ~ clwlknf1oclw... |
| clwlknf1oclwwlknlem3 30063 | Lemma 3 for ~ clwlknf1oclw... |
| clwlknf1oclwwlkn 30064 | There is a one-to-one onto... |
| clwlkssizeeq 30065 | The size of the set of clo... |
| clwlksndivn 30066 | The size of the set of clo... |
| clwwlknonmpo 30069 | ` ( ClWWalksNOn `` G ) ` i... |
| clwwlknon 30070 | The set of closed walks on... |
| isclwwlknon 30071 | A word over the set of ver... |
| clwwlk0on0 30072 | There is no word over the ... |
| clwwlknon0 30073 | Sufficient conditions for ... |
| clwwlknonfin 30074 | In a finite graph ` G ` , ... |
| clwwlknonel 30075 | Characterization of a word... |
| clwwlknonccat 30076 | The concatenation of two w... |
| clwwlknon1 30077 | The set of closed walks on... |
| clwwlknon1loop 30078 | If there is a loop at vert... |
| clwwlknon1nloop 30079 | If there is no loop at ver... |
| clwwlknon1sn 30080 | The set of (closed) walks ... |
| clwwlknon1le1 30081 | There is at most one (clos... |
| clwwlknon2 30082 | The set of closed walks on... |
| clwwlknon2x 30083 | The set of closed walks on... |
| s2elclwwlknon2 30084 | Sufficient conditions of a... |
| clwwlknon2num 30085 | In a ` K `-regular graph `... |
| clwwlknonwwlknonb 30086 | A word over vertices repre... |
| clwwlknonex2lem1 30087 | Lemma 1 for ~ clwwlknonex2... |
| clwwlknonex2lem2 30088 | Lemma 2 for ~ clwwlknonex2... |
| clwwlknonex2 30089 | Extending a closed walk ` ... |
| clwwlknonex2e 30090 | Extending a closed walk ` ... |
| clwwlknondisj 30091 | The sets of closed walks o... |
| clwwlknun 30092 | The set of closed walks of... |
| clwwlkvbij 30093 | There is a bijection betwe... |
| 0ewlk 30094 | The empty set (empty seque... |
| 1ewlk 30095 | A sequence of 1 edge is an... |
| 0wlk 30096 | A pair of an empty set (of... |
| is0wlk 30097 | A pair of an empty set (of... |
| 0wlkonlem1 30098 | Lemma 1 for ~ 0wlkon and ~... |
| 0wlkonlem2 30099 | Lemma 2 for ~ 0wlkon and ~... |
| 0wlkon 30100 | A walk of length 0 from a ... |
| 0wlkons1 30101 | A walk of length 0 from a ... |
| 0trl 30102 | A pair of an empty set (of... |
| is0trl 30103 | A pair of an empty set (of... |
| 0trlon 30104 | A trail of length 0 from a... |
| 0pth 30105 | A pair of an empty set (of... |
| 0spth 30106 | A pair of an empty set (of... |
| 0pthon 30107 | A path of length 0 from a ... |
| 0pthon1 30108 | A path of length 0 from a ... |
| 0pthonv 30109 | For each vertex there is a... |
| 0clwlk 30110 | A pair of an empty set (of... |
| 0clwlkv 30111 | Any vertex (more precisely... |
| 0clwlk0 30112 | There is no closed walk in... |
| 0crct 30113 | A pair of an empty set (of... |
| 0cycl 30114 | A pair of an empty set (of... |
| 1pthdlem1 30115 | Lemma 1 for ~ 1pthd . (Co... |
| 1pthdlem2 30116 | Lemma 2 for ~ 1pthd . (Co... |
| 1wlkdlem1 30117 | Lemma 1 for ~ 1wlkd . (Co... |
| 1wlkdlem2 30118 | Lemma 2 for ~ 1wlkd . (Co... |
| 1wlkdlem3 30119 | Lemma 3 for ~ 1wlkd . (Co... |
| 1wlkdlem4 30120 | Lemma 4 for ~ 1wlkd . (Co... |
| 1wlkd 30121 | In a graph with two vertic... |
| 1trld 30122 | In a graph with two vertic... |
| 1pthd 30123 | In a graph with two vertic... |
| 1pthond 30124 | In a graph with two vertic... |
| upgr1wlkdlem1 30125 | Lemma 1 for ~ upgr1wlkd . ... |
| upgr1wlkdlem2 30126 | Lemma 2 for ~ upgr1wlkd . ... |
| upgr1wlkd 30127 | In a pseudograph with two ... |
| upgr1trld 30128 | In a pseudograph with two ... |
| upgr1pthd 30129 | In a pseudograph with two ... |
| upgr1pthond 30130 | In a pseudograph with two ... |
| lppthon 30131 | A loop (which is an edge a... |
| lp1cycl 30132 | A loop (which is an edge a... |
| 1pthon2v 30133 | For each pair of adjacent ... |
| 1pthon2ve 30134 | For each pair of adjacent ... |
| wlk2v2elem1 30135 | Lemma 1 for ~ wlk2v2e : ` ... |
| wlk2v2elem2 30136 | Lemma 2 for ~ wlk2v2e : T... |
| wlk2v2e 30137 | In a graph with two vertic... |
| ntrl2v2e 30138 | A walk which is not a trai... |
| 3wlkdlem1 30139 | Lemma 1 for ~ 3wlkd . (Co... |
| 3wlkdlem2 30140 | Lemma 2 for ~ 3wlkd . (Co... |
| 3wlkdlem3 30141 | Lemma 3 for ~ 3wlkd . (Co... |
| 3wlkdlem4 30142 | Lemma 4 for ~ 3wlkd . (Co... |
| 3wlkdlem5 30143 | Lemma 5 for ~ 3wlkd . (Co... |
| 3pthdlem1 30144 | Lemma 1 for ~ 3pthd . (Co... |
| 3wlkdlem6 30145 | Lemma 6 for ~ 3wlkd . (Co... |
| 3wlkdlem7 30146 | Lemma 7 for ~ 3wlkd . (Co... |
| 3wlkdlem8 30147 | Lemma 8 for ~ 3wlkd . (Co... |
| 3wlkdlem9 30148 | Lemma 9 for ~ 3wlkd . (Co... |
| 3wlkdlem10 30149 | Lemma 10 for ~ 3wlkd . (C... |
| 3wlkd 30150 | Construction of a walk fro... |
| 3wlkond 30151 | A walk of length 3 from on... |
| 3trld 30152 | Construction of a trail fr... |
| 3trlond 30153 | A trail of length 3 from o... |
| 3pthd 30154 | A path of length 3 from on... |
| 3pthond 30155 | A path of length 3 from on... |
| 3spthd 30156 | A simple path of length 3 ... |
| 3spthond 30157 | A simple path of length 3 ... |
| 3cycld 30158 | Construction of a 3-cycle ... |
| 3cyclpd 30159 | Construction of a 3-cycle ... |
| upgr3v3e3cycl 30160 | If there is a cycle of len... |
| uhgr3cyclexlem 30161 | Lemma for ~ uhgr3cyclex . ... |
| uhgr3cyclex 30162 | If there are three differe... |
| umgr3cyclex 30163 | If there are three (differ... |
| umgr3v3e3cycl 30164 | If and only if there is a ... |
| upgr4cycl4dv4e 30165 | If there is a cycle of len... |
| dfconngr1 30168 | Alternative definition of ... |
| isconngr 30169 | The property of being a co... |
| isconngr1 30170 | The property of being a co... |
| cusconngr 30171 | A complete hypergraph is c... |
| 0conngr 30172 | A graph without vertices i... |
| 0vconngr 30173 | A graph without vertices i... |
| 1conngr 30174 | A graph with (at most) one... |
| conngrv2edg 30175 | A vertex in a connected gr... |
| vdn0conngrumgrv2 30176 | A vertex in a connected mu... |
| releupth 30179 | The set ` ( EulerPaths `` ... |
| eupths 30180 | The Eulerian paths on the ... |
| iseupth 30181 | The property " ` <. F , P ... |
| iseupthf1o 30182 | The property " ` <. F , P ... |
| eupthi 30183 | Properties of an Eulerian ... |
| eupthf1o 30184 | The ` F ` function in an E... |
| eupthfi 30185 | Any graph with an Eulerian... |
| eupthseg 30186 | The ` N ` -th edge in an e... |
| upgriseupth 30187 | The property " ` <. F , P ... |
| upgreupthi 30188 | Properties of an Eulerian ... |
| upgreupthseg 30189 | The ` N ` -th edge in an e... |
| eupthcl 30190 | An Eulerian path has lengt... |
| eupthistrl 30191 | An Eulerian path is a trai... |
| eupthiswlk 30192 | An Eulerian path is a walk... |
| eupthpf 30193 | The ` P ` function in an E... |
| eupth0 30194 | There is an Eulerian path ... |
| eupthres 30195 | The restriction ` <. H , Q... |
| eupthp1 30196 | Append one path segment to... |
| eupth2eucrct 30197 | Append one path segment to... |
| eupth2lem1 30198 | Lemma for ~ eupth2 . (Con... |
| eupth2lem2 30199 | Lemma for ~ eupth2 . (Con... |
| trlsegvdeglem1 30200 | Lemma for ~ trlsegvdeg . ... |
| trlsegvdeglem2 30201 | Lemma for ~ trlsegvdeg . ... |
| trlsegvdeglem3 30202 | Lemma for ~ trlsegvdeg . ... |
| trlsegvdeglem4 30203 | Lemma for ~ trlsegvdeg . ... |
| trlsegvdeglem5 30204 | Lemma for ~ trlsegvdeg . ... |
| trlsegvdeglem6 30205 | Lemma for ~ trlsegvdeg . ... |
| trlsegvdeglem7 30206 | Lemma for ~ trlsegvdeg . ... |
| trlsegvdeg 30207 | Formerly part of proof of ... |
| eupth2lem3lem1 30208 | Lemma for ~ eupth2lem3 . ... |
| eupth2lem3lem2 30209 | Lemma for ~ eupth2lem3 . ... |
| eupth2lem3lem3 30210 | Lemma for ~ eupth2lem3 , f... |
| eupth2lem3lem4 30211 | Lemma for ~ eupth2lem3 , f... |
| eupth2lem3lem5 30212 | Lemma for ~ eupth2 . (Con... |
| eupth2lem3lem6 30213 | Formerly part of proof of ... |
| eupth2lem3lem7 30214 | Lemma for ~ eupth2lem3 : ... |
| eupthvdres 30215 | Formerly part of proof of ... |
| eupth2lem3 30216 | Lemma for ~ eupth2 . (Con... |
| eupth2lemb 30217 | Lemma for ~ eupth2 (induct... |
| eupth2lems 30218 | Lemma for ~ eupth2 (induct... |
| eupth2 30219 | The only vertices of odd d... |
| eulerpathpr 30220 | A graph with an Eulerian p... |
| eulerpath 30221 | A pseudograph with an Eule... |
| eulercrct 30222 | A pseudograph with an Eule... |
| eucrctshift 30223 | Cyclically shifting the in... |
| eucrct2eupth1 30224 | Removing one edge ` ( I ``... |
| eucrct2eupth 30225 | Removing one edge ` ( I ``... |
| konigsbergvtx 30226 | The set of vertices of the... |
| konigsbergiedg 30227 | The indexed edges of the K... |
| konigsbergiedgw 30228 | The indexed edges of the K... |
| konigsbergssiedgwpr 30229 | Each subset of the indexed... |
| konigsbergssiedgw 30230 | Each subset of the indexed... |
| konigsbergumgr 30231 | The Königsberg graph ... |
| konigsberglem1 30232 | Lemma 1 for ~ konigsberg :... |
| konigsberglem2 30233 | Lemma 2 for ~ konigsberg :... |
| konigsberglem3 30234 | Lemma 3 for ~ konigsberg :... |
| konigsberglem4 30235 | Lemma 4 for ~ konigsberg :... |
| konigsberglem5 30236 | Lemma 5 for ~ konigsberg :... |
| konigsberg 30237 | The Königsberg Bridge... |
| isfrgr 30240 | The property of being a fr... |
| frgrusgr 30241 | A friendship graph is a si... |
| frgr0v 30242 | Any null graph (set with n... |
| frgr0vb 30243 | Any null graph (without ve... |
| frgruhgr0v 30244 | Any null graph (without ve... |
| frgr0 30245 | The null graph (graph with... |
| frcond1 30246 | The friendship condition: ... |
| frcond2 30247 | The friendship condition: ... |
| frgreu 30248 | Variant of ~ frcond2 : An... |
| frcond3 30249 | The friendship condition, ... |
| frcond4 30250 | The friendship condition, ... |
| frgr1v 30251 | Any graph with (at most) o... |
| nfrgr2v 30252 | Any graph with two (differ... |
| frgr3vlem1 30253 | Lemma 1 for ~ frgr3v . (C... |
| frgr3vlem2 30254 | Lemma 2 for ~ frgr3v . (C... |
| frgr3v 30255 | Any graph with three verti... |
| 1vwmgr 30256 | Every graph with one verte... |
| 3vfriswmgrlem 30257 | Lemma for ~ 3vfriswmgr . ... |
| 3vfriswmgr 30258 | Every friendship graph wit... |
| 1to2vfriswmgr 30259 | Every friendship graph wit... |
| 1to3vfriswmgr 30260 | Every friendship graph wit... |
| 1to3vfriendship 30261 | The friendship theorem for... |
| 2pthfrgrrn 30262 | Between any two (different... |
| 2pthfrgrrn2 30263 | Between any two (different... |
| 2pthfrgr 30264 | Between any two (different... |
| 3cyclfrgrrn1 30265 | Every vertex in a friendsh... |
| 3cyclfrgrrn 30266 | Every vertex in a friendsh... |
| 3cyclfrgrrn2 30267 | Every vertex in a friendsh... |
| 3cyclfrgr 30268 | Every vertex in a friendsh... |
| 4cycl2v2nb 30269 | In a (maybe degenerate) 4-... |
| 4cycl2vnunb 30270 | In a 4-cycle, two distinct... |
| n4cyclfrgr 30271 | There is no 4-cycle in a f... |
| 4cyclusnfrgr 30272 | A graph with a 4-cycle is ... |
| frgrnbnb 30273 | If two neighbors ` U ` and... |
| frgrconngr 30274 | A friendship graph is conn... |
| vdgn0frgrv2 30275 | A vertex in a friendship g... |
| vdgn1frgrv2 30276 | Any vertex in a friendship... |
| vdgn1frgrv3 30277 | Any vertex in a friendship... |
| vdgfrgrgt2 30278 | Any vertex in a friendship... |
| frgrncvvdeqlem1 30279 | Lemma 1 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem2 30280 | Lemma 2 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem3 30281 | Lemma 3 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem4 30282 | Lemma 4 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem5 30283 | Lemma 5 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem6 30284 | Lemma 6 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem7 30285 | Lemma 7 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem8 30286 | Lemma 8 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem9 30287 | Lemma 9 for ~ frgrncvvdeq ... |
| frgrncvvdeqlem10 30288 | Lemma 10 for ~ frgrncvvdeq... |
| frgrncvvdeq 30289 | In a friendship graph, two... |
| frgrwopreglem4a 30290 | In a friendship graph any ... |
| frgrwopreglem5a 30291 | If a friendship graph has ... |
| frgrwopreglem1 30292 | Lemma 1 for ~ frgrwopreg :... |
| frgrwopreglem2 30293 | Lemma 2 for ~ frgrwopreg .... |
| frgrwopreglem3 30294 | Lemma 3 for ~ frgrwopreg .... |
| frgrwopreglem4 30295 | Lemma 4 for ~ frgrwopreg .... |
| frgrwopregasn 30296 | According to statement 5 i... |
| frgrwopregbsn 30297 | According to statement 5 i... |
| frgrwopreg1 30298 | According to statement 5 i... |
| frgrwopreg2 30299 | According to statement 5 i... |
| frgrwopreglem5lem 30300 | Lemma for ~ frgrwopreglem5... |
| frgrwopreglem5 30301 | Lemma 5 for ~ frgrwopreg .... |
| frgrwopreglem5ALT 30302 | Alternate direct proof of ... |
| frgrwopreg 30303 | In a friendship graph ther... |
| frgrregorufr0 30304 | In a friendship graph ther... |
| frgrregorufr 30305 | If there is a vertex havin... |
| frgrregorufrg 30306 | If there is a vertex havin... |
| frgr2wwlkeu 30307 | For two different vertices... |
| frgr2wwlkn0 30308 | In a friendship graph, the... |
| frgr2wwlk1 30309 | In a friendship graph, the... |
| frgr2wsp1 30310 | In a friendship graph, the... |
| frgr2wwlkeqm 30311 | If there is a (simple) pat... |
| frgrhash2wsp 30312 | The number of simple paths... |
| fusgreg2wsplem 30313 | Lemma for ~ fusgreg2wsp an... |
| fusgr2wsp2nb 30314 | The set of paths of length... |
| fusgreghash2wspv 30315 | According to statement 7 i... |
| fusgreg2wsp 30316 | In a finite simple graph, ... |
| 2wspmdisj 30317 | The sets of paths of lengt... |
| fusgreghash2wsp 30318 | In a finite k-regular grap... |
| frrusgrord0lem 30319 | Lemma for ~ frrusgrord0 . ... |
| frrusgrord0 30320 | If a nonempty finite frien... |
| frrusgrord 30321 | If a nonempty finite frien... |
| numclwwlk2lem1lem 30322 | Lemma for ~ numclwwlk2lem1... |
| 2clwwlklem 30323 | Lemma for ~ clwwnonrepclww... |
| clwwnrepclwwn 30324 | If the initial vertex of a... |
| clwwnonrepclwwnon 30325 | If the initial vertex of a... |
| 2clwwlk2clwwlklem 30326 | Lemma for ~ 2clwwlk2clwwlk... |
| 2clwwlk 30327 | Value of operation ` C ` ,... |
| 2clwwlk2 30328 | The set ` ( X C 2 ) ` of d... |
| 2clwwlkel 30329 | Characterization of an ele... |
| 2clwwlk2clwwlk 30330 | An element of the value of... |
| numclwwlk1lem2foalem 30331 | Lemma for ~ numclwwlk1lem2... |
| extwwlkfab 30332 | The set ` ( X C N ) ` of d... |
| extwwlkfabel 30333 | Characterization of an ele... |
| numclwwlk1lem2foa 30334 | Going forth and back from ... |
| numclwwlk1lem2f 30335 | ` T ` is a function, mappi... |
| numclwwlk1lem2fv 30336 | Value of the function ` T ... |
| numclwwlk1lem2f1 30337 | ` T ` is a 1-1 function. ... |
| numclwwlk1lem2fo 30338 | ` T ` is an onto function.... |
| numclwwlk1lem2f1o 30339 | ` T ` is a 1-1 onto functi... |
| numclwwlk1lem2 30340 | The set of double loops of... |
| numclwwlk1 30341 | Statement 9 in [Huneke] p.... |
| clwwlknonclwlknonf1o 30342 | ` F ` is a bijection betwe... |
| clwwlknonclwlknonen 30343 | The sets of the two repres... |
| dlwwlknondlwlknonf1olem1 30344 | Lemma 1 for ~ dlwwlknondlw... |
| dlwwlknondlwlknonf1o 30345 | ` F ` is a bijection betwe... |
| dlwwlknondlwlknonen 30346 | The sets of the two repres... |
| wlkl0 30347 | There is exactly one walk ... |
| clwlknon2num 30348 | There are k walks of lengt... |
| numclwlk1lem1 30349 | Lemma 1 for ~ numclwlk1 (S... |
| numclwlk1lem2 30350 | Lemma 2 for ~ numclwlk1 (S... |
| numclwlk1 30351 | Statement 9 in [Huneke] p.... |
| numclwwlkovh0 30352 | Value of operation ` H ` ,... |
| numclwwlkovh 30353 | Value of operation ` H ` ,... |
| numclwwlkovq 30354 | Value of operation ` Q ` ,... |
| numclwwlkqhash 30355 | In a ` K `-regular graph, ... |
| numclwwlk2lem1 30356 | In a friendship graph, for... |
| numclwlk2lem2f 30357 | ` R ` is a function mappin... |
| numclwlk2lem2fv 30358 | Value of the function ` R ... |
| numclwlk2lem2f1o 30359 | ` R ` is a 1-1 onto functi... |
| numclwwlk2lem3 30360 | In a friendship graph, the... |
| numclwwlk2 30361 | Statement 10 in [Huneke] p... |
| numclwwlk3lem1 30362 | Lemma 2 for ~ numclwwlk3 .... |
| numclwwlk3lem2lem 30363 | Lemma for ~ numclwwlk3lem2... |
| numclwwlk3lem2 30364 | Lemma 1 for ~ numclwwlk3 :... |
| numclwwlk3 30365 | Statement 12 in [Huneke] p... |
| numclwwlk4 30366 | The total number of closed... |
| numclwwlk5lem 30367 | Lemma for ~ numclwwlk5 . ... |
| numclwwlk5 30368 | Statement 13 in [Huneke] p... |
| numclwwlk7lem 30369 | Lemma for ~ numclwwlk7 , ~... |
| numclwwlk6 30370 | For a prime divisor ` P ` ... |
| numclwwlk7 30371 | Statement 14 in [Huneke] p... |
| numclwwlk8 30372 | The size of the set of clo... |
| frgrreggt1 30373 | If a finite nonempty frien... |
| frgrreg 30374 | If a finite nonempty frien... |
| frgrregord013 30375 | If a finite friendship gra... |
| frgrregord13 30376 | If a nonempty finite frien... |
| frgrogt3nreg 30377 | If a finite friendship gra... |
| friendshipgt3 30378 | The friendship theorem for... |
| friendship 30379 | The friendship theorem: I... |
| conventions 30380 |
H... |
| conventions-labels 30381 |
... |
| conventions-comments 30382 |
... |
| natded 30383 | Here are typical n... |
| ex-natded5.2 30384 | Theorem 5.2 of [Clemente] ... |
| ex-natded5.2-2 30385 | A more efficient proof of ... |
| ex-natded5.2i 30386 | The same as ~ ex-natded5.2... |
| ex-natded5.3 30387 | Theorem 5.3 of [Clemente] ... |
| ex-natded5.3-2 30388 | A more efficient proof of ... |
| ex-natded5.3i 30389 | The same as ~ ex-natded5.3... |
| ex-natded5.5 30390 | Theorem 5.5 of [Clemente] ... |
| ex-natded5.7 30391 | Theorem 5.7 of [Clemente] ... |
| ex-natded5.7-2 30392 | A more efficient proof of ... |
| ex-natded5.8 30393 | Theorem 5.8 of [Clemente] ... |
| ex-natded5.8-2 30394 | A more efficient proof of ... |
| ex-natded5.13 30395 | Theorem 5.13 of [Clemente]... |
| ex-natded5.13-2 30396 | A more efficient proof of ... |
| ex-natded9.20 30397 | Theorem 9.20 of [Clemente]... |
| ex-natded9.20-2 30398 | A more efficient proof of ... |
| ex-natded9.26 30399 | Theorem 9.26 of [Clemente]... |
| ex-natded9.26-2 30400 | A more efficient proof of ... |
| ex-or 30401 | Example for ~ df-or . Exa... |
| ex-an 30402 | Example for ~ df-an . Exa... |
| ex-dif 30403 | Example for ~ df-dif . Ex... |
| ex-un 30404 | Example for ~ df-un . Exa... |
| ex-in 30405 | Example for ~ df-in . Exa... |
| ex-uni 30406 | Example for ~ df-uni . Ex... |
| ex-ss 30407 | Example for ~ df-ss . Exa... |
| ex-pss 30408 | Example for ~ df-pss . Ex... |
| ex-pw 30409 | Example for ~ df-pw . Exa... |
| ex-pr 30410 | Example for ~ df-pr . (Co... |
| ex-br 30411 | Example for ~ df-br . Exa... |
| ex-opab 30412 | Example for ~ df-opab . E... |
| ex-eprel 30413 | Example for ~ df-eprel . ... |
| ex-id 30414 | Example for ~ df-id . Exa... |
| ex-po 30415 | Example for ~ df-po . Exa... |
| ex-xp 30416 | Example for ~ df-xp . Exa... |
| ex-cnv 30417 | Example for ~ df-cnv . Ex... |
| ex-co 30418 | Example for ~ df-co . Exa... |
| ex-dm 30419 | Example for ~ df-dm . Exa... |
| ex-rn 30420 | Example for ~ df-rn . Exa... |
| ex-res 30421 | Example for ~ df-res . Ex... |
| ex-ima 30422 | Example for ~ df-ima . Ex... |
| ex-fv 30423 | Example for ~ df-fv . Exa... |
| ex-1st 30424 | Example for ~ df-1st . Ex... |
| ex-2nd 30425 | Example for ~ df-2nd . Ex... |
| 1kp2ke3k 30426 | Example for ~ df-dec , 100... |
| ex-fl 30427 | Example for ~ df-fl . Exa... |
| ex-ceil 30428 | Example for ~ df-ceil . (... |
| ex-mod 30429 | Example for ~ df-mod . (C... |
| ex-exp 30430 | Example for ~ df-exp . (C... |
| ex-fac 30431 | Example for ~ df-fac . (C... |
| ex-bc 30432 | Example for ~ df-bc . (Co... |
| ex-hash 30433 | Example for ~ df-hash . (... |
| ex-sqrt 30434 | Example for ~ df-sqrt . (... |
| ex-abs 30435 | Example for ~ df-abs . (C... |
| ex-dvds 30436 | Example for ~ df-dvds : 3 ... |
| ex-gcd 30437 | Example for ~ df-gcd . (C... |
| ex-lcm 30438 | Example for ~ df-lcm . (C... |
| ex-prmo 30439 | Example for ~ df-prmo : ` ... |
| aevdemo 30440 | Proof illustrating the com... |
| ex-ind-dvds 30441 | Example of a proof by indu... |
| ex-fpar 30442 | Formalized example provide... |
| avril1 30443 | Poisson d'Avril's Theorem.... |
| 2bornot2b 30444 | The law of excluded middle... |
| helloworld 30445 | The classic "Hello world" ... |
| 1p1e2apr1 30446 | One plus one equals two. ... |
| eqid1 30447 | Law of identity (reflexivi... |
| 1div0apr 30448 | Division by zero is forbid... |
| topnfbey 30449 | Nothing seems to be imposs... |
| 9p10ne21 30450 | 9 + 10 is not equal to 21.... |
| 9p10ne21fool 30451 | 9 + 10 equals 21. This as... |
| nrt2irr 30453 | The ` N ` -th root of 2 is... |
| isplig 30456 | The predicate "is a planar... |
| ispligb 30457 | The predicate "is a planar... |
| tncp 30458 | In any planar incidence ge... |
| l2p 30459 | For any line in a planar i... |
| lpni 30460 | For any line in a planar i... |
| nsnlplig 30461 | There is no "one-point lin... |
| nsnlpligALT 30462 | Alternate version of ~ nsn... |
| n0lplig 30463 | There is no "empty line" i... |
| n0lpligALT 30464 | Alternate version of ~ n0l... |
| eulplig 30465 | Through two distinct point... |
| pliguhgr 30466 | Any planar incidence geome... |
| dummylink 30467 | Alias for ~ a1ii that may ... |
| id1 30468 | Alias for ~ idALT that may... |
| isgrpo 30477 | The predicate "is a group ... |
| isgrpoi 30478 | Properties that determine ... |
| grpofo 30479 | A group operation maps ont... |
| grpocl 30480 | Closure law for a group op... |
| grpolidinv 30481 | A group has a left identit... |
| grpon0 30482 | The base set of a group is... |
| grpoass 30483 | A group operation is assoc... |
| grpoidinvlem1 30484 | Lemma for ~ grpoidinv . (... |
| grpoidinvlem2 30485 | Lemma for ~ grpoidinv . (... |
| grpoidinvlem3 30486 | Lemma for ~ grpoidinv . (... |
| grpoidinvlem4 30487 | Lemma for ~ grpoidinv . (... |
| grpoidinv 30488 | A group has a left and rig... |
| grpoideu 30489 | The left identity element ... |
| grporndm 30490 | A group's range in terms o... |
| 0ngrp 30491 | The empty set is not a gro... |
| gidval 30492 | The value of the identity ... |
| grpoidval 30493 | Lemma for ~ grpoidcl and o... |
| grpoidcl 30494 | The identity element of a ... |
| grpoidinv2 30495 | A group's properties using... |
| grpolid 30496 | The identity element of a ... |
| grporid 30497 | The identity element of a ... |
| grporcan 30498 | Right cancellation law for... |
| grpoinveu 30499 | The left inverse element o... |
| grpoid 30500 | Two ways of saying that an... |
| grporn 30501 | The range of a group opera... |
| grpoinvfval 30502 | The inverse function of a ... |
| grpoinvval 30503 | The inverse of a group ele... |
| grpoinvcl 30504 | A group element's inverse ... |
| grpoinv 30505 | The properties of a group ... |
| grpolinv 30506 | The left inverse of a grou... |
| grporinv 30507 | The right inverse of a gro... |
| grpoinvid1 30508 | The inverse of a group ele... |
| grpoinvid2 30509 | The inverse of a group ele... |
| grpolcan 30510 | Left cancellation law for ... |
| grpo2inv 30511 | Double inverse law for gro... |
| grpoinvf 30512 | Mapping of the inverse fun... |
| grpoinvop 30513 | The inverse of the group o... |
| grpodivfval 30514 | Group division (or subtrac... |
| grpodivval 30515 | Group division (or subtrac... |
| grpodivinv 30516 | Group division by an inver... |
| grpoinvdiv 30517 | Inverse of a group divisio... |
| grpodivf 30518 | Mapping for group division... |
| grpodivcl 30519 | Closure of group division ... |
| grpodivdiv 30520 | Double group division. (C... |
| grpomuldivass 30521 | Associative-type law for m... |
| grpodivid 30522 | Division of a group member... |
| grponpcan 30523 | Cancellation law for group... |
| isablo 30526 | The predicate "is an Abeli... |
| ablogrpo 30527 | An Abelian group operation... |
| ablocom 30528 | An Abelian group operation... |
| ablo32 30529 | Commutative/associative la... |
| ablo4 30530 | Commutative/associative la... |
| isabloi 30531 | Properties that determine ... |
| ablomuldiv 30532 | Law for group multiplicati... |
| ablodivdiv 30533 | Law for double group divis... |
| ablodivdiv4 30534 | Law for double group divis... |
| ablodiv32 30535 | Swap the second and third ... |
| ablonncan 30536 | Cancellation law for group... |
| ablonnncan1 30537 | Cancellation law for group... |
| vcrel 30540 | The class of all complex v... |
| vciOLD 30541 | Obsolete version of ~ cvsi... |
| vcsm 30542 | Functionality of th scalar... |
| vccl 30543 | Closure of the scalar prod... |
| vcidOLD 30544 | Identity element for the s... |
| vcdi 30545 | Distributive law for the s... |
| vcdir 30546 | Distributive law for the s... |
| vcass 30547 | Associative law for the sc... |
| vc2OLD 30548 | A vector plus itself is tw... |
| vcablo 30549 | Vector addition is an Abel... |
| vcgrp 30550 | Vector addition is a group... |
| vclcan 30551 | Left cancellation law for ... |
| vczcl 30552 | The zero vector is a vecto... |
| vc0rid 30553 | The zero vector is a right... |
| vc0 30554 | Zero times a vector is the... |
| vcz 30555 | Anything times the zero ve... |
| vcm 30556 | Minus 1 times a vector is ... |
| isvclem 30557 | Lemma for ~ isvcOLD . (Co... |
| vcex 30558 | The components of a comple... |
| isvcOLD 30559 | The predicate "is a comple... |
| isvciOLD 30560 | Properties that determine ... |
| cnaddabloOLD 30561 | Obsolete version of ~ cnad... |
| cnidOLD 30562 | Obsolete version of ~ cnad... |
| cncvcOLD 30563 | Obsolete version of ~ cncv... |
| nvss 30573 | Structure of the class of ... |
| nvvcop 30574 | A normed complex vector sp... |
| nvrel 30582 | The class of all normed co... |
| vafval 30583 | Value of the function for ... |
| bafval 30584 | Value of the function for ... |
| smfval 30585 | Value of the function for ... |
| 0vfval 30586 | Value of the function for ... |
| nmcvfval 30587 | Value of the norm function... |
| nvop2 30588 | A normed complex vector sp... |
| nvvop 30589 | The vector space component... |
| isnvlem 30590 | Lemma for ~ isnv . (Contr... |
| nvex 30591 | The components of a normed... |
| isnv 30592 | The predicate "is a normed... |
| isnvi 30593 | Properties that determine ... |
| nvi 30594 | The properties of a normed... |
| nvvc 30595 | The vector space component... |
| nvablo 30596 | The vector addition operat... |
| nvgrp 30597 | The vector addition operat... |
| nvgf 30598 | Mapping for the vector add... |
| nvsf 30599 | Mapping for the scalar mul... |
| nvgcl 30600 | Closure law for the vector... |
| nvcom 30601 | The vector addition (group... |
| nvass 30602 | The vector addition (group... |
| nvadd32 30603 | Commutative/associative la... |
| nvrcan 30604 | Right cancellation law for... |
| nvadd4 30605 | Rearrangement of 4 terms i... |
| nvscl 30606 | Closure law for the scalar... |
| nvsid 30607 | Identity element for the s... |
| nvsass 30608 | Associative law for the sc... |
| nvscom 30609 | Commutative law for the sc... |
| nvdi 30610 | Distributive law for the s... |
| nvdir 30611 | Distributive law for the s... |
| nv2 30612 | A vector plus itself is tw... |
| vsfval 30613 | Value of the function for ... |
| nvzcl 30614 | Closure law for the zero v... |
| nv0rid 30615 | The zero vector is a right... |
| nv0lid 30616 | The zero vector is a left ... |
| nv0 30617 | Zero times a vector is the... |
| nvsz 30618 | Anything times the zero ve... |
| nvinv 30619 | Minus 1 times a vector is ... |
| nvinvfval 30620 | Function for the negative ... |
| nvm 30621 | Vector subtraction in term... |
| nvmval 30622 | Value of vector subtractio... |
| nvmval2 30623 | Value of vector subtractio... |
| nvmfval 30624 | Value of the function for ... |
| nvmf 30625 | Mapping for the vector sub... |
| nvmcl 30626 | Closure law for the vector... |
| nvnnncan1 30627 | Cancellation law for vecto... |
| nvmdi 30628 | Distributive law for scala... |
| nvnegneg 30629 | Double negative of a vecto... |
| nvmul0or 30630 | If a scalar product is zer... |
| nvrinv 30631 | A vector minus itself. (C... |
| nvlinv 30632 | Minus a vector plus itself... |
| nvpncan2 30633 | Cancellation law for vecto... |
| nvpncan 30634 | Cancellation law for vecto... |
| nvaddsub 30635 | Commutative/associative la... |
| nvnpcan 30636 | Cancellation law for a nor... |
| nvaddsub4 30637 | Rearrangement of 4 terms i... |
| nvmeq0 30638 | The difference between two... |
| nvmid 30639 | A vector minus itself is t... |
| nvf 30640 | Mapping for the norm funct... |
| nvcl 30641 | The norm of a normed compl... |
| nvcli 30642 | The norm of a normed compl... |
| nvs 30643 | Proportionality property o... |
| nvsge0 30644 | The norm of a scalar produ... |
| nvm1 30645 | The norm of the negative o... |
| nvdif 30646 | The norm of the difference... |
| nvpi 30647 | The norm of a vector plus ... |
| nvz0 30648 | The norm of a zero vector ... |
| nvz 30649 | The norm of a vector is ze... |
| nvtri 30650 | Triangle inequality for th... |
| nvmtri 30651 | Triangle inequality for th... |
| nvabs 30652 | Norm difference property o... |
| nvge0 30653 | The norm of a normed compl... |
| nvgt0 30654 | A nonzero norm is positive... |
| nv1 30655 | From any nonzero vector, c... |
| nvop 30656 | A complex inner product sp... |
| cnnv 30657 | The set of complex numbers... |
| cnnvg 30658 | The vector addition (group... |
| cnnvba 30659 | The base set of the normed... |
| cnnvs 30660 | The scalar product operati... |
| cnnvnm 30661 | The norm operation of the ... |
| cnnvm 30662 | The vector subtraction ope... |
| elimnv 30663 | Hypothesis elimination lem... |
| elimnvu 30664 | Hypothesis elimination lem... |
| imsval 30665 | Value of the induced metri... |
| imsdval 30666 | Value of the induced metri... |
| imsdval2 30667 | Value of the distance func... |
| nvnd 30668 | The norm of a normed compl... |
| imsdf 30669 | Mapping for the induced me... |
| imsmetlem 30670 | Lemma for ~ imsmet . (Con... |
| imsmet 30671 | The induced metric of a no... |
| imsxmet 30672 | The induced metric of a no... |
| cnims 30673 | The metric induced on the ... |
| vacn 30674 | Vector addition is jointly... |
| nmcvcn 30675 | The norm of a normed compl... |
| nmcnc 30676 | The norm of a normed compl... |
| smcnlem 30677 | Lemma for ~ smcn . (Contr... |
| smcn 30678 | Scalar multiplication is j... |
| vmcn 30679 | Vector subtraction is join... |
| dipfval 30682 | The inner product function... |
| ipval 30683 | Value of the inner product... |
| ipval2lem2 30684 | Lemma for ~ ipval3 . (Con... |
| ipval2lem3 30685 | Lemma for ~ ipval3 . (Con... |
| ipval2lem4 30686 | Lemma for ~ ipval3 . (Con... |
| ipval2 30687 | Expansion of the inner pro... |
| 4ipval2 30688 | Four times the inner produ... |
| ipval3 30689 | Expansion of the inner pro... |
| ipidsq 30690 | The inner product of a vec... |
| ipnm 30691 | Norm expressed in terms of... |
| dipcl 30692 | An inner product is a comp... |
| ipf 30693 | Mapping for the inner prod... |
| dipcj 30694 | The complex conjugate of a... |
| ipipcj 30695 | An inner product times its... |
| diporthcom 30696 | Orthogonality (meaning inn... |
| dip0r 30697 | Inner product with a zero ... |
| dip0l 30698 | Inner product with a zero ... |
| ipz 30699 | The inner product of a vec... |
| dipcn 30700 | Inner product is jointly c... |
| sspval 30703 | The set of all subspaces o... |
| isssp 30704 | The predicate "is a subspa... |
| sspid 30705 | A normed complex vector sp... |
| sspnv 30706 | A subspace is a normed com... |
| sspba 30707 | The base set of a subspace... |
| sspg 30708 | Vector addition on a subsp... |
| sspgval 30709 | Vector addition on a subsp... |
| ssps 30710 | Scalar multiplication on a... |
| sspsval 30711 | Scalar multiplication on a... |
| sspmlem 30712 | Lemma for ~ sspm and other... |
| sspmval 30713 | Vector addition on a subsp... |
| sspm 30714 | Vector subtraction on a su... |
| sspz 30715 | The zero vector of a subsp... |
| sspn 30716 | The norm on a subspace is ... |
| sspnval 30717 | The norm on a subspace in ... |
| sspimsval 30718 | The induced metric on a su... |
| sspims 30719 | The induced metric on a su... |
| lnoval 30732 | The set of linear operator... |
| islno 30733 | The predicate "is a linear... |
| lnolin 30734 | Basic linearity property o... |
| lnof 30735 | A linear operator is a map... |
| lno0 30736 | The value of a linear oper... |
| lnocoi 30737 | The composition of two lin... |
| lnoadd 30738 | Addition property of a lin... |
| lnosub 30739 | Subtraction property of a ... |
| lnomul 30740 | Scalar multiplication prop... |
| nvo00 30741 | Two ways to express a zero... |
| nmoofval 30742 | The operator norm function... |
| nmooval 30743 | The operator norm function... |
| nmosetre 30744 | The set in the supremum of... |
| nmosetn0 30745 | The set in the supremum of... |
| nmoxr 30746 | The norm of an operator is... |
| nmooge0 30747 | The norm of an operator is... |
| nmorepnf 30748 | The norm of an operator is... |
| nmoreltpnf 30749 | The norm of any operator i... |
| nmogtmnf 30750 | The norm of an operator is... |
| nmoolb 30751 | A lower bound for an opera... |
| nmoubi 30752 | An upper bound for an oper... |
| nmoub3i 30753 | An upper bound for an oper... |
| nmoub2i 30754 | An upper bound for an oper... |
| nmobndi 30755 | Two ways to express that a... |
| nmounbi 30756 | Two ways two express that ... |
| nmounbseqi 30757 | An unbounded operator dete... |
| nmounbseqiALT 30758 | Alternate shorter proof of... |
| nmobndseqi 30759 | A bounded sequence determi... |
| nmobndseqiALT 30760 | Alternate shorter proof of... |
| bloval 30761 | The class of bounded linea... |
| isblo 30762 | The predicate "is a bounde... |
| isblo2 30763 | The predicate "is a bounde... |
| bloln 30764 | A bounded operator is a li... |
| blof 30765 | A bounded operator is an o... |
| nmblore 30766 | The norm of a bounded oper... |
| 0ofval 30767 | The zero operator between ... |
| 0oval 30768 | Value of the zero operator... |
| 0oo 30769 | The zero operator is an op... |
| 0lno 30770 | The zero operator is linea... |
| nmoo0 30771 | The operator norm of the z... |
| 0blo 30772 | The zero operator is a bou... |
| nmlno0lem 30773 | Lemma for ~ nmlno0i . (Co... |
| nmlno0i 30774 | The norm of a linear opera... |
| nmlno0 30775 | The norm of a linear opera... |
| nmlnoubi 30776 | An upper bound for the ope... |
| nmlnogt0 30777 | The norm of a nonzero line... |
| lnon0 30778 | The domain of a nonzero li... |
| nmblolbii 30779 | A lower bound for the norm... |
| nmblolbi 30780 | A lower bound for the norm... |
| isblo3i 30781 | The predicate "is a bounde... |
| blo3i 30782 | Properties that determine ... |
| blometi 30783 | Upper bound for the distan... |
| blocnilem 30784 | Lemma for ~ blocni and ~ l... |
| blocni 30785 | A linear operator is conti... |
| lnocni 30786 | If a linear operator is co... |
| blocn 30787 | A linear operator is conti... |
| blocn2 30788 | A bounded linear operator ... |
| ajfval 30789 | The adjoint function. (Co... |
| hmoval 30790 | The set of Hermitian (self... |
| ishmo 30791 | The predicate "is a hermit... |
| phnv 30794 | Every complex inner produc... |
| phrel 30795 | The class of all complex i... |
| phnvi 30796 | Every complex inner produc... |
| isphg 30797 | The predicate "is a comple... |
| phop 30798 | A complex inner product sp... |
| cncph 30799 | The set of complex numbers... |
| elimph 30800 | Hypothesis elimination lem... |
| elimphu 30801 | Hypothesis elimination lem... |
| isph 30802 | The predicate "is an inner... |
| phpar2 30803 | The parallelogram law for ... |
| phpar 30804 | The parallelogram law for ... |
| ip0i 30805 | A slight variant of Equati... |
| ip1ilem 30806 | Lemma for ~ ip1i . (Contr... |
| ip1i 30807 | Equation 6.47 of [Ponnusam... |
| ip2i 30808 | Equation 6.48 of [Ponnusam... |
| ipdirilem 30809 | Lemma for ~ ipdiri . (Con... |
| ipdiri 30810 | Distributive law for inner... |
| ipasslem1 30811 | Lemma for ~ ipassi . Show... |
| ipasslem2 30812 | Lemma for ~ ipassi . Show... |
| ipasslem3 30813 | Lemma for ~ ipassi . Show... |
| ipasslem4 30814 | Lemma for ~ ipassi . Show... |
| ipasslem5 30815 | Lemma for ~ ipassi . Show... |
| ipasslem7 30816 | Lemma for ~ ipassi . Show... |
| ipasslem8 30817 | Lemma for ~ ipassi . By ~... |
| ipasslem9 30818 | Lemma for ~ ipassi . Conc... |
| ipasslem10 30819 | Lemma for ~ ipassi . Show... |
| ipasslem11 30820 | Lemma for ~ ipassi . Show... |
| ipassi 30821 | Associative law for inner ... |
| dipdir 30822 | Distributive law for inner... |
| dipdi 30823 | Distributive law for inner... |
| ip2dii 30824 | Inner product of two sums.... |
| dipass 30825 | Associative law for inner ... |
| dipassr 30826 | "Associative" law for seco... |
| dipassr2 30827 | "Associative" law for inne... |
| dipsubdir 30828 | Distributive law for inner... |
| dipsubdi 30829 | Distributive law for inner... |
| pythi 30830 | The Pythagorean theorem fo... |
| siilem1 30831 | Lemma for ~ sii . (Contri... |
| siilem2 30832 | Lemma for ~ sii . (Contri... |
| siii 30833 | Inference from ~ sii . (C... |
| sii 30834 | Obsolete version of ~ ipca... |
| ipblnfi 30835 | A function ` F ` generated... |
| ip2eqi 30836 | Two vectors are equal iff ... |
| phoeqi 30837 | A condition implying that ... |
| ajmoi 30838 | Every operator has at most... |
| ajfuni 30839 | The adjoint function is a ... |
| ajfun 30840 | The adjoint function is a ... |
| ajval 30841 | Value of the adjoint funct... |
| iscbn 30844 | A complex Banach space is ... |
| cbncms 30845 | The induced metric on comp... |
| bnnv 30846 | Every complex Banach space... |
| bnrel 30847 | The class of all complex B... |
| bnsscmcl 30848 | A subspace of a Banach spa... |
| cnbn 30849 | The set of complex numbers... |
| ubthlem1 30850 | Lemma for ~ ubth . The fu... |
| ubthlem2 30851 | Lemma for ~ ubth . Given ... |
| ubthlem3 30852 | Lemma for ~ ubth . Prove ... |
| ubth 30853 | Uniform Boundedness Theore... |
| minvecolem1 30854 | Lemma for ~ minveco . The... |
| minvecolem2 30855 | Lemma for ~ minveco . Any... |
| minvecolem3 30856 | Lemma for ~ minveco . The... |
| minvecolem4a 30857 | Lemma for ~ minveco . ` F ... |
| minvecolem4b 30858 | Lemma for ~ minveco . The... |
| minvecolem4c 30859 | Lemma for ~ minveco . The... |
| minvecolem4 30860 | Lemma for ~ minveco . The... |
| minvecolem5 30861 | Lemma for ~ minveco . Dis... |
| minvecolem6 30862 | Lemma for ~ minveco . Any... |
| minvecolem7 30863 | Lemma for ~ minveco . Sin... |
| minveco 30864 | Minimizing vector theorem,... |
| ishlo 30867 | The predicate "is a comple... |
| hlobn 30868 | Every complex Hilbert spac... |
| hlph 30869 | Every complex Hilbert spac... |
| hlrel 30870 | The class of all complex H... |
| hlnv 30871 | Every complex Hilbert spac... |
| hlnvi 30872 | Every complex Hilbert spac... |
| hlvc 30873 | Every complex Hilbert spac... |
| hlcmet 30874 | The induced metric on a co... |
| hlmet 30875 | The induced metric on a co... |
| hlpar2 30876 | The parallelogram law sati... |
| hlpar 30877 | The parallelogram law sati... |
| hlex 30878 | The base set of a Hilbert ... |
| hladdf 30879 | Mapping for Hilbert space ... |
| hlcom 30880 | Hilbert space vector addit... |
| hlass 30881 | Hilbert space vector addit... |
| hl0cl 30882 | The Hilbert space zero vec... |
| hladdid 30883 | Hilbert space addition wit... |
| hlmulf 30884 | Mapping for Hilbert space ... |
| hlmulid 30885 | Hilbert space scalar multi... |
| hlmulass 30886 | Hilbert space scalar multi... |
| hldi 30887 | Hilbert space scalar multi... |
| hldir 30888 | Hilbert space scalar multi... |
| hlmul0 30889 | Hilbert space scalar multi... |
| hlipf 30890 | Mapping for Hilbert space ... |
| hlipcj 30891 | Conjugate law for Hilbert ... |
| hlipdir 30892 | Distributive law for Hilbe... |
| hlipass 30893 | Associative law for Hilber... |
| hlipgt0 30894 | The inner product of a Hil... |
| hlcompl 30895 | Completeness of a Hilbert ... |
| cnchl 30896 | The set of complex numbers... |
| htthlem 30897 | Lemma for ~ htth . The co... |
| htth 30898 | Hellinger-Toeplitz Theorem... |
| The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here | |
| h2hva 30954 | The group (addition) opera... |
| h2hsm 30955 | The scalar product operati... |
| h2hnm 30956 | The norm function of Hilbe... |
| h2hvs 30957 | The vector subtraction ope... |
| h2hmetdval 30958 | Value of the distance func... |
| h2hcau 30959 | The Cauchy sequences of Hi... |
| h2hlm 30960 | The limit sequences of Hil... |
| axhilex-zf 30961 | Derive Axiom ~ ax-hilex fr... |
| axhfvadd-zf 30962 | Derive Axiom ~ ax-hfvadd f... |
| axhvcom-zf 30963 | Derive Axiom ~ ax-hvcom fr... |
| axhvass-zf 30964 | Derive Axiom ~ ax-hvass fr... |
| axhv0cl-zf 30965 | Derive Axiom ~ ax-hv0cl fr... |
| axhvaddid-zf 30966 | Derive Axiom ~ ax-hvaddid ... |
| axhfvmul-zf 30967 | Derive Axiom ~ ax-hfvmul f... |
| axhvmulid-zf 30968 | Derive Axiom ~ ax-hvmulid ... |
| axhvmulass-zf 30969 | Derive Axiom ~ ax-hvmulass... |
| axhvdistr1-zf 30970 | Derive Axiom ~ ax-hvdistr1... |
| axhvdistr2-zf 30971 | Derive Axiom ~ ax-hvdistr2... |
| axhvmul0-zf 30972 | Derive Axiom ~ ax-hvmul0 f... |
| axhfi-zf 30973 | Derive Axiom ~ ax-hfi from... |
| axhis1-zf 30974 | Derive Axiom ~ ax-his1 fro... |
| axhis2-zf 30975 | Derive Axiom ~ ax-his2 fro... |
| axhis3-zf 30976 | Derive Axiom ~ ax-his3 fro... |
| axhis4-zf 30977 | Derive Axiom ~ ax-his4 fro... |
| axhcompl-zf 30978 | Derive Axiom ~ ax-hcompl f... |
| hvmulex 30991 | The Hilbert space scalar p... |
| hvaddcl 30992 | Closure of vector addition... |
| hvmulcl 30993 | Closure of scalar multipli... |
| hvmulcli 30994 | Closure inference for scal... |
| hvsubf 30995 | Mapping domain and codomai... |
| hvsubval 30996 | Value of vector subtractio... |
| hvsubcl 30997 | Closure of vector subtract... |
| hvaddcli 30998 | Closure of vector addition... |
| hvcomi 30999 | Commutation of vector addi... |
| hvsubvali 31000 | Value of vector subtractio... |
| hvsubcli 31001 | Closure of vector subtract... |
| ifhvhv0 31002 | Prove ` if ( A e. ~H , A ,... |
| hvaddlid 31003 | Addition with the zero vec... |
| hvmul0 31004 | Scalar multiplication with... |
| hvmul0or 31005 | If a scalar product is zer... |
| hvsubid 31006 | Subtraction of a vector fr... |
| hvnegid 31007 | Addition of negative of a ... |
| hv2neg 31008 | Two ways to express the ne... |
| hvaddlidi 31009 | Addition with the zero vec... |
| hvnegidi 31010 | Addition of negative of a ... |
| hv2negi 31011 | Two ways to express the ne... |
| hvm1neg 31012 | Convert minus one times a ... |
| hvaddsubval 31013 | Value of vector addition i... |
| hvadd32 31014 | Commutative/associative la... |
| hvadd12 31015 | Commutative/associative la... |
| hvadd4 31016 | Hilbert vector space addit... |
| hvsub4 31017 | Hilbert vector space addit... |
| hvaddsub12 31018 | Commutative/associative la... |
| hvpncan 31019 | Addition/subtraction cance... |
| hvpncan2 31020 | Addition/subtraction cance... |
| hvaddsubass 31021 | Associativity of sum and d... |
| hvpncan3 31022 | Subtraction and addition o... |
| hvmulcom 31023 | Scalar multiplication comm... |
| hvsubass 31024 | Hilbert vector space assoc... |
| hvsub32 31025 | Hilbert vector space commu... |
| hvmulassi 31026 | Scalar multiplication asso... |
| hvmulcomi 31027 | Scalar multiplication comm... |
| hvmul2negi 31028 | Double negative in scalar ... |
| hvsubdistr1 31029 | Scalar multiplication dist... |
| hvsubdistr2 31030 | Scalar multiplication dist... |
| hvdistr1i 31031 | Scalar multiplication dist... |
| hvsubdistr1i 31032 | Scalar multiplication dist... |
| hvassi 31033 | Hilbert vector space assoc... |
| hvadd32i 31034 | Hilbert vector space commu... |
| hvsubassi 31035 | Hilbert vector space assoc... |
| hvsub32i 31036 | Hilbert vector space commu... |
| hvadd12i 31037 | Hilbert vector space commu... |
| hvadd4i 31038 | Hilbert vector space addit... |
| hvsubsub4i 31039 | Hilbert vector space addit... |
| hvsubsub4 31040 | Hilbert vector space addit... |
| hv2times 31041 | Two times a vector. (Cont... |
| hvnegdii 31042 | Distribution of negative o... |
| hvsubeq0i 31043 | If the difference between ... |
| hvsubcan2i 31044 | Vector cancellation law. ... |
| hvaddcani 31045 | Cancellation law for vecto... |
| hvsubaddi 31046 | Relationship between vecto... |
| hvnegdi 31047 | Distribution of negative o... |
| hvsubeq0 31048 | If the difference between ... |
| hvaddeq0 31049 | If the sum of two vectors ... |
| hvaddcan 31050 | Cancellation law for vecto... |
| hvaddcan2 31051 | Cancellation law for vecto... |
| hvmulcan 31052 | Cancellation law for scala... |
| hvmulcan2 31053 | Cancellation law for scala... |
| hvsubcan 31054 | Cancellation law for vecto... |
| hvsubcan2 31055 | Cancellation law for vecto... |
| hvsub0 31056 | Subtraction of a zero vect... |
| hvsubadd 31057 | Relationship between vecto... |
| hvaddsub4 31058 | Hilbert vector space addit... |
| hicl 31060 | Closure of inner product. ... |
| hicli 31061 | Closure inference for inne... |
| his5 31066 | Associative law for inner ... |
| his52 31067 | Associative law for inner ... |
| his35 31068 | Move scalar multiplication... |
| his35i 31069 | Move scalar multiplication... |
| his7 31070 | Distributive law for inner... |
| hiassdi 31071 | Distributive/associative l... |
| his2sub 31072 | Distributive law for inner... |
| his2sub2 31073 | Distributive law for inner... |
| hire 31074 | A necessary and sufficient... |
| hiidrcl 31075 | Real closure of inner prod... |
| hi01 31076 | Inner product with the 0 v... |
| hi02 31077 | Inner product with the 0 v... |
| hiidge0 31078 | Inner product with self is... |
| his6 31079 | Zero inner product with se... |
| his1i 31080 | Conjugate law for inner pr... |
| abshicom 31081 | Commuted inner products ha... |
| hial0 31082 | A vector whose inner produ... |
| hial02 31083 | A vector whose inner produ... |
| hisubcomi 31084 | Two vector subtractions si... |
| hi2eq 31085 | Lemma used to prove equali... |
| hial2eq 31086 | Two vectors whose inner pr... |
| hial2eq2 31087 | Two vectors whose inner pr... |
| orthcom 31088 | Orthogonality commutes. (... |
| normlem0 31089 | Lemma used to derive prope... |
| normlem1 31090 | Lemma used to derive prope... |
| normlem2 31091 | Lemma used to derive prope... |
| normlem3 31092 | Lemma used to derive prope... |
| normlem4 31093 | Lemma used to derive prope... |
| normlem5 31094 | Lemma used to derive prope... |
| normlem6 31095 | Lemma used to derive prope... |
| normlem7 31096 | Lemma used to derive prope... |
| normlem8 31097 | Lemma used to derive prope... |
| normlem9 31098 | Lemma used to derive prope... |
| normlem7tALT 31099 | Lemma used to derive prope... |
| bcseqi 31100 | Equality case of Bunjakova... |
| normlem9at 31101 | Lemma used to derive prope... |
| dfhnorm2 31102 | Alternate definition of th... |
| normf 31103 | The norm function maps fro... |
| normval 31104 | The value of the norm of a... |
| normcl 31105 | Real closure of the norm o... |
| normge0 31106 | The norm of a vector is no... |
| normgt0 31107 | The norm of nonzero vector... |
| norm0 31108 | The norm of a zero vector.... |
| norm-i 31109 | Theorem 3.3(i) of [Beran] ... |
| normne0 31110 | A norm is nonzero iff its ... |
| normcli 31111 | Real closure of the norm o... |
| normsqi 31112 | The square of a norm. (Co... |
| norm-i-i 31113 | Theorem 3.3(i) of [Beran] ... |
| normsq 31114 | The square of a norm. (Co... |
| normsub0i 31115 | Two vectors are equal iff ... |
| normsub0 31116 | Two vectors are equal iff ... |
| norm-ii-i 31117 | Triangle inequality for no... |
| norm-ii 31118 | Triangle inequality for no... |
| norm-iii-i 31119 | Theorem 3.3(iii) of [Beran... |
| norm-iii 31120 | Theorem 3.3(iii) of [Beran... |
| normsubi 31121 | Negative doesn't change th... |
| normpythi 31122 | Analogy to Pythagorean the... |
| normsub 31123 | Swapping order of subtract... |
| normneg 31124 | The norm of a vector equal... |
| normpyth 31125 | Analogy to Pythagorean the... |
| normpyc 31126 | Corollary to Pythagorean t... |
| norm3difi 31127 | Norm of differences around... |
| norm3adifii 31128 | Norm of differences around... |
| norm3lem 31129 | Lemma involving norm of di... |
| norm3dif 31130 | Norm of differences around... |
| norm3dif2 31131 | Norm of differences around... |
| norm3lemt 31132 | Lemma involving norm of di... |
| norm3adifi 31133 | Norm of differences around... |
| normpari 31134 | Parallelogram law for norm... |
| normpar 31135 | Parallelogram law for norm... |
| normpar2i 31136 | Corollary of parallelogram... |
| polid2i 31137 | Generalized polarization i... |
| polidi 31138 | Polarization identity. Re... |
| polid 31139 | Polarization identity. Re... |
| hilablo 31140 | Hilbert space vector addit... |
| hilid 31141 | The group identity element... |
| hilvc 31142 | Hilbert space is a complex... |
| hilnormi 31143 | Hilbert space norm in term... |
| hilhhi 31144 | Deduce the structure of Hi... |
| hhnv 31145 | Hilbert space is a normed ... |
| hhva 31146 | The group (addition) opera... |
| hhba 31147 | The base set of Hilbert sp... |
| hh0v 31148 | The zero vector of Hilbert... |
| hhsm 31149 | The scalar product operati... |
| hhvs 31150 | The vector subtraction ope... |
| hhnm 31151 | The norm function of Hilbe... |
| hhims 31152 | The induced metric of Hilb... |
| hhims2 31153 | Hilbert space distance met... |
| hhmet 31154 | The induced metric of Hilb... |
| hhxmet 31155 | The induced metric of Hilb... |
| hhmetdval 31156 | Value of the distance func... |
| hhip 31157 | The inner product operatio... |
| hhph 31158 | The Hilbert space of the H... |
| bcsiALT 31159 | Bunjakovaskij-Cauchy-Schwa... |
| bcsiHIL 31160 | Bunjakovaskij-Cauchy-Schwa... |
| bcs 31161 | Bunjakovaskij-Cauchy-Schwa... |
| bcs2 31162 | Corollary of the Bunjakova... |
| bcs3 31163 | Corollary of the Bunjakova... |
| hcau 31164 | Member of the set of Cauch... |
| hcauseq 31165 | A Cauchy sequences on a Hi... |
| hcaucvg 31166 | A Cauchy sequence on a Hil... |
| seq1hcau 31167 | A sequence on a Hilbert sp... |
| hlimi 31168 | Express the predicate: Th... |
| hlimseqi 31169 | A sequence with a limit on... |
| hlimveci 31170 | Closure of the limit of a ... |
| hlimconvi 31171 | Convergence of a sequence ... |
| hlim2 31172 | The limit of a sequence on... |
| hlimadd 31173 | Limit of the sum of two se... |
| hilmet 31174 | The Hilbert space norm det... |
| hilxmet 31175 | The Hilbert space norm det... |
| hilmetdval 31176 | Value of the distance func... |
| hilims 31177 | Hilbert space distance met... |
| hhcau 31178 | The Cauchy sequences of Hi... |
| hhlm 31179 | The limit sequences of Hil... |
| hhcmpl 31180 | Lemma used for derivation ... |
| hilcompl 31181 | Lemma used for derivation ... |
| hhcms 31183 | The Hilbert space induced ... |
| hhhl 31184 | The Hilbert space structur... |
| hilcms 31185 | The Hilbert space norm det... |
| hilhl 31186 | The Hilbert space of the H... |
| issh 31188 | Subspace ` H ` of a Hilber... |
| issh2 31189 | Subspace ` H ` of a Hilber... |
| shss 31190 | A subspace is a subset of ... |
| shel 31191 | A member of a subspace of ... |
| shex 31192 | The set of subspaces of a ... |
| shssii 31193 | A closed subspace of a Hil... |
| sheli 31194 | A member of a subspace of ... |
| shelii 31195 | A member of a subspace of ... |
| sh0 31196 | The zero vector belongs to... |
| shaddcl 31197 | Closure of vector addition... |
| shmulcl 31198 | Closure of vector scalar m... |
| issh3 31199 | Subspace ` H ` of a Hilber... |
| shsubcl 31200 | Closure of vector subtract... |
| isch 31202 | Closed subspace ` H ` of a... |
| isch2 31203 | Closed subspace ` H ` of a... |
| chsh 31204 | A closed subspace is a sub... |
| chsssh 31205 | Closed subspaces are subsp... |
| chex 31206 | The set of closed subspace... |
| chshii 31207 | A closed subspace is a sub... |
| ch0 31208 | The zero vector belongs to... |
| chss 31209 | A closed subspace of a Hil... |
| chel 31210 | A member of a closed subsp... |
| chssii 31211 | A closed subspace of a Hil... |
| cheli 31212 | A member of a closed subsp... |
| chelii 31213 | A member of a closed subsp... |
| chlimi 31214 | The limit property of a cl... |
| hlim0 31215 | The zero sequence in Hilbe... |
| hlimcaui 31216 | If a sequence in Hilbert s... |
| hlimf 31217 | Function-like behavior of ... |
| hlimuni 31218 | A Hilbert space sequence c... |
| hlimreui 31219 | The limit of a Hilbert spa... |
| hlimeui 31220 | The limit of a Hilbert spa... |
| isch3 31221 | A Hilbert subspace is clos... |
| chcompl 31222 | Completeness of a closed s... |
| helch 31223 | The Hilbert lattice one (w... |
| ifchhv 31224 | Prove ` if ( A e. CH , A ,... |
| helsh 31225 | Hilbert space is a subspac... |
| shsspwh 31226 | Subspaces are subsets of H... |
| chsspwh 31227 | Closed subspaces are subse... |
| hsn0elch 31228 | The zero subspace belongs ... |
| norm1 31229 | From any nonzero Hilbert s... |
| norm1exi 31230 | A normalized vector exists... |
| norm1hex 31231 | A normalized vector can ex... |
| elch0 31234 | Membership in zero for clo... |
| h0elch 31235 | The zero subspace is a clo... |
| h0elsh 31236 | The zero subspace is a sub... |
| hhssva 31237 | The vector addition operat... |
| hhsssm 31238 | The scalar multiplication ... |
| hhssnm 31239 | The norm operation on a su... |
| issubgoilem 31240 | Lemma for ~ hhssabloilem .... |
| hhssabloilem 31241 | Lemma for ~ hhssabloi . F... |
| hhssabloi 31242 | Abelian group property of ... |
| hhssablo 31243 | Abelian group property of ... |
| hhssnv 31244 | Normed complex vector spac... |
| hhssnvt 31245 | Normed complex vector spac... |
| hhsst 31246 | A member of ` SH ` is a su... |
| hhshsslem1 31247 | Lemma for ~ hhsssh . (Con... |
| hhshsslem2 31248 | Lemma for ~ hhsssh . (Con... |
| hhsssh 31249 | The predicate " ` H ` is a... |
| hhsssh2 31250 | The predicate " ` H ` is a... |
| hhssba 31251 | The base set of a subspace... |
| hhssvs 31252 | The vector subtraction ope... |
| hhssvsf 31253 | Mapping of the vector subt... |
| hhssims 31254 | Induced metric of a subspa... |
| hhssims2 31255 | Induced metric of a subspa... |
| hhssmet 31256 | Induced metric of a subspa... |
| hhssmetdval 31257 | Value of the distance func... |
| hhsscms 31258 | The induced metric of a cl... |
| hhssbnOLD 31259 | Obsolete version of ~ cssb... |
| ocval 31260 | Value of orthogonal comple... |
| ocel 31261 | Membership in orthogonal c... |
| shocel 31262 | Membership in orthogonal c... |
| ocsh 31263 | The orthogonal complement ... |
| shocsh 31264 | The orthogonal complement ... |
| ocss 31265 | An orthogonal complement i... |
| shocss 31266 | An orthogonal complement i... |
| occon 31267 | Contraposition law for ort... |
| occon2 31268 | Double contraposition for ... |
| occon2i 31269 | Double contraposition for ... |
| oc0 31270 | The zero vector belongs to... |
| ocorth 31271 | Members of a subset and it... |
| shocorth 31272 | Members of a subspace and ... |
| ococss 31273 | Inclusion in complement of... |
| shococss 31274 | Inclusion in complement of... |
| shorth 31275 | Members of orthogonal subs... |
| ocin 31276 | Intersection of a Hilbert ... |
| occon3 31277 | Hilbert lattice contraposi... |
| ocnel 31278 | A nonzero vector in the co... |
| chocvali 31279 | Value of the orthogonal co... |
| shuni 31280 | Two subspaces with trivial... |
| chocunii 31281 | Lemma for uniqueness part ... |
| pjhthmo 31282 | Projection Theorem, unique... |
| occllem 31283 | Lemma for ~ occl . (Contr... |
| occl 31284 | Closure of complement of H... |
| shoccl 31285 | Closure of complement of H... |
| choccl 31286 | Closure of complement of H... |
| choccli 31287 | Closure of ` CH ` orthocom... |
| shsval 31292 | Value of subspace sum of t... |
| shsss 31293 | The subspace sum is a subs... |
| shsel 31294 | Membership in the subspace... |
| shsel3 31295 | Membership in the subspace... |
| shseli 31296 | Membership in subspace sum... |
| shscli 31297 | Closure of subspace sum. ... |
| shscl 31298 | Closure of subspace sum. ... |
| shscom 31299 | Commutative law for subspa... |
| shsva 31300 | Vector sum belongs to subs... |
| shsel1 31301 | A subspace sum contains a ... |
| shsel2 31302 | A subspace sum contains a ... |
| shsvs 31303 | Vector subtraction belongs... |
| shsub1 31304 | Subspace sum is an upper b... |
| shsub2 31305 | Subspace sum is an upper b... |
| choc0 31306 | The orthocomplement of the... |
| choc1 31307 | The orthocomplement of the... |
| chocnul 31308 | Orthogonal complement of t... |
| shintcli 31309 | Closure of intersection of... |
| shintcl 31310 | The intersection of a none... |
| chintcli 31311 | The intersection of a none... |
| chintcl 31312 | The intersection (infimum)... |
| spanval 31313 | Value of the linear span o... |
| hsupval 31314 | Value of supremum of set o... |
| chsupval 31315 | The value of the supremum ... |
| spancl 31316 | The span of a subset of Hi... |
| elspancl 31317 | A member of a span is a ve... |
| shsupcl 31318 | Closure of the subspace su... |
| hsupcl 31319 | Closure of supremum of set... |
| chsupcl 31320 | Closure of supremum of sub... |
| hsupss 31321 | Subset relation for suprem... |
| chsupss 31322 | Subset relation for suprem... |
| hsupunss 31323 | The union of a set of Hilb... |
| chsupunss 31324 | The union of a set of clos... |
| spanss2 31325 | A subset of Hilbert space ... |
| shsupunss 31326 | The union of a set of subs... |
| spanid 31327 | A subspace of Hilbert spac... |
| spanss 31328 | Ordering relationship for ... |
| spanssoc 31329 | The span of a subset of Hi... |
| sshjval 31330 | Value of join for subsets ... |
| shjval 31331 | Value of join in ` SH ` . ... |
| chjval 31332 | Value of join in ` CH ` . ... |
| chjvali 31333 | Value of join in ` CH ` . ... |
| sshjval3 31334 | Value of join for subsets ... |
| sshjcl 31335 | Closure of join for subset... |
| shjcl 31336 | Closure of join in ` SH ` ... |
| chjcl 31337 | Closure of join in ` CH ` ... |
| shjcom 31338 | Commutative law for Hilber... |
| shless 31339 | Subset implies subset of s... |
| shlej1 31340 | Add disjunct to both sides... |
| shlej2 31341 | Add disjunct to both sides... |
| shincli 31342 | Closure of intersection of... |
| shscomi 31343 | Commutative law for subspa... |
| shsvai 31344 | Vector sum belongs to subs... |
| shsel1i 31345 | A subspace sum contains a ... |
| shsel2i 31346 | A subspace sum contains a ... |
| shsvsi 31347 | Vector subtraction belongs... |
| shunssi 31348 | Union is smaller than subs... |
| shunssji 31349 | Union is smaller than Hilb... |
| shsleji 31350 | Subspace sum is smaller th... |
| shjcomi 31351 | Commutative law for join i... |
| shsub1i 31352 | Subspace sum is an upper b... |
| shsub2i 31353 | Subspace sum is an upper b... |
| shub1i 31354 | Hilbert lattice join is an... |
| shjcli 31355 | Closure of ` CH ` join. (... |
| shjshcli 31356 | ` SH ` closure of join. (... |
| shlessi 31357 | Subset implies subset of s... |
| shlej1i 31358 | Add disjunct to both sides... |
| shlej2i 31359 | Add disjunct to both sides... |
| shslej 31360 | Subspace sum is smaller th... |
| shincl 31361 | Closure of intersection of... |
| shub1 31362 | Hilbert lattice join is an... |
| shub2 31363 | A subspace is a subset of ... |
| shsidmi 31364 | Idempotent law for Hilbert... |
| shslubi 31365 | The least upper bound law ... |
| shlesb1i 31366 | Hilbert lattice ordering i... |
| shsval2i 31367 | An alternate way to expres... |
| shsval3i 31368 | An alternate way to expres... |
| shmodsi 31369 | The modular law holds for ... |
| shmodi 31370 | The modular law is implied... |
| pjhthlem1 31371 | Lemma for ~ pjhth . (Cont... |
| pjhthlem2 31372 | Lemma for ~ pjhth . (Cont... |
| pjhth 31373 | Projection Theorem: Any H... |
| pjhtheu 31374 | Projection Theorem: Any H... |
| pjhfval 31376 | The value of the projectio... |
| pjhval 31377 | Value of a projection. (C... |
| pjpreeq 31378 | Equality with a projection... |
| pjeq 31379 | Equality with a projection... |
| axpjcl 31380 | Closure of a projection in... |
| pjhcl 31381 | Closure of a projection in... |
| omlsilem 31382 | Lemma for orthomodular law... |
| omlsii 31383 | Subspace inference form of... |
| omlsi 31384 | Subspace form of orthomodu... |
| ococi 31385 | Complement of complement o... |
| ococ 31386 | Complement of complement o... |
| dfch2 31387 | Alternate definition of th... |
| ococin 31388 | The double complement is t... |
| hsupval2 31389 | Alternate definition of su... |
| chsupval2 31390 | The value of the supremum ... |
| sshjval2 31391 | Value of join in the set o... |
| chsupid 31392 | A subspace is the supremum... |
| chsupsn 31393 | Value of supremum of subse... |
| shlub 31394 | Hilbert lattice join is th... |
| shlubi 31395 | Hilbert lattice join is th... |
| pjhtheu2 31396 | Uniqueness of ` y ` for th... |
| pjcli 31397 | Closure of a projection in... |
| pjhcli 31398 | Closure of a projection in... |
| pjpjpre 31399 | Decomposition of a vector ... |
| axpjpj 31400 | Decomposition of a vector ... |
| pjclii 31401 | Closure of a projection in... |
| pjhclii 31402 | Closure of a projection in... |
| pjpj0i 31403 | Decomposition of a vector ... |
| pjpji 31404 | Decomposition of a vector ... |
| pjpjhth 31405 | Projection Theorem: Any H... |
| pjpjhthi 31406 | Projection Theorem: Any H... |
| pjop 31407 | Orthocomplement projection... |
| pjpo 31408 | Projection in terms of ort... |
| pjopi 31409 | Orthocomplement projection... |
| pjpoi 31410 | Projection in terms of ort... |
| pjoc1i 31411 | Projection of a vector in ... |
| pjchi 31412 | Projection of a vector in ... |
| pjoccl 31413 | The part of a vector that ... |
| pjoc1 31414 | Projection of a vector in ... |
| pjomli 31415 | Subspace form of orthomodu... |
| pjoml 31416 | Subspace form of orthomodu... |
| pjococi 31417 | Proof of orthocomplement t... |
| pjoc2i 31418 | Projection of a vector in ... |
| pjoc2 31419 | Projection of a vector in ... |
| sh0le 31420 | The zero subspace is the s... |
| ch0le 31421 | The zero subspace is the s... |
| shle0 31422 | No subspace is smaller tha... |
| chle0 31423 | No Hilbert lattice element... |
| chnlen0 31424 | A Hilbert lattice element ... |
| ch0pss 31425 | The zero subspace is a pro... |
| orthin 31426 | The intersection of orthog... |
| ssjo 31427 | The lattice join of a subs... |
| shne0i 31428 | A nonzero subspace has a n... |
| shs0i 31429 | Hilbert subspace sum with ... |
| shs00i 31430 | Two subspaces are zero iff... |
| ch0lei 31431 | The closed subspace zero i... |
| chle0i 31432 | No Hilbert closed subspace... |
| chne0i 31433 | A nonzero closed subspace ... |
| chocini 31434 | Intersection of a closed s... |
| chj0i 31435 | Join with lattice zero in ... |
| chm1i 31436 | Meet with lattice one in `... |
| chjcli 31437 | Closure of ` CH ` join. (... |
| chsleji 31438 | Subspace sum is smaller th... |
| chseli 31439 | Membership in subspace sum... |
| chincli 31440 | Closure of Hilbert lattice... |
| chsscon3i 31441 | Hilbert lattice contraposi... |
| chsscon1i 31442 | Hilbert lattice contraposi... |
| chsscon2i 31443 | Hilbert lattice contraposi... |
| chcon2i 31444 | Hilbert lattice contraposi... |
| chcon1i 31445 | Hilbert lattice contraposi... |
| chcon3i 31446 | Hilbert lattice contraposi... |
| chunssji 31447 | Union is smaller than ` CH... |
| chjcomi 31448 | Commutative law for join i... |
| chub1i 31449 | ` CH ` join is an upper bo... |
| chub2i 31450 | ` CH ` join is an upper bo... |
| chlubi 31451 | Hilbert lattice join is th... |
| chlubii 31452 | Hilbert lattice join is th... |
| chlej1i 31453 | Add join to both sides of ... |
| chlej2i 31454 | Add join to both sides of ... |
| chlej12i 31455 | Add join to both sides of ... |
| chlejb1i 31456 | Hilbert lattice ordering i... |
| chdmm1i 31457 | De Morgan's law for meet i... |
| chdmm2i 31458 | De Morgan's law for meet i... |
| chdmm3i 31459 | De Morgan's law for meet i... |
| chdmm4i 31460 | De Morgan's law for meet i... |
| chdmj1i 31461 | De Morgan's law for join i... |
| chdmj2i 31462 | De Morgan's law for join i... |
| chdmj3i 31463 | De Morgan's law for join i... |
| chdmj4i 31464 | De Morgan's law for join i... |
| chnlei 31465 | Equivalent expressions for... |
| chjassi 31466 | Associative law for Hilber... |
| chj00i 31467 | Two Hilbert lattice elemen... |
| chjoi 31468 | The join of a closed subsp... |
| chj1i 31469 | Join with Hilbert lattice ... |
| chm0i 31470 | Meet with Hilbert lattice ... |
| chm0 31471 | Meet with Hilbert lattice ... |
| shjshsi 31472 | Hilbert lattice join equal... |
| shjshseli 31473 | A closed subspace sum equa... |
| chne0 31474 | A nonzero closed subspace ... |
| chocin 31475 | Intersection of a closed s... |
| chssoc 31476 | A closed subspace less tha... |
| chj0 31477 | Join with Hilbert lattice ... |
| chslej 31478 | Subspace sum is smaller th... |
| chincl 31479 | Closure of Hilbert lattice... |
| chsscon3 31480 | Hilbert lattice contraposi... |
| chsscon1 31481 | Hilbert lattice contraposi... |
| chsscon2 31482 | Hilbert lattice contraposi... |
| chpsscon3 31483 | Hilbert lattice contraposi... |
| chpsscon1 31484 | Hilbert lattice contraposi... |
| chpsscon2 31485 | Hilbert lattice contraposi... |
| chjcom 31486 | Commutative law for Hilber... |
| chub1 31487 | Hilbert lattice join is gr... |
| chub2 31488 | Hilbert lattice join is gr... |
| chlub 31489 | Hilbert lattice join is th... |
| chlej1 31490 | Add join to both sides of ... |
| chlej2 31491 | Add join to both sides of ... |
| chlejb1 31492 | Hilbert lattice ordering i... |
| chlejb2 31493 | Hilbert lattice ordering i... |
| chnle 31494 | Equivalent expressions for... |
| chjo 31495 | The join of a closed subsp... |
| chabs1 31496 | Hilbert lattice absorption... |
| chabs2 31497 | Hilbert lattice absorption... |
| chabs1i 31498 | Hilbert lattice absorption... |
| chabs2i 31499 | Hilbert lattice absorption... |
| chjidm 31500 | Idempotent law for Hilbert... |
| chjidmi 31501 | Idempotent law for Hilbert... |
| chj12i 31502 | A rearrangement of Hilbert... |
| chj4i 31503 | Rearrangement of the join ... |
| chjjdiri 31504 | Hilbert lattice join distr... |
| chdmm1 31505 | De Morgan's law for meet i... |
| chdmm2 31506 | De Morgan's law for meet i... |
| chdmm3 31507 | De Morgan's law for meet i... |
| chdmm4 31508 | De Morgan's law for meet i... |
| chdmj1 31509 | De Morgan's law for join i... |
| chdmj2 31510 | De Morgan's law for join i... |
| chdmj3 31511 | De Morgan's law for join i... |
| chdmj4 31512 | De Morgan's law for join i... |
| chjass 31513 | Associative law for Hilber... |
| chj12 31514 | A rearrangement of Hilbert... |
| chj4 31515 | Rearrangement of the join ... |
| ledii 31516 | An ortholattice is distrib... |
| lediri 31517 | An ortholattice is distrib... |
| lejdii 31518 | An ortholattice is distrib... |
| lejdiri 31519 | An ortholattice is distrib... |
| ledi 31520 | An ortholattice is distrib... |
| spansn0 31521 | The span of the singleton ... |
| span0 31522 | The span of the empty set ... |
| elspani 31523 | Membership in the span of ... |
| spanuni 31524 | The span of a union is the... |
| spanun 31525 | The span of a union is the... |
| sshhococi 31526 | The join of two Hilbert sp... |
| hne0 31527 | Hilbert space has a nonzer... |
| chsup0 31528 | The supremum of the empty ... |
| h1deoi 31529 | Membership in orthocomplem... |
| h1dei 31530 | Membership in 1-dimensiona... |
| h1did 31531 | A generating vector belong... |
| h1dn0 31532 | A nonzero vector generates... |
| h1de2i 31533 | Membership in 1-dimensiona... |
| h1de2bi 31534 | Membership in 1-dimensiona... |
| h1de2ctlem 31535 | Lemma for ~ h1de2ci . (Co... |
| h1de2ci 31536 | Membership in 1-dimensiona... |
| spansni 31537 | The span of a singleton in... |
| elspansni 31538 | Membership in the span of ... |
| spansn 31539 | The span of a singleton in... |
| spansnch 31540 | The span of a Hilbert spac... |
| spansnsh 31541 | The span of a Hilbert spac... |
| spansnchi 31542 | The span of a singleton in... |
| spansnid 31543 | A vector belongs to the sp... |
| spansnmul 31544 | A scalar product with a ve... |
| elspansncl 31545 | A member of a span of a si... |
| elspansn 31546 | Membership in the span of ... |
| elspansn2 31547 | Membership in the span of ... |
| spansncol 31548 | The singletons of collinea... |
| spansneleqi 31549 | Membership relation implie... |
| spansneleq 31550 | Membership relation that i... |
| spansnss 31551 | The span of the singleton ... |
| elspansn3 31552 | A member of the span of th... |
| elspansn4 31553 | A span membership conditio... |
| elspansn5 31554 | A vector belonging to both... |
| spansnss2 31555 | The span of the singleton ... |
| normcan 31556 | Cancellation-type law that... |
| pjspansn 31557 | A projection on the span o... |
| spansnpji 31558 | A subset of Hilbert space ... |
| spanunsni 31559 | The span of the union of a... |
| spanpr 31560 | The span of a pair of vect... |
| h1datomi 31561 | A 1-dimensional subspace i... |
| h1datom 31562 | A 1-dimensional subspace i... |
| cmbr 31564 | Binary relation expressing... |
| pjoml2i 31565 | Variation of orthomodular ... |
| pjoml3i 31566 | Variation of orthomodular ... |
| pjoml4i 31567 | Variation of orthomodular ... |
| pjoml5i 31568 | The orthomodular law. Rem... |
| pjoml6i 31569 | An equivalent of the ortho... |
| cmbri 31570 | Binary relation expressing... |
| cmcmlem 31571 | Commutation is symmetric. ... |
| cmcmi 31572 | Commutation is symmetric. ... |
| cmcm2i 31573 | Commutation with orthocomp... |
| cmcm3i 31574 | Commutation with orthocomp... |
| cmcm4i 31575 | Commutation with orthocomp... |
| cmbr2i 31576 | Alternate definition of th... |
| cmcmii 31577 | Commutation is symmetric. ... |
| cmcm2ii 31578 | Commutation with orthocomp... |
| cmcm3ii 31579 | Commutation with orthocomp... |
| cmbr3i 31580 | Alternate definition for t... |
| cmbr4i 31581 | Alternate definition for t... |
| lecmi 31582 | Comparable Hilbert lattice... |
| lecmii 31583 | Comparable Hilbert lattice... |
| cmj1i 31584 | A Hilbert lattice element ... |
| cmj2i 31585 | A Hilbert lattice element ... |
| cmm1i 31586 | A Hilbert lattice element ... |
| cmm2i 31587 | A Hilbert lattice element ... |
| cmbr3 31588 | Alternate definition for t... |
| cm0 31589 | The zero Hilbert lattice e... |
| cmidi 31590 | The commutes relation is r... |
| pjoml2 31591 | Variation of orthomodular ... |
| pjoml3 31592 | Variation of orthomodular ... |
| pjoml5 31593 | The orthomodular law. Rem... |
| cmcm 31594 | Commutation is symmetric. ... |
| cmcm3 31595 | Commutation with orthocomp... |
| cmcm2 31596 | Commutation with orthocomp... |
| lecm 31597 | Comparable Hilbert lattice... |
| fh1 31598 | Foulis-Holland Theorem. I... |
| fh2 31599 | Foulis-Holland Theorem. I... |
| cm2j 31600 | A lattice element that com... |
| fh1i 31601 | Foulis-Holland Theorem. I... |
| fh2i 31602 | Foulis-Holland Theorem. I... |
| fh3i 31603 | Variation of the Foulis-Ho... |
| fh4i 31604 | Variation of the Foulis-Ho... |
| cm2ji 31605 | A lattice element that com... |
| cm2mi 31606 | A lattice element that com... |
| qlax1i 31607 | One of the equations showi... |
| qlax2i 31608 | One of the equations showi... |
| qlax3i 31609 | One of the equations showi... |
| qlax4i 31610 | One of the equations showi... |
| qlax5i 31611 | One of the equations showi... |
| qlaxr1i 31612 | One of the conditions show... |
| qlaxr2i 31613 | One of the conditions show... |
| qlaxr4i 31614 | One of the conditions show... |
| qlaxr5i 31615 | One of the conditions show... |
| qlaxr3i 31616 | A variation of the orthomo... |
| chscllem1 31617 | Lemma for ~ chscl . (Cont... |
| chscllem2 31618 | Lemma for ~ chscl . (Cont... |
| chscllem3 31619 | Lemma for ~ chscl . (Cont... |
| chscllem4 31620 | Lemma for ~ chscl . (Cont... |
| chscl 31621 | The subspace sum of two cl... |
| osumi 31622 | If two closed subspaces of... |
| osumcori 31623 | Corollary of ~ osumi . (C... |
| osumcor2i 31624 | Corollary of ~ osumi , sho... |
| osum 31625 | If two closed subspaces of... |
| spansnji 31626 | The subspace sum of a clos... |
| spansnj 31627 | The subspace sum of a clos... |
| spansnscl 31628 | The subspace sum of a clos... |
| sumspansn 31629 | The sum of two vectors bel... |
| spansnm0i 31630 | The meet of different one-... |
| nonbooli 31631 | A Hilbert lattice with two... |
| spansncvi 31632 | Hilbert space has the cove... |
| spansncv 31633 | Hilbert space has the cove... |
| 5oalem1 31634 | Lemma for orthoarguesian l... |
| 5oalem2 31635 | Lemma for orthoarguesian l... |
| 5oalem3 31636 | Lemma for orthoarguesian l... |
| 5oalem4 31637 | Lemma for orthoarguesian l... |
| 5oalem5 31638 | Lemma for orthoarguesian l... |
| 5oalem6 31639 | Lemma for orthoarguesian l... |
| 5oalem7 31640 | Lemma for orthoarguesian l... |
| 5oai 31641 | Orthoarguesian law 5OA. Th... |
| 3oalem1 31642 | Lemma for 3OA (weak) ortho... |
| 3oalem2 31643 | Lemma for 3OA (weak) ortho... |
| 3oalem3 31644 | Lemma for 3OA (weak) ortho... |
| 3oalem4 31645 | Lemma for 3OA (weak) ortho... |
| 3oalem5 31646 | Lemma for 3OA (weak) ortho... |
| 3oalem6 31647 | Lemma for 3OA (weak) ortho... |
| 3oai 31648 | 3OA (weak) orthoarguesian ... |
| pjorthi 31649 | Projection components on o... |
| pjch1 31650 | Property of identity proje... |
| pjo 31651 | The orthogonal projection.... |
| pjcompi 31652 | Component of a projection.... |
| pjidmi 31653 | A projection is idempotent... |
| pjadjii 31654 | A projection is self-adjoi... |
| pjaddii 31655 | Projection of vector sum i... |
| pjinormii 31656 | The inner product of a pro... |
| pjmulii 31657 | Projection of (scalar) pro... |
| pjsubii 31658 | Projection of vector diffe... |
| pjsslem 31659 | Lemma for subset relations... |
| pjss2i 31660 | Subset relationship for pr... |
| pjssmii 31661 | Projection meet property. ... |
| pjssge0ii 31662 | Theorem 4.5(iv)->(v) of [B... |
| pjdifnormii 31663 | Theorem 4.5(v)<->(vi) of [... |
| pjcji 31664 | The projection on a subspa... |
| pjadji 31665 | A projection is self-adjoi... |
| pjaddi 31666 | Projection of vector sum i... |
| pjinormi 31667 | The inner product of a pro... |
| pjsubi 31668 | Projection of vector diffe... |
| pjmuli 31669 | Projection of scalar produ... |
| pjige0i 31670 | The inner product of a pro... |
| pjige0 31671 | The inner product of a pro... |
| pjcjt2 31672 | The projection on a subspa... |
| pj0i 31673 | The projection of the zero... |
| pjch 31674 | Projection of a vector in ... |
| pjid 31675 | The projection of a vector... |
| pjvec 31676 | The set of vectors belongi... |
| pjocvec 31677 | The set of vectors belongi... |
| pjocini 31678 | Membership of projection i... |
| pjini 31679 | Membership of projection i... |
| pjjsi 31680 | A sufficient condition for... |
| pjfni 31681 | Functionality of a project... |
| pjrni 31682 | The range of a projection.... |
| pjfoi 31683 | A projection maps onto its... |
| pjfi 31684 | The mapping of a projectio... |
| pjvi 31685 | The value of a projection ... |
| pjhfo 31686 | A projection maps onto its... |
| pjrn 31687 | The range of a projection.... |
| pjhf 31688 | The mapping of a projectio... |
| pjfn 31689 | Functionality of a project... |
| pjsumi 31690 | The projection on a subspa... |
| pj11i 31691 | One-to-one correspondence ... |
| pjdsi 31692 | Vector decomposition into ... |
| pjds3i 31693 | Vector decomposition into ... |
| pj11 31694 | One-to-one correspondence ... |
| pjmfn 31695 | Functionality of the proje... |
| pjmf1 31696 | The projector function map... |
| pjoi0 31697 | The inner product of proje... |
| pjoi0i 31698 | The inner product of proje... |
| pjopythi 31699 | Pythagorean theorem for pr... |
| pjopyth 31700 | Pythagorean theorem for pr... |
| pjnormi 31701 | The norm of the projection... |
| pjpythi 31702 | Pythagorean theorem for pr... |
| pjneli 31703 | If a vector does not belon... |
| pjnorm 31704 | The norm of the projection... |
| pjpyth 31705 | Pythagorean theorem for pr... |
| pjnel 31706 | If a vector does not belon... |
| pjnorm2 31707 | A vector belongs to the su... |
| mayete3i 31708 | Mayet's equation E_3. Par... |
| mayetes3i 31709 | Mayet's equation E^*_3, de... |
| hosmval 31715 | Value of the sum of two Hi... |
| hommval 31716 | Value of the scalar produc... |
| hodmval 31717 | Value of the difference of... |
| hfsmval 31718 | Value of the sum of two Hi... |
| hfmmval 31719 | Value of the scalar produc... |
| hosval 31720 | Value of the sum of two Hi... |
| homval 31721 | Value of the scalar produc... |
| hodval 31722 | Value of the difference of... |
| hfsval 31723 | Value of the sum of two Hi... |
| hfmval 31724 | Value of the scalar produc... |
| hoscl 31725 | Closure of the sum of two ... |
| homcl 31726 | Closure of the scalar prod... |
| hodcl 31727 | Closure of the difference ... |
| ho0val 31730 | Value of the zero Hilbert ... |
| ho0f 31731 | Functionality of the zero ... |
| df0op2 31732 | Alternate definition of Hi... |
| dfiop2 31733 | Alternate definition of Hi... |
| hoif 31734 | Functionality of the Hilbe... |
| hoival 31735 | The value of the Hilbert s... |
| hoico1 31736 | Composition with the Hilbe... |
| hoico2 31737 | Composition with the Hilbe... |
| hoaddcl 31738 | The sum of Hilbert space o... |
| homulcl 31739 | The scalar product of a Hi... |
| hoeq 31740 | Equality of Hilbert space ... |
| hoeqi 31741 | Equality of Hilbert space ... |
| hoscli 31742 | Closure of Hilbert space o... |
| hodcli 31743 | Closure of Hilbert space o... |
| hocoi 31744 | Composition of Hilbert spa... |
| hococli 31745 | Closure of composition of ... |
| hocofi 31746 | Mapping of composition of ... |
| hocofni 31747 | Functionality of compositi... |
| hoaddcli 31748 | Mapping of sum of Hilbert ... |
| hosubcli 31749 | Mapping of difference of H... |
| hoaddfni 31750 | Functionality of sum of Hi... |
| hosubfni 31751 | Functionality of differenc... |
| hoaddcomi 31752 | Commutativity of sum of Hi... |
| hosubcl 31753 | Mapping of difference of H... |
| hoaddcom 31754 | Commutativity of sum of Hi... |
| hodsi 31755 | Relationship between Hilbe... |
| hoaddassi 31756 | Associativity of sum of Hi... |
| hoadd12i 31757 | Commutative/associative la... |
| hoadd32i 31758 | Commutative/associative la... |
| hocadddiri 31759 | Distributive law for Hilbe... |
| hocsubdiri 31760 | Distributive law for Hilbe... |
| ho2coi 31761 | Double composition of Hilb... |
| hoaddass 31762 | Associativity of sum of Hi... |
| hoadd32 31763 | Commutative/associative la... |
| hoadd4 31764 | Rearrangement of 4 terms i... |
| hocsubdir 31765 | Distributive law for Hilbe... |
| hoaddridi 31766 | Sum of a Hilbert space ope... |
| hodidi 31767 | Difference of a Hilbert sp... |
| ho0coi 31768 | Composition of the zero op... |
| hoid1i 31769 | Composition of Hilbert spa... |
| hoid1ri 31770 | Composition of Hilbert spa... |
| hoaddrid 31771 | Sum of a Hilbert space ope... |
| hodid 31772 | Difference of a Hilbert sp... |
| hon0 31773 | A Hilbert space operator i... |
| hodseqi 31774 | Subtraction and addition o... |
| ho0subi 31775 | Subtraction of Hilbert spa... |
| honegsubi 31776 | Relationship between Hilbe... |
| ho0sub 31777 | Subtraction of Hilbert spa... |
| hosubid1 31778 | The zero operator subtract... |
| honegsub 31779 | Relationship between Hilbe... |
| homullid 31780 | An operator equals its sca... |
| homco1 31781 | Associative law for scalar... |
| homulass 31782 | Scalar product associative... |
| hoadddi 31783 | Scalar product distributiv... |
| hoadddir 31784 | Scalar product reverse dis... |
| homul12 31785 | Swap first and second fact... |
| honegneg 31786 | Double negative of a Hilbe... |
| hosubneg 31787 | Relationship between opera... |
| hosubdi 31788 | Scalar product distributiv... |
| honegdi 31789 | Distribution of negative o... |
| honegsubdi 31790 | Distribution of negative o... |
| honegsubdi2 31791 | Distribution of negative o... |
| hosubsub2 31792 | Law for double subtraction... |
| hosub4 31793 | Rearrangement of 4 terms i... |
| hosubadd4 31794 | Rearrangement of 4 terms i... |
| hoaddsubass 31795 | Associative-type law for a... |
| hoaddsub 31796 | Law for operator addition ... |
| hosubsub 31797 | Law for double subtraction... |
| hosubsub4 31798 | Law for double subtraction... |
| ho2times 31799 | Two times a Hilbert space ... |
| hoaddsubassi 31800 | Associativity of sum and d... |
| hoaddsubi 31801 | Law for sum and difference... |
| hosd1i 31802 | Hilbert space operator sum... |
| hosd2i 31803 | Hilbert space operator sum... |
| hopncani 31804 | Hilbert space operator can... |
| honpcani 31805 | Hilbert space operator can... |
| hosubeq0i 31806 | If the difference between ... |
| honpncani 31807 | Hilbert space operator can... |
| ho01i 31808 | A condition implying that ... |
| ho02i 31809 | A condition implying that ... |
| hoeq1 31810 | A condition implying that ... |
| hoeq2 31811 | A condition implying that ... |
| adjmo 31812 | Every Hilbert space operat... |
| adjsym 31813 | Symmetry property of an ad... |
| eigrei 31814 | A necessary and sufficient... |
| eigre 31815 | A necessary and sufficient... |
| eigposi 31816 | A sufficient condition (fi... |
| eigorthi 31817 | A necessary and sufficient... |
| eigorth 31818 | A necessary and sufficient... |
| nmopval 31836 | Value of the norm of a Hil... |
| elcnop 31837 | Property defining a contin... |
| ellnop 31838 | Property defining a linear... |
| lnopf 31839 | A linear Hilbert space ope... |
| elbdop 31840 | Property defining a bounde... |
| bdopln 31841 | A bounded linear Hilbert s... |
| bdopf 31842 | A bounded linear Hilbert s... |
| nmopsetretALT 31843 | The set in the supremum of... |
| nmopsetretHIL 31844 | The set in the supremum of... |
| nmopsetn0 31845 | The set in the supremum of... |
| nmopxr 31846 | The norm of a Hilbert spac... |
| nmoprepnf 31847 | The norm of a Hilbert spac... |
| nmopgtmnf 31848 | The norm of a Hilbert spac... |
| nmopreltpnf 31849 | The norm of a Hilbert spac... |
| nmopre 31850 | The norm of a bounded oper... |
| elbdop2 31851 | Property defining a bounde... |
| elunop 31852 | Property defining a unitar... |
| elhmop 31853 | Property defining a Hermit... |
| hmopf 31854 | A Hermitian operator is a ... |
| hmopex 31855 | The class of Hermitian ope... |
| nmfnval 31856 | Value of the norm of a Hil... |
| nmfnsetre 31857 | The set in the supremum of... |
| nmfnsetn0 31858 | The set in the supremum of... |
| nmfnxr 31859 | The norm of any Hilbert sp... |
| nmfnrepnf 31860 | The norm of a Hilbert spac... |
| nlfnval 31861 | Value of the null space of... |
| elcnfn 31862 | Property defining a contin... |
| ellnfn 31863 | Property defining a linear... |
| lnfnf 31864 | A linear Hilbert space fun... |
| dfadj2 31865 | Alternate definition of th... |
| funadj 31866 | Functionality of the adjoi... |
| dmadjss 31867 | The domain of the adjoint ... |
| dmadjop 31868 | A member of the domain of ... |
| adjeu 31869 | Elementhood in the domain ... |
| adjval 31870 | Value of the adjoint funct... |
| adjval2 31871 | Value of the adjoint funct... |
| cnvadj 31872 | The adjoint function equal... |
| funcnvadj 31873 | The converse of the adjoin... |
| adj1o 31874 | The adjoint function maps ... |
| dmadjrn 31875 | The adjoint of an operator... |
| eigvecval 31876 | The set of eigenvectors of... |
| eigvalfval 31877 | The eigenvalues of eigenve... |
| specval 31878 | The value of the spectrum ... |
| speccl 31879 | The spectrum of an operato... |
| hhlnoi 31880 | The linear operators of Hi... |
| hhnmoi 31881 | The norm of an operator in... |
| hhbloi 31882 | A bounded linear operator ... |
| hh0oi 31883 | The zero operator in Hilbe... |
| hhcno 31884 | The continuous operators o... |
| hhcnf 31885 | The continuous functionals... |
| dmadjrnb 31886 | The adjoint of an operator... |
| nmoplb 31887 | A lower bound for an opera... |
| nmopub 31888 | An upper bound for an oper... |
| nmopub2tALT 31889 | An upper bound for an oper... |
| nmopub2tHIL 31890 | An upper bound for an oper... |
| nmopge0 31891 | The norm of any Hilbert sp... |
| nmopgt0 31892 | A linear Hilbert space ope... |
| cnopc 31893 | Basic continuity property ... |
| lnopl 31894 | Basic linearity property o... |
| unop 31895 | Basic inner product proper... |
| unopf1o 31896 | A unitary operator in Hilb... |
| unopnorm 31897 | A unitary operator is idem... |
| cnvunop 31898 | The inverse (converse) of ... |
| unopadj 31899 | The inverse (converse) of ... |
| unoplin 31900 | A unitary operator is line... |
| counop 31901 | The composition of two uni... |
| hmop 31902 | Basic inner product proper... |
| hmopre 31903 | The inner product of the v... |
| nmfnlb 31904 | A lower bound for a functi... |
| nmfnleub 31905 | An upper bound for the nor... |
| nmfnleub2 31906 | An upper bound for the nor... |
| nmfnge0 31907 | The norm of any Hilbert sp... |
| elnlfn 31908 | Membership in the null spa... |
| elnlfn2 31909 | Membership in the null spa... |
| cnfnc 31910 | Basic continuity property ... |
| lnfnl 31911 | Basic linearity property o... |
| adjcl 31912 | Closure of the adjoint of ... |
| adj1 31913 | Property of an adjoint Hil... |
| adj2 31914 | Property of an adjoint Hil... |
| adjeq 31915 | A property that determines... |
| adjadj 31916 | Double adjoint. Theorem 3... |
| adjvalval 31917 | Value of the value of the ... |
| unopadj2 31918 | The adjoint of a unitary o... |
| hmopadj 31919 | A Hermitian operator is se... |
| hmdmadj 31920 | Every Hermitian operator h... |
| hmopadj2 31921 | An operator is Hermitian i... |
| hmoplin 31922 | A Hermitian operator is li... |
| brafval 31923 | The bra of a vector, expre... |
| braval 31924 | A bra-ket juxtaposition, e... |
| braadd 31925 | Linearity property of bra ... |
| bramul 31926 | Linearity property of bra ... |
| brafn 31927 | The bra function is a func... |
| bralnfn 31928 | The Dirac bra function is ... |
| bracl 31929 | Closure of the bra functio... |
| bra0 31930 | The Dirac bra of the zero ... |
| brafnmul 31931 | Anti-linearity property of... |
| kbfval 31932 | The outer product of two v... |
| kbop 31933 | The outer product of two v... |
| kbval 31934 | The value of the operator ... |
| kbmul 31935 | Multiplication property of... |
| kbpj 31936 | If a vector ` A ` has norm... |
| eleigvec 31937 | Membership in the set of e... |
| eleigvec2 31938 | Membership in the set of e... |
| eleigveccl 31939 | Closure of an eigenvector ... |
| eigvalval 31940 | The eigenvalue of an eigen... |
| eigvalcl 31941 | An eigenvalue is a complex... |
| eigvec1 31942 | Property of an eigenvector... |
| eighmre 31943 | The eigenvalues of a Hermi... |
| eighmorth 31944 | Eigenvectors of a Hermitia... |
| nmopnegi 31945 | Value of the norm of the n... |
| lnop0 31946 | The value of a linear Hilb... |
| lnopmul 31947 | Multiplicative property of... |
| lnopli 31948 | Basic scalar product prope... |
| lnopfi 31949 | A linear Hilbert space ope... |
| lnop0i 31950 | The value of a linear Hilb... |
| lnopaddi 31951 | Additive property of a lin... |
| lnopmuli 31952 | Multiplicative property of... |
| lnopaddmuli 31953 | Sum/product property of a ... |
| lnopsubi 31954 | Subtraction property for a... |
| lnopsubmuli 31955 | Subtraction/product proper... |
| lnopmulsubi 31956 | Product/subtraction proper... |
| homco2 31957 | Move a scalar product out ... |
| idunop 31958 | The identity function (res... |
| 0cnop 31959 | The identically zero funct... |
| 0cnfn 31960 | The identically zero funct... |
| idcnop 31961 | The identity function (res... |
| idhmop 31962 | The Hilbert space identity... |
| 0hmop 31963 | The identically zero funct... |
| 0lnop 31964 | The identically zero funct... |
| 0lnfn 31965 | The identically zero funct... |
| nmop0 31966 | The norm of the zero opera... |
| nmfn0 31967 | The norm of the identicall... |
| hmopbdoptHIL 31968 | A Hermitian operator is a ... |
| hoddii 31969 | Distributive law for Hilbe... |
| hoddi 31970 | Distributive law for Hilbe... |
| nmop0h 31971 | The norm of any operator o... |
| idlnop 31972 | The identity function (res... |
| 0bdop 31973 | The identically zero opera... |
| adj0 31974 | Adjoint of the zero operat... |
| nmlnop0iALT 31975 | A linear operator with a z... |
| nmlnop0iHIL 31976 | A linear operator with a z... |
| nmlnopgt0i 31977 | A linear Hilbert space ope... |
| nmlnop0 31978 | A linear operator with a z... |
| nmlnopne0 31979 | A linear operator with a n... |
| lnopmi 31980 | The scalar product of a li... |
| lnophsi 31981 | The sum of two linear oper... |
| lnophdi 31982 | The difference of two line... |
| lnopcoi 31983 | The composition of two lin... |
| lnopco0i 31984 | The composition of a linea... |
| lnopeq0lem1 31985 | Lemma for ~ lnopeq0i . Ap... |
| lnopeq0lem2 31986 | Lemma for ~ lnopeq0i . (C... |
| lnopeq0i 31987 | A condition implying that ... |
| lnopeqi 31988 | Two linear Hilbert space o... |
| lnopeq 31989 | Two linear Hilbert space o... |
| lnopunilem1 31990 | Lemma for ~ lnopunii . (C... |
| lnopunilem2 31991 | Lemma for ~ lnopunii . (C... |
| lnopunii 31992 | If a linear operator (whos... |
| elunop2 31993 | An operator is unitary iff... |
| nmopun 31994 | Norm of a unitary Hilbert ... |
| unopbd 31995 | A unitary operator is a bo... |
| lnophmlem1 31996 | Lemma for ~ lnophmi . (Co... |
| lnophmlem2 31997 | Lemma for ~ lnophmi . (Co... |
| lnophmi 31998 | A linear operator is Hermi... |
| lnophm 31999 | A linear operator is Hermi... |
| hmops 32000 | The sum of two Hermitian o... |
| hmopm 32001 | The scalar product of a He... |
| hmopd 32002 | The difference of two Herm... |
| hmopco 32003 | The composition of two com... |
| nmbdoplbi 32004 | A lower bound for the norm... |
| nmbdoplb 32005 | A lower bound for the norm... |
| nmcexi 32006 | Lemma for ~ nmcopexi and ~... |
| nmcopexi 32007 | The norm of a continuous l... |
| nmcoplbi 32008 | A lower bound for the norm... |
| nmcopex 32009 | The norm of a continuous l... |
| nmcoplb 32010 | A lower bound for the norm... |
| nmophmi 32011 | The norm of the scalar pro... |
| bdophmi 32012 | The scalar product of a bo... |
| lnconi 32013 | Lemma for ~ lnopconi and ~... |
| lnopconi 32014 | A condition equivalent to ... |
| lnopcon 32015 | A condition equivalent to ... |
| lnopcnbd 32016 | A linear operator is conti... |
| lncnopbd 32017 | A continuous linear operat... |
| lncnbd 32018 | A continuous linear operat... |
| lnopcnre 32019 | A linear operator is conti... |
| lnfnli 32020 | Basic property of a linear... |
| lnfnfi 32021 | A linear Hilbert space fun... |
| lnfn0i 32022 | The value of a linear Hilb... |
| lnfnaddi 32023 | Additive property of a lin... |
| lnfnmuli 32024 | Multiplicative property of... |
| lnfnaddmuli 32025 | Sum/product property of a ... |
| lnfnsubi 32026 | Subtraction property for a... |
| lnfn0 32027 | The value of a linear Hilb... |
| lnfnmul 32028 | Multiplicative property of... |
| nmbdfnlbi 32029 | A lower bound for the norm... |
| nmbdfnlb 32030 | A lower bound for the norm... |
| nmcfnexi 32031 | The norm of a continuous l... |
| nmcfnlbi 32032 | A lower bound for the norm... |
| nmcfnex 32033 | The norm of a continuous l... |
| nmcfnlb 32034 | A lower bound of the norm ... |
| lnfnconi 32035 | A condition equivalent to ... |
| lnfncon 32036 | A condition equivalent to ... |
| lnfncnbd 32037 | A linear functional is con... |
| imaelshi 32038 | The image of a subspace un... |
| rnelshi 32039 | The range of a linear oper... |
| nlelshi 32040 | The null space of a linear... |
| nlelchi 32041 | The null space of a contin... |
| riesz3i 32042 | A continuous linear functi... |
| riesz4i 32043 | A continuous linear functi... |
| riesz4 32044 | A continuous linear functi... |
| riesz1 32045 | Part 1 of the Riesz repres... |
| riesz2 32046 | Part 2 of the Riesz repres... |
| cnlnadjlem1 32047 | Lemma for ~ cnlnadji (Theo... |
| cnlnadjlem2 32048 | Lemma for ~ cnlnadji . ` G... |
| cnlnadjlem3 32049 | Lemma for ~ cnlnadji . By... |
| cnlnadjlem4 32050 | Lemma for ~ cnlnadji . Th... |
| cnlnadjlem5 32051 | Lemma for ~ cnlnadji . ` F... |
| cnlnadjlem6 32052 | Lemma for ~ cnlnadji . ` F... |
| cnlnadjlem7 32053 | Lemma for ~ cnlnadji . He... |
| cnlnadjlem8 32054 | Lemma for ~ cnlnadji . ` F... |
| cnlnadjlem9 32055 | Lemma for ~ cnlnadji . ` F... |
| cnlnadji 32056 | Every continuous linear op... |
| cnlnadjeui 32057 | Every continuous linear op... |
| cnlnadjeu 32058 | Every continuous linear op... |
| cnlnadj 32059 | Every continuous linear op... |
| cnlnssadj 32060 | Every continuous linear Hi... |
| bdopssadj 32061 | Every bounded linear Hilbe... |
| bdopadj 32062 | Every bounded linear Hilbe... |
| adjbdln 32063 | The adjoint of a bounded l... |
| adjbdlnb 32064 | An operator is bounded and... |
| adjbd1o 32065 | The mapping of adjoints of... |
| adjlnop 32066 | The adjoint of an operator... |
| adjsslnop 32067 | Every operator with an adj... |
| nmopadjlei 32068 | Property of the norm of an... |
| nmopadjlem 32069 | Lemma for ~ nmopadji . (C... |
| nmopadji 32070 | Property of the norm of an... |
| adjeq0 32071 | An operator is zero iff it... |
| adjmul 32072 | The adjoint of the scalar ... |
| adjadd 32073 | The adjoint of the sum of ... |
| nmoptrii 32074 | Triangle inequality for th... |
| nmopcoi 32075 | Upper bound for the norm o... |
| bdophsi 32076 | The sum of two bounded lin... |
| bdophdi 32077 | The difference between two... |
| bdopcoi 32078 | The composition of two bou... |
| nmoptri2i 32079 | Triangle-type inequality f... |
| adjcoi 32080 | The adjoint of a compositi... |
| nmopcoadji 32081 | The norm of an operator co... |
| nmopcoadj2i 32082 | The norm of an operator co... |
| nmopcoadj0i 32083 | An operator composed with ... |
| unierri 32084 | If we approximate a chain ... |
| branmfn 32085 | The norm of the bra functi... |
| brabn 32086 | The bra of a vector is a b... |
| rnbra 32087 | The set of bras equals the... |
| bra11 32088 | The bra function maps vect... |
| bracnln 32089 | A bra is a continuous line... |
| cnvbraval 32090 | Value of the converse of t... |
| cnvbracl 32091 | Closure of the converse of... |
| cnvbrabra 32092 | The converse bra of the br... |
| bracnvbra 32093 | The bra of the converse br... |
| bracnlnval 32094 | The vector that a continuo... |
| cnvbramul 32095 | Multiplication property of... |
| kbass1 32096 | Dirac bra-ket associative ... |
| kbass2 32097 | Dirac bra-ket associative ... |
| kbass3 32098 | Dirac bra-ket associative ... |
| kbass4 32099 | Dirac bra-ket associative ... |
| kbass5 32100 | Dirac bra-ket associative ... |
| kbass6 32101 | Dirac bra-ket associative ... |
| leopg 32102 | Ordering relation for posi... |
| leop 32103 | Ordering relation for oper... |
| leop2 32104 | Ordering relation for oper... |
| leop3 32105 | Operator ordering in terms... |
| leoppos 32106 | Binary relation defining a... |
| leoprf2 32107 | The ordering relation for ... |
| leoprf 32108 | The ordering relation for ... |
| leopsq 32109 | The square of a Hermitian ... |
| 0leop 32110 | The zero operator is a pos... |
| idleop 32111 | The identity operator is a... |
| leopadd 32112 | The sum of two positive op... |
| leopmuli 32113 | The scalar product of a no... |
| leopmul 32114 | The scalar product of a po... |
| leopmul2i 32115 | Scalar product applied to ... |
| leoptri 32116 | The positive operator orde... |
| leoptr 32117 | The positive operator orde... |
| leopnmid 32118 | A bounded Hermitian operat... |
| nmopleid 32119 | A nonzero, bounded Hermiti... |
| opsqrlem1 32120 | Lemma for opsqri . (Contr... |
| opsqrlem2 32121 | Lemma for opsqri . ` F `` ... |
| opsqrlem3 32122 | Lemma for opsqri . (Contr... |
| opsqrlem4 32123 | Lemma for opsqri . (Contr... |
| opsqrlem5 32124 | Lemma for opsqri . (Contr... |
| opsqrlem6 32125 | Lemma for opsqri . (Contr... |
| pjhmopi 32126 | A projector is a Hermitian... |
| pjlnopi 32127 | A projector is a linear op... |
| pjnmopi 32128 | The operator norm of a pro... |
| pjbdlni 32129 | A projector is a bounded l... |
| pjhmop 32130 | A projection is a Hermitia... |
| hmopidmchi 32131 | An idempotent Hermitian op... |
| hmopidmpji 32132 | An idempotent Hermitian op... |
| hmopidmch 32133 | An idempotent Hermitian op... |
| hmopidmpj 32134 | An idempotent Hermitian op... |
| pjsdii 32135 | Distributive law for Hilbe... |
| pjddii 32136 | Distributive law for Hilbe... |
| pjsdi2i 32137 | Chained distributive law f... |
| pjcoi 32138 | Composition of projections... |
| pjcocli 32139 | Closure of composition of ... |
| pjcohcli 32140 | Closure of composition of ... |
| pjadjcoi 32141 | Adjoint of composition of ... |
| pjcofni 32142 | Functionality of compositi... |
| pjss1coi 32143 | Subset relationship for pr... |
| pjss2coi 32144 | Subset relationship for pr... |
| pjssmi 32145 | Projection meet property. ... |
| pjssge0i 32146 | Theorem 4.5(iv)->(v) of [B... |
| pjdifnormi 32147 | Theorem 4.5(v)<->(vi) of [... |
| pjnormssi 32148 | Theorem 4.5(i)<->(vi) of [... |
| pjorthcoi 32149 | Composition of projections... |
| pjscji 32150 | The projection of orthogon... |
| pjssumi 32151 | The projection on a subspa... |
| pjssposi 32152 | Projector ordering can be ... |
| pjordi 32153 | The definition of projecto... |
| pjssdif2i 32154 | The projection subspace of... |
| pjssdif1i 32155 | A necessary and sufficient... |
| pjimai 32156 | The image of a projection.... |
| pjidmcoi 32157 | A projection is idempotent... |
| pjoccoi 32158 | Composition of projections... |
| pjtoi 32159 | Subspace sum of projection... |
| pjoci 32160 | Projection of orthocomplem... |
| pjidmco 32161 | A projection operator is i... |
| dfpjop 32162 | Definition of projection o... |
| pjhmopidm 32163 | Two ways to express the se... |
| elpjidm 32164 | A projection operator is i... |
| elpjhmop 32165 | A projection operator is H... |
| 0leopj 32166 | A projector is a positive ... |
| pjadj2 32167 | A projector is self-adjoin... |
| pjadj3 32168 | A projector is self-adjoin... |
| elpjch 32169 | Reconstruction of the subs... |
| elpjrn 32170 | Reconstruction of the subs... |
| pjinvari 32171 | A closed subspace ` H ` wi... |
| pjin1i 32172 | Lemma for Theorem 1.22 of ... |
| pjin2i 32173 | Lemma for Theorem 1.22 of ... |
| pjin3i 32174 | Lemma for Theorem 1.22 of ... |
| pjclem1 32175 | Lemma for projection commu... |
| pjclem2 32176 | Lemma for projection commu... |
| pjclem3 32177 | Lemma for projection commu... |
| pjclem4a 32178 | Lemma for projection commu... |
| pjclem4 32179 | Lemma for projection commu... |
| pjci 32180 | Two subspaces commute iff ... |
| pjcmul1i 32181 | A necessary and sufficient... |
| pjcmul2i 32182 | The projection subspace of... |
| pjcohocli 32183 | Closure of composition of ... |
| pjadj2coi 32184 | Adjoint of double composit... |
| pj2cocli 32185 | Closure of double composit... |
| pj3lem1 32186 | Lemma for projection tripl... |
| pj3si 32187 | Stronger projection triple... |
| pj3i 32188 | Projection triplet theorem... |
| pj3cor1i 32189 | Projection triplet corolla... |
| pjs14i 32190 | Theorem S-14 of Watanabe, ... |
| isst 32193 | Property of a state. (Con... |
| ishst 32194 | Property of a complex Hilb... |
| sticl 32195 | ` [ 0 , 1 ] ` closure of t... |
| stcl 32196 | Real closure of the value ... |
| hstcl 32197 | Closure of the value of a ... |
| hst1a 32198 | Unit value of a Hilbert-sp... |
| hstel2 32199 | Properties of a Hilbert-sp... |
| hstorth 32200 | Orthogonality property of ... |
| hstosum 32201 | Orthogonal sum property of... |
| hstoc 32202 | Sum of a Hilbert-space-val... |
| hstnmoc 32203 | Sum of norms of a Hilbert-... |
| stge0 32204 | The value of a state is no... |
| stle1 32205 | The value of a state is le... |
| hstle1 32206 | The norm of the value of a... |
| hst1h 32207 | The norm of a Hilbert-spac... |
| hst0h 32208 | The norm of a Hilbert-spac... |
| hstpyth 32209 | Pythagorean property of a ... |
| hstle 32210 | Ordering property of a Hil... |
| hstles 32211 | Ordering property of a Hil... |
| hstoh 32212 | A Hilbert-space-valued sta... |
| hst0 32213 | A Hilbert-space-valued sta... |
| sthil 32214 | The value of a state at th... |
| stj 32215 | The value of a state on a ... |
| sto1i 32216 | The state of a subspace pl... |
| sto2i 32217 | The state of the orthocomp... |
| stge1i 32218 | If a state is greater than... |
| stle0i 32219 | If a state is less than or... |
| stlei 32220 | Ordering law for states. ... |
| stlesi 32221 | Ordering law for states. ... |
| stji1i 32222 | Join of components of Sasa... |
| stm1i 32223 | State of component of unit... |
| stm1ri 32224 | State of component of unit... |
| stm1addi 32225 | Sum of states whose meet i... |
| staddi 32226 | If the sum of 2 states is ... |
| stm1add3i 32227 | Sum of states whose meet i... |
| stadd3i 32228 | If the sum of 3 states is ... |
| st0 32229 | The state of the zero subs... |
| strlem1 32230 | Lemma for strong state the... |
| strlem2 32231 | Lemma for strong state the... |
| strlem3a 32232 | Lemma for strong state the... |
| strlem3 32233 | Lemma for strong state the... |
| strlem4 32234 | Lemma for strong state the... |
| strlem5 32235 | Lemma for strong state the... |
| strlem6 32236 | Lemma for strong state the... |
| stri 32237 | Strong state theorem. The... |
| strb 32238 | Strong state theorem (bidi... |
| hstrlem2 32239 | Lemma for strong set of CH... |
| hstrlem3a 32240 | Lemma for strong set of CH... |
| hstrlem3 32241 | Lemma for strong set of CH... |
| hstrlem4 32242 | Lemma for strong set of CH... |
| hstrlem5 32243 | Lemma for strong set of CH... |
| hstrlem6 32244 | Lemma for strong set of CH... |
| hstri 32245 | Hilbert space admits a str... |
| hstrbi 32246 | Strong CH-state theorem (b... |
| largei 32247 | A Hilbert lattice admits a... |
| jplem1 32248 | Lemma for Jauch-Piron theo... |
| jplem2 32249 | Lemma for Jauch-Piron theo... |
| jpi 32250 | The function ` S ` , that ... |
| golem1 32251 | Lemma for Godowski's equat... |
| golem2 32252 | Lemma for Godowski's equat... |
| goeqi 32253 | Godowski's equation, shown... |
| stcltr1i 32254 | Property of a strong class... |
| stcltr2i 32255 | Property of a strong class... |
| stcltrlem1 32256 | Lemma for strong classical... |
| stcltrlem2 32257 | Lemma for strong classical... |
| stcltrthi 32258 | Theorem for classically st... |
| cvbr 32262 | Binary relation expressing... |
| cvbr2 32263 | Binary relation expressing... |
| cvcon3 32264 | Contraposition law for the... |
| cvpss 32265 | The covers relation implie... |
| cvnbtwn 32266 | The covers relation implie... |
| cvnbtwn2 32267 | The covers relation implie... |
| cvnbtwn3 32268 | The covers relation implie... |
| cvnbtwn4 32269 | The covers relation implie... |
| cvnsym 32270 | The covers relation is not... |
| cvnref 32271 | The covers relation is not... |
| cvntr 32272 | The covers relation is not... |
| spansncv2 32273 | Hilbert space has the cove... |
| mdbr 32274 | Binary relation expressing... |
| mdi 32275 | Consequence of the modular... |
| mdbr2 32276 | Binary relation expressing... |
| mdbr3 32277 | Binary relation expressing... |
| mdbr4 32278 | Binary relation expressing... |
| dmdbr 32279 | Binary relation expressing... |
| dmdmd 32280 | The dual modular pair prop... |
| mddmd 32281 | The modular pair property ... |
| dmdi 32282 | Consequence of the dual mo... |
| dmdbr2 32283 | Binary relation expressing... |
| dmdi2 32284 | Consequence of the dual mo... |
| dmdbr3 32285 | Binary relation expressing... |
| dmdbr4 32286 | Binary relation expressing... |
| dmdi4 32287 | Consequence of the dual mo... |
| dmdbr5 32288 | Binary relation expressing... |
| mddmd2 32289 | Relationship between modul... |
| mdsl0 32290 | A sublattice condition tha... |
| ssmd1 32291 | Ordering implies the modul... |
| ssmd2 32292 | Ordering implies the modul... |
| ssdmd1 32293 | Ordering implies the dual ... |
| ssdmd2 32294 | Ordering implies the dual ... |
| dmdsl3 32295 | Sublattice mapping for a d... |
| mdsl3 32296 | Sublattice mapping for a m... |
| mdslle1i 32297 | Order preservation of the ... |
| mdslle2i 32298 | Order preservation of the ... |
| mdslj1i 32299 | Join preservation of the o... |
| mdslj2i 32300 | Meet preservation of the r... |
| mdsl1i 32301 | If the modular pair proper... |
| mdsl2i 32302 | If the modular pair proper... |
| mdsl2bi 32303 | If the modular pair proper... |
| cvmdi 32304 | The covering property impl... |
| mdslmd1lem1 32305 | Lemma for ~ mdslmd1i . (C... |
| mdslmd1lem2 32306 | Lemma for ~ mdslmd1i . (C... |
| mdslmd1lem3 32307 | Lemma for ~ mdslmd1i . (C... |
| mdslmd1lem4 32308 | Lemma for ~ mdslmd1i . (C... |
| mdslmd1i 32309 | Preservation of the modula... |
| mdslmd2i 32310 | Preservation of the modula... |
| mdsldmd1i 32311 | Preservation of the dual m... |
| mdslmd3i 32312 | Modular pair conditions th... |
| mdslmd4i 32313 | Modular pair condition tha... |
| csmdsymi 32314 | Cross-symmetry implies M-s... |
| mdexchi 32315 | An exchange lemma for modu... |
| cvmd 32316 | The covering property impl... |
| cvdmd 32317 | The covering property impl... |
| ela 32319 | Atoms in a Hilbert lattice... |
| elat2 32320 | Expanded membership relati... |
| elatcv0 32321 | A Hilbert lattice element ... |
| atcv0 32322 | An atom covers the zero su... |
| atssch 32323 | Atoms are a subset of the ... |
| atelch 32324 | An atom is a Hilbert latti... |
| atne0 32325 | An atom is not the Hilbert... |
| atss 32326 | A lattice element smaller ... |
| atsseq 32327 | Two atoms in a subset rela... |
| atcveq0 32328 | A Hilbert lattice element ... |
| h1da 32329 | A 1-dimensional subspace i... |
| spansna 32330 | The span of the singleton ... |
| sh1dle 32331 | A 1-dimensional subspace i... |
| ch1dle 32332 | A 1-dimensional subspace i... |
| atom1d 32333 | The 1-dimensional subspace... |
| superpos 32334 | Superposition Principle. ... |
| chcv1 32335 | The Hilbert lattice has th... |
| chcv2 32336 | The Hilbert lattice has th... |
| chjatom 32337 | The join of a closed subsp... |
| shatomici 32338 | The lattice of Hilbert sub... |
| hatomici 32339 | The Hilbert lattice is ato... |
| hatomic 32340 | A Hilbert lattice is atomi... |
| shatomistici 32341 | The lattice of Hilbert sub... |
| hatomistici 32342 | ` CH ` is atomistic, i.e. ... |
| chpssati 32343 | Two Hilbert lattice elemen... |
| chrelati 32344 | The Hilbert lattice is rel... |
| chrelat2i 32345 | A consequence of relative ... |
| cvati 32346 | If a Hilbert lattice eleme... |
| cvbr4i 32347 | An alternate way to expres... |
| cvexchlem 32348 | Lemma for ~ cvexchi . (Co... |
| cvexchi 32349 | The Hilbert lattice satisf... |
| chrelat2 32350 | A consequence of relative ... |
| chrelat3 32351 | A consequence of relative ... |
| chrelat3i 32352 | A consequence of the relat... |
| chrelat4i 32353 | A consequence of relative ... |
| cvexch 32354 | The Hilbert lattice satisf... |
| cvp 32355 | The Hilbert lattice satisf... |
| atnssm0 32356 | The meet of a Hilbert latt... |
| atnemeq0 32357 | The meet of distinct atoms... |
| atssma 32358 | The meet with an atom's su... |
| atcv0eq 32359 | Two atoms covering the zer... |
| atcv1 32360 | Two atoms covering the zer... |
| atexch 32361 | The Hilbert lattice satisf... |
| atomli 32362 | An assertion holding in at... |
| atoml2i 32363 | An assertion holding in at... |
| atordi 32364 | An ordering law for a Hilb... |
| atcvatlem 32365 | Lemma for ~ atcvati . (Co... |
| atcvati 32366 | A nonzero Hilbert lattice ... |
| atcvat2i 32367 | A Hilbert lattice element ... |
| atord 32368 | An ordering law for a Hilb... |
| atcvat2 32369 | A Hilbert lattice element ... |
| chirredlem1 32370 | Lemma for ~ chirredi . (C... |
| chirredlem2 32371 | Lemma for ~ chirredi . (C... |
| chirredlem3 32372 | Lemma for ~ chirredi . (C... |
| chirredlem4 32373 | Lemma for ~ chirredi . (C... |
| chirredi 32374 | The Hilbert lattice is irr... |
| chirred 32375 | The Hilbert lattice is irr... |
| atcvat3i 32376 | A condition implying that ... |
| atcvat4i 32377 | A condition implying exist... |
| atdmd 32378 | Two Hilbert lattice elemen... |
| atmd 32379 | Two Hilbert lattice elemen... |
| atmd2 32380 | Two Hilbert lattice elemen... |
| atabsi 32381 | Absorption of an incompara... |
| atabs2i 32382 | Absorption of an incompara... |
| mdsymlem1 32383 | Lemma for ~ mdsymi . (Con... |
| mdsymlem2 32384 | Lemma for ~ mdsymi . (Con... |
| mdsymlem3 32385 | Lemma for ~ mdsymi . (Con... |
| mdsymlem4 32386 | Lemma for ~ mdsymi . This... |
| mdsymlem5 32387 | Lemma for ~ mdsymi . (Con... |
| mdsymlem6 32388 | Lemma for ~ mdsymi . This... |
| mdsymlem7 32389 | Lemma for ~ mdsymi . Lemm... |
| mdsymlem8 32390 | Lemma for ~ mdsymi . Lemm... |
| mdsymi 32391 | M-symmetry of the Hilbert ... |
| mdsym 32392 | M-symmetry of the Hilbert ... |
| dmdsym 32393 | Dual M-symmetry of the Hil... |
| atdmd2 32394 | Two Hilbert lattice elemen... |
| sumdmdii 32395 | If the subspace sum of two... |
| cmmdi 32396 | Commuting subspaces form a... |
| cmdmdi 32397 | Commuting subspaces form a... |
| sumdmdlem 32398 | Lemma for ~ sumdmdi . The... |
| sumdmdlem2 32399 | Lemma for ~ sumdmdi . (Co... |
| sumdmdi 32400 | The subspace sum of two Hi... |
| dmdbr4ati 32401 | Dual modular pair property... |
| dmdbr5ati 32402 | Dual modular pair property... |
| dmdbr6ati 32403 | Dual modular pair property... |
| dmdbr7ati 32404 | Dual modular pair property... |
| mdoc1i 32405 | Orthocomplements form a mo... |
| mdoc2i 32406 | Orthocomplements form a mo... |
| dmdoc1i 32407 | Orthocomplements form a du... |
| dmdoc2i 32408 | Orthocomplements form a du... |
| mdcompli 32409 | A condition equivalent to ... |
| dmdcompli 32410 | A condition equivalent to ... |
| mddmdin0i 32411 | If dual modular implies mo... |
| cdjreui 32412 | A member of the sum of dis... |
| cdj1i 32413 | Two ways to express " ` A ... |
| cdj3lem1 32414 | A property of " ` A ` and ... |
| cdj3lem2 32415 | Lemma for ~ cdj3i . Value... |
| cdj3lem2a 32416 | Lemma for ~ cdj3i . Closu... |
| cdj3lem2b 32417 | Lemma for ~ cdj3i . The f... |
| cdj3lem3 32418 | Lemma for ~ cdj3i . Value... |
| cdj3lem3a 32419 | Lemma for ~ cdj3i . Closu... |
| cdj3lem3b 32420 | Lemma for ~ cdj3i . The s... |
| cdj3i 32421 | Two ways to express " ` A ... |
| The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here | |
| mathbox 32422 | (_This theorem is a dummy ... |
| sa-abvi 32423 | A theorem about the univer... |
| xfree 32424 | A partial converse to ~ 19... |
| xfree2 32425 | A partial converse to ~ 19... |
| addltmulALT 32426 | A proof readability experi... |
| ad11antr 32427 | Deduction adding 11 conjun... |
| simp-12l 32428 | Simplification of a conjun... |
| simp-12r 32429 | Simplification of a conjun... |
| an52ds 32430 | Inference exchanging the l... |
| an62ds 32431 | Inference exchanging the l... |
| an72ds 32432 | Inference exchanging the l... |
| an82ds 32433 | Inference exchanging the l... |
| syl22anbrc 32434 | Syllogism inference. (Con... |
| bian1d 32435 | Adding a superfluous conju... |
| bian1dOLD 32436 | Obsolete version of ~ bian... |
| orim12da 32437 | Deduce a disjunction from ... |
| or3di 32438 | Distributive law for disju... |
| or3dir 32439 | Distributive law for disju... |
| 3o1cs 32440 | Deduction eliminating disj... |
| 3o2cs 32441 | Deduction eliminating disj... |
| 3o3cs 32442 | Deduction eliminating disj... |
| 13an22anass 32443 | Associative law for four c... |
| sbc2iedf 32444 | Conversion of implicit sub... |
| rspc2daf 32445 | Double restricted speciali... |
| ralcom4f 32446 | Commutation of restricted ... |
| rexcom4f 32447 | Commutation of restricted ... |
| 19.9d2rf 32448 | A deduction version of one... |
| 19.9d2r 32449 | A deduction version of one... |
| r19.29ffa 32450 | A commonly used pattern ba... |
| n0limd 32451 | Deduction rule for nonempt... |
| reu6dv 32452 | A condition which implies ... |
| eqtrb 32453 | A transposition of equalit... |
| eqelbid 32454 | A variable elimination law... |
| opsbc2ie 32455 | Conversion of implicit sub... |
| opreu2reuALT 32456 | Correspondence between uni... |
| 2reucom 32459 | Double restricted existent... |
| 2reu2rex1 32460 | Double restricted existent... |
| 2reureurex 32461 | Double restricted existent... |
| 2reu2reu2 32462 | Double restricted existent... |
| opreu2reu1 32463 | Equivalent definition of t... |
| sq2reunnltb 32464 | There exists a unique deco... |
| addsqnot2reu 32465 | For each complex number ` ... |
| sbceqbidf 32466 | Equality theorem for class... |
| sbcies 32467 | A special version of class... |
| mo5f 32468 | Alternate definition of "a... |
| nmo 32469 | Negation of "at most one".... |
| reuxfrdf 32470 | Transfer existential uniqu... |
| rexunirn 32471 | Restricted existential qua... |
| rmoxfrd 32472 | Transfer "at most one" res... |
| rmoun 32473 | "At most one" restricted e... |
| rmounid 32474 | A case where an "at most o... |
| riotaeqbidva 32475 | Equivalent wff's yield equ... |
| dmrab 32476 | Domain of a restricted cla... |
| difrab2 32477 | Difference of two restrict... |
| elrabrd 32478 | Deduction version of ~ elr... |
| rabexgfGS 32479 | Separation Scheme in terms... |
| rabsnel 32480 | Truth implied by equality ... |
| rabsspr 32481 | Conditions for a restricte... |
| rabsstp 32482 | Conditions for a restricte... |
| 3unrab 32483 | Union of three restricted ... |
| foresf1o 32484 | From a surjective function... |
| rabfodom 32485 | Domination relation for re... |
| rabrexfi 32486 | Conditions for a class abs... |
| abrexdomjm 32487 | An indexed set is dominate... |
| abrexdom2jm 32488 | An indexed set is dominate... |
| abrexexd 32489 | Existence of a class abstr... |
| elabreximd 32490 | Class substitution in an i... |
| elabreximdv 32491 | Class substitution in an i... |
| abrexss 32492 | A necessary condition for ... |
| nelun 32493 | Negated membership for a u... |
| snsssng 32494 | If a singleton is a subset... |
| n0nsnel 32495 | If a class with one elemen... |
| inin 32496 | Intersection with an inter... |
| difininv 32497 | Condition for the intersec... |
| difeq 32498 | Rewriting an equation with... |
| eqdif 32499 | If both set differences of... |
| indifbi 32500 | Two ways to express equali... |
| diffib 32501 | Case where ~ diffi is a bi... |
| difxp1ss 32502 | Difference law for Cartesi... |
| difxp2ss 32503 | Difference law for Cartesi... |
| indifundif 32504 | A remarkable equation with... |
| elpwincl1 32505 | Closure of intersection wi... |
| elpwdifcl 32506 | Closure of class differenc... |
| elpwiuncl 32507 | Closure of indexed union w... |
| elpreq 32508 | Equality wihin a pair. (C... |
| prssad 32509 | If a pair is a subset of a... |
| prssbd 32510 | If a pair is a subset of a... |
| nelpr 32511 | A set ` A ` not in a pair ... |
| inpr0 32512 | Rewrite an empty intersect... |
| neldifpr1 32513 | The first element of a pai... |
| neldifpr2 32514 | The second element of a pa... |
| unidifsnel 32515 | The other element of a pai... |
| unidifsnne 32516 | The other element of a pai... |
| tpssg 32517 | An unordered triple of ele... |
| tpssd 32518 | Deduction version of tpssi... |
| tpssad 32519 | If an ordered triple is a ... |
| tpssbd 32520 | If an ordered triple is a ... |
| tpsscd 32521 | If an ordered triple is a ... |
| ifeqeqx 32522 | An equality theorem tailor... |
| elimifd 32523 | Elimination of a condition... |
| elim2if 32524 | Elimination of two conditi... |
| elim2ifim 32525 | Elimination of two conditi... |
| ifeq3da 32526 | Given an expression ` C ` ... |
| ifnetrue 32527 | Deduce truth from a condit... |
| ifnefals 32528 | Deduce falsehood from a co... |
| ifnebib 32529 | The converse of ~ ifbi hol... |
| uniinn0 32530 | Sufficient and necessary c... |
| uniin1 32531 | Union of intersection. Ge... |
| uniin2 32532 | Union of intersection. Ge... |
| difuncomp 32533 | Express a class difference... |
| elpwunicl 32534 | Closure of a set union wit... |
| cbviunf 32535 | Rule used to change the bo... |
| iuneq12daf 32536 | Equality deduction for ind... |
| iunin1f 32537 | Indexed union of intersect... |
| ssiun3 32538 | Subset equivalence for an ... |
| ssiun2sf 32539 | Subset relationship for an... |
| iuninc 32540 | The union of an increasing... |
| iundifdifd 32541 | The intersection of a set ... |
| iundifdif 32542 | The intersection of a set ... |
| iunrdx 32543 | Re-index an indexed union.... |
| iunpreima 32544 | Preimage of an indexed uni... |
| iunrnmptss 32545 | A subset relation for an i... |
| iunxunsn 32546 | Appending a set to an inde... |
| iunxunpr 32547 | Appending two sets to an i... |
| iunxpssiun1 32548 | Provide an upper bound for... |
| iinabrex 32549 | Rewriting an indexed inter... |
| disjnf 32550 | In case ` x ` is not free ... |
| cbvdisjf 32551 | Change bound variables in ... |
| disjss1f 32552 | A subset of a disjoint col... |
| disjeq1f 32553 | Equality theorem for disjo... |
| disjxun0 32554 | Simplify a disjoint union.... |
| disjdifprg 32555 | A trivial partition into a... |
| disjdifprg2 32556 | A trivial partition of a s... |
| disji2f 32557 | Property of a disjoint col... |
| disjif 32558 | Property of a disjoint col... |
| disjorf 32559 | Two ways to say that a col... |
| disjorsf 32560 | Two ways to say that a col... |
| disjif2 32561 | Property of a disjoint col... |
| disjabrex 32562 | Rewriting a disjoint colle... |
| disjabrexf 32563 | Rewriting a disjoint colle... |
| disjpreima 32564 | A preimage of a disjoint s... |
| disjrnmpt 32565 | Rewriting a disjoint colle... |
| disjin 32566 | If a collection is disjoin... |
| disjin2 32567 | If a collection is disjoin... |
| disjxpin 32568 | Derive a disjunction over ... |
| iundisjf 32569 | Rewrite a countable union ... |
| iundisj2f 32570 | A disjoint union is disjoi... |
| disjrdx 32571 | Re-index a disjunct collec... |
| disjex 32572 | Two ways to say that two c... |
| disjexc 32573 | A variant of ~ disjex , ap... |
| disjunsn 32574 | Append an element to a dis... |
| disjun0 32575 | Adding the empty element p... |
| disjiunel 32576 | A set of elements B of a d... |
| disjuniel 32577 | A set of elements B of a d... |
| xpdisjres 32578 | Restriction of a constant ... |
| opeldifid 32579 | Ordered pair elementhood o... |
| difres 32580 | Case when class difference... |
| imadifxp 32581 | Image of the difference wi... |
| relfi 32582 | A relation (set) is finite... |
| 0res 32583 | Restriction of the empty f... |
| fcoinver 32584 | Build an equivalence relat... |
| fcoinvbr 32585 | Binary relation for the eq... |
| breq1dd 32586 | Equality deduction for a b... |
| breq2dd 32587 | Equality deduction for a b... |
| brab2d 32588 | Expressing that two sets a... |
| brabgaf 32589 | The law of concretion for ... |
| brelg 32590 | Two things in a binary rel... |
| br8d 32591 | Substitution for an eight-... |
| fnfvor 32592 | Relation between two funct... |
| ofrco 32593 | Function relation between ... |
| opabdm 32594 | Domain of an ordered-pair ... |
| opabrn 32595 | Range of an ordered-pair c... |
| opabssi 32596 | Sufficient condition for a... |
| opabid2ss 32597 | One direction of ~ opabid2... |
| ssrelf 32598 | A subclass relationship de... |
| eqrelrd2 32599 | A version of ~ eqrelrdv2 w... |
| erbr3b 32600 | Biconditional for equivale... |
| iunsnima 32601 | Image of a singleton by an... |
| iunsnima2 32602 | Version of ~ iunsnima with... |
| fconst7v 32603 | An alternative way to expr... |
| constcof 32604 | Composition with a constan... |
| ac6sf2 32605 | Alternate version of ~ ac6... |
| ac6mapd 32606 | Axiom of choice equivalent... |
| fnresin 32607 | Restriction of a function ... |
| f1o3d 32608 | Describe an implicit one-t... |
| eldmne0 32609 | A function of nonempty dom... |
