MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01d 189 Deduction based on reducti...
pm2.6 190 Theorem *2.6 of [Whitehead...
pm2.61 191 Theorem *2.61 of [Whitehea...
pm2.65 192 Theorem *2.65 of [Whitehea...
pm2.65i 193 Inference for proof by con...
pm2.21dd 194 A contradiction implies an...
pm2.65d 195 Deduction for proof by con...
mto 196 The rule of modus tollens....
mtod 197 Modus tollens deduction. ...
mtoi 198 Modus tollens inference. ...
mt2 199 A rule similar to modus to...
mt3 200 A rule similar to modus to...
peirce 201 Peirce's axiom. A non-int...
looinv 202 The Inversion Axiom of the...
bijust0 203 A self-implication (see ~ ...
bijust 204 Theorem used to justify th...
impbi 207 Property of the biconditio...
impbii 208 Infer an equivalence from ...
impbidd 209 Deduce an equivalence from...
impbid21d 210 Deduce an equivalence from...
impbid 211 Deduce an equivalence from...
dfbi1 212 Relate the biconditional c...
dfbi1ALT 213 Alternate proof of ~ dfbi1...
biimp 214 Property of the biconditio...
biimpi 215 Infer an implication from ...
sylbi 216 A mixed syllogism inferenc...
sylib 217 A mixed syllogism inferenc...
sylbb 218 A mixed syllogism inferenc...
biimpr 219 Property of the biconditio...
bicom1 220 Commutative law for the bi...
bicom 221 Commutative law for the bi...
bicomd 222 Commute two sides of a bic...
bicomi 223 Inference from commutative...
impbid1 224 Infer an equivalence from ...
impbid2 225 Infer an equivalence from ...
impcon4bid 226 A variation on ~ impbid wi...
biimpri 227 Infer a converse implicati...
biimpd 228 Deduce an implication from...
mpbi 229 An inference from a bicond...
mpbir 230 An inference from a bicond...
mpbid 231 A deduction from a bicondi...
mpbii 232 An inference from a nested...
sylibr 233 A mixed syllogism inferenc...
sylbir 234 A mixed syllogism inferenc...
sylbbr 235 A mixed syllogism inferenc...
sylbb1 236 A mixed syllogism inferenc...
sylbb2 237 A mixed syllogism inferenc...
sylibd 238 A syllogism deduction. (C...
sylbid 239 A syllogism deduction. (C...
mpbidi 240 A deduction from a bicondi...
biimtrid 241 A mixed syllogism inferenc...
biimtrrid 242 A mixed syllogism inferenc...
imbitrid 243 A mixed syllogism inferenc...
syl5ibcom 244 A mixed syllogism inferenc...
imbitrrid 245 A mixed syllogism inferenc...
syl5ibrcom 246 A mixed syllogism inferenc...
biimprd 247 Deduce a converse implicat...
biimpcd 248 Deduce a commuted implicat...
biimprcd 249 Deduce a converse commuted...
imbitrdi 250 A mixed syllogism inferenc...
imbitrrdi 251 A mixed syllogism inferenc...
biimtrdi 252 A mixed syllogism inferenc...
biimtrrdi 253 A mixed syllogism inferenc...
syl7bi 254 A mixed syllogism inferenc...
syl8ib 255 A syllogism rule of infere...
mpbird 256 A deduction from a bicondi...
mpbiri 257 An inference from a nested...
sylibrd 258 A syllogism deduction. (C...
sylbird 259 A syllogism deduction. (C...
biid 260 Principle of identity for ...
biidd 261 Principle of identity with...
pm5.1im 262 Two propositions are equiv...
2th 263 Two truths are equivalent....
2thd 264 Two truths are equivalent....
monothetic 265 Two self-implications (see...
ibi 266 Inference that converts a ...
ibir 267 Inference that converts a ...
ibd 268 Deduction that converts a ...
pm5.74 269 Distribution of implicatio...
pm5.74i 270 Distribution of implicatio...
pm5.74ri 271 Distribution of implicatio...
pm5.74d 272 Distribution of implicatio...
pm5.74rd 273 Distribution of implicatio...
bitri 274 An inference from transiti...
bitr2i 275 An inference from transiti...
bitr3i 276 An inference from transiti...
bitr4i 277 An inference from transiti...
bitrd 278 Deduction form of ~ bitri ...
bitr2d 279 Deduction form of ~ bitr2i...
bitr3d 280 Deduction form of ~ bitr3i...
bitr4d 281 Deduction form of ~ bitr4i...
bitrid 282 A syllogism inference from...
bitr2id 283 A syllogism inference from...
bitr3id 284 A syllogism inference from...
bitr3di 285 A syllogism inference from...
bitrdi 286 A syllogism inference from...
bitr2di 287 A syllogism inference from...
bitr4di 288 A syllogism inference from...
bitr4id 289 A syllogism inference from...
3imtr3i 290 A mixed syllogism inferenc...
3imtr4i 291 A mixed syllogism inferenc...
3imtr3d 292 More general version of ~ ...
3imtr4d 293 More general version of ~ ...
3imtr3g 294 More general version of ~ ...
3imtr4g 295 More general version of ~ ...
3bitri 296 A chained inference from t...
3bitrri 297 A chained inference from t...
3bitr2i 298 A chained inference from t...
3bitr2ri 299 A chained inference from t...
3bitr3i 300 A chained inference from t...
3bitr3ri 301 A chained inference from t...
3bitr4i 302 A chained inference from t...
3bitr4ri 303 A chained inference from t...
3bitrd 304 Deduction from transitivit...
3bitrrd 305 Deduction from transitivit...
3bitr2d 306 Deduction from transitivit...
3bitr2rd 307 Deduction from transitivit...
3bitr3d 308 Deduction from transitivit...
3bitr3rd 309 Deduction from transitivit...
3bitr4d 310 Deduction from transitivit...
3bitr4rd 311 Deduction from transitivit...
3bitr3g 312 More general version of ~ ...
3bitr4g 313 More general version of ~ ...
notnotb 314 Double negation. Theorem ...
con34b 315 A biconditional form of co...
con4bid 316 A contraposition deduction...
notbid 317 Deduction negating both si...
notbi 318 Contraposition. Theorem *...
notbii 319 Negate both sides of a log...
con4bii 320 A contraposition inference...
mtbi 321 An inference from a bicond...
mtbir 322 An inference from a bicond...
mtbid 323 A deduction from a bicondi...
mtbird 324 A deduction from a bicondi...
mtbii 325 An inference from a bicond...
mtbiri 326 An inference from a bicond...
sylnib 327 A mixed syllogism inferenc...
sylnibr 328 A mixed syllogism inferenc...
sylnbi 329 A mixed syllogism inferenc...
sylnbir 330 A mixed syllogism inferenc...
xchnxbi 331 Replacement of a subexpres...
xchnxbir 332 Replacement of a subexpres...
xchbinx 333 Replacement of a subexpres...
xchbinxr 334 Replacement of a subexpres...
imbi2i 335 Introduce an antecedent to...
bibi2i 336 Inference adding a bicondi...
bibi1i 337 Inference adding a bicondi...
bibi12i 338 The equivalence of two equ...
imbi2d 339 Deduction adding an antece...
imbi1d 340 Deduction adding a consequ...
bibi2d 341 Deduction adding a bicondi...
bibi1d 342 Deduction adding a bicondi...
imbi12d 343 Deduction joining two equi...
bibi12d 344 Deduction joining two equi...
imbi12 345 Closed form of ~ imbi12i ....
imbi1 346 Theorem *4.84 of [Whitehea...
imbi2 347 Theorem *4.85 of [Whitehea...
imbi1i 348 Introduce a consequent to ...
imbi12i 349 Join two logical equivalen...
bibi1 350 Theorem *4.86 of [Whitehea...
bitr3 351 Closed nested implication ...
con2bi 352 Contraposition. Theorem *...
con2bid 353 A contraposition deduction...
con1bid 354 A contraposition deduction...
con1bii 355 A contraposition inference...
con2bii 356 A contraposition inference...
con1b 357 Contraposition. Bidirecti...
con2b 358 Contraposition. Bidirecti...
biimt 359 A wff is equivalent to its...
pm5.5 360 Theorem *5.5 of [Whitehead...
a1bi 361 Inference introducing a th...
mt2bi 362 A false consequent falsifi...
mtt 363 Modus-tollens-like theorem...
imnot 364 If a proposition is false,...
pm5.501 365 Theorem *5.501 of [Whitehe...
ibib 366 Implication in terms of im...
ibibr 367 Implication in terms of im...
tbt 368 A wff is equivalent to its...
nbn2 369 The negation of a wff is e...
bibif 370 Transfer negation via an e...
nbn 371 The negation of a wff is e...
nbn3 372 Transfer falsehood via equ...
pm5.21im 373 Two propositions are equiv...
2false 374 Two falsehoods are equival...
2falsed 375 Two falsehoods are equival...
pm5.21ni 376 Two propositions implying ...
pm5.21nii 377 Eliminate an antecedent im...
pm5.21ndd 378 Eliminate an antecedent im...
bija 379 Combine antecedents into a...
pm5.18 380 Theorem *5.18 of [Whitehea...
xor3 381 Two ways to express "exclu...
nbbn 382 Move negation outside of b...
biass 383 Associative law for the bi...
biluk 384 Lukasiewicz's shortest axi...
pm5.19 385 Theorem *5.19 of [Whitehea...
bi2.04 386 Logical equivalence of com...
pm5.4 387 Antecedent absorption impl...
imdi 388 Distributive law for impli...
pm5.41 389 Theorem *5.41 of [Whitehea...
imbibi 390 The antecedent of one side...
pm4.8 391 Theorem *4.8 of [Whitehead...
pm4.81 392 A formula is equivalent to...
imim21b 393 Simplify an implication be...
pm4.63 396 Theorem *4.63 of [Whitehea...
pm4.67 397 Theorem *4.67 of [Whitehea...
imnan 398 Express an implication in ...
imnani 399 Infer an implication from ...
iman 400 Implication in terms of co...
pm3.24 401 Law of noncontradiction. ...
annim 402 Express a conjunction in t...
pm4.61 403 Theorem *4.61 of [Whitehea...
pm4.65 404 Theorem *4.65 of [Whitehea...
imp 405 Importation inference. (C...
impcom 406 Importation inference with...
con3dimp 407 Variant of ~ con3d with im...
mpnanrd 408 Eliminate the right side o...
impd 409 Importation deduction. (C...
impcomd 410 Importation deduction with...
ex 411 Exportation inference. (T...
expcom 412 Exportation inference with...
expdcom 413 Commuted form of ~ expd . ...
expd 414 Exportation deduction. (C...
expcomd 415 Deduction form of ~ expcom...
imp31 416 An importation inference. ...
imp32 417 An importation inference. ...
exp31 418 An exportation inference. ...
exp32 419 An exportation inference. ...
imp4b 420 An importation inference. ...
imp4a 421 An importation inference. ...
imp4c 422 An importation inference. ...
imp4d 423 An importation inference. ...
imp41 424 An importation inference. ...
imp42 425 An importation inference. ...
imp43 426 An importation inference. ...
imp44 427 An importation inference. ...
imp45 428 An importation inference. ...
exp4b 429 An exportation inference. ...
exp4a 430 An exportation inference. ...
exp4c 431 An exportation inference. ...
exp4d 432 An exportation inference. ...
exp41 433 An exportation inference. ...
exp42 434 An exportation inference. ...
exp43 435 An exportation inference. ...
exp44 436 An exportation inference. ...
exp45 437 An exportation inference. ...
imp5d 438 An importation inference. ...
imp5a 439 An importation inference. ...
imp5g 440 An importation inference. ...
imp55 441 An importation inference. ...
imp511 442 An importation inference. ...
exp5c 443 An exportation inference. ...
exp5j 444 An exportation inference. ...
exp5l 445 An exportation inference. ...
exp53 446 An exportation inference. ...
pm3.3 447 Theorem *3.3 (Exp) of [Whi...
pm3.31 448 Theorem *3.31 (Imp) of [Wh...
impexp 449 Import-export theorem. Pa...
impancom 450 Mixed importation/commutat...
expdimp 451 A deduction version of exp...
expimpd 452 Exportation followed by a ...
impr 453 Import a wff into a right ...
impl 454 Export a wff from a left c...
expr 455 Export a wff from a right ...
expl 456 Export a wff from a left c...
ancoms 457 Inference commuting conjun...
pm3.22 458 Theorem *3.22 of [Whitehea...
ancom 459 Commutative law for conjun...
ancomd 460 Commutation of conjuncts i...
biancomi 461 Commuting conjunction in a...
biancomd 462 Commuting conjunction in a...
ancomst 463 Closed form of ~ ancoms . ...
ancomsd 464 Deduction commuting conjun...
anasss 465 Associative law for conjun...
anassrs 466 Associative law for conjun...
anass 467 Associative law for conjun...
pm3.2 468 Join antecedents with conj...
pm3.2i 469 Infer conjunction of premi...
pm3.21 470 Join antecedents with conj...
pm3.43i 471 Nested conjunction of ante...
pm3.43 472 Theorem *3.43 (Comp) of [W...
dfbi2 473 A theorem similar to the s...
dfbi 474 Definition ~ df-bi rewritt...
biimpa 475 Importation inference from...
biimpar 476 Importation inference from...
biimpac 477 Importation inference from...
biimparc 478 Importation inference from...
adantr 479 Inference adding a conjunc...
adantl 480 Inference adding a conjunc...
simpl 481 Elimination of a conjunct....
simpli 482 Inference eliminating a co...
simpr 483 Elimination of a conjunct....
simpri 484 Inference eliminating a co...
intnan 485 Introduction of conjunct i...
intnanr 486 Introduction of conjunct i...
intnand 487 Introduction of conjunct i...
intnanrd 488 Introduction of conjunct i...
adantld 489 Deduction adding a conjunc...
adantrd 490 Deduction adding a conjunc...
pm3.41 491 Theorem *3.41 of [Whitehea...
pm3.42 492 Theorem *3.42 of [Whitehea...
simpld 493 Deduction eliminating a co...
simprd 494 Deduction eliminating a co...
simprbi 495 Deduction eliminating a co...
simplbi 496 Deduction eliminating a co...
simprbda 497 Deduction eliminating a co...
simplbda 498 Deduction eliminating a co...
simplbi2 499 Deduction eliminating a co...
simplbi2comt 500 Closed form of ~ simplbi2c...
simplbi2com 501 A deduction eliminating a ...
simpl2im 502 Implication from an elimin...
simplbiim 503 Implication from an elimin...
impel 504 An inference for implicati...
mpan9 505 Modus ponens conjoining di...
sylan9 506 Nested syllogism inference...
sylan9r 507 Nested syllogism inference...
sylan9bb 508 Nested syllogism inference...
sylan9bbr 509 Nested syllogism inference...
jca 510 Deduce conjunction of the ...
jcad 511 Deduction conjoining the c...
jca2 512 Inference conjoining the c...
jca31 513 Join three consequents. (...
jca32 514 Join three consequents. (...
jcai 515 Deduction replacing implic...
jcab 516 Distributive law for impli...
pm4.76 517 Theorem *4.76 of [Whitehea...
jctil 518 Inference conjoining a the...
jctir 519 Inference conjoining a the...
jccir 520 Inference conjoining a con...
jccil 521 Inference conjoining a con...
jctl 522 Inference conjoining a the...
jctr 523 Inference conjoining a the...
jctild 524 Deduction conjoining a the...
jctird 525 Deduction conjoining a the...
iba 526 Introduction of antecedent...
ibar 527 Introduction of antecedent...
biantru 528 A wff is equivalent to its...
biantrur 529 A wff is equivalent to its...
biantrud 530 A wff is equivalent to its...
biantrurd 531 A wff is equivalent to its...
bianfi 532 A wff conjoined with false...
bianfd 533 A wff conjoined with false...
baib 534 Move conjunction outside o...
baibr 535 Move conjunction outside o...
rbaibr 536 Move conjunction outside o...
rbaib 537 Move conjunction outside o...
baibd 538 Move conjunction outside o...
rbaibd 539 Move conjunction outside o...
bianabs 540 Absorb a hypothesis into t...
pm5.44 541 Theorem *5.44 of [Whitehea...
pm5.42 542 Theorem *5.42 of [Whitehea...
ancl 543 Conjoin antecedent to left...
anclb 544 Conjoin antecedent to left...
ancr 545 Conjoin antecedent to righ...
ancrb 546 Conjoin antecedent to righ...
ancli 547 Deduction conjoining antec...
ancri 548 Deduction conjoining antec...
ancld 549 Deduction conjoining antec...
ancrd 550 Deduction conjoining antec...
impac 551 Importation with conjuncti...
anc2l 552 Conjoin antecedent to left...
anc2r 553 Conjoin antecedent to righ...
anc2li 554 Deduction conjoining antec...
anc2ri 555 Deduction conjoining antec...
pm4.71 556 Implication in terms of bi...
pm4.71r 557 Implication in terms of bi...
pm4.71i 558 Inference converting an im...
pm4.71ri 559 Inference converting an im...
pm4.71d 560 Deduction converting an im...
pm4.71rd 561 Deduction converting an im...
pm4.24 562 Theorem *4.24 of [Whitehea...
anidm 563 Idempotent law for conjunc...
anidmdbi 564 Conjunction idempotence wi...
anidms 565 Inference from idempotent ...
imdistan 566 Distribution of implicatio...
imdistani 567 Distribution of implicatio...
imdistanri 568 Distribution of implicatio...
imdistand 569 Distribution of implicatio...
imdistanda 570 Distribution of implicatio...
pm5.3 571 Theorem *5.3 of [Whitehead...
pm5.32 572 Distribution of implicatio...
pm5.32i 573 Distribution of implicatio...
pm5.32ri 574 Distribution of implicatio...
pm5.32d 575 Distribution of implicatio...
pm5.32rd 576 Distribution of implicatio...
pm5.32da 577 Distribution of implicatio...
sylan 578 A syllogism inference. (C...
sylanb 579 A syllogism inference. (C...
sylanbr 580 A syllogism inference. (C...
sylanbrc 581 Syllogism inference. (Con...
syl2anc 582 Syllogism inference combin...
syl2anc2 583 Double syllogism inference...
sylancl 584 Syllogism inference combin...
sylancr 585 Syllogism inference combin...
sylancom 586 Syllogism inference with c...
sylanblc 587 Syllogism inference combin...
sylanblrc 588 Syllogism inference combin...
syldan 589 A syllogism deduction with...
sylbida 590 A syllogism deduction. (C...
sylan2 591 A syllogism inference. (C...
sylan2b 592 A syllogism inference. (C...
sylan2br 593 A syllogism inference. (C...
syl2an 594 A double syllogism inferen...
syl2anr 595 A double syllogism inferen...
syl2anb 596 A double syllogism inferen...
syl2anbr 597 A double syllogism inferen...
sylancb 598 A syllogism inference comb...
sylancbr 599 A syllogism inference comb...
syldanl 600 A syllogism deduction with...
syland 601 A syllogism deduction. (C...
sylani 602 A syllogism inference. (C...
sylan2d 603 A syllogism deduction. (C...
sylan2i 604 A syllogism inference. (C...
syl2ani 605 A syllogism inference. (C...
syl2and 606 A syllogism deduction. (C...
anim12d 607 Conjoin antecedents and co...
anim12d1 608 Variant of ~ anim12d where...
anim1d 609 Add a conjunct to right of...
anim2d 610 Add a conjunct to left of ...
anim12i 611 Conjoin antecedents and co...
anim12ci 612 Variant of ~ anim12i with ...
anim1i 613 Introduce conjunct to both...
anim1ci 614 Introduce conjunct to both...
anim2i 615 Introduce conjunct to both...
anim12ii 616 Conjoin antecedents and co...
anim12dan 617 Conjoin antecedents and co...
im2anan9 618 Deduction joining nested i...
im2anan9r 619 Deduction joining nested i...
pm3.45 620 Theorem *3.45 (Fact) of [W...
anbi2i 621 Introduce a left conjunct ...
anbi1i 622 Introduce a right conjunct...
anbi2ci 623 Variant of ~ anbi2i with c...
anbi1ci 624 Variant of ~ anbi1i with c...
bianbi 625 Exchanging conjunction in ...
anbi12i 626 Conjoin both sides of two ...
anbi12ci 627 Variant of ~ anbi12i with ...
anbi2d 628 Deduction adding a left co...
anbi1d 629 Deduction adding a right c...
anbi12d 630 Deduction joining two equi...
anbi1 631 Introduce a right conjunct...
anbi2 632 Introduce a left conjunct ...
anbi1cd 633 Introduce a proposition as...
an2anr 634 Double commutation in conj...
pm4.38 635 Theorem *4.38 of [Whitehea...
bi2anan9 636 Deduction joining two equi...
bi2anan9r 637 Deduction joining two equi...
bi2bian9 638 Deduction joining two bico...
anbiim 639 Adding biconditional when ...
bianass 640 An inference to merge two ...
bianassc 641 An inference to merge two ...
an21 642 Swap two conjuncts. (Cont...
an12 643 Swap two conjuncts. Note ...
an32 644 A rearrangement of conjunc...
an13 645 A rearrangement of conjunc...
an31 646 A rearrangement of conjunc...
an12s 647 Swap two conjuncts in ante...
ancom2s 648 Inference commuting a nest...
an13s 649 Swap two conjuncts in ante...
an32s 650 Swap two conjuncts in ante...
ancom1s 651 Inference commuting a nest...
an31s 652 Swap two conjuncts in ante...
anass1rs 653 Commutative-associative la...
an4 654 Rearrangement of 4 conjunc...
an42 655 Rearrangement of 4 conjunc...
an43 656 Rearrangement of 4 conjunc...
an3 657 A rearrangement of conjunc...
an4s 658 Inference rearranging 4 co...
an42s 659 Inference rearranging 4 co...
anabs1 660 Absorption into embedded c...
anabs5 661 Absorption into embedded c...
anabs7 662 Absorption into embedded c...
anabsan 663 Absorption of antecedent w...
anabss1 664 Absorption of antecedent i...
anabss4 665 Absorption of antecedent i...
anabss5 666 Absorption of antecedent i...
anabsi5 667 Absorption of antecedent i...
anabsi6 668 Absorption of antecedent i...
anabsi7 669 Absorption of antecedent i...
anabsi8 670 Absorption of antecedent i...
anabss7 671 Absorption of antecedent i...
anabsan2 672 Absorption of antecedent w...
anabss3 673 Absorption of antecedent i...
anandi 674 Distribution of conjunctio...
anandir 675 Distribution of conjunctio...
anandis 676 Inference that undistribut...
anandirs 677 Inference that undistribut...
sylanl1 678 A syllogism inference. (C...
sylanl2 679 A syllogism inference. (C...
sylanr1 680 A syllogism inference. (C...
sylanr2 681 A syllogism inference. (C...
syl6an 682 A syllogism deduction comb...
syl2an2r 683 ~ syl2anr with antecedents...
syl2an2 684 ~ syl2an with antecedents ...
mpdan 685 An inference based on modu...
mpancom 686 An inference based on modu...
mpidan 687 A deduction which "stacks"...
mpan 688 An inference based on modu...
mpan2 689 An inference based on modu...
mp2an 690 An inference based on modu...
mp4an 691 An inference based on modu...
mpan2d 692 A deduction based on modus...
mpand 693 A deduction based on modus...
mpani 694 An inference based on modu...
mpan2i 695 An inference based on modu...
mp2ani 696 An inference based on modu...
mp2and 697 A deduction based on modus...
mpanl1 698 An inference based on modu...
mpanl2 699 An inference based on modu...
mpanl12 700 An inference based on modu...
mpanr1 701 An inference based on modu...
mpanr2 702 An inference based on modu...
mpanr12 703 An inference based on modu...
mpanlr1 704 An inference based on modu...
mpbirand 705 Detach truth from conjunct...
mpbiran2d 706 Detach truth from conjunct...
mpbiran 707 Detach truth from conjunct...
mpbiran2 708 Detach truth from conjunct...
mpbir2an 709 Detach a conjunction of tr...
mpbi2and 710 Detach a conjunction of tr...
mpbir2and 711 Detach a conjunction of tr...
adantll 712 Deduction adding a conjunc...
adantlr 713 Deduction adding a conjunc...
adantrl 714 Deduction adding a conjunc...
adantrr 715 Deduction adding a conjunc...
adantlll 716 Deduction adding a conjunc...
adantllr 717 Deduction adding a conjunc...
adantlrl 718 Deduction adding a conjunc...
adantlrr 719 Deduction adding a conjunc...
adantrll 720 Deduction adding a conjunc...
adantrlr 721 Deduction adding a conjunc...
adantrrl 722 Deduction adding a conjunc...
adantrrr 723 Deduction adding a conjunc...
ad2antrr 724 Deduction adding two conju...
ad2antlr 725 Deduction adding two conju...
ad2antrl 726 Deduction adding two conju...
ad2antll 727 Deduction adding conjuncts...
ad3antrrr 728 Deduction adding three con...
ad3antlr 729 Deduction adding three con...
ad4antr 730 Deduction adding 4 conjunc...
ad4antlr 731 Deduction adding 4 conjunc...
ad5antr 732 Deduction adding 5 conjunc...
ad5antlr 733 Deduction adding 5 conjunc...
ad6antr 734 Deduction adding 6 conjunc...
ad6antlr 735 Deduction adding 6 conjunc...
ad7antr 736 Deduction adding 7 conjunc...
ad7antlr 737 Deduction adding 7 conjunc...
ad8antr 738 Deduction adding 8 conjunc...
ad8antlr 739 Deduction adding 8 conjunc...
ad9antr 740 Deduction adding 9 conjunc...
ad9antlr 741 Deduction adding 9 conjunc...
ad10antr 742 Deduction adding 10 conjun...
ad10antlr 743 Deduction adding 10 conjun...
ad2ant2l 744 Deduction adding two conju...
ad2ant2r 745 Deduction adding two conju...
ad2ant2lr 746 Deduction adding two conju...
ad2ant2rl 747 Deduction adding two conju...
adantl3r 748 Deduction adding 1 conjunc...
ad4ant13 749 Deduction adding conjuncts...
ad4ant14 750 Deduction adding conjuncts...
ad4ant23 751 Deduction adding conjuncts...
ad4ant24 752 Deduction adding conjuncts...
adantl4r 753 Deduction adding 1 conjunc...
ad5ant12 754 Deduction adding conjuncts...
ad5ant13 755 Deduction adding conjuncts...
ad5ant14 756 Deduction adding conjuncts...
ad5ant15 757 Deduction adding conjuncts...
ad5ant23 758 Deduction adding conjuncts...
ad5ant24 759 Deduction adding conjuncts...
ad5ant25 760 Deduction adding conjuncts...
adantl5r 761 Deduction adding 1 conjunc...
adantl6r 762 Deduction adding 1 conjunc...
pm3.33 763 Theorem *3.33 (Syll) of [W...
pm3.34 764 Theorem *3.34 (Syll) of [W...
simpll 765 Simplification of a conjun...
simplld 766 Deduction form of ~ simpll...
simplr 767 Simplification of a conjun...
simplrd 768 Deduction eliminating a do...
simprl 769 Simplification of a conjun...
simprld 770 Deduction eliminating a do...
simprr 771 Simplification of a conjun...
simprrd 772 Deduction form of ~ simprr...
simplll 773 Simplification of a conjun...
simpllr 774 Simplification of a conjun...
simplrl 775 Simplification of a conjun...
simplrr 776 Simplification of a conjun...
simprll 777 Simplification of a conjun...
simprlr 778 Simplification of a conjun...
simprrl 779 Simplification of a conjun...
simprrr 780 Simplification of a conjun...
simp-4l 781 Simplification of a conjun...
simp-4r 782 Simplification of a conjun...
simp-5l 783 Simplification of a conjun...
simp-5r 784 Simplification of a conjun...
simp-6l 785 Simplification of a conjun...
simp-6r 786 Simplification of a conjun...
simp-7l 787 Simplification of a conjun...
simp-7r 788 Simplification of a conjun...
simp-8l 789 Simplification of a conjun...
simp-8r 790 Simplification of a conjun...
simp-9l 791 Simplification of a conjun...
simp-9r 792 Simplification of a conjun...
simp-10l 793 Simplification of a conjun...
simp-10r 794 Simplification of a conjun...
simp-11l 795 Simplification of a conjun...
simp-11r 796 Simplification of a conjun...
pm2.01da 797 Deduction based on reducti...
pm2.18da 798 Deduction based on reducti...
impbida 799 Deduce an equivalence from...
pm5.21nd 800 Eliminate an antecedent im...
pm3.35 801 Conjunctive detachment. T...
pm5.74da 802 Distribution of implicatio...
bitr 803 Theorem *4.22 of [Whitehea...
biantr 804 A transitive law of equiva...
pm4.14 805 Theorem *4.14 of [Whitehea...
pm3.37 806 Theorem *3.37 (Transp) of ...
anim12 807 Conjoin antecedents and co...
pm3.4 808 Conjunction implies implic...
exbiri 809 Inference form of ~ exbir ...
pm2.61ian 810 Elimination of an antecede...
pm2.61dan 811 Elimination of an antecede...
pm2.61ddan 812 Elimination of two anteced...
pm2.61dda 813 Elimination of two anteced...
mtand 814 A modus tollens deduction....
pm2.65da 815 Deduction for proof by con...
condan 816 Proof by contradiction. (...
biadan 817 An implication is equivale...
biadani 818 Inference associated with ...
biadaniALT 819 Alternate proof of ~ biada...
biadanii 820 Inference associated with ...
biadanid 821 Deduction associated with ...
pm5.1 822 Two propositions are equiv...
pm5.21 823 Two propositions are equiv...
pm5.35 824 Theorem *5.35 of [Whitehea...
abai 825 Introduce one conjunct as ...
pm4.45im 826 Conjunction with implicati...
impimprbi 827 An implication and its rev...
nan 828 Theorem to move a conjunct...
pm5.31 829 Theorem *5.31 of [Whitehea...
pm5.31r 830 Variant of ~ pm5.31 . (Co...
pm4.15 831 Theorem *4.15 of [Whitehea...
pm5.36 832 Theorem *5.36 of [Whitehea...
annotanannot 833 A conjunction with a negat...
pm5.33 834 Theorem *5.33 of [Whitehea...
syl12anc 835 Syllogism combined with co...
syl21anc 836 Syllogism combined with co...
syl22anc 837 Syllogism combined with co...
syl1111anc 838 Four-hypothesis eliminatio...
syldbl2 839 Stacked hypotheseis implie...
mpsyl4anc 840 An elimination deduction. ...
pm4.87 841 Theorem *4.87 of [Whitehea...
bimsc1 842 Removal of conjunct from o...
a2and 843 Deduction distributing a c...
animpimp2impd 844 Deduction deriving nested ...
pm4.64 847 Theorem *4.64 of [Whitehea...
pm4.66 848 Theorem *4.66 of [Whitehea...
pm2.53 849 Theorem *2.53 of [Whitehea...
pm2.54 850 Theorem *2.54 of [Whitehea...
imor 851 Implication in terms of di...
imori 852 Infer disjunction from imp...
imorri 853 Infer implication from dis...
pm4.62 854 Theorem *4.62 of [Whitehea...
jaoi 855 Inference disjoining the a...
jao1i 856 Add a disjunct in the ante...
jaod 857 Deduction disjoining the a...
mpjaod 858 Eliminate a disjunction in...
ori 859 Infer implication from dis...
orri 860 Infer disjunction from imp...
orrd 861 Deduce disjunction from im...
ord 862 Deduce implication from di...
orci 863 Deduction introducing a di...
olci 864 Deduction introducing a di...
orc 865 Introduction of a disjunct...
olc 866 Introduction of a disjunct...
pm1.4 867 Axiom *1.4 of [WhiteheadRu...
orcom 868 Commutative law for disjun...
orcomd 869 Commutation of disjuncts i...
orcoms 870 Commutation of disjuncts i...
orcd 871 Deduction introducing a di...
olcd 872 Deduction introducing a di...
orcs 873 Deduction eliminating disj...
olcs 874 Deduction eliminating disj...
olcnd 875 A lemma for Conjunctive No...
orcnd 876 A lemma for Conjunctive No...
mtord 877 A modus tollens deduction ...
pm3.2ni 878 Infer negated disjunction ...
pm2.45 879 Theorem *2.45 of [Whitehea...
pm2.46 880 Theorem *2.46 of [Whitehea...
pm2.47 881 Theorem *2.47 of [Whitehea...
pm2.48 882 Theorem *2.48 of [Whitehea...
pm2.49 883 Theorem *2.49 of [Whitehea...
norbi 884 If neither of two proposit...
nbior 885 If two propositions are no...
orel1 886 Elimination of disjunction...
pm2.25 887 Theorem *2.25 of [Whitehea...
orel2 888 Elimination of disjunction...
pm2.67-2 889 Slight generalization of T...
pm2.67 890 Theorem *2.67 of [Whitehea...
curryax 891 A non-intuitionistic posit...
exmid 892 Law of excluded middle, al...
exmidd 893 Law of excluded middle in ...
pm2.1 894 Theorem *2.1 of [Whitehead...
pm2.13 895 Theorem *2.13 of [Whitehea...
pm2.621 896 Theorem *2.621 of [Whitehe...
pm2.62 897 Theorem *2.62 of [Whitehea...
pm2.68 898 Theorem *2.68 of [Whitehea...
dfor2 899 Logical 'or' expressed in ...
pm2.07 900 Theorem *2.07 of [Whitehea...
pm1.2 901 Axiom *1.2 of [WhiteheadRu...
oridm 902 Idempotent law for disjunc...
pm4.25 903 Theorem *4.25 of [Whitehea...
pm2.4 904 Theorem *2.4 of [Whitehead...
pm2.41 905 Theorem *2.41 of [Whitehea...
orim12i 906 Disjoin antecedents and co...
orim1i 907 Introduce disjunct to both...
orim2i 908 Introduce disjunct to both...
orim12dALT 909 Alternate proof of ~ orim1...
orbi2i 910 Inference adding a left di...
orbi1i 911 Inference adding a right d...
orbi12i 912 Infer the disjunction of t...
orbi2d 913 Deduction adding a left di...
orbi1d 914 Deduction adding a right d...
orbi1 915 Theorem *4.37 of [Whitehea...
orbi12d 916 Deduction joining two equi...
pm1.5 917 Axiom *1.5 (Assoc) of [Whi...
or12 918 Swap two disjuncts. (Cont...
orass 919 Associative law for disjun...
pm2.31 920 Theorem *2.31 of [Whitehea...
pm2.32 921 Theorem *2.32 of [Whitehea...
pm2.3 922 Theorem *2.3 of [Whitehead...
or32 923 A rearrangement of disjunc...
or4 924 Rearrangement of 4 disjunc...
or42 925 Rearrangement of 4 disjunc...
orordi 926 Distribution of disjunctio...
orordir 927 Distribution of disjunctio...
orimdi 928 Disjunction distributes ov...
pm2.76 929 Theorem *2.76 of [Whitehea...
pm2.85 930 Theorem *2.85 of [Whitehea...
pm2.75 931 Theorem *2.75 of [Whitehea...
pm4.78 932 Implication distributes ov...
biort 933 A disjunction with a true ...
biorf 934 A wff is equivalent to its...
biortn 935 A wff is equivalent to its...
biorfi 936 A wff is equivalent to its...
pm2.26 937 Theorem *2.26 of [Whitehea...
pm2.63 938 Theorem *2.63 of [Whitehea...
pm2.64 939 Theorem *2.64 of [Whitehea...
pm2.42 940 Theorem *2.42 of [Whitehea...
pm5.11g 941 A general instance of Theo...
pm5.11 942 Theorem *5.11 of [Whitehea...
pm5.12 943 Theorem *5.12 of [Whitehea...
pm5.14 944 Theorem *5.14 of [Whitehea...
pm5.13 945 Theorem *5.13 of [Whitehea...
pm5.55 946 Theorem *5.55 of [Whitehea...
pm4.72 947 Implication in terms of bi...
imimorb 948 Simplify an implication be...
oibabs 949 Absorption of disjunction ...
orbidi 950 Disjunction distributes ov...
pm5.7 951 Disjunction distributes ov...
jaao 952 Inference conjoining and d...
jaoa 953 Inference disjoining and c...
jaoian 954 Inference disjoining the a...
jaodan 955 Deduction disjoining the a...
mpjaodan 956 Eliminate a disjunction in...
pm3.44 957 Theorem *3.44 of [Whitehea...
jao 958 Disjunction of antecedents...
jaob 959 Disjunction of antecedents...
pm4.77 960 Theorem *4.77 of [Whitehea...
pm3.48 961 Theorem *3.48 of [Whitehea...
orim12d 962 Disjoin antecedents and co...
orim1d 963 Disjoin antecedents and co...
orim2d 964 Disjoin antecedents and co...
orim2 965 Axiom *1.6 (Sum) of [White...
pm2.38 966 Theorem *2.38 of [Whitehea...
pm2.36 967 Theorem *2.36 of [Whitehea...
pm2.37 968 Theorem *2.37 of [Whitehea...
pm2.81 969 Theorem *2.81 of [Whitehea...
pm2.8 970 Theorem *2.8 of [Whitehead...
pm2.73 971 Theorem *2.73 of [Whitehea...
pm2.74 972 Theorem *2.74 of [Whitehea...
pm2.82 973 Theorem *2.82 of [Whitehea...
pm4.39 974 Theorem *4.39 of [Whitehea...
animorl 975 Conjunction implies disjun...
animorr 976 Conjunction implies disjun...
animorlr 977 Conjunction implies disjun...
animorrl 978 Conjunction implies disjun...
ianor 979 Negated conjunction in ter...
anor 980 Conjunction in terms of di...
ioran 981 Negated disjunction in ter...
pm4.52 982 Theorem *4.52 of [Whitehea...
pm4.53 983 Theorem *4.53 of [Whitehea...
pm4.54 984 Theorem *4.54 of [Whitehea...
pm4.55 985 Theorem *4.55 of [Whitehea...
pm4.56 986 Theorem *4.56 of [Whitehea...
oran 987 Disjunction in terms of co...
pm4.57 988 Theorem *4.57 of [Whitehea...
pm3.1 989 Theorem *3.1 of [Whitehead...
pm3.11 990 Theorem *3.11 of [Whitehea...
pm3.12 991 Theorem *3.12 of [Whitehea...
pm3.13 992 Theorem *3.13 of [Whitehea...
pm3.14 993 Theorem *3.14 of [Whitehea...
pm4.44 994 Theorem *4.44 of [Whitehea...
pm4.45 995 Theorem *4.45 of [Whitehea...
orabs 996 Absorption of redundant in...
oranabs 997 Absorb a disjunct into a c...
pm5.61 998 Theorem *5.61 of [Whitehea...
pm5.6 999 Conjunction in antecedent ...
orcanai 1000 Change disjunction in cons...
pm4.79 1001 Theorem *4.79 of [Whitehea...
pm5.53 1002 Theorem *5.53 of [Whitehea...
ordi 1003 Distributive law for disju...
ordir 1004 Distributive law for disju...
andi 1005 Distributive law for conju...
andir 1006 Distributive law for conju...
orddi 1007 Double distributive law fo...
anddi 1008 Double distributive law fo...
pm5.17 1009 Theorem *5.17 of [Whitehea...
pm5.15 1010 Theorem *5.15 of [Whitehea...
pm5.16 1011 Theorem *5.16 of [Whitehea...
xor 1012 Two ways to express exclus...
nbi2 1013 Two ways to express "exclu...
xordi 1014 Conjunction distributes ov...
pm5.54 1015 Theorem *5.54 of [Whitehea...
pm5.62 1016 Theorem *5.62 of [Whitehea...
pm5.63 1017 Theorem *5.63 of [Whitehea...
niabn 1018 Miscellaneous inference re...
ninba 1019 Miscellaneous inference re...
pm4.43 1020 Theorem *4.43 of [Whitehea...
pm4.82 1021 Theorem *4.82 of [Whitehea...
pm4.83 1022 Theorem *4.83 of [Whitehea...
pclem6 1023 Negation inferred from emb...
bigolden 1024 Dijkstra-Scholten's Golden...
pm5.71 1025 Theorem *5.71 of [Whitehea...
pm5.75 1026 Theorem *5.75 of [Whitehea...
ecase2d 1027 Deduction for elimination ...
ecase2dOLD 1028 Obsolete version of ~ ecas...
ecase3 1029 Inference for elimination ...
ecase 1030 Inference for elimination ...
ecase3d 1031 Deduction for elimination ...
ecased 1032 Deduction for elimination ...
ecase3ad 1033 Deduction for elimination ...
ecase3adOLD 1034 Obsolete version of ~ ecas...
ccase 1035 Inference for combining ca...
ccased 1036 Deduction for combining ca...
ccase2 1037 Inference for combining ca...
4cases 1038 Inference eliminating two ...
4casesdan 1039 Deduction eliminating two ...
cases 1040 Case disjunction according...
dedlem0a 1041 Lemma for an alternate ver...
dedlem0b 1042 Lemma for an alternate ver...
dedlema 1043 Lemma for weak deduction t...
dedlemb 1044 Lemma for weak deduction t...
cases2 1045 Case disjunction according...
cases2ALT 1046 Alternate proof of ~ cases...
dfbi3 1047 An alternate definition of...
pm5.24 1048 Theorem *5.24 of [Whitehea...
4exmid 1049 The disjunction of the fou...
consensus 1050 The consensus theorem. Th...
pm4.42 1051 Theorem *4.42 of [Whitehea...
prlem1 1052 A specialized lemma for se...
prlem2 1053 A specialized lemma for se...
oplem1 1054 A specialized lemma for se...
dn1 1055 A single axiom for Boolean...
bianir 1056 A closed form of ~ mpbir ,...
jaoi2 1057 Inference removing a negat...
jaoi3 1058 Inference separating a dis...
ornld 1059 Selecting one statement fr...
dfifp2 1062 Alternate definition of th...
dfifp3 1063 Alternate definition of th...
dfifp4 1064 Alternate definition of th...
dfifp5 1065 Alternate definition of th...
dfifp6 1066 Alternate definition of th...
dfifp7 1067 Alternate definition of th...
ifpdfbi 1068 Define the biconditional a...
anifp 1069 The conditional operator i...
ifpor 1070 The conditional operator i...
ifpn 1071 Conditional operator for t...
ifptru 1072 Value of the conditional o...
ifpfal 1073 Value of the conditional o...
ifpid 1074 Value of the conditional o...
casesifp 1075 Version of ~ cases express...
ifpbi123d 1076 Equivalence deduction for ...
ifpbi23d 1077 Equivalence deduction for ...
ifpimpda 1078 Separation of the values o...
1fpid3 1079 The value of the condition...
elimh 1080 Hypothesis builder for the...
dedt 1081 The weak deduction theorem...
con3ALT 1082 Proof of ~ con3 from its a...
3orass 1087 Associative law for triple...
3orel1 1088 Partial elimination of a t...
3orrot 1089 Rotation law for triple di...
3orcoma 1090 Commutation law for triple...
3orcomb 1091 Commutation law for triple...
3anass 1092 Associative law for triple...
3anan12 1093 Convert triple conjunction...
3anan32 1094 Convert triple conjunction...
3ancoma 1095 Commutation law for triple...
3ancomb 1096 Commutation law for triple...
3anrot 1097 Rotation law for triple co...
3anrev 1098 Reversal law for triple co...
anandi3 1099 Distribution of triple con...
anandi3r 1100 Distribution of triple con...
3anidm 1101 Idempotent law for conjunc...
3an4anass 1102 Associative law for four c...
3ioran 1103 Negated triple disjunction...
3ianor 1104 Negated triple conjunction...
3anor 1105 Triple conjunction express...
3oran 1106 Triple disjunction in term...
3impa 1107 Importation from double to...
3imp 1108 Importation inference. (C...
3imp31 1109 The importation inference ...
3imp231 1110 Importation inference. (C...
3imp21 1111 The importation inference ...
3impb 1112 Importation from double to...
3impib 1113 Importation to triple conj...
3impia 1114 Importation to triple conj...
3expa 1115 Exportation from triple to...
3exp 1116 Exportation inference. (C...
3expb 1117 Exportation from triple to...
3expia 1118 Exportation from triple co...
3expib 1119 Exportation from triple co...
3com12 1120 Commutation in antecedent....
3com13 1121 Commutation in antecedent....
3comr 1122 Commutation in antecedent....
3com23 1123 Commutation in antecedent....
3coml 1124 Commutation in antecedent....
3jca 1125 Join consequents with conj...
3jcad 1126 Deduction conjoining the c...
3adant1 1127 Deduction adding a conjunc...
3adant2 1128 Deduction adding a conjunc...
3adant3 1129 Deduction adding a conjunc...
3ad2ant1 1130 Deduction adding conjuncts...
3ad2ant2 1131 Deduction adding conjuncts...
3ad2ant3 1132 Deduction adding conjuncts...
simp1 1133 Simplification of triple c...
simp2 1134 Simplification of triple c...
simp3 1135 Simplification of triple c...
simp1i 1136 Infer a conjunct from a tr...
simp2i 1137 Infer a conjunct from a tr...
simp3i 1138 Infer a conjunct from a tr...
simp1d 1139 Deduce a conjunct from a t...
simp2d 1140 Deduce a conjunct from a t...
simp3d 1141 Deduce a conjunct from a t...
simp1bi 1142 Deduce a conjunct from a t...
simp2bi 1143 Deduce a conjunct from a t...
simp3bi 1144 Deduce a conjunct from a t...
3simpa 1145 Simplification of triple c...
3simpb 1146 Simplification of triple c...
3simpc 1147 Simplification of triple c...
3anim123i 1148 Join antecedents and conse...
3anim1i 1149 Add two conjuncts to antec...
3anim2i 1150 Add two conjuncts to antec...
3anim3i 1151 Add two conjuncts to antec...
3anbi123i 1152 Join 3 biconditionals with...
3orbi123i 1153 Join 3 biconditionals with...
3anbi1i 1154 Inference adding two conju...
3anbi2i 1155 Inference adding two conju...
3anbi3i 1156 Inference adding two conju...
syl3an 1157 A triple syllogism inferen...
syl3anb 1158 A triple syllogism inferen...
syl3anbr 1159 A triple syllogism inferen...
syl3an1 1160 A syllogism inference. (C...
syl3an2 1161 A syllogism inference. (C...
syl3an3 1162 A syllogism inference. (C...
3adantl1 1163 Deduction adding a conjunc...
3adantl2 1164 Deduction adding a conjunc...
3adantl3 1165 Deduction adding a conjunc...
3adantr1 1166 Deduction adding a conjunc...
3adantr2 1167 Deduction adding a conjunc...
3adantr3 1168 Deduction adding a conjunc...
ad4ant123 1169 Deduction adding conjuncts...
ad4ant124 1170 Deduction adding conjuncts...
ad4ant134 1171 Deduction adding conjuncts...
ad4ant234 1172 Deduction adding conjuncts...
3adant1l 1173 Deduction adding a conjunc...
3adant1r 1174 Deduction adding a conjunc...
3adant2l 1175 Deduction adding a conjunc...
3adant2r 1176 Deduction adding a conjunc...
3adant3l 1177 Deduction adding a conjunc...
3adant3r 1178 Deduction adding a conjunc...
3adant3r1 1179 Deduction adding a conjunc...
3adant3r2 1180 Deduction adding a conjunc...
3adant3r3 1181 Deduction adding a conjunc...
3ad2antl1 1182 Deduction adding conjuncts...
3ad2antl2 1183 Deduction adding conjuncts...
3ad2antl3 1184 Deduction adding conjuncts...
3ad2antr1 1185 Deduction adding conjuncts...
3ad2antr2 1186 Deduction adding conjuncts...
3ad2antr3 1187 Deduction adding conjuncts...
simpl1 1188 Simplification of conjunct...
simpl2 1189 Simplification of conjunct...
simpl3 1190 Simplification of conjunct...
simpr1 1191 Simplification of conjunct...
simpr2 1192 Simplification of conjunct...
simpr3 1193 Simplification of conjunct...
simp1l 1194 Simplification of triple c...
simp1r 1195 Simplification of triple c...
simp2l 1196 Simplification of triple c...
simp2r 1197 Simplification of triple c...
simp3l 1198 Simplification of triple c...
simp3r 1199 Simplification of triple c...
simp11 1200 Simplification of doubly t...
simp12 1201 Simplification of doubly t...
simp13 1202 Simplification of doubly t...
simp21 1203 Simplification of doubly t...
simp22 1204 Simplification of doubly t...
simp23 1205 Simplification of doubly t...
simp31 1206 Simplification of doubly t...
simp32 1207 Simplification of doubly t...
simp33 1208 Simplification of doubly t...
simpll1 1209 Simplification of conjunct...
simpll2 1210 Simplification of conjunct...
simpll3 1211 Simplification of conjunct...
simplr1 1212 Simplification of conjunct...
simplr2 1213 Simplification of conjunct...
simplr3 1214 Simplification of conjunct...
simprl1 1215 Simplification of conjunct...
simprl2 1216 Simplification of conjunct...
simprl3 1217 Simplification of conjunct...
simprr1 1218 Simplification of conjunct...
simprr2 1219 Simplification of conjunct...
simprr3 1220 Simplification of conjunct...
simpl1l 1221 Simplification of conjunct...
simpl1r 1222 Simplification of conjunct...
simpl2l 1223 Simplification of conjunct...
simpl2r 1224 Simplification of conjunct...
simpl3l 1225 Simplification of conjunct...
simpl3r 1226 Simplification of conjunct...
simpr1l 1227 Simplification of conjunct...
simpr1r 1228 Simplification of conjunct...
simpr2l 1229 Simplification of conjunct...
simpr2r 1230 Simplification of conjunct...
simpr3l 1231 Simplification of conjunct...
simpr3r 1232 Simplification of conjunct...
simp1ll 1233 Simplification of conjunct...
simp1lr 1234 Simplification of conjunct...
simp1rl 1235 Simplification of conjunct...
simp1rr 1236 Simplification of conjunct...
simp2ll 1237 Simplification of conjunct...
simp2lr 1238 Simplification of conjunct...
simp2rl 1239 Simplification of conjunct...
simp2rr 1240 Simplification of conjunct...
simp3ll 1241 Simplification of conjunct...
simp3lr 1242 Simplification of conjunct...
simp3rl 1243 Simplification of conjunct...
simp3rr 1244 Simplification of conjunct...
simpl11 1245 Simplification of conjunct...
simpl12 1246 Simplification of conjunct...
simpl13 1247 Simplification of conjunct...
simpl21 1248 Simplification of conjunct...
simpl22 1249 Simplification of conjunct...
simpl23 1250 Simplification of conjunct...
simpl31 1251 Simplification of conjunct...
simpl32 1252 Simplification of conjunct...
simpl33 1253 Simplification of conjunct...
simpr11 1254 Simplification of conjunct...
simpr12 1255 Simplification of conjunct...
simpr13 1256 Simplification of conjunct...
simpr21 1257 Simplification of conjunct...
simpr22 1258 Simplification of conjunct...
simpr23 1259 Simplification of conjunct...
simpr31 1260 Simplification of conjunct...
simpr32 1261 Simplification of conjunct...
simpr33 1262 Simplification of conjunct...
simp1l1 1263 Simplification of conjunct...
simp1l2 1264 Simplification of conjunct...
simp1l3 1265 Simplification of conjunct...
simp1r1 1266 Simplification of conjunct...
simp1r2 1267 Simplification of conjunct...
simp1r3 1268 Simplification of conjunct...
simp2l1 1269 Simplification of conjunct...
simp2l2 1270 Simplification of conjunct...
simp2l3 1271 Simplification of conjunct...
simp2r1 1272 Simplification of conjunct...
simp2r2 1273 Simplification of conjunct...
simp2r3 1274 Simplification of conjunct...
simp3l1 1275 Simplification of conjunct...
simp3l2 1276 Simplification of conjunct...
simp3l3 1277 Simplification of conjunct...
simp3r1 1278 Simplification of conjunct...
simp3r2 1279 Simplification of conjunct...
simp3r3 1280 Simplification of conjunct...
simp11l 1281 Simplification of conjunct...
simp11r 1282 Simplification of conjunct...
simp12l 1283 Simplification of conjunct...
simp12r 1284 Simplification of conjunct...
simp13l 1285 Simplification of conjunct...
simp13r 1286 Simplification of conjunct...
simp21l 1287 Simplification of conjunct...
simp21r 1288 Simplification of conjunct...
simp22l 1289 Simplification of conjunct...
simp22r 1290 Simplification of conjunct...
simp23l 1291 Simplification of conjunct...
simp23r 1292 Simplification of conjunct...
simp31l 1293 Simplification of conjunct...
simp31r 1294 Simplification of conjunct...
simp32l 1295 Simplification of conjunct...
simp32r 1296 Simplification of conjunct...
simp33l 1297 Simplification of conjunct...
simp33r 1298 Simplification of conjunct...
simp111 1299 Simplification of conjunct...
simp112 1300 Simplification of conjunct...
simp113 1301 Simplification of conjunct...
simp121 1302 Simplification of conjunct...
simp122 1303 Simplification of conjunct...
simp123 1304 Simplification of conjunct...
simp131 1305 Simplification of conjunct...
simp132 1306 Simplification of conjunct...
simp133 1307 Simplification of conjunct...
simp211 1308 Simplification of conjunct...
simp212 1309 Simplification of conjunct...
simp213 1310 Simplification of conjunct...
simp221 1311 Simplification of conjunct...
simp222 1312 Simplification of conjunct...
simp223 1313 Simplification of conjunct...
simp231 1314 Simplification of conjunct...
simp232 1315 Simplification of conjunct...
simp233 1316 Simplification of conjunct...
simp311 1317 Simplification of conjunct...
simp312 1318 Simplification of conjunct...
simp313 1319 Simplification of conjunct...
simp321 1320 Simplification of conjunct...
simp322 1321 Simplification of conjunct...
simp323 1322 Simplification of conjunct...
simp331 1323 Simplification of conjunct...
simp332 1324 Simplification of conjunct...
simp333 1325 Simplification of conjunct...
3anibar 1326 Remove a hypothesis from t...
3mix1 1327 Introduction in triple dis...
3mix2 1328 Introduction in triple dis...
3mix3 1329 Introduction in triple dis...
3mix1i 1330 Introduction in triple dis...
3mix2i 1331 Introduction in triple dis...
3mix3i 1332 Introduction in triple dis...
3mix1d 1333 Deduction introducing trip...
3mix2d 1334 Deduction introducing trip...
3mix3d 1335 Deduction introducing trip...
3pm3.2i 1336 Infer conjunction of premi...
pm3.2an3 1337 Version of ~ pm3.2 for a t...
mpbir3an 1338 Detach a conjunction of tr...
mpbir3and 1339 Detach a conjunction of tr...
syl3anbrc 1340 Syllogism inference. (Con...
syl21anbrc 1341 Syllogism inference. (Con...
3imp3i2an 1342 An elimination deduction. ...
ex3 1343 Apply ~ ex to a hypothesis...
3imp1 1344 Importation to left triple...
3impd 1345 Importation deduction for ...
3imp2 1346 Importation to right tripl...
3impdi 1347 Importation inference (und...
3impdir 1348 Importation inference (und...
3exp1 1349 Exportation from left trip...
3expd 1350 Exportation deduction for ...
3exp2 1351 Exportation from right tri...
exp5o 1352 A triple exportation infer...
exp516 1353 A triple exportation infer...
exp520 1354 A triple exportation infer...
3impexp 1355 Version of ~ impexp for a ...
3an1rs 1356 Swap conjuncts. (Contribu...
3anassrs 1357 Associative law for conjun...
ad5ant245 1358 Deduction adding conjuncts...
ad5ant234 1359 Deduction adding conjuncts...
ad5ant235 1360 Deduction adding conjuncts...
ad5ant123 1361 Deduction adding conjuncts...
ad5ant124 1362 Deduction adding conjuncts...
ad5ant125 1363 Deduction adding conjuncts...
ad5ant134 1364 Deduction adding conjuncts...
ad5ant135 1365 Deduction adding conjuncts...
ad5ant145 1366 Deduction adding conjuncts...
ad5ant2345 1367 Deduction adding conjuncts...
syl3anc 1368 Syllogism combined with co...
syl13anc 1369 Syllogism combined with co...
syl31anc 1370 Syllogism combined with co...
syl112anc 1371 Syllogism combined with co...
syl121anc 1372 Syllogism combined with co...
syl211anc 1373 Syllogism combined with co...
syl23anc 1374 Syllogism combined with co...
syl32anc 1375 Syllogism combined with co...
syl122anc 1376 Syllogism combined with co...
syl212anc 1377 Syllogism combined with co...
syl221anc 1378 Syllogism combined with co...
syl113anc 1379 Syllogism combined with co...
syl131anc 1380 Syllogism combined with co...
syl311anc 1381 Syllogism combined with co...
syl33anc 1382 Syllogism combined with co...
syl222anc 1383 Syllogism combined with co...
syl123anc 1384 Syllogism combined with co...
syl132anc 1385 Syllogism combined with co...
syl213anc 1386 Syllogism combined with co...
syl231anc 1387 Syllogism combined with co...
syl312anc 1388 Syllogism combined with co...
syl321anc 1389 Syllogism combined with co...
syl133anc 1390 Syllogism combined with co...
syl313anc 1391 Syllogism combined with co...
syl331anc 1392 Syllogism combined with co...
syl223anc 1393 Syllogism combined with co...
syl232anc 1394 Syllogism combined with co...
syl322anc 1395 Syllogism combined with co...
syl233anc 1396 Syllogism combined with co...
syl323anc 1397 Syllogism combined with co...
syl332anc 1398 Syllogism combined with co...
syl333anc 1399 A syllogism inference comb...
syl3an1b 1400 A syllogism inference. (C...
syl3an2b 1401 A syllogism inference. (C...
syl3an3b 1402 A syllogism inference. (C...
syl3an1br 1403 A syllogism inference. (C...
syl3an2br 1404 A syllogism inference. (C...
syl3an3br 1405 A syllogism inference. (C...
syld3an3 1406 A syllogism inference. (C...
syld3an1 1407 A syllogism inference. (C...
syld3an2 1408 A syllogism inference. (C...
syl3anl1 1409 A syllogism inference. (C...
syl3anl2 1410 A syllogism inference. (C...
syl3anl3 1411 A syllogism inference. (C...
syl3anl 1412 A triple syllogism inferen...
syl3anr1 1413 A syllogism inference. (C...
syl3anr2 1414 A syllogism inference. (C...
syl3anr3 1415 A syllogism inference. (C...
3anidm12 1416 Inference from idempotent ...
3anidm13 1417 Inference from idempotent ...
3anidm23 1418 Inference from idempotent ...
syl2an3an 1419 ~ syl3an with antecedents ...
syl2an23an 1420 Deduction related to ~ syl...
3ori 1421 Infer implication from tri...
3jao 1422 Disjunction of three antec...
3jaob 1423 Disjunction of three antec...
3jaoi 1424 Disjunction of three antec...
3jaod 1425 Disjunction of three antec...
3jaoian 1426 Disjunction of three antec...
3jaodan 1427 Disjunction of three antec...
mpjao3dan 1428 Eliminate a three-way disj...
3jaao 1429 Inference conjoining and d...
syl3an9b 1430 Nested syllogism inference...
3orbi123d 1431 Deduction joining 3 equiva...
3anbi123d 1432 Deduction joining 3 equiva...
3anbi12d 1433 Deduction conjoining and a...
3anbi13d 1434 Deduction conjoining and a...
3anbi23d 1435 Deduction conjoining and a...
3anbi1d 1436 Deduction adding conjuncts...
3anbi2d 1437 Deduction adding conjuncts...
3anbi3d 1438 Deduction adding conjuncts...
3anim123d 1439 Deduction joining 3 implic...
3orim123d 1440 Deduction joining 3 implic...
an6 1441 Rearrangement of 6 conjunc...
3an6 1442 Analogue of ~ an4 for trip...
3or6 1443 Analogue of ~ or4 for trip...
mp3an1 1444 An inference based on modu...
mp3an2 1445 An inference based on modu...
mp3an3 1446 An inference based on modu...
mp3an12 1447 An inference based on modu...
mp3an13 1448 An inference based on modu...
mp3an23 1449 An inference based on modu...
mp3an1i 1450 An inference based on modu...
mp3anl1 1451 An inference based on modu...
mp3anl2 1452 An inference based on modu...
mp3anl3 1453 An inference based on modu...
mp3anr1 1454 An inference based on modu...
mp3anr2 1455 An inference based on modu...
mp3anr3 1456 An inference based on modu...
mp3an 1457 An inference based on modu...
mpd3an3 1458 An inference based on modu...
mpd3an23 1459 An inference based on modu...
mp3and 1460 A deduction based on modus...
mp3an12i 1461 ~ mp3an with antecedents i...
mp3an2i 1462 ~ mp3an with antecedents i...
mp3an3an 1463 ~ mp3an with antecedents i...
mp3an2ani 1464 An elimination deduction. ...
biimp3a 1465 Infer implication from a l...
biimp3ar 1466 Infer implication from a l...
3anandis 1467 Inference that undistribut...
3anandirs 1468 Inference that undistribut...
ecase23d 1469 Deduction for elimination ...
3ecase 1470 Inference for elimination ...
3bior1fd 1471 A disjunction is equivalen...
3bior1fand 1472 A disjunction is equivalen...
3bior2fd 1473 A wff is equivalent to its...
3biant1d 1474 A conjunction is equivalen...
intn3an1d 1475 Introduction of a triple c...
intn3an2d 1476 Introduction of a triple c...
intn3an3d 1477 Introduction of a triple c...
an3andi 1478 Distribution of conjunctio...
an33rean 1479 Rearrange a 9-fold conjunc...
3orel2 1480 Partial elimination of a t...
3orel3 1481 Partial elimination of a t...
3orel13 1482 Elimination of two disjunc...
3pm3.2ni 1483 Triple negated disjunction...
nanan 1486 Conjunction in terms of al...
dfnan2 1487 Alternative denial in term...
nanor 1488 Alternative denial in term...
nancom 1489 Alternative denial is comm...
nannan 1490 Nested alternative denials...
nanim 1491 Implication in terms of al...
nannot 1492 Negation in terms of alter...
nanbi 1493 Biconditional in terms of ...
nanbi1 1494 Introduce a right anti-con...
nanbi2 1495 Introduce a left anti-conj...
nanbi12 1496 Join two logical equivalen...
nanbi1i 1497 Introduce a right anti-con...
nanbi2i 1498 Introduce a left anti-conj...
nanbi12i 1499 Join two logical equivalen...
nanbi1d 1500 Introduce a right anti-con...
nanbi2d 1501 Introduce a left anti-conj...
nanbi12d 1502 Join two logical equivalen...
nanass 1503 A characterization of when...
xnor 1506 Two ways to write XNOR (ex...
xorcom 1507 The connector ` \/_ ` is c...
xorass 1508 The connector ` \/_ ` is a...
excxor 1509 This tautology shows that ...
xor2 1510 Two ways to express "exclu...
xoror 1511 Exclusive disjunction impl...
xornan 1512 Exclusive disjunction impl...
xornan2 1513 XOR implies NAND (written ...
xorneg2 1514 The connector ` \/_ ` is n...
xorneg1 1515 The connector ` \/_ ` is n...
xorneg 1516 The connector ` \/_ ` is u...
xorbi12i 1517 Equality property for excl...
xorbi12d 1518 Equality property for excl...
anxordi 1519 Conjunction distributes ov...
xorexmid 1520 Exclusive-or variant of th...
norcom 1523 The connector ` -\/ ` is c...
nornot 1524 ` -. ` is expressible via ...
noran 1525 ` /\ ` is expressible via ...
noror 1526 ` \/ ` is expressible via ...
norasslem1 1527 This lemma shows the equiv...
norasslem2 1528 This lemma specializes ~ b...
norasslem3 1529 This lemma specializes ~ b...
norass 1530 A characterization of when...
trujust 1535 Soundness justification th...
tru 1537 The truth value ` T. ` is ...
dftru2 1538 An alternate definition of...
trut 1539 A proposition is equivalen...
mptru 1540 Eliminate ` T. ` as an ant...
tbtru 1541 A proposition is equivalen...
bitru 1542 A theorem is equivalent to...
trud 1543 Anything implies ` T. ` . ...
truan 1544 True can be removed from a...
fal 1547 The truth value ` F. ` is ...
nbfal 1548 The negation of a proposit...
bifal 1549 A contradiction is equival...
falim 1550 The truth value ` F. ` imp...
falimd 1551 The truth value ` F. ` imp...
dfnot 1552 Given falsum ` F. ` , we c...
inegd 1553 Negation introduction rule...
efald 1554 Deduction based on reducti...
pm2.21fal 1555 If a wff and its negation ...
truimtru 1556 A ` -> ` identity. (Contr...
truimfal 1557 A ` -> ` identity. (Contr...
falimtru 1558 A ` -> ` identity. (Contr...
falimfal 1559 A ` -> ` identity. (Contr...
nottru 1560 A ` -. ` identity. (Contr...
notfal 1561 A ` -. ` identity. (Contr...
trubitru 1562 A ` <-> ` identity. (Cont...
falbitru 1563 A ` <-> ` identity. (Cont...
trubifal 1564 A ` <-> ` identity. (Cont...
falbifal 1565 A ` <-> ` identity. (Cont...
truantru 1566 A ` /\ ` identity. (Contr...
truanfal 1567 A ` /\ ` identity. (Contr...
falantru 1568 A ` /\ ` identity. (Contr...
falanfal 1569 A ` /\ ` identity. (Contr...
truortru 1570 A ` \/ ` identity. (Contr...
truorfal 1571 A ` \/ ` identity. (Contr...
falortru 1572 A ` \/ ` identity. (Contr...
falorfal 1573 A ` \/ ` identity. (Contr...
trunantru 1574 A ` -/\ ` identity. (Cont...
trunanfal 1575 A ` -/\ ` identity. (Cont...
falnantru 1576 A ` -/\ ` identity. (Cont...
falnanfal 1577 A ` -/\ ` identity. (Cont...
truxortru 1578 A ` \/_ ` identity. (Cont...
truxorfal 1579 A ` \/_ ` identity. (Cont...
falxortru 1580 A ` \/_ ` identity. (Cont...
falxorfal 1581 A ` \/_ ` identity. (Cont...
trunortru 1582 A ` -\/ ` identity. (Cont...
trunorfal 1583 A ` -\/ ` identity. (Cont...
falnortru 1584 A ` -\/ ` identity. (Cont...
falnorfal 1585 A ` -\/ ` identity. (Cont...
hadbi123d 1588 Equality theorem for the a...
hadbi123i 1589 Equality theorem for the a...
hadass 1590 Associative law for the ad...
hadbi 1591 The adder sum is the same ...
hadcoma 1592 Commutative law for the ad...
hadcomb 1593 Commutative law for the ad...
hadrot 1594 Rotation law for the adder...
hadnot 1595 The adder sum distributes ...
had1 1596 If the first input is true...
had0 1597 If the first input is fals...
hadifp 1598 The value of the adder sum...
cador 1601 The adder carry in disjunc...
cadan 1602 The adder carry in conjunc...
cadbi123d 1603 Equality theorem for the a...
cadbi123i 1604 Equality theorem for the a...
cadcoma 1605 Commutative law for the ad...
cadcomb 1606 Commutative law for the ad...
cadrot 1607 Rotation law for the adder...
cadnot 1608 The adder carry distribute...
cad11 1609 If (at least) two inputs a...
cad1 1610 If one input is true, then...
cad0 1611 If one input is false, the...
cad0OLD 1612 Obsolete version of ~ cad0...
cadifp 1613 The value of the carry is,...
cadtru 1614 The adder carry is true as...
minimp 1615 A single axiom for minimal...
minimp-syllsimp 1616 Derivation of Syll-Simp ( ...
minimp-ax1 1617 Derivation of ~ ax-1 from ...
minimp-ax2c 1618 Derivation of a commuted f...
minimp-ax2 1619 Derivation of ~ ax-2 from ...
minimp-pm2.43 1620 Derivation of ~ pm2.43 (al...
impsingle 1621 The shortest single axiom ...
impsingle-step4 1622 Derivation of impsingle-st...
impsingle-step8 1623 Derivation of impsingle-st...
impsingle-ax1 1624 Derivation of impsingle-ax...
impsingle-step15 1625 Derivation of impsingle-st...
impsingle-step18 1626 Derivation of impsingle-st...
impsingle-step19 1627 Derivation of impsingle-st...
impsingle-step20 1628 Derivation of impsingle-st...
impsingle-step21 1629 Derivation of impsingle-st...
impsingle-step22 1630 Derivation of impsingle-st...
impsingle-step25 1631 Derivation of impsingle-st...
impsingle-imim1 1632 Derivation of impsingle-im...
impsingle-peirce 1633 Derivation of impsingle-pe...
tarski-bernays-ax2 1634 Derivation of ~ ax-2 from ...
meredith 1635 Carew Meredith's sole axio...
merlem1 1636 Step 3 of Meredith's proof...
merlem2 1637 Step 4 of Meredith's proof...
merlem3 1638 Step 7 of Meredith's proof...
merlem4 1639 Step 8 of Meredith's proof...
merlem5 1640 Step 11 of Meredith's proo...
merlem6 1641 Step 12 of Meredith's proo...
merlem7 1642 Between steps 14 and 15 of...
merlem8 1643 Step 15 of Meredith's proo...
merlem9 1644 Step 18 of Meredith's proo...
merlem10 1645 Step 19 of Meredith's proo...
merlem11 1646 Step 20 of Meredith's proo...
merlem12 1647 Step 28 of Meredith's proo...
merlem13 1648 Step 35 of Meredith's proo...
luk-1 1649 1 of 3 axioms for proposit...
luk-2 1650 2 of 3 axioms for proposit...
luk-3 1651 3 of 3 axioms for proposit...
luklem1 1652 Used to rederive standard ...
luklem2 1653 Used to rederive standard ...
luklem3 1654 Used to rederive standard ...
luklem4 1655 Used to rederive standard ...
luklem5 1656 Used to rederive standard ...
luklem6 1657 Used to rederive standard ...
luklem7 1658 Used to rederive standard ...
luklem8 1659 Used to rederive standard ...
ax1 1660 Standard propositional axi...
ax2 1661 Standard propositional axi...
ax3 1662 Standard propositional axi...
nic-dfim 1663 This theorem "defines" imp...
nic-dfneg 1664 This theorem "defines" neg...
nic-mp 1665 Derive Nicod's rule of mod...
nic-mpALT 1666 A direct proof of ~ nic-mp...
nic-ax 1667 Nicod's axiom derived from...
nic-axALT 1668 A direct proof of ~ nic-ax...
nic-imp 1669 Inference for ~ nic-mp usi...
nic-idlem1 1670 Lemma for ~ nic-id . (Con...
nic-idlem2 1671 Lemma for ~ nic-id . Infe...
nic-id 1672 Theorem ~ id expressed wit...
nic-swap 1673 The connector ` -/\ ` is s...
nic-isw1 1674 Inference version of ~ nic...
nic-isw2 1675 Inference for swapping nes...
nic-iimp1 1676 Inference version of ~ nic...
nic-iimp2 1677 Inference version of ~ nic...
nic-idel 1678 Inference to remove the tr...
nic-ich 1679 Chained inference. (Contr...
nic-idbl 1680 Double the terms. Since d...
nic-bijust 1681 Biconditional justificatio...
nic-bi1 1682 Inference to extract one s...
nic-bi2 1683 Inference to extract the o...
nic-stdmp 1684 Derive the standard modus ...
nic-luk1 1685 Proof of ~ luk-1 from ~ ni...
nic-luk2 1686 Proof of ~ luk-2 from ~ ni...
nic-luk3 1687 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1688 This alternative axiom for...
lukshefth1 1689 Lemma for ~ renicax . (Co...
lukshefth2 1690 Lemma for ~ renicax . (Co...
renicax 1691 A rederivation of ~ nic-ax...
tbw-bijust 1692 Justification for ~ tbw-ne...
tbw-negdf 1693 The definition of negation...
tbw-ax1 1694 The first of four axioms i...
tbw-ax2 1695 The second of four axioms ...
tbw-ax3 1696 The third of four axioms i...
tbw-ax4 1697 The fourth of four axioms ...
tbwsyl 1698 Used to rederive the Lukas...
tbwlem1 1699 Used to rederive the Lukas...
tbwlem2 1700 Used to rederive the Lukas...
tbwlem3 1701 Used to rederive the Lukas...
tbwlem4 1702 Used to rederive the Lukas...
tbwlem5 1703 Used to rederive the Lukas...
re1luk1 1704 ~ luk-1 derived from the T...
re1luk2 1705 ~ luk-2 derived from the T...
re1luk3 1706 ~ luk-3 derived from the T...
merco1 1707 A single axiom for proposi...
merco1lem1 1708 Used to rederive the Tarsk...
retbwax4 1709 ~ tbw-ax4 rederived from ~...
retbwax2 1710 ~ tbw-ax2 rederived from ~...
merco1lem2 1711 Used to rederive the Tarsk...
merco1lem3 1712 Used to rederive the Tarsk...
merco1lem4 1713 Used to rederive the Tarsk...
merco1lem5 1714 Used to rederive the Tarsk...
merco1lem6 1715 Used to rederive the Tarsk...
merco1lem7 1716 Used to rederive the Tarsk...
retbwax3 1717 ~ tbw-ax3 rederived from ~...
merco1lem8 1718 Used to rederive the Tarsk...
merco1lem9 1719 Used to rederive the Tarsk...
merco1lem10 1720 Used to rederive the Tarsk...
merco1lem11 1721 Used to rederive the Tarsk...
merco1lem12 1722 Used to rederive the Tarsk...
merco1lem13 1723 Used to rederive the Tarsk...
merco1lem14 1724 Used to rederive the Tarsk...
merco1lem15 1725 Used to rederive the Tarsk...
merco1lem16 1726 Used to rederive the Tarsk...
merco1lem17 1727 Used to rederive the Tarsk...
merco1lem18 1728 Used to rederive the Tarsk...
retbwax1 1729 ~ tbw-ax1 rederived from ~...
merco2 1730 A single axiom for proposi...
mercolem1 1731 Used to rederive the Tarsk...
mercolem2 1732 Used to rederive the Tarsk...
mercolem3 1733 Used to rederive the Tarsk...
mercolem4 1734 Used to rederive the Tarsk...
mercolem5 1735 Used to rederive the Tarsk...
mercolem6 1736 Used to rederive the Tarsk...
mercolem7 1737 Used to rederive the Tarsk...
mercolem8 1738 Used to rederive the Tarsk...
re1tbw1 1739 ~ tbw-ax1 rederived from ~...
re1tbw2 1740 ~ tbw-ax2 rederived from ~...
re1tbw3 1741 ~ tbw-ax3 rederived from ~...
re1tbw4 1742 ~ tbw-ax4 rederived from ~...
rb-bijust 1743 Justification for ~ rb-imd...
rb-imdf 1744 The definition of implicat...
anmp 1745 Modus ponens for ` { \/ , ...
rb-ax1 1746 The first of four axioms i...
rb-ax2 1747 The second of four axioms ...
rb-ax3 1748 The third of four axioms i...
rb-ax4 1749 The fourth of four axioms ...
rbsyl 1750 Used to rederive the Lukas...
rblem1 1751 Used to rederive the Lukas...
rblem2 1752 Used to rederive the Lukas...
rblem3 1753 Used to rederive the Lukas...
rblem4 1754 Used to rederive the Lukas...
rblem5 1755 Used to rederive the Lukas...
rblem6 1756 Used to rederive the Lukas...
rblem7 1757 Used to rederive the Lukas...
re1axmp 1758 ~ ax-mp derived from Russe...
re2luk1 1759 ~ luk-1 derived from Russe...
re2luk2 1760 ~ luk-2 derived from Russe...
re2luk3 1761 ~ luk-3 derived from Russe...
mptnan 1762 Modus ponendo tollens 1, o...
mptxor 1763 Modus ponendo tollens 2, o...
mtpor 1764 Modus tollendo ponens (inc...
mtpxor 1765 Modus tollendo ponens (ori...
stoic1a 1766 Stoic logic Thema 1 (part ...
stoic1b 1767 Stoic logic Thema 1 (part ...
stoic2a 1768 Stoic logic Thema 2 versio...
stoic2b 1769 Stoic logic Thema 2 versio...
stoic3 1770 Stoic logic Thema 3. Stat...
stoic4a 1771 Stoic logic Thema 4 versio...
stoic4b 1772 Stoic logic Thema 4 versio...
alnex 1775 Universal quantification o...
eximal 1776 An equivalence between an ...
nf2 1779 Alternate definition of no...
nf3 1780 Alternate definition of no...
nf4 1781 Alternate definition of no...
nfi 1782 Deduce that ` x ` is not f...
nfri 1783 Consequence of the definit...
nfd 1784 Deduce that ` x ` is not f...
nfrd 1785 Consequence of the definit...
nftht 1786 Closed form of ~ nfth . (...
nfntht 1787 Closed form of ~ nfnth . ...
nfntht2 1788 Closed form of ~ nfnth . ...
gen2 1790 Generalization applied twi...
mpg 1791 Modus ponens combined with...
mpgbi 1792 Modus ponens on biconditio...
mpgbir 1793 Modus ponens on biconditio...
nex 1794 Generalization rule for ne...
nfth 1795 No variable is (effectivel...
nfnth 1796 No variable is (effectivel...
hbth 1797 No variable is (effectivel...
nftru 1798 The true constant has no f...
nffal 1799 The false constant has no ...
sptruw 1800 Version of ~ sp when ` ph ...
altru 1801 For all sets, ` T. ` is tr...
alfal 1802 For all sets, ` -. F. ` is...
alim 1804 Restatement of Axiom ~ ax-...
alimi 1805 Inference quantifying both...
2alimi 1806 Inference doubly quantifyi...
ala1 1807 Add an antecedent in a uni...
al2im 1808 Closed form of ~ al2imi . ...
al2imi 1809 Inference quantifying ante...
alanimi 1810 Variant of ~ al2imi with c...
alimdh 1811 Deduction form of Theorem ...
albi 1812 Theorem 19.15 of [Margaris...
albii 1813 Inference adding universal...
2albii 1814 Inference adding two unive...
3albii 1815 Inference adding three uni...
sylgt 1816 Closed form of ~ sylg . (...
sylg 1817 A syllogism combined with ...
alrimih 1818 Inference form of Theorem ...
hbxfrbi 1819 A utility lemma to transfe...
alex 1820 Universal quantifier in te...
exnal 1821 Existential quantification...
2nalexn 1822 Part of theorem *11.5 in [...
2exnaln 1823 Theorem *11.22 in [Whitehe...
2nexaln 1824 Theorem *11.25 in [Whitehe...
alimex 1825 An equivalence between an ...
aleximi 1826 A variant of ~ al2imi : in...
alexbii 1827 Biconditional form of ~ al...
exim 1828 Theorem 19.22 of [Margaris...
eximi 1829 Inference adding existenti...
2eximi 1830 Inference adding two exist...
eximii 1831 Inference associated with ...
exa1 1832 Add an antecedent in an ex...
19.38 1833 Theorem 19.38 of [Margaris...
19.38a 1834 Under a nonfreeness hypoth...
19.38b 1835 Under a nonfreeness hypoth...
imnang 1836 Quantified implication in ...
alinexa 1837 A transformation of quanti...
exnalimn 1838 Existential quantification...
alexn 1839 A relationship between two...
2exnexn 1840 Theorem *11.51 in [Whitehe...
exbi 1841 Theorem 19.18 of [Margaris...
exbii 1842 Inference adding existenti...
2exbii 1843 Inference adding two exist...
3exbii 1844 Inference adding three exi...
nfbiit 1845 Equivalence theorem for th...
nfbii 1846 Equality theorem for the n...
nfxfr 1847 A utility lemma to transfe...
nfxfrd 1848 A utility lemma to transfe...
nfnbi 1849 A variable is nonfree in a...
nfnbiOLD 1850 Obsolete version of ~ nfnb...
nfnt 1851 If a variable is nonfree i...
nfn 1852 Inference associated with ...
nfnd 1853 Deduction associated with ...
exanali 1854 A transformation of quanti...
2exanali 1855 Theorem *11.521 in [Whiteh...
exancom 1856 Commutation of conjunction...
exan 1857 Place a conjunct in the sc...
alrimdh 1858 Deduction form of Theorem ...
eximdh 1859 Deduction from Theorem 19....
nexdh 1860 Deduction for generalizati...
albidh 1861 Formula-building rule for ...
exbidh 1862 Formula-building rule for ...
exsimpl 1863 Simplification of an exist...
exsimpr 1864 Simplification of an exist...
19.26 1865 Theorem 19.26 of [Margaris...
19.26-2 1866 Theorem ~ 19.26 with two q...
19.26-3an 1867 Theorem ~ 19.26 with tripl...
19.29 1868 Theorem 19.29 of [Margaris...
19.29r 1869 Variation of ~ 19.29 . (C...
19.29r2 1870 Variation of ~ 19.29r with...
19.29x 1871 Variation of ~ 19.29 with ...
19.35 1872 Theorem 19.35 of [Margaris...
19.35i 1873 Inference associated with ...
19.35ri 1874 Inference associated with ...
19.25 1875 Theorem 19.25 of [Margaris...
19.30 1876 Theorem 19.30 of [Margaris...
19.43 1877 Theorem 19.43 of [Margaris...
19.43OLD 1878 Obsolete proof of ~ 19.43 ...
19.33 1879 Theorem 19.33 of [Margaris...
19.33b 1880 The antecedent provides a ...
19.40 1881 Theorem 19.40 of [Margaris...
19.40-2 1882 Theorem *11.42 in [Whitehe...
19.40b 1883 The antecedent provides a ...
albiim 1884 Split a biconditional and ...
2albiim 1885 Split a biconditional and ...
exintrbi 1886 Add/remove a conjunct in t...
exintr 1887 Introduce a conjunct in th...
alsyl 1888 Universally quantified and...
nfimd 1889 If in a context ` x ` is n...
nfimt 1890 Closed form of ~ nfim and ...
nfim 1891 If ` x ` is not free in ` ...
nfand 1892 If in a context ` x ` is n...
nf3and 1893 Deduction form of bound-va...
nfan 1894 If ` x ` is not free in ` ...
nfnan 1895 If ` x ` is not free in ` ...
nf3an 1896 If ` x ` is not free in ` ...
nfbid 1897 If in a context ` x ` is n...
nfbi 1898 If ` x ` is not free in ` ...
nfor 1899 If ` x ` is not free in ` ...
nf3or 1900 If ` x ` is not free in ` ...
empty 1901 Two characterizations of t...
emptyex 1902 On the empty domain, any e...
emptyal 1903 On the empty domain, any u...
emptynf 1904 On the empty domain, any v...
ax5d 1906 Version of ~ ax-5 with ant...
ax5e 1907 A rephrasing of ~ ax-5 usi...
ax5ea 1908 If a formula holds for som...
nfv 1909 If ` x ` is not present in...
nfvd 1910 ~ nfv with antecedent. Us...
alimdv 1911 Deduction form of Theorem ...
eximdv 1912 Deduction form of Theorem ...
2alimdv 1913 Deduction form of Theorem ...
2eximdv 1914 Deduction form of Theorem ...
albidv 1915 Formula-building rule for ...
exbidv 1916 Formula-building rule for ...
nfbidv 1917 An equality theorem for no...
2albidv 1918 Formula-building rule for ...
2exbidv 1919 Formula-building rule for ...
3exbidv 1920 Formula-building rule for ...
4exbidv 1921 Formula-building rule for ...
alrimiv 1922 Inference form of Theorem ...
alrimivv 1923 Inference form of Theorem ...
alrimdv 1924 Deduction form of Theorem ...
exlimiv 1925 Inference form of Theorem ...
exlimiiv 1926 Inference (Rule C) associa...
exlimivv 1927 Inference form of Theorem ...
exlimdv 1928 Deduction form of Theorem ...
exlimdvv 1929 Deduction form of Theorem ...
exlimddv 1930 Existential elimination ru...
nexdv 1931 Deduction for generalizati...
2ax5 1932 Quantification of two vari...
stdpc5v 1933 Version of ~ stdpc5 with a...
19.21v 1934 Version of ~ 19.21 with a ...
19.32v 1935 Version of ~ 19.32 with a ...
19.31v 1936 Version of ~ 19.31 with a ...
19.23v 1937 Version of ~ 19.23 with a ...
19.23vv 1938 Theorem ~ 19.23v extended ...
pm11.53v 1939 Version of ~ pm11.53 with ...
19.36imv 1940 One direction of ~ 19.36v ...
19.36imvOLD 1941 Obsolete version of ~ 19.3...
19.36iv 1942 Inference associated with ...
19.37imv 1943 One direction of ~ 19.37v ...
19.37iv 1944 Inference associated with ...
19.41v 1945 Version of ~ 19.41 with a ...
19.41vv 1946 Version of ~ 19.41 with tw...
19.41vvv 1947 Version of ~ 19.41 with th...
19.41vvvv 1948 Version of ~ 19.41 with fo...
19.42v 1949 Version of ~ 19.42 with a ...
exdistr 1950 Distribution of existentia...
exdistrv 1951 Distribute a pair of exist...
4exdistrv 1952 Distribute two pairs of ex...
19.42vv 1953 Version of ~ 19.42 with tw...
exdistr2 1954 Distribution of existentia...
19.42vvv 1955 Version of ~ 19.42 with th...
3exdistr 1956 Distribution of existentia...
4exdistr 1957 Distribution of existentia...
weq 1958 Extend wff definition to i...
speimfw 1959 Specialization, with addit...
speimfwALT 1960 Alternate proof of ~ speim...
spimfw 1961 Specialization, with addit...
ax12i 1962 Inference that has ~ ax-12...
ax6v 1964 Axiom B7 of [Tarski] p. 75...
ax6ev 1965 At least one individual ex...
spimw 1966 Specialization. Lemma 8 o...
spimew 1967 Existential introduction, ...
speiv 1968 Inference from existential...
speivw 1969 Version of ~ spei with a d...
exgen 1970 Rule of existential genera...
extru 1971 There exists a variable su...
19.2 1972 Theorem 19.2 of [Margaris]...
19.2d 1973 Deduction associated with ...
19.8w 1974 Weak version of ~ 19.8a an...
spnfw 1975 Weak version of ~ sp . Us...
spvw 1976 Version of ~ sp when ` x `...
19.3v 1977 Version of ~ 19.3 with a d...
19.8v 1978 Version of ~ 19.8a with a ...
19.9v 1979 Version of ~ 19.9 with a d...
19.39 1980 Theorem 19.39 of [Margaris...
19.24 1981 Theorem 19.24 of [Margaris...
19.34 1982 Theorem 19.34 of [Margaris...
19.36v 1983 Version of ~ 19.36 with a ...
19.12vvv 1984 Version of ~ 19.12vv with ...
19.27v 1985 Version of ~ 19.27 with a ...
19.28v 1986 Version of ~ 19.28 with a ...
19.37v 1987 Version of ~ 19.37 with a ...
19.44v 1988 Version of ~ 19.44 with a ...
19.45v 1989 Version of ~ 19.45 with a ...
spimevw 1990 Existential introduction, ...
spimvw 1991 A weak form of specializat...
spvv 1992 Specialization, using impl...
spfalw 1993 Version of ~ sp when ` ph ...
chvarvv 1994 Implicit substitution of `...
equs4v 1995 Version of ~ equs4 with a ...
alequexv 1996 Version of ~ equs4v with i...
exsbim 1997 One direction of the equiv...
equsv 1998 If a formula does not cont...
equsalvw 1999 Version of ~ equsalv with ...
equsexvw 2000 Version of ~ equsexv with ...
cbvaliw 2001 Change bound variable. Us...
cbvalivw 2002 Change bound variable. Us...
ax7v 2004 Weakened version of ~ ax-7...
ax7v1 2005 First of two weakened vers...
ax7v2 2006 Second of two weakened ver...
equid 2007 Identity law for equality....
nfequid 2008 Bound-variable hypothesis ...
equcomiv 2009 Weaker form of ~ equcomi w...
ax6evr 2010 A commuted form of ~ ax6ev...
ax7 2011 Proof of ~ ax-7 from ~ ax7...
equcomi 2012 Commutative law for equali...
equcom 2013 Commutative law for equali...
equcomd 2014 Deduction form of ~ equcom...
equcoms 2015 An inference commuting equ...
equtr 2016 A transitive law for equal...
equtrr 2017 A transitive law for equal...
equeuclr 2018 Commuted version of ~ eque...
equeucl 2019 Equality is a left-Euclide...
equequ1 2020 An equivalence law for equ...
equequ2 2021 An equivalence law for equ...
equtr2 2022 Equality is a left-Euclide...
stdpc6 2023 One of the two equality ax...
equvinv 2024 A variable introduction la...
equvinva 2025 A modified version of the ...
equvelv 2026 A biconditional form of ~ ...
ax13b 2027 An equivalence between two...
spfw 2028 Weak version of ~ sp . Us...
spw 2029 Weak version of the specia...
cbvalw 2030 Change bound variable. Us...
cbvalvw 2031 Change bound variable. Us...
cbvexvw 2032 Change bound variable. Us...
cbvaldvaw 2033 Rule used to change the bo...
cbvexdvaw 2034 Rule used to change the bo...
cbval2vw 2035 Rule used to change bound ...
cbvex2vw 2036 Rule used to change bound ...
cbvex4vw 2037 Rule used to change bound ...
alcomiw 2038 Weak version of ~ ax-11 . ...
alcomw 2039 Weak version of ~ alcom an...
hbn1fw 2040 Weak version of ~ ax-10 fr...
hbn1w 2041 Weak version of ~ hbn1 . ...
hba1w 2042 Weak version of ~ hba1 . ...
hbe1w 2043 Weak version of ~ hbe1 . ...
hbalw 2044 Weak version of ~ hbal . ...
19.8aw 2045 If a formula is true, then...
exexw 2046 Existential quantification...
spaev 2047 A special instance of ~ sp...
cbvaev 2048 Change bound variable in a...
aevlem0 2049 Lemma for ~ aevlem . Inst...
aevlem 2050 Lemma for ~ aev and ~ axc1...
aeveq 2051 The antecedent ` A. x x = ...
aev 2052 A "distinctor elimination"...
aev2 2053 A version of ~ aev with tw...
hbaev 2054 All variables are effectiv...
naev 2055 If some set variables can ...
naev2 2056 Generalization of ~ hbnaev...
hbnaev 2057 Any variable is free in ` ...
sbjust 2058 Justification theorem for ...
sbt 2061 A substitution into a theo...
sbtru 2062 The result of substituting...
stdpc4 2063 The specialization axiom o...
sbtALT 2064 Alternate proof of ~ sbt ,...
2stdpc4 2065 A double specialization us...
sbi1 2066 Distribute substitution ov...
spsbim 2067 Distribute substitution ov...
spsbbi 2068 Biconditional property for...
sbimi 2069 Distribute substitution ov...
sb2imi 2070 Distribute substitution ov...
sbbii 2071 Infer substitution into bo...
2sbbii 2072 Infer double substitution ...
sbimdv 2073 Deduction substituting bot...
sbbidv 2074 Deduction substituting bot...
sban 2075 Conjunction inside and out...
sb3an 2076 Threefold conjunction insi...
spsbe 2077 Existential generalization...
sbequ 2078 Equality property for subs...
sbequi 2079 An equality theorem for su...
sb6 2080 Alternate definition of su...
2sb6 2081 Equivalence for double sub...
sb1v 2082 One direction of ~ sb5 , p...
sbv 2083 Substitution for a variabl...
sbcom4 2084 Commutativity law for subs...
pm11.07 2085 Axiom *11.07 in [Whitehead...
sbrimvw 2086 Substitution in an implica...
sbievw 2087 Conversion of implicit sub...
sbiedvw 2088 Conversion of implicit sub...
2sbievw 2089 Conversion of double impli...
sbcom3vv 2090 Substituting ` y ` for ` x...
sbievw2 2091 ~ sbievw applied twice, av...
sbco2vv 2092 A composition law for subs...
equsb3 2093 Substitution in an equalit...
equsb3r 2094 Substitution applied to th...
equsb1v 2095 Substitution applied to an...
nsb 2096 Any substitution in an alw...
sbn1 2097 One direction of ~ sbn , u...
wel 2099 Extend wff definition to i...
ax8v 2101 Weakened version of ~ ax-8...
ax8v1 2102 First of two weakened vers...
ax8v2 2103 Second of two weakened ver...
ax8 2104 Proof of ~ ax-8 from ~ ax8...
elequ1 2105 An identity law for the no...
elsb1 2106 Substitution for the first...
cleljust 2107 When the class variables i...
ax9v 2109 Weakened version of ~ ax-9...
ax9v1 2110 First of two weakened vers...
ax9v2 2111 Second of two weakened ver...
ax9 2112 Proof of ~ ax-9 from ~ ax9...
elequ2 2113 An identity law for the no...
elequ2g 2114 A form of ~ elequ2 with a ...
elsb2 2115 Substitution for the secon...
ax6dgen 2116 Tarski's system uses the w...
ax10w 2117 Weak version of ~ ax-10 fr...
ax11w 2118 Weak version of ~ ax-11 fr...
ax11dgen 2119 Degenerate instance of ~ a...
ax12wlem 2120 Lemma for weak version of ...
ax12w 2121 Weak version of ~ ax-12 fr...
ax12dgen 2122 Degenerate instance of ~ a...
ax12wdemo 2123 Example of an application ...
ax13w 2124 Weak version (principal in...
ax13dgen1 2125 Degenerate instance of ~ a...
ax13dgen2 2126 Degenerate instance of ~ a...
ax13dgen3 2127 Degenerate instance of ~ a...
ax13dgen4 2128 Degenerate instance of ~ a...
hbn1 2130 Alias for ~ ax-10 to be us...
hbe1 2131 The setvar ` x ` is not fr...
hbe1a 2132 Dual statement of ~ hbe1 ....
nf5-1 2133 One direction of ~ nf5 can...
nf5i 2134 Deduce that ` x ` is not f...
nf5dh 2135 Deduce that ` x ` is not f...
nf5dv 2136 Apply the definition of no...
nfnaew 2137 All variables are effectiv...
nfnaewOLD 2138 Obsolete version of ~ nfna...
nfe1 2139 The setvar ` x ` is not fr...
nfa1 2140 The setvar ` x ` is not fr...
nfna1 2141 A convenience theorem part...
nfia1 2142 Lemma 23 of [Monk2] p. 114...
nfnf1 2143 The setvar ` x ` is not fr...
modal5 2144 The analogue in our predic...
nfs1v 2145 The setvar ` x ` is not fr...
alcoms 2147 Swap quantifiers in an ant...
alcom 2148 Theorem 19.5 of [Margaris]...
alrot3 2149 Theorem *11.21 in [Whitehe...
alrot4 2150 Rotate four universal quan...
excom 2151 Theorem 19.11 of [Margaris...
excomim 2152 One direction of Theorem 1...
excom13 2153 Swap 1st and 3rd existenti...
exrot3 2154 Rotate existential quantif...
exrot4 2155 Rotate existential quantif...
hbal 2156 If ` x ` is not free in ` ...
hbald 2157 Deduction form of bound-va...
sbal 2158 Move universal quantifier ...
sbalv 2159 Quantify with new variable...
hbsbw 2160 If ` z ` is not free in ` ...
hbsbwOLD 2161 Obsolete version of ~ hbsb...
sbcom2 2162 Commutativity law for subs...
sbco4lem 2163 Lemma for ~ sbco4 . It re...
sbco4 2164 Two ways of exchanging two...
nfa2 2165 Lemma 24 of [Monk2] p. 114...
ax12v 2167 This is essentially Axiom ...
ax12v2 2168 It is possible to remove a...
19.8a 2169 If a wff is true, it is tr...
19.8ad 2170 If a wff is true, it is tr...
sp 2171 Specialization. A univers...
spi 2172 Inference rule of universa...
sps 2173 Generalization of antecede...
2sp 2174 A double specialization (s...
spsd 2175 Deduction generalizing ant...
19.2g 2176 Theorem 19.2 of [Margaris]...
19.21bi 2177 Inference form of ~ 19.21 ...
19.21bbi 2178 Inference removing two uni...
19.23bi 2179 Inference form of Theorem ...
nexr 2180 Inference associated with ...
qexmid 2181 Quantified excluded middle...
nf5r 2182 Consequence of the definit...
nf5ri 2183 Consequence of the definit...
nf5rd 2184 Consequence of the definit...
spimedv 2185 Deduction version of ~ spi...
spimefv 2186 Version of ~ spime with a ...
nfim1 2187 A closed form of ~ nfim . ...
nfan1 2188 A closed form of ~ nfan . ...
19.3t 2189 Closed form of ~ 19.3 and ...
19.3 2190 A wff may be quantified wi...
19.9d 2191 A deduction version of one...
19.9t 2192 Closed form of ~ 19.9 and ...
19.9 2193 A wff may be existentially...
19.21t 2194 Closed form of Theorem 19....
19.21 2195 Theorem 19.21 of [Margaris...
stdpc5 2196 An axiom scheme of standar...
19.21-2 2197 Version of ~ 19.21 with tw...
19.23t 2198 Closed form of Theorem 19....
19.23 2199 Theorem 19.23 of [Margaris...
alimd 2200 Deduction form of Theorem ...
alrimi 2201 Inference form of Theorem ...
alrimdd 2202 Deduction form of Theorem ...
alrimd 2203 Deduction form of Theorem ...
eximd 2204 Deduction form of Theorem ...
exlimi 2205 Inference associated with ...
exlimd 2206 Deduction form of Theorem ...
exlimimdd 2207 Existential elimination ru...
exlimdd 2208 Existential elimination ru...
nexd 2209 Deduction for generalizati...
albid 2210 Formula-building rule for ...
exbid 2211 Formula-building rule for ...
nfbidf 2212 An equality theorem for ef...
19.16 2213 Theorem 19.16 of [Margaris...
19.17 2214 Theorem 19.17 of [Margaris...
19.27 2215 Theorem 19.27 of [Margaris...
19.28 2216 Theorem 19.28 of [Margaris...
19.19 2217 Theorem 19.19 of [Margaris...
19.36 2218 Theorem 19.36 of [Margaris...
19.36i 2219 Inference associated with ...
19.37 2220 Theorem 19.37 of [Margaris...
19.32 2221 Theorem 19.32 of [Margaris...
19.31 2222 Theorem 19.31 of [Margaris...
19.41 2223 Theorem 19.41 of [Margaris...
19.42 2224 Theorem 19.42 of [Margaris...
19.44 2225 Theorem 19.44 of [Margaris...
19.45 2226 Theorem 19.45 of [Margaris...
spimfv 2227 Specialization, using impl...
chvarfv 2228 Implicit substitution of `...
cbv3v2 2229 Version of ~ cbv3 with two...
sbalex 2230 Equivalence of two ways to...
sb4av 2231 Version of ~ sb4a with a d...
sbimd 2232 Deduction substituting bot...
sbbid 2233 Deduction substituting bot...
2sbbid 2234 Deduction doubly substitut...
sbequ1 2235 An equality theorem for su...
sbequ2 2236 An equality theorem for su...
stdpc7 2237 One of the two equality ax...
sbequ12 2238 An equality theorem for su...
sbequ12r 2239 An equality theorem for su...
sbelx 2240 Elimination of substitutio...
sbequ12a 2241 An equality theorem for su...
sbid 2242 An identity theorem for su...
sbcov 2243 A composition law for subs...
sb6a 2244 Equivalence for substituti...
sbid2vw 2245 Reverting substitution yie...
axc16g 2246 Generalization of ~ axc16 ...
axc16 2247 Proof of older axiom ~ ax-...
axc16gb 2248 Biconditional strengthenin...
axc16nf 2249 If ~ dtru is false, then t...
axc11v 2250 Version of ~ axc11 with a ...
axc11rv 2251 Version of ~ axc11r with a...
drsb2 2252 Formula-building lemma for...
equsalv 2253 An equivalence related to ...
equsexv 2254 An equivalence related to ...
equsexvOLD 2255 Obsolete version of ~ equs...
sbft 2256 Substitution has no effect...
sbf 2257 Substitution for a variabl...
sbf2 2258 Substitution has no effect...
sbh 2259 Substitution for a variabl...
hbs1 2260 The setvar ` x ` is not fr...
nfs1f 2261 If ` x ` is not free in ` ...
sb5 2262 Alternate definition of su...
sb5OLD 2263 Obsolete version of ~ sb5 ...
sb56OLD 2264 Obsolete version of ~ sbal...
equs5av 2265 A property related to subs...
2sb5 2266 Equivalence for double sub...
sbco4lemOLD 2267 Obsolete version of ~ sbco...
dfsb7 2268 An alternate definition of...
sbn 2269 Negation inside and outsid...
sbex 2270 Move existential quantifie...
nf5 2271 Alternate definition of ~ ...
nf6 2272 An alternate definition of...
nf5d 2273 Deduce that ` x ` is not f...
nf5di 2274 Since the converse holds b...
19.9h 2275 A wff may be existentially...
19.21h 2276 Theorem 19.21 of [Margaris...
19.23h 2277 Theorem 19.23 of [Margaris...
exlimih 2278 Inference associated with ...
exlimdh 2279 Deduction form of Theorem ...
equsalhw 2280 Version of ~ equsalh with ...
equsexhv 2281 An equivalence related to ...
hba1 2282 The setvar ` x ` is not fr...
hbnt 2283 Closed theorem version of ...
hbn 2284 If ` x ` is not free in ` ...
hbnd 2285 Deduction form of bound-va...
hbim1 2286 A closed form of ~ hbim . ...
hbimd 2287 Deduction form of bound-va...
hbim 2288 If ` x ` is not free in ` ...
hban 2289 If ` x ` is not free in ` ...
hb3an 2290 If ` x ` is not free in ` ...
sbi2 2291 Introduction of implicatio...
sbim 2292 Implication inside and out...
sbrim 2293 Substitution in an implica...
sbrimOLD 2294 Obsolete version of ~ sbri...
sblim 2295 Substitution in an implica...
sbor 2296 Disjunction inside and out...
sbbi 2297 Equivalence inside and out...
sblbis 2298 Introduce left bicondition...
sbrbis 2299 Introduce right biconditio...
sbrbif 2300 Introduce right biconditio...
sbnf 2301 Move nonfree predicate in ...
sbnfOLD 2302 Obsolete version of ~ sbnf...
sbiev 2303 Conversion of implicit sub...
sbiedw 2304 Conversion of implicit sub...
axc7 2305 Show that the original axi...
axc7e 2306 Abbreviated version of ~ a...
modal-b 2307 The analogue in our predic...
19.9ht 2308 A closed version of ~ 19.9...
axc4 2309 Show that the original axi...
axc4i 2310 Inference version of ~ axc...
nfal 2311 If ` x ` is not free in ` ...
nfex 2312 If ` x ` is not free in ` ...
hbex 2313 If ` x ` is not free in ` ...
nfnf 2314 If ` x ` is not free in ` ...
19.12 2315 Theorem 19.12 of [Margaris...
nfald 2316 Deduction form of ~ nfal ....
nfexd 2317 If ` x ` is not free in ` ...
nfsbv 2318 If ` z ` is not free in ` ...
nfsbvOLD 2319 Obsolete version of ~ nfsb...
sbco2v 2320 A composition law for subs...
aaan 2321 Distribute universal quant...
aaanOLD 2322 Obsolete version of ~ aaan...
eeor 2323 Distribute existential qua...
eeorOLD 2324 Obsolete version of ~ eeor...
cbv3v 2325 Rule used to change bound ...
cbv1v 2326 Rule used to change bound ...
cbv2w 2327 Rule used to change bound ...
cbvaldw 2328 Deduction used to change b...
cbvexdw 2329 Deduction used to change b...
cbv3hv 2330 Rule used to change bound ...
cbvalv1 2331 Rule used to change bound ...
cbvexv1 2332 Rule used to change bound ...
cbval2v 2333 Rule used to change bound ...
cbvex2v 2334 Rule used to change bound ...
dvelimhw 2335 Proof of ~ dvelimh without...
pm11.53 2336 Theorem *11.53 in [Whitehe...
19.12vv 2337 Special case of ~ 19.12 wh...
eean 2338 Distribute existential qua...
eeanv 2339 Distribute a pair of exist...
eeeanv 2340 Distribute three existenti...
ee4anv 2341 Distribute two pairs of ex...
sb8v 2342 Substitution of variable i...
sb8f 2343 Substitution of variable i...
sb8fOLD 2344 Obsolete version of ~ sb8f...
sb8ef 2345 Substitution of variable i...
2sb8ef 2346 An equivalent expression f...
sb6rfv 2347 Reversed substitution. Ve...
sbnf2 2348 Two ways of expressing " `...
exsb 2349 An equivalent expression f...
2exsb 2350 An equivalent expression f...
sbbib 2351 Reversal of substitution. ...
sbbibvv 2352 Reversal of substitution. ...
cbvsbv 2353 Change the bound variable ...
cbvsbvf 2354 Change the bound variable ...
cleljustALT 2355 Alternate proof of ~ clelj...
cleljustALT2 2356 Alternate proof of ~ clelj...
equs5aALT 2357 Alternate proof of ~ equs5...
equs5eALT 2358 Alternate proof of ~ equs5...
axc11r 2359 Same as ~ axc11 but with r...
dral1v 2360 Formula-building lemma for...
dral1vOLD 2361 Obsolete version of ~ dral...
drex1v 2362 Formula-building lemma for...
drnf1v 2363 Formula-building lemma for...
drnf1vOLD 2364 Obsolete version of ~ drnf...
ax13v 2366 A weaker version of ~ ax-1...
ax13lem1 2367 A version of ~ ax13v with ...
ax13 2368 Derive ~ ax-13 from ~ ax13...
ax13lem2 2369 Lemma for ~ nfeqf2 . This...
nfeqf2 2370 An equation between setvar...
dveeq2 2371 Quantifier introduction wh...
nfeqf1 2372 An equation between setvar...
dveeq1 2373 Quantifier introduction wh...
nfeqf 2374 A variable is effectively ...
axc9 2375 Derive set.mm's original ~...
ax6e 2376 At least one individual ex...
ax6 2377 Theorem showing that ~ ax-...
axc10 2378 Show that the original axi...
spimt 2379 Closed theorem form of ~ s...
spim 2380 Specialization, using impl...
spimed 2381 Deduction version of ~ spi...
spime 2382 Existential introduction, ...
spimv 2383 A version of ~ spim with a...
spimvALT 2384 Alternate proof of ~ spimv...
spimev 2385 Distinct-variable version ...
spv 2386 Specialization, using impl...
spei 2387 Inference from existential...
chvar 2388 Implicit substitution of `...
chvarv 2389 Implicit substitution of `...
cbv3 2390 Rule used to change bound ...
cbval 2391 Rule used to change bound ...
cbvex 2392 Rule used to change bound ...
cbvalv 2393 Rule used to change bound ...
cbvexv 2394 Rule used to change bound ...
cbv1 2395 Rule used to change bound ...
cbv2 2396 Rule used to change bound ...
cbv3h 2397 Rule used to change bound ...
cbv1h 2398 Rule used to change bound ...
cbv2h 2399 Rule used to change bound ...
cbvald 2400 Deduction used to change b...
cbvexd 2401 Deduction used to change b...
cbvaldva 2402 Rule used to change the bo...
cbvexdva 2403 Rule used to change the bo...
cbval2 2404 Rule used to change bound ...
cbvex2 2405 Rule used to change bound ...
cbval2vv 2406 Rule used to change bound ...
cbvex2vv 2407 Rule used to change bound ...
cbvex4v 2408 Rule used to change bound ...
equs4 2409 Lemma used in proofs of im...
equsal 2410 An equivalence related to ...
equsex 2411 An equivalence related to ...
equsexALT 2412 Alternate proof of ~ equse...
equsalh 2413 An equivalence related to ...
equsexh 2414 An equivalence related to ...
axc15 2415 Derivation of set.mm's ori...
ax12 2416 Rederivation of Axiom ~ ax...
ax12b 2417 A bidirectional version of...
ax13ALT 2418 Alternate proof of ~ ax13 ...
axc11n 2419 Derive set.mm's original ~...
aecom 2420 Commutation law for identi...
aecoms 2421 A commutation rule for ide...
naecoms 2422 A commutation rule for dis...
axc11 2423 Show that ~ ax-c11 can be ...
hbae 2424 All variables are effectiv...
hbnae 2425 All variables are effectiv...
nfae 2426 All variables are effectiv...
nfnae 2427 All variables are effectiv...
hbnaes 2428 Rule that applies ~ hbnae ...
axc16i 2429 Inference with ~ axc16 as ...
axc16nfALT 2430 Alternate proof of ~ axc16...
dral2 2431 Formula-building lemma for...
dral1 2432 Formula-building lemma for...
dral1ALT 2433 Alternate proof of ~ dral1...
drex1 2434 Formula-building lemma for...
drex2 2435 Formula-building lemma for...
drnf1 2436 Formula-building lemma for...
drnf2 2437 Formula-building lemma for...
nfald2 2438 Variation on ~ nfald which...
nfexd2 2439 Variation on ~ nfexd which...
exdistrf 2440 Distribution of existentia...
dvelimf 2441 Version of ~ dvelimv witho...
dvelimdf 2442 Deduction form of ~ dvelim...
dvelimh 2443 Version of ~ dvelim withou...
dvelim 2444 This theorem can be used t...
dvelimv 2445 Similar to ~ dvelim with f...
dvelimnf 2446 Version of ~ dvelim using ...
dveeq2ALT 2447 Alternate proof of ~ dveeq...
equvini 2448 A variable introduction la...
equvel 2449 A variable elimination law...
equs5a 2450 A property related to subs...
equs5e 2451 A property related to subs...
equs45f 2452 Two ways of expressing sub...
equs5 2453 Lemma used in proofs of su...
dveel1 2454 Quantifier introduction wh...
dveel2 2455 Quantifier introduction wh...
axc14 2456 Axiom ~ ax-c14 is redundan...
sb6x 2457 Equivalence involving subs...
sbequ5 2458 Substitution does not chan...
sbequ6 2459 Substitution does not chan...
sb5rf 2460 Reversed substitution. Us...
sb6rf 2461 Reversed substitution. Fo...
ax12vALT 2462 Alternate proof of ~ ax12v...
2ax6elem 2463 We can always find values ...
2ax6e 2464 We can always find values ...
2sb5rf 2465 Reversed double substituti...
2sb6rf 2466 Reversed double substituti...
sbel2x 2467 Elimination of double subs...
sb4b 2468 Simplified definition of s...
sb3b 2469 Simplified definition of s...
sb3 2470 One direction of a simplif...
sb1 2471 One direction of a simplif...
sb2 2472 One direction of a simplif...
sb4a 2473 A version of one implicati...
dfsb1 2474 Alternate definition of su...
hbsb2 2475 Bound-variable hypothesis ...
nfsb2 2476 Bound-variable hypothesis ...
hbsb2a 2477 Special case of a bound-va...
sb4e 2478 One direction of a simplif...
hbsb2e 2479 Special case of a bound-va...
hbsb3 2480 If ` y ` is not free in ` ...
nfs1 2481 If ` y ` is not free in ` ...
axc16ALT 2482 Alternate proof of ~ axc16...
axc16gALT 2483 Alternate proof of ~ axc16...
equsb1 2484 Substitution applied to an...
equsb2 2485 Substitution applied to an...
dfsb2 2486 An alternate definition of...
dfsb3 2487 An alternate definition of...
drsb1 2488 Formula-building lemma for...
sb2ae 2489 In the case of two success...
sb6f 2490 Equivalence for substituti...
sb5f 2491 Equivalence for substituti...
nfsb4t 2492 A variable not free in a p...
nfsb4 2493 A variable not free in a p...
sbequ8 2494 Elimination of equality fr...
sbie 2495 Conversion of implicit sub...
sbied 2496 Conversion of implicit sub...
sbiedv 2497 Conversion of implicit sub...
2sbiev 2498 Conversion of double impli...
sbcom3 2499 Substituting ` y ` for ` x...
sbco 2500 A composition law for subs...
sbid2 2501 An identity law for substi...
sbid2v 2502 An identity law for substi...
sbidm 2503 An idempotent law for subs...
sbco2 2504 A composition law for subs...
sbco2d 2505 A composition law for subs...
sbco3 2506 A composition law for subs...
sbcom 2507 A commutativity law for su...
sbtrt 2508 Partially closed form of ~...
sbtr 2509 A partial converse to ~ sb...
sb8 2510 Substitution of variable i...
sb8e 2511 Substitution of variable i...
sb9 2512 Commutation of quantificat...
sb9i 2513 Commutation of quantificat...
sbhb 2514 Two ways of expressing " `...
nfsbd 2515 Deduction version of ~ nfs...
nfsb 2516 If ` z ` is not free in ` ...
hbsb 2517 If ` z ` is not free in ` ...
sb7f 2518 This version of ~ dfsb7 do...
sb7h 2519 This version of ~ dfsb7 do...
sb10f 2520 Hao Wang's identity axiom ...
sbal1 2521 Check out ~ sbal for a ver...
sbal2 2522 Move quantifier in and out...
2sb8e 2523 An equivalent expression f...
dfmoeu 2524 An elementary proof of ~ m...
dfeumo 2525 An elementary proof showin...
mojust 2527 Soundness justification th...
nexmo 2529 Nonexistence implies uniqu...
exmo 2530 Any proposition holds for ...
moabs 2531 Absorption of existence co...
moim 2532 The at-most-one quantifier...
moimi 2533 The at-most-one quantifier...
moimdv 2534 The at-most-one quantifier...
mobi 2535 Equivalence theorem for th...
mobii 2536 Formula-building rule for ...
mobidv 2537 Formula-building rule for ...
mobid 2538 Formula-building rule for ...
moa1 2539 If an implication holds fo...
moan 2540 "At most one" is still the...
moani 2541 "At most one" is still tru...
moor 2542 "At most one" is still the...
mooran1 2543 "At most one" imports disj...
mooran2 2544 "At most one" exports disj...
nfmo1 2545 Bound-variable hypothesis ...
nfmod2 2546 Bound-variable hypothesis ...
nfmodv 2547 Bound-variable hypothesis ...
nfmov 2548 Bound-variable hypothesis ...
nfmod 2549 Bound-variable hypothesis ...
nfmo 2550 Bound-variable hypothesis ...
mof 2551 Version of ~ df-mo with di...
mo3 2552 Alternate definition of th...
mo 2553 Equivalent definitions of ...
mo4 2554 At-most-one quantifier exp...
mo4f 2555 At-most-one quantifier exp...
eu3v 2558 An alternate way to expres...
eujust 2559 Soundness justification th...
eujustALT 2560 Alternate proof of ~ eujus...
eu6lem 2561 Lemma of ~ eu6im . A diss...
eu6 2562 Alternate definition of th...
eu6im 2563 One direction of ~ eu6 nee...
euf 2564 Version of ~ eu6 with disj...
euex 2565 Existential uniqueness imp...
eumo 2566 Existential uniqueness imp...
eumoi 2567 Uniqueness inferred from e...
exmoeub 2568 Existence implies that uni...
exmoeu 2569 Existence is equivalent to...
moeuex 2570 Uniqueness implies that ex...
moeu 2571 Uniqueness is equivalent t...
eubi 2572 Equivalence theorem for th...
eubii 2573 Introduce unique existenti...
eubidv 2574 Formula-building rule for ...
eubid 2575 Formula-building rule for ...
nfeu1 2576 Bound-variable hypothesis ...
nfeu1ALT 2577 Alternate proof of ~ nfeu1...
nfeud2 2578 Bound-variable hypothesis ...
nfeudw 2579 Bound-variable hypothesis ...
nfeud 2580 Bound-variable hypothesis ...
nfeuw 2581 Bound-variable hypothesis ...
nfeu 2582 Bound-variable hypothesis ...
dfeu 2583 Rederive ~ df-eu from the ...
dfmo 2584 Rederive ~ df-mo from the ...
euequ 2585 There exists a unique set ...
sb8eulem 2586 Lemma. Factor out the com...
sb8euv 2587 Variable substitution in u...
sb8eu 2588 Variable substitution in u...
sb8mo 2589 Variable substitution for ...
cbvmovw 2590 Change bound variable. Us...
cbvmow 2591 Rule used to change bound ...
cbvmo 2592 Rule used to change bound ...
cbveuvw 2593 Change bound variable. Us...
cbveuw 2594 Version of ~ cbveu with a ...
cbveu 2595 Rule used to change bound ...
cbveuALT 2596 Alternative proof of ~ cbv...
eu2 2597 An alternate way of defini...
eu1 2598 An alternate way to expres...
euor 2599 Introduce a disjunct into ...
euorv 2600 Introduce a disjunct into ...
euor2 2601 Introduce or eliminate a d...
sbmo 2602 Substitution into an at-mo...
eu4 2603 Uniqueness using implicit ...
euimmo 2604 Existential uniqueness imp...
euim 2605 Add unique existential qua...
moanimlem 2606 Factor out the common proo...
moanimv 2607 Introduction of a conjunct...
moanim 2608 Introduction of a conjunct...
euan 2609 Introduction of a conjunct...
moanmo 2610 Nested at-most-one quantif...
moaneu 2611 Nested at-most-one and uni...
euanv 2612 Introduction of a conjunct...
mopick 2613 "At most one" picks a vari...
moexexlem 2614 Factor out the proof skele...
2moexv 2615 Double quantification with...
moexexvw 2616 "At most one" double quant...
2moswapv 2617 A condition allowing to sw...
2euswapv 2618 A condition allowing to sw...
2euexv 2619 Double quantification with...
2exeuv 2620 Double existential uniquen...
eupick 2621 Existential uniqueness "pi...
eupicka 2622 Version of ~ eupick with c...
eupickb 2623 Existential uniqueness "pi...
eupickbi 2624 Theorem *14.26 in [Whitehe...
mopick2 2625 "At most one" can show the...
moexex 2626 "At most one" double quant...
moexexv 2627 "At most one" double quant...
2moex 2628 Double quantification with...
2euex 2629 Double quantification with...
2eumo 2630 Nested unique existential ...
2eu2ex 2631 Double existential uniquen...
2moswap 2632 A condition allowing to sw...
2euswap 2633 A condition allowing to sw...
2exeu 2634 Double existential uniquen...
2mo2 2635 Two ways of expressing "th...
2mo 2636 Two ways of expressing "th...
2mos 2637 Double "there exists at mo...
2mosOLD 2638 Obsolete version of ~ 2mos...
2eu1 2639 Double existential uniquen...
2eu1v 2640 Double existential uniquen...
2eu2 2641 Double existential uniquen...
2eu3 2642 Double existential uniquen...
2eu4 2643 This theorem provides us w...
2eu5 2644 An alternate definition of...
2eu6 2645 Two equivalent expressions...
2eu7 2646 Two equivalent expressions...
2eu8 2647 Two equivalent expressions...
euae 2648 Two ways to express "exact...
exists1 2649 Two ways to express "exact...
exists2 2650 A condition implying that ...
barbara 2651 "Barbara", one of the fund...
celarent 2652 "Celarent", one of the syl...
darii 2653 "Darii", one of the syllog...
dariiALT 2654 Alternate proof of ~ darii...
ferio 2655 "Ferio" ("Ferioque"), one ...
barbarilem 2656 Lemma for ~ barbari and th...
barbari 2657 "Barbari", one of the syll...
barbariALT 2658 Alternate proof of ~ barba...
celaront 2659 "Celaront", one of the syl...
cesare 2660 "Cesare", one of the syllo...
camestres 2661 "Camestres", one of the sy...
festino 2662 "Festino", one of the syll...
festinoALT 2663 Alternate proof of ~ festi...
baroco 2664 "Baroco", one of the syllo...
barocoALT 2665 Alternate proof of ~ festi...
cesaro 2666 "Cesaro", one of the syllo...
camestros 2667 "Camestros", one of the sy...
datisi 2668 "Datisi", one of the syllo...
disamis 2669 "Disamis", one of the syll...
ferison 2670 "Ferison", one of the syll...
bocardo 2671 "Bocardo", one of the syll...
darapti 2672 "Darapti", one of the syll...
daraptiALT 2673 Alternate proof of ~ darap...
felapton 2674 "Felapton", one of the syl...
calemes 2675 "Calemes", one of the syll...
dimatis 2676 "Dimatis", one of the syll...
fresison 2677 "Fresison", one of the syl...
calemos 2678 "Calemos", one of the syll...
fesapo 2679 "Fesapo", one of the syllo...
bamalip 2680 "Bamalip", one of the syll...
axia1 2681 Left 'and' elimination (in...
axia2 2682 Right 'and' elimination (i...
axia3 2683 'And' introduction (intuit...
axin1 2684 'Not' introduction (intuit...
axin2 2685 'Not' elimination (intuiti...
axio 2686 Definition of 'or' (intuit...
axi4 2687 Specialization (intuitioni...
axi5r 2688 Converse of ~ axc4 (intuit...
axial 2689 The setvar ` x ` is not fr...
axie1 2690 The setvar ` x ` is not fr...
axie2 2691 A key property of existent...
axi9 2692 Axiom of existence (intuit...
axi10 2693 Axiom of Quantifier Substi...
axi12 2694 Axiom of Quantifier Introd...
axbnd 2695 Axiom of Bundling (intuiti...
axexte 2697 The axiom of extensionalit...
axextg 2698 A generalization of the ax...
axextb 2699 A bidirectional version of...
axextmo 2700 There exists at most one s...
nulmo 2701 There exists at most one e...
eleq1ab 2704 Extension (in the sense of...
cleljustab 2705 Extension of ~ cleljust fr...
abid 2706 Simplification of class ab...
vexwt 2707 A standard theorem of pred...
vexw 2708 If ` ph ` is a theorem, th...
vextru 2709 Every setvar is a member o...
nfsab1 2710 Bound-variable hypothesis ...
hbab1 2711 Bound-variable hypothesis ...
hbab1OLD 2712 Obsolete version of ~ hbab...
hbab 2713 Bound-variable hypothesis ...
hbabg 2714 Bound-variable hypothesis ...
nfsab 2715 Bound-variable hypothesis ...
nfsabg 2716 Bound-variable hypothesis ...
dfcleq 2718 The defining characterizat...
cvjust 2719 Every set is a class. Pro...
ax9ALT 2720 Proof of ~ ax-9 from Tarsk...
eleq2w2 2721 A weaker version of ~ eleq...
eqriv 2722 Infer equality of classes ...
eqrdv 2723 Deduce equality of classes...
eqrdav 2724 Deduce equality of classes...
eqid 2725 Law of identity (reflexivi...
eqidd 2726 Class identity law with an...
eqeq1d 2727 Deduction from equality to...
eqeq1dALT 2728 Alternate proof of ~ eqeq1...
eqeq1 2729 Equality implies equivalen...
eqeq1i 2730 Inference from equality to...
eqcomd 2731 Deduction from commutative...
eqcom 2732 Commutative law for class ...
eqcoms 2733 Inference applying commuta...
eqcomi 2734 Inference from commutative...
neqcomd 2735 Commute an inequality. (C...
eqeq2d 2736 Deduction from equality to...
eqeq2 2737 Equality implies equivalen...
eqeq2i 2738 Inference from equality to...
eqeqan12d 2739 A useful inference for sub...
eqeqan12rd 2740 A useful inference for sub...
eqeq12d 2741 A useful inference for sub...
eqeq12 2742 Equality relationship amon...
eqeq12i 2743 A useful inference for sub...
eqeq12OLD 2744 Obsolete version of ~ eqeq...
eqeq12dOLD 2745 Obsolete version of ~ eqeq...
eqeqan12dOLD 2746 Obsolete version of ~ eqeq...
eqeqan12dALT 2747 Alternate proof of ~ eqeqa...
eqtr 2748 Transitive law for class e...
eqtr2 2749 A transitive law for class...
eqtr2OLD 2750 Obsolete version of eqtr2 ...
eqtr3 2751 A transitive law for class...
eqtr3OLD 2752 Obsolete version of ~ eqtr...
eqtri 2753 An equality transitivity i...
eqtr2i 2754 An equality transitivity i...
eqtr3i 2755 An equality transitivity i...
eqtr4i 2756 An equality transitivity i...
3eqtri 2757 An inference from three ch...
3eqtrri 2758 An inference from three ch...
3eqtr2i 2759 An inference from three ch...
3eqtr2ri 2760 An inference from three ch...
3eqtr3i 2761 An inference from three ch...
3eqtr3ri 2762 An inference from three ch...
3eqtr4i 2763 An inference from three ch...
3eqtr4ri 2764 An inference from three ch...
eqtrd 2765 An equality transitivity d...
eqtr2d 2766 An equality transitivity d...
eqtr3d 2767 An equality transitivity e...
eqtr4d 2768 An equality transitivity e...
3eqtrd 2769 A deduction from three cha...
3eqtrrd 2770 A deduction from three cha...
3eqtr2d 2771 A deduction from three cha...
3eqtr2rd 2772 A deduction from three cha...
3eqtr3d 2773 A deduction from three cha...
3eqtr3rd 2774 A deduction from three cha...
3eqtr4d 2775 A deduction from three cha...
3eqtr4rd 2776 A deduction from three cha...
eqtrid 2777 An equality transitivity d...
eqtr2id 2778 An equality transitivity d...
eqtr3id 2779 An equality transitivity d...
eqtr3di 2780 An equality transitivity d...
eqtrdi 2781 An equality transitivity d...
eqtr2di 2782 An equality transitivity d...
eqtr4di 2783 An equality transitivity d...
eqtr4id 2784 An equality transitivity d...
sylan9eq 2785 An equality transitivity d...
sylan9req 2786 An equality transitivity d...
sylan9eqr 2787 An equality transitivity d...
3eqtr3g 2788 A chained equality inferen...
3eqtr3a 2789 A chained equality inferen...
3eqtr4g 2790 A chained equality inferen...
3eqtr4a 2791 A chained equality inferen...
eq2tri 2792 A compound transitive infe...
abbi 2793 Equivalent formulas yield ...
abbidv 2794 Equivalent wff's yield equ...
abbii 2795 Equivalent wff's yield equ...
abbid 2796 Equivalent wff's yield equ...
abbib 2797 Equal class abstractions r...
cbvabv 2798 Rule used to change bound ...
cbvabw 2799 Rule used to change bound ...
cbvab 2800 Rule used to change bound ...
eqabbw 2801 Version of ~ eqabb using i...
dfclel 2803 Characterization of the el...
elex2 2804 If a class contains anothe...
issetlem 2805 Lemma for ~ elisset and ~ ...
elissetv 2806 An element of a class exis...
elisset 2807 An element of a class exis...
eleq1w 2808 Weaker version of ~ eleq1 ...
eleq2w 2809 Weaker version of ~ eleq2 ...
eleq1d 2810 Deduction from equality to...
eleq2d 2811 Deduction from equality to...
eleq2dALT 2812 Alternate proof of ~ eleq2...
eleq1 2813 Equality implies equivalen...
eleq2 2814 Equality implies equivalen...
eleq12 2815 Equality implies equivalen...
eleq1i 2816 Inference from equality to...
eleq2i 2817 Inference from equality to...
eleq12i 2818 Inference from equality to...
eleq12d 2819 Deduction from equality to...
eleq1a 2820 A transitive-type law rela...
eqeltri 2821 Substitution of equal clas...
eqeltrri 2822 Substitution of equal clas...
eleqtri 2823 Substitution of equal clas...
eleqtrri 2824 Substitution of equal clas...
eqeltrd 2825 Substitution of equal clas...
eqeltrrd 2826 Deduction that substitutes...
eleqtrd 2827 Deduction that substitutes...
eleqtrrd 2828 Deduction that substitutes...
eqeltrid 2829 A membership and equality ...
eqeltrrid 2830 A membership and equality ...
eleqtrid 2831 A membership and equality ...
eleqtrrid 2832 A membership and equality ...
eqeltrdi 2833 A membership and equality ...
eqeltrrdi 2834 A membership and equality ...
eleqtrdi 2835 A membership and equality ...
eleqtrrdi 2836 A membership and equality ...
3eltr3i 2837 Substitution of equal clas...
3eltr4i 2838 Substitution of equal clas...
3eltr3d 2839 Substitution of equal clas...
3eltr4d 2840 Substitution of equal clas...
3eltr3g 2841 Substitution of equal clas...
3eltr4g 2842 Substitution of equal clas...
eleq2s 2843 Substitution of equal clas...
eqneltri 2844 If a class is not an eleme...
eqneltrd 2845 If a class is not an eleme...
eqneltrrd 2846 If a class is not an eleme...
neleqtrd 2847 If a class is not an eleme...
neleqtrrd 2848 If a class is not an eleme...
nelneq 2849 A way of showing two class...
nelneq2 2850 A way of showing two class...
eqsb1 2851 Substitution for the left-...
clelsb1 2852 Substitution for the first...
clelsb2 2853 Substitution for the secon...
clelsb2OLD 2854 Obsolete version of ~ clel...
cleqh 2855 Establish equality between...
hbxfreq 2856 A utility lemma to transfe...
hblem 2857 Change the free variable o...
hblemg 2858 Change the free variable o...
eqabdv 2859 Deduction from a wff to a ...
eqabcdv 2860 Deduction from a wff to a ...
eqabi 2861 Equality of a class variab...
abid1 2862 Every class is equal to a ...
abid2 2863 A simplification of class ...
eqab 2864 One direction of ~ eqabb i...
eqabb 2865 Equality of a class variab...
eqabbOLD 2866 Obsolete version of ~ eqab...
eqabcb 2867 Equality of a class variab...
eqabrd 2868 Equality of a class variab...
eqabri 2869 Equality of a class variab...
eqabcri 2870 Equality of a class variab...
clelab 2871 Membership of a class vari...
clelabOLD 2872 Obsolete version of ~ clel...
clabel 2873 Membership of a class abst...
sbab 2874 The right-hand side of the...
nfcjust 2876 Justification theorem for ...
nfci 2878 Deduce that a class ` A ` ...
nfcii 2879 Deduce that a class ` A ` ...
nfcr 2880 Consequence of the not-fre...
nfcrALT 2881 Alternate version of ~ nfc...
nfcri 2882 Consequence of the not-fre...
nfcd 2883 Deduce that a class ` A ` ...
nfcrd 2884 Consequence of the not-fre...
nfcriOLD 2885 Obsolete version of ~ nfcr...
nfcrii 2886 Consequence of the not-fre...
nfceqdf 2887 An equality theorem for ef...
nfceqdfOLD 2888 Obsolete version of ~ nfce...
nfceqi 2889 Equality theorem for class...
nfcxfr 2890 A utility lemma to transfe...
nfcxfrd 2891 A utility lemma to transfe...
nfcv 2892 If ` x ` is disjoint from ...
nfcvd 2893 If ` x ` is disjoint from ...
nfab1 2894 Bound-variable hypothesis ...
nfnfc1 2895 The setvar ` x ` is bound ...
clelsb1fw 2896 Substitution for the first...
clelsb1f 2897 Substitution for the first...
nfab 2898 Bound-variable hypothesis ...
nfabg 2899 Bound-variable hypothesis ...
nfaba1 2900 Bound-variable hypothesis ...
nfaba1OLD 2901 Obsolete version of ~ nfab...
nfaba1g 2902 Bound-variable hypothesis ...
nfeqd 2903 Hypothesis builder for equ...
nfeld 2904 Hypothesis builder for ele...
nfnfc 2905 Hypothesis builder for ` F...
nfeq 2906 Hypothesis builder for equ...
nfel 2907 Hypothesis builder for ele...
nfeq1 2908 Hypothesis builder for equ...
nfel1 2909 Hypothesis builder for ele...
nfeq2 2910 Hypothesis builder for equ...
nfel2 2911 Hypothesis builder for ele...
drnfc1 2912 Formula-building lemma for...
drnfc1OLD 2913 Obsolete version of ~ drnf...
drnfc2 2914 Formula-building lemma for...
drnfc2OLD 2915 Obsolete version of ~ drnf...
nfabdw 2916 Bound-variable hypothesis ...
nfabdwOLD 2917 Obsolete version of ~ nfab...
nfabd 2918 Bound-variable hypothesis ...
nfabd2 2919 Bound-variable hypothesis ...
dvelimdc 2920 Deduction form of ~ dvelim...
dvelimc 2921 Version of ~ dvelim for cl...
nfcvf 2922 If ` x ` and ` y ` are dis...
nfcvf2 2923 If ` x ` and ` y ` are dis...
cleqf 2924 Establish equality between...
eqabf 2925 Equality of a class variab...
abid2f 2926 A simplification of class ...
abid2fOLD 2927 Obsolete version of ~ abid...
sbabel 2928 Theorem to move a substitu...
sbabelOLD 2929 Obsolete version of ~ sbab...
neii 2932 Inference associated with ...
neir 2933 Inference associated with ...
nne 2934 Negation of inequality. (...
neneqd 2935 Deduction eliminating ineq...
neneq 2936 From inequality to non-equ...
neqned 2937 If it is not the case that...
neqne 2938 From non-equality to inequ...
neirr 2939 No class is unequal to its...
exmidne 2940 Excluded middle with equal...
eqneqall 2941 A contradiction concerning...
nonconne 2942 Law of noncontradiction wi...
necon3ad 2943 Contrapositive law deducti...
necon3bd 2944 Contrapositive law deducti...
necon2ad 2945 Contrapositive inference f...
necon2bd 2946 Contrapositive inference f...
necon1ad 2947 Contrapositive deduction f...
necon1bd 2948 Contrapositive deduction f...
necon4ad 2949 Contrapositive inference f...
necon4bd 2950 Contrapositive inference f...
necon3d 2951 Contrapositive law deducti...
necon1d 2952 Contrapositive law deducti...
necon2d 2953 Contrapositive inference f...
necon4d 2954 Contrapositive inference f...
necon3ai 2955 Contrapositive inference f...
necon3aiOLD 2956 Obsolete version of ~ neco...
necon3bi 2957 Contrapositive inference f...
necon1ai 2958 Contrapositive inference f...
necon1bi 2959 Contrapositive inference f...
necon2ai 2960 Contrapositive inference f...
necon2bi 2961 Contrapositive inference f...
necon4ai 2962 Contrapositive inference f...
necon3i 2963 Contrapositive inference f...
necon1i 2964 Contrapositive inference f...
necon2i 2965 Contrapositive inference f...
necon4i 2966 Contrapositive inference f...
necon3abid 2967 Deduction from equality to...
necon3bbid 2968 Deduction from equality to...
necon1abid 2969 Contrapositive deduction f...
necon1bbid 2970 Contrapositive inference f...
necon4abid 2971 Contrapositive law deducti...
necon4bbid 2972 Contrapositive law deducti...
necon2abid 2973 Contrapositive deduction f...
necon2bbid 2974 Contrapositive deduction f...
necon3bid 2975 Deduction from equality to...
necon4bid 2976 Contrapositive law deducti...
necon3abii 2977 Deduction from equality to...
necon3bbii 2978 Deduction from equality to...
necon1abii 2979 Contrapositive inference f...
necon1bbii 2980 Contrapositive inference f...
necon2abii 2981 Contrapositive inference f...
necon2bbii 2982 Contrapositive inference f...
necon3bii 2983 Inference from equality to...
necom 2984 Commutation of inequality....
necomi 2985 Inference from commutative...
necomd 2986 Deduction from commutative...
nesym 2987 Characterization of inequa...
nesymi 2988 Inference associated with ...
nesymir 2989 Inference associated with ...
neeq1d 2990 Deduction for inequality. ...
neeq2d 2991 Deduction for inequality. ...
neeq12d 2992 Deduction for inequality. ...
neeq1 2993 Equality theorem for inequ...
neeq2 2994 Equality theorem for inequ...
neeq1i 2995 Inference for inequality. ...
neeq2i 2996 Inference for inequality. ...
neeq12i 2997 Inference for inequality. ...
eqnetrd 2998 Substitution of equal clas...
eqnetrrd 2999 Substitution of equal clas...
neeqtrd 3000 Substitution of equal clas...
eqnetri 3001 Substitution of equal clas...
eqnetrri 3002 Substitution of equal clas...
neeqtri 3003 Substitution of equal clas...
neeqtrri 3004 Substitution of equal clas...
neeqtrrd 3005 Substitution of equal clas...
eqnetrrid 3006 A chained equality inferen...
3netr3d 3007 Substitution of equality i...
3netr4d 3008 Substitution of equality i...
3netr3g 3009 Substitution of equality i...
3netr4g 3010 Substitution of equality i...
nebi 3011 Contraposition law for ine...
pm13.18 3012 Theorem *13.18 in [Whitehe...
pm13.181 3013 Theorem *13.181 in [Whiteh...
pm13.181OLD 3014 Obsolete version of ~ pm13...
pm2.61ine 3015 Inference eliminating an i...
pm2.21ddne 3016 A contradiction implies an...
pm2.61ne 3017 Deduction eliminating an i...
pm2.61dne 3018 Deduction eliminating an i...
pm2.61dane 3019 Deduction eliminating an i...
pm2.61da2ne 3020 Deduction eliminating two ...
pm2.61da3ne 3021 Deduction eliminating thre...
pm2.61iine 3022 Equality version of ~ pm2....
mteqand 3023 A modus tollens deduction ...
neor 3024 Logical OR with an equalit...
neanior 3025 A De Morgan's law for ineq...
ne3anior 3026 A De Morgan's law for ineq...
neorian 3027 A De Morgan's law for ineq...
nemtbir 3028 An inference from an inequ...
nelne1 3029 Two classes are different ...
nelne2 3030 Two classes are different ...
nelelne 3031 Two classes are different ...
neneor 3032 If two classes are differe...
nfne 3033 Bound-variable hypothesis ...
nfned 3034 Bound-variable hypothesis ...
nabbib 3035 Not equivalent wff's corre...
neli 3038 Inference associated with ...
nelir 3039 Inference associated with ...
nelcon3d 3040 Contrapositive law deducti...
neleq12d 3041 Equality theorem for negat...
neleq1 3042 Equality theorem for negat...
neleq2 3043 Equality theorem for negat...
nfnel 3044 Bound-variable hypothesis ...
nfneld 3045 Bound-variable hypothesis ...
nnel 3046 Negation of negated member...
elnelne1 3047 Two classes are different ...
elnelne2 3048 Two classes are different ...
pm2.24nel 3049 A contradiction concerning...
pm2.61danel 3050 Deduction eliminating an e...
rgen 3053 Generalization rule for re...
ralel 3054 All elements of a class ar...
rgenw 3055 Generalization rule for re...
rgen2w 3056 Generalization rule for re...
mprg 3057 Modus ponens combined with...
mprgbir 3058 Modus ponens on biconditio...
raln 3059 Restricted universally qua...
ralnex 3062 Relationship between restr...
dfrex2 3063 Relationship between restr...
nrex 3064 Inference adding restricte...
alral 3065 Universal quantification i...
rexex 3066 Restricted existence impli...
rextru 3067 Two ways of expressing tha...
ralimi2 3068 Inference quantifying both...
reximi2 3069 Inference quantifying both...
ralimia 3070 Inference quantifying both...
reximia 3071 Inference quantifying both...
ralimiaa 3072 Inference quantifying both...
ralimi 3073 Inference quantifying both...
reximi 3074 Inference quantifying both...
ral2imi 3075 Inference quantifying ante...
ralim 3076 Distribution of restricted...
rexim 3077 Theorem 19.22 of [Margaris...
reximiaOLD 3078 Obsolete version of ~ rexi...
ralbii2 3079 Inference adding different...
rexbii2 3080 Inference adding different...
ralbiia 3081 Inference adding restricte...
rexbiia 3082 Inference adding restricte...
ralbii 3083 Inference adding restricte...
rexbii 3084 Inference adding restricte...
ralanid 3085 Cancellation law for restr...
rexanid 3086 Cancellation law for restr...
ralcom3 3087 A commutation law for rest...
ralcom3OLD 3088 Obsolete version of ~ ralc...
dfral2 3089 Relationship between restr...
rexnal 3090 Relationship between restr...
ralinexa 3091 A transformation of restri...
rexanali 3092 A transformation of restri...
ralbi 3093 Distribute a restricted un...
rexbi 3094 Distribute restricted quan...
rexbiOLD 3095 Obsolete version of ~ rexb...
ralrexbid 3096 Formula-building rule for ...
ralrexbidOLD 3097 Obsolete version of ~ ralr...
r19.35 3098 Restricted quantifier vers...
r19.35OLD 3099 Obsolete version of ~ 19.3...
r19.26m 3100 Version of ~ 19.26 and ~ r...
r19.26 3101 Restricted quantifier vers...
r19.26-3 3102 Version of ~ r19.26 with t...
ralbiim 3103 Split a biconditional and ...
r19.29 3104 Restricted quantifier vers...
r19.29OLD 3105 Obsolete version of ~ r19....
r19.29r 3106 Restricted quantifier vers...
r19.29rOLD 3107 Obsolete version of ~ r19....
r19.29imd 3108 Theorem 19.29 of [Margaris...
r19.40 3109 Restricted quantifier vers...
r19.30 3110 Restricted quantifier vers...
r19.30OLD 3111 Obsolete version of ~ 19.3...
r19.43 3112 Restricted quantifier vers...
2ralimi 3113 Inference quantifying both...
3ralimi 3114 Inference quantifying both...
4ralimi 3115 Inference quantifying both...
5ralimi 3116 Inference quantifying both...
6ralimi 3117 Inference quantifying both...
2ralbii 3118 Inference adding two restr...
2rexbii 3119 Inference adding two restr...
3ralbii 3120 Inference adding three res...
4ralbii 3121 Inference adding four rest...
2ralbiim 3122 Split a biconditional and ...
ralnex2 3123 Relationship between two r...
ralnex3 3124 Relationship between three...
rexnal2 3125 Relationship between two r...
rexnal3 3126 Relationship between three...
nrexralim 3127 Negation of a complex pred...
r19.26-2 3128 Restricted quantifier vers...
2r19.29 3129 Theorem ~ r19.29 with two ...
r19.29d2r 3130 Theorem 19.29 of [Margaris...
r19.29d2rOLD 3131 Obsolete version of ~ r19....
r2allem 3132 Lemma factoring out common...
r2exlem 3133 Lemma factoring out common...
hbralrimi 3134 Inference from Theorem 19....
ralrimiv 3135 Inference from Theorem 19....
ralrimiva 3136 Inference from Theorem 19....
rexlimiva 3137 Inference from Theorem 19....
rexlimiv 3138 Inference from Theorem 19....
nrexdv 3139 Deduction adding restricte...
ralrimivw 3140 Inference from Theorem 19....
rexlimivw 3141 Weaker version of ~ rexlim...
ralrimdv 3142 Inference from Theorem 19....
rexlimdv 3143 Inference from Theorem 19....
ralrimdva 3144 Inference from Theorem 19....
rexlimdva 3145 Inference from Theorem 19....
rexlimdvaa 3146 Inference from Theorem 19....
rexlimdva2 3147 Inference from Theorem 19....
r19.29an 3148 A commonly used pattern in...
rexlimdv3a 3149 Inference from Theorem 19....
rexlimdvw 3150 Inference from Theorem 19....
rexlimddv 3151 Restricted existential eli...
r19.29a 3152 A commonly used pattern in...
ralimdv2 3153 Inference quantifying both...
reximdv2 3154 Deduction quantifying both...
reximdvai 3155 Deduction quantifying both...
reximdvaiOLD 3156 Obsolete version of ~ rexi...
ralimdva 3157 Deduction quantifying both...
reximdva 3158 Deduction quantifying both...
ralimdv 3159 Deduction quantifying both...
reximdv 3160 Deduction from Theorem 19....
reximddv 3161 Deduction from Theorem 19....
reximddv3 3162 Deduction from Theorem 19....
reximssdv 3163 Derivation of a restricted...
ralbidv2 3164 Formula-building rule for ...
rexbidv2 3165 Formula-building rule for ...
ralbidva 3166 Formula-building rule for ...
rexbidva 3167 Formula-building rule for ...
ralbidv 3168 Formula-building rule for ...
rexbidv 3169 Formula-building rule for ...
r19.21v 3170 Restricted quantifier vers...
r19.21vOLD 3171 Obsolete version of ~ r19....
r19.37v 3172 Restricted quantifier vers...
r19.23v 3173 Restricted quantifier vers...
r19.36v 3174 Restricted quantifier vers...
rexlimivOLD 3175 Obsolete version of ~ rexl...
rexlimivaOLD 3176 Obsolete version of ~ rexl...
rexlimivwOLD 3177 Obsolete version of ~ rexl...
r19.27v 3178 Restricted quantitifer ver...
r19.41v 3179 Restricted quantifier vers...
r19.28v 3180 Restricted quantifier vers...
r19.42v 3181 Restricted quantifier vers...
r19.32v 3182 Restricted quantifier vers...
r19.45v 3183 Restricted quantifier vers...
r19.44v 3184 One direction of a restric...
r2al 3185 Double restricted universa...
r2ex 3186 Double restricted existent...
r3al 3187 Triple restricted universa...
rgen2 3188 Generalization rule for re...
ralrimivv 3189 Inference from Theorem 19....
rexlimivv 3190 Inference from Theorem 19....
ralrimivva 3191 Inference from Theorem 19....
ralrimdvv 3192 Inference from Theorem 19....
rgen3 3193 Generalization rule for re...
ralrimivvva 3194 Inference from Theorem 19....
ralimdvva 3195 Deduction doubly quantifyi...
reximdvva 3196 Deduction doubly quantifyi...
ralimdvv 3197 Deduction doubly quantifyi...
ralimd4v 3198 Deduction quadrupally quan...
ralimd6v 3199 Deduction sextupally quant...
ralrimdvva 3200 Inference from Theorem 19....
rexlimdvv 3201 Inference from Theorem 19....
rexlimdvva 3202 Inference from Theorem 19....
reximddv2 3203 Double deduction from Theo...
r19.29vva 3204 A commonly used pattern ba...
r19.29vvaOLD 3205 Obsolete version of ~ r19....
2rexbiia 3206 Inference adding two restr...
2ralbidva 3207 Formula-building rule for ...
2rexbidva 3208 Formula-building rule for ...
2ralbidv 3209 Formula-building rule for ...
2rexbidv 3210 Formula-building rule for ...
rexralbidv 3211 Formula-building rule for ...
3ralbidv 3212 Formula-building rule for ...
4ralbidv 3213 Formula-building rule for ...
6ralbidv 3214 Formula-building rule for ...
r19.41vv 3215 Version of ~ r19.41v with ...
reeanlem 3216 Lemma factoring out common...
reeanv 3217 Rearrange restricted exist...
3reeanv 3218 Rearrange three restricted...
2ralor 3219 Distribute restricted univ...
2ralorOLD 3220 Obsolete version of ~ 2ral...
risset 3221 Two ways to say " ` A ` be...
nelb 3222 A definition of ` -. A e. ...
nelbOLD 3223 Obsolete version of ~ nelb...
rspw 3224 Restricted specialization....
cbvralvw 3225 Change the bound variable ...
cbvrexvw 3226 Change the bound variable ...
cbvraldva 3227 Rule used to change the bo...
cbvrexdva 3228 Rule used to change the bo...
cbvral2vw 3229 Change bound variables of ...
cbvrex2vw 3230 Change bound variables of ...
cbvral3vw 3231 Change bound variables of ...
cbvral4vw 3232 Change bound variables of ...
cbvral6vw 3233 Change bound variables of ...
cbvral8vw 3234 Change bound variables of ...
rsp 3235 Restricted specialization....
rspa 3236 Restricted specialization....
rspe 3237 Restricted specialization....
rspec 3238 Specialization rule for re...
r19.21bi 3239 Inference from Theorem 19....
r19.21be 3240 Inference from Theorem 19....
r19.21t 3241 Restricted quantifier vers...
r19.21 3242 Restricted quantifier vers...
r19.23t 3243 Closed theorem form of ~ r...
r19.23 3244 Restricted quantifier vers...
ralrimi 3245 Inference from Theorem 19....
ralrimia 3246 Inference from Theorem 19....
rexlimi 3247 Restricted quantifier vers...
ralimdaa 3248 Deduction quantifying both...
reximdai 3249 Deduction from Theorem 19....
r19.37 3250 Restricted quantifier vers...
r19.41 3251 Restricted quantifier vers...
ralrimd 3252 Inference from Theorem 19....
rexlimd2 3253 Version of ~ rexlimd with ...
rexlimd 3254 Deduction form of ~ rexlim...
r19.29af2 3255 A commonly used pattern ba...
r19.29af 3256 A commonly used pattern ba...
reximd2a 3257 Deduction quantifying both...
ralbida 3258 Formula-building rule for ...
ralbidaOLD 3259 Obsolete version of ~ ralb...
rexbida 3260 Formula-building rule for ...
ralbid 3261 Formula-building rule for ...
rexbid 3262 Formula-building rule for ...
rexbidvALT 3263 Alternate proof of ~ rexbi...
rexbidvaALT 3264 Alternate proof of ~ rexbi...
rsp2 3265 Restricted specialization,...
rsp2e 3266 Restricted specialization....
rspec2 3267 Specialization rule for re...
rspec3 3268 Specialization rule for re...
r2alf 3269 Double restricted universa...
r2exf 3270 Double restricted existent...
2ralbida 3271 Formula-building rule for ...
nfra1 3272 The setvar ` x ` is not fr...
nfre1 3273 The setvar ` x ` is not fr...
ralcom4 3274 Commutation of restricted ...
ralcom4OLD 3275 Obsolete version of ~ ralc...
rexcom4 3276 Commutation of restricted ...
ralcom 3277 Commutation of restricted ...
rexcom 3278 Commutation of restricted ...
rexcomOLD 3279 Obsolete version of ~ rexc...
rexcom4a 3280 Specialized existential co...
ralrot3 3281 Rotate three restricted un...
ralcom13 3282 Swap first and third restr...
ralcom13OLD 3283 Obsolete version of ~ ralc...
rexcom13 3284 Swap first and third restr...
rexrot4 3285 Rotate four restricted exi...
2ex2rexrot 3286 Rotate two existential qua...
nfra2w 3287 Similar to Lemma 24 of [Mo...
nfra2wOLD 3288 Obsolete version of ~ nfra...
hbra1 3289 The setvar ` x ` is not fr...
ralcomf 3290 Commutation of restricted ...
rexcomf 3291 Commutation of restricted ...
cbvralfw 3292 Rule used to change bound ...
cbvrexfw 3293 Rule used to change bound ...
cbvralw 3294 Rule used to change bound ...
cbvrexw 3295 Rule used to change bound ...
hbral 3296 Bound-variable hypothesis ...
nfraldw 3297 Deduction version of ~ nfr...
nfrexdw 3298 Deduction version of ~ nfr...
nfralw 3299 Bound-variable hypothesis ...
nfralwOLD 3300 Obsolete version of ~ nfra...
nfrexw 3301 Bound-variable hypothesis ...
r19.12 3302 Restricted quantifier vers...
r19.12OLD 3303 Obsolete version of ~ 19.1...
reean 3304 Rearrange restricted exist...
cbvralsvw 3305 Change bound variable by u...
cbvrexsvw 3306 Change bound variable by u...
cbvralsvwOLD 3307 Obsolete version of ~ cbvr...
cbvrexsvwOLD 3308 Obsolete version of ~ cbvr...
nfraldwOLD 3309 Obsolete version of ~ nfra...
nfra2wOLDOLD 3310 Obsolete version of ~ nfra...
rexeq 3311 Equality theorem for restr...
raleq 3312 Equality theorem for restr...
raleqi 3313 Equality inference for res...
rexeqi 3314 Equality inference for res...
raleqdv 3315 Equality deduction for res...
rexeqdv 3316 Equality deduction for res...
raleqbidva 3317 Equality deduction for res...
rexeqbidva 3318 Equality deduction for res...
raleqbidvv 3319 Version of ~ raleqbidv wit...
raleqbidvvOLD 3320 Obsolete version of ~ rale...
rexeqbidvv 3321 Version of ~ rexeqbidv wit...
rexeqbidvvOLD 3322 Obsolete version of ~ rexe...
raleqbi1dv 3323 Equality deduction for res...
rexeqbi1dv 3324 Equality deduction for res...
raleqOLD 3325 Obsolete version of ~ rale...
rexeqOLD 3326 Obsolete version of ~ rale...
raleleq 3327 All elements of a class ar...
raleqbii 3328 Equality deduction for res...
rexeqbii 3329 Equality deduction for res...
raleqbidv 3330 Equality deduction for res...
rexeqbidv 3331 Equality deduction for res...
cbvraldva2 3332 Rule used to change the bo...
cbvrexdva2 3333 Rule used to change the bo...
cbvrexdva2OLD 3334 Obsolete version of ~ cbvr...
cbvraldvaOLD 3335 Obsolete version of ~ cbvr...
cbvrexdvaOLD 3336 Obsolete version of ~ cbvr...
raleqf 3337 Equality theorem for restr...
rexeqf 3338 Equality theorem for restr...
rexeqfOLD 3339 Obsolete version of ~ rexe...
raleqbid 3340 Equality deduction for res...
rexeqbid 3341 Equality deduction for res...
sbralie 3342 Implicit to explicit subst...
sbralieALT 3343 Alternative shorter proof ...
cbvralf 3344 Rule used to change bound ...
cbvrexf 3345 Rule used to change bound ...
cbvral 3346 Rule used to change bound ...
cbvrex 3347 Rule used to change bound ...
cbvralv 3348 Change the bound variable ...
cbvrexv 3349 Change the bound variable ...
cbvralsv 3350 Change bound variable by u...
cbvrexsv 3351 Change bound variable by u...
cbvral2v 3352 Change bound variables of ...
cbvrex2v 3353 Change bound variables of ...
cbvral3v 3354 Change bound variables of ...
rgen2a 3355 Generalization rule for re...
nfrald 3356 Deduction version of ~ nfr...
nfrexd 3357 Deduction version of ~ nfr...
nfral 3358 Bound-variable hypothesis ...
nfrex 3359 Bound-variable hypothesis ...
nfra2 3360 Similar to Lemma 24 of [Mo...
ralcom2 3361 Commutation of restricted ...
reu5 3366 Restricted uniqueness in t...
reurmo 3367 Restricted existential uni...
reurex 3368 Restricted unique existenc...
mormo 3369 Unrestricted "at most one"...
rmobiia 3370 Formula-building rule for ...
reubiia 3371 Formula-building rule for ...
rmobii 3372 Formula-building rule for ...
reubii 3373 Formula-building rule for ...
rmoanid 3374 Cancellation law for restr...
reuanid 3375 Cancellation law for restr...
rmoanidOLD 3376 Obsolete version of ~ rmoa...
reuanidOLD 3377 Obsolete version of ~ reua...
2reu2rex 3378 Double restricted existent...
rmobidva 3379 Formula-building rule for ...
reubidva 3380 Formula-building rule for ...
rmobidv 3381 Formula-building rule for ...
reubidv 3382 Formula-building rule for ...
reueubd 3383 Restricted existential uni...
rmo5 3384 Restricted "at most one" i...
nrexrmo 3385 Nonexistence implies restr...
moel 3386 "At most one" element in a...
cbvrmovw 3387 Change the bound variable ...
cbvreuvw 3388 Change the bound variable ...
moelOLD 3389 Obsolete version of ~ moel...
rmobida 3390 Formula-building rule for ...
reubida 3391 Formula-building rule for ...
rmobidvaOLD 3392 Obsolete version of ~ rmob...
cbvrmow 3393 Change the bound variable ...
cbvreuw 3394 Change the bound variable ...
nfrmo1 3395 The setvar ` x ` is not fr...
nfreu1 3396 The setvar ` x ` is not fr...
nfrmow 3397 Bound-variable hypothesis ...
nfreuw 3398 Bound-variable hypothesis ...
cbvreuwOLD 3399 Obsolete version of ~ cbvr...
cbvreuvwOLD 3400 Obsolete version of ~ cbvr...
rmoeq1 3401 Equality theorem for restr...
reueq1 3402 Equality theorem for restr...
rmoeq1OLD 3403 Obsolete version of ~ rmoe...
reueq1OLD 3404 Obsolete version of ~ reue...
rmoeqd 3405 Equality deduction for res...
reueqd 3406 Equality deduction for res...
rmoeq1f 3407 Equality theorem for restr...
reueq1f 3408 Equality theorem for restr...
nfreuwOLD 3409 Obsolete version of ~ nfre...
nfrmowOLD 3410 Obsolete version of ~ nfrm...
cbvreu 3411 Change the bound variable ...
cbvrmo 3412 Change the bound variable ...
cbvrmov 3413 Change the bound variable ...
cbvreuv 3414 Change the bound variable ...
nfrmod 3415 Deduction version of ~ nfr...
nfreud 3416 Deduction version of ~ nfr...
nfrmo 3417 Bound-variable hypothesis ...
nfreu 3418 Bound-variable hypothesis ...
rabbidva2 3421 Equivalent wff's yield equ...
rabbia2 3422 Equivalent wff's yield equ...
rabbiia 3423 Equivalent formulas yield ...
rabbiiaOLD 3424 Obsolete version of ~ rabb...
rabbii 3425 Equivalent wff's correspon...
rabbidva 3426 Equivalent wff's yield equ...
rabbidv 3427 Equivalent wff's yield equ...
rabbieq 3428 Equivalent wff's correspon...
rabswap 3429 Swap with a membership rel...
cbvrabv 3430 Rule to change the bound v...
rabeqcda 3431 When ` ps ` is always true...
rabeqc 3432 A restricted class abstrac...
rabeqi 3433 Equality theorem for restr...
rabeq 3434 Equality theorem for restr...
rabeqdv 3435 Equality of restricted cla...
rabeqbidva 3436 Equality of restricted cla...
rabeqbidv 3437 Equality of restricted cla...
rabrabi 3438 Abstract builder restricte...
nfrab1 3439 The abstraction variable i...
rabid 3440 An "identity" law of concr...
rabidim1 3441 Membership in a restricted...
reqabi 3442 Inference from equality of...
rabrab 3443 Abstract builder restricte...
rabrabiOLD 3444 Obsolete version of ~ rabr...
rabbida4 3445 Version of ~ rabbidva2 wit...
rabbida 3446 Equivalent wff's yield equ...
rabbid 3447 Version of ~ rabbidv with ...
rabeqd 3448 Deduction form of ~ rabeq ...
rabeqbida 3449 Version of ~ rabeqbidva wi...
rabbi 3450 Equivalent wff's correspon...
rabid2f 3451 An "identity" law for rest...
rabid2im 3452 One direction of ~ rabid2 ...
rabid2 3453 An "identity" law for rest...
rabid2OLD 3454 Obsolete version of ~ rabi...
rabeqf 3455 Equality theorem for restr...
cbvrabw 3456 Rule to change the bound v...
nfrabw 3457 A variable not free in a w...
nfrabwOLD 3458 Obsolete version of ~ nfra...
rabbidaOLD 3459 Obsolete version of ~ rabb...
rabeqiOLD 3460 Obsolete version of ~ rabe...
nfrab 3461 A variable not free in a w...
cbvrab 3462 Rule to change the bound v...
vjust 3464 Justification theorem for ...
dfv2 3466 Alternate definition of th...
vex 3467 All setvar variables are s...
vexOLD 3468 Obsolete version of ~ vex ...
elv 3469 If a proposition is implie...
elvd 3470 If a proposition is implie...
el2v 3471 If a proposition is implie...
eqv 3472 The universe contains ever...
eqvf 3473 The universe contains ever...
abv 3474 The class of sets verifyin...
abvALT 3475 Alternate proof of ~ abv ,...
isset 3476 Two ways to express that "...
issetft 3477 Closed theorem form of ~ i...
issetf 3478 A version of ~ isset that ...
isseti 3479 A way to say " ` A ` is a ...
issetri 3480 A way to say " ` A ` is a ...
eqvisset 3481 A class equal to a variabl...
elex 3482 If a class is a member of ...
elexOLD 3483 Obsolete version of ~ elex...
elexi 3484 If a class is a member of ...
elexd 3485 If a class is a member of ...
elex2OLD 3486 Obsolete version of ~ elex...
elex22 3487 If two classes each contai...
prcnel 3488 A proper class doesn't bel...
ralv 3489 A universal quantifier res...
rexv 3490 An existential quantifier ...
reuv 3491 A unique existential quant...
rmov 3492 An at-most-one quantifier ...
rabab 3493 A class abstraction restri...
rexcom4b 3494 Specialized existential co...
ceqsal1t 3495 One direction of ~ ceqsalt...
ceqsalt 3496 Closed theorem version of ...
ceqsralt 3497 Restricted quantifier vers...
ceqsalg 3498 A representation of explic...
ceqsalgALT 3499 Alternate proof of ~ ceqsa...
ceqsal 3500 A representation of explic...
ceqsalALT 3501 A representation of explic...
ceqsalv 3502 A representation of explic...
ceqsalvOLD 3503 Obsolete version of ~ ceqs...
ceqsralv 3504 Restricted quantifier vers...
ceqsralvOLD 3505 Obsolete version of ~ ceqs...
gencl 3506 Implicit substitution for ...
2gencl 3507 Implicit substitution for ...
3gencl 3508 Implicit substitution for ...
cgsexg 3509 Implicit substitution infe...
cgsex2g 3510 Implicit substitution infe...
cgsex4g 3511 An implicit substitution i...
cgsex4gOLD 3512 Obsolete version of ~ cgse...
cgsex4gOLDOLD 3513 Obsolete version of ~ cgse...
ceqsex 3514 Elimination of an existent...
ceqsexOLD 3515 Obsolete version of ~ ceqs...
ceqsexv 3516 Elimination of an existent...
ceqsexvOLD 3517 Obsolete version of ~ ceqs...
ceqsexvOLDOLD 3518 Obsolete version of ~ ceqs...
ceqsexv2d 3519 Elimination of an existent...
ceqsex2 3520 Elimination of two existen...
ceqsex2v 3521 Elimination of two existen...
ceqsex3v 3522 Elimination of three exist...
ceqsex4v 3523 Elimination of four existe...
ceqsex6v 3524 Elimination of six existen...
ceqsex8v 3525 Elimination of eight exist...
gencbvex 3526 Change of bound variable u...
gencbvex2 3527 Restatement of ~ gencbvex ...
gencbval 3528 Change of bound variable u...
sbhypf 3529 Introduce an explicit subs...
sbhypfOLD 3530 Obsolete version of ~ sbhy...
vtoclgft 3531 Closed theorem form of ~ v...
vtocleg 3532 Implicit substitution of a...
vtoclg 3533 Implicit substitution of a...
vtocle 3534 Implicit substitution of a...
vtocleOLD 3535 Obsolete version of ~ vtoc...
vtoclbg 3536 Implicit substitution of a...
vtocl 3537 Implicit substitution of a...
vtocldf 3538 Implicit substitution of a...
vtocld 3539 Implicit substitution of a...
vtocldOLD 3540 Obsolete version of ~ vtoc...
vtocl2d 3541 Implicit substitution of t...
vtoclef 3542 Implicit substitution of a...
vtoclf 3543 Implicit substitution of a...
vtoclfOLD 3544 Obsolete version of ~ vtoc...
vtoclALT 3545 Alternate proof of ~ vtocl...
vtocl2 3546 Implicit substitution of c...
vtocl3 3547 Implicit substitution of c...
vtoclb 3548 Implicit substitution of a...
vtoclgf 3549 Implicit substitution of a...
vtoclg1f 3550 Version of ~ vtoclgf with ...
vtoclgOLD 3551 Obsolete version of ~ vtoc...
vtocl2gf 3552 Implicit substitution of a...
vtocl3gf 3553 Implicit substitution of a...
vtocl2g 3554 Implicit substitution of 2...
vtocl3g 3555 Implicit substitution of a...
vtoclgaf 3556 Implicit substitution of a...
vtoclga 3557 Implicit substitution of a...
vtocl2ga 3558 Implicit substitution of 2...
vtocl2gaf 3559 Implicit substitution of 2...
vtocl2gafOLD 3560 Obsolete version of ~ vtoc...
vtocl3gaf 3561 Implicit substitution of 3...
vtocl3gafOLD 3562 Obsolete version of ~ vtoc...
vtocl3ga 3563 Implicit substitution of 3...
vtocl3gaOLD 3564 Obsolete version of ~ vtoc...
vtocl3gaOLDOLD 3565 Obsolete version of ~ vtoc...
vtocl4g 3566 Implicit substitution of 4...
vtocl4ga 3567 Implicit substitution of 4...
vtocl4gaOLD 3568 Obsolete version of ~ vtoc...
vtoclegft 3569 Implicit substitution of a...
vtoclegftOLD 3570 Obsolete version of ~ vtoc...
vtoclri 3571 Implicit substitution of a...
spcimgft 3572 A closed version of ~ spci...
spcgft 3573 A closed version of ~ spcg...
spcimgf 3574 Rule of specialization, us...
spcimegf 3575 Existential specialization...
spcgf 3576 Rule of specialization, us...
spcegf 3577 Existential specialization...
spcimdv 3578 Restricted specialization,...
spcdv 3579 Rule of specialization, us...
spcimedv 3580 Restricted existential spe...
spcgv 3581 Rule of specialization, us...
spcegv 3582 Existential specialization...
spcedv 3583 Existential specialization...
spc2egv 3584 Existential specialization...
spc2gv 3585 Specialization with two qu...
spc2ed 3586 Existential specialization...
spc2d 3587 Specialization with 2 quan...
spc3egv 3588 Existential specialization...
spc3gv 3589 Specialization with three ...
spcv 3590 Rule of specialization, us...
spcev 3591 Existential specialization...
spc2ev 3592 Existential specialization...
rspct 3593 A closed version of ~ rspc...
rspcdf 3594 Restricted specialization,...
rspc 3595 Restricted specialization,...
rspce 3596 Restricted existential spe...
rspcimdv 3597 Restricted specialization,...
rspcimedv 3598 Restricted existential spe...
rspcdv 3599 Restricted specialization,...
rspcedv 3600 Restricted existential spe...
rspcebdv 3601 Restricted existential spe...
rspcdv2 3602 Restricted specialization,...
rspcv 3603 Restricted specialization,...
rspccv 3604 Restricted specialization,...
rspcva 3605 Restricted specialization,...
rspccva 3606 Restricted specialization,...
rspcev 3607 Restricted existential spe...
rspcdva 3608 Restricted specialization,...
rspcedvd 3609 Restricted existential spe...
rspcedvdw 3610 Version of ~ rspcedvd wher...
rspceb2dv 3611 Restricted existential spe...
rspcime 3612 Prove a restricted existen...
rspceaimv 3613 Restricted existential spe...
rspcedeq1vd 3614 Restricted existential spe...
rspcedeq2vd 3615 Restricted existential spe...
rspc2 3616 Restricted specialization ...
rspc2gv 3617 Restricted specialization ...
rspc2v 3618 2-variable restricted spec...
rspc2va 3619 2-variable restricted spec...
rspc2ev 3620 2-variable restricted exis...
2rspcedvdw 3621 Double application of ~ rs...
rspc2dv 3622 2-variable restricted spec...
rspc3v 3623 3-variable restricted spec...
rspc3ev 3624 3-variable restricted exis...
rspc3dv 3625 3-variable restricted spec...
rspc4v 3626 4-variable restricted spec...
rspc6v 3627 6-variable restricted spec...
rspc8v 3628 8-variable restricted spec...
rspceeqv 3629 Restricted existential spe...
ralxpxfr2d 3630 Transfer a universal quant...
rexraleqim 3631 Statement following from e...
eqvincg 3632 A variable introduction la...
eqvinc 3633 A variable introduction la...
eqvincf 3634 A variable introduction la...
alexeqg 3635 Two ways to express substi...
ceqex 3636 Equality implies equivalen...
ceqsexg 3637 A representation of explic...
ceqsexgv 3638 Elimination of an existent...
ceqsrexv 3639 Elimination of a restricte...
ceqsrexbv 3640 Elimination of a restricte...
ceqsralbv 3641 Elimination of a restricte...
ceqsrex2v 3642 Elimination of a restricte...
clel2g 3643 Alternate definition of me...
clel2gOLD 3644 Obsolete version of ~ clel...
clel2 3645 Alternate definition of me...
clel3g 3646 Alternate definition of me...
clel3 3647 Alternate definition of me...
clel4g 3648 Alternate definition of me...
clel4 3649 Alternate definition of me...
clel4OLD 3650 Obsolete version of ~ clel...
clel5 3651 Alternate definition of cl...
pm13.183 3652 Compare theorem *13.183 in...
rr19.3v 3653 Restricted quantifier vers...
rr19.28v 3654 Restricted quantifier vers...
elab6g 3655 Membership in a class abst...
elabd2 3656 Membership in a class abst...
elabd3 3657 Membership in a class abst...
elabgt 3658 Membership in a class abst...
elabgtOLD 3659 Obsolete version of ~ elab...
elabgtOLDOLD 3660 Obsolete version of ~ elab...
elabgf 3661 Membership in a class abst...
elabf 3662 Membership in a class abst...
elabg 3663 Membership in a class abst...
elabgOLD 3664 Obsolete version of ~ elab...
elab 3665 Membership in a class abst...
elabOLD 3666 Obsolete version of ~ elab...
elab2g 3667 Membership in a class abst...
elabd 3668 Explicit demonstration the...
elab2 3669 Membership in a class abst...
elab4g 3670 Membership in a class abst...
elab3gf 3671 Membership in a class abst...
elab3g 3672 Membership in a class abst...
elab3 3673 Membership in a class abst...
elrabi 3674 Implication for the member...
elrabiOLD 3675 Obsolete version of ~ elra...
elrabf 3676 Membership in a restricted...
rabtru 3677 Abstract builder using the...
rabeqcOLD 3678 Obsolete version of ~ rabe...
elrab3t 3679 Membership in a restricted...
elrab 3680 Membership in a restricted...
elrab3 3681 Membership in a restricted...
elrabd 3682 Membership in a restricted...
elrab2 3683 Membership in a restricted...
ralab 3684 Universal quantification o...
ralabOLD 3685 Obsolete version of ~ rala...
ralrab 3686 Universal quantification o...
rexab 3687 Existential quantification...
rexabOLD 3688 Obsolete version of ~ rexa...
rexrab 3689 Existential quantification...
ralab2 3690 Universal quantification o...
ralrab2 3691 Universal quantification o...
rexab2 3692 Existential quantification...
rexrab2 3693 Existential quantification...
reurab 3694 Restricted existential uni...
abidnf 3695 Identity used to create cl...
dedhb 3696 A deduction theorem for co...
class2seteq 3697 Writing a set as a class a...
nelrdva 3698 Deduce negative membership...
eqeu 3699 A condition which implies ...
moeq 3700 There exists at most one s...
eueq 3701 A class is a set if and on...
eueqi 3702 There exists a unique set ...
eueq2 3703 Equality has existential u...
eueq3 3704 Equality has existential u...
moeq3 3705 "At most one" property of ...
mosub 3706 "At most one" remains true...
mo2icl 3707 Theorem for inferring "at ...
mob2 3708 Consequence of "at most on...
moi2 3709 Consequence of "at most on...
mob 3710 Equality implied by "at mo...
moi 3711 Equality implied by "at mo...
morex 3712 Derive membership from uni...
euxfr2w 3713 Transfer existential uniqu...
euxfrw 3714 Transfer existential uniqu...
euxfr2 3715 Transfer existential uniqu...
euxfr 3716 Transfer existential uniqu...
euind 3717 Existential uniqueness via...
reu2 3718 A way to express restricte...
reu6 3719 A way to express restricte...
reu3 3720 A way to express restricte...
reu6i 3721 A condition which implies ...
eqreu 3722 A condition which implies ...
rmo4 3723 Restricted "at most one" u...
reu4 3724 Restricted uniqueness usin...
reu7 3725 Restricted uniqueness usin...
reu8 3726 Restricted uniqueness usin...
rmo3f 3727 Restricted "at most one" u...
rmo4f 3728 Restricted "at most one" u...
reu2eqd 3729 Deduce equality from restr...
reueq 3730 Equality has existential u...
rmoeq 3731 Equality's restricted exis...
rmoan 3732 Restricted "at most one" s...
rmoim 3733 Restricted "at most one" i...
rmoimia 3734 Restricted "at most one" i...
rmoimi 3735 Restricted "at most one" i...
rmoimi2 3736 Restricted "at most one" i...
2reu5a 3737 Double restricted existent...
reuimrmo 3738 Restricted uniqueness impl...
2reuswap 3739 A condition allowing swap ...
2reuswap2 3740 A condition allowing swap ...
reuxfrd 3741 Transfer existential uniqu...
reuxfr 3742 Transfer existential uniqu...
reuxfr1d 3743 Transfer existential uniqu...
reuxfr1ds 3744 Transfer existential uniqu...
reuxfr1 3745 Transfer existential uniqu...
reuind 3746 Existential uniqueness via...
2rmorex 3747 Double restricted quantifi...
2reu5lem1 3748 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3749 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3750 Lemma for ~ 2reu5 . This ...
2reu5 3751 Double restricted existent...
2reurmo 3752 Double restricted quantifi...
2reurex 3753 Double restricted quantifi...
2rmoswap 3754 A condition allowing to sw...
2rexreu 3755 Double restricted existent...
cdeqi 3758 Deduce conditional equalit...
cdeqri 3759 Property of conditional eq...
cdeqth 3760 Deduce conditional equalit...
cdeqnot 3761 Distribute conditional equ...
cdeqal 3762 Distribute conditional equ...
cdeqab 3763 Distribute conditional equ...
cdeqal1 3764 Distribute conditional equ...
cdeqab1 3765 Distribute conditional equ...
cdeqim 3766 Distribute conditional equ...
cdeqcv 3767 Conditional equality for s...
cdeqeq 3768 Distribute conditional equ...
cdeqel 3769 Distribute conditional equ...
nfcdeq 3770 If we have a conditional e...
nfccdeq 3771 Variation of ~ nfcdeq for ...
rru 3772 Relative version of Russel...
ru 3773 Russell's Paradox. Propos...
dfsbcq 3776 Proper substitution of a c...
dfsbcq2 3777 This theorem, which is sim...
sbsbc 3778 Show that ~ df-sb and ~ df...
sbceq1d 3779 Equality theorem for class...
sbceq1dd 3780 Equality theorem for class...
sbceqbid 3781 Equality theorem for class...
sbc8g 3782 This is the closest we can...
sbc2or 3783 The disjunction of two equ...
sbcex 3784 By our definition of prope...
sbceq1a 3785 Equality theorem for class...
sbceq2a 3786 Equality theorem for class...
spsbc 3787 Specialization: if a formu...
spsbcd 3788 Specialization: if a formu...
sbcth 3789 A substitution into a theo...
sbcthdv 3790 Deduction version of ~ sbc...
sbcid 3791 An identity theorem for su...
nfsbc1d 3792 Deduction version of ~ nfs...
nfsbc1 3793 Bound-variable hypothesis ...
nfsbc1v 3794 Bound-variable hypothesis ...
nfsbcdw 3795 Deduction version of ~ nfs...
nfsbcw 3796 Bound-variable hypothesis ...
sbccow 3797 A composition law for clas...
nfsbcd 3798 Deduction version of ~ nfs...
nfsbc 3799 Bound-variable hypothesis ...
sbcco 3800 A composition law for clas...
sbcco2 3801 A composition law for clas...
sbc5 3802 An equivalence for class s...
sbc5ALT 3803 Alternate proof of ~ sbc5 ...
sbc6g 3804 An equivalence for class s...
sbc6gOLD 3805 Obsolete version of ~ sbc6...
sbc6 3806 An equivalence for class s...
sbc7 3807 An equivalence for class s...
cbvsbcw 3808 Change bound variables in ...
cbvsbcvw 3809 Change the bound variable ...
cbvsbc 3810 Change bound variables in ...
cbvsbcv 3811 Change the bound variable ...
sbciegft 3812 Conversion of implicit sub...
sbciegftOLD 3813 Obsolete version of ~ sbci...
sbciegf 3814 Conversion of implicit sub...
sbcieg 3815 Conversion of implicit sub...
sbciegOLD 3816 Obsolete version of ~ sbci...
sbcie2g 3817 Conversion of implicit sub...
sbcie 3818 Conversion of implicit sub...
sbciedf 3819 Conversion of implicit sub...
sbcied 3820 Conversion of implicit sub...
sbciedOLD 3821 Obsolete version of ~ sbci...
sbcied2 3822 Conversion of implicit sub...
elrabsf 3823 Membership in a restricted...
eqsbc1 3824 Substitution for the left-...
sbcng 3825 Move negation in and out o...
sbcimg 3826 Distribution of class subs...
sbcan 3827 Distribution of class subs...
sbcor 3828 Distribution of class subs...
sbcbig 3829 Distribution of class subs...
sbcn1 3830 Move negation in and out o...
sbcim1 3831 Distribution of class subs...
sbcim1OLD 3832 Obsolete version of ~ sbci...
sbcbid 3833 Formula-building deduction...
sbcbidv 3834 Formula-building deduction...
sbcbii 3835 Formula-building inference...
sbcbi1 3836 Distribution of class subs...
sbcbi2 3837 Substituting into equivale...
sbcal 3838 Move universal quantifier ...
sbcex2 3839 Move existential quantifie...
sbceqal 3840 Class version of one impli...
sbceqalOLD 3841 Obsolete version of ~ sbce...
sbeqalb 3842 Theorem *14.121 in [Whiteh...
eqsbc2 3843 Substitution for the right...
sbc3an 3844 Distribution of class subs...
sbcel1v 3845 Class substitution into a ...
sbcel2gv 3846 Class substitution into a ...
sbcel21v 3847 Class substitution into a ...
sbcimdv 3848 Substitution analogue of T...
sbcimdvOLD 3849 Obsolete version of ~ sbci...
sbctt 3850 Substitution for a variabl...
sbcgf 3851 Substitution for a variabl...
sbc19.21g 3852 Substitution for a variabl...
sbcg 3853 Substitution for a variabl...
sbcgOLD 3854 Obsolete version of ~ sbcg...
sbcgfi 3855 Substitution for a variabl...
sbc2iegf 3856 Conversion of implicit sub...
sbc2ie 3857 Conversion of implicit sub...
sbc2ieOLD 3858 Obsolete version of ~ sbc2...
sbc2iedv 3859 Conversion of implicit sub...
sbc3ie 3860 Conversion of implicit sub...
sbccomlem 3861 Lemma for ~ sbccom . (Con...
sbccom 3862 Commutative law for double...
sbcralt 3863 Interchange class substitu...
sbcrext 3864 Interchange class substitu...
sbcralg 3865 Interchange class substitu...
sbcrex 3866 Interchange class substitu...
sbcreu 3867 Interchange class substitu...
reu8nf 3868 Restricted uniqueness usin...
sbcabel 3869 Interchange class substitu...
rspsbc 3870 Restricted quantifier vers...
rspsbca 3871 Restricted quantifier vers...
rspesbca 3872 Existence form of ~ rspsbc...
spesbc 3873 Existence form of ~ spsbc ...
spesbcd 3874 form of ~ spsbc . (Contri...
sbcth2 3875 A substitution into a theo...
ra4v 3876 Version of ~ ra4 with a di...
ra4 3877 Restricted quantifier vers...
rmo2 3878 Alternate definition of re...
rmo2i 3879 Condition implying restric...
rmo3 3880 Restricted "at most one" u...
rmob 3881 Consequence of "at most on...
rmoi 3882 Consequence of "at most on...
rmob2 3883 Consequence of "restricted...
rmoi2 3884 Consequence of "restricted...
rmoanim 3885 Introduction of a conjunct...
rmoanimALT 3886 Alternate proof of ~ rmoan...
reuan 3887 Introduction of a conjunct...
2reu1 3888 Double restricted existent...
2reu2 3889 Double restricted existent...
csb2 3892 Alternate expression for t...
csbeq1 3893 Analogue of ~ dfsbcq for p...
csbeq1d 3894 Equality deduction for pro...
csbeq2 3895 Substituting into equivale...
csbeq2d 3896 Formula-building deduction...
csbeq2dv 3897 Formula-building deduction...
csbeq2i 3898 Formula-building inference...
csbeq12dv 3899 Formula-building inference...
cbvcsbw 3900 Change bound variables in ...
cbvcsb 3901 Change bound variables in ...
cbvcsbv 3902 Change the bound variable ...
csbid 3903 Analogue of ~ sbid for pro...
csbeq1a 3904 Equality theorem for prope...
csbcow 3905 Composition law for chaine...
csbco 3906 Composition law for chaine...
csbtt 3907 Substitution doesn't affec...
csbconstgf 3908 Substitution doesn't affec...
csbconstg 3909 Substitution doesn't affec...
csbconstgOLD 3910 Obsolete version of ~ csbc...
csbgfi 3911 Substitution for a variabl...
csbconstgi 3912 The proper substitution of...
nfcsb1d 3913 Bound-variable hypothesis ...
nfcsb1 3914 Bound-variable hypothesis ...
nfcsb1v 3915 Bound-variable hypothesis ...
nfcsbd 3916 Deduction version of ~ nfc...
nfcsbw 3917 Bound-variable hypothesis ...
nfcsb 3918 Bound-variable hypothesis ...
csbhypf 3919 Introduce an explicit subs...
csbiebt 3920 Conversion of implicit sub...
csbiedf 3921 Conversion of implicit sub...
csbieb 3922 Bidirectional conversion b...
csbiebg 3923 Bidirectional conversion b...
csbiegf 3924 Conversion of implicit sub...
csbief 3925 Conversion of implicit sub...
csbie 3926 Conversion of implicit sub...
csbieOLD 3927 Obsolete version of ~ csbi...
csbied 3928 Conversion of implicit sub...
csbiedOLD 3929 Obsolete version of ~ csbi...
csbied2 3930 Conversion of implicit sub...
csbie2t 3931 Conversion of implicit sub...
csbie2 3932 Conversion of implicit sub...
csbie2g 3933 Conversion of implicit sub...
cbvrabcsfw 3934 Version of ~ cbvrabcsf wit...
cbvralcsf 3935 A more general version of ...
cbvrexcsf 3936 A more general version of ...
cbvreucsf 3937 A more general version of ...
cbvrabcsf 3938 A more general version of ...
cbvralv2 3939 Rule used to change the bo...
cbvrexv2 3940 Rule used to change the bo...
rspc2vd 3941 Deduction version of 2-var...
difjust 3947 Soundness justification th...
unjust 3949 Soundness justification th...
injust 3951 Soundness justification th...
dfin5 3953 Alternate definition for t...
dfdif2 3954 Alternate definition of cl...
eldif 3955 Expansion of membership in...
eldifd 3956 If a class is in one class...
eldifad 3957 If a class is in the diffe...
eldifbd 3958 If a class is in the diffe...
elneeldif 3959 The elements of a set diff...
velcomp 3960 Characterization of setvar...
elin 3961 Expansion of membership in...
dfss2 3963 Alternate definition of th...
dfss 3964 Variant of subclass defini...
dfss3 3966 Alternate definition of su...
dfss6 3967 Alternate definition of su...
dfssf 3968 Equivalence for subclass r...
dfss3f 3969 Equivalence for subclass r...
nfss 3970 If ` x ` is not free in ` ...
ssel 3971 Membership relationships f...
ssel2 3972 Membership relationships f...
sseli 3973 Membership implication fro...
sselii 3974 Membership inference from ...
sselid 3975 Membership inference from ...
sseld 3976 Membership deduction from ...
sselda 3977 Membership deduction from ...
sseldd 3978 Membership inference from ...
ssneld 3979 If a class is not in anoth...
ssneldd 3980 If an element is not in a ...
ssriv 3981 Inference based on subclas...
ssrd 3982 Deduction based on subclas...
ssrdv 3983 Deduction based on subclas...
sstr2 3984 Transitivity of subclass r...
sstr2OLD 3985 Obsolete version of ~ sstr...
sstr 3986 Transitivity of subclass r...
sstri 3987 Subclass transitivity infe...
sstrd 3988 Subclass transitivity dedu...
sstrid 3989 Subclass transitivity dedu...
sstrdi 3990 Subclass transitivity dedu...
sylan9ss 3991 A subclass transitivity de...
sylan9ssr 3992 A subclass transitivity de...
eqss 3993 The subclass relationship ...
eqssi 3994 Infer equality from two su...
eqssd 3995 Equality deduction from tw...
sssseq 3996 If a class is a subclass o...
eqrd 3997 Deduce equality of classes...
eqri 3998 Infer equality of classes ...
eqelssd 3999 Equality deduction from su...
ssid 4000 Any class is a subclass of...
ssidd 4001 Weakening of ~ ssid . (Co...
ssv 4002 Any class is a subclass of...
sseq1 4003 Equality theorem for subcl...
sseq2 4004 Equality theorem for the s...
sseq12 4005 Equality theorem for the s...
sseq1i 4006 An equality inference for ...
sseq2i 4007 An equality inference for ...
sseq12i 4008 An equality inference for ...
sseq1d 4009 An equality deduction for ...
sseq2d 4010 An equality deduction for ...
sseq12d 4011 An equality deduction for ...
eqsstri 4012 Substitution of equality i...
eqsstrri 4013 Substitution of equality i...
sseqtri 4014 Substitution of equality i...
sseqtrri 4015 Substitution of equality i...
eqsstrd 4016 Substitution of equality i...
eqsstrrd 4017 Substitution of equality i...
sseqtrd 4018 Substitution of equality i...
sseqtrrd 4019 Substitution of equality i...
3sstr3i 4020 Substitution of equality i...
3sstr4i 4021 Substitution of equality i...
3sstr3g 4022 Substitution of equality i...
3sstr4g 4023 Substitution of equality i...
3sstr3d 4024 Substitution of equality i...
3sstr4d 4025 Substitution of equality i...
eqsstrid 4026 A chained subclass and equ...
eqsstrrid 4027 A chained subclass and equ...
sseqtrdi 4028 A chained subclass and equ...
sseqtrrdi 4029 A chained subclass and equ...
sseqtrid 4030 Subclass transitivity dedu...
sseqtrrid 4031 Subclass transitivity dedu...
eqsstrdi 4032 A chained subclass and equ...
eqsstrrdi 4033 A chained subclass and equ...
eqimssd 4034 Equality implies inclusion...
eqimsscd 4035 Equality implies inclusion...
eqimss 4036 Equality implies inclusion...
eqimss2 4037 Equality implies inclusion...
eqimssi 4038 Infer subclass relationshi...
eqimss2i 4039 Infer subclass relationshi...
nssne1 4040 Two classes are different ...
nssne2 4041 Two classes are different ...
nss 4042 Negation of subclass relat...
nelss 4043 Demonstrate by witnesses t...
ssrexf 4044 Restricted existential qua...
ssrmof 4045 "At most one" existential ...
ssralv 4046 Quantification restricted ...
ssrexv 4047 Existential quantification...
ss2ralv 4048 Two quantifications restri...
ss2rexv 4049 Two existential quantifica...
ssralvOLD 4050 Obsolete version of ~ ssra...
ssrexvOLD 4051 Obsolete version of ~ ssre...
ralss 4052 Restricted universal quant...
rexss 4053 Restricted existential qua...
ss2ab 4054 Class abstractions in a su...
abss 4055 Class abstraction in a sub...
ssab 4056 Subclass of a class abstra...
ssabral 4057 The relation for a subclas...
ss2abdv 4058 Deduction of abstraction s...
ss2abdvOLD 4059 Obsolete version of ~ ss2a...
ss2abi 4060 Inference of abstraction s...
ss2abiOLD 4061 Obsolete version of ~ ss2a...
abssdv 4062 Deduction of abstraction s...
abssdvOLD 4063 Obsolete version of ~ abss...
abssi 4064 Inference of abstraction s...
ss2rab 4065 Restricted abstraction cla...
rabss 4066 Restricted class abstracti...
ssrab 4067 Subclass of a restricted c...
ssrabdv 4068 Subclass of a restricted c...
rabssdv 4069 Subclass of a restricted c...
ss2rabdv 4070 Deduction of restricted ab...
ss2rabi 4071 Inference of restricted ab...
rabss2 4072 Subclass law for restricte...
ssab2 4073 Subclass relation for the ...
ssrab2 4074 Subclass relation for a re...
ssrab2OLD 4075 Obsolete version of ~ ssra...
rabss3d 4076 Subclass law for restricte...
ssrab3 4077 Subclass relation for a re...
rabssrabd 4078 Subclass of a restricted c...
ssrabeq 4079 If the restricting class o...
rabssab 4080 A restricted class is a su...
uniiunlem 4081 A subset relationship usef...
dfpss2 4082 Alternate definition of pr...
dfpss3 4083 Alternate definition of pr...
psseq1 4084 Equality theorem for prope...
psseq2 4085 Equality theorem for prope...
psseq1i 4086 An equality inference for ...
psseq2i 4087 An equality inference for ...
psseq12i 4088 An equality inference for ...
psseq1d 4089 An equality deduction for ...
psseq2d 4090 An equality deduction for ...
psseq12d 4091 An equality deduction for ...
pssss 4092 A proper subclass is a sub...
pssne 4093 Two classes in a proper su...
pssssd 4094 Deduce subclass from prope...
pssned 4095 Proper subclasses are uneq...
sspss 4096 Subclass in terms of prope...
pssirr 4097 Proper subclass is irrefle...
pssn2lp 4098 Proper subclass has no 2-c...
sspsstri 4099 Two ways of stating tricho...
ssnpss 4100 Partial trichotomy law for...
psstr 4101 Transitive law for proper ...
sspsstr 4102 Transitive law for subclas...
psssstr 4103 Transitive law for subclas...
psstrd 4104 Proper subclass inclusion ...
sspsstrd 4105 Transitivity involving sub...
psssstrd 4106 Transitivity involving sub...
npss 4107 A class is not a proper su...
ssnelpss 4108 A subclass missing a membe...
ssnelpssd 4109 Subclass inclusion with on...
ssexnelpss 4110 If there is an element of ...
dfdif3 4111 Alternate definition of cl...
difeq1 4112 Equality theorem for class...
difeq2 4113 Equality theorem for class...
difeq12 4114 Equality theorem for class...
difeq1i 4115 Inference adding differenc...
difeq2i 4116 Inference adding differenc...
difeq12i 4117 Equality inference for cla...
difeq1d 4118 Deduction adding differenc...
difeq2d 4119 Deduction adding differenc...
difeq12d 4120 Equality deduction for cla...
difeqri 4121 Inference from membership ...
nfdif 4122 Bound-variable hypothesis ...
nfdifOLD 4123 Obsolete version of ~ nfdi...
eldifi 4124 Implication of membership ...
eldifn 4125 Implication of membership ...
elndif 4126 A set does not belong to a...
neldif 4127 Implication of membership ...
difdif 4128 Double class difference. ...
difss 4129 Subclass relationship for ...
difssd 4130 A difference of two classe...
difss2 4131 If a class is contained in...
difss2d 4132 If a class is contained in...
ssdifss 4133 Preservation of a subclass...
ddif 4134 Double complement under un...
ssconb 4135 Contraposition law for sub...
sscon 4136 Contraposition law for sub...
ssdif 4137 Difference law for subsets...
ssdifd 4138 If ` A ` is contained in `...
sscond 4139 If ` A ` is contained in `...
ssdifssd 4140 If ` A ` is contained in `...
ssdif2d 4141 If ` A ` is contained in `...
raldifb 4142 Restricted universal quant...
rexdifi 4143 Restricted existential qua...
complss 4144 Complementation reverses i...
compleq 4145 Two classes are equal if a...
elun 4146 Expansion of membership in...
elunnel1 4147 A member of a union that i...
elunnel2 4148 A member of a union that i...
uneqri 4149 Inference from membership ...
unidm 4150 Idempotent law for union o...
uncom 4151 Commutative law for union ...
equncom 4152 If a class equals the unio...
equncomi 4153 Inference form of ~ equnco...
uneq1 4154 Equality theorem for the u...
uneq2 4155 Equality theorem for the u...
uneq12 4156 Equality theorem for the u...
uneq1i 4157 Inference adding union to ...
uneq2i 4158 Inference adding union to ...
uneq12i 4159 Equality inference for the...
uneq1d 4160 Deduction adding union to ...
uneq2d 4161 Deduction adding union to ...
uneq12d 4162 Equality deduction for the...
nfun 4163 Bound-variable hypothesis ...
nfunOLD 4164 Obsolete version of ~ nfun...
unass 4165 Associative law for union ...
un12 4166 A rearrangement of union. ...
un23 4167 A rearrangement of union. ...
un4 4168 A rearrangement of the uni...
unundi 4169 Union distributes over its...
unundir 4170 Union distributes over its...
ssun1 4171 Subclass relationship for ...
ssun2 4172 Subclass relationship for ...
ssun3 4173 Subclass law for union of ...
ssun4 4174 Subclass law for union of ...
elun1 4175 Membership law for union o...
elun2 4176 Membership law for union o...
elunant 4177 A statement is true for ev...
unss1 4178 Subclass law for union of ...
ssequn1 4179 A relationship between sub...
unss2 4180 Subclass law for union of ...
unss12 4181 Subclass law for union of ...
ssequn2 4182 A relationship between sub...
unss 4183 The union of two subclasse...
unssi 4184 An inference showing the u...
unssd 4185 A deduction showing the un...
unssad 4186 If ` ( A u. B ) ` is conta...
unssbd 4187 If ` ( A u. B ) ` is conta...
ssun 4188 A condition that implies i...
rexun 4189 Restricted existential qua...
ralunb 4190 Restricted quantification ...
ralun 4191 Restricted quantification ...
elini 4192 Membership in an intersect...
elind 4193 Deduce membership in an in...
elinel1 4194 Membership in an intersect...
elinel2 4195 Membership in an intersect...
elin2 4196 Membership in a class defi...
elin1d 4197 Elementhood in the first s...
elin2d 4198 Elementhood in the first s...
elin3 4199 Membership in a class defi...
incom 4200 Commutative law for inters...
ineqcom 4201 Two ways of expressing tha...
ineqcomi 4202 Two ways of expressing tha...
ineqri 4203 Inference from membership ...
ineq1 4204 Equality theorem for inter...
ineq2 4205 Equality theorem for inter...
ineq12 4206 Equality theorem for inter...
ineq1i 4207 Equality inference for int...
ineq2i 4208 Equality inference for int...
ineq12i 4209 Equality inference for int...
ineq1d 4210 Equality deduction for int...
ineq2d 4211 Equality deduction for int...
ineq12d 4212 Equality deduction for int...
ineqan12d 4213 Equality deduction for int...
sseqin2 4214 A relationship between sub...
nfin 4215 Bound-variable hypothesis ...
nfinOLD 4216 Obsolete version of ~ nfin...
rabbi2dva 4217 Deduction from a wff to a ...
inidm 4218 Idempotent law for interse...
inass 4219 Associative law for inters...
in12 4220 A rearrangement of interse...
in32 4221 A rearrangement of interse...
in13 4222 A rearrangement of interse...
in31 4223 A rearrangement of interse...
inrot 4224 Rotate the intersection of...
in4 4225 Rearrangement of intersect...
inindi 4226 Intersection distributes o...
inindir 4227 Intersection distributes o...
inss1 4228 The intersection of two cl...
inss2 4229 The intersection of two cl...
ssin 4230 Subclass of intersection. ...
ssini 4231 An inference showing that ...
ssind 4232 A deduction showing that a...
ssrin 4233 Add right intersection to ...
sslin 4234 Add left intersection to s...
ssrind 4235 Add right intersection to ...
ss2in 4236 Intersection of subclasses...
ssinss1 4237 Intersection preserves sub...
inss 4238 Inclusion of an intersecti...
rexin 4239 Restricted existential qua...
dfss7 4240 Alternate definition of su...
symdifcom 4243 Symmetric difference commu...
symdifeq1 4244 Equality theorem for symme...
symdifeq2 4245 Equality theorem for symme...
nfsymdif 4246 Hypothesis builder for sym...
elsymdif 4247 Membership in a symmetric ...
dfsymdif4 4248 Alternate definition of th...
elsymdifxor 4249 Membership in a symmetric ...
dfsymdif2 4250 Alternate definition of th...
symdifass 4251 Symmetric difference is as...
difsssymdif 4252 The symmetric difference c...
difsymssdifssd 4253 If the symmetric differenc...
unabs 4254 Absorption law for union. ...
inabs 4255 Absorption law for interse...
nssinpss 4256 Negation of subclass expre...
nsspssun 4257 Negation of subclass expre...
dfss4 4258 Subclass defined in terms ...
dfun2 4259 An alternate definition of...
dfin2 4260 An alternate definition of...
difin 4261 Difference with intersecti...
ssdifim 4262 Implication of a class dif...
ssdifsym 4263 Symmetric class difference...
dfss5 4264 Alternate definition of su...
dfun3 4265 Union defined in terms of ...
dfin3 4266 Intersection defined in te...
dfin4 4267 Alternate definition of th...
invdif 4268 Intersection with universa...
indif 4269 Intersection with class di...
indif2 4270 Bring an intersection in a...
indif1 4271 Bring an intersection in a...
indifcom 4272 Commutation law for inters...
indi 4273 Distributive law for inter...
undi 4274 Distributive law for union...
indir 4275 Distributive law for inter...
undir 4276 Distributive law for union...
unineq 4277 Infer equality from equali...
uneqin 4278 Equality of union and inte...
difundi 4279 Distributive law for class...
difundir 4280 Distributive law for class...
difindi 4281 Distributive law for class...
difindir 4282 Distributive law for class...
indifdi 4283 Distribute intersection ov...
indifdir 4284 Distribute intersection ov...
indifdirOLD 4285 Obsolete version of ~ indi...
difdif2 4286 Class difference by a clas...
undm 4287 De Morgan's law for union....
indm 4288 De Morgan's law for inters...
difun1 4289 A relationship involving d...
undif3 4290 An equality involving clas...
difin2 4291 Represent a class differen...
dif32 4292 Swap second and third argu...
difabs 4293 Absorption-like law for cl...
sscon34b 4294 Relative complementation r...
rcompleq 4295 Two subclasses are equal i...
dfsymdif3 4296 Alternate definition of th...
unabw 4297 Union of two class abstrac...
unab 4298 Union of two class abstrac...
inab 4299 Intersection of two class ...
difab 4300 Difference of two class ab...
abanssl 4301 A class abstraction with a...
abanssr 4302 A class abstraction with a...
notabw 4303 A class abstraction define...
notab 4304 A class abstraction define...
unrab 4305 Union of two restricted cl...
inrab 4306 Intersection of two restri...
inrab2 4307 Intersection with a restri...
difrab 4308 Difference of two restrict...
dfrab3 4309 Alternate definition of re...
dfrab2 4310 Alternate definition of re...
rabdif 4311 Move difference in and out...
notrab 4312 Complementation of restric...
dfrab3ss 4313 Restricted class abstracti...
rabun2 4314 Abstraction restricted to ...
reuun2 4315 Transfer uniqueness to a s...
reuss2 4316 Transfer uniqueness to a s...
reuss 4317 Transfer uniqueness to a s...
reuun1 4318 Transfer uniqueness to a s...
reupick 4319 Restricted uniqueness "pic...
reupick3 4320 Restricted uniqueness "pic...
reupick2 4321 Restricted uniqueness "pic...
euelss 4322 Transfer uniqueness of an ...
dfnul4 4325 Alternate definition of th...
dfnul2 4326 Alternate definition of th...
dfnul3 4327 Alternate definition of th...
dfnul2OLD 4328 Obsolete version of ~ dfnu...
dfnul3OLD 4329 Obsolete version of ~ dfnu...
dfnul4OLD 4330 Obsolete version of ~ dfnu...
noel 4331 The empty set has no eleme...
noelOLD 4332 Obsolete version of ~ noel...
nel02 4333 The empty set has no eleme...
n0i 4334 If a class has elements, t...
ne0i 4335 If a class has elements, t...
ne0d 4336 Deduction form of ~ ne0i ....
n0ii 4337 If a class has elements, t...
ne0ii 4338 If a class has elements, t...
vn0 4339 The universal class is not...
vn0ALT 4340 Alternate proof of ~ vn0 ....
eq0f 4341 A class is equal to the em...
neq0f 4342 A class is not empty if an...
n0f 4343 A class is nonempty if and...
eq0 4344 A class is equal to the em...
eq0ALT 4345 Alternate proof of ~ eq0 ....
neq0 4346 A class is not empty if an...
n0 4347 A class is nonempty if and...
eq0OLDOLD 4348 Obsolete version of ~ eq0 ...
neq0OLD 4349 Obsolete version of ~ neq0...
n0OLD 4350 Obsolete version of ~ n0 a...
nel0 4351 From the general negation ...
reximdva0 4352 Restricted existence deduc...
rspn0 4353 Specialization for restric...
rspn0OLD 4354 Obsolete version of ~ rspn...
n0rex 4355 There is an element in a n...
ssn0rex 4356 There is an element in a c...
n0moeu 4357 A case of equivalence of "...
rex0 4358 Vacuous restricted existen...
reu0 4359 Vacuous restricted uniquen...
rmo0 4360 Vacuous restricted at-most...
0el 4361 Membership of the empty se...
n0el 4362 Negated membership of the ...
eqeuel 4363 A condition which implies ...
ssdif0 4364 Subclass expressed in term...
difn0 4365 If the difference of two s...
pssdifn0 4366 A proper subclass has a no...
pssdif 4367 A proper subclass has a no...
ndisj 4368 Express that an intersecti...
difin0ss 4369 Difference, intersection, ...
inssdif0 4370 Intersection, subclass, an...
difid 4371 The difference between a c...
difidALT 4372 Alternate proof of ~ difid...
dif0 4373 The difference between a c...
ab0w 4374 The class of sets verifyin...
ab0 4375 The class of sets verifyin...
ab0OLD 4376 Obsolete version of ~ ab0 ...
ab0ALT 4377 Alternate proof of ~ ab0 ,...
dfnf5 4378 Characterization of nonfre...
ab0orv 4379 The class abstraction defi...
ab0orvALT 4380 Alternate proof of ~ ab0or...
abn0 4381 Nonempty class abstraction...
abn0OLD 4382 Obsolete version of ~ abn0...
rab0 4383 Any restricted class abstr...
rabeq0w 4384 Condition for a restricted...
rabeq0 4385 Condition for a restricted...
rabn0 4386 Nonempty restricted class ...
rabxm 4387 Law of excluded middle, in...
rabnc 4388 Law of noncontradiction, i...
elneldisj 4389 The set of elements ` s ` ...
elnelun 4390 The union of the set of el...
un0 4391 The union of a class with ...
in0 4392 The intersection of a clas...
0un 4393 The union of the empty set...
0in 4394 The intersection of the em...
inv1 4395 The intersection of a clas...
unv 4396 The union of a class with ...
0ss 4397 The null set is a subset o...
ss0b 4398 Any subset of the empty se...
ss0 4399 Any subset of the empty se...
sseq0 4400 A subclass of an empty cla...
ssn0 4401 A class with a nonempty su...
0dif 4402 The difference between the...
abf 4403 A class abstraction determ...
abfOLD 4404 Obsolete version of ~ abf ...
eq0rdv 4405 Deduction for equality to ...
eq0rdvALT 4406 Alternate proof of ~ eq0rd...
csbprc 4407 The proper substitution of...
csb0 4408 The proper substitution of...
sbcel12 4409 Distribute proper substitu...
sbceqg 4410 Distribute proper substitu...
sbceqi 4411 Distribution of class subs...
sbcnel12g 4412 Distribute proper substitu...
sbcne12 4413 Distribute proper substitu...
sbcel1g 4414 Move proper substitution i...
sbceq1g 4415 Move proper substitution t...
sbcel2 4416 Move proper substitution i...
sbceq2g 4417 Move proper substitution t...
csbcom 4418 Commutative law for double...
sbcnestgfw 4419 Nest the composition of tw...
csbnestgfw 4420 Nest the composition of tw...
sbcnestgw 4421 Nest the composition of tw...
csbnestgw 4422 Nest the composition of tw...
sbcco3gw 4423 Composition of two substit...
sbcnestgf 4424 Nest the composition of tw...
csbnestgf 4425 Nest the composition of tw...
sbcnestg 4426 Nest the composition of tw...
csbnestg 4427 Nest the composition of tw...
sbcco3g 4428 Composition of two substit...
csbco3g 4429 Composition of two class s...
csbnest1g 4430 Nest the composition of tw...
csbidm 4431 Idempotent law for class s...
csbvarg 4432 The proper substitution of...
csbvargi 4433 The proper substitution of...
sbccsb 4434 Substitution into a wff ex...
sbccsb2 4435 Substitution into a wff ex...
rspcsbela 4436 Special case related to ~ ...
sbnfc2 4437 Two ways of expressing " `...
csbab 4438 Move substitution into a c...
csbun 4439 Distribution of class subs...
csbin 4440 Distribute proper substitu...
csbie2df 4441 Conversion of implicit sub...
2nreu 4442 If there are two different...
un00 4443 Two classes are empty iff ...
vss 4444 Only the universal class h...
0pss 4445 The null set is a proper s...
npss0 4446 No set is a proper subset ...
pssv 4447 Any non-universal class is...
disj 4448 Two ways of saying that tw...
disjOLD 4449 Obsolete version of ~ disj...
disjr 4450 Two ways of saying that tw...
disj1 4451 Two ways of saying that tw...
reldisj 4452 Two ways of saying that tw...
reldisjOLD 4453 Obsolete version of ~ reld...
disj3 4454 Two ways of saying that tw...
disjne 4455 Members of disjoint sets a...
disjeq0 4456 Two disjoint sets are equa...
disjel 4457 A set can't belong to both...
disj2 4458 Two ways of saying that tw...
disj4 4459 Two ways of saying that tw...
ssdisj 4460 Intersection with a subcla...
disjpss 4461 A class is a proper subset...
undisj1 4462 The union of disjoint clas...
undisj2 4463 The union of disjoint clas...
ssindif0 4464 Subclass expressed in term...
inelcm 4465 The intersection of classe...
minel 4466 A minimum element of a cla...
undif4 4467 Distribute union over diff...
disjssun 4468 Subset relation for disjoi...
vdif0 4469 Universal class equality i...
difrab0eq 4470 If the difference between ...
pssnel 4471 A proper subclass has a me...
disjdif 4472 A class and its relative c...
disjdifr 4473 A class and its relative c...
difin0 4474 The difference of a class ...
unvdif 4475 The union of a class and i...
undif1 4476 Absorption of difference b...
undif2 4477 Absorption of difference b...
undifabs 4478 Absorption of difference b...
inundif 4479 The intersection and class...
disjdif2 4480 The difference of a class ...
difun2 4481 Absorption of union by dif...
undif 4482 Union of complementary par...
undifr 4483 Union of complementary par...
undifrOLD 4484 Obsolete version of ~ undi...
undif5 4485 An equality involving clas...
ssdifin0 4486 A subset of a difference d...
ssdifeq0 4487 A class is a subclass of i...
ssundif 4488 A condition equivalent to ...
difcom 4489 Swap the arguments of a cl...
pssdifcom1 4490 Two ways to express overla...
pssdifcom2 4491 Two ways to express non-co...
difdifdir 4492 Distributive law for class...
uneqdifeq 4493 Two ways to say that ` A `...
raldifeq 4494 Equality theorem for restr...
r19.2z 4495 Theorem 19.2 of [Margaris]...
r19.2zb 4496 A response to the notion t...
r19.3rz 4497 Restricted quantification ...
r19.28z 4498 Restricted quantifier vers...
r19.3rzv 4499 Restricted quantification ...
r19.9rzv 4500 Restricted quantification ...
r19.28zv 4501 Restricted quantifier vers...
r19.37zv 4502 Restricted quantifier vers...
r19.45zv 4503 Restricted version of Theo...
r19.44zv 4504 Restricted version of Theo...
r19.27z 4505 Restricted quantifier vers...
r19.27zv 4506 Restricted quantifier vers...
r19.36zv 4507 Restricted quantifier vers...
ralidmw 4508 Idempotent law for restric...
rzal 4509 Vacuous quantification is ...
rzalALT 4510 Alternate proof of ~ rzal ...
rexn0 4511 Restricted existential qua...
ralidm 4512 Idempotent law for restric...
ral0 4513 Vacuous universal quantifi...
ralf0 4514 The quantification of a fa...
rexn0OLD 4515 Obsolete version of ~ rexn...
ralidmOLD 4516 Obsolete version of ~ rali...
ral0OLD 4517 Obsolete version of ~ ral0...
ralf0OLD 4518 Obsolete version of ~ ralf...
ralnralall 4519 A contradiction concerning...
falseral0 4520 A false statement can only...
raaan 4521 Rearrange restricted quant...
raaanv 4522 Rearrange restricted quant...
sbss 4523 Set substitution into the ...
sbcssg 4524 Distribute proper substitu...
raaan2 4525 Rearrange restricted quant...
2reu4lem 4526 Lemma for ~ 2reu4 . (Cont...
2reu4 4527 Definition of double restr...
csbdif 4528 Distribution of class subs...
dfif2 4531 An alternate definition of...
dfif6 4532 An alternate definition of...
ifeq1 4533 Equality theorem for condi...
ifeq2 4534 Equality theorem for condi...
iftrue 4535 Value of the conditional o...
iftruei 4536 Inference associated with ...
iftrued 4537 Value of the conditional o...
iffalse 4538 Value of the conditional o...
iffalsei 4539 Inference associated with ...
iffalsed 4540 Value of the conditional o...
ifnefalse 4541 When values are unequal, b...
ifsb 4542 Distribute a function over...
dfif3 4543 Alternate definition of th...
dfif4 4544 Alternate definition of th...
dfif5 4545 Alternate definition of th...
ifssun 4546 A conditional class is inc...
ifeq12 4547 Equality theorem for condi...
ifeq1d 4548 Equality deduction for con...
ifeq2d 4549 Equality deduction for con...
ifeq12d 4550 Equality deduction for con...
ifbi 4551 Equivalence theorem for co...
ifbid 4552 Equivalence deduction for ...
ifbieq1d 4553 Equivalence/equality deduc...
ifbieq2i 4554 Equivalence/equality infer...
ifbieq2d 4555 Equivalence/equality deduc...
ifbieq12i 4556 Equivalence deduction for ...
ifbieq12d 4557 Equivalence deduction for ...
nfifd 4558 Deduction form of ~ nfif ....
nfif 4559 Bound-variable hypothesis ...
ifeq1da 4560 Conditional equality. (Co...
ifeq2da 4561 Conditional equality. (Co...
ifeq12da 4562 Equivalence deduction for ...
ifbieq12d2 4563 Equivalence deduction for ...
ifclda 4564 Conditional closure. (Con...
ifeqda 4565 Separation of the values o...
elimif 4566 Elimination of a condition...
ifbothda 4567 A wff ` th ` containing a ...
ifboth 4568 A wff ` th ` containing a ...
ifid 4569 Identical true and false a...
eqif 4570 Expansion of an equality w...
ifval 4571 Another expression of the ...
elif 4572 Membership in a conditiona...
ifel 4573 Membership of a conditiona...
ifcl 4574 Membership (closure) of a ...
ifcld 4575 Membership (closure) of a ...
ifcli 4576 Inference associated with ...
ifexd 4577 Existence of the condition...
ifexg 4578 Existence of the condition...
ifex 4579 Existence of the condition...
ifeqor 4580 The possible values of a c...
ifnot 4581 Negating the first argumen...
ifan 4582 Rewrite a conjunction in a...
ifor 4583 Rewrite a disjunction in a...
2if2 4584 Resolve two nested conditi...
ifcomnan 4585 Commute the conditions in ...
csbif 4586 Distribute proper substitu...
dedth 4587 Weak deduction theorem tha...
dedth2h 4588 Weak deduction theorem eli...
dedth3h 4589 Weak deduction theorem eli...
dedth4h 4590 Weak deduction theorem eli...
dedth2v 4591 Weak deduction theorem for...
dedth3v 4592 Weak deduction theorem for...
dedth4v 4593 Weak deduction theorem for...
elimhyp 4594 Eliminate a hypothesis con...
elimhyp2v 4595 Eliminate a hypothesis con...
elimhyp3v 4596 Eliminate a hypothesis con...
elimhyp4v 4597 Eliminate a hypothesis con...
elimel 4598 Eliminate a membership hyp...
elimdhyp 4599 Version of ~ elimhyp where...
keephyp 4600 Transform a hypothesis ` p...
keephyp2v 4601 Keep a hypothesis containi...
keephyp3v 4602 Keep a hypothesis containi...
pwjust 4604 Soundness justification th...
elpwg 4606 Membership in a power clas...
elpw 4607 Membership in a power clas...
velpw 4608 Setvar variable membership...
elpwd 4609 Membership in a power clas...
elpwi 4610 Subset relation implied by...
elpwb 4611 Characterization of the el...
elpwid 4612 An element of a power clas...
elelpwi 4613 If ` A ` belongs to a part...
sspw 4614 The powerclass preserves i...
sspwi 4615 The powerclass preserves i...
sspwd 4616 The powerclass preserves i...
pweq 4617 Equality theorem for power...
pweqALT 4618 Alternate proof of ~ pweq ...
pweqi 4619 Equality inference for pow...
pweqd 4620 Equality deduction for pow...
pwunss 4621 The power class of the uni...
nfpw 4622 Bound-variable hypothesis ...
pwidg 4623 A set is an element of its...
pwidb 4624 A class is an element of i...
pwid 4625 A set is a member of its p...
pwss 4626 Subclass relationship for ...
pwundif 4627 Break up the power class o...
snjust 4628 Soundness justification th...
sneq 4639 Equality theorem for singl...
sneqi 4640 Equality inference for sin...
sneqd 4641 Equality deduction for sin...
dfsn2 4642 Alternate definition of si...
elsng 4643 There is exactly one eleme...
elsn 4644 There is exactly one eleme...
velsn 4645 There is only one element ...
elsni 4646 There is at most one eleme...
rabsneq 4647 Equality of class abstract...
absn 4648 Condition for a class abst...
dfpr2 4649 Alternate definition of a ...
dfsn2ALT 4650 Alternate definition of si...
elprg 4651 A member of a pair of clas...
elpri 4652 If a class is an element o...
elpr 4653 A member of a pair of clas...
elpr2g 4654 A member of a pair of sets...
elpr2 4655 A member of a pair of sets...
nelpr2 4656 If a class is not an eleme...
nelpr1 4657 If a class is not an eleme...
nelpri 4658 If an element doesn't matc...
prneli 4659 If an element doesn't matc...
nelprd 4660 If an element doesn't matc...
eldifpr 4661 Membership in a set with t...
rexdifpr 4662 Restricted existential qua...
snidg 4663 A set is a member of its s...
snidb 4664 A class is a set iff it is...
snid 4665 A set is a member of its s...
vsnid 4666 A setvar variable is a mem...
elsn2g 4667 There is exactly one eleme...
elsn2 4668 There is exactly one eleme...
nelsn 4669 If a class is not equal to...
rabeqsn 4670 Conditions for a restricte...
rabsssn 4671 Conditions for a restricte...
rabeqsnd 4672 Conditions for a restricte...
ralsnsg 4673 Substitution expressed in ...
rexsns 4674 Restricted existential qua...
rexsngf 4675 Restricted existential qua...
ralsngf 4676 Restricted universal quant...
reusngf 4677 Restricted existential uni...
ralsng 4678 Substitution expressed in ...
rexsng 4679 Restricted existential qua...
reusng 4680 Restricted existential uni...
2ralsng 4681 Substitution expressed in ...
ralsngOLD 4682 Obsolete version of ~ rals...
rexsngOLD 4683 Obsolete version of ~ rexs...
rexreusng 4684 Restricted existential uni...
exsnrex 4685 There is a set being the e...
ralsn 4686 Convert a universal quanti...
rexsn 4687 Convert an existential qua...
elpwunsn 4688 Membership in an extension...
eqoreldif 4689 An element of a set is eit...
eltpg 4690 Members of an unordered tr...
eldiftp 4691 Membership in a set with t...
eltpi 4692 A member of an unordered t...
eltp 4693 A member of an unordered t...
dftp2 4694 Alternate definition of un...
nfpr 4695 Bound-variable hypothesis ...
ifpr 4696 Membership of a conditiona...
ralprgf 4697 Convert a restricted unive...
rexprgf 4698 Convert a restricted exist...
ralprg 4699 Convert a restricted unive...
ralprgOLD 4700 Obsolete version of ~ ralp...
rexprg 4701 Convert a restricted exist...
rexprgOLD 4702 Obsolete version of ~ rexp...
raltpg 4703 Convert a restricted unive...
rextpg 4704 Convert a restricted exist...
ralpr 4705 Convert a restricted unive...
rexpr 4706 Convert a restricted exist...
reuprg0 4707 Convert a restricted exist...
reuprg 4708 Convert a restricted exist...
reurexprg 4709 Convert a restricted exist...
raltp 4710 Convert a universal quanti...
rextp 4711 Convert an existential qua...
nfsn 4712 Bound-variable hypothesis ...
csbsng 4713 Distribute proper substitu...
csbprg 4714 Distribute proper substitu...
elinsn 4715 If the intersection of two...
disjsn 4716 Intersection with the sing...
disjsn2 4717 Two distinct singletons ar...
disjpr2 4718 Two completely distinct un...
disjprsn 4719 The disjoint intersection ...
disjtpsn 4720 The disjoint intersection ...
disjtp2 4721 Two completely distinct un...
snprc 4722 The singleton of a proper ...
snnzb 4723 A singleton is nonempty if...
rmosn 4724 A restricted at-most-one q...
r19.12sn 4725 Special case of ~ r19.12 w...
rabsn 4726 Condition where a restrict...
rabsnifsb 4727 A restricted class abstrac...
rabsnif 4728 A restricted class abstrac...
rabrsn 4729 A restricted class abstrac...
euabsn2 4730 Another way to express exi...
euabsn 4731 Another way to express exi...
reusn 4732 A way to express restricte...
absneu 4733 Restricted existential uni...
rabsneu 4734 Restricted existential uni...
eusn 4735 Two ways to express " ` A ...
rabsnt 4736 Truth implied by equality ...
prcom 4737 Commutative law for unorde...
preq1 4738 Equality theorem for unord...
preq2 4739 Equality theorem for unord...
preq12 4740 Equality theorem for unord...
preq1i 4741 Equality inference for uno...
preq2i 4742 Equality inference for uno...
preq12i 4743 Equality inference for uno...
preq1d 4744 Equality deduction for uno...
preq2d 4745 Equality deduction for uno...
preq12d 4746 Equality deduction for uno...
tpeq1 4747 Equality theorem for unord...
tpeq2 4748 Equality theorem for unord...
tpeq3 4749 Equality theorem for unord...
tpeq1d 4750 Equality theorem for unord...
tpeq2d 4751 Equality theorem for unord...
tpeq3d 4752 Equality theorem for unord...
tpeq123d 4753 Equality theorem for unord...
tprot 4754 Rotation of the elements o...
tpcoma 4755 Swap 1st and 2nd members o...
tpcomb 4756 Swap 2nd and 3rd members o...
tpass 4757 Split off the first elemen...
qdass 4758 Two ways to write an unord...
qdassr 4759 Two ways to write an unord...
tpidm12 4760 Unordered triple ` { A , A...
tpidm13 4761 Unordered triple ` { A , B...
tpidm23 4762 Unordered triple ` { A , B...
tpidm 4763 Unordered triple ` { A , A...
tppreq3 4764 An unordered triple is an ...
prid1g 4765 An unordered pair contains...
prid2g 4766 An unordered pair contains...
prid1 4767 An unordered pair contains...
prid2 4768 An unordered pair contains...
ifpprsnss 4769 An unordered pair is a sin...
prprc1 4770 A proper class vanishes in...
prprc2 4771 A proper class vanishes in...
prprc 4772 An unordered pair containi...
tpid1 4773 One of the three elements ...
tpid1g 4774 Closed theorem form of ~ t...
tpid2 4775 One of the three elements ...
tpid2g 4776 Closed theorem form of ~ t...
tpid3g 4777 Closed theorem form of ~ t...
tpid3 4778 One of the three elements ...
snnzg 4779 The singleton of a set is ...
snn0d 4780 The singleton of a set is ...
snnz 4781 The singleton of a set is ...
prnz 4782 A pair containing a set is...
prnzg 4783 A pair containing a set is...
tpnz 4784 An unordered triple contai...
tpnzd 4785 An unordered triple contai...
raltpd 4786 Convert a universal quanti...
snssb 4787 Characterization of the in...
snssg 4788 The singleton formed on a ...
snssgOLD 4789 Obsolete version of ~ snss...
snss 4790 The singleton of an elemen...
eldifsn 4791 Membership in a set with a...
ssdifsn 4792 Subset of a set with an el...
elpwdifsn 4793 A subset of a set is an el...
eldifsni 4794 Membership in a set with a...
eldifsnneq 4795 An element of a difference...
neldifsn 4796 The class ` A ` is not in ...
neldifsnd 4797 The class ` A ` is not in ...
rexdifsn 4798 Restricted existential qua...
raldifsni 4799 Rearrangement of a propert...
raldifsnb 4800 Restricted universal quant...
eldifvsn 4801 A set is an element of the...
difsn 4802 An element not in a set ca...
difprsnss 4803 Removal of a singleton fro...
difprsn1 4804 Removal of a singleton fro...
difprsn2 4805 Removal of a singleton fro...
diftpsn3 4806 Removal of a singleton fro...
difpr 4807 Removing two elements as p...
tpprceq3 4808 An unordered triple is an ...
tppreqb 4809 An unordered triple is an ...
difsnb 4810 ` ( B \ { A } ) ` equals `...
difsnpss 4811 ` ( B \ { A } ) ` is a pro...
snssi 4812 The singleton of an elemen...
snssd 4813 The singleton of an elemen...
difsnid 4814 If we remove a single elem...
eldifeldifsn 4815 An element of a difference...
pw0 4816 Compute the power set of t...
pwpw0 4817 Compute the power set of t...
snsspr1 4818 A singleton is a subset of...
snsspr2 4819 A singleton is a subset of...
snsstp1 4820 A singleton is a subset of...
snsstp2 4821 A singleton is a subset of...
snsstp3 4822 A singleton is a subset of...
prssg 4823 A pair of elements of a cl...
prss 4824 A pair of elements of a cl...
prssi 4825 A pair of elements of a cl...
prssd 4826 Deduction version of ~ prs...
prsspwg 4827 An unordered pair belongs ...
ssprss 4828 A pair as subset of a pair...
ssprsseq 4829 A proper pair is a subset ...
sssn 4830 The subsets of a singleton...
ssunsn2 4831 The property of being sand...
ssunsn 4832 Possible values for a set ...
eqsn 4833 Two ways to express that a...
issn 4834 A sufficient condition for...
n0snor2el 4835 A nonempty set is either a...
ssunpr 4836 Possible values for a set ...
sspr 4837 The subsets of a pair. (C...
sstp 4838 The subsets of an unordere...
tpss 4839 An unordered triple of ele...
tpssi 4840 An unordered triple of ele...
sneqrg 4841 Closed form of ~ sneqr . ...
sneqr 4842 If the singletons of two s...
snsssn 4843 If a singleton is a subset...
mosneq 4844 There exists at most one s...
sneqbg 4845 Two singletons of sets are...
snsspw 4846 The singleton of a class i...
prsspw 4847 An unordered pair belongs ...
preq1b 4848 Biconditional equality lem...
preq2b 4849 Biconditional equality lem...
preqr1 4850 Reverse equality lemma for...
preqr2 4851 Reverse equality lemma for...
preq12b 4852 Equality relationship for ...
opthpr 4853 An unordered pair has the ...
preqr1g 4854 Reverse equality lemma for...
preq12bg 4855 Closed form of ~ preq12b ....
prneimg 4856 Two pairs are not equal if...
prnebg 4857 A (proper) pair is not equ...
pr1eqbg 4858 A (proper) pair is equal t...
pr1nebg 4859 A (proper) pair is not equ...
preqsnd 4860 Equivalence for a pair equ...
prnesn 4861 A proper unordered pair is...
prneprprc 4862 A proper unordered pair is...
preqsn 4863 Equivalence for a pair equ...
preq12nebg 4864 Equality relationship for ...
prel12g 4865 Equality of two unordered ...
opthprneg 4866 An unordered pair has the ...
elpreqprlem 4867 Lemma for ~ elpreqpr . (C...
elpreqpr 4868 Equality and membership ru...
elpreqprb 4869 A set is an element of an ...
elpr2elpr 4870 For an element ` A ` of an...
dfopif 4871 Rewrite ~ df-op using ` if...
dfopg 4872 Value of the ordered pair ...
dfop 4873 Value of an ordered pair w...
opeq1 4874 Equality theorem for order...
opeq2 4875 Equality theorem for order...
opeq12 4876 Equality theorem for order...
opeq1i 4877 Equality inference for ord...
opeq2i 4878 Equality inference for ord...
opeq12i 4879 Equality inference for ord...
opeq1d 4880 Equality deduction for ord...
opeq2d 4881 Equality deduction for ord...
opeq12d 4882 Equality deduction for ord...
oteq1 4883 Equality theorem for order...
oteq2 4884 Equality theorem for order...
oteq3 4885 Equality theorem for order...
oteq1d 4886 Equality deduction for ord...
oteq2d 4887 Equality deduction for ord...
oteq3d 4888 Equality deduction for ord...
oteq123d 4889 Equality deduction for ord...
nfop 4890 Bound-variable hypothesis ...
nfopd 4891 Deduction version of bound...
csbopg 4892 Distribution of class subs...
opidg 4893 The ordered pair ` <. A , ...
opid 4894 The ordered pair ` <. A , ...
ralunsn 4895 Restricted quantification ...
2ralunsn 4896 Double restricted quantifi...
opprc 4897 Expansion of an ordered pa...
opprc1 4898 Expansion of an ordered pa...
opprc2 4899 Expansion of an ordered pa...
oprcl 4900 If an ordered pair has an ...
pwsn 4901 The power set of a singlet...
pwpr 4902 The power set of an unorde...
pwtp 4903 The power set of an unorde...
pwpwpw0 4904 Compute the power set of t...
pwv 4905 The power class of the uni...
prproe 4906 For an element of a proper...
3elpr2eq 4907 If there are three element...
dfuni2 4910 Alternate definition of cl...
eluni 4911 Membership in class union....
eluni2 4912 Membership in class union....
elunii 4913 Membership in class union....
nfunid 4914 Deduction version of ~ nfu...
nfuni 4915 Bound-variable hypothesis ...
uniss 4916 Subclass relationship for ...
unissi 4917 Subclass relationship for ...
unissd 4918 Subclass relationship for ...
unieq 4919 Equality theorem for class...
unieqi 4920 Inference of equality of t...
unieqd 4921 Deduction of equality of t...
eluniab 4922 Membership in union of a c...
elunirab 4923 Membership in union of a c...
uniprg 4924 The union of a pair is the...
unipr 4925 The union of a pair is the...
uniprOLD 4926 Obsolete version of ~ unip...
uniprgOLD 4927 Obsolete version of ~ unip...
unisng 4928 A set equals the union of ...
unisn 4929 A set equals the union of ...
unisnv 4930 A set equals the union of ...
unisn3 4931 Union of a singleton in th...
dfnfc2 4932 An alternative statement o...
uniun 4933 The class union of the uni...
uniin 4934 The class union of the int...
ssuni 4935 Subclass relationship for ...
uni0b 4936 The union of a set is empt...
uni0c 4937 The union of a set is empt...
uni0 4938 The union of the empty set...
csbuni 4939 Distribute proper substitu...
elssuni 4940 An element of a class is a...
unissel 4941 Condition turning a subcla...
unissb 4942 Relationship involving mem...
unissbOLD 4943 Obsolete version of ~ unis...
uniss2 4944 A subclass condition on th...
unidif 4945 If the difference ` A \ B ...
ssunieq 4946 Relationship implying unio...
unimax 4947 Any member of a class is t...
pwuni 4948 A class is a subclass of t...
dfint2 4951 Alternate definition of cl...
inteq 4952 Equality law for intersect...
inteqi 4953 Equality inference for cla...
inteqd 4954 Equality deduction for cla...
elint 4955 Membership in class inters...
elint2 4956 Membership in class inters...
elintg 4957 Membership in class inters...
elinti 4958 Membership in class inters...
nfint 4959 Bound-variable hypothesis ...
elintabg 4960 Two ways of saying a set i...
elintab 4961 Membership in the intersec...
elintabOLD 4962 Obsolete version of ~ elin...
elintrab 4963 Membership in the intersec...
elintrabg 4964 Membership in the intersec...
int0 4965 The intersection of the em...
intss1 4966 An element of a class incl...
ssint 4967 Subclass of a class inters...
ssintab 4968 Subclass of the intersecti...
ssintub 4969 Subclass of the least uppe...
ssmin 4970 Subclass of the minimum va...
intmin 4971 Any member of a class is t...
intss 4972 Intersection of subclasses...
intssuni 4973 The intersection of a none...
ssintrab 4974 Subclass of the intersecti...
unissint 4975 If the union of a class is...
intssuni2 4976 Subclass relationship for ...
intminss 4977 Under subset ordering, the...
intmin2 4978 Any set is the smallest of...
intmin3 4979 Under subset ordering, the...
intmin4 4980 Elimination of a conjunct ...
intab 4981 The intersection of a spec...
int0el 4982 The intersection of a clas...
intun 4983 The class intersection of ...
intprg 4984 The intersection of a pair...
intpr 4985 The intersection of a pair...
intprOLD 4986 Obsolete version of ~ intp...
intprgOLD 4987 Obsolete version of ~ intp...
intsng 4988 Intersection of a singleto...
intsn 4989 The intersection of a sing...
uniintsn 4990 Two ways to express " ` A ...
uniintab 4991 The union and the intersec...
intunsn 4992 Theorem joining a singleto...
rint0 4993 Relative intersection of a...
elrint 4994 Membership in a restricted...
elrint2 4995 Membership in a restricted...
eliun 5000 Membership in indexed unio...
eliin 5001 Membership in indexed inte...
eliuni 5002 Membership in an indexed u...
iuncom 5003 Commutation of indexed uni...
iuncom4 5004 Commutation of union with ...
iunconst 5005 Indexed union of a constan...
iinconst 5006 Indexed intersection of a ...
iuneqconst 5007 Indexed union of identical...
iuniin 5008 Law combining indexed unio...
iinssiun 5009 An indexed intersection is...
iunss1 5010 Subclass theorem for index...
iinss1 5011 Subclass theorem for index...
iuneq1 5012 Equality theorem for index...
iineq1 5013 Equality theorem for index...
ss2iun 5014 Subclass theorem for index...
iuneq2 5015 Equality theorem for index...
iineq2 5016 Equality theorem for index...
iuneq2i 5017 Equality inference for ind...
iineq2i 5018 Equality inference for ind...
iineq2d 5019 Equality deduction for ind...
iuneq2dv 5020 Equality deduction for ind...
iineq2dv 5021 Equality deduction for ind...
iuneq12df 5022 Equality deduction for ind...
iuneq1d 5023 Equality theorem for index...
iuneq12d 5024 Equality deduction for ind...
iuneq2d 5025 Equality deduction for ind...
nfiun 5026 Bound-variable hypothesis ...
nfiin 5027 Bound-variable hypothesis ...
nfiung 5028 Bound-variable hypothesis ...
nfiing 5029 Bound-variable hypothesis ...
nfiu1 5030 Bound-variable hypothesis ...
nfiu1OLD 5031 Obsolete version of ~ nfiu...
nfii1 5032 Bound-variable hypothesis ...
dfiun2g 5033 Alternate definition of in...
dfiun2gOLD 5034 Obsolete version of ~ dfiu...
dfiin2g 5035 Alternate definition of in...
dfiun2 5036 Alternate definition of in...
dfiin2 5037 Alternate definition of in...
dfiunv2 5038 Define double indexed unio...
cbviun 5039 Rule used to change the bo...
cbviin 5040 Change bound variables in ...
cbviung 5041 Rule used to change the bo...
cbviing 5042 Change bound variables in ...
cbviunv 5043 Rule used to change the bo...
cbviinv 5044 Change bound variables in ...
cbviunvg 5045 Rule used to change the bo...
cbviinvg 5046 Change bound variables in ...
iunssf 5047 Subset theorem for an inde...
iunss 5048 Subset theorem for an inde...
ssiun 5049 Subset implication for an ...
ssiun2 5050 Identity law for subset of...
ssiun2s 5051 Subset relationship for an...
iunss2 5052 A subclass condition on th...
iunssd 5053 Subset theorem for an inde...
iunab 5054 The indexed union of a cla...
iunrab 5055 The indexed union of a res...
iunxdif2 5056 Indexed union with a class...
ssiinf 5057 Subset theorem for an inde...
ssiin 5058 Subset theorem for an inde...
iinss 5059 Subset implication for an ...
iinss2 5060 An indexed intersection is...
uniiun 5061 Class union in terms of in...
intiin 5062 Class intersection in term...
iunid 5063 An indexed union of single...
iunidOLD 5064 Obsolete version of ~ iuni...
iun0 5065 An indexed union of the em...
0iun 5066 An empty indexed union is ...
0iin 5067 An empty indexed intersect...
viin 5068 Indexed intersection with ...
iunsn 5069 Indexed union of a singlet...
iunn0 5070 There is a nonempty class ...
iinab 5071 Indexed intersection of a ...
iinrab 5072 Indexed intersection of a ...
iinrab2 5073 Indexed intersection of a ...
iunin2 5074 Indexed union of intersect...
iunin1 5075 Indexed union of intersect...
iinun2 5076 Indexed intersection of un...
iundif2 5077 Indexed union of class dif...
iindif1 5078 Indexed intersection of cl...
2iunin 5079 Rearrange indexed unions o...
iindif2 5080 Indexed intersection of cl...
iinin2 5081 Indexed intersection of in...
iinin1 5082 Indexed intersection of in...
iinvdif 5083 The indexed intersection o...
elriin 5084 Elementhood in a relative ...
riin0 5085 Relative intersection of a...
riinn0 5086 Relative intersection of a...
riinrab 5087 Relative intersection of a...
symdif0 5088 Symmetric difference with ...
symdifv 5089 The symmetric difference w...
symdifid 5090 The symmetric difference o...
iinxsng 5091 A singleton index picks ou...
iinxprg 5092 Indexed intersection with ...
iunxsng 5093 A singleton index picks ou...
iunxsn 5094 A singleton index picks ou...
iunxsngf 5095 A singleton index picks ou...
iunun 5096 Separate a union in an ind...
iunxun 5097 Separate a union in the in...
iunxdif3 5098 An indexed union where som...
iunxprg 5099 A pair index picks out two...
iunxiun 5100 Separate an indexed union ...
iinuni 5101 A relationship involving u...
iununi 5102 A relationship involving u...
sspwuni 5103 Subclass relationship for ...
pwssb 5104 Two ways to express a coll...
elpwpw 5105 Characterization of the el...
pwpwab 5106 The double power class wri...
pwpwssunieq 5107 The class of sets whose un...
elpwuni 5108 Relationship for power cla...
iinpw 5109 The power class of an inte...
iunpwss 5110 Inclusion of an indexed un...
intss2 5111 A nonempty intersection of...
rintn0 5112 Relative intersection of a...
dfdisj2 5115 Alternate definition for d...
disjss2 5116 If each element of a colle...
disjeq2 5117 Equality theorem for disjo...
disjeq2dv 5118 Equality deduction for dis...
disjss1 5119 A subset of a disjoint col...
disjeq1 5120 Equality theorem for disjo...
disjeq1d 5121 Equality theorem for disjo...
disjeq12d 5122 Equality theorem for disjo...
cbvdisj 5123 Change bound variables in ...
cbvdisjv 5124 Change bound variables in ...
nfdisjw 5125 Bound-variable hypothesis ...
nfdisj 5126 Bound-variable hypothesis ...
nfdisj1 5127 Bound-variable hypothesis ...
disjor 5128 Two ways to say that a col...
disjors 5129 Two ways to say that a col...
disji2 5130 Property of a disjoint col...
disji 5131 Property of a disjoint col...
invdisj 5132 If there is a function ` C...
invdisjrabw 5133 Version of ~ invdisjrab wi...
invdisjrab 5134 The restricted class abstr...
disjiun 5135 A disjoint collection yiel...
disjord 5136 Conditions for a collectio...
disjiunb 5137 Two ways to say that a col...
disjiund 5138 Conditions for a collectio...
sndisj 5139 Any collection of singleto...
0disj 5140 Any collection of empty se...
disjxsn 5141 A singleton collection is ...
disjx0 5142 An empty collection is dis...
disjprgw 5143 Version of ~ disjprg with ...
disjprg 5144 A pair collection is disjo...
disjxiun 5145 An indexed union of a disj...
disjxun 5146 The union of two disjoint ...
disjss3 5147 Expand a disjoint collecti...
breq 5150 Equality theorem for binar...
breq1 5151 Equality theorem for a bin...
breq2 5152 Equality theorem for a bin...
breq12 5153 Equality theorem for a bin...
breqi 5154 Equality inference for bin...
breq1i 5155 Equality inference for a b...
breq2i 5156 Equality inference for a b...
breq12i 5157 Equality inference for a b...
breq1d 5158 Equality deduction for a b...
breqd 5159 Equality deduction for a b...
breq2d 5160 Equality deduction for a b...
breq12d 5161 Equality deduction for a b...
breq123d 5162 Equality deduction for a b...
breqdi 5163 Equality deduction for a b...
breqan12d 5164 Equality deduction for a b...
breqan12rd 5165 Equality deduction for a b...
eqnbrtrd 5166 Substitution of equal clas...
nbrne1 5167 Two classes are different ...
nbrne2 5168 Two classes are different ...
eqbrtri 5169 Substitution of equal clas...
eqbrtrd 5170 Substitution of equal clas...
eqbrtrri 5171 Substitution of equal clas...
eqbrtrrd 5172 Substitution of equal clas...
breqtri 5173 Substitution of equal clas...
breqtrd 5174 Substitution of equal clas...
breqtrri 5175 Substitution of equal clas...
breqtrrd 5176 Substitution of equal clas...
3brtr3i 5177 Substitution of equality i...
3brtr4i 5178 Substitution of equality i...
3brtr3d 5179 Substitution of equality i...
3brtr4d 5180 Substitution of equality i...
3brtr3g 5181 Substitution of equality i...
3brtr4g 5182 Substitution of equality i...
eqbrtrid 5183 A chained equality inferen...
eqbrtrrid 5184 A chained equality inferen...
breqtrid 5185 A chained equality inferen...
breqtrrid 5186 A chained equality inferen...
eqbrtrdi 5187 A chained equality inferen...
eqbrtrrdi 5188 A chained equality inferen...
breqtrdi 5189 A chained equality inferen...
breqtrrdi 5190 A chained equality inferen...
ssbrd 5191 Deduction from a subclass ...
ssbr 5192 Implication from a subclas...
ssbri 5193 Inference from a subclass ...
nfbrd 5194 Deduction version of bound...
nfbr 5195 Bound-variable hypothesis ...
brab1 5196 Relationship between a bin...
br0 5197 The empty binary relation ...
brne0 5198 If two sets are in a binar...
brun 5199 The union of two binary re...
brin 5200 The intersection of two re...
brdif 5201 The difference of two bina...
sbcbr123 5202 Move substitution in and o...
sbcbr 5203 Move substitution in and o...
sbcbr12g 5204 Move substitution in and o...
sbcbr1g 5205 Move substitution in and o...
sbcbr2g 5206 Move substitution in and o...
brsymdif 5207 Characterization of the sy...
brralrspcev 5208 Restricted existential spe...
brimralrspcev 5209 Restricted existential spe...
opabss 5212 The collection of ordered ...
opabbid 5213 Equivalent wff's yield equ...
opabbidv 5214 Equivalent wff's yield equ...
opabbii 5215 Equivalent wff's yield equ...
nfopabd 5216 Bound-variable hypothesis ...
nfopab 5217 Bound-variable hypothesis ...
nfopab1 5218 The first abstraction vari...
nfopab2 5219 The second abstraction var...
cbvopab 5220 Rule used to change bound ...
cbvopabv 5221 Rule used to change bound ...
cbvopabvOLD 5222 Obsolete version of ~ cbvo...
cbvopab1 5223 Change first bound variabl...
cbvopab1g 5224 Change first bound variabl...
cbvopab2 5225 Change second bound variab...
cbvopab1s 5226 Change first bound variabl...
cbvopab1v 5227 Rule used to change the fi...
cbvopab1vOLD 5228 Obsolete version of ~ cbvo...
cbvopab2v 5229 Rule used to change the se...
unopab 5230 Union of two ordered pair ...
mpteq12da 5233 An equality inference for ...
mpteq12df 5234 An equality inference for ...
mpteq12dfOLD 5235 Obsolete version of ~ mpte...
mpteq12f 5236 An equality theorem for th...
mpteq12dva 5237 An equality inference for ...
mpteq12dvaOLD 5238 Obsolete version of ~ mpte...
mpteq12dv 5239 An equality inference for ...
mpteq12 5240 An equality theorem for th...
mpteq1 5241 An equality theorem for th...
mpteq1OLD 5242 Obsolete version of ~ mpte...
mpteq1d 5243 An equality theorem for th...
mpteq1i 5244 An equality theorem for th...
mpteq1iOLD 5245 Obsolete version of ~ mpte...
mpteq2da 5246 Slightly more general equa...
mpteq2daOLD 5247 Obsolete version of ~ mpte...
mpteq2dva 5248 Slightly more general equa...
mpteq2dvaOLD 5249 Obsolete version of ~ mpte...
mpteq2dv 5250 An equality inference for ...
mpteq2ia 5251 An equality inference for ...
mpteq2iaOLD 5252 Obsolete version of ~ mpte...
mpteq2i 5253 An equality inference for ...
mpteq12i 5254 An equality inference for ...
nfmpt 5255 Bound-variable hypothesis ...
nfmpt1 5256 Bound-variable hypothesis ...
cbvmptf 5257 Rule to change the bound v...
cbvmptfg 5258 Rule to change the bound v...
cbvmpt 5259 Rule to change the bound v...
cbvmptg 5260 Rule to change the bound v...
cbvmptv 5261 Rule to change the bound v...
cbvmptvOLD 5262 Obsolete version of ~ cbvm...
cbvmptvg 5263 Rule to change the bound v...
mptv 5264 Function with universal do...
dftr2 5267 An alternate way of defini...
dftr2c 5268 Variant of ~ dftr2 with co...
dftr5 5269 An alternate way of defini...
dftr5OLD 5270 Obsolete version of ~ dftr...
dftr3 5271 An alternate way of defini...
dftr4 5272 An alternate way of defini...
treq 5273 Equality theorem for the t...
trel 5274 In a transitive class, the...
trel3 5275 In a transitive class, the...
trss 5276 An element of a transitive...
trin 5277 The intersection of transi...
tr0 5278 The empty set is transitiv...
trv 5279 The universe is transitive...
triun 5280 An indexed union of a clas...
truni 5281 The union of a class of tr...
triin 5282 An indexed intersection of...
trint 5283 The intersection of a clas...
trintss 5284 Any nonempty transitive cl...
axrep1 5286 The version of the Axiom o...
axreplem 5287 Lemma for ~ axrep2 and ~ a...
axrep2 5288 Axiom of Replacement expre...
axrep3 5289 Axiom of Replacement sligh...
axrep4 5290 A more traditional version...
axrep5 5291 Axiom of Replacement (simi...
axrep6 5292 A condensed form of ~ ax-r...
axrep6g 5293 ~ axrep6 in class notation...
zfrepclf 5294 An inference based on the ...
zfrep3cl 5295 An inference based on the ...
zfrep4 5296 A version of Replacement u...
axsepgfromrep 5297 A more general version ~ a...
axsep 5298 Axiom scheme of separation...
axsepg 5300 A more general version of ...
zfauscl 5301 Separation Scheme (Aussond...
bm1.3ii 5302 Convert implication to equ...
ax6vsep 5303 Derive ~ ax6v (a weakened ...
axnulALT 5304 Alternate proof of ~ axnul...
axnul 5305 The Null Set Axiom of ZF s...
0ex 5307 The Null Set Axiom of ZF s...
al0ssb 5308 The empty set is the uniqu...
sseliALT 5309 Alternate proof of ~ sseli...
csbexg 5310 The existence of proper su...
csbex 5311 The existence of proper su...
unisn2 5312 A version of ~ unisn witho...
nalset 5313 No set contains all sets. ...
vnex 5314 The universal class does n...
vprc 5315 The universal class is not...
nvel 5316 The universal class does n...
inex1 5317 Separation Scheme (Aussond...
inex2 5318 Separation Scheme (Aussond...
inex1g 5319 Closed-form, generalized S...
inex2g 5320 Sufficient condition for a...
ssex 5321 The subset of a set is als...
ssexi 5322 The subset of a set is als...
ssexg 5323 The subset of a set is als...
ssexd 5324 A subclass of a set is a s...
abexd 5325 Conditions for a class abs...
abex 5326 Conditions for a class abs...
prcssprc 5327 The superclass of a proper...
sselpwd 5328 Elementhood to a power set...
difexg 5329 Existence of a difference....
difexi 5330 Existence of a difference,...
difexd 5331 Existence of a difference....
zfausab 5332 Separation Scheme (Aussond...
rabexg 5333 Separation Scheme in terms...
rabex 5334 Separation Scheme in terms...
rabexd 5335 Separation Scheme in terms...
rabex2 5336 Separation Scheme in terms...
rab2ex 5337 A class abstraction based ...
elssabg 5338 Membership in a class abst...
intex 5339 The intersection of a none...
intnex 5340 If a class intersection is...
intexab 5341 The intersection of a none...
intexrab 5342 The intersection of a none...
iinexg 5343 The existence of a class i...
intabs 5344 Absorption of a redundant ...
inuni 5345 The intersection of a unio...
elpw2g 5346 Membership in a power clas...
elpw2 5347 Membership in a power clas...
elpwi2 5348 Membership in a power clas...
axpweq 5349 Two equivalent ways to exp...
pwnss 5350 The power set of a set is ...
pwne 5351 No set equals its power se...
difelpw 5352 A difference is an element...
rabelpw 5353 A restricted class abstrac...
class2set 5354 The class of elements of `...
0elpw 5355 Every power class contains...
pwne0 5356 A power class is never emp...
0nep0 5357 The empty set and its powe...
0inp0 5358 Something cannot be equal ...
unidif0 5359 The removal of the empty s...
eqsnuniex 5360 If a class is equal to the...
iin0 5361 An indexed intersection of...
notzfaus 5362 In the Separation Scheme ~...
intv 5363 The intersection of the un...
zfpow 5365 Axiom of Power Sets expres...
axpow2 5366 A variant of the Axiom of ...
axpow3 5367 A variant of the Axiom of ...
elALT2 5368 Alternate proof of ~ el us...
dtruALT2 5369 Alternate proof of ~ dtru ...
dtrucor 5370 Corollary of ~ dtru . Thi...
dtrucor2 5371 The theorem form of the de...
dvdemo1 5372 Demonstration of a theorem...
dvdemo2 5373 Demonstration of a theorem...
nfnid 5374 A setvar variable is not f...
nfcvb 5375 The "distinctor" expressio...
vpwex 5376 Power set axiom: the power...
pwexg 5377 Power set axiom expressed ...
pwexd 5378 Deduction version of the p...
pwex 5379 Power set axiom expressed ...
pwel 5380 Quantitative version of ~ ...
abssexg 5381 Existence of a class of su...
snexALT 5382 Alternate proof of ~ snex ...
p0ex 5383 The power set of the empty...
p0exALT 5384 Alternate proof of ~ p0ex ...
pp0ex 5385 The power set of the power...
ord3ex 5386 The ordinal number 3 is a ...
dtruALT 5387 Alternate proof of ~ dtru ...
axc16b 5388 This theorem shows that Ax...
eunex 5389 Existential uniqueness imp...
eusv1 5390 Two ways to express single...
eusvnf 5391 Even if ` x ` is free in `...
eusvnfb 5392 Two ways to say that ` A (...
eusv2i 5393 Two ways to express single...
eusv2nf 5394 Two ways to express single...
eusv2 5395 Two ways to express single...
reusv1 5396 Two ways to express single...
reusv2lem1 5397 Lemma for ~ reusv2 . (Con...
reusv2lem2 5398 Lemma for ~ reusv2 . (Con...
reusv2lem3 5399 Lemma for ~ reusv2 . (Con...
reusv2lem4 5400 Lemma for ~ reusv2 . (Con...
reusv2lem5 5401 Lemma for ~ reusv2 . (Con...
reusv2 5402 Two ways to express single...
reusv3i 5403 Two ways of expressing exi...
reusv3 5404 Two ways to express single...
eusv4 5405 Two ways to express single...
alxfr 5406 Transfer universal quantif...
ralxfrd 5407 Transfer universal quantif...
rexxfrd 5408 Transfer universal quantif...
ralxfr2d 5409 Transfer universal quantif...
rexxfr2d 5410 Transfer universal quantif...
ralxfrd2 5411 Transfer universal quantif...
rexxfrd2 5412 Transfer existence from a ...
ralxfr 5413 Transfer universal quantif...
ralxfrALT 5414 Alternate proof of ~ ralxf...
rexxfr 5415 Transfer existence from a ...
rabxfrd 5416 Membership in a restricted...
rabxfr 5417 Membership in a restricted...
reuhypd 5418 A theorem useful for elimi...
reuhyp 5419 A theorem useful for elimi...
zfpair 5420 The Axiom of Pairing of Ze...
axprALT 5421 Alternate proof of ~ axpr ...
axprlem1 5422 Lemma for ~ axpr . There ...
axprlem2 5423 Lemma for ~ axpr . There ...
axprlem3 5424 Lemma for ~ axpr . Elimin...
axprlem4 5425 Lemma for ~ axpr . The fi...
axprlem5 5426 Lemma for ~ axpr . The se...
axpr 5427 Unabbreviated version of t...
zfpair2 5429 Derive the abbreviated ver...
vsnex 5430 A singleton built on a set...
snexg 5431 A singleton built on a set...
snex 5432 A singleton is a set. The...
prex 5433 The Axiom of Pairing using...
exel 5434 There exist two sets, one ...
exexneq 5435 There exist two different ...
exneq 5436 Given any set (the " ` y `...
dtru 5437 Given any set (the " ` y `...
el 5438 Any set is an element of s...
sels 5439 If a class is a set, then ...
selsALT 5440 Alternate proof of ~ sels ...
elALT 5441 Alternate proof of ~ el , ...
dtruOLD 5442 Obsolete proof of ~ dtru a...
snelpwg 5443 A singleton of a set is a ...
snelpwi 5444 If a set is a member of a ...
snelpwiOLD 5445 Obsolete version of ~ snel...
snelpw 5446 A singleton of a set is a ...
prelpw 5447 An unordered pair of two s...
prelpwi 5448 If two sets are members of...
rext 5449 A theorem similar to exten...
sspwb 5450 The powerclass constructio...
unipw 5451 A class equals the union o...
univ 5452 The union of the universe ...
pwtr 5453 A class is transitive iff ...
ssextss 5454 An extensionality-like pri...
ssext 5455 An extensionality-like pri...
nssss 5456 Negation of subclass relat...
pweqb 5457 Classes are equal if and o...
intidg 5458 The intersection of all se...
intidOLD 5459 Obsolete version of ~ inti...
moabex 5460 "At most one" existence im...
rmorabex 5461 Restricted "at most one" e...
euabex 5462 The abstraction of a wff w...
nnullss 5463 A nonempty class (even if ...
exss 5464 Restricted existence in a ...
opex 5465 An ordered pair of classes...
otex 5466 An ordered triple of class...
elopg 5467 Characterization of the el...
elop 5468 Characterization of the el...
opi1 5469 One of the two elements in...
opi2 5470 One of the two elements of...
opeluu 5471 Each member of an ordered ...
op1stb 5472 Extract the first member o...
brv 5473 Two classes are always in ...
opnz 5474 An ordered pair is nonempt...
opnzi 5475 An ordered pair is nonempt...
opth1 5476 Equality of the first memb...
opth 5477 The ordered pair theorem. ...
opthg 5478 Ordered pair theorem. ` C ...
opth1g 5479 Equality of the first memb...
opthg2 5480 Ordered pair theorem. (Co...
opth2 5481 Ordered pair theorem. (Co...
opthneg 5482 Two ordered pairs are not ...
opthne 5483 Two ordered pairs are not ...
otth2 5484 Ordered triple theorem, wi...
otth 5485 Ordered triple theorem. (...
otthg 5486 Ordered triple theorem, cl...
otthne 5487 Contrapositive of the orde...
eqvinop 5488 A variable introduction la...
sbcop1 5489 The proper substitution of...
sbcop 5490 The proper substitution of...
copsexgw 5491 Version of ~ copsexg with ...
copsexg 5492 Substitution of class ` A ...
copsex2t 5493 Closed theorem form of ~ c...
copsex2g 5494 Implicit substitution infe...
copsex2gOLD 5495 Obsolete version of ~ cops...
copsex4g 5496 An implicit substitution i...
0nelop 5497 A property of ordered pair...
opwo0id 5498 An ordered pair is equal t...
opeqex 5499 Equivalence of existence i...
oteqex2 5500 Equivalence of existence i...
oteqex 5501 Equivalence of existence i...
opcom 5502 An ordered pair commutes i...
moop2 5503 "At most one" property of ...
opeqsng 5504 Equivalence for an ordered...
opeqsn 5505 Equivalence for an ordered...
opeqpr 5506 Equivalence for an ordered...
snopeqop 5507 Equivalence for an ordered...
propeqop 5508 Equivalence for an ordered...
propssopi 5509 If a pair of ordered pairs...
snopeqopsnid 5510 Equivalence for an ordered...
mosubopt 5511 "At most one" remains true...
mosubop 5512 "At most one" remains true...
euop2 5513 Transfer existential uniqu...
euotd 5514 Prove existential uniquene...
opthwiener 5515 Justification theorem for ...
uniop 5516 The union of an ordered pa...
uniopel 5517 Ordered pair membership is...
opthhausdorff 5518 Justification theorem for ...
opthhausdorff0 5519 Justification theorem for ...
otsndisj 5520 The singletons consisting ...
otiunsndisj 5521 The union of singletons co...
iunopeqop 5522 Implication of an ordered ...
brsnop 5523 Binary relation for an ord...
brtp 5524 A necessary and sufficient...
opabidw 5525 The law of concretion. Sp...
opabid 5526 The law of concretion. Sp...
elopabw 5527 Membership in a class abst...
elopab 5528 Membership in a class abst...
rexopabb 5529 Restricted existential qua...
vopelopabsb 5530 The law of concretion in t...
opelopabsb 5531 The law of concretion in t...
brabsb 5532 The law of concretion in t...
opelopabt 5533 Closed theorem form of ~ o...
opelopabga 5534 The law of concretion. Th...
brabga 5535 The law of concretion for ...
opelopab2a 5536 Ordered pair membership in...
opelopaba 5537 The law of concretion. Th...
braba 5538 The law of concretion for ...
opelopabg 5539 The law of concretion. Th...
brabg 5540 The law of concretion for ...
opelopabgf 5541 The law of concretion. Th...
opelopab2 5542 Ordered pair membership in...
opelopab 5543 The law of concretion. Th...
brab 5544 The law of concretion for ...
opelopabaf 5545 The law of concretion. Th...
opelopabf 5546 The law of concretion. Th...
ssopab2 5547 Equivalence of ordered pai...
ssopab2bw 5548 Equivalence of ordered pai...
eqopab2bw 5549 Equivalence of ordered pai...
ssopab2b 5550 Equivalence of ordered pai...
ssopab2i 5551 Inference of ordered pair ...
ssopab2dv 5552 Inference of ordered pair ...
eqopab2b 5553 Equivalence of ordered pai...
opabn0 5554 Nonempty ordered pair clas...
opab0 5555 Empty ordered pair class a...
csbopab 5556 Move substitution into a c...
csbopabgALT 5557 Move substitution into a c...
csbmpt12 5558 Move substitution into a m...
csbmpt2 5559 Move substitution into the...
iunopab 5560 Move indexed union inside ...
iunopabOLD 5561 Obsolete version of ~ iuno...
elopabr 5562 Membership in an ordered-p...
elopabran 5563 Membership in an ordered-p...
elopabrOLD 5564 Obsolete version of ~ elop...
rbropapd 5565 Properties of a pair in an...
rbropap 5566 Properties of a pair in a ...
2rbropap 5567 Properties of a pair in a ...
0nelopab 5568 The empty set is never an ...
0nelopabOLD 5569 Obsolete version of ~ 0nel...
brabv 5570 If two classes are in a re...
pwin 5571 The power class of the int...
pwssun 5572 The power class of the uni...
pwun 5573 The power class of the uni...
dfid4 5576 The identity function expr...
dfid2 5577 Alternate definition of th...
dfid3 5578 A stronger version of ~ df...
dfid2OLD 5579 Obsolete version of ~ dfid...
epelg 5582 The membership relation an...
epeli 5583 The membership relation an...
epel 5584 The membership relation an...
0sn0ep 5585 An example for the members...
epn0 5586 The membership relation is...
poss 5591 Subset theorem for the par...
poeq1 5592 Equality theorem for parti...
poeq2 5593 Equality theorem for parti...
nfpo 5594 Bound-variable hypothesis ...
nfso 5595 Bound-variable hypothesis ...
pocl 5596 Characteristic properties ...
poclOLD 5597 Obsolete version of ~ pocl...
ispod 5598 Sufficient conditions for ...
swopolem 5599 Perform the substitutions ...
swopo 5600 A strict weak order is a p...
poirr 5601 A partial order is irrefle...
potr 5602 A partial order is a trans...
po2nr 5603 A partial order has no 2-c...
po3nr 5604 A partial order has no 3-c...
po2ne 5605 Two sets related by a part...
po0 5606 Any relation is a partial ...
pofun 5607 The inverse image of a par...
sopo 5608 A strict linear order is a...
soss 5609 Subset theorem for the str...
soeq1 5610 Equality theorem for the s...
soeq2 5611 Equality theorem for the s...
sonr 5612 A strict order relation is...
sotr 5613 A strict order relation is...
solin 5614 A strict order relation is...
so2nr 5615 A strict order relation ha...
so3nr 5616 A strict order relation ha...
sotric 5617 A strict order relation sa...
sotrieq 5618 Trichotomy law for strict ...
sotrieq2 5619 Trichotomy law for strict ...
soasym 5620 Asymmetry law for strict o...
sotr2 5621 A transitivity relation. ...
issod 5622 An irreflexive, transitive...
issoi 5623 An irreflexive, transitive...
isso2i 5624 Deduce strict ordering fro...
so0 5625 Any relation is a strict o...
somo 5626 A totally ordered set has ...
sotrine 5627 Trichotomy law for strict ...
sotr3 5628 Transitivity law for stric...
dffr6 5635 Alternate definition of ~ ...
frd 5636 A nonempty subset of an ` ...
fri 5637 A nonempty subset of an ` ...
friOLD 5638 Obsolete version of ~ fri ...
seex 5639 The ` R ` -preimage of an ...
exse 5640 Any relation on a set is s...
dffr2 5641 Alternate definition of we...
dffr2ALT 5642 Alternate proof of ~ dffr2...
frc 5643 Property of well-founded r...
frss 5644 Subset theorem for the wel...
sess1 5645 Subset theorem for the set...
sess2 5646 Subset theorem for the set...
freq1 5647 Equality theorem for the w...
freq2 5648 Equality theorem for the w...
seeq1 5649 Equality theorem for the s...
seeq2 5650 Equality theorem for the s...
nffr 5651 Bound-variable hypothesis ...
nfse 5652 Bound-variable hypothesis ...
nfwe 5653 Bound-variable hypothesis ...
frirr 5654 A well-founded relation is...
fr2nr 5655 A well-founded relation ha...
fr0 5656 Any relation is well-found...
frminex 5657 If an element of a well-fo...
efrirr 5658 A well-founded class does ...
efrn2lp 5659 A well-founded class conta...
epse 5660 The membership relation is...
tz7.2 5661 Similar to Theorem 7.2 of ...
dfepfr 5662 An alternate way of saying...
epfrc 5663 A subset of a well-founded...
wess 5664 Subset theorem for the wel...
weeq1 5665 Equality theorem for the w...
weeq2 5666 Equality theorem for the w...
wefr 5667 A well-ordering is well-fo...
weso 5668 A well-ordering is a stric...
wecmpep 5669 The elements of a class we...
wetrep 5670 On a class well-ordered by...
wefrc 5671 A nonempty subclass of a c...
we0 5672 Any relation is a well-ord...
wereu 5673 A nonempty subset of an ` ...
wereu2 5674 A nonempty subclass of an ...
xpeq1 5691 Equality theorem for Carte...
xpss12 5692 Subset theorem for Cartesi...
xpss 5693 A Cartesian product is inc...
inxpssres 5694 Intersection with a Cartes...
relxp 5695 A Cartesian product is a r...
xpss1 5696 Subset relation for Cartes...
xpss2 5697 Subset relation for Cartes...
xpeq2 5698 Equality theorem for Carte...
elxpi 5699 Membership in a Cartesian ...
elxp 5700 Membership in a Cartesian ...
elxp2 5701 Membership in a Cartesian ...
xpeq12 5702 Equality theorem for Carte...
xpeq1i 5703 Equality inference for Car...
xpeq2i 5704 Equality inference for Car...
xpeq12i 5705 Equality inference for Car...
xpeq1d 5706 Equality deduction for Car...
xpeq2d 5707 Equality deduction for Car...
xpeq12d 5708 Equality deduction for Car...
sqxpeqd 5709 Equality deduction for a C...
nfxp 5710 Bound-variable hypothesis ...
0nelxp 5711 The empty set is not a mem...
0nelelxp 5712 A member of a Cartesian pr...
opelxp 5713 Ordered pair membership in...
opelxpi 5714 Ordered pair membership in...
opelxpii 5715 Ordered pair membership in...
opelxpd 5716 Ordered pair membership in...
opelvv 5717 Ordered pair membership in...
opelvvg 5718 Ordered pair membership in...
opelxp1 5719 The first member of an ord...
opelxp2 5720 The second member of an or...
otelxp 5721 Ordered triple membership ...
otelxp1 5722 The first member of an ord...
otel3xp 5723 An ordered triple is an el...
opabssxpd 5724 An ordered-pair class abst...
rabxp 5725 Class abstraction restrict...
brxp 5726 Binary relation on a Carte...
pwvrel 5727 A set is a binary relation...
pwvabrel 5728 The powerclass of the cart...
brrelex12 5729 Two classes related by a b...
brrelex1 5730 If two classes are related...
brrelex2 5731 If two classes are related...
brrelex12i 5732 Two classes that are relat...
brrelex1i 5733 The first argument of a bi...
brrelex2i 5734 The second argument of a b...
nprrel12 5735 Proper classes are not rel...
nprrel 5736 No proper class is related...
0nelrel0 5737 A binary relation does not...
0nelrel 5738 A binary relation does not...
fconstmpt 5739 Representation of a consta...
vtoclr 5740 Variable to class conversi...
opthprc 5741 Justification theorem for ...
brel 5742 Two things in a binary rel...
elxp3 5743 Membership in a Cartesian ...
opeliunxp 5744 Membership in a union of C...
xpundi 5745 Distributive law for Carte...
xpundir 5746 Distributive law for Carte...
xpiundi 5747 Distributive law for Carte...
xpiundir 5748 Distributive law for Carte...
iunxpconst 5749 Membership in a union of C...
xpun 5750 The Cartesian product of t...
elvv 5751 Membership in universal cl...
elvvv 5752 Membership in universal cl...
elvvuni 5753 An ordered pair contains i...
brinxp2 5754 Intersection of binary rel...
brinxp 5755 Intersection of binary rel...
opelinxp 5756 Ordered pair element in an...
poinxp 5757 Intersection of partial or...
soinxp 5758 Intersection of total orde...
frinxp 5759 Intersection of well-found...
seinxp 5760 Intersection of set-like r...
weinxp 5761 Intersection of well-order...
posn 5762 Partial ordering of a sing...
sosn 5763 Strict ordering on a singl...
frsn 5764 Founded relation on a sing...
wesn 5765 Well-ordering of a singlet...
elopaelxp 5766 Membership in an ordered-p...
elopaelxpOLD 5767 Obsolete version of ~ elop...
bropaex12 5768 Two classes related by an ...
opabssxp 5769 An abstraction relation is...
brab2a 5770 The law of concretion for ...
optocl 5771 Implicit substitution of c...
2optocl 5772 Implicit substitution of c...
3optocl 5773 Implicit substitution of c...
opbrop 5774 Ordered pair membership in...