| f1rnen 32610 | Equinumerosity of the rang... |
| f1oeq3dd 32611 | Equality deduction for one... |
| rinvf1o 32612 | Sufficient conditions for ... |
| fresf1o 32613 | Conditions for a restricti... |
| nfpconfp 32614 | The set of fixed points of... |
| fmptco1f1o 32615 | The action of composing (t... |
| cofmpt2 32616 | Express composition of a m... |
| f1mptrn 32617 | Express injection for a ma... |
| dfimafnf 32618 | Alternate definition of th... |
| funimass4f 32619 | Membership relation for th... |
| suppss2f 32620 | Show that the support of a... |
| ofrn 32621 | The range of the function ... |
| ofrn2 32622 | The range of the function ... |
| off2 32623 | The function operation pro... |
| ofresid 32624 | Applying an operation rest... |
| unipreima 32625 | Preimage of a class union.... |
| opfv 32626 | Value of a function produc... |
| xppreima 32627 | The preimage of a Cartesia... |
| 2ndimaxp 32628 | Image of a cartesian produ... |
| dmdju 32629 | Domain of a disjoint union... |
| djussxp2 32630 | Stronger version of ~ djus... |
| 2ndresdju 32631 | The ` 2nd ` function restr... |
| 2ndresdjuf1o 32632 | The ` 2nd ` function restr... |
| xppreima2 32633 | The preimage of a Cartesia... |
| abfmpunirn 32634 | Membership in a union of a... |
| rabfmpunirn 32635 | Membership in a union of a... |
| abfmpeld 32636 | Membership in an element o... |
| abfmpel 32637 | Membership in an element o... |
| fmptdF 32638 | Domain and codomain of the... |
| fmptcof2 32639 | Composition of two functio... |
| fcomptf 32640 | Express composition of two... |
| acunirnmpt 32641 | Axiom of choice for the un... |
| acunirnmpt2 32642 | Axiom of choice for the un... |
| acunirnmpt2f 32643 | Axiom of choice for the un... |
| aciunf1lem 32644 | Choice in an index union. ... |
| aciunf1 32645 | Choice in an index union. ... |
| ofoprabco 32646 | Function operation as a co... |
| ofpreima 32647 | Express the preimage of a ... |
| ofpreima2 32648 | Express the preimage of a ... |
| funcnvmpt 32649 | Condition for a function i... |
| funcnv5mpt 32650 | Two ways to say that a fun... |
| funcnv4mpt 32651 | Two ways to say that a fun... |
| preimane 32652 | Different elements have di... |
| fnpreimac 32653 | Choose a set ` x ` contain... |
| fgreu 32654 | Exactly one point of a fun... |
| fcnvgreu 32655 | If the converse of a relat... |
| rnmposs 32656 | The range of an operation ... |
| mptssALT 32657 | Deduce subset relation of ... |
| dfcnv2 32658 | Alternative definition of ... |
| mpomptxf 32659 | Express a two-argument fun... |
| of0r 32660 | Function operation with th... |
| elmaprd 32661 | Deduction associated with ... |
| suppovss 32662 | A bound for the support of... |
| elsuppfnd 32663 | Deduce membership in the s... |
| fisuppov1 32664 | Formula building theorem f... |
| suppun2 32665 | The support of a union is ... |
| fdifsupp 32666 | Express the support of a f... |
| suppiniseg 32667 | Relation between the suppo... |
| fsuppinisegfi 32668 | The initial segment ` ( ``... |
| fressupp 32669 | The restriction of a funct... |
| fdifsuppconst 32670 | A function is a zero const... |
| ressupprn 32671 | The range of a function re... |
| supppreima 32672 | Express the support of a f... |
| fsupprnfi 32673 | Finite support implies fin... |
| mptiffisupp 32674 | Conditions for a mapping f... |
| cosnopne 32675 | Composition of two ordered... |
| cosnop 32676 | Composition of two ordered... |
| cnvprop 32677 | Converse of a pair of orde... |
| brprop 32678 | Binary relation for a pair... |
| mptprop 32679 | Rewrite pairs of ordered p... |
| coprprop 32680 | Composition of two pairs o... |
| fmptunsnop 32681 | Two ways to express a func... |
| gtiso 32682 | Two ways to write a strict... |
| isoun 32683 | Infer an isomorphism from ... |
| disjdsct 32684 | A disjoint collection is d... |
| df1stres 32685 | Definition for a restricti... |
| df2ndres 32686 | Definition for a restricti... |
| 1stpreimas 32687 | The preimage of a singleto... |
| 1stpreima 32688 | The preimage by ` 1st ` is... |
| 2ndpreima 32689 | The preimage by ` 2nd ` is... |
| curry2ima 32690 | The image of a curried fun... |
| preiman0 32691 | The preimage of a nonempty... |
| intimafv 32692 | The intersection of an ima... |
| imafi2 32693 | The image by a finite set ... |
| unifi3 32694 | If a union is finite, then... |
| snct 32695 | A singleton is countable. ... |
| prct 32696 | An unordered pair is count... |
| mpocti 32697 | An operation is countable ... |
| abrexct 32698 | An image set of a countabl... |
| mptctf 32699 | A countable mapping set is... |
| abrexctf 32700 | An image set of a countabl... |
| padct 32701 | Index a countable set with... |
| f1od2 32702 | Sufficient condition for a... |
| fcobij 32703 | Composing functions with a... |
| fcobijfs 32704 | Composing finitely support... |
| fcobijfs2 32705 | Composing finitely support... |
| suppss3 32706 | Deduce a function's suppor... |
| fsuppcurry1 32707 | Finite support of a currie... |
| fsuppcurry2 32708 | Finite support of a currie... |
| offinsupp1 32709 | Finite support for a funct... |
| ffs2 32710 | Rewrite a function's suppo... |
| ffsrn 32711 | The range of a finitely su... |
| cocnvf1o 32712 | Composing with the inverse... |
| resf1o 32713 | Restriction of functions t... |
| maprnin 32714 | Restricting the range of t... |
| fpwrelmapffslem 32715 | Lemma for ~ fpwrelmapffs .... |
| fpwrelmap 32716 | Define a canonical mapping... |
| fpwrelmapffs 32717 | Define a canonical mapping... |
| sgnval2 32718 | Value of the signum of a r... |
| creq0 32719 | The real representation of... |
| 1nei 32720 | The imaginary unit ` _i ` ... |
| 1neg1t1neg1 32721 | An integer unit times itse... |
| nnmulge 32722 | Multiplying by a positive ... |
| submuladdd 32723 | The product of a differenc... |
| muldivdid 32724 | Distribution of division o... |
| binom2subadd 32725 | The difference of the squa... |
| cjsubd 32726 | Complex conjugate distribu... |
| re0cj 32727 | The conjugate of a pure im... |
| receqid 32728 | Real numbers equal to thei... |
| pythagreim 32729 | A simplified version of th... |
| efiargd 32730 | The exponential of the "ar... |
| arginv 32731 | The argument of the invers... |
| argcj 32732 | The argument of the conjug... |
| quad3d 32733 | Variant of quadratic equat... |
| lt2addrd 32734 | If the right-hand side of ... |
| xrlelttric 32735 | Trichotomy law for extende... |
| xaddeq0 32736 | Two extended reals which a... |
| rexmul2 32737 | If the result ` A ` of an ... |
| xrinfm 32738 | The extended real numbers ... |
| le2halvesd 32739 | A sum is less than the who... |
| xraddge02 32740 | A number is less than or e... |
| xrge0addge 32741 | A number is less than or e... |
| xlt2addrd 32742 | If the right-hand side of ... |
| xrge0infss 32743 | Any subset of nonnegative ... |
| xrge0infssd 32744 | Inequality deduction for i... |
| xrge0addcld 32745 | Nonnegative extended reals... |
| xrge0subcld 32746 | Condition for closure of n... |
| infxrge0lb 32747 | A member of a set of nonne... |
| infxrge0glb 32748 | The infimum of a set of no... |
| infxrge0gelb 32749 | The infimum of a set of no... |
| xrofsup 32750 | The supremum is preserved ... |
| supxrnemnf 32751 | The supremum of a nonempty... |
| xnn0gt0 32752 | Nonzero extended nonnegati... |
| xnn01gt 32753 | An extended nonnegative in... |
| nn0xmulclb 32754 | Finite multiplication in t... |
| xnn0nn0d 32755 | Conditions for an extended... |
| xnn0nnd 32756 | Conditions for an extended... |
| joiniooico 32757 | Disjoint joining an open i... |
| ubico 32758 | A right-open interval does... |
| xeqlelt 32759 | Equality in terms of 'less... |
| eliccelico 32760 | Relate elementhood to a cl... |
| elicoelioo 32761 | Relate elementhood to a cl... |
| iocinioc2 32762 | Intersection between two o... |
| xrdifh 32763 | Class difference of a half... |
| iocinif 32764 | Relate intersection of two... |
| difioo 32765 | The difference between two... |
| difico 32766 | The difference between two... |
| uzssico 32767 | Upper integer sets are a s... |
| fz2ssnn0 32768 | A finite set of sequential... |
| nndiffz1 32769 | Upper set of the positive ... |
| ssnnssfz 32770 | For any finite subset of `... |
| fzm1ne1 32771 | Elementhood of an integer ... |
| fzspl 32772 | Split the last element of ... |
| fzdif2 32773 | Split the last element of ... |
| fzodif2 32774 | Split the last element of ... |
| fzodif1 32775 | Set difference of two half... |
| fzsplit3 32776 | Split a finite interval of... |
| bcm1n 32777 | The proportion of one bino... |
| iundisjfi 32778 | Rewrite a countable union ... |
| iundisj2fi 32779 | A disjoint union is disjoi... |
| iundisjcnt 32780 | Rewrite a countable union ... |
| iundisj2cnt 32781 | A countable disjoint union... |
| f1ocnt 32782 | Given a countable set ` A ... |
| fz1nnct 32783 | NN and integer ranges star... |
| fz1nntr 32784 | NN and integer ranges star... |
| fzo0opth 32785 | Equality for a half open i... |
| nn0difffzod 32786 | A nonnegative integer that... |
| suppssnn0 32787 | Show that the support of a... |
| hashunif 32788 | The cardinality of a disjo... |
| hashxpe 32789 | The size of the Cartesian ... |
| hashgt1 32790 | Restate "set contains at l... |
| hashpss 32791 | The size of a proper subse... |
| hashne0 32792 | Deduce that the size of a ... |
| hashimaf1 32793 | Taking the image of a set ... |
| elq2 32794 | Elementhood in the rationa... |
| znumd 32795 | Numerator of an integer. ... |
| zdend 32796 | Denominator of an integer.... |
| numdenneg 32797 | Numerator and denominator ... |
| divnumden2 32798 | Calculate the reduced form... |
| expgt0b 32799 | A real number ` A ` raised... |
| nn0split01 32800 | Split 0 and 1 from the non... |
| nn0disj01 32801 | The pair ` { 0 , 1 } ` doe... |
| nnindf 32802 | Principle of Mathematical ... |
| nn0min 32803 | Extracting the minimum pos... |
| subne0nn 32804 | A nonnegative difference i... |
| ltesubnnd 32805 | Subtracting an integer num... |
| fprodeq02 32806 | If one of the factors is z... |
| pr01ssre 32807 | The range of the indicator... |
| fprodex01 32808 | A product of factors equal... |
| prodpr 32809 | A product over a pair is t... |
| prodtp 32810 | A product over a triple is... |
| fsumub 32811 | An upper bound for a term ... |
| fsumiunle 32812 | Upper bound for a sum of n... |
| dfdec100 32813 | Split the hundreds from a ... |
| sgncl 32814 | Closure of the signum. (C... |
| sgnclre 32815 | Closure of the signum. (C... |
| sgnneg 32816 | Negation of the signum. (... |
| sgn3da 32817 | A conditional containing a... |
| sgnmul 32818 | Signum of a product. (Con... |
| sgnmulrp2 32819 | Multiplication by a positi... |
| sgnsub 32820 | Subtraction of a number of... |
| sgnnbi 32821 | Negative signum. (Contrib... |
| sgnpbi 32822 | Positive signum. (Contrib... |
| sgn0bi 32823 | Zero signum. (Contributed... |
| sgnsgn 32824 | Signum is idempotent. (Co... |
| sgnmulsgn 32825 | If two real numbers are of... |
| sgnmulsgp 32826 | If two real numbers are of... |
| nexple 32827 | A lower bound for an expon... |
| 2exple2exp 32828 | If a nonnegative integer `... |
| expevenpos 32829 | Even powers are positive. ... |
| oexpled 32830 | Odd power monomials are mo... |
| indv 32833 | Value of the indicator fun... |
| indval 32834 | Value of the indicator fun... |
| indval2 32835 | Alternate value of the ind... |
| indf 32836 | An indicator function as a... |
| indfval 32837 | Value of the indicator fun... |
| ind1 32838 | Value of the indicator fun... |
| ind0 32839 | Value of the indicator fun... |
| ind1a 32840 | Value of the indicator fun... |
| indpi1 32841 | Preimage of the singleton ... |
| indsum 32842 | Finite sum of a product wi... |
| indsumin 32843 | Finite sum of a product wi... |
| prodindf 32844 | The product of indicators ... |
| indf1o 32845 | The bijection between a po... |
| indpreima 32846 | A function with range ` { ... |
| indf1ofs 32847 | The bijection between fini... |
| indsupp 32848 | The support of the indicat... |
| indfsd 32849 | The indicator function of ... |
| indfsid 32850 | Conditions for a function ... |
| dp2eq1 32853 | Equality theorem for the d... |
| dp2eq2 32854 | Equality theorem for the d... |
| dp2eq1i 32855 | Equality theorem for the d... |
| dp2eq2i 32856 | Equality theorem for the d... |
| dp2eq12i 32857 | Equality theorem for the d... |
| dp20u 32858 | Add a zero in the tenths (... |
| dp20h 32859 | Add a zero in the unit pla... |
| dp2cl 32860 | Closure for the decimal fr... |
| dp2clq 32861 | Closure for a decimal frac... |
| rpdp2cl 32862 | Closure for a decimal frac... |
| rpdp2cl2 32863 | Closure for a decimal frac... |
| dp2lt10 32864 | Decimal fraction builds re... |
| dp2lt 32865 | Comparing two decimal frac... |
| dp2ltsuc 32866 | Comparing a decimal fracti... |
| dp2ltc 32867 | Comparing two decimal expa... |
| dpval 32870 | Define the value of the de... |
| dpcl 32871 | Prove that the closure of ... |
| dpfrac1 32872 | Prove a simple equivalence... |
| dpval2 32873 | Value of the decimal point... |
| dpval3 32874 | Value of the decimal point... |
| dpmul10 32875 | Multiply by 10 a decimal e... |
| decdiv10 32876 | Divide a decimal number by... |
| dpmul100 32877 | Multiply by 100 a decimal ... |
| dp3mul10 32878 | Multiply by 10 a decimal e... |
| dpmul1000 32879 | Multiply by 1000 a decimal... |
| dpval3rp 32880 | Value of the decimal point... |
| dp0u 32881 | Add a zero in the tenths p... |
| dp0h 32882 | Remove a zero in the units... |
| rpdpcl 32883 | Closure of the decimal poi... |
| dplt 32884 | Comparing two decimal expa... |
| dplti 32885 | Comparing a decimal expans... |
| dpgti 32886 | Comparing a decimal expans... |
| dpltc 32887 | Comparing two decimal inte... |
| dpexpp1 32888 | Add one zero to the mantis... |
| 0dp2dp 32889 | Multiply by 10 a decimal e... |
| dpadd2 32890 | Addition with one decimal,... |
| dpadd 32891 | Addition with one decimal.... |
| dpadd3 32892 | Addition with two decimals... |
| dpmul 32893 | Multiplication with one de... |
| dpmul4 32894 | An upper bound to multipli... |
| threehalves 32895 | Example theorem demonstrat... |
| 1mhdrd 32896 | Example theorem demonstrat... |
| xdivval 32899 | Value of division: the (un... |
| xrecex 32900 | Existence of reciprocal of... |
| xmulcand 32901 | Cancellation law for exten... |
| xreceu 32902 | Existential uniqueness of ... |
| xdivcld 32903 | Closure law for the extend... |
| xdivcl 32904 | Closure law for the extend... |
| xdivmul 32905 | Relationship between divis... |
| rexdiv 32906 | The extended real division... |
| xdivrec 32907 | Relationship between divis... |
| xdivid 32908 | A number divided by itself... |
| xdiv0 32909 | Division into zero is zero... |
| xdiv0rp 32910 | Division into zero is zero... |
| eliccioo 32911 | Membership in a closed int... |
| elxrge02 32912 | Elementhood in the set of ... |
| xdivpnfrp 32913 | Plus infinity divided by a... |
| rpxdivcld 32914 | Closure law for extended d... |
| xrpxdivcld 32915 | Closure law for extended d... |
| wrdres 32916 | Condition for the restrict... |
| wrdsplex 32917 | Existence of a split of a ... |
| wrdfsupp 32918 | A word has finite support.... |
| wrdpmcl 32919 | Closure of a word with per... |
| pfx1s2 32920 | The prefix of length 1 of ... |
| pfxrn2 32921 | The range of a prefix of a... |
| pfxrn3 32922 | Express the range of a pre... |
| pfxf1 32923 | Condition for a prefix to ... |
| s1f1 32924 | Conditions for a length 1 ... |
| s2rnOLD 32925 | Obsolete version of ~ s2rn... |
| s2f1 32926 | Conditions for a length 2 ... |
| s3rnOLD 32927 | Obsolete version of ~ s2rn... |
| s3f1 32928 | Conditions for a length 3 ... |
| s3clhash 32929 | Closure of the words of le... |
| ccatf1 32930 | Conditions for a concatena... |
| pfxlsw2ccat 32931 | Reconstruct a word from it... |
| ccatws1f1o 32932 | Conditions for the concate... |
| ccatws1f1olast 32933 | Two ways to reorder symbol... |
| wrdt2ind 32934 | Perform an induction over ... |
| swrdrn2 32935 | The range of a subword is ... |
| swrdrn3 32936 | Express the range of a sub... |
| swrdf1 32937 | Condition for a subword to... |
| swrdrndisj 32938 | Condition for the range of... |
| splfv3 32939 | Symbols to the right of a ... |
| 1cshid 32940 | Cyclically shifting a sing... |
| cshw1s2 32941 | Cyclically shifting a leng... |
| cshwrnid 32942 | Cyclically shifting a word... |
| cshf1o 32943 | Condition for the cyclic s... |
| ressplusf 32944 | The group operation functi... |
| ressnm 32945 | The norm in a restricted s... |
| abvpropd2 32946 | Weaker version of ~ abvpro... |
| ressprs 32947 | The restriction of a prose... |
| posrasymb 32948 | A poset ordering is asymet... |
| odutos 32949 | Being a toset is a self-du... |
| tlt2 32950 | In a Toset, two elements m... |
| tlt3 32951 | In a Toset, two elements m... |
| trleile 32952 | In a Toset, two elements m... |
| toslublem 32953 | Lemma for ~ toslub and ~ x... |
| toslub 32954 | In a toset, the lowest upp... |
| tosglblem 32955 | Lemma for ~ tosglb and ~ x... |
| tosglb 32956 | Same theorem as ~ toslub ,... |
| clatp0cl 32957 | The poset zero of a comple... |
| clatp1cl 32958 | The poset one of a complet... |
| mntoval 32963 | Operation value of the mon... |
| ismnt 32964 | Express the statement " ` ... |
| ismntd 32965 | Property of being a monoto... |
| mntf 32966 | A monotone function is a f... |
| mgcoval 32967 | Operation value of the mon... |
| mgcval 32968 | Monotone Galois connection... |
| mgcf1 32969 | The lower adjoint ` F ` of... |
| mgcf2 32970 | The upper adjoint ` G ` of... |
| mgccole1 32971 | An inequality for the kern... |
| mgccole2 32972 | Inequality for the closure... |
| mgcmnt1 32973 | The lower adjoint ` F ` of... |
| mgcmnt2 32974 | The upper adjoint ` G ` of... |
| mgcmntco 32975 | A Galois connection like s... |
| dfmgc2lem 32976 | Lemma for dfmgc2, backward... |
| dfmgc2 32977 | Alternate definition of th... |
| mgcmnt1d 32978 | Galois connection implies ... |
| mgcmnt2d 32979 | Galois connection implies ... |
| mgccnv 32980 | The inverse Galois connect... |
| pwrssmgc 32981 | Given a function ` F ` , e... |
| mgcf1olem1 32982 | Property of a Galois conne... |
| mgcf1olem2 32983 | Property of a Galois conne... |
| mgcf1o 32984 | Given a Galois connection,... |
| xrs0 32987 | The zero of the extended r... |
| xrslt 32988 | The "strictly less than" r... |
| xrsinvgval 32989 | The inversion operation in... |
| xrsmulgzz 32990 | The "multiple" function in... |
| xrstos 32991 | The extended real numbers ... |
| xrsclat 32992 | The extended real numbers ... |
| xrsp0 32993 | The poset 0 of the extende... |
| xrsp1 32994 | The poset 1 of the extende... |
| xrge00 32995 | The zero of the extended n... |
| xrge0mulgnn0 32996 | The group multiple functio... |
| xrge0addass 32997 | Associativity of extended ... |
| xrge0addgt0 32998 | The sum of nonnegative and... |
| xrge0adddir 32999 | Right-distributivity of ex... |
| xrge0adddi 33000 | Left-distributivity of ext... |
| xrge0npcan 33001 | Extended nonnegative real ... |
| fsumrp0cl 33002 | Closure of a finite sum of... |
| mndcld 33003 | Closure of the operation o... |
| mndassd 33004 | A monoid operation is asso... |
| mndlrinv 33005 | In a monoid, if an element... |
| mndlrinvb 33006 | In a monoid, if an element... |
| mndlactf1 33007 | If an element ` X ` of a m... |
| mndlactfo 33008 | An element ` X ` of a mono... |
| mndractf1 33009 | If an element ` X ` of a m... |
| mndractfo 33010 | An element ` X ` of a mono... |
| mndlactf1o 33011 | An element ` X ` of a mono... |
| mndractf1o 33012 | An element ` X ` of a mono... |
| cmn4d 33013 | Commutative/associative la... |
| cmn246135 33014 | Rearrange terms in a commu... |
| cmn145236 33015 | Rearrange terms in a commu... |
| submcld 33016 | Submonoids are closed unde... |
| abliso 33017 | The image of an Abelian gr... |
| lmhmghmd 33018 | A module homomorphism is a... |
| mhmimasplusg 33019 | Value of the operation of ... |
| lmhmimasvsca 33020 | Value of the scalar produc... |
| grpsubcld 33021 | Closure of group subtracti... |
| subgcld 33022 | A subgroup is closed under... |
| subgsubcld 33023 | A subgroup is closed under... |
| subgmulgcld 33024 | Closure of the group multi... |
| ressmulgnn0d 33025 | Values for the group multi... |
| gsumsubg 33026 | The group sum in a subgrou... |
| gsumsra 33027 | The group sum in a subring... |
| gsummpt2co 33028 | Split a finite sum into a ... |
| gsummpt2d 33029 | Express a finite sum over ... |
| lmodvslmhm 33030 | Scalar multiplication in a... |
| gsumvsmul1 33031 | Pull a scalar multiplicati... |
| gsummptres 33032 | Extend a finite group sum ... |
| gsummptres2 33033 | Extend a finite group sum ... |
| gsummptfsf1o 33034 | Re-index a finite group su... |
| gsumfs2d 33035 | Express a finite sum over ... |
| gsumzresunsn 33036 | Append an element to a fin... |
| gsumpart 33037 | Express a group sum as a d... |
| gsumtp 33038 | Group sum of an unordered ... |
| gsumzrsum 33039 | Relate a group sum on ` ZZ... |
| gsummulgc2 33040 | A finite group sum multipl... |
| gsumhashmul 33041 | Express a group sum by gro... |
| xrge0tsmsd 33042 | Any finite or infinite sum... |
| xrge0tsmsbi 33043 | Any limit of a finite or i... |
| xrge0tsmseq 33044 | Any limit of a finite or i... |
| gsumwun 33045 | In a commutative ring, a g... |
| gsumwrd2dccatlem 33046 | Lemma for ~ gsumwrd2dccat ... |
| gsumwrd2dccat 33047 | Rewrite a sum ranging over... |
| cntzun 33048 | The centralizer of a union... |
| cntzsnid 33049 | The centralizer of the ide... |
| cntrcrng 33050 | The center of a ring is a ... |
| symgfcoeu 33051 | Uniqueness property of per... |
| symgcom 33052 | Two permutations ` X ` and... |
| symgcom2 33053 | Two permutations ` X ` and... |
| symgcntz 33054 | All elements of a (finite)... |
| odpmco 33055 | The composition of two odd... |
| symgsubg 33056 | The value of the group sub... |
| pmtrprfv2 33057 | In a transposition of two ... |
| pmtrcnel 33058 | Composing a permutation ` ... |
| pmtrcnel2 33059 | Variation on ~ pmtrcnel . ... |
| pmtrcnelor 33060 | Composing a permutation ` ... |
| fzo0pmtrlast 33061 | Reorder a half-open intege... |
| wrdpmtrlast 33062 | Reorder a word, so that th... |
| pmtridf1o 33063 | Transpositions of ` X ` an... |
| pmtridfv1 33064 | Value at X of the transpos... |
| pmtridfv2 33065 | Value at Y of the transpos... |
| psgnid 33066 | Permutation sign of the id... |
| psgndmfi 33067 | For a finite base set, the... |
| pmtrto1cl 33068 | Useful lemma for the follo... |
| psgnfzto1stlem 33069 | Lemma for ~ psgnfzto1st . ... |
| fzto1stfv1 33070 | Value of our permutation `... |
| fzto1st1 33071 | Special case where the per... |
| fzto1st 33072 | The function moving one el... |
| fzto1stinvn 33073 | Value of the inverse of ou... |
| psgnfzto1st 33074 | The permutation sign for m... |
| tocycval 33077 | Value of the cycle builder... |
| tocycfv 33078 | Function value of a permut... |
| tocycfvres1 33079 | A cyclic permutation is a ... |
| tocycfvres2 33080 | A cyclic permutation is th... |
| cycpmfvlem 33081 | Lemma for ~ cycpmfv1 and ~... |
| cycpmfv1 33082 | Value of a cycle function ... |
| cycpmfv2 33083 | Value of a cycle function ... |
| cycpmfv3 33084 | Values outside of the orbi... |
| cycpmcl 33085 | Cyclic permutations are pe... |
| tocycf 33086 | The permutation cycle buil... |
| tocyc01 33087 | Permutation cycles built f... |
| cycpm2tr 33088 | A cyclic permutation of 2 ... |
| cycpm2cl 33089 | Closure for the 2-cycles. ... |
| cyc2fv1 33090 | Function value of a 2-cycl... |
| cyc2fv2 33091 | Function value of a 2-cycl... |
| trsp2cyc 33092 | Exhibit the word a transpo... |
| cycpmco2f1 33093 | The word U used in ~ cycpm... |
| cycpmco2rn 33094 | The orbit of the compositi... |
| cycpmco2lem1 33095 | Lemma for ~ cycpmco2 . (C... |
| cycpmco2lem2 33096 | Lemma for ~ cycpmco2 . (C... |
| cycpmco2lem3 33097 | Lemma for ~ cycpmco2 . (C... |
| cycpmco2lem4 33098 | Lemma for ~ cycpmco2 . (C... |
| cycpmco2lem5 33099 | Lemma for ~ cycpmco2 . (C... |
| cycpmco2lem6 33100 | Lemma for ~ cycpmco2 . (C... |
| cycpmco2lem7 33101 | Lemma for ~ cycpmco2 . (C... |
| cycpmco2 33102 | The composition of a cycli... |
| cyc2fvx 33103 | Function value of a 2-cycl... |
| cycpm3cl 33104 | Closure of the 3-cycles in... |
| cycpm3cl2 33105 | Closure of the 3-cycles in... |
| cyc3fv1 33106 | Function value of a 3-cycl... |
| cyc3fv2 33107 | Function value of a 3-cycl... |
| cyc3fv3 33108 | Function value of a 3-cycl... |
| cyc3co2 33109 | Represent a 3-cycle as a c... |
| cycpmconjvlem 33110 | Lemma for ~ cycpmconjv . ... |
| cycpmconjv 33111 | A formula for computing co... |
| cycpmrn 33112 | The range of the word used... |
| tocyccntz 33113 | All elements of a (finite)... |
| evpmval 33114 | Value of the set of even p... |
| cnmsgn0g 33115 | The neutral element of the... |
| evpmsubg 33116 | The alternating group is a... |
| evpmid 33117 | The identity is an even pe... |
| altgnsg 33118 | The alternating group ` ( ... |
| cyc3evpm 33119 | 3-Cycles are even permutat... |
| cyc3genpmlem 33120 | Lemma for ~ cyc3genpm . (... |
| cyc3genpm 33121 | The alternating group ` A ... |
| cycpmgcl 33122 | Cyclic permutations are pe... |
| cycpmconjslem1 33123 | Lemma for ~ cycpmconjs . ... |
| cycpmconjslem2 33124 | Lemma for ~ cycpmconjs . ... |
| cycpmconjs 33125 | All cycles of the same len... |
| cyc3conja 33126 | All 3-cycles are conjugate... |
| sgnsv 33129 | The sign mapping. (Contri... |
| sgnsval 33130 | The sign value. (Contribu... |
| sgnsf 33131 | The sign function. (Contr... |
| fxpval 33134 | Value of the set of fixed ... |
| fxpss 33135 | The set of fixed points is... |
| fxpgaval 33136 | Value of the set of fixed ... |
| isfxp 33137 | Property of being a fixed ... |
| fxpgaeq 33138 | A fixed point ` X ` is inv... |
| conjga 33139 | Group conjugation induces ... |
| cntrval2 33140 | Express the center ` Z ` o... |
| fxpsubm 33141 | Provided the group action ... |
| fxpsubg 33142 | The fixed points of a grou... |
| fxpsubrg 33143 | The fixed points of a grou... |
| fxpsdrg 33144 | The fixed points of a grou... |
| inftmrel 33149 | The infinitesimal relation... |
| isinftm 33150 | Express ` x ` is infinites... |
| isarchi 33151 | Express the predicate " ` ... |
| pnfinf 33152 | Plus infinity is an infini... |
| xrnarchi 33153 | The completed real line is... |
| isarchi2 33154 | Alternative way to express... |
| submarchi 33155 | A submonoid is archimedean... |
| isarchi3 33156 | This is the usual definiti... |
| archirng 33157 | Property of Archimedean or... |
| archirngz 33158 | Property of Archimedean le... |
| archiexdiv 33159 | In an Archimedean group, g... |
| archiabllem1a 33160 | Lemma for ~ archiabl : In... |
| archiabllem1b 33161 | Lemma for ~ archiabl . (C... |
| archiabllem1 33162 | Archimedean ordered groups... |
| archiabllem2a 33163 | Lemma for ~ archiabl , whi... |
| archiabllem2c 33164 | Lemma for ~ archiabl . (C... |
| archiabllem2b 33165 | Lemma for ~ archiabl . (C... |
| archiabllem2 33166 | Archimedean ordered groups... |
| archiabl 33167 | Archimedean left- and righ... |
| isarchiofld 33168 | Axiom of Archimedes : a ch... |
| isslmd 33171 | The predicate "is a semimo... |
| slmdlema 33172 | Lemma for properties of a ... |
| lmodslmd 33173 | Left semimodules generaliz... |
| slmdcmn 33174 | A semimodule is a commutat... |
| slmdmnd 33175 | A semimodule is a monoid. ... |
| slmdsrg 33176 | The scalar component of a ... |
| slmdbn0 33177 | The base set of a semimodu... |
| slmdacl 33178 | Closure of ring addition f... |
| slmdmcl 33179 | Closure of ring multiplica... |
| slmdsn0 33180 | The set of scalars in a se... |
| slmdvacl 33181 | Closure of vector addition... |
| slmdass 33182 | Semiring left module vecto... |
| slmdvscl 33183 | Closure of scalar product ... |
| slmdvsdi 33184 | Distributive law for scala... |
| slmdvsdir 33185 | Distributive law for scala... |
| slmdvsass 33186 | Associative law for scalar... |
| slmd0cl 33187 | The ring zero in a semimod... |
| slmd1cl 33188 | The ring unity in a semiri... |
| slmdvs1 33189 | Scalar product with ring u... |
| slmd0vcl 33190 | The zero vector is a vecto... |
| slmd0vlid 33191 | Left identity law for the ... |
| slmd0vrid 33192 | Right identity law for the... |
| slmd0vs 33193 | Zero times a vector is the... |
| slmdvs0 33194 | Anything times the zero ve... |
| gsumvsca1 33195 | Scalar product of a finite... |
| gsumvsca2 33196 | Scalar product of a finite... |
| prmsimpcyc 33197 | A group of prime order is ... |
| ringdi22 33198 | Expand the product of two ... |
| urpropd 33199 | Sufficient condition for r... |
| subrgmcld 33200 | A subring is closed under ... |
| ress1r 33201 | ` 1r ` is unaffected by re... |
| ringinvval 33202 | The ring inverse expressed... |
| dvrcan5 33203 | Cancellation law for commo... |
| subrgchr 33204 | If ` A ` is a subring of `... |
| rmfsupp2 33205 | A mapping of a multiplicat... |
| unitnz 33206 | In a nonzero ring, a unit ... |
| isunit2 33207 | Alternate definition of be... |
| isunit3 33208 | Alternate definition of be... |
| elrgspnlem1 33209 | Lemma for ~ elrgspn . (Co... |
| elrgspnlem2 33210 | Lemma for ~ elrgspn . (Co... |
| elrgspnlem3 33211 | Lemma for ~ elrgspn . (Co... |
| elrgspnlem4 33212 | Lemma for ~ elrgspn . (Co... |
| elrgspn 33213 | Membership in the subring ... |
| elrgspnsubrunlem1 33214 | Lemma for ~ elrgspnsubrun ... |
| elrgspnsubrunlem2 33215 | Lemma for ~ elrgspnsubrun ... |
| elrgspnsubrun 33216 | Membership in the ring spa... |
| irrednzr 33217 | A ring with an irreducible... |
| 0ringsubrg 33218 | A subring of a zero ring i... |
| 0ringcring 33219 | The zero ring is commutati... |
| reldmrloc 33224 | Ring localization is a pro... |
| erlval 33225 | Value of the ring localiza... |
| rlocval 33226 | Expand the value of the ri... |
| erlcl1 33227 | Closure for the ring local... |
| erlcl2 33228 | Closure for the ring local... |
| erldi 33229 | Main property of the ring ... |
| erlbrd 33230 | Deduce the ring localizati... |
| erlbr2d 33231 | Deduce the ring localizati... |
| erler 33232 | The relation used to build... |
| elrlocbasi 33233 | Membership in the basis of... |
| rlocbas 33234 | The base set of a ring loc... |
| rlocaddval 33235 | Value of the addition in t... |
| rlocmulval 33236 | Value of the addition in t... |
| rloccring 33237 | The ring localization ` L ... |
| rloc0g 33238 | The zero of a ring localiz... |
| rloc1r 33239 | The multiplicative identit... |
| rlocf1 33240 | The embedding ` F ` of a r... |
| domnmuln0rd 33241 | In a domain, factors of a ... |
| domnprodn0 33242 | In a domain, a finite prod... |
| domnpropd 33243 | If two structures have the... |
| idompropd 33244 | If two structures have the... |
| idomrcan 33245 | Right-cancellation law for... |
| domnlcanOLD 33246 | Obsolete version of ~ domn... |
| domnlcanbOLD 33247 | Obsolete version of ~ domn... |
| idomrcanOLD 33248 | Obsolete version of ~ idom... |
| 1rrg 33249 | The multiplicative identit... |
| rrgsubm 33250 | The left regular elements ... |
| subrdom 33251 | A subring of a domain is a... |
| subridom 33252 | A subring of an integral d... |
| subrfld 33253 | A subring of a field is an... |
| eufndx 33256 | Index value of the Euclide... |
| eufid 33257 | Utility theorem: index-ind... |
| ringinveu 33260 | If a ring unit element ` X... |
| isdrng4 33261 | A division ring is a ring ... |
| rndrhmcl 33262 | The image of a division ri... |
| qfld 33263 | The field of rational numb... |
| subsdrg 33264 | A subring of a sub-divisio... |
| sdrgdvcl 33265 | A sub-division-ring is clo... |
| sdrginvcl 33266 | A sub-division-ring is clo... |
| primefldchr 33267 | The characteristic of a pr... |
| fracval 33270 | Value of the field of frac... |
| fracbas 33271 | The base of the field of f... |
| fracerl 33272 | Rewrite the ring localizat... |
| fracf1 33273 | The embedding of a commuta... |
| fracfld 33274 | The field of fractions of ... |
| idomsubr 33275 | Every integral domain is i... |
| fldgenval 33278 | Value of the field generat... |
| fldgenssid 33279 | The field generated by a s... |
| fldgensdrg 33280 | A generated subfield is a ... |
| fldgenssv 33281 | A generated subfield is a ... |
| fldgenss 33282 | Generated subfields preser... |
| fldgenidfld 33283 | The subfield generated by ... |
| fldgenssp 33284 | The field generated by a s... |
| fldgenid 33285 | The subfield of a field ` ... |
| fldgenfld 33286 | A generated subfield is a ... |
| primefldgen1 33287 | The prime field of a divis... |
| 1fldgenq 33288 | The field of rational numb... |
| rhmdvd 33289 | A ring homomorphism preser... |
| kerunit 33290 | If a unit element lies in ... |
| reldmresv 33293 | The scalar restriction is ... |
| resvval 33294 | Value of structure restric... |
| resvid2 33295 | General behavior of trivia... |
| resvval2 33296 | Value of nontrivial struct... |
| resvsca 33297 | Base set of a structure re... |
| resvlem 33298 | Other elements of a scalar... |
| resvbas 33299 | ` Base ` is unaffected by ... |
| resvplusg 33300 | ` +g ` is unaffected by sc... |
| resvvsca 33301 | ` .s ` is unaffected by sc... |
| resvmulr 33302 | ` .r ` is unaffected by sc... |
| resv0g 33303 | ` 0g ` is unaffected by sc... |
| resv1r 33304 | ` 1r ` is unaffected by sc... |
| resvcmn 33305 | Scalar restriction preserv... |
| gzcrng 33306 | The gaussian integers form... |
| cnfldfld 33307 | The complex numbers form a... |
| reofld 33308 | The real numbers form an o... |
| nn0omnd 33309 | The nonnegative integers f... |
| gsumind 33310 | The group sum of an indica... |
| rearchi 33311 | The field of the real numb... |
| nn0archi 33312 | The monoid of the nonnegat... |
| xrge0slmod 33313 | The extended nonnegative r... |
| qusker 33314 | The kernel of a quotient m... |
| eqgvscpbl 33315 | The left coset equivalence... |
| qusvscpbl 33316 | The quotient map distribut... |
| qusvsval 33317 | Value of the scalar multip... |
| imaslmod 33318 | The image structure of a l... |
| imasmhm 33319 | Given a function ` F ` wit... |
| imasghm 33320 | Given a function ` F ` wit... |
| imasrhm 33321 | Given a function ` F ` wit... |
| imaslmhm 33322 | Given a function ` F ` wit... |
| quslmod 33323 | If ` G ` is a submodule in... |
| quslmhm 33324 | If ` G ` is a submodule of... |
| quslvec 33325 | If ` S ` is a vector subsp... |
| ecxpid 33326 | The equivalence class of a... |
| qsxpid 33327 | The quotient set of a cart... |
| qusxpid 33328 | The Group quotient equival... |
| qustriv 33329 | The quotient of a group ` ... |
| qustrivr 33330 | Converse of ~ qustriv . (... |
| znfermltl 33331 | Fermat's little theorem in... |
| islinds5 33332 | A set is linearly independ... |
| ellspds 33333 | Variation on ~ ellspd . (... |
| 0ellsp 33334 | Zero is in all spans. (Co... |
| 0nellinds 33335 | The group identity cannot ... |
| rspsnid 33336 | A principal ideal contains... |
| elrsp 33337 | Write the elements of a ri... |
| ellpi 33338 | Elementhood in a left prin... |
| lpirlidllpi 33339 | In a principal ideal ring,... |
| rspidlid 33340 | The ideal span of an ideal... |
| pidlnz 33341 | A principal ideal generate... |
| lbslsp 33342 | Any element of a left modu... |
| lindssn 33343 | Any singleton of a nonzero... |
| lindflbs 33344 | Conditions for an independ... |
| islbs5 33345 | An equivalent formulation ... |
| linds2eq 33346 | Deduce equality of element... |
| lindfpropd 33347 | Property deduction for lin... |
| lindspropd 33348 | Property deduction for lin... |
| dvdsruassoi 33349 | If two elements ` X ` and ... |
| dvdsruasso 33350 | Two elements ` X ` and ` Y... |
| dvdsruasso2 33351 | A reformulation of ~ dvdsr... |
| dvdsrspss 33352 | In a ring, an element ` X ... |
| rspsnasso 33353 | Two elements ` X ` and ` Y... |
| unitprodclb 33354 | A finite product is a unit... |
| elgrplsmsn 33355 | Membership in a sumset wit... |
| lsmsnorb 33356 | The sumset of a group with... |
| lsmsnorb2 33357 | The sumset of a single ele... |
| elringlsm 33358 | Membership in a product of... |
| elringlsmd 33359 | Membership in a product of... |
| ringlsmss 33360 | Closure of the product of ... |
| ringlsmss1 33361 | The product of an ideal ` ... |
| ringlsmss2 33362 | The product with an ideal ... |
| lsmsnpridl 33363 | The product of the ring wi... |
| lsmsnidl 33364 | The product of the ring wi... |
| lsmidllsp 33365 | The sum of two ideals is t... |
| lsmidl 33366 | The sum of two ideals is a... |
| lsmssass 33367 | Group sum is associative, ... |
| grplsm0l 33368 | Sumset with the identity s... |
| grplsmid 33369 | The direct sum of an eleme... |
| quslsm 33370 | Express the image by the q... |
| qusbas2 33371 | Alternate definition of th... |
| qus0g 33372 | The identity element of a ... |
| qusima 33373 | The image of a subgroup by... |
| qusrn 33374 | The natural map from eleme... |
| nsgqus0 33375 | A normal subgroup ` N ` is... |
| nsgmgclem 33376 | Lemma for ~ nsgmgc . (Con... |
| nsgmgc 33377 | There is a monotone Galois... |
| nsgqusf1olem1 33378 | Lemma for ~ nsgqusf1o . (... |
| nsgqusf1olem2 33379 | Lemma for ~ nsgqusf1o . (... |
| nsgqusf1olem3 33380 | Lemma for ~ nsgqusf1o . (... |
| nsgqusf1o 33381 | The canonical projection h... |
| lmhmqusker 33382 | A surjective module homomo... |
| lmicqusker 33383 | The image ` H ` of a modul... |
| lidlmcld 33384 | An ideal is closed under l... |
| intlidl 33385 | The intersection of a none... |
| 0ringidl 33386 | The zero ideal is the only... |
| pidlnzb 33387 | A principal ideal is nonze... |
| lidlunitel 33388 | If an ideal ` I ` contains... |
| unitpidl1 33389 | The ideal ` I ` generated ... |
| rhmquskerlem 33390 | The mapping ` J ` induced ... |
| rhmqusker 33391 | A surjective ring homomorp... |
| ricqusker 33392 | The image ` H ` of a ring ... |
| elrspunidl 33393 | Elementhood in the span of... |
| elrspunsn 33394 | Membership to the span of ... |
| lidlincl 33395 | Ideals are closed under in... |
| idlinsubrg 33396 | The intersection between a... |
| rhmimaidl 33397 | The image of an ideal ` I ... |
| drngidl 33398 | A nonzero ring is a divisi... |
| drngidlhash 33399 | A ring is a division ring ... |
| prmidlval 33402 | The class of prime ideals ... |
| isprmidl 33403 | The predicate "is a prime ... |
| prmidlnr 33404 | A prime ideal is a proper ... |
| prmidl 33405 | The main property of a pri... |
| prmidl2 33406 | A condition that shows an ... |
| idlmulssprm 33407 | Let ` P ` be a prime ideal... |
| pridln1 33408 | A proper ideal cannot cont... |
| prmidlidl 33409 | A prime ideal is an ideal.... |
| prmidlssidl 33410 | Prime ideals as a subset o... |
| cringm4 33411 | Commutative/associative la... |
| isprmidlc 33412 | The predicate "is prime id... |
| prmidlc 33413 | Property of a prime ideal ... |
| 0ringprmidl 33414 | The trivial ring does not ... |
| prmidl0 33415 | The zero ideal of a commut... |
| rhmpreimaprmidl 33416 | The preimage of a prime id... |
| qsidomlem1 33417 | If the quotient ring of a ... |
| qsidomlem2 33418 | A quotient by a prime idea... |
| qsidom 33419 | An ideal ` I ` in the comm... |
| qsnzr 33420 | A quotient of a non-zero r... |
| ssdifidllem 33421 | Lemma for ~ ssdifidl : Th... |
| ssdifidl 33422 | Let ` R ` be a ring, and l... |
| ssdifidlprm 33423 | If the set ` S ` of ~ ssdi... |
| mxidlval 33426 | The set of maximal ideals ... |
| ismxidl 33427 | The predicate "is a maxima... |
| mxidlidl 33428 | A maximal ideal is an idea... |
| mxidlnr 33429 | A maximal ideal is proper.... |
| mxidlmax 33430 | A maximal ideal is a maxim... |
| mxidln1 33431 | One is not contained in an... |
| mxidlnzr 33432 | A ring with a maximal idea... |
| mxidlmaxv 33433 | An ideal ` I ` strictly co... |
| crngmxidl 33434 | In a commutative ring, max... |
| mxidlprm 33435 | Every maximal ideal is pri... |
| mxidlirredi 33436 | In an integral domain, the... |
| mxidlirred 33437 | In a principal ideal domai... |
| ssmxidllem 33438 | The set ` P ` used in the ... |
| ssmxidl 33439 | Let ` R ` be a ring, and l... |
| drnglidl1ne0 33440 | In a nonzero ring, the zer... |
| drng0mxidl 33441 | In a division ring, the ze... |
| drngmxidl 33442 | The zero ideal is the only... |
| drngmxidlr 33443 | If a ring's only maximal i... |
| krull 33444 | Krull's theorem: Any nonz... |
| mxidlnzrb 33445 | A ring is nonzero if and o... |
| krullndrng 33446 | Krull's theorem for non-di... |
| opprabs 33447 | The opposite ring of the o... |
| oppreqg 33448 | Group coset equivalence re... |
| opprnsg 33449 | Normal subgroups of the op... |
| opprlidlabs 33450 | The ideals of the opposite... |
| oppr2idl 33451 | Two sided ideal of the opp... |
| opprmxidlabs 33452 | The maximal ideal of the o... |
| opprqusbas 33453 | The base of the quotient o... |
| opprqusplusg 33454 | The group operation of the... |
| opprqus0g 33455 | The group identity element... |
| opprqusmulr 33456 | The multiplication operati... |
| opprqus1r 33457 | The ring unity of the quot... |
| opprqusdrng 33458 | The quotient of the opposi... |
| qsdrngilem 33459 | Lemma for ~ qsdrngi . (Co... |
| qsdrngi 33460 | A quotient by a maximal le... |
| qsdrnglem2 33461 | Lemma for ~ qsdrng . (Con... |
| qsdrng 33462 | An ideal ` M ` is both lef... |
| qsfld 33463 | An ideal ` M ` in the comm... |
| mxidlprmALT 33464 | Every maximal ideal is pri... |
| idlsrgstr 33467 | A constructed semiring of ... |
| idlsrgval 33468 | Lemma for ~ idlsrgbas thro... |
| idlsrgbas 33469 | Base of the ideals of a ri... |
| idlsrgplusg 33470 | Additive operation of the ... |
| idlsrg0g 33471 | The zero ideal is the addi... |
| idlsrgmulr 33472 | Multiplicative operation o... |
| idlsrgtset 33473 | Topology component of the ... |
| idlsrgmulrval 33474 | Value of the ring multipli... |
| idlsrgmulrcl 33475 | Ideals of a ring ` R ` are... |
| idlsrgmulrss1 33476 | In a commutative ring, the... |
| idlsrgmulrss2 33477 | The product of two ideals ... |
| idlsrgmulrssin 33478 | In a commutative ring, the... |
| idlsrgmnd 33479 | The ideals of a ring form ... |
| idlsrgcmnd 33480 | The ideals of a ring form ... |
| rprmval 33481 | The prime elements of a ri... |
| isrprm 33482 | Property for ` P ` to be a... |
| rprmcl 33483 | A ring prime is an element... |
| rprmdvds 33484 | If a ring prime ` Q ` divi... |
| rprmnz 33485 | A ring prime is nonzero. ... |
| rprmnunit 33486 | A ring prime is not a unit... |
| rsprprmprmidl 33487 | In a commutative ring, ide... |
| rsprprmprmidlb 33488 | In an integral domain, an ... |
| rprmndvdsr1 33489 | A ring prime element does ... |
| rprmasso 33490 | In an integral domain, the... |
| rprmasso2 33491 | In an integral domain, if ... |
| rprmasso3 33492 | In an integral domain, if ... |
| unitmulrprm 33493 | A ring unit multiplied by ... |
| rprmndvdsru 33494 | A ring prime element does ... |
| rprmirredlem 33495 | Lemma for ~ rprmirred . (... |
| rprmirred 33496 | In an integral domain, rin... |
| rprmirredb 33497 | In a principal ideal domai... |
| rprmdvdspow 33498 | If a prime element divides... |
| rprmdvdsprod 33499 | If a prime element ` Q ` d... |
| 1arithidomlem1 33500 | Lemma for ~ 1arithidom . ... |
| 1arithidomlem2 33501 | Lemma for ~ 1arithidom : i... |
| 1arithidom 33502 | Uniqueness of prime factor... |
| isufd 33505 | The property of being a Un... |
| ufdprmidl 33506 | In a unique factorization ... |
| ufdidom 33507 | A nonzero unique factoriza... |
| pidufd 33508 | Every principal ideal doma... |
| 1arithufdlem1 33509 | Lemma for ~ 1arithufd . T... |
| 1arithufdlem2 33510 | Lemma for ~ 1arithufd . T... |
| 1arithufdlem3 33511 | Lemma for ~ 1arithufd . I... |
| 1arithufdlem4 33512 | Lemma for ~ 1arithufd . N... |
| 1arithufd 33513 | Existence of a factorizati... |
| dfufd2lem 33514 | Lemma for ~ dfufd2 . (Con... |
| dfufd2 33515 | Alternative definition of ... |
| zringidom 33516 | The ring of integers is an... |
| zringpid 33517 | The ring of integers is a ... |
| dfprm3 33518 | The (positive) prime eleme... |
| zringfrac 33519 | The field of fractions of ... |
| 0ringmon1p 33520 | There are no monic polynom... |
| fply1 33521 | Conditions for a function ... |
| ply1lvec 33522 | In a division ring, the un... |
| evls1fn 33523 | Functionality of the subri... |
| evls1dm 33524 | The domain of the subring ... |
| evls1fvf 33525 | The subring evaluation fun... |
| evl1fvf 33526 | The univariate polynomial ... |
| evl1fpws 33527 | Evaluation of a univariate... |
| ressply1evls1 33528 | Subring evaluation of a un... |
| ressdeg1 33529 | The degree of a univariate... |
| ressply10g 33530 | A restricted polynomial al... |
| ressply1mon1p 33531 | The monic polynomials of a... |
| ressply1invg 33532 | An element of a restricted... |
| ressply1sub 33533 | A restricted polynomial al... |
| ressasclcl 33534 | Closure of the univariate ... |
| evls1subd 33535 | Univariate polynomial eval... |
| deg1le0eq0 33536 | A polynomial with nonposit... |
| ply1asclunit 33537 | A non-zero scalar polynomi... |
| ply1unit 33538 | In a field ` F ` , a polyn... |
| evl1deg1 33539 | Evaluation of a univariate... |
| evl1deg2 33540 | Evaluation of a univariate... |
| evl1deg3 33541 | Evaluation of a univariate... |
| evls1monply1 33542 | Subring evaluation of a sc... |
| ply1dg1rt 33543 | Express the root ` - B / A... |
| ply1dg1rtn0 33544 | Polynomials of degree 1 ov... |
| ply1mulrtss 33545 | The roots of a factor ` F ... |
| ply1dg3rt0irred 33546 | If a cubic polynomial over... |
| m1pmeq 33547 | If two monic polynomials `... |
| ply1fermltl 33548 | Fermat's little theorem fo... |
| coe1mon 33549 | Coefficient vector of a mo... |
| ply1moneq 33550 | Two monomials are equal if... |
| coe1zfv 33551 | The coefficients of the ze... |
| coe1vr1 33552 | Polynomial coefficient of ... |
| deg1vr 33553 | The degree of the variable... |
| vr1nz 33554 | A univariate polynomial va... |
| ply1degltel 33555 | Characterize elementhood i... |
| ply1degleel 33556 | Characterize elementhood i... |
| ply1degltlss 33557 | The space ` S ` of the uni... |
| gsummoncoe1fzo 33558 | A coefficient of the polyn... |
| ply1gsumz 33559 | If a polynomial given as a... |
| deg1addlt 33560 | If both factors have degre... |
| ig1pnunit 33561 | The polynomial ideal gener... |
| ig1pmindeg 33562 | The polynomial ideal gener... |
| q1pdir 33563 | Distribution of univariate... |
| q1pvsca 33564 | Scalar multiplication prop... |
| r1pvsca 33565 | Scalar multiplication prop... |
| r1p0 33566 | Polynomial remainder opera... |
| r1pcyc 33567 | The polynomial remainder o... |
| r1padd1 33568 | Addition property of the p... |
| r1pid2OLD 33569 | Obsolete version of ~ r1pi... |
| r1plmhm 33570 | The univariate polynomial ... |
| r1pquslmic 33571 | The univariate polynomial ... |
| psrbasfsupp 33572 | Rewrite a finite support f... |
| mplvrpmlem 33573 | Lemma for ~ mplvrpmga and ... |
| mplvrpmfgalem 33574 | Permuting variables in a m... |
| mplvrpmga 33575 | The action of permuting va... |
| mplvrpmmhm 33576 | The action of permuting va... |
| mplvrpmrhm 33577 | The action of permuting va... |
| splyval 33582 | The symmetric polynomials ... |
| splysubrg 33583 | The symmetric polynomials ... |
| issply 33584 | Conditions for being a sym... |
| esplyval 33585 | The elementary polynomials... |
| esplyfval 33586 | The ` K ` -th elementary p... |
| esplylem 33587 | Lemma for ~ esplyfv and ot... |
| esplympl 33588 | Elementary symmetric polyn... |
| esplymhp 33589 | The ` K ` -th elementary s... |
| esplyfv1 33590 | Coefficient for the ` K ` ... |
| esplyfv 33591 | Coefficient for the ` K ` ... |
| esplysply 33592 | The ` K ` -th elementary s... |
| sra1r 33593 | The unity element of a sub... |
| sradrng 33594 | Condition for a subring al... |
| sraidom 33595 | Condition for a subring al... |
| srasubrg 33596 | A subring of the original ... |
| sralvec 33597 | Given a sub division ring ... |
| srafldlvec 33598 | Given a subfield ` F ` of ... |
| resssra 33599 | The subring algebra of a r... |
| lsssra 33600 | A subring is a subspace of... |
| srapwov 33601 | The "power" operation on a... |
| drgext0g 33602 | The additive neutral eleme... |
| drgextvsca 33603 | The scalar multiplication ... |
| drgext0gsca 33604 | The additive neutral eleme... |
| drgextsubrg 33605 | The scalar field is a subr... |
| drgextlsp 33606 | The scalar field is a subs... |
| drgextgsum 33607 | Group sum in a division ri... |
| lvecdimfi 33608 | Finite version of ~ lvecdi... |
| exsslsb 33609 | Any finite generating set ... |
| lbslelsp 33610 | The size of a basis ` X ` ... |
| dimval 33613 | The dimension of a vector ... |
| dimvalfi 33614 | The dimension of a vector ... |
| dimcl 33615 | Closure of the vector spac... |
| lmimdim 33616 | Module isomorphisms preser... |
| lmicdim 33617 | Module isomorphisms preser... |
| lvecdim0i 33618 | A vector space of dimensio... |
| lvecdim0 33619 | A vector space of dimensio... |
| lssdimle 33620 | The dimension of a linear ... |
| dimpropd 33621 | If two structures have the... |
| rlmdim 33622 | The left vector space indu... |
| rgmoddimOLD 33623 | Obsolete version of ~ rlmd... |
| frlmdim 33624 | Dimension of a free left m... |
| tnglvec 33625 | Augmenting a structure wit... |
| tngdim 33626 | Dimension of a left vector... |
| rrxdim 33627 | Dimension of the generaliz... |
| matdim 33628 | Dimension of the space of ... |
| lbslsat 33629 | A nonzero vector ` X ` is ... |
| lsatdim 33630 | A line, spanned by a nonze... |
| drngdimgt0 33631 | The dimension of a vector ... |
| lmhmlvec2 33632 | A homomorphism of left vec... |
| kerlmhm 33633 | The kernel of a vector spa... |
| imlmhm 33634 | The image of a vector spac... |
| ply1degltdimlem 33635 | Lemma for ~ ply1degltdim .... |
| ply1degltdim 33636 | The space ` S ` of the uni... |
| lindsunlem 33637 | Lemma for ~ lindsun . (Co... |
| lindsun 33638 | Condition for the union of... |
| lbsdiflsp0 33639 | The linear spans of two di... |
| dimkerim 33640 | Given a linear map ` F ` b... |
| qusdimsum 33641 | Let ` W ` be a vector spac... |
| fedgmullem1 33642 | Lemma for ~ fedgmul . (Co... |
| fedgmullem2 33643 | Lemma for ~ fedgmul . (Co... |
| fedgmul 33644 | The multiplicativity formu... |
| dimlssid 33645 | If the dimension of a line... |
| lvecendof1f1o 33646 | If an endomorphism ` U ` o... |
| lactlmhm 33647 | In an associative algebra ... |
| assalactf1o 33648 | In an associative algebra ... |
| assarrginv 33649 | If an element ` X ` of an ... |
| assafld 33650 | If an algebra ` A ` of fin... |
| relfldext 33657 | The field extension is a r... |
| brfldext 33658 | The field extension relati... |
| ccfldextrr 33659 | The field of the complex n... |
| fldextfld1 33660 | A field extension is only ... |
| fldextfld2 33661 | A field extension is only ... |
| fldextsubrg 33662 | Field extension implies a ... |
| sdrgfldext 33663 | A field ` E ` and any sub-... |
| fldextress 33664 | Field extension implies a ... |
| brfinext 33665 | The finite field extension... |
| extdgval 33666 | Value of the field extensi... |
| fldextsdrg 33667 | Deduce sub-division-ring f... |
| fldextsralvec 33668 | The subring algebra associ... |
| extdgcl 33669 | Closure of the field exten... |
| extdggt0 33670 | Degrees of field extension... |
| fldexttr 33671 | Field extension is a trans... |
| fldextid 33672 | The field extension relati... |
| extdgid 33673 | A trivial field extension ... |
| fldsdrgfldext 33674 | A sub-division-ring of a f... |
| fldsdrgfldext2 33675 | A sub-sub-division-ring of... |
| extdgmul 33676 | The multiplicativity formu... |
| finextfldext 33677 | A finite field extension i... |
| finexttrb 33678 | The extension ` E ` of ` K... |
| extdg1id 33679 | If the degree of the exten... |
| extdg1b 33680 | The degree of the extensio... |
| fldgenfldext 33681 | A subfield ` F ` extended ... |
| fldextchr 33682 | The characteristic of a su... |
| evls1fldgencl 33683 | Closure of the subring pol... |
| ccfldsrarelvec 33684 | The subring algebra of the... |
| ccfldextdgrr 33685 | The degree of the field ex... |
| fldextrspunlsplem 33686 | Lemma for ~ fldextrspunlsp... |
| fldextrspunlsp 33687 | Lemma for ~ fldextrspunfld... |
| fldextrspunlem1 33688 | Lemma for ~ fldextrspunfld... |
| fldextrspunfld 33689 | The ring generated by the ... |
| fldextrspunlem2 33690 | Part of the proof of Propo... |
| fldextrspundgle 33691 | Inequality involving the d... |
| fldextrspundglemul 33692 | Given two field extensions... |
| fldextrspundgdvdslem 33693 | Lemma for ~ fldextrspundgd... |
| fldextrspundgdvds 33694 | Given two finite extension... |
| fldext2rspun 33695 | Given two field extensions... |
| irngval 33698 | The elements of a field ` ... |
| elirng 33699 | Property for an element ` ... |
| irngss 33700 | All elements of a subring ... |
| irngssv 33701 | An integral element is an ... |
| 0ringirng 33702 | A zero ring ` R ` has no i... |
| irngnzply1lem 33703 | In the case of a field ` E... |
| irngnzply1 33704 | In the case of a field ` E... |
| extdgfialglem1 33705 | Lemma for ~ extdgfialg . ... |
| extdgfialglem2 33706 | Lemma for ~ extdgfialg . ... |
| extdgfialg 33707 | A finite field extension `... |
| bralgext 33710 | Express the fact that a fi... |
| finextalg 33711 | A finite field extension i... |
| ply1annidllem 33714 | Write the set ` Q ` of pol... |
| ply1annidl 33715 | The set ` Q ` of polynomia... |
| ply1annnr 33716 | The set ` Q ` of polynomia... |
| ply1annig1p 33717 | The ideal ` Q ` of polynom... |
| minplyval 33718 | Expand the value of the mi... |
| minplycl 33719 | The minimal polynomial is ... |
| ply1annprmidl 33720 | The set ` Q ` of polynomia... |
| minplymindeg 33721 | The minimal polynomial of ... |
| minplyann 33722 | The minimal polynomial for... |
| minplyirredlem 33723 | Lemma for ~ minplyirred . ... |
| minplyirred 33724 | A nonzero minimal polynomi... |
| irngnminplynz 33725 | Integral elements have non... |
| minplym1p 33726 | A minimal polynomial is mo... |
| minplynzm1p 33727 | If a minimal polynomial is... |
| minplyelirng 33728 | If the minimial polynomial... |
| irredminply 33729 | An irreducible, monic, ann... |
| algextdeglem1 33730 | Lemma for ~ algextdeg . (... |
| algextdeglem2 33731 | Lemma for ~ algextdeg . B... |
| algextdeglem3 33732 | Lemma for ~ algextdeg . T... |
| algextdeglem4 33733 | Lemma for ~ algextdeg . B... |
| algextdeglem5 33734 | Lemma for ~ algextdeg . T... |
| algextdeglem6 33735 | Lemma for ~ algextdeg . B... |
| algextdeglem7 33736 | Lemma for ~ algextdeg . T... |
| algextdeglem8 33737 | Lemma for ~ algextdeg . T... |
| algextdeg 33738 | The degree of an algebraic... |
| rtelextdg2lem 33739 | Lemma for ~ rtelextdg2 : ... |
| rtelextdg2 33740 | If an element ` X ` is a s... |
| fldext2chn 33741 | In a non-empty chain ` T `... |
| constrrtll 33744 | In the construction of con... |
| constrrtlc1 33745 | In the construction of con... |
| constrrtlc2 33746 | In the construction of con... |
| constrrtcclem 33747 | In the construction of con... |
| constrrtcc 33748 | In the construction of con... |
| isconstr 33749 | Property of being a constr... |
| constr0 33750 | The first step of the cons... |
| constrsuc 33751 | Membership in the successo... |
| constrlim 33752 | Limit step of the construc... |
| constrsscn 33753 | Closure of the constructib... |
| constrsslem 33754 | Lemma for ~ constrss . Th... |
| constr01 33755 | ` 0 ` and ` 1 ` are in all... |
| constrss 33756 | Constructed points are in ... |
| constrmon 33757 | The construction of constr... |
| constrconj 33758 | If a point ` X ` of the co... |
| constrfin 33759 | Each step of the construct... |
| constrelextdg2 33760 | If the ` N ` -th step ` ( ... |
| constrextdg2lem 33761 | Lemma for ~ constrextdg2 (... |
| constrextdg2 33762 | Any step ` ( C `` N ) ` of... |
| constrext2chnlem 33763 | Lemma for ~ constrext2chn ... |
| constrfiss 33764 | For any finite set ` A ` o... |
| constrllcllem 33765 | Constructible numbers are ... |
| constrlccllem 33766 | Constructible numbers are ... |
| constrcccllem 33767 | Constructible numbers are ... |
| constrcbvlem 33768 | Technical lemma for elimin... |
| constrllcl 33769 | Constructible numbers are ... |
| constrlccl 33770 | Constructible numbers are ... |
| constrcccl 33771 | Constructible numbers are ... |
| constrext2chn 33772 | If a constructible number ... |
| constrcn 33773 | Constructible numbers are ... |
| nn0constr 33774 | Nonnegative integers are c... |
| constraddcl 33775 | Constructive numbers are c... |
| constrnegcl 33776 | Constructible numbers are ... |
| zconstr 33777 | Integers are constructible... |
| constrdircl 33778 | Constructible numbers are ... |
| iconstr 33779 | The imaginary unit ` _i ` ... |
| constrremulcl 33780 | If two real numbers ` X ` ... |
| constrcjcl 33781 | Constructible numbers are ... |
| constrrecl 33782 | Constructible numbers are ... |
| constrimcl 33783 | Constructible numbers are ... |
| constrmulcl 33784 | Constructible numbers are ... |
| constrreinvcl 33785 | If a real number ` X ` is ... |
| constrinvcl 33786 | Constructible numbers are ... |
| constrcon 33787 | Contradiction of construct... |
| constrsdrg 33788 | Constructible numbers form... |
| constrfld 33789 | The constructible numbers ... |
| constrresqrtcl 33790 | If a positive real number ... |
| constrabscl 33791 | Constructible numbers are ... |
| constrsqrtcl 33792 | Constructible numbers are ... |
| 2sqr3minply 33793 | The polynomial ` ( ( X ^ 3... |
| 2sqr3nconstr 33794 | Doubling the cube is an im... |
| cos9thpiminplylem1 33795 | The polynomial ` ( ( X ^ 3... |
| cos9thpiminplylem2 33796 | The polynomial ` ( ( X ^ 3... |
| cos9thpiminplylem3 33797 | Lemma for ~ cos9thpiminply... |
| cos9thpiminplylem4 33798 | Lemma for ~ cos9thpiminply... |
| cos9thpiminplylem5 33799 | The constructed complex nu... |
| cos9thpiminplylem6 33800 | Evaluation of the polynomi... |
| cos9thpiminply 33801 | The polynomial ` ( ( X ^ 3... |
| cos9thpinconstrlem1 33802 | The complex number ` O ` ,... |
| cos9thpinconstrlem2 33803 | The complex number ` A ` i... |
| cos9thpinconstr 33804 | Trisecting an angle is an ... |
| trisecnconstr 33805 | Not all angles can be tris... |
| smatfval 33808 | Value of the submatrix. (... |
| smatrcl 33809 | Closure of the rectangular... |
| smatlem 33810 | Lemma for the next theorem... |
| smattl 33811 | Entries of a submatrix, to... |
| smattr 33812 | Entries of a submatrix, to... |
| smatbl 33813 | Entries of a submatrix, bo... |
| smatbr 33814 | Entries of a submatrix, bo... |
| smatcl 33815 | Closure of the square subm... |
| matmpo 33816 | Write a square matrix as a... |
| 1smat1 33817 | The submatrix of the ident... |
| submat1n 33818 | One case where the submatr... |
| submatres 33819 | Special case where the sub... |
| submateqlem1 33820 | Lemma for ~ submateq . (C... |
| submateqlem2 33821 | Lemma for ~ submateq . (C... |
| submateq 33822 | Sufficient condition for t... |
| submatminr1 33823 | If we take a submatrix by ... |
| lmatval 33826 | Value of the literal matri... |
| lmatfval 33827 | Entries of a literal matri... |
| lmatfvlem 33828 | Useful lemma to extract li... |
| lmatcl 33829 | Closure of the literal mat... |
| lmat22lem 33830 | Lemma for ~ lmat22e11 and ... |
| lmat22e11 33831 | Entry of a 2x2 literal mat... |
| lmat22e12 33832 | Entry of a 2x2 literal mat... |
| lmat22e21 33833 | Entry of a 2x2 literal mat... |
| lmat22e22 33834 | Entry of a 2x2 literal mat... |
| lmat22det 33835 | The determinant of a liter... |
| mdetpmtr1 33836 | The determinant of a matri... |
| mdetpmtr2 33837 | The determinant of a matri... |
| mdetpmtr12 33838 | The determinant of a matri... |
| mdetlap1 33839 | A Laplace expansion of the... |
| madjusmdetlem1 33840 | Lemma for ~ madjusmdet . ... |
| madjusmdetlem2 33841 | Lemma for ~ madjusmdet . ... |
| madjusmdetlem3 33842 | Lemma for ~ madjusmdet . ... |
| madjusmdetlem4 33843 | Lemma for ~ madjusmdet . ... |
| madjusmdet 33844 | Express the cofactor of th... |
| mdetlap 33845 | Laplace expansion of the d... |
| ist0cld 33846 | The predicate "is a T_0 sp... |
| txomap 33847 | Given two open maps ` F ` ... |
| qtopt1 33848 | If every equivalence class... |
| qtophaus 33849 | If an open map's graph in ... |
| circtopn 33850 | The topology of the unit c... |
| circcn 33851 | The function gluing the re... |
| reff 33852 | For any cover refinement, ... |
| locfinreflem 33853 | A locally finite refinemen... |
| locfinref 33854 | A locally finite refinemen... |
| iscref 33857 | The property that every op... |
| crefeq 33858 | Equality theorem for the "... |
| creftop 33859 | A space where every open c... |
| crefi 33860 | The property that every op... |
| crefdf 33861 | A formulation of ~ crefi e... |
| crefss 33862 | The "every open cover has ... |
| cmpcref 33863 | Equivalent definition of c... |
| cmpfiref 33864 | Every open cover of a Comp... |
| ldlfcntref 33867 | Every open cover of a Lind... |
| ispcmp 33870 | The predicate "is a paraco... |
| cmppcmp 33871 | Every compact space is par... |
| dispcmp 33872 | Every discrete space is pa... |
| pcmplfin 33873 | Given a paracompact topolo... |
| pcmplfinf 33874 | Given a paracompact topolo... |
| rspecval 33877 | Value of the spectrum of t... |
| rspecbas 33878 | The prime ideals form the ... |
| rspectset 33879 | Topology component of the ... |
| rspectopn 33880 | The topology component of ... |
| zarcls0 33881 | The closure of the identit... |
| zarcls1 33882 | The unit ideal ` B ` is th... |
| zarclsun 33883 | The union of two closed se... |
| zarclsiin 33884 | In a Zariski topology, the... |
| zarclsint 33885 | The intersection of a fami... |
| zarclssn 33886 | The closed points of Zaris... |
| zarcls 33887 | The open sets of the Zaris... |
| zartopn 33888 | The Zariski topology is a ... |
| zartop 33889 | The Zariski topology is a ... |
| zartopon 33890 | The points of the Zariski ... |
| zar0ring 33891 | The Zariski Topology of th... |
| zart0 33892 | The Zariski topology is T_... |
| zarmxt1 33893 | The Zariski topology restr... |
| zarcmplem 33894 | Lemma for ~ zarcmp . (Con... |
| zarcmp 33895 | The Zariski topology is co... |
| rspectps 33896 | The spectrum of a ring ` R... |
| rhmpreimacnlem 33897 | Lemma for ~ rhmpreimacn . ... |
| rhmpreimacn 33898 | The function mapping a pri... |
| metidval 33903 | Value of the metric identi... |
| metidss 33904 | As a relation, the metric ... |
| metidv 33905 | ` A ` and ` B ` identify b... |
| metideq 33906 | Basic property of the metr... |
| metider 33907 | The metric identification ... |
| pstmval 33908 | Value of the metric induce... |
| pstmfval 33909 | Function value of the metr... |
| pstmxmet 33910 | The metric induced by a ps... |
| hauseqcn 33911 | In a Hausdorff topology, t... |
| elunitge0 33912 | An element of the closed u... |
| unitssxrge0 33913 | The closed unit interval i... |
| unitdivcld 33914 | Necessary conditions for a... |
| iistmd 33915 | The closed unit interval f... |
| unicls 33916 | The union of the closed se... |
| tpr2tp 33917 | The usual topology on ` ( ... |
| tpr2uni 33918 | The usual topology on ` ( ... |
| xpinpreima 33919 | Rewrite the cartesian prod... |
| xpinpreima2 33920 | Rewrite the cartesian prod... |
| sqsscirc1 33921 | The complex square of side... |
| sqsscirc2 33922 | The complex square of side... |
| cnre2csqlem 33923 | Lemma for ~ cnre2csqima . ... |
| cnre2csqima 33924 | Image of a centered square... |
| tpr2rico 33925 | For any point of an open s... |
| cnvordtrestixx 33926 | The restriction of the 'gr... |
| prsdm 33927 | Domain of the relation of ... |
| prsrn 33928 | Range of the relation of a... |
| prsss 33929 | Relation of a subproset. ... |
| prsssdm 33930 | Domain of a subproset rela... |
| ordtprsval 33931 | Value of the order topolog... |
| ordtprsuni 33932 | Value of the order topolog... |
| ordtcnvNEW 33933 | The order dual generates t... |
| ordtrestNEW 33934 | The subspace topology of a... |
| ordtrest2NEWlem 33935 | Lemma for ~ ordtrest2NEW .... |
| ordtrest2NEW 33936 | An interval-closed set ` A... |
| ordtconnlem1 33937 | Connectedness in the order... |
| ordtconn 33938 | Connectedness in the order... |
| mndpluscn 33939 | A mapping that is both a h... |
| mhmhmeotmd 33940 | Deduce a Topological Monoi... |
| rmulccn 33941 | Multiplication by a real c... |
| raddcn 33942 | Addition in the real numbe... |
| xrmulc1cn 33943 | The operation multiplying ... |
| fmcncfil 33944 | The image of a Cauchy filt... |
| xrge0hmph 33945 | The extended nonnegative r... |
| xrge0iifcnv 33946 | Define a bijection from ` ... |
| xrge0iifcv 33947 | The defined function's val... |
| xrge0iifiso 33948 | The defined bijection from... |
| xrge0iifhmeo 33949 | Expose a homeomorphism fro... |
| xrge0iifhom 33950 | The defined function from ... |
| xrge0iif1 33951 | Condition for the defined ... |
| xrge0iifmhm 33952 | The defined function from ... |
| xrge0pluscn 33953 | The addition operation of ... |
| xrge0mulc1cn 33954 | The operation multiplying ... |
| xrge0tps 33955 | The extended nonnegative r... |
| xrge0topn 33956 | The topology of the extend... |
| xrge0haus 33957 | The topology of the extend... |
| xrge0tmd 33958 | The extended nonnegative r... |
| xrge0tmdALT 33959 | Alternate proof of ~ xrge0... |
| lmlim 33960 | Relate a limit in a given ... |
| lmlimxrge0 33961 | Relate a limit in the nonn... |
| rge0scvg 33962 | Implication of convergence... |
| fsumcvg4 33963 | A serie with finite suppor... |
| pnfneige0 33964 | A neighborhood of ` +oo ` ... |
| lmxrge0 33965 | Express "sequence ` F ` co... |
| lmdvg 33966 | If a monotonic sequence of... |
| lmdvglim 33967 | If a monotonic real number... |
| pl1cn 33968 | A univariate polynomial is... |
| zringnm 33971 | The norm (function) for a ... |
| zzsnm 33972 | The norm of the ring of th... |
| zlm0 33973 | Zero of a ` ZZ ` -module. ... |
| zlm1 33974 | Unity element of a ` ZZ ` ... |
| zlmds 33975 | Distance in a ` ZZ ` -modu... |
| zlmtset 33976 | Topology in a ` ZZ ` -modu... |
| zlmnm 33977 | Norm of a ` ZZ ` -module (... |
| zhmnrg 33978 | The ` ZZ ` -module built f... |
| nmmulg 33979 | The norm of a group produc... |
| zrhnm 33980 | The norm of the image by `... |
| cnzh 33981 | The ` ZZ ` -module of ` CC... |
| rezh 33982 | The ` ZZ ` -module of ` RR... |
| qqhval 33985 | Value of the canonical hom... |
| zrhf1ker 33986 | The kernel of the homomorp... |
| zrhchr 33987 | The kernel of the homomorp... |
| zrhker 33988 | The kernel of the homomorp... |
| zrhunitpreima 33989 | The preimage by ` ZRHom ` ... |
| elzrhunit 33990 | Condition for the image by... |
| zrhneg 33991 | The canonical homomorphism... |
| zrhcntr 33992 | The canonical representati... |
| elzdif0 33993 | Lemma for ~ qqhval2 . (Co... |
| qqhval2lem 33994 | Lemma for ~ qqhval2 . (Co... |
| qqhval2 33995 | Value of the canonical hom... |
| qqhvval 33996 | Value of the canonical hom... |
| qqh0 33997 | The image of ` 0 ` by the ... |
| qqh1 33998 | The image of ` 1 ` by the ... |
| qqhf 33999 | ` QQHom ` as a function. ... |
| qqhvq 34000 | The image of a quotient by... |
| qqhghm 34001 | The ` QQHom ` homomorphism... |
| qqhrhm 34002 | The ` QQHom ` homomorphism... |
| qqhnm 34003 | The norm of the image by `... |
| qqhcn 34004 | The ` QQHom ` homomorphism... |
| qqhucn 34005 | The ` QQHom ` homomorphism... |
| rrhval 34009 | Value of the canonical hom... |
| rrhcn 34010 | If the topology of ` R ` i... |
| rrhf 34011 | If the topology of ` R ` i... |
| isrrext 34013 | Express the property " ` R... |
| rrextnrg 34014 | An extension of ` RR ` is ... |
| rrextdrg 34015 | An extension of ` RR ` is ... |
| rrextnlm 34016 | The norm of an extension o... |
| rrextchr 34017 | The ring characteristic of... |
| rrextcusp 34018 | An extension of ` RR ` is ... |
| rrexttps 34019 | An extension of ` RR ` is ... |
| rrexthaus 34020 | The topology of an extensi... |
| rrextust 34021 | The uniformity of an exten... |
| rerrext 34022 | The field of the real numb... |
| cnrrext 34023 | The field of the complex n... |
| qqtopn 34024 | The topology of the field ... |
| rrhfe 34025 | If ` R ` is an extension o... |
| rrhcne 34026 | If ` R ` is an extension o... |
| rrhqima 34027 | The ` RRHom ` homomorphism... |
| rrh0 34028 | The image of ` 0 ` by the ... |
| xrhval 34031 | The value of the embedding... |
| zrhre 34032 | The ` ZRHom ` homomorphism... |
| qqhre 34033 | The ` QQHom ` homomorphism... |
| rrhre 34034 | The ` RRHom ` homomorphism... |
| relmntop 34037 | Manifold is a relation. (... |
| ismntoplly 34038 | Property of being a manifo... |
| ismntop 34039 | Property of being a manifo... |
| esumex 34042 | An extended sum is a set b... |
| esumcl 34043 | Closure for extended sum i... |
| esumeq12dvaf 34044 | Equality deduction for ext... |
| esumeq12dva 34045 | Equality deduction for ext... |
| esumeq12d 34046 | Equality deduction for ext... |
| esumeq1 34047 | Equality theorem for an ex... |
| esumeq1d 34048 | Equality theorem for an ex... |
| esumeq2 34049 | Equality theorem for exten... |
| esumeq2d 34050 | Equality deduction for ext... |
| esumeq2dv 34051 | Equality deduction for ext... |
| esumeq2sdv 34052 | Equality deduction for ext... |
| nfesum1 34053 | Bound-variable hypothesis ... |
| nfesum2 34054 | Bound-variable hypothesis ... |
| cbvesum 34055 | Change bound variable in a... |
| cbvesumv 34056 | Change bound variable in a... |
| esumid 34057 | Identify the extended sum ... |
| esumgsum 34058 | A finite extended sum is t... |
| esumval 34059 | Develop the value of the e... |
| esumel 34060 | The extended sum is a limi... |
| esumnul 34061 | Extended sum over the empt... |
| esum0 34062 | Extended sum of zero. (Co... |
| esumf1o 34063 | Re-index an extended sum u... |
| esumc 34064 | Convert from the collectio... |
| esumrnmpt 34065 | Rewrite an extended sum in... |
| esumsplit 34066 | Split an extended sum into... |
| esummono 34067 | Extended sum is monotonic.... |
| esumpad 34068 | Extend an extended sum by ... |
| esumpad2 34069 | Remove zeroes from an exte... |
| esumadd 34070 | Addition of infinite sums.... |
| esumle 34071 | If all of the terms of an ... |
| gsumesum 34072 | Relate a group sum on ` ( ... |
| esumlub 34073 | The extended sum is the lo... |
| esumaddf 34074 | Addition of infinite sums.... |
| esumlef 34075 | If all of the terms of an ... |
| esumcst 34076 | The extended sum of a cons... |
| esumsnf 34077 | The extended sum of a sing... |
| esumsn 34078 | The extended sum of a sing... |
| esumpr 34079 | Extended sum over a pair. ... |
| esumpr2 34080 | Extended sum over a pair, ... |
| esumrnmpt2 34081 | Rewrite an extended sum in... |
| esumfzf 34082 | Formulating a partial exte... |
| esumfsup 34083 | Formulating an extended su... |
| esumfsupre 34084 | Formulating an extended su... |
| esumss 34085 | Change the index set to a ... |
| esumpinfval 34086 | The value of the extended ... |
| esumpfinvallem 34087 | Lemma for ~ esumpfinval . ... |
| esumpfinval 34088 | The value of the extended ... |
| esumpfinvalf 34089 | Same as ~ esumpfinval , mi... |
| esumpinfsum 34090 | The value of the extended ... |
| esumpcvgval 34091 | The value of the extended ... |
| esumpmono 34092 | The partial sums in an ext... |
| esumcocn 34093 | Lemma for ~ esummulc2 and ... |
| esummulc1 34094 | An extended sum multiplied... |
| esummulc2 34095 | An extended sum multiplied... |
| esumdivc 34096 | An extended sum divided by... |
| hashf2 34097 | Lemma for ~ hasheuni . (C... |
| hasheuni 34098 | The cardinality of a disjo... |
| esumcvg 34099 | The sequence of partial su... |
| esumcvg2 34100 | Simpler version of ~ esumc... |
| esumcvgsum 34101 | The value of the extended ... |
| esumsup 34102 | Express an extended sum as... |
| esumgect 34103 | "Send ` n ` to ` +oo ` " i... |
| esumcvgre 34104 | All terms of a converging ... |
| esum2dlem 34105 | Lemma for ~ esum2d (finite... |
| esum2d 34106 | Write a double extended su... |
| esumiun 34107 | Sum over a nonnecessarily ... |
| ofceq 34110 | Equality theorem for funct... |
| ofcfval 34111 | Value of an operation appl... |
| ofcval 34112 | Evaluate a function/consta... |
| ofcfn 34113 | The function operation pro... |
| ofcfeqd2 34114 | Equality theorem for funct... |
| ofcfval3 34115 | General value of ` ( F oFC... |
| ofcf 34116 | The function/constant oper... |
| ofcfval2 34117 | The function operation exp... |
| ofcfval4 34118 | The function/constant oper... |
| ofcc 34119 | Left operation by a consta... |
| ofcof 34120 | Relate function operation ... |
| sigaex 34123 | Lemma for ~ issiga and ~ i... |
| sigaval 34124 | The set of sigma-algebra w... |
| issiga 34125 | An alternative definition ... |
| isrnsiga 34126 | The property of being a si... |
| 0elsiga 34127 | A sigma-algebra contains t... |
| baselsiga 34128 | A sigma-algebra contains i... |
| sigasspw 34129 | A sigma-algebra is a set o... |
| sigaclcu 34130 | A sigma-algebra is closed ... |
| sigaclcuni 34131 | A sigma-algebra is closed ... |
| sigaclfu 34132 | A sigma-algebra is closed ... |
| sigaclcu2 34133 | A sigma-algebra is closed ... |
| sigaclfu2 34134 | A sigma-algebra is closed ... |
| sigaclcu3 34135 | A sigma-algebra is closed ... |
| issgon 34136 | Property of being a sigma-... |
| sgon 34137 | A sigma-algebra is a sigma... |
| elsigass 34138 | An element of a sigma-alge... |
| elrnsiga 34139 | Dropping the base informat... |
| isrnsigau 34140 | The property of being a si... |
| unielsiga 34141 | A sigma-algebra contains i... |
| dmvlsiga 34142 | Lebesgue-measurable subset... |
| pwsiga 34143 | Any power set forms a sigm... |
| prsiga 34144 | The smallest possible sigm... |
| sigaclci 34145 | A sigma-algebra is closed ... |
| difelsiga 34146 | A sigma-algebra is closed ... |
| unelsiga 34147 | A sigma-algebra is closed ... |
| inelsiga 34148 | A sigma-algebra is closed ... |
| sigainb 34149 | Building a sigma-algebra f... |
| insiga 34150 | The intersection of a coll... |
| sigagenval 34153 | Value of the generated sig... |
| sigagensiga 34154 | A generated sigma-algebra ... |
| sgsiga 34155 | A generated sigma-algebra ... |
| unisg 34156 | The sigma-algebra generate... |
| dmsigagen 34157 | A sigma-algebra can be gen... |
| sssigagen 34158 | A set is a subset of the s... |
| sssigagen2 34159 | A subset of the generating... |
| elsigagen 34160 | Any element of a set is al... |
| elsigagen2 34161 | Any countable union of ele... |
| sigagenss 34162 | The generated sigma-algebr... |
| sigagenss2 34163 | Sufficient condition for i... |
| sigagenid 34164 | The sigma-algebra generate... |
| ispisys 34165 | The property of being a pi... |
| ispisys2 34166 | The property of being a pi... |
| inelpisys 34167 | Pi-systems are closed unde... |
| sigapisys 34168 | All sigma-algebras are pi-... |
| isldsys 34169 | The property of being a la... |
| pwldsys 34170 | The power set of the unive... |
| unelldsys 34171 | Lambda-systems are closed ... |
| sigaldsys 34172 | All sigma-algebras are lam... |
| ldsysgenld 34173 | The intersection of all la... |
| sigapildsyslem 34174 | Lemma for ~ sigapildsys . ... |
| sigapildsys 34175 | Sigma-algebra are exactly ... |
| ldgenpisyslem1 34176 | Lemma for ~ ldgenpisys . ... |
| ldgenpisyslem2 34177 | Lemma for ~ ldgenpisys . ... |
| ldgenpisyslem3 34178 | Lemma for ~ ldgenpisys . ... |
| ldgenpisys 34179 | The lambda system ` E ` ge... |
| dynkin 34180 | Dynkin's lambda-pi theorem... |
| isros 34181 | The property of being a ri... |
| rossspw 34182 | A ring of sets is a collec... |
| 0elros 34183 | A ring of sets contains th... |
| unelros 34184 | A ring of sets is closed u... |
| difelros 34185 | A ring of sets is closed u... |
| inelros 34186 | A ring of sets is closed u... |
| fiunelros 34187 | A ring of sets is closed u... |
| issros 34188 | The property of being a se... |
| srossspw 34189 | A semiring of sets is a co... |
| 0elsros 34190 | A semiring of sets contain... |
| inelsros 34191 | A semiring of sets is clos... |
| diffiunisros 34192 | In semiring of sets, compl... |
| rossros 34193 | Rings of sets are semiring... |
| brsiga 34196 | The Borel Algebra on real ... |
| brsigarn 34197 | The Borel Algebra is a sig... |
| brsigasspwrn 34198 | The Borel Algebra is a set... |
| unibrsiga 34199 | The union of the Borel Alg... |
| cldssbrsiga 34200 | A Borel Algebra contains a... |
| sxval 34203 | Value of the product sigma... |
| sxsiga 34204 | A product sigma-algebra is... |
| sxsigon 34205 | A product sigma-algebra is... |
| sxuni 34206 | The base set of a product ... |
| elsx 34207 | The cartesian product of t... |
| measbase 34210 | The base set of a measure ... |
| measval 34211 | The value of the ` measure... |
| ismeas 34212 | The property of being a me... |
| isrnmeas 34213 | The property of being a me... |
| dmmeas 34214 | The domain of a measure is... |
| measbasedom 34215 | The base set of a measure ... |
| measfrge0 34216 | A measure is a function ov... |
| measfn 34217 | A measure is a function on... |
| measvxrge0 34218 | The values of a measure ar... |
| measvnul 34219 | The measure of the empty s... |
| measge0 34220 | A measure is nonnegative. ... |
| measle0 34221 | If the measure of a given ... |
| measvun 34222 | The measure of a countable... |
| measxun2 34223 | The measure the union of t... |
| measun 34224 | The measure the union of t... |
| measvunilem 34225 | Lemma for ~ measvuni . (C... |
| measvunilem0 34226 | Lemma for ~ measvuni . (C... |
| measvuni 34227 | The measure of a countable... |
| measssd 34228 | A measure is monotone with... |
| measunl 34229 | A measure is sub-additive ... |
| measiuns 34230 | The measure of the union o... |
| measiun 34231 | A measure is sub-additive.... |
| meascnbl 34232 | A measure is continuous fr... |
| measinblem 34233 | Lemma for ~ measinb . (Co... |
| measinb 34234 | Building a measure restric... |
| measres 34235 | Building a measure restric... |
| measinb2 34236 | Building a measure restric... |
| measdivcst 34237 | Division of a measure by a... |
| measdivcstALTV 34238 | Alternate version of ~ mea... |
| cntmeas 34239 | The Counting measure is a ... |
| pwcntmeas 34240 | The counting measure is a ... |
| cntnevol 34241 | Counting and Lebesgue meas... |
| voliune 34242 | The Lebesgue measure funct... |
| volfiniune 34243 | The Lebesgue measure funct... |
| volmeas 34244 | The Lebesgue measure is a ... |
| ddeval1 34247 | Value of the delta measure... |
| ddeval0 34248 | Value of the delta measure... |
| ddemeas 34249 | The Dirac delta measure is... |
| relae 34253 | 'almost everywhere' is a r... |
| brae 34254 | 'almost everywhere' relati... |
| braew 34255 | 'almost everywhere' relati... |
| truae 34256 | A truth holds almost every... |
| aean 34257 | A conjunction holds almost... |
| faeval 34259 | Value of the 'almost every... |
| relfae 34260 | The 'almost everywhere' bu... |
| brfae 34261 | 'almost everywhere' relati... |
| ismbfm 34264 | The predicate " ` F ` is a... |
| elunirnmbfm 34265 | The property of being a me... |
| mbfmfun 34266 | A measurable function is a... |
| mbfmf 34267 | A measurable function as a... |
| mbfmcnvima 34268 | The preimage by a measurab... |
| isanmbfm 34269 | The predicate to be a meas... |
| mbfmbfmOLD 34270 | A measurable function to a... |
| mbfmbfm 34271 | A measurable function to a... |
| mbfmcst 34272 | A constant function is mea... |
| 1stmbfm 34273 | The first projection map i... |
| 2ndmbfm 34274 | The second projection map ... |
| imambfm 34275 | If the sigma-algebra in th... |
| cnmbfm 34276 | A continuous function is m... |
| mbfmco 34277 | The composition of two mea... |
| mbfmco2 34278 | The pair building of two m... |
| mbfmvolf 34279 | Measurable functions with ... |
| elmbfmvol2 34280 | Measurable functions with ... |
| mbfmcnt 34281 | All functions are measurab... |
| br2base 34282 | The base set for the gener... |
| dya2ub 34283 | An upper bound for a dyadi... |
| sxbrsigalem0 34284 | The closed half-spaces of ... |
| sxbrsigalem3 34285 | The sigma-algebra generate... |
| dya2iocival 34286 | The function ` I ` returns... |
| dya2iocress 34287 | Dyadic intervals are subse... |
| dya2iocbrsiga 34288 | Dyadic intervals are Borel... |
| dya2icobrsiga 34289 | Dyadic intervals are Borel... |
| dya2icoseg 34290 | For any point and any clos... |
| dya2icoseg2 34291 | For any point and any open... |
| dya2iocrfn 34292 | The function returning dya... |
| dya2iocct 34293 | The dyadic rectangle set i... |
| dya2iocnrect 34294 | For any point of an open r... |
| dya2iocnei 34295 | For any point of an open s... |
| dya2iocuni 34296 | Every open set of ` ( RR X... |
| dya2iocucvr 34297 | The dyadic rectangular set... |
| sxbrsigalem1 34298 | The Borel algebra on ` ( R... |
| sxbrsigalem2 34299 | The sigma-algebra generate... |
| sxbrsigalem4 34300 | The Borel algebra on ` ( R... |
| sxbrsigalem5 34301 | First direction for ~ sxbr... |
| sxbrsigalem6 34302 | First direction for ~ sxbr... |
| sxbrsiga 34303 | The product sigma-algebra ... |
| omsval 34306 | Value of the function mapp... |
| omsfval 34307 | Value of the outer measure... |
| omscl 34308 | A closure lemma for the co... |
| omsf 34309 | A constructed outer measur... |
| oms0 34310 | A constructed outer measur... |
| omsmon 34311 | A constructed outer measur... |
| omssubaddlem 34312 | For any small margin ` E `... |
| omssubadd 34313 | A constructed outer measur... |
| carsgval 34316 | Value of the Caratheodory ... |
| carsgcl 34317 | Closure of the Caratheodor... |
| elcarsg 34318 | Property of being a Carath... |
| baselcarsg 34319 | The universe set, ` O ` , ... |
| 0elcarsg 34320 | The empty set is Caratheod... |
| carsguni 34321 | The union of all Caratheod... |
| elcarsgss 34322 | Caratheodory measurable se... |
| difelcarsg 34323 | The Caratheodory measurabl... |
| inelcarsg 34324 | The Caratheodory measurabl... |
| unelcarsg 34325 | The Caratheodory-measurabl... |
| difelcarsg2 34326 | The Caratheodory-measurabl... |
| carsgmon 34327 | Utility lemma: Apply mono... |
| carsgsigalem 34328 | Lemma for the following th... |
| fiunelcarsg 34329 | The Caratheodory measurabl... |
| carsgclctunlem1 34330 | Lemma for ~ carsgclctun . ... |
| carsggect 34331 | The outer measure is count... |
| carsgclctunlem2 34332 | Lemma for ~ carsgclctun . ... |
| carsgclctunlem3 34333 | Lemma for ~ carsgclctun . ... |
| carsgclctun 34334 | The Caratheodory measurabl... |
| carsgsiga 34335 | The Caratheodory measurabl... |
| omsmeas 34336 | The restriction of a const... |
| pmeasmono 34337 | This theorem's hypotheses ... |
| pmeasadd 34338 | A premeasure on a ring of ... |
| itgeq12dv 34339 | Equality theorem for an in... |
| sitgval 34345 | Value of the simple functi... |
| issibf 34346 | The predicate " ` F ` is a... |
| sibf0 34347 | The constant zero function... |
| sibfmbl 34348 | A simple function is measu... |
| sibff 34349 | A simple function is a fun... |
| sibfrn 34350 | A simple function has fini... |
| sibfima 34351 | Any preimage of a singleto... |
| sibfinima 34352 | The measure of the interse... |
| sibfof 34353 | Applying function operatio... |
| sitgfval 34354 | Value of the Bochner integ... |
| sitgclg 34355 | Closure of the Bochner int... |
| sitgclbn 34356 | Closure of the Bochner int... |
| sitgclcn 34357 | Closure of the Bochner int... |
| sitgclre 34358 | Closure of the Bochner int... |
| sitg0 34359 | The integral of the consta... |
| sitgf 34360 | The integral for simple fu... |
| sitgaddlemb 34361 | Lemma for * sitgadd . (Co... |
| sitmval 34362 | Value of the simple functi... |
| sitmfval 34363 | Value of the integral dist... |
| sitmcl 34364 | Closure of the integral di... |
| sitmf 34365 | The integral metric as a f... |
| oddpwdc 34367 | Lemma for ~ eulerpart . T... |
| oddpwdcv 34368 | Lemma for ~ eulerpart : va... |
| eulerpartlemsv1 34369 | Lemma for ~ eulerpart . V... |
| eulerpartlemelr 34370 | Lemma for ~ eulerpart . (... |
| eulerpartlemsv2 34371 | Lemma for ~ eulerpart . V... |
| eulerpartlemsf 34372 | Lemma for ~ eulerpart . (... |
| eulerpartlems 34373 | Lemma for ~ eulerpart . (... |
| eulerpartlemsv3 34374 | Lemma for ~ eulerpart . V... |
| eulerpartlemgc 34375 | Lemma for ~ eulerpart . (... |
| eulerpartleme 34376 | Lemma for ~ eulerpart . (... |
| eulerpartlemv 34377 | Lemma for ~ eulerpart . (... |
| eulerpartlemo 34378 | Lemma for ~ eulerpart : ` ... |
| eulerpartlemd 34379 | Lemma for ~ eulerpart : ` ... |
| eulerpartlem1 34380 | Lemma for ~ eulerpart . (... |
| eulerpartlemb 34381 | Lemma for ~ eulerpart . T... |
| eulerpartlemt0 34382 | Lemma for ~ eulerpart . (... |
| eulerpartlemf 34383 | Lemma for ~ eulerpart : O... |
| eulerpartlemt 34384 | Lemma for ~ eulerpart . (... |
| eulerpartgbij 34385 | Lemma for ~ eulerpart : T... |
| eulerpartlemgv 34386 | Lemma for ~ eulerpart : va... |
| eulerpartlemr 34387 | Lemma for ~ eulerpart . (... |
| eulerpartlemmf 34388 | Lemma for ~ eulerpart . (... |
| eulerpartlemgvv 34389 | Lemma for ~ eulerpart : va... |
| eulerpartlemgu 34390 | Lemma for ~ eulerpart : R... |
| eulerpartlemgh 34391 | Lemma for ~ eulerpart : T... |
| eulerpartlemgf 34392 | Lemma for ~ eulerpart : I... |
| eulerpartlemgs2 34393 | Lemma for ~ eulerpart : T... |
| eulerpartlemn 34394 | Lemma for ~ eulerpart . (... |
| eulerpart 34395 | Euler's theorem on partiti... |
| subiwrd 34398 | Lemma for ~ sseqp1 . (Con... |
| subiwrdlen 34399 | Length of a subword of an ... |
| iwrdsplit 34400 | Lemma for ~ sseqp1 . (Con... |
| sseqval 34401 | Value of the strong sequen... |
| sseqfv1 34402 | Value of the strong sequen... |
| sseqfn 34403 | A strong recursive sequenc... |
| sseqmw 34404 | Lemma for ~ sseqf amd ~ ss... |
| sseqf 34405 | A strong recursive sequenc... |
| sseqfres 34406 | The first elements in the ... |
| sseqfv2 34407 | Value of the strong sequen... |
| sseqp1 34408 | Value of the strong sequen... |
| fiblem 34411 | Lemma for ~ fib0 , ~ fib1 ... |
| fib0 34412 | Value of the Fibonacci seq... |
| fib1 34413 | Value of the Fibonacci seq... |
| fibp1 34414 | Value of the Fibonacci seq... |
| fib2 34415 | Value of the Fibonacci seq... |
| fib3 34416 | Value of the Fibonacci seq... |
| fib4 34417 | Value of the Fibonacci seq... |
| fib5 34418 | Value of the Fibonacci seq... |
| fib6 34419 | Value of the Fibonacci seq... |
| elprob 34422 | The property of being a pr... |
| domprobmeas 34423 | A probability measure is a... |
| domprobsiga 34424 | The domain of a probabilit... |
| probtot 34425 | The probability of the uni... |
| prob01 34426 | A probability is an elemen... |
| probnul 34427 | The probability of the emp... |
| unveldomd 34428 | The universe is an element... |
| unveldom 34429 | The universe is an element... |
| nuleldmp 34430 | The empty set is an elemen... |
| probcun 34431 | The probability of the uni... |
| probun 34432 | The probability of the uni... |
| probdif 34433 | The probability of the dif... |
| probinc 34434 | A probability law is incre... |
| probdsb 34435 | The probability of the com... |
| probmeasd 34436 | A probability measure is a... |
| probvalrnd 34437 | The value of a probability... |
| probtotrnd 34438 | The probability of the uni... |
| totprobd 34439 | Law of total probability, ... |
| totprob 34440 | Law of total probability. ... |
| probfinmeasb 34441 | Build a probability measur... |
| probfinmeasbALTV 34442 | Alternate version of ~ pro... |
| probmeasb 34443 | Build a probability from a... |
| cndprobval 34446 | The value of the condition... |
| cndprobin 34447 | An identity linking condit... |
| cndprob01 34448 | The conditional probabilit... |
| cndprobtot 34449 | The conditional probabilit... |
| cndprobnul 34450 | The conditional probabilit... |
| cndprobprob 34451 | The conditional probabilit... |
| bayesth 34452 | Bayes Theorem. (Contribut... |
| rrvmbfm 34455 | A real-valued random varia... |
| isrrvv 34456 | Elementhood to the set of ... |
| rrvvf 34457 | A real-valued random varia... |
| rrvfn 34458 | A real-valued random varia... |
| rrvdm 34459 | The domain of a random var... |
| rrvrnss 34460 | The range of a random vari... |
| rrvf2 34461 | A real-valued random varia... |
| rrvdmss 34462 | The domain of a random var... |
| rrvfinvima 34463 | For a real-value random va... |
| 0rrv 34464 | The constant function equa... |
| rrvadd 34465 | The sum of two random vari... |
| rrvmulc 34466 | A random variable multipli... |
| rrvsum 34467 | An indexed sum of random v... |
| boolesineq 34468 | Boole's inequality (union ... |
| orvcval 34471 | Value of the preimage mapp... |
| orvcval2 34472 | Another way to express the... |
| elorvc 34473 | Elementhood of a preimage.... |
| orvcval4 34474 | The value of the preimage ... |
| orvcoel 34475 | If the relation produces o... |
| orvccel 34476 | If the relation produces c... |
| elorrvc 34477 | Elementhood of a preimage ... |
| orrvcval4 34478 | The value of the preimage ... |
| orrvcoel 34479 | If the relation produces o... |
| orrvccel 34480 | If the relation produces c... |
| orvcgteel 34481 | Preimage maps produced by ... |
| orvcelval 34482 | Preimage maps produced by ... |
| orvcelel 34483 | Preimage maps produced by ... |
| dstrvval 34484 | The value of the distribut... |
| dstrvprob 34485 | The distribution of a rand... |
| orvclteel 34486 | Preimage maps produced by ... |
| dstfrvel 34487 | Elementhood of preimage ma... |
| dstfrvunirn 34488 | The limit of all preimage ... |
| orvclteinc 34489 | Preimage maps produced by ... |
| dstfrvinc 34490 | A cumulative distribution ... |
| dstfrvclim1 34491 | The limit of the cumulativ... |
| coinfliplem 34492 | Division in the extended r... |
| coinflipprob 34493 | The ` P ` we defined for c... |
| coinflipspace 34494 | The space of our coin-flip... |
| coinflipuniv 34495 | The universe of our coin-f... |
| coinfliprv 34496 | The ` X ` we defined for c... |
| coinflippv 34497 | The probability of heads i... |
| coinflippvt 34498 | The probability of tails i... |
| ballotlemoex 34499 | ` O ` is a set. (Contribu... |
| ballotlem1 34500 | The size of the universe i... |
| ballotlemelo 34501 | Elementhood in ` O ` . (C... |
| ballotlem2 34502 | The probability that the f... |
| ballotlemfval 34503 | The value of ` F ` . (Con... |
| ballotlemfelz 34504 | ` ( F `` C ) ` has values ... |
| ballotlemfp1 34505 | If the ` J ` th ballot is ... |
| ballotlemfc0 34506 | ` F ` takes value 0 betwee... |
| ballotlemfcc 34507 | ` F ` takes value 0 betwee... |
| ballotlemfmpn 34508 | ` ( F `` C ) ` finishes co... |
| ballotlemfval0 34509 | ` ( F `` C ) ` always star... |
| ballotleme 34510 | Elements of ` E ` . (Cont... |
| ballotlemodife 34511 | Elements of ` ( O \ E ) ` ... |
| ballotlem4 34512 | If the first pick is a vot... |
| ballotlem5 34513 | If A is not ahead througho... |
| ballotlemi 34514 | Value of ` I ` for a given... |
| ballotlemiex 34515 | Properties of ` ( I `` C )... |
| ballotlemi1 34516 | The first tie cannot be re... |
| ballotlemii 34517 | The first tie cannot be re... |
| ballotlemsup 34518 | The set of zeroes of ` F `... |
| ballotlemimin 34519 | ` ( I `` C ) ` is the firs... |
| ballotlemic 34520 | If the first vote is for B... |
| ballotlem1c 34521 | If the first vote is for A... |
| ballotlemsval 34522 | Value of ` S ` . (Contrib... |
| ballotlemsv 34523 | Value of ` S ` evaluated a... |
| ballotlemsgt1 34524 | ` S ` maps values less tha... |
| ballotlemsdom 34525 | Domain of ` S ` for a give... |
| ballotlemsel1i 34526 | The range ` ( 1 ... ( I ``... |
| ballotlemsf1o 34527 | The defined ` S ` is a bij... |
| ballotlemsi 34528 | The image by ` S ` of the ... |
| ballotlemsima 34529 | The image by ` S ` of an i... |
| ballotlemieq 34530 | If two countings share the... |
| ballotlemrval 34531 | Value of ` R ` . (Contrib... |
| ballotlemscr 34532 | The image of ` ( R `` C ) ... |
| ballotlemrv 34533 | Value of ` R ` evaluated a... |
| ballotlemrv1 34534 | Value of ` R ` before the ... |
| ballotlemrv2 34535 | Value of ` R ` after the t... |
| ballotlemro 34536 | Range of ` R ` is included... |
| ballotlemgval 34537 | Expand the value of ` .^ `... |
| ballotlemgun 34538 | A property of the defined ... |
| ballotlemfg 34539 | Express the value of ` ( F... |
| ballotlemfrc 34540 | Express the value of ` ( F... |
| ballotlemfrci 34541 | Reverse counting preserves... |
| ballotlemfrceq 34542 | Value of ` F ` for a rever... |
| ballotlemfrcn0 34543 | Value of ` F ` for a rever... |
| ballotlemrc 34544 | Range of ` R ` . (Contrib... |
| ballotlemirc 34545 | Applying ` R ` does not ch... |
| ballotlemrinv0 34546 | Lemma for ~ ballotlemrinv ... |
| ballotlemrinv 34547 | ` R ` is its own inverse :... |
| ballotlem1ri 34548 | When the vote on the first... |
| ballotlem7 34549 | ` R ` is a bijection betwe... |
| ballotlem8 34550 | There are as many counting... |
| ballotth 34551 | Bertrand's ballot problem ... |
| fzssfzo 34552 | Condition for an integer i... |
| gsumncl 34553 | Closure of a group sum in ... |
| gsumnunsn 34554 | Closure of a group sum in ... |
| ccatmulgnn0dir 34555 | Concatenation of words fol... |
| ofcccat 34556 | Letterwise operations on w... |
| ofcs1 34557 | Letterwise operations on a... |
| ofcs2 34558 | Letterwise operations on a... |
| plymul02 34559 | Product of a polynomial wi... |
| plymulx0 34560 | Coefficients of a polynomi... |
| plymulx 34561 | Coefficients of a polynomi... |
| plyrecld 34562 | Closure of a polynomial wi... |
| signsplypnf 34563 | The quotient of a polynomi... |
| signsply0 34564 | Lemma for the rule of sign... |
| signspval 34565 | The value of the skipping ... |
| signsw0glem 34566 | Neutral element property o... |
| signswbase 34567 | The base of ` W ` is the u... |
| signswplusg 34568 | The operation of ` W ` . ... |
| signsw0g 34569 | The neutral element of ` W... |
| signswmnd 34570 | ` W ` is a monoid structur... |
| signswrid 34571 | The zero-skipping operatio... |
| signswlid 34572 | The zero-skipping operatio... |
| signswn0 34573 | The zero-skipping operatio... |
| signswch 34574 | The zero-skipping operatio... |
| signslema 34575 | Computational part of ~~? ... |
| signstfv 34576 | Value of the zero-skipping... |
| signstfval 34577 | Value of the zero-skipping... |
| signstcl 34578 | Closure of the zero skippi... |
| signstf 34579 | The zero skipping sign wor... |
| signstlen 34580 | Length of the zero skippin... |
| signstf0 34581 | Sign of a single letter wo... |
| signstfvn 34582 | Zero-skipping sign in a wo... |
| signsvtn0 34583 | If the last letter is nonz... |
| signstfvp 34584 | Zero-skipping sign in a wo... |
| signstfvneq0 34585 | In case the first letter i... |
| signstfvcl 34586 | Closure of the zero skippi... |
| signstfvc 34587 | Zero-skipping sign in a wo... |
| signstres 34588 | Restriction of a zero skip... |
| signstfveq0a 34589 | Lemma for ~ signstfveq0 . ... |
| signstfveq0 34590 | In case the last letter is... |
| signsvvfval 34591 | The value of ` V ` , which... |
| signsvvf 34592 | ` V ` is a function. (Con... |
| signsvf0 34593 | There is no change of sign... |
| signsvf1 34594 | In a single-letter word, w... |
| signsvfn 34595 | Number of changes in a wor... |
| signsvtp 34596 | Adding a letter of the sam... |
| signsvtn 34597 | Adding a letter of a diffe... |
| signsvfpn 34598 | Adding a letter of the sam... |
| signsvfnn 34599 | Adding a letter of a diffe... |
| signlem0 34600 | Adding a zero as the highe... |
| signshf 34601 | ` H ` , corresponding to t... |
| signshwrd 34602 | ` H ` , corresponding to t... |
| signshlen 34603 | Length of ` H ` , correspo... |
| signshnz 34604 | ` H ` is not the empty wor... |
| iblidicc 34605 | The identity function is i... |
| rpsqrtcn 34606 | Continuity of the real pos... |
| divsqrtid 34607 | A real number divided by i... |
| cxpcncf1 34608 | The power function on comp... |
| efmul2picn 34609 | Multiplying by ` ( _i x. (... |
| fct2relem 34610 | Lemma for ~ ftc2re . (Con... |
| ftc2re 34611 | The Fundamental Theorem of... |
| fdvposlt 34612 | Functions with a positive ... |
| fdvneggt 34613 | Functions with a negative ... |
| fdvposle 34614 | Functions with a nonnegati... |
| fdvnegge 34615 | Functions with a nonpositi... |
| prodfzo03 34616 | A product of three factors... |
| actfunsnf1o 34617 | The action ` F ` of extend... |
| actfunsnrndisj 34618 | The action ` F ` of extend... |
| itgexpif 34619 | The basis for the circle m... |
| fsum2dsub 34620 | Lemma for ~ breprexp - Re-... |
| reprval 34623 | Value of the representatio... |
| repr0 34624 | There is exactly one repre... |
| reprf 34625 | Members of the representat... |
| reprsum 34626 | Sums of values of the memb... |
| reprle 34627 | Upper bound to the terms i... |
| reprsuc 34628 | Express the representation... |
| reprfi 34629 | Bounded representations ar... |
| reprss 34630 | Representations with terms... |
| reprinrn 34631 | Representations with term ... |
| reprlt 34632 | There are no representatio... |
| hashreprin 34633 | Express a sum of represent... |
| reprgt 34634 | There are no representatio... |
| reprinfz1 34635 | For the representation of ... |
| reprfi2 34636 | Corollary of ~ reprinfz1 .... |
| reprfz1 34637 | Corollary of ~ reprinfz1 .... |
| hashrepr 34638 | Develop the number of repr... |
| reprpmtf1o 34639 | Transposing ` 0 ` and ` X ... |
| reprdifc 34640 | Express the representation... |
| chpvalz 34641 | Value of the second Chebys... |
| chtvalz 34642 | Value of the Chebyshev fun... |
| breprexplema 34643 | Lemma for ~ breprexp (indu... |
| breprexplemb 34644 | Lemma for ~ breprexp (clos... |
| breprexplemc 34645 | Lemma for ~ breprexp (indu... |
| breprexp 34646 | Express the ` S ` th power... |
| breprexpnat 34647 | Express the ` S ` th power... |
| vtsval 34650 | Value of the Vinogradov tr... |
| vtscl 34651 | Closure of the Vinogradov ... |
| vtsprod 34652 | Express the Vinogradov tri... |
| circlemeth 34653 | The Hardy, Littlewood and ... |
| circlemethnat 34654 | The Hardy, Littlewood and ... |
| circlevma 34655 | The Circle Method, where t... |
| circlemethhgt 34656 | The circle method, where t... |
| hgt750lemc 34660 | An upper bound to the summ... |
| hgt750lemd 34661 | An upper bound to the summ... |
| hgt749d 34662 | A deduction version of ~ a... |
| logdivsqrle 34663 | Conditions for ` ( ( log `... |
| hgt750lem 34664 | Lemma for ~ tgoldbachgtd .... |
| hgt750lem2 34665 | Decimal multiplication gal... |
| hgt750lemf 34666 | Lemma for the statement 7.... |
| hgt750lemg 34667 | Lemma for the statement 7.... |
| oddprm2 34668 | Two ways to write the set ... |
| hgt750lemb 34669 | An upper bound on the cont... |
| hgt750lema 34670 | An upper bound on the cont... |
| hgt750leme 34671 | An upper bound on the cont... |
| tgoldbachgnn 34672 | Lemma for ~ tgoldbachgtd .... |
| tgoldbachgtde 34673 | Lemma for ~ tgoldbachgtd .... |
| tgoldbachgtda 34674 | Lemma for ~ tgoldbachgtd .... |
| tgoldbachgtd 34675 | Odd integers greater than ... |
| tgoldbachgt 34676 | Odd integers greater than ... |
| istrkg2d 34679 | Property of fulfilling dim... |
| axtglowdim2ALTV 34680 | Alternate version of ~ axt... |
| axtgupdim2ALTV 34681 | Alternate version of ~ axt... |
| afsval 34684 | Value of the AFS relation ... |
| brafs 34685 | Binary relation form of th... |
| tg5segofs 34686 | Rephrase ~ axtg5seg using ... |
| lpadval 34689 | Value of the ` leftpad ` f... |
| lpadlem1 34690 | Lemma for the ` leftpad ` ... |
| lpadlem3 34691 | Lemma for ~ lpadlen1 . (C... |
| lpadlen1 34692 | Length of a left-padded wo... |
| lpadlem2 34693 | Lemma for the ` leftpad ` ... |
| lpadlen2 34694 | Length of a left-padded wo... |
| lpadmax 34695 | Length of a left-padded wo... |
| lpadleft 34696 | The contents of prefix of ... |
| lpadright 34697 | The suffix of a left-padde... |
| bnj170 34710 | ` /\ ` -manipulation. (Co... |
| bnj240 34711 | ` /\ ` -manipulation. (Co... |
| bnj248 34712 | ` /\ ` -manipulation. (Co... |
| bnj250 34713 | ` /\ ` -manipulation. (Co... |
| bnj251 34714 | ` /\ ` -manipulation. (Co... |
| bnj252 34715 | ` /\ ` -manipulation. (Co... |
| bnj253 34716 | ` /\ ` -manipulation. (Co... |
| bnj255 34717 | ` /\ ` -manipulation. (Co... |
| bnj256 34718 | ` /\ ` -manipulation. (Co... |
| bnj257 34719 | ` /\ ` -manipulation. (Co... |
| bnj258 34720 | ` /\ ` -manipulation. (Co... |
| bnj268 34721 | ` /\ ` -manipulation. (Co... |
| bnj290 34722 | ` /\ ` -manipulation. (Co... |
| bnj291 34723 | ` /\ ` -manipulation. (Co... |
| bnj312 34724 | ` /\ ` -manipulation. (Co... |
| bnj334 34725 | ` /\ ` -manipulation. (Co... |
| bnj345 34726 | ` /\ ` -manipulation. (Co... |
| bnj422 34727 | ` /\ ` -manipulation. (Co... |
| bnj432 34728 | ` /\ ` -manipulation. (Co... |
| bnj446 34729 | ` /\ ` -manipulation. (Co... |
| bnj23 34730 | First-order logic and set ... |
| bnj31 34731 | First-order logic and set ... |
| bnj62 34732 | First-order logic and set ... |
| bnj89 34733 | First-order logic and set ... |
| bnj90 34734 | First-order logic and set ... |
| bnj101 34735 | First-order logic and set ... |
| bnj105 34736 | First-order logic and set ... |
| bnj115 34737 | First-order logic and set ... |
| bnj132 34738 | First-order logic and set ... |
| bnj133 34739 | First-order logic and set ... |
| bnj156 34740 | First-order logic and set ... |
| bnj158 34741 | First-order logic and set ... |
| bnj168 34742 | First-order logic and set ... |
| bnj206 34743 | First-order logic and set ... |
| bnj216 34744 | First-order logic and set ... |
| bnj219 34745 | First-order logic and set ... |
| bnj226 34746 | First-order logic and set ... |
| bnj228 34747 | First-order logic and set ... |
| bnj519 34748 | First-order logic and set ... |
| bnj524 34749 | First-order logic and set ... |
| bnj525 34750 | First-order logic and set ... |
| bnj534 34751 | First-order logic and set ... |
| bnj538 34752 | First-order logic and set ... |
| bnj529 34753 | First-order logic and set ... |
| bnj551 34754 | First-order logic and set ... |
| bnj563 34755 | First-order logic and set ... |
| bnj564 34756 | First-order logic and set ... |
| bnj593 34757 | First-order logic and set ... |
| bnj596 34758 | First-order logic and set ... |
| bnj610 34759 | Pass from equality ( ` x =... |
| bnj642 34760 | ` /\ ` -manipulation. (Co... |
| bnj643 34761 | ` /\ ` -manipulation. (Co... |
| bnj645 34762 | ` /\ ` -manipulation. (Co... |
| bnj658 34763 | ` /\ ` -manipulation. (Co... |
| bnj667 34764 | ` /\ ` -manipulation. (Co... |
| bnj705 34765 | ` /\ ` -manipulation. (Co... |
| bnj706 34766 | ` /\ ` -manipulation. (Co... |
| bnj707 34767 | ` /\ ` -manipulation. (Co... |
| bnj708 34768 | ` /\ ` -manipulation. (Co... |
| bnj721 34769 | ` /\ ` -manipulation. (Co... |
| bnj832 34770 | ` /\ ` -manipulation. (Co... |
| bnj835 34771 | ` /\ ` -manipulation. (Co... |
| bnj836 34772 | ` /\ ` -manipulation. (Co... |
| bnj837 34773 | ` /\ ` -manipulation. (Co... |
| bnj769 34774 | ` /\ ` -manipulation. (Co... |
| bnj770 34775 | ` /\ ` -manipulation. (Co... |
| bnj771 34776 | ` /\ ` -manipulation. (Co... |
| bnj887 34777 | ` /\ ` -manipulation. (Co... |
| bnj918 34778 | First-order logic and set ... |
| bnj919 34779 | First-order logic and set ... |
| bnj923 34780 | First-order logic and set ... |
| bnj927 34781 | First-order logic and set ... |
| bnj931 34782 | First-order logic and set ... |
| bnj937 34783 | First-order logic and set ... |
| bnj941 34784 | First-order logic and set ... |
| bnj945 34785 | Technical lemma for ~ bnj6... |
| bnj946 34786 | First-order logic and set ... |
| bnj951 34787 | ` /\ ` -manipulation. (Co... |
| bnj956 34788 | First-order logic and set ... |
| bnj976 34789 | First-order logic and set ... |
| bnj982 34790 | First-order logic and set ... |
| bnj1019 34791 | First-order logic and set ... |
| bnj1023 34792 | First-order logic and set ... |
| bnj1095 34793 | First-order logic and set ... |
| bnj1096 34794 | First-order logic and set ... |
| bnj1098 34795 | First-order logic and set ... |
| bnj1101 34796 | First-order logic and set ... |
| bnj1113 34797 | First-order logic and set ... |
| bnj1109 34798 | First-order logic and set ... |
| bnj1131 34799 | First-order logic and set ... |
| bnj1138 34800 | First-order logic and set ... |
| bnj1142 34801 | First-order logic and set ... |
| bnj1143 34802 | First-order logic and set ... |
| bnj1146 34803 | First-order logic and set ... |
| bnj1149 34804 | First-order logic and set ... |
| bnj1185 34805 | First-order logic and set ... |
| bnj1196 34806 | First-order logic and set ... |
| bnj1198 34807 | First-order logic and set ... |
| bnj1209 34808 | First-order logic and set ... |
| bnj1211 34809 | First-order logic and set ... |
| bnj1213 34810 | First-order logic and set ... |
| bnj1212 34811 | First-order logic and set ... |
| bnj1219 34812 | First-order logic and set ... |
| bnj1224 34813 | First-order logic and set ... |
| bnj1230 34814 | First-order logic and set ... |
| bnj1232 34815 | First-order logic and set ... |
| bnj1235 34816 | First-order logic and set ... |
| bnj1239 34817 | First-order logic and set ... |
| bnj1238 34818 | First-order logic and set ... |
| bnj1241 34819 | First-order logic and set ... |
| bnj1247 34820 | First-order logic and set ... |
| bnj1254 34821 | First-order logic and set ... |
| bnj1262 34822 | First-order logic and set ... |
| bnj1266 34823 | First-order logic and set ... |
| bnj1265 34824 | First-order logic and set ... |
| bnj1275 34825 | First-order logic and set ... |
| bnj1276 34826 | First-order logic and set ... |
| bnj1292 34827 | First-order logic and set ... |
| bnj1293 34828 | First-order logic and set ... |
| bnj1294 34829 | First-order logic and set ... |
| bnj1299 34830 | First-order logic and set ... |
| bnj1304 34831 | First-order logic and set ... |
| bnj1316 34832 | First-order logic and set ... |
| bnj1317 34833 | First-order logic and set ... |
| bnj1322 34834 | First-order logic and set ... |
| bnj1340 34835 | First-order logic and set ... |
| bnj1345 34836 | First-order logic and set ... |
| bnj1350 34837 | First-order logic and set ... |
| bnj1351 34838 | First-order logic and set ... |
| bnj1352 34839 | First-order logic and set ... |
| bnj1361 34840 | First-order logic and set ... |
| bnj1366 34841 | First-order logic and set ... |
| bnj1379 34842 | First-order logic and set ... |
| bnj1383 34843 | First-order logic and set ... |
| bnj1385 34844 | First-order logic and set ... |
| bnj1386 34845 | First-order logic and set ... |
| bnj1397 34846 | First-order logic and set ... |
| bnj1400 34847 | First-order logic and set ... |
| bnj1405 34848 | First-order logic and set ... |
| bnj1422 34849 | First-order logic and set ... |
| bnj1424 34850 | First-order logic and set ... |
| bnj1436 34851 | First-order logic and set ... |
| bnj1441 34852 | First-order logic and set ... |
| bnj1441g 34853 | First-order logic and set ... |
| bnj1454 34854 | First-order logic and set ... |
| bnj1459 34855 | First-order logic and set ... |
| bnj1464 34856 | Conversion of implicit sub... |
| bnj1465 34857 | First-order logic and set ... |
| bnj1468 34858 | Conversion of implicit sub... |
| bnj1476 34859 | First-order logic and set ... |
| bnj1502 34860 | First-order logic and set ... |
| bnj1503 34861 | First-order logic and set ... |
| bnj1517 34862 | First-order logic and set ... |
| bnj1521 34863 | First-order logic and set ... |
| bnj1533 34864 | First-order logic and set ... |
| bnj1534 34865 | First-order logic and set ... |
| bnj1536 34866 | First-order logic and set ... |
| bnj1538 34867 | First-order logic and set ... |
| bnj1541 34868 | First-order logic and set ... |
| bnj1542 34869 | First-order logic and set ... |
| bnj110 34870 | Well-founded induction res... |
| bnj157 34871 | Well-founded induction res... |
| bnj66 34872 | Technical lemma for ~ bnj6... |
| bnj91 34873 | First-order logic and set ... |
| bnj92 34874 | First-order logic and set ... |
| bnj93 34875 | Technical lemma for ~ bnj9... |
| bnj95 34876 | Technical lemma for ~ bnj1... |
| bnj96 34877 | Technical lemma for ~ bnj1... |
| bnj97 34878 | Technical lemma for ~ bnj1... |
| bnj98 34879 | Technical lemma for ~ bnj1... |
| bnj106 34880 | First-order logic and set ... |
| bnj118 34881 | First-order logic and set ... |
| bnj121 34882 | First-order logic and set ... |
| bnj124 34883 | Technical lemma for ~ bnj1... |
| bnj125 34884 | Technical lemma for ~ bnj1... |
| bnj126 34885 | Technical lemma for ~ bnj1... |
| bnj130 34886 | Technical lemma for ~ bnj1... |
| bnj149 34887 | Technical lemma for ~ bnj1... |
| bnj150 34888 | Technical lemma for ~ bnj1... |
| bnj151 34889 | Technical lemma for ~ bnj1... |
| bnj154 34890 | Technical lemma for ~ bnj1... |
| bnj155 34891 | Technical lemma for ~ bnj1... |
| bnj153 34892 | Technical lemma for ~ bnj8... |
| bnj207 34893 | Technical lemma for ~ bnj8... |
| bnj213 34894 | First-order logic and set ... |
| bnj222 34895 | Technical lemma for ~ bnj2... |
| bnj229 34896 | Technical lemma for ~ bnj5... |
| bnj517 34897 | Technical lemma for ~ bnj5... |
| bnj518 34898 | Technical lemma for ~ bnj8... |
| bnj523 34899 | Technical lemma for ~ bnj8... |
| bnj526 34900 | Technical lemma for ~ bnj8... |
| bnj528 34901 | Technical lemma for ~ bnj8... |
| bnj535 34902 | Technical lemma for ~ bnj8... |
| bnj539 34903 | Technical lemma for ~ bnj8... |
| bnj540 34904 | Technical lemma for ~ bnj8... |
| bnj543 34905 | Technical lemma for ~ bnj8... |
| bnj544 34906 | Technical lemma for ~ bnj8... |
| bnj545 34907 | Technical lemma for ~ bnj8... |
| bnj546 34908 | Technical lemma for ~ bnj8... |
| bnj548 34909 | Technical lemma for ~ bnj8... |
| bnj553 34910 | Technical lemma for ~ bnj8... |
| bnj554 34911 | Technical lemma for ~ bnj8... |
| bnj556 34912 | Technical lemma for ~ bnj8... |
| bnj557 34913 | Technical lemma for ~ bnj8... |
| bnj558 34914 | Technical lemma for ~ bnj8... |
| bnj561 34915 | Technical lemma for ~ bnj8... |
| bnj562 34916 | Technical lemma for ~ bnj8... |
| bnj570 34917 | Technical lemma for ~ bnj8... |
| bnj571 34918 | Technical lemma for ~ bnj8... |
| bnj605 34919 | Technical lemma. This lem... |
| bnj581 34920 | Technical lemma for ~ bnj5... |
| bnj589 34921 | Technical lemma for ~ bnj8... |
| bnj590 34922 | Technical lemma for ~ bnj8... |
| bnj591 34923 | Technical lemma for ~ bnj8... |
| bnj594 34924 | Technical lemma for ~ bnj8... |
| bnj580 34925 | Technical lemma for ~ bnj5... |
| bnj579 34926 | Technical lemma for ~ bnj8... |
| bnj602 34927 | Equality theorem for the `... |
| bnj607 34928 | Technical lemma for ~ bnj8... |
| bnj609 34929 | Technical lemma for ~ bnj8... |
| bnj611 34930 | Technical lemma for ~ bnj8... |
| bnj600 34931 | Technical lemma for ~ bnj8... |
| bnj601 34932 | Technical lemma for ~ bnj8... |
| bnj852 34933 | Technical lemma for ~ bnj6... |
| bnj864 34934 | Technical lemma for ~ bnj6... |
| bnj865 34935 | Technical lemma for ~ bnj6... |
| bnj873 34936 | Technical lemma for ~ bnj6... |
| bnj849 34937 | Technical lemma for ~ bnj6... |
| bnj882 34938 | Definition (using hypothes... |
| bnj18eq1 34939 | Equality theorem for trans... |
| bnj893 34940 | Property of ` _trCl ` . U... |
| bnj900 34941 | Technical lemma for ~ bnj6... |
| bnj906 34942 | Property of ` _trCl ` . (... |
| bnj908 34943 | Technical lemma for ~ bnj6... |
| bnj911 34944 | Technical lemma for ~ bnj6... |
| bnj916 34945 | Technical lemma for ~ bnj6... |
| bnj917 34946 | Technical lemma for ~ bnj6... |
| bnj934 34947 | Technical lemma for ~ bnj6... |
| bnj929 34948 | Technical lemma for ~ bnj6... |
| bnj938 34949 | Technical lemma for ~ bnj6... |
| bnj944 34950 | Technical lemma for ~ bnj6... |
| bnj953 34951 | Technical lemma for ~ bnj6... |
| bnj958 34952 | Technical lemma for ~ bnj6... |
| bnj1000 34953 | Technical lemma for ~ bnj8... |
| bnj965 34954 | Technical lemma for ~ bnj8... |
| bnj964 34955 | Technical lemma for ~ bnj6... |
| bnj966 34956 | Technical lemma for ~ bnj6... |
| bnj967 34957 | Technical lemma for ~ bnj6... |
| bnj969 34958 | Technical lemma for ~ bnj6... |
| bnj970 34959 | Technical lemma for ~ bnj6... |
| bnj910 34960 | Technical lemma for ~ bnj6... |
| bnj978 34961 | Technical lemma for ~ bnj6... |
| bnj981 34962 | Technical lemma for ~ bnj6... |
| bnj983 34963 | Technical lemma for ~ bnj6... |
| bnj984 34964 | Technical lemma for ~ bnj6... |
| bnj985v 34965 | Version of ~ bnj985 with a... |
| bnj985 34966 | Technical lemma for ~ bnj6... |
| bnj986 34967 | Technical lemma for ~ bnj6... |
| bnj996 34968 | Technical lemma for ~ bnj6... |
| bnj998 34969 | Technical lemma for ~ bnj6... |
| bnj999 34970 | Technical lemma for ~ bnj6... |
| bnj1001 34971 | Technical lemma for ~ bnj6... |
| bnj1006 34972 | Technical lemma for ~ bnj6... |
| bnj1014 34973 | Technical lemma for ~ bnj6... |
| bnj1015 34974 | Technical lemma for ~ bnj6... |
| bnj1018g 34975 | Version of ~ bnj1018 with ... |
| bnj1018 34976 | Technical lemma for ~ bnj6... |
| bnj1020 34977 | Technical lemma for ~ bnj6... |
| bnj1021 34978 | Technical lemma for ~ bnj6... |
| bnj907 34979 | Technical lemma for ~ bnj6... |
| bnj1029 34980 | Property of ` _trCl ` . (... |
| bnj1033 34981 | Technical lemma for ~ bnj6... |
| bnj1034 34982 | Technical lemma for ~ bnj6... |
| bnj1039 34983 | Technical lemma for ~ bnj6... |
| bnj1040 34984 | Technical lemma for ~ bnj6... |
| bnj1047 34985 | Technical lemma for ~ bnj6... |
| bnj1049 34986 | Technical lemma for ~ bnj6... |
| bnj1052 34987 | Technical lemma for ~ bnj6... |
| bnj1053 34988 | Technical lemma for ~ bnj6... |
| bnj1071 34989 | Technical lemma for ~ bnj6... |
| bnj1083 34990 | Technical lemma for ~ bnj6... |
| bnj1090 34991 | Technical lemma for ~ bnj6... |
| bnj1093 34992 | Technical lemma for ~ bnj6... |
| bnj1097 34993 | Technical lemma for ~ bnj6... |
| bnj1110 34994 | Technical lemma for ~ bnj6... |
| bnj1112 34995 | Technical lemma for ~ bnj6... |
| bnj1118 34996 | Technical lemma for ~ bnj6... |
| bnj1121 34997 | Technical lemma for ~ bnj6... |
| bnj1123 34998 | Technical lemma for ~ bnj6... |
| bnj1030 34999 | Technical lemma for ~ bnj6... |
| bnj1124 35000 | Property of ` _trCl ` . (... |
| bnj1133 35001 | Technical lemma for ~ bnj6... |
| bnj1128 35002 | Technical lemma for ~ bnj6... |
| bnj1127 35003 | Property of ` _trCl ` . (... |
| bnj1125 35004 | Property of ` _trCl ` . (... |
| bnj1145 35005 | Technical lemma for ~ bnj6... |
| bnj1147 35006 | Property of ` _trCl ` . (... |
| bnj1137 35007 | Property of ` _trCl ` . (... |
| bnj1148 35008 | Property of ` _pred ` . (... |
| bnj1136 35009 | Technical lemma for ~ bnj6... |
| bnj1152 35010 | Technical lemma for ~ bnj6... |
| bnj1154 35011 | Property of ` Fr ` . (Con... |
| bnj1171 35012 | Technical lemma for ~ bnj6... |
| bnj1172 35013 | Technical lemma for ~ bnj6... |
| bnj1173 35014 | Technical lemma for ~ bnj6... |
| bnj1174 35015 | Technical lemma for ~ bnj6... |
| bnj1175 35016 | Technical lemma for ~ bnj6... |
| bnj1176 35017 | Technical lemma for ~ bnj6... |
| bnj1177 35018 | Technical lemma for ~ bnj6... |
| bnj1186 35019 | Technical lemma for ~ bnj6... |
| bnj1190 35020 | Technical lemma for ~ bnj6... |
| bnj1189 35021 | Technical lemma for ~ bnj6... |
| bnj69 35022 | Existence of a minimal ele... |
| bnj1228 35023 | Existence of a minimal ele... |
| bnj1204 35024 | Well-founded induction. T... |
| bnj1234 35025 | Technical lemma for ~ bnj6... |
| bnj1245 35026 | Technical lemma for ~ bnj6... |
| bnj1256 35027 | Technical lemma for ~ bnj6... |
| bnj1259 35028 | Technical lemma for ~ bnj6... |
| bnj1253 35029 | Technical lemma for ~ bnj6... |
| bnj1279 35030 | Technical lemma for ~ bnj6... |
| bnj1286 35031 | Technical lemma for ~ bnj6... |
| bnj1280 35032 | Technical lemma for ~ bnj6... |
| bnj1296 35033 | Technical lemma for ~ bnj6... |
| bnj1309 35034 | Technical lemma for ~ bnj6... |
| bnj1307 35035 | Technical lemma for ~ bnj6... |
| bnj1311 35036 | Technical lemma for ~ bnj6... |
| bnj1318 35037 | Technical lemma for ~ bnj6... |
| bnj1326 35038 | Technical lemma for ~ bnj6... |
| bnj1321 35039 | Technical lemma for ~ bnj6... |
| bnj1364 35040 | Property of ` _FrSe ` . (... |
| bnj1371 35041 | Technical lemma for ~ bnj6... |
| bnj1373 35042 | Technical lemma for ~ bnj6... |
| bnj1374 35043 | Technical lemma for ~ bnj6... |
| bnj1384 35044 | Technical lemma for ~ bnj6... |
| bnj1388 35045 | Technical lemma for ~ bnj6... |
| bnj1398 35046 | Technical lemma for ~ bnj6... |
| bnj1413 35047 | Property of ` _trCl ` . (... |
| bnj1408 35048 | Technical lemma for ~ bnj1... |
| bnj1414 35049 | Property of ` _trCl ` . (... |
| bnj1415 35050 | Technical lemma for ~ bnj6... |
| bnj1416 35051 | Technical lemma for ~ bnj6... |
| bnj1418 35052 | Property of ` _pred ` . (... |
| bnj1417 35053 | Technical lemma for ~ bnj6... |
| bnj1421 35054 | Technical lemma for ~ bnj6... |
| bnj1444 35055 | Technical lemma for ~ bnj6... |
| bnj1445 35056 | Technical lemma for ~ bnj6... |
| bnj1446 35057 | Technical lemma for ~ bnj6... |
| bnj1447 35058 | Technical lemma for ~ bnj6... |
| bnj1448 35059 | Technical lemma for ~ bnj6... |
| bnj1449 35060 | Technical lemma for ~ bnj6... |
| bnj1442 35061 | Technical lemma for ~ bnj6... |
| bnj1450 35062 | Technical lemma for ~ bnj6... |
| bnj1423 35063 | Technical lemma for ~ bnj6... |
| bnj1452 35064 | Technical lemma for ~ bnj6... |
| bnj1466 35065 | Technical lemma for ~ bnj6... |
| bnj1467 35066 | Technical lemma for ~ bnj6... |
| bnj1463 35067 | Technical lemma for ~ bnj6... |
| bnj1489 35068 | Technical lemma for ~ bnj6... |
| bnj1491 35069 | Technical lemma for ~ bnj6... |
| bnj1312 35070 | Technical lemma for ~ bnj6... |
| bnj1493 35071 | Technical lemma for ~ bnj6... |
| bnj1497 35072 | Technical lemma for ~ bnj6... |
| bnj1498 35073 | Technical lemma for ~ bnj6... |
| bnj60 35074 | Well-founded recursion, pa... |
| bnj1514 35075 | Technical lemma for ~ bnj1... |
| bnj1518 35076 | Technical lemma for ~ bnj1... |
| bnj1519 35077 | Technical lemma for ~ bnj1... |
| bnj1520 35078 | Technical lemma for ~ bnj1... |
| bnj1501 35079 | Technical lemma for ~ bnj1... |
| bnj1500 35080 | Well-founded recursion, pa... |
| bnj1525 35081 | Technical lemma for ~ bnj1... |
| bnj1529 35082 | Technical lemma for ~ bnj1... |
| bnj1523 35083 | Technical lemma for ~ bnj1... |
| bnj1522 35084 | Well-founded recursion, pa... |
| nfan1c 35085 | Variant of ~ nfan and comm... |
| cbvex1v 35086 | Rule used to change bound ... |
| dvelimalcased 35087 | Eliminate a disjoint varia... |
| dvelimalcasei 35088 | Eliminate a disjoint varia... |
| dvelimexcased 35089 | Eliminate a disjoint varia... |
| dvelimexcasei 35090 | Eliminate a disjoint varia... |
| exdifsn 35091 | There exists an element in... |
| srcmpltd 35092 | If a statement is true for... |
| prsrcmpltd 35093 | If a statement is true for... |
| axsepg2 35094 | A generalization of ~ ax-s... |
| axsepg2ALT 35095 | Alternate proof of ~ axsep... |
| dff15 35096 | A one-to-one function in t... |
| f1resveqaeq 35097 | If a function restricted t... |
| f1resrcmplf1dlem 35098 | Lemma for ~ f1resrcmplf1d ... |
| f1resrcmplf1d 35099 | If a function's restrictio... |
| funen1cnv 35100 | If a function is equinumer... |
| fissorduni 35101 | The union (supremum) of a ... |
| fnrelpredd 35102 | A function that preserves ... |
| cardpred 35103 | The cardinality function p... |
| nummin 35104 | Every nonempty class of nu... |
| r11 35105 | Value of the cumulative hi... |
| r12 35106 | Value of the cumulative hi... |
| r1wf 35107 | Each stage in the cumulati... |
| elwf 35108 | An element of a well-found... |
| r1elcl 35109 | Each set of the cumulative... |
| rankval2b 35110 | Value of an alternate defi... |