0xp 5775 The Cartesian product with...
csbxp 5776 Distribute proper substitu...
releq 5777 Equality theorem for the r...
releqi 5778 Equality inference for the...
releqd 5779 Equality deduction for the...
nfrel 5780 Bound-variable hypothesis ...
sbcrel 5781 Distribute proper substitu...
relss 5782 Subclass theorem for relat...
ssrel 5783 A subclass relationship de...
ssrelOLD 5784 Obsolete version of ~ ssre...
eqrel 5785 Extensionality principle f...
ssrel2 5786 A subclass relationship de...
ssrel3 5787 Subclass relation in anoth...
relssi 5788 Inference from subclass pr...
relssdv 5789 Deduction from subclass pr...
eqrelriv 5790 Inference from extensional...
eqrelriiv 5791 Inference from extensional...
eqbrriv 5792 Inference from extensional...
eqrelrdv 5793 Deduce equality of relatio...
eqbrrdv 5794 Deduction from extensional...
eqbrrdiv 5795 Deduction from extensional...
eqrelrdv2 5796 A version of ~ eqrelrdv . ...
ssrelrel 5797 A subclass relationship de...
eqrelrel 5798 Extensionality principle f...
elrel 5799 A member of a relation is ...
rel0 5800 The empty set is a relatio...
nrelv 5801 The universal class is not...
relsng 5802 A singleton is a relation ...
relsnb 5803 An at-most-singleton is a ...
relsnopg 5804 A singleton of an ordered ...
relsn 5805 A singleton is a relation ...
relsnop 5806 A singleton of an ordered ...
copsex2gb 5807 Implicit substitution infe...
copsex2ga 5808 Implicit substitution infe...
elopaba 5809 Membership in an ordered-p...
xpsspw 5810 A Cartesian product is inc...
unixpss 5811 The double class union of ...
relun 5812 The union of two relations...
relin1 5813 The intersection with a re...
relin2 5814 The intersection with a re...
relinxp 5815 Intersection with a Cartes...
reldif 5816 A difference cutting down ...
reliun 5817 An indexed union is a rela...
reliin 5818 An indexed intersection is...
reluni 5819 The union of a class is a ...
relint 5820 The intersection of a clas...
relopabiv 5821 A class of ordered pairs i...
relopabv 5822 A class of ordered pairs i...
relopabi 5823 A class of ordered pairs i...
relopabiALT 5824 Alternate proof of ~ relop...
relopab 5825 A class of ordered pairs i...
mptrel 5826 The maps-to notation alway...
reli 5827 The identity relation is a...
rele 5828 The membership relation is...
opabid2 5829 A relation expressed as an...
inopab 5830 Intersection of two ordere...
difopab 5831 Difference of two ordered-...
difopabOLD 5832 Obsolete version of ~ difo...
inxp 5833 Intersection of two Cartes...
inxpOLD 5834 Obsolete version of ~ inxp...
xpindi 5835 Distributive law for Carte...
xpindir 5836 Distributive law for Carte...
xpiindi 5837 Distributive law for Carte...
xpriindi 5838 Distributive law for Carte...
eliunxp 5839 Membership in a union of C...
opeliunxp2 5840 Membership in a union of C...
raliunxp 5841 Write a double restricted ...
rexiunxp 5842 Write a double restricted ...
ralxp 5843 Universal quantification r...
rexxp 5844 Existential quantification...
exopxfr 5845 Transfer ordered-pair exis...
exopxfr2 5846 Transfer ordered-pair exis...
djussxp 5847 Disjoint union is a subset...
ralxpf 5848 Version of ~ ralxp with bo...
rexxpf 5849 Version of ~ rexxp with bo...
iunxpf 5850 Indexed union on a Cartesi...
opabbi2dv 5851 Deduce equality of a relat...
relop 5852 A necessary and sufficient...
ideqg 5853 For sets, the identity rel...
ideq 5854 For sets, the identity rel...
ididg 5855 A set is identical to itse...
issetid 5856 Two ways of expressing set...
coss1 5857 Subclass theorem for compo...
coss2 5858 Subclass theorem for compo...
coeq1 5859 Equality theorem for compo...
coeq2 5860 Equality theorem for compo...
coeq1i 5861 Equality inference for com...
coeq2i 5862 Equality inference for com...
coeq1d 5863 Equality deduction for com...
coeq2d 5864 Equality deduction for com...
coeq12i 5865 Equality inference for com...
coeq12d 5866 Equality deduction for com...
nfco 5867 Bound-variable hypothesis ...
brcog 5868 Ordered pair membership in...
opelco2g 5869 Ordered pair membership in...
brcogw 5870 Ordered pair membership in...
eqbrrdva 5871 Deduction from extensional...
brco 5872 Binary relation on a compo...
opelco 5873 Ordered pair membership in...
cnvss 5874 Subset theorem for convers...
cnveq 5875 Equality theorem for conve...
cnveqi 5876 Equality inference for con...
cnveqd 5877 Equality deduction for con...
elcnv 5878 Membership in a converse r...
elcnv2 5879 Membership in a converse r...
nfcnv 5880 Bound-variable hypothesis ...
brcnvg 5881 The converse of a binary r...
opelcnvg 5882 Ordered-pair membership in...
opelcnv 5883 Ordered-pair membership in...
brcnv 5884 The converse of a binary r...
csbcnv 5885 Move class substitution in...
csbcnvgALT 5886 Move class substitution in...
cnvco 5887 Distributive law of conver...
cnvuni 5888 The converse of a class un...
dfdm3 5889 Alternate definition of do...
dfrn2 5890 Alternate definition of ra...
dfrn3 5891 Alternate definition of ra...
elrn2g 5892 Membership in a range. (C...
elrng 5893 Membership in a range. (C...
elrn2 5894 Membership in a range. (C...
elrn 5895 Membership in a range. (C...
ssrelrn 5896 If a relation is a subset ...
dfdm4 5897 Alternate definition of do...
dfdmf 5898 Definition of domain, usin...
csbdm 5899 Distribute proper substitu...
eldmg 5900 Domain membership. Theore...
eldm2g 5901 Domain membership. Theore...
eldm 5902 Membership in a domain. T...
eldm2 5903 Membership in a domain. T...
dmss 5904 Subset theorem for domain....
dmeq 5905 Equality theorem for domai...
dmeqi 5906 Equality inference for dom...
dmeqd 5907 Equality deduction for dom...
opeldmd 5908 Membership of first of an ...
opeldm 5909 Membership of first of an ...
breldm 5910 Membership of first of a b...
breldmg 5911 Membership of first of a b...
dmun 5912 The domain of a union is t...
dmin 5913 The domain of an intersect...
breldmd 5914 Membership of first of a b...
dmiun 5915 The domain of an indexed u...
dmuni 5916 The domain of a union. Pa...
dmopab 5917 The domain of a class of o...
dmopabelb 5918 A set is an element of the...
dmopab2rex 5919 The domain of an ordered p...
dmopabss 5920 Upper bound for the domain...
dmopab3 5921 The domain of a restricted...
dm0 5922 The domain of the empty se...
dmi 5923 The domain of the identity...
dmv 5924 The domain of the universe...
dmep 5925 The domain of the membersh...
dm0rn0 5926 An empty domain is equival...
rn0 5927 The range of the empty set...
rnep 5928 The range of the membershi...
reldm0 5929 A relation is empty iff it...
dmxp 5930 The domain of a Cartesian ...
dmxpid 5931 The domain of a Cartesian ...
dmxpin 5932 The domain of the intersec...
xpid11 5933 The Cartesian square is a ...
dmcnvcnv 5934 The domain of the double c...
rncnvcnv 5935 The range of the double co...
elreldm 5936 The first member of an ord...
rneq 5937 Equality theorem for range...
rneqi 5938 Equality inference for ran...
rneqd 5939 Equality deduction for ran...
rnss 5940 Subset theorem for range. ...
rnssi 5941 Subclass inference for ran...
brelrng 5942 The second argument of a b...
brelrn 5943 The second argument of a b...
opelrn 5944 Membership of second membe...
releldm 5945 The first argument of a bi...
relelrn 5946 The second argument of a b...
releldmb 5947 Membership in a domain. (...
relelrnb 5948 Membership in a range. (C...
releldmi 5949 The first argument of a bi...
relelrni 5950 The second argument of a b...
dfrnf 5951 Definition of range, using...
nfdm 5952 Bound-variable hypothesis ...
nfrn 5953 Bound-variable hypothesis ...
dmiin 5954 Domain of an intersection....
rnopab 5955 The range of a class of or...
rnmpt 5956 The range of a function in...
elrnmpt 5957 The range of a function in...
elrnmpt1s 5958 Elementhood in an image se...
elrnmpt1 5959 Elementhood in an image se...
elrnmptg 5960 Membership in the range of...
elrnmpti 5961 Membership in the range of...
elrnmptd 5962 The range of a function in...
elrnmpt1d 5963 Elementhood in an image se...
elrnmptdv 5964 Elementhood in the range o...
elrnmpt2d 5965 Elementhood in the range o...
dfiun3g 5966 Alternate definition of in...
dfiin3g 5967 Alternate definition of in...
dfiun3 5968 Alternate definition of in...
dfiin3 5969 Alternate definition of in...
riinint 5970 Express a relative indexed...
relrn0 5971 A relation is empty iff it...
dmrnssfld 5972 The domain and range of a ...
dmcoss 5973 Domain of a composition. ...
rncoss 5974 Range of a composition. (...
dmcosseq 5975 Domain of a composition. ...
dmcoeq 5976 Domain of a composition. ...
rncoeq 5977 Range of a composition. (...
reseq1 5978 Equality theorem for restr...
reseq2 5979 Equality theorem for restr...
reseq1i 5980 Equality inference for res...
reseq2i 5981 Equality inference for res...
reseq12i 5982 Equality inference for res...
reseq1d 5983 Equality deduction for res...
reseq2d 5984 Equality deduction for res...
reseq12d 5985 Equality deduction for res...
nfres 5986 Bound-variable hypothesis ...
csbres 5987 Distribute proper substitu...
res0 5988 A restriction to the empty...
dfres3 5989 Alternate definition of re...
opelres 5990 Ordered pair elementhood i...
brres 5991 Binary relation on a restr...
opelresi 5992 Ordered pair membership in...
brresi 5993 Binary relation on a restr...
opres 5994 Ordered pair membership in...
resieq 5995 A restricted identity rela...
opelidres 5996 ` <. A , A >. ` belongs to...
resres 5997 The restriction of a restr...
resundi 5998 Distributive law for restr...
resundir 5999 Distributive law for restr...
resindi 6000 Class restriction distribu...
resindir 6001 Class restriction distribu...
inres 6002 Move intersection into cla...
resdifcom 6003 Commutative law for restri...
resiun1 6004 Distribution of restrictio...
resiun2 6005 Distribution of restrictio...
resss 6006 A class includes its restr...
rescom 6007 Commutative law for restri...
ssres 6008 Subclass theorem for restr...
ssres2 6009 Subclass theorem for restr...
relres 6010 A restriction is a relatio...
resabs1 6011 Absorption law for restric...
resabs1d 6012 Absorption law for restric...
resabs2 6013 Absorption law for restric...
residm 6014 Idempotent law for restric...
dmresss 6015 The domain of a restrictio...
dmres 6016 The domain of a restrictio...
ssdmres 6017 A domain restricted to a s...
dmresexg 6018 The domain of a restrictio...
resima 6019 A restriction to an image....
resima2 6020 Image under a restricted c...
rnresss 6021 The range of a restriction...
xpssres 6022 Restriction of a constant ...
elinxp 6023 Membership in an intersect...
elres 6024 Membership in a restrictio...
elsnres 6025 Membership in restriction ...
relssres 6026 Simplification law for res...
dmressnsn 6027 The domain of a restrictio...
eldmressnsn 6028 The element of the domain ...
eldmeldmressn 6029 An element of the domain (...
resdm 6030 A relation restricted to i...
resexg 6031 The restriction of a set i...
resexd 6032 The restriction of a set i...
resex 6033 The restriction of a set i...
resindm 6034 When restricting a relatio...
resdmdfsn 6035 Restricting a relation to ...
reldisjun 6036 Split a relation into two ...
relresdm1 6037 Restriction of a disjoint ...
resopab 6038 Restriction of a class abs...
iss 6039 A subclass of the identity...
resopab2 6040 Restriction of a class abs...
resmpt 6041 Restriction of the mapping...
resmpt3 6042 Unconditional restriction ...
resmptf 6043 Restriction of the mapping...
resmptd 6044 Restriction of the mapping...
dfres2 6045 Alternate definition of th...
mptss 6046 Sufficient condition for i...
elidinxp 6047 Characterization of the el...
elidinxpid 6048 Characterization of the el...
elrid 6049 Characterization of the el...
idinxpres 6050 The intersection of the id...
idinxpresid 6051 The intersection of the id...
idssxp 6052 A diagonal set as a subset...
opabresid 6053 The restricted identity re...
mptresid 6054 The restricted identity re...
dmresi 6055 The domain of a restricted...
restidsing 6056 Restriction of the identit...
iresn0n0 6057 The identity function rest...
imaeq1 6058 Equality theorem for image...
imaeq2 6059 Equality theorem for image...
imaeq1i 6060 Equality theorem for image...
imaeq2i 6061 Equality theorem for image...
imaeq1d 6062 Equality theorem for image...
imaeq2d 6063 Equality theorem for image...
imaeq12d 6064 Equality theorem for image...
dfima2 6065 Alternate definition of im...
dfima3 6066 Alternate definition of im...
elimag 6067 Membership in an image. T...
elima 6068 Membership in an image. T...
elima2 6069 Membership in an image. T...
elima3 6070 Membership in an image. T...
nfima 6071 Bound-variable hypothesis ...
nfimad 6072 Deduction version of bound...
imadmrn 6073 The image of the domain of...
imassrn 6074 The image of a class is a ...
mptima 6075 Image of a function in map...
mptimass 6076 Image of a function in map...
imai 6077 Image under the identity r...
rnresi 6078 The range of the restricte...
resiima 6079 The image of a restriction...
ima0 6080 Image of the empty set. T...
0ima 6081 Image under the empty rela...
csbima12 6082 Move class substitution in...
imadisj 6083 A class whose image under ...
imadisjlnd 6084 Deduction form of one nega...
cnvimass 6085 A preimage under any class...
cnvimarndm 6086 The preimage of the range ...
imasng 6087 The image of a singleton. ...
relimasn 6088 The image of a singleton. ...
elrelimasn 6089 Elementhood in the image o...
elimasng1 6090 Membership in an image of ...
elimasn1 6091 Membership in an image of ...
elimasng 6092 Membership in an image of ...
elimasn 6093 Membership in an image of ...
elimasngOLD 6094 Obsolete version of ~ elim...
elimasni 6095 Membership in an image of ...
args 6096 Two ways to express the cl...
elinisegg 6097 Membership in the inverse ...
eliniseg 6098 Membership in the inverse ...
epin 6099 Any set is equal to its pr...
epini 6100 Any set is equal to its pr...
iniseg 6101 An idiom that signifies an...
inisegn0 6102 Nonemptiness of an initial...
dffr3 6103 Alternate definition of we...
dfse2 6104 Alternate definition of se...
imass1 6105 Subset theorem for image. ...
imass2 6106 Subset theorem for image. ...
ndmima 6107 The image of a singleton o...
relcnv 6108 A converse is a relation. ...
relbrcnvg 6109 When ` R ` is a relation, ...
eliniseg2 6110 Eliminate the class existe...
relbrcnv 6111 When ` R ` is a relation, ...
relco 6112 A composition is a relatio...
cotrg 6113 Two ways of saying that th...
cotrgOLD 6114 Obsolete version of ~ cotr...
cotrgOLDOLD 6115 Obsolete version of ~ cotr...
cotr 6116 Two ways of saying a relat...
idrefALT 6117 Alternate proof of ~ idref...
cnvsym 6118 Two ways of saying a relat...
cnvsymOLD 6119 Obsolete proof of ~ cnvsym...
cnvsymOLDOLD 6120 Obsolete proof of ~ cnvsym...
intasym 6121 Two ways of saying a relat...
asymref 6122 Two ways of saying a relat...
asymref2 6123 Two ways of saying a relat...
intirr 6124 Two ways of saying a relat...
brcodir 6125 Two ways of saying that tw...
codir 6126 Two ways of saying a relat...
qfto 6127 A quantifier-free way of e...
xpidtr 6128 A Cartesian square is a tr...
trin2 6129 The intersection of two tr...
poirr2 6130 A partial order is irrefle...
trinxp 6131 The relation induced by a ...
soirri 6132 A strict order relation is...
sotri 6133 A strict order relation is...
son2lpi 6134 A strict order relation ha...
sotri2 6135 A transitivity relation. ...
sotri3 6136 A transitivity relation. ...
poleloe 6137 Express "less than or equa...
poltletr 6138 Transitive law for general...
somin1 6139 Property of a minimum in a...
somincom 6140 Commutativity of minimum i...
somin2 6141 Property of a minimum in a...
soltmin 6142 Being less than a minimum,...
cnvopab 6143 The converse of a class ab...
mptcnv 6144 The converse of a mapping ...
cnv0 6145 The converse of the empty ...
cnvi 6146 The converse of the identi...
cnvun 6147 The converse of a union is...
cnvdif 6148 Distributive law for conve...
cnvin 6149 Distributive law for conve...
rnun 6150 Distributive law for range...
rnin 6151 The range of an intersecti...
rniun 6152 The range of an indexed un...
rnuni 6153 The range of a union. Par...
imaundi 6154 Distributive law for image...
imaundir 6155 The image of a union. (Co...
cnvimassrndm 6156 The preimage of a superset...
dminss 6157 An upper bound for interse...
imainss 6158 An upper bound for interse...
inimass 6159 The image of an intersecti...
inimasn 6160 The intersection of the im...
cnvxp 6161 The converse of a Cartesia...
xp0 6162 The Cartesian product with...
xpnz 6163 The Cartesian product of n...
xpeq0 6164 At least one member of an ...
xpdisj1 6165 Cartesian products with di...
xpdisj2 6166 Cartesian products with di...
xpsndisj 6167 Cartesian products with tw...
difxp 6168 Difference of Cartesian pr...
difxp1 6169 Difference law for Cartesi...
difxp2 6170 Difference law for Cartesi...
djudisj 6171 Disjoint unions with disjo...
xpdifid 6172 The set of distinct couple...
resdisj 6173 A double restriction to di...
rnxp 6174 The range of a Cartesian p...
dmxpss 6175 The domain of a Cartesian ...
rnxpss 6176 The range of a Cartesian p...
rnxpid 6177 The range of a Cartesian s...
ssxpb 6178 A Cartesian product subcla...
xp11 6179 The Cartesian product of n...
xpcan 6180 Cancellation law for Carte...
xpcan2 6181 Cancellation law for Carte...
ssrnres 6182 Two ways to express surjec...
rninxp 6183 Two ways to express surjec...
dminxp 6184 Two ways to express totali...
imainrect 6185 Image by a restricted and ...
xpima 6186 Direct image by a Cartesia...
xpima1 6187 Direct image by a Cartesia...
xpima2 6188 Direct image by a Cartesia...
xpimasn 6189 Direct image of a singleto...
sossfld 6190 The base set of a strict o...
sofld 6191 The base set of a nonempty...
cnvcnv3 6192 The set of all ordered pai...
dfrel2 6193 Alternate definition of re...
dfrel4v 6194 A relation can be expresse...
dfrel4 6195 A relation can be expresse...
cnvcnv 6196 The double converse of a c...
cnvcnv2 6197 The double converse of a c...
cnvcnvss 6198 The double converse of a c...
cnvrescnv 6199 Two ways to express the co...
cnveqb 6200 Equality theorem for conve...
cnveq0 6201 A relation empty iff its c...
dfrel3 6202 Alternate definition of re...
elid 6203 Characterization of the el...
dmresv 6204 The domain of a universal ...
rnresv 6205 The range of a universal r...
dfrn4 6206 Range defined in terms of ...
csbrn 6207 Distribute proper substitu...
rescnvcnv 6208 The restriction of the dou...
cnvcnvres 6209 The double converse of the...
imacnvcnv 6210 The image of the double co...
dmsnn0 6211 The domain of a singleton ...
rnsnn0 6212 The range of a singleton i...
dmsn0 6213 The domain of the singleto...
cnvsn0 6214 The converse of the single...
dmsn0el 6215 The domain of a singleton ...
relsn2 6216 A singleton is a relation ...
dmsnopg 6217 The domain of a singleton ...
dmsnopss 6218 The domain of a singleton ...
dmpropg 6219 The domain of an unordered...
dmsnop 6220 The domain of a singleton ...
dmprop 6221 The domain of an unordered...
dmtpop 6222 The domain of an unordered...
cnvcnvsn 6223 Double converse of a singl...
dmsnsnsn 6224 The domain of the singleto...
rnsnopg 6225 The range of a singleton o...
rnpropg 6226 The range of a pair of ord...
cnvsng 6227 Converse of a singleton of...
rnsnop 6228 The range of a singleton o...
op1sta 6229 Extract the first member o...
cnvsn 6230 Converse of a singleton of...
op2ndb 6231 Extract the second member ...
op2nda 6232 Extract the second member ...
opswap 6233 Swap the members of an ord...
cnvresima 6234 An image under the convers...
resdm2 6235 A class restricted to its ...
resdmres 6236 Restriction to the domain ...
resresdm 6237 A restriction by an arbitr...
imadmres 6238 The image of the domain of...
resdmss 6239 Subset relationship for th...
resdifdi 6240 Distributive law for restr...
resdifdir 6241 Distributive law for restr...
mptpreima 6242 The preimage of a function...
mptiniseg 6243 Converse singleton image o...
dmmpt 6244 The domain of the mapping ...
dmmptss 6245 The domain of a mapping is...
dmmptg 6246 The domain of the mapping ...
rnmpt0f 6247 The range of a function in...
rnmptn0 6248 The range of a function in...
dfco2 6249 Alternate definition of a ...
dfco2a 6250 Generalization of ~ dfco2 ...
coundi 6251 Class composition distribu...
coundir 6252 Class composition distribu...
cores 6253 Restricted first member of...
resco 6254 Associative law for the re...
imaco 6255 Image of the composition o...
rnco 6256 The range of the compositi...
rnco2 6257 The range of the compositi...
dmco 6258 The domain of a compositio...
coeq0 6259 A composition of two relat...
coiun 6260 Composition with an indexe...
cocnvcnv1 6261 A composition is not affec...
cocnvcnv2 6262 A composition is not affec...
cores2 6263 Absorption of a reverse (p...
co02 6264 Composition with the empty...
co01 6265 Composition with the empty...
coi1 6266 Composition with the ident...
coi2 6267 Composition with the ident...
coires1 6268 Composition with a restric...
coass 6269 Associative law for class ...
relcnvtrg 6270 General form of ~ relcnvtr...
relcnvtr 6271 A relation is transitive i...
relssdmrn 6272 A relation is included in ...
relssdmrnOLD 6273 Obsolete version of ~ rels...
resssxp 6274 If the ` R ` -image of a c...
cnvssrndm 6275 The converse is a subset o...
cossxp 6276 Composition as a subset of...
relrelss 6277 Two ways to describe the s...
unielrel 6278 The membership relation fo...
relfld 6279 The double union of a rela...
relresfld 6280 Restriction of a relation ...
relcoi2 6281 Composition with the ident...
relcoi1 6282 Composition with the ident...
unidmrn 6283 The double union of the co...
relcnvfld 6284 if ` R ` is a relation, it...
dfdm2 6285 Alternate definition of do...
unixp 6286 The double class union of ...
unixp0 6287 A Cartesian product is emp...
unixpid 6288 Field of a Cartesian squar...
ressn 6289 Restriction of a class to ...
cnviin 6290 The converse of an interse...
cnvpo 6291 The converse of a partial ...
cnvso 6292 The converse of a strict o...
xpco 6293 Composition of two Cartesi...
xpcoid 6294 Composition of two Cartesi...
elsnxp 6295 Membership in a Cartesian ...
reu3op 6296 There is a unique ordered ...
reuop 6297 There is a unique ordered ...
opreu2reurex 6298 There is a unique ordered ...
opreu2reu 6299 If there is a unique order...
dfpo2 6300 Quantifier-free definition...
csbcog 6301 Distribute proper substitu...
snres0 6302 Condition for restriction ...
imaindm 6303 The image is unaffected by...
predeq123 6306 Equality theorem for the p...
predeq1 6307 Equality theorem for the p...
predeq2 6308 Equality theorem for the p...
predeq3 6309 Equality theorem for the p...
nfpred 6310 Bound-variable hypothesis ...
csbpredg 6311 Move class substitution in...
predpredss 6312 If ` A ` is a subset of ` ...
predss 6313 The predecessor class of `...
sspred 6314 Another subset/predecessor...
dfpred2 6315 An alternate definition of...
dfpred3 6316 An alternate definition of...
dfpred3g 6317 An alternate definition of...
elpredgg 6318 Membership in a predecesso...
elpredg 6319 Membership in a predecesso...
elpredimg 6320 Membership in a predecesso...
elpredim 6321 Membership in a predecesso...
elpred 6322 Membership in a predecesso...
predexg 6323 The predecessor class exis...
predasetexOLD 6324 Obsolete form of ~ predexg...
dffr4 6325 Alternate definition of we...
predel 6326 Membership in the predeces...
predbrg 6327 Closed form of ~ elpredim ...
predtrss 6328 If ` R ` is transitive ove...
predpo 6329 Property of the predecesso...
predso 6330 Property of the predecesso...
setlikespec 6331 If ` R ` is set-like in ` ...
predidm 6332 Idempotent law for the pre...
predin 6333 Intersection law for prede...
predun 6334 Union law for predecessor ...
preddif 6335 Difference law for predece...
predep 6336 The predecessor under the ...
trpred 6337 The class of predecessors ...
preddowncl 6338 A property of classes that...
predpoirr 6339 Given a partial ordering, ...
predfrirr 6340 Given a well-founded relat...
pred0 6341 The predecessor class over...
dfse3 6342 Alternate definition of se...
predrelss 6343 Subset carries from relati...
predprc 6344 The predecessor of a prope...
predres 6345 Predecessor class is unaff...
frpomin 6346 Every nonempty (possibly p...
frpomin2 6347 Every nonempty (possibly p...
frpoind 6348 The principle of well-foun...
frpoinsg 6349 Well-Founded Induction Sch...
frpoins2fg 6350 Well-Founded Induction sch...
frpoins2g 6351 Well-Founded Induction sch...
frpoins3g 6352 Well-Founded Induction sch...
tz6.26 6353 All nonempty subclasses of...
tz6.26OLD 6354 Obsolete proof of ~ tz6.26...
tz6.26i 6355 All nonempty subclasses of...
wfi 6356 The Principle of Well-Orde...
wfiOLD 6357 Obsolete proof of ~ wfi as...
wfii 6358 The Principle of Well-Orde...
wfisg 6359 Well-Ordered Induction Sch...
wfisgOLD 6360 Obsolete version of ~ wfis...
wfis 6361 Well-Ordered Induction Sch...
wfis2fg 6362 Well-Ordered Induction Sch...
wfis2fgOLD 6363 Obsolete version of ~ wfis...
wfis2f 6364 Well-Ordered Induction sch...
wfis2g 6365 Well-Ordered Induction Sch...
wfis2 6366 Well-Ordered Induction sch...
wfis3 6367 Well-Ordered Induction sch...
ordeq 6376 Equality theorem for the o...
elong 6377 An ordinal number is an or...
elon 6378 An ordinal number is an or...
eloni 6379 An ordinal number has the ...
elon2 6380 An ordinal number is an or...
limeq 6381 Equality theorem for the l...
ordwe 6382 Membership well-orders eve...
ordtr 6383 An ordinal class is transi...
ordfr 6384 Membership is well-founded...
ordelss 6385 An element of an ordinal c...
trssord 6386 A transitive subclass of a...
ordirr 6387 No ordinal class is a memb...
nordeq 6388 A member of an ordinal cla...
ordn2lp 6389 An ordinal class cannot be...
tz7.5 6390 A nonempty subclass of an ...
ordelord 6391 An element of an ordinal c...
tron 6392 The class of all ordinal n...
ordelon 6393 An element of an ordinal c...
onelon 6394 An element of an ordinal n...
tz7.7 6395 A transitive class belongs...
ordelssne 6396 For ordinal classes, membe...
ordelpss 6397 For ordinal classes, membe...
ordsseleq 6398 For ordinal classes, inclu...
ordin 6399 The intersection of two or...
onin 6400 The intersection of two or...
ordtri3or 6401 A trichotomy law for ordin...
ordtri1 6402 A trichotomy law for ordin...
ontri1 6403 A trichotomy law for ordin...
ordtri2 6404 A trichotomy law for ordin...
ordtri3 6405 A trichotomy law for ordin...
ordtri4 6406 A trichotomy law for ordin...
orddisj 6407 An ordinal class and its s...
onfr 6408 The ordinal class is well-...
onelpss 6409 Relationship between membe...
onsseleq 6410 Relationship between subse...
onelss 6411 An element of an ordinal n...
ordtr1 6412 Transitive law for ordinal...
ordtr2 6413 Transitive law for ordinal...
ordtr3 6414 Transitive law for ordinal...
ontr1 6415 Transitive law for ordinal...
ontr2 6416 Transitive law for ordinal...
onelssex 6417 Ordinal less than is equiv...
ordunidif 6418 The union of an ordinal st...
ordintdif 6419 If ` B ` is smaller than `...
onintss 6420 If a property is true for ...
oneqmini 6421 A way to show that an ordi...
ord0 6422 The empty set is an ordina...
0elon 6423 The empty set is an ordina...
ord0eln0 6424 A nonempty ordinal contain...
on0eln0 6425 An ordinal number contains...
dflim2 6426 An alternate definition of...
inton 6427 The intersection of the cl...
nlim0 6428 The empty set is not a lim...
limord 6429 A limit ordinal is ordinal...
limuni 6430 A limit ordinal is its own...
limuni2 6431 The union of a limit ordin...
0ellim 6432 A limit ordinal contains t...
limelon 6433 A limit ordinal class that...
onn0 6434 The class of all ordinal n...
suceq 6435 Equality of successors. (...
elsuci 6436 Membership in a successor....
elsucg 6437 Membership in a successor....
elsuc2g 6438 Variant of membership in a...
elsuc 6439 Membership in a successor....
elsuc2 6440 Membership in a successor....
nfsuc 6441 Bound-variable hypothesis ...
elelsuc 6442 Membership in a successor....
sucel 6443 Membership of a successor ...
suc0 6444 The successor of the empty...
sucprc 6445 A proper class is its own ...
unisucs 6446 The union of the successor...
unisucg 6447 A transitive class is equa...
unisuc 6448 A transitive class is equa...
sssucid 6449 A class is included in its...
sucidg 6450 Part of Proposition 7.23 o...
sucid 6451 A set belongs to its succe...
nsuceq0 6452 No successor is empty. (C...
eqelsuc 6453 A set belongs to the succe...
iunsuc 6454 Inductive definition for t...
suctr 6455 The successor of a transit...
trsuc 6456 A set whose successor belo...
trsucss 6457 A member of the successor ...
ordsssuc 6458 An ordinal is a subset of ...
onsssuc 6459 A subset of an ordinal num...
ordsssuc2 6460 An ordinal subset of an or...
onmindif 6461 When its successor is subt...
ordnbtwn 6462 There is no set between an...
onnbtwn 6463 There is no set between an...
sucssel 6464 A set whose successor is a...
orddif 6465 Ordinal derived from its s...
orduniss 6466 An ordinal class includes ...
ordtri2or 6467 A trichotomy law for ordin...
ordtri2or2 6468 A trichotomy law for ordin...
ordtri2or3 6469 A consequence of total ord...
ordelinel 6470 The intersection of two or...
ordssun 6471 Property of a subclass of ...
ordequn 6472 The maximum (i.e. union) o...
ordun 6473 The maximum (i.e., union) ...
onunel 6474 The union of two ordinals ...
ordunisssuc 6475 A subclass relationship fo...
suc11 6476 The successor operation be...
onun2 6477 The union of two ordinals ...
ontr 6478 An ordinal number is a tra...
onunisuc 6479 An ordinal number is equal...
onordi 6480 An ordinal number is an or...
ontrciOLD 6481 Obsolete version of ~ ontr...
onirri 6482 An ordinal number is not a...
oneli 6483 A member of an ordinal num...
onelssi 6484 A member of an ordinal num...
onssneli 6485 An ordering law for ordina...
onssnel2i 6486 An ordering law for ordina...
onelini 6487 An element of an ordinal n...
oneluni 6488 An ordinal number equals i...
onunisuci 6489 An ordinal number is equal...
onsseli 6490 Subset is equivalent to me...
onun2i 6491 The union of two ordinal n...
unizlim 6492 An ordinal equal to its ow...
on0eqel 6493 An ordinal number either e...
snsn0non 6494 The singleton of the singl...
onxpdisj 6495 Ordinal numbers and ordere...
onnev 6496 The class of ordinal numbe...
iotajust 6498 Soundness justification th...
dfiota2 6500 Alternate definition for d...
nfiota1 6501 Bound-variable hypothesis ...
nfiotadw 6502 Deduction version of ~ nfi...
nfiotaw 6503 Bound-variable hypothesis ...
nfiotad 6504 Deduction version of ~ nfi...
nfiota 6505 Bound-variable hypothesis ...
cbviotaw 6506 Change bound variables in ...
cbviotavw 6507 Change bound variables in ...
cbviotavwOLD 6508 Obsolete version of ~ cbvi...
cbviota 6509 Change bound variables in ...
cbviotav 6510 Change bound variables in ...
sb8iota 6511 Variable substitution in d...
iotaeq 6512 Equality theorem for descr...
iotabi 6513 Equivalence theorem for de...
uniabio 6514 Part of Theorem 8.17 in [Q...
iotaval2 6515 Version of ~ iotaval using...
iotauni2 6516 Version of ~ iotauni using...
iotanul2 6517 Version of ~ iotanul using...
iotaval 6518 Theorem 8.19 in [Quine] p....
iotassuni 6519 The ` iota ` class is a su...
iotaex 6520 Theorem 8.23 in [Quine] p....
iotavalOLD 6521 Obsolete version of ~ iota...
iotauni 6522 Equivalence between two di...
iotaint 6523 Equivalence between two di...
iota1 6524 Property of iota. (Contri...
iotanul 6525 Theorem 8.22 in [Quine] p....
iotassuniOLD 6526 Obsolete version of ~ iota...
iotaexOLD 6527 Obsolete version of ~ iota...
iota4 6528 Theorem *14.22 in [Whitehe...
iota4an 6529 Theorem *14.23 in [Whitehe...
iota5 6530 A method for computing iot...
iotabidv 6531 Formula-building deduction...
iotabii 6532 Formula-building deduction...
iotacl 6533 Membership law for descrip...
iota2df 6534 A condition that allows to...
iota2d 6535 A condition that allows to...
iota2 6536 The unique element such th...
iotan0 6537 Representation of "the uni...
sniota 6538 A class abstraction with a...
dfiota4 6539 The ` iota ` operation usi...
csbiota 6540 Class substitution within ...
dffun2 6557 Alternate definition of a ...
dffun2OLD 6558 Obsolete version of ~ dffu...
dffun2OLDOLD 6559 Obsolete version of ~ dffu...
dffun6 6560 Alternate definition of a ...
dffun3 6561 Alternate definition of fu...
dffun3OLD 6562 Obsolete version of ~ dffu...
dffun4 6563 Alternate definition of a ...
dffun5 6564 Alternate definition of fu...
dffun6f 6565 Definition of function, us...
dffun6OLD 6566 Obsolete version of ~ dffu...
funmo 6567 A function has at most one...
funmoOLD 6568 Obsolete version of ~ funm...
funrel 6569 A function is a relation. ...
0nelfun 6570 A function does not contai...
funss 6571 Subclass theorem for funct...
funeq 6572 Equality theorem for funct...
funeqi 6573 Equality inference for the...
funeqd 6574 Equality deduction for the...
nffun 6575 Bound-variable hypothesis ...
sbcfung 6576 Distribute proper substitu...
funeu 6577 There is exactly one value...
funeu2 6578 There is exactly one value...
dffun7 6579 Alternate definition of a ...
dffun8 6580 Alternate definition of a ...
dffun9 6581 Alternate definition of a ...
funfn 6582 A class is a function if a...
funfnd 6583 A function is a function o...
funi 6584 The identity relation is a...
nfunv 6585 The universal class is not...
funopg 6586 A Kuratowski ordered pair ...
funopab 6587 A class of ordered pairs i...
funopabeq 6588 A class of ordered pairs o...
funopab4 6589 A class of ordered pairs o...
funmpt 6590 A function in maps-to nota...
funmpt2 6591 Functionality of a class g...
funco 6592 The composition of two fun...
funresfunco 6593 Composition of two functio...
funres 6594 A restriction of a functio...
funresd 6595 A restriction of a functio...
funssres 6596 The restriction of a funct...
fun2ssres 6597 Equality of restrictions o...
funun 6598 The union of functions wit...
fununmo 6599 If the union of classes is...
fununfun 6600 If the union of classes is...
fundif 6601 A function with removed el...
funcnvsn 6602 The converse singleton of ...
funsng 6603 A singleton of an ordered ...
fnsng 6604 Functionality and domain o...
funsn 6605 A singleton of an ordered ...
funprg 6606 A set of two pairs is a fu...
funtpg 6607 A set of three pairs is a ...
funpr 6608 A function with a domain o...
funtp 6609 A function with a domain o...
fnsn 6610 Functionality and domain o...
fnprg 6611 Function with a domain of ...
fntpg 6612 Function with a domain of ...
fntp 6613 A function with a domain o...
funcnvpr 6614 The converse pair of order...
funcnvtp 6615 The converse triple of ord...
funcnvqp 6616 The converse quadruple of ...
fun0 6617 The empty set is a functio...
funcnv0 6618 The converse of the empty ...
funcnvcnv 6619 The double converse of a f...
funcnv2 6620 A simpler equivalence for ...
funcnv 6621 The converse of a class is...
funcnv3 6622 A condition showing a clas...
fun2cnv 6623 The double converse of a c...
svrelfun 6624 A single-valued relation i...
fncnv 6625 Single-rootedness (see ~ f...
fun11 6626 Two ways of stating that `...
fununi 6627 The union of a chain (with...
funin 6628 The intersection with a fu...
funres11 6629 The restriction of a one-t...
funcnvres 6630 The converse of a restrict...
cnvresid 6631 Converse of a restricted i...
funcnvres2 6632 The converse of a restrict...
funimacnv 6633 The image of the preimage ...
funimass1 6634 A kind of contraposition l...
funimass2 6635 A kind of contraposition l...
imadif 6636 The image of a difference ...
imain 6637 The image of an intersecti...
funimaexg 6638 Axiom of Replacement using...
funimaexgOLD 6639 Obsolete version of ~ funi...
funimaex 6640 The image of a set under a...
isarep1 6641 Part of a study of the Axi...
isarep1OLD 6642 Obsolete version of ~ isar...
isarep2 6643 Part of a study of the Axi...
fneq1 6644 Equality theorem for funct...
fneq2 6645 Equality theorem for funct...
fneq1d 6646 Equality deduction for fun...
fneq2d 6647 Equality deduction for fun...
fneq12d 6648 Equality deduction for fun...
fneq12 6649 Equality theorem for funct...
fneq1i 6650 Equality inference for fun...
fneq2i 6651 Equality inference for fun...
nffn 6652 Bound-variable hypothesis ...
fnfun 6653 A function with domain is ...
fnfund 6654 A function with domain is ...
fnrel 6655 A function with domain is ...
fndm 6656 The domain of a function. ...
fndmi 6657 The domain of a function. ...
fndmd 6658 The domain of a function. ...
funfni 6659 Inference to convert a fun...
fndmu 6660 A function has a unique do...
fnbr 6661 The first argument of bina...
fnop 6662 The first argument of an o...
fneu 6663 There is exactly one value...
fneu2 6664 There is exactly one value...
fnunres1 6665 Restriction of a disjoint ...
fnunres2 6666 Restriction of a disjoint ...
fnun 6667 The union of two functions...
fnund 6668 The union of two functions...
fnunop 6669 Extension of a function wi...
fncofn 6670 Composition of a function ...
fnco 6671 Composition of two functio...
fncoOLD 6672 Obsolete version of ~ fnco...
fnresdm 6673 A function does not change...
fnresdisj 6674 A function restricted to a...
2elresin 6675 Membership in two function...
fnssresb 6676 Restriction of a function ...
fnssres 6677 Restriction of a function ...
fnssresd 6678 Restriction of a function ...
fnresin1 6679 Restriction of a function'...
fnresin2 6680 Restriction of a function'...
fnres 6681 An equivalence for functio...
idfn 6682 The identity relation is a...
fnresi 6683 The restricted identity re...
fnima 6684 The image of a function's ...
fn0 6685 A function with empty doma...
fnimadisj 6686 A class that is disjoint w...
fnimaeq0 6687 Images under a function ne...
dfmpt3 6688 Alternate definition for t...
mptfnf 6689 The maps-to notation defin...
fnmptf 6690 The maps-to notation defin...
fnopabg 6691 Functionality and domain o...
fnopab 6692 Functionality and domain o...
mptfng 6693 The maps-to notation defin...
fnmpt 6694 The maps-to notation defin...
fnmptd 6695 The maps-to notation defin...
mpt0 6696 A mapping operation with e...
fnmpti 6697 Functionality and domain o...
dmmpti 6698 Domain of the mapping oper...
dmmptd 6699 The domain of the mapping ...
mptun 6700 Union of mappings which ar...
partfun 6701 Rewrite a function defined...
feq1 6702 Equality theorem for funct...
feq2 6703 Equality theorem for funct...
feq3 6704 Equality theorem for funct...
feq23 6705 Equality theorem for funct...
feq1d 6706 Equality deduction for fun...
feq2d 6707 Equality deduction for fun...
feq3d 6708 Equality deduction for fun...
feq12d 6709 Equality deduction for fun...
feq123d 6710 Equality deduction for fun...
feq123 6711 Equality theorem for funct...
feq1i 6712 Equality inference for fun...
feq2i 6713 Equality inference for fun...
feq12i 6714 Equality inference for fun...
feq23i 6715 Equality inference for fun...
feq23d 6716 Equality deduction for fun...
nff 6717 Bound-variable hypothesis ...
sbcfng 6718 Distribute proper substitu...
sbcfg 6719 Distribute proper substitu...
elimf 6720 Eliminate a mapping hypoth...
ffn 6721 A mapping is a function wi...
ffnd 6722 A mapping is a function wi...
dffn2 6723 Any function is a mapping ...
ffun 6724 A mapping is a function. ...
ffund 6725 A mapping is a function, d...
frel 6726 A mapping is a relation. ...
freld 6727 A mapping is a relation. ...
frn 6728 The range of a mapping. (...
frnd 6729 Deduction form of ~ frn . ...
fdm 6730 The domain of a mapping. ...
fdmd 6731 Deduction form of ~ fdm . ...
fdmi 6732 Inference associated with ...
dffn3 6733 A function maps to its ran...
ffrn 6734 A function maps to its ran...
ffrnb 6735 Characterization of a func...
ffrnbd 6736 A function maps to its ran...
fss 6737 Expanding the codomain of ...
fssd 6738 Expanding the codomain of ...
fssdmd 6739 Expressing that a class is...
fssdm 6740 Expressing that a class is...
fimass 6741 The image of a class under...
fimassd 6742 The image of a class is a ...
fimacnv 6743 The preimage of the codoma...
fcof 6744 Composition of a function ...
fco 6745 Composition of two functio...
fcoOLD 6746 Obsolete version of ~ fco ...
fcod 6747 Composition of two mapping...
fco2 6748 Functionality of a composi...
fssxp 6749 A mapping is a class of or...
funssxp 6750 Two ways of specifying a p...
ffdm 6751 A mapping is a partial fun...
ffdmd 6752 The domain of a function. ...
fdmrn 6753 A different way to write `...
funcofd 6754 Composition of two functio...
fco3OLD 6755 Obsolete version of ~ func...
opelf 6756 The members of an ordered ...
fun 6757 The union of two functions...
fun2 6758 The union of two functions...
fun2d 6759 The union of functions wit...
fnfco 6760 Composition of two functio...
fssres 6761 Restriction of a function ...
fssresd 6762 Restriction of a function ...
fssres2 6763 Restriction of a restricte...
fresin 6764 An identity for the mappin...
resasplit 6765 If two functions agree on ...
fresaun 6766 The union of two functions...
fresaunres2 6767 From the union of two func...
fresaunres1 6768 From the union of two func...
fcoi1 6769 Composition of a mapping a...
fcoi2 6770 Composition of restricted ...
feu 6771 There is exactly one value...
fcnvres 6772 The converse of a restrict...
fimacnvdisj 6773 The preimage of a class di...
fint 6774 Function into an intersect...
fin 6775 Mapping into an intersecti...
f0 6776 The empty function. (Cont...
f00 6777 A class is a function with...
f0bi 6778 A function with empty doma...
f0dom0 6779 A function is empty iff it...
f0rn0 6780 If there is no element in ...
fconst 6781 A Cartesian product with a...
fconstg 6782 A Cartesian product with a...
fnconstg 6783 A Cartesian product with a...
fconst6g 6784 Constant function with loo...
fconst6 6785 A constant function as a m...
f1eq1 6786 Equality theorem for one-t...
f1eq2 6787 Equality theorem for one-t...
f1eq3 6788 Equality theorem for one-t...
nff1 6789 Bound-variable hypothesis ...
dff12 6790 Alternate definition of a ...
f1f 6791 A one-to-one mapping is a ...
f1fn 6792 A one-to-one mapping is a ...
f1fun 6793 A one-to-one mapping is a ...
f1rel 6794 A one-to-one onto mapping ...
f1dm 6795 The domain of a one-to-one...
f1ss 6796 A function that is one-to-...
f1ssr 6797 A function that is one-to-...
f1ssres 6798 A function that is one-to-...
f1resf1 6799 The restriction of an inje...
f1cnvcnv 6800 Two ways to express that a...
f1cof1 6801 Composition of two one-to-...
f1co 6802 Composition of one-to-one ...
f1coOLD 6803 Obsolete version of ~ f1co...
foeq1 6804 Equality theorem for onto ...
foeq2 6805 Equality theorem for onto ...
foeq3 6806 Equality theorem for onto ...
nffo 6807 Bound-variable hypothesis ...
fof 6808 An onto mapping is a mappi...
fofun 6809 An onto mapping is a funct...
fofn 6810 An onto mapping is a funct...
forn 6811 The codomain of an onto fu...
dffo2 6812 Alternate definition of an...
foima 6813 The image of the domain of...
dffn4 6814 A function maps onto its r...
funforn 6815 A function maps its domain...
fodmrnu 6816 An onto function has uniqu...
fimadmfo 6817 A function is a function o...
fores 6818 Restriction of an onto fun...
fimadmfoALT 6819 Alternate proof of ~ fimad...
focnvimacdmdm 6820 The preimage of the codoma...
focofo 6821 Composition of onto functi...
foco 6822 Composition of onto functi...
foconst 6823 A nonzero constant functio...
f1oeq1 6824 Equality theorem for one-t...
f1oeq2 6825 Equality theorem for one-t...
f1oeq3 6826 Equality theorem for one-t...
f1oeq23 6827 Equality theorem for one-t...
f1eq123d 6828 Equality deduction for one...
foeq123d 6829 Equality deduction for ont...
f1oeq123d 6830 Equality deduction for one...
f1oeq1d 6831 Equality deduction for one...
f1oeq2d 6832 Equality deduction for one...
f1oeq3d 6833 Equality deduction for one...
nff1o 6834 Bound-variable hypothesis ...
f1of1 6835 A one-to-one onto mapping ...
f1of 6836 A one-to-one onto mapping ...
f1ofn 6837 A one-to-one onto mapping ...
f1ofun 6838 A one-to-one onto mapping ...
f1orel 6839 A one-to-one onto mapping ...
f1odm 6840 The domain of a one-to-one...
dff1o2 6841 Alternate definition of on...
dff1o3 6842 Alternate definition of on...
f1ofo 6843 A one-to-one onto function...
dff1o4 6844 Alternate definition of on...
dff1o5 6845 Alternate definition of on...
f1orn 6846 A one-to-one function maps...
f1f1orn 6847 A one-to-one function maps...
f1ocnv 6848 The converse of a one-to-o...
f1ocnvb 6849 A relation is a one-to-one...
f1ores 6850 The restriction of a one-t...
f1orescnv 6851 The converse of a one-to-o...
f1imacnv 6852 Preimage of an image. (Co...
foimacnv 6853 A reverse version of ~ f1i...
foun 6854 The union of two onto func...
f1oun 6855 The union of two one-to-on...
f1un 6856 The union of two one-to-on...
resdif 6857 The restriction of a one-t...
resin 6858 The restriction of a one-t...
f1oco 6859 Composition of one-to-one ...
f1cnv 6860 The converse of an injecti...
funcocnv2 6861 Composition with the conve...
fococnv2 6862 The composition of an onto...
f1ococnv2 6863 The composition of a one-t...
f1cocnv2 6864 Composition of an injectiv...
f1ococnv1 6865 The composition of a one-t...
f1cocnv1 6866 Composition of an injectiv...
funcoeqres 6867 Express a constraint on a ...
f1ssf1 6868 A subset of an injective f...
f10 6869 The empty set maps one-to-...
f10d 6870 The empty set maps one-to-...
f1o00 6871 One-to-one onto mapping of...
fo00 6872 Onto mapping of the empty ...
f1o0 6873 One-to-one onto mapping of...
f1oi 6874 A restriction of the ident...
f1ovi 6875 The identity relation is a...
f1osn 6876 A singleton of an ordered ...
f1osng 6877 A singleton of an ordered ...
f1sng 6878 A singleton of an ordered ...
fsnd 6879 A singleton of an ordered ...
f1oprswap 6880 A two-element swap is a bi...
f1oprg 6881 An unordered pair of order...
tz6.12-2 6882 Function value when ` F ` ...
fveu 6883 The value of a function at...
brprcneu 6884 If ` A ` is a proper class...
brprcneuALT 6885 Alternate proof of ~ brprc...
fvprc 6886 A function's value at a pr...
fvprcALT 6887 Alternate proof of ~ fvprc...
rnfvprc 6888 The range of a function va...
fv2 6889 Alternate definition of fu...
dffv3 6890 A definition of function v...
dffv4 6891 The previous definition of...
elfv 6892 Membership in a function v...
fveq1 6893 Equality theorem for funct...
fveq2 6894 Equality theorem for funct...
fveq1i 6895 Equality inference for fun...
fveq1d 6896 Equality deduction for fun...
fveq2i 6897 Equality inference for fun...
fveq2d 6898 Equality deduction for fun...
2fveq3 6899 Equality theorem for neste...
fveq12i 6900 Equality deduction for fun...
fveq12d 6901 Equality deduction for fun...
fveqeq2d 6902 Equality deduction for fun...
fveqeq2 6903 Equality deduction for fun...
nffv 6904 Bound-variable hypothesis ...
nffvmpt1 6905 Bound-variable hypothesis ...
nffvd 6906 Deduction version of bound...
fvex 6907 The value of a class exist...
fvexi 6908 The value of a class exist...
fvexd 6909 The value of a class exist...
fvif 6910 Move a conditional outside...
iffv 6911 Move a conditional outside...
fv3 6912 Alternate definition of th...
fvres 6913 The value of a restricted ...
fvresd 6914 The value of a restricted ...
funssfv 6915 The value of a member of t...
tz6.12c 6916 Corollary of Theorem 6.12(...
tz6.12-1 6917 Function value. Theorem 6...
tz6.12-1OLD 6918 Obsolete version of ~ tz6....
tz6.12 6919 Function value. Theorem 6...
tz6.12f 6920 Function value, using boun...
tz6.12cOLD 6921 Obsolete version of ~ tz6....
tz6.12i 6922 Corollary of Theorem 6.12(...
fvbr0 6923 Two possibilities for the ...
fvrn0 6924 A function value is a memb...
fvn0fvelrn 6925 If the value of a function...
elfvunirn 6926 A function value is a subs...
fvssunirn 6927 The result of a function v...
fvssunirnOLD 6928 Obsolete version of ~ fvss...
ndmfv 6929 The value of a class outsi...
ndmfvrcl 6930 Reverse closure law for fu...
elfvdm 6931 If a function value has a ...
elfvex 6932 If a function value has a ...
elfvexd 6933 If a function value has a ...
eliman0 6934 A nonempty function value ...
nfvres 6935 The value of a non-member ...
nfunsn 6936 If the restriction of a cl...
fvfundmfvn0 6937 If the "value of a class" ...
0fv 6938 Function value of the empt...
fv2prc 6939 A function value of a func...
elfv2ex 6940 If a function value of a f...
fveqres 6941 Equal values imply equal v...
csbfv12 6942 Move class substitution in...
csbfv2g 6943 Move class substitution in...
csbfv 6944 Substitution for a functio...
funbrfv 6945 The second argument of a b...
funopfv 6946 The second element in an o...
fnbrfvb 6947 Equivalence of function va...
fnopfvb 6948 Equivalence of function va...
funbrfvb 6949 Equivalence of function va...
funopfvb 6950 Equivalence of function va...
fnbrfvb2 6951 Version of ~ fnbrfvb for f...
fdmeu 6952 There is exactly one codom...
funbrfv2b 6953 Function value in terms of...
dffn5 6954 Representation of a functi...
fnrnfv 6955 The range of a function ex...
fvelrnb 6956 A member of a function's r...
foelcdmi 6957 A member of a surjective f...
dfimafn 6958 Alternate definition of th...
dfimafn2 6959 Alternate definition of th...
funimass4 6960 Membership relation for th...
fvelima 6961 Function value in an image...
funimassd 6962 Sufficient condition for t...
fvelimad 6963 Function value in an image...
feqmptd 6964 Deduction form of ~ dffn5 ...
feqresmpt 6965 Express a restricted funct...
feqmptdf 6966 Deduction form of ~ dffn5f...
dffn5f 6967 Representation of a functi...
fvelimab 6968 Function value in an image...
fvelimabd 6969 Deduction form of ~ fvelim...
unima 6970 Image of a union. (Contri...
fvi 6971 The value of the identity ...
fviss 6972 The value of the identity ...
fniinfv 6973 The indexed intersection o...
fnsnfv 6974 Singleton of function valu...
fnsnfvOLD 6975 Obsolete version of ~ fnsn...
opabiotafun 6976 Define a function whose va...
opabiotadm 6977 Define a function whose va...
opabiota 6978 Define a function whose va...
fnimapr 6979 The image of a pair under ...
ssimaex 6980 The existence of a subimag...
ssimaexg 6981 The existence of a subimag...
funfv 6982 A simplified expression fo...
funfv2 6983 The value of a function. ...
funfv2f 6984 The value of a function. ...
fvun 6985 Value of the union of two ...
fvun1 6986 The value of a union when ...
fvun2 6987 The value of a union when ...
fvun1d 6988 The value of a union when ...
fvun2d 6989 The value of a union when ...
dffv2 6990 Alternate definition of fu...
dmfco 6991 Domains of a function comp...
fvco2 6992 Value of a function compos...
fvco 6993 Value of a function compos...
fvco3 6994 Value of a function compos...
fvco3d 6995 Value of a function compos...
fvco4i 6996 Conditions for a compositi...
fvopab3g 6997 Value of a function given ...
fvopab3ig 6998 Value of a function given ...
brfvopabrbr 6999 The binary relation of a f...
fvmptg 7000 Value of a function given ...
fvmpti 7001 Value of a function given ...
fvmpt 7002 Value of a function given ...
fvmpt2f 7003 Value of a function given ...
fvtresfn 7004 Functionality of a tuple-r...
fvmpts 7005 Value of a function given ...
fvmpt3 7006 Value of a function given ...
fvmpt3i 7007 Value of a function given ...
fvmptdf 7008 Deduction version of ~ fvm...
fvmptd 7009 Deduction version of ~ fvm...
fvmptd2 7010 Deduction version of ~ fvm...
mptrcl 7011 Reverse closure for a mapp...
fvmpt2i 7012 Value of a function given ...
fvmpt2 7013 Value of a function given ...
fvmptss 7014 If all the values of the m...
fvmpt2d 7015 Deduction version of ~ fvm...
fvmptex 7016 Express a function ` F ` w...
fvmptd3f 7017 Alternate deduction versio...
fvmptd2f 7018 Alternate deduction versio...
fvmptdv 7019 Alternate deduction versio...
fvmptdv2 7020 Alternate deduction versio...
mpteqb 7021 Bidirectional equality the...
fvmptt 7022 Closed theorem form of ~ f...
fvmptf 7023 Value of a function given ...
fvmptnf 7024 The value of a function gi...
fvmptd3 7025 Deduction version of ~ fvm...
fvmptd4 7026 Deduction version of ~ fvm...
fvmptn 7027 This somewhat non-intuitiv...
fvmptss2 7028 A mapping always evaluates...
elfvmptrab1w 7029 Implications for the value...
elfvmptrab1 7030 Implications for the value...
elfvmptrab 7031 Implications for the value...
fvopab4ndm 7032 Value of a function given ...
fvmptndm 7033 Value of a function given ...
fvmptrabfv 7034 Value of a function mappin...
fvopab5 7035 The value of a function th...
fvopab6 7036 Value of a function given ...
eqfnfv 7037 Equality of functions is d...
eqfnfv2 7038 Equality of functions is d...
eqfnfv3 7039 Derive equality of functio...
eqfnfvd 7040 Deduction for equality of ...
eqfnfv2f 7041 Equality of functions is d...
eqfunfv 7042 Equality of functions is d...
eqfnun 7043 Two functions on ` A u. B ...
fvreseq0 7044 Equality of restricted fun...
fvreseq1 7045 Equality of a function res...
fvreseq 7046 Equality of restricted fun...
fnmptfvd 7047 A function with a given do...
fndmdif 7048 Two ways to express the lo...
fndmdifcom 7049 The difference set between...
fndmdifeq0 7050 The difference set of two ...
fndmin 7051 Two ways to express the lo...
fneqeql 7052 Two functions are equal if...
fneqeql2 7053 Two functions are equal if...
fnreseql 7054 Two functions are equal on...
chfnrn 7055 The range of a choice func...
funfvop 7056 Ordered pair with function...
funfvbrb 7057 Two ways to say that ` A `...
fvimacnvi 7058 A member of a preimage is ...
fvimacnv 7059 The argument of a function...
funimass3 7060 A kind of contraposition l...
funimass5 7061 A subclass of a preimage i...
funconstss 7062 Two ways of specifying tha...
fvimacnvALT 7063 Alternate proof of ~ fvima...
elpreima 7064 Membership in the preimage...
elpreimad 7065 Membership in the preimage...
fniniseg 7066 Membership in the preimage...
fncnvima2 7067 Inverse images under funct...
fniniseg2 7068 Inverse point images under...
unpreima 7069 Preimage of a union. (Con...
inpreima 7070 Preimage of an intersectio...
difpreima 7071 Preimage of a difference. ...
respreima 7072 The preimage of a restrict...
cnvimainrn 7073 The preimage of the inters...
sspreima 7074 The preimage of a subset i...
iinpreima 7075 Preimage of an intersectio...
intpreima 7076 Preimage of an intersectio...
fimacnvOLD 7077 Obsolete version of ~ fima...
fimacnvinrn 7078 Taking the converse image ...
fimacnvinrn2 7079 Taking the converse image ...
rescnvimafod 7080 The restriction of a funct...
fvn0ssdmfun 7081 If a class' function value...
fnopfv 7082 Ordered pair with function...
fvelrn 7083 A function's value belongs...
nelrnfvne 7084 A function value cannot be...
fveqdmss 7085 If the empty set is not co...
fveqressseq 7086 If the empty set is not co...
fnfvelrn 7087 A function's value belongs...
ffvelcdm 7088 A function's value belongs...
fnfvelrnd 7089 A function's value belongs...
ffvelcdmi 7090 A function's value belongs...
ffvelcdmda 7091 A function's value belongs...
ffvelcdmd 7092 A function's value belongs...
feldmfvelcdm 7093 A class is an element of t...
rexrn 7094 Restricted existential qua...
ralrn 7095 Restricted universal quant...
elrnrexdm 7096 For any element in the ran...
elrnrexdmb 7097 For any element in the ran...
eldmrexrn 7098 For any element in the dom...
eldmrexrnb 7099 For any element in the dom...
fvcofneq 7100 The values of two function...
ralrnmptw 7101 A restricted quantifier ov...
rexrnmptw 7102 A restricted quantifier ov...
ralrnmpt 7103 A restricted quantifier ov...
rexrnmpt 7104 A restricted quantifier ov...
f0cli 7105 Unconditional closure of a...
dff2 7106 Alternate definition of a ...
dff3 7107 Alternate definition of a ...
dff4 7108 Alternate definition of a ...
dffo3 7109 An onto mapping expressed ...
dffo4 7110 Alternate definition of an...
dffo5 7111 Alternate definition of an...
exfo 7112 A relation equivalent to t...
dffo3f 7113 An onto mapping expressed ...
foelrn 7114 Property of a surjective f...
foelrnf 7115 Property of a surjective f...
foco2 7116 If a composition of two fu...
fmpt 7117 Functionality of the mappi...
f1ompt 7118 Express bijection for a ma...
fmpti 7119 Functionality of the mappi...
fvmptelcdm 7120 The value of a function at...
fmptd 7121 Domain and codomain of the...
fmpttd 7122 Version of ~ fmptd with in...
fmpt3d 7123 Domain and codomain of the...
fmptdf 7124 A version of ~ fmptd using...
fompt 7125 Express being onto for a m...
ffnfv 7126 A function maps to a class...
ffnfvf 7127 A function maps to a class...
fnfvrnss 7128 An upper bound for range d...
fcdmssb 7129 A function is a function i...
rnmptss 7130 The range of an operation ...
fmpt2d 7131 Domain and codomain of the...
ffvresb 7132 A necessary and sufficient...
fssrescdmd 7133 Restriction of a function ...
f1oresrab 7134 Build a bijection between ...
f1ossf1o 7135 Restricting a bijection, w...
fmptco 7136 Composition of two functio...
fmptcof 7137 Version of ~ fmptco where ...
fmptcos 7138 Composition of two functio...
cofmpt 7139 Express composition of a m...
fcompt 7140 Express composition of two...
fcoconst 7141 Composition with a constan...
fsn 7142 A function maps a singleto...
fsn2 7143 A function that maps a sin...
fsng 7144 A function maps a singleto...
fsn2g 7145 A function that maps a sin...
xpsng 7146 The Cartesian product of t...
xpprsng 7147 The Cartesian product of a...
xpsn 7148 The Cartesian product of t...
f1o2sn 7149 A singleton consisting in ...
residpr 7150 Restriction of the identit...
dfmpt 7151 Alternate definition for t...
fnasrn 7152 A function expressed as th...
idref 7153 Two ways to state that a r...
funiun 7154 A function is a union of s...
funopsn 7155 If a function is an ordere...
funop 7156 An ordered pair is a funct...
funopdmsn 7157 The domain of a function w...
funsndifnop 7158 A singleton of an ordered ...
funsneqopb 7159 A singleton of an ordered ...
ressnop0 7160 If ` A ` is not in ` C ` ,...
fpr 7161 A function with a domain o...
fprg 7162 A function with a domain o...
ftpg 7163 A function with a domain o...
ftp 7164 A function with a domain o...
fnressn 7165 A function restricted to a...
funressn 7166 A function restricted to a...
fressnfv 7167 The value of a function re...
fvrnressn 7168 If the value of a function...
fvressn 7169 The value of a function re...
fvn0fvelrnOLD 7170 Obsolete version of ~ fvn0...
fvconst 7171 The value of a constant fu...
fnsnr 7172 If a class belongs to a fu...
fnsnb 7173 A function whose domain is...
fmptsn 7174 Express a singleton functi...
fmptsng 7175 Express a singleton functi...
fmptsnd 7176 Express a singleton functi...
fmptap 7177 Append an additional value...
fmptapd 7178 Append an additional value...
fmptpr 7179 Express a pair function in...
fvresi 7180 The value of a restricted ...
fninfp 7181 Express the class of fixed...
fnelfp 7182 Property of a fixed point ...
fndifnfp 7183 Express the class of non-f...
fnelnfp 7184 Property of a non-fixed po...
fnnfpeq0 7185 A function is the identity...
fvunsn 7186 Remove an ordered pair not...
fvsng 7187 The value of a singleton o...
fvsn 7188 The value of a singleton o...
fvsnun1 7189 The value of a function wi...
fvsnun2 7190 The value of a function wi...
fnsnsplit 7191 Split a function into a si...
fsnunf 7192 Adjoining a point to a fun...
fsnunf2 7193 Adjoining a point to a pun...
fsnunfv 7194 Recover the added point fr...
fsnunres 7195 Recover the original funct...
funresdfunsn 7196 Restricting a function to ...
fvpr1g 7197 The value of a function wi...
fvpr2g 7198 The value of a function wi...
fvpr2gOLD 7199 Obsolete version of ~ fvpr...
fvpr1 7200 The value of a function wi...
fvpr1OLD 7201 Obsolete version of ~ fvpr...
fvpr2 7202 The value of a function wi...
fvpr2OLD 7203 Obsolete version of ~ fvpr...
fprb 7204 A condition for functionho...
fvtp1 7205 The first value of a funct...
fvtp2 7206 The second value of a func...
fvtp3 7207 The third value of a funct...
fvtp1g 7208 The value of a function wi...
fvtp2g 7209 The value of a function wi...
fvtp3g 7210 The value of a function wi...
tpres 7211 An unordered triple of ord...
fvconst2g 7212 The value of a constant fu...
fconst2g 7213 A constant function expres...
fvconst2 7214 The value of a constant fu...
fconst2 7215 A constant function expres...
fconst5 7216 Two ways to express that a...
rnmptc 7217 Range of a constant functi...
fnprb 7218 A function whose domain ha...
fntpb 7219 A function whose domain ha...
fnpr2g 7220 A function whose domain ha...
fpr2g 7221 A function that maps a pai...
fconstfv 7222 A constant function expres...
fconst3 7223 Two ways to express a cons...
fconst4 7224 Two ways to express a cons...
resfunexg 7225 The restriction of a funct...
resiexd 7226 The restriction of the ide...
fnex 7227 If the domain of a functio...
fnexd 7228 If the domain of a functio...
funex 7229 If the domain of a functio...
opabex 7230 Existence of a function ex...
mptexg 7231 If the domain of a functio...
mptexgf 7232 If the domain of a functio...
mptex 7233 If the domain of a functio...
mptexd 7234 If the domain of a functio...
mptrabex 7235 If the domain of a functio...
fex 7236 If the domain of a mapping...
fexd 7237 If the domain of a mapping...
mptfvmpt 7238 A function in maps-to nota...
eufnfv 7239 A function is uniquely det...
funfvima 7240 A function's value in a pr...
funfvima2 7241 A function's value in an i...
funfvima2d 7242 A function's value in a pr...
fnfvima 7243 The function value of an o...
fnfvimad 7244 A function's value belongs...
resfvresima 7245 The value of the function ...
funfvima3 7246 A class including a functi...
rexima 7247 Existential quantification...
ralima 7248 Universal quantification u...
fvclss 7249 Upper bound for the class ...
elabrex 7250 Elementhood in an image se...
elabrexg 7251 Elementhood in an image se...
abrexco 7252 Composition of two image m...
imaiun 7253 The image of an indexed un...
imauni 7254 The image of a union is th...
fniunfv 7255 The indexed union of a fun...
funiunfv 7256 The indexed union of a fun...
funiunfvf 7257 The indexed union of a fun...
eluniima 7258 Membership in the union of...
elunirn 7259 Membership in the union of...
elunirnALT 7260 Alternate proof of ~ eluni...
elunirn2OLD 7261 Obsolete version of ~ elfv...
fnunirn 7262 Membership in a union of s...
dff13 7263 A one-to-one function in t...
dff13f 7264 A one-to-one function in t...
f1veqaeq 7265 If the values of a one-to-...
f1cofveqaeq 7266 If the values of a composi...
f1cofveqaeqALT 7267 Alternate proof of ~ f1cof...
2f1fvneq 7268 If two one-to-one function...
f1mpt 7269 Express injection for a ma...
f1fveq 7270 Equality of function value...
f1elima 7271 Membership in the image of...
f1imass 7272 Taking images under a one-...
f1imaeq 7273 Taking images under a one-...
f1imapss 7274 Taking images under a one-...
fpropnf1 7275 A function, given by an un...
f1dom3fv3dif 7276 The function values for a ...
f1dom3el3dif 7277 The codomain of a 1-1 func...
dff14a 7278 A one-to-one function in t...
dff14b 7279 A one-to-one function in t...
f12dfv 7280 A one-to-one function with...
f13dfv 7281 A one-to-one function with...
dff1o6 7282 A one-to-one onto function...
f1ocnvfv1 7283 The converse value of the ...
f1ocnvfv2 7284 The value of the converse ...
f1ocnvfv 7285 Relationship between the v...
f1ocnvfvb 7286 Relationship between the v...
nvof1o 7287 An involution is a bijecti...
nvocnv 7288 The converse of an involut...
f1cdmsn 7289 If a one-to-one function w...
fsnex 7290 Relate a function with a s...
f1prex 7291 Relate a one-to-one functi...
f1ocnvdm 7292 The value of the converse ...
f1ocnvfvrneq 7293 If the values of a one-to-...
fcof1 7294 An application is injectiv...
fcofo 7295 An application is surjecti...
cbvfo 7296 Change bound variable betw...
cbvexfo 7297 Change bound variable betw...
cocan1 7298 An injection is left-cance...
cocan2 7299 A surjection is right-canc...
fcof1oinvd 7300 Show that a function is th...
fcof1od 7301 A function is bijective if...
2fcoidinvd 7302 Show that a function is th...
fcof1o 7303 Show that two functions ar...
2fvcoidd 7304 Show that the composition ...
2fvidf1od 7305 A function is bijective if...
2fvidinvd 7306 Show that two functions ar...
foeqcnvco 7307 Condition for function equ...
f1eqcocnv 7308 Condition for function equ...
fveqf1o 7309 Given a bijection ` F ` , ...
nf1const 7310 A constant function from a...
nf1oconst 7311 A constant function from a...
f1ofvswap 7312 Swapping two values in a b...
fliftrel 7313 ` F ` , a function lift, i...
fliftel 7314 Elementhood in the relatio...
fliftel1 7315 Elementhood in the relatio...
fliftcnv 7316 Converse of the relation `...
fliftfun 7317 The function ` F ` is the ...
fliftfund 7318 The function ` F ` is the ...
fliftfuns 7319 The function ` F ` is the ...
fliftf 7320 The domain and range of th...
fliftval 7321 The value of the function ...
isoeq1 7322 Equality theorem for isomo...
isoeq2 7323 Equality theorem for isomo...
isoeq3 7324 Equality theorem for isomo...
isoeq4 7325 Equality theorem for isomo...
isoeq5 7326 Equality theorem for isomo...
nfiso 7327 Bound-variable hypothesis ...
isof1o 7328 An isomorphism is a one-to...
isof1oidb 7329 A function is a bijection ...
isof1oopb 7330 A function is a bijection ...
isorel 7331 An isomorphism connects bi...
soisores 7332 Express the condition of i...
soisoi 7333 Infer isomorphism from one...
isoid 7334 Identity law for isomorphi...
isocnv 7335 Converse law for isomorphi...
isocnv2 7336 Converse law for isomorphi...
isocnv3 7337 Complementation law for is...
isores2 7338 An isomorphism from one we...
isores1 7339 An isomorphism from one we...
isores3 7340 Induced isomorphism on a s...
isotr 7341 Composition (transitive) l...
isomin 7342 Isomorphisms preserve mini...
isoini 7343 Isomorphisms preserve init...
isoini2 7344 Isomorphisms are isomorphi...
isofrlem 7345 Lemma for ~ isofr . (Cont...
isoselem 7346 Lemma for ~ isose . (Cont...
isofr 7347 An isomorphism preserves w...
isose 7348 An isomorphism preserves s...
isofr2 7349 A weak form of ~ isofr tha...
isopolem 7350 Lemma for ~ isopo . (Cont...
isopo 7351 An isomorphism preserves t...
isosolem 7352 Lemma for ~ isoso . (Cont...
isoso 7353 An isomorphism preserves t...
isowe 7354 An isomorphism preserves t...
isowe2 7355 A weak form of ~ isowe tha...
f1oiso 7356 Any one-to-one onto functi...
f1oiso2 7357 Any one-to-one onto functi...
f1owe 7358 Well-ordering of isomorphi...
weniso 7359 A set-like well-ordering h...
weisoeq 7360 Thus, there is at most one...
weisoeq2 7361 Thus, there is at most one...
knatar 7362 The Knaster-Tarski theorem...
fvresval 7363 The value of a restricted ...
funeldmb 7364 If ` (/) ` is not part of ...
eqfunresadj 7365 Law for adjoining an eleme...
eqfunressuc 7366 Law for equality of restri...
fnssintima 7367 Condition for subset of an...
imaeqsexv 7368 Substitute a function valu...
imaeqsalv 7369 Substitute a function valu...
canth 7370 No set ` A ` is equinumero...
ncanth 7371 Cantor's theorem fails for...
riotaeqdv 7374 Formula-building deduction...
riotabidv 7375 Formula-building deduction...
riotaeqbidv 7376 Equality deduction for res...
riotaex 7377 Restricted iota is a set. ...
riotav 7378 An iota restricted to the ...
riotauni 7379 Restricted iota in terms o...
nfriota1 7380 The abstraction variable i...
nfriotadw 7381 Deduction version of ~ nfr...
cbvriotaw 7382 Change bound variable in a...
cbvriotavw 7383 Change bound variable in a...
cbvriotavwOLD 7384 Obsolete version of ~ cbvr...
nfriotad 7385 Deduction version of ~ nfr...
nfriota 7386 A variable not free in a w...
cbvriota 7387 Change bound variable in a...
cbvriotav 7388 Change bound variable in a...
csbriota 7389 Interchange class substitu...
riotacl2 7390 Membership law for "the un...
riotacl 7391 Closure of restricted iota...
riotasbc 7392 Substitution law for descr...
riotabidva 7393 Equivalent wff's yield equ...
riotabiia 7394 Equivalent wff's yield equ...
riota1 7395 Property of restricted iot...
riota1a 7396 Property of iota. (Contri...
riota2df 7397 A deduction version of ~ r...
riota2f 7398 This theorem shows a condi...
riota2 7399 This theorem shows a condi...
riotaeqimp 7400 If two restricted iota des...
riotaprop 7401 Properties of a restricted...
riota5f 7402 A method for computing res...
riota5 7403 A method for computing res...
riotass2 7404 Restriction of a unique el...
riotass 7405 Restriction of a unique el...
moriotass 7406 Restriction of a unique el...
snriota 7407 A restricted class abstrac...
riotaxfrd 7408 Change the variable ` x ` ...
eusvobj2 7409 Specify the same property ...
eusvobj1 7410 Specify the same object in...
f1ofveu 7411 There is one domain elemen...
f1ocnvfv3 7412 Value of the converse of a...
riotaund 7413 Restricted iota equals the...
riotassuni 7414 The restricted iota class ...
riotaclb 7415 Bidirectional closure of r...
riotarab 7416 Restricted iota of a restr...
oveq 7423 Equality theorem for opera...
oveq1 7424 Equality theorem for opera...
oveq2 7425 Equality theorem for opera...
oveq12 7426 Equality theorem for opera...
oveq1i 7427 Equality inference for ope...
oveq2i 7428 Equality inference for ope...
oveq12i 7429 Equality inference for ope...
oveqi 7430 Equality inference for ope...
oveq123i 7431 Equality inference for ope...
oveq1d 7432 Equality deduction for ope...
oveq2d 7433 Equality deduction for ope...
oveqd 7434 Equality deduction for ope...
oveq12d 7435 Equality deduction for ope...
oveqan12d 7436 Equality deduction for ope...
oveqan12rd 7437 Equality deduction for ope...
oveq123d 7438 Equality deduction for ope...
fvoveq1d 7439 Equality deduction for nes...
fvoveq1 7440 Equality theorem for neste...
ovanraleqv 7441 Equality theorem for a con...
imbrov2fvoveq 7442 Equality theorem for neste...
ovrspc2v 7443 If an operation value is e...
oveqrspc2v 7444 Restricted specialization ...
oveqdr 7445 Equality of two operations...
nfovd 7446 Deduction version of bound...
nfov 7447 Bound-variable hypothesis ...
oprabidw 7448 The law of concretion. Sp...
oprabid 7449 The law of concretion. Sp...
ovex 7450 The result of an operation...
ovexi 7451 The result of an operation...
ovexd 7452 The result of an operation...
ovssunirn 7453 The result of an operation...
0ov 7454 Operation value of the emp...
ovprc 7455 The value of an operation ...
ovprc1 7456 The value of an operation ...
ovprc2 7457 The value of an operation ...
ovrcl 7458 Reverse closure for an ope...
elfvov1 7459 Utility theorem: reverse c...
csbov123 7460 Move class substitution in...
csbov 7461 Move class substitution in...
csbov12g 7462 Move class substitution in...
csbov1g 7463 Move class substitution in...
csbov2g 7464 Move class substitution in...
rspceov 7465 A frequently used special ...
elovimad 7466 Elementhood of the image s...
fnbrovb 7467 Value of a binary operatio...
fnotovb 7468 Equivalence of operation v...
opabbrex 7469 A collection of ordered pa...
opabresex2 7470 Restrictions of a collecti...
opabresex2d 7471 Obsolete version of ~ opab...
fvmptopab 7472 The function value of a ma...
fvmptopabOLD 7473 Obsolete version of ~ fvmp...
f1opr 7474 Condition for an operation...
brfvopab 7475 The classes involved in a ...
dfoprab2 7476 Class abstraction for oper...
reloprab 7477 An operation class abstrac...
oprabv 7478 If a pair and a class are ...
nfoprab1 7479 The abstraction variables ...
nfoprab2 7480 The abstraction variables ...
nfoprab3 7481 The abstraction variables ...
nfoprab 7482 Bound-variable hypothesis ...
oprabbid 7483 Equivalent wff's yield equ...
oprabbidv 7484 Equivalent wff's yield equ...
oprabbii 7485 Equivalent wff's yield equ...
ssoprab2 7486 Equivalence of ordered pai...
ssoprab2b 7487 Equivalence of ordered pai...
eqoprab2bw 7488 Equivalence of ordered pai...
eqoprab2b 7489 Equivalence of ordered pai...
mpoeq123 7490 An equality theorem for th...
mpoeq12 7491 An equality theorem for th...
mpoeq123dva 7492 An equality deduction for ...
mpoeq123dv 7493 An equality deduction for ...
mpoeq123i 7494 An equality inference for ...
mpoeq3dva 7495 Slightly more general equa...
mpoeq3ia 7496 An equality inference for ...
mpoeq3dv 7497 An equality deduction for ...
nfmpo1 7498 Bound-variable hypothesis ...
nfmpo2 7499 Bound-variable hypothesis ...
nfmpo 7500 Bound-variable hypothesis ...
0mpo0 7501 A mapping operation with e...
mpo0v 7502 A mapping operation with e...
mpo0 7503 A mapping operation with e...
oprab4 7504 Two ways to state the doma...
cbvoprab1 7505 Rule used to change first ...
cbvoprab2 7506 Change the second bound va...
cbvoprab12 7507 Rule used to change first ...
cbvoprab12v 7508 Rule used to change first ...
cbvoprab3 7509 Rule used to change the th...
cbvoprab3v 7510 Rule used to change the th...
cbvmpox 7511 Rule to change the bound v...
cbvmpo 7512 Rule to change the bound v...
cbvmpov 7513 Rule to change the bound v...
elimdelov 7514 Eliminate a hypothesis whi...
brif1 7515 Move a relation inside and...
ovif 7516 Move a conditional outside...
ovif2 7517 Move a conditional outside...
ovif12 7518 Move a conditional outside...
ifov 7519 Move a conditional outside...
dmoprab 7520 The domain of an operation...
dmoprabss 7521 The domain of an operation...
rnoprab 7522 The range of an operation ...
rnoprab2 7523 The range of a restricted ...
reldmoprab 7524 The domain of an operation...
oprabss 7525 Structure of an operation ...
eloprabga 7526 The law of concretion for ...
eloprabgaOLD 7527 Obsolete version of ~ elop...
eloprabg 7528 The law of concretion for ...
ssoprab2i 7529 Inference of operation cla...
mpov 7530 Operation with universal d...
mpomptx 7531 Express a two-argument fun...
mpompt 7532 Express a two-argument fun...
mpodifsnif 7533 A mapping with two argumen...
mposnif 7534 A mapping with two argumen...
fconstmpo 7535 Representation of a consta...
resoprab 7536 Restriction of an operatio...
resoprab2 7537 Restriction of an operator...
resmpo 7538 Restriction of the mapping...
funoprabg 7539 "At most one" is a suffici...
funoprab 7540 "At most one" is a suffici...
fnoprabg 7541 Functionality and domain o...
mpofun 7542 The maps-to notation for a...
mpofunOLD 7543 Obsolete version of ~ mpof...
fnoprab 7544 Functionality and domain o...
ffnov 7545 An operation maps to a cla...
fovcld 7546 Closure law for an operati...
fovcl 7547 Closure law for an operati...
eqfnov 7548 Equality of two operations...
eqfnov2 7549 Two operators with the sam...
fnov 7550 Representation of a functi...
mpo2eqb 7551 Bidirectional equality the...
rnmpo 7552 The range of an operation ...
reldmmpo 7553 The domain of an operation...
elrnmpog 7554 Membership in the range of...
elrnmpo 7555 Membership in the range of...
elimampo 7556 Membership in the image of...
elrnmpores 7557 Membership in the range of...
ralrnmpo 7558 A restricted quantifier ov...
rexrnmpo 7559 A restricted quantifier ov...
ovid 7560 The value of an operation ...
ovidig 7561 The value of an operation ...
ovidi 7562 The value of an operation ...
ov 7563 The value of an operation ...
ovigg 7564 The value of an operation ...
ovig 7565 The value of an operation ...
ovmpt4g 7566 Value of a function given ...
ovmpos 7567 Value of a function given ...
ov2gf 7568 The value of an operation ...
ovmpodxf 7569 Value of an operation give...
ovmpodx 7570 Value of an operation give...
ovmpod 7571 Value of an operation give...
ovmpox 7572 The value of an operation ...
ovmpoga 7573 Value of an operation give...
ovmpoa 7574 Value of an operation give...
ovmpodf 7575 Alternate deduction versio...
ovmpodv 7576 Alternate deduction versio...
ovmpodv2 7577 Alternate deduction versio...
ovmpog 7578 Value of an operation give...
ovmpo 7579 Value of an operation give...
ovmpot 7580 The value of an operation ...
fvmpopr2d 7581 Value of an operation give...
ov3 7582 The value of an operation ...
ov6g 7583 The value of an operation ...
ovg 7584 The value of an operation ...
ovres 7585 The value of a restricted ...
ovresd 7586 Lemma for converting metri...
oprres 7587 The restriction of an oper...
oprssov 7588 The value of a member of t...
fovcdm 7589 An operation's value belon...
fovcdmda 7590 An operation's value belon...
fovcdmd 7591 An operation's value belon...
fnrnov 7592 The range of an operation ...
foov 7593 An onto mapping of an oper...
fnovrn 7594 An operation's value belon...
ovelrn 7595 A member of an operation's...
funimassov 7596 Membership relation for th...
ovelimab 7597 Operation value in an imag...
ovima0 7598 An operation value is a me...
ovconst2 7599 The value of a constant op...
oprssdm 7600 Domain of closure of an op...
nssdmovg 7601 The value of an operation ...
ndmovg 7602 The value of an operation ...
ndmov 7603 The value of an operation ...
ndmovcl 7604 The closure of an operatio...
ndmovrcl 7605 Reverse closure law, when ...
ndmovcom 7606 Any operation is commutati...
ndmovass 7607 Any operation is associati...
ndmovdistr 7608 Any operation is distribut...
ndmovord 7609 Elimination of redundant a...
ndmovordi 7610 Elimination of redundant a...
caovclg 7611 Convert an operation closu...
caovcld 7612 Convert an operation closu...
caovcl 7613 Convert an operation closu...
caovcomg 7614 Convert an operation commu...
caovcomd 7615 Convert an operation commu...
caovcom 7616 Convert an operation commu...
caovassg 7617 Convert an operation assoc...
caovassd 7618 Convert an operation assoc...
caovass 7619 Convert an operation assoc...
caovcang 7620 Convert an operation cance...
caovcand 7621 Convert an operation cance...
caovcanrd 7622 Commute the arguments of a...
caovcan 7623 Convert an operation cance...
caovordig 7624 Convert an operation order...
caovordid 7625 Convert an operation order...
caovordg 7626 Convert an operation order...
caovordd 7627 Convert an operation order...
caovord2d 7628 Operation ordering law wit...
caovord3d 7629 Ordering law. (Contribute...
caovord 7630 Convert an operation order...
caovord2 7631 Operation ordering law wit...
caovord3 7632 Ordering law. (Contribute...
caovdig 7633 Convert an operation distr...
caovdid 7634 Convert an operation distr...
caovdir2d 7635 Convert an operation distr...
caovdirg 7636 Convert an operation rever...
caovdird 7637 Convert an operation distr...
caovdi 7638 Convert an operation distr...
caov32d 7639 Rearrange arguments in a c...
caov12d 7640 Rearrange arguments in a c...
caov31d 7641 Rearrange arguments in a c...
caov13d 7642 Rearrange arguments in a c...
caov4d 7643 Rearrange arguments in a c...
caov411d 7644 Rearrange arguments in a c...
caov42d 7645 Rearrange arguments in a c...
caov32 7646 Rearrange arguments in a c...
caov12 7647 Rearrange arguments in a c...
caov31 7648 Rearrange arguments in a c...
caov13 7649 Rearrange arguments in a c...
caov4 7650 Rearrange arguments in a c...
caov411 7651 Rearrange arguments in a c...
caov42 7652 Rearrange arguments in a c...
caovdir 7653 Reverse distributive law. ...
caovdilem 7654 Lemma used by real number ...
caovlem2 7655 Lemma used in real number ...
caovmo 7656 Uniqueness of inverse elem...
imaeqexov 7657 Substitute an operation va...
imaeqalov 7658 Substitute an operation va...
mpondm0 7659 The value of an operation ...
elmpocl 7660 If a two-parameter class i...
elmpocl1 7661 If a two-parameter class i...
elmpocl2 7662 If a two-parameter class i...
elovmpod 7663 Utility lemma for two-para...
elovmpo 7664 Utility lemma for two-para...
elovmporab 7665 Implications for the value...
elovmporab1w 7666 Implications for the value...
elovmporab1 7667 Implications for the value...
2mpo0 7668 If the operation value of ...
relmptopab 7669 Any function to sets of or...
f1ocnvd 7670 Describe an implicit one-t...
f1od 7671 Describe an implicit one-t...
f1ocnv2d 7672 Describe an implicit one-t...
f1o2d 7673 Describe an implicit one-t...
f1opw2 7674 A one-to-one mapping induc...
f1opw 7675 A one-to-one mapping induc...
elovmpt3imp 7676 If the value of a function...
ovmpt3rab1 7677 The value of an operation ...
ovmpt3rabdm 7678 If the value of a function...
elovmpt3rab1 7679 Implications for the value...
elovmpt3rab 7680 Implications for the value...
ofeqd 7685 Equality theorem for funct...
ofeq 7686 Equality theorem for funct...
ofreq 7687 Equality theorem for funct...
ofexg 7688 A function operation restr...
nfof 7689 Hypothesis builder for fun...
nfofr 7690 Hypothesis builder for fun...
ofrfvalg 7691 Value of a relation applie...
offval 7692 Value of an operation appl...
ofrfval 7693 Value of a relation applie...
ofval 7694 Evaluate a function operat...
ofrval 7695 Exhibit a function relatio...
offn 7696 The function operation pro...
offun 7697 The function operation pro...
offval2f 7698 The function operation exp...
ofmresval 7699 Value of a restriction of ...
fnfvof 7700 Function value of a pointw...
off 7701 The function operation pro...
ofres 7702 Restrict the operands of a...
offval2 7703 The function operation exp...
ofrfval2 7704 The function relation acti...
ofmpteq 7705 Value of a pointwise opera...
coof 7706 The composition of a _homo...
ofco 7707 The composition of a funct...
offveq 7708 Convert an identity of the...
offveqb 7709 Equivalent expressions for...
ofc1 7710 Left operation by a consta...
ofc2 7711 Right operation by a const...
ofc12 7712 Function operation on two ...
caofref 7713 Transfer a reflexive law t...
caofinvl 7714 Transfer a left inverse la...
caofid0l 7715 Transfer a left identity l...
caofid0r 7716 Transfer a right identity ...
caofid1 7717 Transfer a right absorptio...
caofid2 7718 Transfer a right absorptio...
caofcom 7719 Transfer a commutative law...
caofrss 7720 Transfer a relation subset...
caofass 7721 Transfer an associative la...
caoftrn 7722 Transfer a transitivity la...
caofdi 7723 Transfer a distributive la...
caofdir 7724 Transfer a reverse distrib...
caonncan 7725 Transfer ~ nncan -shaped l...
relrpss 7728 The proper subset relation...
brrpssg 7729 The proper subset relation...
brrpss 7730 The proper subset relation...
porpss 7731 Every class is partially o...
sorpss 7732 Express strict ordering un...
sorpssi 7733 Property of a chain of set...
sorpssun 7734 A chain of sets is closed ...
sorpssin 7735 A chain of sets is closed ...
sorpssuni 7736 In a chain of sets, a maxi...
sorpssint 7737 In a chain of sets, a mini...
sorpsscmpl 7738 The componentwise compleme...
zfun 7740 Axiom of Union expressed w...
axun2 7741 A variant of the Axiom of ...
uniex2 7742 The Axiom of Union using t...
vuniex 7743 The union of a setvar is a...
uniexg 7744 The ZF Axiom of Union in c...
uniex 7745 The Axiom of Union in clas...
uniexd 7746 Deduction version of the Z...
unex 7747 The union of two sets is a...
tpex 7748 An unordered triple of cla...
unexb 7749 Existence of union is equi...
unexg 7750 A union of two sets is a s...
xpexg 7751 The Cartesian product of t...
xpexd 7752 The Cartesian product of t...
3xpexg 7753 The Cartesian product of t...
xpex 7754 The Cartesian product of t...
unexd 7755 The union of two sets is a...
sqxpexg 7756 The Cartesian square of a ...
abnexg 7757 Sufficient condition for a...
abnex 7758 Sufficient condition for a...
snnex 7759 The class of all singleton...
pwnex 7760 The class of all power set...
difex2 7761 If the subtrahend of a cla...
difsnexi 7762 If the difference of a cla...
uniuni 7763 Expression for double unio...
uniexr 7764 Converse of the Axiom of U...
uniexb 7765 The Axiom of Union and its...
pwexr 7766 Converse of the Axiom of P...
pwexb 7767 The Axiom of Power Sets an...
elpwpwel 7768 A class belongs to a doubl...
eldifpw 7769 Membership in a power clas...
elpwun 7770 Membership in the power cl...
pwuncl 7771 Power classes are closed u...
iunpw 7772 An indexed union of a powe...
fr3nr 7773 A well-founded relation ha...
epne3 7774 A well-founded class conta...
dfwe2 7775 Alternate definition of we...
epweon 7776 The membership relation we...
epweonALT 7777 Alternate proof of ~ epweo...
ordon 7778 The class of all ordinal n...
onprc 7779 No set contains all ordina...
ssorduni 7780 The union of a class of or...
ssonuni 7781 The union of a set of ordi...
ssonunii 7782 The union of a set of ordi...
ordeleqon 7783 A way to express the ordin...
ordsson 7784 Any ordinal class is a sub...
dford5 7785 A class is ordinal iff it ...
onss 7786 An ordinal number is a sub...
predon 7787 The predecessor of an ordi...
predonOLD 7788 Obsolete version of ~ pred...
ssonprc 7789 Two ways of saying a class...
onuni 7790 The union of an ordinal nu...
orduni 7791 The union of an ordinal cl...
onint 7792 The intersection (infimum)...
onint0 7793 The intersection of a clas...
onssmin 7794 A nonempty class of ordina...
onminesb 7795 If a property is true for ...
onminsb 7796 If a property is true for ...
oninton 7797 The intersection of a none...
onintrab 7798 The intersection of a clas...
onintrab2 7799 An existence condition equ...
onnmin 7800 No member of a set of ordi...
onnminsb 7801 An ordinal number smaller ...
oneqmin 7802 A way to show that an ordi...
uniordint 7803 The union of a set of ordi...
onminex 7804 If a wff is true for an or...
sucon 7805 The class of all ordinal n...
sucexb 7806 A successor exists iff its...
sucexg 7807 The successor of a set is ...
sucex 7808 The successor of a set is ...
onmindif2 7809 The minimum of a class of ...
ordsuci 7810 The successor of an ordina...
sucexeloni 7811 If the successor of an ord...
sucexeloniOLD 7812 Obsolete version of ~ suce...
onsuc 7813 The successor of an ordina...
suceloniOLD 7814 Obsolete version of ~ onsu...
ordsuc 7815 A class is ordinal if and ...
ordsucOLD 7816 Obsolete version of ~ ords...
ordpwsuc 7817 The collection of ordinals...
onpwsuc 7818 The collection of ordinal ...
onsucb 7819 A class is an ordinal numb...
ordsucss 7820 The successor of an elemen...
onpsssuc 7821 An ordinal number is a pro...
ordelsuc 7822 A set belongs to an ordina...
onsucmin 7823 The successor of an ordina...
ordsucelsuc 7824 Membership is inherited by...
ordsucsssuc 7825 The subclass relationship ...
ordsucuniel 7826 Given an element ` A ` of ...
ordsucun 7827 The successor of the maxim...
ordunpr 7828 The maximum of two ordinal...
ordunel 7829 The maximum of two ordinal...
onsucuni 7830 A class of ordinal numbers...
ordsucuni 7831 An ordinal class is a subc...
orduniorsuc 7832 An ordinal class is either...
unon 7833 The class of all ordinal n...
ordunisuc 7834 An ordinal class is equal ...
orduniss2 7835 The union of the ordinal s...
onsucuni2 7836 A successor ordinal is the...
0elsuc 7837 The successor of an ordina...
limon 7838 The class of ordinal numbe...
onuniorsuc 7839 An ordinal number is eithe...
onssi 7840 An ordinal number is a sub...
onsuci 7841 The successor of an ordina...
onuniorsuciOLD 7842 Obsolete version of ~ onun...
onuninsuci 7843 An ordinal is equal to its...
onsucssi 7844 A set belongs to an ordina...
nlimsucg 7845 A successor is not a limit...
orduninsuc 7846 An ordinal class is equal ...
ordunisuc2 7847 An ordinal equal to its un...
ordzsl 7848 An ordinal is zero, a succ...
onzsl 7849 An ordinal number is zero,...
dflim3 7850 An alternate definition of...
dflim4 7851 An alternate definition of...
limsuc 7852 The successor of a member ...
limsssuc 7853 A class includes a limit o...
nlimon 7854 Two ways to express the cl...
limuni3 7855 The union of a nonempty cl...
tfi 7856 The Principle of Transfini...
tfisg 7857 A closed form of ~ tfis . ...
tfis 7858 Transfinite Induction Sche...
tfis2f 7859 Transfinite Induction Sche...
tfis2 7860 Transfinite Induction Sche...
tfis3 7861 Transfinite Induction Sche...
tfisi 7862 A transfinite induction sc...
tfinds 7863 Principle of Transfinite I...
tfindsg 7864 Transfinite Induction (inf...
tfindsg2 7865 Transfinite Induction (inf...
tfindes 7866 Transfinite Induction with...
tfinds2 7867 Transfinite Induction (inf...
tfinds3 7868 Principle of Transfinite I...
dfom2 7871 An alternate definition of...
elom 7872 Membership in omega. The ...
omsson 7873 Omega is a subset of ` On ...
limomss 7874 The class of natural numbe...
nnon 7875 A natural number is an ord...
nnoni 7876 A natural number is an ord...
nnord 7877 A natural number is ordina...
trom 7878 The class of finite ordina...
ordom 7879 The class of finite ordina...
elnn 7880 A member of a natural numb...
omon 7881 The class of natural numbe...
omelon2 7882 Omega is an ordinal number...
nnlim 7883 A natural number is not a ...
omssnlim 7884 The class of natural numbe...
limom 7885 Omega is a limit ordinal. ...
peano2b 7886 A class belongs to omega i...
nnsuc 7887 A nonzero natural number i...
omsucne 7888 A natural number is not th...
ssnlim 7889 An ordinal subclass of non...
omsinds 7890 Strong (or "total") induct...
omsindsOLD 7891 Obsolete version of ~ omsi...
omun 7892 The union of two finite or...
peano1 7893 Zero is a natural number. ...
peano1OLD 7894 Obsolete version of ~ pean...
peano2 7895 The successor of any natur...
peano3 7896 The successor of any natur...
peano4 7897 Two natural numbers are eq...
peano5 7898 The induction postulate: a...
peano5OLD 7899 Obsolete version of ~ pean...
nn0suc 7900 A natural number is either...
find 7901 The Principle of Finite In...
finds 7902 Principle of Finite Induct...
findsg 7903 Principle of Finite Induct...
finds2 7904 Principle of Finite Induct...
finds1 7905 Principle of Finite Induct...
findes 7906 Finite induction with expl...
dmexg 7907 The domain of a set is a s...
rnexg 7908 The range of a set is a se...
dmexd 7909 The domain of a set is a s...
fndmexd 7910 If a function is a set, it...
dmfex 7911 If a mapping is a set, its...
fndmexb 7912 The domain of a function i...
fdmexb 7913 The domain of a function i...
dmfexALT 7914 Alternate proof of ~ dmfex...
dmex 7915 The domain of a set is a s...
rnex 7916 The range of a set is a se...
iprc 7917 The identity function is a...
resiexg 7918 The existence of a restric...
imaexg 7919 The image of a set is a se...
imaex 7920 The image of a set is a se...
rnexd 7921 The range of a set is a se...
imaexd 7922 The image of a set is a se...
exse2 7923 Any set relation is set-li...
xpexr 7924 If a Cartesian product is ...
xpexr2 7925 If a nonempty Cartesian pr...
xpexcnv 7926 A condition where the conv...
soex 7927 If the relation in a stric...
elxp4 7928 Membership in a Cartesian ...
elxp5 7929 Membership in a Cartesian ...
cnvexg 7930 The converse of a set is a...
cnvex 7931 The converse of a set is a...
relcnvexb 7932 A relation is a set iff it...
f1oexrnex 7933 If the range of a 1-1 onto...
f1oexbi 7934 There is a one-to-one onto...
coexg 7935 The composition of two set...
coex 7936 The composition of two set...
coexd 7937 The composition of two set...
funcnvuni 7938 The union of a chain (with...
fun11uni 7939 The union of a chain (with...
fex2 7940 A function with bounded do...
fabexg 7941 Existence of a set of func...
fabex 7942 Existence of a set of func...
f1oabexg 7943 The class of all 1-1-onto ...
fiunlem 7944 Lemma for ~ fiun and ~ f1i...
fiun 7945 The union of a chain (with...
f1iun 7946 The union of a chain (with...
fviunfun 7947 The function value of an i...
ffoss 7948 Relationship between a map...
f11o 7949 Relationship between one-t...
resfunexgALT 7950 Alternate proof of ~ resfu...
cofunexg 7951 Existence of a composition...
cofunex2g 7952 Existence of a composition...
fnexALT 7953 Alternate proof of ~ fnex ...
funexw 7954 Weak version of ~ funex th...
mptexw 7955 Weak version of ~ mptex th...
funrnex 7956 If the domain of a functio...
zfrep6 7957 A version of the Axiom of ...
focdmex 7958 If the domain of an onto f...
f1dmex 7959 If the codomain of a one-t...
f1ovv 7960 The codomain/range of a 1-...
fvclex 7961 Existence of the class of ...
fvresex 7962 Existence of the class of ...
abrexexg 7963 Existence of a class abstr...
abrexexgOLD 7964 Obsolete version of ~ abre...
abrexex 7965 Existence of a class abstr...
iunexg 7966 The existence of an indexe...
abrexex2g 7967 Existence of an existentia...
opabex3d 7968 Existence of an ordered pa...
opabex3rd 7969 Existence of an ordered pa...
opabex3 7970 Existence of an ordered pa...
iunex 7971 The existence of an indexe...
abrexex2 7972 Existence of an existentia...
abexssex 7973 Existence of a class abstr...
abexex 7974 A condition where a class ...
f1oweALT 7975 Alternate proof of ~ f1owe...
wemoiso 7976 Thus, there is at most one...
wemoiso2 7977 Thus, there is at most one...
oprabexd 7978 Existence of an operator a...
oprabex 7979 Existence of an operation ...
oprabex3 7980 Existence of an operation ...
oprabrexex2 7981 Existence of an existentia...
ab2rexex 7982 Existence of a class abstr...
ab2rexex2 7983 Existence of an existentia...
xpexgALT 7984 Alternate proof of ~ xpexg...
offval3 7985 General value of ` ( F oF ...
offres 7986 Pointwise combination comm...
ofmres 7987 Equivalent expressions for...
ofmresex 7988 Existence of a restriction...
mptcnfimad 7989 The converse of a mapping ...
1stval 7994 The value of the function ...
2ndval 7995 The value of the function ...
1stnpr 7996 Value of the first-member ...
2ndnpr 7997 Value of the second-member...
1st0 7998 The value of the first-mem...
2nd0 7999 The value of the second-me...
op1st 8000 Extract the first member o...
op2nd 8001 Extract the second member ...
op1std 8002 Extract the first member o...
op2ndd 8003 Extract the second member ...
op1stg 8004 Extract the first member o...
op2ndg 8005 Extract the second member ...
ot1stg 8006 Extract the first member o...
ot2ndg 8007 Extract the second member ...
ot3rdg 8008 Extract the third member o...
1stval2 8009 Alternate value of the fun...
2ndval2 8010 Alternate value of the fun...
oteqimp 8011 The components of an order...
fo1st 8012 The ` 1st ` function maps ...
fo2nd 8013 The ` 2nd ` function maps ...
br1steqg 8014 Uniqueness condition for t...
br2ndeqg 8015 Uniqueness condition for t...
f1stres 8016 Mapping of a restriction o...
f2ndres 8017 Mapping of a restriction o...
fo1stres 8018 Onto mapping of a restrict...
fo2ndres 8019 Onto mapping of a restrict...
1st2val 8020 Value of an alternate defi...
2nd2val 8021 Value of an alternate defi...
1stcof 8022 Composition of the first m...
2ndcof 8023 Composition of the second ...
xp1st 8024 Location of the first elem...
xp2nd 8025 Location of the second ele...
elxp6 8026 Membership in a Cartesian ...
elxp7 8027 Membership in a Cartesian ...
eqopi 8028 Equality with an ordered p...
xp2 8029 Representation of Cartesia...
unielxp 8030 The membership relation fo...
1st2nd2 8031 Reconstruction of a member...
1st2ndb 8032 Reconstruction of an order...
xpopth 8033 An ordered pair theorem fo...
eqop 8034 Two ways to express equali...
eqop2 8035 Two ways to express equali...
op1steq 8036 Two ways of expressing tha...
opreuopreu 8037 There is a unique ordered ...
el2xptp 8038 A member of a nested Carte...
el2xptp0 8039 A member of a nested Carte...
el2xpss 8040 Version of ~ elrel for tri...
2nd1st 8041 Swap the members of an ord...
1st2nd 8042 Reconstruction of a member...
1stdm 8043 The first ordered pair com...
2ndrn 8044 The second ordered pair co...
1st2ndbr 8045 Express an element of a re...
releldm2 8046 Two ways of expressing mem...
reldm 8047 An expression for the doma...
releldmdifi 8048 One way of expressing memb...
funfv1st2nd 8049 The function value for the...
funelss 8050 If the first component of ...
funeldmdif 8051 Two ways of expressing mem...
sbcopeq1a 8052 Equality theorem for subst...
csbopeq1a 8053 Equality theorem for subst...
sbcoteq1a 8054 Equality theorem for subst...
dfopab2 8055 A way to define an ordered...
dfoprab3s 8056 A way to define an operati...
dfoprab3 8057 Operation class abstractio...
dfoprab4 8058 Operation class abstractio...
dfoprab4f 8059 Operation class abstractio...
opabex2 8060 Condition for an operation...
opabn1stprc 8061 An ordered-pair class abst...
opiota 8062 The property of a uniquely...
cnvoprab 8063 The converse of a class ab...
dfxp3 8064 Define the Cartesian produ...
elopabi 8065 A consequence of membershi...
eloprabi 8066 A consequence of membershi...
mpomptsx 8067 Express a two-argument fun...
mpompts 8068 Express a two-argument fun...
dmmpossx 8069 The domain of a mapping is...
fmpox 8070 Functionality, domain and ...
fmpo 8071 Functionality, domain and ...
fnmpo 8072 Functionality and domain o...
fnmpoi 8073 Functionality and domain o...
dmmpo 8074 Domain of a class given by...
ovmpoelrn 8075 An operation's value belon...
dmmpoga 8076 Domain of an operation giv...
dmmpog 8077 Domain of an operation giv...
mpoexxg 8078 Existence of an operation ...
mpoexg 8079 Existence of an operation ...
mpoexga 8080 If the domain of an operat...
mpoexw 8081 Weak version of ~ mpoex th...
mpoex 8082 If the domain of an operat...
mptmpoopabbrd 8083 The operation value of a f...
mptmpoopabbrdOLD 8084 Obsolete version of ~ mptm...
mptmpoopabovd 8085 The operation value of a f...
mptmpoopabbrdOLDOLD 8086 Obsolete version of ~ mptm...
mptmpoopabovdOLD 8087 Obsolete version of ~ mptm...
el2mpocsbcl 8088 If the operation value of ...
el2mpocl 8089 If the operation value of ...
fnmpoovd 8090 A function with a Cartesia...
offval22 8091 The function operation exp...
brovpreldm 8092 If a binary relation holds...
bropopvvv 8093 If a binary relation holds...
bropfvvvvlem 8094 Lemma for ~ bropfvvvv . (...
bropfvvvv 8095 If a binary relation holds...
ovmptss 8096 If all the values of the m...
relmpoopab 8097 Any function to sets of or...
fmpoco 8098 Composition of two functio...
oprabco 8099 Composition of a function ...
oprab2co 8100 Composition of operator ab...
df1st2 8101 An alternate possible defi...
df2nd2 8102 An alternate possible defi...
1stconst 8103 The mapping of a restricti...
2ndconst 8104 The mapping of a restricti...
dfmpo 8105 Alternate definition for t...
mposn 8106 An operation (in maps-to n...
curry1 8107 Composition with ` ``' ( 2...
curry1val 8108 The value of a curried fun...
curry1f 8109 Functionality of a curried...
curry2 8110 Composition with ` ``' ( 1...
curry2f 8111 Functionality of a curried...
curry2val 8112 The value of a curried fun...
cnvf1olem 8113 Lemma for ~ cnvf1o . (Con...
cnvf1o 8114 Describe a function that m...
fparlem1 8115 Lemma for ~ fpar . (Contr...
fparlem2 8116 Lemma for ~ fpar . (Contr...
fparlem3 8117 Lemma for ~ fpar . (Contr...
fparlem4 8118 Lemma for ~ fpar . (Contr...
fpar 8119 Merge two functions in par...
fsplit 8120 A function that can be use...
fsplitfpar 8121 Merge two functions with a...
offsplitfpar 8122 Express the function opera...
f2ndf 8123 The ` 2nd ` (second compon...
fo2ndf 8124 The ` 2nd ` (second compon...
f1o2ndf1 8125 The ` 2nd ` (second compon...
opco1 8126 Value of an operation prec...
opco2 8127 Value of an operation prec...
opco1i 8128 Inference form of ~ opco1 ...
frxp 8129 A lexicographical ordering...
xporderlem 8130 Lemma for lexicographical ...
poxp 8131 A lexicographical ordering...
soxp 8132 A lexicographical ordering...
wexp 8133 A lexicographical ordering...
fnwelem 8134 Lemma for ~ fnwe . (Contr...
fnwe 8135 A variant on lexicographic...
fnse 8136 Condition for the well-ord...
fvproj 8137 Value of a function on ord...
fimaproj 8138 Image of a cartesian produ...
ralxpes 8139 A version of ~ ralxp with ...
ralxp3f 8140 Restricted for all over a ...
ralxp3 8141 Restricted for all over a ...
ralxp3es 8142 Restricted for-all over a ...
frpoins3xpg 8143 Special case of founded pa...
frpoins3xp3g 8144 Special case of founded pa...
xpord2lem 8145 Lemma for Cartesian produc...
poxp2 8146 Another way of partially o...
frxp2 8147 Another way of giving a we...
xpord2pred 8148 Calculate the predecessor ...
sexp2 8149 Condition for the relation...
xpord2indlem 8150 Induction over the Cartesi...
xpord2ind 8151 Induction over the Cartesi...
xpord3lem 8152 Lemma for triple ordering....
poxp3 8153 Triple Cartesian product p...
frxp3 8154 Give well-foundedness over...
xpord3pred 8155 Calculate the predecsessor...
sexp3 8156 Show that the triple order...
xpord3inddlem 8157 Induction over the triple ...
xpord3indd 8158 Induction over the triple ...
xpord3ind 8159 Induction over the triple ...
orderseqlem 8160 Lemma for ~ poseq and ~ so...
poseq 8161 A partial ordering of ordi...
soseq 8162 A linear ordering of ordin...
suppval 8165 The value of the operation...
supp0prc 8166 The support of a class is ...
suppvalbr 8167 The value of the operation...
supp0 8168 The support of the empty s...
suppval1 8169 The value of the operation...
suppvalfng 8170 The value of the operation...
suppvalfn 8171 The value of the operation...
elsuppfng 8172 An element of the support ...
elsuppfn 8173 An element of the support ...
fvdifsupp 8174 Function value is zero out...
cnvimadfsn 8175 The support of functions "...
suppimacnvss 8176 The support of functions "...
suppimacnv 8177 Support sets of functions ...
fsuppeq 8178 Two ways of writing the su...
fsuppeqg 8179 Version of ~ fsuppeq avoid...
suppssdm 8180 The support of a function ...
suppsnop 8181 The support of a singleton...
snopsuppss 8182 The support of a singleton...
fvn0elsupp 8183 If the function value for ...
fvn0elsuppb 8184 The function value for a g...
rexsupp 8185 Existential quantification...
ressuppss 8186 The support of the restric...
suppun 8187 The support of a class/fun...
ressuppssdif 8188 The support of the restric...
mptsuppdifd 8189 The support of a function ...
mptsuppd 8190 The support of a function ...
extmptsuppeq 8191 The support of an extended...
suppfnss 8192 The support of a function ...
funsssuppss 8193 The support of a function ...
fnsuppres 8194 Two ways to express restri...
fnsuppeq0 8195 The support of a function ...
fczsupp0 8196 The support of a constant ...
suppss 8197 Show that the support of a...
suppssOLD 8198 Obsolete version of ~ supp...
suppssr 8199 A function is zero outside...
suppssrg 8200 A function is zero outside...
suppssov1 8201 Formula building theorem f...
suppssov2 8202 Formula building theorem f...
suppssof1 8203 Formula building theorem f...
suppss2 8204 Show that the support of a...
suppsssn 8205 Show that the support of a...
suppssfv 8206 Formula building theorem f...
suppofssd 8207 Condition for the support ...
suppofss1d 8208 Condition for the support ...
suppofss2d 8209 Condition for the support ...
suppco 8210 The support of the composi...
suppcoss 8211 The support of the composi...
supp0cosupp0 8212 The support of the composi...
imacosupp 8213 The image of the support o...
opeliunxp2f 8214 Membership in a union of C...
mpoxeldm 8215 If there is an element of ...
mpoxneldm 8216 If the first argument of a...
mpoxopn0yelv 8217 If there is an element of ...
mpoxopynvov0g 8218 If the second argument of ...
mpoxopxnop0 8219 If the first argument of a...
mpoxopx0ov0 8220 If the first argument of a...
mpoxopxprcov0 8221 If the components of the f...
mpoxopynvov0 8222 If the second argument of ...
mpoxopoveq 8223 Value of an operation give...
mpoxopovel 8224 Element of the value of an...
mpoxopoveqd 8225 Value of an operation give...
brovex 8226 A binary relation of the v...
brovmpoex 8227 A binary relation of the v...
sprmpod 8228 The extension of a binary ...
tposss 8231 Subset theorem for transpo...
tposeq 8232 Equality theorem for trans...
tposeqd 8233 Equality theorem for trans...
tposssxp 8234 The transposition is a sub...
reltpos 8235 The transposition is a rel...
brtpos2 8236 Value of the transposition...
brtpos0 8237 The behavior of ` tpos ` w...
reldmtpos 8238 Necessary and sufficient c...
brtpos 8239 The transposition swaps ar...
ottpos 8240 The transposition swaps th...
relbrtpos 8241 The transposition swaps ar...
dmtpos 8242 The domain of ` tpos F ` w...
rntpos 8243 The range of ` tpos F ` wh...
tposexg 8244 The transposition of a set...
ovtpos 8245 The transposition swaps th...
tposfun 8246 The transposition of a fun...
dftpos2 8247 Alternate definition of ` ...
dftpos3 8248 Alternate definition of ` ...
dftpos4 8249 Alternate definition of ` ...
tpostpos 8250 Value of the double transp...
tpostpos2 8251 Value of the double transp...
tposfn2 8252 The domain of a transposit...
tposfo2 8253 Condition for a surjective...
tposf2 8254 The domain and codomain of...
tposf12 8255 Condition for an injective...
tposf1o2 8256 Condition of a bijective t...
tposfo 8257 The domain and codomain/ra...
tposf 8258 The domain and codomain of...
tposfn 8259 Functionality of a transpo...
tpos0 8260 Transposition of the empty...
tposco 8261 Transposition of a composi...
tpossym 8262 Two ways to say a function...
tposeqi 8263 Equality theorem for trans...
tposex 8264 A transposition is a set. ...
nftpos 8265 Hypothesis builder for tra...
tposoprab 8266 Transposition of a class o...
tposmpo 8267 Transposition of a two-arg...
tposconst 8268 The transposition of a con...
mpocurryd 8273 The currying of an operati...
mpocurryvald 8274 The value of a curried ope...
fvmpocurryd 8275 The value of the value of ...
pwuninel2 8278 Direct proof of ~ pwuninel...
pwuninel 8279 The power set of the union...
undefval 8280 Value of the undefined val...
undefnel2 8281 The undefined value genera...
undefnel 8282 The undefined value genera...
undefne0 8283 The undefined value genera...
frecseq123 8286 Equality theorem for the w...
nffrecs 8287 Bound-variable hypothesis ...
csbfrecsg 8288 Move class substitution in...
fpr3g 8289 Functions defined by well-...
frrlem1 8290 Lemma for well-founded rec...
frrlem2 8291 Lemma for well-founded rec...
frrlem3 8292 Lemma for well-founded rec...
frrlem4 8293 Lemma for well-founded rec...
frrlem5 8294 Lemma for well-founded rec...
frrlem6 8295 Lemma for well-founded rec...
frrlem7 8296 Lemma for well-founded rec...
frrlem8 8297 Lemma for well-founded rec...
frrlem9 8298 Lemma for well-founded rec...
frrlem10 8299 Lemma for well-founded rec...
frrlem11 8300 Lemma for well-founded rec...
frrlem12 8301 Lemma for well-founded rec...
frrlem13 8302 Lemma for well-founded rec...
frrlem14 8303 Lemma for well-founded rec...
fprlem1 8304 Lemma for well-founded rec...
fprlem2 8305 Lemma for well-founded rec...
fpr2a 8306 Weak version of ~ fpr2 whi...
fpr1 8307 Law of well-founded recurs...
fpr2 8308 Law of well-founded recurs...
fpr3 8309 Law of well-founded recurs...
frrrel 8310 Show without using the axi...
frrdmss 8311 Show without using the axi...
frrdmcl 8312 Show without using the axi...
fprfung 8313 A "function" defined by we...
fprresex 8314 The restriction of a funct...
dfwrecsOLD 8317 Obsolete definition of the...
wrecseq123 8318 General equality theorem f...
wrecseq123OLD 8319 Obsolete version of ~ wrec...
nfwrecs 8320 Bound-variable hypothesis ...
nfwrecsOLD 8321 Obsolete proof of ~ nfwrec...
wrecseq1 8322 Equality theorem for the w...
wrecseq2 8323 Equality theorem for the w...
wrecseq3 8324 Equality theorem for the w...
csbwrecsg 8325 Move class substitution in...
wfr3g 8326 Functions defined by well-...
wfrlem1OLD 8327 Lemma for well-ordered rec...
wfrlem2OLD 8328 Lemma for well-ordered rec...
wfrlem3OLD 8329 Lemma for well-ordered rec...
wfrlem3OLDa 8330 Lemma for well-ordered rec...
wfrlem4OLD 8331 Lemma for well-ordered rec...
wfrlem5OLD 8332 Lemma for well-ordered rec...
wfrrelOLD 8333 Obsolete proof of ~ wfrrel...
wfrdmssOLD 8334 Obsolete proof of ~ wfrdms...
wfrlem8OLD 8335 Lemma for well-ordered rec...
wfrdmclOLD 8336 Obsolete version of ~ wfrd...
wfrlem10OLD 8337 Lemma for well-ordered rec...
wfrfunOLD 8338 Obsolete proof of ~ wfrfun...
wfrlem12OLD 8339 Lemma for well-ordered rec...
wfrlem13OLD 8340 Lemma for well-ordered rec...
wfrlem14OLD 8341 Lemma for well-ordered rec...
wfrlem15OLD 8342 Lemma for well-ordered rec...
wfrlem16OLD 8343 Lemma for well-ordered rec...
wfrlem17OLD 8344 Without using ~ ax-rep , s...
wfr2aOLD 8345 Obsolete version of ~ wfr2...
wfr1OLD 8346 Obsolete version of ~ wfr1...
wfr2OLD 8347 Obsolete version of ~ wfr2...
wfrrel 8348 The well-ordered recursion...
wfrdmss 8349 The domain of the well-ord...
wfrdmcl 8350 The predecessor class of a...
wfrfun 8351 The "function" generated b...
wfrresex 8352 Show without using the axi...
wfr2a 8353 A weak version of ~ wfr2 w...
wfr1 8354 The Principle of Well-Orde...
wfr2 8355 The Principle of Well-Orde...
wfr3 8356 The principle of Well-Orde...
wfr3OLD 8357 Obsolete form of ~ wfr3 as...
iunon 8358 The indexed union of a set...
iinon 8359 The nonempty indexed inter...
onfununi 8360 A property of functions on...
onovuni 8361 A variant of ~ onfununi fo...
onoviun 8362 A variant of ~ onovuni wit...
onnseq 8363 There are no length ` _om ...
dfsmo2 8366 Alternate definition of a ...
issmo 8367 Conditions for which ` A `...
issmo2 8368 Alternate definition of a ...
smoeq 8369 Equality theorem for stric...
smodm 8370 The domain of a strictly m...
smores 8371 A strictly monotone functi...
smores3 8372 A strictly monotone functi...
smores2 8373 A strictly monotone ordina...
smodm2 8374 The domain of a strictly m...
smofvon2 8375 The function values of a s...
iordsmo 8376 The identity relation rest...
smo0 8377 The null set is a strictly...
smofvon 8378 If ` B ` is a strictly mon...
smoel 8379 If ` x ` is less than ` y ...
smoiun 8380 The value of a strictly mo...
smoiso 8381 If ` F ` is an isomorphism...
smoel2 8382 A strictly monotone ordina...
smo11 8383 A strictly monotone ordina...
smoord 8384 A strictly monotone ordina...
smoword 8385 A strictly monotone ordina...
smogt 8386 A strictly monotone ordina...
smocdmdom 8387 The codomain of a strictly...
smoiso2 8388 The strictly monotone ordi...
dfrecs3 8391 The old definition of tran...
dfrecs3OLD 8392 Obsolete version of ~ dfre...
recseq 8393 Equality theorem for ` rec...
nfrecs 8394 Bound-variable hypothesis ...
tfrlem1 8395 A technical lemma for tran...
tfrlem3a 8396 Lemma for transfinite recu...
tfrlem3 8397 Lemma for transfinite recu...
tfrlem4 8398 Lemma for transfinite recu...
tfrlem5 8399 Lemma for transfinite recu...
recsfval 8400 Lemma for transfinite recu...
tfrlem6 8401 Lemma for transfinite recu...
tfrlem7 8402 Lemma for transfinite recu...
tfrlem8 8403 Lemma for transfinite recu...
tfrlem9 8404 Lemma for transfinite recu...
tfrlem9a 8405 Lemma for transfinite recu...
tfrlem10 8406 Lemma for transfinite recu...
tfrlem11 8407 Lemma for transfinite recu...
tfrlem12 8408 Lemma for transfinite recu...
tfrlem13 8409 Lemma for transfinite recu...
tfrlem14 8410 Lemma for transfinite recu...
tfrlem15 8411 Lemma for transfinite recu...
tfrlem16 8412 Lemma for finite recursion...
tfr1a 8413 A weak version of ~ tfr1 w...
tfr2a 8414 A weak version of ~ tfr2 w...
tfr2b 8415 Without assuming ~ ax-rep ...
tfr1 8416 Principle of Transfinite R...
tfr2 8417 Principle of Transfinite R...
tfr3 8418 Principle of Transfinite R...
tfr1ALT 8419 Alternate proof of ~ tfr1 ...
tfr2ALT 8420 Alternate proof of ~ tfr2 ...
tfr3ALT 8421 Alternate proof of ~ tfr3 ...
recsfnon 8422 Strong transfinite recursi...
recsval 8423 Strong transfinite recursi...
tz7.44lem1 8424 The ordered pair abstracti...
tz7.44-1 8425 The value of ` F ` at ` (/...
tz7.44-2 8426 The value of ` F ` at a su...
tz7.44-3 8427 The value of ` F ` at a li...
rdgeq1 8430 Equality theorem for the r...
rdgeq2 8431 Equality theorem for the r...
rdgeq12 8432 Equality theorem for the r...
nfrdg 8433 Bound-variable hypothesis ...
rdglem1 8434 Lemma used with the recurs...
rdgfun 8435 The recursive definition g...
rdgdmlim 8436 The domain of the recursiv...
rdgfnon 8437 The recursive definition g...
rdgvalg 8438 Value of the recursive def...
rdgval 8439 Value of the recursive def...
rdg0 8440 The initial value of the r...
rdgseg 8441 The initial segments of th...
rdgsucg 8442 The value of the recursive...
rdgsuc 8443 The value of the recursive...
rdglimg 8444 The value of the recursive...
rdglim 8445 The value of the recursive...
rdg0g 8446 The initial value of the r...
rdgsucmptf 8447 The value of the recursive...
rdgsucmptnf 8448 The value of the recursive...
rdgsucmpt2 8449 This version of ~ rdgsucmp...
rdgsucmpt 8450 The value of the recursive...
rdglim2 8451 The value of the recursive...
rdglim2a 8452 The value of the recursive...
rdg0n 8453 If ` A ` is a proper class...
frfnom 8454 The function generated by ...
fr0g 8455 The initial value resultin...
frsuc 8456 The successor value result...
frsucmpt 8457 The successor value result...
frsucmptn 8458 The value of the finite re...
frsucmpt2 8459 The successor value result...
tz7.48lem 8460 A way of showing an ordina...
tz7.48-2 8461 Proposition 7.48(2) of [Ta...
tz7.48-1 8462 Proposition 7.48(1) of [Ta...
tz7.48-3 8463 Proposition 7.48(3) of [Ta...
tz7.49 8464 Proposition 7.49 of [Takeu...
tz7.49c 8465 Corollary of Proposition 7...
seqomlem0 8468 Lemma for ` seqom ` . Cha...
seqomlem1 8469 Lemma for ` seqom ` . The...
seqomlem2 8470 Lemma for ` seqom ` . (Co...
seqomlem3 8471 Lemma for ` seqom ` . (Co...
seqomlem4 8472 Lemma for ` seqom ` . (Co...
seqomeq12 8473 Equality theorem for ` seq...
fnseqom 8474 An index-aware recursive d...
seqom0g 8475 Value of an index-aware re...
seqomsuc 8476 Value of an index-aware re...
omsucelsucb 8477 Membership is inherited by...
df1o2 8492 Expanded value of the ordi...
df2o3 8493 Expanded value of the ordi...
df2o2 8494 Expanded value of the ordi...
1oex 8495 Ordinal 1 is a set. (Cont...
2oex 8496 ` 2o ` is a set. (Contrib...
1on 8497 Ordinal 1 is an ordinal nu...
1onOLD 8498 Obsolete version of ~ 1on ...
2on 8499 Ordinal 2 is an ordinal nu...
2onOLD 8500 Obsolete version of ~ 2on ...
2on0 8501 Ordinal two is not zero. ...
ord3 8502 Ordinal 3 is an ordinal cl...
3on 8503 Ordinal 3 is an ordinal nu...
4on 8504 Ordinal 4 is an ordinal nu...
1oexOLD 8505 Obsolete version of ~ 1oex...
2oexOLD 8506 Obsolete version of ~ 2oex...
1n0 8507 Ordinal one is not equal t...
nlim1 8508 1 is not a limit ordinal. ...
nlim2 8509 2 is not a limit ordinal. ...
xp01disj 8510 Cartesian products with th...
xp01disjl 8511 Cartesian products with th...
ordgt0ge1 8512 Two ways to express that a...
ordge1n0 8513 An ordinal greater than or...
el1o 8514 Membership in ordinal one....
ord1eln01 8515 An ordinal that is not 0 o...
ord2eln012 8516 An ordinal that is not 0, ...
1ellim 8517 A limit ordinal contains 1...
2ellim 8518 A limit ordinal contains 2...
dif1o 8519 Two ways to say that ` A `...
ondif1 8520 Two ways to say that ` A `...
ondif2 8521 Two ways to say that ` A `...
2oconcl 8522 Closure of the pair swappi...
0lt1o 8523 Ordinal zero is less than ...
dif20el 8524 An ordinal greater than on...
0we1 8525 The empty set is a well-or...
brwitnlem 8526 Lemma for relations which ...
fnoa 8527 Functionality and domain o...
fnom 8528 Functionality and domain o...
fnoe 8529 Functionality and domain o...
oav 8530 Value of ordinal addition....
omv 8531 Value of ordinal multiplic...
oe0lem 8532 A helper lemma for ~ oe0 a...
oev 8533 Value of ordinal exponenti...
oevn0 8534 Value of ordinal exponenti...
oa0 8535 Addition with zero. Propo...
om0 8536 Ordinal multiplication wit...
oe0m 8537 Value of zero raised to an...
om0x 8538 Ordinal multiplication wit...
oe0m0 8539 Ordinal exponentiation wit...
oe0m1 8540 Ordinal exponentiation wit...
oe0 8541 Ordinal exponentiation wit...
oev2 8542 Alternate value of ordinal...
oasuc 8543 Addition with successor. ...
oesuclem 8544 Lemma for ~ oesuc . (Cont...
omsuc 8545 Multiplication with succes...
oesuc 8546 Ordinal exponentiation wit...
onasuc 8547 Addition with successor. ...
onmsuc 8548 Multiplication with succes...
onesuc 8549 Exponentiation with a succ...
oa1suc 8550 Addition with 1 is same as...
oalim 8551 Ordinal addition with a li...
omlim 8552 Ordinal multiplication wit...
oelim 8553 Ordinal exponentiation wit...
oacl 8554 Closure law for ordinal ad...
omcl 8555 Closure law for ordinal mu...
oecl 8556 Closure law for ordinal ex...
oa0r 8557 Ordinal addition with zero...
om0r 8558 Ordinal multiplication wit...
o1p1e2 8559 1 + 1 = 2 for ordinal numb...
o2p2e4 8560 2 + 2 = 4 for ordinal numb...
om1 8561 Ordinal multiplication wit...
om1r 8562 Ordinal multiplication wit...
oe1 8563 Ordinal exponentiation wit...
oe1m 8564 Ordinal exponentiation wit...
oaordi 8565 Ordering property of ordin...
oaord 8566 Ordering property of ordin...
oacan 8567 Left cancellation law for ...
oaword 8568 Weak ordering property of ...
oawordri 8569 Weak ordering property of ...
oaord1 8570 An ordinal is less than it...
oaword1 8571 An ordinal is less than or...
oaword2 8572 An ordinal is less than or...
oawordeulem 8573 Lemma for ~ oawordex . (C...
oawordeu 8574 Existence theorem for weak...
oawordexr 8575 Existence theorem for weak...
oawordex 8576 Existence theorem for weak...
oaordex 8577 Existence theorem for orde...
oa00 8578 An ordinal sum is zero iff...
oalimcl 8579 The ordinal sum with a lim...
oaass 8580 Ordinal addition is associ...
oarec 8581 Recursive definition of or...
oaf1o 8582 Left addition by a constan...
oacomf1olem 8583 Lemma for ~ oacomf1o . (C...
oacomf1o 8584 Define a bijection from ` ...
omordi 8585 Ordering property of ordin...
omord2 8586 Ordering property of ordin...
omord 8587 Ordering property of ordin...
omcan 8588 Left cancellation law for ...
omword 8589 Weak ordering property of ...
omwordi 8590 Weak ordering property of ...
omwordri 8591 Weak ordering property of ...
omword1 8592 An ordinal is less than or...
omword2 8593 An ordinal is less than or...
om00 8594 The product of two ordinal...
om00el 8595 The product of two nonzero...
omordlim 8596 Ordering involving the pro...
omlimcl 8597 The product of any nonzero...
odi 8598 Distributive law for ordin...
omass 8599 Multiplication of ordinal ...
oneo 8600 If an ordinal number is ev...
omeulem1 8601 Lemma for ~ omeu : existen...
omeulem2 8602 Lemma for ~ omeu : uniquen...
omopth2 8603 An ordered pair-like theor...
omeu 8604 The division algorithm for...
oen0 8605 Ordinal exponentiation wit...
oeordi 8606 Ordering law for ordinal e...
oeord 8607 Ordering property of ordin...
oecan 8608 Left cancellation law for ...
oeword 8609 Weak ordering property of ...
oewordi 8610 Weak ordering property of ...
oewordri 8611 Weak ordering property of ...
oeworde 8612 Ordinal exponentiation com...
oeordsuc 8613 Ordering property of ordin...
oelim2 8614 Ordinal exponentiation wit...
oeoalem 8615 Lemma for ~ oeoa . (Contr...
oeoa 8616 Sum of exponents law for o...
oeoelem 8617 Lemma for ~ oeoe . (Contr...
oeoe 8618 Product of exponents law f...
oelimcl 8619 The ordinal exponential wi...
oeeulem 8620 Lemma for ~ oeeu . (Contr...
oeeui 8621 The division algorithm for...
oeeu 8622 The division algorithm for...
nna0 8623 Addition with zero. Theor...
nnm0 8624 Multiplication with zero. ...
nnasuc 8625 Addition with successor. ...
nnmsuc 8626 Multiplication with succes...
nnesuc 8627 Exponentiation with a succ...
nna0r 8628 Addition to zero. Remark ...
nnm0r 8629 Multiplication with zero. ...
nnacl 8630 Closure of addition of nat...
nnmcl 8631 Closure of multiplication ...
nnecl 8632 Closure of exponentiation ...
nnacli 8633 ` _om ` is closed under ad...
nnmcli 8634 ` _om ` is closed under mu...
nnarcl 8635 Reverse closure law for ad...
nnacom 8636 Addition of natural number...
nnaordi 8637 Ordering property of addit...
nnaord 8638 Ordering property of addit...
nnaordr 8639 Ordering property of addit...
nnawordi 8640 Adding to both sides of an...
nnaass 8641 Addition of natural number...
nndi 8642 Distributive law for natur...
nnmass 8643 Multiplication of natural ...
nnmsucr 8644 Multiplication with succes...
nnmcom 8645 Multiplication of natural ...
nnaword 8646 Weak ordering property of ...
nnacan 8647 Cancellation law for addit...
nnaword1 8648 Weak ordering property of ...
nnaword2 8649 Weak ordering property of ...
nnmordi 8650 Ordering property of multi...
nnmord 8651 Ordering property of multi...
nnmword 8652 Weak ordering property of ...
nnmcan 8653 Cancellation law for multi...
nnmwordi 8654 Weak ordering property of ...
nnmwordri 8655 Weak ordering property of ...
nnawordex 8656 Equivalence for weak order...
nnaordex 8657 Equivalence for ordering. ...
nnaordex2 8658 Equivalence for ordering. ...
1onn 8659 The ordinal 1 is a natural...
1onnALT 8660 Shorter proof of ~ 1onn us...
2onn 8661 The ordinal 2 is a natural...
2onnALT 8662 Shorter proof of ~ 2onn us...
3onn 8663 The ordinal 3 is a natural...
4onn 8664 The ordinal 4 is a natural...
1one2o 8665 Ordinal one is not ordinal...
oaabslem 8666 Lemma for ~ oaabs . (Cont...
oaabs 8667 Ordinal addition absorbs a...
oaabs2 8668 The absorption law ~ oaabs...
omabslem 8669 Lemma for ~ omabs . (Cont...
omabs 8670 Ordinal multiplication is ...
nnm1 8671 Multiply an element of ` _...
nnm2 8672 Multiply an element of ` _...
nn2m 8673 Multiply an element of ` _...
nnneo 8674 If a natural number is eve...
nneob 8675 A natural number is even i...
omsmolem 8676 Lemma for ~ omsmo . (Cont...
omsmo 8677 A strictly monotonic ordin...
omopthlem1 8678 Lemma for ~ omopthi . (Co...
omopthlem2 8679 Lemma for ~ omopthi . (Co...
omopthi 8680 An ordered pair theorem fo...
omopth 8681 An ordered pair theorem fo...
nnasmo 8682 There is at most one left ...
eldifsucnn 8683 Condition for membership i...
on2recsfn 8686 Show that double recursion...
on2recsov 8687 Calculate the value of the...
on2ind 8688 Double induction over ordi...
on3ind 8689 Triple induction over ordi...
coflton 8690 Cofinality theorem for ord...
cofon1 8691 Cofinality theorem for ord...
cofon2 8692 Cofinality theorem for ord...
cofonr 8693 Inverse cofinality law for...
naddfn 8694 Natural addition is a func...
naddcllem 8695 Lemma for ordinal addition...
naddcl 8696 Closure law for natural ad...
naddov 8697 The value of natural addit...
naddov2 8698 Alternate expression for n...
naddov3 8699 Alternate expression for n...
naddf 8700 Function statement for nat...
naddcom 8701 Natural addition commutes....
naddrid 8702 Ordinal zero is the additi...
naddlid 8703 Ordinal zero is the additi...
naddssim 8704 Ordinal less-than-or-equal...
naddelim 8705 Ordinal less-than is prese...
naddel1 8706 Ordinal less-than is not a...
naddel2 8707 Ordinal less-than is not a...
naddss1 8708 Ordinal less-than-or-equal...
naddss2 8709 Ordinal less-than-or-equal...
naddword1 8710 Weak-ordering principle fo...
naddword2 8711 Weak-ordering principle fo...
naddunif 8712 Uniformity theorem for nat...
naddasslem1 8713 Lemma for ~ naddass . Exp...
naddasslem2 8714 Lemma for ~ naddass . Exp...
naddass 8715 Natural ordinal addition i...
nadd32 8716 Commutative/associative la...
nadd4 8717 Rearragement of terms in a...
nadd42 8718 Rearragement of terms in a...
naddel12 8719 Natural addition to both s...
dfer2 8724 Alternate definition of eq...
dfec2 8726 Alternate definition of ` ...
ecexg 8727 An equivalence class modul...
ecexr 8728 A nonempty equivalence cla...
ereq1 8730 Equality theorem for equiv...
ereq2 8731 Equality theorem for equiv...
errel 8732 An equivalence relation is...
erdm 8733 The domain of an equivalen...
ercl 8734 Elementhood in the field o...
ersym 8735 An equivalence relation is...
ercl2 8736 Elementhood in the field o...
ersymb 8737 An equivalence relation is...
ertr 8738 An equivalence relation is...
ertrd 8739 A transitivity relation fo...
ertr2d 8740 A transitivity relation fo...
ertr3d 8741 A transitivity relation fo...
ertr4d 8742 A transitivity relation fo...
erref 8743 An equivalence relation is...
ercnv 8744 The converse of an equival...
errn 8745 The range and domain of an...
erssxp 8746 An equivalence relation is...
erex 8747 An equivalence relation is...
erexb 8748 An equivalence relation is...
iserd 8749 A reflexive, symmetric, tr...
iseri 8750 A reflexive, symmetric, tr...
iseriALT 8751 Alternate proof of ~ iseri...
brdifun 8752 Evaluate the incomparabili...
swoer 8753 Incomparability under a st...
swoord1 8754 The incomparability equiva...
swoord2 8755 The incomparability equiva...
swoso 8756 If the incomparability rel...
eqerlem 8757 Lemma for ~ eqer . (Contr...
eqer 8758 Equivalence relation invol...
ider 8759 The identity relation is a...
0er 8760 The empty set is an equiva...
eceq1 8761 Equality theorem for equiv...
eceq1d 8762 Equality theorem for equiv...
eceq2 8763 Equality theorem for equiv...
eceq2i 8764 Equality theorem for the `...
eceq2d 8765 Equality theorem for the `...
elecg 8766 Membership in an equivalen...
ecref 8767 All elements are in their ...
elec 8768 Membership in an equivalen...
relelec 8769 Membership in an equivalen...
ecss 8770 An equivalence class is a ...
ecdmn0 8771 A representative of a none...
ereldm 8772 Equality of equivalence cl...
erth 8773 Basic property of equivale...
erth2 8774 Basic property of equivale...
erthi 8775 Basic property of equivale...
erdisj 8776 Equivalence classes do not...
ecidsn 8777 An equivalence class modul...
qseq1 8778 Equality theorem for quoti...
qseq2 8779 Equality theorem for quoti...
qseq2i 8780 Equality theorem for quoti...
qseq1d 8781 Equality theorem for quoti...
qseq2d 8782 Equality theorem for quoti...
qseq12 8783 Equality theorem for quoti...
0qs 8784 Quotient set with the empt...
elqsg 8785 Closed form of ~ elqs . (...
elqs 8786 Membership in a quotient s...
elqsi 8787 Membership in a quotient s...
elqsecl 8788 Membership in a quotient s...
ecelqsg 8789 Membership of an equivalen...
ecelqsi 8790 Membership of an equivalen...
ecopqsi 8791 "Closure" law for equivale...
qsexg 8792 A quotient set exists. (C...
qsex 8793 A quotient set exists. (C...
uniqs 8794 The union of a quotient se...
qsss 8795 A quotient set is a set of...
uniqs2 8796 The union of a quotient se...
snec 8797 The singleton of an equiva...
ecqs 8798 Equivalence class in terms...
ecid 8799 A set is equal to its cose...
qsid 8800 A set is equal to its quot...
ectocld 8801 Implicit substitution of c...
ectocl 8802 Implicit substitution of c...
elqsn0 8803 A quotient set does not co...
ecelqsdm 8804 Membership of an equivalen...
xpider 8805 A Cartesian square is an e...
iiner 8806 The intersection of a none...
riiner 8807 The relative intersection ...
erinxp 8808 A restricted equivalence r...
ecinxp 8809 Restrict the relation in a...
qsinxp 8810 Restrict the equivalence r...
qsdisj 8811 Members of a quotient set ...
qsdisj2 8812 A quotient set is a disjoi...
qsel 8813 If an element of a quotien...
uniinqs 8814 Class union distributes ov...
qliftlem 8815 Lemma for theorems about a...
qliftrel 8816 ` F ` , a function lift, i...
qliftel 8817 Elementhood in the relatio...
qliftel1 8818 Elementhood in the relatio...
qliftfun 8819 The function ` F ` is the ...
qliftfund 8820 The function ` F ` is the ...
qliftfuns 8821 The function ` F ` is the ...
qliftf 8822 The domain and codomain of...
qliftval 8823 The value of the function ...
ecoptocl 8824 Implicit substitution of c...
2ecoptocl 8825 Implicit substitution of c...
3ecoptocl 8826 Implicit substitution of c...
brecop 8827 Binary relation on a quoti...
brecop2 8828 Binary relation on a quoti...
eroveu 8829 Lemma for ~ erov and ~ ero...
erovlem 8830 Lemma for ~ erov and ~ ero...
erov 8831 The value of an operation ...
eroprf 8832 Functionality of an operat...
erov2 8833 The value of an operation ...
eroprf2 8834 Functionality of an operat...
ecopoveq 8835 This is the first of sever...
ecopovsym 8836 Assuming the operation ` F...
ecopovtrn 8837 Assuming that operation ` ...
ecopover 8838 Assuming that operation ` ...
eceqoveq 8839 Equality of equivalence re...
ecovcom 8840 Lemma used to transfer a c...
ecovass 8841 Lemma used to transfer an ...
ecovdi 8842 Lemma used to transfer a d...
mapprc 8847 When ` A ` is a proper cla...
pmex 8848 The class of all partial f...
mapex 8849 The class of all functions...
fnmap 8850 Set exponentiation has a u...
fnpm 8851 Partial function exponenti...
reldmmap 8852 Set exponentiation is a we...
mapvalg 8853 The value of set exponenti...
pmvalg 8854 The value of the partial m...
mapval 8855 The value of set exponenti...
elmapg 8856 Membership relation for se...
elmapd 8857 Deduction form of ~ elmapg...
elmapdd 8858 Deduction associated with ...
mapdm0 8859 The empty set is the only ...
elpmg 8860 The predicate "is a partia...
elpm2g 8861 The predicate "is a partia...
elpm2r 8862 Sufficient condition for b...
elpmi 8863 A partial function is a fu...
pmfun 8864 A partial function is a fu...
elmapex 8865 Eliminate antecedent for m...
elmapi 8866 A mapping is a function, f...
mapfset 8867 If ` B ` is a set, the val...
mapssfset 8868 The value of the set expon...
mapfoss 8869 The value of the set expon...
fsetsspwxp 8870 The class of all functions...
fset0 8871 The set of functions from ...
fsetdmprc0 8872 The set of functions with ...
fsetex 8873 The set of functions betwe...
f1setex 8874 The set of injections betw...
fosetex 8875 The set of surjections bet...
f1osetex 8876 The set of bijections betw...
fsetfcdm 8877 The class of functions wit...
fsetfocdm 8878 The class of functions wit...
fsetprcnex 8879 The class of all functions...
fsetcdmex 8880 The class of all functions...
fsetexb 8881 The class of all functions...
elmapfn 8882 A mapping is a function wi...
elmapfun 8883 A mapping is always a func...
elmapssres 8884 A restricted mapping is a ...
fpmg 8885 A total function is a part...
pmss12g 8886 Subset relation for the se...
pmresg 8887 Elementhood of a restricte...
elmap 8888 Membership relation for se...
mapval2 8889 Alternate expression for t...
elpm 8890 The predicate "is a partia...
elpm2 8891 The predicate "is a partia...
fpm 8892 A total function is a part...
mapsspm 8893 Set exponentiation is a su...
pmsspw 8894 Partial maps are a subset ...
mapsspw 8895 Set exponentiation is a su...
mapfvd 8896 The value of a function th...
elmapresaun 8897 ~ fresaun transposed to ma...
fvmptmap 8898 Special case of ~ fvmpt fo...
map0e 8899 Set exponentiation with an...
map0b 8900 Set exponentiation with an...
map0g 8901 Set exponentiation is empt...
0map0sn0 8902 The set of mappings of the...
mapsnd 8903 The value of set exponenti...
map0 8904 Set exponentiation is empt...
mapsn 8905 The value of set exponenti...
mapss 8906 Subset inheritance for set...
fdiagfn 8907 Functionality of the diago...
fvdiagfn 8908 Functionality of the diago...
mapsnconst 8909 Every singleton map is a c...
mapsncnv 8910 Expression for the inverse...
mapsnf1o2 8911 Explicit bijection between...
mapsnf1o3 8912 Explicit bijection in the ...
ralxpmap 8913 Quantification over functi...
dfixp 8916 Eliminate the expression `...
ixpsnval 8917 The value of an infinite C...
elixp2 8918 Membership in an infinite ...
fvixp 8919 Projection of a factor of ...
ixpfn 8920 A nuple is a function. (C...
elixp 8921 Membership in an infinite ...
elixpconst 8922 Membership in an infinite ...
ixpconstg 8923 Infinite Cartesian product...
ixpconst 8924 Infinite Cartesian product...
ixpeq1 8925 Equality theorem for infin...
ixpeq1d 8926 Equality theorem for infin...
ss2ixp 8927 Subclass theorem for infin...
ixpeq2 8928 Equality theorem for infin...
ixpeq2dva 8929 Equality theorem for infin...
ixpeq2dv 8930 Equality theorem for infin...
cbvixp 8931 Change bound variable in a...
cbvixpv 8932 Change bound variable in a...
nfixpw 8933 Bound-variable hypothesis ...
nfixp 8934 Bound-variable hypothesis ...
nfixp1 8935 The index variable in an i...
ixpprc 8936 A cartesian product of pro...
ixpf 8937 A member of an infinite Ca...
uniixp 8938 The union of an infinite C...
ixpexg 8939 The existence of an infini...
ixpin 8940 The intersection of two in...
ixpiin 8941 The indexed intersection o...
ixpint 8942 The intersection of a coll...
ixp0x 8943 An infinite Cartesian prod...
ixpssmap2g 8944 An infinite Cartesian prod...
ixpssmapg 8945 An infinite Cartesian prod...
0elixp 8946 Membership of the empty se...
ixpn0 8947 The infinite Cartesian pro...
ixp0 8948 The infinite Cartesian pro...
ixpssmap 8949 An infinite Cartesian prod...
resixp 8950 Restriction of an element ...
undifixp 8951 Union of two projections o...
mptelixpg 8952 Condition for an explicit ...
resixpfo 8953 Restriction of elements of...
elixpsn 8954 Membership in a class of s...
ixpsnf1o 8955 A bijection between a clas...
mapsnf1o 8956 A bijection between a set ...
boxriin 8957 A rectangular subset of a ...
boxcutc 8958 The relative complement of...
relen 8967 Equinumerosity is a relati...
reldom 8968 Dominance is a relation. ...
relsdom 8969 Strict dominance is a rela...
encv 8970 If two classes are equinum...
breng 8971 Equinumerosity relation. ...
bren 8972 Equinumerosity relation. ...
brenOLD 8973 Obsolete version of ~ bren...
brdom2g 8974 Dominance relation. This ...
brdomg 8975 Dominance relation. (Cont...
brdomgOLD 8976 Obsolete version of ~ brdo...
brdomi 8977 Dominance relation. (Cont...
brdomiOLD 8978 Obsolete version of ~ brdo...
brdom 8979 Dominance relation. (Cont...
domen 8980 Dominance in terms of equi...
domeng 8981 Dominance in terms of equi...
ctex 8982 A countable set is a set. ...
f1oen4g 8983 The domain and range of a ...
f1dom4g 8984 The domain of a one-to-one...
f1oen3g 8985 The domain and range of a ...
f1dom3g 8986 The domain of a one-to-one...
f1oen2g 8987 The domain and range of a ...
f1dom2g 8988 The domain of a one-to-one...
f1dom2gOLD 8989 Obsolete version of ~ f1do...
f1oeng 8990 The domain and range of a ...
f1domg 8991 The domain of a one-to-one...
f1oen 8992 The domain and range of a ...
f1dom 8993 The domain of a one-to-one...
brsdom 8994 Strict dominance relation,...
isfi 8995 Express " ` A ` is finite"...
enssdom 8996 Equinumerosity implies dom...
dfdom2 8997 Alternate definition of do...
endom 8998 Equinumerosity implies dom...
sdomdom 8999 Strict dominance implies d...
sdomnen 9000 Strict dominance implies n...
brdom2 9001 Dominance in terms of stri...
bren2 9002 Equinumerosity expressed i...
enrefg 9003 Equinumerosity is reflexiv...
enref 9004 Equinumerosity is reflexiv...
eqeng 9005 Equality implies equinumer...
domrefg 9006 Dominance is reflexive. (...
en2d 9007 Equinumerosity inference f...
en3d 9008 Equinumerosity inference f...
en2i 9009 Equinumerosity inference f...
en3i 9010 Equinumerosity inference f...
dom2lem 9011 A mapping (first hypothesi...
dom2d 9012 A mapping (first hypothesi...
dom3d 9013 A mapping (first hypothesi...
dom2 9014 A mapping (first hypothesi...
dom3 9015 A mapping (first hypothesi...
idssen 9016 Equality implies equinumer...
domssl 9017 If ` A ` is a subset of ` ...
domssr 9018 If ` C ` is a superset of ...
ssdomg 9019 A set dominates its subset...
ener 9020 Equinumerosity is an equiv...
ensymb 9021 Symmetry of equinumerosity...
ensym 9022 Symmetry of equinumerosity...
ensymi 9023 Symmetry of equinumerosity...
ensymd 9024 Symmetry of equinumerosity...
entr 9025 Transitivity of equinumero...
domtr 9026 Transitivity of dominance ...
entri 9027 A chained equinumerosity i...
entr2i 9028 A chained equinumerosity i...
entr3i 9029 A chained equinumerosity i...
entr4i 9030 A chained equinumerosity i...
endomtr 9031 Transitivity of equinumero...
domentr 9032 Transitivity of dominance ...
f1imaeng 9033 If a function is one-to-on...
f1imaen2g 9034 If a function is one-to-on...
f1imaen 9035 If a function is one-to-on...
en0 9036 The empty set is equinumer...
en0OLD 9037 Obsolete version of ~ en0 ...
en0ALT 9038 Shorter proof of ~ en0 , d...
en0r 9039 The empty set is equinumer...
ensn1 9040 A singleton is equinumerou...
ensn1OLD 9041 Obsolete version of ~ ensn...
ensn1g 9042 A singleton is equinumerou...
enpr1g 9043 ` { A , A } ` has only one...
en1 9044 A set is equinumerous to o...
en1OLD 9045 Obsolete version of ~ en1 ...
en1b 9046 A set is equinumerous to o...
en1bOLD 9047 Obsolete version of ~ en1b...
reuen1 9048 Two ways to express "exact...
euen1 9049 Two ways to express "exact...
euen1b 9050 Two ways to express " ` A ...
en1uniel 9051 A singleton contains its s...
en1unielOLD 9052 Obsolete version of ~ en1u...
2dom 9053 A set that dominates ordin...
fundmen 9054 A function is equinumerous...
fundmeng 9055 A function is equinumerous...
cnven 9056 A relational set is equinu...
cnvct 9057 If a set is countable, so ...
fndmeng 9058 A function is equinumerate...
mapsnend 9059 Set exponentiation to a si...
mapsnen 9060 Set exponentiation to a si...
snmapen 9061 Set exponentiation: a sing...
snmapen1 9062 Set exponentiation: a sing...
map1 9063 Set exponentiation: ordina...
en2sn 9064 Two singletons are equinum...
en2snOLD 9065 Obsolete version of ~ en2s...
en2snOLDOLD 9066 Obsolete version of ~ en2s...
snfi 9067 A singleton is finite. (C...
fiprc 9068 The class of finite sets i...
unen 9069 Equinumerosity of union of...
enrefnn 9070 Equinumerosity is reflexiv...
en2prd 9071 Two unordered pairs are eq...
enpr2d 9072 A pair with distinct eleme...
enpr2dOLD 9073 Obsolete version of ~ enpr...
ssct 9074 Any subset of a countable ...
ssctOLD 9075 Obsolete version of ~ ssct...
difsnen 9076 All decrements of a set ar...
domdifsn 9077 Dominance over a set with ...
xpsnen 9078 A set is equinumerous to i...
xpsneng 9079 A set is equinumerous to i...
xp1en 9080 One times a cardinal numbe...
endisj 9081 Any two sets are equinumer...
undom 9082 Dominance law for union. ...
undomOLD 9083 Obsolete version of ~ undo...
xpcomf1o 9084 The canonical bijection fr...
xpcomco 9085 Composition with the bijec...
xpcomen 9086 Commutative law for equinu...
xpcomeng 9087 Commutative law for equinu...
xpsnen2g 9088 A set is equinumerous to i...
xpassen 9089 Associative law for equinu...
xpdom2 9090 Dominance law for Cartesia...
xpdom2g 9091 Dominance law for Cartesia...
xpdom1g 9092 Dominance law for Cartesia...
xpdom3 9093 A set is dominated by its ...
xpdom1 9094 Dominance law for Cartesia...
domunsncan 9095 A singleton cancellation l...
omxpenlem 9096 Lemma for ~ omxpen . (Con...
omxpen 9097 The cardinal and ordinal p...
omf1o 9098 Construct an explicit bije...
pw2f1olem 9099 Lemma for ~ pw2f1o . (Con...
pw2f1o 9100 The power set of a set is ...
pw2eng 9101 The power set of a set is ...
pw2en 9102 The power set of a set is ...
fopwdom 9103 Covering implies injection...
enfixsn 9104 Given two equipollent sets...
sucdom2OLD 9105 Obsolete version of ~ sucd...
sbthlem1 9106 Lemma for ~ sbth . (Contr...
sbthlem2 9107 Lemma for ~ sbth . (Contr...
sbthlem3 9108 Lemma for ~ sbth . (Contr...
sbthlem4 9109 Lemma for ~ sbth . (Contr...
sbthlem5 9110 Lemma for ~ sbth . (Contr...
sbthlem6 9111 Lemma for ~ sbth . (Contr...
sbthlem7 9112 Lemma for ~ sbth . (Contr...
sbthlem8 9113 Lemma for ~ sbth . (Contr...
sbthlem9 9114 Lemma for ~ sbth . (Contr...
sbthlem10 9115 Lemma for ~ sbth . (Contr...
sbth 9116 Schroeder-Bernstein Theore...
sbthb 9117 Schroeder-Bernstein Theore...
sbthcl 9118 Schroeder-Bernstein Theore...
dfsdom2 9119 Alternate definition of st...
brsdom2 9120 Alternate definition of st...
sdomnsym 9121 Strict dominance is asymme...
domnsym 9122 Theorem 22(i) of [Suppes] ...
0domg 9123 Any set dominates the empt...
0domgOLD 9124 Obsolete version of ~ 0dom...
dom0 9125 A set dominated by the emp...
dom0OLD 9126 Obsolete version of ~ dom0...
0sdomg 9127 A set strictly dominates t...
0sdomgOLD 9128 Obsolete version of ~ 0sdo...
0dom 9129 Any set dominates the empt...
0sdom 9130 A set strictly dominates t...
sdom0 9131 The empty set does not str...
sdom0OLD 9132 Obsolete version of ~ sdom...
sdomdomtr 9133 Transitivity of strict dom...
sdomentr 9134 Transitivity of strict dom...
domsdomtr 9135 Transitivity of dominance ...
ensdomtr 9136 Transitivity of equinumero...
sdomirr 9137 Strict dominance is irrefl...
sdomtr 9138 Strict dominance is transi...
sdomn2lp 9139 Strict dominance has no 2-...
enen1 9140 Equality-like theorem for ...
enen2 9141 Equality-like theorem for ...
domen1 9142 Equality-like theorem for ...
domen2 9143 Equality-like theorem for ...
sdomen1 9144 Equality-like theorem for ...
sdomen2 9145 Equality-like theorem for ...
domtriord 9146 Dominance is trichotomous ...
sdomel 9147 For ordinals, strict domin...
sdomdif 9148 The difference of a set fr...
onsdominel 9149 An ordinal with more eleme...
domunsn 9150 Dominance over a set with ...
fodomr 9151 There exists a mapping fro...
pwdom 9152 Injection of sets implies ...
canth2 9153 Cantor's Theorem. No set ...
canth2g 9154 Cantor's theorem with the ...
2pwuninel 9155 The power set of the power...
2pwne 9156 No set equals the power se...
disjen 9157 A stronger form of ~ pwuni...
disjenex 9158 Existence version of ~ dis...
domss2 9159 A corollary of ~ disjenex ...
domssex2 9160 A corollary of ~ disjenex ...
domssex 9161 Weakening of ~ domssex2 to...
xpf1o 9162 Construct a bijection on a...
xpen 9163 Equinumerosity law for Car...
mapen 9164 Two set exponentiations ar...
mapdom1 9165 Order-preserving property ...
mapxpen 9166 Equinumerosity law for dou...
xpmapenlem 9167 Lemma for ~ xpmapen . (Co...
xpmapen 9168 Equinumerosity law for set...
mapunen 9169 Equinumerosity law for set...
map2xp 9170 A cardinal power with expo...
mapdom2 9171 Order-preserving property ...
mapdom3 9172 Set exponentiation dominat...
pwen 9173 If two sets are equinumero...
ssenen 9174 Equinumerosity of equinume...
limenpsi 9175 A limit ordinal is equinum...
limensuci 9176 A limit ordinal is equinum...
limensuc 9177 A limit ordinal is equinum...
infensuc 9178 Any infinite ordinal is eq...
dif1enlem 9179 Lemma for ~ rexdif1en and ...
dif1enlemOLD 9180 Obsolete version of ~ dif1...
rexdif1en 9181 If a set is equinumerous t...
rexdif1enOLD 9182 Obsolete version of ~ rexd...
dif1en 9183 If a set ` A ` is equinume...
dif1ennn 9184 If a set ` A ` is equinume...
dif1enOLD 9185 Obsolete version of ~ dif1...
findcard 9186 Schema for induction on th...
findcard2 9187 Schema for induction on th...
findcard2s 9188 Variation of ~ findcard2 r...
findcard2d 9189 Deduction version of ~ fin...
nnfi 9190 Natural numbers are finite...
pssnn 9191 A proper subset of a natur...
ssnnfi 9192 A subset of a natural numb...
ssnnfiOLD 9193 Obsolete version of ~ ssnn...
0fin 9194 The empty set is finite. ...
unfi 9195 The union of two finite se...
ssfi 9196 A subset of a finite set i...
ssfiALT 9197 Shorter proof of ~ ssfi us...
imafi 9198 Images of finite sets are ...
pwfir 9199 If the power set of a set ...
pwfilem 9200 Lemma for ~ pwfi . (Contr...
pwfi 9201 The power set of a finite ...
diffi 9202 If ` A ` is finite, ` ( A ...
cnvfi 9203 If a set is finite, its co...
fnfi 9204 A version of ~ fnex for fi...
f1oenfi 9205 If the domain of a one-to-...
f1oenfirn 9206 If the range of a one-to-o...
f1domfi 9207 If the codomain of a one-t...
f1domfi2 9208 If the domain of a one-to-...
enreffi 9209 Equinumerosity is reflexiv...
ensymfib 9210 Symmetry of equinumerosity...
entrfil 9211 Transitivity of equinumero...
enfii 9212 A set equinumerous to a fi...
enfi 9213 Equinumerous sets have the...
enfiALT 9214 Shorter proof of ~ enfi us...
domfi 9215 A set dominated by a finit...
entrfi 9216 Transitivity of equinumero...
entrfir 9217 Transitivity of equinumero...
domtrfil 9218 Transitivity of dominance ...
domtrfi 9219 Transitivity of dominance ...
domtrfir 9220 Transitivity of dominance ...
f1imaenfi 9221 If a function is one-to-on...
ssdomfi 9222 A finite set dominates its...
ssdomfi2 9223 A set dominates its finite...
sbthfilem 9224 Lemma for ~ sbthfi . (Con...
sbthfi 9225 Schroeder-Bernstein Theore...
domnsymfi 9226 If a set dominates a finit...
sdomdomtrfi 9227 Transitivity of strict dom...
domsdomtrfi 9228 Transitivity of dominance ...
sucdom2 9229 Strict dominance of a set ...
phplem1 9230 Lemma for Pigeonhole Princ...
phplem2 9231 Lemma for Pigeonhole Princ...
nneneq 9232 Two equinumerous natural n...
php 9233 Pigeonhole Principle. A n...
php2 9234 Corollary of Pigeonhole Pr...
php3 9235 Corollary of Pigeonhole Pr...
php4 9236 Corollary of the Pigeonhol...
php5 9237 Corollary of the Pigeonhol...
phpeqd 9238 Corollary of the Pigeonhol...
nndomog 9239 Cardinal ordering agrees w...
phplem1OLD 9240 Obsolete lemma for ~ php a...
phplem2OLD 9241 Obsolete lemma for ~ php a...
phplem3OLD 9242 Obsolete version of ~ phpl...
phplem4OLD 9243 Obsolete version of ~ phpl...
nneneqOLD 9244 Obsolete version of ~ nnen...
phpOLD 9245 Obsolete version of ~ php ...
php2OLD 9246 Obsolete version of ~ php2...
php3OLD 9247 Obsolete version of ~ php3...
phpeqdOLD 9248 Obsolete version of ~ phpe...
nndomogOLD 9249 Obsolete version of ~ nndo...
snnen2oOLD 9250 Obsolete version of ~ snne...
onomeneq 9251 An ordinal number equinume...
onomeneqOLD 9252 Obsolete version of ~ onom...
onfin 9253 An ordinal number is finit...
onfin2 9254 A set is a natural number ...
nnfiOLD 9255 Obsolete version of ~ nnfi...
nndomo 9256 Cardinal ordering agrees w...
nnsdomo 9257 Cardinal ordering agrees w...
sucdom 9258 Strict dominance of a set ...
sucdomOLD 9259 Obsolete version of ~ sucd...
snnen2o 9260 A singleton ` { A } ` is n...
0sdom1dom 9261 Strict dominance over 0 is...
0sdom1domALT 9262 Alternate proof of ~ 0sdom...
1sdom2 9263 Ordinal 1 is strictly domi...
1sdom2ALT 9264 Alternate proof of ~ 1sdom...
sdom1 9265 A set has less than one me...
sdom1OLD 9266 Obsolete version of ~ sdom...
modom 9267 Two ways to express "at mo...
modom2 9268 Two ways to express "at mo...
rex2dom 9269 A set that has at least 2 ...
1sdom2dom 9270 Strict dominance over 1 is...
1sdom 9271 A set that strictly domina...
1sdomOLD 9272 Obsolete version of ~ 1sdo...
unxpdomlem1 9273 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 9274 Lemma for ~ unxpdom . (Co...
unxpdomlem3 9275 Lemma for ~ unxpdom . (Co...
unxpdom 9276 Cartesian product dominate...
unxpdom2 9277 Corollary of ~ unxpdom . ...
sucxpdom 9278 Cartesian product dominate...
pssinf 9279 A set equinumerous to a pr...
fisseneq 9280 A finite set is equal to i...
ominf 9281 The set of natural numbers...
ominfOLD 9282 Obsolete version of ~ omin...
isinf 9283 Any set that is not finite...
isinfOLD 9284 Obsolete version of ~ isin...
fineqvlem 9285 Lemma for ~ fineqv . (Con...
fineqv 9286 If the Axiom of Infinity i...
enfiiOLD 9287 Obsolete version of ~ enfi...
pssnnOLD 9288 Obsolete version of ~ pssn...
xpfir 9289 The components of a nonemp...
ssfid 9290 A subset of a finite set i...
infi 9291 The intersection of two se...
rabfi 9292 A restricted class built f...
finresfin 9293 The restriction of a finit...
f1finf1o 9294 Any injection from one fin...
f1finf1oOLD 9295 Obsolete version of ~ f1fi...
nfielex 9296 If a class is not finite, ...
en1eqsn 9297 A set with one element is ...
en1eqsnOLD 9298 Obsolete version of ~ en1e...
en1eqsnbi 9299 A set containing an elemen...
dif1ennnALT 9300 Alternate proof of ~ dif1e...
enp1ilem 9301 Lemma for uses of ~ enp1i ...
enp1i 9302 Proof induction for ~ en2 ...
enp1iOLD 9303 Obsolete version of ~ enp1...
en2 9304 A set equinumerous to ordi...
en3 9305 A set equinumerous to ordi...
en4 9306 A set equinumerous to ordi...
findcard2OLD 9307 Obsolete version of ~ find...
findcard3 9308 Schema for strong inductio...
findcard3OLD 9309 Obsolete version of ~ find...
ac6sfi 9310 A version of ~ ac6s for fi...
frfi 9311 A partial order is well-fo...
fimax2g 9312 A finite set has a maximum...
fimaxg 9313 A finite set has a maximum...
fisupg 9314 Lemma showing existence an...
wofi 9315 A total order on a finite ...
ordunifi 9316 The maximum of a finite co...
nnunifi 9317 The union (supremum) of a ...
unblem1 9318 Lemma for ~ unbnn . After...
unblem2 9319 Lemma for ~ unbnn . The v...
unblem3 9320 Lemma for ~ unbnn . The v...
unblem4 9321 Lemma for ~ unbnn . The f...
unbnn 9322 Any unbounded subset of na...
unbnn2 9323 Version of ~ unbnn that do...
isfinite2 9324 Any set strictly dominated...
nnsdomg 9325 Omega strictly dominates a...
nnsdomgOLD 9326 Obsolete version of ~ nnsd...
isfiniteg 9327 A set is finite iff it is ...
infsdomnn 9328 An infinite set strictly d...
infsdomnnOLD 9329 Obsolete version of ~ infs...
infn0 9330 An infinite set is not emp...
infn0ALT 9331 Shorter proof of ~ infn0 u...
fin2inf 9332 This (useless) theorem, wh...
unfilem1 9333 Lemma for proving that the...
unfilem2 9334 Lemma for proving that the...
unfilem3 9335 Lemma for proving that the...
unfiOLD 9336 Obsolete version of ~ unfi...
unfir 9337 If a union is finite, the ...
unfib 9338 A union is finite if and o...
unfi2 9339 The union of two finite se...
difinf 9340 An infinite set ` A ` minu...
xpfi 9341 The Cartesian product of t...
xpfiOLD 9342 Obsolete version of ~ xpfi...
3xpfi 9343 The Cartesian product of t...
domunfican 9344 A finite set union cancell...
infcntss 9345 Every infinite set has a d...
prfi 9346 An unordered pair is finit...
tpfi 9347 An unordered triple is fin...
fiint 9348 Equivalent ways of stating...
fodomfi 9349 An onto function implies d...
fodomfib 9350 Equivalence of an onto map...
fofinf1o 9351 Any surjection from one fi...
rneqdmfinf1o 9352 Any function from a finite...
fidomdm 9353 Any finite set dominates i...
dmfi 9354 The domain of a finite set...
fundmfibi 9355 A function is finite if an...
resfnfinfin 9356 The restriction of a funct...
residfi 9357 A restricted identity func...
cnvfiALT 9358 Shorter proof of ~ cnvfi u...
rnfi 9359 The range of a finite set ...
f1dmvrnfibi 9360 A one-to-one function whos...
f1vrnfibi 9361 A one-to-one function whic...
fofi 9362 If an onto function has a ...
f1fi 9363 If a 1-to-1 function has a...
iunfi 9364 The finite union of finite...
unifi 9365 The finite union of finite...
unifi2 9366 The finite union of finite...
infssuni 9367 If an infinite set ` A ` i...
unirnffid 9368 The union of the range of ...
imafiALT 9369 Shorter proof of ~ imafi u...
pwfilemOLD 9370 Obsolete version of ~ pwfi...
pwfiOLD 9371 Obsolete version of ~ pwfi...
mapfi 9372 Set exponentiation of fini...
ixpfi 9373 A Cartesian product of fin...
ixpfi2 9374 A Cartesian product of fin...
mptfi 9375 A finite mapping set is fi...
abrexfi 9376 An image set from a finite...
cnvimamptfin 9377 A preimage of a mapping wi...
elfpw 9378 Membership in a class of f...
unifpw 9379 A set is the union of its ...
f1opwfi 9380 A one-to-one mapping induc...
fissuni 9381 A finite subset of a union...
fipreima 9382 Given a finite subset ` A ...
finsschain 9383 A finite subset of the uni...
indexfi 9384 If for every element of a ...
relfsupp 9387 The property of a function...
relprcnfsupp 9388 A proper class is never fi...
isfsupp 9389 The property of a class to...
isfsuppd 9390 Deduction form of ~ isfsup...
funisfsupp 9391 The property of a function...
fsuppimp 9392 Implications of a class be...
fsuppimpd 9393 A finitely supported funct...
fsuppfund 9394 A finitely supported funct...
fisuppfi 9395 A function on a finite set...
fidmfisupp 9396 A function with a finite d...
fdmfisuppfi 9397 The support of a function ...
fdmfifsupp 9398 A function with a finite d...
fsuppmptdm 9399 A mapping with a finite do...
fndmfisuppfi 9400 The support of a function ...
fndmfifsupp 9401 A function with a finite d...
suppeqfsuppbi 9402 If two functions have the ...
suppssfifsupp 9403 If the support of a functi...
fsuppsssupp 9404 If the support of a functi...
fsuppsssuppgd 9405 If the support of a functi...
fsuppss 9406 A subset of a finitely sup...
fsuppssov1 9407 Formula building theorem f...
fsuppxpfi 9408 The cartesian product of t...
fczfsuppd 9409 A constant function with v...
fsuppun 9410 The union of two finitely ...
fsuppunfi 9411 The union of the support o...
fsuppunbi 9412 If the union of two classe...
0fsupp 9413 The empty set is a finitel...
snopfsupp 9414 A singleton containing an ...
funsnfsupp 9415 Finite support for a funct...
fsuppres 9416 The restriction of a finit...
fmptssfisupp 9417 The restriction of a mappi...
ressuppfi 9418 If the support of the rest...
resfsupp 9419 If the restriction of a fu...
resfifsupp 9420 The restriction of a funct...
ffsuppbi 9421 Two ways of saying that a ...
fsuppmptif 9422 A function mapping an argu...
sniffsupp 9423 A function mapping all but...
fsuppcolem 9424 Lemma for ~ fsuppco . For...
fsuppco 9425 The composition of a 1-1 f...
fsuppco2 9426 The composition of a funct...
fsuppcor 9427 The composition of a funct...
mapfienlem1 9428 Lemma 1 for ~ mapfien . (...
mapfienlem2 9429 Lemma 2 for ~ mapfien . (...
mapfienlem3 9430 Lemma 3 for ~ mapfien . (...
mapfien 9431 A bijection of the base se...
mapfien2 9432 Equinumerousity relation f...
fival 9435 The set of all the finite ...
elfi 9436 Specific properties of an ...
elfi2 9437 The empty intersection nee...
elfir 9438 Sufficient condition for a...
intrnfi 9439 Sufficient condition for t...
iinfi 9440 An indexed intersection of...
inelfi 9441 The intersection of two se...
ssfii 9442 Any element of a set ` A `...
fi0 9443 The set of finite intersec...
fieq0 9444 A set is empty iff the cla...
fiin 9445 The elements of ` ( fi `` ...
dffi2 9446 The set of finite intersec...
fiss 9447 Subset relationship for fu...
inficl 9448 A set which is closed unde...
fipwuni 9449 The set of finite intersec...
fisn 9450 A singleton is closed unde...
fiuni 9451 The union of the finite in...
fipwss 9452 If a set is a family of su...
elfiun 9453 A finite intersection of e...
dffi3 9454 The set of finite intersec...
fifo 9455 Describe a surjection from...
marypha1lem 9456 Core induction for Philip ...
marypha1 9457 (Philip) Hall's marriage t...
marypha2lem1 9458 Lemma for ~ marypha2 . Pr...
marypha2lem2 9459 Lemma for ~ marypha2 . Pr...
marypha2lem3 9460 Lemma for ~ marypha2 . Pr...
marypha2lem4 9461 Lemma for ~ marypha2 . Pr...
marypha2 9462 Version of ~ marypha1 usin...
dfsup2 9467 Quantifier-free definition...
supeq1 9468 Equality theorem for supre...
supeq1d 9469 Equality deduction for sup...
supeq1i 9470 Equality inference for sup...
supeq2 9471 Equality theorem for supre...
supeq3 9472 Equality theorem for supre...
supeq123d 9473 Equality deduction for sup...
nfsup 9474 Hypothesis builder for sup...
supmo 9475 Any class ` B ` has at mos...
supexd 9476 A supremum is a set. (Con...
supeu 9477 A supremum is unique. Sim...
supval2 9478 Alternate expression for t...
eqsup 9479 Sufficient condition for a...
eqsupd 9480 Sufficient condition for a...
supcl 9481 A supremum belongs to its ...
supub 9482 A supremum is an upper bou...
suplub 9483 A supremum is the least up...
suplub2 9484 Bidirectional form of ~ su...
supnub 9485 An upper bound is not less...
supex 9486 A supremum is a set. (Con...
sup00 9487 The supremum under an empt...
sup0riota 9488 The supremum of an empty s...
sup0 9489 The supremum of an empty s...
supmax 9490 The greatest element of a ...
fisup2g 9491 A finite set satisfies the...
fisupcl 9492 A nonempty finite set cont...
supgtoreq 9493 The supremum of a finite s...
suppr 9494 The supremum of a pair. (...
supsn 9495 The supremum of a singleto...
supisolem 9496 Lemma for ~ supiso . (Con...
supisoex 9497 Lemma for ~ supiso . (Con...
supiso 9498 Image of a supremum under ...
infeq1 9499 Equality theorem for infim...
infeq1d 9500 Equality deduction for inf...
infeq1i 9501 Equality inference for inf...
infeq2 9502 Equality theorem for infim...
infeq3 9503 Equality theorem for infim...
infeq123d 9504 Equality deduction for inf...
nfinf 9505 Hypothesis builder for inf...
infexd 9506 An infimum is a set. (Con...
eqinf 9507 Sufficient condition for a...
eqinfd 9508 Sufficient condition for a...
infval 9509 Alternate expression for t...
infcllem 9510 Lemma for ~ infcl , ~ infl...
infcl 9511 An infimum belongs to its ...
inflb 9512 An infimum is a lower boun...
infglb 9513 An infimum is the greatest...
infglbb 9514 Bidirectional form of ~ in...
infnlb 9515 A lower bound is not great...
infex 9516 An infimum is a set. (Con...
infmin 9517 The smallest element of a ...
infmo 9518 Any class ` B ` has at mos...
infeu 9519 An infimum is unique. (Co...
fimin2g 9520 A finite set has a minimum...
fiming 9521 A finite set has a minimum...
fiinfg 9522 Lemma showing existence an...
fiinf2g 9523 A finite set satisfies the...
fiinfcl 9524 A nonempty finite set cont...
infltoreq 9525 The infimum of a finite se...
infpr 9526 The infimum of a pair. (C...
infsupprpr 9527 The infimum of a proper pa...
infsn 9528 The infimum of a singleton...
inf00 9529 The infimum regarding an e...
infempty 9530 The infimum of an empty se...
infiso 9531 Image of an infimum under ...
dfoi 9534 Rewrite ~ df-oi with abbre...
oieq1 9535 Equality theorem for ordin...
oieq2 9536 Equality theorem for ordin...
nfoi 9537 Hypothesis builder for ord...
ordiso2 9538 Generalize ~ ordiso to pro...
ordiso 9539 Order-isomorphic ordinal n...
ordtypecbv 9540 Lemma for ~ ordtype . (Co...
ordtypelem1 9541 Lemma for ~ ordtype . (Co...
ordtypelem2 9542 Lemma for ~ ordtype . (Co...
ordtypelem3 9543 Lemma for ~ ordtype . (Co...
ordtypelem4 9544 Lemma for ~ ordtype . (Co...
ordtypelem5 9545 Lemma for ~ ordtype . (Co...
ordtypelem6 9546 Lemma for ~ ordtype . (Co...
ordtypelem7 9547 Lemma for ~ ordtype . ` ra...
ordtypelem8 9548 Lemma for ~ ordtype . (Co...
ordtypelem9 9549 Lemma for ~ ordtype . Eit...
ordtypelem10 9550 Lemma for ~ ordtype . Usi...
oi0 9551 Definition of the ordinal ...
oicl 9552 The order type of the well...
oif 9553 The order isomorphism of t...
oiiso2 9554 The order isomorphism of t...
ordtype 9555 For any set-like well-orde...
oiiniseg 9556 ` ran F ` is an initial se...
ordtype2 9557 For any set-like well-orde...
oiexg 9558 The order isomorphism on a...
oion 9559 The order type of the well...
oiiso 9560 The order isomorphism of t...
oien 9561 The order type of a well-o...
oieu 9562 Uniqueness of the unique o...
oismo 9563 When ` A ` is a subclass o...
oiid 9564 The order type of an ordin...
hartogslem1 9565 Lemma for ~ hartogs . (Co...
hartogslem2 9566 Lemma for ~ hartogs . (Co...
hartogs 9567 The class of ordinals domi...
wofib 9568 The only sets which are we...
wemaplem1 9569 Value of the lexicographic...
wemaplem2 9570 Lemma for ~ wemapso . Tra...
wemaplem3 9571 Lemma for ~ wemapso . Tra...
wemappo 9572 Construct lexicographic or...
wemapsolem 9573 Lemma for ~ wemapso . (Co...
wemapso 9574 Construct lexicographic or...
wemapso2lem 9575 Lemma for ~ wemapso2 . (C...
wemapso2 9576 An alternative to having a...
card2on 9577 The alternate definition o...
card2inf 9578 The alternate definition o...
harf 9581 Functionality of the Harto...
harcl 9582 Values of the Hartogs func...
harval 9583 Function value of the Hart...
elharval 9584 The Hartogs number of a se...
harndom 9585 The Hartogs number of a se...
harword 9586 Weak ordering property of ...
relwdom 9589 Weak dominance is a relati...
brwdom 9590 Property of weak dominance...
brwdomi 9591 Property of weak dominance...
brwdomn0 9592 Weak dominance over nonemp...
0wdom 9593 Any set weakly dominates t...
fowdom 9594 An onto function implies w...
wdomref 9595 Reflexivity of weak domina...
brwdom2 9596 Alternate characterization...
domwdom 9597 Weak dominance is implied ...
wdomtr 9598 Transitivity of weak domin...
wdomen1 9599 Equality-like theorem for ...
wdomen2 9600 Equality-like theorem for ...
wdompwdom 9601 Weak dominance strengthens...
canthwdom 9602 Cantor's Theorem, stated u...
wdom2d 9603 Deduce weak dominance from...
wdomd 9604 Deduce weak dominance from...
brwdom3 9605 Condition for weak dominan...
brwdom3i 9606 Weak dominance implies exi...
unwdomg 9607 Weak dominance of a (disjo...
xpwdomg 9608 Weak dominance of a Cartes...
wdomima2g 9609 A set is weakly dominant o...
wdomimag 9610 A set is weakly dominant o...
unxpwdom2 9611 Lemma for ~ unxpwdom . (C...
unxpwdom 9612 If a Cartesian product is ...
ixpiunwdom 9613 Describe an onto function ...
harwdom 9614 The value of the Hartogs f...
axreg2 9616 Axiom of Regularity expres...
zfregcl 9617 The Axiom of Regularity wi...
zfreg 9618 The Axiom of Regularity us...
elirrv 9619 The membership relation is...
elirr 9620 No class is a member of it...
elneq 9621 A class is not equal to an...
nelaneq 9622 A class is not an element ...
epinid0 9623 The membership relation an...
sucprcreg 9624 A class is equal to its su...
ruv 9625 The Russell class is equal...
ruALT 9626 Alternate proof of ~ ru , ...
disjcsn 9627 A class is disjoint from i...
zfregfr 9628 The membership relation is...
en2lp 9629 No class has 2-cycle membe...
elnanel 9630 Two classes are not elemen...
cnvepnep 9631 The membership (epsilon) r...
epnsym 9632 The membership (epsilon) r...
elnotel 9633 A class cannot be an eleme...
elnel 9634 A class cannot be an eleme...
en3lplem1 9635 Lemma for ~ en3lp . (Cont...
en3lplem2 9636 Lemma for ~ en3lp . (Cont...
en3lp 9637 No class has 3-cycle membe...
preleqg 9638 Equality of two unordered ...
preleq 9639 Equality of two unordered ...
preleqALT 9640 Alternate proof of ~ prele...
opthreg 9641 Theorem for alternate repr...
suc11reg 9642 The successor operation be...
dford2 9643 Assuming ~ ax-reg , an ord...
inf0 9644 Existence of ` _om ` impli...
inf1 9645 Variation of Axiom of Infi...
inf2 9646 Variation of Axiom of Infi...
inf3lema 9647 Lemma for our Axiom of Inf...
inf3lemb 9648 Lemma for our Axiom of Inf...
inf3lemc 9649 Lemma for our Axiom of Inf...
inf3lemd 9650 Lemma for our Axiom of Inf...
inf3lem1 9651 Lemma for our Axiom of Inf...
inf3lem2 9652 Lemma for our Axiom of Inf...
inf3lem3 9653 Lemma for our Axiom of Inf...
inf3lem4 9654 Lemma for our Axiom of Inf...
inf3lem5 9655 Lemma for our Axiom of Inf...
inf3lem6 9656 Lemma for our Axiom of Inf...
inf3lem7 9657 Lemma for our Axiom of Inf...
inf3 9658 Our Axiom of Infinity ~ ax...
infeq5i 9659 Half of ~ infeq5 . (Contr...
infeq5 9660 The statement "there exist...
zfinf 9662 Axiom of Infinity expresse...
axinf2 9663 A standard version of Axio...
zfinf2 9665 A standard version of the ...
omex 9666 The existence of omega (th...
axinf 9667 The first version of the A...
inf5 9668 The statement "there exist...
omelon 9669 Omega is an ordinal number...
dfom3 9670 The class of natural numbe...
elom3 9671 A simplification of ~ elom...
dfom4 9672 A simplification of ~ df-o...
dfom5 9673 ` _om ` is the smallest li...
oancom 9674 Ordinal addition is not co...
isfinite 9675 A set is finite iff it is ...
fict 9676 A finite set is countable ...
nnsdom 9677 A natural number is strict...
omenps 9678 Omega is equinumerous to a...
omensuc 9679 The set of natural numbers...
infdifsn 9680 Removing a singleton from ...
infdiffi 9681 Removing a finite set from...
unbnn3 9682 Any unbounded subset of na...
noinfep 9683 Using the Axiom of Regular...
cantnffval 9686 The value of the Cantor no...
cantnfdm 9687 The domain of the Cantor n...
cantnfvalf 9688 Lemma for ~ cantnf . The ...
cantnfs 9689 Elementhood in the set of ...
cantnfcl 9690 Basic properties of the or...
cantnfval 9691 The value of the Cantor no...
cantnfval2 9692 Alternate expression for t...
cantnfsuc 9693 The value of the recursive...
cantnfle 9694 A lower bound on the ` CNF...
cantnflt 9695 An upper bound on the part...
cantnflt2 9696 An upper bound on the ` CN...
cantnff 9697 The ` CNF ` function is a ...
cantnf0 9698 The value of the zero func...
cantnfrescl 9699 A function is finitely sup...
cantnfres 9700 The ` CNF ` function respe...
cantnfp1lem1 9701 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9702 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9703 Lemma for ~ cantnfp1 . (C...
cantnfp1 9704 If ` F ` is created by add...
oemapso 9705 The relation ` T ` is a st...
oemapval 9706 Value of the relation ` T ...
oemapvali 9707 If ` F < G ` , then there ...
cantnflem1a 9708 Lemma for ~ cantnf . (Con...
cantnflem1b 9709 Lemma for ~ cantnf . (Con...
cantnflem1c 9710 Lemma for ~ cantnf . (Con...
cantnflem1d 9711 Lemma for ~ cantnf . (Con...
cantnflem1 9712 Lemma for ~ cantnf . This...
cantnflem2 9713 Lemma for ~ cantnf . (Con...
cantnflem3 9714 Lemma for ~ cantnf . Here...
cantnflem4 9715 Lemma for ~ cantnf . Comp...
cantnf 9716 The Cantor Normal Form the...
oemapwe 9717 The lexicographic order on...
cantnffval2 9718 An alternate definition of...
cantnff1o 9719 Simplify the isomorphism o...
wemapwe 9720 Construct lexicographic or...
oef1o 9721 A bijection of the base se...
cnfcomlem 9722 Lemma for ~ cnfcom . (Con...
cnfcom 9723 Any ordinal ` B ` is equin...
cnfcom2lem 9724 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9725 Any nonzero ordinal ` B ` ...
cnfcom3lem 9726 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9727 Any infinite ordinal ` B `...
cnfcom3clem 9728 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9729 Wrap the construction of ~...
ttrcleq 9732 Equality theorem for trans...
nfttrcld 9733 Bound variable hypothesis ...
nfttrcl 9734 Bound variable hypothesis ...
relttrcl 9735 The transitive closure of ...
brttrcl 9736 Characterization of elemen...
brttrcl2 9737 Characterization of elemen...
ssttrcl 9738 If ` R ` is a relation, th...
ttrcltr 9739 The transitive closure of ...
ttrclresv 9740 The transitive closure of ...
ttrclco 9741 Composition law for the tr...
cottrcl 9742 Composition law for the tr...
ttrclss 9743 If ` R ` is a subclass of ...
dmttrcl 9744 The domain of a transitive...
rnttrcl 9745 The range of a transitive ...
ttrclexg 9746 If ` R ` is a set, then so...
dfttrcl2 9747 When ` R ` is a set and a ...
ttrclselem1 9748 Lemma for ~ ttrclse . Sho...
ttrclselem2 9749 Lemma for ~ ttrclse . Sho...
ttrclse 9750 If ` R ` is set-like over ...
trcl 9751 For any set ` A ` , show t...
tz9.1 9752 Every set has a transitive...
tz9.1c 9753 Alternate expression for t...
epfrs 9754 The strong form of the Axi...
zfregs 9755 The strong form of the Axi...
zfregs2 9756 Alternate strong form of t...
setind 9757 Set (epsilon) induction. ...
setind2 9758 Set (epsilon) induction, s...
tcvalg 9761 Value of the transitive cl...
tcid 9762 Defining property of the t...
tctr 9763 Defining property of the t...
tcmin 9764 Defining property of the t...
tc2 9765 A variant of the definitio...
tcsni 9766 The transitive closure of ...
tcss 9767 The transitive closure fun...
tcel 9768 The transitive closure fun...
tcidm 9769 The transitive closure fun...
tc0 9770 The transitive closure of ...
tc00 9771 The transitive closure is ...
frmin 9772 Every (possibly proper) su...
frind 9773 A subclass of a well-found...
frinsg 9774 Well-Founded Induction Sch...
frins 9775 Well-Founded Induction Sch...
frins2f 9776 Well-Founded Induction sch...
frins2 9777 Well-Founded Induction sch...
frins3 9778 Well-Founded Induction sch...
frr3g 9779 Functions defined by well-...
frrlem15 9780 Lemma for general well-fou...
frrlem16 9781 Lemma for general well-fou...
frr1 9782 Law of general well-founde...
frr2 9783 Law of general well-founde...
frr3 9784 Law of general well-founde...
r1funlim 9789 The cumulative hierarchy o...
r1fnon 9790 The cumulative hierarchy o...
r10 9791 Value of the cumulative hi...
r1sucg 9792 Value of the cumulative hi...
r1suc 9793 Value of the cumulative hi...
r1limg 9794 Value of the cumulative hi...
r1lim 9795 Value of the cumulative hi...
r1fin 9796 The first ` _om ` levels o...
r1sdom 9797 Each stage in the cumulati...
r111 9798 The cumulative hierarchy i...
r1tr 9799 The cumulative hierarchy o...
r1tr2 9800 The union of a cumulative ...
r1ordg 9801 Ordering relation for the ...
r1ord3g 9802 Ordering relation for the ...
r1ord 9803 Ordering relation for the ...
r1ord2 9804 Ordering relation for the ...
r1ord3 9805 Ordering relation for the ...
r1sssuc 9806 The value of the cumulativ...
r1pwss 9807 Each set of the cumulative...
r1sscl 9808 Each set of the cumulative...
r1val1 9809 The value of the cumulativ...
tz9.12lem1 9810 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9811 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9812 Lemma for ~ tz9.12 . (Con...
tz9.12 9813 A set is well-founded if a...
tz9.13 9814 Every set is well-founded,...
tz9.13g 9815 Every set is well-founded,...
rankwflemb 9816 Two ways of saying a set i...
rankf 9817 The domain and codomain of...
rankon 9818 The rank of a set is an or...
r1elwf 9819 Any member of the cumulati...
rankvalb 9820 Value of the rank function...
rankr1ai 9821 One direction of ~ rankr1a...
rankvaln 9822 Value of the rank function...
rankidb 9823 Identity law for the rank ...
rankdmr1 9824 A rank is a member of the ...
rankr1ag 9825 A version of ~ rankr1a tha...
rankr1bg 9826 A relationship between ran...
r1rankidb 9827 Any set is a subset of the...
r1elssi 9828 The range of the ` R1 ` fu...
r1elss 9829 The range of the ` R1 ` fu...
pwwf 9830 A power set is well-founde...
sswf 9831 A subset of a well-founded...
snwf 9832 A singleton is well-founde...
unwf 9833 A binary union is well-fou...
prwf 9834 An unordered pair is well-...
opwf 9835 An ordered pair is well-fo...
unir1 9836 The cumulative hierarchy o...
jech9.3 9837 Every set belongs to some ...
rankwflem 9838 Every set is well-founded,...
rankval 9839 Value of the rank function...
rankvalg 9840 Value of the rank function...
rankval2 9841 Value of an alternate defi...
uniwf 9842 A union is well-founded if...
rankr1clem 9843 Lemma for ~ rankr1c . (Co...
rankr1c 9844 A relationship between the...
rankidn 9845 A relationship between the...
rankpwi 9846 The rank of a power set. ...
rankelb 9847 The membership relation is...
wfelirr 9848 A well-founded set is not ...
rankval3b 9849 The value of the rank func...
ranksnb 9850 The rank of a singleton. ...
rankonidlem 9851 Lemma for ~ rankonid . (C...
rankonid 9852 The rank of an ordinal num...
onwf 9853 The ordinals are all well-...
onssr1 9854 Initial segments of the or...
rankr1g 9855 A relationship between the...
rankid 9856 Identity law for the rank ...
rankr1 9857 A relationship between the...
ssrankr1 9858 A relationship between an ...
rankr1a 9859 A relationship between ran...
r1val2 9860 The value of the cumulativ...
r1val3 9861 The value of the cumulativ...
rankel 9862 The membership relation is...
rankval3 9863 The value of the rank func...
bndrank 9864 Any class whose elements h...
unbndrank 9865 The elements of a proper c...
rankpw 9866 The rank of a power set. ...
ranklim 9867 The rank of a set belongs ...
r1pw 9868 A stronger property of ` R...
r1pwALT 9869 Alternate shorter proof of...
r1pwcl 9870 The cumulative hierarchy o...
rankssb 9871 The subset relation is inh...
rankss 9872 The subset relation is inh...
rankunb 9873 The rank of the union of t...
rankprb 9874 The rank of an unordered p...
rankopb 9875 The rank of an ordered pai...
rankuni2b 9876 The value of the rank func...
ranksn 9877 The rank of a singleton. ...
rankuni2 9878 The rank of a union. Part...
rankun 9879 The rank of the union of t...
rankpr 9880 The rank of an unordered p...
rankop 9881 The rank of an ordered pai...
r1rankid 9882 Any set is a subset of the...
rankeq0b 9883 A set is empty iff its ran...
rankeq0 9884 A set is empty iff its ran...
rankr1id 9885 The rank of the hierarchy ...
rankuni 9886 The rank of a union. Part...
rankr1b 9887 A relationship between ran...
ranksuc 9888 The rank of a successor. ...
rankuniss 9889 Upper bound of the rank of...
rankval4 9890 The rank of a set is the s...
rankbnd 9891 The rank of a set is bound...
rankbnd2 9892 The rank of a set is bound...
rankc1 9893 A relationship that can be...
rankc2 9894 A relationship that can be...
rankelun 9895 Rank membership is inherit...
rankelpr 9896 Rank membership is inherit...
rankelop 9897 Rank membership is inherit...
rankxpl 9898 A lower bound on the rank ...
rankxpu 9899 An upper bound on the rank...
rankfu 9900 An upper bound on the rank...
rankmapu 9901 An upper bound on the rank...
rankxplim 9902 The rank of a Cartesian pr...
rankxplim2 9903 If the rank of a Cartesian...
rankxplim3 9904 The rank of a Cartesian pr...
rankxpsuc 9905 The rank of a Cartesian pr...
tcwf 9906 The transitive closure fun...
tcrank 9907 This theorem expresses two...
scottex 9908 Scott's trick collects all...
scott0 9909 Scott's trick collects all...
scottexs 9910 Theorem scheme version of ...
scott0s 9911 Theorem scheme version of ...
cplem1 9912 Lemma for the Collection P...
cplem2 9913 Lemma for the Collection P...
cp 9914 Collection Principle. Thi...
bnd 9915 A very strong generalizati...
bnd2 9916 A variant of the Boundedne...
kardex 9917 The collection of all sets...
karden 9918 If we allow the Axiom of R...
htalem 9919 Lemma for defining an emul...
hta 9920 A ZFC emulation of Hilbert...
djueq12 9927 Equality theorem for disjo...
djueq1 9928 Equality theorem for disjo...
djueq2 9929 Equality theorem for disjo...
nfdju 9930 Bound-variable hypothesis ...
djuex 9931 The disjoint union of sets...
djuexb 9932 The disjoint union of two ...
djulcl 9933 Left closure of disjoint u...
djurcl 9934 Right closure of disjoint ...
djulf1o 9935 The left injection functio...
djurf1o 9936 The right injection functi...
inlresf 9937 The left injection restric...
inlresf1 9938 The left injection restric...
inrresf 9939 The right injection restri...
inrresf1 9940 The right injection restri...
djuin 9941 The images of any classes ...
djur 9942 A member of a disjoint uni...
djuss 9943 A disjoint union is a subc...
djuunxp 9944 The union of a disjoint un...
djuexALT 9945 Alternate proof of ~ djuex...
eldju1st 9946 The first component of an ...
eldju2ndl 9947 The second component of an...
eldju2ndr 9948 The second component of an...
djuun 9949 The disjoint union of two ...
1stinl 9950 The first component of the...
2ndinl 9951 The second component of th...
1stinr 9952 The first component of the...
2ndinr 9953 The second component of th...
updjudhf 9954 The mapping of an element ...
updjudhcoinlf 9955 The composition of the map...
updjudhcoinrg 9956 The composition of the map...
updjud 9957 Universal property of the ...
cardf2 9966 The cardinality function i...
cardon 9967 The cardinal number of a s...
isnum2 9968 A way to express well-orde...
isnumi 9969 A set equinumerous to an o...
ennum 9970 Equinumerous sets are equi...
finnum 9971 Every finite set is numera...
onenon 9972 Every ordinal number is nu...
tskwe 9973 A Tarski set is well-order...
xpnum 9974 The cartesian product of n...
cardval3 9975 An alternate definition of...
cardid2 9976 Any numerable set is equin...
isnum3 9977 A set is numerable iff it ...
oncardval 9978 The value of the cardinal ...
oncardid 9979 Any ordinal number is equi...
cardonle 9980 The cardinal of an ordinal...
card0 9981 The cardinality of the emp...
cardidm 9982 The cardinality function i...
oncard 9983 A set is a cardinal number...
ficardom 9984 The cardinal number of a f...
ficardid 9985 A finite set is equinumero...
cardnn 9986 The cardinality of a natur...
cardnueq0 9987 The empty set is the only ...
cardne 9988 No member of a cardinal nu...
carden2a 9989 If two sets have equal non...
carden2b 9990 If two sets are equinumero...
card1 9991 A set has cardinality one ...
cardsn 9992 A singleton has cardinalit...
carddomi2 9993 Two sets have the dominanc...
sdomsdomcardi 9994 A set strictly dominates i...
cardlim 9995 An infinite cardinal is a ...
cardsdomelir 9996 A cardinal strictly domina...
cardsdomel 9997 A cardinal strictly domina...
iscard 9998 Two ways to express the pr...
iscard2 9999 Two ways to express the pr...
carddom2 10000 Two numerable sets have th...
harcard 10001 The class of ordinal numbe...
cardprclem 10002 Lemma for ~ cardprc . (Co...
cardprc 10003 The class of all cardinal ...
carduni 10004 The union of a set of card...
cardiun 10005 The indexed union of a set...
cardennn 10006 If ` A ` is equinumerous t...
cardsucinf 10007 The cardinality of the suc...
cardsucnn 10008 The cardinality of the suc...
cardom 10009 The set of natural numbers...
carden2 10010 Two numerable sets are equ...
cardsdom2 10011 A numerable set is strictl...
domtri2 10012 Trichotomy of dominance fo...
nnsdomel 10013 Strict dominance and eleme...
cardval2 10014 An alternate version of th...
isinffi 10015 An infinite set contains s...
fidomtri 10016 Trichotomy of dominance wi...
fidomtri2 10017 Trichotomy of dominance wi...
harsdom 10018 The Hartogs number of a we...
onsdom 10019 Any well-orderable set is ...
harval2 10020 An alternate expression fo...
harsucnn 10021 The next cardinal after a ...
cardmin2 10022 The smallest ordinal that ...
pm54.43lem 10023 In Theorem *54.43 of [Whit...
pm54.43 10024 Theorem *54.43 of [Whitehe...
enpr2 10025 An unordered pair with dis...
pr2nelemOLD 10026 Obsolete version of ~ enpr...
pr2ne 10027 If an unordered pair has t...
pr2neOLD 10028 Obsolete version of ~ pr2n...
prdom2 10029 An unordered pair has at m...
en2eqpr 10030 Building a set with two el...
en2eleq 10031 Express a set of pair card...
en2other2 10032 Taking the other element t...
dif1card 10033 The cardinality of a nonem...
leweon 10034 Lexicographical order is a...
r0weon 10035 A set-like well-ordering o...
infxpenlem 10036 Lemma for ~ infxpen . (Co...
infxpen 10037 Every infinite ordinal is ...
xpomen 10038 The Cartesian product of o...
xpct 10039 The cartesian product of t...
infxpidm2 10040 Every infinite well-ordera...
infxpenc 10041 A canonical version of ~ i...
infxpenc2lem1 10042 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 10043 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 10044 Lemma for ~ infxpenc2 . (...
infxpenc2 10045 Existence form of ~ infxpe...
iunmapdisj 10046 The union ` U_ n e. C ( A ...
fseqenlem1 10047 Lemma for ~ fseqen . (Con...
fseqenlem2 10048 Lemma for ~ fseqen . (Con...
fseqdom 10049 One half of ~ fseqen . (C...
fseqen 10050 A set that is equinumerous...
infpwfidom 10051 The collection of finite s...
dfac8alem 10052 Lemma for ~ dfac8a . If t...
dfac8a 10053 Numeration theorem: every ...
dfac8b 10054 The well-ordering theorem:...
dfac8clem 10055 Lemma for ~ dfac8c . (Con...
dfac8c 10056 If the union of a set is w...
ac10ct 10057 A proof of the well-orderi...
ween 10058 A set is numerable iff it ...
ac5num 10059 A version of ~ ac5b with t...
ondomen 10060 If a set is dominated by a...
numdom 10061 A set dominated by a numer...
ssnum 10062 A subset of a numerable se...
onssnum 10063 All subsets of the ordinal...
indcardi 10064 Indirect strong induction ...
acnrcl 10065 Reverse closure for the ch...
acneq 10066 Equality theorem for the c...
isacn 10067 The property of being a ch...
acni 10068 The property of being a ch...
acni2 10069 The property of being a ch...
acni3 10070 The property of being a ch...
acnlem 10071 Construct a mapping satisf...
numacn 10072 A well-orderable set has c...
finacn 10073 Every set has finite choic...
acndom 10074 A set with long choice seq...
acnnum 10075 A set ` X ` which has choi...
acnen 10076 The class of choice sets o...
acndom2 10077 A set smaller than one wit...
acnen2 10078 The class of sets with cho...
fodomacn 10079 A version of ~ fodom that ...
fodomnum 10080 A version of ~ fodom that ...
fonum 10081 A surjection maps numerabl...
numwdom 10082 A surjection maps numerabl...
fodomfi2 10083 Onto functions define domi...
wdomfil 10084 Weak dominance agrees with...
infpwfien 10085 Any infinite well-orderabl...
inffien 10086 The set of finite intersec...
wdomnumr 10087 Weak dominance agrees with...
alephfnon 10088 The aleph function is a fu...
aleph0 10089 The first infinite cardina...
alephlim 10090 Value of the aleph functio...
alephsuc 10091 Value of the aleph functio...
alephon 10092 An aleph is an ordinal num...
alephcard 10093 Every aleph is a cardinal ...
alephnbtwn 10094 No cardinal can be sandwic...
alephnbtwn2 10095 No set has equinumerosity ...
alephordilem1 10096 Lemma for ~ alephordi . (...
alephordi 10097 Strict ordering property o...
alephord 10098 Ordering property of the a...
alephord2 10099 Ordering property of the a...
alephord2i 10100 Ordering property of the a...
alephord3 10101 Ordering property of the a...
alephsucdom 10102 A set dominated by an alep...
alephsuc2 10103 An alternate representatio...
alephdom 10104 Relationship between inclu...
alephgeom 10105 Every aleph is greater tha...
alephislim 10106 Every aleph is a limit ord...
aleph11 10107 The aleph function is one-...
alephf1 10108 The aleph function is a on...
alephsdom 10109 If an ordinal is smaller t...
alephdom2 10110 A dominated initial ordina...
alephle 10111 The argument of the aleph ...
cardaleph 10112 Given any transfinite card...
cardalephex 10113 Every transfinite cardinal...
infenaleph 10114 An infinite numerable set ...
isinfcard 10115 Two ways to express the pr...
iscard3 10116 Two ways to express the pr...
cardnum 10117 Two ways to express the cl...
alephinit 10118 An infinite initial ordina...
carduniima 10119 The union of the image of ...
cardinfima 10120 If a mapping to cardinals ...
alephiso 10121 Aleph is an order isomorph...
alephprc 10122 The class of all transfini...
alephsson 10123 The class of transfinite c...
unialeph 10124 The union of the class of ...
alephsmo 10125 The aleph function is stri...
alephf1ALT 10126 Alternate proof of ~ aleph...
alephfplem1 10127 Lemma for ~ alephfp . (Co...
alephfplem2 10128 Lemma for ~ alephfp . (Co...
alephfplem3 10129 Lemma for ~ alephfp . (Co...
alephfplem4 10130 Lemma for ~ alephfp . (Co...
alephfp 10131 The aleph function has a f...
alephfp2 10132 The aleph function has at ...
alephval3 10133 An alternate way to expres...
alephsucpw2 10134 The power set of an aleph ...
mappwen 10135 Power rule for cardinal ar...
finnisoeu 10136 A finite totally ordered s...
iunfictbso 10137 Countability of a countabl...
aceq1 10140 Equivalence of two version...
aceq0 10141 Equivalence of two version...
aceq2 10142 Equivalence of two version...
aceq3lem 10143 Lemma for ~ dfac3 . (Cont...
dfac3 10144 Equivalence of two version...
dfac4 10145 Equivalence of two version...
dfac5lem1 10146 Lemma for ~ dfac5 . (Cont...
dfac5lem2 10147 Lemma for ~ dfac5 . (Cont...
dfac5lem3 10148 Lemma for ~ dfac5 . (Cont...
dfac5lem4 10149 Lemma for ~ dfac5 . (Cont...
dfac5lem5 10150 Lemma for ~ dfac5 . (Cont...
dfac5 10151 Equivalence of two version...
dfac2a 10152 Our Axiom of Choice (in th...
dfac2b 10153 Axiom of Choice (first for...
dfac2 10154 Axiom of Choice (first for...
dfac7 10155 Equivalence of the Axiom o...
dfac0 10156 Equivalence of two version...
dfac1 10157 Equivalence of two version...
dfac8 10158 A proof of the equivalency...
dfac9 10159 Equivalence of the axiom o...
dfac10 10160 Axiom of Choice equivalent...
dfac10c 10161 Axiom of Choice equivalent...
dfac10b 10162 Axiom of Choice equivalent...
acacni 10163 A choice equivalent: every...
dfacacn 10164 A choice equivalent: every...
dfac13 10165 The axiom of choice holds ...
dfac12lem1 10166 Lemma for ~ dfac12 . (Con...
dfac12lem2 10167 Lemma for ~ dfac12 . (Con...
dfac12lem3 10168 Lemma for ~ dfac12 . (Con...
dfac12r 10169 The axiom of choice holds ...
dfac12k 10170 Equivalence of ~ dfac12 an...
dfac12a 10171 The axiom of choice holds ...
dfac12 10172 The axiom of choice holds ...
kmlem1 10173 Lemma for 5-quantifier AC ...
kmlem2 10174 Lemma for 5-quantifier AC ...
kmlem3 10175 Lemma for 5-quantifier AC ...
kmlem4 10176 Lemma for 5-quantifier AC ...
kmlem5 10177 Lemma for 5-quantifier AC ...
kmlem6 10178 Lemma for 5-quantifier AC ...
kmlem7 10179 Lemma for 5-quantifier AC ...
kmlem8 10180 Lemma for 5-quantifier AC ...
kmlem9 10181 Lemma for 5-quantifier AC ...
kmlem10 10182 Lemma for 5-quantifier AC ...
kmlem11 10183 Lemma for 5-quantifier AC ...
kmlem12 10184 Lemma for 5-quantifier AC ...
kmlem13 10185 Lemma for 5-quantifier AC ...
kmlem14 10186 Lemma for 5-quantifier AC ...
kmlem15 10187 Lemma for 5-quantifier AC ...
kmlem16 10188 Lemma for 5-quantifier AC ...
dfackm 10189 Equivalence of the Axiom o...
undjudom 10190 Cardinal addition dominate...
endjudisj 10191 Equinumerosity of a disjoi...
djuen 10192 Disjoint unions of equinum...
djuenun 10193 Disjoint union is equinume...
dju1en 10194 Cardinal addition with car...
dju1dif 10195 Adding and subtracting one...
dju1p1e2 10196 1+1=2 for cardinal number ...
dju1p1e2ALT 10197 Alternate proof of ~ dju1p...
dju0en 10198 Cardinal addition with car...
xp2dju 10199 Two times a cardinal numbe...
djucomen 10200 Commutative law for cardin...
djuassen 10201 Associative law for cardin...
xpdjuen 10202 Cardinal multiplication di...
mapdjuen 10203 Sum of exponents law for c...
pwdjuen 10204 Sum of exponents law for c...
djudom1 10205 Ordering law for cardinal ...
djudom2 10206 Ordering law for cardinal ...
djudoml 10207 A set is dominated by its ...
djuxpdom 10208 Cartesian product dominate...
djufi 10209 The disjoint union of two ...
cdainflem 10210 Any partition of omega int...
djuinf 10211 A set is infinite iff the ...
infdju1 10212 An infinite set is equinum...
pwdju1 10213 The sum of a powerset with...
pwdjuidm 10214 If the natural numbers inj...
djulepw 10215 If ` A ` is idempotent und...
onadju 10216 The cardinal and ordinal s...
cardadju 10217 The cardinal sum is equinu...
djunum 10218 The disjoint union of two ...
unnum 10219 The union of two numerable...
nnadju 10220 The cardinal and ordinal s...
nnadjuALT 10221 Shorter proof of ~ nnadju ...
ficardadju 10222 The disjoint union of fini...
ficardun 10223 The cardinality of the uni...
ficardunOLD 10224 Obsolete version of ~ fica...
ficardun2 10225 The cardinality of the uni...
ficardun2OLD 10226 Obsolete version of ~ fica...
pwsdompw 10227 Lemma for ~ domtriom . Th...
unctb 10228 The union of two countable...
infdjuabs 10229 Absorption law for additio...
infunabs 10230 An infinite set is equinum...
infdju 10231 The sum of two cardinal nu...
infdif 10232 The cardinality of an infi...
infdif2 10233 Cardinality ordering for a...
infxpdom 10234 Dominance law for multipli...
infxpabs 10235 Absorption law for multipl...
infunsdom1 10236 The union of two sets that...
infunsdom 10237 The union of two sets that...
infxp 10238 Absorption law for multipl...
pwdjudom 10239 A property of dominance ov...
infpss 10240 Every infinite set has an ...
infmap2 10241 An exponentiation law for ...
ackbij2lem1 10242 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 10243 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 10244 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 10245 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 10246 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 10247 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 10248 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 10249 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 10250 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 10251 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 10252 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 10253 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 10254 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 10255 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 10256 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 10257 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 10258 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 10259 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 10260 Lemma for ~ ackbij1 . (Co...
ackbij1 10261 The Ackermann bijection, p...
ackbij1b 10262 The Ackermann bijection, p...
ackbij2lem2 10263 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 10264 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 10265 Lemma for ~ ackbij2 . (Co...
ackbij2 10266 The Ackermann bijection, p...
r1om 10267 The set of hereditarily fi...
fictb 10268 A set is countable iff its...
cflem 10269 A lemma used to simplify c...
cfval 10270 Value of the cofinality fu...
cff 10271 Cofinality is a function o...
cfub 10272 An upper bound on cofinali...
cflm 10273 Value of the cofinality fu...
cf0 10274 Value of the cofinality fu...
cardcf 10275 Cofinality is a cardinal n...
cflecard 10276 Cofinality is bounded by t...
cfle 10277 Cofinality is bounded by i...
cfon 10278 The cofinality of any set ...
cfeq0 10279 Only the ordinal zero has ...
cfsuc 10280 Value of the cofinality fu...
cff1 10281 There is always a map from...
cfflb 10282 If there is a cofinal map ...
cfval2 10283 Another expression for the...
coflim 10284 A simpler expression for t...
cflim3 10285 Another expression for the...
cflim2 10286 The cofinality function is...
cfom 10287 Value of the cofinality fu...
cfss 10288 There is a cofinal subset ...
cfslb 10289 Any cofinal subset of ` A ...
cfslbn 10290 Any subset of ` A ` smalle...
cfslb2n 10291 Any small collection of sm...
cofsmo 10292 Any cofinal map implies th...
cfsmolem 10293 Lemma for ~ cfsmo . (Cont...
cfsmo 10294 The map in ~ cff1 can be a...
cfcoflem 10295 Lemma for ~ cfcof , showin...
coftr 10296 If there is a cofinal map ...
cfcof 10297 If there is a cofinal map ...
cfidm 10298 The cofinality function is...
alephsing 10299 The cofinality of a limit ...
sornom 10300 The range of a single-step...
isfin1a 10315 Definition of a Ia-finite ...
fin1ai 10316 Property of a Ia-finite se...
isfin2 10317 Definition of a II-finite ...
fin2i 10318 Property of a II-finite se...
isfin3 10319 Definition of a III-finite...
isfin4 10320 Definition of a IV-finite ...
fin4i 10321 Infer that a set is IV-inf...
isfin5 10322 Definition of a V-finite s...
isfin6 10323 Definition of a VI-finite ...
isfin7 10324 Definition of a VII-finite...
sdom2en01 10325 A set with less than two e...
infpssrlem1 10326 Lemma for ~ infpssr . (Co...
infpssrlem2 10327 Lemma for ~ infpssr . (Co...
infpssrlem3 10328 Lemma for ~ infpssr . (Co...
infpssrlem4 10329 Lemma for ~ infpssr . (Co...
infpssrlem5 10330 Lemma for ~ infpssr . (Co...
infpssr 10331 Dedekind infinity implies ...
fin4en1 10332 Dedekind finite is a cardi...
ssfin4 10333 Dedekind finite sets have ...
domfin4 10334 A set dominated by a Dedek...
ominf4 10335 ` _om ` is Dedekind infini...
infpssALT 10336 Alternate proof of ~ infps...
isfin4-2 10337 Alternate definition of IV...
isfin4p1 10338 Alternate definition of IV...
fin23lem7 10339 Lemma for ~ isfin2-2 . Th...
fin23lem11 10340 Lemma for ~ isfin2-2 . (C...
fin2i2 10341 A II-finite set contains m...
isfin2-2 10342 ` Fin2 ` expressed in term...
ssfin2 10343 A subset of a II-finite se...
enfin2i 10344 II-finiteness is a cardina...
fin23lem24 10345 Lemma for ~ fin23 . In a ...
fincssdom 10346 In a chain of finite sets,...
fin23lem25 10347 Lemma for ~ fin23 . In a ...
fin23lem26 10348 Lemma for ~ fin23lem22 . ...
fin23lem23 10349 Lemma for ~ fin23lem22 . ...
fin23lem22 10350 Lemma for ~ fin23 but coul...
fin23lem27 10351 The mapping constructed in...
isfin3ds 10352 Property of a III-finite s...
ssfin3ds 10353 A subset of a III-finite s...
fin23lem12 10354 The beginning of the proof...
fin23lem13 10355 Lemma for ~ fin23 . Each ...
fin23lem14 10356 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10357 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10358 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10359 Lemma for ~ fin23 . The f...
fin23lem20 10360 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10361 Lemma for ~ fin23 . By ? ...
fin23lem21 10362 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10363 Lemma for ~ fin23 . The r...
fin23lem29 10364 Lemma for ~ fin23 . The r...
fin23lem30 10365 Lemma for ~ fin23 . The r...
fin23lem31 10366 Lemma for ~ fin23 . The r...
fin23lem32 10367 Lemma for ~ fin23 . Wrap ...
fin23lem33 10368 Lemma for ~ fin23 . Disch...
fin23lem34 10369 Lemma for ~ fin23 . Estab...
fin23lem35 10370 Lemma for ~ fin23 . Stric...
fin23lem36 10371 Lemma for ~ fin23 . Weak ...
fin23lem38 10372 Lemma for ~ fin23 . The c...
fin23lem39 10373 Lemma for ~ fin23 . Thus,...
fin23lem40 10374 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10375 Lemma for ~ fin23 . A set...
isf32lem1 10376 Lemma for ~ isfin3-2 . De...
isf32lem2 10377 Lemma for ~ isfin3-2 . No...
isf32lem3 10378 Lemma for ~ isfin3-2 . Be...
isf32lem4 10379 Lemma for ~ isfin3-2 . Be...
isf32lem5 10380 Lemma for ~ isfin3-2 . Th...
isf32lem6 10381 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10382 Lemma for ~ isfin3-2 . Di...
isf32lem8 10383 Lemma for ~ isfin3-2 . K ...
isf32lem9 10384 Lemma for ~ isfin3-2 . Co...
isf32lem10 10385 Lemma for isfin3-2 . Writ...
isf32lem11 10386 Lemma for ~ isfin3-2 . Re...
isf32lem12 10387 Lemma for ~ isfin3-2 . (C...
isfin32i 10388 One half of ~ isfin3-2 . ...
isf33lem 10389 Lemma for ~ isfin3-3 . (C...
isfin3-2 10390 Weakly Dedekind-infinite s...
isfin3-3 10391 Weakly Dedekind-infinite s...
fin33i 10392 Inference from ~ isfin3-3 ...
compsscnvlem 10393 Lemma for ~ compsscnv . (...
compsscnv 10394 Complementation on a power...
isf34lem1 10395 Lemma for ~ isfin3-4 . (C...
isf34lem2 10396 Lemma for ~ isfin3-4 . (C...
compssiso 10397 Complementation is an anti...
isf34lem3 10398 Lemma for ~ isfin3-4 . (C...
compss 10399 Express image under of the...
isf34lem4 10400 Lemma for ~ isfin3-4 . (C...
isf34lem5 10401 Lemma for ~ isfin3-4 . (C...
isf34lem7 10402 Lemma for ~ isfin3-4 . (C...
isf34lem6 10403 Lemma for ~ isfin3-4 . (C...
fin34i 10404 Inference from ~ isfin3-4 ...
isfin3-4 10405 Weakly Dedekind-infinite s...
fin11a 10406 Every I-finite set is Ia-f...
enfin1ai 10407 Ia-finiteness is a cardina...
isfin1-2 10408 A set is finite in the usu...
isfin1-3 10409 A set is I-finite iff ever...
isfin1-4 10410 A set is I-finite iff ever...
dffin1-5 10411 Compact quantifier-free ve...
fin23 10412 Every II-finite set (every...
fin34 10413 Every III-finite set is IV...
isfin5-2 10414 Alternate definition of V-...
fin45 10415 Every IV-finite set is V-f...
fin56 10416 Every V-finite set is VI-f...
fin17 10417 Every I-finite set is VII-...
fin67 10418 Every VI-finite set is VII...
isfin7-2 10419 A set is VII-finite iff it...
fin71num 10420 A well-orderable set is VI...
dffin7-2 10421 Class form of ~ isfin7-2 ....
dfacfin7 10422 Axiom of Choice equivalent...
fin1a2lem1 10423 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10424 Lemma for ~ fin1a2 . The ...
fin1a2lem3 10425 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10426 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10427 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10428 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10429 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10430 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10431 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10432 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10433 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10434 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10435 Lemma for ~ fin1a2 . (Con...
fin12 10436 Weak theorem which skips I...
fin1a2s 10437 An II-infinite set can hav...
fin1a2 10438 Every Ia-finite set is II-...
itunifval 10439 Function value of iterated...
itunifn 10440 Functionality of the itera...
ituni0 10441 A zero-fold iterated union...
itunisuc 10442 Successor iterated union. ...
itunitc1 10443 Each union iterate is a me...
itunitc 10444 The union of all union ite...
ituniiun 10445 Unwrap an iterated union f...
hsmexlem7 10446 Lemma for ~ hsmex . Prope...
hsmexlem8 10447 Lemma for ~ hsmex . Prope...
hsmexlem9 10448 Lemma for ~ hsmex . Prope...
hsmexlem1 10449 Lemma for ~ hsmex . Bound...
hsmexlem2 10450 Lemma for ~ hsmex . Bound...
hsmexlem3 10451 Lemma for ~ hsmex . Clear...
hsmexlem4 10452 Lemma for ~ hsmex . The c...
hsmexlem5 10453 Lemma for ~ hsmex . Combi...
hsmexlem6 10454 Lemma for ~ hsmex . (Cont...
hsmex 10455 The collection of heredita...
hsmex2 10456 The set of hereditary size...
hsmex3 10457 The set of hereditary size...
axcc2lem 10459 Lemma for ~ axcc2 . (Cont...
axcc2 10460 A possibly more useful ver...
axcc3 10461 A possibly more useful ver...
axcc4 10462 A version of ~ axcc3 that ...
acncc 10463 An ~ ax-cc equivalent: eve...
axcc4dom 10464 Relax the constraint on ~ ...
domtriomlem 10465 Lemma for ~ domtriom . (C...
domtriom 10466 Trichotomy of equinumerosi...
fin41 10467 Under countable choice, th...
dominf 10468 A nonempty set that is a s...
dcomex 10470 The Axiom of Dependent Cho...
axdc2lem 10471 Lemma for ~ axdc2 . We co...
axdc2 10472 An apparent strengthening ...
axdc3lem 10473 The class ` S ` of finite ...
axdc3lem2 10474 Lemma for ~ axdc3 . We ha...
axdc3lem3 10475 Simple substitution lemma ...
axdc3lem4 10476 Lemma for ~ axdc3 . We ha...
axdc3 10477 Dependent Choice. Axiom D...
axdc4lem 10478 Lemma for ~ axdc4 . (Cont...
axdc4 10479 A more general version of ...
axcclem 10480 Lemma for ~ axcc . (Contr...
axcc 10481 Although CC can be proven ...
zfac 10483 Axiom of Choice expressed ...
ac2 10484 Axiom of Choice equivalent...
ac3 10485 Axiom of Choice using abbr...
axac3 10487 This theorem asserts that ...
ackm 10488 A remarkable equivalent to...
axac2 10489 Derive ~ ax-ac2 from ~ ax-...
axac 10490 Derive ~ ax-ac from ~ ax-a...
axaci 10491 Apply a choice equivalent....
cardeqv 10492 All sets are well-orderabl...
numth3 10493 All sets are well-orderabl...
numth2 10494 Numeration theorem: any se...
numth 10495 Numeration theorem: every ...
ac7 10496 An Axiom of Choice equival...
ac7g 10497 An Axiom of Choice equival...
ac4 10498 Equivalent of Axiom of Cho...
ac4c 10499 Equivalent of Axiom of Cho...
ac5 10500 An Axiom of Choice equival...
ac5b 10501 Equivalent of Axiom of Cho...
ac6num 10502 A version of ~ ac6 which t...
ac6 10503 Equivalent of Axiom of Cho...
ac6c4 10504 Equivalent of Axiom of Cho...
ac6c5 10505 Equivalent of Axiom of Cho...
ac9 10506 An Axiom of Choice equival...
ac6s 10507 Equivalent of Axiom of Cho...
ac6n 10508 Equivalent of Axiom of Cho...
ac6s2 10509 Generalization of the Axio...
ac6s3 10510 Generalization of the Axio...
ac6sg 10511 ~ ac6s with sethood as ant...
ac6sf 10512 Version of ~ ac6 with boun...
ac6s4 10513 Generalization of the Axio...
ac6s5 10514 Generalization of the Axio...
ac8 10515 An Axiom of Choice equival...
ac9s 10516 An Axiom of Choice equival...
numthcor 10517 Any set is strictly domina...
weth 10518 Well-ordering theorem: any...
zorn2lem1 10519 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10520 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10521 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10522 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10523 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10524 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10525 Lemma for ~ zorn2 . (Cont...
zorn2g 10526 Zorn's Lemma of [Monk1] p....
zorng 10527 Zorn's Lemma. If the unio...
zornn0g 10528 Variant of Zorn's lemma ~ ...
zorn2 10529 Zorn's Lemma of [Monk1] p....
zorn 10530 Zorn's Lemma. If the unio...
zornn0 10531 Variant of Zorn's lemma ~ ...
ttukeylem1 10532 Lemma for ~ ttukey . Expa...
ttukeylem2 10533 Lemma for ~ ttukey . A pr...
ttukeylem3 10534 Lemma for ~ ttukey . (Con...
ttukeylem4 10535 Lemma for ~ ttukey . (Con...
ttukeylem5 10536 Lemma for ~ ttukey . The ...
ttukeylem6 10537 Lemma for ~ ttukey . (Con...
ttukeylem7 10538 Lemma for ~ ttukey . (Con...
ttukey2g 10539 The Teichmüller-Tukey...
ttukeyg 10540 The Teichmüller-Tukey...
ttukey 10541 The Teichmüller-Tukey...
axdclem 10542 Lemma for ~ axdc . (Contr...
axdclem2 10543 Lemma for ~ axdc . Using ...
axdc 10544 This theorem derives ~ ax-...
fodomg 10545 An onto function implies d...
fodom 10546 An onto function implies d...
dmct 10547 The domain of a countable ...
rnct 10548 The range of a countable s...
fodomb 10549 Equivalence of an onto map...
wdomac 10550 When assuming AC, weak and...
brdom3 10551 Equivalence to a dominance...
brdom5 10552 An equivalence to a domina...
brdom4 10553 An equivalence to a domina...
brdom7disj 10554 An equivalence to a domina...
brdom6disj 10555 An equivalence to a domina...
fin71ac 10556 Once we allow AC, the "str...
imadomg 10557 An image of a function und...
fimact 10558 The image by a function of...
fnrndomg 10559 The range of a function is...
fnct 10560 If the domain of a functio...
mptct 10561 A countable mapping set is...
iunfo 10562 Existence of an onto funct...
iundom2g 10563 An upper bound for the car...
iundomg 10564 An upper bound for the car...
iundom 10565 An upper bound for the car...
unidom 10566 An upper bound for the car...
uniimadom 10567 An upper bound for the car...
uniimadomf 10568 An upper bound for the car...
cardval 10569 The value of the cardinal ...
cardid 10570 Any set is equinumerous to...
cardidg 10571 Any set is equinumerous to...
cardidd 10572 Any set is equinumerous to...
cardf 10573 The cardinality function i...
carden 10574 Two sets are equinumerous ...
cardeq0 10575 Only the empty set has car...
unsnen 10576 Equinumerosity of a set wi...
carddom 10577 Two sets have the dominanc...
cardsdom 10578 Two sets have the strict d...
domtri 10579 Trichotomy law for dominan...
entric 10580 Trichotomy of equinumerosi...
entri2 10581 Trichotomy of dominance an...
entri3 10582 Trichotomy of dominance. ...
sdomsdomcard 10583 A set strictly dominates i...
canth3 10584 Cantor's theorem in terms ...
infxpidm 10585 Every infinite class is eq...
ondomon 10586 The class of ordinals domi...
cardmin 10587 The smallest ordinal that ...
ficard 10588 A set is finite iff its ca...
infinf 10589 Equivalence between two in...
unirnfdomd 10590 The union of the range of ...
konigthlem 10591 Lemma for ~ konigth . (Co...
konigth 10592 Konig's Theorem. If ` m (...
alephsucpw 10593 The power set of an aleph ...
aleph1 10594 The set exponentiation of ...
alephval2 10595 An alternate way to expres...
dominfac 10596 A nonempty set that is a s...
iunctb 10597 The countable union of cou...
unictb 10598 The countable union of cou...
infmap 10599 An exponentiation law for ...
alephadd 10600 The sum of two alephs is t...
alephmul 10601 The product of two alephs ...
alephexp1 10602 An exponentiation law for ...
alephsuc3 10603 An alternate representatio...
alephexp2 10604 An expression equinumerous...
alephreg 10605 A successor aleph is regul...
pwcfsdom 10606 A corollary of Konig's The...
cfpwsdom 10607 A corollary of Konig's The...
alephom 10608 From ~ canth2 , we know th...
smobeth 10609 The beth function is stric...
nd1 10610 A lemma for proving condit...
nd2 10611 A lemma for proving condit...
nd3 10612 A lemma for proving condit...
nd4 10613 A lemma for proving condit...
axextnd 10614 A version of the Axiom of ...
axrepndlem1 10615 Lemma for the Axiom of Rep...
axrepndlem2 10616 Lemma for the Axiom of Rep...
axrepnd 10617 A version of the Axiom of ...
axunndlem1 10618 Lemma for the Axiom of Uni...
axunnd 10619 A version of the Axiom of ...
axpowndlem1 10620 Lemma for the Axiom of Pow...
axpowndlem2 10621 Lemma for the Axiom of Pow...
axpowndlem3 10622 Lemma for the Axiom of Pow...
axpowndlem4 10623 Lemma for the Axiom of Pow...
axpownd 10624 A version of the Axiom of ...
axregndlem1 10625 Lemma for the Axiom of Reg...
axregndlem2 10626 Lemma for the Axiom of Reg...
axregnd 10627 A version of the Axiom of ...
axinfndlem1 10628 Lemma for the Axiom of Inf...
axinfnd 10629 A version of the Axiom of ...
axacndlem1 10630 Lemma for the Axiom of Cho...
axacndlem2 10631 Lemma for the Axiom of Cho...
axacndlem3 10632 Lemma for the Axiom of Cho...
axacndlem4 10633 Lemma for the Axiom of Cho...
axacndlem5 10634 Lemma for the Axiom of Cho...
axacnd 10635 A version of the Axiom of ...
zfcndext 10636 Axiom of Extensionality ~ ...
zfcndrep 10637 Axiom of Replacement ~ ax-...
zfcndun 10638 Axiom of Union ~ ax-un , r...
zfcndpow 10639 Axiom of Power Sets ~ ax-p...
zfcndreg 10640 Axiom of Regularity ~ ax-r...
zfcndinf 10641 Axiom of Infinity ~ ax-inf...
zfcndac 10642 Axiom of Choice ~ ax-ac , ...
elgch 10645 Elementhood in the collect...
fingch 10646 A finite set is a GCH-set....
gchi 10647 The only GCH-sets which ha...
gchen1 10648 If ` A <_ B < ~P A ` , and...
gchen2 10649 If ` A < B <_ ~P A ` , and...
gchor 10650 If ` A <_ B <_ ~P A ` , an...
engch 10651 The property of being a GC...
gchdomtri 10652 Under certain conditions, ...
fpwwe2cbv 10653 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10654 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10655 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10656 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10657 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10658 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10659 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10660 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10661 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10662 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10663 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10664 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10665 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10666 Given any function ` F ` f...
fpwwecbv 10667 Lemma for ~ fpwwe . (Cont...
fpwwelem 10668 Lemma for ~ fpwwe . (Cont...
fpwwe 10669 Given any function ` F ` f...
canth4 10670 An "effective" form of Can...
canthnumlem 10671 Lemma for ~ canthnum . (C...
canthnum 10672 The set of well-orderable ...
canthwelem 10673 Lemma for ~ canthwe . (Co...
canthwe 10674 The set of well-orders of ...
canthp1lem1 10675 Lemma for ~ canthp1 . (Co...
canthp1lem2 10676 Lemma for ~ canthp1 . (Co...
canthp1 10677 A slightly stronger form o...
finngch 10678 The exclusion of finite se...
gchdju1 10679 An infinite GCH-set is ide...
gchinf 10680 An infinite GCH-set is Ded...
pwfseqlem1 10681 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10682 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10683 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10684 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10685 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10686 Lemma for ~ pwfseq . Alth...
pwfseq 10687 The powerset of a Dedekind...
pwxpndom2 10688 The powerset of a Dedekind...
pwxpndom 10689 The powerset of a Dedekind...
pwdjundom 10690 The powerset of a Dedekind...
gchdjuidm 10691 An infinite GCH-set is ide...
gchxpidm 10692 An infinite GCH-set is ide...
gchpwdom 10693 A relationship between dom...
gchaleph 10694 If ` ( aleph `` A ) ` is a...
gchaleph2 10695 If ` ( aleph `` A ) ` and ...
hargch 10696 If ` A + ~~ ~P A ` , then ...
alephgch 10697 If ` ( aleph `` suc A ) ` ...
gch2 10698 It is sufficient to requir...
gch3 10699 An equivalent formulation ...
gch-kn 10700 The equivalence of two ver...
gchaclem 10701 Lemma for ~ gchac (obsolet...
gchhar 10702 A "local" form of ~ gchac ...
gchacg 10703 A "local" form of ~ gchac ...
gchac 10704 The Generalized Continuum ...
elwina 10709 Conditions of weak inacces...
elina 10710 Conditions of strong inacc...
winaon 10711 A weakly inaccessible card...
inawinalem 10712 Lemma for ~ inawina . (Co...
inawina 10713 Every strongly inaccessibl...
omina 10714 ` _om ` is a strongly inac...
winacard 10715 A weakly inaccessible card...
winainflem 10716 A weakly inaccessible card...
winainf 10717 A weakly inaccessible card...
winalim 10718 A weakly inaccessible card...
winalim2 10719 A nontrivial weakly inacce...
winafp 10720 A nontrivial weakly inacce...
winafpi 10721 This theorem, which states...
gchina 10722 Assuming the GCH, weakly a...
iswun 10727 Properties of a weak unive...
wuntr 10728 A weak universe is transit...
wununi 10729 A weak universe is closed ...
wunpw 10730 A weak universe is closed ...
wunelss 10731 The elements of a weak uni...
wunpr 10732 A weak universe is closed ...
wunun 10733 A weak universe is closed ...
wuntp 10734 A weak universe is closed ...
wunss 10735 A weak universe is closed ...
wunin 10736 A weak universe is closed ...
wundif 10737 A weak universe is closed ...
wunint 10738 A weak universe is closed ...
wunsn 10739 A weak universe is closed ...
wunsuc 10740 A weak universe is closed ...
wun0 10741 A weak universe contains t...
wunr1om 10742 A weak universe is infinit...
wunom 10743 A weak universe contains a...
wunfi 10744 A weak universe contains a...
wunop 10745 A weak universe is closed ...
wunot 10746 A weak universe is closed ...
wunxp 10747 A weak universe is closed ...
wunpm 10748 A weak universe is closed ...
wunmap 10749 A weak universe is closed ...
wunf 10750 A weak universe is closed ...
wundm 10751 A weak universe is closed ...
wunrn 10752 A weak universe is closed ...
wuncnv 10753 A weak universe is closed ...
wunres 10754 A weak universe is closed ...
wunfv 10755 A weak universe is closed ...
wunco 10756 A weak universe is closed ...
wuntpos 10757 A weak universe is closed ...
intwun 10758 The intersection of a coll...
r1limwun 10759 Each limit stage in the cu...
r1wunlim 10760 The weak universes in the ...
wunex2 10761 Construct a weak universe ...
wunex 10762 Construct a weak universe ...
uniwun 10763 Every set is contained in ...
wunex3 10764 Construct a weak universe ...
wuncval 10765 Value of the weak universe...
wuncid 10766 The weak universe closure ...
wunccl 10767 The weak universe closure ...
wuncss 10768 The weak universe closure ...
wuncidm 10769 The weak universe closure ...
wuncval2 10770 Our earlier expression for...
eltskg 10773 Properties of a Tarski cla...
eltsk2g 10774 Properties of a Tarski cla...
tskpwss 10775 First axiom of a Tarski cl...
tskpw 10776 Second axiom of a Tarski c...
tsken 10777 Third axiom of a Tarski cl...
0tsk 10778 The empty set is a (transi...
tsksdom 10779 An element of a Tarski cla...
tskssel 10780 A part of a Tarski class s...
tskss 10781 The subsets of an element ...
tskin 10782 The intersection of two el...
tsksn 10783 A singleton of an element ...
tsktrss 10784 A transitive element of a ...
tsksuc 10785 If an element of a Tarski ...
tsk0 10786 A nonempty Tarski class co...
tsk1 10787 One is an element of a non...
tsk2 10788 Two is an element of a non...
2domtsk 10789 If a Tarski class is not e...
tskr1om 10790 A nonempty Tarski class is...
tskr1om2 10791 A nonempty Tarski class co...
tskinf 10792 A nonempty Tarski class is...
tskpr 10793 If ` A ` and ` B ` are mem...
tskop 10794 If ` A ` and ` B ` are mem...
tskxpss 10795 A Cartesian product of two...
tskwe2 10796 A Tarski class is well-ord...
inttsk 10797 The intersection of a coll...
inar1 10798 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10799 Alternate proof of ~ r1om ...
rankcf 10800 Any set must be at least a...
inatsk 10801 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10802 The set of hereditarily fi...
tskord 10803 A Tarski class contains al...
tskcard 10804 An even more direct relati...
r1tskina 10805 There is a direct relation...
tskuni 10806 The union of an element of...
tskwun 10807 A nonempty transitive Tars...
tskint 10808 The intersection of an ele...
tskun 10809 The union of two elements ...
tskxp 10810 The Cartesian product of t...
tskmap 10811 Set exponentiation is an e...
tskurn 10812 A transitive Tarski class ...
elgrug 10815 Properties of a Grothendie...
grutr 10816 A Grothendieck universe is...
gruelss 10817 A Grothendieck universe is...
grupw 10818 A Grothendieck universe co...
gruss 10819 Any subset of an element o...
grupr 10820 A Grothendieck universe co...
gruurn 10821 A Grothendieck universe co...
gruiun 10822 If ` B ( x ) ` is a family...
gruuni 10823 A Grothendieck universe co...
grurn 10824 A Grothendieck universe co...
gruima 10825 A Grothendieck universe co...
gruel 10826 Any element of an element ...
grusn 10827 A Grothendieck universe co...
gruop 10828 A Grothendieck universe co...
gruun 10829 A Grothendieck universe co...
gruxp 10830 A Grothendieck universe co...
grumap 10831 A Grothendieck universe co...
gruixp 10832 A Grothendieck universe co...
gruiin 10833 A Grothendieck universe co...
gruf 10834 A Grothendieck universe co...
gruen 10835 A Grothendieck universe co...
gruwun 10836 A nonempty Grothendieck un...
intgru 10837 The intersection of a fami...
ingru 10838 The intersection of a univ...
wfgru 10839 The wellfounded part of a ...
grudomon 10840 Each ordinal that is compa...
gruina 10841 If a Grothendieck universe...
grur1a 10842 A characterization of Grot...
grur1 10843 A characterization of Grot...
grutsk1 10844 Grothendieck universes are...
grutsk 10845 Grothendieck universes are...
axgroth5 10847 The Tarski-Grothendieck ax...
axgroth2 10848 Alternate version of the T...
grothpw 10849 Derive the Axiom of Power ...
grothpwex 10850 Derive the Axiom of Power ...
axgroth6 10851 The Tarski-Grothendieck ax...
grothomex 10852 The Tarski-Grothendieck Ax...
grothac 10853 The Tarski-Grothendieck Ax...
axgroth3 10854 Alternate version of the T...
axgroth4 10855 Alternate version of the T...
grothprimlem 10856 Lemma for ~ grothprim . E...
grothprim 10857 The Tarski-Grothendieck Ax...
grothtsk 10858 The Tarski-Grothendieck Ax...
inaprc 10859 An equivalent to the Tarsk...
tskmval 10862 Value of our tarski map. ...
tskmid 10863 The set ` A ` is an elemen...
tskmcl 10864 A Tarski class that contai...
sstskm 10865 Being a part of ` ( tarski...
eltskm 10866 Belonging to ` ( tarskiMap...
elni 10899 Membership in the class of...
elni2 10900 Membership in the class of...
pinn 10901 A positive integer is a na...
pion 10902 A positive integer is an o...
piord 10903 A positive integer is ordi...
niex 10904 The class of positive inte...
0npi 10905 The empty set is not a pos...
1pi 10906 Ordinal 'one' is a positiv...
addpiord 10907 Positive integer addition ...
mulpiord 10908 Positive integer multiplic...
mulidpi 10909 1 is an identity element f...
ltpiord 10910 Positive integer 'less tha...
ltsopi 10911 Positive integer 'less tha...
ltrelpi 10912 Positive integer 'less tha...
dmaddpi 10913 Domain of addition on posi...
dmmulpi 10914 Domain of multiplication o...
addclpi 10915 Closure of addition of pos...
mulclpi 10916 Closure of multiplication ...
addcompi 10917 Addition of positive integ...
addasspi 10918 Addition of positive integ...
mulcompi 10919 Multiplication of positive...
mulasspi 10920 Multiplication of positive...
distrpi 10921 Multiplication of positive...
addcanpi 10922 Addition cancellation law ...
mulcanpi 10923 Multiplication cancellatio...
addnidpi 10924 There is no identity eleme...
ltexpi 10925 Ordering on positive integ...
ltapi 10926 Ordering property of addit...
ltmpi 10927 Ordering property of multi...
1lt2pi 10928 One is less than two (one ...
nlt1pi 10929 No positive integer is les...
indpi 10930 Principle of Finite Induct...
enqbreq 10942 Equivalence relation for p...
enqbreq2 10943 Equivalence relation for p...
enqer 10944 The equivalence relation f...
enqex 10945 The equivalence relation f...
nqex 10946 The class of positive frac...
0nnq 10947 The empty set is not a pos...
elpqn 10948 Each positive fraction is ...
ltrelnq 10949 Positive fraction 'less th...
pinq 10950 The representatives of pos...
1nq 10951 The positive fraction 'one...
nqereu 10952 There is a unique element ...
nqerf 10953 Corollary of ~ nqereu : th...
nqercl 10954 Corollary of ~ nqereu : cl...
nqerrel 10955 Any member of ` ( N. X. N....
nqerid 10956 Corollary of ~ nqereu : th...
enqeq 10957 Corollary of ~ nqereu : if...
nqereq 10958 The function ` /Q ` acts a...
addpipq2 10959 Addition of positive fract...
addpipq 10960 Addition of positive fract...
addpqnq 10961 Addition of positive fract...
mulpipq2 10962 Multiplication of positive...
mulpipq 10963 Multiplication of positive...
mulpqnq 10964 Multiplication of positive...
ordpipq 10965 Ordering of positive fract...
ordpinq 10966 Ordering of positive fract...
addpqf 10967 Closure of addition on pos...
addclnq 10968 Closure of addition on pos...
mulpqf 10969 Closure of multiplication ...
mulclnq 10970 Closure of multiplication ...
addnqf 10971 Domain of addition on posi...
mulnqf 10972 Domain of multiplication o...
addcompq 10973 Addition of positive fract...
addcomnq 10974 Addition of positive fract...
mulcompq 10975 Multiplication of positive...
mulcomnq 10976 Multiplication of positive...
adderpqlem 10977 Lemma for ~ adderpq . (Co...
mulerpqlem 10978 Lemma for ~ mulerpq . (Co...
adderpq 10979 Addition is compatible wit...
mulerpq 10980 Multiplication is compatib...
addassnq 10981 Addition of positive fract...
mulassnq 10982 Multiplication of positive...
mulcanenq 10983 Lemma for distributive law...
distrnq 10984 Multiplication of positive...
1nqenq 10985 The equivalence class of r...
mulidnq 10986 Multiplication identity el...
recmulnq 10987 Relationship between recip...
recidnq 10988 A positive fraction times ...
recclnq 10989 Closure law for positive f...
recrecnq 10990 Reciprocal of reciprocal o...
dmrecnq 10991 Domain of reciprocal on po...
ltsonq 10992 'Less than' is a strict or...
lterpq 10993 Compatibility of ordering ...
ltanq 10994 Ordering property of addit...
ltmnq 10995 Ordering property of multi...
1lt2nq 10996 One is less than two (one ...
ltaddnq 10997 The sum of two fractions i...
ltexnq 10998 Ordering on positive fract...
halfnq 10999 One-half of any positive f...
nsmallnq 11000 The is no smallest positiv...
ltbtwnnq 11001 There exists a number betw...
ltrnq 11002 Ordering property of recip...
archnq 11003 For any fraction, there is...
npex 11009 The class of positive real...
elnp 11010 Membership in positive rea...
elnpi 11011 Membership in positive rea...
prn0 11012 A positive real is not emp...
prpssnq 11013 A positive real is a subse...
elprnq 11014 A positive real is a set o...
0npr 11015 The empty set is not a pos...
prcdnq 11016 A positive real is closed ...
prub 11017 A positive fraction not in...
prnmax 11018 A positive real has no lar...
npomex 11019 A simplifying observation,...
prnmadd 11020 A positive real has no lar...
ltrelpr 11021 Positive real 'less than' ...
genpv 11022 Value of general operation...
genpelv 11023 Membership in value of gen...
genpprecl 11024 Pre-closure law for genera...
genpdm 11025 Domain of general operatio...
genpn0 11026 The result of an operation...
genpss 11027 The result of an operation...
genpnnp 11028 The result of an operation...
genpcd 11029 Downward closure of an ope...
genpnmax 11030 An operation on positive r...
genpcl 11031 Closure of an operation on...
genpass 11032 Associativity of an operat...
plpv 11033 Value of addition on posit...
mpv 11034 Value of multiplication on...
dmplp 11035 Domain of addition on posi...
dmmp 11036 Domain of multiplication o...
nqpr 11037 The canonical embedding of...
1pr 11038 The positive real number '...
addclprlem1 11039 Lemma to prove downward cl...
addclprlem2 11040 Lemma to prove downward cl...
addclpr 11041 Closure of addition on pos...
mulclprlem 11042 Lemma to prove downward cl...
mulclpr 11043 Closure of multiplication ...
addcompr 11044 Addition of positive reals...
addasspr 11045 Addition of positive reals...
mulcompr 11046 Multiplication of positive...
mulasspr 11047 Multiplication of positive...
distrlem1pr 11048 Lemma for distributive law...
distrlem4pr 11049 Lemma for distributive law...
distrlem5pr 11050 Lemma for distributive law...
distrpr 11051 Multiplication of positive...
1idpr 11052 1 is an identity element f...
ltprord 11053 Positive real 'less than' ...
psslinpr 11054 Proper subset is a linear ...
ltsopr 11055 Positive real 'less than' ...
prlem934 11056 Lemma 9-3.4 of [Gleason] p...
ltaddpr 11057 The sum of two positive re...
ltaddpr2 11058 The sum of two positive re...
ltexprlem1 11059 Lemma for Proposition 9-3....
ltexprlem2 11060 Lemma for Proposition 9-3....
ltexprlem3 11061 Lemma for Proposition 9-3....
ltexprlem4 11062 Lemma for Proposition 9-3....
ltexprlem5 11063 Lemma for Proposition 9-3....
ltexprlem6 11064 Lemma for Proposition 9-3....
ltexprlem7 11065 Lemma for Proposition 9-3....
ltexpri 11066 Proposition 9-3.5(iv) of [...
ltaprlem 11067 Lemma for Proposition 9-3....
ltapr 11068 Ordering property of addit...
addcanpr 11069 Addition cancellation law ...
prlem936 11070 Lemma 9-3.6 of [Gleason] p...
reclem2pr 11071 Lemma for Proposition 9-3....
reclem3pr 11072 Lemma for Proposition 9-3....
reclem4pr 11073 Lemma for Proposition 9-3....
recexpr 11074 The reciprocal of a positi...
suplem1pr 11075 The union of a nonempty, b...
suplem2pr 11076 The union of a set of posi...
supexpr 11077 The union of a nonempty, b...
enrer 11086 The equivalence relation f...
nrex1 11087 The class of signed reals ...
enrbreq 11088 Equivalence relation for s...
enreceq 11089 Equivalence class equality...
enrex 11090 The equivalence relation f...
ltrelsr 11091 Signed real 'less than' is...
addcmpblnr 11092 Lemma showing compatibilit...
mulcmpblnrlem 11093 Lemma used in lemma showin...
mulcmpblnr 11094 Lemma showing compatibilit...
prsrlem1 11095 Decomposing signed reals i...
addsrmo 11096 There is at most one resul...
mulsrmo 11097 There is at most one resul...
addsrpr 11098 Addition of signed reals i...
mulsrpr 11099 Multiplication of signed r...
ltsrpr 11100 Ordering of signed reals i...
gt0srpr 11101 Greater than zero in terms...
0nsr 11102 The empty set is not a sig...
0r 11103 The constant ` 0R ` is a s...
1sr 11104 The constant ` 1R ` is a s...
m1r 11105 The constant ` -1R ` is a ...
addclsr 11106 Closure of addition on sig...
mulclsr 11107 Closure of multiplication ...
dmaddsr 11108 Domain of addition on sign...
dmmulsr 11109 Domain of multiplication o...
addcomsr 11110 Addition of signed reals i...
addasssr 11111 Addition of signed reals i...
mulcomsr 11112 Multiplication of signed r...
mulasssr 11113 Multiplication of signed r...
distrsr 11114 Multiplication of signed r...
m1p1sr 11115 Minus one plus one is zero...
m1m1sr 11116 Minus one times minus one ...
ltsosr 11117 Signed real 'less than' is...
0lt1sr 11118 0 is less than 1 for signe...
1ne0sr 11119 1 and 0 are distinct for s...
0idsr 11120 The signed real number 0 i...
1idsr 11121 1 is an identity element f...
00sr 11122 A signed real times 0 is 0...
ltasr 11123 Ordering property of addit...
pn0sr 11124 A signed real plus its neg...
negexsr 11125 Existence of negative sign...
recexsrlem 11126 The reciprocal of a positi...
addgt0sr 11127 The sum of two positive si...
mulgt0sr 11128 The product of two positiv...
sqgt0sr 11129 The square of a nonzero si...
recexsr 11130 The reciprocal of a nonzer...
mappsrpr 11131 Mapping from positive sign...
ltpsrpr 11132 Mapping of order from posi...
map2psrpr 11133 Equivalence for positive s...
supsrlem 11134 Lemma for supremum theorem...
supsr 11135 A nonempty, bounded set of...
opelcn 11152 Ordered pair membership in...
opelreal 11153 Ordered pair membership in...
elreal 11154 Membership in class of rea...
elreal2 11155 Ordered pair membership in...
0ncn 11156 The empty set is not a com...
ltrelre 11157 'Less than' is a relation ...
addcnsr 11158 Addition of complex number...
mulcnsr 11159 Multiplication of complex ...
eqresr 11160 Equality of real numbers i...
addresr 11161 Addition of real numbers i...
mulresr 11162 Multiplication of real num...
ltresr 11163 Ordering of real subset of...
ltresr2 11164 Ordering of real subset of...
dfcnqs 11165 Technical trick to permit ...
addcnsrec 11166 Technical trick to permit ...
mulcnsrec 11167 Technical trick to permit ...
axaddf 11168 Addition is an operation o...
axmulf 11169 Multiplication is an opera...
axcnex 11170 The complex numbers form a...
axresscn 11171 The real numbers are a sub...
ax1cn 11172 1 is a complex number. Ax...
axicn 11173 ` _i ` is a complex number...
axaddcl 11174 Closure law for addition o...
axaddrcl 11175 Closure law for addition i...
axmulcl 11176 Closure law for multiplica...
axmulrcl 11177 Closure law for multiplica...
axmulcom 11178 Multiplication of complex ...
axaddass 11179 Addition of complex number...
axmulass 11180 Multiplication of complex ...
axdistr 11181 Distributive law for compl...
axi2m1 11182 i-squared equals -1 (expre...
ax1ne0 11183 1 and 0 are distinct. Axi...
ax1rid 11184 ` 1 ` is an identity eleme...
axrnegex 11185 Existence of negative of r...
axrrecex 11186 Existence of reciprocal of...
axcnre 11187 A complex number can be ex...
axpre-lttri 11188 Ordering on reals satisfie...
axpre-lttrn 11189 Ordering on reals is trans...
axpre-ltadd 11190 Ordering property of addit...
axpre-mulgt0 11191 The product of two positiv...
axpre-sup 11192 A nonempty, bounded-above ...
wuncn 11193 A weak universe containing...
cnex 11219 Alias for ~ ax-cnex . See...
addcl 11220 Alias for ~ ax-addcl , for...
readdcl 11221 Alias for ~ ax-addrcl , fo...
mulcl 11222 Alias for ~ ax-mulcl , for...
remulcl 11223 Alias for ~ ax-mulrcl , fo...
mulcom 11224 Alias for ~ ax-mulcom , fo...
addass 11225 Alias for ~ ax-addass , fo...
mulass 11226 Alias for ~ ax-mulass , fo...
adddi 11227 Alias for ~ ax-distr , for...
recn 11228 A real number is a complex...
reex 11229 The real numbers form a se...
reelprrecn 11230 Reals are a subset of the ...
cnelprrecn 11231 Complex numbers are a subs...
mpoaddf 11232 Addition is an operation o...
mpomulf 11233 Multiplication is an opera...
elimne0 11234 Hypothesis for weak deduct...
adddir 11235 Distributive law for compl...
0cn 11236 Zero is a complex number. ...
0cnd 11237 Zero is a complex number, ...
c0ex 11238 Zero is a set. (Contribut...
1cnd 11239 One is a complex number, d...
1ex 11240 One is a set. (Contribute...
cnre 11241 Alias for ~ ax-cnre , for ...
mulrid 11242 The number 1 is an identit...
mullid 11243 Identity law for multiplic...
1re 11244 The number 1 is real. Thi...
1red 11245 The number 1 is real, dedu...
0re 11246 The number 0 is real. Rem...
0red 11247 The number 0 is real, dedu...
mulridi 11248 Identity law for multiplic...
mullidi 11249 Identity law for multiplic...
addcli 11250 Closure law for addition. ...
mulcli 11251 Closure law for multiplica...
mulcomi 11252 Commutative law for multip...
mulcomli 11253 Commutative law for multip...
addassi 11254 Associative law for additi...
mulassi 11255 Associative law for multip...
adddii 11256 Distributive law (left-dis...
adddiri 11257 Distributive law (right-di...
recni 11258 A real number is a complex...
readdcli 11259 Closure law for addition o...
remulcli 11260 Closure law for multiplica...
mulridd 11261 Identity law for multiplic...
mullidd 11262 Identity law for multiplic...
addcld 11263 Closure law for addition. ...
mulcld 11264 Closure law for multiplica...
mulcomd 11265 Commutative law for multip...
addassd 11266 Associative law for additi...
mulassd 11267 Associative law for multip...
adddid 11268 Distributive law (left-dis...
adddird 11269 Distributive law (right-di...
adddirp1d 11270 Distributive law, plus 1 v...
joinlmuladdmuld 11271 Join AB+CB into (A+C) on L...
recnd 11272 Deduction from real number...
readdcld 11273 Closure law for addition o...
remulcld 11274 Closure law for multiplica...
pnfnre 11285 Plus infinity is not a rea...
pnfnre2 11286 Plus infinity is not a rea...
mnfnre 11287 Minus infinity is not a re...
ressxr 11288 The standard reals are a s...
rexpssxrxp 11289 The Cartesian product of s...
rexr 11290 A standard real is an exte...
0xr 11291 Zero is an extended real. ...
renepnf 11292 No (finite) real equals pl...
renemnf 11293 No real equals minus infin...
rexrd 11294 A standard real is an exte...
renepnfd 11295 No (finite) real equals pl...
renemnfd 11296 No real equals minus infin...
pnfex 11297 Plus infinity exists. (Co...
pnfxr 11298 Plus infinity belongs to t...
pnfnemnf 11299 Plus and minus infinity ar...
mnfnepnf 11300 Minus and plus infinity ar...
mnfxr 11301 Minus infinity belongs to ...
rexri 11302 A standard real is an exte...
1xr 11303 ` 1 ` is an extended real ...
renfdisj 11304 The reals and the infiniti...
ltrelxr 11305 "Less than" is a relation ...
ltrel 11306 "Less than" is a relation....
lerelxr 11307 "Less than or equal to" is...
lerel 11308 "Less than or equal to" is...
xrlenlt 11309 "Less than or equal to" ex...
xrlenltd 11310 "Less than or equal to" ex...
xrltnle 11311 "Less than" expressed in t...
xrnltled 11312 "Not less than" implies "l...
ssxr 11313 The three (non-exclusive) ...
ltxrlt 11314 The standard less-than ` <...
axlttri 11315 Ordering on reals satisfie...
axlttrn 11316 Ordering on reals is trans...
axltadd 11317 Ordering property of addit...
axmulgt0 11318 The product of two positiv...
axsup 11319 A nonempty, bounded-above ...
lttr 11320 Alias for ~ axlttrn , for ...
mulgt0 11321 The product of two positiv...
lenlt 11322 'Less than or equal to' ex...
ltnle 11323 'Less than' expressed in t...
ltso 11324 'Less than' is a strict or...
gtso 11325 'Greater than' is a strict...
lttri2 11326 Consequence of trichotomy....
lttri3 11327 Trichotomy law for 'less t...
lttri4 11328 Trichotomy law for 'less t...
letri3 11329 Trichotomy law. (Contribu...
leloe 11330 'Less than or equal to' ex...
eqlelt 11331 Equality in terms of 'less...
ltle 11332 'Less than' implies 'less ...
leltne 11333 'Less than or equal to' im...
lelttr 11334 Transitive law. (Contribu...
leltletr 11335 Transitive law, weaker for...
ltletr 11336 Transitive law. (Contribu...
ltleletr 11337 Transitive law, weaker for...
letr 11338 Transitive law. (Contribu...
ltnr 11339 'Less than' is irreflexive...
leid 11340 'Less than or equal to' is...
ltne 11341 'Less than' implies not eq...
ltnsym 11342 'Less than' is not symmetr...
ltnsym2 11343 'Less than' is antisymmetr...
letric 11344 Trichotomy law. (Contribu...
ltlen 11345 'Less than' expressed in t...
eqle 11346 Equality implies 'less tha...
eqled 11347 Equality implies 'less tha...
ltadd2 11348 Addition to both sides of ...
ne0gt0 11349 A nonzero nonnegative numb...
lecasei 11350 Ordering elimination by ca...
lelttric 11351 Trichotomy law. (Contribu...
ltlecasei 11352 Ordering elimination by ca...
ltnri 11353 'Less than' is irreflexive...
eqlei 11354 Equality implies 'less tha...
eqlei2 11355 Equality implies 'less tha...
gtneii 11356 'Less than' implies not eq...
ltneii 11357 'Greater than' implies not...
lttri2i 11358 Consequence of trichotomy....
lttri3i 11359 Consequence of trichotomy....
letri3i 11360 Consequence of trichotomy....
leloei 11361 'Less than or equal to' in...
ltleni 11362 'Less than' expressed in t...
ltnsymi 11363 'Less than' is not symmetr...
lenlti 11364 'Less than or equal to' in...
ltnlei 11365 'Less than' in terms of 'l...
ltlei 11366 'Less than' implies 'less ...
ltleii 11367 'Less than' implies 'less ...
ltnei 11368 'Less than' implies not eq...
letrii 11369 Trichotomy law for 'less t...
lttri 11370 'Less than' is transitive....
lelttri 11371 'Less than or equal to', '...
ltletri 11372 'Less than', 'less than or...
letri 11373 'Less than or equal to' is...
le2tri3i 11374 Extended trichotomy law fo...
ltadd2i 11375 Addition to both sides of ...
mulgt0i 11376 The product of two positiv...
mulgt0ii 11377 The product of two positiv...
ltnrd 11378 'Less than' is irreflexive...
gtned 11379 'Less than' implies not eq...
ltned 11380 'Greater than' implies not...
ne0gt0d 11381 A nonzero nonnegative numb...
lttrid 11382 Ordering on reals satisfie...
lttri2d 11383 Consequence of trichotomy....
lttri3d 11384 Consequence of trichotomy....
lttri4d 11385 Trichotomy law for 'less t...
letri3d 11386 Consequence of trichotomy....
leloed 11387 'Less than or equal to' in...
eqleltd 11388 Equality in terms of 'less...
ltlend 11389 'Less than' expressed in t...
lenltd 11390 'Less than or equal to' in...
ltnled 11391 'Less than' in terms of 'l...
ltled 11392 'Less than' implies 'less ...
ltnsymd 11393 'Less than' implies 'less ...
nltled 11394 'Not less than ' implies '...
lensymd 11395 'Less than or equal to' im...
letrid 11396 Trichotomy law for 'less t...
leltned 11397 'Less than or equal to' im...
leneltd 11398 'Less than or equal to' an...
mulgt0d 11399 The product of two positiv...
ltadd2d 11400 Addition to both sides of ...
letrd 11401 Transitive law deduction f...
lelttrd 11402 Transitive law deduction f...
ltadd2dd 11403 Addition to both sides of ...
ltletrd 11404 Transitive law deduction f...
lttrd 11405 Transitive law deduction f...
lelttrdi 11406 If a number is less than a...
dedekind 11407 The Dedekind cut theorem. ...
dedekindle 11408 The Dedekind cut theorem, ...
mul12 11409 Commutative/associative la...
mul32 11410 Commutative/associative la...
mul31 11411 Commutative/associative la...
mul4 11412 Rearrangement of 4 factors...
mul4r 11413 Rearrangement of 4 factors...
muladd11 11414 A simple product of sums e...
1p1times 11415 Two times a number. (Cont...
peano2cn 11416 A theorem for complex numb...
peano2re 11417 A theorem for reals analog...
readdcan 11418 Cancellation law for addit...
00id 11419 ` 0 ` is its own additive ...
mul02lem1 11420 Lemma for ~ mul02 . If an...
mul02lem2 11421 Lemma for ~ mul02 . Zero ...
mul02 11422 Multiplication by ` 0 ` . ...
mul01 11423 Multiplication by ` 0 ` . ...
addrid 11424 ` 0 ` is an additive ident...
cnegex 11425 Existence of the negative ...
cnegex2 11426 Existence of a left invers...
addlid 11427 ` 0 ` is a left identity f...
addcan 11428 Cancellation law for addit...
addcan2 11429 Cancellation law for addit...
addcom 11430 Addition commutes. This u...
addridi 11431 ` 0 ` is an additive ident...
addlidi 11432 ` 0 ` is a left identity f...
mul02i 11433 Multiplication by 0. Theo...
mul01i 11434 Multiplication by ` 0 ` . ...
addcomi 11435 Addition commutes. Based ...
addcomli 11436 Addition commutes. (Contr...
addcani 11437 Cancellation law for addit...
addcan2i 11438 Cancellation law for addit...
mul12i 11439 Commutative/associative la...
mul32i 11440 Commutative/associative la...
mul4i 11441 Rearrangement of 4 factors...
mul02d 11442 Multiplication by 0. Theo...
mul01d 11443 Multiplication by ` 0 ` . ...
addridd 11444 ` 0 ` is an additive ident...
addlidd 11445 ` 0 ` is a left identity f...
addcomd 11446 Addition commutes. Based ...
addcand 11447 Cancellation law for addit...
addcan2d 11448 Cancellation law for addit...
addcanad 11449 Cancelling a term on the l...
addcan2ad 11450 Cancelling a term on the r...
addneintrd 11451 Introducing a term on the ...
addneintr2d 11452 Introducing a term on the ...
mul12d 11453 Commutative/associative la...
mul32d 11454 Commutative/associative la...
mul31d 11455 Commutative/associative la...
mul4d 11456 Rearrangement of 4 factors...
muladd11r 11457 A simple product of sums e...
comraddd 11458 Commute RHS addition, in d...
ltaddneg 11459 Adding a negative number t...
ltaddnegr 11460 Adding a negative number t...
add12 11461 Commutative/associative la...
add32 11462 Commutative/associative la...
add32r 11463 Commutative/associative la...
add4 11464 Rearrangement of 4 terms i...
add42 11465 Rearrangement of 4 terms i...
add12i 11466 Commutative/associative la...
add32i 11467 Commutative/associative la...
add4i 11468 Rearrangement of 4 terms i...
add42i 11469 Rearrangement of 4 terms i...
add12d 11470 Commutative/associative la...
add32d 11471 Commutative/associative la...
add4d 11472 Rearrangement of 4 terms i...
add42d 11473 Rearrangement of 4 terms i...
0cnALT 11478 Alternate proof of ~ 0cn w...
0cnALT2 11479 Alternate proof of ~ 0cnAL...
negeu 11480 Existential uniqueness of ...
subval 11481 Value of subtraction, whic...
negeq 11482 Equality theorem for negat...
negeqi 11483 Equality inference for neg...
negeqd 11484 Equality deduction for neg...
nfnegd 11485 Deduction version of ~ nfn...
nfneg 11486 Bound-variable hypothesis ...
csbnegg 11487 Move class substitution in...
negex 11488 A negative is a set. (Con...
subcl 11489 Closure law for subtractio...
negcl 11490 Closure law for negative. ...
negicn 11491 ` -u _i ` is a complex num...
subf 11492 Subtraction is an operatio...
subadd 11493 Relationship between subtr...
subadd2 11494 Relationship between subtr...
subsub23 11495 Swap subtrahend and result...
pncan 11496 Cancellation law for subtr...
pncan2 11497 Cancellation law for subtr...
pncan3 11498 Subtraction and addition o...
npcan 11499 Cancellation law for subtr...
addsubass 11500 Associative-type law for a...
addsub 11501 Law for addition and subtr...
subadd23 11502 Commutative/associative la...
addsub12 11503 Commutative/associative la...
2addsub 11504 Law for subtraction and ad...
addsubeq4 11505 Relation between sums and ...
pncan3oi 11506 Subtraction and addition o...
mvrraddi 11507 Move the right term in a s...
mvlladdi 11508 Move the left term in a su...
subid 11509 Subtraction of a number fr...
subid1 11510 Identity law for subtracti...
npncan 11511 Cancellation law for subtr...
nppcan 11512 Cancellation law for subtr...
nnpcan 11513 Cancellation law for subtr...
nppcan3 11514 Cancellation law for subtr...
subcan2 11515 Cancellation law for subtr...
subeq0 11516 If the difference between ...
npncan2 11517 Cancellation law for subtr...
subsub2 11518 Law for double subtraction...
nncan 11519 Cancellation law for subtr...
subsub 11520 Law for double subtraction...
nppcan2 11521 Cancellation law for subtr...
subsub3 11522 Law for double subtraction...
subsub4 11523 Law for double subtraction...
sub32 11524 Swap the second and third ...
nnncan 11525 Cancellation law for subtr...
nnncan1 11526 Cancellation law for subtr...
nnncan2 11527 Cancellation law for subtr...
npncan3 11528 Cancellation law for subtr...
pnpcan 11529 Cancellation law for mixed...
pnpcan2 11530 Cancellation law for mixed...
pnncan 11531 Cancellation law for mixed...
ppncan 11532 Cancellation law for mixed...
addsub4 11533 Rearrangement of 4 terms i...
subadd4 11534 Rearrangement of 4 terms i...
sub4 11535 Rearrangement of 4 terms i...
neg0 11536 Minus 0 equals 0. (Contri...
negid 11537 Addition of a number and i...
negsub 11538 Relationship between subtr...
subneg 11539 Relationship between subtr...
negneg 11540 A number is equal to the n...
neg11 11541 Negative is one-to-one. (...
negcon1 11542 Negative contraposition la...
negcon2 11543 Negative contraposition la...
negeq0 11544 A number is zero iff its n...
subcan 11545 Cancellation law for subtr...
negsubdi 11546 Distribution of negative o...
negdi 11547 Distribution of negative o...
negdi2 11548 Distribution of negative o...
negsubdi2 11549 Distribution of negative o...
neg2sub 11550 Relationship between subtr...
renegcli 11551 Closure law for negative o...
resubcli 11552 Closure law for subtractio...
renegcl 11553 Closure law for negative o...
resubcl 11554 Closure law for subtractio...
negreb 11555 The negative of a real is ...
peano2cnm 11556 "Reverse" second Peano pos...
peano2rem 11557 "Reverse" second Peano pos...
negcli 11558 Closure law for negative. ...
negidi 11559 Addition of a number and i...
negnegi 11560 A number is equal to the n...
subidi 11561 Subtraction of a number fr...
subid1i 11562 Identity law for subtracti...
negne0bi 11563 A number is nonzero iff it...
negrebi 11564 The negative of a real is ...
negne0i 11565 The negative of a nonzero ...
subcli 11566 Closure law for subtractio...
pncan3i 11567 Subtraction and addition o...
negsubi 11568 Relationship between subtr...
subnegi 11569 Relationship between subtr...
subeq0i 11570 If the difference between ...
neg11i 11571 Negative is one-to-one. (...
negcon1i 11572 Negative contraposition la...
negcon2i 11573 Negative contraposition la...
negdii 11574 Distribution of negative o...
negsubdii 11575 Distribution of negative o...
negsubdi2i 11576 Distribution of negative o...
subaddi 11577 Relationship between subtr...
subadd2i 11578 Relationship between subtr...
subaddrii 11579 Relationship between subtr...
subsub23i 11580 Swap subtrahend and result...
addsubassi 11581 Associative-type law for s...
addsubi 11582 Law for subtraction and ad...
subcani 11583 Cancellation law for subtr...
subcan2i 11584 Cancellation law for subtr...
pnncani 11585 Cancellation law for mixed...
addsub4i 11586 Rearrangement of 4 terms i...
0reALT 11587 Alternate proof of ~ 0re ....
negcld 11588 Closure law for negative. ...
subidd 11589 Subtraction of a number fr...
subid1d 11590 Identity law for subtracti...
negidd 11591 Addition of a number and i...
negnegd 11592 A number is equal to the n...
negeq0d 11593 A number is zero iff its n...
negne0bd 11594 A number is nonzero iff it...
negcon1d 11595 Contraposition law for una...
negcon1ad 11596 Contraposition law for una...
neg11ad 11597 The negatives of two compl...
negned 11598 If two complex numbers are...
negne0d 11599 The negative of a nonzero ...
negrebd 11600 The negative of a real is ...
subcld 11601 Closure law for subtractio...
pncand 11602 Cancellation law for subtr...
pncan2d 11603 Cancellation law for subtr...
pncan3d 11604 Subtraction and addition o...
npcand 11605 Cancellation law for subtr...
nncand 11606 Cancellation law for subtr...
negsubd 11607 Relationship between subtr...
subnegd 11608 Relationship between subtr...
subeq0d 11609 If the difference between ...
subne0d 11610 Two unequal numbers have n...
subeq0ad 11611 The difference of two comp...
subne0ad 11612 If the difference of two c...
neg11d 11613 If the difference between ...
negdid 11614 Distribution of negative o...
negdi2d 11615 Distribution of negative o...
negsubdid 11616 Distribution of negative o...
negsubdi2d 11617 Distribution of negative o...
neg2subd 11618 Relationship between subtr...
subaddd 11619 Relationship between subtr...
subadd2d 11620 Relationship between subtr...
addsubassd 11621 Associative-type law for s...
addsubd 11622 Law for subtraction and ad...
subadd23d 11623 Commutative/associative la...
addsub12d 11624 Commutative/associative la...
npncand 11625 Cancellation law for subtr...
nppcand 11626 Cancellation law for subtr...
nppcan2d 11627 Cancellation law for subtr...
nppcan3d 11628 Cancellation law for subtr...
subsubd 11629 Law for double subtraction...
subsub2d 11630 Law for double subtraction...
subsub3d 11631 Law for double subtraction...
subsub4d 11632 Law for double subtraction...
sub32d 11633 Swap the second and third ...
nnncand 11634 Cancellation law for subtr...
nnncan1d 11635 Cancellation law for subtr...
nnncan2d 11636 Cancellation law for subtr...
npncan3d 11637 Cancellation law for subtr...
pnpcand 11638 Cancellation law for mixed...
pnpcan2d 11639 Cancellation law for mixed...
pnncand 11640 Cancellation law for mixed...
ppncand 11641 Cancellation law for mixed...
subcand 11642 Cancellation law for subtr...
subcan2d 11643 Cancellation law for subtr...
subcanad 11644 Cancellation law for subtr...
subneintrd 11645 Introducing subtraction on...
subcan2ad 11646 Cancellation law for subtr...
subneintr2d 11647 Introducing subtraction on...
addsub4d 11648 Rearrangement of 4 terms i...
subadd4d 11649 Rearrangement of 4 terms i...
sub4d 11650 Rearrangement of 4 terms i...
2addsubd 11651 Law for subtraction and ad...
addsubeq4d 11652 Relation between sums and ...
subeqxfrd 11653 Transfer two terms of a su...
mvlraddd 11654 Move the right term in a s...
mvlladdd 11655 Move the left term in a su...
mvrraddd 11656 Move the right term in a s...
mvrladdd 11657 Move the left term in a su...
assraddsubd 11658 Associate RHS addition-sub...
subaddeqd 11659 Transfer two terms of a su...
addlsub 11660 Left-subtraction: Subtrac...
addrsub 11661 Right-subtraction: Subtra...
subexsub 11662 A subtraction law: Exchan...
addid0 11663 If adding a number to a an...
addn0nid 11664 Adding a nonzero number to...
pnpncand 11665 Addition/subtraction cance...
subeqrev 11666 Reverse the order of subtr...
addeq0 11667 Two complex numbers add up...
pncan1 11668 Cancellation law for addit...
npcan1 11669 Cancellation law for subtr...
subeq0bd 11670 If two complex numbers are...
renegcld 11671 Closure law for negative o...
resubcld 11672 Closure law for subtractio...
negn0 11673 The image under negation o...
negf1o 11674 Negation is an isomorphism...
kcnktkm1cn 11675 k times k minus 1 is a com...
muladd 11676 Product of two sums. (Con...
subdi 11677 Distribution of multiplica...
subdir 11678 Distribution of multiplica...
ine0 11679 The imaginary unit ` _i ` ...
mulneg1 11680 Product with negative is n...
mulneg2 11681 The product with a negativ...
mulneg12 11682 Swap the negative sign in ...
mul2neg 11683 Product of two negatives. ...
submul2 11684 Convert a subtraction to a...
mulm1 11685 Product with minus one is ...
addneg1mul 11686 Addition with product with...
mulsub 11687 Product of two differences...
mulsub2 11688 Swap the order of subtract...
mulm1i 11689 Product with minus one is ...
mulneg1i 11690 Product with negative is n...
mulneg2i 11691 Product with negative is n...
mul2negi 11692 Product of two negatives. ...
subdii 11693 Distribution of multiplica...
subdiri 11694 Distribution of multiplica...
muladdi 11695 Product of two sums. (Con...
mulm1d 11696 Product with minus one is ...
mulneg1d 11697 Product with negative is n...
mulneg2d 11698 Product with negative is n...
mul2negd 11699 Product of two negatives. ...
subdid 11700 Distribution of multiplica...
subdird 11701 Distribution of multiplica...
muladdd 11702 Product of two sums. (Con...
mulsubd 11703 Product of two differences...
muls1d 11704 Multiplication by one minu...
mulsubfacd 11705 Multiplication followed by...
addmulsub 11706 The product of a sum and a...
subaddmulsub 11707 The difference with a prod...
mulsubaddmulsub 11708 A special difference of a ...
gt0ne0 11709 Positive implies nonzero. ...
lt0ne0 11710 A number which is less tha...
ltadd1 11711 Addition to both sides of ...
leadd1 11712 Addition to both sides of ...
leadd2 11713 Addition to both sides of ...
ltsubadd 11714 'Less than' relationship b...
ltsubadd2 11715 'Less than' relationship b...
lesubadd 11716 'Less than or equal to' re...
lesubadd2 11717 'Less than or equal to' re...
ltaddsub 11718 'Less than' relationship b...
ltaddsub2 11719 'Less than' relationship b...
leaddsub 11720 'Less than or equal to' re...
leaddsub2 11721 'Less than or equal to' re...
suble 11722 Swap subtrahends in an ine...
lesub 11723 Swap subtrahends in an ine...
ltsub23 11724 'Less than' relationship b...
ltsub13 11725 'Less than' relationship b...
le2add 11726 Adding both sides of two '...
ltleadd 11727 Adding both sides of two o...
leltadd 11728 Adding both sides of two o...
lt2add 11729 Adding both sides of two '...
addgt0 11730 The sum of 2 positive numb...
addgegt0 11731 The sum of nonnegative and...
addgtge0 11732 The sum of nonnegative and...
addge0 11733 The sum of 2 nonnegative n...
ltaddpos 11734 Adding a positive number t...
ltaddpos2 11735 Adding a positive number t...
ltsubpos 11736 Subtracting a positive num...
posdif 11737 Comparison of two numbers ...
lesub1 11738 Subtraction from both side...
lesub2 11739 Subtraction of both sides ...
ltsub1 11740 Subtraction from both side...
ltsub2 11741 Subtraction of both sides ...
lt2sub 11742 Subtracting both sides of ...
le2sub 11743 Subtracting both sides of ...
ltneg 11744 Negative of both sides of ...
ltnegcon1 11745 Contraposition of negative...
ltnegcon2 11746 Contraposition of negative...
leneg 11747 Negative of both sides of ...
lenegcon1 11748 Contraposition of negative...
lenegcon2 11749 Contraposition of negative...
lt0neg1 11750 Comparison of a number and...
lt0neg2 11751 Comparison of a number and...
le0neg1 11752 Comparison of a number and...
le0neg2 11753 Comparison of a number and...
addge01 11754 A number is less than or e...
addge02 11755 A number is less than or e...
add20 11756 Two nonnegative numbers ar...
subge0 11757 Nonnegative subtraction. ...
suble0 11758 Nonpositive subtraction. ...
leaddle0 11759 The sum of a real number a...
subge02 11760 Nonnegative subtraction. ...
lesub0 11761 Lemma to show a nonnegativ...
mulge0 11762 The product of two nonnega...
mullt0 11763 The product of two negativ...
msqgt0 11764 A nonzero square is positi...
msqge0 11765 A square is nonnegative. ...
0lt1 11766 0 is less than 1. Theorem...
0le1 11767 0 is less than or equal to...
relin01 11768 An interval law for less t...
ltordlem 11769 Lemma for ~ ltord1 . (Con...
ltord1 11770 Infer an ordering relation...
leord1 11771 Infer an ordering relation...
eqord1 11772 A strictly increasing real...
ltord2 11773 Infer an ordering relation...
leord2 11774 Infer an ordering relation...
eqord2 11775 A strictly decreasing real...
wloglei 11776 Form of ~ wlogle where bot...
wlogle 11777 If the predicate ` ch ( x ...
leidi 11778 'Less than or equal to' is...
gt0ne0i 11779 Positive means nonzero (us...
gt0ne0ii 11780 Positive implies nonzero. ...
msqgt0i 11781 A nonzero square is positi...
msqge0i 11782 A square is nonnegative. ...
addgt0i 11783 Addition of 2 positive num...
addge0i 11784 Addition of 2 nonnegative ...
addgegt0i 11785 Addition of nonnegative an...
addgt0ii 11786 Addition of 2 positive num...
add20i 11787 Two nonnegative numbers ar...
ltnegi 11788 Negative of both sides of ...
lenegi 11789 Negative of both sides of ...
ltnegcon2i 11790 Contraposition of negative...
mulge0i 11791 The product of two nonnega...
lesub0i 11792 Lemma to show a nonnegativ...
ltaddposi 11793 Adding a positive number t...
posdifi 11794 Comparison of two numbers ...
ltnegcon1i 11795 Contraposition of negative...
lenegcon1i 11796 Contraposition of negative...
subge0i 11797 Nonnegative subtraction. ...
ltadd1i 11798 Addition to both sides of ...
leadd1i 11799 Addition to both sides of ...
leadd2i 11800 Addition to both sides of ...
ltsubaddi 11801 'Less than' relationship b...
lesubaddi 11802 'Less than or equal to' re...
ltsubadd2i 11803 'Less than' relationship b...
lesubadd2i 11804 'Less than or equal to' re...
ltaddsubi 11805 'Less than' relationship b...
lt2addi 11806 Adding both side of two in...
le2addi 11807 Adding both side of two in...
gt0ne0d 11808 Positive implies nonzero. ...
lt0ne0d 11809 Something less than zero i...
leidd 11810 'Less than or equal to' is...
msqgt0d 11811 A nonzero square is positi...
msqge0d 11812 A square is nonnegative. ...
lt0neg1d 11813 Comparison of a number and...
lt0neg2d 11814 Comparison of a number and...
le0neg1d 11815 Comparison of a number and...
le0neg2d 11816 Comparison of a number and...
addgegt0d 11817 Addition of nonnegative an...
addgtge0d 11818 Addition of positive and n...
addgt0d 11819 Addition of 2 positive num...
addge0d 11820 Addition of 2 nonnegative ...
mulge0d 11821 The product of two nonnega...
ltnegd 11822 Negative of both sides of ...
lenegd 11823 Negative of both sides of ...
ltnegcon1d 11824 Contraposition of negative...
ltnegcon2d 11825 Contraposition of negative...
lenegcon1d 11826 Contraposition of negative...
lenegcon2d 11827 Contraposition of negative...
ltaddposd 11828 Adding a positive number t...
ltaddpos2d 11829 Adding a positive number t...
ltsubposd 11830 Subtracting a positive num...
posdifd 11831 Comparison of two numbers ...
addge01d 11832 A number is less than or e...
addge02d 11833 A number is less than or e...
subge0d 11834 Nonnegative subtraction. ...
suble0d 11835 Nonpositive subtraction. ...
subge02d 11836 Nonnegative subtraction. ...
ltadd1d 11837 Addition to both sides of ...
leadd1d 11838 Addition to both sides of ...
leadd2d 11839 Addition to both sides of ...
ltsubaddd 11840 'Less than' relationship b...
lesubaddd 11841 'Less than or equal to' re...
ltsubadd2d 11842 'Less than' relationship b...
lesubadd2d 11843 'Less than or equal to' re...
ltaddsubd 11844 'Less than' relationship b...
ltaddsub2d 11845 'Less than' relationship b...
leaddsub2d 11846 'Less than or equal to' re...
subled 11847 Swap subtrahends in an ine...
lesubd 11848 Swap subtrahends in an ine...
ltsub23d 11849 'Less than' relationship b...
ltsub13d 11850 'Less than' relationship b...
lesub1d 11851 Subtraction from both side...
lesub2d 11852 Subtraction of both sides ...
ltsub1d 11853 Subtraction from both side...
ltsub2d 11854 Subtraction of both sides ...
ltadd1dd 11855 Addition to both sides of ...
ltsub1dd 11856 Subtraction from both side...
ltsub2dd 11857 Subtraction of both sides ...
leadd1dd 11858 Addition to both sides of ...
leadd2dd 11859 Addition to both sides of ...
lesub1dd 11860 Subtraction from both side...
lesub2dd 11861 Subtraction of both sides ...
lesub3d 11862 The result of subtracting ...
le2addd 11863 Adding both side of two in...
le2subd 11864 Subtracting both sides of ...
ltleaddd 11865 Adding both sides of two o...
leltaddd 11866 Adding both sides of two o...
lt2addd 11867 Adding both side of two in...
lt2subd 11868 Subtracting both sides of ...
possumd 11869 Condition for a positive s...
sublt0d 11870 When a subtraction gives a...
ltaddsublt 11871 Addition and subtraction o...
1le1 11872 One is less than or equal ...
ixi 11873 ` _i ` times itself is min...
recextlem1 11874 Lemma for ~ recex . (Cont...
recextlem2 11875 Lemma for ~ recex . (Cont...
recex 11876 Existence of reciprocal of...
mulcand 11877 Cancellation law for multi...
mulcan2d 11878 Cancellation law for multi...
mulcanad 11879 Cancellation of a nonzero ...
mulcan2ad 11880 Cancellation of a nonzero ...
mulcan 11881 Cancellation law for multi...
mulcan2 11882 Cancellation law for multi...
mulcani 11883 Cancellation law for multi...
mul0or 11884 If a product is zero, one ...
mulne0b 11885 The product of two nonzero...
mulne0 11886 The product of two nonzero...
mulne0i 11887 The product of two nonzero...
muleqadd 11888 Property of numbers whose ...
receu 11889 Existential uniqueness of ...
mulnzcnf 11890 Multiplication maps nonzer...
msq0i 11891 A number is zero iff its s...
mul0ori 11892 If a product is zero, one ...
msq0d 11893 A number is zero iff its s...
mul0ord 11894 If a product is zero, one ...
mulne0bd 11895 The product of two nonzero...
mulne0d 11896 The product of two nonzero...
mulcan1g 11897 A generalized form of the ...
mulcan2g 11898 A generalized form of the ...
mulne0bad 11899 A factor of a nonzero comp...
mulne0bbd 11900 A factor of a nonzero comp...
1div0 11903 You can't divide by zero, ...
divval 11904 Value of division: if ` A ...
divmul 11905 Relationship between divis...
divmul2 11906 Relationship between divis...
divmul3 11907 Relationship between divis...
divcl 11908 Closure law for division. ...
reccl 11909 Closure law for reciprocal...
divcan2 11910 A cancellation law for div...
divcan1 11911 A cancellation law for div...
diveq0 11912 A ratio is zero iff the nu...
divne0b 11913 The ratio of nonzero numbe...
divne0 11914 The ratio of nonzero numbe...
recne0 11915 The reciprocal of a nonzer...
recid 11916 Multiplication of a number...
recid2 11917 Multiplication of a number...
divrec 11918 Relationship between divis...
divrec2 11919 Relationship between divis...
divass 11920 An associative law for div...
div23 11921 A commutative/associative ...
div32 11922 A commutative/associative ...
div13 11923 A commutative/associative ...
div12 11924 A commutative/associative ...
divmulass 11925 An associative law for div...
divmulasscom 11926 An associative/commutative...
divdir 11927 Distribution of division o...
divcan3 11928 A cancellation law for div...
divcan4 11929 A cancellation law for div...
div11 11930 One-to-one relationship fo...
divid 11931 A number divided by itself...
div0 11932 Division into zero is zero...
div1 11933 A number divided by 1 is i...
1div1e1 11934 1 divided by 1 is 1. (Con...
diveq1 11935 Equality in terms of unit ...
divneg 11936 Move negative sign inside ...
muldivdir 11937 Distribution of division o...
divsubdir 11938 Distribution of division o...
subdivcomb1 11939 Bring a term in a subtract...
subdivcomb2 11940 Bring a term in a subtract...
recrec 11941 A number is equal to the r...
rec11 11942 Reciprocal is one-to-one. ...
rec11r 11943 Mutual reciprocals. (Cont...
divmuldiv 11944 Multiplication of two rati...
divdivdiv 11945 Division of two ratios. T...
divcan5 11946 Cancellation of common fac...
divmul13 11947 Swap the denominators in t...
divmul24 11948 Swap the numerators in the...
divmuleq 11949 Cross-multiply in an equal...
recdiv 11950 The reciprocal of a ratio....
divcan6 11951 Cancellation of inverted f...
divdiv32 11952 Swap denominators in a div...
divcan7 11953 Cancel equal divisors in a...
dmdcan 11954 Cancellation law for divis...
divdiv1 11955 Division into a fraction. ...
divdiv2 11956 Division by a fraction. (...
recdiv2 11957 Division into a reciprocal...
ddcan 11958 Cancellation in a double d...
divadddiv 11959 Addition of two ratios. T...
divsubdiv 11960 Subtraction of two ratios....
conjmul 11961 Two numbers whose reciproc...
rereccl 11962 Closure law for reciprocal...
redivcl 11963 Closure law for division o...
eqneg 11964 A number equal to its nega...
eqnegd 11965 A complex number equals it...
eqnegad 11966 If a complex number equals...
div2neg 11967 Quotient of two negatives....
divneg2 11968 Move negative sign inside ...
recclzi 11969 Closure law for reciprocal...
recne0zi 11970 The reciprocal of a nonzer...
recidzi 11971 Multiplication of a number...
div1i 11972 A number divided by 1 is i...
eqnegi 11973 A number equal to its nega...
reccli 11974 Closure law for reciprocal...
recidi 11975 Multiplication of a number...
recreci 11976 A number is equal to the r...
dividi 11977 A number divided by itself...
div0i 11978 Division into zero is zero...
divclzi 11979 Closure law for division. ...
divcan1zi 11980 A cancellation law for div...
divcan2zi 11981 A cancellation law for div...
divreczi 11982 Relationship between divis...
divcan3zi 11983 A cancellation law for div...
divcan4zi 11984 A cancellation law for div...
rec11i 11985 Reciprocal is one-to-one. ...
divcli 11986 Closure law for division. ...
divcan2i 11987 A cancellation law for div...
divcan1i 11988 A cancellation law for div...
divreci 11989 Relationship between divis...
divcan3i 11990 A cancellation law for div...
divcan4i 11991 A cancellation law for div...
divne0i 11992 The ratio of nonzero numbe...
rec11ii 11993 Reciprocal is one-to-one. ...
divasszi 11994 An associative law for div...
divmulzi 11995 Relationship between divis...
divdirzi 11996 Distribution of division o...
divdiv23zi 11997 Swap denominators in a div...
divmuli 11998 Relationship between divis...
divdiv32i 11999 Swap denominators in a div...
divassi 12000 An associative law for div...
divdiri 12001 Distribution of division o...
div23i 12002 A commutative/associative ...
div11i 12003 One-to-one relationship fo...
divmuldivi 12004 Multiplication of two rati...
divmul13i 12005 Swap denominators of two r...
divadddivi 12006 Addition of two ratios. T...
divdivdivi 12007 Division of two ratios. T...
rerecclzi 12008 Closure law for reciprocal...
rereccli 12009 Closure law for reciprocal...
redivclzi 12010 Closure law for division o...
redivcli 12011 Closure law for division o...
div1d 12012 A number divided by 1 is i...
reccld 12013 Closure law for reciprocal...
recne0d 12014 The reciprocal of a nonzer...
recidd 12015 Multiplication of a number...
recid2d 12016 Multiplication of a number...
recrecd 12017 A number is equal to the r...
dividd 12018 A number divided by itself...
div0d 12019 Division into zero is zero...
divcld 12020 Closure law for division. ...
divcan1d 12021 A cancellation law for div...
divcan2d 12022 A cancellation law for div...
divrecd 12023 Relationship between divis...
divrec2d 12024 Relationship between divis...
divcan3d 12025 A cancellation law for div...
divcan4d 12026 A cancellation law for div...
diveq0d 12027 A ratio is zero iff the nu...
diveq1d 12028 Equality in terms of unit ...
diveq1ad 12029 The quotient of two comple...
diveq0ad 12030 A fraction of complex numb...
divne1d 12031 If two complex numbers are...
divne0bd 12032 A ratio is zero iff the nu...
divnegd 12033 Move negative sign inside ...
divneg2d 12034 Move negative sign inside ...
div2negd 12035 Quotient of two negatives....
divne0d 12036 The ratio of nonzero numbe...
recdivd 12037 The reciprocal of a ratio....
recdiv2d 12038 Division into a reciprocal...
divcan6d 12039 Cancellation of inverted f...
ddcand 12040 Cancellation in a double d...
rec11d 12041 Reciprocal is one-to-one. ...
divmuld 12042 Relationship between divis...
div32d 12043 A commutative/associative ...
div13d 12044 A commutative/associative ...
divdiv32d 12045 Swap denominators in a div...
divcan5d 12046 Cancellation of common fac...
divcan5rd 12047 Cancellation of common fac...
divcan7d 12048 Cancel equal divisors in a...
dmdcand 12049 Cancellation law for divis...
dmdcan2d 12050 Cancellation law for divis...
divdiv1d 12051 Division into a fraction. ...
divdiv2d 12052 Division by a fraction. (...
divmul2d 12053 Relationship between divis...
divmul3d 12054 Relationship between divis...
divassd 12055 An associative law for div...
div12d 12056 A commutative/associative ...
div23d 12057 A commutative/associative ...
divdird 12058 Distribution of division o...
divsubdird 12059 Distribution of division o...
div11d 12060 One-to-one relationship fo...
divmuldivd 12061 Multiplication of two rati...
divmul13d 12062 Swap denominators of two r...
divmul24d 12063 Swap the numerators in the...
divadddivd 12064 Addition of two ratios. T...
divsubdivd 12065 Subtraction of two ratios....
divmuleqd 12066 Cross-multiply in an equal...
divdivdivd 12067 Division of two ratios. T...
diveq1bd 12068 If two complex numbers are...
div2sub 12069 Swap the order of subtract...
div2subd 12070 Swap subtrahend and minuen...
rereccld 12071 Closure law for reciprocal...
redivcld 12072 Closure law for division o...
subrec 12073 Subtraction of reciprocals...
subreci 12074 Subtraction of reciprocals...
subrecd 12075 Subtraction of reciprocals...
mvllmuld 12076 Move the left term in a pr...
mvllmuli 12077 Move the left term in a pr...
ldiv 12078 Left-division. (Contribut...
rdiv 12079 Right-division. (Contribu...
mdiv 12080 A division law. (Contribu...
lineq 12081 Solution of a (scalar) lin...
elimgt0 12082 Hypothesis for weak deduct...
elimge0 12083 Hypothesis for weak deduct...
ltp1 12084 A number is less than itse...
lep1 12085 A number is less than or e...
ltm1 12086 A number minus 1 is less t...
lem1 12087 A number minus 1 is less t...
letrp1 12088 A transitive property of '...
p1le 12089 A transitive property of p...
recgt0 12090 The reciprocal of a positi...
prodgt0 12091 Infer that a multiplicand ...
prodgt02 12092 Infer that a multiplier is...
ltmul1a 12093 Lemma for ~ ltmul1 . Mult...
ltmul1 12094 Multiplication of both sid...
ltmul2 12095 Multiplication of both sid...
lemul1 12096 Multiplication of both sid...
lemul2 12097 Multiplication of both sid...
lemul1a 12098 Multiplication of both sid...
lemul2a 12099 Multiplication of both sid...
ltmul12a 12100 Comparison of product of t...
lemul12b 12101 Comparison of product of t...
lemul12a 12102 Comparison of product of t...
mulgt1 12103 The product of two numbers...
ltmulgt11 12104 Multiplication by a number...
ltmulgt12 12105 Multiplication by a number...
lemulge11 12106 Multiplication by a number...
lemulge12 12107 Multiplication by a number...
ltdiv1 12108 Division of both sides of ...
lediv1 12109 Division of both sides of ...
gt0div 12110 Division of a positive num...
ge0div 12111 Division of a nonnegative ...
divgt0 12112 The ratio of two positive ...
divge0 12113 The ratio of nonnegative a...
mulge0b 12114 A condition for multiplica...
mulle0b 12115 A condition for multiplica...
mulsuble0b 12116 A condition for multiplica...
ltmuldiv 12117 'Less than' relationship b...
ltmuldiv2 12118 'Less than' relationship b...
ltdivmul 12119 'Less than' relationship b...
ledivmul 12120 'Less than or equal to' re...
ltdivmul2 12121 'Less than' relationship b...
lt2mul2div 12122 'Less than' relationship b...
ledivmul2 12123 'Less than or equal to' re...
lemuldiv 12124 'Less than or equal' relat...
lemuldiv2 12125 'Less than or equal' relat...
ltrec 12126 The reciprocal of both sid...
lerec 12127 The reciprocal of both sid...
lt2msq1 12128 Lemma for ~ lt2msq . (Con...
lt2msq 12129 Two nonnegative numbers co...
ltdiv2 12130 Division of a positive num...
ltrec1 12131 Reciprocal swap in a 'less...
lerec2 12132 Reciprocal swap in a 'less...
ledivdiv 12133 Invert ratios of positive ...
lediv2 12134 Division of a positive num...
ltdiv23 12135 Swap denominator with othe...
lediv23 12136 Swap denominator with othe...
lediv12a 12137 Comparison of ratio of two...
lediv2a 12138 Division of both sides of ...
reclt1 12139 The reciprocal of a positi...
recgt1 12140 The reciprocal of a positi...
recgt1i 12141 The reciprocal of a number...
recp1lt1 12142 Construct a number less th...
recreclt 12143 Given a positive number ` ...
le2msq 12144 The square function on non...
msq11 12145 The square of a nonnegativ...
ledivp1 12146 "Less than or equal to" an...
squeeze0 12147 If a nonnegative number is...
ltp1i 12148 A number is less than itse...
recgt0i 12149 The reciprocal of a positi...
recgt0ii 12150 The reciprocal of a positi...
prodgt0i 12151 Infer that a multiplicand ...
divgt0i 12152 The ratio of two positive ...
divge0i 12153 The ratio of nonnegative a...
ltreci 12154 The reciprocal of both sid...
lereci 12155 The reciprocal of both sid...
lt2msqi 12156 The square function on non...
le2msqi 12157 The square function on non...
msq11i 12158 The square of a nonnegativ...
divgt0i2i 12159 The ratio of two positive ...
ltrecii 12160 The reciprocal of both sid...
divgt0ii 12161 The ratio of two positive ...
ltmul1i 12162 Multiplication of both sid...
ltdiv1i 12163 Division of both sides of ...
ltmuldivi 12164 'Less than' relationship b...
ltmul2i 12165 Multiplication of both sid...
lemul1i 12166 Multiplication of both sid...
lemul2i 12167 Multiplication of both sid...
ltdiv23i 12168 Swap denominator with othe...
ledivp1i 12169 "Less than or equal to" an...
ltdivp1i 12170 Less-than and division rel...
ltdiv23ii 12171 Swap denominator with othe...
ltmul1ii 12172 Multiplication of both sid...
ltdiv1ii 12173 Division of both sides of ...
ltp1d 12174 A number is less than itse...
lep1d 12175 A number is less than or e...
ltm1d 12176 A number minus 1 is less t...
lem1d 12177 A number minus 1 is less t...
recgt0d 12178 The reciprocal of a positi...
divgt0d 12179 The ratio of two positive ...
mulgt1d 12180 The product of two numbers...
lemulge11d 12181 Multiplication by a number...
lemulge12d 12182 Multiplication by a number...
lemul1ad 12183 Multiplication of both sid...
lemul2ad 12184 Multiplication of both sid...
ltmul12ad 12185 Comparison of product of t...
lemul12ad 12186 Comparison of product of t...
lemul12bd 12187 Comparison of product of t...
fimaxre 12188 A finite set of real numbe...
fimaxre2 12189 A nonempty finite set of r...
fimaxre3 12190 A nonempty finite set of r...
fiminre 12191 A nonempty finite set of r...
fiminre2 12192 A nonempty finite set of r...
negfi 12193 The negation of a finite s...
lbreu 12194 If a set of reals contains...
lbcl 12195 If a set of reals contains...
lble 12196 If a set of reals contains...
lbinf 12197 If a set of reals contains...
lbinfcl 12198 If a set of reals contains...
lbinfle 12199 If a set of reals contains...
sup2 12200 A nonempty, bounded-above ...
sup3 12201 A version of the completen...
infm3lem 12202 Lemma for ~ infm3 . (Cont...
infm3 12203 The completeness axiom for...
suprcl 12204 Closure of supremum of a n...
suprub 12205 A member of a nonempty bou...
suprubd 12206 Natural deduction form of ...
suprcld 12207 Natural deduction form of ...
suprlub 12208 The supremum of a nonempty...
suprnub 12209 An upper bound is not less...
suprleub 12210 The supremum of a nonempty...
supaddc 12211 The supremum function dist...
supadd 12212 The supremum function dist...
supmul1 12213 The supremum function dist...
supmullem1 12214 Lemma for ~ supmul . (Con...
supmullem2 12215 Lemma for ~ supmul . (Con...
supmul 12216 The supremum function dist...
sup3ii 12217 A version of the completen...
suprclii 12218 Closure of supremum of a n...
suprubii 12219 A member of a nonempty bou...
suprlubii 12220 The supremum of a nonempty...
suprnubii 12221 An upper bound is not less...
suprleubii 12222 The supremum of a nonempty...
riotaneg 12223 The negative of the unique...
negiso 12224 Negation is an order anti-...
dfinfre 12225 The infimum of a set of re...
infrecl 12226 Closure of infimum of a no...
infrenegsup 12227 The infimum of a set of re...
infregelb 12228 Any lower bound of a nonem...
infrelb 12229 If a nonempty set of real ...
infrefilb 12230 The infimum of a finite se...
supfirege 12231 The supremum of a finite s...
inelr 12232 The imaginary unit ` _i ` ...
rimul 12233 A real number times the im...
cru 12234 The representation of comp...
crne0 12235 The real representation of...
creur 12236 The real part of a complex...
creui 12237 The imaginary part of a co...
cju 12238 The complex conjugate of a...
ofsubeq0 12239 Function analogue of ~ sub...
ofnegsub 12240 Function analogue of ~ neg...
ofsubge0 12241 Function analogue of ~ sub...
nnexALT 12244 Alternate proof of ~ nnex ...
peano5nni 12245 Peano's inductive postulat...
nnssre 12246 The positive integers are ...
nnsscn 12247 The positive integers are ...
nnex 12248 The set of positive intege...
nnre 12249 A positive integer is a re...
nncn 12250 A positive integer is a co...
nnrei 12251 A positive integer is a re...
nncni 12252 A positive integer is a co...
1nn 12253 Peano postulate: 1 is a po...
peano2nn 12254 Peano postulate: a success...
dfnn2 12255 Alternate definition of th...
dfnn3 12256 Alternate definition of th...
nnred 12257 A positive integer is a re...
nncnd 12258 A positive integer is a co...
peano2nnd 12259 Peano postulate: a success...
nnind 12260 Principle of Mathematical ...
nnindALT 12261 Principle of Mathematical ...
nnindd 12262 Principle of Mathematical ...
nn1m1nn 12263 Every positive integer is ...
nn1suc 12264 If a statement holds for 1...
nnaddcl 12265 Closure of addition of pos...
nnmulcl 12266 Closure of multiplication ...
nnmulcli 12267 Closure of multiplication ...
nnmtmip 12268 "Minus times minus is plus...
nn2ge 12269 There exists a positive in...
nnge1 12270 A positive integer is one ...
nngt1ne1 12271 A positive integer is grea...
nnle1eq1 12272 A positive integer is less...
nngt0 12273 A positive integer is posi...
nnnlt1 12274 A positive integer is not ...
nnnle0 12275 A positive integer is not ...
nnne0 12276 A positive integer is nonz...
nnneneg 12277 No positive integer is equ...
0nnn 12278 Zero is not a positive int...
0nnnALT 12279 Alternate proof of ~ 0nnn ...
nnne0ALT 12280 Alternate version of ~ nnn...
nngt0i 12281 A positive integer is posi...
nnne0i 12282 A positive integer is nonz...
nndivre 12283 The quotient of a real and...
nnrecre 12284 The reciprocal of a positi...
nnrecgt0 12285 The reciprocal of a positi...
nnsub 12286 Subtraction of positive in...
nnsubi 12287 Subtraction of positive in...
nndiv 12288 Two ways to express " ` A ...
nndivtr 12289 Transitive property of div...
nnge1d 12290 A positive integer is one ...
nngt0d 12291 A positive integer is posi...
nnne0d 12292 A positive integer is nonz...
nnrecred 12293 The reciprocal of a positi...
nnaddcld 12294 Closure of addition of pos...
nnmulcld 12295 Closure of multiplication ...
nndivred 12296 A positive integer is one ...
0ne1 12313 Zero is different from one...
1m1e0 12314 One minus one equals zero....
2nn 12315 2 is a positive integer. ...
2re 12316 The number 2 is real. (Co...
2cn 12317 The number 2 is a complex ...
2cnALT 12318 Alternate proof of ~ 2cn ....
2ex 12319 The number 2 is a set. (C...
2cnd 12320 The number 2 is a complex ...
3nn 12321 3 is a positive integer. ...
3re 12322 The number 3 is real. (Co...
3cn 12323 The number 3 is a complex ...
3ex 12324 The number 3 is a set. (C...
4nn 12325 4 is a positive integer. ...
4re 12326 The number 4 is real. (Co...
4cn 12327 The number 4 is a complex ...
5nn 12328 5 is a positive integer. ...
5re 12329 The number 5 is real. (Co...
5cn 12330 The number 5 is a complex ...
6nn 12331 6 is a positive integer. ...
6re 12332 The number 6 is real. (Co...
6cn 12333 The number 6 is a complex ...
7nn 12334 7 is a positive integer. ...
7re 12335 The number 7 is real. (Co...
7cn 12336 The number 7 is a complex ...
8nn 12337 8 is a positive integer. ...
8re 12338 The number 8 is real. (Co...
8cn 12339 The number 8 is a complex ...
9nn 12340 9 is a positive integer. ...
9re 12341 The number 9 is real. (Co...
9cn 12342 The number 9 is a complex ...
0le0 12343 Zero is nonnegative. (Con...
0le2 12344 The number 0 is less than ...
2pos 12345 The number 2 is positive. ...
2ne0 12346 The number 2 is nonzero. ...
3pos 12347 The number 3 is positive. ...
3ne0 12348 The number 3 is nonzero. ...
4pos 12349 The number 4 is positive. ...
4ne0 12350 The number 4 is nonzero. ...
5pos 12351 The number 5 is positive. ...
6pos 12352 The number 6 is positive. ...
7pos 12353 The number 7 is positive. ...
8pos 12354 The number 8 is positive. ...
9pos 12355 The number 9 is positive. ...
neg1cn 12356 -1 is a complex number. (...
neg1rr 12357 -1 is a real number. (Con...
neg1ne0 12358 -1 is nonzero. (Contribut...
neg1lt0 12359 -1 is less than 0. (Contr...
negneg1e1 12360 ` -u -u 1 ` is 1. (Contri...
1pneg1e0 12361 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12362 0 minus 0 equals 0. (Cont...
1m0e1 12363 1 - 0 = 1. (Contributed b...
0p1e1 12364 0 + 1 = 1. (Contributed b...
fv0p1e1 12365 Function value at ` N + 1 ...
1p0e1 12366 1 + 0 = 1. (Contributed b...
1p1e2 12367 1 + 1 = 2. (Contributed b...
2m1e1 12368 2 - 1 = 1. The result is ...
1e2m1 12369 1 = 2 - 1. (Contributed b...
3m1e2 12370 3 - 1 = 2. (Contributed b...
4m1e3 12371 4 - 1 = 3. (Contributed b...
5m1e4 12372 5 - 1 = 4. (Contributed b...
6m1e5 12373 6 - 1 = 5. (Contributed b...
7m1e6 12374 7 - 1 = 6. (Contributed b...
8m1e7 12375 8 - 1 = 7. (Contributed b...
9m1e8 12376 9 - 1 = 8. (Contributed b...
2p2e4 12377 Two plus two equals four. ...
2times 12378 Two times a number. (Cont...
times2 12379 A number times 2. (Contri...
2timesi 12380 Two times a number. (Cont...
times2i 12381 A number times 2. (Contri...
2txmxeqx 12382 Two times a complex number...
2div2e1 12383 2 divided by 2 is 1. (Con...
2p1e3 12384 2 + 1 = 3. (Contributed b...
1p2e3 12385 1 + 2 = 3. For a shorter ...
1p2e3ALT 12386 Alternate proof of ~ 1p2e3...
3p1e4 12387 3 + 1 = 4. (Contributed b...
4p1e5 12388 4 + 1 = 5. (Contributed b...
5p1e6 12389 5 + 1 = 6. (Contributed b...
6p1e7 12390 6 + 1 = 7. (Contributed b...
7p1e8 12391 7 + 1 = 8. (Contributed b...
8p1e9 12392 8 + 1 = 9. (Contributed b...
3p2e5 12393 3 + 2 = 5. (Contributed b...
3p3e6 12394 3 + 3 = 6. (Contributed b...
4p2e6 12395 4 + 2 = 6. (Contributed b...
4p3e7 12396 4 + 3 = 7. (Contributed b...
4p4e8 12397 4 + 4 = 8. (Contributed b...
5p2e7 12398 5 + 2 = 7. (Contributed b...
5p3e8 12399 5 + 3 = 8. (Contributed b...
5p4e9 12400 5 + 4 = 9. (Contributed b...
6p2e8 12401 6 + 2 = 8. (Contributed b...
6p3e9 12402 6 + 3 = 9. (Contributed b...
7p2e9 12403 7 + 2 = 9. (Contributed b...
1t1e1 12404 1 times 1 equals 1. (Cont...
2t1e2 12405 2 times 1 equals 2. (Cont...
2t2e4 12406 2 times 2 equals 4. (Cont...
3t1e3 12407 3 times 1 equals 3. (Cont...
3t2e6 12408 3 times 2 equals 6. (Cont...
3t3e9 12409 3 times 3 equals 9. (Cont...
4t2e8 12410 4 times 2 equals 8. (Cont...
2t0e0 12411 2 times 0 equals 0. (Cont...
4d2e2 12412 One half of four is two. ...
1lt2 12413 1 is less than 2. (Contri...
2lt3 12414 2 is less than 3. (Contri...
1lt3 12415 1 is less than 3. (Contri...
3lt4 12416 3 is less than 4. (Contri...
2lt4 12417 2 is less than 4. (Contri...
1lt4 12418 1 is less than 4. (Contri...
4lt5 12419 4 is less than 5. (Contri...
3lt5 12420 3 is less than 5. (Contri...
2lt5 12421 2 is less than 5. (Contri...
1lt5 12422 1 is less than 5. (Contri...
5lt6 12423 5 is less than 6. (Contri...
4lt6 12424 4 is less than 6. (Contri...
3lt6 12425 3 is less than 6. (Contri...
2lt6 12426 2 is less than 6. (Contri...
1lt6 12427 1 is less than 6. (Contri...
6lt7 12428 6 is less than 7. (Contri...
5lt7 12429 5 is less than 7. (Contri...
4lt7 12430 4 is less than 7. (Contri...
3lt7 12431 3 is less than 7. (Contri...
2lt7 12432 2 is less than 7. (Contri...
1lt7 12433 1 is less than 7. (Contri...
7lt8 12434 7 is less than 8. (Contri...
6lt8 12435 6 is less than 8. (Contri...
5lt8 12436 5 is less than 8. (Contri...
4lt8 12437 4 is less than 8. (Contri...
3lt8 12438 3 is less than 8. (Contri...
2lt8 12439 2 is less than 8. (Contri...
1lt8 12440 1 is less than 8. (Contri...
8lt9 12441 8 is less than 9. (Contri...
7lt9 12442 7 is less than 9. (Contri...
6lt9 12443 6 is less than 9. (Contri...
5lt9 12444 5 is less than 9. (Contri...
4lt9 12445 4 is less than 9. (Contri...
3lt9 12446 3 is less than 9. (Contri...
2lt9 12447 2 is less than 9. (Contri...
1lt9 12448 1 is less than 9. (Contri...
0ne2 12449 0 is not equal to 2. (Con...
1ne2 12450 1 is not equal to 2. (Con...
1le2 12451 1 is less than or equal to...
2cnne0 12452 2 is a nonzero complex num...
2rene0 12453 2 is a nonzero real number...
1le3 12454 1 is less than or equal to...
neg1mulneg1e1 12455 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12456 One-half is real. (Contri...
halfcn 12457 One-half is a complex numb...
halfgt0 12458 One-half is greater than z...
halfge0 12459 One-half is not negative. ...
halflt1 12460 One-half is less than one....
1mhlfehlf 12461 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12462 An eighth of four thirds i...
halfpm6th 12463 One half plus or minus one...
it0e0 12464 i times 0 equals 0. (Cont...
2mulicn 12465 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12466 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12467 Closure of half of a numbe...
rehalfcl 12468 Real closure of half. (Co...
half0 12469 Half of a number is zero i...
2halves 12470 Two halves make a whole. ...
halfpos2 12471 A number is positive iff i...
halfpos 12472 A positive number is great...
halfnneg2 12473 A number is nonnegative if...
halfaddsubcl 12474 Closure of half-sum and ha...
halfaddsub 12475 Sum and difference of half...
subhalfhalf 12476 Subtracting the half of a ...
lt2halves 12477 A sum is less than the who...
addltmul 12478 Sum is less than product f...
nominpos 12479 There is no smallest posit...
avglt1 12480 Ordering property for aver...
avglt2 12481 Ordering property for aver...
avgle1 12482 Ordering property for aver...
avgle2 12483 Ordering property for aver...
avgle 12484 The average of two numbers...
2timesd 12485 Two times a number. (Cont...
times2d 12486 A number times 2. (Contri...
halfcld 12487 Closure of half of a numbe...
2halvesd 12488 Two halves make a whole. ...
rehalfcld 12489 Real closure of half. (Co...
lt2halvesd 12490 A sum is less than the who...
rehalfcli 12491 Half a real number is real...
lt2addmuld 12492 If two real numbers are le...
add1p1 12493 Adding two times 1 to a nu...
sub1m1 12494 Subtracting two times 1 fr...
cnm2m1cnm3 12495 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12496 A complex number increased...
div4p1lem1div2 12497 An integer greater than 5,...
nnunb 12498 The set of positive intege...
arch 12499 Archimedean property of re...
nnrecl 12500 There exists a positive in...
bndndx 12501 A bounded real sequence ` ...
elnn0 12504 Nonnegative integers expre...
nnssnn0 12505 Positive naturals are a su...
nn0ssre 12506 Nonnegative integers are a...
nn0sscn 12507 Nonnegative integers are a...
nn0ex 12508 The set of nonnegative int...
nnnn0 12509 A positive integer is a no...
nnnn0i 12510 A positive integer is a no...
nn0re 12511 A nonnegative integer is a...
nn0cn 12512 A nonnegative integer is a...
nn0rei 12513 A nonnegative integer is a...
nn0cni 12514 A nonnegative integer is a...
dfn2 12515 The set of positive intege...
elnnne0 12516 The positive integer prope...
0nn0 12517 0 is a nonnegative integer...
1nn0 12518 1 is a nonnegative integer...
2nn0 12519 2 is a nonnegative integer...
3nn0 12520 3 is a nonnegative integer...
4nn0 12521 4 is a nonnegative integer...
5nn0 12522 5 is a nonnegative integer...
6nn0 12523 6 is a nonnegative integer...
7nn0 12524 7 is a nonnegative integer...
8nn0 12525 8 is a nonnegative integer...
9nn0 12526 9 is a nonnegative integer...
nn0ge0 12527 A nonnegative integer is g...
nn0nlt0 12528 A nonnegative integer is n...
nn0ge0i 12529 Nonnegative integers are n...
nn0le0eq0 12530 A nonnegative integer is l...
nn0p1gt0 12531 A nonnegative integer incr...
nnnn0addcl 12532 A positive integer plus a ...
nn0nnaddcl 12533 A nonnegative integer plus...
0mnnnnn0 12534 The result of subtracting ...
un0addcl 12535 If ` S ` is closed under a...
un0mulcl 12536 If ` S ` is closed under m...
nn0addcl 12537 Closure of addition of non...
nn0mulcl 12538 Closure of multiplication ...
nn0addcli 12539 Closure of addition of non...
nn0mulcli 12540 Closure of multiplication ...
nn0p1nn 12541 A nonnegative integer plus...
peano2nn0 12542 Second Peano postulate for...
nnm1nn0 12543 A positive integer minus 1...
elnn0nn 12544 The nonnegative integer pr...
elnnnn0 12545 The positive integer prope...
elnnnn0b 12546 The positive integer prope...
elnnnn0c 12547 The positive integer prope...
nn0addge1 12548 A number is less than or e...
nn0addge2 12549 A number is less than or e...
nn0addge1i 12550 A number is less than or e...
nn0addge2i 12551 A number is less than or e...
nn0sub 12552 Subtraction of nonnegative...
ltsubnn0 12553 Subtracting a nonnegative ...
nn0negleid 12554 A nonnegative integer is g...
difgtsumgt 12555 If the difference of a rea...
nn0le2xi 12556 A nonnegative integer is l...
nn0lele2xi 12557 'Less than or equal to' im...
fcdmnn0supp 12558 Two ways to write the supp...
fcdmnn0fsupp 12559 A function into ` NN0 ` is...
fcdmnn0suppg 12560 Version of ~ fcdmnn0supp a...
fcdmnn0fsuppg 12561 Version of ~ fcdmnn0fsupp ...
nnnn0d 12562 A positive integer is a no...
nn0red 12563 A nonnegative integer is a...
nn0cnd 12564 A nonnegative integer is a...
nn0ge0d 12565 A nonnegative integer is g...
nn0addcld 12566 Closure of addition of non...
nn0mulcld 12567 Closure of multiplication ...
nn0readdcl 12568 Closure law for addition o...
nn0n0n1ge2 12569 A nonnegative integer whic...
nn0n0n1ge2b 12570 A nonnegative integer is n...
nn0ge2m1nn 12571 If a nonnegative integer i...
nn0ge2m1nn0 12572 If a nonnegative integer i...
nn0nndivcl 12573 Closure law for dividing o...
elxnn0 12576 An extended nonnegative in...
nn0ssxnn0 12577 The standard nonnegative i...
nn0xnn0 12578 A standard nonnegative int...
xnn0xr 12579 An extended nonnegative in...
0xnn0 12580 Zero is an extended nonneg...
pnf0xnn0 12581 Positive infinity is an ex...
nn0nepnf 12582 No standard nonnegative in...
nn0xnn0d 12583 A standard nonnegative int...
nn0nepnfd 12584 No standard nonnegative in...
xnn0nemnf 12585 No extended nonnegative in...
xnn0xrnemnf 12586 The extended nonnegative i...
xnn0nnn0pnf 12587 An extended nonnegative in...
elz 12590 Membership in the set of i...
nnnegz 12591 The negative of a positive...
zre 12592 An integer is a real. (Co...
zcn 12593 An integer is a complex nu...
zrei 12594 An integer is a real numbe...
zssre 12595 The integers are a subset ...
zsscn 12596 The integers are a subset ...
zex 12597 The set of integers exists...
elnnz 12598 Positive integer property ...
0z 12599 Zero is an integer. (Cont...
0zd 12600 Zero is an integer, deduct...
elnn0z 12601 Nonnegative integer proper...
elznn0nn 12602 Integer property expressed...
elznn0 12603 Integer property expressed...
elznn 12604 Integer property expressed...
zle0orge1 12605 There is no integer in the...
elz2 12606 Membership in the set of i...
dfz2 12607 Alternative definition of ...
zexALT 12608 Alternate proof of ~ zex ....
nnz 12609 A positive integer is an i...
nnssz 12610 Positive integers are a su...
nn0ssz 12611 Nonnegative integers are a...
nnzOLD 12612 Obsolete version of ~ nnz ...
nn0z 12613 A nonnegative integer is a...
nn0zd 12614 A nonnegative integer is a...
nnzd 12615 A positive integer is an i...
nnzi 12616 A positive integer is an i...
nn0zi 12617 A nonnegative integer is a...
elnnz1 12618 Positive integer property ...
znnnlt1 12619 An integer is not a positi...
nnzrab 12620 Positive integers expresse...
nn0zrab 12621 Nonnegative integers expre...
1z 12622 One is an integer. (Contr...
1zzd 12623 One is an integer, deducti...
2z 12624 2 is an integer. (Contrib...
3z 12625 3 is an integer. (Contrib...
4z 12626 4 is an integer. (Contrib...
znegcl 12627 Closure law for negative i...
neg1z 12628 -1 is an integer. (Contri...
znegclb 12629 A complex number is an int...
nn0negz 12630 The negative of a nonnegat...
nn0negzi 12631 The negative of a nonnegat...
zaddcl 12632 Closure of addition of int...
peano2z 12633 Second Peano postulate gen...
zsubcl 12634 Closure of subtraction of ...
peano2zm 12635 "Reverse" second Peano pos...
zletr 12636 Transitive law of ordering...
zrevaddcl 12637 Reverse closure law for ad...
znnsub 12638 The positive difference of...
znn0sub 12639 The nonnegative difference...
nzadd 12640 The sum of a real number n...
zmulcl 12641 Closure of multiplication ...
zltp1le 12642 Integer ordering relation....
zleltp1 12643 Integer ordering relation....
zlem1lt 12644 Integer ordering relation....
zltlem1 12645 Integer ordering relation....
zgt0ge1 12646 An integer greater than ` ...
nnleltp1 12647 Positive integer ordering ...
nnltp1le 12648 Positive integer ordering ...
nnaddm1cl 12649 Closure of addition of pos...
nn0ltp1le 12650 Nonnegative integer orderi...
nn0leltp1 12651 Nonnegative integer orderi...
nn0ltlem1 12652 Nonnegative integer orderi...
nn0sub2 12653 Subtraction of nonnegative...
nn0lt10b 12654 A nonnegative integer less...
nn0lt2 12655 A nonnegative integer less...
nn0le2is012 12656 A nonnegative integer whic...
nn0lem1lt 12657 Nonnegative integer orderi...
nnlem1lt 12658 Positive integer ordering ...
nnltlem1 12659 Positive integer ordering ...
nnm1ge0 12660 A positive integer decreas...
nn0ge0div 12661 Division of a nonnegative ...
zdiv 12662 Two ways to express " ` M ...
zdivadd 12663 Property of divisibility: ...
zdivmul 12664 Property of divisibility: ...
zextle 12665 An extensionality-like pro...
zextlt 12666 An extensionality-like pro...
recnz 12667 The reciprocal of a number...
btwnnz 12668 A number between an intege...
gtndiv 12669 A larger number does not d...
halfnz 12670 One-half is not an integer...
3halfnz 12671 Three halves is not an int...
suprzcl 12672 The supremum of a bounded-...
prime 12673 Two ways to express " ` A ...
msqznn 12674 The square of a nonzero in...
zneo 12675 No even integer equals an ...
nneo 12676 A positive integer is even...
nneoi 12677 A positive integer is even...
zeo 12678 An integer is even or odd....
zeo2 12679 An integer is even or odd ...
peano2uz2 12680 Second Peano postulate for...
peano5uzi 12681 Peano's inductive postulat...
peano5uzti 12682 Peano's inductive postulat...
dfuzi 12683 An expression for the uppe...
uzind 12684 Induction on the upper int...
uzind2 12685 Induction on the upper int...
uzind3 12686 Induction on the upper int...
nn0ind 12687 Principle of Mathematical ...
nn0indALT 12688 Principle of Mathematical ...
nn0indd 12689 Principle of Mathematical ...
fzind 12690 Induction on the integers ...
fnn0ind 12691 Induction on the integers ...
nn0ind-raph 12692 Principle of Mathematical ...
zindd 12693 Principle of Mathematical ...
fzindd 12694 Induction on the integers ...
btwnz 12695 Any real number can be san...
zred 12696 An integer is a real numbe...
zcnd 12697 An integer is a complex nu...
znegcld 12698 Closure law for negative i...
peano2zd 12699 Deduction from second Pean...
zaddcld 12700 Closure of addition of int...
zsubcld 12701 Closure of subtraction of ...
zmulcld 12702 Closure of multiplication ...
znnn0nn 12703 The negative of a negative...
zadd2cl 12704 Increasing an integer by 2...
zriotaneg 12705 The negative of the unique...
suprfinzcl 12706 The supremum of a nonempty...
9p1e10 12709 9 + 1 = 10. (Contributed ...
dfdec10 12710 Version of the definition ...
decex 12711 A decimal number is a set....
deceq1 12712 Equality theorem for the d...
deceq2 12713 Equality theorem for the d...
deceq1i 12714 Equality theorem for the d...
deceq2i 12715 Equality theorem for the d...
deceq12i 12716 Equality theorem for the d...
numnncl 12717 Closure for a numeral (wit...
num0u 12718 Add a zero in the units pl...
num0h 12719 Add a zero in the higher p...
numcl 12720 Closure for a decimal inte...
numsuc 12721 The successor of a decimal...
deccl 12722 Closure for a numeral. (C...
10nn 12723 10 is a positive integer. ...
10pos 12724 The number 10 is positive....
10nn0 12725 10 is a nonnegative intege...
10re 12726 The number 10 is real. (C...
decnncl 12727 Closure for a numeral. (C...
dec0u 12728 Add a zero in the units pl...
dec0h 12729 Add a zero in the higher p...
numnncl2 12730 Closure for a decimal inte...
decnncl2 12731 Closure for a decimal inte...
numlt 12732 Comparing two decimal inte...
numltc 12733 Comparing two decimal inte...
le9lt10 12734 A "decimal digit" (i.e. a ...
declt 12735 Comparing two decimal inte...
decltc 12736 Comparing two decimal inte...
declth 12737 Comparing two decimal inte...
decsuc 12738 The successor of a decimal...
3declth 12739 Comparing two decimal inte...
3decltc 12740 Comparing two decimal inte...
decle 12741 Comparing two decimal inte...
decleh 12742 Comparing two decimal inte...
declei 12743 Comparing a digit to a dec...
numlti 12744 Comparing a digit to a dec...
declti 12745 Comparing a digit to a dec...
decltdi 12746 Comparing a digit to a dec...
numsucc 12747 The successor of a decimal...
decsucc 12748 The successor of a decimal...
1e0p1 12749 The successor of zero. (C...
dec10p 12750 Ten plus an integer. (Con...
numma 12751 Perform a multiply-add of ...
nummac 12752 Perform a multiply-add of ...
numma2c 12753 Perform a multiply-add of ...
numadd 12754 Add two decimal integers `...
numaddc 12755 Add two decimal integers `...
nummul1c 12756 The product of a decimal i...
nummul2c 12757 The product of a decimal i...
decma 12758 Perform a multiply-add of ...
decmac 12759 Perform a multiply-add of ...
decma2c 12760 Perform a multiply-add of ...
decadd 12761 Add two numerals ` M ` and...
decaddc 12762 Add two numerals ` M ` and...
decaddc2 12763 Add two numerals ` M ` and...
decrmanc 12764 Perform a multiply-add of ...
decrmac 12765 Perform a multiply-add of ...
decaddm10 12766 The sum of two multiples o...
decaddi 12767 Add two numerals ` M ` and...
decaddci 12768 Add two numerals ` M ` and...
decaddci2 12769 Add two numerals ` M ` and...
decsubi 12770 Difference between a numer...
decmul1 12771 The product of a numeral w...
decmul1c 12772 The product of a numeral w...
decmul2c 12773 The product of a numeral w...
decmulnc 12774 The product of a numeral w...
11multnc 12775 The product of 11 (as nume...
decmul10add 12776 A multiplication of a numb...
6p5lem 12777 Lemma for ~ 6p5e11 and rel...
5p5e10 12778 5 + 5 = 10. (Contributed ...
6p4e10 12779 6 + 4 = 10. (Contributed ...
6p5e11 12780 6 + 5 = 11. (Contributed ...
6p6e12 12781 6 + 6 = 12. (Contributed ...
7p3e10 12782 7 + 3 = 10. (Contributed ...
7p4e11 12783 7 + 4 = 11. (Contributed ...
7p5e12 12784 7 + 5 = 12. (Contributed ...
7p6e13 12785 7 + 6 = 13. (Contributed ...
7p7e14 12786 7 + 7 = 14. (Contributed ...
8p2e10 12787 8 + 2 = 10. (Contributed ...
8p3e11 12788 8 + 3 = 11. (Contributed ...
8p4e12 12789 8 + 4 = 12. (Contributed ...
8p5e13 12790 8 + 5 = 13. (Contributed ...
8p6e14 12791 8 + 6 = 14. (Contributed ...
8p7e15 12792 8 + 7 = 15. (Contributed ...
8p8e16 12793 8 + 8 = 16. (Contributed ...
9p2e11 12794 9 + 2 = 11. (Contributed ...
9p3e12 12795 9 + 3 = 12. (Contributed ...
9p4e13 12796 9 + 4 = 13. (Contributed ...
9p5e14 12797 9 + 5 = 14. (Contributed ...
9p6e15 12798 9 + 6 = 15. (Contributed ...
9p7e16 12799 9 + 7 = 16. (Contributed ...
9p8e17 12800 9 + 8 = 17. (Contributed ...
9p9e18 12801 9 + 9 = 18. (Contributed ...
10p10e20 12802 10 + 10 = 20. (Contribute...
10m1e9 12803 10 - 1 = 9. (Contributed ...
4t3lem 12804 Lemma for ~ 4t3e12 and rel...
4t3e12 12805 4 times 3 equals 12. (Con...
4t4e16 12806 4 times 4 equals 16. (Con...
5t2e10 12807 5 times 2 equals 10. (Con...
5t3e15 12808 5 times 3 equals 15. (Con...
5t4e20 12809 5 times 4 equals 20. (Con...
5t5e25 12810 5 times 5 equals 25. (Con...
6t2e12 12811 6 times 2 equals 12. (Con...
6t3e18 12812 6 times 3 equals 18. (Con...
6t4e24 12813 6 times 4 equals 24. (Con...
6t5e30 12814 6 times 5 equals 30. (Con...
6t6e36 12815 6 times 6 equals 36. (Con...
7t2e14 12816 7 times 2 equals 14. (Con...
7t3e21 12817 7 times 3 equals 21. (Con...
7t4e28 12818 7 times 4 equals 28. (Con...
7t5e35 12819 7 times 5 equals 35. (Con...
7t6e42 12820 7 times 6 equals 42. (Con...
7t7e49 12821 7 times 7 equals 49. (Con...
8t2e16 12822 8 times 2 equals 16. (Con...
8t3e24 12823 8 times 3 equals 24. (Con...
8t4e32 12824 8 times 4 equals 32. (Con...
8t5e40 12825 8 times 5 equals 40. (Con...
8t6e48 12826 8 times 6 equals 48. (Con...
8t7e56 12827 8 times 7 equals 56. (Con...
8t8e64 12828 8 times 8 equals 64. (Con...
9t2e18 12829 9 times 2 equals 18. (Con...
9t3e27 12830 9 times 3 equals 27. (Con...
9t4e36 12831 9 times 4 equals 36. (Con...
9t5e45 12832 9 times 5 equals 45. (Con...
9t6e54 12833 9 times 6 equals 54. (Con...
9t7e63 12834 9 times 7 equals 63. (Con...
9t8e72 12835 9 times 8 equals 72. (Con...
9t9e81 12836 9 times 9 equals 81. (Con...
9t11e99 12837 9 times 11 equals 99. (Co...
9lt10 12838 9 is less than 10. (Contr...
8lt10 12839 8 is less than 10. (Contr...
7lt10 12840 7 is less than 10. (Contr...
6lt10 12841 6 is less than 10. (Contr...
5lt10 12842 5 is less than 10. (Contr...
4lt10 12843 4 is less than 10. (Contr...
3lt10 12844 3 is less than 10. (Contr...
2lt10 12845 2 is less than 10. (Contr...
1lt10 12846 1 is less than 10. (Contr...
decbin0 12847 Decompose base 4 into base...
decbin2 12848 Decompose base 4 into base...
decbin3 12849 Decompose base 4 into base...
halfthird 12850 Half minus a third. (Cont...
5recm6rec 12851 One fifth minus one sixth....
uzval 12854 The value of the upper int...
uzf 12855 The domain and codomain of...
eluz1 12856 Membership in the upper se...
eluzel2 12857 Implication of membership ...
eluz2 12858 Membership in an upper set...
eluzmn 12859 Membership in an earlier u...
eluz1i 12860 Membership in an upper set...
eluzuzle 12861 An integer in an upper set...
eluzelz 12862 A member of an upper set o...
eluzelre 12863 A member of an upper set o...
eluzelcn 12864 A member of an upper set o...
eluzle 12865 Implication of membership ...
eluz 12866 Membership in an upper set...
uzid 12867 Membership of the least me...
uzidd 12868 Membership of the least me...
uzn0 12869 The upper integers are all...
uztrn 12870 Transitive law for sets of...
uztrn2 12871 Transitive law for sets of...
uzneg 12872 Contraposition law for upp...
uzssz 12873 An upper set of integers i...
uzssre 12874 An upper set of integers i...
uzss 12875 Subset relationship for tw...
uztric 12876 Totality of the ordering r...
uz11 12877 The upper integers functio...
eluzp1m1 12878 Membership in the next upp...
eluzp1l 12879 Strict ordering implied by...
eluzp1p1 12880 Membership in the next upp...
eluzadd 12881 Membership in a later uppe...
eluzsub 12882 Membership in an earlier u...
eluzaddi 12883 Membership in a later uppe...
eluzaddiOLD 12884 Obsolete version of ~ eluz...
eluzsubi 12885 Membership in an earlier u...
eluzsubiOLD 12886 Obsolete version of ~ eluz...
eluzaddOLD 12887 Obsolete version of ~ eluz...
eluzsubOLD 12888 Obsolete version of ~ eluz...
subeluzsub 12889 Membership of a difference...
uzm1 12890 Choices for an element of ...
uznn0sub 12891 The nonnegative difference...
uzin 12892 Intersection of two upper ...
uzp1 12893 Choices for an element of ...
nn0uz 12894 Nonnegative integers expre...
nnuz 12895 Positive integers expresse...
elnnuz 12896 A positive integer express...
elnn0uz 12897 A nonnegative integer expr...
eluz2nn 12898 An integer greater than or...
eluz4eluz2 12899 An integer greater than or...
eluz4nn 12900 An integer greater than or...
eluzge2nn0 12901 If an integer is greater t...
eluz2n0 12902 An integer greater than or...
uzuzle23 12903 An integer in the upper se...
eluzge3nn 12904 If an integer is greater t...
uz3m2nn 12905 An integer greater than or...
1eluzge0 12906 1 is an integer greater th...
2eluzge0 12907 2 is an integer greater th...
2eluzge1 12908 2 is an integer greater th...
uznnssnn 12909 The upper integers startin...
raluz 12910 Restricted universal quant...
raluz2 12911 Restricted universal quant...
rexuz 12912 Restricted existential qua...
rexuz2 12913 Restricted existential qua...
2rexuz 12914 Double existential quantif...
peano2uz 12915 Second Peano postulate for...
peano2uzs 12916 Second Peano postulate for...
peano2uzr 12917 Reversed second Peano axio...
uzaddcl 12918 Addition closure law for a...
nn0pzuz 12919 The sum of a nonnegative i...
uzind4 12920 Induction on the upper set...
uzind4ALT 12921 Induction on the upper set...
uzind4s 12922 Induction on the upper set...
uzind4s2 12923 Induction on the upper set...
uzind4i 12924 Induction on the upper int...
uzwo 12925 Well-ordering principle: a...
uzwo2 12926 Well-ordering principle: a...
nnwo 12927 Well-ordering principle: a...
nnwof 12928 Well-ordering principle: a...
nnwos 12929 Well-ordering principle: a...
indstr 12930 Strong Mathematical Induct...
eluznn0 12931 Membership in a nonnegativ...
eluznn 12932 Membership in a positive u...
eluz2b1 12933 Two ways to say "an intege...
eluz2gt1 12934 An integer greater than or...
eluz2b2 12935 Two ways to say "an intege...
eluz2b3 12936 Two ways to say "an intege...
uz2m1nn 12937 One less than an integer g...
1nuz2 12938 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12939 A positive integer is eith...
uz2mulcl 12940 Closure of multiplication ...
indstr2 12941 Strong Mathematical Induct...
uzinfi 12942 Extract the lower bound of...
nninf 12943 The infimum of the set of ...
nn0inf 12944 The infimum of the set of ...
infssuzle 12945 The infimum of a subset of...
infssuzcl 12946 The infimum of a subset of...
ublbneg 12947 The image under negation o...
eqreznegel 12948 Two ways to express the im...
supminf 12949 The supremum of a bounded-...
lbzbi 12950 If a set of reals is bound...
zsupss 12951 Any nonempty bounded subse...
suprzcl2 12952 The supremum of a bounded-...
suprzub 12953 The supremum of a bounded-...
uzsupss 12954 Any bounded subset of an u...
nn01to3 12955 A (nonnegative) integer be...
nn0ge2m1nnALT 12956 Alternate proof of ~ nn0ge...
uzwo3 12957 Well-ordering principle: a...
zmin 12958 There is a unique smallest...
zmax 12959 There is a unique largest ...
zbtwnre 12960 There is a unique integer ...
rebtwnz 12961 There is a unique greatest...
elq 12964 Membership in the set of r...
qmulz 12965 If ` A ` is rational, then...
znq 12966 The ratio of an integer an...
qre 12967 A rational number is a rea...
zq 12968 An integer is a rational n...
qred 12969 A rational number is a rea...
zssq 12970 The integers are a subset ...
nn0ssq 12971 The nonnegative integers a...
nnssq 12972 The positive integers are ...
qssre 12973 The rationals are a subset...
qsscn 12974 The rationals are a subset...
qex 12975 The set of rational number...
nnq 12976 A positive integer is rati...
qcn 12977 A rational number is a com...
qexALT 12978 Alternate proof of ~ qex ....
qaddcl 12979 Closure of addition of rat...
qnegcl 12980 Closure law for the negati...
qmulcl 12981 Closure of multiplication ...
qsubcl 12982 Closure of subtraction of ...
qreccl 12983 Closure of reciprocal of r...
qdivcl 12984 Closure of division of rat...
qrevaddcl 12985 Reverse closure law for ad...
nnrecq 12986 The reciprocal of a positi...
irradd 12987 The sum of an irrational n...
irrmul 12988 The product of an irration...
elpq 12989 A positive rational is the...
elpqb 12990 A class is a positive rati...
rpnnen1lem2 12991 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12992 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12993 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12994 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12995 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12996 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12997 One half of ~ rpnnen , whe...
reexALT 12998 Alternate proof of ~ reex ...
cnref1o 12999 There is a natural one-to-...
cnexALT 13000 The set of complex numbers...
xrex 13001 The set of extended reals ...
mpoaddex 13002 The addition operation is ...
addex 13003 The addition operation is ...
mpomulex 13004 The multiplication operati...
mulex 13005 The multiplication operati...
elrp 13008 Membership in the set of p...
elrpii 13009 Membership in the set of p...
1rp 13010 1 is a positive real. (Co...
2rp 13011 2 is a positive real. (Co...
3rp 13012 3 is a positive real. (Co...
rpssre 13013 The positive reals are a s...
rpre 13014 A positive real is a real....
rpxr 13015 A positive real is an exte...
rpcn 13016 A positive real is a compl...
nnrp 13017 A positive integer is a po...
rpgt0 13018 A positive real is greater...
rpge0 13019 A positive real is greater...
rpregt0 13020 A positive real is a posit...
rprege0 13021 A positive real is a nonne...
rpne0 13022 A positive real is nonzero...
rprene0 13023 A positive real is a nonze...
rpcnne0 13024 A positive real is a nonze...
rpcndif0 13025 A positive real number is ...
ralrp 13026 Quantification over positi...
rexrp 13027 Quantification over positi...
rpaddcl 13028 Closure law for addition o...
rpmulcl 13029 Closure law for multiplica...
rpmtmip 13030 "Minus times minus is plus...
rpdivcl 13031 Closure law for division o...
rpreccl 13032 Closure law for reciprocat...
rphalfcl 13033 Closure law for half of a ...
rpgecl 13034 A number greater than or e...
rphalflt 13035 Half of a positive real is...
rerpdivcl 13036 Closure law for division o...
ge0p1rp 13037 A nonnegative number plus ...
rpneg 13038 Either a nonzero real or i...
negelrp 13039 Elementhood of a negation ...
negelrpd 13040 The negation of a negative...
0nrp 13041 Zero is not a positive rea...
ltsubrp 13042 Subtracting a positive rea...
ltaddrp 13043 Adding a positive number t...
difrp 13044 Two ways to say one number...
elrpd 13045 Membership in the set of p...
nnrpd 13046 A positive integer is a po...
zgt1rpn0n1 13047 An integer greater than 1 ...
rpred 13048 A positive real is a real....
rpxrd 13049 A positive real is an exte...
rpcnd 13050 A positive real is a compl...
rpgt0d 13051 A positive real is greater...
rpge0d 13052 A positive real is greater...
rpne0d 13053 A positive real is nonzero...
rpregt0d 13054 A positive real is real an...
rprege0d 13055 A positive real is real an...
rprene0d 13056 A positive real is a nonze...
rpcnne0d 13057 A positive real is a nonze...
rpreccld 13058 Closure law for reciprocat...
rprecred 13059 Closure law for reciprocat...
rphalfcld 13060 Closure law for half of a ...
reclt1d 13061 The reciprocal of a positi...
recgt1d 13062 The reciprocal of a positi...
rpaddcld 13063 Closure law for addition o...
rpmulcld 13064 Closure law for multiplica...
rpdivcld 13065 Closure law for division o...
ltrecd 13066 The reciprocal of both sid...
lerecd 13067 The reciprocal of both sid...
ltrec1d 13068 Reciprocal swap in a 'less...
lerec2d 13069 Reciprocal swap in a 'less...
lediv2ad 13070 Division of both sides of ...
ltdiv2d 13071 Division of a positive num...
lediv2d 13072 Division of a positive num...
ledivdivd 13073 Invert ratios of positive ...
divge1 13074 The ratio of a number over...
divlt1lt 13075 A real number divided by a...
divle1le 13076 A real number divided by a...
ledivge1le 13077 If a number is less than o...
ge0p1rpd 13078 A nonnegative number plus ...
rerpdivcld 13079 Closure law for division o...
ltsubrpd 13080 Subtracting a positive rea...
ltaddrpd 13081 Adding a positive number t...
ltaddrp2d 13082 Adding a positive number t...
ltmulgt11d 13083 Multiplication by a number...
ltmulgt12d 13084 Multiplication by a number...
gt0divd 13085 Division of a positive num...
ge0divd 13086 Division of a nonnegative ...
rpgecld 13087 A number greater than or e...
divge0d 13088 The ratio of nonnegative a...
ltmul1d 13089 The ratio of nonnegative a...
ltmul2d 13090 Multiplication of both sid...
lemul1d 13091 Multiplication of both sid...
lemul2d 13092 Multiplication of both sid...
ltdiv1d 13093 Division of both sides of ...
lediv1d 13094 Division of both sides of ...
ltmuldivd 13095 'Less than' relationship b...
ltmuldiv2d 13096 'Less than' relationship b...
lemuldivd 13097 'Less than or equal to' re...
lemuldiv2d 13098 'Less than or equal to' re...
ltdivmuld 13099 'Less than' relationship b...
ltdivmul2d 13100 'Less than' relationship b...
ledivmuld 13101 'Less than or equal to' re...
ledivmul2d 13102 'Less than or equal to' re...
ltmul1dd 13103 The ratio of nonnegative a...
ltmul2dd 13104 Multiplication of both sid...
ltdiv1dd 13105 Division of both sides of ...
lediv1dd 13106 Division of both sides of ...
lediv12ad 13107 Comparison of ratio of two...
mul2lt0rlt0 13108 If the result of a multipl...
mul2lt0rgt0 13109 If the result of a multipl...
mul2lt0llt0 13110 If the result of a multipl...
mul2lt0lgt0 13111 If the result of a multipl...
mul2lt0bi 13112 If the result of a multipl...
prodge0rd 13113 Infer that a multiplicand ...
prodge0ld 13114 Infer that a multiplier is...
ltdiv23d 13115 Swap denominator with othe...
lediv23d 13116 Swap denominator with othe...
lt2mul2divd 13117 The ratio of nonnegative a...
nnledivrp 13118 Division of a positive int...
nn0ledivnn 13119 Division of a nonnegative ...
addlelt 13120 If the sum of a real numbe...
ltxr 13127 The 'less than' binary rel...
elxr 13128 Membership in the set of e...
xrnemnf 13129 An extended real other tha...
xrnepnf 13130 An extended real other tha...
xrltnr 13131 The extended real 'less th...
ltpnf 13132 Any (finite) real is less ...
ltpnfd 13133 Any (finite) real is less ...
0ltpnf 13134 Zero is less than plus inf...
mnflt 13135 Minus infinity is less tha...
mnfltd 13136 Minus infinity is less tha...
mnflt0 13137 Minus infinity is less tha...
mnfltpnf 13138 Minus infinity is less tha...
mnfltxr 13139 Minus infinity is less tha...
pnfnlt 13140 No extended real is greate...
nltmnf 13141 No extended real is less t...
pnfge 13142 Plus infinity is an upper ...
xnn0n0n1ge2b 13143 An extended nonnegative in...
0lepnf 13144 0 less than or equal to po...
xnn0ge0 13145 An extended nonnegative in...
mnfle 13146 Minus infinity is less tha...
mnfled 13147 Minus infinity is less tha...
xrltnsym 13148 Ordering on the extended r...
xrltnsym2 13149 'Less than' is antisymmetr...
xrlttri 13150 Ordering on the extended r...
xrlttr 13151 Ordering on the extended r...
xrltso 13152 'Less than' is a strict or...
xrlttri2 13153 Trichotomy law for 'less t...
xrlttri3 13154 Trichotomy law for 'less t...
xrleloe 13155 'Less than or equal' expre...
xrleltne 13156 'Less than or equal to' im...
xrltlen 13157 'Less than' expressed in t...
dfle2 13158 Alternative definition of ...
dflt2 13159 Alternative definition of ...
xrltle 13160 'Less than' implies 'less ...
xrltled 13161 'Less than' implies 'less ...
xrleid 13162 'Less than or equal to' is...
xrleidd 13163 'Less than or equal to' is...
xrletri 13164 Trichotomy law for extende...
xrletri3 13165 Trichotomy law for extende...
xrletrid 13166 Trichotomy law for extende...
xrlelttr 13167 Transitive law for orderin...
xrltletr 13168 Transitive law for orderin...
xrletr 13169 Transitive law for orderin...
xrlttrd 13170 Transitive law for orderin...
xrlelttrd 13171 Transitive law for orderin...
xrltletrd 13172 Transitive law for orderin...
xrletrd 13173 Transitive law for orderin...
xrltne 13174 'Less than' implies not eq...
nltpnft 13175 An extended real is not le...
xgepnf 13176 An extended real which is ...
ngtmnft 13177 An extended real is not gr...
xlemnf 13178 An extended real which is ...
xrrebnd 13179 An extended real is real i...
xrre 13180 A way of proving that an e...
xrre2 13181 An extended real between t...
xrre3 13182 A way of proving that an e...
ge0gtmnf 13183 A nonnegative extended rea...
ge0nemnf 13184 A nonnegative extended rea...
xrrege0 13185 A nonnegative extended rea...
xrmax1 13186 An extended real is less t...
xrmax2 13187 An extended real is less t...
xrmin1 13188 The minimum of two extende...
xrmin2 13189 The minimum of two extende...
xrmaxeq 13190 The maximum of two extende...
xrmineq 13191 The minimum of two extende...
xrmaxlt 13192 Two ways of saying the max...
xrltmin 13193 Two ways of saying an exte...
xrmaxle 13194 Two ways of saying the max...
xrlemin 13195 Two ways of saying a numbe...
max1 13196 A number is less than or e...
max1ALT 13197 A number is less than or e...
max2 13198 A number is less than or e...
2resupmax 13199 The supremum of two real n...
min1 13200 The minimum of two numbers...
min2 13201 The minimum of two numbers...
maxle 13202 Two ways of saying the max...
lemin 13203 Two ways of saying a numbe...
maxlt 13204 Two ways of saying the max...
ltmin 13205 Two ways of saying a numbe...
lemaxle 13206 A real number which is les...
max0sub 13207 Decompose a real number in...
ifle 13208 An if statement transforms...
z2ge 13209 There exists an integer gr...
qbtwnre 13210 The rational numbers are d...
qbtwnxr 13211 The rational numbers are d...
qsqueeze 13212 If a nonnegative real is l...
qextltlem 13213 Lemma for ~ qextlt and qex...
qextlt 13214 An extensionality-like pro...
qextle 13215 An extensionality-like pro...
xralrple 13216 Show that ` A ` is less th...
alrple 13217 Show that ` A ` is less th...
xnegeq 13218 Equality of two extended n...
xnegex 13219 A negative extended real e...
xnegpnf 13220 Minus ` +oo ` . Remark of...
xnegmnf 13221 Minus ` -oo ` . Remark of...
rexneg 13222 Minus a real number. Rema...
xneg0 13223 The negative of zero. (Co...
xnegcl 13224 Closure of extended real n...
xnegneg 13225 Extended real version of ~...
xneg11 13226 Extended real version of ~...
xltnegi 13227 Forward direction of ~ xlt...
xltneg 13228 Extended real version of ~...
xleneg 13229 Extended real version of ~...
xlt0neg1 13230 Extended real version of ~...
xlt0neg2 13231 Extended real version of ~...
xle0neg1 13232 Extended real version of ~...
xle0neg2 13233 Extended real version of ~...
xaddval 13234 Value of the extended real...
xaddf 13235 The extended real addition...
xmulval 13236 Value of the extended real...
xaddpnf1 13237 Addition of positive infin...
xaddpnf2 13238 Addition of positive infin...
xaddmnf1 13239 Addition of negative infin...
xaddmnf2 13240 Addition of negative infin...
pnfaddmnf 13241 Addition of positive and n...
mnfaddpnf 13242 Addition of negative and p...
rexadd 13243 The extended real addition...
rexsub 13244 Extended real subtraction ...
rexaddd 13245 The extended real addition...
xnn0xaddcl 13246 The extended nonnegative i...
xaddnemnf 13247 Closure of extended real a...
xaddnepnf 13248 Closure of extended real a...
xnegid 13249 Extended real version of ~...
xaddcl 13250 The extended real addition...
xaddcom 13251 The extended real addition...
xaddrid 13252 Extended real version of ~...
xaddlid 13253 Extended real version of ~...
xaddridd 13254 ` 0 ` is a right identity ...
xnn0lem1lt 13255 Extended nonnegative integ...
xnn0lenn0nn0 13256 An extended nonnegative in...
xnn0le2is012 13257 An extended nonnegative in...
xnn0xadd0 13258 The sum of two extended no...
xnegdi 13259 Extended real version of ~...
xaddass 13260 Associativity of extended ...
xaddass2 13261 Associativity of extended ...
xpncan 13262 Extended real version of ~...
xnpcan 13263 Extended real version of ~...
xleadd1a 13264 Extended real version of ~...
xleadd2a 13265 Commuted form of ~ xleadd1...
xleadd1 13266 Weakened version of ~ xlea...
xltadd1 13267 Extended real version of ~...
xltadd2 13268 Extended real version of ~...
xaddge0 13269 The sum of nonnegative ext...
xle2add 13270 Extended real version of ~...
xlt2add 13271 Extended real version of ~...
xsubge0 13272 Extended real version of ~...
xposdif 13273 Extended real version of ~...
xlesubadd 13274 Under certain conditions, ...
xmullem 13275 Lemma for ~ rexmul . (Con...
xmullem2 13276 Lemma for ~ xmulneg1 . (C...
xmulcom 13277 Extended real multiplicati...
xmul01 13278 Extended real version of ~...
xmul02 13279 Extended real version of ~...
xmulneg1 13280 Extended real version of ~...
xmulneg2 13281 Extended real version of ~...
rexmul 13282 The extended real multipli...
xmulf 13283 The extended real multipli...
xmulcl 13284 Closure of extended real m...
xmulpnf1 13285 Multiplication by plus inf...
xmulpnf2 13286 Multiplication by plus inf...
xmulmnf1 13287 Multiplication by minus in...
xmulmnf2 13288 Multiplication by minus in...
xmulpnf1n 13289 Multiplication by plus inf...
xmulrid 13290 Extended real version of ~...
xmullid 13291 Extended real version of ~...
xmulm1 13292 Extended real version of ~...
xmulasslem2 13293 Lemma for ~ xmulass . (Co...
xmulgt0 13294 Extended real version of ~...
xmulge0 13295 Extended real version of ~...
xmulasslem 13296 Lemma for ~ xmulass . (Co...
xmulasslem3 13297 Lemma for ~ xmulass . (Co...
xmulass 13298 Associativity of the exten...
xlemul1a 13299 Extended real version of ~...
xlemul2a 13300 Extended real version of ~...
xlemul1 13301 Extended real version of ~...
xlemul2 13302 Extended real version of ~...
xltmul1 13303 Extended real version of ~...
xltmul2 13304 Extended real version of ~...
xadddilem 13305 Lemma for ~ xadddi . (Con...
xadddi 13306 Distributive property for ...
xadddir 13307 Commuted version of ~ xadd...
xadddi2 13308 The assumption that the mu...
xadddi2r 13309 Commuted version of ~ xadd...
x2times 13310 Extended real version of ~...
xnegcld 13311 Closure of extended real n...
xaddcld 13312 The extended real addition...
xmulcld 13313 Closure of extended real m...
xadd4d 13314 Rearrangement of 4 terms i...
xnn0add4d 13315 Rearrangement of 4 terms i...
xrsupexmnf 13316 Adding minus infinity to a...
xrinfmexpnf 13317 Adding plus infinity to a ...
xrsupsslem 13318 Lemma for ~ xrsupss . (Co...
xrinfmsslem 13319 Lemma for ~ xrinfmss . (C...
xrsupss 13320 Any subset of extended rea...
xrinfmss 13321 Any subset of extended rea...
xrinfmss2 13322 Any subset of extended rea...
xrub 13323 By quantifying only over r...
supxr 13324 The supremum of a set of e...
supxr2 13325 The supremum of a set of e...
supxrcl 13326 The supremum of an arbitra...
supxrun 13327 The supremum of the union ...
supxrmnf 13328 Adding minus infinity to a...
supxrpnf 13329 The supremum of a set of e...
supxrunb1 13330 The supremum of an unbound...
supxrunb2 13331 The supremum of an unbound...
supxrbnd1 13332 The supremum of a bounded-...
supxrbnd2 13333 The supremum of a bounded-...
xrsup0 13334 The supremum of an empty s...
supxrub 13335 A member of a set of exten...
supxrlub 13336 The supremum of a set of e...
supxrleub 13337 The supremum of a set of e...
supxrre 13338 The real and extended real...
supxrbnd 13339 The supremum of a bounded-...
supxrgtmnf 13340 The supremum of a nonempty...
supxrre1 13341 The supremum of a nonempty...
supxrre2 13342 The supremum of a nonempty...
supxrss 13343 Smaller sets of extended r...
infxrcl 13344 The infimum of an arbitrar...
infxrlb 13345 A member of a set of exten...
infxrgelb 13346 The infimum of a set of ex...
infxrre 13347 The real and extended real...
infxrmnf 13348 The infinimum of a set of ...
xrinf0 13349 The infimum of the empty s...
infxrss 13350 Larger sets of extended re...
reltre 13351 For all real numbers there...
rpltrp 13352 For all positive real numb...
reltxrnmnf 13353 For all extended real numb...
infmremnf 13354 The infimum of the reals i...
infmrp1 13355 The infimum of the positiv...
ixxval 13364 Value of the interval func...
elixx1 13365 Membership in an interval ...
ixxf 13366 The set of intervals of ex...
ixxex 13367 The set of intervals of ex...
ixxssxr 13368 The set of intervals of ex...
elixx3g 13369 Membership in a set of ope...
ixxssixx 13370 An interval is a subset of...
ixxdisj 13371 Split an interval into dis...
ixxun 13372 Split an interval into two...
ixxin 13373 Intersection of two interv...
ixxss1 13374 Subset relationship for in...
ixxss2 13375 Subset relationship for in...
ixxss12 13376 Subset relationship for in...
ixxub 13377 Extract the upper bound of...
ixxlb 13378 Extract the lower bound of...
iooex 13379 The set of open intervals ...
iooval 13380 Value of the open interval...
ioo0 13381 An empty open interval of ...
ioon0 13382 An open interval of extend...
ndmioo 13383 The open interval function...
iooid 13384 An open interval with iden...
elioo3g 13385 Membership in a set of ope...
elioore 13386 A member of an open interv...
lbioo 13387 An open interval does not ...
ubioo 13388 An open interval does not ...
iooval2 13389 Value of the open interval...
iooin 13390 Intersection of two open i...
iooss1 13391 Subset relationship for op...
iooss2 13392 Subset relationship for op...
iocval 13393 Value of the open-below, c...
icoval 13394 Value of the closed-below,...
iccval 13395 Value of the closed interv...
elioo1 13396 Membership in an open inte...
elioo2 13397 Membership in an open inte...
elioc1 13398 Membership in an open-belo...
elico1 13399 Membership in a closed-bel...
elicc1 13400 Membership in a closed int...
iccid 13401 A closed interval with ide...
ico0 13402 An empty open interval of ...
ioc0 13403 An empty open interval of ...
icc0 13404 An empty closed interval o...
dfrp2 13405 Alternate definition of th...
elicod 13406 Membership in a left-close...
icogelb 13407 An element of a left-close...
elicore 13408 A member of a left-closed ...
ubioc1 13409 The upper bound belongs to...
lbico1 13410 The lower bound belongs to...
iccleub 13411 An element of a closed int...
iccgelb 13412 An element of a closed int...
elioo5 13413 Membership in an open inte...
eliooxr 13414 A nonempty open interval s...
eliooord 13415 Ordering implied by a memb...
elioo4g 13416 Membership in an open inte...
ioossre 13417 An open interval is a set ...
ioosscn 13418 An open interval is a set ...
elioc2 13419 Membership in an open-belo...
elico2 13420 Membership in a closed-bel...
elicc2 13421 Membership in a closed rea...
elicc2i 13422 Inference for membership i...
elicc4 13423 Membership in a closed rea...
iccss 13424 Condition for a closed int...
iccssioo 13425 Condition for a closed int...
icossico 13426 Condition for a closed-bel...
iccss2 13427 Condition for a closed int...
iccssico 13428 Condition for a closed int...
iccssioo2 13429 Condition for a closed int...
iccssico2 13430 Condition for a closed int...
ioomax 13431 The open interval from min...
iccmax 13432 The closed interval from m...
ioopos 13433 The set of positive reals ...
ioorp 13434 The set of positive reals ...
iooshf 13435 Shift the arguments of the...
iocssre 13436 A closed-above interval wi...
icossre 13437 A closed-below interval wi...
iccssre 13438 A closed real interval is ...
iccssxr 13439 A closed interval is a set...
iocssxr 13440 An open-below, closed-abov...
icossxr 13441 A closed-below, open-above...
ioossicc 13442 An open interval is a subs...
iccssred 13443 A closed real interval is ...
eliccxr 13444 A member of a closed inter...
icossicc 13445 A closed-below, open-above...
iocssicc 13446 A closed-above, open-below...
ioossico 13447 An open interval is a subs...
iocssioo 13448 Condition for a closed int...
icossioo 13449 Condition for a closed int...
ioossioo 13450 Condition for an open inte...
iccsupr 13451 A nonempty subset of a clo...
elioopnf 13452 Membership in an unbounded...
elioomnf 13453 Membership in an unbounded...
elicopnf 13454 Membership in a closed unb...
repos 13455 Two ways of saying that a ...
ioof 13456 The set of open intervals ...
iccf 13457 The set of closed interval...
unirnioo 13458 The union of the range of ...
dfioo2 13459 Alternate definition of th...
ioorebas 13460 Open intervals are element...
xrge0neqmnf 13461 A nonnegative extended rea...
xrge0nre 13462 An extended real which is ...
elrege0 13463 The predicate "is a nonneg...
nn0rp0 13464 A nonnegative integer is a...
rge0ssre 13465 Nonnegative real numbers a...
elxrge0 13466 Elementhood in the set of ...
0e0icopnf 13467 0 is a member of ` ( 0 [,)...
0e0iccpnf 13468 0 is a member of ` ( 0 [,]...
ge0addcl 13469 The nonnegative reals are ...
ge0mulcl 13470 The nonnegative reals are ...
ge0xaddcl 13471 The nonnegative reals are ...
ge0xmulcl 13472 The nonnegative extended r...
lbicc2 13473 The lower bound of a close...
ubicc2 13474 The upper bound of a close...
elicc01 13475 Membership in the closed r...
elunitrn 13476 The closed unit interval i...
elunitcn 13477 The closed unit interval i...
0elunit 13478 Zero is an element of the ...
1elunit 13479 One is an element of the c...
iooneg 13480 Membership in a negated op...
iccneg 13481 Membership in a negated cl...
icoshft 13482 A shifted real is a member...
icoshftf1o 13483 Shifting a closed-below, o...
icoun 13484 The union of two adjacent ...
icodisj 13485 Adjacent left-closed right...
ioounsn 13486 The union of an open inter...
snunioo 13487 The closure of one end of ...
snunico 13488 The closure of the open en...
snunioc 13489 The closure of the open en...
prunioo 13490 The closure of an open rea...
ioodisj 13491 If the upper bound of one ...
ioojoin 13492 Join two open intervals to...
difreicc 13493 The class difference of ` ...
iccsplit 13494 Split a closed interval in...
iccshftr 13495 Membership in a shifted in...
iccshftri 13496 Membership in a shifted in...
iccshftl 13497 Membership in a shifted in...
iccshftli 13498 Membership in a shifted in...
iccdil 13499 Membership in a dilated in...
iccdili 13500 Membership in a dilated in...
icccntr 13501 Membership in a contracted...
icccntri 13502 Membership in a contracted...
divelunit 13503 A condition for a ratio to...
lincmb01cmp 13504 A linear combination of tw...
iccf1o 13505 Describe a bijection from ...
iccen 13506 Any nontrivial closed inte...
xov1plusxeqvd 13507 A complex number ` X ` is ...
unitssre 13508 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13509 The closed unit interval i...
supicc 13510 Supremum of a bounded set ...
supiccub 13511 The supremum of a bounded ...
supicclub 13512 The supremum of a bounded ...
supicclub2 13513 The supremum of a bounded ...
zltaddlt1le 13514 The sum of an integer and ...
xnn0xrge0 13515 An extended nonnegative in...
fzval 13518 The value of a finite set ...
fzval2 13519 An alternative way of expr...
fzf 13520 Establish the domain and c...
elfz1 13521 Membership in a finite set...
elfz 13522 Membership in a finite set...
elfz2 13523 Membership in a finite set...
elfzd 13524 Membership in a finite set...
elfz5 13525 Membership in a finite set...
elfz4 13526 Membership in a finite set...
elfzuzb 13527 Membership in a finite set...
eluzfz 13528 Membership in a finite set...
elfzuz 13529 A member of a finite set o...
elfzuz3 13530 Membership in a finite set...
elfzel2 13531 Membership in a finite set...
elfzel1 13532 Membership in a finite set...
elfzelz 13533 A member of a finite set o...
elfzelzd 13534 A member of a finite set o...
fzssz 13535 A finite sequence of integ...
elfzle1 13536 A member of a finite set o...
elfzle2 13537 A member of a finite set o...
elfzuz2 13538 Implication of membership ...
elfzle3 13539 Membership in a finite set...
eluzfz1 13540 Membership in a finite set...
eluzfz2 13541 Membership in a finite set...
eluzfz2b 13542 Membership in a finite set...
elfz3 13543 Membership in a finite set...
elfz1eq 13544 Membership in a finite set...
elfzubelfz 13545 If there is a member in a ...
peano2fzr 13546 A Peano-postulate-like the...
fzn0 13547 Properties of a finite int...
fz0 13548 A finite set of sequential...
fzn 13549 A finite set of sequential...
fzen 13550 A shifted finite set of se...
fz1n 13551 A 1-based finite set of se...
0nelfz1 13552 0 is not an element of a f...
0fz1 13553 Two ways to say a finite 1...
fz10 13554 There are no integers betw...
uzsubsubfz 13555 Membership of an integer g...
uzsubsubfz1 13556 Membership of an integer g...
ige3m2fz 13557 Membership of an integer g...
fzsplit2 13558 Split a finite interval of...
fzsplit 13559 Split a finite interval of...
fzdisj 13560 Condition for two finite i...
fz01en 13561 0-based and 1-based finite...
elfznn 13562 A member of a finite set o...
elfz1end 13563 A nonempty finite range of...
fz1ssnn 13564 A finite set of positive i...
fznn0sub 13565 Subtraction closure for a ...
fzmmmeqm 13566 Subtracting the difference...
fzaddel 13567 Membership of a sum in a f...
fzadd2 13568 Membership of a sum in a f...
fzsubel 13569 Membership of a difference...
fzopth 13570 A finite set of sequential...
fzass4 13571 Two ways to express a nond...
fzss1 13572 Subset relationship for fi...
fzss2 13573 Subset relationship for fi...
fzssuz 13574 A finite set of sequential...
fzsn 13575 A finite interval of integ...
fzssp1 13576 Subset relationship for fi...
fzssnn 13577 Finite sets of sequential ...
ssfzunsnext 13578 A subset of a finite seque...
ssfzunsn 13579 A subset of a finite seque...
fzsuc 13580 Join a successor to the en...
fzpred 13581 Join a predecessor to the ...
fzpreddisj 13582 A finite set of sequential...
elfzp1 13583 Append an element to a fin...
fzp1ss 13584 Subset relationship for fi...
fzelp1 13585 Membership in a set of seq...
fzp1elp1 13586 Add one to an element of a...
fznatpl1 13587 Shift membership in a fini...
fzpr 13588 A finite interval of integ...
fztp 13589 A finite interval of integ...
fz12pr 13590 An integer range between 1...
fzsuc2 13591 Join a successor to the en...
fzp1disj 13592 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13593 Remove a successor from th...
fzprval 13594 Two ways of defining the f...
fztpval 13595 Two ways of defining the f...
fzrev 13596 Reversal of start and end ...
fzrev2 13597 Reversal of start and end ...
fzrev2i 13598 Reversal of start and end ...
fzrev3 13599 The "complement" of a memb...
fzrev3i 13600 The "complement" of a memb...
fznn 13601 Finite set of sequential i...
elfz1b 13602 Membership in a 1-based fi...
elfz1uz 13603 Membership in a 1-based fi...
elfzm11 13604 Membership in a finite set...
uzsplit 13605 Express an upper integer s...
uzdisj 13606 The first ` N ` elements o...
fseq1p1m1 13607 Add/remove an item to/from...
fseq1m1p1 13608 Add/remove an item to/from...
fz1sbc 13609 Quantification over a one-...
elfzp1b 13610 An integer is a member of ...
elfzm1b 13611 An integer is a member of ...
elfzp12 13612 Options for membership in ...
fzm1 13613 Choices for an element of ...
fzneuz 13614 No finite set of sequentia...
fznuz 13615 Disjointness of the upper ...
uznfz 13616 Disjointness of the upper ...
fzp1nel 13617 One plus the upper bound o...
fzrevral 13618 Reversal of scanning order...
fzrevral2 13619 Reversal of scanning order...
fzrevral3 13620 Reversal of scanning order...
fzshftral 13621 Shift the scanning order i...
ige2m1fz1 13622 Membership of an integer g...
ige2m1fz 13623 Membership in a 0-based fi...
elfz2nn0 13624 Membership in a finite set...
fznn0 13625 Characterization of a fini...
elfznn0 13626 A member of a finite set o...
elfz3nn0 13627 The upper bound of a nonem...
fz0ssnn0 13628 Finite sets of sequential ...
fz1ssfz0 13629 Subset relationship for fi...
0elfz 13630 0 is an element of a finit...
nn0fz0 13631 A nonnegative integer is a...
elfz0add 13632 An element of a finite set...
fz0sn 13633 An integer range from 0 to...
fz0tp 13634 An integer range from 0 to...
fz0to3un2pr 13635 An integer range from 0 to...
fz0to4untppr 13636 An integer range from 0 to...
elfz0ubfz0 13637 An element of a finite set...
elfz0fzfz0 13638 A member of a finite set o...
fz0fzelfz0 13639 If a member of a finite se...
fznn0sub2 13640 Subtraction closure for a ...
uzsubfz0 13641 Membership of an integer g...
fz0fzdiffz0 13642 The difference of an integ...
elfzmlbm 13643 Subtracting the lower boun...
elfzmlbp 13644 Subtracting the lower boun...
fzctr 13645 Lemma for theorems about t...
difelfzle 13646 The difference of two inte...
difelfznle 13647 The difference of two inte...
nn0split 13648 Express the set of nonnega...
nn0disj 13649 The first ` N + 1 ` elemen...
fz0sn0fz1 13650 A finite set of sequential...
fvffz0 13651 The function value of a fu...
1fv 13652 A function on a singleton....
4fvwrd4 13653 The first four function va...
2ffzeq 13654 Two functions over 0-based...
preduz 13655 The value of the predecess...
prednn 13656 The value of the predecess...
prednn0 13657 The value of the predecess...
predfz 13658 Calculate the predecessor ...
fzof 13661 Functionality of the half-...
elfzoel1 13662 Reverse closure for half-o...
elfzoel2 13663 Reverse closure for half-o...
elfzoelz 13664 Reverse closure for half-o...
fzoval 13665 Value of the half-open int...
elfzo 13666 Membership in a half-open ...
elfzo2 13667 Membership in a half-open ...
elfzouz 13668 Membership in a half-open ...
nelfzo 13669 An integer not being a mem...
fzolb 13670 The left endpoint of a hal...
fzolb2 13671 The left endpoint of a hal...
elfzole1 13672 A member in a half-open in...
elfzolt2 13673 A member in a half-open in...
elfzolt3 13674 Membership in a half-open ...
elfzolt2b 13675 A member in a half-open in...
elfzolt3b 13676 Membership in a half-open ...
elfzop1le2 13677 A member in a half-open in...
fzonel 13678 A half-open range does not...
elfzouz2 13679 The upper bound of a half-...
elfzofz 13680 A half-open range is conta...
elfzo3 13681 Express membership in a ha...
fzon0 13682 A half-open integer interv...
fzossfz 13683 A half-open range is conta...
fzossz 13684 A half-open integer interv...
fzon 13685 A half-open set of sequent...
fzo0n 13686 A half-open range of nonne...
fzonlt0 13687 A half-open integer range ...
fzo0 13688 Half-open sets with equal ...
fzonnsub 13689 If ` K < N ` then ` N - K ...
fzonnsub2 13690 If ` M < N ` then ` N - M ...
fzoss1 13691 Subset relationship for ha...
fzoss2 13692 Subset relationship for ha...
fzossrbm1 13693 Subset of a half-open rang...
fzo0ss1 13694 Subset relationship for ha...
fzossnn0 13695 A half-open integer range ...
fzospliti 13696 One direction of splitting...
fzosplit 13697 Split a half-open integer ...
fzodisj 13698 Abutting half-open integer...
fzouzsplit 13699 Split an upper integer set...
fzouzdisj 13700 A half-open integer range ...
fzoun 13701 A half-open integer range ...
fzodisjsn 13702 A half-open integer range ...
prinfzo0 13703 The intersection of a half...
lbfzo0 13704 An integer is strictly gre...
elfzo0 13705 Membership in a half-open ...
elfzo0z 13706 Membership in a half-open ...
nn0p1elfzo 13707 A nonnegative integer incr...
elfzo0le 13708 A member in a half-open ra...
elfzonn0 13709 A member of a half-open ra...
fzonmapblen 13710 The result of subtracting ...
fzofzim 13711 If a nonnegative integer i...
fz1fzo0m1 13712 Translation of one between...
fzossnn 13713 Half-open integer ranges s...
elfzo1 13714 Membership in a half-open ...
fzo1fzo0n0 13715 An integer between 1 and a...
fzo0n0 13716 A half-open integer range ...
fzoaddel 13717 Translate membership in a ...
fzo0addel 13718 Translate membership in a ...
fzo0addelr 13719 Translate membership in a ...
fzoaddel2 13720 Translate membership in a ...
elfzoext 13721 Membership of an integer i...
elincfzoext 13722 Membership of an increased...
fzosubel 13723 Translate membership in a ...
fzosubel2 13724 Membership in a translated...
fzosubel3 13725 Membership in a translated...
eluzgtdifelfzo 13726 Membership of the differen...
ige2m2fzo 13727 Membership of an integer g...
fzocatel 13728 Translate membership in a ...
ubmelfzo 13729 If an integer in a 1-based...
elfzodifsumelfzo 13730 If an integer is in a half...
elfzom1elp1fzo 13731 Membership of an integer i...
elfzom1elfzo 13732 Membership in a half-open ...
fzval3 13733 Expressing a closed intege...
fz0add1fz1 13734 Translate membership in a ...
fzosn 13735 Expressing a singleton as ...
elfzomin 13736 Membership of an integer i...
zpnn0elfzo 13737 Membership of an integer i...
zpnn0elfzo1 13738 Membership of an integer i...
fzosplitsnm1 13739 Removing a singleton from ...
elfzonlteqm1 13740 If an element of a half-op...
fzonn0p1 13741 A nonnegative integer is e...
fzossfzop1 13742 A half-open range of nonne...
fzonn0p1p1 13743 If a nonnegative integer i...
elfzom1p1elfzo 13744 Increasing an element of a...
fzo0ssnn0 13745 Half-open integer ranges s...
fzo01 13746 Expressing the singleton o...
fzo12sn 13747 A 1-based half-open intege...
fzo13pr 13748 A 1-based half-open intege...
fzo0to2pr 13749 A half-open integer range ...
fzo0to3tp 13750 A half-open integer range ...
fzo0to42pr 13751 A half-open integer range ...
fzo1to4tp 13752 A half-open integer range ...
fzo0sn0fzo1 13753 A half-open range of nonne...
elfzo0l 13754 A member of a half-open ra...
fzoend 13755 The endpoint of a half-ope...
fzo0end 13756 The endpoint of a zero-bas...
ssfzo12 13757 Subset relationship for ha...
ssfzoulel 13758 If a half-open integer ran...
ssfzo12bi 13759 Subset relationship for ha...
ubmelm1fzo 13760 The result of subtracting ...
fzofzp1 13761 If a point is in a half-op...
fzofzp1b 13762 If a point is in a half-op...
elfzom1b 13763 An integer is a member of ...
elfzom1elp1fzo1 13764 Membership of a nonnegativ...
elfzo1elm1fzo0 13765 Membership of a positive i...
elfzonelfzo 13766 If an element of a half-op...
fzonfzoufzol 13767 If an element of a half-op...
elfzomelpfzo 13768 An integer increased by an...
elfznelfzo 13769 A value in a finite set of...
elfznelfzob 13770 A value in a finite set of...
peano2fzor 13771 A Peano-postulate-like the...
fzosplitsn 13772 Extending a half-open rang...
fzosplitpr 13773 Extending a half-open inte...
fzosplitprm1 13774 Extending a half-open inte...
fzosplitsni 13775 Membership in a half-open ...
fzisfzounsn 13776 A finite interval of integ...
elfzr 13777 A member of a finite inter...
elfzlmr 13778 A member of a finite inter...
elfz0lmr 13779 A member of a finite inter...
fzostep1 13780 Two possibilities for a nu...
fzoshftral 13781 Shift the scanning order i...
fzind2 13782 Induction on the integers ...
fvinim0ffz 13783 The function values for th...
injresinjlem 13784 Lemma for ~ injresinj . (...
injresinj 13785 A function whose restricti...
subfzo0 13786 The difference between two...
flval 13791 Value of the floor (greate...
flcl 13792 The floor (greatest intege...
reflcl 13793 The floor (greatest intege...
fllelt 13794 A basic property of the fl...
flcld 13795 The floor (greatest intege...
flle 13796 A basic property of the fl...
flltp1 13797 A basic property of the fl...
fllep1 13798 A basic property of the fl...
fraclt1 13799 The fractional part of a r...
fracle1 13800 The fractional part of a r...
fracge0 13801 The fractional part of a r...
flge 13802 The floor function value i...
fllt 13803 The floor function value i...
flflp1 13804 Move floor function betwee...
flid 13805 An integer is its own floo...
flidm 13806 The floor function is idem...
flidz 13807 A real number equals its f...
flltnz 13808 The floor of a non-integer...
flwordi 13809 Ordering relation for the ...
flword2 13810 Ordering relation for the ...
flval2 13811 An alternate way to define...
flval3 13812 An alternate way to define...
flbi 13813 A condition equivalent to ...
flbi2 13814 A condition equivalent to ...
adddivflid 13815 The floor of a sum of an i...
ico01fl0 13816 The floor of a real number...
flge0nn0 13817 The floor of a number grea...
flge1nn 13818 The floor of a number grea...
fldivnn0 13819 The floor function of a di...
refldivcl 13820 The floor function of a di...
divfl0 13821 The floor of a fraction is...
fladdz 13822 An integer can be moved in...
flzadd 13823 An integer can be moved in...
flmulnn0 13824 Move a nonnegative integer...
btwnzge0 13825 A real bounded between an ...
2tnp1ge0ge0 13826 Two times an integer plus ...
flhalf 13827 Ordering relation for the ...
fldivle 13828 The floor function of a di...
fldivnn0le 13829 The floor function of a di...
flltdivnn0lt 13830 The floor function of a di...
ltdifltdiv 13831 If the dividend of a divis...
fldiv4p1lem1div2 13832 The floor of an integer eq...
fldiv4lem1div2uz2 13833 The floor of an integer gr...
fldiv4lem1div2 13834 The floor of a positive in...
ceilval 13835 The value of the ceiling f...
dfceil2 13836 Alternative definition of ...
ceilval2 13837 The value of the ceiling f...
ceicl 13838 The ceiling function retur...
ceilcl 13839 Closure of the ceiling fun...
ceilcld 13840 Closure of the ceiling fun...
ceige 13841 The ceiling of a real numb...
ceilge 13842 The ceiling of a real numb...
ceilged 13843 The ceiling of a real numb...
ceim1l 13844 One less than the ceiling ...
ceilm1lt 13845 One less than the ceiling ...
ceile 13846 The ceiling of a real numb...
ceille 13847 The ceiling of a real numb...
ceilid 13848 An integer is its own ceil...
ceilidz 13849 A real number equals its c...
flleceil 13850 The floor of a real number...
fleqceilz 13851 A real number is an intege...
quoremz 13852 Quotient and remainder of ...
quoremnn0 13853 Quotient and remainder of ...
quoremnn0ALT 13854 Alternate proof of ~ quore...
intfrac2 13855 Decompose a real into inte...
intfracq 13856 Decompose a rational numbe...
fldiv 13857 Cancellation of the embedd...
fldiv2 13858 Cancellation of an embedde...
fznnfl 13859 Finite set of sequential i...
uzsup 13860 An upper set of integers i...
ioopnfsup 13861 An upper set of reals is u...
icopnfsup 13862 An upper set of reals is u...
rpsup 13863 The positive reals are unb...
resup 13864 The real numbers are unbou...
xrsup 13865 The extended real numbers ...
modval 13868 The value of the modulo op...
modvalr 13869 The value of the modulo op...
modcl 13870 Closure law for the modulo...
flpmodeq 13871 Partition of a division in...
modcld 13872 Closure law for the modulo...
mod0 13873 ` A mod B ` is zero iff ` ...
mulmod0 13874 The product of an integer ...
negmod0 13875 ` A ` is divisible by ` B ...
modge0 13876 The modulo operation is no...
modlt 13877 The modulo operation is le...
modelico 13878 Modular reduction produces...
moddiffl 13879 Value of the modulo operat...
moddifz 13880 The modulo operation diffe...
modfrac 13881 The fractional part of a n...
flmod 13882 The floor function express...
intfrac 13883 Break a number into its in...
zmod10 13884 An integer modulo 1 is 0. ...
zmod1congr 13885 Two arbitrary integers are...
modmulnn 13886 Move a positive integer in...
modvalp1 13887 The value of the modulo op...
zmodcl 13888 Closure law for the modulo...
zmodcld 13889 Closure law for the modulo...
zmodfz 13890 An integer mod ` B ` lies ...
zmodfzo 13891 An integer mod ` B ` lies ...
zmodfzp1 13892 An integer mod ` B ` lies ...
modid 13893 Identity law for modulo. ...
modid0 13894 A positive real number mod...
modid2 13895 Identity law for modulo. ...
zmodid2 13896 Identity law for modulo re...
zmodidfzo 13897 Identity law for modulo re...
zmodidfzoimp 13898 Identity law for modulo re...
0mod 13899 Special case: 0 modulo a p...
1mod 13900 Special case: 1 modulo a r...
modabs 13901 Absorption law for modulo....
modabs2 13902 Absorption law for modulo....
modcyc 13903 The modulo operation is pe...
modcyc2 13904 The modulo operation is pe...
modadd1 13905 Addition property of the m...
modaddabs 13906 Absorption law for modulo....
modaddmod 13907 The sum of a real number m...
muladdmodid 13908 The sum of a positive real...
mulp1mod1 13909 The product of an integer ...
modmuladd 13910 Decomposition of an intege...
modmuladdim 13911 Implication of a decomposi...
modmuladdnn0 13912 Implication of a decomposi...
negmod 13913 The negation of a number m...
m1modnnsub1 13914 Minus one modulo a positiv...
m1modge3gt1 13915 Minus one modulo an intege...
addmodid 13916 The sum of a positive inte...
addmodidr 13917 The sum of a positive inte...
modadd2mod 13918 The sum of a real number m...
modm1p1mod0 13919 If a real number modulo a ...
modltm1p1mod 13920 If a real number modulo a ...
modmul1 13921 Multiplication property of...
modmul12d 13922 Multiplication property of...
modnegd 13923 Negation property of the m...
modadd12d 13924 Additive property of the m...
modsub12d 13925 Subtraction property of th...
modsubmod 13926 The difference of a real n...
modsubmodmod 13927 The difference of a real n...
2txmodxeq0 13928 Two times a positive real ...
2submod 13929 If a real number is betwee...
modifeq2int 13930 If a nonnegative integer i...
modaddmodup 13931 The sum of an integer modu...
modaddmodlo 13932 The sum of an integer modu...
modmulmod 13933 The product of a real numb...
modmulmodr 13934 The product of an integer ...
modaddmulmod 13935 The sum of a real number a...
moddi 13936 Distribute multiplication ...
modsubdir 13937 Distribute the modulo oper...
modeqmodmin 13938 A real number equals the d...
modirr 13939 A number modulo an irratio...
modfzo0difsn 13940 For a number within a half...
modsumfzodifsn 13941 The sum of a number within...
modlteq 13942 Two nonnegative integers l...
addmodlteq 13943 Two nonnegative integers l...
om2uz0i 13944 The mapping ` G ` is a one...
om2uzsuci 13945 The value of ` G ` (see ~ ...
om2uzuzi 13946 The value ` G ` (see ~ om2...
om2uzlti 13947 Less-than relation for ` G...
om2uzlt2i 13948 The mapping ` G ` (see ~ o...
om2uzrani 13949 Range of ` G ` (see ~ om2u...
om2uzf1oi 13950 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13951 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13952 An alternative definition ...
om2uzrdg 13953 A helper lemma for the val...
uzrdglem 13954 A helper lemma for the val...
uzrdgfni 13955 The recursive definition g...
uzrdg0i 13956 Initial value of a recursi...
uzrdgsuci 13957 Successor value of a recur...
ltweuz 13958 ` < ` is a well-founded re...
ltwenn 13959 Less than well-orders the ...
ltwefz 13960 Less than well-orders a se...
uzenom 13961 An upper integer set is de...
uzinf 13962 An upper integer set is in...
nnnfi 13963 The set of positive intege...
uzrdgxfr 13964 Transfer the value of the ...
fzennn 13965 The cardinality of a finit...
fzen2 13966 The cardinality of a finit...
cardfz 13967 The cardinality of a finit...
hashgf1o 13968 ` G ` maps ` _om ` one-to-...
fzfi 13969 A finite interval of integ...
fzfid 13970 Commonly used special case...
fzofi 13971 Half-open integer sets are...
fsequb 13972 The values of a finite rea...
fsequb2 13973 The values of a finite rea...
fseqsupcl 13974 The values of a finite rea...
fseqsupubi 13975 The values of a finite rea...
nn0ennn 13976 The nonnegative integers a...
nnenom 13977 The set of positive intege...
nnct 13978 ` NN ` is countable. (Con...
uzindi 13979 Indirect strong induction ...
axdc4uzlem 13980 Lemma for ~ axdc4uz . (Co...
axdc4uz 13981 A version of ~ axdc4 that ...
ssnn0fi 13982 A subset of the nonnegativ...
rabssnn0fi 13983 A subset of the nonnegativ...
uzsinds 13984 Strong (or "total") induct...
nnsinds 13985 Strong (or "total") induct...
nn0sinds 13986 Strong (or "total") induct...
fsuppmapnn0fiublem 13987 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13988 If all functions of a fini...
fsuppmapnn0fiubex 13989 If all functions of a fini...
fsuppmapnn0fiub0 13990 If all functions of a fini...
suppssfz 13991 Condition for a function o...
fsuppmapnn0ub 13992 If a function over the non...
fsuppmapnn0fz 13993 If a function over the non...
mptnn0fsupp 13994 A mapping from the nonnega...
mptnn0fsuppd 13995 A mapping from the nonnega...
mptnn0fsuppr 13996 A finitely supported mappi...
f13idfv 13997 A one-to-one function with...
seqex 14000 Existence of the sequence ...
seqeq1 14001 Equality theorem for the s...
seqeq2 14002 Equality theorem for the s...
seqeq3 14003 Equality theorem for the s...
seqeq1d 14004 Equality deduction for the...
seqeq2d 14005 Equality deduction for the...
seqeq3d 14006 Equality deduction for the...
seqeq123d 14007 Equality deduction for the...
nfseq 14008 Hypothesis builder for the...
seqval 14009 Value of the sequence buil...
seqfn 14010 The sequence builder funct...
seq1 14011 Value of the sequence buil...
seq1i 14012 Value of the sequence buil...
seqp1 14013 Value of the sequence buil...
seqexw 14014 Weak version of ~ seqex th...
seqp1d 14015 Value of the sequence buil...
seqm1 14016 Value of the sequence buil...
seqcl2 14017 Closure properties of the ...
seqf2 14018 Range of the recursive seq...
seqcl 14019 Closure properties of the ...
seqf 14020 Range of the recursive seq...
seqfveq2 14021 Equality of sequences. (C...
seqfeq2 14022 Equality of sequences. (C...
seqfveq 14023 Equality of sequences. (C...
seqfeq 14024 Equality of sequences. (C...
seqshft2 14025 Shifting the index set of ...
seqres 14026 Restricting its characteri...
serf 14027 An infinite series of comp...
serfre 14028 An infinite series of real...
monoord 14029 Ordering relation for a mo...
monoord2 14030 Ordering relation for a mo...
sermono 14031 The partial sums in an inf...
seqsplit 14032 Split a sequence into two ...
seq1p 14033 Removing the first term fr...
seqcaopr3 14034 Lemma for ~ seqcaopr2 . (...
seqcaopr2 14035 The sum of two infinite se...
seqcaopr 14036 The sum of two infinite se...
seqf1olem2a 14037 Lemma for ~ seqf1o . (Con...
seqf1olem1 14038 Lemma for ~ seqf1o . (Con...
seqf1olem2 14039 Lemma for ~ seqf1o . (Con...
seqf1o 14040 Rearrange a sum via an arb...
seradd 14041 The sum of two infinite se...
sersub 14042 The difference of two infi...
seqid3 14043 A sequence that consists e...
seqid 14044 Discarding the first few t...
seqid2 14045 The last few partial sums ...
seqhomo 14046 Apply a homomorphism to a ...
seqz 14047 If the operation ` .+ ` ha...
seqfeq4 14048 Equality of series under d...
seqfeq3 14049 Equality of series under d...
seqdistr 14050 The distributive property ...
ser0 14051 The value of the partial s...
ser0f 14052 A zero-valued infinite ser...
serge0 14053 A finite sum of nonnegativ...
serle 14054 Comparison of partial sums...
ser1const 14055 Value of the partial serie...
seqof 14056 Distribute function operat...
seqof2 14057 Distribute function operat...
expval 14060 Value of exponentiation to...
expnnval 14061 Value of exponentiation to...
exp0 14062 Value of a complex number ...
0exp0e1 14063 The zeroth power of zero e...
exp1 14064 Value of a complex number ...
expp1 14065 Value of a complex number ...
expneg 14066 Value of a complex number ...
expneg2 14067 Value of a complex number ...
expn1 14068 A complex number raised to...
expcllem 14069 Lemma for proving nonnegat...
expcl2lem 14070 Lemma for proving integer ...
nnexpcl 14071 Closure of exponentiation ...
nn0expcl 14072 Closure of exponentiation ...
zexpcl 14073 Closure of exponentiation ...
qexpcl 14074 Closure of exponentiation ...
reexpcl 14075 Closure of exponentiation ...
expcl 14076 Closure law for nonnegativ...
rpexpcl 14077 Closure law for integer ex...
qexpclz 14078 Closure of integer exponen...
reexpclz 14079 Closure of integer exponen...
expclzlem 14080 Lemma for ~ expclz . (Con...
expclz 14081 Closure law for integer ex...
m1expcl2 14082 Closure of integer exponen...
m1expcl 14083 Closure of exponentiation ...
zexpcld 14084 Closure of exponentiation ...
nn0expcli 14085 Closure of exponentiation ...
nn0sqcl 14086 The square of a nonnegativ...
expm1t 14087 Exponentiation in terms of...
1exp 14088 Value of 1 raised to an in...
expeq0 14089 A positive integer power i...
expne0 14090 A positive integer power i...
expne0i 14091 An integer power is nonzer...
expgt0 14092 A positive real raised to ...
expnegz 14093 Value of a nonzero complex...
0exp 14094 Value of zero raised to a ...
expge0 14095 A nonnegative real raised ...
expge1 14096 A real greater than or equ...
expgt1 14097 A real greater than 1 rais...
mulexp 14098 Nonnegative integer expone...
mulexpz 14099 Integer exponentiation of ...
exprec 14100 Integer exponentiation of ...
expadd 14101 Sum of exponents law for n...
expaddzlem 14102 Lemma for ~ expaddz . (Co...
expaddz 14103 Sum of exponents law for i...
expmul 14104 Product of exponents law f...
expmulz 14105 Product of exponents law f...
m1expeven 14106 Exponentiation of negative...
expsub 14107 Exponent subtraction law f...
expp1z 14108 Value of a nonzero complex...
expm1 14109 Value of a nonzero complex...
expdiv 14110 Nonnegative integer expone...
sqval 14111 Value of the square of a c...
sqneg 14112 The square of the negative...
sqsubswap 14113 Swap the order of subtract...
sqcl 14114 Closure of square. (Contr...
sqmul 14115 Distribution of squaring o...
sqeq0 14116 A complex number is zero i...
sqdiv 14117 Distribution of squaring o...
sqdivid 14118 The square of a nonzero co...
sqne0 14119 A complex number is nonzer...
resqcl 14120 Closure of squaring in rea...
resqcld 14121 Closure of squaring in rea...
sqgt0 14122 The square of a nonzero re...
sqn0rp 14123 The square of a nonzero re...
nnsqcl 14124 The positive naturals are ...
zsqcl 14125 Integers are closed under ...
qsqcl 14126 The square of a rational i...
sq11 14127 The square function is one...
nn0sq11 14128 The square function is one...
lt2sq 14129 The square function is inc...
le2sq 14130 The square function is non...
le2sq2 14131 The square function is non...
sqge0 14132 The square of a real is no...
sqge0d 14133 The square of a real is no...
zsqcl2 14134 The square of an integer i...
0expd 14135 Value of zero raised to a ...
exp0d 14136 Value of a complex number ...
exp1d 14137 Value of a complex number ...
expeq0d 14138 If a positive integer powe...
sqvald 14139 Value of square. Inferenc...
sqcld 14140 Closure of square. (Contr...
sqeq0d 14141 A number is zero iff its s...
expcld 14142 Closure law for nonnegativ...
expp1d 14143 Value of a complex number ...
expaddd 14144 Sum of exponents law for n...
expmuld 14145 Product of exponents law f...
sqrecd 14146 Square of reciprocal is re...
expclzd 14147 Closure law for integer ex...
expne0d 14148 A nonnegative integer powe...
expnegd 14149 Value of a nonzero complex...
exprecd 14150 An integer power of a reci...
expp1zd 14151 Value of a nonzero complex...
expm1d 14152 Value of a nonzero complex...
expsubd 14153 Exponent subtraction law f...
sqmuld 14154 Distribution of squaring o...
sqdivd 14155 Distribution of squaring o...
expdivd 14156 Nonnegative integer expone...
mulexpd 14157 Nonnegative integer expone...
znsqcld 14158 The square of a nonzero in...
reexpcld 14159 Closure of exponentiation ...
expge0d 14160 A nonnegative real raised ...
expge1d 14161 A real greater than or equ...
ltexp2a 14162 Exponent ordering relation...
expmordi 14163 Base ordering relationship...
rpexpmord 14164 Base ordering relationship...
expcan 14165 Cancellation law for integ...
ltexp2 14166 Strict ordering law for ex...
leexp2 14167 Ordering law for exponenti...
leexp2a 14168 Weak ordering relationship...
ltexp2r 14169 The integer powers of a fi...
leexp2r 14170 Weak ordering relationship...
leexp1a 14171 Weak base ordering relatio...
exple1 14172 A real between 0 and 1 inc...
expubnd 14173 An upper bound on ` A ^ N ...
sumsqeq0 14174 The sum of two squres of r...
sqvali 14175 Value of square. Inferenc...
sqcli 14176 Closure of square. (Contr...
sqeq0i 14177 A complex number is zero i...
sqrecii 14178 The square of a reciprocal...
sqmuli 14179 Distribution of squaring o...
sqdivi 14180 Distribution of squaring o...
resqcli 14181 Closure of square in reals...
sqgt0i 14182 The square of a nonzero re...
sqge0i 14183 The square of a real is no...
lt2sqi 14184 The square function on non...
le2sqi 14185 The square function on non...
sq11i 14186 The square function is one...
sq0 14187 The square of 0 is 0. (Co...
sq0i 14188 If a number is zero, then ...
sq0id 14189 If a number is zero, then ...
sq1 14190 The square of 1 is 1. (Co...
neg1sqe1 14191 The square of ` -u 1 ` is ...
sq2 14192 The square of 2 is 4. (Co...
sq3 14193 The square of 3 is 9. (Co...
sq4e2t8 14194 The square of 4 is 2 times...
cu2 14195 The cube of 2 is 8. (Cont...
irec 14196 The reciprocal of ` _i ` ....
i2 14197 ` _i ` squared. (Contribu...
i3 14198 ` _i ` cubed. (Contribute...
i4 14199 ` _i ` to the fourth power...
nnlesq 14200 A positive integer is less...
zzlesq 14201 An integer is less than or...
iexpcyc 14202 Taking ` _i ` to the ` K `...
expnass 14203 A counterexample showing t...
sqlecan 14204 Cancel one factor of a squ...
subsq 14205 Factor the difference of t...
subsq2 14206 Express the difference of ...
binom2i 14207 The square of a binomial. ...
subsqi 14208 Factor the difference of t...
sqeqori 14209 The squares of two complex...
subsq0i 14210 The two solutions to the d...
sqeqor 14211 The squares of two complex...
binom2 14212 The square of a binomial. ...
binom21 14213 Special case of ~ binom2 w...
binom2sub 14214 Expand the square of a sub...
binom2sub1 14215 Special case of ~ binom2su...
binom2subi 14216 Expand the square of a sub...
mulbinom2 14217 The square of a binomial w...
binom3 14218 The cube of a binomial. (...
sq01 14219 If a complex number equals...
zesq 14220 An integer is even iff its...
nnesq 14221 A positive integer is even...
crreczi 14222 Reciprocal of a complex nu...
bernneq 14223 Bernoulli's inequality, du...
bernneq2 14224 Variation of Bernoulli's i...
bernneq3 14225 A corollary of ~ bernneq ....
expnbnd 14226 Exponentiation with a base...
expnlbnd 14227 The reciprocal of exponent...
expnlbnd2 14228 The reciprocal of exponent...
expmulnbnd 14229 Exponentiation with a base...
digit2 14230 Two ways to express the ` ...
digit1 14231 Two ways to express the ` ...
modexp 14232 Exponentiation property of...
discr1 14233 A nonnegative quadratic fo...
discr 14234 If a quadratic polynomial ...
expnngt1 14235 If an integer power with a...
expnngt1b 14236 An integer power with an i...
sqoddm1div8 14237 A squared odd number minus...
nnsqcld 14238 The naturals are closed un...
nnexpcld 14239 Closure of exponentiation ...
nn0expcld 14240 Closure of exponentiation ...
rpexpcld 14241 Closure law for exponentia...
ltexp2rd 14242 The power of a positive nu...
reexpclzd 14243 Closure of exponentiation ...
sqgt0d 14244 The square of a nonzero re...
ltexp2d 14245 Ordering relationship for ...
leexp2d 14246 Ordering law for exponenti...
expcand 14247 Ordering relationship for ...
leexp2ad 14248 Ordering relationship for ...
leexp2rd 14249 Ordering relationship for ...
lt2sqd 14250 The square function on non...
le2sqd 14251 The square function on non...
sq11d 14252 The square function is one...
mulsubdivbinom2 14253 The square of a binomial w...
muldivbinom2 14254 The square of a binomial w...
sq10 14255 The square of 10 is 100. ...
sq10e99m1 14256 The square of 10 is 99 plu...
3dec 14257 A "decimal constructor" wh...
nn0le2msqi 14258 The square function on non...
nn0opthlem1 14259 A rather pretty lemma for ...
nn0opthlem2 14260 Lemma for ~ nn0opthi . (C...
nn0opthi 14261 An ordered pair theorem fo...
nn0opth2i 14262 An ordered pair theorem fo...
nn0opth2 14263 An ordered pair theorem fo...
facnn 14266 Value of the factorial fun...
fac0 14267 The factorial of 0. (Cont...
fac1 14268 The factorial of 1. (Cont...
facp1 14269 The factorial of a success...
fac2 14270 The factorial of 2. (Cont...
fac3 14271 The factorial of 3. (Cont...
fac4 14272 The factorial of 4. (Cont...
facnn2 14273 Value of the factorial fun...
faccl 14274 Closure of the factorial f...
faccld 14275 Closure of the factorial f...
facmapnn 14276 The factorial function res...
facne0 14277 The factorial function is ...
facdiv 14278 A positive integer divides...
facndiv 14279 No positive integer (great...
facwordi 14280 Ordering property of facto...
faclbnd 14281 A lower bound for the fact...
faclbnd2 14282 A lower bound for the fact...
faclbnd3 14283 A lower bound for the fact...
faclbnd4lem1 14284 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 14285 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 14286 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 14287 Lemma for ~ faclbnd4 . Pr...
faclbnd4 14288 Variant of ~ faclbnd5 prov...
faclbnd5 14289 The factorial function gro...
faclbnd6 14290 Geometric lower bound for ...
facubnd 14291 An upper bound for the fac...
facavg 14292 The product of two factori...
bcval 14295 Value of the binomial coef...
bcval2 14296 Value of the binomial coef...
bcval3 14297 Value of the binomial coef...
bcval4 14298 Value of the binomial coef...
bcrpcl 14299 Closure of the binomial co...
bccmpl 14300 "Complementing" its second...
bcn0 14301 ` N ` choose 0 is 1. Rema...
bc0k 14302 The binomial coefficient "...
bcnn 14303 ` N ` choose ` N ` is 1. ...
bcn1 14304 Binomial coefficient: ` N ...
bcnp1n 14305 Binomial coefficient: ` N ...
bcm1k 14306 The proportion of one bino...
bcp1n 14307 The proportion of one bino...
bcp1nk 14308 The proportion of one bino...
bcval5 14309 Write out the top and bott...
bcn2 14310 Binomial coefficient: ` N ...
bcp1m1 14311 Compute the binomial coeff...
bcpasc 14312 Pascal's rule for the bino...
bccl 14313 A binomial coefficient, in...
bccl2 14314 A binomial coefficient, in...
bcn2m1 14315 Compute the binomial coeff...
bcn2p1 14316 Compute the binomial coeff...
permnn 14317 The number of permutations...
bcnm1 14318 The binomial coefficent of...
4bc3eq4 14319 The value of four choose t...
4bc2eq6 14320 The value of four choose t...
hashkf 14323 The finite part of the siz...
hashgval 14324 The value of the ` # ` fun...
hashginv 14325 The converse of ` G ` maps...
hashinf 14326 The value of the ` # ` fun...
hashbnd 14327 If ` A ` has size bounded ...
hashfxnn0 14328 The size function is a fun...
hashf 14329 The size function maps all...
hashxnn0 14330 The value of the hash func...
hashresfn 14331 Restriction of the domain ...
dmhashres 14332 Restriction of the domain ...
hashnn0pnf 14333 The value of the hash func...
hashnnn0genn0 14334 If the size of a set is no...
hashnemnf 14335 The size of a set is never...
hashv01gt1 14336 The size of a set is eithe...
hashfz1 14337 The set ` ( 1 ... N ) ` ha...
hashen 14338 Two finite sets have the s...
hasheni 14339 Equinumerous sets have the...
hasheqf1o 14340 The size of two finite set...
fiinfnf1o 14341 There is no bijection betw...
hasheqf1oi 14342 The size of two sets is eq...
hashf1rn 14343 The size of a finite set w...
hasheqf1od 14344 The size of two sets is eq...
fz1eqb 14345 Two possibly-empty 1-based...
hashcard 14346 The size function of the c...
hashcl 14347 Closure of the ` # ` funct...
hashxrcl 14348 Extended real closure of t...
hashclb 14349 Reverse closure of the ` #...
nfile 14350 The size of any infinite s...
hashvnfin 14351 A set of finite size is a ...
hashnfinnn0 14352 The size of an infinite se...
isfinite4 14353 A finite set is equinumero...
hasheq0 14354 Two ways of saying a set i...
hashneq0 14355 Two ways of saying a set i...
hashgt0n0 14356 If the size of a set is gr...
hashnncl 14357 Positive natural closure o...
hash0 14358 The empty set has size zer...
hashelne0d 14359 A set with an element has ...
hashsng 14360 The size of a singleton. ...
hashen1 14361 A set has size 1 if and on...
hash1elsn 14362 A set of size 1 with a kno...
hashrabrsn 14363 The size of a restricted c...
hashrabsn01 14364 The size of a restricted c...
hashrabsn1 14365 If the size of a restricte...
hashfn 14366 A function is equinumerous...
fseq1hash 14367 The value of the size func...
hashgadd 14368 ` G ` maps ordinal additio...
hashgval2 14369 A short expression for the...
hashdom 14370 Dominance relation for the...
hashdomi 14371 Non-strict order relation ...
hashsdom 14372 Strict dominance relation ...
hashun 14373 The size of the union of d...
hashun2 14374 The size of the union of f...
hashun3 14375 The size of the union of f...
hashinfxadd 14376 The extended real addition...
hashunx 14377 The size of the union of d...
hashge0 14378 The cardinality of a set i...
hashgt0 14379 The cardinality of a nonem...
hashge1 14380 The cardinality of a nonem...
1elfz0hash 14381 1 is an element of the fin...
hashnn0n0nn 14382 If a nonnegative integer i...
hashunsng 14383 The size of the union of a...
hashunsngx 14384 The size of the union of a...
hashunsnggt 14385 The size of a set is great...
hashprg 14386 The size of an unordered p...
elprchashprn2 14387 If one element of an unord...
hashprb 14388 The size of an unordered p...
hashprdifel 14389 The elements of an unorder...
prhash2ex 14390 There is (at least) one se...
hashle00 14391 If the size of a set is le...
hashgt0elex 14392 If the size of a set is gr...
hashgt0elexb 14393 The size of a set is great...
hashp1i 14394 Size of a finite ordinal. ...
hash1 14395 Size of a finite ordinal. ...
hash2 14396 Size of a finite ordinal. ...
hash3 14397 Size of a finite ordinal. ...
hash4 14398 Size of a finite ordinal. ...
pr0hash2ex 14399 There is (at least) one se...
hashss 14400 The size of a subset is le...
prsshashgt1 14401 The size of a superset of ...
hashin 14402 The size of the intersecti...
hashssdif 14403 The size of the difference...
hashdif 14404 The size of the difference...
hashdifsn 14405 The size of the difference...
hashdifpr 14406 The size of the difference...
hashsn01 14407 The size of a singleton is...
hashsnle1 14408 The size of a singleton is...
hashsnlei 14409 Get an upper bound on a co...
hash1snb 14410 The size of a set is 1 if ...
euhash1 14411 The size of a set is 1 in ...
hash1n0 14412 If the size of a set is 1 ...
hashgt12el 14413 In a set with more than on...
hashgt12el2 14414 In a set with more than on...
hashgt23el 14415 A set with more than two e...
hashunlei 14416 Get an upper bound on a co...
hashsslei 14417 Get an upper bound on a co...
hashfz 14418 Value of the numeric cardi...
fzsdom2 14419 Condition for finite range...
hashfzo 14420 Cardinality of a half-open...
hashfzo0 14421 Cardinality of a half-open...
hashfzp1 14422 Value of the numeric cardi...
hashfz0 14423 Value of the numeric cardi...
hashxplem 14424 Lemma for ~ hashxp . (Con...
hashxp 14425 The size of the Cartesian ...
hashmap 14426 The size of the set expone...
hashpw 14427 The size of the power set ...
hashfun 14428 A finite set is a function...
hashres 14429 The number of elements of ...
hashreshashfun 14430 The number of elements of ...
hashimarn 14431 The size of the image of a...
hashimarni 14432 If the size of the image o...
hashfundm 14433 The size of a set function...
hashf1dmrn 14434 The size of the domain of ...
hashf1dmcdm 14435 The size of the domain of ...
resunimafz0 14436 TODO-AV: Revise using ` F...
fnfz0hash 14437 The size of a function on ...
ffz0hash 14438 The size of a function on ...
fnfz0hashnn0 14439 The size of a function on ...
ffzo0hash 14440 The size of a function on ...
fnfzo0hash 14441 The size of a function on ...
fnfzo0hashnn0 14442 The value of the size func...
hashbclem 14443 Lemma for ~ hashbc : induc...
hashbc 14444 The binomial coefficient c...
hashfacen 14445 The number of bijections b...
hashfacenOLD 14446 Obsolete version of ~ hash...
hashf1lem1 14447 Lemma for ~ hashf1 . (Con...
hashf1lem1OLD 14448 Obsolete version of ~ hash...
hashf1lem2 14449 Lemma for ~ hashf1 . (Con...
hashf1 14450 The permutation number ` |...
hashfac 14451 A factorial counts the num...
leiso 14452 Two ways to write a strict...
leisorel 14453 Version of ~ isorel for st...
fz1isolem 14454 Lemma for ~ fz1iso . (Con...
fz1iso 14455 Any finite ordered set has...
ishashinf 14456 Any set that is not finite...
seqcoll 14457 The function ` F ` contain...
seqcoll2 14458 The function ` F ` contain...
phphashd 14459 Corollary of the Pigeonhol...
phphashrd 14460 Corollary of the Pigeonhol...
hashprlei 14461 An unordered pair has at m...
hash2pr 14462 A set of size two is an un...
hash2prde 14463 A set of size two is an un...
hash2exprb 14464 A set of size two is an un...
hash2prb 14465 A set of size two is a pro...
prprrab 14466 The set of proper pairs of...
nehash2 14467 The cardinality of a set w...
hash2prd 14468 A set of size two is an un...
hash2pwpr 14469 If the size of a subset of...
hashle2pr 14470 A nonempty set of size les...
hashle2prv 14471 A nonempty subset of a pow...
pr2pwpr 14472 The set of subsets of a pa...
hashge2el2dif 14473 A set with size at least 2...
hashge2el2difr 14474 A set with at least 2 diff...
hashge2el2difb 14475 A set has size at least 2 ...
hashdmpropge2 14476 The size of the domain of ...
hashtplei 14477 An unordered triple has at...
hashtpg 14478 The size of an unordered t...
hashge3el3dif 14479 A set with size at least 3...
elss2prb 14480 An element of the set of s...
hash2sspr 14481 A subset of size two is an...
exprelprel 14482 If there is an element of ...
hash3tr 14483 A set of size three is an ...
hash1to3 14484 If the size of a set is be...
fundmge2nop0 14485 A function with a domain c...
fundmge2nop 14486 A function with a domain c...
fun2dmnop0 14487 A function with a domain c...
fun2dmnop 14488 A function with a domain c...
hashdifsnp1 14489 If the size of a set is a ...
fi1uzind 14490 Properties of an ordered p...
brfi1uzind 14491 Properties of a binary rel...
brfi1ind 14492 Properties of a binary rel...
brfi1indALT 14493 Alternate proof of ~ brfi1...
opfi1uzind 14494 Properties of an ordered p...
opfi1ind 14495 Properties of an ordered p...
iswrd 14498 Property of being a word o...
wrdval 14499 Value of the set of words ...
iswrdi 14500 A zero-based sequence is a...
wrdf 14501 A word is a zero-based seq...
iswrdb 14502 A word over an alphabet is...
wrddm 14503 The indices of a word (i.e...
sswrd 14504 The set of words respects ...
snopiswrd 14505 A singleton of an ordered ...
wrdexg 14506 The set of words over a se...
wrdexb 14507 The set of words over a se...
wrdexi 14508 The set of words over a se...
wrdsymbcl 14509 A symbol within a word ove...
wrdfn 14510 A word is a function with ...
wrdv 14511 A word over an alphabet is...
wrdlndm 14512 The length of a word is no...
iswrdsymb 14513 An arbitrary word is a wor...
wrdfin 14514 A word is a finite set. (...
lencl 14515 The length of a word is a ...
lennncl 14516 The length of a nonempty w...
wrdffz 14517 A word is a function from ...
wrdeq 14518 Equality theorem for the s...
wrdeqi 14519 Equality theorem for the s...
iswrddm0 14520 A function with empty doma...
wrd0 14521 The empty set is a word (t...
0wrd0 14522 The empty word is the only...
ffz0iswrd 14523 A sequence with zero-based...
wrdsymb 14524 A word is a word over the ...
nfwrd 14525 Hypothesis builder for ` W...
csbwrdg 14526 Class substitution for the...
wrdnval 14527 Words of a fixed length ar...
wrdmap 14528 Words as a mapping. (Cont...
hashwrdn 14529 If there is only a finite ...
wrdnfi 14530 If there is only a finite ...
wrdsymb0 14531 A symbol at a position "ou...
wrdlenge1n0 14532 A word with length at leas...
len0nnbi 14533 The length of a word is a ...
wrdlenge2n0 14534 A word with length at leas...
wrdsymb1 14535 The first symbol of a none...
wrdlen1 14536 A word of length 1 starts ...
fstwrdne 14537 The first symbol of a none...
fstwrdne0 14538 The first symbol of a none...
eqwrd 14539 Two words are equal iff th...
elovmpowrd 14540 Implications for the value...
elovmptnn0wrd 14541 Implications for the value...
wrdred1 14542 A word truncated by a symb...
wrdred1hash 14543 The length of a word trunc...
lsw 14546 Extract the last symbol of...
lsw0 14547 The last symbol of an empt...
lsw0g 14548 The last symbol of an empt...
lsw1 14549 The last symbol of a word ...
lswcl 14550 Closure of the last symbol...
lswlgt0cl 14551 The last symbol of a nonem...
ccatfn 14554 The concatenation operator...
ccatfval 14555 Value of the concatenation...
ccatcl 14556 The concatenation of two w...
ccatlen 14557 The length of a concatenat...
ccat0 14558 The concatenation of two w...
ccatval1 14559 Value of a symbol in the l...
ccatval2 14560 Value of a symbol in the r...
ccatval3 14561 Value of a symbol in the r...
elfzelfzccat 14562 An element of a finite set...
ccatvalfn 14563 The concatenation of two w...
ccatsymb 14564 The symbol at a given posi...
ccatfv0 14565 The first symbol of a conc...
ccatval1lsw 14566 The last symbol of the lef...
ccatval21sw 14567 The first symbol of the ri...
ccatlid 14568 Concatenation of a word by...
ccatrid 14569 Concatenation of a word by...
ccatass 14570 Associative law for concat...
ccatrn 14571 The range of a concatenate...
ccatidid 14572 Concatenation of the empty...
lswccatn0lsw 14573 The last symbol of a word ...
lswccat0lsw 14574 The last symbol of a word ...
ccatalpha 14575 A concatenation of two arb...
ccatrcl1 14576 Reverse closure of a conca...
ids1 14579 Identity function protecti...
s1val 14580 Value of a singleton word....
s1rn 14581 The range of a singleton w...
s1eq 14582 Equality theorem for a sin...
s1eqd 14583 Equality theorem for a sin...
s1cl 14584 A singleton word is a word...
s1cld 14585 A singleton word is a word...
s1prc 14586 Value of a singleton word ...
s1cli 14587 A singleton word is a word...
s1len 14588 Length of a singleton word...
s1nz 14589 A singleton word is not th...
s1dm 14590 The domain of a singleton ...
s1dmALT 14591 Alternate version of ~ s1d...
s1fv 14592 Sole symbol of a singleton...
lsws1 14593 The last symbol of a singl...
eqs1 14594 A word of length 1 is a si...
wrdl1exs1 14595 A word of length 1 is a si...
wrdl1s1 14596 A word of length 1 is a si...
s111 14597 The singleton word functio...
ccatws1cl 14598 The concatenation of a wor...
ccatws1clv 14599 The concatenation of a wor...
ccat2s1cl 14600 The concatenation of two s...
ccats1alpha 14601 A concatenation of a word ...
ccatws1len 14602 The length of the concaten...
ccatws1lenp1b 14603 The length of a word is ` ...
wrdlenccats1lenm1 14604 The length of a word is th...
ccat2s1len 14605 The length of the concaten...
ccatw2s1cl 14606 The concatenation of a wor...
ccatw2s1len 14607 The length of the concaten...
ccats1val1 14608 Value of a symbol in the l...
ccats1val2 14609 Value of the symbol concat...
ccat1st1st 14610 The first symbol of a word...
ccat2s1p1 14611 Extract the first of two c...
ccat2s1p2 14612 Extract the second of two ...
ccatw2s1ass 14613 Associative law for a conc...
ccatws1n0 14614 The concatenation of a wor...
ccatws1ls 14615 The last symbol of the con...
lswccats1 14616 The last symbol of a word ...
lswccats1fst 14617 The last symbol of a nonem...
ccatw2s1p1 14618 Extract the symbol of the ...
ccatw2s1p2 14619 Extract the second of two ...
ccat2s1fvw 14620 Extract a symbol of a word...
ccat2s1fst 14621 The first symbol of the co...
swrdnznd 14624 The value of a subword ope...
swrdval 14625 Value of a subword. (Cont...
swrd00 14626 A zero length substring. ...
swrdcl 14627 Closure of the subword ext...
swrdval2 14628 Value of the subword extra...
swrdlen 14629 Length of an extracted sub...
swrdfv 14630 A symbol in an extracted s...
swrdfv0 14631 The first symbol in an ext...
swrdf 14632 A subword of a word is a f...
swrdvalfn 14633 Value of the subword extra...
swrdrn 14634 The range of a subword of ...
swrdlend 14635 The value of the subword e...
swrdnd 14636 The value of the subword e...
swrdnd2 14637 Value of the subword extra...
swrdnnn0nd 14638 The value of a subword ope...
swrdnd0 14639 The value of a subword ope...
swrd0 14640 A subword of an empty set ...
swrdrlen 14641 Length of a right-anchored...
swrdlen2 14642 Length of an extracted sub...
swrdfv2 14643 A symbol in an extracted s...
swrdwrdsymb 14644 A subword is a word over t...
swrdsb0eq 14645 Two subwords with the same...
swrdsbslen 14646 Two subwords with the same...
swrdspsleq 14647 Two words have a common su...
swrds1 14648 Extract a single symbol fr...
swrdlsw 14649 Extract the last single sy...
ccatswrd 14650 Joining two adjacent subwo...
swrdccat2 14651 Recover the right half of ...
pfxnndmnd 14654 The value of a prefix oper...
pfxval 14655 Value of a prefix operatio...
pfx00 14656 The zero length prefix is ...
pfx0 14657 A prefix of an empty set i...
pfxval0 14658 Value of a prefix operatio...
pfxcl 14659 Closure of the prefix extr...
pfxmpt 14660 Value of the prefix extrac...
pfxres 14661 Value of the subword extra...
pfxf 14662 A prefix of a word is a fu...
pfxfn 14663 Value of the prefix extrac...
pfxfv 14664 A symbol in a prefix of a ...
pfxlen 14665 Length of a prefix. (Cont...
pfxid 14666 A word is a prefix of itse...
pfxrn 14667 The range of a prefix of a...
pfxn0 14668 A prefix consisting of at ...
pfxnd 14669 The value of a prefix oper...
pfxnd0 14670 The value of a prefix oper...
pfxwrdsymb 14671 A prefix of a word is a wo...
addlenrevpfx 14672 The sum of the lengths of ...
addlenpfx 14673 The sum of the lengths of ...
pfxfv0 14674 The first symbol of a pref...
pfxtrcfv 14675 A symbol in a word truncat...
pfxtrcfv0 14676 The first symbol in a word...
pfxfvlsw 14677 The last symbol in a nonem...
pfxeq 14678 The prefixes of two words ...
pfxtrcfvl 14679 The last symbol in a word ...
pfxsuffeqwrdeq 14680 Two words are equal if and...
pfxsuff1eqwrdeq 14681 Two (nonempty) words are e...
disjwrdpfx 14682 Sets of words are disjoint...
ccatpfx 14683 Concatenating a prefix wit...
pfxccat1 14684 Recover the left half of a...
pfx1 14685 The prefix of length one o...
swrdswrdlem 14686 Lemma for ~ swrdswrd . (C...
swrdswrd 14687 A subword of a subword is ...
pfxswrd 14688 A prefix of a subword is a...
swrdpfx 14689 A subword of a prefix is a...
pfxpfx 14690 A prefix of a prefix is a ...
pfxpfxid 14691 A prefix of a prefix with ...
pfxcctswrd 14692 The concatenation of the p...
lenpfxcctswrd 14693 The length of the concaten...
lenrevpfxcctswrd 14694 The length of the concaten...
pfxlswccat 14695 Reconstruct a nonempty wor...
ccats1pfxeq 14696 The last symbol of a word ...
ccats1pfxeqrex 14697 There exists a symbol such...
ccatopth 14698 An ~ opth -like theorem fo...
ccatopth2 14699 An ~ opth -like theorem fo...
ccatlcan 14700 Concatenation of words is ...
ccatrcan 14701 Concatenation of words is ...
wrdeqs1cat 14702 Decompose a nonempty word ...
cats1un 14703 Express a word with an ext...
wrdind 14704 Perform induction over the...
wrd2ind 14705 Perform induction over the...
swrdccatfn 14706 The subword of a concatena...
swrdccatin1 14707 The subword of a concatena...
pfxccatin12lem4 14708 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14709 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14710 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14711 The subword of a concatena...
pfxccatin12lem2c 14712 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14713 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14714 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14715 The subword of a concatena...
pfxccat3 14716 The subword of a concatena...
swrdccat 14717 The subword of a concatena...
pfxccatpfx1 14718 A prefix of a concatenatio...
pfxccatpfx2 14719 A prefix of a concatenatio...
pfxccat3a 14720 A prefix of a concatenatio...
swrdccat3blem 14721 Lemma for ~ swrdccat3b . ...
swrdccat3b 14722 A suffix of a concatenatio...
pfxccatid 14723 A prefix of a concatenatio...
ccats1pfxeqbi 14724 A word is a prefix of a wo...
swrdccatin1d 14725 The subword of a concatena...
swrdccatin2d 14726 The subword of a concatena...
pfxccatin12d 14727 The subword of a concatena...
reuccatpfxs1lem 14728 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14729 There is a unique word hav...
reuccatpfxs1v 14730 There is a unique word hav...
splval 14733 Value of the substring rep...
splcl 14734 Closure of the substring r...
splid 14735 Splicing a subword for the...
spllen 14736 The length of a splice. (...
splfv1 14737 Symbols to the left of a s...
splfv2a 14738 Symbols within the replace...
splval2 14739 Value of a splice, assumin...
revval 14742 Value of the word reversin...
revcl 14743 The reverse of a word is a...
revlen 14744 The reverse of a word has ...
revfv 14745 Reverse of a word at a poi...
rev0 14746 The empty word is its own ...
revs1 14747 Singleton words are their ...
revccat 14748 Antiautomorphic property o...
revrev 14749 Reversal is an involution ...
reps 14752 Construct a function mappi...
repsundef 14753 A function mapping a half-...
repsconst 14754 Construct a function mappi...
repsf 14755 The constructed function m...
repswsymb 14756 The symbols of a "repeated...
repsw 14757 A function mapping a half-...
repswlen 14758 The length of a "repeated ...
repsw0 14759 The "repeated symbol word"...
repsdf2 14760 Alternative definition of ...
repswsymball 14761 All the symbols of a "repe...
repswsymballbi 14762 A word is a "repeated symb...
repswfsts 14763 The first symbol of a none...
repswlsw 14764 The last symbol of a nonem...
repsw1 14765 The "repeated symbol word"...
repswswrd 14766 A subword of a "repeated s...
repswpfx 14767 A prefix of a repeated sym...
repswccat 14768 The concatenation of two "...
repswrevw 14769 The reverse of a "repeated...
cshfn 14772 Perform a cyclical shift f...
cshword 14773 Perform a cyclical shift f...
cshnz 14774 A cyclical shift is the em...
0csh0 14775 Cyclically shifting an emp...
cshw0 14776 A word cyclically shifted ...
cshwmodn 14777 Cyclically shifting a word...
cshwsublen 14778 Cyclically shifting a word...
cshwn 14779 A word cyclically shifted ...
cshwcl 14780 A cyclically shifted word ...
cshwlen 14781 The length of a cyclically...
cshwf 14782 A cyclically shifted word ...
cshwfn 14783 A cyclically shifted word ...
cshwrn 14784 The range of a cyclically ...
cshwidxmod 14785 The symbol at a given inde...
cshwidxmodr 14786 The symbol at a given inde...
cshwidx0mod 14787 The symbol at index 0 of a...
cshwidx0 14788 The symbol at index 0 of a...
cshwidxm1 14789 The symbol at index ((n-N)...
cshwidxm 14790 The symbol at index (n-N) ...
cshwidxn 14791 The symbol at index (n-1) ...
cshf1 14792 Cyclically shifting a word...
cshinj 14793 If a word is injectiv (reg...
repswcshw 14794 A cyclically shifted "repe...
2cshw 14795 Cyclically shifting a word...
2cshwid 14796 Cyclically shifting a word...
lswcshw 14797 The last symbol of a word ...
2cshwcom 14798 Cyclically shifting a word...
cshwleneq 14799 If the results of cyclical...
3cshw 14800 Cyclically shifting a word...
cshweqdif2 14801 If cyclically shifting two...
cshweqdifid 14802 If cyclically shifting a w...
cshweqrep 14803 If cyclically shifting a w...
cshw1 14804 If cyclically shifting a w...
cshw1repsw 14805 If cyclically shifting a w...
cshwsexa 14806 The class of (different!) ...
cshwsexaOLD 14807 Obsolete version of ~ cshw...
2cshwcshw 14808 If a word is a cyclically ...
scshwfzeqfzo 14809 For a nonempty word the se...
cshwcshid 14810 A cyclically shifted word ...
cshwcsh2id 14811 A cyclically shifted word ...
cshimadifsn 14812 The image of a cyclically ...
cshimadifsn0 14813 The image of a cyclically ...
wrdco 14814 Mapping a word by a functi...
lenco 14815 Length of a mapped word is...
s1co 14816 Mapping of a singleton wor...
revco 14817 Mapping of words (i.e., a ...
ccatco 14818 Mapping of words commutes ...
cshco 14819 Mapping of words commutes ...
swrdco 14820 Mapping of words commutes ...
pfxco 14821 Mapping of words commutes ...
lswco 14822 Mapping of (nonempty) word...
repsco 14823 Mapping of words commutes ...
cats1cld 14838 Closure of concatenation w...
cats1co 14839 Closure of concatenation w...
cats1cli 14840 Closure of concatenation w...
cats1fvn 14841 The last symbol of a conca...
cats1fv 14842 A symbol other than the la...
cats1len 14843 The length of concatenatio...
cats1cat 14844 Closure of concatenation w...
cats2cat 14845 Closure of concatenation o...
s2eqd 14846 Equality theorem for a dou...
s3eqd 14847 Equality theorem for a len...
s4eqd 14848 Equality theorem for a len...
s5eqd 14849 Equality theorem for a len...
s6eqd 14850 Equality theorem for a len...
s7eqd 14851 Equality theorem for a len...
s8eqd 14852 Equality theorem for a len...
s3eq2 14853 Equality theorem for a len...
s2cld 14854 A doubleton word is a word...
s3cld 14855 A length 3 string is a wor...
s4cld 14856 A length 4 string is a wor...
s5cld 14857 A length 5 string is a wor...
s6cld 14858 A length 6 string is a wor...
s7cld 14859 A length 7 string is a wor...
s8cld 14860 A length 7 string is a wor...
s2cl 14861 A doubleton word is a word...
s3cl 14862 A length 3 string is a wor...
s2cli 14863 A doubleton word is a word...
s3cli 14864 A length 3 string is a wor...
s4cli 14865 A length 4 string is a wor...
s5cli 14866 A length 5 string is a wor...
s6cli 14867 A length 6 string is a wor...
s7cli 14868 A length 7 string is a wor...
s8cli 14869 A length 8 string is a wor...
s2fv0 14870 Extract the first symbol f...
s2fv1 14871 Extract the second symbol ...
s2len 14872 The length of a doubleton ...
s2dm 14873 The domain of a doubleton ...
s3fv0 14874 Extract the first symbol f...
s3fv1 14875 Extract the second symbol ...
s3fv2 14876 Extract the third symbol f...
s3len 14877 The length of a length 3 s...
s4fv0 14878 Extract the first symbol f...
s4fv1 14879 Extract the second symbol ...
s4fv2 14880 Extract the third symbol f...
s4fv3 14881 Extract the fourth symbol ...
s4len 14882 The length of a length 4 s...
s5len 14883 The length of a length 5 s...
s6len 14884 The length of a length 6 s...
s7len 14885 The length of a length 7 s...
s8len 14886 The length of a length 8 s...
lsws2 14887 The last symbol of a doubl...
lsws3 14888 The last symbol of a 3 let...
lsws4 14889 The last symbol of a 4 let...
s2prop 14890 A length 2 word is an unor...
s2dmALT 14891 Alternate version of ~ s2d...
s3tpop 14892 A length 3 word is an unor...
s4prop 14893 A length 4 word is a union...
s3fn 14894 A length 3 word is a funct...
funcnvs1 14895 The converse of a singleto...
funcnvs2 14896 The converse of a length 2...
funcnvs3 14897 The converse of a length 3...
funcnvs4 14898 The converse of a length 4...
s2f1o 14899 A length 2 word with mutua...
f1oun2prg 14900 A union of unordered pairs...
s4f1o 14901 A length 4 word with mutua...
s4dom 14902 The domain of a length 4 w...
s2co 14903 Mapping a doubleton word b...
s3co 14904 Mapping a length 3 string ...
s0s1 14905 Concatenation of fixed len...
s1s2 14906 Concatenation of fixed len...
s1s3 14907 Concatenation of fixed len...
s1s4 14908 Concatenation of fixed len...
s1s5 14909 Concatenation of fixed len...
s1s6 14910 Concatenation of fixed len...
s1s7 14911 Concatenation of fixed len...
s2s2 14912 Concatenation of fixed len...
s4s2 14913 Concatenation of fixed len...
s4s3 14914 Concatenation of fixed len...
s4s4 14915 Concatenation of fixed len...
s3s4 14916 Concatenation of fixed len...
s2s5 14917 Concatenation of fixed len...
s5s2 14918 Concatenation of fixed len...
s2eq2s1eq 14919 Two length 2 words are equ...
s2eq2seq 14920 Two length 2 words are equ...
s3eqs2s1eq 14921 Two length 3 words are equ...
s3eq3seq 14922 Two length 3 words are equ...
swrds2 14923 Extract two adjacent symbo...
swrds2m 14924 Extract two adjacent symbo...
wrdlen2i 14925 Implications of a word of ...
wrd2pr2op 14926 A word of length two repre...
wrdlen2 14927 A word of length two. (Co...
wrdlen2s2 14928 A word of length two as do...
wrdl2exs2 14929 A word of length two is a ...
pfx2 14930 A prefix of length two. (...
wrd3tpop 14931 A word of length three rep...
wrdlen3s3 14932 A word of length three as ...
repsw2 14933 The "repeated symbol word"...
repsw3 14934 The "repeated symbol word"...
swrd2lsw 14935 Extract the last two symbo...
2swrd2eqwrdeq 14936 Two words of length at lea...
ccatw2s1ccatws2 14937 The concatenation of a wor...
ccat2s1fvwALT 14938 Alternate proof of ~ ccat2...
wwlktovf 14939 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14940 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14941 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14942 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14943 There is a bijection betwe...
eqwrds3 14944 A word is equal with a len...
wrdl3s3 14945 A word of length 3 is a le...
s3sndisj 14946 The singletons consisting ...
s3iunsndisj 14947 The union of singletons co...
ofccat 14948 Letterwise operations on w...
ofs1 14949 Letterwise operations on a...
ofs2 14950 Letterwise operations on a...
coss12d 14951 Subset deduction for compo...
trrelssd 14952 The composition of subclas...
xpcogend 14953 The most interesting case ...
xpcoidgend 14954 If two classes are not dis...
cotr2g 14955 Two ways of saying that th...
cotr2 14956 Two ways of saying a relat...
cotr3 14957 Two ways of saying a relat...
coemptyd 14958 Deduction about compositio...
xptrrel 14959 The cross product is alway...
0trrel 14960 The empty class is a trans...
cleq1lem 14961 Equality implies bijection...
cleq1 14962 Equality of relations impl...
clsslem 14963 The closure of a subclass ...
trcleq1 14968 Equality of relations impl...
trclsslem 14969 The transitive closure (as...
trcleq2lem 14970 Equality implies bijection...
cvbtrcl 14971 Change of bound variable i...
trcleq12lem 14972 Equality implies bijection...
trclexlem 14973 Existence of relation impl...
trclublem 14974 If a relation exists then ...
trclubi 14975 The Cartesian product of t...
trclubgi 14976 The union with the Cartesi...
trclub 14977 The Cartesian product of t...
trclubg 14978 The union with the Cartesi...
trclfv 14979 The transitive closure of ...
brintclab 14980 Two ways to express a bina...
brtrclfv 14981 Two ways of expressing the...
brcnvtrclfv 14982 Two ways of expressing the...
brtrclfvcnv 14983 Two ways of expressing the...
brcnvtrclfvcnv 14984 Two ways of expressing the...
trclfvss 14985 The transitive closure (as...
trclfvub 14986 The transitive closure of ...
trclfvlb 14987 The transitive closure of ...
trclfvcotr 14988 The transitive closure of ...
trclfvlb2 14989 The transitive closure of ...
trclfvlb3 14990 The transitive closure of ...
cotrtrclfv 14991 The transitive closure of ...
trclidm 14992 The transitive closure of ...
trclun 14993 Transitive closure of a un...
trclfvg 14994 The value of the transitiv...
trclfvcotrg 14995 The value of the transitiv...
reltrclfv 14996 The transitive closure of ...
dmtrclfv 14997 The domain of the transiti...
reldmrelexp 15000 The domain of the repeated...
relexp0g 15001 A relation composed zero t...
relexp0 15002 A relation composed zero t...
relexp0d 15003 A relation composed zero t...
relexpsucnnr 15004 A reduction for relation e...
relexp1g 15005 A relation composed once i...
dfid5 15006 Identity relation is equal...
dfid6 15007 Identity relation expresse...
relexp1d 15008 A relation composed once i...
relexpsucnnl 15009 A reduction for relation e...
relexpsucl 15010 A reduction for relation e...
relexpsucr 15011 A reduction for relation e...
relexpsucrd 15012 A reduction for relation e...
relexpsucld 15013 A reduction for relation e...
relexpcnv 15014 Commutation of converse an...
relexpcnvd 15015 Commutation of converse an...
relexp0rel 15016 The exponentiation of a cl...
relexprelg 15017 The exponentiation of a cl...
relexprel 15018 The exponentiation of a re...
relexpreld 15019 The exponentiation of a re...
relexpnndm 15020 The domain of an exponenti...
relexpdmg 15021 The domain of an exponenti...
relexpdm 15022 The domain of an exponenti...
relexpdmd 15023 The domain of an exponenti...
relexpnnrn 15024 The range of an exponentia...
relexprng 15025 The range of an exponentia...
relexprn 15026 The range of an exponentia...
relexprnd 15027 The range of an exponentia...
relexpfld 15028 The field of an exponentia...
relexpfldd 15029 The field of an exponentia...
relexpaddnn 15030 Relation composition becom...
relexpuzrel 15031 The exponentiation of a cl...
relexpaddg 15032 Relation composition becom...
relexpaddd 15033 Relation composition becom...
rtrclreclem1 15036 The reflexive, transitive ...
dfrtrclrec2 15037 If two elements are connec...
rtrclreclem2 15038 The reflexive, transitive ...
rtrclreclem3 15039 The reflexive, transitive ...
rtrclreclem4 15040 The reflexive, transitive ...
dfrtrcl2 15041 The two definitions ` t* `...
relexpindlem 15042 Principle of transitive in...
relexpind 15043 Principle of transitive in...
rtrclind 15044 Principle of transitive in...
shftlem 15047 Two ways to write a shifte...
shftuz 15048 A shift of the upper integ...
shftfval 15049 The value of the sequence ...
shftdm 15050 Domain of a relation shift...
shftfib 15051 Value of a fiber of the re...
shftfn 15052 Functionality and domain o...
shftval 15053 Value of a sequence shifte...
shftval2 15054 Value of a sequence shifte...
shftval3 15055 Value of a sequence shifte...
shftval4 15056 Value of a sequence shifte...
shftval5 15057 Value of a shifted sequenc...
shftf 15058 Functionality of a shifted...
2shfti 15059 Composite shift operations...
shftidt2 15060 Identity law for the shift...
shftidt 15061 Identity law for the shift...
shftcan1 15062 Cancellation law for the s...
shftcan2 15063 Cancellation law for the s...
seqshft 15064 Shifting the index set of ...
sgnval 15067 Value of the signum functi...
sgn0 15068 The signum of 0 is 0. (Co...
sgnp 15069 The signum of a positive e...
sgnrrp 15070 The signum of a positive r...
sgn1 15071 The signum of 1 is 1. (Co...
sgnpnf 15072 The signum of ` +oo ` is 1...
sgnn 15073 The signum of a negative e...
sgnmnf 15074 The signum of ` -oo ` is -...
cjval 15081 The value of the conjugate...
cjth 15082 The defining property of t...
cjf 15083 Domain and codomain of the...
cjcl 15084 The conjugate of a complex...
reval 15085 The value of the real part...
imval 15086 The value of the imaginary...
imre 15087 The imaginary part of a co...
reim 15088 The real part of a complex...
recl 15089 The real part of a complex...
imcl 15090 The imaginary part of a co...
ref 15091 Domain and codomain of the...
imf 15092 Domain and codomain of the...
crre 15093 The real part of a complex...
crim 15094 The real part of a complex...
replim 15095 Reconstruct a complex numb...
remim 15096 Value of the conjugate of ...
reim0 15097 The imaginary part of a re...
reim0b 15098 A number is real iff its i...
rereb 15099 A number is real iff it eq...
mulre 15100 A product with a nonzero r...
rere 15101 A real number equals its r...
cjreb 15102 A number is real iff it eq...
recj 15103 Real part of a complex con...
reneg 15104 Real part of negative. (C...
readd 15105 Real part distributes over...
resub 15106 Real part distributes over...
remullem 15107 Lemma for ~ remul , ~ immu...
remul 15108 Real part of a product. (...
remul2 15109 Real part of a product. (...
rediv 15110 Real part of a division. ...
imcj 15111 Imaginary part of a comple...
imneg 15112 The imaginary part of a ne...
imadd 15113 Imaginary part distributes...
imsub 15114 Imaginary part distributes...
immul 15115 Imaginary part of a produc...
immul2 15116 Imaginary part of a produc...
imdiv 15117 Imaginary part of a divisi...
cjre 15118 A real number equals its c...
cjcj 15119 The conjugate of the conju...
cjadd 15120 Complex conjugate distribu...
cjmul 15121 Complex conjugate distribu...
ipcnval 15122 Standard inner product on ...
cjmulrcl 15123 A complex number times its...
cjmulval 15124 A complex number times its...
cjmulge0 15125 A complex number times its...
cjneg 15126 Complex conjugate of negat...
addcj 15127 A number plus its conjugat...
cjsub 15128 Complex conjugate distribu...
cjexp 15129 Complex conjugate of posit...
imval2 15130 The imaginary part of a nu...
re0 15131 The real part of zero. (C...
im0 15132 The imaginary part of zero...
re1 15133 The real part of one. (Co...
im1 15134 The imaginary part of one....
rei 15135 The real part of ` _i ` . ...
imi 15136 The imaginary part of ` _i...
cj0 15137 The conjugate of zero. (C...
cji 15138 The complex conjugate of t...
cjreim 15139 The conjugate of a represe...
cjreim2 15140 The conjugate of the repre...
cj11 15141 Complex conjugate is a one...
cjne0 15142 A number is nonzero iff it...
cjdiv 15143 Complex conjugate distribu...
cnrecnv 15144 The inverse to the canonic...
sqeqd 15145 A deduction for showing tw...
recli 15146 The real part of a complex...
imcli 15147 The imaginary part of a co...
cjcli 15148 Closure law for complex co...
replimi 15149 Construct a complex number...
cjcji 15150 The conjugate of the conju...
reim0bi 15151 A number is real iff its i...
rerebi 15152 A real number equals its r...
cjrebi 15153 A number is real iff it eq...
recji 15154 Real part of a complex con...
imcji 15155 Imaginary part of a comple...
cjmulrcli 15156 A complex number times its...
cjmulvali 15157 A complex number times its...
cjmulge0i 15158 A complex number times its...
renegi 15159 Real part of negative. (C...
imnegi 15160 Imaginary part of negative...
cjnegi 15161 Complex conjugate of negat...
addcji 15162 A number plus its conjugat...
readdi 15163 Real part distributes over...
imaddi 15164 Imaginary part distributes...
remuli 15165 Real part of a product. (...
immuli 15166 Imaginary part of a produc...
cjaddi 15167 Complex conjugate distribu...
cjmuli 15168 Complex conjugate distribu...
ipcni 15169 Standard inner product on ...
cjdivi 15170 Complex conjugate distribu...
crrei 15171 The real part of a complex...
crimi 15172 The imaginary part of a co...
recld 15173 The real part of a complex...
imcld 15174 The imaginary part of a co...
cjcld 15175 Closure law for complex co...
replimd 15176 Construct a complex number...
remimd 15177 Value of the conjugate of ...
cjcjd 15178 The conjugate of the conju...
reim0bd 15179 A number is real iff its i...
rerebd 15180 A real number equals its r...
cjrebd 15181 A number is real iff it eq...
cjne0d 15182 A number is nonzero iff it...
recjd 15183 Real part of a complex con...
imcjd 15184 Imaginary part of a comple...
cjmulrcld 15185 A complex number times its...
cjmulvald 15186 A complex number times its...
cjmulge0d 15187 A complex number times its...
renegd 15188 Real part of negative. (C...
imnegd 15189 Imaginary part of negative...
cjnegd 15190 Complex conjugate of negat...
addcjd 15191 A number plus its conjugat...
cjexpd 15192 Complex conjugate of posit...
readdd 15193 Real part distributes over...
imaddd 15194 Imaginary part distributes...
resubd 15195 Real part distributes over...
imsubd 15196 Imaginary part distributes...
remuld 15197 Real part of a product. (...
immuld 15198 Imaginary part of a produc...
cjaddd 15199 Complex conjugate distribu...
cjmuld 15200 Complex conjugate distribu...
ipcnd 15201 Standard inner product on ...
cjdivd 15202 Complex conjugate distribu...
rered 15203 A real number equals its r...
reim0d 15204 The imaginary part of a re...
cjred 15205 A real number equals its c...
remul2d 15206 Real part of a product. (...
immul2d 15207 Imaginary part of a produc...
redivd 15208 Real part of a division. ...
imdivd 15209 Imaginary part of a divisi...
crred 15210 The real part of a complex...
crimd 15211 The imaginary part of a co...
sqrtval 15216 Value of square root funct...
absval 15217 The absolute value (modulu...
rennim 15218 A real number does not lie...
cnpart 15219 The specification of restr...
sqrt0 15220 The square root of zero is...
01sqrexlem1 15221 Lemma for ~ 01sqrex . (Co...
01sqrexlem2 15222 Lemma for ~ 01sqrex . (Co...
01sqrexlem3 15223 Lemma for ~ 01sqrex . (Co...
01sqrexlem4 15224 Lemma for ~ 01sqrex . (Co...
01sqrexlem5 15225 Lemma for ~ 01sqrex . (Co...
01sqrexlem6 15226 Lemma for ~ 01sqrex . (Co...
01sqrexlem7 15227 Lemma for ~ 01sqrex . (Co...
01sqrex 15228 Existence of a square root...
resqrex 15229 Existence of a square root...
sqrmo 15230 Uniqueness for the square ...
resqreu 15231 Existence and uniqueness f...
resqrtcl 15232 Closure of the square root...
resqrtthlem 15233 Lemma for ~ resqrtth . (C...
resqrtth 15234 Square root theorem over t...
remsqsqrt 15235 Square of square root. (C...
sqrtge0 15236 The square root function i...
sqrtgt0 15237 The square root function i...
sqrtmul 15238 Square root distributes ov...
sqrtle 15239 Square root is monotonic. ...
sqrtlt 15240 Square root is strictly mo...
sqrt11 15241 The square root function i...
sqrt00 15242 A square root is zero iff ...
rpsqrtcl 15243 The square root of a posit...
sqrtdiv 15244 Square root distributes ov...
sqrtneglem 15245 The square root of a negat...
sqrtneg 15246 The square root of a negat...
sqrtsq2 15247 Relationship between squar...
sqrtsq 15248 Square root of square. (C...
sqrtmsq 15249 Square root of square. (C...
sqrt1 15250 The square root of 1 is 1....
sqrt4 15251 The square root of 4 is 2....
sqrt9 15252 The square root of 9 is 3....
sqrt2gt1lt2 15253 The square root of 2 is bo...
sqrtm1 15254 The imaginary unit is the ...
nn0sqeq1 15255 A natural number with squa...
absneg 15256 Absolute value of the nega...
abscl 15257 Real closure of absolute v...
abscj 15258 The absolute value of a nu...
absvalsq 15259 Square of value of absolut...
absvalsq2 15260 Square of value of absolut...
sqabsadd 15261 Square of absolute value o...
sqabssub 15262 Square of absolute value o...
absval2 15263 Value of absolute value fu...
abs0 15264 The absolute value of 0. ...
absi 15265 The absolute value of the ...
absge0 15266 Absolute value is nonnegat...
absrpcl 15267 The absolute value of a no...
abs00 15268 The absolute value of a nu...
abs00ad 15269 A complex number is zero i...
abs00bd 15270 If a complex number is zer...
absreimsq 15271 Square of the absolute val...
absreim 15272 Absolute value of a number...
absmul 15273 Absolute value distributes...
absdiv 15274 Absolute value distributes...
absid 15275 A nonnegative number is it...
abs1 15276 The absolute value of one ...
absnid 15277 For a negative number, its...
leabs 15278 A real number is less than...
absor 15279 The absolute value of a re...
absre 15280 Absolute value of a real n...
absresq 15281 Square of the absolute val...
absmod0 15282 ` A ` is divisible by ` B ...
absexp 15283 Absolute value of positive...
absexpz 15284 Absolute value of integer ...
abssq 15285 Square can be moved in and...
sqabs 15286 The squares of two reals a...
absrele 15287 The absolute value of a co...
absimle 15288 The absolute value of a co...
max0add 15289 The sum of the positive an...
absz 15290 A real number is an intege...
nn0abscl 15291 The absolute value of an i...
zabscl 15292 The absolute value of an i...
abslt 15293 Absolute value and 'less t...
absle 15294 Absolute value and 'less t...
abssubne0 15295 If the absolute value of a...
absdiflt 15296 The absolute value of a di...
absdifle 15297 The absolute value of a di...
elicc4abs 15298 Membership in a symmetric ...
lenegsq 15299 Comparison to a nonnegativ...
releabs 15300 The real part of a number ...
recval 15301 Reciprocal expressed with ...
absidm 15302 The absolute value functio...
absgt0 15303 The absolute value of a no...
nnabscl 15304 The absolute value of a no...
abssub 15305 Swapping order of subtract...
abssubge0 15306 Absolute value of a nonneg...
abssuble0 15307 Absolute value of a nonpos...
absmax 15308 The maximum of two numbers...
abstri 15309 Triangle inequality for ab...
abs3dif 15310 Absolute value of differen...
abs2dif 15311 Difference of absolute val...
abs2dif2 15312 Difference of absolute val...
abs2difabs 15313 Absolute value of differen...
abs1m 15314 For any complex number, th...
recan 15315 Cancellation law involving...
absf 15316 Mapping domain and codomai...
abs3lem 15317 Lemma involving absolute v...
abslem2 15318 Lemma involving absolute v...
rddif 15319 The difference between a r...
absrdbnd 15320 Bound on the absolute valu...
fzomaxdiflem 15321 Lemma for ~ fzomaxdif . (...
fzomaxdif 15322 A bound on the separation ...
uzin2 15323 The upper integers are clo...
rexanuz 15324 Combine two different uppe...
rexanre 15325 Combine two different uppe...
rexfiuz 15326 Combine finitely many diff...
rexuz3 15327 Restrict the base of the u...
rexanuz2 15328 Combine two different uppe...
r19.29uz 15329 A version of ~ 19.29 for u...
r19.2uz 15330 A version of ~ r19.2z for ...
rexuzre 15331 Convert an upper real quan...
rexico 15332 Restrict the base of an up...
cau3lem 15333 Lemma for ~ cau3 . (Contr...
cau3 15334 Convert between three-quan...
cau4 15335 Change the base of a Cauch...
caubnd2 15336 A Cauchy sequence of compl...
caubnd 15337 A Cauchy sequence of compl...
sqreulem 15338 Lemma for ~ sqreu : write ...
sqreu 15339 Existence and uniqueness f...
sqrtcl 15340 Closure of the square root...
sqrtthlem 15341 Lemma for ~ sqrtth . (Con...
sqrtf 15342 Mapping domain and codomai...
sqrtth 15343 Square root theorem over t...
sqrtrege0 15344 The square root function m...
eqsqrtor 15345 Solve an equation containi...
eqsqrtd 15346 A deduction for showing th...
eqsqrt2d 15347 A deduction for showing th...
amgm2 15348 Arithmetic-geometric mean ...
sqrtthi 15349 Square root theorem. Theo...
sqrtcli 15350 The square root of a nonne...
sqrtgt0i 15351 The square root of a posit...
sqrtmsqi 15352 Square root of square. (C...
sqrtsqi 15353 Square root of square. (C...
sqsqrti 15354 Square of square root. (C...
sqrtge0i 15355 The square root of a nonne...
absidi 15356 A nonnegative number is it...
absnidi 15357 A negative number is the n...
leabsi 15358 A real number is less than...
absori 15359 The absolute value of a re...
absrei 15360 Absolute value of a real n...
sqrtpclii 15361 The square root of a posit...
sqrtgt0ii 15362 The square root of a posit...
sqrt11i 15363 The square root function i...
sqrtmuli 15364 Square root distributes ov...
sqrtmulii 15365 Square root distributes ov...
sqrtmsq2i 15366 Relationship between squar...
sqrtlei 15367 Square root is monotonic. ...
sqrtlti 15368 Square root is strictly mo...
abslti 15369 Absolute value and 'less t...
abslei 15370 Absolute value and 'less t...
cnsqrt00 15371 A square root of a complex...
absvalsqi 15372 Square of value of absolut...
absvalsq2i 15373 Square of value of absolut...
abscli 15374 Real closure of absolute v...
absge0i 15375 Absolute value is nonnegat...
absval2i 15376 Value of absolute value fu...
abs00i 15377 The absolute value of a nu...
absgt0i 15378 The absolute value of a no...
absnegi 15379 Absolute value of negative...
abscji 15380 The absolute value of a nu...
releabsi 15381 The real part of a number ...
abssubi 15382 Swapping order of subtract...
absmuli 15383 Absolute value distributes...
sqabsaddi 15384 Square of absolute value o...
sqabssubi 15385 Square of absolute value o...
absdivzi 15386 Absolute value distributes...
abstrii 15387 Triangle inequality for ab...
abs3difi 15388 Absolute value of differen...
abs3lemi 15389 Lemma involving absolute v...
rpsqrtcld 15390 The square root of a posit...
sqrtgt0d 15391 The square root of a posit...
absnidd 15392 A negative number is the n...
leabsd 15393 A real number is less than...
absord 15394 The absolute value of a re...
absred 15395 Absolute value of a real n...
resqrtcld 15396 The square root of a nonne...
sqrtmsqd 15397 Square root of square. (C...
sqrtsqd 15398 Square root of square. (C...
sqrtge0d 15399 The square root of a nonne...
sqrtnegd 15400 The square root of a negat...
absidd 15401 A nonnegative number is it...
sqrtdivd 15402 Square root distributes ov...
sqrtmuld 15403 Square root distributes ov...
sqrtsq2d 15404 Relationship between squar...
sqrtled 15405 Square root is monotonic. ...
sqrtltd 15406 Square root is strictly mo...
sqr11d 15407 The square root function i...
absltd 15408 Absolute value and 'less t...
absled 15409 Absolute value and 'less t...
abssubge0d 15410 Absolute value of a nonneg...
abssuble0d 15411 Absolute value of a nonpos...
absdifltd 15412 The absolute value of a di...
absdifled 15413 The absolute value of a di...
icodiamlt 15414 Two elements in a half-ope...
abscld 15415 Real closure of absolute v...
sqrtcld 15416 Closure of the square root...
sqrtrege0d 15417 The real part of the squar...
sqsqrtd 15418 Square root theorem. Theo...
msqsqrtd 15419 Square root theorem. Theo...
sqr00d 15420 A square root is zero iff ...
absvalsqd 15421 Square of value of absolut...
absvalsq2d 15422 Square of value of absolut...
absge0d 15423 Absolute value is nonnegat...
absval2d 15424 Value of absolute value fu...
abs00d 15425 The absolute value of a nu...
absne0d 15426 The absolute value of a nu...
absrpcld 15427 The absolute value of a no...
absnegd 15428 Absolute value of negative...
abscjd 15429 The absolute value of a nu...
releabsd 15430 The real part of a number ...
absexpd 15431 Absolute value of positive...
abssubd 15432 Swapping order of subtract...
absmuld 15433 Absolute value distributes...
absdivd 15434 Absolute value distributes...
abstrid 15435 Triangle inequality for ab...
abs2difd 15436 Difference of absolute val...
abs2dif2d 15437 Difference of absolute val...
abs2difabsd 15438 Absolute value of differen...
abs3difd 15439 Absolute value of differen...
abs3lemd 15440 Lemma involving absolute v...
reusq0 15441 A complex number is the sq...
bhmafibid1cn 15442 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15443 The Brahmagupta-Fibonacci ...
bhmafibid1 15444 The Brahmagupta-Fibonacci ...
bhmafibid2 15445 The Brahmagupta-Fibonacci ...
limsupgord 15448 Ordering property of the s...
limsupcl 15449 Closure of the superior li...
limsupval 15450 The superior limit of an i...
limsupgf 15451 Closure of the superior li...
limsupgval 15452 Value of the superior limi...
limsupgle 15453 The defining property of t...
limsuple 15454 The defining property of t...
limsuplt 15455 The defining property of t...
limsupval2 15456 The superior limit, relati...
limsupgre 15457 If a sequence of real numb...
limsupbnd1 15458 If a sequence is eventuall...
limsupbnd2 15459 If a sequence is eventuall...
climrel 15468 The limit relation is a re...
rlimrel 15469 The limit relation is a re...
clim 15470 Express the predicate: Th...
rlim 15471 Express the predicate: Th...
rlim2 15472 Rewrite ~ rlim for a mappi...
rlim2lt 15473 Use strictly less-than in ...
rlim3 15474 Restrict the range of the ...
climcl 15475 Closure of the limit of a ...
rlimpm 15476 Closure of a function with...
rlimf 15477 Closure of a function with...
rlimss 15478 Domain closure of a functi...
rlimcl 15479 Closure of the limit of a ...
clim2 15480 Express the predicate: Th...
clim2c 15481 Express the predicate ` F ...
clim0 15482 Express the predicate ` F ...
clim0c 15483 Express the predicate ` F ...
rlim0 15484 Express the predicate ` B ...
rlim0lt 15485 Use strictly less-than in ...
climi 15486 Convergence of a sequence ...
climi2 15487 Convergence of a sequence ...
climi0 15488 Convergence of a sequence ...
rlimi 15489 Convergence at infinity of...
rlimi2 15490 Convergence at infinity of...
ello1 15491 Elementhood in the set of ...
ello12 15492 Elementhood in the set of ...
ello12r 15493 Sufficient condition for e...
lo1f 15494 An eventually upper bounde...
lo1dm 15495 An eventually upper bounde...
lo1bdd 15496 The defining property of a...
ello1mpt 15497 Elementhood in the set of ...
ello1mpt2 15498 Elementhood in the set of ...
ello1d 15499 Sufficient condition for e...
lo1bdd2 15500 If an eventually bounded f...
lo1bddrp 15501 Refine ~ o1bdd2 to give a ...
elo1 15502 Elementhood in the set of ...
elo12 15503 Elementhood in the set of ...
elo12r 15504 Sufficient condition for e...
o1f 15505 An eventually bounded func...
o1dm 15506 An eventually bounded func...
o1bdd 15507 The defining property of a...
lo1o1 15508 A function is eventually b...
lo1o12 15509 A function is eventually b...
elo1mpt 15510 Elementhood in the set of ...
elo1mpt2 15511 Elementhood in the set of ...
elo1d 15512 Sufficient condition for e...
o1lo1 15513 A real function is eventua...
o1lo12 15514 A lower bounded real funct...
o1lo1d 15515 A real eventually bounded ...
icco1 15516 Derive eventual boundednes...
o1bdd2 15517 If an eventually bounded f...
o1bddrp 15518 Refine ~ o1bdd2 to give a ...
climconst 15519 An (eventually) constant s...
rlimconst 15520 A constant sequence conver...
rlimclim1 15521 Forward direction of ~ rli...
rlimclim 15522 A sequence on an upper int...
climrlim2 15523 Produce a real limit from ...
climconst2 15524 A constant sequence conver...
climz 15525 The zero sequence converge...
rlimuni 15526 A real function whose doma...
rlimdm 15527 Two ways to express that a...
climuni 15528 An infinite sequence of co...
fclim 15529 The limit relation is func...
climdm 15530 Two ways to express that a...
climeu 15531 An infinite sequence of co...
climreu 15532 An infinite sequence of co...
climmo 15533 An infinite sequence of co...
rlimres 15534 The restriction of a funct...
lo1res 15535 The restriction of an even...
o1res 15536 The restriction of an even...
rlimres2 15537 The restriction of a funct...
lo1res2 15538 The restriction of a funct...
o1res2 15539 The restriction of a funct...
lo1resb 15540 The restriction of a funct...
rlimresb 15541 The restriction of a funct...
o1resb 15542 The restriction of a funct...
climeq 15543 Two functions that are eve...
lo1eq 15544 Two functions that are eve...
rlimeq 15545 Two functions that are eve...
o1eq 15546 Two functions that are eve...
climmpt 15547 Exhibit a function ` G ` w...
2clim 15548 If two sequences converge ...
climmpt2 15549 Relate an integer limit on...
climshftlem 15550 A shifted function converg...
climres 15551 A function restricted to u...
climshft 15552 A shifted function converg...
serclim0 15553 The zero series converges ...
rlimcld2 15554 If ` D ` is a closed set i...
rlimrege0 15555 The limit of a sequence of...
rlimrecl 15556 The limit of a real sequen...
rlimge0 15557 The limit of a sequence of...
climshft2 15558 A shifted function converg...
climrecl 15559 The limit of a convergent ...
climge0 15560 A nonnegative sequence con...
climabs0 15561 Convergence to zero of the...
o1co 15562 Sufficient condition for t...
o1compt 15563 Sufficient condition for t...
rlimcn1 15564 Image of a limit under a c...
rlimcn1b 15565 Image of a limit under a c...
rlimcn3 15566 Image of a limit under a c...
rlimcn2 15567 Image of a limit under a c...
climcn1 15568 Image of a limit under a c...
climcn2 15569 Image of a limit under a c...
addcn2 15570 Complex number addition is...
subcn2 15571 Complex number subtraction...
mulcn2 15572 Complex number multiplicat...
reccn2 15573 The reciprocal function is...
cn1lem 15574 A sufficient condition for...
abscn2 15575 The absolute value functio...
cjcn2 15576 The complex conjugate func...
recn2 15577 The real part function is ...
imcn2 15578 The imaginary part functio...
climcn1lem 15579 The limit of a continuous ...
climabs 15580 Limit of the absolute valu...
climcj 15581 Limit of the complex conju...
climre 15582 Limit of the real part of ...
climim 15583 Limit of the imaginary par...
rlimmptrcl 15584 Reverse closure for a real...
rlimabs 15585 Limit of the absolute valu...
rlimcj 15586 Limit of the complex conju...
rlimre 15587 Limit of the real part of ...
rlimim 15588 Limit of the imaginary par...
o1of2 15589 Show that a binary operati...
o1add 15590 The sum of two eventually ...
o1mul 15591 The product of two eventua...
o1sub 15592 The difference of two even...
rlimo1 15593 Any function with a finite...
rlimdmo1 15594 A convergent function is e...
o1rlimmul 15595 The product of an eventual...
o1const 15596 A constant function is eve...
lo1const 15597 A constant function is eve...
lo1mptrcl 15598 Reverse closure for an eve...
o1mptrcl 15599 Reverse closure for an eve...
o1add2 15600 The sum of two eventually ...
o1mul2 15601 The product of two eventua...
o1sub2 15602 The product of two eventua...
lo1add 15603 The sum of two eventually ...
lo1mul 15604 The product of an eventual...
lo1mul2 15605 The product of an eventual...
o1dif 15606 If the difference of two f...
lo1sub 15607 The difference of an event...
climadd 15608 Limit of the sum of two co...
climmul 15609 Limit of the product of tw...
climsub 15610 Limit of the difference of...
climaddc1 15611 Limit of a constant ` C ` ...
climaddc2 15612 Limit of a constant ` C ` ...
climmulc2 15613 Limit of a sequence multip...
climsubc1 15614 Limit of a constant ` C ` ...
climsubc2 15615 Limit of a constant ` C ` ...
climle 15616 Comparison of the limits o...
climsqz 15617 Convergence of a sequence ...
climsqz2 15618 Convergence of a sequence ...
rlimadd 15619 Limit of the sum of two co...
rlimaddOLD 15620 Obsolete version of ~ rlim...
rlimsub 15621 Limit of the difference of...
rlimmul 15622 Limit of the product of tw...
rlimmulOLD 15623 Obsolete version of ~ rlim...
rlimdiv 15624 Limit of the quotient of t...
rlimneg 15625 Limit of the negative of a...
rlimle 15626 Comparison of the limits o...
rlimsqzlem 15627 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15628 Convergence of a sequence ...
rlimsqz2 15629 Convergence of a sequence ...
lo1le 15630 Transfer eventual upper bo...
o1le 15631 Transfer eventual boundedn...
rlimno1 15632 A function whose inverse c...
clim2ser 15633 The limit of an infinite s...
clim2ser2 15634 The limit of an infinite s...
iserex 15635 An infinite series converg...
isermulc2 15636 Multiplication of an infin...
climlec2 15637 Comparison of a constant t...
iserle 15638 Comparison of the limits o...
iserge0 15639 The limit of an infinite s...
climub 15640 The limit of a monotonic s...
climserle 15641 The partial sums of a conv...
isershft 15642 Index shift of the limit o...
isercolllem1 15643 Lemma for ~ isercoll . (C...
isercolllem2 15644 Lemma for ~ isercoll . (C...
isercolllem3 15645 Lemma for ~ isercoll . (C...
isercoll 15646 Rearrange an infinite seri...
isercoll2 15647 Generalize ~ isercoll so t...
climsup 15648 A bounded monotonic sequen...
climcau 15649 A converging sequence of c...
climbdd 15650 A converging sequence of c...
caucvgrlem 15651 Lemma for ~ caurcvgr . (C...
caurcvgr 15652 A Cauchy sequence of real ...
caucvgrlem2 15653 Lemma for ~ caucvgr . (Co...
caucvgr 15654 A Cauchy sequence of compl...
caurcvg 15655 A Cauchy sequence of real ...
caurcvg2 15656 A Cauchy sequence of real ...
caucvg 15657 A Cauchy sequence of compl...
caucvgb 15658 A function is convergent i...
serf0 15659 If an infinite series conv...
iseraltlem1 15660 Lemma for ~ iseralt . A d...
iseraltlem2 15661 Lemma for ~ iseralt . The...
iseraltlem3 15662 Lemma for ~ iseralt . Fro...
iseralt 15663 The alternating series tes...
sumex 15666 A sum is a set. (Contribu...
sumeq1 15667 Equality theorem for a sum...
nfsum1 15668 Bound-variable hypothesis ...
nfsum 15669 Bound-variable hypothesis ...
sumeq2w 15670 Equality theorem for sum, ...
sumeq2ii 15671 Equality theorem for sum, ...
sumeq2 15672 Equality theorem for sum. ...
cbvsum 15673 Change bound variable in a...
cbvsumv 15674 Change bound variable in a...
cbvsumi 15675 Change bound variable in a...
sumeq1i 15676 Equality inference for sum...
sumeq2i 15677 Equality inference for sum...
sumeq12i 15678 Equality inference for sum...
sumeq1d 15679 Equality deduction for sum...
sumeq2d 15680 Equality deduction for sum...
sumeq2dv 15681 Equality deduction for sum...
sumeq2sdv 15682 Equality deduction for sum...
2sumeq2dv 15683 Equality deduction for dou...
sumeq12dv 15684 Equality deduction for sum...
sumeq12rdv 15685 Equality deduction for sum...
sum2id 15686 The second class argument ...
sumfc 15687 A lemma to facilitate conv...
fz1f1o 15688 A lemma for working with f...
sumrblem 15689 Lemma for ~ sumrb . (Cont...
fsumcvg 15690 The sequence of partial su...
sumrb 15691 Rebase the starting point ...
summolem3 15692 Lemma for ~ summo . (Cont...
summolem2a 15693 Lemma for ~ summo . (Cont...
summolem2 15694 Lemma for ~ summo . (Cont...
summo 15695 A sum has at most one limi...
zsum 15696 Series sum with index set ...
isum 15697 Series sum with an upper i...
fsum 15698 The value of a sum over a ...
sum0 15699 Any sum over the empty set...
sumz 15700 Any sum of zero over a sum...
fsumf1o 15701 Re-index a finite sum usin...
sumss 15702 Change the index set to a ...
fsumss 15703 Change the index set to a ...
sumss2 15704 Change the index set of a ...
fsumcvg2 15705 The sequence of partial su...
fsumsers 15706 Special case of series sum...
fsumcvg3 15707 A finite sum is convergent...
fsumser 15708 A finite sum expressed in ...
fsumcl2lem 15709 - Lemma for finite sum clo...
fsumcllem 15710 - Lemma for finite sum clo...
fsumcl 15711 Closure of a finite sum of...
fsumrecl 15712 Closure of a finite sum of...
fsumzcl 15713 Closure of a finite sum of...
fsumnn0cl 15714 Closure of a finite sum of...
fsumrpcl 15715 Closure of a finite sum of...
fsumclf 15716 Closure of a finite sum of...
fsumzcl2 15717 A finite sum with integer ...
fsumadd 15718 The sum of two finite sums...
fsumsplit 15719 Split a sum into two parts...
fsumsplitf 15720 Split a sum into two parts...
sumsnf 15721 A sum of a singleton is th...
fsumsplitsn 15722 Separate out a term in a f...
fsumsplit1 15723 Separate out a term in a f...
sumsn 15724 A sum of a singleton is th...
fsum1 15725 The finite sum of ` A ( k ...
sumpr 15726 A sum over a pair is the s...
sumtp 15727 A sum over a triple is the...
sumsns 15728 A sum of a singleton is th...
fsumm1 15729 Separate out the last term...
fzosump1 15730 Separate out the last term...
fsum1p 15731 Separate out the first ter...
fsummsnunz 15732 A finite sum all of whose ...
fsumsplitsnun 15733 Separate out a term in a f...
fsump1 15734 The addition of the next t...
isumclim 15735 An infinite sum equals the...
isumclim2 15736 A converging series conver...
isumclim3 15737 The sequence of partial fi...
sumnul 15738 The sum of a non-convergen...
isumcl 15739 The sum of a converging in...
isummulc2 15740 An infinite sum multiplied...
isummulc1 15741 An infinite sum multiplied...
isumdivc 15742 An infinite sum divided by...
isumrecl 15743 The sum of a converging in...
isumge0 15744 An infinite sum of nonnega...
isumadd 15745 Addition of infinite sums....
sumsplit 15746 Split a sum into two parts...
fsump1i 15747 Optimized version of ~ fsu...
fsum2dlem 15748 Lemma for ~ fsum2d - induc...
fsum2d 15749 Write a double sum as a su...
fsumxp 15750 Combine two sums into a si...
fsumcnv 15751 Transform a region of summ...
fsumcom2 15752 Interchange order of summa...
fsumcom 15753 Interchange order of summa...
fsum0diaglem 15754 Lemma for ~ fsum0diag . (...
fsum0diag 15755 Two ways to express "the s...
mptfzshft 15756 1-1 onto function in maps-...
fsumrev 15757 Reversal of a finite sum. ...
fsumshft 15758 Index shift of a finite su...
fsumshftm 15759 Negative index shift of a ...
fsumrev2 15760 Reversal of a finite sum. ...
fsum0diag2 15761 Two ways to express "the s...
fsummulc2 15762 A finite sum multiplied by...
fsummulc1 15763 A finite sum multiplied by...
fsumdivc 15764 A finite sum divided by a ...
fsumneg 15765 Negation of a finite sum. ...
fsumsub 15766 Split a finite sum over a ...
fsum2mul 15767 Separate the nested sum of...
fsumconst 15768 The sum of constant terms ...
fsumdifsnconst 15769 The sum of constant terms ...
modfsummodslem1 15770 Lemma 1 for ~ modfsummods ...
modfsummods 15771 Induction step for ~ modfs...
modfsummod 15772 A finite sum modulo a posi...
fsumge0 15773 If all of the terms of a f...
fsumless 15774 A shorter sum of nonnegati...
fsumge1 15775 A sum of nonnegative numbe...
fsum00 15776 A sum of nonnegative numbe...
fsumle 15777 If all of the terms of fin...
fsumlt 15778 If every term in one finit...
fsumabs 15779 Generalized triangle inequ...
telfsumo 15780 Sum of a telescoping serie...
telfsumo2 15781 Sum of a telescoping serie...
telfsum 15782 Sum of a telescoping serie...
telfsum2 15783 Sum of a telescoping serie...
fsumparts 15784 Summation by parts. (Cont...
fsumrelem 15785 Lemma for ~ fsumre , ~ fsu...
fsumre 15786 The real part of a sum. (...
fsumim 15787 The imaginary part of a su...
fsumcj 15788 The complex conjugate of a...
fsumrlim 15789 Limit of a finite sum of c...
fsumo1 15790 The finite sum of eventual...
o1fsum 15791 If ` A ( k ) ` is O(1), th...
seqabs 15792 Generalized triangle inequ...
iserabs 15793 Generalized triangle inequ...
cvgcmp 15794 A comparison test for conv...
cvgcmpub 15795 An upper bound for the lim...
cvgcmpce 15796 A comparison test for conv...
abscvgcvg 15797 An absolutely convergent s...
climfsum 15798 Limit of a finite sum of c...
fsumiun 15799 Sum over a disjoint indexe...
hashiun 15800 The cardinality of a disjo...
hash2iun 15801 The cardinality of a neste...
hash2iun1dif1 15802 The cardinality of a neste...
hashrabrex 15803 The number of elements in ...
hashuni 15804 The cardinality of a disjo...
qshash 15805 The cardinality of a set w...
ackbijnn 15806 Translate the Ackermann bi...
binomlem 15807 Lemma for ~ binom (binomia...
binom 15808 The binomial theorem: ` ( ...
binom1p 15809 Special case of the binomi...
binom11 15810 Special case of the binomi...
binom1dif 15811 A summation for the differ...
bcxmaslem1 15812 Lemma for ~ bcxmas . (Con...
bcxmas 15813 Parallel summation (Christ...
incexclem 15814 Lemma for ~ incexc . (Con...
incexc 15815 The inclusion/exclusion pr...
incexc2 15816 The inclusion/exclusion pr...
isumshft 15817 Index shift of an infinite...
isumsplit 15818 Split off the first ` N ` ...
isum1p 15819 The infinite sum of a conv...
isumnn0nn 15820 Sum from 0 to infinity in ...
isumrpcl 15821 The infinite sum of positi...
isumle 15822 Comparison of two infinite...
isumless 15823 A finite sum of nonnegativ...
isumsup2 15824 An infinite sum of nonnega...
isumsup 15825 An infinite sum of nonnega...
isumltss 15826 A partial sum of a series ...
climcndslem1 15827 Lemma for ~ climcnds : bou...
climcndslem2 15828 Lemma for ~ climcnds : bou...
climcnds 15829 The Cauchy condensation te...
divrcnv 15830 The sequence of reciprocal...
divcnv 15831 The sequence of reciprocal...
flo1 15832 The floor function satisfi...
divcnvshft 15833 Limit of a ratio function....
supcvg 15834 Extract a sequence ` f ` i...
infcvgaux1i 15835 Auxiliary theorem for appl...
infcvgaux2i 15836 Auxiliary theorem for appl...
harmonic 15837 The harmonic series ` H ` ...
arisum 15838 Arithmetic series sum of t...
arisum2 15839 Arithmetic series sum of t...
trireciplem 15840 Lemma for ~ trirecip . Sh...
trirecip 15841 The sum of the reciprocals...
expcnv 15842 A sequence of powers of a ...
explecnv 15843 A sequence of terms conver...
geoserg 15844 The value of the finite ge...
geoser 15845 The value of the finite ge...
pwdif 15846 The difference of two numb...
pwm1geoser 15847 The n-th power of a number...
geolim 15848 The partial sums in the in...
geolim2 15849 The partial sums in the ge...
georeclim 15850 The limit of a geometric s...
geo2sum 15851 The value of the finite ge...
geo2sum2 15852 The value of the finite ge...
geo2lim 15853 The value of the infinite ...
geomulcvg 15854 The geometric series conve...
geoisum 15855 The infinite sum of ` 1 + ...
geoisumr 15856 The infinite sum of recipr...
geoisum1 15857 The infinite sum of ` A ^ ...
geoisum1c 15858 The infinite sum of ` A x....
0.999... 15859 The recurring decimal 0.99...
geoihalfsum 15860 Prove that the infinite ge...
cvgrat 15861 Ratio test for convergence...
mertenslem1 15862 Lemma for ~ mertens . (Co...
mertenslem2 15863 Lemma for ~ mertens . (Co...
mertens 15864 Mertens' theorem. If ` A ...
prodf 15865 An infinite product of com...
clim2prod 15866 The limit of an infinite p...
clim2div 15867 The limit of an infinite p...
prodfmul 15868 The product of two infinit...
prodf1 15869 The value of the partial p...
prodf1f 15870 A one-valued infinite prod...
prodfclim1 15871 The constant one product c...
prodfn0 15872 No term of a nonzero infin...
prodfrec 15873 The reciprocal of an infin...
prodfdiv 15874 The quotient of two infini...
ntrivcvg 15875 A non-trivially converging...
ntrivcvgn0 15876 A product that converges t...
ntrivcvgfvn0 15877 Any value of a product seq...
ntrivcvgtail 15878 A tail of a non-trivially ...
ntrivcvgmullem 15879 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15880 The product of two non-tri...
prodex 15883 A product is a set. (Cont...
prodeq1f 15884 Equality theorem for a pro...
prodeq1 15885 Equality theorem for a pro...
nfcprod1 15886 Bound-variable hypothesis ...
nfcprod 15887 Bound-variable hypothesis ...
prodeq2w 15888 Equality theorem for produ...
prodeq2ii 15889 Equality theorem for produ...
prodeq2 15890 Equality theorem for produ...
cbvprod 15891 Change bound variable in a...
cbvprodv 15892 Change bound variable in a...
cbvprodi 15893 Change bound variable in a...
prodeq1i 15894 Equality inference for pro...
prodeq2i 15895 Equality inference for pro...
prodeq12i 15896 Equality inference for pro...
prodeq1d 15897 Equality deduction for pro...
prodeq2d 15898 Equality deduction for pro...
prodeq2dv 15899 Equality deduction for pro...
prodeq2sdv 15900 Equality deduction for pro...
2cprodeq2dv 15901 Equality deduction for dou...
prodeq12dv 15902 Equality deduction for pro...
prodeq12rdv 15903 Equality deduction for pro...
prod2id 15904 The second class argument ...
prodrblem 15905 Lemma for ~ prodrb . (Con...
fprodcvg 15906 The sequence of partial pr...
prodrblem2 15907 Lemma for ~ prodrb . (Con...
prodrb 15908 Rebase the starting point ...
prodmolem3 15909 Lemma for ~ prodmo . (Con...
prodmolem2a 15910 Lemma for ~ prodmo . (Con...
prodmolem2 15911 Lemma for ~ prodmo . (Con...
prodmo 15912 A product has at most one ...
zprod 15913 Series product with index ...
iprod 15914 Series product with an upp...
zprodn0 15915 Nonzero series product wit...
iprodn0 15916 Nonzero series product wit...
fprod 15917 The value of a product ove...
fprodntriv 15918 A non-triviality lemma for...
prod0 15919 A product over the empty s...
prod1 15920 Any product of one over a ...
prodfc 15921 A lemma to facilitate conv...
fprodf1o 15922 Re-index a finite product ...
prodss 15923 Change the index set to a ...
fprodss 15924 Change the index set to a ...
fprodser 15925 A finite product expressed...
fprodcl2lem 15926 Finite product closure lem...
fprodcllem 15927 Finite product closure lem...
fprodcl 15928 Closure of a finite produc...
fprodrecl 15929 Closure of a finite produc...
fprodzcl 15930 Closure of a finite produc...
fprodnncl 15931 Closure of a finite produc...
fprodrpcl 15932 Closure of a finite produc...
fprodnn0cl 15933 Closure of a finite produc...
fprodcllemf 15934 Finite product closure lem...
fprodreclf 15935 Closure of a finite produc...
fprodmul 15936 The product of two finite ...
fproddiv 15937 The quotient of two finite...
prodsn 15938 A product of a singleton i...
fprod1 15939 A finite product of only o...
prodsnf 15940 A product of a singleton i...
climprod1 15941 The limit of a product ove...
fprodsplit 15942 Split a finite product int...
fprodm1 15943 Separate out the last term...
fprod1p 15944 Separate out the first ter...
fprodp1 15945 Multiply in the last term ...
fprodm1s 15946 Separate out the last term...
fprodp1s 15947 Multiply in the last term ...
prodsns 15948 A product of the singleton...
fprodfac 15949 Factorial using product no...
fprodabs 15950 The absolute value of a fi...
fprodeq0 15951 Any finite product contain...
fprodshft 15952 Shift the index of a finit...
fprodrev 15953 Reversal of a finite produ...
fprodconst 15954 The product of constant te...
fprodn0 15955 A finite product of nonzer...
fprod2dlem 15956 Lemma for ~ fprod2d - indu...
fprod2d 15957 Write a double product as ...
fprodxp 15958 Combine two products into ...
fprodcnv 15959 Transform a product region...
fprodcom2 15960 Interchange order of multi...
fprodcom 15961 Interchange product order....
fprod0diag 15962 Two ways to express "the p...
fproddivf 15963 The quotient of two finite...
fprodsplitf 15964 Split a finite product int...
fprodsplitsn 15965 Separate out a term in a f...
fprodsplit1f 15966 Separate out a term in a f...
fprodn0f 15967 A finite product of nonzer...
fprodclf 15968 Closure of a finite produc...
fprodge0 15969 If all the terms of a fini...
fprodeq0g 15970 Any finite product contain...
fprodge1 15971 If all of the terms of a f...
fprodle 15972 If all the terms of two fi...
fprodmodd 15973 If all factors of two fini...
iprodclim 15974 An infinite product equals...
iprodclim2 15975 A converging product conve...
iprodclim3 15976 The sequence of partial fi...
iprodcl 15977 The product of a non-trivi...
iprodrecl 15978 The product of a non-trivi...
iprodmul 15979 Multiplication of infinite...
risefacval 15984 The value of the rising fa...
fallfacval 15985 The value of the falling f...
risefacval2 15986 One-based value of rising ...
fallfacval2 15987 One-based value of falling...
fallfacval3 15988 A product representation o...
risefaccllem 15989 Lemma for rising factorial...
fallfaccllem 15990 Lemma for falling factoria...
risefaccl 15991 Closure law for rising fac...
fallfaccl 15992 Closure law for falling fa...
rerisefaccl 15993 Closure law for rising fac...
refallfaccl 15994 Closure law for falling fa...
nnrisefaccl 15995 Closure law for rising fac...
zrisefaccl 15996 Closure law for rising fac...
zfallfaccl 15997 Closure law for falling fa...
nn0risefaccl 15998 Closure law for rising fac...
rprisefaccl 15999 Closure law for rising fac...
risefallfac 16000 A relationship between ris...
fallrisefac 16001 A relationship between fal...
risefall0lem 16002 Lemma for ~ risefac0 and ~...
risefac0 16003 The value of the rising fa...
fallfac0 16004 The value of the falling f...
risefacp1 16005 The value of the rising fa...
fallfacp1 16006 The value of the falling f...
risefacp1d 16007 The value of the rising fa...
fallfacp1d 16008 The value of the falling f...
risefac1 16009 The value of rising factor...
fallfac1 16010 The value of falling facto...
risefacfac 16011 Relate rising factorial to...
fallfacfwd 16012 The forward difference of ...
0fallfac 16013 The value of the zero fall...
0risefac 16014 The value of the zero risi...
binomfallfaclem1 16015 Lemma for ~ binomfallfac ....
binomfallfaclem2 16016 Lemma for ~ binomfallfac ....
binomfallfac 16017 A version of the binomial ...
binomrisefac 16018 A version of the binomial ...
fallfacval4 16019 Represent the falling fact...
bcfallfac 16020 Binomial coefficient in te...
fallfacfac 16021 Relate falling factorial t...
bpolylem 16024 Lemma for ~ bpolyval . (C...
bpolyval 16025 The value of the Bernoulli...
bpoly0 16026 The value of the Bernoulli...
bpoly1 16027 The value of the Bernoulli...
bpolycl 16028 Closure law for Bernoulli ...
bpolysum 16029 A sum for Bernoulli polyno...
bpolydiflem 16030 Lemma for ~ bpolydif . (C...
bpolydif 16031 Calculate the difference b...
fsumkthpow 16032 A closed-form expression f...
bpoly2 16033 The Bernoulli polynomials ...
bpoly3 16034 The Bernoulli polynomials ...
bpoly4 16035 The Bernoulli polynomials ...
fsumcube 16036 Express the sum of cubes i...
eftcl 16049 Closure of a term in the s...
reeftcl 16050 The terms of the series ex...
eftabs 16051 The absolute value of a te...
eftval 16052 The value of a term in the...
efcllem 16053 Lemma for ~ efcl . The se...
ef0lem 16054 The series defining the ex...
efval 16055 Value of the exponential f...
esum 16056 Value of Euler's constant ...
eff 16057 Domain and codomain of the...
efcl 16058 Closure law for the expone...
efcld 16059 Closure law for the expone...
efval2 16060 Value of the exponential f...
efcvg 16061 The series that defines th...
efcvgfsum 16062 Exponential function conve...
reefcl 16063 The exponential function i...
reefcld 16064 The exponential function i...
ere 16065 Euler's constant ` _e ` = ...
ege2le3 16066 Lemma for ~ egt2lt3 . (Co...
ef0 16067 Value of the exponential f...
efcj 16068 The exponential of a compl...
efaddlem 16069 Lemma for ~ efadd (exponen...
efadd 16070 Sum of exponents law for e...
fprodefsum 16071 Move the exponential funct...
efcan 16072 Cancellation law for expon...
efne0 16073 The exponential of a compl...
efneg 16074 The exponential of the opp...
eff2 16075 The exponential function m...
efsub 16076 Difference of exponents la...
efexp 16077 The exponential of an inte...
efzval 16078 Value of the exponential f...
efgt0 16079 The exponential of a real ...
rpefcl 16080 The exponential of a real ...
rpefcld 16081 The exponential of a real ...
eftlcvg 16082 The tail series of the exp...
eftlcl 16083 Closure of the sum of an i...
reeftlcl 16084 Closure of the sum of an i...
eftlub 16085 An upper bound on the abso...
efsep 16086 Separate out the next term...
effsumlt 16087 The partial sums of the se...
eft0val 16088 The value of the first ter...
ef4p 16089 Separate out the first fou...
efgt1p2 16090 The exponential of a posit...
efgt1p 16091 The exponential of a posit...
efgt1 16092 The exponential of a posit...
eflt 16093 The exponential function o...
efle 16094 The exponential function o...
reef11 16095 The exponential function o...
reeff1 16096 The exponential function m...
eflegeo 16097 The exponential function o...
sinval 16098 Value of the sine function...
cosval 16099 Value of the cosine functi...
sinf 16100 Domain and codomain of the...
cosf 16101 Domain and codomain of the...
sincl 16102 Closure of the sine functi...
coscl 16103 Closure of the cosine func...
tanval 16104 Value of the tangent funct...
tancl 16105 The closure of the tangent...
sincld 16106 Closure of the sine functi...
coscld 16107 Closure of the cosine func...
tancld 16108 Closure of the tangent fun...
tanval2 16109 Express the tangent functi...
tanval3 16110 Express the tangent functi...
resinval 16111 The sine of a real number ...
recosval 16112 The cosine of a real numbe...
efi4p 16113 Separate out the first fou...
resin4p 16114 Separate out the first fou...
recos4p 16115 Separate out the first fou...
resincl 16116 The sine of a real number ...
recoscl 16117 The cosine of a real numbe...
retancl 16118 The closure of the tangent...
resincld 16119 Closure of the sine functi...
recoscld 16120 Closure of the cosine func...
retancld 16121 Closure of the tangent fun...
sinneg 16122 The sine of a negative is ...
cosneg 16123 The cosines of a number an...
tanneg 16124 The tangent of a negative ...
sin0 16125 Value of the sine function...
cos0 16126 Value of the cosine functi...
tan0 16127 The value of the tangent f...
efival 16128 The exponential function i...
efmival 16129 The exponential function i...
sinhval 16130 Value of the hyperbolic si...
coshval 16131 Value of the hyperbolic co...
resinhcl 16132 The hyperbolic sine of a r...
rpcoshcl 16133 The hyperbolic cosine of a...
recoshcl 16134 The hyperbolic cosine of a...
retanhcl 16135 The hyperbolic tangent of ...
tanhlt1 16136 The hyperbolic tangent of ...
tanhbnd 16137 The hyperbolic tangent of ...
efeul 16138 Eulerian representation of...
efieq 16139 The exponentials of two im...
sinadd 16140 Addition formula for sine....
cosadd 16141 Addition formula for cosin...
tanaddlem 16142 A useful intermediate step...
tanadd 16143 Addition formula for tange...
sinsub 16144 Sine of difference. (Cont...
cossub 16145 Cosine of difference. (Co...
addsin 16146 Sum of sines. (Contribute...
subsin 16147 Difference of sines. (Con...
sinmul 16148 Product of sines can be re...
cosmul 16149 Product of cosines can be ...
addcos 16150 Sum of cosines. (Contribu...
subcos 16151 Difference of cosines. (C...
sincossq 16152 Sine squared plus cosine s...
sin2t 16153 Double-angle formula for s...
cos2t 16154 Double-angle formula for c...
cos2tsin 16155 Double-angle formula for c...
sinbnd 16156 The sine of a real number ...
cosbnd 16157 The cosine of a real numbe...
sinbnd2 16158 The sine of a real number ...
cosbnd2 16159 The cosine of a real numbe...
ef01bndlem 16160 Lemma for ~ sin01bnd and ~...
sin01bnd 16161 Bounds on the sine of a po...
cos01bnd 16162 Bounds on the cosine of a ...
cos1bnd 16163 Bounds on the cosine of 1....
cos2bnd 16164 Bounds on the cosine of 2....
sinltx 16165 The sine of a positive rea...
sin01gt0 16166 The sine of a positive rea...
cos01gt0 16167 The cosine of a positive r...
sin02gt0 16168 The sine of a positive rea...
sincos1sgn 16169 The signs of the sine and ...
sincos2sgn 16170 The signs of the sine and ...
sin4lt0 16171 The sine of 4 is negative....
absefi 16172 The absolute value of the ...
absef 16173 The absolute value of the ...
absefib 16174 A complex number is real i...
efieq1re 16175 A number whose imaginary e...
demoivre 16176 De Moivre's Formula. Proo...
demoivreALT 16177 Alternate proof of ~ demoi...
eirrlem 16180 Lemma for ~ eirr . (Contr...
eirr 16181 ` _e ` is irrational. (Co...
egt2lt3 16182 Euler's constant ` _e ` = ...
epos 16183 Euler's constant ` _e ` is...
epr 16184 Euler's constant ` _e ` is...
ene0 16185 ` _e ` is not 0. (Contrib...
ene1 16186 ` _e ` is not 1. (Contrib...
xpnnen 16187 The Cartesian product of t...
znnen 16188 The set of integers and th...
qnnen 16189 The rational numbers are c...
rpnnen2lem1 16190 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 16191 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 16192 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 16193 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 16194 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 16195 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 16196 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 16197 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 16198 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 16199 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 16200 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 16201 Lemma for ~ rpnnen2 . (Co...
rpnnen2 16202 The other half of ~ rpnnen...
rpnnen 16203 The cardinality of the con...
rexpen 16204 The real numbers are equin...
cpnnen 16205 The complex numbers are eq...
rucALT 16206 Alternate proof of ~ ruc ....
ruclem1 16207 Lemma for ~ ruc (the reals...
ruclem2 16208 Lemma for ~ ruc . Orderin...
ruclem3 16209 Lemma for ~ ruc . The con...
ruclem4 16210 Lemma for ~ ruc . Initial...
ruclem6 16211 Lemma for ~ ruc . Domain ...
ruclem7 16212 Lemma for ~ ruc . Success...
ruclem8 16213 Lemma for ~ ruc . The int...
ruclem9 16214 Lemma for ~ ruc . The fir...
ruclem10 16215 Lemma for ~ ruc . Every f...
ruclem11 16216 Lemma for ~ ruc . Closure...
ruclem12 16217 Lemma for ~ ruc . The sup...
ruclem13 16218 Lemma for ~ ruc . There i...
ruc 16219 The set of positive intege...
resdomq 16220 The set of rationals is st...
aleph1re 16221 There are at least aleph-o...
aleph1irr 16222 There are at least aleph-o...
cnso 16223 The complex numbers can be...
sqrt2irrlem 16224 Lemma for ~ sqrt2irr . Th...
sqrt2irr 16225 The square root of 2 is ir...
sqrt2re 16226 The square root of 2 exist...
sqrt2irr0 16227 The square root of 2 is an...
nthruc 16228 The sequence ` NN ` , ` ZZ...
nthruz 16229 The sequence ` NN ` , ` NN...
divides 16232 Define the divides relatio...
dvdsval2 16233 One nonzero integer divide...
dvdsval3 16234 One nonzero integer divide...
dvdszrcl 16235 Reverse closure for the di...
dvdsmod0 16236 If a positive integer divi...
p1modz1 16237 If a number greater than 1...
dvdsmodexp 16238 If a positive integer divi...
nndivdvds 16239 Strong form of ~ dvdsval2 ...
nndivides 16240 Definition of the divides ...
moddvds 16241 Two ways to say ` A == B `...
modm1div 16242 An integer greater than on...
dvds0lem 16243 A lemma to assist theorems...
dvds1lem 16244 A lemma to assist theorems...
dvds2lem 16245 A lemma to assist theorems...
iddvds 16246 An integer divides itself....
1dvds 16247 1 divides any integer. Th...
dvds0 16248 Any integer divides 0. Th...
negdvdsb 16249 An integer divides another...
dvdsnegb 16250 An integer divides another...
absdvdsb 16251 An integer divides another...
dvdsabsb 16252 An integer divides another...
0dvds 16253 Only 0 is divisible by 0. ...
dvdsmul1 16254 An integer divides a multi...
dvdsmul2 16255 An integer divides a multi...
iddvdsexp 16256 An integer divides a posit...
muldvds1 16257 If a product divides an in...
muldvds2 16258 If a product divides an in...
dvdscmul 16259 Multiplication by a consta...
dvdsmulc 16260 Multiplication by a consta...
dvdscmulr 16261 Cancellation law for the d...
dvdsmulcr 16262 Cancellation law for the d...
summodnegmod 16263 The sum of two integers mo...
modmulconst 16264 Constant multiplication in...
dvds2ln 16265 If an integer divides each...
dvds2add 16266 If an integer divides each...
dvds2sub 16267 If an integer divides each...
dvds2addd 16268 Deduction form of ~ dvds2a...
dvds2subd 16269 Deduction form of ~ dvds2s...
dvdstr 16270 The divides relation is tr...
dvdstrd 16271 The divides relation is tr...
dvdsmultr1 16272 If an integer divides anot...
dvdsmultr1d 16273 Deduction form of ~ dvdsmu...
dvdsmultr2 16274 If an integer divides anot...
dvdsmultr2d 16275 Deduction form of ~ dvdsmu...
ordvdsmul 16276 If an integer divides eith...
dvdssub2 16277 If an integer divides a di...
dvdsadd 16278 An integer divides another...
dvdsaddr 16279 An integer divides another...
dvdssub 16280 An integer divides another...
dvdssubr 16281 An integer divides another...
dvdsadd2b 16282 Adding a multiple of the b...
dvdsaddre2b 16283 Adding a multiple of the b...
fsumdvds 16284 If every term in a sum is ...
dvdslelem 16285 Lemma for ~ dvdsle . (Con...
dvdsle 16286 The divisors of a positive...
dvdsleabs 16287 The divisors of a nonzero ...
dvdsleabs2 16288 Transfer divisibility to a...
dvdsabseq 16289 If two integers divide eac...
dvdseq 16290 If two nonnegative integer...
divconjdvds 16291 If a nonzero integer ` M `...
dvdsdivcl 16292 The complement of a diviso...
dvdsflip 16293 An involution of the divis...
dvdsssfz1 16294 The set of divisors of a n...
dvds1 16295 The only nonnegative integ...
alzdvds 16296 Only 0 is divisible by all...
dvdsext 16297 Poset extensionality for d...
fzm1ndvds 16298 No number between ` 1 ` an...
fzo0dvdseq 16299 Zero is the only one of th...
fzocongeq 16300 Two different elements of ...
addmodlteqALT 16301 Two nonnegative integers l...
dvdsfac 16302 A positive integer divides...
dvdsexp2im 16303 If an integer divides anot...
dvdsexp 16304 A power divides a power wi...
dvdsmod 16305 Any number ` K ` whose mod...
mulmoddvds 16306 If an integer is divisible...
3dvds 16307 A rule for divisibility by...
3dvdsdec 16308 A decimal number is divisi...
3dvds2dec 16309 A decimal number is divisi...
fprodfvdvdsd 16310 A finite product of intege...
fproddvdsd 16311 A finite product of intege...
evenelz 16312 An even number is an integ...
zeo3 16313 An integer is even or odd....
zeo4 16314 An integer is even or odd ...
zeneo 16315 No even integer equals an ...
odd2np1lem 16316 Lemma for ~ odd2np1 . (Co...
odd2np1 16317 An integer is odd iff it i...
even2n 16318 An integer is even iff it ...
oddm1even 16319 An integer is odd iff its ...
oddp1even 16320 An integer is odd iff its ...
oexpneg 16321 The exponential of the neg...
mod2eq0even 16322 An integer is 0 modulo 2 i...
mod2eq1n2dvds 16323 An integer is 1 modulo 2 i...
oddnn02np1 16324 A nonnegative integer is o...
oddge22np1 16325 An integer greater than on...
evennn02n 16326 A nonnegative integer is e...
evennn2n 16327 A positive integer is even...
2tp1odd 16328 A number which is twice an...
mulsucdiv2z 16329 An integer multiplied with...
sqoddm1div8z 16330 A squared odd number minus...
2teven 16331 A number which is twice an...
zeo5 16332 An integer is either even ...
evend2 16333 An integer is even iff its...
oddp1d2 16334 An integer is odd iff its ...
zob 16335 Alternate characterization...
oddm1d2 16336 An integer is odd iff its ...
ltoddhalfle 16337 An integer is less than ha...
halfleoddlt 16338 An integer is greater than...
opoe 16339 The sum of two odds is eve...
omoe 16340 The difference of two odds...
opeo 16341 The sum of an odd and an e...
omeo 16342 The difference of an odd a...
z0even 16343 2 divides 0. That means 0...
n2dvds1 16344 2 does not divide 1. That...
n2dvdsm1 16345 2 does not divide -1. Tha...
z2even 16346 2 divides 2. That means 2...
n2dvds3 16347 2 does not divide 3. That...
z4even 16348 2 divides 4. That means 4...
4dvdseven 16349 An integer which is divisi...
m1expe 16350 Exponentiation of -1 by an...
m1expo 16351 Exponentiation of -1 by an...
m1exp1 16352 Exponentiation of negative...
nn0enne 16353 A positive integer is an e...
nn0ehalf 16354 The half of an even nonneg...
nnehalf 16355 The half of an even positi...
nn0onn 16356 An odd nonnegative integer...
nn0o1gt2 16357 An odd nonnegative integer...
nno 16358 An alternate characterizat...
nn0o 16359 An alternate characterizat...
nn0ob 16360 Alternate characterization...
nn0oddm1d2 16361 A positive integer is odd ...
nnoddm1d2 16362 A positive integer is odd ...
sumeven 16363 If every term in a sum is ...
sumodd 16364 If every term in a sum is ...
evensumodd 16365 If every term in a sum wit...
oddsumodd 16366 If every term in a sum wit...
pwp1fsum 16367 The n-th power of a number...
oddpwp1fsum 16368 An odd power of a number i...
divalglem0 16369 Lemma for ~ divalg . (Con...
divalglem1 16370 Lemma for ~ divalg . (Con...
divalglem2 16371 Lemma for ~ divalg . (Con...
divalglem4 16372 Lemma for ~ divalg . (Con...
divalglem5 16373 Lemma for ~ divalg . (Con...
divalglem6 16374 Lemma for ~ divalg . (Con...
divalglem7 16375 Lemma for ~ divalg . (Con...
divalglem8 16376 Lemma for ~ divalg . (Con...
divalglem9 16377 Lemma for ~ divalg . (Con...
divalglem10 16378 Lemma for ~ divalg . (Con...
divalg 16379 The division algorithm (th...
divalgb 16380 Express the division algor...
divalg2 16381 The division algorithm (th...
divalgmod 16382 The result of the ` mod ` ...
divalgmodcl 16383 The result of the ` mod ` ...
modremain 16384 The result of the modulo o...
ndvdssub 16385 Corollary of the division ...
ndvdsadd 16386 Corollary of the division ...
ndvdsp1 16387 Special case of ~ ndvdsadd...
ndvdsi 16388 A quick test for non-divis...
flodddiv4 16389 The floor of an odd intege...
fldivndvdslt 16390 The floor of an integer di...
flodddiv4lt 16391 The floor of an odd number...
flodddiv4t2lthalf 16392 The floor of an odd number...
bitsfval 16397 Expand the definition of t...
bitsval 16398 Expand the definition of t...
bitsval2 16399 Expand the definition of t...
bitsss 16400 The set of bits of an inte...
bitsf 16401 The ` bits ` function is a...
bits0 16402 Value of the zeroth bit. ...
bits0e 16403 The zeroth bit of an even ...
bits0o 16404 The zeroth bit of an odd n...
bitsp1 16405 The ` M + 1 ` -th bit of `...
bitsp1e 16406 The ` M + 1 ` -th bit of `...
bitsp1o 16407 The ` M + 1 ` -th bit of `...
bitsfzolem 16408 Lemma for ~ bitsfzo . (Co...
bitsfzo 16409 The bits of a number are a...
bitsmod 16410 Truncating the bit sequenc...
bitsfi 16411 Every number is associated...
bitscmp 16412 The bit complement of ` N ...
0bits 16413 The bits of zero. (Contri...
m1bits 16414 The bits of negative one. ...
bitsinv1lem 16415 Lemma for ~ bitsinv1 . (C...
bitsinv1 16416 There is an explicit inver...
bitsinv2 16417 There is an explicit inver...
bitsf1ocnv 16418 The ` bits ` function rest...
bitsf1o 16419 The ` bits ` function rest...
bitsf1 16420 The ` bits ` function is a...
2ebits 16421 The bits of a power of two...
bitsinv 16422 The inverse of the ` bits ...
bitsinvp1 16423 Recursive definition of th...
sadadd2lem2 16424 The core of the proof of ~...
sadfval 16426 Define the addition of two...
sadcf 16427 The carry sequence is a se...
sadc0 16428 The initial element of the...
sadcp1 16429 The carry sequence (which ...
sadval 16430 The full adder sequence is...
sadcaddlem 16431 Lemma for ~ sadcadd . (Co...
sadcadd 16432 Non-recursive definition o...
sadadd2lem 16433 Lemma for ~ sadadd2 . (Co...
sadadd2 16434 Sum of initial segments of...
sadadd3 16435 Sum of initial segments of...
sadcl 16436 The sum of two sequences i...
sadcom 16437 The adder sequence functio...
saddisjlem 16438 Lemma for ~ sadadd . (Con...
saddisj 16439 The sum of disjoint sequen...
sadaddlem 16440 Lemma for ~ sadadd . (Con...
sadadd 16441 For sequences that corresp...
sadid1 16442 The adder sequence functio...
sadid2 16443 The adder sequence functio...
sadasslem 16444 Lemma for ~ sadass . (Con...
sadass 16445 Sequence addition is assoc...
sadeq 16446 Any element of a sequence ...
bitsres 16447 Restrict the bits of a num...
bitsuz 16448 The bits of a number are a...
bitsshft 16449 Shifting a bit sequence to...
smufval 16451 The multiplication of two ...
smupf 16452 The sequence of partial su...
smup0 16453 The initial element of the...
smupp1 16454 The initial element of the...
smuval 16455 Define the addition of two...
smuval2 16456 The partial sum sequence s...
smupvallem 16457 If ` A ` only has elements...
smucl 16458 The product of two sequenc...
smu01lem 16459 Lemma for ~ smu01 and ~ sm...
smu01 16460 Multiplication of a sequen...
smu02 16461 Multiplication of a sequen...
smupval 16462 Rewrite the elements of th...
smup1 16463 Rewrite ~ smupp1 using onl...
smueqlem 16464 Any element of a sequence ...
smueq 16465 Any element of a sequence ...
smumullem 16466 Lemma for ~ smumul . (Con...
smumul 16467 For sequences that corresp...
gcdval 16470 The value of the ` gcd ` o...
gcd0val 16471 The value, by convention, ...
gcdn0val 16472 The value of the ` gcd ` o...
gcdcllem1 16473 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16474 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16475 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16476 Closure of the ` gcd ` ope...
gcddvds 16477 The gcd of two integers di...
dvdslegcd 16478 An integer which divides b...
nndvdslegcd 16479 A positive integer which d...
gcdcl 16480 Closure of the ` gcd ` ope...
gcdnncl 16481 Closure of the ` gcd ` ope...
gcdcld 16482 Closure of the ` gcd ` ope...
gcd2n0cl 16483 Closure of the ` gcd ` ope...
zeqzmulgcd 16484 An integer is the product ...
divgcdz 16485 An integer divided by the ...
gcdf 16486 Domain and codomain of the...
gcdcom 16487 The ` gcd ` operator is co...
gcdcomd 16488 The ` gcd ` operator is co...
divgcdnn 16489 A positive integer divided...
divgcdnnr 16490 A positive integer divided...
gcdeq0 16491 The gcd of two integers is...
gcdn0gt0 16492 The gcd of two integers is...
gcd0id 16493 The gcd of 0 and an intege...
gcdid0 16494 The gcd of an integer and ...
nn0gcdid0 16495 The gcd of a nonnegative i...
gcdneg 16496 Negating one operand of th...
neggcd 16497 Negating one operand of th...
gcdaddmlem 16498 Lemma for ~ gcdaddm . (Co...
gcdaddm 16499 Adding a multiple of one o...
gcdadd 16500 The GCD of two numbers is ...
gcdid 16501 The gcd of a number and it...
gcd1 16502 The gcd of a number with 1...
gcdabs1 16503 ` gcd ` of the absolute va...
gcdabs2 16504 ` gcd ` of the absolute va...
gcdabs 16505 The gcd of two integers is...
gcdabsOLD 16506 Obsolete version of ~ gcda...
modgcd 16507 The gcd remains unchanged ...
1gcd 16508 The GCD of one and an inte...
gcdmultipled 16509 The greatest common diviso...
gcdmultiplez 16510 The GCD of a multiple of a...
gcdmultiple 16511 The GCD of a multiple of a...
dvdsgcdidd 16512 The greatest common diviso...
6gcd4e2 16513 The greatest common diviso...
bezoutlem1 16514 Lemma for ~ bezout . (Con...
bezoutlem2 16515 Lemma for ~ bezout . (Con...
bezoutlem3 16516 Lemma for ~ bezout . (Con...
bezoutlem4 16517 Lemma for ~ bezout . (Con...
bezout 16518 Bézout's identity: ...
dvdsgcd 16519 An integer which divides e...
dvdsgcdb 16520 Biconditional form of ~ dv...
dfgcd2 16521 Alternate definition of th...
gcdass 16522 Associative law for ` gcd ...
mulgcd 16523 Distribute multiplication ...
absmulgcd 16524 Distribute absolute value ...
mulgcdr 16525 Reverse distribution law f...
gcddiv 16526 Division law for GCD. (Con...
gcdzeq 16527 A positive integer ` A ` i...
gcdeq 16528 ` A ` is equal to its gcd ...
dvdssqim 16529 Unidirectional form of ~ d...
dvdsmulgcd 16530 A divisibility equivalent ...
rpmulgcd 16531 If ` K ` and ` M ` are rel...
rplpwr 16532 If ` A ` and ` B ` are rel...
rprpwr 16533 If ` A ` and ` B ` are rel...
rppwr 16534 If ` A ` and ` B ` are rel...
sqgcd 16535 Square distributes over gc...
dvdssqlem 16536 Lemma for ~ dvdssq . (Con...
dvdssq 16537 Two numbers are divisible ...
bezoutr 16538 Partial converse to ~ bezo...
bezoutr1 16539 Converse of ~ bezout for w...
nn0seqcvgd 16540 A strictly-decreasing nonn...
seq1st 16541 A sequence whose iteration...
algr0 16542 The value of the algorithm...
algrf 16543 An algorithm is a step fun...
algrp1 16544 The value of the algorithm...
alginv 16545 If ` I ` is an invariant o...
algcvg 16546 One way to prove that an a...
algcvgblem 16547 Lemma for ~ algcvgb . (Co...
algcvgb 16548 Two ways of expressing tha...
algcvga 16549 The countdown function ` C...
algfx 16550 If ` F ` reaches a fixed p...
eucalgval2 16551 The value of the step func...
eucalgval 16552 Euclid's Algorithm ~ eucal...
eucalgf 16553 Domain and codomain of the...
eucalginv 16554 The invariant of the step ...
eucalglt 16555 The second member of the s...
eucalgcvga 16556 Once Euclid's Algorithm ha...
eucalg 16557 Euclid's Algorithm compute...
lcmval 16562 Value of the ` lcm ` opera...
lcmcom 16563 The ` lcm ` operator is co...
lcm0val 16564 The value, by convention, ...
lcmn0val 16565 The value of the ` lcm ` o...
lcmcllem 16566 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16567 Closure of the ` lcm ` ope...
dvdslcm 16568 The lcm of two integers is...
lcmledvds 16569 A positive integer which b...
lcmeq0 16570 The lcm of two integers is...
lcmcl 16571 Closure of the ` lcm ` ope...
gcddvdslcm 16572 The greatest common diviso...
lcmneg 16573 Negating one operand of th...
neglcm 16574 Negating one operand of th...
lcmabs 16575 The lcm of two integers is...
lcmgcdlem 16576 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16577 The product of two numbers...
lcmdvds 16578 The lcm of two integers di...
lcmid 16579 The lcm of an integer and ...
lcm1 16580 The lcm of an integer and ...
lcmgcdnn 16581 The product of two positiv...
lcmgcdeq 16582 Two integers' absolute val...
lcmdvdsb 16583 Biconditional form of ~ lc...
lcmass 16584 Associative law for ` lcm ...
3lcm2e6woprm 16585 The least common multiple ...
6lcm4e12 16586 The least common multiple ...
absproddvds 16587 The absolute value of the ...
absprodnn 16588 The absolute value of the ...
fissn0dvds 16589 For each finite subset of ...
fissn0dvdsn0 16590 For each finite subset of ...
lcmfval 16591 Value of the ` _lcm ` func...
lcmf0val 16592 The value, by convention, ...
lcmfn0val 16593 The value of the ` _lcm ` ...
lcmfnnval 16594 The value of the ` _lcm ` ...
lcmfcllem 16595 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16596 Closure of the ` _lcm ` fu...
lcmfpr 16597 The value of the ` _lcm ` ...
lcmfcl 16598 Closure of the ` _lcm ` fu...
lcmfnncl 16599 Closure of the ` _lcm ` fu...
lcmfeq0b 16600 The least common multiple ...
dvdslcmf 16601 The least common multiple ...
lcmfledvds 16602 A positive integer which i...
lcmf 16603 Characterization of the le...
lcmf0 16604 The least common multiple ...
lcmfsn 16605 The least common multiple ...
lcmftp 16606 The least common multiple ...
lcmfunsnlem1 16607 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16608 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16609 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16610 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16611 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16612 The least common multiple ...
lcmfdvdsb 16613 Biconditional form of ~ lc...
lcmfunsn 16614 The ` _lcm ` function for ...
lcmfun 16615 The ` _lcm ` function for ...
lcmfass 16616 Associative law for the ` ...
lcmf2a3a4e12 16617 The least common multiple ...
lcmflefac 16618 The least common multiple ...
coprmgcdb 16619 Two positive integers are ...
ncoprmgcdne1b 16620 Two positive integers are ...
ncoprmgcdgt1b 16621 Two positive integers are ...
coprmdvds1 16622 If two positive integers a...
coprmdvds 16623 Euclid's Lemma (see ProofW...
coprmdvds2 16624 If an integer is divisible...
mulgcddvds 16625 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16626 If ` M ` is relatively pri...
qredeq 16627 Two equal reduced fraction...
qredeu 16628 Every rational number has ...
rpmul 16629 If ` K ` is relatively pri...
rpdvds 16630 If ` K ` is relatively pri...
coprmprod 16631 The product of the element...
coprmproddvdslem 16632 Lemma for ~ coprmproddvds ...
coprmproddvds 16633 If a positive integer is d...
congr 16634 Definition of congruence b...
divgcdcoprm0 16635 Integers divided by gcd ar...
divgcdcoprmex 16636 Integers divided by gcd ar...
cncongr1 16637 One direction of the bicon...
cncongr2 16638 The other direction of the...
cncongr 16639 Cancellability of Congruen...
cncongrcoprm 16640 Corollary 1 of Cancellabil...
isprm 16643 The predicate "is a prime ...
prmnn 16644 A prime number is a positi...
prmz 16645 A prime number is an integ...
prmssnn 16646 The prime numbers are a su...
prmex 16647 The set of prime numbers e...
0nprm 16648 0 is not a prime number. ...
1nprm 16649 1 is not a prime number. ...
1idssfct 16650 The positive divisors of a...
isprm2lem 16651 Lemma for ~ isprm2 . (Con...
isprm2 16652 The predicate "is a prime ...
isprm3 16653 The predicate "is a prime ...
isprm4 16654 The predicate "is a prime ...
prmind2 16655 A variation on ~ prmind as...
prmind 16656 Perform induction over the...
dvdsprime 16657 If ` M ` divides a prime, ...
nprm 16658 A product of two integers ...
nprmi 16659 An inference for composite...
dvdsnprmd 16660 If a number is divisible b...
prm2orodd 16661 A prime number is either 2...
2prm 16662 2 is a prime number. (Con...
2mulprm 16663 A multiple of two is prime...
3prm 16664 3 is a prime number. (Con...
4nprm 16665 4 is not a prime number. ...
prmuz2 16666 A prime number is an integ...
prmgt1 16667 A prime number is an integ...
prmm2nn0 16668 Subtracting 2 from a prime...
oddprmgt2 16669 An odd prime is greater th...
oddprmge3 16670 An odd prime is greater th...
ge2nprmge4 16671 A composite integer greate...
sqnprm 16672 A square is never prime. ...
dvdsprm 16673 An integer greater than or...
exprmfct 16674 Every integer greater than...
prmdvdsfz 16675 Each integer greater than ...
nprmdvds1 16676 No prime number divides 1....
isprm5 16677 One need only check prime ...
isprm7 16678 One need only check prime ...
maxprmfct 16679 The set of prime factors o...
divgcdodd 16680 Either ` A / ( A gcd B ) `...
coprm 16681 A prime number either divi...
prmrp 16682 Unequal prime numbers are ...
euclemma 16683 Euclid's lemma. A prime n...
isprm6 16684 A number is prime iff it s...
prmdvdsexp 16685 A prime divides a positive...
prmdvdsexpb 16686 A prime divides a positive...
prmdvdsexpr 16687 If a prime divides a nonne...
prmdvdssq 16688 Condition for a prime divi...
prmdvdssqOLD 16689 Obsolete version of ~ prmd...
prmexpb 16690 Two positive prime powers ...
prmfac1 16691 The factorial of a number ...
dvdszzq 16692 Divisibility for an intege...
rpexp 16693 If two numbers ` A ` and `...
rpexp1i 16694 Relative primality passes ...
rpexp12i 16695 Relative primality passes ...
prmndvdsfaclt 16696 A prime number does not di...
prmdvdsbc 16697 Condition for a prime numb...
prmdvdsncoprmbd 16698 Two positive integers are ...
ncoprmlnprm 16699 If two positive integers a...
cncongrprm 16700 Corollary 2 of Cancellabil...
isevengcd2 16701 The predicate "is an even ...
isoddgcd1 16702 The predicate "is an odd n...
3lcm2e6 16703 The least common multiple ...
qnumval 16708 Value of the canonical num...
qdenval 16709 Value of the canonical den...
qnumdencl 16710 Lemma for ~ qnumcl and ~ q...
qnumcl 16711 The canonical numerator of...
qdencl 16712 The canonical denominator ...
fnum 16713 Canonical numerator define...
fden 16714 Canonical denominator defi...
qnumdenbi 16715 Two numbers are the canoni...
qnumdencoprm 16716 The canonical representati...
qeqnumdivden 16717 Recover a rational number ...
qmuldeneqnum 16718 Multiplying a rational by ...
divnumden 16719 Calculate the reduced form...
divdenle 16720 Reducing a quotient never ...
qnumgt0 16721 A rational is positive iff...
qgt0numnn 16722 A rational is positive iff...
nn0gcdsq 16723 Squaring commutes with GCD...
zgcdsq 16724 ~ nn0gcdsq extended to int...
numdensq 16725 Squaring a rational square...
numsq 16726 Square commutes with canon...
densq 16727 Square commutes with canon...
qden1elz 16728 A rational is an integer i...
zsqrtelqelz 16729 If an integer has a ration...
nonsq 16730 Any integer strictly betwe...
phival 16735 Value of the Euler ` phi `...
phicl2 16736 Bounds and closure for the...
phicl 16737 Closure for the value of t...
phibndlem 16738 Lemma for ~ phibnd . (Con...
phibnd 16739 A slightly tighter bound o...
phicld 16740 Closure for the value of t...
phi1 16741 Value of the Euler ` phi `...
dfphi2 16742 Alternate definition of th...
hashdvds 16743 The number of numbers in a...
phiprmpw 16744 Value of the Euler ` phi `...
phiprm 16745 Value of the Euler ` phi `...
crth 16746 The Chinese Remainder Theo...
phimullem 16747 Lemma for ~ phimul . (Con...
phimul 16748 The Euler ` phi ` function...
eulerthlem1 16749 Lemma for ~ eulerth . (Co...
eulerthlem2 16750 Lemma for ~ eulerth . (Co...
eulerth 16751 Euler's theorem, a general...
fermltl 16752 Fermat's little theorem. ...
prmdiv 16753 Show an explicit expressio...
prmdiveq 16754 The modular inverse of ` A...
prmdivdiv 16755 The (modular) inverse of t...
hashgcdlem 16756 A correspondence between e...
hashgcdeq 16757 Number of initial positive...
phisum 16758 The divisor sum identity o...
odzval 16759 Value of the order functio...
odzcllem 16760 - Lemma for ~ odzcl , show...
odzcl 16761 The order of a group eleme...
odzid 16762 Any element raised to the ...
odzdvds 16763 The only powers of ` A ` t...
odzphi 16764 The order of any group ele...
modprm1div 16765 A prime number divides an ...
m1dvdsndvds 16766 If an integer minus 1 is d...
modprminv 16767 Show an explicit expressio...
modprminveq 16768 The modular inverse of ` A...
vfermltl 16769 Variant of Fermat's little...
vfermltlALT 16770 Alternate proof of ~ vferm...
powm2modprm 16771 If an integer minus 1 is d...
reumodprminv 16772 For any prime number and f...
modprm0 16773 For two positive integers ...
nnnn0modprm0 16774 For a positive integer and...
modprmn0modprm0 16775 For an integer not being 0...
coprimeprodsq 16776 If three numbers are copri...
coprimeprodsq2 16777 If three numbers are copri...
oddprm 16778 A prime not equal to ` 2 `...
nnoddn2prm 16779 A prime not equal to ` 2 `...
oddn2prm 16780 A prime not equal to ` 2 `...
nnoddn2prmb 16781 A number is a prime number...
prm23lt5 16782 A prime less than 5 is eit...
prm23ge5 16783 A prime is either 2 or 3 o...
pythagtriplem1 16784 Lemma for ~ pythagtrip . ...
pythagtriplem2 16785 Lemma for ~ pythagtrip . ...
pythagtriplem3 16786 Lemma for ~ pythagtrip . ...
pythagtriplem4 16787 Lemma for ~ pythagtrip . ...
pythagtriplem10 16788 Lemma for ~ pythagtrip . ...
pythagtriplem6 16789 Lemma for ~ pythagtrip . ...
pythagtriplem7 16790 Lemma for ~ pythagtrip . ...
pythagtriplem8 16791 Lemma for ~ pythagtrip . ...
pythagtriplem9 16792 Lemma for ~ pythagtrip . ...
pythagtriplem11 16793 Lemma for ~ pythagtrip . ...
pythagtriplem12 16794 Lemma for ~ pythagtrip . ...
pythagtriplem13 16795 Lemma for ~ pythagtrip . ...
pythagtriplem14 16796 Lemma for ~ pythagtrip . ...
pythagtriplem15 16797 Lemma for ~ pythagtrip . ...
pythagtriplem16 16798 Lemma for ~ pythagtrip . ...
pythagtriplem17 16799 Lemma for ~ pythagtrip . ...
pythagtriplem18 16800 Lemma for ~ pythagtrip . ...
pythagtriplem19 16801 Lemma for ~ pythagtrip . ...
pythagtrip 16802 Parameterize the Pythagore...
iserodd 16803 Collect the odd terms in a...
pclem 16806 - Lemma for the prime powe...
pcprecl 16807 Closure of the prime power...
pcprendvds 16808 Non-divisibility property ...
pcprendvds2 16809 Non-divisibility property ...
pcpre1 16810 Value of the prime power p...
pcpremul 16811 Multiplicative property of...
pcval 16812 The value of the prime pow...
pceulem 16813 Lemma for ~ pceu . (Contr...
pceu 16814 Uniqueness for the prime p...
pczpre 16815 Connect the prime count pr...
pczcl 16816 Closure of the prime power...
pccl 16817 Closure of the prime power...
pccld 16818 Closure of the prime power...
pcmul 16819 Multiplication property of...
pcdiv 16820 Division property of the p...
pcqmul 16821 Multiplication property of...
pc0 16822 The value of the prime pow...
pc1 16823 Value of the prime count f...
pcqcl 16824 Closure of the general pri...
pcqdiv 16825 Division property of the p...
pcrec 16826 Prime power of a reciproca...
pcexp 16827 Prime power of an exponent...
pcxnn0cl 16828 Extended nonnegative integ...
pcxcl 16829 Extended real closure of t...
pcge0 16830 The prime count of an inte...
pczdvds 16831 Defining property of the p...
pcdvds 16832 Defining property of the p...
pczndvds 16833 Defining property of the p...
pcndvds 16834 Defining property of the p...
pczndvds2 16835 The remainder after dividi...
pcndvds2 16836 The remainder after dividi...
pcdvdsb 16837 ` P ^ A ` divides ` N ` if...
pcelnn 16838 There are a positive numbe...
pceq0 16839 There are zero powers of a...
pcidlem 16840 The prime count of a prime...
pcid 16841 The prime count of a prime...
pcneg 16842 The prime count of a negat...
pcabs 16843 The prime count of an abso...
pcdvdstr 16844 The prime count increases ...
pcgcd1 16845 The prime count of a GCD i...
pcgcd 16846 The prime count of a GCD i...
pc2dvds 16847 A characterization of divi...
pc11 16848 The prime count function, ...
pcz 16849 The prime count function c...
pcprmpw2 16850 Self-referential expressio...
pcprmpw 16851 Self-referential expressio...
dvdsprmpweq 16852 If a positive integer divi...
dvdsprmpweqnn 16853 If an integer greater than...
dvdsprmpweqle 16854 If a positive integer divi...
difsqpwdvds 16855 If the difference of two s...
pcaddlem 16856 Lemma for ~ pcadd . The o...
pcadd 16857 An inequality for the prim...
pcadd2 16858 The inequality of ~ pcadd ...
pcmptcl 16859 Closure for the prime powe...
pcmpt 16860 Construct a function with ...
pcmpt2 16861 Dividing two prime count m...
pcmptdvds 16862 The partial products of th...
pcprod 16863 The product of the primes ...
sumhash 16864 The sum of 1 over a set is...
fldivp1 16865 The difference between the...
pcfaclem 16866 Lemma for ~ pcfac . (Cont...
pcfac 16867 Calculate the prime count ...
pcbc 16868 Calculate the prime count ...
qexpz 16869 If a power of a rational n...
expnprm 16870 A second or higher power o...
oddprmdvds 16871 Every positive integer whi...
prmpwdvds 16872 A relation involving divis...
pockthlem 16873 Lemma for ~ pockthg . (Co...
pockthg 16874 The generalized Pocklingto...
pockthi 16875 Pocklington's theorem, whi...
unbenlem 16876 Lemma for ~ unben . (Cont...
unben 16877 An unbounded set of positi...
infpnlem1 16878 Lemma for ~ infpn . The s...
infpnlem2 16879 Lemma for ~ infpn . For a...
infpn 16880 There exist infinitely man...
infpn2 16881 There exist infinitely man...
prmunb 16882 The primes are unbounded. ...
prminf 16883 There are an infinite numb...
prmreclem1 16884 Lemma for ~ prmrec . Prop...
prmreclem2 16885 Lemma for ~ prmrec . Ther...
prmreclem3 16886 Lemma for ~ prmrec . The ...
prmreclem4 16887 Lemma for ~ prmrec . Show...
prmreclem5 16888 Lemma for ~ prmrec . Here...
prmreclem6 16889 Lemma for ~ prmrec . If t...
prmrec 16890 The sum of the reciprocals...
1arithlem1 16891 Lemma for ~ 1arith . (Con...
1arithlem2 16892 Lemma for ~ 1arith . (Con...
1arithlem3 16893 Lemma for ~ 1arith . (Con...
1arithlem4 16894 Lemma for ~ 1arith . (Con...
1arith 16895 Fundamental theorem of ari...
1arith2 16896 Fundamental theorem of ari...
elgz 16899 Elementhood in the gaussia...
gzcn 16900 A gaussian integer is a co...
zgz 16901 An integer is a gaussian i...
igz 16902 ` _i ` is a gaussian integ...
gznegcl 16903 The gaussian integers are ...
gzcjcl 16904 The gaussian integers are ...
gzaddcl 16905 The gaussian integers are ...
gzmulcl 16906 The gaussian integers are ...
gzreim 16907 Construct a gaussian integ...
gzsubcl 16908 The gaussian integers are ...
gzabssqcl 16909 The squared norm of a gaus...
4sqlem5 16910 Lemma for ~ 4sq . (Contri...
4sqlem6 16911 Lemma for ~ 4sq . (Contri...
4sqlem7 16912 Lemma for ~ 4sq . (Contri...
4sqlem8 16913 Lemma for ~ 4sq . (Contri...
4sqlem9 16914 Lemma for ~ 4sq . (Contri...
4sqlem10 16915 Lemma for ~ 4sq . (Contri...
4sqlem1 16916 Lemma for ~ 4sq . The set...
4sqlem2 16917 Lemma for ~ 4sq . Change ...
4sqlem3 16918 Lemma for ~ 4sq . Suffici...
4sqlem4a 16919 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16920 Lemma for ~ 4sq . We can ...
mul4sqlem 16921 Lemma for ~ mul4sq : algeb...
mul4sq 16922 Euler's four-square identi...
4sqlem11 16923 Lemma for ~ 4sq . Use the...
4sqlem12 16924 Lemma for ~ 4sq . For any...
4sqlem13 16925 Lemma for ~ 4sq . (Contri...
4sqlem14 16926 Lemma for ~ 4sq . (Contri...
4sqlem15 16927 Lemma for ~ 4sq . (Contri...
4sqlem16 16928 Lemma for ~ 4sq . (Contri...
4sqlem17 16929 Lemma for ~ 4sq . (Contri...
4sqlem18 16930 Lemma for ~ 4sq . Inducti...
4sqlem19 16931 Lemma for ~ 4sq . The pro...
4sq 16932 Lagrange's four-square the...
vdwapfval 16939 Define the arithmetic prog...
vdwapf 16940 The arithmetic progression...
vdwapval 16941 Value of the arithmetic pr...
vdwapun 16942 Remove the first element o...
vdwapid1 16943 The first element of an ar...
vdwap0 16944 Value of a length-1 arithm...
vdwap1 16945 Value of a length-1 arithm...
vdwmc 16946 The predicate " The ` <. R...
vdwmc2 16947 Expand out the definition ...
vdwpc 16948 The predicate " The colori...
vdwlem1 16949 Lemma for ~ vdw . (Contri...
vdwlem2 16950 Lemma for ~ vdw . (Contri...
vdwlem3 16951 Lemma for ~ vdw . (Contri...
vdwlem4 16952 Lemma for ~ vdw . (Contri...
vdwlem5 16953 Lemma for ~ vdw . (Contri...
vdwlem6 16954 Lemma for ~ vdw . (Contri...
vdwlem7 16955 Lemma for ~ vdw . (Contri...
vdwlem8 16956 Lemma for ~ vdw . (Contri...
vdwlem9 16957 Lemma for ~ vdw . (Contri...
vdwlem10 16958 Lemma for ~ vdw . Set up ...
vdwlem11 16959 Lemma for ~ vdw . (Contri...
vdwlem12 16960 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16961 Lemma for ~ vdw . Main in...
vdw 16962 Van der Waerden's theorem....
vdwnnlem1 16963 Corollary of ~ vdw , and l...
vdwnnlem2 16964 Lemma for ~ vdwnn . The s...
vdwnnlem3 16965 Lemma for ~ vdwnn . (Cont...
vdwnn 16966 Van der Waerden's theorem,...
ramtlecl 16968 The set ` T ` of numbers w...
hashbcval 16970 Value of the "binomial set...
hashbccl 16971 The binomial set is a fini...
hashbcss 16972 Subset relation for the bi...
hashbc0 16973 The set of subsets of size...
hashbc2 16974 The size of the binomial s...
0hashbc 16975 There are no subsets of th...
ramval 16976 The value of the Ramsey nu...
ramcl2lem 16977 Lemma for extended real cl...
ramtcl 16978 The Ramsey number has the ...
ramtcl2 16979 The Ramsey number is an in...
ramtub 16980 The Ramsey number is a low...
ramub 16981 The Ramsey number is a low...
ramub2 16982 It is sufficient to check ...
rami 16983 The defining property of a...
ramcl2 16984 The Ramsey number is eithe...
ramxrcl 16985 The Ramsey number is an ex...
ramubcl 16986 If the Ramsey number is up...
ramlb 16987 Establish a lower bound on...
0ram 16988 The Ramsey number when ` M...
0ram2 16989 The Ramsey number when ` M...
ram0 16990 The Ramsey number when ` R...
0ramcl 16991 Lemma for ~ ramcl : Exist...
ramz2 16992 The Ramsey number when ` F...
ramz 16993 The Ramsey number when ` F...
ramub1lem1 16994 Lemma for ~ ramub1 . (Con...
ramub1lem2 16995 Lemma for ~ ramub1 . (Con...
ramub1 16996 Inductive step for Ramsey'...
ramcl 16997 Ramsey's theorem: the Rams...
ramsey 16998 Ramsey's theorem with the ...
prmoval 17001 Value of the primorial fun...
prmocl 17002 Closure of the primorial f...
prmone0 17003 The primorial function is ...
prmo0 17004 The primorial of 0. (Cont...
prmo1 17005 The primorial of 1. (Cont...
prmop1 17006 The primorial of a success...
prmonn2 17007 Value of the primorial fun...
prmo2 17008 The primorial of 2. (Cont...
prmo3 17009 The primorial of 3. (Cont...
prmdvdsprmo 17010 The primorial of a number ...
prmdvdsprmop 17011 The primorial of a number ...
fvprmselelfz 17012 The value of the prime sel...
fvprmselgcd1 17013 The greatest common diviso...
prmolefac 17014 The primorial of a positiv...
prmodvdslcmf 17015 The primorial of a nonnega...
prmolelcmf 17016 The primorial of a positiv...
prmgaplem1 17017 Lemma for ~ prmgap : The ...
prmgaplem2 17018 Lemma for ~ prmgap : The ...
prmgaplcmlem1 17019 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 17020 Lemma for ~ prmgaplcm : T...
prmgaplem3 17021 Lemma for ~ prmgap . (Con...
prmgaplem4 17022 Lemma for ~ prmgap . (Con...
prmgaplem5 17023 Lemma for ~ prmgap : for e...
prmgaplem6 17024 Lemma for ~ prmgap : for e...
prmgaplem7 17025 Lemma for ~ prmgap . (Con...
prmgaplem8 17026 Lemma for ~ prmgap . (Con...
prmgap 17027 The prime gap theorem: for...
prmgaplcm 17028 Alternate proof of ~ prmga...
prmgapprmolem 17029 Lemma for ~ prmgapprmo : ...
prmgapprmo 17030 Alternate proof of ~ prmga...
dec2dvds 17031 Divisibility by two is obv...
dec5dvds 17032 Divisibility by five is ob...
dec5dvds2 17033 Divisibility by five is ob...
dec5nprm 17034 Divisibility by five is ob...
dec2nprm 17035 Divisibility by two is obv...
modxai 17036 Add exponents in a power m...
mod2xi 17037 Double exponents in a powe...
modxp1i 17038 Add one to an exponent in ...
mod2xnegi 17039 Version of ~ mod2xi with a...
modsubi 17040 Subtract from within a mod...
gcdi 17041 Calculate a GCD via Euclid...
gcdmodi 17042 Calculate a GCD via Euclid...
decexp2 17043 Calculate a power of two. ...
numexp0 17044 Calculate an integer power...
numexp1 17045 Calculate an integer power...
numexpp1 17046 Calculate an integer power...
numexp2x 17047 Double an integer power. ...
decsplit0b 17048 Split a decimal number int...
decsplit0 17049 Split a decimal number int...
decsplit1 17050 Split a decimal number int...
decsplit 17051 Split a decimal number int...
karatsuba 17052 The Karatsuba multiplicati...
2exp4 17053 Two to the fourth power is...
2exp5 17054 Two to the fifth power is ...
2exp6 17055 Two to the sixth power is ...
2exp7 17056 Two to the seventh power i...
2exp8 17057 Two to the eighth power is...
2exp11 17058 Two to the eleventh power ...
2exp16 17059 Two to the sixteenth power...
3exp3 17060 Three to the third power i...
2expltfac 17061 The factorial grows faster...
cshwsidrepsw 17062 If cyclically shifting a w...
cshwsidrepswmod0 17063 If cyclically shifting a w...
cshwshashlem1 17064 If cyclically shifting a w...
cshwshashlem2 17065 If cyclically shifting a w...
cshwshashlem3 17066 If cyclically shifting a w...
cshwsdisj 17067 The singletons resulting b...
cshwsiun 17068 The set of (different!) wo...
cshwsex 17069 The class of (different!) ...
cshws0 17070 The size of the set of (di...
cshwrepswhash1 17071 The size of the set of (di...
cshwshashnsame 17072 If a word (not consisting ...
cshwshash 17073 If a word has a length bei...
prmlem0 17074 Lemma for ~ prmlem1 and ~ ...
prmlem1a 17075 A quick proof skeleton to ...
prmlem1 17076 A quick proof skeleton to ...
5prm 17077 5 is a prime number. (Con...
6nprm 17078 6 is not a prime number. ...
7prm 17079 7 is a prime number. (Con...
8nprm 17080 8 is not a prime number. ...
9nprm 17081 9 is not a prime number. ...
10nprm 17082 10 is not a prime number. ...
11prm 17083 11 is a prime number. (Co...
13prm 17084 13 is a prime number. (Co...
17prm 17085 17 is a prime number. (Co...
19prm 17086 19 is a prime number. (Co...
23prm 17087 23 is a prime number. (Co...
prmlem2 17088 Our last proving session g...
37prm 17089 37 is a prime number. (Co...
43prm 17090 43 is a prime number. (Co...
83prm 17091 83 is a prime number. (Co...
139prm 17092 139 is a prime number. (C...
163prm 17093 163 is a prime number. (C...
317prm 17094 317 is a prime number. (C...
631prm 17095 631 is a prime number. (C...
prmo4 17096 The primorial of 4. (Cont...
prmo5 17097 The primorial of 5. (Cont...
prmo6 17098 The primorial of 6. (Cont...
1259lem1 17099 Lemma for ~ 1259prm . Cal...
1259lem2 17100 Lemma for ~ 1259prm . Cal...
1259lem3 17101 Lemma for ~ 1259prm . Cal...
1259lem4 17102 Lemma for ~ 1259prm . Cal...
1259lem5 17103 Lemma for ~ 1259prm . Cal...
1259prm 17104 1259 is a prime number. (...
2503lem1 17105 Lemma for ~ 2503prm . Cal...
2503lem2 17106 Lemma for ~ 2503prm . Cal...
2503lem3 17107 Lemma for ~ 2503prm . Cal...
2503prm 17108 2503 is a prime number. (...
4001lem1 17109 Lemma for ~ 4001prm . Cal...
4001lem2 17110 Lemma for ~ 4001prm . Cal...
4001lem3 17111 Lemma for ~ 4001prm . Cal...
4001lem4 17112 Lemma for ~ 4001prm . Cal...
4001prm 17113 4001 is a prime number. (...
brstruct 17116 The structure relation is ...
isstruct2 17117 The property of being a st...
structex 17118 A structure is a set. (Co...
structn0fun 17119 A structure without the em...
isstruct 17120 The property of being a st...
structcnvcnv 17121 Two ways to express the re...
structfung 17122 The converse of the conver...
structfun 17123 Convert between two kinds ...
structfn 17124 Convert between two kinds ...
strleun 17125 Combine two structures int...
strle1 17126 Make a structure from a si...
strle2 17127 Make a structure from a pa...
strle3 17128 Make a structure from a tr...
sbcie2s 17129 A special version of class...
sbcie3s 17130 A special version of class...
reldmsets 17133 The structure override ope...
setsvalg 17134 Value of the structure rep...
setsval 17135 Value of the structure rep...
fvsetsid 17136 The value of the structure...
fsets 17137 The structure replacement ...
setsdm 17138 The domain of a structure ...
setsfun 17139 A structure with replaceme...
setsfun0 17140 A structure with replaceme...
setsn0fun 17141 The value of the structure...
setsstruct2 17142 An extensible structure wi...
setsexstruct2 17143 An extensible structure wi...
setsstruct 17144 An extensible structure wi...
wunsets 17145 Closure of structure repla...
setsres 17146 The structure replacement ...
setsabs 17147 Replacing the same compone...
setscom 17148 Different components can b...
sloteq 17151 Equality theorem for the `...
slotfn 17152 A slot is a function on se...
strfvnd 17153 Deduction version of ~ str...
strfvn 17154 Value of a structure compo...
strfvss 17155 A structure component extr...
wunstr 17156 Closure of a structure ind...
str0 17157 All components of the empt...
strfvi 17158 Structure slot extractors ...
fveqprc 17159 Lemma for showing the equa...
oveqprc 17160 Lemma for showing the equa...
wunndx 17163 Closure of the index extra...
ndxarg 17164 Get the numeric argument f...
ndxid 17165 A structure component extr...
strndxid 17166 The value of a structure c...
setsidvald 17167 Value of the structure rep...
setsidvaldOLD 17168 Obsolete version of ~ sets...
strfvd 17169 Deduction version of ~ str...
strfv2d 17170 Deduction version of ~ str...
strfv2 17171 A variation on ~ strfv to ...
strfv 17172 Extract a structure compon...
strfv3 17173 Variant on ~ strfv for lar...
strssd 17174 Deduction version of ~ str...
strss 17175 Propagate component extrac...
setsid 17176 Value of the structure rep...
setsnid 17177 Value of the structure rep...
setsnidOLD 17178 Obsolete proof of ~ setsni...
baseval 17181 Value of the base set extr...
baseid 17182 Utility theorem: index-ind...
basfn 17183 The base set extractor is ...
base0 17184 The base set of the empty ...
elbasfv 17185 Utility theorem: reverse c...
elbasov 17186 Utility theorem: reverse c...
strov2rcl 17187 Partial reverse closure fo...
basendx 17188 Index value of the base se...
basendxnn 17189 The index value of the bas...
basendxnnOLD 17190 Obsolete proof of ~ basend...
basndxelwund 17191 The index of the base set ...
basprssdmsets 17192 The pair of the base index...
opelstrbas 17193 The base set of a structur...
1strstr 17194 A constructed one-slot str...
1strstr1 17195 A constructed one-slot str...
1strbas 17196 The base set of a construc...
1strbasOLD 17197 Obsolete proof of ~ 1strba...
1strwunbndx 17198 A constructed one-slot str...
1strwun 17199 A constructed one-slot str...
1strwunOLD 17200 Obsolete version of ~ 1str...
2strstr 17201 A constructed two-slot str...
2strbas 17202 The base set of a construc...
2strop 17203 The other slot of a constr...
2strstr1 17204 A constructed two-slot str...
2strstr1OLD 17205 Obsolete version of ~ 2str...
2strbas1 17206 The base set of a construc...