| rankval4b 35111 | The rank of a set is the s... |
| rankfilimbi 35112 | If all elements in a finit... |
| rankfilimb 35113 | The rank of a finite well-... |
| r1filimi 35114 | If all elements in a finit... |
| r1filim 35115 | A finite set appears in th... |
| r1omfi 35116 | Hereditarily finite sets a... |
| r1omhf 35117 | A set is hereditarily fini... |
| r1ssel 35118 | A set is a subset of the v... |
| axnulg 35119 | A generalization of ~ ax-n... |
| axnulALT2 35120 | Alternate proof of ~ axnul... |
| r1omfv 35121 | Value of the cumulative hi... |
| trssfir1om 35122 | If every element in a tran... |
| r1omhfb 35123 | The class of all hereditar... |
| axreg 35125 | Derivation of ~ ax-reg fro... |
| axregscl 35126 | A version of ~ ax-regs wit... |
| axregszf 35127 | Derivation of ~ zfregs usi... |
| setindregs 35128 | Set (epsilon) induction. ... |
| setinds2regs 35129 | Principle of set induction... |
| tz9.1regs 35130 | Every set has a transitive... |
| unir1regs 35131 | The cumulative hierarchy o... |
| trssfir1omregs 35132 | If every element in a tran... |
| r1omhfbregs 35133 | The class of all hereditar... |
| fineqvomon 35134 | If the Axiom of Infinity i... |
| fineqvr1ombregs 35135 | All sets are finite iff al... |
| prcinf 35136 | Any proper class is litera... |
| fineqvrep 35137 | If the Axiom of Infinity i... |
| fineqvpow 35138 | If the Axiom of Infinity i... |
| fineqvac 35139 | If the Axiom of Infinity i... |
| fineqvacALT 35140 | Shorter proof of ~ fineqva... |
| fineqvnttrclselem1 35141 | Lemma for ~ fineqvnttrclse... |
| fineqvnttrclselem2 35142 | Lemma for ~ fineqvnttrclse... |
| fineqvnttrclselem3 35143 | Lemma for ~ fineqvnttrclse... |
| fineqvnttrclse 35144 | A counterexample demonstra... |
| axregs 35145 | Derivation of ~ ax-regs fr... |
| gblacfnacd 35146 | If ` G ` is a global choic... |
| onvf1odlem1 35147 | Lemma for ~ onvf1od . (Co... |
| onvf1odlem2 35148 | Lemma for ~ onvf1od . (Co... |
| onvf1odlem3 35149 | Lemma for ~ onvf1od . The... |
| onvf1odlem4 35150 | Lemma for ~ onvf1od . If ... |
| onvf1od 35151 | If ` G ` is a global choic... |
| vonf1owev 35152 | If ` F ` is a bijection fr... |
| wevgblacfn 35153 | If ` R ` is a well-orderin... |
| zltp1ne 35154 | Integer ordering relation.... |
| nnltp1ne 35155 | Positive integer ordering ... |
| nn0ltp1ne 35156 | Nonnegative integer orderi... |
| 0nn0m1nnn0 35157 | A number is zero if and on... |
| f1resfz0f1d 35158 | If a function with a seque... |
| fisshasheq 35159 | A finite set is equal to i... |
| revpfxsfxrev 35160 | The reverse of a prefix of... |
| swrdrevpfx 35161 | A subword expressed in ter... |
| lfuhgr 35162 | A hypergraph is loop-free ... |
| lfuhgr2 35163 | A hypergraph is loop-free ... |
| lfuhgr3 35164 | A hypergraph is loop-free ... |
| cplgredgex 35165 | Any two (distinct) vertice... |
| cusgredgex 35166 | Any two (distinct) vertice... |
| cusgredgex2 35167 | Any two distinct vertices ... |
| pfxwlk 35168 | A prefix of a walk is a wa... |
| revwlk 35169 | The reverse of a walk is a... |
| revwlkb 35170 | Two words represent a walk... |
| swrdwlk 35171 | Two matching subwords of a... |
| pthhashvtx 35172 | A graph containing a path ... |
| spthcycl 35173 | A walk is a trivial path i... |
| usgrgt2cycl 35174 | A non-trivial cycle in a s... |
| usgrcyclgt2v 35175 | A simple graph with a non-... |
| subgrwlk 35176 | If a walk exists in a subg... |
| subgrtrl 35177 | If a trail exists in a sub... |
| subgrpth 35178 | If a path exists in a subg... |
| subgrcycl 35179 | If a cycle exists in a sub... |
| cusgr3cyclex 35180 | Every complete simple grap... |
| loop1cycl 35181 | A hypergraph has a cycle o... |
| 2cycld 35182 | Construction of a 2-cycle ... |
| 2cycl2d 35183 | Construction of a 2-cycle ... |
| umgr2cycllem 35184 | Lemma for ~ umgr2cycl . (... |
| umgr2cycl 35185 | A multigraph with two dist... |
| dfacycgr1 35188 | An alternate definition of... |
| isacycgr 35189 | The property of being an a... |
| isacycgr1 35190 | The property of being an a... |
| acycgrcycl 35191 | Any cycle in an acyclic gr... |
| acycgr0v 35192 | A null graph (with no vert... |
| acycgr1v 35193 | A multigraph with one vert... |
| acycgr2v 35194 | A simple graph with two ve... |
| prclisacycgr 35195 | A proper class (representi... |
| acycgrislfgr 35196 | An acyclic hypergraph is a... |
| upgracycumgr 35197 | An acyclic pseudograph is ... |
| umgracycusgr 35198 | An acyclic multigraph is a... |
| upgracycusgr 35199 | An acyclic pseudograph is ... |
| cusgracyclt3v 35200 | A complete simple graph is... |
| pthacycspth 35201 | A path in an acyclic graph... |
| acycgrsubgr 35202 | The subgraph of an acyclic... |
| quartfull 35209 | The quartic equation, writ... |
| deranglem 35210 | Lemma for derangements. (... |
| derangval 35211 | Define the derangement fun... |
| derangf 35212 | The derangement number is ... |
| derang0 35213 | The derangement number of ... |
| derangsn 35214 | The derangement number of ... |
| derangenlem 35215 | One half of ~ derangen . ... |
| derangen 35216 | The derangement number is ... |
| subfacval 35217 | The subfactorial is define... |
| derangen2 35218 | Write the derangement numb... |
| subfacf 35219 | The subfactorial is a func... |
| subfaclefac 35220 | The subfactorial is less t... |
| subfac0 35221 | The subfactorial at zero. ... |
| subfac1 35222 | The subfactorial at one. ... |
| subfacp1lem1 35223 | Lemma for ~ subfacp1 . Th... |
| subfacp1lem2a 35224 | Lemma for ~ subfacp1 . Pr... |
| subfacp1lem2b 35225 | Lemma for ~ subfacp1 . Pr... |
| subfacp1lem3 35226 | Lemma for ~ subfacp1 . In... |
| subfacp1lem4 35227 | Lemma for ~ subfacp1 . Th... |
| subfacp1lem5 35228 | Lemma for ~ subfacp1 . In... |
| subfacp1lem6 35229 | Lemma for ~ subfacp1 . By... |
| subfacp1 35230 | A two-term recurrence for ... |
| subfacval2 35231 | A closed-form expression f... |
| subfaclim 35232 | The subfactorial converges... |
| subfacval3 35233 | Another closed form expres... |
| derangfmla 35234 | The derangements formula, ... |
| erdszelem1 35235 | Lemma for ~ erdsze . (Con... |
| erdszelem2 35236 | Lemma for ~ erdsze . (Con... |
| erdszelem3 35237 | Lemma for ~ erdsze . (Con... |
| erdszelem4 35238 | Lemma for ~ erdsze . (Con... |
| erdszelem5 35239 | Lemma for ~ erdsze . (Con... |
| erdszelem6 35240 | Lemma for ~ erdsze . (Con... |
| erdszelem7 35241 | Lemma for ~ erdsze . (Con... |
| erdszelem8 35242 | Lemma for ~ erdsze . (Con... |
| erdszelem9 35243 | Lemma for ~ erdsze . (Con... |
| erdszelem10 35244 | Lemma for ~ erdsze . (Con... |
| erdszelem11 35245 | Lemma for ~ erdsze . (Con... |
| erdsze 35246 | The Erdős-Szekeres th... |
| erdsze2lem1 35247 | Lemma for ~ erdsze2 . (Co... |
| erdsze2lem2 35248 | Lemma for ~ erdsze2 . (Co... |
| erdsze2 35249 | Generalize the statement o... |
| kur14lem1 35250 | Lemma for ~ kur14 . (Cont... |
| kur14lem2 35251 | Lemma for ~ kur14 . Write... |
| kur14lem3 35252 | Lemma for ~ kur14 . A clo... |
| kur14lem4 35253 | Lemma for ~ kur14 . Compl... |
| kur14lem5 35254 | Lemma for ~ kur14 . Closu... |
| kur14lem6 35255 | Lemma for ~ kur14 . If ` ... |
| kur14lem7 35256 | Lemma for ~ kur14 : main p... |
| kur14lem8 35257 | Lemma for ~ kur14 . Show ... |
| kur14lem9 35258 | Lemma for ~ kur14 . Since... |
| kur14lem10 35259 | Lemma for ~ kur14 . Disch... |
| kur14 35260 | Kuratowski's closure-compl... |
| ispconn 35267 | The property of being a pa... |
| pconncn 35268 | The property of being a pa... |
| pconntop 35269 | A simply connected space i... |
| issconn 35270 | The property of being a si... |
| sconnpconn 35271 | A simply connected space i... |
| sconntop 35272 | A simply connected space i... |
| sconnpht 35273 | A closed path in a simply ... |
| cnpconn 35274 | An image of a path-connect... |
| pconnconn 35275 | A path-connected space is ... |
| txpconn 35276 | The topological product of... |
| ptpconn 35277 | The topological product of... |
| indispconn 35278 | The indiscrete topology (o... |
| connpconn 35279 | A connected and locally pa... |
| qtoppconn 35280 | A quotient of a path-conne... |
| pconnpi1 35281 | All fundamental groups in ... |
| sconnpht2 35282 | Any two paths in a simply ... |
| sconnpi1 35283 | A path-connected topologic... |
| txsconnlem 35284 | Lemma for ~ txsconn . (Co... |
| txsconn 35285 | The topological product of... |
| cvxpconn 35286 | A convex subset of the com... |
| cvxsconn 35287 | A convex subset of the com... |
| blsconn 35288 | An open ball in the comple... |
| cnllysconn 35289 | The topology of the comple... |
| resconn 35290 | A subset of ` RR ` is simp... |
| ioosconn 35291 | An open interval is simply... |
| iccsconn 35292 | A closed interval is simpl... |
| retopsconn 35293 | The real numbers are simpl... |
| iccllysconn 35294 | A closed interval is local... |
| rellysconn 35295 | The real numbers are local... |
| iisconn 35296 | The unit interval is simpl... |
| iillysconn 35297 | The unit interval is local... |
| iinllyconn 35298 | The unit interval is local... |
| fncvm 35301 | Lemma for covering maps. ... |
| cvmscbv 35302 | Change bound variables in ... |
| iscvm 35303 | The property of being a co... |
| cvmtop1 35304 | Reverse closure for a cove... |
| cvmtop2 35305 | Reverse closure for a cove... |
| cvmcn 35306 | A covering map is a contin... |
| cvmcov 35307 | Property of a covering map... |
| cvmsrcl 35308 | Reverse closure for an eve... |
| cvmsi 35309 | One direction of ~ cvmsval... |
| cvmsval 35310 | Elementhood in the set ` S... |
| cvmsss 35311 | An even covering is a subs... |
| cvmsn0 35312 | An even covering is nonemp... |
| cvmsuni 35313 | An even covering of ` U ` ... |
| cvmsdisj 35314 | An even covering of ` U ` ... |
| cvmshmeo 35315 | Every element of an even c... |
| cvmsf1o 35316 | ` F ` , localized to an el... |
| cvmscld 35317 | The sets of an even coveri... |
| cvmsss2 35318 | An open subset of an evenl... |
| cvmcov2 35319 | The covering map property ... |
| cvmseu 35320 | Every element in ` U. T ` ... |
| cvmsiota 35321 | Identify the unique elemen... |
| cvmopnlem 35322 | Lemma for ~ cvmopn . (Con... |
| cvmfolem 35323 | Lemma for ~ cvmfo . (Cont... |
| cvmopn 35324 | A covering map is an open ... |
| cvmliftmolem1 35325 | Lemma for ~ cvmliftmo . (... |
| cvmliftmolem2 35326 | Lemma for ~ cvmliftmo . (... |
| cvmliftmoi 35327 | A lift of a continuous fun... |
| cvmliftmo 35328 | A lift of a continuous fun... |
| cvmliftlem1 35329 | Lemma for ~ cvmlift . In ... |
| cvmliftlem2 35330 | Lemma for ~ cvmlift . ` W ... |
| cvmliftlem3 35331 | Lemma for ~ cvmlift . Sin... |
| cvmliftlem4 35332 | Lemma for ~ cvmlift . The... |
| cvmliftlem5 35333 | Lemma for ~ cvmlift . Def... |
| cvmliftlem6 35334 | Lemma for ~ cvmlift . Ind... |
| cvmliftlem7 35335 | Lemma for ~ cvmlift . Pro... |
| cvmliftlem8 35336 | Lemma for ~ cvmlift . The... |
| cvmliftlem9 35337 | Lemma for ~ cvmlift . The... |
| cvmliftlem10 35338 | Lemma for ~ cvmlift . The... |
| cvmliftlem11 35339 | Lemma for ~ cvmlift . (Co... |
| cvmliftlem13 35340 | Lemma for ~ cvmlift . The... |
| cvmliftlem14 35341 | Lemma for ~ cvmlift . Put... |
| cvmliftlem15 35342 | Lemma for ~ cvmlift . Dis... |
| cvmlift 35343 | One of the important prope... |
| cvmfo 35344 | A covering map is an onto ... |
| cvmliftiota 35345 | Write out a function ` H `... |
| cvmlift2lem1 35346 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem9a 35347 | Lemma for ~ cvmlift2 and ~... |
| cvmlift2lem2 35348 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem3 35349 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem4 35350 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem5 35351 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem6 35352 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem7 35353 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem8 35354 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem9 35355 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem10 35356 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem11 35357 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem12 35358 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2lem13 35359 | Lemma for ~ cvmlift2 . (C... |
| cvmlift2 35360 | A two-dimensional version ... |
| cvmliftphtlem 35361 | Lemma for ~ cvmliftpht . ... |
| cvmliftpht 35362 | If ` G ` and ` H ` are pat... |
| cvmlift3lem1 35363 | Lemma for ~ cvmlift3 . (C... |
| cvmlift3lem2 35364 | Lemma for ~ cvmlift2 . (C... |
| cvmlift3lem3 35365 | Lemma for ~ cvmlift2 . (C... |
| cvmlift3lem4 35366 | Lemma for ~ cvmlift2 . (C... |
| cvmlift3lem5 35367 | Lemma for ~ cvmlift2 . (C... |
| cvmlift3lem6 35368 | Lemma for ~ cvmlift3 . (C... |
| cvmlift3lem7 35369 | Lemma for ~ cvmlift3 . (C... |
| cvmlift3lem8 35370 | Lemma for ~ cvmlift2 . (C... |
| cvmlift3lem9 35371 | Lemma for ~ cvmlift2 . (C... |
| cvmlift3 35372 | A general version of ~ cvm... |
| snmlff 35373 | The function ` F ` from ~ ... |
| snmlfval 35374 | The function ` F ` from ~ ... |
| snmlval 35375 | The property " ` A ` is si... |
| snmlflim 35376 | If ` A ` is simply normal,... |
| goel 35391 | A "Godel-set of membership... |
| goelel3xp 35392 | A "Godel-set of membership... |
| goeleq12bg 35393 | Two "Godel-set of membersh... |
| gonafv 35394 | The "Godel-set for the She... |
| goaleq12d 35395 | Equality of the "Godel-set... |
| gonanegoal 35396 | The Godel-set for the Shef... |
| satf 35397 | The satisfaction predicate... |
| satfsucom 35398 | The satisfaction predicate... |
| satfn 35399 | The satisfaction predicate... |
| satom 35400 | The satisfaction predicate... |
| satfvsucom 35401 | The satisfaction predicate... |
| satfv0 35402 | The value of the satisfact... |
| satfvsuclem1 35403 | Lemma 1 for ~ satfvsuc . ... |
| satfvsuclem2 35404 | Lemma 2 for ~ satfvsuc . ... |
| satfvsuc 35405 | The value of the satisfact... |
| satfv1lem 35406 | Lemma for ~ satfv1 . (Con... |
| satfv1 35407 | The value of the satisfact... |
| satfsschain 35408 | The binary relation of a s... |
| satfvsucsuc 35409 | The satisfaction predicate... |
| satfbrsuc 35410 | The binary relation of a s... |
| satfrel 35411 | The value of the satisfact... |
| satfdmlem 35412 | Lemma for ~ satfdm . (Con... |
| satfdm 35413 | The domain of the satisfac... |
| satfrnmapom 35414 | The range of the satisfact... |
| satfv0fun 35415 | The value of the satisfact... |
| satf0 35416 | The satisfaction predicate... |
| satf0sucom 35417 | The satisfaction predicate... |
| satf00 35418 | The value of the satisfact... |
| satf0suclem 35419 | Lemma for ~ satf0suc , ~ s... |
| satf0suc 35420 | The value of the satisfact... |
| satf0op 35421 | An element of a value of t... |
| satf0n0 35422 | The value of the satisfact... |
| sat1el2xp 35423 | The first component of an ... |
| fmlafv 35424 | The valid Godel formulas o... |
| fmla 35425 | The set of all valid Godel... |
| fmla0 35426 | The valid Godel formulas o... |
| fmla0xp 35427 | The valid Godel formulas o... |
| fmlasuc0 35428 | The valid Godel formulas o... |
| fmlafvel 35429 | A class is a valid Godel f... |
| fmlasuc 35430 | The valid Godel formulas o... |
| fmla1 35431 | The valid Godel formulas o... |
| isfmlasuc 35432 | The characterization of a ... |
| fmlasssuc 35433 | The Godel formulas of heig... |
| fmlaomn0 35434 | The empty set is not a God... |
| fmlan0 35435 | The empty set is not a God... |
| gonan0 35436 | The "Godel-set of NAND" is... |
| goaln0 35437 | The "Godel-set of universa... |
| gonarlem 35438 | Lemma for ~ gonar (inducti... |
| gonar 35439 | If the "Godel-set of NAND"... |
| goalrlem 35440 | Lemma for ~ goalr (inducti... |
| goalr 35441 | If the "Godel-set of unive... |
| fmla0disjsuc 35442 | The set of valid Godel for... |
| fmlasucdisj 35443 | The valid Godel formulas o... |
| satfdmfmla 35444 | The domain of the satisfac... |
| satffunlem 35445 | Lemma for ~ satffunlem1lem... |
| satffunlem1lem1 35446 | Lemma for ~ satffunlem1 . ... |
| satffunlem1lem2 35447 | Lemma 2 for ~ satffunlem1 ... |
| satffunlem2lem1 35448 | Lemma 1 for ~ satffunlem2 ... |
| dmopab3rexdif 35449 | The domain of an ordered p... |
| satffunlem2lem2 35450 | Lemma 2 for ~ satffunlem2 ... |
| satffunlem1 35451 | Lemma 1 for ~ satffun : in... |
| satffunlem2 35452 | Lemma 2 for ~ satffun : in... |
| satffun 35453 | The value of the satisfact... |
| satff 35454 | The satisfaction predicate... |
| satfun 35455 | The satisfaction predicate... |
| satfvel 35456 | An element of the value of... |
| satfv0fvfmla0 35457 | The value of the satisfact... |
| satefv 35458 | The simplified satisfactio... |
| sate0 35459 | The simplified satisfactio... |
| satef 35460 | The simplified satisfactio... |
| sate0fv0 35461 | A simplified satisfaction ... |
| satefvfmla0 35462 | The simplified satisfactio... |
| sategoelfvb 35463 | Characterization of a valu... |
| sategoelfv 35464 | Condition of a valuation `... |
| ex-sategoelel 35465 | Example of a valuation of ... |
| ex-sategoel 35466 | Instance of ~ sategoelfv f... |
| satfv1fvfmla1 35467 | The value of the satisfact... |
| 2goelgoanfmla1 35468 | Two Godel-sets of membersh... |
| satefvfmla1 35469 | The simplified satisfactio... |
| ex-sategoelelomsuc 35470 | Example of a valuation of ... |
| ex-sategoelel12 35471 | Example of a valuation of ... |
| prv 35472 | The "proves" relation on a... |
| elnanelprv 35473 | The wff ` ( A e. B -/\ B e... |
| prv0 35474 | Every wff encoded as ` U `... |
| prv1n 35475 | No wff encoded as a Godel-... |
| mvtval 35544 | The set of variable typeco... |
| mrexval 35545 | The set of "raw expression... |
| mexval 35546 | The set of expressions, wh... |
| mexval2 35547 | The set of expressions, wh... |
| mdvval 35548 | The set of disjoint variab... |
| mvrsval 35549 | The set of variables in an... |
| mvrsfpw 35550 | The set of variables in an... |
| mrsubffval 35551 | The substitution of some v... |
| mrsubfval 35552 | The substitution of some v... |
| mrsubval 35553 | The substitution of some v... |
| mrsubcv 35554 | The value of a substituted... |
| mrsubvr 35555 | The value of a substituted... |
| mrsubff 35556 | A substitution is a functi... |
| mrsubrn 35557 | Although it is defined for... |
| mrsubff1 35558 | When restricted to complet... |
| mrsubff1o 35559 | When restricted to complet... |
| mrsub0 35560 | The value of the substitut... |
| mrsubf 35561 | A substitution is a functi... |
| mrsubccat 35562 | Substitution distributes o... |
| mrsubcn 35563 | A substitution does not ch... |
| elmrsubrn 35564 | Characterization of the su... |
| mrsubco 35565 | The composition of two sub... |
| mrsubvrs 35566 | The set of variables in a ... |
| msubffval 35567 | A substitution applied to ... |
| msubfval 35568 | A substitution applied to ... |
| msubval 35569 | A substitution applied to ... |
| msubrsub 35570 | A substitution applied to ... |
| msubty 35571 | The type of a substituted ... |
| elmsubrn 35572 | Characterization of substi... |
| msubrn 35573 | Although it is defined for... |
| msubff 35574 | A substitution is a functi... |
| msubco 35575 | The composition of two sub... |
| msubf 35576 | A substitution is a functi... |
| mvhfval 35577 | Value of the function mapp... |
| mvhval 35578 | Value of the function mapp... |
| mpstval 35579 | A pre-statement is an orde... |
| elmpst 35580 | Property of being a pre-st... |
| msrfval 35581 | Value of the reduct of a p... |
| msrval 35582 | Value of the reduct of a p... |
| mpstssv 35583 | A pre-statement is an orde... |
| mpst123 35584 | Decompose a pre-statement ... |
| mpstrcl 35585 | The elements of a pre-stat... |
| msrf 35586 | The reduct of a pre-statem... |
| msrrcl 35587 | If ` X ` and ` Y ` have th... |
| mstaval 35588 | Value of the set of statem... |
| msrid 35589 | The reduct of a statement ... |
| msrfo 35590 | The reduct of a pre-statem... |
| mstapst 35591 | A statement is a pre-state... |
| elmsta 35592 | Property of being a statem... |
| ismfs 35593 | A formal system is a tuple... |
| mfsdisj 35594 | The constants and variable... |
| mtyf2 35595 | The type function maps var... |
| mtyf 35596 | The type function maps var... |
| mvtss 35597 | The set of variable typeco... |
| maxsta 35598 | An axiom is a statement. ... |
| mvtinf 35599 | Each variable typecode has... |
| msubff1 35600 | When restricted to complet... |
| msubff1o 35601 | When restricted to complet... |
| mvhf 35602 | The function mapping varia... |
| mvhf1 35603 | The function mapping varia... |
| msubvrs 35604 | The set of variables in a ... |
| mclsrcl 35605 | Reverse closure for the cl... |
| mclsssvlem 35606 | Lemma for ~ mclsssv . (Co... |
| mclsval 35607 | The function mapping varia... |
| mclsssv 35608 | The closure of a set of ex... |
| ssmclslem 35609 | Lemma for ~ ssmcls . (Con... |
| vhmcls 35610 | All variable hypotheses ar... |
| ssmcls 35611 | The original expressions a... |
| ss2mcls 35612 | The closure is monotonic u... |
| mclsax 35613 | The closure is closed unde... |
| mclsind 35614 | Induction theorem for clos... |
| mppspstlem 35615 | Lemma for ~ mppspst . (Co... |
| mppsval 35616 | Definition of a provable p... |
| elmpps 35617 | Definition of a provable p... |
| mppspst 35618 | A provable pre-statement i... |
| mthmval 35619 | A theorem is a pre-stateme... |
| elmthm 35620 | A theorem is a pre-stateme... |
| mthmi 35621 | A statement whose reduct i... |
| mthmsta 35622 | A theorem is a pre-stateme... |
| mppsthm 35623 | A provable pre-statement i... |
| mthmblem 35624 | Lemma for ~ mthmb . (Cont... |
| mthmb 35625 | If two statements have the... |
| mthmpps 35626 | Given a theorem, there is ... |
| mclsppslem 35627 | The closure is closed unde... |
| mclspps 35628 | The closure is closed unde... |
| rexxfr3d 35682 | Transfer existential quant... |
| rexxfr3dALT 35683 | Longer proof of ~ rexxfr3d... |
| rspssbasd 35684 | The span of a set of ring ... |
| ellcsrspsn 35685 | Membership in a left coset... |
| ply1divalg3 35686 | Uniqueness of polynomial r... |
| r1peuqusdeg1 35687 | Uniqueness of polynomial r... |
| problem1 35709 | Practice problem 1. Clues... |
| problem2 35710 | Practice problem 2. Clues... |
| problem3 35711 | Practice problem 3. Clues... |
| problem4 35712 | Practice problem 4. Clues... |
| problem5 35713 | Practice problem 5. Clues... |
| quad3 35714 | Variant of quadratic equat... |
| climuzcnv 35715 | Utility lemma to convert b... |
| sinccvglem 35716 | ` ( ( sin `` x ) / x ) ~~>... |
| sinccvg 35717 | ` ( ( sin `` x ) / x ) ~~>... |
| circum 35718 | The circumference of a cir... |
| elfzm12 35719 | Membership in a curtailed ... |
| nn0seqcvg 35720 | A strictly-decreasing nonn... |
| lediv2aALT 35721 | Division of both sides of ... |
| abs2sqlei 35722 | The absolute values of two... |
| abs2sqlti 35723 | The absolute values of two... |
| abs2sqle 35724 | The absolute values of two... |
| abs2sqlt 35725 | The absolute values of two... |
| abs2difi 35726 | Difference of absolute val... |
| abs2difabsi 35727 | Absolute value of differen... |
| 2thALT 35728 | Alternate proof of ~ 2th .... |
| orbi2iALT 35729 | Alternate proof of ~ orbi2... |
| pm3.48ALT 35730 | Alternate proof of ~ pm3.4... |
| 3jcadALT 35731 | Alternate proof of ~ 3jcad... |
| currybi 35732 | Biconditional version of C... |
| antnest 35733 | Suppose ` ph ` , ` ps ` ar... |
| antnestlaw3lem 35734 | Lemma for ~ antnestlaw3 . ... |
| antnestlaw1 35735 | A law of nested antecedent... |
| antnestlaw2 35736 | A law of nested antecedent... |
| antnestlaw3 35737 | A law of nested antecedent... |
| antnestALT 35738 | Alternative proof of ~ ant... |
| axextprim 35745 | ~ ax-ext without distinct ... |
| axrepprim 35746 | ~ ax-rep without distinct ... |
| axunprim 35747 | ~ ax-un without distinct v... |
| axpowprim 35748 | ~ ax-pow without distinct ... |
| axregprim 35749 | ~ ax-reg without distinct ... |
| axinfprim 35750 | ~ ax-inf without distinct ... |
| axacprim 35751 | ~ ax-ac without distinct v... |
| untelirr 35752 | We call a class "untanged"... |
| untuni 35753 | The union of a class is un... |
| untsucf 35754 | If a class is untangled, t... |
| unt0 35755 | The null set is untangled.... |
| untint 35756 | If there is an untangled e... |
| efrunt 35757 | If ` A ` is well-founded b... |
| untangtr 35758 | A transitive class is unta... |
| 3jaodd 35759 | Double deduction form of ~... |
| 3orit 35760 | Closed form of ~ 3ori . (... |
| biimpexp 35761 | A biconditional in the ant... |
| nepss 35762 | Two classes are unequal if... |
| 3ccased 35763 | Triple disjunction form of... |
| dfso3 35764 | Expansion of the definitio... |
| brtpid1 35765 | A binary relation involvin... |
| brtpid2 35766 | A binary relation involvin... |
| brtpid3 35767 | A binary relation involvin... |
| iota5f 35768 | A method for computing iot... |
| jath 35769 | Closed form of ~ ja . Pro... |
| xpab 35770 | Cartesian product of two c... |
| nnuni 35771 | The union of a finite ordi... |
| sqdivzi 35772 | Distribution of square ove... |
| supfz 35773 | The supremum of a finite s... |
| inffz 35774 | The infimum of a finite se... |
| fz0n 35775 | The sequence ` ( 0 ... ( N... |
| shftvalg 35776 | Value of a sequence shifte... |
| divcnvlin 35777 | Limit of the ratio of two ... |
| climlec3 35778 | Comparison of a constant t... |
| iexpire 35779 | ` _i ` raised to itself is... |
| bcneg1 35780 | The binomial coefficient o... |
| bcm1nt 35781 | The proportion of one bino... |
| bcprod 35782 | A product identity for bin... |
| bccolsum 35783 | A column-sum rule for bino... |
| iprodefisumlem 35784 | Lemma for ~ iprodefisum . ... |
| iprodefisum 35785 | Applying the exponential f... |
| iprodgam 35786 | An infinite product versio... |
| faclimlem1 35787 | Lemma for ~ faclim . Clos... |
| faclimlem2 35788 | Lemma for ~ faclim . Show... |
| faclimlem3 35789 | Lemma for ~ faclim . Alge... |
| faclim 35790 | An infinite product expres... |
| iprodfac 35791 | An infinite product expres... |
| faclim2 35792 | Another factorial limit du... |
| gcd32 35793 | Swap the second and third ... |
| gcdabsorb 35794 | Absorption law for gcd. (... |
| dftr6 35795 | A potential definition of ... |
| coep 35796 | Composition with the membe... |
| coepr 35797 | Composition with the conve... |
| dffr5 35798 | A quantifier-free definiti... |
| dfso2 35799 | Quantifier-free definition... |
| br8 35800 | Substitution for an eight-... |
| br6 35801 | Substitution for a six-pla... |
| br4 35802 | Substitution for a four-pl... |
| cnvco1 35803 | Another distributive law o... |
| cnvco2 35804 | Another distributive law o... |
| eldm3 35805 | Quantifier-free definition... |
| elrn3 35806 | Quantifier-free definition... |
| pocnv 35807 | The converse of a partial ... |
| socnv 35808 | The converse of a strict o... |
| elintfv 35809 | Membership in an intersect... |
| funpsstri 35810 | A condition for subset tri... |
| fundmpss 35811 | If a class ` F ` is a prop... |
| funsseq 35812 | Given two functions with e... |
| fununiq 35813 | The uniqueness condition o... |
| funbreq 35814 | An equality condition for ... |
| br1steq 35815 | Uniqueness condition for t... |
| br2ndeq 35816 | Uniqueness condition for t... |
| dfdm5 35817 | Definition of domain in te... |
| dfrn5 35818 | Definition of range in ter... |
| opelco3 35819 | Alternate way of saying th... |
| elima4 35820 | Quantifier-free expression... |
| fv1stcnv 35821 | The value of the converse ... |
| fv2ndcnv 35822 | The value of the converse ... |
| elpotr 35823 | A class of transitive sets... |
| dford5reg 35824 | Given ~ ax-reg , an ordina... |
| dfon2lem1 35825 | Lemma for ~ dfon2 . (Cont... |
| dfon2lem2 35826 | Lemma for ~ dfon2 . (Cont... |
| dfon2lem3 35827 | Lemma for ~ dfon2 . All s... |
| dfon2lem4 35828 | Lemma for ~ dfon2 . If tw... |
| dfon2lem5 35829 | Lemma for ~ dfon2 . Two s... |
| dfon2lem6 35830 | Lemma for ~ dfon2 . A tra... |
| dfon2lem7 35831 | Lemma for ~ dfon2 . All e... |
| dfon2lem8 35832 | Lemma for ~ dfon2 . The i... |
| dfon2lem9 35833 | Lemma for ~ dfon2 . A cla... |
| dfon2 35834 | ` On ` consists of all set... |
| rdgprc0 35835 | The value of the recursive... |
| rdgprc 35836 | The value of the recursive... |
| dfrdg2 35837 | Alternate definition of th... |
| dfrdg3 35838 | Generalization of ~ dfrdg2... |
| axextdfeq 35839 | A version of ~ ax-ext for ... |
| ax8dfeq 35840 | A version of ~ ax-8 for us... |
| axextdist 35841 | ~ ax-ext with distinctors ... |
| axextbdist 35842 | ~ axextb with distinctors ... |
| 19.12b 35843 | Version of ~ 19.12vv with ... |
| exnel 35844 | There is always a set not ... |
| distel 35845 | Distinctors in terms of me... |
| axextndbi 35846 | ~ axextnd as a bicondition... |
| hbntg 35847 | A more general form of ~ h... |
| hbimtg 35848 | A more general and closed ... |
| hbaltg 35849 | A more general and closed ... |
| hbng 35850 | A more general form of ~ h... |
| hbimg 35851 | A more general form of ~ h... |
| wsuceq123 35856 | Equality theorem for well-... |
| wsuceq1 35857 | Equality theorem for well-... |
| wsuceq2 35858 | Equality theorem for well-... |
| wsuceq3 35859 | Equality theorem for well-... |
| nfwsuc 35860 | Bound-variable hypothesis ... |
| wlimeq12 35861 | Equality theorem for the l... |
| wlimeq1 35862 | Equality theorem for the l... |
| wlimeq2 35863 | Equality theorem for the l... |
| nfwlim 35864 | Bound-variable hypothesis ... |
| elwlim 35865 | Membership in the limit cl... |
| wzel 35866 | The zero of a well-founded... |
| wsuclem 35867 | Lemma for the supremum pro... |
| wsucex 35868 | Existence theorem for well... |
| wsuccl 35869 | If ` X ` is a set with an ... |
| wsuclb 35870 | A well-founded successor i... |
| wlimss 35871 | The class of limit points ... |
| txpss3v 35920 | A tail Cartesian product i... |
| txprel 35921 | A tail Cartesian product i... |
| brtxp 35922 | Characterize a ternary rel... |
| brtxp2 35923 | The binary relation over a... |
| dfpprod2 35924 | Expanded definition of par... |
| pprodcnveq 35925 | A converse law for paralle... |
| pprodss4v 35926 | The parallel product is a ... |
| brpprod 35927 | Characterize a quaternary ... |
| brpprod3a 35928 | Condition for parallel pro... |
| brpprod3b 35929 | Condition for parallel pro... |
| relsset 35930 | The subset class is a bina... |
| brsset 35931 | For sets, the ` SSet ` bin... |
| idsset 35932 | ` _I ` is equal to the int... |
| eltrans 35933 | Membership in the class of... |
| dfon3 35934 | A quantifier-free definiti... |
| dfon4 35935 | Another quantifier-free de... |
| brtxpsd 35936 | Expansion of a common form... |
| brtxpsd2 35937 | Another common abbreviatio... |
| brtxpsd3 35938 | A third common abbreviatio... |
| relbigcup 35939 | The ` Bigcup ` relationshi... |
| brbigcup 35940 | Binary relation over ` Big... |
| dfbigcup2 35941 | ` Bigcup ` using maps-to n... |
| fobigcup 35942 | ` Bigcup ` maps the univer... |
| fnbigcup 35943 | ` Bigcup ` is a function o... |
| fvbigcup 35944 | For sets, ` Bigcup ` yield... |
| elfix 35945 | Membership in the fixpoint... |
| elfix2 35946 | Alternative membership in ... |
| dffix2 35947 | The fixpoints of a class i... |
| fixssdm 35948 | The fixpoints of a class a... |
| fixssrn 35949 | The fixpoints of a class a... |
| fixcnv 35950 | The fixpoints of a class a... |
| fixun 35951 | The fixpoint operator dist... |
| ellimits 35952 | Membership in the class of... |
| limitssson 35953 | The class of all limit ord... |
| dfom5b 35954 | A quantifier-free definiti... |
| sscoid 35955 | A condition for subset and... |
| dffun10 35956 | Another potential definiti... |
| elfuns 35957 | Membership in the class of... |
| elfunsg 35958 | Closed form of ~ elfuns . ... |
| brsingle 35959 | The binary relation form o... |
| elsingles 35960 | Membership in the class of... |
| fnsingle 35961 | The singleton relationship... |
| fvsingle 35962 | The value of the singleton... |
| dfsingles2 35963 | Alternate definition of th... |
| snelsingles 35964 | A singleton is a member of... |
| dfiota3 35965 | A definition of iota using... |
| dffv5 35966 | Another quantifier-free de... |
| unisnif 35967 | Express union of singleton... |
| brimage 35968 | Binary relation form of th... |
| brimageg 35969 | Closed form of ~ brimage .... |
| funimage 35970 | ` Image A ` is a function.... |
| fnimage 35971 | ` Image R ` is a function ... |
| imageval 35972 | The image functor in maps-... |
| fvimage 35973 | Value of the image functor... |
| brcart 35974 | Binary relation form of th... |
| brdomain 35975 | Binary relation form of th... |
| brrange 35976 | Binary relation form of th... |
| brdomaing 35977 | Closed form of ~ brdomain ... |
| brrangeg 35978 | Closed form of ~ brrange .... |
| brimg 35979 | Binary relation form of th... |
| brapply 35980 | Binary relation form of th... |
| brcup 35981 | Binary relation form of th... |
| brcap 35982 | Binary relation form of th... |
| lemsuccf 35983 | Lemma for unfolding differ... |
| brsuccf 35984 | Binary relation form of th... |
| dfsuccf2 35985 | Alternate definition of Sc... |
| funpartlem 35986 | Lemma for ~ funpartfun . ... |
| funpartfun 35987 | The functional part of ` F... |
| funpartss 35988 | The functional part of ` F... |
| funpartfv 35989 | The function value of the ... |
| fullfunfnv 35990 | The full functional part o... |
| fullfunfv 35991 | The function value of the ... |
| brfullfun 35992 | A binary relation form con... |
| brrestrict 35993 | Binary relation form of th... |
| dfrecs2 35994 | A quantifier-free definiti... |
| dfrdg4 35995 | A quantifier-free definiti... |
| dfint3 35996 | Quantifier-free definition... |
| imagesset 35997 | The Image functor applied ... |
| brub 35998 | Binary relation form of th... |
| brlb 35999 | Binary relation form of th... |
| altopex 36004 | Alternative ordered pairs ... |
| altopthsn 36005 | Two alternate ordered pair... |
| altopeq12 36006 | Equality for alternate ord... |
| altopeq1 36007 | Equality for alternate ord... |
| altopeq2 36008 | Equality for alternate ord... |
| altopth1 36009 | Equality of the first memb... |
| altopth2 36010 | Equality of the second mem... |
| altopthg 36011 | Alternate ordered pair the... |
| altopthbg 36012 | Alternate ordered pair the... |
| altopth 36013 | The alternate ordered pair... |
| altopthb 36014 | Alternate ordered pair the... |
| altopthc 36015 | Alternate ordered pair the... |
| altopthd 36016 | Alternate ordered pair the... |
| altxpeq1 36017 | Equality for alternate Car... |
| altxpeq2 36018 | Equality for alternate Car... |
| elaltxp 36019 | Membership in alternate Ca... |
| altopelaltxp 36020 | Alternate ordered pair mem... |
| altxpsspw 36021 | An inclusion rule for alte... |
| altxpexg 36022 | The alternate Cartesian pr... |
| rankaltopb 36023 | Compute the rank of an alt... |
| nfaltop 36024 | Bound-variable hypothesis ... |
| sbcaltop 36025 | Distribution of class subs... |
| cgrrflx2d 36028 | Deduction form of ~ axcgrr... |
| cgrtr4d 36029 | Deduction form of ~ axcgrt... |
| cgrtr4and 36030 | Deduction form of ~ axcgrt... |
| cgrrflx 36031 | Reflexivity law for congru... |
| cgrrflxd 36032 | Deduction form of ~ cgrrfl... |
| cgrcomim 36033 | Congruence commutes on the... |
| cgrcom 36034 | Congruence commutes betwee... |
| cgrcomand 36035 | Deduction form of ~ cgrcom... |
| cgrtr 36036 | Transitivity law for congr... |
| cgrtrand 36037 | Deduction form of ~ cgrtr ... |
| cgrtr3 36038 | Transitivity law for congr... |
| cgrtr3and 36039 | Deduction form of ~ cgrtr3... |
| cgrcoml 36040 | Congruence commutes on the... |
| cgrcomr 36041 | Congruence commutes on the... |
| cgrcomlr 36042 | Congruence commutes on bot... |
| cgrcomland 36043 | Deduction form of ~ cgrcom... |
| cgrcomrand 36044 | Deduction form of ~ cgrcom... |
| cgrcomlrand 36045 | Deduction form of ~ cgrcom... |
| cgrtriv 36046 | Degenerate segments are co... |
| cgrid2 36047 | Identity law for congruenc... |
| cgrdegen 36048 | Two congruent segments are... |
| brofs 36049 | Binary relation form of th... |
| 5segofs 36050 | Rephrase ~ ax5seg using th... |
| ofscom 36051 | The outer five segment pre... |
| cgrextend 36052 | Link congruence over a pai... |
| cgrextendand 36053 | Deduction form of ~ cgrext... |
| segconeq 36054 | Two points that satisfy th... |
| segconeu 36055 | Existential uniqueness ver... |
| btwntriv2 36056 | Betweenness always holds f... |
| btwncomim 36057 | Betweenness commutes. Imp... |
| btwncom 36058 | Betweenness commutes. (Co... |
| btwncomand 36059 | Deduction form of ~ btwnco... |
| btwntriv1 36060 | Betweenness always holds f... |
| btwnswapid 36061 | If you can swap the first ... |
| btwnswapid2 36062 | If you can swap arguments ... |
| btwnintr 36063 | Inner transitivity law for... |
| btwnexch3 36064 | Exchange the first endpoin... |
| btwnexch3and 36065 | Deduction form of ~ btwnex... |
| btwnouttr2 36066 | Outer transitivity law for... |
| btwnexch2 36067 | Exchange the outer point o... |
| btwnouttr 36068 | Outer transitivity law for... |
| btwnexch 36069 | Outer transitivity law for... |
| btwnexchand 36070 | Deduction form of ~ btwnex... |
| btwndiff 36071 | There is always a ` c ` di... |
| trisegint 36072 | A line segment between two... |
| funtransport 36075 | The ` TransportTo ` relati... |
| fvtransport 36076 | Calculate the value of the... |
| transportcl 36077 | Closure law for segment tr... |
| transportprops 36078 | Calculate the defining pro... |
| brifs 36087 | Binary relation form of th... |
| ifscgr 36088 | Inner five segment congrue... |
| cgrsub 36089 | Removing identical parts f... |
| brcgr3 36090 | Binary relation form of th... |
| cgr3permute3 36091 | Permutation law for three-... |
| cgr3permute1 36092 | Permutation law for three-... |
| cgr3permute2 36093 | Permutation law for three-... |
| cgr3permute4 36094 | Permutation law for three-... |
| cgr3permute5 36095 | Permutation law for three-... |
| cgr3tr4 36096 | Transitivity law for three... |
| cgr3com 36097 | Commutativity law for thre... |
| cgr3rflx 36098 | Identity law for three-pla... |
| cgrxfr 36099 | A line segment can be divi... |
| btwnxfr 36100 | A condition for extending ... |
| colinrel 36101 | Colinearity is a relations... |
| brcolinear2 36102 | Alternate colinearity bina... |
| brcolinear 36103 | The binary relation form o... |
| colinearex 36104 | The colinear predicate exi... |
| colineardim1 36105 | If ` A ` is colinear with ... |
| colinearperm1 36106 | Permutation law for coline... |
| colinearperm3 36107 | Permutation law for coline... |
| colinearperm2 36108 | Permutation law for coline... |
| colinearperm4 36109 | Permutation law for coline... |
| colinearperm5 36110 | Permutation law for coline... |
| colineartriv1 36111 | Trivial case of colinearit... |
| colineartriv2 36112 | Trivial case of colinearit... |
| btwncolinear1 36113 | Betweenness implies coline... |
| btwncolinear2 36114 | Betweenness implies coline... |
| btwncolinear3 36115 | Betweenness implies coline... |
| btwncolinear4 36116 | Betweenness implies coline... |
| btwncolinear5 36117 | Betweenness implies coline... |
| btwncolinear6 36118 | Betweenness implies coline... |
| colinearxfr 36119 | Transfer law for colineari... |
| lineext 36120 | Extend a line with a missi... |
| brofs2 36121 | Change some conditions for... |
| brifs2 36122 | Change some conditions for... |
| brfs 36123 | Binary relation form of th... |
| fscgr 36124 | Congruence law for the gen... |
| linecgr 36125 | Congruence rule for lines.... |
| linecgrand 36126 | Deduction form of ~ linecg... |
| lineid 36127 | Identity law for points on... |
| idinside 36128 | Law for finding a point in... |
| endofsegid 36129 | If ` A ` , ` B ` , and ` C... |
| endofsegidand 36130 | Deduction form of ~ endofs... |
| btwnconn1lem1 36131 | Lemma for ~ btwnconn1 . T... |
| btwnconn1lem2 36132 | Lemma for ~ btwnconn1 . N... |
| btwnconn1lem3 36133 | Lemma for ~ btwnconn1 . E... |
| btwnconn1lem4 36134 | Lemma for ~ btwnconn1 . A... |
| btwnconn1lem5 36135 | Lemma for ~ btwnconn1 . N... |
| btwnconn1lem6 36136 | Lemma for ~ btwnconn1 . N... |
| btwnconn1lem7 36137 | Lemma for ~ btwnconn1 . U... |
| btwnconn1lem8 36138 | Lemma for ~ btwnconn1 . N... |
| btwnconn1lem9 36139 | Lemma for ~ btwnconn1 . N... |
| btwnconn1lem10 36140 | Lemma for ~ btwnconn1 . N... |
| btwnconn1lem11 36141 | Lemma for ~ btwnconn1 . N... |
| btwnconn1lem12 36142 | Lemma for ~ btwnconn1 . U... |
| btwnconn1lem13 36143 | Lemma for ~ btwnconn1 . B... |
| btwnconn1lem14 36144 | Lemma for ~ btwnconn1 . F... |
| btwnconn1 36145 | Connectitivy law for betwe... |
| btwnconn2 36146 | Another connectivity law f... |
| btwnconn3 36147 | Inner connectivity law for... |
| midofsegid 36148 | If two points fall in the ... |
| segcon2 36149 | Generalization of ~ axsegc... |
| brsegle 36152 | Binary relation form of th... |
| brsegle2 36153 | Alternate characterization... |
| seglecgr12im 36154 | Substitution law for segme... |
| seglecgr12 36155 | Substitution law for segme... |
| seglerflx 36156 | Segment comparison is refl... |
| seglemin 36157 | Any segment is at least as... |
| segletr 36158 | Segment less than is trans... |
| segleantisym 36159 | Antisymmetry law for segme... |
| seglelin 36160 | Linearity law for segment ... |
| btwnsegle 36161 | If ` B ` falls between ` A... |
| colinbtwnle 36162 | Given three colinear point... |
| broutsideof 36165 | Binary relation form of ` ... |
| broutsideof2 36166 | Alternate form of ` Outsid... |
| outsidene1 36167 | Outsideness implies inequa... |
| outsidene2 36168 | Outsideness implies inequa... |
| btwnoutside 36169 | A principle linking outsid... |
| broutsideof3 36170 | Characterization of outsid... |
| outsideofrflx 36171 | Reflexivity of outsideness... |
| outsideofcom 36172 | Commutativity law for outs... |
| outsideoftr 36173 | Transitivity law for outsi... |
| outsideofeq 36174 | Uniqueness law for ` Outsi... |
| outsideofeu 36175 | Given a nondegenerate ray,... |
| outsidele 36176 | Relate ` OutsideOf ` to ` ... |
| outsideofcol 36177 | Outside of implies colinea... |
| funray 36184 | Show that the ` Ray ` rela... |
| fvray 36185 | Calculate the value of the... |
| funline 36186 | Show that the ` Line ` rel... |
| linedegen 36187 | When ` Line ` is applied w... |
| fvline 36188 | Calculate the value of the... |
| liness 36189 | A line is a subset of the ... |
| fvline2 36190 | Alternate definition of a ... |
| lineunray 36191 | A line is composed of a po... |
| lineelsb2 36192 | If ` S ` lies on ` P Q ` ,... |
| linerflx1 36193 | Reflexivity law for line m... |
| linecom 36194 | Commutativity law for line... |
| linerflx2 36195 | Reflexivity law for line m... |
| ellines 36196 | Membership in the set of a... |
| linethru 36197 | If ` A ` is a line contain... |
| hilbert1.1 36198 | There is a line through an... |
| hilbert1.2 36199 | There is at most one line ... |
| linethrueu 36200 | There is a unique line goi... |
| lineintmo 36201 | Two distinct lines interse... |
| fwddifval 36206 | Calculate the value of the... |
| fwddifnval 36207 | The value of the forward d... |
| fwddifn0 36208 | The value of the n-iterate... |
| fwddifnp1 36209 | The value of the n-iterate... |
| rankung 36210 | The rank of the union of t... |
| ranksng 36211 | The rank of a singleton. ... |
| rankelg 36212 | The membership relation is... |
| rankpwg 36213 | The rank of a power set. ... |
| rank0 36214 | The rank of the empty set ... |
| rankeq1o 36215 | The only set with rank ` 1... |
| elhf 36218 | Membership in the heredita... |
| elhf2 36219 | Alternate form of membersh... |
| elhf2g 36220 | Hereditarily finiteness vi... |
| 0hf 36221 | The empty set is a heredit... |
| hfun 36222 | The union of two HF sets i... |
| hfsn 36223 | The singleton of an HF set... |
| hfadj 36224 | Adjoining one HF element t... |
| hfelhf 36225 | Any member of an HF set is... |
| hftr 36226 | The class of all hereditar... |
| hfext 36227 | Extensionality for HF sets... |
| hfuni 36228 | The union of an HF set is ... |
| hfpw 36229 | The power class of an HF s... |
| hfninf 36230 | ` _om ` is not hereditaril... |
| rmoeqi 36231 | Equality inference for res... |
| rmoeqbii 36232 | Equality inference for res... |
| reueqi 36233 | Equality inference for res... |
| reueqbii 36234 | Equality inference for res... |
| sbceqbii 36235 | Formula-building inference... |
| disjeq1i 36236 | Equality theorem for disjo... |
| disjeq12i 36237 | Equality theorem for disjo... |
| rabeqbii 36238 | Equality theorem for restr... |
| iuneq12i 36239 | Equality theorem for index... |
| iineq1i 36240 | Equality theorem for index... |
| iineq12i 36241 | Equality theorem for index... |
| riotaeqbii 36242 | Equivalent wff's and equal... |
| riotaeqi 36243 | Equal domains yield equal ... |
| ixpeq1i 36244 | Equality inference for inf... |
| ixpeq12i 36245 | Equality inference for inf... |
| sumeq2si 36246 | Equality inference for sum... |
| sumeq12si 36247 | Equality inference for sum... |
| prodeq2si 36248 | Equality inference for pro... |
| prodeq12si 36249 | Equality inference for pro... |
| itgeq12i 36250 | Equality inference for an ... |
| itgeq1i 36251 | Equality inference for an ... |
| itgeq2i 36252 | Equality inference for an ... |
| ditgeq123i 36253 | Equality inference for the... |
| ditgeq12i 36254 | Equality inference for the... |
| ditgeq3i 36255 | Equality inference for the... |
| rmoeqdv 36256 | Formula-building rule for ... |
| rmoeqbidv 36257 | Formula-building rule for ... |
| sbequbidv 36258 | Deduction substituting bot... |
| disjeq12dv 36259 | Equality theorem for disjo... |
| ixpeq12dv 36260 | Equality theorem for infin... |
| sumeq12sdv 36261 | Equality deduction for sum... |
| prodeq12sdv 36262 | Equality deduction for pro... |
| itgeq12sdv 36263 | Equality theorem for an in... |
| itgeq2sdv 36264 | Equality theorem for an in... |
| ditgeq123dv 36265 | Equality theorem for the d... |
| ditgeq12d 36266 | Equality theorem for the d... |
| ditgeq3sdv 36267 | Equality theorem for the d... |
| in-ax8 36268 | A proof of ~ ax-8 that doe... |
| ss-ax8 36269 | A proof of ~ ax-8 that doe... |
| cbvralvw2 36270 | Change bound variable and ... |
| cbvrexvw2 36271 | Change bound variable and ... |
| cbvrmovw2 36272 | Change bound variable and ... |
| cbvreuvw2 36273 | Change bound variable and ... |
| cbvsbcvw2 36274 | Change bound variable of a... |
| cbvcsbvw2 36275 | Change bound variable of a... |
| cbviunvw2 36276 | Change bound variable and ... |
| cbviinvw2 36277 | Change bound variable and ... |
| cbvmptvw2 36278 | Change bound variable and ... |
| cbvdisjvw2 36279 | Change bound variable and ... |
| cbvriotavw2 36280 | Change bound variable and ... |
| cbvoprab1vw 36281 | Change the first bound var... |
| cbvoprab2vw 36282 | Change the second bound va... |
| cbvoprab123vw 36283 | Change all bound variables... |
| cbvoprab23vw 36284 | Change the second and thir... |
| cbvoprab13vw 36285 | Change the first and third... |
| cbvmpovw2 36286 | Change bound variables and... |
| cbvmpo1vw2 36287 | Change domains and the fir... |
| cbvmpo2vw2 36288 | Change domains and the sec... |
| cbvixpvw2 36289 | Change bound variable and ... |
| cbvsumvw2 36290 | Change bound variable and ... |
| cbvprodvw2 36291 | Change bound variable and ... |
| cbvitgvw2 36292 | Change bound variable and ... |
| cbvditgvw2 36293 | Change bound variable and ... |
| cbvmodavw 36294 | Change bound variable in t... |
| cbveudavw 36295 | Change bound variable in t... |
| cbvrmodavw 36296 | Change bound variable in t... |
| cbvreudavw 36297 | Change bound variable in t... |
| cbvsbdavw 36298 | Change bound variable in p... |
| cbvsbdavw2 36299 | Change bound variable in p... |
| cbvabdavw 36300 | Change bound variable in c... |
| cbvsbcdavw 36301 | Change bound variable of a... |
| cbvsbcdavw2 36302 | Change bound variable of a... |
| cbvcsbdavw 36303 | Change bound variable of a... |
| cbvcsbdavw2 36304 | Change bound variable of a... |
| cbvrabdavw 36305 | Change bound variable in r... |
| cbviundavw 36306 | Change bound variable in i... |
| cbviindavw 36307 | Change bound variable in i... |
| cbvopab1davw 36308 | Change the first bound var... |
| cbvopab2davw 36309 | Change the second bound va... |
| cbvopabdavw 36310 | Change bound variables in ... |
| cbvmptdavw 36311 | Change bound variable in a... |
| cbvdisjdavw 36312 | Change bound variable in a... |
| cbviotadavw 36313 | Change bound variable in a... |
| cbvriotadavw 36314 | Change bound variable in a... |
| cbvoprab1davw 36315 | Change the first bound var... |
| cbvoprab2davw 36316 | Change the second bound va... |
| cbvoprab3davw 36317 | Change the third bound var... |
| cbvoprab123davw 36318 | Change all bound variables... |
| cbvoprab12davw 36319 | Change the first and secon... |
| cbvoprab23davw 36320 | Change the second and thir... |
| cbvoprab13davw 36321 | Change the first and third... |
| cbvixpdavw 36322 | Change bound variable in a... |
| cbvsumdavw 36323 | Change bound variable in a... |
| cbvproddavw 36324 | Change bound variable in a... |
| cbvitgdavw 36325 | Change bound variable in a... |
| cbvditgdavw 36326 | Change bound variable in a... |
| cbvrmodavw2 36327 | Change bound variable and ... |
| cbvreudavw2 36328 | Change bound variable and ... |
| cbvrabdavw2 36329 | Change bound variable and ... |
| cbviundavw2 36330 | Change bound variable and ... |
| cbviindavw2 36331 | Change bound variable and ... |
| cbvmptdavw2 36332 | Change bound variable and ... |
| cbvdisjdavw2 36333 | Change bound variable and ... |
| cbvriotadavw2 36334 | Change bound variable and ... |
| cbvmpodavw2 36335 | Change bound variable and ... |
| cbvmpo1davw2 36336 | Change first bound variabl... |
| cbvmpo2davw2 36337 | Change second bound variab... |
| cbvixpdavw2 36338 | Change bound variable and ... |
| cbvsumdavw2 36339 | Change bound variable and ... |
| cbvproddavw2 36340 | Change bound variable and ... |
| cbvitgdavw2 36341 | Change bound variable and ... |
| cbvditgdavw2 36342 | Change bound variable and ... |
| mpomulnzcnf 36343 | Multiplication maps nonzer... |
| a1i14 36344 | Add two antecedents to a w... |
| a1i24 36345 | Add two antecedents to a w... |
| exp5d 36346 | An exportation inference. ... |
| exp5g 36347 | An exportation inference. ... |
| exp5k 36348 | An exportation inference. ... |
| exp56 36349 | An exportation inference. ... |
| exp58 36350 | An exportation inference. ... |
| exp510 36351 | An exportation inference. ... |
| exp511 36352 | An exportation inference. ... |
| exp512 36353 | An exportation inference. ... |
| 3com12d 36354 | Commutation in consequent.... |
| imp5p 36355 | A triple importation infer... |
| imp5q 36356 | A triple importation infer... |
| ecase13d 36357 | Deduction for elimination ... |
| subtr 36358 | Transitivity of implicit s... |
| subtr2 36359 | Transitivity of implicit s... |
| trer 36360 | A relation intersected wit... |
| elicc3 36361 | An equivalent membership c... |
| finminlem 36362 | A useful lemma about finit... |
| gtinf 36363 | Any number greater than an... |
| opnrebl 36364 | A set is open in the stand... |
| opnrebl2 36365 | A set is open in the stand... |
| nn0prpwlem 36366 | Lemma for ~ nn0prpw . Use... |
| nn0prpw 36367 | Two nonnegative integers a... |
| topbnd 36368 | Two equivalent expressions... |
| opnbnd 36369 | A set is open iff it is di... |
| cldbnd 36370 | A set is closed iff it con... |
| ntruni 36371 | A union of interiors is a ... |
| clsun 36372 | A pairwise union of closur... |
| clsint2 36373 | The closure of an intersec... |
| opnregcld 36374 | A set is regularly closed ... |
| cldregopn 36375 | A set if regularly open if... |
| neiin 36376 | Two neighborhoods intersec... |
| hmeoclda 36377 | Homeomorphisms preserve cl... |
| hmeocldb 36378 | Homeomorphisms preserve cl... |
| ivthALT 36379 | An alternate proof of the ... |
| fnerel 36382 | Fineness is a relation. (... |
| isfne 36383 | The predicate " ` B ` is f... |
| isfne4 36384 | The predicate " ` B ` is f... |
| isfne4b 36385 | A condition for a topology... |
| isfne2 36386 | The predicate " ` B ` is f... |
| isfne3 36387 | The predicate " ` B ` is f... |
| fnebas 36388 | A finer cover covers the s... |
| fnetg 36389 | A finer cover generates a ... |
| fnessex 36390 | If ` B ` is finer than ` A... |
| fneuni 36391 | If ` B ` is finer than ` A... |
| fneint 36392 | If a cover is finer than a... |
| fness 36393 | A cover is finer than its ... |
| fneref 36394 | Reflexivity of the finenes... |
| fnetr 36395 | Transitivity of the finene... |
| fneval 36396 | Two covers are finer than ... |
| fneer 36397 | Fineness intersected with ... |
| topfne 36398 | Fineness for covers corres... |
| topfneec 36399 | A cover is equivalent to a... |
| topfneec2 36400 | A topology is precisely id... |
| fnessref 36401 | A cover is finer iff it ha... |
| refssfne 36402 | A cover is a refinement if... |
| neibastop1 36403 | A collection of neighborho... |
| neibastop2lem 36404 | Lemma for ~ neibastop2 . ... |
| neibastop2 36405 | In the topology generated ... |
| neibastop3 36406 | The topology generated by ... |
| topmtcl 36407 | The meet of a collection o... |
| topmeet 36408 | Two equivalent formulation... |
| topjoin 36409 | Two equivalent formulation... |
| fnemeet1 36410 | The meet of a collection o... |
| fnemeet2 36411 | The meet of equivalence cl... |
| fnejoin1 36412 | Join of equivalence classe... |
| fnejoin2 36413 | Join of equivalence classe... |
| fgmin 36414 | Minimality property of a g... |
| neifg 36415 | The neighborhood filter of... |
| tailfval 36416 | The tail function for a di... |
| tailval 36417 | The tail of an element in ... |
| eltail 36418 | An element of a tail. (Co... |
| tailf 36419 | The tail function of a dir... |
| tailini 36420 | A tail contains its initia... |
| tailfb 36421 | The collection of tails of... |
| filnetlem1 36422 | Lemma for ~ filnet . Chan... |
| filnetlem2 36423 | Lemma for ~ filnet . The ... |
| filnetlem3 36424 | Lemma for ~ filnet . (Con... |
| filnetlem4 36425 | Lemma for ~ filnet . (Con... |
| filnet 36426 | A filter has the same conv... |
| tb-ax1 36427 | The first of three axioms ... |
| tb-ax2 36428 | The second of three axioms... |
| tb-ax3 36429 | The third of three axioms ... |
| tbsyl 36430 | The weak syllogism from Ta... |
| re1ax2lem 36431 | Lemma for ~ re1ax2 . (Con... |
| re1ax2 36432 | ~ ax-2 rederived from the ... |
| naim1 36433 | Constructor theorem for ` ... |
| naim2 36434 | Constructor theorem for ` ... |
| naim1i 36435 | Constructor rule for ` -/\... |
| naim2i 36436 | Constructor rule for ` -/\... |
| naim12i 36437 | Constructor rule for ` -/\... |
| nabi1i 36438 | Constructor rule for ` -/\... |
| nabi2i 36439 | Constructor rule for ` -/\... |
| nabi12i 36440 | Constructor rule for ` -/\... |
| df3nandALT1 36443 | The double nand expressed ... |
| df3nandALT2 36444 | The double nand expressed ... |
| andnand1 36445 | Double and in terms of dou... |
| imnand2 36446 | An ` -> ` nand relation. ... |
| nalfal 36447 | Not all sets hold ` F. ` a... |
| nexntru 36448 | There does not exist a set... |
| nexfal 36449 | There does not exist a set... |
| neufal 36450 | There does not exist exact... |
| neutru 36451 | There does not exist exact... |
| nmotru 36452 | There does not exist at mo... |
| mofal 36453 | There exist at most one se... |
| nrmo 36454 | "At most one" restricted e... |
| meran1 36455 | A single axiom for proposi... |
| meran2 36456 | A single axiom for proposi... |
| meran3 36457 | A single axiom for proposi... |
| waj-ax 36458 | A single axiom for proposi... |
| lukshef-ax2 36459 | A single axiom for proposi... |
| arg-ax 36460 | A single axiom for proposi... |
| negsym1 36461 | In the paper "On Variable ... |
| imsym1 36462 | A symmetry with ` -> ` . ... |
| bisym1 36463 | A symmetry with ` <-> ` . ... |
| consym1 36464 | A symmetry with ` /\ ` . ... |
| dissym1 36465 | A symmetry with ` \/ ` . ... |
| nandsym1 36466 | A symmetry with ` -/\ ` . ... |
| unisym1 36467 | A symmetry with ` A. ` . ... |
| exisym1 36468 | A symmetry with ` E. ` . ... |
| unqsym1 36469 | A symmetry with ` E! ` . ... |
| amosym1 36470 | A symmetry with ` E* ` . ... |
| subsym1 36471 | A symmetry with ` [ x / y ... |
| ontopbas 36472 | An ordinal number is a top... |
| onsstopbas 36473 | The class of ordinal numbe... |
| onpsstopbas 36474 | The class of ordinal numbe... |
| ontgval 36475 | The topology generated fro... |
| ontgsucval 36476 | The topology generated fro... |
| onsuctop 36477 | A successor ordinal number... |
| onsuctopon 36478 | One of the topologies on a... |
| ordtoplem 36479 | Membership of the class of... |
| ordtop 36480 | An ordinal is a topology i... |
| onsucconni 36481 | A successor ordinal number... |
| onsucconn 36482 | A successor ordinal number... |
| ordtopconn 36483 | An ordinal topology is con... |
| onintopssconn 36484 | An ordinal topology is con... |
| onsuct0 36485 | A successor ordinal number... |
| ordtopt0 36486 | An ordinal topology is T_0... |
| onsucsuccmpi 36487 | The successor of a success... |
| onsucsuccmp 36488 | The successor of a success... |
| limsucncmpi 36489 | The successor of a limit o... |
| limsucncmp 36490 | The successor of a limit o... |
| ordcmp 36491 | An ordinal topology is com... |
| ssoninhaus 36492 | The ordinal topologies ` 1... |
| onint1 36493 | The ordinal T_1 spaces are... |
| oninhaus 36494 | The ordinal Hausdorff spac... |
| fveleq 36495 | Please add description her... |
| findfvcl 36496 | Please add description her... |
| findreccl 36497 | Please add description her... |
| findabrcl 36498 | Please add description her... |
| nnssi2 36499 | Convert a theorem for real... |
| nnssi3 36500 | Convert a theorem for real... |
| nndivsub 36501 | Please add description her... |
| nndivlub 36502 | A factor of a positive int... |
| ee7.2aOLD 36505 | Lemma for Euclid's Element... |
| weiunlem1 36506 | Lemma for ~ weiunpo , ~ we... |
| weiunlem2 36507 | Lemma for ~ weiunpo , ~ we... |
| weiunfrlem 36508 | Lemma for ~ weiunfr . (Co... |
| weiunpo 36509 | A partial ordering on an i... |
| weiunso 36510 | A strict ordering on an in... |
| weiunfr 36511 | A well-founded relation on... |
| weiunse 36512 | The relation constructed i... |
| weiunwe 36513 | A well-ordering on an inde... |
| numiunnum 36514 | An indexed union of sets i... |
| dnival 36515 | Value of the "distance to ... |
| dnicld1 36516 | Closure theorem for the "d... |
| dnicld2 36517 | Closure theorem for the "d... |
| dnif 36518 | The "distance to nearest i... |
| dnizeq0 36519 | The distance to nearest in... |
| dnizphlfeqhlf 36520 | The distance to nearest in... |
| rddif2 36521 | Variant of ~ rddif . (Con... |
| dnibndlem1 36522 | Lemma for ~ dnibnd . (Con... |
| dnibndlem2 36523 | Lemma for ~ dnibnd . (Con... |
| dnibndlem3 36524 | Lemma for ~ dnibnd . (Con... |
| dnibndlem4 36525 | Lemma for ~ dnibnd . (Con... |
| dnibndlem5 36526 | Lemma for ~ dnibnd . (Con... |
| dnibndlem6 36527 | Lemma for ~ dnibnd . (Con... |
| dnibndlem7 36528 | Lemma for ~ dnibnd . (Con... |
| dnibndlem8 36529 | Lemma for ~ dnibnd . (Con... |
| dnibndlem9 36530 | Lemma for ~ dnibnd . (Con... |
| dnibndlem10 36531 | Lemma for ~ dnibnd . (Con... |
| dnibndlem11 36532 | Lemma for ~ dnibnd . (Con... |
| dnibndlem12 36533 | Lemma for ~ dnibnd . (Con... |
| dnibndlem13 36534 | Lemma for ~ dnibnd . (Con... |
| dnibnd 36535 | The "distance to nearest i... |
| dnicn 36536 | The "distance to nearest i... |
| knoppcnlem1 36537 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem2 36538 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem3 36539 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem4 36540 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem5 36541 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem6 36542 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem7 36543 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem8 36544 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem9 36545 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem10 36546 | Lemma for ~ knoppcn . (Co... |
| knoppcnlem11 36547 | Lemma for ~ knoppcn . (Co... |
| knoppcn 36548 | The continuous nowhere dif... |
| knoppcld 36549 | Closure theorem for Knopp'... |
| unblimceq0lem 36550 | Lemma for ~ unblimceq0 . ... |
| unblimceq0 36551 | If ` F ` is unbounded near... |
| unbdqndv1 36552 | If the difference quotient... |
| unbdqndv2lem1 36553 | Lemma for ~ unbdqndv2 . (... |
| unbdqndv2lem2 36554 | Lemma for ~ unbdqndv2 . (... |
| unbdqndv2 36555 | Variant of ~ unbdqndv1 wit... |
| knoppndvlem1 36556 | Lemma for ~ knoppndv . (C... |
| knoppndvlem2 36557 | Lemma for ~ knoppndv . (C... |
| knoppndvlem3 36558 | Lemma for ~ knoppndv . (C... |
| knoppndvlem4 36559 | Lemma for ~ knoppndv . (C... |
| knoppndvlem5 36560 | Lemma for ~ knoppndv . (C... |
| knoppndvlem6 36561 | Lemma for ~ knoppndv . (C... |
| knoppndvlem7 36562 | Lemma for ~ knoppndv . (C... |
| knoppndvlem8 36563 | Lemma for ~ knoppndv . (C... |
| knoppndvlem9 36564 | Lemma for ~ knoppndv . (C... |
| knoppndvlem10 36565 | Lemma for ~ knoppndv . (C... |
| knoppndvlem11 36566 | Lemma for ~ knoppndv . (C... |
| knoppndvlem12 36567 | Lemma for ~ knoppndv . (C... |
| knoppndvlem13 36568 | Lemma for ~ knoppndv . (C... |
| knoppndvlem14 36569 | Lemma for ~ knoppndv . (C... |
| knoppndvlem15 36570 | Lemma for ~ knoppndv . (C... |
| knoppndvlem16 36571 | Lemma for ~ knoppndv . (C... |
| knoppndvlem17 36572 | Lemma for ~ knoppndv . (C... |
| knoppndvlem18 36573 | Lemma for ~ knoppndv . (C... |
| knoppndvlem19 36574 | Lemma for ~ knoppndv . (C... |
| knoppndvlem20 36575 | Lemma for ~ knoppndv . (C... |
| knoppndvlem21 36576 | Lemma for ~ knoppndv . (C... |
| knoppndvlem22 36577 | Lemma for ~ knoppndv . (C... |
| knoppndv 36578 | The continuous nowhere dif... |
| knoppf 36579 | Knopp's function is a func... |
| knoppcn2 36580 | Variant of ~ knoppcn with ... |
| cnndvlem1 36581 | Lemma for ~ cnndv . (Cont... |
| cnndvlem2 36582 | Lemma for ~ cnndv . (Cont... |
| cnndv 36583 | There exists a continuous ... |
| bj-mp2c 36584 | A double _modus ponens_ in... |
| bj-mp2d 36585 | A double _modus ponens_ in... |
| bj-0 36586 | A syntactic theorem. See ... |
| bj-1 36587 | In this proof, the use of ... |
| bj-a1k 36588 | Weakening of ~ ax-1 . As ... |
| bj-poni 36589 | Inference associated with ... |
| bj-nnclav 36590 | When ` F. ` is substituted... |
| bj-nnclavi 36591 | Inference associated with ... |
| bj-nnclavc 36592 | Commuted form of ~ bj-nncl... |
| bj-nnclavci 36593 | Inference associated with ... |
| bj-jarrii 36594 | Inference associated with ... |
| bj-imim21 36595 | The propositional function... |
| bj-imim21i 36596 | Inference associated with ... |
| bj-peircestab 36597 | Over minimal implicational... |
| bj-stabpeirce 36598 | This minimal implicational... |
| bj-syl66ib 36599 | A mixed syllogism inferenc... |
| bj-orim2 36600 | Proof of ~ orim2 from the ... |
| bj-currypeirce 36601 | Curry's axiom ~ curryax (a... |
| bj-peircecurry 36602 | Peirce's axiom ~ peirce im... |
| bj-animbi 36603 | Conjunction in terms of im... |
| bj-currypara 36604 | Curry's paradox. Note tha... |
| bj-con2com 36605 | A commuted form of the con... |
| bj-con2comi 36606 | Inference associated with ... |
| bj-nimn 36607 | If a formula is true, then... |
| bj-nimni 36608 | Inference associated with ... |
| bj-peircei 36609 | Inference associated with ... |
| bj-looinvi 36610 | Inference associated with ... |
| bj-looinvii 36611 | Inference associated with ... |
| bj-mt2bi 36612 | Version of ~ mt2 where the... |
| bj-ntrufal 36613 | The negation of a theorem ... |
| bj-fal 36614 | Shortening of ~ fal using ... |
| bj-jaoi1 36615 | Shortens ~ orfa2 (58>53), ... |
| bj-jaoi2 36616 | Shortens ~ consensus (110>... |
| bj-dfbi4 36617 | Alternate definition of th... |
| bj-dfbi5 36618 | Alternate definition of th... |
| bj-dfbi6 36619 | Alternate definition of th... |
| bj-bijust0ALT 36620 | Alternate proof of ~ bijus... |
| bj-bijust00 36621 | A self-implication does no... |
| bj-consensus 36622 | Version of ~ consensus exp... |
| bj-consensusALT 36623 | Alternate proof of ~ bj-co... |
| bj-df-ifc 36624 | Candidate definition for t... |
| bj-dfif 36625 | Alternate definition of th... |
| bj-ififc 36626 | A biconditional connecting... |
| bj-imbi12 36627 | Uncurried (imported) form ... |
| bj-falor 36628 | Dual of ~ truan (which has... |
| bj-falor2 36629 | Dual of ~ truan . (Contri... |
| bj-bibibi 36630 | A property of the bicondit... |
| bj-imn3ani 36631 | Duplication of ~ bnj1224 .... |
| bj-andnotim 36632 | Two ways of expressing a c... |
| bj-bi3ant 36633 | This used to be in the mai... |
| bj-bisym 36634 | This used to be in the mai... |
| bj-bixor 36635 | Equivalence of two ternary... |
| bj-axdd2 36636 | This implication, proved u... |
| bj-axd2d 36637 | This implication, proved u... |
| bj-axtd 36638 | This implication, proved f... |
| bj-gl4 36639 | In a normal modal logic, t... |
| bj-axc4 36640 | Over minimal calculus, the... |
| prvlem1 36645 | An elementary property of ... |
| prvlem2 36646 | An elementary property of ... |
| bj-babygodel 36647 | See the section header com... |
| bj-babylob 36648 | See the section header com... |
| bj-godellob 36649 | Proof of Gödel's theo... |
| bj-genr 36650 | Generalization rule on the... |
| bj-genl 36651 | Generalization rule on the... |
| bj-genan 36652 | Generalization rule on a c... |
| bj-mpgs 36653 | From a closed form theorem... |
| bj-2alim 36654 | Closed form of ~ 2alimi . ... |
| bj-2exim 36655 | Closed form of ~ 2eximi . ... |
| bj-alanim 36656 | Closed form of ~ alanimi .... |
| bj-2albi 36657 | Closed form of ~ 2albii . ... |
| bj-notalbii 36658 | Equivalence of universal q... |
| bj-2exbi 36659 | Closed form of ~ 2exbii . ... |
| bj-3exbi 36660 | Closed form of ~ 3exbii . ... |
| bj-sylggt 36661 | Stronger form of ~ sylgt ,... |
| bj-sylgt2 36662 | Uncurried (imported) form ... |
| bj-alrimg 36663 | The general form of the *a... |
| bj-alrimd 36664 | A slightly more general ~ ... |
| bj-sylget 36665 | Dual statement of ~ sylgt ... |
| bj-sylget2 36666 | Uncurried (imported) form ... |
| bj-exlimg 36667 | The general form of the *e... |
| bj-sylge 36668 | Dual statement of ~ sylg (... |
| bj-exlimd 36669 | A slightly more general ~ ... |
| bj-nfimexal 36670 | A weak from of nonfreeness... |
| bj-alexim 36671 | Closed form of ~ aleximi .... |
| bj-nexdh 36672 | Closed form of ~ nexdh (ac... |
| bj-nexdh2 36673 | Uncurried (imported) form ... |
| bj-hbxfrbi 36674 | Closed form of ~ hbxfrbi .... |
| bj-hbyfrbi 36675 | Version of ~ bj-hbxfrbi wi... |
| bj-exalim 36676 | Distribute quantifiers ove... |
| bj-exalimi 36677 | An inference for distribut... |
| bj-exalims 36678 | Distributing quantifiers o... |
| bj-exalimsi 36679 | An inference for distribut... |
| bj-ax12ig 36680 | A lemma used to prove a we... |
| bj-ax12i 36681 | A weakening of ~ bj-ax12ig... |
| bj-nfimt 36682 | Closed form of ~ nfim and ... |
| bj-cbvalimt 36683 | A lemma in closed form use... |
| bj-cbveximt 36684 | A lemma in closed form use... |
| bj-eximALT 36685 | Alternate proof of ~ exim ... |
| bj-aleximiALT 36686 | Alternate proof of ~ alexi... |
| bj-eximcom 36687 | A commuted form of ~ exim ... |
| bj-ax12wlem 36688 | A lemma used to prove a we... |
| bj-cbvalim 36689 | A lemma used to prove ~ bj... |
| bj-cbvexim 36690 | A lemma used to prove ~ bj... |
| bj-cbvalimi 36691 | An equality-free general i... |
| bj-cbveximi 36692 | An equality-free general i... |
| bj-cbval 36693 | Changing a bound variable ... |
| bj-cbvex 36694 | Changing a bound variable ... |
| bj-ssbeq 36697 | Substitution in an equalit... |
| bj-ssblem1 36698 | A lemma for the definiens ... |
| bj-ssblem2 36699 | An instance of ~ ax-11 pro... |
| bj-ax12v 36700 | A weaker form of ~ ax-12 a... |
| bj-ax12 36701 | Remove a DV condition from... |
| bj-ax12ssb 36702 | Axiom ~ bj-ax12 expressed ... |
| bj-19.41al 36703 | Special case of ~ 19.41 pr... |
| bj-equsexval 36704 | Special case of ~ equsexv ... |
| bj-subst 36705 | Proof of ~ sbalex from cor... |
| bj-ssbid2 36706 | A special case of ~ sbequ2... |
| bj-ssbid2ALT 36707 | Alternate proof of ~ bj-ss... |
| bj-ssbid1 36708 | A special case of ~ sbequ1... |
| bj-ssbid1ALT 36709 | Alternate proof of ~ bj-ss... |
| bj-ax6elem1 36710 | Lemma for ~ bj-ax6e . (Co... |
| bj-ax6elem2 36711 | Lemma for ~ bj-ax6e . (Co... |
| bj-ax6e 36712 | Proof of ~ ax6e (hence ~ a... |
| bj-spimvwt 36713 | Closed form of ~ spimvw . ... |
| bj-spnfw 36714 | Theorem close to a closed ... |
| bj-cbvexiw 36715 | Change bound variable. Th... |
| bj-cbvexivw 36716 | Change bound variable. Th... |
| bj-modald 36717 | A short form of the axiom ... |
| bj-denot 36718 | A weakening of ~ ax-6 and ... |
| bj-eqs 36719 | A lemma for substitutions,... |
| bj-cbvexw 36720 | Change bound variable. Th... |
| bj-ax12w 36721 | The general statement that... |
| bj-ax89 36722 | A theorem which could be u... |
| bj-cleljusti 36723 | One direction of ~ cleljus... |
| bj-alcomexcom 36724 | Commutation of two existen... |
| bj-hbalt 36725 | Closed form of ~ hbal . W... |
| axc11n11 36726 | Proof of ~ axc11n from { ~... |
| axc11n11r 36727 | Proof of ~ axc11n from { ~... |
| bj-axc16g16 36728 | Proof of ~ axc16g from { ~... |
| bj-ax12v3 36729 | A weak version of ~ ax-12 ... |
| bj-ax12v3ALT 36730 | Alternate proof of ~ bj-ax... |
| bj-sb 36731 | A weak variant of ~ sbid2 ... |
| bj-modalbe 36732 | The predicate-calculus ver... |
| bj-spst 36733 | Closed form of ~ sps . On... |
| bj-19.21bit 36734 | Closed form of ~ 19.21bi .... |
| bj-19.23bit 36735 | Closed form of ~ 19.23bi .... |
| bj-nexrt 36736 | Closed form of ~ nexr . C... |
| bj-alrim 36737 | Closed form of ~ alrimi . ... |
| bj-alrim2 36738 | Uncurried (imported) form ... |
| bj-nfdt0 36739 | A theorem close to a close... |
| bj-nfdt 36740 | Closed form of ~ nf5d and ... |
| bj-nexdt 36741 | Closed form of ~ nexd . (... |
| bj-nexdvt 36742 | Closed form of ~ nexdv . ... |
| bj-alexbiex 36743 | Adding a second quantifier... |
| bj-exexbiex 36744 | Adding a second quantifier... |
| bj-alalbial 36745 | Adding a second quantifier... |
| bj-exalbial 36746 | Adding a second quantifier... |
| bj-19.9htbi 36747 | Strengthening ~ 19.9ht by ... |
| bj-hbntbi 36748 | Strengthening ~ hbnt by re... |
| bj-biexal1 36749 | A general FOL biconditiona... |
| bj-biexal2 36750 | When ` ph ` is substituted... |
| bj-biexal3 36751 | When ` ph ` is substituted... |
| bj-bialal 36752 | When ` ph ` is substituted... |
| bj-biexex 36753 | When ` ph ` is substituted... |
| bj-hbext 36754 | Closed form of ~ hbex . (... |
| bj-nfalt 36755 | Closed form of ~ nfal . (... |
| bj-nfext 36756 | Closed form of ~ nfex . (... |
| bj-eeanvw 36757 | Version of ~ exdistrv with... |
| bj-modal4 36758 | First-order logic form of ... |
| bj-modal4e 36759 | First-order logic form of ... |
| bj-modalb 36760 | A short form of the axiom ... |
| bj-wnf1 36761 | When ` ph ` is substituted... |
| bj-wnf2 36762 | When ` ph ` is substituted... |
| bj-wnfanf 36763 | When ` ph ` is substituted... |
| bj-wnfenf 36764 | When ` ph ` is substituted... |
| bj-substax12 36765 | Equivalent form of the axi... |
| bj-substw 36766 | Weak form of the LHS of ~ ... |
| bj-nnfbi 36769 | If two formulas are equiva... |
| bj-nnfbd 36770 | If two formulas are equiva... |
| bj-nnfbii 36771 | If two formulas are equiva... |
| bj-nnfa 36772 | Nonfreeness implies the eq... |
| bj-nnfad 36773 | Nonfreeness implies the eq... |
| bj-nnfai 36774 | Nonfreeness implies the eq... |
| bj-nnfe 36775 | Nonfreeness implies the eq... |
| bj-nnfed 36776 | Nonfreeness implies the eq... |
| bj-nnfei 36777 | Nonfreeness implies the eq... |
| bj-nnfea 36778 | Nonfreeness implies the eq... |
| bj-nnfead 36779 | Nonfreeness implies the eq... |
| bj-nnfeai 36780 | Nonfreeness implies the eq... |
| bj-dfnnf2 36781 | Alternate definition of ~ ... |
| bj-nnfnfTEMP 36782 | New nonfreeness implies ol... |
| bj-wnfnf 36783 | When ` ph ` is substituted... |
| bj-nnfnt 36784 | A variable is nonfree in a... |
| bj-nnftht 36785 | A variable is nonfree in a... |
| bj-nnfth 36786 | A variable is nonfree in a... |
| bj-nnfnth 36787 | A variable is nonfree in t... |
| bj-nnfim1 36788 | A consequence of nonfreene... |
| bj-nnfim2 36789 | A consequence of nonfreene... |
| bj-nnfim 36790 | Nonfreeness in the anteced... |
| bj-nnfimd 36791 | Nonfreeness in the anteced... |
| bj-nnfan 36792 | Nonfreeness in both conjun... |
| bj-nnfand 36793 | Nonfreeness in both conjun... |
| bj-nnfor 36794 | Nonfreeness in both disjun... |
| bj-nnford 36795 | Nonfreeness in both disjun... |
| bj-nnfbit 36796 | Nonfreeness in both sides ... |
| bj-nnfbid 36797 | Nonfreeness in both sides ... |
| bj-nnfv 36798 | A non-occurring variable i... |
| bj-nnf-alrim 36799 | Proof of the closed form o... |
| bj-nnf-exlim 36800 | Proof of the closed form o... |
| bj-dfnnf3 36801 | Alternate definition of no... |
| bj-nfnnfTEMP 36802 | New nonfreeness is equival... |
| bj-nnfa1 36803 | See ~ nfa1 . (Contributed... |
| bj-nnfe1 36804 | See ~ nfe1 . (Contributed... |
| bj-19.12 36805 | See ~ 19.12 . Could be la... |
| bj-nnflemaa 36806 | One of four lemmas for non... |
| bj-nnflemee 36807 | One of four lemmas for non... |
| bj-nnflemae 36808 | One of four lemmas for non... |
| bj-nnflemea 36809 | One of four lemmas for non... |
| bj-nnfalt 36810 | See ~ nfal and ~ bj-nfalt ... |
| bj-nnfext 36811 | See ~ nfex and ~ bj-nfext ... |
| bj-stdpc5t 36812 | Alias of ~ bj-nnf-alrim fo... |
| bj-19.21t 36813 | Statement ~ 19.21t proved ... |
| bj-19.23t 36814 | Statement ~ 19.23t proved ... |
| bj-19.36im 36815 | One direction of ~ 19.36 f... |
| bj-19.37im 36816 | One direction of ~ 19.37 f... |
| bj-19.42t 36817 | Closed form of ~ 19.42 fro... |
| bj-19.41t 36818 | Closed form of ~ 19.41 fro... |
| bj-sbft 36819 | Version of ~ sbft using ` ... |
| bj-pm11.53vw 36820 | Version of ~ pm11.53v with... |
| bj-pm11.53v 36821 | Version of ~ pm11.53v with... |
| bj-pm11.53a 36822 | A variant of ~ pm11.53v . ... |
| bj-equsvt 36823 | A variant of ~ equsv . (C... |
| bj-equsalvwd 36824 | Variant of ~ equsalvw . (... |
| bj-equsexvwd 36825 | Variant of ~ equsexvw . (... |
| bj-sbievwd 36826 | Variant of ~ sbievw . (Co... |
| bj-axc10 36827 | Alternate proof of ~ axc10... |
| bj-alequex 36828 | A fol lemma. See ~ aleque... |
| bj-spimt2 36829 | A step in the proof of ~ s... |
| bj-cbv3ta 36830 | Closed form of ~ cbv3 . (... |
| bj-cbv3tb 36831 | Closed form of ~ cbv3 . (... |
| bj-hbsb3t 36832 | A theorem close to a close... |
| bj-hbsb3 36833 | Shorter proof of ~ hbsb3 .... |
| bj-nfs1t 36834 | A theorem close to a close... |
| bj-nfs1t2 36835 | A theorem close to a close... |
| bj-nfs1 36836 | Shorter proof of ~ nfs1 (t... |
| bj-axc10v 36837 | Version of ~ axc10 with a ... |
| bj-spimtv 36838 | Version of ~ spimt with a ... |
| bj-cbv3hv2 36839 | Version of ~ cbv3h with tw... |
| bj-cbv1hv 36840 | Version of ~ cbv1h with a ... |
| bj-cbv2hv 36841 | Version of ~ cbv2h with a ... |
| bj-cbv2v 36842 | Version of ~ cbv2 with a d... |
| bj-cbvaldv 36843 | Version of ~ cbvald with a... |
| bj-cbvexdv 36844 | Version of ~ cbvexd with a... |
| bj-cbval2vv 36845 | Version of ~ cbval2vv with... |
| bj-cbvex2vv 36846 | Version of ~ cbvex2vv with... |
| bj-cbvaldvav 36847 | Version of ~ cbvaldva with... |
| bj-cbvexdvav 36848 | Version of ~ cbvexdva with... |
| bj-cbvex4vv 36849 | Version of ~ cbvex4v with ... |
| bj-equsalhv 36850 | Version of ~ equsalh with ... |
| bj-axc11nv 36851 | Version of ~ axc11n with a... |
| bj-aecomsv 36852 | Version of ~ aecoms with a... |
| bj-axc11v 36853 | Version of ~ axc11 with a ... |
| bj-drnf2v 36854 | Version of ~ drnf2 with a ... |
| bj-equs45fv 36855 | Version of ~ equs45f with ... |
| bj-hbs1 36856 | Version of ~ hbsb2 with a ... |
| bj-nfs1v 36857 | Version of ~ nfsb2 with a ... |
| bj-hbsb2av 36858 | Version of ~ hbsb2a with a... |
| bj-hbsb3v 36859 | Version of ~ hbsb3 with a ... |
| bj-nfsab1 36860 | Remove dependency on ~ ax-... |
| bj-dtrucor2v 36861 | Version of ~ dtrucor2 with... |
| bj-hbaeb2 36862 | Biconditional version of a... |
| bj-hbaeb 36863 | Biconditional version of ~... |
| bj-hbnaeb 36864 | Biconditional version of ~... |
| bj-dvv 36865 | A special instance of ~ bj... |
| bj-equsal1t 36866 | Duplication of ~ wl-equsal... |
| bj-equsal1ti 36867 | Inference associated with ... |
| bj-equsal1 36868 | One direction of ~ equsal ... |
| bj-equsal2 36869 | One direction of ~ equsal ... |
| bj-equsal 36870 | Shorter proof of ~ equsal ... |
| stdpc5t 36871 | Closed form of ~ stdpc5 . ... |
| bj-stdpc5 36872 | More direct proof of ~ std... |
| 2stdpc5 36873 | A double ~ stdpc5 (one dir... |
| bj-19.21t0 36874 | Proof of ~ 19.21t from ~ s... |
| exlimii 36875 | Inference associated with ... |
| ax11-pm 36876 | Proof of ~ ax-11 similar t... |
| ax6er 36877 | Commuted form of ~ ax6e . ... |
| exlimiieq1 36878 | Inferring a theorem when i... |
| exlimiieq2 36879 | Inferring a theorem when i... |
| ax11-pm2 36880 | Proof of ~ ax-11 from the ... |
| bj-sbsb 36881 | Biconditional showing two ... |
| bj-dfsb2 36882 | Alternate (dual) definitio... |
| bj-sbf3 36883 | Substitution has no effect... |
| bj-sbf4 36884 | Substitution has no effect... |
| bj-eu3f 36885 | Version of ~ eu3v where th... |
| bj-sblem1 36886 | Lemma for substitution. (... |
| bj-sblem2 36887 | Lemma for substitution. (... |
| bj-sblem 36888 | Lemma for substitution. (... |
| bj-sbievw1 36889 | Lemma for substitution. (... |
| bj-sbievw2 36890 | Lemma for substitution. (... |
| bj-sbievw 36891 | Lemma for substitution. C... |
| bj-sbievv 36892 | Version of ~ sbie with a s... |
| bj-moeub 36893 | Uniqueness is equivalent t... |
| bj-sbidmOLD 36894 | Obsolete proof of ~ sbidm ... |
| bj-dvelimdv 36895 | Deduction form of ~ dvelim... |
| bj-dvelimdv1 36896 | Curried (exported) form of... |
| bj-dvelimv 36897 | A version of ~ dvelim usin... |
| bj-nfeel2 36898 | Nonfreeness in a membershi... |
| bj-axc14nf 36899 | Proof of a version of ~ ax... |
| bj-axc14 36900 | Alternate proof of ~ axc14... |
| mobidvALT 36901 | Alternate proof of ~ mobid... |
| sbn1ALT 36902 | Alternate proof of ~ sbn1 ... |
| eliminable1 36903 | A theorem used to prove th... |
| eliminable2a 36904 | A theorem used to prove th... |
| eliminable2b 36905 | A theorem used to prove th... |
| eliminable2c 36906 | A theorem used to prove th... |
| eliminable3a 36907 | A theorem used to prove th... |
| eliminable3b 36908 | A theorem used to prove th... |
| eliminable-velab 36909 | A theorem used to prove th... |
| eliminable-veqab 36910 | A theorem used to prove th... |
| eliminable-abeqv 36911 | A theorem used to prove th... |
| eliminable-abeqab 36912 | A theorem used to prove th... |
| eliminable-abelv 36913 | A theorem used to prove th... |
| eliminable-abelab 36914 | A theorem used to prove th... |
| bj-denoteslem 36915 | Duplicate of ~ issettru an... |
| bj-denotesALTV 36916 | Moved to main as ~ iseqset... |
| bj-issettruALTV 36917 | Moved to main as ~ issettr... |
| bj-elabtru 36918 | This is as close as we can... |
| bj-issetwt 36919 | Closed form of ~ bj-issetw... |
| bj-issetw 36920 | The closest one can get to... |
| bj-issetiv 36921 | Version of ~ bj-isseti wit... |
| bj-isseti 36922 | Version of ~ isseti with a... |
| bj-ralvw 36923 | A weak version of ~ ralv n... |
| bj-rexvw 36924 | A weak version of ~ rexv n... |
| bj-rababw 36925 | A weak version of ~ rabab ... |
| bj-rexcom4bv 36926 | Version of ~ rexcom4b and ... |
| bj-rexcom4b 36927 | Remove from ~ rexcom4b dep... |
| bj-ceqsalt0 36928 | The FOL content of ~ ceqsa... |
| bj-ceqsalt1 36929 | The FOL content of ~ ceqsa... |
| bj-ceqsalt 36930 | Remove from ~ ceqsalt depe... |
| bj-ceqsaltv 36931 | Version of ~ bj-ceqsalt wi... |
| bj-ceqsalg0 36932 | The FOL content of ~ ceqsa... |
| bj-ceqsalg 36933 | Remove from ~ ceqsalg depe... |
| bj-ceqsalgALT 36934 | Alternate proof of ~ bj-ce... |
| bj-ceqsalgv 36935 | Version of ~ bj-ceqsalg wi... |
| bj-ceqsalgvALT 36936 | Alternate proof of ~ bj-ce... |
| bj-ceqsal 36937 | Remove from ~ ceqsal depen... |
| bj-ceqsalv 36938 | Remove from ~ ceqsalv depe... |
| bj-spcimdv 36939 | Remove from ~ spcimdv depe... |
| bj-spcimdvv 36940 | Remove from ~ spcimdv depe... |
| elelb 36941 | Equivalence between two co... |
| bj-pwvrelb 36942 | Characterization of the el... |
| bj-nfcsym 36943 | The nonfreeness quantifier... |
| bj-sbeqALT 36944 | Substitution in an equalit... |
| bj-sbeq 36945 | Distribute proper substitu... |
| bj-sbceqgALT 36946 | Distribute proper substitu... |
| bj-csbsnlem 36947 | Lemma for ~ bj-csbsn (in t... |
| bj-csbsn 36948 | Substitution in a singleto... |
| bj-sbel1 36949 | Version of ~ sbcel1g when ... |
| bj-abv 36950 | The class of sets verifyin... |
| bj-abvALT 36951 | Alternate version of ~ bj-... |
| bj-ab0 36952 | The class of sets verifyin... |
| bj-abf 36953 | Shorter proof of ~ abf (wh... |
| bj-csbprc 36954 | More direct proof of ~ csb... |
| bj-exlimvmpi 36955 | A Fol lemma ( ~ exlimiv fo... |
| bj-exlimmpi 36956 | Lemma for ~ bj-vtoclg1f1 (... |
| bj-exlimmpbi 36957 | Lemma for theorems of the ... |
| bj-exlimmpbir 36958 | Lemma for theorems of the ... |
| bj-vtoclf 36959 | Remove dependency on ~ ax-... |
| bj-vtocl 36960 | Remove dependency on ~ ax-... |
| bj-vtoclg1f1 36961 | The FOL content of ~ vtocl... |
| bj-vtoclg1f 36962 | Reprove ~ vtoclg1f from ~ ... |
| bj-vtoclg1fv 36963 | Version of ~ bj-vtoclg1f w... |
| bj-vtoclg 36964 | A version of ~ vtoclg with... |
| bj-rabeqbid 36965 | Version of ~ rabeqbidv wit... |
| bj-seex 36966 | Version of ~ seex with a d... |
| bj-nfcf 36967 | Version of ~ df-nfc with a... |
| bj-zfauscl 36968 | General version of ~ zfaus... |
| bj-elabd2ALT 36969 | Alternate proof of ~ elabd... |
| bj-unrab 36970 | Generalization of ~ unrab ... |
| bj-inrab 36971 | Generalization of ~ inrab ... |
| bj-inrab2 36972 | Shorter proof of ~ inrab .... |
| bj-inrab3 36973 | Generalization of ~ dfrab3... |
| bj-rabtr 36974 | Restricted class abstracti... |
| bj-rabtrALT 36975 | Alternate proof of ~ bj-ra... |
| bj-rabtrAUTO 36976 | Proof of ~ bj-rabtr found ... |
| bj-gabss 36979 | Inclusion of generalized c... |
| bj-gabssd 36980 | Inclusion of generalized c... |
| bj-gabeqd 36981 | Equality of generalized cl... |
| bj-gabeqis 36982 | Equality of generalized cl... |
| bj-elgab 36983 | Elements of a generalized ... |
| bj-gabima 36984 | Generalized class abstract... |
| bj-ru1 36987 | A version of Russell's par... |
| bj-ru 36988 | Remove dependency on ~ ax-... |
| currysetlem 36989 | Lemma for ~ currysetlem , ... |
| curryset 36990 | Curry's paradox in set the... |
| currysetlem1 36991 | Lemma for ~ currysetALT . ... |
| currysetlem2 36992 | Lemma for ~ currysetALT . ... |
| currysetlem3 36993 | Lemma for ~ currysetALT . ... |
| currysetALT 36994 | Alternate proof of ~ curry... |
| bj-n0i 36995 | Inference associated with ... |
| bj-disjsn01 36996 | Disjointness of the single... |
| bj-0nel1 36997 | The empty set does not bel... |
| bj-1nel0 36998 | ` 1o ` does not belong to ... |
| bj-xpimasn 36999 | The image of a singleton, ... |
| bj-xpima1sn 37000 | The image of a singleton b... |
| bj-xpima1snALT 37001 | Alternate proof of ~ bj-xp... |
| bj-xpima2sn 37002 | The image of a singleton b... |
| bj-xpnzex 37003 | If the first factor of a p... |
| bj-xpexg2 37004 | Curried (exported) form of... |
| bj-xpnzexb 37005 | If the first factor of a p... |
| bj-cleq 37006 | Substitution property for ... |
| bj-snsetex 37007 | The class of sets "whose s... |
| bj-clexab 37008 | Sethood of certain classes... |
| bj-sngleq 37011 | Substitution property for ... |
| bj-elsngl 37012 | Characterization of the el... |
| bj-snglc 37013 | Characterization of the el... |
| bj-snglss 37014 | The singletonization of a ... |
| bj-0nelsngl 37015 | The empty set is not a mem... |
| bj-snglinv 37016 | Inverse of singletonizatio... |
| bj-snglex 37017 | A class is a set if and on... |
| bj-tageq 37020 | Substitution property for ... |
| bj-eltag 37021 | Characterization of the el... |
| bj-0eltag 37022 | The empty set belongs to t... |
| bj-tagn0 37023 | The tagging of a class is ... |
| bj-tagss 37024 | The tagging of a class is ... |
| bj-snglsstag 37025 | The singletonization is in... |
| bj-sngltagi 37026 | The singletonization is in... |
| bj-sngltag 37027 | The singletonization and t... |
| bj-tagci 37028 | Characterization of the el... |
| bj-tagcg 37029 | Characterization of the el... |
| bj-taginv 37030 | Inverse of tagging. (Cont... |
| bj-tagex 37031 | A class is a set if and on... |
| bj-xtageq 37032 | The products of a given cl... |
| bj-xtagex 37033 | The product of a set and t... |
| bj-projeq 37036 | Substitution property for ... |
| bj-projeq2 37037 | Substitution property for ... |
| bj-projun 37038 | The class projection on a ... |
| bj-projex 37039 | Sethood of the class proje... |
| bj-projval 37040 | Value of the class project... |
| bj-1upleq 37043 | Substitution property for ... |
| bj-pr1eq 37046 | Substitution property for ... |
| bj-pr1un 37047 | The first projection prese... |
| bj-pr1val 37048 | Value of the first project... |
| bj-pr11val 37049 | Value of the first project... |
| bj-pr1ex 37050 | Sethood of the first proje... |
| bj-1uplth 37051 | The characteristic propert... |
| bj-1uplex 37052 | A monuple is a set if and ... |
| bj-1upln0 37053 | A monuple is nonempty. (C... |
| bj-2upleq 37056 | Substitution property for ... |
| bj-pr21val 37057 | Value of the first project... |
| bj-pr2eq 37060 | Substitution property for ... |
| bj-pr2un 37061 | The second projection pres... |
| bj-pr2val 37062 | Value of the second projec... |
| bj-pr22val 37063 | Value of the second projec... |
| bj-pr2ex 37064 | Sethood of the second proj... |
| bj-2uplth 37065 | The characteristic propert... |
| bj-2uplex 37066 | A couple is a set if and o... |
| bj-2upln0 37067 | A couple is nonempty. (Co... |
| bj-2upln1upl 37068 | A couple is never equal to... |
| bj-rcleqf 37069 | Relative version of ~ cleq... |
| bj-rcleq 37070 | Relative version of ~ dfcl... |
| bj-reabeq 37071 | Relative form of ~ eqabb .... |
| bj-disj2r 37072 | Relative version of ~ ssdi... |
| bj-sscon 37073 | Contraposition law for rel... |
| bj-abex 37074 | Two ways of stating that t... |
| bj-clex 37075 | Two ways of stating that a... |
| bj-axsn 37076 | Two ways of stating the ax... |
| bj-snexg 37078 | A singleton built on a set... |
| bj-snex 37079 | A singleton is a set. See... |
| bj-axbun 37080 | Two ways of stating the ax... |
| bj-unexg 37082 | Existence of binary unions... |
| bj-prexg 37083 | Existence of unordered pai... |
| bj-prex 37084 | Existence of unordered pai... |
| bj-axadj 37085 | Two ways of stating the ax... |
| bj-adjg1 37087 | Existence of the result of... |
| bj-snfromadj 37088 | Singleton from adjunction ... |
| bj-prfromadj 37089 | Unordered pair from adjunc... |
| bj-adjfrombun 37090 | Adjunction from singleton ... |
| eleq2w2ALT 37091 | Alternate proof of ~ eleq2... |
| bj-clel3gALT 37092 | Alternate proof of ~ clel3... |
| bj-pw0ALT 37093 | Alternate proof of ~ pw0 .... |
| bj-sselpwuni 37094 | Quantitative version of ~ ... |
| bj-unirel 37095 | Quantitative version of ~ ... |
| bj-elpwg 37096 | If the intersection of two... |
| bj-velpwALT 37097 | This theorem ~ bj-velpwALT... |
| bj-elpwgALT 37098 | Alternate proof of ~ elpwg... |
| bj-vjust 37099 | Justification theorem for ... |
| bj-nul 37100 | Two formulations of the ax... |
| bj-nuliota 37101 | Definition of the empty se... |
| bj-nuliotaALT 37102 | Alternate proof of ~ bj-nu... |
| bj-vtoclgfALT 37103 | Alternate proof of ~ vtocl... |
| bj-elsn12g 37104 | Join of ~ elsng and ~ elsn... |
| bj-elsnb 37105 | Biconditional version of ~... |
| bj-pwcfsdom 37106 | Remove hypothesis from ~ p... |
| bj-grur1 37107 | Remove hypothesis from ~ g... |
| bj-bm1.3ii 37108 | The extension of a predica... |
| bj-dfid2ALT 37109 | Alternate version of ~ dfi... |
| bj-0nelopab 37110 | The empty set is never an ... |
| bj-brrelex12ALT 37111 | Two classes related by a b... |
| bj-epelg 37112 | The membership relation an... |
| bj-epelb 37113 | Two classes are related by... |
| bj-nsnid 37114 | A set does not contain the... |
| bj-rdg0gALT 37115 | Alternate proof of ~ rdg0g... |
| bj-evaleq 37116 | Equality theorem for the `... |
| bj-evalfun 37117 | The evaluation at a class ... |
| bj-evalfn 37118 | The evaluation at a class ... |
| bj-evalval 37119 | Value of the evaluation at... |
| bj-evalid 37120 | The evaluation at a set of... |
| bj-ndxarg 37121 | Proof of ~ ndxarg from ~ b... |
| bj-evalidval 37122 | Closed general form of ~ s... |
| bj-rest00 37125 | An elementwise intersectio... |
| bj-restsn 37126 | An elementwise intersectio... |
| bj-restsnss 37127 | Special case of ~ bj-rests... |
| bj-restsnss2 37128 | Special case of ~ bj-rests... |
| bj-restsn0 37129 | An elementwise intersectio... |
| bj-restsn10 37130 | Special case of ~ bj-rests... |
| bj-restsnid 37131 | The elementwise intersecti... |
| bj-rest10 37132 | An elementwise intersectio... |
| bj-rest10b 37133 | Alternate version of ~ bj-... |
| bj-restn0 37134 | An elementwise intersectio... |
| bj-restn0b 37135 | Alternate version of ~ bj-... |
| bj-restpw 37136 | The elementwise intersecti... |
| bj-rest0 37137 | An elementwise intersectio... |
| bj-restb 37138 | An elementwise intersectio... |
| bj-restv 37139 | An elementwise intersectio... |
| bj-resta 37140 | An elementwise intersectio... |
| bj-restuni 37141 | The union of an elementwis... |
| bj-restuni2 37142 | The union of an elementwis... |
| bj-restreg 37143 | A reformulation of the axi... |
| bj-raldifsn 37144 | All elements in a set sati... |
| bj-0int 37145 | If ` A ` is a collection o... |
| bj-mooreset 37146 | A Moore collection is a se... |
| bj-ismoore 37149 | Characterization of Moore ... |
| bj-ismoored0 37150 | Necessary condition to be ... |
| bj-ismoored 37151 | Necessary condition to be ... |
| bj-ismoored2 37152 | Necessary condition to be ... |
| bj-ismooredr 37153 | Sufficient condition to be... |
| bj-ismooredr2 37154 | Sufficient condition to be... |
| bj-discrmoore 37155 | The powerclass ` ~P A ` is... |
| bj-0nmoore 37156 | The empty set is not a Moo... |
| bj-snmoore 37157 | A singleton is a Moore col... |
| bj-snmooreb 37158 | A singleton is a Moore col... |
| bj-prmoore 37159 | A pair formed of two neste... |
| bj-0nelmpt 37160 | The empty set is not an el... |
| bj-mptval 37161 | Value of a function given ... |
| bj-dfmpoa 37162 | An equivalent definition o... |
| bj-mpomptALT 37163 | Alternate proof of ~ mpomp... |
| setsstrset 37180 | Relation between ~ df-sets... |
| bj-nfald 37181 | Variant of ~ nfald . (Con... |
| bj-nfexd 37182 | Variant of ~ nfexd . (Con... |
| copsex2d 37183 | Implicit substitution dedu... |
| copsex2b 37184 | Biconditional form of ~ co... |
| opelopabd 37185 | Membership of an ordere pa... |
| opelopabb 37186 | Membership of an ordered p... |
| opelopabbv 37187 | Membership of an ordered p... |
| bj-opelrelex 37188 | The coordinates of an orde... |
| bj-opelresdm 37189 | If an ordered pair is in a... |
| bj-brresdm 37190 | If two classes are related... |
| brabd0 37191 | Expressing that two sets a... |
| brabd 37192 | Expressing that two sets a... |
| bj-brab2a1 37193 | "Unbounded" version of ~ b... |
| bj-opabssvv 37194 | A variant of ~ relopabiv (... |
| bj-funidres 37195 | The restricted identity re... |
| bj-opelidb 37196 | Characterization of the or... |
| bj-opelidb1 37197 | Characterization of the or... |
| bj-inexeqex 37198 | Lemma for ~ bj-opelid (but... |
| bj-elsn0 37199 | If the intersection of two... |
| bj-opelid 37200 | Characterization of the or... |
| bj-ideqg 37201 | Characterization of the cl... |
| bj-ideqgALT 37202 | Alternate proof of ~ bj-id... |
| bj-ideqb 37203 | Characterization of classe... |
| bj-idres 37204 | Alternate expression for t... |
| bj-opelidres 37205 | Characterization of the or... |
| bj-idreseq 37206 | Sufficient condition for t... |
| bj-idreseqb 37207 | Characterization for two c... |
| bj-ideqg1 37208 | For sets, the identity rel... |
| bj-ideqg1ALT 37209 | Alternate proof of bj-ideq... |
| bj-opelidb1ALT 37210 | Characterization of the co... |
| bj-elid3 37211 | Characterization of the co... |
| bj-elid4 37212 | Characterization of the el... |
| bj-elid5 37213 | Characterization of the el... |
| bj-elid6 37214 | Characterization of the el... |
| bj-elid7 37215 | Characterization of the el... |
| bj-diagval 37218 | Value of the functionalize... |
| bj-diagval2 37219 | Value of the functionalize... |
| bj-eldiag 37220 | Characterization of the el... |
| bj-eldiag2 37221 | Characterization of the el... |
| bj-imdirvallem 37224 | Lemma for ~ bj-imdirval an... |
| bj-imdirval 37225 | Value of the functionalize... |
| bj-imdirval2lem 37226 | Lemma for ~ bj-imdirval2 a... |
| bj-imdirval2 37227 | Value of the functionalize... |
| bj-imdirval3 37228 | Value of the functionalize... |
| bj-imdiridlem 37229 | Lemma for ~ bj-imdirid and... |
| bj-imdirid 37230 | Functorial property of the... |
| bj-opelopabid 37231 | Membership in an ordered-p... |
| bj-opabco 37232 | Composition of ordered-pai... |
| bj-xpcossxp 37233 | The composition of two Car... |
| bj-imdirco 37234 | Functorial property of the... |
| bj-iminvval 37237 | Value of the functionalize... |
| bj-iminvval2 37238 | Value of the functionalize... |
| bj-iminvid 37239 | Functorial property of the... |
| bj-inftyexpitaufo 37246 | The function ` inftyexpita... |
| bj-inftyexpitaudisj 37249 | An element of the circle a... |
| bj-inftyexpiinv 37252 | Utility theorem for the in... |
| bj-inftyexpiinj 37253 | Injectivity of the paramet... |
| bj-inftyexpidisj 37254 | An element of the circle a... |
| bj-ccinftydisj 37257 | The circle at infinity is ... |
| bj-elccinfty 37258 | A lemma for infinite exten... |
| bj-ccssccbar 37261 | Complex numbers are extend... |
| bj-ccinftyssccbar 37262 | Infinite extended complex ... |
| bj-pinftyccb 37265 | The class ` pinfty ` is an... |
| bj-pinftynrr 37266 | The extended complex numbe... |
| bj-minftyccb 37269 | The class ` minfty ` is an... |
| bj-minftynrr 37270 | The extended complex numbe... |
| bj-pinftynminfty 37271 | The extended complex numbe... |
| bj-rrhatsscchat 37280 | The real projective line i... |
| bj-imafv 37295 | If the direct image of a s... |
| bj-funun 37296 | Value of a function expres... |
| bj-fununsn1 37297 | Value of a function expres... |
| bj-fununsn2 37298 | Value of a function expres... |
| bj-fvsnun1 37299 | The value of a function wi... |
| bj-fvsnun2 37300 | The value of a function wi... |
| bj-fvmptunsn1 37301 | Value of a function expres... |
| bj-fvmptunsn2 37302 | Value of a function expres... |
| bj-iomnnom 37303 | The canonical bijection fr... |
| bj-smgrpssmgm 37312 | Semigroups are magmas. (C... |
| bj-smgrpssmgmel 37313 | Semigroups are magmas (ele... |
| bj-mndsssmgrp 37314 | Monoids are semigroups. (... |
| bj-mndsssmgrpel 37315 | Monoids are semigroups (el... |
| bj-cmnssmnd 37316 | Commutative monoids are mo... |
| bj-cmnssmndel 37317 | Commutative monoids are mo... |
| bj-grpssmnd 37318 | Groups are monoids. (Cont... |
| bj-grpssmndel 37319 | Groups are monoids (elemen... |
| bj-ablssgrp 37320 | Abelian groups are groups.... |
| bj-ablssgrpel 37321 | Abelian groups are groups ... |
| bj-ablsscmn 37322 | Abelian groups are commuta... |
| bj-ablsscmnel 37323 | Abelian groups are commuta... |
| bj-modssabl 37324 | (The additive groups of) m... |
| bj-vecssmod 37325 | Vector spaces are modules.... |
| bj-vecssmodel 37326 | Vector spaces are modules ... |
| bj-finsumval0 37329 | Value of a finite sum. (C... |
| bj-fvimacnv0 37330 | Variant of ~ fvimacnv wher... |
| bj-isvec 37331 | The predicate "is a vector... |
| bj-fldssdrng 37332 | Fields are division rings.... |
| bj-flddrng 37333 | Fields are division rings ... |
| bj-rrdrg 37334 | The field of real numbers ... |
| bj-isclm 37335 | The predicate "is a subcom... |
| bj-isrvec 37338 | The predicate "is a real v... |
| bj-rvecmod 37339 | Real vector spaces are mod... |
| bj-rvecssmod 37340 | Real vector spaces are mod... |
| bj-rvecrr 37341 | The field of scalars of a ... |
| bj-isrvecd 37342 | The predicate "is a real v... |
| bj-rvecvec 37343 | Real vector spaces are vec... |
| bj-isrvec2 37344 | The predicate "is a real v... |
| bj-rvecssvec 37345 | Real vector spaces are vec... |
| bj-rveccmod 37346 | Real vector spaces are sub... |
| bj-rvecsscmod 37347 | Real vector spaces are sub... |
| bj-rvecsscvec 37348 | Real vector spaces are sub... |
| bj-rveccvec 37349 | Real vector spaces are sub... |
| bj-rvecssabl 37350 | (The additive groups of) r... |
| bj-rvecabl 37351 | (The additive groups of) r... |
| bj-subcom 37352 | A consequence of commutati... |
| bj-lineqi 37353 | Solution of a (scalar) lin... |
| bj-bary1lem 37354 | Lemma for ~ bj-bary1 : exp... |
| bj-bary1lem1 37355 | Lemma for ~ bj-bary1 : com... |
| bj-bary1 37356 | Barycentric coordinates in... |
| bj-endval 37359 | Value of the monoid of end... |
| bj-endbase 37360 | Base set of the monoid of ... |
| bj-endcomp 37361 | Composition law of the mon... |
| bj-endmnd 37362 | The monoid of endomorphism... |
| taupilem3 37363 | Lemma for tau-related theo... |
| taupilemrplb 37364 | A set of positive reals ha... |
| taupilem1 37365 | Lemma for ~ taupi . A pos... |
| taupilem2 37366 | Lemma for ~ taupi . The s... |
| taupi 37367 | Relationship between ` _ta... |
| dfgcd3 37368 | Alternate definition of th... |
| irrdifflemf 37369 | Lemma for ~ irrdiff . The... |
| irrdiff 37370 | The irrationals are exactl... |
| iccioo01 37371 | The closed unit interval i... |
| csbrecsg 37372 | Move class substitution in... |
| csbrdgg 37373 | Move class substitution in... |
| csboprabg 37374 | Move class substitution in... |
| csbmpo123 37375 | Move class substitution in... |
| con1bii2 37376 | A contraposition inference... |
| con2bii2 37377 | A contraposition inference... |
| vtoclefex 37378 | Implicit substitution of a... |
| rnmptsn 37379 | The range of a function ma... |
| f1omptsnlem 37380 | This is the core of the pr... |
| f1omptsn 37381 | A function mapping to sing... |
| mptsnunlem 37382 | This is the core of the pr... |
| mptsnun 37383 | A class ` B ` is equal to ... |
| dissneqlem 37384 | This is the core of the pr... |
| dissneq 37385 | Any topology that contains... |
| exlimim 37386 | Closed form of ~ exlimimd ... |
| exlimimd 37387 | Existential elimination ru... |
| exellim 37388 | Closed form of ~ exellimdd... |
| exellimddv 37389 | Eliminate an antecedent wh... |
| topdifinfindis 37390 | Part of Exercise 3 of [Mun... |
| topdifinffinlem 37391 | This is the core of the pr... |
| topdifinffin 37392 | Part of Exercise 3 of [Mun... |
| topdifinf 37393 | Part of Exercise 3 of [Mun... |
| topdifinfeq 37394 | Two different ways of defi... |
| icorempo 37395 | Closed-below, open-above i... |
| icoreresf 37396 | Closed-below, open-above i... |
| icoreval 37397 | Value of the closed-below,... |
| icoreelrnab 37398 | Elementhood in the set of ... |
| isbasisrelowllem1 37399 | Lemma for ~ isbasisrelowl ... |
| isbasisrelowllem2 37400 | Lemma for ~ isbasisrelowl ... |
| icoreclin 37401 | The set of closed-below, o... |
| isbasisrelowl 37402 | The set of all closed-belo... |
| icoreunrn 37403 | The union of all closed-be... |
| istoprelowl 37404 | The set of all closed-belo... |
| icoreelrn 37405 | A class abstraction which ... |
| iooelexlt 37406 | An element of an open inte... |
| relowlssretop 37407 | The lower limit topology o... |
| relowlpssretop 37408 | The lower limit topology o... |
| sucneqond 37409 | Inequality of an ordinal s... |
| sucneqoni 37410 | Inequality of an ordinal s... |
| onsucuni3 37411 | If an ordinal number has a... |
| 1oequni2o 37412 | The ordinal number ` 1o ` ... |
| rdgsucuni 37413 | If an ordinal number has a... |
| rdgeqoa 37414 | If a recursive function wi... |
| elxp8 37415 | Membership in a Cartesian ... |
| cbveud 37416 | Deduction used to change b... |
| cbvreud 37417 | Deduction used to change b... |
| difunieq 37418 | The difference of unions i... |
| inunissunidif 37419 | Theorem about subsets of t... |
| rdgellim 37420 | Elementhood in a recursive... |
| rdglimss 37421 | A recursive definition at ... |
| rdgssun 37422 | In a recursive definition ... |
| exrecfnlem 37423 | Lemma for ~ exrecfn . (Co... |
| exrecfn 37424 | Theorem about the existenc... |
| exrecfnpw 37425 | For any base set, a set wh... |
| finorwe 37426 | If the Axiom of Infinity i... |
| dffinxpf 37429 | This theorem is the same a... |
| finxpeq1 37430 | Equality theorem for Carte... |
| finxpeq2 37431 | Equality theorem for Carte... |
| csbfinxpg 37432 | Distribute proper substitu... |
| finxpreclem1 37433 | Lemma for ` ^^ ` recursion... |
| finxpreclem2 37434 | Lemma for ` ^^ ` recursion... |
| finxp0 37435 | The value of Cartesian exp... |
| finxp1o 37436 | The value of Cartesian exp... |
| finxpreclem3 37437 | Lemma for ` ^^ ` recursion... |
| finxpreclem4 37438 | Lemma for ` ^^ ` recursion... |
| finxpreclem5 37439 | Lemma for ` ^^ ` recursion... |
| finxpreclem6 37440 | Lemma for ` ^^ ` recursion... |
| finxpsuclem 37441 | Lemma for ~ finxpsuc . (C... |
| finxpsuc 37442 | The value of Cartesian exp... |
| finxp2o 37443 | The value of Cartesian exp... |
| finxp3o 37444 | The value of Cartesian exp... |
| finxpnom 37445 | Cartesian exponentiation w... |
| finxp00 37446 | Cartesian exponentiation o... |
| iunctb2 37447 | Using the axiom of countab... |
| domalom 37448 | A class which dominates ev... |
| isinf2 37449 | The converse of ~ isinf . ... |
| ctbssinf 37450 | Using the axiom of choice,... |
| ralssiun 37451 | The index set of an indexe... |
| nlpineqsn 37452 | For every point ` p ` of a... |
| nlpfvineqsn 37453 | Given a subset ` A ` of ` ... |
| fvineqsnf1 37454 | A theorem about functions ... |
| fvineqsneu 37455 | A theorem about functions ... |
| fvineqsneq 37456 | A theorem about functions ... |
| pibp16 37457 | Property P000016 of pi-bas... |
| pibp19 37458 | Property P000019 of pi-bas... |
| pibp21 37459 | Property P000021 of pi-bas... |
| pibt1 37460 | Theorem T000001 of pi-base... |
| pibt2 37461 | Theorem T000002 of pi-base... |
| wl-section-prop 37462 | Intuitionistic logic is no... |
| wl-section-boot 37466 | In this section, I provide... |
| wl-luk-imim1i 37467 | Inference adding common co... |
| wl-luk-syl 37468 | An inference version of th... |
| wl-luk-imtrid 37469 | A syllogism rule of infere... |
| wl-luk-pm2.18d 37470 | Deduction based on reducti... |
| wl-luk-con4i 37471 | Inference rule. Copy of ~... |
| wl-luk-pm2.24i 37472 | Inference rule. Copy of ~... |
| wl-luk-a1i 37473 | Inference rule. Copy of ~... |
| wl-luk-mpi 37474 | A nested _modus ponens_ in... |
| wl-luk-imim2i 37475 | Inference adding common an... |
| wl-luk-imtrdi 37476 | A syllogism rule of infere... |
| wl-luk-ax3 37477 | ~ ax-3 proved from Lukasie... |
| wl-luk-ax1 37478 | ~ ax-1 proved from Lukasie... |
| wl-luk-pm2.27 37479 | This theorem, called "Asse... |
| wl-luk-com12 37480 | Inference that swaps (comm... |
| wl-luk-pm2.21 37481 | From a wff and its negatio... |
| wl-luk-con1i 37482 | A contraposition inference... |
| wl-luk-ja 37483 | Inference joining the ante... |
| wl-luk-imim2 37484 | A closed form of syllogism... |
| wl-luk-a1d 37485 | Deduction introducing an e... |
| wl-luk-ax2 37486 | ~ ax-2 proved from Lukasie... |
| wl-luk-id 37487 | Principle of identity. Th... |
| wl-luk-notnotr 37488 | Converse of double negatio... |
| wl-luk-pm2.04 37489 | Swap antecedents. Theorem... |
| wl-section-impchain 37490 | An implication like ` ( ps... |
| wl-impchain-mp-x 37491 | This series of theorems pr... |
| wl-impchain-mp-0 37492 | This theorem is the start ... |
| wl-impchain-mp-1 37493 | This theorem is in fact a ... |
| wl-impchain-mp-2 37494 | This theorem is in fact a ... |
| wl-impchain-com-1.x 37495 | It is often convenient to ... |
| wl-impchain-com-1.1 37496 | A degenerate form of antec... |
| wl-impchain-com-1.2 37497 | This theorem is in fact a ... |
| wl-impchain-com-1.3 37498 | This theorem is in fact a ... |
| wl-impchain-com-1.4 37499 | This theorem is in fact a ... |
| wl-impchain-com-n.m 37500 | This series of theorems al... |
| wl-impchain-com-2.3 37501 | This theorem is in fact a ... |
| wl-impchain-com-2.4 37502 | This theorem is in fact a ... |
| wl-impchain-com-3.2.1 37503 | This theorem is in fact a ... |
| wl-impchain-a1-x 37504 | If an implication chain is... |
| wl-impchain-a1-1 37505 | Inference rule, a copy of ... |
| wl-impchain-a1-2 37506 | Inference rule, a copy of ... |
| wl-impchain-a1-3 37507 | Inference rule, a copy of ... |
| wl-ifp-ncond1 37508 | If one case of an ` if- ` ... |
| wl-ifp-ncond2 37509 | If one case of an ` if- ` ... |
| wl-ifpimpr 37510 | If one case of an ` if- ` ... |
| wl-ifp4impr 37511 | If one case of an ` if- ` ... |
| wl-df-3xor 37512 | Alternative definition of ... |
| wl-df3xor2 37513 | Alternative definition of ... |
| wl-df3xor3 37514 | Alternative form of ~ wl-d... |
| wl-3xortru 37515 | If the first input is true... |
| wl-3xorfal 37516 | If the first input is fals... |
| wl-3xorbi 37517 | Triple xor can be replaced... |
| wl-3xorbi2 37518 | Alternative form of ~ wl-3... |
| wl-3xorbi123d 37519 | Equivalence theorem for tr... |
| wl-3xorbi123i 37520 | Equivalence theorem for tr... |
| wl-3xorrot 37521 | Rotation law for triple xo... |
| wl-3xorcoma 37522 | Commutative law for triple... |
| wl-3xorcomb 37523 | Commutative law for triple... |
| wl-3xornot1 37524 | Flipping the first input f... |
| wl-3xornot 37525 | Triple xor distributes ove... |
| wl-1xor 37526 | In the recursive scheme ... |
| wl-2xor 37527 | In the recursive scheme ... |
| wl-df-3mintru2 37528 | Alternative definition of ... |
| wl-df2-3mintru2 37529 | The adder carry in disjunc... |
| wl-df3-3mintru2 37530 | The adder carry in conjunc... |
| wl-df4-3mintru2 37531 | An alternative definition ... |
| wl-1mintru1 37532 | Using the recursion formul... |
| wl-1mintru2 37533 | Using the recursion formul... |
| wl-2mintru1 37534 | Using the recursion formul... |
| wl-2mintru2 37535 | Using the recursion formul... |
| wl-df3maxtru1 37536 | Assuming "(n+1)-maxtru1" `... |
| wl-ax13lem1 37538 | A version of ~ ax-wl-13v w... |
| wl-cleq-0 37539 |
Disclaimer: |
| wl-cleq-1 37540 |
Disclaimer: |
| wl-cleq-2 37541 |
Disclaimer: |
| wl-cleq-3 37542 |
Disclaimer: |
| wl-cleq-4 37543 |
Disclaimer: |
| wl-cleq-5 37544 |
Disclaimer: |
| wl-cleq-6 37545 |
Disclaimer: |
| wl-df-clab 37548 | Disclaimer: The material ... |
| wl-isseteq 37549 | A class equal to a set var... |
| wl-ax12v2cl 37550 | The class version of ~ ax1... |
| wl-mps 37551 | Replacing a nested consequ... |
| wl-syls1 37552 | Replacing a nested consequ... |
| wl-syls2 37553 | Replacing a nested anteced... |
| wl-embant 37554 | A true wff can always be a... |
| wl-orel12 37555 | In a conjunctive normal fo... |
| wl-cases2-dnf 37556 | A particular instance of ~... |
| wl-cbvmotv 37557 | Change bound variable. Us... |
| wl-moteq 37558 | Change bound variable. Us... |
| wl-motae 37559 | Change bound variable. Us... |
| wl-moae 37560 | Two ways to express "at mo... |
| wl-euae 37561 | Two ways to express "exact... |
| wl-nax6im 37562 | The following series of th... |
| wl-hbae1 37563 | This specialization of ~ h... |
| wl-naevhba1v 37564 | An instance of ~ hbn1w app... |
| wl-spae 37565 | Prove an instance of ~ sp ... |
| wl-speqv 37566 | Under the assumption ` -. ... |
| wl-19.8eqv 37567 | Under the assumption ` -. ... |
| wl-19.2reqv 37568 | Under the assumption ` -. ... |
| wl-nfalv 37569 | If ` x ` is not present in... |
| wl-nfimf1 37570 | An antecedent is irrelevan... |
| wl-nfae1 37571 | Unlike ~ nfae , this speci... |
| wl-nfnae1 37572 | Unlike ~ nfnae , this spec... |
| wl-aetr 37573 | A transitive law for varia... |
| wl-axc11r 37574 | Same as ~ axc11r , but usi... |
| wl-dral1d 37575 | A version of ~ dral1 with ... |
| wl-cbvalnaed 37576 | ~ wl-cbvalnae with a conte... |
| wl-cbvalnae 37577 | A more general version of ... |
| wl-exeq 37578 | The semantics of ` E. x y ... |
| wl-aleq 37579 | The semantics of ` A. x y ... |
| wl-nfeqfb 37580 | Extend ~ nfeqf to an equiv... |
| wl-nfs1t 37581 | If ` y ` is not free in ` ... |
| wl-equsalvw 37582 | Version of ~ equsalv with ... |
| wl-equsald 37583 | Deduction version of ~ equ... |
| wl-equsaldv 37584 | Deduction version of ~ equ... |
| wl-equsal 37585 | A useful equivalence relat... |
| wl-equsal1t 37586 | The expression ` x = y ` i... |
| wl-equsalcom 37587 | This simple equivalence ea... |
| wl-equsal1i 37588 | The antecedent ` x = y ` i... |
| wl-sbid2ft 37589 | A more general version of ... |
| wl-cbvalsbi 37590 | Change bounded variables i... |
| wl-sbrimt 37591 | Substitution with a variab... |
| wl-sblimt 37592 | Substitution with a variab... |
| wl-sb9v 37593 | Commutation of quantificat... |
| wl-sb8ft 37594 | Substitution of variable i... |
| wl-sb8eft 37595 | Substitution of variable i... |
| wl-sb8t 37596 | Substitution of variable i... |
| wl-sb8et 37597 | Substitution of variable i... |
| wl-sbhbt 37598 | Closed form of ~ sbhb . C... |
| wl-sbnf1 37599 | Two ways expressing that `... |
| wl-equsb3 37600 | ~ equsb3 with a distinctor... |
| wl-equsb4 37601 | Substitution applied to an... |
| wl-2sb6d 37602 | Version of ~ 2sb6 with a c... |
| wl-sbcom2d-lem1 37603 | Lemma used to prove ~ wl-s... |
| wl-sbcom2d-lem2 37604 | Lemma used to prove ~ wl-s... |
| wl-sbcom2d 37605 | Version of ~ sbcom2 with a... |
| wl-sbalnae 37606 | A theorem used in eliminat... |
| wl-sbal1 37607 | A theorem used in eliminat... |
| wl-sbal2 37608 | Move quantifier in and out... |
| wl-2spsbbi 37609 | ~ spsbbi applied twice. (... |
| wl-lem-exsb 37610 | This theorem provides a ba... |
| wl-lem-nexmo 37611 | This theorem provides a ba... |
| wl-lem-moexsb 37612 | The antecedent ` A. x ( ph... |
| wl-alanbii 37613 | This theorem extends ~ ala... |
| wl-mo2df 37614 | Version of ~ mof with a co... |
| wl-mo2tf 37615 | Closed form of ~ mof with ... |
| wl-eudf 37616 | Version of ~ eu6 with a co... |
| wl-eutf 37617 | Closed form of ~ eu6 with ... |
| wl-euequf 37618 | ~ euequ proved with a dist... |
| wl-mo2t 37619 | Closed form of ~ mof . (C... |
| wl-mo3t 37620 | Closed form of ~ mo3 . (C... |
| wl-nfsbtv 37621 | Closed form of ~ nfsbv . ... |
| wl-sb8eut 37622 | Substitution of variable i... |
| wl-sb8eutv 37623 | Substitution of variable i... |
| wl-sb8mot 37624 | Substitution of variable i... |
| wl-sb8motv 37625 | Substitution of variable i... |
| wl-issetft 37626 | A closed form of ~ issetf ... |
| wl-axc11rc11 37627 | Proving ~ axc11r from ~ ax... |
| wl-ax11-lem1 37629 | A transitive law for varia... |
| wl-ax11-lem2 37630 | Lemma. (Contributed by Wo... |
| wl-ax11-lem3 37631 | Lemma. (Contributed by Wo... |
| wl-ax11-lem4 37632 | Lemma. (Contributed by Wo... |
| wl-ax11-lem5 37633 | Lemma. (Contributed by Wo... |
| wl-ax11-lem6 37634 | Lemma. (Contributed by Wo... |
| wl-ax11-lem7 37635 | Lemma. (Contributed by Wo... |
| wl-ax11-lem8 37636 | Lemma. (Contributed by Wo... |
| wl-ax11-lem9 37637 | The easy part when ` x ` c... |
| wl-ax11-lem10 37638 | We now have prepared every... |
| wl-clabv 37639 | Variant of ~ df-clab , whe... |
| wl-dfclab 37640 | Rederive ~ df-clab from ~ ... |
| wl-clabtv 37641 | Using class abstraction in... |
| wl-clabt 37642 | Using class abstraction in... |
| rabiun 37643 | Abstraction restricted to ... |
| iundif1 37644 | Indexed union of class dif... |
| imadifss 37645 | The difference of images i... |
| cureq 37646 | Equality theorem for curry... |
| unceq 37647 | Equality theorem for uncur... |
| curf 37648 | Functional property of cur... |
| uncf 37649 | Functional property of unc... |
| curfv 37650 | Value of currying. (Contr... |
| uncov 37651 | Value of uncurrying. (Con... |
| curunc 37652 | Currying of uncurrying. (... |
| unccur 37653 | Uncurrying of currying. (... |
| phpreu 37654 | Theorem related to pigeonh... |
| finixpnum 37655 | A finite Cartesian product... |
| fin2solem 37656 | Lemma for ~ fin2so . (Con... |
| fin2so 37657 | Any totally ordered Tarski... |
| ltflcei 37658 | Theorem to move the floor ... |
| leceifl 37659 | Theorem to move the floor ... |
| sin2h 37660 | Half-angle rule for sine. ... |
| cos2h 37661 | Half-angle rule for cosine... |
| tan2h 37662 | Half-angle rule for tangen... |
| lindsadd 37663 | In a vector space, the uni... |
| lindsdom 37664 | A linearly independent set... |
| lindsenlbs 37665 | A maximal linearly indepen... |
| matunitlindflem1 37666 | One direction of ~ matunit... |
| matunitlindflem2 37667 | One direction of ~ matunit... |
| matunitlindf 37668 | A matrix over a field is i... |
| ptrest 37669 | Expressing a restriction o... |
| ptrecube 37670 | Any point in an open set o... |
| poimirlem1 37671 | Lemma for ~ poimir - the v... |
| poimirlem2 37672 | Lemma for ~ poimir - conse... |
| poimirlem3 37673 | Lemma for ~ poimir to add ... |
| poimirlem4 37674 | Lemma for ~ poimir connect... |
| poimirlem5 37675 | Lemma for ~ poimir to esta... |
| poimirlem6 37676 | Lemma for ~ poimir establi... |
| poimirlem7 37677 | Lemma for ~ poimir , simil... |
| poimirlem8 37678 | Lemma for ~ poimir , estab... |
| poimirlem9 37679 | Lemma for ~ poimir , estab... |
| poimirlem10 37680 | Lemma for ~ poimir establi... |
| poimirlem11 37681 | Lemma for ~ poimir connect... |
| poimirlem12 37682 | Lemma for ~ poimir connect... |
| poimirlem13 37683 | Lemma for ~ poimir - for a... |
| poimirlem14 37684 | Lemma for ~ poimir - for a... |
| poimirlem15 37685 | Lemma for ~ poimir , that ... |
| poimirlem16 37686 | Lemma for ~ poimir establi... |
| poimirlem17 37687 | Lemma for ~ poimir establi... |
| poimirlem18 37688 | Lemma for ~ poimir stating... |
| poimirlem19 37689 | Lemma for ~ poimir establi... |
| poimirlem20 37690 | Lemma for ~ poimir establi... |
| poimirlem21 37691 | Lemma for ~ poimir stating... |
| poimirlem22 37692 | Lemma for ~ poimir , that ... |
| poimirlem23 37693 | Lemma for ~ poimir , two w... |
| poimirlem24 37694 | Lemma for ~ poimir , two w... |
| poimirlem25 37695 | Lemma for ~ poimir stating... |
| poimirlem26 37696 | Lemma for ~ poimir showing... |
| poimirlem27 37697 | Lemma for ~ poimir showing... |
| poimirlem28 37698 | Lemma for ~ poimir , a var... |
| poimirlem29 37699 | Lemma for ~ poimir connect... |
| poimirlem30 37700 | Lemma for ~ poimir combini... |
| poimirlem31 37701 | Lemma for ~ poimir , assig... |
| poimirlem32 37702 | Lemma for ~ poimir , combi... |
| poimir 37703 | Poincare-Miranda theorem. ... |
| broucube 37704 | Brouwer - or as Kulpa call... |
| heicant 37705 | Heine-Cantor theorem: a co... |
| opnmbllem0 37706 | Lemma for ~ ismblfin ; cou... |
| mblfinlem1 37707 | Lemma for ~ ismblfin , ord... |
| mblfinlem2 37708 | Lemma for ~ ismblfin , eff... |
| mblfinlem3 37709 | The difference between two... |
| mblfinlem4 37710 | Backward direction of ~ is... |
| ismblfin 37711 | Measurability in terms of ... |
| ovoliunnfl 37712 | ~ ovoliun is incompatible ... |
| ex-ovoliunnfl 37713 | Demonstration of ~ ovoliun... |
| voliunnfl 37714 | ~ voliun is incompatible w... |
| volsupnfl 37715 | ~ volsup is incompatible w... |
| mbfresfi 37716 | Measurability of a piecewi... |
| mbfposadd 37717 | If the sum of two measurab... |
| cnambfre 37718 | A real-valued, a.e. contin... |
| dvtanlem 37719 | Lemma for ~ dvtan - the do... |
| dvtan 37720 | Derivative of tangent. (C... |
| itg2addnclem 37721 | An alternate expression fo... |
| itg2addnclem2 37722 | Lemma for ~ itg2addnc . T... |
| itg2addnclem3 37723 | Lemma incomprehensible in ... |
| itg2addnc 37724 | Alternate proof of ~ itg2a... |
| itg2gt0cn 37725 | ~ itg2gt0 holds on functio... |
| ibladdnclem 37726 | Lemma for ~ ibladdnc ; cf ... |
| ibladdnc 37727 | Choice-free analogue of ~ ... |
| itgaddnclem1 37728 | Lemma for ~ itgaddnc ; cf.... |
| itgaddnclem2 37729 | Lemma for ~ itgaddnc ; cf.... |
| itgaddnc 37730 | Choice-free analogue of ~ ... |
| iblsubnc 37731 | Choice-free analogue of ~ ... |
| itgsubnc 37732 | Choice-free analogue of ~ ... |
| iblabsnclem 37733 | Lemma for ~ iblabsnc ; cf.... |
| iblabsnc 37734 | Choice-free analogue of ~ ... |
| iblmulc2nc 37735 | Choice-free analogue of ~ ... |
| itgmulc2nclem1 37736 | Lemma for ~ itgmulc2nc ; c... |
| itgmulc2nclem2 37737 | Lemma for ~ itgmulc2nc ; c... |
| itgmulc2nc 37738 | Choice-free analogue of ~ ... |
| itgabsnc 37739 | Choice-free analogue of ~ ... |
| itggt0cn 37740 | ~ itggt0 holds for continu... |
| ftc1cnnclem 37741 | Lemma for ~ ftc1cnnc ; cf.... |
| ftc1cnnc 37742 | Choice-free proof of ~ ftc... |
| ftc1anclem1 37743 | Lemma for ~ ftc1anc - the ... |
| ftc1anclem2 37744 | Lemma for ~ ftc1anc - rest... |
| ftc1anclem3 37745 | Lemma for ~ ftc1anc - the ... |
| ftc1anclem4 37746 | Lemma for ~ ftc1anc . (Co... |
| ftc1anclem5 37747 | Lemma for ~ ftc1anc , the ... |
| ftc1anclem6 37748 | Lemma for ~ ftc1anc - cons... |
| ftc1anclem7 37749 | Lemma for ~ ftc1anc . (Co... |
| ftc1anclem8 37750 | Lemma for ~ ftc1anc . (Co... |
| ftc1anc 37751 | ~ ftc1a holds for function... |
| ftc2nc 37752 | Choice-free proof of ~ ftc... |
| asindmre 37753 | Real part of domain of dif... |
| dvasin 37754 | Derivative of arcsine. (C... |
| dvacos 37755 | Derivative of arccosine. ... |
| dvreasin 37756 | Real derivative of arcsine... |
| dvreacos 37757 | Real derivative of arccosi... |
| areacirclem1 37758 | Antiderivative of cross-se... |
| areacirclem2 37759 | Endpoint-inclusive continu... |
| areacirclem3 37760 | Integrability of cross-sec... |
| areacirclem4 37761 | Endpoint-inclusive continu... |
| areacirclem5 37762 | Finding the cross-section ... |
| areacirc 37763 | The area of a circle of ra... |
| unirep 37764 | Define a quantity whose de... |
| cover2 37765 | Two ways of expressing the... |
| cover2g 37766 | Two ways of expressing the... |
| brabg2 37767 | Relation by a binary relat... |
| opelopab3 37768 | Ordered pair membership in... |
| cocanfo 37769 | Cancellation of a surjecti... |
| brresi2 37770 | Restriction of a binary re... |
| fnopabeqd 37771 | Equality deduction for fun... |
| fvopabf4g 37772 | Function value of an opera... |
| fnopabco 37773 | Composition of a function ... |
| opropabco 37774 | Composition of an operator... |
| cocnv 37775 | Composition with a functio... |
| f1ocan1fv 37776 | Cancel a composition by a ... |
| f1ocan2fv 37777 | Cancel a composition by th... |
| inixp 37778 | Intersection of Cartesian ... |
| upixp 37779 | Universal property of the ... |
| abrexdom 37780 | An indexed set is dominate... |
| abrexdom2 37781 | An indexed set is dominate... |
| ac6gf 37782 | Axiom of Choice. (Contrib... |
| indexa 37783 | If for every element of an... |
| indexdom 37784 | If for every element of an... |
| frinfm 37785 | A subset of a well-founded... |
| welb 37786 | A nonempty subset of a wel... |
| supex2g 37787 | Existence of supremum. (C... |
| supclt 37788 | Closure of supremum. (Con... |
| supubt 37789 | Upper bound property of su... |
| filbcmb 37790 | Combine a finite set of lo... |
| fzmul 37791 | Membership of a product in... |
| sdclem2 37792 | Lemma for ~ sdc . (Contri... |
| sdclem1 37793 | Lemma for ~ sdc . (Contri... |
| sdc 37794 | Strong dependent choice. ... |
| fdc 37795 | Finite version of dependen... |