2strop1 17207 The other slot of a constr...
reldmress 17210 The structure restriction ...
ressval 17211 Value of structure restric...
ressid2 17212 General behavior of trivia...
ressval2 17213 Value of nontrivial struct...
ressbas 17214 Base set of a structure re...
ressbasOLD 17215 Obsolete proof of ~ ressba...
ressbasssg 17216 The base set of a restrict...
ressbas2 17217 Base set of a structure re...
ressbasss 17218 The base set of a restrict...
ressbasssOLD 17219 Obsolete proof of ~ ressba...
ressbasss2 17220 The base set of a restrict...
resseqnbas 17221 The components of an exten...
resslemOLD 17222 Obsolete version of ~ ress...
ress0 17223 All restrictions of the nu...
ressid 17224 Behavior of trivial restri...
ressinbas 17225 Restriction only cares abo...
ressval3d 17226 Value of structure restric...
ressval3dOLD 17227 Obsolete version of ~ ress...
ressress 17228 Restriction composition la...
ressabs 17229 Restriction absorption law...
wunress 17230 Closure of structure restr...
wunressOLD 17231 Obsolete proof of ~ wunres...
plusgndx 17258 Index value of the ~ df-pl...
plusgid 17259 Utility theorem: index-ind...
plusgndxnn 17260 The index of the slot for ...
basendxltplusgndx 17261 The index of the slot for ...
basendxnplusgndx 17262 The slot for the base set ...
basendxnplusgndxOLD 17263 Obsolete version of ~ base...
grpstr 17264 A constructed group is a s...
grpstrndx 17265 A constructed group is a s...
grpbase 17266 The base set of a construc...
grpbaseOLD 17267 Obsolete version of ~ grpb...
grpplusg 17268 The operation of a constru...
grpplusgOLD 17269 Obsolete version of ~ grpp...
ressplusg 17270 ` +g ` is unaffected by re...
grpbasex 17271 The base of an explicitly ...
grpplusgx 17272 The operation of an explic...
mulrndx 17273 Index value of the ~ df-mu...
mulridx 17274 Utility theorem: index-ind...
basendxnmulrndx 17275 The slot for the base set ...
basendxnmulrndxOLD 17276 Obsolete proof of ~ basend...
plusgndxnmulrndx 17277 The slot for the group (ad...
rngstr 17278 A constructed ring is a st...
rngbase 17279 The base set of a construc...
rngplusg 17280 The additive operation of ...
rngmulr 17281 The multiplicative operati...
starvndx 17282 Index value of the ~ df-st...
starvid 17283 Utility theorem: index-ind...
starvndxnbasendx 17284 The slot for the involutio...
starvndxnplusgndx 17285 The slot for the involutio...
starvndxnmulrndx 17286 The slot for the involutio...
ressmulr 17287 ` .r ` is unaffected by re...
ressstarv 17288 ` *r ` is unaffected by re...
srngstr 17289 A constructed star ring is...
srngbase 17290 The base set of a construc...
srngplusg 17291 The addition operation of ...
srngmulr 17292 The multiplication operati...
srnginvl 17293 The involution function of...
scandx 17294 Index value of the ~ df-sc...
scaid 17295 Utility theorem: index-ind...
scandxnbasendx 17296 The slot for the scalar is...
scandxnplusgndx 17297 The slot for the scalar fi...
scandxnmulrndx 17298 The slot for the scalar fi...
vscandx 17299 Index value of the ~ df-vs...
vscaid 17300 Utility theorem: index-ind...
vscandxnbasendx 17301 The slot for the scalar pr...
vscandxnplusgndx 17302 The slot for the scalar pr...
vscandxnmulrndx 17303 The slot for the scalar pr...
vscandxnscandx 17304 The slot for the scalar pr...
lmodstr 17305 A constructed left module ...
lmodbase 17306 The base set of a construc...
lmodplusg 17307 The additive operation of ...
lmodsca 17308 The set of scalars of a co...
lmodvsca 17309 The scalar product operati...
ipndx 17310 Index value of the ~ df-ip...
ipid 17311 Utility theorem: index-ind...
ipndxnbasendx 17312 The slot for the inner pro...
ipndxnplusgndx 17313 The slot for the inner pro...
ipndxnmulrndx 17314 The slot for the inner pro...
slotsdifipndx 17315 The slot for the scalar is...
ipsstr 17316 Lemma to shorten proofs of...
ipsbase 17317 The base set of a construc...
ipsaddg 17318 The additive operation of ...
ipsmulr 17319 The multiplicative operati...
ipssca 17320 The set of scalars of a co...
ipsvsca 17321 The scalar product operati...
ipsip 17322 The multiplicative operati...
resssca 17323 ` Scalar ` is unaffected b...
ressvsca 17324 ` .s ` is unaffected by re...
ressip 17325 The inner product is unaff...
phlstr 17326 A constructed pre-Hilbert ...
phlbase 17327 The base set of a construc...
phlplusg 17328 The additive operation of ...
phlsca 17329 The ring of scalars of a c...
phlvsca 17330 The scalar product operati...
phlip 17331 The inner product (Hermiti...
tsetndx 17332 Index value of the ~ df-ts...
tsetid 17333 Utility theorem: index-ind...
tsetndxnn 17334 The index of the slot for ...
basendxlttsetndx 17335 The index of the slot for ...
tsetndxnbasendx 17336 The slot for the topology ...
tsetndxnplusgndx 17337 The slot for the topology ...
tsetndxnmulrndx 17338 The slot for the topology ...
tsetndxnstarvndx 17339 The slot for the topology ...
slotstnscsi 17340 The slots ` Scalar ` , ` ....
topgrpstr 17341 A constructed topological ...
topgrpbas 17342 The base set of a construc...
topgrpplusg 17343 The additive operation of ...
topgrptset 17344 The topology of a construc...
resstset 17345 ` TopSet ` is unaffected b...
plendx 17346 Index value of the ~ df-pl...
pleid 17347 Utility theorem: self-refe...
plendxnn 17348 The index value of the ord...
basendxltplendx 17349 The index value of the ` B...
plendxnbasendx 17350 The slot for the order is ...
plendxnplusgndx 17351 The slot for the "less tha...
plendxnmulrndx 17352 The slot for the "less tha...
plendxnscandx 17353 The slot for the "less tha...
plendxnvscandx 17354 The slot for the "less tha...
slotsdifplendx 17355 The index of the slot for ...
otpsstr 17356 Functionality of a topolog...
otpsbas 17357 The base set of a topologi...
otpstset 17358 The open sets of a topolog...
otpsle 17359 The order of a topological...
ressle 17360 ` le ` is unaffected by re...
ocndx 17361 Index value of the ~ df-oc...
ocid 17362 Utility theorem: index-ind...
basendxnocndx 17363 The slot for the orthocomp...
plendxnocndx 17364 The slot for the orthocomp...
dsndx 17365 Index value of the ~ df-ds...
dsid 17366 Utility theorem: index-ind...
dsndxnn 17367 The index of the slot for ...
basendxltdsndx 17368 The index of the slot for ...
dsndxnbasendx 17369 The slot for the distance ...
dsndxnplusgndx 17370 The slot for the distance ...
dsndxnmulrndx 17371 The slot for the distance ...
slotsdnscsi 17372 The slots ` Scalar ` , ` ....
dsndxntsetndx 17373 The slot for the distance ...
slotsdifdsndx 17374 The index of the slot for ...
unifndx 17375 Index value of the ~ df-un...
unifid 17376 Utility theorem: index-ind...
unifndxnn 17377 The index of the slot for ...
basendxltunifndx 17378 The index of the slot for ...
unifndxnbasendx 17379 The slot for the uniform s...
unifndxntsetndx 17380 The slot for the uniform s...
slotsdifunifndx 17381 The index of the slot for ...
ressunif 17382 ` UnifSet ` is unaffected ...
odrngstr 17383 Functionality of an ordere...
odrngbas 17384 The base set of an ordered...
odrngplusg 17385 The addition operation of ...
odrngmulr 17386 The multiplication operati...
odrngtset 17387 The open sets of an ordere...
odrngle 17388 The order of an ordered me...
odrngds 17389 The metric of an ordered m...
ressds 17390 ` dist ` is unaffected by ...
homndx 17391 Index value of the ~ df-ho...
homid 17392 Utility theorem: index-ind...
ccondx 17393 Index value of the ~ df-cc...
ccoid 17394 Utility theorem: index-ind...
slotsbhcdif 17395 The slots ` Base ` , ` Hom...
slotsbhcdifOLD 17396 Obsolete proof of ~ slotsb...
slotsdifplendx2 17397 The index of the slot for ...
slotsdifocndx 17398 The index of the slot for ...
resshom 17399 ` Hom ` is unaffected by r...
ressco 17400 ` comp ` is unaffected by ...
restfn 17405 The subspace topology oper...
topnfn 17406 The topology extractor fun...
restval 17407 The subspace topology indu...
elrest 17408 The predicate "is an open ...
elrestr 17409 Sufficient condition for b...
0rest 17410 Value of the structure res...
restid2 17411 The subspace topology over...
restsspw 17412 The subspace topology is a...
firest 17413 The finite intersections o...
restid 17414 The subspace topology of t...
topnval 17415 Value of the topology extr...
topnid 17416 Value of the topology extr...
topnpropd 17417 The topology extractor fun...
reldmprds 17429 The structure product is a...
prdsbasex 17431 Lemma for structure produc...
imasvalstr 17432 An image structure value i...
prdsvalstr 17433 Structure product value is...
prdsbaslem 17434 Lemma for ~ prdsbas and si...
prdsvallem 17435 Lemma for ~ prdsval . (Co...
prdsval 17436 Value of the structure pro...
prdssca 17437 Scalar ring of a structure...
prdsbas 17438 Base set of a structure pr...
prdsplusg 17439 Addition in a structure pr...
prdsmulr 17440 Multiplication in a struct...
prdsvsca 17441 Scalar multiplication in a...
prdsip 17442 Inner product in a structu...
prdsle 17443 Structure product weak ord...
prdsless 17444 Closure of the order relat...
prdsds 17445 Structure product distance...
prdsdsfn 17446 Structure product distance...
prdstset 17447 Structure product topology...
prdshom 17448 Structure product hom-sets...
prdsco 17449 Structure product composit...
prdsbas2 17450 The base set of a structur...
prdsbasmpt 17451 A constructed tuple is a p...
prdsbasfn 17452 Points in the structure pr...
prdsbasprj 17453 Each point in a structure ...
prdsplusgval 17454 Value of a componentwise s...
prdsplusgfval 17455 Value of a structure produ...
prdsmulrval 17456 Value of a componentwise r...
prdsmulrfval 17457 Value of a structure produ...
prdsleval 17458 Value of the product order...
prdsdsval 17459 Value of the metric in a s...
prdsvscaval 17460 Scalar multiplication in a...
prdsvscafval 17461 Scalar multiplication of a...
prdsbas3 17462 The base set of an indexed...
prdsbasmpt2 17463 A constructed tuple is a p...
prdsbascl 17464 An element of the base has...
prdsdsval2 17465 Value of the metric in a s...
prdsdsval3 17466 Value of the metric in a s...
pwsval 17467 Value of a structure power...
pwsbas 17468 Base set of a structure po...
pwselbasb 17469 Membership in the base set...
pwselbas 17470 An element of a structure ...
pwsplusgval 17471 Value of addition in a str...
pwsmulrval 17472 Value of multiplication in...
pwsle 17473 Ordering in a structure po...
pwsleval 17474 Ordering in a structure po...
pwsvscafval 17475 Scalar multiplication in a...
pwsvscaval 17476 Scalar multiplication of a...
pwssca 17477 The ring of scalars of a s...
pwsdiagel 17478 Membership of diagonal ele...
pwssnf1o 17479 Triviality of singleton po...
imasval 17492 Value of an image structur...
imasbas 17493 The base set of an image s...
imasds 17494 The distance function of a...
imasdsfn 17495 The distance function is a...
imasdsval 17496 The distance function of a...
imasdsval2 17497 The distance function of a...
imasplusg 17498 The group operation in an ...
imasmulr 17499 The ring multiplication in...
imassca 17500 The scalar field of an ima...
imasvsca 17501 The scalar multiplication ...
imasip 17502 The inner product of an im...
imastset 17503 The topology of an image s...
imasle 17504 The ordering of an image s...
f1ocpbllem 17505 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17506 An injection is compatible...
f1ovscpbl 17507 An injection is compatible...
f1olecpbl 17508 An injection is compatible...
imasaddfnlem 17509 The image structure operat...
imasaddvallem 17510 The operation of an image ...
imasaddflem 17511 The image set operations a...
imasaddfn 17512 The image structure's grou...
imasaddval 17513 The value of an image stru...
imasaddf 17514 The image structure's grou...
imasmulfn 17515 The image structure's ring...
imasmulval 17516 The value of an image stru...
imasmulf 17517 The image structure's ring...
imasvscafn 17518 The image structure's scal...
imasvscaval 17519 The value of an image stru...
imasvscaf 17520 The image structure's scal...
imasless 17521 The order relation defined...
imasleval 17522 The value of the image str...
qusval 17523 Value of a quotient struct...
quslem 17524 The function in ~ qusval i...
qusin 17525 Restrict the equivalence r...
qusbas 17526 Base set of a quotient str...
quss 17527 The scalar field of a quot...
divsfval 17528 Value of the function in ~...
ercpbllem 17529 Lemma for ~ ercpbl . (Con...
ercpbl 17530 Translate the function com...
erlecpbl 17531 Translate the relation com...
qusaddvallem 17532 Value of an operation defi...
qusaddflem 17533 The operation of a quotien...
qusaddval 17534 The addition in a quotient...
qusaddf 17535 The addition in a quotient...
qusmulval 17536 The multiplication in a qu...
qusmulf 17537 The multiplication in a qu...
fnpr2o 17538 Function with a domain of ...
fnpr2ob 17539 Biconditional version of ~...
fvpr0o 17540 The value of a function wi...
fvpr1o 17541 The value of a function wi...
fvprif 17542 The value of the pair func...
xpsfrnel 17543 Elementhood in the target ...
xpsfeq 17544 A function on ` 2o ` is de...
xpsfrnel2 17545 Elementhood in the target ...
xpscf 17546 Equivalent condition for t...
xpsfval 17547 The value of the function ...
xpsff1o 17548 The function appearing in ...
xpsfrn 17549 A short expression for the...
xpsff1o2 17550 The function appearing in ...
xpsval 17551 Value of the binary struct...
xpsrnbas 17552 The indexed structure prod...
xpsbas 17553 The base set of the binary...
xpsaddlem 17554 Lemma for ~ xpsadd and ~ x...
xpsadd 17555 Value of the addition oper...
xpsmul 17556 Value of the multiplicatio...
xpssca 17557 Value of the scalar field ...
xpsvsca 17558 Value of the scalar multip...
xpsless 17559 Closure of the ordering in...
xpsle 17560 Value of the ordering in a...
ismre 17569 Property of being a Moore ...
fnmre 17570 The Moore collection gener...
mresspw 17571 A Moore collection is a su...
mress 17572 A Moore-closed subset is a...
mre1cl 17573 In any Moore collection th...
mreintcl 17574 A nonempty collection of c...
mreiincl 17575 A nonempty indexed interse...
mrerintcl 17576 The relative intersection ...
mreriincl 17577 The relative intersection ...
mreincl 17578 Two closed sets have a clo...
mreuni 17579 Since the entire base set ...
mreunirn 17580 Two ways to express the no...
ismred 17581 Properties that determine ...
ismred2 17582 Properties that determine ...
mremre 17583 The Moore collections of s...
submre 17584 The subcollection of a clo...
mrcflem 17585 The domain and codomain of...
fnmrc 17586 Moore-closure is a well-be...
mrcfval 17587 Value of the function expr...
mrcf 17588 The Moore closure is a fun...
mrcval 17589 Evaluation of the Moore cl...
mrccl 17590 The Moore closure of a set...
mrcsncl 17591 The Moore closure of a sin...
mrcid 17592 The closure of a closed se...
mrcssv 17593 The closure of a set is a ...
mrcidb 17594 A set is closed iff it is ...
mrcss 17595 Closure preserves subset o...
mrcssid 17596 The closure of a set is a ...
mrcidb2 17597 A set is closed iff it con...
mrcidm 17598 The closure operation is i...
mrcsscl 17599 The closure is the minimal...
mrcuni 17600 Idempotence of closure und...
mrcun 17601 Idempotence of closure und...
mrcssvd 17602 The Moore closure of a set...
mrcssd 17603 Moore closure preserves su...
mrcssidd 17604 A set is contained in its ...
mrcidmd 17605 Moore closure is idempoten...
mressmrcd 17606 In a Moore system, if a se...
submrc 17607 In a closure system which ...
mrieqvlemd 17608 In a Moore system, if ` Y ...
mrisval 17609 Value of the set of indepe...
ismri 17610 Criterion for a set to be ...
ismri2 17611 Criterion for a subset of ...
ismri2d 17612 Criterion for a subset of ...
ismri2dd 17613 Definition of independence...
mriss 17614 An independent set of a Mo...
mrissd 17615 An independent set of a Mo...
ismri2dad 17616 Consequence of a set in a ...
mrieqvd 17617 In a Moore system, a set i...
mrieqv2d 17618 In a Moore system, a set i...
mrissmrcd 17619 In a Moore system, if an i...
mrissmrid 17620 In a Moore system, subsets...
mreexd 17621 In a Moore system, the clo...
mreexmrid 17622 In a Moore system whose cl...
mreexexlemd 17623 This lemma is used to gene...
mreexexlem2d 17624 Used in ~ mreexexlem4d to ...
mreexexlem3d 17625 Base case of the induction...
mreexexlem4d 17626 Induction step of the indu...
mreexexd 17627 Exchange-type theorem. In...
mreexdomd 17628 In a Moore system whose cl...
mreexfidimd 17629 In a Moore system whose cl...
isacs 17630 A set is an algebraic clos...
acsmre 17631 Algebraic closure systems ...
isacs2 17632 In the definition of an al...
acsfiel 17633 A set is closed in an alge...
acsfiel2 17634 A set is closed in an alge...
acsmred 17635 An algebraic closure syste...
isacs1i 17636 A closure system determine...
mreacs 17637 Algebraicity is a composab...
acsfn 17638 Algebraicity of a conditio...
acsfn0 17639 Algebraicity of a point cl...
acsfn1 17640 Algebraicity of a one-argu...
acsfn1c 17641 Algebraicity of a one-argu...
acsfn2 17642 Algebraicity of a two-argu...
iscat 17651 The predicate "is a catego...
iscatd 17652 Properties that determine ...
catidex 17653 Each object in a category ...
catideu 17654 Each object in a category ...
cidfval 17655 Each object in a category ...
cidval 17656 Each object in a category ...
cidffn 17657 The identity arrow constru...
cidfn 17658 The identity arrow operato...
catidd 17659 Deduce the identity arrow ...
iscatd2 17660 Version of ~ iscatd with a...
catidcl 17661 Each object in a category ...
catlid 17662 Left identity property of ...
catrid 17663 Right identity property of...
catcocl 17664 Closure of a composition a...
catass 17665 Associativity of compositi...
catcone0 17666 Composition of non-empty h...
0catg 17667 Any structure with an empt...
0cat 17668 The empty set is a categor...
homffval 17669 Value of the functionalize...
fnhomeqhomf 17670 If the Hom-set operation i...
homfval 17671 Value of the functionalize...
homffn 17672 The functionalized Hom-set...
homfeq 17673 Condition for two categori...
homfeqd 17674 If two structures have the...
homfeqbas 17675 Deduce equality of base se...
homfeqval 17676 Value of the functionalize...
comfffval 17677 Value of the functionalize...
comffval 17678 Value of the functionalize...
comfval 17679 Value of the functionalize...
comfffval2 17680 Value of the functionalize...
comffval2 17681 Value of the functionalize...
comfval2 17682 Value of the functionalize...
comfffn 17683 The functionalized composi...
comffn 17684 The functionalized composi...
comfeq 17685 Condition for two categori...
comfeqd 17686 Condition for two categori...
comfeqval 17687 Equality of two compositio...
catpropd 17688 Two structures with the sa...
cidpropd 17689 Two structures with the sa...
oppcval 17692 Value of the opposite cate...
oppchomfval 17693 Hom-sets of the opposite c...
oppchomfvalOLD 17694 Obsolete proof of ~ oppcho...
oppchom 17695 Hom-sets of the opposite c...
oppccofval 17696 Composition in the opposit...
oppcco 17697 Composition in the opposit...
oppcbas 17698 Base set of an opposite ca...
oppcbasOLD 17699 Obsolete version of ~ oppc...
oppccatid 17700 Lemma for ~ oppccat . (Co...
oppchomf 17701 Hom-sets of the opposite c...
oppcid 17702 Identity function of an op...
oppccat 17703 An opposite category is a ...
2oppcbas 17704 The double opposite catego...
2oppchomf 17705 The double opposite catego...
2oppccomf 17706 The double opposite catego...
oppchomfpropd 17707 If two categories have the...
oppccomfpropd 17708 If two categories have the...
oppccatf 17709 ` oppCat ` restricted to `...
monfval 17714 Definition of a monomorphi...
ismon 17715 Definition of a monomorphi...
ismon2 17716 Write out the monomorphism...
monhom 17717 A monomorphism is a morphi...
moni 17718 Property of a monomorphism...
monpropd 17719 If two categories have the...
oppcmon 17720 A monomorphism in the oppo...
oppcepi 17721 An epimorphism in the oppo...
isepi 17722 Definition of an epimorphi...
isepi2 17723 Write out the epimorphism ...
epihom 17724 An epimorphism is a morphi...
epii 17725 Property of an epimorphism...
sectffval 17732 Value of the section opera...
sectfval 17733 Value of the section relat...
sectss 17734 The section relation is a ...
issect 17735 The property " ` F ` is a ...
issect2 17736 Property of being a sectio...
sectcan 17737 If ` G ` is a section of `...
sectco 17738 Composition of two section...
isofval 17739 Function value of the func...
invffval 17740 Value of the inverse relat...
invfval 17741 Value of the inverse relat...
isinv 17742 Value of the inverse relat...
invss 17743 The inverse relation is a ...
invsym 17744 The inverse relation is sy...
invsym2 17745 The inverse relation is sy...
invfun 17746 The inverse relation is a ...
isoval 17747 The isomorphisms are the d...
inviso1 17748 If ` G ` is an inverse to ...
inviso2 17749 If ` G ` is an inverse to ...
invf 17750 The inverse relation is a ...
invf1o 17751 The inverse relation is a ...
invinv 17752 The inverse of the inverse...
invco 17753 The composition of two iso...
dfiso2 17754 Alternate definition of an...
dfiso3 17755 Alternate definition of an...
inveq 17756 If there are two inverses ...
isofn 17757 The function value of the ...
isohom 17758 An isomorphism is a homomo...
isoco 17759 The composition of two iso...
oppcsect 17760 A section in the opposite ...
oppcsect2 17761 A section in the opposite ...
oppcinv 17762 An inverse in the opposite...
oppciso 17763 An isomorphism in the oppo...
sectmon 17764 If ` F ` is a section of `...
monsect 17765 If ` F ` is a monomorphism...
sectepi 17766 If ` F ` is a section of `...
episect 17767 If ` F ` is an epimorphism...
sectid 17768 The identity is a section ...
invid 17769 The inverse of the identit...
idiso 17770 The identity is an isomorp...
idinv 17771 The inverse of the identit...
invisoinvl 17772 The inverse of an isomorph...
invisoinvr 17773 The inverse of an isomorph...
invcoisoid 17774 The inverse of an isomorph...
isocoinvid 17775 The inverse of an isomorph...
rcaninv 17776 Right cancellation of an i...
cicfval 17779 The set of isomorphic obje...
brcic 17780 The relation "is isomorphi...
cic 17781 Objects ` X ` and ` Y ` in...
brcici 17782 Prove that two objects are...
cicref 17783 Isomorphism is reflexive. ...
ciclcl 17784 Isomorphism implies the le...
cicrcl 17785 Isomorphism implies the ri...
cicsym 17786 Isomorphism is symmetric. ...
cictr 17787 Isomorphism is transitive....
cicer 17788 Isomorphism is an equivale...
sscrel 17795 The subcategory subset rel...
brssc 17796 The subcategory subset rel...
sscpwex 17797 An analogue of ~ pwex for ...
subcrcl 17798 Reverse closure for the su...
sscfn1 17799 The subcategory subset rel...
sscfn2 17800 The subcategory subset rel...
ssclem 17801 Lemma for ~ ssc1 and simil...
isssc 17802 Value of the subcategory s...
ssc1 17803 Infer subset relation on o...
ssc2 17804 Infer subset relation on m...
sscres 17805 Any function restricted to...
sscid 17806 The subcategory subset rel...
ssctr 17807 The subcategory subset rel...
ssceq 17808 The subcategory subset rel...
rescval 17809 Value of the category rest...
rescval2 17810 Value of the category rest...
rescbas 17811 Base set of the category r...
rescbasOLD 17812 Obsolete version of ~ resc...
reschom 17813 Hom-sets of the category r...
reschomf 17814 Hom-sets of the category r...
rescco 17815 Composition in the categor...
resccoOLD 17816 Obsolete proof of ~ rescco...
rescabs 17817 Restriction absorption law...
rescabsOLD 17818 Obsolete proof of ~ seqp1d...
rescabs2 17819 Restriction absorption law...
issubc 17820 Elementhood in the set of ...
issubc2 17821 Elementhood in the set of ...
0ssc 17822 For any category ` C ` , t...
0subcat 17823 For any category ` C ` , t...
catsubcat 17824 For any category ` C ` , `...
subcssc 17825 An element in the set of s...
subcfn 17826 An element in the set of s...
subcss1 17827 The objects of a subcatego...
subcss2 17828 The morphisms of a subcate...
subcidcl 17829 The identity of the origin...
subccocl 17830 A subcategory is closed un...
subccatid 17831 A subcategory is a categor...
subcid 17832 The identity in a subcateg...
subccat 17833 A subcategory is a categor...
issubc3 17834 Alternate definition of a ...
fullsubc 17835 The full subcategory gener...
fullresc 17836 The category formed by str...
resscat 17837 A category restricted to a...
subsubc 17838 A subcategory of a subcate...
relfunc 17847 The set of functors is a r...
funcrcl 17848 Reverse closure for a func...
isfunc 17849 Value of the set of functo...
isfuncd 17850 Deduce that an operation i...
funcf1 17851 The object part of a funct...
funcixp 17852 The morphism part of a fun...
funcf2 17853 The morphism part of a fun...
funcfn2 17854 The morphism part of a fun...
funcid 17855 A functor maps each identi...
funcco 17856 A functor maps composition...
funcsect 17857 The image of a section und...
funcinv 17858 The image of an inverse un...
funciso 17859 The image of an isomorphis...
funcoppc 17860 A functor on categories yi...
idfuval 17861 Value of the identity func...
idfu2nd 17862 Value of the morphism part...
idfu2 17863 Value of the morphism part...
idfu1st 17864 Value of the object part o...
idfu1 17865 Value of the object part o...
idfucl 17866 The identity functor is a ...
cofuval 17867 Value of the composition o...
cofu1st 17868 Value of the object part o...
cofu1 17869 Value of the object part o...
cofu2nd 17870 Value of the morphism part...
cofu2 17871 Value of the morphism part...
cofuval2 17872 Value of the composition o...
cofucl 17873 The composition of two fun...
cofuass 17874 Functor composition is ass...
cofulid 17875 The identity functor is a ...
cofurid 17876 The identity functor is a ...
resfval 17877 Value of the functor restr...
resfval2 17878 Value of the functor restr...
resf1st 17879 Value of the functor restr...
resf2nd 17880 Value of the functor restr...
funcres 17881 A functor restricted to a ...
funcres2b 17882 Condition for a functor to...
funcres2 17883 A functor into a restricte...
idfusubc0 17884 The identity functor for a...
idfusubc 17885 The identity functor for a...
wunfunc 17886 A weak universe is closed ...
wunfuncOLD 17887 Obsolete proof of ~ wunfun...
funcpropd 17888 If two categories have the...
funcres2c 17889 Condition for a functor to...
fullfunc 17894 A full functor is a functo...
fthfunc 17895 A faithful functor is a fu...
relfull 17896 The set of full functors i...
relfth 17897 The set of faithful functo...
isfull 17898 Value of the set of full f...
isfull2 17899 Equivalent condition for a...
fullfo 17900 The morphism map of a full...
fulli 17901 The morphism map of a full...
isfth 17902 Value of the set of faithf...
isfth2 17903 Equivalent condition for a...
isffth2 17904 A fully faithful functor i...
fthf1 17905 The morphism map of a fait...
fthi 17906 The morphism map of a fait...
ffthf1o 17907 The morphism map of a full...
fullpropd 17908 If two categories have the...
fthpropd 17909 If two categories have the...
fulloppc 17910 The opposite functor of a ...
fthoppc 17911 The opposite functor of a ...
ffthoppc 17912 The opposite functor of a ...
fthsect 17913 A faithful functor reflect...
fthinv 17914 A faithful functor reflect...
fthmon 17915 A faithful functor reflect...
fthepi 17916 A faithful functor reflect...
ffthiso 17917 A fully faithful functor r...
fthres2b 17918 Condition for a faithful f...
fthres2c 17919 Condition for a faithful f...
fthres2 17920 A faithful functor into a ...
idffth 17921 The identity functor is a ...
cofull 17922 The composition of two ful...
cofth 17923 The composition of two fai...
coffth 17924 The composition of two ful...
rescfth 17925 The inclusion functor from...
ressffth 17926 The inclusion functor from...
fullres2c 17927 Condition for a full funct...
ffthres2c 17928 Condition for a fully fait...
inclfusubc 17929 The "inclusion functor" fr...
fnfuc 17934 The ` FuncCat ` operation ...
natfval 17935 Value of the function givi...
isnat 17936 Property of being a natura...
isnat2 17937 Property of being a natura...
natffn 17938 The natural transformation...
natrcl 17939 Reverse closure for a natu...
nat1st2nd 17940 Rewrite the natural transf...
natixp 17941 A natural transformation i...
natcl 17942 A component of a natural t...
natfn 17943 A natural transformation i...
nati 17944 Naturality property of a n...
wunnat 17945 A weak universe is closed ...
wunnatOLD 17946 Obsolete proof of ~ wunnat...
catstr 17947 A category structure is a ...
fucval 17948 Value of the functor categ...
fuccofval 17949 Value of the functor categ...
fucbas 17950 The objects of the functor...
fuchom 17951 The morphisms in the funct...
fuchomOLD 17952 Obsolete proof of ~ fuchom...
fucco 17953 Value of the composition o...
fuccoval 17954 Value of the functor categ...
fuccocl 17955 The composition of two nat...
fucidcl 17956 The identity natural trans...
fuclid 17957 Left identity of natural t...
fucrid 17958 Right identity of natural ...
fucass 17959 Associativity of natural t...
fuccatid 17960 The functor category is a ...
fuccat 17961 The functor category is a ...
fucid 17962 The identity morphism in t...
fucsect 17963 Two natural transformation...
fucinv 17964 Two natural transformation...
invfuc 17965 If ` V ( x ) ` is an inver...
fuciso 17966 A natural transformation i...
natpropd 17967 If two categories have the...
fucpropd 17968 If two categories have the...
initofn 17975 ` InitO ` is a function on...
termofn 17976 ` TermO ` is a function on...
zeroofn 17977 ` ZeroO ` is a function on...
initorcl 17978 Reverse closure for an ini...
termorcl 17979 Reverse closure for a term...
zeroorcl 17980 Reverse closure for a zero...
initoval 17981 The value of the initial o...
termoval 17982 The value of the terminal ...
zerooval 17983 The value of the zero obje...
isinito 17984 The predicate "is an initi...
istermo 17985 The predicate "is a termin...
iszeroo 17986 The predicate "is a zero o...
isinitoi 17987 Implication of a class bei...
istermoi 17988 Implication of a class bei...
initoid 17989 For an initial object, the...
termoid 17990 For a terminal object, the...
dfinito2 17991 An initial object is a ter...
dftermo2 17992 A terminal object is an in...
dfinito3 17993 An alternate definition of...
dftermo3 17994 An alternate definition of...
initoo 17995 An initial object is an ob...
termoo 17996 A terminal object is an ob...
iszeroi 17997 Implication of a class bei...
2initoinv 17998 Morphisms between two init...
initoeu1 17999 Initial objects are essent...
initoeu1w 18000 Initial objects are essent...
initoeu2lem0 18001 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 18002 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 18003 Lemma 2 for ~ initoeu2 . ...
initoeu2 18004 Initial objects are essent...
2termoinv 18005 Morphisms between two term...
termoeu1 18006 Terminal objects are essen...
termoeu1w 18007 Terminal objects are essen...
homarcl 18016 Reverse closure for an arr...
homafval 18017 Value of the disjointified...
homaf 18018 Functionality of the disjo...
homaval 18019 Value of the disjointified...
elhoma 18020 Value of the disjointified...
elhomai 18021 Produce an arrow from a mo...
elhomai2 18022 Produce an arrow from a mo...
homarcl2 18023 Reverse closure for the do...
homarel 18024 An arrow is an ordered pai...
homa1 18025 The first component of an ...
homahom2 18026 The second component of an...
homahom 18027 The second component of an...
homadm 18028 The domain of an arrow wit...
homacd 18029 The codomain of an arrow w...
homadmcd 18030 Decompose an arrow into do...
arwval 18031 The set of arrows is the u...
arwrcl 18032 The first component of an ...
arwhoma 18033 An arrow is contained in t...
homarw 18034 A hom-set is a subset of t...
arwdm 18035 The domain of an arrow is ...
arwcd 18036 The codomain of an arrow i...
dmaf 18037 The domain function is a f...
cdaf 18038 The codomain function is a...
arwhom 18039 The second component of an...
arwdmcd 18040 Decompose an arrow into do...
idafval 18045 Value of the identity arro...
idaval 18046 Value of the identity arro...
ida2 18047 Morphism part of the ident...
idahom 18048 Domain and codomain of the...
idadm 18049 Domain of the identity arr...
idacd 18050 Codomain of the identity a...
idaf 18051 The identity arrow functio...
coafval 18052 The value of the compositi...
eldmcoa 18053 A pair ` <. G , F >. ` is ...
dmcoass 18054 The domain of composition ...
homdmcoa 18055 If ` F : X --> Y ` and ` G...
coaval 18056 Value of composition for c...
coa2 18057 The morphism part of arrow...
coahom 18058 The composition of two com...
coapm 18059 Composition of arrows is a...
arwlid 18060 Left identity of a categor...
arwrid 18061 Right identity of a catego...
arwass 18062 Associativity of compositi...
setcval 18065 Value of the category of s...
setcbas 18066 Set of objects of the cate...
setchomfval 18067 Set of arrows of the categ...
setchom 18068 Set of arrows of the categ...
elsetchom 18069 A morphism of sets is a fu...
setccofval 18070 Composition in the categor...
setcco 18071 Composition in the categor...
setccatid 18072 Lemma for ~ setccat . (Co...
setccat 18073 The category of sets is a ...
setcid 18074 The identity arrow in the ...
setcmon 18075 A monomorphism of sets is ...
setcepi 18076 An epimorphism of sets is ...
setcsect 18077 A section in the category ...
setcinv 18078 An inverse in the category...
setciso 18079 An isomorphism in the cate...
resssetc 18080 The restriction of the cat...
funcsetcres2 18081 A functor into a smaller c...
setc2obas 18082 ` (/) ` and ` 1o ` are dis...
setc2ohom 18083 ` ( SetCat `` 2o ) ` is a ...
cat1lem 18084 The category of sets in a ...
cat1 18085 The definition of category...
catcval 18088 Value of the category of c...
catcbas 18089 Set of objects of the cate...
catchomfval 18090 Set of arrows of the categ...
catchom 18091 Set of arrows of the categ...
catccofval 18092 Composition in the categor...
catcco 18093 Composition in the categor...
catccatid 18094 Lemma for ~ catccat . (Co...
catcid 18095 The identity arrow in the ...
catccat 18096 The category of categories...
resscatc 18097 The restriction of the cat...
catcisolem 18098 Lemma for ~ catciso . (Co...
catciso 18099 A functor is an isomorphis...
catcbascl 18100 An element of the base set...
catcslotelcl 18101 A slot entry of an element...
catcbaselcl 18102 The base set of an element...
catchomcl 18103 The Hom-set of an element ...
catcccocl 18104 The composition operation ...
catcoppccl 18105 The category of categories...
catcoppcclOLD 18106 Obsolete proof of ~ catcop...
catcfuccl 18107 The category of categories...
catcfucclOLD 18108 Obsolete proof of ~ catcfu...
fncnvimaeqv 18109 The inverse images of the ...
bascnvimaeqv 18110 The inverse image of the u...
estrcval 18113 Value of the category of e...
estrcbas 18114 Set of objects of the cate...
estrchomfval 18115 Set of morphisms ("arrows"...
estrchom 18116 The morphisms between exte...
elestrchom 18117 A morphism between extensi...
estrccofval 18118 Composition in the categor...
estrcco 18119 Composition in the categor...
estrcbasbas 18120 An element of the base set...
estrccatid 18121 Lemma for ~ estrccat . (C...
estrccat 18122 The category of extensible...
estrcid 18123 The identity arrow in the ...
estrchomfn 18124 The Hom-set operation in t...
estrchomfeqhom 18125 The functionalized Hom-set...
estrreslem1 18126 Lemma 1 for ~ estrres . (...
estrreslem1OLD 18127 Obsolete version of ~ estr...
estrreslem2 18128 Lemma 2 for ~ estrres . (...
estrres 18129 Any restriction of a categ...
funcestrcsetclem1 18130 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 18131 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 18132 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 18133 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 18134 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 18135 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 18136 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 18137 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 18138 Lemma 9 for ~ funcestrcset...
funcestrcsetc 18139 The "natural forgetful fun...
fthestrcsetc 18140 The "natural forgetful fun...
fullestrcsetc 18141 The "natural forgetful fun...
equivestrcsetc 18142 The "natural forgetful fun...
setc1strwun 18143 A constructed one-slot str...
funcsetcestrclem1 18144 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 18145 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 18146 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 18147 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 18148 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 18149 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 18150 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 18151 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 18152 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 18153 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 18154 The "embedding functor" fr...
fthsetcestrc 18155 The "embedding functor" fr...
fullsetcestrc 18156 The "embedding functor" fr...
embedsetcestrc 18157 The "embedding functor" fr...
fnxpc 18166 The binary product of cate...
xpcval 18167 Value of the binary produc...
xpcbas 18168 Set of objects of the bina...
xpchomfval 18169 Set of morphisms of the bi...
xpchom 18170 Set of morphisms of the bi...
relxpchom 18171 A hom-set in the binary pr...
xpccofval 18172 Value of composition in th...
xpcco 18173 Value of composition in th...
xpcco1st 18174 Value of composition in th...
xpcco2nd 18175 Value of composition in th...
xpchom2 18176 Value of the set of morphi...
xpcco2 18177 Value of composition in th...
xpccatid 18178 The product of two categor...
xpcid 18179 The identity morphism in t...
xpccat 18180 The product of two categor...
1stfval 18181 Value of the first project...
1stf1 18182 Value of the first project...
1stf2 18183 Value of the first project...
2ndfval 18184 Value of the first project...
2ndf1 18185 Value of the first project...
2ndf2 18186 Value of the first project...
1stfcl 18187 The first projection funct...
2ndfcl 18188 The second projection func...
prfval 18189 Value of the pairing funct...
prf1 18190 Value of the pairing funct...
prf2fval 18191 Value of the pairing funct...
prf2 18192 Value of the pairing funct...
prfcl 18193 The pairing of functors ` ...
prf1st 18194 Cancellation of pairing wi...
prf2nd 18195 Cancellation of pairing wi...
1st2ndprf 18196 Break a functor into a pro...
catcxpccl 18197 The category of categories...
catcxpcclOLD 18198 Obsolete proof of ~ catcxp...
xpcpropd 18199 If two categories have the...
evlfval 18208 Value of the evaluation fu...
evlf2 18209 Value of the evaluation fu...
evlf2val 18210 Value of the evaluation na...
evlf1 18211 Value of the evaluation fu...
evlfcllem 18212 Lemma for ~ evlfcl . (Con...
evlfcl 18213 The evaluation functor is ...
curfval 18214 Value of the curry functor...
curf1fval 18215 Value of the object part o...
curf1 18216 Value of the object part o...
curf11 18217 Value of the double evalua...
curf12 18218 The partially evaluated cu...
curf1cl 18219 The partially evaluated cu...
curf2 18220 Value of the curry functor...
curf2val 18221 Value of a component of th...
curf2cl 18222 The curry functor at a mor...
curfcl 18223 The curry functor of a fun...
curfpropd 18224 If two categories have the...
uncfval 18225 Value of the uncurry funct...
uncfcl 18226 The uncurry operation take...
uncf1 18227 Value of the uncurry funct...
uncf2 18228 Value of the uncurry funct...
curfuncf 18229 Cancellation of curry with...
uncfcurf 18230 Cancellation of uncurry wi...
diagval 18231 Define the diagonal functo...
diagcl 18232 The diagonal functor is a ...
diag1cl 18233 The constant functor of ` ...
diag11 18234 Value of the constant func...
diag12 18235 Value of the constant func...
diag2 18236 Value of the diagonal func...
diag2cl 18237 The diagonal functor at a ...
curf2ndf 18238 As shown in ~ diagval , th...
hofval 18243 Value of the Hom functor, ...
hof1fval 18244 The object part of the Hom...
hof1 18245 The object part of the Hom...
hof2fval 18246 The morphism part of the H...
hof2val 18247 The morphism part of the H...
hof2 18248 The morphism part of the H...
hofcllem 18249 Lemma for ~ hofcl . (Cont...
hofcl 18250 Closure of the Hom functor...
oppchofcl 18251 Closure of the opposite Ho...
yonval 18252 Value of the Yoneda embedd...
yoncl 18253 The Yoneda embedding is a ...
yon1cl 18254 The Yoneda embedding at an...
yon11 18255 Value of the Yoneda embedd...
yon12 18256 Value of the Yoneda embedd...
yon2 18257 Value of the Yoneda embedd...
hofpropd 18258 If two categories have the...
yonpropd 18259 If two categories have the...
oppcyon 18260 Value of the opposite Yone...
oyoncl 18261 The opposite Yoneda embedd...
oyon1cl 18262 The opposite Yoneda embedd...
yonedalem1 18263 Lemma for ~ yoneda . (Con...
yonedalem21 18264 Lemma for ~ yoneda . (Con...
yonedalem3a 18265 Lemma for ~ yoneda . (Con...
yonedalem4a 18266 Lemma for ~ yoneda . (Con...
yonedalem4b 18267 Lemma for ~ yoneda . (Con...
yonedalem4c 18268 Lemma for ~ yoneda . (Con...
yonedalem22 18269 Lemma for ~ yoneda . (Con...
yonedalem3b 18270 Lemma for ~ yoneda . (Con...
yonedalem3 18271 Lemma for ~ yoneda . (Con...
yonedainv 18272 The Yoneda Lemma with expl...
yonffthlem 18273 Lemma for ~ yonffth . (Co...
yoneda 18274 The Yoneda Lemma. There i...
yonffth 18275 The Yoneda Lemma. The Yon...
yoniso 18276 If the codomain is recover...
oduval 18279 Value of an order dual str...
oduleval 18280 Value of the less-equal re...
oduleg 18281 Truth of the less-equal re...
odubas 18282 Base set of an order dual ...
odubasOLD 18283 Obsolete proof of ~ odubas...
isprs 18288 Property of being a preord...
prslem 18289 Lemma for ~ prsref and ~ p...
prsref 18290 "Less than or equal to" is...
prstr 18291 "Less than or equal to" is...
isdrs 18292 Property of being a direct...
drsdir 18293 Direction of a directed se...
drsprs 18294 A directed set is a proset...
drsbn0 18295 The base of a directed set...
drsdirfi 18296 Any _finite_ number of ele...
isdrs2 18297 Directed sets may be defin...
ispos 18305 The predicate "is a poset"...
ispos2 18306 A poset is an antisymmetri...
posprs 18307 A poset is a proset. (Con...
posi 18308 Lemma for poset properties...
posref 18309 A poset ordering is reflex...
posasymb 18310 A poset ordering is asymme...
postr 18311 A poset ordering is transi...
0pos 18312 Technical lemma to simplif...
0posOLD 18313 Obsolete proof of ~ 0pos a...
isposd 18314 Properties that determine ...
isposi 18315 Properties that determine ...
isposix 18316 Properties that determine ...
isposixOLD 18317 Obsolete proof of ~ isposi...
pospropd 18318 Posethood is determined on...
odupos 18319 Being a poset is a self-du...
oduposb 18320 Being a poset is a self-du...
pltfval 18322 Value of the less-than rel...
pltval 18323 Less-than relation. ( ~ d...
pltle 18324 "Less than" implies "less ...
pltne 18325 The "less than" relation i...
pltirr 18326 The "less than" relation i...
pleval2i 18327 One direction of ~ pleval2...
pleval2 18328 "Less than or equal to" in...
pltnle 18329 "Less than" implies not co...
pltval3 18330 Alternate expression for t...
pltnlt 18331 The less-than relation imp...
pltn2lp 18332 The less-than relation has...
plttr 18333 The less-than relation is ...
pltletr 18334 Transitive law for chained...
plelttr 18335 Transitive law for chained...
pospo 18336 Write a poset structure in...
lubfval 18341 Value of the least upper b...
lubdm 18342 Domain of the least upper ...
lubfun 18343 The LUB is a function. (C...
lubeldm 18344 Member of the domain of th...
lubelss 18345 A member of the domain of ...
lubeu 18346 Unique existence proper of...
lubval 18347 Value of the least upper b...
lubcl 18348 The least upper bound func...
lubprop 18349 Properties of greatest low...
luble 18350 The greatest lower bound i...
lublecllem 18351 Lemma for ~ lublecl and ~ ...
lublecl 18352 The set of all elements le...
lubid 18353 The LUB of elements less t...
glbfval 18354 Value of the greatest lowe...
glbdm 18355 Domain of the greatest low...
glbfun 18356 The GLB is a function. (C...
glbeldm 18357 Member of the domain of th...
glbelss 18358 A member of the domain of ...
glbeu 18359 Unique existence proper of...
glbval 18360 Value of the greatest lowe...
glbcl 18361 The least upper bound func...
glbprop 18362 Properties of greatest low...
glble 18363 The greatest lower bound i...
joinfval 18364 Value of join function for...
joinfval2 18365 Value of join function for...
joindm 18366 Domain of join function fo...
joindef 18367 Two ways to say that a joi...
joinval 18368 Join value. Since both si...
joincl 18369 Closure of join of element...
joindmss 18370 Subset property of domain ...
joinval2lem 18371 Lemma for ~ joinval2 and ~...
joinval2 18372 Value of join for a poset ...
joineu 18373 Uniqueness of join of elem...
joinlem 18374 Lemma for join properties....
lejoin1 18375 A join's first argument is...
lejoin2 18376 A join's second argument i...
joinle 18377 A join is less than or equ...
meetfval 18378 Value of meet function for...
meetfval2 18379 Value of meet function for...
meetdm 18380 Domain of meet function fo...
meetdef 18381 Two ways to say that a mee...
meetval 18382 Meet value. Since both si...
meetcl 18383 Closure of meet of element...
meetdmss 18384 Subset property of domain ...
meetval2lem 18385 Lemma for ~ meetval2 and ~...
meetval2 18386 Value of meet for a poset ...
meeteu 18387 Uniqueness of meet of elem...
meetlem 18388 Lemma for meet properties....
lemeet1 18389 A meet's first argument is...
lemeet2 18390 A meet's second argument i...
meetle 18391 A meet is less than or equ...
joincomALT 18392 The join of a poset is com...
joincom 18393 The join of a poset is com...
meetcomALT 18394 The meet of a poset is com...
meetcom 18395 The meet of a poset is com...
join0 18396 Lemma for ~ odumeet . (Co...
meet0 18397 Lemma for ~ odujoin . (Co...
odulub 18398 Least upper bounds in a du...
odujoin 18399 Joins in a dual order are ...
oduglb 18400 Greatest lower bounds in a...
odumeet 18401 Meets in a dual order are ...
poslubmo 18402 Least upper bounds in a po...
posglbmo 18403 Greatest lower bounds in a...
poslubd 18404 Properties which determine...
poslubdg 18405 Properties which determine...
posglbdg 18406 Properties which determine...
istos 18409 The predicate "is a toset"...
tosso 18410 Write the totally ordered ...
tospos 18411 A Toset is a Poset. (Cont...
tleile 18412 In a Toset, any two elemen...
tltnle 18413 In a Toset, "less than" is...
p0val 18418 Value of poset zero. (Con...
p1val 18419 Value of poset zero. (Con...
p0le 18420 Any element is less than o...
ple1 18421 Any element is less than o...
islat 18424 The predicate "is a lattic...
odulatb 18425 Being a lattice is self-du...
odulat 18426 Being a lattice is self-du...
latcl2 18427 The join and meet of any t...
latlem 18428 Lemma for lattice properti...
latpos 18429 A lattice is a poset. (Co...
latjcl 18430 Closure of join operation ...
latmcl 18431 Closure of meet operation ...
latref 18432 A lattice ordering is refl...
latasymb 18433 A lattice ordering is asym...
latasym 18434 A lattice ordering is asym...
lattr 18435 A lattice ordering is tran...
latasymd 18436 Deduce equality from latti...
lattrd 18437 A lattice ordering is tran...
latjcom 18438 The join of a lattice comm...
latlej1 18439 A join's first argument is...
latlej2 18440 A join's second argument i...
latjle12 18441 A join is less than or equ...
latleeqj1 18442 "Less than or equal to" in...
latleeqj2 18443 "Less than or equal to" in...
latjlej1 18444 Add join to both sides of ...
latjlej2 18445 Add join to both sides of ...
latjlej12 18446 Add join to both sides of ...
latnlej 18447 An idiom to express that a...
latnlej1l 18448 An idiom to express that a...
latnlej1r 18449 An idiom to express that a...
latnlej2 18450 An idiom to express that a...
latnlej2l 18451 An idiom to express that a...
latnlej2r 18452 An idiom to express that a...
latjidm 18453 Lattice join is idempotent...
latmcom 18454 The join of a lattice comm...
latmle1 18455 A meet is less than or equ...
latmle2 18456 A meet is less than or equ...
latlem12 18457 An element is less than or...
latleeqm1 18458 "Less than or equal to" in...
latleeqm2 18459 "Less than or equal to" in...
latmlem1 18460 Add meet to both sides of ...
latmlem2 18461 Add meet to both sides of ...
latmlem12 18462 Add join to both sides of ...
latnlemlt 18463 Negation of "less than or ...
latnle 18464 Equivalent expressions for...
latmidm 18465 Lattice meet is idempotent...
latabs1 18466 Lattice absorption law. F...
latabs2 18467 Lattice absorption law. F...
latledi 18468 An ortholattice is distrib...
latmlej11 18469 Ordering of a meet and joi...
latmlej12 18470 Ordering of a meet and joi...
latmlej21 18471 Ordering of a meet and joi...
latmlej22 18472 Ordering of a meet and joi...
lubsn 18473 The least upper bound of a...
latjass 18474 Lattice join is associativ...
latj12 18475 Swap 1st and 2nd members o...
latj32 18476 Swap 2nd and 3rd members o...
latj13 18477 Swap 1st and 3rd members o...
latj31 18478 Swap 2nd and 3rd members o...
latjrot 18479 Rotate lattice join of 3 c...
latj4 18480 Rearrangement of lattice j...
latj4rot 18481 Rotate lattice join of 4 c...
latjjdi 18482 Lattice join distributes o...
latjjdir 18483 Lattice join distributes o...
mod1ile 18484 The weak direction of the ...
mod2ile 18485 The weak direction of the ...
latmass 18486 Lattice meet is associativ...
latdisdlem 18487 Lemma for ~ latdisd . (Co...
latdisd 18488 In a lattice, joins distri...
isclat 18491 The predicate "is a comple...
clatpos 18492 A complete lattice is a po...
clatlem 18493 Lemma for properties of a ...
clatlubcl 18494 Any subset of the base set...
clatlubcl2 18495 Any subset of the base set...
clatglbcl 18496 Any subset of the base set...
clatglbcl2 18497 Any subset of the base set...
oduclatb 18498 Being a complete lattice i...
clatl 18499 A complete lattice is a la...
isglbd 18500 Properties that determine ...
lublem 18501 Lemma for the least upper ...
lubub 18502 The LUB of a complete latt...
lubl 18503 The LUB of a complete latt...
lubss 18504 Subset law for least upper...
lubel 18505 An element of a set is les...
lubun 18506 The LUB of a union. (Cont...
clatglb 18507 Properties of greatest low...
clatglble 18508 The greatest lower bound i...
clatleglb 18509 Two ways of expressing "le...
clatglbss 18510 Subset law for greatest lo...
isdlat 18513 Property of being a distri...
dlatmjdi 18514 In a distributive lattice,...
dlatl 18515 A distributive lattice is ...
odudlatb 18516 The dual of a distributive...
dlatjmdi 18517 In a distributive lattice,...
ipostr 18520 The structure of ~ df-ipo ...
ipoval 18521 Value of the inclusion pos...
ipobas 18522 Base set of the inclusion ...
ipolerval 18523 Relation of the inclusion ...
ipotset 18524 Topology of the inclusion ...
ipole 18525 Weak order condition of th...
ipolt 18526 Strict order condition of ...
ipopos 18527 The inclusion poset on a f...
isipodrs 18528 Condition for a family of ...
ipodrscl 18529 Direction by inclusion as ...
ipodrsfi 18530 Finite upper bound propert...
fpwipodrs 18531 The finite subsets of any ...
ipodrsima 18532 The monotone image of a di...
isacs3lem 18533 An algebraic closure syste...
acsdrsel 18534 An algebraic closure syste...
isacs4lem 18535 In a closure system in whi...
isacs5lem 18536 If closure commutes with d...
acsdrscl 18537 In an algebraic closure sy...
acsficl 18538 A closure in an algebraic ...
isacs5 18539 A closure system is algebr...
isacs4 18540 A closure system is algebr...
isacs3 18541 A closure system is algebr...
acsficld 18542 In an algebraic closure sy...
acsficl2d 18543 In an algebraic closure sy...
acsfiindd 18544 In an algebraic closure sy...
acsmapd 18545 In an algebraic closure sy...
acsmap2d 18546 In an algebraic closure sy...
acsinfd 18547 In an algebraic closure sy...
acsdomd 18548 In an algebraic closure sy...
acsinfdimd 18549 In an algebraic closure sy...
acsexdimd 18550 In an algebraic closure sy...
mrelatglb 18551 Greatest lower bounds in a...
mrelatglb0 18552 The empty intersection in ...
mrelatlub 18553 Least upper bounds in a Mo...
mreclatBAD 18554 A Moore space is a complet...
isps 18559 The predicate "is a poset"...
psrel 18560 A poset is a relation. (C...
psref2 18561 A poset is antisymmetric a...
pstr2 18562 A poset is transitive. (C...
pslem 18563 Lemma for ~ psref and othe...
psdmrn 18564 The domain and range of a ...
psref 18565 A poset is reflexive. (Co...
psrn 18566 The range of a poset equal...
psasym 18567 A poset is antisymmetric. ...
pstr 18568 A poset is transitive. (C...
cnvps 18569 The converse of a poset is...
cnvpsb 18570 The converse of a poset is...
psss 18571 Any subset of a partially ...
psssdm2 18572 Field of a subposet. (Con...
psssdm 18573 Field of a subposet. (Con...
istsr 18574 The predicate is a toset. ...
istsr2 18575 The predicate is a toset. ...
tsrlin 18576 A toset is a linear order....
tsrlemax 18577 Two ways of saying a numbe...
tsrps 18578 A toset is a poset. (Cont...
cnvtsr 18579 The converse of a toset is...
tsrss 18580 Any subset of a totally or...
ledm 18581 The domain of ` <_ ` is ` ...
lern 18582 The range of ` <_ ` is ` R...
lefld 18583 The field of the 'less or ...
letsr 18584 The "less than or equal to...
isdir 18589 A condition for a relation...
reldir 18590 A direction is a relation....
dirdm 18591 A direction's domain is eq...
dirref 18592 A direction is reflexive. ...
dirtr 18593 A direction is transitive....
dirge 18594 For any two elements of a ...
tsrdir 18595 A totally ordered set is a...
ismgm 18600 The predicate "is a magma"...
ismgmn0 18601 The predicate "is a magma"...
mgmcl 18602 Closure of the operation o...
isnmgm 18603 A condition for a structur...
mgmsscl 18604 If the base set of a magma...
plusffval 18605 The group addition operati...
plusfval 18606 The group addition operati...
plusfeq 18607 If the addition operation ...
plusffn 18608 The group addition operati...
mgmplusf 18609 The group addition functio...
mgmpropd 18610 If two structures have the...
ismgmd 18611 Deduce a magma from its pr...
issstrmgm 18612 Characterize a substructur...
intopsn 18613 The internal operation for...
mgmb1mgm1 18614 The only magma with a base...
mgm0 18615 Any set with an empty base...
mgm0b 18616 The structure with an empt...
mgm1 18617 The structure with one ele...
opifismgm 18618 A structure with a group a...
mgmidmo 18619 A two-sided identity eleme...
grpidval 18620 The value of the identity ...
grpidpropd 18621 If two structures have the...
fn0g 18622 The group zero extractor i...
0g0 18623 The identity element funct...
ismgmid 18624 The identity element of a ...
mgmidcl 18625 The identity element of a ...
mgmlrid 18626 The identity element of a ...
ismgmid2 18627 Show that a given element ...
lidrideqd 18628 If there is a left and rig...
lidrididd 18629 If there is a left and rig...
grpidd 18630 Deduce the identity elemen...
mgmidsssn0 18631 Property of the set of ide...
grpinvalem 18632 Lemma for ~ grpinva . (Co...
grpinva 18633 Deduce right inverse from ...
grprida 18634 Deduce right identity from...
gsumvalx 18635 Expand out the substitutio...
gsumval 18636 Expand out the substitutio...
gsumpropd 18637 The group sum depends only...
gsumpropd2lem 18638 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18639 A stronger version of ~ gs...
gsummgmpropd 18640 A stronger version of ~ gs...
gsumress 18641 The group sum in a substru...
gsumval1 18642 Value of the group sum ope...
gsum0 18643 Value of the empty group s...
gsumval2a 18644 Value of the group sum ope...
gsumval2 18645 Value of the group sum ope...
gsumsplit1r 18646 Splitting off the rightmos...
gsumprval 18647 Value of the group sum ope...
gsumpr12val 18648 Value of the group sum ope...
mgmhmrcl 18653 Reverse closure of a magma...
submgmrcl 18654 Reverse closure for submag...
ismgmhm 18655 Property of a magma homomo...
mgmhmf 18656 A magma homomorphism is a ...
mgmhmpropd 18657 Magma homomorphism depends...
mgmhmlin 18658 A magma homomorphism prese...
mgmhmf1o 18659 A magma homomorphism is bi...
idmgmhm 18660 The identity homomorphism ...
issubmgm 18661 Expand definition of a sub...
issubmgm2 18662 Submagmas are subsets that...
rabsubmgmd 18663 Deduction for proving that...
submgmss 18664 Submagmas are subsets of t...
submgmid 18665 Every magma is trivially a...
submgmcl 18666 Submagmas are closed under...
submgmmgm 18667 Submagmas are themselves m...
submgmbas 18668 The base set of a submagma...
subsubmgm 18669 A submagma of a submagma i...
resmgmhm 18670 Restriction of a magma hom...
resmgmhm2 18671 One direction of ~ resmgmh...
resmgmhm2b 18672 Restriction of the codomai...
mgmhmco 18673 The composition of magma h...
mgmhmima 18674 The homomorphic image of a...
mgmhmeql 18675 The equalizer of two magma...
submgmacs 18676 Submagmas are an algebraic...
issgrp 18679 The predicate "is a semigr...
issgrpv 18680 The predicate "is a semigr...
issgrpn0 18681 The predicate "is a semigr...
isnsgrp 18682 A condition for a structur...
sgrpmgm 18683 A semigroup is a magma. (...
sgrpass 18684 A semigroup operation is a...
sgrpcl 18685 Closure of the operation o...
sgrp0 18686 Any set with an empty base...
sgrp0b 18687 The structure with an empt...
sgrp1 18688 The structure with one ele...
issgrpd 18689 Deduce a semigroup from it...
sgrppropd 18690 If two structures are sets...
prdsplusgsgrpcl 18691 Structure product pointwis...
prdssgrpd 18692 The product of a family of...
ismnddef 18695 The predicate "is a monoid...
ismnd 18696 The predicate "is a monoid...
isnmnd 18697 A condition for a structur...
sgrpidmnd 18698 A semigroup with an identi...
mndsgrp 18699 A monoid is a semigroup. ...
mndmgm 18700 A monoid is a magma. (Con...
mndcl 18701 Closure of the operation o...
mndass 18702 A monoid operation is asso...
mndid 18703 A monoid has a two-sided i...
mndideu 18704 The two-sided identity ele...
mnd32g 18705 Commutative/associative la...
mnd12g 18706 Commutative/associative la...
mnd4g 18707 Commutative/associative la...
mndidcl 18708 The identity element of a ...
mndbn0 18709 The base set of a monoid i...
hashfinmndnn 18710 A finite monoid has positi...
mndplusf 18711 The group addition operati...
mndlrid 18712 A monoid's identity elemen...
mndlid 18713 The identity element of a ...
mndrid 18714 The identity element of a ...
ismndd 18715 Deduce a monoid from its p...
mndpfo 18716 The addition operation of ...
mndfo 18717 The addition operation of ...
mndpropd 18718 If two structures have the...
mndprop 18719 If two structures have the...
issubmnd 18720 Characterize a submonoid b...
ress0g 18721 ` 0g ` is unaffected by re...
submnd0 18722 The zero of a submonoid is...
mndinvmod 18723 Uniqueness of an inverse e...
prdsplusgcl 18724 Structure product pointwis...
prdsidlem 18725 Characterization of identi...
prdsmndd 18726 The product of a family of...
prds0g 18727 Zero in a product of monoi...
pwsmnd 18728 The structure power of a m...
pws0g 18729 Zero in a structure power ...
imasmnd2 18730 The image structure of a m...
imasmnd 18731 The image structure of a m...
imasmndf1 18732 The image of a monoid unde...
xpsmnd 18733 The binary product of mono...
xpsmnd0 18734 The identity element of a ...
mnd1 18735 The (smallest) structure r...
mnd1id 18736 The singleton element of a...
ismhm 18741 Property of a monoid homom...
ismhmd 18742 Deduction version of ~ ism...
mhmrcl1 18743 Reverse closure of a monoi...
mhmrcl2 18744 Reverse closure of a monoi...
mhmf 18745 A monoid homomorphism is a...
ismhm0 18746 Property of a monoid homom...
mhmismgmhm 18747 Each monoid homomorphism i...
mhmpropd 18748 Monoid homomorphism depend...
mhmlin 18749 A monoid homomorphism comm...
mhm0 18750 A monoid homomorphism pres...
idmhm 18751 The identity homomorphism ...
mhmf1o 18752 A monoid homomorphism is b...
mndvcl 18753 Tuple-wise additive closur...
mndvass 18754 Tuple-wise associativity i...
mndvlid 18755 Tuple-wise left identity i...
mndvrid 18756 Tuple-wise right identity ...
mhmvlin 18757 Tuple extension of monoid ...
submrcl 18758 Reverse closure for submon...
issubm 18759 Expand definition of a sub...
issubm2 18760 Submonoids are subsets tha...
issubmndb 18761 The submonoid predicate. ...
issubmd 18762 Deduction for proving a su...
mndissubm 18763 If the base set of a monoi...
resmndismnd 18764 If the base set of a monoi...
submss 18765 Submonoids are subsets of ...
submid 18766 Every monoid is trivially ...
subm0cl 18767 Submonoids contain zero. ...
submcl 18768 Submonoids are closed unde...
submmnd 18769 Submonoids are themselves ...
submbas 18770 The base set of a submonoi...
subm0 18771 Submonoids have the same i...
subsubm 18772 A submonoid of a submonoid...
0subm 18773 The zero submonoid of an a...
insubm 18774 The intersection of two su...
0mhm 18775 The constant zero linear f...
resmhm 18776 Restriction of a monoid ho...
resmhm2 18777 One direction of ~ resmhm2...
resmhm2b 18778 Restriction of the codomai...
mhmco 18779 The composition of monoid ...
mhmimalem 18780 Lemma for ~ mhmima and sim...
mhmima 18781 The homomorphic image of a...
mhmeql 18782 The equalizer of two monoi...
submacs 18783 Submonoids are an algebrai...
mndind 18784 Induction in a monoid. In...
prdspjmhm 18785 A projection from a produc...
pwspjmhm 18786 A projection from a struct...
pwsdiagmhm 18787 Diagonal monoid homomorphi...
pwsco1mhm 18788 Right composition with a f...
pwsco2mhm 18789 Left composition with a mo...
gsumvallem2 18790 Lemma for properties of th...
gsumsubm 18791 Evaluate a group sum in a ...
gsumz 18792 Value of a group sum over ...
gsumwsubmcl 18793 Closure of the composite i...
gsumws1 18794 A singleton composite reco...
gsumwcl 18795 Closure of the composite o...
gsumsgrpccat 18796 Homomorphic property of no...
gsumccat 18797 Homomorphic property of co...
gsumws2 18798 Valuation of a pair in a m...
gsumccatsn 18799 Homomorphic property of co...
gsumspl 18800 The primary purpose of the...
gsumwmhm 18801 Behavior of homomorphisms ...
gsumwspan 18802 The submonoid generated by...
frmdval 18807 Value of the free monoid c...
frmdbas 18808 The base set of a free mon...
frmdelbas 18809 An element of the base set...
frmdplusg 18810 The monoid operation of a ...
frmdadd 18811 Value of the monoid operat...
vrmdfval 18812 The canonical injection fr...
vrmdval 18813 The value of the generatin...
vrmdf 18814 The mapping from the index...
frmdmnd 18815 A free monoid is a monoid....
frmd0 18816 The identity of the free m...
frmdsssubm 18817 The set of words taking va...
frmdgsum 18818 Any word in a free monoid ...
frmdss2 18819 A subset of generators is ...
frmdup1 18820 Any assignment of the gene...
frmdup2 18821 The evaluation map has the...
frmdup3lem 18822 Lemma for ~ frmdup3 . (Co...
frmdup3 18823 Universal property of the ...
efmnd 18826 The monoid of endofunction...
efmndbas 18827 The base set of the monoid...
efmndbasabf 18828 The base set of the monoid...
elefmndbas 18829 Two ways of saying a funct...
elefmndbas2 18830 Two ways of saying a funct...
efmndbasf 18831 Elements in the monoid of ...
efmndhash 18832 The monoid of endofunction...
efmndbasfi 18833 The monoid of endofunction...
efmndfv 18834 The function value of an e...
efmndtset 18835 The topology of the monoid...
efmndplusg 18836 The group operation of a m...
efmndov 18837 The value of the group ope...
efmndcl 18838 The group operation of the...
efmndtopn 18839 The topology of the monoid...
symggrplem 18840 Lemma for ~ symggrp and ~ ...
efmndmgm 18841 The monoid of endofunction...
efmndsgrp 18842 The monoid of endofunction...
ielefmnd 18843 The identity function rest...
efmndid 18844 The identity function rest...
efmndmnd 18845 The monoid of endofunction...
efmnd0nmnd 18846 Even the monoid of endofun...
efmndbas0 18847 The base set of the monoid...
efmnd1hash 18848 The monoid of endofunction...
efmnd1bas 18849 The monoid of endofunction...
efmnd2hash 18850 The monoid of endofunction...
submefmnd 18851 If the base set of a monoi...
sursubmefmnd 18852 The set of surjective endo...
injsubmefmnd 18853 The set of injective endof...
idressubmefmnd 18854 The singleton containing o...
idresefmnd 18855 The structure with the sin...
smndex1ibas 18856 The modulo function ` I ` ...
smndex1iidm 18857 The modulo function ` I ` ...
smndex1gbas 18858 The constant functions ` (...
smndex1gid 18859 The composition of a const...
smndex1igid 18860 The composition of the mod...
smndex1basss 18861 The modulo function ` I ` ...
smndex1bas 18862 The base set of the monoid...
smndex1mgm 18863 The monoid of endofunction...
smndex1sgrp 18864 The monoid of endofunction...
smndex1mndlem 18865 Lemma for ~ smndex1mnd and...
smndex1mnd 18866 The monoid of endofunction...
smndex1id 18867 The modulo function ` I ` ...
smndex1n0mnd 18868 The identity of the monoid...
nsmndex1 18869 The base set ` B ` of the ...
smndex2dbas 18870 The doubling function ` D ...
smndex2dnrinv 18871 The doubling function ` D ...
smndex2hbas 18872 The halving functions ` H ...
smndex2dlinvh 18873 The halving functions ` H ...
mgm2nsgrplem1 18874 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18875 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18876 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18877 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18878 A small magma (with two el...
sgrp2nmndlem1 18879 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18880 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18881 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18882 A small semigroup (with tw...
sgrp2rid2ex 18883 A small semigroup (with tw...
sgrp2nmndlem4 18884 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18885 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18886 A small semigroup (with tw...
mgmnsgrpex 18887 There is a magma which is ...
sgrpnmndex 18888 There is a semigroup which...
sgrpssmgm 18889 The class of all semigroup...
mndsssgrp 18890 The class of all monoids i...
pwmndgplus 18891 The operation of the monoi...
pwmndid 18892 The identity of the monoid...
pwmnd 18893 The power set of a class `...
isgrp 18900 The predicate "is a group"...
grpmnd 18901 A group is a monoid. (Con...
grpcl 18902 Closure of the operation o...
grpass 18903 A group operation is assoc...
grpinvex 18904 Every member of a group ha...
grpideu 18905 The two-sided identity ele...
grpassd 18906 A group operation is assoc...
grpmndd 18907 A group is a monoid. (Con...
grpcld 18908 Closure of the operation o...
grpplusf 18909 The group addition operati...
grpplusfo 18910 The group addition operati...
resgrpplusfrn 18911 The underlying set of a gr...
grppropd 18912 If two structures have the...
grpprop 18913 If two structures have the...
grppropstr 18914 Generalize a specific 2-el...
grpss 18915 Show that a structure exte...
isgrpd2e 18916 Deduce a group from its pr...
isgrpd2 18917 Deduce a group from its pr...
isgrpde 18918 Deduce a group from its pr...
isgrpd 18919 Deduce a group from its pr...
isgrpi 18920 Properties that determine ...
grpsgrp 18921 A group is a semigroup. (...
grpmgmd 18922 A group is a magma, deduct...
dfgrp2 18923 Alternate definition of a ...
dfgrp2e 18924 Alternate definition of a ...
isgrpix 18925 Properties that determine ...
grpidcl 18926 The identity element of a ...
grpbn0 18927 The base set of a group is...
grplid 18928 The identity element of a ...
grprid 18929 The identity element of a ...
grplidd 18930 The identity element of a ...
grpridd 18931 The identity element of a ...
grpn0 18932 A group is not empty. (Co...
hashfingrpnn 18933 A finite group has positiv...
grprcan 18934 Right cancellation law for...
grpinveu 18935 The left inverse element o...
grpid 18936 Two ways of saying that an...
isgrpid2 18937 Properties showing that an...
grpidd2 18938 Deduce the identity elemen...
grpinvfval 18939 The inverse function of a ...
grpinvfvalALT 18940 Shorter proof of ~ grpinvf...
grpinvval 18941 The inverse of a group ele...
grpinvfn 18942 Functionality of the group...
grpinvfvi 18943 The group inverse function...
grpsubfval 18944 Group subtraction (divisio...
grpsubfvalALT 18945 Shorter proof of ~ grpsubf...
grpsubval 18946 Group subtraction (divisio...
grpinvf 18947 The group inversion operat...
grpinvcl 18948 A group element's inverse ...
grpinvcld 18949 A group element's inverse ...
grplinv 18950 The left inverse of a grou...
grprinv 18951 The right inverse of a gro...
grpinvid1 18952 The inverse of a group ele...
grpinvid2 18953 The inverse of a group ele...
isgrpinv 18954 Properties showing that a ...
grplinvd 18955 The left inverse of a grou...
grprinvd 18956 The right inverse of a gro...
grplrinv 18957 In a group, every member h...
grpidinv2 18958 A group's properties using...
grpidinv 18959 A group has a left and rig...
grpinvid 18960 The inverse of the identit...
grplcan 18961 Left cancellation law for ...
grpasscan1 18962 An associative cancellatio...
grpasscan2 18963 An associative cancellatio...
grpidrcan 18964 If right adding an element...
grpidlcan 18965 If left adding an element ...
grpinvinv 18966 Double inverse law for gro...
grpinvcnv 18967 The group inverse is its o...
grpinv11 18968 The group inverse is one-t...
grpinvf1o 18969 The group inverse is a one...
grpinvnz 18970 The inverse of a nonzero g...
grpinvnzcl 18971 The inverse of a nonzero g...
grpsubinv 18972 Subtraction of an inverse....
grplmulf1o 18973 Left multiplication by a g...
grpraddf1o 18974 Right addition by a group ...
grpinvpropd 18975 If two structures have the...
grpidssd 18976 If the base set of a group...
grpinvssd 18977 If the base set of a group...
grpinvadd 18978 The inverse of the group o...
grpsubf 18979 Functionality of group sub...
grpsubcl 18980 Closure of group subtracti...
grpsubrcan 18981 Right cancellation law for...
grpinvsub 18982 Inverse of a group subtrac...
grpinvval2 18983 A ~ df-neg -like equation ...
grpsubid 18984 Subtraction of a group ele...
grpsubid1 18985 Subtraction of the identit...
grpsubeq0 18986 If the difference between ...
grpsubadd0sub 18987 Subtraction expressed as a...
grpsubadd 18988 Relationship between group...
grpsubsub 18989 Double group subtraction. ...
grpaddsubass 18990 Associative-type law for g...
grppncan 18991 Cancellation law for subtr...
grpnpcan 18992 Cancellation law for subtr...
grpsubsub4 18993 Double group subtraction (...
grppnpcan2 18994 Cancellation law for mixed...
grpnpncan 18995 Cancellation law for group...
grpnpncan0 18996 Cancellation law for group...
grpnnncan2 18997 Cancellation law for group...
dfgrp3lem 18998 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18999 Alternate definition of a ...
dfgrp3e 19000 Alternate definition of a ...
grplactfval 19001 The left group action of e...
grplactval 19002 The value of the left grou...
grplactcnv 19003 The left group action of e...
grplactf1o 19004 The left group action of e...
grpsubpropd 19005 Weak property deduction fo...
grpsubpropd2 19006 Strong property deduction ...
grp1 19007 The (smallest) structure r...
grp1inv 19008 The inverse function of th...
prdsinvlem 19009 Characterization of invers...
prdsgrpd 19010 The product of a family of...
prdsinvgd 19011 Negation in a product of g...
pwsgrp 19012 A structure power of a gro...
pwsinvg 19013 Negation in a group power....
pwssub 19014 Subtraction in a group pow...
imasgrp2 19015 The image structure of a g...
imasgrp 19016 The image structure of a g...
imasgrpf1 19017 The image of a group under...
qusgrp2 19018 Prove that a quotient stru...
xpsgrp 19019 The binary product of grou...
xpsinv 19020 Value of the negation oper...
xpsgrpsub 19021 Value of the subtraction o...
mhmlem 19022 Lemma for ~ mhmmnd and ~ g...
mhmid 19023 A surjective monoid morphi...
mhmmnd 19024 The image of a monoid ` G ...
mhmfmhm 19025 The function fulfilling th...
ghmgrp 19026 The image of a group ` G `...
mulgfval 19029 Group multiple (exponentia...
mulgfvalALT 19030 Shorter proof of ~ mulgfva...
mulgval 19031 Value of the group multipl...
mulgfn 19032 Functionality of the group...
mulgfvi 19033 The group multiple operati...
mulg0 19034 Group multiple (exponentia...
mulgnn 19035 Group multiple (exponentia...
ressmulgnn 19036 Values for the group multi...
ressmulgnn0 19037 Values for the group multi...
mulgnngsum 19038 Group multiple (exponentia...
mulgnn0gsum 19039 Group multiple (exponentia...
mulg1 19040 Group multiple (exponentia...
mulgnnp1 19041 Group multiple (exponentia...
mulg2 19042 Group multiple (exponentia...
mulgnegnn 19043 Group multiple (exponentia...
mulgnn0p1 19044 Group multiple (exponentia...
mulgnnsubcl 19045 Closure of the group multi...
mulgnn0subcl 19046 Closure of the group multi...
mulgsubcl 19047 Closure of the group multi...
mulgnncl 19048 Closure of the group multi...
mulgnn0cl 19049 Closure of the group multi...
mulgcl 19050 Closure of the group multi...
mulgneg 19051 Group multiple (exponentia...
mulgnegneg 19052 The inverse of a negative ...
mulgm1 19053 Group multiple (exponentia...
mulgnn0cld 19054 Closure of the group multi...
mulgcld 19055 Deduction associated with ...
mulgaddcomlem 19056 Lemma for ~ mulgaddcom . ...
mulgaddcom 19057 The group multiple operato...
mulginvcom 19058 The group multiple operato...
mulginvinv 19059 The group multiple operato...
mulgnn0z 19060 A group multiple of the id...
mulgz 19061 A group multiple of the id...
mulgnndir 19062 Sum of group multiples, fo...
mulgnn0dir 19063 Sum of group multiples, ge...
mulgdirlem 19064 Lemma for ~ mulgdir . (Co...
mulgdir 19065 Sum of group multiples, ge...
mulgp1 19066 Group multiple (exponentia...
mulgneg2 19067 Group multiple (exponentia...
mulgnnass 19068 Product of group multiples...
mulgnn0ass 19069 Product of group multiples...
mulgass 19070 Product of group multiples...
mulgassr 19071 Reversed product of group ...
mulgmodid 19072 Casting out multiples of t...
mulgsubdir 19073 Distribution of group mult...
mhmmulg 19074 A homomorphism of monoids ...
mulgpropd 19075 Two structures with the sa...
submmulgcl 19076 Closure of the group multi...
submmulg 19077 A group multiple is the sa...
pwsmulg 19078 Value of a group multiple ...
issubg 19085 The subgroup predicate. (...
subgss 19086 A subgroup is a subset. (...
subgid 19087 A group is a subgroup of i...
subggrp 19088 A subgroup is a group. (C...
subgbas 19089 The base of the restricted...
subgrcl 19090 Reverse closure for the su...
subg0 19091 A subgroup of a group must...
subginv 19092 The inverse of an element ...
subg0cl 19093 The group identity is an e...
subginvcl 19094 The inverse of an element ...
subgcl 19095 A subgroup is closed under...
subgsubcl 19096 A subgroup is closed under...
subgsub 19097 The subtraction of element...
subgmulgcl 19098 Closure of the group multi...
subgmulg 19099 A group multiple is the sa...
issubg2 19100 Characterize the subgroups...
issubgrpd2 19101 Prove a subgroup by closur...
issubgrpd 19102 Prove a subgroup by closur...
issubg3 19103 A subgroup is a symmetric ...
issubg4 19104 A subgroup is a nonempty s...
grpissubg 19105 If the base set of a group...
resgrpisgrp 19106 If the base set of a group...
subgsubm 19107 A subgroup is a submonoid....
subsubg 19108 A subgroup of a subgroup i...
subgint 19109 The intersection of a none...
0subg 19110 The zero subgroup of an ar...
0subgOLD 19111 Obsolete version of ~ 0sub...
trivsubgd 19112 The only subgroup of a tri...
trivsubgsnd 19113 The only subgroup of a tri...
isnsg 19114 Property of being a normal...
isnsg2 19115 Weaken the condition of ~ ...
nsgbi 19116 Defining property of a nor...
nsgsubg 19117 A normal subgroup is a sub...
nsgconj 19118 The conjugation of an elem...
isnsg3 19119 A subgroup is normal iff t...
subgacs 19120 Subgroups are an algebraic...
nsgacs 19121 Normal subgroups form an a...
elnmz 19122 Elementhood in the normali...
nmzbi 19123 Defining property of the n...
nmzsubg 19124 The normalizer N_G(S) of a...
ssnmz 19125 A subgroup is a subset of ...
isnsg4 19126 A subgroup is normal iff i...
nmznsg 19127 Any subgroup is a normal s...
0nsg 19128 The zero subgroup is norma...
nsgid 19129 The whole group is a norma...
0idnsgd 19130 The whole group and the ze...
trivnsgd 19131 The only normal subgroup o...
triv1nsgd 19132 A trivial group has exactl...
1nsgtrivd 19133 A group with exactly one n...
releqg 19134 The left coset equivalence...
eqgfval 19135 Value of the subgroup left...
eqgval 19136 Value of the subgroup left...
eqger 19137 The subgroup coset equival...
eqglact 19138 A left coset can be expres...
eqgid 19139 The left coset containing ...
eqgen 19140 Each coset is equipotent t...
eqgcpbl 19141 The subgroup coset equival...
eqg0el 19142 Equivalence class of a quo...
quselbas 19143 Membership in the base set...
quseccl0 19144 Closure of the quotient ma...
qusgrp 19145 If ` Y ` is a normal subgr...
quseccl 19146 Closure of the quotient ma...
qusadd 19147 Value of the group operati...
qus0 19148 Value of the group identit...
qusinv 19149 Value of the group inverse...
qussub 19150 Value of the group subtrac...
ecqusaddd 19151 Addition of equivalence cl...
ecqusaddcl 19152 Closure of the addition in...
lagsubg2 19153 Lagrange's theorem for fin...
lagsubg 19154 Lagrange's theorem for Gro...
eqg0subg 19155 The coset equivalence rela...
eqg0subgecsn 19156 The equivalence classes mo...
qus0subgbas 19157 The base set of a quotient...
qus0subgadd 19158 The addition in a quotient...
cycsubmel 19159 Characterization of an ele...
cycsubmcl 19160 The set of nonnegative int...
cycsubm 19161 The set of nonnegative int...
cyccom 19162 Condition for an operation...
cycsubmcom 19163 The operation of a monoid ...
cycsubggend 19164 The cyclic subgroup genera...
cycsubgcl 19165 The set of integer powers ...
cycsubgss 19166 The cyclic subgroup genera...
cycsubg 19167 The cyclic group generated...
cycsubgcld 19168 The cyclic subgroup genera...
cycsubg2 19169 The subgroup generated by ...
cycsubg2cl 19170 Any multiple of an element...
reldmghm 19173 Lemma for group homomorphi...
isghm 19174 Property of being a homomo...
isghm3 19175 Property of a group homomo...
ghmgrp1 19176 A group homomorphism is on...
ghmgrp2 19177 A group homomorphism is on...
ghmf 19178 A group homomorphism is a ...
ghmlin 19179 A homomorphism of groups i...
ghmid 19180 A homomorphism of groups p...
ghminv 19181 A homomorphism of groups p...
ghmsub 19182 Linearity of subtraction t...
isghmd 19183 Deduction for a group homo...
ghmmhm 19184 A group homomorphism is a ...
ghmmhmb 19185 Group homomorphisms and mo...
ghmmulg 19186 A group homomorphism prese...
ghmrn 19187 The range of a homomorphis...
0ghm 19188 The constant zero linear f...
idghm 19189 The identity homomorphism ...
resghm 19190 Restriction of a homomorph...
resghm2 19191 One direction of ~ resghm2...
resghm2b 19192 Restriction of the codomai...
ghmghmrn 19193 A group homomorphism from ...
ghmco 19194 The composition of group h...
ghmima 19195 The image of a subgroup un...
ghmpreima 19196 The inverse image of a sub...
ghmeql 19197 The equalizer of two group...
ghmnsgima 19198 The image of a normal subg...
ghmnsgpreima 19199 The inverse image of a nor...
ghmker 19200 The kernel of a homomorphi...
ghmeqker 19201 Two source points map to t...
pwsdiagghm 19202 Diagonal homomorphism into...
f1ghm0to0 19203 If a group homomorphism ` ...
ghmf1 19204 Two ways of saying a group...
kerf1ghm 19205 A group homomorphism ` F `...
ghmf1o 19206 A bijective group homomorp...
conjghm 19207 Conjugation is an automorp...
conjsubg 19208 A conjugated subgroup is a...
conjsubgen 19209 A conjugated subgroup is e...
conjnmz 19210 A subgroup is unchanged un...
conjnmzb 19211 Alternative condition for ...
conjnsg 19212 A normal subgroup is uncha...
qusghm 19213 If ` Y ` is a normal subgr...
ghmpropd 19214 Group homomorphism depends...
gimfn 19219 The group isomorphism func...
isgim 19220 An isomorphism of groups i...
gimf1o 19221 An isomorphism of groups i...
gimghm 19222 An isomorphism of groups i...
isgim2 19223 A group isomorphism is a h...
subggim 19224 Behavior of subgroups unde...
gimcnv 19225 The converse of a group is...
gimco 19226 The composition of group i...
gim0to0 19227 A group isomorphism maps t...
brgic 19228 The relation "is isomorphi...
brgici 19229 Prove isomorphic by an exp...
gicref 19230 Isomorphism is reflexive. ...
giclcl 19231 Isomorphism implies the le...
gicrcl 19232 Isomorphism implies the ri...
gicsym 19233 Isomorphism is symmetric. ...
gictr 19234 Isomorphism is transitive....
gicer 19235 Isomorphism is an equivale...
gicen 19236 Isomorphic groups have equ...
gicsubgen 19237 A less trivial example of ...
ghmquskerlem1 19238 Lemma for ~ ghmqusker . (...
ghmquskerco 19239 In the case of theorem ~ g...
ghmquskerlem2 19240 Lemma for ~ ghmqusker . (...
ghmquskerlem3 19241 The mapping ` H ` induced ...
ghmqusker 19242 A surjective group homomor...
gicqusker 19243 The image ` H ` of a group...
isga 19246 The predicate "is a (left)...
gagrp 19247 The left argument of a gro...
gaset 19248 The right argument of a gr...
gagrpid 19249 The identity of the group ...
gaf 19250 The mapping of the group a...
gafo 19251 A group action is onto its...
gaass 19252 An "associative" property ...
ga0 19253 The action of a group on t...
gaid 19254 The trivial action of a gr...
subgga 19255 A subgroup acts on its par...
gass 19256 A subset of a group action...
gasubg 19257 The restriction of a group...
gaid2 19258 A group operation is a lef...
galcan 19259 The action of a particular...
gacan 19260 Group inverses cancel in a...
gapm 19261 The action of a particular...
gaorb 19262 The orbit equivalence rela...
gaorber 19263 The orbit equivalence rela...
gastacl 19264 The stabilizer subgroup in...
gastacos 19265 Write the coset relation f...
orbstafun 19266 Existence and uniqueness f...
orbstaval 19267 Value of the function at a...
orbsta 19268 The Orbit-Stabilizer theor...
orbsta2 19269 Relation between the size ...
cntrval 19274 Substitute definition of t...
cntzfval 19275 First level substitution f...
cntzval 19276 Definition substitution fo...
elcntz 19277 Elementhood in the central...
cntzel 19278 Membership in a centralize...
cntzsnval 19279 Special substitution for t...
elcntzsn 19280 Value of the centralizer o...
sscntz 19281 A centralizer expression f...
cntzrcl 19282 Reverse closure for elemen...
cntzssv 19283 The centralizer is uncondi...
cntzi 19284 Membership in a centralize...
elcntr 19285 Elementhood in the center ...
cntrss 19286 The center is a subset of ...
cntri 19287 Defining property of the c...
resscntz 19288 Centralizer in a substruct...
cntzsgrpcl 19289 Centralizers are closed un...
cntz2ss 19290 Centralizers reverse the s...
cntzrec 19291 Reciprocity relationship f...
cntziinsn 19292 Express any centralizer as...
cntzsubm 19293 Centralizers in a monoid a...
cntzsubg 19294 Centralizers in a group ar...
cntzidss 19295 If the elements of ` S ` c...
cntzmhm 19296 Centralizers in a monoid a...
cntzmhm2 19297 Centralizers in a monoid a...
cntrsubgnsg 19298 A central subgroup is norm...
cntrnsg 19299 The center of a group is a...
oppgval 19302 Value of the opposite grou...
oppgplusfval 19303 Value of the addition oper...
oppgplus 19304 Value of the addition oper...
setsplusg 19305 The other components of an...
oppglemOLD 19306 Obsolete version of ~ sets...
oppgbas 19307 Base set of an opposite gr...
oppgbasOLD 19308 Obsolete version of ~ oppg...
oppgtset 19309 Topology of an opposite gr...
oppgtsetOLD 19310 Obsolete version of ~ oppg...
oppgtopn 19311 Topology of an opposite gr...
oppgmnd 19312 The opposite of a monoid i...
oppgmndb 19313 Bidirectional form of ~ op...
oppgid 19314 Zero in a monoid is a symm...
oppggrp 19315 The opposite of a group is...
oppggrpb 19316 Bidirectional form of ~ op...
oppginv 19317 Inverses in a group are a ...
invoppggim 19318 The inverse is an antiauto...
oppggic 19319 Every group is (naturally)...
oppgsubm 19320 Being a submonoid is a sym...
oppgsubg 19321 Being a subgroup is a symm...
oppgcntz 19322 A centralizer in a group i...
oppgcntr 19323 The center of a group is t...
gsumwrev 19324 A sum in an opposite monoi...
symgval 19327 The value of the symmetric...
permsetexOLD 19328 Obsolete version of ~ f1os...
symgbas 19329 The base set of the symmet...
symgbasexOLD 19330 Obsolete as of 8-Aug-2024....
elsymgbas2 19331 Two ways of saying a funct...
elsymgbas 19332 Two ways of saying a funct...
symgbasf1o 19333 Elements in the symmetric ...
symgbasf 19334 A permutation (element of ...
symgbasmap 19335 A permutation (element of ...
symghash 19336 The symmetric group on ` n...
symgbasfi 19337 The symmetric group on a f...
symgfv 19338 The function value of a pe...
symgfvne 19339 The function values of a p...
symgressbas 19340 The symmetric group on ` A...
symgplusg 19341 The group operation of a s...
symgov 19342 The value of the group ope...
symgcl 19343 The group operation of the...
idresperm 19344 The identity function rest...
symgmov1 19345 For a permutation of a set...
symgmov2 19346 For a permutation of a set...
symgbas0 19347 The base set of the symmet...
symg1hash 19348 The symmetric group on a s...
symg1bas 19349 The symmetric group on a s...
symg2hash 19350 The symmetric group on a (...
symg2bas 19351 The symmetric group on a p...
0symgefmndeq 19352 The symmetric group on the...
snsymgefmndeq 19353 The symmetric group on a s...
symgpssefmnd 19354 For a set ` A ` with more ...
symgvalstruct 19355 The value of the symmetric...
symgvalstructOLD 19356 Obsolete proof of ~ symgva...
symgsubmefmnd 19357 The symmetric group on a s...
symgtset 19358 The topology of the symmet...
symggrp 19359 The symmetric group on a s...
symgid 19360 The group identity element...
symginv 19361 The group inverse in the s...
symgsubmefmndALT 19362 The symmetric group on a s...
galactghm 19363 The currying of a group ac...
lactghmga 19364 The converse of ~ galactgh...
symgtopn 19365 The topology of the symmet...
symgga 19366 The symmetric group induce...
pgrpsubgsymgbi 19367 Every permutation group is...
pgrpsubgsymg 19368 Every permutation group is...
idressubgsymg 19369 The singleton containing o...
idrespermg 19370 The structure with the sin...
cayleylem1 19371 Lemma for ~ cayley . (Con...
cayleylem2 19372 Lemma for ~ cayley . (Con...
cayley 19373 Cayley's Theorem (construc...
cayleyth 19374 Cayley's Theorem (existenc...
symgfix2 19375 If a permutation does not ...
symgextf 19376 The extension of a permuta...
symgextfv 19377 The function value of the ...
symgextfve 19378 The function value of the ...
symgextf1lem 19379 Lemma for ~ symgextf1 . (...
symgextf1 19380 The extension of a permuta...
symgextfo 19381 The extension of a permuta...
symgextf1o 19382 The extension of a permuta...
symgextsymg 19383 The extension of a permuta...
symgextres 19384 The restriction of the ext...
gsumccatsymgsn 19385 Homomorphic property of co...
gsmsymgrfixlem1 19386 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 19387 The composition of permuta...
fvcosymgeq 19388 The values of two composit...
gsmsymgreqlem1 19389 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 19390 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 19391 Two combination of permuta...
symgfixelq 19392 A permutation of a set fix...
symgfixels 19393 The restriction of a permu...
symgfixelsi 19394 The restriction of a permu...
symgfixf 19395 The mapping of a permutati...
symgfixf1 19396 The mapping of a permutati...
symgfixfolem1 19397 Lemma 1 for ~ symgfixfo . ...
symgfixfo 19398 The mapping of a permutati...
symgfixf1o 19399 The mapping of a permutati...
f1omvdmvd 19402 A permutation of any class...
f1omvdcnv 19403 A permutation and its inve...
mvdco 19404 Composing two permutations...
f1omvdconj 19405 Conjugation of a permutati...
f1otrspeq 19406 A transposition is charact...
f1omvdco2 19407 If exactly one of two perm...
f1omvdco3 19408 If a point is moved by exa...
pmtrfval 19409 The function generating tr...
pmtrval 19410 A generated transposition,...
pmtrfv 19411 General value of mapping a...
pmtrprfv 19412 In a transposition of two ...
pmtrprfv3 19413 In a transposition of two ...
pmtrf 19414 Functionality of a transpo...
pmtrmvd 19415 A transposition moves prec...
pmtrrn 19416 Transposing two points giv...
pmtrfrn 19417 A transposition (as a kind...
pmtrffv 19418 Mapping of a point under a...
pmtrrn2 19419 For any transposition ther...
pmtrfinv 19420 A transposition function i...
pmtrfmvdn0 19421 A transposition moves at l...
pmtrff1o 19422 A transposition function i...
pmtrfcnv 19423 A transposition function i...
pmtrfb 19424 An intrinsic characterizat...
pmtrfconj 19425 Any conjugate of a transpo...
symgsssg 19426 The symmetric group has su...
symgfisg 19427 The symmetric group has a ...
symgtrf 19428 Transpositions are element...
symggen 19429 The span of the transposit...
symggen2 19430 A finite permutation group...
symgtrinv 19431 To invert a permutation re...
pmtr3ncomlem1 19432 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 19433 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 19434 Transpositions over sets w...
pmtrdifellem1 19435 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19436 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19437 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19438 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19439 A transposition of element...
pmtrdifwrdellem1 19440 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19441 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19442 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19443 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19444 A sequence of transpositio...
pmtrdifwrdel2 19445 A sequence of transpositio...
pmtrprfval 19446 The transpositions on a pa...
pmtrprfvalrn 19447 The range of the transposi...
psgnunilem1 19452 Lemma for ~ psgnuni . Giv...
psgnunilem5 19453 Lemma for ~ psgnuni . It ...
psgnunilem2 19454 Lemma for ~ psgnuni . Ind...
psgnunilem3 19455 Lemma for ~ psgnuni . Any...
psgnunilem4 19456 Lemma for ~ psgnuni . An ...
m1expaddsub 19457 Addition and subtraction o...
psgnuni 19458 If the same permutation ca...
psgnfval 19459 Function definition of the...
psgnfn 19460 Functionality and domain o...
psgndmsubg 19461 The finitary permutations ...
psgneldm 19462 Property of being a finita...
psgneldm2 19463 The finitary permutations ...
psgneldm2i 19464 A sequence of transpositio...
psgneu 19465 A finitary permutation has...
psgnval 19466 Value of the permutation s...
psgnvali 19467 A finitary permutation has...
psgnvalii 19468 Any representation of a pe...
psgnpmtr 19469 All transpositions are odd...
psgn0fv0 19470 The permutation sign funct...
sygbasnfpfi 19471 The class of non-fixed poi...
psgnfvalfi 19472 Function definition of the...
psgnvalfi 19473 Value of the permutation s...
psgnran 19474 The range of the permutati...
gsmtrcl 19475 The group sum of transposi...
psgnfitr 19476 A permutation of a finite ...
psgnfieu 19477 A permutation of a finite ...
pmtrsn 19478 The value of the transposi...
psgnsn 19479 The permutation sign funct...
psgnprfval 19480 The permutation sign funct...
psgnprfval1 19481 The permutation sign of th...
psgnprfval2 19482 The permutation sign of th...
odfval 19491 Value of the order functio...
odfvalALT 19492 Shorter proof of ~ odfval ...
odval 19493 Second substitution for th...
odlem1 19494 The group element order is...
odcl 19495 The order of a group eleme...
odf 19496 Functionality of the group...
odid 19497 Any element to the power o...
odlem2 19498 Any positive annihilator o...
odmodnn0 19499 Reduce the argument of a g...
mndodconglem 19500 Lemma for ~ mndodcong . (...
mndodcong 19501 If two multipliers are con...
mndodcongi 19502 If two multipliers are con...
oddvdsnn0 19503 The only multiples of ` A ...
odnncl 19504 If a nonzero multiple of a...
odmod 19505 Reduce the argument of a g...
oddvds 19506 The only multiples of ` A ...
oddvdsi 19507 Any group element is annih...
odcong 19508 If two multipliers are con...
odeq 19509 The ~ oddvds property uniq...
odval2 19510 A non-conditional definiti...
odcld 19511 The order of a group eleme...
odm1inv 19512 The (order-1)th multiple o...
odmulgid 19513 A relationship between the...
odmulg2 19514 The order of a multiple di...
odmulg 19515 Relationship between the o...
odmulgeq 19516 A multiple of a point of f...
odbezout 19517 If ` N ` is coprime to the...
od1 19518 The order of the group ide...
odeq1 19519 The group identity is the ...
odinv 19520 The order of the inverse o...
odf1 19521 The multiples of an elemen...
odinf 19522 The multiples of an elemen...
dfod2 19523 An alternative definition ...
odcl2 19524 The order of an element of...
oddvds2 19525 The order of an element of...
finodsubmsubg 19526 A submonoid whose elements...
0subgALT 19527 A shorter proof of ~ 0subg...
submod 19528 The order of an element is...
subgod 19529 The order of an element is...
odsubdvds 19530 The order of an element of...
odf1o1 19531 An element with zero order...
odf1o2 19532 An element with nonzero or...
odhash 19533 An element of zero order g...
odhash2 19534 If an element has nonzero ...
odhash3 19535 An element which generates...
odngen 19536 A cyclic subgroup of size ...
gexval 19537 Value of the exponent of a...
gexlem1 19538 The group element order is...
gexcl 19539 The exponent of a group is...
gexid 19540 Any element to the power o...
gexlem2 19541 Any positive annihilator o...
gexdvdsi 19542 Any group element is annih...
gexdvds 19543 The only ` N ` that annihi...
gexdvds2 19544 An integer divides the gro...
gexod 19545 Any group element is annih...
gexcl3 19546 If the order of every grou...
gexnnod 19547 Every group element has fi...
gexcl2 19548 The exponent of a finite g...
gexdvds3 19549 The exponent of a finite g...
gex1 19550 A group or monoid has expo...
ispgp 19551 A group is a ` P ` -group ...
pgpprm 19552 Reverse closure for the fi...
pgpgrp 19553 Reverse closure for the se...
pgpfi1 19554 A finite group with order ...
pgp0 19555 The identity subgroup is a...
subgpgp 19556 A subgroup of a p-group is...
sylow1lem1 19557 Lemma for ~ sylow1 . The ...
sylow1lem2 19558 Lemma for ~ sylow1 . The ...
sylow1lem3 19559 Lemma for ~ sylow1 . One ...
sylow1lem4 19560 Lemma for ~ sylow1 . The ...
sylow1lem5 19561 Lemma for ~ sylow1 . Usin...
sylow1 19562 Sylow's first theorem. If...
odcau 19563 Cauchy's theorem for the o...
pgpfi 19564 The converse to ~ pgpfi1 ....
pgpfi2 19565 Alternate version of ~ pgp...
pgphash 19566 The order of a p-group. (...
isslw 19567 The property of being a Sy...
slwprm 19568 Reverse closure for the fi...
slwsubg 19569 A Sylow ` P ` -subgroup is...
slwispgp 19570 Defining property of a Syl...
slwpss 19571 A proper superset of a Syl...
slwpgp 19572 A Sylow ` P ` -subgroup is...
pgpssslw 19573 Every ` P ` -subgroup is c...
slwn0 19574 Every finite group contain...
subgslw 19575 A Sylow subgroup that is c...
sylow2alem1 19576 Lemma for ~ sylow2a . An ...
sylow2alem2 19577 Lemma for ~ sylow2a . All...
sylow2a 19578 A named lemma of Sylow's s...
sylow2blem1 19579 Lemma for ~ sylow2b . Eva...
sylow2blem2 19580 Lemma for ~ sylow2b . Lef...
sylow2blem3 19581 Sylow's second theorem. P...
sylow2b 19582 Sylow's second theorem. A...
slwhash 19583 A sylow subgroup has cardi...
fislw 19584 The sylow subgroups of a f...
sylow2 19585 Sylow's second theorem. S...
sylow3lem1 19586 Lemma for ~ sylow3 , first...
sylow3lem2 19587 Lemma for ~ sylow3 , first...
sylow3lem3 19588 Lemma for ~ sylow3 , first...
sylow3lem4 19589 Lemma for ~ sylow3 , first...
sylow3lem5 19590 Lemma for ~ sylow3 , secon...
sylow3lem6 19591 Lemma for ~ sylow3 , secon...
sylow3 19592 Sylow's third theorem. Th...
lsmfval 19597 The subgroup sum function ...
lsmvalx 19598 Subspace sum value (for a ...
lsmelvalx 19599 Subspace sum membership (f...
lsmelvalix 19600 Subspace sum membership (f...
oppglsm 19601 The subspace sum operation...
lsmssv 19602 Subgroup sum is a subset o...
lsmless1x 19603 Subset implies subgroup su...
lsmless2x 19604 Subset implies subgroup su...
lsmub1x 19605 Subgroup sum is an upper b...
lsmub2x 19606 Subgroup sum is an upper b...
lsmval 19607 Subgroup sum value (for a ...
lsmelval 19608 Subgroup sum membership (f...
lsmelvali 19609 Subgroup sum membership (f...
lsmelvalm 19610 Subgroup sum membership an...
lsmelvalmi 19611 Membership of vector subtr...
lsmsubm 19612 The sum of two commuting s...
lsmsubg 19613 The sum of two commuting s...
lsmcom2 19614 Subgroup sum commutes. (C...
smndlsmidm 19615 The direct product is idem...
lsmub1 19616 Subgroup sum is an upper b...
lsmub2 19617 Subgroup sum is an upper b...
lsmunss 19618 Union of subgroups is a su...
lsmless1 19619 Subset implies subgroup su...
lsmless2 19620 Subset implies subgroup su...
lsmless12 19621 Subset implies subgroup su...
lsmidm 19622 Subgroup sum is idempotent...
lsmlub 19623 The least upper bound prop...
lsmss1 19624 Subgroup sum with a subset...
lsmss1b 19625 Subgroup sum with a subset...
lsmss2 19626 Subgroup sum with a subset...
lsmss2b 19627 Subgroup sum with a subset...
lsmass 19628 Subgroup sum is associativ...
mndlsmidm 19629 Subgroup sum is idempotent...
lsm01 19630 Subgroup sum with the zero...
lsm02 19631 Subgroup sum with the zero...
subglsm 19632 The subgroup sum evaluated...
lssnle 19633 Equivalent expressions for...
lsmmod 19634 The modular law holds for ...
lsmmod2 19635 Modular law dual for subgr...
lsmpropd 19636 If two structures have the...
cntzrecd 19637 Commute the "subgroups com...
lsmcntz 19638 The "subgroups commute" pr...
lsmcntzr 19639 The "subgroups commute" pr...
lsmdisj 19640 Disjointness from a subgro...
lsmdisj2 19641 Association of the disjoin...
lsmdisj3 19642 Association of the disjoin...
lsmdisjr 19643 Disjointness from a subgro...
lsmdisj2r 19644 Association of the disjoin...
lsmdisj3r 19645 Association of the disjoin...
lsmdisj2a 19646 Association of the disjoin...
lsmdisj2b 19647 Association of the disjoin...
lsmdisj3a 19648 Association of the disjoin...
lsmdisj3b 19649 Association of the disjoin...
subgdisj1 19650 Vectors belonging to disjo...
subgdisj2 19651 Vectors belonging to disjo...
subgdisjb 19652 Vectors belonging to disjo...
pj1fval 19653 The left projection functi...
pj1val 19654 The left projection functi...
pj1eu 19655 Uniqueness of a left proje...
pj1f 19656 The left projection functi...
pj2f 19657 The right projection funct...
pj1id 19658 Any element of a direct su...
pj1eq 19659 Any element of a direct su...
pj1lid 19660 The left projection functi...
pj1rid 19661 The left projection functi...
pj1ghm 19662 The left projection functi...
pj1ghm2 19663 The left projection functi...
lsmhash 19664 The order of the direct pr...
efgmval 19671 Value of the formal invers...
efgmf 19672 The formal inverse operati...
efgmnvl 19673 The inversion function on ...
efgrcl 19674 Lemma for ~ efgval . (Con...
efglem 19675 Lemma for ~ efgval . (Con...
efgval 19676 Value of the free group co...
efger 19677 Value of the free group co...
efgi 19678 Value of the free group co...
efgi0 19679 Value of the free group co...
efgi1 19680 Value of the free group co...
efgtf 19681 Value of the free group co...
efgtval 19682 Value of the extension fun...
efgval2 19683 Value of the free group co...
efgi2 19684 Value of the free group co...
efgtlen 19685 Value of the free group co...
efginvrel2 19686 The inverse of the reverse...
efginvrel1 19687 The inverse of the reverse...
efgsf 19688 Value of the auxiliary fun...
efgsdm 19689 Elementhood in the domain ...
efgsval 19690 Value of the auxiliary fun...
efgsdmi 19691 Property of the last link ...
efgsval2 19692 Value of the auxiliary fun...
efgsrel 19693 The start and end of any e...
efgs1 19694 A singleton of an irreduci...
efgs1b 19695 Every extension sequence e...
efgsp1 19696 If ` F ` is an extension s...
efgsres 19697 An initial segment of an e...
efgsfo 19698 For any word, there is a s...
efgredlema 19699 The reduced word that form...
efgredlemf 19700 Lemma for ~ efgredleme . ...
efgredlemg 19701 Lemma for ~ efgred . (Con...
efgredleme 19702 Lemma for ~ efgred . (Con...
efgredlemd 19703 The reduced word that form...
efgredlemc 19704 The reduced word that form...
efgredlemb 19705 The reduced word that form...
efgredlem 19706 The reduced word that form...
efgred 19707 The reduced word that form...
efgrelexlema 19708 If two words ` A , B ` are...
efgrelexlemb 19709 If two words ` A , B ` are...
efgrelex 19710 If two words ` A , B ` are...
efgredeu 19711 There is a unique reduced ...
efgred2 19712 Two extension sequences ha...
efgcpbllema 19713 Lemma for ~ efgrelex . De...
efgcpbllemb 19714 Lemma for ~ efgrelex . Sh...
efgcpbl 19715 Two extension sequences ha...
efgcpbl2 19716 Two extension sequences ha...
frgpval 19717 Value of the free group co...
frgpcpbl 19718 Compatibility of the group...
frgp0 19719 The free group is a group....
frgpeccl 19720 Closure of the quotient ma...
frgpgrp 19721 The free group is a group....
frgpadd 19722 Addition in the free group...
frgpinv 19723 The inverse of an element ...
frgpmhm 19724 The "natural map" from wor...
vrgpfval 19725 The canonical injection fr...
vrgpval 19726 The value of the generatin...
vrgpf 19727 The mapping from the index...
vrgpinv 19728 The inverse of a generatin...
frgpuptf 19729 Any assignment of the gene...
frgpuptinv 19730 Any assignment of the gene...
frgpuplem 19731 Any assignment of the gene...
frgpupf 19732 Any assignment of the gene...
frgpupval 19733 Any assignment of the gene...
frgpup1 19734 Any assignment of the gene...
frgpup2 19735 The evaluation map has the...
frgpup3lem 19736 The evaluation map has the...
frgpup3 19737 Universal property of the ...
0frgp 19738 The free group on zero gen...
isabl 19743 The predicate "is an Abeli...
ablgrp 19744 An Abelian group is a grou...
ablgrpd 19745 An Abelian group is a grou...
ablcmn 19746 An Abelian group is a comm...
ablcmnd 19747 An Abelian group is a comm...
iscmn 19748 The predicate "is a commut...
isabl2 19749 The predicate "is an Abeli...
cmnpropd 19750 If two structures have the...
ablpropd 19751 If two structures have the...
ablprop 19752 If two structures have the...
iscmnd 19753 Properties that determine ...
isabld 19754 Properties that determine ...
isabli 19755 Properties that determine ...
cmnmnd 19756 A commutative monoid is a ...
cmncom 19757 A commutative monoid is co...
ablcom 19758 An Abelian group operation...
cmn32 19759 Commutative/associative la...
cmn4 19760 Commutative/associative la...
cmn12 19761 Commutative/associative la...
abl32 19762 Commutative/associative la...
cmnmndd 19763 A commutative monoid is a ...
cmnbascntr 19764 The base set of a commutat...
rinvmod 19765 Uniqueness of a right inve...
ablinvadd 19766 The inverse of an Abelian ...
ablsub2inv 19767 Abelian group subtraction ...
ablsubadd 19768 Relationship between Abeli...
ablsub4 19769 Commutative/associative su...
abladdsub4 19770 Abelian group addition/sub...
abladdsub 19771 Associative-type law for g...
ablsubadd23 19772 Commutative/associative la...
ablsubaddsub 19773 Double subtraction and add...
ablpncan2 19774 Cancellation law for subtr...
ablpncan3 19775 A cancellation law for Abe...
ablsubsub 19776 Law for double subtraction...
ablsubsub4 19777 Law for double subtraction...
ablpnpcan 19778 Cancellation law for mixed...
ablnncan 19779 Cancellation law for group...
ablsub32 19780 Swap the second and third ...
ablnnncan 19781 Cancellation law for group...
ablnnncan1 19782 Cancellation law for group...
ablsubsub23 19783 Swap subtrahend and result...
mulgnn0di 19784 Group multiple of a sum, f...
mulgdi 19785 Group multiple of a sum. ...
mulgmhm 19786 The map from ` x ` to ` n ...
mulgghm 19787 The map from ` x ` to ` n ...
mulgsubdi 19788 Group multiple of a differ...
ghmfghm 19789 The function fulfilling th...
ghmcmn 19790 The image of a commutative...
ghmabl 19791 The image of an abelian gr...
invghm 19792 The inversion map is a gro...
eqgabl 19793 Value of the subgroup cose...
qusecsub 19794 Two subgroup cosets are eq...
subgabl 19795 A subgroup of an abelian g...
subcmn 19796 A submonoid of a commutati...
submcmn 19797 A submonoid of a commutati...
submcmn2 19798 A submonoid is commutative...
cntzcmn 19799 The centralizer of any sub...
cntzcmnss 19800 Any subset in a commutativ...
cntrcmnd 19801 The center of a monoid is ...
cntrabl 19802 The center of a group is a...
cntzspan 19803 If the generators commute,...
cntzcmnf 19804 Discharge the centralizer ...
ghmplusg 19805 The pointwise sum of two l...
ablnsg 19806 Every subgroup of an abeli...
odadd1 19807 The order of a product in ...
odadd2 19808 The order of a product in ...
odadd 19809 The order of a product is ...
gex2abl 19810 A group with exponent 2 (o...
gexexlem 19811 Lemma for ~ gexex . (Cont...
gexex 19812 In an abelian group with f...
torsubg 19813 The set of all elements of...
oddvdssubg 19814 The set of all elements wh...
lsmcomx 19815 Subgroup sum commutes (ext...
ablcntzd 19816 All subgroups in an abelia...
lsmcom 19817 Subgroup sum commutes. (C...
lsmsubg2 19818 The sum of two subgroups i...
lsm4 19819 Commutative/associative la...
prdscmnd 19820 The product of a family of...
prdsabld 19821 The product of a family of...
pwscmn 19822 The structure power on a c...
pwsabl 19823 The structure power on an ...
qusabl 19824 If ` Y ` is a subgroup of ...
abl1 19825 The (smallest) structure r...
abln0 19826 Abelian groups (and theref...
cnaddablx 19827 The complex numbers are an...
cnaddabl 19828 The complex numbers are an...
cnaddid 19829 The group identity element...
cnaddinv 19830 Value of the group inverse...
zaddablx 19831 The integers are an Abelia...
frgpnabllem1 19832 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19833 Lemma for ~ frgpnabl . (C...
frgpnabl 19834 The free group on two or m...
imasabl 19835 The image structure of an ...
iscyg 19838 Definition of a cyclic gro...
iscyggen 19839 The property of being a cy...
iscyggen2 19840 The property of being a cy...
iscyg2 19841 A cyclic group is a group ...
cyggeninv 19842 The inverse of a cyclic ge...
cyggenod 19843 An element is the generato...
cyggenod2 19844 In an infinite cyclic grou...
iscyg3 19845 Definition of a cyclic gro...
iscygd 19846 Definition of a cyclic gro...
iscygodd 19847 Show that a group with an ...
cycsubmcmn 19848 The set of nonnegative int...
cyggrp 19849 A cyclic group is a group....
cygabl 19850 A cyclic group is abelian....
cygctb 19851 A cyclic group is countabl...
0cyg 19852 The trivial group is cycli...
prmcyg 19853 A group with prime order i...
lt6abl 19854 A group with fewer than ` ...
ghmcyg 19855 The image of a cyclic grou...
cyggex2 19856 The exponent of a cyclic g...
cyggex 19857 The exponent of a finite c...
cyggexb 19858 A finite abelian group is ...
giccyg 19859 Cyclicity is a group prope...
cycsubgcyg 19860 The cyclic subgroup genera...
cycsubgcyg2 19861 The cyclic subgroup genera...
gsumval3a 19862 Value of the group sum ope...
gsumval3eu 19863 The group sum as defined i...
gsumval3lem1 19864 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19865 Lemma 2 for ~ gsumval3 . ...
gsumval3 19866 Value of the group sum ope...
gsumcllem 19867 Lemma for ~ gsumcl and rel...
gsumzres 19868 Extend a finite group sum ...
gsumzcl2 19869 Closure of a finite group ...
gsumzcl 19870 Closure of a finite group ...
gsumzf1o 19871 Re-index a finite group su...
gsumres 19872 Extend a finite group sum ...
gsumcl2 19873 Closure of a finite group ...
gsumcl 19874 Closure of a finite group ...
gsumf1o 19875 Re-index a finite group su...
gsumreidx 19876 Re-index a finite group su...
gsumzsubmcl 19877 Closure of a group sum in ...
gsumsubmcl 19878 Closure of a group sum in ...
gsumsubgcl 19879 Closure of a group sum in ...
gsumzaddlem 19880 The sum of two group sums....
gsumzadd 19881 The sum of two group sums....
gsumadd 19882 The sum of two group sums....
gsummptfsadd 19883 The sum of two group sums ...
gsummptfidmadd 19884 The sum of two group sums ...
gsummptfidmadd2 19885 The sum of two group sums ...
gsumzsplit 19886 Split a group sum into two...
gsumsplit 19887 Split a group sum into two...
gsumsplit2 19888 Split a group sum into two...
gsummptfidmsplit 19889 Split a group sum expresse...
gsummptfidmsplitres 19890 Split a group sum expresse...
gsummptfzsplit 19891 Split a group sum expresse...
gsummptfzsplitl 19892 Split a group sum expresse...
gsumconst 19893 Sum of a constant series. ...
gsumconstf 19894 Sum of a constant series. ...
gsummptshft 19895 Index shift of a finite gr...
gsumzmhm 19896 Apply a group homomorphism...
gsummhm 19897 Apply a group homomorphism...
gsummhm2 19898 Apply a group homomorphism...
gsummptmhm 19899 Apply a group homomorphism...
gsummulglem 19900 Lemma for ~ gsummulg and ~...
gsummulg 19901 Nonnegative multiple of a ...
gsummulgz 19902 Integer multiple of a grou...
gsumzoppg 19903 The opposite of a group su...
gsumzinv 19904 Inverse of a group sum. (...
gsuminv 19905 Inverse of a group sum. (...
gsummptfidminv 19906 Inverse of a group sum exp...
gsumsub 19907 The difference of two grou...
gsummptfssub 19908 The difference of two grou...
gsummptfidmsub 19909 The difference of two grou...
gsumsnfd 19910 Group sum of a singleton, ...
gsumsnd 19911 Group sum of a singleton, ...
gsumsnf 19912 Group sum of a singleton, ...
gsumsn 19913 Group sum of a singleton. ...
gsumpr 19914 Group sum of a pair. (Con...
gsumzunsnd 19915 Append an element to a fin...
gsumunsnfd 19916 Append an element to a fin...
gsumunsnd 19917 Append an element to a fin...
gsumunsnf 19918 Append an element to a fin...
gsumunsn 19919 Append an element to a fin...
gsumdifsnd 19920 Extract a summand from a f...
gsumpt 19921 Sum of a family that is no...
gsummptf1o 19922 Re-index a finite group su...
gsummptun 19923 Group sum of a disjoint un...
gsummpt1n0 19924 If only one summand in a f...
gsummptif1n0 19925 If only one summand in a f...
gsummptcl 19926 Closure of a finite group ...
gsummptfif1o 19927 Re-index a finite group su...
gsummptfzcl 19928 Closure of a finite group ...
gsum2dlem1 19929 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19930 Lemma for ~ gsum2d . (Con...
gsum2d 19931 Write a sum over a two-dim...
gsum2d2lem 19932 Lemma for ~ gsum2d2 : show...
gsum2d2 19933 Write a group sum over a t...
gsumcom2 19934 Two-dimensional commutatio...
gsumxp 19935 Write a group sum over a c...
gsumcom 19936 Commute the arguments of a...
gsumcom3 19937 A commutative law for fini...
gsumcom3fi 19938 A commutative law for fini...
gsumxp2 19939 Write a group sum over a c...
prdsgsum 19940 Finite commutative sums in...
pwsgsum 19941 Finite commutative sums in...
fsfnn0gsumfsffz 19942 Replacing a finitely suppo...
nn0gsumfz 19943 Replacing a finitely suppo...
nn0gsumfz0 19944 Replacing a finitely suppo...
gsummptnn0fz 19945 A final group sum over a f...
gsummptnn0fzfv 19946 A final group sum over a f...
telgsumfzslem 19947 Lemma for ~ telgsumfzs (in...
telgsumfzs 19948 Telescoping group sum rang...
telgsumfz 19949 Telescoping group sum rang...
telgsumfz0s 19950 Telescoping finite group s...
telgsumfz0 19951 Telescoping finite group s...
telgsums 19952 Telescoping finitely suppo...
telgsum 19953 Telescoping finitely suppo...
reldmdprd 19958 The domain of the internal...
dmdprd 19959 The domain of definition o...
dmdprdd 19960 Show that a given family i...
dprddomprc 19961 A family of subgroups inde...
dprddomcld 19962 If a family of subgroups i...
dprdval0prc 19963 The internal direct produc...
dprdval 19964 The value of the internal ...
eldprd 19965 A class ` A ` is an intern...
dprdgrp 19966 Reverse closure for the in...
dprdf 19967 The function ` S ` is a fa...
dprdf2 19968 The function ` S ` is a fa...
dprdcntz 19969 The function ` S ` is a fa...
dprddisj 19970 The function ` S ` is a fa...
dprdw 19971 The property of being a fi...
dprdwd 19972 A mapping being a finitely...
dprdff 19973 A finitely supported funct...
dprdfcl 19974 A finitely supported funct...
dprdffsupp 19975 A finitely supported funct...
dprdfcntz 19976 A function on the elements...
dprdssv 19977 The internal direct produc...
dprdfid 19978 A function mapping all but...
eldprdi 19979 The domain of definition o...
dprdfinv 19980 Take the inverse of a grou...
dprdfadd 19981 Take the sum of group sums...
dprdfsub 19982 Take the difference of gro...
dprdfeq0 19983 The zero function is the o...
dprdf11 19984 Two group sums over a dire...
dprdsubg 19985 The internal direct produc...
dprdub 19986 Each factor is a subset of...
dprdlub 19987 The direct product is smal...
dprdspan 19988 The direct product is the ...
dprdres 19989 Restriction of a direct pr...
dprdss 19990 Create a direct product by...
dprdz 19991 A family consisting entire...
dprd0 19992 The empty family is an int...
dprdf1o 19993 Rearrange the index set of...
dprdf1 19994 Rearrange the index set of...
subgdmdprd 19995 A direct product in a subg...
subgdprd 19996 A direct product in a subg...
dprdsn 19997 A singleton family is an i...
dmdprdsplitlem 19998 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19999 The function ` S ` is a fa...
dprddisj2 20000 The function ` S ` is a fa...
dprd2dlem2 20001 The direct product of a co...
dprd2dlem1 20002 The direct product of a co...
dprd2da 20003 The direct product of a co...
dprd2db 20004 The direct product of a co...
dprd2d2 20005 The direct product of a co...
dmdprdsplit2lem 20006 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 20007 The direct product splits ...
dmdprdsplit 20008 The direct product splits ...
dprdsplit 20009 The direct product is the ...
dmdprdpr 20010 A singleton family is an i...
dprdpr 20011 A singleton family is an i...
dpjlem 20012 Lemma for theorems about d...
dpjcntz 20013 The two subgroups that app...
dpjdisj 20014 The two subgroups that app...
dpjlsm 20015 The two subgroups that app...
dpjfval 20016 Value of the direct produc...
dpjval 20017 Value of the direct produc...
dpjf 20018 The ` X ` -th index projec...
dpjidcl 20019 The key property of projec...
dpjeq 20020 Decompose a group sum into...
dpjid 20021 The key property of projec...
dpjlid 20022 The ` X ` -th index projec...
dpjrid 20023 The ` Y ` -th index projec...
dpjghm 20024 The direct product is the ...
dpjghm2 20025 The direct product is the ...
ablfacrplem 20026 Lemma for ~ ablfacrp2 . (...
ablfacrp 20027 A finite abelian group who...
ablfacrp2 20028 The factors ` K , L ` of ~...
ablfac1lem 20029 Lemma for ~ ablfac1b . Sa...
ablfac1a 20030 The factors of ~ ablfac1b ...
ablfac1b 20031 Any abelian group is the d...
ablfac1c 20032 The factors of ~ ablfac1b ...
ablfac1eulem 20033 Lemma for ~ ablfac1eu . (...
ablfac1eu 20034 The factorization of ~ abl...
pgpfac1lem1 20035 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 20036 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 20037 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 20038 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 20039 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 20040 Lemma for ~ pgpfac1 . (Co...
pgpfac1 20041 Factorization of a finite ...
pgpfaclem1 20042 Lemma for ~ pgpfac . (Con...
pgpfaclem2 20043 Lemma for ~ pgpfac . (Con...
pgpfaclem3 20044 Lemma for ~ pgpfac . (Con...
pgpfac 20045 Full factorization of a fi...
ablfaclem1 20046 Lemma for ~ ablfac . (Con...
ablfaclem2 20047 Lemma for ~ ablfac . (Con...
ablfaclem3 20048 Lemma for ~ ablfac . (Con...
ablfac 20049 The Fundamental Theorem of...
ablfac2 20050 Choose generators for each...
issimpg 20053 The predicate "is a simple...
issimpgd 20054 Deduce a simple group from...
simpggrp 20055 A simple group is a group....
simpggrpd 20056 A simple group is a group....
simpg2nsg 20057 A simple group has two nor...
trivnsimpgd 20058 Trivial groups are not sim...
simpgntrivd 20059 Simple groups are nontrivi...
simpgnideld 20060 A simple group contains a ...
simpgnsgd 20061 The only normal subgroups ...
simpgnsgeqd 20062 A normal subgroup of a sim...
2nsgsimpgd 20063 If any normal subgroup of ...
simpgnsgbid 20064 A nontrivial group is simp...
ablsimpnosubgd 20065 A subgroup of an abelian s...
ablsimpg1gend 20066 An abelian simple group is...
ablsimpgcygd 20067 An abelian simple group is...
ablsimpgfindlem1 20068 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 20069 Lemma for ~ ablsimpgfind ....
cycsubggenodd 20070 Relationship between the o...
ablsimpgfind 20071 An abelian simple group is...
fincygsubgd 20072 The subgroup referenced in...
fincygsubgodd 20073 Calculate the order of a s...
fincygsubgodexd 20074 A finite cyclic group has ...
prmgrpsimpgd 20075 A group of prime order is ...
ablsimpgprmd 20076 An abelian simple group ha...
ablsimpgd 20077 An abelian group is simple...
fnmgp 20080 The multiplicative group o...
mgpval 20081 Value of the multiplicatio...
mgpplusg 20082 Value of the group operati...
mgplemOLD 20083 Obsolete version of ~ sets...
mgpbas 20084 Base set of the multiplica...
mgpbasOLD 20085 Obsolete version of ~ mgpb...
mgpsca 20086 The multiplication monoid ...
mgpscaOLD 20087 Obsolete version of ~ mgps...
mgptset 20088 Topology component of the ...
mgptsetOLD 20089 Obsolete version of ~ mgpt...
mgptopn 20090 Topology of the multiplica...
mgpds 20091 Distance function of the m...
mgpdsOLD 20092 Obsolete version of ~ mgpd...
mgpress 20093 Subgroup commutes with the...
mgpressOLD 20094 Obsolete version of ~ mgpr...
prdsmgp 20095 The multiplicative monoid ...
isrng 20098 The predicate "is a non-un...
rngabl 20099 A non-unital ring is an (a...
rngmgp 20100 A non-unital ring is a sem...
rngmgpf 20101 Restricted functionality o...
rnggrp 20102 A non-unital ring is a (ad...
rngass 20103 Associative law for the mu...
rngdi 20104 Distributive law for the m...
rngdir 20105 Distributive law for the m...
rngacl 20106 Closure of the addition op...
rng0cl 20107 The zero element of a non-...
rngcl 20108 Closure of the multiplicat...
rnglz 20109 The zero of a non-unital r...
rngrz 20110 The zero of a non-unital r...
rngmneg1 20111 Negation of a product in a...
rngmneg2 20112 Negation of a product in a...
rngm2neg 20113 Double negation of a produ...
rngansg 20114 Every additive subgroup of...
rngsubdi 20115 Ring multiplication distri...
rngsubdir 20116 Ring multiplication distri...
isrngd 20117 Properties that determine ...
rngpropd 20118 If two structures have the...
prdsmulrngcl 20119 Closure of the multiplicat...
prdsrngd 20120 A product of non-unital ri...
imasrng 20121 The image structure of a n...
imasrngf1 20122 The image of a non-unital ...
xpsrngd 20123 A product of two non-unita...
qusrng 20124 The quotient structure of ...
ringidval 20127 The value of the unity ele...
dfur2 20128 The multiplicative identit...
ringurd 20129 Deduce the unity element o...
issrg 20132 The predicate "is a semiri...
srgcmn 20133 A semiring is a commutativ...
srgmnd 20134 A semiring is a monoid. (...
srgmgp 20135 A semiring is a monoid und...
srgdilem 20136 Lemma for ~ srgdi and ~ sr...
srgcl 20137 Closure of the multiplicat...
srgass 20138 Associative law for the mu...
srgideu 20139 The unity element of a sem...
srgfcl 20140 Functionality of the multi...
srgdi 20141 Distributive law for the m...
srgdir 20142 Distributive law for the m...
srgidcl 20143 The unity element of a sem...
srg0cl 20144 The zero element of a semi...
srgidmlem 20145 Lemma for ~ srglidm and ~ ...
srglidm 20146 The unity element of a sem...
srgridm 20147 The unity element of a sem...
issrgid 20148 Properties showing that an...
srgacl 20149 Closure of the addition op...
srgcom 20150 Commutativity of the addit...
srgrz 20151 The zero of a semiring is ...
srglz 20152 The zero of a semiring is ...
srgisid 20153 In a semiring, the only le...
o2timesd 20154 An element of a ring-like ...
rglcom4d 20155 Restricted commutativity o...
srgo2times 20156 A semiring element plus it...
srgcom4lem 20157 Lemma for ~ srgcom4 . Thi...
srgcom4 20158 Restricted commutativity o...
srg1zr 20159 The only semiring with a b...
srgen1zr 20160 The only semiring with one...
srgmulgass 20161 An associative property be...
srgpcomp 20162 If two elements of a semir...
srgpcompp 20163 If two elements of a semir...
srgpcomppsc 20164 If two elements of a semir...
srglmhm 20165 Left-multiplication in a s...
srgrmhm 20166 Right-multiplication in a ...
srgsummulcr 20167 A finite semiring sum mult...
sgsummulcl 20168 A finite semiring sum mult...
srg1expzeq1 20169 The exponentiation (by a n...
srgbinomlem1 20170 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 20171 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 20172 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 20173 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 20174 Lemma for ~ srgbinom . In...
srgbinom 20175 The binomial theorem for c...
csrgbinom 20176 The binomial theorem for c...
isring 20181 The predicate "is a (unita...
ringgrp 20182 A ring is a group. (Contr...
ringmgp 20183 A ring is a monoid under m...
iscrng 20184 A commutative ring is a ri...
crngmgp 20185 A commutative ring's multi...
ringgrpd 20186 A ring is a group. (Contr...
ringmnd 20187 A ring is a monoid under a...
ringmgm 20188 A ring is a magma. (Contr...
crngring 20189 A commutative ring is a ri...
crngringd 20190 A commutative ring is a ri...
crnggrpd 20191 A commutative ring is a gr...
mgpf 20192 Restricted functionality o...
ringdilem 20193 Properties of a unital rin...
ringcl 20194 Closure of the multiplicat...
crngcom 20195 A commutative ring's multi...
iscrng2 20196 A commutative ring is a ri...
ringass 20197 Associative law for multip...
ringideu 20198 The unity element of a rin...
crngcomd 20199 Multiplication is commutat...
crngbascntr 20200 The base set of a commutat...
ringassd 20201 Associative law for multip...
crng12d 20202 Commutative/associative la...
ringcld 20203 Closure of the multiplicat...
ringdi 20204 Distributive law for the m...
ringdir 20205 Distributive law for the m...
ringidcl 20206 The unity element of a rin...
ring0cl 20207 The zero element of a ring...
ringidmlem 20208 Lemma for ~ ringlidm and ~...
ringlidm 20209 The unity element of a rin...
ringridm 20210 The unity element of a rin...
isringid 20211 Properties showing that an...
ringlidmd 20212 The unity element of a rin...
ringridmd 20213 The unity element of a rin...
ringid 20214 The multiplication operati...
ringo2times 20215 A ring element plus itself...
ringadd2 20216 A ring element plus itself...
ringidss 20217 A subset of the multiplica...
ringacl 20218 Closure of the addition op...
ringcomlem 20219 Lemma for ~ ringcom . Thi...
ringcom 20220 Commutativity of the addit...
ringabl 20221 A ring is an Abelian group...
ringcmn 20222 A ring is a commutative mo...
ringabld 20223 A ring is an Abelian group...
ringcmnd 20224 A ring is a commutative mo...
ringrng 20225 A unital ring is a non-uni...
ringssrng 20226 The unital rings are non-u...
isringrng 20227 The predicate "is a unital...
ringpropd 20228 If two structures have the...
crngpropd 20229 If two structures have the...
ringprop 20230 If two structures have the...
isringd 20231 Properties that determine ...
iscrngd 20232 Properties that determine ...
ringlz 20233 The zero of a unital ring ...
ringrz 20234 The zero of a unital ring ...
ringlzd 20235 The zero of a unital ring ...
ringrzd 20236 The zero of a unital ring ...
ringsrg 20237 Any ring is also a semirin...
ring1eq0 20238 If one and zero are equal,...
ring1ne0 20239 If a ring has at least two...
ringinvnz1ne0 20240 In a unital ring, a left i...
ringinvnzdiv 20241 In a unital ring, a left i...
ringnegl 20242 Negation in a ring is the ...
ringnegr 20243 Negation in a ring is the ...
ringmneg1 20244 Negation of a product in a...
ringmneg2 20245 Negation of a product in a...
ringm2neg 20246 Double negation of a produ...
ringsubdi 20247 Ring multiplication distri...
ringsubdir 20248 Ring multiplication distri...
mulgass2 20249 An associative property be...
ring1 20250 The (smallest) structure r...
ringn0 20251 Rings exist. (Contributed...
ringlghm 20252 Left-multiplication in a r...
ringrghm 20253 Right-multiplication in a ...
gsummulc1OLD 20254 Obsolete version of ~ gsum...
gsummulc2OLD 20255 Obsolete version of ~ gsum...
gsummulc1 20256 A finite ring sum multipli...
gsummulc2 20257 A finite ring sum multipli...
gsummgp0 20258 If one factor in a finite ...
gsumdixp 20259 Distribute a binary produc...
prdsmulrcl 20260 A structure product of rin...
prdsringd 20261 A product of rings is a ri...
prdscrngd 20262 A product of commutative r...
prds1 20263 Value of the ring unity in...
pwsring 20264 A structure power of a rin...
pws1 20265 Value of the ring unity in...
pwscrng 20266 A structure power of a com...
pwsmgp 20267 The multiplicative group o...
pwspjmhmmgpd 20268 The projection given by ~ ...
pwsexpg 20269 Value of a group exponenti...
imasring 20270 The image structure of a r...
imasringf1 20271 The image of a ring under ...
xpsringd 20272 A product of two rings is ...
xpsring1d 20273 The multiplicative identit...
qusring2 20274 The quotient structure of ...
crngbinom 20275 The binomial theorem for c...
opprval 20278 Value of the opposite ring...
opprmulfval 20279 Value of the multiplicatio...
opprmul 20280 Value of the multiplicatio...
crngoppr 20281 In a commutative ring, the...
opprlem 20282 Lemma for ~ opprbas and ~ ...
opprlemOLD 20283 Obsolete version of ~ oppr...
opprbas 20284 Base set of an opposite ri...
opprbasOLD 20285 Obsolete proof of ~ opprba...
oppradd 20286 Addition operation of an o...
oppraddOLD 20287 Obsolete proof of ~ opprba...
opprrng 20288 An opposite non-unital rin...
opprrngb 20289 A class is a non-unital ri...
opprring 20290 An opposite ring is a ring...
opprringb 20291 Bidirectional form of ~ op...
oppr0 20292 Additive identity of an op...
oppr1 20293 Multiplicative identity of...
opprneg 20294 The negative function in a...
opprsubg 20295 Being a subgroup is a symm...
mulgass3 20296 An associative property be...
reldvdsr 20303 The divides relation is a ...
dvdsrval 20304 Value of the divides relat...
dvdsr 20305 Value of the divides relat...
dvdsr2 20306 Value of the divides relat...
dvdsrmul 20307 A left-multiple of ` X ` i...
dvdsrcl 20308 Closure of a dividing elem...
dvdsrcl2 20309 Closure of a dividing elem...
dvdsrid 20310 An element in a (unital) r...
dvdsrtr 20311 Divisibility is transitive...
dvdsrmul1 20312 The divisibility relation ...
dvdsrneg 20313 An element divides its neg...
dvdsr01 20314 In a ring, zero is divisib...
dvdsr02 20315 Only zero is divisible by ...
isunit 20316 Property of being a unit o...
1unit 20317 The multiplicative identit...
unitcl 20318 A unit is an element of th...
unitss 20319 The set of units is contai...
opprunit 20320 Being a unit is a symmetri...
crngunit 20321 Property of being a unit i...
dvdsunit 20322 A divisor of a unit is a u...
unitmulcl 20323 The product of units is a ...
unitmulclb 20324 Reversal of ~ unitmulcl in...
unitgrpbas 20325 The base set of the group ...
unitgrp 20326 The group of units is a gr...
unitabl 20327 The group of units of a co...
unitgrpid 20328 The identity of the group ...
unitsubm 20329 The group of units is a su...
invrfval 20332 Multiplicative inverse fun...
unitinvcl 20333 The inverse of a unit exis...
unitinvinv 20334 The inverse of the inverse...
ringinvcl 20335 The inverse of a unit is a...
unitlinv 20336 A unit times its inverse i...
unitrinv 20337 A unit times its inverse i...
1rinv 20338 The inverse of the ring un...
0unit 20339 The additive identity is a...
unitnegcl 20340 The negative of a unit is ...
ringunitnzdiv 20341 In a unitary ring, a unit ...
ring1nzdiv 20342 In a unitary ring, the rin...
dvrfval 20345 Division operation in a ri...
dvrval 20346 Division operation in a ri...
dvrcl 20347 Closure of division operat...
unitdvcl 20348 The units are closed under...
dvrid 20349 A ring element divided by ...
dvr1 20350 A ring element divided by ...
dvrass 20351 An associative law for div...
dvrcan1 20352 A cancellation law for div...
dvrcan3 20353 A cancellation law for div...
dvreq1 20354 Equality in terms of ratio...
dvrdir 20355 Distributive law for the d...
rdivmuldivd 20356 Multiplication of two rati...
ringinvdv 20357 Write the inverse function...
rngidpropd 20358 The ring unity depends onl...
dvdsrpropd 20359 The divisibility relation ...
unitpropd 20360 The set of units depends o...
invrpropd 20361 The ring inverse function ...
isirred 20362 An irreducible element of ...
isnirred 20363 The property of being a no...
isirred2 20364 Expand out the class diffe...
opprirred 20365 Irreducibility is symmetri...
irredn0 20366 The additive identity is n...
irredcl 20367 An irreducible element is ...
irrednu 20368 An irreducible element is ...
irredn1 20369 The multiplicative identit...
irredrmul 20370 The product of an irreduci...
irredlmul 20371 The product of a unit and ...
irredmul 20372 If product of two elements...
irredneg 20373 The negative of an irreduc...
irrednegb 20374 An element is irreducible ...
rnghmrcl 20381 Reverse closure of a non-u...
rnghmfn 20382 The mapping of two non-uni...
rnghmval 20383 The set of the non-unital ...
isrnghm 20384 A function is a non-unital...
isrnghmmul 20385 A function is a non-unital...
rnghmmgmhm 20386 A non-unital ring homomorp...
rnghmval2 20387 The non-unital ring homomo...
isrngim 20388 An isomorphism of non-unit...
rngimrcl 20389 Reverse closure for an iso...
rnghmghm 20390 A non-unital ring homomorp...
rnghmf 20391 A ring homomorphism is a f...
rnghmmul 20392 A homomorphism of non-unit...
isrnghm2d 20393 Demonstration of non-unita...
isrnghmd 20394 Demonstration of non-unita...
rnghmf1o 20395 A non-unital ring homomorp...
isrngim2 20396 An isomorphism of non-unit...
rngimf1o 20397 An isomorphism of non-unit...
rngimrnghm 20398 An isomorphism of non-unit...
rngimcnv 20399 The converse of an isomorp...
rnghmco 20400 The composition of non-uni...
idrnghm 20401 The identity homomorphism ...
c0mgm 20402 The constant mapping to ze...
c0mhm 20403 The constant mapping to ze...
c0ghm 20404 The constant mapping to ze...
c0snmgmhm 20405 The constant mapping to ze...
c0snmhm 20406 The constant mapping to ze...
c0snghm 20407 The constant mapping to ze...
rngisomfv1 20408 If there is a non-unital r...
rngisom1 20409 If there is a non-unital r...
rngisomring 20410 If there is a non-unital r...
rngisomring1 20411 If there is a non-unital r...
dfrhm2 20417 The property of a ring hom...
rhmrcl1 20419 Reverse closure of a ring ...
rhmrcl2 20420 Reverse closure of a ring ...
isrhm 20421 A function is a ring homom...
rhmmhm 20422 A ring homomorphism is a h...
rhmisrnghm 20423 Each unital ring homomorph...
isrim0OLD 20424 Obsolete version of ~ isri...
rimrcl 20425 Reverse closure for an iso...
isrim0 20426 A ring isomorphism is a ho...
rhmghm 20427 A ring homomorphism is an ...
rhmf 20428 A ring homomorphism is a f...
rhmmul 20429 A homomorphism of rings pr...
isrhm2d 20430 Demonstration of ring homo...
isrhmd 20431 Demonstration of ring homo...
rhm1 20432 Ring homomorphisms are req...
idrhm 20433 The identity homomorphism ...
rhmf1o 20434 A ring homomorphism is bij...
isrim 20435 An isomorphism of rings is...
isrimOLD 20436 Obsolete version of ~ isri...
rimf1o 20437 An isomorphism of rings is...
rimrhmOLD 20438 Obsolete version of ~ rimr...
rimrhm 20439 A ring isomorphism is a ho...
rimgim 20440 An isomorphism of rings is...
rimisrngim 20441 Each unital ring isomorphi...
rhmfn 20442 The mapping of two rings t...
rhmval 20443 The ring homomorphisms bet...
rhmco 20444 The composition of ring ho...
pwsco1rhm 20445 Right composition with a f...
pwsco2rhm 20446 Left composition with a ri...
brric 20447 The relation "is isomorphi...
brrici 20448 Prove isomorphic by an exp...
brric2 20449 The relation "is isomorphi...
ricgic 20450 If two rings are (ring) is...
rhmdvdsr 20451 A ring homomorphism preser...
rhmopp 20452 A ring homomorphism is als...
elrhmunit 20453 Ring homomorphisms preserv...
rhmunitinv 20454 Ring homomorphisms preserv...
isnzr 20457 Property of a nonzero ring...
nzrnz 20458 One and zero are different...
nzrring 20459 A nonzero ring is a ring. ...
nzrringOLD 20460 Obsolete version of ~ nzrr...
isnzr2 20461 Equivalent characterizatio...
isnzr2hash 20462 Equivalent characterizatio...
opprnzr 20463 The opposite of a nonzero ...
ringelnzr 20464 A ring is nonzero if it ha...
nzrunit 20465 A unit is nonzero in any n...
0ringnnzr 20466 A ring is a zero ring iff ...
0ring 20467 If a ring has only one ele...
0ringdif 20468 A zero ring is a ring whic...
0ringbas 20469 The base set of a zero rin...
0ring01eq 20470 In a ring with only one el...
01eq0ring 20471 If the zero and the identi...
01eq0ringOLD 20472 Obsolete version of ~ 01eq...
0ring01eqbi 20473 In a unital ring the zero ...
0ring1eq0 20474 In a zero ring, a ring whi...
c0rhm 20475 The constant mapping to ze...
c0rnghm 20476 The constant mapping to ze...
zrrnghm 20477 The constant mapping to ze...
nrhmzr 20478 There is no ring homomorph...
islring 20481 The predicate "is a local ...
lringnzr 20482 A local ring is a nonzero ...
lringring 20483 A local ring is a ring. (...
lringnz 20484 A local ring is a nonzero ...
lringuplu 20485 If the sum of two elements...
issubrng 20488 The subring of non-unital ...
subrngss 20489 A subring is a subset. (C...
subrngid 20490 Every non-unital ring is a...
subrngrng 20491 A subring is a non-unital ...
subrngrcl 20492 Reverse closure for a subr...
subrngsubg 20493 A subring is a subgroup. ...
subrngringnsg 20494 A subring is a normal subg...
subrngbas 20495 Base set of a subring stru...
subrng0 20496 A subring always has the s...
subrngacl 20497 A subring is closed under ...
subrngmcl 20498 A subgroup is closed under...
issubrng2 20499 Characterize the subrings ...
opprsubrng 20500 Being a subring is a symme...
subrngint 20501 The intersection of a none...
subrngin 20502 The intersection of two su...
subrngmre 20503 The subrings of a non-unit...
subsubrng 20504 A subring of a subring is ...
subsubrng2 20505 The set of subrings of a s...
rhmimasubrnglem 20506 Lemma for ~ rhmimasubrng :...
rhmimasubrng 20507 The homomorphic image of a...
cntzsubrng 20508 Centralizers in a non-unit...
subrngpropd 20509 If two structures have the...
issubrg 20514 The subring predicate. (C...
subrgss 20515 A subring is a subset. (C...
subrgid 20516 Every ring is a subring of...
subrgring 20517 A subring is a ring. (Con...
subrgcrng 20518 A subring of a commutative...
subrgrcl 20519 Reverse closure for a subr...
subrgsubg 20520 A subring is a subgroup. ...
subrgsubrng 20521 A subring of a unital ring...
subrg0 20522 A subring always has the s...
subrg1cl 20523 A subring contains the mul...
subrgbas 20524 Base set of a subring stru...
subrg1 20525 A subring always has the s...
subrgacl 20526 A subring is closed under ...
subrgmcl 20527 A subgroup is closed under...
subrgsubm 20528 A subring is a submonoid o...
subrgdvds 20529 If an element divides anot...
subrguss 20530 A unit of a subring is a u...
subrginv 20531 A subring always has the s...
subrgdv 20532 A subring always has the s...
subrgunit 20533 An element of a ring is a ...
subrgugrp 20534 The units of a subring for...
issubrg2 20535 Characterize the subrings ...
opprsubrg 20536 Being a subring is a symme...
subrgnzr 20537 A subring of a nonzero rin...
subrgint 20538 The intersection of a none...
subrgin 20539 The intersection of two su...
subrgmre 20540 The subrings of a ring are...
subsubrg 20541 A subring of a subring is ...
subsubrg2 20542 The set of subrings of a s...
issubrg3 20543 A subring is an additive s...
resrhm 20544 Restriction of a ring homo...
resrhm2b 20545 Restriction of the codomai...
rhmeql 20546 The equalizer of two ring ...
rhmima 20547 The homomorphic image of a...
rnrhmsubrg 20548 The range of a ring homomo...
cntzsubr 20549 Centralizers in a ring are...
pwsdiagrhm 20550 Diagonal homomorphism into...
subrgpropd 20551 If two structures have the...
rhmpropd 20552 Ring homomorphism depends ...
rngcval 20555 Value of the category of n...
rnghmresfn 20556 The class of non-unital ri...
rnghmresel 20557 An element of the non-unit...
rngcbas 20558 Set of objects of the cate...
rngchomfval 20559 Set of arrows of the categ...
rngchom 20560 Set of arrows of the categ...
elrngchom 20561 A morphism of non-unital r...
rngchomfeqhom 20562 The functionalized Hom-set...
rngccofval 20563 Composition in the categor...
rngcco 20564 Composition in the categor...
dfrngc2 20565 Alternate definition of th...
rnghmsscmap2 20566 The non-unital ring homomo...
rnghmsscmap 20567 The non-unital ring homomo...
rnghmsubcsetclem1 20568 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 20569 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 20570 The non-unital ring homomo...
rngccat 20571 The category of non-unital...
rngcid 20572 The identity arrow in the ...
rngcsect 20573 A section in the category ...
rngcinv 20574 An inverse in the category...
rngciso 20575 An isomorphism in the cate...
rngcifuestrc 20576 The "inclusion functor" fr...
funcrngcsetc 20577 The "natural forgetful fun...
funcrngcsetcALT 20578 Alternate proof of ~ funcr...
zrinitorngc 20579 The zero ring is an initia...
zrtermorngc 20580 The zero ring is a termina...
zrzeroorngc 20581 The zero ring is a zero ob...
ringcval 20584 Value of the category of u...
rhmresfn 20585 The class of unital ring h...
rhmresel 20586 An element of the unital r...
ringcbas 20587 Set of objects of the cate...
ringchomfval 20588 Set of arrows of the categ...
ringchom 20589 Set of arrows of the categ...
elringchom 20590 A morphism of unital rings...
ringchomfeqhom 20591 The functionalized Hom-set...
ringccofval 20592 Composition in the categor...
ringcco 20593 Composition in the categor...
dfringc2 20594 Alternate definition of th...
rhmsscmap2 20595 The unital ring homomorphi...
rhmsscmap 20596 The unital ring homomorphi...
rhmsubcsetclem1 20597 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 20598 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 20599 The unital ring homomorphi...
ringccat 20600 The category of unital rin...
ringcid 20601 The identity arrow in the ...
rhmsscrnghm 20602 The unital ring homomorphi...
rhmsubcrngclem1 20603 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 20604 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 20605 The unital ring homomorphi...
rngcresringcat 20606 The restriction of the cat...
ringcsect 20607 A section in the category ...
ringcinv 20608 An inverse in the category...
ringciso 20609 An isomorphism in the cate...
ringcbasbas 20610 An element of the base set...
funcringcsetc 20611 The "natural forgetful fun...
zrtermoringc 20612 The zero ring is a termina...
zrninitoringc 20613 The zero ring is not an in...
srhmsubclem1 20614 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 20615 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 20616 Lemma 3 for ~ srhmsubc . ...
srhmsubc 20617 According to ~ df-subc , t...
sringcat 20618 The restriction of the cat...
crhmsubc 20619 According to ~ df-subc , t...
cringcat 20620 The restriction of the cat...
rngcrescrhm 20621 The category of non-unital...
rhmsubclem1 20622 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 20623 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 20624 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 20625 Lemma 4 for ~ rhmsubc . (...
rhmsubc 20626 According to ~ df-subc , t...
rhmsubccat 20627 The restriction of the cat...
isdrng 20632 The predicate "is a divisi...
drngunit 20633 Elementhood in the set of ...
drngui 20634 The set of units of a divi...
drngring 20635 A division ring is a ring....
drngringd 20636 A division ring is a ring....
drnggrpd 20637 A division ring is a group...
drnggrp 20638 A division ring is a group...
isfld 20639 A field is a commutative d...
flddrngd 20640 A field is a division ring...
fldcrngd 20641 A field is a commutative r...
isdrng2 20642 A division ring can equiva...
drngprop 20643 If two structures have the...
drngmgp 20644 A division ring contains a...
drngmcl 20645 The product of two nonzero...
drngid 20646 A division ring's unity is...
drngunz 20647 A division ring's unity is...
drngnzr 20648 All division rings are non...
drngid2 20649 Properties showing that an...
drnginvrcl 20650 Closure of the multiplicat...
drnginvrn0 20651 The multiplicative inverse...
drnginvrcld 20652 Closure of the multiplicat...
drnginvrl 20653 Property of the multiplica...
drnginvrr 20654 Property of the multiplica...
drnginvrld 20655 Property of the multiplica...
drnginvrrd 20656 Property of the multiplica...
drngmul0or 20657 A product is zero iff one ...
drngmulne0 20658 A product is nonzero iff b...
drngmuleq0 20659 An element is zero iff its...
opprdrng 20660 The opposite of a division...
isdrngd 20661 Properties that characteri...
isdrngrd 20662 Properties that characteri...
isdrngdOLD 20663 Obsolete version of ~ isdr...
isdrngrdOLD 20664 Obsolete version of ~ isdr...
drngpropd 20665 If two structures have the...
fldpropd 20666 If two structures have the...
rng1nnzr 20667 The (smallest) structure r...
ring1zr 20668 The only (unital) ring wit...
rngen1zr 20669 The only (unital) ring wit...
ringen1zr 20670 The only unital ring with ...
rng1nfld 20671 The zero ring is not a fie...
issubdrg 20672 Characterize the subfields...
drhmsubc 20673 According to ~ df-subc , t...
drngcat 20674 The restriction of the cat...
fldcat 20675 The restriction of the cat...
fldc 20676 The restriction of the cat...
fldhmsubc 20677 According to ~ df-subc , t...
issdrg 20680 Property of a division sub...
sdrgrcl 20681 Reverse closure for a sub-...
sdrgdrng 20682 A sub-division-ring is a d...
sdrgsubrg 20683 A sub-division-ring is a s...
sdrgid 20684 Every division ring is a d...
sdrgss 20685 A division subring is a su...
sdrgbas 20686 Base set of a sub-division...
issdrg2 20687 Property of a division sub...
sdrgunit 20688 A unit of a sub-division-r...
imadrhmcl 20689 The image of a (nontrivial...
fldsdrgfld 20690 A sub-division-ring of a f...
acsfn1p 20691 Construction of a closure ...
subrgacs 20692 Closure property of subrin...
sdrgacs 20693 Closure property of divisi...
cntzsdrg 20694 Centralizers in division r...
subdrgint 20695 The intersection of a none...
sdrgint 20696 The intersection of a none...
primefld 20697 The smallest sub division ...
primefld0cl 20698 The prime field contains t...
primefld1cl 20699 The prime field contains t...
abvfval 20702 Value of the set of absolu...
isabv 20703 Elementhood in the set of ...
isabvd 20704 Properties that determine ...
abvrcl 20705 Reverse closure for the ab...
abvfge0 20706 An absolute value is a fun...
abvf 20707 An absolute value is a fun...
abvcl 20708 An absolute value is a fun...
abvge0 20709 The absolute value of a nu...
abveq0 20710 The value of an absolute v...
abvne0 20711 The absolute value of a no...
abvgt0 20712 The absolute value of a no...
abvmul 20713 An absolute value distribu...
abvtri 20714 An absolute value satisfie...
abv0 20715 The absolute value of zero...
abv1z 20716 The absolute value of one ...
abv1 20717 The absolute value of one ...
abvneg 20718 The absolute value of a ne...
abvsubtri 20719 An absolute value satisfie...
abvrec 20720 The absolute value distrib...
abvdiv 20721 The absolute value distrib...
abvdom 20722 Any ring with an absolute ...
abvres 20723 The restriction of an abso...
abvtrivd 20724 The trivial absolute value...
abvtriv 20725 The trivial absolute value...
abvpropd 20726 If two structures have the...
staffval 20731 The functionalization of t...
stafval 20732 The functionalization of t...
staffn 20733 The functionalization is e...
issrng 20734 The predicate "is a star r...
srngrhm 20735 The involution function in...
srngring 20736 A star ring is a ring. (C...
srngcnv 20737 The involution function in...
srngf1o 20738 The involution function in...
srngcl 20739 The involution function in...
srngnvl 20740 The involution function in...
srngadd 20741 The involution function in...
srngmul 20742 The involution function in...
srng1 20743 The conjugate of the ring ...
srng0 20744 The conjugate of the ring ...
issrngd 20745 Properties that determine ...
idsrngd 20746 A commutative ring is a st...
islmod 20751 The predicate "is a left m...
lmodlema 20752 Lemma for properties of a ...
islmodd 20753 Properties that determine ...
lmodgrp 20754 A left module is a group. ...
lmodring 20755 The scalar component of a ...
lmodfgrp 20756 The scalar component of a ...
lmodgrpd 20757 A left module is a group. ...
lmodbn0 20758 The base set of a left mod...
lmodacl 20759 Closure of ring addition f...
lmodmcl 20760 Closure of ring multiplica...
lmodsn0 20761 The set of scalars in a le...
lmodvacl 20762 Closure of vector addition...
lmodass 20763 Left module vector sum is ...
lmodlcan 20764 Left cancellation law for ...
lmodvscl 20765 Closure of scalar product ...
lmodvscld 20766 Closure of scalar product ...
scaffval 20767 The scalar multiplication ...
scafval 20768 The scalar multiplication ...
scafeq 20769 If the scalar multiplicati...
scaffn 20770 The scalar multiplication ...
lmodscaf 20771 The scalar multiplication ...
lmodvsdi 20772 Distributive law for scala...
lmodvsdir 20773 Distributive law for scala...
lmodvsass 20774 Associative law for scalar...
lmod0cl 20775 The ring zero in a left mo...
lmod1cl 20776 The ring unity in a left m...
lmodvs1 20777 Scalar product with the ri...
lmod0vcl 20778 The zero vector is a vecto...
lmod0vlid 20779 Left identity law for the ...
lmod0vrid 20780 Right identity law for the...
lmod0vid 20781 Identity equivalent to the...
lmod0vs 20782 Zero times a vector is the...
lmodvs0 20783 Anything times the zero ve...
lmodvsmmulgdi 20784 Distributive law for a gro...
lmodfopnelem1 20785 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20786 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20787 The (functionalized) opera...
lcomf 20788 A linear-combination sum i...
lcomfsupp 20789 A linear-combination sum i...
lmodvnegcl 20790 Closure of vector negative...
lmodvnegid 20791 Addition of a vector with ...
lmodvneg1 20792 Minus 1 times a vector is ...
lmodvsneg 20793 Multiplication of a vector...
lmodvsubcl 20794 Closure of vector subtract...
lmodcom 20795 Left module vector sum is ...
lmodabl 20796 A left module is an abelia...
lmodcmn 20797 A left module is a commuta...
lmodnegadd 20798 Distribute negation throug...
lmod4 20799 Commutative/associative la...
lmodvsubadd 20800 Relationship between vecto...
lmodvaddsub4 20801 Vector addition/subtractio...
lmodvpncan 20802 Addition/subtraction cance...
lmodvnpcan 20803 Cancellation law for vecto...
lmodvsubval2 20804 Value of vector subtractio...
lmodsubvs 20805 Subtraction of a scalar pr...
lmodsubdi 20806 Scalar multiplication dist...
lmodsubdir 20807 Scalar multiplication dist...
lmodsubeq0 20808 If the difference between ...
lmodsubid 20809 Subtraction of a vector fr...
lmodvsghm 20810 Scalar multiplication of t...
lmodprop2d 20811 If two structures have the...
lmodpropd 20812 If two structures have the...
gsumvsmul 20813 Pull a scalar multiplicati...
mptscmfsupp0 20814 A mapping to a scalar prod...
mptscmfsuppd 20815 A function mapping to a sc...
rmodislmodlem 20816 Lemma for ~ rmodislmod . ...
rmodislmod 20817 The right module ` R ` ind...
rmodislmodOLD 20818 Obsolete version of ~ rmod...
lssset 20821 The set of all (not necess...
islss 20822 The predicate "is a subspa...
islssd 20823 Properties that determine ...
lssss 20824 A subspace is a set of vec...
lssel 20825 A subspace member is a vec...
lss1 20826 The set of vectors in a le...
lssuni 20827 The union of all subspaces...
lssn0 20828 A subspace is not empty. ...
00lss 20829 The empty structure has no...
lsscl 20830 Closure property of a subs...
lssvacl 20831 Closure of vector addition...
lssvsubcl 20832 Closure of vector subtract...
lssvancl1 20833 Non-closure: if one vector...
lssvancl2 20834 Non-closure: if one vector...
lss0cl 20835 The zero vector belongs to...
lsssn0 20836 The singleton of the zero ...
lss0ss 20837 The zero subspace is inclu...
lssle0 20838 No subspace is smaller tha...
lssne0 20839 A nonzero subspace has a n...
lssvneln0 20840 A vector ` X ` which doesn...
lssneln0 20841 A vector ` X ` which doesn...
lssssr 20842 Conclude subspace ordering...
lssvscl 20843 Closure of scalar product ...
lssvnegcl 20844 Closure of negative vector...
lsssubg 20845 All subspaces are subgroup...
lsssssubg 20846 All subspaces are subgroup...
islss3 20847 A linear subspace of a mod...
lsslmod 20848 A submodule is a module. ...
lsslss 20849 The subspaces of a subspac...
islss4 20850 A linear subspace is a sub...
lss1d 20851 One-dimensional subspace (...
lssintcl 20852 The intersection of a none...
lssincl 20853 The intersection of two su...
lssmre 20854 The subspaces of a module ...
lssacs 20855 Submodules are an algebrai...
prdsvscacl 20856 Pointwise scalar multiplic...
prdslmodd 20857 The product of a family of...
pwslmod 20858 A structure power of a lef...
lspfval 20861 The span function for a le...
lspf 20862 The span function on a lef...
lspval 20863 The span of a set of vecto...
lspcl 20864 The span of a set of vecto...
lspsncl 20865 The span of a singleton is...
lspprcl 20866 The span of a pair is a su...
lsptpcl 20867 The span of an unordered t...
lspsnsubg 20868 The span of a singleton is...
00lsp 20869 ~ fvco4i lemma for linear ...
lspid 20870 The span of a subspace is ...
lspssv 20871 A span is a set of vectors...
lspss 20872 Span preserves subset orde...
lspssid 20873 A set of vectors is a subs...
lspidm 20874 The span of a set of vecto...
lspun 20875 The span of union is the s...
lspssp 20876 If a set of vectors is a s...
mrclsp 20877 Moore closure generalizes ...
lspsnss 20878 The span of the singleton ...
lspsnel3 20879 A member of the span of th...
lspprss 20880 The span of a pair of vect...
lspsnid 20881 A vector belongs to the sp...
lspsnel6 20882 Relationship between a vec...
lspsnel5 20883 Relationship between a vec...
lspsnel5a 20884 Relationship between a vec...
lspprid1 20885 A member of a pair of vect...
lspprid2 20886 A member of a pair of vect...
lspprvacl 20887 The sum of two vectors bel...
lssats2 20888 A way to express atomistic...
lspsneli 20889 A scalar product with a ve...
lspsn 20890 Span of the singleton of a...
lspsnel 20891 Member of span of the sing...
lspsnvsi 20892 Span of a scalar product o...
lspsnss2 20893 Comparable spans of single...
lspsnneg 20894 Negation does not change t...
lspsnsub 20895 Swapping subtraction order...
lspsn0 20896 Span of the singleton of t...
lsp0 20897 Span of the empty set. (C...
lspuni0 20898 Union of the span of the e...
lspun0 20899 The span of a union with t...
lspsneq0 20900 Span of the singleton is t...
lspsneq0b 20901 Equal singleton spans impl...
lmodindp1 20902 Two independent (non-colin...
lsslsp 20903 Spans in submodules corres...
lsslspOLD 20904 Obsolete version of ~ lssl...
lss0v 20905 The zero vector in a submo...
lsspropd 20906 If two structures have the...
lsppropd 20907 If two structures have the...
reldmlmhm 20914 Lemma for module homomorph...
lmimfn 20915 Lemma for module isomorphi...
islmhm 20916 Property of being a homomo...
islmhm3 20917 Property of a module homom...
lmhmlem 20918 Non-quantified consequence...
lmhmsca 20919 A homomorphism of left mod...
lmghm 20920 A homomorphism of left mod...
lmhmlmod2 20921 A homomorphism of left mod...
lmhmlmod1 20922 A homomorphism of left mod...
lmhmf 20923 A homomorphism of left mod...
lmhmlin 20924 A homomorphism of left mod...
lmodvsinv 20925 Multiplication of a vector...
lmodvsinv2 20926 Multiplying a negated vect...
islmhm2 20927 A one-equation proof of li...
islmhmd 20928 Deduction for a module hom...
0lmhm 20929 The constant zero linear f...
idlmhm 20930 The identity function on a...
invlmhm 20931 The negative function on a...
lmhmco 20932 The composition of two mod...
lmhmplusg 20933 The pointwise sum of two l...
lmhmvsca 20934 The pointwise scalar produ...
lmhmf1o 20935 A bijective module homomor...
lmhmima 20936 The image of a subspace un...
lmhmpreima 20937 The inverse image of a sub...
lmhmlsp 20938 Homomorphisms preserve spa...
lmhmrnlss 20939 The range of a homomorphis...
lmhmkerlss 20940 The kernel of a homomorphi...
reslmhm 20941 Restriction of a homomorph...
reslmhm2 20942 Expansion of the codomain ...
reslmhm2b 20943 Expansion of the codomain ...
lmhmeql 20944 The equalizer of two modul...
lspextmo 20945 A linear function is compl...
pwsdiaglmhm 20946 Diagonal homomorphism into...
pwssplit0 20947 Splitting for structure po...
pwssplit1 20948 Splitting for structure po...
pwssplit2 20949 Splitting for structure po...
pwssplit3 20950 Splitting for structure po...
islmim 20951 An isomorphism of left mod...
lmimf1o 20952 An isomorphism of left mod...
lmimlmhm 20953 An isomorphism of modules ...
lmimgim 20954 An isomorphism of modules ...
islmim2 20955 An isomorphism of left mod...
lmimcnv 20956 The converse of a bijectiv...
brlmic 20957 The relation "is isomorphi...
brlmici 20958 Prove isomorphic by an exp...
lmiclcl 20959 Isomorphism implies the le...
lmicrcl 20960 Isomorphism implies the ri...
lmicsym 20961 Module isomorphism is symm...
lmhmpropd 20962 Module homomorphism depend...
islbs 20965 The predicate " ` B ` is a...
lbsss 20966 A basis is a set of vector...
lbsel 20967 An element of a basis is a...
lbssp 20968 The span of a basis is the...
lbsind 20969 A basis is linearly indepe...
lbsind2 20970 A basis is linearly indepe...
lbspss 20971 No proper subset of a basi...
lsmcl 20972 The sum of two subspaces i...
lsmspsn 20973 Member of subspace sum of ...
lsmelval2 20974 Subspace sum membership in...
lsmsp 20975 Subspace sum in terms of s...
lsmsp2 20976 Subspace sum of spans of s...
lsmssspx 20977 Subspace sum (in its exten...
lsmpr 20978 The span of a pair of vect...
lsppreli 20979 A vector expressed as a su...
lsmelpr 20980 Two ways to say that a vec...
lsppr0 20981 The span of a vector paire...
lsppr 20982 Span of a pair of vectors....
lspprel 20983 Member of the span of a pa...
lspprabs 20984 Absorption of vector sum i...
lspvadd 20985 The span of a vector sum i...
lspsntri 20986 Triangle-type inequality f...
lspsntrim 20987 Triangle-type inequality f...
lbspropd 20988 If two structures have the...
pj1lmhm 20989 The left projection functi...
pj1lmhm2 20990 The left projection functi...
islvec 20993 The predicate "is a left v...
lvecdrng 20994 The set of scalars of a le...
lveclmod 20995 A left vector space is a l...
lveclmodd 20996 A vector space is a left m...
lvecgrpd 20997 A vector space is a group....
lsslvec 20998 A vector subspace is a vec...
lmhmlvec 20999 The property for modules t...
lvecvs0or 21000 If a scalar product is zer...
lvecvsn0 21001 A scalar product is nonzer...
lssvs0or 21002 If a scalar product belong...
lvecvscan 21003 Cancellation law for scala...
lvecvscan2 21004 Cancellation law for scala...
lvecinv 21005 Invert coefficient of scal...
lspsnvs 21006 A nonzero scalar product d...
lspsneleq 21007 Membership relation that i...
lspsncmp 21008 Comparable spans of nonzer...
lspsnne1 21009 Two ways to express that v...
lspsnne2 21010 Two ways to express that v...
lspsnnecom 21011 Swap two vectors with diff...
lspabs2 21012 Absorption law for span of...
lspabs3 21013 Absorption law for span of...
lspsneq 21014 Equal spans of singletons ...
lspsneu 21015 Nonzero vectors with equal...
lspsnel4 21016 A member of the span of th...
lspdisj 21017 The span of a vector not i...
lspdisjb 21018 A nonzero vector is not in...
lspdisj2 21019 Unequal spans are disjoint...
lspfixed 21020 Show membership in the spa...
lspexch 21021 Exchange property for span...
lspexchn1 21022 Exchange property for span...
lspexchn2 21023 Exchange property for span...
lspindpi 21024 Partial independence prope...
lspindp1 21025 Alternate way to say 3 vec...
lspindp2l 21026 Alternate way to say 3 vec...
lspindp2 21027 Alternate way to say 3 vec...
lspindp3 21028 Independence of 2 vectors ...
lspindp4 21029 (Partial) independence of ...
lvecindp 21030 Compute the ` X ` coeffici...
lvecindp2 21031 Sums of independent vector...
lspsnsubn0 21032 Unequal singleton spans im...
lsmcv 21033 Subspace sum has the cover...
lspsolvlem 21034 Lemma for ~ lspsolv . (Co...
lspsolv 21035 If ` X ` is in the span of...
lssacsex 21036 In a vector space, subspac...
lspsnat 21037 There is no subspace stric...
lspsncv0 21038 The span of a singleton co...
lsppratlem1 21039 Lemma for ~ lspprat . Let...
lsppratlem2 21040 Lemma for ~ lspprat . Sho...
lsppratlem3 21041 Lemma for ~ lspprat . In ...
lsppratlem4 21042 Lemma for ~ lspprat . In ...
lsppratlem5 21043 Lemma for ~ lspprat . Com...
lsppratlem6 21044 Lemma for ~ lspprat . Neg...
lspprat 21045 A proper subspace of the s...
islbs2 21046 An equivalent formulation ...
islbs3 21047 An equivalent formulation ...
lbsacsbs 21048 Being a basis in a vector ...
lvecdim 21049 The dimension theorem for ...
lbsextlem1 21050 Lemma for ~ lbsext . The ...
lbsextlem2 21051 Lemma for ~ lbsext . Sinc...
lbsextlem3 21052 Lemma for ~ lbsext . A ch...
lbsextlem4 21053 Lemma for ~ lbsext . ~ lbs...
lbsextg 21054 For any linearly independe...
lbsext 21055 For any linearly independe...
lbsexg 21056 Every vector space has a b...
lbsex 21057 Every vector space has a b...
lvecprop2d 21058 If two structures have the...
lvecpropd 21059 If two structures have the...
sraval 21064 Lemma for ~ srabase throug...
sralem 21065 Lemma for ~ srabase and si...
sralemOLD 21066 Obsolete version of ~ sral...
srabase 21067 Base set of a subring alge...
srabaseOLD 21068 Obsolete proof of ~ srabas...
sraaddg 21069 Additive operation of a su...
sraaddgOLD 21070 Obsolete proof of ~ sraadd...
sramulr 21071 Multiplicative operation o...
sramulrOLD 21072 Obsolete proof of ~ sramul...
srasca 21073 The set of scalars of a su...
srascaOLD 21074 Obsolete proof of ~ srasca...
sravsca 21075 The scalar product operati...
sravscaOLD 21076 Obsolete proof of ~ sravsc...
sraip 21077 The inner product operatio...
sratset 21078 Topology component of a su...
sratsetOLD 21079 Obsolete proof of ~ sratse...
sratopn 21080 Topology component of a su...
srads 21081 Distance function of a sub...
sradsOLD 21082 Obsolete proof of ~ srads ...
sraring 21083 Condition for a subring al...
sralmod 21084 The subring algebra is a l...
sralmod0 21085 The subring module inherit...
issubrgd 21086 Prove a subring by closure...
rlmfn 21087 ` ringLMod ` is a function...
rlmval 21088 Value of the ring module. ...
rlmval2 21089 Value of the ring module e...
rlmbas 21090 Base set of the ring modul...
rlmplusg 21091 Vector addition in the rin...
rlm0 21092 Zero vector in the ring mo...
rlmsub 21093 Subtraction in the ring mo...
rlmmulr 21094 Ring multiplication in the...
rlmsca 21095 Scalars in the ring module...
rlmsca2 21096 Scalars in the ring module...
rlmvsca 21097 Scalar multiplication in t...
rlmtopn 21098 Topology component of the ...
rlmds 21099 Metric component of the ri...
rlmlmod 21100 The ring module is a modul...
rlmlvec 21101 The ring module over a div...
rlmlsm 21102 Subgroup sum of the ring m...
rlmvneg 21103 Vector negation in the rin...
rlmscaf 21104 Functionalized scalar mult...
ixpsnbasval 21105 The value of an infinite C...
lidlval 21110 Value of the set of ring i...
rspval 21111 Value of the ring span fun...
lidlss 21112 An ideal is a subset of th...
lidlssbas 21113 The base set of the restri...
lidlbas 21114 A (left) ideal of a ring i...
islidl 21115 Predicate of being a (left...
rnglidlmcl 21116 A (left) ideal containing ...
rngridlmcl 21117 A right ideal (which is a ...
dflidl2rng 21118 Alternate (the usual textb...
isridlrng 21119 A right ideal is a left id...
lidl0cl 21120 An ideal contains 0. (Con...
lidlacl 21121 An ideal is closed under a...
lidlnegcl 21122 An ideal contains negative...
lidlsubg 21123 An ideal is a subgroup of ...
lidlsubcl 21124 An ideal is closed under s...
lidlmcl 21125 An ideal is closed under l...
lidl1el 21126 An ideal contains 1 iff it...
dflidl2 21127 Alternate (the usual textb...
lidl0ALT 21128 Alternate proof for ~ lidl...
rnglidl0 21129 Every non-unital ring cont...
lidl0 21130 Every ring contains a zero...
lidl1ALT 21131 Alternate proof for ~ lidl...
rnglidl1 21132 The base set of every non-...
lidl1 21133 Every ring contains a unit...
lidlacs 21134 The ideal system is an alg...
rspcl 21135 The span of a set of ring ...
rspssid 21136 The span of a set of ring ...
rsp1 21137 The span of the identity e...
rsp0 21138 The span of the zero eleme...
rspssp 21139 The ideal span of a set of...
mrcrsp 21140 Moore closure generalizes ...
lidlnz 21141 A nonzero ideal contains a...
drngnidl 21142 A division ring has only t...
lidlrsppropd 21143 The left ideals and ring s...
rnglidlmmgm 21144 The multiplicative group o...
rnglidlmsgrp 21145 The multiplicative group o...
rnglidlrng 21146 A (left) ideal of a non-un...
2idlval 21149 Definition of a two-sided ...
isridl 21150 A right ideal is a left id...
2idlelb 21151 Membership in a two-sided ...
2idllidld 21152 A two-sided ideal is a lef...
2idlridld 21153 A two-sided ideal is a rig...
df2idl2rng 21154 Alternate (the usual textb...
df2idl2 21155 Alternate (the usual textb...
ridl0 21156 Every ring contains a zero...
ridl1 21157 Every ring contains a unit...
2idl0 21158 Every ring contains a zero...
2idl1 21159 Every ring contains a unit...
2idlss 21160 A two-sided ideal is a sub...
2idlbas 21161 The base set of a two-side...
2idlelbas 21162 The base set of a two-side...
rng2idlsubrng 21163 A two-sided ideal of a non...
rng2idlnsg 21164 A two-sided ideal of a non...
rng2idl0 21165 The zero (additive identit...
rng2idlsubgsubrng 21166 A two-sided ideal of a non...
rng2idlsubgnsg 21167 A two-sided ideal of a non...
rng2idlsubg0 21168 The zero (additive identit...
2idlcpblrng 21169 The coset equivalence rela...
2idlcpbl 21170 The coset equivalence rela...
qus2idrng 21171 The quotient of a non-unit...
qus1 21172 The multiplicative identit...
qusring 21173 If ` S ` is a two-sided id...
qusrhm 21174 If ` S ` is a two-sided id...
qusmul2 21175 Value of the ring operatio...
crngridl 21176 In a commutative ring, the...
crng2idl 21177 In a commutative ring, a t...
qusmulrng 21178 Value of the multiplicatio...
quscrng 21179 The quotient of a commutat...
rngqiprng1elbas 21180 The ring unity of a two-si...
rngqiprngghmlem1 21181 Lemma 1 for ~ rngqiprngghm...
rngqiprngghmlem2 21182 Lemma 2 for ~ rngqiprngghm...
rngqiprngghmlem3 21183 Lemma 3 for ~ rngqiprngghm...
rngqiprngimfolem 21184 Lemma for ~ rngqiprngimfo ...
rngqiprnglinlem1 21185 Lemma 1 for ~ rngqiprnglin...
rngqiprnglinlem2 21186 Lemma 2 for ~ rngqiprnglin...
rngqiprnglinlem3 21187 Lemma 3 for ~ rngqiprnglin...
rngqiprngimf1lem 21188 Lemma for ~ rngqiprngimf1 ...
rngqipbas 21189 The base set of the produc...
rngqiprng 21190 The product of the quotien...
rngqiprngimf 21191 ` F ` is a function from (...
rngqiprngimfv 21192 The value of the function ...
rngqiprngghm 21193 ` F ` is a homomorphism of...
rngqiprngimf1 21194 ` F ` is a one-to-one func...
rngqiprngimfo 21195 ` F ` is a function from (...
rngqiprnglin 21196 ` F ` is linear with respe...
rngqiprngho 21197 ` F ` is a homomorphism of...
rngqiprngim 21198 ` F ` is an isomorphism of...
rng2idl1cntr 21199 The unity of a two-sided i...
rngringbdlem1 21200 In a unital ring, the quot...
rngringbdlem2 21201 A non-unital ring is unita...
rngringbd 21202 A non-unital ring is unita...
ring2idlqus 21203 For every unital ring ther...
ring2idlqusb 21204 A non-unital ring is unita...
rngqiprngfulem1 21205 Lemma 1 for ~ rngqiprngfu ...
rngqiprngfulem2 21206 Lemma 2 for ~ rngqiprngfu ...
rngqiprngfulem3 21207 Lemma 3 for ~ rngqiprngfu ...
rngqiprngfulem4 21208 Lemma 4 for ~ rngqiprngfu ...
rngqiprngfulem5 21209 Lemma 5 for ~ rngqiprngfu ...
rngqipring1 21210 The ring unity of the prod...
rngqiprngfu 21211 The function value of ` F ...
rngqiprngu 21212 If a non-unital ring has a...
ring2idlqus1 21213 If a non-unital ring has a...
lpival 21218 Value of the set of princi...
islpidl 21219 Property of being a princi...
lpi0 21220 The zero ideal is always p...
lpi1 21221 The unit ideal is always p...
islpir 21222 Principal ideal rings are ...
lpiss 21223 Principal ideals are a sub...
islpir2 21224 Principal ideal rings are ...
lpirring 21225 Principal ideal rings are ...
drnglpir 21226 Division rings are princip...
rspsn 21227 Membership in principal id...
lidldvgen 21228 An element generates an id...
lpigen 21229 An ideal is principal iff ...
rrgval 21238 Value of the set or left-r...
isrrg 21239 Membership in the set of l...
rrgeq0i 21240 Property of a left-regular...
rrgeq0 21241 Left-multiplication by a l...
rrgsupp 21242 Left multiplication by a l...
rrgss 21243 Left-regular elements are ...
unitrrg 21244 Units are regular elements...
isdomn 21245 Expand definition of a dom...
domnnzr 21246 A domain is a nonzero ring...
domnring 21247 A domain is a ring. (Cont...
domneq0 21248 In a domain, a product is ...
domnmuln0 21249 In a domain, a product of ...
isdomn2 21250 A ring is a domain iff all...
domnrrg 21251 In a domain, any nonzero e...
isdomn3 21252 Nonzero elements form a mu...
isdomn5 21253 The right conjunct in the ...
isdomn4 21254 A ring is a domain iff it ...
opprdomn 21255 The opposite of a domain i...
abvn0b 21256 Another characterization o...
drngdomn 21257 A division ring is a domai...
isidom 21258 An integral domain is a co...
idomdomd 21259 An integral domain is a do...
idomcringd 21260 An integral domain is a co...
idomringd 21261 An integral domain is a ri...
fldidom 21262 A field is an integral dom...
fldidomOLD 21263 Obsolete version of ~ fldi...
fidomndrnglem 21264 Lemma for ~ fidomndrng . ...
fidomndrng 21265 A finite domain is a divis...
fiidomfld 21266 A finite integral domain i...
cnfldstr 21285 The field of complex numbe...
cnfldex 21286 The field of complex numbe...
cnfldbas 21287 The base set of the field ...
mpocnfldadd 21288 The addition operation of ...
cnfldadd 21289 The addition operation of ...
mpocnfldmul 21290 The multiplication operati...
cnfldmul 21291 The multiplication operati...
cnfldcj 21292 The conjugation operation ...
cnfldtset 21293 The topology component of ...
cnfldle 21294 The ordering of the field ...
cnfldds 21295 The metric of the field of...
cnfldunif 21296 The uniform structure comp...
cnfldfun 21297 The field of complex numbe...
cnfldfunALT 21298 The field of complex numbe...
dfcnfldOLD 21299 Obsolete version of ~ df-c...
cnfldstrOLD 21300 Obsolete version of ~ cnfl...
cnfldexOLD 21301 Obsolete version of ~ cnfl...
cnfldbasOLD 21302 Obsolete version of ~ cnfl...
cnfldaddOLD 21303 Obsolete version of ~ cnfl...
cnfldmulOLD 21304 Obsolete version of ~ cnfl...
cnfldcjOLD 21305 Obsolete version of ~ cnfl...
cnfldtsetOLD 21306 Obsolete version of ~ cnfl...
cnfldleOLD 21307 Obsolete version of ~ cnfl...
cnflddsOLD 21308 Obsolete version of ~ cnfl...
cnfldunifOLD 21309 Obsolete version of ~ cnfl...
cnfldfunOLD 21310 Obsolete version of ~ cnfl...
cnfldfunALTOLD 21311 Obsolete version of ~ cnfl...
cnfldfunALTOLDOLD 21312 Obsolete proof of ~ cnfldf...
xrsstr 21313 The extended real structur...
xrsex 21314 The extended real structur...
xrsbas 21315 The base set of the extend...
xrsadd 21316 The addition operation of ...
xrsmul 21317 The multiplication operati...
xrstset 21318 The topology component of ...
xrsle 21319 The ordering of the extend...
cncrng 21320 The complex numbers form a...
cncrngOLD 21321 Obsolete version of ~ cncr...
cnring 21322 The complex numbers form a...
xrsmcmn 21323 The "multiplicative group"...
cnfld0 21324 Zero is the zero element o...
cnfld1 21325 One is the unity element o...
cnfld1OLD 21326 Obsolete version of ~ cnfl...
cnfldneg 21327 The additive inverse in th...
cnfldplusf 21328 The functionalized additio...
cnfldsub 21329 The subtraction operator i...
cndrng 21330 The complex numbers form a...
cndrngOLD 21331 Obsolete version of ~ cndr...
cnflddiv 21332 The division operation in ...
cnflddivOLD 21333 Obsolete version of ~ cnfl...
cnfldinv 21334 The multiplicative inverse...
cnfldmulg 21335 The group multiple functio...
cnfldexp 21336 The exponentiation operato...
cnsrng 21337 The complex numbers form a...
xrsmgm 21338 The "additive group" of th...
xrsnsgrp 21339 The "additive group" of th...
xrsmgmdifsgrp 21340 The "additive group" of th...
xrs1mnd 21341 The extended real numbers,...
xrs10 21342 The zero of the extended r...
xrs1cmn 21343 The extended real numbers ...
xrge0subm 21344 The nonnegative extended r...
xrge0cmn 21345 The nonnegative extended r...
xrsds 21346 The metric of the extended...
xrsdsval 21347 The metric of the extended...
xrsdsreval 21348 The metric of the extended...
xrsdsreclblem 21349 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 21350 The metric of the extended...
cnsubmlem 21351 Lemma for ~ nn0subm and fr...
cnsubglem 21352 Lemma for ~ resubdrg and f...
cnsubrglem 21353 Lemma for ~ resubdrg and f...
cnsubrglemOLD 21354 Obsolete version of ~ cnsu...
cnsubdrglem 21355 Lemma for ~ resubdrg and f...
qsubdrg 21356 The rational numbers form ...
zsubrg 21357 The integers form a subrin...
gzsubrg 21358 The gaussian integers form...
nn0subm 21359 The nonnegative integers f...
rege0subm 21360 The nonnegative reals form...
absabv 21361 The regular absolute value...
zsssubrg 21362 The integers are a subset ...
qsssubdrg 21363 The rational numbers are a...
cnsubrg 21364 There are no subrings of t...
cnmgpabl 21365 The unit group of the comp...
cnmgpid 21366 The group identity element...
cnmsubglem 21367 Lemma for ~ rpmsubg and fr...
rpmsubg 21368 The positive reals form a ...
gzrngunitlem 21369 Lemma for ~ gzrngunit . (...
gzrngunit 21370 The units on ` ZZ [ _i ] `...
gsumfsum 21371 Relate a group sum on ` CC...
regsumfsum 21372 Relate a group sum on ` ( ...
expmhm 21373 Exponentiation is a monoid...
nn0srg 21374 The nonnegative integers f...
rge0srg 21375 The nonnegative real numbe...
zringcrng 21378 The ring of integers is a ...
zringring 21379 The ring of integers is a ...
zringrng 21380 The ring of integers is a ...
zringabl 21381 The ring of integers is an...
zringgrp 21382 The ring of integers is an...
zringbas 21383 The integers are the base ...
zringplusg 21384 The addition operation of ...
zringsub 21385 The subtraction of element...
zringmulg 21386 The multiplication (group ...
zringmulr 21387 The multiplication operati...
zring0 21388 The zero element of the ri...
zring1 21389 The unity element of the r...
zringnzr 21390 The ring of integers is a ...
dvdsrzring 21391 Ring divisibility in the r...
zringlpirlem1 21392 Lemma for ~ zringlpir . A...
zringlpirlem2 21393 Lemma for ~ zringlpir . A...
zringlpirlem3 21394 Lemma for ~ zringlpir . A...
zringinvg 21395 The additive inverse of an...
zringunit 21396 The units of ` ZZ ` are th...
zringlpir 21397 The integers are a princip...
zringndrg 21398 The integers are not a div...
zringcyg 21399 The integers are a cyclic ...
zringsubgval 21400 Subtraction in the ring of...
zringmpg 21401 The multiplicative group o...
prmirredlem 21402 A positive integer is irre...
dfprm2 21403 The positive irreducible e...
prmirred 21404 The irreducible elements o...
expghm 21405 Exponentiation is a group ...
mulgghm2 21406 The powers of a group elem...
mulgrhm 21407 The powers of the element ...
mulgrhm2 21408 The powers of the element ...
irinitoringc 21409 The ring of integers is an...
nzerooringczr 21410 There is no zero object in...
pzriprnglem1 21411 Lemma 1 for ~ pzriprng : `...
pzriprnglem2 21412 Lemma 2 for ~ pzriprng : ...
pzriprnglem3 21413 Lemma 3 for ~ pzriprng : ...
pzriprnglem4 21414 Lemma 4 for ~ pzriprng : `...
pzriprnglem5 21415 Lemma 5 for ~ pzriprng : `...
pzriprnglem6 21416 Lemma 6 for ~ pzriprng : `...
pzriprnglem7 21417 Lemma 7 for ~ pzriprng : `...
pzriprnglem8 21418 Lemma 8 for ~ pzriprng : `...
pzriprnglem9 21419 Lemma 9 for ~ pzriprng : ...
pzriprnglem10 21420 Lemma 10 for ~ pzriprng : ...
pzriprnglem11 21421 Lemma 11 for ~ pzriprng : ...
pzriprnglem12 21422 Lemma 12 for ~ pzriprng : ...
pzriprnglem13 21423 Lemma 13 for ~ pzriprng : ...
pzriprnglem14 21424 Lemma 14 for ~ pzriprng : ...
pzriprngALT 21425 The non-unital ring ` ( ZZ...
pzriprng1ALT 21426 The ring unity of the ring...
pzriprng 21427 The non-unital ring ` ( ZZ...
pzriprng1 21428 The ring unity of the ring...
zrhval 21437 Define the unique homomorp...
zrhval2 21438 Alternate value of the ` Z...
zrhmulg 21439 Value of the ` ZRHom ` hom...
zrhrhmb 21440 The ` ZRHom ` homomorphism...
zrhrhm 21441 The ` ZRHom ` homomorphism...
zrh1 21442 Interpretation of 1 in a r...
zrh0 21443 Interpretation of 0 in a r...
zrhpropd 21444 The ` ZZ ` ring homomorphi...
zlmval 21445 Augment an abelian group w...
zlmlem 21446 Lemma for ~ zlmbas and ~ z...
zlmlemOLD 21447 Obsolete version of ~ zlml...
zlmbas 21448 Base set of a ` ZZ ` -modu...
zlmbasOLD 21449 Obsolete version of ~ zlmb...
zlmplusg 21450 Group operation of a ` ZZ ...
zlmplusgOLD 21451 Obsolete version of ~ zlmb...
zlmmulr 21452 Ring operation of a ` ZZ `...
zlmmulrOLD 21453 Obsolete version of ~ zlmb...
zlmsca 21454 Scalar ring of a ` ZZ ` -m...
zlmvsca 21455 Scalar multiplication oper...
zlmlmod 21456 The ` ZZ ` -module operati...
chrval 21457 Definition substitution of...
chrcl 21458 Closure of the characteris...
chrid 21459 The canonical ` ZZ ` ring ...
chrdvds 21460 The ` ZZ ` ring homomorphi...
chrcong 21461 If two integers are congru...
dvdschrmulg 21462 In a ring, any multiple of...
fermltlchr 21463 A generalization of Fermat...
chrnzr 21464 Nonzero rings are precisel...
chrrhm 21465 The characteristic restric...
domnchr 21466 The characteristic of a do...
znlidl 21467 The set ` n ZZ ` is an ide...
zncrng2 21468 Making a commutative ring ...
znval 21469 The value of the ` Z/nZ ` ...
znle 21470 The value of the ` Z/nZ ` ...
znval2 21471 Self-referential expressio...
znbaslem 21472 Lemma for ~ znbas . (Cont...
znbaslemOLD 21473 Obsolete version of ~ znba...
znbas2 21474 The base set of ` Z/nZ ` i...
znbas2OLD 21475 Obsolete version of ~ znba...
znadd 21476 The additive structure of ...
znaddOLD 21477 Obsolete version of ~ znad...
znmul 21478 The multiplicative structu...
znmulOLD 21479 Obsolete version of ~ znad...
znzrh 21480 The ` ZZ ` ring homomorphi...
znbas 21481 The base set of ` Z/nZ ` s...
zncrng 21482 ` Z/nZ ` is a commutative ...
znzrh2 21483 The ` ZZ ` ring homomorphi...
znzrhval 21484 The ` ZZ ` ring homomorphi...
znzrhfo 21485 The ` ZZ ` ring homomorphi...
zncyg 21486 The group ` ZZ / n ZZ ` is...
zndvds 21487 Express equality of equiva...
zndvds0 21488 Special case of ~ zndvds w...
znf1o 21489 The function ` F ` enumera...
zzngim 21490 The ` ZZ ` ring homomorphi...
znle2 21491 The ordering of the ` Z/nZ...
znleval 21492 The ordering of the ` Z/nZ...
znleval2 21493 The ordering of the ` Z/nZ...
zntoslem 21494 Lemma for ~ zntos . (Cont...
zntos 21495 The ` Z/nZ ` structure is ...
znhash 21496 The ` Z/nZ ` structure has...
znfi 21497 The ` Z/nZ ` structure is ...
znfld 21498 The ` Z/nZ ` structure is ...
znidomb 21499 The ` Z/nZ ` structure is ...
znchr 21500 Cyclic rings are defined b...
znunit 21501 The units of ` Z/nZ ` are ...
znunithash 21502 The size of the unit group...
znrrg 21503 The regular elements of ` ...
cygznlem1 21504 Lemma for ~ cygzn . (Cont...
cygznlem2a 21505 Lemma for ~ cygzn . (Cont...
cygznlem2 21506 Lemma for ~ cygzn . (Cont...
cygznlem3 21507 A cyclic group with ` n ` ...
cygzn 21508 A cyclic group with ` n ` ...
cygth 21509 The "fundamental theorem o...
cyggic 21510 Cyclic groups are isomorph...
frgpcyg 21511 A free group is cyclic iff...
freshmansdream 21512 For a prime number ` P ` ,...
cnmsgnsubg 21513 The signs form a multiplic...
cnmsgnbas 21514 The base set of the sign s...
cnmsgngrp 21515 The group of signs under m...
psgnghm 21516 The sign is a homomorphism...
psgnghm2 21517 The sign is a homomorphism...
psgninv 21518 The sign of a permutation ...
psgnco 21519 Multiplicativity of the pe...
zrhpsgnmhm 21520 Embedding of permutation s...
zrhpsgninv 21521 The embedded sign of a per...
evpmss 21522 Even permutations are perm...
psgnevpmb 21523 A class is an even permuta...
psgnodpm 21524 A permutation which is odd...
psgnevpm 21525 A permutation which is eve...
psgnodpmr 21526 If a permutation has sign ...
zrhpsgnevpm 21527 The sign of an even permut...
zrhpsgnodpm 21528 The sign of an odd permuta...
cofipsgn 21529 Composition of any class `...
zrhpsgnelbas 21530 Embedding of permutation s...
zrhcopsgnelbas 21531 Embedding of permutation s...
evpmodpmf1o 21532 The function for performin...
pmtrodpm 21533 A transposition is an odd ...
psgnfix1 21534 A permutation of a finite ...
psgnfix2 21535 A permutation of a finite ...
psgndiflemB 21536 Lemma 1 for ~ psgndif . (...
psgndiflemA 21537 Lemma 2 for ~ psgndif . (...
psgndif 21538 Embedding of permutation s...
copsgndif 21539 Embedding of permutation s...
rebase 21542 The base of the field of r...
remulg 21543 The multiplication (group ...
resubdrg 21544 The real numbers form a di...
resubgval 21545 Subtraction in the field o...
replusg 21546 The addition operation of ...
remulr 21547 The multiplication operati...
re0g 21548 The zero element of the fi...
re1r 21549 The unity element of the f...
rele2 21550 The ordering relation of t...
relt 21551 The ordering relation of t...
reds 21552 The distance of the field ...
redvr 21553 The division operation of ...
retos 21554 The real numbers are a tot...
refld 21555 The real numbers form a fi...
refldcj 21556 The conjugation operation ...
resrng 21557 The real numbers form a st...
regsumsupp 21558 The group sum over the rea...
rzgrp 21559 The quotient group ` RR / ...
isphl 21564 The predicate "is a genera...
phllvec 21565 A pre-Hilbert space is a l...
phllmod 21566 A pre-Hilbert space is a l...
phlsrng 21567 The scalar ring of a pre-H...
phllmhm 21568 The inner product of a pre...
ipcl 21569 Closure of the inner produ...
ipcj 21570 Conjugate of an inner prod...
iporthcom 21571 Orthogonality (meaning inn...
ip0l 21572 Inner product with a zero ...
ip0r 21573 Inner product with a zero ...
ipeq0 21574 The inner product of a vec...
ipdir 21575 Distributive law for inner...
ipdi 21576 Distributive law for inner...
ip2di 21577 Distributive law for inner...
ipsubdir 21578 Distributive law for inner...
ipsubdi 21579 Distributive law for inner...
ip2subdi 21580 Distributive law for inner...
ipass 21581 Associative law for inner ...
ipassr 21582 "Associative" law for seco...
ipassr2 21583 "Associative" law for inne...
ipffval 21584 The inner product operatio...
ipfval 21585 The inner product operatio...
ipfeq 21586 If the inner product opera...
ipffn 21587 The inner product operatio...
phlipf 21588 The inner product operatio...
ip2eq 21589 Two vectors are equal iff ...
isphld 21590 Properties that determine ...
phlpropd 21591 If two structures have the...
ssipeq 21592 The inner product on a sub...
phssipval 21593 The inner product on a sub...
phssip 21594 The inner product (as a fu...
phlssphl 21595 A subspace of an inner pro...
ocvfval 21602 The orthocomplement operat...
ocvval 21603 Value of the orthocompleme...
elocv 21604 Elementhood in the orthoco...
ocvi 21605 Property of a member of th...
ocvss 21606 The orthocomplement of a s...
ocvocv 21607 A set is contained in its ...
ocvlss 21608 The orthocomplement of a s...
ocv2ss 21609 Orthocomplements reverse s...
ocvin 21610 An orthocomplement has tri...
ocvsscon 21611 Two ways to say that ` S `...
ocvlsp 21612 The orthocomplement of a l...
ocv0 21613 The orthocomplement of the...
ocvz 21614 The orthocomplement of the...
ocv1 21615 The orthocomplement of the...
unocv 21616 The orthocomplement of a u...
iunocv 21617 The orthocomplement of an ...
cssval 21618 The set of closed subspace...
iscss 21619 The predicate "is a closed...
cssi 21620 Property of a closed subsp...
cssss 21621 A closed subspace is a sub...
iscss2 21622 It is sufficient to prove ...
ocvcss 21623 The orthocomplement of any...
cssincl 21624 The zero subspace is a clo...
css0 21625 The zero subspace is a clo...
css1 21626 The whole space is a close...
csslss 21627 A closed subspace of a pre...
lsmcss 21628 A subset of a pre-Hilbert ...
cssmre 21629 The closed subspaces of a ...
mrccss 21630 The Moore closure correspo...
thlval 21631 Value of the Hilbert latti...
thlbas 21632 Base set of the Hilbert la...
thlbasOLD 21633 Obsolete proof of ~ thlbas...
thlle 21634 Ordering on the Hilbert la...
thlleOLD 21635 Obsolete proof of ~ thlle ...
thlleval 21636 Ordering on the Hilbert la...
thloc 21637 Orthocomplement on the Hil...
pjfval 21644 The value of the projectio...
pjdm 21645 A subspace is in the domai...
pjpm 21646 The projection map is a pa...
pjfval2 21647 Value of the projection ma...
pjval 21648 Value of the projection ma...
pjdm2 21649 A subspace is in the domai...
pjff 21650 A projection is a linear o...
pjf 21651 A projection is a function...
pjf2 21652 A projection is a function...
pjfo 21653 A projection is a surjecti...
pjcss 21654 A projection subspace is a...
ocvpj 21655 The orthocomplement of a p...
ishil 21656 The predicate "is a Hilber...
ishil2 21657 The predicate "is a Hilber...
isobs 21658 The predicate "is an ortho...
obsip 21659 The inner product of two e...
obsipid 21660 A basis element has length...
obsrcl 21661 Reverse closure for an ort...
obsss 21662 An orthonormal basis is a ...
obsne0 21663 A basis element is nonzero...
obsocv 21664 An orthonormal basis has t...
obs2ocv 21665 The double orthocomplement...
obselocv 21666 A basis element is in the ...
obs2ss 21667 A basis has no proper subs...
obslbs 21668 An orthogonal basis is a l...
reldmdsmm 21671 The direct sum is a well-b...
dsmmval 21672 Value of the module direct...
dsmmbase 21673 Base set of the module dir...
dsmmval2 21674 Self-referential definitio...
dsmmbas2 21675 Base set of the direct sum...
dsmmfi 21676 For finite products, the d...
dsmmelbas 21677 Membership in the finitely...
dsmm0cl 21678 The all-zero vector is con...
dsmmacl 21679 The finite hull is closed ...
prdsinvgd2 21680 Negation of a single coord...
dsmmsubg 21681 The finite hull of a produ...
dsmmlss 21682 The finite hull of a produ...
dsmmlmod 21683 The direct sum of a family...
frlmval 21686 Value of the "free module"...
frlmlmod 21687 The free module is a modul...
frlmpws 21688 The free module as a restr...
frlmlss 21689 The base set of the free m...
frlmpwsfi 21690 The finite free module is ...
frlmsca 21691 The ring of scalars of a f...
frlm0 21692 Zero in a free module (rin...
frlmbas 21693 Base set of the free modul...
frlmelbas 21694 Membership in the base set...
frlmrcl 21695 If a free module is inhabi...
frlmbasfsupp 21696 Elements of the free modul...
frlmbasmap 21697 Elements of the free modul...
frlmbasf 21698 Elements of the free modul...
frlmlvec 21699 The free module over a div...
frlmfibas 21700 The base set of the finite...
elfrlmbasn0 21701 If the dimension of a free...
frlmplusgval 21702 Addition in a free module....
frlmsubgval 21703 Subtraction in a free modu...
frlmvscafval 21704 Scalar multiplication in a...
frlmvplusgvalc 21705 Coordinates of a sum with ...
frlmvscaval 21706 Coordinates of a scalar mu...
frlmplusgvalb 21707 Addition in a free module ...
frlmvscavalb 21708 Scalar multiplication in a...
frlmvplusgscavalb 21709 Addition combined with sca...
frlmgsum 21710 Finite commutative sums in...
frlmsplit2 21711 Restriction is homomorphic...
frlmsslss 21712 A subset of a free module ...
frlmsslss2 21713 A subset of a free module ...
frlmbas3 21714 An element of the base set...
mpofrlmd 21715 Elements of the free modul...
frlmip 21716 The inner product of a fre...
frlmipval 21717 The inner product of a fre...
frlmphllem 21718 Lemma for ~ frlmphl . (Co...
frlmphl 21719 Conditions for a free modu...
uvcfval 21722 Value of the unit-vector g...
uvcval 21723 Value of a single unit vec...
uvcvval 21724 Value of a unit vector coo...
uvcvvcl 21725 A coordinate of a unit vec...
uvcvvcl2 21726 A unit vector coordinate i...
uvcvv1 21727 The unit vector is one at ...
uvcvv0 21728 The unit vector is zero at...
uvcff 21729 Domain and codomain of the...
uvcf1 21730 In a nonzero ring, each un...
uvcresum 21731 Any element of a free modu...
frlmssuvc1 21732 A scalar multiple of a uni...
frlmssuvc2 21733 A nonzero scalar multiple ...
frlmsslsp 21734 A subset of a free module ...
frlmlbs 21735 The unit vectors comprise ...
frlmup1 21736 Any assignment of unit vec...
frlmup2 21737 The evaluation map has the...
frlmup3 21738 The range of such an evalu...
frlmup4 21739 Universal property of the ...
ellspd 21740 The elements of the span o...
elfilspd 21741 Simplified version of ~ el...
rellindf 21746 The independent-family pre...
islinds 21747 Property of an independent...
linds1 21748 An independent set of vect...
linds2 21749 An independent set of vect...
islindf 21750 Property of an independent...
islinds2 21751 Expanded property of an in...
islindf2 21752 Property of an independent...
lindff 21753 Functional property of a l...
lindfind 21754 A linearly independent fam...
lindsind 21755 A linearly independent set...
lindfind2 21756 In a linearly independent ...
lindsind2 21757 In a linearly independent ...
lindff1 21758 A linearly independent fam...
lindfrn 21759 The range of an independen...
f1lindf 21760 Rearranging and deleting e...
lindfres 21761 Any restriction of an inde...
lindsss 21762 Any subset of an independe...
f1linds 21763 A family constructed from ...
islindf3 21764 In a nonzero ring, indepen...
lindfmm 21765 Linear independence of a f...
lindsmm 21766 Linear independence of a s...
lindsmm2 21767 The monomorphic image of a...
lsslindf 21768 Linear independence is unc...
lsslinds 21769 Linear independence is unc...
islbs4 21770 A basis is an independent ...
lbslinds 21771 A basis is independent. (...
islinds3 21772 A subset is linearly indep...
islinds4 21773 A set is independent in a ...
lmimlbs 21774 The isomorphic image of a ...
lmiclbs 21775 Having a basis is an isomo...
islindf4 21776 A family is independent if...
islindf5 21777 A family is independent if...
indlcim 21778 An independent, spanning f...
lbslcic 21779 A module with a basis is i...
lmisfree 21780 A module has a basis iff i...
lvecisfrlm 21781 Every vector space is isom...
lmimco 21782 The composition of two iso...
lmictra 21783 Module isomorphism is tran...
uvcf1o 21784 In a nonzero ring, the map...
uvcendim 21785 In a nonzero ring, the num...
frlmisfrlm 21786 A free module is isomorphi...
frlmiscvec 21787 Every free module is isomo...
isassa 21794 The properties of an assoc...
assalem 21795 The properties of an assoc...
assaass 21796 Left-associative property ...
assaassr 21797 Right-associative property...
assalmod 21798 An associative algebra is ...
assaring 21799 An associative algebra is ...
assasca 21800 The scalars of an associat...
assa2ass 21801 Left- and right-associativ...
isassad 21802 Sufficient condition for b...
issubassa3 21803 A subring that is also a s...
issubassa 21804 The subalgebras of an asso...
sraassab 21805 A subring algebra is an as...
sraassa 21806 The subring algebra over a...
sraassaOLD 21807 Obsolete version of ~ sraa...
rlmassa 21808 The ring module over a com...
assapropd 21809 If two structures have the...
aspval 21810 Value of the algebraic clo...
asplss 21811 The algebraic span of a se...
aspid 21812 The algebraic span of a su...
aspsubrg 21813 The algebraic span of a se...
aspss 21814 Span preserves subset orde...
aspssid 21815 A set of vectors is a subs...
asclfval 21816 Function value of the alge...
asclval 21817 Value of a mapped algebra ...
asclfn 21818 Unconditional functionalit...
asclf 21819 The algebra scalars functi...
asclghm 21820 The algebra scalars functi...
ascl0 21821 The scalar 0 embedded into...
ascl1 21822 The scalar 1 embedded into...
asclmul1 21823 Left multiplication by a l...
asclmul2 21824 Right multiplication by a ...
ascldimul 21825 The algebra scalars functi...
asclinvg 21826 The group inverse (negatio...
asclrhm 21827 The scalar injection is a ...
rnascl 21828 The set of injected scalar...
issubassa2 21829 A subring of a unital alge...
rnasclsubrg 21830 The scalar multiples of th...
rnasclmulcl 21831 (Vector) multiplication is...
rnasclassa 21832 The scalar multiples of th...
ressascl 21833 The injection of scalars i...
asclpropd 21834 If two structures have the...
aspval2 21835 The algebraic closure is t...
assamulgscmlem1 21836 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21837 Lemma for ~ assamulgscm (i...
assamulgscm 21838 Exponentiation of a scalar...
asclmulg 21839 Apply group multiplication...
zlmassa 21840 The ` ZZ ` -module operati...
reldmpsr 21851 The multivariate power ser...
psrval 21852 Value of the multivariate ...
psrvalstr 21853 The multivariate power ser...
psrbag 21854 Elementhood in the set of ...
psrbagf 21855 A finite bag is a function...
psrbagfOLD 21856 Obsolete version of ~ psrb...
psrbagfsupp 21857 Finite bags have finite su...
psrbagfsuppOLD 21858 Obsolete version of ~ psrb...
snifpsrbag 21859 A bag containing one eleme...
fczpsrbag 21860 The constant function equa...
psrbaglesupp 21861 The support of a dominated...
psrbaglesuppOLD 21862 Obsolete version of ~ psrb...
psrbaglecl 21863 The set of finite bags is ...
psrbagleclOLD 21864 Obsolete version of ~ psrb...
psrbagaddcl 21865 The sum of two finite bags...
psrbagaddclOLD 21866 Obsolete version of ~ psrb...
psrbagcon 21867 The analogue of the statem...
psrbagconOLD 21868 Obsolete version of ~ psrb...
psrbaglefi 21869 There are finitely many ba...
psrbaglefiOLD 21870 Obsolete version of ~ psrb...
psrbagconcl 21871 The complement of a bag is...
psrbagconclOLD 21872 Obsolete version of ~ psrb...
psrbagleadd1 21873 The analogue of " ` X <_ F...
psrbagconf1o 21874 Bag complementation is a b...
psrbagconf1oOLD 21875 Obsolete version of ~ psrb...
gsumbagdiaglemOLD 21876 Obsolete version of ~ gsum...
gsumbagdiagOLD 21877 Obsolete version of ~ gsum...
psrass1lemOLD 21878 Obsolete version of ~ psra...
gsumbagdiaglem 21879 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21880 Two-dimensional commutatio...
psrass1lem 21881 A group sum commutation us...
psrbas 21882 The base set of the multiv...
psrelbas 21883 An element of the set of p...
psrelbasfun 21884 An element of the set of p...
psrplusg 21885 The addition operation of ...
psradd 21886 The addition operation of ...
psraddcl 21887 Closure of the power serie...
psraddclOLD 21888 Obsolete version of ~ psra...
rhmpsrlem1 21889 Lemma for ~ rhmpsr et al. ...
rhmpsrlem2 21890 Lemma for ~ rhmpsr et al. ...
psrmulr 21891 The multiplication operati...
psrmulfval 21892 The multiplication operati...
psrmulval 21893 The multiplication operati...
psrmulcllem 21894 Closure of the power serie...
psrmulcl 21895 Closure of the power serie...
psrsca 21896 The scalar field of the mu...
psrvscafval 21897 The scalar multiplication ...
psrvsca 21898 The scalar multiplication ...
psrvscaval 21899 The scalar multiplication ...
psrvscacl 21900 Closure of the power serie...
psr0cl 21901 The zero element of the ri...
psr0lid 21902 The zero element of the ri...
psrnegcl 21903 The negative function in t...
psrlinv 21904 The negative function in t...
psrgrp 21905 The ring of power series i...
psrgrpOLD 21906 Obsolete proof of ~ psrgrp...
psr0 21907 The zero element of the ri...
psrneg 21908 The negative function of t...
psrlmod 21909 The ring of power series i...
psr1cl 21910 The identity element of th...
psrlidm 21911 The identity element of th...
psrridm 21912 The identity element of th...
psrass1 21913 Associative identity for t...
psrdi 21914 Distributive law for the r...
psrdir 21915 Distributive law for the r...
psrass23l 21916 Associative identity for t...
psrcom 21917 Commutative law for the ri...
psrass23 21918 Associative identities for...
psrring 21919 The ring of power series i...
psr1 21920 The identity element of th...
psrcrng 21921 The ring of power series i...
psrassa 21922 The ring of power series i...
resspsrbas 21923 A restricted power series ...
resspsradd 21924 A restricted power series ...
resspsrmul 21925 A restricted power series ...
resspsrvsca 21926 A restricted power series ...
subrgpsr 21927 A subring of the base ring...
psrascl 21928 Value of the scalar inject...
psrasclcl 21929 A scalar is lifted into a ...
mvrfval 21930 Value of the generating el...
mvrval 21931 Value of the generating el...
mvrval2 21932 Value of the generating el...
mvrid 21933 The ` X i ` -th coefficien...
mvrf 21934 The power series variable ...
mvrf1 21935 The power series variable ...
mvrcl2 21936 A power series variable is...
reldmmpl 21937 The multivariate polynomia...
mplval 21938 Value of the set of multiv...
mplbas 21939 Base set of the set of mul...
mplelbas 21940 Property of being a polyno...
mvrcl 21941 A power series variable is...
mvrf2 21942 The power series/polynomia...
mplrcl 21943 Reverse closure for the po...
mplelsfi 21944 A polynomial treated as a ...
mplval2 21945 Self-referential expressio...
mplbasss 21946 The set of polynomials is ...
mplelf 21947 A polynomial is defined as...
mplsubglem 21948 If ` A ` is an ideal of se...
mpllsslem 21949 If ` A ` is an ideal of su...
mplsubglem2 21950 Lemma for ~ mplsubg and ~ ...
mplsubg 21951 The set of polynomials is ...
mpllss 21952 The set of polynomials is ...
mplsubrglem 21953 Lemma for ~ mplsubrg . (C...
mplsubrg 21954 The set of polynomials is ...
mpl0 21955 The zero polynomial. (Con...
mplplusg 21956 Value of addition in a pol...
mplmulr 21957 Value of multiplication in...
mpladd 21958 The addition operation on ...
mplneg 21959 The negative function on m...
mplmul 21960 The multiplication operati...
mpl1 21961 The identity element of th...
mplsca 21962 The scalar field of a mult...
mplvsca2 21963 The scalar multiplication ...
mplvsca 21964 The scalar multiplication ...
mplvscaval 21965 The scalar multiplication ...
mplgrp 21966 The polynomial ring is a g...
mpllmod 21967 The polynomial ring is a l...
mplring 21968 The polynomial ring is a r...
mpllvec 21969 The polynomial ring is a v...
mplcrng 21970 The polynomial ring is a c...
mplassa 21971 The polynomial ring is an ...
ressmplbas2 21972 The base set of a restrict...
ressmplbas 21973 A restricted polynomial al...
ressmpladd 21974 A restricted polynomial al...
ressmplmul 21975 A restricted polynomial al...
ressmplvsca 21976 A restricted power series ...
subrgmpl 21977 A subring of the base ring...
subrgmvr 21978 The variables in a subring...
subrgmvrf 21979 The variables in a polynom...
mplmon 21980 A monomial is a polynomial...
mplmonmul 21981 The product of two monomia...
mplcoe1 21982 Decompose a polynomial int...
mplcoe3 21983 Decompose a monomial in on...
mplcoe5lem 21984 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21985 Decompose a monomial into ...
mplcoe2 21986 Decompose a monomial into ...
mplbas2 21987 An alternative expression ...
ltbval 21988 Value of the well-order on...
ltbwe 21989 The finite bag order is a ...
reldmopsr 21990 Lemma for ordered power se...
opsrval 21991 The value of the "ordered ...
opsrle 21992 An alternative expression ...
opsrval2 21993 Self-referential expressio...
opsrbaslem 21994 Get a component of the ord...
opsrbaslemOLD 21995 Obsolete version of ~ opsr...
opsrbas 21996 The base set of the ordere...
opsrbasOLD 21997 Obsolete version of ~ opsr...
opsrplusg 21998 The addition operation of ...
opsrplusgOLD 21999 Obsolete version of ~ opsr...
opsrmulr 22000 The multiplication operati...
opsrmulrOLD 22001 Obsolete version of ~ opsr...
opsrvsca 22002 The scalar product operati...
opsrvscaOLD 22003 Obsolete version of ~ opsr...
opsrsca 22004 The scalar ring of the ord...
opsrscaOLD 22005 Obsolete version of ~ opsr...
opsrtoslem1 22006 Lemma for ~ opsrtos . (Co...
opsrtoslem2 22007 Lemma for ~ opsrtos . (Co...
opsrtos 22008 The ordered power series s...
opsrso 22009 The ordered power series s...
opsrcrng 22010 The ring of ordered power ...
opsrassa 22011 The ring of ordered power ...
mplmon2 22012 Express a scaled monomial....
psrbag0 22013 The empty bag is a bag. (...
psrbagsn 22014 A singleton bag is a bag. ...
mplascl 22015 Value of the scalar inject...
mplasclf 22016 The scalar injection is a ...
subrgascl 22017 The scalar injection funct...
subrgasclcl 22018 The scalars in a polynomia...
mplmon2cl 22019 A scaled monomial is a pol...
mplmon2mul 22020 Product of scaled monomial...
mplind 22021 Prove a property of polyno...
mplcoe4 22022 Decompose a polynomial int...
evlslem4 22027 The support of a tensor pr...
psrbagev1 22028 A bag of multipliers provi...
psrbagev1OLD 22029 Obsolete version of ~ psrb...
psrbagev2 22030 Closure of a sum using a b...
psrbagev2OLD 22031 Obsolete version of ~ psrb...
evlslem2 22032 A linear function on the p...
evlslem3 22033 Lemma for ~ evlseu . Poly...
evlslem6 22034 Lemma for ~ evlseu . Fini...
evlslem1 22035 Lemma for ~ evlseu , give ...
evlseu 22036 For a given interpretation...
reldmevls 22037 Well-behaved binary operat...
mpfrcl 22038 Reverse closure for the se...
evlsval 22039 Value of the polynomial ev...
evlsval2 22040 Characterizing properties ...
evlsrhm 22041 Polynomial evaluation is a...
evlssca 22042 Polynomial evaluation maps...
evlsvar 22043 Polynomial evaluation maps...
evlsgsumadd 22044 Polynomial evaluation maps...
evlsgsummul 22045 Polynomial evaluation maps...
evlspw 22046 Polynomial evaluation for ...
evlsvarpw 22047 Polynomial evaluation for ...
evlval 22048 Value of the simple/same r...
evlrhm 22049 The simple evaluation map ...
evlsscasrng 22050 The evaluation of a scalar...
evlsca 22051 Simple polynomial evaluati...
evlsvarsrng 22052 The evaluation of the vari...
evlvar 22053 Simple polynomial evaluati...
mpfconst 22054 Constants are multivariate...
mpfproj 22055 Projections are multivaria...
mpfsubrg 22056 Polynomial functions are a...
mpff 22057 Polynomial functions are f...
mpfaddcl 22058 The sum of multivariate po...
mpfmulcl 22059 The product of multivariat...
mpfind 22060 Prove a property of polyno...
selvffval 22066 Value of the "variable sel...
selvfval 22067 Value of the "variable sel...
selvval 22068 Value of the "variable sel...
reldmmhp 22070 The domain of the homogene...
mhpfval 22071 Value of the "homogeneous ...
mhpval 22072 Value of the "homogeneous ...
ismhp 22073 Property of being a homoge...
ismhp2 22074 Deduce a homogeneous polyn...
ismhp3 22075 A polynomial is homogeneou...
mhpmpl 22076 A homogeneous polynomial i...
mhpdeg 22077 All nonzero terms of a hom...
mhp0cl 22078 The zero polynomial is hom...
mhpsclcl 22079 A scalar (or constant) pol...
mhpvarcl 22080 A power series variable is...
mhpmulcl 22081 A product of homogeneous p...
mhppwdeg 22082 Degree of a homogeneous po...
mhpaddcl 22083 Homogeneous polynomials ar...
mhpinvcl 22084 Homogeneous polynomials ar...
mhpsubg 22085 Homogeneous polynomials fo...
mhpvscacl 22086 Homogeneous polynomials ar...
mhplss 22087 Homogeneous polynomials fo...
psdffval 22089 Value of the power series ...
psdfval 22090 Give a map between power s...
psdval 22091 Evaluate the partial deriv...
psdcoef 22092 Coefficient of a term of t...
psdcl 22093 The derivative of a power ...
psdmplcl 22094 The derivative of a polyno...
psdadd 22095 The derivative of a sum is...
psdvsca 22096 The derivative of a scaled...
psdmullem 22097 Lemma for ~ psdmul . Tran...
psdmul 22098 Product rule for power ser...
psd1 22099 The derivative of one is z...
psdascl 22100 The derivative of a consta...
psr1baslem 22112 The set of finite bags on ...
psr1val 22113 Value of the ring of univa...
psr1crng 22114 The ring of univariate pow...
psr1assa 22115 The ring of univariate pow...
psr1tos 22116 The ordered power series s...
psr1bas2 22117 The base set of the ring o...
psr1bas 22118 The base set of the ring o...
vr1val 22119 The value of the generator...
vr1cl2 22120 The variable ` X ` is a me...
ply1val 22121 The value of the set of un...
ply1bas 22122 The value of the base set ...
ply1basOLD 22123 Obsolete version of ~ ply1...
ply1lss 22124 Univariate polynomials for...
ply1subrg 22125 Univariate polynomials for...
ply1crng 22126 The ring of univariate pol...
ply1assa 22127 The ring of univariate pol...
psr1bascl 22128 A univariate power series ...
psr1basf 22129 Univariate power series ba...
ply1basf 22130 Univariate polynomial base...
ply1bascl 22131 A univariate polynomial is...
ply1bascl2 22132 A univariate polynomial is...
coe1fval 22133 Value of the univariate po...
coe1fv 22134 Value of an evaluated coef...
fvcoe1 22135 Value of a multivariate co...
coe1fval3 22136 Univariate power series co...
coe1f2 22137 Functionality of univariat...
coe1fval2 22138 Univariate polynomial coef...
coe1f 22139 Functionality of univariat...
coe1fvalcl 22140 A coefficient of a univari...
coe1sfi 22141 Finite support of univaria...
coe1fsupp 22142 The coefficient vector of ...
mptcoe1fsupp 22143 A mapping involving coeffi...
coe1ae0 22144 The coefficient vector of ...
vr1cl 22145 The generator of a univari...
opsr0 22146 Zero in the ordered power ...
opsr1 22147 One in the ordered power s...
psr1plusg 22148 Value of addition in a uni...
psr1vsca 22149 Value of scalar multiplica...
psr1mulr 22150 Value of multiplication in...
ply1plusg 22151 Value of addition in a uni...
ply1vsca 22152 Value of scalar multiplica...
ply1mulr 22153 Value of multiplication in...
ply1ass23l 22154 Associative identity with ...
ressply1bas2 22155 The base set of a restrict...
ressply1bas 22156 A restricted polynomial al...
ressply1add 22157 A restricted polynomial al...
ressply1mul 22158 A restricted polynomial al...
ressply1vsca 22159 A restricted power series ...
subrgply1 22160 A subring of the base ring...
gsumply1subr 22161 Evaluate a group sum in a ...
psrbaspropd 22162 Property deduction for pow...
psrplusgpropd 22163 Property deduction for pow...
mplbaspropd 22164 Property deduction for pol...
psropprmul 22165 Reversing multiplication i...
ply1opprmul 22166 Reversing multiplication i...
00ply1bas 22167 Lemma for ~ ply1basfvi and...
ply1basfvi 22168 Protection compatibility o...
ply1plusgfvi 22169 Protection compatibility o...
ply1baspropd 22170 Property deduction for uni...
ply1plusgpropd 22171 Property deduction for uni...
opsrring 22172 Ordered power series form ...
opsrlmod 22173 Ordered power series form ...
psr1ring 22174 Univariate power series fo...
ply1ring 22175 Univariate polynomials for...
psr1lmod 22176 Univariate power series fo...
psr1sca 22177 Scalars of a univariate po...
psr1sca2 22178 Scalars of a univariate po...
ply1lmod 22179 Univariate polynomials for...
ply1sca 22180 Scalars of a univariate po...
ply1sca2 22181 Scalars of a univariate po...
ply1ascl0 22182 The zero scalar as a polyn...
ply1mpl0 22183 The univariate polynomial ...
ply10s0 22184 Zero times a univariate po...
ply1mpl1 22185 The univariate polynomial ...
ply1ascl 22186 The univariate polynomial ...
subrg1ascl 22187 The scalar injection funct...
subrg1asclcl 22188 The scalars in a polynomia...
subrgvr1 22189 The variables in a subring...
subrgvr1cl 22190 The variables in a polynom...
coe1z 22191 The coefficient vector of ...
coe1add 22192 The coefficient vector of ...
coe1addfv 22193 A particular coefficient o...
coe1subfv 22194 A particular coefficient o...
coe1mul2lem1 22195 An equivalence for ~ coe1m...
coe1mul2lem2 22196 An equivalence for ~ coe1m...
coe1mul2 22197 The coefficient vector of ...
coe1mul 22198 The coefficient vector of ...
ply1moncl 22199 Closure of the expression ...
ply1tmcl 22200 Closure of the expression ...
coe1tm 22201 Coefficient vector of a po...
coe1tmfv1 22202 Nonzero coefficient of a p...
coe1tmfv2 22203 Zero coefficient of a poly...
coe1tmmul2 22204 Coefficient vector of a po...
coe1tmmul 22205 Coefficient vector of a po...
coe1tmmul2fv 22206 Function value of a right-...
coe1pwmul 22207 Coefficient vector of a po...
coe1pwmulfv 22208 Function value of a right-...
ply1scltm 22209 A scalar is a term with ze...
coe1sclmul 22210 Coefficient vector of a po...
coe1sclmulfv 22211 A single coefficient of a ...
coe1sclmul2 22212 Coefficient vector of a po...
ply1sclf 22213 A scalar polynomial is a p...
ply1sclcl 22214 The value of the algebra s...
coe1scl 22215 Coefficient vector of a sc...
ply1sclid 22216 Recover the base scalar fr...
ply1sclf1 22217 The polynomial scalar func...
ply1scl0 22218 The zero scalar is zero. ...
ply1scl0OLD 22219 Obsolete version of ~ ply1...
ply1scln0 22220 Nonzero scalars create non...
ply1scl1 22221 The one scalar is the unit...
ply1scl1OLD 22222 Obsolete version of ~ ply1...
ply1idvr1 22223 The identity of a polynomi...
cply1mul 22224 The product of two constan...
ply1coefsupp 22225 The decomposition of a uni...
ply1coe 22226 Decompose a univariate pol...
eqcoe1ply1eq 22227 Two polynomials over the s...
ply1coe1eq 22228 Two polynomials over the s...
cply1coe0 22229 All but the first coeffici...
cply1coe0bi 22230 A polynomial is constant (...
coe1fzgsumdlem 22231 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 22232 Value of an evaluated coef...
ply1scleq 22233 Equality of a constant pol...
ply1chr 22234 The characteristic of a po...
gsumsmonply1 22235 A finite group sum of scal...
gsummoncoe1 22236 A coefficient of the polyn...
gsumply1eq 22237 Two univariate polynomials...
lply1binom 22238 The binomial theorem for l...
lply1binomsc 22239 The binomial theorem for l...
ply1fermltlchr 22240 Fermat's little theorem fo...
reldmevls1 22245 Well-behaved binary operat...
ply1frcl 22246 Reverse closure for the se...
evls1fval 22247 Value of the univariate po...
evls1val 22248 Value of the univariate po...
evls1rhmlem 22249 Lemma for ~ evl1rhm and ~ ...
evls1rhm 22250 Polynomial evaluation is a...
evls1sca 22251 Univariate polynomial eval...
evls1gsumadd 22252 Univariate polynomial eval...
evls1gsummul 22253 Univariate polynomial eval...
evls1pw 22254 Univariate polynomial eval...
evls1varpw 22255 Univariate polynomial eval...
evl1fval 22256 Value of the simple/same r...
evl1val 22257 Value of the simple/same r...
evl1fval1lem 22258 Lemma for ~ evl1fval1 . (...
evl1fval1 22259 Value of the simple/same r...
evl1rhm 22260 Polynomial evaluation is a...
fveval1fvcl 22261 The function value of the ...
evl1sca 22262 Polynomial evaluation maps...
evl1scad 22263 Polynomial evaluation buil...
evl1var 22264 Polynomial evaluation maps...
evl1vard 22265 Polynomial evaluation buil...
evls1var 22266 Univariate polynomial eval...
evls1scasrng 22267 The evaluation of a scalar...
evls1varsrng 22268 The evaluation of the vari...
evl1addd 22269 Polynomial evaluation buil...
evl1subd 22270 Polynomial evaluation buil...
evl1muld 22271 Polynomial evaluation buil...
evl1vsd 22272 Polynomial evaluation buil...
evl1expd 22273 Polynomial evaluation buil...
pf1const 22274 Constants are polynomial f...
pf1id 22275 The identity is a polynomi...
pf1subrg 22276 Polynomial functions are a...
pf1rcl 22277 Reverse closure for the se...
pf1f 22278 Polynomial functions are f...
mpfpf1 22279 Convert a multivariate pol...
pf1mpf 22280 Convert a univariate polyn...
pf1addcl 22281 The sum of multivariate po...
pf1mulcl 22282 The product of multivariat...
pf1ind 22283 Prove a property of polyno...
evl1gsumdlem 22284 Lemma for ~ evl1gsumd (ind...
evl1gsumd 22285 Polynomial evaluation buil...
evl1gsumadd 22286 Univariate polynomial eval...
evl1gsumaddval 22287 Value of a univariate poly...
evl1gsummul 22288 Univariate polynomial eval...
evl1varpw 22289 Univariate polynomial eval...
evl1varpwval 22290 Value of a univariate poly...
evl1scvarpw 22291 Univariate polynomial eval...
evl1scvarpwval 22292 Value of a univariate poly...
evl1gsummon 22293 Value of a univariate poly...
evls1scafv 22294 Value of the univariate po...
evls1expd 22295 Univariate polynomial eval...
evls1varpwval 22296 Univariate polynomial eval...
evls1fpws 22297 Evaluation of a univariate...
ressply1evl 22298 Evaluation of a univariate...
evls1addd 22299 Univariate polynomial eval...
evls1muld 22300 Univariate polynomial eval...
evls1vsca 22301 Univariate polynomial eval...
asclply1subcl 22302 Closure of the algebra sca...
evls1fvcl 22303 Variant of ~ fveval1fvcl f...
evls1maprhm 22304 The function ` F ` mapping...
evls1maplmhm 22305 The function ` F ` mapping...
evls1maprnss 22306 The function ` F ` mapping...
evl1maprhm 22307 The function ` F ` mapping...
mplringd 22308 The polynomial ring is a r...
mpllmodd 22309 The polynomial ring is a l...
mhmcompl 22310 The composition of a monoi...
mhmcoaddmpl 22311 Show that the ring homomor...
rhmcomulmpl 22312 Show that the ring homomor...
rhmmpl 22313 Provide a ring homomorphis...
ply1vscl 22314 Closure of scalar multipli...
mhmcoply1 22315 The composition of a monoi...
rhmply1 22316 Provide a ring homomorphis...
rhmply1vr1 22317 A ring homomorphism betwee...
rhmply1vsca 22318 Apply a ring homomorphism ...
rhmply1mon 22319 Apply a ring homomorphism ...
mamufval 22322 Functional value of the ma...
mamuval 22323 Multiplication of two matr...
mamufv 22324 A cell in the multiplicati...
mamudm 22325 The domain of the matrix m...
mamufacex 22326 Every solution of the equa...
mamures 22327 Rows in a matrix product a...
grpvlinv 22328 Tuple-wise left inverse in...
grpvrinv 22329 Tuple-wise right inverse i...
ringvcl 22330 Tuple-wise multiplication ...
mamucl 22331 Operation closure of matri...
mamuass 22332 Matrix multiplication is a...
mamudi 22333 Matrix multiplication dist...
mamudir 22334 Matrix multiplication dist...
mamuvs1 22335 Matrix multiplication dist...
mamuvs2 22336 Matrix multiplication dist...
matbas0pc 22339 There is no matrix with a ...
matbas0 22340 There is no matrix for a n...
matval 22341 Value of the matrix algebr...
matrcl 22342 Reverse closure for the ma...
matbas 22343 The matrix ring has the sa...
matplusg 22344 The matrix ring has the sa...
matsca 22345 The matrix ring has the sa...
matscaOLD 22346 Obsolete proof of ~ matsca...
matvsca 22347 The matrix ring has the sa...
matvscaOLD 22348 Obsolete proof of ~ matvsc...
mat0 22349 The matrix ring has the sa...
matinvg 22350 The matrix ring has the sa...
mat0op 22351 Value of a zero matrix as ...
matsca2 22352 The scalars of the matrix ...
matbas2 22353 The base set of the matrix...
matbas2i 22354 A matrix is a function. (...
matbas2d 22355 The base set of the matrix...
eqmat 22356 Two square matrices of the...
matecl 22357 Each entry (according to W...
matecld 22358 Each entry (according to W...
matplusg2 22359 Addition in the matrix rin...
matvsca2 22360 Scalar multiplication in t...
matlmod 22361 The matrix ring is a linea...
matgrp 22362 The matrix ring is a group...
matvscl 22363 Closure of the scalar mult...
matsubg 22364 The matrix ring has the sa...
matplusgcell 22365 Addition in the matrix rin...
matsubgcell 22366 Subtraction in the matrix ...
matinvgcell 22367 Additive inversion in the ...
matvscacell 22368 Scalar multiplication in t...
matgsum 22369 Finite commutative sums in...
matmulr 22370 Multiplication in the matr...
mamumat1cl 22371 The identity matrix (as op...
mat1comp 22372 The components of the iden...
mamulid 22373 The identity matrix (as op...
mamurid 22374 The identity matrix (as op...
matring 22375 Existence of the matrix ri...
matassa 22376 Existence of the matrix al...
matmulcell 22377 Multiplication in the matr...
mpomatmul 22378 Multiplication of two N x ...
mat1 22379 Value of an identity matri...
mat1ov 22380 Entries of an identity mat...
mat1bas 22381 The identity matrix is a m...
matsc 22382 The identity matrix multip...
ofco2 22383 Distribution law for the f...
oftpos 22384 The transposition of the v...
mattposcl 22385 The transpose of a square ...
mattpostpos 22386 The transpose of the trans...
mattposvs 22387 The transposition of a mat...
mattpos1 22388 The transposition of the i...
tposmap 22389 The transposition of an I ...
mamutpos 22390 Behavior of transposes in ...
mattposm 22391 Multiplying two transposed...
matgsumcl 22392 Closure of a group sum ove...
madetsumid 22393 The identity summand in th...
matepmcl 22394 Each entry of a matrix wit...
matepm2cl 22395 Each entry of a matrix wit...
madetsmelbas 22396 A summand of the determina...
madetsmelbas2 22397 A summand of the determina...
mat0dimbas0 22398 The empty set is the one a...
mat0dim0 22399 The zero of the algebra of...
mat0dimid 22400 The identity of the algebr...
mat0dimscm 22401 The scalar multiplication ...
mat0dimcrng 22402 The algebra of matrices wi...
mat1dimelbas 22403 A matrix with dimension 1 ...
mat1dimbas 22404 A matrix with dimension 1 ...
mat1dim0 22405 The zero of the algebra of...
mat1dimid 22406 The identity of the algebr...
mat1dimscm 22407 The scalar multiplication ...
mat1dimmul 22408 The ring multiplication in...
mat1dimcrng 22409 The algebra of matrices wi...
mat1f1o 22410 There is a 1-1 function fr...
mat1rhmval 22411 The value of the ring homo...
mat1rhmelval 22412 The value of the ring homo...
mat1rhmcl 22413 The value of the ring homo...
mat1f 22414 There is a function from a...
mat1ghm 22415 There is a group homomorph...
mat1mhm 22416 There is a monoid homomorp...
mat1rhm 22417 There is a ring homomorphi...
mat1rngiso 22418 There is a ring isomorphis...
mat1ric 22419 A ring is isomorphic to th...
dmatval 22424 The set of ` N ` x ` N ` d...
dmatel 22425 A ` N ` x ` N ` diagonal m...
dmatmat 22426 An ` N ` x ` N ` diagonal ...
dmatid 22427 The identity matrix is a d...
dmatelnd 22428 An extradiagonal entry of ...
dmatmul 22429 The product of two diagona...
dmatsubcl 22430 The difference of two diag...
dmatsgrp 22431 The set of diagonal matric...
dmatmulcl 22432 The product of two diagona...
dmatsrng 22433 The set of diagonal matric...
dmatcrng 22434 The subring of diagonal ma...
dmatscmcl 22435 The multiplication of a di...
scmatval 22436 The set of ` N ` x ` N ` s...
scmatel 22437 An ` N ` x ` N ` scalar ma...
scmatscmid 22438 A scalar matrix can be exp...
scmatscmide 22439 An entry of a scalar matri...
scmatscmiddistr 22440 Distributive law for scala...
scmatmat 22441 An ` N ` x ` N ` scalar ma...
scmate 22442 An entry of an ` N ` x ` N...
scmatmats 22443 The set of an ` N ` x ` N ...
scmateALT 22444 Alternate proof of ~ scmat...
scmatscm 22445 The multiplication of a ma...
scmatid 22446 The identity matrix is a s...
scmatdmat 22447 A scalar matrix is a diago...
scmataddcl 22448 The sum of two scalar matr...
scmatsubcl 22449 The difference of two scal...
scmatmulcl 22450 The product of two scalar ...
scmatsgrp 22451 The set of scalar matrices...
scmatsrng 22452 The set of scalar matrices...
scmatcrng 22453 The subring of scalar matr...
scmatsgrp1 22454 The set of scalar matrices...
scmatsrng1 22455 The set of scalar matrices...
smatvscl 22456 Closure of the scalar mult...
scmatlss 22457 The set of scalar matrices...
scmatstrbas 22458 The set of scalar matrices...
scmatrhmval 22459 The value of the ring homo...
scmatrhmcl 22460 The value of the ring homo...
scmatf 22461 There is a function from a...
scmatfo 22462 There is a function from a...
scmatf1 22463 There is a 1-1 function fr...
scmatf1o 22464 There is a bijection betwe...
scmatghm 22465 There is a group homomorph...
scmatmhm 22466 There is a monoid homomorp...
scmatrhm 22467 There is a ring homomorphi...
scmatrngiso 22468 There is a ring isomorphis...
scmatric 22469 A ring is isomorphic to ev...
mat0scmat 22470 The empty matrix over a ri...
mat1scmat 22471 A 1-dimensional matrix ove...
mvmulfval 22474 Functional value of the ma...
mvmulval 22475 Multiplication of a vector...
mvmulfv 22476 A cell/element in the vect...
mavmulval 22477 Multiplication of a vector...
mavmulfv 22478 A cell/element in the vect...
mavmulcl 22479 Multiplication of an NxN m...
1mavmul 22480 Multiplication of the iden...
mavmulass 22481 Associativity of the multi...
mavmuldm 22482 The domain of the matrix v...
mavmulsolcl 22483 Every solution of the equa...
mavmul0 22484 Multiplication of a 0-dime...
mavmul0g 22485 The result of the 0-dimens...
mvmumamul1 22486 The multiplication of an M...
mavmumamul1 22487 The multiplication of an N...
marrepfval 22492 First substitution for the...
marrepval0 22493 Second substitution for th...
marrepval 22494 Third substitution for the...
marrepeval 22495 An entry of a matrix with ...
marrepcl 22496 Closure of the row replace...
marepvfval 22497 First substitution for the...
marepvval0 22498 Second substitution for th...
marepvval 22499 Third substitution for the...
marepveval 22500 An entry of a matrix with ...
marepvcl 22501 Closure of the column repl...
ma1repvcl 22502 Closure of the column repl...
ma1repveval 22503 An entry of an identity ma...
mulmarep1el 22504 Element by element multipl...
mulmarep1gsum1 22505 The sum of element by elem...
mulmarep1gsum2 22506 The sum of element by elem...
1marepvmarrepid 22507 Replacing the ith row by 0...
submabas 22510 Any subset of the index se...
submafval 22511 First substitution for a s...
submaval0 22512 Second substitution for a ...
submaval 22513 Third substitution for a s...
submaeval 22514 An entry of a submatrix of...
1marepvsma1 22515 The submatrix of the ident...
mdetfval 22518 First substitution for the...
mdetleib 22519 Full substitution of our d...
mdetleib2 22520 Leibniz' formula can also ...
nfimdetndef 22521 The determinant is not def...
mdetfval1 22522 First substitution of an a...
mdetleib1 22523 Full substitution of an al...
mdet0pr 22524 The determinant function f...
mdet0f1o 22525 The determinant function f...
mdet0fv0 22526 The determinant of the emp...
mdetf 22527 Functionality of the deter...
mdetcl 22528 The determinant evaluates ...
m1detdiag 22529 The determinant of a 1-dim...
mdetdiaglem 22530 Lemma for ~ mdetdiag . Pr...
mdetdiag 22531 The determinant of a diago...
mdetdiagid 22532 The determinant of a diago...
mdet1 22533 The determinant of the ide...
mdetrlin 22534 The determinant function i...
mdetrsca 22535 The determinant function i...
mdetrsca2 22536 The determinant function i...
mdetr0 22537 The determinant of a matri...
mdet0 22538 The determinant of the zer...
mdetrlin2 22539 The determinant function i...
mdetralt 22540 The determinant function i...
mdetralt2 22541 The determinant function i...
mdetero 22542 The determinant function i...
mdettpos 22543 Determinant is invariant u...
mdetunilem1 22544 Lemma for ~ mdetuni . (Co...
mdetunilem2 22545 Lemma for ~ mdetuni . (Co...
mdetunilem3 22546 Lemma for ~ mdetuni . (Co...
mdetunilem4 22547 Lemma for ~ mdetuni . (Co...
mdetunilem5 22548 Lemma for ~ mdetuni . (Co...
mdetunilem6 22549 Lemma for ~ mdetuni . (Co...
mdetunilem7 22550 Lemma for ~ mdetuni . (Co...
mdetunilem8 22551 Lemma for ~ mdetuni . (Co...
mdetunilem9 22552 Lemma for ~ mdetuni . (Co...
mdetuni0 22553 Lemma for ~ mdetuni . (Co...
mdetuni 22554 According to the definitio...
mdetmul 22555 Multiplicativity of the de...
m2detleiblem1 22556 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 22557 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 22558 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 22559 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 22560 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 22561 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 22562 Lemma 4 for ~ m2detleib . ...
m2detleib 22563 Leibniz' Formula for 2x2-m...
mndifsplit 22568 Lemma for ~ maducoeval2 . ...
madufval 22569 First substitution for the...
maduval 22570 Second substitution for th...
maducoeval 22571 An entry of the adjunct (c...
maducoeval2 22572 An entry of the adjunct (c...
maduf 22573 Creating the adjunct of ma...
madutpos 22574 The adjuct of a transposed...
madugsum 22575 The determinant of a matri...
madurid 22576 Multiplying a matrix with ...
madulid 22577 Multiplying the adjunct of...
minmar1fval 22578 First substitution for the...
minmar1val0 22579 Second substitution for th...
minmar1val 22580 Third substitution for the...
minmar1eval 22581 An entry of a matrix for a...
minmar1marrep 22582 The minor matrix is a spec...
minmar1cl 22583 Closure of the row replace...
maducoevalmin1 22584 The coefficients of an adj...
symgmatr01lem 22585 Lemma for ~ symgmatr01 . ...
symgmatr01 22586 Applying a permutation tha...
gsummatr01lem1 22587 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 22588 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 22589 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 22590 Lemma 2 for ~ gsummatr01 ....
gsummatr01 22591 Lemma 1 for ~ smadiadetlem...
marep01ma 22592 Replacing a row of a squar...
smadiadetlem0 22593 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 22594 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 22595 Lemma 1a for ~ smadiadet :...
smadiadetlem2 22596 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 22597 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 22598 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 22599 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 22600 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 22601 Lemma 4 for ~ smadiadet . ...
smadiadet 22602 The determinant of a subma...
smadiadetglem1 22603 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 22604 Lemma 2 for ~ smadiadetg ....
smadiadetg 22605 The determinant of a squar...
smadiadetg0 22606 Lemma for ~ smadiadetr : v...
smadiadetr 22607 The determinant of a squar...
invrvald 22608 If a matrix multiplied wit...
matinv 22609 The inverse of a matrix is...
matunit 22610 A matrix is a unit in the ...
slesolvec 22611 Every solution of a system...
slesolinv 22612 The solution of a system o...
slesolinvbi 22613 The solution of a system o...
slesolex 22614 Every system of linear equ...
cramerimplem1 22615 Lemma 1 for ~ cramerimp : ...
cramerimplem2 22616 Lemma 2 for ~ cramerimp : ...
cramerimplem3 22617 Lemma 3 for ~ cramerimp : ...
cramerimp 22618 One direction of Cramer's ...
cramerlem1 22619 Lemma 1 for ~ cramer . (C...
cramerlem2 22620 Lemma 2 for ~ cramer . (C...
cramerlem3 22621 Lemma 3 for ~ cramer . (C...
cramer0 22622 Special case of Cramer's r...
cramer 22623 Cramer's rule. According ...
pmatring 22624 The set of polynomial matr...
pmatlmod 22625 The set of polynomial matr...
pmatassa 22626 The set of polynomial matr...
pmat0op 22627 The zero polynomial matrix...
pmat1op 22628 The identity polynomial ma...
pmat1ovd 22629 Entries of the identity po...
pmat0opsc 22630 The zero polynomial matrix...
pmat1opsc 22631 The identity polynomial ma...
pmat1ovscd 22632 Entries of the identity po...
pmatcoe1fsupp 22633 For a polynomial matrix th...
1pmatscmul 22634 The scalar product of the ...
cpmat 22641 Value of the constructor o...
cpmatpmat 22642 A constant polynomial matr...
cpmatel 22643 Property of a constant pol...
cpmatelimp 22644 Implication of a set being...
cpmatel2 22645 Another property of a cons...
cpmatelimp2 22646 Another implication of a s...
1elcpmat 22647 The identity of the ring o...
cpmatacl 22648 The set of all constant po...
cpmatinvcl 22649 The set of all constant po...
cpmatmcllem 22650 Lemma for ~ cpmatmcl . (C...
cpmatmcl 22651 The set of all constant po...
cpmatsubgpmat 22652 The set of all constant po...
cpmatsrgpmat 22653 The set of all constant po...
0elcpmat 22654 The zero of the ring of al...
mat2pmatfval 22655 Value of the matrix transf...
mat2pmatval 22656 The result of a matrix tra...
mat2pmatvalel 22657 A (matrix) element of the ...
mat2pmatbas 22658 The result of a matrix tra...
mat2pmatbas0 22659 The result of a matrix tra...
mat2pmatf 22660 The matrix transformation ...
mat2pmatf1 22661 The matrix transformation ...
mat2pmatghm 22662 The transformation of matr...
mat2pmatmul 22663 The transformation of matr...
mat2pmat1 22664 The transformation of the ...
mat2pmatmhm 22665 The transformation of matr...
mat2pmatrhm 22666 The transformation of matr...
mat2pmatlin 22667 The transformation of matr...
0mat2pmat 22668 The transformed zero matri...
idmatidpmat 22669 The transformed identity m...
d0mat2pmat 22670 The transformed empty set ...
d1mat2pmat 22671 The transformation of a ma...
mat2pmatscmxcl 22672 A transformed matrix multi...
m2cpm 22673 The result of a matrix tra...
m2cpmf 22674 The matrix transformation ...
m2cpmf1 22675 The matrix transformation ...
m2cpmghm 22676 The transformation of matr...
m2cpmmhm 22677 The transformation of matr...
m2cpmrhm 22678 The transformation of matr...
m2pmfzmap 22679 The transformed values of ...
m2pmfzgsumcl 22680 Closure of the sum of scal...
cpm2mfval 22681 Value of the inverse matri...
cpm2mval 22682 The result of an inverse m...
cpm2mvalel 22683 A (matrix) element of the ...
cpm2mf 22684 The inverse matrix transfo...
m2cpminvid 22685 The inverse transformation...
m2cpminvid2lem 22686 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 22687 The transformation applied...
m2cpmfo 22688 The matrix transformation ...
m2cpmf1o 22689 The matrix transformation ...
m2cpmrngiso 22690 The transformation of matr...
matcpmric 22691 The ring of matrices over ...
m2cpminv 22692 The inverse matrix transfo...
m2cpminv0 22693 The inverse matrix transfo...
decpmatval0 22696 The matrix consisting of t...
decpmatval 22697 The matrix consisting of t...
decpmate 22698 An entry of the matrix con...
decpmatcl 22699 Closure of the decompositi...
decpmataa0 22700 The matrix consisting of t...
decpmatfsupp 22701 The mapping to the matrice...
decpmatid 22702 The matrix consisting of t...
decpmatmullem 22703 Lemma for ~ decpmatmul . ...
decpmatmul 22704 The matrix consisting of t...
decpmatmulsumfsupp 22705 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 22706 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 22707 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 22708 Write a polynomial matrix ...
pmatcollpw2lem 22709 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 22710 Write a polynomial matrix ...
monmatcollpw 22711 The matrix consisting of t...
pmatcollpwlem 22712 Lemma for ~ pmatcollpw . ...
pmatcollpw 22713 Write a polynomial matrix ...
pmatcollpwfi 22714 Write a polynomial matrix ...
pmatcollpw3lem 22715 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 22716 Write a polynomial matrix ...
pmatcollpw3fi 22717 Write a polynomial matrix ...
pmatcollpw3fi1lem1 22718 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 22719 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 22720 Write a polynomial matrix ...
pmatcollpwscmatlem1 22721 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 22722 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 22723 Write a scalar matrix over...
pm2mpf1lem 22726 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 22727 Value of the transformatio...
pm2mpfval 22728 A polynomial matrix transf...
pm2mpcl 22729 The transformation of poly...
pm2mpf 22730 The transformation of poly...
pm2mpf1 22731 The transformation of poly...
pm2mpcoe1 22732 A coefficient of the polyn...
idpm2idmp 22733 The transformation of the ...
mptcoe1matfsupp 22734 The mapping extracting the...
mply1topmatcllem 22735 Lemma for ~ mply1topmatcl ...
mply1topmatval 22736 A polynomial over matrices...
mply1topmatcl 22737 A polynomial over matrices...
mp2pm2mplem1 22738 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 22739 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 22740 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 22741 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 22742 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 22743 A polynomial over matrices...
pm2mpghmlem2 22744 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 22745 Lemma 1 for pm2mpghm . (C...
pm2mpfo 22746 The transformation of poly...
pm2mpf1o 22747 The transformation of poly...
pm2mpghm 22748 The transformation of poly...
pm2mpgrpiso 22749 The transformation of poly...
pm2mpmhmlem1 22750 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 22751 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 22752 The transformation of poly...
pm2mprhm 22753 The transformation of poly...
pm2mprngiso 22754 The transformation of poly...
pmmpric 22755 The ring of polynomial mat...
monmat2matmon 22756 The transformation of a po...
pm2mp 22757 The transformation of a su...
chmatcl 22760 Closure of the characteris...
chmatval 22761 The entries of the charact...
chpmatfval 22762 Value of the characteristi...
chpmatval 22763 The characteristic polynom...
chpmatply1 22764 The characteristic polynom...
chpmatval2 22765 The characteristic polynom...
chpmat0d 22766 The characteristic polynom...
chpmat1dlem 22767 Lemma for ~ chpmat1d . (C...
chpmat1d 22768 The characteristic polynom...
chpdmatlem0 22769 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 22770 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 22771 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 22772 Lemma 3 for ~ chpdmat . (...
chpdmat 22773 The characteristic polynom...
chpscmat 22774 The characteristic polynom...
chpscmat0 22775 The characteristic polynom...
chpscmatgsumbin 22776 The characteristic polynom...
chpscmatgsummon 22777 The characteristic polynom...
chp0mat 22778 The characteristic polynom...
chpidmat 22779 The characteristic polynom...
chmaidscmat 22780 The characteristic polynom...
fvmptnn04if 22781 The function values of a m...
fvmptnn04ifa 22782 The function value of a ma...
fvmptnn04ifb 22783 The function value of a ma...
fvmptnn04ifc 22784 The function value of a ma...
fvmptnn04ifd 22785 The function value of a ma...
chfacfisf 22786 The "characteristic factor...
chfacfisfcpmat 22787 The "characteristic factor...
chfacffsupp 22788 The "characteristic factor...
chfacfscmulcl 22789 Closure of a scaled value ...
chfacfscmul0 22790 A scaled value of the "cha...
chfacfscmulfsupp 22791 A mapping of scaled values...
chfacfscmulgsum 22792 Breaking up a sum of value...
chfacfpmmulcl 22793 Closure of the value of th...
chfacfpmmul0 22794 The value of the "characte...
chfacfpmmulfsupp 22795 A mapping of values of the...
chfacfpmmulgsum 22796 Breaking up a sum of value...
chfacfpmmulgsum2 22797 Breaking up a sum of value...
cayhamlem1 22798 Lemma 1 for ~ cayleyhamilt...
cpmadurid 22799 The right-hand fundamental...
cpmidgsum 22800 Representation of the iden...
cpmidgsumm2pm 22801 Representation of the iden...
cpmidpmatlem1 22802 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 22803 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 22804 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 22805 Representation of the iden...
cpmadugsumlemB 22806 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 22807 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 22808 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 22809 The product of the charact...
cpmadugsum 22810 The product of the charact...
cpmidgsum2 22811 Representation of the iden...
cpmidg2sum 22812 Equality of two sums repre...
cpmadumatpolylem1 22813 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 22814 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 22815 The product of the charact...
cayhamlem2 22816 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 22817 Lemma for ~ chcoeffeq . (...
chcoeffeq 22818 The coefficients of the ch...
cayhamlem3 22819 Lemma for ~ cayhamlem4 . ...
cayhamlem4 22820 Lemma for ~ cayleyhamilton...
cayleyhamilton0 22821 The Cayley-Hamilton theore...
cayleyhamilton 22822 The Cayley-Hamilton theore...
cayleyhamiltonALT 22823 Alternate proof of ~ cayle...
cayleyhamilton1 22824 The Cayley-Hamilton theore...
istopg 22827 Express the predicate " ` ...
istop2g 22828 Express the predicate " ` ...
uniopn 22829 The union of a subset of a...
iunopn 22830 The indexed union of a sub...
inopn 22831 The intersection of two op...
fitop 22832 A topology is closed under...
fiinopn 22833 The intersection of a none...
iinopn 22834 The intersection of a none...
unopn 22835 The union of two open sets...
0opn 22836 The empty set is an open s...
0ntop 22837 The empty set is not a top...
topopn 22838 The underlying set of a to...
eltopss 22839 A member of a topology is ...
riinopn 22840 A finite indexed relative ...
rintopn 22841 A finite relative intersec...
istopon 22844 Property of being a topolo...
topontop 22845 A topology on a given base...
toponuni 22846 The base set of a topology...
topontopi 22847 A topology on a given base...
toponunii 22848 The base set of a topology...
toptopon 22849 Alternative definition of ...
toptopon2 22850 A topology is the same thi...
topontopon 22851 A topology on a set is a t...
funtopon 22852 The class ` TopOn ` is a f...
toponrestid 22853 Given a topology on a set,...
toponsspwpw 22854 The set of topologies on a...
dmtopon 22855 The domain of ` TopOn ` is...
fntopon 22856 The class ` TopOn ` is a f...
toprntopon 22857 A topology is the same thi...
toponmax 22858 The base set of a topology...
toponss 22859 A member of a topology is ...
toponcom 22860 If ` K ` is a topology on ...
toponcomb 22861 Biconditional form of ~ to...
topgele 22862 The topologies over the sa...
topsn 22863 The only topology on a sin...
istps 22866 Express the predicate "is ...
istps2 22867 Express the predicate "is ...
tpsuni 22868 The base set of a topologi...
tpstop 22869 The topology extractor on ...
tpspropd 22870 A topological space depend...
tpsprop2d 22871 A topological space depend...
topontopn 22872 Express the predicate "is ...
tsettps 22873 If the topology component ...
istpsi 22874 Properties that determine ...
eltpsg 22875 Properties that determine ...
eltpsgOLD 22876 Obsolete version of ~ eltp...
eltpsi 22877 Properties that determine ...
isbasisg 22880 Express the predicate "the...
isbasis2g 22881 Express the predicate "the...
isbasis3g 22882 Express the predicate "the...
basis1 22883 Property of a basis. (Con...
basis2 22884 Property of a basis. (Con...
fiinbas 22885 If a set is closed under f...
basdif0 22886 A basis is not affected by...
baspartn 22887 A disjoint system of sets ...
tgval 22888 The topology generated by ...
tgval2 22889 Definition of a topology g...
eltg 22890 Membership in a topology g...
eltg2 22891 Membership in a topology g...
eltg2b 22892 Membership in a topology g...
eltg4i 22893 An open set in a topology ...
eltg3i 22894 The union of a set of basi...
eltg3 22895 Membership in a topology g...
tgval3 22896 Alternate expression for t...
tg1 22897 Property of a member of a ...
tg2 22898 Property of a member of a ...
bastg 22899 A member of a basis is a s...
unitg 22900 The topology generated by ...
tgss 22901 Subset relation for genera...
tgcl 22902 Show that a basis generate...
tgclb 22903 The property ~ tgcl can be...
tgtopon 22904 A basis generates a topolo...
topbas 22905 A topology is its own basi...
tgtop 22906 A topology is its own basi...
eltop 22907 Membership in a topology, ...
eltop2 22908 Membership in a topology. ...
eltop3 22909 Membership in a topology. ...
fibas 22910 A collection of finite int...
tgdom 22911 A space has no more open s...
tgiun 22912 The indexed union of a set...
tgidm 22913 The topology generator fun...
bastop 22914 Two ways to express that a...
tgtop11 22915 The topology generation fu...
0top 22916 The singleton of the empty...
en1top 22917 ` { (/) } ` is the only to...
en2top 22918 If a topology has two elem...
tgss3 22919 A criterion for determinin...
tgss2 22920 A criterion for determinin...
basgen 22921 Given a topology ` J ` , s...
basgen2 22922 Given a topology ` J ` , s...
2basgen 22923 Conditions that determine ...
tgfiss 22924 If a subbase is included i...
tgdif0 22925 A generated topology is no...
bastop1 22926 A subset of a topology is ...
bastop2 22927 A version of ~ bastop1 tha...
distop 22928 The discrete topology on a...
topnex 22929 The class of all topologie...
distopon 22930 The discrete topology on a...
sn0topon 22931 The singleton of the empty...
sn0top 22932 The singleton of the empty...
indislem 22933 A lemma to eliminate some ...
indistopon 22934 The indiscrete topology on...
indistop 22935 The indiscrete topology on...
indisuni 22936 The base set of the indisc...
fctop 22937 The finite complement topo...
fctop2 22938 The finite complement topo...
cctop 22939 The countable complement t...
ppttop 22940 The particular point topol...
pptbas 22941 The particular point topol...
epttop 22942 The excluded point topolog...
indistpsx 22943 The indiscrete topology on...
indistps 22944 The indiscrete topology on...
indistps2 22945 The indiscrete topology on...
indistpsALT 22946 The indiscrete topology on...
indistpsALTOLD 22947 Obsolete version of ~ indi...
indistps2ALT 22948 The indiscrete topology on...
distps 22949 The discrete topology on a...
fncld 22956 The closed-set generator i...
cldval 22957 The set of closed sets of ...
ntrfval 22958 The interior function on t...
clsfval 22959 The closure function on th...
cldrcl 22960 Reverse closure of the clo...
iscld 22961 The predicate "the class `...
iscld2 22962 A subset of the underlying...
cldss 22963 A closed set is a subset o...
cldss2 22964 The set of closed sets is ...
cldopn 22965 The complement of a closed...
isopn2 22966 A subset of the underlying...
opncld 22967 The complement of an open ...
difopn 22968 The difference of a closed...
topcld 22969 The underlying set of a to...
ntrval 22970 The interior of a subset o...
clsval 22971 The closure of a subset of...
0cld 22972 The empty set is closed. ...
iincld 22973 The indexed intersection o...
intcld 22974 The intersection of a set ...
uncld 22975 The union of two closed se...
cldcls 22976 A closed subset equals its...
incld 22977 The intersection of two cl...
riincld 22978 An indexed relative inters...
iuncld 22979 A finite indexed union of ...
unicld 22980 A finite union of closed s...
clscld 22981 The closure of a subset of...
clsf 22982 The closure function is a ...
ntropn 22983 The interior of a subset o...
clsval2 22984 Express closure in terms o...
ntrval2 22985 Interior expressed in term...
ntrdif 22986 An interior of a complemen...
clsdif 22987 A closure of a complement ...
clsss 22988 Subset relationship for cl...
ntrss 22989 Subset relationship for in...
sscls 22990 A subset of a topology's u...
ntrss2 22991 A subset includes its inte...
ssntr 22992 An open subset of a set is...
clsss3 22993 The closure of a subset of...
ntrss3 22994 The interior of a subset o...
ntrin 22995 A pairwise intersection of...
cmclsopn 22996 The complement of a closur...
cmntrcld 22997 The complement of an inter...
iscld3 22998 A subset is closed iff it ...
iscld4 22999 A subset is closed iff it ...
isopn3 23000 A subset is open iff it eq...
clsidm 23001 The closure operation is i...
ntridm 23002 The interior operation is ...
clstop 23003 The closure of a topology'...
ntrtop 23004 The interior of a topology...
0ntr 23005 A subset with an empty int...
clsss2 23006 If a subset is included in...
elcls 23007 Membership in a closure. ...
elcls2 23008 Membership in a closure. ...
clsndisj 23009 Any open set containing a ...
ntrcls0 23010 A subset whose closure has...
ntreq0 23011 Two ways to say that a sub...
cldmre 23012 The closed sets of a topol...
mrccls 23013 Moore closure generalizes ...
cls0 23014 The closure of the empty s...
ntr0 23015 The interior of the empty ...
isopn3i 23016 An open subset equals its ...
elcls3 23017 Membership in a closure in...
opncldf1 23018 A bijection useful for con...
opncldf2 23019 The values of the open-clo...
opncldf3 23020 The values of the converse...
isclo 23021 A set ` A ` is clopen iff ...
isclo2 23022 A set ` A ` is clopen iff ...
discld 23023 The open sets of a discret...
sn0cld 23024 The closed sets of the top...
indiscld 23025 The closed sets of an indi...
mretopd 23026 A Moore collection which i...
toponmre 23027 The topologies over a give...
cldmreon 23028 The closed sets of a topol...
iscldtop 23029 A family is the closed set...
mreclatdemoBAD 23030 The closed subspaces of a ...
neifval 23033 Value of the neighborhood ...
neif 23034 The neighborhood function ...
neiss2 23035 A set with a neighborhood ...
neival 23036 Value of the set of neighb...
isnei 23037 The predicate "the class `...
neiint 23038 An intuitive definition of...
isneip 23039 The predicate "the class `...
neii1 23040 A neighborhood is included...
neisspw 23041 The neighborhoods of any s...
neii2 23042 Property of a neighborhood...
neiss 23043 Any neighborhood of a set ...
ssnei 23044 A set is included in any o...
elnei 23045 A point belongs to any of ...
0nnei 23046 The empty set is not a nei...
neips 23047 A neighborhood of a set is...
opnneissb 23048 An open set is a neighborh...
opnssneib 23049 Any superset of an open se...
ssnei2 23050 Any subset ` M ` of ` X ` ...
neindisj 23051 Any neighborhood of an ele...
opnneiss 23052 An open set is a neighborh...
opnneip 23053 An open set is a neighborh...
opnnei 23054 A set is open iff it is a ...
tpnei 23055 The underlying set of a to...
neiuni 23056 The union of the neighborh...
neindisj2 23057 A point ` P ` belongs to t...
topssnei 23058 A finer topology has more ...
innei 23059 The intersection of two ne...
opnneiid 23060 Only an open set is a neig...
neissex 23061 For any neighborhood ` N `...
0nei 23062 The empty set is a neighbo...
neipeltop 23063 Lemma for ~ neiptopreu . ...
neiptopuni 23064 Lemma for ~ neiptopreu . ...
neiptoptop 23065 Lemma for ~ neiptopreu . ...
neiptopnei 23066 Lemma for ~ neiptopreu . ...
neiptopreu 23067 If, to each element ` P ` ...
lpfval 23072 The limit point function o...
lpval 23073 The set of limit points of...
islp 23074 The predicate "the class `...
lpsscls 23075 The limit points of a subs...
lpss 23076 The limit points of a subs...
lpdifsn 23077 ` P ` is a limit point of ...
lpss3 23078 Subset relationship for li...
islp2 23079 The predicate " ` P ` is a...
islp3 23080 The predicate " ` P ` is a...
maxlp 23081 A point is a limit point o...
clslp 23082 The closure of a subset of...
islpi 23083 A point belonging to a set...
cldlp 23084 A subset of a topological ...
isperf 23085 Definition of a perfect sp...
isperf2 23086 Definition of a perfect sp...
isperf3 23087 A perfect space is a topol...
perflp 23088 The limit points of a perf...
perfi 23089 Property of a perfect spac...
perftop 23090 A perfect space is a topol...
restrcl 23091 Reverse closure for the su...
restbas 23092 A subspace topology basis ...
tgrest 23093 A subspace can be generate...
resttop 23094 A subspace topology is a t...
resttopon 23095 A subspace topology is a t...
restuni 23096 The underlying set of a su...
stoig 23097 The topological space buil...
restco 23098 Composition of subspaces. ...
restabs 23099 Equivalence of being a sub...
restin 23100 When the subspace region i...
restuni2 23101 The underlying set of a su...
resttopon2 23102 The underlying set of a su...
rest0 23103 The subspace topology indu...
restsn 23104 The only subspace topology...
restsn2 23105 The subspace topology indu...
restcld 23106 A closed set of a subspace...
restcldi 23107 A closed set is closed in ...
restcldr 23108 A set which is closed in t...
restopnb 23109 If ` B ` is an open subset...
ssrest 23110 If ` K ` is a finer topolo...
restopn2 23111 If ` A ` is open, then ` B...
restdis 23112 A subspace of a discrete t...
restfpw 23113 The restriction of the set...
neitr 23114 The neighborhood of a trac...
restcls 23115 A closure in a subspace to...
restntr 23116 An interior in a subspace ...
restlp 23117 The limit points of a subs...
restperf 23118 Perfection of a subspace. ...
perfopn 23119 An open subset of a perfec...
resstopn 23120 The topology of a restrict...
resstps 23121 A restricted topological s...
ordtbaslem 23122 Lemma for ~ ordtbas . In ...
ordtval 23123 Value of the order topolog...
ordtuni 23124 Value of the order topolog...
ordtbas2 23125 Lemma for ~ ordtbas . (Co...
ordtbas 23126 In a total order, the fini...
ordttopon 23127 Value of the order topolog...
ordtopn1 23128 An upward ray ` ( P , +oo ...
ordtopn2 23129 A downward ray ` ( -oo , P...
ordtopn3 23130 An open interval ` ( A , B...
ordtcld1 23131 A downward ray ` ( -oo , P...
ordtcld2 23132 An upward ray ` [ P , +oo ...
ordtcld3 23133 A closed interval ` [ A , ...
ordttop 23134 The order topology is a to...
ordtcnv 23135 The order dual generates t...
ordtrest 23136 The subspace topology of a...
ordtrest2lem 23137 Lemma for ~ ordtrest2 . (...
ordtrest2 23138 An interval-closed set ` A...
letopon 23139 The topology of the extend...
letop 23140 The topology of the extend...
letopuni 23141 The topology of the extend...
xrstopn 23142 The topology component of ...
xrstps 23143 The extended real number s...
leordtvallem1 23144 Lemma for ~ leordtval . (...
leordtvallem2 23145 Lemma for ~ leordtval . (...
leordtval2 23146 The topology of the extend...
leordtval 23147 The topology of the extend...
iccordt 23148 A closed interval is close...
iocpnfordt 23149 An unbounded above open in...
icomnfordt 23150 An unbounded above open in...
iooordt 23151 An open interval is open i...
reordt 23152 The real numbers are an op...
lecldbas 23153 The set of closed interval...
pnfnei 23154 A neighborhood of ` +oo ` ...
mnfnei 23155 A neighborhood of ` -oo ` ...
ordtrestixx 23156 The restriction of the les...
ordtresticc 23157 The restriction of the les...
lmrel 23164 The topological space conv...
lmrcl 23165 Reverse closure for the co...
lmfval 23166 The relation "sequence ` f...
cnfval 23167 The set of all continuous ...
cnpfval 23168 The function mapping the p...
iscn 23169 The predicate "the class `...
cnpval 23170 The set of all functions f...
iscnp 23171 The predicate "the class `...
iscn2 23172 The predicate "the class `...
iscnp2 23173 The predicate "the class `...
cntop1 23174 Reverse closure for a cont...
cntop2 23175 Reverse closure for a cont...
cnptop1 23176 Reverse closure for a func...
cnptop2 23177 Reverse closure for a func...
iscnp3 23178 The predicate "the class `...
cnprcl 23179 Reverse closure for a func...
cnf 23180 A continuous function is a...
cnpf 23181 A continuous function at p...
cnpcl 23182 The value of a continuous ...
cnf2 23183 A continuous function is a...
cnpf2 23184 A continuous function at p...
cnprcl2 23185 Reverse closure for a func...
tgcn 23186 The continuity predicate w...
tgcnp 23187 The "continuous at a point...
subbascn 23188 The continuity predicate w...
ssidcn 23189 The identity function is a...
cnpimaex 23190 Property of a function con...
idcn 23191 A restricted identity func...
lmbr 23192 Express the binary relatio...
lmbr2 23193 Express the binary relatio...
lmbrf 23194 Express the binary relatio...
lmconst 23195 A constant sequence conver...
lmcvg 23196 Convergence property of a ...
iscnp4 23197 The predicate "the class `...
cnpnei 23198 A condition for continuity...
cnima 23199 An open subset of the codo...
cnco 23200 The composition of two con...
cnpco 23201 The composition of a funct...
cnclima 23202 A closed subset of the cod...
iscncl 23203 A characterization of a co...
cncls2i 23204 Property of the preimage o...
cnntri 23205 Property of the preimage o...
cnclsi 23206 Property of the image of a...
cncls2 23207 Continuity in terms of clo...
cncls 23208 Continuity in terms of clo...
cnntr 23209 Continuity in terms of int...
cnss1 23210 If the topology ` K ` is f...
cnss2 23211 If the topology ` K ` is f...
cncnpi 23212 A continuous function is c...
cnsscnp 23213 The set of continuous func...
cncnp 23214 A continuous function is c...
cncnp2 23215 A continuous function is c...
cnnei 23216 Continuity in terms of nei...
cnconst2 23217 A constant function is con...
cnconst 23218 A constant function is con...
cnrest 23219 Continuity of a restrictio...
cnrest2 23220 Equivalence of continuity ...
cnrest2r 23221 Equivalence of continuity ...
cnpresti 23222 One direction of ~ cnprest...
cnprest 23223 Equivalence of continuity ...
cnprest2 23224 Equivalence of point-conti...
cndis 23225 Every function is continuo...
cnindis 23226 Every function is continuo...
cnpdis 23227 If ` A ` is an isolated po...
paste 23228 Pasting lemma. If ` A ` a...
lmfpm 23229 If ` F ` converges, then `...
lmfss 23230 Inclusion of a function ha...
lmcl 23231 Closure of a limit. (Cont...
lmss 23232 Limit on a subspace. (Con...
sslm 23233 A finer topology has fewer...
lmres 23234 A function converges iff i...
lmff 23235 If ` F ` converges, there ...
lmcls 23236 Any convergent sequence of...
lmcld 23237 Any convergent sequence of...
lmcnp 23238 The image of a convergent ...
lmcn 23239 The image of a convergent ...
ist0 23254 The predicate "is a T_0 sp...
ist1 23255 The predicate "is a T_1 sp...
ishaus 23256 The predicate "is a Hausdo...
iscnrm 23257 The property of being comp...
t0sep 23258 Any two topologically indi...
t0dist 23259 Any two distinct points in...
t1sncld 23260 In a T_1 space, singletons...
t1ficld 23261 In a T_1 space, finite set...
hausnei 23262 Neighborhood property of a...
t0top 23263 A T_0 space is a topologic...
t1top 23264 A T_1 space is a topologic...
haustop 23265 A Hausdorff space is a top...
isreg 23266 The predicate "is a regula...
regtop 23267 A regular space is a topol...
regsep 23268 In a regular space, every ...
isnrm 23269 The predicate "is a normal...
nrmtop 23270 A normal space is a topolo...
cnrmtop 23271 A completely normal space ...
iscnrm2 23272 The property of being comp...
ispnrm 23273 The property of being perf...
pnrmnrm 23274 A perfectly normal space i...
pnrmtop 23275 A perfectly normal space i...
pnrmcld 23276 A closed set in a perfectl...
pnrmopn 23277 An open set in a perfectly...
ist0-2 23278 The predicate "is a T_0 sp...
ist0-3 23279 The predicate "is a T_0 sp...
cnt0 23280 The preimage of a T_0 topo...
ist1-2 23281 An alternate characterizat...
t1t0 23282 A T_1 space is a T_0 space...
ist1-3 23283 A space is T_1 iff every p...
cnt1 23284 The preimage of a T_1 topo...
ishaus2 23285 Express the predicate " ` ...
haust1 23286 A Hausdorff space is a T_1...
hausnei2 23287 The Hausdorff condition st...
cnhaus 23288 The preimage of a Hausdorf...
nrmsep3 23289 In a normal space, given a...
nrmsep2 23290 In a normal space, any two...
nrmsep 23291 In a normal space, disjoin...
isnrm2 23292 An alternate characterizat...
isnrm3 23293 A topological space is nor...
cnrmi 23294 A subspace of a completely...
cnrmnrm 23295 A completely normal space ...
restcnrm 23296 A subspace of a completely...
resthauslem 23297 Lemma for ~ resthaus and s...
lpcls 23298 The limit points of the cl...
perfcls 23299 A subset of a perfect spac...
restt0 23300 A subspace of a T_0 topolo...
restt1 23301 A subspace of a T_1 topolo...
resthaus 23302 A subspace of a Hausdorff ...
t1sep2 23303 Any two points in a T_1 sp...
t1sep 23304 Any two distinct points in...
sncld 23305 A singleton is closed in a...
sshauslem 23306 Lemma for ~ sshaus and sim...
sst0 23307 A topology finer than a T_...
sst1 23308 A topology finer than a T_...
sshaus 23309 A topology finer than a Ha...
regsep2 23310 In a regular space, a clos...
isreg2 23311 A topological space is reg...
dnsconst 23312 If a continuous mapping to...
ordtt1 23313 The order topology is T_1 ...
lmmo 23314 A sequence in a Hausdorff ...
lmfun 23315 The convergence relation i...
dishaus 23316 A discrete topology is Hau...
ordthauslem 23317 Lemma for ~ ordthaus . (C...
ordthaus 23318 The order topology of a to...
xrhaus 23319 The topology of the extend...
iscmp 23322 The predicate "is a compac...
cmpcov 23323 An open cover of a compact...
cmpcov2 23324 Rewrite ~ cmpcov for the c...
cmpcovf 23325 Combine ~ cmpcov with ~ ac...
cncmp 23326 Compactness is respected b...
fincmp 23327 A finite topology is compa...