| fdc1 37796 | Variant of ~ fdc with no s... |
| seqpo 37797 | Two ways to say that a seq... |
| incsequz 37798 | An increasing sequence of ... |
| incsequz2 37799 | An increasing sequence of ... |
| nnubfi 37800 | A bounded above set of pos... |
| nninfnub 37801 | An infinite set of positiv... |
| subspopn 37802 | An open set is open in the... |
| neificl 37803 | Neighborhoods are closed u... |
| lpss2 37804 | Limit points of a subset a... |
| metf1o 37805 | Use a bijection with a met... |
| blssp 37806 | A ball in the subspace met... |
| mettrifi 37807 | Generalized triangle inequ... |
| lmclim2 37808 | A sequence in a metric spa... |
| geomcau 37809 | If the distance between co... |
| caures 37810 | The restriction of a Cauch... |
| caushft 37811 | A shifted Cauchy sequence ... |
| constcncf 37812 | A constant function is a c... |
| cnres2 37813 | The restriction of a conti... |
| cnresima 37814 | A continuous function is c... |
| cncfres 37815 | A continuous function on c... |
| istotbnd 37819 | The predicate "is a totall... |
| istotbnd2 37820 | The predicate "is a totall... |
| istotbnd3 37821 | A metric space is totally ... |
| totbndmet 37822 | The predicate "totally bou... |
| 0totbnd 37823 | The metric (there is only ... |
| sstotbnd2 37824 | Condition for a subset of ... |
| sstotbnd 37825 | Condition for a subset of ... |
| sstotbnd3 37826 | Use a net that is not nece... |
| totbndss 37827 | A subset of a totally boun... |
| equivtotbnd 37828 | If the metric ` M ` is "st... |
| isbnd 37830 | The predicate "is a bounde... |
| bndmet 37831 | A bounded metric space is ... |
| isbndx 37832 | A "bounded extended metric... |
| isbnd2 37833 | The predicate "is a bounde... |
| isbnd3 37834 | A metric space is bounded ... |
| isbnd3b 37835 | A metric space is bounded ... |
| bndss 37836 | A subset of a bounded metr... |
| blbnd 37837 | A ball is bounded. (Contr... |
| ssbnd 37838 | A subset of a metric space... |
| totbndbnd 37839 | A totally bounded metric s... |
| equivbnd 37840 | If the metric ` M ` is "st... |
| bnd2lem 37841 | Lemma for ~ equivbnd2 and ... |
| equivbnd2 37842 | If balls are totally bound... |
| prdsbnd 37843 | The product metric over fi... |
| prdstotbnd 37844 | The product metric over fi... |
| prdsbnd2 37845 | If balls are totally bound... |
| cntotbnd 37846 | A subset of the complex nu... |
| cnpwstotbnd 37847 | A subset of ` A ^ I ` , wh... |
| ismtyval 37850 | The set of isometries betw... |
| isismty 37851 | The condition "is an isome... |
| ismtycnv 37852 | The inverse of an isometry... |
| ismtyima 37853 | The image of a ball under ... |
| ismtyhmeolem 37854 | Lemma for ~ ismtyhmeo . (... |
| ismtyhmeo 37855 | An isometry is a homeomorp... |
| ismtybndlem 37856 | Lemma for ~ ismtybnd . (C... |
| ismtybnd 37857 | Isometries preserve bounde... |
| ismtyres 37858 | A restriction of an isomet... |
| heibor1lem 37859 | Lemma for ~ heibor1 . A c... |
| heibor1 37860 | One half of ~ heibor , tha... |
| heiborlem1 37861 | Lemma for ~ heibor . We w... |
| heiborlem2 37862 | Lemma for ~ heibor . Subs... |
| heiborlem3 37863 | Lemma for ~ heibor . Usin... |
| heiborlem4 37864 | Lemma for ~ heibor . Usin... |
| heiborlem5 37865 | Lemma for ~ heibor . The ... |
| heiborlem6 37866 | Lemma for ~ heibor . Sinc... |
| heiborlem7 37867 | Lemma for ~ heibor . Sinc... |
| heiborlem8 37868 | Lemma for ~ heibor . The ... |
| heiborlem9 37869 | Lemma for ~ heibor . Disc... |
| heiborlem10 37870 | Lemma for ~ heibor . The ... |
| heibor 37871 | Generalized Heine-Borel Th... |
| bfplem1 37872 | Lemma for ~ bfp . The seq... |
| bfplem2 37873 | Lemma for ~ bfp . Using t... |
| bfp 37874 | Banach fixed point theorem... |
| rrnval 37877 | The n-dimensional Euclidea... |
| rrnmval 37878 | The value of the Euclidean... |
| rrnmet 37879 | Euclidean space is a metri... |
| rrndstprj1 37880 | The distance between two p... |
| rrndstprj2 37881 | Bound on the distance betw... |
| rrncmslem 37882 | Lemma for ~ rrncms . (Con... |
| rrncms 37883 | Euclidean space is complet... |
| repwsmet 37884 | The supremum metric on ` R... |
| rrnequiv 37885 | The supremum metric on ` R... |
| rrntotbnd 37886 | A set in Euclidean space i... |
| rrnheibor 37887 | Heine-Borel theorem for Eu... |
| ismrer1 37888 | An isometry between ` RR `... |
| reheibor 37889 | Heine-Borel theorem for re... |
| iccbnd 37890 | A closed interval in ` RR ... |
| icccmpALT 37891 | A closed interval in ` RR ... |
| isass 37896 | The predicate "is an assoc... |
| isexid 37897 | The predicate ` G ` has a ... |
| ismgmOLD 37900 | Obsolete version of ~ ismg... |
| clmgmOLD 37901 | Obsolete version of ~ mgmc... |
| opidonOLD 37902 | Obsolete version of ~ mndp... |
| rngopidOLD 37903 | Obsolete version of ~ mndp... |
| opidon2OLD 37904 | Obsolete version of ~ mndp... |
| isexid2 37905 | If ` G e. ( Magma i^i ExId... |
| exidu1 37906 | Uniqueness of the left and... |
| idrval 37907 | The value of the identity ... |
| iorlid 37908 | A magma right and left ide... |
| cmpidelt 37909 | A magma right and left ide... |
| smgrpismgmOLD 37912 | Obsolete version of ~ sgrp... |
| issmgrpOLD 37913 | Obsolete version of ~ issg... |
| smgrpmgm 37914 | A semigroup is a magma. (... |
| smgrpassOLD 37915 | Obsolete version of ~ sgrp... |
| mndoissmgrpOLD 37918 | Obsolete version of ~ mnds... |
| mndoisexid 37919 | A monoid has an identity e... |
| mndoismgmOLD 37920 | Obsolete version of ~ mndm... |
| mndomgmid 37921 | A monoid is a magma with a... |
| ismndo 37922 | The predicate "is a monoid... |
| ismndo1 37923 | The predicate "is a monoid... |
| ismndo2 37924 | The predicate "is a monoid... |
| grpomndo 37925 | A group is a monoid. (Con... |
| exidcl 37926 | Closure of the binary oper... |
| exidreslem 37927 | Lemma for ~ exidres and ~ ... |
| exidres 37928 | The restriction of a binar... |
| exidresid 37929 | The restriction of a binar... |
| ablo4pnp 37930 | A commutative/associative ... |
| grpoeqdivid 37931 | Two group elements are equ... |
| grposnOLD 37932 | The group operation for th... |
| elghomlem1OLD 37935 | Obsolete as of 15-Mar-2020... |
| elghomlem2OLD 37936 | Obsolete as of 15-Mar-2020... |
| elghomOLD 37937 | Obsolete version of ~ isgh... |
| ghomlinOLD 37938 | Obsolete version of ~ ghml... |
| ghomidOLD 37939 | Obsolete version of ~ ghmi... |
| ghomf 37940 | Mapping property of a grou... |
| ghomco 37941 | The composition of two gro... |
| ghomdiv 37942 | Group homomorphisms preser... |
| grpokerinj 37943 | A group homomorphism is in... |
| relrngo 37946 | The class of all unital ri... |
| isrngo 37947 | The predicate "is a (unita... |
| isrngod 37948 | Conditions that determine ... |
| rngoi 37949 | The properties of a unital... |
| rngosm 37950 | Functionality of the multi... |
| rngocl 37951 | Closure of the multiplicat... |
| rngoid 37952 | The multiplication operati... |
| rngoideu 37953 | The unity element of a rin... |
| rngodi 37954 | Distributive law for the m... |
| rngodir 37955 | Distributive law for the m... |
| rngoass 37956 | Associative law for the mu... |
| rngo2 37957 | A ring element plus itself... |
| rngoablo 37958 | A ring's addition operatio... |
| rngoablo2 37959 | In a unital ring the addit... |
| rngogrpo 37960 | A ring's addition operatio... |
| rngone0 37961 | The base set of a ring is ... |
| rngogcl 37962 | Closure law for the additi... |
| rngocom 37963 | The addition operation of ... |
| rngoaass 37964 | The addition operation of ... |
| rngoa32 37965 | The addition operation of ... |
| rngoa4 37966 | Rearrangement of 4 terms i... |
| rngorcan 37967 | Right cancellation law for... |
| rngolcan 37968 | Left cancellation law for ... |
| rngo0cl 37969 | A ring has an additive ide... |
| rngo0rid 37970 | The additive identity of a... |
| rngo0lid 37971 | The additive identity of a... |
| rngolz 37972 | The zero of a unital ring ... |
| rngorz 37973 | The zero of a unital ring ... |
| rngosn3 37974 | Obsolete as of 25-Jan-2020... |
| rngosn4 37975 | Obsolete as of 25-Jan-2020... |
| rngosn6 37976 | Obsolete as of 25-Jan-2020... |
| rngonegcl 37977 | A ring is closed under neg... |
| rngoaddneg1 37978 | Adding the negative in a r... |
| rngoaddneg2 37979 | Adding the negative in a r... |
| rngosub 37980 | Subtraction in a ring, in ... |
| rngmgmbs4 37981 | The range of an internal o... |
| rngodm1dm2 37982 | In a unital ring the domai... |
| rngorn1 37983 | In a unital ring the range... |
| rngorn1eq 37984 | In a unital ring the range... |
| rngomndo 37985 | In a unital ring the multi... |
| rngoidmlem 37986 | The unity element of a rin... |
| rngolidm 37987 | The unity element of a rin... |
| rngoridm 37988 | The unity element of a rin... |
| rngo1cl 37989 | The unity element of a rin... |
| rngoueqz 37990 | Obsolete as of 23-Jan-2020... |
| rngonegmn1l 37991 | Negation in a ring is the ... |
| rngonegmn1r 37992 | Negation in a ring is the ... |
| rngoneglmul 37993 | Negation of a product in a... |
| rngonegrmul 37994 | Negation of a product in a... |
| rngosubdi 37995 | Ring multiplication distri... |
| rngosubdir 37996 | Ring multiplication distri... |
| zerdivemp1x 37997 | In a unital ring a left in... |
| isdivrngo 38000 | The predicate "is a divisi... |
| drngoi 38001 | The properties of a divisi... |
| gidsn 38002 | Obsolete as of 23-Jan-2020... |
| zrdivrng 38003 | The zero ring is not a div... |
| dvrunz 38004 | In a division ring the rin... |
| isgrpda 38005 | Properties that determine ... |
| isdrngo1 38006 | The predicate "is a divisi... |
| divrngcl 38007 | The product of two nonzero... |
| isdrngo2 38008 | A division ring is a ring ... |
| isdrngo3 38009 | A division ring is a ring ... |
| rngohomval 38014 | The set of ring homomorphi... |
| isrngohom 38015 | The predicate "is a ring h... |
| rngohomf 38016 | A ring homomorphism is a f... |
| rngohomcl 38017 | Closure law for a ring hom... |
| rngohom1 38018 | A ring homomorphism preser... |
| rngohomadd 38019 | Ring homomorphisms preserv... |
| rngohommul 38020 | Ring homomorphisms preserv... |
| rngogrphom 38021 | A ring homomorphism is a g... |
| rngohom0 38022 | A ring homomorphism preser... |
| rngohomsub 38023 | Ring homomorphisms preserv... |
| rngohomco 38024 | The composition of two rin... |
| rngokerinj 38025 | A ring homomorphism is inj... |
| rngoisoval 38027 | The set of ring isomorphis... |
| isrngoiso 38028 | The predicate "is a ring i... |
| rngoiso1o 38029 | A ring isomorphism is a bi... |
| rngoisohom 38030 | A ring isomorphism is a ri... |
| rngoisocnv 38031 | The inverse of a ring isom... |
| rngoisoco 38032 | The composition of two rin... |
| isriscg 38034 | The ring isomorphism relat... |
| isrisc 38035 | The ring isomorphism relat... |
| risc 38036 | The ring isomorphism relat... |
| risci 38037 | Determine that two rings a... |
| riscer 38038 | Ring isomorphism is an equ... |
| iscom2 38045 | A device to add commutativ... |
| iscrngo 38046 | The predicate "is a commut... |
| iscrngo2 38047 | The predicate "is a commut... |
| iscringd 38048 | Conditions that determine ... |
| flddivrng 38049 | A field is a division ring... |
| crngorngo 38050 | A commutative ring is a ri... |
| crngocom 38051 | The multiplication operati... |
| crngm23 38052 | Commutative/associative la... |
| crngm4 38053 | Commutative/associative la... |
| fldcrngo 38054 | A field is a commutative r... |
| isfld2 38055 | The predicate "is a field"... |
| crngohomfo 38056 | The image of a homomorphis... |
| idlval 38063 | The class of ideals of a r... |
| isidl 38064 | The predicate "is an ideal... |
| isidlc 38065 | The predicate "is an ideal... |
| idlss 38066 | An ideal of ` R ` is a sub... |
| idlcl 38067 | An element of an ideal is ... |
| idl0cl 38068 | An ideal contains ` 0 ` . ... |
| idladdcl 38069 | An ideal is closed under a... |
| idllmulcl 38070 | An ideal is closed under m... |
| idlrmulcl 38071 | An ideal is closed under m... |
| idlnegcl 38072 | An ideal is closed under n... |
| idlsubcl 38073 | An ideal is closed under s... |
| rngoidl 38074 | A ring ` R ` is an ` R ` i... |
| 0idl 38075 | The set containing only ` ... |
| 1idl 38076 | Two ways of expressing the... |
| 0rngo 38077 | In a ring, ` 0 = 1 ` iff t... |
| divrngidl 38078 | The only ideals in a divis... |
| intidl 38079 | The intersection of a none... |
| inidl 38080 | The intersection of two id... |
| unichnidl 38081 | The union of a nonempty ch... |
| keridl 38082 | The kernel of a ring homom... |
| pridlval 38083 | The class of prime ideals ... |
| ispridl 38084 | The predicate "is a prime ... |
| pridlidl 38085 | A prime ideal is an ideal.... |
| pridlnr 38086 | A prime ideal is a proper ... |
| pridl 38087 | The main property of a pri... |
| ispridl2 38088 | A condition that shows an ... |
| maxidlval 38089 | The set of maximal ideals ... |
| ismaxidl 38090 | The predicate "is a maxima... |
| maxidlidl 38091 | A maximal ideal is an idea... |
| maxidlnr 38092 | A maximal ideal is proper.... |
| maxidlmax 38093 | A maximal ideal is a maxim... |
| maxidln1 38094 | One is not contained in an... |
| maxidln0 38095 | A ring with a maximal idea... |
| isprrngo 38100 | The predicate "is a prime ... |
| prrngorngo 38101 | A prime ring is a ring. (... |
| smprngopr 38102 | A simple ring (one whose o... |
| divrngpr 38103 | A division ring is a prime... |
| isdmn 38104 | The predicate "is a domain... |
| isdmn2 38105 | The predicate "is a domain... |
| dmncrng 38106 | A domain is a commutative ... |
| dmnrngo 38107 | A domain is a ring. (Cont... |
| flddmn 38108 | A field is a domain. (Con... |
| igenval 38111 | The ideal generated by a s... |
| igenss 38112 | A set is a subset of the i... |
| igenidl 38113 | The ideal generated by a s... |
| igenmin 38114 | The ideal generated by a s... |
| igenidl2 38115 | The ideal generated by an ... |
| igenval2 38116 | The ideal generated by a s... |
| prnc 38117 | A principal ideal (an idea... |
| isfldidl 38118 | Determine if a ring is a f... |
| isfldidl2 38119 | Determine if a ring is a f... |
| ispridlc 38120 | The predicate "is a prime ... |
| pridlc 38121 | Property of a prime ideal ... |
| pridlc2 38122 | Property of a prime ideal ... |
| pridlc3 38123 | Property of a prime ideal ... |
| isdmn3 38124 | The predicate "is a domain... |
| dmnnzd 38125 | A domain has no zero-divis... |
| dmncan1 38126 | Cancellation law for domai... |
| dmncan2 38127 | Cancellation law for domai... |
| efald2 38128 | A proof by contradiction. ... |
| notbinot1 38129 | Simplification rule of neg... |
| bicontr 38130 | Biconditional of its own n... |
| impor 38131 | An equivalent formula for ... |
| orfa 38132 | The falsum ` F. ` can be r... |
| notbinot2 38133 | Commutation rule between n... |
| biimpor 38134 | A rewriting rule for bicon... |
| orfa1 38135 | Add a contradicting disjun... |
| orfa2 38136 | Remove a contradicting dis... |
| bifald 38137 | Infer the equivalence to a... |
| orsild 38138 | A lemma for not-or-not eli... |
| orsird 38139 | A lemma for not-or-not eli... |
| cnf1dd 38140 | A lemma for Conjunctive No... |
| cnf2dd 38141 | A lemma for Conjunctive No... |
| cnfn1dd 38142 | A lemma for Conjunctive No... |
| cnfn2dd 38143 | A lemma for Conjunctive No... |
| or32dd 38144 | A rearrangement of disjunc... |
| notornotel1 38145 | A lemma for not-or-not eli... |
| notornotel2 38146 | A lemma for not-or-not eli... |
| contrd 38147 | A proof by contradiction, ... |
| an12i 38148 | An inference from commutin... |
| exmid2 38149 | An excluded middle law. (... |
| selconj 38150 | An inference for selecting... |
| truconj 38151 | Add true as a conjunct. (... |
| orel 38152 | An inference for disjuncti... |
| negel 38153 | An inference for negation ... |
| botel 38154 | An inference for bottom el... |
| tradd 38155 | Add top ad a conjunct. (C... |
| gm-sbtru 38156 | Substitution does not chan... |
| sbfal 38157 | Substitution does not chan... |
| sbcani 38158 | Distribution of class subs... |
| sbcori 38159 | Distribution of class subs... |
| sbcimi 38160 | Distribution of class subs... |
| sbcni 38161 | Move class substitution in... |
| sbali 38162 | Discard class substitution... |
| sbexi 38163 | Discard class substitution... |
| sbcalf 38164 | Move universal quantifier ... |
| sbcexf 38165 | Move existential quantifie... |
| sbcalfi 38166 | Move universal quantifier ... |
| sbcexfi 38167 | Move existential quantifie... |
| spsbcdi 38168 | A lemma for eliminating a ... |
| alrimii 38169 | A lemma for introducing a ... |
| spesbcdi 38170 | A lemma for introducing an... |
| exlimddvf 38171 | A lemma for eliminating an... |
| exlimddvfi 38172 | A lemma for eliminating an... |
| sbceq1ddi 38173 | A lemma for eliminating in... |
| sbccom2lem 38174 | Lemma for ~ sbccom2 . (Co... |
| sbccom2 38175 | Commutative law for double... |
| sbccom2f 38176 | Commutative law for double... |
| sbccom2fi 38177 | Commutative law for double... |
| csbcom2fi 38178 | Commutative law for double... |
| fald 38179 | Refutation of falsity, in ... |
| tsim1 38180 | A Tseitin axiom for logica... |
| tsim2 38181 | A Tseitin axiom for logica... |
| tsim3 38182 | A Tseitin axiom for logica... |
| tsbi1 38183 | A Tseitin axiom for logica... |
| tsbi2 38184 | A Tseitin axiom for logica... |
| tsbi3 38185 | A Tseitin axiom for logica... |
| tsbi4 38186 | A Tseitin axiom for logica... |
| tsxo1 38187 | A Tseitin axiom for logica... |
| tsxo2 38188 | A Tseitin axiom for logica... |
| tsxo3 38189 | A Tseitin axiom for logica... |
| tsxo4 38190 | A Tseitin axiom for logica... |
| tsan1 38191 | A Tseitin axiom for logica... |
| tsan2 38192 | A Tseitin axiom for logica... |
| tsan3 38193 | A Tseitin axiom for logica... |
| tsna1 38194 | A Tseitin axiom for logica... |
| tsna2 38195 | A Tseitin axiom for logica... |
| tsna3 38196 | A Tseitin axiom for logica... |
| tsor1 38197 | A Tseitin axiom for logica... |
| tsor2 38198 | A Tseitin axiom for logica... |
| tsor3 38199 | A Tseitin axiom for logica... |
| ts3an1 38200 | A Tseitin axiom for triple... |
| ts3an2 38201 | A Tseitin axiom for triple... |
| ts3an3 38202 | A Tseitin axiom for triple... |
| ts3or1 38203 | A Tseitin axiom for triple... |
| ts3or2 38204 | A Tseitin axiom for triple... |
| ts3or3 38205 | A Tseitin axiom for triple... |
| iuneq2f 38206 | Equality deduction for ind... |
| rabeq12f 38207 | Equality deduction for res... |
| csbeq12 38208 | Equality deduction for sub... |
| sbeqi 38209 | Equality deduction for sub... |
| ralbi12f 38210 | Equality deduction for res... |
| oprabbi 38211 | Equality deduction for cla... |
| mpobi123f 38212 | Equality deduction for map... |
| iuneq12f 38213 | Equality deduction for ind... |
| iineq12f 38214 | Equality deduction for ind... |
| opabbi 38215 | Equality deduction for cla... |
| mptbi12f 38216 | Equality deduction for map... |
| orcomdd 38217 | Commutativity of logic dis... |
| scottexf 38218 | A version of ~ scottex wit... |
| scott0f 38219 | A version of ~ scott0 with... |
| scottn0f 38220 | A version of ~ scott0f wit... |
| ac6s3f 38221 | Generalization of the Axio... |
| ac6s6 38222 | Generalization of the Axio... |
| ac6s6f 38223 | Generalization of the Axio... |
| el2v1 38274 | New way ( ~ elv , and the ... |
| el3v1 38275 | New way ( ~ elv , and the ... |
| el3v2 38276 | New way ( ~ elv , and the ... |
| el3v12 38277 | New way ( ~ elv , and the ... |
| el3v13 38278 | New way ( ~ elv , and the ... |
| el3v23 38279 | New way ( ~ elv , and the ... |
| anan 38280 | Multiple commutations in c... |
| triantru3 38281 | A wff is equivalent to its... |
| biorfd 38282 | A wff is equivalent to its... |
| eqbrtr 38283 | Substitution of equal clas... |
| eqbrb 38284 | Substitution of equal clas... |
| eqeltr 38285 | Substitution of equal clas... |
| eqelb 38286 | Substitution of equal clas... |
| eqeqan2d 38287 | Implication of introducing... |
| disjresin 38288 | The restriction to a disjo... |
| disjresdisj 38289 | The intersection of restri... |
| disjresdif 38290 | The difference between res... |
| disjresundif 38291 | Lemma for ~ ressucdifsn2 .... |
| inres2 38292 | Two ways of expressing the... |
| coideq 38293 | Equality theorem for compo... |
| nexmo1 38294 | If there is no case where ... |
| eqab2 38295 | Implication of a class abs... |
| r2alan 38296 | Double restricted universa... |
| ssrabi 38297 | Inference of restricted ab... |
| rabimbieq 38298 | Restricted equivalent wff'... |
| abeqin 38299 | Intersection with class ab... |
| abeqinbi 38300 | Intersection with class ab... |
| rabeqel 38301 | Class element of a restric... |
| eqrelf 38302 | The equality connective be... |
| br1cnvinxp 38303 | Binary relation on the con... |
| releleccnv 38304 | Elementhood in a converse ... |
| releccnveq 38305 | Equality of converse ` R `... |
| opelvvdif 38306 | Negated elementhood of ord... |
| vvdifopab 38307 | Ordered-pair class abstrac... |
| brvdif 38308 | Binary relation with unive... |
| brvdif2 38309 | Binary relation with unive... |
| brvvdif 38310 | Binary relation with the c... |
| brvbrvvdif 38311 | Binary relation with the c... |
| brcnvep 38312 | The converse of the binary... |
| elecALTV 38313 | Elementhood in the ` R ` -... |
| brcnvepres 38314 | Restricted converse epsilo... |
| brres2 38315 | Binary relation on a restr... |
| br1cnvres 38316 | Binary relation on the con... |
| elec1cnvres 38317 | Elementhood in the convers... |
| ec1cnvres 38318 | Converse restricted coset ... |
| eldmres 38319 | Elementhood in the domain ... |
| elrnres 38320 | Element of the range of a ... |
| eldmressnALTV 38321 | Element of the domain of a... |
| elrnressn 38322 | Element of the range of a ... |
| eldm4 38323 | Elementhood in a domain. ... |
| eldmres2 38324 | Elementhood in the domain ... |
| eldmres3 38325 | Elementhood in the domain ... |
| eceq1i 38326 | Equality theorem for ` C `... |
| ecres 38327 | Restricted coset of ` B ` ... |
| eccnvepres 38328 | Restricted converse epsilo... |
| eleccnvep 38329 | Elementhood in the convers... |
| eccnvep 38330 | The converse epsilon coset... |
| extep 38331 | Property of epsilon relati... |
| disjeccnvep 38332 | Property of the epsilon re... |
| eccnvepres2 38333 | The restricted converse ep... |
| eccnvepres3 38334 | Condition for a restricted... |
| eldmqsres 38335 | Elementhood in a restricte... |
| eldmqsres2 38336 | Elementhood in a restricte... |
| qsss1 38337 | Subclass theorem for quoti... |
| qseq1i 38338 | Equality theorem for quoti... |
| brinxprnres 38339 | Binary relation on a restr... |
| inxprnres 38340 | Restriction of a class as ... |
| dfres4 38341 | Alternate definition of th... |
| exan3 38342 | Equivalent expressions wit... |
| exanres 38343 | Equivalent expressions wit... |
| exanres3 38344 | Equivalent expressions wit... |
| exanres2 38345 | Equivalent expressions wit... |
| cnvepres 38346 | Restricted converse epsilo... |
| eqrel2 38347 | Equality of relations. (C... |
| rncnv 38348 | Range of converse is the d... |
| dfdm6 38349 | Alternate definition of do... |
| dfrn6 38350 | Alternate definition of ra... |
| rncnvepres 38351 | The range of the restricte... |
| dmecd 38352 | Equality of the coset of `... |
| dmec2d 38353 | Equality of the coset of `... |
| brid 38354 | Property of the identity b... |
| ideq2 38355 | For sets, the identity bin... |
| idresssidinxp 38356 | Condition for the identity... |
| idreseqidinxp 38357 | Condition for the identity... |
| extid 38358 | Property of identity relat... |
| inxpss 38359 | Two ways to say that an in... |
| idinxpss 38360 | Two ways to say that an in... |
| ref5 38361 | Two ways to say that an in... |
| inxpss3 38362 | Two ways to say that an in... |
| inxpss2 38363 | Two ways to say that inter... |
| inxpssidinxp 38364 | Two ways to say that inter... |
| idinxpssinxp 38365 | Two ways to say that inter... |
| idinxpssinxp2 38366 | Identity intersection with... |
| idinxpssinxp3 38367 | Identity intersection with... |
| idinxpssinxp4 38368 | Identity intersection with... |
| relcnveq3 38369 | Two ways of saying a relat... |
| relcnveq 38370 | Two ways of saying a relat... |
| relcnveq2 38371 | Two ways of saying a relat... |
| relcnveq4 38372 | Two ways of saying a relat... |
| qsresid 38373 | Simplification of a specia... |
| n0elqs 38374 | Two ways of expressing tha... |
| n0elqs2 38375 | Two ways of expressing tha... |
| rnresequniqs 38376 | The range of a restriction... |
| n0el2 38377 | Two ways of expressing tha... |
| cnvepresex 38378 | Sethood condition for the ... |
| cnvepima 38379 | The image of converse epsi... |
| inex3 38380 | Sufficient condition for t... |
| inxpex 38381 | Sufficient condition for a... |
| eqres 38382 | Converting a class constan... |
| brrabga 38383 | The law of concretion for ... |
| brcnvrabga 38384 | The law of concretion for ... |
| opideq 38385 | Equality conditions for or... |
| iss2 38386 | A subclass of the identity... |
| eldmcnv 38387 | Elementhood in a domain of... |
| dfrel5 38388 | Alternate definition of th... |
| dfrel6 38389 | Alternate definition of th... |
| cnvresrn 38390 | Converse restricted to ran... |
| relssinxpdmrn 38391 | Subset of restriction, spe... |
| cnvref4 38392 | Two ways to say that a rel... |
| cnvref5 38393 | Two ways to say that a rel... |
| ecin0 38394 | Two ways of saying that th... |
| ecinn0 38395 | Two ways of saying that th... |
| ineleq 38396 | Equivalence of restricted ... |
| inecmo 38397 | Equivalence of a double re... |
| inecmo2 38398 | Equivalence of a double re... |
| ineccnvmo 38399 | Equivalence of a double re... |
| alrmomorn 38400 | Equivalence of an "at most... |
| alrmomodm 38401 | Equivalence of an "at most... |
| ineccnvmo2 38402 | Equivalence of a double un... |
| inecmo3 38403 | Equivalence of a double un... |
| moeu2 38404 | Uniqueness is equivalent t... |
| mopickr 38405 | "At most one" picks a vari... |
| moantr 38406 | Sufficient condition for t... |
| brabidgaw 38407 | The law of concretion for ... |
| brabidga 38408 | The law of concretion for ... |
| inxp2 38409 | Intersection with a Cartes... |
| opabf 38410 | A class abstraction of a c... |
| ec0 38411 | The empty-coset of a class... |
| brcnvin 38412 | Intersection with a conver... |
| ssdmral 38413 | Subclass of a domain. (Co... |
| xrnss3v 38415 | A range Cartesian product ... |
| xrnrel 38416 | A range Cartesian product ... |
| brxrn 38417 | Characterize a ternary rel... |
| brxrn2 38418 | A characterization of the ... |
| dfxrn2 38419 | Alternate definition of th... |
| brxrncnvep 38420 | The range product with con... |
| dmxrn 38421 | Domain of the range produc... |
| dmcnvep 38422 | Domain of converse epsilon... |
| dmxrncnvep 38423 | Domain of the range produc... |
| dmcnvepres 38424 | Domain of the restricted c... |
| dmuncnvepres 38425 | Domain of the union with t... |
| dmxrnuncnvepres 38426 | Domain of the range Cartes... |
| ecun 38427 | The union coset of ` A ` .... |
| ecunres 38428 | The restricted union coset... |
| ecuncnvepres 38429 | The restricted union with ... |
| xrneq1 38430 | Equality theorem for the r... |
| xrneq1i 38431 | Equality theorem for the r... |
| xrneq1d 38432 | Equality theorem for the r... |
| xrneq2 38433 | Equality theorem for the r... |
| xrneq2i 38434 | Equality theorem for the r... |
| xrneq2d 38435 | Equality theorem for the r... |
| xrneq12 38436 | Equality theorem for the r... |
| xrneq12i 38437 | Equality theorem for the r... |
| xrneq12d 38438 | Equality theorem for the r... |
| elecxrn 38439 | Elementhood in the ` ( R |... |
| ecxrn 38440 | The ` ( R |X. S ) ` -coset... |
| relecxrn 38441 | The ` ( R |X. S ) ` -coset... |
| ecxrn2 38442 | The ` ( R |X. S ) ` -coset... |
| ecxrncnvep 38443 | The ` ( R |X. ``' _E ) ` -... |
| ecxrncnvep2 38444 | The ` ( R |X. ``' _E ) ` -... |
| disjressuc2 38445 | Double restricted quantifi... |
| disjecxrn 38446 | Two ways of saying that ` ... |
| disjecxrncnvep 38447 | Two ways of saying that co... |
| disjsuc2 38448 | Double restricted quantifi... |
| xrninxp 38449 | Intersection of a range Ca... |
| xrninxp2 38450 | Intersection of a range Ca... |
| xrninxpex 38451 | Sufficient condition for t... |
| inxpxrn 38452 | Two ways to express the in... |
| br1cnvxrn2 38453 | The converse of a binary r... |
| elec1cnvxrn2 38454 | Elementhood in the convers... |
| rnxrn 38455 | Range of the range Cartesi... |
| rnxrnres 38456 | Range of a range Cartesian... |
| rnxrncnvepres 38457 | Range of a range Cartesian... |
| rnxrnidres 38458 | Range of a range Cartesian... |
| xrnres 38459 | Two ways to express restri... |
| xrnres2 38460 | Two ways to express restri... |
| xrnres3 38461 | Two ways to express restri... |
| xrnres4 38462 | Two ways to express restri... |
| xrnresex 38463 | Sufficient condition for a... |
| xrnidresex 38464 | Sufficient condition for a... |
| xrncnvepresex 38465 | Sufficient condition for a... |
| dmxrncnvepres 38466 | Domain of the range produc... |
| dmxrncnvepres2 38467 | Domain of the range produc... |
| eldmxrncnvepres 38468 | Element of the domain of t... |
| eldmxrncnvepres2 38469 | Element of the domain of t... |
| eceldmqsxrncnvepres 38470 | An ` ( R |X. ( ``' _E |`` ... |
| eceldmqsxrncnvepres2 38471 | An ` ( R |X. ( ``' _E |`` ... |
| brin2 38472 | Binary relation on an inte... |
| brin3 38473 | Binary relation on an inte... |
| elrels2 38475 | The element of the relatio... |
| elrelsrel 38476 | The element of the relatio... |
| elrelsrelim 38477 | The element of the relatio... |
| elrels5 38478 | Equivalent expressions for... |
| elrels6 38479 | Equivalent expressions for... |
| dfadjliftmap2 38481 | Alternate definition of th... |
| blockadjliftmap 38482 | A "two-stage" construction... |
| dfblockliftmap2 38484 | Alternate definition of th... |
| dfsucmap3 38486 | Alternate definition of th... |
| dfsucmap2 38487 | Alternate definition of th... |
| dfsucmap4 38488 | Alternate definition of th... |
| brsucmap 38489 | Binary relation form of th... |
| relsucmap 38490 | The successor map is a rel... |
| dmsucmap 38491 | The domain of the successo... |
| dfsuccl2 38493 | Alternate definition of th... |
| mopre 38494 | There is at most one prede... |
| exeupre2 38495 | Whenever a predecessor exi... |
| dfsuccl3 38496 | Alternate definition of th... |
| dfsuccl4 38497 | Alternate definition that ... |
| dfpre 38499 | Alternate definition of th... |
| dfpre2 38500 | Alternate definition of th... |
| dfpre3 38501 | Alternate definition of th... |
| dfpred4 38502 | Alternate definition of th... |
| dfpre4 38503 | Alternate definition of th... |
| suceqsneq 38506 | One-to-one relationship be... |
| sucdifsn2 38507 | Absorption of union with a... |
| sucdifsn 38508 | The difference between the... |
| ressucdifsn2 38509 | The difference between res... |
| ressucdifsn 38510 | The difference between res... |
| sucmapsuc 38511 | A set is succeeded by its ... |
| sucmapleftuniq 38512 | Left uniqueness of the suc... |
| exeupre 38513 | Whenever a predecessor exi... |
| preex 38514 | The successor-predecessor ... |
| eupre2 38515 | Unique predecessor exists ... |
| eupre 38516 | Unique predecessor exists ... |
| presucmap 38517 | ` pre ` is really a predec... |
| preuniqval 38518 | Uniqueness/canonicity of `... |
| sucpre 38519 | ` suc ` is a right-inverse... |
| presuc 38520 | ` pre ` is a left-inverse ... |
| press 38521 | Predecessor is a subset of... |
| preel 38522 | Predecessor is a subset of... |
| dfcoss2 38525 | Alternate definition of th... |
| dfcoss3 38526 | Alternate definition of th... |
| dfcoss4 38527 | Alternate definition of th... |
| cosscnv 38528 | Class of cosets by the con... |
| coss1cnvres 38529 | Class of cosets by the con... |
| coss2cnvepres 38530 | Special case of ~ coss1cnv... |
| cossex 38531 | If ` A ` is a set then the... |
| cosscnvex 38532 | If ` A ` is a set then the... |
| 1cosscnvepresex 38533 | Sufficient condition for a... |
| 1cossxrncnvepresex 38534 | Sufficient condition for a... |
| relcoss 38535 | Cosets by ` R ` is a relat... |
| relcoels 38536 | Coelements on ` A ` is a r... |
| cossss 38537 | Subclass theorem for the c... |
| cosseq 38538 | Equality theorem for the c... |
| cosseqi 38539 | Equality theorem for the c... |
| cosseqd 38540 | Equality theorem for the c... |
| 1cossres 38541 | The class of cosets by a r... |
| dfcoels 38542 | Alternate definition of th... |
| brcoss 38543 | ` A ` and ` B ` are cosets... |
| brcoss2 38544 | Alternate form of the ` A ... |
| brcoss3 38545 | Alternate form of the ` A ... |
| brcosscnvcoss 38546 | For sets, the ` A ` and ` ... |
| brcoels 38547 | ` B ` and ` C ` are coelem... |
| cocossss 38548 | Two ways of saying that co... |
| cnvcosseq 38549 | The converse of cosets by ... |
| br2coss 38550 | Cosets by ` ,~ R ` binary ... |
| br1cossres 38551 | ` B ` and ` C ` are cosets... |
| br1cossres2 38552 | ` B ` and ` C ` are cosets... |
| brressn 38553 | Binary relation on a restr... |
| ressn2 38554 | A class ' R ' restricted t... |
| refressn 38555 | Any class ' R ' restricted... |
| antisymressn 38556 | Every class ' R ' restrict... |
| trressn 38557 | Any class ' R ' restricted... |
| relbrcoss 38558 | ` A ` and ` B ` are cosets... |
| br1cossinres 38559 | ` B ` and ` C ` are cosets... |
| br1cossxrnres 38560 | ` <. B , C >. ` and ` <. D... |
| br1cossinidres 38561 | ` B ` and ` C ` are cosets... |
| br1cossincnvepres 38562 | ` B ` and ` C ` are cosets... |
| br1cossxrnidres 38563 | ` <. B , C >. ` and ` <. D... |
| br1cossxrncnvepres 38564 | ` <. B , C >. ` and ` <. D... |
| dmcoss3 38565 | The domain of cosets is th... |
| dmcoss2 38566 | The domain of cosets is th... |
| rncossdmcoss 38567 | The range of cosets is the... |
| dm1cosscnvepres 38568 | The domain of cosets of th... |
| dmcoels 38569 | The domain of coelements i... |
| eldmcoss 38570 | Elementhood in the domain ... |
| eldmcoss2 38571 | Elementhood in the domain ... |
| eldm1cossres 38572 | Elementhood in the domain ... |
| eldm1cossres2 38573 | Elementhood in the domain ... |
| refrelcosslem 38574 | Lemma for the left side of... |
| refrelcoss3 38575 | The class of cosets by ` R... |
| refrelcoss2 38576 | The class of cosets by ` R... |
| symrelcoss3 38577 | The class of cosets by ` R... |
| symrelcoss2 38578 | The class of cosets by ` R... |
| cossssid 38579 | Equivalent expressions for... |
| cossssid2 38580 | Equivalent expressions for... |
| cossssid3 38581 | Equivalent expressions for... |
| cossssid4 38582 | Equivalent expressions for... |
| cossssid5 38583 | Equivalent expressions for... |
| brcosscnv 38584 | ` A ` and ` B ` are cosets... |
| brcosscnv2 38585 | ` A ` and ` B ` are cosets... |
| br1cosscnvxrn 38586 | ` A ` and ` B ` are cosets... |
| 1cosscnvxrn 38587 | Cosets by the converse ran... |
| cosscnvssid3 38588 | Equivalent expressions for... |
| cosscnvssid4 38589 | Equivalent expressions for... |
| cosscnvssid5 38590 | Equivalent expressions for... |
| coss0 38591 | Cosets by the empty set ar... |
| cossid 38592 | Cosets by the identity rel... |
| cosscnvid 38593 | Cosets by the converse ide... |
| trcoss 38594 | Sufficient condition for t... |
| eleccossin 38595 | Two ways of saying that th... |
| trcoss2 38596 | Equivalent expressions for... |
| cosselrels 38597 | Cosets of sets are element... |
| cnvelrels 38598 | The converse of a set is a... |
| cosscnvelrels 38599 | Cosets of converse sets ar... |
| dfssr2 38601 | Alternate definition of th... |
| relssr 38602 | The subset relation is a r... |
| brssr 38603 | The subset relation and su... |
| brssrid 38604 | Any set is a subset of its... |
| issetssr 38605 | Two ways of expressing set... |
| brssrres 38606 | Restricted subset binary r... |
| br1cnvssrres 38607 | Restricted converse subset... |
| brcnvssr 38608 | The converse of a subset r... |
| brcnvssrid 38609 | Any set is a converse subs... |
| br1cossxrncnvssrres 38610 | ` <. B , C >. ` and ` <. D... |
| extssr 38611 | Property of subset relatio... |
| dfrefrels2 38615 | Alternate definition of th... |
| dfrefrels3 38616 | Alternate definition of th... |
| dfrefrel2 38617 | Alternate definition of th... |
| dfrefrel3 38618 | Alternate definition of th... |
| dfrefrel5 38619 | Alternate definition of th... |
| elrefrels2 38620 | Element of the class of re... |
| elrefrels3 38621 | Element of the class of re... |
| elrefrelsrel 38622 | For sets, being an element... |
| refreleq 38623 | Equality theorem for refle... |
| refrelid 38624 | Identity relation is refle... |
| refrelcoss 38625 | The class of cosets by ` R... |
| refrelressn 38626 | Any class ' R ' restricted... |
| dfcnvrefrels2 38630 | Alternate definition of th... |
| dfcnvrefrels3 38631 | Alternate definition of th... |
| dfcnvrefrel2 38632 | Alternate definition of th... |
| dfcnvrefrel3 38633 | Alternate definition of th... |
| dfcnvrefrel4 38634 | Alternate definition of th... |
| dfcnvrefrel5 38635 | Alternate definition of th... |
| elcnvrefrels2 38636 | Element of the class of co... |
| elcnvrefrels3 38637 | Element of the class of co... |
| elcnvrefrelsrel 38638 | For sets, being an element... |
| cnvrefrelcoss2 38639 | Necessary and sufficient c... |
| cosselcnvrefrels2 38640 | Necessary and sufficient c... |
| cosselcnvrefrels3 38641 | Necessary and sufficient c... |
| cosselcnvrefrels4 38642 | Necessary and sufficient c... |
| cosselcnvrefrels5 38643 | Necessary and sufficient c... |
| dfsymrels2 38647 | Alternate definition of th... |
| dfsymrels3 38648 | Alternate definition of th... |
| elrelscnveq3 38649 | Two ways of saying a relat... |
| elrelscnveq 38650 | Two ways of saying a relat... |
| elrelscnveq2 38651 | Two ways of saying a relat... |
| elrelscnveq4 38652 | Two ways of saying a relat... |
| dfsymrels4 38653 | Alternate definition of th... |
| dfsymrels5 38654 | Alternate definition of th... |
| dfsymrel2 38655 | Alternate definition of th... |
| dfsymrel3 38656 | Alternate definition of th... |
| dfsymrel4 38657 | Alternate definition of th... |
| dfsymrel5 38658 | Alternate definition of th... |
| elsymrels2 38659 | Element of the class of sy... |
| elsymrels3 38660 | Element of the class of sy... |
| elsymrels4 38661 | Element of the class of sy... |
| elsymrels5 38662 | Element of the class of sy... |
| elsymrelsrel 38663 | For sets, being an element... |
| symreleq 38664 | Equality theorem for symme... |
| symrelim 38665 | Symmetric relation implies... |
| symrelcoss 38666 | The class of cosets by ` R... |
| idsymrel 38667 | The identity relation is s... |
| epnsymrel 38668 | The membership (epsilon) r... |
| symrefref2 38669 | Symmetry is a sufficient c... |
| symrefref3 38670 | Symmetry is a sufficient c... |
| refsymrels2 38671 | Elements of the class of r... |
| refsymrels3 38672 | Elements of the class of r... |
| refsymrel2 38673 | A relation which is reflex... |
| refsymrel3 38674 | A relation which is reflex... |
| elrefsymrels2 38675 | Elements of the class of r... |
| elrefsymrels3 38676 | Elements of the class of r... |
| elrefsymrelsrel 38677 | For sets, being an element... |
| dftrrels2 38681 | Alternate definition of th... |
| dftrrels3 38682 | Alternate definition of th... |
| dftrrel2 38683 | Alternate definition of th... |
| dftrrel3 38684 | Alternate definition of th... |
| eltrrels2 38685 | Element of the class of tr... |
| eltrrels3 38686 | Element of the class of tr... |
| eltrrelsrel 38687 | For sets, being an element... |
| trreleq 38688 | Equality theorem for the t... |
| trrelressn 38689 | Any class ' R ' restricted... |
| dfeqvrels2 38694 | Alternate definition of th... |
| dfeqvrels3 38695 | Alternate definition of th... |
| dfeqvrel2 38696 | Alternate definition of th... |
| dfeqvrel3 38697 | Alternate definition of th... |
| eleqvrels2 38698 | Element of the class of eq... |
| eleqvrels3 38699 | Element of the class of eq... |
| eleqvrelsrel 38700 | For sets, being an element... |
| elcoeleqvrels 38701 | Elementhood in the coeleme... |
| elcoeleqvrelsrel 38702 | For sets, being an element... |
| eqvrelrel 38703 | An equivalence relation is... |
| eqvrelrefrel 38704 | An equivalence relation is... |
| eqvrelsymrel 38705 | An equivalence relation is... |
| eqvreltrrel 38706 | An equivalence relation is... |
| eqvrelim 38707 | Equivalence relation impli... |
| eqvreleq 38708 | Equality theorem for equiv... |
| eqvreleqi 38709 | Equality theorem for equiv... |
| eqvreleqd 38710 | Equality theorem for equiv... |
| eqvrelsym 38711 | An equivalence relation is... |
| eqvrelsymb 38712 | An equivalence relation is... |
| eqvreltr 38713 | An equivalence relation is... |
| eqvreltrd 38714 | A transitivity relation fo... |
| eqvreltr4d 38715 | A transitivity relation fo... |
| eqvrelref 38716 | An equivalence relation is... |
| eqvrelth 38717 | Basic property of equivale... |
| eqvrelcl 38718 | Elementhood in the field o... |
| eqvrelthi 38719 | Basic property of equivale... |
| eqvreldisj 38720 | Equivalence classes do not... |
| qsdisjALTV 38721 | Elements of a quotient set... |
| eqvrelqsel 38722 | If an element of a quotien... |
| eqvrelcoss 38723 | Two ways to express equiva... |
| eqvrelcoss3 38724 | Two ways to express equiva... |
| eqvrelcoss2 38725 | Two ways to express equiva... |
| eqvrelcoss4 38726 | Two ways to express equiva... |
| dfcoeleqvrels 38727 | Alternate definition of th... |
| dfcoeleqvrel 38728 | Alternate definition of th... |
| brredunds 38732 | Binary relation on the cla... |
| brredundsredund 38733 | For sets, binary relation ... |
| redundss3 38734 | Implication of redundancy ... |
| redundeq1 38735 | Equivalence of redundancy ... |
| redundpim3 38736 | Implication of redundancy ... |
| redundpbi1 38737 | Equivalence of redundancy ... |
| refrelsredund4 38738 | The naive version of the c... |
| refrelsredund2 38739 | The naive version of the c... |
| refrelsredund3 38740 | The naive version of the c... |
| refrelredund4 38741 | The naive version of the d... |
| refrelredund2 38742 | The naive version of the d... |
| refrelredund3 38743 | The naive version of the d... |
| dfblockliftfix2 38746 | Alternate definition of th... |
| dmqseq 38747 | Equality theorem for domai... |
| dmqseqi 38748 | Equality theorem for domai... |
| dmqseqd 38749 | Equality theorem for domai... |
| dmqseqeq1 38750 | Equality theorem for domai... |
| dmqseqeq1i 38751 | Equality theorem for domai... |
| dmqseqeq1d 38752 | Equality theorem for domai... |
| brdmqss 38753 | The domain quotient binary... |
| brdmqssqs 38754 | If ` A ` and ` R ` are set... |
| n0eldmqs 38755 | The empty set is not an el... |
| qseq 38756 | The quotient set equal to ... |
| n0eldmqseq 38757 | The empty set is not an el... |
| n0elim 38758 | Implication of that the em... |
| n0el3 38759 | Two ways of expressing tha... |
| cnvepresdmqss 38760 | The domain quotient binary... |
| cnvepresdmqs 38761 | The domain quotient predic... |
| unidmqs 38762 | The range of a relation is... |
| unidmqseq 38763 | The union of the domain qu... |
| dmqseqim 38764 | If the domain quotient of ... |
| dmqseqim2 38765 | Lemma for ~ erimeq2 . (Co... |
| releldmqs 38766 | Elementhood in the domain ... |
| eldmqs1cossres 38767 | Elementhood in the domain ... |
| releldmqscoss 38768 | Elementhood in the domain ... |
| dmqscoelseq 38769 | Two ways to express the eq... |
| dmqs1cosscnvepreseq 38770 | Two ways to express the eq... |
| brers 38775 | Binary equivalence relatio... |
| dferALTV2 38776 | Equivalence relation with ... |
| erALTVeq1 38777 | Equality theorem for equiv... |
| erALTVeq1i 38778 | Equality theorem for equiv... |
| erALTVeq1d 38779 | Equality theorem for equiv... |
| dfcomember 38780 | Alternate definition of th... |
| dfcomember2 38781 | Alternate definition of th... |
| dfcomember3 38782 | Alternate definition of th... |
| eqvreldmqs 38783 | Two ways to express comemb... |
| eqvreldmqs2 38784 | Two ways to express comemb... |
| brerser 38785 | Binary equivalence relatio... |
| erimeq2 38786 | Equivalence relation on it... |
| erimeq 38787 | Equivalence relation on it... |
| dffunsALTV 38791 | Alternate definition of th... |
| dffunsALTV2 38792 | Alternate definition of th... |
| dffunsALTV3 38793 | Alternate definition of th... |
| dffunsALTV4 38794 | Alternate definition of th... |
| dffunsALTV5 38795 | Alternate definition of th... |
| dffunALTV2 38796 | Alternate definition of th... |
| dffunALTV3 38797 | Alternate definition of th... |
| dffunALTV4 38798 | Alternate definition of th... |
| dffunALTV5 38799 | Alternate definition of th... |
| elfunsALTV 38800 | Elementhood in the class o... |
| elfunsALTV2 38801 | Elementhood in the class o... |
| elfunsALTV3 38802 | Elementhood in the class o... |
| elfunsALTV4 38803 | Elementhood in the class o... |
| elfunsALTV5 38804 | Elementhood in the class o... |
| elfunsALTVfunALTV 38805 | The element of the class o... |
| funALTVfun 38806 | Our definition of the func... |
| funALTVss 38807 | Subclass theorem for funct... |
| funALTVeq 38808 | Equality theorem for funct... |
| funALTVeqi 38809 | Equality inference for the... |
| funALTVeqd 38810 | Equality deduction for the... |
| dfdisjs 38816 | Alternate definition of th... |
| dfdisjs2 38817 | Alternate definition of th... |
| dfdisjs3 38818 | Alternate definition of th... |
| dfdisjs4 38819 | Alternate definition of th... |
| dfdisjs5 38820 | Alternate definition of th... |
| dfdisjALTV 38821 | Alternate definition of th... |
| dfdisjALTV2 38822 | Alternate definition of th... |
| dfdisjALTV3 38823 | Alternate definition of th... |
| dfdisjALTV4 38824 | Alternate definition of th... |
| dfdisjALTV5 38825 | Alternate definition of th... |
| dfeldisj2 38826 | Alternate definition of th... |
| dfeldisj3 38827 | Alternate definition of th... |
| dfeldisj4 38828 | Alternate definition of th... |
| dfeldisj5 38829 | Alternate definition of th... |
| eldisjs 38830 | Elementhood in the class o... |
| eldisjs2 38831 | Elementhood in the class o... |
| eldisjs3 38832 | Elementhood in the class o... |
| eldisjs4 38833 | Elementhood in the class o... |
| eldisjs5 38834 | Elementhood in the class o... |
| eldisjsdisj 38835 | The element of the class o... |
| eleldisjs 38836 | Elementhood in the disjoin... |
| eleldisjseldisj 38837 | The element of the disjoin... |
| disjrel 38838 | Disjoint relation is a rel... |
| disjss 38839 | Subclass theorem for disjo... |
| disjssi 38840 | Subclass theorem for disjo... |
| disjssd 38841 | Subclass theorem for disjo... |
| disjeq 38842 | Equality theorem for disjo... |
| disjeqi 38843 | Equality theorem for disjo... |
| disjeqd 38844 | Equality theorem for disjo... |
| disjdmqseqeq1 38845 | Lemma for the equality the... |
| eldisjss 38846 | Subclass theorem for disjo... |
| eldisjssi 38847 | Subclass theorem for disjo... |
| eldisjssd 38848 | Subclass theorem for disjo... |
| eldisjeq 38849 | Equality theorem for disjo... |
| eldisjeqi 38850 | Equality theorem for disjo... |
| eldisjeqd 38851 | Equality theorem for disjo... |
| disjres 38852 | Disjoint restriction. (Co... |
| eldisjn0elb 38853 | Two forms of disjoint elem... |
| disjxrn 38854 | Two ways of saying that a ... |
| disjxrnres5 38855 | Disjoint range Cartesian p... |
| disjorimxrn 38856 | Disjointness condition for... |
| disjimxrn 38857 | Disjointness condition for... |
| disjimres 38858 | Disjointness condition for... |
| disjimin 38859 | Disjointness condition for... |
| disjiminres 38860 | Disjointness condition for... |
| disjimxrnres 38861 | Disjointness condition for... |
| disjALTV0 38862 | The null class is disjoint... |
| disjALTVid 38863 | The class of identity rela... |
| disjALTVidres 38864 | The class of identity rela... |
| disjALTVinidres 38865 | The intersection with rest... |
| disjALTVxrnidres 38866 | The class of range Cartesi... |
| disjsuc 38867 | Disjoint range Cartesian p... |
| dfantisymrel4 38869 | Alternate definition of th... |
| dfantisymrel5 38870 | Alternate definition of th... |
| antisymrelres 38871 | (Contributed by Peter Mazs... |
| antisymrelressn 38872 | (Contributed by Peter Mazs... |
| dfpart2 38877 | Alternate definition of th... |
| dfmembpart2 38878 | Alternate definition of th... |
| brparts 38879 | Binary partitions relation... |
| brparts2 38880 | Binary partitions relation... |
| brpartspart 38881 | Binary partition and the p... |
| parteq1 38882 | Equality theorem for parti... |
| parteq2 38883 | Equality theorem for parti... |
| parteq12 38884 | Equality theorem for parti... |
| parteq1i 38885 | Equality theorem for parti... |
| parteq1d 38886 | Equality theorem for parti... |
| partsuc2 38887 | Property of the partition.... |
| partsuc 38888 | Property of the partition.... |
| disjim 38889 | The "Divide et Aequivalere... |
| disjimi 38890 | Every disjoint relation ge... |
| detlem 38891 | If a relation is disjoint,... |
| eldisjim 38892 | If the elements of ` A ` a... |
| eldisjim2 38893 | Alternate form of ~ eldisj... |
| eqvrel0 38894 | The null class is an equiv... |
| det0 38895 | The cosets by the null cla... |
| eqvrelcoss0 38896 | The cosets by the null cla... |
| eqvrelid 38897 | The identity relation is a... |
| eqvrel1cossidres 38898 | The cosets by a restricted... |
| eqvrel1cossinidres 38899 | The cosets by an intersect... |
| eqvrel1cossxrnidres 38900 | The cosets by a range Cart... |
| detid 38901 | The cosets by the identity... |
| eqvrelcossid 38902 | The cosets by the identity... |
| detidres 38903 | The cosets by the restrict... |
| detinidres 38904 | The cosets by the intersec... |
| detxrnidres 38905 | The cosets by the range Ca... |
| disjlem14 38906 | Lemma for ~ disjdmqseq , ~... |
| disjlem17 38907 | Lemma for ~ disjdmqseq , ~... |
| disjlem18 38908 | Lemma for ~ disjdmqseq , ~... |
| disjlem19 38909 | Lemma for ~ disjdmqseq , ~... |
| disjdmqsss 38910 | Lemma for ~ disjdmqseq via... |
| disjdmqscossss 38911 | Lemma for ~ disjdmqseq via... |
| disjdmqs 38912 | If a relation is disjoint,... |
| disjdmqseq 38913 | If a relation is disjoint,... |
| eldisjn0el 38914 | Special case of ~ disjdmqs... |
| partim2 38915 | Disjoint relation on its n... |
| partim 38916 | Partition implies equivale... |
| partimeq 38917 | Partition implies that the... |
| eldisjlem19 38918 | Special case of ~ disjlem1... |
| membpartlem19 38919 | Together with ~ disjlem19 ... |
| petlem 38920 | If you can prove that the ... |
| petlemi 38921 | If you can prove disjointn... |
| pet02 38922 | Class ` A ` is a partition... |
| pet0 38923 | Class ` A ` is a partition... |
| petid2 38924 | Class ` A ` is a partition... |
| petid 38925 | A class is a partition by ... |
| petidres2 38926 | Class ` A ` is a partition... |
| petidres 38927 | A class is a partition by ... |
| petinidres2 38928 | Class ` A ` is a partition... |
| petinidres 38929 | A class is a partition by ... |
| petxrnidres2 38930 | Class ` A ` is a partition... |
| petxrnidres 38931 | A class is a partition by ... |
| eqvreldisj1 38932 | The elements of the quotie... |
| eqvreldisj2 38933 | The elements of the quotie... |
| eqvreldisj3 38934 | The elements of the quotie... |
| eqvreldisj4 38935 | Intersection with the conv... |
| eqvreldisj5 38936 | Range Cartesian product wi... |
| eqvrelqseqdisj2 38937 | Implication of ~ eqvreldis... |
| fences3 38938 | Implication of ~ eqvrelqse... |
| eqvrelqseqdisj3 38939 | Implication of ~ eqvreldis... |
| eqvrelqseqdisj4 38940 | Lemma for ~ petincnvepres2... |
| eqvrelqseqdisj5 38941 | Lemma for the Partition-Eq... |
| mainer 38942 | The Main Theorem of Equiva... |
| partimcomember 38943 | Partition with general ` R... |
| mpet3 38944 | Member Partition-Equivalen... |
| cpet2 38945 | The conventional form of t... |
| cpet 38946 | The conventional form of M... |
| mpet 38947 | Member Partition-Equivalen... |
| mpet2 38948 | Member Partition-Equivalen... |
| mpets2 38949 | Member Partition-Equivalen... |
| mpets 38950 | Member Partition-Equivalen... |
| mainpart 38951 | Partition with general ` R... |
| fences 38952 | The Theorem of Fences by E... |
| fences2 38953 | The Theorem of Fences by E... |
| mainer2 38954 | The Main Theorem of Equiva... |
| mainerim 38955 | Every equivalence relation... |
| petincnvepres2 38956 | A partition-equivalence th... |
| petincnvepres 38957 | The shortest form of a par... |
| pet2 38958 | Partition-Equivalence Theo... |
| pet 38959 | Partition-Equivalence Theo... |
| pets 38960 | Partition-Equivalence Theo... |
| dmqsblocks 38961 | If the ~ pet span ` ( R |X... |
| prtlem60 38962 | Lemma for ~ prter3 . (Con... |
| bicomdd 38963 | Commute two sides of a bic... |
| jca2r 38964 | Inference conjoining the c... |
| jca3 38965 | Inference conjoining the c... |
| prtlem70 38966 | Lemma for ~ prter3 : a rea... |
| ibdr 38967 | Reverse of ~ ibd . (Contr... |
| prtlem100 38968 | Lemma for ~ prter3 . (Con... |
| prtlem5 38969 | Lemma for ~ prter1 , ~ prt... |
| prtlem80 38970 | Lemma for ~ prter2 . (Con... |
| brabsb2 38971 | A closed form of ~ brabsb ... |
| eqbrrdv2 38972 | Other version of ~ eqbrrdi... |
| prtlem9 38973 | Lemma for ~ prter3 . (Con... |
| prtlem10 38974 | Lemma for ~ prter3 . (Con... |
| prtlem11 38975 | Lemma for ~ prter2 . (Con... |
| prtlem12 38976 | Lemma for ~ prtex and ~ pr... |
| prtlem13 38977 | Lemma for ~ prter1 , ~ prt... |
| prtlem16 38978 | Lemma for ~ prtex , ~ prte... |
| prtlem400 38979 | Lemma for ~ prter2 and als... |
| erprt 38982 | The quotient set of an equ... |
| prtlem14 38983 | Lemma for ~ prter1 , ~ prt... |
| prtlem15 38984 | Lemma for ~ prter1 and ~ p... |
| prtlem17 38985 | Lemma for ~ prter2 . (Con... |
| prtlem18 38986 | Lemma for ~ prter2 . (Con... |
| prtlem19 38987 | Lemma for ~ prter2 . (Con... |
| prter1 38988 | Every partition generates ... |
| prtex 38989 | The equivalence relation g... |
| prter2 38990 | The quotient set of the eq... |
| prter3 38991 | For every partition there ... |
| axc5 39002 | This theorem repeats ~ sp ... |
| ax4fromc4 39003 | Rederivation of Axiom ~ ax... |
| ax10fromc7 39004 | Rederivation of Axiom ~ ax... |
| ax6fromc10 39005 | Rederivation of Axiom ~ ax... |
| hba1-o 39006 | The setvar ` x ` is not fr... |
| axc4i-o 39007 | Inference version of ~ ax-... |
| equid1 39008 | Proof of ~ equid from our ... |
| equcomi1 39009 | Proof of ~ equcomi from ~ ... |
| aecom-o 39010 | Commutation law for identi... |
| aecoms-o 39011 | A commutation rule for ide... |
| hbae-o 39012 | All variables are effectiv... |
| dral1-o 39013 | Formula-building lemma for... |
| ax12fromc15 39014 | Rederivation of Axiom ~ ax... |
| ax13fromc9 39015 | Derive ~ ax-13 from ~ ax-c... |
| ax5ALT 39016 | Axiom to quantify a variab... |
| sps-o 39017 | Generalization of antecede... |
| hbequid 39018 | Bound-variable hypothesis ... |
| nfequid-o 39019 | Bound-variable hypothesis ... |
| axc5c7 39020 | Proof of a single axiom th... |
| axc5c7toc5 39021 | Rederivation of ~ ax-c5 fr... |
| axc5c7toc7 39022 | Rederivation of ~ ax-c7 fr... |
| axc711 39023 | Proof of a single axiom th... |
| nfa1-o 39024 | ` x ` is not free in ` A. ... |
| axc711toc7 39025 | Rederivation of ~ ax-c7 fr... |
| axc711to11 39026 | Rederivation of ~ ax-11 fr... |
| axc5c711 39027 | Proof of a single axiom th... |
| axc5c711toc5 39028 | Rederivation of ~ ax-c5 fr... |
| axc5c711toc7 39029 | Rederivation of ~ ax-c7 fr... |
| axc5c711to11 39030 | Rederivation of ~ ax-11 fr... |
| equidqe 39031 | ~ equid with existential q... |
| axc5sp1 39032 | A special case of ~ ax-c5 ... |
| equidq 39033 | ~ equid with universal qua... |
| equid1ALT 39034 | Alternate proof of ~ equid... |
| axc11nfromc11 39035 | Rederivation of ~ ax-c11n ... |
| naecoms-o 39036 | A commutation rule for dis... |
| hbnae-o 39037 | All variables are effectiv... |
| dvelimf-o 39038 | Proof of ~ dvelimh that us... |
| dral2-o 39039 | Formula-building lemma for... |
| aev-o 39040 | A "distinctor elimination"... |
| ax5eq 39041 | Theorem to add distinct qu... |
| dveeq2-o 39042 | Quantifier introduction wh... |
| axc16g-o 39043 | A generalization of Axiom ... |
| dveeq1-o 39044 | Quantifier introduction wh... |
| dveeq1-o16 39045 | Version of ~ dveeq1 using ... |
| ax5el 39046 | Theorem to add distinct qu... |
| axc11n-16 39047 | This theorem shows that, g... |
| dveel2ALT 39048 | Alternate proof of ~ dveel... |
| ax12f 39049 | Basis step for constructin... |
| ax12eq 39050 | Basis step for constructin... |
| ax12el 39051 | Basis step for constructin... |
| ax12indn 39052 | Induction step for constru... |
| ax12indi 39053 | Induction step for constru... |
| ax12indalem 39054 | Lemma for ~ ax12inda2 and ... |
| ax12inda2ALT 39055 | Alternate proof of ~ ax12i... |
| ax12inda2 39056 | Induction step for constru... |
| ax12inda 39057 | Induction step for constru... |
| ax12v2-o 39058 | Rederivation of ~ ax-c15 f... |
| ax12a2-o 39059 | Derive ~ ax-c15 from a hyp... |
| axc11-o 39060 | Show that ~ ax-c11 can be ... |
| fsumshftd 39061 | Index shift of a finite su... |
| riotaclbgBAD 39063 | Closure of restricted iota... |
| riotaclbBAD 39064 | Closure of restricted iota... |
| riotasvd 39065 | Deduction version of ~ rio... |
| riotasv2d 39066 | Value of description binde... |
| riotasv2s 39067 | The value of description b... |
| riotasv 39068 | Value of description binde... |
| riotasv3d 39069 | A property ` ch ` holding ... |
| elimhyps 39070 | A version of ~ elimhyp usi... |
| dedths 39071 | A version of weak deductio... |
| renegclALT 39072 | Closure law for negative o... |
| elimhyps2 39073 | Generalization of ~ elimhy... |
| dedths2 39074 | Generalization of ~ dedths... |
| nfcxfrdf 39075 | A utility lemma to transfe... |
| nfded 39076 | A deduction theorem that c... |
| nfded2 39077 | A deduction theorem that c... |
| nfunidALT2 39078 | Deduction version of ~ nfu... |
| nfunidALT 39079 | Deduction version of ~ nfu... |
| nfopdALT 39080 | Deduction version of bound... |
| cnaddcom 39081 | Recover the commutative la... |
| toycom 39082 | Show the commutative law f... |
| lshpset 39087 | The set of all hyperplanes... |
| islshp 39088 | The predicate "is a hyperp... |
| islshpsm 39089 | Hyperplane properties expr... |
| lshplss 39090 | A hyperplane is a subspace... |
| lshpne 39091 | A hyperplane is not equal ... |
| lshpnel 39092 | A hyperplane's generating ... |
| lshpnelb 39093 | The subspace sum of a hype... |
| lshpnel2N 39094 | Condition that determines ... |
| lshpne0 39095 | The member of the span in ... |
| lshpdisj 39096 | A hyperplane and the span ... |
| lshpcmp 39097 | If two hyperplanes are com... |
| lshpinN 39098 | The intersection of two di... |
| lsatset 39099 | The set of all 1-dim subsp... |
| islsat 39100 | The predicate "is a 1-dim ... |
| lsatlspsn2 39101 | The span of a nonzero sing... |
| lsatlspsn 39102 | The span of a nonzero sing... |
| islsati 39103 | A 1-dim subspace (atom) (o... |
| lsateln0 39104 | A 1-dim subspace (atom) (o... |
| lsatlss 39105 | The set of 1-dim subspaces... |
| lsatlssel 39106 | An atom is a subspace. (C... |
| lsatssv 39107 | An atom is a set of vector... |
| lsatn0 39108 | A 1-dim subspace (atom) of... |
| lsatspn0 39109 | The span of a vector is an... |
| lsator0sp 39110 | The span of a vector is ei... |
| lsatssn0 39111 | A subspace (or any class) ... |
| lsatcmp 39112 | If two atoms are comparabl... |
| lsatcmp2 39113 | If an atom is included in ... |
| lsatel 39114 | A nonzero vector in an ato... |
| lsatelbN 39115 | A nonzero vector in an ato... |
| lsat2el 39116 | Two atoms sharing a nonzer... |
| lsmsat 39117 | Convert comparison of atom... |
| lsatfixedN 39118 | Show equality with the spa... |
| lsmsatcv 39119 | Subspace sum has the cover... |
| lssatomic 39120 | The lattice of subspaces i... |
| lssats 39121 | The lattice of subspaces i... |
| lpssat 39122 | Two subspaces in a proper ... |
| lrelat 39123 | Subspaces are relatively a... |
| lssatle 39124 | The ordering of two subspa... |
| lssat 39125 | Two subspaces in a proper ... |
| islshpat 39126 | Hyperplane properties expr... |
| lcvfbr 39129 | The covers relation for a ... |
| lcvbr 39130 | The covers relation for a ... |
| lcvbr2 39131 | The covers relation for a ... |
| lcvbr3 39132 | The covers relation for a ... |
| lcvpss 39133 | The covers relation implie... |
| lcvnbtwn 39134 | The covers relation implie... |
| lcvntr 39135 | The covers relation is not... |
| lcvnbtwn2 39136 | The covers relation implie... |
| lcvnbtwn3 39137 | The covers relation implie... |
| lsmcv2 39138 | Subspace sum has the cover... |
| lcvat 39139 | If a subspace covers anoth... |
| lsatcv0 39140 | An atom covers the zero su... |
| lsatcveq0 39141 | A subspace covered by an a... |
| lsat0cv 39142 | A subspace is an atom iff ... |
| lcvexchlem1 39143 | Lemma for ~ lcvexch . (Co... |
| lcvexchlem2 39144 | Lemma for ~ lcvexch . (Co... |
| lcvexchlem3 39145 | Lemma for ~ lcvexch . (Co... |
| lcvexchlem4 39146 | Lemma for ~ lcvexch . (Co... |
| lcvexchlem5 39147 | Lemma for ~ lcvexch . (Co... |
| lcvexch 39148 | Subspaces satisfy the exch... |
| lcvp 39149 | Covering property of Defin... |
| lcv1 39150 | Covering property of a sub... |
| lcv2 39151 | Covering property of a sub... |
| lsatexch 39152 | The atom exchange property... |
| lsatnle 39153 | The meet of a subspace and... |
| lsatnem0 39154 | The meet of distinct atoms... |
| lsatexch1 39155 | The atom exch1ange propert... |
| lsatcv0eq 39156 | If the sum of two atoms co... |
| lsatcv1 39157 | Two atoms covering the zer... |
| lsatcvatlem 39158 | Lemma for ~ lsatcvat . (C... |
| lsatcvat 39159 | A nonzero subspace less th... |
| lsatcvat2 39160 | A subspace covered by the ... |
| lsatcvat3 39161 | A condition implying that ... |
| islshpcv 39162 | Hyperplane properties expr... |
| l1cvpat 39163 | A subspace covered by the ... |
| l1cvat 39164 | Create an atom under an el... |
| lshpat 39165 | Create an atom under a hyp... |
| lflset 39168 | The set of linear function... |
| islfl 39169 | The predicate "is a linear... |
| lfli 39170 | Property of a linear funct... |
| islfld 39171 | Properties that determine ... |
| lflf 39172 | A linear functional is a f... |
| lflcl 39173 | A linear functional value ... |
| lfl0 39174 | A linear functional is zer... |
| lfladd 39175 | Property of a linear funct... |
| lflsub 39176 | Property of a linear funct... |
| lflmul 39177 | Property of a linear funct... |
| lfl0f 39178 | The zero function is a fun... |
| lfl1 39179 | A nonzero functional has a... |
| lfladdcl 39180 | Closure of addition of two... |
| lfladdcom 39181 | Commutativity of functiona... |
| lfladdass 39182 | Associativity of functiona... |
| lfladd0l 39183 | Functional addition with t... |
| lflnegcl 39184 | Closure of the negative of... |
| lflnegl 39185 | A functional plus its nega... |
| lflvscl 39186 | Closure of a scalar produc... |
| lflvsdi1 39187 | Distributive law for (righ... |
| lflvsdi2 39188 | Reverse distributive law f... |
| lflvsdi2a 39189 | Reverse distributive law f... |
| lflvsass 39190 | Associative law for (right... |
| lfl0sc 39191 | The (right vector space) s... |
| lflsc0N 39192 | The scalar product with th... |
| lfl1sc 39193 | The (right vector space) s... |
| lkrfval 39196 | The kernel of a functional... |
| lkrval 39197 | Value of the kernel of a f... |
| ellkr 39198 | Membership in the kernel o... |
| lkrval2 39199 | Value of the kernel of a f... |
| ellkr2 39200 | Membership in the kernel o... |
| lkrcl 39201 | A member of the kernel of ... |
| lkrf0 39202 | The value of a functional ... |
| lkr0f 39203 | The kernel of the zero fun... |
| lkrlss 39204 | The kernel of a linear fun... |
| lkrssv 39205 | The kernel of a linear fun... |
| lkrsc 39206 | The kernel of a nonzero sc... |
| lkrscss 39207 | The kernel of a scalar pro... |
| eqlkr 39208 | Two functionals with the s... |
| eqlkr2 39209 | Two functionals with the s... |
| eqlkr3 39210 | Two functionals with the s... |
| lkrlsp 39211 | The subspace sum of a kern... |
| lkrlsp2 39212 | The subspace sum of a kern... |
| lkrlsp3 39213 | The subspace sum of a kern... |
| lkrshp 39214 | The kernel of a nonzero fu... |
| lkrshp3 39215 | The kernels of nonzero fun... |
| lkrshpor 39216 | The kernel of a functional... |
| lkrshp4 39217 | A kernel is a hyperplane i... |
| lshpsmreu 39218 | Lemma for ~ lshpkrex . Sh... |
| lshpkrlem1 39219 | Lemma for ~ lshpkrex . Th... |
| lshpkrlem2 39220 | Lemma for ~ lshpkrex . Th... |
| lshpkrlem3 39221 | Lemma for ~ lshpkrex . De... |
| lshpkrlem4 39222 | Lemma for ~ lshpkrex . Pa... |
| lshpkrlem5 39223 | Lemma for ~ lshpkrex . Pa... |
| lshpkrlem6 39224 | Lemma for ~ lshpkrex . Sh... |
| lshpkrcl 39225 | The set ` G ` defined by h... |
| lshpkr 39226 | The kernel of functional `... |
| lshpkrex 39227 | There exists a functional ... |
| lshpset2N 39228 | The set of all hyperplanes... |
| islshpkrN 39229 | The predicate "is a hyperp... |
| lfl1dim 39230 | Equivalent expressions for... |
| lfl1dim2N 39231 | Equivalent expressions for... |
| ldualset 39234 | Define the (left) dual of ... |
| ldualvbase 39235 | The vectors of a dual spac... |
| ldualelvbase 39236 | Utility theorem for conver... |
| ldualfvadd 39237 | Vector addition in the dua... |
| ldualvadd 39238 | Vector addition in the dua... |
| ldualvaddcl 39239 | The value of vector additi... |
| ldualvaddval 39240 | The value of the value of ... |
| ldualsca 39241 | The ring of scalars of the... |
| ldualsbase 39242 | Base set of scalar ring fo... |
| ldualsaddN 39243 | Scalar addition for the du... |
| ldualsmul 39244 | Scalar multiplication for ... |
| ldualfvs 39245 | Scalar product operation f... |
| ldualvs 39246 | Scalar product operation v... |
| ldualvsval 39247 | Value of scalar product op... |
| ldualvscl 39248 | The scalar product operati... |
| ldualvaddcom 39249 | Commutative law for vector... |
| ldualvsass 39250 | Associative law for scalar... |
| ldualvsass2 39251 | Associative law for scalar... |
| ldualvsdi1 39252 | Distributive law for scala... |
| ldualvsdi2 39253 | Reverse distributive law f... |
| ldualgrplem 39254 | Lemma for ~ ldualgrp . (C... |
| ldualgrp 39255 | The dual of a vector space... |
| ldual0 39256 | The zero scalar of the dua... |
| ldual1 39257 | The unit scalar of the dua... |
| ldualneg 39258 | The negative of a scalar o... |
| ldual0v 39259 | The zero vector of the dua... |
| ldual0vcl 39260 | The dual zero vector is a ... |
| lduallmodlem 39261 | Lemma for ~ lduallmod . (... |
| lduallmod 39262 | The dual of a left module ... |
| lduallvec 39263 | The dual of a left vector ... |
| ldualvsub 39264 | The value of vector subtra... |
| ldualvsubcl 39265 | Closure of vector subtract... |
| ldualvsubval 39266 | The value of the value of ... |
| ldualssvscl 39267 | Closure of scalar product ... |
| ldualssvsubcl 39268 | Closure of vector subtract... |
| ldual0vs 39269 | Scalar zero times a functi... |
| lkr0f2 39270 | The kernel of the zero fun... |
| lduallkr3 39271 | The kernels of nonzero fun... |
| lkrpssN 39272 | Proper subset relation bet... |
| lkrin 39273 | Intersection of the kernel... |
| eqlkr4 39274 | Two functionals with the s... |
| ldual1dim 39275 | Equivalent expressions for... |
| ldualkrsc 39276 | The kernel of a nonzero sc... |
| lkrss 39277 | The kernel of a scalar pro... |
| lkrss2N 39278 | Two functionals with kerne... |
| lkreqN 39279 | Proportional functionals h... |
| lkrlspeqN 39280 | Condition for colinear fun... |
| isopos 39289 | The predicate "is an ortho... |
| opposet 39290 | Every orthoposet is a pose... |
| oposlem 39291 | Lemma for orthoposet prope... |
| op01dm 39292 | Conditions necessary for z... |
| op0cl 39293 | An orthoposet has a zero e... |
| op1cl 39294 | An orthoposet has a unity ... |
| op0le 39295 | Orthoposet zero is less th... |
| ople0 39296 | An element less than or eq... |
| opnlen0 39297 | An element not less than a... |
| lub0N 39298 | The least upper bound of t... |
| opltn0 39299 | A lattice element greater ... |
| ople1 39300 | Any element is less than t... |
| op1le 39301 | If the orthoposet unity is... |
| glb0N 39302 | The greatest lower bound o... |
| opoccl 39303 | Closure of orthocomplement... |
| opococ 39304 | Double negative law for or... |
| opcon3b 39305 | Contraposition law for ort... |
| opcon2b 39306 | Orthocomplement contraposi... |
| opcon1b 39307 | Orthocomplement contraposi... |
| oplecon3 39308 | Contraposition law for ort... |
| oplecon3b 39309 | Contraposition law for ort... |
| oplecon1b 39310 | Contraposition law for str... |
| opoc1 39311 | Orthocomplement of orthopo... |
| opoc0 39312 | Orthocomplement of orthopo... |
| opltcon3b 39313 | Contraposition law for str... |
| opltcon1b 39314 | Contraposition law for str... |
| opltcon2b 39315 | Contraposition law for str... |
| opexmid 39316 | Law of excluded middle for... |
| opnoncon 39317 | Law of contradiction for o... |
| riotaocN 39318 | The orthocomplement of the... |
| cmtfvalN 39319 | Value of commutes relation... |
| cmtvalN 39320 | Equivalence for commutes r... |
| isolat 39321 | The predicate "is an ortho... |
| ollat 39322 | An ortholattice is a latti... |
| olop 39323 | An ortholattice is an orth... |
| olposN 39324 | An ortholattice is a poset... |
| isolatiN 39325 | Properties that determine ... |
| oldmm1 39326 | De Morgan's law for meet i... |
| oldmm2 39327 | De Morgan's law for meet i... |
| oldmm3N 39328 | De Morgan's law for meet i... |
| oldmm4 39329 | De Morgan's law for meet i... |
| oldmj1 39330 | De Morgan's law for join i... |
| oldmj2 39331 | De Morgan's law for join i... |
| oldmj3 39332 | De Morgan's law for join i... |
| oldmj4 39333 | De Morgan's law for join i... |
| olj01 39334 | An ortholattice element jo... |
| olj02 39335 | An ortholattice element jo... |
| olm11 39336 | The meet of an ortholattic... |
| olm12 39337 | The meet of an ortholattic... |
| latmassOLD 39338 | Ortholattice meet is assoc... |
| latm12 39339 | A rearrangement of lattice... |
| latm32 39340 | A rearrangement of lattice... |
| latmrot 39341 | Rotate lattice meet of 3 c... |
| latm4 39342 | Rearrangement of lattice m... |
| latmmdiN 39343 | Lattice meet distributes o... |
| latmmdir 39344 | Lattice meet distributes o... |
| olm01 39345 | Meet with lattice zero is ... |
| olm02 39346 | Meet with lattice zero is ... |
| isoml 39347 | The predicate "is an ortho... |
| isomliN 39348 | Properties that determine ... |
| omlol 39349 | An orthomodular lattice is... |
| omlop 39350 | An orthomodular lattice is... |
| omllat 39351 | An orthomodular lattice is... |
| omllaw 39352 | The orthomodular law. (Co... |
| omllaw2N 39353 | Variation of orthomodular ... |
| omllaw3 39354 | Orthomodular law equivalen... |
| omllaw4 39355 | Orthomodular law equivalen... |
| omllaw5N 39356 | The orthomodular law. Rem... |
| cmtcomlemN 39357 | Lemma for ~ cmtcomN . ( ~... |
| cmtcomN 39358 | Commutation is symmetric. ... |
| cmt2N 39359 | Commutation with orthocomp... |
| cmt3N 39360 | Commutation with orthocomp... |
| cmt4N 39361 | Commutation with orthocomp... |
| cmtbr2N 39362 | Alternate definition of th... |
| cmtbr3N 39363 | Alternate definition for t... |
| cmtbr4N 39364 | Alternate definition for t... |
| lecmtN 39365 | Ordered elements commute. ... |
| cmtidN 39366 | Any element commutes with ... |
| omlfh1N 39367 | Foulis-Holland Theorem, pa... |
| omlfh3N 39368 | Foulis-Holland Theorem, pa... |
| omlmod1i2N 39369 | Analogue of modular law ~ ... |
| omlspjN 39370 | Contraction of a Sasaki pr... |
| cvrfval 39377 | Value of covers relation "... |
| cvrval 39378 | Binary relation expressing... |
| cvrlt 39379 | The covers relation implie... |
| cvrnbtwn 39380 | There is no element betwee... |
| ncvr1 39381 | No element covers the latt... |
| cvrletrN 39382 | Property of an element abo... |
| cvrval2 39383 | Binary relation expressing... |
| cvrnbtwn2 39384 | The covers relation implie... |
| cvrnbtwn3 39385 | The covers relation implie... |
| cvrcon3b 39386 | Contraposition law for the... |
| cvrle 39387 | The covers relation implie... |
| cvrnbtwn4 39388 | The covers relation implie... |
| cvrnle 39389 | The covers relation implie... |
| cvrne 39390 | The covers relation implie... |
| cvrnrefN 39391 | The covers relation is not... |
| cvrcmp 39392 | If two lattice elements th... |
| cvrcmp2 39393 | If two lattice elements co... |
| pats 39394 | The set of atoms in a pose... |
| isat 39395 | The predicate "is an atom"... |
| isat2 39396 | The predicate "is an atom"... |
| atcvr0 39397 | An atom covers zero. ( ~ ... |
| atbase 39398 | An atom is a member of the... |
| atssbase 39399 | The set of atoms is a subs... |
| 0ltat 39400 | An atom is greater than ze... |
| leatb 39401 | A poset element less than ... |
| leat 39402 | A poset element less than ... |
| leat2 39403 | A nonzero poset element le... |
| leat3 39404 | A poset element less than ... |
| meetat 39405 | The meet of any element wi... |
| meetat2 39406 | The meet of any element wi... |
| isatl 39408 | The predicate "is an atomi... |
| atllat 39409 | An atomic lattice is a lat... |
| atlpos 39410 | An atomic lattice is a pos... |
| atl0dm 39411 | Condition necessary for ze... |
| atl0cl 39412 | An atomic lattice has a ze... |
| atl0le 39413 | Orthoposet zero is less th... |
| atlle0 39414 | An element less than or eq... |
| atlltn0 39415 | A lattice element greater ... |
| isat3 39416 | The predicate "is an atom"... |
| atn0 39417 | An atom is not zero. ( ~ ... |
| atnle0 39418 | An atom is not less than o... |
| atlen0 39419 | A lattice element is nonze... |
| atcmp 39420 | If two atoms are comparabl... |
| atncmp 39421 | Frequently-used variation ... |
| atnlt 39422 | Two atoms cannot satisfy t... |
| atcvreq0 39423 | An element covered by an a... |
| atncvrN 39424 | Two atoms cannot satisfy t... |
| atlex 39425 | Every nonzero element of a... |
| atnle 39426 | Two ways of expressing "an... |
| atnem0 39427 | The meet of distinct atoms... |
| atlatmstc 39428 | An atomic, complete, ortho... |
| atlatle 39429 | The ordering of two Hilber... |
| atlrelat1 39430 | An atomistic lattice with ... |
| iscvlat 39432 | The predicate "is an atomi... |
| iscvlat2N 39433 | The predicate "is an atomi... |
| cvlatl 39434 | An atomic lattice with the... |
| cvllat 39435 | An atomic lattice with the... |
| cvlposN 39436 | An atomic lattice with the... |
| cvlexch1 39437 | An atomic covering lattice... |
| cvlexch2 39438 | An atomic covering lattice... |
| cvlexchb1 39439 | An atomic covering lattice... |
| cvlexchb2 39440 | An atomic covering lattice... |
| cvlexch3 39441 | An atomic covering lattice... |
| cvlexch4N 39442 | An atomic covering lattice... |
| cvlatexchb1 39443 | A version of ~ cvlexchb1 f... |
| cvlatexchb2 39444 | A version of ~ cvlexchb2 f... |
| cvlatexch1 39445 | Atom exchange property. (... |
| cvlatexch2 39446 | Atom exchange property. (... |
| cvlatexch3 39447 | Atom exchange property. (... |
| cvlcvr1 39448 | The covering property. Pr... |
| cvlcvrp 39449 | A Hilbert lattice satisfie... |
| cvlatcvr1 39450 | An atom is covered by its ... |
| cvlatcvr2 39451 | An atom is covered by its ... |
| cvlsupr2 39452 | Two equivalent ways of exp... |
| cvlsupr3 39453 | Two equivalent ways of exp... |
| cvlsupr4 39454 | Consequence of superpositi... |
| cvlsupr5 39455 | Consequence of superpositi... |
| cvlsupr6 39456 | Consequence of superpositi... |
| cvlsupr7 39457 | Consequence of superpositi... |
| cvlsupr8 39458 | Consequence of superpositi... |
| ishlat1 39461 | The predicate "is a Hilber... |
| ishlat2 39462 | The predicate "is a Hilber... |
| ishlat3N 39463 | The predicate "is a Hilber... |
| ishlatiN 39464 | Properties that determine ... |
| hlomcmcv 39465 | A Hilbert lattice is ortho... |
| hloml 39466 | A Hilbert lattice is ortho... |
| hlclat 39467 | A Hilbert lattice is compl... |
| hlcvl 39468 | A Hilbert lattice is an at... |
| hlatl 39469 | A Hilbert lattice is atomi... |
| hlol 39470 | A Hilbert lattice is an or... |
| hlop 39471 | A Hilbert lattice is an or... |
| hllat 39472 | A Hilbert lattice is a lat... |
| hllatd 39473 | Deduction form of ~ hllat ... |
| hlomcmat 39474 | A Hilbert lattice is ortho... |
| hlpos 39475 | A Hilbert lattice is a pos... |
| hlatjcl 39476 | Closure of join operation.... |
| hlatjcom 39477 | Commutatitivity of join op... |
| hlatjidm 39478 | Idempotence of join operat... |
| hlatjass 39479 | Lattice join is associativ... |
| hlatj12 39480 | Swap 1st and 2nd members o... |
| hlatj32 39481 | Swap 2nd and 3rd members o... |
| hlatjrot 39482 | Rotate lattice join of 3 c... |
| hlatj4 39483 | Rearrangement of lattice j... |
| hlatlej1 39484 | A join's first argument is... |
| hlatlej2 39485 | A join's second argument i... |
| glbconN 39486 | De Morgan's law for GLB an... |
| glbconxN 39487 | De Morgan's law for GLB an... |
| atnlej1 39488 | If an atom is not less tha... |
| atnlej2 39489 | If an atom is not less tha... |
| hlsuprexch 39490 | A Hilbert lattice has the ... |
| hlexch1 39491 | A Hilbert lattice has the ... |
| hlexch2 39492 | A Hilbert lattice has the ... |
| hlexchb1 39493 | A Hilbert lattice has the ... |
| hlexchb2 39494 | A Hilbert lattice has the ... |
| hlsupr 39495 | A Hilbert lattice has the ... |
| hlsupr2 39496 | A Hilbert lattice has the ... |
| hlhgt4 39497 | A Hilbert lattice has a he... |
| hlhgt2 39498 | A Hilbert lattice has a he... |
| hl0lt1N 39499 | Lattice 0 is less than lat... |
| hlexch3 39500 | A Hilbert lattice has the ... |
| hlexch4N 39501 | A Hilbert lattice has the ... |
| hlatexchb1 39502 | A version of ~ hlexchb1 fo... |
| hlatexchb2 39503 | A version of ~ hlexchb2 fo... |
| hlatexch1 39504 | Atom exchange property. (... |
| hlatexch2 39505 | Atom exchange property. (... |
| hlatmstcOLDN 39506 | An atomic, complete, ortho... |
| hlatle 39507 | The ordering of two Hilber... |
| hlateq 39508 | The equality of two Hilber... |
| hlrelat1 39509 | An atomistic lattice with ... |
| hlrelat5N 39510 | An atomistic lattice with ... |
| hlrelat 39511 | A Hilbert lattice is relat... |
| hlrelat2 39512 | A consequence of relative ... |
| exatleN 39513 | A condition for an atom to... |
| hl2at 39514 | A Hilbert lattice has at l... |
| atex 39515 | At least one atom exists. ... |
| intnatN 39516 | If the intersection with a... |
| 2llnne2N 39517 | Condition implying that tw... |
| 2llnneN 39518 | Condition implying that tw... |
| cvr1 39519 | A Hilbert lattice has the ... |
| cvr2N 39520 | Less-than and covers equiv... |
| hlrelat3 39521 | The Hilbert lattice is rel... |
| cvrval3 39522 | Binary relation expressing... |
| cvrval4N 39523 | Binary relation expressing... |
| cvrval5 39524 | Binary relation expressing... |
| cvrp 39525 | A Hilbert lattice satisfie... |
| atcvr1 39526 | An atom is covered by its ... |
| atcvr2 39527 | An atom is covered by its ... |
| cvrexchlem 39528 | Lemma for ~ cvrexch . ( ~... |
| cvrexch 39529 | A Hilbert lattice satisfie... |
| cvratlem 39530 | Lemma for ~ cvrat . ( ~ a... |
| cvrat 39531 | A nonzero Hilbert lattice ... |
| ltltncvr 39532 | A chained strong ordering ... |
| ltcvrntr 39533 | Non-transitive condition f... |
| cvrntr 39534 | The covers relation is not... |
| atcvr0eq 39535 | The covers relation is not... |
| lnnat 39536 | A line (the join of two di... |
| atcvrj0 39537 | Two atoms covering the zer... |
| cvrat2 39538 | A Hilbert lattice element ... |
| atcvrneN 39539 | Inequality derived from at... |
| atcvrj1 39540 | Condition for an atom to b... |
| atcvrj2b 39541 | Condition for an atom to b... |
| atcvrj2 39542 | Condition for an atom to b... |
| atleneN 39543 | Inequality derived from at... |
| atltcvr 39544 | An equivalence of less-tha... |
| atle 39545 | Any nonzero element has an... |
| atlt 39546 | Two atoms are unequal iff ... |
| atlelt 39547 | Transfer less-than relatio... |
| 2atlt 39548 | Given an atom less than an... |
| atexchcvrN 39549 | Atom exchange property. V... |
| atexchltN 39550 | Atom exchange property. V... |
| cvrat3 39551 | A condition implying that ... |
| cvrat4 39552 | A condition implying exist... |
| cvrat42 39553 | Commuted version of ~ cvra... |
| 2atjm 39554 | The meet of a line (expres... |
| atbtwn 39555 | Property of a 3rd atom ` R... |
| atbtwnexOLDN 39556 | There exists a 3rd atom ` ... |
| atbtwnex 39557 | Given atoms ` P ` in ` X `... |
| 3noncolr2 39558 | Two ways to express 3 non-... |
| 3noncolr1N 39559 | Two ways to express 3 non-... |
| hlatcon3 39560 | Atom exchange combined wit... |
| hlatcon2 39561 | Atom exchange combined wit... |
| 4noncolr3 39562 | A way to express 4 non-col... |
| 4noncolr2 39563 | A way to express 4 non-col... |
| 4noncolr1 39564 | A way to express 4 non-col... |
| athgt 39565 | A Hilbert lattice, whose h... |
| 3dim0 39566 | There exists a 3-dimension... |
| 3dimlem1 39567 | Lemma for ~ 3dim1 . (Cont... |
| 3dimlem2 39568 | Lemma for ~ 3dim1 . (Cont... |
| 3dimlem3a 39569 | Lemma for ~ 3dim3 . (Cont... |
| 3dimlem3 39570 | Lemma for ~ 3dim1 . (Cont... |
| 3dimlem3OLDN 39571 | Lemma for ~ 3dim1 . (Cont... |
| 3dimlem4a 39572 | Lemma for ~ 3dim3 . (Cont... |
| 3dimlem4 39573 | Lemma for ~ 3dim1 . (Cont... |
| 3dimlem4OLDN 39574 | Lemma for ~ 3dim1 . (Cont... |
| 3dim1lem5 39575 | Lemma for ~ 3dim1 . (Cont... |
| 3dim1 39576 | Construct a 3-dimensional ... |
| 3dim2 39577 | Construct 2 new layers on ... |
| 3dim3 39578 | Construct a new layer on t... |
| 2dim 39579 | Generate a height-3 elemen... |
| 1dimN 39580 | An atom is covered by a he... |
| 1cvrco 39581 | The orthocomplement of an ... |
| 1cvratex 39582 | There exists an atom less ... |
| 1cvratlt 39583 | An atom less than or equal... |
| 1cvrjat 39584 | An element covered by the ... |
| 1cvrat 39585 | Create an atom under an el... |
| ps-1 39586 | The join of two atoms ` R ... |
| ps-2 39587 | Lattice analogue for the p... |
| 2atjlej 39588 | Two atoms are different if... |
| hlatexch3N 39589 | Rearrange join of atoms in... |
| hlatexch4 39590 | Exchange 2 atoms. (Contri... |
| ps-2b 39591 | Variation of projective ge... |
| 3atlem1 39592 | Lemma for ~ 3at . (Contri... |
| 3atlem2 39593 | Lemma for ~ 3at . (Contri... |
| 3atlem3 39594 | Lemma for ~ 3at . (Contri... |
| 3atlem4 39595 | Lemma for ~ 3at . (Contri... |
| 3atlem5 39596 | Lemma for ~ 3at . (Contri... |
| 3atlem6 39597 | Lemma for ~ 3at . (Contri... |
| 3atlem7 39598 | Lemma for ~ 3at . (Contri... |
| 3at 39599 | Any three non-colinear ato... |
| llnset 39614 | The set of lattice lines i... |
| islln 39615 | The predicate "is a lattic... |
| islln4 39616 | The predicate "is a lattic... |
| llni 39617 | Condition implying a latti... |
| llnbase 39618 | A lattice line is a lattic... |
| islln3 39619 | The predicate "is a lattic... |
| islln2 39620 | The predicate "is a lattic... |
| llni2 39621 | The join of two different ... |
| llnnleat 39622 | An atom cannot majorize a ... |
| llnneat 39623 | A lattice line is not an a... |
| 2atneat 39624 | The join of two distinct a... |
| llnn0 39625 | A lattice line is nonzero.... |
| islln2a 39626 | The predicate "is a lattic... |
| llnle 39627 | Any element greater than 0... |
| atcvrlln2 39628 | An atom under a line is co... |
| atcvrlln 39629 | An element covering an ato... |
| llnexatN 39630 | Given an atom on a line, t... |
| llncmp 39631 | If two lattice lines are c... |
| llnnlt 39632 | Two lattice lines cannot s... |
| 2llnmat 39633 | Two intersecting lines int... |
| 2at0mat0 39634 | Special case of ~ 2atmat0 ... |
| 2atmat0 39635 | The meet of two unequal li... |
| 2atm 39636 | An atom majorized by two d... |
| ps-2c 39637 | Variation of projective ge... |
| lplnset 39638 | The set of lattice planes ... |
| islpln 39639 | The predicate "is a lattic... |
| islpln4 39640 | The predicate "is a lattic... |
| lplni 39641 | Condition implying a latti... |
| islpln3 39642 | The predicate "is a lattic... |
| lplnbase 39643 | A lattice plane is a latti... |
| islpln5 39644 | The predicate "is a lattic... |
| islpln2 39645 | The predicate "is a lattic... |
| lplni2 39646 | The join of 3 different at... |
| lvolex3N 39647 | There is an atom outside o... |
| llnmlplnN 39648 | The intersection of a line... |
| lplnle 39649 | Any element greater than 0... |
| lplnnle2at 39650 | A lattice line (or atom) c... |
| lplnnleat 39651 | A lattice plane cannot maj... |
| lplnnlelln 39652 | A lattice plane is not les... |
| 2atnelpln 39653 | The join of two atoms is n... |
| lplnneat 39654 | No lattice plane is an ato... |
| lplnnelln 39655 | No lattice plane is a latt... |
| lplnn0N 39656 | A lattice plane is nonzero... |
| islpln2a 39657 | The predicate "is a lattic... |
| islpln2ah 39658 | The predicate "is a lattic... |
| lplnriaN 39659 | Property of a lattice plan... |
| lplnribN 39660 | Property of a lattice plan... |
| lplnric 39661 | Property of a lattice plan... |
| lplnri1 39662 | Property of a lattice plan... |
| lplnri2N 39663 | Property of a lattice plan... |
| lplnri3N 39664 | Property of a lattice plan... |
| lplnllnneN 39665 | Two lattice lines defined ... |
| llncvrlpln2 39666 | A lattice line under a lat... |
| llncvrlpln 39667 | An element covering a latt... |
| 2lplnmN 39668 | If the join of two lattice... |
| 2llnmj 39669 | The meet of two lattice li... |
| 2atmat 39670 | The meet of two intersecti... |
| lplncmp 39671 | If two lattice planes are ... |
| lplnexatN 39672 | Given a lattice line on a ... |
| lplnexllnN 39673 | Given an atom on a lattice... |
| lplnnlt 39674 | Two lattice planes cannot ... |
| 2llnjaN 39675 | The join of two different ... |
| 2llnjN 39676 | The join of two different ... |
| 2llnm2N 39677 | The meet of two different ... |
| 2llnm3N 39678 | Two lattice lines in a lat... |
| 2llnm4 39679 | Two lattice lines that maj... |
| 2llnmeqat 39680 | An atom equals the interse... |
| lvolset 39681 | The set of 3-dim lattice v... |
| islvol 39682 | The predicate "is a 3-dim ... |
| islvol4 39683 | The predicate "is a 3-dim ... |
| lvoli 39684 | Condition implying a 3-dim... |
| islvol3 39685 | The predicate "is a 3-dim ... |
| lvoli3 39686 | Condition implying a 3-dim... |
| lvolbase 39687 | A 3-dim lattice volume is ... |
| islvol5 39688 | The predicate "is a 3-dim ... |
| islvol2 39689 | The predicate "is a 3-dim ... |
| lvoli2 39690 | The join of 4 different at... |
| lvolnle3at 39691 | A lattice plane (or lattic... |
| lvolnleat 39692 | An atom cannot majorize a ... |
| lvolnlelln 39693 | A lattice line cannot majo... |
| lvolnlelpln 39694 | A lattice plane cannot maj... |
| 3atnelvolN 39695 | The join of 3 atoms is not... |
| 2atnelvolN 39696 | The join of two atoms is n... |
| lvolneatN 39697 | No lattice volume is an at... |
| lvolnelln 39698 | No lattice volume is a lat... |
| lvolnelpln 39699 | No lattice volume is a lat... |
| lvoln0N 39700 | A lattice volume is nonzer... |
| islvol2aN 39701 | The predicate "is a lattic... |
| 4atlem0a 39702 | Lemma for ~ 4at . (Contri... |
| 4atlem0ae 39703 | Lemma for ~ 4at . (Contri... |
| 4atlem0be 39704 | Lemma for ~ 4at . (Contri... |
| 4atlem3 39705 | Lemma for ~ 4at . Break i... |
| 4atlem3a 39706 | Lemma for ~ 4at . Break i... |
| 4atlem3b 39707 | Lemma for ~ 4at . Break i... |
| 4atlem4a 39708 | Lemma for ~ 4at . Frequen... |
| 4atlem4b 39709 | Lemma for ~ 4at . Frequen... |
| 4atlem4c 39710 | Lemma for ~ 4at . Frequen... |
| 4atlem4d 39711 | Lemma for ~ 4at . Frequen... |
| 4atlem9 39712 | Lemma for ~ 4at . Substit... |
| 4atlem10a 39713 | Lemma for ~ 4at . Substit... |
| 4atlem10b 39714 | Lemma for ~ 4at . Substit... |
| 4atlem10 39715 | Lemma for ~ 4at . Combine... |
| 4atlem11a 39716 | Lemma for ~ 4at . Substit... |
| 4atlem11b 39717 | Lemma for ~ 4at . Substit... |
| 4atlem11 39718 | Lemma for ~ 4at . Combine... |
| 4atlem12a 39719 | Lemma for ~ 4at . Substit... |
| 4atlem12b 39720 | Lemma for ~ 4at . Substit... |
| 4atlem12 39721 | Lemma for ~ 4at . Combine... |
| 4at 39722 | Four atoms determine a lat... |
| 4at2 39723 | Four atoms determine a lat... |
| lplncvrlvol2 39724 | A lattice line under a lat... |
| lplncvrlvol 39725 | An element covering a latt... |
| lvolcmp 39726 | If two lattice planes are ... |
| lvolnltN 39727 | Two lattice volumes cannot... |
| 2lplnja 39728 | The join of two different ... |
| 2lplnj 39729 | The join of two different ... |
| 2lplnm2N 39730 | The meet of two different ... |
| 2lplnmj 39731 | The meet of two lattice pl... |
| dalemkehl 39732 | Lemma for ~ dath . Freque... |
| dalemkelat 39733 | Lemma for ~ dath . Freque... |
| dalemkeop 39734 | Lemma for ~ dath . Freque... |
| dalempea 39735 | Lemma for ~ dath . Freque... |
| dalemqea 39736 | Lemma for ~ dath . Freque... |
| dalemrea 39737 | Lemma for ~ dath . Freque... |
| dalemsea 39738 | Lemma for ~ dath . Freque... |
| dalemtea 39739 | Lemma for ~ dath . Freque... |
| dalemuea 39740 | Lemma for ~ dath . Freque... |
| dalemyeo 39741 | Lemma for ~ dath . Freque... |
| dalemzeo 39742 | Lemma for ~ dath . Freque... |
| dalemclpjs 39743 | Lemma for ~ dath . Freque... |
| dalemclqjt 39744 | Lemma for ~ dath . Freque... |
| dalemclrju 39745 | Lemma for ~ dath . Freque... |
| dalem-clpjq 39746 | Lemma for ~ dath . Freque... |
| dalemceb 39747 | Lemma for ~ dath . Freque... |
| dalempeb 39748 | Lemma for ~ dath . Freque... |
| dalemqeb 39749 | Lemma for ~ dath . Freque... |
| dalemreb 39750 | Lemma for ~ dath . Freque... |
| dalemseb 39751 | Lemma for ~ dath . Freque... |
| dalemteb 39752 | Lemma for ~ dath . Freque... |
| dalemueb 39753 | Lemma for ~ dath . Freque... |
| dalempjqeb 39754 | Lemma for ~ dath . Freque... |
| dalemsjteb 39755 | Lemma for ~ dath . Freque... |
| dalemtjueb 39756 | Lemma for ~ dath . Freque... |
| dalemqrprot 39757 | Lemma for ~ dath . Freque... |
| dalemyeb 39758 | Lemma for ~ dath . Freque... |
| dalemcnes 39759 | Lemma for ~ dath . Freque... |
| dalempnes 39760 | Lemma for ~ dath . Freque... |
| dalemqnet 39761 | Lemma for ~ dath . Freque... |
| dalempjsen 39762 | Lemma for ~ dath . Freque... |
| dalemply 39763 | Lemma for ~ dath . Freque... |
| dalemsly 39764 | Lemma for ~ dath . Freque... |
| dalemswapyz 39765 | Lemma for ~ dath . Swap t... |
| dalemrot 39766 | Lemma for ~ dath . Rotate... |
| dalemrotyz 39767 | Lemma for ~ dath . Rotate... |
| dalem1 39768 | Lemma for ~ dath . Show t... |
| dalemcea 39769 | Lemma for ~ dath . Freque... |
| dalem2 39770 | Lemma for ~ dath . Show t... |
| dalemdea 39771 | Lemma for ~ dath . Freque... |
| dalemeea 39772 | Lemma for ~ dath . Freque... |
| dalem3 39773 | Lemma for ~ dalemdnee . (... |
| dalem4 39774 | Lemma for ~ dalemdnee . (... |
| dalemdnee 39775 | Lemma for ~ dath . Axis o... |
| dalem5 39776 | Lemma for ~ dath . Atom `... |
| dalem6 39777 | Lemma for ~ dath . Analog... |
| dalem7 39778 | Lemma for ~ dath . Analog... |
| dalem8 39779 | Lemma for ~ dath . Plane ... |
| dalem-cly 39780 | Lemma for ~ dalem9 . Cent... |
| dalem9 39781 | Lemma for ~ dath . Since ... |
| dalem10 39782 | Lemma for ~ dath . Atom `... |
| dalem11 39783 | Lemma for ~ dath . Analog... |
| dalem12 39784 | Lemma for ~ dath . Analog... |
| dalem13 39785 | Lemma for ~ dalem14 . (Co... |
| dalem14 39786 | Lemma for ~ dath . Planes... |
| dalem15 39787 | Lemma for ~ dath . The ax... |
| dalem16 39788 | Lemma for ~ dath . The at... |
| dalem17 39789 | Lemma for ~ dath . When p... |
| dalem18 39790 | Lemma for ~ dath . Show t... |
| dalem19 39791 | Lemma for ~ dath . Show t... |
| dalemccea 39792 | Lemma for ~ dath . Freque... |
| dalemddea 39793 | Lemma for ~ dath . Freque... |
| dalem-ccly 39794 | Lemma for ~ dath . Freque... |
| dalem-ddly 39795 | Lemma for ~ dath . Freque... |
| dalemccnedd 39796 | Lemma for ~ dath . Freque... |
| dalemclccjdd 39797 | Lemma for ~ dath . Freque... |
| dalemcceb 39798 | Lemma for ~ dath . Freque... |
| dalemswapyzps 39799 | Lemma for ~ dath . Swap t... |
| dalemrotps 39800 | Lemma for ~ dath . Rotate... |
| dalemcjden 39801 | Lemma for ~ dath . Show t... |
| dalem20 39802 | Lemma for ~ dath . Show t... |
| dalem21 39803 | Lemma for ~ dath . Show t... |
| dalem22 39804 | Lemma for ~ dath . Show t... |
| dalem23 39805 | Lemma for ~ dath . Show t... |
| dalem24 39806 | Lemma for ~ dath . Show t... |
| dalem25 39807 | Lemma for ~ dath . Show t... |
| dalem27 39808 | Lemma for ~ dath . Show t... |
| dalem28 39809 | Lemma for ~ dath . Lemma ... |
| dalem29 39810 | Lemma for ~ dath . Analog... |
| dalem30 39811 | Lemma for ~ dath . Analog... |
| dalem31N 39812 | Lemma for ~ dath . Analog... |
| dalem32 39813 | Lemma for ~ dath . Analog... |
| dalem33 39814 | Lemma for ~ dath . Analog... |
| dalem34 39815 | Lemma for ~ dath . Analog... |
| dalem35 39816 | Lemma for ~ dath . Analog... |
| dalem36 39817 | Lemma for ~ dath . Analog... |
| dalem37 39818 | Lemma for ~ dath . Analog... |
| dalem38 39819 | Lemma for ~ dath . Plane ... |
| dalem39 39820 | Lemma for ~ dath . Auxili... |
| dalem40 39821 | Lemma for ~ dath . Analog... |
| dalem41 39822 | Lemma for ~ dath . (Contr... |
| dalem42 39823 | Lemma for ~ dath . Auxili... |
| dalem43 39824 | Lemma for ~ dath . Planes... |
| dalem44 39825 | Lemma for ~ dath . Dummy ... |
| dalem45 39826 | Lemma for ~ dath . Dummy ... |
| dalem46 39827 | Lemma for ~ dath . Analog... |
| dalem47 39828 | Lemma for ~ dath . Analog... |
| dalem48 39829 | Lemma for ~ dath . Analog... |
| dalem49 39830 | Lemma for ~ dath . Analog... |
| dalem50 39831 | Lemma for ~ dath . Analog... |
| dalem51 39832 | Lemma for ~ dath . Constr... |
| dalem52 39833 | Lemma for ~ dath . Lines ... |
| dalem53 39834 | Lemma for ~ dath . The au... |
| dalem54 39835 | Lemma for ~ dath . Line `... |
| dalem55 39836 | Lemma for ~ dath . Lines ... |
| dalem56 39837 | Lemma for ~ dath . Analog... |
| dalem57 39838 | Lemma for ~ dath . Axis o... |
| dalem58 39839 | Lemma for ~ dath . Analog... |
| dalem59 39840 | Lemma for ~ dath . Analog... |
| dalem60 39841 | Lemma for ~ dath . ` B ` i... |
| dalem61 39842 | Lemma for ~ dath . Show t... |
| dalem62 39843 | Lemma for ~ dath . Elimin... |
| dalem63 39844 | Lemma for ~ dath . Combin... |
| dath 39845 | Desargues's theorem of pro... |
| dath2 39846 | Version of Desargues's the... |
| lineset 39847 | The set of lines in a Hilb... |
| isline 39848 | The predicate "is a line".... |
| islinei 39849 | Condition implying "is a l... |
| pointsetN 39850 | The set of points in a Hil... |
| ispointN 39851 | The predicate "is a point"... |
| atpointN 39852 | The singleton of an atom i... |
| psubspset 39853 | The set of projective subs... |
| ispsubsp 39854 | The predicate "is a projec... |
| ispsubsp2 39855 | The predicate "is a projec... |
| psubspi 39856 | Property of a projective s... |
| psubspi2N 39857 | Property of a projective s... |
| 0psubN 39858 | The empty set is a project... |
| snatpsubN 39859 | The singleton of an atom i... |
| pointpsubN 39860 | A point (singleton of an a... |
| linepsubN 39861 | A line is a projective sub... |
| atpsubN 39862 | The set of all atoms is a ... |
| psubssat 39863 | A projective subspace cons... |
| psubatN 39864 | A member of a projective s... |
| pmapfval 39865 | The projective map of a Hi... |
| pmapval 39866 | Value of the projective ma... |
| elpmap 39867 | Member of a projective map... |
| pmapssat 39868 | The projective map of a Hi... |
| pmapssbaN 39869 | A weakening of ~ pmapssat ... |
| pmaple 39870 | The projective map of a Hi... |
| pmap11 39871 | The projective map of a Hi... |
| pmapat 39872 | The projective map of an a... |
| elpmapat 39873 | Member of the projective m... |
| pmap0 39874 | Value of the projective ma... |
| pmapeq0 39875 | A projective map value is ... |
| pmap1N 39876 | Value of the projective ma... |
| pmapsub 39877 | The projective map of a Hi... |
| pmapglbx 39878 | The projective map of the ... |
| pmapglb 39879 | The projective map of the ... |
| pmapglb2N 39880 | The projective map of the ... |
| pmapglb2xN 39881 | The projective map of the ... |
| pmapmeet 39882 | The projective map of a me... |
| isline2 39883 | Definition of line in term... |
| linepmap 39884 | A line described with a pr... |
| isline3 39885 | Definition of line in term... |
| isline4N 39886 | Definition of line in term... |
| lneq2at 39887 | A line equals the join of ... |
| lnatexN 39888 | There is an atom in a line... |
| lnjatN 39889 | Given an atom in a line, t... |
| lncvrelatN 39890 | A lattice element covered ... |
| lncvrat 39891 | A line covers the atoms it... |
| lncmp 39892 | If two lines are comparabl... |
| 2lnat 39893 | Two intersecting lines int... |
| 2atm2atN 39894 | Two joins with a common at... |
| 2llnma1b 39895 | Generalization of ~ 2llnma... |
| 2llnma1 39896 | Two different intersecting... |
| 2llnma3r 39897 | Two different intersecting... |
| 2llnma2 39898 | Two different intersecting... |
| 2llnma2rN 39899 | Two different intersecting... |
| cdlema1N 39900 | A condition for required f... |
| cdlema2N 39901 | A condition for required f... |
| cdlemblem 39902 | Lemma for ~ cdlemb . (Con... |
| cdlemb 39903 | Given two atoms not less t... |
| paddfval 39906 | Projective subspace sum op... |
| paddval 39907 | Projective subspace sum op... |
| elpadd 39908 | Member of a projective sub... |
| elpaddn0 39909 | Member of projective subsp... |
| paddvaln0N 39910 | Projective subspace sum op... |
| elpaddri 39911 | Condition implying members... |
| elpaddatriN 39912 | Condition implying members... |
| elpaddat 39913 | Membership in a projective... |
| elpaddatiN 39914 | Consequence of membership ... |
| elpadd2at 39915 | Membership in a projective... |
| elpadd2at2 39916 | Membership in a projective... |
| paddunssN 39917 | Projective subspace sum in... |
| elpadd0 39918 | Member of projective subsp... |
| paddval0 39919 | Projective subspace sum wi... |
| padd01 39920 | Projective subspace sum wi... |
| padd02 39921 | Projective subspace sum wi... |
| paddcom 39922 | Projective subspace sum co... |
| paddssat 39923 | A projective subspace sum ... |
| sspadd1 39924 | A projective subspace sum ... |
| sspadd2 39925 | A projective subspace sum ... |
| paddss1 39926 | Subset law for projective ... |
| paddss2 39927 | Subset law for projective ... |
| paddss12 39928 | Subset law for projective ... |
| paddasslem1 39929 | Lemma for ~ paddass . (Co... |
| paddasslem2 39930 | Lemma for ~ paddass . (Co... |
| paddasslem3 39931 | Lemma for ~ paddass . Res... |
| paddasslem4 39932 | Lemma for ~ paddass . Com... |
| paddasslem5 39933 | Lemma for ~ paddass . Sho... |
| paddasslem6 39934 | Lemma for ~ paddass . (Co... |
| paddasslem7 39935 | Lemma for ~ paddass . Com... |
| paddasslem8 39936 | Lemma for ~ paddass . (Co... |
| paddasslem9 39937 | Lemma for ~ paddass . Com... |
| paddasslem10 39938 | Lemma for ~ paddass . Use... |
| paddasslem11 39939 | Lemma for ~ paddass . The... |
| paddasslem12 39940 | Lemma for ~ paddass . The... |
| paddasslem13 39941 | Lemma for ~ paddass . The... |
| paddasslem14 39942 | Lemma for ~ paddass . Rem... |
| paddasslem15 39943 | Lemma for ~ paddass . Use... |
| paddasslem16 39944 | Lemma for ~ paddass . Use... |
| paddasslem17 39945 | Lemma for ~ paddass . The... |
| paddasslem18 39946 | Lemma for ~ paddass . Com... |
| paddass 39947 | Projective subspace sum is... |
| padd12N 39948 | Commutative/associative la... |
| padd4N 39949 | Rearrangement of 4 terms i... |
| paddidm 39950 | Projective subspace sum is... |
| paddclN 39951 | The projective sum of two ... |
| paddssw1 39952 | Subset law for projective ... |
| paddssw2 39953 | Subset law for projective ... |
| paddss 39954 | Subset law for projective ... |
| pmodlem1 39955 | Lemma for ~ pmod1i . (Con... |
| pmodlem2 39956 | Lemma for ~ pmod1i . (Con... |
| pmod1i 39957 | The modular law holds in a... |
| pmod2iN 39958 | Dual of the modular law. ... |
| pmodN 39959 | The modular law for projec... |
| pmodl42N 39960 | Lemma derived from modular... |
| pmapjoin 39961 | The projective map of the ... |
| pmapjat1 39962 | The projective map of the ... |
| pmapjat2 39963 | The projective map of the ... |
| pmapjlln1 39964 | The projective map of the ... |
| hlmod1i 39965 | A version of the modular l... |
| atmod1i1 39966 | Version of modular law ~ p... |
| atmod1i1m 39967 | Version of modular law ~ p... |
| atmod1i2 39968 | Version of modular law ~ p... |
| llnmod1i2 39969 | Version of modular law ~ p... |
| atmod2i1 39970 | Version of modular law ~ p... |
| atmod2i2 39971 | Version of modular law ~ p... |
| llnmod2i2 39972 | Version of modular law ~ p... |
| atmod3i1 39973 | Version of modular law tha... |
| atmod3i2 39974 | Version of modular law tha... |
| atmod4i1 39975 | Version of modular law tha... |
| atmod4i2 39976 | Version of modular law tha... |
| llnexchb2lem 39977 | Lemma for ~ llnexchb2 . (... |
| llnexchb2 39978 | Line exchange property (co... |
| llnexch2N 39979 | Line exchange property (co... |
| dalawlem1 39980 | Lemma for ~ dalaw . Speci... |
| dalawlem2 39981 | Lemma for ~ dalaw . Utili... |
| dalawlem3 39982 | Lemma for ~ dalaw . First... |
| dalawlem4 39983 | Lemma for ~ dalaw . Secon... |
| dalawlem5 39984 | Lemma for ~ dalaw . Speci... |
| dalawlem6 39985 | Lemma for ~ dalaw . First... |
| dalawlem7 39986 | Lemma for ~ dalaw . Secon... |
| dalawlem8 39987 | Lemma for ~ dalaw . Speci... |
| dalawlem9 39988 | Lemma for ~ dalaw . Speci... |
| dalawlem10 39989 | Lemma for ~ dalaw . Combi... |
| dalawlem11 39990 | Lemma for ~ dalaw . First... |
| dalawlem12 39991 | Lemma for ~ dalaw . Secon... |
| dalawlem13 39992 | Lemma for ~ dalaw . Speci... |
| dalawlem14 39993 | Lemma for ~ dalaw . Combi... |
| dalawlem15 39994 | Lemma for ~ dalaw . Swap ... |
| dalaw 39995 | Desargues's law, derived f... |
| pclfvalN 39998 | The projective subspace cl... |
| pclvalN 39999 | Value of the projective su... |
| pclclN 40000 | Closure of the projective ... |
| elpclN 40001 | Membership in the projecti... |
| elpcliN 40002 | Implication of membership ... |
| pclssN 40003 | Ordering is preserved by s... |
| pclssidN 40004 | A set of atoms is included... |
| pclidN 40005 | The projective subspace cl... |
| pclbtwnN 40006 | A projective subspace sand... |
| pclunN 40007 | The projective subspace cl... |
| pclun2N 40008 | The projective subspace cl... |
| pclfinN 40009 | The projective subspace cl... |
| pclcmpatN 40010 | The set of projective subs... |
| polfvalN 40013 | The projective subspace po... |
| polvalN 40014 | Value of the projective su... |
| polval2N 40015 | Alternate expression for v... |
| polsubN 40016 | The polarity of a set of a... |
| polssatN 40017 | The polarity of a set of a... |
| pol0N 40018 | The polarity of the empty ... |
| pol1N 40019 | The polarity of the whole ... |
| 2pol0N 40020 | The closed subspace closur... |
| polpmapN 40021 | The polarity of a projecti... |
| 2polpmapN 40022 | Double polarity of a proje... |
| 2polvalN 40023 | Value of double polarity. ... |
| 2polssN 40024 | A set of atoms is a subset... |
| 3polN 40025 | Triple polarity cancels to... |
| polcon3N 40026 | Contraposition law for pol... |
| 2polcon4bN 40027 | Contraposition law for pol... |
| polcon2N 40028 | Contraposition law for pol... |
| polcon2bN 40029 | Contraposition law for pol... |
| pclss2polN 40030 | The projective subspace cl... |
| pcl0N 40031 | The projective subspace cl... |
| pcl0bN 40032 | The projective subspace cl... |
| pmaplubN 40033 | The LUB of a projective ma... |
| sspmaplubN 40034 | A set of atoms is a subset... |
| 2pmaplubN 40035 | Double projective map of a... |
| paddunN 40036 | The closure of the project... |
| poldmj1N 40037 | De Morgan's law for polari... |
| pmapj2N 40038 | The projective map of the ... |
| pmapocjN 40039 | The projective map of the ... |
| polatN 40040 | The polarity of the single... |
| 2polatN 40041 | Double polarity of the sin... |
| pnonsingN 40042 | The intersection of a set ... |
| psubclsetN 40045 | The set of closed projecti... |
| ispsubclN 40046 | The predicate "is a closed... |
| psubcliN 40047 | Property of a closed proje... |
| psubcli2N 40048 | Property of a closed proje... |
| psubclsubN 40049 | A closed projective subspa... |
| psubclssatN 40050 | A closed projective subspa... |
| pmapidclN 40051 | Projective map of the LUB ... |
| 0psubclN 40052 | The empty set is a closed ... |
| 1psubclN 40053 | The set of all atoms is a ... |
| atpsubclN 40054 | A point (singleton of an a... |
| pmapsubclN 40055 | A projective map value is ... |
| ispsubcl2N 40056 | Alternate predicate for "i... |
| psubclinN 40057 | The intersection of two cl... |
| paddatclN 40058 | The projective sum of a cl... |
| pclfinclN 40059 | The projective subspace cl... |
| linepsubclN 40060 | A line is a closed project... |
| polsubclN 40061 | A polarity is a closed pro... |
| poml4N 40062 | Orthomodular law for proje... |
| poml5N 40063 | Orthomodular law for proje... |
| poml6N 40064 | Orthomodular law for proje... |
| osumcllem1N 40065 | Lemma for ~ osumclN . (Co... |
| osumcllem2N 40066 | Lemma for ~ osumclN . (Co... |
| osumcllem3N 40067 | Lemma for ~ osumclN . (Co... |
| osumcllem4N 40068 | Lemma for ~ osumclN . (Co... |
| osumcllem5N 40069 | Lemma for ~ osumclN . (Co... |
| osumcllem6N 40070 | Lemma for ~ osumclN . Use... |
| osumcllem7N 40071 | Lemma for ~ osumclN . (Co... |
| osumcllem8N 40072 | Lemma for ~ osumclN . (Co... |
| osumcllem9N 40073 | Lemma for ~ osumclN . (Co... |
| osumcllem10N 40074 | Lemma for ~ osumclN . Con... |
| osumcllem11N 40075 | Lemma for ~ osumclN . (Co... |
| osumclN 40076 | Closure of orthogonal sum.... |
| pmapojoinN 40077 | For orthogonal elements, p... |
| pexmidN 40078 | Excluded middle law for cl... |
| pexmidlem1N 40079 | Lemma for ~ pexmidN . Hol... |
| pexmidlem2N 40080 | Lemma for ~ pexmidN . (Co... |
| pexmidlem3N 40081 | Lemma for ~ pexmidN . Use... |
| pexmidlem4N 40082 | Lemma for ~ pexmidN . (Co... |
| pexmidlem5N 40083 | Lemma for ~ pexmidN . (Co... |
| pexmidlem6N 40084 | Lemma for ~ pexmidN . (Co... |
| pexmidlem7N 40085 | Lemma for ~ pexmidN . Con... |
| pexmidlem8N 40086 | Lemma for ~ pexmidN . The... |
| pexmidALTN 40087 | Excluded middle law for cl... |
| pl42lem1N 40088 | Lemma for ~ pl42N . (Cont... |
| pl42lem2N 40089 | Lemma for ~ pl42N . (Cont... |
| pl42lem3N 40090 | Lemma for ~ pl42N . (Cont... |
| pl42lem4N 40091 | Lemma for ~ pl42N . (Cont... |
| pl42N 40092 | Law holding in a Hilbert l... |
| watfvalN 40101 | The W atoms function. (Co... |
| watvalN 40102 | Value of the W atoms funct... |
| iswatN 40103 | The predicate "is a W atom... |
| lhpset 40104 | The set of co-atoms (latti... |
| islhp 40105 | The predicate "is a co-ato... |
| islhp2 40106 | The predicate "is a co-ato... |
| lhpbase 40107 | A co-atom is a member of t... |
| lhp1cvr 40108 | The lattice unity covers a... |
| lhplt 40109 | An atom under a co-atom is... |
| lhp2lt 40110 | The join of two atoms unde... |
| lhpexlt 40111 | There exists an atom less ... |
| lhp0lt 40112 | A co-atom is greater than ... |
| lhpn0 40113 | A co-atom is nonzero. TOD... |
| lhpexle 40114 | There exists an atom under... |
| lhpexnle 40115 | There exists an atom not u... |
| lhpexle1lem 40116 | Lemma for ~ lhpexle1 and o... |
| lhpexle1 40117 | There exists an atom under... |
| lhpexle2lem 40118 | Lemma for ~ lhpexle2 . (C... |
| lhpexle2 40119 | There exists atom under a ... |
| lhpexle3lem 40120 | There exists atom under a ... |
| lhpexle3 40121 | There exists atom under a ... |
| lhpex2leN 40122 | There exist at least two d... |
| lhpoc 40123 | The orthocomplement of a c... |
| lhpoc2N 40124 | The orthocomplement of an ... |
| lhpocnle 40125 | The orthocomplement of a c... |
| lhpocat 40126 | The orthocomplement of a c... |
| lhpocnel 40127 | The orthocomplement of a c... |
| lhpocnel2 40128 | The orthocomplement of a c... |
| lhpjat1 40129 | The join of a co-atom (hyp... |
| lhpjat2 40130 | The join of a co-atom (hyp... |
| lhpj1 40131 | The join of a co-atom (hyp... |
| lhpmcvr 40132 | The meet of a lattice hype... |
| lhpmcvr2 40133 | Alternate way to express t... |
| lhpmcvr3 40134 | Specialization of ~ lhpmcv... |
| lhpmcvr4N 40135 | Specialization of ~ lhpmcv... |
| lhpmcvr5N 40136 | Specialization of ~ lhpmcv... |
| lhpmcvr6N 40137 | Specialization of ~ lhpmcv... |
| lhpm0atN 40138 | If the meet of a lattice h... |
| lhpmat 40139 | An element covered by the ... |
| lhpmatb 40140 | An element covered by the ... |
| lhp2at0 40141 | Join and meet with differe... |
| lhp2atnle 40142 | Inequality for 2 different... |
| lhp2atne 40143 | Inequality for joins with ... |
| lhp2at0nle 40144 | Inequality for 2 different... |
| lhp2at0ne 40145 | Inequality for joins with ... |
| lhpelim 40146 | Eliminate an atom not unde... |
| lhpmod2i2 40147 | Modular law for hyperplane... |
| lhpmod6i1 40148 | Modular law for hyperplane... |
| lhprelat3N 40149 | The Hilbert lattice is rel... |
| cdlemb2 40150 | Given two atoms not under ... |
| lhple 40151 | Property of a lattice elem... |
| lhpat 40152 | Create an atom under a co-... |
| lhpat4N 40153 | Property of an atom under ... |
| lhpat2 40154 | Create an atom under a co-... |
| lhpat3 40155 | There is only one atom und... |
| 4atexlemk 40156 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemw 40157 | Lemma for ~ 4atexlem7 . (... |
| 4atexlempw 40158 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemp 40159 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemq 40160 | Lemma for ~ 4atexlem7 . (... |
| 4atexlems 40161 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemt 40162 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemutvt 40163 | Lemma for ~ 4atexlem7 . (... |
| 4atexlempnq 40164 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemnslpq 40165 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemkl 40166 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemkc 40167 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemwb 40168 | Lemma for ~ 4atexlem7 . (... |
| 4atexlempsb 40169 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemqtb 40170 | Lemma for ~ 4atexlem7 . (... |
| 4atexlempns 40171 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemswapqr 40172 | Lemma for ~ 4atexlem7 . S... |
| 4atexlemu 40173 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemv 40174 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemunv 40175 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemtlw 40176 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemntlpq 40177 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemc 40178 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemnclw 40179 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemex2 40180 | Lemma for ~ 4atexlem7 . S... |
| 4atexlemcnd 40181 | Lemma for ~ 4atexlem7 . (... |
| 4atexlemex4 40182 | Lemma for ~ 4atexlem7 . S... |
| 4atexlemex6 40183 | Lemma for ~ 4atexlem7 . (... |
| 4atexlem7 40184 | Whenever there are at leas... |
| 4atex 40185 | Whenever there are at leas... |
| 4atex2 40186 | More general version of ~ ... |
| 4atex2-0aOLDN 40187 | Same as ~ 4atex2 except th... |
| 4atex2-0bOLDN 40188 | Same as ~ 4atex2 except th... |
| 4atex2-0cOLDN 40189 | Same as ~ 4atex2 except th... |
| 4atex3 40190 | More general version of ~ ... |
| lautset 40191 | The set of lattice automor... |
| islaut 40192 | The predicate "is a lattic... |
| lautle 40193 | Less-than or equal propert... |
| laut1o 40194 | A lattice automorphism is ... |
| laut11 40195 | One-to-one property of a l... |
| lautcl 40196 | A lattice automorphism val... |
| lautcnvclN 40197 | Reverse closure of a latti... |
| lautcnvle 40198 | Less-than or equal propert... |
| lautcnv 40199 | The converse of a lattice ... |
| lautlt 40200 | Less-than property of a la... |
| lautcvr 40201 | Covering property of a lat... |
| lautj 40202 | Meet property of a lattice... |
| lautm 40203 | Meet property of a lattice... |
| lauteq 40204 | A lattice automorphism arg... |
| idlaut 40205 | The identity function is a... |
| lautco 40206 | The composition of two lat... |
| pautsetN 40207 | The set of projective auto... |
| ispautN 40208 | The predicate "is a projec... |
| ldilfset 40217 | The mapping from fiducial ... |
| ldilset 40218 | The set of lattice dilatio... |
| isldil 40219 | The predicate "is a lattic... |
| ldillaut 40220 | A lattice dilation is an a... |
| ldil1o 40221 | A lattice dilation is a on... |
| ldilval 40222 | Value of a lattice dilatio... |
| idldil 40223 | The identity function is a... |
| ldilcnv 40224 | The converse of a lattice ... |
| ldilco 40225 | The composition of two lat... |
| ltrnfset 40226 | The set of all lattice tra... |
| ltrnset 40227 | The set of lattice transla... |
| isltrn 40228 | The predicate "is a lattic... |
| isltrn2N 40229 | The predicate "is a lattic... |
| ltrnu 40230 | Uniqueness property of a l... |
| ltrnldil 40231 | A lattice translation is a... |
| ltrnlaut 40232 | A lattice translation is a... |
| ltrn1o 40233 | A lattice translation is a... |
| ltrncl 40234 | Closure of a lattice trans... |
| ltrn11 40235 | One-to-one property of a l... |
| ltrncnvnid 40236 | If a translation is differ... |
| ltrncoidN 40237 | Two translations are equal... |
| ltrnle 40238 | Less-than or equal propert... |
| ltrncnvleN 40239 | Less-than or equal propert... |
| ltrnm 40240 | Lattice translation of a m... |
| ltrnj 40241 | Lattice translation of a m... |
| ltrncvr 40242 | Covering property of a lat... |
| ltrnval1 40243 | Value of a lattice transla... |
| ltrnid 40244 | A lattice translation is t... |
| ltrnnid 40245 | If a lattice translation i... |
| ltrnatb 40246 | The lattice translation of... |
| ltrncnvatb 40247 | The converse of the lattic... |
| ltrnel 40248 | The lattice translation of... |
| ltrnat 40249 | The lattice translation of... |
| ltrncnvat 40250 | The converse of the lattic... |
| ltrncnvel 40251 | The converse of the lattic... |
| ltrncoelN 40252 | Composition of lattice tra... |
| ltrncoat 40253 | Composition of lattice tra... |
| ltrncoval 40254 | Two ways to express value ... |
| ltrncnv 40255 | The converse of a lattice ... |
| ltrn11at 40256 | Frequently used one-to-one... |
| ltrneq2 40257 | The equality of two transl... |
| ltrneq 40258 | The equality of two transl... |
| idltrn 40259 | The identity function is a... |
| ltrnmw 40260 | Property of lattice transl... |
| dilfsetN 40261 | The mapping from fiducial ... |
| dilsetN 40262 | The set of dilations for a... |
| isdilN 40263 | The predicate "is a dilati... |
| trnfsetN 40264 | The mapping from fiducial ... |
| trnsetN 40265 | The set of translations fo... |
| istrnN 40266 | The predicate "is a transl... |
| trlfset 40269 | The set of all traces of l... |
| trlset 40270 | The set of traces of latti... |
| trlval 40271 | The value of the trace of ... |
| trlval2 40272 | The value of the trace of ... |
| trlcl 40273 | Closure of the trace of a ... |
| trlcnv 40274 | The trace of the converse ... |
| trljat1 40275 | The value of a translation... |
| trljat2 40276 | The value of a translation... |
| trljat3 40277 | The value of a translation... |
| trlat 40278 | If an atom differs from it... |
| trl0 40279 | If an atom not under the f... |
| trlator0 40280 | The trace of a lattice tra... |
| trlatn0 40281 | The trace of a lattice tra... |
| trlnidat 40282 | The trace of a lattice tra... |
| ltrnnidn 40283 | If a lattice translation i... |
| ltrnideq 40284 | Property of the identity l... |
| trlid0 40285 | The trace of the identity ... |
| trlnidatb 40286 | A lattice translation is n... |
| trlid0b 40287 | A lattice translation is t... |
| trlnid 40288 | Different translations wit... |
| ltrn2ateq 40289 | Property of the equality o... |
| ltrnateq 40290 | If any atom (under ` W ` )... |
| ltrnatneq 40291 | If any atom (under ` W ` )... |
| ltrnatlw 40292 | If the value of an atom eq... |
| trlle 40293 | The trace of a lattice tra... |
| trlne 40294 | The trace of a lattice tra... |
| trlnle 40295 | The atom not under the fid... |
| trlval3 40296 | The value of the trace of ... |
| trlval4 40297 | The value of the trace of ... |
| trlval5 40298 | The value of the trace of ... |
| arglem1N 40299 | Lemma for Desargues's law.... |
| cdlemc1 40300 | Part of proof of Lemma C i... |
| cdlemc2 40301 | Part of proof of Lemma C i... |
| cdlemc3 40302 | Part of proof of Lemma C i... |
| cdlemc4 40303 | Part of proof of Lemma C i... |
| cdlemc5 40304 | Lemma for ~ cdlemc . (Con... |
| cdlemc6 40305 | Lemma for ~ cdlemc . (Con... |
| cdlemc 40306 | Lemma C in [Crawley] p. 11... |
| cdlemd1 40307 | Part of proof of Lemma D i... |
| cdlemd2 40308 | Part of proof of Lemma D i... |
| cdlemd3 40309 | Part of proof of Lemma D i... |
| cdlemd4 40310 | Part of proof of Lemma D i... |
| cdlemd5 40311 | Part of proof of Lemma D i... |
| cdlemd6 40312 | Part of proof of Lemma D i... |
| cdlemd7 40313 | Part of proof of Lemma D i... |
| cdlemd8 40314 | Part of proof of Lemma D i... |
| cdlemd9 40315 | Part of proof of Lemma D i... |
| cdlemd 40316 | If two translations agree ... |
| ltrneq3 40317 | Two translations agree at ... |
| cdleme00a 40318 | Part of proof of Lemma E i... |
| cdleme0aa 40319 | Part of proof of Lemma E i... |
| cdleme0a 40320 | Part of proof of Lemma E i... |
| cdleme0b 40321 | Part of proof of Lemma E i... |
| cdleme0c 40322 | Part of proof of Lemma E i... |
| cdleme0cp 40323 | Part of proof of Lemma E i... |
| cdleme0cq 40324 | Part of proof of Lemma E i... |
| cdleme0dN 40325 | Part of proof of Lemma E i... |
| cdleme0e 40326 | Part of proof of Lemma E i... |
| cdleme0fN 40327 | Part of proof of Lemma E i... |
| cdleme0gN 40328 | Part of proof of Lemma E i... |
| cdlemeulpq 40329 | Part of proof of Lemma E i... |
| cdleme01N 40330 | Part of proof of Lemma E i... |
| cdleme02N 40331 | Part of proof of Lemma E i... |
| cdleme0ex1N 40332 | Part of proof of Lemma E i... |
| cdleme0ex2N 40333 | Part of proof of Lemma E i... |
| cdleme0moN 40334 | Part of proof of Lemma E i... |
| cdleme1b 40335 | Part of proof of Lemma E i... |
| cdleme1 40336 | Part of proof of Lemma E i... |
| cdleme2 40337 | Part of proof of Lemma E i... |
| cdleme3b 40338 | Part of proof of Lemma E i... |
| cdleme3c 40339 | Part of proof of Lemma E i... |
| cdleme3d 40340 | Part of proof of Lemma E i... |
| cdleme3e 40341 | Part of proof of Lemma E i... |
| cdleme3fN 40342 | Part of proof of Lemma E i... |
| cdleme3g 40343 | Part of proof of Lemma E i... |
| cdleme3h 40344 | Part of proof of Lemma E i... |
| cdleme3fa 40345 | Part of proof of Lemma E i... |
| cdleme3 40346 | Part of proof of Lemma E i... |
| cdleme4 40347 | Part of proof of Lemma E i... |
| cdleme4a 40348 | Part of proof of Lemma E i... |
| cdleme5 40349 | Part of proof of Lemma E i... |
| cdleme6 40350 | Part of proof of Lemma E i... |
| cdleme7aa 40351 | Part of proof of Lemma E i... |
| cdleme7a 40352 | Part of proof of Lemma E i... |
| cdleme7b 40353 | Part of proof of Lemma E i... |
| cdleme7c 40354 | Part of proof of Lemma E i... |
| cdleme7d 40355 | Part of proof of Lemma E i... |
| cdleme7e 40356 | Part of proof of Lemma E i... |
| cdleme7ga 40357 | Part of proof of Lemma E i... |
| cdleme7 40358 | Part of proof of Lemma E i... |
| cdleme8 40359 | Part of proof of Lemma E i... |
| cdleme9a 40360 | Part of proof of Lemma E i... |
| cdleme9b 40361 | Utility lemma for Lemma E ... |
| cdleme9 40362 | Part of proof of Lemma E i... |
| cdleme10 40363 | Part of proof of Lemma E i... |
| cdleme8tN 40364 | Part of proof of Lemma E i... |
| cdleme9taN 40365 | Part of proof of Lemma E i... |
| cdleme9tN 40366 | Part of proof of Lemma E i... |
| cdleme10tN 40367 | Part of proof of Lemma E i... |
| cdleme16aN 40368 | Part of proof of Lemma E i... |
| cdleme11a 40369 | Part of proof of Lemma E i... |
| cdleme11c 40370 | Part of proof of Lemma E i... |
| cdleme11dN 40371 | Part of proof of Lemma E i... |