0cmp 23328 The singleton of the empty...
cmptop 23329 A compact topology is a to...
rncmp 23330 The image of a compact set...
imacmp 23331 The image of a compact set...
discmp 23332 A discrete topology is com...
cmpsublem 23333 Lemma for ~ cmpsub . (Con...
cmpsub 23334 Two equivalent ways of des...
tgcmp 23335 A topology generated by a ...
cmpcld 23336 A closed subset of a compa...
uncmp 23337 The union of two compact s...
fiuncmp 23338 A finite union of compact ...
sscmp 23339 A subset of a compact topo...
hauscmplem 23340 Lemma for ~ hauscmp . (Co...
hauscmp 23341 A compact subspace of a T2...
cmpfi 23342 If a topology is compact a...
cmpfii 23343 In a compact topology, a s...
bwth 23344 The glorious Bolzano-Weier...
isconn 23347 The predicate ` J ` is a c...
isconn2 23348 The predicate ` J ` is a c...
connclo 23349 The only nonempty clopen s...
conndisj 23350 If a topology is connected...
conntop 23351 A connected topology is a ...
indisconn 23352 The indiscrete topology (o...
dfconn2 23353 An alternate definition of...
connsuba 23354 Connectedness for a subspa...
connsub 23355 Two equivalent ways of say...
cnconn 23356 Connectedness is respected...
nconnsubb 23357 Disconnectedness for a sub...
connsubclo 23358 If a clopen set meets a co...
connima 23359 The image of a connected s...
conncn 23360 A continuous function from...
iunconnlem 23361 Lemma for ~ iunconn . (Co...
iunconn 23362 The indexed union of conne...
unconn 23363 The union of two connected...
clsconn 23364 The closure of a connected...
conncompid 23365 The connected component co...
conncompconn 23366 The connected component co...
conncompss 23367 The connected component co...
conncompcld 23368 The connected component co...
conncompclo 23369 The connected component co...
t1connperf 23370 A connected T_1 space is p...
is1stc 23375 The predicate "is a first-...
is1stc2 23376 An equivalent way of sayin...
1stctop 23377 A first-countable topology...
1stcclb 23378 A property of points in a ...
1stcfb 23379 For any point ` A ` in a f...
is2ndc 23380 The property of being seco...
2ndctop 23381 A second-countable topolog...
2ndci 23382 A countable basis generate...
2ndcsb 23383 Having a countable subbase...
2ndcredom 23384 A second-countable space h...
2ndc1stc 23385 A second-countable space i...
1stcrestlem 23386 Lemma for ~ 1stcrest . (C...
1stcrest 23387 A subspace of a first-coun...
2ndcrest 23388 A subspace of a second-cou...
2ndcctbss 23389 If a topology is second-co...
2ndcdisj 23390 Any disjoint family of ope...
2ndcdisj2 23391 Any disjoint collection of...
2ndcomap 23392 A surjective continuous op...
2ndcsep 23393 A second-countable topolog...
dis2ndc 23394 A discrete space is second...
1stcelcls 23395 A point belongs to the clo...
1stccnp 23396 A mapping is continuous at...
1stccn 23397 A mapping ` X --> Y ` , wh...
islly 23402 The property of being a lo...
isnlly 23403 The property of being an n...
llyeq 23404 Equality theorem for the `...
nllyeq 23405 Equality theorem for the `...
llytop 23406 A locally ` A ` space is a...
nllytop 23407 A locally ` A ` space is a...
llyi 23408 The property of a locally ...
nllyi 23409 The property of an n-local...
nlly2i 23410 Eliminate the neighborhood...
llynlly 23411 A locally ` A ` space is n...
llyssnlly 23412 A locally ` A ` space is n...
llyss 23413 The "locally" predicate re...
nllyss 23414 The "n-locally" predicate ...
subislly 23415 The property of a subspace...
restnlly 23416 If the property ` A ` pass...
restlly 23417 If the property ` A ` pass...
islly2 23418 An alternative expression ...
llyrest 23419 An open subspace of a loca...
nllyrest 23420 An open subspace of an n-l...
loclly 23421 If ` A ` is a local proper...
llyidm 23422 Idempotence of the "locall...
nllyidm 23423 Idempotence of the "n-loca...
toplly 23424 A topology is locally a to...
topnlly 23425 A topology is n-locally a ...
hauslly 23426 A Hausdorff space is local...
hausnlly 23427 A Hausdorff space is n-loc...
hausllycmp 23428 A compact Hausdorff space ...
cldllycmp 23429 A closed subspace of a loc...
lly1stc 23430 First-countability is a lo...
dislly 23431 The discrete space ` ~P X ...
disllycmp 23432 A discrete space is locall...
dis1stc 23433 A discrete space is first-...
hausmapdom 23434 If ` X ` is a first-counta...
hauspwdom 23435 Simplify the cardinal ` A ...
refrel 23442 Refinement is a relation. ...
isref 23443 The property of being a re...
refbas 23444 A refinement covers the sa...
refssex 23445 Every set in a refinement ...
ssref 23446 A subcover is a refinement...
refref 23447 Reflexivity of refinement....
reftr 23448 Refinement is transitive. ...
refun0 23449 Adding the empty set prese...
isptfin 23450 The statement "is a point-...
islocfin 23451 The statement "is a locall...
finptfin 23452 A finite cover is a point-...
ptfinfin 23453 A point covered by a point...
finlocfin 23454 A finite cover of a topolo...
locfintop 23455 A locally finite cover cov...
locfinbas 23456 A locally finite cover mus...
locfinnei 23457 A point covered by a local...
lfinpfin 23458 A locally finite cover is ...
lfinun 23459 Adding a finite set preser...
locfincmp 23460 For a compact space, the l...
unisngl 23461 Taking the union of the se...
dissnref 23462 The set of singletons is a...
dissnlocfin 23463 The set of singletons is l...
locfindis 23464 The locally finite covers ...
locfincf 23465 A locally finite cover in ...
comppfsc 23466 A space where every open c...
kgenval 23469 Value of the compact gener...
elkgen 23470 Value of the compact gener...
kgeni 23471 Property of the open sets ...
kgentopon 23472 The compact generator gene...
kgenuni 23473 The base set of the compac...
kgenftop 23474 The compact generator gene...
kgenf 23475 The compact generator is a...
kgentop 23476 A compactly generated spac...
kgenss 23477 The compact generator gene...
kgenhaus 23478 The compact generator gene...
kgencmp 23479 The compact generator topo...
kgencmp2 23480 The compact generator topo...
kgenidm 23481 The compact generator is i...
iskgen2 23482 A space is compactly gener...
iskgen3 23483 Derive the usual definitio...
llycmpkgen2 23484 A locally compact space is...
cmpkgen 23485 A compact space is compact...
llycmpkgen 23486 A locally compact space is...
1stckgenlem 23487 The one-point compactifica...
1stckgen 23488 A first-countable space is...
kgen2ss 23489 The compact generator pres...
kgencn 23490 A function from a compactl...
kgencn2 23491 A function ` F : J --> K `...
kgencn3 23492 The set of continuous func...
kgen2cn 23493 A continuous function is a...
txval 23498 Value of the binary topolo...
txuni2 23499 The underlying set of the ...
txbasex 23500 The basis for the product ...
txbas 23501 The set of Cartesian produ...
eltx 23502 A set in a product is open...
txtop 23503 The product of two topolog...
ptval 23504 The value of the product t...
ptpjpre1 23505 The preimage of a projecti...
elpt 23506 Elementhood in the bases o...
elptr 23507 A basic open set in the pr...
elptr2 23508 A basic open set in the pr...
ptbasid 23509 The base set of the produc...
ptuni2 23510 The base set for the produ...
ptbasin 23511 The basis for a product to...
ptbasin2 23512 The basis for a product to...
ptbas 23513 The basis for a product to...
ptpjpre2 23514 The basis for a product to...
ptbasfi 23515 The basis for the product ...
pttop 23516 The product topology is a ...
ptopn 23517 A basic open set in the pr...
ptopn2 23518 A sub-basic open set in th...
xkotf 23519 Functionality of function ...
xkobval 23520 Alternative expression for...
xkoval 23521 Value of the compact-open ...
xkotop 23522 The compact-open topology ...
xkoopn 23523 A basic open set of the co...
txtopi 23524 The product of two topolog...
txtopon 23525 The underlying set of the ...
txuni 23526 The underlying set of the ...
txunii 23527 The underlying set of the ...
ptuni 23528 The base set for the produ...
ptunimpt 23529 Base set of a product topo...
pttopon 23530 The base set for the produ...
pttoponconst 23531 The base set for a product...
ptuniconst 23532 The base set for a product...
xkouni 23533 The base set of the compac...
xkotopon 23534 The base set of the compac...
ptval2 23535 The value of the product t...
txopn 23536 The product of two open se...
txcld 23537 The product of two closed ...
txcls 23538 Closure of a rectangle in ...
txss12 23539 Subset property of the top...
txbasval 23540 It is sufficient to consid...
neitx 23541 The Cartesian product of t...
txcnpi 23542 Continuity of a two-argume...
tx1cn 23543 Continuity of the first pr...
tx2cn 23544 Continuity of the second p...
ptpjcn 23545 Continuity of a projection...
ptpjopn 23546 The projection map is an o...
ptcld 23547 A closed box in the produc...
ptcldmpt 23548 A closed box in the produc...
ptclsg 23549 The closure of a box in th...
ptcls 23550 The closure of a box in th...
dfac14lem 23551 Lemma for ~ dfac14 . By e...
dfac14 23552 Theorem ~ ptcls is an equi...
xkoccn 23553 The "constant function" fu...
txcnp 23554 If two functions are conti...
ptcnplem 23555 Lemma for ~ ptcnp . (Cont...
ptcnp 23556 If every projection of a f...
upxp 23557 Universal property of the ...
txcnmpt 23558 A map into the product of ...
uptx 23559 Universal property of the ...
txcn 23560 A map into the product of ...
ptcn 23561 If every projection of a f...
prdstopn 23562 Topology of a structure pr...
prdstps 23563 A structure product of top...
pwstps 23564 A structure power of a top...
txrest 23565 The subspace of a topologi...
txdis 23566 The topological product of...
txindislem 23567 Lemma for ~ txindis . (Co...
txindis 23568 The topological product of...
txdis1cn 23569 A function is jointly cont...
txlly 23570 If the property ` A ` is p...
txnlly 23571 If the property ` A ` is p...
pthaus 23572 The product of a collectio...
ptrescn 23573 Restriction is a continuou...
txtube 23574 The "tube lemma". If ` X ...
txcmplem1 23575 Lemma for ~ txcmp . (Cont...
txcmplem2 23576 Lemma for ~ txcmp . (Cont...
txcmp 23577 The topological product of...
txcmpb 23578 The topological product of...
hausdiag 23579 A topology is Hausdorff if...
hauseqlcld 23580 In a Hausdorff topology, t...
txhaus 23581 The topological product of...
txlm 23582 Two sequences converge iff...
lmcn2 23583 The image of a convergent ...
tx1stc 23584 The topological product of...
tx2ndc 23585 The topological product of...
txkgen 23586 The topological product of...
xkohaus 23587 If the codomain space is H...
xkoptsub 23588 The compact-open topology ...
xkopt 23589 The compact-open topology ...
xkopjcn 23590 Continuity of a projection...
xkoco1cn 23591 If ` F ` is a continuous f...
xkoco2cn 23592 If ` F ` is a continuous f...
xkococnlem 23593 Continuity of the composit...
xkococn 23594 Continuity of the composit...
cnmptid 23595 The identity function is c...
cnmptc 23596 A constant function is con...
cnmpt11 23597 The composition of continu...
cnmpt11f 23598 The composition of continu...
cnmpt1t 23599 The composition of continu...
cnmpt12f 23600 The composition of continu...
cnmpt12 23601 The composition of continu...
cnmpt1st 23602 The projection onto the fi...
cnmpt2nd 23603 The projection onto the se...
cnmpt2c 23604 A constant function is con...
cnmpt21 23605 The composition of continu...
cnmpt21f 23606 The composition of continu...
cnmpt2t 23607 The composition of continu...
cnmpt22 23608 The composition of continu...
cnmpt22f 23609 The composition of continu...
cnmpt1res 23610 The restriction of a conti...
cnmpt2res 23611 The restriction of a conti...
cnmptcom 23612 The argument converse of a...
cnmptkc 23613 The curried first projecti...
cnmptkp 23614 The evaluation of the inne...
cnmptk1 23615 The composition of a curri...
cnmpt1k 23616 The composition of a one-a...
cnmptkk 23617 The composition of two cur...
xkofvcn 23618 Joint continuity of the fu...
cnmptk1p 23619 The evaluation of a currie...
cnmptk2 23620 The uncurrying of a currie...
xkoinjcn 23621 Continuity of "injection",...
cnmpt2k 23622 The currying of a two-argu...
txconn 23623 The topological product of...
imasnopn 23624 If a relation graph is ope...
imasncld 23625 If a relation graph is clo...
imasncls 23626 If a relation graph is clo...
qtopval 23629 Value of the quotient topo...
qtopval2 23630 Value of the quotient topo...
elqtop 23631 Value of the quotient topo...
qtopres 23632 The quotient topology is u...
qtoptop2 23633 The quotient topology is a...
qtoptop 23634 The quotient topology is a...
elqtop2 23635 Value of the quotient topo...
qtopuni 23636 The base set of the quotie...
elqtop3 23637 Value of the quotient topo...
qtoptopon 23638 The base set of the quotie...
qtopid 23639 A quotient map is a contin...
idqtop 23640 The quotient topology indu...
qtopcmplem 23641 Lemma for ~ qtopcmp and ~ ...
qtopcmp 23642 A quotient of a compact sp...
qtopconn 23643 A quotient of a connected ...
qtopkgen 23644 A quotient of a compactly ...
basqtop 23645 An injection maps bases to...
tgqtop 23646 An injection maps generate...
qtopcld 23647 The property of being a cl...
qtopcn 23648 Universal property of a qu...
qtopss 23649 A surjective continuous fu...
qtopeu 23650 Universal property of the ...
qtoprest 23651 If ` A ` is a saturated op...
qtopomap 23652 If ` F ` is a surjective c...
qtopcmap 23653 If ` F ` is a surjective c...
imastopn 23654 The topology of an image s...
imastps 23655 The image of a topological...
qustps 23656 A quotient structure is a ...
kqfval 23657 Value of the function appe...
kqfeq 23658 Two points in the Kolmogor...
kqffn 23659 The topological indistingu...
kqval 23660 Value of the quotient topo...
kqtopon 23661 The Kolmogorov quotient is...
kqid 23662 The topological indistingu...
ist0-4 23663 The topological indistingu...
kqfvima 23664 When the image set is open...
kqsat 23665 Any open set is saturated ...
kqdisj 23666 A version of ~ imain for t...
kqcldsat 23667 Any closed set is saturate...
kqopn 23668 The topological indistingu...
kqcld 23669 The topological indistingu...
kqt0lem 23670 Lemma for ~ kqt0 . (Contr...
isr0 23671 The property " ` J ` is an...
r0cld 23672 The analogue of the T_1 ax...
regr1lem 23673 Lemma for ~ regr1 . (Cont...
regr1lem2 23674 A Kolmogorov quotient of a...
kqreglem1 23675 A Kolmogorov quotient of a...
kqreglem2 23676 If the Kolmogorov quotient...
kqnrmlem1 23677 A Kolmogorov quotient of a...
kqnrmlem2 23678 If the Kolmogorov quotient...
kqtop 23679 The Kolmogorov quotient is...
kqt0 23680 The Kolmogorov quotient is...
kqf 23681 The Kolmogorov quotient is...
r0sep 23682 The separation property of...
nrmr0reg 23683 A normal R_0 space is also...
regr1 23684 A regular space is R_1, wh...
kqreg 23685 The Kolmogorov quotient of...
kqnrm 23686 The Kolmogorov quotient of...
hmeofn 23691 The set of homeomorphisms ...
hmeofval 23692 The set of all the homeomo...
ishmeo 23693 The predicate F is a homeo...
hmeocn 23694 A homeomorphism is continu...
hmeocnvcn 23695 The converse of a homeomor...
hmeocnv 23696 The converse of a homeomor...
hmeof1o2 23697 A homeomorphism is a 1-1-o...
hmeof1o 23698 A homeomorphism is a 1-1-o...
hmeoima 23699 The image of an open set b...
hmeoopn 23700 Homeomorphisms preserve op...
hmeocld 23701 Homeomorphisms preserve cl...
hmeocls 23702 Homeomorphisms preserve cl...
hmeontr 23703 Homeomorphisms preserve in...
hmeoimaf1o 23704 The function mapping open ...
hmeores 23705 The restriction of a homeo...
hmeoco 23706 The composite of two homeo...
idhmeo 23707 The identity function is a...
hmeocnvb 23708 The converse of a homeomor...
hmeoqtop 23709 A homeomorphism is a quoti...
hmph 23710 Express the predicate ` J ...
hmphi 23711 If there is a homeomorphis...
hmphtop 23712 Reverse closure for the ho...
hmphtop1 23713 The relation "being homeom...
hmphtop2 23714 The relation "being homeom...
hmphref 23715 "Is homeomorphic to" is re...
hmphsym 23716 "Is homeomorphic to" is sy...
hmphtr 23717 "Is homeomorphic to" is tr...
hmpher 23718 "Is homeomorphic to" is an...
hmphen 23719 Homeomorphisms preserve th...
hmphsymb 23720 "Is homeomorphic to" is sy...
haushmphlem 23721 Lemma for ~ haushmph and s...
cmphmph 23722 Compactness is a topologic...
connhmph 23723 Connectedness is a topolog...
t0hmph 23724 T_0 is a topological prope...
t1hmph 23725 T_1 is a topological prope...
haushmph 23726 Hausdorff-ness is a topolo...
reghmph 23727 Regularity is a topologica...
nrmhmph 23728 Normality is a topological...
hmph0 23729 A topology homeomorphic to...
hmphdis 23730 Homeomorphisms preserve to...
hmphindis 23731 Homeomorphisms preserve to...
indishmph 23732 Equinumerous sets equipped...
hmphen2 23733 Homeomorphisms preserve th...
cmphaushmeo 23734 A continuous bijection fro...
ordthmeolem 23735 Lemma for ~ ordthmeo . (C...
ordthmeo 23736 An order isomorphism is a ...
txhmeo 23737 Lift a pair of homeomorphi...
txswaphmeolem 23738 Show inverse for the "swap...
txswaphmeo 23739 There is a homeomorphism f...
pt1hmeo 23740 The canonical homeomorphis...
ptuncnv 23741 Exhibit the converse funct...
ptunhmeo 23742 Define a homeomorphism fro...
xpstopnlem1 23743 The function ` F ` used in...
xpstps 23744 A binary product of topolo...
xpstopnlem2 23745 Lemma for ~ xpstopn . (Co...
xpstopn 23746 The topology on a binary p...
ptcmpfi 23747 A topological product of f...
xkocnv 23748 The inverse of the "curryi...
xkohmeo 23749 The Exponential Law for to...
qtopf1 23750 If a quotient map is injec...
qtophmeo 23751 If two functions on a base...
t0kq 23752 A topological space is T_0...
kqhmph 23753 A topological space is T_0...
ist1-5lem 23754 Lemma for ~ ist1-5 and sim...
t1r0 23755 A T_1 space is R_0. That ...
ist1-5 23756 A topological space is T_1...
ishaus3 23757 A topological space is Hau...
nrmreg 23758 A normal T_1 space is regu...
reghaus 23759 A regular T_0 space is Hau...
nrmhaus 23760 A T_1 normal space is Haus...
elmptrab 23761 Membership in a one-parame...
elmptrab2 23762 Membership in a one-parame...
isfbas 23763 The predicate " ` F ` is a...
fbasne0 23764 There are no empty filter ...
0nelfb 23765 No filter base contains th...
fbsspw 23766 A filter base on a set is ...
fbelss 23767 An element of the filter b...
fbdmn0 23768 The domain of a filter bas...
isfbas2 23769 The predicate " ` F ` is a...
fbasssin 23770 A filter base contains sub...
fbssfi 23771 A filter base contains sub...
fbssint 23772 A filter base contains sub...
fbncp 23773 A filter base does not con...
fbun 23774 A necessary and sufficient...
fbfinnfr 23775 No filter base containing ...
opnfbas 23776 The collection of open sup...
trfbas2 23777 Conditions for the trace o...
trfbas 23778 Conditions for the trace o...
isfil 23781 The predicate "is a filter...
filfbas 23782 A filter is a filter base....
0nelfil 23783 The empty set doesn't belo...
fileln0 23784 An element of a filter is ...
filsspw 23785 A filter is a subset of th...
filelss 23786 An element of a filter is ...
filss 23787 A filter is closed under t...
filin 23788 A filter is closed under t...
filtop 23789 The underlying set belongs...
isfil2 23790 Derive the standard axioms...
isfildlem 23791 Lemma for ~ isfild . (Con...
isfild 23792 Sufficient condition for a...
filfi 23793 A filter is closed under t...
filinn0 23794 The intersection of two el...
filintn0 23795 A filter has the finite in...
filn0 23796 The empty set is not a fil...
infil 23797 The intersection of two fi...
snfil 23798 A singleton is a filter. ...
fbasweak 23799 A filter base on any set i...
snfbas 23800 Condition for a singleton ...
fsubbas 23801 A condition for a set to g...
fbasfip 23802 A filter base has the fini...
fbunfip 23803 A helpful lemma for showin...
fgval 23804 The filter generating clas...
elfg 23805 A condition for elements o...
ssfg 23806 A filter base is a subset ...
fgss 23807 A bigger base generates a ...
fgss2 23808 A condition for a filter t...
fgfil 23809 A filter generates itself....
elfilss 23810 An element belongs to a fi...
filfinnfr 23811 No filter containing a fin...
fgcl 23812 A generated filter is a fi...
fgabs 23813 Absorption law for filter ...
neifil 23814 The neighborhoods of a non...
filunibas 23815 Recover the base set from ...
filunirn 23816 Two ways to express a filt...
filconn 23817 A filter gives rise to a c...
fbasrn 23818 Given a filter on a domain...
filuni 23819 The union of a nonempty se...
trfil1 23820 Conditions for the trace o...
trfil2 23821 Conditions for the trace o...
trfil3 23822 Conditions for the trace o...
trfilss 23823 If ` A ` is a member of th...
fgtr 23824 If ` A ` is a member of th...
trfg 23825 The trace operation and th...
trnei 23826 The trace, over a set ` A ...
cfinfil 23827 Relative complements of th...
csdfil 23828 The set of all elements wh...
supfil 23829 The supersets of a nonempt...
zfbas 23830 The set of upper sets of i...
uzrest 23831 The restriction of the set...
uzfbas 23832 The set of upper sets of i...
isufil 23837 The property of being an u...
ufilfil 23838 An ultrafilter is a filter...
ufilss 23839 For any subset of the base...
ufilb 23840 The complement is in an ul...
ufilmax 23841 Any filter finer than an u...
isufil2 23842 The maximal property of an...
ufprim 23843 An ultrafilter is a prime ...
trufil 23844 Conditions for the trace o...
filssufilg 23845 A filter is contained in s...
filssufil 23846 A filter is contained in s...
isufl 23847 Define the (strong) ultraf...
ufli 23848 Property of a set that sat...
numufl 23849 Consequence of ~ filssufil...
fiufl 23850 A finite set satisfies the...
acufl 23851 The axiom of choice implie...
ssufl 23852 If ` Y ` is a subset of ` ...
ufileu 23853 If the ultrafilter contain...
filufint 23854 A filter is equal to the i...
uffix 23855 Lemma for ~ fixufil and ~ ...
fixufil 23856 The condition describing a...
uffixfr 23857 An ultrafilter is either f...
uffix2 23858 A classification of fixed ...
uffixsn 23859 The singleton of the gener...
ufildom1 23860 An ultrafilter is generate...
uffinfix 23861 An ultrafilter containing ...
cfinufil 23862 An ultrafilter is free iff...
ufinffr 23863 An infinite subset is cont...
ufilen 23864 Any infinite set has an ul...
ufildr 23865 An ultrafilter gives rise ...
fin1aufil 23866 There are no definable fre...
fmval 23877 Introduce a function that ...
fmfil 23878 A mapping filter is a filt...
fmf 23879 Pushing-forward via a func...
fmss 23880 A finer filter produces a ...
elfm 23881 An element of a mapping fi...
elfm2 23882 An element of a mapping fi...
fmfg 23883 The image filter of a filt...
elfm3 23884 An alternate formulation o...
imaelfm 23885 An image of a filter eleme...
rnelfmlem 23886 Lemma for ~ rnelfm . (Con...
rnelfm 23887 A condition for a filter t...
fmfnfmlem1 23888 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23889 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23890 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23891 Lemma for ~ fmfnfm . (Con...
fmfnfm 23892 A filter finer than an ima...
fmufil 23893 An image filter of an ultr...
fmid 23894 The filter map applied to ...
fmco 23895 Composition of image filte...
ufldom 23896 The ultrafilter lemma prop...
flimval 23897 The set of limit points of...
elflim2 23898 The predicate "is a limit ...
flimtop 23899 Reverse closure for the li...
flimneiss 23900 A filter contains the neig...
flimnei 23901 A filter contains all of t...
flimelbas 23902 A limit point of a filter ...
flimfil 23903 Reverse closure for the li...
flimtopon 23904 Reverse closure for the li...
elflim 23905 The predicate "is a limit ...
flimss2 23906 A limit point of a filter ...
flimss1 23907 A limit point of a filter ...
neiflim 23908 A point is a limit point o...
flimopn 23909 The condition for being a ...
fbflim 23910 A condition for a filter t...
fbflim2 23911 A condition for a filter b...
flimclsi 23912 The convergent points of a...
hausflimlem 23913 If ` A ` and ` B ` are bot...
hausflimi 23914 One direction of ~ hausfli...
hausflim 23915 A condition for a topology...
flimcf 23916 Fineness is properly chara...
flimrest 23917 The set of limit points in...
flimclslem 23918 Lemma for ~ flimcls . (Co...
flimcls 23919 Closure in terms of filter...
flimsncls 23920 If ` A ` is a limit point ...
hauspwpwf1 23921 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23922 If ` X ` is a Hausdorff sp...
flffval 23923 Given a topology and a fil...
flfval 23924 Given a function from a fi...
flfnei 23925 The property of being a li...
flfneii 23926 A neighborhood of a limit ...
isflf 23927 The property of being a li...
flfelbas 23928 A limit point of a functio...
flffbas 23929 Limit points of a function...
flftg 23930 Limit points of a function...
hausflf 23931 If a function has its valu...
hausflf2 23932 If a convergent function h...
cnpflfi 23933 Forward direction of ~ cnp...
cnpflf2 23934 ` F ` is continuous at poi...
cnpflf 23935 Continuity of a function a...
cnflf 23936 A function is continuous i...
cnflf2 23937 A function is continuous i...
flfcnp 23938 A continuous function pres...
lmflf 23939 The topological limit rela...
txflf 23940 Two sequences converge in ...
flfcnp2 23941 The image of a convergent ...
fclsval 23942 The set of all cluster poi...
isfcls 23943 A cluster point of a filte...
fclsfil 23944 Reverse closure for the cl...
fclstop 23945 Reverse closure for the cl...
fclstopon 23946 Reverse closure for the cl...
isfcls2 23947 A cluster point of a filte...
fclsopn 23948 Write the cluster point co...
fclsopni 23949 An open neighborhood of a ...
fclselbas 23950 A cluster point is in the ...
fclsneii 23951 A neighborhood of a cluste...
fclssscls 23952 The set of cluster points ...
fclsnei 23953 Cluster points in terms of...
supnfcls 23954 The filter of supersets of...
fclsbas 23955 Cluster points in terms of...
fclsss1 23956 A finer topology has fewer...
fclsss2 23957 A finer filter has fewer c...
fclsrest 23958 The set of cluster points ...
fclscf 23959 Characterization of finene...
flimfcls 23960 A limit point is a cluster...
fclsfnflim 23961 A filter clusters at a poi...
flimfnfcls 23962 A filter converges to a po...
fclscmpi 23963 Forward direction of ~ fcl...
fclscmp 23964 A space is compact iff eve...
uffclsflim 23965 The cluster points of an u...
ufilcmp 23966 A space is compact iff eve...
fcfval 23967 The set of cluster points ...
isfcf 23968 The property of being a cl...
fcfnei 23969 The property of being a cl...
fcfelbas 23970 A cluster point of a funct...
fcfneii 23971 A neighborhood of a cluste...
flfssfcf 23972 A limit point of a functio...
uffcfflf 23973 If the domain filter is an...
cnpfcfi 23974 Lemma for ~ cnpfcf . If a...
cnpfcf 23975 A function ` F ` is contin...
cnfcf 23976 Continuity of a function i...
flfcntr 23977 A continuous function's va...
alexsublem 23978 Lemma for ~ alexsub . (Co...
alexsub 23979 The Alexander Subbase Theo...
alexsubb 23980 Biconditional form of the ...
alexsubALTlem1 23981 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23982 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23983 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23984 Lemma for ~ alexsubALT . ...
alexsubALT 23985 The Alexander Subbase Theo...
ptcmplem1 23986 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23987 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23988 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23989 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23990 Lemma for ~ ptcmp . (Cont...
ptcmpg 23991 Tychonoff's theorem: The ...
ptcmp 23992 Tychonoff's theorem: The ...
cnextval 23995 The function applying cont...
cnextfval 23996 The continuous extension o...
cnextrel 23997 In the general case, a con...
cnextfun 23998 If the target space is Hau...
cnextfvval 23999 The value of the continuou...
cnextf 24000 Extension by continuity. ...
cnextcn 24001 Extension by continuity. ...
cnextfres1 24002 ` F ` and its extension by...
cnextfres 24003 ` F ` and its extension by...
istmd 24008 The predicate "is a topolo...
tmdmnd 24009 A topological monoid is a ...
tmdtps 24010 A topological monoid is a ...
istgp 24011 The predicate "is a topolo...
tgpgrp 24012 A topological group is a g...
tgptmd 24013 A topological group is a t...
tgptps 24014 A topological group is a t...
tmdtopon 24015 The topology of a topologi...
tgptopon 24016 The topology of a topologi...
tmdcn 24017 In a topological monoid, t...
tgpcn 24018 In a topological group, th...
tgpinv 24019 In a topological group, th...
grpinvhmeo 24020 The inverse function in a ...
cnmpt1plusg 24021 Continuity of the group su...
cnmpt2plusg 24022 Continuity of the group su...
tmdcn2 24023 Write out the definition o...
tgpsubcn 24024 In a topological group, th...
istgp2 24025 A group with a topology is...
tmdmulg 24026 In a topological monoid, t...
tgpmulg 24027 In a topological group, th...
tgpmulg2 24028 In a topological monoid, t...
tmdgsum 24029 In a topological monoid, t...
tmdgsum2 24030 For any neighborhood ` U `...
oppgtmd 24031 The opposite of a topologi...
oppgtgp 24032 The opposite of a topologi...
distgp 24033 Any group equipped with th...
indistgp 24034 Any group equipped with th...
efmndtmd 24035 The monoid of endofunction...
tmdlactcn 24036 The left group action of e...
tgplacthmeo 24037 The left group action of e...
submtmd 24038 A submonoid of a topologic...
subgtgp 24039 A subgroup of a topologica...
symgtgp 24040 The symmetric group is a t...
subgntr 24041 A subgroup of a topologica...
opnsubg 24042 An open subgroup of a topo...
clssubg 24043 The closure of a subgroup ...
clsnsg 24044 The closure of a normal su...
cldsubg 24045 A subgroup of finite index...
tgpconncompeqg 24046 The connected component co...
tgpconncomp 24047 The identity component, th...
tgpconncompss 24048 The identity component is ...
ghmcnp 24049 A group homomorphism on to...
snclseqg 24050 The coset of the closure o...
tgphaus 24051 A topological group is Hau...
tgpt1 24052 Hausdorff and T1 are equiv...
tgpt0 24053 Hausdorff and T0 are equiv...
qustgpopn 24054 A quotient map in a topolo...
qustgplem 24055 Lemma for ~ qustgp . (Con...
qustgp 24056 The quotient of a topologi...
qustgphaus 24057 The quotient of a topologi...
prdstmdd 24058 The product of a family of...
prdstgpd 24059 The product of a family of...
tsmsfbas 24062 The collection of all sets...
tsmslem1 24063 The finite partial sums of...
tsmsval2 24064 Definition of the topologi...
tsmsval 24065 Definition of the topologi...
tsmspropd 24066 The group sum depends only...
eltsms 24067 The property of being a su...
tsmsi 24068 The property of being a su...
tsmscl 24069 A sum in a topological gro...
haustsms 24070 In a Hausdorff topological...
haustsms2 24071 In a Hausdorff topological...
tsmscls 24072 One half of ~ tgptsmscls ,...
tsmsgsum 24073 The convergent points of a...
tsmsid 24074 If a sum is finite, the us...
haustsmsid 24075 In a Hausdorff topological...
tsms0 24076 The sum of zero is zero. ...
tsmssubm 24077 Evaluate an infinite group...
tsmsres 24078 Extend an infinite group s...
tsmsf1o 24079 Re-index an infinite group...
tsmsmhm 24080 Apply a continuous group h...
tsmsadd 24081 The sum of two infinite gr...
tsmsinv 24082 Inverse of an infinite gro...
tsmssub 24083 The difference of two infi...
tgptsmscls 24084 A sum in a topological gro...
tgptsmscld 24085 The set of limit points to...
tsmssplit 24086 Split a topological group ...
tsmsxplem1 24087 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 24088 Lemma for ~ tsmsxp . (Con...
tsmsxp 24089 Write a sum over a two-dim...
istrg 24098 Express the predicate " ` ...
trgtmd 24099 The multiplicative monoid ...
istdrg 24100 Express the predicate " ` ...
tdrgunit 24101 The unit group of a topolo...
trgtgp 24102 A topological ring is a to...
trgtmd2 24103 A topological ring is a to...
trgtps 24104 A topological ring is a to...
trgring 24105 A topological ring is a ri...
trggrp 24106 A topological ring is a gr...
tdrgtrg 24107 A topological division rin...
tdrgdrng 24108 A topological division rin...
tdrgring 24109 A topological division rin...
tdrgtmd 24110 A topological division rin...
tdrgtps 24111 A topological division rin...
istdrg2 24112 A topological-ring divisio...
mulrcn 24113 The functionalization of t...
invrcn2 24114 The multiplicative inverse...
invrcn 24115 The multiplicative inverse...
cnmpt1mulr 24116 Continuity of ring multipl...
cnmpt2mulr 24117 Continuity of ring multipl...
dvrcn 24118 The division function is c...
istlm 24119 The predicate " ` W ` is a...
vscacn 24120 The scalar multiplication ...
tlmtmd 24121 A topological module is a ...
tlmtps 24122 A topological module is a ...
tlmlmod 24123 A topological module is a ...
tlmtrg 24124 The scalar ring of a topol...
tlmscatps 24125 The scalar ring of a topol...
istvc 24126 A topological vector space...
tvctdrg 24127 The scalar field of a topo...
cnmpt1vsca 24128 Continuity of scalar multi...
cnmpt2vsca 24129 Continuity of scalar multi...
tlmtgp 24130 A topological vector space...
tvctlm 24131 A topological vector space...
tvclmod 24132 A topological vector space...
tvclvec 24133 A topological vector space...
ustfn 24136 The defined uniform struct...
ustval 24137 The class of all uniform s...
isust 24138 The predicate " ` U ` is a...
ustssxp 24139 Entourages are subsets of ...
ustssel 24140 A uniform structure is upw...
ustbasel 24141 The full set is always an ...
ustincl 24142 A uniform structure is clo...
ustdiag 24143 The diagonal set is includ...
ustinvel 24144 If ` V ` is an entourage, ...
ustexhalf 24145 For each entourage ` V ` t...
ustrel 24146 The elements of uniform st...
ustfilxp 24147 A uniform structure on a n...
ustne0 24148 A uniform structure cannot...
ustssco 24149 In an uniform structure, a...
ustexsym 24150 In an uniform structure, f...
ustex2sym 24151 In an uniform structure, f...
ustex3sym 24152 In an uniform structure, f...
ustref 24153 Any element of the base se...
ust0 24154 The unique uniform structu...
ustn0 24155 The empty set is not an un...
ustund 24156 If two intersecting sets `...
ustelimasn 24157 Any point ` A ` is near en...
ustneism 24158 For a point ` A ` in ` X `...
elrnustOLD 24159 Obsolete version of ~ elfv...
ustbas2 24160 Second direction for ~ ust...
ustuni 24161 The set union of a uniform...
ustbas 24162 Recover the base of an uni...
ustimasn 24163 Lemma for ~ ustuqtop . (C...
trust 24164 The trace of a uniform str...
utopval 24167 The topology induced by a ...
elutop 24168 Open sets in the topology ...
utoptop 24169 The topology induced by a ...
utopbas 24170 The base of the topology i...
utoptopon 24171 Topology induced by a unif...
restutop 24172 Restriction of a topology ...
restutopopn 24173 The restriction of the top...
ustuqtoplem 24174 Lemma for ~ ustuqtop . (C...
ustuqtop0 24175 Lemma for ~ ustuqtop . (C...
ustuqtop1 24176 Lemma for ~ ustuqtop , sim...
ustuqtop2 24177 Lemma for ~ ustuqtop . (C...
ustuqtop3 24178 Lemma for ~ ustuqtop , sim...
ustuqtop4 24179 Lemma for ~ ustuqtop . (C...
ustuqtop5 24180 Lemma for ~ ustuqtop . (C...
ustuqtop 24181 For a given uniform struct...
utopsnneiplem 24182 The neighborhoods of a poi...
utopsnneip 24183 The neighborhoods of a poi...
utopsnnei 24184 Images of singletons by en...
utop2nei 24185 For any symmetrical entour...
utop3cls 24186 Relation between a topolog...
utopreg 24187 All Hausdorff uniform spac...
ussval 24194 The uniform structure on u...
ussid 24195 In case the base of the ` ...
isusp 24196 The predicate ` W ` is a u...
ressuss 24197 Value of the uniform struc...
ressust 24198 The uniform structure of a...
ressusp 24199 The restriction of a unifo...
tusval 24200 The value of the uniform s...
tuslem 24201 Lemma for ~ tusbas , ~ tus...
tuslemOLD 24202 Obsolete proof of ~ tuslem...
tusbas 24203 The base set of a construc...
tusunif 24204 The uniform structure of a...
tususs 24205 The uniform structure of a...
tustopn 24206 The topology induced by a ...
tususp 24207 A constructed uniform spac...
tustps 24208 A constructed uniform spac...
uspreg 24209 If a uniform space is Haus...
ucnval 24212 The set of all uniformly c...
isucn 24213 The predicate " ` F ` is a...
isucn2 24214 The predicate " ` F ` is a...
ucnimalem 24215 Reformulate the ` G ` func...
ucnima 24216 An equivalent statement of...
ucnprima 24217 The preimage by a uniforml...
iducn 24218 The identity is uniformly ...
cstucnd 24219 A constant function is uni...
ucncn 24220 Uniform continuity implies...
iscfilu 24223 The predicate " ` F ` is a...
cfilufbas 24224 A Cauchy filter base is a ...
cfiluexsm 24225 For a Cauchy filter base a...
fmucndlem 24226 Lemma for ~ fmucnd . (Con...
fmucnd 24227 The image of a Cauchy filt...
cfilufg 24228 The filter generated by a ...
trcfilu 24229 Condition for the trace of...
cfiluweak 24230 A Cauchy filter base is al...
neipcfilu 24231 In an uniform space, a nei...
iscusp 24234 The predicate " ` W ` is a...
cuspusp 24235 A complete uniform space i...
cuspcvg 24236 In a complete uniform spac...
iscusp2 24237 The predicate " ` W ` is a...
cnextucn 24238 Extension by continuity. ...
ucnextcn 24239 Extension by continuity. ...
ispsmet 24240 Express the predicate " ` ...
psmetdmdm 24241 Recover the base set from ...
psmetf 24242 The distance function of a...
psmetcl 24243 Closure of the distance fu...
psmet0 24244 The distance function of a...
psmettri2 24245 Triangle inequality for th...
psmetsym 24246 The distance function of a...
psmettri 24247 Triangle inequality for th...
psmetge0 24248 The distance function of a...
psmetxrge0 24249 The distance function of a...
psmetres2 24250 Restriction of a pseudomet...
psmetlecl 24251 Real closure of an extende...
distspace 24252 A set ` X ` together with ...
ismet 24259 Express the predicate " ` ...
isxmet 24260 Express the predicate " ` ...
ismeti 24261 Properties that determine ...
isxmetd 24262 Properties that determine ...
isxmet2d 24263 It is safe to only require...
metflem 24264 Lemma for ~ metf and other...
xmetf 24265 Mapping of the distance fu...
metf 24266 Mapping of the distance fu...
xmetcl 24267 Closure of the distance fu...
metcl 24268 Closure of the distance fu...
ismet2 24269 An extended metric is a me...
metxmet 24270 A metric is an extended me...
xmetdmdm 24271 Recover the base set from ...
metdmdm 24272 Recover the base set from ...
xmetunirn 24273 Two ways to express an ext...
xmeteq0 24274 The value of an extended m...
meteq0 24275 The value of a metric is z...
xmettri2 24276 Triangle inequality for th...
mettri2 24277 Triangle inequality for th...
xmet0 24278 The distance function of a...
met0 24279 The distance function of a...
xmetge0 24280 The distance function of a...
metge0 24281 The distance function of a...
xmetlecl 24282 Real closure of an extende...
xmetsym 24283 The distance function of a...
xmetpsmet 24284 An extended metric is a ps...
xmettpos 24285 The distance function of a...
metsym 24286 The distance function of a...
xmettri 24287 Triangle inequality for th...
mettri 24288 Triangle inequality for th...
xmettri3 24289 Triangle inequality for th...
mettri3 24290 Triangle inequality for th...
xmetrtri 24291 One half of the reverse tr...
xmetrtri2 24292 The reverse triangle inequ...
metrtri 24293 Reverse triangle inequalit...
xmetgt0 24294 The distance function of a...
metgt0 24295 The distance function of a...
metn0 24296 A metric space is nonempty...
xmetres2 24297 Restriction of an extended...
metreslem 24298 Lemma for ~ metres . (Con...
metres2 24299 Lemma for ~ metres . (Con...
xmetres 24300 A restriction of an extend...
metres 24301 A restriction of a metric ...
0met 24302 The empty metric. (Contri...
prdsdsf 24303 The product metric is a fu...
prdsxmetlem 24304 The product metric is an e...
prdsxmet 24305 The product metric is an e...
prdsmet 24306 The product metric is a me...
ressprdsds 24307 Restriction of a product m...
resspwsds 24308 Restriction of a power met...
imasdsf1olem 24309 Lemma for ~ imasdsf1o . (...
imasdsf1o 24310 The distance function is t...
imasf1oxmet 24311 The image of an extended m...
imasf1omet 24312 The image of a metric is a...
xpsdsfn 24313 Closure of the metric in a...
xpsdsfn2 24314 Closure of the metric in a...
xpsxmetlem 24315 Lemma for ~ xpsxmet . (Co...
xpsxmet 24316 A product metric of extend...
xpsdsval 24317 Value of the metric in a b...
xpsmet 24318 The direct product of two ...
blfvalps 24319 The value of the ball func...
blfval 24320 The value of the ball func...
blvalps 24321 The ball around a point ` ...
blval 24322 The ball around a point ` ...
elblps 24323 Membership in a ball. (Co...
elbl 24324 Membership in a ball. (Co...
elbl2ps 24325 Membership in a ball. (Co...
elbl2 24326 Membership in a ball. (Co...
elbl3ps 24327 Membership in a ball, with...
elbl3 24328 Membership in a ball, with...
blcomps 24329 Commute the arguments to t...
blcom 24330 Commute the arguments to t...
xblpnfps 24331 The infinity ball in an ex...
xblpnf 24332 The infinity ball in an ex...
blpnf 24333 The infinity ball in a sta...
bldisj 24334 Two balls are disjoint if ...
blgt0 24335 A nonempty ball implies th...
bl2in 24336 Two balls are disjoint if ...
xblss2ps 24337 One ball is contained in a...
xblss2 24338 One ball is contained in a...
blss2ps 24339 One ball is contained in a...
blss2 24340 One ball is contained in a...
blhalf 24341 A ball of radius ` R / 2 `...
blfps 24342 Mapping of a ball. (Contr...
blf 24343 Mapping of a ball. (Contr...
blrnps 24344 Membership in the range of...
blrn 24345 Membership in the range of...
xblcntrps 24346 A ball contains its center...
xblcntr 24347 A ball contains its center...
blcntrps 24348 A ball contains its center...
blcntr 24349 A ball contains its center...
xbln0 24350 A ball is nonempty iff the...
bln0 24351 A ball is not empty. (Con...
blelrnps 24352 A ball belongs to the set ...
blelrn 24353 A ball belongs to the set ...
blssm 24354 A ball is a subset of the ...
unirnblps 24355 The union of the set of ba...
unirnbl 24356 The union of the set of ba...
blin 24357 The intersection of two ba...
ssblps 24358 The size of a ball increas...
ssbl 24359 The size of a ball increas...
blssps 24360 Any point ` P ` in a ball ...
blss 24361 Any point ` P ` in a ball ...
blssexps 24362 Two ways to express the ex...
blssex 24363 Two ways to express the ex...
ssblex 24364 A nested ball exists whose...
blin2 24365 Given any two balls and a ...
blbas 24366 The balls of a metric spac...
blres 24367 A ball in a restricted met...
xmeterval 24368 Value of the "finitely sep...
xmeter 24369 The "finitely separated" r...
xmetec 24370 The equivalence classes un...
blssec 24371 A ball centered at ` P ` i...
blpnfctr 24372 The infinity ball in an ex...
xmetresbl 24373 An extended metric restric...
mopnval 24374 An open set is a subset of...
mopntopon 24375 The set of open sets of a ...
mopntop 24376 The set of open sets of a ...
mopnuni 24377 The union of all open sets...
elmopn 24378 The defining property of a...
mopnfss 24379 The family of open sets of...
mopnm 24380 The base set of a metric s...
elmopn2 24381 A defining property of an ...
mopnss 24382 An open set of a metric sp...
isxms 24383 Express the predicate " ` ...
isxms2 24384 Express the predicate " ` ...
isms 24385 Express the predicate " ` ...
isms2 24386 Express the predicate " ` ...
xmstopn 24387 The topology component of ...
mstopn 24388 The topology component of ...
xmstps 24389 An extended metric space i...
msxms 24390 A metric space is an exten...
mstps 24391 A metric space is a topolo...
xmsxmet 24392 The distance function, sui...
msmet 24393 The distance function, sui...
msf 24394 The distance function of a...
xmsxmet2 24395 The distance function, sui...
msmet2 24396 The distance function, sui...
mscl 24397 Closure of the distance fu...
xmscl 24398 Closure of the distance fu...
xmsge0 24399 The distance function in a...
xmseq0 24400 The distance between two p...
xmssym 24401 The distance function in a...
xmstri2 24402 Triangle inequality for th...
mstri2 24403 Triangle inequality for th...
xmstri 24404 Triangle inequality for th...
mstri 24405 Triangle inequality for th...
xmstri3 24406 Triangle inequality for th...
mstri3 24407 Triangle inequality for th...
msrtri 24408 Reverse triangle inequalit...
xmspropd 24409 Property deduction for an ...
mspropd 24410 Property deduction for a m...
setsmsbas 24411 The base set of a construc...
setsmsbasOLD 24412 Obsolete proof of ~ setsms...
setsmsds 24413 The distance function of a...
setsmsdsOLD 24414 Obsolete proof of ~ setsms...
setsmstset 24415 The topology of a construc...
setsmstopn 24416 The topology of a construc...
setsxms 24417 The constructed metric spa...
setsms 24418 The constructed metric spa...
tmsval 24419 For any metric there is an...
tmslem 24420 Lemma for ~ tmsbas , ~ tms...
tmslemOLD 24421 Obsolete version of ~ tmsl...
tmsbas 24422 The base set of a construc...
tmsds 24423 The metric of a constructe...
tmstopn 24424 The topology of a construc...
tmsxms 24425 The constructed metric spa...
tmsms 24426 The constructed metric spa...
imasf1obl 24427 The image of a metric spac...
imasf1oxms 24428 The image of a metric spac...
imasf1oms 24429 The image of a metric spac...
prdsbl 24430 A ball in the product metr...
mopni 24431 An open set of a metric sp...
mopni2 24432 An open set of a metric sp...
mopni3 24433 An open set of a metric sp...
blssopn 24434 The balls of a metric spac...
unimopn 24435 The union of a collection ...
mopnin 24436 The intersection of two op...
mopn0 24437 The empty set is an open s...
rnblopn 24438 A ball of a metric space i...
blopn 24439 A ball of a metric space i...
neibl 24440 The neighborhoods around a...
blnei 24441 A ball around a point is a...
lpbl 24442 Every ball around a limit ...
blsscls2 24443 A smaller closed ball is c...
blcld 24444 A "closed ball" in a metri...
blcls 24445 The closure of an open bal...
blsscls 24446 If two concentric balls ha...
metss 24447 Two ways of saying that me...
metequiv 24448 Two ways of saying that tw...
metequiv2 24449 If there is a sequence of ...
metss2lem 24450 Lemma for ~ metss2 . (Con...
metss2 24451 If the metric ` D ` is "st...
comet 24452 The composition of an exte...
stdbdmetval 24453 Value of the standard boun...
stdbdxmet 24454 The standard bounded metri...
stdbdmet 24455 The standard bounded metri...
stdbdbl 24456 The standard bounded metri...
stdbdmopn 24457 The standard bounded metri...
mopnex 24458 The topology generated by ...
methaus 24459 The topology generated by ...
met1stc 24460 The topology generated by ...
met2ndci 24461 A separable metric space (...
met2ndc 24462 A metric space is second-c...
metrest 24463 Two alternate formulations...
ressxms 24464 The restriction of a metri...
ressms 24465 The restriction of a metri...
prdsmslem1 24466 Lemma for ~ prdsms . The ...
prdsxmslem1 24467 Lemma for ~ prdsms . The ...
prdsxmslem2 24468 Lemma for ~ prdsxms . The...
prdsxms 24469 The indexed product struct...
prdsms 24470 The indexed product struct...
pwsxms 24471 A power of an extended met...
pwsms 24472 A power of a metric space ...
xpsxms 24473 A binary product of metric...
xpsms 24474 A binary product of metric...
tmsxps 24475 Express the product of two...
tmsxpsmopn 24476 Express the product of two...
tmsxpsval 24477 Value of the product of tw...
tmsxpsval2 24478 Value of the product of tw...
metcnp3 24479 Two ways to express that `...
metcnp 24480 Two ways to say a mapping ...
metcnp2 24481 Two ways to say a mapping ...
metcn 24482 Two ways to say a mapping ...
metcnpi 24483 Epsilon-delta property of ...
metcnpi2 24484 Epsilon-delta property of ...
metcnpi3 24485 Epsilon-delta property of ...
txmetcnp 24486 Continuity of a binary ope...
txmetcn 24487 Continuity of a binary ope...
metuval 24488 Value of the uniform struc...
metustel 24489 Define a filter base ` F `...
metustss 24490 Range of the elements of t...
metustrel 24491 Elements of the filter bas...
metustto 24492 Any two elements of the fi...
metustid 24493 The identity diagonal is i...
metustsym 24494 Elements of the filter bas...
metustexhalf 24495 For any element ` A ` of t...
metustfbas 24496 The filter base generated ...
metust 24497 The uniform structure gene...
cfilucfil 24498 Given a metric ` D ` and a...
metuust 24499 The uniform structure gene...
cfilucfil2 24500 Given a metric ` D ` and a...
blval2 24501 The ball around a point ` ...
elbl4 24502 Membership in a ball, alte...
metuel 24503 Elementhood in the uniform...
metuel2 24504 Elementhood in the uniform...
metustbl 24505 The "section" image of an ...
psmetutop 24506 The topology induced by a ...
xmetutop 24507 The topology induced by a ...
xmsusp 24508 If the uniform set of a me...
restmetu 24509 The uniform structure gene...
metucn 24510 Uniform continuity in metr...
dscmet 24511 The discrete metric on any...
dscopn 24512 The discrete metric genera...
nrmmetd 24513 Show that a group norm gen...
abvmet 24514 An absolute value ` F ` ge...
nmfval 24527 The value of the norm func...
nmval 24528 The value of the norm as t...
nmfval0 24529 The value of the norm func...
nmfval2 24530 The value of the norm func...
nmval2 24531 The value of the norm on a...
nmf2 24532 The norm on a metric group...
nmpropd 24533 Weak property deduction fo...
nmpropd2 24534 Strong property deduction ...
isngp 24535 The property of being a no...
isngp2 24536 The property of being a no...
isngp3 24537 The property of being a no...
ngpgrp 24538 A normed group is a group....
ngpms 24539 A normed group is a metric...
ngpxms 24540 A normed group is an exten...
ngptps 24541 A normed group is a topolo...
ngpmet 24542 The (induced) metric of a ...
ngpds 24543 Value of the distance func...
ngpdsr 24544 Value of the distance func...
ngpds2 24545 Write the distance between...
ngpds2r 24546 Write the distance between...
ngpds3 24547 Write the distance between...
ngpds3r 24548 Write the distance between...
ngprcan 24549 Cancel right addition insi...
ngplcan 24550 Cancel left addition insid...
isngp4 24551 Express the property of be...
ngpinvds 24552 Two elements are the same ...
ngpsubcan 24553 Cancel right subtraction i...
nmf 24554 The norm on a normed group...
nmcl 24555 The norm of a normed group...
nmge0 24556 The norm of a normed group...
nmeq0 24557 The identity is the only e...
nmne0 24558 The norm of a nonzero elem...
nmrpcl 24559 The norm of a nonzero elem...
nminv 24560 The norm of a negated elem...
nmmtri 24561 The triangle inequality fo...
nmsub 24562 The norm of the difference...
nmrtri 24563 Reverse triangle inequalit...
nm2dif 24564 Inequality for the differe...
nmtri 24565 The triangle inequality fo...
nmtri2 24566 Triangle inequality for th...
ngpi 24567 The properties of a normed...
nm0 24568 Norm of the identity eleme...
nmgt0 24569 The norm of a nonzero elem...
sgrim 24570 The induced metric on a su...
sgrimval 24571 The induced metric on a su...
subgnm 24572 The norm in a subgroup. (...
subgnm2 24573 A substructure assigns the...
subgngp 24574 A normed group restricted ...
ngptgp 24575 A normed abelian group is ...
ngppropd 24576 Property deduction for a n...
reldmtng 24577 The function ` toNrmGrp ` ...
tngval 24578 Value of the function whic...
tnglem 24579 Lemma for ~ tngbas and sim...
tnglemOLD 24580 Obsolete version of ~ tngl...
tngbas 24581 The base set of a structur...
tngbasOLD 24582 Obsolete proof of ~ tngbas...
tngplusg 24583 The group addition of a st...
tngplusgOLD 24584 Obsolete proof of ~ tngplu...
tng0 24585 The group identity of a st...
tngmulr 24586 The ring multiplication of...
tngmulrOLD 24587 Obsolete proof of ~ tngmul...
tngsca 24588 The scalar ring of a struc...
tngscaOLD 24589 Obsolete proof of ~ tngsca...
tngvsca 24590 The scalar multiplication ...
tngvscaOLD 24591 Obsolete proof of ~ tngvsc...
tngip 24592 The inner product operatio...
tngipOLD 24593 Obsolete proof of ~ tngip ...
tngds 24594 The metric function of a s...
tngdsOLD 24595 Obsolete proof of ~ tngds ...
tngtset 24596 The topology generated by ...
tngtopn 24597 The topology generated by ...
tngnm 24598 The topology generated by ...
tngngp2 24599 A norm turns a group into ...
tngngpd 24600 Derive the axioms for a no...
tngngp 24601 Derive the axioms for a no...
tnggrpr 24602 If a structure equipped wi...
tngngp3 24603 Alternate definition of a ...
nrmtngdist 24604 The augmentation of a norm...
nrmtngnrm 24605 The augmentation of a norm...
tngngpim 24606 The induced metric of a no...
isnrg 24607 A normed ring is a ring wi...
nrgabv 24608 The norm of a normed ring ...
nrgngp 24609 A normed ring is a normed ...
nrgring 24610 A normed ring is a ring. ...
nmmul 24611 The norm of a product in a...
nrgdsdi 24612 Distribute a distance calc...
nrgdsdir 24613 Distribute a distance calc...
nm1 24614 The norm of one in a nonze...
unitnmn0 24615 The norm of a unit is nonz...
nminvr 24616 The norm of an inverse in ...
nmdvr 24617 The norm of a division in ...
nrgdomn 24618 A nonzero normed ring is a...
nrgtgp 24619 A normed ring is a topolog...
subrgnrg 24620 A normed ring restricted t...
tngnrg 24621 Given any absolute value o...
isnlm 24622 A normed (left) module is ...
nmvs 24623 Defining property of a nor...
nlmngp 24624 A normed module is a norme...
nlmlmod 24625 A normed module is a left ...
nlmnrg 24626 The scalar component of a ...
nlmngp2 24627 The scalar component of a ...
nlmdsdi 24628 Distribute a distance calc...
nlmdsdir 24629 Distribute a distance calc...
nlmmul0or 24630 If a scalar product is zer...
sranlm 24631 The subring algebra over a...
nlmvscnlem2 24632 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 24633 Lemma for ~ nlmvscn . (Co...
nlmvscn 24634 The scalar multiplication ...
rlmnlm 24635 The ring module over a nor...
rlmnm 24636 The norm function in the r...
nrgtrg 24637 A normed ring is a topolog...
nrginvrcnlem 24638 Lemma for ~ nrginvrcn . C...
nrginvrcn 24639 The ring inverse function ...
nrgtdrg 24640 A normed division ring is ...
nlmtlm 24641 A normed module is a topol...
isnvc 24642 A normed vector space is j...
nvcnlm 24643 A normed vector space is a...
nvclvec 24644 A normed vector space is a...
nvclmod 24645 A normed vector space is a...
isnvc2 24646 A normed vector space is j...
nvctvc 24647 A normed vector space is a...
lssnlm 24648 A subspace of a normed mod...
lssnvc 24649 A subspace of a normed vec...
rlmnvc 24650 The ring module over a nor...
ngpocelbl 24651 Membership of an off-cente...
nmoffn 24658 The function producing ope...
reldmnghm 24659 Lemma for normed group hom...
reldmnmhm 24660 Lemma for module homomorph...
nmofval 24661 Value of the operator norm...
nmoval 24662 Value of the operator norm...
nmogelb 24663 Property of the operator n...
nmolb 24664 Any upper bound on the val...
nmolb2d 24665 Any upper bound on the val...
nmof 24666 The operator norm is a fun...
nmocl 24667 The operator norm of an op...
nmoge0 24668 The operator norm of an op...
nghmfval 24669 A normed group homomorphis...
isnghm 24670 A normed group homomorphis...
isnghm2 24671 A normed group homomorphis...
isnghm3 24672 A normed group homomorphis...
bddnghm 24673 A bounded group homomorphi...
nghmcl 24674 A normed group homomorphis...
nmoi 24675 The operator norm achieves...
nmoix 24676 The operator norm is a bou...
nmoi2 24677 The operator norm is a bou...
nmoleub 24678 The operator norm, defined...
nghmrcl1 24679 Reverse closure for a norm...
nghmrcl2 24680 Reverse closure for a norm...
nghmghm 24681 A normed group homomorphis...
nmo0 24682 The operator norm of the z...
nmoeq0 24683 The operator norm is zero ...
nmoco 24684 An upper bound on the oper...
nghmco 24685 The composition of normed ...
nmotri 24686 Triangle inequality for th...
nghmplusg 24687 The sum of two bounded lin...
0nghm 24688 The zero operator is a nor...
nmoid 24689 The operator norm of the i...
idnghm 24690 The identity operator is a...
nmods 24691 Upper bound for the distan...
nghmcn 24692 A normed group homomorphis...
isnmhm 24693 A normed module homomorphi...
nmhmrcl1 24694 Reverse closure for a norm...
nmhmrcl2 24695 Reverse closure for a norm...
nmhmlmhm 24696 A normed module homomorphi...
nmhmnghm 24697 A normed module homomorphi...
nmhmghm 24698 A normed module homomorphi...
isnmhm2 24699 A normed module homomorphi...
nmhmcl 24700 A normed module homomorphi...
idnmhm 24701 The identity operator is a...
0nmhm 24702 The zero operator is a bou...
nmhmco 24703 The composition of bounded...
nmhmplusg 24704 The sum of two bounded lin...
qtopbaslem 24705 The set of open intervals ...
qtopbas 24706 The set of open intervals ...
retopbas 24707 A basis for the standard t...
retop 24708 The standard topology on t...
uniretop 24709 The underlying set of the ...
retopon 24710 The standard topology on t...
retps 24711 The standard topological s...
iooretop 24712 Open intervals are open se...
icccld 24713 Closed intervals are close...
icopnfcld 24714 Right-unbounded closed int...
iocmnfcld 24715 Left-unbounded closed inte...
qdensere 24716 ` QQ ` is dense in the sta...
cnmetdval 24717 Value of the distance func...
cnmet 24718 The absolute value metric ...
cnxmet 24719 The absolute value metric ...
cnbl0 24720 Two ways to write the open...
cnblcld 24721 Two ways to write the clos...
cnfldms 24722 The complex number field i...
cnfldxms 24723 The complex number field i...
cnfldtps 24724 The complex number field i...
cnfldnm 24725 The norm of the field of c...
cnngp 24726 The complex numbers form a...
cnnrg 24727 The complex numbers form a...
cnfldtopn 24728 The topology of the comple...
cnfldtopon 24729 The topology of the comple...
cnfldtop 24730 The topology of the comple...
cnfldhaus 24731 The topology of the comple...
unicntop 24732 The underlying set of the ...
cnopn 24733 The set of complex numbers...
zringnrg 24734 The ring of integers is a ...
remetdval 24735 Value of the distance func...
remet 24736 The absolute value metric ...
rexmet 24737 The absolute value metric ...
bl2ioo 24738 A ball in terms of an open...
ioo2bl 24739 An open interval of reals ...
ioo2blex 24740 An open interval of reals ...
blssioo 24741 The balls of the standard ...
tgioo 24742 The topology generated by ...
qdensere2 24743 ` QQ ` is dense in ` RR ` ...
blcvx 24744 An open ball in the comple...
rehaus 24745 The standard topology on t...
tgqioo 24746 The topology generated by ...
re2ndc 24747 The standard topology on t...
resubmet 24748 The subspace topology indu...
tgioo2 24749 The standard topology on t...
rerest 24750 The subspace topology indu...
tgioo3 24751 The standard topology on t...
xrtgioo 24752 The topology on the extend...
xrrest 24753 The subspace topology indu...
xrrest2 24754 The subspace topology indu...
xrsxmet 24755 The metric on the extended...
xrsdsre 24756 The metric on the extended...
xrsblre 24757 Any ball of the metric of ...
xrsmopn 24758 The metric on the extended...
zcld 24759 The integers are a closed ...
recld2 24760 The real numbers are a clo...
zcld2 24761 The integers are a closed ...
zdis 24762 The integers are a discret...
sszcld 24763 Every subset of the intege...
reperflem 24764 A subset of the real numbe...
reperf 24765 The real numbers are a per...
cnperf 24766 The complex numbers are a ...
iccntr 24767 The interior of a closed i...
icccmplem1 24768 Lemma for ~ icccmp . (Con...
icccmplem2 24769 Lemma for ~ icccmp . (Con...
icccmplem3 24770 Lemma for ~ icccmp . (Con...
icccmp 24771 A closed interval in ` RR ...
reconnlem1 24772 Lemma for ~ reconn . Conn...
reconnlem2 24773 Lemma for ~ reconn . (Con...
reconn 24774 A subset of the reals is c...
retopconn 24775 Corollary of ~ reconn . T...
iccconn 24776 A closed interval is conne...
opnreen 24777 Every nonempty open set is...
rectbntr0 24778 A countable subset of the ...
xrge0gsumle 24779 A finite sum in the nonneg...
xrge0tsms 24780 Any finite or infinite sum...
xrge0tsms2 24781 Any finite or infinite sum...
metdcnlem 24782 The metric function of a m...
xmetdcn2 24783 The metric function of an ...
xmetdcn 24784 The metric function of an ...
metdcn2 24785 The metric function of a m...
metdcn 24786 The metric function of a m...
msdcn 24787 The metric function of a m...
cnmpt1ds 24788 Continuity of the metric f...
cnmpt2ds 24789 Continuity of the metric f...
nmcn 24790 The norm of a normed group...
ngnmcncn 24791 The norm of a normed group...
abscn 24792 The absolute value functio...
metdsval 24793 Value of the "distance to ...
metdsf 24794 The distance from a point ...
metdsge 24795 The distance from the poin...
metds0 24796 If a point is in a set, it...
metdstri 24797 A generalization of the tr...
metdsle 24798 The distance from a point ...
metdsre 24799 The distance from a point ...
metdseq0 24800 The distance from a point ...
metdscnlem 24801 Lemma for ~ metdscn . (Co...
metdscn 24802 The function ` F ` which g...
metdscn2 24803 The function ` F ` which g...
metnrmlem1a 24804 Lemma for ~ metnrm . (Con...
metnrmlem1 24805 Lemma for ~ metnrm . (Con...
metnrmlem2 24806 Lemma for ~ metnrm . (Con...
metnrmlem3 24807 Lemma for ~ metnrm . (Con...
metnrm 24808 A metric space is normal. ...
metreg 24809 A metric space is regular....
addcnlem 24810 Lemma for ~ addcn , ~ subc...
addcn 24811 Complex number addition is...
subcn 24812 Complex number subtraction...
mulcn 24813 Complex number multiplicat...
divcnOLD 24814 Obsolete version of ~ divc...
mpomulcn 24815 Complex number multiplicat...
divcn 24816 Complex number division is...
cnfldtgp 24817 The complex numbers form a...
fsumcn 24818 A finite sum of functions ...
fsum2cn 24819 Version of ~ fsumcn for tw...
expcn 24820 The power function on comp...
divccn 24821 Division by a nonzero cons...
expcnOLD 24822 Obsolete version of ~ expc...
divccnOLD 24823 Obsolete version of ~ divc...
sqcn 24824 The square function on com...
iitopon 24829 The unit interval is a top...
iitop 24830 The unit interval is a top...
iiuni 24831 The base set of the unit i...
dfii2 24832 Alternate definition of th...
dfii3 24833 Alternate definition of th...
dfii4 24834 Alternate definition of th...
dfii5 24835 The unit interval expresse...
iicmp 24836 The unit interval is compa...
iiconn 24837 The unit interval is conne...
cncfval 24838 The value of the continuou...
elcncf 24839 Membership in the set of c...
elcncf2 24840 Version of ~ elcncf with a...
cncfrss 24841 Reverse closure of the con...
cncfrss2 24842 Reverse closure of the con...
cncff 24843 A continuous complex funct...
cncfi 24844 Defining property of a con...
elcncf1di 24845 Membership in the set of c...
elcncf1ii 24846 Membership in the set of c...
rescncf 24847 A continuous complex funct...
cncfcdm 24848 Change the codomain of a c...
cncfss 24849 The set of continuous func...
climcncf 24850 Image of a limit under a c...
abscncf 24851 Absolute value is continuo...
recncf 24852 Real part is continuous. ...
imcncf 24853 Imaginary part is continuo...
cjcncf 24854 Complex conjugate is conti...
mulc1cncf 24855 Multiplication by a consta...
divccncf 24856 Division by a constant is ...
cncfco 24857 The composition of two con...
cncfcompt2 24858 Composition of continuous ...
cncfmet 24859 Relate complex function co...
cncfcn 24860 Relate complex function co...
cncfcn1 24861 Relate complex function co...
cncfmptc 24862 A constant function is a c...
cncfmptid 24863 The identity function is a...
cncfmpt1f 24864 Composition of continuous ...
cncfmpt2f 24865 Composition of continuous ...
cncfmpt2ss 24866 Composition of continuous ...
addccncf 24867 Adding a constant is a con...
idcncf 24868 The identity function is a...
sub1cncf 24869 Subtracting a constant is ...
sub2cncf 24870 Subtraction from a constan...
cdivcncf 24871 Division with a constant n...
negcncf 24872 The negative function is c...
negcncfOLD 24873 Obsolete version of ~ negc...
negfcncf 24874 The negative of a continuo...
abscncfALT 24875 Absolute value is continuo...
cncfcnvcn 24876 Rewrite ~ cmphaushmeo for ...
expcncf 24877 The power function on comp...
cnmptre 24878 Lemma for ~ iirevcn and re...
cnmpopc 24879 Piecewise definition of a ...
iirev 24880 Reverse the unit interval....
iirevcn 24881 The reversion function is ...
iihalf1 24882 Map the first half of ` II...
iihalf1cn 24883 The first half function is...
iihalf1cnOLD 24884 Obsolete version of ~ iiha...
iihalf2 24885 Map the second half of ` I...
iihalf2cn 24886 The second half function i...
iihalf2cnOLD 24887 Obsolete version of ~ iiha...
elii1 24888 Divide the unit interval i...
elii2 24889 Divide the unit interval i...
iimulcl 24890 The unit interval is close...
iimulcn 24891 Multiplication is a contin...
iimulcnOLD 24892 Obsolete version of ~ iimu...
icoopnst 24893 A half-open interval start...
iocopnst 24894 A half-open interval endin...
icchmeo 24895 The natural bijection from...
icchmeoOLD 24896 Obsolete version of ~ icch...
icopnfcnv 24897 Define a bijection from ` ...
icopnfhmeo 24898 The defined bijection from...
iccpnfcnv 24899 Define a bijection from ` ...
iccpnfhmeo 24900 The defined bijection from...
xrhmeo 24901 The bijection from ` [ -u ...
xrhmph 24902 The extended reals are hom...
xrcmp 24903 The topology of the extend...
xrconn 24904 The topology of the extend...
icccvx 24905 A linear combination of tw...
oprpiece1res1 24906 Restriction to the first p...
oprpiece1res2 24907 Restriction to the second ...
cnrehmeo 24908 The canonical bijection fr...
cnrehmeoOLD 24909 Obsolete version of ~ cnre...
cnheiborlem 24910 Lemma for ~ cnheibor . (C...
cnheibor 24911 Heine-Borel theorem for co...
cnllycmp 24912 The topology on the comple...
rellycmp 24913 The topology on the reals ...
bndth 24914 The Boundedness Theorem. ...
evth 24915 The Extreme Value Theorem....
evth2 24916 The Extreme Value Theorem,...
lebnumlem1 24917 Lemma for ~ lebnum . The ...
lebnumlem2 24918 Lemma for ~ lebnum . As a...
lebnumlem3 24919 Lemma for ~ lebnum . By t...
lebnum 24920 The Lebesgue number lemma,...
xlebnum 24921 Generalize ~ lebnum to ext...
lebnumii 24922 Specialize the Lebesgue nu...
ishtpy 24928 Membership in the class of...
htpycn 24929 A homotopy is a continuous...
htpyi 24930 A homotopy evaluated at it...
ishtpyd 24931 Deduction for membership i...
htpycom 24932 Given a homotopy from ` F ...
htpyid 24933 A homotopy from a function...
htpyco1 24934 Compose a homotopy with a ...
htpyco2 24935 Compose a homotopy with a ...
htpycc 24936 Concatenate two homotopies...
isphtpy 24937 Membership in the class of...
phtpyhtpy 24938 A path homotopy is a homot...
phtpycn 24939 A path homotopy is a conti...
phtpyi 24940 Membership in the class of...
phtpy01 24941 Two path-homotopic paths h...
isphtpyd 24942 Deduction for membership i...
isphtpy2d 24943 Deduction for membership i...
phtpycom 24944 Given a homotopy from ` F ...
phtpyid 24945 A homotopy from a path to ...
phtpyco2 24946 Compose a path homotopy wi...
phtpycc 24947 Concatenate two path homot...
phtpcrel 24949 The path homotopy relation...
isphtpc 24950 The relation "is path homo...
phtpcer 24951 Path homotopy is an equiva...
phtpc01 24952 Path homotopic paths have ...
reparphti 24953 Lemma for ~ reparpht . (C...
reparphtiOLD 24954 Obsolete version of ~ repa...
reparpht 24955 Reparametrization lemma. ...
phtpcco2 24956 Compose a path homotopy wi...
pcofval 24967 The value of the path conc...
pcoval 24968 The concatenation of two p...
pcovalg 24969 Evaluate the concatenation...
pcoval1 24970 Evaluate the concatenation...
pco0 24971 The starting point of a pa...
pco1 24972 The ending point of a path...
pcoval2 24973 Evaluate the concatenation...
pcocn 24974 The concatenation of two p...
copco 24975 The composition of a conca...
pcohtpylem 24976 Lemma for ~ pcohtpy . (Co...
pcohtpy 24977 Homotopy invariance of pat...
pcoptcl 24978 A constant function is a p...
pcopt 24979 Concatenation with a point...
pcopt2 24980 Concatenation with a point...
pcoass 24981 Order of concatenation doe...
pcorevcl 24982 Closure for a reversed pat...
pcorevlem 24983 Lemma for ~ pcorev . Prov...
pcorev 24984 Concatenation with the rev...
pcorev2 24985 Concatenation with the rev...
pcophtb 24986 The path homotopy equivale...
om1val 24987 The definition of the loop...
om1bas 24988 The base set of the loop s...
om1elbas 24989 Elementhood in the base se...
om1addcl 24990 Closure of the group opera...
om1plusg 24991 The group operation (which...
om1tset 24992 The topology of the loop s...
om1opn 24993 The topology of the loop s...
pi1val 24994 The definition of the fund...
pi1bas 24995 The base set of the fundam...
pi1blem 24996 Lemma for ~ pi1buni . (Co...
pi1buni 24997 Another way to write the l...
pi1bas2 24998 The base set of the fundam...
pi1eluni 24999 Elementhood in the base se...
pi1bas3 25000 The base set of the fundam...
pi1cpbl 25001 The group operation, loop ...
elpi1 25002 The elements of the fundam...
elpi1i 25003 The elements of the fundam...
pi1addf 25004 The group operation of ` p...
pi1addval 25005 The concatenation of two p...
pi1grplem 25006 Lemma for ~ pi1grp . (Con...
pi1grp 25007 The fundamental group is a...
pi1id 25008 The identity element of th...
pi1inv 25009 An inverse in the fundamen...
pi1xfrf 25010 Functionality of the loop ...
pi1xfrval 25011 The value of the loop tran...
pi1xfr 25012 Given a path ` F ` and its...
pi1xfrcnvlem 25013 Given a path ` F ` between...
pi1xfrcnv 25014 Given a path ` F ` between...
pi1xfrgim 25015 The mapping ` G ` between ...
pi1cof 25016 Functionality of the loop ...
pi1coval 25017 The value of the loop tran...
pi1coghm 25018 The mapping ` G ` between ...
isclm 25021 A subcomplex module is a l...
clmsca 25022 The ring of scalars ` F ` ...
clmsubrg 25023 The base set of the ring o...
clmlmod 25024 A subcomplex module is a l...
clmgrp 25025 A subcomplex module is an ...
clmabl 25026 A subcomplex module is an ...
clmring 25027 The scalar ring of a subco...
clmfgrp 25028 The scalar ring of a subco...
clm0 25029 The zero of the scalar rin...
clm1 25030 The identity of the scalar...
clmadd 25031 The addition of the scalar...
clmmul 25032 The multiplication of the ...
clmcj 25033 The conjugation of the sca...
isclmi 25034 Reverse direction of ~ isc...
clmzss 25035 The scalar ring of a subco...
clmsscn 25036 The scalar ring of a subco...
clmsub 25037 Subtraction in the scalar ...
clmneg 25038 Negation in the scalar rin...
clmneg1 25039 Minus one is in the scalar...
clmabs 25040 Norm in the scalar ring of...
clmacl 25041 Closure of ring addition f...
clmmcl 25042 Closure of ring multiplica...
clmsubcl 25043 Closure of ring subtractio...
lmhmclm 25044 The domain of a linear ope...
clmvscl 25045 Closure of scalar product ...
clmvsass 25046 Associative law for scalar...
clmvscom 25047 Commutative law for the sc...
clmvsdir 25048 Distributive law for scala...
clmvsdi 25049 Distributive law for scala...
clmvs1 25050 Scalar product with ring u...
clmvs2 25051 A vector plus itself is tw...
clm0vs 25052 Zero times a vector is the...
clmopfne 25053 The (functionalized) opera...
isclmp 25054 The predicate "is a subcom...
isclmi0 25055 Properties that determine ...
clmvneg1 25056 Minus 1 times a vector is ...
clmvsneg 25057 Multiplication of a vector...
clmmulg 25058 The group multiple functio...
clmsubdir 25059 Scalar multiplication dist...
clmpm1dir 25060 Subtractive distributive l...
clmnegneg 25061 Double negative of a vecto...
clmnegsubdi2 25062 Distribution of negative o...
clmsub4 25063 Rearrangement of 4 terms i...
clmvsrinv 25064 A vector minus itself. (C...
clmvslinv 25065 Minus a vector plus itself...
clmvsubval 25066 Value of vector subtractio...
clmvsubval2 25067 Value of vector subtractio...
clmvz 25068 Two ways to express the ne...
zlmclm 25069 The ` ZZ ` -module operati...
clmzlmvsca 25070 The scalar product of a su...
nmoleub2lem 25071 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 25072 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 25073 Lemma for ~ nmoleub2a and ...
nmoleub2a 25074 The operator norm is the s...
nmoleub2b 25075 The operator norm is the s...
nmoleub3 25076 The operator norm is the s...
nmhmcn 25077 A linear operator over a n...
cmodscexp 25078 The powers of ` _i ` belon...
cmodscmulexp 25079 The scalar product of a ve...
cvslvec 25082 A subcomplex vector space ...
cvsclm 25083 A subcomplex vector space ...
iscvs 25084 A subcomplex vector space ...
iscvsp 25085 The predicate "is a subcom...
iscvsi 25086 Properties that determine ...
cvsi 25087 The properties of a subcom...
cvsunit 25088 Unit group of the scalar r...
cvsdiv 25089 Division of the scalar rin...
cvsdivcl 25090 The scalar field of a subc...
cvsmuleqdivd 25091 An equality involving rati...
cvsdiveqd 25092 An equality involving rati...
cnlmodlem1 25093 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 25094 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 25095 Lemma 3 for ~ cnlmod . (C...
cnlmod4 25096 Lemma 4 for ~ cnlmod . (C...
cnlmod 25097 The set of complex numbers...
cnstrcvs 25098 The set of complex numbers...
cnrbas 25099 The set of complex numbers...
cnrlmod 25100 The complex left module of...
cnrlvec 25101 The complex left module of...
cncvs 25102 The complex left module of...
recvs 25103 The field of the real numb...
recvsOLD 25104 Obsolete version of ~ recv...
qcvs 25105 The field of rational numb...
zclmncvs 25106 The ring of integers as le...
isncvsngp 25107 A normed subcomplex vector...
isncvsngpd 25108 Properties that determine ...
ncvsi 25109 The properties of a normed...
ncvsprp 25110 Proportionality property o...
ncvsge0 25111 The norm of a scalar produ...
ncvsm1 25112 The norm of the opposite o...
ncvsdif 25113 The norm of the difference...
ncvspi 25114 The norm of a vector plus ...
ncvs1 25115 From any nonzero vector of...
cnrnvc 25116 The module of complex numb...
cnncvs 25117 The module of complex numb...
cnnm 25118 The norm of the normed sub...
ncvspds 25119 Value of the distance func...
cnindmet 25120 The metric induced on the ...
cnncvsaddassdemo 25121 Derive the associative law...
cnncvsmulassdemo 25122 Derive the associative law...
cnncvsabsnegdemo 25123 Derive the absolute value ...
iscph 25128 A subcomplex pre-Hilbert s...
cphphl 25129 A subcomplex pre-Hilbert s...
cphnlm 25130 A subcomplex pre-Hilbert s...
cphngp 25131 A subcomplex pre-Hilbert s...
cphlmod 25132 A subcomplex pre-Hilbert s...
cphlvec 25133 A subcomplex pre-Hilbert s...
cphnvc 25134 A subcomplex pre-Hilbert s...
cphsubrglem 25135 Lemma for ~ cphsubrg . (C...
cphreccllem 25136 Lemma for ~ cphreccl . (C...
cphsca 25137 A subcomplex pre-Hilbert s...
cphsubrg 25138 The scalar field of a subc...
cphreccl 25139 The scalar field of a subc...
cphdivcl 25140 The scalar field of a subc...
cphcjcl 25141 The scalar field of a subc...
cphsqrtcl 25142 The scalar field of a subc...
cphabscl 25143 The scalar field of a subc...
cphsqrtcl2 25144 The scalar field of a subc...
cphsqrtcl3 25145 If the scalar field of a s...
cphqss 25146 The scalar field of a subc...
cphclm 25147 A subcomplex pre-Hilbert s...
cphnmvs 25148 Norm of a scalar product. ...
cphipcl 25149 An inner product is a memb...
cphnmfval 25150 The value of the norm in a...
cphnm 25151 The square of the norm is ...
nmsq 25152 The square of the norm is ...
cphnmf 25153 The norm of a vector is a ...
cphnmcl 25154 The norm of a vector is a ...
reipcl 25155 An inner product of an ele...
ipge0 25156 The inner product in a sub...
cphipcj 25157 Conjugate of an inner prod...
cphipipcj 25158 An inner product times its...
cphorthcom 25159 Orthogonality (meaning inn...
cphip0l 25160 Inner product with a zero ...
cphip0r 25161 Inner product with a zero ...
cphipeq0 25162 The inner product of a vec...
cphdir 25163 Distributive law for inner...
cphdi 25164 Distributive law for inner...
cph2di 25165 Distributive law for inner...
cphsubdir 25166 Distributive law for inner...
cphsubdi 25167 Distributive law for inner...
cph2subdi 25168 Distributive law for inner...
cphass 25169 Associative law for inner ...
cphassr 25170 "Associative" law for seco...
cph2ass 25171 Move scalar multiplication...
cphassi 25172 Associative law for the fi...
cphassir 25173 "Associative" law for the ...
cphpyth 25174 The pythagorean theorem fo...
tcphex 25175 Lemma for ~ tcphbas and si...
tcphval 25176 Define a function to augme...
tcphbas 25177 The base set of a subcompl...
tchplusg 25178 The addition operation of ...
tcphsub 25179 The subtraction operation ...
tcphmulr 25180 The ring operation of a su...
tcphsca 25181 The scalar field of a subc...
tcphvsca 25182 The scalar multiplication ...
tcphip 25183 The inner product of a sub...
tcphtopn 25184 The topology of a subcompl...
tcphphl 25185 Augmentation of a subcompl...
tchnmfval 25186 The norm of a subcomplex p...
tcphnmval 25187 The norm of a subcomplex p...
cphtcphnm 25188 The norm of a norm-augment...
tcphds 25189 The distance of a pre-Hilb...
phclm 25190 A pre-Hilbert space whose ...
tcphcphlem3 25191 Lemma for ~ tcphcph : real...
ipcau2 25192 The Cauchy-Schwarz inequal...
tcphcphlem1 25193 Lemma for ~ tcphcph : the ...
tcphcphlem2 25194 Lemma for ~ tcphcph : homo...
tcphcph 25195 The standard definition of...
ipcau 25196 The Cauchy-Schwarz inequal...
nmparlem 25197 Lemma for ~ nmpar . (Cont...
nmpar 25198 A subcomplex pre-Hilbert s...
cphipval2 25199 Value of the inner product...
4cphipval2 25200 Four times the inner produ...
cphipval 25201 Value of the inner product...
ipcnlem2 25202 The inner product operatio...
ipcnlem1 25203 The inner product operatio...
ipcn 25204 The inner product operatio...
cnmpt1ip 25205 Continuity of inner produc...
cnmpt2ip 25206 Continuity of inner produc...
csscld 25207 A "closed subspace" in a s...
clsocv 25208 The orthogonal complement ...
cphsscph 25209 A subspace of a subcomplex...
lmmbr 25216 Express the binary relatio...
lmmbr2 25217 Express the binary relatio...
lmmbr3 25218 Express the binary relatio...
lmmcvg 25219 Convergence property of a ...
lmmbrf 25220 Express the binary relatio...
lmnn 25221 A condition that implies c...
cfilfval 25222 The set of Cauchy filters ...
iscfil 25223 The property of being a Ca...
iscfil2 25224 The property of being a Ca...
cfilfil 25225 A Cauchy filter is a filte...
cfili 25226 Property of a Cauchy filte...
cfil3i 25227 A Cauchy filter contains b...
cfilss 25228 A filter finer than a Cauc...
fgcfil 25229 The Cauchy filter conditio...
fmcfil 25230 The Cauchy filter conditio...
iscfil3 25231 A filter is Cauchy iff it ...
cfilfcls 25232 Similar to ultrafilters ( ...
caufval 25233 The set of Cauchy sequence...
iscau 25234 Express the property " ` F...
iscau2 25235 Express the property " ` F...
iscau3 25236 Express the Cauchy sequenc...
iscau4 25237 Express the property " ` F...
iscauf 25238 Express the property " ` F...
caun0 25239 A metric with a Cauchy seq...
caufpm 25240 Inclusion of a Cauchy sequ...
caucfil 25241 A Cauchy sequence predicat...
iscmet 25242 The property " ` D ` is a ...
cmetcvg 25243 The convergence of a Cauch...
cmetmet 25244 A complete metric space is...
cmetmeti 25245 A complete metric space is...
cmetcaulem 25246 Lemma for ~ cmetcau . (Co...
cmetcau 25247 The convergence of a Cauch...
iscmet3lem3 25248 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 25249 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 25250 Lemma for ~ iscmet3 . (Co...
iscmet3 25251 The property " ` D ` is a ...
iscmet2 25252 A metric ` D ` is complete...
cfilresi 25253 A Cauchy filter on a metri...
cfilres 25254 Cauchy filter on a metric ...
caussi 25255 Cauchy sequence on a metri...
causs 25256 Cauchy sequence on a metri...
equivcfil 25257 If the metric ` D ` is "st...
equivcau 25258 If the metric ` D ` is "st...
lmle 25259 If the distance from each ...
nglmle 25260 If the norm of each member...
lmclim 25261 Relate a limit on the metr...
lmclimf 25262 Relate a limit on the metr...
metelcls 25263 A point belongs to the clo...
metcld 25264 A subset of a metric space...
metcld2 25265 A subset of a metric space...
caubl 25266 Sufficient condition to en...
caublcls 25267 The convergent point of a ...
metcnp4 25268 Two ways to say a mapping ...
metcn4 25269 Two ways to say a mapping ...
iscmet3i 25270 Properties that determine ...
lmcau 25271 Every convergent sequence ...
flimcfil 25272 Every convergent filter in...
metsscmetcld 25273 A complete subspace of a m...
cmetss 25274 A subspace of a complete m...
equivcmet 25275 If two metrics are strongl...
relcmpcmet 25276 If ` D ` is a metric space...
cmpcmet 25277 A compact metric space is ...
cfilucfil3 25278 Given a metric ` D ` and a...
cfilucfil4 25279 Given a metric ` D ` and a...
cncmet 25280 The set of complex numbers...
recmet 25281 The real numbers are a com...
bcthlem1 25282 Lemma for ~ bcth . Substi...
bcthlem2 25283 Lemma for ~ bcth . The ba...
bcthlem3 25284 Lemma for ~ bcth . The li...
bcthlem4 25285 Lemma for ~ bcth . Given ...
bcthlem5 25286 Lemma for ~ bcth . The pr...
bcth 25287 Baire's Category Theorem. ...
bcth2 25288 Baire's Category Theorem, ...
bcth3 25289 Baire's Category Theorem, ...
isbn 25296 A Banach space is a normed...
bnsca 25297 The scalar field of a Bana...
bnnvc 25298 A Banach space is a normed...
bnnlm 25299 A Banach space is a normed...
bnngp 25300 A Banach space is a normed...
bnlmod 25301 A Banach space is a left m...
bncms 25302 A Banach space is a comple...
iscms 25303 A complete metric space is...
cmscmet 25304 The induced metric on a co...
bncmet 25305 The induced metric on Bana...
cmsms 25306 A complete metric space is...
cmspropd 25307 Property deduction for a c...
cmssmscld 25308 The restriction of a metri...
cmsss 25309 The restriction of a compl...
lssbn 25310 A subspace of a Banach spa...
cmetcusp1 25311 If the uniform set of a co...
cmetcusp 25312 The uniform space generate...
cncms 25313 The field of complex numbe...
cnflduss 25314 The uniform structure of t...
cnfldcusp 25315 The field of complex numbe...
resscdrg 25316 The real numbers are a sub...
cncdrg 25317 The only complete subfield...
srabn 25318 The subring algebra over a...
rlmbn 25319 The ring module over a com...
ishl 25320 The predicate "is a subcom...
hlbn 25321 Every subcomplex Hilbert s...
hlcph 25322 Every subcomplex Hilbert s...
hlphl 25323 Every subcomplex Hilbert s...
hlcms 25324 Every subcomplex Hilbert s...
hlprlem 25325 Lemma for ~ hlpr . (Contr...
hlress 25326 The scalar field of a subc...
hlpr 25327 The scalar field of a subc...
ishl2 25328 A Hilbert space is a compl...
cphssphl 25329 A Banach subspace of a sub...
cmslssbn 25330 A complete linear subspace...
cmscsscms 25331 A closed subspace of a com...
bncssbn 25332 A closed subspace of a Ban...
cssbn 25333 A complete subspace of a n...
csschl 25334 A complete subspace of a c...
cmslsschl 25335 A complete linear subspace...
chlcsschl 25336 A closed subspace of a sub...
retopn 25337 The topology of the real n...
recms 25338 The real numbers form a co...
reust 25339 The Uniform structure of t...
recusp 25340 The real numbers form a co...
rrxval 25345 Value of the generalized E...
rrxbase 25346 The base of the generalize...
rrxprds 25347 Expand the definition of t...
rrxip 25348 The inner product of the g...
rrxnm 25349 The norm of the generalize...
rrxcph 25350 Generalized Euclidean real...
rrxds 25351 The distance over generali...
rrxvsca 25352 The scalar product over ge...
rrxplusgvscavalb 25353 The result of the addition...
rrxsca 25354 The field of real numbers ...
rrx0 25355 The zero ("origin") in a g...
rrx0el 25356 The zero ("origin") in a g...
csbren 25357 Cauchy-Schwarz-Bunjakovsky...
trirn 25358 Triangle inequality in R^n...
rrxf 25359 Euclidean vectors as funct...
rrxfsupp 25360 Euclidean vectors are of f...
rrxsuppss 25361 Support of Euclidean vecto...
rrxmvallem 25362 Support of the function us...
rrxmval 25363 The value of the Euclidean...
rrxmfval 25364 The value of the Euclidean...
rrxmetlem 25365 Lemma for ~ rrxmet . (Con...
rrxmet 25366 Euclidean space is a metri...
rrxdstprj1 25367 The distance between two p...
rrxbasefi 25368 The base of the generalize...
rrxdsfi 25369 The distance over generali...
rrxmetfi 25370 Euclidean space is a metri...
rrxdsfival 25371 The value of the Euclidean...
ehlval 25372 Value of the Euclidean spa...
ehlbase 25373 The base of the Euclidean ...
ehl0base 25374 The base of the Euclidean ...
ehl0 25375 The Euclidean space of dim...
ehleudis 25376 The Euclidean distance fun...
ehleudisval 25377 The value of the Euclidean...
ehl1eudis 25378 The Euclidean distance fun...
ehl1eudisval 25379 The value of the Euclidean...
ehl2eudis 25380 The Euclidean distance fun...
ehl2eudisval 25381 The value of the Euclidean...
minveclem1 25382 Lemma for ~ minvec . The ...
minveclem4c 25383 Lemma for ~ minvec . The ...
minveclem2 25384 Lemma for ~ minvec . Any ...
minveclem3a 25385 Lemma for ~ minvec . ` D `...
minveclem3b 25386 Lemma for ~ minvec . The ...
minveclem3 25387 Lemma for ~ minvec . The ...
minveclem4a 25388 Lemma for ~ minvec . ` F `...
minveclem4b 25389 Lemma for ~ minvec . The ...
minveclem4 25390 Lemma for ~ minvec . The ...
minveclem5 25391 Lemma for ~ minvec . Disc...
minveclem6 25392 Lemma for ~ minvec . Any ...
minveclem7 25393 Lemma for ~ minvec . Sinc...
minvec 25394 Minimizing vector theorem,...
pjthlem1 25395 Lemma for ~ pjth . (Contr...
pjthlem2 25396 Lemma for ~ pjth . (Contr...
pjth 25397 Projection Theorem: Any H...
pjth2 25398 Projection Theorem with ab...
cldcss 25399 Corollary of the Projectio...
cldcss2 25400 Corollary of the Projectio...
hlhil 25401 Corollary of the Projectio...
addcncf 25402 The addition of two contin...
subcncf 25403 The addition of two contin...
mulcncf 25404 The multiplication of two ...
mulcncfOLD 25405 Obsolete version of ~ mulc...
divcncf 25406 The quotient of two contin...
pmltpclem1 25407 Lemma for ~ pmltpc . (Con...
pmltpclem2 25408 Lemma for ~ pmltpc . (Con...
pmltpc 25409 Any function on the reals ...
ivthlem1 25410 Lemma for ~ ivth . The se...
ivthlem2 25411 Lemma for ~ ivth . Show t...
ivthlem3 25412 Lemma for ~ ivth , the int...
ivth 25413 The intermediate value the...
ivth2 25414 The intermediate value the...
ivthle 25415 The intermediate value the...
ivthle2 25416 The intermediate value the...
ivthicc 25417 The interval between any t...
evthicc 25418 Specialization of the Extr...
evthicc2 25419 Combine ~ ivthicc with ~ e...
cniccbdd 25420 A continuous function on a...
ovolfcl 25425 Closure for the interval e...
ovolfioo 25426 Unpack the interval coveri...
ovolficc 25427 Unpack the interval coveri...
ovolficcss 25428 Any (closed) interval cove...
ovolfsval 25429 The value of the interval ...
ovolfsf 25430 Closure for the interval l...
ovolsf 25431 Closure for the partial su...
ovolval 25432 The value of the outer mea...
elovolmlem 25433 Lemma for ~ elovolm and re...
elovolm 25434 Elementhood in the set ` M...
elovolmr 25435 Sufficient condition for e...
ovolmge0 25436 The set ` M ` is composed ...
ovolcl 25437 The volume of a set is an ...
ovollb 25438 The outer volume is a lowe...
ovolgelb 25439 The outer volume is the gr...
ovolge0 25440 The volume of a set is alw...
ovolf 25441 The domain and codomain of...
ovollecl 25442 If an outer volume is boun...
ovolsslem 25443 Lemma for ~ ovolss . (Con...
ovolss 25444 The volume of a set is mon...
ovolsscl 25445 If a set is contained in a...
ovolssnul 25446 A subset of a nullset is n...
ovollb2lem 25447 Lemma for ~ ovollb2 . (Co...
ovollb2 25448 It is often more convenien...
ovolctb 25449 The volume of a denumerabl...
ovolq 25450 The rational numbers have ...
ovolctb2 25451 The volume of a countable ...
ovol0 25452 The empty set has 0 outer ...
ovolfi 25453 A finite set has 0 outer L...
ovolsn 25454 A singleton has 0 outer Le...
ovolunlem1a 25455 Lemma for ~ ovolun . (Con...
ovolunlem1 25456 Lemma for ~ ovolun . (Con...
ovolunlem2 25457 Lemma for ~ ovolun . (Con...
ovolun 25458 The Lebesgue outer measure...
ovolunnul 25459 Adding a nullset does not ...
ovolfiniun 25460 The Lebesgue outer measure...
ovoliunlem1 25461 Lemma for ~ ovoliun . (Co...
ovoliunlem2 25462 Lemma for ~ ovoliun . (Co...
ovoliunlem3 25463 Lemma for ~ ovoliun . (Co...
ovoliun 25464 The Lebesgue outer measure...
ovoliun2 25465 The Lebesgue outer measure...
ovoliunnul 25466 A countable union of nulls...
shft2rab 25467 If ` B ` is a shift of ` A...
ovolshftlem1 25468 Lemma for ~ ovolshft . (C...
ovolshftlem2 25469 Lemma for ~ ovolshft . (C...
ovolshft 25470 The Lebesgue outer measure...
sca2rab 25471 If ` B ` is a scale of ` A...
ovolscalem1 25472 Lemma for ~ ovolsca . (Co...
ovolscalem2 25473 Lemma for ~ ovolshft . (C...
ovolsca 25474 The Lebesgue outer measure...
ovolicc1 25475 The measure of a closed in...
ovolicc2lem1 25476 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 25477 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 25478 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 25479 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 25480 Lemma for ~ ovolicc2 . (C...
ovolicc2 25481 The measure of a closed in...
ovolicc 25482 The measure of a closed in...
ovolicopnf 25483 The measure of a right-unb...
ovolre 25484 The measure of the real nu...
ismbl 25485 The predicate " ` A ` is L...
ismbl2 25486 From ~ ovolun , it suffice...
volres 25487 A self-referencing abbrevi...
volf 25488 The domain and codomain of...
mblvol 25489 The volume of a measurable...
mblss 25490 A measurable set is a subs...
mblsplit 25491 The defining property of m...
volss 25492 The Lebesgue measure is mo...
cmmbl 25493 The complement of a measur...
nulmbl 25494 A nullset is measurable. ...
nulmbl2 25495 A set of outer measure zer...
unmbl 25496 A union of measurable sets...
shftmbl 25497 A shift of a measurable se...
0mbl 25498 The empty set is measurabl...
rembl 25499 The set of all real number...
unidmvol 25500 The union of the Lebesgue ...
inmbl 25501 An intersection of measura...
difmbl 25502 A difference of measurable...
finiunmbl 25503 A finite union of measurab...
volun 25504 The Lebesgue measure funct...
volinun 25505 Addition of non-disjoint s...
volfiniun 25506 The volume of a disjoint f...
iundisj 25507 Rewrite a countable union ...
iundisj2 25508 A disjoint union is disjoi...
voliunlem1 25509 Lemma for ~ voliun . (Con...
voliunlem2 25510 Lemma for ~ voliun . (Con...
voliunlem3 25511 Lemma for ~ voliun . (Con...
iunmbl 25512 The measurable sets are cl...
voliun 25513 The Lebesgue measure funct...
volsuplem 25514 Lemma for ~ volsup . (Con...
volsup 25515 The volume of the limit of...
iunmbl2 25516 The measurable sets are cl...
ioombl1lem1 25517 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 25518 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 25519 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 25520 Lemma for ~ ioombl1 . (Co...
ioombl1 25521 An open right-unbounded in...
icombl1 25522 A closed unbounded-above i...
icombl 25523 A closed-below, open-above...
ioombl 25524 An open real interval is m...
iccmbl 25525 A closed real interval is ...
iccvolcl 25526 A closed real interval has...
ovolioo 25527 The measure of an open int...
volioo 25528 The measure of an open int...
ioovolcl 25529 An open real interval has ...
ovolfs2 25530 Alternative expression for...
ioorcl2 25531 An open interval with fini...
ioorf 25532 Define a function from ope...
ioorval 25533 Define a function from ope...
ioorinv2 25534 The function ` F ` is an "...
ioorinv 25535 The function ` F ` is an "...
ioorcl 25536 The function ` F ` does no...
uniiccdif 25537 A union of closed interval...
uniioovol 25538 A disjoint union of open i...
uniiccvol 25539 An almost-disjoint union o...
uniioombllem1 25540 Lemma for ~ uniioombl . (...
uniioombllem2a 25541 Lemma for ~ uniioombl . (...
uniioombllem2 25542 Lemma for ~ uniioombl . (...
uniioombllem3a 25543 Lemma for ~ uniioombl . (...
uniioombllem3 25544 Lemma for ~ uniioombl . (...
uniioombllem4 25545 Lemma for ~ uniioombl . (...
uniioombllem5 25546 Lemma for ~ uniioombl . (...
uniioombllem6 25547 Lemma for ~ uniioombl . (...
uniioombl 25548 A disjoint union of open i...
uniiccmbl 25549 An almost-disjoint union o...
dyadf 25550 The function ` F ` returns...
dyadval 25551 Value of the dyadic ration...
dyadovol 25552 Volume of a dyadic rationa...
dyadss 25553 Two closed dyadic rational...
dyaddisjlem 25554 Lemma for ~ dyaddisj . (C...
dyaddisj 25555 Two closed dyadic rational...
dyadmaxlem 25556 Lemma for ~ dyadmax . (Co...
dyadmax 25557 Any nonempty set of dyadic...
dyadmbllem 25558 Lemma for ~ dyadmbl . (Co...
dyadmbl 25559 Any union of dyadic ration...
opnmbllem 25560 Lemma for ~ opnmbl . (Con...
opnmbl 25561 All open sets are measurab...
opnmblALT 25562 All open sets are measurab...
subopnmbl 25563 Sets which are open in a m...
volsup2 25564 The volume of ` A ` is the...
volcn 25565 The function formed by res...
volivth 25566 The Intermediate Value The...
vitalilem1 25567 Lemma for ~ vitali . (Con...
vitalilem2 25568 Lemma for ~ vitali . (Con...
vitalilem3 25569 Lemma for ~ vitali . (Con...
vitalilem4 25570 Lemma for ~ vitali . (Con...
vitalilem5 25571 Lemma for ~ vitali . (Con...
vitali 25572 If the reals can be well-o...
ismbf1 25583 The predicate " ` F ` is a...
mbff 25584 A measurable function is a...
mbfdm 25585 The domain of a measurable...
mbfconstlem 25586 Lemma for ~ mbfconst and r...
ismbf 25587 The predicate " ` F ` is a...
ismbfcn 25588 A complex function is meas...
mbfima 25589 Definitional property of a...
mbfimaicc 25590 The preimage of any closed...
mbfimasn 25591 The preimage of a point un...
mbfconst 25592 A constant function is mea...
mbf0 25593 The empty function is meas...
mbfid 25594 The identity function is m...
mbfmptcl 25595 Lemma for the ` MblFn ` pr...
mbfdm2 25596 The domain of a measurable...
ismbfcn2 25597 A complex function is meas...
ismbfd 25598 Deduction to prove measura...
ismbf2d 25599 Deduction to prove measura...
mbfeqalem1 25600 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 25601 Lemma for ~ mbfeqa . (Con...
mbfeqa 25602 If two functions are equal...
mbfres 25603 The restriction of a measu...
mbfres2 25604 Measurability of a piecewi...
mbfss 25605 Change the domain of a mea...
mbfmulc2lem 25606 Multiplication by a consta...
mbfmulc2re 25607 Multiplication by a consta...
mbfmax 25608 The maximum of two functio...
mbfneg 25609 The negative of a measurab...
mbfpos 25610 The positive part of a mea...
mbfposr 25611 Converse to ~ mbfpos . (C...
mbfposb 25612 A function is measurable i...
ismbf3d 25613 Simplified form of ~ ismbf...
mbfimaopnlem 25614 Lemma for ~ mbfimaopn . (...
mbfimaopn 25615 The preimage of any open s...
mbfimaopn2 25616 The preimage of any set op...
cncombf 25617 The composition of a conti...
cnmbf 25618 A continuous function is m...
mbfaddlem 25619 The sum of two measurable ...
mbfadd 25620 The sum of two measurable ...
mbfsub 25621 The difference of two meas...
mbfmulc2 25622 A complex constant times a...
mbfsup 25623 The supremum of a sequence...
mbfinf 25624 The infimum of a sequence ...
mbflimsup 25625 The limit supremum of a se...
mbflimlem 25626 The pointwise limit of a s...
mbflim 25627 The pointwise limit of a s...
0pval 25630 The zero function evaluate...
0plef 25631 Two ways to say that the f...
0pledm 25632 Adjust the domain of the l...
isi1f 25633 The predicate " ` F ` is a...
i1fmbf 25634 Simple functions are measu...
i1ff 25635 A simple function is a fun...
i1frn 25636 A simple function has fini...
i1fima 25637 Any preimage of a simple f...
i1fima2 25638 Any preimage of a simple f...
i1fima2sn 25639 Preimage of a singleton. ...
i1fd 25640 A simplified set of assump...
i1f0rn 25641 Any simple function takes ...
itg1val 25642 The value of the integral ...
itg1val2 25643 The value of the integral ...
itg1cl 25644 Closure of the integral on...
itg1ge0 25645 Closure of the integral on...
i1f0 25646 The zero function is simpl...
itg10 25647 The zero function has zero...
i1f1lem 25648 Lemma for ~ i1f1 and ~ itg...
i1f1 25649 Base case simple functions...
itg11 25650 The integral of an indicat...
itg1addlem1 25651 Decompose a preimage, whic...
i1faddlem 25652 Decompose the preimage of ...
i1fmullem 25653 Decompose the preimage of ...
i1fadd 25654 The sum of two simple func...
i1fmul 25655 The pointwise product of t...
itg1addlem2 25656 Lemma for ~ itg1add . The...
itg1addlem3 25657 Lemma for ~ itg1add . (Co...
itg1addlem4 25658 Lemma for ~ itg1add . (Co...
itg1addlem4OLD 25659 Obsolete version of ~ itg1...
itg1addlem5 25660 Lemma for ~ itg1add . (Co...
itg1add 25661 The integral of a sum of s...
i1fmulclem 25662 Decompose the preimage of ...
i1fmulc 25663 A nonnegative constant tim...
itg1mulc 25664 The integral of a constant...
i1fres 25665 The "restriction" of a sim...
i1fpos 25666 The positive part of a sim...
i1fposd 25667 Deduction form of ~ i1fpos...
i1fsub 25668 The difference of two simp...
itg1sub 25669 The integral of a differen...
itg10a 25670 The integral of a simple f...
itg1ge0a 25671 The integral of an almost ...
itg1lea 25672 Approximate version of ~ i...
itg1le 25673 If one simple function dom...
itg1climres 25674 Restricting the simple fun...
mbfi1fseqlem1 25675 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 25676 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 25677 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 25678 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 25679 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 25680 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 25681 A characterization of meas...
mbfi1flimlem 25682 Lemma for ~ mbfi1flim . (...
mbfi1flim 25683 Any real measurable functi...
mbfmullem2 25684 Lemma for ~ mbfmul . (Con...
mbfmullem 25685 Lemma for ~ mbfmul . (Con...
mbfmul 25686 The product of two measura...
itg2lcl 25687 The set of lower sums is a...
itg2val 25688 Value of the integral on n...
itg2l 25689 Elementhood in the set ` L...
itg2lr 25690 Sufficient condition for e...
xrge0f 25691 A real function is a nonne...
itg2cl 25692 The integral of a nonnegat...
itg2ub 25693 The integral of a nonnegat...
itg2leub 25694 Any upper bound on the int...
itg2ge0 25695 The integral of a nonnegat...
itg2itg1 25696 The integral of a nonnegat...
itg20 25697 The integral of the zero f...
itg2lecl 25698 If an ` S.2 ` integral is ...
itg2le 25699 If one function dominates ...
itg2const 25700 Integral of a constant fun...
itg2const2 25701 When the base set of a con...
itg2seq 25702 Definitional property of t...
itg2uba 25703 Approximate version of ~ i...
itg2lea 25704 Approximate version of ~ i...
itg2eqa 25705 Approximate equality of in...
itg2mulclem 25706 Lemma for ~ itg2mulc . (C...
itg2mulc 25707 The integral of a nonnegat...
itg2splitlem 25708 Lemma for ~ itg2split . (...
itg2split 25709 The ` S.2 ` integral split...
itg2monolem1 25710 Lemma for ~ itg2mono . We...
itg2monolem2 25711 Lemma for ~ itg2mono . (C...
itg2monolem3 25712 Lemma for ~ itg2mono . (C...
itg2mono 25713 The Monotone Convergence T...
itg2i1fseqle 25714 Subject to the conditions ...
itg2i1fseq 25715 Subject to the conditions ...
itg2i1fseq2 25716 In an extension to the res...
itg2i1fseq3 25717 Special case of ~ itg2i1fs...
itg2addlem 25718 Lemma for ~ itg2add . (Co...
itg2add 25719 The ` S.2 ` integral is li...
itg2gt0 25720 If the function ` F ` is s...
itg2cnlem1 25721 Lemma for ~ itgcn . (Cont...
itg2cnlem2 25722 Lemma for ~ itgcn . (Cont...
itg2cn 25723 A sort of absolute continu...
ibllem 25724 Conditioned equality theor...
isibl 25725 The predicate " ` F ` is i...
isibl2 25726 The predicate " ` F ` is i...
iblmbf 25727 An integrable function is ...
iblitg 25728 If a function is integrabl...
dfitg 25729 Evaluate the class substit...
itgex 25730 An integral is a set. (Co...
itgeq1f 25731 Equality theorem for an in...
itgeq1 25732 Equality theorem for an in...
nfitg1 25733 Bound-variable hypothesis ...
nfitg 25734 Bound-variable hypothesis ...
cbvitg 25735 Change bound variable in a...
cbvitgv 25736 Change bound variable in a...
itgeq2 25737 Equality theorem for an in...
itgresr 25738 The domain of an integral ...
itg0 25739 The integral of anything o...
itgz 25740 The integral of zero on an...
itgeq2dv 25741 Equality theorem for an in...
itgmpt 25742 Change bound variable in a...
itgcl 25743 The integral of an integra...
itgvallem 25744 Substitution lemma. (Cont...
itgvallem3 25745 Lemma for ~ itgposval and ...
ibl0 25746 The zero function is integ...
iblcnlem1 25747 Lemma for ~ iblcnlem . (C...
iblcnlem 25748 Expand out the universal q...
itgcnlem 25749 Expand out the sum in ~ df...
iblrelem 25750 Integrability of a real fu...
iblposlem 25751 Lemma for ~ iblpos . (Con...
iblpos 25752 Integrability of a nonnega...
iblre 25753 Integrability of a real fu...
itgrevallem1 25754 Lemma for ~ itgposval and ...
itgposval 25755 The integral of a nonnegat...
itgreval 25756 Decompose the integral of ...
itgrecl 25757 Real closure of an integra...
iblcn 25758 Integrability of a complex...
itgcnval 25759 Decompose the integral of ...
itgre 25760 Real part of an integral. ...
itgim 25761 Imaginary part of an integ...
iblneg 25762 The negative of an integra...
itgneg 25763 Negation of an integral. ...
iblss 25764 A subset of an integrable ...
iblss2 25765 Change the domain of an in...
itgitg2 25766 Transfer an integral using...
i1fibl 25767 A simple function is integ...
itgitg1 25768 Transfer an integral using...
itgle 25769 Monotonicity of an integra...
itgge0 25770 The integral of a positive...
itgss 25771 Expand the set of an integ...
itgss2 25772 Expand the set of an integ...
itgeqa 25773 Approximate equality of in...
itgss3 25774 Expand the set of an integ...
itgioo 25775 Equality of integrals on o...
itgless 25776 Expand the integral of a n...
iblconst 25777 A constant function is int...
itgconst 25778 Integral of a constant fun...
ibladdlem 25779 Lemma for ~ ibladd . (Con...
ibladd 25780 Add two integrals over the...
iblsub 25781 Subtract two integrals ove...
itgaddlem1 25782 Lemma for ~ itgadd . (Con...
itgaddlem2 25783 Lemma for ~ itgadd . (Con...
itgadd 25784 Add two integrals over the...
itgsub 25785 Subtract two integrals ove...
itgfsum 25786 Take a finite sum of integ...
iblabslem 25787 Lemma for ~ iblabs . (Con...
iblabs 25788 The absolute value of an i...
iblabsr 25789 A measurable function is i...
iblmulc2 25790 Multiply an integral by a ...
itgmulc2lem1 25791 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 25792 Lemma for ~ itgmulc2 : rea...
itgmulc2 25793 Multiply an integral by a ...
itgabs 25794 The triangle inequality fo...
itgsplit 25795 The ` S. ` integral splits...
itgspliticc 25796 The ` S. ` integral splits...
itgsplitioo 25797 The ` S. ` integral splits...
bddmulibl 25798 A bounded function times a...
bddibl 25799 A bounded function is inte...
cniccibl 25800 A continuous function on a...
bddiblnc 25801 Choice-free proof of ~ bdd...
cnicciblnc 25802 Choice-free proof of ~ cni...
itggt0 25803 The integral of a strictly...
itgcn 25804 Transfer ~ itg2cn to the f...
ditgeq1 25807 Equality theorem for the d...
ditgeq2 25808 Equality theorem for the d...
ditgeq3 25809 Equality theorem for the d...
ditgeq3dv 25810 Equality theorem for the d...
ditgex 25811 A directed integral is a s...
ditg0 25812 Value of the directed inte...
cbvditg 25813 Change bound variable in a...
cbvditgv 25814 Change bound variable in a...
ditgpos 25815 Value of the directed inte...
ditgneg 25816 Value of the directed inte...
ditgcl 25817 Closure of a directed inte...
ditgswap 25818 Reverse a directed integra...
ditgsplitlem 25819 Lemma for ~ ditgsplit . (...
ditgsplit 25820 This theorem is the raison...
reldv 25829 The derivative function is...
limcvallem 25830 Lemma for ~ ellimc . (Con...
limcfval 25831 Value and set bounds on th...
ellimc 25832 Value of the limit predica...
limcrcl 25833 Reverse closure for the li...
limccl 25834 Closure of the limit opera...
limcdif 25835 It suffices to consider fu...
ellimc2 25836 Write the definition of a ...
limcnlp 25837 If ` B ` is not a limit po...
ellimc3 25838 Write the epsilon-delta de...
limcflflem 25839 Lemma for ~ limcflf . (Co...
limcflf 25840 The limit operator can be ...
limcmo 25841 If ` B ` is a limit point ...
limcmpt 25842 Express the limit operator...
limcmpt2 25843 Express the limit operator...
limcresi 25844 Any limit of ` F ` is also...
limcres 25845 If ` B ` is an interior po...
cnplimc 25846 A function is continuous a...
cnlimc 25847 ` F ` is a continuous func...
cnlimci 25848 If ` F ` is a continuous f...
cnmptlimc 25849 If ` F ` is a continuous f...
limccnp 25850 If the limit of ` F ` at `...
limccnp2 25851 The image of a convergent ...
limcco 25852 Composition of two limits....
limciun 25853 A point is a limit of ` F ...
limcun 25854 A point is a limit of ` F ...
dvlem 25855 Closure for a difference q...
dvfval 25856 Value and set bounds on th...
eldv 25857 The differentiable predica...
dvcl 25858 The derivative function ta...
dvbssntr 25859 The set of differentiable ...
dvbss 25860 The set of differentiable ...
dvbsss 25861 The set of differentiable ...
perfdvf 25862 The derivative is a functi...
recnprss 25863 Both ` RR ` and ` CC ` are...
recnperf 25864 Both ` RR ` and ` CC ` are...
dvfg 25865 Explicitly write out the f...
dvf 25866 The derivative is a functi...
dvfcn 25867 The derivative is a functi...
dvreslem 25868 Lemma for ~ dvres . (Cont...
dvres2lem 25869 Lemma for ~ dvres2 . (Con...
dvres 25870 Restriction of a derivativ...
dvres2 25871 Restriction of the base se...
dvres3 25872 Restriction of a complex d...
dvres3a 25873 Restriction of a complex d...
dvidlem 25874 Lemma for ~ dvid and ~ dvc...
dvmptresicc 25875 Derivative of a function r...
dvconst 25876 Derivative of a constant f...
dvid 25877 Derivative of the identity...
dvcnp 25878 The difference quotient is...
dvcnp2 25879 A function is continuous a...
dvcnp2OLD 25880 Obsolete version of ~ dvcn...
dvcn 25881 A differentiable function ...
dvnfval 25882 Value of the iterated deri...
dvnff 25883 The iterated derivative is...
dvn0 25884 Zero times iterated deriva...
dvnp1 25885 Successor iterated derivat...
dvn1 25886 One times iterated derivat...
dvnf 25887 The N-times derivative is ...
dvnbss 25888 The set of N-times differe...
dvnadd 25889 The ` N ` -th derivative o...
dvn2bss 25890 An N-times differentiable ...
dvnres 25891 Multiple derivative versio...
cpnfval 25892 Condition for n-times cont...
fncpn 25893 The ` C^n ` object is a fu...
elcpn 25894 Condition for n-times cont...
cpnord 25895 ` C^n ` conditions are ord...
cpncn 25896 A ` C^n ` function is cont...
cpnres 25897 The restriction of a ` C^n...
dvaddbr 25898 The sum rule for derivativ...
dvmulbr 25899 The product rule for deriv...
dvmulbrOLD 25900 Obsolete version of ~ dvmu...
dvadd 25901 The sum rule for derivativ...
dvmul 25902 The product rule for deriv...
dvaddf 25903 The sum rule for everywher...
dvmulf 25904 The product rule for every...
dvcmul 25905 The product rule when one ...
dvcmulf 25906 The product rule when one ...
dvcobr 25907 The chain rule for derivat...
dvcobrOLD 25908 Obsolete version of ~ dvco...
dvco 25909 The chain rule for derivat...
dvcof 25910 The chain rule for everywh...
dvcjbr 25911 The derivative of the conj...
dvcj 25912 The derivative of the conj...
dvfre 25913 The derivative of a real f...
dvnfre 25914 The ` N ` -th derivative o...
dvexp 25915 Derivative of a power func...
dvexp2 25916 Derivative of an exponenti...
dvrec 25917 Derivative of the reciproc...
dvmptres3 25918 Function-builder for deriv...
dvmptid 25919 Function-builder for deriv...
dvmptc 25920 Function-builder for deriv...
dvmptcl 25921 Closure lemma for ~ dvmptc...
dvmptadd 25922 Function-builder for deriv...
dvmptmul 25923 Function-builder for deriv...
dvmptres2 25924 Function-builder for deriv...
dvmptres 25925 Function-builder for deriv...
dvmptcmul 25926 Function-builder for deriv...
dvmptdivc 25927 Function-builder for deriv...
dvmptneg 25928 Function-builder for deriv...
dvmptsub 25929 Function-builder for deriv...
dvmptcj 25930 Function-builder for deriv...
dvmptre 25931 Function-builder for deriv...
dvmptim 25932 Function-builder for deriv...
dvmptntr 25933 Function-builder for deriv...
dvmptco 25934 Function-builder for deriv...
dvrecg 25935 Derivative of the reciproc...
dvmptdiv 25936 Function-builder for deriv...
dvmptfsum 25937 Function-builder for deriv...
dvcnvlem 25938 Lemma for ~ dvcnvre . (Co...
dvcnv 25939 A weak version of ~ dvcnvr...
dvexp3 25940 Derivative of an exponenti...
dveflem 25941 Derivative of the exponent...
dvef 25942 Derivative of the exponent...
dvsincos 25943 Derivative of the sine and...
dvsin 25944 Derivative of the sine fun...
dvcos 25945 Derivative of the cosine f...
dvferm1lem 25946 Lemma for ~ dvferm . (Con...
dvferm1 25947 One-sided version of ~ dvf...
dvferm2lem 25948 Lemma for ~ dvferm . (Con...
dvferm2 25949 One-sided version of ~ dvf...
dvferm 25950 Fermat's theorem on statio...
rollelem 25951 Lemma for ~ rolle . (Cont...
rolle 25952 Rolle's theorem. If ` F `...
cmvth 25953 Cauchy's Mean Value Theore...
cmvthOLD 25954 Obsolete version of ~ cmvt...
mvth 25955 The Mean Value Theorem. I...
dvlip 25956 A function with derivative...
dvlipcn 25957 A complex function with de...
dvlip2 25958 Combine the results of ~ d...
c1liplem1 25959 Lemma for ~ c1lip1 . (Con...
c1lip1 25960 C^1 functions are Lipschit...
c1lip2 25961 C^1 functions are Lipschit...
c1lip3 25962 C^1 functions are Lipschit...
dveq0 25963 If a continuous function h...
dv11cn 25964 Two functions defined on a...
dvgt0lem1 25965 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25966 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25967 A function on a closed int...
dvlt0 25968 A function on a closed int...
dvge0 25969 A function on a closed int...
dvle 25970 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25971 Lemma for ~ dvivth . (Con...
dvivthlem2 25972 Lemma for ~ dvivth . (Con...
dvivth 25973 Darboux' theorem, or the i...
dvne0 25974 A function on a closed int...
dvne0f1 25975 A function on a closed int...
lhop1lem 25976 Lemma for ~ lhop1 . (Cont...
lhop1 25977 L'Hôpital's Rule for...
lhop2 25978 L'Hôpital's Rule for...
lhop 25979 L'Hôpital's Rule. I...
dvcnvrelem1 25980 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25981 Lemma for ~ dvcnvre . (Co...
dvcnvre 25982 The derivative rule for in...
dvcvx 25983 A real function with stric...
dvfsumle 25984 Compare a finite sum to an...
dvfsumleOLD 25985 Obsolete version of ~ dvfs...
dvfsumge 25986 Compare a finite sum to an...
dvfsumabs 25987 Compare a finite sum to an...
dvmptrecl 25988 Real closure of a derivati...
dvfsumrlimf 25989 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25990 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25991 Lemma for ~ dvfsumrlim . ...
dvfsumlem2OLD 25992 Obsolete version of ~ dvfs...
dvfsumlem3 25993 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25994 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25995 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25996 Compare a finite sum to an...
dvfsumrlim2 25997 Compare a finite sum to an...
dvfsumrlim3 25998 Conjoin the statements of ...
dvfsum2 25999 The reverse of ~ dvfsumrli...
ftc1lem1 26000 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 26001 Lemma for ~ ftc1 . (Contr...
ftc1a 26002 The Fundamental Theorem of...
ftc1lem3 26003 Lemma for ~ ftc1 . (Contr...
ftc1lem4 26004 Lemma for ~ ftc1 . (Contr...
ftc1lem5 26005 Lemma for ~ ftc1 . (Contr...
ftc1lem6 26006 Lemma for ~ ftc1 . (Contr...
ftc1 26007 The Fundamental Theorem of...
ftc1cn 26008 Strengthen the assumptions...
ftc2 26009 The Fundamental Theorem of...
ftc2ditglem 26010 Lemma for ~ ftc2ditg . (C...
ftc2ditg 26011 Directed integral analogue...
itgparts 26012 Integration by parts. If ...
itgsubstlem 26013 Lemma for ~ itgsubst . (C...
itgsubst 26014 Integration by ` u ` -subs...
itgpowd 26015 The integral of a monomial...
reldmmdeg 26020 Multivariate degree is a b...
tdeglem1 26021 Functionality of the total...
tdeglem1OLD 26022 Obsolete version of ~ tdeg...
tdeglem3 26023 Additivity of the total de...
tdeglem3OLD 26024 Obsolete version of ~ tdeg...
tdeglem4 26025 There is only one multi-in...
tdeglem4OLD 26026 Obsolete version of ~ tdeg...
tdeglem2 26027 Simplification of total de...
mdegfval 26028 Value of the multivariate ...
mdegval 26029 Value of the multivariate ...
mdegleb 26030 Property of being of limit...
mdeglt 26031 If there is an upper limit...
mdegldg 26032 A nonzero polynomial has s...
mdegxrcl 26033 Closure of polynomial degr...
mdegxrf 26034 Functionality of polynomia...
mdegcl 26035 Sharp closure for multivar...
mdeg0 26036 Degree of the zero polynom...
mdegnn0cl 26037 Degree of a nonzero polyno...
degltlem1 26038 Theorem on arithmetic of e...
degltp1le 26039 Theorem on arithmetic of e...
mdegaddle 26040 The degree of a sum is at ...
mdegvscale 26041 The degree of a scalar mul...
mdegvsca 26042 The degree of a scalar mul...
mdegle0 26043 A polynomial has nonpositi...
mdegmullem 26044 Lemma for ~ mdegmulle2 . ...
mdegmulle2 26045 The multivariate degree of...
deg1fval 26046 Relate univariate polynomi...
deg1xrf 26047 Functionality of univariat...
deg1xrcl 26048 Closure of univariate poly...
deg1cl 26049 Sharp closure of univariat...
mdegpropd 26050 Property deduction for pol...
deg1fvi 26051 Univariate polynomial degr...
deg1propd 26052 Property deduction for pol...
deg1z 26053 Degree of the zero univari...
deg1nn0cl 26054 Degree of a nonzero univar...
deg1n0ima 26055 Degree image of a set of p...
deg1nn0clb 26056 A polynomial is nonzero if...
deg1lt0 26057 A polynomial is zero iff i...
deg1ldg 26058 A nonzero univariate polyn...
deg1ldgn 26059 An index at which a polyno...
deg1ldgdomn 26060 A nonzero univariate polyn...
deg1leb 26061 Property of being of limit...
deg1val 26062 Value of the univariate de...
deg1lt 26063 If the degree of a univari...
deg1ge 26064 Conversely, a nonzero coef...
coe1mul3 26065 The coefficient vector of ...
coe1mul4 26066 Value of the "leading" coe...
deg1addle 26067 The degree of a sum is at ...
deg1addle2 26068 If both factors have degre...
deg1add 26069 Exact degree of a sum of t...
deg1vscale 26070 The degree of a scalar tim...
deg1vsca 26071 The degree of a scalar tim...
deg1invg 26072 The degree of the negated ...
deg1suble 26073 The degree of a difference...
deg1sub 26074 Exact degree of a differen...
deg1mulle2 26075 Produce a bound on the pro...
deg1sublt 26076 Subtraction of two polynom...
deg1le0 26077 A polynomial has nonpositi...
deg1sclle 26078 A scalar polynomial has no...
deg1scl 26079 A nonzero scalar polynomia...
deg1mul2 26080 Degree of multiplication o...
deg1mul3 26081 Degree of multiplication o...
deg1mul3le 26082 Degree of multiplication o...
deg1tmle 26083 Limiting degree of a polyn...
deg1tm 26084 Exact degree of a polynomi...
deg1pwle 26085 Limiting degree of a varia...
deg1pw 26086 Exact degree of a variable...
ply1nz 26087 Univariate polynomials ove...
ply1nzb 26088 Univariate polynomials are...
ply1domn 26089 Corollary of ~ deg1mul2 : ...
ply1idom 26090 The ring of univariate pol...
ply1divmo 26101 Uniqueness of a quotient i...
ply1divex 26102 Lemma for ~ ply1divalg : e...
ply1divalg 26103 The division algorithm for...
ply1divalg2 26104 Reverse the order of multi...
uc1pval 26105 Value of the set of unitic...
isuc1p 26106 Being a unitic polynomial....
mon1pval 26107 Value of the set of monic ...
ismon1p 26108 Being a monic polynomial. ...
uc1pcl 26109 Unitic polynomials are pol...
mon1pcl 26110 Monic polynomials are poly...
uc1pn0 26111 Unitic polynomials are not...
mon1pn0 26112 Monic polynomials are not ...
uc1pdeg 26113 Unitic polynomials have no...
uc1pldg 26114 Unitic polynomials have un...
mon1pldg 26115 Unitic polynomials have on...
mon1puc1p 26116 Monic polynomials are unit...
uc1pmon1p 26117 Make a unitic polynomial m...
deg1submon1p 26118 The difference of two moni...
mon1pid 26119 Monicity and degree of the...
q1pval 26120 Value of the univariate po...
q1peqb 26121 Characterizing property of...
q1pcl 26122 Closure of the quotient by...
r1pval 26123 Value of the polynomial re...
r1pcl 26124 Closure of remainder follo...
r1pdeglt 26125 The remainder has a degree...
r1pid 26126 Express the original polyn...
dvdsq1p 26127 Divisibility in a polynomi...
dvdsr1p 26128 Divisibility in a polynomi...
ply1remlem 26129 A term of the form ` x - N...
ply1rem 26130 The polynomial remainder t...
facth1 26131 The factor theorem and its...
fta1glem1 26132 Lemma for ~ fta1g . (Cont...
fta1glem2 26133 Lemma for ~ fta1g . (Cont...
fta1g 26134 The one-sided fundamental ...
fta1blem 26135 Lemma for ~ fta1b . (Cont...
fta1b 26136 The assumption that ` R ` ...
idomrootle 26137 No element of an integral ...
drnguc1p 26138 Over a division ring, all ...
ig1peu 26139 There is a unique monic po...
ig1pval 26140 Substitutions for the poly...
ig1pval2 26141 Generator of the zero idea...
ig1pval3 26142 Characterizing properties ...
ig1pcl 26143 The monic generator of an ...
ig1pdvds 26144 The monic generator of an ...
ig1prsp 26145 Any ideal of polynomials o...
ply1lpir 26146 The ring of polynomials ov...
ply1pid 26147 The polynomials over a fie...
plyco0 26156 Two ways to say that a fun...
plyval 26157 Value of the polynomial se...
plybss 26158 Reverse closure of the par...
elply 26159 Definition of a polynomial...
elply2 26160 The coefficient function c...
plyun0 26161 The set of polynomials is ...
plyf 26162 The polynomial is a functi...
plyss 26163 The polynomial set functio...
plyssc 26164 Every polynomial ring is c...
elplyr 26165 Sufficient condition for e...
elplyd 26166 Sufficient condition for e...
ply1termlem 26167 Lemma for ~ ply1term . (C...
ply1term 26168 A one-term polynomial. (C...
plypow 26169 A power is a polynomial. ...
plyconst 26170 A constant function is a p...
ne0p 26171 A test to show that a poly...
ply0 26172 The zero function is a pol...
plyid 26173 The identity function is a...
plyeq0lem 26174 Lemma for ~ plyeq0 . If `...
plyeq0 26175 If a polynomial is zero at...
plypf1 26176 Write the set of complex p...
plyaddlem1 26177 Derive the coefficient fun...
plymullem1 26178 Derive the coefficient fun...
plyaddlem 26179 Lemma for ~ plyadd . (Con...
plymullem 26180 Lemma for ~ plymul . (Con...
plyadd 26181 The sum of two polynomials...
plymul 26182 The product of two polynom...
plysub 26183 The difference of two poly...
plyaddcl 26184 The sum of two polynomials...
plymulcl 26185 The product of two polynom...
plysubcl 26186 The difference of two poly...
coeval 26187 Value of the coefficient f...
coeeulem 26188 Lemma for ~ coeeu . (Cont...
coeeu 26189 Uniqueness of the coeffici...
coelem 26190 Lemma for properties of th...
coeeq 26191 If ` A ` satisfies the pro...
dgrval 26192 Value of the degree functi...
dgrlem 26193 Lemma for ~ dgrcl and simi...
coef 26194 The domain and codomain of...
coef2 26195 The domain and codomain of...
coef3 26196 The domain and codomain of...
dgrcl 26197 The degree of any polynomi...
dgrub 26198 If the ` M ` -th coefficie...
dgrub2 26199 All the coefficients above...
dgrlb 26200 If all the coefficients ab...
coeidlem 26201 Lemma for ~ coeid . (Cont...
coeid 26202 Reconstruct a polynomial a...
coeid2 26203 Reconstruct a polynomial a...
coeid3 26204 Reconstruct a polynomial a...
plyco 26205 The composition of two pol...
coeeq2 26206 Compute the coefficient fu...
dgrle 26207 Given an explicit expressi...
dgreq 26208 If the highest term in a p...
0dgr 26209 A constant function has de...
0dgrb 26210 A function has degree zero...
dgrnznn 26211 A nonzero polynomial with ...
coefv0 26212 The result of evaluating a...
coeaddlem 26213 Lemma for ~ coeadd and ~ d...
coemullem 26214 Lemma for ~ coemul and ~ d...
coeadd 26215 The coefficient function o...
coemul 26216 A coefficient of a product...
coe11 26217 The coefficient function i...
coemulhi 26218 The leading coefficient of...
coemulc 26219 The coefficient function i...
coe0 26220 The coefficients of the ze...
coesub 26221 The coefficient function o...
coe1termlem 26222 The coefficient function o...
coe1term 26223 The coefficient function o...
dgr1term 26224 The degree of a monomial. ...
plycn 26225 A polynomial is a continuo...
plycnOLD 26226 Obsolete version of ~ plyc...
dgr0 26227 The degree of the zero pol...
coeidp 26228 The coefficients of the id...
dgrid 26229 The degree of the identity...
dgreq0 26230 The leading coefficient of...
dgrlt 26231 Two ways to say that the d...
dgradd 26232 The degree of a sum of pol...
dgradd2 26233 The degree of a sum of pol...
dgrmul2 26234 The degree of a product of...
dgrmul 26235 The degree of a product of...
dgrmulc 26236 Scalar multiplication by a...
dgrsub 26237 The degree of a difference...
dgrcolem1 26238 The degree of a compositio...
dgrcolem2 26239 Lemma for ~ dgrco . (Cont...
dgrco 26240 The degree of a compositio...
plycjlem 26241 Lemma for ~ plycj and ~ co...
plycj 26242 The double conjugation of ...
coecj 26243 Double conjugation of a po...
plyrecj 26244 A polynomial with real coe...
plymul0or 26245 Polynomial multiplication ...
ofmulrt 26246 The set of roots of a prod...
plyreres 26247 Real-coefficient polynomia...
dvply1 26248 Derivative of a polynomial...
dvply2g 26249 The derivative of a polyno...
dvply2gOLD 26250 Obsolete version of ~ dvpl...
dvply2 26251 The derivative of a polyno...
dvnply2 26252 Polynomials have polynomia...
dvnply 26253 Polynomials have polynomia...
plycpn 26254 Polynomials are smooth. (...
quotval 26257 Value of the quotient func...
plydivlem1 26258 Lemma for ~ plydivalg . (...
plydivlem2 26259 Lemma for ~ plydivalg . (...
plydivlem3 26260 Lemma for ~ plydivex . Ba...
plydivlem4 26261 Lemma for ~ plydivex . In...
plydivex 26262 Lemma for ~ plydivalg . (...
plydiveu 26263 Lemma for ~ plydivalg . (...
plydivalg 26264 The division algorithm on ...
quotlem 26265 Lemma for properties of th...
quotcl 26266 The quotient of two polyno...
quotcl2 26267 Closure of the quotient fu...
quotdgr 26268 Remainder property of the ...
plyremlem 26269 Closure of a linear factor...
plyrem 26270 The polynomial remainder t...
facth 26271 The factor theorem. If a ...
fta1lem 26272 Lemma for ~ fta1 . (Contr...
fta1 26273 The easy direction of the ...
quotcan 26274 Exact division with a mult...
vieta1lem1 26275 Lemma for ~ vieta1 . (Con...
vieta1lem2 26276 Lemma for ~ vieta1 : induc...
vieta1 26277 The first-order Vieta's fo...
plyexmo 26278 An infinite set of values ...
elaa 26281 Elementhood in the set of ...
aacn 26282 An algebraic number is a c...
aasscn 26283 The algebraic numbers are ...
elqaalem1 26284 Lemma for ~ elqaa . The f...
elqaalem2 26285 Lemma for ~ elqaa . (Cont...
elqaalem3 26286 Lemma for ~ elqaa . (Cont...
elqaa 26287 The set of numbers generat...
qaa 26288 Every rational number is a...
qssaa 26289 The rational numbers are c...
iaa 26290 The imaginary unit is alge...
aareccl 26291 The reciprocal of an algeb...
aacjcl 26292 The conjugate of an algebr...
aannenlem1 26293 Lemma for ~ aannen . (Con...
aannenlem2 26294 Lemma for ~ aannen . (Con...
aannenlem3 26295 The algebraic numbers are ...
aannen 26296 The algebraic numbers are ...
aalioulem1 26297 Lemma for ~ aaliou . An i...
aalioulem2 26298 Lemma for ~ aaliou . (Con...
aalioulem3 26299 Lemma for ~ aaliou . (Con...
aalioulem4 26300 Lemma for ~ aaliou . (Con...
aalioulem5 26301 Lemma for ~ aaliou . (Con...
aalioulem6 26302 Lemma for ~ aaliou . (Con...
aaliou 26303 Liouville's theorem on dio...
geolim3 26304 Geometric series convergen...
aaliou2 26305 Liouville's approximation ...
aaliou2b 26306 Liouville's approximation ...
aaliou3lem1 26307 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 26308 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 26309 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 26310 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 26311 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 26312 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 26313 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 26314 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 26315 Example of a "Liouville nu...
aaliou3 26316 Example of a "Liouville nu...
taylfvallem1 26321 Lemma for ~ taylfval . (C...
taylfvallem 26322 Lemma for ~ taylfval . (C...
taylfval 26323 Define the Taylor polynomi...
eltayl 26324 Value of the Taylor series...
taylf 26325 The Taylor series defines ...
tayl0 26326 The Taylor series is alway...
taylplem1 26327 Lemma for ~ taylpfval and ...
taylplem2 26328 Lemma for ~ taylpfval and ...
taylpfval 26329 Define the Taylor polynomi...
taylpf 26330 The Taylor polynomial is a...
taylpval 26331 Value of the Taylor polyno...
taylply2 26332 The Taylor polynomial is a...
taylply2OLD 26333 Obsolete version of ~ tayl...
taylply 26334 The Taylor polynomial is a...
dvtaylp 26335 The derivative of the Tayl...
dvntaylp 26336 The ` M ` -th derivative o...
dvntaylp0 26337 The first ` N ` derivative...
taylthlem1 26338 Lemma for ~ taylth . This...
taylthlem2 26339 Lemma for ~ taylth . (Con...
taylthlem2OLD 26340 Obsolete version of ~ tayl...
taylth 26341 Taylor's theorem. The Tay...
ulmrel 26344 The uniform limit relation...
ulmscl 26345 Closure of the base set in...
ulmval 26346 Express the predicate: Th...
ulmcl 26347 Closure of a uniform limit...
ulmf 26348 Closure of a uniform limit...
ulmpm 26349 Closure of a uniform limit...
ulmf2 26350 Closure of a uniform limit...
ulm2 26351 Simplify ~ ulmval when ` F...
ulmi 26352 The uniform limit property...
ulmclm 26353 A uniform limit of functio...
ulmres 26354 A sequence of functions co...
ulmshftlem 26355 Lemma for ~ ulmshft . (Co...
ulmshft 26356 A sequence of functions co...
ulm0 26357 Every function converges u...
ulmuni 26358 A sequence of functions un...
ulmdm 26359 Two ways to express that a...
ulmcaulem 26360 Lemma for ~ ulmcau and ~ u...
ulmcau 26361 A sequence of functions co...
ulmcau2 26362 A sequence of functions co...
ulmss 26363 A uniform limit of functio...
ulmbdd 26364 A uniform limit of bounded...
ulmcn 26365 A uniform limit of continu...
ulmdvlem1 26366 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 26367 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 26368 Lemma for ~ ulmdv . (Cont...
ulmdv 26369 If ` F ` is a sequence of ...
mtest 26370 The Weierstrass M-test. I...
mtestbdd 26371 Given the hypotheses of th...
mbfulm 26372 A uniform limit of measura...
iblulm 26373 A uniform limit of integra...
itgulm 26374 A uniform limit of integra...
itgulm2 26375 A uniform limit of integra...
pserval 26376 Value of the function ` G ...
pserval2 26377 Value of the function ` G ...
psergf 26378 The sequence of terms in t...
radcnvlem1 26379 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 26380 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 26381 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 26382 Zero is always a convergen...
radcnvcl 26383 The radius of convergence ...
radcnvlt1 26384 If ` X ` is within the ope...
radcnvlt2 26385 If ` X ` is within the ope...
radcnvle 26386 If ` X ` is a convergent p...
dvradcnv 26387 The radius of convergence ...
pserulm 26388 If ` S ` is a region conta...
psercn2 26389 Since by ~ pserulm the ser...
psercn2OLD 26390 Obsolete version of ~ pser...
psercnlem2 26391 Lemma for ~ psercn . (Con...
psercnlem1 26392 Lemma for ~ psercn . (Con...
psercn 26393 An infinite series converg...
pserdvlem1 26394 Lemma for ~ pserdv . (Con...
pserdvlem2 26395 Lemma for ~ pserdv . (Con...
pserdv 26396 The derivative of a power ...
pserdv2 26397 The derivative of a power ...
abelthlem1 26398 Lemma for ~ abelth . (Con...
abelthlem2 26399 Lemma for ~ abelth . The ...
abelthlem3 26400 Lemma for ~ abelth . (Con...
abelthlem4 26401 Lemma for ~ abelth . (Con...
abelthlem5 26402 Lemma for ~ abelth . (Con...
abelthlem6 26403 Lemma for ~ abelth . (Con...
abelthlem7a 26404 Lemma for ~ abelth . (Con...
abelthlem7 26405 Lemma for ~ abelth . (Con...
abelthlem8 26406 Lemma for ~ abelth . (Con...
abelthlem9 26407 Lemma for ~ abelth . By a...
abelth 26408 Abel's theorem. If the po...
abelth2 26409 Abel's theorem, restricted...
efcn 26410 The exponential function i...
sincn 26411 Sine is continuous. (Cont...
coscn 26412 Cosine is continuous. (Co...
reeff1olem 26413 Lemma for ~ reeff1o . (Co...
reeff1o 26414 The real exponential funct...
reefiso 26415 The exponential function o...
efcvx 26416 The exponential function o...
reefgim 26417 The exponential function i...
pilem1 26418 Lemma for ~ pire , ~ pigt2...
pilem2 26419 Lemma for ~ pire , ~ pigt2...
pilem3 26420 Lemma for ~ pire , ~ pigt2...
pigt2lt4 26421 ` _pi ` is between 2 and 4...
sinpi 26422 The sine of ` _pi ` is 0. ...
pire 26423 ` _pi ` is a real number. ...
picn 26424 ` _pi ` is a complex numbe...
pipos 26425 ` _pi ` is positive. (Con...
pirp 26426 ` _pi ` is a positive real...
negpicn 26427 ` -u _pi ` is a real numbe...
sinhalfpilem 26428 Lemma for ~ sinhalfpi and ...
halfpire 26429 ` _pi / 2 ` is real. (Con...
neghalfpire 26430 ` -u _pi / 2 ` is real. (...
neghalfpirx 26431 ` -u _pi / 2 ` is an exten...
pidiv2halves 26432 Adding ` _pi / 2 ` to itse...
sinhalfpi 26433 The sine of ` _pi / 2 ` is...
coshalfpi 26434 The cosine of ` _pi / 2 ` ...
cosneghalfpi 26435 The cosine of ` -u _pi / 2...
efhalfpi 26436 The exponential of ` _i _p...
cospi 26437 The cosine of ` _pi ` is `...
efipi 26438 The exponential of ` _i x....
eulerid 26439 Euler's identity. (Contri...
sin2pi 26440 The sine of ` 2 _pi ` is 0...
cos2pi 26441 The cosine of ` 2 _pi ` is...
ef2pi 26442 The exponential of ` 2 _pi...
ef2kpi 26443 If ` K ` is an integer, th...
efper 26444 The exponential function i...
sinperlem 26445 Lemma for ~ sinper and ~ c...
sinper 26446 The sine function is perio...
cosper 26447 The cosine function is per...
sin2kpi 26448 If ` K ` is an integer, th...
cos2kpi 26449 If ` K ` is an integer, th...
sin2pim 26450 Sine of a number subtracte...
cos2pim 26451 Cosine of a number subtrac...
sinmpi 26452 Sine of a number less ` _p...
cosmpi 26453 Cosine of a number less ` ...
sinppi 26454 Sine of a number plus ` _p...
cosppi 26455 Cosine of a number plus ` ...
efimpi 26456 The exponential function a...
sinhalfpip 26457 The sine of ` _pi / 2 ` pl...
sinhalfpim 26458 The sine of ` _pi / 2 ` mi...
coshalfpip 26459 The cosine of ` _pi / 2 ` ...
coshalfpim 26460 The cosine of ` _pi / 2 ` ...
ptolemy 26461 Ptolemy's Theorem. This t...
sincosq1lem 26462 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 26463 The signs of the sine and ...
sincosq2sgn 26464 The signs of the sine and ...
sincosq3sgn 26465 The signs of the sine and ...
sincosq4sgn 26466 The signs of the sine and ...
coseq00topi 26467 Location of the zeroes of ...
coseq0negpitopi 26468 Location of the zeroes of ...
tanrpcl 26469 Positive real closure of t...
tangtx 26470 The tangent function is gr...
tanabsge 26471 The tangent function is gr...
sinq12gt0 26472 The sine of a number stric...
sinq12ge0 26473 The sine of a number betwe...
sinq34lt0t 26474 The sine of a number stric...
cosq14gt0 26475 The cosine of a number str...
cosq14ge0 26476 The cosine of a number bet...
sincosq1eq 26477 Complementarity of the sin...
sincos4thpi 26478 The sine and cosine of ` _...
tan4thpi 26479 The tangent of ` _pi / 4 `...
sincos6thpi 26480 The sine and cosine of ` _...
sincos3rdpi 26481 The sine and cosine of ` _...
pigt3 26482 ` _pi ` is greater than 3....
pige3 26483 ` _pi ` is greater than or...
pige3ALT 26484 Alternate proof of ~ pige3...
abssinper 26485 The absolute value of sine...
sinkpi 26486 The sine of an integer mul...
coskpi 26487 The absolute value of the ...
sineq0 26488 A complex number whose sin...
coseq1 26489 A complex number whose cos...
cos02pilt1 26490 Cosine is less than one be...
cosq34lt1 26491 Cosine is less than one in...
efeq1 26492 A complex number whose exp...
cosne0 26493 The cosine function has no...
cosordlem 26494 Lemma for ~ cosord . (Con...
cosord 26495 Cosine is decreasing over ...
cos0pilt1 26496 Cosine is between minus on...
cos11 26497 Cosine is one-to-one over ...
sinord 26498 Sine is increasing over th...
recosf1o 26499 The cosine function is a b...
resinf1o 26500 The sine function is a bij...
tanord1 26501 The tangent function is st...
tanord 26502 The tangent function is st...
tanregt0 26503 The real part of the tange...
negpitopissre 26504 The interval ` ( -u _pi (,...
efgh 26505 The exponential function o...
efif1olem1 26506 Lemma for ~ efif1o . (Con...
efif1olem2 26507 Lemma for ~ efif1o . (Con...
efif1olem3 26508 Lemma for ~ efif1o . (Con...
efif1olem4 26509 The exponential function o...
efif1o 26510 The exponential function o...
efifo 26511 The exponential function o...
eff1olem 26512 The exponential function m...
eff1o 26513 The exponential function m...
efabl 26514 The image of a subgroup of...
efsubm 26515 The image of a subgroup of...
circgrp 26516 The circle group ` T ` is ...
circsubm 26517 The circle group ` T ` is ...
logrn 26522 The range of the natural l...
ellogrn 26523 Write out the property ` A...
dflog2 26524 The natural logarithm func...
relogrn 26525 The range of the natural l...
logrncn 26526 The range of the natural l...
eff1o2 26527 The exponential function r...
logf1o 26528 The natural logarithm func...
dfrelog 26529 The natural logarithm func...
relogf1o 26530 The natural logarithm func...
logrncl 26531 Closure of the natural log...
logcl 26532 Closure of the natural log...
logimcl 26533 Closure of the imaginary p...
logcld 26534 The logarithm of a nonzero...
logimcld 26535 The imaginary part of the ...
logimclad 26536 The imaginary part of the ...
abslogimle 26537 The imaginary part of the ...
logrnaddcl 26538 The range of the natural l...
relogcl 26539 Closure of the natural log...
eflog 26540 Relationship between the n...
logeq0im1 26541 If the logarithm of a numb...
logccne0 26542 The logarithm isn't 0 if i...
logne0 26543 Logarithm of a non-1 posit...
reeflog 26544 Relationship between the n...
logef 26545 Relationship between the n...
relogef 26546 Relationship between the n...
logeftb 26547 Relationship between the n...
relogeftb 26548 Relationship between the n...
log1 26549 The natural logarithm of `...
loge 26550 The natural logarithm of `...
logi 26551 The natural logarithm of `...
logneg 26552 The natural logarithm of a...
logm1 26553 The natural logarithm of n...
lognegb 26554 If a number has imaginary ...
relogoprlem 26555 Lemma for ~ relogmul and ~...
relogmul 26556 The natural logarithm of t...
relogdiv 26557 The natural logarithm of t...
explog 26558 Exponentiation of a nonzer...
reexplog 26559 Exponentiation of a positi...
relogexp 26560 The natural logarithm of p...
relog 26561 Real part of a logarithm. ...
relogiso 26562 The natural logarithm func...
reloggim 26563 The natural logarithm is a...
logltb 26564 The natural logarithm func...
logfac 26565 The logarithm of a factori...
eflogeq 26566 Solve an equation involvin...
logleb 26567 Natural logarithm preserve...
rplogcl 26568 Closure of the logarithm f...
logge0 26569 The logarithm of a number ...
logcj 26570 The natural logarithm dist...
efiarg 26571 The exponential of the "ar...
cosargd 26572 The cosine of the argument...
cosarg0d 26573 The cosine of the argument...
argregt0 26574 Closure of the argument of...
argrege0 26575 Closure of the argument of...
argimgt0 26576 Closure of the argument of...
argimlt0 26577 Closure of the argument of...
logimul 26578 Multiplying a number by ` ...
logneg2 26579 The logarithm of the negat...
logmul2 26580 Generalization of ~ relogm...
logdiv2 26581 Generalization of ~ relogd...
abslogle 26582 Bound on the magnitude of ...
tanarg 26583 The basic relation between...
logdivlti 26584 The ` log x / x ` function...
logdivlt 26585 The ` log x / x ` function...
logdivle 26586 The ` log x / x ` function...
relogcld 26587 Closure of the natural log...
reeflogd 26588 Relationship between the n...
relogmuld 26589 The natural logarithm of t...
relogdivd 26590 The natural logarithm of t...
logled 26591 Natural logarithm preserve...
relogefd 26592 Relationship between the n...
rplogcld 26593 Closure of the logarithm f...
logge0d 26594 The logarithm of a number ...
logge0b 26595 The logarithm of a number ...
loggt0b 26596 The logarithm of a number ...
logle1b 26597 The logarithm of a number ...
loglt1b 26598 The logarithm of a number ...
divlogrlim 26599 The inverse logarithm func...
logno1 26600 The logarithm function is ...
dvrelog 26601 The derivative of the real...
relogcn 26602 The real logarithm functio...
ellogdm 26603 Elementhood in the "contin...
logdmn0 26604 A number in the continuous...
logdmnrp 26605 A number in the continuous...
logdmss 26606 The continuity domain of `...
logcnlem2 26607 Lemma for ~ logcn . (Cont...
logcnlem3 26608 Lemma for ~ logcn . (Cont...
logcnlem4 26609 Lemma for ~ logcn . (Cont...
logcnlem5 26610 Lemma for ~ logcn . (Cont...
logcn 26611 The logarithm function is ...
dvloglem 26612 Lemma for ~ dvlog . (Cont...
logdmopn 26613 The "continuous domain" of...
logf1o2 26614 The logarithm maps its con...
dvlog 26615 The derivative of the comp...
dvlog2lem 26616 Lemma for ~ dvlog2 . (Con...
dvlog2 26617 The derivative of the comp...
advlog 26618 The antiderivative of the ...
advlogexp 26619 The antiderivative of a po...
efopnlem1 26620 Lemma for ~ efopn . (Cont...
efopnlem2 26621 Lemma for ~ efopn . (Cont...
efopn 26622 The exponential map is an ...
logtayllem 26623 Lemma for ~ logtayl . (Co...
logtayl 26624 The Taylor series for ` -u...
logtaylsum 26625 The Taylor series for ` -u...
logtayl2 26626 Power series expression fo...
logccv 26627 The natural logarithm func...
cxpval 26628 Value of the complex power...
cxpef 26629 Value of the complex power...
0cxp 26630 Value of the complex power...
cxpexpz 26631 Relate the complex power f...
cxpexp 26632 Relate the complex power f...
logcxp 26633 Logarithm of a complex pow...
cxp0 26634 Value of the complex power...
cxp1 26635 Value of the complex power...
1cxp 26636 Value of the complex power...
ecxp 26637 Write the exponential func...
cxpcl 26638 Closure of the complex pow...
recxpcl 26639 Real closure of the comple...
rpcxpcl 26640 Positive real closure of t...
cxpne0 26641 Complex exponentiation is ...
cxpeq0 26642 Complex exponentiation is ...
cxpadd 26643 Sum of exponents law for c...
cxpp1 26644 Value of a nonzero complex...
cxpneg 26645 Value of a complex number ...
cxpsub 26646 Exponent subtraction law f...
cxpge0 26647 Nonnegative exponentiation...
mulcxplem 26648 Lemma for ~ mulcxp . (Con...
mulcxp 26649 Complex exponentiation of ...
cxprec 26650 Complex exponentiation of ...
divcxp 26651 Complex exponentiation of ...
cxpmul 26652 Product of exponents law f...
cxpmul2 26653 Product of exponents law f...
cxproot 26654 The complex power function...
cxpmul2z 26655 Generalize ~ cxpmul2 to ne...
abscxp 26656 Absolute value of a power,...
abscxp2 26657 Absolute value of a power,...
cxplt 26658 Ordering property for comp...
cxple 26659 Ordering property for comp...
cxplea 26660 Ordering property for comp...
cxple2 26661 Ordering property for comp...
cxplt2 26662 Ordering property for comp...
cxple2a 26663 Ordering property for comp...
cxplt3 26664 Ordering property for comp...
cxple3 26665 Ordering property for comp...
cxpsqrtlem 26666 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 26667 The complex exponential fu...
logsqrt 26668 Logarithm of a square root...
cxp0d 26669 Value of the complex power...
cxp1d 26670 Value of the complex power...
1cxpd 26671 Value of the complex power...
cxpcld 26672 Closure of the complex pow...
cxpmul2d 26673 Product of exponents law f...
0cxpd 26674 Value of the complex power...
cxpexpzd 26675 Relate the complex power f...
cxpefd 26676 Value of the complex power...
cxpne0d 26677 Complex exponentiation is ...
cxpp1d 26678 Value of a nonzero complex...
cxpnegd 26679 Value of a complex number ...
cxpmul2zd 26680 Generalize ~ cxpmul2 to ne...
cxpaddd 26681 Sum of exponents law for c...
cxpsubd 26682 Exponent subtraction law f...
cxpltd 26683 Ordering property for comp...
cxpled 26684 Ordering property for comp...
cxplead 26685 Ordering property for comp...
divcxpd 26686 Complex exponentiation of ...
recxpcld 26687 Positive real closure of t...
cxpge0d 26688 Nonnegative exponentiation...
cxple2ad 26689 Ordering property for comp...
cxplt2d 26690 Ordering property for comp...
cxple2d 26691 Ordering property for comp...
mulcxpd 26692 Complex exponentiation of ...
recxpf1lem 26693 Complex exponentiation on ...
cxpsqrtth 26694 Square root theorem over t...
2irrexpq 26695 There exist irrational num...
cxprecd 26696 Complex exponentiation of ...
rpcxpcld 26697 Positive real closure of t...
logcxpd 26698 Logarithm of a complex pow...
cxplt3d 26699 Ordering property for comp...
cxple3d 26700 Ordering property for comp...
cxpmuld 26701 Product of exponents law f...
cxpgt0d 26702 A positive real raised to ...
cxpcom 26703 Commutative law for real e...
dvcxp1 26704 The derivative of a comple...
dvcxp2 26705 The derivative of a comple...
dvsqrt 26706 The derivative of the real...
dvcncxp1 26707 Derivative of complex powe...
dvcnsqrt 26708 Derivative of square root ...
cxpcn 26709 Domain of continuity of th...
cxpcnOLD 26710 Obsolete version of ~ cxpc...
cxpcn2 26711 Continuity of the complex ...
cxpcn3lem 26712 Lemma for ~ cxpcn3 . (Con...
cxpcn3 26713 Extend continuity of the c...
resqrtcn 26714 Continuity of the real squ...
sqrtcn 26715 Continuity of the square r...
cxpaddlelem 26716 Lemma for ~ cxpaddle . (C...
cxpaddle 26717 Ordering property for comp...
abscxpbnd 26718 Bound on the absolute valu...
root1id 26719 Property of an ` N ` -th r...
root1eq1 26720 The only powers of an ` N ...
root1cj 26721 Within the ` N ` -th roots...
cxpeq 26722 Solve an equation involvin...
loglesqrt 26723 An upper bound on the loga...
logreclem 26724 Symmetry of the natural lo...
logrec 26725 Logarithm of a reciprocal ...
logbval 26728 Define the value of the ` ...
logbcl 26729 General logarithm closure....
logbid1 26730 General logarithm is 1 whe...
logb1 26731 The logarithm of ` 1 ` to ...
elogb 26732 The general logarithm of a...
logbchbase 26733 Change of base for logarit...
relogbval 26734 Value of the general logar...
relogbcl 26735 Closure of the general log...
relogbzcl 26736 Closure of the general log...
relogbreexp 26737 Power law for the general ...
relogbzexp 26738 Power law for the general ...
relogbmul 26739 The logarithm of the produ...
relogbmulexp 26740 The logarithm of the produ...
relogbdiv 26741 The logarithm of the quoti...
relogbexp 26742 Identity law for general l...
nnlogbexp 26743 Identity law for general l...
logbrec 26744 Logarithm of a reciprocal ...
logbleb 26745 The general logarithm func...
logblt 26746 The general logarithm func...
relogbcxp 26747 Identity law for the gener...
cxplogb 26748 Identity law for the gener...
relogbcxpb 26749 The logarithm is the inver...
logbmpt 26750 The general logarithm to a...
logbf 26751 The general logarithm to a...
logbfval 26752 The general logarithm of a...
relogbf 26753 The general logarithm to a...
logblog 26754 The general logarithm to t...
logbgt0b 26755 The logarithm of a positiv...
logbgcd1irr 26756 The logarithm of an intege...
2logb9irr 26757 Example for ~ logbgcd1irr ...
logbprmirr 26758 The logarithm of a prime t...
2logb3irr 26759 Example for ~ logbprmirr ....
2logb9irrALT 26760 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 26761 The square root of two to ...
2irrexpqALT 26762 Alternate proof of ~ 2irre...
angval 26763 Define the angle function,...
angcan 26764 Cancel a constant multipli...
angneg 26765 Cancel a negative sign in ...
angvald 26766 The (signed) angle between...
angcld 26767 The (signed) angle between...
angrteqvd 26768 Two vectors are at a right...
cosangneg2d 26769 The cosine of the angle be...
angrtmuld 26770 Perpendicularity of two ve...
ang180lem1 26771 Lemma for ~ ang180 . Show...
ang180lem2 26772 Lemma for ~ ang180 . Show...
ang180lem3 26773 Lemma for ~ ang180 . Sinc...
ang180lem4 26774 Lemma for ~ ang180 . Redu...
ang180lem5 26775 Lemma for ~ ang180 : Redu...
ang180 26776 The sum of angles ` m A B ...
lawcoslem1 26777 Lemma for ~ lawcos . Here...
lawcos 26778 Law of cosines (also known...
pythag 26779 Pythagorean theorem. Give...
isosctrlem1 26780 Lemma for ~ isosctr . (Co...
isosctrlem2 26781 Lemma for ~ isosctr . Cor...
isosctrlem3 26782 Lemma for ~ isosctr . Cor...
isosctr 26783 Isosceles triangle theorem...
ssscongptld 26784 If two triangles have equa...
affineequiv 26785 Equivalence between two wa...
affineequiv2 26786 Equivalence between two wa...
affineequiv3 26787 Equivalence between two wa...
affineequiv4 26788 Equivalence between two wa...
affineequivne 26789 Equivalence between two wa...
angpieqvdlem 26790 Equivalence used in the pr...
angpieqvdlem2 26791 Equivalence used in ~ angp...
angpined 26792 If the angle at ABC is ` _...
angpieqvd 26793 The angle ABC is ` _pi ` i...
chordthmlem 26794 If ` M ` is the midpoint o...
chordthmlem2 26795 If M is the midpoint of AB...
chordthmlem3 26796 If M is the midpoint of AB...
chordthmlem4 26797 If P is on the segment AB ...
chordthmlem5 26798 If P is on the segment AB ...
chordthm 26799 The intersecting chords th...
heron 26800 Heron's formula gives the ...
quad2 26801 The quadratic equation, wi...
quad 26802 The quadratic equation. (...
1cubrlem 26803 The cube roots of unity. ...
1cubr 26804 The cube roots of unity. ...
dcubic1lem 26805 Lemma for ~ dcubic1 and ~ ...
dcubic2 26806 Reverse direction of ~ dcu...
dcubic1 26807 Forward direction of ~ dcu...
dcubic 26808 Solutions to the depressed...
mcubic 26809 Solutions to a monic cubic...
cubic2 26810 The solution to the genera...
cubic 26811 The cubic equation, which ...
binom4 26812 Work out a quartic binomia...
dquartlem1 26813 Lemma for ~ dquart . (Con...
dquartlem2 26814 Lemma for ~ dquart . (Con...
dquart 26815 Solve a depressed quartic ...
quart1cl 26816 Closure lemmas for ~ quart...
quart1lem 26817 Lemma for ~ quart1 . (Con...
quart1 26818 Depress a quartic equation...
quartlem1 26819 Lemma for ~ quart . (Cont...
quartlem2 26820 Closure lemmas for ~ quart...
quartlem3 26821 Closure lemmas for ~ quart...
quartlem4 26822 Closure lemmas for ~ quart...
quart 26823 The quartic equation, writ...
asinlem 26830 The argument to the logari...
asinlem2 26831 The argument to the logari...
asinlem3a 26832 Lemma for ~ asinlem3 . (C...
asinlem3 26833 The argument to the logari...
asinf 26834 Domain and codomain of the...
asincl 26835 Closure for the arcsin fun...
acosf 26836 Domain and codoamin of the...
acoscl 26837 Closure for the arccos fun...
atandm 26838 Since the property is a li...
atandm2 26839 This form of ~ atandm is a...
atandm3 26840 A compact form of ~ atandm...
atandm4 26841 A compact form of ~ atandm...
atanf 26842 Domain and codoamin of the...
atancl 26843 Closure for the arctan fun...
asinval 26844 Value of the arcsin functi...
acosval 26845 Value of the arccos functi...
atanval 26846 Value of the arctan functi...
atanre 26847 A real number is in the do...
asinneg 26848 The arcsine function is od...
acosneg 26849 The negative symmetry rela...
efiasin 26850 The exponential of the arc...
sinasin 26851 The arcsine function is an...
cosacos 26852 The arccosine function is ...
asinsinlem 26853 Lemma for ~ asinsin . (Co...
asinsin 26854 The arcsine function compo...
acoscos 26855 The arccosine function is ...
asin1 26856 The arcsine of ` 1 ` is ` ...
acos1 26857 The arccosine of ` 1 ` is ...
reasinsin 26858 The arcsine function compo...
asinsinb 26859 Relationship between sine ...
acoscosb 26860 Relationship between cosin...
asinbnd 26861 The arcsine function has r...
acosbnd 26862 The arccosine function has...
asinrebnd 26863 Bounds on the arcsine func...
asinrecl 26864 The arcsine function is re...
acosrecl 26865 The arccosine function is ...
cosasin 26866 The cosine of the arcsine ...
sinacos 26867 The sine of the arccosine ...
atandmneg 26868 The domain of the arctange...
atanneg 26869 The arctangent function is...
atan0 26870 The arctangent of zero is ...
atandmcj 26871 The arctangent function di...
atancj 26872 The arctangent function di...
atanrecl 26873 The arctangent function is...
efiatan 26874 Value of the exponential o...
atanlogaddlem 26875 Lemma for ~ atanlogadd . ...
atanlogadd 26876 The rule ` sqrt ( z w ) = ...
atanlogsublem 26877 Lemma for ~ atanlogsub . ...
atanlogsub 26878 A variation on ~ atanlogad...
efiatan2 26879 Value of the exponential o...
2efiatan 26880 Value of the exponential o...
tanatan 26881 The arctangent function is...
atandmtan 26882 The tangent function has r...
cosatan 26883 The cosine of an arctangen...
cosatanne0 26884 The arctangent function ha...
atantan 26885 The arctangent function is...
atantanb 26886 Relationship between tange...
atanbndlem 26887 Lemma for ~ atanbnd . (Co...
atanbnd 26888 The arctangent function is...
atanord 26889 The arctangent function is...
atan1 26890 The arctangent of ` 1 ` is...
bndatandm 26891 A point in the open unit d...
atans 26892 The "domain of continuity"...
atans2 26893 It suffices to show that `...
atansopn 26894 The domain of continuity o...
atansssdm 26895 The domain of continuity o...
ressatans 26896 The real number line is a ...
dvatan 26897 The derivative of the arct...
atancn 26898 The arctangent is a contin...
atantayl 26899 The Taylor series for ` ar...
atantayl2 26900 The Taylor series for ` ar...
atantayl3 26901 The Taylor series for ` ar...
leibpilem1 26902 Lemma for ~ leibpi . (Con...
leibpilem2 26903 The Leibniz formula for ` ...
leibpi 26904 The Leibniz formula for ` ...
leibpisum 26905 The Leibniz formula for ` ...
log2cnv 26906 Using the Taylor series fo...
log2tlbnd 26907 Bound the error term in th...
log2ublem1 26908 Lemma for ~ log2ub . The ...
log2ublem2 26909 Lemma for ~ log2ub . (Con...
log2ublem3 26910 Lemma for ~ log2ub . In d...
log2ub 26911 ` log 2 ` is less than ` 2...
log2le1 26912 ` log 2 ` is less than ` 1...
birthdaylem1 26913 Lemma for ~ birthday . (C...
birthdaylem2 26914 For general ` N ` and ` K ...
birthdaylem3 26915 For general ` N ` and ` K ...
birthday 26916 The Birthday Problem. The...
dmarea 26919 The domain of the area fun...
areambl 26920 The fibers of a measurable...
areass 26921 A measurable region is a s...
dfarea 26922 Rewrite ~ df-area self-ref...
areaf 26923 Area measurement is a func...
areacl 26924 The area of a measurable r...
areage0 26925 The area of a measurable r...
areaval 26926 The area of a measurable r...
rlimcnp 26927 Relate a limit of a real-v...
rlimcnp2 26928 Relate a limit of a real-v...
rlimcnp3 26929 Relate a limit of a real-v...
xrlimcnp 26930 Relate a limit of a real-v...
efrlim 26931 The limit of the sequence ...
efrlimOLD 26932 Obsolete version of ~ efrl...
dfef2 26933 The limit of the sequence ...
cxplim 26934 A power to a negative expo...
sqrtlim 26935 The inverse square root fu...
rlimcxp 26936 Any power to a positive ex...
o1cxp 26937 An eventually bounded func...
cxp2limlem 26938 A linear factor grows slow...
cxp2lim 26939 Any power grows slower tha...
cxploglim 26940 The logarithm grows slower...
cxploglim2 26941 Every power of the logarit...
divsqrtsumlem 26942 Lemma for ~ divsqrsum and ...
divsqrsumf 26943 The function ` F ` used in...
divsqrsum 26944 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26945 A bound on the distance of...
divsqrtsumo1 26946 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26947 Closure of a 0-1 linear co...
scvxcvx 26948 A strictly convex function...
jensenlem1 26949 Lemma for ~ jensen . (Con...
jensenlem2 26950 Lemma for ~ jensen . (Con...
jensen 26951 Jensen's inequality, a fin...
amgmlem 26952 Lemma for ~ amgm . (Contr...
amgm 26953 Inequality of arithmetic a...
logdifbnd 26956 Bound on the difference of...
logdiflbnd 26957 Lower bound on the differe...
emcllem1 26958 Lemma for ~ emcl . The se...
emcllem2 26959 Lemma for ~ emcl . ` F ` i...
emcllem3 26960 Lemma for ~ emcl . The fu...
emcllem4 26961 Lemma for ~ emcl . The di...
emcllem5 26962 Lemma for ~ emcl . The pa...
emcllem6 26963 Lemma for ~ emcl . By the...
emcllem7 26964 Lemma for ~ emcl and ~ har...
emcl 26965 Closure and bounds for the...
harmonicbnd 26966 A bound on the harmonic se...
harmonicbnd2 26967 A bound on the harmonic se...
emre 26968 The Euler-Mascheroni const...
emgt0 26969 The Euler-Mascheroni const...
harmonicbnd3 26970 A bound on the harmonic se...
harmoniclbnd 26971 A bound on the harmonic se...
harmonicubnd 26972 A bound on the harmonic se...
harmonicbnd4 26973 The asymptotic behavior of...
fsumharmonic 26974 Bound a finite sum based o...
zetacvg 26977 The zeta series is converg...
eldmgm 26984 Elementhood in the set of ...
dmgmaddn0 26985 If ` A ` is not a nonposit...
dmlogdmgm 26986 If ` A ` is in the continu...
rpdmgm 26987 A positive real number is ...
dmgmn0 26988 If ` A ` is not a nonposit...
dmgmaddnn0 26989 If ` A ` is not a nonposit...
dmgmdivn0 26990 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26991 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26992 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26993 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26994 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26995 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26996 The series ` G ` is unifor...
lgamgulm 26997 The series ` G ` is unifor...
lgamgulm2 26998 Rewrite the limit of the s...
lgambdd 26999 The log-Gamma function is ...
lgamucov 27000 The ` U ` regions used in ...
lgamucov2 27001 The ` U ` regions used in ...
lgamcvglem 27002 Lemma for ~ lgamf and ~ lg...
lgamcl 27003 The log-Gamma function is ...
lgamf 27004 The log-Gamma function is ...
gamf 27005 The Gamma function is a co...
gamcl 27006 The exponential of the log...
eflgam 27007 The exponential of the log...
gamne0 27008 The Gamma function is neve...
igamval 27009 Value of the inverse Gamma...
igamz 27010 Value of the inverse Gamma...
igamgam 27011 Value of the inverse Gamma...
igamlgam 27012 Value of the inverse Gamma...
igamf 27013 Closure of the inverse Gam...
igamcl 27014 Closure of the inverse Gam...
gamigam 27015 The Gamma function is the ...
lgamcvg 27016 The series ` G ` converges...
lgamcvg2 27017 The series ` G ` converges...
gamcvg 27018 The pointwise exponential ...
lgamp1 27019 The functional equation of...
gamp1 27020 The functional equation of...
gamcvg2lem 27021 Lemma for ~ gamcvg2 . (Co...
gamcvg2 27022 An infinite product expres...
regamcl 27023 The Gamma function is real...
relgamcl 27024 The log-Gamma function is ...
rpgamcl 27025 The log-Gamma function is ...
lgam1 27026 The log-Gamma function at ...
gam1 27027 The log-Gamma function at ...
facgam 27028 The Gamma function general...
gamfac 27029 The Gamma function general...
wilthlem1 27030 The only elements that are...
wilthlem2 27031 Lemma for ~ wilth : induct...
wilthlem3 27032 Lemma for ~ wilth . Here ...
wilth 27033 Wilson's theorem. A numbe...
wilthimp 27034 The forward implication of...
ftalem1 27035 Lemma for ~ fta : "growth...
ftalem2 27036 Lemma for ~ fta . There e...
ftalem3 27037 Lemma for ~ fta . There e...
ftalem4 27038 Lemma for ~ fta : Closure...
ftalem5 27039 Lemma for ~ fta : Main pr...
ftalem6 27040 Lemma for ~ fta : Dischar...
ftalem7 27041 Lemma for ~ fta . Shift t...
fta 27042 The Fundamental Theorem of...
basellem1 27043 Lemma for ~ basel . Closu...
basellem2 27044 Lemma for ~ basel . Show ...
basellem3 27045 Lemma for ~ basel . Using...
basellem4 27046 Lemma for ~ basel . By ~ ...
basellem5 27047 Lemma for ~ basel . Using...
basellem6 27048 Lemma for ~ basel . The f...
basellem7 27049 Lemma for ~ basel . The f...
basellem8 27050 Lemma for ~ basel . The f...
basellem9 27051 Lemma for ~ basel . Since...
basel 27052 The sum of the inverse squ...
efnnfsumcl 27065 Finite sum closure in the ...
ppisval 27066 The set of primes less tha...
ppisval2 27067 The set of primes less tha...
ppifi 27068 The set of primes less tha...
prmdvdsfi 27069 The set of prime divisors ...
chtf 27070 Domain and codoamin of the...
chtcl 27071 Real closure of the Chebys...
chtval 27072 Value of the Chebyshev fun...
efchtcl 27073 The Chebyshev function is ...
chtge0 27074 The Chebyshev function is ...
vmaval 27075 Value of the von Mangoldt ...
isppw 27076 Two ways to say that ` A `...
isppw2 27077 Two ways to say that ` A `...
vmappw 27078 Value of the von Mangoldt ...
vmaprm 27079 Value of the von Mangoldt ...
vmacl 27080 Closure for the von Mangol...
vmaf 27081 Functionality of the von M...
efvmacl 27082 The von Mangoldt is closed...
vmage0 27083 The von Mangoldt function ...
chpval 27084 Value of the second Chebys...
chpf 27085 Functionality of the secon...
chpcl 27086 Closure for the second Che...
efchpcl 27087 The second Chebyshev funct...
chpge0 27088 The second Chebyshev funct...
ppival 27089 Value of the prime-countin...
ppival2 27090 Value of the prime-countin...
ppival2g 27091 Value of the prime-countin...
ppif 27092 Domain and codomain of the...
ppicl 27093 Real closure of the prime-...
muval 27094 The value of the Möbi...
muval1 27095 The value of the Möbi...
muval2 27096 The value of the Möbi...
isnsqf 27097 Two ways to say that a num...
issqf 27098 Two ways to say that a num...
sqfpc 27099 The prime count of a squar...
dvdssqf 27100 A divisor of a squarefree ...
sqf11 27101 A squarefree number is com...
muf 27102 The Möbius function i...
mucl 27103 Closure of the Möbius...
sgmval 27104 The value of the divisor f...
sgmval2 27105 The value of the divisor f...
0sgm 27106 The value of the sum-of-di...
sgmf 27107 The divisor function is a ...
sgmcl 27108 Closure of the divisor fun...
sgmnncl 27109 Closure of the divisor fun...
mule1 27110 The Möbius function t...
chtfl 27111 The Chebyshev function doe...
chpfl 27112 The second Chebyshev funct...
ppiprm 27113 The prime-counting functio...
ppinprm 27114 The prime-counting functio...
chtprm 27115 The Chebyshev function at ...
chtnprm 27116 The Chebyshev function at ...
chpp1 27117 The second Chebyshev funct...
chtwordi 27118 The Chebyshev function is ...
chpwordi 27119 The second Chebyshev funct...
chtdif 27120 The difference of the Cheb...
efchtdvds 27121 The exponentiated Chebyshe...
ppifl 27122 The prime-counting functio...
ppip1le 27123 The prime-counting functio...
ppiwordi 27124 The prime-counting functio...
ppidif 27125 The difference of the prim...
ppi1 27126 The prime-counting functio...
cht1 27127 The Chebyshev function at ...
vma1 27128 The von Mangoldt function ...
chp1 27129 The second Chebyshev funct...
ppi1i 27130 Inference form of ~ ppiprm...
ppi2i 27131 Inference form of ~ ppinpr...
ppi2 27132 The prime-counting functio...
ppi3 27133 The prime-counting functio...
cht2 27134 The Chebyshev function at ...
cht3 27135 The Chebyshev function at ...
ppinncl 27136 Closure of the prime-count...
chtrpcl 27137 Closure of the Chebyshev f...
ppieq0 27138 The prime-counting functio...
ppiltx 27139 The prime-counting functio...
prmorcht 27140 Relate the primorial (prod...
mumullem1 27141 Lemma for ~ mumul . A mul...
mumullem2 27142 Lemma for ~ mumul . The p...
mumul 27143 The Möbius function i...
sqff1o 27144 There is a bijection from ...
fsumdvdsdiaglem 27145 A "diagonal commutation" o...
fsumdvdsdiag 27146 A "diagonal commutation" o...
fsumdvdscom 27147 A double commutation of di...
dvdsppwf1o 27148 A bijection from the divis...
dvdsflf1o 27149 A bijection from the numbe...
dvdsflsumcom 27150 A sum commutation from ` s...
fsumfldivdiaglem 27151 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 27152 The right-hand side of ~ d...
musum 27153 The sum of the Möbius...
musumsum 27154 Evaluate a collapsing sum ...
muinv 27155 The Möbius inversion ...
mpodvdsmulf1o 27156 If ` M ` and ` N ` are two...
fsumdvdsmul 27157 Product of two divisor sum...
dvdsmulf1o 27158 If ` M ` and ` N ` are two...
fsumdvdsmulOLD 27159 Obsolete version of ~ fsum...
sgmppw 27160 The value of the divisor f...
0sgmppw 27161 A prime power ` P ^ K ` ha...
1sgmprm 27162 The sum of divisors for a ...
1sgm2ppw 27163 The sum of the divisors of...
sgmmul 27164 The divisor function for f...
ppiublem1 27165 Lemma for ~ ppiub . (Cont...
ppiublem2 27166 A prime greater than ` 3 `...
ppiub 27167 An upper bound on the prim...
vmalelog 27168 The von Mangoldt function ...
chtlepsi 27169 The first Chebyshev functi...
chprpcl 27170 Closure of the second Cheb...
chpeq0 27171 The second Chebyshev funct...
chteq0 27172 The first Chebyshev functi...
chtleppi 27173 Upper bound on the ` theta...
chtublem 27174 Lemma for ~ chtub . (Cont...
chtub 27175 An upper bound on the Cheb...
fsumvma 27176 Rewrite a sum over the von...
fsumvma2 27177 Apply ~ fsumvma for the co...
pclogsum 27178 The logarithmic analogue o...
vmasum 27179 The sum of the von Mangold...
logfac2 27180 Another expression for the...
chpval2 27181 Express the second Chebysh...
chpchtsum 27182 The second Chebyshev funct...
chpub 27183 An upper bound on the seco...
logfacubnd 27184 A simple upper bound on th...
logfaclbnd 27185 A lower bound on the logar...
logfacbnd3 27186 Show the stronger statemen...
logfacrlim 27187 Combine the estimates ~ lo...
logexprlim 27188 The sum ` sum_ n <_ x , lo...
logfacrlim2 27189 Write out ~ logfacrlim as ...
mersenne 27190 A Mersenne prime is a prim...
perfect1 27191 Euclid's contribution to t...
perfectlem1 27192 Lemma for ~ perfect . (Co...
perfectlem2 27193 Lemma for ~ perfect . (Co...
perfect 27194 The Euclid-Euler theorem, ...
dchrval 27197 Value of the group of Diri...
dchrbas 27198 Base set of the group of D...
dchrelbas 27199 A Dirichlet character is a...
dchrelbas2 27200 A Dirichlet character is a...
dchrelbas3 27201 A Dirichlet character is a...
dchrelbasd 27202 A Dirichlet character is a...
dchrrcl 27203 Reverse closure for a Diri...
dchrmhm 27204 A Dirichlet character is a...
dchrf 27205 A Dirichlet character is a...
dchrelbas4 27206 A Dirichlet character is a...
dchrzrh1 27207 Value of a Dirichlet chara...
dchrzrhcl 27208 A Dirichlet character take...
dchrzrhmul 27209 A Dirichlet character is c...
dchrplusg 27210 Group operation on the gro...
dchrmul 27211 Group operation on the gro...
dchrmulcl 27212 Closure of the group opera...
dchrn0 27213 A Dirichlet character is n...
dchr1cl 27214 Closure of the principal D...
dchrmullid 27215 Left identity for the prin...
dchrinvcl 27216 Closure of the group inver...
dchrabl 27217 The set of Dirichlet chara...
dchrfi 27218 The group of Dirichlet cha...
dchrghm 27219 A Dirichlet character rest...
dchr1 27220 Value of the principal Dir...
dchreq 27221 A Dirichlet character is d...
dchrresb 27222 A Dirichlet character is d...
dchrabs 27223 A Dirichlet character take...
dchrinv 27224 The inverse of a Dirichlet...
dchrabs2 27225 A Dirichlet character take...
dchr1re 27226 The principal Dirichlet ch...
dchrptlem1 27227 Lemma for ~ dchrpt . (Con...
dchrptlem2 27228 Lemma for ~ dchrpt . (Con...
dchrptlem3 27229 Lemma for ~ dchrpt . (Con...
dchrpt 27230 For any element other than...
dchrsum2 27231 An orthogonality relation ...
dchrsum 27232 An orthogonality relation ...
sumdchr2 27233 Lemma for ~ sumdchr . (Co...
dchrhash 27234 There are exactly ` phi ( ...
sumdchr 27235 An orthogonality relation ...
dchr2sum 27236 An orthogonality relation ...
sum2dchr 27237 An orthogonality relation ...
bcctr 27238 Value of the central binom...
pcbcctr 27239 Prime count of a central b...
bcmono 27240 The binomial coefficient i...
bcmax 27241 The binomial coefficient t...
bcp1ctr 27242 Ratio of two central binom...
bclbnd 27243 A bound on the binomial co...
efexple 27244 Convert a bound on a power...
bpos1lem 27245 Lemma for ~ bpos1 . (Cont...
bpos1 27246 Bertrand's postulate, chec...
bposlem1 27247 An upper bound on the prim...
bposlem2 27248 There are no odd primes in...
bposlem3 27249 Lemma for ~ bpos . Since ...
bposlem4 27250 Lemma for ~ bpos . (Contr...
bposlem5 27251 Lemma for ~ bpos . Bound ...
bposlem6 27252 Lemma for ~ bpos . By usi...
bposlem7 27253 Lemma for ~ bpos . The fu...
bposlem8 27254 Lemma for ~ bpos . Evalua...
bposlem9 27255 Lemma for ~ bpos . Derive...
bpos 27256 Bertrand's postulate: ther...
zabsle1 27259 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 27260 When ` a ` is coprime to t...
lgslem2 27261 The set ` Z ` of all integ...
lgslem3 27262 The set ` Z ` of all integ...
lgslem4 27263 Lemma for ~ lgsfcl2 . (Co...
lgsval 27264 Value of the Legendre symb...
lgsfval 27265 Value of the function ` F ...
lgsfcl2 27266 The function ` F ` is clos...
lgscllem 27267 The Legendre symbol is an ...
lgsfcl 27268 Closure of the function ` ...
lgsfle1 27269 The function ` F ` has mag...
lgsval2lem 27270 Lemma for ~ lgsval2 . (Co...
lgsval4lem 27271 Lemma for ~ lgsval4 . (Co...
lgscl2 27272 The Legendre symbol is an ...
lgs0 27273 The Legendre symbol when t...
lgscl 27274 The Legendre symbol is an ...
lgsle1 27275 The Legendre symbol has ab...
lgsval2 27276 The Legendre symbol at a p...
lgs2 27277 The Legendre symbol at ` 2...
lgsval3 27278 The Legendre symbol at an ...
lgsvalmod 27279 The Legendre symbol is equ...
lgsval4 27280 Restate ~ lgsval for nonze...
lgsfcl3 27281 Closure of the function ` ...
lgsval4a 27282 Same as ~ lgsval4 for posi...
lgscl1 27283 The value of the Legendre ...
lgsneg 27284 The Legendre symbol is eit...
lgsneg1 27285 The Legendre symbol for no...
lgsmod 27286 The Legendre (Jacobi) symb...
lgsdilem 27287 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 27288 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 27289 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 27290 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 27291 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 27292 Lemma for ~ lgsdir2 . (Co...
lgsdir2 27293 The Legendre symbol is com...
lgsdirprm 27294 The Legendre symbol is com...
lgsdir 27295 The Legendre symbol is com...
lgsdilem2 27296 Lemma for ~ lgsdi . (Cont...
lgsdi 27297 The Legendre symbol is com...
lgsne0 27298 The Legendre symbol is non...
lgsabs1 27299 The Legendre symbol is non...
lgssq 27300 The Legendre symbol at a s...
lgssq2 27301 The Legendre symbol at a s...
lgsprme0 27302 The Legendre symbol at any...
1lgs 27303 The Legendre symbol at ` 1...
lgs1 27304 The Legendre symbol at ` 1...
lgsmodeq 27305 The Legendre (Jacobi) symb...
lgsmulsqcoprm 27306 The Legendre (Jacobi) symb...
lgsdirnn0 27307 Variation on ~ lgsdir vali...
lgsdinn0 27308 Variation on ~ lgsdi valid...
lgsqrlem1 27309 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 27310 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 27311 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 27312 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 27313 Lemma for ~ lgsqr . (Cont...
lgsqr 27314 The Legendre symbol for od...
lgsqrmod 27315 If the Legendre symbol of ...
lgsqrmodndvds 27316 If the Legendre symbol of ...
lgsdchrval 27317 The Legendre symbol functi...
lgsdchr 27318 The Legendre symbol functi...
gausslemma2dlem0a 27319 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 27320 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 27321 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 27322 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 27323 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 27324 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 27325 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 27326 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 27327 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 27328 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 27329 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 27330 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 27331 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 27332 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 27333 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 27334 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 27335 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 27336 Lemma 7 for ~ gausslemma2d...
gausslemma2d 27337 Gauss' Lemma (see also the...
lgseisenlem1 27338 Lemma for ~ lgseisen . If...
lgseisenlem2 27339 Lemma for ~ lgseisen . Th...
lgseisenlem3 27340 Lemma for ~ lgseisen . (C...
lgseisenlem4 27341 Lemma for ~ lgseisen . Th...
lgseisen 27342 Eisenstein's lemma, an exp...
lgsquadlem1 27343 Lemma for ~ lgsquad . Cou...
lgsquadlem2 27344 Lemma for ~ lgsquad . Cou...
lgsquadlem3 27345 Lemma for ~ lgsquad . (Co...
lgsquad 27346 The Law of Quadratic Recip...
lgsquad2lem1 27347 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 27348 Lemma for ~ lgsquad2 . (C...
lgsquad2 27349 Extend ~ lgsquad to coprim...
lgsquad3 27350 Extend ~ lgsquad2 to integ...
m1lgs 27351 The first supplement to th...
2lgslem1a1 27352 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 27353 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 27354 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 27355 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 27356 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 27357 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 27358 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 27359 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 27360 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 27361 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 27362 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 27363 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 27364 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 27365 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 27366 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 27367 Lemma 3 for ~ 2lgs . (Con...
2lgs2 27368 The Legendre symbol for ` ...
2lgslem4 27369 Lemma 4 for ~ 2lgs : speci...
2lgs 27370 The second supplement to t...
2lgsoddprmlem1 27371 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 27372 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 27373 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 27374 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 27375 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 27376 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 27377 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 27378 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 27379 The second supplement to t...
2sqlem1 27380 Lemma for ~ 2sq . (Contri...
2sqlem2 27381 Lemma for ~ 2sq . (Contri...
mul2sq 27382 Fibonacci's identity (actu...
2sqlem3 27383 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 27384 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 27385 Lemma for ~ 2sq . If a nu...
2sqlem6 27386 Lemma for ~ 2sq . If a nu...
2sqlem7 27387 Lemma for ~ 2sq . (Contri...
2sqlem8a 27388 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 27389 Lemma for ~ 2sq . (Contri...
2sqlem9 27390 Lemma for ~ 2sq . (Contri...
2sqlem10 27391 Lemma for ~ 2sq . Every f...
2sqlem11 27392 Lemma for ~ 2sq . (Contri...
2sq 27393 All primes of the form ` 4...
2sqblem 27394 Lemma for ~ 2sqb . (Contr...
2sqb 27395 The converse to ~ 2sq . (...
2sq2 27396 ` 2 ` is the sum of square...
2sqn0 27397 If the sum of two squares ...
2sqcoprm 27398 If the sum of two squares ...
2sqmod 27399 Given two decompositions o...
2sqmo 27400 There exists at most one d...
2sqnn0 27401 All primes of the form ` 4...
2sqnn 27402 All primes of the form ` 4...
addsq2reu 27403 For each complex number ` ...
addsqn2reu 27404 For each complex number ` ...
addsqrexnreu 27405 For each complex number, t...
addsqnreup 27406 There is no unique decompo...
addsq2nreurex 27407 For each complex number ` ...
addsqn2reurex2 27408 For each complex number ` ...
2sqreulem1 27409 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 27410 Lemma for ~ 2sqreult . (C...
2sqreultblem 27411 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 27412 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 27413 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 27414 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 27415 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 27416 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 27417 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 27418 Lemma 2 for ~ 2sqreunn . ...
2sqreu 27419 There exists a unique deco...
2sqreunn 27420 There exists a unique deco...
2sqreult 27421 There exists a unique deco...
2sqreultb 27422 There exists a unique deco...
2sqreunnlt 27423 There exists a unique deco...
2sqreunnltb 27424 There exists a unique deco...
2sqreuop 27425 There exists a unique deco...
2sqreuopnn 27426 There exists a unique deco...
2sqreuoplt 27427 There exists a unique deco...
2sqreuopltb 27428 There exists a unique deco...
2sqreuopnnlt 27429 There exists a unique deco...
2sqreuopnnltb 27430 There exists a unique deco...
2sqreuopb 27431 There exists a unique deco...
chebbnd1lem1 27432 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 27433 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 27434 Lemma for ~ chebbnd1 : get...
chebbnd1 27435 The Chebyshev bound: The ...
chtppilimlem1 27436 Lemma for ~ chtppilim . (...
chtppilimlem2 27437 Lemma for ~ chtppilim . (...
chtppilim 27438 The ` theta ` function is ...
chto1ub 27439 The ` theta ` function is ...
chebbnd2 27440 The Chebyshev bound, part ...
chto1lb 27441 The ` theta ` function is ...
chpchtlim 27442 The ` psi ` and ` theta ` ...
chpo1ub 27443 The ` psi ` function is up...
chpo1ubb 27444 The ` psi ` function is up...
vmadivsum 27445 The sum of the von Mangold...
vmadivsumb 27446 Give a total bound on the ...
rplogsumlem1 27447 Lemma for ~ rplogsum . (C...
rplogsumlem2 27448 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 27449 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 27450 Lemma for ~ rpvmasum . Ca...
dchrisumlema 27451 Lemma for ~ dchrisum . Le...
dchrisumlem1 27452 Lemma for ~ dchrisum . Le...
dchrisumlem2 27453 Lemma for ~ dchrisum . Le...
dchrisumlem3 27454 Lemma for ~ dchrisum . Le...
dchrisum 27455 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 27456 Lemma for ~ dchrmusum and ...
dchrmusum2 27457 The sum of the Möbius...
dchrvmasumlem1 27458 An alternative expression ...
dchrvmasum2lem 27459 Give an expression for ` l...
dchrvmasum2if 27460 Combine the results of ~ d...
dchrvmasumlem2 27461 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 27462 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 27463 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 27464 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 27465 Lemma for ~ dchrvmasum . ...
dchrvmasumif 27466 An asymptotic approximatio...
dchrvmaeq0 27467 The set ` W ` is the colle...
dchrisum0fval 27468 Value of the function ` F ...
dchrisum0fmul 27469 The function ` F ` , the d...
dchrisum0ff 27470 The function ` F ` is a re...
dchrisum0flblem1 27471 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 27472 Lemma for ~ dchrisum0flb ....
dchrisum0flb 27473 The divisor sum of a real ...
dchrisum0fno1 27474 The sum ` sum_ k <_ x , F ...
rpvmasum2 27475 A partial result along the...
dchrisum0re 27476 Suppose ` X ` is a non-pri...
dchrisum0lema 27477 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 27478 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 27479 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 27480 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 27481 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 27482 Lemma for ~ dchrisum0 . (...
dchrisum0 27483 The sum ` sum_ n e. NN , X...
dchrisumn0 27484 The sum ` sum_ n e. NN , X...
dchrmusumlem 27485 The sum of the Möbius...
dchrvmasumlem 27486 The sum of the Möbius...
dchrmusum 27487 The sum of the Möbius...
dchrvmasum 27488 The sum of the von Mangold...
rpvmasum 27489 The sum of the von Mangold...
rplogsum 27490 The sum of ` log p / p ` o...
dirith2 27491 Dirichlet's theorem: there...
dirith 27492 Dirichlet's theorem: there...
mudivsum 27493 Asymptotic formula for ` s...
mulogsumlem 27494 Lemma for ~ mulogsum . (C...
mulogsum 27495 Asymptotic formula for ...
logdivsum 27496 Asymptotic analysis of ...
mulog2sumlem1 27497 Asymptotic formula for ...
mulog2sumlem2 27498 Lemma for ~ mulog2sum . (...
mulog2sumlem3 27499 Lemma for ~ mulog2sum . (...
mulog2sum 27500 Asymptotic formula for ...
vmalogdivsum2 27501 The sum ` sum_ n <_ x , La...
vmalogdivsum 27502 The sum ` sum_ n <_ x , La...
2vmadivsumlem 27503 Lemma for ~ 2vmadivsum . ...
2vmadivsum 27504 The sum ` sum_ m n <_ x , ...
logsqvma 27505 A formula for ` log ^ 2 ( ...
logsqvma2 27506 The Möbius inverse of...
log2sumbnd 27507 Bound on the difference be...
selberglem1 27508 Lemma for ~ selberg . Est...
selberglem2 27509 Lemma for ~ selberg . (Co...
selberglem3 27510 Lemma for ~ selberg . Est...
selberg 27511 Selberg's symmetry formula...
selbergb 27512 Convert eventual boundedne...
selberg2lem 27513 Lemma for ~ selberg2 . Eq...
selberg2 27514 Selberg's symmetry formula...
selberg2b 27515 Convert eventual boundedne...
chpdifbndlem1 27516 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 27517 Lemma for ~ chpdifbnd . (...
chpdifbnd 27518 A bound on the difference ...
logdivbnd 27519 A bound on a sum of logs, ...
selberg3lem1 27520 Introduce a log weighting ...
selberg3lem2 27521 Lemma for ~ selberg3 . Eq...
selberg3 27522 Introduce a log weighting ...
selberg4lem1 27523 Lemma for ~ selberg4 . Eq...
selberg4 27524 The Selberg symmetry formu...
pntrval 27525 Define the residual of the...
pntrf 27526 Functionality of the resid...
pntrmax 27527 There is a bound on the re...
pntrsumo1 27528 A bound on a sum over ` R ...
pntrsumbnd 27529 A bound on a sum over ` R ...
pntrsumbnd2 27530 A bound on a sum over ` R ...
selbergr 27531 Selberg's symmetry formula...
selberg3r 27532 Selberg's symmetry formula...
selberg4r 27533 Selberg's symmetry formula...
selberg34r 27534 The sum of ~ selberg3r and...
pntsval 27535 Define the "Selberg functi...
pntsf 27536 Functionality of the Selbe...
selbergs 27537 Selberg's symmetry formula...
selbergsb 27538 Selberg's symmetry formula...
pntsval2 27539 The Selberg function can b...
pntrlog2bndlem1 27540 The sum of ~ selberg3r and...
pntrlog2bndlem2 27541 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 27542 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 27543 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 27544 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 27545 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 27546 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 27547 A bound on ` R ( x ) log ^...
pntpbnd1a 27548 Lemma for ~ pntpbnd . (Co...
pntpbnd1 27549 Lemma for ~ pntpbnd . (Co...
pntpbnd2 27550 Lemma for ~ pntpbnd . (Co...
pntpbnd 27551 Lemma for ~ pnt . Establi...
pntibndlem1 27552 Lemma for ~ pntibnd . (Co...
pntibndlem2a 27553 Lemma for ~ pntibndlem2 . ...
pntibndlem2 27554 Lemma for ~ pntibnd . The...
pntibndlem3 27555 Lemma for ~ pntibnd . Pac...
pntibnd 27556 Lemma for ~ pnt . Establi...
pntlemd 27557 Lemma for ~ pnt . Closure...
pntlemc 27558 Lemma for ~ pnt . Closure...
pntlema 27559 Lemma for ~ pnt . Closure...
pntlemb 27560 Lemma for ~ pnt . Unpack ...
pntlemg 27561 Lemma for ~ pnt . Closure...
pntlemh 27562 Lemma for ~ pnt . Bounds ...
pntlemn 27563 Lemma for ~ pnt . The "na...
pntlemq 27564 Lemma for ~ pntlemj . (Co...
pntlemr 27565 Lemma for ~ pntlemj . (Co...
pntlemj 27566 Lemma for ~ pnt . The ind...
pntlemi 27567 Lemma for ~ pnt . Elimina...
pntlemf 27568 Lemma for ~ pnt . Add up ...
pntlemk 27569 Lemma for ~ pnt . Evaluat...
pntlemo 27570 Lemma for ~ pnt . Combine...
pntleme 27571 Lemma for ~ pnt . Package...
pntlem3 27572 Lemma for ~ pnt . Equatio...
pntlemp 27573 Lemma for ~ pnt . Wrappin...
pntleml 27574 Lemma for ~ pnt . Equatio...
pnt3 27575 The Prime Number Theorem, ...
pnt2 27576 The Prime Number Theorem, ...
pnt 27577 The Prime Number Theorem: ...
abvcxp 27578 Raising an absolute value ...
padicfval 27579 Value of the p-adic absolu...
padicval 27580 Value of the p-adic absolu...
ostth2lem1 27581 Lemma for ~ ostth2 , altho...
qrngbas 27582 The base set of the field ...
qdrng 27583 The rationals form a divis...
qrng0 27584 The zero element of the fi...
qrng1 27585 The unity element of the f...
qrngneg 27586 The additive inverse in th...
qrngdiv 27587 The division operation in ...
qabvle 27588 By using induction on ` N ...
qabvexp 27589 Induct the product rule ~ ...
ostthlem1 27590 Lemma for ~ ostth . If tw...
ostthlem2 27591 Lemma for ~ ostth . Refin...
qabsabv 27592 The regular absolute value...
padicabv 27593 The p-adic absolute value ...
padicabvf 27594 The p-adic absolute value ...
padicabvcxp 27595 All positive powers of the...
ostth1 27596 - Lemma for ~ ostth : triv...
ostth2lem2 27597 Lemma for ~ ostth2 . (Con...
ostth2lem3 27598 Lemma for ~ ostth2 . (Con...
ostth2lem4 27599 Lemma for ~ ostth2 . (Con...
ostth2 27600 - Lemma for ~ ostth : regu...
ostth3 27601 - Lemma for ~ ostth : p-ad...
ostth 27602 Ostrowski's theorem, which...
elno 27609 Membership in the surreals...
sltval 27610 The value of the surreal l...
bdayval 27611 The value of the birthday ...
nofun 27612 A surreal is a function. ...
nodmon 27613 The domain of a surreal is...
norn 27614 The range of a surreal is ...
nofnbday 27615 A surreal is a function ov...
nodmord 27616 The domain of a surreal ha...
elno2 27617 An alternative condition f...
elno3 27618 Another condition for memb...
sltval2 27619 Alternate expression for s...
nofv 27620 The function value of a su...
nosgnn0 27621 ` (/) ` is not a surreal s...
nosgnn0i 27622 If ` X ` is a surreal sign...
noreson 27623 The restriction of a surre...
sltintdifex 27624 If ` A
sltres 27625 If the restrictions of two...
noxp1o 27626 The Cartesian product of a...
noseponlem 27627 Lemma for ~ nosepon . Con...
nosepon 27628 Given two unequal surreals...
noextend 27629 Extending a surreal by one...
noextendseq 27630 Extend a surreal by a sequ...
noextenddif 27631 Calculate the place where ...
noextendlt 27632 Extending a surreal with a...
noextendgt 27633 Extending a surreal with a...
nolesgn2o 27634 Given ` A ` less-than or e...
nolesgn2ores 27635 Given ` A ` less-than or e...
nogesgn1o 27636 Given ` A ` greater than o...
nogesgn1ores 27637 Given ` A ` greater than o...
sltsolem1 27638 Lemma for ~ sltso . The "...
sltso 27639 Less-than totally orders t...
bdayfo 27640 The birthday function maps...
fvnobday 27641 The value of a surreal at ...
nosepnelem 27642 Lemma for ~ nosepne . (Co...
nosepne 27643 The value of two non-equal...
nosep1o 27644 If the value of a surreal ...
nosep2o 27645 If the value of a surreal ...
nosepdmlem 27646 Lemma for ~ nosepdm . (Co...
nosepdm 27647 The first place two surrea...
nosepeq 27648 The values of two surreals...
nosepssdm 27649 Given two non-equal surrea...
nodenselem4 27650 Lemma for ~ nodense . Sho...
nodenselem5 27651 Lemma for ~ nodense . If ...
nodenselem6 27652 The restriction of a surre...
nodenselem7 27653 Lemma for ~ nodense . ` A ...
nodenselem8 27654 Lemma for ~ nodense . Giv...
nodense 27655 Given two distinct surreal...
bdayimaon 27656 Lemma for full-eta propert...
nolt02olem 27657 Lemma for ~ nolt02o . If ...
nolt02o 27658 Given ` A ` less-than ` B ...
nogt01o 27659 Given ` A ` greater than `...
noresle 27660 Restriction law for surrea...
nomaxmo 27661 A class of surreals has at...
nominmo 27662 A class of surreals has at...
nosupprefixmo 27663 In any class of surreals, ...
noinfprefixmo 27664 In any class of surreals, ...
nosupcbv 27665 Lemma to change bound vari...
nosupno 27666 The next several theorems ...
nosupdm 27667 The domain of the surreal ...
nosupbday 27668 Birthday bounding law for ...
nosupfv 27669 The value of surreal supre...
nosupres 27670 A restriction law for surr...
nosupbnd1lem1 27671 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 27672 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 27673 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 27674 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 27675 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 27676 Lemma for ~ nosupbnd1 . E...
nosupbnd1 27677 Bounding law from below fo...
nosupbnd2lem1 27678 Bounding law from above wh...
nosupbnd2 27679 Bounding law from above fo...
noinfcbv 27680 Change bound variables for...
noinfno 27681 The next several theorems ...
noinfdm 27682 Next, we calculate the dom...
noinfbday 27683 Birthday bounding law for ...
noinffv 27684 The value of surreal infim...
noinfres 27685 The restriction of surreal...
noinfbnd1lem1 27686 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 27687 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 27688 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 27689 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 27690 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 27691 Lemma for ~ noinfbnd1 . E...
noinfbnd1 27692 Bounding law from above fo...
noinfbnd2lem1 27693 Bounding law from below wh...
noinfbnd2 27694 Bounding law from below fo...
nosupinfsep 27695 Given two sets of surreals...
noetasuplem1 27696 Lemma for ~ noeta . Estab...
noetasuplem2 27697 Lemma for ~ noeta . The r...
noetasuplem3 27698 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 27699 Lemma for ~ noeta . When ...
noetainflem1 27700 Lemma for ~ noeta . Estab...
noetainflem2 27701 Lemma for ~ noeta . The r...
noetainflem3 27702 Lemma for ~ noeta . ` W ` ...
noetainflem4 27703 Lemma for ~ noeta . If ` ...
noetalem1 27704 Lemma for ~ noeta . Eithe...
noetalem2 27705 Lemma for ~ noeta . The f...
noeta 27706 The full-eta axiom for the...
sltirr 27709 Surreal less-than is irref...
slttr 27710 Surreal less-than is trans...
sltasym 27711 Surreal less-than is asymm...
sltlin 27712 Surreal less-than obeys tr...
slttrieq2 27713 Trichotomy law for surreal...
slttrine 27714 Trichotomy law for surreal...
slenlt 27715 Surreal less-than or equal...
sltnle 27716 Surreal less-than in terms...
sleloe 27717 Surreal less-than or equal...
sletri3 27718 Trichotomy law for surreal...
sltletr 27719 Surreal transitive law. (...
slelttr 27720 Surreal transitive law. (...
sletr 27721 Surreal transitive law. (...
slttrd 27722 Surreal less-than is trans...
sltletrd 27723 Surreal less-than is trans...
slelttrd 27724 Surreal less-than is trans...
sletrd 27725 Surreal less-than or equal...
slerflex 27726 Surreal less-than or equal...
sletric 27727 Surreal trichotomy law. (...
maxs1 27728 A surreal is less than or ...
maxs2 27729 A surreal is less than or ...
mins1 27730 The minimum of two surreal...
mins2 27731 The minimum of two surreal...
sltled 27732 Surreal less-than implies ...
sltne 27733 Surreal less-than implies ...
sltlend 27734 Surreal less-than in terms...
bdayfun 27735 The birthday function is a...
bdayfn 27736 The birthday function is a...
bdaydm 27737 The birthday function's do...
bdayrn 27738 The birthday function's ra...
bdayelon 27739 The value of the birthday ...
nocvxminlem 27740 Lemma for ~ nocvxmin . Gi...
nocvxmin 27741 Given a nonempty convex cl...
noprc 27742 The surreal numbers are a ...
noeta2 27747 A version of ~ noeta with ...
brsslt 27748 Binary relation form of th...
ssltex1 27749 The first argument of surr...
ssltex2 27750 The second argument of sur...
ssltss1 27751 The first argument of surr...
ssltss2 27752 The second argument of sur...
ssltsep 27753 The separation property of...
ssltd 27754 Deduce surreal set less-th...
ssltsn 27755 Surreal set less-than of t...
ssltsepc 27756 Two elements of separated ...
ssltsepcd 27757 Two elements of separated ...
sssslt1 27758 Relation between surreal s...
sssslt2 27759 Relation between surreal s...
nulsslt 27760 The empty set is less-than...
nulssgt 27761 The empty set is greater t...
conway 27762 Conway's Simplicity Theore...
scutval 27763 The value of the surreal c...
scutcut 27764 Cut properties of the surr...
scutcl 27765 Closure law for surreal cu...
scutcld 27766 Closure law for surreal cu...
scutbday 27767 The birthday of the surrea...
eqscut 27768 Condition for equality to ...
eqscut2 27769 Condition for equality to ...
sslttr 27770 Transitive law for surreal...
ssltun1 27771 Union law for surreal set ...
ssltun2 27772 Union law for surreal set ...
scutun12 27773 Union law for surreal cuts...
dmscut 27774 The domain of the surreal ...
scutf 27775 Functionality statement fo...
etasslt 27776 A restatement of ~ noeta u...
etasslt2 27777 A version of ~ etasslt wit...
scutbdaybnd 27778 An upper bound on the birt...
scutbdaybnd2 27779 An upper bound on the birt...
scutbdaybnd2lim 27780 An upper bound on the birt...
scutbdaylt 27781 If a surreal lies in a gap...
slerec 27782 A comparison law for surre...
sltrec 27783 A comparison law for surre...
ssltdisj 27784 If ` A ` preceeds ` B ` , ...
0sno 27789 Surreal zero is a surreal....
1sno 27790 Surreal one is a surreal. ...
bday0s 27791 Calculate the birthday of ...
0slt1s 27792 Surreal zero is less than ...
bday0b 27793 The only surreal with birt...
bday1s 27794 The birthday of surreal on...
cuteq0 27795 Condition for a surreal cu...
cuteq1 27796 Condition for a surreal cu...
sgt0ne0 27797 A positive surreal is not ...
sgt0ne0d 27798 A positive surreal is not ...
madeval 27809 The value of the made by f...
madeval2 27810 Alternative characterizati...
oldval 27811 The value of the old optio...
newval 27812 The value of the new optio...
madef 27813 The made function is a fun...
oldf 27814 The older function is a fu...
newf 27815 The new function is a func...
old0 27816 No surreal is older than `...
madessno 27817 Made sets are surreals. (...
oldssno 27818 Old sets are surreals. (C...
newssno 27819 New sets are surreals. (C...
leftval 27820 The value of the left opti...
rightval 27821 The value of the right opt...
leftf 27822 The functionality of the l...
rightf 27823 The functionality of the r...
elmade 27824 Membership in the made fun...
elmade2 27825 Membership in the made fun...
elold 27826 Membership in an old set. ...
ssltleft 27827 A surreal is greater than ...
ssltright 27828 A surreal is less than its...
lltropt 27829 The left options of a surr...
made0 27830 The only surreal made on d...
new0 27831 The only surreal new on da...
old1 27832 The only surreal older tha...
madess 27833 If ` A ` is less than or e...
oldssmade 27834 The older-than set is a su...
leftssold 27835 The left options are a sub...
rightssold 27836 The right options are a su...
leftssno 27837 The left set of a surreal ...
rightssno 27838 The right set of a surreal...
madecut 27839 Given a section that is a ...
madeun 27840 The made set is the union ...
madeoldsuc 27841 The made set is the old se...
oldsuc 27842 The value of the old set a...
oldlim 27843 The value of the old set a...
madebdayim 27844 If a surreal is a member o...
oldbdayim 27845 If ` X ` is in the old set...
oldirr 27846 No surreal is a member of ...
leftirr 27847 No surreal is a member of ...
rightirr 27848 No surreal is a member of ...
left0s 27849 The left set of ` 0s ` is ...
right0s 27850 The right set of ` 0s ` is...
left1s 27851 The left set of ` 1s ` is ...
right1s 27852 The right set of ` 1s ` is...
lrold 27853 The union of the left and ...
madebdaylemold 27854 Lemma for ~ madebday . If...
madebdaylemlrcut 27855 Lemma for ~ madebday . If...
madebday 27856 A surreal is part of the s...
oldbday 27857 A surreal is part of the s...
newbday 27858 A surreal is an element of...
lrcut 27859 A surreal is equal to the ...
scutfo 27860 The surreal cut function i...
sltn0 27861 If ` X ` is less than ` Y ...
lruneq 27862 If two surreals share a bi...
sltlpss 27863 If two surreals share a bi...
slelss 27864 If two surreals ` A ` and ...
0elold 27865 Zero is in the old set of ...
0elleft 27866 Zero is in the left set of...
0elright 27867 Zero is in the right set o...
cofsslt 27868 If every element of ` A ` ...
coinitsslt 27869 If ` B ` is coinitial with...
cofcut1 27870 If ` C ` is cofinal with `...
cofcut1d 27871 If ` C ` is cofinal with `...
cofcut2 27872 If ` A ` and ` C ` are mut...
cofcut2d 27873 If ` A ` and ` C ` are mut...
cofcutr 27874 If ` X ` is the cut of ` A...
cofcutr1d 27875 If ` X ` is the cut of ` A...
cofcutr2d 27876 If ` X ` is the cut of ` A...
cofcutrtime 27877 If ` X ` is the cut of ` A...
cofcutrtime1d 27878 If ` X ` is a timely cut o...
cofcutrtime2d 27879 If ` X ` is a timely cut o...
cofss 27880 Cofinality for a subset. ...
coiniss 27881 Coinitiality for a subset....
cutlt 27882 Eliminating all elements b...
cutpos 27883 Reduce the elements of a c...
lrrecval 27886 The next step in the devel...
lrrecval2 27887 Next, we establish an alte...
lrrecpo 27888 Now, we establish that ` R...
lrrecse 27889 Next, we show that ` R ` i...
lrrecfr 27890 Now we show that ` R ` is ...
lrrecpred 27891 Finally, we calculate the ...
noinds 27892 Induction principle for a ...
norecfn 27893 Surreal recursion over one...
norecov 27894 Calculate the value of the...
noxpordpo 27897 To get through most of the...
noxpordfr 27898 Next we establish the foun...
noxpordse 27899 Next we establish the set-...
noxpordpred 27900 Next we calculate the pred...
no2indslem 27901 Double induction on surrea...
no2inds 27902 Double induction on surrea...
norec2fn 27903 The double-recursion opera...
norec2ov 27904 The value of the double-re...
no3inds 27905 Triple induction over surr...
addsfn 27908 Surreal addition is a func...
addsval 27909 The value of surreal addit...
addsval2 27910 The value of surreal addit...
addsrid 27911 Surreal addition to zero i...
addsridd 27912 Surreal addition to zero i...
addscom 27913 Surreal addition commutes....
addscomd 27914 Surreal addition commutes....
addslid 27915 Surreal addition to zero i...
addsproplem1 27916 Lemma for surreal addition...
addsproplem2 27917 Lemma for surreal addition...
addsproplem3 27918 Lemma for surreal addition...
addsproplem4 27919 Lemma for surreal addition...
addsproplem5 27920 Lemma for surreal addition...
addsproplem6 27921 Lemma for surreal addition...
addsproplem7 27922 Lemma for surreal addition...
addsprop 27923 Inductively show that surr...
addscutlem 27924 Lemma for ~ addscut . Sho...
addscut 27925 Demonstrate the cut proper...
addscut2 27926 Show that the cut involved...
addscld 27927 Surreal numbers are closed...
addscl 27928 Surreal numbers are closed...
addsf 27929 Function statement for sur...
addsfo 27930 Surreal addition is onto. ...
peano2no 27931 A theorem for surreals tha...
sltadd1im 27932 Surreal less-than is prese...
sltadd2im 27933 Surreal less-than is prese...
sleadd1im 27934 Surreal less-than or equal...
sleadd2im 27935 Surreal less-than or equal...
sleadd1 27936 Addition to both sides of ...
sleadd2 27937 Addition to both sides of ...
sltadd2 27938 Addition to both sides of ...
sltadd1 27939 Addition to both sides of ...
addscan2 27940 Cancellation law for surre...
addscan1 27941 Cancellation law for surre...
sleadd1d 27942 Addition to both sides of ...
sleadd2d 27943 Addition to both sides of ...
sltadd2d 27944 Addition to both sides of ...
sltadd1d 27945 Addition to both sides of ...
addscan2d 27946 Cancellation law for surre...
addscan1d 27947 Cancellation law for surre...
addsuniflem 27948 Lemma for ~ addsunif . St...
addsunif 27949 Uniformity theorem for sur...
addsasslem1 27950 Lemma for addition associa...
addsasslem2 27951 Lemma for addition associa...
addsass 27952 Surreal addition is associ...
addsassd 27953 Surreal addition is associ...
adds32d 27954 Commutative/associative la...
adds12d 27955 Commutative/associative la...
adds4d 27956 Rearrangement of four term...
adds42d 27957 Rearrangement of four term...
sltaddpos1d 27958 Addition of a positive num...
sltaddpos2d 27959 Addition of a positive num...
slt2addd 27960 Adding both sides of two s...
addsgt0d 27961 The sum of two positive su...
negsfn 27966 Surreal negation is a func...
subsfn 27967 Surreal subtraction is a f...
negsval 27968 The value of the surreal n...
negs0s 27969 Negative surreal zero is s...
negsproplem1 27970 Lemma for surreal negation...
negsproplem2 27971 Lemma for surreal negation...
negsproplem3 27972 Lemma for surreal negation...
negsproplem4 27973 Lemma for surreal negation...
negsproplem5 27974 Lemma for surreal negation...
negsproplem6 27975 Lemma for surreal negation...
negsproplem7 27976 Lemma for surreal negation...
negsprop 27977 Show closure and ordering ...
negscl 27978 The surreals are closed un...
negscld 27979 The surreals are closed un...
sltnegim 27980 The forward direction of t...
negscut 27981 The cut properties of surr...
negscut2 27982 The cut that defines surre...
negsid 27983 Surreal addition of a numb...
negsidd 27984 Surreal addition of a numb...
negsex 27985 Every surreal has a negati...
negnegs 27986 A surreal is equal to the ...
sltneg 27987 Negative of both sides of ...
sleneg 27988 Negative of both sides of ...
sltnegd 27989 Negative of both sides of ...
slenegd 27990 Negative of both sides of ...
negs11 27991 Surreal negation is one-to...
negsdi 27992 Distribution of surreal ne...
slt0neg2d 27993 Comparison of a surreal an...
negsf 27994 Function statement for sur...
negsfo 27995 Function statement for sur...
negsf1o 27996 Surreal negation is a bije...
negsunif 27997 Uniformity property for su...
negsbdaylem 27998 Lemma for ~ negsbday . Bo...
negsbday 27999 Negation of a surreal numb...
subsval 28000 The value of surreal subtr...
subsvald 28001 The value of surreal subtr...
subscl 28002 Closure law for surreal su...
subscld 28003 Closure law for surreal su...
subsf 28004 Function statement for sur...
subsfo 28005 Surreal subtraction is an ...
negsval2 28006 Surreal negation in terms ...
negsval2d 28007 Surreal negation in terms ...
subsid1 28008 Identity law for subtracti...
subsid 28009 Subtraction of a surreal f...
subadds 28010 Relationship between addit...
subaddsd 28011 Relationship between addit...
pncans 28012 Cancellation law for surre...
pncan3s 28013 Subtraction and addition o...
pncan2s 28014 Cancellation law for surre...
npcans 28015 Cancellation law for surre...
sltsub1 28016 Subtraction from both side...
sltsub2 28017 Subtraction from both side...
sltsub1d 28018 Subtraction from both side...
sltsub2d 28019 Subtraction from both side...
negsubsdi2d 28020 Distribution of negative o...
addsubsassd 28021 Associative-type law for s...
addsubsd 28022 Law for surreal addition a...
sltsubsubbd 28023 Equivalence for the surrea...
sltsubsub2bd 28024 Equivalence for the surrea...
sltsubsub3bd 28025 Equivalence for the surrea...
slesubsubbd 28026 Equivalence for the surrea...
slesubsub2bd 28027 Equivalence for the surrea...
slesubsub3bd 28028 Equivalence for the surrea...
sltsubaddd 28029 Surreal less-than relation...
sltsubadd2d 28030 Surreal less-than relation...
sltaddsubd 28031 Surreal less-than relation...
sltaddsub2d 28032 Surreal less-than relation...
slesubaddd 28033 Surreal less-than or equal...
subsubs4d 28034 Law for double surreal sub...
subsubs2d 28035 Law for double surreal sub...
nncansd 28036 Cancellation law for surre...
posdifsd 28037 Comparison of two surreals...
sltsubposd 28038 Subtraction of a positive ...
subsge0d 28039 Non-negative subtraction. ...
mulsfn 28042 Surreal multiplication is ...
mulsval 28043 The value of surreal multi...
mulsval2lem 28044 Lemma for ~ mulsval2 . Ch...
mulsval2 28045 The value of surreal multi...
muls01 28046 Surreal multiplication by ...
mulsrid 28047 Surreal one is a right ide...
mulsridd 28048 Surreal one is a right ide...
mulsproplemcbv 28049 Lemma for surreal multipli...
mulsproplem1 28050 Lemma for surreal multipli...
mulsproplem2 28051 Lemma for surreal multipli...
mulsproplem3 28052 Lemma for surreal multipli...
mulsproplem4 28053 Lemma for surreal multipli...
mulsproplem5 28054 Lemma for surreal multipli...
mulsproplem6 28055 Lemma for surreal multipli...
mulsproplem7 28056 Lemma for surreal multipli...
mulsproplem8 28057 Lemma for surreal multipli...
mulsproplem9 28058 Lemma for surreal multipli...
mulsproplem10 28059 Lemma for surreal multipli...
mulsproplem11 28060 Lemma for surreal multipli...
mulsproplem12 28061 Lemma for surreal multipli...
mulsproplem13 28062 Lemma for surreal multipli...
mulsproplem14 28063 Lemma for surreal multipli...
mulsprop 28064 Surreals are closed under ...
mulscutlem 28065 Lemma for ~ mulscut . Sta...
mulscut 28066 Show the cut properties of...
mulscut2 28067 Show that the cut involved...
mulscl 28068 The surreals are closed un...
mulscld 28069 The surreals are closed un...
sltmul 28070 An ordering relationship f...
sltmuld 28071 An ordering relationship f...
slemuld 28072 An ordering relationship f...
mulscom 28073 Surreal multiplication com...
mulscomd 28074 Surreal multiplication com...
muls02 28075 Surreal multiplication by ...
mulslid 28076 Surreal one is a left iden...
mulslidd 28077 Surreal one is a left iden...
mulsgt0 28078 The product of two positiv...
mulsgt0d 28079 The product of two positiv...
mulsge0d 28080 The product of two non-neg...
ssltmul1 28081 One surreal set less-than ...
ssltmul2 28082 One surreal set less-than ...
mulsuniflem 28083 Lemma for ~ mulsunif . St...
mulsunif 28084 Surreal multiplication has...
addsdilem1 28085 Lemma for surreal distribu...
addsdilem2 28086 Lemma for surreal distribu...
addsdilem3 28087 Lemma for ~ addsdi . Show...
addsdilem4 28088 Lemma for ~ addsdi . Show...
addsdi 28089 Distributive law for surre...
addsdid 28090 Distributive law for surre...
addsdird 28091 Distributive law for surre...
subsdid 28092 Distribution of surreal mu...
subsdird 28093 Distribution of surreal mu...
mulnegs1d 28094 Product with negative is n...
mulnegs2d 28095 Product with negative is n...
mul2negsd 28096 Surreal product of two neg...
mulsasslem1 28097 Lemma for ~ mulsass . Exp...
mulsasslem2 28098 Lemma for ~ mulsass . Exp...
mulsasslem3 28099 Lemma for ~ mulsass . Dem...
mulsass 28100 Associative law for surrea...
mulsassd 28101 Associative law for surrea...
muls4d 28102 Rearrangement of four surr...
mulsunif2lem 28103 Lemma for ~ mulsunif2 . S...
mulsunif2 28104 Alternate expression for s...
sltmul2 28105 Multiplication of both sid...
sltmul2d 28106 Multiplication of both sid...
sltmul1d 28107 Multiplication of both sid...
slemul2d 28108 Multiplication of both sid...
slemul1d 28109 Multiplication of both sid...
sltmulneg1d 28110 Multiplication of both sid...
sltmulneg2d 28111 Multiplication of both sid...
mulscan2dlem 28112 Lemma for ~ mulscan2d . C...
mulscan2d 28113 Cancellation of surreal mu...
mulscan1d 28114 Cancellation of surreal mu...
muls12d 28115 Commutative/associative la...
slemul1ad 28116 Multiplication of both sid...
sltmul12ad 28117 Comparison of the product ...
divsmo 28118 Uniqueness of surreal inve...
muls0ord 28119 If a surreal product is ze...
mulsne0bd 28120 The product of two non-zer...
divsval 28123 The value of surreal divis...
norecdiv 28124 If a surreal has a recipro...
noreceuw 28125 If a surreal has a recipro...
divsmulw 28126 Relationship between surre...
divsmulwd 28127 Relationship between surre...
divsclw 28128 Weak division closure law....
divsclwd 28129 Weak division closure law....
divscan2wd 28130 A weak cancellation law fo...
divscan1wd 28131 A weak cancellation law fo...
sltdivmulwd 28132 Surreal less-than relation...
sltdivmul2wd 28133 Surreal less-than relation...
sltmuldivwd 28134 Surreal less-than relation...
sltmuldiv2wd 28135 Surreal less-than relation...
divsasswd 28136 An associative law for sur...
divs1 28137 A surreal divided by one i...
precsexlemcbv 28138 Lemma for surreal reciproc...
precsexlem1 28139 Lemma for surreal reciproc...
precsexlem2 28140 Lemma for surreal reciproc...
precsexlem3 28141 Lemma for surreal reciproc...
precsexlem4 28142 Lemma for surreal reciproc...
precsexlem5 28143 Lemma for surreal reciproc...
precsexlem6 28144 Lemma for surreal reciproc...
precsexlem7 28145 Lemma for surreal reciproc...
precsexlem8 28146 Lemma for surreal reciproc...
precsexlem9 28147 Lemma for surreal reciproc...
precsexlem10 28148 Lemma for surreal reciproc...
precsexlem11 28149 Lemma for surreal reciproc...
precsex 28150 Every positive surreal has...
recsex 28151 A non-zero surreal has a r...
recsexd 28152 A non-zero surreal has a r...
divsmul 28153 Relationship between surre...
divsmuld 28154 Relationship between surre...
divscl 28155 Surreal division closure l...
divscld 28156 Surreal division closure l...
divscan2d 28157 A cancellation law for sur...
divscan1d 28158 A cancellation law for sur...
sltdivmuld 28159 Surreal less-than relation...
sltdivmul2d 28160 Surreal less-than relation...
sltmuldivd 28161 Surreal less-than relation...
sltmuldiv2d 28162 Surreal less-than relation...
divsassd 28163 An associative law for sur...
divmuldivsd 28164 Multiplication of two surr...
abssval 28167 The value of surreal absol...
absscl 28168 Closure law for surreal ab...
abssid 28169 The absolute value of a no...
abs0s 28170 The absolute value of surr...
abssnid 28171 For a negative surreal, it...
absmuls 28172 Surreal absolute value dis...
abssge0 28173 The absolute value of a su...
abssor 28174 The absolute value of a su...
abssneg 28175 Surreal absolute value of ...
sleabs 28176 A surreal is less than or ...
absslt 28177 Surreal absolute value and...
elons 28180 Membership in the class of...
onssno 28181 The surreal ordinals are a...
onsno 28182 A surreal ordinal is a sur...
0ons 28183 Surreal zero is a surreal ...
1ons 28184 Surreal one is a surreal o...
elons2 28185 A surreal is ordinal iff i...
elons2d 28186 The cut of any set of surr...
sltonold 28187 The class of ordinals less...
sltonex 28188 The class of ordinals less...
onscutleft 28189 A surreal ordinal is equal...
seqsex 28192 Existence of the surreal s...
seqseq123d 28193 Equality deduction for the...
nfseqs 28194 Hypothesis builder for the...
seqsval 28195 The value of the surreal s...
noseqex 28196 The next several theorems ...
noseq0 28197 The surreal ` A ` is a mem...
noseqp1 28198 One plus an element of ` Z...
noseqind 28199 Peano's inductive postulat...
noseqinds 28200 Induction schema for surre...
noseqssno 28201 A surreal sequence is a su...
noseqno 28202 An element of a surreal se...
om2noseq0 28203 The mapping ` G ` is a one...
om2noseqsuc 28204 The value of ` G ` at a su...
om2noseqfo 28205 Function statement for ` G...
om2noseqlt 28206 Surreal less-than relation...
om2noseqlt2 28207 The mapping ` G ` preserve...
om2noseqf1o 28208 ` G ` is a bijection. (Co...
om2noseqiso 28209 ` G ` is an isomorphism fr...
om2noseqoi 28210 An alternative definition ...
om2noseqrdg 28211 A helper lemma for the val...
noseqrdglem 28212 A helper lemma for the val...
noseqrdgfn 28213 The recursive definition g...
noseqrdg0 28214 Initial value of a recursi...
noseqrdgsuc 28215 Successor value of a recur...
seqsfn 28216 The surreal sequence build...
seqs1 28217 The value of the surreal s...
seqsp1 28218 The value of the surreal s...
n0sex 28223 The set of all non-negativ...
nnsex 28224 The set of all positive su...
peano5n0s 28225 Peano's inductive postulat...
n0ssno 28226 The non-negative surreal i...
nnssn0s 28227 The positive surreal integ...
nnssno 28228 The positive surreal integ...
n0sno 28229 A non-negative surreal int...
nnsno 28230 A positive surreal integer...
n0snod 28231 A non-negative surreal int...
nnsnod 28232 A positive surreal integer...
nnn0s 28233 A positive surreal integer...
nnn0sd 28234 A positive surreal integer...
0n0s 28235 Peano postulate: ` 0s ` is...
peano2n0s 28236 Peano postulate: the succe...
dfn0s2 28237 Alternate definition of th...
n0sind 28238 Principle of Mathematical ...
n0scut 28239 A cut form for surreal nat...
n0ons 28240 A surreal natural is a sur...
nnne0s 28241 A surreal positive integer...
n0sge0 28242 A non-negative integer is ...
nnsgt0 28243 A positive integer is grea...
elnns 28244 Membership in the positive...
elnns2 28245 A positive surreal integer...
n0addscl 28246 The non-negative surreal i...
n0mulscl 28247 The non-negative surreal i...
nnaddscl 28248 The positive surreal integ...
nnmulscl 28249 The positive surreal integ...
1n0s 28250 Surreal one is a non-negat...
1nns 28251 Surreal one is a positive ...
peano2nns 28252 Peano postulate for positi...
n0sbday 28253 A non-negative surreal int...
n0ssold 28254 The non-negative surreal i...
nnsrecgt0d 28255 The reciprocal of a positi...
seqn0sfn 28256 The surreal sequence build...
eln0s 28257 A non-negative surreal int...
n0s0m1 28258 Every non-negative surreal...
n0subs 28259 Subtraction of non-negativ...
n0p1nns 28260 One plus a non-negative su...
zsex 28263 The surreal integers form ...
zssno 28264 The surreal integers are a...
zno 28265 A surreal integer is a sur...
znod 28266 A surreal integer is a sur...
elzs 28267 Membership in the set of s...
nnzs 28268 A positive surreal integer...
nnzsd 28269 A positive surreal integer...
0zs 28270 Zero is a surreal integer....
n0zs 28271 A non-negative surreal int...
n0zsd 28272 A non-negative surreal int...
znegscl 28273 The surreal integers are c...
znegscld 28274 The surreal integers are c...
elzn0s 28275 A surreal integer is a sur...
zsbday 28276 A surreal integer has a fi...
elreno 28279 Membership in the set of s...
recut 28280 The cut involved in defini...
0reno 28281 Surreal zero is a surreal ...
renegscl 28282 The surreal reals are clos...
readdscl 28283 The surreal reals are clos...
remulscllem1 28284 Lemma for ~ remulscl . Sp...
remulscllem2 28285 Lemma for ~ remulscl . Bo...
remulscl 28286 The surreal reals are clos...
itvndx 28297 Index value of the Interva...
lngndx 28298 Index value of the "line" ...
itvid 28299 Utility theorem: index-ind...
lngid 28300 Utility theorem: index-ind...
slotsinbpsd 28301 The slots ` Base ` , ` +g ...
slotslnbpsd 28302 The slots ` Base ` , ` +g ...
lngndxnitvndx 28303 The slot for the line is n...
trkgstr 28304 Functionality of a Tarski ...
trkgbas 28305 The base set of a Tarski g...
trkgdist 28306 The measure of a distance ...
trkgitv 28307 The congruence relation in...
istrkgc 28314 Property of being a Tarski...
istrkgb 28315 Property of being a Tarski...
istrkgcb 28316 Property of being a Tarski...
istrkge 28317 Property of fulfilling Euc...
istrkgl 28318 Building lines from the se...
istrkgld 28319 Property of fulfilling the...
istrkg2ld 28320 Property of fulfilling the...
istrkg3ld 28321 Property of fulfilling the...
axtgcgrrflx 28322 Axiom of reflexivity of co...
axtgcgrid 28323 Axiom of identity of congr...
axtgsegcon 28324 Axiom of segment construct...
axtg5seg 28325 Five segments axiom, Axiom...
axtgbtwnid 28326 Identity of Betweenness. ...
axtgpasch 28327 Axiom of (Inner) Pasch, Ax...
axtgcont1 28328 Axiom of Continuity. Axio...
axtgcont 28329 Axiom of Continuity. Axio...
axtglowdim2 28330 Lower dimension axiom for ...
axtgupdim2 28331 Upper dimension axiom for ...
axtgeucl 28332 Euclid's Axiom. Axiom A10...
tgjustf 28333 Given any function ` F ` ,...
tgjustr 28334 Given any equivalence rela...
tgjustc1 28335 A justification for using ...
tgjustc2 28336 A justification for using ...
tgcgrcomimp 28337 Congruence commutes on the...
tgcgrcomr 28338 Congruence commutes on the...
tgcgrcoml 28339 Congruence commutes on the...
tgcgrcomlr 28340 Congruence commutes on bot...
tgcgreqb 28341 Congruence and equality. ...
tgcgreq 28342 Congruence and equality. ...
tgcgrneq 28343 Congruence and equality. ...
tgcgrtriv 28344 Degenerate segments are co...
tgcgrextend 28345 Link congruence over a pai...
tgsegconeq 28346 Two points that satisfy th...
tgbtwntriv2 28347 Betweenness always holds f...
tgbtwncom 28348 Betweenness commutes. The...
tgbtwncomb 28349 Betweenness commutes, bico...
tgbtwnne 28350 Betweenness and inequality...
tgbtwntriv1 28351 Betweenness always holds f...
tgbtwnswapid 28352 If you can swap the first ...
tgbtwnintr 28353 Inner transitivity law for...
tgbtwnexch3 28354 Exchange the first endpoin...
tgbtwnouttr2 28355 Outer transitivity law for...
tgbtwnexch2 28356 Exchange the outer point o...
tgbtwnouttr 28357 Outer transitivity law for...
tgbtwnexch 28358 Outer transitivity law for...
tgtrisegint 28359 A line segment between two...
tglowdim1 28360 Lower dimension axiom for ...
tglowdim1i 28361 Lower dimension axiom for ...
tgldimor 28362 Excluded-middle like state...
tgldim0eq 28363 In dimension zero, any two...
tgldim0itv 28364 In dimension zero, any two...
tgldim0cgr 28365 In dimension zero, any two...
tgbtwndiff 28366 There is always a ` c ` di...
tgdim01 28367 In geometries of dimension...
tgifscgr 28368 Inner five segment congrue...
tgcgrsub 28369 Removing identical parts f...
iscgrg 28372 The congruence property fo...
iscgrgd 28373 The property for two seque...
iscgrglt 28374 The property for two seque...
trgcgrg 28375 The property for two trian...
trgcgr 28376 Triangle congruence. (Con...
ercgrg 28377 The shape congruence relat...
tgcgrxfr 28378 A line segment can be divi...
cgr3id 28379 Reflexivity law for three-...
cgr3simp1 28380 Deduce segment congruence ...
cgr3simp2 28381 Deduce segment congruence ...
cgr3simp3 28382 Deduce segment congruence ...
cgr3swap12 28383 Permutation law for three-...
cgr3swap23 28384 Permutation law for three-...
cgr3swap13 28385 Permutation law for three-...
cgr3rotr 28386 Permutation law for three-...
cgr3rotl 28387 Permutation law for three-...
trgcgrcom 28388 Commutative law for three-...
cgr3tr 28389 Transitivity law for three...
tgbtwnxfr 28390 A condition for extending ...
tgcgr4 28391 Two quadrilaterals to be c...
isismt 28394 Property of being an isome...
ismot 28395 Property of being an isome...
motcgr 28396 Property of a motion: dist...
idmot 28397 The identity is a motion. ...
motf1o 28398 Motions are bijections. (...
motcl 28399 Closure of motions. (Cont...
motco 28400 The composition of two mot...
cnvmot 28401 The converse of a motion i...
motplusg 28402 The operation for motions ...
motgrp 28403 The motions of a geometry ...
motcgrg 28404 Property of a motion: dist...
motcgr3 28405 Property of a motion: dist...
tglng 28406 Lines of a Tarski Geometry...
tglnfn 28407 Lines as functions. (Cont...
tglnunirn 28408 Lines are sets of points. ...
tglnpt 28409 Lines are sets of points. ...
tglngne 28410 It takes two different poi...
tglngval 28411 The line going through poi...
tglnssp 28412 Lines are subset of the ge...
tgellng 28413 Property of lying on the l...
tgcolg 28414 We choose the notation ` (...
btwncolg1 28415 Betweenness implies coline...
btwncolg2 28416 Betweenness implies coline...
btwncolg3 28417 Betweenness implies coline...
colcom 28418 Swapping the points defini...
colrot1 28419 Rotating the points defini...
colrot2 28420 Rotating the points defini...
ncolcom 28421 Swapping non-colinear poin...
ncolrot1 28422 Rotating non-colinear poin...
ncolrot2 28423 Rotating non-colinear poin...
tgdim01ln 28424 In geometries of dimension...
ncoltgdim2 28425 If there are three non-col...
lnxfr 28426 Transfer law for colineari...
lnext 28427 Extend a line with a missi...
tgfscgr 28428 Congruence law for the gen...
lncgr 28429 Congruence rule for lines....
lnid 28430 Identity law for points on...
tgidinside 28431 Law for finding a point in...
tgbtwnconn1lem1 28432 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 28433 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 28434 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 28435 Connectivity law for betwe...
tgbtwnconn2 28436 Another connectivity law f...
tgbtwnconn3 28437 Inner connectivity law for...
tgbtwnconnln3 28438 Derive colinearity from be...
tgbtwnconn22 28439 Double connectivity law fo...
tgbtwnconnln1 28440 Derive colinearity from be...
tgbtwnconnln2 28441 Derive colinearity from be...
legval 28444 Value of the less-than rel...
legov 28445 Value of the less-than rel...
legov2 28446 An equivalent definition o...
legid 28447 Reflexivity of the less-th...
btwnleg 28448 Betweenness implies less-t...
legtrd 28449 Transitivity of the less-t...
legtri3 28450 Equality from the less-tha...
legtrid 28451 Trichotomy law for the les...
leg0 28452 Degenerated (zero-length) ...
legeq 28453 Deduce equality from "less...
legbtwn 28454 Deduce betweenness from "l...
tgcgrsub2 28455 Removing identical parts f...
ltgseg 28456 The set ` E ` denotes the ...
ltgov 28457 Strict "shorter than" geom...
legov3 28458 An equivalent definition o...
legso 28459 The "shorter than" relatio...
ishlg 28462 Rays : Definition 6.1 of ...
hlcomb 28463 The half-line relation com...
hlcomd 28464 The half-line relation com...
hlne1 28465 The half-line relation imp...
hlne2 28466 The half-line relation imp...
hlln 28467 The half-line relation imp...
hleqnid 28468 The endpoint does not belo...
hlid 28469 The half-line relation is ...
hltr 28470 The half-line relation is ...
hlbtwn 28471 Betweenness is a sufficien...
btwnhl1 28472 Deduce half-line from betw...
btwnhl2 28473 Deduce half-line from betw...
btwnhl 28474 Swap betweenness for a hal...
lnhl 28475 Either a point ` C ` on th...
hlcgrex 28476 Construct a point on a hal...
hlcgreulem 28477 Lemma for ~ hlcgreu . (Co...
hlcgreu 28478 The point constructed in ~...
btwnlng1 28479 Betweenness implies coline...
btwnlng2 28480 Betweenness implies coline...
btwnlng3 28481 Betweenness implies coline...
lncom 28482 Swapping the points defini...
lnrot1 28483 Rotating the points defini...
lnrot2 28484 Rotating the points defini...
ncolne1 28485 Non-colinear points are di...
ncolne2 28486 Non-colinear points are di...
tgisline 28487 The property of being a pr...
tglnne 28488 It takes two different poi...
tglndim0 28489 There are no lines in dime...
tgelrnln 28490 The property of being a pr...
tglineeltr 28491 Transitivity law for lines...
tglineelsb2 28492 If ` S ` lies on PQ , then...
tglinerflx1 28493 Reflexivity law for line m...
tglinerflx2 28494 Reflexivity law for line m...
tglinecom 28495 Commutativity law for line...
tglinethru 28496 If ` A ` is a line contain...
tghilberti1 28497 There is a line through an...
tghilberti2 28498 There is at most one line ...
tglinethrueu 28499 There is a unique line goi...
tglnne0 28500 A line ` A ` has at least ...
tglnpt2 28501 Find a second point on a l...
tglineintmo 28502 Two distinct lines interse...
tglineineq 28503 Two distinct lines interse...
tglineneq 28504 Given three non-colinear p...
tglineinteq 28505 Two distinct lines interse...
ncolncol 28506 Deduce non-colinearity fro...
coltr 28507 A transitivity law for col...
coltr3 28508 A transitivity law for col...
colline 28509 Three points are colinear ...
tglowdim2l 28510 Reformulation of the lower...
tglowdim2ln 28511 There is always one point ...
mirreu3 28514 Existential uniqueness of ...
mirval 28515 Value of the point inversi...
mirfv 28516 Value of the point inversi...
mircgr 28517 Property of the image by t...
mirbtwn 28518 Property of the image by t...
ismir 28519 Property of the image by t...
mirf 28520 Point inversion as functio...
mircl 28521 Closure of the point inver...
mirmir 28522 The point inversion functi...
mircom 28523 Variation on ~ mirmir . (...
mirreu 28524 Any point has a unique ant...
mireq 28525 Equality deduction for poi...
mirinv 28526 The only invariant point o...
mirne 28527 Mirror of non-center point...
mircinv 28528 The center point is invari...
mirf1o 28529 The point inversion functi...
miriso 28530 The point inversion functi...
mirbtwni 28531 Point inversion preserves ...
mirbtwnb 28532 Point inversion preserves ...
mircgrs 28533 Point inversion preserves ...
mirmir2 28534 Point inversion of a point...
mirmot 28535 Point investion is a motio...
mirln 28536 If two points are on the s...
mirln2 28537 If a point and its mirror ...
mirconn 28538 Point inversion of connect...
mirhl 28539 If two points ` X ` and ` ...
mirbtwnhl 28540 If the center of the point...
mirhl2 28541 Deduce half-line relation ...
mircgrextend 28542 Link congruence over a pai...
mirtrcgr 28543 Point inversion of one poi...
mirauto 28544 Point inversion preserves ...
miduniq 28545 Uniqueness of the middle p...
miduniq1 28546 Uniqueness of the middle p...
miduniq2 28547 If two point inversions co...
colmid 28548 Colinearity and equidistan...
symquadlem 28549 Lemma of the symetrial qua...
krippenlem 28550 Lemma for ~ krippen . We ...
krippen 28551 Krippenlemma (German for c...
midexlem 28552 Lemma for the existence of...
israg 28557 Property for 3 points A, B...
ragcom 28558 Commutative rule for right...
ragcol 28559 The right angle property i...
ragmir 28560 Right angle property is pr...
mirrag 28561 Right angle is conserved b...
ragtrivb 28562 Trivial right angle. Theo...
ragflat2 28563 Deduce equality from two r...
ragflat 28564 Deduce equality from two r...
ragtriva 28565 Trivial right angle. Theo...
ragflat3 28566 Right angle and colinearit...
ragcgr 28567 Right angle and colinearit...
motrag 28568 Right angles are preserved...
ragncol 28569 Right angle implies non-co...
perpln1 28570 Derive a line from perpend...
perpln2 28571 Derive a line from perpend...
isperp 28572 Property for 2 lines A, B ...
perpcom 28573 The "perpendicular" relati...
perpneq 28574 Two perpendicular lines ar...
isperp2 28575 Property for 2 lines A, B,...
isperp2d 28576 One direction of ~ isperp2...
ragperp 28577 Deduce that two lines are ...
footexALT 28578 Alternative version of ~ f...
footexlem1 28579 Lemma for ~ footex . (Con...
footexlem2 28580 Lemma for ~ footex . (Con...
footex 28581 From a point ` C ` outside...
foot 28582 From a point ` C ` outside...
footne 28583 Uniqueness of the foot poi...
footeq 28584 Uniqueness of the foot poi...
hlperpnel 28585 A point on a half-line whi...
perprag 28586 Deduce a right angle from ...
perpdragALT 28587 Deduce a right angle from ...
perpdrag 28588 Deduce a right angle from ...
colperp 28589 Deduce a perpendicularity ...
colperpexlem1 28590 Lemma for ~ colperp . Fir...
colperpexlem2 28591 Lemma for ~ colperpex . S...
colperpexlem3 28592 Lemma for ~ colperpex . C...
colperpex 28593 In dimension 2 and above, ...
mideulem2 28594 Lemma for ~ opphllem , whi...
opphllem 28595 Lemma 8.24 of [Schwabhause...
mideulem 28596 Lemma for ~ mideu . We ca...
midex 28597 Existence of the midpoint,...
mideu 28598 Existence and uniqueness o...
islnopp 28599 The property for two point...
islnoppd 28600 Deduce that ` A ` and ` B ...
oppne1 28601 Points lying on opposite s...
oppne2 28602 Points lying on opposite s...
oppne3 28603 Points lying on opposite s...
oppcom 28604 Commutativity rule for "op...
opptgdim2 28605 If two points opposite to ...
oppnid 28606 The "opposite to a line" r...
opphllem1 28607 Lemma for ~ opphl . (Cont...
opphllem2 28608 Lemma for ~ opphl . Lemma...
opphllem3 28609 Lemma for ~ opphl : We as...
opphllem4 28610 Lemma for ~ opphl . (Cont...
opphllem5 28611 Second part of Lemma 9.4 o...
opphllem6 28612 First part of Lemma 9.4 of...
oppperpex 28613 Restating ~ colperpex usin...
opphl 28614 If two points ` A ` and ` ...
outpasch 28615 Axiom of Pasch, outer form...
hlpasch 28616 An application of the axio...
ishpg 28619 Value of the half-plane re...
hpgbr 28620 Half-planes : property for...
hpgne1 28621 Points on the open half pl...
hpgne2 28622 Points on the open half pl...
lnopp2hpgb 28623 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 28624 If two points lie on the o...
hpgerlem 28625 Lemma for the proof that t...
hpgid 28626 The half-plane relation is...
hpgcom 28627 The half-plane relation co...
hpgtr 28628 The half-plane relation is...
colopp 28629 Opposite sides of a line f...
colhp 28630 Half-plane relation for co...
hphl 28631 If two points are on the s...
midf 28636 Midpoint as a function. (...
midcl 28637 Closure of the midpoint. ...
ismidb 28638 Property of the midpoint. ...
midbtwn 28639 Betweenness of midpoint. ...
midcgr 28640 Congruence of midpoint. (...
midid 28641 Midpoint of a null segment...
midcom 28642 Commutativity rule for the...
mirmid 28643 Point inversion preserves ...
lmieu 28644 Uniqueness of the line mir...
lmif 28645 Line mirror as a function....
lmicl 28646 Closure of the line mirror...
islmib 28647 Property of the line mirro...
lmicom 28648 The line mirroring functio...
lmilmi 28649 Line mirroring is an invol...
lmireu 28650 Any point has a unique ant...
lmieq 28651 Equality deduction for lin...
lmiinv 28652 The invariants of the line...
lmicinv 28653 The mirroring line is an i...
lmimid 28654 If we have a right angle, ...
lmif1o 28655 The line mirroring functio...
lmiisolem 28656 Lemma for ~ lmiiso . (Con...
lmiiso 28657 The line mirroring functio...
lmimot 28658 Line mirroring is a motion...
hypcgrlem1 28659 Lemma for ~ hypcgr , case ...
hypcgrlem2 28660 Lemma for ~ hypcgr , case ...
hypcgr 28661 If the catheti of two righ...
lmiopp 28662 Line mirroring produces po...
lnperpex 28663 Existence of a perpendicul...
trgcopy 28664 Triangle construction: a c...
trgcopyeulem 28665 Lemma for ~ trgcopyeu . (...
trgcopyeu 28666 Triangle construction: a c...
iscgra 28669 Property for two angles AB...
iscgra1 28670 A special version of ~ isc...
iscgrad 28671 Sufficient conditions for ...
cgrane1 28672 Angles imply inequality. ...
cgrane2 28673 Angles imply inequality. ...
cgrane3 28674 Angles imply inequality. ...
cgrane4 28675 Angles imply inequality. ...
cgrahl1 28676 Angle congruence is indepe...
cgrahl2 28677 Angle congruence is indepe...
cgracgr 28678 First direction of proposi...
cgraid 28679 Angle congruence is reflex...
cgraswap 28680 Swap rays in a congruence ...
cgrcgra 28681 Triangle congruence implie...
cgracom 28682 Angle congruence commutes....
cgratr 28683 Angle congruence is transi...
flatcgra 28684 Flat angles are congruent....
cgraswaplr 28685 Swap both side of angle co...
cgrabtwn 28686 Angle congruence preserves...
cgrahl 28687 Angle congruence preserves...
cgracol 28688 Angle congruence preserves...
cgrancol 28689 Angle congruence preserves...
dfcgra2 28690 This is the full statement...
sacgr 28691 Supplementary angles of co...
oacgr 28692 Vertical angle theorem. V...
acopy 28693 Angle construction. Theor...
acopyeu 28694 Angle construction. Theor...
isinag 28698 Property for point ` X ` t...
isinagd 28699 Sufficient conditions for ...
inagflat 28700 Any point lies in a flat a...
inagswap 28701 Swap the order of the half...
inagne1 28702 Deduce inequality from the...
inagne2 28703 Deduce inequality from the...
inagne3 28704 Deduce inequality from the...
inaghl 28705 The "point lie in angle" r...
isleag 28707 Geometrical "less than" pr...
isleagd 28708 Sufficient condition for "...
leagne1 28709 Deduce inequality from the...
leagne2 28710 Deduce inequality from the...
leagne3 28711 Deduce inequality from the...
leagne4 28712 Deduce inequality from the...
cgrg3col4 28713 Lemma 11.28 of [Schwabhaus...
tgsas1 28714 First congruence theorem: ...
tgsas 28715 First congruence theorem: ...
tgsas2 28716 First congruence theorem: ...
tgsas3 28717 First congruence theorem: ...
tgasa1 28718 Second congruence theorem:...
tgasa 28719 Second congruence theorem:...
tgsss1 28720 Third congruence theorem: ...
tgsss2 28721 Third congruence theorem: ...
tgsss3 28722 Third congruence theorem: ...
dfcgrg2 28723 Congruence for two triangl...
isoas 28724 Congruence theorem for iso...
iseqlg 28727 Property of a triangle bei...
iseqlgd 28728 Condition for a triangle t...
f1otrgds 28729 Convenient lemma for ~ f1o...
f1otrgitv 28730 Convenient lemma for ~ f1o...
f1otrg 28731 A bijection between bases ...
f1otrge 28732 A bijection between bases ...
ttgval 28735 Define a function to augme...
ttgvalOLD 28736 Obsolete proof of ~ ttgval...
ttglem 28737 Lemma for ~ ttgbas , ~ ttg...
ttglemOLD 28738 Obsolete version of ~ ttgl...
ttgbas 28739 The base set of a subcompl...
ttgbasOLD 28740 Obsolete proof of ~ ttgbas...
ttgplusg 28741 The addition operation of ...
ttgplusgOLD 28742 Obsolete proof of ~ ttgplu...
ttgsub 28743 The subtraction operation ...
ttgvsca 28744 The scalar product of a su...
ttgvscaOLD 28745 Obsolete proof of ~ ttgvsc...
ttgds 28746 The metric of a subcomplex...
ttgdsOLD 28747 Obsolete proof of ~ ttgds ...
ttgitvval 28748 Betweenness for a subcompl...
ttgelitv 28749 Betweenness for a subcompl...
ttgbtwnid 28750 Any subcomplex module equi...
ttgcontlem1 28751 Lemma for % ttgcont . (Co...
xmstrkgc 28752 Any metric space fulfills ...
cchhllem 28753 Lemma for chlbas and chlvs...
cchhllemOLD 28754 Obsolete version of ~ cchh...
elee 28761 Membership in a Euclidean ...
mptelee 28762 A condition for a mapping ...
eleenn 28763 If ` A ` is in ` ( EE `` N...
eleei 28764 The forward direction of ~...
eedimeq 28765 A point belongs to at most...
brbtwn 28766 The binary relation form o...
brcgr 28767 The binary relation form o...
fveere 28768 The function value of a po...
fveecn 28769 The function value of a po...
eqeefv 28770 Two points are equal iff t...
eqeelen 28771 Two points are equal iff t...
brbtwn2 28772 Alternate characterization...
colinearalglem1 28773 Lemma for ~ colinearalg . ...
colinearalglem2 28774 Lemma for ~ colinearalg . ...
colinearalglem3 28775 Lemma for ~ colinearalg . ...
colinearalglem4 28776 Lemma for ~ colinearalg . ...
colinearalg 28777 An algebraic characterizat...
eleesub 28778 Membership of a subtractio...
eleesubd 28779 Membership of a subtractio...
axdimuniq 28780 The unique dimension axiom...
axcgrrflx 28781 ` A ` is as far from ` B `...
axcgrtr 28782 Congruence is transitive. ...
axcgrid 28783 If there is no distance be...
axsegconlem1 28784 Lemma for ~ axsegcon . Ha...
axsegconlem2 28785 Lemma for ~ axsegcon . Sh...
axsegconlem3 28786 Lemma for ~ axsegcon . Sh...
axsegconlem4 28787 Lemma for ~ axsegcon . Sh...
axsegconlem5 28788 Lemma for ~ axsegcon . Sh...
axsegconlem6 28789 Lemma for ~ axsegcon . Sh...
axsegconlem7 28790 Lemma for ~ axsegcon . Sh...
axsegconlem8 28791 Lemma for ~ axsegcon . Sh...
axsegconlem9 28792 Lemma for ~ axsegcon . Sh...
axsegconlem10 28793 Lemma for ~ axsegcon . Sh...
axsegcon 28794 Any segment ` A B ` can be...
ax5seglem1 28795 Lemma for ~ ax5seg . Rexp...
ax5seglem2 28796 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 28797 Lemma for ~ ax5seg . (Con...
ax5seglem3 28798 Lemma for ~ ax5seg . Comb...
ax5seglem4 28799 Lemma for ~ ax5seg . Give...
ax5seglem5 28800 Lemma for ~ ax5seg . If `...
ax5seglem6 28801 Lemma for ~ ax5seg . Give...
ax5seglem7 28802 Lemma for ~ ax5seg . An a...
ax5seglem8 28803 Lemma for ~ ax5seg . Use ...
ax5seglem9 28804 Lemma for ~ ax5seg . Take...
ax5seg 28805 The five segment axiom. T...
axbtwnid 28806 Points are indivisible. T...
axpaschlem 28807 Lemma for ~ axpasch . Set...
axpasch 28808 The inner Pasch axiom. Ta...
axlowdimlem1 28809 Lemma for ~ axlowdim . Es...
axlowdimlem2 28810 Lemma for ~ axlowdim . Sh...
axlowdimlem3 28811 Lemma for ~ axlowdim . Se...
axlowdimlem4 28812 Lemma for ~ axlowdim . Se...
axlowdimlem5 28813 Lemma for ~ axlowdim . Sh...
axlowdimlem6 28814 Lemma for ~ axlowdim . Sh...
axlowdimlem7 28815 Lemma for ~ axlowdim . Se...
axlowdimlem8 28816 Lemma for ~ axlowdim . Ca...
axlowdimlem9 28817 Lemma for ~ axlowdim . Ca...
axlowdimlem10 28818 Lemma for ~ axlowdim . Se...
axlowdimlem11 28819 Lemma for ~ axlowdim . Ca...
axlowdimlem12 28820 Lemma for ~ axlowdim . Ca...
axlowdimlem13 28821 Lemma for ~ axlowdim . Es...
axlowdimlem14 28822 Lemma for ~ axlowdim . Ta...
axlowdimlem15 28823 Lemma for ~ axlowdim . Se...
axlowdimlem16 28824 Lemma for ~ axlowdim . Se...
axlowdimlem17 28825 Lemma for ~ axlowdim . Es...
axlowdim1 28826 The lower dimension axiom ...
axlowdim2 28827 The lower two-dimensional ...
axlowdim 28828 The general lower dimensio...
axeuclidlem 28829 Lemma for ~ axeuclid . Ha...
axeuclid 28830 Euclid's axiom. Take an a...
axcontlem1 28831 Lemma for ~ axcont . Chan...
axcontlem2 28832 Lemma for ~ axcont . The ...
axcontlem3 28833 Lemma for ~ axcont . Give...
axcontlem4 28834 Lemma for ~ axcont . Give...
axcontlem5 28835 Lemma for ~ axcont . Comp...
axcontlem6 28836 Lemma for ~ axcont . Stat...
axcontlem7 28837 Lemma for ~ axcont . Give...
axcontlem8 28838 Lemma for ~ axcont . A po...
axcontlem9 28839 Lemma for ~ axcont . Give...
axcontlem10 28840 Lemma for ~ axcont . Give...
axcontlem11 28841 Lemma for ~ axcont . Elim...
axcontlem12 28842 Lemma for ~ axcont . Elim...
axcont 28843 The axiom of continuity. ...
eengv 28846 The value of the Euclidean...
eengstr 28847 The Euclidean geometry as ...
eengbas 28848 The Base of the Euclidean ...
ebtwntg 28849 The betweenness relation u...
ecgrtg 28850 The congruence relation us...
elntg 28851 The line definition in the...
elntg2 28852 The line definition in the...
eengtrkg 28853 The geometry structure for...
eengtrkge 28854 The geometry structure for...
edgfid 28857 Utility theorem: index-ind...
edgfndx 28858 Index value of the ~ df-ed...
edgfndxnn 28859 The index value of the edg...
edgfndxid 28860 The value of the edge func...
edgfndxidOLD 28861 Obsolete version of ~ edgf...
basendxltedgfndx 28862 The index value of the ` B...
baseltedgfOLD 28863 Obsolete proof of ~ basend...
basendxnedgfndx 28864 The slots ` Base ` and ` ....
vtxval 28869 The set of vertices of a g...
iedgval 28870 The set of indexed edges o...