| cdleme11e 40372 | Part of proof of Lemma E i... |
| cdleme11fN 40373 | Part of proof of Lemma E i... |
| cdleme11g 40374 | Part of proof of Lemma E i... |
| cdleme11h 40375 | Part of proof of Lemma E i... |
| cdleme11j 40376 | Part of proof of Lemma E i... |
| cdleme11k 40377 | Part of proof of Lemma E i... |
| cdleme11l 40378 | Part of proof of Lemma E i... |
| cdleme11 40379 | Part of proof of Lemma E i... |
| cdleme12 40380 | Part of proof of Lemma E i... |
| cdleme13 40381 | Part of proof of Lemma E i... |
| cdleme14 40382 | Part of proof of Lemma E i... |
| cdleme15a 40383 | Part of proof of Lemma E i... |
| cdleme15b 40384 | Part of proof of Lemma E i... |
| cdleme15c 40385 | Part of proof of Lemma E i... |
| cdleme15d 40386 | Part of proof of Lemma E i... |
| cdleme15 40387 | Part of proof of Lemma E i... |
| cdleme16b 40388 | Part of proof of Lemma E i... |
| cdleme16c 40389 | Part of proof of Lemma E i... |
| cdleme16d 40390 | Part of proof of Lemma E i... |
| cdleme16e 40391 | Part of proof of Lemma E i... |
| cdleme16f 40392 | Part of proof of Lemma E i... |
| cdleme16g 40393 | Part of proof of Lemma E i... |
| cdleme16 40394 | Part of proof of Lemma E i... |
| cdleme17a 40395 | Part of proof of Lemma E i... |
| cdleme17b 40396 | Lemma leading to ~ cdleme1... |
| cdleme17c 40397 | Part of proof of Lemma E i... |
| cdleme17d1 40398 | Part of proof of Lemma E i... |
| cdleme0nex 40399 | Part of proof of Lemma E i... |
| cdleme18a 40400 | Part of proof of Lemma E i... |
| cdleme18b 40401 | Part of proof of Lemma E i... |
| cdleme18c 40402 | Part of proof of Lemma E i... |
| cdleme22gb 40403 | Utility lemma for Lemma E ... |
| cdleme18d 40404 | Part of proof of Lemma E i... |
| cdlemesner 40405 | Part of proof of Lemma E i... |
| cdlemedb 40406 | Part of proof of Lemma E i... |
| cdlemeda 40407 | Part of proof of Lemma E i... |
| cdlemednpq 40408 | Part of proof of Lemma E i... |
| cdlemednuN 40409 | Part of proof of Lemma E i... |
| cdleme20zN 40410 | Part of proof of Lemma E i... |
| cdleme20y 40411 | Part of proof of Lemma E i... |
| cdleme19a 40412 | Part of proof of Lemma E i... |
| cdleme19b 40413 | Part of proof of Lemma E i... |
| cdleme19c 40414 | Part of proof of Lemma E i... |
| cdleme19d 40415 | Part of proof of Lemma E i... |
| cdleme19e 40416 | Part of proof of Lemma E i... |
| cdleme19f 40417 | Part of proof of Lemma E i... |
| cdleme20aN 40418 | Part of proof of Lemma E i... |
| cdleme20bN 40419 | Part of proof of Lemma E i... |
| cdleme20c 40420 | Part of proof of Lemma E i... |
| cdleme20d 40421 | Part of proof of Lemma E i... |
| cdleme20e 40422 | Part of proof of Lemma E i... |
| cdleme20f 40423 | Part of proof of Lemma E i... |
| cdleme20g 40424 | Part of proof of Lemma E i... |
| cdleme20h 40425 | Part of proof of Lemma E i... |
| cdleme20i 40426 | Part of proof of Lemma E i... |
| cdleme20j 40427 | Part of proof of Lemma E i... |
| cdleme20k 40428 | Part of proof of Lemma E i... |
| cdleme20l1 40429 | Part of proof of Lemma E i... |
| cdleme20l2 40430 | Part of proof of Lemma E i... |
| cdleme20l 40431 | Part of proof of Lemma E i... |
| cdleme20m 40432 | Part of proof of Lemma E i... |
| cdleme20 40433 | Combine ~ cdleme19f and ~ ... |
| cdleme21a 40434 | Part of proof of Lemma E i... |
| cdleme21b 40435 | Part of proof of Lemma E i... |
| cdleme21c 40436 | Part of proof of Lemma E i... |
| cdleme21at 40437 | Part of proof of Lemma E i... |
| cdleme21ct 40438 | Part of proof of Lemma E i... |
| cdleme21d 40439 | Part of proof of Lemma E i... |
| cdleme21e 40440 | Part of proof of Lemma E i... |
| cdleme21f 40441 | Part of proof of Lemma E i... |
| cdleme21g 40442 | Part of proof of Lemma E i... |
| cdleme21h 40443 | Part of proof of Lemma E i... |
| cdleme21i 40444 | Part of proof of Lemma E i... |
| cdleme21j 40445 | Combine ~ cdleme20 and ~ c... |
| cdleme21 40446 | Part of proof of Lemma E i... |
| cdleme21k 40447 | Eliminate ` S =/= T ` cond... |
| cdleme22aa 40448 | Part of proof of Lemma E i... |
| cdleme22a 40449 | Part of proof of Lemma E i... |
| cdleme22b 40450 | Part of proof of Lemma E i... |
| cdleme22cN 40451 | Part of proof of Lemma E i... |
| cdleme22d 40452 | Part of proof of Lemma E i... |
| cdleme22e 40453 | Part of proof of Lemma E i... |
| cdleme22eALTN 40454 | Part of proof of Lemma E i... |
| cdleme22f 40455 | Part of proof of Lemma E i... |
| cdleme22f2 40456 | Part of proof of Lemma E i... |
| cdleme22g 40457 | Part of proof of Lemma E i... |
| cdleme23a 40458 | Part of proof of Lemma E i... |
| cdleme23b 40459 | Part of proof of Lemma E i... |
| cdleme23c 40460 | Part of proof of Lemma E i... |
| cdleme24 40461 | Quantified version of ~ cd... |
| cdleme25a 40462 | Lemma for ~ cdleme25b . (... |
| cdleme25b 40463 | Transform ~ cdleme24 . TO... |
| cdleme25c 40464 | Transform ~ cdleme25b . (... |
| cdleme25dN 40465 | Transform ~ cdleme25c . (... |
| cdleme25cl 40466 | Show closure of the unique... |
| cdleme25cv 40467 | Change bound variables in ... |
| cdleme26e 40468 | Part of proof of Lemma E i... |
| cdleme26ee 40469 | Part of proof of Lemma E i... |
| cdleme26eALTN 40470 | Part of proof of Lemma E i... |
| cdleme26fALTN 40471 | Part of proof of Lemma E i... |
| cdleme26f 40472 | Part of proof of Lemma E i... |
| cdleme26f2ALTN 40473 | Part of proof of Lemma E i... |
| cdleme26f2 40474 | Part of proof of Lemma E i... |
| cdleme27cl 40475 | Part of proof of Lemma E i... |
| cdleme27a 40476 | Part of proof of Lemma E i... |
| cdleme27b 40477 | Lemma for ~ cdleme27N . (... |
| cdleme27N 40478 | Part of proof of Lemma E i... |
| cdleme28a 40479 | Lemma for ~ cdleme25b . T... |
| cdleme28b 40480 | Lemma for ~ cdleme25b . T... |
| cdleme28c 40481 | Part of proof of Lemma E i... |
| cdleme28 40482 | Quantified version of ~ cd... |
| cdleme29ex 40483 | Lemma for ~ cdleme29b . (... |
| cdleme29b 40484 | Transform ~ cdleme28 . (C... |
| cdleme29c 40485 | Transform ~ cdleme28b . (... |
| cdleme29cl 40486 | Show closure of the unique... |
| cdleme30a 40487 | Part of proof of Lemma E i... |
| cdleme31so 40488 | Part of proof of Lemma E i... |
| cdleme31sn 40489 | Part of proof of Lemma E i... |
| cdleme31sn1 40490 | Part of proof of Lemma E i... |
| cdleme31se 40491 | Part of proof of Lemma D i... |
| cdleme31se2 40492 | Part of proof of Lemma D i... |
| cdleme31sc 40493 | Part of proof of Lemma E i... |
| cdleme31sde 40494 | Part of proof of Lemma D i... |
| cdleme31snd 40495 | Part of proof of Lemma D i... |
| cdleme31sdnN 40496 | Part of proof of Lemma E i... |
| cdleme31sn1c 40497 | Part of proof of Lemma E i... |
| cdleme31sn2 40498 | Part of proof of Lemma E i... |
| cdleme31fv 40499 | Part of proof of Lemma E i... |
| cdleme31fv1 40500 | Part of proof of Lemma E i... |
| cdleme31fv1s 40501 | Part of proof of Lemma E i... |
| cdleme31fv2 40502 | Part of proof of Lemma E i... |
| cdleme31id 40503 | Part of proof of Lemma E i... |
| cdlemefrs29pre00 40504 | ***START OF VALUE AT ATOM ... |
| cdlemefrs29bpre0 40505 | TODO fix comment. (Contri... |
| cdlemefrs29bpre1 40506 | TODO: FIX COMMENT. (Contr... |
| cdlemefrs29cpre1 40507 | TODO: FIX COMMENT. (Contr... |
| cdlemefrs29clN 40508 | TODO: NOT USED? Show clo... |
| cdlemefrs32fva 40509 | Part of proof of Lemma E i... |
| cdlemefrs32fva1 40510 | Part of proof of Lemma E i... |
| cdlemefr29exN 40511 | Lemma for ~ cdlemefs29bpre... |
| cdlemefr27cl 40512 | Part of proof of Lemma E i... |
| cdlemefr32sn2aw 40513 | Show that ` [_ R / s ]_ N ... |
| cdlemefr32snb 40514 | Show closure of ` [_ R / s... |
| cdlemefr29bpre0N 40515 | TODO fix comment. (Contri... |
| cdlemefr29clN 40516 | Show closure of the unique... |
| cdleme43frv1snN 40517 | Value of ` [_ R / s ]_ N `... |
| cdlemefr32fvaN 40518 | Part of proof of Lemma E i... |
| cdlemefr32fva1 40519 | Part of proof of Lemma E i... |
| cdlemefr31fv1 40520 | Value of ` ( F `` R ) ` wh... |
| cdlemefs29pre00N 40521 | FIX COMMENT. TODO: see if ... |
| cdlemefs27cl 40522 | Part of proof of Lemma E i... |
| cdlemefs32sn1aw 40523 | Show that ` [_ R / s ]_ N ... |
| cdlemefs32snb 40524 | Show closure of ` [_ R / s... |
| cdlemefs29bpre0N 40525 | TODO: FIX COMMENT. (Contr... |
| cdlemefs29bpre1N 40526 | TODO: FIX COMMENT. (Contr... |
| cdlemefs29cpre1N 40527 | TODO: FIX COMMENT. (Contr... |
| cdlemefs29clN 40528 | Show closure of the unique... |
| cdleme43fsv1snlem 40529 | Value of ` [_ R / s ]_ N `... |
| cdleme43fsv1sn 40530 | Value of ` [_ R / s ]_ N `... |
| cdlemefs32fvaN 40531 | Part of proof of Lemma E i... |
| cdlemefs32fva1 40532 | Part of proof of Lemma E i... |
| cdlemefs31fv1 40533 | Value of ` ( F `` R ) ` wh... |
| cdlemefr44 40534 | Value of f(r) when r is an... |
| cdlemefs44 40535 | Value of f_s(r) when r is ... |
| cdlemefr45 40536 | Value of f(r) when r is an... |
| cdlemefr45e 40537 | Explicit expansion of ~ cd... |
| cdlemefs45 40538 | Value of f_s(r) when r is ... |
| cdlemefs45ee 40539 | Explicit expansion of ~ cd... |
| cdlemefs45eN 40540 | Explicit expansion of ~ cd... |
| cdleme32sn1awN 40541 | Show that ` [_ R / s ]_ N ... |
| cdleme41sn3a 40542 | Show that ` [_ R / s ]_ N ... |
| cdleme32sn2awN 40543 | Show that ` [_ R / s ]_ N ... |
| cdleme32snaw 40544 | Show that ` [_ R / s ]_ N ... |
| cdleme32snb 40545 | Show closure of ` [_ R / s... |
| cdleme32fva 40546 | Part of proof of Lemma D i... |
| cdleme32fva1 40547 | Part of proof of Lemma D i... |
| cdleme32fvaw 40548 | Show that ` ( F `` R ) ` i... |
| cdleme32fvcl 40549 | Part of proof of Lemma D i... |
| cdleme32a 40550 | Part of proof of Lemma D i... |
| cdleme32b 40551 | Part of proof of Lemma D i... |
| cdleme32c 40552 | Part of proof of Lemma D i... |
| cdleme32d 40553 | Part of proof of Lemma D i... |
| cdleme32e 40554 | Part of proof of Lemma D i... |
| cdleme32f 40555 | Part of proof of Lemma D i... |
| cdleme32le 40556 | Part of proof of Lemma D i... |
| cdleme35a 40557 | Part of proof of Lemma E i... |
| cdleme35fnpq 40558 | Part of proof of Lemma E i... |
| cdleme35b 40559 | Part of proof of Lemma E i... |
| cdleme35c 40560 | Part of proof of Lemma E i... |
| cdleme35d 40561 | Part of proof of Lemma E i... |
| cdleme35e 40562 | Part of proof of Lemma E i... |
| cdleme35f 40563 | Part of proof of Lemma E i... |
| cdleme35g 40564 | Part of proof of Lemma E i... |
| cdleme35h 40565 | Part of proof of Lemma E i... |
| cdleme35h2 40566 | Part of proof of Lemma E i... |
| cdleme35sn2aw 40567 | Part of proof of Lemma E i... |
| cdleme35sn3a 40568 | Part of proof of Lemma E i... |
| cdleme36a 40569 | Part of proof of Lemma E i... |
| cdleme36m 40570 | Part of proof of Lemma E i... |
| cdleme37m 40571 | Part of proof of Lemma E i... |
| cdleme38m 40572 | Part of proof of Lemma E i... |
| cdleme38n 40573 | Part of proof of Lemma E i... |
| cdleme39a 40574 | Part of proof of Lemma E i... |
| cdleme39n 40575 | Part of proof of Lemma E i... |
| cdleme40m 40576 | Part of proof of Lemma E i... |
| cdleme40n 40577 | Part of proof of Lemma E i... |
| cdleme40v 40578 | Part of proof of Lemma E i... |
| cdleme40w 40579 | Part of proof of Lemma E i... |
| cdleme42a 40580 | Part of proof of Lemma E i... |
| cdleme42c 40581 | Part of proof of Lemma E i... |
| cdleme42d 40582 | Part of proof of Lemma E i... |
| cdleme41sn3aw 40583 | Part of proof of Lemma E i... |
| cdleme41sn4aw 40584 | Part of proof of Lemma E i... |
| cdleme41snaw 40585 | Part of proof of Lemma E i... |
| cdleme41fva11 40586 | Part of proof of Lemma E i... |
| cdleme42b 40587 | Part of proof of Lemma E i... |
| cdleme42e 40588 | Part of proof of Lemma E i... |
| cdleme42f 40589 | Part of proof of Lemma E i... |
| cdleme42g 40590 | Part of proof of Lemma E i... |
| cdleme42h 40591 | Part of proof of Lemma E i... |
| cdleme42i 40592 | Part of proof of Lemma E i... |
| cdleme42k 40593 | Part of proof of Lemma E i... |
| cdleme42ke 40594 | Part of proof of Lemma E i... |
| cdleme42keg 40595 | Part of proof of Lemma E i... |
| cdleme42mN 40596 | Part of proof of Lemma E i... |
| cdleme42mgN 40597 | Part of proof of Lemma E i... |
| cdleme43aN 40598 | Part of proof of Lemma E i... |
| cdleme43bN 40599 | Lemma for Lemma E in [Craw... |
| cdleme43cN 40600 | Part of proof of Lemma E i... |
| cdleme43dN 40601 | Part of proof of Lemma E i... |
| cdleme46f2g2 40602 | Conversion for ` G ` to re... |
| cdleme46f2g1 40603 | Conversion for ` G ` to re... |
| cdleme17d2 40604 | Part of proof of Lemma E i... |
| cdleme17d3 40605 | TODO: FIX COMMENT. (Contr... |
| cdleme17d4 40606 | TODO: FIX COMMENT. (Contr... |
| cdleme17d 40607 | Part of proof of Lemma E i... |
| cdleme48fv 40608 | Part of proof of Lemma D i... |
| cdleme48fvg 40609 | Remove ` P =/= Q ` conditi... |
| cdleme46fvaw 40610 | Show that ` ( F `` R ) ` i... |
| cdleme48bw 40611 | TODO: fix comment. TODO: ... |
| cdleme48b 40612 | TODO: fix comment. (Contr... |
| cdleme46frvlpq 40613 | Show that ` ( F `` S ) ` i... |
| cdleme46fsvlpq 40614 | Show that ` ( F `` R ) ` i... |
| cdlemeg46fvcl 40615 | TODO: fix comment. (Contr... |
| cdleme4gfv 40616 | Part of proof of Lemma D i... |
| cdlemeg47b 40617 | TODO: FIX COMMENT. (Contr... |
| cdlemeg47rv 40618 | Value of g_s(r) when r is ... |
| cdlemeg47rv2 40619 | Value of g_s(r) when r is ... |
| cdlemeg49le 40620 | Part of proof of Lemma D i... |
| cdlemeg46bOLDN 40621 | TODO FIX COMMENT. (Contrib... |
| cdlemeg46c 40622 | TODO FIX COMMENT. (Contrib... |
| cdlemeg46rvOLDN 40623 | Value of g_s(r) when r is ... |
| cdlemeg46rv2OLDN 40624 | Value of g_s(r) when r is ... |
| cdlemeg46fvaw 40625 | Show that ` ( F `` R ) ` i... |
| cdlemeg46nlpq 40626 | Show that ` ( G `` S ) ` i... |
| cdlemeg46ngfr 40627 | TODO FIX COMMENT g(f(s))=s... |
| cdlemeg46nfgr 40628 | TODO FIX COMMENT f(g(s))=s... |
| cdlemeg46sfg 40629 | TODO FIX COMMENT f(r) ` \/... |
| cdlemeg46fjgN 40630 | NOT NEEDED? TODO FIX COMM... |
| cdlemeg46rjgN 40631 | NOT NEEDED? TODO FIX COMM... |
| cdlemeg46fjv 40632 | TODO FIX COMMENT f(r) ` \/... |
| cdlemeg46fsfv 40633 | TODO FIX COMMENT f(r) ` \/... |
| cdlemeg46frv 40634 | TODO FIX COMMENT. (f(r) ` ... |
| cdlemeg46v1v2 40635 | TODO FIX COMMENT v_1 = v_2... |
| cdlemeg46vrg 40636 | TODO FIX COMMENT v_1 ` <_ ... |
| cdlemeg46rgv 40637 | TODO FIX COMMENT r ` <_ ` ... |
| cdlemeg46req 40638 | TODO FIX COMMENT r = (v_1 ... |
| cdlemeg46gfv 40639 | TODO FIX COMMENT p. 115 pe... |
| cdlemeg46gfr 40640 | TODO FIX COMMENT p. 116 pe... |
| cdlemeg46gfre 40641 | TODO FIX COMMENT p. 116 pe... |
| cdlemeg46gf 40642 | TODO FIX COMMENT Eliminate... |
| cdlemeg46fgN 40643 | TODO FIX COMMENT p. 116 pe... |
| cdleme48d 40644 | TODO: fix comment. (Contr... |
| cdleme48gfv1 40645 | TODO: fix comment. (Contr... |
| cdleme48gfv 40646 | TODO: fix comment. (Contr... |
| cdleme48fgv 40647 | TODO: fix comment. (Contr... |
| cdlemeg49lebilem 40648 | Part of proof of Lemma D i... |
| cdleme50lebi 40649 | Part of proof of Lemma D i... |
| cdleme50eq 40650 | Part of proof of Lemma D i... |
| cdleme50f 40651 | Part of proof of Lemma D i... |
| cdleme50f1 40652 | Part of proof of Lemma D i... |
| cdleme50rnlem 40653 | Part of proof of Lemma D i... |
| cdleme50rn 40654 | Part of proof of Lemma D i... |
| cdleme50f1o 40655 | Part of proof of Lemma D i... |
| cdleme50laut 40656 | Part of proof of Lemma D i... |
| cdleme50ldil 40657 | Part of proof of Lemma D i... |
| cdleme50trn1 40658 | Part of proof that ` F ` i... |
| cdleme50trn2a 40659 | Part of proof that ` F ` i... |
| cdleme50trn2 40660 | Part of proof that ` F ` i... |
| cdleme50trn12 40661 | Part of proof that ` F ` i... |
| cdleme50trn3 40662 | Part of proof that ` F ` i... |
| cdleme50trn123 40663 | Part of proof that ` F ` i... |
| cdleme51finvfvN 40664 | Part of proof of Lemma E i... |
| cdleme51finvN 40665 | Part of proof of Lemma E i... |
| cdleme50ltrn 40666 | Part of proof of Lemma E i... |
| cdleme51finvtrN 40667 | Part of proof of Lemma E i... |
| cdleme50ex 40668 | Part of Lemma E in [Crawle... |
| cdleme 40669 | Lemma E in [Crawley] p. 11... |
| cdlemf1 40670 | Part of Lemma F in [Crawle... |
| cdlemf2 40671 | Part of Lemma F in [Crawle... |
| cdlemf 40672 | Lemma F in [Crawley] p. 11... |
| cdlemfnid 40673 | ~ cdlemf with additional c... |
| cdlemftr3 40674 | Special case of ~ cdlemf s... |
| cdlemftr2 40675 | Special case of ~ cdlemf s... |
| cdlemftr1 40676 | Part of proof of Lemma G o... |
| cdlemftr0 40677 | Special case of ~ cdlemf s... |
| trlord 40678 | The ordering of two Hilber... |
| cdlemg1a 40679 | Shorter expression for ` G... |
| cdlemg1b2 40680 | This theorem can be used t... |
| cdlemg1idlemN 40681 | Lemma for ~ cdlemg1idN . ... |
| cdlemg1fvawlemN 40682 | Lemma for ~ ltrniotafvawN ... |
| cdlemg1ltrnlem 40683 | Lemma for ~ ltrniotacl . ... |
| cdlemg1finvtrlemN 40684 | Lemma for ~ ltrniotacnvN .... |
| cdlemg1bOLDN 40685 | This theorem can be used t... |
| cdlemg1idN 40686 | Version of ~ cdleme31id wi... |
| ltrniotafvawN 40687 | Version of ~ cdleme46fvaw ... |
| ltrniotacl 40688 | Version of ~ cdleme50ltrn ... |
| ltrniotacnvN 40689 | Version of ~ cdleme51finvt... |
| ltrniotaval 40690 | Value of the unique transl... |
| ltrniotacnvval 40691 | Converse value of the uniq... |
| ltrniotaidvalN 40692 | Value of the unique transl... |
| ltrniotavalbN 40693 | Value of the unique transl... |
| cdlemeiota 40694 | A translation is uniquely ... |
| cdlemg1ci2 40695 | Any function of the form o... |
| cdlemg1cN 40696 | Any translation belongs to... |
| cdlemg1cex 40697 | Any translation is one of ... |
| cdlemg2cN 40698 | Any translation belongs to... |
| cdlemg2dN 40699 | This theorem can be used t... |
| cdlemg2cex 40700 | Any translation is one of ... |
| cdlemg2ce 40701 | Utility theorem to elimina... |
| cdlemg2jlemOLDN 40702 | Part of proof of Lemma E i... |
| cdlemg2fvlem 40703 | Lemma for ~ cdlemg2fv . (... |
| cdlemg2klem 40704 | ~ cdleme42keg with simpler... |
| cdlemg2idN 40705 | Version of ~ cdleme31id wi... |
| cdlemg3a 40706 | Part of proof of Lemma G i... |
| cdlemg2jOLDN 40707 | TODO: Replace this with ~... |
| cdlemg2fv 40708 | Value of a translation in ... |
| cdlemg2fv2 40709 | Value of a translation in ... |
| cdlemg2k 40710 | ~ cdleme42keg with simpler... |
| cdlemg2kq 40711 | ~ cdlemg2k with ` P ` and ... |
| cdlemg2l 40712 | TODO: FIX COMMENT. (Contr... |
| cdlemg2m 40713 | TODO: FIX COMMENT. (Contr... |
| cdlemg5 40714 | TODO: Is there a simpler ... |
| cdlemb3 40715 | Given two atoms not under ... |
| cdlemg7fvbwN 40716 | Properties of a translatio... |
| cdlemg4a 40717 | TODO: FIX COMMENT If fg(p... |
| cdlemg4b1 40718 | TODO: FIX COMMENT. (Contr... |
| cdlemg4b2 40719 | TODO: FIX COMMENT. (Contr... |
| cdlemg4b12 40720 | TODO: FIX COMMENT. (Contr... |
| cdlemg4c 40721 | TODO: FIX COMMENT. (Contr... |
| cdlemg4d 40722 | TODO: FIX COMMENT. (Contr... |
| cdlemg4e 40723 | TODO: FIX COMMENT. (Contr... |
| cdlemg4f 40724 | TODO: FIX COMMENT. (Contr... |
| cdlemg4g 40725 | TODO: FIX COMMENT. (Contr... |
| cdlemg4 40726 | TODO: FIX COMMENT. (Contr... |
| cdlemg6a 40727 | TODO: FIX COMMENT. TODO: ... |
| cdlemg6b 40728 | TODO: FIX COMMENT. TODO: ... |
| cdlemg6c 40729 | TODO: FIX COMMENT. (Contr... |
| cdlemg6d 40730 | TODO: FIX COMMENT. (Contr... |
| cdlemg6e 40731 | TODO: FIX COMMENT. (Contr... |
| cdlemg6 40732 | TODO: FIX COMMENT. (Contr... |
| cdlemg7fvN 40733 | Value of a translation com... |
| cdlemg7aN 40734 | TODO: FIX COMMENT. (Contr... |
| cdlemg7N 40735 | TODO: FIX COMMENT. (Contr... |
| cdlemg8a 40736 | TODO: FIX COMMENT. (Contr... |
| cdlemg8b 40737 | TODO: FIX COMMENT. (Contr... |
| cdlemg8c 40738 | TODO: FIX COMMENT. (Contr... |
| cdlemg8d 40739 | TODO: FIX COMMENT. (Contr... |
| cdlemg8 40740 | TODO: FIX COMMENT. (Contr... |
| cdlemg9a 40741 | TODO: FIX COMMENT. (Contr... |
| cdlemg9b 40742 | The triples ` <. P , ( F `... |
| cdlemg9 40743 | The triples ` <. P , ( F `... |
| cdlemg10b 40744 | TODO: FIX COMMENT. TODO: ... |
| cdlemg10bALTN 40745 | TODO: FIX COMMENT. TODO: ... |
| cdlemg11a 40746 | TODO: FIX COMMENT. (Contr... |
| cdlemg11aq 40747 | TODO: FIX COMMENT. TODO: ... |
| cdlemg10c 40748 | TODO: FIX COMMENT. TODO: ... |
| cdlemg10a 40749 | TODO: FIX COMMENT. (Contr... |
| cdlemg10 40750 | TODO: FIX COMMENT. (Contr... |
| cdlemg11b 40751 | TODO: FIX COMMENT. (Contr... |
| cdlemg12a 40752 | TODO: FIX COMMENT. (Contr... |
| cdlemg12b 40753 | The triples ` <. P , ( F `... |
| cdlemg12c 40754 | The triples ` <. P , ( F `... |
| cdlemg12d 40755 | TODO: FIX COMMENT. (Contr... |
| cdlemg12e 40756 | TODO: FIX COMMENT. (Contr... |
| cdlemg12f 40757 | TODO: FIX COMMENT. (Contr... |
| cdlemg12g 40758 | TODO: FIX COMMENT. TODO: ... |
| cdlemg12 40759 | TODO: FIX COMMENT. (Contr... |
| cdlemg13a 40760 | TODO: FIX COMMENT. (Contr... |
| cdlemg13 40761 | TODO: FIX COMMENT. (Contr... |
| cdlemg14f 40762 | TODO: FIX COMMENT. (Contr... |
| cdlemg14g 40763 | TODO: FIX COMMENT. (Contr... |
| cdlemg15a 40764 | Eliminate the ` ( F `` P )... |
| cdlemg15 40765 | Eliminate the ` ( (... |
| cdlemg16 40766 | Part of proof of Lemma G o... |
| cdlemg16ALTN 40767 | This version of ~ cdlemg16... |
| cdlemg16z 40768 | Eliminate ` ( ( F `... |
| cdlemg16zz 40769 | Eliminate ` P =/= Q ` from... |
| cdlemg17a 40770 | TODO: FIX COMMENT. (Contr... |
| cdlemg17b 40771 | Part of proof of Lemma G i... |
| cdlemg17dN 40772 | TODO: fix comment. (Contr... |
| cdlemg17dALTN 40773 | Same as ~ cdlemg17dN with ... |
| cdlemg17e 40774 | TODO: fix comment. (Contr... |
| cdlemg17f 40775 | TODO: fix comment. (Contr... |
| cdlemg17g 40776 | TODO: fix comment. (Contr... |
| cdlemg17h 40777 | TODO: fix comment. (Contr... |
| cdlemg17i 40778 | TODO: fix comment. (Contr... |
| cdlemg17ir 40779 | TODO: fix comment. (Contr... |
| cdlemg17j 40780 | TODO: fix comment. (Contr... |
| cdlemg17pq 40781 | Utility theorem for swappi... |
| cdlemg17bq 40782 | ~ cdlemg17b with ` P ` and... |
| cdlemg17iqN 40783 | ~ cdlemg17i with ` P ` and... |
| cdlemg17irq 40784 | ~ cdlemg17ir with ` P ` an... |
| cdlemg17jq 40785 | ~ cdlemg17j with ` P ` and... |
| cdlemg17 40786 | Part of Lemma G of [Crawle... |
| cdlemg18a 40787 | Show two lines are differe... |
| cdlemg18b 40788 | Lemma for ~ cdlemg18c . T... |
| cdlemg18c 40789 | Show two lines intersect a... |
| cdlemg18d 40790 | Show two lines intersect a... |
| cdlemg18 40791 | Show two lines intersect a... |
| cdlemg19a 40792 | Show two lines intersect a... |
| cdlemg19 40793 | Show two lines intersect a... |
| cdlemg20 40794 | Show two lines intersect a... |
| cdlemg21 40795 | Version of cdlemg19 with `... |
| cdlemg22 40796 | ~ cdlemg21 with ` ( F `` P... |
| cdlemg24 40797 | Combine ~ cdlemg16z and ~ ... |
| cdlemg37 40798 | Use ~ cdlemg8 to eliminate... |
| cdlemg25zz 40799 | ~ cdlemg16zz restated for ... |
| cdlemg26zz 40800 | ~ cdlemg16zz restated for ... |
| cdlemg27a 40801 | For use with case when ` (... |
| cdlemg28a 40802 | Part of proof of Lemma G o... |
| cdlemg31b0N 40803 | TODO: Fix comment. (Cont... |
| cdlemg31b0a 40804 | TODO: Fix comment. (Cont... |
| cdlemg27b 40805 | TODO: Fix comment. (Cont... |
| cdlemg31a 40806 | TODO: fix comment. (Contr... |
| cdlemg31b 40807 | TODO: fix comment. (Contr... |
| cdlemg31c 40808 | Show that when ` N ` is an... |
| cdlemg31d 40809 | Eliminate ` ( F `` P ) =/=... |
| cdlemg33b0 40810 | TODO: Fix comment. (Cont... |
| cdlemg33c0 40811 | TODO: Fix comment. (Cont... |
| cdlemg28b 40812 | Part of proof of Lemma G o... |
| cdlemg28 40813 | Part of proof of Lemma G o... |
| cdlemg29 40814 | Eliminate ` ( F `` P ) =/=... |
| cdlemg33a 40815 | TODO: Fix comment. (Cont... |
| cdlemg33b 40816 | TODO: Fix comment. (Cont... |
| cdlemg33c 40817 | TODO: Fix comment. (Cont... |
| cdlemg33d 40818 | TODO: Fix comment. (Cont... |
| cdlemg33e 40819 | TODO: Fix comment. (Cont... |
| cdlemg33 40820 | Combine ~ cdlemg33b , ~ cd... |
| cdlemg34 40821 | Use cdlemg33 to eliminate ... |
| cdlemg35 40822 | TODO: Fix comment. TODO:... |
| cdlemg36 40823 | Use cdlemg35 to eliminate ... |
| cdlemg38 40824 | Use ~ cdlemg37 to eliminat... |
| cdlemg39 40825 | Eliminate ` =/= ` conditio... |
| cdlemg40 40826 | Eliminate ` P =/= Q ` cond... |
| cdlemg41 40827 | Convert ~ cdlemg40 to func... |
| ltrnco 40828 | The composition of two tra... |
| trlcocnv 40829 | Swap the arguments of the ... |
| trlcoabs 40830 | Absorption into a composit... |
| trlcoabs2N 40831 | Absorption of the trace of... |
| trlcoat 40832 | The trace of a composition... |
| trlcocnvat 40833 | Commonly used special case... |
| trlconid 40834 | The composition of two dif... |
| trlcolem 40835 | Lemma for ~ trlco . (Cont... |
| trlco 40836 | The trace of a composition... |
| trlcone 40837 | If two translations have d... |
| cdlemg42 40838 | Part of proof of Lemma G o... |
| cdlemg43 40839 | Part of proof of Lemma G o... |
| cdlemg44a 40840 | Part of proof of Lemma G o... |
| cdlemg44b 40841 | Eliminate ` ( F `` P ) =/=... |
| cdlemg44 40842 | Part of proof of Lemma G o... |
| cdlemg47a 40843 | TODO: fix comment. TODO: ... |
| cdlemg46 40844 | Part of proof of Lemma G o... |
| cdlemg47 40845 | Part of proof of Lemma G o... |
| cdlemg48 40846 | Eliminate ` h ` from ~ cdl... |
| ltrncom 40847 | Composition is commutative... |
| ltrnco4 40848 | Rearrange a composition of... |
| trljco 40849 | Trace joined with trace of... |
| trljco2 40850 | Trace joined with trace of... |
| tgrpfset 40853 | The translation group maps... |
| tgrpset 40854 | The translation group for ... |
| tgrpbase 40855 | The base set of the transl... |
| tgrpopr 40856 | The group operation of the... |
| tgrpov 40857 | The group operation value ... |
| tgrpgrplem 40858 | Lemma for ~ tgrpgrp . (Co... |
| tgrpgrp 40859 | The translation group is a... |
| tgrpabl 40860 | The translation group is a... |
| tendofset 40867 | The set of all trace-prese... |
| tendoset 40868 | The set of trace-preservin... |
| istendo 40869 | The predicate "is a trace-... |
| tendotp 40870 | Trace-preserving property ... |
| istendod 40871 | Deduce the predicate "is a... |
| tendof 40872 | Functionality of a trace-p... |
| tendoeq1 40873 | Condition determining equa... |
| tendovalco 40874 | Value of composition of tr... |
| tendocoval 40875 | Value of composition of en... |
| tendocl 40876 | Closure of a trace-preserv... |
| tendoco2 40877 | Distribution of compositio... |
| tendoidcl 40878 | The identity is a trace-pr... |
| tendo1mul 40879 | Multiplicative identity mu... |
| tendo1mulr 40880 | Multiplicative identity mu... |
| tendococl 40881 | The composition of two tra... |
| tendoid 40882 | The identity value of a tr... |
| tendoeq2 40883 | Condition determining equa... |
| tendoplcbv 40884 | Define sum operation for t... |
| tendopl 40885 | Value of endomorphism sum ... |
| tendopl2 40886 | Value of result of endomor... |
| tendoplcl2 40887 | Value of result of endomor... |
| tendoplco2 40888 | Value of result of endomor... |
| tendopltp 40889 | Trace-preserving property ... |
| tendoplcl 40890 | Endomorphism sum is a trac... |
| tendoplcom 40891 | The endomorphism sum opera... |
| tendoplass 40892 | The endomorphism sum opera... |
| tendodi1 40893 | Endomorphism composition d... |
| tendodi2 40894 | Endomorphism composition d... |
| tendo0cbv 40895 | Define additive identity f... |
| tendo02 40896 | Value of additive identity... |
| tendo0co2 40897 | The additive identity trac... |
| tendo0tp 40898 | Trace-preserving property ... |
| tendo0cl 40899 | The additive identity is a... |
| tendo0pl 40900 | Property of the additive i... |
| tendo0plr 40901 | Property of the additive i... |
| tendoicbv 40902 | Define inverse function fo... |
| tendoi 40903 | Value of inverse endomorph... |
| tendoi2 40904 | Value of additive inverse ... |
| tendoicl 40905 | Closure of the additive in... |
| tendoipl 40906 | Property of the additive i... |
| tendoipl2 40907 | Property of the additive i... |
| erngfset 40908 | The division rings on trac... |
| erngset 40909 | The division ring on trace... |
| erngbase 40910 | The base set of the divisi... |
| erngfplus 40911 | Ring addition operation. ... |
| erngplus 40912 | Ring addition operation. ... |
| erngplus2 40913 | Ring addition operation. ... |
| erngfmul 40914 | Ring multiplication operat... |
| erngmul 40915 | Ring addition operation. ... |
| erngfset-rN 40916 | The division rings on trac... |
| erngset-rN 40917 | The division ring on trace... |
| erngbase-rN 40918 | The base set of the divisi... |
| erngfplus-rN 40919 | Ring addition operation. ... |
| erngplus-rN 40920 | Ring addition operation. ... |
| erngplus2-rN 40921 | Ring addition operation. ... |
| erngfmul-rN 40922 | Ring multiplication operat... |
| erngmul-rN 40923 | Ring addition operation. ... |
| cdlemh1 40924 | Part of proof of Lemma H o... |
| cdlemh2 40925 | Part of proof of Lemma H o... |
| cdlemh 40926 | Lemma H of [Crawley] p. 11... |
| cdlemi1 40927 | Part of proof of Lemma I o... |
| cdlemi2 40928 | Part of proof of Lemma I o... |
| cdlemi 40929 | Lemma I of [Crawley] p. 11... |
| cdlemj1 40930 | Part of proof of Lemma J o... |
| cdlemj2 40931 | Part of proof of Lemma J o... |
| cdlemj3 40932 | Part of proof of Lemma J o... |
| tendocan 40933 | Cancellation law: if the v... |
| tendoid0 40934 | A trace-preserving endomor... |
| tendo0mul 40935 | Additive identity multipli... |
| tendo0mulr 40936 | Additive identity multipli... |
| tendo1ne0 40937 | The identity (unity) is no... |
| tendoconid 40938 | The composition (product) ... |
| tendotr 40939 | The trace of the value of ... |
| cdlemk1 40940 | Part of proof of Lemma K o... |
| cdlemk2 40941 | Part of proof of Lemma K o... |
| cdlemk3 40942 | Part of proof of Lemma K o... |
| cdlemk4 40943 | Part of proof of Lemma K o... |
| cdlemk5a 40944 | Part of proof of Lemma K o... |
| cdlemk5 40945 | Part of proof of Lemma K o... |
| cdlemk6 40946 | Part of proof of Lemma K o... |
| cdlemk8 40947 | Part of proof of Lemma K o... |
| cdlemk9 40948 | Part of proof of Lemma K o... |
| cdlemk9bN 40949 | Part of proof of Lemma K o... |
| cdlemki 40950 | Part of proof of Lemma K o... |
| cdlemkvcl 40951 | Part of proof of Lemma K o... |
| cdlemk10 40952 | Part of proof of Lemma K o... |
| cdlemksv 40953 | Part of proof of Lemma K o... |
| cdlemksel 40954 | Part of proof of Lemma K o... |
| cdlemksat 40955 | Part of proof of Lemma K o... |
| cdlemksv2 40956 | Part of proof of Lemma K o... |
| cdlemk7 40957 | Part of proof of Lemma K o... |
| cdlemk11 40958 | Part of proof of Lemma K o... |
| cdlemk12 40959 | Part of proof of Lemma K o... |
| cdlemkoatnle 40960 | Utility lemma. (Contribut... |
| cdlemk13 40961 | Part of proof of Lemma K o... |
| cdlemkole 40962 | Utility lemma. (Contribut... |
| cdlemk14 40963 | Part of proof of Lemma K o... |
| cdlemk15 40964 | Part of proof of Lemma K o... |
| cdlemk16a 40965 | Part of proof of Lemma K o... |
| cdlemk16 40966 | Part of proof of Lemma K o... |
| cdlemk17 40967 | Part of proof of Lemma K o... |
| cdlemk1u 40968 | Part of proof of Lemma K o... |
| cdlemk5auN 40969 | Part of proof of Lemma K o... |
| cdlemk5u 40970 | Part of proof of Lemma K o... |
| cdlemk6u 40971 | Part of proof of Lemma K o... |
| cdlemkj 40972 | Part of proof of Lemma K o... |
| cdlemkuvN 40973 | Part of proof of Lemma K o... |
| cdlemkuel 40974 | Part of proof of Lemma K o... |
| cdlemkuat 40975 | Part of proof of Lemma K o... |
| cdlemkuv2 40976 | Part of proof of Lemma K o... |
| cdlemk18 40977 | Part of proof of Lemma K o... |
| cdlemk19 40978 | Part of proof of Lemma K o... |
| cdlemk7u 40979 | Part of proof of Lemma K o... |
| cdlemk11u 40980 | Part of proof of Lemma K o... |
| cdlemk12u 40981 | Part of proof of Lemma K o... |
| cdlemk21N 40982 | Part of proof of Lemma K o... |
| cdlemk20 40983 | Part of proof of Lemma K o... |
| cdlemkoatnle-2N 40984 | Utility lemma. (Contribut... |
| cdlemk13-2N 40985 | Part of proof of Lemma K o... |
| cdlemkole-2N 40986 | Utility lemma. (Contribut... |
| cdlemk14-2N 40987 | Part of proof of Lemma K o... |
| cdlemk15-2N 40988 | Part of proof of Lemma K o... |
| cdlemk16-2N 40989 | Part of proof of Lemma K o... |
| cdlemk17-2N 40990 | Part of proof of Lemma K o... |
| cdlemkj-2N 40991 | Part of proof of Lemma K o... |
| cdlemkuv-2N 40992 | Part of proof of Lemma K o... |
| cdlemkuel-2N 40993 | Part of proof of Lemma K o... |
| cdlemkuv2-2 40994 | Part of proof of Lemma K o... |
| cdlemk18-2N 40995 | Part of proof of Lemma K o... |
| cdlemk19-2N 40996 | Part of proof of Lemma K o... |
| cdlemk7u-2N 40997 | Part of proof of Lemma K o... |
| cdlemk11u-2N 40998 | Part of proof of Lemma K o... |
| cdlemk12u-2N 40999 | Part of proof of Lemma K o... |
| cdlemk21-2N 41000 | Part of proof of Lemma K o... |
| cdlemk20-2N 41001 | Part of proof of Lemma K o... |
| cdlemk22 41002 | Part of proof of Lemma K o... |
| cdlemk30 41003 | Part of proof of Lemma K o... |
| cdlemkuu 41004 | Convert between function a... |
| cdlemk31 41005 | Part of proof of Lemma K o... |
| cdlemk32 41006 | Part of proof of Lemma K o... |
| cdlemkuel-3 41007 | Part of proof of Lemma K o... |
| cdlemkuv2-3N 41008 | Part of proof of Lemma K o... |
| cdlemk18-3N 41009 | Part of proof of Lemma K o... |
| cdlemk22-3 41010 | Part of proof of Lemma K o... |
| cdlemk23-3 41011 | Part of proof of Lemma K o... |
| cdlemk24-3 41012 | Part of proof of Lemma K o... |
| cdlemk25-3 41013 | Part of proof of Lemma K o... |
| cdlemk26b-3 41014 | Part of proof of Lemma K o... |
| cdlemk26-3 41015 | Part of proof of Lemma K o... |
| cdlemk27-3 41016 | Part of proof of Lemma K o... |
| cdlemk28-3 41017 | Part of proof of Lemma K o... |
| cdlemk33N 41018 | Part of proof of Lemma K o... |
| cdlemk34 41019 | Part of proof of Lemma K o... |
| cdlemk29-3 41020 | Part of proof of Lemma K o... |
| cdlemk35 41021 | Part of proof of Lemma K o... |
| cdlemk36 41022 | Part of proof of Lemma K o... |
| cdlemk37 41023 | Part of proof of Lemma K o... |
| cdlemk38 41024 | Part of proof of Lemma K o... |
| cdlemk39 41025 | Part of proof of Lemma K o... |
| cdlemk40 41026 | TODO: fix comment. (Contr... |
| cdlemk40t 41027 | TODO: fix comment. (Contr... |
| cdlemk40f 41028 | TODO: fix comment. (Contr... |
| cdlemk41 41029 | Part of proof of Lemma K o... |
| cdlemkfid1N 41030 | Lemma for ~ cdlemkfid3N . ... |
| cdlemkid1 41031 | Lemma for ~ cdlemkid . (C... |
| cdlemkfid2N 41032 | Lemma for ~ cdlemkfid3N . ... |
| cdlemkid2 41033 | Lemma for ~ cdlemkid . (C... |
| cdlemkfid3N 41034 | TODO: is this useful or sh... |
| cdlemky 41035 | Part of proof of Lemma K o... |
| cdlemkyu 41036 | Convert between function a... |
| cdlemkyuu 41037 | ~ cdlemkyu with some hypot... |
| cdlemk11ta 41038 | Part of proof of Lemma K o... |
| cdlemk19ylem 41039 | Lemma for ~ cdlemk19y . (... |
| cdlemk11tb 41040 | Part of proof of Lemma K o... |
| cdlemk19y 41041 | ~ cdlemk19 with simpler hy... |
| cdlemkid3N 41042 | Lemma for ~ cdlemkid . (C... |
| cdlemkid4 41043 | Lemma for ~ cdlemkid . (C... |
| cdlemkid5 41044 | Lemma for ~ cdlemkid . (C... |
| cdlemkid 41045 | The value of the tau funct... |
| cdlemk35s 41046 | Substitution version of ~ ... |
| cdlemk35s-id 41047 | Substitution version of ~ ... |
| cdlemk39s 41048 | Substitution version of ~ ... |
| cdlemk39s-id 41049 | Substitution version of ~ ... |
| cdlemk42 41050 | Part of proof of Lemma K o... |
| cdlemk19xlem 41051 | Lemma for ~ cdlemk19x . (... |
| cdlemk19x 41052 | ~ cdlemk19 with simpler hy... |
| cdlemk42yN 41053 | Part of proof of Lemma K o... |
| cdlemk11tc 41054 | Part of proof of Lemma K o... |
| cdlemk11t 41055 | Part of proof of Lemma K o... |
| cdlemk45 41056 | Part of proof of Lemma K o... |
| cdlemk46 41057 | Part of proof of Lemma K o... |
| cdlemk47 41058 | Part of proof of Lemma K o... |
| cdlemk48 41059 | Part of proof of Lemma K o... |
| cdlemk49 41060 | Part of proof of Lemma K o... |
| cdlemk50 41061 | Part of proof of Lemma K o... |
| cdlemk51 41062 | Part of proof of Lemma K o... |
| cdlemk52 41063 | Part of proof of Lemma K o... |
| cdlemk53a 41064 | Lemma for ~ cdlemk53 . (C... |
| cdlemk53b 41065 | Lemma for ~ cdlemk53 . (C... |
| cdlemk53 41066 | Part of proof of Lemma K o... |
| cdlemk54 41067 | Part of proof of Lemma K o... |
| cdlemk55a 41068 | Lemma for ~ cdlemk55 . (C... |
| cdlemk55b 41069 | Lemma for ~ cdlemk55 . (C... |
| cdlemk55 41070 | Part of proof of Lemma K o... |
| cdlemkyyN 41071 | Part of proof of Lemma K o... |
| cdlemk43N 41072 | Part of proof of Lemma K o... |
| cdlemk35u 41073 | Substitution version of ~ ... |
| cdlemk55u1 41074 | Lemma for ~ cdlemk55u . (... |
| cdlemk55u 41075 | Part of proof of Lemma K o... |
| cdlemk39u1 41076 | Lemma for ~ cdlemk39u . (... |
| cdlemk39u 41077 | Part of proof of Lemma K o... |
| cdlemk19u1 41078 | ~ cdlemk19 with simpler hy... |
| cdlemk19u 41079 | Part of Lemma K of [Crawle... |
| cdlemk56 41080 | Part of Lemma K of [Crawle... |
| cdlemk19w 41081 | Use a fixed element to eli... |
| cdlemk56w 41082 | Use a fixed element to eli... |
| cdlemk 41083 | Lemma K of [Crawley] p. 11... |
| tendoex 41084 | Generalization of Lemma K ... |
| cdleml1N 41085 | Part of proof of Lemma L o... |
| cdleml2N 41086 | Part of proof of Lemma L o... |
| cdleml3N 41087 | Part of proof of Lemma L o... |
| cdleml4N 41088 | Part of proof of Lemma L o... |
| cdleml5N 41089 | Part of proof of Lemma L o... |
| cdleml6 41090 | Part of proof of Lemma L o... |
| cdleml7 41091 | Part of proof of Lemma L o... |
| cdleml8 41092 | Part of proof of Lemma L o... |
| cdleml9 41093 | Part of proof of Lemma L o... |
| dva1dim 41094 | Two expressions for the 1-... |
| dvhb1dimN 41095 | Two expressions for the 1-... |
| erng1lem 41096 | Value of the endomorphism ... |
| erngdvlem1 41097 | Lemma for ~ eringring . (... |
| erngdvlem2N 41098 | Lemma for ~ eringring . (... |
| erngdvlem3 41099 | Lemma for ~ eringring . (... |
| erngdvlem4 41100 | Lemma for ~ erngdv . (Con... |
| eringring 41101 | An endomorphism ring is a ... |
| erngdv 41102 | An endomorphism ring is a ... |
| erng0g 41103 | The division ring zero of ... |
| erng1r 41104 | The division ring unity of... |
| erngdvlem1-rN 41105 | Lemma for ~ eringring . (... |
| erngdvlem2-rN 41106 | Lemma for ~ eringring . (... |
| erngdvlem3-rN 41107 | Lemma for ~ eringring . (... |
| erngdvlem4-rN 41108 | Lemma for ~ erngdv . (Con... |
| erngring-rN 41109 | An endomorphism ring is a ... |
| erngdv-rN 41110 | An endomorphism ring is a ... |
| dvafset 41113 | The constructed partial ve... |
| dvaset 41114 | The constructed partial ve... |
| dvasca 41115 | The ring base set of the c... |
| dvabase 41116 | The ring base set of the c... |
| dvafplusg 41117 | Ring addition operation fo... |
| dvaplusg 41118 | Ring addition operation fo... |
| dvaplusgv 41119 | Ring addition operation fo... |
| dvafmulr 41120 | Ring multiplication operat... |
| dvamulr 41121 | Ring multiplication operat... |
| dvavbase 41122 | The vectors (vector base s... |
| dvafvadd 41123 | The vector sum operation f... |
| dvavadd 41124 | Ring addition operation fo... |
| dvafvsca 41125 | Ring addition operation fo... |
| dvavsca 41126 | Ring addition operation fo... |
| tendospcl 41127 | Closure of endomorphism sc... |
| tendospass 41128 | Associative law for endomo... |
| tendospdi1 41129 | Forward distributive law f... |
| tendocnv 41130 | Converse of a trace-preser... |
| tendospdi2 41131 | Reverse distributive law f... |
| tendospcanN 41132 | Cancellation law for trace... |
| dvaabl 41133 | The constructed partial ve... |
| dvalveclem 41134 | Lemma for ~ dvalvec . (Co... |
| dvalvec 41135 | The constructed partial ve... |
| dva0g 41136 | The zero vector of partial... |
| diaffval 41139 | The partial isomorphism A ... |
| diafval 41140 | The partial isomorphism A ... |
| diaval 41141 | The partial isomorphism A ... |
| diaelval 41142 | Member of the partial isom... |
| diafn 41143 | Functionality and domain o... |
| diadm 41144 | Domain of the partial isom... |
| diaeldm 41145 | Member of domain of the pa... |
| diadmclN 41146 | A member of domain of the ... |
| diadmleN 41147 | A member of domain of the ... |
| dian0 41148 | The value of the partial i... |
| dia0eldmN 41149 | The lattice zero belongs t... |
| dia1eldmN 41150 | The fiducial hyperplane (t... |
| diass 41151 | The value of the partial i... |
| diael 41152 | A member of the value of t... |
| diatrl 41153 | Trace of a member of the p... |
| diaelrnN 41154 | Any value of the partial i... |
| dialss 41155 | The value of partial isomo... |
| diaord 41156 | The partial isomorphism A ... |
| dia11N 41157 | The partial isomorphism A ... |
| diaf11N 41158 | The partial isomorphism A ... |
| diaclN 41159 | Closure of partial isomorp... |
| diacnvclN 41160 | Closure of partial isomorp... |
| dia0 41161 | The value of the partial i... |
| dia1N 41162 | The value of the partial i... |
| dia1elN 41163 | The largest subspace in th... |
| diaglbN 41164 | Partial isomorphism A of a... |
| diameetN 41165 | Partial isomorphism A of a... |
| diainN 41166 | Inverse partial isomorphis... |
| diaintclN 41167 | The intersection of partia... |
| diasslssN 41168 | The partial isomorphism A ... |
| diassdvaN 41169 | The partial isomorphism A ... |
| dia1dim 41170 | Two expressions for the 1-... |
| dia1dim2 41171 | Two expressions for a 1-di... |
| dia1dimid 41172 | A vector (translation) bel... |
| dia2dimlem1 41173 | Lemma for ~ dia2dim . Sho... |
| dia2dimlem2 41174 | Lemma for ~ dia2dim . Def... |
| dia2dimlem3 41175 | Lemma for ~ dia2dim . Def... |
| dia2dimlem4 41176 | Lemma for ~ dia2dim . Sho... |
| dia2dimlem5 41177 | Lemma for ~ dia2dim . The... |
| dia2dimlem6 41178 | Lemma for ~ dia2dim . Eli... |
| dia2dimlem7 41179 | Lemma for ~ dia2dim . Eli... |
| dia2dimlem8 41180 | Lemma for ~ dia2dim . Eli... |
| dia2dimlem9 41181 | Lemma for ~ dia2dim . Eli... |
| dia2dimlem10 41182 | Lemma for ~ dia2dim . Con... |
| dia2dimlem11 41183 | Lemma for ~ dia2dim . Con... |
| dia2dimlem12 41184 | Lemma for ~ dia2dim . Obt... |
| dia2dimlem13 41185 | Lemma for ~ dia2dim . Eli... |
| dia2dim 41186 | A two-dimensional subspace... |
| dvhfset 41189 | The constructed full vecto... |
| dvhset 41190 | The constructed full vecto... |
| dvhsca 41191 | The ring of scalars of the... |
| dvhbase 41192 | The ring base set of the c... |
| dvhfplusr 41193 | Ring addition operation fo... |
| dvhfmulr 41194 | Ring multiplication operat... |
| dvhmulr 41195 | Ring multiplication operat... |
| dvhvbase 41196 | The vectors (vector base s... |
| dvhelvbasei 41197 | Vector membership in the c... |
| dvhvaddcbv 41198 | Change bound variables to ... |
| dvhvaddval 41199 | The vector sum operation f... |
| dvhfvadd 41200 | The vector sum operation f... |
| dvhvadd 41201 | The vector sum operation f... |
| dvhopvadd 41202 | The vector sum operation f... |
| dvhopvadd2 41203 | The vector sum operation f... |
| dvhvaddcl 41204 | Closure of the vector sum ... |
| dvhvaddcomN 41205 | Commutativity of vector su... |
| dvhvaddass 41206 | Associativity of vector su... |
| dvhvscacbv 41207 | Change bound variables to ... |
| dvhvscaval 41208 | The scalar product operati... |
| dvhfvsca 41209 | Scalar product operation f... |
| dvhvsca 41210 | Scalar product operation f... |
| dvhopvsca 41211 | Scalar product operation f... |
| dvhvscacl 41212 | Closure of the scalar prod... |
| tendoinvcl 41213 | Closure of multiplicative ... |
| tendolinv 41214 | Left multiplicative invers... |
| tendorinv 41215 | Right multiplicative inver... |
| dvhgrp 41216 | The full vector space ` U ... |
| dvhlveclem 41217 | Lemma for ~ dvhlvec . TOD... |
| dvhlvec 41218 | The full vector space ` U ... |
| dvhlmod 41219 | The full vector space ` U ... |
| dvh0g 41220 | The zero vector of vector ... |
| dvheveccl 41221 | Properties of a unit vecto... |
| dvhopclN 41222 | Closure of a ` DVecH ` vec... |
| dvhopaddN 41223 | Sum of ` DVecH ` vectors e... |
| dvhopspN 41224 | Scalar product of ` DVecH ... |
| dvhopN 41225 | Decompose a ` DVecH ` vect... |
| dvhopellsm 41226 | Ordered pair membership in... |
| cdlemm10N 41227 | The image of the map ` G `... |
| docaffvalN 41230 | Subspace orthocomplement f... |
| docafvalN 41231 | Subspace orthocomplement f... |
| docavalN 41232 | Subspace orthocomplement f... |
| docaclN 41233 | Closure of subspace orthoc... |
| diaocN 41234 | Value of partial isomorphi... |
| doca2N 41235 | Double orthocomplement of ... |
| doca3N 41236 | Double orthocomplement of ... |
| dvadiaN 41237 | Any closed subspace is a m... |
| diarnN 41238 | Partial isomorphism A maps... |
| diaf1oN 41239 | The partial isomorphism A ... |
| djaffvalN 41242 | Subspace join for ` DVecA ... |
| djafvalN 41243 | Subspace join for ` DVecA ... |
| djavalN 41244 | Subspace join for ` DVecA ... |
| djaclN 41245 | Closure of subspace join f... |
| djajN 41246 | Transfer lattice join to `... |
| dibffval 41249 | The partial isomorphism B ... |
| dibfval 41250 | The partial isomorphism B ... |
| dibval 41251 | The partial isomorphism B ... |
| dibopelvalN 41252 | Member of the partial isom... |
| dibval2 41253 | Value of the partial isomo... |
| dibopelval2 41254 | Member of the partial isom... |
| dibval3N 41255 | Value of the partial isomo... |
| dibelval3 41256 | Member of the partial isom... |
| dibopelval3 41257 | Member of the partial isom... |
| dibelval1st 41258 | Membership in value of the... |
| dibelval1st1 41259 | Membership in value of the... |
| dibelval1st2N 41260 | Membership in value of the... |
| dibelval2nd 41261 | Membership in value of the... |
| dibn0 41262 | The value of the partial i... |
| dibfna 41263 | Functionality and domain o... |
| dibdiadm 41264 | Domain of the partial isom... |
| dibfnN 41265 | Functionality and domain o... |
| dibdmN 41266 | Domain of the partial isom... |
| dibeldmN 41267 | Member of domain of the pa... |
| dibord 41268 | The isomorphism B for a la... |
| dib11N 41269 | The isomorphism B for a la... |
| dibf11N 41270 | The partial isomorphism A ... |
| dibclN 41271 | Closure of partial isomorp... |
| dibvalrel 41272 | The value of partial isomo... |
| dib0 41273 | The value of partial isomo... |
| dib1dim 41274 | Two expressions for the 1-... |
| dibglbN 41275 | Partial isomorphism B of a... |
| dibintclN 41276 | The intersection of partia... |
| dib1dim2 41277 | Two expressions for a 1-di... |
| dibss 41278 | The partial isomorphism B ... |
| diblss 41279 | The value of partial isomo... |
| diblsmopel 41280 | Membership in subspace sum... |
| dicffval 41283 | The partial isomorphism C ... |
| dicfval 41284 | The partial isomorphism C ... |
| dicval 41285 | The partial isomorphism C ... |
| dicopelval 41286 | Membership in value of the... |
| dicelvalN 41287 | Membership in value of the... |
| dicval2 41288 | The partial isomorphism C ... |
| dicelval3 41289 | Member of the partial isom... |
| dicopelval2 41290 | Membership in value of the... |
| dicelval2N 41291 | Membership in value of the... |
| dicfnN 41292 | Functionality and domain o... |
| dicdmN 41293 | Domain of the partial isom... |
| dicvalrelN 41294 | The value of partial isomo... |
| dicssdvh 41295 | The partial isomorphism C ... |
| dicelval1sta 41296 | Membership in value of the... |
| dicelval1stN 41297 | Membership in value of the... |
| dicelval2nd 41298 | Membership in value of the... |
| dicvaddcl 41299 | Membership in value of the... |
| dicvscacl 41300 | Membership in value of the... |
| dicn0 41301 | The value of the partial i... |
| diclss 41302 | The value of partial isomo... |
| diclspsn 41303 | The value of isomorphism C... |
| cdlemn2 41304 | Part of proof of Lemma N o... |
| cdlemn2a 41305 | Part of proof of Lemma N o... |
| cdlemn3 41306 | Part of proof of Lemma N o... |
| cdlemn4 41307 | Part of proof of Lemma N o... |
| cdlemn4a 41308 | Part of proof of Lemma N o... |
| cdlemn5pre 41309 | Part of proof of Lemma N o... |
| cdlemn5 41310 | Part of proof of Lemma N o... |
| cdlemn6 41311 | Part of proof of Lemma N o... |
| cdlemn7 41312 | Part of proof of Lemma N o... |
| cdlemn8 41313 | Part of proof of Lemma N o... |
| cdlemn9 41314 | Part of proof of Lemma N o... |
| cdlemn10 41315 | Part of proof of Lemma N o... |
| cdlemn11a 41316 | Part of proof of Lemma N o... |
| cdlemn11b 41317 | Part of proof of Lemma N o... |
| cdlemn11c 41318 | Part of proof of Lemma N o... |
| cdlemn11pre 41319 | Part of proof of Lemma N o... |
| cdlemn11 41320 | Part of proof of Lemma N o... |
| cdlemn 41321 | Lemma N of [Crawley] p. 12... |
| dihordlem6 41322 | Part of proof of Lemma N o... |
| dihordlem7 41323 | Part of proof of Lemma N o... |
| dihordlem7b 41324 | Part of proof of Lemma N o... |
| dihjustlem 41325 | Part of proof after Lemma ... |
| dihjust 41326 | Part of proof after Lemma ... |
| dihord1 41327 | Part of proof after Lemma ... |
| dihord2a 41328 | Part of proof after Lemma ... |
| dihord2b 41329 | Part of proof after Lemma ... |
| dihord2cN 41330 | Part of proof after Lemma ... |
| dihord11b 41331 | Part of proof after Lemma ... |
| dihord10 41332 | Part of proof after Lemma ... |
| dihord11c 41333 | Part of proof after Lemma ... |
| dihord2pre 41334 | Part of proof after Lemma ... |
| dihord2pre2 41335 | Part of proof after Lemma ... |
| dihord2 41336 | Part of proof after Lemma ... |
| dihffval 41339 | The isomorphism H for a la... |
| dihfval 41340 | Isomorphism H for a lattic... |
| dihval 41341 | Value of isomorphism H for... |
| dihvalc 41342 | Value of isomorphism H for... |
| dihlsscpre 41343 | Closure of isomorphism H f... |
| dihvalcqpre 41344 | Value of isomorphism H for... |
| dihvalcq 41345 | Value of isomorphism H for... |
| dihvalb 41346 | Value of isomorphism H for... |
| dihopelvalbN 41347 | Ordered pair member of the... |
| dihvalcqat 41348 | Value of isomorphism H for... |
| dih1dimb 41349 | Two expressions for a 1-di... |
| dih1dimb2 41350 | Isomorphism H at an atom u... |
| dih1dimc 41351 | Isomorphism H at an atom n... |
| dib2dim 41352 | Extend ~ dia2dim to partia... |
| dih2dimb 41353 | Extend ~ dib2dim to isomor... |
| dih2dimbALTN 41354 | Extend ~ dia2dim to isomor... |
| dihopelvalcqat 41355 | Ordered pair member of the... |
| dihvalcq2 41356 | Value of isomorphism H for... |
| dihopelvalcpre 41357 | Member of value of isomorp... |
| dihopelvalc 41358 | Member of value of isomorp... |
| dihlss 41359 | The value of isomorphism H... |
| dihss 41360 | The value of isomorphism H... |
| dihssxp 41361 | An isomorphism H value is ... |
| dihopcl 41362 | Closure of an ordered pair... |
| xihopellsmN 41363 | Ordered pair membership in... |
| dihopellsm 41364 | Ordered pair membership in... |
| dihord6apre 41365 | Part of proof that isomorp... |
| dihord3 41366 | The isomorphism H for a la... |
| dihord4 41367 | The isomorphism H for a la... |
| dihord5b 41368 | Part of proof that isomorp... |
| dihord6b 41369 | Part of proof that isomorp... |
| dihord6a 41370 | Part of proof that isomorp... |
| dihord5apre 41371 | Part of proof that isomorp... |
| dihord5a 41372 | Part of proof that isomorp... |
| dihord 41373 | The isomorphism H is order... |
| dih11 41374 | The isomorphism H is one-t... |
| dihf11lem 41375 | Functionality of the isomo... |
| dihf11 41376 | The isomorphism H for a la... |
| dihfn 41377 | Functionality and domain o... |
| dihdm 41378 | Domain of isomorphism H. (... |
| dihcl 41379 | Closure of isomorphism H. ... |
| dihcnvcl 41380 | Closure of isomorphism H c... |
| dihcnvid1 41381 | The converse isomorphism o... |
| dihcnvid2 41382 | The isomorphism of a conve... |
| dihcnvord 41383 | Ordering property for conv... |
| dihcnv11 41384 | The converse of isomorphis... |
| dihsslss 41385 | The isomorphism H maps to ... |
| dihrnlss 41386 | The isomorphism H maps to ... |
| dihrnss 41387 | The isomorphism H maps to ... |
| dihvalrel 41388 | The value of isomorphism H... |
| dih0 41389 | The value of isomorphism H... |
| dih0bN 41390 | A lattice element is zero ... |
| dih0vbN 41391 | A vector is zero iff its s... |
| dih0cnv 41392 | The isomorphism H converse... |
| dih0rn 41393 | The zero subspace belongs ... |
| dih0sb 41394 | A subspace is zero iff the... |
| dih1 41395 | The value of isomorphism H... |
| dih1rn 41396 | The full vector space belo... |
| dih1cnv 41397 | The isomorphism H converse... |
| dihwN 41398 | Value of isomorphism H at ... |
| dihmeetlem1N 41399 | Isomorphism H of a conjunc... |
| dihglblem5apreN 41400 | A conjunction property of ... |
| dihglblem5aN 41401 | A conjunction property of ... |
| dihglblem2aN 41402 | Lemma for isomorphism H of... |
| dihglblem2N 41403 | The GLB of a set of lattic... |
| dihglblem3N 41404 | Isomorphism H of a lattice... |
| dihglblem3aN 41405 | Isomorphism H of a lattice... |
| dihglblem4 41406 | Isomorphism H of a lattice... |
| dihglblem5 41407 | Isomorphism H of a lattice... |
| dihmeetlem2N 41408 | Isomorphism H of a conjunc... |
| dihglbcpreN 41409 | Isomorphism H of a lattice... |
| dihglbcN 41410 | Isomorphism H of a lattice... |
| dihmeetcN 41411 | Isomorphism H of a lattice... |
| dihmeetbN 41412 | Isomorphism H of a lattice... |
| dihmeetbclemN 41413 | Lemma for isomorphism H of... |
| dihmeetlem3N 41414 | Lemma for isomorphism H of... |
| dihmeetlem4preN 41415 | Lemma for isomorphism H of... |
| dihmeetlem4N 41416 | Lemma for isomorphism H of... |
| dihmeetlem5 41417 | Part of proof that isomorp... |
| dihmeetlem6 41418 | Lemma for isomorphism H of... |
| dihmeetlem7N 41419 | Lemma for isomorphism H of... |
| dihjatc1 41420 | Lemma for isomorphism H of... |
| dihjatc2N 41421 | Isomorphism H of join with... |
| dihjatc3 41422 | Isomorphism H of join with... |
| dihmeetlem8N 41423 | Lemma for isomorphism H of... |
| dihmeetlem9N 41424 | Lemma for isomorphism H of... |
| dihmeetlem10N 41425 | Lemma for isomorphism H of... |
| dihmeetlem11N 41426 | Lemma for isomorphism H of... |
| dihmeetlem12N 41427 | Lemma for isomorphism H of... |
| dihmeetlem13N 41428 | Lemma for isomorphism H of... |
| dihmeetlem14N 41429 | Lemma for isomorphism H of... |
| dihmeetlem15N 41430 | Lemma for isomorphism H of... |
| dihmeetlem16N 41431 | Lemma for isomorphism H of... |
| dihmeetlem17N 41432 | Lemma for isomorphism H of... |
| dihmeetlem18N 41433 | Lemma for isomorphism H of... |
| dihmeetlem19N 41434 | Lemma for isomorphism H of... |
| dihmeetlem20N 41435 | Lemma for isomorphism H of... |
| dihmeetALTN 41436 | Isomorphism H of a lattice... |
| dih1dimatlem0 41437 | Lemma for ~ dih1dimat . (... |
| dih1dimatlem 41438 | Lemma for ~ dih1dimat . (... |
| dih1dimat 41439 | Any 1-dimensional subspace... |
| dihlsprn 41440 | The span of a vector belon... |
| dihlspsnssN 41441 | A subspace included in a 1... |
| dihlspsnat 41442 | The inverse isomorphism H ... |
| dihatlat 41443 | The isomorphism H of an at... |
| dihat 41444 | There exists at least one ... |
| dihpN 41445 | The value of isomorphism H... |
| dihlatat 41446 | The reverse isomorphism H ... |
| dihatexv 41447 | There is a nonzero vector ... |
| dihatexv2 41448 | There is a nonzero vector ... |
| dihglblem6 41449 | Isomorphism H of a lattice... |
| dihglb 41450 | Isomorphism H of a lattice... |
| dihglb2 41451 | Isomorphism H of a lattice... |
| dihmeet 41452 | Isomorphism H of a lattice... |
| dihintcl 41453 | The intersection of closed... |
| dihmeetcl 41454 | Closure of closed subspace... |
| dihmeet2 41455 | Reverse isomorphism H of a... |
| dochffval 41458 | Subspace orthocomplement f... |
| dochfval 41459 | Subspace orthocomplement f... |
| dochval 41460 | Subspace orthocomplement f... |
| dochval2 41461 | Subspace orthocomplement f... |
| dochcl 41462 | Closure of subspace orthoc... |
| dochlss 41463 | A subspace orthocomplement... |
| dochssv 41464 | A subspace orthocomplement... |
| dochfN 41465 | Domain and codomain of the... |
| dochvalr 41466 | Orthocomplement of a close... |
| doch0 41467 | Orthocomplement of the zer... |
| doch1 41468 | Orthocomplement of the uni... |
| dochoc0 41469 | The zero subspace is close... |
| dochoc1 41470 | The unit subspace (all vec... |
| dochvalr2 41471 | Orthocomplement of a close... |
| dochvalr3 41472 | Orthocomplement of a close... |
| doch2val2 41473 | Double orthocomplement for... |
| dochss 41474 | Subset law for orthocomple... |
| dochocss 41475 | Double negative law for or... |
| dochoc 41476 | Double negative law for or... |
| dochsscl 41477 | If a set of vectors is inc... |
| dochoccl 41478 | A set of vectors is closed... |
| dochord 41479 | Ordering law for orthocomp... |
| dochord2N 41480 | Ordering law for orthocomp... |
| dochord3 41481 | Ordering law for orthocomp... |
| doch11 41482 | Orthocomplement is one-to-... |
| dochsordN 41483 | Strict ordering law for or... |
| dochn0nv 41484 | An orthocomplement is nonz... |
| dihoml4c 41485 | Version of ~ dihoml4 with ... |
| dihoml4 41486 | Orthomodular law for const... |
| dochspss 41487 | The span of a set of vecto... |
| dochocsp 41488 | The span of an orthocomple... |
| dochspocN 41489 | The span of an orthocomple... |
| dochocsn 41490 | The double orthocomplement... |
| dochsncom 41491 | Swap vectors in an orthoco... |
| dochsat 41492 | The double orthocomplement... |
| dochshpncl 41493 | If a hyperplane is not clo... |
| dochlkr 41494 | Equivalent conditions for ... |
| dochkrshp 41495 | The closure of a kernel is... |
| dochkrshp2 41496 | Properties of the closure ... |
| dochkrshp3 41497 | Properties of the closure ... |
| dochkrshp4 41498 | Properties of the closure ... |
| dochdmj1 41499 | De Morgan-like law for sub... |
| dochnoncon 41500 | Law of noncontradiction. ... |
| dochnel2 41501 | A nonzero member of a subs... |
| dochnel 41502 | A nonzero vector doesn't b... |
| djhffval 41505 | Subspace join for ` DVecH ... |
| djhfval 41506 | Subspace join for ` DVecH ... |
| djhval 41507 | Subspace join for ` DVecH ... |
| djhval2 41508 | Value of subspace join for... |
| djhcl 41509 | Closure of subspace join f... |
| djhlj 41510 | Transfer lattice join to `... |
| djhljjN 41511 | Lattice join in terms of `... |
| djhjlj 41512 | ` DVecH ` vector space clo... |
| djhj 41513 | ` DVecH ` vector space clo... |
| djhcom 41514 | Subspace join commutes. (... |
| djhspss 41515 | Subspace span of union is ... |
| djhsumss 41516 | Subspace sum is a subset o... |
| dihsumssj 41517 | The subspace sum of two is... |
| djhunssN 41518 | Subspace union is a subset... |
| dochdmm1 41519 | De Morgan-like law for clo... |
| djhexmid 41520 | Excluded middle property o... |
| djh01 41521 | Closed subspace join with ... |
| djh02 41522 | Closed subspace join with ... |
| djhlsmcl 41523 | A closed subspace sum equa... |
| djhcvat42 41524 | A covering property. ( ~ ... |
| dihjatb 41525 | Isomorphism H of lattice j... |
| dihjatc 41526 | Isomorphism H of lattice j... |
| dihjatcclem1 41527 | Lemma for isomorphism H of... |
| dihjatcclem2 41528 | Lemma for isomorphism H of... |
| dihjatcclem3 41529 | Lemma for ~ dihjatcc . (C... |
| dihjatcclem4 41530 | Lemma for isomorphism H of... |
| dihjatcc 41531 | Isomorphism H of lattice j... |
| dihjat 41532 | Isomorphism H of lattice j... |
| dihprrnlem1N 41533 | Lemma for ~ dihprrn , show... |
| dihprrnlem2 41534 | Lemma for ~ dihprrn . (Co... |
| dihprrn 41535 | The span of a vector pair ... |
| djhlsmat 41536 | The sum of two subspace at... |
| dihjat1lem 41537 | Subspace sum of a closed s... |
| dihjat1 41538 | Subspace sum of a closed s... |
| dihsmsprn 41539 | Subspace sum of a closed s... |
| dihjat2 41540 | The subspace sum of a clos... |
| dihjat3 41541 | Isomorphism H of lattice j... |
| dihjat4 41542 | Transfer the subspace sum ... |
| dihjat6 41543 | Transfer the subspace sum ... |
| dihsmsnrn 41544 | The subspace sum of two si... |
| dihsmatrn 41545 | The subspace sum of a clos... |
| dihjat5N 41546 | Transfer lattice join with... |
| dvh4dimat 41547 | There is an atom that is o... |
| dvh3dimatN 41548 | There is an atom that is o... |
| dvh2dimatN 41549 | Given an atom, there exist... |
| dvh1dimat 41550 | There exists an atom. (Co... |
| dvh1dim 41551 | There exists a nonzero vec... |
| dvh4dimlem 41552 | Lemma for ~ dvh4dimN . (C... |
| dvhdimlem 41553 | Lemma for ~ dvh2dim and ~ ... |
| dvh2dim 41554 | There is a vector that is ... |
| dvh3dim 41555 | There is a vector that is ... |
| dvh4dimN 41556 | There is a vector that is ... |
| dvh3dim2 41557 | There is a vector that is ... |
| dvh3dim3N 41558 | There is a vector that is ... |
| dochsnnz 41559 | The orthocomplement of a s... |
| dochsatshp 41560 | The orthocomplement of a s... |
| dochsatshpb 41561 | The orthocomplement of a s... |
| dochsnshp 41562 | The orthocomplement of a n... |
| dochshpsat 41563 | A hyperplane is closed iff... |
| dochkrsat 41564 | The orthocomplement of a k... |
| dochkrsat2 41565 | The orthocomplement of a k... |
| dochsat0 41566 | The orthocomplement of a k... |
| dochkrsm 41567 | The subspace sum of a clos... |
| dochexmidat 41568 | Special case of excluded m... |
| dochexmidlem1 41569 | Lemma for ~ dochexmid . H... |
| dochexmidlem2 41570 | Lemma for ~ dochexmid . (... |
| dochexmidlem3 41571 | Lemma for ~ dochexmid . U... |
| dochexmidlem4 41572 | Lemma for ~ dochexmid . (... |
| dochexmidlem5 41573 | Lemma for ~ dochexmid . (... |
| dochexmidlem6 41574 | Lemma for ~ dochexmid . (... |
| dochexmidlem7 41575 | Lemma for ~ dochexmid . C... |
| dochexmidlem8 41576 | Lemma for ~ dochexmid . T... |
| dochexmid 41577 | Excluded middle law for cl... |
| dochsnkrlem1 41578 | Lemma for ~ dochsnkr . (C... |
| dochsnkrlem2 41579 | Lemma for ~ dochsnkr . (C... |
| dochsnkrlem3 41580 | Lemma for ~ dochsnkr . (C... |
| dochsnkr 41581 | A (closed) kernel expresse... |
| dochsnkr2 41582 | Kernel of the explicit fun... |
| dochsnkr2cl 41583 | The ` X ` determining func... |
| dochflcl 41584 | Closure of the explicit fu... |
| dochfl1 41585 | The value of the explicit ... |
| dochfln0 41586 | The value of a functional ... |
| dochkr1 41587 | A nonzero functional has a... |
| dochkr1OLDN 41588 | A nonzero functional has a... |
| lpolsetN 41591 | The set of polarities of a... |
| islpolN 41592 | The predicate "is a polari... |
| islpoldN 41593 | Properties that determine ... |
| lpolfN 41594 | Functionality of a polarit... |
| lpolvN 41595 | The polarity of the whole ... |
| lpolconN 41596 | Contraposition property of... |
| lpolsatN 41597 | The polarity of an atomic ... |
| lpolpolsatN 41598 | Property of a polarity. (... |
| dochpolN 41599 | The subspace orthocompleme... |
| lcfl1lem 41600 | Property of a functional w... |
| lcfl1 41601 | Property of a functional w... |
| lcfl2 41602 | Property of a functional w... |
| lcfl3 41603 | Property of a functional w... |
| lcfl4N 41604 | Property of a functional w... |
| lcfl5 41605 | Property of a functional w... |
| lcfl5a 41606 | Property of a functional w... |
| lcfl6lem 41607 | Lemma for ~ lcfl6 . A fun... |
| lcfl7lem 41608 | Lemma for ~ lcfl7N . If t... |
| lcfl6 41609 | Property of a functional w... |
| lcfl7N 41610 | Property of a functional w... |
| lcfl8 41611 | Property of a functional w... |
| lcfl8a 41612 | Property of a functional w... |
| lcfl8b 41613 | Property of a nonzero func... |
| lcfl9a 41614 | Property implying that a f... |
| lclkrlem1 41615 | The set of functionals hav... |
| lclkrlem2a 41616 | Lemma for ~ lclkr . Use ~... |
| lclkrlem2b 41617 | Lemma for ~ lclkr . (Cont... |
| lclkrlem2c 41618 | Lemma for ~ lclkr . (Cont... |
| lclkrlem2d 41619 | Lemma for ~ lclkr . (Cont... |
| lclkrlem2e 41620 | Lemma for ~ lclkr . The k... |
| lclkrlem2f 41621 | Lemma for ~ lclkr . Const... |
| lclkrlem2g 41622 | Lemma for ~ lclkr . Compa... |
| lclkrlem2h 41623 | Lemma for ~ lclkr . Elimi... |
| lclkrlem2i 41624 | Lemma for ~ lclkr . Elimi... |
| lclkrlem2j 41625 | Lemma for ~ lclkr . Kerne... |
| lclkrlem2k 41626 | Lemma for ~ lclkr . Kerne... |
| lclkrlem2l 41627 | Lemma for ~ lclkr . Elimi... |
| lclkrlem2m 41628 | Lemma for ~ lclkr . Const... |
| lclkrlem2n 41629 | Lemma for ~ lclkr . (Cont... |
| lclkrlem2o 41630 | Lemma for ~ lclkr . When ... |
| lclkrlem2p 41631 | Lemma for ~ lclkr . When ... |
| lclkrlem2q 41632 | Lemma for ~ lclkr . The s... |
| lclkrlem2r 41633 | Lemma for ~ lclkr . When ... |
| lclkrlem2s 41634 | Lemma for ~ lclkr . Thus,... |
| lclkrlem2t 41635 | Lemma for ~ lclkr . We el... |
| lclkrlem2u 41636 | Lemma for ~ lclkr . ~ lclk... |
| lclkrlem2v 41637 | Lemma for ~ lclkr . When ... |
| lclkrlem2w 41638 | Lemma for ~ lclkr . This ... |
| lclkrlem2x 41639 | Lemma for ~ lclkr . Elimi... |
| lclkrlem2y 41640 | Lemma for ~ lclkr . Resta... |
| lclkrlem2 41641 | The set of functionals hav... |
| lclkr 41642 | The set of functionals wit... |
| lcfls1lem 41643 | Property of a functional w... |
| lcfls1N 41644 | Property of a functional w... |
| lcfls1c 41645 | Property of a functional w... |
| lclkrslem1 41646 | The set of functionals hav... |
| lclkrslem2 41647 | The set of functionals hav... |
| lclkrs 41648 | The set of functionals hav... |
| lclkrs2 41649 | The set of functionals wit... |
| lcfrvalsnN 41650 | Reconstruction from the du... |
| lcfrlem1 41651 | Lemma for ~ lcfr . Note t... |
| lcfrlem2 41652 | Lemma for ~ lcfr . (Contr... |
| lcfrlem3 41653 | Lemma for ~ lcfr . (Contr... |
| lcfrlem4 41654 | Lemma for ~ lcfr . (Contr... |
| lcfrlem5 41655 | Lemma for ~ lcfr . The se... |
| lcfrlem6 41656 | Lemma for ~ lcfr . Closur... |
| lcfrlem7 41657 | Lemma for ~ lcfr . Closur... |
| lcfrlem8 41658 | Lemma for ~ lcf1o and ~ lc... |
| lcfrlem9 41659 | Lemma for ~ lcf1o . (This... |
| lcf1o 41660 | Define a function ` J ` th... |
| lcfrlem10 41661 | Lemma for ~ lcfr . (Contr... |
| lcfrlem11 41662 | Lemma for ~ lcfr . (Contr... |
| lcfrlem12N 41663 | Lemma for ~ lcfr . (Contr... |
| lcfrlem13 41664 | Lemma for ~ lcfr . (Contr... |
| lcfrlem14 41665 | Lemma for ~ lcfr . (Contr... |
| lcfrlem15 41666 | Lemma for ~ lcfr . (Contr... |
| lcfrlem16 41667 | Lemma for ~ lcfr . (Contr... |
| lcfrlem17 41668 | Lemma for ~ lcfr . Condit... |
| lcfrlem18 41669 | Lemma for ~ lcfr . (Contr... |
| lcfrlem19 41670 | Lemma for ~ lcfr . (Contr... |
| lcfrlem20 41671 | Lemma for ~ lcfr . (Contr... |
| lcfrlem21 41672 | Lemma for ~ lcfr . (Contr... |
| lcfrlem22 41673 | Lemma for ~ lcfr . (Contr... |
| lcfrlem23 41674 | Lemma for ~ lcfr . TODO: ... |
| lcfrlem24 41675 | Lemma for ~ lcfr . (Contr... |
| lcfrlem25 41676 | Lemma for ~ lcfr . Specia... |
| lcfrlem26 41677 | Lemma for ~ lcfr . Specia... |
| lcfrlem27 41678 | Lemma for ~ lcfr . Specia... |
| lcfrlem28 41679 | Lemma for ~ lcfr . TODO: ... |
| lcfrlem29 41680 | Lemma for ~ lcfr . (Contr... |
| lcfrlem30 41681 | Lemma for ~ lcfr . (Contr... |
| lcfrlem31 41682 | Lemma for ~ lcfr . (Contr... |
| lcfrlem32 41683 | Lemma for ~ lcfr . (Contr... |
| lcfrlem33 41684 | Lemma for ~ lcfr . (Contr... |
| lcfrlem34 41685 | Lemma for ~ lcfr . (Contr... |
| lcfrlem35 41686 | Lemma for ~ lcfr . (Contr... |
| lcfrlem36 41687 | Lemma for ~ lcfr . (Contr... |
| lcfrlem37 41688 | Lemma for ~ lcfr . (Contr... |
| lcfrlem38 41689 | Lemma for ~ lcfr . Combin... |
| lcfrlem39 41690 | Lemma for ~ lcfr . Elimin... |
| lcfrlem40 41691 | Lemma for ~ lcfr . Elimin... |
| lcfrlem41 41692 | Lemma for ~ lcfr . Elimin... |
| lcfrlem42 41693 | Lemma for ~ lcfr . Elimin... |
| lcfr 41694 | Reconstruction of a subspa... |
| lcdfval 41697 | Dual vector space of funct... |
| lcdval 41698 | Dual vector space of funct... |
| lcdval2 41699 | Dual vector space of funct... |
| lcdlvec 41700 | The dual vector space of f... |
| lcdlmod 41701 | The dual vector space of f... |
| lcdvbase 41702 | Vector base set of a dual ... |
| lcdvbasess 41703 | The vector base set of the... |
| lcdvbaselfl 41704 | A vector in the base set o... |
| lcdvbasecl 41705 | Closure of the value of a ... |
| lcdvadd 41706 | Vector addition for the cl... |
| lcdvaddval 41707 | The value of the value of ... |
| lcdsca 41708 | The ring of scalars of the... |
| lcdsbase 41709 | Base set of scalar ring fo... |
| lcdsadd 41710 | Scalar addition for the cl... |
| lcdsmul 41711 | Scalar multiplication for ... |
| lcdvs 41712 | Scalar product for the clo... |
| lcdvsval 41713 | Value of scalar product op... |
| lcdvscl 41714 | The scalar product operati... |
| lcdlssvscl 41715 | Closure of scalar product ... |
| lcdvsass 41716 | Associative law for scalar... |
| lcd0 41717 | The zero scalar of the clo... |
| lcd1 41718 | The unit scalar of the clo... |
| lcdneg 41719 | The unit scalar of the clo... |
| lcd0v 41720 | The zero functional in the... |
| lcd0v2 41721 | The zero functional in the... |
| lcd0vvalN 41722 | Value of the zero function... |
| lcd0vcl 41723 | Closure of the zero functi... |
| lcd0vs 41724 | A scalar zero times a func... |
| lcdvs0N 41725 | A scalar times the zero fu... |
| lcdvsub 41726 | The value of vector subtra... |
| lcdvsubval 41727 | The value of the value of ... |
| lcdlss 41728 | Subspaces of a dual vector... |
| lcdlss2N 41729 | Subspaces of a dual vector... |
| lcdlsp 41730 | Span in the set of functio... |
| lcdlkreqN 41731 | Colinear functionals have ... |
| lcdlkreq2N 41732 | Colinear functionals have ... |
| mapdffval 41735 | Projectivity from vector s... |
| mapdfval 41736 | Projectivity from vector s... |
| mapdval 41737 | Value of projectivity from... |
| mapdvalc 41738 | Value of projectivity from... |
| mapdval2N 41739 | Value of projectivity from... |
| mapdval3N 41740 | Value of projectivity from... |
| mapdval4N 41741 | Value of projectivity from... |
| mapdval5N 41742 | Value of projectivity from... |
| mapdordlem1a 41743 | Lemma for ~ mapdord . (Co... |
| mapdordlem1bN 41744 | Lemma for ~ mapdord . (Co... |
| mapdordlem1 41745 | Lemma for ~ mapdord . (Co... |
| mapdordlem2 41746 | Lemma for ~ mapdord . Ord... |
| mapdord 41747 | Ordering property of the m... |
| mapd11 41748 | The map defined by ~ df-ma... |
| mapddlssN 41749 | The mapping of a subspace ... |
| mapdsn 41750 | Value of the map defined b... |
| mapdsn2 41751 | Value of the map defined b... |
| mapdsn3 41752 | Value of the map defined b... |
| mapd1dim2lem1N 41753 | Value of the map defined b... |
| mapdrvallem2 41754 | Lemma for ~ mapdrval . TO... |
| mapdrvallem3 41755 | Lemma for ~ mapdrval . (C... |
| mapdrval 41756 | Given a dual subspace ` R ... |
| mapd1o 41757 | The map defined by ~ df-ma... |
| mapdrn 41758 | Range of the map defined b... |
| mapdunirnN 41759 | Union of the range of the ... |
| mapdrn2 41760 | Range of the map defined b... |
| mapdcnvcl 41761 | Closure of the converse of... |
| mapdcl 41762 | Closure the value of the m... |
| mapdcnvid1N 41763 | Converse of the value of t... |
| mapdsord 41764 | Strong ordering property o... |
| mapdcl2 41765 | The mapping of a subspace ... |
| mapdcnvid2 41766 | Value of the converse of t... |
| mapdcnvordN 41767 | Ordering property of the c... |
| mapdcnv11N 41768 | The converse of the map de... |
| mapdcv 41769 | Covering property of the c... |
| mapdincl 41770 | Closure of dual subspace i... |
| mapdin 41771 | Subspace intersection is p... |
| mapdlsmcl 41772 | Closure of dual subspace s... |
| mapdlsm 41773 | Subspace sum is preserved ... |
| mapd0 41774 | Projectivity map of the ze... |
| mapdcnvatN 41775 | Atoms are preserved by the... |
| mapdat 41776 | Atoms are preserved by the... |
| mapdspex 41777 | The map of a span equals t... |
| mapdn0 41778 | Transfer nonzero property ... |
| mapdncol 41779 | Transfer non-colinearity f... |
| mapdindp 41780 | Transfer (part of) vector ... |
| mapdpglem1 41781 | Lemma for ~ mapdpg . Baer... |
| mapdpglem2 41782 | Lemma for ~ mapdpg . Baer... |
| mapdpglem2a 41783 | Lemma for ~ mapdpg . (Con... |
| mapdpglem3 41784 | Lemma for ~ mapdpg . Baer... |
| mapdpglem4N 41785 | Lemma for ~ mapdpg . (Con... |
| mapdpglem5N 41786 | Lemma for ~ mapdpg . (Con... |
| mapdpglem6 41787 | Lemma for ~ mapdpg . Baer... |
| mapdpglem8 41788 | Lemma for ~ mapdpg . Baer... |
| mapdpglem9 41789 | Lemma for ~ mapdpg . Baer... |
| mapdpglem10 41790 | Lemma for ~ mapdpg . Baer... |
| mapdpglem11 41791 | Lemma for ~ mapdpg . (Con... |
| mapdpglem12 41792 | Lemma for ~ mapdpg . TODO... |
| mapdpglem13 41793 | Lemma for ~ mapdpg . (Con... |
| mapdpglem14 41794 | Lemma for ~ mapdpg . (Con... |
| mapdpglem15 41795 | Lemma for ~ mapdpg . (Con... |
| mapdpglem16 41796 | Lemma for ~ mapdpg . Baer... |
| mapdpglem17N 41797 | Lemma for ~ mapdpg . Baer... |
| mapdpglem18 41798 | Lemma for ~ mapdpg . Baer... |
| mapdpglem19 41799 | Lemma for ~ mapdpg . Baer... |
| mapdpglem20 41800 | Lemma for ~ mapdpg . Baer... |
| mapdpglem21 41801 | Lemma for ~ mapdpg . (Con... |
| mapdpglem22 41802 | Lemma for ~ mapdpg . Baer... |
| mapdpglem23 41803 | Lemma for ~ mapdpg . Baer... |
| mapdpglem30a 41804 | Lemma for ~ mapdpg . (Con... |
| mapdpglem30b 41805 | Lemma for ~ mapdpg . (Con... |
| mapdpglem25 41806 | Lemma for ~ mapdpg . Baer... |
| mapdpglem26 41807 | Lemma for ~ mapdpg . Baer... |
| mapdpglem27 41808 | Lemma for ~ mapdpg . Baer... |
| mapdpglem29 41809 | Lemma for ~ mapdpg . Baer... |
| mapdpglem28 41810 | Lemma for ~ mapdpg . Baer... |
| mapdpglem30 41811 | Lemma for ~ mapdpg . Baer... |
| mapdpglem31 41812 | Lemma for ~ mapdpg . Baer... |
| mapdpglem24 41813 | Lemma for ~ mapdpg . Exis... |
| mapdpglem32 41814 | Lemma for ~ mapdpg . Uniq... |
| mapdpg 41815 | Part 1 of proof of the fir... |
| baerlem3lem1 41816 | Lemma for ~ baerlem3 . (C... |
| baerlem5alem1 41817 | Lemma for ~ baerlem5a . (... |
| baerlem5blem1 41818 | Lemma for ~ baerlem5b . (... |
| baerlem3lem2 41819 | Lemma for ~ baerlem3 . (C... |
| baerlem5alem2 41820 | Lemma for ~ baerlem5a . (... |
| baerlem5blem2 41821 | Lemma for ~ baerlem5b . (... |
| baerlem3 41822 | An equality that holds whe... |
| baerlem5a 41823 | An equality that holds whe... |
| baerlem5b 41824 | An equality that holds whe... |
| baerlem5amN 41825 | An equality that holds whe... |
| baerlem5bmN 41826 | An equality that holds whe... |
| baerlem5abmN 41827 | An equality that holds whe... |
| mapdindp0 41828 | Vector independence lemma.... |
| mapdindp1 41829 | Vector independence lemma.... |
| mapdindp2 41830 | Vector independence lemma.... |
| mapdindp3 41831 | Vector independence lemma.... |
| mapdindp4 41832 | Vector independence lemma.... |
| mapdhval 41833 | Lemmma for ~~? mapdh . (C... |
| mapdhval0 41834 | Lemmma for ~~? mapdh . (C... |
| mapdhval2 41835 | Lemmma for ~~? mapdh . (C... |
| mapdhcl 41836 | Lemmma for ~~? mapdh . (C... |
| mapdheq 41837 | Lemmma for ~~? mapdh . Th... |
| mapdheq2 41838 | Lemmma for ~~? mapdh . On... |
| mapdheq2biN 41839 | Lemmma for ~~? mapdh . Pa... |
| mapdheq4lem 41840 | Lemma for ~ mapdheq4 . Pa... |
| mapdheq4 41841 | Lemma for ~~? mapdh . Par... |
| mapdh6lem1N 41842 | Lemma for ~ mapdh6N . Par... |
| mapdh6lem2N 41843 | Lemma for ~ mapdh6N . Par... |
| mapdh6aN 41844 | Lemma for ~ mapdh6N . Par... |
| mapdh6b0N 41845 | Lemmma for ~ mapdh6N . (C... |
| mapdh6bN 41846 | Lemmma for ~ mapdh6N . (C... |
| mapdh6cN 41847 | Lemmma for ~ mapdh6N . (C... |
| mapdh6dN 41848 | Lemmma for ~ mapdh6N . (C... |
| mapdh6eN 41849 | Lemmma for ~ mapdh6N . Pa... |
| mapdh6fN 41850 | Lemmma for ~ mapdh6N . Pa... |
| mapdh6gN 41851 | Lemmma for ~ mapdh6N . Pa... |
| mapdh6hN 41852 | Lemmma for ~ mapdh6N . Pa... |
| mapdh6iN 41853 | Lemmma for ~ mapdh6N . El... |
| mapdh6jN 41854 | Lemmma for ~ mapdh6N . El... |
| mapdh6kN 41855 | Lemmma for ~ mapdh6N . El... |
| mapdh6N 41856 | Part (6) of [Baer] p. 47 l... |
| mapdh7eN 41857 | Part (7) of [Baer] p. 48 l... |
| mapdh7cN 41858 | Part (7) of [Baer] p. 48 l... |
| mapdh7dN 41859 | Part (7) of [Baer] p. 48 l... |
| mapdh7fN 41860 | Part (7) of [Baer] p. 48 l... |
| mapdh75e 41861 | Part (7) of [Baer] p. 48 l... |
| mapdh75cN 41862 | Part (7) of [Baer] p. 48 l... |
| mapdh75d 41863 | Part (7) of [Baer] p. 48 l... |
| mapdh75fN 41864 | Part (7) of [Baer] p. 48 l... |
| hvmapffval 41867 | Map from nonzero vectors t... |
| hvmapfval 41868 | Map from nonzero vectors t... |
| hvmapval 41869 | Value of map from nonzero ... |
| hvmapvalvalN 41870 | Value of value of map (i.e... |
| hvmapidN 41871 | The value of the vector to... |
| hvmap1o 41872 | The vector to functional m... |
| hvmapclN 41873 | Closure of the vector to f... |
| hvmap1o2 41874 | The vector to functional m... |
| hvmapcl2 41875 | Closure of the vector to f... |
| hvmaplfl 41876 | The vector to functional m... |
| hvmaplkr 41877 | Kernel of the vector to fu... |
| mapdhvmap 41878 | Relationship between ` map... |
| lspindp5 41879 | Obtain an independent vect... |
| hdmaplem1 41880 | Lemma to convert a frequen... |
| hdmaplem2N 41881 | Lemma to convert a frequen... |
| hdmaplem3 41882 | Lemma to convert a frequen... |
| hdmaplem4 41883 | Lemma to convert a frequen... |
| mapdh8a 41884 | Part of Part (8) in [Baer]... |
| mapdh8aa 41885 | Part of Part (8) in [Baer]... |
| mapdh8ab 41886 | Part of Part (8) in [Baer]... |
| mapdh8ac 41887 | Part of Part (8) in [Baer]... |
| mapdh8ad 41888 | Part of Part (8) in [Baer]... |
| mapdh8b 41889 | Part of Part (8) in [Baer]... |
| mapdh8c 41890 | Part of Part (8) in [Baer]... |
| mapdh8d0N 41891 | Part of Part (8) in [Baer]... |
| mapdh8d 41892 | Part of Part (8) in [Baer]... |
| mapdh8e 41893 | Part of Part (8) in [Baer]... |
| mapdh8g 41894 | Part of Part (8) in [Baer]... |
| mapdh8i 41895 | Part of Part (8) in [Baer]... |
| mapdh8j 41896 | Part of Part (8) in [Baer]... |
| mapdh8 41897 | Part (8) in [Baer] p. 48. ... |
| mapdh9a 41898 | Lemma for part (9) in [Bae... |
| mapdh9aOLDN 41899 | Lemma for part (9) in [Bae... |
| hdmap1ffval 41904 | Preliminary map from vecto... |
| hdmap1fval 41905 | Preliminary map from vecto... |
| hdmap1vallem 41906 | Value of preliminary map f... |
| hdmap1val 41907 | Value of preliminary map f... |
| hdmap1val0 41908 | Value of preliminary map f... |
| hdmap1val2 41909 | Value of preliminary map f... |
| hdmap1eq 41910 | The defining equation for ... |
| hdmap1cbv 41911 | Frequently used lemma to c... |
| hdmap1valc 41912 | Connect the value of the p... |
| hdmap1cl 41913 | Convert closure theorem ~ ... |
| hdmap1eq2 41914 | Convert ~ mapdheq2 to use ... |
| hdmap1eq4N 41915 | Convert ~ mapdheq4 to use ... |
| hdmap1l6lem1 41916 | Lemma for ~ hdmap1l6 . Pa... |
| hdmap1l6lem2 41917 | Lemma for ~ hdmap1l6 . Pa... |
| hdmap1l6a 41918 | Lemma for ~ hdmap1l6 . Pa... |
| hdmap1l6b0N 41919 | Lemmma for ~ hdmap1l6 . (... |
| hdmap1l6b 41920 | Lemmma for ~ hdmap1l6 . (... |
| hdmap1l6c 41921 | Lemmma for ~ hdmap1l6 . (... |
| hdmap1l6d 41922 | Lemmma for ~ hdmap1l6 . (... |
| hdmap1l6e 41923 | Lemmma for ~ hdmap1l6 . P... |
| hdmap1l6f 41924 | Lemmma for ~ hdmap1l6 . P... |
| hdmap1l6g 41925 | Lemmma for ~ hdmap1l6 . P... |
| hdmap1l6h 41926 | Lemmma for ~ hdmap1l6 . P... |
| hdmap1l6i 41927 | Lemmma for ~ hdmap1l6 . E... |
| hdmap1l6j 41928 | Lemmma for ~ hdmap1l6 . E... |
| hdmap1l6k 41929 | Lemmma for ~ hdmap1l6 . E... |
| hdmap1l6 41930 | Part (6) of [Baer] p. 47 l... |
| hdmap1eulem 41931 | Lemma for ~ hdmap1eu . TO... |
| hdmap1eulemOLDN 41932 | Lemma for ~ hdmap1euOLDN .... |
| hdmap1eu 41933 | Convert ~ mapdh9a to use t... |
| hdmap1euOLDN 41934 | Convert ~ mapdh9aOLDN to u... |
| hdmapffval 41935 | Map from vectors to functi... |
| hdmapfval 41936 | Map from vectors to functi... |
| hdmapval 41937 | Value of map from vectors ... |
| hdmapfnN 41938 | Functionality of map from ... |
| hdmapcl 41939 | Closure of map from vector... |
| hdmapval2lem 41940 | Lemma for ~ hdmapval2 . (... |
| hdmapval2 41941 | Value of map from vectors ... |
| hdmapval0 41942 | Value of map from vectors ... |
| hdmapeveclem 41943 | Lemma for ~ hdmapevec . T... |
| hdmapevec 41944 | Value of map from vectors ... |
| hdmapevec2 41945 | The inner product of the r... |
| hdmapval3lemN 41946 | Value of map from vectors ... |
| hdmapval3N 41947 | Value of map from vectors ... |
| hdmap10lem 41948 | Lemma for ~ hdmap10 . (Co... |
| hdmap10 41949 | Part 10 in [Baer] p. 48 li... |
| hdmap11lem1 41950 | Lemma for ~ hdmapadd . (C... |
| hdmap11lem2 41951 | Lemma for ~ hdmapadd . (C... |
| hdmapadd 41952 | Part 11 in [Baer] p. 48 li... |
| hdmapeq0 41953 | Part of proof of part 12 i... |
| hdmapnzcl 41954 | Nonzero vector closure of ... |
| hdmapneg 41955 | Part of proof of part 12 i... |
| hdmapsub 41956 | Part of proof of part 12 i... |
| hdmap11 41957 | Part of proof of part 12 i... |
| hdmaprnlem1N 41958 | Part of proof of part 12 i... |
| hdmaprnlem3N 41959 | Part of proof of part 12 i... |
| hdmaprnlem3uN 41960 | Part of proof of part 12 i... |
| hdmaprnlem4tN 41961 | Lemma for ~ hdmaprnN . TO... |
| hdmaprnlem4N 41962 | Part of proof of part 12 i... |
| hdmaprnlem6N 41963 | Part of proof of part 12 i... |
| hdmaprnlem7N 41964 | Part of proof of part 12 i... |
| hdmaprnlem8N 41965 | Part of proof of part 12 i... |
| hdmaprnlem9N 41966 | Part of proof of part 12 i... |
| hdmaprnlem3eN 41967 | Lemma for ~ hdmaprnN . (C... |
| hdmaprnlem10N 41968 | Lemma for ~ hdmaprnN . Sh... |
| hdmaprnlem11N 41969 | Lemma for ~ hdmaprnN . Sh... |
| hdmaprnlem15N 41970 | Lemma for ~ hdmaprnN . El... |
| hdmaprnlem16N 41971 | Lemma for ~ hdmaprnN . El... |
| hdmaprnlem17N 41972 | Lemma for ~ hdmaprnN . In... |
| hdmaprnN 41973 | Part of proof of part 12 i... |
| hdmapf1oN 41974 | Part 12 in [Baer] p. 49. ... |
| hdmap14lem1a 41975 | Prior to part 14 in [Baer]... |
| hdmap14lem2a 41976 | Prior to part 14 in [Baer]... |
| hdmap14lem1 41977 | Prior to part 14 in [Baer]... |
| hdmap14lem2N 41978 | Prior to part 14 in [Baer]... |
| hdmap14lem3 41979 | Prior to part 14 in [Baer]... |
| hdmap14lem4a 41980 | Simplify ` ( A \ { Q } ) `... |
| hdmap14lem4 41981 | Simplify ` ( A \ { Q } ) `... |
| hdmap14lem6 41982 | Case where ` F ` is zero. ... |
| hdmap14lem7 41983 | Combine cases of ` F ` . ... |
| hdmap14lem8 41984 | Part of proof of part 14 i... |
| hdmap14lem9 41985 | Part of proof of part 14 i... |
| hdmap14lem10 41986 | Part of proof of part 14 i... |
| hdmap14lem11 41987 | Part of proof of part 14 i... |
| hdmap14lem12 41988 | Lemma for proof of part 14... |
| hdmap14lem13 41989 | Lemma for proof of part 14... |
| hdmap14lem14 41990 | Part of proof of part 14 i... |
| hdmap14lem15 41991 | Part of proof of part 14 i... |
| hgmapffval 41994 | Map from the scalar divisi... |
| hgmapfval 41995 | Map from the scalar divisi... |
| hgmapval 41996 | Value of map from the scal... |
| hgmapfnN 41997 | Functionality of scalar si... |
| hgmapcl 41998 | Closure of scalar sigma ma... |
| hgmapdcl 41999 | Closure of the vector spac... |
| hgmapvs 42000 | Part 15 of [Baer] p. 50 li... |
| hgmapval0 42001 | Value of the scalar sigma ... |
| hgmapval1 42002 | Value of the scalar sigma ... |
| hgmapadd 42003 | Part 15 of [Baer] p. 50 li... |
| hgmapmul 42004 | Part 15 of [Baer] p. 50 li... |
| hgmaprnlem1N 42005 | Lemma for ~ hgmaprnN . (C... |
| hgmaprnlem2N 42006 | Lemma for ~ hgmaprnN . Pa... |
| hgmaprnlem3N 42007 | Lemma for ~ hgmaprnN . El... |
| hgmaprnlem4N 42008 | Lemma for ~ hgmaprnN . El... |
| hgmaprnlem5N 42009 | Lemma for ~ hgmaprnN . El... |
| hgmaprnN 42010 | Part of proof of part 16 i... |
| hgmap11 42011 | The scalar sigma map is on... |
| hgmapf1oN 42012 | The scalar sigma map is a ... |
| hgmapeq0 42013 | The scalar sigma map is ze... |
| hdmapipcl 42014 | The inner product (Hermiti... |
| hdmapln1 42015 | Linearity property that wi... |
| hdmaplna1 42016 | Additive property of first... |
| hdmaplns1 42017 | Subtraction property of fi... |
| hdmaplnm1 42018 | Multiplicative property of... |
| hdmaplna2 42019 | Additive property of secon... |
| hdmapglnm2 42020 | g-linear property of secon... |
| hdmapgln2 42021 | g-linear property that wil... |
| hdmaplkr 42022 | Kernel of the vector to du... |
| hdmapellkr 42023 | Membership in the kernel (... |
| hdmapip0 42024 | Zero property that will be... |
| hdmapip1 42025 | Construct a proportional v... |
| hdmapip0com 42026 | Commutation property of Ba... |
| hdmapinvlem1 42027 | Line 27 in [Baer] p. 110. ... |
| hdmapinvlem2 42028 | Line 28 in [Baer] p. 110, ... |
| hdmapinvlem3 42029 | Line 30 in [Baer] p. 110, ... |
| hdmapinvlem4 42030 | Part 1.1 of Proposition 1 ... |
| hdmapglem5 42031 | Part 1.2 in [Baer] p. 110 ... |
| hgmapvvlem1 42032 | Involution property of sca... |
| hgmapvvlem2 42033 | Lemma for ~ hgmapvv . Eli... |
| hgmapvvlem3 42034 | Lemma for ~ hgmapvv . Eli... |
| hgmapvv 42035 | Value of a double involuti... |
| hdmapglem7a 42036 | Lemma for ~ hdmapg . (Con... |
| hdmapglem7b 42037 | Lemma for ~ hdmapg . (Con... |
| hdmapglem7 42038 | Lemma for ~ hdmapg . Line... |
| hdmapg 42039 | Apply the scalar sigma fun... |
| hdmapoc 42040 | Express our constructed or... |
| hlhilset 42043 | The final Hilbert space co... |
| hlhilsca 42044 | The scalar of the final co... |
| hlhilbase 42045 | The base set of the final ... |
| hlhilplus 42046 | The vector addition for th... |
| hlhilslem 42047 | Lemma for ~ hlhilsbase etc... |
| hlhilsbase 42048 | The scalar base set of the... |
| hlhilsplus 42049 | Scalar addition for the fi... |
| hlhilsmul 42050 | Scalar multiplication for ... |
| hlhilsbase2 42051 | The scalar base set of the... |
| hlhilsplus2 42052 | Scalar addition for the fi... |
| hlhilsmul2 42053 | Scalar multiplication for ... |
| hlhils0 42054 | The scalar ring zero for t... |
| hlhils1N 42055 | The scalar ring unity for ... |
| hlhilvsca 42056 | The scalar product for the... |
| hlhilip 42057 | Inner product operation fo... |
| hlhilipval 42058 | Value of inner product ope... |
| hlhilnvl 42059 | The involution operation o... |
| hlhillvec 42060 | The final constructed Hilb... |
| hlhildrng 42061 | The star division ring for... |
| hlhilsrnglem 42062 | Lemma for ~ hlhilsrng . (... |
| hlhilsrng 42063 | The star division ring for... |
| hlhil0 42064 | The zero vector for the fi... |
| hlhillsm 42065 | The vector sum operation f... |
| hlhilocv 42066 | The orthocomplement for th... |
| hlhillcs 42067 | The closed subspaces of th... |
| hlhilphllem 42068 | Lemma for ~ hlhil . (Cont... |
| hlhilhillem 42069 | Lemma for ~ hlhil . (Cont... |
| hlathil 42070 | Construction of a Hilbert ... |
| iscsrg 42073 | A commutative semiring is ... |
| rhmzrhval 42074 | Evaluation of integers acr... |
| zndvdchrrhm 42075 | Construction of a ring hom... |
| relogbcld 42076 | Closure of the general log... |
| relogbexpd 42077 | Identity law for general l... |
| relogbzexpd 42078 | Power law for the general ... |
| logblebd 42079 | The general logarithm is m... |
| uzindd 42080 | Induction on the upper int... |
| fzadd2d 42081 | Membership of a sum in a f... |
| zltp1led 42082 | Integer ordering relation,... |
| fzne2d 42083 | Elementhood in a finite se... |
| eqfnfv2d2 42084 | Equality of functions is d... |
| fzsplitnd 42085 | Split a finite interval of... |
| fzsplitnr 42086 | Split a finite interval of... |
| addassnni 42087 | Associative law for additi... |
| addcomnni 42088 | Commutative law for additi... |
| mulassnni 42089 | Associative law for multip... |
| mulcomnni 42090 | Commutative law for multip... |
| gcdcomnni 42091 | Commutative law for gcd. ... |
| gcdnegnni 42092 | Negation invariance for gc... |
| neggcdnni 42093 | Negation invariance for gc... |
| bccl2d 42094 | Closure of the binomial co... |
| recbothd 42095 | Take reciprocal on both si... |
| gcdmultiplei 42096 | The GCD of a multiple of a... |
| gcdaddmzz2nni 42097 | Adding a multiple of one o... |
| gcdaddmzz2nncomi 42098 | Adding a multiple of one o... |
| gcdnncli 42099 | Closure of the gcd operato... |
| muldvds1d 42100 | If a product divides an in... |
| muldvds2d 42101 | If a product divides an in... |
| nndivdvdsd 42102 | A positive integer divides... |
| nnproddivdvdsd 42103 | A product of natural numbe... |
| coprmdvds2d 42104 | If an integer is divisible... |
| imadomfi 42105 | An image of a function und... |
| 12gcd5e1 42106 | The gcd of 12 and 5 is 1. ... |
| 60gcd6e6 42107 | The gcd of 60 and 6 is 6. ... |
| 60gcd7e1 42108 | The gcd of 60 and 7 is 1. ... |
| 420gcd8e4 42109 | The gcd of 420 and 8 is 4.... |
| lcmeprodgcdi 42110 | Calculate the least common... |
| 12lcm5e60 42111 | The lcm of 12 and 5 is 60.... |
| 60lcm6e60 42112 | The lcm of 60 and 6 is 60.... |
| 60lcm7e420 42113 | The lcm of 60 and 7 is 420... |
| 420lcm8e840 42114 | The lcm of 420 and 8 is 84... |
| lcmfunnnd 42115 | Useful equation to calcula... |
| lcm1un 42116 | Least common multiple of n... |
| lcm2un 42117 | Least common multiple of n... |
| lcm3un 42118 | Least common multiple of n... |
| lcm4un 42119 | Least common multiple of n... |
| lcm5un 42120 | Least common multiple of n... |
| lcm6un 42121 | Least common multiple of n... |
| lcm7un 42122 | Least common multiple of n... |
| lcm8un 42123 | Least common multiple of n... |
| 3factsumint1 42124 | Move constants out of inte... |
| 3factsumint2 42125 | Move constants out of inte... |
| 3factsumint3 42126 | Move constants out of inte... |
| 3factsumint4 42127 | Move constants out of inte... |
| 3factsumint 42128 | Helpful equation for lcm i... |
| resopunitintvd 42129 | Restrict continuous functi... |
| resclunitintvd 42130 | Restrict continuous functi... |
| resdvopclptsd 42131 | Restrict derivative on uni... |
| lcmineqlem1 42132 | Part of lcm inequality lem... |
| lcmineqlem2 42133 | Part of lcm inequality lem... |
| lcmineqlem3 42134 | Part of lcm inequality lem... |
| lcmineqlem4 42135 | Part of lcm inequality lem... |
| lcmineqlem5 42136 | Technical lemma for recipr... |
| lcmineqlem6 42137 | Part of lcm inequality lem... |
| lcmineqlem7 42138 | Derivative of 1-x for chai... |
| lcmineqlem8 42139 | Derivative of (1-x)^(N-M).... |
| lcmineqlem9 42140 | (1-x)^(N-M) is continuous.... |
| lcmineqlem10 42141 | Induction step of ~ lcmine... |
| lcmineqlem11 42142 | Induction step, continuati... |
| lcmineqlem12 42143 | Base case for induction. ... |
| lcmineqlem13 42144 | Induction proof for lcm in... |
| lcmineqlem14 42145 | Technical lemma for inequa... |
| lcmineqlem15 42146 | F times the least common m... |
| lcmineqlem16 42147 | Technical divisibility lem... |
| lcmineqlem17 42148 | Inequality of 2^{2n}. (Co... |
| lcmineqlem18 42149 | Technical lemma to shift f... |
| lcmineqlem19 42150 | Dividing implies inequalit... |
| lcmineqlem20 42151 | Inequality for lcm lemma. ... |
| lcmineqlem21 42152 | The lcm inequality lemma w... |
| lcmineqlem22 42153 | The lcm inequality lemma w... |
| lcmineqlem23 42154 | Penultimate step to the lc... |
| lcmineqlem 42155 | The least common multiple ... |
| 3exp7 42156 | 3 to the power of 7 equals... |
| 3lexlogpow5ineq1 42157 | First inequality in inequa... |
| 3lexlogpow5ineq2 42158 | Second inequality in inequ... |
| 3lexlogpow5ineq4 42159 | Sharper logarithm inequali... |
| 3lexlogpow5ineq3 42160 | Combined inequality chain ... |
| 3lexlogpow2ineq1 42161 | Result for bound in AKS in... |
| 3lexlogpow2ineq2 42162 | Result for bound in AKS in... |
| 3lexlogpow5ineq5 42163 | Result for bound in AKS in... |
| intlewftc 42164 | Inequality inference by in... |
| aks4d1lem1 42165 | Technical lemma to reduce ... |
| aks4d1p1p1 42166 | Exponential law for finite... |
| dvrelog2 42167 | The derivative of the loga... |
| dvrelog3 42168 | The derivative of the loga... |
| dvrelog2b 42169 | Derivative of the binary l... |
| 0nonelalab 42170 | Technical lemma for open i... |
| dvrelogpow2b 42171 | Derivative of the power of... |
| aks4d1p1p3 42172 | Bound of a ceiling of the ... |
| aks4d1p1p2 42173 | Rewrite ` A ` in more suit... |
| aks4d1p1p4 42174 | Technical step for inequal... |
| dvle2 42175 | Collapsed ~ dvle . (Contr... |
| aks4d1p1p6 42176 | Inequality lift to differe... |
| aks4d1p1p7 42177 | Bound of intermediary of i... |
| aks4d1p1p5 42178 | Show inequality for existe... |
| aks4d1p1 42179 | Show inequality for existe... |
| aks4d1p2 42180 | Technical lemma for existe... |
| aks4d1p3 42181 | There exists a small enoug... |
| aks4d1p4 42182 | There exists a small enoug... |
| aks4d1p5 42183 | Show that ` N ` and ` R ` ... |
| aks4d1p6 42184 | The maximal prime power ex... |
| aks4d1p7d1 42185 | Technical step in AKS lemm... |
| aks4d1p7 42186 | Technical step in AKS lemm... |
| aks4d1p8d1 42187 | If a prime divides one num... |
| aks4d1p8d2 42188 | Any prime power dividing a... |
| aks4d1p8d3 42189 | The remainder of a divisio... |
| aks4d1p8 42190 | Show that ` N ` and ` R ` ... |
| aks4d1p9 42191 | Show that the order is bou... |
| aks4d1 42192 | Lemma 4.1 from ~ https://w... |
| fldhmf1 42193 | A field homomorphism is in... |
| isprimroot 42196 | The value of a primitive r... |
| isprimroot2 42197 | Alternative way of creatin... |
| mndmolinv 42198 | An element of a monoid tha... |
| linvh 42199 | If an element has a unique... |
| primrootsunit1 42200 | Primitive roots have left ... |
| primrootsunit 42201 | Primitive roots have left ... |
| primrootscoprmpow 42202 | Coprime powers of primitiv... |
| posbezout 42203 | Bezout's identity restrict... |
| primrootscoprf 42204 | Coprime powers of primitiv... |
| primrootscoprbij 42205 | A bijection between coprim... |
| primrootscoprbij2 42206 | A bijection between coprim... |
| remexz 42207 | Division with rest. (Cont... |
| primrootlekpowne0 42208 | There is no smaller power ... |
| primrootspoweq0 42209 | The power of a ` R ` -th p... |
| aks6d1c1p1 42210 | Definition of the introspe... |
| aks6d1c1p1rcl 42211 | Reverse closure of the int... |
| aks6d1c1p2 42212 | ` P ` and linear factors a... |
| aks6d1c1p3 42213 | In a field with a Frobeniu... |
| aks6d1c1p4 42214 | The product of polynomials... |
| aks6d1c1p5 42215 | The product of exponents i... |
| aks6d1c1p7 42216 | ` X ` is introspective to ... |
| aks6d1c1p6 42217 | If a polynomials ` F ` is ... |
| aks6d1c1p8 42218 | If a number ` E ` is intro... |
| aks6d1c1 42219 | Claim 1 of Theorem 6.1 ~ h... |
| evl1gprodd 42220 | Polynomial evaluation buil... |
| aks6d1c2p1 42221 | In the AKS-theorem the sub... |
| aks6d1c2p2 42222 | Injective condition for co... |
| hashscontpowcl 42223 | Closure of E for ~ https:/... |
| hashscontpow1 42224 | Helper lemma for to prove ... |
| hashscontpow 42225 | If a set contains all ` N ... |
| aks6d1c3 42226 | Claim 3 of Theorem 6.1 of ... |
| aks6d1c4 42227 | Claim 4 of Theorem 6.1 of ... |
| aks6d1c1rh 42228 | Claim 1 of AKS primality p... |
| aks6d1c2lem3 42229 | Lemma for ~ aks6d1c2 to si... |
| aks6d1c2lem4 42230 | Claim 2 of Theorem 6.1 AKS... |
| hashnexinj 42231 | If the number of elements ... |
| hashnexinjle 42232 | If the number of elements ... |
| aks6d1c2 42233 | Claim 2 of Theorem 6.1 of ... |
| rspcsbnea 42234 | Special case related to ~ ... |
| idomnnzpownz 42235 | A non-zero power in an int... |
| idomnnzgmulnz 42236 | A finite product of non-ze... |
| ringexp0nn 42237 | Zero to the power of a pos... |
| aks6d1c5lem0 42238 | Lemma for Claim 5 of Theor... |
| aks6d1c5lem1 42239 | Lemma for claim 5, evaluat... |
| aks6d1c5lem3 42240 | Lemma for Claim 5, polynom... |
| aks6d1c5lem2 42241 | Lemma for Claim 5, contrad... |
| aks6d1c5 42242 | Claim 5 of Theorem 6.1 ~ h... |
| deg1gprod 42243 | Degree multiplication is a... |
| deg1pow 42244 | Exact degree of a power of... |
| 5bc2eq10 42245 | The value of 5 choose 2. ... |
| facp2 42246 | The factorial of a success... |
| 2np3bcnp1 42247 | Part of induction step for... |
| 2ap1caineq 42248 | Inequality for Theorem 6.6... |
| sticksstones1 42249 | Different strictly monoton... |
| sticksstones2 42250 | The range function on stri... |
| sticksstones3 42251 | The range function on stri... |
| sticksstones4 42252 | Equinumerosity lemma for s... |
| sticksstones5 42253 | Count the number of strict... |
| sticksstones6 42254 | Function induces an order ... |
| sticksstones7 42255 | Closure property of sticks... |
| sticksstones8 42256 | Establish mapping between ... |
| sticksstones9 42257 | Establish mapping between ... |
| sticksstones10 42258 | Establish mapping between ... |
| sticksstones11 42259 | Establish bijective mappin... |
| sticksstones12a 42260 | Establish bijective mappin... |
| sticksstones12 42261 | Establish bijective mappin... |
| sticksstones13 42262 | Establish bijective mappin... |
| sticksstones14 42263 | Sticks and stones with def... |
| sticksstones15 42264 | Sticks and stones with alm... |
| sticksstones16 42265 | Sticks and stones with col... |
| sticksstones17 42266 | Extend sticks and stones t... |
| sticksstones18 42267 | Extend sticks and stones t... |
| sticksstones19 42268 | Extend sticks and stones t... |
| sticksstones20 42269 | Lift sticks and stones to ... |
| sticksstones21 42270 | Lift sticks and stones to ... |
| sticksstones22 42271 | Non-exhaustive sticks and ... |
| sticksstones23 42272 | Non-exhaustive sticks and ... |
| aks6d1c6lem1 42273 | Lemma for claim 6, deduce ... |
| aks6d1c6lem2 42274 | Every primitive root is ro... |
| aks6d1c6lem3 42275 | Claim 6 of Theorem 6.1 of ... |
| aks6d1c6lem4 42276 | Claim 6 of Theorem 6.1 of ... |
| aks6d1c6isolem1 42277 | Lemma to construct the map... |
| aks6d1c6isolem2 42278 | Lemma to construct the gro... |
| aks6d1c6isolem3 42279 | The preimage of a map send... |
| aks6d1c6lem5 42280 | Eliminate the size hypothe... |
| bcled 42281 | Inequality for binomial co... |
| bcle2d 42282 | Inequality for binomial co... |
| aks6d1c7lem1 42283 | The last set of inequaliti... |
| aks6d1c7lem2 42284 | Contradiction to Claim 2 a... |
| aks6d1c7lem3 42285 | Remove lots of hypotheses ... |
| aks6d1c7lem4 42286 | In the AKS algorithm there... |
| aks6d1c7 42287 | ` N ` is a prime power if ... |
| rhmqusspan 42288 | Ring homomorphism out of a... |
| aks5lem1 42289 | Section 5 of ~ https://www... |
| aks5lem2 42290 | Lemma for section 5 ~ http... |
| ply1asclzrhval 42291 | Transfer results from alge... |
| aks5lem3a 42292 | Lemma for AKS section 5. ... |
| aks5lem4a 42293 | Lemma for AKS section 5, r... |
| aks5lem5a 42294 | Lemma for AKS, section 5, ... |
| aks5lem6 42295 | Connect results of section... |
| indstrd 42296 | Strong induction, deductio... |
| grpods 42297 | Relate sums of elements of... |
| unitscyglem1 42298 | Lemma for unitscyg. (Cont... |
| unitscyglem2 42299 | Lemma for unitscyg. (Cont... |
| unitscyglem3 42300 | Lemma for unitscyg. (Cont... |
| unitscyglem4 42301 | Lemma for unitscyg (Contri... |
| unitscyglem5 42302 | Lemma for unitscyg (Contri... |
| aks5lem7 42303 | Lemma for aks5. We clean ... |
| aks5lem8 42304 | Lemma for aks5. Clean up ... |
| exfinfldd 42306 | For any prime ` P ` and an... |
| aks5 42307 | The AKS Primality test, gi... |
| jarrii 42308 | Inference associated with ... |
| intnanrt 42309 | Introduction of conjunct i... |
| ioin9i8 42310 | Miscellaneous inference cr... |
| jaodd 42311 | Double deduction form of ~... |
| syl3an12 42312 | A double syllogism inferen... |
| exbiii 42313 | Inference associated with ... |
| sbtd 42314 | A true statement is true u... |
| sbor2 42315 | One direction of ~ sbor , ... |
| sbalexi 42316 | Inference form of ~ sbalex... |
| 19.9dev 42317 | ~ 19.9d in the case of an ... |
| 3rspcedvd 42318 | Triple application of ~ rs... |
| sn-axrep5v 42319 | A condensed form of ~ axre... |
| sn-axprlem3 42320 | ~ axprlem3 using only Tars... |
| sn-exelALT 42321 | Alternate proof of ~ exel ... |
| ss2ab1 42322 | Class abstractions in a su... |
| ssabdv 42323 | Deduction of abstraction s... |
| sn-iotalem 42324 | An unused lemma showing th... |
| sn-iotalemcor 42325 | Corollary of ~ sn-iotalem ... |
| abbi1sn 42326 | Originally part of ~ uniab... |
| brif2 42327 | Move a relation inside and... |
| brif12 42328 | Move a relation inside and... |
| pssexg 42329 | The proper subset of a set... |
| pssn0 42330 | A proper superset is nonem... |
| psspwb 42331 | Classes are proper subclas... |
| xppss12 42332 | Proper subset theorem for ... |
| elpwbi 42333 | Membership in a power set,... |
| imaopab 42334 | The image of a class of or... |
| eqresfnbd 42335 | Property of being the rest... |
| f1o2d2 42336 | Sufficient condition for a... |
| fmpocos 42337 | Composition of two functio... |
| ovmpogad 42338 | Value of an operation give... |
| ofun 42339 | A function operation of un... |
| dfqs2 42340 | Alternate definition of qu... |
| dfqs3 42341 | Alternate definition of qu... |
| qseq12d 42342 | Equality theorem for quoti... |
| qsalrel 42343 | The quotient set is equal ... |
| elmapssresd 42344 | A restricted mapping is a ... |
| supinf 42345 | The supremum is the infimu... |
| mapcod 42346 | Compose two mappings. (Co... |
| fisdomnn 42347 | A finite set is dominated ... |
| ltex 42348 | The less-than relation is ... |
| leex 42349 | The less-than-or-equal-to ... |
| subex 42350 | The subtraction operation ... |
| absex 42351 | The absolute value functio... |
| cjex 42352 | The conjugate function is ... |
| fzosumm1 42353 | Separate out the last term... |
| ccatcan2d 42354 | Cancellation law for conca... |
| c0exALT 42355 | Alternate proof of ~ c0ex ... |
| 0cnALT3 42356 | Alternate proof of ~ 0cn u... |
| elre0re 42357 | Specialized version of ~ 0... |
| 1t1e1ALT 42358 | Alternate proof of ~ 1t1e1... |
| lttrii 42359 | 'Less than' is transitive.... |
| remulcan2d 42360 | ~ mulcan2d for real number... |
| readdridaddlidd 42361 | Given some real number ` B... |
| 1p3e4 42362 | 1 + 3 = 4. (Contributed b... |
| 5ne0 42363 | The number 5 is nonzero. ... |
| 6ne0 42364 | The number 6 is nonzero. ... |
| 7ne0 42365 | The number 7 is nonzero. ... |
| 8ne0 42366 | The number 8 is nonzero. ... |
| 9ne0 42367 | The number 9 is nonzero. ... |
| sn-1ne2 42368 | A proof of ~ 1ne2 without ... |
| nnn1suc 42369 | A positive integer that is... |
| nnadd1com 42370 | Addition with 1 is commuta... |
| nnaddcom 42371 | Addition is commutative fo... |
| nnaddcomli 42372 | Version of ~ addcomli for ... |
| nnadddir 42373 | Right-distributivity for n... |
| nnmul1com 42374 | Multiplication with 1 is c... |
| nnmulcom 42375 | Multiplication is commutat... |
| readdrcl2d 42376 | Reverse closure for additi... |
| mvrrsubd 42377 | Move a subtraction in the ... |
| laddrotrd 42378 | Rotate the variables right... |
| raddswap12d 42379 | Swap the first two variabl... |
| lsubrotld 42380 | Rotate the variables left ... |
| rsubrotld 42381 | Rotate the variables left ... |
| lsubswap23d 42382 | Swap the second and third ... |
| addsubeq4com 42383 | Relation between sums and ... |
| sqsumi 42384 | A sum squared. (Contribut... |
| negn0nposznnd 42385 | Lemma for ~ dffltz . (Con... |
| sqmid3api 42386 | Value of the square of the... |
| decaddcom 42387 | Commute ones place in addi... |
| sqn5i 42388 | The square of a number end... |
| sqn5ii 42389 | The square of a number end... |
| decpmulnc 42390 | Partial products algorithm... |
| decpmul 42391 | Partial products algorithm... |
| sqdeccom12 42392 | The square of a number in ... |
| sq3deccom12 42393 | Variant of ~ sqdeccom12 wi... |
| 4t5e20 42394 | 4 times 5 equals 20. (Con... |
| 3rdpwhole 42395 | A third of a number plus t... |
| sq4 42396 | The square of 4 is 16. (C... |
| sq5 42397 | The square of 5 is 25. (C... |
| sq6 42398 | The square of 6 is 36. (C... |
| sq7 42399 | The square of 7 is 49. (C... |
| sq8 42400 | The square of 8 is 64. (C... |
| sq9 42401 | The square of 9 is 81. (C... |
| rpsscn 42402 | The positive reals are a s... |
| 4rp 42403 | 4 is a positive real. (Co... |
| 6rp 42404 | 6 is a positive real. (Co... |
| 7rp 42405 | 7 is a positive real. (Co... |
| 8rp 42406 | 8 is a positive real. (Co... |
| 9rp 42407 | 9 is a positive real. (Co... |
| 235t711 42408 | Calculate a product by lon... |
| ex-decpmul 42409 | Example usage of ~ decpmul... |
| eluzp1 42410 | Membership in a successor ... |
| sn-eluzp1l 42411 | Shorter proof of ~ eluzp1l... |
| fz1sumconst 42412 | The sum of ` N ` constant ... |
| fz1sump1 42413 | Add one more term to a sum... |
| oddnumth 42414 | The Odd Number Theorem. T... |
| nicomachus 42415 | Nicomachus's Theorem. The... |
| sumcubes 42416 | The sum of the first ` N `... |
| ine1 42417 | ` _i ` is not 1. (Contrib... |
| 0tie0 42418 | 0 times ` _i ` equals 0. ... |
| it1ei 42419 | ` _i ` times 1 equals ` _i... |
| 1tiei 42420 | 1 times ` _i ` equals ` _i... |
| itrere 42421 | ` _i ` times a real is rea... |
| retire 42422 | A real times ` _i ` is rea... |
| iocioodisjd 42423 | Adjacent intervals where t... |
| rpabsid 42424 | A positive real is its own... |
| oexpreposd 42425 | Lemma for ~ dffltz . For ... |
| explt1d 42426 | A nonnegative real number ... |
| expeq1d 42427 | A nonnegative real number ... |
| expeqidd 42428 | A nonnegative real number ... |
| exp11d 42429 | ~ exp11nnd for nonzero int... |
| 0dvds0 42430 | 0 divides 0. (Contributed... |
| absdvdsabsb 42431 | Divisibility is invariant ... |
| gcdnn0id 42432 | The ` gcd ` of a nonnegati... |
| gcdle1d 42433 | The greatest common diviso... |
| gcdle2d 42434 | The greatest common diviso... |
| dvdsexpad 42435 | Deduction associated with ... |
| dvdsexpnn 42436 | ~ dvdssqlem generalized to... |
| dvdsexpnn0 42437 | ~ dvdsexpnn generalized to... |
| dvdsexpb 42438 | ~ dvdssq generalized to po... |
| posqsqznn 42439 | When a positive rational s... |
| zdivgd 42440 | Two ways to express " ` N ... |
| efsubd 42441 | Difference of exponents la... |
| ef11d 42442 | General condition for the ... |
| logccne0d 42443 | The logarithm isn't 0 if i... |
| cxp112d 42444 | General condition for comp... |
| cxp111d 42445 | General condition for comp... |
| cxpi11d 42446 | ` _i ` to the powers of ` ... |
| logne0d 42447 | Deduction form of ~ logne0... |
| rxp112d 42448 | Real exponentiation is one... |
| log11d 42449 | The natural logarithm is o... |
| rplog11d 42450 | The natural logarithm is o... |
| rxp11d 42451 | Real exponentiation is one... |
| tanhalfpim 42452 | The tangent of ` _pi / 2 `... |
| sinpim 42453 | Sine of a number subtracte... |
| cospim 42454 | Cosine of a number subtrac... |
| tan3rdpi 42455 | The tangent of ` _pi / 3 `... |
| sin2t3rdpi 42456 | The sine of ` 2 x. ( _pi /... |
| cos2t3rdpi 42457 | The cosine of ` 2 x. ( _pi... |
| sin4t3rdpi 42458 | The sine of ` 4 x. ( _pi /... |
| cos4t3rdpi 42459 | The cosine of ` 4 x. ( _pi... |
| asin1half 42460 | The arcsine of ` 1 / 2 ` i... |
| acos1half 42461 | The arccosine of ` 1 / 2 `... |
| dvun 42462 | Condition for the union of... |
| redvmptabs 42463 | The derivative of the abso... |
| readvrec2 42464 | The antiderivative of 1/x ... |
| readvrec 42465 | For real numbers, the anti... |
| resuppsinopn 42466 | The support of sin ( ~ df-... |
| readvcot 42467 | Real antiderivative of cot... |
| resubval 42470 | Value of real subtraction,... |
| renegeulemv 42471 | Lemma for ~ renegeu and si... |
| renegeulem 42472 | Lemma for ~ renegeu and si... |
| renegeu 42473 | Existential uniqueness of ... |
| rernegcl 42474 | Closure law for negative r... |
| renegadd 42475 | Relationship between real ... |
| renegid 42476 | Addition of a real number ... |
| reneg0addlid 42477 | Negative zero is a left ad... |
| resubeulem1 42478 | Lemma for ~ resubeu . A v... |
| resubeulem2 42479 | Lemma for ~ resubeu . A v... |
| resubeu 42480 | Existential uniqueness of ... |
| rersubcl 42481 | Closure for real subtracti... |
| resubadd 42482 | Relation between real subt... |
| resubaddd 42483 | Relationship between subtr... |
| resubf 42484 | Real subtraction is an ope... |
| repncan2 42485 | Addition and subtraction o... |
| repncan3 42486 | Addition and subtraction o... |
| readdsub 42487 | Law for addition and subtr... |
| reladdrsub 42488 | Move LHS of a sum into RHS... |
| reltsub1 42489 | Subtraction from both side... |
| reltsubadd2 42490 | 'Less than' relationship b... |
| resubcan2 42491 | Cancellation law for real ... |
| resubsub4 42492 | Law for double subtraction... |
| rennncan2 42493 | Cancellation law for real ... |
| renpncan3 42494 | Cancellation law for real ... |
| repnpcan 42495 | Cancellation law for addit... |
| reppncan 42496 | Cancellation law for mixed... |
| resubidaddlidlem 42497 | Lemma for ~ resubidaddlid ... |
| resubidaddlid 42498 | Any real number subtracted... |
| resubdi 42499 | Distribution of multiplica... |
| re1m1e0m0 42500 | Equality of two left-addit... |
| sn-00idlem1 42501 | Lemma for ~ sn-00id . (Co... |
| sn-00idlem2 42502 | Lemma for ~ sn-00id . (Co... |
| sn-00idlem3 42503 | Lemma for ~ sn-00id . (Co... |
| sn-00id 42504 | ~ 00id proven without ~ ax... |
| re0m0e0 42505 | Real number version of ~ 0... |
| readdlid 42506 | Real number version of ~ a... |
| sn-addlid 42507 | ~ addlid without ~ ax-mulc... |
| remul02 42508 | Real number version of ~ m... |
| sn-0ne2 42509 | ~ 0ne2 without ~ ax-mulcom... |
| remul01 42510 | Real number version of ~ m... |
| sn-remul0ord 42511 | A product is zero iff one ... |
| resubid 42512 | Subtraction of a real numb... |
| readdrid 42513 | Real number version of ~ a... |
| resubid1 42514 | Real number version of ~ s... |
| renegneg 42515 | A real number is equal to ... |
| readdcan2 42516 | Commuted version of ~ read... |
| renegid2 42517 | Commuted version of ~ rene... |
| remulneg2d 42518 | Product with negative is n... |
| sn-it0e0 42519 | Proof of ~ it0e0 without ~... |
| sn-negex12 42520 | A combination of ~ cnegex ... |
| sn-negex 42521 | Proof of ~ cnegex without ... |
| sn-negex2 42522 | Proof of ~ cnegex2 without... |
| sn-addcand 42523 | ~ addcand without ~ ax-mul... |
| sn-addrid 42524 | ~ addrid without ~ ax-mulc... |
| sn-addcan2d 42525 | ~ addcan2d without ~ ax-mu... |
| reixi 42526 | ~ ixi without ~ ax-mulcom ... |
| rei4 42527 | ~ i4 without ~ ax-mulcom .... |
| sn-addid0 42528 | A number that sums to itse... |
| sn-mul01 42529 | ~ mul01 without ~ ax-mulco... |
| sn-subeu 42530 | ~ negeu without ~ ax-mulco... |
| sn-subcl 42531 | ~ subcl without ~ ax-mulco... |
| sn-subf 42532 | ~ subf without ~ ax-mulcom... |
| resubeqsub 42533 | Equivalence between real s... |
| subresre 42534 | Subtraction restricted to ... |
| addinvcom 42535 | A number commutes with its... |
| remulinvcom 42536 | A left multiplicative inve... |
| remullid 42537 | Commuted version of ~ ax-1... |
| sn-1ticom 42538 | Lemma for ~ sn-mullid and ... |
| sn-mullid 42539 | ~ mullid without ~ ax-mulc... |
| sn-it1ei 42540 | ~ it1ei without ~ ax-mulco... |
| ipiiie0 42541 | The multiplicative inverse... |
| remulcand 42542 | Commuted version of ~ remu... |
| redivvald 42545 | Value of real division, wh... |
| rediveud 42546 | Existential uniqueness of ... |
| sn-redivcld 42547 | Closure law for real divis... |
| redivmuld 42548 | Relationship between divis... |
| redivcan2d 42549 | A cancellation law for div... |
| redivcan3d 42550 | A cancellation law for div... |
| sn-rereccld 42551 | Closure law for reciprocal... |
| rerecid 42552 | Multiplication of a number... |
| rerecid2 42553 | Multiplication of a number... |
| sn-0tie0 42554 | Lemma for ~ sn-mul02 . Co... |
| sn-mul02 42555 | ~ mul02 without ~ ax-mulco... |
| sn-ltaddpos 42556 | ~ ltaddpos without ~ ax-mu... |
| sn-ltaddneg 42557 | ~ ltaddneg without ~ ax-mu... |
| reposdif 42558 | Comparison of two numbers ... |
| relt0neg1 42559 | Comparison of a real and i... |
| relt0neg2 42560 | Comparison of a real and i... |
| sn-addlt0d 42561 | The sum of negative number... |
| sn-addgt0d 42562 | The sum of positive number... |
| sn-nnne0 42563 | ~ nnne0 without ~ ax-mulco... |
| reelznn0nn 42564 | ~ elznn0nn restated using ... |
| nn0addcom 42565 | Addition is commutative fo... |
| zaddcomlem 42566 | Lemma for ~ zaddcom . (Co... |
| zaddcom 42567 | Addition is commutative fo... |
| renegmulnnass 42568 | Move multiplication by a n... |
| nn0mulcom 42569 | Multiplication is commutat... |
| zmulcomlem 42570 | Lemma for ~ zmulcom . (Co... |
| zmulcom 42571 | Multiplication is commutat... |
| mulgt0con1dlem 42572 | Lemma for ~ mulgt0con1d . ... |
| mulgt0con1d 42573 | Counterpart to ~ mulgt0con... |
| mulgt0con2d 42574 | Lemma for ~ mulgt0b1d and ... |
| mulgt0b1d 42575 | Biconditional, deductive f... |
| sn-ltmul2d 42576 | ~ ltmul2d without ~ ax-mul... |
| sn-ltmulgt11d 42577 | ~ ltmulgt11d without ~ ax-... |
| sn-0lt1 42578 | ~ 0lt1 without ~ ax-mulcom... |
| sn-ltp1 42579 | ~ ltp1 without ~ ax-mulcom... |
| sn-recgt0d 42580 | The reciprocal of a positi... |
| mulgt0b2d 42581 | Biconditional, deductive f... |
| sn-mulgt1d 42582 | ~ mulgt1d without ~ ax-mul... |
| reneg1lt0 42583 | Negative one is a negative... |
| sn-reclt0d 42584 | The reciprocal of a negati... |
| mulltgt0d 42585 | Negative times positive is... |
| mullt0b1d 42586 | When the first term is neg... |
| mullt0b2d 42587 | When the second term is ne... |
| sn-mullt0d 42588 | The product of two negativ... |
| sn-msqgt0d 42589 | A nonzero square is positi... |
| sn-inelr 42590 | ~ inelr without ~ ax-mulco... |
| sn-itrere 42591 | ` _i ` times a real is rea... |
| sn-retire 42592 | Commuted version of ~ sn-i... |
| cnreeu 42593 | The reals in the expressio... |
| sn-sup2 42594 | ~ sup2 with exactly the sa... |
| sn-sup3d 42595 | ~ sup3 without ~ ax-mulcom... |
| sn-suprcld 42596 | ~ suprcld without ~ ax-mul... |
| sn-suprubd 42597 | ~ suprubd without ~ ax-mul... |
| sn-base0 42598 | Avoid axioms in ~ base0 by... |
| nelsubginvcld 42599 | The inverse of a non-subgr... |
| nelsubgcld 42600 | A non-subgroup-member plus... |
| nelsubgsubcld 42601 | A non-subgroup-member minu... |
| rnasclg 42602 | The set of injected scalar... |
| frlmfielbas 42603 | The vectors of a finite fr... |
| frlmfzwrd 42604 | A vector of a module with ... |
| frlmfzowrd 42605 | A vector of a module with ... |
| frlmfzolen 42606 | The dimension of a vector ... |
| frlmfzowrdb 42607 | The vectors of a module wi... |
| frlmfzoccat 42608 | The concatenation of two v... |
| frlmvscadiccat 42609 | Scalar multiplication dist... |
| grpasscan2d 42610 | An associative cancellatio... |
| grpcominv1 42611 | If two elements commute, t... |
| grpcominv2 42612 | If two elements commute, t... |
| finsubmsubg 42613 | A submonoid of a finite gr... |
| opprmndb 42614 | A class is a monoid if and... |
| opprgrpb 42615 | A class is a group if and ... |
| opprablb 42616 | A class is an Abelian grou... |
| imacrhmcl 42617 | The image of a commutative... |
| rimrcl1 42618 | Reverse closure of a ring ... |
| rimrcl2 42619 | Reverse closure of a ring ... |
| rimcnv 42620 | The converse of a ring iso... |
| rimco 42621 | The composition of ring is... |
| ricsym 42622 | Ring isomorphism is symmet... |
| rictr 42623 | Ring isomorphism is transi... |
| riccrng1 42624 | Ring isomorphism preserves... |
| riccrng 42625 | A ring is commutative if a... |
| domnexpgn0cl 42626 | In a domain, a (nonnegativ... |
| drnginvrn0d 42627 | A multiplicative inverse i... |
| drngmullcan 42628 | Cancellation of a nonzero ... |
| drngmulrcan 42629 | Cancellation of a nonzero ... |
| drnginvmuld 42630 | Inverse of a nonzero produ... |
| ricdrng1 42631 | A ring isomorphism maps a ... |
| ricdrng 42632 | A ring is a division ring ... |
| ricfld 42633 | A ring is a field if and o... |
| asclf1 42634 | Two ways of saying the sca... |
| abvexp 42635 | Move exponentiation in and... |
| fimgmcyclem 42636 | Lemma for ~ fimgmcyc . (C... |
| fimgmcyc 42637 | Version of ~ odcl2 for fin... |
| fidomncyc 42638 | Version of ~ odcl2 for mul... |
| fiabv 42639 | In a finite domain (a fini... |
| lvecgrp 42640 | A vector space is a group.... |
| lvecring 42641 | The scalar component of a ... |
| frlm0vald 42642 | All coordinates of the zer... |
| frlmsnic 42643 | Given a free module with a... |
| uvccl 42644 | A unit vector is a vector.... |
| uvcn0 42645 | A unit vector is nonzero. ... |
| pwselbasr 42646 | The reverse direction of ~... |
| pwsgprod 42647 | Finite products in a power... |
| psrmnd 42648 | The ring of power series i... |
| psrbagres 42649 | Restrict a bag of variable... |
| mplcrngd 42650 | The polynomial ring is a c... |
| mplsubrgcl 42651 | An element of a polynomial... |
| mhmcopsr 42652 | The composition of a monoi... |
| mhmcoaddpsr 42653 | Show that the ring homomor... |
| rhmcomulpsr 42654 | Show that the ring homomor... |
| rhmpsr 42655 | Provide a ring homomorphis... |
| rhmpsr1 42656 | Provide a ring homomorphis... |
| mplascl0 42657 | The zero scalar as a polyn... |
| mplascl1 42658 | The one scalar as a polyno... |
| mplmapghm 42659 | The function ` H ` mapping... |
| evl0 42660 | The zero polynomial evalua... |
| evlscl 42661 | A polynomial over the ring... |
| evlsval3 42662 | Give a formula for the pol... |
| evlsvval 42663 | Give a formula for the eva... |
| evlsvvvallem 42664 | Lemma for ~ evlsvvval akin... |
| evlsvvvallem2 42665 | Lemma for theorems using ~... |
| evlsvvval 42666 | Give a formula for the eva... |
| evlsscaval 42667 | Polynomial evaluation buil... |
| evlsvarval 42668 | Polynomial evaluation buil... |
| evlsbagval 42669 | Polynomial evaluation buil... |
| evlsexpval 42670 | Polynomial evaluation buil... |
| evlsaddval 42671 | Polynomial evaluation buil... |
| evlsmulval 42672 | Polynomial evaluation buil... |
| evlsmaprhm 42673 | The function ` F ` mapping... |
| evlsevl 42674 | Evaluation in a subring is... |
| evlcl 42675 | A polynomial over the ring... |
| evlvvval 42676 | Give a formula for the eva... |
| evlvvvallem 42677 | Lemma for theorems using ~... |
| evladdval 42678 | Polynomial evaluation buil... |
| evlmulval 42679 | Polynomial evaluation buil... |
| selvcllem1 42680 | ` T ` is an associative al... |
| selvcllem2 42681 | ` D ` is a ring homomorphi... |
| selvcllem3 42682 | The third argument passed ... |
| selvcllemh 42683 | Apply the third argument (... |
| selvcllem4 42684 | The fourth argument passed... |
| selvcllem5 42685 | The fifth argument passed ... |
| selvcl 42686 | Closure of the "variable s... |
| selvval2 42687 | Value of the "variable sel... |
| selvvvval 42688 | Recover the original polyn... |
| evlselvlem 42689 | Lemma for ~ evlselv . Use... |
| evlselv 42690 | Evaluating a selection of ... |
| selvadd 42691 | The "variable selection" f... |
| selvmul 42692 | The "variable selection" f... |
| fsuppind 42693 | Induction on functions ` F... |
| fsuppssindlem1 42694 | Lemma for ~ fsuppssind . ... |
| fsuppssindlem2 42695 | Lemma for ~ fsuppssind . ... |
| fsuppssind 42696 | Induction on functions ` F... |
| mhpind 42697 | The homogeneous polynomial... |
| evlsmhpvvval 42698 | Give a formula for the eva... |
| mhphflem 42699 | Lemma for ~ mhphf . Add s... |
| mhphf 42700 | A homogeneous polynomial d... |
| mhphf2 42701 | A homogeneous polynomial d... |
| mhphf3 42702 | A homogeneous polynomial d... |
| mhphf4 42703 | A homogeneous polynomial d... |
| prjspval 42706 | Value of the projective sp... |
| prjsprel 42707 | Utility theorem regarding ... |
| prjspertr 42708 | The relation in ` PrjSp ` ... |
| prjsperref 42709 | The relation in ` PrjSp ` ... |
| prjspersym 42710 | The relation in ` PrjSp ` ... |
| prjsper 42711 | The relation used to defin... |
| prjspreln0 42712 | Two nonzero vectors are eq... |
| prjspvs 42713 | A nonzero multiple of a ve... |
| prjsprellsp 42714 | Two vectors are equivalent... |
| prjspeclsp 42715 | The vectors equivalent to ... |
| prjspval2 42716 | Alternate definition of pr... |
| prjspnval 42719 | Value of the n-dimensional... |
| prjspnerlem 42720 | A lemma showing that the e... |
| prjspnval2 42721 | Value of the n-dimensional... |
| prjspner 42722 | The relation used to defin... |
| prjspnvs 42723 | A nonzero multiple of a ve... |
| prjspnssbas 42724 | A projective point spans a... |
| prjspnn0 42725 | A projective point is none... |
| 0prjspnlem 42726 | Lemma for ~ 0prjspn . The... |
| prjspnfv01 42727 | Any vector is equivalent t... |
| prjspner01 42728 | Any vector is equivalent t... |