1vgrex 28871 A graph with at least one ...
opvtxval 28872 The set of vertices of a g...
opvtxfv 28873 The set of vertices of a g...
opvtxov 28874 The set of vertices of a g...
opiedgval 28875 The set of indexed edges o...
opiedgfv 28876 The set of indexed edges o...
opiedgov 28877 The set of indexed edges o...
opvtxfvi 28878 The set of vertices of a g...
opiedgfvi 28879 The set of indexed edges o...
funvtxdmge2val 28880 The set of vertices of an ...
funiedgdmge2val 28881 The set of indexed edges o...
funvtxdm2val 28882 The set of vertices of an ...
funiedgdm2val 28883 The set of indexed edges o...
funvtxval0 28884 The set of vertices of an ...
basvtxval 28885 The set of vertices of a g...
edgfiedgval 28886 The set of indexed edges o...
funvtxval 28887 The set of vertices of a g...
funiedgval 28888 The set of indexed edges o...
structvtxvallem 28889 Lemma for ~ structvtxval a...
structvtxval 28890 The set of vertices of an ...
structiedg0val 28891 The set of indexed edges o...
structgrssvtxlem 28892 Lemma for ~ structgrssvtx ...
structgrssvtx 28893 The set of vertices of a g...
structgrssiedg 28894 The set of indexed edges o...
struct2grstr 28895 A graph represented as an ...
struct2grvtx 28896 The set of vertices of a g...
struct2griedg 28897 The set of indexed edges o...
graop 28898 Any representation of a gr...
grastruct 28899 Any representation of a gr...
gropd 28900 If any representation of a...
grstructd 28901 If any representation of a...
gropeld 28902 If any representation of a...
grstructeld 28903 If any representation of a...
setsvtx 28904 The vertices of a structur...
setsiedg 28905 The (indexed) edges of a s...
snstrvtxval 28906 The set of vertices of a g...
snstriedgval 28907 The set of indexed edges o...
vtxval0 28908 Degenerated case 1 for ver...
iedgval0 28909 Degenerated case 1 for edg...
vtxvalsnop 28910 Degenerated case 2 for ver...
iedgvalsnop 28911 Degenerated case 2 for edg...
vtxval3sn 28912 Degenerated case 3 for ver...
iedgval3sn 28913 Degenerated case 3 for edg...
vtxvalprc 28914 Degenerated case 4 for ver...
iedgvalprc 28915 Degenerated case 4 for edg...
edgval 28918 The edges of a graph. (Co...
iedgedg 28919 An indexed edge is an edge...
edgopval 28920 The edges of a graph repre...
edgov 28921 The edges of a graph repre...
edgstruct 28922 The edges of a graph repre...
edgiedgb 28923 A set is an edge iff it is...
edg0iedg0 28924 There is no edge in a grap...
isuhgr 28929 The predicate "is an undir...
isushgr 28930 The predicate "is an undir...
uhgrf 28931 The edge function of an un...
ushgrf 28932 The edge function of an un...
uhgrss 28933 An edge is a subset of ver...
uhgreq12g 28934 If two sets have the same ...
uhgrfun 28935 The edge function of an un...
uhgrn0 28936 An edge is a nonempty subs...
lpvtx 28937 The endpoints of a loop (w...
ushgruhgr 28938 An undirected simple hyper...
isuhgrop 28939 The property of being an u...
uhgr0e 28940 The empty graph, with vert...
uhgr0vb 28941 The null graph, with no ve...
uhgr0 28942 The null graph represented...
uhgrun 28943 The union ` U ` of two (un...
uhgrunop 28944 The union of two (undirect...
ushgrun 28945 The union ` U ` of two (un...
ushgrunop 28946 The union of two (undirect...
uhgrstrrepe 28947 Replacing (or adding) the ...
incistruhgr 28948 An _incidence structure_ `...
isupgr 28953 The property of being an u...
wrdupgr 28954 The property of being an u...
upgrf 28955 The edge function of an un...
upgrfn 28956 The edge function of an un...
upgrss 28957 An edge is a subset of ver...
upgrn0 28958 An edge is a nonempty subs...
upgrle 28959 An edge of an undirected p...
upgrfi 28960 An edge is a finite subset...
upgrex 28961 An edge is an unordered pa...
upgrbi 28962 Show that an unordered pai...
upgrop 28963 A pseudograph represented ...
isumgr 28964 The property of being an u...
isumgrs 28965 The simplified property of...
wrdumgr 28966 The property of being an u...
umgrf 28967 The edge function of an un...
umgrfn 28968 The edge function of an un...
umgredg2 28969 An edge of a multigraph ha...
umgrbi 28970 Show that an unordered pai...
upgruhgr 28971 An undirected pseudograph ...
umgrupgr 28972 An undirected multigraph i...
umgruhgr 28973 An undirected multigraph i...
upgrle2 28974 An edge of an undirected p...
umgrnloopv 28975 In a multigraph, there is ...
umgredgprv 28976 In a multigraph, an edge i...
umgrnloop 28977 In a multigraph, there is ...
umgrnloop0 28978 A multigraph has no loops....
umgr0e 28979 The empty graph, with vert...
upgr0e 28980 The empty graph, with vert...
upgr1elem 28981 Lemma for ~ upgr1e and ~ u...
upgr1e 28982 A pseudograph with one edg...
upgr0eop 28983 The empty graph, with vert...
upgr1eop 28984 A pseudograph with one edg...
upgr0eopALT 28985 Alternate proof of ~ upgr0...
upgr1eopALT 28986 Alternate proof of ~ upgr1...
upgrun 28987 The union ` U ` of two pse...
upgrunop 28988 The union of two pseudogra...
umgrun 28989 The union ` U ` of two mul...
umgrunop 28990 The union of two multigrap...
umgrislfupgrlem 28991 Lemma for ~ umgrislfupgr a...
umgrislfupgr 28992 A multigraph is a loop-fre...
lfgredgge2 28993 An edge of a loop-free gra...
lfgrnloop 28994 A loop-free graph has no l...
uhgredgiedgb 28995 In a hypergraph, a set is ...
uhgriedg0edg0 28996 A hypergraph has no edges ...
uhgredgn0 28997 An edge of a hypergraph is...
edguhgr 28998 An edge of a hypergraph is...
uhgredgrnv 28999 An edge of a hypergraph co...
uhgredgss 29000 The set of edges of a hype...
upgredgss 29001 The set of edges of a pseu...
umgredgss 29002 The set of edges of a mult...
edgupgr 29003 Properties of an edge of a...
edgumgr 29004 Properties of an edge of a...
uhgrvtxedgiedgb 29005 In a hypergraph, a vertex ...
upgredg 29006 For each edge in a pseudog...
umgredg 29007 For each edge in a multigr...
upgrpredgv 29008 An edge of a pseudograph a...
umgrpredgv 29009 An edge of a multigraph al...
upgredg2vtx 29010 For a vertex incident to a...
upgredgpr 29011 If a proper pair (of verti...
edglnl 29012 The edges incident with a ...
numedglnl 29013 The number of edges incide...
umgredgne 29014 An edge of a multigraph al...
umgrnloop2 29015 A multigraph has no loops....
umgredgnlp 29016 An edge of a multigraph is...
isuspgr 29021 The property of being a si...
isusgr 29022 The property of being a si...
uspgrf 29023 The edge function of a sim...
usgrf 29024 The edge function of a sim...
isusgrs 29025 The property of being a si...
usgrfs 29026 The edge function of a sim...
usgrfun 29027 The edge function of a sim...
usgredgss 29028 The set of edges of a simp...
edgusgr 29029 An edge of a simple graph ...
isuspgrop 29030 The property of being an u...
isusgrop 29031 The property of being an u...
usgrop 29032 A simple graph represented...
isausgr 29033 The property of an unorder...
ausgrusgrb 29034 The equivalence of the def...
usgrausgri 29035 A simple graph represented...
ausgrumgri 29036 If an alternatively define...
ausgrusgri 29037 The equivalence of the def...
usgrausgrb 29038 The equivalence of the def...
usgredgop 29039 An edge of a simple graph ...
usgrf1o 29040 The edge function of a sim...
usgrf1 29041 The edge function of a sim...
uspgrf1oedg 29042 The edge function of a sim...
usgrss 29043 An edge is a subset of ver...
uspgredgiedg 29044 In a simple pseudograph, f...
uspgriedgedg 29045 In a simple pseudograph, f...
uspgrushgr 29046 A simple pseudograph is an...
uspgrupgr 29047 A simple pseudograph is an...
uspgrupgrushgr 29048 A graph is a simple pseudo...
usgruspgr 29049 A simple graph is a simple...
usgrumgr 29050 A simple graph is an undir...
usgrumgruspgr 29051 A graph is a simple graph ...
usgruspgrb 29052 A class is a simple graph ...
uspgruhgr 29053 An undirected simple pseud...
usgrupgr 29054 A simple graph is an undir...
usgruhgr 29055 A simple graph is an undir...
usgrislfuspgr 29056 A simple graph is a loop-f...
uspgrun 29057 The union ` U ` of two sim...
uspgrunop 29058 The union of two simple ps...
usgrun 29059 The union ` U ` of two sim...
usgrunop 29060 The union of two simple gr...
usgredg2 29061 The value of the "edge fun...
usgredg2ALT 29062 Alternate proof of ~ usgre...
usgredgprv 29063 In a simple graph, an edge...
usgredgprvALT 29064 Alternate proof of ~ usgre...
usgredgppr 29065 An edge of a simple graph ...
usgrpredgv 29066 An edge of a simple graph ...
edgssv2 29067 An edge of a simple graph ...
usgredg 29068 For each edge in a simple ...
usgrnloopv 29069 In a simple graph, there i...
usgrnloopvALT 29070 Alternate proof of ~ usgrn...
usgrnloop 29071 In a simple graph, there i...
usgrnloopALT 29072 Alternate proof of ~ usgrn...
usgrnloop0 29073 A simple graph has no loop...
usgrnloop0ALT 29074 Alternate proof of ~ usgrn...
usgredgne 29075 An edge of a simple graph ...
usgrf1oedg 29076 The edge function of a sim...
uhgr2edg 29077 If a vertex is adjacent to...
umgr2edg 29078 If a vertex is adjacent to...
usgr2edg 29079 If a vertex is adjacent to...
umgr2edg1 29080 If a vertex is adjacent to...
usgr2edg1 29081 If a vertex is adjacent to...
umgrvad2edg 29082 If a vertex is adjacent to...
umgr2edgneu 29083 If a vertex is adjacent to...
usgrsizedg 29084 In a simple graph, the siz...
usgredg3 29085 The value of the "edge fun...
usgredg4 29086 For a vertex incident to a...
usgredgreu 29087 For a vertex incident to a...
usgredg2vtx 29088 For a vertex incident to a...
uspgredg2vtxeu 29089 For a vertex incident to a...
usgredg2vtxeu 29090 For a vertex incident to a...
usgredg2vtxeuALT 29091 Alternate proof of ~ usgre...
uspgredg2vlem 29092 Lemma for ~ uspgredg2v . ...
uspgredg2v 29093 In a simple pseudograph, t...
usgredg2vlem1 29094 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 29095 Lemma 2 for ~ usgredg2v . ...
usgredg2v 29096 In a simple graph, the map...
usgriedgleord 29097 Alternate version of ~ usg...
ushgredgedg 29098 In a simple hypergraph the...
usgredgedg 29099 In a simple graph there is...
ushgredgedgloop 29100 In a simple hypergraph the...
uspgredgleord 29101 In a simple pseudograph th...
usgredgleord 29102 In a simple graph the numb...
usgredgleordALT 29103 Alternate proof for ~ usgr...
usgrstrrepe 29104 Replacing (or adding) the ...
usgr0e 29105 The empty graph, with vert...
usgr0vb 29106 The null graph, with no ve...
uhgr0v0e 29107 The null graph, with no ve...
uhgr0vsize0 29108 The size of a hypergraph w...
uhgr0edgfi 29109 A graph of order 0 (i.e. w...
usgr0v 29110 The null graph, with no ve...
uhgr0vusgr 29111 The null graph, with no ve...
usgr0 29112 The null graph represented...
uspgr1e 29113 A simple pseudograph with ...
usgr1e 29114 A simple graph with one ed...
usgr0eop 29115 The empty graph, with vert...
uspgr1eop 29116 A simple pseudograph with ...
uspgr1ewop 29117 A simple pseudograph with ...
uspgr1v1eop 29118 A simple pseudograph with ...
usgr1eop 29119 A simple graph with (at le...
uspgr2v1e2w 29120 A simple pseudograph with ...
usgr2v1e2w 29121 A simple graph with two ve...
edg0usgr 29122 A class without edges is a...
lfuhgr1v0e 29123 A loop-free hypergraph wit...
usgr1vr 29124 A simple graph with one ve...
usgr1v 29125 A class with one (or no) v...
usgr1v0edg 29126 A class with one (or no) v...
usgrexmpldifpr 29127 Lemma for ~ usgrexmpledg :...
usgrexmplef 29128 Lemma for ~ usgrexmpl . (...
usgrexmpllem 29129 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 29130 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 29131 The edges ` { 0 , 1 } , { ...
usgrexmpl 29132 ` G ` is a simple graph of...
griedg0prc 29133 The class of empty graphs ...
griedg0ssusgr 29134 The class of all simple gr...
usgrprc 29135 The class of simple graphs...
relsubgr 29138 The class of the subgraph ...
subgrv 29139 If a class is a subgraph o...
issubgr 29140 The property of a set to b...
issubgr2 29141 The property of a set to b...
subgrprop 29142 The properties of a subgra...
subgrprop2 29143 The properties of a subgra...
uhgrissubgr 29144 The property of a hypergra...
subgrprop3 29145 The properties of a subgra...
egrsubgr 29146 An empty graph consisting ...
0grsubgr 29147 The null graph (represente...
0uhgrsubgr 29148 The null graph (as hypergr...
uhgrsubgrself 29149 A hypergraph is a subgraph...
subgrfun 29150 The edge function of a sub...
subgruhgrfun 29151 The edge function of a sub...
subgreldmiedg 29152 An element of the domain o...
subgruhgredgd 29153 An edge of a subgraph of a...
subumgredg2 29154 An edge of a subgraph of a...
subuhgr 29155 A subgraph of a hypergraph...
subupgr 29156 A subgraph of a pseudograp...
subumgr 29157 A subgraph of a multigraph...
subusgr 29158 A subgraph of a simple gra...
uhgrspansubgrlem 29159 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 29160 A spanning subgraph ` S ` ...
uhgrspan 29161 A spanning subgraph ` S ` ...
upgrspan 29162 A spanning subgraph ` S ` ...
umgrspan 29163 A spanning subgraph ` S ` ...
usgrspan 29164 A spanning subgraph ` S ` ...
uhgrspanop 29165 A spanning subgraph of a h...
upgrspanop 29166 A spanning subgraph of a p...
umgrspanop 29167 A spanning subgraph of a m...
usgrspanop 29168 A spanning subgraph of a s...
uhgrspan1lem1 29169 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 29170 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 29171 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 29172 The induced subgraph ` S `...
upgrreslem 29173 Lemma for ~ upgrres . (Co...
umgrreslem 29174 Lemma for ~ umgrres and ~ ...
upgrres 29175 A subgraph obtained by rem...
umgrres 29176 A subgraph obtained by rem...
usgrres 29177 A subgraph obtained by rem...
upgrres1lem1 29178 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 29179 Lemma for ~ umgrres1 . (C...
upgrres1lem2 29180 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 29181 Lemma 3 for ~ upgrres1 . ...
upgrres1 29182 A pseudograph obtained by ...
umgrres1 29183 A multigraph obtained by r...
usgrres1 29184 Restricting a simple graph...
isfusgr 29187 The property of being a fi...
fusgrvtxfi 29188 A finite simple graph has ...
isfusgrf1 29189 The property of being a fi...
isfusgrcl 29190 The property of being a fi...
fusgrusgr 29191 A finite simple graph is a...
opfusgr 29192 A finite simple graph repr...
usgredgffibi 29193 The number of edges in a s...
fusgredgfi 29194 In a finite simple graph t...
usgr1v0e 29195 The size of a (finite) sim...
usgrfilem 29196 In a finite simple graph, ...
fusgrfisbase 29197 Induction base for ~ fusgr...
fusgrfisstep 29198 Induction step in ~ fusgrf...
fusgrfis 29199 A finite simple graph is o...
fusgrfupgrfs 29200 A finite simple graph is a...
nbgrprc0 29203 The set of neighbors is em...
nbgrcl 29204 If a class ` X ` has at le...
nbgrval 29205 The set of neighbors of a ...
dfnbgr2 29206 Alternate definition of th...
dfnbgr3 29207 Alternate definition of th...
nbgrnvtx0 29208 If a class ` X ` is not a ...
nbgrel 29209 Characterization of a neig...
nbgrisvtx 29210 Every neighbor ` N ` of a ...
nbgrssvtx 29211 The neighbors of a vertex ...
nbuhgr 29212 The set of neighbors of a ...
nbupgr 29213 The set of neighbors of a ...
nbupgrel 29214 A neighbor of a vertex in ...
nbumgrvtx 29215 The set of neighbors of a ...
nbumgr 29216 The set of neighbors of an...
nbusgrvtx 29217 The set of neighbors of a ...
nbusgr 29218 The set of neighbors of an...
nbgr2vtx1edg 29219 If a graph has two vertice...
nbuhgr2vtx1edgblem 29220 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 29221 If a hypergraph has two ve...
nbusgreledg 29222 A class/vertex is a neighb...
uhgrnbgr0nb 29223 A vertex which is not endp...
nbgr0vtx 29224 In a null graph (with no v...
nbgr0edglem 29225 Lemma for ~ nbgr0edg and ~...
nbgr0edg 29226 In an empty graph (with no...
nbgr1vtx 29227 In a graph with one vertex...
nbgrnself 29228 A vertex in a graph is not...
nbgrnself2 29229 A class ` X ` is not a nei...
nbgrssovtx 29230 The neighbors of a vertex ...
nbgrssvwo2 29231 The neighbors of a vertex ...
nbgrsym 29232 In a graph, the neighborho...
nbupgrres 29233 The neighborhood of a vert...
usgrnbcnvfv 29234 Applying the edge function...
nbusgredgeu 29235 For each neighbor of a ver...
edgnbusgreu 29236 For each edge incident to ...
nbusgredgeu0 29237 For each neighbor of a ver...
nbusgrf1o0 29238 The mapping of neighbors o...
nbusgrf1o1 29239 The set of neighbors of a ...
nbusgrf1o 29240 The set of neighbors of a ...
nbedgusgr 29241 The number of neighbors of...
edgusgrnbfin 29242 The number of neighbors of...
nbusgrfi 29243 The class of neighbors of ...
nbfiusgrfi 29244 The class of neighbors of ...
hashnbusgrnn0 29245 The number of neighbors of...
nbfusgrlevtxm1 29246 The number of neighbors of...
nbfusgrlevtxm2 29247 If there is a vertex which...
nbusgrvtxm1 29248 If the number of neighbors...
nb3grprlem1 29249 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 29250 Lemma 2 for ~ nb3grpr . (...
nb3grpr 29251 The neighbors of a vertex ...
nb3grpr2 29252 The neighbors of a vertex ...
nb3gr2nb 29253 If the neighbors of two ve...
uvtxval 29256 The set of all universal v...
uvtxel 29257 A universal vertex, i.e. a...
uvtxisvtx 29258 A universal vertex is a ve...
uvtxssvtx 29259 The set of the universal v...
vtxnbuvtx 29260 A universal vertex has all...
uvtxnbgrss 29261 A universal vertex has all...
uvtxnbgrvtx 29262 A universal vertex is neig...
uvtx0 29263 There is no universal vert...
isuvtx 29264 The set of all universal v...
uvtxel1 29265 Characterization of a univ...
uvtx01vtx 29266 If a graph/class has no ed...
uvtx2vtx1edg 29267 If a graph has two vertice...
uvtx2vtx1edgb 29268 If a hypergraph has two ve...
uvtxnbgr 29269 A universal vertex has all...
uvtxnbgrb 29270 A vertex is universal iff ...
uvtxusgr 29271 The set of all universal v...
uvtxusgrel 29272 A universal vertex, i.e. a...
uvtxnm1nbgr 29273 A universal vertex has ` n...
nbusgrvtxm1uvtx 29274 If the number of neighbors...
uvtxnbvtxm1 29275 A universal vertex has ` n...
nbupgruvtxres 29276 The neighborhood of a univ...
uvtxupgrres 29277 A universal vertex is univ...
cplgruvtxb 29282 A graph ` G ` is complete ...
prcliscplgr 29283 A proper class (representi...
iscplgr 29284 The property of being a co...
iscplgrnb 29285 A graph is complete iff al...
iscplgredg 29286 A graph ` G ` is complete ...
iscusgr 29287 The property of being a co...
cusgrusgr 29288 A complete simple graph is...
cusgrcplgr 29289 A complete simple graph is...
iscusgrvtx 29290 A simple graph is complete...
cusgruvtxb 29291 A simple graph is complete...
iscusgredg 29292 A simple graph is complete...
cusgredg 29293 In a complete simple graph...
cplgr0 29294 The null graph (with no ve...
cusgr0 29295 The null graph (with no ve...
cplgr0v 29296 A null graph (with no vert...
cusgr0v 29297 A graph with no vertices a...
cplgr1vlem 29298 Lemma for ~ cplgr1v and ~ ...
cplgr1v 29299 A graph with one vertex is...
cusgr1v 29300 A graph with one vertex an...
cplgr2v 29301 An undirected hypergraph w...
cplgr2vpr 29302 An undirected hypergraph w...
nbcplgr 29303 In a complete graph, each ...
cplgr3v 29304 A pseudograph with three (...
cusgr3vnbpr 29305 The neighbors of a vertex ...
cplgrop 29306 A complete graph represent...
cusgrop 29307 A complete simple graph re...
cusgrexilem1 29308 Lemma 1 for ~ cusgrexi . ...
usgrexilem 29309 Lemma for ~ usgrexi . (Co...
usgrexi 29310 An arbitrary set regarded ...
cusgrexilem2 29311 Lemma 2 for ~ cusgrexi . ...
cusgrexi 29312 An arbitrary set ` V ` reg...
cusgrexg 29313 For each set there is a se...
structtousgr 29314 Any (extensible) structure...
structtocusgr 29315 Any (extensible) structure...
cffldtocusgr 29316 The field of complex numbe...
cffldtocusgrOLD 29317 Obsolete version of ~ cffl...
cusgrres 29318 Restricting a complete sim...
cusgrsizeindb0 29319 Base case of the induction...
cusgrsizeindb1 29320 Base case of the induction...
cusgrsizeindslem 29321 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 29322 Part 1 of induction step i...
cusgrsize2inds 29323 Induction step in ~ cusgrs...
cusgrsize 29324 The size of a finite compl...
cusgrfilem1 29325 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 29326 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 29327 Lemma 3 for ~ cusgrfi . (...
cusgrfi 29328 If the size of a complete ...
usgredgsscusgredg 29329 A simple graph is a subgra...
usgrsscusgr 29330 A simple graph is a subgra...
sizusglecusglem1 29331 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 29332 Lemma 2 for ~ sizusglecusg...
sizusglecusg 29333 The size of a simple graph...
fusgrmaxsize 29334 The maximum size of a fini...
vtxdgfval 29337 The value of the vertex de...
vtxdgval 29338 The degree of a vertex. (...
vtxdgfival 29339 The degree of a vertex for...
vtxdgop 29340 The vertex degree expresse...
vtxdgf 29341 The vertex degree function...
vtxdgelxnn0 29342 The degree of a vertex is ...
vtxdg0v 29343 The degree of a vertex in ...
vtxdg0e 29344 The degree of a vertex in ...
vtxdgfisnn0 29345 The degree of a vertex in ...
vtxdgfisf 29346 The vertex degree function...
vtxdeqd 29347 Equality theorem for the v...
vtxduhgr0e 29348 The degree of a vertex in ...
vtxdlfuhgr1v 29349 The degree of the vertex i...
vdumgr0 29350 A vertex in a multigraph h...
vtxdun 29351 The degree of a vertex in ...
vtxdfiun 29352 The degree of a vertex in ...
vtxduhgrun 29353 The degree of a vertex in ...
vtxduhgrfiun 29354 The degree of a vertex in ...
vtxdlfgrval 29355 The value of the vertex de...
vtxdumgrval 29356 The value of the vertex de...
vtxdusgrval 29357 The value of the vertex de...
vtxd0nedgb 29358 A vertex has degree 0 iff ...
vtxdushgrfvedglem 29359 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 29360 The value of the vertex de...
vtxdusgrfvedg 29361 The value of the vertex de...
vtxduhgr0nedg 29362 If a vertex in a hypergrap...
vtxdumgr0nedg 29363 If a vertex in a multigrap...
vtxduhgr0edgnel 29364 A vertex in a hypergraph h...
vtxdusgr0edgnel 29365 A vertex in a simple graph...
vtxdusgr0edgnelALT 29366 Alternate proof of ~ vtxdu...
vtxdgfusgrf 29367 The vertex degree function...
vtxdgfusgr 29368 In a finite simple graph, ...
fusgrn0degnn0 29369 In a nonempty, finite grap...
1loopgruspgr 29370 A graph with one edge whic...
1loopgredg 29371 The set of edges in a grap...
1loopgrnb0 29372 In a graph (simple pseudog...
1loopgrvd2 29373 The vertex degree of a one...
1loopgrvd0 29374 The vertex degree of a one...
1hevtxdg0 29375 The vertex degree of verte...
1hevtxdg1 29376 The vertex degree of verte...
1hegrvtxdg1 29377 The vertex degree of a gra...
1hegrvtxdg1r 29378 The vertex degree of a gra...
1egrvtxdg1 29379 The vertex degree of a one...
1egrvtxdg1r 29380 The vertex degree of a one...
1egrvtxdg0 29381 The vertex degree of a one...
p1evtxdeqlem 29382 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 29383 If an edge ` E ` which doe...
p1evtxdp1 29384 If an edge ` E ` (not bein...
uspgrloopvtx 29385 The set of vertices in a g...
uspgrloopvtxel 29386 A vertex in a graph (simpl...
uspgrloopiedg 29387 The set of edges in a grap...
uspgrloopedg 29388 The set of edges in a grap...
uspgrloopnb0 29389 In a graph (simple pseudog...
uspgrloopvd2 29390 The vertex degree of a one...
umgr2v2evtx 29391 The set of vertices in a m...
umgr2v2evtxel 29392 A vertex in a multigraph w...
umgr2v2eiedg 29393 The edge function in a mul...
umgr2v2eedg 29394 The set of edges in a mult...
umgr2v2e 29395 A multigraph with two edge...
umgr2v2enb1 29396 In a multigraph with two e...
umgr2v2evd2 29397 In a multigraph with two e...
hashnbusgrvd 29398 In a simple graph, the num...
usgruvtxvdb 29399 In a finite simple graph w...
vdiscusgrb 29400 A finite simple graph with...
vdiscusgr 29401 In a finite complete simpl...
vtxdusgradjvtx 29402 The degree of a vertex in ...
usgrvd0nedg 29403 If a vertex in a simple gr...
uhgrvd00 29404 If every vertex in a hyper...
usgrvd00 29405 If every vertex in a simpl...
vdegp1ai 29406 The induction step for a v...
vdegp1bi 29407 The induction step for a v...
vdegp1ci 29408 The induction step for a v...
vtxdginducedm1lem1 29409 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 29410 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 29411 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 29412 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 29413 The degree of a vertex ` v...
vtxdginducedm1fi 29414 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 29415 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 29416 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 29417 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 29418 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 29419 Induction step of ~ finsum...
finsumvtxdg2size 29420 The sum of the degrees of ...
fusgr1th 29421 The sum of the degrees of ...
finsumvtxdgeven 29422 The sum of the degrees of ...
vtxdgoddnumeven 29423 The number of vertices of ...
fusgrvtxdgonume 29424 The number of vertices of ...
isrgr 29429 The property of a class be...
rgrprop 29430 The properties of a k-regu...
isrusgr 29431 The property of being a k-...
rusgrprop 29432 The properties of a k-regu...
rusgrrgr 29433 A k-regular simple graph i...
rusgrusgr 29434 A k-regular simple graph i...
finrusgrfusgr 29435 A finite regular simple gr...
isrusgr0 29436 The property of being a k-...
rusgrprop0 29437 The properties of a k-regu...
usgreqdrusgr 29438 If all vertices in a simpl...
fusgrregdegfi 29439 In a nonempty finite simpl...
fusgrn0eqdrusgr 29440 If all vertices in a nonem...
frusgrnn0 29441 In a nonempty finite k-reg...
0edg0rgr 29442 A graph is 0-regular if it...
uhgr0edg0rgr 29443 A hypergraph is 0-regular ...
uhgr0edg0rgrb 29444 A hypergraph is 0-regular ...
usgr0edg0rusgr 29445 A simple graph is 0-regula...
0vtxrgr 29446 A null graph (with no vert...
0vtxrusgr 29447 A graph with no vertices a...
0uhgrrusgr 29448 The null graph as hypergra...
0grrusgr 29449 The null graph represented...
0grrgr 29450 The null graph represented...
cusgrrusgr 29451 A complete simple graph wi...
cusgrm1rusgr 29452 A finite simple graph with...
rusgrpropnb 29453 The properties of a k-regu...
rusgrpropedg 29454 The properties of a k-regu...
rusgrpropadjvtx 29455 The properties of a k-regu...
rusgrnumwrdl2 29456 In a k-regular simple grap...
rusgr1vtxlem 29457 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 29458 If a k-regular simple grap...
rgrusgrprc 29459 The class of 0-regular sim...
rusgrprc 29460 The class of 0-regular sim...
rgrprc 29461 The class of 0-regular gra...
rgrprcx 29462 The class of 0-regular gra...
rgrx0ndm 29463 0 is not in the domain of ...
rgrx0nd 29464 The potentially alternativ...
ewlksfval 29471 The set of s-walks of edge...
isewlk 29472 Conditions for a function ...
ewlkprop 29473 Properties of an s-walk of...
ewlkinedg 29474 The intersection (common v...
ewlkle 29475 An s-walk of edges is also...
upgrewlkle2 29476 In a pseudograph, there is...
wkslem1 29477 Lemma 1 for walks to subst...
wkslem2 29478 Lemma 2 for walks to subst...
wksfval 29479 The set of walks (in an un...
iswlk 29480 Properties of a pair of fu...
wlkprop 29481 Properties of a walk. (Co...
wlkv 29482 The classes involved in a ...
iswlkg 29483 Generalization of ~ iswlk ...
wlkf 29484 The mapping enumerating th...
wlkcl 29485 A walk has length ` # ( F ...
wlkp 29486 The mapping enumerating th...
wlkpwrd 29487 The sequence of vertices o...
wlklenvp1 29488 The number of vertices of ...
wksv 29489 The class of walks is a se...
wksvOLD 29490 Obsolete version of ~ wksv...
wlkn0 29491 The sequence of vertices o...
wlklenvm1 29492 The number of edges of a w...
ifpsnprss 29493 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 29494 Each pair of adjacent vert...
wlkvtxiedg 29495 The vertices of a walk are...
relwlk 29496 The set ` ( Walks `` G ) `...
wlkvv 29497 If there is at least one w...
wlkop 29498 A walk is an ordered pair....
wlkcpr 29499 A walk as class with two c...
wlk2f 29500 If there is a walk ` W ` t...
wlkcomp 29501 A walk expressed by proper...
wlkcompim 29502 Implications for the prope...
wlkelwrd 29503 The components of a walk a...
wlkeq 29504 Conditions for two walks (...
edginwlk 29505 The value of the edge func...
upgredginwlk 29506 The value of the edge func...
iedginwlk 29507 The value of the edge func...
wlkl1loop 29508 A walk of length 1 from a ...
wlk1walk 29509 A walk is a 1-walk "on the...
wlk1ewlk 29510 A walk is an s-walk "on th...
upgriswlk 29511 Properties of a pair of fu...
upgrwlkedg 29512 The edges of a walk in a p...
upgrwlkcompim 29513 Implications for the prope...
wlkvtxedg 29514 The vertices of a walk are...
upgrwlkvtxedg 29515 The pairs of connected ver...
uspgr2wlkeq 29516 Conditions for two walks w...
uspgr2wlkeq2 29517 Conditions for two walks w...
uspgr2wlkeqi 29518 Conditions for two walks w...
umgrwlknloop 29519 In a multigraph, each walk...
wlkResOLD 29520 Obsolete version of ~ opab...
wlkv0 29521 If there is a walk in the ...
g0wlk0 29522 There is no walk in a null...
0wlk0 29523 There is no walk for the e...
wlk0prc 29524 There is no walk in a null...
wlklenvclwlk 29525 The number of vertices in ...
wlkson 29526 The set of walks between t...
iswlkon 29527 Properties of a pair of fu...
wlkonprop 29528 Properties of a walk betwe...
wlkpvtx 29529 A walk connects vertices. ...
wlkepvtx 29530 The endpoints of a walk ar...
wlkoniswlk 29531 A walk between two vertice...
wlkonwlk 29532 A walk is a walk between i...
wlkonwlk1l 29533 A walk is a walk from its ...
wlksoneq1eq2 29534 Two walks with identical s...
wlkonl1iedg 29535 If there is a walk between...
wlkon2n0 29536 The length of a walk betwe...
2wlklem 29537 Lemma for theorems for wal...
upgr2wlk 29538 Properties of a pair of fu...
wlkreslem 29539 Lemma for ~ wlkres . (Con...
wlkres 29540 The restriction ` <. H , Q...
redwlklem 29541 Lemma for ~ redwlk . (Con...
redwlk 29542 A walk ending at the last ...
wlkp1lem1 29543 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 29544 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 29545 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 29546 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 29547 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 29548 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 29549 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 29550 Lemma for ~ wlkp1 . (Cont...
wlkp1 29551 Append one path segment (e...
wlkdlem1 29552 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 29553 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 29554 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 29555 Lemma 4 for ~ wlkd . (Con...
wlkd 29556 Two words representing a w...
lfgrwlkprop 29557 Two adjacent vertices in a...
lfgriswlk 29558 Conditions for a pair of f...
lfgrwlknloop 29559 In a loop-free graph, each...
reltrls 29564 The set ` ( Trails `` G ) ...
trlsfval 29565 The set of trails (in an u...
istrl 29566 Conditions for a pair of c...
trliswlk 29567 A trail is a walk. (Contr...
trlf1 29568 The enumeration ` F ` of a...
trlreslem 29569 Lemma for ~ trlres . Form...
trlres 29570 The restriction ` <. H , Q...
upgrtrls 29571 The set of trails in a pse...
upgristrl 29572 Properties of a pair of fu...
upgrf1istrl 29573 Properties of a pair of a ...
wksonproplem 29574 Lemma for theorems for pro...
wksonproplemOLD 29575 Obsolete version of ~ wkso...
trlsonfval 29576 The set of trails between ...
istrlson 29577 Properties of a pair of fu...
trlsonprop 29578 Properties of a trail betw...
trlsonistrl 29579 A trail between two vertic...
trlsonwlkon 29580 A trail between two vertic...
trlontrl 29581 A trail is a trail between...
relpths 29590 The set ` ( Paths `` G ) `...
pthsfval 29591 The set of paths (in an un...
spthsfval 29592 The set of simple paths (i...
ispth 29593 Conditions for a pair of c...
isspth 29594 Conditions for a pair of c...
pthistrl 29595 A path is a trail (in an u...
spthispth 29596 A simple path is a path (i...
pthiswlk 29597 A path is a walk (in an un...
spthiswlk 29598 A simple path is a walk (i...
pthdivtx 29599 The inner vertices of a pa...
pthdadjvtx 29600 The adjacent vertices of a...
2pthnloop 29601 A path of length at least ...
upgr2pthnlp 29602 A path of length at least ...
spthdifv 29603 The vertices of a simple p...
spthdep 29604 A simple path (at least of...
pthdepisspth 29605 A path with different star...
upgrwlkdvdelem 29606 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 29607 In a pseudograph, all edge...
upgrspthswlk 29608 The set of simple paths in...
upgrwlkdvspth 29609 A walk consisting of diffe...
pthsonfval 29610 The set of paths between t...
spthson 29611 The set of simple paths be...
ispthson 29612 Properties of a pair of fu...
isspthson 29613 Properties of a pair of fu...
pthsonprop 29614 Properties of a path betwe...
spthonprop 29615 Properties of a simple pat...
pthonispth 29616 A path between two vertice...
pthontrlon 29617 A path between two vertice...
pthonpth 29618 A path is a path between i...
isspthonpth 29619 A pair of functions is a s...
spthonisspth 29620 A simple path between to v...
spthonpthon 29621 A simple path between two ...
spthonepeq 29622 The endpoints of a simple ...
uhgrwkspthlem1 29623 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 29624 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 29625 Any walk of length 1 betwe...
usgr2wlkneq 29626 The vertices and edges are...
usgr2wlkspthlem1 29627 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 29628 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 29629 In a simple graph, any wal...
usgr2trlncl 29630 In a simple graph, any tra...
usgr2trlspth 29631 In a simple graph, any tra...
usgr2pthspth 29632 In a simple graph, any pat...
usgr2pthlem 29633 Lemma for ~ usgr2pth . (C...
usgr2pth 29634 In a simple graph, there i...
usgr2pth0 29635 In a simply graph, there i...
pthdlem1 29636 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 29637 Lemma for ~ pthdlem2 . (C...
pthdlem2 29638 Lemma 2 for ~ pthd . (Con...
pthd 29639 Two words representing a t...
clwlks 29642 The set of closed walks (i...
isclwlk 29643 A pair of functions repres...
clwlkiswlk 29644 A closed walk is a walk (i...
clwlkwlk 29645 Closed walks are walks (in...
clwlkswks 29646 Closed walks are walks (in...
isclwlke 29647 Properties of a pair of fu...
isclwlkupgr 29648 Properties of a pair of fu...
clwlkcomp 29649 A closed walk expressed by...
clwlkcompim 29650 Implications for the prope...
upgrclwlkcompim 29651 Implications for the prope...
clwlkcompbp 29652 Basic properties of the co...
clwlkl1loop 29653 A closed walk of length 1 ...
crcts 29658 The set of circuits (in an...
cycls 29659 The set of cycles (in an u...
iscrct 29660 Sufficient and necessary c...
iscycl 29661 Sufficient and necessary c...
crctprop 29662 The properties of a circui...
cyclprop 29663 The properties of a cycle:...
crctisclwlk 29664 A circuit is a closed walk...
crctistrl 29665 A circuit is a trail. (Co...
crctiswlk 29666 A circuit is a walk. (Con...
cyclispth 29667 A cycle is a path. (Contr...
cycliswlk 29668 A cycle is a walk. (Contr...
cycliscrct 29669 A cycle is a circuit. (Co...
cyclnspth 29670 A (non-trivial) cycle is n...
cyclispthon 29671 A cycle is a path starting...
lfgrn1cycl 29672 In a loop-free graph there...
usgr2trlncrct 29673 In a simple graph, any tra...
umgrn1cycl 29674 In a multigraph graph (wit...
uspgrn2crct 29675 In a simple pseudograph th...
usgrn2cycl 29676 In a simple graph there ar...
crctcshwlkn0lem1 29677 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 29678 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 29679 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 29680 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 29681 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 29682 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 29683 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 29684 Lemma for ~ crctcsh . (Co...
crctcshlem2 29685 Lemma for ~ crctcsh . (Co...
crctcshlem3 29686 Lemma for ~ crctcsh . (Co...
crctcshlem4 29687 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 29688 Cyclically shifting the in...
crctcshwlk 29689 Cyclically shifting the in...
crctcshtrl 29690 Cyclically shifting the in...
crctcsh 29691 Cyclically shifting the in...
wwlks 29702 The set of walks (in an un...
iswwlks 29703 A word over the set of ver...
wwlksn 29704 The set of walks (in an un...
iswwlksn 29705 A word over the set of ver...
wwlksnprcl 29706 Derivation of the length o...
iswwlksnx 29707 Properties of a word to re...
wwlkbp 29708 Basic properties of a walk...
wwlknbp 29709 Basic properties of a walk...
wwlknp 29710 Properties of a set being ...
wwlknbp1 29711 Other basic properties of ...
wwlknvtx 29712 The symbols of a word ` W ...
wwlknllvtx 29713 If a word ` W ` represents...
wwlknlsw 29714 If a word represents a wal...
wspthsn 29715 The set of simple paths of...
iswspthn 29716 An element of the set of s...
wspthnp 29717 Properties of a set being ...
wwlksnon 29718 The set of walks of a fixe...
wspthsnon 29719 The set of simple paths of...
iswwlksnon 29720 The set of walks of a fixe...
wwlksnon0 29721 Sufficient conditions for ...
wwlksonvtx 29722 If a word ` W ` represents...
iswspthsnon 29723 The set of simple paths of...
wwlknon 29724 An element of the set of w...
wspthnon 29725 An element of the set of s...
wspthnonp 29726 Properties of a set being ...
wspthneq1eq2 29727 Two simple paths with iden...
wwlksn0s 29728 The set of all walks as wo...
wwlkssswrd 29729 Walks (represented by word...
wwlksn0 29730 A walk of length 0 is repr...
0enwwlksnge1 29731 In graphs without edges, t...
wwlkswwlksn 29732 A walk of a fixed length a...
wwlkssswwlksn 29733 The walks of a fixed lengt...
wlkiswwlks1 29734 The sequence of vertices i...
wlklnwwlkln1 29735 The sequence of vertices i...
wlkiswwlks2lem1 29736 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 29737 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 29738 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 29739 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 29740 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 29741 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 29742 A walk as word corresponds...
wlkiswwlks 29743 A walk as word corresponds...
wlkiswwlksupgr2 29744 A walk as word corresponds...
wlkiswwlkupgr 29745 A walk as word corresponds...
wlkswwlksf1o 29746 The mapping of (ordinary) ...
wlkswwlksen 29747 The set of walks as words ...
wwlksm1edg 29748 Removing the trailing edge...
wlklnwwlkln2lem 29749 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 29750 A walk of length ` N ` as ...
wlklnwwlkn 29751 A walk of length ` N ` as ...
wlklnwwlklnupgr2 29752 A walk of length ` N ` as ...
wlklnwwlknupgr 29753 A walk of length ` N ` as ...
wlknewwlksn 29754 If a walk in a pseudograph...
wlknwwlksnbij 29755 The mapping ` ( t e. T |->...
wlknwwlksnen 29756 In a simple pseudograph, t...
wlknwwlksneqs 29757 The set of walks of a fixe...
wwlkseq 29758 Equality of two walks (as ...
wwlksnred 29759 Reduction of a walk (as wo...
wwlksnext 29760 Extension of a walk (as wo...
wwlksnextbi 29761 Extension of a walk (as wo...
wwlksnredwwlkn 29762 For each walk (as word) of...
wwlksnredwwlkn0 29763 For each walk (as word) of...
wwlksnextwrd 29764 Lemma for ~ wwlksnextbij ....
wwlksnextfun 29765 Lemma for ~ wwlksnextbij ....
wwlksnextinj 29766 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 29767 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 29768 Lemma for ~ wwlksnextbij ....
wwlksnextbij 29769 There is a bijection betwe...
wwlksnexthasheq 29770 The number of the extensio...
disjxwwlksn 29771 Sets of walks (as words) e...
wwlksnndef 29772 Conditions for ` WWalksN `...
wwlksnfi 29773 The number of walks repres...
wlksnfi 29774 The number of walks of fix...
wlksnwwlknvbij 29775 There is a bijection betwe...
wwlksnextproplem1 29776 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 29777 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 29778 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 29779 Adding additional properti...
disjxwwlkn 29780 Sets of walks (as words) e...
hashwwlksnext 29781 Number of walks (as words)...
wwlksnwwlksnon 29782 A walk of fixed length is ...
wspthsnwspthsnon 29783 A simple path of fixed len...
wspthsnonn0vne 29784 If the set of simple paths...
wspthsswwlkn 29785 The set of simple paths of...
wspthnfi 29786 In a finite graph, the set...
wwlksnonfi 29787 In a finite graph, the set...
wspthsswwlknon 29788 The set of simple paths of...
wspthnonfi 29789 In a finite graph, the set...
wspniunwspnon 29790 The set of nonempty simple...
wspn0 29791 If there are no vertices, ...
2wlkdlem1 29792 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 29793 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 29794 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 29795 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 29796 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 29797 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 29798 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 29799 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 29800 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 29801 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 29802 Lemma 10 for ~ 3wlkd . (C...
2wlkd 29803 Construction of a walk fro...
2wlkond 29804 A walk of length 2 from on...
2trld 29805 Construction of a trail fr...
2trlond 29806 A trail of length 2 from o...
2pthd 29807 A path of length 2 from on...
2spthd 29808 A simple path of length 2 ...
2pthond 29809 A simple path of length 2 ...
2pthon3v 29810 For a vertex adjacent to t...
umgr2adedgwlklem 29811 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 29812 In a multigraph, two adjac...
umgr2adedgwlkon 29813 In a multigraph, two adjac...
umgr2adedgwlkonALT 29814 Alternate proof for ~ umgr...
umgr2adedgspth 29815 In a multigraph, two adjac...
umgr2wlk 29816 In a multigraph, there is ...
umgr2wlkon 29817 For each pair of adjacent ...
elwwlks2s3 29818 A walk of length 2 as word...
midwwlks2s3 29819 There is a vertex between ...
wwlks2onv 29820 If a length 3 string repre...
elwwlks2ons3im 29821 A walk as word of length 2...
elwwlks2ons3 29822 For each walk of length 2 ...
s3wwlks2on 29823 A length 3 string which re...
umgrwwlks2on 29824 A walk of length 2 between...
wwlks2onsym 29825 There is a walk of length ...
elwwlks2on 29826 A walk of length 2 between...
elwspths2on 29827 A simple path of length 2 ...
wpthswwlks2on 29828 For two different vertices...
2wspdisj 29829 All simple paths of length...
2wspiundisj 29830 All simple paths of length...
usgr2wspthons3 29831 A simple path of length 2 ...
usgr2wspthon 29832 A simple path of length 2 ...
elwwlks2 29833 A walk of length 2 between...
elwspths2spth 29834 A simple path of length 2 ...
rusgrnumwwlkl1 29835 In a k-regular graph, ther...
rusgrnumwwlkslem 29836 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 29837 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 29838 Induction base 0 for ~ rus...
rusgrnumwwlkb1 29839 Induction base 1 for ~ rus...
rusgr0edg 29840 Special case for graphs wi...
rusgrnumwwlks 29841 Induction step for ~ rusgr...
rusgrnumwwlk 29842 In a ` K `-regular graph, ...
rusgrnumwwlkg 29843 In a ` K `-regular graph, ...
rusgrnumwlkg 29844 In a k-regular graph, the ...
clwwlknclwwlkdif 29845 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 29846 In a ` K `-regular graph, ...
clwwlk 29849 The set of closed walks (i...
isclwwlk 29850 Properties of a word to re...
clwwlkbp 29851 Basic properties of a clos...
clwwlkgt0 29852 There is no empty closed w...
clwwlksswrd 29853 Closed walks (represented ...
clwwlk1loop 29854 A closed walk of length 1 ...
clwwlkccatlem 29855 Lemma for ~ clwwlkccat : i...
clwwlkccat 29856 The concatenation of two w...
umgrclwwlkge2 29857 A closed walk in a multigr...
clwlkclwwlklem2a1 29858 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 29859 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 29860 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 29861 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 29862 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 29863 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 29864 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 29865 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 29866 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 29867 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 29868 A closed walk as word of l...
clwlkclwwlk2 29869 A closed walk corresponds ...
clwlkclwwlkflem 29870 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 29871 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 29872 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 29873 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 29874 ` F ` is a function from t...
clwlkclwwlkfo 29875 ` F ` is a function from t...
clwlkclwwlkf1 29876 ` F ` is a one-to-one func...
clwlkclwwlkf1o 29877 ` F ` is a bijection betwe...
clwlkclwwlken 29878 The set of the nonempty cl...
clwwisshclwwslemlem 29879 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 29880 Lemma for ~ clwwisshclwws ...
clwwisshclwws 29881 Cyclically shifting a clos...
clwwisshclwwsn 29882 Cyclically shifting a clos...
erclwwlkrel 29883 ` .~ ` is a relation. (Co...
erclwwlkeq 29884 Two classes are equivalent...
erclwwlkeqlen 29885 If two classes are equival...
erclwwlkref 29886 ` .~ ` is a reflexive rela...
erclwwlksym 29887 ` .~ ` is a symmetric rela...
erclwwlktr 29888 ` .~ ` is a transitive rel...
erclwwlk 29889 ` .~ ` is an equivalence r...
clwwlkn 29892 The set of closed walks of...
isclwwlkn 29893 A word over the set of ver...
clwwlkn0 29894 There is no closed walk of...
clwwlkneq0 29895 Sufficient conditions for ...
clwwlkclwwlkn 29896 A closed walk of a fixed l...
clwwlksclwwlkn 29897 The closed walks of a fixe...
clwwlknlen 29898 The length of a word repre...
clwwlknnn 29899 The length of a closed wal...
clwwlknwrd 29900 A closed walk of a fixed l...
clwwlknbp 29901 Basic properties of a clos...
isclwwlknx 29902 Characterization of a word...
clwwlknp 29903 Properties of a set being ...
clwwlknwwlksn 29904 A word representing a clos...
clwwlknlbonbgr1 29905 The last but one vertex in...
clwwlkinwwlk 29906 If the initial vertex of a...
clwwlkn1 29907 A closed walk of length 1 ...
loopclwwlkn1b 29908 The singleton word consist...
clwwlkn1loopb 29909 A word represents a closed...
clwwlkn2 29910 A closed walk of length 2 ...
clwwlknfi 29911 If there is only a finite ...
clwwlkel 29912 Obtaining a closed walk (a...
clwwlkf 29913 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 29914 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 29915 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 29916 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 29917 F is a 1-1 onto function, ...
clwwlken 29918 The set of closed walks of...
clwwlknwwlkncl 29919 Obtaining a closed walk (a...
clwwlkwwlksb 29920 A nonempty word over verti...
clwwlknwwlksnb 29921 A word over vertices repre...
clwwlkext2edg 29922 If a word concatenated wit...
wwlksext2clwwlk 29923 If a word represents a wal...
wwlksubclwwlk 29924 Any prefix of a word repre...
clwwnisshclwwsn 29925 Cyclically shifting a clos...
eleclclwwlknlem1 29926 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 29927 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 29928 The set of cyclical shifts...
clwwlknccat 29929 The concatenation of two w...
umgr2cwwk2dif 29930 If a word represents a clo...
umgr2cwwkdifex 29931 If a word represents a clo...
erclwwlknrel 29932 ` .~ ` is a relation. (Co...
erclwwlkneq 29933 Two classes are equivalent...
erclwwlkneqlen 29934 If two classes are equival...
erclwwlknref 29935 ` .~ ` is a reflexive rela...
erclwwlknsym 29936 ` .~ ` is a symmetric rela...
erclwwlkntr 29937 ` .~ ` is a transitive rel...
erclwwlkn 29938 ` .~ ` is an equivalence r...
qerclwwlknfi 29939 The quotient set of the se...
hashclwwlkn0 29940 The number of closed walks...
eclclwwlkn1 29941 An equivalence class accor...
eleclclwwlkn 29942 A member of an equivalence...
hashecclwwlkn1 29943 The size of every equivale...
umgrhashecclwwlk 29944 The size of every equivale...
fusgrhashclwwlkn 29945 The size of the set of clo...
clwwlkndivn 29946 The size of the set of clo...
clwlknf1oclwwlknlem1 29947 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 29948 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 29949 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 29950 There is a one-to-one onto...
clwlkssizeeq 29951 The size of the set of clo...
clwlksndivn 29952 The size of the set of clo...
clwwlknonmpo 29955 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 29956 The set of closed walks on...
isclwwlknon 29957 A word over the set of ver...
clwwlk0on0 29958 There is no word over the ...
clwwlknon0 29959 Sufficient conditions for ...
clwwlknonfin 29960 In a finite graph ` G ` , ...
clwwlknonel 29961 Characterization of a word...
clwwlknonccat 29962 The concatenation of two w...
clwwlknon1 29963 The set of closed walks on...
clwwlknon1loop 29964 If there is a loop at vert...
clwwlknon1nloop 29965 If there is no loop at ver...
clwwlknon1sn 29966 The set of (closed) walks ...
clwwlknon1le1 29967 There is at most one (clos...
clwwlknon2 29968 The set of closed walks on...
clwwlknon2x 29969 The set of closed walks on...
s2elclwwlknon2 29970 Sufficient conditions of a...
clwwlknon2num 29971 In a ` K `-regular graph `...
clwwlknonwwlknonb 29972 A word over vertices repre...
clwwlknonex2lem1 29973 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 29974 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 29975 Extending a closed walk ` ...
clwwlknonex2e 29976 Extending a closed walk ` ...
clwwlknondisj 29977 The sets of closed walks o...
clwwlknun 29978 The set of closed walks of...
clwwlkvbij 29979 There is a bijection betwe...
0ewlk 29980 The empty set (empty seque...
1ewlk 29981 A sequence of 1 edge is an...
0wlk 29982 A pair of an empty set (of...
is0wlk 29983 A pair of an empty set (of...
0wlkonlem1 29984 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 29985 Lemma 2 for ~ 0wlkon and ~...
0wlkon 29986 A walk of length 0 from a ...
0wlkons1 29987 A walk of length 0 from a ...
0trl 29988 A pair of an empty set (of...
is0trl 29989 A pair of an empty set (of...
0trlon 29990 A trail of length 0 from a...
0pth 29991 A pair of an empty set (of...
0spth 29992 A pair of an empty set (of...
0pthon 29993 A path of length 0 from a ...
0pthon1 29994 A path of length 0 from a ...
0pthonv 29995 For each vertex there is a...
0clwlk 29996 A pair of an empty set (of...
0clwlkv 29997 Any vertex (more precisely...
0clwlk0 29998 There is no closed walk in...
0crct 29999 A pair of an empty set (of...
0cycl 30000 A pair of an empty set (of...
1pthdlem1 30001 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 30002 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 30003 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 30004 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 30005 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 30006 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 30007 In a graph with two vertic...
1trld 30008 In a graph with two vertic...
1pthd 30009 In a graph with two vertic...
1pthond 30010 In a graph with two vertic...
upgr1wlkdlem1 30011 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 30012 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 30013 In a pseudograph with two ...
upgr1trld 30014 In a pseudograph with two ...
upgr1pthd 30015 In a pseudograph with two ...
upgr1pthond 30016 In a pseudograph with two ...
lppthon 30017 A loop (which is an edge a...
lp1cycl 30018 A loop (which is an edge a...
1pthon2v 30019 For each pair of adjacent ...
1pthon2ve 30020 For each pair of adjacent ...
wlk2v2elem1 30021 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 30022 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 30023 In a graph with two vertic...
ntrl2v2e 30024 A walk which is not a trai...
3wlkdlem1 30025 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 30026 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 30027 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 30028 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 30029 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 30030 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 30031 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 30032 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 30033 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 30034 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 30035 Lemma 10 for ~ 3wlkd . (C...
3wlkd 30036 Construction of a walk fro...
3wlkond 30037 A walk of length 3 from on...
3trld 30038 Construction of a trail fr...
3trlond 30039 A trail of length 3 from o...
3pthd 30040 A path of length 3 from on...
3pthond 30041 A path of length 3 from on...
3spthd 30042 A simple path of length 3 ...
3spthond 30043 A simple path of length 3 ...
3cycld 30044 Construction of a 3-cycle ...
3cyclpd 30045 Construction of a 3-cycle ...
upgr3v3e3cycl 30046 If there is a cycle of len...
uhgr3cyclexlem 30047 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 30048 If there are three differe...
umgr3cyclex 30049 If there are three (differ...
umgr3v3e3cycl 30050 If and only if there is a ...
upgr4cycl4dv4e 30051 If there is a cycle of len...
dfconngr1 30054 Alternative definition of ...
isconngr 30055 The property of being a co...
isconngr1 30056 The property of being a co...
cusconngr 30057 A complete hypergraph is c...
0conngr 30058 A graph without vertices i...
0vconngr 30059 A graph without vertices i...
1conngr 30060 A graph with (at most) one...
conngrv2edg 30061 A vertex in a connected gr...
vdn0conngrumgrv2 30062 A vertex in a connected mu...
releupth 30065 The set ` ( EulerPaths `` ...
eupths 30066 The Eulerian paths on the ...
iseupth 30067 The property " ` <. F , P ...
iseupthf1o 30068 The property " ` <. F , P ...
eupthi 30069 Properties of an Eulerian ...
eupthf1o 30070 The ` F ` function in an E...
eupthfi 30071 Any graph with an Eulerian...
eupthseg 30072 The ` N ` -th edge in an e...
upgriseupth 30073 The property " ` <. F , P ...
upgreupthi 30074 Properties of an Eulerian ...
upgreupthseg 30075 The ` N ` -th edge in an e...
eupthcl 30076 An Eulerian path has lengt...
eupthistrl 30077 An Eulerian path is a trai...
eupthiswlk 30078 An Eulerian path is a walk...
eupthpf 30079 The ` P ` function in an E...
eupth0 30080 There is an Eulerian path ...
eupthres 30081 The restriction ` <. H , Q...
eupthp1 30082 Append one path segment to...
eupth2eucrct 30083 Append one path segment to...
eupth2lem1 30084 Lemma for ~ eupth2 . (Con...
eupth2lem2 30085 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 30086 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 30087 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 30088 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 30089 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 30090 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 30091 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 30092 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 30093 Formerly part of proof of ...
eupth2lem3lem1 30094 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 30095 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 30096 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 30097 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 30098 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 30099 Formerly part of proof of ...
eupth2lem3lem7 30100 Lemma for ~ eupth2lem3 : ...
eupthvdres 30101 Formerly part of proof of ...
eupth2lem3 30102 Lemma for ~ eupth2 . (Con...
eupth2lemb 30103 Lemma for ~ eupth2 (induct...
eupth2lems 30104 Lemma for ~ eupth2 (induct...
eupth2 30105 The only vertices of odd d...
eulerpathpr 30106 A graph with an Eulerian p...
eulerpath 30107 A pseudograph with an Eule...
eulercrct 30108 A pseudograph with an Eule...
eucrctshift 30109 Cyclically shifting the in...
eucrct2eupth1 30110 Removing one edge ` ( I ``...
eucrct2eupth 30111 Removing one edge ` ( I ``...
konigsbergvtx 30112 The set of vertices of the...
konigsbergiedg 30113 The indexed edges of the K...
konigsbergiedgw 30114 The indexed edges of the K...
konigsbergssiedgwpr 30115 Each subset of the indexed...
konigsbergssiedgw 30116 Each subset of the indexed...
konigsbergumgr 30117 The Königsberg graph ...
konigsberglem1 30118 Lemma 1 for ~ konigsberg :...
konigsberglem2 30119 Lemma 2 for ~ konigsberg :...
konigsberglem3 30120 Lemma 3 for ~ konigsberg :...
konigsberglem4 30121 Lemma 4 for ~ konigsberg :...
konigsberglem5 30122 Lemma 5 for ~ konigsberg :...
konigsberg 30123 The Königsberg Bridge...
isfrgr 30126 The property of being a fr...
frgrusgr 30127 A friendship graph is a si...
frgr0v 30128 Any null graph (set with n...
frgr0vb 30129 Any null graph (without ve...
frgruhgr0v 30130 Any null graph (without ve...
frgr0 30131 The null graph (graph with...
frcond1 30132 The friendship condition: ...
frcond2 30133 The friendship condition: ...
frgreu 30134 Variant of ~ frcond2 : An...
frcond3 30135 The friendship condition, ...
frcond4 30136 The friendship condition, ...
frgr1v 30137 Any graph with (at most) o...
nfrgr2v 30138 Any graph with two (differ...
frgr3vlem1 30139 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 30140 Lemma 2 for ~ frgr3v . (C...
frgr3v 30141 Any graph with three verti...
1vwmgr 30142 Every graph with one verte...
3vfriswmgrlem 30143 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 30144 Every friendship graph wit...
1to2vfriswmgr 30145 Every friendship graph wit...
1to3vfriswmgr 30146 Every friendship graph wit...
1to3vfriendship 30147 The friendship theorem for...
2pthfrgrrn 30148 Between any two (different...
2pthfrgrrn2 30149 Between any two (different...
2pthfrgr 30150 Between any two (different...
3cyclfrgrrn1 30151 Every vertex in a friendsh...
3cyclfrgrrn 30152 Every vertex in a friendsh...
3cyclfrgrrn2 30153 Every vertex in a friendsh...
3cyclfrgr 30154 Every vertex in a friendsh...
4cycl2v2nb 30155 In a (maybe degenerate) 4-...
4cycl2vnunb 30156 In a 4-cycle, two distinct...
n4cyclfrgr 30157 There is no 4-cycle in a f...
4cyclusnfrgr 30158 A graph with a 4-cycle is ...
frgrnbnb 30159 If two neighbors ` U ` and...
frgrconngr 30160 A friendship graph is conn...
vdgn0frgrv2 30161 A vertex in a friendship g...
vdgn1frgrv2 30162 Any vertex in a friendship...
vdgn1frgrv3 30163 Any vertex in a friendship...
vdgfrgrgt2 30164 Any vertex in a friendship...
frgrncvvdeqlem1 30165 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 30166 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 30167 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 30168 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 30169 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 30170 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 30171 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 30172 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 30173 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 30174 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 30175 In a friendship graph, two...
frgrwopreglem4a 30176 In a friendship graph any ...
frgrwopreglem5a 30177 If a friendship graph has ...
frgrwopreglem1 30178 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 30179 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 30180 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 30181 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 30182 According to statement 5 i...
frgrwopregbsn 30183 According to statement 5 i...
frgrwopreg1 30184 According to statement 5 i...
frgrwopreg2 30185 According to statement 5 i...
frgrwopreglem5lem 30186 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 30187 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 30188 Alternate direct proof of ...
frgrwopreg 30189 In a friendship graph ther...
frgrregorufr0 30190 In a friendship graph ther...
frgrregorufr 30191 If there is a vertex havin...
frgrregorufrg 30192 If there is a vertex havin...
frgr2wwlkeu 30193 For two different vertices...
frgr2wwlkn0 30194 In a friendship graph, the...
frgr2wwlk1 30195 In a friendship graph, the...
frgr2wsp1 30196 In a friendship graph, the...
frgr2wwlkeqm 30197 If there is a (simple) pat...
frgrhash2wsp 30198 The number of simple paths...
fusgreg2wsplem 30199 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 30200 The set of paths of length...
fusgreghash2wspv 30201 According to statement 7 i...
fusgreg2wsp 30202 In a finite simple graph, ...
2wspmdisj 30203 The sets of paths of lengt...
fusgreghash2wsp 30204 In a finite k-regular grap...
frrusgrord0lem 30205 Lemma for ~ frrusgrord0 . ...
frrusgrord0 30206 If a nonempty finite frien...
frrusgrord 30207 If a nonempty finite frien...
numclwwlk2lem1lem 30208 Lemma for ~ numclwwlk2lem1...
2clwwlklem 30209 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 30210 If the initial vertex of a...
clwwnonrepclwwnon 30211 If the initial vertex of a...
2clwwlk2clwwlklem 30212 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 30213 Value of operation ` C ` ,...
2clwwlk2 30214 The set ` ( X C 2 ) ` of d...
2clwwlkel 30215 Characterization of an ele...
2clwwlk2clwwlk 30216 An element of the value of...
numclwwlk1lem2foalem 30217 Lemma for ~ numclwwlk1lem2...
extwwlkfab 30218 The set ` ( X C N ) ` of d...
extwwlkfabel 30219 Characterization of an ele...
numclwwlk1lem2foa 30220 Going forth and back from ...
numclwwlk1lem2f 30221 ` T ` is a function, mappi...
numclwwlk1lem2fv 30222 Value of the function ` T ...
numclwwlk1lem2f1 30223 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 30224 ` T ` is an onto function....
numclwwlk1lem2f1o 30225 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 30226 The set of double loops of...
numclwwlk1 30227 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 30228 ` F ` is a bijection betwe...
clwwlknonclwlknonen 30229 The sets of the two repres...
dlwwlknondlwlknonf1olem1 30230 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 30231 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 30232 The sets of the two repres...
wlkl0 30233 There is exactly one walk ...
clwlknon2num 30234 There are k walks of lengt...
numclwlk1lem1 30235 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 30236 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 30237 Statement 9 in [Huneke] p....
numclwwlkovh0 30238 Value of operation ` H ` ,...
numclwwlkovh 30239 Value of operation ` H ` ,...
numclwwlkovq 30240 Value of operation ` Q ` ,...
numclwwlkqhash 30241 In a ` K `-regular graph, ...
numclwwlk2lem1 30242 In a friendship graph, for...
numclwlk2lem2f 30243 ` R ` is a function mappin...
numclwlk2lem2fv 30244 Value of the function ` R ...
numclwlk2lem2f1o 30245 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 30246 In a friendship graph, the...
numclwwlk2 30247 Statement 10 in [Huneke] p...
numclwwlk3lem1 30248 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 30249 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 30250 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 30251 Statement 12 in [Huneke] p...
numclwwlk4 30252 The total number of closed...
numclwwlk5lem 30253 Lemma for ~ numclwwlk5 . ...
numclwwlk5 30254 Statement 13 in [Huneke] p...
numclwwlk7lem 30255 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 30256 For a prime divisor ` P ` ...
numclwwlk7 30257 Statement 14 in [Huneke] p...
numclwwlk8 30258 The size of the set of clo...
frgrreggt1 30259 If a finite nonempty frien...
frgrreg 30260 If a finite nonempty frien...
frgrregord013 30261 If a finite friendship gra...
frgrregord13 30262 If a nonempty finite frien...
frgrogt3nreg 30263 If a finite friendship gra...
friendshipgt3 30264 The friendship theorem for...
friendship 30265 The friendship theorem: I...
conventions 30266

H...

conventions-labels 30267

...

conventions-comments 30268

...

natded 30269 Here are typical n...
ex-natded5.2 30270 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 30271 A more efficient proof of ...
ex-natded5.2i 30272 The same as ~ ex-natded5.2...
ex-natded5.3 30273 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 30274 A more efficient proof of ...
ex-natded5.3i 30275 The same as ~ ex-natded5.3...
ex-natded5.5 30276 Theorem 5.5 of [Clemente] ...
ex-natded5.7 30277 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 30278 A more efficient proof of ...
ex-natded5.8 30279 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 30280 A more efficient proof of ...
ex-natded5.13 30281 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 30282 A more efficient proof of ...
ex-natded9.20 30283 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 30284 A more efficient proof of ...
ex-natded9.26 30285 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 30286 A more efficient proof of ...
ex-or 30287 Example for ~ df-or . Exa...
ex-an 30288 Example for ~ df-an . Exa...
ex-dif 30289 Example for ~ df-dif . Ex...
ex-un 30290 Example for ~ df-un . Exa...
ex-in 30291 Example for ~ df-in . Exa...
ex-uni 30292 Example for ~ df-uni . Ex...
ex-ss 30293 Example for ~ df-ss . Exa...
ex-pss 30294 Example for ~ df-pss . Ex...
ex-pw 30295 Example for ~ df-pw . Exa...
ex-pr 30296 Example for ~ df-pr . (Co...
ex-br 30297 Example for ~ df-br . Exa...
ex-opab 30298 Example for ~ df-opab . E...
ex-eprel 30299 Example for ~ df-eprel . ...
ex-id 30300 Example for ~ df-id . Exa...
ex-po 30301 Example for ~ df-po . Exa...
ex-xp 30302 Example for ~ df-xp . Exa...
ex-cnv 30303 Example for ~ df-cnv . Ex...
ex-co 30304 Example for ~ df-co . Exa...
ex-dm 30305 Example for ~ df-dm . Exa...
ex-rn 30306 Example for ~ df-rn . Exa...
ex-res 30307 Example for ~ df-res . Ex...
ex-ima 30308 Example for ~ df-ima . Ex...
ex-fv 30309 Example for ~ df-fv . Exa...
ex-1st 30310 Example for ~ df-1st . Ex...
ex-2nd 30311 Example for ~ df-2nd . Ex...
1kp2ke3k 30312 Example for ~ df-dec , 100...
ex-fl 30313 Example for ~ df-fl . Exa...
ex-ceil 30314 Example for ~ df-ceil . (...
ex-mod 30315 Example for ~ df-mod . (C...
ex-exp 30316 Example for ~ df-exp . (C...
ex-fac 30317 Example for ~ df-fac . (C...
ex-bc 30318 Example for ~ df-bc . (Co...
ex-hash 30319 Example for ~ df-hash . (...
ex-sqrt 30320 Example for ~ df-sqrt . (...
ex-abs 30321 Example for ~ df-abs . (C...
ex-dvds 30322 Example for ~ df-dvds : 3 ...
ex-gcd 30323 Example for ~ df-gcd . (C...
ex-lcm 30324 Example for ~ df-lcm . (C...
ex-prmo 30325 Example for ~ df-prmo : ` ...
aevdemo 30326 Proof illustrating the com...
ex-ind-dvds 30327 Example of a proof by indu...
ex-fpar 30328 Formalized example provide...
avril1 30329 Poisson d'Avril's Theorem....
2bornot2b 30330 The law of excluded middle...
helloworld 30331 The classic "Hello world" ...
1p1e2apr1 30332 One plus one equals two. ...
eqid1 30333 Law of identity (reflexivi...
1div0apr 30334 Division by zero is forbid...
topnfbey 30335 Nothing seems to be imposs...
9p10ne21 30336 9 + 10 is not equal to 21....
9p10ne21fool 30337 9 + 10 equals 21. This as...
nrt2irr 30339 The ` N ` -th root of 2 is...
isplig 30342 The predicate "is a planar...
ispligb 30343 The predicate "is a planar...
tncp 30344 In any planar incidence ge...
l2p 30345 For any line in a planar i...
lpni 30346 For any line in a planar i...
nsnlplig 30347 There is no "one-point lin...
nsnlpligALT 30348 Alternate version of ~ nsn...
n0lplig 30349 There is no "empty line" i...
n0lpligALT 30350 Alternate version of ~ n0l...
eulplig 30351 Through two distinct point...
pliguhgr 30352 Any planar incidence geome...
dummylink 30353 Alias for ~ a1ii that may ...
id1 30354 Alias for ~ idALT that may...
isgrpo 30363 The predicate "is a group ...
isgrpoi 30364 Properties that determine ...
grpofo 30365 A group operation maps ont...
grpocl 30366 Closure law for a group op...
grpolidinv 30367 A group has a left identit...
grpon0 30368 The base set of a group is...
grpoass 30369 A group operation is assoc...
grpoidinvlem1 30370 Lemma for ~ grpoidinv . (...
grpoidinvlem2 30371 Lemma for ~ grpoidinv . (...
grpoidinvlem3 30372 Lemma for ~ grpoidinv . (...
grpoidinvlem4 30373 Lemma for ~ grpoidinv . (...
grpoidinv 30374 A group has a left and rig...
grpoideu 30375 The left identity element ...
grporndm 30376 A group's range in terms o...
0ngrp 30377 The empty set is not a gro...
gidval 30378 The value of the identity ...
grpoidval 30379 Lemma for ~ grpoidcl and o...
grpoidcl 30380 The identity element of a ...
grpoidinv2 30381 A group's properties using...
grpolid 30382 The identity element of a ...
grporid 30383 The identity element of a ...
grporcan 30384 Right cancellation law for...
grpoinveu 30385 The left inverse element o...
grpoid 30386 Two ways of saying that an...
grporn 30387 The range of a group opera...
grpoinvfval 30388 The inverse function of a ...
grpoinvval 30389 The inverse of a group ele...
grpoinvcl 30390 A group element's inverse ...
grpoinv 30391 The properties of a group ...
grpolinv 30392 The left inverse of a grou...
grporinv 30393 The right inverse of a gro...
grpoinvid1 30394 The inverse of a group ele...
grpoinvid2 30395 The inverse of a group ele...
grpolcan 30396 Left cancellation law for ...
grpo2inv 30397 Double inverse law for gro...
grpoinvf 30398 Mapping of the inverse fun...
grpoinvop 30399 The inverse of the group o...
grpodivfval 30400 Group division (or subtrac...
grpodivval 30401 Group division (or subtrac...
grpodivinv 30402 Group division by an inver...
grpoinvdiv 30403 Inverse of a group divisio...
grpodivf 30404 Mapping for group division...
grpodivcl 30405 Closure of group division ...
grpodivdiv 30406 Double group division. (C...
grpomuldivass 30407 Associative-type law for m...
grpodivid 30408 Division of a group member...
grponpcan 30409 Cancellation law for group...
isablo 30412 The predicate "is an Abeli...
ablogrpo 30413 An Abelian group operation...
ablocom 30414 An Abelian group operation...
ablo32 30415 Commutative/associative la...
ablo4 30416 Commutative/associative la...
isabloi 30417 Properties that determine ...
ablomuldiv 30418 Law for group multiplicati...
ablodivdiv 30419 Law for double group divis...
ablodivdiv4 30420 Law for double group divis...
ablodiv32 30421 Swap the second and third ...
ablonncan 30422 Cancellation law for group...
ablonnncan1 30423 Cancellation law for group...
vcrel 30426 The class of all complex v...
vciOLD 30427 Obsolete version of ~ cvsi...
vcsm 30428 Functionality of th scalar...
vccl 30429 Closure of the scalar prod...
vcidOLD 30430 Identity element for the s...
vcdi 30431 Distributive law for the s...
vcdir 30432 Distributive law for the s...
vcass 30433 Associative law for the sc...
vc2OLD 30434 A vector plus itself is tw...
vcablo 30435 Vector addition is an Abel...
vcgrp 30436 Vector addition is a group...
vclcan 30437 Left cancellation law for ...
vczcl 30438 The zero vector is a vecto...
vc0rid 30439 The zero vector is a right...
vc0 30440 Zero times a vector is the...
vcz 30441 Anything times the zero ve...
vcm 30442 Minus 1 times a vector is ...
isvclem 30443 Lemma for ~ isvcOLD . (Co...
vcex 30444 The components of a comple...
isvcOLD 30445 The predicate "is a comple...
isvciOLD 30446 Properties that determine ...
cnaddabloOLD 30447 Obsolete version of ~ cnad...
cnidOLD 30448 Obsolete version of ~ cnad...
cncvcOLD 30449 Obsolete version of ~ cncv...
nvss 30459 Structure of the class of ...
nvvcop 30460 A normed complex vector sp...
nvrel 30468 The class of all normed co...
vafval 30469 Value of the function for ...
bafval 30470 Value of the function for ...
smfval 30471 Value of the function for ...
0vfval 30472 Value of the function for ...
nmcvfval 30473 Value of the norm function...
nvop2 30474 A normed complex vector sp...
nvvop 30475 The vector space component...
isnvlem 30476 Lemma for ~ isnv . (Contr...
nvex 30477 The components of a normed...
isnv 30478 The predicate "is a normed...
isnvi 30479 Properties that determine ...
nvi 30480 The properties of a normed...
nvvc 30481 The vector space component...
nvablo 30482 The vector addition operat...
nvgrp 30483 The vector addition operat...
nvgf 30484 Mapping for the vector add...
nvsf 30485 Mapping for the scalar mul...
nvgcl 30486 Closure law for the vector...
nvcom 30487 The vector addition (group...
nvass 30488 The vector addition (group...
nvadd32 30489 Commutative/associative la...
nvrcan 30490 Right cancellation law for...
nvadd4 30491 Rearrangement of 4 terms i...
nvscl 30492 Closure law for the scalar...
nvsid 30493 Identity element for the s...
nvsass 30494 Associative law for the sc...
nvscom 30495 Commutative law for the sc...
nvdi 30496 Distributive law for the s...
nvdir 30497 Distributive law for the s...
nv2 30498 A vector plus itself is tw...
vsfval 30499 Value of the function for ...
nvzcl 30500 Closure law for the zero v...
nv0rid 30501 The zero vector is a right...
nv0lid 30502 The zero vector is a left ...
nv0 30503 Zero times a vector is the...
nvsz 30504 Anything times the zero ve...
nvinv 30505 Minus 1 times a vector is ...
nvinvfval 30506 Function for the negative ...
nvm 30507 Vector subtraction in term...
nvmval 30508 Value of vector subtractio...
nvmval2 30509 Value of vector subtractio...
nvmfval 30510 Value of the function for ...
nvmf 30511 Mapping for the vector sub...
nvmcl 30512 Closure law for the vector...
nvnnncan1 30513 Cancellation law for vecto...
nvmdi 30514 Distributive law for scala...
nvnegneg 30515 Double negative of a vecto...
nvmul0or 30516 If a scalar product is zer...
nvrinv 30517 A vector minus itself. (C...
nvlinv 30518 Minus a vector plus itself...
nvpncan2 30519 Cancellation law for vecto...
nvpncan 30520 Cancellation law for vecto...
nvaddsub 30521 Commutative/associative la...
nvnpcan 30522 Cancellation law for a nor...
nvaddsub4 30523 Rearrangement of 4 terms i...
nvmeq0 30524 The difference between two...
nvmid 30525 A vector minus itself is t...
nvf 30526 Mapping for the norm funct...
nvcl 30527 The norm of a normed compl...
nvcli 30528 The norm of a normed compl...
nvs 30529 Proportionality property o...
nvsge0 30530 The norm of a scalar produ...
nvm1 30531 The norm of the negative o...
nvdif 30532 The norm of the difference...
nvpi 30533 The norm of a vector plus ...
nvz0 30534 The norm of a zero vector ...
nvz 30535 The norm of a vector is ze...
nvtri 30536 Triangle inequality for th...
nvmtri 30537 Triangle inequality for th...
nvabs 30538 Norm difference property o...
nvge0 30539 The norm of a normed compl...
nvgt0 30540 A nonzero norm is positive...
nv1 30541 From any nonzero vector, c...
nvop 30542 A complex inner product sp...
cnnv 30543 The set of complex numbers...
cnnvg 30544 The vector addition (group...
cnnvba 30545 The base set of the normed...
cnnvs 30546 The scalar product operati...
cnnvnm 30547 The norm operation of the ...
cnnvm 30548 The vector subtraction ope...
elimnv 30549 Hypothesis elimination lem...
elimnvu 30550 Hypothesis elimination lem...
imsval 30551 Value of the induced metri...
imsdval 30552 Value of the induced metri...
imsdval2 30553 Value of the distance func...
nvnd 30554 The norm of a normed compl...
imsdf 30555 Mapping for the induced me...
imsmetlem 30556 Lemma for ~ imsmet . (Con...
imsmet 30557 The induced metric of a no...
imsxmet 30558 The induced metric of a no...
cnims 30559 The metric induced on the ...
vacn 30560 Vector addition is jointly...
nmcvcn 30561 The norm of a normed compl...
nmcnc 30562 The norm of a normed compl...
smcnlem 30563 Lemma for ~ smcn . (Contr...
smcn 30564 Scalar multiplication is j...
vmcn 30565 Vector subtraction is join...
dipfval 30568 The inner product function...
ipval 30569 Value of the inner product...
ipval2lem2 30570 Lemma for ~ ipval3 . (Con...
ipval2lem3 30571 Lemma for ~ ipval3 . (Con...
ipval2lem4 30572 Lemma for ~ ipval3 . (Con...
ipval2 30573 Expansion of the inner pro...
4ipval2 30574 Four times the inner produ...
ipval3 30575 Expansion of the inner pro...
ipidsq 30576 The inner product of a vec...
ipnm 30577 Norm expressed in terms of...
dipcl 30578 An inner product is a comp...
ipf 30579 Mapping for the inner prod...
dipcj 30580 The complex conjugate of a...
ipipcj 30581 An inner product times its...
diporthcom 30582 Orthogonality (meaning inn...
dip0r 30583 Inner product with a zero ...
dip0l 30584 Inner product with a zero ...
ipz 30585 The inner product of a vec...
dipcn 30586 Inner product is jointly c...
sspval 30589 The set of all subspaces o...
isssp 30590 The predicate "is a subspa...
sspid 30591 A normed complex vector sp...
sspnv 30592 A subspace is a normed com...
sspba 30593 The base set of a subspace...
sspg 30594 Vector addition on a subsp...
sspgval 30595 Vector addition on a subsp...
ssps 30596 Scalar multiplication on a...
sspsval 30597 Scalar multiplication on a...
sspmlem 30598 Lemma for ~ sspm and other...
sspmval 30599 Vector addition on a subsp...
sspm 30600 Vector subtraction on a su...
sspz 30601 The zero vector of a subsp...
sspn 30602 The norm on a subspace is ...
sspnval 30603 The norm on a subspace in ...
sspimsval 30604 The induced metric on a su...
sspims 30605 The induced metric on a su...
lnoval 30618 The set of linear operator...
islno 30619 The predicate "is a linear...
lnolin 30620 Basic linearity property o...
lnof 30621 A linear operator is a map...
lno0 30622 The value of a linear oper...
lnocoi 30623 The composition of two lin...
lnoadd 30624 Addition property of a lin...
lnosub 30625 Subtraction property of a ...
lnomul 30626 Scalar multiplication prop...
nvo00 30627 Two ways to express a zero...
nmoofval 30628 The operator norm function...
nmooval 30629 The operator norm function...
nmosetre 30630 The set in the supremum of...
nmosetn0 30631 The set in the supremum of...
nmoxr 30632 The norm of an operator is...
nmooge0 30633 The norm of an operator is...
nmorepnf 30634 The norm of an operator is...
nmoreltpnf 30635 The norm of any operator i...
nmogtmnf 30636 The norm of an operator is...
nmoolb 30637 A lower bound for an opera...
nmoubi 30638 An upper bound for an oper...
nmoub3i 30639 An upper bound for an oper...
nmoub2i 30640 An upper bound for an oper...
nmobndi 30641 Two ways to express that a...
nmounbi 30642 Two ways two express that ...
nmounbseqi 30643 An unbounded operator dete...
nmounbseqiALT 30644 Alternate shorter proof of...
nmobndseqi 30645 A bounded sequence determi...
nmobndseqiALT 30646 Alternate shorter proof of...
bloval 30647 The class of bounded linea...
isblo 30648 The predicate "is a bounde...
isblo2 30649 The predicate "is a bounde...
bloln 30650 A bounded operator is a li...
blof 30651 A bounded operator is an o...
nmblore 30652 The norm of a bounded oper...
0ofval 30653 The zero operator between ...
0oval 30654 Value of the zero operator...
0oo 30655 The zero operator is an op...
0lno 30656 The zero operator is linea...
nmoo0 30657 The operator norm of the z...
0blo 30658 The zero operator is a bou...
nmlno0lem 30659 Lemma for ~ nmlno0i . (Co...
nmlno0i 30660 The norm of a linear opera...
nmlno0 30661 The norm of a linear opera...
nmlnoubi 30662 An upper bound for the ope...
nmlnogt0 30663 The norm of a nonzero line...
lnon0 30664 The domain of a nonzero li...
nmblolbii 30665 A lower bound for the norm...
nmblolbi 30666 A lower bound for the norm...
isblo3i 30667 The predicate "is a bounde...
blo3i 30668 Properties that determine ...
blometi 30669 Upper bound for the distan...
blocnilem 30670 Lemma for ~ blocni and ~ l...
blocni 30671 A linear operator is conti...
lnocni 30672 If a linear operator is co...
blocn 30673 A linear operator is conti...
blocn2 30674 A bounded linear operator ...
ajfval 30675 The adjoint function. (Co...
hmoval 30676 The set of Hermitian (self...
ishmo 30677 The predicate "is a hermit...
phnv 30680 Every complex inner produc...
phrel 30681 The class of all complex i...
phnvi 30682 Every complex inner produc...
isphg 30683 The predicate "is a comple...
phop 30684 A complex inner product sp...
cncph 30685 The set of complex numbers...
elimph 30686 Hypothesis elimination lem...
elimphu 30687 Hypothesis elimination lem...
isph 30688 The predicate "is an inner...
phpar2 30689 The parallelogram law for ...
phpar 30690 The parallelogram law for ...
ip0i 30691 A slight variant of Equati...
ip1ilem 30692 Lemma for ~ ip1i . (Contr...
ip1i 30693 Equation 6.47 of [Ponnusam...
ip2i 30694 Equation 6.48 of [Ponnusam...
ipdirilem 30695 Lemma for ~ ipdiri . (Con...
ipdiri 30696 Distributive law for inner...
ipasslem1 30697 Lemma for ~ ipassi . Show...
ipasslem2 30698 Lemma for ~ ipassi . Show...
ipasslem3 30699 Lemma for ~ ipassi . Show...
ipasslem4 30700 Lemma for ~ ipassi . Show...
ipasslem5 30701 Lemma for ~ ipassi . Show...
ipasslem7 30702 Lemma for ~ ipassi . Show...
ipasslem8 30703 Lemma for ~ ipassi . By ~...
ipasslem9 30704 Lemma for ~ ipassi . Conc...
ipasslem10 30705 Lemma for ~ ipassi . Show...
ipasslem11 30706 Lemma for ~ ipassi . Show...
ipassi 30707 Associative law for inner ...
dipdir 30708 Distributive law for inner...
dipdi 30709 Distributive law for inner...
ip2dii 30710 Inner product of two sums....
dipass 30711 Associative law for inner ...
dipassr 30712 "Associative" law for seco...
dipassr2 30713 "Associative" law for inne...
dipsubdir 30714 Distributive law for inner...
dipsubdi 30715 Distributive law for inner...
pythi 30716 The Pythagorean theorem fo...
siilem1 30717 Lemma for ~ sii . (Contri...
siilem2 30718 Lemma for ~ sii . (Contri...
siii 30719 Inference from ~ sii . (C...
sii 30720 Obsolete version of ~ ipca...
ipblnfi 30721 A function ` F ` generated...
ip2eqi 30722 Two vectors are equal iff ...
phoeqi 30723 A condition implying that ...
ajmoi 30724 Every operator has at most...
ajfuni 30725 The adjoint function is a ...
ajfun 30726 The adjoint function is a ...
ajval 30727 Value of the adjoint funct...
iscbn 30730 A complex Banach space is ...
cbncms 30731 The induced metric on comp...
bnnv 30732 Every complex Banach space...
bnrel 30733 The class of all complex B...
bnsscmcl 30734 A subspace of a Banach spa...
cnbn 30735 The set of complex numbers...
ubthlem1 30736 Lemma for ~ ubth . The fu...
ubthlem2 30737 Lemma for ~ ubth . Given ...
ubthlem3 30738 Lemma for ~ ubth . Prove ...
ubth 30739 Uniform Boundedness Theore...
minvecolem1 30740 Lemma for ~ minveco . The...
minvecolem2 30741 Lemma for ~ minveco . Any...
minvecolem3 30742 Lemma for ~ minveco . The...
minvecolem4a 30743 Lemma for ~ minveco . ` F ...
minvecolem4b 30744 Lemma for ~ minveco . The...
minvecolem4c 30745 Lemma for ~ minveco . The...
minvecolem4 30746 Lemma for ~ minveco . The...
minvecolem5 30747 Lemma for ~ minveco . Dis...
minvecolem6 30748 Lemma for ~ minveco . Any...
minvecolem7 30749 Lemma for ~ minveco . Sin...
minveco 30750 Minimizing vector theorem,...
ishlo 30753 The predicate "is a comple...
hlobn 30754 Every complex Hilbert spac...
hlph 30755 Every complex Hilbert spac...
hlrel 30756 The class of all complex H...
hlnv 30757 Every complex Hilbert spac...
hlnvi 30758 Every complex Hilbert spac...
hlvc 30759 Every complex Hilbert spac...
hlcmet 30760 The induced metric on a co...
hlmet 30761 The induced metric on a co...
hlpar2 30762 The parallelogram law sati...
hlpar 30763 The parallelogram law sati...
hlex 30764 The base set of a Hilbert ...
hladdf 30765 Mapping for Hilbert space ...
hlcom 30766 Hilbert space vector addit...
hlass 30767 Hilbert space vector addit...
hl0cl 30768 The Hilbert space zero vec...
hladdid 30769 Hilbert space addition wit...
hlmulf 30770 Mapping for Hilbert space ...
hlmulid 30771 Hilbert space scalar multi...
hlmulass 30772 Hilbert space scalar multi...
hldi 30773 Hilbert space scalar multi...
hldir 30774 Hilbert space scalar multi...
hlmul0 30775 Hilbert space scalar multi...
hlipf 30776 Mapping for Hilbert space ...
hlipcj 30777 Conjugate law for Hilbert ...
hlipdir 30778 Distributive law for Hilbe...
hlipass 30779 Associative law for Hilber...
hlipgt0 30780 The inner product of a Hil...
hlcompl 30781 Completeness of a Hilbert ...
cnchl 30782 The set of complex numbers...
htthlem 30783 Lemma for ~ htth . The co...
htth 30784 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 30840 The group (addition) opera...
h2hsm 30841 The scalar product operati...
h2hnm 30842 The norm function of Hilbe...
h2hvs 30843 The vector subtraction ope...
h2hmetdval 30844 Value of the distance func...
h2hcau 30845 The Cauchy sequences of Hi...
h2hlm 30846 The limit sequences of Hil...
axhilex-zf 30847 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 30848 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 30849 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 30850 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 30851 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 30852 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 30853 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 30854 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 30855 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 30856 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 30857 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 30858 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 30859 Derive Axiom ~ ax-hfi from...
axhis1-zf 30860 Derive Axiom ~ ax-his1 fro...
axhis2-zf 30861 Derive Axiom ~ ax-his2 fro...
axhis3-zf 30862 Derive Axiom ~ ax-his3 fro...
axhis4-zf 30863 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 30864 Derive Axiom ~ ax-hcompl f...
hvmulex 30877 The Hilbert space scalar p...
hvaddcl 30878 Closure of vector addition...
hvmulcl 30879 Closure of scalar multipli...
hvmulcli 30880 Closure inference for scal...
hvsubf 30881 Mapping domain and codomai...
hvsubval 30882 Value of vector subtractio...
hvsubcl 30883 Closure of vector subtract...
hvaddcli 30884 Closure of vector addition...
hvcomi 30885 Commutation of vector addi...
hvsubvali 30886 Value of vector subtractio...
hvsubcli 30887 Closure of vector subtract...
ifhvhv0 30888 Prove ` if ( A e. ~H , A ,...
hvaddlid 30889 Addition with the zero vec...
hvmul0 30890 Scalar multiplication with...
hvmul0or 30891 If a scalar product is zer...
hvsubid 30892 Subtraction of a vector fr...
hvnegid 30893 Addition of negative of a ...
hv2neg 30894 Two ways to express the ne...
hvaddlidi 30895 Addition with the zero vec...
hvnegidi 30896 Addition of negative of a ...
hv2negi 30897 Two ways to express the ne...
hvm1neg 30898 Convert minus one times a ...
hvaddsubval 30899 Value of vector addition i...
hvadd32 30900 Commutative/associative la...
hvadd12 30901 Commutative/associative la...
hvadd4 30902 Hilbert vector space addit...
hvsub4 30903 Hilbert vector space addit...
hvaddsub12 30904 Commutative/associative la...
hvpncan 30905 Addition/subtraction cance...
hvpncan2 30906 Addition/subtraction cance...
hvaddsubass 30907 Associativity of sum and d...
hvpncan3 30908 Subtraction and addition o...
hvmulcom 30909 Scalar multiplication comm...
hvsubass 30910 Hilbert vector space assoc...
hvsub32 30911 Hilbert vector space commu...
hvmulassi 30912 Scalar multiplication asso...
hvmulcomi 30913 Scalar multiplication comm...
hvmul2negi 30914 Double negative in scalar ...
hvsubdistr1 30915 Scalar multiplication dist...
hvsubdistr2 30916 Scalar multiplication dist...
hvdistr1i 30917 Scalar multiplication dist...
hvsubdistr1i 30918 Scalar multiplication dist...
hvassi 30919 Hilbert vector space assoc...
hvadd32i 30920 Hilbert vector space commu...
hvsubassi 30921 Hilbert vector space assoc...
hvsub32i 30922 Hilbert vector space commu...
hvadd12i 30923 Hilbert vector space commu...
hvadd4i 30924 Hilbert vector space addit...
hvsubsub4i 30925 Hilbert vector space addit...
hvsubsub4 30926 Hilbert vector space addit...
hv2times 30927 Two times a vector. (Cont...
hvnegdii 30928 Distribution of negative o...
hvsubeq0i 30929 If the difference between ...
hvsubcan2i 30930 Vector cancellation law. ...
hvaddcani 30931 Cancellation law for vecto...
hvsubaddi 30932 Relationship between vecto...
hvnegdi 30933 Distribution of negative o...
hvsubeq0 30934 If the difference between ...
hvaddeq0 30935 If the sum of two vectors ...
hvaddcan 30936 Cancellation law for vecto...
hvaddcan2 30937 Cancellation law for vecto...
hvmulcan 30938 Cancellation law for scala...
hvmulcan2 30939 Cancellation law for scala...
hvsubcan 30940 Cancellation law for vecto...
hvsubcan2 30941 Cancellation law for vecto...
hvsub0 30942 Subtraction of a zero vect...
hvsubadd 30943 Relationship between vecto...
hvaddsub4 30944 Hilbert vector space addit...
hicl 30946 Closure of inner product. ...
hicli 30947 Closure inference for inne...
his5 30952 Associative law for inner ...
his52 30953 Associative law for inner ...
his35 30954 Move scalar multiplication...
his35i 30955 Move scalar multiplication...
his7 30956 Distributive law for inner...
hiassdi 30957 Distributive/associative l...
his2sub 30958 Distributive law for inner...
his2sub2 30959 Distributive law for inner...
hire 30960 A necessary and sufficient...
hiidrcl 30961 Real closure of inner prod...
hi01 30962 Inner product with the 0 v...
hi02 30963 Inner product with the 0 v...
hiidge0 30964 Inner product with self is...
his6 30965 Zero inner product with se...
his1i 30966 Conjugate law for inner pr...
abshicom 30967 Commuted inner products ha...
hial0 30968 A vector whose inner produ...
hial02 30969 A vector whose inner produ...
hisubcomi 30970 Two vector subtractions si...
hi2eq 30971 Lemma used to prove equali...
hial2eq 30972 Two vectors whose inner pr...
hial2eq2 30973 Two vectors whose inner pr...
orthcom 30974 Orthogonality commutes. (...
normlem0 30975 Lemma used to derive prope...
normlem1 30976 Lemma used to derive prope...
normlem2 30977 Lemma used to derive prope...
normlem3 30978 Lemma used to derive prope...
normlem4 30979 Lemma used to derive prope...
normlem5 30980 Lemma used to derive prope...
normlem6 30981 Lemma used to derive prope...
normlem7 30982 Lemma used to derive prope...
normlem8 30983 Lemma used to derive prope...
normlem9 30984 Lemma used to derive prope...
normlem7tALT 30985 Lemma used to derive prope...
bcseqi 30986 Equality case of Bunjakova...
normlem9at 30987 Lemma used to derive prope...
dfhnorm2 30988 Alternate definition of th...
normf 30989 The norm function maps fro...
normval 30990 The value of the norm of a...
normcl 30991 Real closure of the norm o...
normge0 30992 The norm of a vector is no...
normgt0 30993 The norm of nonzero vector...
norm0 30994 The norm of a zero vector....
norm-i 30995 Theorem 3.3(i) of [Beran] ...
normne0 30996 A norm is nonzero iff its ...
normcli 30997 Real closure of the norm o...
normsqi 30998 The square of a norm. (Co...
norm-i-i 30999 Theorem 3.3(i) of [Beran] ...
normsq 31000 The square of a norm. (Co...
normsub0i 31001 Two vectors are equal iff ...
normsub0 31002 Two vectors are equal iff ...
norm-ii-i 31003 Triangle inequality for no...
norm-ii 31004 Triangle inequality for no...
norm-iii-i 31005 Theorem 3.3(iii) of [Beran...
norm-iii 31006 Theorem 3.3(iii) of [Beran...
normsubi 31007 Negative doesn't change th...
normpythi 31008 Analogy to Pythagorean the...
normsub 31009 Swapping order of subtract...
normneg 31010 The norm of a vector equal...
normpyth 31011 Analogy to Pythagorean the...
normpyc 31012 Corollary to Pythagorean t...
norm3difi 31013 Norm of differences around...
norm3adifii 31014 Norm of differences around...
norm3lem 31015 Lemma involving norm of di...
norm3dif 31016 Norm of differences around...
norm3dif2 31017 Norm of differences around...
norm3lemt 31018 Lemma involving norm of di...
norm3adifi 31019 Norm of differences around...
normpari 31020 Parallelogram law for norm...
normpar 31021 Parallelogram law for norm...
normpar2i 31022 Corollary of parallelogram...
polid2i 31023 Generalized polarization i...
polidi 31024 Polarization identity. Re...
polid 31025 Polarization identity. Re...
hilablo 31026 Hilbert space vector addit...
hilid 31027 The group identity element...
hilvc 31028 Hilbert space is a complex...
hilnormi 31029 Hilbert space norm in term...
hilhhi 31030 Deduce the structure of Hi...
hhnv 31031 Hilbert space is a normed ...
hhva 31032 The group (addition) opera...
hhba 31033 The base set of Hilbert sp...
hh0v 31034 The zero vector of Hilbert...
hhsm 31035 The scalar product operati...
hhvs 31036 The vector subtraction ope...
hhnm 31037 The norm function of Hilbe...
hhims 31038 The induced metric of Hilb...
hhims2 31039 Hilbert space distance met...
hhmet 31040 The induced metric of Hilb...
hhxmet 31041 The induced metric of Hilb...
hhmetdval 31042 Value of the distance func...
hhip 31043 The inner product operatio...
hhph 31044 The Hilbert space of the H...
bcsiALT 31045 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 31046 Bunjakovaskij-Cauchy-Schwa...
bcs 31047 Bunjakovaskij-Cauchy-Schwa...
bcs2 31048 Corollary of the Bunjakova...
bcs3 31049 Corollary of the Bunjakova...
hcau 31050 Member of the set of Cauch...
hcauseq 31051 A Cauchy sequences on a Hi...
hcaucvg 31052 A Cauchy sequence on a Hil...
seq1hcau 31053 A sequence on a Hilbert sp...
hlimi 31054 Express the predicate: Th...
hlimseqi 31055 A sequence with a limit on...
hlimveci 31056 Closure of the limit of a ...
hlimconvi 31057 Convergence of a sequence ...
hlim2 31058 The limit of a sequence on...
hlimadd 31059 Limit of the sum of two se...
hilmet 31060 The Hilbert space norm det...
hilxmet 31061 The Hilbert space norm det...
hilmetdval 31062 Value of the distance func...
hilims 31063 Hilbert space distance met...
hhcau 31064 The Cauchy sequences of Hi...
hhlm 31065 The limit sequences of Hil...
hhcmpl 31066 Lemma used for derivation ...
hilcompl 31067 Lemma used for derivation ...
hhcms 31069 The Hilbert space induced ...
hhhl 31070 The Hilbert space structur...
hilcms 31071 The Hilbert space norm det...
hilhl 31072 The Hilbert space of the H...
issh 31074 Subspace ` H ` of a Hilber...
issh2 31075 Subspace ` H ` of a Hilber...
shss 31076 A subspace is a subset of ...
shel 31077 A member of a subspace of ...
shex 31078 The set of subspaces of a ...
shssii 31079 A closed subspace of a Hil...
sheli 31080 A member of a subspace of ...
shelii 31081 A member of a subspace of ...
sh0 31082 The zero vector belongs to...
shaddcl 31083 Closure of vector addition...
shmulcl 31084 Closure of vector scalar m...
issh3 31085 Subspace ` H ` of a Hilber...
shsubcl 31086 Closure of vector subtract...
isch 31088 Closed subspace ` H ` of a...
isch2 31089 Closed subspace ` H ` of a...
chsh 31090 A closed subspace is a sub...
chsssh 31091 Closed subspaces are subsp...
chex 31092 The set of closed subspace...
chshii 31093 A closed subspace is a sub...
ch0 31094 The zero vector belongs to...
chss 31095 A closed subspace of a Hil...
chel 31096 A member of a closed subsp...
chssii 31097 A closed subspace of a Hil...
cheli 31098 A member of a closed subsp...
chelii 31099 A member of a closed subsp...
chlimi 31100 The limit property of a cl...
hlim0 31101 The zero sequence in Hilbe...
hlimcaui 31102 If a sequence in Hilbert s...
hlimf 31103 Function-like behavior of ...
hlimuni 31104 A Hilbert space sequence c...
hlimreui 31105 The limit of a Hilbert spa...
hlimeui 31106 The limit of a Hilbert spa...
isch3 31107 A Hilbert subspace is clos...
chcompl 31108 Completeness of a closed s...
helch 31109 The Hilbert lattice one (w...
ifchhv 31110 Prove ` if ( A e. CH , A ,...
helsh 31111 Hilbert space is a subspac...
shsspwh 31112 Subspaces are subsets of H...
chsspwh 31113 Closed subspaces are subse...
hsn0elch 31114 The zero subspace belongs ...
norm1 31115 From any nonzero Hilbert s...
norm1exi 31116 A normalized vector exists...
norm1hex 31117 A normalized vector can ex...
elch0 31120 Membership in zero for clo...
h0elch 31121 The zero subspace is a clo...
h0elsh 31122 The zero subspace is a sub...
hhssva 31123 The vector addition operat...
hhsssm 31124 The scalar multiplication ...
hhssnm 31125 The norm operation on a su...
issubgoilem 31126 Lemma for ~ hhssabloilem ....
hhssabloilem 31127 Lemma for ~ hhssabloi . F...
hhssabloi 31128 Abelian group property of ...
hhssablo 31129 Abelian group property of ...
hhssnv 31130 Normed complex vector spac...
hhssnvt 31131 Normed complex vector spac...
hhsst 31132 A member of ` SH ` is a su...
hhshsslem1 31133 Lemma for ~ hhsssh . (Con...
hhshsslem2 31134 Lemma for ~ hhsssh . (Con...
hhsssh 31135 The predicate " ` H ` is a...
hhsssh2 31136 The predicate " ` H ` is a...
hhssba 31137 The base set of a subspace...
hhssvs 31138 The vector subtraction ope...
hhssvsf 31139 Mapping of the vector subt...
hhssims 31140 Induced metric of a subspa...
hhssims2 31141 Induced metric of a subspa...
hhssmet 31142 Induced metric of a subspa...
hhssmetdval 31143 Value of the distance func...
hhsscms 31144 The induced metric of a cl...
hhssbnOLD 31145 Obsolete version of ~ cssb...
ocval 31146 Value of orthogonal comple...
ocel 31147 Membership in orthogonal c...
shocel 31148 Membership in orthogonal c...
ocsh 31149 The orthogonal complement ...
shocsh 31150 The orthogonal complement ...
ocss 31151 An orthogonal complement i...
shocss 31152 An orthogonal complement i...
occon 31153 Contraposition law for ort...
occon2 31154 Double contraposition for ...
occon2i 31155 Double contraposition for ...
oc0 31156 The zero vector belongs to...
ocorth 31157 Members of a subset and it...
shocorth 31158 Members of a subspace and ...
ococss 31159 Inclusion in complement of...
shococss 31160 Inclusion in complement of...
shorth 31161 Members of orthogonal subs...
ocin 31162 Intersection of a Hilbert ...
occon3 31163 Hilbert lattice contraposi...
ocnel 31164 A nonzero vector in the co...
chocvali 31165 Value of the orthogonal co...
shuni 31166 Two subspaces with trivial...
chocunii 31167 Lemma for uniqueness part ...
pjhthmo 31168 Projection Theorem, unique...
occllem 31169 Lemma for ~ occl . (Contr...
occl 31170 Closure of complement of H...
shoccl 31171 Closure of complement of H...
choccl 31172 Closure of complement of H...
choccli 31173 Closure of ` CH ` orthocom...
shsval 31178 Value of subspace sum of t...
shsss 31179 The subspace sum is a subs...
shsel 31180 Membership in the subspace...
shsel3 31181 Membership in the subspace...
shseli 31182 Membership in subspace sum...
shscli 31183 Closure of subspace sum. ...
shscl 31184 Closure of subspace sum. ...
shscom 31185 Commutative law for subspa...
shsva 31186 Vector sum belongs to subs...
shsel1 31187 A subspace sum contains a ...
shsel2 31188 A subspace sum contains a ...
shsvs 31189 Vector subtraction belongs...
shsub1 31190 Subspace sum is an upper b...
shsub2 31191 Subspace sum is an upper b...
choc0 31192 The orthocomplement of the...
choc1 31193 The orthocomplement of the...
chocnul 31194 Orthogonal complement of t...
shintcli 31195 Closure of intersection of...
shintcl 31196 The intersection of a none...
chintcli 31197 The intersection of a none...
chintcl 31198 The intersection (infimum)...
spanval 31199 Value of the linear span o...
hsupval 31200 Value of supremum of set o...
chsupval 31201 The value of the supremum ...
spancl 31202 The span of a subset of Hi...
elspancl 31203 A member of a span is a ve...
shsupcl 31204 Closure of the subspace su...
hsupcl 31205 Closure of supremum of set...
chsupcl 31206 Closure of supremum of sub...
hsupss 31207 Subset relation for suprem...
chsupss 31208 Subset relation for suprem...
hsupunss 31209 The union of a set of Hilb...
chsupunss 31210 The union of a set of clos...
spanss2 31211 A subset of Hilbert space ...
shsupunss 31212 The union of a set of subs...
spanid 31213 A subspace of Hilbert spac...
spanss 31214 Ordering relationship for ...
spanssoc 31215 The span of a subset of Hi...
sshjval 31216 Value of join for subsets ...
shjval 31217 Value of join in ` SH ` . ...
chjval 31218 Value of join in ` CH ` . ...
chjvali 31219 Value of join in ` CH ` . ...
sshjval3 31220 Value of join for subsets ...
sshjcl 31221 Closure of join for subset...
shjcl 31222 Closure of join in ` SH ` ...
chjcl 31223 Closure of join in ` CH ` ...
shjcom 31224 Commutative law for Hilber...
shless 31225 Subset implies subset of s...
shlej1 31226 Add disjunct to both sides...
shlej2 31227 Add disjunct to both sides...
shincli 31228 Closure of intersection of...
shscomi 31229 Commutative law for subspa...
shsvai 31230 Vector sum belongs to subs...
shsel1i 31231 A subspace sum contains a ...
shsel2i 31232 A subspace sum contains a ...
shsvsi 31233 Vector subtraction belongs...
shunssi 31234 Union is smaller than subs...
shunssji 31235 Union is smaller than Hilb...
shsleji 31236 Subspace sum is smaller th...
shjcomi 31237 Commutative law for join i...
shsub1i 31238 Subspace sum is an upper b...
shsub2i 31239 Subspace sum is an upper b...
shub1i 31240 Hilbert lattice join is an...
shjcli 31241 Closure of ` CH ` join. (...
shjshcli 31242 ` SH ` closure of join. (...
shlessi 31243 Subset implies subset of s...
shlej1i 31244 Add disjunct to both sides...
shlej2i 31245 Add disjunct to both sides...
shslej 31246 Subspace sum is smaller th...
shincl 31247 Closure of intersection of...
shub1 31248 Hilbert lattice join is an...
shub2 31249 A subspace is a subset of ...
shsidmi 31250 Idempotent law for Hilbert...
shslubi 31251 The least upper bound law ...
shlesb1i 31252 Hilbert lattice ordering i...
shsval2i 31253 An alternate way to expres...
shsval3i 31254 An alternate way to expres...
shmodsi 31255 The modular law holds for ...
shmodi 31256 The modular law is implied...
pjhthlem1 31257 Lemma for ~ pjhth . (Cont...
pjhthlem2 31258 Lemma for ~ pjhth . (Cont...
pjhth 31259 Projection Theorem: Any H...
pjhtheu 31260 Projection Theorem: Any H...
pjhfval 31262 The value of the projectio...
pjhval 31263 Value of a projection. (C...
pjpreeq 31264 Equality with a projection...
pjeq 31265 Equality with a projection...
axpjcl 31266 Closure of a projection in...
pjhcl 31267 Closure of a projection in...
omlsilem 31268 Lemma for orthomodular law...
omlsii 31269 Subspace inference form of...
omlsi 31270 Subspace form of orthomodu...
ococi 31271 Complement of complement o...
ococ 31272 Complement of complement o...
dfch2 31273 Alternate definition of th...
ococin 31274 The double complement is t...
hsupval2 31275 Alternate definition of su...
chsupval2 31276 The value of the supremum ...
sshjval2 31277 Value of join in the set o...
chsupid 31278 A subspace is the supremum...
chsupsn 31279 Value of supremum of subse...
shlub 31280 Hilbert lattice join is th...
shlubi 31281 Hilbert lattice join is th...
pjhtheu2 31282 Uniqueness of ` y ` for th...
pjcli 31283 Closure of a projection in...
pjhcli 31284 Closure of a projection in...
pjpjpre 31285 Decomposition of a vector ...
axpjpj 31286 Decomposition of a vector ...
pjclii 31287 Closure of a projection in...
pjhclii 31288 Closure of a projection in...
pjpj0i 31289 Decomposition of a vector ...
pjpji 31290 Decomposition of a vector ...
pjpjhth 31291 Projection Theorem: Any H...
pjpjhthi 31292 Projection Theorem: Any H...
pjop 31293 Orthocomplement projection...
pjpo 31294 Projection in terms of ort...
pjopi 31295 Orthocomplement projection...
pjpoi 31296 Projection in terms of ort...
pjoc1i 31297 Projection of a vector in ...
pjchi 31298 Projection of a vector in ...
pjoccl 31299 The part of a vector that ...
pjoc1 31300 Projection of a vector in ...
pjomli 31301 Subspace form of orthomodu...
pjoml 31302 Subspace form of orthomodu...
pjococi 31303 Proof of orthocomplement t...
pjoc2i 31304 Projection of a vector in ...
pjoc2 31305 Projection of a vector in ...
sh0le 31306 The zero subspace is the s...
ch0le 31307 The zero subspace is the s...
shle0 31308 No subspace is smaller tha...
chle0 31309 No Hilbert lattice element...
chnlen0 31310 A Hilbert lattice element ...
ch0pss 31311 The zero subspace is a pro...
orthin 31312 The intersection of orthog...
ssjo 31313 The lattice join of a subs...
shne0i 31314 A nonzero subspace has a n...
shs0i 31315 Hilbert subspace sum with ...
shs00i 31316 Two subspaces are zero iff...
ch0lei 31317 The closed subspace zero i...
chle0i 31318 No Hilbert closed subspace...
chne0i 31319 A nonzero closed subspace ...
chocini 31320 Intersection of a closed s...
chj0i 31321 Join with lattice zero in ...
chm1i 31322 Meet with lattice one in `...
chjcli 31323 Closure of ` CH ` join. (...
chsleji 31324 Subspace sum is smaller th...
chseli 31325 Membership in subspace sum...
chincli 31326 Closure of Hilbert lattice...
chsscon3i 31327 Hilbert lattice contraposi...
chsscon1i 31328 Hilbert lattice contraposi...
chsscon2i 31329 Hilbert lattice contraposi...
chcon2i 31330 Hilbert lattice contraposi...
chcon1i 31331 Hilbert lattice contraposi...
chcon3i 31332 Hilbert lattice contraposi...
chunssji 31333 Union is smaller than ` CH...
chjcomi 31334 Commutative law for join i...
chub1i 31335 ` CH ` join is an upper bo...
chub2i 31336 ` CH ` join is an upper bo...
chlubi 31337 Hilbert lattice join is th...
chlubii 31338 Hilbert lattice join is th...
chlej1i 31339 Add join to both sides of ...
chlej2i 31340 Add join to both sides of ...
chlej12i 31341 Add join to both sides of ...
chlejb1i 31342 Hilbert lattice ordering i...
chdmm1i 31343 De Morgan's law for meet i...
chdmm2i 31344 De Morgan's law for meet i...
chdmm3i 31345 De Morgan's law for meet i...
chdmm4i 31346 De Morgan's law for meet i...
chdmj1i 31347 De Morgan's law for join i...
chdmj2i 31348 De Morgan's law for join i...
chdmj3i 31349 De Morgan's law for join i...
chdmj4i 31350 De Morgan's law for join i...
chnlei 31351 Equivalent expressions for...
chjassi 31352 Associative law for Hilber...
chj00i 31353 Two Hilbert lattice elemen...
chjoi 31354 The join of a closed subsp...
chj1i 31355 Join with Hilbert lattice ...
chm0i 31356 Meet with Hilbert lattice ...
chm0 31357 Meet with Hilbert lattice ...
shjshsi 31358 Hilbert lattice join equal...
shjshseli 31359 A closed subspace sum equa...
chne0 31360 A nonzero closed subspace ...
chocin 31361 Intersection of a closed s...
chssoc 31362 A closed subspace less tha...
chj0 31363 Join with Hilbert lattice ...
chslej 31364 Subspace sum is smaller th...
chincl 31365 Closure of Hilbert lattice...
chsscon3 31366 Hilbert lattice contraposi...
chsscon1 31367 Hilbert lattice contraposi...
chsscon2 31368 Hilbert lattice contraposi...
chpsscon3 31369 Hilbert lattice contraposi...
chpsscon1 31370 Hilbert lattice contraposi...
chpsscon2 31371 Hilbert lattice contraposi...
chjcom 31372 Commutative law for Hilber...
chub1 31373 Hilbert lattice join is gr...
chub2 31374 Hilbert lattice join is gr...
chlub 31375 Hilbert lattice join is th...
chlej1 31376 Add join to both sides of ...
chlej2 31377 Add join to both sides of ...
chlejb1 31378 Hilbert lattice ordering i...
chlejb2 31379 Hilbert lattice ordering i...
chnle 31380 Equivalent expressions for...
chjo 31381 The join of a closed subsp...
chabs1 31382 Hilbert lattice absorption...
chabs2 31383 Hilbert lattice absorption...
chabs1i 31384 Hilbert lattice absorption...
chabs2i 31385 Hilbert lattice absorption...
chjidm 31386 Idempotent law for Hilbert...
chjidmi 31387 Idempotent law for Hilbert...
chj12i 31388 A rearrangement of Hilbert...
chj4i 31389 Rearrangement of the join ...
chjjdiri 31390 Hilbert lattice join distr...
chdmm1 31391 De Morgan's law for meet i...
chdmm2 31392 De Morgan's law for meet i...
chdmm3 31393 De Morgan's law for meet i...
chdmm4 31394 De Morgan's law for meet i...
chdmj1 31395 De Morgan's law for join i...
chdmj2 31396 De Morgan's law for join i...
chdmj3 31397 De Morgan's law for join i...
chdmj4 31398 De Morgan's law for join i...
chjass 31399 Associative law for Hilber...
chj12 31400 A rearrangement of Hilbert...
chj4 31401 Rearrangement of the join ...
ledii 31402 An ortholattice is distrib...
lediri 31403 An ortholattice is distrib...
lejdii 31404 An ortholattice is distrib...
lejdiri 31405 An ortholattice is distrib...
ledi 31406 An ortholattice is distrib...
spansn0 31407 The span of the singleton ...
span0 31408 The span of the empty set ...
elspani 31409 Membership in the span of ...
spanuni 31410 The span of a union is the...
spanun 31411 The span of a union is the...
sshhococi 31412 The join of two Hilbert sp...
hne0 31413 Hilbert space has a nonzer...
chsup0 31414 The supremum of the empty ...
h1deoi 31415 Membership in orthocomplem...
h1dei 31416 Membership in 1-dimensiona...
h1did 31417 A generating vector belong...
h1dn0 31418 A nonzero vector generates...
h1de2i 31419 Membership in 1-dimensiona...
h1de2bi 31420 Membership in 1-dimensiona...
h1de2ctlem 31421 Lemma for ~ h1de2ci . (Co...
h1de2ci 31422 Membership in 1-dimensiona...
spansni 31423 The span of a singleton in...
elspansni 31424 Membership in the span of ...
spansn 31425 The span of a singleton in...
spansnch 31426 The span of a Hilbert spac...
spansnsh 31427 The span of a Hilbert spac...
spansnchi 31428 The span of a singleton in...
spansnid 31429 A vector belongs to the sp...
spansnmul 31430 A scalar product with a ve...
elspansncl 31431 A member of a span of a si...
elspansn 31432 Membership in the span of ...
elspansn2 31433 Membership in the span of ...
spansncol 31434 The singletons of collinea...
spansneleqi 31435 Membership relation implie...
spansneleq 31436 Membership relation that i...
spansnss 31437 The span of the singleton ...
elspansn3 31438 A member of the span of th...
elspansn4 31439 A span membership conditio...
elspansn5 31440 A vector belonging to both...
spansnss2 31441 The span of the singleton ...
normcan 31442 Cancellation-type law that...
pjspansn 31443 A projection on the span o...
spansnpji 31444 A subset of Hilbert space ...
spanunsni 31445 The span of the union of a...
spanpr 31446 The span of a pair of vect...
h1datomi 31447 A 1-dimensional subspace i...
h1datom 31448 A 1-dimensional subspace i...
cmbr 31450 Binary relation expressing...
pjoml2i 31451 Variation of orthomodular ...
pjoml3i 31452 Variation of orthomodular ...
pjoml4i 31453 Variation of orthomodular ...
pjoml5i 31454 The orthomodular law. Rem...
pjoml6i 31455 An equivalent of the ortho...
cmbri 31456 Binary relation expressing...
cmcmlem 31457 Commutation is symmetric. ...
cmcmi 31458 Commutation is symmetric. ...
cmcm2i 31459 Commutation with orthocomp...
cmcm3i 31460 Commutation with orthocomp...
cmcm4i 31461 Commutation with orthocomp...
cmbr2i 31462 Alternate definition of th...
cmcmii 31463 Commutation is symmetric. ...
cmcm2ii 31464 Commutation with orthocomp...
cmcm3ii 31465 Commutation with orthocomp...
cmbr3i 31466 Alternate definition for t...
cmbr4i 31467 Alternate definition for t...
lecmi 31468 Comparable Hilbert lattice...
lecmii 31469 Comparable Hilbert lattice...
cmj1i 31470 A Hilbert lattice element ...
cmj2i 31471 A Hilbert lattice element ...
cmm1i 31472 A Hilbert lattice element ...
cmm2i 31473 A Hilbert lattice element ...
cmbr3 31474 Alternate definition for t...
cm0 31475 The zero Hilbert lattice e...
cmidi 31476 The commutes relation is r...
pjoml2 31477 Variation of orthomodular ...
pjoml3 31478 Variation of orthomodular ...
pjoml5 31479 The orthomodular law. Rem...
cmcm 31480 Commutation is symmetric. ...
cmcm3 31481 Commutation with orthocomp...
cmcm2 31482 Commutation with orthocomp...
lecm 31483 Comparable Hilbert lattice...
fh1 31484 Foulis-Holland Theorem. I...
fh2 31485 Foulis-Holland Theorem. I...
cm2j 31486 A lattice element that com...
fh1i 31487 Foulis-Holland Theorem. I...
fh2i 31488 Foulis-Holland Theorem. I...
fh3i 31489 Variation of the Foulis-Ho...
fh4i 31490 Variation of the Foulis-Ho...
cm2ji 31491 A lattice element that com...
cm2mi 31492 A lattice element that com...
qlax1i 31493 One of the equations showi...
qlax2i 31494 One of the equations showi...
qlax3i 31495 One of the equations showi...
qlax4i 31496 One of the equations showi...
qlax5i 31497 One of the equations showi...
qlaxr1i 31498 One of the conditions show...
qlaxr2i 31499 One of the conditions show...
qlaxr4i 31500 One of the conditions show...
qlaxr5i 31501 One of the conditions show...
qlaxr3i 31502 A variation of the orthomo...
chscllem1 31503 Lemma for ~ chscl . (Cont...
chscllem2 31504 Lemma for ~ chscl . (Cont...
chscllem3 31505 Lemma for ~ chscl . (Cont...
chscllem4 31506 Lemma for ~ chscl . (Cont...
chscl 31507 The subspace sum of two cl...
osumi 31508 If two closed subspaces of...
osumcori 31509 Corollary of ~ osumi . (C...
osumcor2i 31510 Corollary of ~ osumi , sho...
osum 31511 If two closed subspaces of...
spansnji 31512 The subspace sum of a clos...
spansnj 31513 The subspace sum of a clos...
spansnscl 31514 The subspace sum of a clos...
sumspansn 31515 The sum of two vectors bel...
spansnm0i 31516 The meet of different one-...
nonbooli 31517 A Hilbert lattice with two...
spansncvi 31518 Hilbert space has the cove...
spansncv 31519 Hilbert space has the cove...
5oalem1 31520 Lemma for orthoarguesian l...
5oalem2 31521 Lemma for orthoarguesian l...
5oalem3 31522 Lemma for orthoarguesian l...
5oalem4 31523 Lemma for orthoarguesian l...
5oalem5 31524 Lemma for orthoarguesian l...
5oalem6 31525 Lemma for orthoarguesian l...
5oalem7 31526 Lemma for orthoarguesian l...
5oai 31527 Orthoarguesian law 5OA. Th...
3oalem1 31528 Lemma for 3OA (weak) ortho...
3oalem2 31529 Lemma for 3OA (weak) ortho...
3oalem3 31530 Lemma for 3OA (weak) ortho...
3oalem4 31531 Lemma for 3OA (weak) ortho...
3oalem5 31532 Lemma for 3OA (weak) ortho...
3oalem6 31533 Lemma for 3OA (weak) ortho...
3oai 31534 3OA (weak) orthoarguesian ...
pjorthi 31535 Projection components on o...
pjch1 31536 Property of identity proje...
pjo 31537 The orthogonal projection....
pjcompi 31538 Component of a projection....
pjidmi 31539 A projection is idempotent...
pjadjii 31540 A projection is self-adjoi...
pjaddii 31541 Projection of vector sum i...
pjinormii 31542 The inner product of a pro...
pjmulii 31543 Projection of (scalar) pro...
pjsubii 31544 Projection of vector diffe...
pjsslem 31545 Lemma for subset relations...
pjss2i 31546 Subset relationship for pr...
pjssmii 31547 Projection meet property. ...
pjssge0ii 31548 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 31549 Theorem 4.5(v)<->(vi) of [...
pjcji 31550 The projection on a subspa...
pjadji 31551 A projection is self-adjoi...
pjaddi 31552 Projection of vector sum i...
pjinormi 31553 The inner product of a pro...
pjsubi 31554 Projection of vector diffe...
pjmuli 31555 Projection of scalar produ...
pjige0i 31556 The inner product of a pro...
pjige0 31557 The inner product of a pro...
pjcjt2 31558 The projection on a subspa...
pj0i 31559 The projection of the zero...
pjch 31560 Projection of a vector in ...
pjid 31561 The projection of a vector...
pjvec 31562 The set of vectors belongi...
pjocvec 31563 The set of vectors belongi...
pjocini 31564 Membership of projection i...
pjini 31565 Membership of projection i...
pjjsi 31566 A sufficient condition for...
pjfni 31567 Functionality of a project...
pjrni 31568 The range of a projection....
pjfoi 31569 A projection maps onto its...
pjfi 31570 The mapping of a projectio...
pjvi 31571 The value of a projection ...
pjhfo 31572 A projection maps onto its...
pjrn 31573 The range of a projection....
pjhf 31574 The mapping of a projectio...
pjfn 31575 Functionality of a project...
pjsumi 31576 The projection on a subspa...
pj11i 31577 One-to-one correspondence ...
pjdsi 31578 Vector decomposition into ...
pjds3i 31579 Vector decomposition into ...
pj11 31580 One-to-one correspondence ...
pjmfn 31581 Functionality of the proje...
pjmf1 31582 The projector function map...
pjoi0 31583 The inner product of proje...
pjoi0i 31584 The inner product of proje...
pjopythi 31585 Pythagorean theorem for pr...
pjopyth 31586 Pythagorean theorem for pr...
pjnormi 31587 The norm of the projection...
pjpythi 31588 Pythagorean theorem for pr...
pjneli 31589 If a vector does not belon...
pjnorm 31590 The norm of the projection...
pjpyth 31591 Pythagorean theorem for pr...
pjnel 31592 If a vector does not belon...
pjnorm2 31593 A vector belongs to the su...
mayete3i 31594 Mayet's equation E_3. Par...
mayetes3i 31595 Mayet's equation E^*_3, de...
hosmval 31601 Value of the sum of two Hi...
hommval 31602 Value of the scalar produc...
hodmval 31603 Value of the difference of...
hfsmval 31604 Value of the sum of two Hi...
hfmmval 31605 Value of the scalar produc...
hosval 31606 Value of the sum of two Hi...
homval 31607 Value of the scalar produc...
hodval 31608 Value of the difference of...
hfsval 31609 Value of the sum of two Hi...
hfmval 31610 Value of the scalar produc...
hoscl 31611 Closure of the sum of two ...
homcl 31612 Closure of the scalar prod...
hodcl 31613 Closure of the difference ...
ho0val 31616 Value of the zero Hilbert ...
ho0f 31617 Functionality of the zero ...
df0op2 31618 Alternate definition of Hi...
dfiop2 31619 Alternate definition of Hi...
hoif 31620 Functionality of the Hilbe...
hoival 31621 The value of the Hilbert s...
hoico1 31622 Composition with the Hilbe...
hoico2 31623 Composition with the Hilbe...
hoaddcl 31624 The sum of Hilbert space o...
homulcl 31625 The scalar product of a Hi...
hoeq 31626 Equality of Hilbert space ...
hoeqi 31627 Equality of Hilbert space ...
hoscli 31628 Closure of Hilbert space o...
hodcli 31629 Closure of Hilbert space o...
hocoi 31630 Composition of Hilbert spa...
hococli 31631 Closure of composition of ...
hocofi 31632 Mapping of composition of ...
hocofni 31633 Functionality of compositi...
hoaddcli 31634 Mapping of sum of Hilbert ...
hosubcli 31635 Mapping of difference of H...
hoaddfni 31636 Functionality of sum of Hi...
hosubfni 31637 Functionality of differenc...
hoaddcomi 31638 Commutativity of sum of Hi...
hosubcl 31639 Mapping of difference of H...
hoaddcom 31640 Commutativity of sum of Hi...
hodsi 31641 Relationship between Hilbe...
hoaddassi 31642 Associativity of sum of Hi...
hoadd12i 31643 Commutative/associative la...
hoadd32i 31644 Commutative/associative la...
hocadddiri 31645 Distributive law for Hilbe...
hocsubdiri 31646 Distributive law for Hilbe...
ho2coi 31647 Double composition of Hilb...
hoaddass 31648 Associativity of sum of Hi...
hoadd32 31649 Commutative/associative la...
hoadd4 31650 Rearrangement of 4 terms i...
hocsubdir 31651 Distributive law for Hilbe...
hoaddridi 31652 Sum of a Hilbert space ope...
hodidi 31653 Difference of a Hilbert sp...
ho0coi 31654 Composition of the zero op...
hoid1i 31655 Composition of Hilbert spa...
hoid1ri 31656 Composition of Hilbert spa...
hoaddrid 31657 Sum of a Hilbert space ope...
hodid 31658 Difference of a Hilbert sp...
hon0 31659 A Hilbert space operator i...
hodseqi 31660 Subtraction and addition o...
ho0subi 31661 Subtraction of Hilbert spa...
honegsubi 31662 Relationship between Hilbe...
ho0sub 31663 Subtraction of Hilbert spa...
hosubid1 31664 The zero operator subtract...
honegsub 31665 Relationship between Hilbe...
homullid 31666 An operator equals its sca...
homco1 31667 Associative law for scalar...
homulass 31668 Scalar product associative...
hoadddi 31669 Scalar product distributiv...
hoadddir 31670 Scalar product reverse dis...
homul12 31671 Swap first and second fact...
honegneg 31672 Double negative of a Hilbe...
hosubneg 31673 Relationship between opera...
hosubdi 31674 Scalar product distributiv...
honegdi 31675 Distribution of negative o...
honegsubdi 31676 Distribution of negative o...
honegsubdi2 31677 Distribution of negative o...
hosubsub2 31678 Law for double subtraction...
hosub4 31679 Rearrangement of 4 terms i...
hosubadd4 31680 Rearrangement of 4 terms i...
hoaddsubass 31681 Associative-type law for a...
hoaddsub 31682 Law for operator addition ...
hosubsub 31683 Law for double subtraction...
hosubsub4 31684 Law for double subtraction...
ho2times 31685 Two times a Hilbert space ...
hoaddsubassi 31686 Associativity of sum and d...
hoaddsubi 31687 Law for sum and difference...
hosd1i 31688 Hilbert space operator sum...
hosd2i 31689 Hilbert space operator sum...
hopncani 31690 Hilbert space operator can...
honpcani 31691 Hilbert space operator can...
hosubeq0i 31692 If the difference between ...
honpncani 31693 Hilbert space operator can...
ho01i 31694 A condition implying that ...
ho02i 31695 A condition implying that ...
hoeq1 31696 A condition implying that ...
hoeq2 31697 A condition implying that ...
adjmo 31698 Every Hilbert space operat...
adjsym 31699 Symmetry property of an ad...
eigrei 31700 A necessary and sufficient...
eigre 31701 A necessary and sufficient...
eigposi 31702 A sufficient condition (fi...
eigorthi 31703 A necessary and sufficient...
eigorth 31704 A necessary and sufficient...
nmopval 31722 Value of the norm of a Hil...
elcnop 31723 Property defining a contin...
ellnop 31724 Property defining a linear...
lnopf 31725 A linear Hilbert space ope...
elbdop 31726 Property defining a bounde...
bdopln 31727 A bounded linear Hilbert s...
bdopf 31728 A bounded linear Hilbert s...
nmopsetretALT 31729 The set in the supremum of...
nmopsetretHIL 31730 The set in the supremum of...
nmopsetn0 31731 The set in the supremum of...
nmopxr 31732 The norm of a Hilbert spac...
nmoprepnf 31733 The norm of a Hilbert spac...
nmopgtmnf 31734 The norm of a Hilbert spac...
nmopreltpnf 31735 The norm of a Hilbert spac...
nmopre 31736 The norm of a bounded oper...
elbdop2 31737 Property defining a bounde...
elunop 31738 Property defining a unitar...
elhmop 31739 Property defining a Hermit...
hmopf 31740 A Hermitian operator is a ...
hmopex 31741 The class of Hermitian ope...
nmfnval 31742 Value of the norm of a Hil...
nmfnsetre 31743 The set in the supremum of...
nmfnsetn0 31744 The set in the supremum of...
nmfnxr 31745 The norm of any Hilbert sp...
nmfnrepnf 31746 The norm of a Hilbert spac...
nlfnval 31747 Value of the null space of...
elcnfn 31748 Property defining a contin...
ellnfn 31749 Property defining a linear...
lnfnf 31750 A linear Hilbert space fun...
dfadj2 31751 Alternate definition of th...
funadj 31752 Functionality of the adjoi...
dmadjss 31753 The domain of the adjoint ...
dmadjop 31754 A member of the domain of ...
adjeu 31755 Elementhood in the domain ...
adjval 31756 Value of the adjoint funct...
adjval2 31757 Value of the adjoint funct...
cnvadj 31758 The adjoint function equal...
funcnvadj 31759 The converse of the adjoin...
adj1o 31760 The adjoint function maps ...
dmadjrn 31761 The adjoint of an operator...
eigvecval 31762 The set of eigenvectors of...
eigvalfval 31763 The eigenvalues of eigenve...
specval 31764 The value of the spectrum ...
speccl 31765 The spectrum of an operato...
hhlnoi 31766 The linear operators of Hi...
hhnmoi 31767 The norm of an operator in...
hhbloi 31768 A bounded linear operator ...
hh0oi 31769 The zero operator in Hilbe...
hhcno 31770 The continuous operators o...
hhcnf 31771 The continuous functionals...
dmadjrnb 31772 The adjoint of an operator...
nmoplb 31773 A lower bound for an opera...
nmopub 31774 An upper bound for an oper...
nmopub2tALT 31775 An upper bound for an oper...
nmopub2tHIL 31776 An upper bound for an oper...
nmopge0 31777 The norm of any Hilbert sp...
nmopgt0 31778 A linear Hilbert space ope...
cnopc 31779 Basic continuity property ...
lnopl 31780 Basic linearity property o...
unop 31781 Basic inner product proper...
unopf1o 31782 A unitary operator in Hilb...
unopnorm 31783 A unitary operator is idem...
cnvunop 31784 The inverse (converse) of ...
unopadj 31785 The inverse (converse) of ...
unoplin 31786 A unitary operator is line...
counop 31787 The composition of two uni...
hmop 31788 Basic inner product proper...
hmopre 31789 The inner product of the v...
nmfnlb 31790 A lower bound for a functi...
nmfnleub 31791 An upper bound for the nor...
nmfnleub2 31792 An upper bound for the nor...
nmfnge0 31793 The norm of any Hilbert sp...
elnlfn 31794 Membership in the null spa...
elnlfn2 31795 Membership in the null spa...
cnfnc 31796 Basic continuity property ...
lnfnl 31797 Basic linearity property o...
adjcl 31798 Closure of the adjoint of ...
adj1 31799 Property of an adjoint Hil...
adj2 31800 Property of an adjoint Hil...
adjeq 31801 A property that determines...
adjadj 31802 Double adjoint. Theorem 3...
adjvalval 31803 Value of the value of the ...
unopadj2 31804 The adjoint of a unitary o...
hmopadj 31805 A Hermitian operator is se...
hmdmadj 31806 Every Hermitian operator h...
hmopadj2 31807 An operator is Hermitian i...
hmoplin 31808 A Hermitian operator is li...
brafval 31809 The bra of a vector, expre...
braval 31810 A bra-ket juxtaposition, e...
braadd 31811 Linearity property of bra ...
bramul 31812 Linearity property of bra ...
brafn 31813 The bra function is a func...
bralnfn 31814 The Dirac bra function is ...
bracl 31815 Closure of the bra functio...
bra0 31816 The Dirac bra of the zero ...
brafnmul 31817 Anti-linearity property of...
kbfval 31818 The outer product of two v...
kbop 31819 The outer product of two v...
kbval 31820 The value of the operator ...
kbmul 31821 Multiplication property of...
kbpj 31822 If a vector ` A ` has norm...
eleigvec 31823 Membership in the set of e...
eleigvec2 31824 Membership in the set of e...
eleigveccl 31825 Closure of an eigenvector ...
eigvalval 31826 The eigenvalue of an eigen...
eigvalcl 31827 An eigenvalue is a complex...
eigvec1 31828 Property of an eigenvector...
eighmre 31829 The eigenvalues of a Hermi...
eighmorth 31830 Eigenvectors of a Hermitia...
nmopnegi 31831 Value of the norm of the n...
lnop0 31832 The value of a linear Hilb...
lnopmul 31833 Multiplicative property of...
lnopli 31834 Basic scalar product prope...
lnopfi 31835 A linear Hilbert space ope...
lnop0i 31836 The value of a linear Hilb...
lnopaddi 31837 Additive property of a lin...
lnopmuli 31838 Multiplicative property of...
lnopaddmuli 31839 Sum/product property of a ...
lnopsubi 31840 Subtraction property for a...
lnopsubmuli 31841 Subtraction/product proper...
lnopmulsubi 31842 Product/subtraction proper...
homco2 31843 Move a scalar product out ...
idunop 31844 The identity function (res...
0cnop 31845 The identically zero funct...
0cnfn 31846 The identically zero funct...
idcnop 31847 The identity function (res...
idhmop 31848 The Hilbert space identity...
0hmop 31849 The identically zero funct...
0lnop 31850 The identically zero funct...
0lnfn 31851 The identically zero funct...
nmop0 31852 The norm of the zero opera...
nmfn0 31853 The norm of the identicall...
hmopbdoptHIL 31854 A Hermitian operator is a ...
hoddii 31855 Distributive law for Hilbe...
hoddi 31856 Distributive law for Hilbe...
nmop0h 31857 The norm of any operator o...
idlnop 31858 The identity function (res...
0bdop 31859 The identically zero opera...
adj0 31860 Adjoint of the zero operat...
nmlnop0iALT 31861 A linear operator with a z...
nmlnop0iHIL 31862 A linear operator with a z...
nmlnopgt0i 31863 A linear Hilbert space ope...
nmlnop0 31864 A linear operator with a z...
nmlnopne0 31865 A linear operator with a n...
lnopmi 31866 The scalar product of a li...
lnophsi 31867 The sum of two linear oper...
lnophdi 31868 The difference of two line...
lnopcoi 31869 The composition of two lin...
lnopco0i 31870 The composition of a linea...
lnopeq0lem1 31871 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 31872 Lemma for ~ lnopeq0i . (C...
lnopeq0i 31873 A condition implying that ...
lnopeqi 31874 Two linear Hilbert space o...
lnopeq 31875 Two linear Hilbert space o...
lnopunilem1 31876 Lemma for ~ lnopunii . (C...
lnopunilem2 31877 Lemma for ~ lnopunii . (C...
lnopunii 31878 If a linear operator (whos...
elunop2 31879 An operator is unitary iff...
nmopun 31880 Norm of a unitary Hilbert ...
unopbd 31881 A unitary operator is a bo...
lnophmlem1 31882 Lemma for ~ lnophmi . (Co...
lnophmlem2 31883 Lemma for ~ lnophmi . (Co...
lnophmi 31884 A linear operator is Hermi...
lnophm 31885 A linear operator is Hermi...
hmops 31886 The sum of two Hermitian o...
hmopm 31887 The scalar product of a He...
hmopd 31888 The difference of two Herm...
hmopco 31889 The composition of two com...
nmbdoplbi 31890 A lower bound for the norm...
nmbdoplb 31891 A lower bound for the norm...
nmcexi 31892 Lemma for ~ nmcopexi and ~...
nmcopexi 31893 The norm of a continuous l...
nmcoplbi 31894 A lower bound for the norm...
nmcopex 31895 The norm of a continuous l...
nmcoplb 31896 A lower bound for the norm...
nmophmi 31897 The norm of the scalar pro...
bdophmi 31898 The scalar product of a bo...
lnconi 31899 Lemma for ~ lnopconi and ~...
lnopconi 31900 A condition equivalent to ...
lnopcon 31901 A condition equivalent to ...
lnopcnbd 31902 A linear operator is conti...
lncnopbd 31903 A continuous linear operat...
lncnbd 31904 A continuous linear operat...
lnopcnre 31905 A linear operator is conti...
lnfnli 31906 Basic property of a linear...
lnfnfi 31907 A linear Hilbert space fun...
lnfn0i 31908 The value of a linear Hilb...
lnfnaddi 31909 Additive property of a lin...
lnfnmuli 31910 Multiplicative property of...
lnfnaddmuli 31911 Sum/product property of a ...
lnfnsubi 31912 Subtraction property for a...
lnfn0 31913 The value of a linear Hilb...
lnfnmul 31914 Multiplicative property of...
nmbdfnlbi 31915 A lower bound for the norm...
nmbdfnlb 31916 A lower bound for the norm...
nmcfnexi 31917 The norm of a continuous l...
nmcfnlbi 31918 A lower bound for the norm...
nmcfnex 31919 The norm of a continuous l...
nmcfnlb 31920 A lower bound of the norm ...
lnfnconi 31921 A condition equivalent to ...
lnfncon 31922 A condition equivalent to ...
lnfncnbd 31923 A linear functional is con...
imaelshi 31924 The image of a subspace un...
rnelshi 31925 The range of a linear oper...
nlelshi 31926 The null space of a linear...
nlelchi 31927 The null space of a contin...
riesz3i 31928 A continuous linear functi...
riesz4i 31929 A continuous linear functi...
riesz4 31930 A continuous linear functi...
riesz1 31931 Part 1 of the Riesz repres...
riesz2 31932 Part 2 of the Riesz repres...
cnlnadjlem1 31933 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 31934 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 31935 Lemma for ~ cnlnadji . By...
cnlnadjlem4 31936 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 31937 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 31938 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 31939 Lemma for ~ cnlnadji . He...
cnlnadjlem8 31940 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 31941 Lemma for ~ cnlnadji . ` F...
cnlnadji 31942 Every continuous linear op...
cnlnadjeui 31943 Every continuous linear op...
cnlnadjeu 31944 Every continuous linear op...
cnlnadj 31945 Every continuous linear op...
cnlnssadj 31946 Every continuous linear Hi...
bdopssadj 31947 Every bounded linear Hilbe...
bdopadj 31948 Every bounded linear Hilbe...
adjbdln 31949 The adjoint of a bounded l...
adjbdlnb 31950 An operator is bounded and...
adjbd1o 31951 The mapping of adjoints of...
adjlnop 31952 The adjoint of an operator...
adjsslnop 31953 Every operator with an adj...
nmopadjlei 31954 Property of the norm of an...
nmopadjlem 31955 Lemma for ~ nmopadji . (C...
nmopadji 31956 Property of the norm of an...
adjeq0 31957 An operator is zero iff it...
adjmul 31958 The adjoint of the scalar ...
adjadd 31959 The adjoint of the sum of ...
nmoptrii 31960 Triangle inequality for th...
nmopcoi 31961 Upper bound for the norm o...
bdophsi 31962 The sum of two bounded lin...
bdophdi 31963 The difference between two...
bdopcoi 31964 The composition of two bou...
nmoptri2i 31965 Triangle-type inequality f...
adjcoi 31966 The adjoint of a compositi...
nmopcoadji 31967 The norm of an operator co...
nmopcoadj2i 31968 The norm of an operator co...
nmopcoadj0i 31969 An operator composed with ...
unierri 31970 If we approximate a chain ...
branmfn 31971 The norm of the bra functi...
brabn 31972 The bra of a vector is a b...
rnbra 31973 The set of bras equals the...
bra11 31974 The bra function maps vect...
bracnln 31975 A bra is a continuous line...
cnvbraval 31976 Value of the converse of t...
cnvbracl 31977 Closure of the converse of...
cnvbrabra 31978 The converse bra of the br...
bracnvbra 31979 The bra of the converse br...
bracnlnval 31980 The vector that a continuo...
cnvbramul 31981 Multiplication property of...
kbass1 31982 Dirac bra-ket associative ...
kbass2 31983 Dirac bra-ket associative ...
kbass3 31984 Dirac bra-ket associative ...
kbass4 31985 Dirac bra-ket associative ...
kbass5 31986 Dirac bra-ket associative ...
kbass6 31987 Dirac bra-ket associative ...
leopg 31988 Ordering relation for posi...
leop 31989 Ordering relation for oper...
leop2 31990 Ordering relation for oper...
leop3 31991 Operator ordering in terms...
leoppos 31992 Binary relation defining a...
leoprf2 31993 The ordering relation for ...
leoprf 31994 The ordering relation for ...
leopsq 31995 The square of a Hermitian ...
0leop 31996 The zero operator is a pos...
idleop 31997 The identity operator is a...
leopadd 31998 The sum of two positive op...
leopmuli 31999 The scalar product of a no...
leopmul 32000 The scalar product of a po...
leopmul2i 32001 Scalar product applied to ...
leoptri 32002 The positive operator orde...
leoptr 32003 The positive operator orde...
leopnmid 32004 A bounded Hermitian operat...
nmopleid 32005 A nonzero, bounded Hermiti...
opsqrlem1 32006 Lemma for opsqri . (Contr...
opsqrlem2 32007 Lemma for opsqri . ` F `` ...
opsqrlem3 32008 Lemma for opsqri . (Contr...
opsqrlem4 32009 Lemma for opsqri . (Contr...
opsqrlem5 32010 Lemma for opsqri . (Contr...
opsqrlem6 32011 Lemma for opsqri . (Contr...
pjhmopi 32012 A projector is a Hermitian...
pjlnopi 32013 A projector is a linear op...
pjnmopi 32014 The operator norm of a pro...
pjbdlni 32015 A projector is a bounded l...
pjhmop 32016 A projection is a Hermitia...
hmopidmchi 32017 An idempotent Hermitian op...
hmopidmpji 32018 An idempotent Hermitian op...
hmopidmch 32019 An idempotent Hermitian op...
hmopidmpj 32020 An idempotent Hermitian op...
pjsdii 32021 Distributive law for Hilbe...
pjddii 32022 Distributive law for Hilbe...
pjsdi2i 32023 Chained distributive law f...
pjcoi 32024 Composition of projections...
pjcocli 32025 Closure of composition of ...
pjcohcli 32026 Closure of composition of ...
pjadjcoi 32027 Adjoint of composition of ...
pjcofni 32028 Functionality of compositi...
pjss1coi 32029 Subset relationship for pr...
pjss2coi 32030 Subset relationship for pr...
pjssmi 32031 Projection meet property. ...
pjssge0i 32032 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 32033 Theorem 4.5(v)<->(vi) of [...
pjnormssi 32034 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 32035 Composition of projections...
pjscji 32036 The projection of orthogon...
pjssumi 32037 The projection on a subspa...
pjssposi 32038 Projector ordering can be ...
pjordi 32039 The definition of projecto...
pjssdif2i 32040 The projection subspace of...
pjssdif1i 32041 A necessary and sufficient...
pjimai 32042 The image of a projection....
pjidmcoi 32043 A projection is idempotent...
pjoccoi 32044 Composition of projections...
pjtoi 32045 Subspace sum of projection...
pjoci 32046 Projection of orthocomplem...
pjidmco 32047 A projection operator is i...
dfpjop 32048 Definition of projection o...
pjhmopidm 32049 Two ways to express the se...
elpjidm 32050 A projection operator is i...
elpjhmop 32051 A projection operator is H...
0leopj 32052 A projector is a positive ...
pjadj2 32053 A projector is self-adjoin...
pjadj3 32054 A projector is self-adjoin...
elpjch 32055 Reconstruction of the subs...
elpjrn 32056 Reconstruction of the subs...
pjinvari 32057 A closed subspace ` H ` wi...
pjin1i 32058 Lemma for Theorem 1.22 of ...
pjin2i 32059 Lemma for Theorem 1.22 of ...
pjin3i 32060 Lemma for Theorem 1.22 of ...
pjclem1 32061 Lemma for projection commu...
pjclem2 32062 Lemma for projection commu...
pjclem3 32063 Lemma for projection commu...
pjclem4a 32064 Lemma for projection commu...
pjclem4 32065 Lemma for projection commu...
pjci 32066 Two subspaces commute iff ...
pjcmul1i 32067 A necessary and sufficient...
pjcmul2i 32068 The projection subspace of...
pjcohocli 32069 Closure of composition of ...
pjadj2coi 32070 Adjoint of double composit...
pj2cocli 32071 Closure of double composit...
pj3lem1 32072 Lemma for projection tripl...
pj3si 32073 Stronger projection triple...
pj3i 32074 Projection triplet theorem...
pj3cor1i 32075 Projection triplet corolla...
pjs14i 32076 Theorem S-14 of Watanabe, ...
isst 32079 Property of a state. (Con...
ishst 32080 Property of a complex Hilb...
sticl 32081 ` [ 0 , 1 ] ` closure of t...
stcl 32082 Real closure of the value ...
hstcl 32083 Closure of the value of a ...
hst1a 32084 Unit value of a Hilbert-sp...
hstel2 32085 Properties of a Hilbert-sp...
hstorth 32086 Orthogonality property of ...
hstosum 32087 Orthogonal sum property of...
hstoc 32088 Sum of a Hilbert-space-val...
hstnmoc 32089 Sum of norms of a Hilbert-...
stge0 32090 The value of a state is no...
stle1 32091 The value of a state is le...
hstle1 32092 The norm of the value of a...
hst1h 32093 The norm of a Hilbert-spac...
hst0h 32094 The norm of a Hilbert-spac...
hstpyth 32095 Pythagorean property of a ...
hstle 32096 Ordering property of a Hil...
hstles 32097 Ordering property of a Hil...
hstoh 32098 A Hilbert-space-valued sta...
hst0 32099 A Hilbert-space-valued sta...
sthil 32100 The value of a state at th...
stj 32101 The value of a state on a ...
sto1i 32102 The state of a subspace pl...
sto2i 32103 The state of the orthocomp...
stge1i 32104 If a state is greater than...
stle0i 32105 If a state is less than or...
stlei 32106 Ordering law for states. ...
stlesi 32107 Ordering law for states. ...
stji1i 32108 Join of components of Sasa...
stm1i 32109 State of component of unit...
stm1ri 32110 State of component of unit...
stm1addi 32111 Sum of states whose meet i...
staddi 32112 If the sum of 2 states is ...
stm1add3i 32113 Sum of states whose meet i...
stadd3i 32114 If the sum of 3 states is ...
st0 32115 The state of the zero subs...
strlem1 32116 Lemma for strong state the...
strlem2 32117 Lemma for strong state the...
strlem3a 32118 Lemma for strong state the...
strlem3 32119 Lemma for strong state the...
strlem4 32120 Lemma for strong state the...
strlem5 32121 Lemma for strong state the...
strlem6 32122 Lemma for strong state the...
stri 32123 Strong state theorem. The...
strb 32124 Strong state theorem (bidi...
hstrlem2 32125 Lemma for strong set of CH...
hstrlem3a 32126 Lemma for strong set of CH...
hstrlem3 32127 Lemma for strong set of CH...
hstrlem4 32128 Lemma for strong set of CH...
hstrlem5 32129 Lemma for strong set of CH...
hstrlem6 32130 Lemma for strong set of CH...
hstri 32131 Hilbert space admits a str...
hstrbi 32132 Strong CH-state theorem (b...
largei 32133 A Hilbert lattice admits a...
jplem1 32134 Lemma for Jauch-Piron theo...
jplem2 32135 Lemma for Jauch-Piron theo...
jpi 32136 The function ` S ` , that ...
golem1 32137 Lemma for Godowski's equat...
golem2 32138 Lemma for Godowski's equat...
goeqi 32139 Godowski's equation, shown...
stcltr1i 32140 Property of a strong class...
stcltr2i 32141 Property of a strong class...
stcltrlem1 32142 Lemma for strong classical...
stcltrlem2 32143 Lemma for strong classical...
stcltrthi 32144 Theorem for classically st...
cvbr 32148 Binary relation expressing...
cvbr2 32149 Binary relation expressing...
cvcon3 32150 Contraposition law for the...
cvpss 32151 The covers relation implie...
cvnbtwn 32152 The covers relation implie...
cvnbtwn2 32153 The covers relation implie...
cvnbtwn3 32154 The covers relation implie...
cvnbtwn4 32155 The covers relation implie...
cvnsym 32156 The covers relation is not...
cvnref 32157 The covers relation is not...
cvntr 32158 The covers relation is not...
spansncv2 32159 Hilbert space has the cove...
mdbr 32160 Binary relation expressing...
mdi 32161 Consequence of the modular...
mdbr2 32162 Binary relation expressing...
mdbr3 32163 Binary relation expressing...
mdbr4 32164 Binary relation expressing...
dmdbr 32165 Binary relation expressing...
dmdmd 32166 The dual modular pair prop...
mddmd 32167 The modular pair property ...
dmdi 32168 Consequence of the dual mo...
dmdbr2 32169 Binary relation expressing...
dmdi2 32170 Consequence of the dual mo...
dmdbr3 32171 Binary relation expressing...
dmdbr4 32172 Binary relation expressing...
dmdi4 32173 Consequence of the dual mo...
dmdbr5 32174 Binary relation expressing...
mddmd2 32175 Relationship between modul...
mdsl0 32176 A sublattice condition tha...
ssmd1 32177 Ordering implies the modul...
ssmd2 32178 Ordering implies the modul...
ssdmd1 32179 Ordering implies the dual ...
ssdmd2 32180 Ordering implies the dual ...
dmdsl3 32181 Sublattice mapping for a d...
mdsl3 32182 Sublattice mapping for a m...
mdslle1i 32183 Order preservation of the ...
mdslle2i 32184 Order preservation of the ...
mdslj1i 32185 Join preservation of the o...
mdslj2i 32186 Meet preservation of the r...
mdsl1i 32187 If the modular pair proper...
mdsl2i 32188 If the modular pair proper...
mdsl2bi 32189 If the modular pair proper...
cvmdi 32190 The covering property impl...
mdslmd1lem1 32191 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 32192 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 32193 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 32194 Lemma for ~ mdslmd1i . (C...
mdslmd1i 32195 Preservation of the modula...
mdslmd2i 32196 Preservation of the modula...
mdsldmd1i 32197 Preservation of the dual m...
mdslmd3i 32198 Modular pair conditions th...
mdslmd4i 32199 Modular pair condition tha...
csmdsymi 32200 Cross-symmetry implies M-s...
mdexchi 32201 An exchange lemma for modu...
cvmd 32202 The covering property impl...
cvdmd 32203 The covering property impl...
ela 32205 Atoms in a Hilbert lattice...
elat2 32206 Expanded membership relati...
elatcv0 32207 A Hilbert lattice element ...
atcv0 32208 An atom covers the zero su...
atssch 32209 Atoms are a subset of the ...
atelch 32210 An atom is a Hilbert latti...
atne0 32211 An atom is not the Hilbert...
atss 32212 A lattice element smaller ...
atsseq 32213 Two atoms in a subset rela...
atcveq0 32214 A Hilbert lattice element ...
h1da 32215 A 1-dimensional subspace i...
spansna 32216 The span of the singleton ...
sh1dle 32217 A 1-dimensional subspace i...
ch1dle 32218 A 1-dimensional subspace i...
atom1d 32219 The 1-dimensional subspace...
superpos 32220 Superposition Principle. ...
chcv1 32221 The Hilbert lattice has th...
chcv2 32222 The Hilbert lattice has th...
chjatom 32223 The join of a closed subsp...
shatomici 32224 The lattice of Hilbert sub...
hatomici 32225 The Hilbert lattice is ato...
hatomic 32226 A Hilbert lattice is atomi...
shatomistici 32227 The lattice of Hilbert sub...
hatomistici 32228 ` CH ` is atomistic, i.e. ...
chpssati 32229 Two Hilbert lattice elemen...
chrelati 32230 The Hilbert lattice is rel...
chrelat2i 32231 A consequence of relative ...
cvati 32232 If a Hilbert lattice eleme...
cvbr4i 32233 An alternate way to expres...
cvexchlem 32234 Lemma for ~ cvexchi . (Co...
cvexchi 32235 The Hilbert lattice satisf...
chrelat2 32236 A consequence of relative ...
chrelat3 32237 A consequence of relative ...
chrelat3i 32238 A consequence of the relat...
chrelat4i 32239 A consequence of relative ...
cvexch 32240 The Hilbert lattice satisf...
cvp 32241 The Hilbert lattice satisf...
atnssm0 32242 The meet of a Hilbert latt...
atnemeq0 32243 The meet of distinct atoms...
atssma 32244 The meet with an atom's su...
atcv0eq 32245 Two atoms covering the zer...
atcv1 32246 Two atoms covering the zer...
atexch 32247 The Hilbert lattice satisf...
atomli 32248 An assertion holding in at...
atoml2i 32249 An assertion holding in at...
atordi 32250 An ordering law for a Hilb...
atcvatlem 32251 Lemma for ~ atcvati . (Co...
atcvati 32252 A nonzero Hilbert lattice ...
atcvat2i 32253 A Hilbert lattice element ...
atord 32254 An ordering law for a Hilb...
atcvat2 32255 A Hilbert lattice element ...
chirredlem1 32256 Lemma for ~ chirredi . (C...
chirredlem2 32257 Lemma for ~ chirredi . (C...
chirredlem3 32258 Lemma for ~ chirredi . (C...
chirredlem4 32259 Lemma for ~ chirredi . (C...
chirredi 32260 The Hilbert lattice is irr...
chirred 32261 The Hilbert lattice is irr...
atcvat3i 32262 A condition implying that ...
atcvat4i 32263 A condition implying exist...
atdmd 32264 Two Hilbert lattice elemen...
atmd 32265 Two Hilbert lattice elemen...
atmd2 32266 Two Hilbert lattice elemen...
atabsi 32267 Absorption of an incompara...
atabs2i 32268 Absorption of an incompara...
mdsymlem1 32269 Lemma for ~ mdsymi . (Con...
mdsymlem2 32270 Lemma for ~ mdsymi . (Con...
mdsymlem3 32271 Lemma for ~ mdsymi . (Con...
mdsymlem4 32272 Lemma for ~ mdsymi . This...
mdsymlem5 32273 Lemma for ~ mdsymi . (Con...
mdsymlem6 32274 Lemma for ~ mdsymi . This...
mdsymlem7 32275 Lemma for ~ mdsymi . Lemm...
mdsymlem8 32276 Lemma for ~ mdsymi . Lemm...
mdsymi 32277 M-symmetry of the Hilbert ...
mdsym 32278 M-symmetry of the Hilbert ...
dmdsym 32279 Dual M-symmetry of the Hil...
atdmd2 32280 Two Hilbert lattice elemen...
sumdmdii 32281 If the subspace sum of two...
cmmdi 32282 Commuting subspaces form a...
cmdmdi 32283 Commuting subspaces form a...
sumdmdlem 32284 Lemma for ~ sumdmdi . The...
sumdmdlem2 32285 Lemma for ~ sumdmdi . (Co...
sumdmdi 32286 The subspace sum of two Hi...
dmdbr4ati 32287 Dual modular pair property...
dmdbr5ati 32288 Dual modular pair property...
dmdbr6ati 32289 Dual modular pair property...
dmdbr7ati 32290 Dual modular pair property...
mdoc1i 32291 Orthocomplements form a mo...
mdoc2i 32292 Orthocomplements form a mo...
dmdoc1i 32293 Orthocomplements form a du...
dmdoc2i 32294 Orthocomplements form a du...
mdcompli 32295 A condition equivalent to ...
dmdcompli 32296 A condition equivalent to ...
mddmdin0i 32297 If dual modular implies mo...
cdjreui 32298 A member of the sum of dis...
cdj1i 32299 Two ways to express " ` A ...
cdj3lem1 32300 A property of " ` A ` and ...
cdj3lem2 32301 Lemma for ~ cdj3i . Value...
cdj3lem2a 32302 Lemma for ~ cdj3i . Closu...
cdj3lem2b 32303 Lemma for ~ cdj3i . The f...
cdj3lem3 32304 Lemma for ~ cdj3i . Value...
cdj3lem3a 32305 Lemma for ~ cdj3i . Closu...
cdj3lem3b 32306 Lemma for ~ cdj3i . The s...
cdj3i 32307 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 32308 (_This theorem is a dummy ...
sa-abvi 32309 A theorem about the univer...
xfree 32310 A partial converse to ~ 19...
xfree2 32311 A partial converse to ~ 19...
addltmulALT 32312 A proof readability experi...
bian1d 32313 Adding a superfluous conju...
bibiad 32314 Eliminate an hypothesis ` ...
orim12da 32315 Deduce a disjunction from ...
or3di 32316 Distributive law for disju...
or3dir 32317 Distributive law for disju...
3o1cs 32318 Deduction eliminating disj...
3o2cs 32319 Deduction eliminating disj...
3o3cs 32320 Deduction eliminating disj...
13an22anass 32321 Associative law for four c...
sbc2iedf 32322 Conversion of implicit sub...
rspc2daf 32323 Double restricted speciali...
ralcom4f 32324 Commutation of restricted ...
rexcom4f 32325 Commutation of restricted ...
19.9d2rf 32326 A deduction version of one...
19.9d2r 32327 A deduction version of one...
r19.29ffa 32328 A commonly used pattern ba...
eqtrb 32329 A transposition of equalit...
eqelbid 32330 A variable elimination law...
opsbc2ie 32331 Conversion of implicit sub...
opreu2reuALT 32332 Correspondence between uni...
2reucom 32335 Double restricted existent...
2reu2rex1 32336 Double restricted existent...
2reureurex 32337 Double restricted existent...
2reu2reu2 32338 Double restricted existent...
opreu2reu1 32339 Equivalent definition of t...
sq2reunnltb 32340 There exists a unique deco...
addsqnot2reu 32341 For each complex number ` ...
sbceqbidf 32342 Equality theorem for class...
sbcies 32343 A special version of class...
mo5f 32344 Alternate definition of "a...
nmo 32345 Negation of "at most one"....
reuxfrdf 32346 Transfer existential uniqu...
rexunirn 32347 Restricted existential qua...
rmoxfrd 32348 Transfer "at most one" res...
rmoun 32349 "At most one" restricted e...
rmounid 32350 A case where an "at most o...
riotaeqbidva 32351 Equivalent wff's yield equ...
dmrab 32352 Domain of a restricted cla...
difrab2 32353 Difference of two restrict...
rabexgfGS 32354 Separation Scheme in terms...
rabsnel 32355 Truth implied by equality ...
eqrrabd 32356 Deduce equality with a res...
foresf1o 32357 From a surjective function...
rabfodom 32358 Domination relation for re...
abrexdomjm 32359 An indexed set is dominate...
abrexdom2jm 32360 An indexed set is dominate...
abrexexd 32361 Existence of a class abstr...
elabreximd 32362 Class substitution in an i...
elabreximdv 32363 Class substitution in an i...
abrexss 32364 A necessary condition for ...
elunsn 32365 Elementhood to a union wit...
nelun 32366 Negated membership for a u...
snsssng 32367 If a singleton is a subset...
inin 32368 Intersection with an inter...
inindif 32369 See ~ inundif . (Contribu...
difininv 32370 Condition for the intersec...
eldifsnd 32371 Membership in a set with a...
difeq 32372 Rewriting an equation with...
eqdif 32373 If both set differences of...
indifbi 32374 Two ways to express equali...
diffib 32375 Case where ~ diffi is a bi...
difxp1ss 32376 Difference law for Cartesi...
difxp2ss 32377 Difference law for Cartesi...
indifundif 32378 A remarkable equation with...
elpwincl1 32379 Closure of intersection wi...
elpwdifcl 32380 Closure of class differenc...
elpwiuncl 32381 Closure of indexed union w...
eqsnd 32382 Deduce that a set is a sin...
elpreq 32383 Equality wihin a pair. (C...
nelpr 32384 A set ` A ` not in a pair ...
inpr0 32385 Rewrite an empty intersect...
neldifpr1 32386 The first element of a pai...
neldifpr2 32387 The second element of a pa...
unidifsnel 32388 The other element of a pai...
unidifsnne 32389 The other element of a pai...
ifeqeqx 32390 An equality theorem tailor...
elimifd 32391 Elimination of a condition...
elim2if 32392 Elimination of two conditi...
elim2ifim 32393 Elimination of two conditi...
ifeq3da 32394 Given an expression ` C ` ...
ifnetrue 32395 Deduce truth from a condit...
ifnefals 32396 Deduce falsehood from a co...
ifnebib 32397 The converse of ~ ifbi hol...
uniinn0 32398 Sufficient and necessary c...
uniin1 32399 Union of intersection. Ge...
uniin2 32400 Union of intersection. Ge...
difuncomp 32401 Express a class difference...
elpwunicl 32402 Closure of a set union wit...
cbviunf 32403 Rule used to change the bo...
iuneq12daf 32404 Equality deduction for ind...
iunin1f 32405 Indexed union of intersect...
ssiun3 32406 Subset equivalence for an ...
ssiun2sf 32407 Subset relationship for an...
iuninc 32408 The union of an increasing...
iundifdifd 32409 The intersection of a set ...
iundifdif 32410 The intersection of a set ...
iunrdx 32411 Re-index an indexed union....
iunpreima 32412 Preimage of an indexed uni...
iunrnmptss 32413 A subset relation for an i...
iunxunsn 32414 Appending a set to an inde...
iunxunpr 32415 Appending two sets to an i...
iinabrex 32416 Rewriting an indexed inter...
disjnf 32417 In case ` x ` is not free ...
cbvdisjf 32418 Change bound variables in ...
disjss1f 32419 A subset of a disjoint col...
disjeq1f 32420 Equality theorem for disjo...
disjxun0 32421 Simplify a disjoint union....
disjdifprg 32422 A trivial partition into a...
disjdifprg2 32423 A trivial partition of a s...
disji2f 32424 Property of a disjoint col...
disjif 32425 Property of a disjoint col...
disjorf 32426 Two ways to say that a col...
disjorsf 32427 Two ways to say that a col...
disjif2 32428 Property of a disjoint col...
disjabrex 32429 Rewriting a disjoint colle...
disjabrexf 32430 Rewriting a disjoint colle...
disjpreima 32431 A preimage of a disjoint s...
disjrnmpt 32432 Rewriting a disjoint colle...
disjin 32433 If a collection is disjoin...
disjin2 32434 If a collection is disjoin...
disjxpin 32435 Derive a disjunction over ...
iundisjf 32436 Rewrite a countable union ...
iundisj2f 32437 A disjoint union is disjoi...
disjrdx 32438 Re-index a disjunct collec...
disjex 32439 Two ways to say that two c...
disjexc 32440 A variant of ~ disjex , ap...
disjunsn 32441 Append an element to a dis...
disjun0 32442 Adding the empty element p...
disjiunel 32443 A set of elements B of a d...
disjuniel 32444 A set of elements B of a d...
xpdisjres 32445 Restriction of a constant ...
opeldifid 32446 Ordered pair elementhood o...
difres 32447 Case when class difference...
imadifxp 32448 Image of the difference wi...
relfi 32449 A relation (set) is finite...
0res 32450 Restriction of the empty f...
fcoinver 32451 Build an equivalence relat...
fcoinvbr 32452 Binary relation for the eq...
copsex2dv 32453 Implicit substitution dedu...
brab2d 32454 Expressing that two sets a...
brabgaf 32455 The law of concretion for ...
brelg 32456 Two things in a binary rel...
br8d 32457 Substitution for an eight-...
opabdm 32458 Domain of an ordered-pair ...
opabrn 32459 Range of an ordered-pair c...
opabssi 32460 Sufficient condition for a...
opabid2ss 32461 One direction of ~ opabid2...
ssrelf 32462 A subclass relationship de...
eqrelrd2 32463 A version of ~ eqrelrdv2 w...
erbr3b 32464 Biconditional for equivale...
iunsnima 32465 Image of a singleton by an...
iunsnima2 32466 Version of ~ iunsnima with...
ac6sf2 32467 Alternate version of ~ ac6...
fnresin 32468 Restriction of a function ...
f1o3d 32469 Describe an implicit one-t...
eldmne0 32470 A function of nonempty dom...
f1rnen 32471 Equinumerosity of the rang...
rinvf1o 32472 Sufficient conditions for ...
fresf1o 32473 Conditions for a restricti...
nfpconfp 32474 The set of fixed points of...
fmptco1f1o 32475 The action of composing (t...
cofmpt2 32476 Express composition of a m...
f1mptrn 32477 Express injection for a ma...
dfimafnf 32478 Alternate definition of th...
funimass4f 32479 Membership relation for th...
elimampt 32480 Membership in the image of...
suppss2f 32481 Show that the support of a...
ofrn 32482 The range of the function ...
ofrn2 32483 The range of the function ...
off2 32484 The function operation pro...
ofresid 32485 Applying an operation rest...
fimarab 32486 Expressing the image of a ...
unipreima 32487 Preimage of a class union....
opfv 32488 Value of a function produc...
xppreima 32489 The preimage of a Cartesia...
2ndimaxp 32490 Image of a cartesian produ...
djussxp2 32491 Stronger version of ~ djus...
2ndresdju 32492 The ` 2nd ` function restr...
2ndresdjuf1o 32493 The ` 2nd ` function restr...
xppreima2 32494 The preimage of a Cartesia...
abfmpunirn 32495 Membership in a union of a...
rabfmpunirn 32496 Membership in a union of a...
abfmpeld 32497 Membership in an element o...
abfmpel 32498 Membership in an element o...
fmptdF 32499 Domain and codomain of the...
fmptcof2 32500 Composition of two functio...
fcomptf 32501 Express composition of two...
acunirnmpt 32502 Axiom of choice for the un...
acunirnmpt2 32503 Axiom of choice for the un...
acunirnmpt2f 32504 Axiom of choice for the un...
aciunf1lem 32505 Choice in an index union. ...
aciunf1 32506 Choice in an index union. ...
ofoprabco 32507 Function operation as a co...
ofpreima 32508 Express the preimage of a ...
ofpreima2 32509 Express the preimage of a ...
funcnvmpt 32510 Condition for a function i...
funcnv5mpt 32511 Two ways to say that a fun...
funcnv4mpt 32512 Two ways to say that a fun...
preimane 32513 Different elements have di...
fnpreimac 32514 Choose a set ` x ` contain...
fgreu 32515 Exactly one point of a fun...
fcnvgreu 32516 If the converse of a relat...
rnmposs 32517 The range of an operation ...
mptssALT 32518 Deduce subset relation of ...
dfcnv2 32519 Alternative definition of ...
fnimatp 32520 The image of an unordered ...
mpomptxf 32521 Express a two-argument fun...
suppovss 32522 A bound for the support of...
suppiniseg 32523 Relation between the suppo...
fsuppinisegfi 32524 The initial segment ` ( ``...
fressupp 32525 The restriction of a funct...
fdifsuppconst 32526 A function is a zero const...
ressupprn 32527 The range of a function re...
supppreima 32528 Express the support of a f...
fsupprnfi 32529 Finite support implies fin...
mptiffisupp 32530 Conditions for a mapping f...
cosnopne 32531 Composition of two ordered...
cosnop 32532 Composition of two ordered...
cnvprop 32533 Converse of a pair of orde...
brprop 32534 Binary relation for a pair...
mptprop 32535 Rewrite pairs of ordered p...
coprprop 32536 Composition of two pairs o...
gtiso 32537 Two ways to write a strict...
isoun 32538 Infer an isomorphism from ...
disjdsct 32539 A disjoint collection is d...
df1stres 32540 Definition for a restricti...
df2ndres 32541 Definition for a restricti...
1stpreimas 32542 The preimage of a singleto...
1stpreima 32543 The preimage by ` 1st ` is...
2ndpreima 32544 The preimage by ` 2nd ` is...
curry2ima 32545 The image of a curried fun...
preiman0 32546 The preimage of a nonempty...
intimafv 32547 The intersection of an ima...
supssd 32548 Inequality deduction for s...
infssd 32549 Inequality deduction for i...
imafi2 32550 The image by a finite set ...
unifi3 32551 If a union is finite, then...
snct 32552 A singleton is countable. ...
prct 32553 An unordered pair is count...
mpocti 32554 An operation is countable ...
abrexct 32555 An image set of a countabl...
mptctf 32556 A countable mapping set is...
abrexctf 32557 An image set of a countabl...
padct 32558 Index a countable set with...
cnvoprabOLD 32559 The converse of a class ab...
f1od2 32560 Sufficient condition for a...
fcobij 32561 Composing functions with a...
fcobijfs 32562 Composing finitely support...
suppss3 32563 Deduce a function's suppor...
fsuppcurry1 32564 Finite support of a currie...
fsuppcurry2 32565 Finite support of a currie...
offinsupp1 32566 Finite support for a funct...
ffs2 32567 Rewrite a function's suppo...
ffsrn 32568 The range of a finitely su...
resf1o 32569 Restriction of functions t...
maprnin 32570 Restricting the range of t...
fpwrelmapffslem 32571 Lemma for ~ fpwrelmapffs ....
fpwrelmap 32572 Define a canonical mapping...
fpwrelmapffs 32573 Define a canonical mapping...
creq0 32574 The real representation of...
1nei 32575 The imaginary unit ` _i ` ...
1neg1t1neg1 32576 An integer unit times itse...
nnmulge 32577 Multiplying by a positive ...
lt2addrd 32578 If the right-hand side of ...
xrlelttric 32579 Trichotomy law for extende...
xaddeq0 32580 Two extended reals which a...
xrinfm 32581 The extended real numbers ...
le2halvesd 32582 A sum is less than the who...
xraddge02 32583 A number is less than or e...
xrge0addge 32584 A number is less than or e...
xlt2addrd 32585 If the right-hand side of ...
xrsupssd 32586 Inequality deduction for s...
xrge0infss 32587 Any subset of nonnegative ...
xrge0infssd 32588 Inequality deduction for i...
xrge0addcld 32589 Nonnegative extended reals...
xrge0subcld 32590 Condition for closure of n...
infxrge0lb 32591 A member of a set of nonne...
infxrge0glb 32592 The infimum of a set of no...
infxrge0gelb 32593 The infimum of a set of no...
xrofsup 32594 The supremum is preserved ...
supxrnemnf 32595 The supremum of a nonempty...
xnn0gt0 32596 Nonzero extended nonnegati...
xnn01gt 32597 An extended nonnegative in...
nn0xmulclb 32598 Finite multiplication in t...
joiniooico 32599 Disjoint joining an open i...
ubico 32600 A right-open interval does...
xeqlelt 32601 Equality in terms of 'less...
eliccelico 32602 Relate elementhood to a cl...
elicoelioo 32603 Relate elementhood to a cl...
iocinioc2 32604 Intersection between two o...
xrdifh 32605 Class difference of a half...
iocinif 32606 Relate intersection of two...
difioo 32607 The difference between two...
difico 32608 The difference between two...
uzssico 32609 Upper integer sets are a s...
fz2ssnn0 32610 A finite set of sequential...
nndiffz1 32611 Upper set of the positive ...
ssnnssfz 32612 For any finite subset of `...
fzne1 32613 Elementhood in a finite se...
fzm1ne1 32614 Elementhood of an integer ...
fzspl 32615 Split the last element of ...
fzdif2 32616 Split the last element of ...
fzodif2 32617 Split the last element of ...
fzodif1 32618 Set difference of two half...
fzsplit3 32619 Split a finite interval of...
bcm1n 32620 The proportion of one bino...
iundisjfi 32621 Rewrite a countable union ...
iundisj2fi 32622 A disjoint union is disjoi...
iundisjcnt 32623 Rewrite a countable union ...
iundisj2cnt 32624 A countable disjoint union...
fzone1 32625 Elementhood in a half-open...
fzom1ne1 32626 Elementhood in a half-open...
f1ocnt 32627 Given a countable set ` A ...
fz1nnct 32628 NN and integer ranges star...
fz1nntr 32629 NN and integer ranges star...
nn0difffzod 32630 A nonnegative integer that...
suppssnn0 32631 Show that the support of a...
hashunif 32632 The cardinality of a disjo...
hashxpe 32633 The size of the Cartesian ...
hashgt1 32634 Restate "set contains at l...
znumd 32635 Numerator of an integer. ...
zdend 32636 Denominator of an integer....
numdenneg 32637 Numerator and denominator ...
divnumden2 32638 Calculate the reduced form...
nnindf 32639 Principle of Mathematical ...
nn0min 32640 Extracting the minimum pos...
subne0nn 32641 A nonnegative difference i...
ltesubnnd 32642 Subtracting an integer num...
fprodeq02 32643 If one of the factors is z...
pr01ssre 32644 The range of the indicator...
fprodex01 32645 A product of factors equal...
prodpr 32646 A product over a pair is t...
prodtp 32647 A product over a triple is...
fsumub 32648 An upper bound for a term ...
fsumiunle 32649 Upper bound for a sum of n...
dfdec100 32650 Split the hundreds from a ...
dp2eq1 32653 Equality theorem for the d...
dp2eq2 32654 Equality theorem for the d...
dp2eq1i 32655 Equality theorem for the d...
dp2eq2i 32656 Equality theorem for the d...
dp2eq12i 32657 Equality theorem for the d...
dp20u 32658 Add a zero in the tenths (...
dp20h 32659 Add a zero in the unit pla...
dp2cl 32660 Closure for the decimal fr...
dp2clq 32661 Closure for a decimal frac...
rpdp2cl 32662 Closure for a decimal frac...
rpdp2cl2 32663 Closure for a decimal frac...
dp2lt10 32664 Decimal fraction builds re...
dp2lt 32665 Comparing two decimal frac...
dp2ltsuc 32666 Comparing a decimal fracti...
dp2ltc 32667 Comparing two decimal expa...
dpval 32670 Define the value of the de...
dpcl 32671 Prove that the closure of ...
dpfrac1 32672 Prove a simple equivalence...
dpval2 32673 Value of the decimal point...
dpval3 32674 Value of the decimal point...
dpmul10 32675 Multiply by 10 a decimal e...
decdiv10 32676 Divide a decimal number by...
dpmul100 32677 Multiply by 100 a decimal ...
dp3mul10 32678 Multiply by 10 a decimal e...
dpmul1000 32679 Multiply by 1000 a decimal...
dpval3rp 32680 Value of the decimal point...
dp0u 32681 Add a zero in the tenths p...
dp0h 32682 Remove a zero in the units...
rpdpcl 32683 Closure of the decimal poi...
dplt 32684 Comparing two decimal expa...
dplti 32685 Comparing a decimal expans...
dpgti 32686 Comparing a decimal expans...
dpltc 32687 Comparing two decimal inte...
dpexpp1 32688 Add one zero to the mantis...
0dp2dp 32689 Multiply by 10 a decimal e...
dpadd2 32690 Addition with one decimal,...
dpadd 32691 Addition with one decimal....
dpadd3 32692 Addition with two decimals...
dpmul 32693 Multiplication with one de...
dpmul4 32694 An upper bound to multipli...
threehalves 32695 Example theorem demonstrat...
1mhdrd 32696 Example theorem demonstrat...
xdivval 32699 Value of division: the (un...
xrecex 32700 Existence of reciprocal of...
xmulcand 32701 Cancellation law for exten...
xreceu 32702 Existential uniqueness of ...
xdivcld 32703 Closure law for the extend...
xdivcl 32704 Closure law for the extend...
xdivmul 32705 Relationship between divis...
rexdiv 32706 The extended real division...
xdivrec 32707 Relationship between divis...
xdivid 32708 A number divided by itself...
xdiv0 32709 Division into zero is zero...
xdiv0rp 32710 Division into zero is zero...
eliccioo 32711 Membership in a closed int...
elxrge02 32712 Elementhood in the set of ...
xdivpnfrp 32713 Plus infinity divided by a...
rpxdivcld 32714 Closure law for extended d...
xrpxdivcld 32715 Closure law for extended d...
wrdfd 32716 A word is a zero-based seq...
wrdres 32717 Condition for the restrict...
wrdsplex 32718 Existence of a split of a ...
pfx1s2 32719 The prefix of length 1 of ...
pfxrn2 32720 The range of a prefix of a...
pfxrn3 32721 Express the range of a pre...
pfxf1 32722 Condition for a prefix to ...
s1f1 32723 Conditions for a length 1 ...
s2rn 32724 Range of a length 2 string...
s2f1 32725 Conditions for a length 2 ...
s3rn 32726 Range of a length 3 string...
s3f1 32727 Conditions for a length 3 ...
s3clhash 32728 Closure of the words of le...
ccatf1 32729 Conditions for a concatena...
pfxlsw2ccat 32730 Reconstruct a word from it...
wrdt2ind 32731 Perform an induction over ...
swrdrn2 32732 The range of a subword is ...
swrdrn3 32733 Express the range of a sub...
swrdf1 32734 Condition for a subword to...
swrdrndisj 32735 Condition for the range of...
splfv3 32736 Symbols to the right of a ...
1cshid 32737 Cyclically shifting a sing...
cshw1s2 32738 Cyclically shifting a leng...
cshwrnid 32739 Cyclically shifting a word...
cshf1o 32740 Condition for the cyclic s...
ressplusf 32741 The group operation functi...
ressnm 32742 The norm in a restricted s...
abvpropd2 32743 Weaker version of ~ abvpro...
oppgle 32744 less-than relation of an o...
oppgleOLD 32745 Obsolete version of ~ oppg...
oppglt 32746 less-than relation of an o...
ressprs 32747 The restriction of a prose...
oduprs 32748 Being a proset is a self-d...
posrasymb 32749 A poset ordering is asymet...
resspos 32750 The restriction of a Poset...
resstos 32751 The restriction of a Toset...
odutos 32752 Being a toset is a self-du...
tlt2 32753 In a Toset, two elements m...
tlt3 32754 In a Toset, two elements m...
trleile 32755 In a Toset, two elements m...
toslublem 32756 Lemma for ~ toslub and ~ x...
toslub 32757 In a toset, the lowest upp...
tosglblem 32758 Lemma for ~ tosglb and ~ x...
tosglb 32759 Same theorem as ~ toslub ,...
clatp0cl 32760 The poset zero of a comple...
clatp1cl 32761 The poset one of a complet...
mntoval 32766 Operation value of the mon...
ismnt 32767 Express the statement " ` ...
ismntd 32768 Property of being a monoto...
mntf 32769 A monotone function is a f...
mgcoval 32770 Operation value of the mon...
mgcval 32771 Monotone Galois connection...
mgcf1 32772 The lower adjoint ` F ` of...
mgcf2 32773 The upper adjoint ` G ` of...
mgccole1 32774 An inequality for the kern...
mgccole2 32775 Inequality for the closure...
mgcmnt1 32776 The lower adjoint ` F ` of...
mgcmnt2 32777 The upper adjoint ` G ` of...
mgcmntco 32778 A Galois connection like s...
dfmgc2lem 32779 Lemma for dfmgc2, backward...
dfmgc2 32780 Alternate definition of th...
mgcmnt1d 32781 Galois connection implies ...
mgcmnt2d 32782 Galois connection implies ...
mgccnv 32783 The inverse Galois connect...
pwrssmgc 32784 Given a function ` F ` , e...
mgcf1olem1 32785 Property of a Galois conne...
mgcf1olem2 32786 Property of a Galois conne...
mgcf1o 32787 Given a Galois connection,...
xrs0 32790 The zero of the extended r...
xrslt 32791 The "strictly less than" r...
xrsinvgval 32792 The inversion operation in...
xrsmulgzz 32793 The "multiple" function in...
xrstos 32794 The extended real numbers ...
xrsclat 32795 The extended real numbers ...
xrsp0 32796 The poset 0 of the extende...
xrsp1 32797 The poset 1 of the extende...
xrge0base 32798 The base of the extended n...
xrge00 32799 The zero of the extended n...
xrge0plusg 32800 The additive law of the ex...
xrge0le 32801 The "less than or equal to...
xrge0mulgnn0 32802 The group multiple functio...
xrge0addass 32803 Associativity of extended ...
xrge0addgt0 32804 The sum of nonnegative and...
xrge0adddir 32805 Right-distributivity of ex...
xrge0adddi 32806 Left-distributivity of ext...
xrge0npcan 32807 Extended nonnegative real ...
fsumrp0cl 32808 Closure of a finite sum of...
cmn4d 32809 Commutative/associative la...
cmn246135 32810 Rearrange terms in a commu...
cmn145236 32811 Rearrange terms in a commu...
submcld 32812 Submonoids are closed unde...
abliso 32813 The image of an Abelian gr...
lmhmghmd 32814 A module homomorphism is a...
mhmimasplusg 32815 Value of the operation of ...
lmhmimasvsca 32816 Value of the scalar produc...
gsumsubg 32817 The group sum in a subgrou...
gsumsra 32818 The group sum in a subring...
gsummpt2co 32819 Split a finite sum into a ...
gsummpt2d 32820 Express a finite sum over ...
lmodvslmhm 32821 Scalar multiplication in a...
gsumvsmul1 32822 Pull a scalar multiplicati...
gsummptres 32823 Extend a finite group sum ...
gsummptres2 32824 Extend a finite group sum ...
gsumzresunsn 32825 Append an element to a fin...
gsumpart 32826 Express a group sum as a d...
gsumhashmul 32827 Express a group sum by gro...
xrge0tsmsd 32828 Any finite or infinite sum...
xrge0tsmsbi 32829 Any limit of a finite or i...
xrge0tsmseq 32830 Any limit of a finite or i...
cntzun 32831 The centralizer of a union...
cntzsnid 32832 The centralizer of the ide...
cntrcrng 32833 The center of a ring is a ...
isomnd 32838 A (left) ordered monoid is...
isogrp 32839 A (left-)ordered group is ...
ogrpgrp 32840 A left-ordered group is a ...
omndmnd 32841 A left-ordered monoid is a...
omndtos 32842 A left-ordered monoid is a...
omndadd 32843 In an ordered monoid, the ...
omndaddr 32844 In a right ordered monoid,...
omndadd2d 32845 In a commutative left orde...
omndadd2rd 32846 In a left- and right- orde...
submomnd 32847 A submonoid of an ordered ...
xrge0omnd 32848 The nonnegative extended r...
omndmul2 32849 In an ordered monoid, the ...
omndmul3 32850 In an ordered monoid, the ...
omndmul 32851 In a commutative ordered m...
ogrpinv0le 32852 In an ordered group, the o...
ogrpsub 32853 In an ordered group, the o...
ogrpaddlt 32854 In an ordered group, stric...
ogrpaddltbi 32855 In a right ordered group, ...
ogrpaddltrd 32856 In a right ordered group, ...
ogrpaddltrbid 32857 In a right ordered group, ...
ogrpsublt 32858 In an ordered group, stric...
ogrpinv0lt 32859 In an ordered group, the o...
ogrpinvlt 32860 In an ordered group, the o...
gsumle 32861 A finite sum in an ordered...
symgfcoeu 32862 Uniqueness property of per...
symgcom 32863 Two permutations ` X ` and...
symgcom2 32864 Two permutations ` X ` and...
symgcntz 32865 All elements of a (finite)...
odpmco 32866 The composition of two odd...
symgsubg 32867 The value of the group sub...
pmtrprfv2 32868 In a transposition of two ...
pmtrcnel 32869 Composing a permutation ` ...
pmtrcnel2 32870 Variation on ~ pmtrcnel . ...
pmtrcnelor 32871 Composing a permutation ` ...
pmtridf1o 32872 Transpositions of ` X ` an...
pmtridfv1 32873 Value at X of the transpos...
pmtridfv2 32874 Value at Y of the transpos...
psgnid 32875 Permutation sign of the id...
psgndmfi 32876 For a finite base set, the...
pmtrto1cl 32877 Useful lemma for the follo...
psgnfzto1stlem 32878 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 32879 Value of our permutation `...
fzto1st1 32880 Special case where the per...
fzto1st 32881 The function moving one el...
fzto1stinvn 32882 Value of the inverse of ou...
psgnfzto1st 32883 The permutation sign for m...
tocycval 32886 Value of the cycle builder...
tocycfv 32887 Function value of a permut...
tocycfvres1 32888 A cyclic permutation is a ...
tocycfvres2 32889 A cyclic permutation is th...
cycpmfvlem 32890 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 32891 Value of a cycle function ...
cycpmfv2 32892 Value of a cycle function ...
cycpmfv3 32893 Values outside of the orbi...
cycpmcl 32894 Cyclic permutations are pe...
tocycf 32895 The permutation cycle buil...
tocyc01 32896 Permutation cycles built f...
cycpm2tr 32897 A cyclic permutation of 2 ...
cycpm2cl 32898 Closure for the 2-cycles. ...
cyc2fv1 32899 Function value of a 2-cycl...
cyc2fv2 32900 Function value of a 2-cycl...
trsp2cyc 32901 Exhibit the word a transpo...
cycpmco2f1 32902 The word U used in ~ cycpm...
cycpmco2rn 32903 The orbit of the compositi...
cycpmco2lem1 32904 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 32905 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 32906 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 32907 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 32908 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 32909 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 32910 Lemma for ~ cycpmco2 . (C...
cycpmco2 32911 The composition of a cycli...
cyc2fvx 32912 Function value of a 2-cycl...
cycpm3cl 32913 Closure of the 3-cycles in...
cycpm3cl2 32914 Closure of the 3-cycles in...
cyc3fv1 32915 Function value of a 3-cycl...
cyc3fv2 32916 Function value of a 3-cycl...
cyc3fv3 32917 Function value of a 3-cycl...
cyc3co2 32918 Represent a 3-cycle as a c...
cycpmconjvlem 32919 Lemma for ~ cycpmconjv . ...
cycpmconjv 32920 A formula for computing co...
cycpmrn 32921 The range of the word used...
tocyccntz 32922 All elements of a (finite)...
evpmval 32923 Value of the set of even p...
cnmsgn0g 32924 The neutral element of the...
evpmsubg 32925 The alternating group is a...
evpmid 32926 The identity is an even pe...
altgnsg 32927 The alternating group ` ( ...
cyc3evpm 32928 3-Cycles are even permutat...
cyc3genpmlem 32929 Lemma for ~ cyc3genpm . (...
cyc3genpm 32930 The alternating group ` A ...
cycpmgcl 32931 Cyclic permutations are pe...
cycpmconjslem1 32932 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 32933 Lemma for ~ cycpmconjs . ...
cycpmconjs 32934 All cycles of the same len...
cyc3conja 32935 All 3-cycles are conjugate...
sgnsv 32938 The sign mapping. (Contri...
sgnsval 32939 The sign value. (Contribu...
sgnsf 32940 The sign function. (Contr...
inftmrel 32945 The infinitesimal relation...
isinftm 32946 Express ` x ` is infinites...
isarchi 32947 Express the predicate " ` ...
pnfinf 32948 Plus infinity is an infini...
xrnarchi 32949 The completed real line is...
isarchi2 32950 Alternative way to express...
submarchi 32951 A submonoid is archimedean...
isarchi3 32952 This is the usual definiti...
archirng 32953 Property of Archimedean or...
archirngz 32954 Property of Archimedean le...
archiexdiv 32955 In an Archimedean group, g...
archiabllem1a 32956 Lemma for ~ archiabl : In...
archiabllem1b 32957 Lemma for ~ archiabl . (C...
archiabllem1 32958 Archimedean ordered groups...
archiabllem2a 32959 Lemma for ~ archiabl , whi...
archiabllem2c 32960 Lemma for ~ archiabl . (C...
archiabllem2b 32961 Lemma for ~ archiabl . (C...
archiabllem2 32962 Archimedean ordered groups...
archiabl 32963 Archimedean left- and righ...
isslmd 32966 The predicate "is a semimo...
slmdlema 32967 Lemma for properties of a ...
lmodslmd 32968 Left semimodules generaliz...
slmdcmn 32969 A semimodule is a commutat...
slmdmnd 32970 A semimodule is a monoid. ...
slmdsrg 32971 The scalar component of a ...
slmdbn0 32972 The base set of a semimodu...
slmdacl 32973 Closure of ring addition f...
slmdmcl 32974 Closure of ring multiplica...
slmdsn0 32975 The set of scalars in a se...
slmdvacl 32976 Closure of vector addition...
slmdass 32977 Semiring left module vecto...
slmdvscl 32978 Closure of scalar product ...
slmdvsdi 32979 Distributive law for scala...
slmdvsdir 32980 Distributive law for scala...
slmdvsass 32981 Associative law for scalar...
slmd0cl 32982 The ring zero in a semimod...
slmd1cl 32983 The ring unity in a semiri...
slmdvs1 32984 Scalar product with ring u...
slmd0vcl 32985 The zero vector is a vecto...
slmd0vlid 32986 Left identity law for the ...
slmd0vrid 32987 Right identity law for the...
slmd0vs 32988 Zero times a vector is the...
slmdvs0 32989 Anything times the zero ve...
gsumvsca1 32990 Scalar product of a finite...
gsumvsca2 32991 Scalar product of a finite...
prmsimpcyc 32992 A group of prime order is ...
cringmul32d 32993 Commutative/associative la...
ringdid 32994 Distributive law for the m...
ringdird 32995 Distributive law for the m...
urpropd 32996 Sufficient condition for r...
frobrhm 32997 In a commutative ring with...
ress1r 32998 ` 1r ` is unaffected by re...
ringinvval 32999 The ring inverse expressed...
dvrcan5 33000 Cancellation law for commo...
subrgchr 33001 If ` A ` is a subring of `...
rmfsupp2 33002 A mapping of a multiplicat...
unitnz 33003 In a nonzero ring, a unit ...
irrednzr 33004 A ring with an irreducible...
0ringsubrg 33005 A subring of a zero ring i...
0ringcring 33006 The zero ring is commutati...
reldmrloc 33011 Ring localization is a pro...
erlval 33012 Value of the ring localiza...
rlocval 33013 Expand the value of the ri...
erlcl1 33014 Closure for the ring local...
erlcl2 33015 Closure for the ring local...
erldi 33016 Main property of the ring ...
erlbrd 33017 Deduce the ring localizati...
erlbr2d 33018 Deduce the ring localizati...
erler 33019 The relation used to build...
elrlocbasi 33020 Membership in the basis of...
rlocbas 33021 The base set of a ring loc...
rlocaddval 33022 Value of the addition in t...
rlocmulval 33023 Value of the addition in t...
rloccring 33024 The ring localization ` L ...
rloc0g 33025 The zero of a ring localiz...
rloc1r 33026 The multiplicative identit...
rlocf1 33027 The embedding ` F ` of a r...
domnlcan 33028 Left-cancellation law for ...
idomrcan 33029 Right-cancellation law for...
1rrg 33030 The multiplicative identit...
rrgnz 33031 In a non-zero ring, the ze...
isdomn6 33032 A ring is a domain iff non...
rrgsubm 33033 The left regular elements ...
subrdom 33034 A subring of a domain is a...
subridom 33035 A subring of an integral d...
subrfld 33036 A subring of a field is an...
eufndx 33039 Index value of the Euclide...
eufid 33040 Utility theorem: index-ind...
ringinveu 33043 If a ring unit element ` X...
isdrng4 33044 A division ring is a ring ...
rndrhmcl 33045 The image of a division ri...
sdrgdvcl 33046 A sub-division-ring is clo...
sdrginvcl 33047 A sub-division-ring is clo...
primefldchr 33048 The characteristic of a pr...
fracval 33051 Value of the field of frac...
fracbas 33052 The base of the field of f...
fracerl 33053 Rewrite the ring localizat...
fracf1 33054 The embedding of a commuta...
fracfld 33055 The field of fractions of ...
idomsubr 33056 Every integral domain is i...
fldgenval 33059 Value of the field generat...
fldgenssid 33060 The field generated by a s...
fldgensdrg 33061 A generated subfield is a ...
fldgenssv 33062 A generated subfield is a ...
fldgenss 33063 Generated subfields preser...
fldgenidfld 33064 The subfield generated by ...
fldgenssp 33065 The field generated by a s...
fldgenid 33066 The subfield of a field ` ...
fldgenfld 33067 A generated subfield is a ...
primefldgen1 33068 The prime field of a divis...
1fldgenq 33069 The field of rational numb...
isorng 33074 An ordered ring is a ring ...
orngring 33075 An ordered ring is a ring....
orngogrp 33076 An ordered ring is an orde...
isofld 33077 An ordered field is a fiel...
orngmul 33078 In an ordered ring, the or...
orngsqr 33079 In an ordered ring, all sq...
ornglmulle 33080 In an ordered ring, multip...
orngrmulle 33081 In an ordered ring, multip...
ornglmullt 33082 In an ordered ring, multip...
orngrmullt 33083 In an ordered ring, multip...
orngmullt 33084 In an ordered ring, the st...
ofldfld 33085 An ordered field is a fiel...
ofldtos 33086 An ordered field is a tota...
orng0le1 33087 In an ordered ring, the ri...
ofldlt1 33088 In an ordered field, the r...
ofldchr 33089 The characteristic of an o...
suborng 33090 Every subring of an ordere...
subofld 33091 Every subfield of an order...
isarchiofld 33092 Axiom of Archimedes : a ch...
rhmdvd 33093 A ring homomorphism preser...
kerunit 33094 If a unit element lies in ...
reldmresv 33097 The scalar restriction is ...
resvval 33098 Value of structure restric...
resvid2 33099 General behavior of trivia...
resvval2 33100 Value of nontrivial struct...
resvsca 33101 Base set of a structure re...
resvlem 33102 Other elements of a scalar...
resvlemOLD 33103 Obsolete version of ~ resv...
resvbas 33104 ` Base ` is unaffected by ...
resvbasOLD 33105 Obsolete proof of ~ resvba...
resvplusg 33106 ` +g ` is unaffected by sc...
resvplusgOLD 33107 Obsolete proof of ~ resvpl...
resvvsca 33108 ` .s ` is unaffected by sc...
resvvscaOLD 33109 Obsolete proof of ~ resvvs...
resvmulr 33110 ` .r ` is unaffected by sc...
resvmulrOLD 33111 Obsolete proof of ~ resvmu...
resv0g 33112 ` 0g ` is unaffected by sc...
resv1r 33113 ` 1r ` is unaffected by sc...
resvcmn 33114 Scalar restriction preserv...
gzcrng 33115 The gaussian integers form...
reofld 33116 The real numbers form an o...
nn0omnd 33117 The nonnegative integers f...
rearchi 33118 The field of the real numb...
nn0archi 33119 The monoid of the nonnegat...
xrge0slmod 33120 The extended nonnegative r...
qusker 33121 The kernel of a quotient m...
eqgvscpbl 33122 The left coset equivalence...
qusvscpbl 33123 The quotient map distribut...
qusvsval 33124 Value of the scalar multip...
imaslmod 33125 The image structure of a l...
imasmhm 33126 Given a function ` F ` wit...
imasghm 33127 Given a function ` F ` wit...
imasrhm 33128 Given a function ` F ` wit...
imaslmhm 33129 Given a function ` F ` wit...
quslmod 33130 If ` G ` is a submodule in...
quslmhm 33131 If ` G ` is a submodule of...
quslvec 33132 If ` S ` is a vector subsp...
ecxpid 33133 The equivalence class of a...
qsxpid 33134 The quotient set of a cart...
qusxpid 33135 The Group quotient equival...
qustriv 33136 The quotient of a group ` ...
qustrivr 33137 Converse of ~ qustriv . (...
znfermltl 33138 Fermat's little theorem in...
islinds5 33139 A set is linearly independ...
ellspds 33140 Variation on ~ ellspd . (...
0ellsp 33141 Zero is in all spans. (Co...
0nellinds 33142 The group identity cannot ...
rspsnel 33143 Membership in a principal ...
rspsnid 33144 A principal ideal contains...
elrsp 33145 Write the elements of a ri...
ellpi 33146 Elementhood in a left prin...
rspidlid 33147 The ideal span of an ideal...
pidlnz 33148 A principal ideal generate...
dvdsruassoi 33149 If two elements ` X ` and ...
dvdsruasso 33150 Two elements ` X ` and ` Y...
dvdsruasso2 33151 A reformulation of ~ dvdsr...
dvdsrspss 33152 In a ring, an element ` X ...
rspsnasso 33153 Two elements ` X ` and ` Y...
lbslsp 33154 Any element of a left modu...
lindssn 33155 Any singleton of a nonzero...
lindflbs 33156 Conditions for an independ...
islbs5 33157 An equivalent formulation ...
linds2eq 33158 Deduce equality of element...
lindfpropd 33159 Property deduction for lin...
lindspropd 33160 Property deduction for lin...
elgrplsmsn 33161 Membership in a sumset wit...
lsmsnorb 33162 The sumset of a group with...
lsmsnorb2 33163 The sumset of a single ele...
elringlsm 33164 Membership in a product of...
elringlsmd 33165 Membership in a product of...
ringlsmss 33166 Closure of the product of ...
ringlsmss1 33167 The product of an ideal ` ...
ringlsmss2 33168 The product with an ideal ...
lsmsnpridl 33169 The product of the ring wi...
lsmsnidl 33170 The product of the ring wi...
lsmidllsp 33171 The sum of two ideals is t...
lsmidl 33172 The sum of two ideals is a...
lsmssass 33173 Group sum is associative, ...
grplsm0l 33174 Sumset with the identity s...
grplsmid 33175 The direct sum of an eleme...
qusmul 33176 Value of the ring operatio...
quslsm 33177 Express the image by the q...
qusbas2 33178 Alternate definition of th...
qus0g 33179 The identity element of a ...
qusima 33180 The image of a subgroup by...
qusrn 33181 The natural map from eleme...
nsgqus0 33182 A normal subgroup ` N ` is...
nsgmgclem 33183 Lemma for ~ nsgmgc . (Con...
nsgmgc 33184 There is a monotone Galois...
nsgqusf1olem1 33185 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 33186 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 33187 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 33188 The canonical projection h...
lmhmqusker 33189 A surjective module homomo...
lmicqusker 33190 The image ` H ` of a modul...
ghmqusnsglem1 33191 Lemma for ~ ghmqusnsg . (...
ghmqusnsglem2 33192 Lemma for ~ ghmqusnsg . (...
ghmqusnsg 33193 The mapping ` H ` induced ...
intlidl 33194 The intersection of a none...
rhmpreimaidl 33195 The preimage of an ideal b...
kerlidl 33196 The kernel of a ring homom...
lidlnsg 33197 An ideal is a normal subgr...
0ringidl 33198 The zero ideal is the only...
pidlnzb 33199 A principal ideal is nonze...
lidlunitel 33200 If an ideal ` I ` contains...
unitpidl1 33201 The ideal ` I ` generated ...
rhmquskerlem 33202 The mapping ` J ` induced ...
rhmqusker 33203 A surjective ring homomorp...
ricqusker 33204 The image ` H ` of a ring ...
rhmqusnsg 33205 The mapping ` J ` induced ...
elrspunidl 33206 Elementhood in the span of...
elrspunsn 33207 Membership to the span of ...
lidlincl 33208 Ideals are closed under in...
idlinsubrg 33209 The intersection between a...
rhmimaidl 33210 The image of an ideal ` I ...
drngidl 33211 A nonzero ring is a divisi...
drngidlhash 33212 A ring is a division ring ...
prmidlval 33215 The class of prime ideals ...
isprmidl 33216 The predicate "is a prime ...
prmidlnr 33217 A prime ideal is a proper ...
prmidl 33218 The main property of a pri...
prmidl2 33219 A condition that shows an ...
idlmulssprm 33220 Let ` P ` be a prime ideal...
pridln1 33221 A proper ideal cannot cont...
prmidlidl 33222 A prime ideal is an ideal....
prmidlssidl 33223 Prime ideals as a subset o...
cringm4 33224 Commutative/associative la...
isprmidlc 33225 The predicate "is prime id...
prmidlc 33226 Property of a prime ideal ...
0ringprmidl 33227 The trivial ring does not ...
prmidl0 33228 The zero ideal of a commut...
rhmpreimaprmidl 33229 The preimage of a prime id...
qsidomlem1 33230 If the quotient ring of a ...
qsidomlem2 33231 A quotient by a prime idea...
qsidom 33232 An ideal ` I ` in the comm...
qsnzr 33233 A quotient of a non-zero r...
mxidlval 33236 The set of maximal ideals ...
ismxidl 33237 The predicate "is a maxima...
mxidlidl 33238 A maximal ideal is an idea...
mxidlnr 33239 A maximal ideal is proper....
mxidlmax 33240 A maximal ideal is a maxim...
mxidln1 33241 One is not contained in an...
mxidlnzr 33242 A ring with a maximal idea...
mxidlmaxv 33243 An ideal ` I ` strictly co...
crngmxidl 33244 In a commutative ring, max...
mxidlprm 33245 Every maximal ideal is pri...
mxidlirredi 33246 In an integral domain, the...
mxidlirred 33247 In a principal ideal domai...
ssmxidllem 33248 The set ` P ` used in the ...
ssmxidl 33249 Let ` R ` be a ring, and l...
drnglidl1ne0 33250 In a nonzero ring, the zer...
drng0mxidl 33251 In a division ring, the ze...
drngmxidl 33252 The zero ideal is the only...
krull 33253 Krull's theorem: Any nonz...
mxidlnzrb 33254 A ring is nonzero if and o...
opprabs 33255 The opposite ring of the o...
oppreqg 33256 Group coset equivalence re...
opprnsg 33257 Normal subgroups of the op...
opprlidlabs 33258 The ideals of the opposite...
oppr2idl 33259 Two sided ideal of the opp...
opprmxidlabs 33260 The maximal ideal of the o...
opprqusbas 33261 The base of the quotient o...
opprqusplusg 33262 The group operation of the...
opprqus0g 33263 The group identity element...
opprqusmulr 33264 The multiplication operati...
opprqus1r 33265 The ring unity of the quot...
opprqusdrng 33266 The quotient of the opposi...
qsdrngilem 33267 Lemma for ~ qsdrngi . (Co...
qsdrngi 33268 A quotient by a maximal le...
qsdrnglem2 33269 Lemma for ~ qsdrng . (Con...
qsdrng 33270 An ideal ` M ` is both lef...
qsfld 33271 An ideal ` M ` in the comm...
mxidlprmALT 33272 Every maximal ideal is pri...
idlsrgstr 33275 A constructed semiring of ...
idlsrgval 33276 Lemma for ~ idlsrgbas thro...
idlsrgbas 33277 Base of the ideals of a ri...
idlsrgplusg 33278 Additive operation of the ...
idlsrg0g 33279 The zero ideal is the addi...
idlsrgmulr 33280 Multiplicative operation o...
idlsrgtset 33281 Topology component of the ...
idlsrgmulrval 33282 Value of the ring multipli...
idlsrgmulrcl 33283 Ideals of a ring ` R ` are...
idlsrgmulrss1 33284 In a commutative ring, the...
idlsrgmulrss2 33285 The product of two ideals ...
idlsrgmulrssin 33286 In a commutative ring, the...
idlsrgmnd 33287 The ideals of a ring form ...
idlsrgcmnd 33288 The ideals of a ring form ...
rprmval 33289 The prime elements of a ri...
isrprm 33290 Property for ` P ` to be a...
rprmcl 33291 A ring prime is an element...
rprmdvds 33292 If a ring prime ` Q ` divi...
rprmnz 33293 A ring prime is nonzero. ...
rprmnunit 33294 A ring prime is not a unit...
rsprprmprmidl 33295 In a commutative ring, ide...
rsprprmprmidlb 33296 In an integral domain, an ...
rprmndvdsr1 33297 A ring prime element does ...
rprmasso 33298 In an integral domain, the...
rprmasso2 33299 In an integral domain, if ...
rprmirredlem 33300 Lemma for ~ rprmirred . (...
rprmirred 33301 In an integral domain, rin...
rprmirredb 33302 In a principal ideal domai...
rprmdvdspow 33303 If a prime element divides...
rprmdvdsprod 33304 If a prime element ` Q ` d...
isufd 33307 The property of being a Un...
isufd2 33308 Alternate definition of un...
ufdcringd 33309 A unique factorization dom...
0ringufd 33310 A zero ring is a unique fa...
zringidom 33311 The ring of integers is an...
zringpid 33312 The ring of integers is a ...
dfprm3 33313 The (positive) prime eleme...
zringfrac 33314 The field of fractions of ...
0ringmon1p 33315 There are no monic polynom...
fply1 33316 Conditions for a function ...
ply1lvec 33317 In a division ring, the un...
evls1fn 33318 Functionality of the subri...
evls1dm 33319 The domain of the subring ...
evls1fvf 33320 The subring evaluation fun...
ressdeg1 33321 The degree of a univariate...
ressply10g 33322 A restricted polynomial al...
ressply1mon1p 33323 The monic polynomials of a...
ressply1invg 33324 An element of a restricted...
ressply1sub 33325 A restricted polynomial al...
evls1subd 33326 Univariate polynomial eval...
ply1ascl1 33327 The multiplicative identit...
deg1le0eq0 33328 A polynomial with nonposit...
ply1asclunit 33329 A non-zero scalar polynomi...
ply1unit 33330 In a field ` F ` , a polyn...
m1pmeq 33331 If two monic polynomials `...
ply1fermltl 33332 Fermat's little theorem fo...
coe1mon 33333 Coefficient vector of a mo...
ply1moneq 33334 Two monomials are equal if...
ply1degltel 33335 Characterize elementhood i...
ply1degleel 33336 Characterize elementhood i...
ply1degltlss 33337 The space ` S ` of the uni...
gsummoncoe1fzo 33338 A coefficient of the polyn...
ply1gsumz 33339 If a polynomial given as a...
deg1addlt 33340 If both factors have degre...
ig1pnunit 33341 The polynomial ideal gener...
ig1pmindeg 33342 The polynomial ideal gener...
q1pdir 33343 Distribution of univariate...
q1pvsca 33344 Scalar multiplication prop...
r1pvsca 33345 Scalar multiplication prop...
r1p0 33346 Polynomial remainder opera...
r1pcyc 33347 The polynomial remainder o...
r1padd1 33348 Addition property of the p...
r1pid2 33349 Identity law for polynomia...
r1plmhm 33350 The univariate polynomial ...
r1pquslmic 33351 The univariate polynomial ...
sra1r 33352 The unity element of a sub...
sradrng 33353 Condition for a subring al...
srasubrg 33354 A subring of the original ...
sralvec 33355 Given a sub division ring ...
srafldlvec 33356 Given a subfield ` F ` of ...
resssra 33357 The subring algebra of a r...
lsssra 33358 A subring is a subspace of...
drgext0g 33359 The additive neutral eleme...
drgextvsca 33360 The scalar multiplication ...
drgext0gsca 33361 The additive neutral eleme...
drgextsubrg 33362 The scalar field is a subr...
drgextlsp 33363 The scalar field is a subs...
drgextgsum 33364 Group sum in a division ri...
lvecdimfi 33365 Finite version of ~ lvecdi...
dimval 33368 The dimension of a vector ...
dimvalfi 33369 The dimension of a vector ...
dimcl 33370 Closure of the vector spac...
lmimdim 33371 Module isomorphisms preser...
lmicdim 33372 Module isomorphisms preser...
lvecdim0i 33373 A vector space of dimensio...
lvecdim0 33374 A vector space of dimensio...
lssdimle 33375 The dimension of a linear ...
dimpropd 33376 If two structures have the...
rlmdim 33377 The left vector space indu...
rgmoddimOLD 33378 Obsolete version of ~ rlmd...
frlmdim 33379 Dimension of a free left m...
tnglvec 33380 Augmenting a structure wit...
tngdim 33381 Dimension of a left vector...
rrxdim 33382 Dimension of the generaliz...
matdim 33383 Dimension of the space of ...
lbslsat 33384 A nonzero vector ` X ` is ...
lsatdim 33385 A line, spanned by a nonze...
drngdimgt0 33386 The dimension of a vector ...
lmhmlvec2 33387 A homomorphism of left vec...
kerlmhm 33388 The kernel of a vector spa...
imlmhm 33389 The image of a vector spac...
ply1degltdimlem 33390 Lemma for ~ ply1degltdim ....
ply1degltdim 33391 The space ` S ` of the uni...
lindsunlem 33392 Lemma for ~ lindsun . (Co...
lindsun 33393 Condition for the union of...
lbsdiflsp0 33394 The linear spans of two di...
dimkerim 33395 Given a linear map ` F ` b...
qusdimsum 33396 Let ` W ` be a vector spac...
fedgmullem1 33397 Lemma for ~ fedgmul . (Co...
fedgmullem2 33398 Lemma for ~ fedgmul . (Co...
fedgmul 33399 The multiplicativity formu...
relfldext 33408 The field extension is a r...
brfldext 33409 The field extension relati...
ccfldextrr 33410 The field of the complex n...
fldextfld1 33411 A field extension is only ...
fldextfld2 33412 A field extension is only ...
fldextsubrg 33413 Field extension implies a ...
fldextress 33414 Field extension implies a ...
brfinext 33415 The finite field extension...
extdgval 33416 Value of the field extensi...
fldextsralvec 33417 The subring algebra associ...
extdgcl 33418 Closure of the field exten...
extdggt0 33419 Degrees of field extension...
fldexttr 33420 Field extension is a trans...
fldextid 33421 The field extension relati...
extdgid 33422 A trivial field extension ...
extdgmul 33423 The multiplicativity formu...
finexttrb 33424 The extension ` E ` of ` K...
extdg1id 33425 If the degree of the exten...
extdg1b 33426 The degree of the extensio...
fldextchr 33427 The characteristic of a su...
evls1fldgencl 33428 Closure of the subring pol...
ccfldsrarelvec 33429 The subring algebra of the...
ccfldextdgrr 33430 The degree of the field ex...
irngval 33433 The elements of a field ` ...
elirng 33434 Property for an element ` ...
irngss 33435 All elements of a subring ...
irngssv 33436 An integral element is an ...
0ringirng 33437 A zero ring ` R ` has no i...
irngnzply1lem 33438 In the case of a field ` E...
irngnzply1 33439 In the case of a field ` E...
ply1annidllem 33442 Write the set ` Q ` of pol...
ply1annidl 33443 The set ` Q ` of polynomia...
ply1annnr 33444 The set ` Q ` of polynomia...
ply1annig1p 33445 The ideal ` Q ` of polynom...
minplyval 33446 Expand the value of the mi...
minplycl 33447 The minimal polynomial is ...
ply1annprmidl 33448 The set ` Q ` of polynomia...
minplyann 33449 The minimal polynomial for...
minplyirredlem 33450 Lemma for ~ minplyirred . ...
minplyirred 33451 A nonzero minimal polynomi...
irngnminplynz 33452 Integral elements have non...
minplym1p 33453 A minimal polynomial is mo...
irredminply 33454 An irreducible, monic, ann...
algextdeglem1 33455 Lemma for ~ algextdeg . (...
algextdeglem2 33456 Lemma for ~ algextdeg . B...
algextdeglem3 33457 Lemma for ~ algextdeg . T...
algextdeglem4 33458 Lemma for ~ algextdeg . B...
algextdeglem5 33459 Lemma for ~ algextdeg . T...
algextdeglem6 33460 Lemma for ~ algextdeg . B...
algextdeglem7 33461 Lemma for ~ algextdeg . T...
algextdeglem8 33462 Lemma for ~ algextdeg . T...
algextdeg 33463 The degree of an algebraic...
smatfval 33466 Value of the submatrix. (...
smatrcl 33467 Closure of the rectangular...
smatlem 33468 Lemma for the next theorem...
smattl 33469 Entries of a submatrix, to...
smattr 33470 Entries of a submatrix, to...
smatbl 33471 Entries of a submatrix, bo...
smatbr 33472 Entries of a submatrix, bo...
smatcl 33473 Closure of the square subm...
matmpo 33474 Write a square matrix as a...
1smat1 33475 The submatrix of the ident...
submat1n 33476 One case where the submatr...
submatres 33477 Special case where the sub...
submateqlem1 33478 Lemma for ~ submateq . (C...
submateqlem2 33479 Lemma for ~ submateq . (C...
submateq 33480 Sufficient condition for t...
submatminr1 33481 If we take a submatrix by ...
lmatval 33484 Value of the literal matri...
lmatfval 33485 Entries of a literal matri...
lmatfvlem 33486 Useful lemma to extract li...
lmatcl 33487 Closure of the literal mat...
lmat22lem 33488 Lemma for ~ lmat22e11 and ...
lmat22e11 33489 Entry of a 2x2 literal mat...
lmat22e12 33490 Entry of a 2x2 literal mat...
lmat22e21 33491 Entry of a 2x2 literal mat...
lmat22e22 33492 Entry of a 2x2 literal mat...
lmat22det 33493 The determinant of a liter...
mdetpmtr1 33494 The determinant of a matri...
mdetpmtr2 33495 The determinant of a matri...
mdetpmtr12 33496 The determinant of a matri...
mdetlap1 33497 A Laplace expansion of the...
madjusmdetlem1 33498 Lemma for ~ madjusmdet . ...
madjusmdetlem2 33499 Lemma for ~ madjusmdet . ...
madjusmdetlem3 33500 Lemma for ~ madjusmdet . ...
madjusmdetlem4 33501 Lemma for ~ madjusmdet . ...
madjusmdet 33502 Express the cofactor of th...
mdetlap 33503 Laplace expansion of the d...
ist0cld 33504 The predicate "is a T_0 sp...
txomap 33505 Given two open maps ` F ` ...
qtopt1 33506 If every equivalence class...
qtophaus 33507 If an open map's graph in ...
circtopn 33508 The topology of the unit c...
circcn 33509 The function gluing the re...
reff 33510 For any cover refinement, ...
locfinreflem 33511 A locally finite refinemen...
locfinref 33512 A locally finite refinemen...
iscref 33515 The property that every op...
crefeq 33516 Equality theorem for the "...
creftop 33517 A space where every open c...
crefi 33518 The property that every op...
crefdf 33519 A formulation of ~ crefi e...
crefss 33520 The "every open cover has ...
cmpcref 33521 Equivalent definition of c...
cmpfiref 33522 Every open cover of a Comp...
ldlfcntref 33525 Every open cover of a Lind...
ispcmp 33528 The predicate "is a paraco...
cmppcmp 33529 Every compact space is par...
dispcmp 33530 Every discrete space is pa...
pcmplfin 33531 Given a paracompact topolo...
pcmplfinf 33532 Given a paracompact topolo...
rspecval 33535 Value of the spectrum of t...
rspecbas 33536 The prime ideals form the ...
rspectset 33537 Topology component of the ...
rspectopn 33538 The topology component of ...
zarcls0 33539 The closure of the identit...
zarcls1 33540 The unit ideal ` B ` is th...
zarclsun 33541 The union of two closed se...
zarclsiin 33542 In a Zariski topology, the...
zarclsint 33543 The intersection of a fami...
zarclssn 33544 The closed points of Zaris...
zarcls 33545 The open sets of the Zaris...
zartopn 33546 The Zariski topology is a ...
zartop 33547 The Zariski topology is a ...
zartopon 33548 The points of the Zariski ...
zar0ring 33549 The Zariski Topology of th...
zart0 33550 The Zariski topology is T_...
zarmxt1 33551 The Zariski topology restr...
zarcmplem 33552 Lemma for ~ zarcmp . (Con...
zarcmp 33553 The Zariski topology is co...
rspectps 33554 The spectrum of a ring ` R...
rhmpreimacnlem 33555 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 33556 The function mapping a pri...
metidval 33561 Value of the metric identi...
metidss 33562 As a relation, the metric ...
metidv 33563 ` A ` and ` B ` identify b...
metideq 33564 Basic property of the metr...
metider 33565 The metric identification ...
pstmval 33566 Value of the metric induce...
pstmfval 33567 Function value of the metr...
pstmxmet 33568 The metric induced by a ps...
hauseqcn 33569 In a Hausdorff topology, t...
elunitge0 33570 An element of the closed u...
unitssxrge0 33571 The closed unit interval i...
unitdivcld 33572 Necessary conditions for a...
iistmd 33573 The closed unit interval f...
unicls 33574 The union of the closed se...
tpr2tp 33575 The usual topology on ` ( ...
tpr2uni 33576 The usual topology on ` ( ...
xpinpreima 33577 Rewrite the cartesian prod...
xpinpreima2 33578 Rewrite the cartesian prod...
sqsscirc1 33579 The complex square of side...
sqsscirc2 33580 The complex square of side...
cnre2csqlem 33581 Lemma for ~ cnre2csqima . ...
cnre2csqima 33582 Image of a centered square...
tpr2rico 33583 For any point of an open s...
cnvordtrestixx 33584 The restriction of the 'gr...
prsdm 33585 Domain of the relation of ...
prsrn 33586 Range of the relation of a...
prsss 33587 Relation of a subproset. ...
prsssdm 33588 Domain of a subproset rela...
ordtprsval 33589 Value of the order topolog...
ordtprsuni 33590 Value of the order topolog...
ordtcnvNEW 33591 The order dual generates t...
ordtrestNEW 33592 The subspace topology of a...
ordtrest2NEWlem 33593 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 33594 An interval-closed set ` A...
ordtconnlem1 33595 Connectedness in the order...
ordtconn 33596 Connectedness in the order...
mndpluscn 33597 A mapping that is both a h...
mhmhmeotmd 33598 Deduce a Topological Monoi...
rmulccn 33599 Multiplication by a real c...
raddcn 33600 Addition in the real numbe...
xrmulc1cn 33601 The operation multiplying ...
fmcncfil 33602 The image of a Cauchy filt...
xrge0hmph 33603 The extended nonnegative r...
xrge0iifcnv 33604 Define a bijection from ` ...
xrge0iifcv 33605 The defined function's val...
xrge0iifiso 33606 The defined bijection from...
xrge0iifhmeo 33607 Expose a homeomorphism fro...
xrge0iifhom 33608 The defined function from ...
xrge0iif1 33609 Condition for the defined ...
xrge0iifmhm 33610 The defined function from ...
xrge0pluscn 33611 The addition operation of ...
xrge0mulc1cn 33612 The operation multiplying ...
xrge0tps 33613 The extended nonnegative r...
xrge0topn 33614 The topology of the extend...
xrge0haus 33615 The topology of the extend...
xrge0tmd 33616 The extended nonnegative r...
xrge0tmdALT 33617 Alternate proof of ~ xrge0...
lmlim 33618 Relate a limit in a given ...
lmlimxrge0 33619 Relate a limit in the nonn...
rge0scvg 33620 Implication of convergence...
fsumcvg4 33621 A serie with finite suppor...
pnfneige0 33622 A neighborhood of ` +oo ` ...
lmxrge0 33623 Express "sequence ` F ` co...
lmdvg 33624 If a monotonic sequence of...
lmdvglim 33625 If a monotonic real number...
pl1cn 33626 A univariate polynomial is...
zringnm 33629 The norm (function) for a ...
zzsnm 33630 The norm of the ring of th...
zlm0 33631 Zero of a ` ZZ ` -module. ...
zlm1 33632 Unity element of a ` ZZ ` ...
zlmds 33633 Distance in a ` ZZ ` -modu...
zlmdsOLD 33634 Obsolete proof of ~ zlmds ...
zlmtset 33635 Topology in a ` ZZ ` -modu...
zlmtsetOLD 33636 Obsolete proof of ~ zlmtse...
zlmnm 33637 Norm of a ` ZZ ` -module (...
zhmnrg 33638 The ` ZZ ` -module built f...
nmmulg 33639 The norm of a group produc...
zrhnm 33640 The norm of the image by `...
cnzh 33641 The ` ZZ ` -module of ` CC...
rezh 33642 The ` ZZ ` -module of ` RR...
qqhval 33645 Value of the canonical hom...
zrhf1ker 33646 The kernel of the homomorp...
zrhchr 33647 The kernel of the homomorp...
zrhker 33648 The kernel of the homomorp...
zrhunitpreima 33649 The preimage by ` ZRHom ` ...
elzrhunit 33650 Condition for the image by...
elzdif0 33651 Lemma for ~ qqhval2 . (Co...
qqhval2lem 33652 Lemma for ~ qqhval2 . (Co...
qqhval2 33653 Value of the canonical hom...
qqhvval 33654 Value of the canonical hom...
qqh0 33655 The image of ` 0 ` by the ...
qqh1 33656 The image of ` 1 ` by the ...
qqhf 33657 ` QQHom ` as a function. ...
qqhvq 33658 The image of a quotient by...
qqhghm 33659 The ` QQHom ` homomorphism...
qqhrhm 33660 The ` QQHom ` homomorphism...
qqhnm 33661 The norm of the image by `...
qqhcn 33662 The ` QQHom ` homomorphism...
qqhucn 33663 The ` QQHom ` homomorphism...
rrhval 33667 Value of the canonical hom...
rrhcn 33668 If the topology of ` R ` i...
rrhf 33669 If the topology of ` R ` i...
isrrext 33671 Express the property " ` R...
rrextnrg 33672 An extension of ` RR ` is ...
rrextdrg 33673 An extension of ` RR ` is ...
rrextnlm 33674 The norm of an extension o...
rrextchr 33675 The ring characteristic of...
rrextcusp 33676 An extension of ` RR ` is ...
rrexttps 33677 An extension of ` RR ` is ...
rrexthaus 33678 The topology of an extensi...
rrextust 33679 The uniformity of an exten...
rerrext 33680 The field of the real numb...
cnrrext 33681 The field of the complex n...
qqtopn 33682 The topology of the field ...
rrhfe 33683 If ` R ` is an extension o...
rrhcne 33684 If ` R ` is an extension o...
rrhqima 33685 The ` RRHom ` homomorphism...
rrh0 33686 The image of ` 0 ` by the ...
xrhval 33689 The value of the embedding...
zrhre 33690 The ` ZRHom ` homomorphism...
qqhre 33691 The ` QQHom ` homomorphism...
rrhre 33692 The ` RRHom ` homomorphism...
relmntop 33695 Manifold is a relation. (...
ismntoplly 33696 Property of being a manifo...
ismntop 33697 Property of being a manifo...
nexple 33698 A lower bound for an expon...
indv 33701 Value of the indicator fun...
indval 33702 Value of the indicator fun...
indval2 33703 Alternate value of the ind...
indf 33704 An indicator function as a...
indfval 33705 Value of the indicator fun...
ind1 33706 Value of the indicator fun...
ind0 33707 Value of the indicator fun...
ind1a 33708 Value of the indicator fun...
indpi1 33709 Preimage of the singleton ...
indsum 33710 Finite sum of a product wi...
indsumin 33711 Finite sum of a product wi...
prodindf 33712 The product of indicators ...
indf1o 33713 The bijection between a po...
indpreima 33714 A function with range ` { ...
indf1ofs 33715 The bijection between fini...
esumex 33718 An extended sum is a set b...
esumcl 33719 Closure for extended sum i...
esumeq12dvaf 33720 Equality deduction for ext...
esumeq12dva 33721 Equality deduction for ext...
esumeq12d 33722 Equality deduction for ext...
esumeq1 33723 Equality theorem for an ex...
esumeq1d 33724 Equality theorem for an ex...
esumeq2 33725 Equality theorem for exten...
esumeq2d 33726 Equality deduction for ext...
esumeq2dv 33727 Equality deduction for ext...
esumeq2sdv 33728 Equality deduction for ext...
nfesum1 33729 Bound-variable hypothesis ...
nfesum2 33730 Bound-variable hypothesis ...
cbvesum 33731 Change bound variable in a...
cbvesumv 33732 Change bound variable in a...
esumid 33733 Identify the extended sum ...
esumgsum 33734 A finite extended sum is t...
esumval 33735 Develop the value of the e...
esumel 33736 The extended sum is a limi...
esumnul 33737 Extended sum over the empt...
esum0 33738 Extended sum of zero. (Co...
esumf1o 33739 Re-index an extended sum u...
esumc 33740 Convert from the collectio...
esumrnmpt 33741 Rewrite an extended sum in...
esumsplit 33742 Split an extended sum into...
esummono 33743 Extended sum is monotonic....
esumpad 33744 Extend an extended sum by ...
esumpad2 33745 Remove zeroes from an exte...
esumadd 33746 Addition of infinite sums....
esumle 33747 If all of the terms of an ...
gsumesum 33748 Relate a group sum on ` ( ...
esumlub 33749 The extended sum is the lo...
esumaddf 33750 Addition of infinite sums....
esumlef 33751 If all of the terms of an ...
esumcst 33752 The extended sum of a cons...
esumsnf 33753 The extended sum of a sing...
esumsn 33754 The extended sum of a sing...
esumpr 33755 Extended sum over a pair. ...
esumpr2 33756 Extended sum over a pair, ...
esumrnmpt2 33757 Rewrite an extended sum in...
esumfzf 33758 Formulating a partial exte...
esumfsup 33759 Formulating an extended su...
esumfsupre 33760 Formulating an extended su...
esumss 33761 Change the index set to a ...
esumpinfval 33762 The value of the extended ...
esumpfinvallem 33763 Lemma for ~ esumpfinval . ...
esumpfinval 33764 The value of the extended ...
esumpfinvalf 33765 Same as ~ esumpfinval , mi...
esumpinfsum 33766 The value of the extended ...
esumpcvgval 33767 The value of the extended ...
esumpmono 33768 The partial sums in an ext...
esumcocn 33769 Lemma for ~ esummulc2 and ...
esummulc1 33770 An extended sum multiplied...
esummulc2 33771 An extended sum multiplied...
esumdivc 33772 An extended sum divided by...
hashf2 33773 Lemma for ~ hasheuni . (C...
hasheuni 33774 The cardinality of a disjo...
esumcvg 33775 The sequence of partial su...
esumcvg2 33776 Simpler version of ~ esumc...
esumcvgsum 33777 The value of the extended ...
esumsup 33778 Express an extended sum as...
esumgect 33779 "Send ` n ` to ` +oo ` " i...
esumcvgre 33780 All terms of a converging ...
esum2dlem 33781 Lemma for ~ esum2d (finite...
esum2d 33782 Write a double extended su...
esumiun 33783 Sum over a nonnecessarily ...
ofceq 33786 Equality theorem for funct...
ofcfval 33787 Value of an operation appl...
ofcval 33788 Evaluate a function/consta...
ofcfn 33789 The function operation pro...
ofcfeqd2 33790 Equality theorem for funct...
ofcfval3 33791 General value of ` ( F oFC...
ofcf 33792 The function/constant oper...
ofcfval2 33793 The function operation exp...
ofcfval4 33794 The function/constant oper...
ofcc 33795 Left operation by a consta...
ofcof 33796 Relate function operation ...
sigaex 33799 Lemma for ~ issiga and ~ i...
sigaval 33800 The set of sigma-algebra w...
issiga 33801 An alternative definition ...
isrnsiga 33802 The property of being a si...
0elsiga 33803 A sigma-algebra contains t...
baselsiga 33804 A sigma-algebra contains i...
sigasspw 33805 A sigma-algebra is a set o...
sigaclcu 33806 A sigma-algebra is closed ...
sigaclcuni 33807 A sigma-algebra is closed ...
sigaclfu 33808 A sigma-algebra is closed ...
sigaclcu2 33809 A sigma-algebra is closed ...
sigaclfu2 33810 A sigma-algebra is closed ...
sigaclcu3 33811 A sigma-algebra is closed ...
issgon 33812 Property of being a sigma-...
sgon 33813 A sigma-algebra is a sigma...
elsigass 33814 An element of a sigma-alge...
elrnsiga 33815 Dropping the base informat...
isrnsigau 33816 The property of being a si...
unielsiga 33817 A sigma-algebra contains i...
dmvlsiga 33818 Lebesgue-measurable subset...
pwsiga 33819 Any power set forms a sigm...
prsiga 33820 The smallest possible sigm...
sigaclci 33821 A sigma-algebra is closed ...
difelsiga 33822 A sigma-algebra is closed ...
unelsiga 33823 A sigma-algebra is closed ...
inelsiga 33824 A sigma-algebra is closed ...
sigainb 33825 Building a sigma-algebra f...
insiga 33826 The intersection of a coll...
sigagenval 33829 Value of the generated sig...
sigagensiga 33830 A generated sigma-algebra ...
sgsiga 33831 A generated sigma-algebra ...
unisg 33832 The sigma-algebra generate...
dmsigagen 33833 A sigma-algebra can be gen...
sssigagen 33834 A set is a subset of the s...
sssigagen2 33835 A subset of the generating...
elsigagen 33836 Any element of a set is al...
elsigagen2 33837 Any countable union of ele...
sigagenss 33838 The generated sigma-algebr...
sigagenss2 33839 Sufficient condition for i...
sigagenid 33840 The sigma-algebra generate...
ispisys 33841 The property of being a pi...
ispisys2 33842 The property of being a pi...
inelpisys 33843 Pi-systems are closed unde...
sigapisys 33844 All sigma-algebras are pi-...
isldsys 33845 The property of being a la...
pwldsys 33846 The power set of the unive...
unelldsys 33847 Lambda-systems are closed ...
sigaldsys 33848 All sigma-algebras are lam...
ldsysgenld 33849 The intersection of all la...
sigapildsyslem 33850 Lemma for ~ sigapildsys . ...
sigapildsys 33851 Sigma-algebra are exactly ...
ldgenpisyslem1 33852 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 33853 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 33854 Lemma for ~ ldgenpisys . ...
ldgenpisys 33855 The lambda system ` E ` ge...
dynkin 33856 Dynkin's lambda-pi theorem...
isros 33857 The property of being a ri...
rossspw 33858 A ring of sets is a collec...
0elros 33859 A ring of sets contains th...
unelros 33860 A ring of sets is closed u...
difelros 33861 A ring of sets is closed u...
inelros 33862 A ring of sets is closed u...
fiunelros 33863 A ring of sets is closed u...
issros 33864 The property of being a se...
srossspw 33865 A semiring of sets is a co...
0elsros 33866 A semiring of sets contain...
inelsros 33867 A semiring of sets is clos...
diffiunisros 33868 In semiring of sets, compl...
rossros 33869 Rings of sets are semiring...
brsiga 33872 The Borel Algebra on real ...
brsigarn 33873 The Borel Algebra is a sig...
brsigasspwrn 33874 The Borel Algebra is a set...
unibrsiga 33875 The union of the Borel Alg...
cldssbrsiga 33876 A Borel Algebra contains a...
sxval 33879 Value of the product sigma...
sxsiga 33880 A product sigma-algebra is...
sxsigon 33881 A product sigma-algebra is...
sxuni 33882 The base set of a product ...
elsx 33883 The cartesian product of t...
measbase 33886 The base set of a measure ...
measval 33887 The value of the ` measure...
ismeas 33888 The property of being a me...
isrnmeas 33889 The property of being a me...
dmmeas 33890 The domain of a measure is...
measbasedom 33891 The base set of a measure ...
measfrge0 33892 A measure is a function ov...
measfn 33893 A measure is a function on...
measvxrge0 33894 The values of a measure ar...
measvnul 33895 The measure of the empty s...
measge0 33896 A measure is nonnegative. ...
measle0 33897 If the measure of a given ...
measvun 33898 The measure of a countable...
measxun2 33899 The measure the union of t...
measun 33900 The measure the union of t...
measvunilem 33901 Lemma for ~ measvuni . (C...
measvunilem0 33902 Lemma for ~ measvuni . (C...
measvuni 33903 The measure of a countable...
measssd 33904 A measure is monotone with...
measunl 33905 A measure is sub-additive ...
measiuns 33906 The measure of the union o...
measiun 33907 A measure is sub-additive....
meascnbl 33908 A measure is continuous fr...
measinblem 33909 Lemma for ~ measinb . (Co...
measinb 33910 Building a measure restric...
measres 33911 Building a measure restric...
measinb2 33912 Building a measure restric...
measdivcst 33913 Division of a measure by a...
measdivcstALTV 33914 Alternate version of ~ mea...
cntmeas 33915 The Counting measure is a ...
pwcntmeas 33916 The counting measure is a ...
cntnevol 33917 Counting and Lebesgue meas...
voliune 33918 The Lebesgue measure funct...
volfiniune 33919 The Lebesgue measure funct...
volmeas 33920 The Lebesgue measure is a ...
ddeval1 33923 Value of the delta measure...
ddeval0 33924 Value of the delta measure...
ddemeas 33925 The Dirac delta measure is...
relae 33929 'almost everywhere' is a r...
brae 33930 'almost everywhere' relati...
braew 33931 'almost everywhere' relati...
truae 33932 A truth holds almost every...
aean 33933 A conjunction holds almost...
faeval 33935 Value of the 'almost every...
relfae 33936 The 'almost everywhere' bu...
brfae 33937 'almost everywhere' relati...
ismbfm 33940 The predicate " ` F ` is a...
elunirnmbfm 33941 The property of being a me...
mbfmfun 33942 A measurable function is a...
mbfmf 33943 A measurable function as a...
isanmbfmOLD 33944 Obsolete version of ~ isan...
mbfmcnvima 33945 The preimage by a measurab...
isanmbfm 33946 The predicate to be a meas...
mbfmbfmOLD 33947 A measurable function to a...
mbfmbfm 33948 A measurable function to a...
mbfmcst 33949 A constant function is mea...
1stmbfm 33950 The first projection map i...
2ndmbfm 33951 The second projection map ...
imambfm 33952 If the sigma-algebra in th...
cnmbfm 33953 A continuous function is m...
mbfmco 33954 The composition of two mea...
mbfmco2 33955 The pair building of two m...
mbfmvolf 33956 Measurable functions with ...
elmbfmvol2 33957 Measurable functions with ...
mbfmcnt 33958 All functions are measurab...
br2base 33959 The base set for the gener...
dya2ub 33960 An upper bound for a dyadi...
sxbrsigalem0 33961 The closed half-spaces of ...
sxbrsigalem3 33962 The sigma-algebra generate...
dya2iocival 33963 The function ` I ` returns...
dya2iocress 33964 Dyadic intervals are subse...
dya2iocbrsiga 33965 Dyadic intervals are Borel...
dya2icobrsiga 33966 Dyadic intervals are Borel...
dya2icoseg 33967 For any point and any clos...
dya2icoseg2 33968 For any point and any open...
dya2iocrfn 33969 The function returning dya...
dya2iocct 33970 The dyadic rectangle set i...
dya2iocnrect 33971 For any point of an open r...
dya2iocnei 33972 For any point of an open s...
dya2iocuni 33973 Every open set of ` ( RR X...
dya2iocucvr 33974 The dyadic rectangular set...
sxbrsigalem1 33975 The Borel algebra on ` ( R...
sxbrsigalem2 33976 The sigma-algebra generate...
sxbrsigalem4 33977 The Borel algebra on ` ( R...
sxbrsigalem5 33978 First direction for ~ sxbr...
sxbrsigalem6 33979 First direction for ~ sxbr...
sxbrsiga 33980 The product sigma-algebra ...
omsval 33983 Value of the function mapp...
omsfval 33984 Value of the outer measure...
omscl 33985 A closure lemma for the co...
omsf 33986 A constructed outer measur...
oms0 33987 A constructed outer measur...
omsmon 33988 A constructed outer measur...
omssubaddlem 33989 For any small margin ` E `...
omssubadd 33990 A constructed outer measur...
carsgval 33993 Value of the Caratheodory ...
carsgcl 33994 Closure of the Caratheodor...
elcarsg 33995 Property of being a Carath...
baselcarsg 33996 The universe set, ` O ` , ...
0elcarsg 33997 The empty set is Caratheod...
carsguni 33998 The union of all Caratheod...
elcarsgss 33999 Caratheodory measurable se...
difelcarsg 34000 The Caratheodory measurabl...
inelcarsg 34001 The Caratheodory measurabl...
unelcarsg 34002 The Caratheodory-measurabl...
difelcarsg2 34003 The Caratheodory-measurabl...
carsgmon 34004 Utility lemma: Apply mono...
carsgsigalem 34005 Lemma for the following th...
fiunelcarsg 34006 The Caratheodory measurabl...
carsgclctunlem1 34007 Lemma for ~ carsgclctun . ...
carsggect 34008 The outer measure is count...
carsgclctunlem2 34009 Lemma for ~ carsgclctun . ...
carsgclctunlem3 34010 Lemma for ~ carsgclctun . ...
carsgclctun 34011 The Caratheodory measurabl...
carsgsiga 34012 The Caratheodory measurabl...
omsmeas 34013 The restriction of a const...
pmeasmono 34014 This theorem's hypotheses ...
pmeasadd 34015 A premeasure on a ring of ...
itgeq12dv 34016 Equality theorem for an in...
sitgval 34022 Value of the simple functi...
issibf 34023 The predicate " ` F ` is a...
sibf0 34024 The constant zero function...
sibfmbl 34025 A simple function is measu...
sibff 34026 A simple function is a fun...
sibfrn 34027 A simple function has fini...
sibfima 34028 Any preimage of a singleto...
sibfinima 34029 The measure of the interse...
sibfof 34030 Applying function operatio...
sitgfval 34031 Value of the Bochner integ...
sitgclg 34032 Closure of the Bochner int...
sitgclbn 34033 Closure of the Bochner int...
sitgclcn 34034 Closure of the Bochner int...
sitgclre 34035 Closure of the Bochner int...
sitg0 34036 The integral of the consta...
sitgf 34037 The integral for simple fu...
sitgaddlemb 34038 Lemma for * sitgadd . (Co...
sitmval 34039 Value of the simple functi...
sitmfval 34040 Value of the integral dist...
sitmcl 34041 Closure of the integral di...
sitmf 34042 The integral metric as a f...
oddpwdc 34044 Lemma for ~ eulerpart . T...
oddpwdcv 34045 Lemma for ~ eulerpart : va...
eulerpartlemsv1 34046 Lemma for ~ eulerpart . V...
eulerpartlemelr 34047 Lemma for ~ eulerpart . (...
eulerpartlemsv2 34048 Lemma for ~ eulerpart . V...
eulerpartlemsf 34049 Lemma for ~ eulerpart . (...
eulerpartlems 34050 Lemma for ~ eulerpart . (...
eulerpartlemsv3 34051 Lemma for ~ eulerpart . V...
eulerpartlemgc 34052 Lemma for ~ eulerpart . (...
eulerpartleme 34053 Lemma for ~ eulerpart . (...
eulerpartlemv 34054 Lemma for ~ eulerpart . (...
eulerpartlemo 34055 Lemma for ~ eulerpart : ` ...
eulerpartlemd 34056 Lemma for ~ eulerpart : ` ...
eulerpartlem1 34057 Lemma for ~ eulerpart . (...
eulerpartlemb 34058 Lemma for ~ eulerpart . T...
eulerpartlemt0 34059 Lemma for ~ eulerpart . (...
eulerpartlemf 34060 Lemma for ~ eulerpart : O...
eulerpartlemt 34061 Lemma for ~ eulerpart . (...
eulerpartgbij 34062 Lemma for ~ eulerpart : T...
eulerpartlemgv 34063 Lemma for ~ eulerpart : va...
eulerpartlemr 34064 Lemma for ~ eulerpart . (...
eulerpartlemmf 34065 Lemma for ~ eulerpart . (...
eulerpartlemgvv 34066 Lemma for ~ eulerpart : va...
eulerpartlemgu 34067 Lemma for ~ eulerpart : R...
eulerpartlemgh 34068 Lemma for ~ eulerpart : T...
eulerpartlemgf 34069 Lemma for ~ eulerpart : I...
eulerpartlemgs2 34070 Lemma for ~ eulerpart : T...
eulerpartlemn 34071 Lemma for ~ eulerpart . (...
eulerpart 34072 Euler's theorem on partiti...
subiwrd 34075 Lemma for ~ sseqp1 . (Con...
subiwrdlen 34076 Length of a subword of an ...
iwrdsplit 34077 Lemma for ~ sseqp1 . (Con...
sseqval 34078 Value of the strong sequen...
sseqfv1 34079 Value of the strong sequen...
sseqfn 34080 A strong recursive sequenc...
sseqmw 34081 Lemma for ~ sseqf amd ~ ss...
sseqf 34082 A strong recursive sequenc...
sseqfres 34083 The first elements in the ...
sseqfv2 34084 Value of the strong sequen...
sseqp1 34085 Value of the strong sequen...
fiblem 34088 Lemma for ~ fib0 , ~ fib1 ...
fib0 34089 Value of the Fibonacci seq...
fib1 34090 Value of the Fibonacci seq...
fibp1 34091 Value of the Fibonacci seq...
fib2 34092 Value of the Fibonacci seq...
fib3 34093 Value of the Fibonacci seq...
fib4 34094 Value of the Fibonacci seq...
fib5 34095 Value of the Fibonacci seq...
fib6 34096 Value of the Fibonacci seq...
elprob 34099 The property of being a pr...
domprobmeas 34100 A probability measure is a...
domprobsiga 34101 The domain of a probabilit...
probtot 34102 The probability of the uni...
prob01 34103 A probability is an elemen...
probnul 34104 The probability of the emp...
unveldomd 34105 The universe is an element...
unveldom 34106 The universe is an element...
nuleldmp 34107 The empty set is an elemen...
probcun 34108 The probability of the uni...
probun 34109 The probability of the uni...
probdif 34110 The probability of the dif...
probinc 34111 A probability law is incre...
probdsb 34112 The probability of the com...
probmeasd 34113 A probability measure is a...
probvalrnd 34114 The value of a probability...
probtotrnd 34115 The probability of the uni...
totprobd 34116 Law of total probability, ...
totprob 34117 Law of total probability. ...
probfinmeasb 34118 Build a probability measur...
probfinmeasbALTV 34119 Alternate version of ~ pro...
probmeasb 34120 Build a probability from a...
cndprobval 34123 The value of the condition...
cndprobin 34124 An identity linking condit...
cndprob01 34125 The conditional probabilit...
cndprobtot 34126 The conditional probabilit...
cndprobnul 34127 The conditional probabilit...
cndprobprob 34128 The conditional probabilit...
bayesth 34129 Bayes Theorem. (Contribut...
rrvmbfm 34132 A real-valued random varia...
isrrvv 34133 Elementhood to the set of ...
rrvvf 34134 A real-valued random varia...
rrvfn 34135 A real-valued random varia...
rrvdm 34136 The domain of a random var...
rrvrnss 34137 The range of a random vari...
rrvf2 34138 A real-valued random varia...
rrvdmss 34139 The domain of a random var...
rrvfinvima 34140 For a real-value random va...
0rrv 34141 The constant function equa...
rrvadd 34142 The sum of two random vari...
rrvmulc 34143 A random variable multipli...
rrvsum 34144 An indexed sum of random v...
orvcval 34147 Value of the preimage mapp...
orvcval2 34148 Another way to express the...
elorvc 34149 Elementhood of a preimage....
orvcval4 34150 The value of the preimage ...
orvcoel 34151 If the relation produces o...
orvccel 34152 If the relation produces c...
elorrvc 34153 Elementhood of a preimage ...
orrvcval4 34154 The value of the preimage ...
orrvcoel 34155 If the relation produces o...
orrvccel 34156 If the relation produces c...
orvcgteel 34157 Preimage maps produced by ...
orvcelval 34158 Preimage maps produced by ...
orvcelel 34159 Preimage maps produced by ...
dstrvval 34160 The value of the distribut...
dstrvprob 34161 The distribution of a rand...
orvclteel 34162 Preimage maps produced by ...
dstfrvel 34163 Elementhood of preimage ma...
dstfrvunirn 34164 The limit of all preimage ...
orvclteinc 34165 Preimage maps produced by ...
dstfrvinc 34166 A cumulative distribution ...
dstfrvclim1 34167 The limit of the cumulativ...
coinfliplem 34168 Division in the extended r...
coinflipprob 34169 The ` P ` we defined for c...
coinflipspace 34170 The space of our coin-flip...
coinflipuniv 34171 The universe of our coin-f...
coinfliprv 34172 The ` X ` we defined for c...
coinflippv 34173 The probability of heads i...
coinflippvt 34174 The probability of tails i...
ballotlemoex 34175 ` O ` is a set. (Contribu...
ballotlem1 34176 The size of the universe i...
ballotlemelo 34177 Elementhood in ` O ` . (C...
ballotlem2 34178 The probability that the f...
ballotlemfval 34179 The value of ` F ` . (Con...
ballotlemfelz 34180 ` ( F `` C ) ` has values ...
ballotlemfp1 34181 If the ` J ` th ballot is ...
ballotlemfc0 34182 ` F ` takes value 0 betwee...
ballotlemfcc 34183 ` F ` takes value 0 betwee...
ballotlemfmpn 34184 ` ( F `` C ) ` finishes co...
ballotlemfval0 34185 ` ( F `` C ) ` always star...
ballotleme 34186 Elements of ` E ` . (Cont...
ballotlemodife 34187 Elements of ` ( O \ E ) ` ...
ballotlem4 34188 If the first pick is a vot...
ballotlem5 34189 If A is not ahead througho...
ballotlemi 34190 Value of ` I ` for a given...
ballotlemiex 34191 Properties of ` ( I `` C )...
ballotlemi1 34192 The first tie cannot be re...
ballotlemii 34193 The first tie cannot be re...
ballotlemsup 34194 The set of zeroes of ` F `...
ballotlemimin 34195 ` ( I `` C ) ` is the firs...
ballotlemic 34196 If the first vote is for B...
ballotlem1c 34197 If the first vote is for A...
ballotlemsval 34198 Value of ` S ` . (Contrib...
ballotlemsv 34199 Value of ` S ` evaluated a...
ballotlemsgt1 34200 ` S ` maps values less tha...
ballotlemsdom 34201 Domain of ` S ` for a give...
ballotlemsel1i 34202 The range ` ( 1 ... ( I ``...
ballotlemsf1o 34203 The defined ` S ` is a bij...
ballotlemsi 34204 The image by ` S ` of the ...
ballotlemsima 34205 The image by ` S ` of an i...
ballotlemieq 34206 If two countings share the...
ballotlemrval 34207 Value of ` R ` . (Contrib...
ballotlemscr 34208 The image of ` ( R `` C ) ...
ballotlemrv 34209 Value of ` R ` evaluated a...
ballotlemrv1 34210 Value of ` R ` before the ...
ballotlemrv2 34211 Value of ` R ` after the t...
ballotlemro 34212 Range of ` R ` is included...
ballotlemgval 34213 Expand the value of ` .^ `...
ballotlemgun 34214 A property of the defined ...
ballotlemfg 34215 Express the value of ` ( F...
ballotlemfrc 34216 Express the value of ` ( F...
ballotlemfrci 34217 Reverse counting preserves...
ballotlemfrceq 34218 Value of ` F ` for a rever...
ballotlemfrcn0 34219 Value of ` F ` for a rever...
ballotlemrc 34220 Range of ` R ` . (Contrib...
ballotlemirc 34221 Applying ` R ` does not ch...
ballotlemrinv0 34222 Lemma for ~ ballotlemrinv ...
ballotlemrinv 34223 ` R ` is its own inverse :...
ballotlem1ri 34224 When the vote on the first...
ballotlem7 34225 ` R ` is a bijection betwe...
ballotlem8 34226 There are as many counting...
ballotth 34227 Bertrand's ballot problem ...
sgncl 34228 Closure of the signum. (C...
sgnclre 34229 Closure of the signum. (C...
sgnneg 34230 Negation of the signum. (...
sgn3da 34231 A conditional containing a...
sgnmul 34232 Signum of a product. (Con...
sgnmulrp2 34233 Multiplication by a positi...
sgnsub 34234 Subtraction of a number of...
sgnnbi 34235 Negative signum. (Contrib...
sgnpbi 34236 Positive signum. (Contrib...
sgn0bi 34237 Zero signum. (Contributed...
sgnsgn 34238 Signum is idempotent. (Co...
sgnmulsgn 34239 If two real numbers are of...
sgnmulsgp 34240 If two real numbers are of...
fzssfzo 34241 Condition for an integer i...
gsumncl 34242 Closure of a group sum in ...
gsumnunsn 34243 Closure of a group sum in ...
ccatmulgnn0dir 34244 Concatenation of words fol...
ofcccat 34245 Letterwise operations on w...
ofcs1 34246 Letterwise operations on a...
ofcs2 34247 Letterwise operations on a...
plymul02 34248 Product of a polynomial wi...
plymulx0 34249 Coefficients of a polynomi...
plymulx 34250 Coefficients of a polynomi...
plyrecld 34251 Closure of a polynomial wi...
signsplypnf 34252 The quotient of a polynomi...
signsply0 34253 Lemma for the rule of sign...
signspval 34254 The value of the skipping ...
signsw0glem 34255 Neutral element property o...
signswbase 34256 The base of ` W ` is the u...
signswplusg 34257 The operation of ` W ` . ...
signsw0g 34258 The neutral element of ` W...
signswmnd 34259 ` W ` is a monoid structur...
signswrid 34260 The zero-skipping operatio...
signswlid 34261 The zero-skipping operatio...
signswn0 34262 The zero-skipping operatio...
signswch 34263 The zero-skipping operatio...
signslema 34264 Computational part of ~~? ...
signstfv 34265 Value of the zero-skipping...
signstfval 34266 Value of the zero-skipping...
signstcl 34267 Closure of the zero skippi...
signstf 34268 The zero skipping sign wor...
signstlen 34269 Length of the zero skippin...
signstf0 34270 Sign of a single letter wo...
signstfvn 34271 Zero-skipping sign in a wo...
signsvtn0 34272 If the last letter is nonz...
signstfvp 34273 Zero-skipping sign in a wo...
signstfvneq0 34274 In case the first letter i...
signstfvcl 34275 Closure of the zero skippi...
signstfvc 34276 Zero-skipping sign in a wo...
signstres 34277 Restriction of a zero skip...
signstfveq0a 34278 Lemma for ~ signstfveq0 . ...
signstfveq0 34279 In case the last letter is...
signsvvfval 34280 The value of ` V ` , which...
signsvvf 34281 ` V ` is a function. (Con...
signsvf0 34282 There is no change of sign...
signsvf1 34283 In a single-letter word, w...
signsvfn 34284 Number of changes in a wor...
signsvtp 34285 Adding a letter of the sam...
signsvtn 34286 Adding a letter of a diffe...
signsvfpn 34287 Adding a letter of the sam...
signsvfnn 34288 Adding a letter of a diffe...
signlem0 34289 Adding a zero as the highe...
signshf 34290 ` H ` , corresponding to t...
signshwrd 34291 ` H ` , corresponding to t...
signshlen 34292 Length of ` H ` , correspo...
signshnz 34293 ` H ` is not the empty wor...
iblidicc 34294 The identity function is i...
rpsqrtcn 34295 Continuity of the real pos...
divsqrtid 34296 A real number divided by i...
cxpcncf1 34297 The power function on comp...
efmul2picn 34298 Multiplying by ` ( _i x. (...
fct2relem 34299 Lemma for ~ ftc2re . (Con...
ftc2re 34300 The Fundamental Theorem of...
fdvposlt 34301 Functions with a positive ...
fdvneggt 34302 Functions with a negative ...
fdvposle 34303 Functions with a nonnegati...
fdvnegge 34304 Functions with a nonpositi...
prodfzo03 34305 A product of three factors...
actfunsnf1o 34306 The action ` F ` of extend...
actfunsnrndisj 34307 The action ` F ` of extend...
itgexpif 34308 The basis for the circle m...
fsum2dsub 34309 Lemma for ~ breprexp - Re-...
reprval 34312 Value of the representatio...
repr0 34313 There is exactly one repre...
reprf 34314 Members of the representat...
reprsum 34315 Sums of values of the memb...
reprle 34316 Upper bound to the terms i...
reprsuc 34317 Express the representation...
reprfi 34318 Bounded representations ar...
reprss 34319 Representations with terms...
reprinrn 34320 Representations with term ...
reprlt 34321 There are no representatio...
hashreprin 34322 Express a sum of represent...
reprgt 34323 There are no representatio...
reprinfz1 34324 For the representation of ...
reprfi2 34325 Corollary of ~ reprinfz1 ....
reprfz1 34326 Corollary of ~ reprinfz1 ....
hashrepr 34327 Develop the number of repr...
reprpmtf1o 34328 Transposing ` 0 ` and ` X ...
reprdifc 34329 Express the representation...
chpvalz 34330 Value of the second Chebys...
chtvalz 34331 Value of the Chebyshev fun...
breprexplema 34332 Lemma for ~ breprexp (indu...
breprexplemb 34333 Lemma for ~ breprexp (clos...
breprexplemc 34334 Lemma for ~ breprexp (indu...
breprexp 34335 Express the ` S ` th power...
breprexpnat 34336 Express the ` S ` th power...
vtsval 34339 Value of the Vinogradov tr...
vtscl 34340 Closure of the Vinogradov ...
vtsprod 34341 Express the Vinogradov tri...
circlemeth 34342 The Hardy, Littlewood and ...
circlemethnat 34343 The Hardy, Littlewood and ...
circlevma 34344 The Circle Method, where t...
circlemethhgt 34345 The circle method, where t...
hgt750lemc 34349 An upper bound to the summ...
hgt750lemd 34350 An upper bound to the summ...
hgt749d 34351 A deduction version of ~ a...
logdivsqrle 34352 Conditions for ` ( ( log `...
hgt750lem 34353 Lemma for ~ tgoldbachgtd ....
hgt750lem2 34354 Decimal multiplication gal...
hgt750lemf 34355 Lemma for the statement 7....
hgt750lemg 34356 Lemma for the statement 7....
oddprm2 34357 Two ways to write the set ...
hgt750lemb 34358 An upper bound on the cont...
hgt750lema 34359 An upper bound on the cont...
hgt750leme 34360 An upper bound on the cont...
tgoldbachgnn 34361 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 34362 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 34363 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 34364 Odd integers greater than ...
tgoldbachgt 34365 Odd integers greater than ...
istrkg2d 34368 Property of fulfilling dim...
axtglowdim2ALTV 34369 Alternate version of ~ axt...
axtgupdim2ALTV 34370 Alternate version of ~ axt...
afsval 34373 Value of the AFS relation ...
brafs 34374 Binary relation form of th...
tg5segofs 34375 Rephrase ~ axtg5seg using ...
lpadval 34378 Value of the ` leftpad ` f...
lpadlem1 34379 Lemma for the ` leftpad ` ...
lpadlem3 34380 Lemma for ~ lpadlen1 . (C...
lpadlen1 34381 Length of a left-padded wo...
lpadlem2 34382 Lemma for the ` leftpad ` ...
lpadlen2 34383 Length of a left-padded wo...
lpadmax 34384 Length of a left-padded wo...
lpadleft 34385 The contents of prefix of ...
lpadright 34386 The suffix of a left-padde...
bnj170 34399 ` /\ ` -manipulation. (Co...
bnj240 34400 ` /\ ` -manipulation. (Co...
bnj248 34401 ` /\ ` -manipulation. (Co...
bnj250 34402 ` /\ ` -manipulation. (Co...
bnj251 34403 ` /\ ` -manipulation. (Co...
bnj252 34404 ` /\ ` -manipulation. (Co...
bnj253 34405 ` /\ ` -manipulation. (Co...
bnj255 34406 ` /\ ` -manipulation. (Co...
bnj256 34407 ` /\ ` -manipulation. (Co...
bnj257 34408 ` /\ ` -manipulation. (Co...
bnj258 34409 ` /\ ` -manipulation. (Co...
bnj268 34410 ` /\ ` -manipulation. (Co...
bnj290 34411 ` /\ ` -manipulation. (Co...
bnj291 34412 ` /\ ` -manipulation. (Co...
bnj312 34413 ` /\ ` -manipulation. (Co...
bnj334 34414 ` /\ ` -manipulation. (Co...
bnj345 34415 ` /\ ` -manipulation. (Co...
bnj422 34416 ` /\ ` -manipulation. (Co...
bnj432 34417 ` /\ ` -manipulation. (Co...
bnj446 34418 ` /\ ` -manipulation. (Co...
bnj23 34419 First-order logic and set ...
bnj31 34420 First-order logic and set ...
bnj62 34421 First-order logic and set ...
bnj89 34422 First-order logic and set ...
bnj90 34423 First-order logic and set ...
bnj101 34424 First-order logic and set ...
bnj105 34425 First-order logic and set ...
bnj115 34426 First-order logic and set ...
bnj132 34427 First-order logic and set ...
bnj133 34428 First-order logic and set ...
bnj156 34429 First-order logic and set ...
bnj158 34430 First-order logic and set ...
bnj168 34431 First-order logic and set ...
bnj206 34432 First-order logic and set ...
bnj216 34433 First-order logic and set ...
bnj219 34434 First-order logic and set ...
bnj226 34435 First-order logic and set ...
bnj228 34436 First-order logic and set ...
bnj519 34437 First-order logic and set ...
bnj524 34438 First-order logic and set ...
bnj525 34439 First-order logic and set ...
bnj534 34440 First-order logic and set ...
bnj538 34441 First-order logic and set ...
bnj529 34442 First-order logic and set ...
bnj551 34443 First-order logic and set ...
bnj563 34444 First-order logic and set ...
bnj564 34445 First-order logic and set ...
bnj593 34446 First-order logic and set ...
bnj596 34447 First-order logic and set ...
bnj610 34448 Pass from equality ( ` x =...
bnj642 34449 ` /\ ` -manipulation. (Co...
bnj643 34450 ` /\ ` -manipulation. (Co...
bnj645 34451 ` /\ ` -manipulation. (Co...
bnj658 34452 ` /\ ` -manipulation. (Co...
bnj667 34453 ` /\ ` -manipulation. (Co...
bnj705 34454 ` /\ ` -manipulation. (Co...
bnj706 34455 ` /\ ` -manipulation. (Co...
bnj707 34456 ` /\ ` -manipulation. (Co...
bnj708 34457 ` /\ ` -manipulation. (Co...
bnj721 34458 ` /\ ` -manipulation. (Co...
bnj832 34459 ` /\ ` -manipulation. (Co...
bnj835 34460 ` /\ ` -manipulation. (Co...
bnj836 34461 ` /\ ` -manipulation. (Co...
bnj837 34462 ` /\ ` -manipulation. (Co...
bnj769 34463 ` /\ ` -manipulation. (Co...
bnj770 34464 ` /\ ` -manipulation. (Co...
bnj771 34465 ` /\ ` -manipulation. (Co...
bnj887 34466 ` /\ ` -manipulation. (Co...
bnj918 34467 First-order logic and set ...
bnj919 34468 First-order logic and set ...
bnj923 34469 First-order logic and set ...
bnj927 34470 First-order logic and set ...
bnj931 34471 First-order logic and set ...
bnj937 34472 First-order logic and set ...
bnj941 34473 First-order logic and set ...
bnj945 34474 Technical lemma for ~ bnj6...
bnj946 34475 First-order logic and set ...
bnj951 34476 ` /\ ` -manipulation. (Co...
bnj956 34477 First-order logic and set ...
bnj976 34478 First-order logic and set ...
bnj982 34479 First-order logic and set ...
bnj1019 34480 First-order logic and set ...
bnj1023 34481 First-order logic and set ...
bnj1095 34482 First-order logic and set ...
bnj1096 34483 First-order logic and set ...
bnj1098 34484 First-order logic and set ...
bnj1101 34485 First-order logic and set ...
bnj1113 34486 First-order logic and set ...
bnj1109 34487 First-order logic and set ...
bnj1131 34488 First-order logic and set ...
bnj1138 34489 First-order logic and set ...
bnj1142 34490 First-order logic and set ...
bnj1143 34491 First-order logic and set ...
bnj1146 34492 First-order logic and set ...
bnj1149 34493 First-order logic and set ...
bnj1185 34494 First-order logic and set ...
bnj1196 34495 First-order logic and set ...
bnj1198 34496 First-order logic and set ...
bnj1209 34497 First-order logic and set ...
bnj1211 34498 First-order logic and set ...
bnj1213 34499 First-order logic and set ...
bnj1212 34500 First-order logic and set ...
bnj1219 34501 First-order logic and set ...
bnj1224 34502 First-order logic and set ...
bnj1230 34503 First-order logic and set ...
bnj1232 34504 First-order logic and set ...
bnj1235 34505 First-order logic and set ...
bnj1239 34506 First-order logic and set ...
bnj1238 34507 First-order logic and set ...
bnj1241 34508 First-order logic and set ...
bnj1247 34509 First-order logic and set ...
bnj1254 34510 First-order logic and set ...
bnj1262 34511 First-order logic and set ...
bnj1266 34512 First-order logic and set ...
bnj1265 34513 First-order logic and set ...
bnj1275 34514 First-order logic and set ...
bnj1276 34515 First-order logic and set ...
bnj1292 34516 First-order logic and set ...
bnj1293 34517 First-order logic and set ...
bnj1294 34518 First-order logic and set ...
bnj1299 34519 First-order logic and set ...
bnj1304 34520 First-order logic and set ...
bnj1316 34521 First-order logic and set ...
bnj1317 34522 First-order logic and set ...
bnj1322 34523 First-order logic and set ...
bnj1340 34524 First-order logic and set ...
bnj1345 34525 First-order logic and set ...
bnj1350 34526 First-order logic and set ...
bnj1351 34527 First-order logic and set ...
bnj1352 34528 First-order logic and set ...
bnj1361 34529 First-order logic and set ...
bnj1366 34530 First-order logic and set ...
bnj1379 34531 First-order logic and set ...
bnj1383 34532 First-order logic and set ...
bnj1385 34533 First-order logic and set ...
bnj1386 34534 First-order logic and set ...
bnj1397 34535 First-order logic and set ...
bnj1400 34536 First-order logic and set ...
bnj1405 34537 First-order logic and set ...
bnj1422 34538 First-order logic and set ...
bnj1424 34539 First-order logic and set ...
bnj1436 34540 First-order logic and set ...
bnj1441 34541 First-order logic and set ...
bnj1441g 34542 First-order logic and set ...
bnj1454 34543 First-order logic and set ...
bnj1459 34544 First-order logic and set ...
bnj1464 34545 Conversion of implicit sub...
bnj1465 34546 First-order logic and set ...
bnj1468 34547 Conversion of implicit sub...
bnj1476 34548 First-order logic and set ...
bnj1502 34549 First-order logic and set ...
bnj1503 34550 First-order logic and set ...
bnj1517 34551 First-order logic and set ...
bnj1521 34552 First-order logic and set ...
bnj1533 34553 First-order logic and set ...
bnj1534 34554 First-order logic and set ...
bnj1536 34555 First-order logic and set ...
bnj1538 34556 First-order logic and set ...
bnj1541 34557 First-order logic and set ...
bnj1542 34558 First-order logic and set ...
bnj110 34559 Well-founded induction res...
bnj157 34560 Well-founded induction res...
bnj66 34561 Technical lemma for ~ bnj6...
bnj91 34562 First-order logic and set ...
bnj92 34563 First-order logic and set ...
bnj93 34564 Technical lemma for ~ bnj9...
bnj95 34565 Technical lemma for ~ bnj1...
bnj96 34566 Technical lemma for ~ bnj1...
bnj97 34567 Technical lemma for ~ bnj1...
bnj98 34568 Technical lemma for ~ bnj1...
bnj106 34569 First-order logic and set ...
bnj118 34570 First-order logic and set ...
bnj121 34571 First-order logic and set ...
bnj124 34572 Technical lemma for ~ bnj1...
bnj125 34573 Technical lemma for ~ bnj1...
bnj126 34574 Technical lemma for ~ bnj1...
bnj130 34575 Technical lemma for ~ bnj1...
bnj149 34576 Technical lemma for ~ bnj1...
bnj150 34577 Technical lemma for ~ bnj1...
bnj151 34578 Technical lemma for ~ bnj1...
bnj154 34579 Technical lemma for ~ bnj1...
bnj155 34580 Technical lemma for ~ bnj1...
bnj153 34581 Technical lemma for ~ bnj8...
bnj207 34582 Technical lemma for ~ bnj8...
bnj213 34583 First-order logic and set ...
bnj222 34584 Technical lemma for ~ bnj2...
bnj229 34585 Technical lemma for ~ bnj5...
bnj517 34586 Technical lemma for ~ bnj5...
bnj518 34587 Technical lemma for ~ bnj8...
bnj523 34588 Technical lemma for ~ bnj8...
bnj526 34589 Technical lemma for ~ bnj8...
bnj528 34590 Technical lemma for ~ bnj8...
bnj535 34591 Technical lemma for ~ bnj8...
bnj539 34592 Technical lemma for ~ bnj8...
bnj540 34593 Technical lemma for ~ bnj8...
bnj543 34594 Technical lemma for ~ bnj8...
bnj544 34595 Technical lemma for ~ bnj8...
bnj545 34596 Technical lemma for ~ bnj8...
bnj546 34597 Technical lemma for ~ bnj8...
bnj548 34598 Technical lemma for ~ bnj8...
bnj553 34599 Technical lemma for ~ bnj8...
bnj554 34600 Technical lemma for ~ bnj8...
bnj556 34601 Technical lemma for ~ bnj8...
bnj557 34602 Technical lemma for ~ bnj8...
bnj558 34603 Technical lemma for ~ bnj8...
bnj561 34604 Technical lemma for ~ bnj8...
bnj562 34605 Technical lemma for ~ bnj8...
bnj570 34606 Technical lemma for ~ bnj8...
bnj571 34607 Technical lemma for ~ bnj8...
bnj605 34608 Technical lemma. This lem...
bnj581 34609 Technical lemma for ~ bnj5...
bnj589 34610 Technical lemma for ~ bnj8...
bnj590 34611 Technical lemma for ~ bnj8...
bnj591 34612 Technical lemma for ~ bnj8...
bnj594 34613 Technical lemma for ~ bnj8...
bnj580 34614 Technical lemma for ~ bnj5...
bnj579 34615 Technical lemma for ~ bnj8...
bnj602 34616 Equality theorem for the `...
bnj607 34617 Technical lemma for ~ bnj8...
bnj609 34618 Technical lemma for ~ bnj8...
bnj611 34619 Technical lemma for ~ bnj8...
bnj600 34620 Technical lemma for ~ bnj8...
bnj601 34621 Technical lemma for ~ bnj8...
bnj852 34622 Technical lemma for ~ bnj6...
bnj864 34623 Technical lemma for ~ bnj6...
bnj865 34624 Technical lemma for ~ bnj6...
bnj873 34625 Technical lemma for ~ bnj6...
bnj849 34626 Technical lemma for ~ bnj6...
bnj882 34627 Definition (using hypothes...
bnj18eq1 34628 Equality theorem for trans...
bnj893 34629 Property of ` _trCl ` . U...
bnj900 34630 Technical lemma for ~ bnj6...
bnj906 34631 Property of ` _trCl ` . (...
bnj908 34632 Technical lemma for ~ bnj6...
bnj911 34633 Technical lemma for ~ bnj6...
bnj916 34634 Technical lemma for ~ bnj6...
bnj917 34635 Technical lemma for ~ bnj6...
bnj934 34636 Technical lemma for ~ bnj6...
bnj929 34637 Technical lemma for ~ bnj6...
bnj938 34638 Technical lemma for ~ bnj6...
bnj944 34639 Technical lemma for ~ bnj6...
bnj953 34640 Technical lemma for ~ bnj6...
bnj958 34641 Technical lemma for ~ bnj6...
bnj1000 34642 Technical lemma for ~ bnj8...
bnj965 34643 Technical lemma for ~ bnj8...
bnj964 34644 Technical lemma for ~ bnj6...
bnj966 34645 Technical lemma for ~ bnj6...
bnj967 34646 Technical lemma for ~ bnj6...
bnj969 34647 Technical lemma for ~ bnj6...
bnj970 34648 Technical lemma for ~ bnj6...
bnj910 34649 Technical lemma for ~ bnj6...
bnj978 34650 Technical lemma for ~ bnj6...
bnj981 34651 Technical lemma for ~ bnj6...
bnj983 34652 Technical lemma for ~ bnj6...
bnj984 34653 Technical lemma for ~ bnj6...
bnj985v 34654 Version of ~ bnj985 with a...
bnj985 34655 Technical lemma for ~ bnj6...
bnj986 34656 Technical lemma for ~ bnj6...
bnj996 34657 Technical lemma for ~ bnj6...
bnj998 34658 Technical lemma for ~ bnj6...
bnj999 34659 Technical lemma for ~ bnj6...
bnj1001 34660 Technical lemma for ~ bnj6...
bnj1006 34661 Technical lemma for ~ bnj6...
bnj1014 34662 Technical lemma for ~ bnj6...
bnj1015 34663 Technical lemma for ~ bnj6...
bnj1018g 34664 Version of ~ bnj1018 with ...
bnj1018 34665 Technical lemma for ~ bnj6...
bnj1020 34666 Technical lemma for ~ bnj6...
bnj1021 34667 Technical lemma for ~ bnj6...
bnj907 34668 Technical lemma for ~ bnj6...
bnj1029 34669 Property of ` _trCl ` . (...
bnj1033 34670 Technical lemma for ~ bnj6...
bnj1034 34671 Technical lemma for ~ bnj6...
bnj1039 34672 Technical lemma for ~ bnj6...
bnj1040 34673 Technical lemma for ~ bnj6...
bnj1047 34674 Technical lemma for ~ bnj6...
bnj1049 34675 Technical lemma for ~ bnj6...
bnj1052 34676 Technical lemma for ~ bnj6...
bnj1053 34677 Technical lemma for ~ bnj6...
bnj1071 34678 Technical lemma for ~ bnj6...
bnj1083 34679 Technical lemma for ~ bnj6...
bnj1090 34680 Technical lemma for ~ bnj6...
bnj1093 34681 Technical lemma for ~ bnj6...
bnj1097 34682 Technical lemma for ~ bnj6...
bnj1110 34683 Technical lemma for ~ bnj6...
bnj1112 34684 Technical lemma for ~ bnj6...
bnj1118 34685 Technical lemma for ~ bnj6...
bnj1121 34686 Technical lemma for ~ bnj6...
bnj1123 34687 Technical lemma for ~ bnj6...
bnj1030 34688 Technical lemma for ~ bnj6...
bnj1124 34689 Property of ` _trCl ` . (...
bnj1133 34690 Technical lemma for ~ bnj6...
bnj1128 34691 Technical lemma for ~ bnj6...
bnj1127 34692 Property of ` _trCl ` . (...
bnj1125 34693 Property of ` _trCl ` . (...
bnj1145 34694 Technical lemma for ~ bnj6...
bnj1147 34695 Property of ` _trCl ` . (...
bnj1137 34696 Property of ` _trCl ` . (...
bnj1148 34697 Property of ` _pred ` . (...
bnj1136 34698 Technical lemma for ~ bnj6...
bnj1152 34699 Technical lemma for ~ bnj6...
bnj1154 34700 Property of ` Fr ` . (Con...
bnj1171 34701 Technical lemma for ~ bnj6...
bnj1172 34702 Technical lemma for ~ bnj6...
bnj1173 34703 Technical lemma for ~ bnj6...
bnj1174 34704 Technical lemma for ~ bnj6...
bnj1175 34705 Technical lemma for ~ bnj6...
bnj1176 34706 Technical lemma for ~ bnj6...
bnj1177 34707 Technical lemma for ~ bnj6...
bnj1186 34708 Technical lemma for ~ bnj6...
bnj1190 34709 Technical lemma for ~ bnj6...
bnj1189 34710 Technical lemma for ~ bnj6...
bnj69 34711 Existence of a minimal ele...
bnj1228 34712 Existence of a minimal ele...
bnj1204 34713 Well-founded induction. T...
bnj1234 34714 Technical lemma for ~ bnj6...
bnj1245 34715 Technical lemma for ~ bnj6...
bnj1256 34716 Technical lemma for ~ bnj6...
bnj1259 34717 Technical lemma for ~ bnj6...
bnj1253 34718 Technical lemma for ~ bnj6...
bnj1279 34719 Technical lemma for ~ bnj6...
bnj1286 34720 Technical lemma for ~ bnj6...
bnj1280 34721 Technical lemma for ~ bnj6...
bnj1296 34722 Technical lemma for ~ bnj6...
bnj1309 34723 Technical lemma for ~ bnj6...
bnj1307 34724 Technical lemma for ~ bnj6...
bnj1311 34725 Technical lemma for ~ bnj6...
bnj1318 34726 Technical lemma for ~ bnj6...
bnj1326 34727 Technical lemma for ~ bnj6...
bnj1321 34728 Technical lemma for ~ bnj6...
bnj1364 34729 Property of ` _FrSe ` . (...
bnj1371 34730 Technical lemma for ~ bnj6...
bnj1373 34731 Technical lemma for ~ bnj6...
bnj1374 34732 Technical lemma for ~ bnj6...
bnj1384 34733 Technical lemma for ~ bnj6...
bnj1388 34734 Technical lemma for ~ bnj6...
bnj1398 34735 Technical lemma for ~ bnj6...
bnj1413 34736 Property of ` _trCl ` . (...
bnj1408 34737 Technical lemma for ~ bnj1...
bnj1414 34738 Property of ` _trCl ` . (...
bnj1415 34739 Technical lemma for ~ bnj6...
bnj1416 34740 Technical lemma for ~ bnj6...
bnj1418 34741 Property of ` _pred ` . (...
bnj1417 34742 Technical lemma for ~ bnj6...
bnj1421 34743 Technical lemma for ~ bnj6...
bnj1444 34744 Technical lemma for ~ bnj6...
bnj1445 34745 Technical lemma for ~ bnj6...
bnj1446 34746 Technical lemma for ~ bnj6...
bnj1447 34747 Technical lemma for ~ bnj6...
bnj1448 34748 Technical lemma for ~ bnj6...
bnj1449 34749 Technical lemma for ~ bnj6...
bnj1442 34750 Technical lemma for ~ bnj6...
bnj1450 34751 Technical lemma for ~ bnj6...
bnj1423 34752 Technical lemma for ~ bnj6...
bnj1452 34753 Technical lemma for ~ bnj6...
bnj1466 34754 Technical lemma for ~ bnj6...
bnj1467 34755 Technical lemma for ~ bnj6...
bnj1463 34756 Technical lemma for ~ bnj6...
bnj1489 34757 Technical lemma for ~ bnj6...
bnj1491 34758 Technical lemma for ~ bnj6...
bnj1312 34759 Technical lemma for ~ bnj6...
bnj1493 34760 Technical lemma for ~ bnj6...
bnj1497 34761 Technical lemma for ~ bnj6...
bnj1498 34762 Technical lemma for ~ bnj6...
bnj60 34763 Well-founded recursion, pa...
bnj1514 34764 Technical lemma for ~ bnj1...
bnj1518 34765 Technical lemma for ~ bnj1...
bnj1519 34766 Technical lemma for ~ bnj1...
bnj1520 34767 Technical lemma for ~ bnj1...
bnj1501 34768 Technical lemma for ~ bnj1...
bnj1500 34769 Well-founded recursion, pa...
bnj1525 34770 Technical lemma for ~ bnj1...
bnj1529 34771 Technical lemma for ~ bnj1...
bnj1523 34772 Technical lemma for ~ bnj1...
bnj1522 34773 Well-founded recursion, pa...
exdifsn 34774 There exists an element in...
srcmpltd 34775 If a statement is true for...
prsrcmpltd 34776 If a statement is true for...
dff15 34777 A one-to-one function in t...
f1resveqaeq 34778 If a function restricted t...
f1resrcmplf1dlem 34779 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 34780 If a function's restrictio...
funen1cnv 34781 If a function is equinumer...
fnrelpredd 34782 A function that preserves ...
cardpred 34783 The cardinality function p...
nummin 34784 Every nonempty class of nu...
fineqvrep 34785 If the Axiom of Infinity i...
fineqvpow 34786 If the Axiom of Infinity i...
fineqvac 34787 If the Axiom of Infinity i...
fineqvacALT 34788 Shorter proof of ~ fineqva...
zltp1ne 34789 Integer ordering relation....
nnltp1ne 34790 Positive integer ordering ...
nn0ltp1ne 34791 Nonnegative integer orderi...