| prjspner1 42729 | Two vectors whose zeroth c... |
| 0prjspnrel 42730 | In the zero-dimensional pr... |
| 0prjspn 42731 | A zero-dimensional project... |
| prjcrvfval 42734 | Value of the projective cu... |
| prjcrvval 42735 | Value of the projective cu... |
| prjcrv0 42736 | The "curve" (zero set) cor... |
| dffltz 42737 | Fermat's Last Theorem (FLT... |
| fltmul 42738 | A counterexample to FLT st... |
| fltdiv 42739 | A counterexample to FLT st... |
| flt0 42740 | A counterexample for FLT d... |
| fltdvdsabdvdsc 42741 | Any factor of both ` A ` a... |
| fltabcoprmex 42742 | A counterexample to FLT im... |
| fltaccoprm 42743 | A counterexample to FLT wi... |
| fltbccoprm 42744 | A counterexample to FLT wi... |
| fltabcoprm 42745 | A counterexample to FLT wi... |
| infdesc 42746 | Infinite descent. The hyp... |
| fltne 42747 | If a counterexample to FLT... |
| flt4lem 42748 | Raising a number to the fo... |
| flt4lem1 42749 | Satisfy the antecedent use... |
| flt4lem2 42750 | If ` A ` is even, ` B ` is... |
| flt4lem3 42751 | Equivalent to ~ pythagtrip... |
| flt4lem4 42752 | If the product of two copr... |
| flt4lem5 42753 | In the context of the lemm... |
| flt4lem5elem 42754 | Version of ~ fltaccoprm an... |
| flt4lem5a 42755 | Part 1 of Equation 1 of ... |
| flt4lem5b 42756 | Part 2 of Equation 1 of ... |
| flt4lem5c 42757 | Part 2 of Equation 2 of ... |
| flt4lem5d 42758 | Part 3 of Equation 2 of ... |
| flt4lem5e 42759 | Satisfy the hypotheses of ... |
| flt4lem5f 42760 | Final equation of ~... |
| flt4lem6 42761 | Remove shared factors in a... |
| flt4lem7 42762 | Convert ~ flt4lem5f into a... |
| nna4b4nsq 42763 | Strengthening of Fermat's ... |
| fltltc 42764 | ` ( C ^ N ) ` is the large... |
| fltnltalem 42765 | Lemma for ~ fltnlta . A l... |
| fltnlta 42766 | In a Fermat counterexample... |
| iddii 42767 | Version of ~ a1ii with the... |
| bicomdALT 42768 | Alternate proof of ~ bicom... |
| alan 42769 | Alias for ~ 19.26 for easi... |
| exor 42770 | Alias for ~ 19.43 for easi... |
| rexor 42771 | Alias for ~ r19.43 for eas... |
| ruvALT 42772 | Alternate proof of ~ ruv w... |
| sn-wcdeq 42773 | Alternative to ~ wcdeq and... |
| sq45 42774 | 45 squared is 2025. (Cont... |
| sum9cubes 42775 | The sum of the first nine ... |
| sn-isghm 42776 | Longer proof of ~ isghm , ... |
| aprilfools2025 42777 | An abuse of notation. (Co... |
| nfa1w 42778 | Replace ~ ax-10 in ~ nfa1 ... |
| eu6w 42779 | Replace ~ ax-10 , ~ ax-12 ... |
| abbibw 42780 | Replace ~ ax-10 , ~ ax-11 ... |
| absnw 42781 | Replace ~ ax-10 , ~ ax-11 ... |
| euabsn2w 42782 | Replace ~ ax-10 , ~ ax-11 ... |
| sn-tz6.12-2 42783 | ~ tz6.12-2 without ~ ax-10... |
| cu3addd 42784 | Cube of sum of three numbe... |
| negexpidd 42785 | The sum of a real number t... |
| rexlimdv3d 42786 | An extended version of ~ r... |
| 3cubeslem1 42787 | Lemma for ~ 3cubes . (Con... |
| 3cubeslem2 42788 | Lemma for ~ 3cubes . Used... |
| 3cubeslem3l 42789 | Lemma for ~ 3cubes . (Con... |
| 3cubeslem3r 42790 | Lemma for ~ 3cubes . (Con... |
| 3cubeslem3 42791 | Lemma for ~ 3cubes . (Con... |
| 3cubeslem4 42792 | Lemma for ~ 3cubes . This... |
| 3cubes 42793 | Every rational number is a... |
| rntrclfvOAI 42794 | The range of the transitiv... |
| moxfr 42795 | Transfer at-most-one betwe... |
| imaiinfv 42796 | Indexed intersection of an... |
| elrfi 42797 | Elementhood in a set of re... |
| elrfirn 42798 | Elementhood in a set of re... |
| elrfirn2 42799 | Elementhood in a set of re... |
| cmpfiiin 42800 | In a compact topology, a s... |
| ismrcd1 42801 | Any function from the subs... |
| ismrcd2 42802 | Second half of ~ ismrcd1 .... |
| istopclsd 42803 | A closure function which s... |
| ismrc 42804 | A function is a Moore clos... |
| isnacs 42807 | Expand definition of Noeth... |
| nacsfg 42808 | In a Noetherian-type closu... |
| isnacs2 42809 | Express Noetherian-type cl... |
| mrefg2 42810 | Slight variation on finite... |
| mrefg3 42811 | Slight variation on finite... |
| nacsacs 42812 | A closure system of Noethe... |
| isnacs3 42813 | A choice-free order equiva... |
| incssnn0 42814 | Transitivity induction of ... |
| nacsfix 42815 | An increasing sequence of ... |
| constmap 42816 | A constant (represented wi... |
| mapco2g 42817 | Renaming indices in a tupl... |
| mapco2 42818 | Post-composition (renaming... |
| mapfzcons 42819 | Extending a one-based mapp... |
| mapfzcons1 42820 | Recover prefix mapping fro... |
| mapfzcons1cl 42821 | A nonempty mapping has a p... |
| mapfzcons2 42822 | Recover added element from... |
| mptfcl 42823 | Interpret range of a maps-... |
| mzpclval 42828 | Substitution lemma for ` m... |
| elmzpcl 42829 | Double substitution lemma ... |
| mzpclall 42830 | The set of all functions w... |
| mzpcln0 42831 | Corollary of ~ mzpclall : ... |
| mzpcl1 42832 | Defining property 1 of a p... |
| mzpcl2 42833 | Defining property 2 of a p... |
| mzpcl34 42834 | Defining properties 3 and ... |
| mzpval 42835 | Value of the ` mzPoly ` fu... |
| dmmzp 42836 | ` mzPoly ` is defined for ... |
| mzpincl 42837 | Polynomial closedness is a... |
| mzpconst 42838 | Constant functions are pol... |
| mzpf 42839 | A polynomial function is a... |
| mzpproj 42840 | A projection function is p... |
| mzpadd 42841 | The pointwise sum of two p... |
| mzpmul 42842 | The pointwise product of t... |
| mzpconstmpt 42843 | A constant function expres... |
| mzpaddmpt 42844 | Sum of polynomial function... |
| mzpmulmpt 42845 | Product of polynomial func... |
| mzpsubmpt 42846 | The difference of two poly... |
| mzpnegmpt 42847 | Negation of a polynomial f... |
| mzpexpmpt 42848 | Raise a polynomial functio... |
| mzpindd 42849 | "Structural" induction to ... |
| mzpmfp 42850 | Relationship between multi... |
| mzpsubst 42851 | Substituting polynomials f... |
| mzprename 42852 | Simplified version of ~ mz... |
| mzpresrename 42853 | A polynomial is a polynomi... |
| mzpcompact2lem 42854 | Lemma for ~ mzpcompact2 . ... |
| mzpcompact2 42855 | Polynomials are finitary o... |
| coeq0i 42856 | ~ coeq0 but without explic... |
| fzsplit1nn0 42857 | Split a finite 1-based set... |
| eldiophb 42860 | Initial expression of Diop... |
| eldioph 42861 | Condition for a set to be ... |
| diophrw 42862 | Renaming and adding unused... |
| eldioph2lem1 42863 | Lemma for ~ eldioph2 . Co... |
| eldioph2lem2 42864 | Lemma for ~ eldioph2 . Co... |
| eldioph2 42865 | Construct a Diophantine se... |
| eldioph2b 42866 | While Diophantine sets wer... |
| eldiophelnn0 42867 | Remove antecedent on ` B `... |
| eldioph3b 42868 | Define Diophantine sets in... |
| eldioph3 42869 | Inference version of ~ eld... |
| ellz1 42870 | Membership in a lower set ... |
| lzunuz 42871 | The union of a lower set o... |
| fz1eqin 42872 | Express a one-based finite... |
| lzenom 42873 | Lower integers are countab... |
| elmapresaunres2 42874 | ~ fresaunres2 transposed t... |
| diophin 42875 | If two sets are Diophantin... |
| diophun 42876 | If two sets are Diophantin... |
| eldiophss 42877 | Diophantine sets are sets ... |
| diophrex 42878 | Projecting a Diophantine s... |
| eq0rabdioph 42879 | This is the first of a num... |
| eqrabdioph 42880 | Diophantine set builder fo... |
| 0dioph 42881 | The null set is Diophantin... |
| vdioph 42882 | The "universal" set (as la... |
| anrabdioph 42883 | Diophantine set builder fo... |
| orrabdioph 42884 | Diophantine set builder fo... |
| 3anrabdioph 42885 | Diophantine set builder fo... |
| 3orrabdioph 42886 | Diophantine set builder fo... |
| 2sbcrex 42887 | Exchange an existential qu... |
| sbcrexgOLD 42888 | Interchange class substitu... |
| 2sbcrexOLD 42889 | Exchange an existential qu... |
| sbc2rex 42890 | Exchange a substitution wi... |
| sbc2rexgOLD 42891 | Exchange a substitution wi... |
| sbc4rex 42892 | Exchange a substitution wi... |
| sbc4rexgOLD 42893 | Exchange a substitution wi... |
| sbcrot3 42894 | Rotate a sequence of three... |
| sbcrot5 42895 | Rotate a sequence of five ... |
| sbccomieg 42896 | Commute two explicit subst... |
| rexrabdioph 42897 | Diophantine set builder fo... |
| rexfrabdioph 42898 | Diophantine set builder fo... |
| 2rexfrabdioph 42899 | Diophantine set builder fo... |
| 3rexfrabdioph 42900 | Diophantine set builder fo... |
| 4rexfrabdioph 42901 | Diophantine set builder fo... |
| 6rexfrabdioph 42902 | Diophantine set builder fo... |
| 7rexfrabdioph 42903 | Diophantine set builder fo... |
| rabdiophlem1 42904 | Lemma for arithmetic dioph... |
| rabdiophlem2 42905 | Lemma for arithmetic dioph... |
| elnn0rabdioph 42906 | Diophantine set builder fo... |
| rexzrexnn0 42907 | Rewrite an existential qua... |
| lerabdioph 42908 | Diophantine set builder fo... |
| eluzrabdioph 42909 | Diophantine set builder fo... |
| elnnrabdioph 42910 | Diophantine set builder fo... |
| ltrabdioph 42911 | Diophantine set builder fo... |
| nerabdioph 42912 | Diophantine set builder fo... |
| dvdsrabdioph 42913 | Divisibility is a Diophant... |
| eldioph4b 42914 | Membership in ` Dioph ` ex... |
| eldioph4i 42915 | Forward-only version of ~ ... |
| diophren 42916 | Change variables in a Diop... |
| rabrenfdioph 42917 | Change variable numbers in... |
| rabren3dioph 42918 | Change variable numbers in... |
| fphpd 42919 | Pigeonhole principle expre... |
| fphpdo 42920 | Pigeonhole principle for s... |
| ctbnfien 42921 | An infinite subset of a co... |
| fiphp3d 42922 | Infinite pigeonhole princi... |
| rencldnfilem 42923 | Lemma for ~ rencldnfi . (... |
| rencldnfi 42924 | A set of real numbers whic... |
| irrapxlem1 42925 | Lemma for ~ irrapx1 . Div... |
| irrapxlem2 42926 | Lemma for ~ irrapx1 . Two... |
| irrapxlem3 42927 | Lemma for ~ irrapx1 . By ... |
| irrapxlem4 42928 | Lemma for ~ irrapx1 . Eli... |
| irrapxlem5 42929 | Lemma for ~ irrapx1 . Swi... |
| irrapxlem6 42930 | Lemma for ~ irrapx1 . Exp... |
| irrapx1 42931 | Dirichlet's approximation ... |
| pellexlem1 42932 | Lemma for ~ pellex . Arit... |
| pellexlem2 42933 | Lemma for ~ pellex . Arit... |
| pellexlem3 42934 | Lemma for ~ pellex . To e... |
| pellexlem4 42935 | Lemma for ~ pellex . Invo... |
| pellexlem5 42936 | Lemma for ~ pellex . Invo... |
| pellexlem6 42937 | Lemma for ~ pellex . Doin... |
| pellex 42938 | Every Pell equation has a ... |
| pell1qrval 42949 | Value of the set of first-... |
| elpell1qr 42950 | Membership in a first-quad... |
| pell14qrval 42951 | Value of the set of positi... |
| elpell14qr 42952 | Membership in the set of p... |
| pell1234qrval 42953 | Value of the set of genera... |
| elpell1234qr 42954 | Membership in the set of g... |
| pell1234qrre 42955 | General Pell solutions are... |
| pell1234qrne0 42956 | No solution to a Pell equa... |
| pell1234qrreccl 42957 | General solutions of the P... |
| pell1234qrmulcl 42958 | General solutions of the P... |
| pell14qrss1234 42959 | A positive Pell solution i... |
| pell14qrre 42960 | A positive Pell solution i... |
| pell14qrne0 42961 | A positive Pell solution i... |
| pell14qrgt0 42962 | A positive Pell solution i... |
| pell14qrrp 42963 | A positive Pell solution i... |
| pell1234qrdich 42964 | A general Pell solution is... |
| elpell14qr2 42965 | A number is a positive Pel... |
| pell14qrmulcl 42966 | Positive Pell solutions ar... |
| pell14qrreccl 42967 | Positive Pell solutions ar... |
| pell14qrdivcl 42968 | Positive Pell solutions ar... |
| pell14qrexpclnn0 42969 | Lemma for ~ pell14qrexpcl ... |
| pell14qrexpcl 42970 | Positive Pell solutions ar... |
| pell1qrss14 42971 | First-quadrant Pell soluti... |
| pell14qrdich 42972 | A positive Pell solution i... |
| pell1qrge1 42973 | A Pell solution in the fir... |
| pell1qr1 42974 | 1 is a Pell solution and i... |
| elpell1qr2 42975 | The first quadrant solutio... |
| pell1qrgaplem 42976 | Lemma for ~ pell1qrgap . ... |
| pell1qrgap 42977 | First-quadrant Pell soluti... |
| pell14qrgap 42978 | Positive Pell solutions ar... |
| pell14qrgapw 42979 | Positive Pell solutions ar... |
| pellqrexplicit 42980 | Condition for a calculated... |
| infmrgelbi 42981 | Any lower bound of a nonem... |
| pellqrex 42982 | There is a nontrivial solu... |
| pellfundval 42983 | Value of the fundamental s... |
| pellfundre 42984 | The fundamental solution o... |
| pellfundge 42985 | Lower bound on the fundame... |
| pellfundgt1 42986 | Weak lower bound on the Pe... |
| pellfundlb 42987 | A nontrivial first quadran... |
| pellfundglb 42988 | If a real is larger than t... |
| pellfundex 42989 | The fundamental solution a... |
| pellfund14gap 42990 | There are no solutions bet... |
| pellfundrp 42991 | The fundamental Pell solut... |
| pellfundne1 42992 | The fundamental Pell solut... |
| reglogcl 42993 | General logarithm is a rea... |
| reglogltb 42994 | General logarithm preserve... |
| reglogleb 42995 | General logarithm preserve... |
| reglogmul 42996 | Multiplication law for gen... |
| reglogexp 42997 | Power law for general log.... |
| reglogbas 42998 | General log of the base is... |
| reglog1 42999 | General log of 1 is 0. (C... |
| reglogexpbas 43000 | General log of a power of ... |
| pellfund14 43001 | Every positive Pell soluti... |
| pellfund14b 43002 | The positive Pell solution... |
| rmxfval 43007 | Value of the X sequence. ... |
| rmyfval 43008 | Value of the Y sequence. ... |
| rmspecsqrtnq 43009 | The discriminant used to d... |
| rmspecnonsq 43010 | The discriminant used to d... |
| qirropth 43011 | This lemma implements the ... |
| rmspecfund 43012 | The base of exponent used ... |
| rmxyelqirr 43013 | The solutions used to cons... |
| rmxypairf1o 43014 | The function used to extra... |
| rmxyelxp 43015 | Lemma for ~ frmx and ~ frm... |
| frmx 43016 | The X sequence is a nonneg... |
| frmy 43017 | The Y sequence is an integ... |
| rmxyval 43018 | Main definition of the X a... |
| rmspecpos 43019 | The discriminant used to d... |
| rmxycomplete 43020 | The X and Y sequences take... |
| rmxynorm 43021 | The X and Y sequences defi... |
| rmbaserp 43022 | The base of exponentiation... |
| rmxyneg 43023 | Negation law for X and Y s... |
| rmxyadd 43024 | Addition formula for X and... |
| rmxy1 43025 | Value of the X and Y seque... |
| rmxy0 43026 | Value of the X and Y seque... |
| rmxneg 43027 | Negation law (even functio... |
| rmx0 43028 | Value of X sequence at 0. ... |
| rmx1 43029 | Value of X sequence at 1. ... |
| rmxadd 43030 | Addition formula for X seq... |
| rmyneg 43031 | Negation formula for Y seq... |
| rmy0 43032 | Value of Y sequence at 0. ... |
| rmy1 43033 | Value of Y sequence at 1. ... |
| rmyadd 43034 | Addition formula for Y seq... |
| rmxp1 43035 | Special addition-of-1 form... |
| rmyp1 43036 | Special addition of 1 form... |
| rmxm1 43037 | Subtraction of 1 formula f... |
| rmym1 43038 | Subtraction of 1 formula f... |
| rmxluc 43039 | The X sequence is a Lucas ... |
| rmyluc 43040 | The Y sequence is a Lucas ... |
| rmyluc2 43041 | Lucas sequence property of... |
| rmxdbl 43042 | "Double-angle formula" for... |
| rmydbl 43043 | "Double-angle formula" for... |
| monotuz 43044 | A function defined on an u... |
| monotoddzzfi 43045 | A function which is odd an... |
| monotoddzz 43046 | A function (given implicit... |
| oddcomabszz 43047 | An odd function which take... |
| 2nn0ind 43048 | Induction on nonnegative i... |
| zindbi 43049 | Inductively transfer a pro... |
| rmxypos 43050 | For all nonnegative indice... |
| ltrmynn0 43051 | The Y-sequence is strictly... |
| ltrmxnn0 43052 | The X-sequence is strictly... |
| lermxnn0 43053 | The X-sequence is monotoni... |
| rmxnn 43054 | The X-sequence is defined ... |
| ltrmy 43055 | The Y-sequence is strictly... |
| rmyeq0 43056 | Y is zero only at zero. (... |
| rmyeq 43057 | Y is one-to-one. (Contrib... |
| lermy 43058 | Y is monotonic (non-strict... |
| rmynn 43059 | ` rmY ` is positive for po... |
| rmynn0 43060 | ` rmY ` is nonnegative for... |
| rmyabs 43061 | ` rmY ` commutes with ` ab... |
| jm2.24nn 43062 | X(n) is strictly greater t... |
| jm2.17a 43063 | First half of lemma 2.17 o... |
| jm2.17b 43064 | Weak form of the second ha... |
| jm2.17c 43065 | Second half of lemma 2.17 ... |
| jm2.24 43066 | Lemma 2.24 of [JonesMatija... |
| rmygeid 43067 | Y(n) increases faster than... |
| congtr 43068 | A wff of the form ` A || (... |
| congadd 43069 | If two pairs of numbers ar... |
| congmul 43070 | If two pairs of numbers ar... |
| congsym 43071 | Congruence mod ` A ` is a ... |
| congneg 43072 | If two integers are congru... |
| congsub 43073 | If two pairs of numbers ar... |
| congid 43074 | Every integer is congruent... |
| mzpcong 43075 | Polynomials commute with c... |
| congrep 43076 | Every integer is congruent... |
| congabseq 43077 | If two integers are congru... |
| acongid 43078 | A wff like that in this th... |
| acongsym 43079 | Symmetry of alternating co... |
| acongneg2 43080 | Negate right side of alter... |
| acongtr 43081 | Transitivity of alternatin... |
| acongeq12d 43082 | Substitution deduction for... |
| acongrep 43083 | Every integer is alternati... |
| fzmaxdif 43084 | Bound on the difference be... |
| fzneg 43085 | Reflection of a finite ran... |
| acongeq 43086 | Two numbers in the fundame... |
| dvdsacongtr 43087 | Alternating congruence pas... |
| coprmdvdsb 43088 | Multiplication by a coprim... |
| modabsdifz 43089 | Divisibility in terms of m... |
| dvdsabsmod0 43090 | Divisibility in terms of m... |
| jm2.18 43091 | Theorem 2.18 of [JonesMati... |
| jm2.19lem1 43092 | Lemma for ~ jm2.19 . X an... |
| jm2.19lem2 43093 | Lemma for ~ jm2.19 . (Con... |
| jm2.19lem3 43094 | Lemma for ~ jm2.19 . (Con... |
| jm2.19lem4 43095 | Lemma for ~ jm2.19 . Exte... |
| jm2.19 43096 | Lemma 2.19 of [JonesMatija... |
| jm2.21 43097 | Lemma for ~ jm2.20nn . Ex... |
| jm2.22 43098 | Lemma for ~ jm2.20nn . Ap... |
| jm2.23 43099 | Lemma for ~ jm2.20nn . Tr... |
| jm2.20nn 43100 | Lemma 2.20 of [JonesMatija... |
| jm2.25lem1 43101 | Lemma for ~ jm2.26 . (Con... |
| jm2.25 43102 | Lemma for ~ jm2.26 . Rema... |
| jm2.26a 43103 | Lemma for ~ jm2.26 . Reve... |
| jm2.26lem3 43104 | Lemma for ~ jm2.26 . Use ... |
| jm2.26 43105 | Lemma 2.26 of [JonesMatija... |
| jm2.15nn0 43106 | Lemma 2.15 of [JonesMatija... |
| jm2.16nn0 43107 | Lemma 2.16 of [JonesMatija... |
| jm2.27a 43108 | Lemma for ~ jm2.27 . Reve... |
| jm2.27b 43109 | Lemma for ~ jm2.27 . Expa... |
| jm2.27c 43110 | Lemma for ~ jm2.27 . Forw... |
| jm2.27 43111 | Lemma 2.27 of [JonesMatija... |
| jm2.27dlem1 43112 | Lemma for ~ rmydioph . Su... |
| jm2.27dlem2 43113 | Lemma for ~ rmydioph . Th... |
| jm2.27dlem3 43114 | Lemma for ~ rmydioph . In... |
| jm2.27dlem4 43115 | Lemma for ~ rmydioph . In... |
| jm2.27dlem5 43116 | Lemma for ~ rmydioph . Us... |
| rmydioph 43117 | ~ jm2.27 restated in terms... |
| rmxdiophlem 43118 | X can be expressed in term... |
| rmxdioph 43119 | X is a Diophantine functio... |
| jm3.1lem1 43120 | Lemma for ~ jm3.1 . (Cont... |
| jm3.1lem2 43121 | Lemma for ~ jm3.1 . (Cont... |
| jm3.1lem3 43122 | Lemma for ~ jm3.1 . (Cont... |
| jm3.1 43123 | Diophantine expression for... |
| expdiophlem1 43124 | Lemma for ~ expdioph . Fu... |
| expdiophlem2 43125 | Lemma for ~ expdioph . Ex... |
| expdioph 43126 | The exponential function i... |
| setindtr 43127 | Set induction for sets con... |
| setindtrs 43128 | Set induction scheme witho... |
| dford3lem1 43129 | Lemma for ~ dford3 . (Con... |
| dford3lem2 43130 | Lemma for ~ dford3 . (Con... |
| dford3 43131 | Ordinals are precisely the... |
| dford4 43132 | ~ dford3 expressed in prim... |
| wopprc 43133 | Unrelated: Wiener pairs t... |
| rpnnen3lem 43134 | Lemma for ~ rpnnen3 . (Co... |
| rpnnen3 43135 | Dedekind cut injection of ... |
| axac10 43136 | Characterization of choice... |
| harinf 43137 | The Hartogs number of an i... |
| wdom2d2 43138 | Deduction for weak dominan... |
| ttac 43139 | Tarski's theorem about cho... |
| pw2f1ocnv 43140 | Define a bijection between... |
| pw2f1o2 43141 | Define a bijection between... |
| pw2f1o2val 43142 | Function value of the ~ pw... |
| pw2f1o2val2 43143 | Membership in a mapped set... |
| limsuc2 43144 | Limit ordinals in the sens... |
| wepwsolem 43145 | Transfer an ordering on ch... |
| wepwso 43146 | A well-ordering induces a ... |
| dnnumch1 43147 | Define an enumeration of a... |
| dnnumch2 43148 | Define an enumeration (wea... |
| dnnumch3lem 43149 | Value of the ordinal injec... |
| dnnumch3 43150 | Define an injection from a... |
| dnwech 43151 | Define a well-ordering fro... |
| fnwe2val 43152 | Lemma for ~ fnwe2 . Subst... |
| fnwe2lem1 43153 | Lemma for ~ fnwe2 . Subst... |
| fnwe2lem2 43154 | Lemma for ~ fnwe2 . An el... |
| fnwe2lem3 43155 | Lemma for ~ fnwe2 . Trich... |
| fnwe2 43156 | A well-ordering can be con... |
| aomclem1 43157 | Lemma for ~ dfac11 . This... |
| aomclem2 43158 | Lemma for ~ dfac11 . Succ... |
| aomclem3 43159 | Lemma for ~ dfac11 . Succ... |
| aomclem4 43160 | Lemma for ~ dfac11 . Limi... |
| aomclem5 43161 | Lemma for ~ dfac11 . Comb... |
| aomclem6 43162 | Lemma for ~ dfac11 . Tran... |
| aomclem7 43163 | Lemma for ~ dfac11 . ` ( R... |
| aomclem8 43164 | Lemma for ~ dfac11 . Perf... |
| dfac11 43165 | The right-hand side of thi... |
| kelac1 43166 | Kelley's choice, basic for... |
| kelac2lem 43167 | Lemma for ~ kelac2 and ~ d... |
| kelac2 43168 | Kelley's choice, most comm... |
| dfac21 43169 | Tychonoff's theorem is a c... |
| islmodfg 43172 | Property of a finitely gen... |
| islssfg 43173 | Property of a finitely gen... |
| islssfg2 43174 | Property of a finitely gen... |
| islssfgi 43175 | Finitely spanned subspaces... |
| fglmod 43176 | Finitely generated left mo... |
| lsmfgcl 43177 | The sum of two finitely ge... |
| islnm 43180 | Property of being a Noethe... |
| islnm2 43181 | Property of being a Noethe... |
| lnmlmod 43182 | A Noetherian left module i... |
| lnmlssfg 43183 | A submodule of Noetherian ... |
| lnmlsslnm 43184 | All submodules of a Noethe... |
| lnmfg 43185 | A Noetherian left module i... |
| kercvrlsm 43186 | The domain of a linear fun... |
| lmhmfgima 43187 | A homomorphism maps finite... |
| lnmepi 43188 | Epimorphic images of Noeth... |
| lmhmfgsplit 43189 | If the kernel and range of... |
| lmhmlnmsplit 43190 | If the kernel and range of... |
| lnmlmic 43191 | Noetherian is an invariant... |
| pwssplit4 43192 | Splitting for structure po... |
| filnm 43193 | Finite left modules are No... |
| pwslnmlem0 43194 | Zeroeth powers are Noether... |
| pwslnmlem1 43195 | First powers are Noetheria... |
| pwslnmlem2 43196 | A sum of powers is Noether... |
| pwslnm 43197 | Finite powers of Noetheria... |
| unxpwdom3 43198 | Weaker version of ~ unxpwd... |
| pwfi2f1o 43199 | The ~ pw2f1o bijection rel... |
| pwfi2en 43200 | Finitely supported indicat... |
| frlmpwfi 43201 | Formal linear combinations... |
| gicabl 43202 | Being Abelian is a group i... |
| imasgim 43203 | A relabeling of the elemen... |
| isnumbasgrplem1 43204 | A set which is equipollent... |
| harn0 43205 | The Hartogs number of a se... |
| numinfctb 43206 | A numerable infinite set c... |
| isnumbasgrplem2 43207 | If the (to be thought of a... |
| isnumbasgrplem3 43208 | Every nonempty numerable s... |
| isnumbasabl 43209 | A set is numerable iff it ... |
| isnumbasgrp 43210 | A set is numerable iff it ... |
| dfacbasgrp 43211 | A choice equivalent in abs... |
| islnr 43214 | Property of a left-Noether... |
| lnrring 43215 | Left-Noetherian rings are ... |
| lnrlnm 43216 | Left-Noetherian rings have... |
| islnr2 43217 | Property of being a left-N... |
| islnr3 43218 | Relate left-Noetherian rin... |
| lnr2i 43219 | Given an ideal in a left-N... |
| lpirlnr 43220 | Left principal ideal rings... |
| lnrfrlm 43221 | Finite-dimensional free mo... |
| lnrfg 43222 | Finitely-generated modules... |
| lnrfgtr 43223 | A submodule of a finitely ... |
| hbtlem1 43226 | Value of the leading coeff... |
| hbtlem2 43227 | Leading coefficient ideals... |
| hbtlem7 43228 | Functionality of leading c... |
| hbtlem4 43229 | The leading ideal function... |
| hbtlem3 43230 | The leading ideal function... |
| hbtlem5 43231 | The leading ideal function... |
| hbtlem6 43232 | There is a finite set of p... |
| hbt 43233 | The Hilbert Basis Theorem ... |
| dgrsub2 43238 | Subtracting two polynomial... |
| elmnc 43239 | Property of a monic polyno... |
| mncply 43240 | A monic polynomial is a po... |
| mnccoe 43241 | A monic polynomial has lea... |
| mncn0 43242 | A monic polynomial is not ... |
| dgraaval 43247 | Value of the degree functi... |
| dgraalem 43248 | Properties of the degree o... |
| dgraacl 43249 | Closure of the degree func... |
| dgraaf 43250 | Degree function on algebra... |
| dgraaub 43251 | Upper bound on degree of a... |
| dgraa0p 43252 | A rational polynomial of d... |
| mpaaeu 43253 | An algebraic number has ex... |
| mpaaval 43254 | Value of the minimal polyn... |
| mpaalem 43255 | Properties of the minimal ... |
| mpaacl 43256 | Minimal polynomial is a po... |
| mpaadgr 43257 | Minimal polynomial has deg... |
| mpaaroot 43258 | The minimal polynomial of ... |
| mpaamn 43259 | Minimal polynomial is moni... |
| itgoval 43264 | Value of the integral-over... |
| aaitgo 43265 | The standard algebraic num... |
| itgoss 43266 | An integral element is int... |
| itgocn 43267 | All integral elements are ... |
| cnsrexpcl 43268 | Exponentiation is closed i... |
| fsumcnsrcl 43269 | Finite sums are closed in ... |
| cnsrplycl 43270 | Polynomials are closed in ... |
| rgspnid 43271 | The span of a subring is i... |
| rngunsnply 43272 | Adjoining one element to a... |
| flcidc 43273 | Finite linear combinations... |
| algstr 43276 | Lemma to shorten proofs of... |
| algbase 43277 | The base set of a construc... |
| algaddg 43278 | The additive operation of ... |
| algmulr 43279 | The multiplicative operati... |
| algsca 43280 | The set of scalars of a co... |
| algvsca 43281 | The scalar product operati... |
| mendval 43282 | Value of the module endomo... |
| mendbas 43283 | Base set of the module end... |
| mendplusgfval 43284 | Addition in the module end... |
| mendplusg 43285 | A specific addition in the... |
| mendmulrfval 43286 | Multiplication in the modu... |
| mendmulr 43287 | A specific multiplication ... |
| mendsca 43288 | The module endomorphism al... |
| mendvscafval 43289 | Scalar multiplication in t... |
| mendvsca 43290 | A specific scalar multipli... |
| mendring 43291 | The module endomorphism al... |
| mendlmod 43292 | The module endomorphism al... |
| mendassa 43293 | The module endomorphism al... |
| idomodle 43294 | Limit on the number of ` N... |
| fiuneneq 43295 | Two finite sets of equal s... |
| idomsubgmo 43296 | The units of an integral d... |
| proot1mul 43297 | Any primitive ` N ` -th ro... |
| proot1hash 43298 | If an integral domain has ... |
| proot1ex 43299 | The complex field has prim... |
| mon1psubm 43302 | Monic polynomials are a mu... |
| deg1mhm 43303 | Homomorphic property of th... |
| cytpfn 43304 | Functionality of the cyclo... |
| cytpval 43305 | Substitutions for the Nth ... |
| fgraphopab 43306 | Express a function as a su... |
| fgraphxp 43307 | Express a function as a su... |
| hausgraph 43308 | The graph of a continuous ... |
| r1sssucd 43313 | Deductive form of ~ r1sssu... |
| iocunico 43314 | Split an open interval int... |
| iocinico 43315 | The intersection of two se... |
| iocmbl 43316 | An open-below, closed-abov... |
| cnioobibld 43317 | A bounded, continuous func... |
| arearect 43318 | The area of a rectangle wh... |
| areaquad 43319 | The area of a quadrilatera... |
| uniel 43320 | Two ways to say a union is... |
| unielss 43321 | Two ways to say the union ... |
| unielid 43322 | Two ways to say the union ... |
| ssunib 43323 | Two ways to say a class is... |
| rp-intrabeq 43324 | Equality theorem for supre... |
| rp-unirabeq 43325 | Equality theorem for infim... |
| onmaxnelsup 43326 | Two ways to say the maximu... |
| onsupneqmaxlim0 43327 | If the supremum of a class... |
| onsupcl2 43328 | The supremum of a set of o... |
| onuniintrab 43329 | The union of a set of ordi... |
| onintunirab 43330 | The intersection of a non-... |
| onsupnmax 43331 | If the union of a class of... |
| onsupuni 43332 | The supremum of a set of o... |
| onsupuni2 43333 | The supremum of a set of o... |
| onsupintrab 43334 | The supremum of a set of o... |
| onsupintrab2 43335 | The supremum of a set of o... |
| onsupcl3 43336 | The supremum of a set of o... |
| onsupex3 43337 | The supremum of a set of o... |
| onuniintrab2 43338 | The union of a set of ordi... |
| oninfint 43339 | The infimum of a non-empty... |
| oninfunirab 43340 | The infimum of a non-empty... |
| oninfcl2 43341 | The infimum of a non-empty... |
| onsupmaxb 43342 | The union of a class of or... |
| onexgt 43343 | For any ordinal, there is ... |
| onexomgt 43344 | For any ordinal, there is ... |
| omlimcl2 43345 | The product of a limit ord... |
| onexlimgt 43346 | For any ordinal, there is ... |
| onexoegt 43347 | For any ordinal, there is ... |
| oninfex2 43348 | The infimum of a non-empty... |
| onsupeqmax 43349 | Condition when the supremu... |
| onsupeqnmax 43350 | Condition when the supremu... |
| onsuplub 43351 | The supremum of a set of o... |
| onsupnub 43352 | An upper bound of a set of... |
| onfisupcl 43353 | Sufficient condition when ... |
| onelord 43354 | Every element of a ordinal... |
| onepsuc 43355 | Every ordinal is less than... |
| epsoon 43356 | The ordinals are strictly ... |
| epirron 43357 | The strict order on the or... |
| oneptr 43358 | The strict order on the or... |
| oneltr 43359 | The elementhood relation o... |
| oneptri 43360 | The strict, complete (line... |
| ordeldif 43361 | Membership in the differen... |
| ordeldifsucon 43362 | Membership in the differen... |
| ordeldif1o 43363 | Membership in the differen... |
| ordne0gt0 43364 | Ordinal zero is less than ... |
| ondif1i 43365 | Ordinal zero is less than ... |
| onsucelab 43366 | The successor of every ord... |
| dflim6 43367 | A limit ordinal is a non-z... |
| limnsuc 43368 | A limit ordinal is not an ... |
| onsucss 43369 | If one ordinal is less tha... |
| ordnexbtwnsuc 43370 | For any distinct pair of o... |
| orddif0suc 43371 | For any distinct pair of o... |
| onsucf1lem 43372 | For ordinals, the successo... |
| onsucf1olem 43373 | The successor operation is... |
| onsucrn 43374 | The successor operation is... |
| onsucf1o 43375 | The successor operation is... |
| dflim7 43376 | A limit ordinal is a non-z... |
| onov0suclim 43377 | Compactly express rules fo... |
| oa0suclim 43378 | Closed form expression of ... |
| om0suclim 43379 | Closed form expression of ... |
| oe0suclim 43380 | Closed form expression of ... |
| oaomoecl 43381 | The operations of addition... |
| onsupsucismax 43382 | If the union of a set of o... |
| onsssupeqcond 43383 | If for every element of a ... |
| limexissup 43384 | An ordinal which is a limi... |
| limiun 43385 | A limit ordinal is the uni... |
| limexissupab 43386 | An ordinal which is a limi... |
| om1om1r 43387 | Ordinal one is both a left... |
| oe0rif 43388 | Ordinal zero raised to any... |
| oasubex 43389 | While subtraction can't be... |
| nnamecl 43390 | Natural numbers are closed... |
| onsucwordi 43391 | The successor operation pr... |
| oalim2cl 43392 | The ordinal sum of any ord... |
| oaltublim 43393 | Given ` C ` is a limit ord... |
| oaordi3 43394 | Ordinal addition of the sa... |
| oaord3 43395 | When the same ordinal is a... |
| 1oaomeqom 43396 | Ordinal one plus omega is ... |
| oaabsb 43397 | The right addend absorbs t... |
| oaordnrex 43398 | When omega is added on the... |
| oaordnr 43399 | When the same ordinal is a... |
| omge1 43400 | Any non-zero ordinal produ... |
| omge2 43401 | Any non-zero ordinal produ... |
| omlim2 43402 | The non-zero product with ... |
| omord2lim 43403 | Given a limit ordinal, the... |
| omord2i 43404 | Ordinal multiplication of ... |
| omord2com 43405 | When the same non-zero ord... |
| 2omomeqom 43406 | Ordinal two times omega is... |
| omnord1ex 43407 | When omega is multiplied o... |
| omnord1 43408 | When the same non-zero ord... |
| oege1 43409 | Any non-zero ordinal power... |
| oege2 43410 | Any power of an ordinal at... |
| rp-oelim2 43411 | The power of an ordinal at... |
| oeord2lim 43412 | Given a limit ordinal, the... |
| oeord2i 43413 | Ordinal exponentiation of ... |
| oeord2com 43414 | When the same base at leas... |
| nnoeomeqom 43415 | Any natural number at leas... |
| df3o2 43416 | Ordinal 3 is the unordered... |
| df3o3 43417 | Ordinal 3, fully expanded.... |
| oenord1ex 43418 | When ordinals two and thre... |
| oenord1 43419 | When two ordinals (both at... |
| oaomoencom 43420 | Ordinal addition, multipli... |
| oenassex 43421 | Ordinal two raised to two ... |
| oenass 43422 | Ordinal exponentiation is ... |
| cantnftermord 43423 | For terms of the form of a... |
| cantnfub 43424 | Given a finite number of t... |
| cantnfub2 43425 | Given a finite number of t... |
| bropabg 43426 | Equivalence for two classe... |
| cantnfresb 43427 | A Cantor normal form which... |
| cantnf2 43428 | For every ordinal, ` A ` ,... |
| oawordex2 43429 | If ` C ` is between ` A ` ... |
| nnawordexg 43430 | If an ordinal, ` B ` , is ... |
| succlg 43431 | Closure law for ordinal su... |
| dflim5 43432 | A limit ordinal is either ... |
| oacl2g 43433 | Closure law for ordinal ad... |
| onmcl 43434 | If an ordinal is less than... |
| omabs2 43435 | Ordinal multiplication by ... |
| omcl2 43436 | Closure law for ordinal mu... |
| omcl3g 43437 | Closure law for ordinal mu... |
| ordsssucb 43438 | An ordinal number is less ... |
| tfsconcatlem 43439 | Lemma for ~ tfsconcatun . ... |
| tfsconcatun 43440 | The concatenation of two t... |
| tfsconcatfn 43441 | The concatenation of two t... |
| tfsconcatfv1 43442 | An early value of the conc... |
| tfsconcatfv2 43443 | A latter value of the conc... |
| tfsconcatfv 43444 | The value of the concatena... |
| tfsconcatrn 43445 | The range of the concatena... |
| tfsconcatfo 43446 | The concatenation of two t... |
| tfsconcatb0 43447 | The concatentation with th... |
| tfsconcat0i 43448 | The concatentation with th... |
| tfsconcat0b 43449 | The concatentation with th... |
| tfsconcat00 43450 | The concatentation of two ... |
| tfsconcatrev 43451 | If the domain of a transfi... |
| tfsconcatrnss12 43452 | The range of the concatena... |
| tfsconcatrnss 43453 | The concatenation of trans... |
| tfsconcatrnsson 43454 | The concatenation of trans... |
| tfsnfin 43455 | A transfinite sequence is ... |
| rp-tfslim 43456 | The limit of a sequence of... |
| ofoafg 43457 | Addition operator for func... |
| ofoaf 43458 | Addition operator for func... |
| ofoafo 43459 | Addition operator for func... |
| ofoacl 43460 | Closure law for component ... |
| ofoaid1 43461 | Identity law for component... |
| ofoaid2 43462 | Identity law for component... |
| ofoaass 43463 | Component-wise addition of... |
| ofoacom 43464 | Component-wise addition of... |
| naddcnff 43465 | Addition operator for Cant... |
| naddcnffn 43466 | Addition operator for Cant... |
| naddcnffo 43467 | Addition of Cantor normal ... |
| naddcnfcl 43468 | Closure law for component-... |
| naddcnfcom 43469 | Component-wise ordinal add... |
| naddcnfid1 43470 | Identity law for component... |
| naddcnfid2 43471 | Identity law for component... |
| naddcnfass 43472 | Component-wise addition of... |
| onsucunifi 43473 | The successor to the union... |
| sucunisn 43474 | The successor to the union... |
| onsucunipr 43475 | The successor to the union... |
| onsucunitp 43476 | The successor to the union... |
| oaun3lem1 43477 | The class of all ordinal s... |
| oaun3lem2 43478 | The class of all ordinal s... |
| oaun3lem3 43479 | The class of all ordinal s... |
| oaun3lem4 43480 | The class of all ordinal s... |
| rp-abid 43481 | Two ways to express a clas... |
| oadif1lem 43482 | Express the set difference... |
| oadif1 43483 | Express the set difference... |
| oaun2 43484 | Ordinal addition as a unio... |
| oaun3 43485 | Ordinal addition as a unio... |
| naddov4 43486 | Alternate expression for n... |
| nadd2rabtr 43487 | The set of ordinals which ... |
| nadd2rabord 43488 | The set of ordinals which ... |
| nadd2rabex 43489 | The class of ordinals whic... |
| nadd2rabon 43490 | The set of ordinals which ... |
| nadd1rabtr 43491 | The set of ordinals which ... |
| nadd1rabord 43492 | The set of ordinals which ... |
| nadd1rabex 43493 | The class of ordinals whic... |
| nadd1rabon 43494 | The set of ordinals which ... |
| nadd1suc 43495 | Natural addition with 1 is... |
| naddass1 43496 | Natural addition of ordina... |
| naddgeoa 43497 | Natural addition results i... |
| naddonnn 43498 | Natural addition with a na... |
| naddwordnexlem0 43499 | When ` A ` is the sum of a... |
| naddwordnexlem1 43500 | When ` A ` is the sum of a... |
| naddwordnexlem2 43501 | When ` A ` is the sum of a... |
| naddwordnexlem3 43502 | When ` A ` is the sum of a... |
| oawordex3 43503 | When ` A ` is the sum of a... |
| naddwordnexlem4 43504 | When ` A ` is the sum of a... |
| ordsssucim 43505 | If an ordinal is less than... |
| insucid 43506 | The intersection of a clas... |
| om2 43507 | Two ways to double an ordi... |
| oaltom 43508 | Multiplication eventually ... |
| oe2 43509 | Two ways to square an ordi... |
| omltoe 43510 | Exponentiation eventually ... |
| abeqabi 43511 | Generalized condition for ... |
| abpr 43512 | Condition for a class abst... |
| abtp 43513 | Condition for a class abst... |
| ralopabb 43514 | Restricted universal quant... |
| fpwfvss 43515 | Functions into a powerset ... |
| sdomne0 43516 | A class that strictly domi... |
| sdomne0d 43517 | A class that strictly domi... |
| safesnsupfiss 43518 | If ` B ` is a finite subse... |
| safesnsupfiub 43519 | If ` B ` is a finite subse... |
| safesnsupfidom1o 43520 | If ` B ` is a finite subse... |
| safesnsupfilb 43521 | If ` B ` is a finite subse... |
| isoeq145d 43522 | Equality deduction for iso... |
| resisoeq45d 43523 | Equality deduction for equ... |
| negslem1 43524 | An equivalence between ide... |
| nvocnvb 43525 | Equivalence to saying the ... |
| rp-brsslt 43526 | Binary relation form of a ... |
| nla0002 43527 | Extending a linear order t... |
| nla0003 43528 | Extending a linear order t... |
| nla0001 43529 | Extending a linear order t... |
| faosnf0.11b 43530 | ` B ` is called a non-limi... |
| dfno2 43531 | A surreal number, in the f... |
| onnog 43532 | Every ordinal maps to a su... |
| onnobdayg 43533 | Every ordinal maps to a su... |
| bdaybndex 43534 | Bounds formed from the bir... |
| bdaybndbday 43535 | Bounds formed from the bir... |
| onno 43536 | Every ordinal maps to a su... |
| onnoi 43537 | Every ordinal maps to a su... |
| 0no 43538 | Ordinal zero maps to a sur... |
| 1no 43539 | Ordinal one maps to a surr... |
| 2no 43540 | Ordinal two maps to a surr... |
| 3no 43541 | Ordinal three maps to a su... |
| 4no 43542 | Ordinal four maps to a sur... |
| fnimafnex 43543 | The functional image of a ... |
| nlimsuc 43544 | A successor is not a limit... |
| nlim1NEW 43545 | 1 is not a limit ordinal. ... |
| nlim2NEW 43546 | 2 is not a limit ordinal. ... |
| nlim3 43547 | 3 is not a limit ordinal. ... |
| nlim4 43548 | 4 is not a limit ordinal. ... |
| oa1un 43549 | Given ` A e. On ` , let ` ... |
| oa1cl 43550 | ` A +o 1o ` is in ` On ` .... |
| 0finon 43551 | 0 is a finite ordinal. Se... |
| 1finon 43552 | 1 is a finite ordinal. Se... |
| 2finon 43553 | 2 is a finite ordinal. Se... |
| 3finon 43554 | 3 is a finite ordinal. Se... |
| 4finon 43555 | 4 is a finite ordinal. Se... |
| finona1cl 43556 | The finite ordinals are cl... |
| finonex 43557 | The finite ordinals are a ... |
| fzunt 43558 | Union of two adjacent fini... |
| fzuntd 43559 | Union of two adjacent fini... |
| fzunt1d 43560 | Union of two overlapping f... |
| fzuntgd 43561 | Union of two adjacent or o... |
| ifpan123g 43562 | Conjunction of conditional... |
| ifpan23 43563 | Conjunction of conditional... |
| ifpdfor2 43564 | Define or in terms of cond... |
| ifporcor 43565 | Corollary of commutation o... |
| ifpdfan2 43566 | Define and with conditiona... |
| ifpancor 43567 | Corollary of commutation o... |
| ifpdfor 43568 | Define or in terms of cond... |
| ifpdfan 43569 | Define and with conditiona... |
| ifpbi2 43570 | Equivalence theorem for co... |
| ifpbi3 43571 | Equivalence theorem for co... |
| ifpim1 43572 | Restate implication as con... |
| ifpnot 43573 | Restate negated wff as con... |
| ifpid2 43574 | Restate wff as conditional... |
| ifpim2 43575 | Restate implication as con... |
| ifpbi23 43576 | Equivalence theorem for co... |
| ifpbiidcor 43577 | Restatement of ~ biid . (... |
| ifpbicor 43578 | Corollary of commutation o... |
| ifpxorcor 43579 | Corollary of commutation o... |
| ifpbi1 43580 | Equivalence theorem for co... |
| ifpnot23 43581 | Negation of conditional lo... |
| ifpnotnotb 43582 | Factor conditional logic o... |
| ifpnorcor 43583 | Corollary of commutation o... |
| ifpnancor 43584 | Corollary of commutation o... |
| ifpnot23b 43585 | Negation of conditional lo... |
| ifpbiidcor2 43586 | Restatement of ~ biid . (... |
| ifpnot23c 43587 | Negation of conditional lo... |
| ifpnot23d 43588 | Negation of conditional lo... |
| ifpdfnan 43589 | Define nand as conditional... |
| ifpdfxor 43590 | Define xor as conditional ... |
| ifpbi12 43591 | Equivalence theorem for co... |
| ifpbi13 43592 | Equivalence theorem for co... |
| ifpbi123 43593 | Equivalence theorem for co... |
| ifpidg 43594 | Restate wff as conditional... |
| ifpid3g 43595 | Restate wff as conditional... |
| ifpid2g 43596 | Restate wff as conditional... |
| ifpid1g 43597 | Restate wff as conditional... |
| ifpim23g 43598 | Restate implication as con... |
| ifpim3 43599 | Restate implication as con... |
| ifpnim1 43600 | Restate negated implicatio... |
| ifpim4 43601 | Restate implication as con... |
| ifpnim2 43602 | Restate negated implicatio... |
| ifpim123g 43603 | Implication of conditional... |
| ifpim1g 43604 | Implication of conditional... |
| ifp1bi 43605 | Substitute the first eleme... |
| ifpbi1b 43606 | When the first variable is... |
| ifpimimb 43607 | Factor conditional logic o... |
| ifpororb 43608 | Factor conditional logic o... |
| ifpananb 43609 | Factor conditional logic o... |
| ifpnannanb 43610 | Factor conditional logic o... |
| ifpor123g 43611 | Disjunction of conditional... |
| ifpimim 43612 | Consequnce of implication.... |
| ifpbibib 43613 | Factor conditional logic o... |
| ifpxorxorb 43614 | Factor conditional logic o... |
| rp-fakeimass 43615 | A special case where impli... |
| rp-fakeanorass 43616 | A special case where a mix... |
| rp-fakeoranass 43617 | A special case where a mix... |
| rp-fakeinunass 43618 | A special case where a mix... |
| rp-fakeuninass 43619 | A special case where a mix... |
| rp-isfinite5 43620 | A set is said to be finite... |
| rp-isfinite6 43621 | A set is said to be finite... |
| intabssd 43622 | When for each element ` y ... |
| eu0 43623 | There is only one empty se... |
| epelon2 43624 | Over the ordinal numbers, ... |
| ontric3g 43625 | For all ` x , y e. On ` , ... |
| dfsucon 43626 | ` A ` is called a successo... |
| snen1g 43627 | A singleton is equinumerou... |
| snen1el 43628 | A singleton is equinumerou... |
| sn1dom 43629 | A singleton is dominated b... |
| pr2dom 43630 | An unordered pair is domin... |
| tr3dom 43631 | An unordered triple is dom... |
| ensucne0 43632 | A class equinumerous to a ... |
| ensucne0OLD 43633 | A class equinumerous to a ... |
| dfom6 43634 | Let ` _om ` be defined to ... |
| infordmin 43635 | ` _om ` is the smallest in... |
| iscard4 43636 | Two ways to express the pr... |
| minregex 43637 | Given any cardinal number ... |
| minregex2 43638 | Given any cardinal number ... |
| iscard5 43639 | Two ways to express the pr... |
| elrncard 43640 | Let us define a cardinal n... |
| harval3 43641 | ` ( har `` A ) ` is the le... |
| harval3on 43642 | For any ordinal number ` A... |
| omssrncard 43643 | All natural numbers are ca... |
| 0iscard 43644 | 0 is a cardinal number. (... |
| 1iscard 43645 | 1 is a cardinal number. (... |
| omiscard 43646 | ` _om ` is a cardinal numb... |
| sucomisnotcard 43647 | ` _om +o 1o ` is not a car... |
| nna1iscard 43648 | For any natural number, th... |
| har2o 43649 | The least cardinal greater... |
| en2pr 43650 | A class is equinumerous to... |
| pr2cv 43651 | If an unordered pair is eq... |
| pr2el1 43652 | If an unordered pair is eq... |
| pr2cv1 43653 | If an unordered pair is eq... |
| pr2el2 43654 | If an unordered pair is eq... |
| pr2cv2 43655 | If an unordered pair is eq... |
| pren2 43656 | An unordered pair is equin... |
| pr2eldif1 43657 | If an unordered pair is eq... |
| pr2eldif2 43658 | If an unordered pair is eq... |
| pren2d 43659 | A pair of two distinct set... |
| aleph1min 43660 | ` ( aleph `` 1o ) ` is the... |
| alephiso2 43661 | ` aleph ` is a strictly or... |
| alephiso3 43662 | ` aleph ` is a strictly or... |
| pwelg 43663 | The powerclass is an eleme... |
| pwinfig 43664 | The powerclass of an infin... |
| pwinfi2 43665 | The powerclass of an infin... |
| pwinfi3 43666 | The powerclass of an infin... |
| pwinfi 43667 | The powerclass of an infin... |
| fipjust 43668 | A definition of the finite... |
| cllem0 43669 | The class of all sets with... |
| superficl 43670 | The class of all supersets... |
| superuncl 43671 | The class of all supersets... |
| ssficl 43672 | The class of all subsets o... |
| ssuncl 43673 | The class of all subsets o... |
| ssdifcl 43674 | The class of all subsets o... |
| sssymdifcl 43675 | The class of all subsets o... |
| fiinfi 43676 | If two classes have the fi... |
| rababg 43677 | Condition when restricted ... |
| elinintab 43678 | Two ways of saying a set i... |
| elmapintrab 43679 | Two ways to say a set is a... |
| elinintrab 43680 | Two ways of saying a set i... |
| inintabss 43681 | Upper bound on intersectio... |
| inintabd 43682 | Value of the intersection ... |
| xpinintabd 43683 | Value of the intersection ... |
| relintabex 43684 | If the intersection of a c... |
| elcnvcnvintab 43685 | Two ways of saying a set i... |
| relintab 43686 | Value of the intersection ... |
| nonrel 43687 | A non-relation is equal to... |
| elnonrel 43688 | Only an ordered pair where... |
| cnvssb 43689 | Subclass theorem for conve... |
| relnonrel 43690 | The non-relation part of a... |
| cnvnonrel 43691 | The converse of the non-re... |
| brnonrel 43692 | A non-relation cannot rela... |
| dmnonrel 43693 | The domain of the non-rela... |
| rnnonrel 43694 | The range of the non-relat... |
| resnonrel 43695 | A restriction of the non-r... |
| imanonrel 43696 | An image under the non-rel... |
| cononrel1 43697 | Composition with the non-r... |
| cononrel2 43698 | Composition with the non-r... |
| elmapintab 43699 | Two ways to say a set is a... |
| fvnonrel 43700 | The function value of any ... |
| elinlem 43701 | Two ways to say a set is a... |
| elcnvcnvlem 43702 | Two ways to say a set is a... |
| cnvcnvintabd 43703 | Value of the relationship ... |
| elcnvlem 43704 | Two ways to say a set is a... |
| elcnvintab 43705 | Two ways of saying a set i... |
| cnvintabd 43706 | Value of the converse of t... |
| undmrnresiss 43707 | Two ways of saying the ide... |
| reflexg 43708 | Two ways of saying a relat... |
| cnvssco 43709 | A condition weaker than re... |
| refimssco 43710 | Reflexive relations are su... |
| cleq2lem 43711 | Equality implies bijection... |
| cbvcllem 43712 | Change of bound variable i... |
| clublem 43713 | If a superset ` Y ` of ` X... |
| clss2lem 43714 | The closure of a property ... |
| dfid7 43715 | Definition of identity rel... |
| mptrcllem 43716 | Show two versions of a clo... |
| cotrintab 43717 | The intersection of a clas... |
| rclexi 43718 | The reflexive closure of a... |
| rtrclexlem 43719 | Existence of relation impl... |
| rtrclex 43720 | The reflexive-transitive c... |
| trclubgNEW 43721 | If a relation exists then ... |
| trclubNEW 43722 | If a relation exists then ... |
| trclexi 43723 | The transitive closure of ... |
| rtrclexi 43724 | The reflexive-transitive c... |
| clrellem 43725 | When the property ` ps ` h... |
| clcnvlem 43726 | When ` A ` , an upper boun... |
| cnvtrucl0 43727 | The converse of the trivia... |
| cnvrcl0 43728 | The converse of the reflex... |
| cnvtrcl0 43729 | The converse of the transi... |
| dmtrcl 43730 | The domain of the transiti... |
| rntrcl 43731 | The range of the transitiv... |
| dfrtrcl5 43732 | Definition of reflexive-tr... |
| trcleq2lemRP 43733 | Equality implies bijection... |
| sqrtcvallem1 43734 | Two ways of saying a compl... |
| reabsifneg 43735 | Alternate expression for t... |
| reabsifnpos 43736 | Alternate expression for t... |
| reabsifpos 43737 | Alternate expression for t... |
| reabsifnneg 43738 | Alternate expression for t... |
| reabssgn 43739 | Alternate expression for t... |
| sqrtcvallem2 43740 | Equivalent to saying that ... |
| sqrtcvallem3 43741 | Equivalent to saying that ... |
| sqrtcvallem4 43742 | Equivalent to saying that ... |
| sqrtcvallem5 43743 | Equivalent to saying that ... |
| sqrtcval 43744 | Explicit formula for the c... |
| sqrtcval2 43745 | Explicit formula for the c... |
| resqrtval 43746 | Real part of the complex s... |
| imsqrtval 43747 | Imaginary part of the comp... |
| resqrtvalex 43748 | Example for ~ resqrtval . ... |
| imsqrtvalex 43749 | Example for ~ imsqrtval . ... |
| al3im 43750 | Version of ~ ax-4 for a ne... |
| intima0 43751 | Two ways of expressing the... |
| elimaint 43752 | Element of image of inters... |
| cnviun 43753 | Converse of indexed union.... |
| imaiun1 43754 | The image of an indexed un... |
| coiun1 43755 | Composition with an indexe... |
| elintima 43756 | Element of intersection of... |
| intimass 43757 | The image under the inters... |
| intimass2 43758 | The image under the inters... |
| intimag 43759 | Requirement for the image ... |
| intimasn 43760 | Two ways to express the im... |
| intimasn2 43761 | Two ways to express the im... |
| ss2iundf 43762 | Subclass theorem for index... |
| ss2iundv 43763 | Subclass theorem for index... |
| cbviuneq12df 43764 | Rule used to change the bo... |
| cbviuneq12dv 43765 | Rule used to change the bo... |
| conrel1d 43766 | Deduction about compositio... |
| conrel2d 43767 | Deduction about compositio... |
| trrelind 43768 | The intersection of transi... |
| xpintrreld 43769 | The intersection of a tran... |
| restrreld 43770 | The restriction of a trans... |
| trrelsuperreldg 43771 | Concrete construction of a... |
| trficl 43772 | The class of all transitiv... |
| cnvtrrel 43773 | The converse of a transiti... |
| trrelsuperrel2dg 43774 | Concrete construction of a... |
| dfrcl2 43777 | Reflexive closure of a rel... |
| dfrcl3 43778 | Reflexive closure of a rel... |
| dfrcl4 43779 | Reflexive closure of a rel... |
| relexp2 43780 | A set operated on by the r... |
| relexpnul 43781 | If the domain and range of... |
| eliunov2 43782 | Membership in the indexed ... |
| eltrclrec 43783 | Membership in the indexed ... |
| elrtrclrec 43784 | Membership in the indexed ... |
| briunov2 43785 | Two classes related by the... |
| brmptiunrelexpd 43786 | If two elements are connec... |
| fvmptiunrelexplb0d 43787 | If the indexed union range... |
| fvmptiunrelexplb0da 43788 | If the indexed union range... |
| fvmptiunrelexplb1d 43789 | If the indexed union range... |
| brfvid 43790 | If two elements are connec... |
| brfvidRP 43791 | If two elements are connec... |
| fvilbd 43792 | A set is a subset of its i... |
| fvilbdRP 43793 | A set is a subset of its i... |
| brfvrcld 43794 | If two elements are connec... |
| brfvrcld2 43795 | If two elements are connec... |
| fvrcllb0d 43796 | A restriction of the ident... |
| fvrcllb0da 43797 | A restriction of the ident... |
| fvrcllb1d 43798 | A set is a subset of its i... |
| brtrclrec 43799 | Two classes related by the... |
| brrtrclrec 43800 | Two classes related by the... |
| briunov2uz 43801 | Two classes related by the... |
| eliunov2uz 43802 | Membership in the indexed ... |
| ov2ssiunov2 43803 | Any particular operator va... |
| relexp0eq 43804 | The zeroth power of relati... |
| iunrelexp0 43805 | Simplification of zeroth p... |
| relexpxpnnidm 43806 | Any positive power of a Ca... |
| relexpiidm 43807 | Any power of any restricti... |
| relexpss1d 43808 | The relational power of a ... |
| comptiunov2i 43809 | The composition two indexe... |
| corclrcl 43810 | The reflexive closure is i... |
| iunrelexpmin1 43811 | The indexed union of relat... |
| relexpmulnn 43812 | With exponents limited to ... |
| relexpmulg 43813 | With ordered exponents, th... |
| trclrelexplem 43814 | The union of relational po... |
| iunrelexpmin2 43815 | The indexed union of relat... |
| relexp01min 43816 | With exponents limited to ... |
| relexp1idm 43817 | Repeated raising a relatio... |
| relexp0idm 43818 | Repeated raising a relatio... |
| relexp0a 43819 | Absorption law for zeroth ... |
| relexpxpmin 43820 | The composition of powers ... |
| relexpaddss 43821 | The composition of two pow... |
| iunrelexpuztr 43822 | The indexed union of relat... |
| dftrcl3 43823 | Transitive closure of a re... |
| brfvtrcld 43824 | If two elements are connec... |
| fvtrcllb1d 43825 | A set is a subset of its i... |
| trclfvcom 43826 | The transitive closure of ... |
| cnvtrclfv 43827 | The converse of the transi... |
| cotrcltrcl 43828 | The transitive closure is ... |
| trclimalb2 43829 | Lower bound for image unde... |
| brtrclfv2 43830 | Two ways to indicate two e... |
| trclfvdecomr 43831 | The transitive closure of ... |
| trclfvdecoml 43832 | The transitive closure of ... |
| dmtrclfvRP 43833 | The domain of the transiti... |
| rntrclfvRP 43834 | The range of the transitiv... |
| rntrclfv 43835 | The range of the transitiv... |
| dfrtrcl3 43836 | Reflexive-transitive closu... |
| brfvrtrcld 43837 | If two elements are connec... |
| fvrtrcllb0d 43838 | A restriction of the ident... |
| fvrtrcllb0da 43839 | A restriction of the ident... |
| fvrtrcllb1d 43840 | A set is a subset of its i... |
| dfrtrcl4 43841 | Reflexive-transitive closu... |
| corcltrcl 43842 | The composition of the ref... |
| cortrcltrcl 43843 | Composition with the refle... |
| corclrtrcl 43844 | Composition with the refle... |
| cotrclrcl 43845 | The composition of the ref... |
| cortrclrcl 43846 | Composition with the refle... |
| cotrclrtrcl 43847 | Composition with the refle... |
| cortrclrtrcl 43848 | The reflexive-transitive c... |
| frege77d 43849 | If the images of both ` { ... |
| frege81d 43850 | If the image of ` U ` is a... |
| frege83d 43851 | If the image of the union ... |
| frege96d 43852 | If ` C ` follows ` A ` in ... |
| frege87d 43853 | If the images of both ` { ... |
| frege91d 43854 | If ` B ` follows ` A ` in ... |
| frege97d 43855 | If ` A ` contains all elem... |
| frege98d 43856 | If ` C ` follows ` A ` and... |
| frege102d 43857 | If either ` A ` and ` C ` ... |
| frege106d 43858 | If ` B ` follows ` A ` in ... |
| frege108d 43859 | If either ` A ` and ` C ` ... |
| frege109d 43860 | If ` A ` contains all elem... |
| frege114d 43861 | If either ` R ` relates ` ... |
| frege111d 43862 | If either ` A ` and ` C ` ... |
| frege122d 43863 | If ` F ` is a function, ` ... |
| frege124d 43864 | If ` F ` is a function, ` ... |
| frege126d 43865 | If ` F ` is a function, ` ... |
| frege129d 43866 | If ` F ` is a function and... |
| frege131d 43867 | If ` F ` is a function and... |
| frege133d 43868 | If ` F ` is a function and... |
| dfxor4 43869 | Express exclusive-or in te... |
| dfxor5 43870 | Express exclusive-or in te... |
| df3or2 43871 | Express triple-or in terms... |
| df3an2 43872 | Express triple-and in term... |
| nev 43873 | Express that not every set... |
| 0pssin 43874 | Express that an intersecti... |
| dfhe2 43877 | The property of relation `... |
| dfhe3 43878 | The property of relation `... |
| heeq12 43879 | Equality law for relations... |
| heeq1 43880 | Equality law for relations... |
| heeq2 43881 | Equality law for relations... |
| sbcheg 43882 | Distribute proper substitu... |
| hess 43883 | Subclass law for relations... |
| xphe 43884 | Any Cartesian product is h... |
| 0he 43885 | The empty relation is here... |
| 0heALT 43886 | The empty relation is here... |
| he0 43887 | Any relation is hereditary... |
| unhe1 43888 | The union of two relations... |
| snhesn 43889 | Any singleton is hereditar... |
| idhe 43890 | The identity relation is h... |
| psshepw 43891 | The relation between sets ... |
| sshepw 43892 | The relation between sets ... |
| rp-simp2-frege 43895 | Simplification of triple c... |
| rp-simp2 43896 | Simplification of triple c... |
| rp-frege3g 43897 | Add antecedent to ~ ax-fre... |
| frege3 43898 | Add antecedent to ~ ax-fre... |
| rp-misc1-frege 43899 | Double-use of ~ ax-frege2 ... |
| rp-frege24 43900 | Introducing an embedded an... |
| rp-frege4g 43901 | Deduction related to distr... |
| frege4 43902 | Special case of closed for... |
| frege5 43903 | A closed form of ~ syl . ... |
| rp-7frege 43904 | Distribute antecedent and ... |
| rp-4frege 43905 | Elimination of a nested an... |
| rp-6frege 43906 | Elimination of a nested an... |
| rp-8frege 43907 | Eliminate antecedent when ... |
| rp-frege25 43908 | Closed form for ~ a1dd . ... |
| frege6 43909 | A closed form of ~ imim2d ... |
| axfrege8 43910 | Swap antecedents. Identic... |
| frege7 43911 | A closed form of ~ syl6 . ... |
| frege26 43913 | Identical to ~ idd . Prop... |
| frege27 43914 | We cannot (at the same tim... |
| frege9 43915 | Closed form of ~ syl with ... |
| frege12 43916 | A closed form of ~ com23 .... |
| frege11 43917 | Elimination of a nested an... |
| frege24 43918 | Closed form for ~ a1d . D... |
| frege16 43919 | A closed form of ~ com34 .... |
| frege25 43920 | Closed form for ~ a1dd . ... |
| frege18 43921 | Closed form of a syllogism... |
| frege22 43922 | A closed form of ~ com45 .... |
| frege10 43923 | Result commuting anteceden... |
| frege17 43924 | A closed form of ~ com3l .... |
| frege13 43925 | A closed form of ~ com3r .... |
| frege14 43926 | Closed form of a deduction... |
| frege19 43927 | A closed form of ~ syl6 . ... |
| frege23 43928 | Syllogism followed by rota... |
| frege15 43929 | A closed form of ~ com4r .... |
| frege21 43930 | Replace antecedent in ante... |
| frege20 43931 | A closed form of ~ syl8 . ... |
| axfrege28 43932 | Contraposition. Identical... |
| frege29 43934 | Closed form of ~ con3d . ... |
| frege30 43935 | Commuted, closed form of ~... |
| axfrege31 43936 | Identical to ~ notnotr . ... |
| frege32 43938 | Deduce ~ con1 from ~ con3 ... |
| frege33 43939 | If ` ph ` or ` ps ` takes ... |
| frege34 43940 | If as a consequence of the... |
| frege35 43941 | Commuted, closed form of ~... |
| frege36 43942 | The case in which ` ps ` i... |
| frege37 43943 | If ` ch ` is a necessary c... |
| frege38 43944 | Identical to ~ pm2.21 . P... |
| frege39 43945 | Syllogism between ~ pm2.18... |
| frege40 43946 | Anything implies ~ pm2.18 ... |
| axfrege41 43947 | Identical to ~ notnot . A... |
| frege42 43949 | Not not ~ id . Propositio... |
| frege43 43950 | If there is a choice only ... |
| frege44 43951 | Similar to a commuted ~ pm... |
| frege45 43952 | Deduce ~ pm2.6 from ~ con1... |
| frege46 43953 | If ` ps ` holds when ` ph ... |
| frege47 43954 | Deduce consequence follows... |
| frege48 43955 | Closed form of syllogism w... |
| frege49 43956 | Closed form of deduction w... |
| frege50 43957 | Closed form of ~ jaoi . P... |
| frege51 43958 | Compare with ~ jaod . Pro... |
| axfrege52a 43959 | Justification for ~ ax-fre... |
| frege52aid 43961 | The case when the content ... |
| frege53aid 43962 | Specialization of ~ frege5... |
| frege53a 43963 | Lemma for ~ frege55a . Pr... |
| axfrege54a 43964 | Justification for ~ ax-fre... |
| frege54cor0a 43966 | Synonym for logical equiva... |
| frege54cor1a 43967 | Reflexive equality. (Cont... |
| frege55aid 43968 | Lemma for ~ frege57aid . ... |
| frege55lem1a 43969 | Necessary deduction regard... |
| frege55lem2a 43970 | Core proof of Proposition ... |
| frege55a 43971 | Proposition 55 of [Frege18... |
| frege55cor1a 43972 | Proposition 55 of [Frege18... |
| frege56aid 43973 | Lemma for ~ frege57aid . ... |
| frege56a 43974 | Proposition 56 of [Frege18... |
| frege57aid 43975 | This is the all important ... |
| frege57a 43976 | Analogue of ~ frege57aid .... |
| axfrege58a 43977 | Identical to ~ anifp . Ju... |
| frege58acor 43979 | Lemma for ~ frege59a . (C... |
| frege59a 43980 | A kind of Aristotelian inf... |
| frege60a 43981 | Swap antecedents of ~ ax-f... |
| frege61a 43982 | Lemma for ~ frege65a . Pr... |
| frege62a 43983 | A kind of Aristotelian inf... |
| frege63a 43984 | Proposition 63 of [Frege18... |
| frege64a 43985 | Lemma for ~ frege65a . Pr... |
| frege65a 43986 | A kind of Aristotelian inf... |
| frege66a 43987 | Swap antecedents of ~ freg... |
| frege67a 43988 | Lemma for ~ frege68a . Pr... |
| frege68a 43989 | Combination of applying a ... |
| axfrege52c 43990 | Justification for ~ ax-fre... |
| frege52b 43992 | The case when the content ... |
| frege53b 43993 | Lemma for frege102 (via ~ ... |
| axfrege54c 43994 | Reflexive equality of clas... |
| frege54b 43996 | Reflexive equality of sets... |
| frege54cor1b 43997 | Reflexive equality. (Cont... |
| frege55lem1b 43998 | Necessary deduction regard... |
| frege55lem2b 43999 | Lemma for ~ frege55b . Co... |
| frege55b 44000 | Lemma for ~ frege57b . Pr... |
| frege56b 44001 | Lemma for ~ frege57b . Pr... |
| frege57b 44002 | Analogue of ~ frege57aid .... |
| axfrege58b 44003 | If ` A. x ph ` is affirmed... |
| frege58bid 44005 | If ` A. x ph ` is affirmed... |
| frege58bcor 44006 | Lemma for ~ frege59b . (C... |
| frege59b 44007 | A kind of Aristotelian inf... |
| frege60b 44008 | Swap antecedents of ~ ax-f... |
| frege61b 44009 | Lemma for ~ frege65b . Pr... |
| frege62b 44010 | A kind of Aristotelian inf... |
| frege63b 44011 | Lemma for ~ frege91 . Pro... |
| frege64b 44012 | Lemma for ~ frege65b . Pr... |
| frege65b 44013 | A kind of Aristotelian inf... |
| frege66b 44014 | Swap antecedents of ~ freg... |
| frege67b 44015 | Lemma for ~ frege68b . Pr... |
| frege68b 44016 | Combination of applying a ... |
| frege53c 44017 | Proposition 53 of [Frege18... |
| frege54cor1c 44018 | Reflexive equality. (Cont... |
| frege55lem1c 44019 | Necessary deduction regard... |
| frege55lem2c 44020 | Core proof of Proposition ... |
| frege55c 44021 | Proposition 55 of [Frege18... |
| frege56c 44022 | Lemma for ~ frege57c . Pr... |
| frege57c 44023 | Swap order of implication ... |
| frege58c 44024 | Principle related to ~ sp ... |
| frege59c 44025 | A kind of Aristotelian inf... |
| frege60c 44026 | Swap antecedents of ~ freg... |
| frege61c 44027 | Lemma for ~ frege65c . Pr... |
| frege62c 44028 | A kind of Aristotelian inf... |
| frege63c 44029 | Analogue of ~ frege63b . ... |
| frege64c 44030 | Lemma for ~ frege65c . Pr... |
| frege65c 44031 | A kind of Aristotelian inf... |
| frege66c 44032 | Swap antecedents of ~ freg... |
| frege67c 44033 | Lemma for ~ frege68c . Pr... |
| frege68c 44034 | Combination of applying a ... |
| dffrege69 44035 | If from the proposition th... |
| frege70 44036 | Lemma for ~ frege72 . Pro... |
| frege71 44037 | Lemma for ~ frege72 . Pro... |
| frege72 44038 | If property ` A ` is hered... |
| frege73 44039 | Lemma for ~ frege87 . Pro... |
| frege74 44040 | If ` X ` has a property ` ... |
| frege75 44041 | If from the proposition th... |
| dffrege76 44042 | If from the two propositio... |
| frege77 44043 | If ` Y ` follows ` X ` in ... |
| frege78 44044 | Commuted form of ~ frege77... |
| frege79 44045 | Distributed form of ~ freg... |
| frege80 44046 | Add additional condition t... |
| frege81 44047 | If ` X ` has a property ` ... |
| frege82 44048 | Closed-form deduction base... |
| frege83 44049 | Apply commuted form of ~ f... |
| frege84 44050 | Commuted form of ~ frege81... |
| frege85 44051 | Commuted form of ~ frege77... |
| frege86 44052 | Conclusion about element o... |
| frege87 44053 | If ` Z ` is a result of an... |
| frege88 44054 | Commuted form of ~ frege87... |
| frege89 44055 | One direction of ~ dffrege... |
| frege90 44056 | Add antecedent to ~ frege8... |
| frege91 44057 | Every result of an applica... |
| frege92 44058 | Inference from ~ frege91 .... |
| frege93 44059 | Necessary condition for tw... |
| frege94 44060 | Looking one past a pair re... |
| frege95 44061 | Looking one past a pair re... |
| frege96 44062 | Every result of an applica... |
| frege97 44063 | The property of following ... |
| frege98 44064 | If ` Y ` follows ` X ` and... |
| dffrege99 44065 | If ` Z ` is identical with... |
| frege100 44066 | One direction of ~ dffrege... |
| frege101 44067 | Lemma for ~ frege102 . Pr... |
| frege102 44068 | If ` Z ` belongs to the ` ... |
| frege103 44069 | Proposition 103 of [Frege1... |
| frege104 44070 | Proposition 104 of [Frege1... |
| frege105 44071 | Proposition 105 of [Frege1... |
| frege106 44072 | Whatever follows ` X ` in ... |
| frege107 44073 | Proposition 107 of [Frege1... |
| frege108 44074 | If ` Y ` belongs to the ` ... |
| frege109 44075 | The property of belonging ... |
| frege110 44076 | Proposition 110 of [Frege1... |
| frege111 44077 | If ` Y ` belongs to the ` ... |
| frege112 44078 | Identity implies belonging... |
| frege113 44079 | Proposition 113 of [Frege1... |
| frege114 44080 | If ` X ` belongs to the ` ... |
| dffrege115 44081 | If from the circumstance t... |
| frege116 44082 | One direction of ~ dffrege... |
| frege117 44083 | Lemma for ~ frege118 . Pr... |
| frege118 44084 | Simplified application of ... |
| frege119 44085 | Lemma for ~ frege120 . Pr... |
| frege120 44086 | Simplified application of ... |
| frege121 44087 | Lemma for ~ frege122 . Pr... |
| frege122 44088 | If ` X ` is a result of an... |
| frege123 44089 | Lemma for ~ frege124 . Pr... |
| frege124 44090 | If ` X ` is a result of an... |
| frege125 44091 | Lemma for ~ frege126 . Pr... |
| frege126 44092 | If ` M ` follows ` Y ` in ... |
| frege127 44093 | Communte antecedents of ~ ... |
| frege128 44094 | Lemma for ~ frege129 . Pr... |
| frege129 44095 | If the procedure ` R ` is ... |
| frege130 44096 | Lemma for ~ frege131 . Pr... |
| frege131 44097 | If the procedure ` R ` is ... |
| frege132 44098 | Lemma for ~ frege133 . Pr... |
| frege133 44099 | If the procedure ` R ` is ... |
| enrelmap 44100 | The set of all possible re... |
| enrelmapr 44101 | The set of all possible re... |
| enmappw 44102 | The set of all mappings fr... |
| enmappwid 44103 | The set of all mappings fr... |
| rfovd 44104 | Value of the operator, ` (... |
| rfovfvd 44105 | Value of the operator, ` (... |
| rfovfvfvd 44106 | Value of the operator, ` (... |
| rfovcnvf1od 44107 | Properties of the operator... |
| rfovcnvd 44108 | Value of the converse of t... |
| rfovf1od 44109 | The value of the operator,... |
| rfovcnvfvd 44110 | Value of the converse of t... |
| fsovd 44111 | Value of the operator, ` (... |
| fsovrfovd 44112 | The operator which gives a... |
| fsovfvd 44113 | Value of the operator, ` (... |
| fsovfvfvd 44114 | Value of the operator, ` (... |
| fsovfd 44115 | The operator, ` ( A O B ) ... |
| fsovcnvlem 44116 | The ` O ` operator, which ... |
| fsovcnvd 44117 | The value of the converse ... |
| fsovcnvfvd 44118 | The value of the converse ... |
| fsovf1od 44119 | The value of ` ( A O B ) `... |
| dssmapfvd 44120 | Value of the duality opera... |
| dssmapfv2d 44121 | Value of the duality opera... |
| dssmapfv3d 44122 | Value of the duality opera... |
| dssmapnvod 44123 | For any base set ` B ` the... |
| dssmapf1od 44124 | For any base set ` B ` the... |
| dssmap2d 44125 | For any base set ` B ` the... |
| or3or 44126 | Decompose disjunction into... |
| andi3or 44127 | Distribute over triple dis... |
| uneqsn 44128 | If a union of classes is e... |
| brfvimex 44129 | If a binary relation holds... |
| brovmptimex 44130 | If a binary relation holds... |
| brovmptimex1 44131 | If a binary relation holds... |
| brovmptimex2 44132 | If a binary relation holds... |
| brcoffn 44133 | Conditions allowing the de... |
| brcofffn 44134 | Conditions allowing the de... |
| brco2f1o 44135 | Conditions allowing the de... |
| brco3f1o 44136 | Conditions allowing the de... |
| ntrclsbex 44137 | If (pseudo-)interior and (... |
| ntrclsrcomplex 44138 | The relative complement of... |
| neik0imk0p 44139 | Kuratowski's K0 axiom impl... |
| ntrk2imkb 44140 | If an interior function is... |
| ntrkbimka 44141 | If the interiors of disjoi... |
| ntrk0kbimka 44142 | If the interiors of disjoi... |
| clsk3nimkb 44143 | If the base set is not emp... |
| clsk1indlem0 44144 | The ansatz closure functio... |
| clsk1indlem2 44145 | The ansatz closure functio... |
| clsk1indlem3 44146 | The ansatz closure functio... |
| clsk1indlem4 44147 | The ansatz closure functio... |
| clsk1indlem1 44148 | The ansatz closure functio... |
| clsk1independent 44149 | For generalized closure fu... |
| neik0pk1imk0 44150 | Kuratowski's K0' and K1 ax... |
| isotone1 44151 | Two different ways to say ... |
| isotone2 44152 | Two different ways to say ... |
| ntrk1k3eqk13 44153 | An interior function is bo... |
| ntrclsf1o 44154 | If (pseudo-)interior and (... |
| ntrclsnvobr 44155 | If (pseudo-)interior and (... |
| ntrclsiex 44156 | If (pseudo-)interior and (... |
| ntrclskex 44157 | If (pseudo-)interior and (... |
| ntrclsfv1 44158 | If (pseudo-)interior and (... |
| ntrclsfv2 44159 | If (pseudo-)interior and (... |
| ntrclselnel1 44160 | If (pseudo-)interior and (... |
| ntrclselnel2 44161 | If (pseudo-)interior and (... |
| ntrclsfv 44162 | The value of the interior ... |
| ntrclsfveq1 44163 | If interior and closure fu... |
| ntrclsfveq2 44164 | If interior and closure fu... |
| ntrclsfveq 44165 | If interior and closure fu... |
| ntrclsss 44166 | If interior and closure fu... |
| ntrclsneine0lem 44167 | If (pseudo-)interior and (... |
| ntrclsneine0 44168 | If (pseudo-)interior and (... |
| ntrclscls00 44169 | If (pseudo-)interior and (... |
| ntrclsiso 44170 | If (pseudo-)interior and (... |
| ntrclsk2 44171 | An interior function is co... |
| ntrclskb 44172 | The interiors of disjoint ... |
| ntrclsk3 44173 | The intersection of interi... |
| ntrclsk13 44174 | The interior of the inters... |
| ntrclsk4 44175 | Idempotence of the interio... |
| ntrneibex 44176 | If (pseudo-)interior and (... |
| ntrneircomplex 44177 | The relative complement of... |
| ntrneif1o 44178 | If (pseudo-)interior and (... |
| ntrneiiex 44179 | If (pseudo-)interior and (... |
| ntrneinex 44180 | If (pseudo-)interior and (... |
| ntrneicnv 44181 | If (pseudo-)interior and (... |
| ntrneifv1 44182 | If (pseudo-)interior and (... |
| ntrneifv2 44183 | If (pseudo-)interior and (... |
| ntrneiel 44184 | If (pseudo-)interior and (... |
| ntrneifv3 44185 | The value of the neighbors... |
| ntrneineine0lem 44186 | If (pseudo-)interior and (... |
| ntrneineine1lem 44187 | If (pseudo-)interior and (... |
| ntrneifv4 44188 | The value of the interior ... |
| ntrneiel2 44189 | Membership in iterated int... |
| ntrneineine0 44190 | If (pseudo-)interior and (... |
| ntrneineine1 44191 | If (pseudo-)interior and (... |
| ntrneicls00 44192 | If (pseudo-)interior and (... |
| ntrneicls11 44193 | If (pseudo-)interior and (... |
| ntrneiiso 44194 | If (pseudo-)interior and (... |
| ntrneik2 44195 | An interior function is co... |
| ntrneix2 44196 | An interior (closure) func... |
| ntrneikb 44197 | The interiors of disjoint ... |
| ntrneixb 44198 | The interiors (closures) o... |
| ntrneik3 44199 | The intersection of interi... |
| ntrneix3 44200 | The closure of the union o... |
| ntrneik13 44201 | The interior of the inters... |
| ntrneix13 44202 | The closure of the union o... |
| ntrneik4w 44203 | Idempotence of the interio... |
| ntrneik4 44204 | Idempotence of the interio... |
| clsneibex 44205 | If (pseudo-)closure and (p... |
| clsneircomplex 44206 | The relative complement of... |
| clsneif1o 44207 | If a (pseudo-)closure func... |
| clsneicnv 44208 | If a (pseudo-)closure func... |
| clsneikex 44209 | If closure and neighborhoo... |
| clsneinex 44210 | If closure and neighborhoo... |
| clsneiel1 44211 | If a (pseudo-)closure func... |
| clsneiel2 44212 | If a (pseudo-)closure func... |
| clsneifv3 44213 | Value of the neighborhoods... |
| clsneifv4 44214 | Value of the closure (inte... |
| neicvgbex 44215 | If (pseudo-)neighborhood a... |
| neicvgrcomplex 44216 | The relative complement of... |
| neicvgf1o 44217 | If neighborhood and conver... |
| neicvgnvo 44218 | If neighborhood and conver... |
| neicvgnvor 44219 | If neighborhood and conver... |
| neicvgmex 44220 | If the neighborhoods and c... |
| neicvgnex 44221 | If the neighborhoods and c... |
| neicvgel1 44222 | A subset being an element ... |
| neicvgel2 44223 | The complement of a subset... |
| neicvgfv 44224 | The value of the neighborh... |
| ntrrn 44225 | The range of the interior ... |
| ntrf 44226 | The interior function of a... |
| ntrf2 44227 | The interior function is a... |
| ntrelmap 44228 | The interior function is a... |
| clsf2 44229 | The closure function is a ... |
| clselmap 44230 | The closure function is a ... |
| dssmapntrcls 44231 | The interior and closure o... |
| dssmapclsntr 44232 | The closure and interior o... |
| gneispa 44233 | Each point ` p ` of the ne... |
| gneispb 44234 | Given a neighborhood ` N `... |
| gneispace2 44235 | The predicate that ` F ` i... |
| gneispace3 44236 | The predicate that ` F ` i... |
| gneispace 44237 | The predicate that ` F ` i... |
| gneispacef 44238 | A generic neighborhood spa... |
| gneispacef2 44239 | A generic neighborhood spa... |
| gneispacefun 44240 | A generic neighborhood spa... |
| gneispacern 44241 | A generic neighborhood spa... |
| gneispacern2 44242 | A generic neighborhood spa... |
| gneispace0nelrn 44243 | A generic neighborhood spa... |
| gneispace0nelrn2 44244 | A generic neighborhood spa... |
| gneispace0nelrn3 44245 | A generic neighborhood spa... |
| gneispaceel 44246 | Every neighborhood of a po... |
| gneispaceel2 44247 | Every neighborhood of a po... |
| gneispacess 44248 | All supersets of a neighbo... |
| gneispacess2 44249 | All supersets of a neighbo... |
| k0004lem1 44250 | Application of ~ ssin to r... |
| k0004lem2 44251 | A mapping with a particula... |
| k0004lem3 44252 | When the value of a mappin... |
| k0004val 44253 | The topological simplex of... |
| k0004ss1 44254 | The topological simplex of... |
| k0004ss2 44255 | The topological simplex of... |
| k0004ss3 44256 | The topological simplex of... |
| k0004val0 44257 | The topological simplex of... |
| inductionexd 44258 | Simple induction example. ... |
| wwlemuld 44259 | Natural deduction form of ... |
| leeq1d 44260 | Specialization of ~ breq1d... |
| leeq2d 44261 | Specialization of ~ breq2d... |
| absmulrposd 44262 | Specialization of absmuld ... |
| imadisjld 44263 | Natural dduction form of o... |
| wnefimgd 44264 | The image of a mapping fro... |
| fco2d 44265 | Natural deduction form of ... |
| wfximgfd 44266 | The value of a function on... |
| extoimad 44267 | If |f(x)| <= C for all x t... |
| imo72b2lem0 44268 | Lemma for ~ imo72b2 . (Co... |
| suprleubrd 44269 | Natural deduction form of ... |
| imo72b2lem2 44270 | Lemma for ~ imo72b2 . (Co... |
| suprlubrd 44271 | Natural deduction form of ... |
| imo72b2lem1 44272 | Lemma for ~ imo72b2 . (Co... |
| lemuldiv3d 44273 | 'Less than or equal to' re... |
| lemuldiv4d 44274 | 'Less than or equal to' re... |
| imo72b2 44275 | IMO 1972 B2. (14th Intern... |
| int-addcomd 44276 | AdditionCommutativity gene... |
| int-addassocd 44277 | AdditionAssociativity gene... |
| int-addsimpd 44278 | AdditionSimplification gen... |
| int-mulcomd 44279 | MultiplicationCommutativit... |
| int-mulassocd 44280 | MultiplicationAssociativit... |
| int-mulsimpd 44281 | MultiplicationSimplificati... |
| int-leftdistd 44282 | AdditionMultiplicationLeft... |
| int-rightdistd 44283 | AdditionMultiplicationRigh... |
| int-sqdefd 44284 | SquareDefinition generator... |
| int-mul11d 44285 | First MultiplicationOne ge... |
| int-mul12d 44286 | Second MultiplicationOne g... |
| int-add01d 44287 | First AdditionZero generat... |
| int-add02d 44288 | Second AdditionZero genera... |
| int-sqgeq0d 44289 | SquareGEQZero generator ru... |
| int-eqprincd 44290 | PrincipleOfEquality genera... |
| int-eqtransd 44291 | EqualityTransitivity gener... |
| int-eqmvtd 44292 | EquMoveTerm generator rule... |
| int-eqineqd 44293 | EquivalenceImpliesDoubleIn... |
| int-ineqmvtd 44294 | IneqMoveTerm generator rul... |
| int-ineq1stprincd 44295 | FirstPrincipleOfInequality... |
| int-ineq2ndprincd 44296 | SecondPrincipleOfInequalit... |
| int-ineqtransd 44297 | InequalityTransitivity gen... |
| unitadd 44298 | Theorem used in conjunctio... |
| gsumws3 44299 | Valuation of a length 3 wo... |
| gsumws4 44300 | Valuation of a length 4 wo... |
| amgm2d 44301 | Arithmetic-geometric mean ... |
| amgm3d 44302 | Arithmetic-geometric mean ... |
| amgm4d 44303 | Arithmetic-geometric mean ... |
| spALT 44304 | ~ sp can be proven from th... |
| elnelneqd 44305 | Two classes are not equal ... |
| elnelneq2d 44306 | Two classes are not equal ... |
| rr-spce 44307 | Prove an existential. (Co... |
| rexlimdvaacbv 44308 | Unpack a restricted existe... |
| rexlimddvcbvw 44309 | Unpack a restricted existe... |
| rexlimddvcbv 44310 | Unpack a restricted existe... |
| rr-elrnmpt3d 44311 | Elementhood in an image se... |
| rr-phpd 44312 | Equivalent of ~ php withou... |
| tfindsd 44313 | Deduction associated with ... |
| mnringvald 44316 | Value of the monoid ring f... |
| mnringnmulrd 44317 | Components of a monoid rin... |
| mnringbased 44318 | The base set of a monoid r... |
| mnringbaserd 44319 | The base set of a monoid r... |
| mnringelbased 44320 | Membership in the base set... |
| mnringbasefd 44321 | Elements of a monoid ring ... |
| mnringbasefsuppd 44322 | Elements of a monoid ring ... |
| mnringaddgd 44323 | The additive operation of ... |
| mnring0gd 44324 | The additive identity of a... |
| mnring0g2d 44325 | The additive identity of a... |
| mnringmulrd 44326 | The ring product of a mono... |
| mnringscad 44327 | The scalar ring of a monoi... |
| mnringvscad 44328 | The scalar product of a mo... |
| mnringlmodd 44329 | Monoid rings are left modu... |
| mnringmulrvald 44330 | Value of multiplication in... |
| mnringmulrcld 44331 | Monoid rings are closed un... |
| gru0eld 44332 | A nonempty Grothendieck un... |
| grusucd 44333 | Grothendieck universes are... |
| r1rankcld 44334 | Any rank of the cumulative... |
| grur1cld 44335 | Grothendieck universes are... |
| grurankcld 44336 | Grothendieck universes are... |
| grurankrcld 44337 | If a Grothendieck universe... |
| scotteqd 44340 | Equality theorem for the S... |
| scotteq 44341 | Closed form of ~ scotteqd ... |
| nfscott 44342 | Bound-variable hypothesis ... |
| scottabf 44343 | Value of the Scott operati... |
| scottab 44344 | Value of the Scott operati... |
| scottabes 44345 | Value of the Scott operati... |
| scottss 44346 | Scott's trick produces a s... |
| elscottab 44347 | An element of the output o... |
| scottex2 44348 | ~ scottex expressed using ... |
| scotteld 44349 | The Scott operation sends ... |
| scottelrankd 44350 | Property of a Scott's tric... |
| scottrankd 44351 | Rank of a nonempty Scott's... |
| gruscottcld 44352 | If a Grothendieck universe... |
| dfcoll2 44355 | Alternate definition of th... |
| colleq12d 44356 | Equality theorem for the c... |
| colleq1 44357 | Equality theorem for the c... |
| colleq2 44358 | Equality theorem for the c... |
| nfcoll 44359 | Bound-variable hypothesis ... |
| collexd 44360 | The output of the collecti... |
| cpcolld 44361 | Property of the collection... |
| cpcoll2d 44362 | ~ cpcolld with an extra ex... |
| grucollcld 44363 | A Grothendieck universe co... |
| ismnu 44364 | The hypothesis of this the... |
| mnuop123d 44365 | Operations of a minimal un... |
| mnussd 44366 | Minimal universes are clos... |
| mnuss2d 44367 | ~ mnussd with arguments pr... |
| mnu0eld 44368 | A nonempty minimal univers... |
| mnuop23d 44369 | Second and third operation... |
| mnupwd 44370 | Minimal universes are clos... |
| mnusnd 44371 | Minimal universes are clos... |
| mnuprssd 44372 | A minimal universe contain... |
| mnuprss2d 44373 | Special case of ~ mnuprssd... |
| mnuop3d 44374 | Third operation of a minim... |
| mnuprdlem1 44375 | Lemma for ~ mnuprd . (Con... |
| mnuprdlem2 44376 | Lemma for ~ mnuprd . (Con... |
| mnuprdlem3 44377 | Lemma for ~ mnuprd . (Con... |
| mnuprdlem4 44378 | Lemma for ~ mnuprd . Gene... |
| mnuprd 44379 | Minimal universes are clos... |
| mnuunid 44380 | Minimal universes are clos... |
| mnuund 44381 | Minimal universes are clos... |
| mnutrcld 44382 | Minimal universes contain ... |
| mnutrd 44383 | Minimal universes are tran... |
| mnurndlem1 44384 | Lemma for ~ mnurnd . (Con... |
| mnurndlem2 44385 | Lemma for ~ mnurnd . Dedu... |
| mnurnd 44386 | Minimal universes contain ... |
| mnugrud 44387 | Minimal universes are Grot... |
| grumnudlem 44388 | Lemma for ~ grumnud . (Co... |
| grumnud 44389 | Grothendieck universes are... |
| grumnueq 44390 | The class of Grothendieck ... |
| expandan 44391 | Expand conjunction to prim... |
| expandexn 44392 | Expand an existential quan... |
| expandral 44393 | Expand a restricted univer... |
| expandrexn 44394 | Expand a restricted existe... |
| expandrex 44395 | Expand a restricted existe... |
| expanduniss 44396 | Expand ` U. A C_ B ` to pr... |
| ismnuprim 44397 | Express the predicate on `... |
| rr-grothprimbi 44398 | Express "every set is cont... |
| inagrud 44399 | Inaccessible levels of the... |
| inaex 44400 | Assuming the Tarski-Grothe... |
| gruex 44401 | Assuming the Tarski-Grothe... |
| rr-groth 44402 | An equivalent of ~ ax-grot... |
| rr-grothprim 44403 | An equivalent of ~ ax-grot... |
| ismnushort 44404 | Express the predicate on `... |
| dfuniv2 44405 | Alternative definition of ... |
| rr-grothshortbi 44406 | Express "every set is cont... |
| rr-grothshort 44407 | A shorter equivalent of ~ ... |
| nanorxor 44408 | 'nand' is equivalent to th... |
| undisjrab 44409 | Union of two disjoint rest... |
| iso0 44410 | The empty set is an ` R , ... |
| ssrecnpr 44411 | ` RR ` is a subset of both... |
| seff 44412 | Let set ` S ` be the real ... |
| sblpnf 44413 | The infinity ball in the a... |
| prmunb2 44414 | The primes are unbounded. ... |
| dvgrat 44415 | Ratio test for divergence ... |
| cvgdvgrat 44416 | Ratio test for convergence... |
| radcnvrat 44417 | Let ` L ` be the limit, if... |
| reldvds 44418 | The divides relation is in... |
| nznngen 44419 | All positive integers in t... |
| nzss 44420 | The set of multiples of _m... |
| nzin 44421 | The intersection of the se... |
| nzprmdif 44422 | Subtract one prime's multi... |
| hashnzfz 44423 | Special case of ~ hashdvds... |
| hashnzfz2 44424 | Special case of ~ hashnzfz... |
| hashnzfzclim 44425 | As the upper bound ` K ` o... |
| caofcan 44426 | Transfer a cancellation la... |
| ofsubid 44427 | Function analogue of ~ sub... |
| ofmul12 44428 | Function analogue of ~ mul... |
| ofdivrec 44429 | Function analogue of ~ div... |
| ofdivcan4 44430 | Function analogue of ~ div... |
| ofdivdiv2 44431 | Function analogue of ~ div... |
| lhe4.4ex1a 44432 | Example of the Fundamental... |
| dvsconst 44433 | Derivative of a constant f... |
| dvsid 44434 | Derivative of the identity... |
| dvsef 44435 | Derivative of the exponent... |
| expgrowthi 44436 | Exponential growth and dec... |
| dvconstbi 44437 | The derivative of a functi... |
| expgrowth 44438 | Exponential growth and dec... |
| bccval 44441 | Value of the generalized b... |
| bcccl 44442 | Closure of the generalized... |
| bcc0 44443 | The generalized binomial c... |
| bccp1k 44444 | Generalized binomial coeff... |
| bccm1k 44445 | Generalized binomial coeff... |
| bccn0 44446 | Generalized binomial coeff... |
| bccn1 44447 | Generalized binomial coeff... |
| bccbc 44448 | The binomial coefficient a... |
| uzmptshftfval 44449 | When ` F ` is a maps-to fu... |
| dvradcnv2 44450 | The radius of convergence ... |
| binomcxplemwb 44451 | Lemma for ~ binomcxp . Th... |
| binomcxplemnn0 44452 | Lemma for ~ binomcxp . Wh... |
| binomcxplemrat 44453 | Lemma for ~ binomcxp . As... |
| binomcxplemfrat 44454 | Lemma for ~ binomcxp . ~ b... |
| binomcxplemradcnv 44455 | Lemma for ~ binomcxp . By... |
| binomcxplemdvbinom 44456 | Lemma for ~ binomcxp . By... |
| binomcxplemcvg 44457 | Lemma for ~ binomcxp . Th... |
| binomcxplemdvsum 44458 | Lemma for ~ binomcxp . Th... |
| binomcxplemnotnn0 44459 | Lemma for ~ binomcxp . Wh... |
| binomcxp 44460 | Generalize the binomial th... |
| pm10.12 44461 | Theorem *10.12 in [Whitehe... |
| pm10.14 44462 | Theorem *10.14 in [Whitehe... |
| pm10.251 44463 | Theorem *10.251 in [Whiteh... |
| pm10.252 44464 | Theorem *10.252 in [Whiteh... |
| pm10.253 44465 | Theorem *10.253 in [Whiteh... |
| albitr 44466 | Theorem *10.301 in [Whiteh... |
| pm10.42 44467 | Theorem *10.42 in [Whitehe... |
| pm10.52 44468 | Theorem *10.52 in [Whitehe... |
| pm10.53 44469 | Theorem *10.53 in [Whitehe... |
| pm10.541 44470 | Theorem *10.541 in [Whiteh... |
| pm10.542 44471 | Theorem *10.542 in [Whiteh... |
| pm10.55 44472 | Theorem *10.55 in [Whitehe... |
| pm10.56 44473 | Theorem *10.56 in [Whitehe... |
| pm10.57 44474 | Theorem *10.57 in [Whitehe... |
| 2alanimi 44475 | Removes two universal quan... |
| 2al2imi 44476 | Removes two universal quan... |
| pm11.11 44477 | Theorem *11.11 in [Whitehe... |
| pm11.12 44478 | Theorem *11.12 in [Whitehe... |
| 19.21vv 44479 | Compare Theorem *11.3 in [... |
| 2alim 44480 | Theorem *11.32 in [Whitehe... |
| 2albi 44481 | Theorem *11.33 in [Whitehe... |
| 2exim 44482 | Theorem *11.34 in [Whitehe... |
| 2exbi 44483 | Theorem *11.341 in [Whiteh... |
| spsbce-2 44484 | Theorem *11.36 in [Whitehe... |
| 19.33-2 44485 | Theorem *11.421 in [Whiteh... |
| 19.36vv 44486 | Theorem *11.43 in [Whitehe... |
| 19.31vv 44487 | Theorem *11.44 in [Whitehe... |
| 19.37vv 44488 | Theorem *11.46 in [Whitehe... |
| 19.28vv 44489 | Theorem *11.47 in [Whitehe... |
| pm11.52 44490 | Theorem *11.52 in [Whitehe... |
| aaanv 44491 | Theorem *11.56 in [Whitehe... |
| pm11.57 44492 | Theorem *11.57 in [Whitehe... |
| pm11.58 44493 | Theorem *11.58 in [Whitehe... |
| pm11.59 44494 | Theorem *11.59 in [Whitehe... |
| pm11.6 44495 | Theorem *11.6 in [Whitehea... |
| pm11.61 44496 | Theorem *11.61 in [Whitehe... |
| pm11.62 44497 | Theorem *11.62 in [Whitehe... |
| pm11.63 44498 | Theorem *11.63 in [Whitehe... |
| pm11.7 44499 | Theorem *11.7 in [Whitehea... |
| pm11.71 44500 | Theorem *11.71 in [Whitehe... |
| sbeqal1 44501 | If ` x = y ` always implie... |
| sbeqal1i 44502 | Suppose you know ` x = y `... |
| sbeqal2i 44503 | If ` x = y ` implies ` x =... |
| axc5c4c711 44504 | Proof of a theorem that ca... |
| axc5c4c711toc5 44505 | Rederivation of ~ sp from ... |
| axc5c4c711toc4 44506 | Rederivation of ~ axc4 fro... |
| axc5c4c711toc7 44507 | Rederivation of ~ axc7 fro... |
| axc5c4c711to11 44508 | Rederivation of ~ ax-11 fr... |
| axc11next 44509 | This theorem shows that, g... |
| pm13.13a 44510 | One result of theorem *13.... |
| pm13.13b 44511 | Theorem *13.13 in [Whitehe... |
| pm13.14 44512 | Theorem *13.14 in [Whitehe... |
| pm13.192 44513 | Theorem *13.192 in [Whiteh... |
| pm13.193 44514 | Theorem *13.193 in [Whiteh... |
| pm13.194 44515 | Theorem *13.194 in [Whiteh... |
| pm13.195 44516 | Theorem *13.195 in [Whiteh... |
| pm13.196a 44517 | Theorem *13.196 in [Whiteh... |
| 2sbc6g 44518 | Theorem *13.21 in [Whitehe... |
| 2sbc5g 44519 | Theorem *13.22 in [Whitehe... |
| iotain 44520 | Equivalence between two di... |
| iotaexeu 44521 | The iota class exists. Th... |
| iotasbc 44522 | Definition *14.01 in [Whit... |
| iotasbc2 44523 | Theorem *14.111 in [Whiteh... |
| pm14.12 44524 | Theorem *14.12 in [Whitehe... |
| pm14.122a 44525 | Theorem *14.122 in [Whiteh... |
| pm14.122b 44526 | Theorem *14.122 in [Whiteh... |
| pm14.122c 44527 | Theorem *14.122 in [Whiteh... |
| pm14.123a 44528 | Theorem *14.123 in [Whiteh... |
| pm14.123b 44529 | Theorem *14.123 in [Whiteh... |
| pm14.123c 44530 | Theorem *14.123 in [Whiteh... |
| pm14.18 44531 | Theorem *14.18 in [Whitehe... |
| iotaequ 44532 | Theorem *14.2 in [Whitehea... |
| iotavalb 44533 | Theorem *14.202 in [Whiteh... |
| iotasbc5 44534 | Theorem *14.205 in [Whiteh... |
| pm14.24 44535 | Theorem *14.24 in [Whitehe... |
| iotavalsb 44536 | Theorem *14.242 in [Whiteh... |
| sbiota1 44537 | Theorem *14.25 in [Whitehe... |
| sbaniota 44538 | Theorem *14.26 in [Whitehe... |
| iotasbcq 44539 | Theorem *14.272 in [Whiteh... |
| elnev 44540 | Any set that contains one ... |
| rusbcALT 44541 | A version of Russell's par... |
| compeq 44542 | Equality between two ways ... |
| compne 44543 | The complement of ` A ` is... |
| compab 44544 | Two ways of saying "the co... |
| conss2 44545 | Contrapositive law for sub... |
| conss1 44546 | Contrapositive law for sub... |
| ralbidar 44547 | More general form of ~ ral... |
| rexbidar 44548 | More general form of ~ rex... |
| dropab1 44549 | Theorem to aid use of the ... |
| dropab2 44550 | Theorem to aid use of the ... |
| ipo0 44551 | If the identity relation p... |
| ifr0 44552 | A class that is founded by... |
| ordpss 44553 | ~ ordelpss with an anteced... |
| fvsb 44554 | Explicit substitution of a... |
| fveqsb 44555 | Implicit substitution of a... |
| xpexb 44556 | A Cartesian product exists... |
| trelpss 44557 | An element of a transitive... |
| addcomgi 44558 | Generalization of commutat... |
| addrval 44568 | Value of the operation of ... |
| subrval 44569 | Value of the operation of ... |
| mulvval 44570 | Value of the operation of ... |
| addrfv 44571 | Vector addition at a value... |
| subrfv 44572 | Vector subtraction at a va... |
| mulvfv 44573 | Scalar multiplication at a... |
| addrfn 44574 | Vector addition produces a... |
| subrfn 44575 | Vector subtraction produce... |
| mulvfn 44576 | Scalar multiplication prod... |
| addrcom 44577 | Vector addition is commuta... |
| idiALT 44581 | Placeholder for ~ idi . T... |
| exbir 44582 | Exportation implication al... |
| 3impexpbicom 44583 | Version of ~ 3impexp where... |
| 3impexpbicomi 44584 | Inference associated with ... |
| bi1imp 44585 | Importation inference simi... |
| bi2imp 44586 | Importation inference simi... |
| bi3impb 44587 | Similar to ~ 3impb with im... |
| bi3impa 44588 | Similar to ~ 3impa with im... |
| bi23impib 44589 | ~ 3impib with the inner im... |
| bi13impib 44590 | ~ 3impib with the outer im... |
| bi123impib 44591 | ~ 3impib with the implicat... |
| bi13impia 44592 | ~ 3impia with the outer im... |
| bi123impia 44593 | ~ 3impia with the implicat... |
| bi33imp12 44594 | ~ 3imp with innermost impl... |
| bi13imp23 44595 | ~ 3imp with outermost impl... |
| bi13imp2 44596 | Similar to ~ 3imp except t... |
| bi12imp3 44597 | Similar to ~ 3imp except a... |
| bi23imp1 44598 | Similar to ~ 3imp except a... |
| bi123imp0 44599 | Similar to ~ 3imp except a... |
| 4animp1 44600 | A single hypothesis unific... |
| 4an31 44601 | A rearrangement of conjunc... |
| 4an4132 44602 | A rearrangement of conjunc... |
| expcomdg 44603 | Biconditional form of ~ ex... |
| iidn3 44604 | ~ idn3 without virtual ded... |
| ee222 44605 | ~ e222 without virtual ded... |
| ee3bir 44606 | Right-biconditional form o... |
| ee13 44607 | ~ e13 without virtual dedu... |
| ee121 44608 | ~ e121 without virtual ded... |
| ee122 44609 | ~ e122 without virtual ded... |
| ee333 44610 | ~ e333 without virtual ded... |
| ee323 44611 | ~ e323 without virtual ded... |
| 3ornot23 44612 | If the second and third di... |
| orbi1r 44613 | ~ orbi1 with order of disj... |
| 3orbi123 44614 | ~ pm4.39 with a 3-conjunct... |
| syl5imp 44615 | Closed form of ~ syl5 . D... |
| impexpd 44616 | The following User's Proof... |
| com3rgbi 44617 | The following User's Proof... |
| impexpdcom 44618 | The following User's Proof... |
| ee1111 44619 | Non-virtual deduction form... |
| pm2.43bgbi 44620 | Logical equivalence of a 2... |
| pm2.43cbi 44621 | Logical equivalence of a 3... |
| ee233 44622 | Non-virtual deduction form... |
| imbi13 44623 | Join three logical equival... |
| ee33 44624 | Non-virtual deduction form... |
| con5 44625 | Biconditional contrapositi... |
| con5i 44626 | Inference form of ~ con5 .... |
| exlimexi 44627 | Inference similar to Theor... |
| sb5ALT 44628 | Equivalence for substituti... |
| eexinst01 44629 | ~ exinst01 without virtual... |
| eexinst11 44630 | ~ exinst11 without virtual... |
| vk15.4j 44631 | Excercise 4j of Unit 15 of... |
| notnotrALT 44632 | Converse of double negatio... |
| con3ALT2 44633 | Contraposition. Alternate... |
| ssralv2 44634 | Quantification restricted ... |
| sbc3or 44635 | ~ sbcor with a 3-disjuncts... |
| alrim3con13v 44636 | Closed form of ~ alrimi wi... |
| rspsbc2 44637 | ~ rspsbc with two quantify... |
| sbcoreleleq 44638 | Substitution of a setvar v... |
| tratrb 44639 | If a class is transitive a... |
| ordelordALT 44640 | An element of an ordinal c... |
| sbcim2g 44641 | Distribution of class subs... |
| sbcbi 44642 | Implication form of ~ sbcb... |
| trsbc 44643 | Formula-building inference... |
| truniALT 44644 | The union of a class of tr... |
| onfrALTlem5 44645 | Lemma for ~ onfrALT . (Co... |
| onfrALTlem4 44646 | Lemma for ~ onfrALT . (Co... |
| onfrALTlem3 44647 | Lemma for ~ onfrALT . (Co... |
| ggen31 44648 | ~ gen31 without virtual de... |
| onfrALTlem2 44649 | Lemma for ~ onfrALT . (Co... |
| cbvexsv 44650 | A theorem pertaining to th... |
| onfrALTlem1 44651 | Lemma for ~ onfrALT . (Co... |
| onfrALT 44652 | The membership relation is... |
| 19.41rg 44653 | Closed form of right-to-le... |
| opelopab4 44654 | Ordered pair membership in... |
| 2pm13.193 44655 | ~ pm13.193 for two variabl... |
| hbntal 44656 | A closed form of ~ hbn . ~... |
| hbimpg 44657 | A closed form of ~ hbim . ... |
| hbalg 44658 | Closed form of ~ hbal . D... |
| hbexg 44659 | Closed form of ~ nfex . D... |
| ax6e2eq 44660 | Alternate form of ~ ax6e f... |
| ax6e2nd 44661 | If at least two sets exist... |
| ax6e2ndeq 44662 | "At least two sets exist" ... |
| 2sb5nd 44663 | Equivalence for double sub... |
| 2uasbanh 44664 | Distribute the unabbreviat... |
| 2uasban 44665 | Distribute the unabbreviat... |
| e2ebind 44666 | Absorption of an existenti... |
| elpwgded 44667 | ~ elpwgdedVD in convention... |
| trelded 44668 | Deduction form of ~ trel .... |
| jaoded 44669 | Deduction form of ~ jao . ... |
| sbtT 44670 | A substitution into a theo... |
| not12an2impnot1 44671 | If a double conjunction is... |
| in1 44674 | Inference form of ~ df-vd1... |
| iin1 44675 | ~ in1 without virtual dedu... |
| dfvd1ir 44676 | Inference form of ~ df-vd1... |
| idn1 44677 | Virtual deduction identity... |
| dfvd1imp 44678 | Left-to-right part of defi... |
| dfvd1impr 44679 | Right-to-left part of defi... |
| dfvd2 44682 | Definition of a 2-hypothes... |
| dfvd2an 44685 | Definition of a 2-hypothes... |
| dfvd2ani 44686 | Inference form of ~ dfvd2a... |
| dfvd2anir 44687 | Right-to-left inference fo... |
| dfvd2i 44688 | Inference form of ~ dfvd2 ... |
| dfvd2ir 44689 | Right-to-left inference fo... |
| dfvd3 44694 | Definition of a 3-hypothes... |
| dfvd3i 44695 | Inference form of ~ dfvd3 ... |
| dfvd3ir 44696 | Right-to-left inference fo... |
| dfvd3an 44697 | Definition of a 3-hypothes... |
| dfvd3ani 44698 | Inference form of ~ dfvd3a... |
| dfvd3anir 44699 | Right-to-left inference fo... |
| vd01 44700 | A virtual hypothesis virtu... |
| vd02 44701 | Two virtual hypotheses vir... |
| vd03 44702 | A theorem is virtually inf... |
| vd12 44703 | A virtual deduction with 1... |
| vd13 44704 | A virtual deduction with 1... |
| vd23 44705 | A virtual deduction with 2... |
| dfvd2imp 44706 | The virtual deduction form... |
| dfvd2impr 44707 | A 2-antecedent nested impl... |
| in2 44708 | The virtual deduction intr... |
| int2 44709 | The virtual deduction intr... |
| iin2 44710 | ~ in2 without virtual dedu... |
| in2an 44711 | The virtual deduction intr... |
| in3 44712 | The virtual deduction intr... |
| iin3 44713 | ~ in3 without virtual dedu... |
| in3an 44714 | The virtual deduction intr... |
| int3 44715 | The virtual deduction intr... |
| idn2 44716 | Virtual deduction identity... |
| iden2 44717 | Virtual deduction identity... |
| idn3 44718 | Virtual deduction identity... |
| gen11 44719 | Virtual deduction generali... |
| gen11nv 44720 | Virtual deduction generali... |
| gen12 44721 | Virtual deduction generali... |
| gen21 44722 | Virtual deduction generali... |
| gen21nv 44723 | Virtual deduction form of ... |
| gen31 44724 | Virtual deduction generali... |
| gen22 44725 | Virtual deduction generali... |
| ggen22 44726 | ~ gen22 without virtual de... |
| exinst 44727 | Existential Instantiation.... |
| exinst01 44728 | Existential Instantiation.... |
| exinst11 44729 | Existential Instantiation.... |
| e1a 44730 | A Virtual deduction elimin... |
| el1 44731 | A Virtual deduction elimin... |
| e1bi 44732 | Biconditional form of ~ e1... |
| e1bir 44733 | Right biconditional form o... |
| e2 44734 | A virtual deduction elimin... |
| e2bi 44735 | Biconditional form of ~ e2... |
| e2bir 44736 | Right biconditional form o... |
| ee223 44737 | ~ e223 without virtual ded... |
| e223 44738 | A virtual deduction elimin... |
| e222 44739 | A virtual deduction elimin... |
| e220 44740 | A virtual deduction elimin... |
| ee220 44741 | ~ e220 without virtual ded... |
| e202 44742 | A virtual deduction elimin... |
| ee202 44743 | ~ e202 without virtual ded... |
| e022 44744 | A virtual deduction elimin... |
| ee022 44745 | ~ e022 without virtual ded... |
| e002 44746 | A virtual deduction elimin... |
| ee002 44747 | ~ e002 without virtual ded... |
| e020 44748 | A virtual deduction elimin... |
| ee020 44749 | ~ e020 without virtual ded... |
| e200 44750 | A virtual deduction elimin... |
| ee200 44751 | ~ e200 without virtual ded... |
| e221 44752 | A virtual deduction elimin... |
| ee221 44753 | ~ e221 without virtual ded... |
| e212 44754 | A virtual deduction elimin... |
| ee212 44755 | ~ e212 without virtual ded... |
| e122 44756 | A virtual deduction elimin... |
| e112 44757 | A virtual deduction elimin... |
| ee112 44758 | ~ e112 without virtual ded... |
| e121 44759 | A virtual deduction elimin... |
| e211 44760 | A virtual deduction elimin... |
| ee211 44761 | ~ e211 without virtual ded... |
| e210 44762 | A virtual deduction elimin... |
| ee210 44763 | ~ e210 without virtual ded... |
| e201 44764 | A virtual deduction elimin... |
| ee201 44765 | ~ e201 without virtual ded... |
| e120 44766 | A virtual deduction elimin... |
| ee120 44767 | Virtual deduction rule ~ e... |
| e021 44768 | A virtual deduction elimin... |
| ee021 44769 | ~ e021 without virtual ded... |
| e012 44770 | A virtual deduction elimin... |
| ee012 44771 | ~ e012 without virtual ded... |
| e102 44772 | A virtual deduction elimin... |
| ee102 44773 | ~ e102 without virtual ded... |
| e22 44774 | A virtual deduction elimin... |
| e22an 44775 | Conjunction form of ~ e22 ... |
| ee22an 44776 | ~ e22an without virtual de... |
| e111 44777 | A virtual deduction elimin... |
| e1111 44778 | A virtual deduction elimin... |
| e110 44779 | A virtual deduction elimin... |
| ee110 44780 | ~ e110 without virtual ded... |
| e101 44781 | A virtual deduction elimin... |
| ee101 44782 | ~ e101 without virtual ded... |
| e011 44783 | A virtual deduction elimin... |
| ee011 44784 | ~ e011 without virtual ded... |
| e100 44785 | A virtual deduction elimin... |
| ee100 44786 | ~ e100 without virtual ded... |
| e010 44787 | A virtual deduction elimin... |
| ee010 44788 | ~ e010 without virtual ded... |
| e001 44789 | A virtual deduction elimin... |
| ee001 44790 | ~ e001 without virtual ded... |
| e11 44791 | A virtual deduction elimin... |
| e11an 44792 | Conjunction form of ~ e11 ... |
| ee11an 44793 | ~ e11an without virtual de... |
| e01 44794 | A virtual deduction elimin... |
| e01an 44795 | Conjunction form of ~ e01 ... |
| ee01an 44796 | ~ e01an without virtual de... |
| e10 44797 | A virtual deduction elimin... |
| e10an 44798 | Conjunction form of ~ e10 ... |
| ee10an 44799 | ~ e10an without virtual de... |
| e02 44800 | A virtual deduction elimin... |
| e02an 44801 | Conjunction form of ~ e02 ... |
| ee02an 44802 | ~ e02an without virtual de... |
| eel021old 44803 | ~ el021old without virtual... |
| el021old 44804 | A virtual deduction elimin... |
| eel000cT 44805 | An elimination deduction. ... |
| eel0TT 44806 | An elimination deduction. ... |
| eelT00 44807 | An elimination deduction. ... |
| eelTTT 44808 | An elimination deduction. ... |
| eelT11 44809 | An elimination deduction. ... |
| eelT1 44810 | Syllogism inference combin... |
| eelT12 44811 | An elimination deduction. ... |
| eelTT1 44812 | An elimination deduction. ... |
| eelT01 44813 | An elimination deduction. ... |
| eel0T1 44814 | An elimination deduction. ... |
| eel12131 44815 | An elimination deduction. ... |
| eel2131 44816 | ~ syl2an with antecedents ... |
| eel3132 44817 | ~ syl2an with antecedents ... |
| eel0321old 44818 | ~ el0321old without virtua... |
| el0321old 44819 | A virtual deduction elimin... |
| eel2122old 44820 | ~ el2122old without virtua... |
| el2122old 44821 | A virtual deduction elimin... |
| eel0000 44822 | Elimination rule similar t... |
| eel00001 44823 | An elimination deduction. ... |
| eel00000 44824 | Elimination rule similar ~... |
| eel11111 44825 | Five-hypothesis eliminatio... |
| e12 44826 | A virtual deduction elimin... |
| e12an 44827 | Conjunction form of ~ e12 ... |
| el12 44828 | Virtual deduction form of ... |
| e20 44829 | A virtual deduction elimin... |
| e20an 44830 | Conjunction form of ~ e20 ... |
| ee20an 44831 | ~ e20an without virtual de... |
| e21 44832 | A virtual deduction elimin... |
| e21an 44833 | Conjunction form of ~ e21 ... |
| ee21an 44834 | ~ e21an without virtual de... |
| e333 44835 | A virtual deduction elimin... |
| e33 44836 | A virtual deduction elimin... |
| e33an 44837 | Conjunction form of ~ e33 ... |
| ee33an 44838 | ~ e33an without virtual de... |
| e3 44839 | Meta-connective form of ~ ... |
| e3bi 44840 | Biconditional form of ~ e3... |
| e3bir 44841 | Right biconditional form o... |
| e03 44842 | A virtual deduction elimin... |
| ee03 44843 | ~ e03 without virtual dedu... |
| e03an 44844 | Conjunction form of ~ e03 ... |
| ee03an 44845 | Conjunction form of ~ ee03... |
| e30 44846 | A virtual deduction elimin... |
| ee30 44847 | ~ e30 without virtual dedu... |
| e30an 44848 | A virtual deduction elimin... |
| ee30an 44849 | Conjunction form of ~ ee30... |
| e13 44850 | A virtual deduction elimin... |
| e13an 44851 | A virtual deduction elimin... |
| ee13an 44852 | ~ e13an without virtual de... |
| e31 44853 | A virtual deduction elimin... |
| ee31 44854 | ~ e31 without virtual dedu... |
| e31an 44855 | A virtual deduction elimin... |
| ee31an 44856 | ~ e31an without virtual de... |
| e23 44857 | A virtual deduction elimin... |
| e23an 44858 | A virtual deduction elimin... |
| ee23an 44859 | ~ e23an without virtual de... |
| e32 44860 | A virtual deduction elimin... |
| ee32 44861 | ~ e32 without virtual dedu... |
| e32an 44862 | A virtual deduction elimin... |
| ee32an 44863 | ~ e33an without virtual de... |
| e123 44864 | A virtual deduction elimin... |
| ee123 44865 | ~ e123 without virtual ded... |
| el123 44866 | A virtual deduction elimin... |
| e233 44867 | A virtual deduction elimin... |
| e323 44868 | A virtual deduction elimin... |
| e000 44869 | A virtual deduction elimin... |
| e00 44870 | Elimination rule identical... |
| e00an 44871 | Elimination rule identical... |
| eel00cT 44872 | An elimination deduction. ... |
| eelTT 44873 | An elimination deduction. ... |
| e0a 44874 | Elimination rule identical... |
| eelT 44875 | An elimination deduction. ... |
| eel0cT 44876 | An elimination deduction. ... |
| eelT0 44877 | An elimination deduction. ... |
| e0bi 44878 | Elimination rule identical... |
| e0bir 44879 | Elimination rule identical... |
| uun0.1 44880 | Convention notation form o... |
| un0.1 44881 | ` T. ` is the constant tru... |
| uunT1 44882 | A deduction unionizing a n... |
| uunT1p1 44883 | A deduction unionizing a n... |
| uunT21 44884 | A deduction unionizing a n... |
| uun121 44885 | A deduction unionizing a n... |
| uun121p1 44886 | A deduction unionizing a n... |
| uun132 44887 | A deduction unionizing a n... |
| uun132p1 44888 | A deduction unionizing a n... |
| anabss7p1 44889 | A deduction unionizing a n... |
| un10 44890 | A unionizing deduction. (... |
| un01 44891 | A unionizing deduction. (... |
| un2122 44892 | A deduction unionizing a n... |
| uun2131 44893 | A deduction unionizing a n... |
| uun2131p1 44894 | A deduction unionizing a n... |
| uunTT1 44895 | A deduction unionizing a n... |
| uunTT1p1 44896 | A deduction unionizing a n... |
| uunTT1p2 44897 | A deduction unionizing a n... |
| uunT11 44898 | A deduction unionizing a n... |
| uunT11p1 44899 | A deduction unionizing a n... |
| uunT11p2 44900 | A deduction unionizing a n... |
| uunT12 44901 | A deduction unionizing a n... |
| uunT12p1 44902 | A deduction unionizing a n... |
| uunT12p2 44903 | A deduction unionizing a n... |
| uunT12p3 44904 | A deduction unionizing a n... |
| uunT12p4 44905 | A deduction unionizing a n... |
| uunT12p5 44906 | A deduction unionizing a n... |
| uun111 44907 | A deduction unionizing a n... |
| 3anidm12p1 44908 | A deduction unionizing a n... |
| 3anidm12p2 44909 | A deduction unionizing a n... |
| uun123 44910 | A deduction unionizing a n... |
| uun123p1 44911 | A deduction unionizing a n... |
| uun123p2 44912 | A deduction unionizing a n... |
| uun123p3 44913 | A deduction unionizing a n... |
| uun123p4 44914 | A deduction unionizing a n... |
| uun2221 44915 | A deduction unionizing a n... |
| uun2221p1 44916 | A deduction unionizing a n... |
| uun2221p2 44917 | A deduction unionizing a n... |
| 3impdirp1 44918 | A deduction unionizing a n... |
| 3impcombi 44919 | A 1-hypothesis proposition... |
| trsspwALT 44920 | Virtual deduction proof of... |
| trsspwALT2 44921 | Virtual deduction proof of... |
| trsspwALT3 44922 | Short predicate calculus p... |
| sspwtr 44923 | Virtual deduction proof of... |
| sspwtrALT 44924 | Virtual deduction proof of... |
| sspwtrALT2 44925 | Short predicate calculus p... |
| pwtrVD 44926 | Virtual deduction proof of... |
| pwtrrVD 44927 | Virtual deduction proof of... |
| suctrALT 44928 | The successor of a transit... |
| snssiALTVD 44929 | Virtual deduction proof of... |
| snssiALT 44930 | If a class is an element o... |
| snsslVD 44931 | Virtual deduction proof of... |
| snssl 44932 | If a singleton is a subcla... |
| snelpwrVD 44933 | Virtual deduction proof of... |
| unipwrVD 44934 | Virtual deduction proof of... |
| unipwr 44935 | A class is a subclass of t... |
| sstrALT2VD 44936 | Virtual deduction proof of... |
| sstrALT2 44937 | Virtual deduction proof of... |
| suctrALT2VD 44938 | Virtual deduction proof of... |
| suctrALT2 44939 | Virtual deduction proof of... |
| elex2VD 44940 | Virtual deduction proof of... |
| elex22VD 44941 | Virtual deduction proof of... |
| eqsbc2VD 44942 | Virtual deduction proof of... |
| zfregs2VD 44943 | Virtual deduction proof of... |
| tpid3gVD 44944 | Virtual deduction proof of... |
| en3lplem1VD 44945 | Virtual deduction proof of... |
| en3lplem2VD 44946 | Virtual deduction proof of... |
| en3lpVD 44947 | Virtual deduction proof of... |
| simplbi2VD 44948 | Virtual deduction proof of... |
| 3ornot23VD 44949 | Virtual deduction proof of... |
| orbi1rVD 44950 | Virtual deduction proof of... |
| bitr3VD 44951 | Virtual deduction proof of... |
| 3orbi123VD 44952 | Virtual deduction proof of... |
| sbc3orgVD 44953 | Virtual deduction proof of... |
| 19.21a3con13vVD 44954 | Virtual deduction proof of... |
| exbirVD 44955 | Virtual deduction proof of... |
| exbiriVD 44956 | Virtual deduction proof of... |
| rspsbc2VD 44957 | Virtual deduction proof of... |
| 3impexpVD 44958 | Virtual deduction proof of... |
| 3impexpbicomVD 44959 | Virtual deduction proof of... |
| 3impexpbicomiVD 44960 | Virtual deduction proof of... |
| sbcoreleleqVD 44961 | Virtual deduction proof of... |
| hbra2VD 44962 | Virtual deduction proof of... |
| tratrbVD 44963 | Virtual deduction proof of... |
| al2imVD 44964 | Virtual deduction proof of... |
| syl5impVD 44965 | Virtual deduction proof of... |
| idiVD 44966 | Virtual deduction proof of... |
| ancomstVD 44967 | Closed form of ~ ancoms . ... |
| ssralv2VD 44968 | Quantification restricted ... |
| ordelordALTVD 44969 | An element of an ordinal c... |
| equncomVD 44970 | If a class equals the unio... |
| equncomiVD 44971 | Inference form of ~ equnco... |
| sucidALTVD 44972 | A set belongs to its succe... |
| sucidALT 44973 | A set belongs to its succe... |
| sucidVD 44974 | A set belongs to its succe... |
| imbi12VD 44975 | Implication form of ~ imbi... |
| imbi13VD 44976 | Join three logical equival... |
| sbcim2gVD 44977 | Distribution of class subs... |
| sbcbiVD 44978 | Implication form of ~ sbcb... |
| trsbcVD 44979 | Formula-building inference... |
| truniALTVD 44980 | The union of a class of tr... |
| ee33VD 44981 | Non-virtual deduction form... |
| trintALTVD 44982 | The intersection of a clas... |
| trintALT 44983 | The intersection of a clas... |
| undif3VD 44984 | The first equality of Exer... |
| sbcssgVD 44985 | Virtual deduction proof of... |
| csbingVD 44986 | Virtual deduction proof of... |
| onfrALTlem5VD 44987 | Virtual deduction proof of... |
| onfrALTlem4VD 44988 | Virtual deduction proof of... |
| onfrALTlem3VD 44989 | Virtual deduction proof of... |
| simplbi2comtVD 44990 | Virtual deduction proof of... |
| onfrALTlem2VD 44991 | Virtual deduction proof of... |
| onfrALTlem1VD 44992 | Virtual deduction proof of... |
| onfrALTVD 44993 | Virtual deduction proof of... |
| csbeq2gVD 44994 | Virtual deduction proof of... |
| csbsngVD 44995 | Virtual deduction proof of... |
| csbxpgVD 44996 | Virtual deduction proof of... |
| csbresgVD 44997 | Virtual deduction proof of... |
| csbrngVD 44998 | Virtual deduction proof of... |
| csbima12gALTVD 44999 | Virtual deduction proof of... |
| csbunigVD 45000 | Virtual deduction proof of... |
| csbfv12gALTVD 45001 | Virtual deduction proof of... |
| con5VD 45002 | Virtual deduction proof of... |
| relopabVD 45003 | Virtual deduction proof of... |
| 19.41rgVD 45004 | Virtual deduction proof of... |
| 2pm13.193VD 45005 | Virtual deduction proof of... |
| hbimpgVD 45006 | Virtual deduction proof of... |
| hbalgVD 45007 | Virtual deduction proof of... |
| hbexgVD 45008 | Virtual deduction proof of... |
| ax6e2eqVD 45009 | The following User's Proof... |
| ax6e2ndVD 45010 | The following User's Proof... |
| ax6e2ndeqVD 45011 | The following User's Proof... |
| 2sb5ndVD 45012 | The following User's Proof... |
| 2uasbanhVD 45013 | The following User's Proof... |
| e2ebindVD 45014 | The following User's Proof... |
| sb5ALTVD 45015 | The following User's Proof... |
| vk15.4jVD 45016 | The following User's Proof... |
| notnotrALTVD 45017 | The following User's Proof... |
| con3ALTVD 45018 | The following User's Proof... |
| elpwgdedVD 45019 | Membership in a power clas... |
| sspwimp 45020 | If a class is a subclass o... |
| sspwimpVD 45021 | The following User's Proof... |
| sspwimpcf 45022 | If a class is a subclass o... |
| sspwimpcfVD 45023 | The following User's Proof... |
| suctrALTcf 45024 | The successor of a transit... |
| suctrALTcfVD 45025 | The following User's Proof... |
| suctrALT3 45026 | The successor of a transit... |
| sspwimpALT 45027 | If a class is a subclass o... |
| unisnALT 45028 | A set equals the union of ... |
| notnotrALT2 45029 | Converse of double negatio... |
| sspwimpALT2 45030 | If a class is a subclass o... |
| e2ebindALT 45031 | Absorption of an existenti... |
| ax6e2ndALT 45032 | If at least two sets exist... |
| ax6e2ndeqALT 45033 | "At least two sets exist" ... |
| 2sb5ndALT 45034 | Equivalence for double sub... |
| chordthmALT 45035 | The intersecting chords th... |
| isosctrlem1ALT 45036 | Lemma for ~ isosctr . Thi... |
| iunconnlem2 45037 | The indexed union of conne... |
| iunconnALT 45038 | The indexed union of conne... |
| sineq0ALT 45039 | A complex number whose sin... |
| rspesbcd 45040 | Restricted quantifier vers... |
| rext0 45041 | Nonempty existential quant... |
| dfbi1ALTa 45042 | Version of ~ dfbi1ALT usin... |
| simprimi 45043 | Inference associated with ... |
| dfbi1ALTb 45044 | Further shorten ~ dfbi1ALT... |
| relpeq1 45047 | Equality theorem for relat... |
| relpeq2 45048 | Equality theorem for relat... |
| relpeq3 45049 | Equality theorem for relat... |
| relpeq4 45050 | Equality theorem for relat... |
| relpeq5 45051 | Equality theorem for relat... |
| nfrelp 45052 | Bound-variable hypothesis ... |
| relpf 45053 | A relation-preserving func... |
| relprel 45054 | A relation-preserving func... |
| relpmin 45055 | A preimage of a minimal el... |
| relpfrlem 45056 | Lemma for ~ relpfr . Prov... |
| relpfr 45057 | If the image of a set unde... |
| orbitex 45058 | Orbits exist. Given a set... |
| orbitinit 45059 | A set is contained in its ... |
| orbitcl 45060 | The orbit under a function... |
| orbitclmpt 45061 | Version of ~ orbitcl using... |
| trwf 45062 | The class of well-founded ... |
| rankrelp 45063 | The rank function preserve... |
| wffr 45064 | The class of well-founded ... |
| trfr 45065 | A transitive class well-fo... |
| tcfr 45066 | A set is well-founded if a... |
| xpwf 45067 | The Cartesian product of t... |
| dmwf 45068 | The domain of a well-found... |
| rnwf 45069 | The range of a well-founde... |
| relwf 45070 | A relation is a well-found... |
| ralabso 45071 | Simplification of restrict... |
| rexabso 45072 | Simplification of restrict... |
| ralabsod 45073 | Deduction form of ~ ralabs... |
| rexabsod 45074 | Deduction form of ~ rexabs... |
| ralabsobidv 45075 | Formula-building lemma for... |
| rexabsobidv 45076 | Formula-building lemma for... |
| ssabso 45077 | The notion " ` x ` is a su... |
| disjabso 45078 | Disjointness is absolute f... |
| n0abso 45079 | Nonemptiness is absolute f... |
| traxext 45080 | A transitive class models ... |
| modelaxreplem1 45081 | Lemma for ~ modelaxrep . ... |
| modelaxreplem2 45082 | Lemma for ~ modelaxrep . ... |
| modelaxreplem3 45083 | Lemma for ~ modelaxrep . ... |
| modelaxrep 45084 | Conditions which guarantee... |
| ssclaxsep 45085 | A class that is closed und... |
| 0elaxnul 45086 | A class that contains the ... |
| pwclaxpow 45087 | Suppose ` M ` is a transit... |
| prclaxpr 45088 | A class that is closed und... |
| uniclaxun 45089 | A class that is closed und... |
| sswfaxreg 45090 | A subclass of the class of... |
| omssaxinf2 45091 | A class that contains all ... |
| omelaxinf2 45092 | A transitive class that co... |
| dfac5prim 45093 | ~ dfac5 expanded into prim... |
| ac8prim 45094 | ~ ac8 expanded into primit... |
| modelac8prim 45095 | If ` M ` is a transitive c... |
| wfaxext 45096 | The class of well-founded ... |
| wfaxrep 45097 | The class of well-founded ... |
| wfaxsep 45098 | The class of well-founded ... |
| wfaxnul 45099 | The class of well-founded ... |
| wfaxpow 45100 | The class of well-founded ... |
| wfaxpr 45101 | The class of well-founded ... |
| wfaxun 45102 | The class of well-founded ... |
| wfaxreg 45103 | The class of well-founded ... |
| wfaxinf2 45104 | The class of well-founded ... |
| wfac8prim 45105 | The class of well-founded ... |
| brpermmodel 45106 | The membership relation in... |
| brpermmodelcnv 45107 | Ordinary membership expres... |
| permaxext 45108 | The Axiom of Extensionalit... |
| permaxrep 45109 | The Axiom of Replacement ~... |
| permaxsep 45110 | The Axiom of Separation ~ ... |
| permaxnul 45111 | The Null Set Axiom ~ ax-nu... |
| permaxpow 45112 | The Axiom of Power Sets ~ ... |
| permaxpr 45113 | The Axiom of Pairing ~ ax-... |
| permaxun 45114 | The Axiom of Union ~ ax-un... |
| permaxinf2lem 45115 | Lemma for ~ permaxinf2 . ... |
| permaxinf2 45116 | The Axiom of Infinity ~ ax... |
| permac8prim 45117 | The Axiom of Choice ~ ac8p... |
| nregmodelf1o 45118 | Define a permutation ` F `... |
| nregmodellem 45119 | Lemma for ~ nregmodel . (... |
| nregmodel 45120 | The Axiom of Regularity ~ ... |
| nregmodelaxext 45121 | The Axiom of Extensionalit... |
| evth2f 45122 | A version of ~ evth2 using... |
| elunif 45123 | A version of ~ eluni using... |
| rzalf 45124 | A version of ~ rzal using ... |
| fvelrnbf 45125 | A version of ~ fvelrnb usi... |
| rfcnpre1 45126 | If F is a continuous funct... |
| ubelsupr 45127 | If U belongs to A and U is... |
| fsumcnf 45128 | A finite sum of functions ... |
| mulltgt0 45129 | The product of a negative ... |
| rspcegf 45130 | A version of ~ rspcev usin... |
| rabexgf 45131 | A version of ~ rabexg usin... |
| fcnre 45132 | A function continuous with... |
| sumsnd 45133 | A sum of a singleton is th... |
| evthf 45134 | A version of ~ evth using ... |
| cnfex 45135 | The class of continuous fu... |
| fnchoice 45136 | For a finite set, a choice... |
| refsumcn 45137 | A finite sum of continuous... |
| rfcnpre2 45138 | If ` F ` is a continuous f... |
| cncmpmax 45139 | When the hypothesis for th... |
| rfcnpre3 45140 | If F is a continuous funct... |
| rfcnpre4 45141 | If F is a continuous funct... |
| sumpair 45142 | Sum of two distinct comple... |
| rfcnnnub 45143 | Given a real continuous fu... |
| refsum2cnlem1 45144 | This is the core Lemma for... |
| refsum2cn 45145 | The sum of two continuus r... |
| adantlllr 45146 | Deduction adding a conjunc... |
| 3adantlr3 45147 | Deduction adding a conjunc... |
| 3adantll2 45148 | Deduction adding a conjunc... |
| 3adantll3 45149 | Deduction adding a conjunc... |
| ssnel 45150 | If not element of a set, t... |
| sncldre 45151 | A singleton is closed w.r.... |
| n0p 45152 | A polynomial with a nonzer... |
| pm2.65ni 45153 | Inference rule for proof b... |
| iuneq2df 45154 | Equality deduction for ind... |
| nnfoctb 45155 | There exists a mapping fro... |
| elpwinss 45156 | An element of the powerset... |
| unidmex 45157 | If ` F ` is a set, then ` ... |
| ndisj2 45158 | A non-disjointness conditi... |
| zenom 45159 | The set of integer numbers... |
| uzwo4 45160 | Well-ordering principle: a... |
| unisn0 45161 | The union of the singleton... |
| ssin0 45162 | If two classes are disjoin... |
| inabs3 45163 | Absorption law for interse... |
| pwpwuni 45164 | Relationship between power... |
| disjiun2 45165 | In a disjoint collection, ... |
| 0pwfi 45166 | The empty set is in any po... |
| ssinss2d 45167 | Intersection preserves sub... |
| zct 45168 | The set of integer numbers... |