0nn0m1nnn0 34792 A number is zero if and on...
f1resfz0f1d 34793 If a function with a seque...
fisshasheq 34794 A finite set is equal to i...
revpfxsfxrev 34795 The reverse of a prefix of...
swrdrevpfx 34796 A subword expressed in ter...
lfuhgr 34797 A hypergraph is loop-free ...
lfuhgr2 34798 A hypergraph is loop-free ...
lfuhgr3 34799 A hypergraph is loop-free ...
cplgredgex 34800 Any two (distinct) vertice...
cusgredgex 34801 Any two (distinct) vertice...
cusgredgex2 34802 Any two distinct vertices ...
pfxwlk 34803 A prefix of a walk is a wa...
revwlk 34804 The reverse of a walk is a...
revwlkb 34805 Two words represent a walk...
swrdwlk 34806 Two matching subwords of a...
pthhashvtx 34807 A graph containing a path ...
pthisspthorcycl 34808 A path is either a simple ...
spthcycl 34809 A walk is a trivial path i...
usgrgt2cycl 34810 A non-trivial cycle in a s...
usgrcyclgt2v 34811 A simple graph with a non-...
subgrwlk 34812 If a walk exists in a subg...
subgrtrl 34813 If a trail exists in a sub...
subgrpth 34814 If a path exists in a subg...
subgrcycl 34815 If a cycle exists in a sub...
cusgr3cyclex 34816 Every complete simple grap...
loop1cycl 34817 A hypergraph has a cycle o...
2cycld 34818 Construction of a 2-cycle ...
2cycl2d 34819 Construction of a 2-cycle ...
umgr2cycllem 34820 Lemma for ~ umgr2cycl . (...
umgr2cycl 34821 A multigraph with two dist...
dfacycgr1 34824 An alternate definition of...
isacycgr 34825 The property of being an a...
isacycgr1 34826 The property of being an a...
acycgrcycl 34827 Any cycle in an acyclic gr...
acycgr0v 34828 A null graph (with no vert...
acycgr1v 34829 A multigraph with one vert...
acycgr2v 34830 A simple graph with two ve...
prclisacycgr 34831 A proper class (representi...
acycgrislfgr 34832 An acyclic hypergraph is a...
upgracycumgr 34833 An acyclic pseudograph is ...
umgracycusgr 34834 An acyclic multigraph is a...
upgracycusgr 34835 An acyclic pseudograph is ...
cusgracyclt3v 34836 A complete simple graph is...
pthacycspth 34837 A path in an acyclic graph...
acycgrsubgr 34838 The subgraph of an acyclic...
quartfull 34845 The quartic equation, writ...
deranglem 34846 Lemma for derangements. (...
derangval 34847 Define the derangement fun...
derangf 34848 The derangement number is ...
derang0 34849 The derangement number of ...
derangsn 34850 The derangement number of ...
derangenlem 34851 One half of ~ derangen . ...
derangen 34852 The derangement number is ...
subfacval 34853 The subfactorial is define...
derangen2 34854 Write the derangement numb...
subfacf 34855 The subfactorial is a func...
subfaclefac 34856 The subfactorial is less t...
subfac0 34857 The subfactorial at zero. ...
subfac1 34858 The subfactorial at one. ...
subfacp1lem1 34859 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 34860 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 34861 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 34862 Lemma for ~ subfacp1 . In...
subfacp1lem4 34863 Lemma for ~ subfacp1 . Th...
subfacp1lem5 34864 Lemma for ~ subfacp1 . In...
subfacp1lem6 34865 Lemma for ~ subfacp1 . By...
subfacp1 34866 A two-term recurrence for ...
subfacval2 34867 A closed-form expression f...
subfaclim 34868 The subfactorial converges...
subfacval3 34869 Another closed form expres...
derangfmla 34870 The derangements formula, ...
erdszelem1 34871 Lemma for ~ erdsze . (Con...
erdszelem2 34872 Lemma for ~ erdsze . (Con...
erdszelem3 34873 Lemma for ~ erdsze . (Con...
erdszelem4 34874 Lemma for ~ erdsze . (Con...
erdszelem5 34875 Lemma for ~ erdsze . (Con...
erdszelem6 34876 Lemma for ~ erdsze . (Con...
erdszelem7 34877 Lemma for ~ erdsze . (Con...
erdszelem8 34878 Lemma for ~ erdsze . (Con...
erdszelem9 34879 Lemma for ~ erdsze . (Con...
erdszelem10 34880 Lemma for ~ erdsze . (Con...
erdszelem11 34881 Lemma for ~ erdsze . (Con...
erdsze 34882 The ErdÅ‘s-Szekeres th...
erdsze2lem1 34883 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 34884 Lemma for ~ erdsze2 . (Co...
erdsze2 34885 Generalize the statement o...
kur14lem1 34886 Lemma for ~ kur14 . (Cont...
kur14lem2 34887 Lemma for ~ kur14 . Write...
kur14lem3 34888 Lemma for ~ kur14 . A clo...
kur14lem4 34889 Lemma for ~ kur14 . Compl...
kur14lem5 34890 Lemma for ~ kur14 . Closu...
kur14lem6 34891 Lemma for ~ kur14 . If ` ...
kur14lem7 34892 Lemma for ~ kur14 : main p...
kur14lem8 34893 Lemma for ~ kur14 . Show ...
kur14lem9 34894 Lemma for ~ kur14 . Since...
kur14lem10 34895 Lemma for ~ kur14 . Disch...
kur14 34896 Kuratowski's closure-compl...
ispconn 34903 The property of being a pa...
pconncn 34904 The property of being a pa...
pconntop 34905 A simply connected space i...
issconn 34906 The property of being a si...
sconnpconn 34907 A simply connected space i...
sconntop 34908 A simply connected space i...
sconnpht 34909 A closed path in a simply ...
cnpconn 34910 An image of a path-connect...
pconnconn 34911 A path-connected space is ...
txpconn 34912 The topological product of...
ptpconn 34913 The topological product of...
indispconn 34914 The indiscrete topology (o...
connpconn 34915 A connected and locally pa...
qtoppconn 34916 A quotient of a path-conne...
pconnpi1 34917 All fundamental groups in ...
sconnpht2 34918 Any two paths in a simply ...
sconnpi1 34919 A path-connected topologic...
txsconnlem 34920 Lemma for ~ txsconn . (Co...
txsconn 34921 The topological product of...
cvxpconn 34922 A convex subset of the com...
cvxsconn 34923 A convex subset of the com...
blsconn 34924 An open ball in the comple...
cnllysconn 34925 The topology of the comple...
resconn 34926 A subset of ` RR ` is simp...
ioosconn 34927 An open interval is simply...
iccsconn 34928 A closed interval is simpl...
retopsconn 34929 The real numbers are simpl...
iccllysconn 34930 A closed interval is local...
rellysconn 34931 The real numbers are local...
iisconn 34932 The unit interval is simpl...
iillysconn 34933 The unit interval is local...
iinllyconn 34934 The unit interval is local...
fncvm 34937 Lemma for covering maps. ...
cvmscbv 34938 Change bound variables in ...
iscvm 34939 The property of being a co...
cvmtop1 34940 Reverse closure for a cove...
cvmtop2 34941 Reverse closure for a cove...
cvmcn 34942 A covering map is a contin...
cvmcov 34943 Property of a covering map...
cvmsrcl 34944 Reverse closure for an eve...
cvmsi 34945 One direction of ~ cvmsval...
cvmsval 34946 Elementhood in the set ` S...
cvmsss 34947 An even covering is a subs...
cvmsn0 34948 An even covering is nonemp...
cvmsuni 34949 An even covering of ` U ` ...
cvmsdisj 34950 An even covering of ` U ` ...
cvmshmeo 34951 Every element of an even c...
cvmsf1o 34952 ` F ` , localized to an el...
cvmscld 34953 The sets of an even coveri...
cvmsss2 34954 An open subset of an evenl...
cvmcov2 34955 The covering map property ...
cvmseu 34956 Every element in ` U. T ` ...
cvmsiota 34957 Identify the unique elemen...
cvmopnlem 34958 Lemma for ~ cvmopn . (Con...
cvmfolem 34959 Lemma for ~ cvmfo . (Cont...
cvmopn 34960 A covering map is an open ...
cvmliftmolem1 34961 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 34962 Lemma for ~ cvmliftmo . (...
cvmliftmoi 34963 A lift of a continuous fun...
cvmliftmo 34964 A lift of a continuous fun...
cvmliftlem1 34965 Lemma for ~ cvmlift . In ...
cvmliftlem2 34966 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 34967 Lemma for ~ cvmlift . Sin...
cvmliftlem4 34968 Lemma for ~ cvmlift . The...
cvmliftlem5 34969 Lemma for ~ cvmlift . Def...
cvmliftlem6 34970 Lemma for ~ cvmlift . Ind...
cvmliftlem7 34971 Lemma for ~ cvmlift . Pro...
cvmliftlem8 34972 Lemma for ~ cvmlift . The...
cvmliftlem9 34973 Lemma for ~ cvmlift . The...
cvmliftlem10 34974 Lemma for ~ cvmlift . The...
cvmliftlem11 34975 Lemma for ~ cvmlift . (Co...
cvmliftlem13 34976 Lemma for ~ cvmlift . The...
cvmliftlem14 34977 Lemma for ~ cvmlift . Put...
cvmliftlem15 34978 Lemma for ~ cvmlift . Dis...
cvmlift 34979 One of the important prope...
cvmfo 34980 A covering map is an onto ...
cvmliftiota 34981 Write out a function ` H `...
cvmlift2lem1 34982 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 34983 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 34984 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 34985 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 34986 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 34987 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 34988 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 34989 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 34990 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 34991 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 34992 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 34993 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 34994 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 34995 Lemma for ~ cvmlift2 . (C...
cvmlift2 34996 A two-dimensional version ...
cvmliftphtlem 34997 Lemma for ~ cvmliftpht . ...
cvmliftpht 34998 If ` G ` and ` H ` are pat...
cvmlift3lem1 34999 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 35000 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 35001 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 35002 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 35003 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 35004 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 35005 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 35006 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 35007 Lemma for ~ cvmlift2 . (C...
cvmlift3 35008 A general version of ~ cvm...
snmlff 35009 The function ` F ` from ~ ...
snmlfval 35010 The function ` F ` from ~ ...
snmlval 35011 The property " ` A ` is si...
snmlflim 35012 If ` A ` is simply normal,...
goel 35027 A "Godel-set of membership...
goelel3xp 35028 A "Godel-set of membership...
goeleq12bg 35029 Two "Godel-set of membersh...
gonafv 35030 The "Godel-set for the She...
goaleq12d 35031 Equality of the "Godel-set...
gonanegoal 35032 The Godel-set for the Shef...
satf 35033 The satisfaction predicate...
satfsucom 35034 The satisfaction predicate...
satfn 35035 The satisfaction predicate...
satom 35036 The satisfaction predicate...
satfvsucom 35037 The satisfaction predicate...
satfv0 35038 The value of the satisfact...
satfvsuclem1 35039 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 35040 Lemma 2 for ~ satfvsuc . ...
satfvsuc 35041 The value of the satisfact...
satfv1lem 35042 Lemma for ~ satfv1 . (Con...
satfv1 35043 The value of the satisfact...
satfsschain 35044 The binary relation of a s...
satfvsucsuc 35045 The satisfaction predicate...
satfbrsuc 35046 The binary relation of a s...
satfrel 35047 The value of the satisfact...
satfdmlem 35048 Lemma for ~ satfdm . (Con...
satfdm 35049 The domain of the satisfac...
satfrnmapom 35050 The range of the satisfact...
satfv0fun 35051 The value of the satisfact...
satf0 35052 The satisfaction predicate...
satf0sucom 35053 The satisfaction predicate...
satf00 35054 The value of the satisfact...
satf0suclem 35055 Lemma for ~ satf0suc , ~ s...
satf0suc 35056 The value of the satisfact...
satf0op 35057 An element of a value of t...
satf0n0 35058 The value of the satisfact...
sat1el2xp 35059 The first component of an ...
fmlafv 35060 The valid Godel formulas o...
fmla 35061 The set of all valid Godel...
fmla0 35062 The valid Godel formulas o...
fmla0xp 35063 The valid Godel formulas o...
fmlasuc0 35064 The valid Godel formulas o...
fmlafvel 35065 A class is a valid Godel f...
fmlasuc 35066 The valid Godel formulas o...
fmla1 35067 The valid Godel formulas o...
isfmlasuc 35068 The characterization of a ...
fmlasssuc 35069 The Godel formulas of heig...
fmlaomn0 35070 The empty set is not a God...
fmlan0 35071 The empty set is not a God...
gonan0 35072 The "Godel-set of NAND" is...
goaln0 35073 The "Godel-set of universa...
gonarlem 35074 Lemma for ~ gonar (inducti...
gonar 35075 If the "Godel-set of NAND"...
goalrlem 35076 Lemma for ~ goalr (inducti...
goalr 35077 If the "Godel-set of unive...
fmla0disjsuc 35078 The set of valid Godel for...
fmlasucdisj 35079 The valid Godel formulas o...
satfdmfmla 35080 The domain of the satisfac...
satffunlem 35081 Lemma for ~ satffunlem1lem...
satffunlem1lem1 35082 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 35083 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 35084 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 35085 The domain of an ordered p...
satffunlem2lem2 35086 Lemma 2 for ~ satffunlem2 ...
satffunlem1 35087 Lemma 1 for ~ satffun : in...
satffunlem2 35088 Lemma 2 for ~ satffun : in...
satffun 35089 The value of the satisfact...
satff 35090 The satisfaction predicate...
satfun 35091 The satisfaction predicate...
satfvel 35092 An element of the value of...
satfv0fvfmla0 35093 The value of the satisfact...
satefv 35094 The simplified satisfactio...
sate0 35095 The simplified satisfactio...
satef 35096 The simplified satisfactio...
sate0fv0 35097 A simplified satisfaction ...
satefvfmla0 35098 The simplified satisfactio...
sategoelfvb 35099 Characterization of a valu...
sategoelfv 35100 Condition of a valuation `...
ex-sategoelel 35101 Example of a valuation of ...
ex-sategoel 35102 Instance of ~ sategoelfv f...
satfv1fvfmla1 35103 The value of the satisfact...
2goelgoanfmla1 35104 Two Godel-sets of membersh...
satefvfmla1 35105 The simplified satisfactio...
ex-sategoelelomsuc 35106 Example of a valuation of ...
ex-sategoelel12 35107 Example of a valuation of ...
prv 35108 The "proves" relation on a...
elnanelprv 35109 The wff ` ( A e. B -/\ B e...
prv0 35110 Every wff encoded as ` U `...
prv1n 35111 No wff encoded as a Godel-...
mvtval 35180 The set of variable typeco...
mrexval 35181 The set of "raw expression...
mexval 35182 The set of expressions, wh...
mexval2 35183 The set of expressions, wh...
mdvval 35184 The set of disjoint variab...
mvrsval 35185 The set of variables in an...
mvrsfpw 35186 The set of variables in an...
mrsubffval 35187 The substitution of some v...
mrsubfval 35188 The substitution of some v...
mrsubval 35189 The substitution of some v...
mrsubcv 35190 The value of a substituted...
mrsubvr 35191 The value of a substituted...
mrsubff 35192 A substitution is a functi...
mrsubrn 35193 Although it is defined for...
mrsubff1 35194 When restricted to complet...
mrsubff1o 35195 When restricted to complet...
mrsub0 35196 The value of the substitut...
mrsubf 35197 A substitution is a functi...
mrsubccat 35198 Substitution distributes o...
mrsubcn 35199 A substitution does not ch...
elmrsubrn 35200 Characterization of the su...
mrsubco 35201 The composition of two sub...
mrsubvrs 35202 The set of variables in a ...
msubffval 35203 A substitution applied to ...
msubfval 35204 A substitution applied to ...
msubval 35205 A substitution applied to ...
msubrsub 35206 A substitution applied to ...
msubty 35207 The type of a substituted ...
elmsubrn 35208 Characterization of substi...
msubrn 35209 Although it is defined for...
msubff 35210 A substitution is a functi...
msubco 35211 The composition of two sub...
msubf 35212 A substitution is a functi...
mvhfval 35213 Value of the function mapp...
mvhval 35214 Value of the function mapp...
mpstval 35215 A pre-statement is an orde...
elmpst 35216 Property of being a pre-st...
msrfval 35217 Value of the reduct of a p...
msrval 35218 Value of the reduct of a p...
mpstssv 35219 A pre-statement is an orde...
mpst123 35220 Decompose a pre-statement ...
mpstrcl 35221 The elements of a pre-stat...
msrf 35222 The reduct of a pre-statem...
msrrcl 35223 If ` X ` and ` Y ` have th...
mstaval 35224 Value of the set of statem...
msrid 35225 The reduct of a statement ...
msrfo 35226 The reduct of a pre-statem...
mstapst 35227 A statement is a pre-state...
elmsta 35228 Property of being a statem...
ismfs 35229 A formal system is a tuple...
mfsdisj 35230 The constants and variable...
mtyf2 35231 The type function maps var...
mtyf 35232 The type function maps var...
mvtss 35233 The set of variable typeco...
maxsta 35234 An axiom is a statement. ...
mvtinf 35235 Each variable typecode has...
msubff1 35236 When restricted to complet...
msubff1o 35237 When restricted to complet...
mvhf 35238 The function mapping varia...
mvhf1 35239 The function mapping varia...
msubvrs 35240 The set of variables in a ...
mclsrcl 35241 Reverse closure for the cl...
mclsssvlem 35242 Lemma for ~ mclsssv . (Co...
mclsval 35243 The function mapping varia...
mclsssv 35244 The closure of a set of ex...
ssmclslem 35245 Lemma for ~ ssmcls . (Con...
vhmcls 35246 All variable hypotheses ar...
ssmcls 35247 The original expressions a...
ss2mcls 35248 The closure is monotonic u...
mclsax 35249 The closure is closed unde...
mclsind 35250 Induction theorem for clos...
mppspstlem 35251 Lemma for ~ mppspst . (Co...
mppsval 35252 Definition of a provable p...
elmpps 35253 Definition of a provable p...
mppspst 35254 A provable pre-statement i...
mthmval 35255 A theorem is a pre-stateme...
elmthm 35256 A theorem is a pre-stateme...
mthmi 35257 A statement whose reduct i...
mthmsta 35258 A theorem is a pre-stateme...
mppsthm 35259 A provable pre-statement i...
mthmblem 35260 Lemma for ~ mthmb . (Cont...
mthmb 35261 If two statements have the...
mthmpps 35262 Given a theorem, there is ...
mclsppslem 35263 The closure is closed unde...
mclspps 35264 The closure is closed unde...
problem1 35339 Practice problem 1. Clues...
problem2 35340 Practice problem 2. Clues...
problem3 35341 Practice problem 3. Clues...
problem4 35342 Practice problem 4. Clues...
problem5 35343 Practice problem 5. Clues...
quad3 35344 Variant of quadratic equat...
climuzcnv 35345 Utility lemma to convert b...
sinccvglem 35346 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 35347 ` ( ( sin `` x ) / x ) ~~>...
circum 35348 The circumference of a cir...
elfzm12 35349 Membership in a curtailed ...
nn0seqcvg 35350 A strictly-decreasing nonn...
lediv2aALT 35351 Division of both sides of ...
abs2sqlei 35352 The absolute values of two...
abs2sqlti 35353 The absolute values of two...
abs2sqle 35354 The absolute values of two...
abs2sqlt 35355 The absolute values of two...
abs2difi 35356 Difference of absolute val...
abs2difabsi 35357 Absolute value of differen...
currybi 35358 Biconditional version of C...
axextprim 35365 ~ ax-ext without distinct ...
axrepprim 35366 ~ ax-rep without distinct ...
axunprim 35367 ~ ax-un without distinct v...
axpowprim 35368 ~ ax-pow without distinct ...
axregprim 35369 ~ ax-reg without distinct ...
axinfprim 35370 ~ ax-inf without distinct ...
axacprim 35371 ~ ax-ac without distinct v...
untelirr 35372 We call a class "untanged"...
untuni 35373 The union of a class is un...
untsucf 35374 If a class is untangled, t...
unt0 35375 The null set is untangled....
untint 35376 If there is an untangled e...
efrunt 35377 If ` A ` is well-founded b...
untangtr 35378 A transitive class is unta...
3jaodd 35379 Double deduction form of ~...
3orit 35380 Closed form of ~ 3ori . (...
biimpexp 35381 A biconditional in the ant...
nepss 35382 Two classes are unequal if...
3ccased 35383 Triple disjunction form of...
dfso3 35384 Expansion of the definitio...
brtpid1 35385 A binary relation involvin...
brtpid2 35386 A binary relation involvin...
brtpid3 35387 A binary relation involvin...
iota5f 35388 A method for computing iot...
jath 35389 Closed form of ~ ja . Pro...
xpab 35390 Cartesian product of two c...
nnuni 35391 The union of a finite ordi...
sqdivzi 35392 Distribution of square ove...
supfz 35393 The supremum of a finite s...
inffz 35394 The infimum of a finite se...
fz0n 35395 The sequence ` ( 0 ... ( N...
shftvalg 35396 Value of a sequence shifte...
divcnvlin 35397 Limit of the ratio of two ...
climlec3 35398 Comparison of a constant t...
iexpire 35399 ` _i ` raised to itself is...
bcneg1 35400 The binomial coefficent ov...
bcm1nt 35401 The proportion of one bion...
bcprod 35402 A product identity for bin...
bccolsum 35403 A column-sum rule for bino...
iprodefisumlem 35404 Lemma for ~ iprodefisum . ...
iprodefisum 35405 Applying the exponential f...
iprodgam 35406 An infinite product versio...
faclimlem1 35407 Lemma for ~ faclim . Clos...
faclimlem2 35408 Lemma for ~ faclim . Show...
faclimlem3 35409 Lemma for ~ faclim . Alge...
faclim 35410 An infinite product expres...
iprodfac 35411 An infinite product expres...
faclim2 35412 Another factorial limit du...
gcd32 35413 Swap the second and third ...
gcdabsorb 35414 Absorption law for gcd. (...
dftr6 35415 A potential definition of ...
coep 35416 Composition with the membe...
coepr 35417 Composition with the conve...
dffr5 35418 A quantifier-free definiti...
dfso2 35419 Quantifier-free definition...
br8 35420 Substitution for an eight-...
br6 35421 Substitution for a six-pla...
br4 35422 Substitution for a four-pl...
cnvco1 35423 Another distributive law o...
cnvco2 35424 Another distributive law o...
eldm3 35425 Quantifier-free definition...
elrn3 35426 Quantifier-free definition...
pocnv 35427 The converse of a partial ...
socnv 35428 The converse of a strict o...
sotrd 35429 Transitivity law for stric...
elintfv 35430 Membership in an intersect...
funpsstri 35431 A condition for subset tri...
fundmpss 35432 If a class ` F ` is a prop...
funsseq 35433 Given two functions with e...
fununiq 35434 The uniqueness condition o...
funbreq 35435 An equality condition for ...
br1steq 35436 Uniqueness condition for t...
br2ndeq 35437 Uniqueness condition for t...
dfdm5 35438 Definition of domain in te...
dfrn5 35439 Definition of range in ter...
opelco3 35440 Alternate way of saying th...
elima4 35441 Quantifier-free expression...
fv1stcnv 35442 The value of the converse ...
fv2ndcnv 35443 The value of the converse ...
setinds 35444 Principle of set induction...
setinds2f 35445 ` _E ` induction schema, u...
setinds2 35446 ` _E ` induction schema, u...
elpotr 35447 A class of transitive sets...
dford5reg 35448 Given ~ ax-reg , an ordina...
dfon2lem1 35449 Lemma for ~ dfon2 . (Cont...
dfon2lem2 35450 Lemma for ~ dfon2 . (Cont...
dfon2lem3 35451 Lemma for ~ dfon2 . All s...
dfon2lem4 35452 Lemma for ~ dfon2 . If tw...
dfon2lem5 35453 Lemma for ~ dfon2 . Two s...
dfon2lem6 35454 Lemma for ~ dfon2 . A tra...
dfon2lem7 35455 Lemma for ~ dfon2 . All e...
dfon2lem8 35456 Lemma for ~ dfon2 . The i...
dfon2lem9 35457 Lemma for ~ dfon2 . A cla...
dfon2 35458 ` On ` consists of all set...
rdgprc0 35459 The value of the recursive...
rdgprc 35460 The value of the recursive...
dfrdg2 35461 Alternate definition of th...
dfrdg3 35462 Generalization of ~ dfrdg2...
axextdfeq 35463 A version of ~ ax-ext for ...
ax8dfeq 35464 A version of ~ ax-8 for us...
axextdist 35465 ~ ax-ext with distinctors ...
axextbdist 35466 ~ axextb with distinctors ...
19.12b 35467 Version of ~ 19.12vv with ...
exnel 35468 There is always a set not ...
distel 35469 Distinctors in terms of me...
axextndbi 35470 ~ axextnd as a bicondition...
hbntg 35471 A more general form of ~ h...
hbimtg 35472 A more general and closed ...
hbaltg 35473 A more general and closed ...
hbng 35474 A more general form of ~ h...
hbimg 35475 A more general form of ~ h...
wsuceq123 35480 Equality theorem for well-...
wsuceq1 35481 Equality theorem for well-...
wsuceq2 35482 Equality theorem for well-...
wsuceq3 35483 Equality theorem for well-...
nfwsuc 35484 Bound-variable hypothesis ...
wlimeq12 35485 Equality theorem for the l...
wlimeq1 35486 Equality theorem for the l...
wlimeq2 35487 Equality theorem for the l...
nfwlim 35488 Bound-variable hypothesis ...
elwlim 35489 Membership in the limit cl...
wzel 35490 The zero of a well-founded...
wsuclem 35491 Lemma for the supremum pro...
wsucex 35492 Existence theorem for well...
wsuccl 35493 If ` X ` is a set with an ...
wsuclb 35494 A well-founded successor i...
wlimss 35495 The class of limit points ...
txpss3v 35544 A tail Cartesian product i...
txprel 35545 A tail Cartesian product i...
brtxp 35546 Characterize a ternary rel...
brtxp2 35547 The binary relation over a...
dfpprod2 35548 Expanded definition of par...
pprodcnveq 35549 A converse law for paralle...
pprodss4v 35550 The parallel product is a ...
brpprod 35551 Characterize a quaternary ...
brpprod3a 35552 Condition for parallel pro...
brpprod3b 35553 Condition for parallel pro...
relsset 35554 The subset class is a bina...
brsset 35555 For sets, the ` SSet ` bin...
idsset 35556 ` _I ` is equal to the int...
eltrans 35557 Membership in the class of...
dfon3 35558 A quantifier-free definiti...
dfon4 35559 Another quantifier-free de...
brtxpsd 35560 Expansion of a common form...
brtxpsd2 35561 Another common abbreviatio...
brtxpsd3 35562 A third common abbreviatio...
relbigcup 35563 The ` Bigcup ` relationshi...
brbigcup 35564 Binary relation over ` Big...
dfbigcup2 35565 ` Bigcup ` using maps-to n...
fobigcup 35566 ` Bigcup ` maps the univer...
fnbigcup 35567 ` Bigcup ` is a function o...
fvbigcup 35568 For sets, ` Bigcup ` yield...
elfix 35569 Membership in the fixpoint...
elfix2 35570 Alternative membership in ...
dffix2 35571 The fixpoints of a class i...
fixssdm 35572 The fixpoints of a class a...
fixssrn 35573 The fixpoints of a class a...
fixcnv 35574 The fixpoints of a class a...
fixun 35575 The fixpoint operator dist...
ellimits 35576 Membership in the class of...
limitssson 35577 The class of all limit ord...
dfom5b 35578 A quantifier-free definiti...
sscoid 35579 A condition for subset and...
dffun10 35580 Another potential definiti...
elfuns 35581 Membership in the class of...
elfunsg 35582 Closed form of ~ elfuns . ...
brsingle 35583 The binary relation form o...
elsingles 35584 Membership in the class of...
fnsingle 35585 The singleton relationship...
fvsingle 35586 The value of the singleton...
dfsingles2 35587 Alternate definition of th...
snelsingles 35588 A singleton is a member of...
dfiota3 35589 A definition of iota using...
dffv5 35590 Another quantifier-free de...
unisnif 35591 Express union of singleton...
brimage 35592 Binary relation form of th...
brimageg 35593 Closed form of ~ brimage ....
funimage 35594 ` Image A ` is a function....
fnimage 35595 ` Image R ` is a function ...
imageval 35596 The image functor in maps-...
fvimage 35597 Value of the image functor...
brcart 35598 Binary relation form of th...
brdomain 35599 Binary relation form of th...
brrange 35600 Binary relation form of th...
brdomaing 35601 Closed form of ~ brdomain ...
brrangeg 35602 Closed form of ~ brrange ....
brimg 35603 Binary relation form of th...
brapply 35604 Binary relation form of th...
brcup 35605 Binary relation form of th...
brcap 35606 Binary relation form of th...
brsuccf 35607 Binary relation form of th...
funpartlem 35608 Lemma for ~ funpartfun . ...
funpartfun 35609 The functional part of ` F...
funpartss 35610 The functional part of ` F...
funpartfv 35611 The function value of the ...
fullfunfnv 35612 The full functional part o...
fullfunfv 35613 The function value of the ...
brfullfun 35614 A binary relation form con...
brrestrict 35615 Binary relation form of th...
dfrecs2 35616 A quantifier-free definiti...
dfrdg4 35617 A quantifier-free definiti...
dfint3 35618 Quantifier-free definition...
imagesset 35619 The Image functor applied ...
brub 35620 Binary relation form of th...
brlb 35621 Binary relation form of th...
altopex 35626 Alternative ordered pairs ...
altopthsn 35627 Two alternate ordered pair...
altopeq12 35628 Equality for alternate ord...
altopeq1 35629 Equality for alternate ord...
altopeq2 35630 Equality for alternate ord...
altopth1 35631 Equality of the first memb...
altopth2 35632 Equality of the second mem...
altopthg 35633 Alternate ordered pair the...
altopthbg 35634 Alternate ordered pair the...
altopth 35635 The alternate ordered pair...
altopthb 35636 Alternate ordered pair the...
altopthc 35637 Alternate ordered pair the...
altopthd 35638 Alternate ordered pair the...
altxpeq1 35639 Equality for alternate Car...
altxpeq2 35640 Equality for alternate Car...
elaltxp 35641 Membership in alternate Ca...
altopelaltxp 35642 Alternate ordered pair mem...
altxpsspw 35643 An inclusion rule for alte...
altxpexg 35644 The alternate Cartesian pr...
rankaltopb 35645 Compute the rank of an alt...
nfaltop 35646 Bound-variable hypothesis ...
sbcaltop 35647 Distribution of class subs...
cgrrflx2d 35650 Deduction form of ~ axcgrr...
cgrtr4d 35651 Deduction form of ~ axcgrt...
cgrtr4and 35652 Deduction form of ~ axcgrt...
cgrrflx 35653 Reflexivity law for congru...
cgrrflxd 35654 Deduction form of ~ cgrrfl...
cgrcomim 35655 Congruence commutes on the...
cgrcom 35656 Congruence commutes betwee...
cgrcomand 35657 Deduction form of ~ cgrcom...
cgrtr 35658 Transitivity law for congr...
cgrtrand 35659 Deduction form of ~ cgrtr ...
cgrtr3 35660 Transitivity law for congr...
cgrtr3and 35661 Deduction form of ~ cgrtr3...
cgrcoml 35662 Congruence commutes on the...
cgrcomr 35663 Congruence commutes on the...
cgrcomlr 35664 Congruence commutes on bot...
cgrcomland 35665 Deduction form of ~ cgrcom...
cgrcomrand 35666 Deduction form of ~ cgrcom...
cgrcomlrand 35667 Deduction form of ~ cgrcom...
cgrtriv 35668 Degenerate segments are co...
cgrid2 35669 Identity law for congruenc...
cgrdegen 35670 Two congruent segments are...
brofs 35671 Binary relation form of th...
5segofs 35672 Rephrase ~ ax5seg using th...
ofscom 35673 The outer five segment pre...
cgrextend 35674 Link congruence over a pai...
cgrextendand 35675 Deduction form of ~ cgrext...
segconeq 35676 Two points that satisfy th...
segconeu 35677 Existential uniqueness ver...
btwntriv2 35678 Betweenness always holds f...
btwncomim 35679 Betweenness commutes. Imp...
btwncom 35680 Betweenness commutes. (Co...
btwncomand 35681 Deduction form of ~ btwnco...
btwntriv1 35682 Betweenness always holds f...
btwnswapid 35683 If you can swap the first ...
btwnswapid2 35684 If you can swap arguments ...
btwnintr 35685 Inner transitivity law for...
btwnexch3 35686 Exchange the first endpoin...
btwnexch3and 35687 Deduction form of ~ btwnex...
btwnouttr2 35688 Outer transitivity law for...
btwnexch2 35689 Exchange the outer point o...
btwnouttr 35690 Outer transitivity law for...
btwnexch 35691 Outer transitivity law for...
btwnexchand 35692 Deduction form of ~ btwnex...
btwndiff 35693 There is always a ` c ` di...
trisegint 35694 A line segment between two...
funtransport 35697 The ` TransportTo ` relati...
fvtransport 35698 Calculate the value of the...
transportcl 35699 Closure law for segment tr...
transportprops 35700 Calculate the defining pro...
brifs 35709 Binary relation form of th...
ifscgr 35710 Inner five segment congrue...
cgrsub 35711 Removing identical parts f...
brcgr3 35712 Binary relation form of th...
cgr3permute3 35713 Permutation law for three-...
cgr3permute1 35714 Permutation law for three-...
cgr3permute2 35715 Permutation law for three-...
cgr3permute4 35716 Permutation law for three-...
cgr3permute5 35717 Permutation law for three-...
cgr3tr4 35718 Transitivity law for three...
cgr3com 35719 Commutativity law for thre...
cgr3rflx 35720 Identity law for three-pla...
cgrxfr 35721 A line segment can be divi...
btwnxfr 35722 A condition for extending ...
colinrel 35723 Colinearity is a relations...
brcolinear2 35724 Alternate colinearity bina...
brcolinear 35725 The binary relation form o...
colinearex 35726 The colinear predicate exi...
colineardim1 35727 If ` A ` is colinear with ...
colinearperm1 35728 Permutation law for coline...
colinearperm3 35729 Permutation law for coline...
colinearperm2 35730 Permutation law for coline...
colinearperm4 35731 Permutation law for coline...
colinearperm5 35732 Permutation law for coline...
colineartriv1 35733 Trivial case of colinearit...
colineartriv2 35734 Trivial case of colinearit...
btwncolinear1 35735 Betweenness implies coline...
btwncolinear2 35736 Betweenness implies coline...
btwncolinear3 35737 Betweenness implies coline...
btwncolinear4 35738 Betweenness implies coline...
btwncolinear5 35739 Betweenness implies coline...
btwncolinear6 35740 Betweenness implies coline...
colinearxfr 35741 Transfer law for colineari...
lineext 35742 Extend a line with a missi...
brofs2 35743 Change some conditions for...
brifs2 35744 Change some conditions for...
brfs 35745 Binary relation form of th...
fscgr 35746 Congruence law for the gen...
linecgr 35747 Congruence rule for lines....
linecgrand 35748 Deduction form of ~ linecg...
lineid 35749 Identity law for points on...
idinside 35750 Law for finding a point in...
endofsegid 35751 If ` A ` , ` B ` , and ` C...
endofsegidand 35752 Deduction form of ~ endofs...
btwnconn1lem1 35753 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 35754 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 35755 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 35756 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 35757 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 35758 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 35759 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 35760 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 35761 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 35762 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 35763 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 35764 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 35765 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 35766 Lemma for ~ btwnconn1 . F...
btwnconn1 35767 Connectitivy law for betwe...
btwnconn2 35768 Another connectivity law f...
btwnconn3 35769 Inner connectivity law for...
midofsegid 35770 If two points fall in the ...
segcon2 35771 Generalization of ~ axsegc...
brsegle 35774 Binary relation form of th...
brsegle2 35775 Alternate characterization...
seglecgr12im 35776 Substitution law for segme...
seglecgr12 35777 Substitution law for segme...
seglerflx 35778 Segment comparison is refl...
seglemin 35779 Any segment is at least as...
segletr 35780 Segment less than is trans...
segleantisym 35781 Antisymmetry law for segme...
seglelin 35782 Linearity law for segment ...
btwnsegle 35783 If ` B ` falls between ` A...
colinbtwnle 35784 Given three colinear point...
broutsideof 35787 Binary relation form of ` ...
broutsideof2 35788 Alternate form of ` Outsid...
outsidene1 35789 Outsideness implies inequa...
outsidene2 35790 Outsideness implies inequa...
btwnoutside 35791 A principle linking outsid...
broutsideof3 35792 Characterization of outsid...
outsideofrflx 35793 Reflexivity of outsideness...
outsideofcom 35794 Commutativity law for outs...
outsideoftr 35795 Transitivity law for outsi...
outsideofeq 35796 Uniqueness law for ` Outsi...
outsideofeu 35797 Given a nondegenerate ray,...
outsidele 35798 Relate ` OutsideOf ` to ` ...
outsideofcol 35799 Outside of implies colinea...
funray 35806 Show that the ` Ray ` rela...
fvray 35807 Calculate the value of the...
funline 35808 Show that the ` Line ` rel...
linedegen 35809 When ` Line ` is applied w...
fvline 35810 Calculate the value of the...
liness 35811 A line is a subset of the ...
fvline2 35812 Alternate definition of a ...
lineunray 35813 A line is composed of a po...
lineelsb2 35814 If ` S ` lies on ` P Q ` ,...
linerflx1 35815 Reflexivity law for line m...
linecom 35816 Commutativity law for line...
linerflx2 35817 Reflexivity law for line m...
ellines 35818 Membership in the set of a...
linethru 35819 If ` A ` is a line contain...
hilbert1.1 35820 There is a line through an...
hilbert1.2 35821 There is at most one line ...
linethrueu 35822 There is a unique line goi...
lineintmo 35823 Two distinct lines interse...
fwddifval 35828 Calculate the value of the...
fwddifnval 35829 The value of the forward d...
fwddifn0 35830 The value of the n-iterate...
fwddifnp1 35831 The value of the n-iterate...
rankung 35832 The rank of the union of t...
ranksng 35833 The rank of a singleton. ...
rankelg 35834 The membership relation is...
rankpwg 35835 The rank of a power set. ...
rank0 35836 The rank of the empty set ...
rankeq1o 35837 The only set with rank ` 1...
elhf 35840 Membership in the heredita...
elhf2 35841 Alternate form of membersh...
elhf2g 35842 Hereditarily finiteness vi...
0hf 35843 The empty set is a heredit...
hfun 35844 The union of two HF sets i...
hfsn 35845 The singleton of an HF set...
hfadj 35846 Adjoining one HF element t...
hfelhf 35847 Any member of an HF set is...
hftr 35848 The class of all hereditar...
hfext 35849 Extensionality for HF sets...
hfuni 35850 The union of an HF set is ...
hfpw 35851 The power class of an HF s...
hfninf 35852 ` _om ` is not hereditaril...
mpomulnzcnf 35853 Multiplication maps nonzer...
a1i14 35854 Add two antecedents to a w...
a1i24 35855 Add two antecedents to a w...
exp5d 35856 An exportation inference. ...
exp5g 35857 An exportation inference. ...
exp5k 35858 An exportation inference. ...
exp56 35859 An exportation inference. ...
exp58 35860 An exportation inference. ...
exp510 35861 An exportation inference. ...
exp511 35862 An exportation inference. ...
exp512 35863 An exportation inference. ...
3com12d 35864 Commutation in consequent....
imp5p 35865 A triple importation infer...
imp5q 35866 A triple importation infer...
ecase13d 35867 Deduction for elimination ...
subtr 35868 Transitivity of implicit s...
subtr2 35869 Transitivity of implicit s...
trer 35870 A relation intersected wit...
elicc3 35871 An equivalent membership c...
finminlem 35872 A useful lemma about finit...
gtinf 35873 Any number greater than an...
opnrebl 35874 A set is open in the stand...
opnrebl2 35875 A set is open in the stand...
nn0prpwlem 35876 Lemma for ~ nn0prpw . Use...
nn0prpw 35877 Two nonnegative integers a...
topbnd 35878 Two equivalent expressions...
opnbnd 35879 A set is open iff it is di...
cldbnd 35880 A set is closed iff it con...
ntruni 35881 A union of interiors is a ...
clsun 35882 A pairwise union of closur...
clsint2 35883 The closure of an intersec...
opnregcld 35884 A set is regularly closed ...
cldregopn 35885 A set if regularly open if...
neiin 35886 Two neighborhoods intersec...
hmeoclda 35887 Homeomorphisms preserve cl...
hmeocldb 35888 Homeomorphisms preserve cl...
ivthALT 35889 An alternate proof of the ...
fnerel 35892 Fineness is a relation. (...
isfne 35893 The predicate " ` B ` is f...
isfne4 35894 The predicate " ` B ` is f...
isfne4b 35895 A condition for a topology...
isfne2 35896 The predicate " ` B ` is f...
isfne3 35897 The predicate " ` B ` is f...
fnebas 35898 A finer cover covers the s...
fnetg 35899 A finer cover generates a ...
fnessex 35900 If ` B ` is finer than ` A...
fneuni 35901 If ` B ` is finer than ` A...
fneint 35902 If a cover is finer than a...
fness 35903 A cover is finer than its ...
fneref 35904 Reflexivity of the finenes...
fnetr 35905 Transitivity of the finene...
fneval 35906 Two covers are finer than ...
fneer 35907 Fineness intersected with ...
topfne 35908 Fineness for covers corres...
topfneec 35909 A cover is equivalent to a...
topfneec2 35910 A topology is precisely id...
fnessref 35911 A cover is finer iff it ha...
refssfne 35912 A cover is a refinement if...
neibastop1 35913 A collection of neighborho...
neibastop2lem 35914 Lemma for ~ neibastop2 . ...
neibastop2 35915 In the topology generated ...
neibastop3 35916 The topology generated by ...
topmtcl 35917 The meet of a collection o...
topmeet 35918 Two equivalent formulation...
topjoin 35919 Two equivalent formulation...
fnemeet1 35920 The meet of a collection o...
fnemeet2 35921 The meet of equivalence cl...
fnejoin1 35922 Join of equivalence classe...
fnejoin2 35923 Join of equivalence classe...
fgmin 35924 Minimality property of a g...
neifg 35925 The neighborhood filter of...
tailfval 35926 The tail function for a di...
tailval 35927 The tail of an element in ...
eltail 35928 An element of a tail. (Co...
tailf 35929 The tail function of a dir...
tailini 35930 A tail contains its initia...
tailfb 35931 The collection of tails of...
filnetlem1 35932 Lemma for ~ filnet . Chan...
filnetlem2 35933 Lemma for ~ filnet . The ...
filnetlem3 35934 Lemma for ~ filnet . (Con...
filnetlem4 35935 Lemma for ~ filnet . (Con...
filnet 35936 A filter has the same conv...
tb-ax1 35937 The first of three axioms ...
tb-ax2 35938 The second of three axioms...
tb-ax3 35939 The third of three axioms ...
tbsyl 35940 The weak syllogism from Ta...
re1ax2lem 35941 Lemma for ~ re1ax2 . (Con...
re1ax2 35942 ~ ax-2 rederived from the ...
naim1 35943 Constructor theorem for ` ...
naim2 35944 Constructor theorem for ` ...
naim1i 35945 Constructor rule for ` -/\...
naim2i 35946 Constructor rule for ` -/\...
naim12i 35947 Constructor rule for ` -/\...
nabi1i 35948 Constructor rule for ` -/\...
nabi2i 35949 Constructor rule for ` -/\...
nabi12i 35950 Constructor rule for ` -/\...
df3nandALT1 35953 The double nand expressed ...
df3nandALT2 35954 The double nand expressed ...
andnand1 35955 Double and in terms of dou...
imnand2 35956 An ` -> ` nand relation. ...
nalfal 35957 Not all sets hold ` F. ` a...
nexntru 35958 There does not exist a set...
nexfal 35959 There does not exist a set...
neufal 35960 There does not exist exact...
neutru 35961 There does not exist exact...
nmotru 35962 There does not exist at mo...
mofal 35963 There exist at most one se...
nrmo 35964 "At most one" restricted e...
meran1 35965 A single axiom for proposi...
meran2 35966 A single axiom for proposi...
meran3 35967 A single axiom for proposi...
waj-ax 35968 A single axiom for proposi...
lukshef-ax2 35969 A single axiom for proposi...
arg-ax 35970 A single axiom for proposi...
negsym1 35971 In the paper "On Variable ...
imsym1 35972 A symmetry with ` -> ` . ...
bisym1 35973 A symmetry with ` <-> ` . ...
consym1 35974 A symmetry with ` /\ ` . ...
dissym1 35975 A symmetry with ` \/ ` . ...
nandsym1 35976 A symmetry with ` -/\ ` . ...
unisym1 35977 A symmetry with ` A. ` . ...
exisym1 35978 A symmetry with ` E. ` . ...
unqsym1 35979 A symmetry with ` E! ` . ...
amosym1 35980 A symmetry with ` E* ` . ...
subsym1 35981 A symmetry with ` [ x / y ...
ontopbas 35982 An ordinal number is a top...
onsstopbas 35983 The class of ordinal numbe...
onpsstopbas 35984 The class of ordinal numbe...
ontgval 35985 The topology generated fro...
ontgsucval 35986 The topology generated fro...
onsuctop 35987 A successor ordinal number...
onsuctopon 35988 One of the topologies on a...
ordtoplem 35989 Membership of the class of...
ordtop 35990 An ordinal is a topology i...
onsucconni 35991 A successor ordinal number...
onsucconn 35992 A successor ordinal number...
ordtopconn 35993 An ordinal topology is con...
onintopssconn 35994 An ordinal topology is con...
onsuct0 35995 A successor ordinal number...
ordtopt0 35996 An ordinal topology is T_0...
onsucsuccmpi 35997 The successor of a success...
onsucsuccmp 35998 The successor of a success...
limsucncmpi 35999 The successor of a limit o...
limsucncmp 36000 The successor of a limit o...
ordcmp 36001 An ordinal topology is com...
ssoninhaus 36002 The ordinal topologies ` 1...
onint1 36003 The ordinal T_1 spaces are...
oninhaus 36004 The ordinal Hausdorff spac...
fveleq 36005 Please add description her...
findfvcl 36006 Please add description her...
findreccl 36007 Please add description her...
findabrcl 36008 Please add description her...
nnssi2 36009 Convert a theorem for real...
nnssi3 36010 Convert a theorem for real...
nndivsub 36011 Please add description her...
nndivlub 36012 A factor of a positive int...
ee7.2aOLD 36015 Lemma for Euclid's Element...
dnival 36016 Value of the "distance to ...
dnicld1 36017 Closure theorem for the "d...
dnicld2 36018 Closure theorem for the "d...
dnif 36019 The "distance to nearest i...
dnizeq0 36020 The distance to nearest in...
dnizphlfeqhlf 36021 The distance to nearest in...
rddif2 36022 Variant of ~ rddif . (Con...
dnibndlem1 36023 Lemma for ~ dnibnd . (Con...
dnibndlem2 36024 Lemma for ~ dnibnd . (Con...
dnibndlem3 36025 Lemma for ~ dnibnd . (Con...
dnibndlem4 36026 Lemma for ~ dnibnd . (Con...
dnibndlem5 36027 Lemma for ~ dnibnd . (Con...
dnibndlem6 36028 Lemma for ~ dnibnd . (Con...
dnibndlem7 36029 Lemma for ~ dnibnd . (Con...
dnibndlem8 36030 Lemma for ~ dnibnd . (Con...
dnibndlem9 36031 Lemma for ~ dnibnd . (Con...
dnibndlem10 36032 Lemma for ~ dnibnd . (Con...
dnibndlem11 36033 Lemma for ~ dnibnd . (Con...
dnibndlem12 36034 Lemma for ~ dnibnd . (Con...
dnibndlem13 36035 Lemma for ~ dnibnd . (Con...
dnibnd 36036 The "distance to nearest i...
dnicn 36037 The "distance to nearest i...
knoppcnlem1 36038 Lemma for ~ knoppcn . (Co...
knoppcnlem2 36039 Lemma for ~ knoppcn . (Co...
knoppcnlem3 36040 Lemma for ~ knoppcn . (Co...
knoppcnlem4 36041 Lemma for ~ knoppcn . (Co...
knoppcnlem5 36042 Lemma for ~ knoppcn . (Co...
knoppcnlem6 36043 Lemma for ~ knoppcn . (Co...
knoppcnlem7 36044 Lemma for ~ knoppcn . (Co...
knoppcnlem8 36045 Lemma for ~ knoppcn . (Co...
knoppcnlem9 36046 Lemma for ~ knoppcn . (Co...
knoppcnlem10 36047 Lemma for ~ knoppcn . (Co...
knoppcnlem11 36048 Lemma for ~ knoppcn . (Co...
knoppcn 36049 The continuous nowhere dif...
knoppcld 36050 Closure theorem for Knopp'...
unblimceq0lem 36051 Lemma for ~ unblimceq0 . ...
unblimceq0 36052 If ` F ` is unbounded near...
unbdqndv1 36053 If the difference quotient...
unbdqndv2lem1 36054 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 36055 Lemma for ~ unbdqndv2 . (...
unbdqndv2 36056 Variant of ~ unbdqndv1 wit...
knoppndvlem1 36057 Lemma for ~ knoppndv . (C...
knoppndvlem2 36058 Lemma for ~ knoppndv . (C...
knoppndvlem3 36059 Lemma for ~ knoppndv . (C...
knoppndvlem4 36060 Lemma for ~ knoppndv . (C...
knoppndvlem5 36061 Lemma for ~ knoppndv . (C...
knoppndvlem6 36062 Lemma for ~ knoppndv . (C...
knoppndvlem7 36063 Lemma for ~ knoppndv . (C...
knoppndvlem8 36064 Lemma for ~ knoppndv . (C...
knoppndvlem9 36065 Lemma for ~ knoppndv . (C...
knoppndvlem10 36066 Lemma for ~ knoppndv . (C...
knoppndvlem11 36067 Lemma for ~ knoppndv . (C...
knoppndvlem12 36068 Lemma for ~ knoppndv . (C...
knoppndvlem13 36069 Lemma for ~ knoppndv . (C...
knoppndvlem14 36070 Lemma for ~ knoppndv . (C...
knoppndvlem15 36071 Lemma for ~ knoppndv . (C...
knoppndvlem16 36072 Lemma for ~ knoppndv . (C...
knoppndvlem17 36073 Lemma for ~ knoppndv . (C...
knoppndvlem18 36074 Lemma for ~ knoppndv . (C...
knoppndvlem19 36075 Lemma for ~ knoppndv . (C...
knoppndvlem20 36076 Lemma for ~ knoppndv . (C...
knoppndvlem21 36077 Lemma for ~ knoppndv . (C...
knoppndvlem22 36078 Lemma for ~ knoppndv . (C...
knoppndv 36079 The continuous nowhere dif...
knoppf 36080 Knopp's function is a func...
knoppcn2 36081 Variant of ~ knoppcn with ...
cnndvlem1 36082 Lemma for ~ cnndv . (Cont...
cnndvlem2 36083 Lemma for ~ cnndv . (Cont...
cnndv 36084 There exists a continuous ...
bj-mp2c 36085 A double modus ponens infe...
bj-mp2d 36086 A double modus ponens infe...
bj-0 36087 A syntactic theorem. See ...
bj-1 36088 In this proof, the use of ...
bj-a1k 36089 Weakening of ~ ax-1 . As ...
bj-poni 36090 Inference associated with ...
bj-nnclav 36091 When ` F. ` is substituted...
bj-nnclavi 36092 Inference associated with ...
bj-nnclavc 36093 Commuted form of ~ bj-nncl...
bj-nnclavci 36094 Inference associated with ...
bj-jarrii 36095 Inference associated with ...
bj-imim21 36096 The propositional function...
bj-imim21i 36097 Inference associated with ...
bj-peircestab 36098 Over minimal implicational...
bj-stabpeirce 36099 This minimal implicational...
bj-syl66ib 36100 A mixed syllogism inferenc...
bj-orim2 36101 Proof of ~ orim2 from the ...
bj-currypeirce 36102 Curry's axiom ~ curryax (a...
bj-peircecurry 36103 Peirce's axiom ~ peirce im...
bj-animbi 36104 Conjunction in terms of im...
bj-currypara 36105 Curry's paradox. Note tha...
bj-con2com 36106 A commuted form of the con...
bj-con2comi 36107 Inference associated with ...
bj-pm2.01i 36108 Inference associated with ...
bj-nimn 36109 If a formula is true, then...
bj-nimni 36110 Inference associated with ...
bj-peircei 36111 Inference associated with ...
bj-looinvi 36112 Inference associated with ...
bj-looinvii 36113 Inference associated with ...
bj-mt2bi 36114 Version of ~ mt2 where the...
bj-ntrufal 36115 The negation of a theorem ...
bj-fal 36116 Shortening of ~ fal using ...
bj-jaoi1 36117 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 36118 Shortens ~ consensus (110>...
bj-dfbi4 36119 Alternate definition of th...
bj-dfbi5 36120 Alternate definition of th...
bj-dfbi6 36121 Alternate definition of th...
bj-bijust0ALT 36122 Alternate proof of ~ bijus...
bj-bijust00 36123 A self-implication does no...
bj-consensus 36124 Version of ~ consensus exp...
bj-consensusALT 36125 Alternate proof of ~ bj-co...
bj-df-ifc 36126 Candidate definition for t...
bj-dfif 36127 Alternate definition of th...
bj-ififc 36128 A biconditional connecting...
bj-imbi12 36129 Uncurried (imported) form ...
bj-biorfi 36130 This should be labeled "bi...
bj-falor 36131 Dual of ~ truan (which has...
bj-falor2 36132 Dual of ~ truan . (Contri...
bj-bibibi 36133 A property of the bicondit...
bj-imn3ani 36134 Duplication of ~ bnj1224 ....
bj-andnotim 36135 Two ways of expressing a c...
bj-bi3ant 36136 This used to be in the mai...
bj-bisym 36137 This used to be in the mai...
bj-bixor 36138 Equivalence of two ternary...
bj-axdd2 36139 This implication, proved u...
bj-axd2d 36140 This implication, proved u...
bj-axtd 36141 This implication, proved f...
bj-gl4 36142 In a normal modal logic, t...
bj-axc4 36143 Over minimal calculus, the...
prvlem1 36148 An elementary property of ...
prvlem2 36149 An elementary property of ...
bj-babygodel 36150 See the section header com...
bj-babylob 36151 See the section header com...
bj-godellob 36152 Proof of Gödel's theo...
bj-genr 36153 Generalization rule on the...
bj-genl 36154 Generalization rule on the...
bj-genan 36155 Generalization rule on a c...
bj-mpgs 36156 From a closed form theorem...
bj-2alim 36157 Closed form of ~ 2alimi . ...
bj-2exim 36158 Closed form of ~ 2eximi . ...
bj-alanim 36159 Closed form of ~ alanimi ....
bj-2albi 36160 Closed form of ~ 2albii . ...
bj-notalbii 36161 Equivalence of universal q...
bj-2exbi 36162 Closed form of ~ 2exbii . ...
bj-3exbi 36163 Closed form of ~ 3exbii . ...
bj-sylgt2 36164 Uncurried (imported) form ...
bj-alrimg 36165 The general form of the *a...
bj-alrimd 36166 A slightly more general ~ ...
bj-sylget 36167 Dual statement of ~ sylgt ...
bj-sylget2 36168 Uncurried (imported) form ...
bj-exlimg 36169 The general form of the *e...
bj-sylge 36170 Dual statement of ~ sylg (...
bj-exlimd 36171 A slightly more general ~ ...
bj-nfimexal 36172 A weak from of nonfreeness...
bj-alexim 36173 Closed form of ~ aleximi ....
bj-nexdh 36174 Closed form of ~ nexdh (ac...
bj-nexdh2 36175 Uncurried (imported) form ...
bj-hbxfrbi 36176 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 36177 Version of ~ bj-hbxfrbi wi...
bj-exalim 36178 Distribute quantifiers ove...
bj-exalimi 36179 An inference for distribut...
bj-exalims 36180 Distributing quantifiers o...
bj-exalimsi 36181 An inference for distribut...
bj-ax12ig 36182 A lemma used to prove a we...
bj-ax12i 36183 A weakening of ~ bj-ax12ig...
bj-nfimt 36184 Closed form of ~ nfim and ...
bj-cbvalimt 36185 A lemma in closed form use...
bj-cbveximt 36186 A lemma in closed form use...
bj-eximALT 36187 Alternate proof of ~ exim ...
bj-aleximiALT 36188 Alternate proof of ~ alexi...
bj-eximcom 36189 A commuted form of ~ exim ...
bj-ax12wlem 36190 A lemma used to prove a we...
bj-cbvalim 36191 A lemma used to prove ~ bj...
bj-cbvexim 36192 A lemma used to prove ~ bj...
bj-cbvalimi 36193 An equality-free general i...
bj-cbveximi 36194 An equality-free general i...
bj-cbval 36195 Changing a bound variable ...
bj-cbvex 36196 Changing a bound variable ...
bj-ssbeq 36199 Substitution in an equalit...
bj-ssblem1 36200 A lemma for the definiens ...
bj-ssblem2 36201 An instance of ~ ax-11 pro...
bj-ax12v 36202 A weaker form of ~ ax-12 a...
bj-ax12 36203 Remove a DV condition from...
bj-ax12ssb 36204 Axiom ~ bj-ax12 expressed ...
bj-19.41al 36205 Special case of ~ 19.41 pr...
bj-equsexval 36206 Special case of ~ equsexv ...
bj-subst 36207 Proof of ~ sbalex from cor...
bj-ssbid2 36208 A special case of ~ sbequ2...
bj-ssbid2ALT 36209 Alternate proof of ~ bj-ss...
bj-ssbid1 36210 A special case of ~ sbequ1...
bj-ssbid1ALT 36211 Alternate proof of ~ bj-ss...
bj-ax6elem1 36212 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 36213 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 36214 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 36215 Closed form of ~ spimvw . ...
bj-spnfw 36216 Theorem close to a closed ...
bj-cbvexiw 36217 Change bound variable. Th...
bj-cbvexivw 36218 Change bound variable. Th...
bj-modald 36219 A short form of the axiom ...
bj-denot 36220 A weakening of ~ ax-6 and ...
bj-eqs 36221 A lemma for substitutions,...
bj-cbvexw 36222 Change bound variable. Th...
bj-ax12w 36223 The general statement that...
bj-ax89 36224 A theorem which could be u...
bj-elequ12 36225 An identity law for the no...
bj-cleljusti 36226 One direction of ~ cleljus...
bj-alcomexcom 36227 Commutation of two existen...
bj-hbalt 36228 Closed form of ~ hbal . W...
axc11n11 36229 Proof of ~ axc11n from { ~...
axc11n11r 36230 Proof of ~ axc11n from { ~...
bj-axc16g16 36231 Proof of ~ axc16g from { ~...
bj-ax12v3 36232 A weak version of ~ ax-12 ...
bj-ax12v3ALT 36233 Alternate proof of ~ bj-ax...
bj-sb 36234 A weak variant of ~ sbid2 ...
bj-modalbe 36235 The predicate-calculus ver...
bj-spst 36236 Closed form of ~ sps . On...
bj-19.21bit 36237 Closed form of ~ 19.21bi ....
bj-19.23bit 36238 Closed form of ~ 19.23bi ....
bj-nexrt 36239 Closed form of ~ nexr . C...
bj-alrim 36240 Closed form of ~ alrimi . ...
bj-alrim2 36241 Uncurried (imported) form ...
bj-nfdt0 36242 A theorem close to a close...
bj-nfdt 36243 Closed form of ~ nf5d and ...
bj-nexdt 36244 Closed form of ~ nexd . (...
bj-nexdvt 36245 Closed form of ~ nexdv . ...
bj-alexbiex 36246 Adding a second quantifier...
bj-exexbiex 36247 Adding a second quantifier...
bj-alalbial 36248 Adding a second quantifier...
bj-exalbial 36249 Adding a second quantifier...
bj-19.9htbi 36250 Strengthening ~ 19.9ht by ...
bj-hbntbi 36251 Strengthening ~ hbnt by re...
bj-biexal1 36252 A general FOL biconditiona...
bj-biexal2 36253 When ` ph ` is substituted...
bj-biexal3 36254 When ` ph ` is substituted...
bj-bialal 36255 When ` ph ` is substituted...
bj-biexex 36256 When ` ph ` is substituted...
bj-hbext 36257 Closed form of ~ hbex . (...
bj-nfalt 36258 Closed form of ~ nfal . (...
bj-nfext 36259 Closed form of ~ nfex . (...
bj-eeanvw 36260 Version of ~ exdistrv with...
bj-modal4 36261 First-order logic form of ...
bj-modal4e 36262 First-order logic form of ...
bj-modalb 36263 A short form of the axiom ...
bj-wnf1 36264 When ` ph ` is substituted...
bj-wnf2 36265 When ` ph ` is substituted...
bj-wnfanf 36266 When ` ph ` is substituted...
bj-wnfenf 36267 When ` ph ` is substituted...
bj-substax12 36268 Equivalent form of the axi...
bj-substw 36269 Weak form of the LHS of ~ ...
bj-nnfbi 36272 If two formulas are equiva...
bj-nnfbd 36273 If two formulas are equiva...
bj-nnfbii 36274 If two formulas are equiva...
bj-nnfa 36275 Nonfreeness implies the eq...
bj-nnfad 36276 Nonfreeness implies the eq...
bj-nnfai 36277 Nonfreeness implies the eq...
bj-nnfe 36278 Nonfreeness implies the eq...
bj-nnfed 36279 Nonfreeness implies the eq...
bj-nnfei 36280 Nonfreeness implies the eq...
bj-nnfea 36281 Nonfreeness implies the eq...
bj-nnfead 36282 Nonfreeness implies the eq...
bj-nnfeai 36283 Nonfreeness implies the eq...
bj-dfnnf2 36284 Alternate definition of ~ ...
bj-nnfnfTEMP 36285 New nonfreeness implies ol...
bj-wnfnf 36286 When ` ph ` is substituted...
bj-nnfnt 36287 A variable is nonfree in a...
bj-nnftht 36288 A variable is nonfree in a...
bj-nnfth 36289 A variable is nonfree in a...
bj-nnfnth 36290 A variable is nonfree in t...
bj-nnfim1 36291 A consequence of nonfreene...
bj-nnfim2 36292 A consequence of nonfreene...
bj-nnfim 36293 Nonfreeness in the anteced...
bj-nnfimd 36294 Nonfreeness in the anteced...
bj-nnfan 36295 Nonfreeness in both conjun...
bj-nnfand 36296 Nonfreeness in both conjun...
bj-nnfor 36297 Nonfreeness in both disjun...
bj-nnford 36298 Nonfreeness in both disjun...
bj-nnfbit 36299 Nonfreeness in both sides ...
bj-nnfbid 36300 Nonfreeness in both sides ...
bj-nnfv 36301 A non-occurring variable i...
bj-nnf-alrim 36302 Proof of the closed form o...
bj-nnf-exlim 36303 Proof of the closed form o...
bj-dfnnf3 36304 Alternate definition of no...
bj-nfnnfTEMP 36305 New nonfreeness is equival...
bj-nnfa1 36306 See ~ nfa1 . (Contributed...
bj-nnfe1 36307 See ~ nfe1 . (Contributed...
bj-19.12 36308 See ~ 19.12 . Could be la...
bj-nnflemaa 36309 One of four lemmas for non...
bj-nnflemee 36310 One of four lemmas for non...
bj-nnflemae 36311 One of four lemmas for non...
bj-nnflemea 36312 One of four lemmas for non...
bj-nnfalt 36313 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 36314 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 36315 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 36316 Statement ~ 19.21t proved ...
bj-19.23t 36317 Statement ~ 19.23t proved ...
bj-19.36im 36318 One direction of ~ 19.36 f...
bj-19.37im 36319 One direction of ~ 19.37 f...
bj-19.42t 36320 Closed form of ~ 19.42 fro...
bj-19.41t 36321 Closed form of ~ 19.41 fro...
bj-sbft 36322 Version of ~ sbft using ` ...
bj-pm11.53vw 36323 Version of ~ pm11.53v with...
bj-pm11.53v 36324 Version of ~ pm11.53v with...
bj-pm11.53a 36325 A variant of ~ pm11.53v . ...
bj-equsvt 36326 A variant of ~ equsv . (C...
bj-equsalvwd 36327 Variant of ~ equsalvw . (...
bj-equsexvwd 36328 Variant of ~ equsexvw . (...
bj-sbievwd 36329 Variant of ~ sbievw . (Co...
bj-axc10 36330 Alternate proof of ~ axc10...
bj-alequex 36331 A fol lemma. See ~ aleque...
bj-spimt2 36332 A step in the proof of ~ s...
bj-cbv3ta 36333 Closed form of ~ cbv3 . (...
bj-cbv3tb 36334 Closed form of ~ cbv3 . (...
bj-hbsb3t 36335 A theorem close to a close...
bj-hbsb3 36336 Shorter proof of ~ hbsb3 ....
bj-nfs1t 36337 A theorem close to a close...
bj-nfs1t2 36338 A theorem close to a close...
bj-nfs1 36339 Shorter proof of ~ nfs1 (t...
bj-axc10v 36340 Version of ~ axc10 with a ...
bj-spimtv 36341 Version of ~ spimt with a ...
bj-cbv3hv2 36342 Version of ~ cbv3h with tw...
bj-cbv1hv 36343 Version of ~ cbv1h with a ...
bj-cbv2hv 36344 Version of ~ cbv2h with a ...
bj-cbv2v 36345 Version of ~ cbv2 with a d...
bj-cbvaldv 36346 Version of ~ cbvald with a...
bj-cbvexdv 36347 Version of ~ cbvexd with a...
bj-cbval2vv 36348 Version of ~ cbval2vv with...
bj-cbvex2vv 36349 Version of ~ cbvex2vv with...
bj-cbvaldvav 36350 Version of ~ cbvaldva with...
bj-cbvexdvav 36351 Version of ~ cbvexdva with...
bj-cbvex4vv 36352 Version of ~ cbvex4v with ...
bj-equsalhv 36353 Version of ~ equsalh with ...
bj-axc11nv 36354 Version of ~ axc11n with a...
bj-aecomsv 36355 Version of ~ aecoms with a...
bj-axc11v 36356 Version of ~ axc11 with a ...
bj-drnf2v 36357 Version of ~ drnf2 with a ...
bj-equs45fv 36358 Version of ~ equs45f with ...
bj-hbs1 36359 Version of ~ hbsb2 with a ...
bj-nfs1v 36360 Version of ~ nfsb2 with a ...
bj-hbsb2av 36361 Version of ~ hbsb2a with a...
bj-hbsb3v 36362 Version of ~ hbsb3 with a ...
bj-nfsab1 36363 Remove dependency on ~ ax-...
bj-dtrucor2v 36364 Version of ~ dtrucor2 with...
bj-hbaeb2 36365 Biconditional version of a...
bj-hbaeb 36366 Biconditional version of ~...
bj-hbnaeb 36367 Biconditional version of ~...
bj-dvv 36368 A special instance of ~ bj...
bj-equsal1t 36369 Duplication of ~ wl-equsal...
bj-equsal1ti 36370 Inference associated with ...
bj-equsal1 36371 One direction of ~ equsal ...
bj-equsal2 36372 One direction of ~ equsal ...
bj-equsal 36373 Shorter proof of ~ equsal ...
stdpc5t 36374 Closed form of ~ stdpc5 . ...
bj-stdpc5 36375 More direct proof of ~ std...
2stdpc5 36376 A double ~ stdpc5 (one dir...
bj-19.21t0 36377 Proof of ~ 19.21t from ~ s...
exlimii 36378 Inference associated with ...
ax11-pm 36379 Proof of ~ ax-11 similar t...
ax6er 36380 Commuted form of ~ ax6e . ...
exlimiieq1 36381 Inferring a theorem when i...
exlimiieq2 36382 Inferring a theorem when i...
ax11-pm2 36383 Proof of ~ ax-11 from the ...
bj-sbsb 36384 Biconditional showing two ...
bj-dfsb2 36385 Alternate (dual) definitio...
bj-sbf3 36386 Substitution has no effect...
bj-sbf4 36387 Substitution has no effect...
bj-eu3f 36388 Version of ~ eu3v where th...
bj-sblem1 36389 Lemma for substitution. (...
bj-sblem2 36390 Lemma for substitution. (...
bj-sblem 36391 Lemma for substitution. (...
bj-sbievw1 36392 Lemma for substitution. (...
bj-sbievw2 36393 Lemma for substitution. (...
bj-sbievw 36394 Lemma for substitution. C...
bj-sbievv 36395 Version of ~ sbie with a s...
bj-moeub 36396 Uniqueness is equivalent t...
bj-sbidmOLD 36397 Obsolete proof of ~ sbidm ...
bj-dvelimdv 36398 Deduction form of ~ dvelim...
bj-dvelimdv1 36399 Curried (exported) form of...
bj-dvelimv 36400 A version of ~ dvelim usin...
bj-nfeel2 36401 Nonfreeness in a membershi...
bj-axc14nf 36402 Proof of a version of ~ ax...
bj-axc14 36403 Alternate proof of ~ axc14...
mobidvALT 36404 Alternate proof of ~ mobid...
sbn1ALT 36405 Alternate proof of ~ sbn1 ...
eliminable1 36406 A theorem used to prove th...
eliminable2a 36407 A theorem used to prove th...
eliminable2b 36408 A theorem used to prove th...
eliminable2c 36409 A theorem used to prove th...
eliminable3a 36410 A theorem used to prove th...
eliminable3b 36411 A theorem used to prove th...
eliminable-velab 36412 A theorem used to prove th...
eliminable-veqab 36413 A theorem used to prove th...
eliminable-abeqv 36414 A theorem used to prove th...
eliminable-abeqab 36415 A theorem used to prove th...
eliminable-abelv 36416 A theorem used to prove th...
eliminable-abelab 36417 A theorem used to prove th...
bj-denoteslem 36418 Lemma for ~ bj-denotes . ...
bj-denotes 36419 This would be the justific...
bj-issettru 36420 Weak version of ~ isset wi...
bj-elabtru 36421 This is as close as we can...
bj-issetwt 36422 Closed form of ~ bj-issetw...
bj-issetw 36423 The closest one can get to...
bj-elissetALT 36424 Alternate proof of ~ eliss...
bj-issetiv 36425 Version of ~ bj-isseti wit...
bj-isseti 36426 Version of ~ isseti with a...
bj-ralvw 36427 A weak version of ~ ralv n...
bj-rexvw 36428 A weak version of ~ rexv n...
bj-rababw 36429 A weak version of ~ rabab ...
bj-rexcom4bv 36430 Version of ~ rexcom4b and ...
bj-rexcom4b 36431 Remove from ~ rexcom4b dep...
bj-ceqsalt0 36432 The FOL content of ~ ceqsa...
bj-ceqsalt1 36433 The FOL content of ~ ceqsa...
bj-ceqsalt 36434 Remove from ~ ceqsalt depe...
bj-ceqsaltv 36435 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 36436 The FOL content of ~ ceqsa...
bj-ceqsalg 36437 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 36438 Alternate proof of ~ bj-ce...
bj-ceqsalgv 36439 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 36440 Alternate proof of ~ bj-ce...
bj-ceqsal 36441 Remove from ~ ceqsal depen...
bj-ceqsalv 36442 Remove from ~ ceqsalv depe...
bj-spcimdv 36443 Remove from ~ spcimdv depe...
bj-spcimdvv 36444 Remove from ~ spcimdv depe...
elelb 36445 Equivalence between two co...
bj-pwvrelb 36446 Characterization of the el...
bj-nfcsym 36447 The nonfreeness quantifier...
bj-sbeqALT 36448 Substitution in an equalit...
bj-sbeq 36449 Distribute proper substitu...
bj-sbceqgALT 36450 Distribute proper substitu...
bj-csbsnlem 36451 Lemma for ~ bj-csbsn (in t...
bj-csbsn 36452 Substitution in a singleto...
bj-sbel1 36453 Version of ~ sbcel1g when ...
bj-abv 36454 The class of sets verifyin...
bj-abvALT 36455 Alternate version of ~ bj-...
bj-ab0 36456 The class of sets verifyin...
bj-abf 36457 Shorter proof of ~ abf (wh...
bj-csbprc 36458 More direct proof of ~ csb...
bj-exlimvmpi 36459 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 36460 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 36461 Lemma for theorems of the ...
bj-exlimmpbir 36462 Lemma for theorems of the ...
bj-vtoclf 36463 Remove dependency on ~ ax-...
bj-vtocl 36464 Remove dependency on ~ ax-...
bj-vtoclg1f1 36465 The FOL content of ~ vtocl...
bj-vtoclg1f 36466 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 36467 Version of ~ bj-vtoclg1f w...
bj-vtoclg 36468 A version of ~ vtoclg with...
bj-rabeqbid 36469 Version of ~ rabeqbidv wit...
bj-seex 36470 Version of ~ seex with a d...
bj-nfcf 36471 Version of ~ df-nfc with a...
bj-zfauscl 36472 General version of ~ zfaus...
bj-elabd2ALT 36473 Alternate proof of ~ elabd...
bj-unrab 36474 Generalization of ~ unrab ...
bj-inrab 36475 Generalization of ~ inrab ...
bj-inrab2 36476 Shorter proof of ~ inrab ....
bj-inrab3 36477 Generalization of ~ dfrab3...
bj-rabtr 36478 Restricted class abstracti...
bj-rabtrALT 36479 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 36480 Proof of ~ bj-rabtr found ...
bj-gabss 36483 Inclusion of generalized c...
bj-gabssd 36484 Inclusion of generalized c...
bj-gabeqd 36485 Equality of generalized cl...
bj-gabeqis 36486 Equality of generalized cl...
bj-elgab 36487 Elements of a generalized ...
bj-gabima 36488 Generalized class abstract...
bj-ru0 36491 The FOL part of Russell's ...
bj-ru1 36492 A version of Russell's par...
bj-ru 36493 Remove dependency on ~ ax-...
currysetlem 36494 Lemma for ~ currysetlem , ...
curryset 36495 Curry's paradox in set the...
currysetlem1 36496 Lemma for ~ currysetALT . ...
currysetlem2 36497 Lemma for ~ currysetALT . ...
currysetlem3 36498 Lemma for ~ currysetALT . ...
currysetALT 36499 Alternate proof of ~ curry...
bj-n0i 36500 Inference associated with ...
bj-disjsn01 36501 Disjointness of the single...
bj-0nel1 36502 The empty set does not bel...
bj-1nel0 36503 ` 1o ` does not belong to ...
bj-xpimasn 36504 The image of a singleton, ...
bj-xpima1sn 36505 The image of a singleton b...
bj-xpima1snALT 36506 Alternate proof of ~ bj-xp...
bj-xpima2sn 36507 The image of a singleton b...
bj-xpnzex 36508 If the first factor of a p...
bj-xpexg2 36509 Curried (exported) form of...
bj-xpnzexb 36510 If the first factor of a p...
bj-cleq 36511 Substitution property for ...
bj-snsetex 36512 The class of sets "whose s...
bj-clexab 36513 Sethood of certain classes...
bj-sngleq 36516 Substitution property for ...
bj-elsngl 36517 Characterization of the el...
bj-snglc 36518 Characterization of the el...
bj-snglss 36519 The singletonization of a ...
bj-0nelsngl 36520 The empty set is not a mem...
bj-snglinv 36521 Inverse of singletonizatio...
bj-snglex 36522 A class is a set if and on...
bj-tageq 36525 Substitution property for ...
bj-eltag 36526 Characterization of the el...
bj-0eltag 36527 The empty set belongs to t...
bj-tagn0 36528 The tagging of a class is ...
bj-tagss 36529 The tagging of a class is ...
bj-snglsstag 36530 The singletonization is in...
bj-sngltagi 36531 The singletonization is in...
bj-sngltag 36532 The singletonization and t...
bj-tagci 36533 Characterization of the el...
bj-tagcg 36534 Characterization of the el...
bj-taginv 36535 Inverse of tagging. (Cont...
bj-tagex 36536 A class is a set if and on...
bj-xtageq 36537 The products of a given cl...
bj-xtagex 36538 The product of a set and t...
bj-projeq 36541 Substitution property for ...
bj-projeq2 36542 Substitution property for ...
bj-projun 36543 The class projection on a ...
bj-projex 36544 Sethood of the class proje...
bj-projval 36545 Value of the class project...
bj-1upleq 36548 Substitution property for ...
bj-pr1eq 36551 Substitution property for ...
bj-pr1un 36552 The first projection prese...
bj-pr1val 36553 Value of the first project...
bj-pr11val 36554 Value of the first project...
bj-pr1ex 36555 Sethood of the first proje...
bj-1uplth 36556 The characteristic propert...
bj-1uplex 36557 A monuple is a set if and ...
bj-1upln0 36558 A monuple is nonempty. (C...
bj-2upleq 36561 Substitution property for ...
bj-pr21val 36562 Value of the first project...
bj-pr2eq 36565 Substitution property for ...
bj-pr2un 36566 The second projection pres...
bj-pr2val 36567 Value of the second projec...
bj-pr22val 36568 Value of the second projec...
bj-pr2ex 36569 Sethood of the second proj...
bj-2uplth 36570 The characteristic propert...
bj-2uplex 36571 A couple is a set if and o...
bj-2upln0 36572 A couple is nonempty. (Co...
bj-2upln1upl 36573 A couple is never equal to...
bj-rcleqf 36574 Relative version of ~ cleq...
bj-rcleq 36575 Relative version of ~ dfcl...
bj-reabeq 36576 Relative form of ~ eqabb ....
bj-disj2r 36577 Relative version of ~ ssdi...
bj-sscon 36578 Contraposition law for rel...
bj-abex 36579 Two ways of stating that t...
bj-clex 36580 Two ways of stating that a...
bj-axsn 36581 Two ways of stating the ax...
bj-snexg 36583 A singleton built on a set...
bj-snex 36584 A singleton is a set. See...
bj-axbun 36585 Two ways of stating the ax...
bj-unexg 36587 Existence of binary unions...
bj-prexg 36588 Existence of unordered pai...
bj-prex 36589 Existence of unordered pai...
bj-axadj 36590 Two ways of stating the ax...
bj-adjg1 36592 Existence of the result of...
bj-snfromadj 36593 Singleton from adjunction ...
bj-prfromadj 36594 Unordered pair from adjunc...
bj-adjfrombun 36595 Adjunction from singleton ...
eleq2w2ALT 36596 Alternate proof of ~ eleq2...
bj-clel3gALT 36597 Alternate proof of ~ clel3...
bj-pw0ALT 36598 Alternate proof of ~ pw0 ....
bj-sselpwuni 36599 Quantitative version of ~ ...
bj-unirel 36600 Quantitative version of ~ ...
bj-elpwg 36601 If the intersection of two...
bj-velpwALT 36602 This theorem ~ bj-velpwALT...
bj-elpwgALT 36603 Alternate proof of ~ elpwg...
bj-vjust 36604 Justification theorem for ...
bj-nul 36605 Two formulations of the ax...
bj-nuliota 36606 Definition of the empty se...
bj-nuliotaALT 36607 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 36608 Alternate proof of ~ vtocl...
bj-elsn12g 36609 Join of ~ elsng and ~ elsn...
bj-elsnb 36610 Biconditional version of ~...
bj-pwcfsdom 36611 Remove hypothesis from ~ p...
bj-grur1 36612 Remove hypothesis from ~ g...
bj-bm1.3ii 36613 The extension of a predica...
bj-dfid2ALT 36614 Alternate version of ~ dfi...
bj-0nelopab 36615 The empty set is never an ...
bj-brrelex12ALT 36616 Two classes related by a b...
bj-epelg 36617 The membership relation an...
bj-epelb 36618 Two classes are related by...
bj-nsnid 36619 A set does not contain the...
bj-rdg0gALT 36620 Alternate proof of ~ rdg0g...
bj-evaleq 36621 Equality theorem for the `...
bj-evalfun 36622 The evaluation at a class ...
bj-evalfn 36623 The evaluation at a class ...
bj-evalval 36624 Value of the evaluation at...
bj-evalid 36625 The evaluation at a set of...
bj-ndxarg 36626 Proof of ~ ndxarg from ~ b...
bj-evalidval 36627 Closed general form of ~ s...
bj-rest00 36630 An elementwise intersectio...
bj-restsn 36631 An elementwise intersectio...
bj-restsnss 36632 Special case of ~ bj-rests...
bj-restsnss2 36633 Special case of ~ bj-rests...
bj-restsn0 36634 An elementwise intersectio...
bj-restsn10 36635 Special case of ~ bj-rests...
bj-restsnid 36636 The elementwise intersecti...
bj-rest10 36637 An elementwise intersectio...
bj-rest10b 36638 Alternate version of ~ bj-...
bj-restn0 36639 An elementwise intersectio...
bj-restn0b 36640 Alternate version of ~ bj-...
bj-restpw 36641 The elementwise intersecti...
bj-rest0 36642 An elementwise intersectio...
bj-restb 36643 An elementwise intersectio...
bj-restv 36644 An elementwise intersectio...
bj-resta 36645 An elementwise intersectio...
bj-restuni 36646 The union of an elementwis...
bj-restuni2 36647 The union of an elementwis...
bj-restreg 36648 A reformulation of the axi...
bj-raldifsn 36649 All elements in a set sati...
bj-0int 36650 If ` A ` is a collection o...
bj-mooreset 36651 A Moore collection is a se...
bj-ismoore 36654 Characterization of Moore ...
bj-ismoored0 36655 Necessary condition to be ...
bj-ismoored 36656 Necessary condition to be ...
bj-ismoored2 36657 Necessary condition to be ...
bj-ismooredr 36658 Sufficient condition to be...
bj-ismooredr2 36659 Sufficient condition to be...
bj-discrmoore 36660 The powerclass ` ~P A ` is...
bj-0nmoore 36661 The empty set is not a Moo...
bj-snmoore 36662 A singleton is a Moore col...
bj-snmooreb 36663 A singleton is a Moore col...
bj-prmoore 36664 A pair formed of two neste...
bj-0nelmpt 36665 The empty set is not an el...
bj-mptval 36666 Value of a function given ...
bj-dfmpoa 36667 An equivalent definition o...
bj-mpomptALT 36668 Alternate proof of ~ mpomp...
setsstrset 36685 Relation between ~ df-sets...
bj-nfald 36686 Variant of ~ nfald . (Con...
bj-nfexd 36687 Variant of ~ nfexd . (Con...
copsex2d 36688 Implicit substitution dedu...
copsex2b 36689 Biconditional form of ~ co...
opelopabd 36690 Membership of an ordere pa...
opelopabb 36691 Membership of an ordered p...
opelopabbv 36692 Membership of an ordered p...
bj-opelrelex 36693 The coordinates of an orde...
bj-opelresdm 36694 If an ordered pair is in a...
bj-brresdm 36695 If two classes are related...
brabd0 36696 Expressing that two sets a...
brabd 36697 Expressing that two sets a...
bj-brab2a1 36698 "Unbounded" version of ~ b...
bj-opabssvv 36699 A variant of ~ relopabiv (...
bj-funidres 36700 The restricted identity re...
bj-opelidb 36701 Characterization of the or...
bj-opelidb1 36702 Characterization of the or...
bj-inexeqex 36703 Lemma for ~ bj-opelid (but...
bj-elsn0 36704 If the intersection of two...
bj-opelid 36705 Characterization of the or...
bj-ideqg 36706 Characterization of the cl...
bj-ideqgALT 36707 Alternate proof of ~ bj-id...
bj-ideqb 36708 Characterization of classe...
bj-idres 36709 Alternate expression for t...
bj-opelidres 36710 Characterization of the or...
bj-idreseq 36711 Sufficient condition for t...
bj-idreseqb 36712 Characterization for two c...
bj-ideqg1 36713 For sets, the identity rel...
bj-ideqg1ALT 36714 Alternate proof of bj-ideq...
bj-opelidb1ALT 36715 Characterization of the co...
bj-elid3 36716 Characterization of the co...
bj-elid4 36717 Characterization of the el...
bj-elid5 36718 Characterization of the el...
bj-elid6 36719 Characterization of the el...
bj-elid7 36720 Characterization of the el...
bj-diagval 36723 Value of the functionalize...
bj-diagval2 36724 Value of the functionalize...
bj-eldiag 36725 Characterization of the el...
bj-eldiag2 36726 Characterization of the el...
bj-imdirvallem 36729 Lemma for ~ bj-imdirval an...
bj-imdirval 36730 Value of the functionalize...
bj-imdirval2lem 36731 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 36732 Value of the functionalize...
bj-imdirval3 36733 Value of the functionalize...
bj-imdiridlem 36734 Lemma for ~ bj-imdirid and...
bj-imdirid 36735 Functorial property of the...
bj-opelopabid 36736 Membership in an ordered-p...
bj-opabco 36737 Composition of ordered-pai...
bj-xpcossxp 36738 The composition of two Car...
bj-imdirco 36739 Functorial property of the...
bj-iminvval 36742 Value of the functionalize...
bj-iminvval2 36743 Value of the functionalize...
bj-iminvid 36744 Functorial property of the...
bj-inftyexpitaufo 36751 The function ` inftyexpita...
bj-inftyexpitaudisj 36754 An element of the circle a...
bj-inftyexpiinv 36757 Utility theorem for the in...
bj-inftyexpiinj 36758 Injectivity of the paramet...
bj-inftyexpidisj 36759 An element of the circle a...
bj-ccinftydisj 36762 The circle at infinity is ...
bj-elccinfty 36763 A lemma for infinite exten...
bj-ccssccbar 36766 Complex numbers are extend...
bj-ccinftyssccbar 36767 Infinite extended complex ...
bj-pinftyccb 36770 The class ` pinfty ` is an...
bj-pinftynrr 36771 The extended complex numbe...
bj-minftyccb 36774 The class ` minfty ` is an...
bj-minftynrr 36775 The extended complex numbe...
bj-pinftynminfty 36776 The extended complex numbe...
bj-rrhatsscchat 36785 The real projective line i...
bj-imafv 36800 If the direct image of a s...
bj-funun 36801 Value of a function expres...
bj-fununsn1 36802 Value of a function expres...
bj-fununsn2 36803 Value of a function expres...
bj-fvsnun1 36804 The value of a function wi...
bj-fvsnun2 36805 The value of a function wi...
bj-fvmptunsn1 36806 Value of a function expres...
bj-fvmptunsn2 36807 Value of a function expres...
bj-iomnnom 36808 The canonical bijection fr...
bj-smgrpssmgm 36817 Semigroups are magmas. (C...
bj-smgrpssmgmel 36818 Semigroups are magmas (ele...
bj-mndsssmgrp 36819 Monoids are semigroups. (...
bj-mndsssmgrpel 36820 Monoids are semigroups (el...
bj-cmnssmnd 36821 Commutative monoids are mo...
bj-cmnssmndel 36822 Commutative monoids are mo...
bj-grpssmnd 36823 Groups are monoids. (Cont...
bj-grpssmndel 36824 Groups are monoids (elemen...
bj-ablssgrp 36825 Abelian groups are groups....
bj-ablssgrpel 36826 Abelian groups are groups ...
bj-ablsscmn 36827 Abelian groups are commuta...
bj-ablsscmnel 36828 Abelian groups are commuta...
bj-modssabl 36829 (The additive groups of) m...
bj-vecssmod 36830 Vector spaces are modules....
bj-vecssmodel 36831 Vector spaces are modules ...
bj-finsumval0 36834 Value of a finite sum. (C...
bj-fvimacnv0 36835 Variant of ~ fvimacnv wher...
bj-isvec 36836 The predicate "is a vector...
bj-fldssdrng 36837 Fields are division rings....
bj-flddrng 36838 Fields are division rings ...
bj-rrdrg 36839 The field of real numbers ...
bj-isclm 36840 The predicate "is a subcom...
bj-isrvec 36843 The predicate "is a real v...
bj-rvecmod 36844 Real vector spaces are mod...
bj-rvecssmod 36845 Real vector spaces are mod...
bj-rvecrr 36846 The field of scalars of a ...
bj-isrvecd 36847 The predicate "is a real v...
bj-rvecvec 36848 Real vector spaces are vec...
bj-isrvec2 36849 The predicate "is a real v...
bj-rvecssvec 36850 Real vector spaces are vec...
bj-rveccmod 36851 Real vector spaces are sub...
bj-rvecsscmod 36852 Real vector spaces are sub...
bj-rvecsscvec 36853 Real vector spaces are sub...
bj-rveccvec 36854 Real vector spaces are sub...
bj-rvecssabl 36855 (The additive groups of) r...
bj-rvecabl 36856 (The additive groups of) r...
bj-subcom 36857 A consequence of commutati...
bj-lineqi 36858 Solution of a (scalar) lin...
bj-bary1lem 36859 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 36860 Lemma for bj-bary1: comput...
bj-bary1 36861 Barycentric coordinates in...
bj-endval 36864 Value of the monoid of end...
bj-endbase 36865 Base set of the monoid of ...
bj-endcomp 36866 Composition law of the mon...
bj-endmnd 36867 The monoid of endomorphism...
taupilem3 36868 Lemma for tau-related theo...
taupilemrplb 36869 A set of positive reals ha...
taupilem1 36870 Lemma for ~ taupi . A pos...
taupilem2 36871 Lemma for ~ taupi . The s...
taupi 36872 Relationship between ` _ta...
dfgcd3 36873 Alternate definition of th...
irrdifflemf 36874 Lemma for ~ irrdiff . The...
irrdiff 36875 The irrationals are exactl...
iccioo01 36876 The closed unit interval i...
csbrecsg 36877 Move class substitution in...
csbrdgg 36878 Move class substitution in...
csboprabg 36879 Move class substitution in...
csbmpo123 36880 Move class substitution in...
con1bii2 36881 A contraposition inference...
con2bii2 36882 A contraposition inference...
vtoclefex 36883 Implicit substitution of a...
rnmptsn 36884 The range of a function ma...
f1omptsnlem 36885 This is the core of the pr...
f1omptsn 36886 A function mapping to sing...
mptsnunlem 36887 This is the core of the pr...
mptsnun 36888 A class ` B ` is equal to ...
dissneqlem 36889 This is the core of the pr...
dissneq 36890 Any topology that contains...
exlimim 36891 Closed form of ~ exlimimd ...
exlimimd 36892 Existential elimination ru...
exellim 36893 Closed form of ~ exellimdd...
exellimddv 36894 Eliminate an antecedent wh...
topdifinfindis 36895 Part of Exercise 3 of [Mun...
topdifinffinlem 36896 This is the core of the pr...
topdifinffin 36897 Part of Exercise 3 of [Mun...
topdifinf 36898 Part of Exercise 3 of [Mun...
topdifinfeq 36899 Two different ways of defi...
icorempo 36900 Closed-below, open-above i...
icoreresf 36901 Closed-below, open-above i...
icoreval 36902 Value of the closed-below,...
icoreelrnab 36903 Elementhood in the set of ...
isbasisrelowllem1 36904 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 36905 Lemma for ~ isbasisrelowl ...
icoreclin 36906 The set of closed-below, o...
isbasisrelowl 36907 The set of all closed-belo...
icoreunrn 36908 The union of all closed-be...
istoprelowl 36909 The set of all closed-belo...
icoreelrn 36910 A class abstraction which ...
iooelexlt 36911 An element of an open inte...
relowlssretop 36912 The lower limit topology o...
relowlpssretop 36913 The lower limit topology o...
sucneqond 36914 Inequality of an ordinal s...
sucneqoni 36915 Inequality of an ordinal s...
onsucuni3 36916 If an ordinal number has a...
1oequni2o 36917 The ordinal number ` 1o ` ...
rdgsucuni 36918 If an ordinal number has a...
rdgeqoa 36919 If a recursive function wi...
elxp8 36920 Membership in a Cartesian ...
cbveud 36921 Deduction used to change b...
cbvreud 36922 Deduction used to change b...
difunieq 36923 The difference of unions i...
inunissunidif 36924 Theorem about subsets of t...
rdgellim 36925 Elementhood in a recursive...
rdglimss 36926 A recursive definition at ...
rdgssun 36927 In a recursive definition ...
exrecfnlem 36928 Lemma for ~ exrecfn . (Co...
exrecfn 36929 Theorem about the existenc...
exrecfnpw 36930 For any base set, a set wh...
finorwe 36931 If the Axiom of Infinity i...
dffinxpf 36934 This theorem is the same a...
finxpeq1 36935 Equality theorem for Carte...
finxpeq2 36936 Equality theorem for Carte...
csbfinxpg 36937 Distribute proper substitu...
finxpreclem1 36938 Lemma for ` ^^ ` recursion...
finxpreclem2 36939 Lemma for ` ^^ ` recursion...
finxp0 36940 The value of Cartesian exp...
finxp1o 36941 The value of Cartesian exp...
finxpreclem3 36942 Lemma for ` ^^ ` recursion...
finxpreclem4 36943 Lemma for ` ^^ ` recursion...
finxpreclem5 36944 Lemma for ` ^^ ` recursion...
finxpreclem6 36945 Lemma for ` ^^ ` recursion...
finxpsuclem 36946 Lemma for ~ finxpsuc . (C...
finxpsuc 36947 The value of Cartesian exp...
finxp2o 36948 The value of Cartesian exp...
finxp3o 36949 The value of Cartesian exp...
finxpnom 36950 Cartesian exponentiation w...
finxp00 36951 Cartesian exponentiation o...
iunctb2 36952 Using the axiom of countab...
domalom 36953 A class which dominates ev...
isinf2 36954 The converse of ~ isinf . ...
ctbssinf 36955 Using the axiom of choice,...
ralssiun 36956 The index set of an indexe...
nlpineqsn 36957 For every point ` p ` of a...
nlpfvineqsn 36958 Given a subset ` A ` of ` ...
fvineqsnf1 36959 A theorem about functions ...
fvineqsneu 36960 A theorem about functions ...
fvineqsneq 36961 A theorem about functions ...
pibp16 36962 Property P000016 of pi-bas...
pibp19 36963 Property P000019 of pi-bas...
pibp21 36964 Property P000021 of pi-bas...
pibt1 36965 Theorem T000001 of pi-base...
pibt2 36966 Theorem T000002 of pi-base...
wl-section-prop 36967 Intuitionistic logic is no...
wl-section-boot 36971 In this section, I provide...
wl-luk-imim1i 36972 Inference adding common co...
wl-luk-syl 36973 An inference version of th...
wl-luk-imtrid 36974 A syllogism rule of infere...
wl-luk-pm2.18d 36975 Deduction based on reducti...
wl-luk-con4i 36976 Inference rule. Copy of ~...
wl-luk-pm2.24i 36977 Inference rule. Copy of ~...
wl-luk-a1i 36978 Inference rule. Copy of ~...
wl-luk-mpi 36979 A nested modus ponens infe...
wl-luk-imim2i 36980 Inference adding common an...
wl-luk-imtrdi 36981 A syllogism rule of infere...
wl-luk-ax3 36982 ~ ax-3 proved from Lukasie...
wl-luk-ax1 36983 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 36984 This theorem, called "Asse...
wl-luk-com12 36985 Inference that swaps (comm...
wl-luk-pm2.21 36986 From a wff and its negatio...
wl-luk-con1i 36987 A contraposition inference...
wl-luk-ja 36988 Inference joining the ante...
wl-luk-imim2 36989 A closed form of syllogism...
wl-luk-a1d 36990 Deduction introducing an e...
wl-luk-ax2 36991 ~ ax-2 proved from Lukasie...
wl-luk-id 36992 Principle of identity. Th...
wl-luk-notnotr 36993 Converse of double negatio...
wl-luk-pm2.04 36994 Swap antecedents. Theorem...
wl-section-impchain 36995 An implication like ` ( ps...
wl-impchain-mp-x 36996 This series of theorems pr...
wl-impchain-mp-0 36997 This theorem is the start ...
wl-impchain-mp-1 36998 This theorem is in fact a ...
wl-impchain-mp-2 36999 This theorem is in fact a ...
wl-impchain-com-1.x 37000 It is often convenient to ...
wl-impchain-com-1.1 37001 A degenerate form of antec...
wl-impchain-com-1.2 37002 This theorem is in fact a ...
wl-impchain-com-1.3 37003 This theorem is in fact a ...
wl-impchain-com-1.4 37004 This theorem is in fact a ...
wl-impchain-com-n.m 37005 This series of theorems al...
wl-impchain-com-2.3 37006 This theorem is in fact a ...
wl-impchain-com-2.4 37007 This theorem is in fact a ...
wl-impchain-com-3.2.1 37008 This theorem is in fact a ...
wl-impchain-a1-x 37009 If an implication chain is...
wl-impchain-a1-1 37010 Inference rule, a copy of ...
wl-impchain-a1-2 37011 Inference rule, a copy of ...
wl-impchain-a1-3 37012 Inference rule, a copy of ...
wl-ifp-ncond1 37013 If one case of an ` if- ` ...
wl-ifp-ncond2 37014 If one case of an ` if- ` ...
wl-ifpimpr 37015 If one case of an ` if- ` ...
wl-ifp4impr 37016 If one case of an ` if- ` ...
wl-df-3xor 37017 Alternative definition of ...
wl-df3xor2 37018 Alternative definition of ...
wl-df3xor3 37019 Alternative form of ~ wl-d...
wl-3xortru 37020 If the first input is true...
wl-3xorfal 37021 If the first input is fals...
wl-3xorbi 37022 Triple xor can be replaced...
wl-3xorbi2 37023 Alternative form of ~ wl-3...
wl-3xorbi123d 37024 Equivalence theorem for tr...
wl-3xorbi123i 37025 Equivalence theorem for tr...
wl-3xorrot 37026 Rotation law for triple xo...
wl-3xorcoma 37027 Commutative law for triple...
wl-3xorcomb 37028 Commutative law for triple...
wl-3xornot1 37029 Flipping the first input f...
wl-3xornot 37030 Triple xor distributes ove...
wl-1xor 37031 In the recursive scheme ...
wl-2xor 37032 In the recursive scheme ...
wl-df-3mintru2 37033 Alternative definition of ...
wl-df2-3mintru2 37034 The adder carry in disjunc...
wl-df3-3mintru2 37035 The adder carry in conjunc...
wl-df4-3mintru2 37036 An alternative definition ...
wl-1mintru1 37037 Using the recursion formul...
wl-1mintru2 37038 Using the recursion formul...
wl-2mintru1 37039 Using the recursion formul...
wl-2mintru2 37040 Using the recursion formul...
wl-df3maxtru1 37041 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 37043 A version of ~ ax-wl-13v w...
wl-mps 37044 Replacing a nested consequ...
wl-syls1 37045 Replacing a nested consequ...
wl-syls2 37046 Replacing a nested anteced...
wl-embant 37047 A true wff can always be a...
wl-orel12 37048 In a conjunctive normal fo...
wl-cases2-dnf 37049 A particular instance of ~...
wl-cbvmotv 37050 Change bound variable. Us...
wl-moteq 37051 Change bound variable. Us...
wl-motae 37052 Change bound variable. Us...
wl-moae 37053 Two ways to express "at mo...
wl-euae 37054 Two ways to express "exact...
wl-nax6im 37055 The following series of th...
wl-hbae1 37056 This specialization of ~ h...
wl-naevhba1v 37057 An instance of ~ hbn1w app...
wl-spae 37058 Prove an instance of ~ sp ...
wl-speqv 37059 Under the assumption ` -. ...
wl-19.8eqv 37060 Under the assumption ` -. ...
wl-19.2reqv 37061 Under the assumption ` -. ...
wl-nfalv 37062 If ` x ` is not present in...
wl-nfimf1 37063 An antecedent is irrelevan...
wl-nfae1 37064 Unlike ~ nfae , this speci...
wl-nfnae1 37065 Unlike ~ nfnae , this spec...
wl-aetr 37066 A transitive law for varia...
wl-axc11r 37067 Same as ~ axc11r , but usi...
wl-dral1d 37068 A version of ~ dral1 with ...
wl-cbvalnaed 37069 ~ wl-cbvalnae with a conte...
wl-cbvalnae 37070 A more general version of ...
wl-exeq 37071 The semantics of ` E. x y ...
wl-aleq 37072 The semantics of ` A. x y ...
wl-nfeqfb 37073 Extend ~ nfeqf to an equiv...
wl-nfs1t 37074 If ` y ` is not free in ` ...
wl-equsalvw 37075 Version of ~ equsalv with ...
wl-equsald 37076 Deduction version of ~ equ...
wl-equsaldv 37077 Deduction version of ~ equ...
wl-equsal 37078 A useful equivalence relat...
wl-equsal1t 37079 The expression ` x = y ` i...
wl-equsalcom 37080 This simple equivalence ea...
wl-equsal1i 37081 The antecedent ` x = y ` i...
wl-sbid2ft 37082 A more general version of ...
wl-cbvalsbi 37083 Change bounded variables i...
wl-sbrimt 37084 Substitution with a variab...
wl-sblimt 37085 Substitution with a variab...
wl-sb9v 37086 Commutation of quantificat...
wl-sb8ft 37087 Substitution of variable i...
wl-sb8eft 37088 Substitution of variable i...
wl-sb8t 37089 Substitution of variable i...
wl-sb8et 37090 Substitution of variable i...
wl-sbhbt 37091 Closed form of ~ sbhb . C...
wl-sbnf1 37092 Two ways expressing that `...
wl-equsb3 37093 ~ equsb3 with a distinctor...
wl-equsb4 37094 Substitution applied to an...
wl-2sb6d 37095 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 37096 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 37097 Lemma used to prove ~ wl-s...
wl-sbcom2d 37098 Version of ~ sbcom2 with a...
wl-sbalnae 37099 A theorem used in eliminat...
wl-sbal1 37100 A theorem used in eliminat...
wl-sbal2 37101 Move quantifier in and out...
wl-2spsbbi 37102 ~ spsbbi applied twice. (...
wl-lem-exsb 37103 This theorem provides a ba...
wl-lem-nexmo 37104 This theorem provides a ba...
wl-lem-moexsb 37105 The antecedent ` A. x ( ph...
wl-alanbii 37106 This theorem extends ~ ala...
wl-mo2df 37107 Version of ~ mof with a co...
wl-mo2tf 37108 Closed form of ~ mof with ...
wl-eudf 37109 Version of ~ eu6 with a co...
wl-eutf 37110 Closed form of ~ eu6 with ...
wl-euequf 37111 ~ euequ proved with a dist...
wl-mo2t 37112 Closed form of ~ mof . (C...
wl-mo3t 37113 Closed form of ~ mo3 . (C...
wl-nfsbtv 37114 Closed form of ~ nfsbv . ...
wl-sb8eut 37115 Substitution of variable i...
wl-sb8eutv 37116 Substitution of variable i...
wl-sb8mot 37117 Substitution of variable i...
wl-sb8motv 37118 Substitution of variable i...
wl-issetft 37119 A closed form of ~ issetf ...
wl-axc11rc11 37120 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 37122 A transitive law for varia...
wl-ax11-lem2 37123 Lemma. (Contributed by Wo...
wl-ax11-lem3 37124 Lemma. (Contributed by Wo...
wl-ax11-lem4 37125 Lemma. (Contributed by Wo...
wl-ax11-lem5 37126 Lemma. (Contributed by Wo...
wl-ax11-lem6 37127 Lemma. (Contributed by Wo...
wl-ax11-lem7 37128 Lemma. (Contributed by Wo...
wl-ax11-lem8 37129 Lemma. (Contributed by Wo...
wl-ax11-lem9 37130 The easy part when ` x ` c...
wl-ax11-lem10 37131 We now have prepared every...
wl-clabv 37132 Variant of ~ df-clab , whe...
wl-dfclab 37133 Rederive ~ df-clab from ~ ...
wl-clabtv 37134 Using class abstraction in...
wl-clabt 37135 Using class abstraction in...
rabiun 37136 Abstraction restricted to ...
iundif1 37137 Indexed union of class dif...
imadifss 37138 The difference of images i...
cureq 37139 Equality theorem for curry...
unceq 37140 Equality theorem for uncur...
curf 37141 Functional property of cur...
uncf 37142 Functional property of unc...
curfv 37143 Value of currying. (Contr...
uncov 37144 Value of uncurrying. (Con...
curunc 37145 Currying of uncurrying. (...
unccur 37146 Uncurrying of currying. (...
phpreu 37147 Theorem related to pigeonh...
finixpnum 37148 A finite Cartesian product...
fin2solem 37149 Lemma for ~ fin2so . (Con...
fin2so 37150 Any totally ordered Tarski...
ltflcei 37151 Theorem to move the floor ...
leceifl 37152 Theorem to move the floor ...
sin2h 37153 Half-angle rule for sine. ...
cos2h 37154 Half-angle rule for cosine...
tan2h 37155 Half-angle rule for tangen...
lindsadd 37156 In a vector space, the uni...
lindsdom 37157 A linearly independent set...
lindsenlbs 37158 A maximal linearly indepen...
matunitlindflem1 37159 One direction of ~ matunit...
matunitlindflem2 37160 One direction of ~ matunit...
matunitlindf 37161 A matrix over a field is i...
ptrest 37162 Expressing a restriction o...
ptrecube 37163 Any point in an open set o...
poimirlem1 37164 Lemma for ~ poimir - the v...
poimirlem2 37165 Lemma for ~ poimir - conse...
poimirlem3 37166 Lemma for ~ poimir to add ...
poimirlem4 37167 Lemma for ~ poimir connect...
poimirlem5 37168 Lemma for ~ poimir to esta...
poimirlem6 37169 Lemma for ~ poimir establi...
poimirlem7 37170 Lemma for ~ poimir , simil...
poimirlem8 37171 Lemma for ~ poimir , estab...
poimirlem9 37172 Lemma for ~ poimir , estab...
poimirlem10 37173 Lemma for ~ poimir establi...
poimirlem11 37174 Lemma for ~ poimir connect...
poimirlem12 37175 Lemma for ~ poimir connect...
poimirlem13 37176 Lemma for ~ poimir - for a...
poimirlem14 37177 Lemma for ~ poimir - for a...
poimirlem15 37178 Lemma for ~ poimir , that ...
poimirlem16 37179 Lemma for ~ poimir establi...
poimirlem17 37180 Lemma for ~ poimir establi...
poimirlem18 37181 Lemma for ~ poimir stating...
poimirlem19 37182 Lemma for ~ poimir establi...
poimirlem20 37183 Lemma for ~ poimir establi...
poimirlem21 37184 Lemma for ~ poimir stating...
poimirlem22 37185 Lemma for ~ poimir , that ...
poimirlem23 37186 Lemma for ~ poimir , two w...
poimirlem24 37187 Lemma for ~ poimir , two w...
poimirlem25 37188 Lemma for ~ poimir stating...
poimirlem26 37189 Lemma for ~ poimir showing...
poimirlem27 37190 Lemma for ~ poimir showing...
poimirlem28 37191 Lemma for ~ poimir , a var...
poimirlem29 37192 Lemma for ~ poimir connect...
poimirlem30 37193 Lemma for ~ poimir combini...
poimirlem31 37194 Lemma for ~ poimir , assig...
poimirlem32 37195 Lemma for ~ poimir , combi...
poimir 37196 Poincare-Miranda theorem. ...
broucube 37197 Brouwer - or as Kulpa call...
heicant 37198 Heine-Cantor theorem: a co...
opnmbllem0 37199 Lemma for ~ ismblfin ; cou...
mblfinlem1 37200 Lemma for ~ ismblfin , ord...
mblfinlem2 37201 Lemma for ~ ismblfin , eff...
mblfinlem3 37202 The difference between two...
mblfinlem4 37203 Backward direction of ~ is...
ismblfin 37204 Measurability in terms of ...
ovoliunnfl 37205 ~ ovoliun is incompatible ...
ex-ovoliunnfl 37206 Demonstration of ~ ovoliun...
voliunnfl 37207 ~ voliun is incompatible w...
volsupnfl 37208 ~ volsup is incompatible w...
mbfresfi 37209 Measurability of a piecewi...
mbfposadd 37210 If the sum of two measurab...
cnambfre 37211 A real-valued, a.e. contin...
dvtanlem 37212 Lemma for ~ dvtan - the do...
dvtan 37213 Derivative of tangent. (C...
itg2addnclem 37214 An alternate expression fo...
itg2addnclem2 37215 Lemma for ~ itg2addnc . T...
itg2addnclem3 37216 Lemma incomprehensible in ...
itg2addnc 37217 Alternate proof of ~ itg2a...
itg2gt0cn 37218 ~ itg2gt0 holds on functio...
ibladdnclem 37219 Lemma for ~ ibladdnc ; cf ...
ibladdnc 37220 Choice-free analogue of ~ ...
itgaddnclem1 37221 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 37222 Lemma for ~ itgaddnc ; cf....
itgaddnc 37223 Choice-free analogue of ~ ...
iblsubnc 37224 Choice-free analogue of ~ ...
itgsubnc 37225 Choice-free analogue of ~ ...
iblabsnclem 37226 Lemma for ~ iblabsnc ; cf....
iblabsnc 37227 Choice-free analogue of ~ ...
iblmulc2nc 37228 Choice-free analogue of ~ ...
itgmulc2nclem1 37229 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 37230 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 37231 Choice-free analogue of ~ ...
itgabsnc 37232 Choice-free analogue of ~ ...
itggt0cn 37233 ~ itggt0 holds for continu...
ftc1cnnclem 37234 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 37235 Choice-free proof of ~ ftc...
ftc1anclem1 37236 Lemma for ~ ftc1anc - the ...
ftc1anclem2 37237 Lemma for ~ ftc1anc - rest...
ftc1anclem3 37238 Lemma for ~ ftc1anc - the ...
ftc1anclem4 37239 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 37240 Lemma for ~ ftc1anc , the ...
ftc1anclem6 37241 Lemma for ~ ftc1anc - cons...
ftc1anclem7 37242 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 37243 Lemma for ~ ftc1anc . (Co...
ftc1anc 37244 ~ ftc1a holds for function...
ftc2nc 37245 Choice-free proof of ~ ftc...
asindmre 37246 Real part of domain of dif...
dvasin 37247 Derivative of arcsine. (C...
dvacos 37248 Derivative of arccosine. ...
dvreasin 37249 Real derivative of arcsine...
dvreacos 37250 Real derivative of arccosi...
areacirclem1 37251 Antiderivative of cross-se...
areacirclem2 37252 Endpoint-inclusive continu...
areacirclem3 37253 Integrability of cross-sec...
areacirclem4 37254 Endpoint-inclusive continu...
areacirclem5 37255 Finding the cross-section ...
areacirc 37256 The area of a circle of ra...
unirep 37257 Define a quantity whose de...
cover2 37258 Two ways of expressing the...
cover2g 37259 Two ways of expressing the...
brabg2 37260 Relation by a binary relat...
opelopab3 37261 Ordered pair membership in...
cocanfo 37262 Cancellation of a surjecti...
brresi2 37263 Restriction of a binary re...
fnopabeqd 37264 Equality deduction for fun...
fvopabf4g 37265 Function value of an opera...
fnopabco 37266 Composition of a function ...
opropabco 37267 Composition of an operator...
cocnv 37268 Composition with a functio...
f1ocan1fv 37269 Cancel a composition by a ...
f1ocan2fv 37270 Cancel a composition by th...
inixp 37271 Intersection of Cartesian ...
upixp 37272 Universal property of the ...
abrexdom 37273 An indexed set is dominate...
abrexdom2 37274 An indexed set is dominate...
ac6gf 37275 Axiom of Choice. (Contrib...
indexa 37276 If for every element of an...
indexdom 37277 If for every element of an...
frinfm 37278 A subset of a well-founded...
welb 37279 A nonempty subset of a wel...
supex2g 37280 Existence of supremum. (C...
supclt 37281 Closure of supremum. (Con...
supubt 37282 Upper bound property of su...
filbcmb 37283 Combine a finite set of lo...
fzmul 37284 Membership of a product in...
sdclem2 37285 Lemma for ~ sdc . (Contri...
sdclem1 37286 Lemma for ~ sdc . (Contri...
sdc 37287 Strong dependent choice. ...
fdc 37288 Finite version of dependen...
fdc1 37289 Variant of ~ fdc with no s...
seqpo 37290 Two ways to say that a seq...
incsequz 37291 An increasing sequence of ...
incsequz2 37292 An increasing sequence of ...
nnubfi 37293 A bounded above set of pos...
nninfnub 37294 An infinite set of positiv...
subspopn 37295 An open set is open in the...
neificl 37296 Neighborhoods are closed u...
lpss2 37297 Limit points of a subset a...
metf1o 37298 Use a bijection with a met...
blssp 37299 A ball in the subspace met...
mettrifi 37300 Generalized triangle inequ...
lmclim2 37301 A sequence in a metric spa...
geomcau 37302 If the distance between co...
caures 37303 The restriction of a Cauch...
caushft 37304 A shifted Cauchy sequence ...
constcncf 37305 A constant function is a c...
cnres2 37306 The restriction of a conti...
cnresima 37307 A continuous function is c...
cncfres 37308 A continuous function on c...
istotbnd 37312 The predicate "is a totall...
istotbnd2 37313 The predicate "is a totall...
istotbnd3 37314 A metric space is totally ...
totbndmet 37315 The predicate "totally bou...
0totbnd 37316 The metric (there is only ...
sstotbnd2 37317 Condition for a subset of ...
sstotbnd 37318 Condition for a subset of ...
sstotbnd3 37319 Use a net that is not nece...
totbndss 37320 A subset of a totally boun...
equivtotbnd 37321 If the metric ` M ` is "st...
isbnd 37323 The predicate "is a bounde...
bndmet 37324 A bounded metric space is ...
isbndx 37325 A "bounded extended metric...
isbnd2 37326 The predicate "is a bounde...
isbnd3 37327 A metric space is bounded ...
isbnd3b 37328 A metric space is bounded ...
bndss 37329 A subset of a bounded metr...
blbnd 37330 A ball is bounded. (Contr...
ssbnd 37331 A subset of a metric space...
totbndbnd 37332 A totally bounded metric s...
equivbnd 37333 If the metric ` M ` is "st...
bnd2lem 37334 Lemma for ~ equivbnd2 and ...
equivbnd2 37335 If balls are totally bound...
prdsbnd 37336 The product metric over fi...
prdstotbnd 37337 The product metric over fi...
prdsbnd2 37338 If balls are totally bound...
cntotbnd 37339 A subset of the complex nu...
cnpwstotbnd 37340 A subset of ` A ^ I ` , wh...
ismtyval 37343 The set of isometries betw...
isismty 37344 The condition "is an isome...
ismtycnv 37345 The inverse of an isometry...
ismtyima 37346 The image of a ball under ...
ismtyhmeolem 37347 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 37348 An isometry is a homeomorp...
ismtybndlem 37349 Lemma for ~ ismtybnd . (C...
ismtybnd 37350 Isometries preserve bounde...
ismtyres 37351 A restriction of an isomet...
heibor1lem 37352 Lemma for ~ heibor1 . A c...
heibor1 37353 One half of ~ heibor , tha...
heiborlem1 37354 Lemma for ~ heibor . We w...
heiborlem2 37355 Lemma for ~ heibor . Subs...
heiborlem3 37356 Lemma for ~ heibor . Usin...
heiborlem4 37357 Lemma for ~ heibor . Usin...
heiborlem5 37358 Lemma for ~ heibor . The ...
heiborlem6 37359 Lemma for ~ heibor . Sinc...
heiborlem7 37360 Lemma for ~ heibor . Sinc...
heiborlem8 37361 Lemma for ~ heibor . The ...
heiborlem9 37362 Lemma for ~ heibor . Disc...
heiborlem10 37363 Lemma for ~ heibor . The ...
heibor 37364 Generalized Heine-Borel Th...
bfplem1 37365 Lemma for ~ bfp . The seq...
bfplem2 37366 Lemma for ~ bfp . Using t...
bfp 37367 Banach fixed point theorem...
rrnval 37370 The n-dimensional Euclidea...
rrnmval 37371 The value of the Euclidean...
rrnmet 37372 Euclidean space is a metri...
rrndstprj1 37373 The distance between two p...
rrndstprj2 37374 Bound on the distance betw...
rrncmslem 37375 Lemma for ~ rrncms . (Con...
rrncms 37376 Euclidean space is complet...
repwsmet 37377 The supremum metric on ` R...
rrnequiv 37378 The supremum metric on ` R...
rrntotbnd 37379 A set in Euclidean space i...
rrnheibor 37380 Heine-Borel theorem for Eu...
ismrer1 37381 An isometry between ` RR `...
reheibor 37382 Heine-Borel theorem for re...
iccbnd 37383 A closed interval in ` RR ...
icccmpALT 37384 A closed interval in ` RR ...
isass 37389 The predicate "is an assoc...
isexid 37390 The predicate ` G ` has a ...
ismgmOLD 37393 Obsolete version of ~ ismg...
clmgmOLD 37394 Obsolete version of ~ mgmc...
opidonOLD 37395 Obsolete version of ~ mndp...
rngopidOLD 37396 Obsolete version of ~ mndp...
opidon2OLD 37397 Obsolete version of ~ mndp...
isexid2 37398 If ` G e. ( Magma i^i ExId...
exidu1 37399 Uniqueness of the left and...
idrval 37400 The value of the identity ...
iorlid 37401 A magma right and left ide...
cmpidelt 37402 A magma right and left ide...
smgrpismgmOLD 37405 Obsolete version of ~ sgrp...
issmgrpOLD 37406 Obsolete version of ~ issg...
smgrpmgm 37407 A semigroup is a magma. (...
smgrpassOLD 37408 Obsolete version of ~ sgrp...
mndoissmgrpOLD 37411 Obsolete version of ~ mnds...
mndoisexid 37412 A monoid has an identity e...
mndoismgmOLD 37413 Obsolete version of ~ mndm...
mndomgmid 37414 A monoid is a magma with a...
ismndo 37415 The predicate "is a monoid...
ismndo1 37416 The predicate "is a monoid...
ismndo2 37417 The predicate "is a monoid...
grpomndo 37418 A group is a monoid. (Con...
exidcl 37419 Closure of the binary oper...
exidreslem 37420 Lemma for ~ exidres and ~ ...
exidres 37421 The restriction of a binar...
exidresid 37422 The restriction of a binar...
ablo4pnp 37423 A commutative/associative ...
grpoeqdivid 37424 Two group elements are equ...
grposnOLD 37425 The group operation for th...
elghomlem1OLD 37428 Obsolete as of 15-Mar-2020...
elghomlem2OLD 37429 Obsolete as of 15-Mar-2020...
elghomOLD 37430 Obsolete version of ~ isgh...
ghomlinOLD 37431 Obsolete version of ~ ghml...
ghomidOLD 37432 Obsolete version of ~ ghmi...
ghomf 37433 Mapping property of a grou...
ghomco 37434 The composition of two gro...
ghomdiv 37435 Group homomorphisms preser...
grpokerinj 37436 A group homomorphism is in...
relrngo 37439 The class of all unital ri...
isrngo 37440 The predicate "is a (unita...
isrngod 37441 Conditions that determine ...
rngoi 37442 The properties of a unital...
rngosm 37443 Functionality of the multi...
rngocl 37444 Closure of the multiplicat...
rngoid 37445 The multiplication operati...
rngoideu 37446 The unity element of a rin...
rngodi 37447 Distributive law for the m...
rngodir 37448 Distributive law for the m...
rngoass 37449 Associative law for the mu...
rngo2 37450 A ring element plus itself...
rngoablo 37451 A ring's addition operatio...
rngoablo2 37452 In a unital ring the addit...
rngogrpo 37453 A ring's addition operatio...
rngone0 37454 The base set of a ring is ...
rngogcl 37455 Closure law for the additi...
rngocom 37456 The addition operation of ...
rngoaass 37457 The addition operation of ...
rngoa32 37458 The addition operation of ...
rngoa4 37459 Rearrangement of 4 terms i...
rngorcan 37460 Right cancellation law for...
rngolcan 37461 Left cancellation law for ...
rngo0cl 37462 A ring has an additive ide...
rngo0rid 37463 The additive identity of a...
rngo0lid 37464 The additive identity of a...
rngolz 37465 The zero of a unital ring ...
rngorz 37466 The zero of a unital ring ...
rngosn3 37467 Obsolete as of 25-Jan-2020...
rngosn4 37468 Obsolete as of 25-Jan-2020...
rngosn6 37469 Obsolete as of 25-Jan-2020...
rngonegcl 37470 A ring is closed under neg...
rngoaddneg1 37471 Adding the negative in a r...
rngoaddneg2 37472 Adding the negative in a r...
rngosub 37473 Subtraction in a ring, in ...
rngmgmbs4 37474 The range of an internal o...
rngodm1dm2 37475 In a unital ring the domai...
rngorn1 37476 In a unital ring the range...
rngorn1eq 37477 In a unital ring the range...
rngomndo 37478 In a unital ring the multi...
rngoidmlem 37479 The unity element of a rin...
rngolidm 37480 The unity element of a rin...
rngoridm 37481 The unity element of a rin...
rngo1cl 37482 The unity element of a rin...
rngoueqz 37483 Obsolete as of 23-Jan-2020...
rngonegmn1l 37484 Negation in a ring is the ...
rngonegmn1r 37485 Negation in a ring is the ...
rngoneglmul 37486 Negation of a product in a...
rngonegrmul 37487 Negation of a product in a...
rngosubdi 37488 Ring multiplication distri...
rngosubdir 37489 Ring multiplication distri...
zerdivemp1x 37490 In a unital ring a left in...
isdivrngo 37493 The predicate "is a divisi...
drngoi 37494 The properties of a divisi...
gidsn 37495 Obsolete as of 23-Jan-2020...
zrdivrng 37496 The zero ring is not a div...
dvrunz 37497 In a division ring the rin...
isgrpda 37498 Properties that determine ...
isdrngo1 37499 The predicate "is a divisi...
divrngcl 37500 The product of two nonzero...
isdrngo2 37501 A division ring is a ring ...
isdrngo3 37502 A division ring is a ring ...
rngohomval 37507 The set of ring homomorphi...
isrngohom 37508 The predicate "is a ring h...
rngohomf 37509 A ring homomorphism is a f...
rngohomcl 37510 Closure law for a ring hom...
rngohom1 37511 A ring homomorphism preser...
rngohomadd 37512 Ring homomorphisms preserv...
rngohommul 37513 Ring homomorphisms preserv...
rngogrphom 37514 A ring homomorphism is a g...
rngohom0 37515 A ring homomorphism preser...
rngohomsub 37516 Ring homomorphisms preserv...
rngohomco 37517 The composition of two rin...
rngokerinj 37518 A ring homomorphism is inj...
rngoisoval 37520 The set of ring isomorphis...
isrngoiso 37521 The predicate "is a ring i...
rngoiso1o 37522 A ring isomorphism is a bi...
rngoisohom 37523 A ring isomorphism is a ri...
rngoisocnv 37524 The inverse of a ring isom...
rngoisoco 37525 The composition of two rin...
isriscg 37527 The ring isomorphism relat...
isrisc 37528 The ring isomorphism relat...
risc 37529 The ring isomorphism relat...
risci 37530 Determine that two rings a...
riscer 37531 Ring isomorphism is an equ...
iscom2 37538 A device to add commutativ...
iscrngo 37539 The predicate "is a commut...
iscrngo2 37540 The predicate "is a commut...
iscringd 37541 Conditions that determine ...
flddivrng 37542 A field is a division ring...
crngorngo 37543 A commutative ring is a ri...
crngocom 37544 The multiplication operati...
crngm23 37545 Commutative/associative la...
crngm4 37546 Commutative/associative la...
fldcrngo 37547 A field is a commutative r...
isfld2 37548 The predicate "is a field"...
crngohomfo 37549 The image of a homomorphis...
idlval 37556 The class of ideals of a r...
isidl 37557 The predicate "is an ideal...
isidlc 37558 The predicate "is an ideal...
idlss 37559 An ideal of ` R ` is a sub...
idlcl 37560 An element of an ideal is ...
idl0cl 37561 An ideal contains ` 0 ` . ...
idladdcl 37562 An ideal is closed under a...
idllmulcl 37563 An ideal is closed under m...
idlrmulcl 37564 An ideal is closed under m...
idlnegcl 37565 An ideal is closed under n...
idlsubcl 37566 An ideal is closed under s...
rngoidl 37567 A ring ` R ` is an ` R ` i...
0idl 37568 The set containing only ` ...
1idl 37569 Two ways of expressing the...
0rngo 37570 In a ring, ` 0 = 1 ` iff t...
divrngidl 37571 The only ideals in a divis...
intidl 37572 The intersection of a none...
inidl 37573 The intersection of two id...
unichnidl 37574 The union of a nonempty ch...
keridl 37575 The kernel of a ring homom...
pridlval 37576 The class of prime ideals ...
ispridl 37577 The predicate "is a prime ...
pridlidl 37578 A prime ideal is an ideal....
pridlnr 37579 A prime ideal is a proper ...
pridl 37580 The main property of a pri...
ispridl2 37581 A condition that shows an ...
maxidlval 37582 The set of maximal ideals ...
ismaxidl 37583 The predicate "is a maxima...
maxidlidl 37584 A maximal ideal is an idea...
maxidlnr 37585 A maximal ideal is proper....
maxidlmax 37586 A maximal ideal is a maxim...
maxidln1 37587 One is not contained in an...
maxidln0 37588 A ring with a maximal idea...
isprrngo 37593 The predicate "is a prime ...
prrngorngo 37594 A prime ring is a ring. (...
smprngopr 37595 A simple ring (one whose o...
divrngpr 37596 A division ring is a prime...
isdmn 37597 The predicate "is a domain...
isdmn2 37598 The predicate "is a domain...
dmncrng 37599 A domain is a commutative ...
dmnrngo 37600 A domain is a ring. (Cont...
flddmn 37601 A field is a domain. (Con...
igenval 37604 The ideal generated by a s...
igenss 37605 A set is a subset of the i...
igenidl 37606 The ideal generated by a s...
igenmin 37607 The ideal generated by a s...
igenidl2 37608 The ideal generated by an ...
igenval2 37609 The ideal generated by a s...
prnc 37610 A principal ideal (an idea...
isfldidl 37611 Determine if a ring is a f...
isfldidl2 37612 Determine if a ring is a f...
ispridlc 37613 The predicate "is a prime ...
pridlc 37614 Property of a prime ideal ...
pridlc2 37615 Property of a prime ideal ...
pridlc3 37616 Property of a prime ideal ...
isdmn3 37617 The predicate "is a domain...
dmnnzd 37618 A domain has no zero-divis...
dmncan1 37619 Cancellation law for domai...
dmncan2 37620 Cancellation law for domai...
efald2 37621 A proof by contradiction. ...
notbinot1 37622 Simplification rule of neg...
bicontr 37623 Biconditional of its own n...
impor 37624 An equivalent formula for ...
orfa 37625 The falsum ` F. ` can be r...
notbinot2 37626 Commutation rule between n...
biimpor 37627 A rewriting rule for bicon...
orfa1 37628 Add a contradicting disjun...
orfa2 37629 Remove a contradicting dis...
bifald 37630 Infer the equivalence to a...
orsild 37631 A lemma for not-or-not eli...
orsird 37632 A lemma for not-or-not eli...
cnf1dd 37633 A lemma for Conjunctive No...
cnf2dd 37634 A lemma for Conjunctive No...
cnfn1dd 37635 A lemma for Conjunctive No...
cnfn2dd 37636 A lemma for Conjunctive No...
or32dd 37637 A rearrangement of disjunc...
notornotel1 37638 A lemma for not-or-not eli...
notornotel2 37639 A lemma for not-or-not eli...
contrd 37640 A proof by contradiction, ...
an12i 37641 An inference from commutin...
exmid2 37642 An excluded middle law. (...
selconj 37643 An inference for selecting...
truconj 37644 Add true as a conjunct. (...
orel 37645 An inference for disjuncti...
negel 37646 An inference for negation ...
botel 37647 An inference for bottom el...
tradd 37648 Add top ad a conjunct. (C...
gm-sbtru 37649 Substitution does not chan...
sbfal 37650 Substitution does not chan...
sbcani 37651 Distribution of class subs...
sbcori 37652 Distribution of class subs...
sbcimi 37653 Distribution of class subs...
sbcni 37654 Move class substitution in...
sbali 37655 Discard class substitution...
sbexi 37656 Discard class substitution...
sbcalf 37657 Move universal quantifier ...
sbcexf 37658 Move existential quantifie...
sbcalfi 37659 Move universal quantifier ...
sbcexfi 37660 Move existential quantifie...
spsbcdi 37661 A lemma for eliminating a ...
alrimii 37662 A lemma for introducing a ...
spesbcdi 37663 A lemma for introducing an...
exlimddvf 37664 A lemma for eliminating an...
exlimddvfi 37665 A lemma for eliminating an...
sbceq1ddi 37666 A lemma for eliminating in...
sbccom2lem 37667 Lemma for ~ sbccom2 . (Co...
sbccom2 37668 Commutative law for double...
sbccom2f 37669 Commutative law for double...
sbccom2fi 37670 Commutative law for double...
csbcom2fi 37671 Commutative law for double...
fald 37672 Refutation of falsity, in ...
tsim1 37673 A Tseitin axiom for logica...
tsim2 37674 A Tseitin axiom for logica...
tsim3 37675 A Tseitin axiom for logica...
tsbi1 37676 A Tseitin axiom for logica...
tsbi2 37677 A Tseitin axiom for logica...
tsbi3 37678 A Tseitin axiom for logica...
tsbi4 37679 A Tseitin axiom for logica...
tsxo1 37680 A Tseitin axiom for logica...
tsxo2 37681 A Tseitin axiom for logica...
tsxo3 37682 A Tseitin axiom for logica...
tsxo4 37683 A Tseitin axiom for logica...
tsan1 37684 A Tseitin axiom for logica...
tsan2 37685 A Tseitin axiom for logica...
tsan3 37686 A Tseitin axiom for logica...
tsna1 37687 A Tseitin axiom for logica...
tsna2 37688 A Tseitin axiom for logica...
tsna3 37689 A Tseitin axiom for logica...
tsor1 37690 A Tseitin axiom for logica...
tsor2 37691 A Tseitin axiom for logica...
tsor3 37692 A Tseitin axiom for logica...
ts3an1 37693 A Tseitin axiom for triple...
ts3an2 37694 A Tseitin axiom for triple...
ts3an3 37695 A Tseitin axiom for triple...
ts3or1 37696 A Tseitin axiom for triple...
ts3or2 37697 A Tseitin axiom for triple...
ts3or3 37698 A Tseitin axiom for triple...
iuneq2f 37699 Equality deduction for ind...
rabeq12f 37700 Equality deduction for res...
csbeq12 37701 Equality deduction for sub...
sbeqi 37702 Equality deduction for sub...
ralbi12f 37703 Equality deduction for res...
oprabbi 37704 Equality deduction for cla...
mpobi123f 37705 Equality deduction for map...
iuneq12f 37706 Equality deduction for ind...
iineq12f 37707 Equality deduction for ind...
opabbi 37708 Equality deduction for cla...
mptbi12f 37709 Equality deduction for map...
orcomdd 37710 Commutativity of logic dis...
scottexf 37711 A version of ~ scottex wit...
scott0f 37712 A version of ~ scott0 with...
scottn0f 37713 A version of ~ scott0f wit...
ac6s3f 37714 Generalization of the Axio...
ac6s6 37715 Generalization of the Axio...
ac6s6f 37716 Generalization of the Axio...
el2v1 37760 New way ( ~ elv , and the ...
el3v 37761 New way ( ~ elv , and the ...
el3v1 37762 New way ( ~ elv , and the ...
el3v2 37763 New way ( ~ elv , and the ...
el3v3 37764 New way ( ~ elv , and the ...
el3v12 37765 New way ( ~ elv , and the ...
el3v13 37766 New way ( ~ elv , and the ...
el3v23 37767 New way ( ~ elv , and the ...
anan 37768 Multiple commutations in c...
triantru3 37769 A wff is equivalent to its...
bianim 37770 Exchanging conjunction in ...
biorfd 37771 A wff is equivalent to its...
eqbrtr 37772 Substitution of equal clas...
eqbrb 37773 Substitution of equal clas...
eqeltr 37774 Substitution of equal clas...
eqelb 37775 Substitution of equal clas...
eqeqan2d 37776 Implication of introducing...
suceqsneq 37777 One-to-one relationship be...
sucdifsn2 37778 Absorption of union with a...
sucdifsn 37779 The difference between the...
disjresin 37780 The restriction to a disjo...
disjresdisj 37781 The intersection of restri...
disjresdif 37782 The difference between res...
disjresundif 37783 Lemma for ~ ressucdifsn2 ....
ressucdifsn2 37784 The difference between res...
ressucdifsn 37785 The difference between res...
inres2 37786 Two ways of expressing the...
coideq 37787 Equality theorem for compo...
nexmo1 37788 If there is no case where ...
ralin 37789 Restricted universal quant...
r2alan 37790 Double restricted universa...
ssrabi 37791 Inference of restricted ab...
rabimbieq 37792 Restricted equivalent wff'...
abeqin 37793 Intersection with class ab...
abeqinbi 37794 Intersection with class ab...
rabeqel 37795 Class element of a restric...
eqrelf 37796 The equality connective be...
br1cnvinxp 37797 Binary relation on the con...
releleccnv 37798 Elementhood in a converse ...
releccnveq 37799 Equality of converse ` R `...
opelvvdif 37800 Negated elementhood of ord...
vvdifopab 37801 Ordered-pair class abstrac...
brvdif 37802 Binary relation with unive...
brvdif2 37803 Binary relation with unive...
brvvdif 37804 Binary relation with the c...
brvbrvvdif 37805 Binary relation with the c...
brcnvep 37806 The converse of the binary...
elecALTV 37807 Elementhood in the ` R ` -...
brcnvepres 37808 Restricted converse epsilo...
brres2 37809 Binary relation on a restr...
br1cnvres 37810 Binary relation on the con...
eldmres 37811 Elementhood in the domain ...
elrnres 37812 Element of the range of a ...
eldmressnALTV 37813 Element of the domain of a...
elrnressn 37814 Element of the range of a ...
eldm4 37815 Elementhood in a domain. ...
eldmres2 37816 Elementhood in the domain ...
eceq1i 37817 Equality theorem for ` C `...
elecres 37818 Elementhood in the restric...
ecres 37819 Restricted coset of ` B ` ...
ecres2 37820 The restricted coset of ` ...
eccnvepres 37821 Restricted converse epsilo...
eleccnvep 37822 Elementhood in the convers...
eccnvep 37823 The converse epsilon coset...
extep 37824 Property of epsilon relati...
disjeccnvep 37825 Property of the epsilon re...
eccnvepres2 37826 The restricted converse ep...
eccnvepres3 37827 Condition for a restricted...
eldmqsres 37828 Elementhood in a restricte...
eldmqsres2 37829 Elementhood in a restricte...
qsss1 37830 Subclass theorem for quoti...
qseq1i 37831 Equality theorem for quoti...
brinxprnres 37832 Binary relation on a restr...
inxprnres 37833 Restriction of a class as ...
dfres4 37834 Alternate definition of th...
exan3 37835 Equivalent expressions wit...
exanres 37836 Equivalent expressions wit...
exanres3 37837 Equivalent expressions wit...
exanres2 37838 Equivalent expressions wit...
cnvepres 37839 Restricted converse epsilo...
eqrel2 37840 Equality of relations. (C...
rncnv 37841 Range of converse is the d...
dfdm6 37842 Alternate definition of do...
dfrn6 37843 Alternate definition of ra...
rncnvepres 37844 The range of the restricte...
dmecd 37845 Equality of the coset of `...
dmec2d 37846 Equality of the coset of `...
brid 37847 Property of the identity b...
ideq2 37848 For sets, the identity bin...
idresssidinxp 37849 Condition for the identity...
idreseqidinxp 37850 Condition for the identity...
extid 37851 Property of identity relat...
inxpss 37852 Two ways to say that an in...
idinxpss 37853 Two ways to say that an in...
ref5 37854 Two ways to say that an in...
inxpss3 37855 Two ways to say that an in...
inxpss2 37856 Two ways to say that inter...
inxpssidinxp 37857 Two ways to say that inter...
idinxpssinxp 37858 Two ways to say that inter...
idinxpssinxp2 37859 Identity intersection with...
idinxpssinxp3 37860 Identity intersection with...
idinxpssinxp4 37861 Identity intersection with...
relcnveq3 37862 Two ways of saying a relat...
relcnveq 37863 Two ways of saying a relat...
relcnveq2 37864 Two ways of saying a relat...
relcnveq4 37865 Two ways of saying a relat...
qsresid 37866 Simplification of a specia...
n0elqs 37867 Two ways of expressing tha...
n0elqs2 37868 Two ways of expressing tha...
ecex2 37869 Condition for a coset to b...
uniqsALTV 37870 The union of a quotient se...
imaexALTV 37871 Existence of an image of a...
ecexALTV 37872 Existence of a coset, like...
rnresequniqs 37873 The range of a restriction...
n0el2 37874 Two ways of expressing tha...
cnvepresex 37875 Sethood condition for the ...
eccnvepex 37876 The converse epsilon coset...
cnvepimaex 37877 The image of converse epsi...
cnvepima 37878 The image of converse epsi...
inex3 37879 Sufficient condition for t...
inxpex 37880 Sufficient condition for a...
eqres 37881 Converting a class constan...
brrabga 37882 The law of concretion for ...
brcnvrabga 37883 The law of concretion for ...
opideq 37884 Equality conditions for or...
iss2 37885 A subclass of the identity...
eldmcnv 37886 Elementhood in a domain of...
dfrel5 37887 Alternate definition of th...
dfrel6 37888 Alternate definition of th...
cnvresrn 37889 Converse restricted to ran...
relssinxpdmrn 37890 Subset of restriction, spe...
cnvref4 37891 Two ways to say that a rel...
cnvref5 37892 Two ways to say that a rel...
ecin0 37893 Two ways of saying that th...
ecinn0 37894 Two ways of saying that th...
ineleq 37895 Equivalence of restricted ...
inecmo 37896 Equivalence of a double re...
inecmo2 37897 Equivalence of a double re...
ineccnvmo 37898 Equivalence of a double re...
alrmomorn 37899 Equivalence of an "at most...
alrmomodm 37900 Equivalence of an "at most...
ineccnvmo2 37901 Equivalence of a double un...
inecmo3 37902 Equivalence of a double un...
moeu2 37903 Uniqueness is equivalent t...
mopickr 37904 "At most one" picks a vari...
moantr 37905 Sufficient condition for t...
brabidgaw 37906 The law of concretion for ...
brabidga 37907 The law of concretion for ...
inxp2 37908 Intersection with a Cartes...
opabf 37909 A class abstraction of a c...
ec0 37910 The empty-coset of a class...
brcnvin 37911 Intersection with a conver...
xrnss3v 37913 A range Cartesian product ...
xrnrel 37914 A range Cartesian product ...
brxrn 37915 Characterize a ternary rel...
brxrn2 37916 A characterization of the ...
dfxrn2 37917 Alternate definition of th...
xrneq1 37918 Equality theorem for the r...
xrneq1i 37919 Equality theorem for the r...
xrneq1d 37920 Equality theorem for the r...
xrneq2 37921 Equality theorem for the r...
xrneq2i 37922 Equality theorem for the r...
xrneq2d 37923 Equality theorem for the r...
xrneq12 37924 Equality theorem for the r...
xrneq12i 37925 Equality theorem for the r...
xrneq12d 37926 Equality theorem for the r...
elecxrn 37927 Elementhood in the ` ( R |...
ecxrn 37928 The ` ( R |X. S ) ` -coset...
disjressuc2 37929 Double restricted quantifi...
disjecxrn 37930 Two ways of saying that ` ...
disjecxrncnvep 37931 Two ways of saying that co...
disjsuc2 37932 Double restricted quantifi...
xrninxp 37933 Intersection of a range Ca...
xrninxp2 37934 Intersection of a range Ca...
xrninxpex 37935 Sufficient condition for t...
inxpxrn 37936 Two ways to express the in...
br1cnvxrn2 37937 The converse of a binary r...
elec1cnvxrn2 37938 Elementhood in the convers...
rnxrn 37939 Range of the range Cartesi...
rnxrnres 37940 Range of a range Cartesian...
rnxrncnvepres 37941 Range of a range Cartesian...
rnxrnidres 37942 Range of a range Cartesian...
xrnres 37943 Two ways to express restri...
xrnres2 37944 Two ways to express restri...
xrnres3 37945 Two ways to express restri...
xrnres4 37946 Two ways to express restri...
xrnresex 37947 Sufficient condition for a...
xrnidresex 37948 Sufficient condition for a...
xrncnvepresex 37949 Sufficient condition for a...
brin2 37950 Binary relation on an inte...
brin3 37951 Binary relation on an inte...
dfcoss2 37954 Alternate definition of th...
dfcoss3 37955 Alternate definition of th...
dfcoss4 37956 Alternate definition of th...
cosscnv 37957 Class of cosets by the con...
coss1cnvres 37958 Class of cosets by the con...
coss2cnvepres 37959 Special case of ~ coss1cnv...
cossex 37960 If ` A ` is a set then the...
cosscnvex 37961 If ` A ` is a set then the...
1cosscnvepresex 37962 Sufficient condition for a...
1cossxrncnvepresex 37963 Sufficient condition for a...
relcoss 37964 Cosets by ` R ` is a relat...
relcoels 37965 Coelements on ` A ` is a r...
cossss 37966 Subclass theorem for the c...
cosseq 37967 Equality theorem for the c...
cosseqi 37968 Equality theorem for the c...
cosseqd 37969 Equality theorem for the c...
1cossres 37970 The class of cosets by a r...
dfcoels 37971 Alternate definition of th...
brcoss 37972 ` A ` and ` B ` are cosets...
brcoss2 37973 Alternate form of the ` A ...
brcoss3 37974 Alternate form of the ` A ...
brcosscnvcoss 37975 For sets, the ` A ` and ` ...
brcoels 37976 ` B ` and ` C ` are coelem...
cocossss 37977 Two ways of saying that co...
cnvcosseq 37978 The converse of cosets by ...
br2coss 37979 Cosets by ` ,~ R ` binary ...
br1cossres 37980 ` B ` and ` C ` are cosets...
br1cossres2 37981 ` B ` and ` C ` are cosets...
brressn 37982 Binary relation on a restr...
ressn2 37983 A class ' R ' restricted t...
refressn 37984 Any class ' R ' restricted...
antisymressn 37985 Every class ' R ' restrict...
trressn 37986 Any class ' R ' restricted...
relbrcoss 37987 ` A ` and ` B ` are cosets...
br1cossinres 37988 ` B ` and ` C ` are cosets...
br1cossxrnres 37989 ` <. B , C >. ` and ` <. D...
br1cossinidres 37990 ` B ` and ` C ` are cosets...
br1cossincnvepres 37991 ` B ` and ` C ` are cosets...
br1cossxrnidres 37992 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 37993 ` <. B , C >. ` and ` <. D...
dmcoss3 37994 The domain of cosets is th...
dmcoss2 37995 The domain of cosets is th...
rncossdmcoss 37996 The range of cosets is the...
dm1cosscnvepres 37997 The domain of cosets of th...
dmcoels 37998 The domain of coelements i...
eldmcoss 37999 Elementhood in the domain ...
eldmcoss2 38000 Elementhood in the domain ...
eldm1cossres 38001 Elementhood in the domain ...
eldm1cossres2 38002 Elementhood in the domain ...
refrelcosslem 38003 Lemma for the left side of...
refrelcoss3 38004 The class of cosets by ` R...
refrelcoss2 38005 The class of cosets by ` R...
symrelcoss3 38006 The class of cosets by ` R...
symrelcoss2 38007 The class of cosets by ` R...
cossssid 38008 Equivalent expressions for...
cossssid2 38009 Equivalent expressions for...
cossssid3 38010 Equivalent expressions for...
cossssid4 38011 Equivalent expressions for...
cossssid5 38012 Equivalent expressions for...
brcosscnv 38013 ` A ` and ` B ` are cosets...
brcosscnv2 38014 ` A ` and ` B ` are cosets...
br1cosscnvxrn 38015 ` A ` and ` B ` are cosets...
1cosscnvxrn 38016 Cosets by the converse ran...
cosscnvssid3 38017 Equivalent expressions for...
cosscnvssid4 38018 Equivalent expressions for...
cosscnvssid5 38019 Equivalent expressions for...
coss0 38020 Cosets by the empty set ar...
cossid 38021 Cosets by the identity rel...
cosscnvid 38022 Cosets by the converse ide...
trcoss 38023 Sufficient condition for t...
eleccossin 38024 Two ways of saying that th...
trcoss2 38025 Equivalent expressions for...
elrels2 38027 The element of the relatio...
elrelsrel 38028 The element of the relatio...
elrelsrelim 38029 The element of the relatio...
elrels5 38030 Equivalent expressions for...
elrels6 38031 Equivalent expressions for...
elrelscnveq3 38032 Two ways of saying a relat...
elrelscnveq 38033 Two ways of saying a relat...
elrelscnveq2 38034 Two ways of saying a relat...
elrelscnveq4 38035 Two ways of saying a relat...
cnvelrels 38036 The converse of a set is a...
cosselrels 38037 Cosets of sets are element...
cosscnvelrels 38038 Cosets of converse sets ar...
dfssr2 38040 Alternate definition of th...
relssr 38041 The subset relation is a r...
brssr 38042 The subset relation and su...
brssrid 38043 Any set is a subset of its...
issetssr 38044 Two ways of expressing set...
brssrres 38045 Restricted subset binary r...
br1cnvssrres 38046 Restricted converse subset...
brcnvssr 38047 The converse of a subset r...
brcnvssrid 38048 Any set is a converse subs...
br1cossxrncnvssrres 38049 ` <. B , C >. ` and ` <. D...
extssr 38050 Property of subset relatio...
dfrefrels2 38054 Alternate definition of th...
dfrefrels3 38055 Alternate definition of th...
dfrefrel2 38056 Alternate definition of th...
dfrefrel3 38057 Alternate definition of th...
dfrefrel5 38058 Alternate definition of th...
elrefrels2 38059 Element of the class of re...
elrefrels3 38060 Element of the class of re...
elrefrelsrel 38061 For sets, being an element...
refreleq 38062 Equality theorem for refle...
refrelid 38063 Identity relation is refle...
refrelcoss 38064 The class of cosets by ` R...
refrelressn 38065 Any class ' R ' restricted...
dfcnvrefrels2 38069 Alternate definition of th...
dfcnvrefrels3 38070 Alternate definition of th...
dfcnvrefrel2 38071 Alternate definition of th...
dfcnvrefrel3 38072 Alternate definition of th...
dfcnvrefrel4 38073 Alternate definition of th...
dfcnvrefrel5 38074 Alternate definition of th...
elcnvrefrels2 38075 Element of the class of co...
elcnvrefrels3 38076 Element of the class of co...
elcnvrefrelsrel 38077 For sets, being an element...
cnvrefrelcoss2 38078 Necessary and sufficient c...
cosselcnvrefrels2 38079 Necessary and sufficient c...
cosselcnvrefrels3 38080 Necessary and sufficient c...
cosselcnvrefrels4 38081 Necessary and sufficient c...
cosselcnvrefrels5 38082 Necessary and sufficient c...
dfsymrels2 38086 Alternate definition of th...
dfsymrels3 38087 Alternate definition of th...
dfsymrels4 38088 Alternate definition of th...
dfsymrels5 38089 Alternate definition of th...
dfsymrel2 38090 Alternate definition of th...
dfsymrel3 38091 Alternate definition of th...
dfsymrel4 38092 Alternate definition of th...
dfsymrel5 38093 Alternate definition of th...
elsymrels2 38094 Element of the class of sy...
elsymrels3 38095 Element of the class of sy...
elsymrels4 38096 Element of the class of sy...
elsymrels5 38097 Element of the class of sy...
elsymrelsrel 38098 For sets, being an element...
symreleq 38099 Equality theorem for symme...
symrelim 38100 Symmetric relation implies...
symrelcoss 38101 The class of cosets by ` R...
idsymrel 38102 The identity relation is s...
epnsymrel 38103 The membership (epsilon) r...
symrefref2 38104 Symmetry is a sufficient c...
symrefref3 38105 Symmetry is a sufficient c...
refsymrels2 38106 Elements of the class of r...
refsymrels3 38107 Elements of the class of r...
refsymrel2 38108 A relation which is reflex...
refsymrel3 38109 A relation which is reflex...
elrefsymrels2 38110 Elements of the class of r...
elrefsymrels3 38111 Elements of the class of r...
elrefsymrelsrel 38112 For sets, being an element...
dftrrels2 38116 Alternate definition of th...
dftrrels3 38117 Alternate definition of th...
dftrrel2 38118 Alternate definition of th...
dftrrel3 38119 Alternate definition of th...
eltrrels2 38120 Element of the class of tr...
eltrrels3 38121 Element of the class of tr...
eltrrelsrel 38122 For sets, being an element...
trreleq 38123 Equality theorem for the t...
trrelressn 38124 Any class ' R ' restricted...
dfeqvrels2 38129 Alternate definition of th...
dfeqvrels3 38130 Alternate definition of th...
dfeqvrel2 38131 Alternate definition of th...
dfeqvrel3 38132 Alternate definition of th...
eleqvrels2 38133 Element of the class of eq...
eleqvrels3 38134 Element of the class of eq...
eleqvrelsrel 38135 For sets, being an element...
elcoeleqvrels 38136 Elementhood in the coeleme...
elcoeleqvrelsrel 38137 For sets, being an element...
eqvrelrel 38138 An equivalence relation is...
eqvrelrefrel 38139 An equivalence relation is...
eqvrelsymrel 38140 An equivalence relation is...
eqvreltrrel 38141 An equivalence relation is...
eqvrelim 38142 Equivalence relation impli...
eqvreleq 38143 Equality theorem for equiv...
eqvreleqi 38144 Equality theorem for equiv...
eqvreleqd 38145 Equality theorem for equiv...
eqvrelsym 38146 An equivalence relation is...
eqvrelsymb 38147 An equivalence relation is...
eqvreltr 38148 An equivalence relation is...
eqvreltrd 38149 A transitivity relation fo...
eqvreltr4d 38150 A transitivity relation fo...
eqvrelref 38151 An equivalence relation is...
eqvrelth 38152 Basic property of equivale...
eqvrelcl 38153 Elementhood in the field o...
eqvrelthi 38154 Basic property of equivale...
eqvreldisj 38155 Equivalence classes do not...
qsdisjALTV 38156 Elements of a quotient set...
eqvrelqsel 38157 If an element of a quotien...
eqvrelcoss 38158 Two ways to express equiva...
eqvrelcoss3 38159 Two ways to express equiva...
eqvrelcoss2 38160 Two ways to express equiva...
eqvrelcoss4 38161 Two ways to express equiva...
dfcoeleqvrels 38162 Alternate definition of th...
dfcoeleqvrel 38163 Alternate definition of th...
brredunds 38167 Binary relation on the cla...
brredundsredund 38168 For sets, binary relation ...
redundss3 38169 Implication of redundancy ...
redundeq1 38170 Equivalence of redundancy ...
redundpim3 38171 Implication of redundancy ...
redundpbi1 38172 Equivalence of redundancy ...
refrelsredund4 38173 The naive version of the c...
refrelsredund2 38174 The naive version of the c...
refrelsredund3 38175 The naive version of the c...
refrelredund4 38176 The naive version of the d...
refrelredund2 38177 The naive version of the d...
refrelredund3 38178 The naive version of the d...
dmqseq 38181 Equality theorem for domai...
dmqseqi 38182 Equality theorem for domai...
dmqseqd 38183 Equality theorem for domai...
dmqseqeq1 38184 Equality theorem for domai...
dmqseqeq1i 38185 Equality theorem for domai...
dmqseqeq1d 38186 Equality theorem for domai...
brdmqss 38187 The domain quotient binary...
brdmqssqs 38188 If ` A ` and ` R ` are set...
n0eldmqs 38189 The empty set is not an el...
n0eldmqseq 38190 The empty set is not an el...
n0elim 38191 Implication of that the em...
n0el3 38192 Two ways of expressing tha...
cnvepresdmqss 38193 The domain quotient binary...
cnvepresdmqs 38194 The domain quotient predic...
unidmqs 38195 The range of a relation is...
unidmqseq 38196 The union of the domain qu...
dmqseqim 38197 If the domain quotient of ...
dmqseqim2 38198 Lemma for ~ erimeq2 . (Co...
releldmqs 38199 Elementhood in the domain ...
eldmqs1cossres 38200 Elementhood in the domain ...
releldmqscoss 38201 Elementhood in the domain ...
dmqscoelseq 38202 Two ways to express the eq...
dmqs1cosscnvepreseq 38203 Two ways to express the eq...
brers 38208 Binary equivalence relatio...
dferALTV2 38209 Equivalence relation with ...
erALTVeq1 38210 Equality theorem for equiv...
erALTVeq1i 38211 Equality theorem for equiv...
erALTVeq1d 38212 Equality theorem for equiv...
dfcomember 38213 Alternate definition of th...
dfcomember2 38214 Alternate definition of th...
dfcomember3 38215 Alternate definition of th...
eqvreldmqs 38216 Two ways to express comemb...
eqvreldmqs2 38217 Two ways to express comemb...
brerser 38218 Binary equivalence relatio...
erimeq2 38219 Equivalence relation on it...
erimeq 38220 Equivalence relation on it...
dffunsALTV 38224 Alternate definition of th...
dffunsALTV2 38225 Alternate definition of th...
dffunsALTV3 38226 Alternate definition of th...
dffunsALTV4 38227 Alternate definition of th...
dffunsALTV5 38228 Alternate definition of th...
dffunALTV2 38229 Alternate definition of th...
dffunALTV3 38230 Alternate definition of th...
dffunALTV4 38231 Alternate definition of th...
dffunALTV5 38232 Alternate definition of th...
elfunsALTV 38233 Elementhood in the class o...
elfunsALTV2 38234 Elementhood in the class o...
elfunsALTV3 38235 Elementhood in the class o...
elfunsALTV4 38236 Elementhood in the class o...
elfunsALTV5 38237 Elementhood in the class o...
elfunsALTVfunALTV 38238 The element of the class o...
funALTVfun 38239 Our definition of the func...
funALTVss 38240 Subclass theorem for funct...
funALTVeq 38241 Equality theorem for funct...
funALTVeqi 38242 Equality inference for the...
funALTVeqd 38243 Equality deduction for the...
dfdisjs 38249 Alternate definition of th...
dfdisjs2 38250 Alternate definition of th...
dfdisjs3 38251 Alternate definition of th...
dfdisjs4 38252 Alternate definition of th...
dfdisjs5 38253 Alternate definition of th...
dfdisjALTV 38254 Alternate definition of th...
dfdisjALTV2 38255 Alternate definition of th...
dfdisjALTV3 38256 Alternate definition of th...
dfdisjALTV4 38257 Alternate definition of th...
dfdisjALTV5 38258 Alternate definition of th...
dfeldisj2 38259 Alternate definition of th...
dfeldisj3 38260 Alternate definition of th...
dfeldisj4 38261 Alternate definition of th...
dfeldisj5 38262 Alternate definition of th...
eldisjs 38263 Elementhood in the class o...
eldisjs2 38264 Elementhood in the class o...
eldisjs3 38265 Elementhood in the class o...
eldisjs4 38266 Elementhood in the class o...
eldisjs5 38267 Elementhood in the class o...
eldisjsdisj 38268 The element of the class o...
eleldisjs 38269 Elementhood in the disjoin...
eleldisjseldisj 38270 The element of the disjoin...
disjrel 38271 Disjoint relation is a rel...
disjss 38272 Subclass theorem for disjo...
disjssi 38273 Subclass theorem for disjo...
disjssd 38274 Subclass theorem for disjo...
disjeq 38275 Equality theorem for disjo...
disjeqi 38276 Equality theorem for disjo...
disjeqd 38277 Equality theorem for disjo...
disjdmqseqeq1 38278 Lemma for the equality the...
eldisjss 38279 Subclass theorem for disjo...
eldisjssi 38280 Subclass theorem for disjo...
eldisjssd 38281 Subclass theorem for disjo...
eldisjeq 38282 Equality theorem for disjo...
eldisjeqi 38283 Equality theorem for disjo...
eldisjeqd 38284 Equality theorem for disjo...
disjres 38285 Disjoint restriction. (Co...
eldisjn0elb 38286 Two forms of disjoint elem...
disjxrn 38287 Two ways of saying that a ...
disjxrnres5 38288 Disjoint range Cartesian p...
disjorimxrn 38289 Disjointness condition for...
disjimxrn 38290 Disjointness condition for...
disjimres 38291 Disjointness condition for...
disjimin 38292 Disjointness condition for...
disjiminres 38293 Disjointness condition for...
disjimxrnres 38294 Disjointness condition for...
disjALTV0 38295 The null class is disjoint...
disjALTVid 38296 The class of identity rela...
disjALTVidres 38297 The class of identity rela...
disjALTVinidres 38298 The intersection with rest...
disjALTVxrnidres 38299 The class of range Cartesi...
disjsuc 38300 Disjoint range Cartesian p...
dfantisymrel4 38302 Alternate definition of th...
dfantisymrel5 38303 Alternate definition of th...
antisymrelres 38304 (Contributed by Peter Mazs...
antisymrelressn 38305 (Contributed by Peter Mazs...
dfpart2 38310 Alternate definition of th...
dfmembpart2 38311 Alternate definition of th...
brparts 38312 Binary partitions relation...
brparts2 38313 Binary partitions relation...
brpartspart 38314 Binary partition and the p...
parteq1 38315 Equality theorem for parti...
parteq2 38316 Equality theorem for parti...
parteq12 38317 Equality theorem for parti...
parteq1i 38318 Equality theorem for parti...
parteq1d 38319 Equality theorem for parti...
partsuc2 38320 Property of the partition....
partsuc 38321 Property of the partition....
disjim 38322 The "Divide et Aequivalere...
disjimi 38323 Every disjoint relation ge...
detlem 38324 If a relation is disjoint,...
eldisjim 38325 If the elements of ` A ` a...
eldisjim2 38326 Alternate form of ~ eldisj...
eqvrel0 38327 The null class is an equiv...
det0 38328 The cosets by the null cla...
eqvrelcoss0 38329 The cosets by the null cla...
eqvrelid 38330 The identity relation is a...
eqvrel1cossidres 38331 The cosets by a restricted...
eqvrel1cossinidres 38332 The cosets by an intersect...
eqvrel1cossxrnidres 38333 The cosets by a range Cart...
detid 38334 The cosets by the identity...
eqvrelcossid 38335 The cosets by the identity...
detidres 38336 The cosets by the restrict...
detinidres 38337 The cosets by the intersec...
detxrnidres 38338 The cosets by the range Ca...
disjlem14 38339 Lemma for ~ disjdmqseq , ~...
disjlem17 38340 Lemma for ~ disjdmqseq , ~...
disjlem18 38341 Lemma for ~ disjdmqseq , ~...
disjlem19 38342 Lemma for ~ disjdmqseq , ~...
disjdmqsss 38343 Lemma for ~ disjdmqseq via...
disjdmqscossss 38344 Lemma for ~ disjdmqseq via...
disjdmqs 38345 If a relation is disjoint,...
disjdmqseq 38346 If a relation is disjoint,...
eldisjn0el 38347 Special case of ~ disjdmqs...
partim2 38348 Disjoint relation on its n...
partim 38349 Partition implies equivale...
partimeq 38350 Partition implies that the...
eldisjlem19 38351 Special case of ~ disjlem1...
membpartlem19 38352 Together with ~ disjlem19 ...
petlem 38353 If you can prove that the ...
petlemi 38354 If you can prove disjointn...
pet02 38355 Class ` A ` is a partition...
pet0 38356 Class ` A ` is a partition...
petid2 38357 Class ` A ` is a partition...
petid 38358 A class is a partition by ...
petidres2 38359 Class ` A ` is a partition...
petidres 38360 A class is a partition by ...
petinidres2 38361 Class ` A ` is a partition...
petinidres 38362 A class is a partition by ...
petxrnidres2 38363 Class ` A ` is a partition...
petxrnidres 38364 A class is a partition by ...
eqvreldisj1 38365 The elements of the quotie...
eqvreldisj2 38366 The elements of the quotie...
eqvreldisj3 38367 The elements of the quotie...
eqvreldisj4 38368 Intersection with the conv...
eqvreldisj5 38369 Range Cartesian product wi...
eqvrelqseqdisj2 38370 Implication of ~ eqvreldis...
fences3 38371 Implication of ~ eqvrelqse...
eqvrelqseqdisj3 38372 Implication of ~ eqvreldis...
eqvrelqseqdisj4 38373 Lemma for ~ petincnvepres2...
eqvrelqseqdisj5 38374 Lemma for the Partition-Eq...
mainer 38375 The Main Theorem of Equiva...
partimcomember 38376 Partition with general ` R...
mpet3 38377 Member Partition-Equivalen...
cpet2 38378 The conventional form of t...
cpet 38379 The conventional form of M...
mpet 38380 Member Partition-Equivalen...
mpet2 38381 Member Partition-Equivalen...
mpets2 38382 Member Partition-Equivalen...
mpets 38383 Member Partition-Equivalen...
mainpart 38384 Partition with general ` R...
fences 38385 The Theorem of Fences by E...
fences2 38386 The Theorem of Fences by E...
mainer2 38387 The Main Theorem of Equiva...
mainerim 38388 Every equivalence relation...
petincnvepres2 38389 A partition-equivalence th...
petincnvepres 38390 The shortest form of a par...
pet2 38391 Partition-Equivalence Theo...
pet 38392 Partition-Equivalence Theo...
pets 38393 Partition-Equivalence Theo...
prtlem60 38394 Lemma for ~ prter3 . (Con...
bicomdd 38395 Commute two sides of a bic...
jca2r 38396 Inference conjoining the c...
jca3 38397 Inference conjoining the c...
prtlem70 38398 Lemma for ~ prter3 : a rea...
ibdr 38399 Reverse of ~ ibd . (Contr...
prtlem100 38400 Lemma for ~ prter3 . (Con...
prtlem5 38401 Lemma for ~ prter1 , ~ prt...
prtlem80 38402 Lemma for ~ prter2 . (Con...
brabsb2 38403 A closed form of ~ brabsb ...
eqbrrdv2 38404 Other version of ~ eqbrrdi...
prtlem9 38405 Lemma for ~ prter3 . (Con...
prtlem10 38406 Lemma for ~ prter3 . (Con...
prtlem11 38407 Lemma for ~ prter2 . (Con...
prtlem12 38408 Lemma for ~ prtex and ~ pr...
prtlem13 38409 Lemma for ~ prter1 , ~ prt...
prtlem16 38410 Lemma for ~ prtex , ~ prte...
prtlem400 38411 Lemma for ~ prter2 and als...
erprt 38414 The quotient set of an equ...
prtlem14 38415 Lemma for ~ prter1 , ~ prt...
prtlem15 38416 Lemma for ~ prter1 and ~ p...
prtlem17 38417 Lemma for ~ prter2 . (Con...
prtlem18 38418 Lemma for ~ prter2 . (Con...
prtlem19 38419 Lemma for ~ prter2 . (Con...
prter1 38420 Every partition generates ...
prtex 38421 The equivalence relation g...
prter2 38422 The quotient set of the eq...
prter3 38423 For every partition there ...
axc5 38434 This theorem repeats ~ sp ...
ax4fromc4 38435 Rederivation of Axiom ~ ax...
ax10fromc7 38436 Rederivation of Axiom ~ ax...
ax6fromc10 38437 Rederivation of Axiom ~ ax...
hba1-o 38438 The setvar ` x ` is not fr...
axc4i-o 38439 Inference version of ~ ax-...
equid1 38440 Proof of ~ equid from our ...
equcomi1 38441 Proof of ~ equcomi from ~ ...
aecom-o 38442 Commutation law for identi...
aecoms-o 38443 A commutation rule for ide...
hbae-o 38444 All variables are effectiv...
dral1-o 38445 Formula-building lemma for...
ax12fromc15 38446 Rederivation of Axiom ~ ax...
ax13fromc9 38447 Derive ~ ax-13 from ~ ax-c...
ax5ALT 38448 Axiom to quantify a variab...
sps-o 38449 Generalization of antecede...
hbequid 38450 Bound-variable hypothesis ...
nfequid-o 38451 Bound-variable hypothesis ...
axc5c7 38452 Proof of a single axiom th...
axc5c7toc5 38453 Rederivation of ~ ax-c5 fr...
axc5c7toc7 38454 Rederivation of ~ ax-c7 fr...
axc711 38455 Proof of a single axiom th...
nfa1-o 38456 ` x ` is not free in ` A. ...
axc711toc7 38457 Rederivation of ~ ax-c7 fr...
axc711to11 38458 Rederivation of ~ ax-11 fr...
axc5c711 38459 Proof of a single axiom th...
axc5c711toc5 38460 Rederivation of ~ ax-c5 fr...
axc5c711toc7 38461 Rederivation of ~ ax-c7 fr...
axc5c711to11 38462 Rederivation of ~ ax-11 fr...
equidqe 38463 ~ equid with existential q...
axc5sp1 38464 A special case of ~ ax-c5 ...
equidq 38465 ~ equid with universal qua...
equid1ALT 38466 Alternate proof of ~ equid...
axc11nfromc11 38467 Rederivation of ~ ax-c11n ...
naecoms-o 38468 A commutation rule for dis...
hbnae-o 38469 All variables are effectiv...
dvelimf-o 38470 Proof of ~ dvelimh that us...
dral2-o 38471 Formula-building lemma for...
aev-o 38472 A "distinctor elimination"...
ax5eq 38473 Theorem to add distinct qu...
dveeq2-o 38474 Quantifier introduction wh...
axc16g-o 38475 A generalization of Axiom ...
dveeq1-o 38476 Quantifier introduction wh...
dveeq1-o16 38477 Version of ~ dveeq1 using ...
ax5el 38478 Theorem to add distinct qu...
axc11n-16 38479 This theorem shows that, g...
dveel2ALT 38480 Alternate proof of ~ dveel...
ax12f 38481 Basis step for constructin...
ax12eq 38482 Basis step for constructin...
ax12el 38483 Basis step for constructin...
ax12indn 38484 Induction step for constru...
ax12indi 38485 Induction step for constru...
ax12indalem 38486 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 38487 Alternate proof of ~ ax12i...
ax12inda2 38488 Induction step for constru...
ax12inda 38489 Induction step for constru...
ax12v2-o 38490 Rederivation of ~ ax-c15 f...
ax12a2-o 38491 Derive ~ ax-c15 from a hyp...
axc11-o 38492 Show that ~ ax-c11 can be ...
fsumshftd 38493 Index shift of a finite su...
riotaclbgBAD 38495 Closure of restricted iota...
riotaclbBAD 38496 Closure of restricted iota...
riotasvd 38497 Deduction version of ~ rio...
riotasv2d 38498 Value of description binde...
riotasv2s 38499 The value of description b...
riotasv 38500 Value of description binde...
riotasv3d 38501 A property ` ch ` holding ...
elimhyps 38502 A version of ~ elimhyp usi...
dedths 38503 A version of weak deductio...
renegclALT 38504 Closure law for negative o...
elimhyps2 38505 Generalization of ~ elimhy...
dedths2 38506 Generalization of ~ dedths...
nfcxfrdf 38507 A utility lemma to transfe...
nfded 38508 A deduction theorem that c...
nfded2 38509 A deduction theorem that c...
nfunidALT2 38510 Deduction version of ~ nfu...
nfunidALT 38511 Deduction version of ~ nfu...
nfopdALT 38512 Deduction version of bound...
cnaddcom 38513 Recover the commutative la...
toycom 38514 Show the commutative law f...
lshpset 38519 The set of all hyperplanes...
islshp 38520 The predicate "is a hyperp...
islshpsm 38521 Hyperplane properties expr...
lshplss 38522 A hyperplane is a subspace...
lshpne 38523 A hyperplane is not equal ...
lshpnel 38524 A hyperplane's generating ...
lshpnelb 38525 The subspace sum of a hype...
lshpnel2N 38526 Condition that determines ...
lshpne0 38527 The member of the span in ...
lshpdisj 38528 A hyperplane and the span ...
lshpcmp 38529 If two hyperplanes are com...
lshpinN 38530 The intersection of two di...
lsatset 38531 The set of all 1-dim subsp...
islsat 38532 The predicate "is a 1-dim ...
lsatlspsn2 38533 The span of a nonzero sing...
lsatlspsn 38534 The span of a nonzero sing...
islsati 38535 A 1-dim subspace (atom) (o...
lsateln0 38536 A 1-dim subspace (atom) (o...
lsatlss 38537 The set of 1-dim subspaces...
lsatlssel 38538 An atom is a subspace. (C...
lsatssv 38539 An atom is a set of vector...
lsatn0 38540 A 1-dim subspace (atom) of...
lsatspn0 38541 The span of a vector is an...
lsator0sp 38542 The span of a vector is ei...
lsatssn0 38543 A subspace (or any class) ...
lsatcmp 38544 If two atoms are comparabl...
lsatcmp2 38545 If an atom is included in ...
lsatel 38546 A nonzero vector in an ato...
lsatelbN 38547 A nonzero vector in an ato...
lsat2el 38548 Two atoms sharing a nonzer...
lsmsat 38549 Convert comparison of atom...
lsatfixedN 38550 Show equality with the spa...
lsmsatcv 38551 Subspace sum has the cover...
lssatomic 38552 The lattice of subspaces i...
lssats 38553 The lattice of subspaces i...
lpssat 38554 Two subspaces in a proper ...
lrelat 38555 Subspaces are relatively a...
lssatle 38556 The ordering of two subspa...
lssat 38557 Two subspaces in a proper ...
islshpat 38558 Hyperplane properties expr...
lcvfbr 38561 The covers relation for a ...
lcvbr 38562 The covers relation for a ...
lcvbr2 38563 The covers relation for a ...
lcvbr3 38564 The covers relation for a ...
lcvpss 38565 The covers relation implie...
lcvnbtwn 38566 The covers relation implie...
lcvntr 38567 The covers relation is not...
lcvnbtwn2 38568 The covers relation implie...
lcvnbtwn3 38569 The covers relation implie...
lsmcv2 38570 Subspace sum has the cover...
lcvat 38571 If a subspace covers anoth...
lsatcv0 38572 An atom covers the zero su...
lsatcveq0 38573 A subspace covered by an a...
lsat0cv 38574 A subspace is an atom iff ...
lcvexchlem1 38575 Lemma for ~ lcvexch . (Co...
lcvexchlem2 38576 Lemma for ~ lcvexch . (Co...
lcvexchlem3 38577 Lemma for ~ lcvexch . (Co...
lcvexchlem4 38578 Lemma for ~ lcvexch . (Co...
lcvexchlem5 38579 Lemma for ~ lcvexch . (Co...
lcvexch 38580 Subspaces satisfy the exch...
lcvp 38581 Covering property of Defin...
lcv1 38582 Covering property of a sub...
lcv2 38583 Covering property of a sub...
lsatexch 38584 The atom exchange property...
lsatnle 38585 The meet of a subspace and...
lsatnem0 38586 The meet of distinct atoms...
lsatexch1 38587 The atom exch1ange propert...
lsatcv0eq 38588 If the sum of two atoms co...
lsatcv1 38589 Two atoms covering the zer...
lsatcvatlem 38590 Lemma for ~ lsatcvat . (C...
lsatcvat 38591 A nonzero subspace less th...
lsatcvat2 38592 A subspace covered by the ...
lsatcvat3 38593 A condition implying that ...
islshpcv 38594 Hyperplane properties expr...
l1cvpat 38595 A subspace covered by the ...
l1cvat 38596 Create an atom under an el...
lshpat 38597 Create an atom under a hyp...
lflset 38600 The set of linear function...
islfl 38601 The predicate "is a linear...
lfli 38602 Property of a linear funct...
islfld 38603 Properties that determine ...
lflf 38604 A linear functional is a f...
lflcl 38605 A linear functional value ...
lfl0 38606 A linear functional is zer...
lfladd 38607 Property of a linear funct...
lflsub 38608 Property of a linear funct...
lflmul 38609 Property of a linear funct...
lfl0f 38610 The zero function is a fun...
lfl1 38611 A nonzero functional has a...
lfladdcl 38612 Closure of addition of two...
lfladdcom 38613 Commutativity of functiona...
lfladdass 38614 Associativity of functiona...
lfladd0l 38615 Functional addition with t...
lflnegcl 38616 Closure of the negative of...
lflnegl 38617 A functional plus its nega...
lflvscl 38618 Closure of a scalar produc...
lflvsdi1 38619 Distributive law for (righ...
lflvsdi2 38620 Reverse distributive law f...
lflvsdi2a 38621 Reverse distributive law f...
lflvsass 38622 Associative law for (right...
lfl0sc 38623 The (right vector space) s...
lflsc0N 38624 The scalar product with th...
lfl1sc 38625 The (right vector space) s...
lkrfval 38628 The kernel of a functional...
lkrval 38629 Value of the kernel of a f...
ellkr 38630 Membership in the kernel o...
lkrval2 38631 Value of the kernel of a f...
ellkr2 38632 Membership in the kernel o...
lkrcl 38633 A member of the kernel of ...
lkrf0 38634 The value of a functional ...
lkr0f 38635 The kernel of the zero fun...
lkrlss 38636 The kernel of a linear fun...
lkrssv 38637 The kernel of a linear fun...
lkrsc 38638 The kernel of a nonzero sc...
lkrscss 38639 The kernel of a scalar pro...
eqlkr 38640 Two functionals with the s...
eqlkr2 38641 Two functionals with the s...
eqlkr3 38642 Two functionals with the s...
lkrlsp 38643 The subspace sum of a kern...
lkrlsp2 38644 The subspace sum of a kern...
lkrlsp3 38645 The subspace sum of a kern...
lkrshp 38646 The kernel of a nonzero fu...
lkrshp3 38647 The kernels of nonzero fun...
lkrshpor 38648 The kernel of a functional...
lkrshp4 38649 A kernel is a hyperplane i...
lshpsmreu 38650 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 38651 Lemma for ~ lshpkrex . Th...
lshpkrlem2 38652 Lemma for ~ lshpkrex . Th...
lshpkrlem3 38653 Lemma for ~ lshpkrex . De...
lshpkrlem4 38654 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 38655 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 38656 Lemma for ~ lshpkrex . Sh...
lshpkrcl 38657 The set ` G ` defined by h...
lshpkr 38658 The kernel of functional `...
lshpkrex 38659 There exists a functional ...
lshpset2N 38660 The set of all hyperplanes...
islshpkrN 38661 The predicate "is a hyperp...
lfl1dim 38662 Equivalent expressions for...
lfl1dim2N 38663 Equivalent expressions for...
ldualset 38666 Define the (left) dual of ...
ldualvbase 38667 The vectors of a dual spac...
ldualelvbase 38668 Utility theorem for conver...
ldualfvadd 38669 Vector addition in the dua...
ldualvadd 38670 Vector addition in the dua...
ldualvaddcl 38671 The value of vector additi...
ldualvaddval 38672 The value of the value of ...
ldualsca 38673 The ring of scalars of the...
ldualsbase 38674 Base set of scalar ring fo...
ldualsaddN 38675 Scalar addition for the du...
ldualsmul 38676 Scalar multiplication for ...
ldualfvs 38677 Scalar product operation f...
ldualvs 38678 Scalar product operation v...
ldualvsval 38679 Value of scalar product op...
ldualvscl 38680 The scalar product operati...
ldualvaddcom 38681 Commutative law for vector...
ldualvsass 38682 Associative law for scalar...
ldualvsass2 38683 Associative law for scalar...
ldualvsdi1 38684 Distributive law for scala...
ldualvsdi2 38685 Reverse distributive law f...
ldualgrplem 38686 Lemma for ~ ldualgrp . (C...
ldualgrp 38687 The dual of a vector space...
ldual0 38688 The zero scalar of the dua...
ldual1 38689 The unit scalar of the dua...
ldualneg 38690 The negative of a scalar o...
ldual0v 38691 The zero vector of the dua...
ldual0vcl 38692 The dual zero vector is a ...
lduallmodlem 38693 Lemma for ~ lduallmod . (...
lduallmod 38694 The dual of a left module ...
lduallvec 38695 The dual of a left vector ...
ldualvsub 38696 The value of vector subtra...
ldualvsubcl 38697 Closure of vector subtract...
ldualvsubval 38698 The value of the value of ...
ldualssvscl 38699 Closure of scalar product ...
ldualssvsubcl 38700 Closure of vector subtract...
ldual0vs 38701 Scalar zero times a functi...
lkr0f2 38702 The kernel of the zero fun...
lduallkr3 38703 The kernels of nonzero fun...
lkrpssN 38704 Proper subset relation bet...
lkrin 38705 Intersection of the kernel...
eqlkr4 38706 Two functionals with the s...
ldual1dim 38707 Equivalent expressions for...
ldualkrsc 38708 The kernel of a nonzero sc...
lkrss 38709 The kernel of a scalar pro...
lkrss2N 38710 Two functionals with kerne...
lkreqN 38711 Proportional functionals h...
lkrlspeqN 38712 Condition for colinear fun...
isopos 38721 The predicate "is an ortho...
opposet 38722 Every orthoposet is a pose...
oposlem 38723 Lemma for orthoposet prope...
op01dm 38724 Conditions necessary for z...
op0cl 38725 An orthoposet has a zero e...
op1cl 38726 An orthoposet has a unity ...
op0le 38727 Orthoposet zero is less th...
ople0 38728 An element less than or eq...
opnlen0 38729 An element not less than a...
lub0N 38730 The least upper bound of t...
opltn0 38731 A lattice element greater ...
ople1 38732 Any element is less than t...
op1le 38733 If the orthoposet unity is...
glb0N 38734 The greatest lower bound o...
opoccl 38735 Closure of orthocomplement...
opococ 38736 Double negative law for or...
opcon3b 38737 Contraposition law for ort...
opcon2b 38738 Orthocomplement contraposi...
opcon1b 38739 Orthocomplement contraposi...
oplecon3 38740 Contraposition law for ort...
oplecon3b 38741 Contraposition law for ort...
oplecon1b 38742 Contraposition law for str...
opoc1 38743 Orthocomplement of orthopo...
opoc0 38744 Orthocomplement of orthopo...
opltcon3b 38745 Contraposition law for str...
opltcon1b 38746 Contraposition law for str...
opltcon2b 38747 Contraposition law for str...
opexmid 38748 Law of excluded middle for...
opnoncon 38749 Law of contradiction for o...
riotaocN 38750 The orthocomplement of the...
cmtfvalN 38751 Value of commutes relation...
cmtvalN 38752 Equivalence for commutes r...
isolat 38753 The predicate "is an ortho...
ollat 38754 An ortholattice is a latti...
olop 38755 An ortholattice is an orth...
olposN 38756 An ortholattice is a poset...
isolatiN 38757 Properties that determine ...
oldmm1 38758 De Morgan's law for meet i...
oldmm2 38759 De Morgan's law for meet i...
oldmm3N 38760 De Morgan's law for meet i...
oldmm4 38761 De Morgan's law for meet i...
oldmj1 38762 De Morgan's law for join i...
oldmj2 38763 De Morgan's law for join i...
oldmj3 38764 De Morgan's law for join i...
oldmj4 38765 De Morgan's law for join i...
olj01 38766 An ortholattice element jo...
olj02 38767 An ortholattice element jo...
olm11 38768 The meet of an ortholattic...
olm12 38769 The meet of an ortholattic...
latmassOLD 38770 Ortholattice meet is assoc...
latm12 38771 A rearrangement of lattice...
latm32 38772 A rearrangement of lattice...
latmrot 38773 Rotate lattice meet of 3 c...
latm4 38774 Rearrangement of lattice m...
latmmdiN 38775 Lattice meet distributes o...
latmmdir 38776 Lattice meet distributes o...
olm01 38777 Meet with lattice zero is ...
olm02 38778 Meet with lattice zero is ...
isoml 38779 The predicate "is an ortho...
isomliN 38780 Properties that determine ...
omlol 38781 An orthomodular lattice is...
omlop 38782 An orthomodular lattice is...
omllat 38783 An orthomodular lattice is...
omllaw 38784 The orthomodular law. (Co...
omllaw2N 38785 Variation of orthomodular ...
omllaw3 38786 Orthomodular law equivalen...
omllaw4 38787 Orthomodular law equivalen...
omllaw5N 38788 The orthomodular law. Rem...
cmtcomlemN 38789 Lemma for ~ cmtcomN . ( ~...
cmtcomN 38790 Commutation is symmetric. ...
cmt2N 38791 Commutation with orthocomp...
cmt3N 38792 Commutation with orthocomp...
cmt4N 38793 Commutation with orthocomp...
cmtbr2N 38794 Alternate definition of th...
cmtbr3N 38795 Alternate definition for t...
cmtbr4N 38796 Alternate definition for t...
lecmtN 38797 Ordered elements commute. ...
cmtidN 38798 Any element commutes with ...
omlfh1N 38799 Foulis-Holland Theorem, pa...
omlfh3N 38800 Foulis-Holland Theorem, pa...
omlmod1i2N 38801 Analogue of modular law ~ ...
omlspjN 38802 Contraction of a Sasaki pr...
cvrfval 38809 Value of covers relation "...
cvrval 38810 Binary relation expressing...
cvrlt 38811 The covers relation implie...
cvrnbtwn 38812 There is no element betwee...
ncvr1 38813 No element covers the latt...
cvrletrN 38814 Property of an element abo...
cvrval2 38815 Binary relation expressing...
cvrnbtwn2 38816 The covers relation implie...
cvrnbtwn3 38817 The covers relation implie...
cvrcon3b 38818 Contraposition law for the...
cvrle 38819 The covers relation implie...
cvrnbtwn4 38820 The covers relation implie...
cvrnle 38821 The covers relation implie...
cvrne 38822 The covers relation implie...
cvrnrefN 38823 The covers relation is not...
cvrcmp 38824 If two lattice elements th...
cvrcmp2 38825 If two lattice elements co...
pats 38826 The set of atoms in a pose...
isat 38827 The predicate "is an atom"...
isat2 38828 The predicate "is an atom"...
atcvr0 38829 An atom covers zero. ( ~ ...
atbase 38830 An atom is a member of the...
atssbase 38831 The set of atoms is a subs...
0ltat 38832 An atom is greater than ze...
leatb 38833 A poset element less than ...
leat 38834 A poset element less than ...
leat2 38835 A nonzero poset element le...
leat3 38836 A poset element less than ...
meetat 38837 The meet of any element wi...
meetat2 38838 The meet of any element wi...
isatl 38840 The predicate "is an atomi...
atllat 38841 An atomic lattice is a lat...
atlpos 38842 An atomic lattice is a pos...
atl0dm 38843 Condition necessary for ze...
atl0cl 38844 An atomic lattice has a ze...
atl0le 38845 Orthoposet zero is less th...
atlle0 38846 An element less than or eq...
atlltn0 38847 A lattice element greater ...
isat3 38848 The predicate "is an atom"...
atn0 38849 An atom is not zero. ( ~ ...
atnle0 38850 An atom is not less than o...
atlen0 38851 A lattice element is nonze...
atcmp 38852 If two atoms are comparabl...
atncmp 38853 Frequently-used variation ...
atnlt 38854 Two atoms cannot satisfy t...
atcvreq0 38855 An element covered by an a...
atncvrN 38856 Two atoms cannot satisfy t...
atlex 38857 Every nonzero element of a...
atnle 38858 Two ways of expressing "an...
atnem0 38859 The meet of distinct atoms...
atlatmstc 38860 An atomic, complete, ortho...
atlatle 38861 The ordering of two Hilber...
atlrelat1 38862 An atomistic lattice with ...
iscvlat 38864 The predicate "is an atomi...
iscvlat2N 38865 The predicate "is an atomi...
cvlatl 38866 An atomic lattice with the...
cvllat 38867 An atomic lattice with the...
cvlposN 38868 An atomic lattice with the...
cvlexch1 38869 An atomic covering lattice...
cvlexch2 38870 An atomic covering lattice...
cvlexchb1 38871 An atomic covering lattice...
cvlexchb2 38872 An atomic covering lattice...
cvlexch3 38873 An atomic covering lattice...
cvlexch4N 38874 An atomic covering lattice...
cvlatexchb1 38875 A version of ~ cvlexchb1 f...
cvlatexchb2 38876 A version of ~ cvlexchb2 f...
cvlatexch1 38877 Atom exchange property. (...
cvlatexch2 38878 Atom exchange property. (...
cvlatexch3 38879 Atom exchange property. (...
cvlcvr1 38880 The covering property. Pr...
cvlcvrp 38881 A Hilbert lattice satisfie...
cvlatcvr1 38882 An atom is covered by its ...
cvlatcvr2 38883 An atom is covered by its ...
cvlsupr2 38884 Two equivalent ways of exp...
cvlsupr3 38885 Two equivalent ways of exp...
cvlsupr4 38886 Consequence of superpositi...
cvlsupr5 38887 Consequence of superpositi...
cvlsupr6 38888 Consequence of superpositi...
cvlsupr7 38889 Consequence of superpositi...
cvlsupr8 38890 Consequence of superpositi...
ishlat1 38893 The predicate "is a Hilber...
ishlat2 38894 The predicate "is a Hilber...
ishlat3N 38895 The predicate "is a Hilber...
ishlatiN 38896 Properties that determine ...
hlomcmcv 38897 A Hilbert lattice is ortho...
hloml 38898 A Hilbert lattice is ortho...
hlclat 38899 A Hilbert lattice is compl...
hlcvl 38900 A Hilbert lattice is an at...
hlatl 38901 A Hilbert lattice is atomi...
hlol 38902 A Hilbert lattice is an or...
hlop 38903 A Hilbert lattice is an or...
hllat 38904 A Hilbert lattice is a lat...
hllatd 38905 Deduction form of ~ hllat ...
hlomcmat 38906 A Hilbert lattice is ortho...
hlpos 38907 A Hilbert lattice is a pos...
hlatjcl 38908 Closure of join operation....
hlatjcom 38909 Commutatitivity of join op...
hlatjidm 38910 Idempotence of join operat...
hlatjass 38911 Lattice join is associativ...
hlatj12 38912 Swap 1st and 2nd members o...
hlatj32 38913 Swap 2nd and 3rd members o...
hlatjrot 38914 Rotate lattice join of 3 c...
hlatj4 38915 Rearrangement of lattice j...
hlatlej1 38916 A join's first argument is...
hlatlej2 38917 A join's second argument i...
glbconN 38918 De Morgan's law for GLB an...
glbconNOLD 38919 Obsolete version of ~ glbc...
glbconxN 38920 De Morgan's law for GLB an...
atnlej1 38921 If an atom is not less tha...
atnlej2 38922 If an atom is not less tha...
hlsuprexch 38923 A Hilbert lattice has the ...
hlexch1 38924 A Hilbert lattice has the ...
hlexch2 38925 A Hilbert lattice has the ...
hlexchb1 38926 A Hilbert lattice has the ...
hlexchb2 38927 A Hilbert lattice has the ...
hlsupr 38928 A Hilbert lattice has the ...
hlsupr2 38929 A Hilbert lattice has the ...
hlhgt4 38930 A Hilbert lattice has a he...
hlhgt2 38931 A Hilbert lattice has a he...
hl0lt1N 38932 Lattice 0 is less than lat...
hlexch3 38933 A Hilbert lattice has the ...
hlexch4N 38934 A Hilbert lattice has the ...
hlatexchb1 38935 A version of ~ hlexchb1 fo...
hlatexchb2 38936 A version of ~ hlexchb2 fo...
hlatexch1 38937 Atom exchange property. (...
hlatexch2 38938 Atom exchange property. (...
hlatmstcOLDN 38939 An atomic, complete, ortho...
hlatle 38940 The ordering of two Hilber...
hlateq 38941 The equality of two Hilber...
hlrelat1 38942 An atomistic lattice with ...
hlrelat5N 38943 An atomistic lattice with ...
hlrelat 38944 A Hilbert lattice is relat...
hlrelat2 38945 A consequence of relative ...
exatleN 38946 A condition for an atom to...
hl2at 38947 A Hilbert lattice has at l...
atex 38948 At least one atom exists. ...
intnatN 38949 If the intersection with a...
2llnne2N 38950 Condition implying that tw...
2llnneN 38951 Condition implying that tw...
cvr1 38952 A Hilbert lattice has the ...
cvr2N 38953 Less-than and covers equiv...
hlrelat3 38954 The Hilbert lattice is rel...
cvrval3 38955 Binary relation expressing...
cvrval4N 38956 Binary relation expressing...
cvrval5 38957 Binary relation expressing...
cvrp 38958 A Hilbert lattice satisfie...
atcvr1 38959 An atom is covered by its ...
atcvr2 38960 An atom is covered by its ...
cvrexchlem 38961 Lemma for ~ cvrexch . ( ~...
cvrexch 38962 A Hilbert lattice satisfie...
cvratlem 38963 Lemma for ~ cvrat . ( ~ a...
cvrat 38964 A nonzero Hilbert lattice ...
ltltncvr 38965 A chained strong ordering ...
ltcvrntr 38966 Non-transitive condition f...
cvrntr 38967 The covers relation is not...
atcvr0eq 38968 The covers relation is not...
lnnat 38969 A line (the join of two di...
atcvrj0 38970 Two atoms covering the zer...
cvrat2 38971 A Hilbert lattice element ...
atcvrneN 38972 Inequality derived from at...
atcvrj1 38973 Condition for an atom to b...
atcvrj2b 38974 Condition for an atom to b...
atcvrj2 38975 Condition for an atom to b...
atleneN 38976 Inequality derived from at...
atltcvr 38977 An equivalence of less-tha...
atle 38978 Any nonzero element has an...
atlt 38979 Two atoms are unequal iff ...
atlelt 38980 Transfer less-than relatio...
2atlt 38981 Given an atom less than an...
atexchcvrN 38982 Atom exchange property. V...
atexchltN 38983 Atom exchange property. V...
cvrat3 38984 A condition implying that ...
cvrat4 38985 A condition implying exist...
cvrat42 38986 Commuted version of ~ cvra...
2atjm 38987 The meet of a line (expres...
atbtwn 38988 Property of a 3rd atom ` R...
atbtwnexOLDN 38989 There exists a 3rd atom ` ...
atbtwnex 38990 Given atoms ` P ` in ` X `...
3noncolr2 38991 Two ways to express 3 non-...
3noncolr1N 38992 Two ways to express 3 non-...
hlatcon3 38993 Atom exchange combined wit...
hlatcon2 38994 Atom exchange combined wit...
4noncolr3 38995 A way to express 4 non-col...
4noncolr2 38996 A way to express 4 non-col...
4noncolr1 38997 A way to express 4 non-col...
athgt 38998 A Hilbert lattice, whose h...
3dim0 38999 There exists a 3-dimension...
3dimlem1 39000 Lemma for ~ 3dim1 . (Cont...
3dimlem2 39001 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 39002 Lemma for ~ 3dim3 . (Cont...
3dimlem3 39003 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 39004 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 39005 Lemma for ~ 3dim3 . (Cont...
3dimlem4 39006 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 39007 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 39008 Lemma for ~ 3dim1 . (Cont...
3dim1 39009 Construct a 3-dimensional ...
3dim2 39010 Construct 2 new layers on ...
3dim3 39011 Construct a new layer on t...
2dim 39012 Generate a height-3 elemen...
1dimN 39013 An atom is covered by a he...
1cvrco 39014 The orthocomplement of an ...
1cvratex 39015 There exists an atom less ...
1cvratlt 39016 An atom less than or equal...
1cvrjat 39017 An element covered by the ...
1cvrat 39018 Create an atom under an el...
ps-1 39019 The join of two atoms ` R ...
ps-2 39020 Lattice analogue for the p...
2atjlej 39021 Two atoms are different if...
hlatexch3N 39022 Rearrange join of atoms in...
hlatexch4 39023 Exchange 2 atoms. (Contri...
ps-2b 39024 Variation of projective ge...
3atlem1 39025 Lemma for ~ 3at . (Contri...
3atlem2 39026 Lemma for ~ 3at . (Contri...
3atlem3 39027 Lemma for ~ 3at . (Contri...
3atlem4 39028 Lemma for ~ 3at . (Contri...
3atlem5 39029 Lemma for ~ 3at . (Contri...
3atlem6 39030 Lemma for ~ 3at . (Contri...
3atlem7 39031 Lemma for ~ 3at . (Contri...
3at 39032 Any three non-colinear ato...
llnset 39047 The set of lattice lines i...
islln 39048 The predicate "is a lattic...
islln4 39049 The predicate "is a lattic...
llni 39050 Condition implying a latti...
llnbase 39051 A lattice line is a lattic...
islln3 39052 The predicate "is a lattic...
islln2 39053 The predicate "is a lattic...
llni2 39054 The join of two different ...
llnnleat 39055 An atom cannot majorize a ...
llnneat 39056 A lattice line is not an a...
2atneat 39057 The join of two distinct a...
llnn0 39058 A lattice line is nonzero....
islln2a 39059 The predicate "is a lattic...
llnle 39060 Any element greater than 0...
atcvrlln2 39061 An atom under a line is co...
atcvrlln 39062 An element covering an ato...
llnexatN 39063 Given an atom on a line, t...
llncmp 39064 If two lattice lines are c...
llnnlt 39065 Two lattice lines cannot s...
2llnmat 39066 Two intersecting lines int...
2at0mat0 39067 Special case of ~ 2atmat0 ...
2atmat0 39068 The meet of two unequal li...
2atm 39069 An atom majorized by two d...
ps-2c 39070 Variation of projective ge...
lplnset 39071 The set of lattice planes ...
islpln 39072 The predicate "is a lattic...
islpln4 39073 The predicate "is a lattic...
lplni 39074 Condition implying a latti...
islpln3 39075 The predicate "is a lattic...
lplnbase 39076 A lattice plane is a latti...
islpln5 39077 The predicate "is a lattic...
islpln2 39078 The predicate "is a lattic...
lplni2 39079 The join of 3 different at...
lvolex3N 39080 There is an atom outside o...
llnmlplnN 39081 The intersection of a line...
lplnle 39082 Any element greater than 0...
lplnnle2at 39083 A lattice line (or atom) c...
lplnnleat 39084 A lattice plane cannot maj...
lplnnlelln 39085 A lattice plane is not les...
2atnelpln 39086 The join of two atoms is n...
lplnneat 39087 No lattice plane is an ato...
lplnnelln 39088 No lattice plane is a latt...
lplnn0N 39089 A lattice plane is nonzero...
islpln2a 39090 The predicate "is a lattic...
islpln2ah 39091 The predicate "is a lattic...
lplnriaN 39092 Property of a lattice plan...
lplnribN 39093 Property of a lattice plan...
lplnric 39094 Property of a lattice plan...
lplnri1 39095 Property of a lattice plan...
lplnri2N 39096 Property of a lattice plan...
lplnri3N 39097 Property of a lattice plan...
lplnllnneN 39098 Two lattice lines defined ...
llncvrlpln2 39099 A lattice line under a lat...
llncvrlpln 39100 An element covering a latt...
2lplnmN 39101 If the join of two lattice...
2llnmj 39102 The meet of two lattice li...
2atmat 39103 The meet of two intersecti...
lplncmp 39104 If two lattice planes are ...
lplnexatN 39105 Given a lattice line on a ...
lplnexllnN 39106 Given an atom on a lattice...
lplnnlt 39107 Two lattice planes cannot ...
2llnjaN 39108 The join of two different ...
2llnjN 39109 The join of two different ...
2llnm2N 39110 The meet of two different ...
2llnm3N 39111 Two lattice lines in a lat...
2llnm4 39112 Two lattice lines that maj...
2llnmeqat 39113 An atom equals the interse...
lvolset 39114 The set of 3-dim lattice v...
islvol 39115 The predicate "is a 3-dim ...
islvol4 39116 The predicate "is a 3-dim ...
lvoli 39117 Condition implying a 3-dim...
islvol3 39118 The predicate "is a 3-dim ...
lvoli3 39119 Condition implying a 3-dim...
lvolbase 39120 A 3-dim lattice volume is ...
islvol5 39121 The predicate "is a 3-dim ...
islvol2 39122 The predicate "is a 3-dim ...
lvoli2 39123 The join of 4 different at...
lvolnle3at 39124 A lattice plane (or lattic...
lvolnleat 39125 An atom cannot majorize a ...
lvolnlelln 39126 A lattice line cannot majo...
lvolnlelpln 39127 A lattice plane cannot maj...
3atnelvolN 39128 The join of 3 atoms is not...
2atnelvolN 39129 The join of two atoms is n...
lvolneatN 39130 No lattice volume is an at...
lvolnelln 39131 No lattice volume is a lat...
lvolnelpln 39132 No lattice volume is a lat...
lvoln0N 39133 A lattice volume is nonzer...
islvol2aN 39134 The predicate "is a lattic...
4atlem0a 39135 Lemma for ~ 4at . (Contri...
4atlem0ae 39136 Lemma for ~ 4at . (Contri...
4atlem0be 39137 Lemma for ~ 4at . (Contri...
4atlem3 39138 Lemma for ~ 4at . Break i...
4atlem3a 39139 Lemma for ~ 4at . Break i...
4atlem3b 39140 Lemma for ~ 4at . Break i...
4atlem4a 39141 Lemma for ~ 4at . Frequen...
4atlem4b 39142 Lemma for ~ 4at . Frequen...
4atlem4c 39143 Lemma for ~ 4at . Frequen...
4atlem4d 39144 Lemma for ~ 4at . Frequen...
4atlem9 39145 Lemma for ~ 4at . Substit...
4atlem10a 39146 Lemma for ~ 4at . Substit...
4atlem10b 39147 Lemma for ~ 4at . Substit...
4atlem10 39148 Lemma for ~ 4at . Combine...
4atlem11a 39149 Lemma for ~ 4at . Substit...
4atlem11b 39150 Lemma for ~ 4at . Substit...
4atlem11 39151 Lemma for ~ 4at . Combine...
4atlem12a 39152 Lemma for ~ 4at . Substit...
4atlem12b 39153 Lemma for ~ 4at . Substit...
4atlem12 39154 Lemma for ~ 4at . Combine...
4at 39155 Four atoms determine a lat...
4at2 39156 Four atoms determine a lat...
lplncvrlvol2 39157 A lattice line under a lat...
lplncvrlvol 39158 An element covering a latt...
lvolcmp 39159 If two lattice planes are ...
lvolnltN 39160 Two lattice volumes cannot...
2lplnja 39161 The join of two different ...
2lplnj 39162 The join of two different ...
2lplnm2N 39163 The meet of two different ...
2lplnmj 39164 The meet of two lattice pl...
dalemkehl 39165 Lemma for ~ dath . Freque...
dalemkelat 39166 Lemma for ~ dath . Freque...
dalemkeop 39167 Lemma for ~ dath . Freque...
dalempea 39168 Lemma for ~ dath . Freque...
dalemqea 39169 Lemma for ~ dath . Freque...
dalemrea 39170 Lemma for ~ dath . Freque...
dalemsea 39171 Lemma for ~ dath . Freque...
dalemtea 39172 Lemma for ~ dath . Freque...
dalemuea 39173 Lemma for ~ dath . Freque...
dalemyeo 39174 Lemma for ~ dath . Freque...
dalemzeo 39175 Lemma for ~ dath . Freque...
dalemclpjs 39176 Lemma for ~ dath . Freque...
dalemclqjt 39177 Lemma for ~ dath . Freque...
dalemclrju 39178 Lemma for ~ dath . Freque...
dalem-clpjq 39179 Lemma for ~ dath . Freque...
dalemceb 39180 Lemma for ~ dath . Freque...
dalempeb 39181 Lemma for ~ dath . Freque...
dalemqeb 39182 Lemma for ~ dath . Freque...
dalemreb 39183 Lemma for ~ dath . Freque...
dalemseb 39184 Lemma for ~ dath . Freque...
dalemteb 39185 Lemma for ~ dath . Freque...
dalemueb 39186 Lemma for ~ dath . Freque...
dalempjqeb 39187 Lemma for ~ dath . Freque...
dalemsjteb 39188 Lemma for ~ dath . Freque...
dalemtjueb 39189 Lemma for ~ dath . Freque...
dalemqrprot 39190 Lemma for ~ dath . Freque...
dalemyeb 39191 Lemma for ~ dath . Freque...
dalemcnes 39192 Lemma for ~ dath . Freque...
dalempnes 39193 Lemma for ~ dath . Freque...
dalemqnet 39194 Lemma for ~ dath . Freque...
dalempjsen 39195 Lemma for ~ dath . Freque...
dalemply 39196 Lemma for ~ dath . Freque...
dalemsly 39197 Lemma for ~ dath . Freque...
dalemswapyz 39198 Lemma for ~ dath . Swap t...
dalemrot 39199 Lemma for ~ dath . Rotate...
dalemrotyz 39200 Lemma for ~ dath . Rotate...
dalem1 39201 Lemma for ~ dath . Show t...
dalemcea 39202 Lemma for ~ dath . Freque...
dalem2 39203 Lemma for ~ dath . Show t...
dalemdea 39204 Lemma for ~ dath . Freque...
dalemeea 39205 Lemma for ~ dath . Freque...
dalem3 39206 Lemma for ~ dalemdnee . (...
dalem4 39207 Lemma for ~ dalemdnee . (...
dalemdnee 39208 Lemma for ~ dath . Axis o...
dalem5 39209 Lemma for ~ dath . Atom `...
dalem6 39210 Lemma for ~ dath . Analog...
dalem7 39211 Lemma for ~ dath . Analog...
dalem8 39212 Lemma for ~ dath . Plane ...
dalem-cly 39213 Lemma for ~ dalem9 . Cent...
dalem9 39214 Lemma for ~ dath . Since ...
dalem10 39215 Lemma for ~ dath . Atom `...
dalem11 39216 Lemma for ~ dath . Analog...
dalem12 39217 Lemma for ~ dath . Analog...
dalem13 39218 Lemma for ~ dalem14 . (Co...
dalem14 39219 Lemma for ~ dath . Planes...
dalem15 39220 Lemma for ~ dath . The ax...
dalem16 39221 Lemma for ~ dath . The at...
dalem17 39222 Lemma for ~ dath . When p...
dalem18 39223 Lemma for ~ dath . Show t...
dalem19 39224 Lemma for ~ dath . Show t...
dalemccea 39225 Lemma for ~ dath . Freque...
dalemddea 39226 Lemma for ~ dath . Freque...
dalem-ccly 39227 Lemma for ~ dath . Freque...
dalem-ddly 39228 Lemma for ~ dath . Freque...
dalemccnedd 39229 Lemma for ~ dath . Freque...
dalemclccjdd 39230 Lemma for ~ dath . Freque...
dalemcceb 39231 Lemma for ~ dath . Freque...
dalemswapyzps 39232 Lemma for ~ dath . Swap t...
dalemrotps 39233 Lemma for ~ dath . Rotate...
dalemcjden 39234 Lemma for ~ dath . Show t...
dalem20 39235 Lemma for ~ dath . Show t...
dalem21 39236 Lemma for ~ dath . Show t...
dalem22 39237 Lemma for ~ dath . Show t...
dalem23 39238 Lemma for ~ dath . Show t...
dalem24 39239 Lemma for ~ dath . Show t...
dalem25 39240 Lemma for ~ dath . Show t...
dalem27 39241 Lemma for ~ dath . Show t...
dalem28 39242 Lemma for ~ dath . Lemma ...
dalem29 39243 Lemma for ~ dath . Analog...
dalem30 39244 Lemma for ~ dath . Analog...
dalem31N 39245 Lemma for ~ dath . Analog...
dalem32 39246 Lemma for ~ dath . Analog...
dalem33 39247 Lemma for ~ dath . Analog...
dalem34 39248 Lemma for ~ dath . Analog...
dalem35 39249 Lemma for ~ dath . Analog...
dalem36 39250 Lemma for ~ dath . Analog...
dalem37 39251 Lemma for ~ dath . Analog...
dalem38 39252 Lemma for ~ dath . Plane ...
dalem39 39253 Lemma for ~ dath . Auxili...
dalem40 39254 Lemma for ~ dath . Analog...
dalem41 39255 Lemma for ~ dath . (Contr...
dalem42 39256 Lemma for ~ dath . Auxili...
dalem43 39257 Lemma for ~ dath . Planes...
dalem44 39258 Lemma for ~ dath . Dummy ...
dalem45 39259 Lemma for ~ dath . Dummy ...
dalem46 39260 Lemma for ~ dath . Analog...
dalem47 39261 Lemma for ~ dath . Analog...
dalem48 39262 Lemma for ~ dath . Analog...
dalem49 39263 Lemma for ~ dath . Analog...
dalem50 39264 Lemma for ~ dath . Analog...
dalem51 39265 Lemma for ~ dath . Constr...
dalem52 39266 Lemma for ~ dath . Lines ...
dalem53 39267 Lemma for ~ dath . The au...
dalem54 39268 Lemma for ~ dath . Line `...
dalem55 39269 Lemma for ~ dath . Lines ...
dalem56 39270 Lemma for ~ dath . Analog...
dalem57 39271 Lemma for ~ dath . Axis o...
dalem58 39272 Lemma for ~ dath . Analog...
dalem59 39273 Lemma for ~ dath . Analog...
dalem60 39274 Lemma for ~ dath . ` B ` i...
dalem61 39275 Lemma for ~ dath . Show t...
dalem62 39276 Lemma for ~ dath . Elimin...
dalem63 39277 Lemma for ~ dath . Combin...
dath 39278 Desargues's theorem of pro...
dath2 39279 Version of Desargues's the...
lineset 39280 The set of lines in a Hilb...
isline 39281 The predicate "is a line"....
islinei 39282 Condition implying "is a l...
pointsetN 39283 The set of points in a Hil...
ispointN 39284 The predicate "is a point"...
atpointN 39285 The singleton of an atom i...
psubspset 39286 The set of projective subs...
ispsubsp 39287 The predicate "is a projec...
ispsubsp2 39288 The predicate "is a projec...
psubspi 39289 Property of a projective s...
psubspi2N 39290 Property of a projective s...
0psubN 39291 The empty set is a project...
snatpsubN 39292 The singleton of an atom i...
pointpsubN 39293 A point (singleton of an a...
linepsubN 39294 A line is a projective sub...
atpsubN 39295 The set of all atoms is a ...
psubssat 39296 A projective subspace cons...
psubatN 39297 A member of a projective s...
pmapfval 39298 The projective map of a Hi...
pmapval 39299 Value of the projective ma...
elpmap 39300 Member of a projective map...
pmapssat 39301 The projective map of a Hi...
pmapssbaN 39302 A weakening of ~ pmapssat ...
pmaple 39303 The projective map of a Hi...
pmap11 39304 The projective map of a Hi...
pmapat 39305 The projective map of an a...
elpmapat 39306 Member of the projective m...
pmap0 39307 Value of the projective ma...
pmapeq0 39308 A projective map value is ...
pmap1N 39309 Value of the projective ma...
pmapsub 39310 The projective map of a Hi...
pmapglbx 39311 The projective map of the ...
pmapglb 39312 The projective map of the ...
pmapglb2N 39313 The projective map of the ...
pmapglb2xN 39314 The projective map of the ...
pmapmeet 39315 The projective map of a me...
isline2 39316 Definition of line in term...
linepmap 39317 A line described with a pr...
isline3 39318 Definition of line in term...
isline4N 39319 Definition of line in term...
lneq2at 39320 A line equals the join of ...
lnatexN 39321 There is an atom in a line...
lnjatN 39322 Given an atom in a line, t...
lncvrelatN 39323 A lattice element covered ...
lncvrat 39324 A line covers the atoms it...
lncmp 39325 If two lines are comparabl...
2lnat 39326 Two intersecting lines int...
2atm2atN 39327 Two joins with a common at...
2llnma1b 39328 Generalization of ~ 2llnma...
2llnma1 39329 Two different intersecting...
2llnma3r 39330 Two different intersecting...
2llnma2 39331 Two different intersecting...
2llnma2rN 39332 Two different intersecting...
cdlema1N 39333 A condition for required f...
cdlema2N 39334 A condition for required f...
cdlemblem 39335 Lemma for ~ cdlemb . (Con...
cdlemb 39336 Given two atoms not less t...
paddfval 39339 Projective subspace sum op...
paddval 39340 Projective subspace sum op...
elpadd 39341 Member of a projective sub...
elpaddn0 39342 Member of projective subsp...
paddvaln0N 39343 Projective subspace sum op...
elpaddri 39344 Condition implying members...
elpaddatriN 39345 Condition implying members...
elpaddat 39346 Membership in a projective...
elpaddatiN 39347 Consequence of membership ...
elpadd2at 39348 Membership in a projective...
elpadd2at2 39349 Membership in a projective...
paddunssN 39350 Projective subspace sum in...
elpadd0 39351 Member of projective subsp...
paddval0 39352 Projective subspace sum wi...
padd01 39353 Projective subspace sum wi...
padd02 39354 Projective subspace sum wi...
paddcom 39355 Projective subspace sum co...
paddssat 39356 A projective subspace sum ...
sspadd1 39357 A projective subspace sum ...
sspadd2 39358 A projective subspace sum ...
paddss1 39359 Subset law for projective ...
paddss2 39360 Subset law for projective ...
paddss12 39361 Subset law for projective ...
paddasslem1 39362 Lemma for ~ paddass . (Co...
paddasslem2 39363 Lemma for ~ paddass . (Co...
paddasslem3 39364 Lemma for ~ paddass . Res...
paddasslem4 39365 Lemma for ~ paddass . Com...
paddasslem5 39366 Lemma for ~ paddass . Sho...
paddasslem6 39367 Lemma for ~ paddass . (Co...
paddasslem7 39368 Lemma for ~ paddass . Com...
paddasslem8 39369 Lemma for ~ paddass . (Co...
paddasslem9 39370 Lemma for ~ paddass . Com...
paddasslem10 39371 Lemma for ~ paddass . Use...
paddasslem11 39372 Lemma for ~ paddass . The...
paddasslem12 39373 Lemma for ~ paddass . The...
paddasslem13 39374 Lemma for ~ paddass . The...
paddasslem14 39375 Lemma for ~ paddass . Rem...
paddasslem15 39376 Lemma for ~ paddass . Use...
paddasslem16 39377 Lemma for ~ paddass . Use...
paddasslem17 39378 Lemma for ~ paddass . The...
paddasslem18 39379 Lemma for ~ paddass . Com...
paddass 39380 Projective subspace sum is...
padd12N 39381 Commutative/associative la...
padd4N 39382 Rearrangement of 4 terms i...
paddidm 39383 Projective subspace sum is...
paddclN 39384 The projective sum of two ...
paddssw1 39385 Subset law for projective ...
paddssw2 39386 Subset law for projective ...
paddss 39387 Subset law for projective ...
pmodlem1 39388 Lemma for ~ pmod1i . (Con...
pmodlem2 39389 Lemma for ~ pmod1i . (Con...
pmod1i 39390 The modular law holds in a...
pmod2iN 39391 Dual of the modular law. ...
pmodN 39392 The modular law for projec...
pmodl42N 39393 Lemma derived from modular...
pmapjoin 39394 The projective map of the ...
pmapjat1 39395 The projective map of the ...
pmapjat2 39396 The projective map of the ...
pmapjlln1 39397 The projective map of the ...
hlmod1i 39398 A version of the modular l...
atmod1i1 39399 Version of modular law ~ p...
atmod1i1m 39400 Version of modular law ~ p...
atmod1i2 39401 Version of modular law ~ p...
llnmod1i2 39402 Version of modular law ~ p...
atmod2i1 39403 Version of modular law ~ p...
atmod2i2 39404 Version of modular law ~ p...
llnmod2i2 39405 Version of modular law ~ p...
atmod3i1 39406 Version of modular law tha...
atmod3i2 39407 Version of modular law tha...
atmod4i1 39408 Version of modular law tha...
atmod4i2 39409 Version of modular law tha...
llnexchb2lem 39410 Lemma for ~ llnexchb2 . (...
llnexchb2 39411 Line exchange property (co...
llnexch2N 39412 Line exchange property (co...
dalawlem1 39413 Lemma for ~ dalaw . Speci...
dalawlem2 39414 Lemma for ~ dalaw . Utili...
dalawlem3 39415 Lemma for ~ dalaw . First...
dalawlem4 39416 Lemma for ~ dalaw . Secon...
dalawlem5 39417 Lemma for ~ dalaw . Speci...
dalawlem6 39418 Lemma for ~ dalaw . First...
dalawlem7 39419 Lemma for ~ dalaw . Secon...
dalawlem8 39420 Lemma for ~ dalaw . Speci...
dalawlem9 39421 Lemma for ~ dalaw . Speci...
dalawlem10 39422 Lemma for ~ dalaw . Combi...
dalawlem11 39423 Lemma for ~ dalaw . First...
dalawlem12 39424 Lemma for ~ dalaw . Secon...
dalawlem13 39425 Lemma for ~ dalaw . Speci...
dalawlem14 39426 Lemma for ~ dalaw . Combi...
dalawlem15 39427 Lemma for ~ dalaw . Swap ...
dalaw 39428 Desargues's law, derived f...
pclfvalN 39431 The projective subspace cl...
pclvalN 39432 Value of the projective su...
pclclN 39433 Closure of the projective ...
elpclN 39434 Membership in the projecti...
elpcliN 39435 Implication of membership ...
pclssN 39436 Ordering is preserved by s...
pclssidN 39437 A set of atoms is included...
pclidN 39438 The projective subspace cl...
pclbtwnN 39439 A projective subspace sand...
pclunN 39440 The projective subspace cl...
pclun2N 39441 The projective subspace cl...
pclfinN 39442 The projective subspace cl...
pclcmpatN 39443 The set of projective subs...
polfvalN 39446 The projective subspace po...
polvalN 39447 Value of the projective su...
polval2N 39448 Alternate expression for v...
polsubN 39449 The polarity of a set of a...
polssatN 39450 The polarity of a set of a...
pol0N 39451 The polarity of the empty ...
pol1N 39452 The polarity of the whole ...
2pol0N 39453 The closed subspace closur...
polpmapN 39454 The polarity of a projecti...
2polpmapN 39455 Double polarity of a proje...
2polvalN 39456 Value of double polarity. ...
2polssN 39457 A set of atoms is a subset...
3polN 39458 Triple polarity cancels to...
polcon3N 39459 Contraposition law for pol...
2polcon4bN 39460 Contraposition law for pol...
polcon2N 39461 Contraposition law for pol...
polcon2bN 39462 Contraposition law for pol...
pclss2polN 39463 The projective subspace cl...
pcl0N 39464 The projective subspace cl...
pcl0bN 39465 The projective subspace cl...
pmaplubN 39466 The LUB of a projective ma...
sspmaplubN 39467 A set of atoms is a subset...
2pmaplubN 39468 Double projective map of a...
paddunN 39469 The closure of the project...
poldmj1N 39470 De Morgan's law for polari...
pmapj2N 39471 The projective map of the ...
pmapocjN 39472 The projective map of the ...
polatN 39473 The polarity of the single...
2polatN 39474 Double polarity of the sin...
pnonsingN 39475 The intersection of a set ...
psubclsetN 39478 The set of closed projecti...
ispsubclN 39479 The predicate "is a closed...
psubcliN 39480 Property of a closed proje...
psubcli2N 39481 Property of a closed proje...
psubclsubN 39482 A closed projective subspa...
psubclssatN 39483 A closed projective subspa...
pmapidclN 39484 Projective map of the LUB ...
0psubclN 39485 The empty set is a closed ...
1psubclN 39486 The set of all atoms is a ...
atpsubclN 39487 A point (singleton of an a...
pmapsubclN 39488 A projective map value is ...
ispsubcl2N 39489 Alternate predicate for "i...
psubclinN 39490 The intersection of two cl...
paddatclN 39491 The projective sum of a cl...
pclfinclN 39492 The projective subspace cl...
linepsubclN 39493 A line is a closed project...
polsubclN 39494 A polarity is a closed pro...
poml4N 39495 Orthomodular law for proje...
poml5N 39496 Orthomodular law for proje...
poml6N 39497 Orthomodular law for proje...
osumcllem1N 39498 Lemma for ~ osumclN . (Co...
osumcllem2N 39499 Lemma for ~ osumclN . (Co...
osumcllem3N 39500 Lemma for ~ osumclN . (Co...
osumcllem4N 39501 Lemma for ~ osumclN . (Co...
osumcllem5N 39502 Lemma for ~ osumclN . (Co...
osumcllem6N 39503 Lemma for ~ osumclN . Use...
osumcllem7N 39504 Lemma for ~ osumclN . (Co...
osumcllem8N 39505 Lemma for ~ osumclN . (Co...
osumcllem9N 39506 Lemma for ~ osumclN . (Co...
osumcllem10N 39507 Lemma for ~ osumclN . Con...
osumcllem11N 39508 Lemma for ~ osumclN . (Co...
osumclN 39509 Closure of orthogonal sum....
pmapojoinN 39510 For orthogonal elements, p...
pexmidN 39511 Excluded middle law for cl...
pexmidlem1N 39512 Lemma for ~ pexmidN . Hol...
pexmidlem2N 39513 Lemma for ~ pexmidN . (Co...
pexmidlem3N 39514 Lemma for ~ pexmidN . Use...
pexmidlem4N 39515 Lemma for ~ pexmidN . (Co...
pexmidlem5N 39516 Lemma for ~ pexmidN . (Co...
pexmidlem6N 39517 Lemma for ~ pexmidN . (Co...
pexmidlem7N 39518 Lemma for ~ pexmidN . Con...
pexmidlem8N 39519 Lemma for ~ pexmidN . The...
pexmidALTN 39520 Excluded middle law for cl...
pl42lem1N 39521 Lemma for ~ pl42N . (Cont...
pl42lem2N 39522 Lemma for ~ pl42N . (Cont...
pl42lem3N 39523 Lemma for ~ pl42N . (Cont...
pl42lem4N 39524 Lemma for ~ pl42N . (Cont...
pl42N 39525 Law holding in a Hilbert l...
watfvalN 39534 The W atoms function. (Co...
watvalN 39535 Value of the W atoms funct...
iswatN 39536 The predicate "is a W atom...
lhpset 39537 The set of co-atoms (latti...
islhp 39538 The predicate "is a co-ato...
islhp2 39539 The predicate "is a co-ato...
lhpbase 39540 A co-atom is a member of t...
lhp1cvr 39541 The lattice unity covers a...
lhplt 39542 An atom under a co-atom is...
lhp2lt 39543 The join of two atoms unde...
lhpexlt 39544 There exists an atom less ...
lhp0lt 39545 A co-atom is greater than ...
lhpn0 39546 A co-atom is nonzero. TOD...
lhpexle 39547 There exists an atom under...
lhpexnle 39548 There exists an atom not u...
lhpexle1lem 39549 Lemma for ~ lhpexle1 and o...
lhpexle1 39550 There exists an atom under...
lhpexle2lem 39551 Lemma for ~ lhpexle2 . (C...
lhpexle2 39552 There exists atom under a ...
lhpexle3lem 39553 There exists atom under a ...
lhpexle3 39554 There exists atom under a ...
lhpex2leN 39555 There exist at least two d...
lhpoc 39556 The orthocomplement of a c...
lhpoc2N 39557 The orthocomplement of an ...
lhpocnle 39558 The orthocomplement of a c...
lhpocat 39559 The orthocomplement of a c...
lhpocnel 39560 The orthocomplement of a c...
lhpocnel2 39561 The orthocomplement of a c...
lhpjat1 39562 The join of a co-atom (hyp...
lhpjat2 39563 The join of a co-atom (hyp...
lhpj1 39564 The join of a co-atom (hyp...
lhpmcvr 39565 The meet of a lattice hype...
lhpmcvr2 39566 Alternate way to express t...
lhpmcvr3 39567 Specialization of ~ lhpmcv...
lhpmcvr4N 39568 Specialization of ~ lhpmcv...
lhpmcvr5N 39569 Specialization of ~ lhpmcv...
lhpmcvr6N 39570 Specialization of ~ lhpmcv...
lhpm0atN 39571 If the meet of a lattice h...
lhpmat 39572 An element covered by the ...
lhpmatb 39573 An element covered by the ...
lhp2at0 39574 Join and meet with differe...
lhp2atnle 39575 Inequality for 2 different...
lhp2atne 39576 Inequality for joins with ...
lhp2at0nle 39577 Inequality for 2 different...
lhp2at0ne 39578 Inequality for joins with ...
lhpelim 39579 Eliminate an atom not unde...
lhpmod2i2 39580 Modular law for hyperplane...
lhpmod6i1 39581 Modular law for hyperplane...
lhprelat3N 39582 The Hilbert lattice is rel...
cdlemb2 39583 Given two atoms not under ...
lhple 39584 Property of a lattice elem...
lhpat 39585 Create an atom under a co-...
lhpat4N 39586 Property of an atom under ...
lhpat2 39587 Create an atom under a co-...
lhpat3 39588 There is only one atom und...
4atexlemk 39589 Lemma for ~ 4atexlem7 . (...
4atexlemw 39590 Lemma for ~ 4atexlem7 . (...
4atexlempw 39591 Lemma for ~ 4atexlem7 . (...
4atexlemp 39592 Lemma for ~ 4atexlem7 . (...
4atexlemq 39593 Lemma for ~ 4atexlem7 . (...
4atexlems 39594 Lemma for ~ 4atexlem7 . (...
4atexlemt 39595 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 39596 Lemma for ~ 4atexlem7 . (...
4atexlempnq 39597 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 39598 Lemma for ~ 4atexlem7 . (...
4atexlemkl 39599 Lemma for ~ 4atexlem7 . (...
4atexlemkc 39600 Lemma for ~ 4atexlem7 . (...
4atexlemwb 39601 Lemma for ~ 4atexlem7 . (...
4atexlempsb 39602 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 39603 Lemma for ~ 4atexlem7 . (...
4atexlempns 39604 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 39605 Lemma for ~ 4atexlem7 . S...
4atexlemu 39606 Lemma for ~ 4atexlem7 . (...
4atexlemv 39607 Lemma for ~ 4atexlem7 . (...
4atexlemunv 39608 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 39609 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 39610 Lemma for ~ 4atexlem7 . (...
4atexlemc 39611 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 39612 Lemma for ~ 4atexlem7 . (...
4atexlemex2 39613 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 39614 Lemma for ~ 4atexlem7 . (...
4atexlemex4 39615 Lemma for ~ 4atexlem7 . S...
4atexlemex6 39616 Lemma for ~ 4atexlem7 . (...
4atexlem7 39617 Whenever there are at leas...
4atex 39618 Whenever there are at leas...
4atex2 39619 More general version of ~ ...
4atex2-0aOLDN 39620 Same as ~ 4atex2 except th...
4atex2-0bOLDN 39621 Same as ~ 4atex2 except th...
4atex2-0cOLDN 39622 Same as ~ 4atex2 except th...