| pwfin0 45169 | A finite set always belong... |
| uzct 45170 | An upper integer set is co... |
| iunxsnf 45171 | A singleton index picks ou... |
| fiiuncl 45172 | If a set is closed under t... |
| iunp1 45173 | The addition of the next s... |
| fiunicl 45174 | If a set is closed under t... |
| ixpeq2d 45175 | Equality theorem for infin... |
| disjxp1 45176 | The sets of a cartesian pr... |
| disjsnxp 45177 | The sets in the cartesian ... |
| eliind 45178 | Membership in indexed inte... |
| rspcef 45179 | Restricted existential spe... |
| ixpssmapc 45180 | An infinite Cartesian prod... |
| elintd 45181 | Membership in class inters... |
| ssdf 45182 | A sufficient condition for... |
| brneqtrd 45183 | Substitution of equal clas... |
| ssnct 45184 | A set containing an uncoun... |
| ssuniint 45185 | Sufficient condition for b... |
| elintdv 45186 | Membership in class inters... |
| ssd 45187 | A sufficient condition for... |
| ralimralim 45188 | Introducing any antecedent... |
| snelmap 45189 | Membership of the element ... |
| xrnmnfpnf 45190 | An extended real that is n... |
| nelrnmpt 45191 | Non-membership in the rang... |
| iuneq1i 45192 | Equality theorem for index... |
| nssrex 45193 | Negation of subclass relat... |
| ssinc 45194 | Inclusion relation for a m... |
| ssdec 45195 | Inclusion relation for a m... |
| elixpconstg 45196 | Membership in an infinite ... |
| iineq1d 45197 | Equality theorem for index... |
| metpsmet 45198 | A metric is a pseudometric... |
| ixpssixp 45199 | Subclass theorem for infin... |
| ballss3 45200 | A sufficient condition for... |
| iunincfi 45201 | Given a sequence of increa... |
| nsstr 45202 | If it's not a subclass, it... |
| rexanuz3 45203 | Combine two different uppe... |
| cbvmpo2 45204 | Rule to change the second ... |
| cbvmpo1 45205 | Rule to change the first b... |
| eliuniin 45206 | Indexed union of indexed i... |
| ssabf 45207 | Subclass of a class abstra... |
| pssnssi 45208 | A proper subclass does not... |
| rabidim2 45209 | Membership in a restricted... |
| eluni2f 45210 | Membership in class union.... |
| eliin2f 45211 | Membership in indexed inte... |
| nssd 45212 | Negation of subclass relat... |
| iineq12dv 45213 | Equality deduction for ind... |
| supxrcld 45214 | The supremum of an arbitra... |
| elrestd 45215 | A sufficient condition for... |
| eliuniincex 45216 | Counterexample to show tha... |
| eliincex 45217 | Counterexample to show tha... |
| eliinid 45218 | Membership in an indexed i... |
| abssf 45219 | Class abstraction in a sub... |
| supxrubd 45220 | A member of a set of exten... |
| ssrabf 45221 | Subclass of a restricted c... |
| ssrabdf 45222 | Subclass of a restricted c... |
| eliin2 45223 | Membership in indexed inte... |
| ssrab2f 45224 | Subclass relation for a re... |
| restuni3 45225 | The underlying set of a su... |
| rabssf 45226 | Restricted class abstracti... |
| eliuniin2 45227 | Indexed union of indexed i... |
| restuni4 45228 | The underlying set of a su... |
| restuni6 45229 | The underlying set of a su... |
| restuni5 45230 | The underlying set of a su... |
| unirestss 45231 | The union of an elementwis... |
| iniin1 45232 | Indexed intersection of in... |
| iniin2 45233 | Indexed intersection of in... |
| cbvrabv2 45234 | A more general version of ... |
| cbvrabv2w 45235 | A more general version of ... |
| iinssiin 45236 | Subset implication for an ... |
| eliind2 45237 | Membership in indexed inte... |
| iinssd 45238 | Subset implication for an ... |
| rabbida2 45239 | Equivalent wff's yield equ... |
| iinexd 45240 | The existence of an indexe... |
| rabexf 45241 | Separation Scheme in terms... |
| rabbida3 45242 | Equivalent wff's yield equ... |
| r19.36vf 45243 | Restricted quantifier vers... |
| raleqd 45244 | Equality deduction for res... |
| iinssf 45245 | Subset implication for an ... |
| iinssdf 45246 | Subset implication for an ... |
| resabs2i 45247 | Absorption law for restric... |
| ssdf2 45248 | A sufficient condition for... |
| rabssd 45249 | Restricted class abstracti... |
| rexnegd 45250 | Minus a real number. (Con... |
| rexlimd3 45251 | * Inference from Theorem 1... |
| nel1nelini 45252 | Membership in an intersect... |
| nel2nelini 45253 | Membership in an intersect... |
| eliunid 45254 | Membership in indexed unio... |
| reximdd 45255 | Deduction from Theorem 19.... |
| inopnd 45256 | The intersection of two op... |
| ss2rabdf 45257 | Deduction of restricted ab... |
| restopn3 45258 | If ` A ` is open, then ` A... |
| restopnssd 45259 | A topology restricted to a... |
| restsubel 45260 | A subset belongs in the sp... |
| toprestsubel 45261 | A subset is open in the to... |
| rabidd 45262 | An "identity" law of concr... |
| iunssdf 45263 | Subset theorem for an inde... |
| iinss2d 45264 | Subset implication for an ... |
| r19.3rzf 45265 | Restricted quantification ... |
| r19.28zf 45266 | Restricted quantifier vers... |
| iindif2f 45267 | Indexed intersection of cl... |
| ralfal 45268 | Two ways of expressing emp... |
| archd 45269 | Archimedean property of re... |
| nimnbi 45270 | If an implication is false... |
| nimnbi2 45271 | If an implication is false... |
| notbicom 45272 | Commutative law for the ne... |
| rexeqif 45273 | Equality inference for res... |
| rspced 45274 | Restricted existential spe... |
| fnresdmss 45275 | A function does not change... |
| fmptsnxp 45276 | Maps-to notation and Carte... |
| fvmpt2bd 45277 | Value of a function given ... |
| rnmptfi 45278 | The range of a function wi... |
| fresin2 45279 | Restriction of a function ... |
| ffi 45280 | A function with finite dom... |
| suprnmpt 45281 | An explicit bound for the ... |
| rnffi 45282 | The range of a function wi... |
| mptelpm 45283 | A function in maps-to nota... |
| rnmptpr 45284 | Range of a function define... |
| resmpti 45285 | Restriction of the mapping... |
| founiiun 45286 | Union expressed as an inde... |
| rnresun 45287 | Distribution law for range... |
| elrnmptf 45288 | The range of a function in... |
| rnmptssrn 45289 | Inclusion relation for two... |
| disjf1 45290 | A 1 to 1 mapping built fro... |
| rnsnf 45291 | The range of a function wh... |
| wessf1ornlem 45292 | Given a function ` F ` on ... |
| wessf1orn 45293 | Given a function ` F ` on ... |
| nelrnres 45294 | If ` A ` is not in the ran... |
| disjrnmpt2 45295 | Disjointness of the range ... |
| elrnmpt1sf 45296 | Elementhood in an image se... |
| founiiun0 45297 | Union expressed as an inde... |
| disjf1o 45298 | A bijection built from dis... |
| disjinfi 45299 | Only a finite number of di... |
| fvovco 45300 | Value of the composition o... |
| ssnnf1octb 45301 | There exists a bijection b... |
| nnf1oxpnn 45302 | There is a bijection betwe... |
| rnmptssd 45303 | The range of a function gi... |
| projf1o 45304 | A biijection from a set to... |
| fvmap 45305 | Function value for a membe... |
| fvixp2 45306 | Projection of a factor of ... |
| choicefi 45307 | For a finite set, a choice... |
| mpct 45308 | The exponentiation of a co... |
| cnmetcoval 45309 | Value of the distance func... |
| fcomptss 45310 | Express composition of two... |
| elmapsnd 45311 | Membership in a set expone... |
| mapss2 45312 | Subset inheritance for set... |
| fsneq 45313 | Equality condition for two... |
| difmap 45314 | Difference of two sets exp... |
| unirnmap 45315 | Given a subset of a set ex... |
| inmap 45316 | Intersection of two sets e... |
| fcoss 45317 | Composition of two mapping... |
| fsneqrn 45318 | Equality condition for two... |
| difmapsn 45319 | Difference of two sets exp... |
| mapssbi 45320 | Subset inheritance for set... |
| unirnmapsn 45321 | Equality theorem for a sub... |
| iunmapss 45322 | The indexed union of set e... |
| ssmapsn 45323 | A subset ` C ` of a set ex... |
| iunmapsn 45324 | The indexed union of set e... |
| absfico 45325 | Mapping domain and codomai... |
| icof 45326 | The set of left-closed rig... |
| elpmrn 45327 | The range of a partial fun... |
| imaexi 45328 | The image of a set is a se... |
| axccdom 45329 | Relax the constraint on ax... |
| dmmptdff 45330 | The domain of the mapping ... |
| dmmptdf 45331 | The domain of the mapping ... |
| elpmi2 45332 | The domain of a partial fu... |
| dmrelrnrel 45333 | A relation preserving func... |
| fvcod 45334 | Value of a function compos... |
| elrnmpoid 45335 | Membership in the range of... |
| axccd 45336 | An alternative version of ... |
| axccd2 45337 | An alternative version of ... |
| feqresmptf 45338 | Express a restricted funct... |
| dmmptssf 45339 | The domain of a mapping is... |
| dmmptdf2 45340 | The domain of the mapping ... |
| dmuz 45341 | Domain of the upper intege... |
| fmptd2f 45342 | Domain and codomain of the... |
| mpteq1df 45343 | An equality theorem for th... |
| mptexf 45344 | If the domain of a functio... |
| fvmpt4 45345 | Value of a function given ... |
| fmptf 45346 | Functionality of the mappi... |
| resimass 45347 | The image of a restriction... |
| mptssid 45348 | The mapping operation expr... |
| mptfnd 45349 | The maps-to notation defin... |
| rnmptlb 45350 | Boundness below of the ran... |
| rnmptbddlem 45351 | Boundness of the range of ... |
| rnmptbdd 45352 | Boundness of the range of ... |
| funimaeq 45353 | Membership relation for th... |
| rnmptssf 45354 | The range of a function gi... |
| rnmptbd2lem 45355 | Boundness below of the ran... |
| rnmptbd2 45356 | Boundness below of the ran... |
| infnsuprnmpt 45357 | The indexed infimum of rea... |
| suprclrnmpt 45358 | Closure of the indexed sup... |
| suprubrnmpt2 45359 | A member of a nonempty ind... |
| suprubrnmpt 45360 | A member of a nonempty ind... |
| rnmptssdf 45361 | The range of a function gi... |
| rnmptbdlem 45362 | Boundness above of the ran... |
| rnmptbd 45363 | Boundness above of the ran... |
| rnmptss2 45364 | The range of a function gi... |
| elmptima 45365 | The image of a function in... |
| ralrnmpt3 45366 | A restricted quantifier ov... |
| rnmptssbi 45367 | The range of a function gi... |
| imass2d 45368 | Subset theorem for image. ... |
| imassmpt 45369 | Membership relation for th... |
| fpmd 45370 | A total function is a part... |
| fconst7 45371 | An alternative way to expr... |
| fnmptif 45372 | Functionality and domain o... |
| dmmptif 45373 | Domain of the mapping oper... |
| mpteq2dfa 45374 | Slightly more general equa... |
| dmmpt1 45375 | The domain of the mapping ... |
| fmptff 45376 | Functionality of the mappi... |
| fvmptelcdmf 45377 | The value of a function at... |
| fmptdff 45378 | A version of ~ fmptd using... |
| fvmpt2df 45379 | Deduction version of ~ fvm... |
| rn1st 45380 | The range of a function wi... |
| rnmptssff 45381 | The range of a function gi... |
| rnmptssdff 45382 | The range of a function gi... |
| fvmpt4d 45383 | Value of a function given ... |
| sub2times 45384 | Subtracting from a number,... |
| nnxrd 45385 | A natural number is an ext... |
| nnxr 45386 | A natural number is an ext... |
| abssubrp 45387 | The distance of two distin... |
| elfzfzo 45388 | Relationship between membe... |
| oddfl 45389 | Odd number representation ... |
| abscosbd 45390 | Bound for the absolute val... |
| mul13d 45391 | Commutative/associative la... |
| negpilt0 45392 | Negative ` _pi ` is negati... |
| dstregt0 45393 | A complex number ` A ` tha... |
| subadd4b 45394 | Rearrangement of 4 terms i... |
| xrlttri5d 45395 | Not equal and not larger i... |
| zltlesub 45396 | If an integer ` N ` is les... |
| divlt0gt0d 45397 | The ratio of a negative nu... |
| subsub23d 45398 | Swap subtrahend and result... |
| 2timesgt 45399 | Double of a positive real ... |
| reopn 45400 | The reals are open with re... |
| sub31 45401 | Swap the first and third t... |
| nnne1ge2 45402 | A positive integer which i... |
| lefldiveq 45403 | A closed enough, smaller r... |
| negsubdi3d 45404 | Distribution of negative o... |
| ltdiv2dd 45405 | Division of a positive num... |
| abssinbd 45406 | Bound for the absolute val... |
| halffl 45407 | Floor of ` ( 1 / 2 ) ` . ... |
| monoords 45408 | Ordering relation for a st... |
| hashssle 45409 | The size of a subset of a ... |
| lttri5d 45410 | Not equal and not larger i... |
| fzisoeu 45411 | A finite ordered set has a... |
| lt3addmuld 45412 | If three real numbers are ... |
| absnpncan2d 45413 | Triangular inequality, com... |
| fperiodmullem 45414 | A function with period ` T... |
| fperiodmul 45415 | A function with period T i... |
| upbdrech 45416 | Choice of an upper bound f... |
| lt4addmuld 45417 | If four real numbers are l... |
| absnpncan3d 45418 | Triangular inequality, com... |
| upbdrech2 45419 | Choice of an upper bound f... |
| ssfiunibd 45420 | A finite union of bounded ... |
| fzdifsuc2 45421 | Remove a successor from th... |
| fzsscn 45422 | A finite sequence of integ... |
| divcan8d 45423 | A cancellation law for div... |
| dmmcand 45424 | Cancellation law for divis... |
| fzssre 45425 | A finite sequence of integ... |
| bccld 45426 | A binomial coefficient, in... |
| fzssnn0 45427 | A finite set of sequential... |
| xreqle 45428 | Equality implies 'less tha... |
| xaddlidd 45429 | ` 0 ` is a left identity f... |
| xadd0ge 45430 | A number is less than or e... |
| xrgtned 45431 | 'Greater than' implies not... |
| xrleneltd 45432 | 'Less than or equal to' an... |
| xaddcomd 45433 | The extended real addition... |
| supxrre3 45434 | The supremum of a nonempty... |
| uzfissfz 45435 | For any finite subset of t... |
| xleadd2d 45436 | Addition of extended reals... |
| suprltrp 45437 | The supremum of a nonempty... |
| xleadd1d 45438 | Addition of extended reals... |
| xreqled 45439 | Equality implies 'less tha... |
| xrgepnfd 45440 | An extended real greater t... |
| xrge0nemnfd 45441 | A nonnegative extended rea... |
| supxrgere 45442 | If a real number can be ap... |
| iuneqfzuzlem 45443 | Lemma for ~ iuneqfzuz : he... |
| iuneqfzuz 45444 | If two unions indexed by u... |
| xle2addd 45445 | Adding both side of two in... |
| supxrgelem 45446 | If an extended real number... |
| supxrge 45447 | If an extended real number... |
| suplesup 45448 | If any element of ` A ` ca... |
| infxrglb 45449 | The infimum of a set of ex... |
| xadd0ge2 45450 | A number is less than or e... |
| nepnfltpnf 45451 | An extended real that is n... |
| ltadd12dd 45452 | Addition to both sides of ... |
| nemnftgtmnft 45453 | An extended real that is n... |
| xrgtso 45454 | 'Greater than' is a strict... |
| rpex 45455 | The positive reals form a ... |
| xrge0ge0 45456 | A nonnegative extended rea... |
| xrssre 45457 | A subset of extended reals... |
| ssuzfz 45458 | A finite subset of the upp... |
| absfun 45459 | The absolute value is a fu... |
| infrpge 45460 | The infimum of a nonempty,... |
| xrlexaddrp 45461 | If an extended real number... |
| supsubc 45462 | The supremum function dist... |
| xralrple2 45463 | Show that ` A ` is less th... |
| nnuzdisj 45464 | The first ` N ` elements o... |
| ltdivgt1 45465 | Divsion by a number greate... |
| xrltned 45466 | 'Less than' implies not eq... |
| nnsplit 45467 | Express the set of positiv... |
| divdiv3d 45468 | Division into a fraction. ... |
| abslt2sqd 45469 | Comparison of the square o... |
| qenom 45470 | The set of rational number... |
| qct 45471 | The set of rational number... |
| lenlteq 45472 | 'less than or equal to' bu... |
| xrred 45473 | An extended real that is n... |
| rr2sscn2 45474 | The cartesian square of ` ... |
| infxr 45475 | The infimum of a set of ex... |
| infxrunb2 45476 | The infimum of an unbounde... |
| infxrbnd2 45477 | The infimum of a bounded-b... |
| infleinflem1 45478 | Lemma for ~ infleinf , cas... |
| infleinflem2 45479 | Lemma for ~ infleinf , whe... |
| infleinf 45480 | If any element of ` B ` ca... |
| xralrple4 45481 | Show that ` A ` is less th... |
| xralrple3 45482 | Show that ` A ` is less th... |
| eluzelzd 45483 | A member of an upper set o... |
| suplesup2 45484 | If any element of ` A ` is... |
| recnnltrp 45485 | ` N ` is a natural number ... |
| nnn0 45486 | The set of positive intege... |
| fzct 45487 | A finite set of sequential... |
| rpgtrecnn 45488 | Any positive real number i... |
| fzossuz 45489 | A half-open integer interv... |
| infxrrefi 45490 | The real and extended real... |
| xrralrecnnle 45491 | Show that ` A ` is less th... |
| fzoct 45492 | A finite set of sequential... |
| frexr 45493 | A function taking real val... |
| nnrecrp 45494 | The reciprocal of a positi... |
| reclt0d 45495 | The reciprocal of a negati... |
| lt0neg1dd 45496 | If a number is negative, i... |
| infxrcld 45497 | The infimum of an arbitrar... |
| xrralrecnnge 45498 | Show that ` A ` is less th... |
| reclt0 45499 | The reciprocal of a negati... |
| ltmulneg 45500 | Multiplying by a negative ... |
| allbutfi 45501 | For all but finitely many.... |
| ltdiv23neg 45502 | Swap denominator with othe... |
| xreqnltd 45503 | A consequence of trichotom... |
| mnfnre2 45504 | Minus infinity is not a re... |
| zssxr 45505 | The integers are a subset ... |
| fisupclrnmpt 45506 | A nonempty finite indexed ... |
| supxrunb3 45507 | The supremum of an unbound... |
| elfzod 45508 | Membership in a half-open ... |
| fimaxre4 45509 | A nonempty finite set of r... |
| ren0 45510 | The set of reals is nonemp... |
| eluzelz2 45511 | A member of an upper set o... |
| resabs2d 45512 | Absorption law for restric... |
| uzid2 45513 | Membership of the least me... |
| supxrleubrnmpt 45514 | The supremum of a nonempty... |
| uzssre2 45515 | An upper set of integers i... |
| uzssd 45516 | Subset relationship for tw... |
| eluzd 45517 | Membership in an upper set... |
| infxrlbrnmpt2 45518 | A member of a nonempty ind... |
| xrre4 45519 | An extended real is real i... |
| uz0 45520 | The upper integers functio... |
| eluzelz2d 45521 | A member of an upper set o... |
| infleinf2 45522 | If any element in ` B ` is... |
| unb2ltle 45523 | "Unbounded below" expresse... |
| uzidd2 45524 | Membership of the least me... |
| uzssd2 45525 | Subset relationship for tw... |
| rexabslelem 45526 | An indexed set of absolute... |
| rexabsle 45527 | An indexed set of absolute... |
| allbutfiinf 45528 | Given a "for all but finit... |
| supxrrernmpt 45529 | The real and extended real... |
| suprleubrnmpt 45530 | The supremum of a nonempty... |
| infrnmptle 45531 | An indexed infimum of exte... |
| infxrunb3 45532 | The infimum of an unbounde... |
| uzn0d 45533 | The upper integers are all... |
| uzssd3 45534 | Subset relationship for tw... |
| rexabsle2 45535 | An indexed set of absolute... |
| infxrunb3rnmpt 45536 | The infimum of an unbounde... |
| supxrre3rnmpt 45537 | The indexed supremum of a ... |
| uzublem 45538 | A set of reals, indexed by... |
| uzub 45539 | A set of reals, indexed by... |
| ssrexr 45540 | A subset of the reals is a... |
| supxrmnf2 45541 | Removing minus infinity fr... |
| supxrcli 45542 | The supremum of an arbitra... |
| uzid3 45543 | Membership of the least me... |
| infxrlesupxr 45544 | The supremum of a nonempty... |
| xnegeqd 45545 | Equality of two extended n... |
| xnegrecl 45546 | The extended real negative... |
| xnegnegi 45547 | Extended real version of ~... |
| xnegeqi 45548 | Equality of two extended n... |
| nfxnegd 45549 | Deduction version of ~ nfx... |
| xnegnegd 45550 | Extended real version of ~... |
| uzred 45551 | An upper integer is a real... |
| xnegcli 45552 | Closure of extended real n... |
| supminfrnmpt 45553 | The indexed supremum of a ... |
| infxrpnf 45554 | Adding plus infinity to a ... |
| infxrrnmptcl 45555 | The infimum of an arbitrar... |
| leneg2d 45556 | Negative of one side of 'l... |
| supxrltinfxr 45557 | The supremum of the empty ... |
| max1d 45558 | A number is less than or e... |
| supxrleubrnmptf 45559 | The supremum of a nonempty... |
| nleltd 45560 | 'Not less than or equal to... |
| zxrd 45561 | An integer is an extended ... |
| infxrgelbrnmpt 45562 | The infimum of an indexed ... |
| rphalfltd 45563 | Half of a positive real is... |
| uzssz2 45564 | An upper set of integers i... |
| leneg3d 45565 | Negative of one side of 'l... |
| max2d 45566 | A number is less than or e... |
| uzn0bi 45567 | The upper integers functio... |
| xnegrecl2 45568 | If the extended real negat... |
| nfxneg 45569 | Bound-variable hypothesis ... |
| uzxrd 45570 | An upper integer is an ext... |
| infxrpnf2 45571 | Removing plus infinity fro... |
| supminfxr 45572 | The extended real suprema ... |
| infrpgernmpt 45573 | The infimum of a nonempty,... |
| xnegre 45574 | An extended real is real i... |
| xnegrecl2d 45575 | If the extended real negat... |
| uzxr 45576 | An upper integer is an ext... |
| supminfxr2 45577 | The extended real suprema ... |
| xnegred 45578 | An extended real is real i... |
| supminfxrrnmpt 45579 | The indexed supremum of a ... |
| min1d 45580 | The minimum of two numbers... |
| min2d 45581 | The minimum of two numbers... |
| xrnpnfmnf 45582 | An extended real that is n... |
| uzsscn 45583 | An upper set of integers i... |
| absimnre 45584 | The absolute value of the ... |
| uzsscn2 45585 | An upper set of integers i... |
| xrtgcntopre 45586 | The standard topologies on... |
| absimlere 45587 | The absolute value of the ... |
| rpssxr 45588 | The positive reals are a s... |
| monoordxrv 45589 | Ordering relation for a mo... |
| monoordxr 45590 | Ordering relation for a mo... |
| monoord2xrv 45591 | Ordering relation for a mo... |
| monoord2xr 45592 | Ordering relation for a mo... |
| xrpnf 45593 | An extended real is plus i... |
| xlenegcon1 45594 | Extended real version of ~... |
| xlenegcon2 45595 | Extended real version of ~... |
| pimxrneun 45596 | The preimage of a set of e... |
| caucvgbf 45597 | A function is convergent i... |
| cvgcau 45598 | A convergent function is C... |
| cvgcaule 45599 | A convergent function is C... |
| rexanuz2nf 45600 | A simple counterexample re... |
| gtnelioc 45601 | A real number larger than ... |
| ioossioc 45602 | An open interval is a subs... |
| ioondisj2 45603 | A condition for two open i... |
| ioondisj1 45604 | A condition for two open i... |
| ioogtlb 45605 | An element of a closed int... |
| evthiccabs 45606 | Extreme Value Theorem on y... |
| ltnelicc 45607 | A real number smaller than... |
| eliood 45608 | Membership in an open real... |
| iooabslt 45609 | An upper bound for the dis... |
| gtnelicc 45610 | A real number greater than... |
| iooinlbub 45611 | An open interval has empty... |
| iocgtlb 45612 | An element of a left-open ... |
| iocleub 45613 | An element of a left-open ... |
| eliccd 45614 | Membership in a closed rea... |
| eliccre 45615 | A member of a closed inter... |
| eliooshift 45616 | Element of an open interva... |
| eliocd 45617 | Membership in a left-open ... |
| icoltub 45618 | An element of a left-close... |
| eliocre 45619 | A member of a left-open ri... |
| iooltub 45620 | An element of an open inte... |
| ioontr 45621 | The interior of an interva... |
| snunioo1 45622 | The closure of one end of ... |
| lbioc 45623 | A left-open right-closed i... |
| ioomidp 45624 | The midpoint is an element... |
| iccdifioo 45625 | If the open inverval is re... |
| iccdifprioo 45626 | An open interval is the cl... |
| ioossioobi 45627 | Biconditional form of ~ io... |
| iccshift 45628 | A closed interval shifted ... |
| iccsuble 45629 | An upper bound to the dist... |
| iocopn 45630 | A left-open right-closed i... |
| eliccelioc 45631 | Membership in a closed int... |
| iooshift 45632 | An open interval shifted b... |
| iccintsng 45633 | Intersection of two adiace... |
| icoiccdif 45634 | Left-closed right-open int... |
| icoopn 45635 | A left-closed right-open i... |
| icoub 45636 | A left-closed, right-open ... |
| eliccxrd 45637 | Membership in a closed rea... |
| pnfel0pnf 45638 | ` +oo ` is a nonnegative e... |
| eliccnelico 45639 | An element of a closed int... |
| eliccelicod 45640 | A member of a closed inter... |
| ge0xrre 45641 | A nonnegative extended rea... |
| ge0lere 45642 | A nonnegative extended Rea... |
| elicores 45643 | Membership in a left-close... |
| inficc 45644 | The infimum of a nonempty ... |
| qinioo 45645 | The rational numbers are d... |
| lenelioc 45646 | A real number smaller than... |
| ioonct 45647 | A nonempty open interval i... |
| xrgtnelicc 45648 | A real number greater than... |
| iccdificc 45649 | The difference of two clos... |
| iocnct 45650 | A nonempty left-open, righ... |
| iccnct 45651 | A closed interval, with mo... |
| iooiinicc 45652 | A closed interval expresse... |
| iccgelbd 45653 | An element of a closed int... |
| iooltubd 45654 | An element of an open inte... |
| icoltubd 45655 | An element of a left-close... |
| qelioo 45656 | The rational numbers are d... |
| tgqioo2 45657 | Every open set of reals is... |
| iccleubd 45658 | An element of a closed int... |
| elioored 45659 | A member of an open interv... |
| ioogtlbd 45660 | An element of a closed int... |
| ioofun 45661 | ` (,) ` is a function. (C... |
| icomnfinre 45662 | A left-closed, right-open,... |
| sqrlearg 45663 | The square compared with i... |
| ressiocsup 45664 | If the supremum belongs to... |
| ressioosup 45665 | If the supremum does not b... |
| iooiinioc 45666 | A left-open, right-closed ... |
| ressiooinf 45667 | If the infimum does not be... |
| iocleubd 45668 | An element of a left-open ... |
| uzinico 45669 | An upper interval of integ... |
| preimaiocmnf 45670 | Preimage of a right-closed... |
| uzinico2 45671 | An upper interval of integ... |
| uzinico3 45672 | An upper interval of integ... |
| dmico 45673 | The domain of the closed-b... |
| ndmico 45674 | The closed-below, open-abo... |
| uzubioo 45675 | The upper integers are unb... |
| uzubico 45676 | The upper integers are unb... |
| uzubioo2 45677 | The upper integers are unb... |
| uzubico2 45678 | The upper integers are unb... |
| iocgtlbd 45679 | An element of a left-open ... |
| xrtgioo2 45680 | The topology on the extend... |
| fsummulc1f 45681 | Closure of a finite sum of... |
| fsumnncl 45682 | Closure of a nonempty, fin... |
| fsumge0cl 45683 | The finite sum of nonnegat... |
| fsumf1of 45684 | Re-index a finite sum usin... |
| fsumiunss 45685 | Sum over a disjoint indexe... |
| fsumreclf 45686 | Closure of a finite sum of... |
| fsumlessf 45687 | A shorter sum of nonnegati... |
| fsumsupp0 45688 | Finite sum of function val... |
| fsumsermpt 45689 | A finite sum expressed in ... |
| fmul01 45690 | Multiplying a finite numbe... |
| fmulcl 45691 | If ' Y ' is closed under t... |
| fmuldfeqlem1 45692 | induction step for the pro... |
| fmuldfeq 45693 | X and Z are two equivalent... |
| fmul01lt1lem1 45694 | Given a finite multiplicat... |
| fmul01lt1lem2 45695 | Given a finite multiplicat... |
| fmul01lt1 45696 | Given a finite multiplicat... |
| cncfmptss 45697 | A continuous complex funct... |
| rrpsscn 45698 | The positive reals are a s... |
| mulc1cncfg 45699 | A version of ~ mulc1cncf u... |
| infrglb 45700 | The infimum of a nonempty ... |
| expcnfg 45701 | If ` F ` is a complex cont... |
| prodeq2ad 45702 | Equality deduction for pro... |
| fprodsplit1 45703 | Separate out a term in a f... |
| fprodexp 45704 | Positive integer exponenti... |
| fprodabs2 45705 | The absolute value of a fi... |
| fprod0 45706 | A finite product with a ze... |
| mccllem 45707 | * Induction step for ~ mcc... |
| mccl 45708 | A multinomial coefficient,... |
| fprodcnlem 45709 | A finite product of functi... |
| fprodcn 45710 | A finite product of functi... |
| clim1fr1 45711 | A class of sequences of fr... |
| isumneg 45712 | Negation of a converging s... |
| climrec 45713 | Limit of the reciprocal of... |
| climmulf 45714 | A version of ~ climmul usi... |
| climexp 45715 | The limit of natural power... |
| climinf 45716 | A bounded monotonic noninc... |
| climsuselem1 45717 | The subsequence index ` I ... |
| climsuse 45718 | A subsequence ` G ` of a c... |
| climrecf 45719 | A version of ~ climrec usi... |
| climneg 45720 | Complex limit of the negat... |
| climinff 45721 | A version of ~ climinf usi... |
| climdivf 45722 | Limit of the ratio of two ... |
| climreeq 45723 | If ` F ` is a real functio... |
| ellimciota 45724 | An explicit value for the ... |
| climaddf 45725 | A version of ~ climadd usi... |
| mullimc 45726 | Limit of the product of tw... |
| ellimcabssub0 45727 | An equivalent condition fo... |
| limcdm0 45728 | If a function has empty do... |
| islptre 45729 | An equivalence condition f... |
| limccog 45730 | Limit of the composition o... |
| limciccioolb 45731 | The limit of a function at... |
| climf 45732 | Express the predicate: Th... |
| mullimcf 45733 | Limit of the multiplicatio... |
| constlimc 45734 | Limit of constant function... |
| rexlim2d 45735 | Inference removing two res... |
| idlimc 45736 | Limit of the identity func... |
| divcnvg 45737 | The sequence of reciprocal... |
| limcperiod 45738 | If ` F ` is a periodic fun... |
| limcrecl 45739 | If ` F ` is a real-valued ... |
| sumnnodd 45740 | A series indexed by ` NN `... |
| lptioo2 45741 | The upper bound of an open... |
| lptioo1 45742 | The lower bound of an open... |
| limcmptdm 45743 | The domain of a maps-to fu... |
| clim2f 45744 | Express the predicate: Th... |
| limcicciooub 45745 | The limit of a function at... |
| ltmod 45746 | A sufficient condition for... |
| islpcn 45747 | A characterization for a l... |
| lptre2pt 45748 | If a set in the real line ... |
| limsupre 45749 | If a sequence is bounded, ... |
| limcresiooub 45750 | The left limit doesn't cha... |
| limcresioolb 45751 | The right limit doesn't ch... |
| limcleqr 45752 | If the left and the right ... |
| lptioo2cn 45753 | The upper bound of an open... |
| lptioo1cn 45754 | The lower bound of an open... |
| neglimc 45755 | Limit of the negative func... |
| addlimc 45756 | Sum of two limits. (Contr... |
| 0ellimcdiv 45757 | If the numerator converges... |
| clim2cf 45758 | Express the predicate ` F ... |
| limclner 45759 | For a limit point, both fr... |
| sublimc 45760 | Subtraction of two limits.... |
| reclimc 45761 | Limit of the reciprocal of... |
| clim0cf 45762 | Express the predicate ` F ... |
| limclr 45763 | For a limit point, both fr... |
| divlimc 45764 | Limit of the quotient of t... |
| expfac 45765 | Factorial grows faster tha... |
| climconstmpt 45766 | A constant sequence conver... |
| climresmpt 45767 | A function restricted to u... |
| climsubmpt 45768 | Limit of the difference of... |
| climsubc2mpt 45769 | Limit of the difference of... |
| climsubc1mpt 45770 | Limit of the difference of... |
| fnlimfv 45771 | The value of the limit fun... |
| climreclf 45772 | The limit of a convergent ... |
| climeldmeq 45773 | Two functions that are eve... |
| climf2 45774 | Express the predicate: Th... |
| fnlimcnv 45775 | The sequence of function v... |
| climeldmeqmpt 45776 | Two functions that are eve... |
| climfveq 45777 | Two functions that are eve... |
| clim2f2 45778 | Express the predicate: Th... |
| climfveqmpt 45779 | Two functions that are eve... |
| climd 45780 | Express the predicate: Th... |
| clim2d 45781 | The limit of complex numbe... |
| fnlimfvre 45782 | The limit function of real... |
| allbutfifvre 45783 | Given a sequence of real-v... |
| climleltrp 45784 | The limit of complex numbe... |
| fnlimfvre2 45785 | The limit function of real... |
| fnlimf 45786 | The limit function of real... |
| fnlimabslt 45787 | A sequence of function val... |
| climfveqf 45788 | Two functions that are eve... |
| climmptf 45789 | Exhibit a function ` G ` w... |
| climfveqmpt3 45790 | Two functions that are eve... |
| climeldmeqf 45791 | Two functions that are eve... |
| climreclmpt 45792 | The limit of B convergent ... |
| limsupref 45793 | If a sequence is bounded, ... |
| limsupbnd1f 45794 | If a sequence is eventuall... |
| climbddf 45795 | A converging sequence of c... |
| climeqf 45796 | Two functions that are eve... |
| climeldmeqmpt3 45797 | Two functions that are eve... |
| limsupcld 45798 | Closure of the superior li... |
| climfv 45799 | The limit of a convergent ... |
| limsupval3 45800 | The superior limit of an i... |
| climfveqmpt2 45801 | Two functions that are eve... |
| limsup0 45802 | The superior limit of the ... |
| climeldmeqmpt2 45803 | Two functions that are eve... |
| limsupresre 45804 | The supremum limit of a fu... |
| climeqmpt 45805 | Two functions that are eve... |
| climfvd 45806 | The limit of a convergent ... |
| limsuplesup 45807 | An upper bound for the sup... |
| limsupresico 45808 | The superior limit doesn't... |
| limsuppnfdlem 45809 | If the restriction of a fu... |
| limsuppnfd 45810 | If the restriction of a fu... |
| limsupresuz 45811 | If the real part of the do... |
| limsupub 45812 | If the limsup is not ` +oo... |
| limsupres 45813 | The superior limit of a re... |
| climinf2lem 45814 | A convergent, nonincreasin... |
| climinf2 45815 | A convergent, nonincreasin... |
| limsupvaluz 45816 | The superior limit, when t... |
| limsupresuz2 45817 | If the domain of a functio... |
| limsuppnflem 45818 | If the restriction of a fu... |
| limsuppnf 45819 | If the restriction of a fu... |
| limsupubuzlem 45820 | If the limsup is not ` +oo... |
| limsupubuz 45821 | For a real-valued function... |
| climinf2mpt 45822 | A bounded below, monotonic... |
| climinfmpt 45823 | A bounded below, monotonic... |
| climinf3 45824 | A convergent, nonincreasin... |
| limsupvaluzmpt 45825 | The superior limit, when t... |
| limsupequzmpt2 45826 | Two functions that are eve... |
| limsupubuzmpt 45827 | If the limsup is not ` +oo... |
| limsupmnflem 45828 | The superior limit of a fu... |
| limsupmnf 45829 | The superior limit of a fu... |
| limsupequzlem 45830 | Two functions that are eve... |
| limsupequz 45831 | Two functions that are eve... |
| limsupre2lem 45832 | Given a function on the ex... |
| limsupre2 45833 | Given a function on the ex... |
| limsupmnfuzlem 45834 | The superior limit of a fu... |
| limsupmnfuz 45835 | The superior limit of a fu... |
| limsupequzmptlem 45836 | Two functions that are eve... |
| limsupequzmpt 45837 | Two functions that are eve... |
| limsupre2mpt 45838 | Given a function on the ex... |
| limsupequzmptf 45839 | Two functions that are eve... |
| limsupre3lem 45840 | Given a function on the ex... |
| limsupre3 45841 | Given a function on the ex... |
| limsupre3mpt 45842 | Given a function on the ex... |
| limsupre3uzlem 45843 | Given a function on the ex... |
| limsupre3uz 45844 | Given a function on the ex... |
| limsupreuz 45845 | Given a function on the re... |
| limsupvaluz2 45846 | The superior limit, when t... |
| limsupreuzmpt 45847 | Given a function on the re... |
| supcnvlimsup 45848 | If a function on a set of ... |
| supcnvlimsupmpt 45849 | If a function on a set of ... |
| 0cnv 45850 | If ` (/) ` is a complex nu... |
| climuzlem 45851 | Express the predicate: Th... |
| climuz 45852 | Express the predicate: Th... |
| lmbr3v 45853 | Express the binary relatio... |
| climisp 45854 | If a sequence converges to... |
| lmbr3 45855 | Express the binary relatio... |
| climrescn 45856 | A sequence converging w.r.... |
| climxrrelem 45857 | If a sequence ranging over... |
| climxrre 45858 | If a sequence ranging over... |
| limsuplt2 45861 | The defining property of t... |
| liminfgord 45862 | Ordering property of the i... |
| limsupvald 45863 | The superior limit of a se... |
| limsupresicompt 45864 | The superior limit doesn't... |
| limsupcli 45865 | Closure of the superior li... |
| liminfgf 45866 | Closure of the inferior li... |
| liminfval 45867 | The inferior limit of a se... |
| climlimsup 45868 | A sequence of real numbers... |
| limsupge 45869 | The defining property of t... |
| liminfgval 45870 | Value of the inferior limi... |
| liminfcl 45871 | Closure of the inferior li... |
| liminfvald 45872 | The inferior limit of a se... |
| liminfval5 45873 | The inferior limit of an i... |
| limsupresxr 45874 | The superior limit of a fu... |
| liminfresxr 45875 | The inferior limit of a fu... |
| liminfval2 45876 | The superior limit, relati... |
| climlimsupcex 45877 | Counterexample for ~ climl... |
| liminfcld 45878 | Closure of the inferior li... |
| liminfresico 45879 | The inferior limit doesn't... |
| limsup10exlem 45880 | The range of the given fun... |
| limsup10ex 45881 | The superior limit of a fu... |
| liminf10ex 45882 | The inferior limit of a fu... |
| liminflelimsuplem 45883 | The superior limit is grea... |
| liminflelimsup 45884 | The superior limit is grea... |
| limsupgtlem 45885 | For any positive real, the... |
| limsupgt 45886 | Given a sequence of real n... |
| liminfresre 45887 | The inferior limit of a fu... |
| liminfresicompt 45888 | The inferior limit doesn't... |
| liminfltlimsupex 45889 | An example where the ` lim... |
| liminfgelimsup 45890 | The inferior limit is grea... |
| liminfvalxr 45891 | Alternate definition of ` ... |
| liminfresuz 45892 | If the real part of the do... |
| liminflelimsupuz 45893 | The superior limit is grea... |
| liminfvalxrmpt 45894 | Alternate definition of ` ... |
| liminfresuz2 45895 | If the domain of a functio... |
| liminfgelimsupuz 45896 | The inferior limit is grea... |
| liminfval4 45897 | Alternate definition of ` ... |
| liminfval3 45898 | Alternate definition of ` ... |
| liminfequzmpt2 45899 | Two functions that are eve... |
| liminfvaluz 45900 | Alternate definition of ` ... |
| liminf0 45901 | The inferior limit of the ... |
| limsupval4 45902 | Alternate definition of ` ... |
| liminfvaluz2 45903 | Alternate definition of ` ... |
| liminfvaluz3 45904 | Alternate definition of ` ... |
| liminflelimsupcex 45905 | A counterexample for ~ lim... |
| limsupvaluz3 45906 | Alternate definition of ` ... |
| liminfvaluz4 45907 | Alternate definition of ` ... |
| limsupvaluz4 45908 | Alternate definition of ` ... |
| climliminflimsupd 45909 | If a sequence of real numb... |
| liminfreuzlem 45910 | Given a function on the re... |
| liminfreuz 45911 | Given a function on the re... |
| liminfltlem 45912 | Given a sequence of real n... |
| liminflt 45913 | Given a sequence of real n... |
| climliminf 45914 | A sequence of real numbers... |
| liminflimsupclim 45915 | A sequence of real numbers... |
| climliminflimsup 45916 | A sequence of real numbers... |
| climliminflimsup2 45917 | A sequence of real numbers... |
| climliminflimsup3 45918 | A sequence of real numbers... |
| climliminflimsup4 45919 | A sequence of real numbers... |
| limsupub2 45920 | A extended real valued fun... |
| limsupubuz2 45921 | A sequence with values in ... |
| xlimpnfxnegmnf 45922 | A sequence converges to ` ... |
| liminflbuz2 45923 | A sequence with values in ... |
| liminfpnfuz 45924 | The inferior limit of a fu... |
| liminflimsupxrre 45925 | A sequence with values in ... |
| xlimrel 45928 | The limit on extended real... |
| xlimres 45929 | A function converges iff i... |
| xlimcl 45930 | The limit of a sequence of... |
| rexlimddv2 45931 | Restricted existential eli... |
| xlimclim 45932 | Given a sequence of reals,... |
| xlimconst 45933 | A constant sequence conver... |
| climxlim 45934 | A converging sequence in t... |
| xlimbr 45935 | Express the binary relatio... |
| fuzxrpmcn 45936 | A function mapping from an... |
| cnrefiisplem 45937 | Lemma for ~ cnrefiisp (som... |
| cnrefiisp 45938 | A non-real, complex number... |
| xlimxrre 45939 | If a sequence ranging over... |
| xlimmnfvlem1 45940 | Lemma for ~ xlimmnfv : the... |
| xlimmnfvlem2 45941 | Lemma for ~ xlimmnf : the ... |
| xlimmnfv 45942 | A function converges to mi... |
| xlimconst2 45943 | A sequence that eventually... |
| xlimpnfvlem1 45944 | Lemma for ~ xlimpnfv : the... |
| xlimpnfvlem2 45945 | Lemma for ~ xlimpnfv : the... |
| xlimpnfv 45946 | A function converges to pl... |
| xlimclim2lem 45947 | Lemma for ~ xlimclim2 . H... |
| xlimclim2 45948 | Given a sequence of extend... |
| xlimmnf 45949 | A function converges to mi... |
| xlimpnf 45950 | A function converges to pl... |
| xlimmnfmpt 45951 | A function converges to pl... |
| xlimpnfmpt 45952 | A function converges to pl... |
| climxlim2lem 45953 | In this lemma for ~ climxl... |
| climxlim2 45954 | A sequence of extended rea... |
| dfxlim2v 45955 | An alternative definition ... |
| dfxlim2 45956 | An alternative definition ... |
| climresd 45957 | A function restricted to u... |
| climresdm 45958 | A real function converges ... |
| dmclimxlim 45959 | A real valued sequence tha... |
| xlimmnflimsup2 45960 | A sequence of extended rea... |
| xlimuni 45961 | An infinite sequence conve... |
| xlimclimdm 45962 | A sequence of extended rea... |
| xlimfun 45963 | The convergence relation o... |
| xlimmnflimsup 45964 | If a sequence of extended ... |
| xlimdm 45965 | Two ways to express that a... |
| xlimpnfxnegmnf2 45966 | A sequence converges to ` ... |
| xlimresdm 45967 | A function converges in th... |
| xlimpnfliminf 45968 | If a sequence of extended ... |
| xlimpnfliminf2 45969 | A sequence of extended rea... |
| xlimliminflimsup 45970 | A sequence of extended rea... |
| xlimlimsupleliminf 45971 | A sequence of extended rea... |
| coseq0 45972 | A complex number whose cos... |
| sinmulcos 45973 | Multiplication formula for... |
| coskpi2 45974 | The cosine of an integer m... |
| cosnegpi 45975 | The cosine of negative ` _... |
| sinaover2ne0 45976 | If ` A ` in ` ( 0 , 2 _pi ... |
| cosknegpi 45977 | The cosine of an integer m... |
| mulcncff 45978 | The multiplication of two ... |
| cncfmptssg 45979 | A continuous complex funct... |
| constcncfg 45980 | A constant function is a c... |
| idcncfg 45981 | The identity function is a... |
| cncfshift 45982 | A periodic continuous func... |
| resincncf 45983 | ` sin ` restricted to real... |
| addccncf2 45984 | Adding a constant is a con... |
| 0cnf 45985 | The empty set is a continu... |
| fsumcncf 45986 | The finite sum of continuo... |
| cncfperiod 45987 | A periodic continuous func... |
| subcncff 45988 | The subtraction of two con... |
| negcncfg 45989 | The opposite of a continuo... |
| cnfdmsn 45990 | A function with a singleto... |
| cncfcompt 45991 | Composition of continuous ... |
| addcncff 45992 | The sum of two continuous ... |
| ioccncflimc 45993 | Limit at the upper bound o... |
| cncfuni 45994 | A complex function on a su... |
| icccncfext 45995 | A continuous function on a... |
| cncficcgt0 45996 | A the absolute value of a ... |
| icocncflimc 45997 | Limit at the lower bound, ... |
| cncfdmsn 45998 | A complex function with a ... |
| divcncff 45999 | The quotient of two contin... |
| cncfshiftioo 46000 | A periodic continuous func... |
| cncfiooicclem1 46001 | A continuous function ` F ... |
| cncfiooicc 46002 | A continuous function ` F ... |
| cncfiooiccre 46003 | A continuous function ` F ... |
| cncfioobdlem 46004 | ` G ` actually extends ` F... |
| cncfioobd 46005 | A continuous function ` F ... |
| jumpncnp 46006 | Jump discontinuity or disc... |
| cxpcncf2 46007 | The complex power function... |
| fprodcncf 46008 | The finite product of cont... |
| add1cncf 46009 | Addition to a constant is ... |
| add2cncf 46010 | Addition to a constant is ... |
| sub1cncfd 46011 | Subtracting a constant is ... |
| sub2cncfd 46012 | Subtraction from a constan... |
| fprodsub2cncf 46013 | ` F ` is continuous. (Con... |
| fprodadd2cncf 46014 | ` F ` is continuous. (Con... |
| fprodsubrecnncnvlem 46015 | The sequence ` S ` of fini... |
| fprodsubrecnncnv 46016 | The sequence ` S ` of fini... |
| fprodaddrecnncnvlem 46017 | The sequence ` S ` of fini... |
| fprodaddrecnncnv 46018 | The sequence ` S ` of fini... |
| dvsinexp 46019 | The derivative of sin^N . ... |
| dvcosre 46020 | The real derivative of the... |
| dvsinax 46021 | Derivative exercise: the d... |
| dvsubf 46022 | The subtraction rule for e... |
| dvmptconst 46023 | Function-builder for deriv... |
| dvcnre 46024 | From complex differentiati... |
| dvmptidg 46025 | Function-builder for deriv... |
| dvresntr 46026 | Function-builder for deriv... |
| fperdvper 46027 | The derivative of a period... |
| dvasinbx 46028 | Derivative exercise: the d... |
| dvresioo 46029 | Restriction of a derivativ... |
| dvdivf 46030 | The quotient rule for ever... |
| dvdivbd 46031 | A sufficient condition for... |
| dvsubcncf 46032 | A sufficient condition for... |
| dvmulcncf 46033 | A sufficient condition for... |
| dvcosax 46034 | Derivative exercise: the d... |
| dvdivcncf 46035 | A sufficient condition for... |
| dvbdfbdioolem1 46036 | Given a function with boun... |
| dvbdfbdioolem2 46037 | A function on an open inte... |
| dvbdfbdioo 46038 | A function on an open inte... |
| ioodvbdlimc1lem1 46039 | If ` F ` has bounded deriv... |
| ioodvbdlimc1lem2 46040 | Limit at the lower bound o... |
| ioodvbdlimc1 46041 | A real function with bound... |
| ioodvbdlimc2lem 46042 | Limit at the upper bound o... |
| ioodvbdlimc2 46043 | A real function with bound... |
| dvdmsscn 46044 | ` X ` is a subset of ` CC ... |
| dvmptmulf 46045 | Function-builder for deriv... |
| dvnmptdivc 46046 | Function-builder for itera... |
| dvdsn1add 46047 | If ` K ` divides ` N ` but... |
| dvxpaek 46048 | Derivative of the polynomi... |
| dvnmptconst 46049 | The ` N ` -th derivative o... |
| dvnxpaek 46050 | The ` n ` -th derivative o... |
| dvnmul 46051 | Function-builder for the `... |
| dvmptfprodlem 46052 | Induction step for ~ dvmpt... |
| dvmptfprod 46053 | Function-builder for deriv... |
| dvnprodlem1 46054 | ` D ` is bijective. (Cont... |
| dvnprodlem2 46055 | Induction step for ~ dvnpr... |
| dvnprodlem3 46056 | The multinomial formula fo... |
| dvnprod 46057 | The multinomial formula fo... |
| itgsin0pilem1 46058 | Calculation of the integra... |
| ibliccsinexp 46059 | sin^n on a closed interval... |
| itgsin0pi 46060 | Calculation of the integra... |
| iblioosinexp 46061 | sin^n on an open integral ... |
| itgsinexplem1 46062 | Integration by parts is ap... |
| itgsinexp 46063 | A recursive formula for th... |
| iblconstmpt 46064 | A constant function is int... |
| itgeq1d 46065 | Equality theorem for an in... |
| mbfres2cn 46066 | Measurability of a piecewi... |
| vol0 46067 | The measure of the empty s... |
| ditgeqiooicc 46068 | A function ` F ` on an ope... |
| volge0 46069 | The volume of a set is alw... |
| cnbdibl 46070 | A continuous bounded funct... |
| snmbl 46071 | A singleton is measurable.... |
| ditgeq3d 46072 | Equality theorem for the d... |
| iblempty 46073 | The empty function is inte... |
| iblsplit 46074 | The union of two integrabl... |
| volsn 46075 | A singleton has 0 Lebesgue... |
| itgvol0 46076 | If the domani is negligibl... |
| itgcoscmulx 46077 | Exercise: the integral of ... |
| iblsplitf 46078 | A version of ~ iblsplit us... |
| ibliooicc 46079 | If a function is integrabl... |
| volioc 46080 | The measure of a left-open... |
| iblspltprt 46081 | If a function is integrabl... |
| itgsincmulx 46082 | Exercise: the integral of ... |
| itgsubsticclem 46083 | lemma for ~ itgsubsticc . ... |
| itgsubsticc 46084 | Integration by u-substitut... |
| itgioocnicc 46085 | The integral of a piecewis... |
| iblcncfioo 46086 | A continuous function ` F ... |
| itgspltprt 46087 | The ` S. ` integral splits... |
| itgiccshift 46088 | The integral of a function... |
| itgperiod 46089 | The integral of a periodic... |
| itgsbtaddcnst 46090 | Integral substitution, add... |
| volico 46091 | The measure of left-closed... |
| sublevolico 46092 | The Lebesgue measure of a ... |
| dmvolss 46093 | Lebesgue measurable sets a... |
| ismbl3 46094 | The predicate " ` A ` is L... |
| volioof 46095 | The function that assigns ... |
| ovolsplit 46096 | The Lebesgue outer measure... |
| fvvolioof 46097 | The function value of the ... |
| volioore 46098 | The measure of an open int... |
| fvvolicof 46099 | The function value of the ... |
| voliooico 46100 | An open interval and a lef... |
| ismbl4 46101 | The predicate " ` A ` is L... |
| volioofmpt 46102 | ` ( ( vol o. (,) ) o. F ) ... |
| volicoff 46103 | ` ( ( vol o. [,) ) o. F ) ... |
| voliooicof 46104 | The Lebesgue measure of op... |
| volicofmpt 46105 | ` ( ( vol o. [,) ) o. F ) ... |
| volicc 46106 | The Lebesgue measure of a ... |
| voliccico 46107 | A closed interval and a le... |
| mbfdmssre 46108 | The domain of a measurable... |
| stoweidlem1 46109 | Lemma for ~ stoweid . Thi... |
| stoweidlem2 46110 | lemma for ~ stoweid : here... |
| stoweidlem3 46111 | Lemma for ~ stoweid : if `... |
| stoweidlem4 46112 | Lemma for ~ stoweid : a cl... |
| stoweidlem5 46113 | There exists a δ as ... |
| stoweidlem6 46114 | Lemma for ~ stoweid : two ... |
| stoweidlem7 46115 | This lemma is used to prov... |
| stoweidlem8 46116 | Lemma for ~ stoweid : two ... |
| stoweidlem9 46117 | Lemma for ~ stoweid : here... |
| stoweidlem10 46118 | Lemma for ~ stoweid . Thi... |
| stoweidlem11 46119 | This lemma is used to prov... |
| stoweidlem12 46120 | Lemma for ~ stoweid . Thi... |
| stoweidlem13 46121 | Lemma for ~ stoweid . Thi... |
| stoweidlem14 46122 | There exists a ` k ` as in... |
| stoweidlem15 46123 | This lemma is used to prov... |
| stoweidlem16 46124 | Lemma for ~ stoweid . The... |
| stoweidlem17 46125 | This lemma proves that the... |
| stoweidlem18 46126 | This theorem proves Lemma ... |
| stoweidlem19 46127 | If a set of real functions... |
| stoweidlem20 46128 | If a set A of real functio... |
| stoweidlem21 46129 | Once the Stone Weierstrass... |
| stoweidlem22 46130 | If a set of real functions... |
| stoweidlem23 46131 | This lemma is used to prov... |
| stoweidlem24 46132 | This lemma proves that for... |
| stoweidlem25 46133 | This lemma proves that for... |
| stoweidlem26 46134 | This lemma is used to prov... |
| stoweidlem27 46135 | This lemma is used to prov... |
| stoweidlem28 46136 | There exists a δ as ... |
| stoweidlem29 46137 | When the hypothesis for th... |
| stoweidlem30 46138 | This lemma is used to prov... |
| stoweidlem31 46139 | This lemma is used to prov... |
| stoweidlem32 46140 | If a set A of real functio... |
| stoweidlem33 46141 | If a set of real functions... |
| stoweidlem34 46142 | This lemma proves that for... |
| stoweidlem35 46143 | This lemma is used to prov... |
| stoweidlem36 46144 | This lemma is used to prov... |
| stoweidlem37 46145 | This lemma is used to prov... |
| stoweidlem38 46146 | This lemma is used to prov... |
| stoweidlem39 46147 | This lemma is used to prov... |
| stoweidlem40 46148 | This lemma proves that q_n... |
| stoweidlem41 46149 | This lemma is used to prov... |
| stoweidlem42 46150 | This lemma is used to prov... |
| stoweidlem43 46151 | This lemma is used to prov... |
| stoweidlem44 46152 | This lemma is used to prov... |
| stoweidlem45 46153 | This lemma proves that, gi... |
| stoweidlem46 46154 | This lemma proves that set... |
| stoweidlem47 46155 | Subtracting a constant fro... |
| stoweidlem48 46156 | This lemma is used to prov... |
| stoweidlem49 46157 | There exists a function q_... |
| stoweidlem50 46158 | This lemma proves that set... |
| stoweidlem51 46159 | There exists a function x ... |
| stoweidlem52 46160 | There exists a neighborhoo... |
| stoweidlem53 46161 | This lemma is used to prov... |
| stoweidlem54 46162 | There exists a function ` ... |
| stoweidlem55 46163 | This lemma proves the exis... |
| stoweidlem56 46164 | This theorem proves Lemma ... |
| stoweidlem57 46165 | There exists a function x ... |
| stoweidlem58 46166 | This theorem proves Lemma ... |
| stoweidlem59 46167 | This lemma proves that the... |
| stoweidlem60 46168 | This lemma proves that the... |
| stoweidlem61 46169 | This lemma proves that the... |
| stoweidlem62 46170 | This theorem proves the St... |
| stoweid 46171 | This theorem proves the St... |
| stowei 46172 | This theorem proves the St... |
| wallispilem1 46173 | ` I ` is monotone: increas... |
| wallispilem2 46174 | A first set of properties ... |
| wallispilem3 46175 | I maps to real values. (C... |
| wallispilem4 46176 | ` F ` maps to explicit exp... |
| wallispilem5 46177 | The sequence ` H ` converg... |
| wallispi 46178 | Wallis' formula for π :... |
| wallispi2lem1 46179 | An intermediate step betwe... |
| wallispi2lem2 46180 | Two expressions are proven... |
| wallispi2 46181 | An alternative version of ... |
| stirlinglem1 46182 | A simple limit of fraction... |
| stirlinglem2 46183 | ` A ` maps to positive rea... |
| stirlinglem3 46184 | Long but simple algebraic ... |
| stirlinglem4 46185 | Algebraic manipulation of ... |
| stirlinglem5 46186 | If ` T ` is between ` 0 ` ... |
| stirlinglem6 46187 | A series that converges to... |
| stirlinglem7 46188 | Algebraic manipulation of ... |
| stirlinglem8 46189 | If ` A ` converges to ` C ... |
| stirlinglem9 46190 | ` ( ( B `` N ) - ( B `` ( ... |
| stirlinglem10 46191 | A bound for any B(N)-B(N +... |
| stirlinglem11 46192 | ` B ` is decreasing. (Con... |
| stirlinglem12 46193 | The sequence ` B ` is boun... |
| stirlinglem13 46194 | ` B ` is decreasing and ha... |
| stirlinglem14 46195 | The sequence ` A ` converg... |
| stirlinglem15 46196 | The Stirling's formula is ... |
| stirling 46197 | Stirling's approximation f... |
| stirlingr 46198 | Stirling's approximation f... |
| dirkerval 46199 | The N_th Dirichlet Kernel.... |
| dirker2re 46200 | The Dirichlet Kernel value... |
| dirkerdenne0 46201 | The Dirichlet Kernel denom... |
| dirkerval2 46202 | The N_th Dirichlet Kernel ... |
| dirkerre 46203 | The Dirichlet Kernel at an... |
| dirkerper 46204 | the Dirichlet Kernel has p... |
| dirkerf 46205 | For any natural number ` N... |
| dirkertrigeqlem1 46206 | Sum of an even number of a... |
| dirkertrigeqlem2 46207 | Trigonomic equality lemma ... |
| dirkertrigeqlem3 46208 | Trigonometric equality lem... |
| dirkertrigeq 46209 | Trigonometric equality for... |
| dirkeritg 46210 | The definite integral of t... |
| dirkercncflem1 46211 | If ` Y ` is a multiple of ... |
| dirkercncflem2 46212 | Lemma used to prove that t... |
| dirkercncflem3 46213 | The Dirichlet Kernel is co... |
| dirkercncflem4 46214 | The Dirichlet Kernel is co... |
| dirkercncf 46215 | For any natural number ` N... |
| fourierdlem1 46216 | A partition interval is a ... |
| fourierdlem2 46217 | Membership in a partition.... |
| fourierdlem3 46218 | Membership in a partition.... |
| fourierdlem4 46219 | ` E ` is a function that m... |
| fourierdlem5 46220 | ` S ` is a function. (Con... |
| fourierdlem6 46221 | ` X ` is in the periodic p... |
| fourierdlem7 46222 | The difference between the... |
| fourierdlem8 46223 | A partition interval is a ... |
| fourierdlem9 46224 | ` H ` is a complex functio... |
| fourierdlem10 46225 | Condition on the bounds of... |
| fourierdlem11 46226 | If there is a partition, t... |
| fourierdlem12 46227 | A point of a partition is ... |
| fourierdlem13 46228 | Value of ` V ` in terms of... |
| fourierdlem14 46229 | Given the partition ` V ` ... |
| fourierdlem15 46230 | The range of the partition... |
| fourierdlem16 46231 | The coefficients of the fo... |
| fourierdlem17 46232 | The defined ` L ` is actua... |
| fourierdlem18 46233 | The function ` S ` is cont... |
| fourierdlem19 46234 | If two elements of ` D ` h... |
| fourierdlem20 46235 | Every interval in the part... |
| fourierdlem21 46236 | The coefficients of the fo... |
| fourierdlem22 46237 | The coefficients of the fo... |
| fourierdlem23 46238 | If ` F ` is continuous and... |
| fourierdlem24 46239 | A sufficient condition for... |
| fourierdlem25 46240 | If ` C ` is not in the ran... |
| fourierdlem26 46241 | Periodic image of a point ... |
| fourierdlem27 46242 | A partition open interval ... |
| fourierdlem28 46243 | Derivative of ` ( F `` ( X... |
| fourierdlem29 46244 | Explicit function value fo... |
| fourierdlem30 46245 | Sum of three small pieces ... |
| fourierdlem31 46246 | If ` A ` is finite and for... |
| fourierdlem32 46247 | Limit of a continuous func... |
| fourierdlem33 46248 | Limit of a continuous func... |
| fourierdlem34 46249 | A partition is one to one.... |
| fourierdlem35 46250 | There is a single point in... |
| fourierdlem36 46251 | ` F ` is an isomorphism. ... |
| fourierdlem37 46252 | ` I ` is a function that m... |
| fourierdlem38 46253 | The function ` F ` is cont... |
| fourierdlem39 46254 | Integration by parts of ... |
| fourierdlem40 46255 | ` H ` is a continuous func... |
| fourierdlem41 46256 | Lemma used to prove that e... |
| fourierdlem42 46257 | The set of points in a mov... |
| fourierdlem43 46258 | ` K ` is a real function. ... |
| fourierdlem44 46259 | A condition for having ` (... |
| fourierdlem46 46260 | The function ` F ` has a l... |
| fourierdlem47 46261 | For ` r ` large enough, th... |
| fourierdlem48 46262 | The given periodic functio... |
| fourierdlem49 46263 | The given periodic functio... |
| fourierdlem50 46264 | Continuity of ` O ` and it... |
| fourierdlem51 46265 | ` X ` is in the periodic p... |
| fourierdlem52 46266 | d16:d17,d18:jca |- ( ph ->... |
| fourierdlem53 46267 | The limit of ` F ( s ) ` a... |
| fourierdlem54 46268 | Given a partition ` Q ` an... |
| fourierdlem55 46269 | ` U ` is a real function. ... |
| fourierdlem56 46270 | Derivative of the ` K ` fu... |
| fourierdlem57 46271 | The derivative of ` O ` . ... |
| fourierdlem58 46272 | The derivative of ` K ` is... |
| fourierdlem59 46273 | The derivative of ` H ` is... |
| fourierdlem60 46274 | Given a differentiable fun... |
| fourierdlem61 46275 | Given a differentiable fun... |
| fourierdlem62 46276 | The function ` K ` is cont... |
| fourierdlem63 46277 | The upper bound of interva... |
| fourierdlem64 46278 | The partition ` V ` is fin... |
| fourierdlem65 46279 | The distance of two adjace... |
| fourierdlem66 46280 | Value of the ` G ` functio... |
| fourierdlem67 46281 | ` G ` is a function. (Con... |
| fourierdlem68 46282 | The derivative of ` O ` is... |
| fourierdlem69 46283 | A piecewise continuous fun... |
| fourierdlem70 46284 | A piecewise continuous fun... |
| fourierdlem71 46285 | A periodic piecewise conti... |
| fourierdlem72 46286 | The derivative of ` O ` is... |
| fourierdlem73 46287 | A version of the Riemann L... |
| fourierdlem74 46288 | Given a piecewise smooth f... |
| fourierdlem75 46289 | Given a piecewise smooth f... |
| fourierdlem76 46290 | Continuity of ` O ` and it... |
| fourierdlem77 46291 | If ` H ` is bounded, then ... |
| fourierdlem78 46292 | ` G ` is continuous when r... |
| fourierdlem79 46293 | ` E ` projects every inter... |
| fourierdlem80 46294 | The derivative of ` O ` is... |
| fourierdlem81 46295 | The integral of a piecewis... |
| fourierdlem82 46296 | Integral by substitution, ... |
| fourierdlem83 46297 | The fourier partial sum fo... |
| fourierdlem84 46298 | If ` F ` is piecewise cont... |
| fourierdlem85 46299 | Limit of the function ` G ... |
| fourierdlem86 46300 | Continuity of ` O ` and it... |
| fourierdlem87 46301 | The integral of ` G ` goes... |
| fourierdlem88 46302 | Given a piecewise continuo... |
| fourierdlem89 46303 | Given a piecewise continuo... |
| fourierdlem90 46304 | Given a piecewise continuo... |
| fourierdlem91 46305 | Given a piecewise continuo... |
| fourierdlem92 46306 | The integral of a piecewis... |
| fourierdlem93 46307 | Integral by substitution (... |
| fourierdlem94 46308 | For a piecewise smooth fun... |
| fourierdlem95 46309 | Algebraic manipulation of ... |
| fourierdlem96 46310 | limit for ` F ` at the low... |
| fourierdlem97 46311 | ` F ` is continuous on the... |
| fourierdlem98 46312 | ` F ` is continuous on the... |
| fourierdlem99 46313 | limit for ` F ` at the upp... |
| fourierdlem100 46314 | A piecewise continuous fun... |
| fourierdlem101 46315 | Integral by substitution f... |
| fourierdlem102 46316 | For a piecewise smooth fun... |
| fourierdlem103 46317 | The half lower part of the... |
| fourierdlem104 46318 | The half upper part of the... |
| fourierdlem105 46319 | A piecewise continuous fun... |
| fourierdlem106 46320 | For a piecewise smooth fun... |
| fourierdlem107 46321 | The integral of a piecewis... |
| fourierdlem108 46322 | The integral of a piecewis... |
| fourierdlem109 46323 | The integral of a piecewis... |
| fourierdlem110 46324 | The integral of a piecewis... |
| fourierdlem111 46325 | The fourier partial sum fo... |
| fourierdlem112 46326 | Here abbreviations (local ... |
| fourierdlem113 46327 | Fourier series convergence... |
| fourierdlem114 46328 | Fourier series convergence... |
| fourierdlem115 46329 | Fourier serier convergence... |
| fourierd 46330 | Fourier series convergence... |
| fourierclimd 46331 | Fourier series convergence... |
| fourierclim 46332 | Fourier series convergence... |
| fourier 46333 | Fourier series convergence... |
| fouriercnp 46334 | If ` F ` is continuous at ... |
| fourier2 46335 | Fourier series convergence... |
| sqwvfoura 46336 | Fourier coefficients for t... |
| sqwvfourb 46337 | Fourier series ` B ` coeff... |
| fourierswlem 46338 | The Fourier series for the... |
| fouriersw 46339 | Fourier series convergence... |
| fouriercn 46340 | If the derivative of ` F `... |
| elaa2lem 46341 | Elementhood in the set of ... |
| elaa2 46342 | Elementhood in the set of ... |
| etransclem1 46343 | ` H ` is a function. (Con... |
| etransclem2 46344 | Derivative of ` G ` . (Co... |
| etransclem3 46345 | The given ` if ` term is a... |
| etransclem4 46346 | ` F ` expressed as a finit... |
| etransclem5 46347 | A change of bound variable... |
| etransclem6 46348 | A change of bound variable... |
| etransclem7 46349 | The given product is an in... |
| etransclem8 46350 | ` F ` is a function. (Con... |
| etransclem9 46351 | If ` K ` divides ` N ` but... |
| etransclem10 46352 | The given ` if ` term is a... |
| etransclem11 46353 | A change of bound variable... |
| etransclem12 46354 | ` C ` applied to ` N ` . ... |
| etransclem13 46355 | ` F ` applied to ` Y ` . ... |
| etransclem14 46356 | Value of the term ` T ` , ... |
| etransclem15 46357 | Value of the term ` T ` , ... |
| etransclem16 46358 | Every element in the range... |
| etransclem17 46359 | The ` N ` -th derivative o... |
| etransclem18 46360 | The given function is inte... |
| etransclem19 46361 | The ` N ` -th derivative o... |
| etransclem20 46362 | ` H ` is smooth. (Contrib... |
| etransclem21 46363 | The ` N ` -th derivative o... |
| etransclem22 46364 | The ` N ` -th derivative o... |
| etransclem23 46365 | This is the claim proof in... |
| etransclem24 46366 | ` P ` divides the I -th de... |
| etransclem25 46367 | ` P ` factorial divides th... |
| etransclem26 46368 | Every term in the sum of t... |
| etransclem27 46369 | The ` N ` -th derivative o... |
| etransclem28 46370 | ` ( P - 1 ) ` factorial di... |
| etransclem29 46371 | The ` N ` -th derivative o... |
| etransclem30 46372 | The ` N ` -th derivative o... |
| etransclem31 46373 | The ` N ` -th derivative o... |
| etransclem32 46374 | This is the proof for the ... |
| etransclem33 46375 | ` F ` is smooth. (Contrib... |
| etransclem34 46376 | The ` N ` -th derivative o... |
| etransclem35 46377 | ` P ` does not divide the ... |
| etransclem36 46378 | The ` N ` -th derivative o... |
| etransclem37 46379 | ` ( P - 1 ) ` factorial di... |
| etransclem38 46380 | ` P ` divides the I -th de... |
| etransclem39 46381 | ` G ` is a function. (Con... |
| etransclem40 46382 | The ` N ` -th derivative o... |
| etransclem41 46383 | ` P ` does not divide the ... |
| etransclem42 46384 | The ` N ` -th derivative o... |
| etransclem43 46385 | ` G ` is a continuous func... |
| etransclem44 46386 | The given finite sum is no... |
| etransclem45 46387 | ` K ` is an integer. (Con... |
| etransclem46 46388 | This is the proof for equa... |
| etransclem47 46389 | ` _e ` is transcendental. ... |
| etransclem48 46390 | ` _e ` is transcendental. ... |
| etransc 46391 | ` _e ` is transcendental. ... |
| rrxtopn 46392 | The topology of the genera... |
| rrxngp 46393 | Generalized Euclidean real... |
| rrxtps 46394 | Generalized Euclidean real... |
| rrxtopnfi 46395 | The topology of the n-dime... |
| rrxtopon 46396 | The topology on generalize... |
| rrxtop 46397 | The topology on generalize... |
| rrndistlt 46398 | Given two points in the sp... |
| rrxtoponfi 46399 | The topology on n-dimensio... |
| rrxunitopnfi 46400 | The base set of the standa... |
| rrxtopn0 46401 | The topology of the zero-d... |
| qndenserrnbllem 46402 | n-dimensional rational num... |
| qndenserrnbl 46403 | n-dimensional rational num... |
| rrxtopn0b 46404 | The topology of the zero-d... |
| qndenserrnopnlem 46405 | n-dimensional rational num... |
| qndenserrnopn 46406 | n-dimensional rational num... |
| qndenserrn 46407 | n-dimensional rational num... |
| rrxsnicc 46408 | A multidimensional singlet... |
| rrnprjdstle 46409 | The distance between two p... |
| rrndsmet 46410 | ` D ` is a metric for the ... |
| rrndsxmet 46411 | ` D ` is an extended metri... |
| ioorrnopnlem 46412 | The a point in an indexed ... |
| ioorrnopn 46413 | The indexed product of ope... |
| ioorrnopnxrlem 46414 | Given a point ` F ` that b... |
| ioorrnopnxr 46415 | The indexed product of ope... |
| issal 46422 | Express the predicate " ` ... |
| pwsal 46423 | The power set of a given s... |
| salunicl 46424 | SAlg sigma-algebra is clos... |
| saluncl 46425 | The union of two sets in a... |
| prsal 46426 | The pair of the empty set ... |
| saldifcl 46427 | The complement of an eleme... |
| 0sal 46428 | The empty set belongs to e... |
| salgenval 46429 | The sigma-algebra generate... |
| saliunclf 46430 | SAlg sigma-algebra is clos... |
| saliuncl 46431 | SAlg sigma-algebra is clos... |
| salincl 46432 | The intersection of two se... |
| saluni 46433 | A set is an element of any... |
| saliinclf 46434 | SAlg sigma-algebra is clos... |
| saliincl 46435 | SAlg sigma-algebra is clos... |
| saldifcl2 46436 | The difference of two elem... |
| intsaluni 46437 | The union of an arbitrary ... |
| intsal 46438 | The arbitrary intersection... |
| salgenn0 46439 | The set used in the defini... |
| salgencl 46440 | ` SalGen ` actually genera... |
| issald 46441 | Sufficient condition to pr... |
| salexct 46442 | An example of nontrivial s... |
| sssalgen 46443 | A set is a subset of the s... |
| salgenss 46444 | The sigma-algebra generate... |
| salgenuni 46445 | The base set of the sigma-... |
| issalgend 46446 | One side of ~ dfsalgen2 . ... |
| salexct2 46447 | An example of a subset tha... |
| unisalgen 46448 | The union of a set belongs... |
| dfsalgen2 46449 | Alternate characterization... |
| salexct3 46450 | An example of a sigma-alge... |
| salgencntex 46451 | This counterexample shows ... |
| salgensscntex 46452 | This counterexample shows ... |
| issalnnd 46453 | Sufficient condition to pr... |
| dmvolsal 46454 | Lebesgue measurable sets f... |
| saldifcld 46455 | The complement of an eleme... |
| saluncld 46456 | The union of two sets in a... |
| salgencld 46457 | ` SalGen ` actually genera... |
| 0sald 46458 | The empty set belongs to e... |
| iooborel 46459 | An open interval is a Bore... |
| salincld 46460 | The intersection of two se... |
| salunid 46461 | A set is an element of any... |
| unisalgen2 46462 | The union of a set belongs... |
| bor1sal 46463 | The Borel sigma-algebra on... |
| iocborel 46464 | A left-open, right-closed ... |
| subsaliuncllem 46465 | A subspace sigma-algebra i... |
| subsaliuncl 46466 | A subspace sigma-algebra i... |
| subsalsal 46467 | A subspace sigma-algebra i... |
| subsaluni 46468 | A set belongs to the subsp... |
| salrestss 46469 | A sigma-algebra restricted... |
| sge0rnre 46472 | When ` sum^ ` is applied t... |
| fge0icoicc 46473 | If ` F ` maps to nonnegati... |
| sge0val 46474 | The value of the sum of no... |
| fge0npnf 46475 | If ` F ` maps to nonnegati... |
| sge0rnn0 46476 | The range used in the defi... |
| sge0vald 46477 | The value of the sum of no... |
| fge0iccico 46478 | A range of nonnegative ext... |
| gsumge0cl 46479 | Closure of group sum, for ... |
| sge0reval 46480 | Value of the sum of nonneg... |
| sge0pnfval 46481 | If a term in the sum of no... |
| fge0iccre 46482 | A range of nonnegative ext... |
| sge0z 46483 | Any nonnegative extended s... |
| sge00 46484 | The sum of nonnegative ext... |
| fsumlesge0 46485 | Every finite subsum of non... |
| sge0revalmpt 46486 | Value of the sum of nonneg... |
| sge0sn 46487 | A sum of a nonnegative ext... |
| sge0tsms 46488 | ` sum^ ` applied to a nonn... |
| sge0cl 46489 | The arbitrary sum of nonne... |
| sge0f1o 46490 | Re-index a nonnegative ext... |
| sge0snmpt 46491 | A sum of a nonnegative ext... |
| sge0ge0 46492 | The sum of nonnegative ext... |
| sge0xrcl 46493 | The arbitrary sum of nonne... |
| sge0repnf 46494 | The of nonnegative extende... |
| sge0fsum 46495 | The arbitrary sum of a fin... |
| sge0rern 46496 | If the sum of nonnegative ... |
| sge0supre 46497 | If the arbitrary sum of no... |
| sge0fsummpt 46498 | The arbitrary sum of a fin... |
| sge0sup 46499 | The arbitrary sum of nonne... |
| sge0less 46500 | A shorter sum of nonnegati... |
| sge0rnbnd 46501 | The range used in the defi... |
| sge0pr 46502 | Sum of a pair of nonnegati... |
| sge0gerp 46503 | The arbitrary sum of nonne... |
| sge0pnffigt 46504 | If the sum of nonnegative ... |
| sge0ssre 46505 | If a sum of nonnegative ex... |
| sge0lefi 46506 | A sum of nonnegative exten... |
| sge0lessmpt 46507 | A shorter sum of nonnegati... |
| sge0ltfirp 46508 | If the sum of nonnegative ... |
| sge0prle 46509 | The sum of a pair of nonne... |
| sge0gerpmpt 46510 | The arbitrary sum of nonne... |
| sge0resrnlem 46511 | The sum of nonnegative ext... |
| sge0resrn 46512 | The sum of nonnegative ext... |
| sge0ssrempt 46513 | If a sum of nonnegative ex... |
| sge0resplit 46514 | ` sum^ ` splits into two p... |
| sge0le 46515 | If all of the terms of sum... |
| sge0ltfirpmpt 46516 | If the extended sum of non... |
| sge0split 46517 | Split a sum of nonnegative... |
| sge0lempt 46518 | If all of the terms of sum... |
| sge0splitmpt 46519 | Split a sum of nonnegative... |
| sge0ss 46520 | Change the index set to a ... |
| sge0iunmptlemfi 46521 | Sum of nonnegative extende... |
| sge0p1 46522 | The addition of the next t... |
| sge0iunmptlemre 46523 | Sum of nonnegative extende... |
| sge0fodjrnlem 46524 | Re-index a nonnegative ext... |
| sge0fodjrn 46525 | Re-index a nonnegative ext... |
| sge0iunmpt 46526 | Sum of nonnegative extende... |
| sge0iun 46527 | Sum of nonnegative extende... |
| sge0nemnf 46528 | The generalized sum of non... |
| sge0rpcpnf 46529 | The sum of an infinite num... |
| sge0rernmpt 46530 | If the sum of nonnegative ... |
| sge0lefimpt 46531 | A sum of nonnegative exten... |
| nn0ssge0 46532 | Nonnegative integers are n... |
| sge0clmpt 46533 | The generalized sum of non... |
| sge0ltfirpmpt2 46534 | If the extended sum of non... |
| sge0isum 46535 | If a series of nonnegative... |
| sge0xrclmpt 46536 | The generalized sum of non... |
| sge0xp 46537 | Combine two generalized su... |
| sge0isummpt 46538 | If a series of nonnegative... |
| sge0ad2en 46539 | The value of the infinite ... |
| sge0isummpt2 46540 | If a series of nonnegative... |
| sge0xaddlem1 46541 | The extended addition of t... |
| sge0xaddlem2 46542 | The extended addition of t... |
| sge0xadd 46543 | The extended addition of t... |
| sge0fsummptf 46544 | The generalized sum of a f... |
| sge0snmptf 46545 | A sum of a nonnegative ext... |
| sge0ge0mpt 46546 | The sum of nonnegative ext... |
| sge0repnfmpt 46547 | The of nonnegative extende... |
| sge0pnffigtmpt 46548 | If the generalized sum of ... |
| sge0splitsn 46549 | Separate out a term in a g... |
| sge0pnffsumgt 46550 | If the sum of nonnegative ... |
| sge0gtfsumgt 46551 | If the generalized sum of ... |
| sge0uzfsumgt 46552 | If a real number is smalle... |
| sge0pnfmpt 46553 | If a term in the sum of no... |
| sge0seq 46554 | A series of nonnegative re... |
| sge0reuz 46555 | Value of the generalized s... |
| sge0reuzb 46556 | Value of the generalized s... |
| ismea 46559 | Express the predicate " ` ... |
| dmmeasal 46560 | The domain of a measure is... |
| meaf 46561 | A measure is a function th... |
| mea0 46562 | The measure of the empty s... |
| nnfoctbdjlem 46563 | There exists a mapping fro... |
| nnfoctbdj 46564 | There exists a mapping fro... |
| meadjuni 46565 | The measure of the disjoin... |
| meacl 46566 | The measure of a set is a ... |
| iundjiunlem 46567 | The sets in the sequence `... |
| iundjiun 46568 | Given a sequence ` E ` of ... |
| meaxrcl 46569 | The measure of a set is an... |
| meadjun 46570 | The measure of the union o... |
| meassle 46571 | The measure of a set is gr... |
| meaunle 46572 | The measure of the union o... |
| meadjiunlem 46573 | The sum of nonnegative ext... |
| meadjiun 46574 | The measure of the disjoin... |
| ismeannd 46575 | Sufficient condition to pr... |
| meaiunlelem 46576 | The measure of the union o... |
| meaiunle 46577 | The measure of the union o... |
| psmeasurelem 46578 | ` M ` applied to a disjoin... |
| psmeasure 46579 | Point supported measure, R... |
| voliunsge0lem 46580 | The Lebesgue measure funct... |
| voliunsge0 46581 | The Lebesgue measure funct... |
| volmea 46582 | The Lebesgue measure on th... |
| meage0 46583 | If the measure of a measur... |
| meadjunre 46584 | The measure of the union o... |
| meassre 46585 | If the measure of a measur... |
| meale0eq0 46586 | A measure that is less tha... |
| meadif 46587 | The measure of the differe... |
| meaiuninclem 46588 | Measures are continuous fr... |
| meaiuninc 46589 | Measures are continuous fr... |
| meaiuninc2 46590 | Measures are continuous fr... |
| meaiunincf 46591 | Measures are continuous fr... |
| meaiuninc3v 46592 | Measures are continuous fr... |
| meaiuninc3 46593 | Measures are continuous fr... |
| meaiininclem 46594 | Measures are continuous fr... |
| meaiininc 46595 | Measures are continuous fr... |
| meaiininc2 46596 | Measures are continuous fr... |
| caragenval 46601 | The sigma-algebra generate... |
| isome 46602 | Express the predicate " ` ... |
| caragenel 46603 | Membership in the Caratheo... |
| omef 46604 | An outer measure is a func... |
| ome0 46605 | The outer measure of the e... |
| omessle 46606 | The outer measure of a set... |
| omedm 46607 | The domain of an outer mea... |
| caragensplit 46608 | If ` E ` is in the set gen... |
| caragenelss 46609 | An element of the Caratheo... |
| carageneld 46610 | Membership in the Caratheo... |
| omecl 46611 | The outer measure of a set... |
| caragenss 46612 | The sigma-algebra generate... |
| omeunile 46613 | The outer measure of the u... |
| caragen0 46614 | The empty set belongs to a... |
| omexrcl 46615 | The outer measure of a set... |
| caragenunidm 46616 | The base set of an outer m... |
| caragensspw 46617 | The sigma-algebra generate... |
| omessre 46618 | If the outer measure of a ... |
| caragenuni 46619 | The base set of the sigma-... |
| caragenuncllem 46620 | The Caratheodory's constru... |
| caragenuncl 46621 | The Caratheodory's constru... |
| caragendifcl 46622 | The Caratheodory's constru... |
| caragenfiiuncl 46623 | The Caratheodory's constru... |
| omeunle 46624 | The outer measure of the u... |
| omeiunle 46625 | The outer measure of the i... |
| omelesplit 46626 | The outer measure of a set... |
| omeiunltfirp 46627 | If the outer measure of a ... |
| omeiunlempt 46628 | The outer measure of the i... |
| carageniuncllem1 46629 | The outer measure of ` A i... |
| carageniuncllem2 46630 | The Caratheodory's constru... |
| carageniuncl 46631 | The Caratheodory's constru... |
| caragenunicl 46632 | The Caratheodory's constru... |
| caragensal 46633 | Caratheodory's method gene... |
| caratheodorylem1 46634 | Lemma used to prove that C... |
| caratheodorylem2 46635 | Caratheodory's constructio... |
| caratheodory 46636 | Caratheodory's constructio... |
| 0ome 46637 | The map that assigns 0 to ... |
| isomenndlem 46638 | ` O ` is sub-additive w.r.... |
| isomennd 46639 | Sufficient condition to pr... |
| caragenel2d 46640 | Membership in the Caratheo... |
| omege0 46641 | If the outer measure of a ... |
| omess0 46642 | If the outer measure of a ... |
| caragencmpl 46643 | A measure built with the C... |
| vonval 46648 | Value of the Lebesgue meas... |
| ovnval 46649 | Value of the Lebesgue oute... |
| elhoi 46650 | Membership in a multidimen... |
| icoresmbl 46651 | A closed-below, open-above... |
| hoissre 46652 | The projection of a half-o... |
| ovnval2 46653 | Value of the Lebesgue oute... |
| volicorecl 46654 | The Lebesgue measure of a ... |
| hoiprodcl 46655 | The pre-measure of half-op... |
| hoicvr 46656 | ` I ` is a countable set o... |
| hoissrrn 46657 | A half-open interval is a ... |
| ovn0val 46658 | The Lebesgue outer measure... |
| ovnn0val 46659 | The value of a (multidimen... |
| ovnval2b 46660 | Value of the Lebesgue oute... |
| volicorescl 46661 | The Lebesgue measure of a ... |
| ovnprodcl 46662 | The product used in the de... |
| hoiprodcl2 46663 | The pre-measure of half-op... |
| hoicvrrex 46664 | Any subset of the multidim... |
| ovnsupge0 46665 | The set used in the defini... |
| ovnlecvr 46666 | Given a subset of multidim... |
| ovnpnfelsup 46667 | ` +oo ` is an element of t... |
| ovnsslelem 46668 | The (multidimensional, non... |
| ovnssle 46669 | The (multidimensional) Leb... |
| ovnlerp 46670 | The Lebesgue outer measure... |
| ovnf 46671 | The Lebesgue outer measure... |
| ovncvrrp 46672 | The Lebesgue outer measure... |
| ovn0lem 46673 | For any finite dimension, ... |
| ovn0 46674 | For any finite dimension, ... |
| ovncl 46675 | The Lebesgue outer measure... |
| ovn02 46676 | For the zero-dimensional s... |
| ovnxrcl 46677 | The Lebesgue outer measure... |
| ovnsubaddlem1 46678 | The Lebesgue outer measure... |
| ovnsubaddlem2 46679 | ` ( voln* `` X ) ` is suba... |
| ovnsubadd 46680 | ` ( voln* `` X ) ` is suba... |
| ovnome 46681 | ` ( voln* `` X ) ` is an o... |
| vonmea 46682 | ` ( voln `` X ) ` is a mea... |
| volicon0 46683 | The measure of a nonempty ... |
| hsphoif 46684 | ` H ` is a function (that ... |
| hoidmvval 46685 | The dimensional volume of ... |
| hoissrrn2 46686 | A half-open interval is a ... |
| hsphoival 46687 | ` H ` is a function (that ... |
| hoiprodcl3 46688 | The pre-measure of half-op... |
| volicore 46689 | The Lebesgue measure of a ... |
| hoidmvcl 46690 | The dimensional volume of ... |
| hoidmv0val 46691 | The dimensional volume of ... |
| hoidmvn0val 46692 | The dimensional volume of ... |
| hsphoidmvle2 46693 | The dimensional volume of ... |
| hsphoidmvle 46694 | The dimensional volume of ... |
| hoidmvval0 46695 | The dimensional volume of ... |
| hoiprodp1 46696 | The dimensional volume of ... |
| sge0hsphoire 46697 | If the generalized sum of ... |
| hoidmvval0b 46698 | The dimensional volume of ... |
| hoidmv1lelem1 46699 | The supremum of ` U ` belo... |
| hoidmv1lelem2 46700 | This is the contradiction ... |
| hoidmv1lelem3 46701 | The dimensional volume of ... |
| hoidmv1le 46702 | The dimensional volume of ... |
| hoidmvlelem1 46703 | The supremum of ` U ` belo... |
| hoidmvlelem2 46704 | This is the contradiction ... |
| hoidmvlelem3 46705 | This is the contradiction ... |
| hoidmvlelem4 46706 | The dimensional volume of ... |
| hoidmvlelem5 46707 | The dimensional volume of ... |
| hoidmvle 46708 | The dimensional volume of ... |
| ovnhoilem1 46709 | The Lebesgue outer measure... |
| ovnhoilem2 46710 | The Lebesgue outer measure... |
| ovnhoi 46711 | The Lebesgue outer measure... |
| dmovn 46712 | The domain of the Lebesgue... |
| hoicoto2 46713 | The half-open interval exp... |
| dmvon 46714 | Lebesgue measurable n-dime... |
| hoi2toco 46715 | The half-open interval exp... |
| hoidifhspval 46716 | ` D ` is a function that r... |
| hspval 46717 | The value of the half-spac... |
| ovnlecvr2 46718 | Given a subset of multidim... |
| ovncvr2 46719 | ` B ` and ` T ` are the le... |
| dmovnsal 46720 | The domain of the Lebesgue... |
| unidmovn 46721 | Base set of the n-dimensio... |
| rrnmbl 46722 | The set of n-dimensional R... |
| hoidifhspval2 46723 | ` D ` is a function that r... |
| hspdifhsp 46724 | A n-dimensional half-open ... |
| unidmvon 46725 | Base set of the n-dimensio... |
| hoidifhspf 46726 | ` D ` is a function that r... |
| hoidifhspval3 46727 | ` D ` is a function that r... |
| hoidifhspdmvle 46728 | The dimensional volume of ... |
| voncmpl 46729 | The Lebesgue measure is co... |
| hoiqssbllem1 46730 | The center of the n-dimens... |
| hoiqssbllem2 46731 | The center of the n-dimens... |
| hoiqssbllem3 46732 | A n-dimensional ball conta... |
| hoiqssbl 46733 | A n-dimensional ball conta... |
| hspmbllem1 46734 | Any half-space of the n-di... |
| hspmbllem2 46735 | Any half-space of the n-di... |
| hspmbllem3 46736 | Any half-space of the n-di... |
| hspmbl 46737 | Any half-space of the n-di... |
| hoimbllem 46738 | Any n-dimensional half-ope... |
| hoimbl 46739 | Any n-dimensional half-ope... |
| opnvonmbllem1 46740 | The half-open interval exp... |
| opnvonmbllem2 46741 | An open subset of the n-di... |
| opnvonmbl 46742 | An open subset of the n-di... |
| opnssborel 46743 | Open sets of a generalized... |
| borelmbl 46744 | All Borel subsets of the n... |
| volicorege0 46745 | The Lebesgue measure of a ... |
| isvonmbl 46746 | The predicate " ` A ` is m... |
| mblvon 46747 | The n-dimensional Lebesgue... |
| vonmblss 46748 | n-dimensional Lebesgue mea... |
| volico2 46749 | The measure of left-closed... |
| vonmblss2 46750 | n-dimensional Lebesgue mea... |
| ovolval2lem 46751 | The value of the Lebesgue ... |
| ovolval2 46752 | The value of the Lebesgue ... |
| ovnsubadd2lem 46753 | ` ( voln* `` X ) ` is suba... |
| ovnsubadd2 46754 | ` ( voln* `` X ) ` is suba... |
| ovolval3 46755 | The value of the Lebesgue ... |
| ovnsplit 46756 | The n-dimensional Lebesgue... |
| ovolval4lem1 46757 | |- ( ( ph /\ n e. A ) -> ... |
| ovolval4lem2 46758 | The value of the Lebesgue ... |
| ovolval4 46759 | The value of the Lebesgue ... |
| ovolval5lem1 46760 | ` |- ( ph -> ( sum^ `` ( n... |
| ovolval5lem2 46761 | ` |- ( ( ph /\ n e. NN ) -... |
| ovolval5lem3 46762 | The value of the Lebesgue ... |
| ovolval5 46763 | The value of the Lebesgue ... |
| ovnovollem1 46764 | if ` F ` is a cover of ` B... |
| ovnovollem2 46765 | if ` I ` is a cover of ` (... |
| ovnovollem3 46766 | The 1-dimensional Lebesgue... |
| ovnovol 46767 | The 1-dimensional Lebesgue... |
| vonvolmbllem 46768 | If a subset ` B ` of real ... |
| vonvolmbl 46769 | A subset of Real numbers i... |
| vonvol 46770 | The 1-dimensional Lebesgue... |
| vonvolmbl2 46771 | A subset ` X ` of the spac... |
| vonvol2 46772 | The 1-dimensional Lebesgue... |
| hoimbl2 46773 | Any n-dimensional half-ope... |
| voncl 46774 | The Lebesgue measure of a ... |
| vonhoi 46775 | The Lebesgue outer measure... |
| vonxrcl 46776 | The Lebesgue measure of a ... |
| ioosshoi 46777 | A n-dimensional open inter... |
| vonn0hoi 46778 | The Lebesgue outer measure... |
| von0val 46779 | The Lebesgue measure (for ... |
| vonhoire 46780 | The Lebesgue measure of a ... |
| iinhoiicclem 46781 | A n-dimensional closed int... |
| iinhoiicc 46782 | A n-dimensional closed int... |
| iunhoiioolem 46783 | A n-dimensional open inter... |
| iunhoiioo 46784 | A n-dimensional open inter... |
| ioovonmbl 46785 | Any n-dimensional open int... |
| iccvonmbllem 46786 | Any n-dimensional closed i... |
| iccvonmbl 46787 | Any n-dimensional closed i... |
| vonioolem1 46788 | The sequence of the measur... |
| vonioolem2 46789 | The n-dimensional Lebesgue... |
| vonioo 46790 | The n-dimensional Lebesgue... |
| vonicclem1 46791 | The sequence of the measur... |
| vonicclem2 46792 | The n-dimensional Lebesgue... |
| vonicc 46793 | The n-dimensional Lebesgue... |
| snvonmbl 46794 | A n-dimensional singleton ... |
| vonn0ioo 46795 | The n-dimensional Lebesgue... |
| vonn0icc 46796 | The n-dimensional Lebesgue... |
| ctvonmbl 46797 | Any n-dimensional countabl... |
| vonn0ioo2 46798 | The n-dimensional Lebesgue... |
| vonsn 46799 | The n-dimensional Lebesgue... |
| vonn0icc2 46800 | The n-dimensional Lebesgue... |
| vonct 46801 | The n-dimensional Lebesgue... |
| vitali2 46802 | There are non-measurable s... |
| pimltmnf2f 46805 | Given a real-valued functi... |
| pimltmnf2 46806 | Given a real-valued functi... |
| preimagelt 46807 | The preimage of a right-op... |
| preimalegt 46808 | The preimage of a left-ope... |
| pimconstlt0 46809 | Given a constant function,... |
| pimconstlt1 46810 | Given a constant function,... |
| pimltpnff 46811 | Given a real-valued functi... |
| pimltpnf 46812 | Given a real-valued functi... |
| pimgtpnf2f 46813 | Given a real-valued functi... |
| pimgtpnf2 46814 | Given a real-valued functi... |
| salpreimagelt 46815 | If all the preimages of le... |
| pimrecltpos 46816 | The preimage of an unbound... |
| salpreimalegt 46817 | If all the preimages of ri... |
| pimiooltgt 46818 | The preimage of an open in... |
| preimaicomnf 46819 | Preimage of an open interv... |
| pimltpnf2f 46820 | Given a real-valued functi... |
| pimltpnf2 46821 | Given a real-valued functi... |
| pimgtmnf2 46822 | Given a real-valued functi... |
| pimdecfgtioc 46823 | Given a nonincreasing func... |
| pimincfltioc 46824 | Given a nondecreasing func... |
| pimdecfgtioo 46825 | Given a nondecreasing func... |
| pimincfltioo 46826 | Given a nondecreasing func... |
| preimaioomnf 46827 | Preimage of an open interv... |
| preimageiingt 46828 | A preimage of a left-close... |
| preimaleiinlt 46829 | A preimage of a left-open,... |
| pimgtmnff 46830 | Given a real-valued functi... |
| pimgtmnf 46831 | Given a real-valued functi... |
| pimrecltneg 46832 | The preimage of an unbound... |
| salpreimagtge 46833 | If all the preimages of le... |
| salpreimaltle 46834 | If all the preimages of ri... |
| issmflem 46835 | The predicate " ` F ` is a... |
| issmf 46836 | The predicate " ` F ` is a... |
| salpreimalelt 46837 | If all the preimages of ri... |
| salpreimagtlt 46838 | If all the preimages of le... |
| smfpreimalt 46839 | Given a function measurabl... |
| smff 46840 | A function measurable w.r.... |
| smfdmss 46841 | The domain of a function m... |
| issmff 46842 | The predicate " ` F ` is a... |
| issmfd 46843 | A sufficient condition for... |
| smfpreimaltf 46844 | Given a function measurabl... |
| issmfdf 46845 | A sufficient condition for... |
| sssmf 46846 | The restriction of a sigma... |
| mbfresmf 46847 | A real-valued measurable f... |
| cnfsmf 46848 | A continuous function is m... |
| incsmflem 46849 | A nondecreasing function i... |
| incsmf 46850 | A real-valued, nondecreasi... |
| smfsssmf 46851 | If a function is measurabl... |
| issmflelem 46852 | The predicate " ` F ` is a... |
| issmfle 46853 | The predicate " ` F ` is a... |
| smfpimltmpt 46854 | Given a function measurabl... |
| smfpimltxr 46855 | Given a function measurabl... |
| issmfdmpt 46856 | A sufficient condition for... |
| smfconst 46857 | Given a sigma-algebra over... |
| sssmfmpt 46858 | The restriction of a sigma... |
| cnfrrnsmf 46859 | A function, continuous fro... |
| smfid 46860 | The identity function is B... |
| bormflebmf 46861 | A Borel measurable functio... |
| smfpreimale 46862 | Given a function measurabl... |
| issmfgtlem 46863 | The predicate " ` F ` is a... |
| issmfgt 46864 | The predicate " ` F ` is a... |
| issmfled 46865 | A sufficient condition for... |
| smfpimltxrmptf 46866 | Given a function measurabl... |
| smfpimltxrmpt 46867 | Given a function measurabl... |
| smfmbfcex 46868 | A constant function, with ... |
| issmfgtd 46869 | A sufficient condition for... |
| smfpreimagt 46870 | Given a function measurabl... |
| smfaddlem1 46871 | Given the sum of two funct... |
| smfaddlem2 46872 | The sum of two sigma-measu... |
| smfadd 46873 | The sum of two sigma-measu... |
| decsmflem 46874 | A nonincreasing function i... |
| decsmf 46875 | A real-valued, nonincreasi... |
| smfpreimagtf 46876 | Given a function measurabl... |
| issmfgelem 46877 | The predicate " ` F ` is a... |
| issmfge 46878 | The predicate " ` F ` is a... |
| smflimlem1 46879 | Lemma for the proof that t... |
| smflimlem2 46880 | Lemma for the proof that t... |
| smflimlem3 46881 | The limit of sigma-measura... |
| smflimlem4 46882 | Lemma for the proof that t... |
| smflimlem5 46883 | Lemma for the proof that t... |
| smflimlem6 46884 | Lemma for the proof that t... |
| smflim 46885 | The limit of sigma-measura... |
| nsssmfmbflem 46886 | The sigma-measurable funct... |
| nsssmfmbf 46887 | The sigma-measurable funct... |
| smfpimgtxr 46888 | Given a function measurabl... |
| smfpimgtmpt 46889 | Given a function measurabl... |
| smfpreimage 46890 | Given a function measurabl... |
| mbfpsssmf 46891 | Real-valued measurable fun... |
| smfpimgtxrmptf 46892 | Given a function measurabl... |
| smfpimgtxrmpt 46893 | Given a function measurabl... |
| smfpimioompt 46894 | Given a function measurabl... |
| smfpimioo 46895 | Given a function measurabl... |
| smfresal 46896 | Given a sigma-measurable f... |
| smfrec 46897 | The reciprocal of a sigma-... |
| smfres 46898 | The restriction of sigma-m... |
| smfmullem1 46899 | The multiplication of two ... |
| smfmullem2 46900 | The multiplication of two ... |
| smfmullem3 46901 | The multiplication of two ... |
| smfmullem4 46902 | The multiplication of two ... |
| smfmul 46903 | The multiplication of two ... |
| smfmulc1 46904 | A sigma-measurable functio... |
| smfdiv 46905 | The fraction of two sigma-... |
| smfpimbor1lem1 46906 | Every open set belongs to ... |
| smfpimbor1lem2 46907 | Given a sigma-measurable f... |
| smfpimbor1 46908 | Given a sigma-measurable f... |
| smf2id 46909 | Twice the identity functio... |
| smfco 46910 | The composition of a Borel... |
| smfneg 46911 | The negative of a sigma-me... |
| smffmptf 46912 | A function measurable w.r.... |
| smffmpt 46913 | A function measurable w.r.... |
| smflim2 46914 | The limit of a sequence of... |
| smfpimcclem 46915 | Lemma for ~ smfpimcc given... |
| smfpimcc 46916 | Given a countable set of s... |
| issmfle2d 46917 | A sufficient condition for... |
| smflimmpt 46918 | The limit of a sequence of... |
| smfsuplem1 46919 | The supremum of a countabl... |
| smfsuplem2 46920 | The supremum of a countabl... |
| smfsuplem3 46921 | The supremum of a countabl... |
| smfsup 46922 | The supremum of a countabl... |
| smfsupmpt 46923 | The supremum of a countabl... |
| smfsupxr 46924 | The supremum of a countabl... |
| smfinflem 46925 | The infimum of a countable... |
| smfinf 46926 | The infimum of a countable... |
| smfinfmpt 46927 | The infimum of a countable... |
| smflimsuplem1 46928 | If ` H ` converges, the ` ... |
| smflimsuplem2 46929 | The superior limit of a se... |
| smflimsuplem3 46930 | The limit of the ` ( H `` ... |
| smflimsuplem4 46931 | If ` H ` converges, the ` ... |
| smflimsuplem5 46932 | ` H ` converges to the sup... |
| smflimsuplem6 46933 | The superior limit of a se... |
| smflimsuplem7 46934 | The superior limit of a se... |
| smflimsuplem8 46935 | The superior limit of a se... |
| smflimsup 46936 | The superior limit of a se... |
| smflimsupmpt 46937 | The superior limit of a se... |
| smfliminflem 46938 | The inferior limit of a co... |
| smfliminf 46939 | The inferior limit of a co... |
| smfliminfmpt 46940 | The inferior limit of a co... |
| adddmmbl 46941 | If two functions have doma... |
| adddmmbl2 46942 | If two functions have doma... |
| muldmmbl 46943 | If two functions have doma... |
| muldmmbl2 46944 | If two functions have doma... |
| smfdmmblpimne 46945 | If a measurable function w... |
| smfdivdmmbl 46946 | If a functions and a sigma... |
| smfpimne 46947 | Given a function measurabl... |
| smfpimne2 46948 | Given a function measurabl... |
| smfdivdmmbl2 46949 | If a functions and a sigma... |
| fsupdm 46950 | The domain of the sup func... |
| fsupdm2 46951 | The domain of the sup func... |
| smfsupdmmbllem 46952 | If a countable set of sigm... |
| smfsupdmmbl 46953 | If a countable set of sigm... |
| finfdm 46954 | The domain of the inf func... |
| finfdm2 46955 | The domain of the inf func... |
| smfinfdmmbllem 46956 | If a countable set of sigm... |
| smfinfdmmbl 46957 | If a countable set of sigm... |
| sigarval 46958 | Define the signed area by ... |
| sigarim 46959 | Signed area takes value in... |
| sigarac 46960 | Signed area is anticommuta... |
| sigaraf 46961 | Signed area is additive by... |
| sigarmf 46962 | Signed area is additive (w... |
| sigaras 46963 | Signed area is additive by... |
| sigarms 46964 | Signed area is additive (w... |
| sigarls 46965 | Signed area is linear by t... |
| sigarid 46966 | Signed area of a flat para... |
| sigarexp 46967 | Expand the signed area for... |
| sigarperm 46968 | Signed area ` ( A - C ) G ... |
| sigardiv 46969 | If signed area between vec... |
| sigarimcd 46970 | Signed area takes value in... |
| sigariz 46971 | If signed area is zero, th... |
| sigarcol 46972 | Given three points ` A ` ,... |
| sharhght 46973 | Let ` A B C ` be a triangl... |
| sigaradd 46974 | Subtracting (double) area ... |
| cevathlem1 46975 | Ceva's theorem first lemma... |
| cevathlem2 46976 | Ceva's theorem second lemm... |
| cevath 46977 | Ceva's theorem. Let ` A B... |
| simpcntrab 46978 | The center of a simple gro... |
| et-ltneverrefl 46979 | Less-than class is never r... |
| et-equeucl 46980 | Alternative proof that equ... |
| et-sqrtnegnre 46981 | The square root of a negat... |
| ormklocald 46982 | If elements of a certain s... |
| ormkglobd 46983 | If all adjacent elements o... |
| natlocalincr 46984 | Global monotonicity on hal... |
| natglobalincr 46985 | Local monotonicity on half... |
| chnsubseqword 46986 | A subsequence of a chain i... |
| chnsubseqwl 46987 | A subsequence of a chain h... |
| chnsubseq 46988 | An order-preserving subseq... |
| chnsuslle 46989 | Length of a subsequence is... |
| chnerlem1 46990 | In a chain constructed on ... |
| chnerlem2 46991 | Lemma for ~ chner where th... |
| chnerlem3 46992 | Lemma for ~ chner - tricho... |
| chner 46993 | Any two elements are equiv... |
| nthrucw 46994 | Some number sets form a ch... |
| evenwodadd 46995 | If an integer is multiplie... |
| squeezedltsq 46996 | If a real value is squeeze... |
| lambert0 46997 | A value of Lambert W (prod... |
| lamberte 46998 | A value of Lambert W (prod... |
| cjnpoly 46999 | Complex conjugation operat... |
| tannpoly 47000 | The tangent function is no... |
| sinnpoly 47001 | Sine function is not a pol... |
| hirstL-ax3 47002 | The third axiom of a syste... |
| ax3h 47003 | Recover ~ ax-3 from ~ hirs... |
| aibandbiaiffaiffb 47004 | A closed form showing (a i... |
| aibandbiaiaiffb 47005 | A closed form showing (a i... |
| notatnand 47006 | Do not use. Use intnanr i... |
| aistia 47007 | Given a is equivalent to `... |
| aisfina 47008 | Given a is equivalent to `... |
| bothtbothsame 47009 | Given both a, b are equiva... |
| bothfbothsame 47010 | Given both a, b are equiva... |
| aiffbbtat 47011 | Given a is equivalent to b... |
| aisbbisfaisf 47012 | Given a is equivalent to b... |
| axorbtnotaiffb 47013 | Given a is exclusive to b,... |
| aiffnbandciffatnotciffb 47014 | Given a is equivalent to (... |
| axorbciffatcxorb 47015 | Given a is equivalent to (... |
| aibnbna 47016 | Given a implies b, (not b)... |
| aibnbaif 47017 | Given a implies b, not b, ... |
| aiffbtbat 47018 | Given a is equivalent to b... |
| astbstanbst 47019 | Given a is equivalent to T... |
| aistbistaandb 47020 | Given a is equivalent to T... |
| aisbnaxb 47021 | Given a is equivalent to b... |
| atbiffatnnb 47022 | If a implies b, then a imp... |
| bisaiaisb 47023 | Application of bicom1 with... |
| atbiffatnnbalt 47024 | If a implies b, then a imp... |
| abnotbtaxb 47025 | Assuming a, not b, there e... |
| abnotataxb 47026 | Assuming not a, b, there e... |
| conimpf 47027 | Assuming a, not b, and a i... |
| conimpfalt 47028 | Assuming a, not b, and a i... |
| aistbisfiaxb 47029 | Given a is equivalent to T... |
| aisfbistiaxb 47030 | Given a is equivalent to F... |
| aifftbifffaibif 47031 | Given a is equivalent to T... |
| aifftbifffaibifff 47032 | Given a is equivalent to T... |
| atnaiana 47033 | Given a, it is not the cas... |
| ainaiaandna 47034 | Given a, a implies it is n... |
| abcdta 47035 | Given (((a and b) and c) a... |
| abcdtb 47036 | Given (((a and b) and c) a... |
| abcdtc 47037 | Given (((a and b) and c) a... |
| abcdtd 47038 | Given (((a and b) and c) a... |
| abciffcbatnabciffncba 47039 | Operands in a biconditiona... |
| abciffcbatnabciffncbai 47040 | Operands in a biconditiona... |
| nabctnabc 47041 | not ( a -> ( b /\ c ) ) we... |
| jabtaib 47042 | For when pm3.4 lacks a pm3... |
| onenotinotbothi 47043 | From one negated implicati... |
| twonotinotbothi 47044 | From these two negated imp... |
| clifte 47045 | show d is the same as an i... |
| cliftet 47046 | show d is the same as an i... |
| clifteta 47047 | show d is the same as an i... |
| cliftetb 47048 | show d is the same as an i... |
| confun 47049 | Given the hypotheses there... |
| confun2 47050 | Confun simplified to two p... |
| confun3 47051 | Confun's more complex form... |
| confun4 47052 | An attempt at derivative. ... |
| confun5 47053 | An attempt at derivative. ... |
| plcofph 47054 | Given, a,b and a "definiti... |
| pldofph 47055 | Given, a,b c, d, "definiti... |
| plvcofph 47056 | Given, a,b,d, and "definit... |
| plvcofphax 47057 | Given, a,b,d, and "definit... |
| plvofpos 47058 | rh is derivable because ON... |
| mdandyv0 47059 | Given the equivalences set... |
| mdandyv1 47060 | Given the equivalences set... |
| mdandyv2 47061 | Given the equivalences set... |
| mdandyv3 47062 | Given the equivalences set... |
| mdandyv4 47063 | Given the equivalences set... |
| mdandyv5 47064 | Given the equivalences set... |
| mdandyv6 47065 | Given the equivalences set... |
| mdandyv7 47066 | Given the equivalences set... |
| mdandyv8 47067 | Given the equivalences set... |
| mdandyv9 47068 | Given the equivalences set... |
| mdandyv10 47069 | Given the equivalences set... |
| mdandyv11 47070 | Given the equivalences set... |
| mdandyv12 47071 | Given the equivalences set... |
| mdandyv13 47072 | Given the equivalences set... |
| mdandyv14 47073 | Given the equivalences set... |
| mdandyv15 47074 | Given the equivalences set... |
| mdandyvr0 47075 | Given the equivalences set... |
| mdandyvr1 47076 | Given the equivalences set... |
| mdandyvr2 47077 | Given the equivalences set... |
| mdandyvr3 47078 | Given the equivalences set... |
| mdandyvr4 47079 | Given the equivalences set... |
| mdandyvr5 47080 | Given the equivalences set... |
| mdandyvr6 47081 | Given the equivalences set... |
| mdandyvr7 47082 | Given the equivalences set... |
| mdandyvr8 47083 | Given the equivalences set... |
| mdandyvr9 47084 | Given the equivalences set... |
| mdandyvr10 47085 | Given the equivalences set... |
| mdandyvr11 47086 | Given the equivalences set... |
| mdandyvr12 47087 | Given the equivalences set... |
| mdandyvr13 47088 | Given the equivalences set... |
| mdandyvr14 47089 | Given the equivalences set... |
| mdandyvr15 47090 | Given the equivalences set... |
| mdandyvrx0 47091 | Given the exclusivities se... |
| mdandyvrx1 47092 | Given the exclusivities se... |
| mdandyvrx2 47093 | Given the exclusivities se... |
| mdandyvrx3 47094 | Given the exclusivities se... |
| mdandyvrx4 47095 | Given the exclusivities se... |
| mdandyvrx5 47096 | Given the exclusivities se... |
| mdandyvrx6 47097 | Given the exclusivities se... |
| mdandyvrx7 47098 | Given the exclusivities se... |
| mdandyvrx8 47099 | Given the exclusivities se... |
| mdandyvrx9 47100 | Given the exclusivities se... |
| mdandyvrx10 47101 | Given the exclusivities se... |
| mdandyvrx11 47102 | Given the exclusivities se... |
| mdandyvrx12 47103 | Given the exclusivities se... |
| mdandyvrx13 47104 | Given the exclusivities se... |
| mdandyvrx14 47105 | Given the exclusivities se... |
| mdandyvrx15 47106 | Given the exclusivities se... |
| H15NH16TH15IH16 47107 | Given 15 hypotheses and a ... |
| dandysum2p2e4 47108 | CONTRADICTION PROVED AT 1 ... |
| mdandysum2p2e4 47109 | CONTRADICTION PROVED AT 1 ... |
| adh-jarrsc 47110 | Replacement of a nested an... |
| adh-minim 47111 | A single axiom for minimal... |
| adh-minim-ax1-ax2-lem1 47112 | First lemma for the deriva... |
| adh-minim-ax1-ax2-lem2 47113 | Second lemma for the deriv... |
| adh-minim-ax1-ax2-lem3 47114 | Third lemma for the deriva... |
| adh-minim-ax1-ax2-lem4 47115 | Fourth lemma for the deriv... |
| adh-minim-ax1 47116 | Derivation of ~ ax-1 from ... |
| adh-minim-ax2-lem5 47117 | Fifth lemma for the deriva... |
| adh-minim-ax2-lem6 47118 | Sixth lemma for the deriva... |
| adh-minim-ax2c 47119 | Derivation of a commuted f... |
| adh-minim-ax2 47120 | Derivation of ~ ax-2 from ... |
| adh-minim-idALT 47121 | Derivation of ~ id (reflex... |
| adh-minim-pm2.43 47122 | Derivation of ~ pm2.43 Whi... |
| adh-minimp 47123 | Another single axiom for m... |
| adh-minimp-jarr-imim1-ax2c-lem1 47124 | First lemma for the deriva... |
| adh-minimp-jarr-lem2 47125 | Second lemma for the deriv... |
| adh-minimp-jarr-ax2c-lem3 47126 | Third lemma for the deriva... |
| adh-minimp-sylsimp 47127 | Derivation of ~ jarr (also... |
| adh-minimp-ax1 47128 | Derivation of ~ ax-1 from ... |
| adh-minimp-imim1 47129 | Derivation of ~ imim1 ("le... |
| adh-minimp-ax2c 47130 | Derivation of a commuted f... |
| adh-minimp-ax2-lem4 47131 | Fourth lemma for the deriv... |
| adh-minimp-ax2 47132 | Derivation of ~ ax-2 from ... |
| adh-minimp-idALT 47133 | Derivation of ~ id (reflex... |
| adh-minimp-pm2.43 47134 | Derivation of ~ pm2.43 Whi... |
| n0nsn2el 47135 | If a class with one elemen... |
| eusnsn 47136 | There is a unique element ... |
| absnsb 47137 | If the class abstraction `... |
| euabsneu 47138 | Another way to express exi... |
| elprneb 47139 | An element of a proper uno... |
| oppr 47140 | Equality for ordered pairs... |
| opprb 47141 | Equality for unordered pai... |
| or2expropbilem1 47142 | Lemma 1 for ~ or2expropbi ... |
| or2expropbilem2 47143 | Lemma 2 for ~ or2expropbi ... |
| or2expropbi 47144 | If two classes are strictl... |
| eubrv 47145 | If there is a unique set w... |
| eubrdm 47146 | If there is a unique set w... |
| eldmressn 47147 | Element of the domain of a... |
| iota0def 47148 | Example for a defined iota... |
| iota0ndef 47149 | Example for an undefined i... |
| fveqvfvv 47150 | If a function's value at a... |
| fnresfnco 47151 | Composition of two functio... |
| funcoressn 47152 | A composition restricted t... |
| funressnfv 47153 | A restriction to a singlet... |
| funressndmfvrn 47154 | The value of a function ` ... |
| funressnvmo 47155 | A function restricted to a... |
| funressnmo 47156 | A function restricted to a... |
| funressneu 47157 | There is exactly one value... |
| fresfo 47158 | Conditions for a restricti... |
| fsetsniunop 47159 | The class of all functions... |
| fsetabsnop 47160 | The class of all functions... |
| fsetsnf 47161 | The mapping of an element ... |
| fsetsnf1 47162 | The mapping of an element ... |
| fsetsnfo 47163 | The mapping of an element ... |
| fsetsnf1o 47164 | The mapping of an element ... |
| fsetsnprcnex 47165 | The class of all functions... |
| cfsetssfset 47166 | The class of constant func... |
| cfsetsnfsetfv 47167 | The function value of the ... |
| cfsetsnfsetf 47168 | The mapping of the class o... |
| cfsetsnfsetf1 47169 | The mapping of the class o... |
| cfsetsnfsetfo 47170 | The mapping of the class o... |
| cfsetsnfsetf1o 47171 | The mapping of the class o... |
| fsetprcnexALT 47172 | First version of proof for... |
| fcoreslem1 47173 | Lemma 1 for ~ fcores . (C... |
| fcoreslem2 47174 | Lemma 2 for ~ fcores . (C... |
| fcoreslem3 47175 | Lemma 3 for ~ fcores . (C... |
| fcoreslem4 47176 | Lemma 4 for ~ fcores . (C... |
| fcores 47177 | Every composite function `... |
| fcoresf1lem 47178 | Lemma for ~ fcoresf1 . (C... |
| fcoresf1 47179 | If a composition is inject... |
| fcoresf1b 47180 | A composition is injective... |
| fcoresfo 47181 | If a composition is surjec... |
| fcoresfob 47182 | A composition is surjectiv... |
| fcoresf1ob 47183 | A composition is bijective... |
| f1cof1blem 47184 | Lemma for ~ f1cof1b and ~ ... |
| 3f1oss1 47185 | The composition of three b... |
| 3f1oss2 47186 | The composition of three b... |
| f1cof1b 47187 | If the range of ` F ` equa... |
| funfocofob 47188 | If the domain of a functio... |
| fnfocofob 47189 | If the domain of a functio... |
| focofob 47190 | If the domain of a functio... |
| f1ocof1ob 47191 | If the range of ` F ` equa... |
| f1ocof1ob2 47192 | If the range of ` F ` equa... |
| aiotajust 47194 | Soundness justification th... |
| dfaiota2 47196 | Alternate definition of th... |
| reuabaiotaiota 47197 | The iota and the alternate... |
| reuaiotaiota 47198 | The iota and the alternate... |
| aiotaexb 47199 | The alternate iota over a ... |
| aiotavb 47200 | The alternate iota over a ... |
| aiotaint 47201 | This is to ~ df-aiota what... |
| dfaiota3 47202 | Alternate definition of ` ... |
| iotan0aiotaex 47203 | If the iota over a wff ` p... |
| aiotaexaiotaiota 47204 | The alternate iota over a ... |
| aiotaval 47205 | Theorem 8.19 in [Quine] p.... |
| aiota0def 47206 | Example for a defined alte... |
| aiota0ndef 47207 | Example for an undefined a... |
| r19.32 47208 | Theorem 19.32 of [Margaris... |
| rexsb 47209 | An equivalent expression f... |
| rexrsb 47210 | An equivalent expression f... |
| 2rexsb 47211 | An equivalent expression f... |
| 2rexrsb 47212 | An equivalent expression f... |
| cbvral2 47213 | Change bound variables of ... |
| cbvrex2 47214 | Change bound variables of ... |
| ralndv1 47215 | Example for a theorem abou... |
| ralndv2 47216 | Second example for a theor... |
| reuf1odnf 47217 | There is exactly one eleme... |
| reuf1od 47218 | There is exactly one eleme... |
| euoreqb 47219 | There is a set which is eq... |
| 2reu3 47220 | Double restricted existent... |
| 2reu7 47221 | Two equivalent expressions... |
| 2reu8 47222 | Two equivalent expressions... |
| 2reu8i 47223 | Implication of a double re... |
| 2reuimp0 47224 | Implication of a double re... |
| 2reuimp 47225 | Implication of a double re... |
| ralbinrald 47232 | Elemination of a restricte... |
| nvelim 47233 | If a class is the universa... |
| alneu 47234 | If a statement holds for a... |
| eu2ndop1stv 47235 | If there is a unique secon... |
| dfateq12d 47236 | Equality deduction for "de... |
| nfdfat 47237 | Bound-variable hypothesis ... |
| dfdfat2 47238 | Alternate definition of th... |
| fundmdfat 47239 | A function is defined at a... |
| dfatprc 47240 | A function is not defined ... |
| dfatelrn 47241 | The value of a function ` ... |
| dfafv2 47242 | Alternative definition of ... |
| afveq12d 47243 | Equality deduction for fun... |
| afveq1 47244 | Equality theorem for funct... |
| afveq2 47245 | Equality theorem for funct... |
| nfafv 47246 | Bound-variable hypothesis ... |
| csbafv12g 47247 | Move class substitution in... |
| afvfundmfveq 47248 | If a class is a function r... |
| afvnfundmuv 47249 | If a set is not in the dom... |
| ndmafv 47250 | The value of a class outsi... |
| afvvdm 47251 | If the function value of a... |
| nfunsnafv 47252 | If the restriction of a cl... |
| afvvfunressn 47253 | If the function value of a... |
| afvprc 47254 | A function's value at a pr... |
| afvvv 47255 | If a function's value at a... |
| afvpcfv0 47256 | If the value of the altern... |
| afvnufveq 47257 | The value of the alternati... |
| afvvfveq 47258 | The value of the alternati... |
| afv0fv0 47259 | If the value of the altern... |
| afvfvn0fveq 47260 | If the function's value at... |
| afv0nbfvbi 47261 | The function's value at an... |
| afvfv0bi 47262 | The function's value at an... |
| afveu 47263 | The value of a function at... |
| fnbrafvb 47264 | Equivalence of function va... |
| fnopafvb 47265 | Equivalence of function va... |
| funbrafvb 47266 | Equivalence of function va... |
| funopafvb 47267 | Equivalence of function va... |
| funbrafv 47268 | The second argument of a b... |
| funbrafv2b 47269 | Function value in terms of... |
| dfafn5a 47270 | Representation of a functi... |
| dfafn5b 47271 | Representation of a functi... |
| fnrnafv 47272 | The range of a function ex... |
| afvelrnb 47273 | A member of a function's r... |
| afvelrnb0 47274 | A member of a function's r... |
| dfaimafn 47275 | Alternate definition of th... |
| dfaimafn2 47276 | Alternate definition of th... |
| afvelima 47277 | Function value in an image... |
| afvelrn 47278 | A function's value belongs... |
| fnafvelrn 47279 | A function's value belongs... |
| fafvelcdm 47280 | A function's value belongs... |
| ffnafv 47281 | A function maps to a class... |
| afvres 47282 | The value of a restricted ... |
| tz6.12-afv 47283 | Function value. Theorem 6... |
| tz6.12-1-afv 47284 | Function value (Theorem 6.... |
| dmfcoafv 47285 | Domains of a function comp... |
| afvco2 47286 | Value of a function compos... |
| rlimdmafv 47287 | Two ways to express that a... |
| aoveq123d 47288 | Equality deduction for ope... |
| nfaov 47289 | Bound-variable hypothesis ... |
| csbaovg 47290 | Move class substitution in... |
| aovfundmoveq 47291 | If a class is a function r... |
| aovnfundmuv 47292 | If an ordered pair is not ... |
| ndmaov 47293 | The value of an operation ... |
| ndmaovg 47294 | The value of an operation ... |
| aovvdm 47295 | If the operation value of ... |
| nfunsnaov 47296 | If the restriction of a cl... |
| aovvfunressn 47297 | If the operation value of ... |
| aovprc 47298 | The value of an operation ... |
| aovrcl 47299 | Reverse closure for an ope... |
| aovpcov0 47300 | If the alternative value o... |
| aovnuoveq 47301 | The alternative value of t... |
| aovvoveq 47302 | The alternative value of t... |
| aov0ov0 47303 | If the alternative value o... |
| aovovn0oveq 47304 | If the operation's value a... |
| aov0nbovbi 47305 | The operation's value on a... |
| aovov0bi 47306 | The operation's value on a... |
| rspceaov 47307 | A frequently used special ... |
| fnotaovb 47308 | Equivalence of operation v... |
| ffnaov 47309 | An operation maps to a cla... |
| faovcl 47310 | Closure law for an operati... |
| aovmpt4g 47311 | Value of a function given ... |
| aoprssdm 47312 | Domain of closure of an op... |
| ndmaovcl 47313 | The "closure" of an operat... |
| ndmaovrcl 47314 | Reverse closure law, in co... |
| ndmaovcom 47315 | Any operation is commutati... |
| ndmaovass 47316 | Any operation is associati... |
| ndmaovdistr 47317 | Any operation is distribut... |
| dfatafv2iota 47320 | If a function is defined a... |
| ndfatafv2 47321 | The alternate function val... |
| ndfatafv2undef 47322 | The alternate function val... |
| dfatafv2ex 47323 | The alternate function val... |
| afv2ex 47324 | The alternate function val... |
| afv2eq12d 47325 | Equality deduction for fun... |
| afv2eq1 47326 | Equality theorem for funct... |
| afv2eq2 47327 | Equality theorem for funct... |
| nfafv2 47328 | Bound-variable hypothesis ... |
| csbafv212g 47329 | Move class substitution in... |
| fexafv2ex 47330 | The alternate function val... |
| ndfatafv2nrn 47331 | The alternate function val... |
| ndmafv2nrn 47332 | The value of a class outsi... |
| funressndmafv2rn 47333 | The alternate function val... |
| afv2ndefb 47334 | Two ways to say that an al... |
| nfunsnafv2 47335 | If the restriction of a cl... |
| afv2prc 47336 | A function's value at a pr... |
| dfatafv2rnb 47337 | The alternate function val... |
| afv2orxorb 47338 | If a set is in the range o... |
| dmafv2rnb 47339 | The alternate function val... |
| fundmafv2rnb 47340 | The alternate function val... |
| afv2elrn 47341 | An alternate function valu... |
| afv20defat 47342 | If the alternate function ... |
| fnafv2elrn 47343 | An alternate function valu... |
| fafv2elcdm 47344 | An alternate function valu... |
| fafv2elrnb 47345 | An alternate function valu... |
| fcdmvafv2v 47346 | If the codomain of a funct... |
| tz6.12-2-afv2 47347 | Function value when ` F ` ... |
| afv2eu 47348 | The value of a function at... |
| afv2res 47349 | The value of a restricted ... |
| tz6.12-afv2 47350 | Function value (Theorem 6.... |
| tz6.12-1-afv2 47351 | Function value (Theorem 6.... |
| tz6.12c-afv2 47352 | Corollary of Theorem 6.12(... |
| tz6.12i-afv2 47353 | Corollary of Theorem 6.12(... |
| funressnbrafv2 47354 | The second argument of a b... |
| dfatbrafv2b 47355 | Equivalence of function va... |
| dfatopafv2b 47356 | Equivalence of function va... |
| funbrafv2 47357 | The second argument of a b... |
| fnbrafv2b 47358 | Equivalence of function va... |
| fnopafv2b 47359 | Equivalence of function va... |
| funbrafv22b 47360 | Equivalence of function va... |
| funopafv2b 47361 | Equivalence of function va... |
| dfatsnafv2 47362 | Singleton of function valu... |
| dfafv23 47363 | A definition of function v... |
| dfatdmfcoafv2 47364 | Domain of a function compo... |
| dfatcolem 47365 | Lemma for ~ dfatco . (Con... |
| dfatco 47366 | The predicate "defined at"... |
| afv2co2 47367 | Value of a function compos... |
| rlimdmafv2 47368 | Two ways to express that a... |
| dfafv22 47369 | Alternate definition of ` ... |
| afv2ndeffv0 47370 | If the alternate function ... |
| dfatafv2eqfv 47371 | If a function is defined a... |
| afv2rnfveq 47372 | If the alternate function ... |
| afv20fv0 47373 | If the alternate function ... |
| afv2fvn0fveq 47374 | If the function's value at... |
| afv2fv0 47375 | If the function's value at... |
| afv2fv0b 47376 | The function's value at an... |
| afv2fv0xorb 47377 | If a set is in the range o... |
| an4com24 47378 | Rearrangement of 4 conjunc... |
| 3an4ancom24 47379 | Commutative law for a conj... |
| 4an21 47380 | Rearrangement of 4 conjunc... |
| dfnelbr2 47383 | Alternate definition of th... |
| nelbr 47384 | The binary relation of a s... |
| nelbrim 47385 | If a set is related to ano... |
| nelbrnel 47386 | A set is related to anothe... |
| nelbrnelim 47387 | If a set is related to ano... |
| ralralimp 47388 | Selecting one of two alter... |
| otiunsndisjX 47389 | The union of singletons co... |
| fvifeq 47390 | Equality of function value... |
| rnfdmpr 47391 | The range of a one-to-one ... |
| imarnf1pr 47392 | The image of the range of ... |
| funop1 47393 | A function is an ordered p... |
| fun2dmnopgexmpl 47394 | A function with a domain c... |
| opabresex0d 47395 | A collection of ordered pa... |
| opabbrfex0d 47396 | A collection of ordered pa... |
| opabresexd 47397 | A collection of ordered pa... |
| opabbrfexd 47398 | A collection of ordered pa... |
| f1oresf1orab 47399 | Build a bijection by restr... |
| f1oresf1o 47400 | Build a bijection by restr... |
| f1oresf1o2 47401 | Build a bijection by restr... |
| fvmptrab 47402 | Value of a function mappin... |
| fvmptrabdm 47403 | Value of a function mappin... |
| cnambpcma 47404 | ((a-b)+c)-a = c-a holds fo... |
| cnapbmcpd 47405 | ((a+b)-c)+d = ((a+d)+b)-c ... |
| addsubeq0 47406 | The sum of two complex num... |
| leaddsuble 47407 | Addition and subtraction o... |
| 2leaddle2 47408 | If two real numbers are le... |
| ltnltne 47409 | Variant of trichotomy law ... |
| p1lep2 47410 | A real number increasd by ... |
| ltsubsubaddltsub 47411 | If the result of subtracti... |
| zm1nn 47412 | An integer minus 1 is posi... |
| readdcnnred 47413 | The sum of a real number a... |
| resubcnnred 47414 | The difference of a real n... |
| recnmulnred 47415 | The product of a real numb... |
| cndivrenred 47416 | The quotient of an imagina... |
| sqrtnegnre 47417 | The square root of a negat... |
| nn0resubcl 47418 | Closure law for subtractio... |
| zgeltp1eq 47419 | If an integer is between a... |
| 1t10e1p1e11 47420 | 11 is 1 times 10 to the po... |
| deccarry 47421 | Add 1 to a 2 digit number ... |
| eluzge0nn0 47422 | If an integer is greater t... |
| nltle2tri 47423 | Negated extended trichotom... |
| ssfz12 47424 | Subset relationship for fi... |
| elfz2z 47425 | Membership of an integer i... |
| 2elfz3nn0 47426 | If there are two elements ... |
| fz0addcom 47427 | The addition of two member... |
| 2elfz2melfz 47428 | If the sum of two integers... |
| fz0addge0 47429 | The sum of two integers in... |
| elfzlble 47430 | Membership of an integer i... |
| elfzelfzlble 47431 | Membership of an element o... |
| fzopred 47432 | Join a predecessor to the ... |
| fzopredsuc 47433 | Join a predecessor and a s... |
| 1fzopredsuc 47434 | Join 0 and a successor to ... |
| el1fzopredsuc 47435 | An element of an open inte... |
| subsubelfzo0 47436 | Subtracting a difference f... |
| 2ffzoeq 47437 | Two functions over a half-... |
| 2ltceilhalf 47438 | The ceiling of half of an ... |
| ceilhalfgt1 47439 | The ceiling of half of an ... |
| ceilhalfelfzo1 47440 | A positive integer less th... |
| gpgedgvtx1lem 47441 | Lemma for ~ gpgedgvtx1 . ... |
| 2tceilhalfelfzo1 47442 | Two times a positive integ... |
| ceilbi 47443 | A condition equivalent to ... |
| ceilhalf1 47444 | The ceiling of one half is... |
| rehalfge1 47445 | Half of a real number grea... |
| ceilhalfnn 47446 | The ceiling of half of a p... |
| 1elfzo1ceilhalf1 47447 | 1 is in the half-open inte... |
| fldivmod 47448 | Expressing the floor of a ... |
| ceildivmod 47449 | Expressing the ceiling of ... |
| ceil5half3 47450 | The ceiling of half of 5 i... |
| submodaddmod 47451 | Subtraction and addition m... |
| difltmodne 47452 | Two nonnegative integers a... |
| zplusmodne 47453 | A nonnegative integer is n... |
| addmodne 47454 | The sum of a nonnegative i... |
| plusmod5ne 47455 | A nonnegative integer is n... |
| zp1modne 47456 | An integer is not itself p... |
| p1modne 47457 | A nonnegative integer is n... |
| m1modne 47458 | A nonnegative integer is n... |
| minusmod5ne 47459 | A nonnegative integer is n... |
| submodlt 47460 | The difference of an eleme... |
| submodneaddmod 47461 | An integer minus ` B ` is ... |
| m1modnep2mod 47462 | A nonnegative integer minu... |
| minusmodnep2tmod 47463 | A nonnegative integer minu... |
| m1mod0mod1 47464 | An integer decreased by 1 ... |
| elmod2 47465 | An integer modulo 2 is eit... |
| mod0mul 47466 | If an integer is 0 modulo ... |
| modn0mul 47467 | If an integer is not 0 mod... |
| m1modmmod 47468 | An integer decreased by 1 ... |
| difmodm1lt 47469 | The difference between an ... |
| 8mod5e3 47470 | 8 modulo 5 is 3. (Contrib... |
| modmkpkne 47471 | If an integer minus a cons... |
| modmknepk 47472 | A nonnegative integer less... |
| modlt0b 47473 | An integer with an absolut... |
| mod2addne 47474 | The sums of a nonnegative ... |
| modm1nep1 47475 | A nonnegative integer less... |
| modm2nep1 47476 | A nonnegative integer less... |
| modp2nep1 47477 | A nonnegative integer less... |
| modm1nep2 47478 | A nonnegative integer less... |
| modm1nem2 47479 | A nonnegative integer less... |
| modm1p1ne 47480 | If an integer minus one eq... |
| smonoord 47481 | Ordering relation for a st... |
| fsummsndifre 47482 | A finite sum with one of i... |
| fsumsplitsndif 47483 | Separate out a term in a f... |
| fsummmodsndifre 47484 | A finite sum of summands m... |
| fsummmodsnunz 47485 | A finite sum of summands m... |
| setsidel 47486 | The injected slot is an el... |
| setsnidel 47487 | The injected slot is an el... |
| setsv 47488 | The value of the structure... |
| preimafvsnel 47489 | The preimage of a function... |
| preimafvn0 47490 | The preimage of a function... |
| uniimafveqt 47491 | The union of the image of ... |
| uniimaprimaeqfv 47492 | The union of the image of ... |
| setpreimafvex 47493 | The class ` P ` of all pre... |
| elsetpreimafvb 47494 | The characterization of an... |
| elsetpreimafv 47495 | An element of the class ` ... |
| elsetpreimafvssdm 47496 | An element of the class ` ... |
| fvelsetpreimafv 47497 | There is an element in a p... |
| preimafvelsetpreimafv 47498 | The preimage of a function... |
| preimafvsspwdm 47499 | The class ` P ` of all pre... |
| 0nelsetpreimafv 47500 | The empty set is not an el... |
| elsetpreimafvbi 47501 | An element of the preimage... |
| elsetpreimafveqfv 47502 | The elements of the preima... |
| eqfvelsetpreimafv 47503 | If an element of the domai... |
| elsetpreimafvrab 47504 | An element of the preimage... |
| imaelsetpreimafv 47505 | The image of an element of... |
| uniimaelsetpreimafv 47506 | The union of the image of ... |
| elsetpreimafveq 47507 | If two preimages of functi... |
| fundcmpsurinjlem1 47508 | Lemma 1 for ~ fundcmpsurin... |
| fundcmpsurinjlem2 47509 | Lemma 2 for ~ fundcmpsurin... |
| fundcmpsurinjlem3 47510 | Lemma 3 for ~ fundcmpsurin... |
| imasetpreimafvbijlemf 47511 | Lemma for ~ imasetpreimafv... |
| imasetpreimafvbijlemfv 47512 | Lemma for ~ imasetpreimafv... |
| imasetpreimafvbijlemfv1 47513 | Lemma for ~ imasetpreimafv... |
| imasetpreimafvbijlemf1 47514 | Lemma for ~ imasetpreimafv... |
| imasetpreimafvbijlemfo 47515 | Lemma for ~ imasetpreimafv... |
| imasetpreimafvbij 47516 | The mapping ` H ` is a bij... |
| fundcmpsurbijinjpreimafv 47517 | Every function ` F : A -->... |
| fundcmpsurinjpreimafv 47518 | Every function ` F : A -->... |
| fundcmpsurinj 47519 | Every function ` F : A -->... |
| fundcmpsurbijinj 47520 | Every function ` F : A -->... |
| fundcmpsurinjimaid 47521 | Every function ` F : A -->... |
| fundcmpsurinjALT 47522 | Alternate proof of ~ fundc... |
| iccpval 47525 | Partition consisting of a ... |
| iccpart 47526 | A special partition. Corr... |
| iccpartimp 47527 | Implications for a class b... |
| iccpartres 47528 | The restriction of a parti... |
| iccpartxr 47529 | If there is a partition, t... |
| iccpartgtprec 47530 | If there is a partition, t... |
| iccpartipre 47531 | If there is a partition, t... |
| iccpartiltu 47532 | If there is a partition, t... |
| iccpartigtl 47533 | If there is a partition, t... |
| iccpartlt 47534 | If there is a partition, t... |
| iccpartltu 47535 | If there is a partition, t... |
| iccpartgtl 47536 | If there is a partition, t... |
| iccpartgt 47537 | If there is a partition, t... |
| iccpartleu 47538 | If there is a partition, t... |
| iccpartgel 47539 | If there is a partition, t... |
| iccpartrn 47540 | If there is a partition, t... |
| iccpartf 47541 | The range of the partition... |
| iccpartel 47542 | If there is a partition, t... |
| iccelpart 47543 | An element of any partitio... |
| iccpartiun 47544 | A half-open interval of ex... |
| icceuelpartlem 47545 | Lemma for ~ icceuelpart . ... |
| icceuelpart 47546 | An element of a partitione... |
| iccpartdisj 47547 | The segments of a partitio... |
| iccpartnel 47548 | A point of a partition is ... |
| fargshiftfv 47549 | If a class is a function, ... |
| fargshiftf 47550 | If a class is a function, ... |
| fargshiftf1 47551 | If a function is 1-1, then... |
| fargshiftfo 47552 | If a function is onto, the... |
| fargshiftfva 47553 | The values of a shifted fu... |
| lswn0 47554 | The last symbol of a nonem... |
| nfich1 47557 | The first interchangeable ... |
| nfich2 47558 | The second interchangeable... |
| ichv 47559 | Setvar variables are inter... |
| ichf 47560 | Setvar variables are inter... |
| ichid 47561 | A setvar variable is alway... |
| icht 47562 | A theorem is interchangeab... |
| ichbidv 47563 | Formula building rule for ... |
| ichcircshi 47564 | The setvar variables are i... |
| ichan 47565 | If two setvar variables ar... |
| ichn 47566 | Negation does not affect i... |
| ichim 47567 | Formula building rule for ... |
| dfich2 47568 | Alternate definition of th... |
| ichcom 47569 | The interchangeability of ... |
| ichbi12i 47570 | Equivalence for interchang... |
| icheqid 47571 | In an equality for the sam... |
| icheq 47572 | In an equality of setvar v... |
| ichnfimlem 47573 | Lemma for ~ ichnfim : A s... |
| ichnfim 47574 | If in an interchangeabilit... |
| ichnfb 47575 | If ` x ` and ` y ` are int... |
| ichal 47576 | Move a universal quantifie... |
| ich2al 47577 | Two setvar variables are a... |
| ich2ex 47578 | Two setvar variables are a... |
| ichexmpl1 47579 | Example for interchangeabl... |
| ichexmpl2 47580 | Example for interchangeabl... |
| ich2exprop 47581 | If the setvar variables ar... |
| ichnreuop 47582 | If the setvar variables ar... |
| ichreuopeq 47583 | If the setvar variables ar... |
| sprid 47584 | Two identical representati... |
| elsprel 47585 | An unordered pair is an el... |
| spr0nelg 47586 | The empty set is not an el... |
| sprval 47589 | The set of all unordered p... |
| sprvalpw 47590 | The set of all unordered p... |
| sprssspr 47591 | The set of all unordered p... |
| spr0el 47592 | The empty set is not an un... |
| sprvalpwn0 47593 | The set of all unordered p... |
| sprel 47594 | An element of the set of a... |
| prssspr 47595 | An element of a subset of ... |
| prelspr 47596 | An unordered pair of eleme... |
| prsprel 47597 | The elements of a pair fro... |
| prsssprel 47598 | The elements of a pair fro... |
| sprvalpwle2 47599 | The set of all unordered p... |
| sprsymrelfvlem 47600 | Lemma for ~ sprsymrelf and... |
| sprsymrelf1lem 47601 | Lemma for ~ sprsymrelf1 . ... |
| sprsymrelfolem1 47602 | Lemma 1 for ~ sprsymrelfo ... |
| sprsymrelfolem2 47603 | Lemma 2 for ~ sprsymrelfo ... |
| sprsymrelfv 47604 | The value of the function ... |
| sprsymrelf 47605 | The mapping ` F ` is a fun... |
| sprsymrelf1 47606 | The mapping ` F ` is a one... |
| sprsymrelfo 47607 | The mapping ` F ` is a fun... |
| sprsymrelf1o 47608 | The mapping ` F ` is a bij... |
| sprbisymrel 47609 | There is a bijection betwe... |
| sprsymrelen 47610 | The class ` P ` of subsets... |
| prpair 47611 | Characterization of a prop... |
| prproropf1olem0 47612 | Lemma 0 for ~ prproropf1o ... |
| prproropf1olem1 47613 | Lemma 1 for ~ prproropf1o ... |
| prproropf1olem2 47614 | Lemma 2 for ~ prproropf1o ... |
| prproropf1olem3 47615 | Lemma 3 for ~ prproropf1o ... |
| prproropf1olem4 47616 | Lemma 4 for ~ prproropf1o ... |
| prproropf1o 47617 | There is a bijection betwe... |
| prproropen 47618 | The set of proper pairs an... |
| prproropreud 47619 | There is exactly one order... |
| pairreueq 47620 | Two equivalent representat... |
| paireqne 47621 | Two sets are not equal iff... |
| prprval 47624 | The set of all proper unor... |
| prprvalpw 47625 | The set of all proper unor... |
| prprelb 47626 | An element of the set of a... |
| prprelprb 47627 | A set is an element of the... |
| prprspr2 47628 | The set of all proper unor... |
| prprsprreu 47629 | There is a unique proper u... |
| prprreueq 47630 | There is a unique proper u... |
| sbcpr 47631 | The proper substitution of... |
| reupr 47632 | There is a unique unordere... |
| reuprpr 47633 | There is a unique proper u... |
| poprelb 47634 | Equality for unordered pai... |
| 2exopprim 47635 | The existence of an ordere... |
| reuopreuprim 47636 | There is a unique unordere... |
| fmtno 47639 | The ` N ` th Fermat number... |
| fmtnoge3 47640 | Each Fermat number is grea... |
| fmtnonn 47641 | Each Fermat number is a po... |
| fmtnom1nn 47642 | A Fermat number minus one ... |
| fmtnoodd 47643 | Each Fermat number is odd.... |
| fmtnorn 47644 | A Fermat number is a funct... |
| fmtnof1 47645 | The enumeration of the Fer... |
| fmtnoinf 47646 | The set of Fermat numbers ... |
| fmtnorec1 47647 | The first recurrence relat... |
| sqrtpwpw2p 47648 | The floor of the square ro... |
| fmtnosqrt 47649 | The floor of the square ro... |
| fmtno0 47650 | The ` 0 ` th Fermat number... |
| fmtno1 47651 | The ` 1 ` st Fermat number... |
| fmtnorec2lem 47652 | Lemma for ~ fmtnorec2 (ind... |
| fmtnorec2 47653 | The second recurrence rela... |
| fmtnodvds 47654 | Any Fermat number divides ... |
| goldbachthlem1 47655 | Lemma 1 for ~ goldbachth .... |
| goldbachthlem2 47656 | Lemma 2 for ~ goldbachth .... |
| goldbachth 47657 | Goldbach's theorem: Two d... |
| fmtnorec3 47658 | The third recurrence relat... |
| fmtnorec4 47659 | The fourth recurrence rela... |
| fmtno2 47660 | The ` 2 ` nd Fermat number... |
| fmtno3 47661 | The ` 3 ` rd Fermat number... |
| fmtno4 47662 | The ` 4 ` th Fermat number... |
| fmtno5lem1 47663 | Lemma 1 for ~ fmtno5 . (C... |
| fmtno5lem2 47664 | Lemma 2 for ~ fmtno5 . (C... |
| fmtno5lem3 47665 | Lemma 3 for ~ fmtno5 . (C... |
| fmtno5lem4 47666 | Lemma 4 for ~ fmtno5 . (C... |
| fmtno5 47667 | The ` 5 ` th Fermat number... |
| fmtno0prm 47668 | The ` 0 ` th Fermat number... |
| fmtno1prm 47669 | The ` 1 ` st Fermat number... |
| fmtno2prm 47670 | The ` 2 ` nd Fermat number... |
| 257prm 47671 | 257 is a prime number (the... |
| fmtno3prm 47672 | The ` 3 ` rd Fermat number... |
| odz2prm2pw 47673 | Any power of two is coprim... |
| fmtnoprmfac1lem 47674 | Lemma for ~ fmtnoprmfac1 :... |
| fmtnoprmfac1 47675 | Divisor of Fermat number (... |
| fmtnoprmfac2lem1 47676 | Lemma for ~ fmtnoprmfac2 .... |
| fmtnoprmfac2 47677 | Divisor of Fermat number (... |
| fmtnofac2lem 47678 | Lemma for ~ fmtnofac2 (Ind... |
| fmtnofac2 47679 | Divisor of Fermat number (... |
| fmtnofac1 47680 | Divisor of Fermat number (... |
| fmtno4sqrt 47681 | The floor of the square ro... |
| fmtno4prmfac 47682 | If P was a (prime) factor ... |
| fmtno4prmfac193 47683 | If P was a (prime) factor ... |
| fmtno4nprmfac193 47684 | 193 is not a (prime) facto... |
| fmtno4prm 47685 | The ` 4 `-th Fermat number... |
| 65537prm 47686 | 65537 is a prime number (t... |
| fmtnofz04prm 47687 | The first five Fermat numb... |
| fmtnole4prm 47688 | The first five Fermat numb... |
| fmtno5faclem1 47689 | Lemma 1 for ~ fmtno5fac . ... |
| fmtno5faclem2 47690 | Lemma 2 for ~ fmtno5fac . ... |
| fmtno5faclem3 47691 | Lemma 3 for ~ fmtno5fac . ... |
| fmtno5fac 47692 | The factorization of the `... |
| fmtno5nprm 47693 | The ` 5 ` th Fermat number... |
| prmdvdsfmtnof1lem1 47694 | Lemma 1 for ~ prmdvdsfmtno... |
| prmdvdsfmtnof1lem2 47695 | Lemma 2 for ~ prmdvdsfmtno... |
| prmdvdsfmtnof 47696 | The mapping of a Fermat nu... |
| prmdvdsfmtnof1 47697 | The mapping of a Fermat nu... |
| prminf2 47698 | The set of prime numbers i... |
| 2pwp1prm 47699 | For ` ( ( 2 ^ k ) + 1 ) ` ... |
| 2pwp1prmfmtno 47700 | Every prime number of the ... |
| m2prm 47701 | The second Mersenne number... |
| m3prm 47702 | The third Mersenne number ... |
| flsqrt 47703 | A condition equivalent to ... |
| flsqrt5 47704 | The floor of the square ro... |
| 3ndvds4 47705 | 3 does not divide 4. (Con... |
| 139prmALT 47706 | 139 is a prime number. In... |
| 31prm 47707 | 31 is a prime number. In ... |
| m5prm 47708 | The fifth Mersenne number ... |
| 127prm 47709 | 127 is a prime number. (C... |
| m7prm 47710 | The seventh Mersenne numbe... |
| m11nprm 47711 | The eleventh Mersenne numb... |
| mod42tp1mod8 47712 | If a number is ` 3 ` modul... |
| sfprmdvdsmersenne 47713 | If ` Q ` is a safe prime (... |
| sgprmdvdsmersenne 47714 | If ` P ` is a Sophie Germa... |
| lighneallem1 47715 | Lemma 1 for ~ lighneal . ... |
| lighneallem2 47716 | Lemma 2 for ~ lighneal . ... |
| lighneallem3 47717 | Lemma 3 for ~ lighneal . ... |
| lighneallem4a 47718 | Lemma 1 for ~ lighneallem4... |
| lighneallem4b 47719 | Lemma 2 for ~ lighneallem4... |
| lighneallem4 47720 | Lemma 3 for ~ lighneal . ... |
| lighneal 47721 | If a power of a prime ` P ... |
| modexp2m1d 47722 | The square of an integer w... |
| proththdlem 47723 | Lemma for ~ proththd . (C... |
| proththd 47724 | Proth's theorem (1878). I... |
| 5tcu2e40 47725 | 5 times the cube of 2 is 4... |
| 3exp4mod41 47726 | 3 to the fourth power is -... |
| 41prothprmlem1 47727 | Lemma 1 for ~ 41prothprm .... |
| 41prothprmlem2 47728 | Lemma 2 for ~ 41prothprm .... |
| 41prothprm 47729 | 41 is a _Proth prime_. (C... |
| quad1 47730 | A condition for a quadrati... |
| requad01 47731 | A condition for a quadrati... |
| requad1 47732 | A condition for a quadrati... |
| requad2 47733 | A condition for a quadrati... |
| iseven 47738 | The predicate "is an even ... |
| isodd 47739 | The predicate "is an odd n... |
| evenz 47740 | An even number is an integ... |
| oddz 47741 | An odd number is an intege... |
| evendiv2z 47742 | The result of dividing an ... |
| oddp1div2z 47743 | The result of dividing an ... |
| oddm1div2z 47744 | The result of dividing an ... |
| isodd2 47745 | The predicate "is an odd n... |
| dfodd2 47746 | Alternate definition for o... |
| dfodd6 47747 | Alternate definition for o... |
| dfeven4 47748 | Alternate definition for e... |
| evenm1odd 47749 | The predecessor of an even... |
| evenp1odd 47750 | The successor of an even n... |
| oddp1eveni 47751 | The successor of an odd nu... |
| oddm1eveni 47752 | The predecessor of an odd ... |
| evennodd 47753 | An even number is not an o... |
| oddneven 47754 | An odd number is not an ev... |
| enege 47755 | The negative of an even nu... |
| onego 47756 | The negative of an odd num... |
| m1expevenALTV 47757 | Exponentiation of -1 by an... |
| m1expoddALTV 47758 | Exponentiation of -1 by an... |
| dfeven2 47759 | Alternate definition for e... |
| dfodd3 47760 | Alternate definition for o... |
| iseven2 47761 | The predicate "is an even ... |
| isodd3 47762 | The predicate "is an odd n... |
| 2dvdseven 47763 | 2 divides an even number. ... |
| m2even 47764 | A multiple of 2 is an even... |
| 2ndvdsodd 47765 | 2 does not divide an odd n... |
| 2dvdsoddp1 47766 | 2 divides an odd number in... |
| 2dvdsoddm1 47767 | 2 divides an odd number de... |
| dfeven3 47768 | Alternate definition for e... |
| dfodd4 47769 | Alternate definition for o... |
| dfodd5 47770 | Alternate definition for o... |
| zefldiv2ALTV 47771 | The floor of an even numbe... |
| zofldiv2ALTV 47772 | The floor of an odd number... |
| oddflALTV 47773 | Odd number representation ... |
| iseven5 47774 | The predicate "is an even ... |
| isodd7 47775 | The predicate "is an odd n... |
| dfeven5 47776 | Alternate definition for e... |
| dfodd7 47777 | Alternate definition for o... |
| gcd2odd1 47778 | The greatest common diviso... |
| zneoALTV 47779 | No even integer equals an ... |
| zeoALTV 47780 | An integer is even or odd.... |
| zeo2ALTV 47781 | An integer is even or odd ... |
| nneoALTV 47782 | A positive integer is even... |
| nneoiALTV 47783 | A positive integer is even... |
| odd2np1ALTV 47784 | An integer is odd iff it i... |
| oddm1evenALTV 47785 | An integer is odd iff its ... |
| oddp1evenALTV 47786 | An integer is odd iff its ... |
| oexpnegALTV 47787 | The exponential of the neg... |
| oexpnegnz 47788 | The exponential of the neg... |
| bits0ALTV 47789 | Value of the zeroth bit. ... |
| bits0eALTV 47790 | The zeroth bit of an even ... |
| bits0oALTV 47791 | The zeroth bit of an odd n... |
| divgcdoddALTV 47792 | Either ` A / ( A gcd B ) `... |
| opoeALTV 47793 | The sum of two odds is eve... |
| opeoALTV 47794 | The sum of an odd and an e... |
| omoeALTV 47795 | The difference of two odds... |
| omeoALTV 47796 | The difference of an odd a... |
| oddprmALTV 47797 | A prime not equal to ` 2 `... |
| 0evenALTV 47798 | 0 is an even number. (Con... |
| 0noddALTV 47799 | 0 is not an odd number. (... |
| 1oddALTV 47800 | 1 is an odd number. (Cont... |
| 1nevenALTV 47801 | 1 is not an even number. ... |
| 2evenALTV 47802 | 2 is an even number. (Con... |
| 2noddALTV 47803 | 2 is not an odd number. (... |
| nn0o1gt2ALTV 47804 | An odd nonnegative integer... |
| nnoALTV 47805 | An alternate characterizat... |
| nn0oALTV 47806 | An alternate characterizat... |
| nn0e 47807 | An alternate characterizat... |
| nneven 47808 | An alternate characterizat... |
| nn0onn0exALTV 47809 | For each odd nonnegative i... |
| nn0enn0exALTV 47810 | For each even nonnegative ... |
| nnennexALTV 47811 | For each even positive int... |
| nnpw2evenALTV 47812 | 2 to the power of a positi... |
| epoo 47813 | The sum of an even and an ... |
| emoo 47814 | The difference of an even ... |
| epee 47815 | The sum of two even number... |
| emee 47816 | The difference of two even... |
| evensumeven 47817 | If a summand is even, the ... |
| 3odd 47818 | 3 is an odd number. (Cont... |
| 4even 47819 | 4 is an even number. (Con... |
| 5odd 47820 | 5 is an odd number. (Cont... |
| 6even 47821 | 6 is an even number. (Con... |
| 7odd 47822 | 7 is an odd number. (Cont... |
| 8even 47823 | 8 is an even number. (Con... |
| evenprm2 47824 | A prime number is even iff... |
| oddprmne2 47825 | Every prime number not bei... |
| oddprmuzge3 47826 | A prime number which is od... |
| evenltle 47827 | If an even number is great... |
| odd2prm2 47828 | If an odd number is the su... |
| even3prm2 47829 | If an even number is the s... |
| mogoldbblem 47830 | Lemma for ~ mogoldbb . (C... |
| perfectALTVlem1 47831 | Lemma for ~ perfectALTV . ... |
| perfectALTVlem2 47832 | Lemma for ~ perfectALTV . ... |
| perfectALTV 47833 | The Euclid-Euler theorem, ... |
| fppr 47836 | The set of Fermat pseudopr... |
| fpprmod 47837 | The set of Fermat pseudopr... |
| fpprel 47838 | A Fermat pseudoprime to th... |
| fpprbasnn 47839 | The base of a Fermat pseud... |
| fpprnn 47840 | A Fermat pseudoprime to th... |
| fppr2odd 47841 | A Fermat pseudoprime to th... |
| 11t31e341 47842 | 341 is the product of 11 a... |
| 2exp340mod341 47843 | Eight to the eighth power ... |
| 341fppr2 47844 | 341 is the (smallest) _Pou... |
| 4fppr1 47845 | 4 is the (smallest) Fermat... |
| 8exp8mod9 47846 | Eight to the eighth power ... |
| 9fppr8 47847 | 9 is the (smallest) Fermat... |
| dfwppr 47848 | Alternate definition of a ... |
| fpprwppr 47849 | A Fermat pseudoprime to th... |
| fpprwpprb 47850 | An integer ` X ` which is ... |
| fpprel2 47851 | An alternate definition fo... |
| nfermltl8rev 47852 | Fermat's little theorem wi... |
| nfermltl2rev 47853 | Fermat's little theorem wi... |
| nfermltlrev 47854 | Fermat's little theorem re... |
| isgbe 47861 | The predicate "is an even ... |
| isgbow 47862 | The predicate "is a weak o... |
| isgbo 47863 | The predicate "is an odd G... |
| gbeeven 47864 | An even Goldbach number is... |
| gbowodd 47865 | A weak odd Goldbach number... |
| gbogbow 47866 | A (strong) odd Goldbach nu... |
| gboodd 47867 | An odd Goldbach number is ... |
| gbepos 47868 | Any even Goldbach number i... |
| gbowpos 47869 | Any weak odd Goldbach numb... |
| gbopos 47870 | Any odd Goldbach number is... |
| gbegt5 47871 | Any even Goldbach number i... |
| gbowgt5 47872 | Any weak odd Goldbach numb... |
| gbowge7 47873 | Any weak odd Goldbach numb... |
| gboge9 47874 | Any odd Goldbach number is... |
| gbege6 47875 | Any even Goldbach number i... |
| gbpart6 47876 | The Goldbach partition of ... |
| gbpart7 47877 | The (weak) Goldbach partit... |
| gbpart8 47878 | The Goldbach partition of ... |
| gbpart9 47879 | The (strong) Goldbach part... |
| gbpart11 47880 | The (strong) Goldbach part... |
| 6gbe 47881 | 6 is an even Goldbach numb... |
| 7gbow 47882 | 7 is a weak odd Goldbach n... |
| 8gbe 47883 | 8 is an even Goldbach numb... |
| 9gbo 47884 | 9 is an odd Goldbach numbe... |
| 11gbo 47885 | 11 is an odd Goldbach numb... |
| stgoldbwt 47886 | If the strong ternary Gold... |
| sbgoldbwt 47887 | If the strong binary Goldb... |
| sbgoldbst 47888 | If the strong binary Goldb... |
| sbgoldbaltlem1 47889 | Lemma 1 for ~ sbgoldbalt :... |
| sbgoldbaltlem2 47890 | Lemma 2 for ~ sbgoldbalt :... |
| sbgoldbalt 47891 | An alternate (related to t... |
| sbgoldbb 47892 | If the strong binary Goldb... |
| sgoldbeven3prm 47893 | If the binary Goldbach con... |
| sbgoldbm 47894 | If the strong binary Goldb... |
| mogoldbb 47895 | If the modern version of t... |
| sbgoldbmb 47896 | The strong binary Goldbach... |
| sbgoldbo 47897 | If the strong binary Goldb... |
| nnsum3primes4 47898 | 4 is the sum of at most 3 ... |
| nnsum4primes4 47899 | 4 is the sum of at most 4 ... |
| nnsum3primesprm 47900 | Every prime is "the sum of... |
| nnsum4primesprm 47901 | Every prime is "the sum of... |
| nnsum3primesgbe 47902 | Any even Goldbach number i... |
| nnsum4primesgbe 47903 | Any even Goldbach number i... |
| nnsum3primesle9 47904 | Every integer greater than... |
| nnsum4primesle9 47905 | Every integer greater than... |
| nnsum4primesodd 47906 | If the (weak) ternary Gold... |
| nnsum4primesoddALTV 47907 | If the (strong) ternary Go... |
| evengpop3 47908 | If the (weak) ternary Gold... |
| evengpoap3 47909 | If the (strong) ternary Go... |
| nnsum4primeseven 47910 | If the (weak) ternary Gold... |
| nnsum4primesevenALTV 47911 | If the (strong) ternary Go... |
| wtgoldbnnsum4prm 47912 | If the (weak) ternary Gold... |
| stgoldbnnsum4prm 47913 | If the (strong) ternary Go... |
| bgoldbnnsum3prm 47914 | If the binary Goldbach con... |
| bgoldbtbndlem1 47915 | Lemma 1 for ~ bgoldbtbnd :... |
| bgoldbtbndlem2 47916 | Lemma 2 for ~ bgoldbtbnd .... |
| bgoldbtbndlem3 47917 | Lemma 3 for ~ bgoldbtbnd .... |
| bgoldbtbndlem4 47918 | Lemma 4 for ~ bgoldbtbnd .... |
| bgoldbtbnd 47919 | If the binary Goldbach con... |
| tgoldbachgtALTV 47922 | Variant of Thierry Arnoux'... |
| bgoldbachlt 47923 | The binary Goldbach conjec... |
| tgblthelfgott 47925 | The ternary Goldbach conje... |
| tgoldbachlt 47926 | The ternary Goldbach conje... |
| tgoldbach 47927 | The ternary Goldbach conje... |
| clnbgrprc0 47930 | The closed neighborhood is... |
| clnbgrcl 47931 | If a class ` X ` has at le... |
| clnbgrval 47932 | The closed neighborhood of... |
| dfclnbgr2 47933 | Alternate definition of th... |
| dfclnbgr4 47934 | Alternate definition of th... |
| elclnbgrelnbgr 47935 | An element of the closed n... |
| dfclnbgr3 47936 | Alternate definition of th... |
| clnbgrnvtx0 47937 | If a class ` X ` is not a ... |
| clnbgrel 47938 | Characterization of a memb... |
| clnbgrvtxel 47939 | Every vertex ` K ` is a me... |
| clnbgrisvtx 47940 | Every member ` N ` of the ... |
| clnbgrssvtx 47941 | The closed neighborhood of... |
| clnbgrn0 47942 | The closed neighborhood of... |
| clnbupgr 47943 | The closed neighborhood of... |
| clnbupgrel 47944 | A member of the closed nei... |
| clnbupgreli 47945 | A member of the closed nei... |
| clnbgr0vtx 47946 | In a null graph (with no v... |
| clnbgr0edg 47947 | In an empty graph (with no... |
| clnbgrsym 47948 | In a graph, the closed nei... |
| predgclnbgrel 47949 | If a (not necessarily prop... |
| clnbgredg 47950 | A vertex connected by an e... |
| clnbgrssedg 47951 | The vertices connected by ... |
| edgusgrclnbfin 47952 | The size of the closed nei... |
| clnbusgrfi 47953 | The closed neighborhood of... |
| clnbfiusgrfi 47954 | The closed neighborhood of... |
| clnbgrlevtx 47955 | The size of the closed nei... |
| dfsclnbgr2 47956 | Alternate definition of th... |
| sclnbgrel 47957 | Characterization of a memb... |
| sclnbgrelself 47958 | A vertex ` N ` is a member... |
| sclnbgrisvtx 47959 | Every member ` X ` of the ... |
| dfclnbgr5 47960 | Alternate definition of th... |
| dfnbgr5 47961 | Alternate definition of th... |
| dfnbgrss 47962 | Subset chain for different... |
| dfvopnbgr2 47963 | Alternate definition of th... |
| vopnbgrel 47964 | Characterization of a memb... |
| vopnbgrelself 47965 | A vertex ` N ` is a member... |
| dfclnbgr6 47966 | Alternate definition of th... |
| dfnbgr6 47967 | Alternate definition of th... |
| dfsclnbgr6 47968 | Alternate definition of a ... |
| dfnbgrss2 47969 | Subset chain for different... |
| isisubgr 47972 | The subgraph induced by a ... |
| isubgriedg 47973 | The edges of an induced su... |
| isubgrvtxuhgr 47974 | The subgraph induced by th... |
| isubgredgss 47975 | The edges of an induced su... |
| isubgredg 47976 | An edge of an induced subg... |
| isubgrvtx 47977 | The vertices of an induced... |
| isubgruhgr 47978 | An induced subgraph of a h... |
| isubgrsubgr 47979 | An induced subgraph of a h... |
| isubgrupgr 47980 | An induced subgraph of a p... |
| isubgrumgr 47981 | An induced subgraph of a m... |
| isubgrusgr 47982 | An induced subgraph of a s... |
| isubgr0uhgr 47983 | The subgraph induced by an... |
| grimfn 47989 | The graph isomorphism func... |
| grimdmrel 47990 | The domain of the graph is... |
| isgrim 47992 | An isomorphism of graphs i... |
| grimprop 47993 | Properties of an isomorphi... |
| grimf1o 47994 | An isomorphism of graphs i... |
| grimidvtxedg 47995 | The identity relation rest... |
| grimid 47996 | The identity relation rest... |
| grimuhgr 47997 | If there is a graph isomor... |
| grimcnv 47998 | The converse of a graph is... |
| grimco 47999 | The composition of graph i... |
| uhgrimedgi 48000 | An isomorphism between gra... |
| uhgrimedg 48001 | An isomorphism between gra... |
| uhgrimprop 48002 | An isomorphism between hyp... |
| isuspgrim0lem 48003 | An isomorphism of simple p... |
| isuspgrim0 48004 | An isomorphism of simple p... |
| isuspgrimlem 48005 | Lemma for ~ isuspgrim . (... |
| isuspgrim 48006 | A class is an isomorphism ... |
| upgrimwlklem1 48007 | Lemma 1 for ~ upgrimwlk an... |
| upgrimwlklem2 48008 | Lemma 2 for ~ upgrimwlk . ... |
| upgrimwlklem3 48009 | Lemma 3 for ~ upgrimwlk . ... |
| upgrimwlklem4 48010 | Lemma 4 for ~ upgrimwlk . ... |
| upgrimwlklem5 48011 | Lemma 5 for ~ upgrimwlk . ... |
| upgrimwlk 48012 | Graph isomorphisms between... |
| upgrimwlklen 48013 | Graph isomorphisms between... |
| upgrimtrlslem1 48014 | Lemma 1 for ~ upgrimtrls .... |
| upgrimtrlslem2 48015 | Lemma 2 for ~ upgrimtrls .... |
| upgrimtrls 48016 | Graph isomorphisms between... |
| upgrimpthslem1 48017 | Lemma 1 for ~ upgrimpths .... |
| upgrimpthslem2 48018 | Lemma 2 for ~ upgrimpths .... |
| upgrimpths 48019 | Graph isomorphisms between... |
| upgrimspths 48020 | Graph isomorphisms between... |
| upgrimcycls 48021 | Graph isomorphisms between... |
| brgric 48022 | The relation "is isomorphi... |
| brgrici 48023 | Prove that two graphs are ... |
| gricrcl 48024 | Reverse closure of the "is... |
| dfgric2 48025 | Alternate, explicit defini... |
| gricbri 48026 | Implications of two graphs... |
| gricushgr 48027 | The "is isomorphic to" rel... |
| gricuspgr 48028 | The "is isomorphic to" rel... |
| gricrel 48029 | The "is isomorphic to" rel... |
| gricref 48030 | Graph isomorphism is refle... |
| gricsym 48031 | Graph isomorphism is symme... |
| gricsymb 48032 | Graph isomorphism is symme... |
| grictr 48033 | Graph isomorphism is trans... |
| gricer 48034 | Isomorphism is an equivale... |
| gricen 48035 | Isomorphic graphs have equ... |
| opstrgric 48036 | A graph represented as an ... |
| ushggricedg 48037 | A simple hypergraph (with ... |
| cycldlenngric 48038 | Two simple pseudographs ar... |
| isubgrgrim 48039 | Isomorphic subgraphs induc... |
| uhgrimisgrgriclem 48040 | Lemma for ~ uhgrimisgrgric... |
| uhgrimisgrgric 48041 | For isomorphic hypergraphs... |
| clnbgrisubgrgrim 48042 | Isomorphic subgraphs induc... |
| clnbgrgrimlem 48043 | Lemma for ~ clnbgrgrim : ... |
| clnbgrgrim 48044 | Graph isomorphisms between... |
| grimedg 48045 | For two isomorphic graphs,... |
| grimedgi 48046 | Graph isomorphisms map edg... |
| grtriproplem 48049 | Lemma for ~ grtriprop . (... |
| grtri 48050 | The triangles in a graph. ... |
| grtriprop 48051 | The properties of a triang... |
| grtrif1o 48052 | Any bijection onto a trian... |
| isgrtri 48053 | A triangle in a graph. (C... |
| grtrissvtx 48054 | A triangle is a subset of ... |
| grtriclwlk3 48055 | A triangle induces a close... |
| cycl3grtrilem 48056 | Lemma for ~ cycl3grtri . ... |
| cycl3grtri 48057 | The vertices of a cycle of... |
| grtrimap 48058 | Conditions for mapping tri... |
| grimgrtri 48059 | Graph isomorphisms map tri... |
| usgrgrtrirex 48060 | Conditions for a simple gr... |
| stgrfv 48063 | The star graph S_N. (Contr... |
| stgrvtx 48064 | The vertices of the star g... |
| stgriedg 48065 | The indexed edges of the s... |
| stgredg 48066 | The edges of the star grap... |
| stgredgel 48067 | An edge of the star graph ... |
| stgredgiun 48068 | The edges of the star grap... |
| stgrusgra 48069 | The star graph S_N is a si... |
| stgr0 48070 | The star graph S_0 consist... |
| stgr1 48071 | The star graph S_1 consist... |
| stgrvtx0 48072 | The center ("internal node... |
| stgrorder 48073 | The order of a star graph ... |
| stgrnbgr0 48074 | All vertices of a star gra... |
| stgrclnbgr0 48075 | All vertices of a star gra... |
| isubgr3stgrlem1 48076 | Lemma 1 for ~ isubgr3stgr ... |
| isubgr3stgrlem2 48077 | Lemma 2 for ~ isubgr3stgr ... |
| isubgr3stgrlem3 48078 | Lemma 3 for ~ isubgr3stgr ... |
| isubgr3stgrlem4 48079 | Lemma 4 for ~ isubgr3stgr ... |
| isubgr3stgrlem5 48080 | Lemma 5 for ~ isubgr3stgr ... |
| isubgr3stgrlem6 48081 | Lemma 6 for ~ isubgr3stgr ... |
| isubgr3stgrlem7 48082 | Lemma 7 for ~ isubgr3stgr ... |
| isubgr3stgrlem8 48083 | Lemma 8 for ~ isubgr3stgr ... |
| isubgr3stgrlem9 48084 | Lemma 9 for ~ isubgr3stgr ... |
| isubgr3stgr 48085 | If a vertex of a simple gr... |
| grlimfn 48089 | The graph local isomorphis... |
| grlimdmrel 48090 | The domain of the graph lo... |
| isgrlim 48092 | A local isomorphism of gra... |
| isgrlim2 48093 | A local isomorphism of gra... |
| grlimprop 48094 | Properties of a local isom... |
| grlimf1o 48095 | A local isomorphism of gra... |
| grlimprop2 48096 | Properties of a local isom... |
| uhgrimgrlim 48097 | An isomorphism of hypergra... |
| uspgrlimlem1 48098 | Lemma 1 for ~ uspgrlim . ... |
| uspgrlimlem2 48099 | Lemma 2 for ~ uspgrlim . ... |
| uspgrlimlem3 48100 | Lemma 3 for ~ uspgrlim . ... |
| uspgrlimlem4 48101 | Lemma 4 for ~ uspgrlim . ... |
| uspgrlim 48102 | A local isomorphism of sim... |
| usgrlimprop 48103 | Properties of a local isom... |
| clnbgrvtxedg 48104 | An edge ` E ` containing a... |
| grlimedgclnbgr 48105 | For two locally isomorphic... |
| grlimprclnbgr 48106 | For two locally isomorphic... |
| grlimprclnbgredg 48107 | For two locally isomorphic... |
| grlimpredg 48108 | For two locally isomorphic... |
| grlimprclnbgrvtx 48109 | For two locally isomorphic... |
| grlimgredgex 48110 | Local isomorphisms between... |
| grlimgrtrilem1 48111 | Lemma 3 for ~ grlimgrtri .... |
| grlimgrtrilem2 48112 | Lemma 3 for ~ grlimgrtri .... |
| grlimgrtri 48113 | If one of two locally isom... |
| brgrlic 48114 | The relation "is locally i... |
| brgrilci 48115 | Prove that two graphs are ... |
| grlicrel 48116 | The "is locally isomorphic... |
| grlicrcl 48117 | Reverse closure of the "is... |
| dfgrlic2 48118 | Alternate, explicit defini... |
| grilcbri 48119 | Implications of two graphs... |
| dfgrlic3 48120 | Alternate, explicit defini... |
| grilcbri2 48121 | Implications of two graphs... |
| grlicref 48122 | Graph local isomorphism is... |
| grlicsym 48123 | Graph local isomorphism is... |
| grlicsymb 48124 | Graph local isomorphism is... |
| grlictr 48125 | Graph local isomorphism is... |
| grlicer 48126 | Local isomorphism is an eq... |
| grlicen 48127 | Locally isomorphic graphs ... |
| gricgrlic 48128 | Isomorphic hypergraphs are... |
| clnbgr3stgrgrlim 48129 | If all (closed) neighborho... |
| clnbgr3stgrgrlic 48130 | If all (closed) neighborho... |
| usgrexmpl1lem 48131 | Lemma for ~ usgrexmpl1 . ... |
| usgrexmpl1 48132 | ` G ` is a simple graph of... |
| usgrexmpl1vtx 48133 | The vertices ` 0 , 1 , 2 ,... |
| usgrexmpl1edg 48134 | The edges ` { 0 , 1 } , { ... |
| usgrexmpl1tri 48135 | ` G ` contains a triangle ... |
| usgrexmpl2lem 48136 | Lemma for ~ usgrexmpl2 . ... |
| usgrexmpl2 48137 | ` G ` is a simple graph of... |
| usgrexmpl2vtx 48138 | The vertices ` 0 , 1 , 2 ,... |
| usgrexmpl2edg 48139 | The edges ` { 0 , 1 } , { ... |
| usgrexmpl2nblem 48140 | Lemma for ~ usgrexmpl2nb0 ... |
| usgrexmpl2nb0 48141 | The neighborhood of the fi... |
| usgrexmpl2nb1 48142 | The neighborhood of the se... |
| usgrexmpl2nb2 48143 | The neighborhood of the th... |
| usgrexmpl2nb3 48144 | The neighborhood of the fo... |
| usgrexmpl2nb4 48145 | The neighborhood of the fi... |
| usgrexmpl2nb5 48146 | The neighborhood of the si... |
| usgrexmpl2trifr 48147 | ` G ` is triangle-free. (... |
| usgrexmpl12ngric 48148 | The graphs ` H ` and ` G `... |
| usgrexmpl12ngrlic 48149 | The graphs ` H ` and ` G `... |
| gpgov 48152 | The generalized Petersen g... |
| gpgvtx 48153 | The vertices of the genera... |
| gpgiedg 48154 | The indexed edges of the g... |
| gpgedg 48155 | The edges of the generaliz... |
| gpgiedgdmellem 48156 | Lemma for ~ gpgiedgdmel an... |
| gpgvtxel 48157 | A vertex in a generalized ... |
| gpgvtxel2 48158 | The second component of a ... |
| gpgiedgdmel 48159 | An index of edges of the g... |
| gpgedgel 48160 | An edge in a generalized P... |
| gpgprismgriedgdmel 48161 | An index of edges of the g... |
| gpgprismgriedgdmss 48162 | A subset of the index of e... |
| gpgvtx0 48163 | The outside vertices in a ... |
| gpgvtx1 48164 | The inside vertices in a g... |
| opgpgvtx 48165 | A vertex in a generalized ... |
| gpgusgralem 48166 | Lemma for ~ gpgusgra . (C... |
| gpgusgra 48167 | The generalized Petersen g... |
| gpgprismgrusgra 48168 | The generalized Petersen g... |
| gpgorder 48169 | The order of the generaliz... |
| gpg5order 48170 | The order of a generalized... |
| gpgedgvtx0 48171 | The edges starting at an o... |
| gpgedgvtx1 48172 | The edges starting at an i... |
| gpgvtxedg0 48173 | The edges starting at an o... |
| gpgvtxedg1 48174 | The edges starting at an i... |
| gpgedgiov 48175 | The edges of the generaliz... |
| gpgedg2ov 48176 | The edges of the generaliz... |
| gpgedg2iv 48177 | The edges of the generaliz... |
| gpg5nbgrvtx03starlem1 48178 | Lemma 1 for ~ gpg5nbgrvtx0... |
| gpg5nbgrvtx03starlem2 48179 | Lemma 2 for ~ gpg5nbgrvtx0... |
| gpg5nbgrvtx03starlem3 48180 | Lemma 3 for ~ gpg5nbgrvtx0... |
| gpg5nbgrvtx13starlem1 48181 | Lemma 1 for ~ gpg5nbgr3sta... |
| gpg5nbgrvtx13starlem2 48182 | Lemma 2 for ~ gpg5nbgr3sta... |
| gpg5nbgrvtx13starlem3 48183 | Lemma 3 for ~ gpg5nbgr3sta... |
| gpgnbgrvtx0 48184 | The (open) neighborhood of... |
| gpgnbgrvtx1 48185 | The (open) neighborhood of... |
| gpg3nbgrvtx0 48186 | In a generalized Petersen ... |
| gpg3nbgrvtx0ALT 48187 | In a generalized Petersen ... |
| gpg3nbgrvtx1 48188 | In a generalized Petersen ... |
| gpgcubic 48189 | Every generalized Petersen... |
| gpg5nbgrvtx03star 48190 | In a generalized Petersen ... |
| gpg5nbgr3star 48191 | In a generalized Petersen ... |
| gpgvtxdg3 48192 | Every vertex in a generali... |
| gpg3kgrtriexlem1 48193 | Lemma 1 for ~ gpg3kgrtriex... |
| gpg3kgrtriexlem2 48194 | Lemma 2 for ~ gpg3kgrtriex... |
| gpg3kgrtriexlem3 48195 | Lemma 3 for ~ gpg3kgrtriex... |
| gpg3kgrtriexlem4 48196 | Lemma 4 for ~ gpg3kgrtriex... |
| gpg3kgrtriexlem5 48197 | Lemma 5 for ~ gpg3kgrtriex... |
| gpg3kgrtriexlem6 48198 | Lemma 6 for ~ gpg3kgrtriex... |
| gpg3kgrtriex 48199 | All generalized Petersen g... |
| gpg5gricstgr3 48200 | Each closed neighborhood i... |
| pglem 48201 | Lemma for theorems about P... |
| pgjsgr 48202 | A Petersen graph is a simp... |
| gpg5grlim 48203 | A local isomorphism betwee... |
| gpg5grlic 48204 | The two generalized Peters... |
| gpgprismgr4cycllem1 48205 | Lemma 1 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem2 48206 | Lemma 2 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem3 48207 | Lemma 3 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem4 48208 | Lemma 4 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem5 48209 | Lemma 5 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem6 48210 | Lemma 6 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem7 48211 | Lemma 7 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem8 48212 | Lemma 8 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem9 48213 | Lemma 9 for ~ gpgprismgr4c... |
| gpgprismgr4cycllem10 48214 | Lemma 10 for ~ gpgprismgr4... |
| gpgprismgr4cycllem11 48215 | Lemma 11 for ~ gpgprismgr4... |
| gpgprismgr4cycl0 48216 | The generalized Petersen g... |
| gpgprismgr4cyclex 48217 | The generalized Petersen g... |
| pgnioedg1 48218 | An inside and an outside v... |
| pgnioedg2 48219 | An inside and an outside v... |
| pgnioedg3 48220 | An inside and an outside v... |
| pgnioedg4 48221 | An inside and an outside v... |
| pgnioedg5 48222 | An inside and an outside v... |
| pgnbgreunbgrlem1 48223 | Lemma 1 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem2lem1 48224 | Lemma 1 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem2lem2 48225 | Lemma 2 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem2lem3 48226 | Lemma 3 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem2 48227 | Lemma 2 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem3 48228 | Lemma 3 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem4 48229 | Lemma 4 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem5lem1 48230 | Lemma 1 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem5lem2 48231 | Lemma 2 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem5lem3 48232 | Lemma 3 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem5 48233 | Lemma 5 for ~ pgnbgreunbgr... |
| pgnbgreunbgrlem6 48234 | Lemma 6 for ~ pgnbgreunbgr... |
| pgnbgreunbgr 48235 | In a Petersen graph, two d... |
| pgn4cyclex 48236 | A cycle in a Petersen grap... |
| pg4cyclnex 48237 | In the Petersen graph G(5,... |
| gpg5ngric 48238 | The two generalized Peters... |
| lgricngricex 48239 | There are two different lo... |
| gpg5edgnedg 48240 | Two consecutive (according... |
| grlimedgnedg 48241 | In general, the image of a... |
| 1hegrlfgr 48242 | A graph ` G ` with one hyp... |
| upwlksfval 48245 | The set of simple walks (i... |
| isupwlk 48246 | Properties of a pair of fu... |
| isupwlkg 48247 | Generalization of ~ isupwl... |
| upwlkbprop 48248 | Basic properties of a simp... |
| upwlkwlk 48249 | A simple walk is a walk. ... |
| upgrwlkupwlk 48250 | In a pseudograph, a walk i... |
| upgrwlkupwlkb 48251 | In a pseudograph, the defi... |
| upgrisupwlkALT 48252 | Alternate proof of ~ upgri... |
| upgredgssspr 48253 | The set of edges of a pseu... |
| uspgropssxp 48254 | The set ` G ` of "simple p... |
| uspgrsprfv 48255 | The value of the function ... |
| uspgrsprf 48256 | The mapping ` F ` is a fun... |
| uspgrsprf1 48257 | The mapping ` F ` is a one... |
| uspgrsprfo 48258 | The mapping ` F ` is a fun... |
| uspgrsprf1o 48259 | The mapping ` F ` is a bij... |
| uspgrex 48260 | The class ` G ` of all "si... |
| uspgrbispr 48261 | There is a bijection betwe... |
| uspgrspren 48262 | The set ` G ` of the "simp... |
| uspgrymrelen 48263 | The set ` G ` of the "simp... |
| uspgrbisymrel 48264 | There is a bijection betwe... |
| uspgrbisymrelALT 48265 | Alternate proof of ~ uspgr... |
| ovn0dmfun 48266 | If a class operation value... |
| xpsnopab 48267 | A Cartesian product with a... |
| xpiun 48268 | A Cartesian product expres... |
| ovn0ssdmfun 48269 | If a class' operation valu... |
| fnxpdmdm 48270 | The domain of the domain o... |
| cnfldsrngbas 48271 | The base set of a subring ... |
| cnfldsrngadd 48272 | The group addition operati... |
| cnfldsrngmul 48273 | The ring multiplication op... |
| plusfreseq 48274 | If the empty set is not co... |
| mgmplusfreseq 48275 | If the empty set is not co... |
| 0mgm 48276 | A set with an empty base s... |
| opmpoismgm 48277 | A structure with a group a... |
| copissgrp 48278 | A structure with a constan... |
| copisnmnd 48279 | A structure with a constan... |
| 0nodd 48280 | 0 is not an odd integer. ... |
| 1odd 48281 | 1 is an odd integer. (Con... |
| 2nodd 48282 | 2 is not an odd integer. ... |
| oddibas 48283 | Lemma 1 for ~ oddinmgm : ... |
| oddiadd 48284 | Lemma 2 for ~ oddinmgm : ... |
| oddinmgm 48285 | The structure of all odd i... |
| nnsgrpmgm 48286 | The structure of positive ... |
| nnsgrp 48287 | The structure of positive ... |
| nnsgrpnmnd 48288 | The structure of positive ... |
| nn0mnd 48289 | The set of nonnegative int... |
| gsumsplit2f 48290 | Split a group sum into two... |
| gsumdifsndf 48291 | Extract a summand from a f... |
| gsumfsupp 48292 | A group sum of a family ca... |
| iscllaw 48299 | The predicate "is a closed... |
| iscomlaw 48300 | The predicate "is a commut... |
| clcllaw 48301 | Closure of a closed operat... |
| isasslaw 48302 | The predicate "is an assoc... |
| asslawass 48303 | Associativity of an associ... |
| mgmplusgiopALT 48304 | Slot 2 (group operation) o... |
| sgrpplusgaopALT 48305 | Slot 2 (group operation) o... |
| intopval 48312 | The internal (binary) oper... |
| intop 48313 | An internal (binary) opera... |
| clintopval 48314 | The closed (internal binar... |
| assintopval 48315 | The associative (closed in... |
| assintopmap 48316 | The associative (closed in... |
| isclintop 48317 | The predicate "is a closed... |
| clintop 48318 | A closed (internal binary)... |
| assintop 48319 | An associative (closed int... |
| isassintop 48320 | The predicate "is an assoc... |
| clintopcllaw 48321 | The closure law holds for ... |
| assintopcllaw 48322 | The closure low holds for ... |
| assintopasslaw 48323 | The associative low holds ... |
| assintopass 48324 | An associative (closed int... |
| ismgmALT 48333 | The predicate "is a magma"... |
| iscmgmALT 48334 | The predicate "is a commut... |
| issgrpALT 48335 | The predicate "is a semigr... |
| iscsgrpALT 48336 | The predicate "is a commut... |
| mgm2mgm 48337 | Equivalence of the two def... |
| sgrp2sgrp 48338 | Equivalence of the two def... |
| lmod0rng 48339 | If the scalar ring of a mo... |
| nzrneg1ne0 48340 | The additive inverse of th... |
| lidldomn1 48341 | If a (left) ideal (which i... |
| lidlabl 48342 | A (left) ideal of a ring i... |
| lidlrng 48343 | A (left) ideal of a ring i... |
| zlidlring 48344 | The zero (left) ideal of a... |
| uzlidlring 48345 | Only the zero (left) ideal... |
| lidldomnnring 48346 | A (left) ideal of a domain... |
| 0even 48347 | 0 is an even integer. (Co... |
| 1neven 48348 | 1 is not an even integer. ... |
| 2even 48349 | 2 is an even integer. (Co... |
| 2zlidl 48350 | The even integers are a (l... |
| 2zrng 48351 | The ring of integers restr... |
| 2zrngbas 48352 | The base set of R is the s... |
| 2zrngadd 48353 | The group addition operati... |
| 2zrng0 48354 | The additive identity of R... |
| 2zrngamgm 48355 | R is an (additive) magma. ... |
| 2zrngasgrp 48356 | R is an (additive) semigro... |
| 2zrngamnd 48357 | R is an (additive) monoid.... |
| 2zrngacmnd 48358 | R is a commutative (additi... |
| 2zrngagrp 48359 | R is an (additive) group. ... |
| 2zrngaabl 48360 | R is an (additive) abelian... |
| 2zrngmul 48361 | The ring multiplication op... |
| 2zrngmmgm 48362 | R is a (multiplicative) ma... |
| 2zrngmsgrp 48363 | R is a (multiplicative) se... |
| 2zrngALT 48364 | The ring of integers restr... |
| 2zrngnmlid 48365 | R has no multiplicative (l... |
| 2zrngnmrid 48366 | R has no multiplicative (r... |
| 2zrngnmlid2 48367 | R has no multiplicative (l... |
| 2zrngnring 48368 | R is not a unital ring. (... |
| cznrnglem 48369 | Lemma for ~ cznrng : The ... |
| cznabel 48370 | The ring constructed from ... |
| cznrng 48371 | The ring constructed from ... |
| cznnring 48372 | The ring constructed from ... |
| rngcvalALTV 48375 | Value of the category of n... |
| rngcbasALTV 48376 | Set of objects of the cate... |
| rngchomfvalALTV 48377 | Set of arrows of the categ... |
| rngchomALTV 48378 | Set of arrows of the categ... |
| elrngchomALTV 48379 | A morphism of non-unital r... |
| rngccofvalALTV 48380 | Composition in the categor... |
| rngccoALTV 48381 | Composition in the categor... |
| rngccatidALTV 48382 | Lemma for ~ rngccatALTV . ... |
| rngccatALTV 48383 | The category of non-unital... |
| rngcidALTV 48384 | The identity arrow in the ... |
| rngcsectALTV 48385 | A section in the category ... |
| rngcinvALTV 48386 | An inverse in the category... |
| rngcisoALTV 48387 | An isomorphism in the cate... |
| rngchomffvalALTV 48388 | The value of the functiona... |
| rngchomrnghmresALTV 48389 | The value of the functiona... |
| rngcrescrhmALTV 48390 | The category of non-unital... |
| rhmsubcALTVlem1 48391 | Lemma 1 for ~ rhmsubcALTV ... |
| rhmsubcALTVlem2 48392 | Lemma 2 for ~ rhmsubcALTV ... |
| rhmsubcALTVlem3 48393 | Lemma 3 for ~ rhmsubcALTV ... |
| rhmsubcALTVlem4 48394 | Lemma 4 for ~ rhmsubcALTV ... |
| rhmsubcALTV 48395 | According to ~ df-subc , t... |
| rhmsubcALTVcat 48396 | The restriction of the cat... |
| ringcvalALTV 48399 | Value of the category of r... |
| funcringcsetcALTV2lem1 48400 | Lemma 1 for ~ funcringcset... |
| funcringcsetcALTV2lem2 48401 | Lemma 2 for ~ funcringcset... |
| funcringcsetcALTV2lem3 48402 | Lemma 3 for ~ funcringcset... |
| funcringcsetcALTV2lem4 48403 | Lemma 4 for ~ funcringcset... |
| funcringcsetcALTV2lem5 48404 | Lemma 5 for ~ funcringcset... |
| funcringcsetcALTV2lem6 48405 | Lemma 6 for ~ funcringcset... |
| funcringcsetcALTV2lem7 48406 | Lemma 7 for ~ funcringcset... |
| funcringcsetcALTV2lem8 48407 | Lemma 8 for ~ funcringcset... |
| funcringcsetcALTV2lem9 48408 | Lemma 9 for ~ funcringcset... |
| funcringcsetcALTV2 48409 | The "natural forgetful fun... |
| ringcbasALTV 48410 | Set of objects of the cate... |
| ringchomfvalALTV 48411 | Set of arrows of the categ... |
| ringchomALTV 48412 | Set of arrows of the categ... |
| elringchomALTV 48413 | A morphism of rings is a f... |
| ringccofvalALTV 48414 | Composition in the categor... |
| ringccoALTV 48415 | Composition in the categor... |
| ringccatidALTV 48416 | Lemma for ~ ringccatALTV .... |
| ringccatALTV 48417 | The category of rings is a... |
| ringcidALTV 48418 | The identity arrow in the ... |
| ringcsectALTV 48419 | A section in the category ... |
| ringcinvALTV 48420 | An inverse in the category... |
| ringcisoALTV 48421 | An isomorphism in the cate... |
| ringcbasbasALTV 48422 | An element of the base set... |
| funcringcsetclem1ALTV 48423 | Lemma 1 for ~ funcringcset... |
| funcringcsetclem2ALTV 48424 | Lemma 2 for ~ funcringcset... |
| funcringcsetclem3ALTV 48425 | Lemma 3 for ~ funcringcset... |
| funcringcsetclem4ALTV 48426 | Lemma 4 for ~ funcringcset... |
| funcringcsetclem5ALTV 48427 | Lemma 5 for ~ funcringcset... |
| funcringcsetclem6ALTV 48428 | Lemma 6 for ~ funcringcset... |
| funcringcsetclem7ALTV 48429 | Lemma 7 for ~ funcringcset... |
| funcringcsetclem8ALTV 48430 | Lemma 8 for ~ funcringcset... |
| funcringcsetclem9ALTV 48431 | Lemma 9 for ~ funcringcset... |
| funcringcsetcALTV 48432 | The "natural forgetful fun... |
| srhmsubcALTVlem1 48433 | Lemma 1 for ~ srhmsubcALTV... |
| srhmsubcALTVlem2 48434 | Lemma 2 for ~ srhmsubcALTV... |
| srhmsubcALTV 48435 | According to ~ df-subc , t... |
| sringcatALTV 48436 | The restriction of the cat... |
| crhmsubcALTV 48437 | According to ~ df-subc , t... |
| cringcatALTV 48438 | The restriction of the cat... |
| drhmsubcALTV 48439 | According to ~ df-subc , t... |
| drngcatALTV 48440 | The restriction of the cat... |
| fldcatALTV 48441 | The restriction of the cat... |
| fldcALTV 48442 | The restriction of the cat... |
| fldhmsubcALTV 48443 | According to ~ df-subc , t... |
| eliunxp2 48444 | Membership in a union of C... |
| mpomptx2 48445 | Express a two-argument fun... |
| cbvmpox2 48446 | Rule to change the bound v... |
| dmmpossx2 48447 | The domain of a mapping is... |
| mpoexxg2 48448 | Existence of an operation ... |
| ovmpordxf 48449 | Value of an operation give... |
| ovmpordx 48450 | Value of an operation give... |
| ovmpox2 48451 | The value of an operation ... |
| fdmdifeqresdif 48452 | The restriction of a condi... |
| ofaddmndmap 48453 | The function operation app... |
| mapsnop 48454 | A singleton of an ordered ... |
| fprmappr 48455 | A function with a domain o... |
| mapprop 48456 | An unordered pair containi... |
| ztprmneprm 48457 | A prime is not an integer ... |
| 2t6m3t4e0 48458 | 2 times 6 minus 3 times 4 ... |
| ssnn0ssfz 48459 | For any finite subset of `... |
| nn0sumltlt 48460 | If the sum of two nonnegat... |
| bcpascm1 48461 | Pascal's rule for the bino... |
| altgsumbc 48462 | The sum of binomial coeffi... |
| altgsumbcALT 48463 | Alternate proof of ~ altgs... |
| zlmodzxzlmod 48464 | The ` ZZ `-module ` ZZ X. ... |
| zlmodzxzel 48465 | An element of the (base se... |
| zlmodzxz0 48466 | The ` 0 ` of the ` ZZ `-mo... |
| zlmodzxzscm 48467 | The scalar multiplication ... |
| zlmodzxzadd 48468 | The addition of the ` ZZ `... |
| zlmodzxzsubm 48469 | The subtraction of the ` Z... |
| zlmodzxzsub 48470 | The subtraction of the ` Z... |
| mgpsumunsn 48471 | Extract a summand/factor f... |
| mgpsumz 48472 | If the group sum for the m... |
| mgpsumn 48473 | If the group sum for the m... |
| exple2lt6 48474 | A nonnegative integer to t... |
| pgrple2abl 48475 | Every symmetric group on a... |
| pgrpgt2nabl 48476 | Every symmetric group on a... |
| invginvrid 48477 | Identity for a multiplicat... |
| rmsupp0 48478 | The support of a mapping o... |
| domnmsuppn0 48479 | The support of a mapping o... |
| rmsuppss 48480 | The support of a mapping o... |
| scmsuppss 48481 | The support of a mapping o... |
| rmsuppfi 48482 | The support of a mapping o... |
| rmfsupp 48483 | A mapping of a multiplicat... |
| scmsuppfi 48484 | The support of a mapping o... |
| scmfsupp 48485 | A mapping of a scalar mult... |
| suppmptcfin 48486 | The support of a mapping w... |
| mptcfsupp 48487 | A mapping with value 0 exc... |
| fsuppmptdmf 48488 | A mapping with a finite do... |
| lmodvsmdi 48489 | Multiple distributive law ... |
| gsumlsscl 48490 | Closure of a group sum in ... |
| assaascl0 48491 | The scalar 0 embedded into... |
| assaascl1 48492 | The scalar 1 embedded into... |
| ply1vr1smo 48493 | The variable in a polynomi... |
| ply1sclrmsm 48494 | The ring multiplication of... |
| coe1id 48495 | Coefficient vector of the ... |
| coe1sclmulval 48496 | The value of the coefficie... |
| ply1mulgsumlem1 48497 | Lemma 1 for ~ ply1mulgsum ... |
| ply1mulgsumlem2 48498 | Lemma 2 for ~ ply1mulgsum ... |
| ply1mulgsumlem3 48499 | Lemma 3 for ~ ply1mulgsum ... |
| ply1mulgsumlem4 48500 | Lemma 4 for ~ ply1mulgsum ... |
| ply1mulgsum 48501 | The product of two polynom... |
| evl1at0 48502 | Polynomial evaluation for ... |
| evl1at1 48503 | Polynomial evaluation for ... |
| linply1 48504 | A term of the form ` x - C... |
| lineval 48505 | A term of the form ` x - C... |
| linevalexample 48506 | The polynomial ` x - 3 ` o... |
| dmatALTval 48511 | The algebra of ` N ` x ` N... |
| dmatALTbas 48512 | The base set of the algebr... |
| dmatALTbasel 48513 | An element of the base set... |
| dmatbas 48514 | The set of all ` N ` x ` N... |
| lincop 48519 | A linear combination as op... |
| lincval 48520 | The value of a linear comb... |
| dflinc2 48521 | Alternative definition of ... |
| lcoop 48522 | A linear combination as op... |
| lcoval 48523 | The value of a linear comb... |
| lincfsuppcl 48524 | A linear combination of ve... |
| linccl 48525 | A linear combination of ve... |
| lincval0 48526 | The value of an empty line... |
| lincvalsng 48527 | The linear combination ove... |
| lincvalsn 48528 | The linear combination ove... |
| lincvalpr 48529 | The linear combination ove... |
| lincval1 48530 | The linear combination ove... |
| lcosn0 48531 | Properties of a linear com... |
| lincvalsc0 48532 | The linear combination whe... |
| lcoc0 48533 | Properties of a linear com... |
| linc0scn0 48534 | If a set contains the zero... |
| lincdifsn 48535 | A vector is a linear combi... |
| linc1 48536 | A vector is a linear combi... |
| lincellss 48537 | A linear combination of a ... |
| lco0 48538 | The set of empty linear co... |
| lcoel0 48539 | The zero vector is always ... |
| lincsum 48540 | The sum of two linear comb... |
| lincscm 48541 | A linear combinations mult... |
| lincsumcl 48542 | The sum of two linear comb... |
| lincscmcl 48543 | The multiplication of a li... |
| lincsumscmcl 48544 | The sum of a linear combin... |
| lincolss 48545 | According to the statement... |
| ellcoellss 48546 | Every linear combination o... |
| lcoss 48547 | A set of vectors of a modu... |
| lspsslco 48548 | Lemma for ~ lspeqlco . (C... |
| lcosslsp 48549 | Lemma for ~ lspeqlco . (C... |
| lspeqlco 48550 | Equivalence of a _span_ of... |
| rellininds 48554 | The class defining the rel... |
| linindsv 48556 | The classes of the module ... |
| islininds 48557 | The property of being a li... |
| linindsi 48558 | The implications of being ... |
| linindslinci 48559 | The implications of being ... |
| islinindfis 48560 | The property of being a li... |
| islinindfiss 48561 | The property of being a li... |
| linindscl 48562 | A linearly independent set... |
| lindepsnlininds 48563 | A linearly dependent subse... |
| islindeps 48564 | The property of being a li... |
| lincext1 48565 | Property 1 of an extension... |
| lincext2 48566 | Property 2 of an extension... |
| lincext3 48567 | Property 3 of an extension... |
| lindslinindsimp1 48568 | Implication 1 for ~ lindsl... |
| lindslinindimp2lem1 48569 | Lemma 1 for ~ lindslininds... |
| lindslinindimp2lem2 48570 | Lemma 2 for ~ lindslininds... |
| lindslinindimp2lem3 48571 | Lemma 3 for ~ lindslininds... |
| lindslinindimp2lem4 48572 | Lemma 4 for ~ lindslininds... |
| lindslinindsimp2lem5 48573 | Lemma 5 for ~ lindslininds... |
| lindslinindsimp2 48574 | Implication 2 for ~ lindsl... |
| lindslininds 48575 | Equivalence of definitions... |
| linds0 48576 | The empty set is always a ... |
| el0ldep 48577 | A set containing the zero ... |
| el0ldepsnzr 48578 | A set containing the zero ... |
| lindsrng01 48579 | Any subset of a module is ... |
| lindszr 48580 | Any subset of a module ove... |
| snlindsntorlem 48581 | Lemma for ~ snlindsntor . ... |
| snlindsntor 48582 | A singleton is linearly in... |
| ldepsprlem 48583 | Lemma for ~ ldepspr . (Co... |
| ldepspr 48584 | If a vector is a scalar mu... |
| lincresunit3lem3 48585 | Lemma 3 for ~ lincresunit3... |
| lincresunitlem1 48586 | Lemma 1 for properties of ... |
| lincresunitlem2 48587 | Lemma for properties of a ... |
| lincresunit1 48588 | Property 1 of a specially ... |
| lincresunit2 48589 | Property 2 of a specially ... |
| lincresunit3lem1 48590 | Lemma 1 for ~ lincresunit3... |
| lincresunit3lem2 48591 | Lemma 2 for ~ lincresunit3... |
| lincresunit3 48592 | Property 3 of a specially ... |
| lincreslvec3 48593 | Property 3 of a specially ... |
| islindeps2 48594 | Conditions for being a lin... |
| islininds2 48595 | Implication of being a lin... |
| isldepslvec2 48596 | Alternative definition of ... |
| lindssnlvec 48597 | A singleton not containing... |
| lmod1lem1 48598 | Lemma 1 for ~ lmod1 . (Co... |
| lmod1lem2 48599 | Lemma 2 for ~ lmod1 . (Co... |
| lmod1lem3 48600 | Lemma 3 for ~ lmod1 . (Co... |
| lmod1lem4 48601 | Lemma 4 for ~ lmod1 . (Co... |
| lmod1lem5 48602 | Lemma 5 for ~ lmod1 . (Co... |
| lmod1 48603 | The (smallest) structure r... |
| lmod1zr 48604 | The (smallest) structure r... |
| lmod1zrnlvec 48605 | There is a (left) module (... |
| lmodn0 48606 | Left modules exist. (Cont... |
| zlmodzxzequa 48607 | Example of an equation wit... |
| zlmodzxznm 48608 | Example of a linearly depe... |
| zlmodzxzldeplem 48609 | A and B are not equal. (C... |
| zlmodzxzequap 48610 | Example of an equation wit... |
| zlmodzxzldeplem1 48611 | Lemma 1 for ~ zlmodzxzldep... |
| zlmodzxzldeplem2 48612 | Lemma 2 for ~ zlmodzxzldep... |
| zlmodzxzldeplem3 48613 | Lemma 3 for ~ zlmodzxzldep... |
| zlmodzxzldeplem4 48614 | Lemma 4 for ~ zlmodzxzldep... |
| zlmodzxzldep 48615 | { A , B } is a linearly de... |
| ldepsnlinclem1 48616 | Lemma 1 for ~ ldepsnlinc .... |
| ldepsnlinclem2 48617 | Lemma 2 for ~ ldepsnlinc .... |
| lvecpsslmod 48618 | The class of all (left) ve... |
| ldepsnlinc 48619 | The reverse implication of... |
| ldepslinc 48620 | For (left) vector spaces, ... |
| suppdm 48621 | If the range of a function... |
| eluz2cnn0n1 48622 | An integer greater than 1 ... |
| divge1b 48623 | The ratio of a real number... |
| divgt1b 48624 | The ratio of a real number... |
| ltsubaddb 48625 | Equivalence for the "less ... |
| ltsubsubb 48626 | Equivalence for the "less ... |
| ltsubadd2b 48627 | Equivalence for the "less ... |
| divsub1dir 48628 | Distribution of division o... |
| expnegico01 48629 | An integer greater than 1 ... |
| elfzolborelfzop1 48630 | An element of a half-open ... |
| pw2m1lepw2m1 48631 | 2 to the power of a positi... |
| zgtp1leeq 48632 | If an integer is between a... |
| flsubz 48633 | An integer can be moved in... |
| nn0onn0ex 48634 | For each odd nonnegative i... |
| nn0enn0ex 48635 | For each even nonnegative ... |
| nnennex 48636 | For each even positive int... |
| nneop 48637 | A positive integer is even... |
| nneom 48638 | A positive integer is even... |
| nn0eo 48639 | A nonnegative integer is e... |
| nnpw2even 48640 | 2 to the power of a positi... |
| zefldiv2 48641 | The floor of an even integ... |
| zofldiv2 48642 | The floor of an odd intege... |
| nn0ofldiv2 48643 | The floor of an odd nonneg... |
| flnn0div2ge 48644 | The floor of a positive in... |
| flnn0ohalf 48645 | The floor of the half of a... |
| logcxp0 48646 | Logarithm of a complex pow... |
| regt1loggt0 48647 | The natural logarithm for ... |
| fdivval 48650 | The quotient of two functi... |
| fdivmpt 48651 | The quotient of two functi... |
| fdivmptf 48652 | The quotient of two functi... |
| refdivmptf 48653 | The quotient of two functi... |
| fdivpm 48654 | The quotient of two functi... |
| refdivpm 48655 | The quotient of two functi... |
| fdivmptfv 48656 | The function value of a qu... |
| refdivmptfv 48657 | The function value of a qu... |
| bigoval 48660 | Set of functions of order ... |
| elbigofrcl 48661 | Reverse closure of the "bi... |
| elbigo 48662 | Properties of a function o... |
| elbigo2 48663 | Properties of a function o... |
| elbigo2r 48664 | Sufficient condition for a... |
| elbigof 48665 | A function of order G(x) i... |
| elbigodm 48666 | The domain of a function o... |
| elbigoimp 48667 | The defining property of a... |
| elbigolo1 48668 | A function (into the posit... |
| rege1logbrege0 48669 | The general logarithm, wit... |
| rege1logbzge0 48670 | The general logarithm, wit... |
| fllogbd 48671 | A real number is between t... |
| relogbmulbexp 48672 | The logarithm of the produ... |
| relogbdivb 48673 | The logarithm of the quoti... |
| logbge0b 48674 | The logarithm of a number ... |
| logblt1b 48675 | The logarithm of a number ... |
| fldivexpfllog2 48676 | The floor of a positive re... |
| nnlog2ge0lt1 48677 | A positive integer is 1 if... |
| logbpw2m1 48678 | The floor of the binary lo... |
| fllog2 48679 | The floor of the binary lo... |
| blenval 48682 | The binary length of an in... |
| blen0 48683 | The binary length of 0. (... |
| blenn0 48684 | The binary length of a "nu... |
| blenre 48685 | The binary length of a pos... |
| blennn 48686 | The binary length of a pos... |
| blennnelnn 48687 | The binary length of a pos... |
| blennn0elnn 48688 | The binary length of a non... |
| blenpw2 48689 | The binary length of a pow... |
| blenpw2m1 48690 | The binary length of a pow... |
| nnpw2blen 48691 | A positive integer is betw... |
| nnpw2blenfzo 48692 | A positive integer is betw... |
| nnpw2blenfzo2 48693 | A positive integer is eith... |
| nnpw2pmod 48694 | Every positive integer can... |
| blen1 48695 | The binary length of 1. (... |
| blen2 48696 | The binary length of 2. (... |
| nnpw2p 48697 | Every positive integer can... |
| nnpw2pb 48698 | A number is a positive int... |
| blen1b 48699 | The binary length of a non... |
| blennnt2 48700 | The binary length of a pos... |
| nnolog2flm1 48701 | The floor of the binary lo... |
| blennn0em1 48702 | The binary length of the h... |
| blennngt2o2 48703 | The binary length of an od... |
| blengt1fldiv2p1 48704 | The binary length of an in... |
| blennn0e2 48705 | The binary length of an ev... |
| digfval 48708 | Operation to obtain the ` ... |
| digval 48709 | The ` K ` th digit of a no... |
| digvalnn0 48710 | The ` K ` th digit of a no... |
| nn0digval 48711 | The ` K ` th digit of a no... |
| dignn0fr 48712 | The digits of the fraction... |
| dignn0ldlem 48713 | Lemma for ~ dignnld . (Co... |
| dignnld 48714 | The leading digits of a po... |
| dig2nn0ld 48715 | The leading digits of a po... |
| dig2nn1st 48716 | The first (relevant) digit... |
| dig0 48717 | All digits of 0 are 0. (C... |
| digexp 48718 | The ` K ` th digit of a po... |
| dig1 48719 | All but one digits of 1 ar... |
| 0dig1 48720 | The ` 0 ` th digit of 1 is... |
| 0dig2pr01 48721 | The integers 0 and 1 corre... |
| dig2nn0 48722 | A digit of a nonnegative i... |
| 0dig2nn0e 48723 | The last bit of an even in... |
| 0dig2nn0o 48724 | The last bit of an odd int... |
| dig2bits 48725 | The ` K ` th digit of a no... |
| dignn0flhalflem1 48726 | Lemma 1 for ~ dignn0flhalf... |
| dignn0flhalflem2 48727 | Lemma 2 for ~ dignn0flhalf... |
| dignn0ehalf 48728 | The digits of the half of ... |
| dignn0flhalf 48729 | The digits of the rounded ... |
| nn0sumshdiglemA 48730 | Lemma for ~ nn0sumshdig (i... |
| nn0sumshdiglemB 48731 | Lemma for ~ nn0sumshdig (i... |
| nn0sumshdiglem1 48732 | Lemma 1 for ~ nn0sumshdig ... |
| nn0sumshdiglem2 48733 | Lemma 2 for ~ nn0sumshdig ... |
| nn0sumshdig 48734 | A nonnegative integer can ... |
| nn0mulfsum 48735 | Trivial algorithm to calcu... |
| nn0mullong 48736 | Standard algorithm (also k... |
| naryfval 48739 | The set of the n-ary (endo... |
| naryfvalixp 48740 | The set of the n-ary (endo... |
| naryfvalel 48741 | An n-ary (endo)function on... |
| naryrcl 48742 | Reverse closure for n-ary ... |
| naryfvalelfv 48743 | The value of an n-ary (end... |
| naryfvalelwrdf 48744 | An n-ary (endo)function on... |
| 0aryfvalel 48745 | A nullary (endo)function o... |
| 0aryfvalelfv 48746 | The value of a nullary (en... |
| 1aryfvalel 48747 | A unary (endo)function on ... |
| fv1arycl 48748 | Closure of a unary (endo)f... |
| 1arympt1 48749 | A unary (endo)function in ... |
| 1arympt1fv 48750 | The value of a unary (endo... |
| 1arymaptfv 48751 | The value of the mapping o... |
| 1arymaptf 48752 | The mapping of unary (endo... |
| 1arymaptf1 48753 | The mapping of unary (endo... |
| 1arymaptfo 48754 | The mapping of unary (endo... |
| 1arymaptf1o 48755 | The mapping of unary (endo... |
| 1aryenef 48756 | The set of unary (endo)fun... |
| 1aryenefmnd 48757 | The set of unary (endo)fun... |
| 2aryfvalel 48758 | A binary (endo)function on... |
| fv2arycl 48759 | Closure of a binary (endo)... |
| 2arympt 48760 | A binary (endo)function in... |
| 2arymptfv 48761 | The value of a binary (end... |
| 2arymaptfv 48762 | The value of the mapping o... |
| 2arymaptf 48763 | The mapping of binary (end... |
| 2arymaptf1 48764 | The mapping of binary (end... |
| 2arymaptfo 48765 | The mapping of binary (end... |
| 2arymaptf1o 48766 | The mapping of binary (end... |
| 2aryenef 48767 | The set of binary (endo)fu... |
| itcoval 48772 | The value of the function ... |
| itcoval0 48773 | A function iterated zero t... |
| itcoval1 48774 | A function iterated once. ... |
| itcoval2 48775 | A function iterated twice.... |
| itcoval3 48776 | A function iterated three ... |
| itcoval0mpt 48777 | A mapping iterated zero ti... |
| itcovalsuc 48778 | The value of the function ... |
| itcovalsucov 48779 | The value of the function ... |
| itcovalendof 48780 | The n-th iterate of an end... |
| itcovalpclem1 48781 | Lemma 1 for ~ itcovalpc : ... |
| itcovalpclem2 48782 | Lemma 2 for ~ itcovalpc : ... |
| itcovalpc 48783 | The value of the function ... |
| itcovalt2lem2lem1 48784 | Lemma 1 for ~ itcovalt2lem... |
| itcovalt2lem2lem2 48785 | Lemma 2 for ~ itcovalt2lem... |
| itcovalt2lem1 48786 | Lemma 1 for ~ itcovalt2 : ... |
| itcovalt2lem2 48787 | Lemma 2 for ~ itcovalt2 : ... |
| itcovalt2 48788 | The value of the function ... |
| ackvalsuc1mpt 48789 | The Ackermann function at ... |
| ackvalsuc1 48790 | The Ackermann function at ... |
| ackval0 48791 | The Ackermann function at ... |
| ackval1 48792 | The Ackermann function at ... |
| ackval2 48793 | The Ackermann function at ... |
| ackval3 48794 | The Ackermann function at ... |
| ackendofnn0 48795 | The Ackermann function at ... |
| ackfnnn0 48796 | The Ackermann function at ... |
| ackval0val 48797 | The Ackermann function at ... |
| ackvalsuc0val 48798 | The Ackermann function at ... |
| ackvalsucsucval 48799 | The Ackermann function at ... |
| ackval0012 48800 | The Ackermann function at ... |
| ackval1012 48801 | The Ackermann function at ... |
| ackval2012 48802 | The Ackermann function at ... |
| ackval3012 48803 | The Ackermann function at ... |
| ackval40 48804 | The Ackermann function at ... |
| ackval41a 48805 | The Ackermann function at ... |
| ackval41 48806 | The Ackermann function at ... |
| ackval42 48807 | The Ackermann function at ... |
| ackval42a 48808 | The Ackermann function at ... |
| ackval50 48809 | The Ackermann function at ... |
| fv1prop 48810 | The function value of unor... |
| fv2prop 48811 | The function value of unor... |
| submuladdmuld 48812 | Transformation of a sum of... |
| affinecomb1 48813 | Combination of two real af... |
| affinecomb2 48814 | Combination of two real af... |
| affineid 48815 | Identity of an affine comb... |
| 1subrec1sub 48816 | Subtract the reciprocal of... |
| resum2sqcl 48817 | The sum of two squares of ... |
| resum2sqgt0 48818 | The sum of the square of a... |
| resum2sqrp 48819 | The sum of the square of a... |
| resum2sqorgt0 48820 | The sum of the square of t... |
| reorelicc 48821 | Membership in and outside ... |
| rrx2pxel 48822 | The x-coordinate of a poin... |
| rrx2pyel 48823 | The y-coordinate of a poin... |
| prelrrx2 48824 | An unordered pair of order... |
| prelrrx2b 48825 | An unordered pair of order... |
| rrx2pnecoorneor 48826 | If two different points ` ... |
| rrx2pnedifcoorneor 48827 | If two different points ` ... |
| rrx2pnedifcoorneorr 48828 | If two different points ` ... |
| rrx2xpref1o 48829 | There is a bijection betwe... |
| rrx2xpreen 48830 | The set of points in the t... |
| rrx2plord 48831 | The lexicographical orderi... |
| rrx2plord1 48832 | The lexicographical orderi... |
| rrx2plord2 48833 | The lexicographical orderi... |
| rrx2plordisom 48834 | The set of points in the t... |
| rrx2plordso 48835 | The lexicographical orderi... |
| ehl2eudisval0 48836 | The Euclidean distance of ... |
| ehl2eudis0lt 48837 | An upper bound of the Eucl... |
| lines 48842 | The lines passing through ... |
| line 48843 | The line passing through t... |
| rrxlines 48844 | Definition of lines passin... |
| rrxline 48845 | The line passing through t... |
| rrxlinesc 48846 | Definition of lines passin... |
| rrxlinec 48847 | The line passing through t... |
| eenglngeehlnmlem1 48848 | Lemma 1 for ~ eenglngeehln... |
| eenglngeehlnmlem2 48849 | Lemma 2 for ~ eenglngeehln... |
| eenglngeehlnm 48850 | The line definition in the... |
| rrx2line 48851 | The line passing through t... |
| rrx2vlinest 48852 | The vertical line passing ... |
| rrx2linest 48853 | The line passing through t... |
| rrx2linesl 48854 | The line passing through t... |
| rrx2linest2 48855 | The line passing through t... |
| elrrx2linest2 48856 | The line passing through t... |
| spheres 48857 | The spheres for given cent... |
| sphere 48858 | A sphere with center ` X `... |
| rrxsphere 48859 | The sphere with center ` M... |
| 2sphere 48860 | The sphere with center ` M... |
| 2sphere0 48861 | The sphere around the orig... |
| line2ylem 48862 | Lemma for ~ line2y . This... |
| line2 48863 | Example for a line ` G ` p... |
| line2xlem 48864 | Lemma for ~ line2x . This... |
| line2x 48865 | Example for a horizontal l... |
| line2y 48866 | Example for a vertical lin... |
| itsclc0lem1 48867 | Lemma for theorems about i... |
| itsclc0lem2 48868 | Lemma for theorems about i... |
| itsclc0lem3 48869 | Lemma for theorems about i... |
| itscnhlc0yqe 48870 | Lemma for ~ itsclc0 . Qua... |
| itschlc0yqe 48871 | Lemma for ~ itsclc0 . Qua... |
| itsclc0yqe 48872 | Lemma for ~ itsclc0 . Qua... |
| itsclc0yqsollem1 48873 | Lemma 1 for ~ itsclc0yqsol... |
| itsclc0yqsollem2 48874 | Lemma 2 for ~ itsclc0yqsol... |
| itsclc0yqsol 48875 | Lemma for ~ itsclc0 . Sol... |
| itscnhlc0xyqsol 48876 | Lemma for ~ itsclc0 . Sol... |
| itschlc0xyqsol1 48877 | Lemma for ~ itsclc0 . Sol... |
| itschlc0xyqsol 48878 | Lemma for ~ itsclc0 . Sol... |
| itsclc0xyqsol 48879 | Lemma for ~ itsclc0 . Sol... |
| itsclc0xyqsolr 48880 | Lemma for ~ itsclc0 . Sol... |
| itsclc0xyqsolb 48881 | Lemma for ~ itsclc0 . Sol... |
| itsclc0 48882 | The intersection points of... |
| itsclc0b 48883 | The intersection points of... |
| itsclinecirc0 48884 | The intersection points of... |
| itsclinecirc0b 48885 | The intersection points of... |
| itsclinecirc0in 48886 | The intersection points of... |
| itsclquadb 48887 | Quadratic equation for the... |
| itsclquadeu 48888 | Quadratic equation for the... |
| 2itscplem1 48889 | Lemma 1 for ~ 2itscp . (C... |
| 2itscplem2 48890 | Lemma 2 for ~ 2itscp . (C... |
| 2itscplem3 48891 | Lemma D for ~ 2itscp . (C... |
| 2itscp 48892 | A condition for a quadrati... |
| itscnhlinecirc02plem1 48893 | Lemma 1 for ~ itscnhlineci... |
| itscnhlinecirc02plem2 48894 | Lemma 2 for ~ itscnhlineci... |
| itscnhlinecirc02plem3 48895 | Lemma 3 for ~ itscnhlineci... |
| itscnhlinecirc02p 48896 | Intersection of a nonhoriz... |
| inlinecirc02plem 48897 | Lemma for ~ inlinecirc02p ... |
| inlinecirc02p 48898 | Intersection of a line wit... |
| inlinecirc02preu 48899 | Intersection of a line wit... |
| pm4.71da 48900 | Deduction converting a bic... |
| logic1 48901 | Distribution of implicatio... |
| logic1a 48902 | Variant of ~ logic1 . (Co... |
| logic2 48903 | Variant of ~ logic1 . (Co... |
| pm5.32dav 48904 | Distribution of implicatio... |
| pm5.32dra 48905 | Reverse distribution of im... |
| exp12bd 48906 | The import-export theorem ... |
| mpbiran3d 48907 | Equivalence with a conjunc... |
| mpbiran4d 48908 | Equivalence with a conjunc... |
| dtrucor3 48909 | An example of how ~ ax-5 w... |
| ralbidb 48910 | Formula-building rule for ... |
| ralbidc 48911 | Formula-building rule for ... |
| r19.41dv 48912 | A complex deduction form o... |
| rmotru 48913 | Two ways of expressing "at... |
| reutru 48914 | Two ways of expressing "ex... |
| reutruALT 48915 | Alternate proof of ~ reutr... |
| reueqbidva 48916 | Formula-building rule for ... |
| reuxfr1dd 48917 | Transfer existential uniqu... |
| ssdisjd 48918 | Subset preserves disjointn... |
| ssdisjdr 48919 | Subset preserves disjointn... |
| disjdifb 48920 | Relative complement is ant... |
| predisj 48921 | Preimages of disjoint sets... |
| vsn 48922 | The singleton of the unive... |
| mosn 48923 | "At most one" element in a... |
| mo0 48924 | "At most one" element in a... |
| mosssn 48925 | "At most one" element in a... |
| mo0sn 48926 | Two ways of expressing "at... |
| mosssn2 48927 | Two ways of expressing "at... |
| unilbss 48928 | Superclass of the greatest... |
| iuneq0 48929 | An indexed union is empty ... |
| iineq0 48930 | An indexed intersection is... |
| iunlub 48931 | The indexed union is the t... |
| iinglb 48932 | The indexed intersection i... |
| iuneqconst2 48933 | Indexed union of identical... |
| iineqconst2 48934 | Indexed intersection of id... |
| inpw 48935 | Two ways of expressing a c... |
| opth1neg 48936 | Two ordered pairs are not ... |
| opth2neg 48937 | Two ordered pairs are not ... |
| brab2dd 48938 | Expressing that two sets a... |
| brab2ddw 48939 | Expressing that two sets a... |
| brab2ddw2 48940 | Expressing that two sets a... |
| iinxp 48941 | Indexed intersection of Ca... |
| intxp 48942 | Intersection of Cartesian ... |
| coxp 48943 | Composition with a Cartesi... |
| cosn 48944 | Composition with an ordere... |
| cosni 48945 | Composition with an ordere... |
| inisegn0a 48946 | The inverse image of a sin... |
| dmrnxp 48947 | A Cartesian product is the... |
| mof0 48948 | There is at most one funct... |
| mof02 48949 | A variant of ~ mof0 . (Co... |
| mof0ALT 48950 | Alternate proof of ~ mof0 ... |
| eufsnlem 48951 | There is exactly one funct... |
| eufsn 48952 | There is exactly one funct... |
| eufsn2 48953 | There is exactly one funct... |
| mofsn 48954 | There is at most one funct... |
| mofsn2 48955 | There is at most one funct... |
| mofsssn 48956 | There is at most one funct... |
| mofmo 48957 | There is at most one funct... |
| mofeu 48958 | The uniqueness of a functi... |
| elfvne0 48959 | If a function value has a ... |
| fdomne0 48960 | A function with non-empty ... |
| f1sn2g 48961 | A function that maps a sin... |
| f102g 48962 | A function that maps the e... |
| f1mo 48963 | A function that maps a set... |
| f002 48964 | A function with an empty c... |
| map0cor 48965 | A function exists iff an e... |
| ffvbr 48966 | Relation with function val... |
| xpco2 48967 | Composition of a Cartesian... |
| ovsng 48968 | The operation value of a s... |
| ovsng2 48969 | The operation value of a s... |
| ovsn 48970 | The operation value of a s... |
| ovsn2 48971 | The operation value of a s... |
| fvconstr 48972 | Two ways of expressing ` A... |
| fvconstrn0 48973 | Two ways of expressing ` A... |
| fvconstr2 48974 | Two ways of expressing ` A... |
| ovmpt4d 48975 | Deduction version of ~ ovm... |
| eqfnovd 48976 | Deduction for equality of ... |
| fonex 48977 | The domain of a surjection... |
| eloprab1st2nd 48978 | Reconstruction of a nested... |
| fmpodg 48979 | Domain and codomain of the... |
| fmpod 48980 | Domain and codomain of the... |
| resinsnlem 48981 | Lemma for ~ resinsnALT . ... |
| resinsn 48982 | Restriction to the interse... |
| resinsnALT 48983 | Restriction to the interse... |
| dftpos5 48984 | Alternate definition of ` ... |
| dftpos6 48985 | Alternate definition of ` ... |
| dmtposss 48986 | The domain of ` tpos F ` i... |
| tposres0 48987 | The transposition of a set... |
| tposresg 48988 | The transposition restrict... |
| tposrescnv 48989 | The transposition restrict... |
| tposres2 48990 | The transposition restrict... |
| tposres3 48991 | The transposition restrict... |
| tposres 48992 | The transposition restrict... |
| tposresxp 48993 | The transposition restrict... |
| tposf1o 48994 | Condition of a bijective t... |
| tposid 48995 | Swap an ordered pair. (Co... |
| tposidres 48996 | Swap an ordered pair. (Co... |
| tposidf1o 48997 | The swap function, or the ... |
| tposideq 48998 | Two ways of expressing the... |
| tposideq2 48999 | Two ways of expressing the... |
| ixpv 49000 | Infinite Cartesian product... |
| fvconst0ci 49001 | A constant function's valu... |
| fvconstdomi 49002 | A constant function's valu... |
| f1omo 49003 | There is at most one eleme... |
| f1omoOLD 49004 | Obsolete version of ~ f1om... |
| f1omoALT 49005 | There is at most one eleme... |
| iccin 49006 | Intersection of two closed... |
| iccdisj2 49007 | If the upper bound of one ... |
| iccdisj 49008 | If the upper bound of one ... |
| slotresfo 49009 | The condition of a structu... |
| mreuniss 49010 | The union of a collection ... |
| clduni 49011 | The union of closed sets i... |
| opncldeqv 49012 | Conditions on open sets ar... |
| opndisj 49013 | Two ways of saying that tw... |
| clddisj 49014 | Two ways of saying that tw... |
| neircl 49015 | Reverse closure of the nei... |
| opnneilem 49016 | Lemma factoring out common... |
| opnneir 49017 | If something is true for a... |
| opnneirv 49018 | A variant of ~ opnneir wit... |
| opnneilv 49019 | The converse of ~ opnneir ... |
| opnneil 49020 | A variant of ~ opnneilv . ... |
| opnneieqv 49021 | The equivalence between ne... |
| opnneieqvv 49022 | The equivalence between ne... |
| restcls2lem 49023 | A closed set in a subspace... |
| restcls2 49024 | A closed set in a subspace... |
| restclsseplem 49025 | Lemma for ~ restclssep . ... |
| restclssep 49026 | Two disjoint closed sets i... |
| cnneiima 49027 | Given a continuous functio... |
| iooii 49028 | Open intervals are open se... |
| icccldii 49029 | Closed intervals are close... |
| i0oii 49030 | ` ( 0 [,) A ) ` is open in... |
| io1ii 49031 | ` ( A (,] 1 ) ` is open in... |
| sepnsepolem1 49032 | Lemma for ~ sepnsepo . (C... |
| sepnsepolem2 49033 | Open neighborhood and neig... |
| sepnsepo 49034 | Open neighborhood and neig... |
| sepdisj 49035 | Separated sets are disjoin... |
| seposep 49036 | If two sets are separated ... |
| sepcsepo 49037 | If two sets are separated ... |
| sepfsepc 49038 | If two sets are separated ... |
| seppsepf 49039 | If two sets are precisely ... |
| seppcld 49040 | If two sets are precisely ... |
| isnrm4 49041 | A topological space is nor... |
| dfnrm2 49042 | A topological space is nor... |
| dfnrm3 49043 | A topological space is nor... |
| iscnrm3lem1 49044 | Lemma for ~ iscnrm3 . Sub... |
| iscnrm3lem2 49045 | Lemma for ~ iscnrm3 provin... |
| iscnrm3lem4 49046 | Lemma for ~ iscnrm3lem5 an... |
| iscnrm3lem5 49047 | Lemma for ~ iscnrm3l . (C... |
| iscnrm3lem6 49048 | Lemma for ~ iscnrm3lem7 . ... |
| iscnrm3lem7 49049 | Lemma for ~ iscnrm3rlem8 a... |
| iscnrm3rlem1 49050 | Lemma for ~ iscnrm3rlem2 .... |
| iscnrm3rlem2 49051 | Lemma for ~ iscnrm3rlem3 .... |
| iscnrm3rlem3 49052 | Lemma for ~ iscnrm3r . Th... |
| iscnrm3rlem4 49053 | Lemma for ~ iscnrm3rlem8 .... |
| iscnrm3rlem5 49054 | Lemma for ~ iscnrm3rlem6 .... |
| iscnrm3rlem6 49055 | Lemma for ~ iscnrm3rlem7 .... |
| iscnrm3rlem7 49056 | Lemma for ~ iscnrm3rlem8 .... |
| iscnrm3rlem8 49057 | Lemma for ~ iscnrm3r . Di... |
| iscnrm3r 49058 | Lemma for ~ iscnrm3 . If ... |
| iscnrm3llem1 49059 | Lemma for ~ iscnrm3l . Cl... |
| iscnrm3llem2 49060 | Lemma for ~ iscnrm3l . If... |
| iscnrm3l 49061 | Lemma for ~ iscnrm3 . Giv... |
| iscnrm3 49062 | A completely normal topolo... |
| iscnrm3v 49063 | A topology is completely n... |
| iscnrm4 49064 | A completely normal topolo... |
| isprsd 49065 | Property of being a preord... |
| lubeldm2 49066 | Member of the domain of th... |
| glbeldm2 49067 | Member of the domain of th... |
| lubeldm2d 49068 | Member of the domain of th... |
| glbeldm2d 49069 | Member of the domain of th... |
| lubsscl 49070 | If a subset of ` S ` conta... |
| glbsscl 49071 | If a subset of ` S ` conta... |
| lubprlem 49072 | Lemma for ~ lubprdm and ~ ... |
| lubprdm 49073 | The set of two comparable ... |
| lubpr 49074 | The LUB of the set of two ... |
| glbprlem 49075 | Lemma for ~ glbprdm and ~ ... |
| glbprdm 49076 | The set of two comparable ... |
| glbpr 49077 | The GLB of the set of two ... |
| joindm2 49078 | The join of any two elemen... |
| joindm3 49079 | The join of any two elemen... |
| meetdm2 49080 | The meet of any two elemen... |
| meetdm3 49081 | The meet of any two elemen... |
| posjidm 49082 | Poset join is idempotent. ... |
| posmidm 49083 | Poset meet is idempotent. ... |
| resiposbas 49084 | Construct a poset ( ~ resi... |
| resipos 49085 | A set equipped with an ord... |
| exbaspos 49086 | There exists a poset for a... |
| exbasprs 49087 | There exists a preordered ... |
| basresposfo 49088 | The base function restrict... |
| basresprsfo 49089 | The base function restrict... |
| posnex 49090 | The class of posets is a p... |
| prsnex 49091 | The class of preordered se... |
| toslat 49092 | A toset is a lattice. (Co... |
| isclatd 49093 | The predicate "is a comple... |
| intubeu 49094 | Existential uniqueness of ... |
| unilbeu 49095 | Existential uniqueness of ... |
| ipolublem 49096 | Lemma for ~ ipolubdm and ~... |
| ipolubdm 49097 | The domain of the LUB of t... |
| ipolub 49098 | The LUB of the inclusion p... |
| ipoglblem 49099 | Lemma for ~ ipoglbdm and ~... |
| ipoglbdm 49100 | The domain of the GLB of t... |
| ipoglb 49101 | The GLB of the inclusion p... |
| ipolub0 49102 | The LUB of the empty set i... |
| ipolub00 49103 | The LUB of the empty set i... |
| ipoglb0 49104 | The GLB of the empty set i... |
| mrelatlubALT 49105 | Least upper bounds in a Mo... |
| mrelatglbALT 49106 | Greatest lower bounds in a... |
| mreclat 49107 | A Moore space is a complet... |
| topclat 49108 | A topology is a complete l... |
| toplatglb0 49109 | The empty intersection in ... |
| toplatlub 49110 | Least upper bounds in a to... |
| toplatglb 49111 | Greatest lower bounds in a... |
| toplatjoin 49112 | Joins in a topology are re... |
| toplatmeet 49113 | Meets in a topology are re... |
| topdlat 49114 | A topology is a distributi... |
| elmgpcntrd 49115 | The center of a ring. (Co... |
| asclelbas 49116 | Lifted scalars are in the ... |
| asclelbasALT 49117 | Alternate proof of ~ ascle... |
| asclcntr 49118 | The algebra scalar lifting... |
| asclcom 49119 | Scalars are commutative af... |
| homf0 49120 | The base is empty iff the ... |
| catprslem 49121 | Lemma for ~ catprs . (Con... |
| catprs 49122 | A preorder can be extracte... |
| catprs2 49123 | A category equipped with t... |
| catprsc 49124 | A construction of the preo... |
| catprsc2 49125 | An alternate construction ... |
| endmndlem 49126 | A diagonal hom-set in a ca... |
| oppccatb 49127 | An opposite category is a ... |
| oppcmndclem 49128 | Lemma for ~ oppcmndc . Ev... |
| oppcendc 49129 | The opposite category of a... |
| oppcmndc 49130 | The opposite category of a... |
| idmon 49131 | An identity arrow, or an i... |
| idepi 49132 | An identity arrow, or an i... |
| sectrcl 49133 | Reverse closure for sectio... |
| sectrcl2 49134 | Reverse closure for sectio... |
| invrcl 49135 | Reverse closure for invers... |
| invrcl2 49136 | Reverse closure for invers... |
| isinv2 49137 | The property " ` F ` is an... |
| isisod 49138 | The predicate "is an isomo... |
| upeu2lem 49139 | Lemma for ~ upeu2 . There... |
| sectfn 49140 | The function value of the ... |
| invfn 49141 | The function value of the ... |
| isofnALT 49142 | The function value of the ... |
| isofval2 49143 | Function value of the func... |
| isorcl 49144 | Reverse closure for isomor... |
| isorcl2 49145 | Reverse closure for isomor... |
| isoval2 49146 | The isomorphisms are the d... |
| sectpropdlem 49147 | Lemma for ~ sectpropd . (... |
| sectpropd 49148 | Two structures with the sa... |
| invpropdlem 49149 | Lemma for ~ invpropd . (C... |
| invpropd 49150 | Two structures with the sa... |
| isopropdlem 49151 | Lemma for ~ isopropd . (C... |
| isopropd 49152 | Two structures with the sa... |
| cicfn 49153 | ` ~=c ` is a function on `... |
| cicrcl2 49154 | Isomorphism implies the st... |
| oppccic 49155 | Isomorphic objects are iso... |
| relcic 49156 | The set of isomorphic obje... |
| cicerALT 49157 | Isomorphism is an equivale... |
| cic1st2nd 49158 | Reconstruction of a pair o... |
| cic1st2ndbr 49159 | Rewrite the predicate of i... |
| cicpropdlem 49160 | Lemma for ~ cicpropd . (C... |
| cicpropd 49161 | Two structures with the sa... |
| oppccicb 49162 | Isomorphic objects are iso... |
| oppcciceq 49163 | The opposite category has ... |
| dmdm 49164 | The double domain of a fun... |
| iinfssclem1 49165 | Lemma for ~ iinfssc . (Co... |
| iinfssclem2 49166 | Lemma for ~ iinfssc . (Co... |
| iinfssclem3 49167 | Lemma for ~ iinfssc . (Co... |
| iinfssc 49168 | Indexed intersection of su... |
| iinfsubc 49169 | Indexed intersection of su... |
| iinfprg 49170 | Indexed intersection of fu... |
| infsubc 49171 | The intersection of two su... |
| infsubc2 49172 | The intersection of two su... |
| infsubc2d 49173 | The intersection of two su... |
| discsubclem 49174 | Lemma for ~ discsubc . (C... |
| discsubc 49175 | A discrete category, whose... |
| iinfconstbaslem 49176 | Lemma for ~ iinfconstbas .... |
| iinfconstbas 49177 | The discrete category is t... |
| nelsubclem 49178 | Lemma for ~ nelsubc . (Co... |
| nelsubc 49179 | An empty "hom-set" for non... |
| nelsubc2 49180 | An empty "hom-set" for non... |
| nelsubc3lem 49181 | Lemma for ~ nelsubc3 . (C... |
| nelsubc3 49182 | Remark 4.2(2) of [Adamek] ... |
| ssccatid 49183 | A category ` C ` restricte... |
| resccatlem 49184 | Lemma for ~ resccat . (Co... |
| resccat 49185 | A class ` C ` restricted b... |
| reldmfunc 49186 | The domain of ` Func ` is ... |
| func1st2nd 49187 | Rewrite the functor predic... |
| func1st 49188 | Extract the first member o... |
| func2nd 49189 | Extract the second member ... |
| funcrcl2 49190 | Reverse closure for a func... |
| funcrcl3 49191 | Reverse closure for a func... |
| funcf2lem 49192 | A utility theorem for prov... |
| funcf2lem2 49193 | A utility theorem for prov... |
| 0funcglem 49194 | Lemma for ~ 0funcg . (Con... |
| 0funcg2 49195 | The functor from the empty... |
| 0funcg 49196 | The functor from the empty... |
| 0funclem 49197 | Lemma for ~ 0funcALT . (C... |
| 0func 49198 | The functor from the empty... |
| 0funcALT 49199 | Alternate proof of ~ 0func... |
| func0g 49200 | The source category of a f... |
| func0g2 49201 | The source category of a f... |
| initc 49202 | Sets with empty base are t... |
| cofu1st2nd 49203 | Rewrite the functor compos... |
| rescofuf 49204 | The restriction of functor... |
| cofu1a 49205 | Value of the object part o... |
| cofu2a 49206 | Value of the morphism part... |
| cofucla 49207 | The composition of two fun... |
| funchomf 49208 | Source categories of a fun... |
| idfurcl 49209 | Reverse closure for an ide... |
| idfu1stf1o 49210 | The identity functor/inclu... |
| idfu1stalem 49211 | Lemma for ~ idfu1sta . (C... |
| idfu1sta 49212 | Value of the object part o... |
| idfu1a 49213 | Value of the object part o... |
| idfu2nda 49214 | Value of the morphism part... |
| imasubclem1 49215 | Lemma for ~ imasubc . (Co... |
| imasubclem2 49216 | Lemma for ~ imasubc . (Co... |
| imasubclem3 49217 | Lemma for ~ imasubc . (Co... |
| imaf1homlem 49218 | Lemma for ~ imaf1hom and o... |
| imaf1hom 49219 | The hom-set of an image of... |
| imaidfu2lem 49220 | Lemma for ~ imaidfu2 . (C... |
| imaidfu 49221 | The image of the identity ... |
| imaidfu2 49222 | The image of the identity ... |
| cofid1a 49223 | Express the object part of... |
| cofid2a 49224 | Express the morphism part ... |
| cofid1 49225 | Express the object part of... |
| cofid2 49226 | Express the morphism part ... |
| cofidvala 49227 | The property " ` F ` is a ... |
| cofidf2a 49228 | If " ` F ` is a section of... |
| cofidf1a 49229 | If " ` F ` is a section of... |
| cofidval 49230 | The property " ` <. F , G ... |
| cofidf2 49231 | If " ` F ` is a section of... |
| cofidf1 49232 | If " ` <. F , G >. ` is a ... |
| oppffn 49235 | ` oppFunc ` is a function ... |
| reldmoppf 49236 | The domain of ` oppFunc ` ... |
| oppfvalg 49237 | Value of the opposite func... |
| oppfrcllem 49238 | Lemma for ~ oppfrcl . (Co... |
| oppfrcl 49239 | If an opposite functor of ... |
| oppfrcl2 49240 | If an opposite functor of ... |
| oppfrcl3 49241 | If an opposite functor of ... |
| oppf1st2nd 49242 | Rewrite the opposite funct... |
| 2oppf 49243 | The double opposite functo... |
| eloppf 49244 | The pre-image of a non-emp... |
| eloppf2 49245 | Both components of a pre-i... |
| oppfvallem 49246 | Lemma for ~ oppfval . (Co... |
| oppfval 49247 | Value of the opposite func... |
| oppfval2 49248 | Value of the opposite func... |
| oppfval3 49249 | Value of the opposite func... |
| oppf1 49250 | Value of the object part o... |
| oppf2 49251 | Value of the morphism part... |
| oppfoppc 49252 | The opposite functor is a ... |
| oppfoppc2 49253 | The opposite functor is a ... |
| funcoppc2 49254 | A functor on opposite cate... |
| funcoppc4 49255 | A functor on opposite cate... |
| funcoppc5 49256 | A functor on opposite cate... |
| 2oppffunc 49257 | The opposite functor of an... |
| funcoppc3 49258 | A functor on opposite cate... |
| oppff1 49259 | The operation generating o... |
| oppff1o 49260 | The operation generating o... |
| cofuoppf 49261 | Composition of opposite fu... |
| imasubc 49262 | An image of a full functor... |
| imasubc2 49263 | An image of a full functor... |
| imassc 49264 | An image of a functor sati... |
| imaid 49265 | An image of a functor pres... |
| imaf1co 49266 | An image of a functor whos... |
| imasubc3 49267 | An image of a functor inje... |
| fthcomf 49268 | Source categories of a fai... |
| idfth 49269 | The inclusion functor is a... |
| idemb 49270 | The inclusion functor is a... |
| idsubc 49271 | The source category of an ... |
| idfullsubc 49272 | The source category of an ... |
| cofidfth 49273 | If " ` F ` is a section of... |
| fulloppf 49274 | The opposite functor of a ... |
| fthoppf 49275 | The opposite functor of a ... |
| ffthoppf 49276 | The opposite functor of a ... |
| upciclem1 49277 | Lemma for ~ upcic , ~ upeu... |
| upciclem2 49278 | Lemma for ~ upciclem3 and ... |
| upciclem3 49279 | Lemma for ~ upciclem4 . (... |
| upciclem4 49280 | Lemma for ~ upcic and ~ up... |
| upcic 49281 | A universal property defin... |
| upeu 49282 | A universal property defin... |
| upeu2 49283 | Generate new universal mor... |
| reldmup 49286 | The domain of ` UP ` is a ... |
| upfval 49287 | Function value of the clas... |
| upfval2 49288 | Function value of the clas... |
| upfval3 49289 | Function value of the clas... |
| isuplem 49290 | Lemma for ~ isup and other... |
| isup 49291 | The predicate "is a univer... |
| uppropd 49292 | If two categories have the... |
| reldmup2 49293 | The domain of ` ( D UP E )... |
| relup 49294 | The set of universal pairs... |
| uprcl 49295 | Reverse closure for the cl... |
| up1st2nd 49296 | Rewrite the universal prop... |
| up1st2ndr 49297 | Combine separated parts in... |
| up1st2ndb 49298 | Combine/separate parts in ... |
| up1st2nd2 49299 | Rewrite the universal prop... |
| uprcl2 49300 | Reverse closure for the cl... |
| uprcl3 49301 | Reverse closure for the cl... |
| uprcl4 49302 | Reverse closure for the cl... |
| uprcl5 49303 | Reverse closure for the cl... |
| uobrcl 49304 | Reverse closure for univer... |
| isup2 49305 | The universal property of ... |
| upeu3 49306 | The universal pair ` <. X ... |
| upeu4 49307 | Generate a new universal m... |
| uptposlem 49308 | Lemma for ~ uptpos . (Con... |
| uptpos 49309 | Rewrite the predicate of u... |
| oppcuprcl4 49310 | Reverse closure for the cl... |
| oppcuprcl3 49311 | Reverse closure for the cl... |
| oppcuprcl5 49312 | Reverse closure for the cl... |
| oppcuprcl2 49313 | Reverse closure for the cl... |
| uprcl2a 49314 | Reverse closure for the cl... |
| oppfuprcl 49315 | Reverse closure for the cl... |
| oppfuprcl2 49316 | Reverse closure for the cl... |
| oppcup3lem 49317 | Lemma for ~ oppcup3 . (Co... |
| oppcup 49318 | The universal pair ` <. X ... |
| oppcup2 49319 | The universal property for... |
| oppcup3 49320 | The universal property for... |
| uptrlem1 49321 | Lemma for ~ uptr . (Contr... |
| uptrlem2 49322 | Lemma for ~ uptr . (Contr... |
| uptrlem3 49323 | Lemma for ~ uptr . (Contr... |
| uptr 49324 | Universal property and ful... |
| uptri 49325 | Universal property and ful... |
| uptra 49326 | Universal property and ful... |
| uptrar 49327 | Universal property and ful... |
| uptrai 49328 | Universal property and ful... |
| uobffth 49329 | A fully faithful functor g... |
| uobeqw 49330 | If a full functor (in fact... |
| uobeq 49331 | If a full functor (in fact... |
| uptr2 49332 | Universal property and ful... |
| uptr2a 49333 | Universal property and ful... |
| isnatd 49334 | Property of being a natura... |
| natrcl2 49335 | Reverse closure for a natu... |
| natrcl3 49336 | Reverse closure for a natu... |
| catbas 49337 | The base of the category s... |
| cathomfval 49338 | The hom-sets of the catego... |
| catcofval 49339 | Composition of the categor... |
| natoppf 49340 | A natural transformation i... |
| natoppf2 49341 | A natural transformation i... |
| natoppfb 49342 | A natural transformation i... |
| initoo2 49343 | An initial object is an ob... |
| termoo2 49344 | A terminal object is an ob... |
| zeroo2 49345 | A zero object is an object... |
| oppcinito 49346 | Initial objects are termin... |
| oppctermo 49347 | Terminal objects are initi... |
| oppczeroo 49348 | Zero objects are zero in t... |
| termoeu2 49349 | Terminal objects are essen... |
| initopropdlemlem 49350 | Lemma for ~ initopropdlem ... |
| initopropdlem 49351 | Lemma for ~ initopropd . ... |
| termopropdlem 49352 | Lemma for ~ termopropd . ... |
| zeroopropdlem 49353 | Lemma for ~ zeroopropd . ... |
| initopropd 49354 | Two structures with the sa... |
| termopropd 49355 | Two structures with the sa... |
| zeroopropd 49356 | Two structures with the sa... |
| reldmxpc 49357 | The binary product of cate... |
| reldmxpcALT 49358 | Alternate proof of ~ reldm... |
| elxpcbasex1 49359 | A non-empty base set of th... |
| elxpcbasex1ALT 49360 | Alternate proof of ~ elxpc... |
| elxpcbasex2 49361 | A non-empty base set of th... |
| elxpcbasex2ALT 49362 | Alternate proof of ~ elxpc... |
| xpcfucbas 49363 | The base set of the produc... |
| xpcfuchomfval 49364 | Set of morphisms of the bi... |
| xpcfuchom 49365 | Set of morphisms of the bi... |
| xpcfuchom2 49366 | Value of the set of morphi... |
| xpcfucco2 49367 | Value of composition in th... |
| xpcfuccocl 49368 | The composition of two nat... |
| xpcfucco3 49369 | Value of composition in th... |
| dfswapf2 49372 | Alternate definition of ` ... |
| swapfval 49373 | Value of the swap functor.... |
| swapfelvv 49374 | A swap functor is an order... |
| swapf2fvala 49375 | The morphism part of the s... |
| swapf2fval 49376 | The morphism part of the s... |
| swapf1vala 49377 | The object part of the swa... |
| swapf1val 49378 | The object part of the swa... |
| swapf2fn 49379 | The morphism part of the s... |
| swapf1a 49380 | The object part of the swa... |
| swapf2vala 49381 | The morphism part of the s... |
| swapf2a 49382 | The morphism part of the s... |
| swapf1 49383 | The object part of the swa... |
| swapf2val 49384 | The morphism part of the s... |
| swapf2 49385 | The morphism part of the s... |
| swapf1f1o 49386 | The object part of the swa... |
| swapf2f1o 49387 | The morphism part of the s... |
| swapf2f1oa 49388 | The morphism part of the s... |
| swapf2f1oaALT 49389 | Alternate proof of ~ swapf... |
| swapfid 49390 | Each identity morphism in ... |
| swapfida 49391 | Each identity morphism in ... |
| swapfcoa 49392 | Composition in the source ... |
| swapffunc 49393 | The swap functor is a func... |
| swapfffth 49394 | The swap functor is a full... |
| swapffunca 49395 | The swap functor is a func... |
| swapfiso 49396 | The swap functor is an iso... |
| swapciso 49397 | The product category is ca... |
| oppc1stflem 49398 | A utility theorem for prov... |
| oppc1stf 49399 | The opposite functor of th... |
| oppc2ndf 49400 | The opposite functor of th... |
| 1stfpropd 49401 | If two categories have the... |
| 2ndfpropd 49402 | If two categories have the... |
| diagpropd 49403 | If two categories have the... |
| cofuswapfcl 49404 | The bifunctor pre-composed... |
| cofuswapf1 49405 | The object part of a bifun... |
| cofuswapf2 49406 | The morphism part of a bif... |
| tposcurf1cl 49407 | The partially evaluated tr... |
| tposcurf11 49408 | Value of the double evalua... |
| tposcurf12 49409 | The partially evaluated tr... |
| tposcurf1 49410 | Value of the object part o... |
| tposcurf2 49411 | Value of the transposed cu... |
| tposcurf2val 49412 | Value of a component of th... |
| tposcurf2cl 49413 | The transposed curry funct... |
| tposcurfcl 49414 | The transposed curry funct... |
| diag1 49415 | The constant functor of ` ... |
| diag1a 49416 | The constant functor of ` ... |
| diag1f1lem 49417 | The object part of the dia... |
| diag1f1 49418 | The object part of the dia... |
| diag2f1lem 49419 | Lemma for ~ diag2f1 . The... |
| diag2f1 49420 | If ` B ` is non-empty, the... |
| fucofulem1 49421 | Lemma for proving functor ... |
| fucofulem2 49422 | Lemma for proving functor ... |
| fuco2el 49423 | Equivalence of product fun... |
| fuco2eld 49424 | Equivalence of product fun... |
| fuco2eld2 49425 | Equivalence of product fun... |
| fuco2eld3 49426 | Equivalence of product fun... |
| fucofvalg 49429 | Value of the function givi... |
| fucofval 49430 | Value of the function givi... |
| fucoelvv 49431 | A functor composition bifu... |
| fuco1 49432 | The object part of the fun... |
| fucof1 49433 | The object part of the fun... |
| fuco2 49434 | The morphism part of the f... |
| fucofn2 49435 | The morphism part of the f... |
| fucofvalne 49436 | Value of the function givi... |
| fuco11 49437 | The object part of the fun... |
| fuco11cl 49438 | The object part of the fun... |
| fuco11a 49439 | The object part of the fun... |
| fuco112 49440 | The object part of the fun... |
| fuco111 49441 | The object part of the fun... |
| fuco111x 49442 | The object part of the fun... |
| fuco112x 49443 | The object part of the fun... |
| fuco112xa 49444 | The object part of the fun... |
| fuco11id 49445 | The identity morphism of t... |
| fuco11idx 49446 | The identity morphism of t... |
| fuco21 49447 | The morphism part of the f... |
| fuco11b 49448 | The object part of the fun... |
| fuco11bALT 49449 | Alternate proof of ~ fuco1... |
| fuco22 49450 | The morphism part of the f... |
| fucofn22 49451 | The morphism part of the f... |
| fuco23 49452 | The morphism part of the f... |
| fuco22natlem1 49453 | Lemma for ~ fuco22nat . T... |
| fuco22natlem2 49454 | Lemma for ~ fuco22nat . T... |
| fuco22natlem3 49455 | Combine ~ fuco22natlem2 wi... |
| fuco22natlem 49456 | The composed natural trans... |
| fuco22nat 49457 | The composed natural trans... |
| fucof21 49458 | The morphism part of the f... |
| fucoid 49459 | Each identity morphism in ... |
| fucoid2 49460 | Each identity morphism in ... |
| fuco22a 49461 | The morphism part of the f... |
| fuco23alem 49462 | The naturality property ( ... |
| fuco23a 49463 | The morphism part of the f... |
| fucocolem1 49464 | Lemma for ~ fucoco . Asso... |
| fucocolem2 49465 | Lemma for ~ fucoco . The ... |
| fucocolem3 49466 | Lemma for ~ fucoco . The ... |
| fucocolem4 49467 | Lemma for ~ fucoco . The ... |
| fucoco 49468 | Composition in the source ... |
| fucoco2 49469 | Composition in the source ... |
| fucofunc 49470 | The functor composition bi... |
| fucofunca 49471 | The functor composition bi... |
| fucolid 49472 | Post-compose a natural tra... |
| fucorid 49473 | Pre-composing a natural tr... |
| fucorid2 49474 | Pre-composing a natural tr... |
| postcofval 49475 | Value of the post-composit... |
| postcofcl 49476 | The post-composition funct... |
| precofvallem 49477 | Lemma for ~ precofval to e... |
| precofval 49478 | Value of the pre-compositi... |
| precofvalALT 49479 | Alternate proof of ~ preco... |
| precofval2 49480 | Value of the pre-compositi... |
| precofcl 49481 | The pre-composition functo... |
| precofval3 49482 | Value of the pre-compositi... |
| precoffunc 49483 | The pre-composition functo... |
| reldmprcof 49486 | The domain of ` -o.F ` is ... |
| prcofvalg 49487 | Value of the pre-compositi... |
| prcofvala 49488 | Value of the pre-compositi... |
| prcofval 49489 | Value of the pre-compositi... |
| prcofpropd 49490 | If the categories have the... |
| prcofelvv 49491 | The pre-composition functo... |
| reldmprcof1 49492 | The domain of the object p... |
| reldmprcof2 49493 | The domain of the morphism... |
| prcoftposcurfuco 49494 | The pre-composition functo... |
| prcoftposcurfucoa 49495 | The pre-composition functo... |
| prcoffunc 49496 | The pre-composition functo... |
| prcoffunca 49497 | The pre-composition functo... |
| prcoffunca2 49498 | The pre-composition functo... |
| prcof1 49499 | The object part of the pre... |
| prcof2a 49500 | The morphism part of the p... |
| prcof2 49501 | The morphism part of the p... |
| prcof21a 49502 | The morphism part of the p... |
| prcof22a 49503 | The morphism part of the p... |
| prcofdiag1 49504 | A constant functor pre-com... |
| prcofdiag 49505 | A diagonal functor post-co... |
| catcrcl 49506 | Reverse closure for the ca... |
| catcrcl2 49507 | Reverse closure for the ca... |
| elcatchom 49508 | A morphism of the category... |
| catcsect 49509 | The property " ` F ` is a ... |
| catcinv 49510 | The property " ` F ` is an... |
| catcisoi 49511 | A functor is an isomorphis... |
| uobeq2 49512 | If a full functor (in fact... |
| uobeq3 49513 | An isomorphism between cat... |
| opf11 49514 | The object part of the op ... |
| opf12 49515 | The object part of the op ... |
| opf2fval 49516 | The morphism part of the o... |
| opf2 49517 | The morphism part of the o... |
| fucoppclem 49518 | Lemma for ~ fucoppc . (Co... |
| fucoppcid 49519 | The opposite category of f... |
| fucoppcco 49520 | The opposite category of f... |
| fucoppc 49521 | The isomorphism from the o... |
| fucoppcffth 49522 | A fully faithful functor f... |
| fucoppcfunc 49523 | A functor from the opposit... |
| fucoppccic 49524 | The opposite category of f... |
| oppfdiag1 49525 | A constant functor for opp... |
| oppfdiag1a 49526 | A constant functor for opp... |
| oppfdiag 49527 | A diagonal functor for opp... |
| isthinc 49530 | The predicate "is a thin c... |
| isthinc2 49531 | A thin category is a categ... |
| isthinc3 49532 | A thin category is a categ... |
| thincc 49533 | A thin category is a categ... |
| thinccd 49534 | A thin category is a categ... |
| thincssc 49535 | A thin category is a categ... |
| isthincd2lem1 49536 | Lemma for ~ isthincd2 and ... |
| thincmo2 49537 | Morphisms in the same hom-... |
| thinchom 49538 | A non-empty hom-set of a t... |
| thincmo 49539 | There is at most one morph... |
| thincmoALT 49540 | Alternate proof of ~ thinc... |
| thincmod 49541 | At most one morphism in ea... |
| thincn0eu 49542 | In a thin category, a hom-... |
| thincid 49543 | In a thin category, a morp... |
| thincmon 49544 | In a thin category, all mo... |
| thincepi 49545 | In a thin category, all mo... |
| isthincd2lem2 49546 | Lemma for ~ isthincd2 . (... |
| isthincd 49547 | The predicate "is a thin c... |
| isthincd2 49548 | The predicate " ` C ` is a... |
| oppcthin 49549 | The opposite category of a... |
| oppcthinco 49550 | If the opposite category o... |
| oppcthinendc 49551 | The opposite category of a... |
| oppcthinendcALT 49552 | Alternate proof of ~ oppct... |
| thincpropd 49553 | Two structures with the sa... |
| subthinc 49554 | A subcategory of a thin ca... |
| functhinclem1 49555 | Lemma for ~ functhinc . G... |
| functhinclem2 49556 | Lemma for ~ functhinc . (... |
| functhinclem3 49557 | Lemma for ~ functhinc . T... |
| functhinclem4 49558 | Lemma for ~ functhinc . O... |
| functhinc 49559 | A functor to a thin catego... |
| functhincfun 49560 | A functor to a thin catego... |
| fullthinc 49561 | A functor to a thin catego... |
| fullthinc2 49562 | A full functor to a thin c... |
| thincfth 49563 | A functor from a thin cate... |
| thincciso 49564 | Two thin categories are is... |
| thinccisod 49565 | Two thin categories are is... |
| thincciso2 49566 | Categories isomorphic to a... |
| thincciso3 49567 | Categories isomorphic to a... |
| thincciso4 49568 | Two isomorphic categories ... |
| 0thincg 49569 | Any structure with an empt... |
| 0thinc 49570 | The empty category (see ~ ... |
| indcthing 49571 | An indiscrete category, i.... |
| discthing 49572 | A discrete category, i.e.,... |
| indthinc 49573 | An indiscrete category in ... |
| indthincALT 49574 | An alternate proof of ~ in... |
| prsthinc 49575 | Preordered sets as categor... |
| setcthin 49576 | A category of sets all of ... |
| setc2othin 49577 | The category ` ( SetCat ``... |
| thincsect 49578 | In a thin category, one mo... |
| thincsect2 49579 | In a thin category, ` F ` ... |
| thincinv 49580 | In a thin category, ` F ` ... |
| thinciso 49581 | In a thin category, ` F : ... |
| thinccic 49582 | In a thin category, two ob... |
| istermc 49585 | The predicate "is a termin... |
| istermc2 49586 | The predicate "is a termin... |
| istermc3 49587 | The predicate "is a termin... |
| termcthin 49588 | A terminal category is a t... |
| termcthind 49589 | A terminal category is a t... |
| termccd 49590 | A terminal category is a c... |
| termcbas 49591 | The base of a terminal cat... |
| termco 49592 | The object of a terminal c... |
| termcbas2 49593 | The base of a terminal cat... |
| termcbasmo 49594 | Two objects in a terminal ... |
| termchomn0 49595 | All hom-sets of a terminal... |
| termchommo 49596 | All morphisms of a termina... |
| termcid 49597 | The morphism of a terminal... |
| termcid2 49598 | The morphism of a terminal... |
| termchom 49599 | The hom-set of a terminal ... |
| termchom2 49600 | The hom-set of a terminal ... |
| setcsnterm 49601 | The category of one set, e... |
| setc1oterm 49602 | The category ` ( SetCat ``... |
| setc1obas 49603 | The base of the trivial ca... |
| setc1ohomfval 49604 | Set of morphisms of the tr... |
| setc1ocofval 49605 | Composition in the trivial... |
| setc1oid 49606 | The identity morphism of t... |
| funcsetc1ocl 49607 | The functor to the trivial... |
| funcsetc1o 49608 | Value of the functor to th... |
| isinito2lem 49609 | The predicate "is an initi... |
| isinito2 49610 | The predicate "is an initi... |
| isinito3 49611 | The predicate "is an initi... |
| dfinito4 49612 | An alternate definition of... |
| dftermo4 49613 | An alternate definition of... |
| termcpropd 49614 | Two structures with the sa... |
| oppctermhom 49615 | The opposite category of a... |
| oppctermco 49616 | The opposite category of a... |
| oppcterm 49617 | The opposite category of a... |
| functermclem 49618 | Lemma for ~ functermc . (... |
| functermc 49619 | Functor to a terminal cate... |
| functermc2 49620 | Functor to a terminal cate... |
| functermceu 49621 | There exists a unique func... |
| fulltermc 49622 | A functor to a terminal ca... |
| fulltermc2 49623 | Given a full functor to a ... |
| termcterm 49624 | A terminal category is a t... |
| termcterm2 49625 | A terminal object of the c... |
| termcterm3 49626 | In the category of small c... |
| termcciso 49627 | A category is isomorphic t... |
| termccisoeu 49628 | The isomorphism between te... |
| termc2 49629 | If there exists a unique f... |
| termc 49630 | Alternate definition of ` ... |
| dftermc2 49631 | Alternate definition of ` ... |
| eufunclem 49632 | If there exists a unique f... |
| eufunc 49633 | If there exists a unique f... |
| idfudiag1lem 49634 | Lemma for ~ idfudiag1bas a... |
| idfudiag1bas 49635 | If the identity functor of... |
| idfudiag1 49636 | If the identity functor of... |
| euendfunc 49637 | If there exists a unique e... |
| euendfunc2 49638 | If there exists a unique e... |
| termcarweu 49639 | There exists a unique disj... |
| arweuthinc 49640 | If a structure has a uniqu... |
| arweutermc 49641 | If a structure has a uniqu... |
| dftermc3 49642 | Alternate definition of ` ... |
| termcfuncval 49643 | The value of a functor fro... |
| diag1f1olem 49644 | To any functor from a term... |
| diag1f1o 49645 | The object part of the dia... |
| termcnatval 49646 | Value of natural transform... |
| diag2f1olem 49647 | Lemma for ~ diag2f1o . (C... |
| diag2f1o 49648 | If ` D ` is terminal, the ... |
| diagffth 49649 | The diagonal functor is a ... |
| diagciso 49650 | The diagonal functor is an... |
| diagcic 49651 | Any category ` C ` is isom... |
| funcsn 49652 | The category of one functo... |
| fucterm 49653 | The category of functors t... |
| 0fucterm 49654 | The category of functors f... |
| termfucterm 49655 | All functors between two t... |
| cofuterm 49656 | Post-compose with a functo... |
| uobeqterm 49657 | Universal objects and term... |
| isinito4 49658 | The predicate "is an initi... |
| isinito4a 49659 | The predicate "is an initi... |
| prstcval 49662 | Lemma for ~ prstcnidlem an... |
| prstcnidlem 49663 | Lemma for ~ prstcnid and ~... |
| prstcnid 49664 | Components other than ` Ho... |
| prstcbas 49665 | The base set is unchanged.... |
| prstcleval 49666 | Value of the less-than-or-... |
| prstcle 49667 | Value of the less-than-or-... |
| prstcocval 49668 | Orthocomplementation is un... |
| prstcoc 49669 | Orthocomplementation is un... |
| prstchomval 49670 | Hom-sets of the constructe... |
| prstcprs 49671 | The category is a preorder... |
| prstcthin 49672 | The preordered set is equi... |
| prstchom 49673 | Hom-sets of the constructe... |
| prstchom2 49674 | Hom-sets of the constructe... |
| prstchom2ALT 49675 | Hom-sets of the constructe... |
| oduoppcbas 49676 | The dual of a preordered s... |
| oduoppcciso 49677 | The dual of a preordered s... |
| postcpos 49678 | The converted category is ... |
| postcposALT 49679 | Alternate proof of ~ postc... |
| postc 49680 | The converted category is ... |
| discsntermlem 49681 | A singlegon is an element ... |
| basrestermcfolem 49682 | An element of the class of... |
| discbas 49683 | A discrete category (a cat... |
| discthin 49684 | A discrete category (a cat... |
| discsnterm 49685 | A discrete category (a cat... |
| basrestermcfo 49686 | The base function restrict... |
| termcnex 49687 | The class of all terminal ... |
| mndtcval 49690 | Value of the category buil... |
| mndtcbasval 49691 | The base set of the catego... |
| mndtcbas 49692 | The category built from a ... |
| mndtcob 49693 | Lemma for ~ mndtchom and ~... |
| mndtcbas2 49694 | Two objects in a category ... |
| mndtchom 49695 | The only hom-set of the ca... |
| mndtcco 49696 | The composition of the cat... |
| mndtcco2 49697 | The composition of the cat... |
| mndtccatid 49698 | Lemma for ~ mndtccat and ~... |
| mndtccat 49699 | The function value is a ca... |
| mndtcid 49700 | The identity morphism, or ... |
| oppgoppchom 49701 | The converted opposite mon... |
| oppgoppcco 49702 | The converted opposite mon... |
| oppgoppcid 49703 | The converted opposite mon... |
| grptcmon 49704 | All morphisms in a categor... |
| grptcepi 49705 | All morphisms in a categor... |
| 2arwcatlem1 49706 | Lemma for ~ 2arwcat . (Co... |
| 2arwcatlem2 49707 | Lemma for ~ 2arwcat . (Co... |
| 2arwcatlem3 49708 | Lemma for ~ 2arwcat . (Co... |
| 2arwcatlem4 49709 | Lemma for ~ 2arwcat . (Co... |
| 2arwcatlem5 49710 | Lemma for ~ 2arwcat . (Co... |
| 2arwcat 49711 | The condition for a struct... |
| incat 49712 | Constructing a category wi... |
| setc1onsubc 49713 | Construct a category with ... |
| cnelsubclem 49714 | Lemma for ~ cnelsubc . (C... |
| cnelsubc 49715 | Remark 4.2(2) of [Adamek] ... |
| lanfn 49720 | ` Lan ` is a function on `... |
| ranfn 49721 | ` Ran ` is a function on `... |
| reldmlan 49722 | The domain of ` Lan ` is a... |
| reldmran 49723 | The domain of ` Ran ` is a... |
| lanfval 49724 | Value of the function gene... |
| ranfval 49725 | Value of the function gene... |
| lanpropd 49726 | If the categories have the... |
| ranpropd 49727 | If the categories have the... |
| reldmlan2 49728 | The domain of ` ( P Lan E ... |
| reldmran2 49729 | The domain of ` ( P Ran E ... |
| lanval 49730 | Value of the set of left K... |
| ranval 49731 | Value of the set of right ... |
| lanrcl 49732 | Reverse closure for left K... |
| ranrcl 49733 | Reverse closure for right ... |
| rellan 49734 | The set of left Kan extens... |
| relran 49735 | The set of right Kan exten... |
| islan 49736 | A left Kan extension is a ... |
| islan2 49737 | A left Kan extension is a ... |
| lanval2 49738 | The set of left Kan extens... |
| isran 49739 | A right Kan extension is a... |
| isran2 49740 | A right Kan extension is a... |
| ranval2 49741 | The set of right Kan exten... |
| ranval3 49742 | The set of right Kan exten... |
| lanrcl2 49743 | Reverse closure for left K... |
| lanrcl3 49744 | Reverse closure for left K... |
| lanrcl4 49745 | The first component of a l... |
| lanrcl5 49746 | The second component of a ... |
| ranrcl2 49747 | Reverse closure for right ... |
| ranrcl3 49748 | Reverse closure for right ... |
| ranrcl4lem 49749 | Lemma for ~ ranrcl4 and ~ ... |
| ranrcl4 49750 | The first component of a r... |
| ranrcl5 49751 | The second component of a ... |
| lanup 49752 | The universal property of ... |
| ranup 49753 | The universal property of ... |
| reldmlmd 49758 | The domain of ` Limit ` is... |
| reldmcmd 49759 | The domain of ` Colimit ` ... |
| lmdfval 49760 | Function value of ` Limit ... |
| cmdfval 49761 | Function value of ` Colimi... |
| lmdrcl 49762 | Reverse closure for a limi... |
| cmdrcl 49763 | Reverse closure for a coli... |
| reldmlmd2 49764 | The domain of ` ( C Limit ... |
| reldmcmd2 49765 | The domain of ` ( C Colimi... |
| lmdfval2 49766 | The set of limits of a dia... |
| cmdfval2 49767 | The set of colimits of a d... |
| lmdpropd 49768 | If the categories have the... |
| cmdpropd 49769 | If the categories have the... |
| rellmd 49770 | The set of limits of a dia... |
| relcmd 49771 | The set of colimits of a d... |
| concl 49772 | A natural transformation f... |
| coccl 49773 | A natural transformation t... |
| concom 49774 | A cone to a diagram commut... |
| coccom 49775 | A co-cone to a diagram com... |
| islmd 49776 | The universal property of ... |
| iscmd 49777 | The universal property of ... |
| lmddu 49778 | The duality of limits and ... |
| cmddu 49779 | The duality of limits and ... |
| initocmd 49780 | Initial objects are the ob... |
| termolmd 49781 | Terminal objects are the o... |
| lmdran 49782 | To each limit of a diagram... |
| cmdlan 49783 | To each colimit of a diagr... |
| nfintd 49784 | Bound-variable hypothesis ... |
| nfiund 49785 | Bound-variable hypothesis ... |
| nfiundg 49786 | Bound-variable hypothesis ... |
| iunord 49787 | The indexed union of a col... |
| iunordi 49788 | The indexed union of a col... |
| spd 49789 | Specialization deduction, ... |
| spcdvw 49790 | A version of ~ spcdv where... |
| tfis2d 49791 | Transfinite Induction Sche... |
| bnd2d 49792 | Deduction form of ~ bnd2 .... |
| dffun3f 49793 | Alternate definition of fu... |
| setrecseq 49796 | Equality theorem for set r... |
| nfsetrecs 49797 | Bound-variable hypothesis ... |
| setrec1lem1 49798 | Lemma for ~ setrec1 . Thi... |
| setrec1lem2 49799 | Lemma for ~ setrec1 . If ... |
| setrec1lem3 49800 | Lemma for ~ setrec1 . If ... |
| setrec1lem4 49801 | Lemma for ~ setrec1 . If ... |
| setrec1 49802 | This is the first of two f... |
| setrec2fun 49803 | This is the second of two ... |
| setrec2lem1 49804 | Lemma for ~ setrec2 . The... |
| setrec2lem2 49805 | Lemma for ~ setrec2 . The... |
| setrec2 49806 | This is the second of two ... |
| setrec2v 49807 | Version of ~ setrec2 with ... |
| setrec2mpt 49808 | Version of ~ setrec2 where... |
| setis 49809 | Version of ~ setrec2 expre... |
| elsetrecslem 49810 | Lemma for ~ elsetrecs . A... |
| elsetrecs 49811 | A set ` A ` is an element ... |
| setrecsss 49812 | The ` setrecs ` operator r... |
| setrecsres 49813 | A recursively generated cl... |
| vsetrec 49814 | Construct ` _V ` using set... |
| 0setrec 49815 | If a function sends the em... |
| onsetreclem1 49816 | Lemma for ~ onsetrec . (C... |
| onsetreclem2 49817 | Lemma for ~ onsetrec . (C... |
| onsetreclem3 49818 | Lemma for ~ onsetrec . (C... |
| onsetrec 49819 | Construct ` On ` using set... |
| elpglem1 49822 | Lemma for ~ elpg . (Contr... |
| elpglem2 49823 | Lemma for ~ elpg . (Contr... |
| elpglem3 49824 | Lemma for ~ elpg . (Contr... |
| elpg 49825 | Membership in the class of... |
| pgindlem 49826 | Lemma for ~ pgind . (Cont... |
| pgindnf 49827 | Version of ~ pgind with ex... |
| pgind 49828 | Induction on partizan game... |
| sbidd 49829 | An identity theorem for su... |
| sbidd-misc 49830 | An identity theorem for su... |
| gte-lte 49835 | Simple relationship betwee... |
| gt-lt 49836 | Simple relationship betwee... |
| gte-lteh 49837 | Relationship between ` <_ ... |
| gt-lth 49838 | Relationship between ` < `... |
| ex-gt 49839 | Simple example of ` > ` , ... |
| ex-gte 49840 | Simple example of ` >_ ` ,... |
| sinhval-named 49847 | Value of the named sinh fu... |
| coshval-named 49848 | Value of the named cosh fu... |
| tanhval-named 49849 | Value of the named tanh fu... |
| sinh-conventional 49850 | Conventional definition of... |
| sinhpcosh 49851 | Prove that ` ( sinh `` A )... |
| secval 49858 | Value of the secant functi... |
| cscval 49859 | Value of the cosecant func... |
| cotval 49860 | Value of the cotangent fun... |
| seccl 49861 | The closure of the secant ... |
| csccl 49862 | The closure of the cosecan... |
| cotcl 49863 | The closure of the cotange... |
| reseccl 49864 | The closure of the secant ... |
| recsccl 49865 | The closure of the cosecan... |
| recotcl 49866 | The closure of the cotange... |
| recsec 49867 | The reciprocal of secant i... |
| reccsc 49868 | The reciprocal of cosecant... |
| reccot 49869 | The reciprocal of cotangen... |
| rectan 49870 | The reciprocal of tangent ... |
| sec0 49871 | The value of the secant fu... |
| onetansqsecsq 49872 | Prove the tangent squared ... |
| cotsqcscsq 49873 | Prove the tangent squared ... |
| ifnmfalse 49874 | If A is not a member of B,... |
| logb2aval 49875 | Define the value of the ` ... |
| mvlraddi 49882 | Move the right term in a s... |
| assraddsubi 49883 | Associate RHS addition-sub... |
| joinlmuladdmuli 49884 | Join AB+CB into (A+C) on L... |
| joinlmulsubmuld 49885 | Join AB-CB into (A-C) on L... |
| joinlmulsubmuli 49886 | Join AB-CB into (A-C) on L... |
| mvlrmuld 49887 | Move the right term in a p... |
| mvlrmuli 49888 | Move the right term in a p... |
| i2linesi 49889 | Solve for the intersection... |
| i2linesd 49890 | Solve for the intersection... |
| alimp-surprise 49891 | Demonstrate that when usin... |
| alimp-no-surprise 49892 | There is no "surprise" in ... |
| empty-surprise 49893 | Demonstrate that when usin... |
| empty-surprise2 49894 | "Prove" that false is true... |
| eximp-surprise 49895 | Show what implication insi... |
| eximp-surprise2 49896 | Show that "there exists" w... |
| alsconv 49901 | There is an equivalence be... |
| alsi1d 49902 | Deduction rule: Given "al... |
| alsi2d 49903 | Deduction rule: Given "al... |
| alsc1d 49904 | Deduction rule: Given "al... |
| alsc2d 49905 | Deduction rule: Given "al... |
| alscn0d 49906 | Deduction rule: Given "al... |
| alsi-no-surprise 49907 | Demonstrate that there is ... |
| 5m4e1 49908 | Prove that 5 - 4 = 1. (Co... |
| 2p2ne5 49909 | Prove that ` 2 + 2 =/= 5 `... |
| resolution 49910 | Resolution rule. This is ... |
| testable 49911 | In classical logic all wff... |
| aacllem 49912 | Lemma for other theorems a... |
| amgmwlem 49913 | Weighted version of ~ amgm... |
| amgmlemALT 49914 | Alternate proof of ~ amgml... |
| amgmw2d 49915 | Weighted arithmetic-geomet... |
| young2d 49916 | Young's inequality for ` n... |
| Copyright terms: Public domain | W3C validator |