4atex3 39623 More general version of ~ ...
lautset 39624 The set of lattice automor...
islaut 39625 The predicate "is a lattic...
lautle 39626 Less-than or equal propert...
laut1o 39627 A lattice automorphism is ...
laut11 39628 One-to-one property of a l...
lautcl 39629 A lattice automorphism val...
lautcnvclN 39630 Reverse closure of a latti...
lautcnvle 39631 Less-than or equal propert...
lautcnv 39632 The converse of a lattice ...
lautlt 39633 Less-than property of a la...
lautcvr 39634 Covering property of a lat...
lautj 39635 Meet property of a lattice...
lautm 39636 Meet property of a lattice...
lauteq 39637 A lattice automorphism arg...
idlaut 39638 The identity function is a...
lautco 39639 The composition of two lat...
pautsetN 39640 The set of projective auto...
ispautN 39641 The predicate "is a projec...
ldilfset 39650 The mapping from fiducial ...
ldilset 39651 The set of lattice dilatio...
isldil 39652 The predicate "is a lattic...
ldillaut 39653 A lattice dilation is an a...
ldil1o 39654 A lattice dilation is a on...
ldilval 39655 Value of a lattice dilatio...
idldil 39656 The identity function is a...
ldilcnv 39657 The converse of a lattice ...
ldilco 39658 The composition of two lat...
ltrnfset 39659 The set of all lattice tra...
ltrnset 39660 The set of lattice transla...
isltrn 39661 The predicate "is a lattic...
isltrn2N 39662 The predicate "is a lattic...
ltrnu 39663 Uniqueness property of a l...
ltrnldil 39664 A lattice translation is a...
ltrnlaut 39665 A lattice translation is a...
ltrn1o 39666 A lattice translation is a...
ltrncl 39667 Closure of a lattice trans...
ltrn11 39668 One-to-one property of a l...
ltrncnvnid 39669 If a translation is differ...
ltrncoidN 39670 Two translations are equal...
ltrnle 39671 Less-than or equal propert...
ltrncnvleN 39672 Less-than or equal propert...
ltrnm 39673 Lattice translation of a m...
ltrnj 39674 Lattice translation of a m...
ltrncvr 39675 Covering property of a lat...
ltrnval1 39676 Value of a lattice transla...
ltrnid 39677 A lattice translation is t...
ltrnnid 39678 If a lattice translation i...
ltrnatb 39679 The lattice translation of...
ltrncnvatb 39680 The converse of the lattic...
ltrnel 39681 The lattice translation of...
ltrnat 39682 The lattice translation of...
ltrncnvat 39683 The converse of the lattic...
ltrncnvel 39684 The converse of the lattic...
ltrncoelN 39685 Composition of lattice tra...
ltrncoat 39686 Composition of lattice tra...
ltrncoval 39687 Two ways to express value ...
ltrncnv 39688 The converse of a lattice ...
ltrn11at 39689 Frequently used one-to-one...
ltrneq2 39690 The equality of two transl...
ltrneq 39691 The equality of two transl...
idltrn 39692 The identity function is a...
ltrnmw 39693 Property of lattice transl...
dilfsetN 39694 The mapping from fiducial ...
dilsetN 39695 The set of dilations for a...
isdilN 39696 The predicate "is a dilati...
trnfsetN 39697 The mapping from fiducial ...
trnsetN 39698 The set of translations fo...
istrnN 39699 The predicate "is a transl...
trlfset 39702 The set of all traces of l...
trlset 39703 The set of traces of latti...
trlval 39704 The value of the trace of ...
trlval2 39705 The value of the trace of ...
trlcl 39706 Closure of the trace of a ...
trlcnv 39707 The trace of the converse ...
trljat1 39708 The value of a translation...
trljat2 39709 The value of a translation...
trljat3 39710 The value of a translation...
trlat 39711 If an atom differs from it...
trl0 39712 If an atom not under the f...
trlator0 39713 The trace of a lattice tra...
trlatn0 39714 The trace of a lattice tra...
trlnidat 39715 The trace of a lattice tra...
ltrnnidn 39716 If a lattice translation i...
ltrnideq 39717 Property of the identity l...
trlid0 39718 The trace of the identity ...
trlnidatb 39719 A lattice translation is n...
trlid0b 39720 A lattice translation is t...
trlnid 39721 Different translations wit...
ltrn2ateq 39722 Property of the equality o...
ltrnateq 39723 If any atom (under ` W ` )...
ltrnatneq 39724 If any atom (under ` W ` )...
ltrnatlw 39725 If the value of an atom eq...
trlle 39726 The trace of a lattice tra...
trlne 39727 The trace of a lattice tra...
trlnle 39728 The atom not under the fid...
trlval3 39729 The value of the trace of ...
trlval4 39730 The value of the trace of ...
trlval5 39731 The value of the trace of ...
arglem1N 39732 Lemma for Desargues's law....
cdlemc1 39733 Part of proof of Lemma C i...
cdlemc2 39734 Part of proof of Lemma C i...
cdlemc3 39735 Part of proof of Lemma C i...
cdlemc4 39736 Part of proof of Lemma C i...
cdlemc5 39737 Lemma for ~ cdlemc . (Con...
cdlemc6 39738 Lemma for ~ cdlemc . (Con...
cdlemc 39739 Lemma C in [Crawley] p. 11...
cdlemd1 39740 Part of proof of Lemma D i...
cdlemd2 39741 Part of proof of Lemma D i...
cdlemd3 39742 Part of proof of Lemma D i...
cdlemd4 39743 Part of proof of Lemma D i...
cdlemd5 39744 Part of proof of Lemma D i...
cdlemd6 39745 Part of proof of Lemma D i...
cdlemd7 39746 Part of proof of Lemma D i...
cdlemd8 39747 Part of proof of Lemma D i...
cdlemd9 39748 Part of proof of Lemma D i...
cdlemd 39749 If two translations agree ...
ltrneq3 39750 Two translations agree at ...
cdleme00a 39751 Part of proof of Lemma E i...
cdleme0aa 39752 Part of proof of Lemma E i...
cdleme0a 39753 Part of proof of Lemma E i...
cdleme0b 39754 Part of proof of Lemma E i...
cdleme0c 39755 Part of proof of Lemma E i...
cdleme0cp 39756 Part of proof of Lemma E i...
cdleme0cq 39757 Part of proof of Lemma E i...
cdleme0dN 39758 Part of proof of Lemma E i...
cdleme0e 39759 Part of proof of Lemma E i...
cdleme0fN 39760 Part of proof of Lemma E i...
cdleme0gN 39761 Part of proof of Lemma E i...
cdlemeulpq 39762 Part of proof of Lemma E i...
cdleme01N 39763 Part of proof of Lemma E i...
cdleme02N 39764 Part of proof of Lemma E i...
cdleme0ex1N 39765 Part of proof of Lemma E i...
cdleme0ex2N 39766 Part of proof of Lemma E i...
cdleme0moN 39767 Part of proof of Lemma E i...
cdleme1b 39768 Part of proof of Lemma E i...
cdleme1 39769 Part of proof of Lemma E i...
cdleme2 39770 Part of proof of Lemma E i...
cdleme3b 39771 Part of proof of Lemma E i...
cdleme3c 39772 Part of proof of Lemma E i...
cdleme3d 39773 Part of proof of Lemma E i...
cdleme3e 39774 Part of proof of Lemma E i...
cdleme3fN 39775 Part of proof of Lemma E i...
cdleme3g 39776 Part of proof of Lemma E i...
cdleme3h 39777 Part of proof of Lemma E i...
cdleme3fa 39778 Part of proof of Lemma E i...
cdleme3 39779 Part of proof of Lemma E i...
cdleme4 39780 Part of proof of Lemma E i...
cdleme4a 39781 Part of proof of Lemma E i...
cdleme5 39782 Part of proof of Lemma E i...
cdleme6 39783 Part of proof of Lemma E i...
cdleme7aa 39784 Part of proof of Lemma E i...
cdleme7a 39785 Part of proof of Lemma E i...
cdleme7b 39786 Part of proof of Lemma E i...
cdleme7c 39787 Part of proof of Lemma E i...
cdleme7d 39788 Part of proof of Lemma E i...
cdleme7e 39789 Part of proof of Lemma E i...
cdleme7ga 39790 Part of proof of Lemma E i...
cdleme7 39791 Part of proof of Lemma E i...
cdleme8 39792 Part of proof of Lemma E i...
cdleme9a 39793 Part of proof of Lemma E i...
cdleme9b 39794 Utility lemma for Lemma E ...
cdleme9 39795 Part of proof of Lemma E i...
cdleme10 39796 Part of proof of Lemma E i...
cdleme8tN 39797 Part of proof of Lemma E i...
cdleme9taN 39798 Part of proof of Lemma E i...
cdleme9tN 39799 Part of proof of Lemma E i...
cdleme10tN 39800 Part of proof of Lemma E i...
cdleme16aN 39801 Part of proof of Lemma E i...
cdleme11a 39802 Part of proof of Lemma E i...
cdleme11c 39803 Part of proof of Lemma E i...
cdleme11dN 39804 Part of proof of Lemma E i...
cdleme11e 39805 Part of proof of Lemma E i...
cdleme11fN 39806 Part of proof of Lemma E i...
cdleme11g 39807 Part of proof of Lemma E i...
cdleme11h 39808 Part of proof of Lemma E i...
cdleme11j 39809 Part of proof of Lemma E i...
cdleme11k 39810 Part of proof of Lemma E i...
cdleme11l 39811 Part of proof of Lemma E i...
cdleme11 39812 Part of proof of Lemma E i...
cdleme12 39813 Part of proof of Lemma E i...
cdleme13 39814 Part of proof of Lemma E i...
cdleme14 39815 Part of proof of Lemma E i...
cdleme15a 39816 Part of proof of Lemma E i...
cdleme15b 39817 Part of proof of Lemma E i...
cdleme15c 39818 Part of proof of Lemma E i...
cdleme15d 39819 Part of proof of Lemma E i...
cdleme15 39820 Part of proof of Lemma E i...
cdleme16b 39821 Part of proof of Lemma E i...
cdleme16c 39822 Part of proof of Lemma E i...
cdleme16d 39823 Part of proof of Lemma E i...
cdleme16e 39824 Part of proof of Lemma E i...
cdleme16f 39825 Part of proof of Lemma E i...
cdleme16g 39826 Part of proof of Lemma E i...
cdleme16 39827 Part of proof of Lemma E i...
cdleme17a 39828 Part of proof of Lemma E i...
cdleme17b 39829 Lemma leading to ~ cdleme1...
cdleme17c 39830 Part of proof of Lemma E i...
cdleme17d1 39831 Part of proof of Lemma E i...
cdleme0nex 39832 Part of proof of Lemma E i...
cdleme18a 39833 Part of proof of Lemma E i...
cdleme18b 39834 Part of proof of Lemma E i...
cdleme18c 39835 Part of proof of Lemma E i...
cdleme22gb 39836 Utility lemma for Lemma E ...
cdleme18d 39837 Part of proof of Lemma E i...
cdlemesner 39838 Part of proof of Lemma E i...
cdlemedb 39839 Part of proof of Lemma E i...
cdlemeda 39840 Part of proof of Lemma E i...
cdlemednpq 39841 Part of proof of Lemma E i...
cdlemednuN 39842 Part of proof of Lemma E i...
cdleme20zN 39843 Part of proof of Lemma E i...
cdleme20y 39844 Part of proof of Lemma E i...
cdleme19a 39845 Part of proof of Lemma E i...
cdleme19b 39846 Part of proof of Lemma E i...
cdleme19c 39847 Part of proof of Lemma E i...
cdleme19d 39848 Part of proof of Lemma E i...
cdleme19e 39849 Part of proof of Lemma E i...
cdleme19f 39850 Part of proof of Lemma E i...
cdleme20aN 39851 Part of proof of Lemma E i...
cdleme20bN 39852 Part of proof of Lemma E i...
cdleme20c 39853 Part of proof of Lemma E i...
cdleme20d 39854 Part of proof of Lemma E i...
cdleme20e 39855 Part of proof of Lemma E i...
cdleme20f 39856 Part of proof of Lemma E i...
cdleme20g 39857 Part of proof of Lemma E i...
cdleme20h 39858 Part of proof of Lemma E i...
cdleme20i 39859 Part of proof of Lemma E i...
cdleme20j 39860 Part of proof of Lemma E i...
cdleme20k 39861 Part of proof of Lemma E i...
cdleme20l1 39862 Part of proof of Lemma E i...
cdleme20l2 39863 Part of proof of Lemma E i...
cdleme20l 39864 Part of proof of Lemma E i...
cdleme20m 39865 Part of proof of Lemma E i...
cdleme20 39866 Combine ~ cdleme19f and ~ ...
cdleme21a 39867 Part of proof of Lemma E i...
cdleme21b 39868 Part of proof of Lemma E i...
cdleme21c 39869 Part of proof of Lemma E i...
cdleme21at 39870 Part of proof of Lemma E i...
cdleme21ct 39871 Part of proof of Lemma E i...
cdleme21d 39872 Part of proof of Lemma E i...
cdleme21e 39873 Part of proof of Lemma E i...
cdleme21f 39874 Part of proof of Lemma E i...
cdleme21g 39875 Part of proof of Lemma E i...
cdleme21h 39876 Part of proof of Lemma E i...
cdleme21i 39877 Part of proof of Lemma E i...
cdleme21j 39878 Combine ~ cdleme20 and ~ c...
cdleme21 39879 Part of proof of Lemma E i...
cdleme21k 39880 Eliminate ` S =/= T ` cond...
cdleme22aa 39881 Part of proof of Lemma E i...
cdleme22a 39882 Part of proof of Lemma E i...
cdleme22b 39883 Part of proof of Lemma E i...
cdleme22cN 39884 Part of proof of Lemma E i...
cdleme22d 39885 Part of proof of Lemma E i...
cdleme22e 39886 Part of proof of Lemma E i...
cdleme22eALTN 39887 Part of proof of Lemma E i...
cdleme22f 39888 Part of proof of Lemma E i...
cdleme22f2 39889 Part of proof of Lemma E i...
cdleme22g 39890 Part of proof of Lemma E i...
cdleme23a 39891 Part of proof of Lemma E i...
cdleme23b 39892 Part of proof of Lemma E i...
cdleme23c 39893 Part of proof of Lemma E i...
cdleme24 39894 Quantified version of ~ cd...
cdleme25a 39895 Lemma for ~ cdleme25b . (...
cdleme25b 39896 Transform ~ cdleme24 . TO...
cdleme25c 39897 Transform ~ cdleme25b . (...
cdleme25dN 39898 Transform ~ cdleme25c . (...
cdleme25cl 39899 Show closure of the unique...
cdleme25cv 39900 Change bound variables in ...
cdleme26e 39901 Part of proof of Lemma E i...
cdleme26ee 39902 Part of proof of Lemma E i...
cdleme26eALTN 39903 Part of proof of Lemma E i...
cdleme26fALTN 39904 Part of proof of Lemma E i...
cdleme26f 39905 Part of proof of Lemma E i...
cdleme26f2ALTN 39906 Part of proof of Lemma E i...
cdleme26f2 39907 Part of proof of Lemma E i...
cdleme27cl 39908 Part of proof of Lemma E i...
cdleme27a 39909 Part of proof of Lemma E i...
cdleme27b 39910 Lemma for ~ cdleme27N . (...
cdleme27N 39911 Part of proof of Lemma E i...
cdleme28a 39912 Lemma for ~ cdleme25b . T...
cdleme28b 39913 Lemma for ~ cdleme25b . T...
cdleme28c 39914 Part of proof of Lemma E i...
cdleme28 39915 Quantified version of ~ cd...
cdleme29ex 39916 Lemma for ~ cdleme29b . (...
cdleme29b 39917 Transform ~ cdleme28 . (C...
cdleme29c 39918 Transform ~ cdleme28b . (...
cdleme29cl 39919 Show closure of the unique...
cdleme30a 39920 Part of proof of Lemma E i...
cdleme31so 39921 Part of proof of Lemma E i...
cdleme31sn 39922 Part of proof of Lemma E i...
cdleme31sn1 39923 Part of proof of Lemma E i...
cdleme31se 39924 Part of proof of Lemma D i...
cdleme31se2 39925 Part of proof of Lemma D i...
cdleme31sc 39926 Part of proof of Lemma E i...
cdleme31sde 39927 Part of proof of Lemma D i...
cdleme31snd 39928 Part of proof of Lemma D i...
cdleme31sdnN 39929 Part of proof of Lemma E i...
cdleme31sn1c 39930 Part of proof of Lemma E i...
cdleme31sn2 39931 Part of proof of Lemma E i...
cdleme31fv 39932 Part of proof of Lemma E i...
cdleme31fv1 39933 Part of proof of Lemma E i...
cdleme31fv1s 39934 Part of proof of Lemma E i...
cdleme31fv2 39935 Part of proof of Lemma E i...
cdleme31id 39936 Part of proof of Lemma E i...
cdlemefrs29pre00 39937 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 39938 TODO fix comment. (Contri...
cdlemefrs29bpre1 39939 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 39940 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 39941 TODO: NOT USED? Show clo...
cdlemefrs32fva 39942 Part of proof of Lemma E i...
cdlemefrs32fva1 39943 Part of proof of Lemma E i...
cdlemefr29exN 39944 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 39945 Part of proof of Lemma E i...
cdlemefr32sn2aw 39946 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 39947 Show closure of ` [_ R / s...
cdlemefr29bpre0N 39948 TODO fix comment. (Contri...
cdlemefr29clN 39949 Show closure of the unique...
cdleme43frv1snN 39950 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 39951 Part of proof of Lemma E i...
cdlemefr32fva1 39952 Part of proof of Lemma E i...
cdlemefr31fv1 39953 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 39954 FIX COMMENT. TODO: see if ...
cdlemefs27cl 39955 Part of proof of Lemma E i...
cdlemefs32sn1aw 39956 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 39957 Show closure of ` [_ R / s...
cdlemefs29bpre0N 39958 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 39959 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 39960 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 39961 Show closure of the unique...
cdleme43fsv1snlem 39962 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 39963 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 39964 Part of proof of Lemma E i...
cdlemefs32fva1 39965 Part of proof of Lemma E i...
cdlemefs31fv1 39966 Value of ` ( F `` R ) ` wh...
cdlemefr44 39967 Value of f(r) when r is an...
cdlemefs44 39968 Value of f_s(r) when r is ...
cdlemefr45 39969 Value of f(r) when r is an...
cdlemefr45e 39970 Explicit expansion of ~ cd...
cdlemefs45 39971 Value of f_s(r) when r is ...
cdlemefs45ee 39972 Explicit expansion of ~ cd...
cdlemefs45eN 39973 Explicit expansion of ~ cd...
cdleme32sn1awN 39974 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 39975 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 39976 Show that ` [_ R / s ]_ N ...
cdleme32snaw 39977 Show that ` [_ R / s ]_ N ...
cdleme32snb 39978 Show closure of ` [_ R / s...
cdleme32fva 39979 Part of proof of Lemma D i...
cdleme32fva1 39980 Part of proof of Lemma D i...
cdleme32fvaw 39981 Show that ` ( F `` R ) ` i...
cdleme32fvcl 39982 Part of proof of Lemma D i...
cdleme32a 39983 Part of proof of Lemma D i...
cdleme32b 39984 Part of proof of Lemma D i...
cdleme32c 39985 Part of proof of Lemma D i...
cdleme32d 39986 Part of proof of Lemma D i...
cdleme32e 39987 Part of proof of Lemma D i...
cdleme32f 39988 Part of proof of Lemma D i...
cdleme32le 39989 Part of proof of Lemma D i...
cdleme35a 39990 Part of proof of Lemma E i...
cdleme35fnpq 39991 Part of proof of Lemma E i...
cdleme35b 39992 Part of proof of Lemma E i...
cdleme35c 39993 Part of proof of Lemma E i...
cdleme35d 39994 Part of proof of Lemma E i...
cdleme35e 39995 Part of proof of Lemma E i...
cdleme35f 39996 Part of proof of Lemma E i...
cdleme35g 39997 Part of proof of Lemma E i...
cdleme35h 39998 Part of proof of Lemma E i...
cdleme35h2 39999 Part of proof of Lemma E i...
cdleme35sn2aw 40000 Part of proof of Lemma E i...
cdleme35sn3a 40001 Part of proof of Lemma E i...
cdleme36a 40002 Part of proof of Lemma E i...
cdleme36m 40003 Part of proof of Lemma E i...
cdleme37m 40004 Part of proof of Lemma E i...
cdleme38m 40005 Part of proof of Lemma E i...
cdleme38n 40006 Part of proof of Lemma E i...
cdleme39a 40007 Part of proof of Lemma E i...
cdleme39n 40008 Part of proof of Lemma E i...
cdleme40m 40009 Part of proof of Lemma E i...
cdleme40n 40010 Part of proof of Lemma E i...
cdleme40v 40011 Part of proof of Lemma E i...
cdleme40w 40012 Part of proof of Lemma E i...
cdleme42a 40013 Part of proof of Lemma E i...
cdleme42c 40014 Part of proof of Lemma E i...
cdleme42d 40015 Part of proof of Lemma E i...
cdleme41sn3aw 40016 Part of proof of Lemma E i...
cdleme41sn4aw 40017 Part of proof of Lemma E i...
cdleme41snaw 40018 Part of proof of Lemma E i...
cdleme41fva11 40019 Part of proof of Lemma E i...
cdleme42b 40020 Part of proof of Lemma E i...
cdleme42e 40021 Part of proof of Lemma E i...
cdleme42f 40022 Part of proof of Lemma E i...
cdleme42g 40023 Part of proof of Lemma E i...
cdleme42h 40024 Part of proof of Lemma E i...
cdleme42i 40025 Part of proof of Lemma E i...
cdleme42k 40026 Part of proof of Lemma E i...
cdleme42ke 40027 Part of proof of Lemma E i...
cdleme42keg 40028 Part of proof of Lemma E i...
cdleme42mN 40029 Part of proof of Lemma E i...
cdleme42mgN 40030 Part of proof of Lemma E i...
cdleme43aN 40031 Part of proof of Lemma E i...
cdleme43bN 40032 Lemma for Lemma E in [Craw...
cdleme43cN 40033 Part of proof of Lemma E i...
cdleme43dN 40034 Part of proof of Lemma E i...
cdleme46f2g2 40035 Conversion for ` G ` to re...
cdleme46f2g1 40036 Conversion for ` G ` to re...
cdleme17d2 40037 Part of proof of Lemma E i...
cdleme17d3 40038 TODO: FIX COMMENT. (Contr...
cdleme17d4 40039 TODO: FIX COMMENT. (Contr...
cdleme17d 40040 Part of proof of Lemma E i...
cdleme48fv 40041 Part of proof of Lemma D i...
cdleme48fvg 40042 Remove ` P =/= Q ` conditi...
cdleme46fvaw 40043 Show that ` ( F `` R ) ` i...
cdleme48bw 40044 TODO: fix comment. TODO: ...
cdleme48b 40045 TODO: fix comment. (Contr...
cdleme46frvlpq 40046 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 40047 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 40048 TODO: fix comment. (Contr...
cdleme4gfv 40049 Part of proof of Lemma D i...
cdlemeg47b 40050 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 40051 Value of g_s(r) when r is ...
cdlemeg47rv2 40052 Value of g_s(r) when r is ...
cdlemeg49le 40053 Part of proof of Lemma D i...
cdlemeg46bOLDN 40054 TODO FIX COMMENT. (Contrib...
cdlemeg46c 40055 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 40056 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 40057 Value of g_s(r) when r is ...
cdlemeg46fvaw 40058 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 40059 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 40060 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 40061 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 40062 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 40063 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 40064 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 40065 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 40066 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 40067 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 40068 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 40069 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 40070 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 40071 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 40072 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 40073 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 40074 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 40075 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 40076 TODO FIX COMMENT p. 116 pe...
cdleme48d 40077 TODO: fix comment. (Contr...
cdleme48gfv1 40078 TODO: fix comment. (Contr...
cdleme48gfv 40079 TODO: fix comment. (Contr...
cdleme48fgv 40080 TODO: fix comment. (Contr...
cdlemeg49lebilem 40081 Part of proof of Lemma D i...
cdleme50lebi 40082 Part of proof of Lemma D i...
cdleme50eq 40083 Part of proof of Lemma D i...
cdleme50f 40084 Part of proof of Lemma D i...
cdleme50f1 40085 Part of proof of Lemma D i...
cdleme50rnlem 40086 Part of proof of Lemma D i...
cdleme50rn 40087 Part of proof of Lemma D i...
cdleme50f1o 40088 Part of proof of Lemma D i...
cdleme50laut 40089 Part of proof of Lemma D i...
cdleme50ldil 40090 Part of proof of Lemma D i...
cdleme50trn1 40091 Part of proof that ` F ` i...
cdleme50trn2a 40092 Part of proof that ` F ` i...
cdleme50trn2 40093 Part of proof that ` F ` i...
cdleme50trn12 40094 Part of proof that ` F ` i...
cdleme50trn3 40095 Part of proof that ` F ` i...
cdleme50trn123 40096 Part of proof that ` F ` i...
cdleme51finvfvN 40097 Part of proof of Lemma E i...
cdleme51finvN 40098 Part of proof of Lemma E i...
cdleme50ltrn 40099 Part of proof of Lemma E i...
cdleme51finvtrN 40100 Part of proof of Lemma E i...
cdleme50ex 40101 Part of Lemma E in [Crawle...
cdleme 40102 Lemma E in [Crawley] p. 11...
cdlemf1 40103 Part of Lemma F in [Crawle...
cdlemf2 40104 Part of Lemma F in [Crawle...
cdlemf 40105 Lemma F in [Crawley] p. 11...
cdlemfnid 40106 ~ cdlemf with additional c...
cdlemftr3 40107 Special case of ~ cdlemf s...
cdlemftr2 40108 Special case of ~ cdlemf s...
cdlemftr1 40109 Part of proof of Lemma G o...
cdlemftr0 40110 Special case of ~ cdlemf s...
trlord 40111 The ordering of two Hilber...
cdlemg1a 40112 Shorter expression for ` G...
cdlemg1b2 40113 This theorem can be used t...
cdlemg1idlemN 40114 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 40115 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 40116 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 40117 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 40118 This theorem can be used t...
cdlemg1idN 40119 Version of ~ cdleme31id wi...
ltrniotafvawN 40120 Version of ~ cdleme46fvaw ...
ltrniotacl 40121 Version of ~ cdleme50ltrn ...
ltrniotacnvN 40122 Version of ~ cdleme51finvt...
ltrniotaval 40123 Value of the unique transl...
ltrniotacnvval 40124 Converse value of the uniq...
ltrniotaidvalN 40125 Value of the unique transl...
ltrniotavalbN 40126 Value of the unique transl...
cdlemeiota 40127 A translation is uniquely ...
cdlemg1ci2 40128 Any function of the form o...
cdlemg1cN 40129 Any translation belongs to...
cdlemg1cex 40130 Any translation is one of ...
cdlemg2cN 40131 Any translation belongs to...
cdlemg2dN 40132 This theorem can be used t...
cdlemg2cex 40133 Any translation is one of ...
cdlemg2ce 40134 Utility theorem to elimina...
cdlemg2jlemOLDN 40135 Part of proof of Lemma E i...
cdlemg2fvlem 40136 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 40137 ~ cdleme42keg with simpler...
cdlemg2idN 40138 Version of ~ cdleme31id wi...
cdlemg3a 40139 Part of proof of Lemma G i...
cdlemg2jOLDN 40140 TODO: Replace this with ~...
cdlemg2fv 40141 Value of a translation in ...
cdlemg2fv2 40142 Value of a translation in ...
cdlemg2k 40143 ~ cdleme42keg with simpler...
cdlemg2kq 40144 ~ cdlemg2k with ` P ` and ...
cdlemg2l 40145 TODO: FIX COMMENT. (Contr...
cdlemg2m 40146 TODO: FIX COMMENT. (Contr...
cdlemg5 40147 TODO: Is there a simpler ...
cdlemb3 40148 Given two atoms not under ...
cdlemg7fvbwN 40149 Properties of a translatio...
cdlemg4a 40150 TODO: FIX COMMENT If fg(p...
cdlemg4b1 40151 TODO: FIX COMMENT. (Contr...
cdlemg4b2 40152 TODO: FIX COMMENT. (Contr...
cdlemg4b12 40153 TODO: FIX COMMENT. (Contr...
cdlemg4c 40154 TODO: FIX COMMENT. (Contr...
cdlemg4d 40155 TODO: FIX COMMENT. (Contr...
cdlemg4e 40156 TODO: FIX COMMENT. (Contr...
cdlemg4f 40157 TODO: FIX COMMENT. (Contr...
cdlemg4g 40158 TODO: FIX COMMENT. (Contr...
cdlemg4 40159 TODO: FIX COMMENT. (Contr...
cdlemg6a 40160 TODO: FIX COMMENT. TODO: ...
cdlemg6b 40161 TODO: FIX COMMENT. TODO: ...
cdlemg6c 40162 TODO: FIX COMMENT. (Contr...
cdlemg6d 40163 TODO: FIX COMMENT. (Contr...
cdlemg6e 40164 TODO: FIX COMMENT. (Contr...
cdlemg6 40165 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 40166 Value of a translation com...
cdlemg7aN 40167 TODO: FIX COMMENT. (Contr...
cdlemg7N 40168 TODO: FIX COMMENT. (Contr...
cdlemg8a 40169 TODO: FIX COMMENT. (Contr...
cdlemg8b 40170 TODO: FIX COMMENT. (Contr...
cdlemg8c 40171 TODO: FIX COMMENT. (Contr...
cdlemg8d 40172 TODO: FIX COMMENT. (Contr...
cdlemg8 40173 TODO: FIX COMMENT. (Contr...
cdlemg9a 40174 TODO: FIX COMMENT. (Contr...
cdlemg9b 40175 The triples ` <. P , ( F `...
cdlemg9 40176 The triples ` <. P , ( F `...
cdlemg10b 40177 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 40178 TODO: FIX COMMENT. TODO: ...
cdlemg11a 40179 TODO: FIX COMMENT. (Contr...
cdlemg11aq 40180 TODO: FIX COMMENT. TODO: ...
cdlemg10c 40181 TODO: FIX COMMENT. TODO: ...
cdlemg10a 40182 TODO: FIX COMMENT. (Contr...
cdlemg10 40183 TODO: FIX COMMENT. (Contr...
cdlemg11b 40184 TODO: FIX COMMENT. (Contr...
cdlemg12a 40185 TODO: FIX COMMENT. (Contr...
cdlemg12b 40186 The triples ` <. P , ( F `...
cdlemg12c 40187 The triples ` <. P , ( F `...
cdlemg12d 40188 TODO: FIX COMMENT. (Contr...
cdlemg12e 40189 TODO: FIX COMMENT. (Contr...
cdlemg12f 40190 TODO: FIX COMMENT. (Contr...
cdlemg12g 40191 TODO: FIX COMMENT. TODO: ...
cdlemg12 40192 TODO: FIX COMMENT. (Contr...
cdlemg13a 40193 TODO: FIX COMMENT. (Contr...
cdlemg13 40194 TODO: FIX COMMENT. (Contr...
cdlemg14f 40195 TODO: FIX COMMENT. (Contr...
cdlemg14g 40196 TODO: FIX COMMENT. (Contr...
cdlemg15a 40197 Eliminate the ` ( F `` P )...
cdlemg15 40198 Eliminate the ` ( (...
cdlemg16 40199 Part of proof of Lemma G o...
cdlemg16ALTN 40200 This version of ~ cdlemg16...
cdlemg16z 40201 Eliminate ` ( ( F `...
cdlemg16zz 40202 Eliminate ` P =/= Q ` from...
cdlemg17a 40203 TODO: FIX COMMENT. (Contr...
cdlemg17b 40204 Part of proof of Lemma G i...
cdlemg17dN 40205 TODO: fix comment. (Contr...
cdlemg17dALTN 40206 Same as ~ cdlemg17dN with ...
cdlemg17e 40207 TODO: fix comment. (Contr...
cdlemg17f 40208 TODO: fix comment. (Contr...
cdlemg17g 40209 TODO: fix comment. (Contr...
cdlemg17h 40210 TODO: fix comment. (Contr...
cdlemg17i 40211 TODO: fix comment. (Contr...
cdlemg17ir 40212 TODO: fix comment. (Contr...
cdlemg17j 40213 TODO: fix comment. (Contr...
cdlemg17pq 40214 Utility theorem for swappi...
cdlemg17bq 40215 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 40216 ~ cdlemg17i with ` P ` and...
cdlemg17irq 40217 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 40218 ~ cdlemg17j with ` P ` and...
cdlemg17 40219 Part of Lemma G of [Crawle...
cdlemg18a 40220 Show two lines are differe...
cdlemg18b 40221 Lemma for ~ cdlemg18c . T...
cdlemg18c 40222 Show two lines intersect a...
cdlemg18d 40223 Show two lines intersect a...
cdlemg18 40224 Show two lines intersect a...
cdlemg19a 40225 Show two lines intersect a...
cdlemg19 40226 Show two lines intersect a...
cdlemg20 40227 Show two lines intersect a...
cdlemg21 40228 Version of cdlemg19 with `...
cdlemg22 40229 ~ cdlemg21 with ` ( F `` P...
cdlemg24 40230 Combine ~ cdlemg16z and ~ ...
cdlemg37 40231 Use ~ cdlemg8 to eliminate...
cdlemg25zz 40232 ~ cdlemg16zz restated for ...
cdlemg26zz 40233 ~ cdlemg16zz restated for ...
cdlemg27a 40234 For use with case when ` (...
cdlemg28a 40235 Part of proof of Lemma G o...
cdlemg31b0N 40236 TODO: Fix comment. (Cont...
cdlemg31b0a 40237 TODO: Fix comment. (Cont...
cdlemg27b 40238 TODO: Fix comment. (Cont...
cdlemg31a 40239 TODO: fix comment. (Contr...
cdlemg31b 40240 TODO: fix comment. (Contr...
cdlemg31c 40241 Show that when ` N ` is an...
cdlemg31d 40242 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 40243 TODO: Fix comment. (Cont...
cdlemg33c0 40244 TODO: Fix comment. (Cont...
cdlemg28b 40245 Part of proof of Lemma G o...
cdlemg28 40246 Part of proof of Lemma G o...
cdlemg29 40247 Eliminate ` ( F `` P ) =/=...
cdlemg33a 40248 TODO: Fix comment. (Cont...
cdlemg33b 40249 TODO: Fix comment. (Cont...
cdlemg33c 40250 TODO: Fix comment. (Cont...
cdlemg33d 40251 TODO: Fix comment. (Cont...
cdlemg33e 40252 TODO: Fix comment. (Cont...
cdlemg33 40253 Combine ~ cdlemg33b , ~ cd...
cdlemg34 40254 Use cdlemg33 to eliminate ...
cdlemg35 40255 TODO: Fix comment. TODO:...
cdlemg36 40256 Use cdlemg35 to eliminate ...
cdlemg38 40257 Use ~ cdlemg37 to eliminat...
cdlemg39 40258 Eliminate ` =/= ` conditio...
cdlemg40 40259 Eliminate ` P =/= Q ` cond...
cdlemg41 40260 Convert ~ cdlemg40 to func...
ltrnco 40261 The composition of two tra...
trlcocnv 40262 Swap the arguments of the ...
trlcoabs 40263 Absorption into a composit...
trlcoabs2N 40264 Absorption of the trace of...
trlcoat 40265 The trace of a composition...
trlcocnvat 40266 Commonly used special case...
trlconid 40267 The composition of two dif...
trlcolem 40268 Lemma for ~ trlco . (Cont...
trlco 40269 The trace of a composition...
trlcone 40270 If two translations have d...
cdlemg42 40271 Part of proof of Lemma G o...
cdlemg43 40272 Part of proof of Lemma G o...
cdlemg44a 40273 Part of proof of Lemma G o...
cdlemg44b 40274 Eliminate ` ( F `` P ) =/=...
cdlemg44 40275 Part of proof of Lemma G o...
cdlemg47a 40276 TODO: fix comment. TODO: ...
cdlemg46 40277 Part of proof of Lemma G o...
cdlemg47 40278 Part of proof of Lemma G o...
cdlemg48 40279 Eliminate ` h ` from ~ cdl...
ltrncom 40280 Composition is commutative...
ltrnco4 40281 Rearrange a composition of...
trljco 40282 Trace joined with trace of...
trljco2 40283 Trace joined with trace of...
tgrpfset 40286 The translation group maps...
tgrpset 40287 The translation group for ...
tgrpbase 40288 The base set of the transl...
tgrpopr 40289 The group operation of the...
tgrpov 40290 The group operation value ...
tgrpgrplem 40291 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 40292 The translation group is a...
tgrpabl 40293 The translation group is a...
tendofset 40300 The set of all trace-prese...
tendoset 40301 The set of trace-preservin...
istendo 40302 The predicate "is a trace-...
tendotp 40303 Trace-preserving property ...
istendod 40304 Deduce the predicate "is a...
tendof 40305 Functionality of a trace-p...
tendoeq1 40306 Condition determining equa...
tendovalco 40307 Value of composition of tr...
tendocoval 40308 Value of composition of en...
tendocl 40309 Closure of a trace-preserv...
tendoco2 40310 Distribution of compositio...
tendoidcl 40311 The identity is a trace-pr...
tendo1mul 40312 Multiplicative identity mu...
tendo1mulr 40313 Multiplicative identity mu...
tendococl 40314 The composition of two tra...
tendoid 40315 The identity value of a tr...
tendoeq2 40316 Condition determining equa...
tendoplcbv 40317 Define sum operation for t...
tendopl 40318 Value of endomorphism sum ...
tendopl2 40319 Value of result of endomor...
tendoplcl2 40320 Value of result of endomor...
tendoplco2 40321 Value of result of endomor...
tendopltp 40322 Trace-preserving property ...
tendoplcl 40323 Endomorphism sum is a trac...
tendoplcom 40324 The endomorphism sum opera...
tendoplass 40325 The endomorphism sum opera...
tendodi1 40326 Endomorphism composition d...
tendodi2 40327 Endomorphism composition d...
tendo0cbv 40328 Define additive identity f...
tendo02 40329 Value of additive identity...
tendo0co2 40330 The additive identity trac...
tendo0tp 40331 Trace-preserving property ...
tendo0cl 40332 The additive identity is a...
tendo0pl 40333 Property of the additive i...
tendo0plr 40334 Property of the additive i...
tendoicbv 40335 Define inverse function fo...
tendoi 40336 Value of inverse endomorph...
tendoi2 40337 Value of additive inverse ...
tendoicl 40338 Closure of the additive in...
tendoipl 40339 Property of the additive i...
tendoipl2 40340 Property of the additive i...
erngfset 40341 The division rings on trac...
erngset 40342 The division ring on trace...
erngbase 40343 The base set of the divisi...
erngfplus 40344 Ring addition operation. ...
erngplus 40345 Ring addition operation. ...
erngplus2 40346 Ring addition operation. ...
erngfmul 40347 Ring multiplication operat...
erngmul 40348 Ring addition operation. ...
erngfset-rN 40349 The division rings on trac...
erngset-rN 40350 The division ring on trace...
erngbase-rN 40351 The base set of the divisi...
erngfplus-rN 40352 Ring addition operation. ...
erngplus-rN 40353 Ring addition operation. ...
erngplus2-rN 40354 Ring addition operation. ...
erngfmul-rN 40355 Ring multiplication operat...
erngmul-rN 40356 Ring addition operation. ...
cdlemh1 40357 Part of proof of Lemma H o...
cdlemh2 40358 Part of proof of Lemma H o...
cdlemh 40359 Lemma H of [Crawley] p. 11...
cdlemi1 40360 Part of proof of Lemma I o...
cdlemi2 40361 Part of proof of Lemma I o...
cdlemi 40362 Lemma I of [Crawley] p. 11...
cdlemj1 40363 Part of proof of Lemma J o...
cdlemj2 40364 Part of proof of Lemma J o...
cdlemj3 40365 Part of proof of Lemma J o...
tendocan 40366 Cancellation law: if the v...
tendoid0 40367 A trace-preserving endomor...
tendo0mul 40368 Additive identity multipli...
tendo0mulr 40369 Additive identity multipli...
tendo1ne0 40370 The identity (unity) is no...
tendoconid 40371 The composition (product) ...
tendotr 40372 The trace of the value of ...
cdlemk1 40373 Part of proof of Lemma K o...
cdlemk2 40374 Part of proof of Lemma K o...
cdlemk3 40375 Part of proof of Lemma K o...
cdlemk4 40376 Part of proof of Lemma K o...
cdlemk5a 40377 Part of proof of Lemma K o...
cdlemk5 40378 Part of proof of Lemma K o...
cdlemk6 40379 Part of proof of Lemma K o...
cdlemk8 40380 Part of proof of Lemma K o...
cdlemk9 40381 Part of proof of Lemma K o...
cdlemk9bN 40382 Part of proof of Lemma K o...
cdlemki 40383 Part of proof of Lemma K o...
cdlemkvcl 40384 Part of proof of Lemma K o...
cdlemk10 40385 Part of proof of Lemma K o...
cdlemksv 40386 Part of proof of Lemma K o...
cdlemksel 40387 Part of proof of Lemma K o...
cdlemksat 40388 Part of proof of Lemma K o...
cdlemksv2 40389 Part of proof of Lemma K o...
cdlemk7 40390 Part of proof of Lemma K o...
cdlemk11 40391 Part of proof of Lemma K o...
cdlemk12 40392 Part of proof of Lemma K o...
cdlemkoatnle 40393 Utility lemma. (Contribut...
cdlemk13 40394 Part of proof of Lemma K o...
cdlemkole 40395 Utility lemma. (Contribut...
cdlemk14 40396 Part of proof of Lemma K o...
cdlemk15 40397 Part of proof of Lemma K o...
cdlemk16a 40398 Part of proof of Lemma K o...
cdlemk16 40399 Part of proof of Lemma K o...
cdlemk17 40400 Part of proof of Lemma K o...
cdlemk1u 40401 Part of proof of Lemma K o...
cdlemk5auN 40402 Part of proof of Lemma K o...
cdlemk5u 40403 Part of proof of Lemma K o...
cdlemk6u 40404 Part of proof of Lemma K o...
cdlemkj 40405 Part of proof of Lemma K o...
cdlemkuvN 40406 Part of proof of Lemma K o...
cdlemkuel 40407 Part of proof of Lemma K o...
cdlemkuat 40408 Part of proof of Lemma K o...
cdlemkuv2 40409 Part of proof of Lemma K o...
cdlemk18 40410 Part of proof of Lemma K o...
cdlemk19 40411 Part of proof of Lemma K o...
cdlemk7u 40412 Part of proof of Lemma K o...
cdlemk11u 40413 Part of proof of Lemma K o...
cdlemk12u 40414 Part of proof of Lemma K o...
cdlemk21N 40415 Part of proof of Lemma K o...
cdlemk20 40416 Part of proof of Lemma K o...
cdlemkoatnle-2N 40417 Utility lemma. (Contribut...
cdlemk13-2N 40418 Part of proof of Lemma K o...
cdlemkole-2N 40419 Utility lemma. (Contribut...
cdlemk14-2N 40420 Part of proof of Lemma K o...
cdlemk15-2N 40421 Part of proof of Lemma K o...
cdlemk16-2N 40422 Part of proof of Lemma K o...
cdlemk17-2N 40423 Part of proof of Lemma K o...
cdlemkj-2N 40424 Part of proof of Lemma K o...
cdlemkuv-2N 40425 Part of proof of Lemma K o...
cdlemkuel-2N 40426 Part of proof of Lemma K o...
cdlemkuv2-2 40427 Part of proof of Lemma K o...
cdlemk18-2N 40428 Part of proof of Lemma K o...
cdlemk19-2N 40429 Part of proof of Lemma K o...
cdlemk7u-2N 40430 Part of proof of Lemma K o...
cdlemk11u-2N 40431 Part of proof of Lemma K o...
cdlemk12u-2N 40432 Part of proof of Lemma K o...
cdlemk21-2N 40433 Part of proof of Lemma K o...
cdlemk20-2N 40434 Part of proof of Lemma K o...
cdlemk22 40435 Part of proof of Lemma K o...
cdlemk30 40436 Part of proof of Lemma K o...
cdlemkuu 40437 Convert between function a...
cdlemk31 40438 Part of proof of Lemma K o...
cdlemk32 40439 Part of proof of Lemma K o...
cdlemkuel-3 40440 Part of proof of Lemma K o...
cdlemkuv2-3N 40441 Part of proof of Lemma K o...
cdlemk18-3N 40442 Part of proof of Lemma K o...
cdlemk22-3 40443 Part of proof of Lemma K o...
cdlemk23-3 40444 Part of proof of Lemma K o...
cdlemk24-3 40445 Part of proof of Lemma K o...
cdlemk25-3 40446 Part of proof of Lemma K o...
cdlemk26b-3 40447 Part of proof of Lemma K o...
cdlemk26-3 40448 Part of proof of Lemma K o...
cdlemk27-3 40449 Part of proof of Lemma K o...
cdlemk28-3 40450 Part of proof of Lemma K o...
cdlemk33N 40451 Part of proof of Lemma K o...
cdlemk34 40452 Part of proof of Lemma K o...
cdlemk29-3 40453 Part of proof of Lemma K o...
cdlemk35 40454 Part of proof of Lemma K o...
cdlemk36 40455 Part of proof of Lemma K o...
cdlemk37 40456 Part of proof of Lemma K o...
cdlemk38 40457 Part of proof of Lemma K o...
cdlemk39 40458 Part of proof of Lemma K o...
cdlemk40 40459 TODO: fix comment. (Contr...
cdlemk40t 40460 TODO: fix comment. (Contr...
cdlemk40f 40461 TODO: fix comment. (Contr...
cdlemk41 40462 Part of proof of Lemma K o...
cdlemkfid1N 40463 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 40464 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 40465 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 40466 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 40467 TODO: is this useful or sh...
cdlemky 40468 Part of proof of Lemma K o...
cdlemkyu 40469 Convert between function a...
cdlemkyuu 40470 ~ cdlemkyu with some hypot...
cdlemk11ta 40471 Part of proof of Lemma K o...
cdlemk19ylem 40472 Lemma for ~ cdlemk19y . (...
cdlemk11tb 40473 Part of proof of Lemma K o...
cdlemk19y 40474 ~ cdlemk19 with simpler hy...
cdlemkid3N 40475 Lemma for ~ cdlemkid . (C...
cdlemkid4 40476 Lemma for ~ cdlemkid . (C...
cdlemkid5 40477 Lemma for ~ cdlemkid . (C...
cdlemkid 40478 The value of the tau funct...
cdlemk35s 40479 Substitution version of ~ ...
cdlemk35s-id 40480 Substitution version of ~ ...
cdlemk39s 40481 Substitution version of ~ ...
cdlemk39s-id 40482 Substitution version of ~ ...
cdlemk42 40483 Part of proof of Lemma K o...
cdlemk19xlem 40484 Lemma for ~ cdlemk19x . (...
cdlemk19x 40485 ~ cdlemk19 with simpler hy...
cdlemk42yN 40486 Part of proof of Lemma K o...
cdlemk11tc 40487 Part of proof of Lemma K o...
cdlemk11t 40488 Part of proof of Lemma K o...
cdlemk45 40489 Part of proof of Lemma K o...
cdlemk46 40490 Part of proof of Lemma K o...
cdlemk47 40491 Part of proof of Lemma K o...
cdlemk48 40492 Part of proof of Lemma K o...
cdlemk49 40493 Part of proof of Lemma K o...
cdlemk50 40494 Part of proof of Lemma K o...
cdlemk51 40495 Part of proof of Lemma K o...
cdlemk52 40496 Part of proof of Lemma K o...
cdlemk53a 40497 Lemma for ~ cdlemk53 . (C...
cdlemk53b 40498 Lemma for ~ cdlemk53 . (C...
cdlemk53 40499 Part of proof of Lemma K o...
cdlemk54 40500 Part of proof of Lemma K o...
cdlemk55a 40501 Lemma for ~ cdlemk55 . (C...
cdlemk55b 40502 Lemma for ~ cdlemk55 . (C...
cdlemk55 40503 Part of proof of Lemma K o...
cdlemkyyN 40504 Part of proof of Lemma K o...
cdlemk43N 40505 Part of proof of Lemma K o...
cdlemk35u 40506 Substitution version of ~ ...
cdlemk55u1 40507 Lemma for ~ cdlemk55u . (...
cdlemk55u 40508 Part of proof of Lemma K o...
cdlemk39u1 40509 Lemma for ~ cdlemk39u . (...
cdlemk39u 40510 Part of proof of Lemma K o...
cdlemk19u1 40511 ~ cdlemk19 with simpler hy...
cdlemk19u 40512 Part of Lemma K of [Crawle...
cdlemk56 40513 Part of Lemma K of [Crawle...
cdlemk19w 40514 Use a fixed element to eli...
cdlemk56w 40515 Use a fixed element to eli...
cdlemk 40516 Lemma K of [Crawley] p. 11...
tendoex 40517 Generalization of Lemma K ...
cdleml1N 40518 Part of proof of Lemma L o...
cdleml2N 40519 Part of proof of Lemma L o...
cdleml3N 40520 Part of proof of Lemma L o...
cdleml4N 40521 Part of proof of Lemma L o...
cdleml5N 40522 Part of proof of Lemma L o...
cdleml6 40523 Part of proof of Lemma L o...
cdleml7 40524 Part of proof of Lemma L o...
cdleml8 40525 Part of proof of Lemma L o...
cdleml9 40526 Part of proof of Lemma L o...
dva1dim 40527 Two expressions for the 1-...
dvhb1dimN 40528 Two expressions for the 1-...
erng1lem 40529 Value of the endomorphism ...
erngdvlem1 40530 Lemma for ~ eringring . (...
erngdvlem2N 40531 Lemma for ~ eringring . (...
erngdvlem3 40532 Lemma for ~ eringring . (...
erngdvlem4 40533 Lemma for ~ erngdv . (Con...
eringring 40534 An endomorphism ring is a ...
erngdv 40535 An endomorphism ring is a ...
erng0g 40536 The division ring zero of ...
erng1r 40537 The division ring unity of...
erngdvlem1-rN 40538 Lemma for ~ eringring . (...
erngdvlem2-rN 40539 Lemma for ~ eringring . (...
erngdvlem3-rN 40540 Lemma for ~ eringring . (...
erngdvlem4-rN 40541 Lemma for ~ erngdv . (Con...
erngring-rN 40542 An endomorphism ring is a ...
erngdv-rN 40543 An endomorphism ring is a ...
dvafset 40546 The constructed partial ve...
dvaset 40547 The constructed partial ve...
dvasca 40548 The ring base set of the c...
dvabase 40549 The ring base set of the c...
dvafplusg 40550 Ring addition operation fo...
dvaplusg 40551 Ring addition operation fo...
dvaplusgv 40552 Ring addition operation fo...
dvafmulr 40553 Ring multiplication operat...
dvamulr 40554 Ring multiplication operat...
dvavbase 40555 The vectors (vector base s...
dvafvadd 40556 The vector sum operation f...
dvavadd 40557 Ring addition operation fo...
dvafvsca 40558 Ring addition operation fo...
dvavsca 40559 Ring addition operation fo...
tendospcl 40560 Closure of endomorphism sc...
tendospass 40561 Associative law for endomo...
tendospdi1 40562 Forward distributive law f...
tendocnv 40563 Converse of a trace-preser...
tendospdi2 40564 Reverse distributive law f...
tendospcanN 40565 Cancellation law for trace...
dvaabl 40566 The constructed partial ve...
dvalveclem 40567 Lemma for ~ dvalvec . (Co...
dvalvec 40568 The constructed partial ve...
dva0g 40569 The zero vector of partial...
diaffval 40572 The partial isomorphism A ...
diafval 40573 The partial isomorphism A ...
diaval 40574 The partial isomorphism A ...
diaelval 40575 Member of the partial isom...
diafn 40576 Functionality and domain o...
diadm 40577 Domain of the partial isom...
diaeldm 40578 Member of domain of the pa...
diadmclN 40579 A member of domain of the ...
diadmleN 40580 A member of domain of the ...
dian0 40581 The value of the partial i...
dia0eldmN 40582 The lattice zero belongs t...
dia1eldmN 40583 The fiducial hyperplane (t...
diass 40584 The value of the partial i...
diael 40585 A member of the value of t...
diatrl 40586 Trace of a member of the p...
diaelrnN 40587 Any value of the partial i...
dialss 40588 The value of partial isomo...
diaord 40589 The partial isomorphism A ...
dia11N 40590 The partial isomorphism A ...
diaf11N 40591 The partial isomorphism A ...
diaclN 40592 Closure of partial isomorp...
diacnvclN 40593 Closure of partial isomorp...
dia0 40594 The value of the partial i...
dia1N 40595 The value of the partial i...
dia1elN 40596 The largest subspace in th...
diaglbN 40597 Partial isomorphism A of a...
diameetN 40598 Partial isomorphism A of a...
diainN 40599 Inverse partial isomorphis...
diaintclN 40600 The intersection of partia...
diasslssN 40601 The partial isomorphism A ...
diassdvaN 40602 The partial isomorphism A ...
dia1dim 40603 Two expressions for the 1-...
dia1dim2 40604 Two expressions for a 1-di...
dia1dimid 40605 A vector (translation) bel...
dia2dimlem1 40606 Lemma for ~ dia2dim . Sho...
dia2dimlem2 40607 Lemma for ~ dia2dim . Def...
dia2dimlem3 40608 Lemma for ~ dia2dim . Def...
dia2dimlem4 40609 Lemma for ~ dia2dim . Sho...
dia2dimlem5 40610 Lemma for ~ dia2dim . The...
dia2dimlem6 40611 Lemma for ~ dia2dim . Eli...
dia2dimlem7 40612 Lemma for ~ dia2dim . Eli...
dia2dimlem8 40613 Lemma for ~ dia2dim . Eli...
dia2dimlem9 40614 Lemma for ~ dia2dim . Eli...
dia2dimlem10 40615 Lemma for ~ dia2dim . Con...
dia2dimlem11 40616 Lemma for ~ dia2dim . Con...
dia2dimlem12 40617 Lemma for ~ dia2dim . Obt...
dia2dimlem13 40618 Lemma for ~ dia2dim . Eli...
dia2dim 40619 A two-dimensional subspace...
dvhfset 40622 The constructed full vecto...
dvhset 40623 The constructed full vecto...
dvhsca 40624 The ring of scalars of the...
dvhbase 40625 The ring base set of the c...
dvhfplusr 40626 Ring addition operation fo...
dvhfmulr 40627 Ring multiplication operat...
dvhmulr 40628 Ring multiplication operat...
dvhvbase 40629 The vectors (vector base s...
dvhelvbasei 40630 Vector membership in the c...
dvhvaddcbv 40631 Change bound variables to ...
dvhvaddval 40632 The vector sum operation f...
dvhfvadd 40633 The vector sum operation f...
dvhvadd 40634 The vector sum operation f...
dvhopvadd 40635 The vector sum operation f...
dvhopvadd2 40636 The vector sum operation f...
dvhvaddcl 40637 Closure of the vector sum ...
dvhvaddcomN 40638 Commutativity of vector su...
dvhvaddass 40639 Associativity of vector su...
dvhvscacbv 40640 Change bound variables to ...
dvhvscaval 40641 The scalar product operati...
dvhfvsca 40642 Scalar product operation f...
dvhvsca 40643 Scalar product operation f...
dvhopvsca 40644 Scalar product operation f...
dvhvscacl 40645 Closure of the scalar prod...
tendoinvcl 40646 Closure of multiplicative ...
tendolinv 40647 Left multiplicative invers...
tendorinv 40648 Right multiplicative inver...
dvhgrp 40649 The full vector space ` U ...
dvhlveclem 40650 Lemma for ~ dvhlvec . TOD...
dvhlvec 40651 The full vector space ` U ...
dvhlmod 40652 The full vector space ` U ...
dvh0g 40653 The zero vector of vector ...
dvheveccl 40654 Properties of a unit vecto...
dvhopclN 40655 Closure of a ` DVecH ` vec...
dvhopaddN 40656 Sum of ` DVecH ` vectors e...
dvhopspN 40657 Scalar product of ` DVecH ...
dvhopN 40658 Decompose a ` DVecH ` vect...
dvhopellsm 40659 Ordered pair membership in...
cdlemm10N 40660 The image of the map ` G `...
docaffvalN 40663 Subspace orthocomplement f...
docafvalN 40664 Subspace orthocomplement f...
docavalN 40665 Subspace orthocomplement f...
docaclN 40666 Closure of subspace orthoc...
diaocN 40667 Value of partial isomorphi...
doca2N 40668 Double orthocomplement of ...
doca3N 40669 Double orthocomplement of ...
dvadiaN 40670 Any closed subspace is a m...
diarnN 40671 Partial isomorphism A maps...
diaf1oN 40672 The partial isomorphism A ...
djaffvalN 40675 Subspace join for ` DVecA ...
djafvalN 40676 Subspace join for ` DVecA ...
djavalN 40677 Subspace join for ` DVecA ...
djaclN 40678 Closure of subspace join f...
djajN 40679 Transfer lattice join to `...
dibffval 40682 The partial isomorphism B ...
dibfval 40683 The partial isomorphism B ...
dibval 40684 The partial isomorphism B ...
dibopelvalN 40685 Member of the partial isom...
dibval2 40686 Value of the partial isomo...
dibopelval2 40687 Member of the partial isom...
dibval3N 40688 Value of the partial isomo...
dibelval3 40689 Member of the partial isom...
dibopelval3 40690 Member of the partial isom...
dibelval1st 40691 Membership in value of the...
dibelval1st1 40692 Membership in value of the...
dibelval1st2N 40693 Membership in value of the...
dibelval2nd 40694 Membership in value of the...
dibn0 40695 The value of the partial i...
dibfna 40696 Functionality and domain o...
dibdiadm 40697 Domain of the partial isom...
dibfnN 40698 Functionality and domain o...
dibdmN 40699 Domain of the partial isom...
dibeldmN 40700 Member of domain of the pa...
dibord 40701 The isomorphism B for a la...
dib11N 40702 The isomorphism B for a la...
dibf11N 40703 The partial isomorphism A ...
dibclN 40704 Closure of partial isomorp...
dibvalrel 40705 The value of partial isomo...
dib0 40706 The value of partial isomo...
dib1dim 40707 Two expressions for the 1-...
dibglbN 40708 Partial isomorphism B of a...
dibintclN 40709 The intersection of partia...
dib1dim2 40710 Two expressions for a 1-di...
dibss 40711 The partial isomorphism B ...
diblss 40712 The value of partial isomo...
diblsmopel 40713 Membership in subspace sum...
dicffval 40716 The partial isomorphism C ...
dicfval 40717 The partial isomorphism C ...
dicval 40718 The partial isomorphism C ...
dicopelval 40719 Membership in value of the...
dicelvalN 40720 Membership in value of the...
dicval2 40721 The partial isomorphism C ...
dicelval3 40722 Member of the partial isom...
dicopelval2 40723 Membership in value of the...
dicelval2N 40724 Membership in value of the...
dicfnN 40725 Functionality and domain o...
dicdmN 40726 Domain of the partial isom...
dicvalrelN 40727 The value of partial isomo...
dicssdvh 40728 The partial isomorphism C ...
dicelval1sta 40729 Membership in value of the...
dicelval1stN 40730 Membership in value of the...
dicelval2nd 40731 Membership in value of the...
dicvaddcl 40732 Membership in value of the...
dicvscacl 40733 Membership in value of the...
dicn0 40734 The value of the partial i...
diclss 40735 The value of partial isomo...
diclspsn 40736 The value of isomorphism C...
cdlemn2 40737 Part of proof of Lemma N o...
cdlemn2a 40738 Part of proof of Lemma N o...
cdlemn3 40739 Part of proof of Lemma N o...
cdlemn4 40740 Part of proof of Lemma N o...
cdlemn4a 40741 Part of proof of Lemma N o...
cdlemn5pre 40742 Part of proof of Lemma N o...
cdlemn5 40743 Part of proof of Lemma N o...
cdlemn6 40744 Part of proof of Lemma N o...
cdlemn7 40745 Part of proof of Lemma N o...
cdlemn8 40746 Part of proof of Lemma N o...
cdlemn9 40747 Part of proof of Lemma N o...
cdlemn10 40748 Part of proof of Lemma N o...
cdlemn11a 40749 Part of proof of Lemma N o...
cdlemn11b 40750 Part of proof of Lemma N o...
cdlemn11c 40751 Part of proof of Lemma N o...
cdlemn11pre 40752 Part of proof of Lemma N o...
cdlemn11 40753 Part of proof of Lemma N o...
cdlemn 40754 Lemma N of [Crawley] p. 12...
dihordlem6 40755 Part of proof of Lemma N o...
dihordlem7 40756 Part of proof of Lemma N o...
dihordlem7b 40757 Part of proof of Lemma N o...
dihjustlem 40758 Part of proof after Lemma ...
dihjust 40759 Part of proof after Lemma ...
dihord1 40760 Part of proof after Lemma ...
dihord2a 40761 Part of proof after Lemma ...
dihord2b 40762 Part of proof after Lemma ...
dihord2cN 40763 Part of proof after Lemma ...
dihord11b 40764 Part of proof after Lemma ...
dihord10 40765 Part of proof after Lemma ...
dihord11c 40766 Part of proof after Lemma ...
dihord2pre 40767 Part of proof after Lemma ...
dihord2pre2 40768 Part of proof after Lemma ...
dihord2 40769 Part of proof after Lemma ...
dihffval 40772 The isomorphism H for a la...
dihfval 40773 Isomorphism H for a lattic...
dihval 40774 Value of isomorphism H for...
dihvalc 40775 Value of isomorphism H for...
dihlsscpre 40776 Closure of isomorphism H f...
dihvalcqpre 40777 Value of isomorphism H for...
dihvalcq 40778 Value of isomorphism H for...
dihvalb 40779 Value of isomorphism H for...
dihopelvalbN 40780 Ordered pair member of the...
dihvalcqat 40781 Value of isomorphism H for...
dih1dimb 40782 Two expressions for a 1-di...
dih1dimb2 40783 Isomorphism H at an atom u...
dih1dimc 40784 Isomorphism H at an atom n...
dib2dim 40785 Extend ~ dia2dim to partia...
dih2dimb 40786 Extend ~ dib2dim to isomor...
dih2dimbALTN 40787 Extend ~ dia2dim to isomor...
dihopelvalcqat 40788 Ordered pair member of the...
dihvalcq2 40789 Value of isomorphism H for...
dihopelvalcpre 40790 Member of value of isomorp...
dihopelvalc 40791 Member of value of isomorp...
dihlss 40792 The value of isomorphism H...
dihss 40793 The value of isomorphism H...
dihssxp 40794 An isomorphism H value is ...
dihopcl 40795 Closure of an ordered pair...
xihopellsmN 40796 Ordered pair membership in...
dihopellsm 40797 Ordered pair membership in...
dihord6apre 40798 Part of proof that isomorp...
dihord3 40799 The isomorphism H for a la...
dihord4 40800 The isomorphism H for a la...
dihord5b 40801 Part of proof that isomorp...
dihord6b 40802 Part of proof that isomorp...
dihord6a 40803 Part of proof that isomorp...
dihord5apre 40804 Part of proof that isomorp...
dihord5a 40805 Part of proof that isomorp...
dihord 40806 The isomorphism H is order...
dih11 40807 The isomorphism H is one-t...
dihf11lem 40808 Functionality of the isomo...
dihf11 40809 The isomorphism H for a la...
dihfn 40810 Functionality and domain o...
dihdm 40811 Domain of isomorphism H. (...
dihcl 40812 Closure of isomorphism H. ...
dihcnvcl 40813 Closure of isomorphism H c...
dihcnvid1 40814 The converse isomorphism o...
dihcnvid2 40815 The isomorphism of a conve...
dihcnvord 40816 Ordering property for conv...
dihcnv11 40817 The converse of isomorphis...
dihsslss 40818 The isomorphism H maps to ...
dihrnlss 40819 The isomorphism H maps to ...
dihrnss 40820 The isomorphism H maps to ...
dihvalrel 40821 The value of isomorphism H...
dih0 40822 The value of isomorphism H...
dih0bN 40823 A lattice element is zero ...
dih0vbN 40824 A vector is zero iff its s...
dih0cnv 40825 The isomorphism H converse...
dih0rn 40826 The zero subspace belongs ...
dih0sb 40827 A subspace is zero iff the...
dih1 40828 The value of isomorphism H...
dih1rn 40829 The full vector space belo...
dih1cnv 40830 The isomorphism H converse...
dihwN 40831 Value of isomorphism H at ...
dihmeetlem1N 40832 Isomorphism H of a conjunc...
dihglblem5apreN 40833 A conjunction property of ...
dihglblem5aN 40834 A conjunction property of ...
dihglblem2aN 40835 Lemma for isomorphism H of...
dihglblem2N 40836 The GLB of a set of lattic...
dihglblem3N 40837 Isomorphism H of a lattice...
dihglblem3aN 40838 Isomorphism H of a lattice...
dihglblem4 40839 Isomorphism H of a lattice...
dihglblem5 40840 Isomorphism H of a lattice...
dihmeetlem2N 40841 Isomorphism H of a conjunc...
dihglbcpreN 40842 Isomorphism H of a lattice...
dihglbcN 40843 Isomorphism H of a lattice...
dihmeetcN 40844 Isomorphism H of a lattice...
dihmeetbN 40845 Isomorphism H of a lattice...
dihmeetbclemN 40846 Lemma for isomorphism H of...
dihmeetlem3N 40847 Lemma for isomorphism H of...
dihmeetlem4preN 40848 Lemma for isomorphism H of...
dihmeetlem4N 40849 Lemma for isomorphism H of...
dihmeetlem5 40850 Part of proof that isomorp...
dihmeetlem6 40851 Lemma for isomorphism H of...
dihmeetlem7N 40852 Lemma for isomorphism H of...
dihjatc1 40853 Lemma for isomorphism H of...
dihjatc2N 40854 Isomorphism H of join with...
dihjatc3 40855 Isomorphism H of join with...
dihmeetlem8N 40856 Lemma for isomorphism H of...
dihmeetlem9N 40857 Lemma for isomorphism H of...
dihmeetlem10N 40858 Lemma for isomorphism H of...
dihmeetlem11N 40859 Lemma for isomorphism H of...
dihmeetlem12N 40860 Lemma for isomorphism H of...
dihmeetlem13N 40861 Lemma for isomorphism H of...
dihmeetlem14N 40862 Lemma for isomorphism H of...
dihmeetlem15N 40863 Lemma for isomorphism H of...
dihmeetlem16N 40864 Lemma for isomorphism H of...
dihmeetlem17N 40865 Lemma for isomorphism H of...
dihmeetlem18N 40866 Lemma for isomorphism H of...
dihmeetlem19N 40867 Lemma for isomorphism H of...
dihmeetlem20N 40868 Lemma for isomorphism H of...
dihmeetALTN 40869 Isomorphism H of a lattice...
dih1dimatlem0 40870 Lemma for ~ dih1dimat . (...
dih1dimatlem 40871 Lemma for ~ dih1dimat . (...
dih1dimat 40872 Any 1-dimensional subspace...
dihlsprn 40873 The span of a vector belon...
dihlspsnssN 40874 A subspace included in a 1...
dihlspsnat 40875 The inverse isomorphism H ...
dihatlat 40876 The isomorphism H of an at...
dihat 40877 There exists at least one ...
dihpN 40878 The value of isomorphism H...
dihlatat 40879 The reverse isomorphism H ...
dihatexv 40880 There is a nonzero vector ...
dihatexv2 40881 There is a nonzero vector ...
dihglblem6 40882 Isomorphism H of a lattice...
dihglb 40883 Isomorphism H of a lattice...
dihglb2 40884 Isomorphism H of a lattice...
dihmeet 40885 Isomorphism H of a lattice...
dihintcl 40886 The intersection of closed...
dihmeetcl 40887 Closure of closed subspace...
dihmeet2 40888 Reverse isomorphism H of a...
dochffval 40891 Subspace orthocomplement f...
dochfval 40892 Subspace orthocomplement f...
dochval 40893 Subspace orthocomplement f...
dochval2 40894 Subspace orthocomplement f...
dochcl 40895 Closure of subspace orthoc...
dochlss 40896 A subspace orthocomplement...
dochssv 40897 A subspace orthocomplement...
dochfN 40898 Domain and codomain of the...
dochvalr 40899 Orthocomplement of a close...
doch0 40900 Orthocomplement of the zer...
doch1 40901 Orthocomplement of the uni...
dochoc0 40902 The zero subspace is close...
dochoc1 40903 The unit subspace (all vec...
dochvalr2 40904 Orthocomplement of a close...
dochvalr3 40905 Orthocomplement of a close...
doch2val2 40906 Double orthocomplement for...
dochss 40907 Subset law for orthocomple...
dochocss 40908 Double negative law for or...
dochoc 40909 Double negative law for or...
dochsscl 40910 If a set of vectors is inc...
dochoccl 40911 A set of vectors is closed...
dochord 40912 Ordering law for orthocomp...
dochord2N 40913 Ordering law for orthocomp...
dochord3 40914 Ordering law for orthocomp...
doch11 40915 Orthocomplement is one-to-...
dochsordN 40916 Strict ordering law for or...
dochn0nv 40917 An orthocomplement is nonz...
dihoml4c 40918 Version of ~ dihoml4 with ...
dihoml4 40919 Orthomodular law for const...
dochspss 40920 The span of a set of vecto...
dochocsp 40921 The span of an orthocomple...
dochspocN 40922 The span of an orthocomple...
dochocsn 40923 The double orthocomplement...
dochsncom 40924 Swap vectors in an orthoco...
dochsat 40925 The double orthocomplement...
dochshpncl 40926 If a hyperplane is not clo...
dochlkr 40927 Equivalent conditions for ...
dochkrshp 40928 The closure of a kernel is...
dochkrshp2 40929 Properties of the closure ...
dochkrshp3 40930 Properties of the closure ...
dochkrshp4 40931 Properties of the closure ...
dochdmj1 40932 De Morgan-like law for sub...
dochnoncon 40933 Law of noncontradiction. ...
dochnel2 40934 A nonzero member of a subs...
dochnel 40935 A nonzero vector doesn't b...
djhffval 40938 Subspace join for ` DVecH ...
djhfval 40939 Subspace join for ` DVecH ...
djhval 40940 Subspace join for ` DVecH ...
djhval2 40941 Value of subspace join for...
djhcl 40942 Closure of subspace join f...
djhlj 40943 Transfer lattice join to `...
djhljjN 40944 Lattice join in terms of `...
djhjlj 40945 ` DVecH ` vector space clo...
djhj 40946 ` DVecH ` vector space clo...
djhcom 40947 Subspace join commutes. (...
djhspss 40948 Subspace span of union is ...
djhsumss 40949 Subspace sum is a subset o...
dihsumssj 40950 The subspace sum of two is...
djhunssN 40951 Subspace union is a subset...
dochdmm1 40952 De Morgan-like law for clo...
djhexmid 40953 Excluded middle property o...
djh01 40954 Closed subspace join with ...
djh02 40955 Closed subspace join with ...
djhlsmcl 40956 A closed subspace sum equa...
djhcvat42 40957 A covering property. ( ~ ...
dihjatb 40958 Isomorphism H of lattice j...
dihjatc 40959 Isomorphism H of lattice j...
dihjatcclem1 40960 Lemma for isomorphism H of...
dihjatcclem2 40961 Lemma for isomorphism H of...
dihjatcclem3 40962 Lemma for ~ dihjatcc . (C...
dihjatcclem4 40963 Lemma for isomorphism H of...
dihjatcc 40964 Isomorphism H of lattice j...
dihjat 40965 Isomorphism H of lattice j...
dihprrnlem1N 40966 Lemma for ~ dihprrn , show...
dihprrnlem2 40967 Lemma for ~ dihprrn . (Co...
dihprrn 40968 The span of a vector pair ...
djhlsmat 40969 The sum of two subspace at...
dihjat1lem 40970 Subspace sum of a closed s...
dihjat1 40971 Subspace sum of a closed s...
dihsmsprn 40972 Subspace sum of a closed s...
dihjat2 40973 The subspace sum of a clos...
dihjat3 40974 Isomorphism H of lattice j...
dihjat4 40975 Transfer the subspace sum ...
dihjat6 40976 Transfer the subspace sum ...
dihsmsnrn 40977 The subspace sum of two si...
dihsmatrn 40978 The subspace sum of a clos...
dihjat5N 40979 Transfer lattice join with...
dvh4dimat 40980 There is an atom that is o...
dvh3dimatN 40981 There is an atom that is o...
dvh2dimatN 40982 Given an atom, there exist...
dvh1dimat 40983 There exists an atom. (Co...
dvh1dim 40984 There exists a nonzero vec...
dvh4dimlem 40985 Lemma for ~ dvh4dimN . (C...
dvhdimlem 40986 Lemma for ~ dvh2dim and ~ ...
dvh2dim 40987 There is a vector that is ...
dvh3dim 40988 There is a vector that is ...
dvh4dimN 40989 There is a vector that is ...
dvh3dim2 40990 There is a vector that is ...
dvh3dim3N 40991 There is a vector that is ...
dochsnnz 40992 The orthocomplement of a s...
dochsatshp 40993 The orthocomplement of a s...
dochsatshpb 40994 The orthocomplement of a s...
dochsnshp 40995 The orthocomplement of a n...
dochshpsat 40996 A hyperplane is closed iff...
dochkrsat 40997 The orthocomplement of a k...
dochkrsat2 40998 The orthocomplement of a k...
dochsat0 40999 The orthocomplement of a k...
dochkrsm 41000 The subspace sum of a clos...
dochexmidat 41001 Special case of excluded m...
dochexmidlem1 41002 Lemma for ~ dochexmid . H...
dochexmidlem2 41003 Lemma for ~ dochexmid . (...
dochexmidlem3 41004 Lemma for ~ dochexmid . U...
dochexmidlem4 41005 Lemma for ~ dochexmid . (...
dochexmidlem5 41006 Lemma for ~ dochexmid . (...
dochexmidlem6 41007 Lemma for ~ dochexmid . (...
dochexmidlem7 41008 Lemma for ~ dochexmid . C...
dochexmidlem8 41009 Lemma for ~ dochexmid . T...
dochexmid 41010 Excluded middle law for cl...
dochsnkrlem1 41011 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 41012 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 41013 Lemma for ~ dochsnkr . (C...
dochsnkr 41014 A (closed) kernel expresse...
dochsnkr2 41015 Kernel of the explicit fun...
dochsnkr2cl 41016 The ` X ` determining func...
dochflcl 41017 Closure of the explicit fu...
dochfl1 41018 The value of the explicit ...
dochfln0 41019 The value of a functional ...
dochkr1 41020 A nonzero functional has a...
dochkr1OLDN 41021 A nonzero functional has a...
lpolsetN 41024 The set of polarities of a...
islpolN 41025 The predicate "is a polari...
islpoldN 41026 Properties that determine ...
lpolfN 41027 Functionality of a polarit...
lpolvN 41028 The polarity of the whole ...
lpolconN 41029 Contraposition property of...
lpolsatN 41030 The polarity of an atomic ...
lpolpolsatN 41031 Property of a polarity. (...
dochpolN 41032 The subspace orthocompleme...
lcfl1lem 41033 Property of a functional w...
lcfl1 41034 Property of a functional w...
lcfl2 41035 Property of a functional w...
lcfl3 41036 Property of a functional w...
lcfl4N 41037 Property of a functional w...
lcfl5 41038 Property of a functional w...
lcfl5a 41039 Property of a functional w...
lcfl6lem 41040 Lemma for ~ lcfl6 . A fun...
lcfl7lem 41041 Lemma for ~ lcfl7N . If t...
lcfl6 41042 Property of a functional w...
lcfl7N 41043 Property of a functional w...
lcfl8 41044 Property of a functional w...
lcfl8a 41045 Property of a functional w...
lcfl8b 41046 Property of a nonzero func...
lcfl9a 41047 Property implying that a f...
lclkrlem1 41048 The set of functionals hav...
lclkrlem2a 41049 Lemma for ~ lclkr . Use ~...
lclkrlem2b 41050 Lemma for ~ lclkr . (Cont...
lclkrlem2c 41051 Lemma for ~ lclkr . (Cont...
lclkrlem2d 41052 Lemma for ~ lclkr . (Cont...
lclkrlem2e 41053 Lemma for ~ lclkr . The k...
lclkrlem2f 41054 Lemma for ~ lclkr . Const...
lclkrlem2g 41055 Lemma for ~ lclkr . Compa...
lclkrlem2h 41056 Lemma for ~ lclkr . Elimi...
lclkrlem2i 41057 Lemma for ~ lclkr . Elimi...
lclkrlem2j 41058 Lemma for ~ lclkr . Kerne...
lclkrlem2k 41059 Lemma for ~ lclkr . Kerne...
lclkrlem2l 41060 Lemma for ~ lclkr . Elimi...
lclkrlem2m 41061 Lemma for ~ lclkr . Const...
lclkrlem2n 41062 Lemma for ~ lclkr . (Cont...
lclkrlem2o 41063 Lemma for ~ lclkr . When ...
lclkrlem2p 41064 Lemma for ~ lclkr . When ...
lclkrlem2q 41065 Lemma for ~ lclkr . The s...
lclkrlem2r 41066 Lemma for ~ lclkr . When ...
lclkrlem2s 41067 Lemma for ~ lclkr . Thus,...
lclkrlem2t 41068 Lemma for ~ lclkr . We el...
lclkrlem2u 41069 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 41070 Lemma for ~ lclkr . When ...
lclkrlem2w 41071 Lemma for ~ lclkr . This ...
lclkrlem2x 41072 Lemma for ~ lclkr . Elimi...
lclkrlem2y 41073 Lemma for ~ lclkr . Resta...
lclkrlem2 41074 The set of functionals hav...
lclkr 41075 The set of functionals wit...
lcfls1lem 41076 Property of a functional w...
lcfls1N 41077 Property of a functional w...
lcfls1c 41078 Property of a functional w...
lclkrslem1 41079 The set of functionals hav...
lclkrslem2 41080 The set of functionals hav...
lclkrs 41081 The set of functionals hav...
lclkrs2 41082 The set of functionals wit...
lcfrvalsnN 41083 Reconstruction from the du...
lcfrlem1 41084 Lemma for ~ lcfr . Note t...
lcfrlem2 41085 Lemma for ~ lcfr . (Contr...
lcfrlem3 41086 Lemma for ~ lcfr . (Contr...
lcfrlem4 41087 Lemma for ~ lcfr . (Contr...
lcfrlem5 41088 Lemma for ~ lcfr . The se...
lcfrlem6 41089 Lemma for ~ lcfr . Closur...
lcfrlem7 41090 Lemma for ~ lcfr . Closur...
lcfrlem8 41091 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 41092 Lemma for ~ lcf1o . (This...
lcf1o 41093 Define a function ` J ` th...
lcfrlem10 41094 Lemma for ~ lcfr . (Contr...
lcfrlem11 41095 Lemma for ~ lcfr . (Contr...
lcfrlem12N 41096 Lemma for ~ lcfr . (Contr...
lcfrlem13 41097 Lemma for ~ lcfr . (Contr...
lcfrlem14 41098 Lemma for ~ lcfr . (Contr...
lcfrlem15 41099 Lemma for ~ lcfr . (Contr...
lcfrlem16 41100 Lemma for ~ lcfr . (Contr...
lcfrlem17 41101 Lemma for ~ lcfr . Condit...
lcfrlem18 41102 Lemma for ~ lcfr . (Contr...
lcfrlem19 41103 Lemma for ~ lcfr . (Contr...
lcfrlem20 41104 Lemma for ~ lcfr . (Contr...
lcfrlem21 41105 Lemma for ~ lcfr . (Contr...
lcfrlem22 41106 Lemma for ~ lcfr . (Contr...
lcfrlem23 41107 Lemma for ~ lcfr . TODO: ...
lcfrlem24 41108 Lemma for ~ lcfr . (Contr...
lcfrlem25 41109 Lemma for ~ lcfr . Specia...
lcfrlem26 41110 Lemma for ~ lcfr . Specia...
lcfrlem27 41111 Lemma for ~ lcfr . Specia...
lcfrlem28 41112 Lemma for ~ lcfr . TODO: ...
lcfrlem29 41113 Lemma for ~ lcfr . (Contr...
lcfrlem30 41114 Lemma for ~ lcfr . (Contr...
lcfrlem31 41115 Lemma for ~ lcfr . (Contr...
lcfrlem32 41116 Lemma for ~ lcfr . (Contr...
lcfrlem33 41117 Lemma for ~ lcfr . (Contr...
lcfrlem34 41118 Lemma for ~ lcfr . (Contr...
lcfrlem35 41119 Lemma for ~ lcfr . (Contr...
lcfrlem36 41120 Lemma for ~ lcfr . (Contr...
lcfrlem37 41121 Lemma for ~ lcfr . (Contr...
lcfrlem38 41122 Lemma for ~ lcfr . Combin...
lcfrlem39 41123 Lemma for ~ lcfr . Elimin...
lcfrlem40 41124 Lemma for ~ lcfr . Elimin...
lcfrlem41 41125 Lemma for ~ lcfr . Elimin...
lcfrlem42 41126 Lemma for ~ lcfr . Elimin...
lcfr 41127 Reconstruction of a subspa...
lcdfval 41130 Dual vector space of funct...
lcdval 41131 Dual vector space of funct...
lcdval2 41132 Dual vector space of funct...
lcdlvec 41133 The dual vector space of f...
lcdlmod 41134 The dual vector space of f...
lcdvbase 41135 Vector base set of a dual ...
lcdvbasess 41136 The vector base set of the...
lcdvbaselfl 41137 A vector in the base set o...
lcdvbasecl 41138 Closure of the value of a ...
lcdvadd 41139 Vector addition for the cl...
lcdvaddval 41140 The value of the value of ...
lcdsca 41141 The ring of scalars of the...
lcdsbase 41142 Base set of scalar ring fo...
lcdsadd 41143 Scalar addition for the cl...
lcdsmul 41144 Scalar multiplication for ...
lcdvs 41145 Scalar product for the clo...
lcdvsval 41146 Value of scalar product op...
lcdvscl 41147 The scalar product operati...
lcdlssvscl 41148 Closure of scalar product ...
lcdvsass 41149 Associative law for scalar...
lcd0 41150 The zero scalar of the clo...
lcd1 41151 The unit scalar of the clo...
lcdneg 41152 The unit scalar of the clo...
lcd0v 41153 The zero functional in the...
lcd0v2 41154 The zero functional in the...
lcd0vvalN 41155 Value of the zero function...
lcd0vcl 41156 Closure of the zero functi...
lcd0vs 41157 A scalar zero times a func...
lcdvs0N 41158 A scalar times the zero fu...
lcdvsub 41159 The value of vector subtra...
lcdvsubval 41160 The value of the value of ...
lcdlss 41161 Subspaces of a dual vector...
lcdlss2N 41162 Subspaces of a dual vector...
lcdlsp 41163 Span in the set of functio...
lcdlkreqN 41164 Colinear functionals have ...
lcdlkreq2N 41165 Colinear functionals have ...
mapdffval 41168 Projectivity from vector s...
mapdfval 41169 Projectivity from vector s...
mapdval 41170 Value of projectivity from...
mapdvalc 41171 Value of projectivity from...
mapdval2N 41172 Value of projectivity from...
mapdval3N 41173 Value of projectivity from...
mapdval4N 41174 Value of projectivity from...
mapdval5N 41175 Value of projectivity from...
mapdordlem1a 41176 Lemma for ~ mapdord . (Co...
mapdordlem1bN 41177 Lemma for ~ mapdord . (Co...
mapdordlem1 41178 Lemma for ~ mapdord . (Co...
mapdordlem2 41179 Lemma for ~ mapdord . Ord...
mapdord 41180 Ordering property of the m...
mapd11 41181 The map defined by ~ df-ma...
mapddlssN 41182 The mapping of a subspace ...
mapdsn 41183 Value of the map defined b...
mapdsn2 41184 Value of the map defined b...
mapdsn3 41185 Value of the map defined b...
mapd1dim2lem1N 41186 Value of the map defined b...
mapdrvallem2 41187 Lemma for ~ mapdrval . TO...
mapdrvallem3 41188 Lemma for ~ mapdrval . (C...
mapdrval 41189 Given a dual subspace ` R ...
mapd1o 41190 The map defined by ~ df-ma...
mapdrn 41191 Range of the map defined b...
mapdunirnN 41192 Union of the range of the ...
mapdrn2 41193 Range of the map defined b...
mapdcnvcl 41194 Closure of the converse of...
mapdcl 41195 Closure the value of the m...
mapdcnvid1N 41196 Converse of the value of t...
mapdsord 41197 Strong ordering property o...
mapdcl2 41198 The mapping of a subspace ...
mapdcnvid2 41199 Value of the converse of t...
mapdcnvordN 41200 Ordering property of the c...
mapdcnv11N 41201 The converse of the map de...
mapdcv 41202 Covering property of the c...
mapdincl 41203 Closure of dual subspace i...
mapdin 41204 Subspace intersection is p...
mapdlsmcl 41205 Closure of dual subspace s...
mapdlsm 41206 Subspace sum is preserved ...
mapd0 41207 Projectivity map of the ze...
mapdcnvatN 41208 Atoms are preserved by the...
mapdat 41209 Atoms are preserved by the...
mapdspex 41210 The map of a span equals t...
mapdn0 41211 Transfer nonzero property ...
mapdncol 41212 Transfer non-colinearity f...
mapdindp 41213 Transfer (part of) vector ...
mapdpglem1 41214 Lemma for ~ mapdpg . Baer...
mapdpglem2 41215 Lemma for ~ mapdpg . Baer...
mapdpglem2a 41216 Lemma for ~ mapdpg . (Con...
mapdpglem3 41217 Lemma for ~ mapdpg . Baer...
mapdpglem4N 41218 Lemma for ~ mapdpg . (Con...
mapdpglem5N 41219 Lemma for ~ mapdpg . (Con...
mapdpglem6 41220 Lemma for ~ mapdpg . Baer...
mapdpglem8 41221 Lemma for ~ mapdpg . Baer...
mapdpglem9 41222 Lemma for ~ mapdpg . Baer...
mapdpglem10 41223 Lemma for ~ mapdpg . Baer...
mapdpglem11 41224 Lemma for ~ mapdpg . (Con...
mapdpglem12 41225 Lemma for ~ mapdpg . TODO...
mapdpglem13 41226 Lemma for ~ mapdpg . (Con...
mapdpglem14 41227 Lemma for ~ mapdpg . (Con...
mapdpglem15 41228 Lemma for ~ mapdpg . (Con...
mapdpglem16 41229 Lemma for ~ mapdpg . Baer...
mapdpglem17N 41230 Lemma for ~ mapdpg . Baer...
mapdpglem18 41231 Lemma for ~ mapdpg . Baer...
mapdpglem19 41232 Lemma for ~ mapdpg . Baer...
mapdpglem20 41233 Lemma for ~ mapdpg . Baer...
mapdpglem21 41234 Lemma for ~ mapdpg . (Con...
mapdpglem22 41235 Lemma for ~ mapdpg . Baer...
mapdpglem23 41236 Lemma for ~ mapdpg . Baer...
mapdpglem30a 41237 Lemma for ~ mapdpg . (Con...
mapdpglem30b 41238 Lemma for ~ mapdpg . (Con...
mapdpglem25 41239 Lemma for ~ mapdpg . Baer...
mapdpglem26 41240 Lemma for ~ mapdpg . Baer...
mapdpglem27 41241 Lemma for ~ mapdpg . Baer...
mapdpglem29 41242 Lemma for ~ mapdpg . Baer...
mapdpglem28 41243 Lemma for ~ mapdpg . Baer...
mapdpglem30 41244 Lemma for ~ mapdpg . Baer...
mapdpglem31 41245 Lemma for ~ mapdpg . Baer...
mapdpglem24 41246 Lemma for ~ mapdpg . Exis...
mapdpglem32 41247 Lemma for ~ mapdpg . Uniq...
mapdpg 41248 Part 1 of proof of the fir...
baerlem3lem1 41249 Lemma for ~ baerlem3 . (C...
baerlem5alem1 41250 Lemma for ~ baerlem5a . (...
baerlem5blem1 41251 Lemma for ~ baerlem5b . (...
baerlem3lem2 41252 Lemma for ~ baerlem3 . (C...
baerlem5alem2 41253 Lemma for ~ baerlem5a . (...
baerlem5blem2 41254 Lemma for ~ baerlem5b . (...
baerlem3 41255 An equality that holds whe...
baerlem5a 41256 An equality that holds whe...
baerlem5b 41257 An equality that holds whe...
baerlem5amN 41258 An equality that holds whe...
baerlem5bmN 41259 An equality that holds whe...
baerlem5abmN 41260 An equality that holds whe...
mapdindp0 41261 Vector independence lemma....
mapdindp1 41262 Vector independence lemma....
mapdindp2 41263 Vector independence lemma....
mapdindp3 41264 Vector independence lemma....
mapdindp4 41265 Vector independence lemma....
mapdhval 41266 Lemmma for ~~? mapdh . (C...
mapdhval0 41267 Lemmma for ~~? mapdh . (C...
mapdhval2 41268 Lemmma for ~~? mapdh . (C...
mapdhcl 41269 Lemmma for ~~? mapdh . (C...
mapdheq 41270 Lemmma for ~~? mapdh . Th...
mapdheq2 41271 Lemmma for ~~? mapdh . On...
mapdheq2biN 41272 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 41273 Lemma for ~ mapdheq4 . Pa...
mapdheq4 41274 Lemma for ~~? mapdh . Par...
mapdh6lem1N 41275 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 41276 Lemma for ~ mapdh6N . Par...
mapdh6aN 41277 Lemma for ~ mapdh6N . Par...
mapdh6b0N 41278 Lemmma for ~ mapdh6N . (C...
mapdh6bN 41279 Lemmma for ~ mapdh6N . (C...
mapdh6cN 41280 Lemmma for ~ mapdh6N . (C...
mapdh6dN 41281 Lemmma for ~ mapdh6N . (C...
mapdh6eN 41282 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 41283 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 41284 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 41285 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 41286 Lemmma for ~ mapdh6N . El...
mapdh6jN 41287 Lemmma for ~ mapdh6N . El...
mapdh6kN 41288 Lemmma for ~ mapdh6N . El...
mapdh6N 41289 Part (6) of [Baer] p. 47 l...
mapdh7eN 41290 Part (7) of [Baer] p. 48 l...
mapdh7cN 41291 Part (7) of [Baer] p. 48 l...
mapdh7dN 41292 Part (7) of [Baer] p. 48 l...
mapdh7fN 41293 Part (7) of [Baer] p. 48 l...
mapdh75e 41294 Part (7) of [Baer] p. 48 l...
mapdh75cN 41295 Part (7) of [Baer] p. 48 l...
mapdh75d 41296 Part (7) of [Baer] p. 48 l...
mapdh75fN 41297 Part (7) of [Baer] p. 48 l...
hvmapffval 41300 Map from nonzero vectors t...
hvmapfval 41301 Map from nonzero vectors t...
hvmapval 41302 Value of map from nonzero ...
hvmapvalvalN 41303 Value of value of map (i.e...
hvmapidN 41304 The value of the vector to...
hvmap1o 41305 The vector to functional m...
hvmapclN 41306 Closure of the vector to f...
hvmap1o2 41307 The vector to functional m...
hvmapcl2 41308 Closure of the vector to f...
hvmaplfl 41309 The vector to functional m...
hvmaplkr 41310 Kernel of the vector to fu...
mapdhvmap 41311 Relationship between ` map...
lspindp5 41312 Obtain an independent vect...
hdmaplem1 41313 Lemma to convert a frequen...
hdmaplem2N 41314 Lemma to convert a frequen...
hdmaplem3 41315 Lemma to convert a frequen...
hdmaplem4 41316 Lemma to convert a frequen...
mapdh8a 41317 Part of Part (8) in [Baer]...
mapdh8aa 41318 Part of Part (8) in [Baer]...
mapdh8ab 41319 Part of Part (8) in [Baer]...
mapdh8ac 41320 Part of Part (8) in [Baer]...
mapdh8ad 41321 Part of Part (8) in [Baer]...
mapdh8b 41322 Part of Part (8) in [Baer]...
mapdh8c 41323 Part of Part (8) in [Baer]...
mapdh8d0N 41324 Part of Part (8) in [Baer]...
mapdh8d 41325 Part of Part (8) in [Baer]...
mapdh8e 41326 Part of Part (8) in [Baer]...
mapdh8g 41327 Part of Part (8) in [Baer]...
mapdh8i 41328 Part of Part (8) in [Baer]...
mapdh8j 41329 Part of Part (8) in [Baer]...
mapdh8 41330 Part (8) in [Baer] p. 48. ...
mapdh9a 41331 Lemma for part (9) in [Bae...
mapdh9aOLDN 41332 Lemma for part (9) in [Bae...
hdmap1ffval 41337 Preliminary map from vecto...
hdmap1fval 41338 Preliminary map from vecto...
hdmap1vallem 41339 Value of preliminary map f...
hdmap1val 41340 Value of preliminary map f...
hdmap1val0 41341 Value of preliminary map f...
hdmap1val2 41342 Value of preliminary map f...
hdmap1eq 41343 The defining equation for ...
hdmap1cbv 41344 Frequently used lemma to c...
hdmap1valc 41345 Connect the value of the p...
hdmap1cl 41346 Convert closure theorem ~ ...
hdmap1eq2 41347 Convert ~ mapdheq2 to use ...
hdmap1eq4N 41348 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 41349 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 41350 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 41351 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 41352 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 41353 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 41354 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 41355 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 41356 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 41357 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 41358 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 41359 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 41360 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 41361 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 41362 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 41363 Part (6) of [Baer] p. 47 l...
hdmap1eulem 41364 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 41365 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 41366 Convert ~ mapdh9a to use t...
hdmap1euOLDN 41367 Convert ~ mapdh9aOLDN to u...
hdmapffval 41368 Map from vectors to functi...
hdmapfval 41369 Map from vectors to functi...
hdmapval 41370 Value of map from vectors ...
hdmapfnN 41371 Functionality of map from ...
hdmapcl 41372 Closure of map from vector...
hdmapval2lem 41373 Lemma for ~ hdmapval2 . (...
hdmapval2 41374 Value of map from vectors ...
hdmapval0 41375 Value of map from vectors ...
hdmapeveclem 41376 Lemma for ~ hdmapevec . T...
hdmapevec 41377 Value of map from vectors ...
hdmapevec2 41378 The inner product of the r...
hdmapval3lemN 41379 Value of map from vectors ...
hdmapval3N 41380 Value of map from vectors ...
hdmap10lem 41381 Lemma for ~ hdmap10 . (Co...
hdmap10 41382 Part 10 in [Baer] p. 48 li...
hdmap11lem1 41383 Lemma for ~ hdmapadd . (C...
hdmap11lem2 41384 Lemma for ~ hdmapadd . (C...
hdmapadd 41385 Part 11 in [Baer] p. 48 li...
hdmapeq0 41386 Part of proof of part 12 i...
hdmapnzcl 41387 Nonzero vector closure of ...
hdmapneg 41388 Part of proof of part 12 i...
hdmapsub 41389 Part of proof of part 12 i...
hdmap11 41390 Part of proof of part 12 i...
hdmaprnlem1N 41391 Part of proof of part 12 i...
hdmaprnlem3N 41392 Part of proof of part 12 i...
hdmaprnlem3uN 41393 Part of proof of part 12 i...
hdmaprnlem4tN 41394 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 41395 Part of proof of part 12 i...
hdmaprnlem6N 41396 Part of proof of part 12 i...
hdmaprnlem7N 41397 Part of proof of part 12 i...
hdmaprnlem8N 41398 Part of proof of part 12 i...
hdmaprnlem9N 41399 Part of proof of part 12 i...
hdmaprnlem3eN 41400 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 41401 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 41402 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 41403 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 41404 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 41405 Lemma for ~ hdmaprnN . In...
hdmaprnN 41406 Part of proof of part 12 i...
hdmapf1oN 41407 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 41408 Prior to part 14 in [Baer]...
hdmap14lem2a 41409 Prior to part 14 in [Baer]...
hdmap14lem1 41410 Prior to part 14 in [Baer]...
hdmap14lem2N 41411 Prior to part 14 in [Baer]...
hdmap14lem3 41412 Prior to part 14 in [Baer]...
hdmap14lem4a 41413 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 41414 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 41415 Case where ` F ` is zero. ...
hdmap14lem7 41416 Combine cases of ` F ` . ...
hdmap14lem8 41417 Part of proof of part 14 i...
hdmap14lem9 41418 Part of proof of part 14 i...
hdmap14lem10 41419 Part of proof of part 14 i...
hdmap14lem11 41420 Part of proof of part 14 i...
hdmap14lem12 41421 Lemma for proof of part 14...
hdmap14lem13 41422 Lemma for proof of part 14...
hdmap14lem14 41423 Part of proof of part 14 i...
hdmap14lem15 41424 Part of proof of part 14 i...
hgmapffval 41427 Map from the scalar divisi...
hgmapfval 41428 Map from the scalar divisi...
hgmapval 41429 Value of map from the scal...
hgmapfnN 41430 Functionality of scalar si...
hgmapcl 41431 Closure of scalar sigma ma...
hgmapdcl 41432 Closure of the vector spac...
hgmapvs 41433 Part 15 of [Baer] p. 50 li...
hgmapval0 41434 Value of the scalar sigma ...
hgmapval1 41435 Value of the scalar sigma ...
hgmapadd 41436 Part 15 of [Baer] p. 50 li...
hgmapmul 41437 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 41438 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 41439 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 41440 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 41441 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 41442 Lemma for ~ hgmaprnN . El...
hgmaprnN 41443 Part of proof of part 16 i...
hgmap11 41444 The scalar sigma map is on...
hgmapf1oN 41445 The scalar sigma map is a ...
hgmapeq0 41446 The scalar sigma map is ze...
hdmapipcl 41447 The inner product (Hermiti...
hdmapln1 41448 Linearity property that wi...
hdmaplna1 41449 Additive property of first...
hdmaplns1 41450 Subtraction property of fi...
hdmaplnm1 41451 Multiplicative property of...
hdmaplna2 41452 Additive property of secon...
hdmapglnm2 41453 g-linear property of secon...
hdmapgln2 41454 g-linear property that wil...
hdmaplkr 41455 Kernel of the vector to du...
hdmapellkr 41456 Membership in the kernel (...
hdmapip0 41457 Zero property that will be...
hdmapip1 41458 Construct a proportional v...
hdmapip0com 41459 Commutation property of Ba...
hdmapinvlem1 41460 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 41461 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 41462 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 41463 Part 1.1 of Proposition 1 ...
hdmapglem5 41464 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 41465 Involution property of sca...
hgmapvvlem2 41466 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 41467 Lemma for ~ hgmapvv . Eli...
hgmapvv 41468 Value of a double involuti...
hdmapglem7a 41469 Lemma for ~ hdmapg . (Con...
hdmapglem7b 41470 Lemma for ~ hdmapg . (Con...
hdmapglem7 41471 Lemma for ~ hdmapg . Line...
hdmapg 41472 Apply the scalar sigma fun...
hdmapoc 41473 Express our constructed or...
hlhilset 41476 The final Hilbert space co...
hlhilsca 41477 The scalar of the final co...
hlhilbase 41478 The base set of the final ...
hlhilplus 41479 The vector addition for th...
hlhilslem 41480 Lemma for ~ hlhilsbase etc...
hlhilslemOLD 41481 Obsolete version of ~ hlhi...
hlhilsbase 41482 The scalar base set of the...
hlhilsbaseOLD 41483 Obsolete version of ~ hlhi...
hlhilsplus 41484 Scalar addition for the fi...
hlhilsplusOLD 41485 Obsolete version of ~ hlhi...
hlhilsmul 41486 Scalar multiplication for ...
hlhilsmulOLD 41487 Obsolete version of ~ hlhi...
hlhilsbase2 41488 The scalar base set of the...
hlhilsplus2 41489 Scalar addition for the fi...
hlhilsmul2 41490 Scalar multiplication for ...
hlhils0 41491 The scalar ring zero for t...
hlhils1N 41492 The scalar ring unity for ...
hlhilvsca 41493 The scalar product for the...
hlhilip 41494 Inner product operation fo...
hlhilipval 41495 Value of inner product ope...
hlhilnvl 41496 The involution operation o...
hlhillvec 41497 The final constructed Hilb...
hlhildrng 41498 The star division ring for...
hlhilsrnglem 41499 Lemma for ~ hlhilsrng . (...
hlhilsrng 41500 The star division ring for...
hlhil0 41501 The zero vector for the fi...
hlhillsm 41502 The vector sum operation f...
hlhilocv 41503 The orthocomplement for th...
hlhillcs 41504 The closed subspaces of th...
hlhilphllem 41505 Lemma for ~ hlhil . (Cont...
hlhilhillem 41506 Lemma for ~ hlhil . (Cont...
hlathil 41507 Construction of a Hilbert ...
iscsrg 41510 A commutative semiring is ...
leexp1ad 41511 Weak base ordering relatio...
relogbcld 41512 Closure of the general log...
relogbexpd 41513 Identity law for general l...
relogbzexpd 41514 Power law for the general ...
logblebd 41515 The general logarithm is m...
uzindd 41516 Induction on the upper int...
fzadd2d 41517 Membership of a sum in a f...
zltlem1d 41518 Integer ordering relation,...
zltp1led 41519 Integer ordering relation,...
fzne2d 41520 Elementhood in a finite se...
eqfnfv2d2 41521 Equality of functions is d...
fzsplitnd 41522 Split a finite interval of...
fzsplitnr 41523 Split a finite interval of...
addassnni 41524 Associative law for additi...
addcomnni 41525 Commutative law for additi...
mulassnni 41526 Associative law for multip...
mulcomnni 41527 Commutative law for multip...
gcdcomnni 41528 Commutative law for gcd. ...
gcdnegnni 41529 Negation invariance for gc...
neggcdnni 41530 Negation invariance for gc...
bccl2d 41531 Closure of the binomial co...
recbothd 41532 Take reciprocal on both si...
gcdmultiplei 41533 The GCD of a multiple of a...
gcdaddmzz2nni 41534 Adding a multiple of one o...
gcdaddmzz2nncomi 41535 Adding a multiple of one o...
gcdnncli 41536 Closure of the gcd operato...
muldvds1d 41537 If a product divides an in...
muldvds2d 41538 If a product divides an in...
nndivdvdsd 41539 A positive integer divides...
nnproddivdvdsd 41540 A product of natural numbe...
coprmdvds2d 41541 If an integer is divisible...
imadomfi 41542 An image of a function und...
12gcd5e1 41543 The gcd of 12 and 5 is 1. ...
60gcd6e6 41544 The gcd of 60 and 6 is 6. ...
60gcd7e1 41545 The gcd of 60 and 7 is 1. ...
420gcd8e4 41546 The gcd of 420 and 8 is 4....
lcmeprodgcdi 41547 Calculate the least common...
12lcm5e60 41548 The lcm of 12 and 5 is 60....
60lcm6e60 41549 The lcm of 60 and 6 is 60....
60lcm7e420 41550 The lcm of 60 and 7 is 420...
420lcm8e840 41551 The lcm of 420 and 8 is 84...
lcmfunnnd 41552 Useful equation to calcula...
lcm1un 41553 Least common multiple of n...
lcm2un 41554 Least common multiple of n...
lcm3un 41555 Least common multiple of n...
lcm4un 41556 Least common multiple of n...
lcm5un 41557 Least common multiple of n...
lcm6un 41558 Least common multiple of n...
lcm7un 41559 Least common multiple of n...
lcm8un 41560 Least common multiple of n...
3factsumint1 41561 Move constants out of inte...
3factsumint2 41562 Move constants out of inte...
3factsumint3 41563 Move constants out of inte...
3factsumint4 41564 Move constants out of inte...
3factsumint 41565 Helpful equation for lcm i...
resopunitintvd 41566 Restrict continuous functi...
resclunitintvd 41567 Restrict continuous functi...
resdvopclptsd 41568 Restrict derivative on uni...
lcmineqlem1 41569 Part of lcm inequality lem...
lcmineqlem2 41570 Part of lcm inequality lem...
lcmineqlem3 41571 Part of lcm inequality lem...
lcmineqlem4 41572 Part of lcm inequality lem...
lcmineqlem5 41573 Technical lemma for recipr...
lcmineqlem6 41574 Part of lcm inequality lem...
lcmineqlem7 41575 Derivative of 1-x for chai...
lcmineqlem8 41576 Derivative of (1-x)^(N-M)....
lcmineqlem9 41577 (1-x)^(N-M) is continuous....
lcmineqlem10 41578 Induction step of ~ lcmine...
lcmineqlem11 41579 Induction step, continuati...
lcmineqlem12 41580 Base case for induction. ...
lcmineqlem13 41581 Induction proof for lcm in...
lcmineqlem14 41582 Technical lemma for inequa...
lcmineqlem15 41583 F times the least common m...
lcmineqlem16 41584 Technical divisibility lem...
lcmineqlem17 41585 Inequality of 2^{2n}. (Co...
lcmineqlem18 41586 Technical lemma to shift f...
lcmineqlem19 41587 Dividing implies inequalit...
lcmineqlem20 41588 Inequality for lcm lemma. ...
lcmineqlem21 41589 The lcm inequality lemma w...
lcmineqlem22 41590 The lcm inequality lemma w...
lcmineqlem23 41591 Penultimate step to the lc...
lcmineqlem 41592 The least common multiple ...
3exp7 41593 3 to the power of 7 equals...
3lexlogpow5ineq1 41594 First inequality in inequa...
3lexlogpow5ineq2 41595 Second inequality in inequ...
3lexlogpow5ineq4 41596 Sharper logarithm inequali...
3lexlogpow5ineq3 41597 Combined inequality chain ...
3lexlogpow2ineq1 41598 Result for bound in AKS in...
3lexlogpow2ineq2 41599 Result for bound in AKS in...
3lexlogpow5ineq5 41600 Result for bound in AKS in...
intlewftc 41601 Inequality inference by in...
aks4d1lem1 41602 Technical lemma to reduce ...
aks4d1p1p1 41603 Exponential law for finite...
dvrelog2 41604 The derivative of the loga...
dvrelog3 41605 The derivative of the loga...
dvrelog2b 41606 Derivative of the binary l...
0nonelalab 41607 Technical lemma for open i...
dvrelogpow2b 41608 Derivative of the power of...
aks4d1p1p3 41609 Bound of a ceiling of the ...
aks4d1p1p2 41610 Rewrite ` A ` in more suit...
aks4d1p1p4 41611 Technical step for inequal...
dvle2 41612 Collapsed ~ dvle . (Contr...
aks4d1p1p6 41613 Inequality lift to differe...
aks4d1p1p7 41614 Bound of intermediary of i...
aks4d1p1p5 41615 Show inequality for existe...
aks4d1p1 41616 Show inequality for existe...
aks4d1p2 41617 Technical lemma for existe...
aks4d1p3 41618 There exists a small enoug...
aks4d1p4 41619 There exists a small enoug...
aks4d1p5 41620 Show that ` N ` and ` R ` ...
aks4d1p6 41621 The maximal prime power ex...
aks4d1p7d1 41622 Technical step in AKS lemm...
aks4d1p7 41623 Technical step in AKS lemm...
aks4d1p8d1 41624 If a prime divides one num...
aks4d1p8d2 41625 Any prime power dividing a...
aks4d1p8d3 41626 The remainder of a divisio...
aks4d1p8 41627 Show that ` N ` and ` R ` ...
aks4d1p9 41628 Show that the order is bou...
aks4d1 41629 Lemma 4.1 from ~ https://w...
fldhmf1 41630 A field homomorphism is in...
isprimroot 41633 The value of a primitive r...
mndmolinv 41634 An element of a monoid tha...
linvh 41635 If an element has a unique...
primrootsunit1 41636 Primitive roots have left ...
primrootsunit 41637 Primitive roots have left ...
ressmulgnnd 41638 Values for the group multi...
primrootscoprmpow 41639 Coprime powers of primitiv...
posbezout 41640 Bezout's identity restrict...
primrootscoprf 41641 Coprime powers of primitiv...
primrootscoprbij 41642 A bijection between coprim...
primrootscoprbij2 41643 A bijection between coprim...
remexz 41644 Division with rest. (Cont...
primrootlekpowne0 41645 There is no smaller power ...
primrootspoweq0 41646 The power of a ` R ` -th p...
aks6d1c1p1 41647 Definition of the introspe...
aks6d1c1p1rcl 41648 Reverse closure of the int...
aks6d1c1p2 41649 ` P ` and linear factors a...
aks6d1c1p3 41650 In a field with a Frobeniu...
aks6d1c1p4 41651 The product of polynomials...
aks6d1c1p5 41652 The product of exponents i...
aks6d1c1p7 41653 ` X ` is introspective to ...
aks6d1c1p6 41654 If a polynomials ` F ` is ...
aks6d1c1p8 41655 If a number ` E ` is intro...
aks6d1c1 41656 Claim 1 of Theorem 6.1 ~ h...
evl1gprodd 41657 Polynomial evaluation buil...
aks6d1c2p1 41658 In the AKS-theorem the sub...
aks6d1c2p2 41659 Injective condition for co...
hashscontpowcl 41660 Closure of E for ~ https:/...
hashscontpow1 41661 Helper lemma for to prove ...
hashscontpow 41662 If a set contains all ` N ...
aks6d1c3 41663 Claim 3 of Theorem 6.1 of ...
aks6d1c4 41664 Claim 4 of Theorem 6.1 of ...
aks6d1c1rh 41665 Claim 1 of AKS primality p...
aks6d1c2lem3 41666 Lemma for ~ aks6d1c2 to si...
aks6d1c2lem4 41667 Claim 2 of Theorem 6.1 AKS...
hashnexinj 41668 If the number of elements ...
hashnexinjle 41669 If the number of elements ...
aks6d1c2 41670 Claim 2 of Theorem 6.1 of ...
rspcsbnea 41671 Special case related to ~ ...
idomnnzpownz 41672 A non-zero power in an int...
idomnnzgmulnz 41673 A finite product of non-ze...
ringexp0nn 41674 Zero to the power of a pos...
aks6d1c5lem0 41675 Lemma for Claim 5 of Theor...
aks6d1c5lem1 41676 Lemma for claim 5, evaluat...
aks6d1c5lem3 41677 Lemma for Claim 5, polynom...
aks6d1c5lem2 41678 Lemma for Claim 5, contrad...
aks6d1c5 41679 Claim 5 of Theorem 6.1 ~ h...
deg1mul 41680 Degree of multiplication o...
deg1gprod 41681 Degree multiplication is a...
deg1pow 41682 Exact degree of a power of...
5bc2eq10 41683 The value of 5 choose 2. ...
facp2 41684 The factorial of a success...
2np3bcnp1 41685 Part of induction step for...
2ap1caineq 41686 Inequality for Theorem 6.6...
sticksstones1 41687 Different strictly monoton...
sticksstones2 41688 The range function on stri...
sticksstones3 41689 The range function on stri...
sticksstones4 41690 Equinumerosity lemma for s...
sticksstones5 41691 Count the number of strict...
sticksstones6 41692 Function induces an order ...
sticksstones7 41693 Closure property of sticks...
sticksstones8 41694 Establish mapping between ...
sticksstones9 41695 Establish mapping between ...
sticksstones10 41696 Establish mapping between ...
sticksstones11 41697 Establish bijective mappin...
sticksstones12a 41698 Establish bijective mappin...
sticksstones12 41699 Establish bijective mappin...
sticksstones13 41700 Establish bijective mappin...
sticksstones14 41701 Sticks and stones with def...
sticksstones15 41702 Sticks and stones with alm...
sticksstones16 41703 Sticks and stones with col...
sticksstones17 41704 Extend sticks and stones t...
sticksstones18 41705 Extend sticks and stones t...
sticksstones19 41706 Extend sticks and stones t...
sticksstones20 41707 Lift sticks and stones to ...
sticksstones21 41708 Lift sticks and stones to ...
sticksstones22 41709 Non-exhaustive sticks and ...
sticksstones23 41710 Non-exhaustive sticks and ...
aks6d1c6lem1 41711 Lemma for claim 6, deduce ...
aks6d1c6lem2 41712 Every primitive root is ro...
aks6d1c6lem3 41713 Claim 6 of Theorem 6.1 of ...
aks6d1c6lem4 41714 Claim 6 of Theorem 6.1 of ...
aks6d1c6isolem1 41715 Lemma to construct the map...
aks6d1c6isolem2 41716 Lemma to construct the gro...
aks6d1c6isolem3 41717 The preimage of a map send...
aks6d1c6lem5 41718 Eliminate the size hypothe...
bcled 41719 Inequality for binomial co...
bcle2d 41720 Inequality for binomial co...
aks6d1c7lem1 41721 The last set of inequaliti...
aks6d1c7lem2 41722 Contradiction to Claim 2 a...
aks6d1c7lem3 41723 Remove lots of hypotheses ...
aks6d1c7lem4 41724 In the AKS algorithm there...
aks6d1c7 41725 ` N ` is a prime power if ...
metakunt1 41726 A is an endomapping. (Con...
metakunt2 41727 A is an endomapping. (Con...
metakunt3 41728 Value of A. (Contributed b...
metakunt4 41729 Value of A. (Contributed b...
metakunt5 41730 C is the left inverse for ...
metakunt6 41731 C is the left inverse for ...
metakunt7 41732 C is the left inverse for ...
metakunt8 41733 C is the left inverse for ...
metakunt9 41734 C is the left inverse for ...
metakunt10 41735 C is the right inverse for...
metakunt11 41736 C is the right inverse for...
metakunt12 41737 C is the right inverse for...
metakunt13 41738 C is the right inverse for...
metakunt14 41739 A is a primitive permutati...
metakunt15 41740 Construction of another pe...
metakunt16 41741 Construction of another pe...
metakunt17 41742 The union of three disjoin...
metakunt18 41743 Disjoint domains and codom...
metakunt19 41744 Domains on restrictions of...
metakunt20 41745 Show that B coincides on t...
metakunt21 41746 Show that B coincides on t...
metakunt22 41747 Show that B coincides on t...
metakunt23 41748 B coincides on the union o...
metakunt24 41749 Technical condition such t...
metakunt25 41750 B is a permutation. (Cont...
metakunt26 41751 Construction of one soluti...
metakunt27 41752 Construction of one soluti...
metakunt28 41753 Construction of one soluti...
metakunt29 41754 Construction of one soluti...
metakunt30 41755 Construction of one soluti...
metakunt31 41756 Construction of one soluti...
metakunt32 41757 Construction of one soluti...
metakunt33 41758 Construction of one soluti...
metakunt34 41759 ` D ` is a permutation. (...
fac2xp3 41760 Factorial of 2x+3, sublemm...
prodsplit 41761 Product split into two fac...
2xp3dxp2ge1d 41762 2x+3 is greater than or eq...
factwoffsmonot 41763 A factorial with offset is...
intnanrt 41764 Introduction of conjunct i...
ioin9i8 41765 Miscellaneous inference cr...
jaodd 41766 Double deduction form of ~...
syl3an12 41767 A double syllogism inferen...
sbtd 41768 A true statement is true u...
sbor2 41769 One direction of ~ sbor , ...
19.9dev 41770 ~ 19.9d in the case of an ...
3rspcedvdw 41771 Triple application of ~ rs...
3rspcedvd 41772 Triple application of ~ rs...
sn-axrep5v 41773 A condensed form of ~ axre...
sn-axprlem3 41774 ~ axprlem3 using only Tars...
sn-exelALT 41775 Alternate proof of ~ exel ...
ss2ab1 41776 Class abstractions in a su...
ssabdv 41777 Deduction of abstraction s...
sn-iotalem 41778 An unused lemma showing th...
sn-iotalemcor 41779 Corollary of ~ sn-iotalem ...
abbi1sn 41780 Originally part of ~ uniab...
brif2 41781 Move a relation inside and...
brif12 41782 Move a relation inside and...
pssexg 41783 The proper subset of a set...
pssn0 41784 A proper superset is nonem...
psspwb 41785 Classes are proper subclas...
xppss12 41786 Proper subset theorem for ...
elpwbi 41787 Membership in a power set,...
imaopab 41788 The image of a class of or...
fnsnbt 41789 A function's domain is a s...
fnimasnd 41790 The image of a function by...
eqresfnbd 41791 Property of being the rest...
f1o2d2 41792 Sufficient condition for a...
fmpocos 41793 Composition of two functio...
ovmpogad 41794 Value of an operation give...
ofun 41795 A function operation of un...
dfqs2 41796 Alternate definition of qu...
dfqs3 41797 Alternate definition of qu...
qseq12d 41798 Equality theorem for quoti...
qsalrel 41799 The quotient set is equal ...
elmapssresd 41800 A restricted mapping is a ...
mapcod 41801 Compose two mappings. (Co...
fzosumm1 41802 Separate out the last term...
ccatcan2d 41803 Cancellation law for conca...
nelsubginvcld 41804 The inverse of a non-subgr...
nelsubgcld 41805 A non-subgroup-member plus...
nelsubgsubcld 41806 A non-subgroup-member minu...
rnasclg 41807 The set of injected scalar...
frlmfielbas 41808 The vectors of a finite fr...
frlmfzwrd 41809 A vector of a module with ...
frlmfzowrd 41810 A vector of a module with ...
frlmfzolen 41811 The dimension of a vector ...
frlmfzowrdb 41812 The vectors of a module wi...
frlmfzoccat 41813 The concatenation of two v...
frlmvscadiccat 41814 Scalar multiplication dist...
grpasscan2d 41815 An associative cancellatio...
grpcominv1 41816 If two elements commute, t...
grpcominv2 41817 If two elements commute, t...
finsubmsubg 41818 A submonoid of a finite gr...
imacrhmcl 41819 The image of a commutative...
rimrcl1 41820 Reverse closure of a ring ...
rimrcl2 41821 Reverse closure of a ring ...
rimcnv 41822 The converse of a ring iso...
rimco 41823 The composition of ring is...
ricsym 41824 Ring isomorphism is symmet...
rictr 41825 Ring isomorphism is transi...
riccrng1 41826 Ring isomorphism preserves...
riccrng 41827 A ring is commutative if a...
drnginvrn0d 41828 A multiplicative inverse i...
drngmulcanad 41829 Cancellation of a nonzero ...
drngmulcan2ad 41830 Cancellation of a nonzero ...
drnginvmuld 41831 Inverse of a nonzero produ...
ricdrng1 41832 A ring isomorphism maps a ...
ricdrng 41833 A ring is a division ring ...
ricfld 41834 A ring is a field if and o...
lvecgrp 41835 A vector space is a group....
lvecring 41836 The scalar component of a ...
frlm0vald 41837 All coordinates of the zer...
frlmsnic 41838 Given a free module with a...
uvccl 41839 A unit vector is a vector....
uvcn0 41840 A unit vector is nonzero. ...
pwselbasr 41841 The reverse direction of ~...
pwsgprod 41842 Finite products in a power...
psrmnd 41843 The ring of power series i...
psrbagres 41844 Restrict a bag of variable...
mplcrngd 41845 The polynomial ring is a c...
mplsubrgcl 41846 An element of a polynomial...
mhmcopsr 41847 The composition of a monoi...
mhmcoaddpsr 41848 Show that the ring homomor...
rhmcomulpsr 41849 Show that the ring homomor...
rhmpsr 41850 Provide a ring homomorphis...
rhmpsr1 41851 Provide a ring homomorphis...
mplascl0 41852 The zero scalar as a polyn...
mplascl1 41853 The one scalar as a polyno...
mplmapghm 41854 The function ` H ` mapping...
evl0 41855 The zero polynomial evalua...
evlscl 41856 A polynomial over the ring...
evlsval3 41857 Give a formula for the pol...
evlsvval 41858 Give a formula for the eva...
evlsvvvallem 41859 Lemma for ~ evlsvvval akin...
evlsvvvallem2 41860 Lemma for theorems using ~...
evlsvvval 41861 Give a formula for the eva...
evlsscaval 41862 Polynomial evaluation buil...
evlsvarval 41863 Polynomial evaluation buil...
evlsbagval 41864 Polynomial evaluation buil...
evlsexpval 41865 Polynomial evaluation buil...
evlsaddval 41866 Polynomial evaluation buil...
evlsmulval 41867 Polynomial evaluation buil...
evlsmaprhm 41868 The function ` F ` mapping...
evlsevl 41869 Evaluation in a subring is...
evlcl 41870 A polynomial over the ring...
evlvvval 41871 Give a formula for the eva...
evlvvvallem 41872 Lemma for theorems using ~...
evladdval 41873 Polynomial evaluation buil...
evlmulval 41874 Polynomial evaluation buil...
selvcllem1 41875 ` T ` is an associative al...
selvcllem2 41876 ` D ` is a ring homomorphi...
selvcllem3 41877 The third argument passed ...
selvcllemh 41878 Apply the third argument (...
selvcllem4 41879 The fourth argument passed...
selvcllem5 41880 The fifth argument passed ...
selvcl 41881 Closure of the "variable s...
selvval2 41882 Value of the "variable sel...
selvvvval 41883 Recover the original polyn...
evlselvlem 41884 Lemma for ~ evlselv . Use...
evlselv 41885 Evaluating a selection of ...
selvadd 41886 The "variable selection" f...
selvmul 41887 The "variable selection" f...
fsuppind 41888 Induction on functions ` F...
fsuppssindlem1 41889 Lemma for ~ fsuppssind . ...
fsuppssindlem2 41890 Lemma for ~ fsuppssind . ...
fsuppssind 41891 Induction on functions ` F...
mhpind 41892 The homogeneous polynomial...
evlsmhpvvval 41893 Give a formula for the eva...
mhphflem 41894 Lemma for ~ mhphf . Add s...
mhphf 41895 A homogeneous polynomial d...
mhphf2 41896 A homogeneous polynomial d...
mhphf3 41897 A homogeneous polynomial d...
mhphf4 41898 A homogeneous polynomial d...
c0exALT 41899 Alternate proof of ~ c0ex ...
0cnALT3 41900 Alternate proof of ~ 0cn u...
elre0re 41901 Specialized version of ~ 0...
1t1e1ALT 41902 Alternate proof of ~ 1t1e1...
remulcan2d 41903 ~ mulcan2d for real number...
readdridaddlidd 41904 Given some real number ` B...
sn-1ne2 41905 A proof of ~ 1ne2 without ...
nnn1suc 41906 A positive integer that is...
nnadd1com 41907 Addition with 1 is commuta...
nnaddcom 41908 Addition is commutative fo...
nnaddcomli 41909 Version of ~ addcomli for ...
nnadddir 41910 Right-distributivity for n...
nnmul1com 41911 Multiplication with 1 is c...
nnmulcom 41912 Multiplication is commutat...
readdrcl2d 41913 Reverse closure for additi...
mvrrsubd 41914 Move a subtraction in the ...
laddrotrd 41915 Rotate the variables right...
raddcom12d 41916 Swap the first two variabl...
lsubrotld 41917 Rotate the variables left ...
lsubcom23d 41918 Swap the second and third ...
addsubeq4com 41919 Relation between sums and ...
sqsumi 41920 A sum squared. (Contribut...
negn0nposznnd 41921 Lemma for ~ dffltz . (Con...
sqmid3api 41922 Value of the square of the...
decaddcom 41923 Commute ones place in addi...
sqn5i 41924 The square of a number end...
sqn5ii 41925 The square of a number end...
decpmulnc 41926 Partial products algorithm...
decpmul 41927 Partial products algorithm...
sqdeccom12 41928 The square of a number in ...
sq3deccom12 41929 Variant of ~ sqdeccom12 wi...
4t5e20 41930 4 times 5 equals 20. (Con...
sq9 41931 The square of 9 is 81. (C...
235t711 41932 Calculate a product by lon...
ex-decpmul 41933 Example usage of ~ decpmul...
fz1sumconst 41934 The sum of ` N ` constant ...
fz1sump1 41935 Add one more term to a sum...
oddnumth 41936 The Odd Number Theorem. T...
nicomachus 41937 Nicomachus's Theorem. The...
sumcubes 41938 The sum of the first ` N `...
pine0 41939 ` _pi ` is nonzero. (Cont...
ine1 41940 ` _i ` is not 1. (Contrib...
0tie0 41941 0 times ` _i ` equals 0. ...
it1ei 41942 ` _i ` times 1 equals ` _i...
1tiei 41943 1 times ` _i ` equals ` _i...
itrere 41944 ` _i ` times a real is rea...
retire 41945 A real times ` _i ` is rea...
oexpreposd 41946 Lemma for ~ dffltz . TODO...
ltexp1d 41947 ~ ltmul1d for exponentiati...
ltexp1dd 41948 Raising both sides of 'les...
exp11nnd 41949 ~ sq11d for positive real ...
exp11d 41950 ~ exp11nnd for nonzero int...
0dvds0 41951 0 divides 0. (Contributed...
absdvdsabsb 41952 Divisibility is invariant ...
dvdsexpim 41953 ~ dvdssqim generalized to ...
gcdnn0id 41954 The ` gcd ` of a nonnegati...
gcdle1d 41955 The greatest common diviso...
gcdle2d 41956 The greatest common diviso...
dvdsexpad 41957 Deduction associated with ...
nn0rppwr 41958 If ` A ` and ` B ` are rel...
expgcd 41959 Exponentiation distributes...
nn0expgcd 41960 Exponentiation distributes...
zexpgcd 41961 Exponentiation distributes...
numdenexp 41962 ~ numdensq extended to non...
numexp 41963 ~ numsq extended to nonneg...
denexp 41964 ~ densq extended to nonneg...
dvdsexpnn 41965 ~ dvdssqlem generalized to...
dvdsexpnn0 41966 ~ dvdsexpnn generalized to...
dvdsexpb 41967 ~ dvdssq generalized to po...
posqsqznn 41968 When a positive rational s...
zrtelqelz 41969 ~ zsqrtelqelz generalized ...
zrtdvds 41970 A positive integer root di...
rtprmirr 41971 The root of a prime number...
zdivgd 41972 Two ways to express " ` N ...
efne0d 41973 The exponential of a compl...
efsubd 41974 Difference of exponents la...
ef11d 41975 General condition for the ...
logccne0d 41976 The logarithm isn't 0 if i...
cxp112d 41977 General condition for comp...
cxp111d 41978 General condition for comp...
cxpi11d 41979 ` _i ` to the powers of ` ...
logne0d 41980 Deduction form of ~ logne0...
rxp112d 41981 Real exponentiation is one...
log11d 41982 The natural logarithm is o...
rplog11d 41983 The natural logarithm is o...
rxp11d 41984 Real exponentiation is one...
resubval 41987 Value of real subtraction,...
renegeulemv 41988 Lemma for ~ renegeu and si...
renegeulem 41989 Lemma for ~ renegeu and si...
renegeu 41990 Existential uniqueness of ...
rernegcl 41991 Closure law for negative r...
renegadd 41992 Relationship between real ...
renegid 41993 Addition of a real number ...
reneg0addlid 41994 Negative zero is a left ad...
resubeulem1 41995 Lemma for ~ resubeu . A v...
resubeulem2 41996 Lemma for ~ resubeu . A v...
resubeu 41997 Existential uniqueness of ...
rersubcl 41998 Closure for real subtracti...
resubadd 41999 Relation between real subt...
resubaddd 42000 Relationship between subtr...
resubf 42001 Real subtraction is an ope...
repncan2 42002 Addition and subtraction o...
repncan3 42003 Addition and subtraction o...
readdsub 42004 Law for addition and subtr...
reladdrsub 42005 Move LHS of a sum into RHS...
reltsub1 42006 Subtraction from both side...
reltsubadd2 42007 'Less than' relationship b...
resubcan2 42008 Cancellation law for real ...
resubsub4 42009 Law for double subtraction...
rennncan2 42010 Cancellation law for real ...
renpncan3 42011 Cancellation law for real ...
repnpcan 42012 Cancellation law for addit...
reppncan 42013 Cancellation law for mixed...
resubidaddlidlem 42014 Lemma for ~ resubidaddlid ...
resubidaddlid 42015 Any real number subtracted...
resubdi 42016 Distribution of multiplica...
re1m1e0m0 42017 Equality of two left-addit...
sn-00idlem1 42018 Lemma for ~ sn-00id . (Co...
sn-00idlem2 42019 Lemma for ~ sn-00id . (Co...
sn-00idlem3 42020 Lemma for ~ sn-00id . (Co...
sn-00id 42021 ~ 00id proven without ~ ax...
re0m0e0 42022 Real number version of ~ 0...
readdlid 42023 Real number version of ~ a...
sn-addlid 42024 ~ addlid without ~ ax-mulc...
remul02 42025 Real number version of ~ m...
sn-0ne2 42026 ~ 0ne2 without ~ ax-mulcom...
remul01 42027 Real number version of ~ m...
resubid 42028 Subtraction of a real numb...
readdrid 42029 Real number version of ~ a...
resubid1 42030 Real number version of ~ s...
renegneg 42031 A real number is equal to ...
readdcan2 42032 Commuted version of ~ read...
renegid2 42033 Commuted version of ~ rene...
remulneg2d 42034 Product with negative is n...
sn-it0e0 42035 Proof of ~ it0e0 without ~...
sn-negex12 42036 A combination of ~ cnegex ...
sn-negex 42037 Proof of ~ cnegex without ...
sn-negex2 42038 Proof of ~ cnegex2 without...
sn-addcand 42039 ~ addcand without ~ ax-mul...
sn-addrid 42040 ~ addrid without ~ ax-mulc...
sn-addcan2d 42041 ~ addcan2d without ~ ax-mu...
reixi 42042 ~ ixi without ~ ax-mulcom ...
rei4 42043 ~ i4 without ~ ax-mulcom ....
sn-addid0 42044 A number that sums to itse...
sn-mul01 42045 ~ mul01 without ~ ax-mulco...
sn-subeu 42046 ~ negeu without ~ ax-mulco...
sn-subcl 42047 ~ subcl without ~ ax-mulco...
sn-subf 42048 ~ subf without ~ ax-mulcom...
resubeqsub 42049 Equivalence between real s...
subresre 42050 Subtraction restricted to ...
addinvcom 42051 A number commutes with its...
remulinvcom 42052 A left multiplicative inve...
remullid 42053 Commuted version of ~ ax-1...
sn-1ticom 42054 Lemma for ~ sn-mullid and ...
sn-mullid 42055 ~ mullid without ~ ax-mulc...
sn-it1ei 42056 ~ it1ei without ~ ax-mulco...
ipiiie0 42057 The multiplicative inverse...
remulcand 42058 Commuted version of ~ remu...
sn-0tie0 42059 Lemma for ~ sn-mul02 . Co...
sn-mul02 42060 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 42061 ~ ltaddpos without ~ ax-mu...
sn-ltaddneg 42062 ~ ltaddneg without ~ ax-mu...
reposdif 42063 Comparison of two numbers ...
relt0neg1 42064 Comparison of a real and i...
relt0neg2 42065 Comparison of a real and i...
sn-addlt0d 42066 The sum of negative number...
sn-addgt0d 42067 The sum of positive number...
sn-nnne0 42068 ~ nnne0 without ~ ax-mulco...
reelznn0nn 42069 ~ elznn0nn restated using ...
nn0addcom 42070 Addition is commutative fo...
zaddcomlem 42071 Lemma for ~ zaddcom . (Co...
zaddcom 42072 Addition is commutative fo...
renegmulnnass 42073 Move multiplication by a n...
nn0mulcom 42074 Multiplication is commutat...
zmulcomlem 42075 Lemma for ~ zmulcom . (Co...
zmulcom 42076 Multiplication is commutat...
mulgt0con1dlem 42077 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 42078 Counterpart to ~ mulgt0con...
mulgt0con2d 42079 Lemma for ~ mulgt0b2d and ...
mulgt0b2d 42080 Biconditional, deductive f...
sn-ltmul2d 42081 ~ ltmul2d without ~ ax-mul...
sn-0lt1 42082 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 42083 ~ ltp1 without ~ ax-mulcom...
reneg1lt0 42084 Lemma for ~ sn-inelr . (C...
sn-inelr 42085 ~ inelr without ~ ax-mulco...
sn-itrere 42086 ` _i ` times a real is rea...
sn-retire 42087 Commuted version of ~ sn-i...
cnreeu 42088 The reals in the expressio...
sn-sup2 42089 ~ sup2 with exactly the sa...
prjspval 42092 Value of the projective sp...
prjsprel 42093 Utility theorem regarding ...
prjspertr 42094 The relation in ` PrjSp ` ...
prjsperref 42095 The relation in ` PrjSp ` ...
prjspersym 42096 The relation in ` PrjSp ` ...
prjsper 42097 The relation used to defin...
prjspreln0 42098 Two nonzero vectors are eq...
prjspvs 42099 A nonzero multiple of a ve...
prjsprellsp 42100 Two vectors are equivalent...
prjspeclsp 42101 The vectors equivalent to ...
prjspval2 42102 Alternate definition of pr...
prjspnval 42105 Value of the n-dimensional...
prjspnerlem 42106 A lemma showing that the e...
prjspnval2 42107 Value of the n-dimensional...
prjspner 42108 The relation used to defin...
prjspnvs 42109 A nonzero multiple of a ve...
prjspnssbas 42110 A projective point spans a...
prjspnn0 42111 A projective point is none...
0prjspnlem 42112 Lemma for ~ 0prjspn . The...
prjspnfv01 42113 Any vector is equivalent t...
prjspner01 42114 Any vector is equivalent t...
prjspner1 42115 Two vectors whose zeroth c...
0prjspnrel 42116 In the zero-dimensional pr...
0prjspn 42117 A zero-dimensional project...
prjcrvfval 42120 Value of the projective cu...
prjcrvval 42121 Value of the projective cu...
prjcrv0 42122 The "curve" (zero set) cor...
dffltz 42123 Fermat's Last Theorem (FLT...
fltmul 42124 A counterexample to FLT st...
fltdiv 42125 A counterexample to FLT st...
flt0 42126 A counterexample for FLT d...
fltdvdsabdvdsc 42127 Any factor of both ` A ` a...
fltabcoprmex 42128 A counterexample to FLT im...
fltaccoprm 42129 A counterexample to FLT wi...
fltbccoprm 42130 A counterexample to FLT wi...
fltabcoprm 42131 A counterexample to FLT wi...
infdesc 42132 Infinite descent. The hyp...
fltne 42133 If a counterexample to FLT...
flt4lem 42134 Raising a number to the fo...
flt4lem1 42135 Satisfy the antecedent use...
flt4lem2 42136 If ` A ` is even, ` B ` is...
flt4lem3 42137 Equivalent to ~ pythagtrip...
flt4lem4 42138 If the product of two copr...
flt4lem5 42139 In the context of the lemm...
flt4lem5elem 42140 Version of ~ fltaccoprm an...
flt4lem5a 42141 Part 1 of Equation 1 of ...
flt4lem5b 42142 Part 2 of Equation 1 of ...
flt4lem5c 42143 Part 2 of Equation 2 of ...
flt4lem5d 42144 Part 3 of Equation 2 of ...
flt4lem5e 42145 Satisfy the hypotheses of ...
flt4lem5f 42146 Final equation of ~...
flt4lem6 42147 Remove shared factors in a...
flt4lem7 42148 Convert ~ flt4lem5f into a...
nna4b4nsq 42149 Strengthening of Fermat's ...
fltltc 42150 ` ( C ^ N ) ` is the large...
fltnltalem 42151 Lemma for ~ fltnlta . A l...
fltnlta 42152 In a Fermat counterexample...
iddii 42153 Version of ~ a1ii with the...
bicomdALT 42154 Alternate proof of ~ bicom...
elabgw 42155 Membership in a class abst...
elab2gw 42156 Membership in a class abst...
elrab2w 42157 Membership in a restricted...
ruvALT 42158 Alternate proof of ~ ruv w...
sn-wcdeq 42159 Alternative to ~ wcdeq and...
sq45 42160 45 squared is 2025. (Cont...
sum9cubes 42161 The sum of the first nine ...
acos1half 42162 The arccosine of ` 1 / 2 `...
aprilfools2025 42163 An abuse of notation. (Co...
binom2d 42164 Deduction form of binom2. ...
cu3addd 42165 Cube of sum of three numbe...
sqnegd 42166 The square of the negative...
negexpidd 42167 The sum of a real number t...
rexlimdv3d 42168 An extended version of ~ r...
3cubeslem1 42169 Lemma for ~ 3cubes . (Con...
3cubeslem2 42170 Lemma for ~ 3cubes . Used...
3cubeslem3l 42171 Lemma for ~ 3cubes . (Con...
3cubeslem3r 42172 Lemma for ~ 3cubes . (Con...
3cubeslem3 42173 Lemma for ~ 3cubes . (Con...
3cubeslem4 42174 Lemma for ~ 3cubes . This...
3cubes 42175 Every rational number is a...
rntrclfvOAI 42176 The range of the transitiv...
moxfr 42177 Transfer at-most-one betwe...
imaiinfv 42178 Indexed intersection of an...
elrfi 42179 Elementhood in a set of re...
elrfirn 42180 Elementhood in a set of re...
elrfirn2 42181 Elementhood in a set of re...
cmpfiiin 42182 In a compact topology, a s...
ismrcd1 42183 Any function from the subs...
ismrcd2 42184 Second half of ~ ismrcd1 ....
istopclsd 42185 A closure function which s...
ismrc 42186 A function is a Moore clos...
isnacs 42189 Expand definition of Noeth...
nacsfg 42190 In a Noetherian-type closu...
isnacs2 42191 Express Noetherian-type cl...
mrefg2 42192 Slight variation on finite...
mrefg3 42193 Slight variation on finite...
nacsacs 42194 A closure system of Noethe...
isnacs3 42195 A choice-free order equiva...
incssnn0 42196 Transitivity induction of ...
nacsfix 42197 An increasing sequence of ...
constmap 42198 A constant (represented wi...
mapco2g 42199 Renaming indices in a tupl...
mapco2 42200 Post-composition (renaming...
mapfzcons 42201 Extending a one-based mapp...
mapfzcons1 42202 Recover prefix mapping fro...
mapfzcons1cl 42203 A nonempty mapping has a p...
mapfzcons2 42204 Recover added element from...
mptfcl 42205 Interpret range of a maps-...
mzpclval 42210 Substitution lemma for ` m...
elmzpcl 42211 Double substitution lemma ...
mzpclall 42212 The set of all functions w...
mzpcln0 42213 Corollary of ~ mzpclall : ...
mzpcl1 42214 Defining property 1 of a p...
mzpcl2 42215 Defining property 2 of a p...
mzpcl34 42216 Defining properties 3 and ...
mzpval 42217 Value of the ` mzPoly ` fu...
dmmzp 42218 ` mzPoly ` is defined for ...
mzpincl 42219 Polynomial closedness is a...
mzpconst 42220 Constant functions are pol...
mzpf 42221 A polynomial function is a...
mzpproj 42222 A projection function is p...
mzpadd 42223 The pointwise sum of two p...
mzpmul 42224 The pointwise product of t...
mzpconstmpt 42225 A constant function expres...
mzpaddmpt 42226 Sum of polynomial function...
mzpmulmpt 42227 Product of polynomial func...
mzpsubmpt 42228 The difference of two poly...
mzpnegmpt 42229 Negation of a polynomial f...
mzpexpmpt 42230 Raise a polynomial functio...
mzpindd 42231 "Structural" induction to ...
mzpmfp 42232 Relationship between multi...
mzpsubst 42233 Substituting polynomials f...
mzprename 42234 Simplified version of ~ mz...
mzpresrename 42235 A polynomial is a polynomi...
mzpcompact2lem 42236 Lemma for ~ mzpcompact2 . ...
mzpcompact2 42237 Polynomials are finitary o...
coeq0i 42238 ~ coeq0 but without explic...
fzsplit1nn0 42239 Split a finite 1-based set...
eldiophb 42242 Initial expression of Diop...
eldioph 42243 Condition for a set to be ...
diophrw 42244 Renaming and adding unused...
eldioph2lem1 42245 Lemma for ~ eldioph2 . Co...
eldioph2lem2 42246 Lemma for ~ eldioph2 . Co...
eldioph2 42247 Construct a Diophantine se...
eldioph2b 42248 While Diophantine sets wer...
eldiophelnn0 42249 Remove antecedent on ` B `...
eldioph3b 42250 Define Diophantine sets in...
eldioph3 42251 Inference version of ~ eld...
ellz1 42252 Membership in a lower set ...
lzunuz 42253 The union of a lower set o...
fz1eqin 42254 Express a one-based finite...
lzenom 42255 Lower integers are countab...
elmapresaunres2 42256 ~ fresaunres2 transposed t...
diophin 42257 If two sets are Diophantin...
diophun 42258 If two sets are Diophantin...
eldiophss 42259 Diophantine sets are sets ...
diophrex 42260 Projecting a Diophantine s...
eq0rabdioph 42261 This is the first of a num...
eqrabdioph 42262 Diophantine set builder fo...
0dioph 42263 The null set is Diophantin...
vdioph 42264 The "universal" set (as la...
anrabdioph 42265 Diophantine set builder fo...
orrabdioph 42266 Diophantine set builder fo...
3anrabdioph 42267 Diophantine set builder fo...
3orrabdioph 42268 Diophantine set builder fo...
2sbcrex 42269 Exchange an existential qu...
sbcrexgOLD 42270 Interchange class substitu...
2sbcrexOLD 42271 Exchange an existential qu...
sbc2rex 42272 Exchange a substitution wi...
sbc2rexgOLD 42273 Exchange a substitution wi...
sbc4rex 42274 Exchange a substitution wi...
sbc4rexgOLD 42275 Exchange a substitution wi...
sbcrot3 42276 Rotate a sequence of three...
sbcrot5 42277 Rotate a sequence of five ...
sbccomieg 42278 Commute two explicit subst...
rexrabdioph 42279 Diophantine set builder fo...
rexfrabdioph 42280 Diophantine set builder fo...
2rexfrabdioph 42281 Diophantine set builder fo...
3rexfrabdioph 42282 Diophantine set builder fo...
4rexfrabdioph 42283 Diophantine set builder fo...
6rexfrabdioph 42284 Diophantine set builder fo...
7rexfrabdioph 42285 Diophantine set builder fo...
rabdiophlem1 42286 Lemma for arithmetic dioph...
rabdiophlem2 42287 Lemma for arithmetic dioph...
elnn0rabdioph 42288 Diophantine set builder fo...
rexzrexnn0 42289 Rewrite an existential qua...
lerabdioph 42290 Diophantine set builder fo...
eluzrabdioph 42291 Diophantine set builder fo...
elnnrabdioph 42292 Diophantine set builder fo...
ltrabdioph 42293 Diophantine set builder fo...
nerabdioph 42294 Diophantine set builder fo...
dvdsrabdioph 42295 Divisibility is a Diophant...
eldioph4b 42296 Membership in ` Dioph ` ex...
eldioph4i 42297 Forward-only version of ~ ...
diophren 42298 Change variables in a Diop...
rabrenfdioph 42299 Change variable numbers in...
rabren3dioph 42300 Change variable numbers in...
fphpd 42301 Pigeonhole principle expre...
fphpdo 42302 Pigeonhole principle for s...
ctbnfien 42303 An infinite subset of a co...
fiphp3d 42304 Infinite pigeonhole princi...
rencldnfilem 42305 Lemma for ~ rencldnfi . (...
rencldnfi 42306 A set of real numbers whic...
irrapxlem1 42307 Lemma for ~ irrapx1 . Div...
irrapxlem2 42308 Lemma for ~ irrapx1 . Two...
irrapxlem3 42309 Lemma for ~ irrapx1 . By ...
irrapxlem4 42310 Lemma for ~ irrapx1 . Eli...
irrapxlem5 42311 Lemma for ~ irrapx1 . Swi...
irrapxlem6 42312 Lemma for ~ irrapx1 . Exp...
irrapx1 42313 Dirichlet's approximation ...
pellexlem1 42314 Lemma for ~ pellex . Arit...
pellexlem2 42315 Lemma for ~ pellex . Arit...
pellexlem3 42316 Lemma for ~ pellex . To e...
pellexlem4 42317 Lemma for ~ pellex . Invo...
pellexlem5 42318 Lemma for ~ pellex . Invo...
pellexlem6 42319 Lemma for ~ pellex . Doin...
pellex 42320 Every Pell equation has a ...
pell1qrval 42331 Value of the set of first-...
elpell1qr 42332 Membership in a first-quad...
pell14qrval 42333 Value of the set of positi...
elpell14qr 42334 Membership in the set of p...
pell1234qrval 42335 Value of the set of genera...
elpell1234qr 42336 Membership in the set of g...
pell1234qrre 42337 General Pell solutions are...
pell1234qrne0 42338 No solution to a Pell equa...
pell1234qrreccl 42339 General solutions of the P...
pell1234qrmulcl 42340 General solutions of the P...
pell14qrss1234 42341 A positive Pell solution i...
pell14qrre 42342 A positive Pell solution i...
pell14qrne0 42343 A positive Pell solution i...
pell14qrgt0 42344 A positive Pell solution i...
pell14qrrp 42345 A positive Pell solution i...
pell1234qrdich 42346 A general Pell solution is...
elpell14qr2 42347 A number is a positive Pel...
pell14qrmulcl 42348 Positive Pell solutions ar...
pell14qrreccl 42349 Positive Pell solutions ar...
pell14qrdivcl 42350 Positive Pell solutions ar...
pell14qrexpclnn0 42351 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 42352 Positive Pell solutions ar...
pell1qrss14 42353 First-quadrant Pell soluti...
pell14qrdich 42354 A positive Pell solution i...
pell1qrge1 42355 A Pell solution in the fir...
pell1qr1 42356 1 is a Pell solution and i...
elpell1qr2 42357 The first quadrant solutio...
pell1qrgaplem 42358 Lemma for ~ pell1qrgap . ...
pell1qrgap 42359 First-quadrant Pell soluti...
pell14qrgap 42360 Positive Pell solutions ar...
pell14qrgapw 42361 Positive Pell solutions ar...
pellqrexplicit 42362 Condition for a calculated...
infmrgelbi 42363 Any lower bound of a nonem...
pellqrex 42364 There is a nontrivial solu...
pellfundval 42365 Value of the fundamental s...
pellfundre 42366 The fundamental solution o...
pellfundge 42367 Lower bound on the fundame...
pellfundgt1 42368 Weak lower bound on the Pe...
pellfundlb 42369 A nontrivial first quadran...
pellfundglb 42370 If a real is larger than t...
pellfundex 42371 The fundamental solution a...
pellfund14gap 42372 There are no solutions bet...
pellfundrp 42373 The fundamental Pell solut...
pellfundne1 42374 The fundamental Pell solut...
reglogcl 42375 General logarithm is a rea...
reglogltb 42376 General logarithm preserve...
reglogleb 42377 General logarithm preserve...
reglogmul 42378 Multiplication law for gen...
reglogexp 42379 Power law for general log....
reglogbas 42380 General log of the base is...
reglog1 42381 General log of 1 is 0. (C...
reglogexpbas 42382 General log of a power of ...
pellfund14 42383 Every positive Pell soluti...
pellfund14b 42384 The positive Pell solution...
rmxfval 42389 Value of the X sequence. ...
rmyfval 42390 Value of the Y sequence. ...
rmspecsqrtnq 42391 The discriminant used to d...
rmspecnonsq 42392 The discriminant used to d...
qirropth 42393 This lemma implements the ...
rmspecfund 42394 The base of exponent used ...
rmxyelqirr 42395 The solutions used to cons...
rmxyelqirrOLD 42396 Obsolete version of ~ rmxy...
rmxypairf1o 42397 The function used to extra...
rmxyelxp 42398 Lemma for ~ frmx and ~ frm...
frmx 42399 The X sequence is a nonneg...
frmy 42400 The Y sequence is an integ...
rmxyval 42401 Main definition of the X a...
rmspecpos 42402 The discriminant used to d...
rmxycomplete 42403 The X and Y sequences take...
rmxynorm 42404 The X and Y sequences defi...
rmbaserp 42405 The base of exponentiation...
rmxyneg 42406 Negation law for X and Y s...
rmxyadd 42407 Addition formula for X and...
rmxy1 42408 Value of the X and Y seque...
rmxy0 42409 Value of the X and Y seque...
rmxneg 42410 Negation law (even functio...
rmx0 42411 Value of X sequence at 0. ...
rmx1 42412 Value of X sequence at 1. ...
rmxadd 42413 Addition formula for X seq...
rmyneg 42414 Negation formula for Y seq...
rmy0 42415 Value of Y sequence at 0. ...
rmy1 42416 Value of Y sequence at 1. ...
rmyadd 42417 Addition formula for Y seq...
rmxp1 42418 Special addition-of-1 form...
rmyp1 42419 Special addition of 1 form...
rmxm1 42420 Subtraction of 1 formula f...
rmym1 42421 Subtraction of 1 formula f...
rmxluc 42422 The X sequence is a Lucas ...
rmyluc 42423 The Y sequence is a Lucas ...
rmyluc2 42424 Lucas sequence property of...
rmxdbl 42425 "Double-angle formula" for...
rmydbl 42426 "Double-angle formula" for...
monotuz 42427 A function defined on an u...
monotoddzzfi 42428 A function which is odd an...
monotoddzz 42429 A function (given implicit...
oddcomabszz 42430 An odd function which take...
2nn0ind 42431 Induction on nonnegative i...
zindbi 42432 Inductively transfer a pro...
rmxypos 42433 For all nonnegative indice...
ltrmynn0 42434 The Y-sequence is strictly...
ltrmxnn0 42435 The X-sequence is strictly...
lermxnn0 42436 The X-sequence is monotoni...
rmxnn 42437 The X-sequence is defined ...
ltrmy 42438 The Y-sequence is strictly...
rmyeq0 42439 Y is zero only at zero. (...
rmyeq 42440 Y is one-to-one. (Contrib...
lermy 42441 Y is monotonic (non-strict...
rmynn 42442 ` rmY ` is positive for po...
rmynn0 42443 ` rmY ` is nonnegative for...
rmyabs 42444 ` rmY ` commutes with ` ab...
jm2.24nn 42445 X(n) is strictly greater t...
jm2.17a 42446 First half of lemma 2.17 o...
jm2.17b 42447 Weak form of the second ha...
jm2.17c 42448 Second half of lemma 2.17 ...
jm2.24 42449 Lemma 2.24 of [JonesMatija...
rmygeid 42450 Y(n) increases faster than...
congtr 42451 A wff of the form ` A || (...
congadd 42452 If two pairs of numbers ar...
congmul 42453 If two pairs of numbers ar...
congsym 42454 Congruence mod ` A ` is a ...
congneg 42455 If two integers are congru...
congsub 42456 If two pairs of numbers ar...
congid 42457 Every integer is congruent...
mzpcong 42458 Polynomials commute with c...
congrep 42459 Every integer is congruent...
congabseq 42460 If two integers are congru...
acongid 42461 A wff like that in this th...
acongsym 42462 Symmetry of alternating co...
acongneg2 42463 Negate right side of alter...
acongtr 42464 Transitivity of alternatin...
acongeq12d 42465 Substitution deduction for...
acongrep 42466 Every integer is alternati...
fzmaxdif 42467 Bound on the difference be...
fzneg 42468 Reflection of a finite ran...
acongeq 42469 Two numbers in the fundame...
dvdsacongtr 42470 Alternating congruence pas...
coprmdvdsb 42471 Multiplication by a coprim...
modabsdifz 42472 Divisibility in terms of m...
dvdsabsmod0 42473 Divisibility in terms of m...
jm2.18 42474 Theorem 2.18 of [JonesMati...
jm2.19lem1 42475 Lemma for ~ jm2.19 . X an...
jm2.19lem2 42476 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 42477 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 42478 Lemma for ~ jm2.19 . Exte...
jm2.19 42479 Lemma 2.19 of [JonesMatija...
jm2.21 42480 Lemma for ~ jm2.20nn . Ex...
jm2.22 42481 Lemma for ~ jm2.20nn . Ap...
jm2.23 42482 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 42483 Lemma 2.20 of [JonesMatija...
jm2.25lem1 42484 Lemma for ~ jm2.26 . (Con...
jm2.25 42485 Lemma for ~ jm2.26 . Rema...
jm2.26a 42486 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 42487 Lemma for ~ jm2.26 . Use ...
jm2.26 42488 Lemma 2.26 of [JonesMatija...
jm2.15nn0 42489 Lemma 2.15 of [JonesMatija...
jm2.16nn0 42490 Lemma 2.16 of [JonesMatija...
jm2.27a 42491 Lemma for ~ jm2.27 . Reve...
jm2.27b 42492 Lemma for ~ jm2.27 . Expa...
jm2.27c 42493 Lemma for ~ jm2.27 . Forw...
jm2.27 42494 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 42495 Lemma for ~ rmydioph . Su...
jm2.27dlem2 42496 Lemma for ~ rmydioph . Th...
jm2.27dlem3 42497 Lemma for ~ rmydioph . In...
jm2.27dlem4 42498 Lemma for ~ rmydioph . In...
jm2.27dlem5 42499 Lemma for ~ rmydioph . Us...
rmydioph 42500 ~ jm2.27 restated in terms...
rmxdiophlem 42501 X can be expressed in term...
rmxdioph 42502 X is a Diophantine functio...
jm3.1lem1 42503 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 42504 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 42505 Lemma for ~ jm3.1 . (Cont...
jm3.1 42506 Diophantine expression for...
expdiophlem1 42507 Lemma for ~ expdioph . Fu...
expdiophlem2 42508 Lemma for ~ expdioph . Ex...
expdioph 42509 The exponential function i...
setindtr 42510 Set induction for sets con...
setindtrs 42511 Set induction scheme witho...
dford3lem1 42512 Lemma for ~ dford3 . (Con...
dford3lem2 42513 Lemma for ~ dford3 . (Con...
dford3 42514 Ordinals are precisely the...
dford4 42515 ~ dford3 expressed in prim...
wopprc 42516 Unrelated: Wiener pairs t...
rpnnen3lem 42517 Lemma for ~ rpnnen3 . (Co...
rpnnen3 42518 Dedekind cut injection of ...
axac10 42519 Characterization of choice...
harinf 42520 The Hartogs number of an i...
wdom2d2 42521 Deduction for weak dominan...
ttac 42522 Tarski's theorem about cho...
pw2f1ocnv 42523 Define a bijection between...
pw2f1o2 42524 Define a bijection between...
pw2f1o2val 42525 Function value of the ~ pw...
pw2f1o2val2 42526 Membership in a mapped set...
soeq12d 42527 Equality deduction for tot...
freq12d 42528 Equality deduction for fou...
weeq12d 42529 Equality deduction for wel...
limsuc2 42530 Limit ordinals in the sens...
wepwsolem 42531 Transfer an ordering on ch...
wepwso 42532 A well-ordering induces a ...
dnnumch1 42533 Define an enumeration of a...
dnnumch2 42534 Define an enumeration (wea...
dnnumch3lem 42535 Value of the ordinal injec...
dnnumch3 42536 Define an injection from a...
dnwech 42537 Define a well-ordering fro...
fnwe2val 42538 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 42539 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 42540 Lemma for ~ fnwe2 . An el...
fnwe2lem3 42541 Lemma for ~ fnwe2 . Trich...
fnwe2 42542 A well-ordering can be con...
aomclem1 42543 Lemma for ~ dfac11 . This...
aomclem2 42544 Lemma for ~ dfac11 . Succ...
aomclem3 42545 Lemma for ~ dfac11 . Succ...
aomclem4 42546 Lemma for ~ dfac11 . Limi...
aomclem5 42547 Lemma for ~ dfac11 . Comb...
aomclem6 42548 Lemma for ~ dfac11 . Tran...
aomclem7 42549 Lemma for ~ dfac11 . ` ( R...
aomclem8 42550 Lemma for ~ dfac11 . Perf...
dfac11 42551 The right-hand side of thi...
kelac1 42552 Kelley's choice, basic for...
kelac2lem 42553 Lemma for ~ kelac2 and ~ d...
kelac2 42554 Kelley's choice, most comm...
dfac21 42555 Tychonoff's theorem is a c...
islmodfg 42558 Property of a finitely gen...
islssfg 42559 Property of a finitely gen...
islssfg2 42560 Property of a finitely gen...
islssfgi 42561 Finitely spanned subspaces...
fglmod 42562 Finitely generated left mo...
lsmfgcl 42563 The sum of two finitely ge...
islnm 42566 Property of being a Noethe...
islnm2 42567 Property of being a Noethe...
lnmlmod 42568 A Noetherian left module i...
lnmlssfg 42569 A submodule of Noetherian ...
lnmlsslnm 42570 All submodules of a Noethe...
lnmfg 42571 A Noetherian left module i...
kercvrlsm 42572 The domain of a linear fun...
lmhmfgima 42573 A homomorphism maps finite...
lnmepi 42574 Epimorphic images of Noeth...
lmhmfgsplit 42575 If the kernel and range of...
lmhmlnmsplit 42576 If the kernel and range of...
lnmlmic 42577 Noetherian is an invariant...
pwssplit4 42578 Splitting for structure po...
filnm 42579 Finite left modules are No...
pwslnmlem0 42580 Zeroeth powers are Noether...
pwslnmlem1 42581 First powers are Noetheria...
pwslnmlem2 42582 A sum of powers is Noether...
pwslnm 42583 Finite powers of Noetheria...
unxpwdom3 42584 Weaker version of ~ unxpwd...
pwfi2f1o 42585 The ~ pw2f1o bijection rel...
pwfi2en 42586 Finitely supported indicat...
frlmpwfi 42587 Formal linear combinations...
gicabl 42588 Being Abelian is a group i...
imasgim 42589 A relabeling of the elemen...
isnumbasgrplem1 42590 A set which is equipollent...
harn0 42591 The Hartogs number of a se...
numinfctb 42592 A numerable infinite set c...
isnumbasgrplem2 42593 If the (to be thought of a...
isnumbasgrplem3 42594 Every nonempty numerable s...
isnumbasabl 42595 A set is numerable iff it ...
isnumbasgrp 42596 A set is numerable iff it ...
dfacbasgrp 42597 A choice equivalent in abs...
islnr 42600 Property of a left-Noether...
lnrring 42601 Left-Noetherian rings are ...
lnrlnm 42602 Left-Noetherian rings have...
islnr2 42603 Property of being a left-N...
islnr3 42604 Relate left-Noetherian rin...
lnr2i 42605 Given an ideal in a left-N...
lpirlnr 42606 Left principal ideal rings...
lnrfrlm 42607 Finite-dimensional free mo...
lnrfg 42608 Finitely-generated modules...
lnrfgtr 42609 A submodule of a finitely ...
hbtlem1 42612 Value of the leading coeff...
hbtlem2 42613 Leading coefficient ideals...
hbtlem7 42614 Functionality of leading c...
hbtlem4 42615 The leading ideal function...
hbtlem3 42616 The leading ideal function...
hbtlem5 42617 The leading ideal function...
hbtlem6 42618 There is a finite set of p...
hbt 42619 The Hilbert Basis Theorem ...
dgrsub2 42624 Subtracting two polynomial...
elmnc 42625 Property of a monic polyno...
mncply 42626 A monic polynomial is a po...
mnccoe 42627 A monic polynomial has lea...
mncn0 42628 A monic polynomial is not ...
dgraaval 42633 Value of the degree functi...
dgraalem 42634 Properties of the degree o...
dgraacl 42635 Closure of the degree func...
dgraaf 42636 Degree function on algebra...
dgraaub 42637 Upper bound on degree of a...
dgraa0p 42638 A rational polynomial of d...
mpaaeu 42639 An algebraic number has ex...
mpaaval 42640 Value of the minimal polyn...
mpaalem 42641 Properties of the minimal ...
mpaacl 42642 Minimal polynomial is a po...
mpaadgr 42643 Minimal polynomial has deg...
mpaaroot 42644 The minimal polynomial of ...
mpaamn 42645 Minimal polynomial is moni...
itgoval 42650 Value of the integral-over...
aaitgo 42651 The standard algebraic num...
itgoss 42652 An integral element is int...
itgocn 42653 All integral elements are ...
cnsrexpcl 42654 Exponentiation is closed i...
fsumcnsrcl 42655 Finite sums are closed in ...
cnsrplycl 42656 Polynomials are closed in ...
rgspnval 42657 Value of the ring-span of ...
rgspncl 42658 The ring-span of a set is ...
rgspnssid 42659 The ring-span of a set con...
rgspnmin 42660 The ring-span is contained...
rgspnid 42661 The span of a subring is i...
rngunsnply 42662 Adjoining one element to a...
flcidc 42663 Finite linear combinations...
algstr 42666 Lemma to shorten proofs of...
algbase 42667 The base set of a construc...
algaddg 42668 The additive operation of ...
algmulr 42669 The multiplicative operati...
algsca 42670 The set of scalars of a co...
algvsca 42671 The scalar product operati...
mendval 42672 Value of the module endomo...
mendbas 42673 Base set of the module end...
mendplusgfval 42674 Addition in the module end...
mendplusg 42675 A specific addition in the...
mendmulrfval 42676 Multiplication in the modu...
mendmulr 42677 A specific multiplication ...
mendsca 42678 The module endomorphism al...
mendvscafval 42679 Scalar multiplication in t...
mendvsca 42680 A specific scalar multipli...
mendring 42681 The module endomorphism al...
mendlmod 42682 The module endomorphism al...
mendassa 42683 The module endomorphism al...
idomodle 42684 Limit on the number of ` N...
fiuneneq 42685 Two finite sets of equal s...
idomsubgmo 42686 The units of an integral d...
proot1mul 42687 Any primitive ` N ` -th ro...
proot1hash 42688 If an integral domain has ...
proot1ex 42689 The complex field has prim...
mon1psubm 42692 Monic polynomials are a mu...
deg1mhm 42693 Homomorphic property of th...
cytpfn 42694 Functionality of the cyclo...
cytpval 42695 Substitutions for the Nth ...
fgraphopab 42696 Express a function as a su...
fgraphxp 42697 Express a function as a su...
hausgraph 42698 The graph of a continuous ...
r1sssucd 42703 Deductive form of ~ r1sssu...
iocunico 42704 Split an open interval int...
iocinico 42705 The intersection of two se...
iocmbl 42706 An open-below, closed-abov...
cnioobibld 42707 A bounded, continuous func...
arearect 42708 The area of a rectangle wh...
areaquad 42709 The area of a quadrilatera...
uniel 42710 Two ways to say a union is...
unielss 42711 Two ways to say the union ...
unielid 42712 Two ways to say the union ...
ssunib 42713 Two ways to say a class is...
rp-intrabeq 42714 Equality theorem for supre...
rp-unirabeq 42715 Equality theorem for infim...
onmaxnelsup 42716 Two ways to say the maximu...
onsupneqmaxlim0 42717 If the supremum of a class...
onsupcl2 42718 The supremum of a set of o...
onuniintrab 42719 The union of a set of ordi...
onintunirab 42720 The intersection of a non-...
onsupnmax 42721 If the union of a class of...
onsupuni 42722 The supremum of a set of o...
onsupuni2 42723 The supremum of a set of o...
onsupintrab 42724 The supremum of a set of o...
onsupintrab2 42725 The supremum of a set of o...
onsupcl3 42726 The supremum of a set of o...
onsupex3 42727 The supremum of a set of o...
onuniintrab2 42728 The union of a set of ordi...
oninfint 42729 The infimum of a non-empty...
oninfunirab 42730 The infimum of a non-empty...
oninfcl2 42731 The infimum of a non-empty...
onsupmaxb 42732 The union of a class of or...
onexgt 42733 For any ordinal, there is ...
onexomgt 42734 For any ordinal, there is ...
omlimcl2 42735 The product of a limit ord...
onexlimgt 42736 For any ordinal, there is ...
onexoegt 42737 For any ordinal, there is ...
oninfex2 42738 The infimum of a non-empty...
onsupeqmax 42739 Condition when the supremu...
onsupeqnmax 42740 Condition when the supremu...
onsuplub 42741 The supremum of a set of o...
onsupnub 42742 An upper bound of a set of...
onfisupcl 42743 Sufficient condition when ...
onelord 42744 Every element of a ordinal...
onepsuc 42745 Every ordinal is less than...
epsoon 42746 The ordinals are strictly ...
epirron 42747 The strict order on the or...
oneptr 42748 The strict order on the or...
oneltr 42749 The elementhood relation o...
oneptri 42750 The strict, complete (line...
oneltri 42751 The elementhood relation o...
ordeldif 42752 Membership in the differen...
ordeldifsucon 42753 Membership in the differen...
ordeldif1o 42754 Membership in the differen...
ordne0gt0 42755 Ordinal zero is less than ...
ondif1i 42756 Ordinal zero is less than ...
onsucelab 42757 The successor of every ord...
dflim6 42758 A limit ordinal is a non-z...
limnsuc 42759 A limit ordinal is not an ...
onsucss 42760 If one ordinal is less tha...
ordnexbtwnsuc 42761 For any distinct pair of o...
orddif0suc 42762 For any distinct pair of o...
onsucf1lem 42763 For ordinals, the successo...
onsucf1olem 42764 The successor operation is...
onsucrn 42765 The successor operation is...
onsucf1o 42766 The successor operation is...
dflim7 42767 A limit ordinal is a non-z...
onov0suclim 42768 Compactly express rules fo...
oa0suclim 42769 Closed form expression of ...
om0suclim 42770 Closed form expression of ...
oe0suclim 42771 Closed form expression of ...
oaomoecl 42772 The operations of addition...
onsupsucismax 42773 If the union of a set of o...
onsssupeqcond 42774 If for every element of a ...
limexissup 42775 An ordinal which is a limi...
limiun 42776 A limit ordinal is the uni...
limexissupab 42777 An ordinal which is a limi...
om1om1r 42778 Ordinal one is both a left...
oe0rif 42779 Ordinal zero raised to any...
oasubex 42780 While subtraction can't be...
nnamecl 42781 Natural numbers are closed...
onsucwordi 42782 The successor operation pr...
oalim2cl 42783 The ordinal sum of any ord...
oaltublim 42784 Given ` C ` is a limit ord...
oaordi3 42785 Ordinal addition of the sa...
oaord3 42786 When the same ordinal is a...
1oaomeqom 42787 Ordinal one plus omega is ...
oaabsb 42788 The right addend absorbs t...
oaordnrex 42789 When omega is added on the...
oaordnr 42790 When the same ordinal is a...
omge1 42791 Any non-zero ordinal produ...
omge2 42792 Any non-zero ordinal produ...
omlim2 42793 The non-zero product with ...
omord2lim 42794 Given a limit ordinal, the...
omord2i 42795 Ordinal multiplication of ...
omord2com 42796 When the same non-zero ord...
2omomeqom 42797 Ordinal two times omega is...
omnord1ex 42798 When omega is multiplied o...
omnord1 42799 When the same non-zero ord...
oege1 42800 Any non-zero ordinal power...
oege2 42801 Any power of an ordinal at...
rp-oelim2 42802 The power of an ordinal at...
oeord2lim 42803 Given a limit ordinal, the...
oeord2i 42804 Ordinal exponentiation of ...
oeord2com 42805 When the same base at leas...
nnoeomeqom 42806 Any natural number at leas...
df3o2 42807 Ordinal 3 is the unordered...
df3o3 42808 Ordinal 3, fully expanded....
oenord1ex 42809 When ordinals two and thre...
oenord1 42810 When two ordinals (both at...
oaomoencom 42811 Ordinal addition, multipli...
oenassex 42812 Ordinal two raised to two ...
oenass 42813 Ordinal exponentiation is ...
cantnftermord 42814 For terms of the form of a...
cantnfub 42815 Given a finite number of t...
cantnfub2 42816 Given a finite number of t...
bropabg 42817 Equivalence for two classe...
cantnfresb 42818 A Cantor normal form which...
cantnf2 42819 For every ordinal, ` A ` ,...
oawordex2 42820 If ` C ` is between ` A ` ...
nnawordexg 42821 If an ordinal, ` B ` , is ...
succlg 42822 Closure law for ordinal su...
dflim5 42823 A limit ordinal is either ...
oacl2g 42824 Closure law for ordinal ad...
onmcl 42825 If an ordinal is less than...
omabs2 42826 Ordinal multiplication by ...
omcl2 42827 Closure law for ordinal mu...
omcl3g 42828 Closure law for ordinal mu...
ordsssucb 42829 An ordinal number is less ...
tfsconcatlem 42830 Lemma for ~ tfsconcatun . ...
tfsconcatun 42831 The concatenation of two t...
tfsconcatfn 42832 The concatenation of two t...
tfsconcatfv1 42833 An early value of the conc...
tfsconcatfv2 42834 A latter value of the conc...
tfsconcatfv 42835 The value of the concatena...
tfsconcatrn 42836 The range of the concatena...
tfsconcatfo 42837 The concatenation of two t...
tfsconcatb0 42838 The concatentation with th...
tfsconcat0i 42839 The concatentation with th...
tfsconcat0b 42840 The concatentation with th...
tfsconcat00 42841 The concatentation of two ...
tfsconcatrev 42842 If the domain of a transfi...
tfsconcatrnss12 42843 The range of the concatena...
tfsconcatrnss 42844 The concatenation of trans...
tfsconcatrnsson 42845 The concatenation of trans...
tfsnfin 42846 A transfinite sequence is ...
rp-tfslim 42847 The limit of a sequence of...
ofoafg 42848 Addition operator for func...
ofoaf 42849 Addition operator for func...
ofoafo 42850 Addition operator for func...
ofoacl 42851 Closure law for component ...
ofoaid1 42852 Identity law for component...
ofoaid2 42853 Identity law for component...
ofoaass 42854 Component-wise addition of...
ofoacom 42855 Component-wise addition of...
naddcnff 42856 Addition operator for Cant...
naddcnffn 42857 Addition operator for Cant...
naddcnffo 42858 Addition of Cantor normal ...
naddcnfcl 42859 Closure law for component-...
naddcnfcom 42860 Component-wise ordinal add...
naddcnfid1 42861 Identity law for component...
naddcnfid2 42862 Identity law for component...
naddcnfass 42863 Component-wise addition of...
onsucunifi 42864 The successor to the union...
sucunisn 42865 The successor to the union...
onsucunipr 42866 The successor to the union...
onsucunitp 42867 The successor to the union...
oaun3lem1 42868 The class of all ordinal s...
oaun3lem2 42869 The class of all ordinal s...
oaun3lem3 42870 The class of all ordinal s...
oaun3lem4 42871 The class of all ordinal s...
rp-abid 42872 Two ways to express a clas...
oadif1lem 42873 Express the set difference...
oadif1 42874 Express the set difference...
oaun2 42875 Ordinal addition as a unio...
oaun3 42876 Ordinal addition as a unio...
naddov4 42877 Alternate expression for n...
nadd2rabtr 42878 The set of ordinals which ...
nadd2rabord 42879 The set of ordinals which ...
nadd2rabex 42880 The class of ordinals whic...
nadd2rabon 42881 The set of ordinals which ...
nadd1rabtr 42882 The set of ordinals which ...
nadd1rabord 42883 The set of ordinals which ...
nadd1rabex 42884 The class of ordinals whic...
nadd1rabon 42885 The set of ordinals which ...
nadd1suc 42886 Natural addition with 1 is...
naddsuc2 42887 Natural addition with succ...
naddass1 42888 Natural addition of ordina...
naddgeoa 42889 Natural addition results i...
naddonnn 42890 Natural addition with a na...
naddwordnexlem0 42891 When ` A ` is the sum of a...
naddwordnexlem1 42892 When ` A ` is the sum of a...
naddwordnexlem2 42893 When ` A ` is the sum of a...
naddwordnexlem3 42894 When ` A ` is the sum of a...
oawordex3 42895 When ` A ` is the sum of a...
naddwordnexlem4 42896 When ` A ` is the sum of a...
ordsssucim 42897 If an ordinal is less than...
insucid 42898 The intersection of a clas...
om2 42899 Two ways to double an ordi...
oaltom 42900 Multiplication eventually ...
oe2 42901 Two ways to square an ordi...
omltoe 42902 Exponentiation eventually ...
abeqabi 42903 Generalized condition for ...
abpr 42904 Condition for a class abst...
abtp 42905 Condition for a class abst...
ralopabb 42906 Restricted universal quant...
fpwfvss 42907 Functions into a powerset ...
sdomne0 42908 A class that strictly domi...
sdomne0d 42909 A class that strictly domi...
safesnsupfiss 42910 If ` B ` is a finite subse...
safesnsupfiub 42911 If ` B ` is a finite subse...
safesnsupfidom1o 42912 If ` B ` is a finite subse...
safesnsupfilb 42913 If ` B ` is a finite subse...
isoeq145d 42914 Equality deduction for iso...
resisoeq45d 42915 Equality deduction for equ...
negslem1 42916 An equivalence between ide...
nvocnvb 42917 Equivalence to saying the ...
rp-brsslt 42918 Binary relation form of a ...
nla0002 42919 Extending a linear order t...
nla0003 42920 Extending a linear order t...
nla0001 42921 Extending a linear order t...
faosnf0.11b 42922 ` B ` is called a non-limi...
dfno2 42923 A surreal number, in the f...
onnog 42924 Every ordinal maps to a su...
onnobdayg 42925 Every ordinal maps to a su...
bdaybndex 42926 Bounds formed from the bir...
bdaybndbday 42927 Bounds formed from the bir...
onno 42928 Every ordinal maps to a su...
onnoi 42929 Every ordinal maps to a su...
0no 42930 Ordinal zero maps to a sur...
1no 42931 Ordinal one maps to a surr...
2no 42932 Ordinal two maps to a surr...
3no 42933 Ordinal three maps to a su...
4no 42934 Ordinal four maps to a sur...
fnimafnex 42935 The functional image of a ...
nlimsuc 42936 A successor is not a limit...
nlim1NEW 42937 1 is not a limit ordinal. ...
nlim2NEW 42938 2 is not a limit ordinal. ...
nlim3 42939 3 is not a limit ordinal. ...
nlim4 42940 4 is not a limit ordinal. ...
oa1un 42941 Given ` A e. On ` , let ` ...
oa1cl 42942 ` A +o 1o ` is in ` On ` ....
0finon 42943 0 is a finite ordinal. Se...
1finon 42944 1 is a finite ordinal. Se...
2finon 42945 2 is a finite ordinal. Se...
3finon 42946 3 is a finite ordinal. Se...
4finon 42947 4 is a finite ordinal. Se...
finona1cl 42948 The finite ordinals are cl...
finonex 42949 The finite ordinals are a ...
fzunt 42950 Union of two adjacent fini...
fzuntd 42951 Union of two adjacent fini...
fzunt1d 42952 Union of two overlapping f...
fzuntgd 42953 Union of two adjacent or o...
ifpan123g 42954 Conjunction of conditional...
ifpan23 42955 Conjunction of conditional...
ifpdfor2 42956 Define or in terms of cond...
ifporcor 42957 Corollary of commutation o...
ifpdfan2 42958 Define and with conditiona...
ifpancor 42959 Corollary of commutation o...
ifpdfor 42960 Define or in terms of cond...
ifpdfan 42961 Define and with conditiona...
ifpbi2 42962 Equivalence theorem for co...
ifpbi3 42963 Equivalence theorem for co...
ifpim1 42964 Restate implication as con...
ifpnot 42965 Restate negated wff as con...
ifpid2 42966 Restate wff as conditional...
ifpim2 42967 Restate implication as con...
ifpbi23 42968 Equivalence theorem for co...
ifpbiidcor 42969 Restatement of ~ biid . (...
ifpbicor 42970 Corollary of commutation o...
ifpxorcor 42971 Corollary of commutation o...
ifpbi1 42972 Equivalence theorem for co...
ifpnot23 42973 Negation of conditional lo...
ifpnotnotb 42974 Factor conditional logic o...
ifpnorcor 42975 Corollary of commutation o...
ifpnancor 42976 Corollary of commutation o...
ifpnot23b 42977 Negation of conditional lo...
ifpbiidcor2 42978 Restatement of ~ biid . (...
ifpnot23c 42979 Negation of conditional lo...
ifpnot23d 42980 Negation of conditional lo...
ifpdfnan 42981 Define nand as conditional...
ifpdfxor 42982 Define xor as conditional ...
ifpbi12 42983 Equivalence theorem for co...
ifpbi13 42984 Equivalence theorem for co...
ifpbi123 42985 Equivalence theorem for co...
ifpidg 42986 Restate wff as conditional...
ifpid3g 42987 Restate wff as conditional...
ifpid2g 42988 Restate wff as conditional...
ifpid1g 42989 Restate wff as conditional...
ifpim23g 42990 Restate implication as con...
ifpim3 42991 Restate implication as con...
ifpnim1 42992 Restate negated implicatio...
ifpim4 42993 Restate implication as con...
ifpnim2 42994 Restate negated implicatio...
ifpim123g 42995 Implication of conditional...
ifpim1g 42996 Implication of conditional...
ifp1bi 42997 Substitute the first eleme...
ifpbi1b 42998 When the first variable is...
ifpimimb 42999 Factor conditional logic o...
ifpororb 43000 Factor conditional logic o...
ifpananb 43001 Factor conditional logic o...
ifpnannanb 43002 Factor conditional logic o...
ifpor123g 43003 Disjunction of conditional...
ifpimim 43004 Consequnce of implication....
ifpbibib 43005 Factor conditional logic o...
ifpxorxorb 43006 Factor conditional logic o...
rp-fakeimass 43007 A special case where impli...
rp-fakeanorass 43008 A special case where a mix...
rp-fakeoranass 43009 A special case where a mix...
rp-fakeinunass 43010 A special case where a mix...
rp-fakeuninass 43011 A special case where a mix...
rp-isfinite5 43012 A set is said to be finite...
rp-isfinite6 43013 A set is said to be finite...
intabssd 43014 When for each element ` y ...
eu0 43015 There is only one empty se...
epelon2 43016 Over the ordinal numbers, ...
ontric3g 43017 For all ` x , y e. On ` , ...
dfsucon 43018 ` A ` is called a successo...
snen1g 43019 A singleton is equinumerou...
snen1el 43020 A singleton is equinumerou...
sn1dom 43021 A singleton is dominated b...
pr2dom 43022 An unordered pair is domin...
tr3dom 43023 An unordered triple is dom...
ensucne0 43024 A class equinumerous to a ...
ensucne0OLD 43025 A class equinumerous to a ...
dfom6 43026 Let ` _om ` be defined to ...
infordmin 43027 ` _om ` is the smallest in...
iscard4 43028 Two ways to express the pr...
minregex 43029 Given any cardinal number ...
minregex2 43030 Given any cardinal number ...
iscard5 43031 Two ways to express the pr...
elrncard 43032 Let us define a cardinal n...
harval3 43033 ` ( har `` A ) ` is the le...
harval3on 43034 For any ordinal number ` A...
omssrncard 43035 All natural numbers are ca...
0iscard 43036 0 is a cardinal number. (...
1iscard 43037 1 is a cardinal number. (...
omiscard 43038 ` _om ` is a cardinal numb...
sucomisnotcard 43039 ` _om +o 1o ` is not a car...
nna1iscard 43040 For any natural number, th...
har2o 43041 The least cardinal greater...
en2pr 43042 A class is equinumerous to...
pr2cv 43043 If an unordered pair is eq...
pr2el1 43044 If an unordered pair is eq...
pr2cv1 43045 If an unordered pair is eq...
pr2el2 43046 If an unordered pair is eq...
pr2cv2 43047 If an unordered pair is eq...
pren2 43048 An unordered pair is equin...
pr2eldif1 43049 If an unordered pair is eq...
pr2eldif2 43050 If an unordered pair is eq...
pren2d 43051 A pair of two distinct set...
aleph1min 43052 ` ( aleph `` 1o ) ` is the...
alephiso2 43053 ` aleph ` is a strictly or...
alephiso3 43054 ` aleph ` is a strictly or...
pwelg 43055 The powerclass is an eleme...
pwinfig 43056 The powerclass of an infin...
pwinfi2 43057 The powerclass of an infin...
pwinfi3 43058 The powerclass of an infin...
pwinfi 43059 The powerclass of an infin...
fipjust 43060 A definition of the finite...
cllem0 43061 The class of all sets with...
superficl 43062 The class of all supersets...
superuncl 43063 The class of all supersets...
ssficl 43064 The class of all subsets o...
ssuncl 43065 The class of all subsets o...
ssdifcl 43066 The class of all subsets o...
sssymdifcl 43067 The class of all subsets o...
fiinfi 43068 If two classes have the fi...
rababg 43069 Condition when restricted ...
elinintab 43070 Two ways of saying a set i...
elmapintrab 43071 Two ways to say a set is a...
elinintrab 43072 Two ways of saying a set i...
inintabss 43073 Upper bound on intersectio...
inintabd 43074 Value of the intersection ...
xpinintabd 43075 Value of the intersection ...
relintabex 43076 If the intersection of a c...
elcnvcnvintab 43077 Two ways of saying a set i...
relintab 43078 Value of the intersection ...
nonrel 43079 A non-relation is equal to...
elnonrel 43080 Only an ordered pair where...
cnvssb 43081 Subclass theorem for conve...
relnonrel 43082 The non-relation part of a...
cnvnonrel 43083 The converse of the non-re...
brnonrel 43084 A non-relation cannot rela...
dmnonrel 43085 The domain of the non-rela...
rnnonrel 43086 The range of the non-relat...
resnonrel 43087 A restriction of the non-r...
imanonrel 43088 An image under the non-rel...
cononrel1 43089 Composition with the non-r...
cononrel2 43090 Composition with the non-r...
elmapintab 43091 Two ways to say a set is a...
fvnonrel 43092 The function value of any ...
elinlem 43093 Two ways to say a set is a...
elcnvcnvlem 43094 Two ways to say a set is a...
cnvcnvintabd 43095 Value of the relationship ...
elcnvlem 43096 Two ways to say a set is a...
elcnvintab 43097 Two ways of saying a set i...
cnvintabd 43098 Value of the converse of t...
undmrnresiss 43099 Two ways of saying the ide...
reflexg 43100 Two ways of saying a relat...
cnvssco 43101 A condition weaker than re...
refimssco 43102 Reflexive relations are su...
cleq2lem 43103 Equality implies bijection...
cbvcllem 43104 Change of bound variable i...
clublem 43105 If a superset ` Y ` of ` X...
clss2lem 43106 The closure of a property ...
dfid7 43107 Definition of identity rel...
mptrcllem 43108 Show two versions of a clo...
cotrintab 43109 The intersection of a clas...
rclexi 43110 The reflexive closure of a...
rtrclexlem 43111 Existence of relation impl...
rtrclex 43112 The reflexive-transitive c...
trclubgNEW 43113 If a relation exists then ...
trclubNEW 43114 If a relation exists then ...
trclexi 43115 The transitive closure of ...
rtrclexi 43116 The reflexive-transitive c...
clrellem 43117 When the property ` ps ` h...
clcnvlem 43118 When ` A ` , an upper boun...
cnvtrucl0 43119 The converse of the trivia...
cnvrcl0 43120 The converse of the reflex...
cnvtrcl0 43121 The converse of the transi...
dmtrcl 43122 The domain of the transiti...
rntrcl 43123 The range of the transitiv...
dfrtrcl5 43124 Definition of reflexive-tr...
trcleq2lemRP 43125 Equality implies bijection...
sqrtcvallem1 43126 Two ways of saying a compl...
reabsifneg 43127 Alternate expression for t...
reabsifnpos 43128 Alternate expression for t...
reabsifpos 43129 Alternate expression for t...
reabsifnneg 43130 Alternate expression for t...
reabssgn 43131 Alternate expression for t...
sqrtcvallem2 43132 Equivalent to saying that ...
sqrtcvallem3 43133 Equivalent to saying that ...
sqrtcvallem4 43134 Equivalent to saying that ...
sqrtcvallem5 43135 Equivalent to saying that ...
sqrtcval 43136 Explicit formula for the c...
sqrtcval2 43137 Explicit formula for the c...
resqrtval 43138 Real part of the complex s...
imsqrtval 43139 Imaginary part of the comp...
resqrtvalex 43140 Example for ~ resqrtval . ...
imsqrtvalex 43141 Example for ~ imsqrtval . ...
al3im 43142 Version of ~ ax-4 for a ne...
intima0 43143 Two ways of expressing the...
elimaint 43144 Element of image of inters...
cnviun 43145 Converse of indexed union....
imaiun1 43146 The image of an indexed un...
coiun1 43147 Composition with an indexe...
elintima 43148 Element of intersection of...
intimass 43149 The image under the inters...
intimass2 43150 The image under the inters...
intimag 43151 Requirement for the image ...
intimasn 43152 Two ways to express the im...
intimasn2 43153 Two ways to express the im...
ss2iundf 43154 Subclass theorem for index...
ss2iundv 43155 Subclass theorem for index...
cbviuneq12df 43156 Rule used to change the bo...
cbviuneq12dv 43157 Rule used to change the bo...
conrel1d 43158 Deduction about compositio...
conrel2d 43159 Deduction about compositio...
trrelind 43160 The intersection of transi...
xpintrreld 43161 The intersection of a tran...
restrreld 43162 The restriction of a trans...
trrelsuperreldg 43163 Concrete construction of a...
trficl 43164 The class of all transitiv...
cnvtrrel 43165 The converse of a transiti...
trrelsuperrel2dg 43166 Concrete construction of a...
dfrcl2 43169 Reflexive closure of a rel...
dfrcl3 43170 Reflexive closure of a rel...
dfrcl4 43171 Reflexive closure of a rel...
relexp2 43172 A set operated on by the r...
relexpnul 43173 If the domain and range of...
eliunov2 43174 Membership in the indexed ...
eltrclrec 43175 Membership in the indexed ...
elrtrclrec 43176 Membership in the indexed ...
briunov2 43177 Two classes related by the...
brmptiunrelexpd 43178 If two elements are connec...
fvmptiunrelexplb0d 43179 If the indexed union range...
fvmptiunrelexplb0da 43180 If the indexed union range...
fvmptiunrelexplb1d 43181 If the indexed union range...
brfvid 43182 If two elements are connec...
brfvidRP 43183 If two elements are connec...
fvilbd 43184 A set is a subset of its i...
fvilbdRP 43185 A set is a subset of its i...
brfvrcld 43186 If two elements are connec...
brfvrcld2 43187 If two elements are connec...
fvrcllb0d 43188 A restriction of the ident...
fvrcllb0da 43189 A restriction of the ident...
fvrcllb1d 43190 A set is a subset of its i...
brtrclrec 43191 Two classes related by the...
brrtrclrec 43192 Two classes related by the...
briunov2uz 43193 Two classes related by the...
eliunov2uz 43194 Membership in the indexed ...
ov2ssiunov2 43195 Any particular operator va...
relexp0eq 43196 The zeroth power of relati...
iunrelexp0 43197 Simplification of zeroth p...
relexpxpnnidm 43198 Any positive power of a Ca...
relexpiidm 43199 Any power of any restricti...
relexpss1d 43200 The relational power of a ...
comptiunov2i 43201 The composition two indexe...
corclrcl 43202 The reflexive closure is i...
iunrelexpmin1 43203 The indexed union of relat...
relexpmulnn 43204 With exponents limited to ...
relexpmulg 43205 With ordered exponents, th...
trclrelexplem 43206 The union of relational po...
iunrelexpmin2 43207 The indexed union of relat...
relexp01min 43208 With exponents limited to ...
relexp1idm 43209 Repeated raising a relatio...
relexp0idm 43210 Repeated raising a relatio...
relexp0a 43211 Absorption law for zeroth ...
relexpxpmin 43212 The composition of powers ...
relexpaddss 43213 The composition of two pow...
iunrelexpuztr 43214 The indexed union of relat...
dftrcl3 43215 Transitive closure of a re...
brfvtrcld 43216 If two elements are connec...
fvtrcllb1d 43217 A set is a subset of its i...
trclfvcom 43218 The transitive closure of ...
cnvtrclfv 43219 The converse of the transi...
cotrcltrcl 43220 The transitive closure is ...
trclimalb2 43221 Lower bound for image unde...
brtrclfv2 43222 Two ways to indicate two e...
trclfvdecomr 43223 The transitive closure of ...
trclfvdecoml 43224 The transitive closure of ...
dmtrclfvRP 43225 The domain of the transiti...
rntrclfvRP 43226 The range of the transitiv...
rntrclfv 43227 The range of the transitiv...
dfrtrcl3 43228 Reflexive-transitive closu...
brfvrtrcld 43229 If two elements are connec...
fvrtrcllb0d 43230 A restriction of the ident...
fvrtrcllb0da 43231 A restriction of the ident...
fvrtrcllb1d 43232 A set is a subset of its i...
dfrtrcl4 43233 Reflexive-transitive closu...
corcltrcl 43234 The composition of the ref...
cortrcltrcl 43235 Composition with the refle...
corclrtrcl 43236 Composition with the refle...
cotrclrcl 43237 The composition of the ref...
cortrclrcl 43238 Composition with the refle...
cotrclrtrcl 43239 Composition with the refle...
cortrclrtrcl 43240 The reflexive-transitive c...
frege77d 43241 If the images of both ` { ...
frege81d 43242 If the image of ` U ` is a...
frege83d 43243 If the image of the union ...
frege96d 43244 If ` C ` follows ` A ` in ...
frege87d 43245 If the images of both ` { ...
frege91d 43246 If ` B ` follows ` A ` in ...
frege97d 43247 If ` A ` contains all elem...
frege98d 43248 If ` C ` follows ` A ` and...
frege102d 43249 If either ` A ` and ` C ` ...
frege106d 43250 If ` B ` follows ` A ` in ...
frege108d 43251 If either ` A ` and ` C ` ...
frege109d 43252 If ` A ` contains all elem...
frege114d 43253 If either ` R ` relates ` ...
frege111d 43254 If either ` A ` and ` C ` ...
frege122d 43255 If ` F ` is a function, ` ...
frege124d 43256 If ` F ` is a function, ` ...
frege126d 43257 If ` F ` is a function, ` ...
frege129d 43258 If ` F ` is a function and...
frege131d 43259 If ` F ` is a function and...
frege133d 43260 If ` F ` is a function and...
dfxor4 43261 Express exclusive-or in te...
dfxor5 43262 Express exclusive-or in te...
df3or2 43263 Express triple-or in terms...
df3an2 43264 Express triple-and in term...
nev 43265 Express that not every set...
0pssin 43266 Express that an intersecti...
dfhe2 43269 The property of relation `...
dfhe3 43270 The property of relation `...
heeq12 43271 Equality law for relations...
heeq1 43272 Equality law for relations...
heeq2 43273 Equality law for relations...
sbcheg 43274 Distribute proper substitu...
hess 43275 Subclass law for relations...
xphe 43276 Any Cartesian product is h...
0he 43277 The empty relation is here...
0heALT 43278 The empty relation is here...
he0 43279 Any relation is hereditary...
unhe1 43280 The union of two relations...
snhesn 43281 Any singleton is hereditar...
idhe 43282 The identity relation is h...
psshepw 43283 The relation between sets ...
sshepw 43284 The relation between sets ...
rp-simp2-frege 43287 Simplification of triple c...
rp-simp2 43288 Simplification of triple c...
rp-frege3g 43289 Add antecedent to ~ ax-fre...
frege3 43290 Add antecedent to ~ ax-fre...
rp-misc1-frege 43291 Double-use of ~ ax-frege2 ...
rp-frege24 43292 Introducing an embedded an...
rp-frege4g 43293 Deduction related to distr...
frege4 43294 Special case of closed for...
frege5 43295 A closed form of ~ syl . ...
rp-7frege 43296 Distribute antecedent and ...
rp-4frege 43297 Elimination of a nested an...
rp-6frege 43298 Elimination of a nested an...
rp-8frege 43299 Eliminate antecedent when ...
rp-frege25 43300 Closed form for ~ a1dd . ...
frege6 43301 A closed form of ~ imim2d ...
axfrege8 43302 Swap antecedents. Identic...
frege7 43303 A closed form of ~ syl6 . ...
frege26 43305 Identical to ~ idd . Prop...
frege27 43306 We cannot (at the same tim...
frege9 43307 Closed form of ~ syl with ...
frege12 43308 A closed form of ~ com23 ....
frege11 43309 Elimination of a nested an...
frege24 43310 Closed form for ~ a1d . D...
frege16 43311 A closed form of ~ com34 ....
frege25 43312 Closed form for ~ a1dd . ...
frege18 43313 Closed form of a syllogism...
frege22 43314 A closed form of ~ com45 ....
frege10 43315 Result commuting anteceden...
frege17 43316 A closed form of ~ com3l ....
frege13 43317 A closed form of ~ com3r ....
frege14 43318 Closed form of a deduction...
frege19 43319 A closed form of ~ syl6 . ...
frege23 43320 Syllogism followed by rota...
frege15 43321 A closed form of ~ com4r ....
frege21 43322 Replace antecedent in ante...
frege20 43323 A closed form of ~ syl8 . ...
axfrege28 43324 Contraposition. Identical...
frege29 43326 Closed form of ~ con3d . ...
frege30 43327 Commuted, closed form of ~...
axfrege31 43328 Identical to ~ notnotr . ...
frege32 43330 Deduce ~ con1 from ~ con3 ...
frege33 43331 If ` ph ` or ` ps ` takes ...
frege34 43332 If as a consequence of the...
frege35 43333 Commuted, closed form of ~...
frege36 43334 The case in which ` ps ` i...
frege37 43335 If ` ch ` is a necessary c...
frege38 43336 Identical to ~ pm2.21 . P...
frege39 43337 Syllogism between ~ pm2.18...
frege40 43338 Anything implies ~ pm2.18 ...
axfrege41 43339 Identical to ~ notnot . A...
frege42 43341 Not not ~ id . Propositio...
frege43 43342 If there is a choice only ...
frege44 43343 Similar to a commuted ~ pm...
frege45 43344 Deduce ~ pm2.6 from ~ con1...
frege46 43345 If ` ps ` holds when ` ph ...
frege47 43346 Deduce consequence follows...
frege48 43347 Closed form of syllogism w...
frege49 43348 Closed form of deduction w...
frege50 43349 Closed form of ~ jaoi . P...
frege51 43350 Compare with ~ jaod . Pro...
axfrege52a 43351 Justification for ~ ax-fre...
frege52aid 43353 The case when the content ...
frege53aid 43354 Specialization of ~ frege5...
frege53a 43355 Lemma for ~ frege55a . Pr...
axfrege54a 43356 Justification for ~ ax-fre...
frege54cor0a 43358 Synonym for logical equiva...
frege54cor1a 43359 Reflexive equality. (Cont...
frege55aid 43360 Lemma for ~ frege57aid . ...
frege55lem1a 43361 Necessary deduction regard...
frege55lem2a 43362 Core proof of Proposition ...
frege55a 43363 Proposition 55 of [Frege18...
frege55cor1a 43364 Proposition 55 of [Frege18...
frege56aid 43365 Lemma for ~ frege57aid . ...
frege56a 43366 Proposition 56 of [Frege18...
frege57aid 43367 This is the all imporant f...
frege57a 43368 Analogue of ~ frege57aid ....
axfrege58a 43369 Identical to ~ anifp . Ju...
frege58acor 43371 Lemma for ~ frege59a . (C...
frege59a 43372 A kind of Aristotelian inf...
frege60a 43373 Swap antecedents of ~ ax-f...
frege61a 43374 Lemma for ~ frege65a . Pr...
frege62a 43375 A kind of Aristotelian inf...
frege63a 43376 Proposition 63 of [Frege18...
frege64a 43377 Lemma for ~ frege65a . Pr...
frege65a 43378 A kind of Aristotelian inf...
frege66a 43379 Swap antecedents of ~ freg...
frege67a 43380 Lemma for ~ frege68a . Pr...
frege68a 43381 Combination of applying a ...
axfrege52c 43382 Justification for ~ ax-fre...
frege52b 43384 The case when the content ...
frege53b 43385 Lemma for frege102 (via ~ ...
axfrege54c 43386 Reflexive equality of clas...
frege54b 43388 Reflexive equality of sets...
frege54cor1b 43389 Reflexive equality. (Cont...
frege55lem1b 43390 Necessary deduction regard...
frege55lem2b 43391 Lemma for ~ frege55b . Co...
frege55b 43392 Lemma for ~ frege57b . Pr...
frege56b 43393 Lemma for ~ frege57b . Pr...
frege57b 43394 Analogue of ~ frege57aid ....
axfrege58b 43395 If ` A. x ph ` is affirmed...
frege58bid 43397 If ` A. x ph ` is affirmed...
frege58bcor 43398 Lemma for ~ frege59b . (C...
frege59b 43399 A kind of Aristotelian inf...
frege60b 43400 Swap antecedents of ~ ax-f...
frege61b 43401 Lemma for ~ frege65b . Pr...
frege62b 43402 A kind of Aristotelian inf...
frege63b 43403 Lemma for ~ frege91 . Pro...
frege64b 43404 Lemma for ~ frege65b . Pr...
frege65b 43405 A kind of Aristotelian inf...
frege66b 43406 Swap antecedents of ~ freg...
frege67b 43407 Lemma for ~ frege68b . Pr...
frege68b 43408 Combination of applying a ...
frege53c 43409 Proposition 53 of [Frege18...
frege54cor1c 43410 Reflexive equality. (Cont...
frege55lem1c 43411 Necessary deduction regard...
frege55lem2c 43412 Core proof of Proposition ...
frege55c 43413 Proposition 55 of [Frege18...
frege56c 43414 Lemma for ~ frege57c . Pr...
frege57c 43415 Swap order of implication ...
frege58c 43416 Principle related to ~ sp ...
frege59c 43417 A kind of Aristotelian inf...
frege60c 43418 Swap antecedents of ~ freg...
frege61c 43419 Lemma for ~ frege65c . Pr...
frege62c 43420 A kind of Aristotelian inf...
frege63c 43421 Analogue of ~ frege63b . ...
frege64c 43422 Lemma for ~ frege65c . Pr...
frege65c 43423 A kind of Aristotelian inf...
frege66c 43424 Swap antecedents of ~ freg...
frege67c 43425 Lemma for ~ frege68c . Pr...
frege68c 43426 Combination of applying a ...
dffrege69 43427 If from the proposition th...
frege70 43428 Lemma for ~ frege72 . Pro...
frege71 43429 Lemma for ~ frege72 . Pro...
frege72 43430 If property ` A ` is hered...
frege73 43431 Lemma for ~ frege87 . Pro...
frege74 43432 If ` X ` has a property ` ...
frege75 43433 If from the proposition th...
dffrege76 43434 If from the two propositio...
frege77 43435 If ` Y ` follows ` X ` in ...
frege78 43436 Commuted form of ~ frege77...
frege79 43437 Distributed form of ~ freg...
frege80 43438 Add additional condition t...
frege81 43439 If ` X ` has a property ` ...
frege82 43440 Closed-form deduction base...
frege83 43441 Apply commuted form of ~ f...
frege84 43442 Commuted form of ~ frege81...
frege85 43443 Commuted form of ~ frege77...
frege86 43444 Conclusion about element o...
frege87 43445 If ` Z ` is a result of an...
frege88 43446 Commuted form of ~ frege87...
frege89 43447 One direction of ~ dffrege...
frege90 43448 Add antecedent to ~ frege8...
frege91 43449 Every result of an applica...
frege92 43450 Inference from ~ frege91 ....
frege93 43451 Necessary condition for tw...
frege94 43452 Looking one past a pair re...
frege95 43453 Looking one past a pair re...
frege96 43454 Every result of an applica...
frege97 43455 The property of following ...
frege98 43456 If ` Y ` follows ` X ` and...
dffrege99 43457 If ` Z ` is identical with...
frege100 43458 One direction of ~ dffrege...
frege101 43459 Lemma for ~ frege102 . Pr...
frege102 43460 If ` Z ` belongs to the ` ...
frege103 43461 Proposition 103 of [Frege1...
frege104 43462 Proposition 104 of [Frege1...
frege105 43463 Proposition 105 of [Frege1...
frege106 43464 Whatever follows ` X ` in ...
frege107 43465 Proposition 107 of [Frege1...
frege108 43466 If ` Y ` belongs to the ` ...
frege109 43467 The property of belonging ...
frege110 43468 Proposition 110 of [Frege1...
frege111 43469 If ` Y ` belongs to the ` ...
frege112 43470 Identity implies belonging...
frege113 43471 Proposition 113 of [Frege1...
frege114 43472 If ` X ` belongs to the ` ...
dffrege115 43473 If from the circumstance t...
frege116 43474 One direction of ~ dffrege...
frege117 43475 Lemma for ~ frege118 . Pr...
frege118 43476 Simplified application of ...
frege119 43477 Lemma for ~ frege120 . Pr...
frege120 43478 Simplified application of ...
frege121 43479 Lemma for ~ frege122 . Pr...
frege122 43480 If ` X ` is a result of an...
frege123 43481 Lemma for ~ frege124 . Pr...
frege124 43482 If ` X ` is a result of an...
frege125 43483 Lemma for ~ frege126 . Pr...
frege126 43484 If ` M ` follows ` Y ` in ...
frege127 43485 Communte antecedents of ~ ...
frege128 43486 Lemma for ~ frege129 . Pr...
frege129 43487 If the procedure ` R ` is ...
frege130 43488 Lemma for ~ frege131 . Pr...
frege131 43489 If the procedure ` R ` is ...
frege132 43490 Lemma for ~ frege133 . Pr...
frege133 43491 If the procedure ` R ` is ...
enrelmap 43492 The set of all possible re...
enrelmapr 43493 The set of all possible re...
enmappw 43494 The set of all mappings fr...
enmappwid 43495 The set of all mappings fr...
rfovd 43496 Value of the operator, ` (...
rfovfvd 43497 Value of the operator, ` (...
rfovfvfvd 43498 Value of the operator, ` (...
rfovcnvf1od 43499 Properties of the operator...
rfovcnvd 43500 Value of the converse of t...
rfovf1od 43501 The value of the operator,...
rfovcnvfvd 43502 Value of the converse of t...
fsovd 43503 Value of the operator, ` (...
fsovrfovd 43504 The operator which gives a...
fsovfvd 43505 Value of the operator, ` (...
fsovfvfvd 43506 Value of the operator, ` (...
fsovfd 43507 The operator, ` ( A O B ) ...
fsovcnvlem 43508 The ` O ` operator, which ...
fsovcnvd 43509 The value of the converse ...
fsovcnvfvd 43510 The value of the converse ...
fsovf1od 43511 The value of ` ( A O B ) `...
dssmapfvd 43512 Value of the duality opera...
dssmapfv2d 43513 Value of the duality opera...
dssmapfv3d 43514 Value of the duality opera...
dssmapnvod 43515 For any base set ` B ` the...
dssmapf1od 43516 For any base set ` B ` the...
dssmap2d 43517 For any base set ` B ` the...
or3or 43518 Decompose disjunction into...
andi3or 43519 Distribute over triple dis...
uneqsn 43520 If a union of classes is e...
brfvimex 43521 If a binary relation holds...
brovmptimex 43522 If a binary relation holds...
brovmptimex1 43523 If a binary relation holds...
brovmptimex2 43524 If a binary relation holds...
brcoffn 43525 Conditions allowing the de...
brcofffn 43526 Conditions allowing the de...
brco2f1o 43527 Conditions allowing the de...
brco3f1o 43528 Conditions allowing the de...
ntrclsbex 43529 If (pseudo-)interior and (...
ntrclsrcomplex 43530 The relative complement of...
neik0imk0p 43531 Kuratowski's K0 axiom impl...
ntrk2imkb 43532 If an interior function is...
ntrkbimka 43533 If the interiors of disjoi...
ntrk0kbimka 43534 If the interiors of disjoi...
clsk3nimkb 43535 If the base set is not emp...
clsk1indlem0 43536 The ansatz closure functio...
clsk1indlem2 43537 The ansatz closure functio...
clsk1indlem3 43538 The ansatz closure functio...
clsk1indlem4 43539 The ansatz closure functio...
clsk1indlem1 43540 The ansatz closure functio...
clsk1independent 43541 For generalized closure fu...
neik0pk1imk0 43542 Kuratowski's K0' and K1 ax...
isotone1 43543 Two different ways to say ...
isotone2 43544 Two different ways to say ...
ntrk1k3eqk13 43545 An interior function is bo...
ntrclsf1o 43546 If (pseudo-)interior and (...
ntrclsnvobr 43547 If (pseudo-)interior and (...
ntrclsiex 43548 If (pseudo-)interior and (...
ntrclskex 43549 If (pseudo-)interior and (...
ntrclsfv1 43550 If (pseudo-)interior and (...
ntrclsfv2 43551 If (pseudo-)interior and (...
ntrclselnel1 43552 If (pseudo-)interior and (...
ntrclselnel2 43553 If (pseudo-)interior and (...
ntrclsfv 43554 The value of the interior ...
ntrclsfveq1 43555 If interior and closure fu...
ntrclsfveq2 43556 If interior and closure fu...
ntrclsfveq 43557 If interior and closure fu...
ntrclsss 43558 If interior and closure fu...
ntrclsneine0lem 43559 If (pseudo-)interior and (...
ntrclsneine0 43560 If (pseudo-)interior and (...
ntrclscls00 43561 If (pseudo-)interior and (...
ntrclsiso 43562 If (pseudo-)interior and (...
ntrclsk2 43563 An interior function is co...
ntrclskb 43564 The interiors of disjoint ...
ntrclsk3 43565 The intersection of interi...
ntrclsk13 43566 The interior of the inters...
ntrclsk4 43567 Idempotence of the interio...
ntrneibex 43568 If (pseudo-)interior and (...
ntrneircomplex 43569 The relative complement of...
ntrneif1o 43570 If (pseudo-)interior and (...
ntrneiiex 43571 If (pseudo-)interior and (...
ntrneinex 43572 If (pseudo-)interior and (...
ntrneicnv 43573 If (pseudo-)interior and (...
ntrneifv1 43574 If (pseudo-)interior and (...
ntrneifv2 43575 If (pseudo-)interior and (...
ntrneiel 43576 If (pseudo-)interior and (...
ntrneifv3 43577 The value of the neighbors...
ntrneineine0lem 43578 If (pseudo-)interior and (...
ntrneineine1lem 43579 If (pseudo-)interior and (...
ntrneifv4 43580 The value of the interior ...
ntrneiel2 43581 Membership in iterated int...
ntrneineine0 43582 If (pseudo-)interior and (...
ntrneineine1 43583 If (pseudo-)interior and (...
ntrneicls00 43584 If (pseudo-)interior and (...
ntrneicls11 43585 If (pseudo-)interior and (...
ntrneiiso 43586 If (pseudo-)interior and (...
ntrneik2 43587 An interior function is co...
ntrneix2 43588 An interior (closure) func...
ntrneikb 43589 The interiors of disjoint ...
ntrneixb 43590 The interiors (closures) o...
ntrneik3 43591 The intersection of interi...
ntrneix3 43592 The closure of the union o...
ntrneik13 43593 The interior of the inters...
ntrneix13 43594 The closure of the union o...
ntrneik4w 43595 Idempotence of the interio...
ntrneik4 43596 Idempotence of the interio...
clsneibex 43597 If (pseudo-)closure and (p...
clsneircomplex 43598 The relative complement of...
clsneif1o 43599 If a (pseudo-)closure func...
clsneicnv 43600 If a (pseudo-)closure func...
clsneikex 43601 If closure and neighborhoo...
clsneinex 43602 If closure and neighborhoo...
clsneiel1 43603 If a (pseudo-)closure func...
clsneiel2 43604 If a (pseudo-)closure func...
clsneifv3 43605 Value of the neighborhoods...
clsneifv4 43606 Value of the closure (inte...
neicvgbex 43607 If (pseudo-)neighborhood a...
neicvgrcomplex 43608 The relative complement of...
neicvgf1o 43609 If neighborhood and conver...
neicvgnvo 43610 If neighborhood and conver...
neicvgnvor 43611 If neighborhood and conver...
neicvgmex 43612 If the neighborhoods and c...
neicvgnex 43613 If the neighborhoods and c...
neicvgel1 43614 A subset being an element ...
neicvgel2 43615 The complement of a subset...
neicvgfv 43616 The value of the neighborh...
ntrrn 43617 The range of the interior ...
ntrf 43618 The interior function of a...
ntrf2 43619 The interior function is a...
ntrelmap 43620 The interior function is a...
clsf2 43621 The closure function is a ...
clselmap 43622 The closure function is a ...
dssmapntrcls 43623 The interior and closure o...
dssmapclsntr 43624 The closure and interior o...
gneispa 43625 Each point ` p ` of the ne...
gneispb 43626 Given a neighborhood ` N `...
gneispace2 43627 The predicate that ` F ` i...
gneispace3 43628 The predicate that ` F ` i...
gneispace 43629 The predicate that ` F ` i...
gneispacef 43630 A generic neighborhood spa...
gneispacef2 43631 A generic neighborhood spa...
gneispacefun 43632 A generic neighborhood spa...
gneispacern 43633 A generic neighborhood spa...
gneispacern2 43634 A generic neighborhood spa...
gneispace0nelrn 43635 A generic neighborhood spa...
gneispace0nelrn2 43636 A generic neighborhood spa...
gneispace0nelrn3 43637 A generic neighborhood spa...
gneispaceel 43638 Every neighborhood of a po...
gneispaceel2 43639 Every neighborhood of a po...
gneispacess 43640 All supersets of a neighbo...
gneispacess2 43641 All supersets of a neighbo...
k0004lem1 43642 Application of ~ ssin to r...
k0004lem2 43643 A mapping with a particula...
k0004lem3 43644 When the value of a mappin...
k0004val 43645 The topological simplex of...
k0004ss1 43646 The topological simplex of...
k0004ss2 43647 The topological simplex of...
k0004ss3 43648 The topological simplex of...
k0004val0 43649 The topological simplex of...
inductionexd 43650 Simple induction example. ...
wwlemuld 43651 Natural deduction form of ...
leeq1d 43652 Specialization of ~ breq1d...
leeq2d 43653 Specialization of ~ breq2d...
absmulrposd 43654 Specialization of absmuld ...
imadisjld 43655 Natural dduction form of o...
wnefimgd 43656 The image of a mapping fro...
fco2d 43657 Natural deduction form of ...
wfximgfd 43658 The value of a function on...
extoimad 43659 If |f(x)| <= C for all x t...
imo72b2lem0 43660 Lemma for ~ imo72b2 . (Co...
suprleubrd 43661 Natural deduction form of ...
imo72b2lem2 43662 Lemma for ~ imo72b2 . (Co...
suprlubrd 43663 Natural deduction form of ...
imo72b2lem1 43664 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 43665 'Less than or equal to' re...
lemuldiv4d 43666 'Less than or equal to' re...
imo72b2 43667 IMO 1972 B2. (14th Intern...
int-addcomd 43668 AdditionCommutativity gene...
int-addassocd 43669 AdditionAssociativity gene...
int-addsimpd 43670 AdditionSimplification gen...
int-mulcomd 43671 MultiplicationCommutativit...
int-mulassocd 43672 MultiplicationAssociativit...
int-mulsimpd 43673 MultiplicationSimplificati...
int-leftdistd 43674 AdditionMultiplicationLeft...
int-rightdistd 43675 AdditionMultiplicationRigh...
int-sqdefd 43676 SquareDefinition generator...
int-mul11d 43677 First MultiplicationOne ge...
int-mul12d 43678 Second MultiplicationOne g...
int-add01d 43679 First AdditionZero generat...
int-add02d 43680 Second AdditionZero genera...
int-sqgeq0d 43681 SquareGEQZero generator ru...
int-eqprincd 43682 PrincipleOfEquality genera...
int-eqtransd 43683 EqualityTransitivity gener...
int-eqmvtd 43684 EquMoveTerm generator rule...
int-eqineqd 43685 EquivalenceImpliesDoubleIn...
int-ineqmvtd 43686 IneqMoveTerm generator rul...
int-ineq1stprincd 43687 FirstPrincipleOfInequality...
int-ineq2ndprincd 43688 SecondPrincipleOfInequalit...
int-ineqtransd 43689 InequalityTransitivity gen...
unitadd 43690 Theorem used in conjunctio...
gsumws3 43691 Valuation of a length 3 wo...
gsumws4 43692 Valuation of a length 4 wo...
amgm2d 43693 Arithmetic-geometric mean ...
amgm3d 43694 Arithmetic-geometric mean ...
amgm4d 43695 Arithmetic-geometric mean ...
spALT 43696 ~ sp can be proven from th...
elnelneqd 43697 Two classes are not equal ...
elnelneq2d 43698 Two classes are not equal ...
rr-spce 43699 Prove an existential. (Co...
rexlimdvaacbv 43700 Unpack a restricted existe...
rexlimddvcbvw 43701 Unpack a restricted existe...
rexlimddvcbv 43702 Unpack a restricted existe...
rr-elrnmpt3d 43703 Elementhood in an image se...
finnzfsuppd 43704 If a function is zero outs...
rr-phpd 43705 Equivalent of ~ php withou...
suceqd 43706 Deduction associated with ...
tfindsd 43707 Deduction associated with ...
mnringvald 43710 Value of the monoid ring f...
mnringnmulrd 43711 Components of a monoid rin...
mnringnmulrdOLD 43712 Obsolete version of ~ mnri...
mnringbased 43713 The base set of a monoid r...
mnringbasedOLD 43714 Obsolete version of ~ mnri...
mnringbaserd 43715 The base set of a monoid r...
mnringelbased 43716 Membership in the base set...
mnringbasefd 43717 Elements of a monoid ring ...
mnringbasefsuppd 43718 Elements of a monoid ring ...
mnringaddgd 43719 The additive operation of ...
mnringaddgdOLD 43720 Obsolete version of ~ mnri...
mnring0gd 43721 The additive identity of a...
mnring0g2d 43722 The additive identity of a...
mnringmulrd 43723 The ring product of a mono...
mnringscad 43724 The scalar ring of a monoi...
mnringscadOLD 43725 Obsolete version of ~ mnri...
mnringvscad 43726 The scalar product of a mo...
mnringvscadOLD 43727 Obsolete version of ~ mnri...
mnringlmodd 43728 Monoid rings are left modu...
mnringmulrvald 43729 Value of multiplication in...
mnringmulrcld 43730 Monoid rings are closed un...
gru0eld 43731 A nonempty Grothendieck un...
grusucd 43732 Grothendieck universes are...
r1rankcld 43733 Any rank of the cumulative...
grur1cld 43734 Grothendieck universes are...
grurankcld 43735 Grothendieck universes are...
grurankrcld 43736 If a Grothendieck universe...
scotteqd 43739 Equality theorem for the S...
scotteq 43740 Closed form of ~ scotteqd ...
nfscott 43741 Bound-variable hypothesis ...
scottabf 43742 Value of the Scott operati...
scottab 43743 Value of the Scott operati...
scottabes 43744 Value of the Scott operati...
scottss 43745 Scott's trick produces a s...
elscottab 43746 An element of the output o...
scottex2 43747 ~ scottex expressed using ...
scotteld 43748 The Scott operation sends ...
scottelrankd 43749 Property of a Scott's tric...
scottrankd 43750 Rank of a nonempty Scott's...
gruscottcld 43751 If a Grothendieck universe...
dfcoll2 43754 Alternate definition of th...
colleq12d 43755 Equality theorem for the c...
colleq1 43756 Equality theorem for the c...
colleq2 43757 Equality theorem for the c...
nfcoll 43758 Bound-variable hypothesis ...
collexd 43759 The output of the collecti...
cpcolld 43760 Property of the collection...
cpcoll2d 43761 ~ cpcolld with an extra ex...
grucollcld 43762 A Grothendieck universe co...
ismnu 43763 The hypothesis of this the...
mnuop123d 43764 Operations of a minimal un...
mnussd 43765 Minimal universes are clos...
mnuss2d 43766 ~ mnussd with arguments pr...
mnu0eld 43767 A nonempty minimal univers...
mnuop23d 43768 Second and third operation...
mnupwd 43769 Minimal universes are clos...
mnusnd 43770 Minimal universes are clos...
mnuprssd 43771 A minimal universe contain...
mnuprss2d 43772 Special case of ~ mnuprssd...
mnuop3d 43773 Third operation of a minim...
mnuprdlem1 43774 Lemma for ~ mnuprd . (Con...
mnuprdlem2 43775 Lemma for ~ mnuprd . (Con...
mnuprdlem3 43776 Lemma for ~ mnuprd . (Con...
mnuprdlem4 43777 Lemma for ~ mnuprd . Gene...
mnuprd 43778 Minimal universes are clos...
mnuunid 43779 Minimal universes are clos...
mnuund 43780 Minimal universes are clos...
mnutrcld 43781 Minimal universes contain ...
mnutrd 43782 Minimal universes are tran...
mnurndlem1 43783 Lemma for ~ mnurnd . (Con...
mnurndlem2 43784 Lemma for ~ mnurnd . Dedu...
mnurnd 43785 Minimal universes contain ...
mnugrud 43786 Minimal universes are Grot...
grumnudlem 43787 Lemma for ~ grumnud . (Co...
grumnud 43788 Grothendieck universes are...
grumnueq 43789 The class of Grothendieck ...
expandan 43790 Expand conjunction to prim...
expandexn 43791 Expand an existential quan...
expandral 43792 Expand a restricted univer...
expandrexn 43793 Expand a restricted existe...
expandrex 43794 Expand a restricted existe...
expanduniss 43795 Expand ` U. A C_ B ` to pr...
ismnuprim 43796 Express the predicate on `...
rr-grothprimbi 43797 Express "every set is cont...
inagrud 43798 Inaccessible levels of the...
inaex 43799 Assuming the Tarski-Grothe...
gruex 43800 Assuming the Tarski-Grothe...
rr-groth 43801 An equivalent of ~ ax-grot...
rr-grothprim 43802 An equivalent of ~ ax-grot...
ismnushort 43803 Express the predicate on `...
dfuniv2 43804 Alternative definition of ...
rr-grothshortbi 43805 Express "every set is cont...
rr-grothshort 43806 A shorter equivalent of ~ ...
nanorxor 43807 'nand' is equivalent to th...
undisjrab 43808 Union of two disjoint rest...
iso0 43809 The empty set is an ` R , ...
ssrecnpr 43810 ` RR ` is a subset of both...
seff 43811 Let set ` S ` be the real ...
sblpnf 43812 The infinity ball in the a...
prmunb2 43813 The primes are unbounded. ...
dvgrat 43814 Ratio test for divergence ...
cvgdvgrat 43815 Ratio test for convergence...
radcnvrat 43816 Let ` L ` be the limit, if...
reldvds 43817 The divides relation is in...
nznngen 43818 All positive integers in t...
nzss 43819 The set of multiples of _m...
nzin 43820 The intersection of the se...
nzprmdif 43821 Subtract one prime's multi...
hashnzfz 43822 Special case of ~ hashdvds...
hashnzfz2 43823 Special case of ~ hashnzfz...
hashnzfzclim 43824 As the upper bound ` K ` o...
caofcan 43825 Transfer a cancellation la...
ofsubid 43826 Function analogue of ~ sub...
ofmul12 43827 Function analogue of ~ mul...
ofdivrec 43828 Function analogue of ~ div...
ofdivcan4 43829 Function analogue of ~ div...
ofdivdiv2 43830 Function analogue of ~ div...
lhe4.4ex1a 43831 Example of the Fundamental...
dvsconst 43832 Derivative of a constant f...
dvsid 43833 Derivative of the identity...
dvsef 43834 Derivative of the exponent...
expgrowthi 43835 Exponential growth and dec...
dvconstbi 43836 The derivative of a functi...
expgrowth 43837 Exponential growth and dec...
bccval 43840 Value of the generalized b...
bcccl 43841 Closure of the generalized...
bcc0 43842 The generalized binomial c...
bccp1k 43843 Generalized binomial coeff...
bccm1k 43844 Generalized binomial coeff...
bccn0 43845 Generalized binomial coeff...
bccn1 43846 Generalized binomial coeff...
bccbc 43847 The binomial coefficient a...
uzmptshftfval 43848 When ` F ` is a maps-to fu...
dvradcnv2 43849 The radius of convergence ...
binomcxplemwb 43850 Lemma for ~ binomcxp . Th...
binomcxplemnn0 43851 Lemma for ~ binomcxp . Wh...
binomcxplemrat 43852 Lemma for ~ binomcxp . As...
binomcxplemfrat 43853 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 43854 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 43855 Lemma for ~ binomcxp . By...
binomcxplemcvg 43856 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 43857 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 43858 Lemma for ~ binomcxp . Wh...
binomcxp 43859 Generalize the binomial th...
pm10.12 43860 Theorem *10.12 in [Whitehe...
pm10.14 43861 Theorem *10.14 in [Whitehe...
pm10.251 43862 Theorem *10.251 in [Whiteh...
pm10.252 43863 Theorem *10.252 in [Whiteh...
pm10.253 43864 Theorem *10.253 in [Whiteh...
albitr 43865 Theorem *10.301 in [Whiteh...
pm10.42 43866 Theorem *10.42 in [Whitehe...
pm10.52 43867 Theorem *10.52 in [Whitehe...
pm10.53 43868 Theorem *10.53 in [Whitehe...
pm10.541 43869 Theorem *10.541 in [Whiteh...
pm10.542 43870 Theorem *10.542 in [Whiteh...
pm10.55 43871 Theorem *10.55 in [Whitehe...
pm10.56 43872 Theorem *10.56 in [Whitehe...
pm10.57 43873 Theorem *10.57 in [Whitehe...
2alanimi 43874 Removes two universal quan...
2al2imi 43875 Removes two universal quan...
pm11.11 43876 Theorem *11.11 in [Whitehe...
pm11.12 43877 Theorem *11.12 in [Whitehe...
19.21vv 43878 Compare Theorem *11.3 in [...
2alim 43879 Theorem *11.32 in [Whitehe...
2albi 43880 Theorem *11.33 in [Whitehe...
2exim 43881 Theorem *11.34 in [Whitehe...
2exbi 43882 Theorem *11.341 in [Whiteh...
spsbce-2 43883 Theorem *11.36 in [Whitehe...
19.33-2 43884 Theorem *11.421 in [Whiteh...
19.36vv 43885 Theorem *11.43 in [Whitehe...
19.31vv 43886 Theorem *11.44 in [Whitehe...
19.37vv 43887 Theorem *11.46 in [Whitehe...
19.28vv 43888 Theorem *11.47 in [Whitehe...
pm11.52 43889 Theorem *11.52 in [Whitehe...
aaanv 43890 Theorem *11.56 in [Whitehe...
pm11.57 43891 Theorem *11.57 in [Whitehe...
pm11.58 43892 Theorem *11.58 in [Whitehe...
pm11.59 43893 Theorem *11.59 in [Whitehe...
pm11.6 43894 Theorem *11.6 in [Whitehea...
pm11.61 43895 Theorem *11.61 in [Whitehe...
pm11.62 43896 Theorem *11.62 in [Whitehe...
pm11.63 43897 Theorem *11.63 in [Whitehe...
pm11.7 43898 Theorem *11.7 in [Whitehea...
pm11.71 43899 Theorem *11.71 in [Whitehe...
sbeqal1 43900 If ` x = y ` always implie...
sbeqal1i 43901 Suppose you know ` x = y `...
sbeqal2i 43902 If ` x = y ` implies ` x =...
axc5c4c711 43903 Proof of a theorem that ca...
axc5c4c711toc5 43904 Rederivation of ~ sp from ...
axc5c4c711toc4 43905 Rederivation of ~ axc4 fro...
axc5c4c711toc7 43906 Rederivation of ~ axc7 fro...
axc5c4c711to11 43907 Rederivation of ~ ax-11 fr...
axc11next 43908 This theorem shows that, g...
pm13.13a 43909 One result of theorem *13....
pm13.13b 43910 Theorem *13.13 in [Whitehe...
pm13.14 43911 Theorem *13.14 in [Whitehe...
pm13.192 43912 Theorem *13.192 in [Whiteh...
pm13.193 43913 Theorem *13.193 in [Whiteh...
pm13.194 43914 Theorem *13.194 in [Whiteh...
pm13.195 43915 Theorem *13.195 in [Whiteh...
pm13.196a 43916 Theorem *13.196 in [Whiteh...
2sbc6g 43917 Theorem *13.21 in [Whitehe...
2sbc5g 43918 Theorem *13.22 in [Whitehe...
iotain 43919 Equivalence between two di...
iotaexeu 43920 The iota class exists. Th...
iotasbc 43921 Definition *14.01 in [Whit...
iotasbc2 43922 Theorem *14.111 in [Whiteh...
pm14.12 43923 Theorem *14.12 in [Whitehe...
pm14.122a 43924 Theorem *14.122 in [Whiteh...
pm14.122b 43925 Theorem *14.122 in [Whiteh...
pm14.122c 43926 Theorem *14.122 in [Whiteh...
pm14.123a 43927 Theorem *14.123 in [Whiteh...
pm14.123b 43928 Theorem *14.123 in [Whiteh...
pm14.123c 43929 Theorem *14.123 in [Whiteh...
pm14.18 43930 Theorem *14.18 in [Whitehe...
iotaequ 43931 Theorem *14.2 in [Whitehea...
iotavalb 43932 Theorem *14.202 in [Whiteh...
iotasbc5 43933 Theorem *14.205 in [Whiteh...
pm14.24 43934 Theorem *14.24 in [Whitehe...
iotavalsb 43935 Theorem *14.242 in [Whiteh...
sbiota1 43936 Theorem *14.25 in [Whitehe...
sbaniota 43937 Theorem *14.26 in [Whitehe...
eubiOLD 43938 Obsolete proof of ~ eubi a...
iotasbcq 43939 Theorem *14.272 in [Whiteh...
elnev 43940 Any set that contains one ...
rusbcALT 43941 A version of Russell's par...
compeq 43942 Equality between two ways ...
compne 43943 The complement of ` A ` is...
compab 43944 Two ways of saying "the co...
conss2 43945 Contrapositive law for sub...
conss1 43946 Contrapositive law for sub...
ralbidar 43947 More general form of ~ ral...
rexbidar 43948 More general form of ~ rex...
dropab1 43949 Theorem to aid use of the ...
dropab2 43950 Theorem to aid use of the ...
ipo0 43951 If the identity relation p...
ifr0 43952 A class that is founded by...
ordpss 43953 ~ ordelpss with an anteced...
fvsb 43954 Explicit substitution of a...
fveqsb 43955 Implicit substitution of a...
xpexb 43956 A Cartesian product exists...
trelpss 43957 An element of a transitive...
addcomgi 43958 Generalization of commutat...
addrval 43968 Value of the operation of ...
subrval 43969 Value of the operation of ...
mulvval 43970 Value of the operation of ...
addrfv 43971 Vector addition at a value...
subrfv 43972 Vector subtraction at a va...
mulvfv 43973 Scalar multiplication at a...
addrfn 43974 Vector addition produces a...
subrfn 43975 Vector subtraction produce...
mulvfn 43976 Scalar multiplication prod...
addrcom 43977 Vector addition is commuta...
idiALT 43981 Placeholder for ~ idi . T...
exbir 43982 Exportation implication al...
3impexpbicom 43983 Version of ~ 3impexp where...
3impexpbicomi 43984 Inference associated with ...
bi1imp 43985 Importation inference simi...
bi2imp 43986 Importation inference simi...
bi3impb 43987 Similar to ~ 3impb with im...
bi3impa 43988 Similar to ~ 3impa with im...
bi23impib 43989 ~ 3impib with the inner im...
bi13impib 43990 ~ 3impib with the outer im...
bi123impib 43991 ~ 3impib with the implicat...
bi13impia 43992 ~ 3impia with the outer im...
bi123impia 43993 ~ 3impia with the implicat...
bi33imp12 43994 ~ 3imp with innermost impl...
bi23imp13 43995 ~ 3imp with middle implica...
bi13imp23 43996 ~ 3imp with outermost impl...
bi13imp2 43997 Similar to ~ 3imp except t...
bi12imp3 43998 Similar to ~ 3imp except a...
bi23imp1 43999 Similar to ~ 3imp except a...
bi123imp0 44000 Similar to ~ 3imp except a...
4animp1 44001 A single hypothesis unific...
4an31 44002 A rearrangement of conjunc...
4an4132 44003 A rearrangement of conjunc...
expcomdg 44004 Biconditional form of ~ ex...
iidn3 44005 ~ idn3 without virtual ded...
ee222 44006 ~ e222 without virtual ded...
ee3bir 44007 Right-biconditional form o...
ee13 44008 ~ e13 without virtual dedu...
ee121 44009 ~ e121 without virtual ded...
ee122 44010 ~ e122 without virtual ded...
ee333 44011 ~ e333 without virtual ded...
ee323 44012 ~ e323 without virtual ded...
3ornot23 44013 If the second and third di...
orbi1r 44014 ~ orbi1 with order of disj...
3orbi123 44015 ~ pm4.39 with a 3-conjunct...
syl5imp 44016 Closed form of ~ syl5 . D...
impexpd 44017 The following User's Proof...
com3rgbi 44018 The following User's Proof...
impexpdcom 44019 The following User's Proof...
ee1111 44020 Non-virtual deduction form...
pm2.43bgbi 44021 Logical equivalence of a 2...
pm2.43cbi 44022 Logical equivalence of a 3...
ee233 44023 Non-virtual deduction form...
imbi13 44024 Join three logical equival...
ee33 44025 Non-virtual deduction form...
con5 44026 Biconditional contrapositi...
con5i 44027 Inference form of ~ con5 ....
exlimexi 44028 Inference similar to Theor...
sb5ALT 44029 Equivalence for substituti...
eexinst01 44030 ~ exinst01 without virtual...
eexinst11 44031 ~ exinst11 without virtual...
vk15.4j 44032 Excercise 4j of Unit 15 of...
notnotrALT 44033 Converse of double negatio...
con3ALT2 44034 Contraposition. Alternate...
ssralv2 44035 Quantification restricted ...
sbc3or 44036 ~ sbcor with a 3-disjuncts...
alrim3con13v 44037 Closed form of ~ alrimi wi...
rspsbc2 44038 ~ rspsbc with two quantify...
sbcoreleleq 44039 Substitution of a setvar v...
tratrb 44040 If a class is transitive a...
ordelordALT 44041 An element of an ordinal c...
sbcim2g 44042 Distribution of class subs...
sbcbi 44043 Implication form of ~ sbcb...
trsbc 44044 Formula-building inference...
truniALT 44045 The union of a class of tr...
onfrALTlem5 44046 Lemma for ~ onfrALT . (Co...
onfrALTlem4 44047 Lemma for ~ onfrALT . (Co...
onfrALTlem3 44048 Lemma for ~ onfrALT . (Co...
ggen31 44049 ~ gen31 without virtual de...
onfrALTlem2 44050 Lemma for ~ onfrALT . (Co...
cbvexsv 44051 A theorem pertaining to th...
onfrALTlem1 44052 Lemma for ~ onfrALT . (Co...
onfrALT 44053 The membership relation is...
19.41rg 44054 Closed form of right-to-le...
opelopab4 44055 Ordered pair membership in...
2pm13.193 44056 ~ pm13.193 for two variabl...
hbntal 44057 A closed form of ~ hbn . ~...
hbimpg 44058 A closed form of ~ hbim . ...
hbalg 44059 Closed form of ~ hbal . D...
hbexg 44060 Closed form of ~ nfex . D...
ax6e2eq 44061 Alternate form of ~ ax6e f...
ax6e2nd 44062 If at least two sets exist...
ax6e2ndeq 44063 "At least two sets exist" ...
2sb5nd 44064 Equivalence for double sub...
2uasbanh 44065 Distribute the unabbreviat...
2uasban 44066 Distribute the unabbreviat...
e2ebind 44067 Absorption of an existenti...
elpwgded 44068 ~ elpwgdedVD in convention...
trelded 44069 Deduction form of ~ trel ....
jaoded 44070 Deduction form of ~ jao . ...
sbtT 44071 A substitution into a theo...
not12an2impnot1 44072 If a double conjunction is...
in1 44075 Inference form of ~ df-vd1...
iin1 44076 ~ in1 without virtual dedu...
dfvd1ir 44077 Inference form of ~ df-vd1...
idn1 44078 Virtual deduction identity...
dfvd1imp 44079 Left-to-right part of defi...
dfvd1impr 44080 Right-to-left part of defi...
dfvd2 44083 Definition of a 2-hypothes...
dfvd2an 44086 Definition of a 2-hypothes...
dfvd2ani 44087 Inference form of ~ dfvd2a...
dfvd2anir 44088 Right-to-left inference fo...
dfvd2i 44089 Inference form of ~ dfvd2 ...
dfvd2ir 44090 Right-to-left inference fo...
dfvd3 44095 Definition of a 3-hypothes...
dfvd3i 44096 Inference form of ~ dfvd3 ...
dfvd3ir 44097 Right-to-left inference fo...
dfvd3an 44098 Definition of a 3-hypothes...
dfvd3ani 44099 Inference form of ~ dfvd3a...
dfvd3anir 44100 Right-to-left inference fo...
vd01 44101 A virtual hypothesis virtu...
vd02 44102 Two virtual hypotheses vir...
vd03 44103 A theorem is virtually inf...
vd12 44104 A virtual deduction with 1...
vd13 44105 A virtual deduction with 1...
vd23 44106 A virtual deduction with 2...
dfvd2imp 44107 The virtual deduction form...
dfvd2impr 44108 A 2-antecedent nested impl...
in2 44109 The virtual deduction intr...
int2 44110 The virtual deduction intr...
iin2 44111 ~ in2 without virtual dedu...
in2an 44112 The virtual deduction intr...
in3 44113 The virtual deduction intr...
iin3 44114 ~ in3 without virtual dedu...
in3an 44115 The virtual deduction intr...
int3 44116 The virtual deduction intr...
idn2 44117 Virtual deduction identity...
iden2 44118 Virtual deduction identity...
idn3 44119 Virtual deduction identity...
gen11 44120 Virtual deduction generali...
gen11nv 44121 Virtual deduction generali...
gen12 44122 Virtual deduction generali...
gen21 44123 Virtual deduction generali...
gen21nv 44124 Virtual deduction form of ...
gen31 44125 Virtual deduction generali...
gen22 44126 Virtual deduction generali...
ggen22 44127 ~ gen22 without virtual de...
exinst 44128 Existential Instantiation....
exinst01 44129 Existential Instantiation....
exinst11 44130 Existential Instantiation....
e1a 44131 A Virtual deduction elimin...
el1 44132 A Virtual deduction elimin...
e1bi 44133 Biconditional form of ~ e1...
e1bir 44134 Right biconditional form o...
e2 44135 A virtual deduction elimin...
e2bi 44136 Biconditional form of ~ e2...
e2bir 44137 Right biconditional form o...
ee223 44138 ~ e223 without virtual ded...
e223 44139 A virtual deduction elimin...
e222 44140 A virtual deduction elimin...
e220 44141 A virtual deduction elimin...
ee220 44142 ~ e220 without virtual ded...
e202 44143 A virtual deduction elimin...
ee202 44144 ~ e202 without virtual ded...
e022 44145 A virtual deduction elimin...
ee022 44146 ~ e022 without virtual ded...
e002 44147 A virtual deduction elimin...
ee002 44148 ~ e002 without virtual ded...
e020 44149 A virtual deduction elimin...
ee020 44150 ~ e020 without virtual ded...
e200 44151 A virtual deduction elimin...
ee200 44152 ~ e200 without virtual ded...
e221 44153 A virtual deduction elimin...
ee221 44154 ~ e221 without virtual ded...
e212 44155 A virtual deduction elimin...
ee212 44156 ~ e212 without virtual ded...
e122 44157 A virtual deduction elimin...
e112 44158 A virtual deduction elimin...
ee112 44159 ~ e112 without virtual ded...
e121 44160 A virtual deduction elimin...
e211 44161 A virtual deduction elimin...
ee211 44162 ~ e211 without virtual ded...
e210 44163 A virtual deduction elimin...
ee210 44164 ~ e210 without virtual ded...
e201 44165 A virtual deduction elimin...
ee201 44166 ~ e201 without virtual ded...
e120 44167 A virtual deduction elimin...
ee120 44168 Virtual deduction rule ~ e...
e021 44169 A virtual deduction elimin...
ee021 44170 ~ e021 without virtual ded...
e012 44171 A virtual deduction elimin...
ee012 44172 ~ e012 without virtual ded...
e102 44173 A virtual deduction elimin...
ee102 44174 ~ e102 without virtual ded...
e22 44175 A virtual deduction elimin...
e22an 44176 Conjunction form of ~ e22 ...
ee22an 44177 ~ e22an without virtual de...
e111 44178 A virtual deduction elimin...
e1111 44179 A virtual deduction elimin...
e110 44180 A virtual deduction elimin...
ee110 44181 ~ e110 without virtual ded...
e101 44182 A virtual deduction elimin...
ee101 44183 ~ e101 without virtual ded...
e011 44184 A virtual deduction elimin...
ee011 44185 ~ e011 without virtual ded...
e100 44186 A virtual deduction elimin...
ee100 44187 ~ e100 without virtual ded...
e010 44188 A virtual deduction elimin...
ee010 44189 ~ e010 without virtual ded...
e001 44190 A virtual deduction elimin...
ee001 44191 ~ e001 without virtual ded...
e11 44192 A virtual deduction elimin...
e11an 44193 Conjunction form of ~ e11 ...
ee11an 44194 ~ e11an without virtual de...
e01 44195 A virtual deduction elimin...
e01an 44196 Conjunction form of ~ e01 ...
ee01an 44197 ~ e01an without virtual de...
e10 44198 A virtual deduction elimin...
e10an 44199 Conjunction form of ~ e10 ...
ee10an 44200 ~ e10an without virtual de...
e02 44201 A virtual deduction elimin...
e02an 44202 Conjunction form of ~ e02 ...
ee02an 44203 ~ e02an without virtual de...
eel021old 44204 ~ el021old without virtual...
el021old 44205 A virtual deduction elimin...
eel132 44206 ~ syl2an with antecedents ...
eel000cT 44207 An elimination deduction. ...
eel0TT 44208 An elimination deduction. ...
eelT00 44209 An elimination deduction. ...
eelTTT 44210 An elimination deduction. ...
eelT11 44211 An elimination deduction. ...
eelT1 44212 Syllogism inference combin...
eelT12 44213 An elimination deduction. ...
eelTT1 44214 An elimination deduction. ...
eelT01 44215 An elimination deduction. ...
eel0T1 44216 An elimination deduction. ...
eel12131 44217 An elimination deduction. ...
eel2131 44218 ~ syl2an with antecedents ...
eel3132 44219 ~ syl2an with antecedents ...
eel0321old 44220 ~ el0321old without virtua...
el0321old 44221 A virtual deduction elimin...
eel2122old 44222 ~ el2122old without virtua...
el2122old 44223 A virtual deduction elimin...
eel0000 44224 Elimination rule similar t...
eel00001 44225 An elimination deduction. ...
eel00000 44226 Elimination rule similar ~...
eel11111 44227 Five-hypothesis eliminatio...
e12 44228 A virtual deduction elimin...
e12an 44229 Conjunction form of ~ e12 ...
el12 44230 Virtual deduction form of ...
e20 44231 A virtual deduction elimin...
e20an 44232 Conjunction form of ~ e20 ...
ee20an 44233 ~ e20an without virtual de...
e21 44234 A virtual deduction elimin...
e21an 44235 Conjunction form of ~ e21 ...
ee21an 44236 ~ e21an without virtual de...
e333 44237 A virtual deduction elimin...
e33 44238 A virtual deduction elimin...
e33an 44239 Conjunction form of ~ e33 ...
ee33an 44240 ~ e33an without virtual de...
e3 44241 Meta-connective form of ~ ...
e3bi 44242 Biconditional form of ~ e3...
e3bir 44243 Right biconditional form o...
e03 44244 A virtual deduction elimin...
ee03 44245 ~ e03 without virtual dedu...
e03an 44246 Conjunction form of ~ e03 ...
ee03an 44247 Conjunction form of ~ ee03...
e30 44248 A virtual deduction elimin...
ee30 44249 ~ e30 without virtual dedu...
e30an 44250 A virtual deduction elimin...
ee30an 44251 Conjunction form of ~ ee30...
e13 44252 A virtual deduction elimin...
e13an 44253 A virtual deduction elimin...
ee13an 44254 ~ e13an without virtual de...
e31 44255 A virtual deduction elimin...
ee31 44256 ~ e31 without virtual dedu...
e31an 44257 A virtual deduction elimin...
ee31an 44258 ~ e31an without virtual de...
e23 44259 A virtual deduction elimin...
e23an 44260 A virtual deduction elimin...
ee23an 44261 ~ e23an without virtual de...
e32 44262 A virtual deduction elimin...
ee32 44263 ~ e32 without virtual dedu...
e32an 44264 A virtual deduction elimin...
ee32an 44265 ~ e33an without virtual de...
e123 44266 A virtual deduction elimin...
ee123 44267 ~ e123 without virtual ded...
el123 44268 A virtual deduction elimin...
e233 44269 A virtual deduction elimin...
e323 44270 A virtual deduction elimin...
e000 44271 A virtual deduction elimin...
e00 44272 Elimination rule identical...
e00an 44273 Elimination rule identical...
eel00cT 44274 An elimination deduction. ...
eelTT 44275 An elimination deduction. ...
e0a 44276 Elimination rule identical...
eelT 44277 An elimination deduction. ...
eel0cT 44278 An elimination deduction. ...
eelT0 44279 An elimination deduction. ...
e0bi 44280 Elimination rule identical...
e0bir 44281 Elimination rule identical...
uun0.1 44282 Convention notation form o...
un0.1 44283 ` T. ` is the constant tru...
uunT1 44284 A deduction unionizing a n...
uunT1p1 44285 A deduction unionizing a n...
uunT21 44286 A deduction unionizing a n...
uun121 44287 A deduction unionizing a n...
uun121p1 44288 A deduction unionizing a n...
uun132 44289 A deduction unionizing a n...
uun132p1 44290 A deduction unionizing a n...
anabss7p1 44291 A deduction unionizing a n...
un10 44292 A unionizing deduction. (...
un01 44293 A unionizing deduction. (...
un2122 44294 A deduction unionizing a n...
uun2131 44295 A deduction unionizing a n...
uun2131p1 44296 A deduction unionizing a n...
uunTT1 44297 A deduction unionizing a n...
uunTT1p1 44298 A deduction unionizing a n...
uunTT1p2 44299 A deduction unionizing a n...
uunT11 44300 A deduction unionizing a n...
uunT11p1 44301 A deduction unionizing a n...
uunT11p2 44302 A deduction unionizing a n...
uunT12 44303 A deduction unionizing a n...
uunT12p1 44304 A deduction unionizing a n...
uunT12p2 44305 A deduction unionizing a n...
uunT12p3 44306 A deduction unionizing a n...
uunT12p4 44307 A deduction unionizing a n...
uunT12p5 44308 A deduction unionizing a n...
uun111 44309 A deduction unionizing a n...
3anidm12p1 44310 A deduction unionizing a n...
3anidm12p2 44311 A deduction unionizing a n...
uun123 44312 A deduction unionizing a n...
uun123p1 44313 A deduction unionizing a n...
uun123p2 44314 A deduction unionizing a n...
uun123p3 44315 A deduction unionizing a n...
uun123p4 44316 A deduction unionizing a n...
uun2221 44317 A deduction unionizing a n...
uun2221p1 44318 A deduction unionizing a n...
uun2221p2 44319 A deduction unionizing a n...
3impdirp1 44320 A deduction unionizing a n...
3impcombi 44321 A 1-hypothesis proposition...
trsspwALT 44322 Virtual deduction proof of...
trsspwALT2 44323 Virtual deduction proof of...
trsspwALT3 44324 Short predicate calculus p...
sspwtr 44325 Virtual deduction proof of...
sspwtrALT 44326 Virtual deduction proof of...
sspwtrALT2 44327 Short predicate calculus p...
pwtrVD 44328 Virtual deduction proof of...
pwtrrVD 44329 Virtual deduction proof of...
suctrALT 44330 The successor of a transit...
snssiALTVD 44331 Virtual deduction proof of...
snssiALT 44332 If a class is an element o...
snsslVD 44333 Virtual deduction proof of...
snssl 44334 If a singleton is a subcla...
snelpwrVD 44335 Virtual deduction proof of...
unipwrVD 44336 Virtual deduction proof of...
unipwr 44337 A class is a subclass of t...
sstrALT2VD 44338 Virtual deduction proof of...
sstrALT2 44339 Virtual deduction proof of...
suctrALT2VD 44340 Virtual deduction proof of...
suctrALT2 44341 Virtual deduction proof of...
elex2VD 44342 Virtual deduction proof of...
elex22VD 44343 Virtual deduction proof of...
eqsbc2VD 44344 Virtual deduction proof of...
zfregs2VD 44345 Virtual deduction proof of...
tpid3gVD 44346 Virtual deduction proof of...
en3lplem1VD 44347 Virtual deduction proof of...
en3lplem2VD 44348 Virtual deduction proof of...
en3lpVD 44349 Virtual deduction proof of...
simplbi2VD 44350 Virtual deduction proof of...
3ornot23VD 44351 Virtual deduction proof of...
orbi1rVD 44352 Virtual deduction proof of...
bitr3VD 44353 Virtual deduction proof of...
3orbi123VD 44354 Virtual deduction proof of...
sbc3orgVD 44355 Virtual deduction proof of...
19.21a3con13vVD 44356 Virtual deduction proof of...
exbirVD 44357 Virtual deduction proof of...
exbiriVD 44358 Virtual deduction proof of...
rspsbc2VD 44359 Virtual deduction proof of...
3impexpVD 44360 Virtual deduction proof of...
3impexpbicomVD 44361 Virtual deduction proof of...
3impexpbicomiVD 44362 Virtual deduction proof of...
sbcoreleleqVD 44363 Virtual deduction proof of...
hbra2VD 44364 Virtual deduction proof of...
tratrbVD 44365 Virtual deduction proof of...
al2imVD 44366 Virtual deduction proof of...
syl5impVD 44367 Virtual deduction proof of...
idiVD 44368 Virtual deduction proof of...
ancomstVD 44369 Closed form of ~ ancoms . ...
ssralv2VD 44370 Quantification restricted ...
ordelordALTVD 44371 An element of an ordinal c...
equncomVD 44372 If a class equals the unio...
equncomiVD 44373 Inference form of ~ equnco...
sucidALTVD 44374 A set belongs to its succe...
sucidALT 44375 A set belongs to its succe...
sucidVD 44376 A set belongs to its succe...
imbi12VD 44377 Implication form of ~ imbi...
imbi13VD 44378 Join three logical equival...
sbcim2gVD 44379 Distribution of class subs...
sbcbiVD 44380 Implication form of ~ sbcb...
trsbcVD 44381 Formula-building inference...
truniALTVD 44382 The union of a class of tr...
ee33VD 44383 Non-virtual deduction form...
trintALTVD 44384 The intersection of a clas...
trintALT 44385 The intersection of a clas...
undif3VD 44386 The first equality of Exer...
sbcssgVD 44387 Virtual deduction proof of...
csbingVD 44388 Virtual deduction proof of...
onfrALTlem5VD 44389 Virtual deduction proof of...
onfrALTlem4VD 44390 Virtual deduction proof of...
onfrALTlem3VD 44391 Virtual deduction proof of...
simplbi2comtVD 44392 Virtual deduction proof of...
onfrALTlem2VD 44393 Virtual deduction proof of...
onfrALTlem1VD 44394 Virtual deduction proof of...
onfrALTVD 44395 Virtual deduction proof of...
csbeq2gVD 44396 Virtual deduction proof of...
csbsngVD 44397 Virtual deduction proof of...
csbxpgVD 44398 Virtual deduction proof of...
csbresgVD 44399 Virtual deduction proof of...
csbrngVD 44400 Virtual deduction proof of...
csbima12gALTVD 44401 Virtual deduction proof of...
csbunigVD 44402 Virtual deduction proof of...
csbfv12gALTVD 44403 Virtual deduction proof of...
con5VD 44404 Virtual deduction proof of...
relopabVD 44405 Virtual deduction proof of...
19.41rgVD 44406 Virtual deduction proof of...
2pm13.193VD 44407 Virtual deduction proof of...
hbimpgVD 44408 Virtual deduction proof of...
hbalgVD 44409 Virtual deduction proof of...
hbexgVD 44410 Virtual deduction proof of...
ax6e2eqVD 44411 The following User's Proof...
ax6e2ndVD 44412 The following User's Proof...
ax6e2ndeqVD 44413 The following User's Proof...
2sb5ndVD 44414 The following User's Proof...
2uasbanhVD 44415 The following User's Proof...
e2ebindVD 44416 The following User's Proof...
sb5ALTVD 44417 The following User's Proof...
vk15.4jVD 44418 The following User's Proof...
notnotrALTVD 44419 The following User's Proof...
con3ALTVD 44420 The following User's Proof...
elpwgdedVD 44421 Membership in a power clas...
sspwimp 44422 If a class is a subclass o...
sspwimpVD 44423 The following User's Proof...
sspwimpcf 44424 If a class is a subclass o...
sspwimpcfVD 44425 The following User's Proof...
suctrALTcf 44426 The sucessor of a transiti...
suctrALTcfVD 44427 The following User's Proof...
suctrALT3 44428 The successor of a transit...
sspwimpALT 44429 If a class is a subclass o...
unisnALT 44430 A set equals the union of ...
notnotrALT2 44431 Converse of double negatio...
sspwimpALT2 44432 If a class is a subclass o...
e2ebindALT 44433 Absorption of an existenti...
ax6e2ndALT 44434 If at least two sets exist...
ax6e2ndeqALT 44435 "At least two sets exist" ...
2sb5ndALT 44436 Equivalence for double sub...
chordthmALT 44437 The intersecting chords th...
isosctrlem1ALT 44438 Lemma for ~ isosctr . Thi...
iunconnlem2 44439 The indexed union of conne...
iunconnALT 44440 The indexed union of conne...
sineq0ALT 44441 A complex number whose sin...
evth2f 44442 A version of ~ evth2 using...
elunif 44443 A version of ~ eluni using...
rzalf 44444 A version of ~ rzal using ...
fvelrnbf 44445 A version of ~ fvelrnb usi...
rfcnpre1 44446 If F is a continuous funct...
ubelsupr 44447 If U belongs to A and U is...
fsumcnf 44448 A finite sum of functions ...
mulltgt0 44449 The product of a negative ...
rspcegf 44450 A version of ~ rspcev usin...
rabexgf 44451 A version of ~ rabexg usin...
fcnre 44452 A function continuous with...
sumsnd 44453 A sum of a singleton is th...
evthf 44454 A version of ~ evth using ...
cnfex 44455 The class of continuous fu...
fnchoice 44456 For a finite set, a choice...
refsumcn 44457 A finite sum of continuous...
rfcnpre2 44458 If ` F ` is a continuous f...
cncmpmax 44459 When the hypothesis for th...
rfcnpre3 44460 If F is a continuous funct...
rfcnpre4 44461 If F is a continuous funct...
sumpair 44462 Sum of two distinct comple...
rfcnnnub 44463 Given a real continuous fu...
refsum2cnlem1 44464 This is the core Lemma for...
refsum2cn 44465 The sum of two continuus r...
adantlllr 44466 Deduction adding a conjunc...
3adantlr3 44467 Deduction adding a conjunc...
3adantll2 44468 Deduction adding a conjunc...
3adantll3 44469 Deduction adding a conjunc...
ssnel 44470 If not element of a set, t...
sncldre 44471 A singleton is closed w.r....
n0p 44472 A polynomial with a nonzer...
pm2.65ni 44473 Inference rule for proof b...
pwssfi 44474 Every element of the power...
iuneq2df 44475 Equality deduction for ind...
nnfoctb 44476 There exists a mapping fro...
ssinss1d 44477 Intersection preserves sub...
elpwinss 44478 An element of the powerset...
unidmex 44479 If ` F ` is a set, then ` ...
ndisj2 44480 A non-disjointness conditi...
zenom 44481 The set of integer numbers...
uzwo4 44482 Well-ordering principle: a...
unisn0 44483 The union of the singleton...
ssin0 44484 If two classes are disjoin...
inabs3 44485 Absorption law for interse...
pwpwuni 44486 Relationship between power...
disjiun2 44487 In a disjoint collection, ...
0pwfi 44488 The empty set is in any po...
ssinss2d 44489 Intersection preserves sub...
zct 44490 The set of integer numbers...
pwfin0 44491 A finite set always belong...
uzct 44492 An upper integer set is co...
iunxsnf 44493 A singleton index picks ou...
fiiuncl 44494 If a set is closed under t...
iunp1 44495 The addition of the next s...
fiunicl 44496 If a set is closed under t...
ixpeq2d 44497 Equality theorem for infin...
disjxp1 44498 The sets of a cartesian pr...
disjsnxp 44499 The sets in the cartesian ...
eliind 44500 Membership in indexed inte...
rspcef 44501 Restricted existential spe...
inn0f 44502 A nonempty intersection. ...
ixpssmapc 44503 An infinite Cartesian prod...
inn0 44504 A nonempty intersection. ...
elintd 44505 Membership in class inters...
ssdf 44506 A sufficient condition for...
brneqtrd 44507 Substitution of equal clas...
ssnct 44508 A set containing an uncoun...
ssuniint 44509 Sufficient condition for b...
elintdv 44510 Membership in class inters...
ssd 44511 A sufficient condition for...
ralimralim 44512 Introducing any antecedent...
snelmap 44513 Membership of the element ...
xrnmnfpnf 44514 An extended real that is n...
nelrnmpt 44515 Non-membership in the rang...
iuneq1i 44516 Equality theorem for index...
nssrex 44517 Negation of subclass relat...
ssinc 44518 Inclusion relation for a m...
ssdec 44519 Inclusion relation for a m...
elixpconstg 44520 Membership in an infinite ...
iineq1d 44521 Equality theorem for index...
metpsmet 44522 A metric is a pseudometric...
ixpssixp 44523 Subclass theorem for infin...
ballss3 44524 A sufficient condition for...
iunincfi 44525 Given a sequence of increa...
nsstr 44526 If it's not a subclass, it...
rexanuz3 44527 Combine two different uppe...
cbvmpo2 44528 Rule to change the second ...
cbvmpo1 44529 Rule to change the first b...
eliuniin 44530 Indexed union of indexed i...
ssabf 44531 Subclass of a class abstra...
pssnssi 44532 A proper subclass does not...
rabidim2 44533 Membership in a restricted...
eluni2f 44534 Membership in class union....
eliin2f 44535 Membership in indexed inte...
nssd 44536 Negation of subclass relat...
iineq12dv 44537 Equality deduction for ind...
supxrcld 44538 The supremum of an arbitra...
elrestd 44539 A sufficient condition for...
eliuniincex 44540 Counterexample to show tha...
eliincex 44541 Counterexample to show tha...
eliinid 44542 Membership in an indexed i...
abssf 44543 Class abstraction in a sub...
supxrubd 44544 A member of a set of exten...
ssrabf 44545 Subclass of a restricted c...
ssrabdf 44546 Subclass of a restricted c...
eliin2 44547 Membership in indexed inte...
ssrab2f 44548 Subclass relation for a re...
restuni3 44549 The underlying set of a su...
rabssf 44550 Restricted class abstracti...
eliuniin2 44551 Indexed union of indexed i...
restuni4 44552 The underlying set of a su...
restuni6 44553 The underlying set of a su...
restuni5 44554 The underlying set of a su...
unirestss 44555 The union of an elementwis...
iniin1 44556 Indexed intersection of in...
iniin2 44557 Indexed intersection of in...
cbvrabv2 44558 A more general version of ...
cbvrabv2w 44559 A more general version of ...
iinssiin 44560 Subset implication for an ...
eliind2 44561 Membership in indexed inte...
iinssd 44562 Subset implication for an ...
rabbida2 44563 Equivalent wff's yield equ...
iinexd 44564 The existence of an indexe...
rabexf 44565 Separation Scheme in terms...
rabbida3 44566 Equivalent wff's yield equ...
r19.36vf 44567 Restricted quantifier vers...
raleqd 44568 Equality deduction for res...
iinssf 44569 Subset implication for an ...
iinssdf 44570 Subset implication for an ...
resabs2i 44571 Absorption law for restric...
ssdf2 44572 A sufficient condition for...
rabssd 44573 Restricted class abstracti...
rexnegd 44574 Minus a real number. (Con...
rexlimd3 44575 * Inference from Theorem 1...
resabs1i 44576 Absorption law for restric...
nel1nelin 44577 Membership in an intersect...
nel2nelin 44578 Membership in an intersect...
nel1nelini 44579 Membership in an intersect...
nel2nelini 44580 Membership in an intersect...
eliunid 44581 Membership in indexed unio...
reximdd 44582 Deduction from Theorem 19....
unfid 44583 The union of two finite se...
inopnd 44584 The intersection of two op...
ss2rabdf 44585 Deduction of restricted ab...
restopn3 44586 If ` A ` is open, then ` A...
restopnssd 44587 A topology restricted to a...
restsubel 44588 A subset belongs in the sp...
toprestsubel 44589 A subset is open in the to...
rabidd 44590 An "identity" law of concr...
iunssdf 44591 Subset theorem for an inde...
iinss2d 44592 Subset implication for an ...
r19.3rzf 44593 Restricted quantification ...
r19.28zf 44594 Restricted quantifier vers...
iindif2f 44595 Indexed intersection of cl...
ralfal 44596 Two ways of expressing emp...
archd 44597 Archimedean property of re...
eliund 44598 Membership in indexed unio...
nimnbi 44599 If an implication is false...
nimnbi2 44600 If an implication is false...
notbicom 44601 Commutative law for the ne...
rexeqif 44602 Equality inference for res...
rspced 44603 Restricted existential spe...
feq1dd 44604 Equality deduction for fun...
fnresdmss 44605 A function does not change...
fmptsnxp 44606 Maps-to notation and Carte...
fvmpt2bd 44607 Value of a function given ...
rnmptfi 44608 The range of a function wi...
fresin2 44609 Restriction of a function ...
ffi 44610 A function with finite dom...
suprnmpt 44611 An explicit bound for the ...
rnffi 44612 The range of a function wi...
mptelpm 44613 A function in maps-to nota...
rnmptpr 44614 Range of a function define...
resmpti 44615 Restriction of the mapping...
founiiun 44616 Union expressed as an inde...
rnresun 44617 Distribution law for range...
elrnmptf 44618 The range of a function in...
rnmptssrn 44619 Inclusion relation for two...
disjf1 44620 A 1 to 1 mapping built fro...
rnsnf 44621 The range of a function wh...
wessf1ornlem 44622 Given a function ` F ` on ...
wessf1orn 44623 Given a function ` F ` on ...
nelrnres 44624 If ` A ` is not in the ran...
disjrnmpt2 44625 Disjointness of the range ...
elrnmpt1sf 44626 Elementhood in an image se...
founiiun0 44627 Union expressed as an inde...
disjf1o 44628 A bijection built from dis...
disjinfi 44629 Only a finite number of di...
fvovco 44630 Value of the composition o...
ssnnf1octb 44631 There exists a bijection b...
nnf1oxpnn 44632 There is a bijection betwe...
rnmptssd 44633 The range of a function gi...
projf1o 44634 A biijection from a set to...
fvmap 44635 Function value for a membe...
fvixp2 44636 Projection of a factor of ...
choicefi 44637 For a finite set, a choice...
mpct 44638 The exponentiation of a co...
cnmetcoval 44639 Value of the distance func...
fcomptss 44640 Express composition of two...
elmapsnd 44641 Membership in a set expone...
mapss2 44642 Subset inheritance for set...
fsneq 44643 Equality condition for two...
difmap 44644 Difference of two sets exp...
unirnmap 44645 Given a subset of a set ex...
inmap 44646 Intersection of two sets e...
fcoss 44647 Composition of two mapping...
fsneqrn 44648 Equality condition for two...
difmapsn 44649 Difference of two sets exp...
mapssbi 44650 Subset inheritance for set...
unirnmapsn 44651 Equality theorem for a sub...
iunmapss 44652 The indexed union of set e...
ssmapsn 44653 A subset ` C ` of a set ex...
iunmapsn 44654 The indexed union of set e...
absfico 44655 Mapping domain and codomai...
icof 44656 The set of left-closed rig...
elpmrn 44657 The range of a partial fun...
imaexi 44658 The image of a set is a se...
axccdom 44659 Relax the constraint on ax...
dmmptdff 44660 The domain of the mapping ...
dmmptdf 44661 The domain of the mapping ...
elpmi2 44662 The domain of a partial fu...
dmrelrnrel 44663 A relation preserving func...
fvcod 44664 Value of a function compos...
elrnmpoid 44665 Membership in the range of...
axccd 44666 An alternative version of ...
axccd2 44667 An alternative version of ...
feqresmptf 44668 Express a restricted funct...
dmmptssf 44669 The domain of a mapping is...
dmmptdf2 44670 The domain of the mapping ...
dmuz 44671 Domain of the upper intege...
fmptd2f 44672 Domain and codomain of the...
mpteq1df 44673 An equality theorem for th...
mpteq1dfOLD 44674 Obsolete version of ~ mpte...
mptexf 44675 If the domain of a functio...
fvmpt4 44676 Value of a function given ...
fmptf 44677 Functionality of the mappi...
resimass 44678 The image of a restriction...
mptssid 44679 The mapping operation expr...
mptfnd 44680 The maps-to notation defin...
mpteq12daOLD 44681 Obsolete version of ~ mpte...
rnmptlb 44682 Boundness below of the ran...
rnmptbddlem 44683 Boundness of the range of ...
rnmptbdd 44684 Boundness of the range of ...
funimaeq 44685 Membership relation for th...
rnmptssf 44686 The range of a function gi...
rnmptbd2lem 44687 Boundness below of the ran...
rnmptbd2 44688 Boundness below of the ran...
infnsuprnmpt 44689 The indexed infimum of rea...
suprclrnmpt 44690 Closure of the indexed sup...
suprubrnmpt2 44691 A member of a nonempty ind...
suprubrnmpt 44692 A member of a nonempty ind...
rnmptssdf 44693 The range of a function gi...
rnmptbdlem 44694 Boundness above of the ran...
rnmptbd 44695 Boundness above of the ran...
rnmptss2 44696 The range of a function gi...
elmptima 44697 The image of a function in...
ralrnmpt3 44698 A restricted quantifier ov...
fvelima2 44699 Function value in an image...
rnmptssbi 44700 The range of a function gi...
imass2d 44701 Subset theorem for image. ...
imassmpt 44702 Membership relation for th...
fpmd 44703 A total function is a part...
fconst7 44704 An alternative way to expr...
fnmptif 44705 Functionality and domain o...
dmmptif 44706 Domain of the mapping oper...
mpteq2dfa 44707 Slightly more general equa...
dmmpt1 44708 The domain of the mapping ...
fmptff 44709 Functionality of the mappi...
fvmptelcdmf 44710 The value of a function at...
fmptdff 44711 A version of ~ fmptd using...
fvmpt2df 44712 Deduction version of ~ fvm...
rn1st 44713 The range of a function wi...
rnmptssff 44714 The range of a function gi...
rnmptssdff 44715 The range of a function gi...
fvmpt4d 44716 Value of a function given ...
sub2times 44717 Subtracting from a number,...
nnxrd 44718 A natural number is an ext...
nnxr 44719 A natural number is an ext...
abssubrp 44720 The distance of two distin...
elfzfzo 44721 Relationship between membe...
oddfl 44722 Odd number representation ...
abscosbd 44723 Bound for the absolute val...
mul13d 44724 Commutative/associative la...
negpilt0 44725 Negative ` _pi ` is negati...
dstregt0 44726 A complex number ` A ` tha...
subadd4b 44727 Rearrangement of 4 terms i...
xrlttri5d 44728 Not equal and not larger i...
neglt 44729 The negative of a positive...
zltlesub 44730 If an integer ` N ` is les...
divlt0gt0d 44731 The ratio of a negative nu...
subsub23d 44732 Swap subtrahend and result...
2timesgt 44733 Double of a positive real ...
reopn 44734 The reals are open with re...
sub31 44735 Swap the first and third t...
nnne1ge2 44736 A positive integer which i...
lefldiveq 44737 A closed enough, smaller r...
negsubdi3d 44738 Distribution of negative o...
ltdiv2dd 44739 Division of a positive num...
abssinbd 44740 Bound for the absolute val...
halffl 44741 Floor of ` ( 1 / 2 ) ` . ...
monoords 44742 Ordering relation for a st...
hashssle 44743 The size of a subset of a ...
lttri5d 44744 Not equal and not larger i...
fzisoeu 44745 A finite ordered set has a...
lt3addmuld 44746 If three real numbers are ...
absnpncan2d 44747 Triangular inequality, com...
fperiodmullem 44748 A function with period ` T...
fperiodmul 44749 A function with period T i...
upbdrech 44750 Choice of an upper bound f...
lt4addmuld 44751 If four real numbers are l...
absnpncan3d 44752 Triangular inequality, com...
upbdrech2 44753 Choice of an upper bound f...
ssfiunibd 44754 A finite union of bounded ...
fzdifsuc2 44755 Remove a successor from th...
fzsscn 44756 A finite sequence of integ...
divcan8d 44757 A cancellation law for div...
dmmcand 44758 Cancellation law for divis...
fzssre 44759 A finite sequence of integ...
bccld 44760 A binomial coefficient, in...
leadd12dd 44761 Addition to both sides of ...
fzssnn0 44762 A finite set of sequential...
xreqle 44763 Equality implies 'less tha...
xaddlidd 44764 ` 0 ` is a left identity f...
xadd0ge 44765 A number is less than or e...
elfzolem1 44766 A member in a half-open in...
xrgtned 44767 'Greater than' implies not...
xrleneltd 44768 'Less than or equal to' an...
xaddcomd 44769 The extended real addition...
supxrre3 44770 The supremum of a nonempty...
uzfissfz 44771 For any finite subset of t...
xleadd2d 44772 Addition of extended reals...
suprltrp 44773 The supremum of a nonempty...
xleadd1d 44774 Addition of extended reals...
xreqled 44775 Equality implies 'less tha...
xrgepnfd 44776 An extended real greater t...
xrge0nemnfd 44777 A nonnegative extended rea...
supxrgere 44778 If a real number can be ap...
iuneqfzuzlem 44779 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 44780 If two unions indexed by u...
xle2addd 44781 Adding both side of two in...
supxrgelem 44782 If an extended real number...
supxrge 44783 If an extended real number...
suplesup 44784 If any element of ` A ` ca...
infxrglb 44785 The infimum of a set of ex...
xadd0ge2 44786 A number is less than or e...
nepnfltpnf 44787 An extended real that is n...
ltadd12dd 44788 Addition to both sides of ...
nemnftgtmnft 44789 An extended real that is n...
xrgtso 44790 'Greater than' is a strict...
rpex 44791 The positive reals form a ...
xrge0ge0 44792 A nonnegative extended rea...
xrssre 44793 A subset of extended reals...
ssuzfz 44794 A finite subset of the upp...
absfun 44795 The absolute value is a fu...
infrpge 44796 The infimum of a nonempty,...
xrlexaddrp 44797 If an extended real number...
supsubc 44798 The supremum function dist...
xralrple2 44799 Show that ` A ` is less th...
nnuzdisj 44800 The first ` N ` elements o...
ltdivgt1 44801 Divsion by a number greate...
xrltned 44802 'Less than' implies not eq...
nnsplit 44803 Express the set of positiv...
divdiv3d 44804 Division into a fraction. ...
abslt2sqd 44805 Comparison of the square o...
qenom 44806 The set of rational number...
qct 44807 The set of rational number...
xrltnled 44808 'Less than' in terms of 'l...
lenlteq 44809 'less than or equal to' bu...
xrred 44810 An extended real that is n...
rr2sscn2 44811 The cartesian square of ` ...
infxr 44812 The infimum of a set of ex...
infxrunb2 44813 The infimum of an unbounde...
infxrbnd2 44814 The infimum of a bounded-b...
infleinflem1 44815 Lemma for ~ infleinf , cas...
infleinflem2 44816 Lemma for ~ infleinf , whe...
infleinf 44817 If any element of ` B ` ca...
xralrple4 44818 Show that ` A ` is less th...
xralrple3 44819 Show that ` A ` is less th...
eluzelzd 44820 A member of an upper set o...
suplesup2 44821 If any element of ` A ` is...
recnnltrp 44822 ` N ` is a natural number ...
nnn0 44823 The set of positive intege...
fzct 44824 A finite set of sequential...
rpgtrecnn 44825 Any positive real number i...
fzossuz 44826 A half-open integer interv...
infxrrefi 44827 The real and extended real...
xrralrecnnle 44828 Show that ` A ` is less th...
fzoct 44829 A finite set of sequential...
frexr 44830 A function taking real val...
nnrecrp 44831 The reciprocal of a positi...
reclt0d 44832 The reciprocal of a negati...
lt0neg1dd 44833 If a number is negative, i...
infxrcld 44834 The infimum of an arbitrar...
xrralrecnnge 44835 Show that ` A ` is less th...
reclt0 44836 The reciprocal of a negati...
ltmulneg 44837 Multiplying by a negative ...
allbutfi 44838 For all but finitely many....
ltdiv23neg 44839 Swap denominator with othe...
xreqnltd 44840 A consequence of trichotom...
mnfnre2 44841 Minus infinity is not a re...
zssxr 44842 The integers are a subset ...
fisupclrnmpt 44843 A nonempty finite indexed ...
supxrunb3 44844 The supremum of an unbound...
elfzod 44845 Membership in a half-open ...
fimaxre4 44846 A nonempty finite set of r...
ren0 44847 The set of reals is nonemp...
eluzelz2 44848 A member of an upper set o...
resabs2d 44849 Absorption law for restric...
uzid2 44850 Membership of the least me...
supxrleubrnmpt 44851 The supremum of a nonempty...
uzssre2 44852 An upper set of integers i...
uzssd 44853 Subset relationship for tw...
eluzd 44854 Membership in an upper set...
infxrlbrnmpt2 44855 A member of a nonempty ind...
xrre4 44856 An extended real is real i...
uz0 44857 The upper integers functio...
eluzelz2d 44858 A member of an upper set o...
infleinf2 44859 If any element in ` B ` is...
unb2ltle 44860 "Unbounded below" expresse...
uzidd2 44861 Membership of the least me...
uzssd2 44862 Subset relationship for tw...
rexabslelem 44863 An indexed set of absolute...
rexabsle 44864 An indexed set of absolute...
allbutfiinf 44865 Given a "for all but finit...
supxrrernmpt 44866 The real and extended real...
suprleubrnmpt 44867 The supremum of a nonempty...
infrnmptle 44868 An indexed infimum of exte...
infxrunb3 44869 The infimum of an unbounde...
uzn0d 44870 The upper integers are all...
uzssd3 44871 Subset relationship for tw...
rexabsle2 44872 An indexed set of absolute...
infxrunb3rnmpt 44873 The infimum of an unbounde...
supxrre3rnmpt 44874 The indexed supremum of a ...
uzublem 44875 A set of reals, indexed by...
uzub 44876 A set of reals, indexed by...
ssrexr 44877 A subset of the reals is a...
supxrmnf2 44878 Removing minus infinity fr...
supxrcli 44879 The supremum of an arbitra...
uzid3 44880 Membership of the least me...
infxrlesupxr 44881 The supremum of a nonempty...
xnegeqd 44882 Equality of two extended n...
xnegrecl 44883 The extended real negative...
xnegnegi 44884 Extended real version of ~...
xnegeqi 44885 Equality of two extended n...
nfxnegd 44886 Deduction version of ~ nfx...
xnegnegd 44887 Extended real version of ~...
uzred 44888 An upper integer is a real...
xnegcli 44889 Closure of extended real n...
supminfrnmpt 44890 The indexed supremum of a ...
infxrpnf 44891 Adding plus infinity to a ...
infxrrnmptcl 44892 The infimum of an arbitrar...
leneg2d 44893 Negative of one side of 'l...
supxrltinfxr 44894 The supremum of the empty ...
max1d 44895 A number is less than or e...
supxrleubrnmptf 44896 The supremum of a nonempty...
nleltd 44897 'Not less than or equal to...
zxrd 44898 An integer is an extended ...
infxrgelbrnmpt 44899 The infimum of an indexed ...
rphalfltd 44900 Half of a positive real is...
uzssz2 44901 An upper set of integers i...
leneg3d 44902 Negative of one side of 'l...
max2d 44903 A number is less than or e...
uzn0bi 44904 The upper integers functio...
xnegrecl2 44905 If the extended real negat...
nfxneg 44906 Bound-variable hypothesis ...
uzxrd 44907 An upper integer is an ext...
infxrpnf2 44908 Removing plus infinity fro...
supminfxr 44909 The extended real suprema ...
infrpgernmpt 44910 The infimum of a nonempty,...
xnegre 44911 An extended real is real i...
xnegrecl2d 44912 If the extended real negat...
uzxr 44913 An upper integer is an ext...
supminfxr2 44914 The extended real suprema ...
xnegred 44915 An extended real is real i...
supminfxrrnmpt 44916 The indexed supremum of a ...
min1d 44917 The minimum of two numbers...
min2d 44918 The minimum of two numbers...
pnfged 44919 Plus infinity is an upper ...
xrnpnfmnf 44920 An extended real that is n...
uzsscn 44921 An upper set of integers i...
absimnre 44922 The absolute value of the ...
uzsscn2 44923 An upper set of integers i...
xrtgcntopre 44924 The standard topologies on...
absimlere 44925 The absolute value of the ...
rpssxr 44926 The positive reals are a s...
monoordxrv 44927 Ordering relation for a mo...
monoordxr 44928 Ordering relation for a mo...
monoord2xrv 44929 Ordering relation for a mo...
monoord2xr 44930 Ordering relation for a mo...
xrpnf 44931 An extended real is plus i...
xlenegcon1 44932 Extended real version of ~...
xlenegcon2 44933 Extended real version of ~...
pimxrneun 44934 The preimage of a set of e...
caucvgbf 44935 A function is convergent i...
cvgcau 44936 A convergent function is C...
cvgcaule 44937 A convergent function is C...
rexanuz2nf 44938 A simple counterexample re...
gtnelioc 44939 A real number larger than ...
ioossioc 44940 An open interval is a subs...
ioondisj2 44941 A condition for two open i...
ioondisj1 44942 A condition for two open i...
ioogtlb 44943 An element of a closed int...
evthiccabs 44944 Extreme Value Theorem on y...
ltnelicc 44945 A real number smaller than...
eliood 44946 Membership in an open real...
iooabslt 44947 An upper bound for the dis...
gtnelicc 44948 A real number greater than...
iooinlbub 44949 An open interval has empty...
iocgtlb 44950 An element of a left-open ...
iocleub 44951 An element of a left-open ...
eliccd 44952 Membership in a closed rea...
eliccre 44953 A member of a closed inter...
eliooshift 44954 Element of an open interva...
eliocd 44955 Membership in a left-open ...
icoltub 44956 An element of a left-close...
eliocre 44957 A member of a left-open ri...
iooltub 44958 An element of an open inte...
ioontr 44959 The interior of an interva...
snunioo1 44960 The closure of one end of ...
lbioc 44961 A left-open right-closed i...
ioomidp 44962 The midpoint is an element...
iccdifioo 44963 If the open inverval is re...
iccdifprioo 44964 An open interval is the cl...
ioossioobi 44965 Biconditional form of ~ io...
iccshift 44966 A closed interval shifted ...
iccsuble 44967 An upper bound to the dist...
iocopn 44968 A left-open right-closed i...
eliccelioc 44969 Membership in a closed int...
iooshift 44970 An open interval shifted b...
iccintsng 44971 Intersection of two adiace...
icoiccdif 44972 Left-closed right-open int...
icoopn 44973 A left-closed right-open i...
icoub 44974 A left-closed, right-open ...
eliccxrd 44975 Membership in a closed rea...
pnfel0pnf 44976 ` +oo ` is a nonnegative e...
eliccnelico 44977 An element of a closed int...
eliccelicod 44978 A member of a closed inter...
ge0xrre 44979 A nonnegative extended rea...
ge0lere 44980 A nonnegative extended Rea...
elicores 44981 Membership in a left-close...
inficc 44982 The infimum of a nonempty ...
qinioo 44983 The rational numbers are d...
lenelioc 44984 A real number smaller than...
ioonct 44985 A nonempty open interval i...
xrgtnelicc 44986 A real number greater than...
iccdificc 44987 The difference of two clos...
iocnct 44988 A nonempty left-open, righ...
iccnct 44989 A closed interval, with mo...
iooiinicc 44990 A closed interval expresse...
iccgelbd 44991 An element of a closed int...
iooltubd 44992 An element of an open inte...
icoltubd 44993 An element of a left-close...
qelioo 44994 The rational numbers are d...
tgqioo2 44995 Every open set of reals is...
iccleubd 44996 An element of a closed int...
elioored 44997 A member of an open interv...
ioogtlbd 44998 An element of a closed int...
ioofun 44999 ` (,) ` is a function. (C...
icomnfinre 45000 A left-closed, right-open,...
sqrlearg 45001 The square compared with i...
ressiocsup 45002 If the supremum belongs to...
ressioosup 45003 If the supremum does not b...
iooiinioc 45004 A left-open, right-closed ...
ressiooinf 45005 If the infimum does not be...
icogelbd 45006 An element of a left-close...
iocleubd 45007 An element of a left-open ...
uzinico 45008 An upper interval of integ...
preimaiocmnf 45009 Preimage of a right-closed...
uzinico2 45010 An upper interval of integ...
uzinico3 45011 An upper interval of integ...
icossico2 45012 Condition for a closed-bel...
dmico 45013 The domain of the closed-b...
ndmico 45014 The closed-below, open-abo...
uzubioo 45015 The upper integers are unb...
uzubico 45016 The upper integers are unb...
uzubioo2 45017 The upper integers are unb...
uzubico2 45018 The upper integers are unb...
iocgtlbd 45019 An element of a left-open ...
xrtgioo2 45020 The topology on the extend...
tgioo4 45021 The standard topology on t...
fsummulc1f 45022 Closure of a finite sum of...
fsumnncl 45023 Closure of a nonempty, fin...
fsumge0cl 45024 The finite sum of nonnegat...
fsumf1of 45025 Re-index a finite sum usin...
fsumiunss 45026 Sum over a disjoint indexe...
fsumreclf 45027 Closure of a finite sum of...
fsumlessf 45028 A shorter sum of nonnegati...
fsumsupp0 45029 Finite sum of function val...
fsumsermpt 45030 A finite sum expressed in ...
fmul01 45031 Multiplying a finite numbe...
fmulcl 45032 If ' Y ' is closed under t...
fmuldfeqlem1 45033 induction step for the pro...
fmuldfeq 45034 X and Z are two equivalent...
fmul01lt1lem1 45035 Given a finite multiplicat...
fmul01lt1lem2 45036 Given a finite multiplicat...
fmul01lt1 45037 Given a finite multiplicat...
cncfmptss 45038 A continuous complex funct...
rrpsscn 45039 The positive reals are a s...
mulc1cncfg 45040 A version of ~ mulc1cncf u...
infrglb 45041 The infimum of a nonempty ...
expcnfg 45042 If ` F ` is a complex cont...
prodeq2ad 45043 Equality deduction for pro...
fprodsplit1 45044 Separate out a term in a f...
fprodexp 45045 Positive integer exponenti...
fprodabs2 45046 The absolute value of a fi...
fprod0 45047 A finite product with a ze...
mccllem 45048 * Induction step for ~ mcc...
mccl 45049 A multinomial coefficient,...
fprodcnlem 45050 A finite product of functi...
fprodcn 45051 A finite product of functi...
clim1fr1 45052 A class of sequences of fr...
isumneg 45053 Negation of a converging s...
climrec 45054 Limit of the reciprocal of...
climmulf 45055 A version of ~ climmul usi...
climexp 45056 The limit of natural power...
climinf 45057 A bounded monotonic noninc...
climsuselem1 45058 The subsequence index ` I ...
climsuse 45059 A subsequence ` G ` of a c...
climrecf 45060 A version of ~ climrec usi...
climneg 45061 Complex limit of the negat...
climinff 45062 A version of ~ climinf usi...
climdivf 45063 Limit of the ratio of two ...
climreeq 45064 If ` F ` is a real functio...
ellimciota 45065 An explicit value for the ...
climaddf 45066 A version of ~ climadd usi...
mullimc 45067 Limit of the product of tw...
ellimcabssub0 45068 An equivalent condition fo...
limcdm0 45069 If a function has empty do...
islptre 45070 An equivalence condition f...
limccog 45071 Limit of the composition o...
limciccioolb 45072 The limit of a function at...
climf 45073 Express the predicate: Th...
mullimcf 45074 Limit of the multiplicatio...
constlimc 45075 Limit of constant function...
rexlim2d 45076 Inference removing two res...
idlimc 45077 Limit of the identity func...
divcnvg 45078 The sequence of reciprocal...
limcperiod 45079 If ` F ` is a periodic fun...
limcrecl 45080 If ` F ` is a real-valued ...
sumnnodd 45081 A series indexed by ` NN `...
lptioo2 45082 The upper bound of an open...
lptioo1 45083 The lower bound of an open...
elprn1 45084 A member of an unordered p...
elprn2 45085 A member of an unordered p...
limcmptdm 45086 The domain of a maps-to fu...
clim2f 45087 Express the predicate: Th...
limcicciooub 45088 The limit of a function at...
ltmod 45089 A sufficient condition for...
islpcn 45090 A characterization for a l...
lptre2pt 45091 If a set in the real line ...
limsupre 45092 If a sequence is bounded, ...
limcresiooub 45093 The left limit doesn't cha...
limcresioolb 45094 The right limit doesn't ch...
limcleqr 45095 If the left and the right ...
lptioo2cn 45096 The upper bound of an open...
lptioo1cn 45097 The lower bound of an open...
neglimc 45098 Limit of the negative func...
addlimc 45099 Sum of two limits. (Contr...
0ellimcdiv 45100 If the numerator converges...
clim2cf 45101 Express the predicate ` F ...
limclner 45102 For a limit point, both fr...
sublimc 45103 Subtraction of two limits....
reclimc 45104 Limit of the reciprocal of...
clim0cf 45105 Express the predicate ` F ...
limclr 45106 For a limit point, both fr...
divlimc 45107 Limit of the quotient of t...
expfac 45108 Factorial grows faster tha...
climconstmpt 45109 A constant sequence conver...
climresmpt 45110 A function restricted to u...
climsubmpt 45111 Limit of the difference of...
climsubc2mpt 45112 Limit of the difference of...
climsubc1mpt 45113 Limit of the difference of...
fnlimfv 45114 The value of the limit fun...
climreclf 45115 The limit of a convergent ...
climeldmeq 45116 Two functions that are eve...
climf2 45117 Express the predicate: Th...
fnlimcnv 45118 The sequence of function v...
climeldmeqmpt 45119 Two functions that are eve...
climfveq 45120 Two functions that are eve...
clim2f2 45121 Express the predicate: Th...
climfveqmpt 45122 Two functions that are eve...
climd 45123 Express the predicate: Th...
clim2d 45124 The limit of complex numbe...
fnlimfvre 45125 The limit function of real...
allbutfifvre 45126 Given a sequence of real-v...
climleltrp 45127 The limit of complex numbe...
fnlimfvre2 45128 The limit function of real...
fnlimf 45129 The limit function of real...
fnlimabslt 45130 A sequence of function val...
climfveqf 45131 Two functions that are eve...
climmptf 45132 Exhibit a function ` G ` w...
climfveqmpt3 45133 Two functions that are eve...
climeldmeqf 45134 Two functions that are eve...
climreclmpt 45135 The limit of B convergent ...
limsupref 45136 If a sequence is bounded, ...
limsupbnd1f 45137 If a sequence is eventuall...
climbddf 45138 A converging sequence of c...
climeqf 45139 Two functions that are eve...
climeldmeqmpt3 45140 Two functions that are eve...
limsupcld 45141 Closure of the superior li...
climfv 45142 The limit of a convergent ...
limsupval3 45143 The superior limit of an i...
climfveqmpt2 45144 Two functions that are eve...
limsup0 45145 The superior limit of the ...
climeldmeqmpt2 45146 Two functions that are eve...
limsupresre 45147 The supremum limit of a fu...
climeqmpt 45148 Two functions that are eve...
climfvd 45149 The limit of a convergent ...
limsuplesup 45150 An upper bound for the sup...
limsupresico 45151 The superior limit doesn't...
limsuppnfdlem 45152 If the restriction of a fu...
limsuppnfd 45153 If the restriction of a fu...
limsupresuz 45154 If the real part of the do...
limsupub 45155 If the limsup is not ` +oo...
limsupres 45156 The superior limit of a re...
climinf2lem 45157 A convergent, nonincreasin...
climinf2 45158 A convergent, nonincreasin...
limsupvaluz 45159 The superior limit, when t...
limsupresuz2 45160 If the domain of a functio...
limsuppnflem 45161 If the restriction of a fu...
limsuppnf 45162 If the restriction of a fu...
limsupubuzlem 45163 If the limsup is not ` +oo...
limsupubuz 45164 For a real-valued function...
climinf2mpt 45165 A bounded below, monotonic...
climinfmpt 45166 A bounded below, monotonic...
climinf3 45167 A convergent, nonincreasin...
limsupvaluzmpt 45168 The superior limit, when t...
limsupequzmpt2 45169 Two functions that are eve...
limsupubuzmpt 45170 If the limsup is not ` +oo...
limsupmnflem 45171 The superior limit of a fu...
limsupmnf 45172 The superior limit of a fu...
limsupequzlem 45173 Two functions that are eve...
limsupequz 45174 Two functions that are eve...
limsupre2lem 45175 Given a function on the ex...
limsupre2 45176 Given a function on the ex...
limsupmnfuzlem 45177 The superior limit of a fu...
limsupmnfuz 45178 The superior limit of a fu...
limsupequzmptlem 45179 Two functions that are eve...
limsupequzmpt 45180 Two functions that are eve...
limsupre2mpt 45181 Given a function on the ex...
limsupequzmptf 45182 Two functions that are eve...
limsupre3lem 45183 Given a function on the ex...
limsupre3 45184 Given a function on the ex...
limsupre3mpt 45185 Given a function on the ex...
limsupre3uzlem 45186 Given a function on the ex...
limsupre3uz 45187 Given a function on the ex...
limsupreuz 45188 Given a function on the re...
limsupvaluz2 45189 The superior limit, when t...
limsupreuzmpt 45190 Given a function on the re...
supcnvlimsup 45191 If a function on a set of ...
supcnvlimsupmpt 45192 If a function on a set of ...
0cnv 45193 If ` (/) ` is a complex nu...
climuzlem 45194 Express the predicate: Th...
climuz 45195 Express the predicate: Th...
lmbr3v 45196 Express the binary relatio...
climisp 45197 If a sequence converges to...
lmbr3 45198 Express the binary relatio...
climrescn 45199 A sequence converging w.r....
climxrrelem 45200 If a sequence ranging over...
climxrre 45201 If a sequence ranging over...
limsuplt2 45204 The defining property of t...
liminfgord 45205 Ordering property of the i...
limsupvald 45206 The superior limit of a se...
limsupresicompt 45207 The superior limit doesn't...
limsupcli 45208 Closure of the superior li...
liminfgf 45209 Closure of the inferior li...
liminfval 45210 The inferior limit of a se...
climlimsup 45211 A sequence of real numbers...
limsupge 45212 The defining property of t...
liminfgval 45213 Value of the inferior limi...
liminfcl 45214 Closure of the inferior li...
liminfvald 45215 The inferior limit of a se...
liminfval5 45216 The inferior limit of an i...
limsupresxr 45217 The superior limit of a fu...
liminfresxr 45218 The inferior limit of a fu...
liminfval2 45219 The superior limit, relati...
climlimsupcex 45220 Counterexample for ~ climl...
liminfcld 45221 Closure of the inferior li...
liminfresico 45222 The inferior limit doesn't...
limsup10exlem 45223 The range of the given fun...
limsup10ex 45224 The superior limit of a fu...
liminf10ex 45225 The inferior limit of a fu...
liminflelimsuplem 45226 The superior limit is grea...
liminflelimsup 45227 The superior limit is grea...
limsupgtlem 45228 For any positive real, the...
limsupgt 45229 Given a sequence of real n...
liminfresre 45230 The inferior limit of a fu...
liminfresicompt 45231 The inferior limit doesn't...
liminfltlimsupex 45232 An example where the ` lim...
liminfgelimsup 45233 The inferior limit is grea...
liminfvalxr 45234 Alternate definition of ` ...
liminfresuz 45235 If the real part of the do...
liminflelimsupuz 45236 The superior limit is grea...
liminfvalxrmpt 45237 Alternate definition of ` ...
liminfresuz2 45238 If the domain of a functio...
liminfgelimsupuz 45239 The inferior limit is grea...
liminfval4 45240 Alternate definition of ` ...
liminfval3 45241 Alternate definition of ` ...
liminfequzmpt2 45242 Two functions that are eve...
liminfvaluz 45243 Alternate definition of ` ...
liminf0 45244 The inferior limit of the ...
limsupval4 45245 Alternate definition of ` ...
liminfvaluz2 45246 Alternate definition of ` ...
liminfvaluz3 45247 Alternate definition of ` ...
liminflelimsupcex 45248 A counterexample for ~ lim...
limsupvaluz3 45249 Alternate definition of ` ...
liminfvaluz4 45250 Alternate definition of ` ...
limsupvaluz4 45251 Alternate definition of ` ...
climliminflimsupd 45252 If a sequence of real numb...
liminfreuzlem 45253 Given a function on the re...
liminfreuz 45254 Given a function on the re...
liminfltlem 45255 Given a sequence of real n...
liminflt 45256 Given a sequence of real n...
climliminf 45257 A sequence of real numbers...
liminflimsupclim 45258 A sequence of real numbers...
climliminflimsup 45259 A sequence of real numbers...
climliminflimsup2 45260 A sequence of real numbers...
climliminflimsup3 45261 A sequence of real numbers...
climliminflimsup4 45262 A sequence of real numbers...
limsupub2 45263 A extended real valued fun...
limsupubuz2 45264 A sequence with values in ...
xlimpnfxnegmnf 45265 A sequence converges to ` ...
liminflbuz2 45266 A sequence with values in ...
liminfpnfuz 45267 The inferior limit of a fu...
liminflimsupxrre 45268 A sequence with values in ...
xlimrel 45271 The limit on extended real...
xlimres 45272 A function converges iff i...
xlimcl 45273 The limit of a sequence of...
rexlimddv2 45274 Restricted existential eli...
xlimclim 45275 Given a sequence of reals,...
xlimconst 45276 A constant sequence conver...
climxlim 45277 A converging sequence in t...
xlimbr 45278 Express the binary relatio...
fuzxrpmcn 45279 A function mapping from an...
cnrefiisplem 45280 Lemma for ~ cnrefiisp (som...
cnrefiisp 45281 A non-real, complex number...
xlimxrre 45282 If a sequence ranging over...
xlimmnfvlem1 45283 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 45284 Lemma for ~ xlimmnf : the ...
xlimmnfv 45285 A function converges to mi...
xlimconst2 45286 A sequence that eventually...
xlimpnfvlem1 45287 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 45288 Lemma for ~ xlimpnfv : the...
xlimpnfv 45289 A function converges to pl...
xlimclim2lem 45290 Lemma for ~ xlimclim2 . H...
xlimclim2 45291 Given a sequence of extend...
xlimmnf 45292 A function converges to mi...
xlimpnf 45293 A function converges to pl...
xlimmnfmpt 45294 A function converges to pl...
xlimpnfmpt 45295 A function converges to pl...
climxlim2lem 45296 In this lemma for ~ climxl...
climxlim2 45297 A sequence of extended rea...
dfxlim2v 45298 An alternative definition ...
dfxlim2 45299 An alternative definition ...
climresd 45300 A function restricted to u...
climresdm 45301 A real function converges ...
dmclimxlim 45302 A real valued sequence tha...
xlimmnflimsup2 45303 A sequence of extended rea...
xlimuni 45304 An infinite sequence conve...
xlimclimdm 45305 A sequence of extended rea...
xlimfun 45306 The convergence relation o...
xlimmnflimsup 45307 If a sequence of extended ...
xlimdm 45308 Two ways to express that a...
xlimpnfxnegmnf2 45309 A sequence converges to ` ...
xlimresdm 45310 A function converges in th...
xlimpnfliminf 45311 If a sequence of extended ...
xlimpnfliminf2 45312 A sequence of extended rea...
xlimliminflimsup 45313 A sequence of extended rea...
xlimlimsupleliminf 45314 A sequence of extended rea...
coseq0 45315 A complex number whose cos...
sinmulcos 45316 Multiplication formula for...
coskpi2 45317 The cosine of an integer m...
cosnegpi 45318 The cosine of negative ` _...
sinaover2ne0 45319 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 45320 The cosine of an integer m...
mulcncff 45321 The multiplication of two ...
cncfmptssg 45322 A continuous complex funct...
constcncfg 45323 A constant function is a c...
idcncfg 45324 The identity function is a...
cncfshift 45325 A periodic continuous func...
resincncf 45326 ` sin ` restricted to real...
addccncf2 45327 Adding a constant is a con...
0cnf 45328 The empty set is a continu...
fsumcncf 45329 The finite sum of continuo...
cncfperiod 45330 A periodic continuous func...
subcncff 45331 The subtraction of two con...
negcncfg 45332 The opposite of a continuo...
cnfdmsn 45333 A function with a singleto...
cncfcompt 45334 Composition of continuous ...
addcncff 45335 The sum of two continuous ...
ioccncflimc 45336 Limit at the upper bound o...
cncfuni 45337 A complex function on a su...
icccncfext 45338 A continuous function on a...
cncficcgt0 45339 A the absolute value of a ...
icocncflimc 45340 Limit at the lower bound, ...
cncfdmsn 45341 A complex function with a ...
divcncff 45342 The quotient of two contin...
cncfshiftioo 45343 A periodic continuous func...
cncfiooicclem1 45344 A continuous function ` F ...
cncfiooicc 45345 A continuous function ` F ...
cncfiooiccre 45346 A continuous function ` F ...
cncfioobdlem 45347 ` G ` actually extends ` F...
cncfioobd 45348 A continuous function ` F ...
jumpncnp 45349 Jump discontinuity or disc...
cxpcncf2 45350 The complex power function...
fprodcncf 45351 The finite product of cont...
add1cncf 45352 Addition to a constant is ...
add2cncf 45353 Addition to a constant is ...
sub1cncfd 45354 Subtracting a constant is ...
sub2cncfd 45355 Subtraction from a constan...
fprodsub2cncf 45356 ` F ` is continuous. (Con...
fprodadd2cncf 45357 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 45358 The sequence ` S ` of fini...
fprodsubrecnncnv 45359 The sequence ` S ` of fini...
fprodaddrecnncnvlem 45360 The sequence ` S ` of fini...
fprodaddrecnncnv 45361 The sequence ` S ` of fini...
dvsinexp 45362 The derivative of sin^N . ...
dvcosre 45363 The real derivative of the...
dvsinax 45364 Derivative exercise: the d...
dvsubf 45365 The subtraction rule for e...
dvmptconst 45366 Function-builder for deriv...
dvcnre 45367 From complex differentiati...
dvmptidg 45368 Function-builder for deriv...
dvresntr 45369 Function-builder for deriv...
fperdvper 45370 The derivative of a period...
dvasinbx 45371 Derivative exercise: the d...
dvresioo 45372 Restriction of a derivativ...
dvdivf 45373 The quotient rule for ever...
dvdivbd 45374 A sufficient condition for...
dvsubcncf 45375 A sufficient condition for...
dvmulcncf 45376 A sufficient condition for...
dvcosax 45377 Derivative exercise: the d...
dvdivcncf 45378 A sufficient condition for...
dvbdfbdioolem1 45379 Given a function with boun...
dvbdfbdioolem2 45380 A function on an open inte...
dvbdfbdioo 45381 A function on an open inte...
ioodvbdlimc1lem1 45382 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 45383 Limit at the lower bound o...
ioodvbdlimc1 45384 A real function with bound...
ioodvbdlimc2lem 45385 Limit at the upper bound o...
ioodvbdlimc2 45386 A real function with bound...
dvdmsscn 45387 ` X ` is a subset of ` CC ...
dvmptmulf 45388 Function-builder for deriv...
dvnmptdivc 45389 Function-builder for itera...
dvdsn1add 45390 If ` K ` divides ` N ` but...
dvxpaek 45391 Derivative of the polynomi...
dvnmptconst 45392 The ` N ` -th derivative o...
dvnxpaek 45393 The ` n ` -th derivative o...
dvnmul 45394 Function-builder for the `...
dvmptfprodlem 45395 Induction step for ~ dvmpt...
dvmptfprod 45396 Function-builder for deriv...
dvnprodlem1 45397 ` D ` is bijective. (Cont...
dvnprodlem2 45398 Induction step for ~ dvnpr...
dvnprodlem3 45399 The multinomial formula fo...
dvnprod 45400 The multinomial formula fo...
itgsin0pilem1 45401 Calculation of the integra...
ibliccsinexp 45402 sin^n on a closed interval...
itgsin0pi 45403 Calculation of the integra...
iblioosinexp 45404 sin^n on an open integral ...
itgsinexplem1 45405 Integration by parts is ap...
itgsinexp 45406 A recursive formula for th...
iblconstmpt 45407 A constant function is int...
itgeq1d 45408 Equality theorem for an in...
mbfres2cn 45409 Measurability of a piecewi...
vol0 45410 The measure of the empty s...
ditgeqiooicc 45411 A function ` F ` on an ope...
volge0 45412 The volume of a set is alw...
cnbdibl 45413 A continuous bounded funct...
snmbl 45414 A singleton is measurable....
ditgeq3d 45415 Equality theorem for the d...
iblempty 45416 The empty function is inte...
iblsplit 45417 The union of two integrabl...
volsn 45418 A singleton has 0 Lebesgue...
itgvol0 45419 If the domani is negligibl...
itgcoscmulx 45420 Exercise: the integral of ...
iblsplitf 45421 A version of ~ iblsplit us...
ibliooicc 45422 If a function is integrabl...
volioc 45423 The measure of a left-open...
iblspltprt 45424 If a function is integrabl...
itgsincmulx 45425 Exercise: the integral of ...
itgsubsticclem 45426 lemma for ~ itgsubsticc . ...
itgsubsticc 45427 Integration by u-substitut...
itgioocnicc 45428 The integral of a piecewis...
iblcncfioo 45429 A continuous function ` F ...
itgspltprt 45430 The ` S. ` integral splits...
itgiccshift 45431 The integral of a function...
itgperiod 45432 The integral of a periodic...
itgsbtaddcnst 45433 Integral substitution, add...
volico 45434 The measure of left-closed...
sublevolico 45435 The Lebesgue measure of a ...
dmvolss 45436 Lebesgue measurable sets a...
ismbl3 45437 The predicate " ` A ` is L...
volioof 45438 The function that assigns ...
ovolsplit 45439 The Lebesgue outer measure...
fvvolioof 45440 The function value of the ...
volioore 45441 The measure of an open int...
fvvolicof 45442 The function value of the ...
voliooico 45443 An open interval and a lef...
ismbl4 45444 The predicate " ` A ` is L...
volioofmpt 45445 ` ( ( vol o. (,) ) o. F ) ...
volicoff 45446 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 45447 The Lebesgue measure of op...
volicofmpt 45448 ` ( ( vol o. [,) ) o. F ) ...
volicc 45449 The Lebesgue measure of a ...
voliccico 45450 A closed interval and a le...
mbfdmssre 45451 The domain of a measurable...
stoweidlem1 45452 Lemma for ~ stoweid . Thi...
stoweidlem2 45453 lemma for ~ stoweid : here...
stoweidlem3 45454 Lemma for ~ stoweid : if `...
stoweidlem4 45455 Lemma for ~ stoweid : a cl...
stoweidlem5 45456 There exists a δ as ...
stoweidlem6 45457 Lemma for ~ stoweid : two ...
stoweidlem7 45458 This lemma is used to prov...
stoweidlem8 45459 Lemma for ~ stoweid : two ...
stoweidlem9 45460 Lemma for ~ stoweid : here...
stoweidlem10 45461 Lemma for ~ stoweid . Thi...
stoweidlem11 45462 This lemma is used to prov...
stoweidlem12 45463 Lemma for ~ stoweid . Thi...
stoweidlem13 45464 Lemma for ~ stoweid . Thi...
stoweidlem14 45465 There exists a ` k ` as in...
stoweidlem15 45466 This lemma is used to prov...
stoweidlem16 45467 Lemma for ~ stoweid . The...
stoweidlem17 45468 This lemma proves that the...
stoweidlem18 45469 This theorem proves Lemma ...
stoweidlem19 45470 If a set of real functions...
stoweidlem20 45471 If a set A of real functio...
stoweidlem21 45472 Once the Stone Weierstrass...
stoweidlem22 45473 If a set of real functions...
stoweidlem23 45474 This lemma is used to prov...
stoweidlem24 45475 This lemma proves that for...
stoweidlem25 45476 This lemma proves that for...
stoweidlem26 45477 This lemma is used to prov...
stoweidlem27 45478 This lemma is used to prov...
stoweidlem28 45479 There exists a δ as ...
stoweidlem29 45480 When the hypothesis for th...
stoweidlem30 45481 This lemma is used to prov...
stoweidlem31 45482 This lemma is used to prov...
stoweidlem32 45483 If a set A of real functio...
stoweidlem33 45484 If a set of real functions...
stoweidlem34 45485 This lemma proves that for...
stoweidlem35 45486 This lemma is used to prov...
stoweidlem36 45487 This lemma is used to prov...
stoweidlem37 45488 This lemma is used to prov...
stoweidlem38 45489 This lemma is used to prov...
stoweidlem39 45490 This lemma is used to prov...
stoweidlem40 45491 This lemma proves that q_n...
stoweidlem41 45492 This lemma is used to prov...
stoweidlem42 45493 This lemma is used to prov...
stoweidlem43 45494 This lemma is used to prov...
stoweidlem44 45495 This lemma is used to prov...
stoweidlem45 45496 This lemma proves that, gi...
stoweidlem46 45497 This lemma proves that set...
stoweidlem47 45498 Subtracting a constant fro...
stoweidlem48 45499 This lemma is used to prov...
stoweidlem49 45500 There exists a function q_...
stoweidlem50 45501 This lemma proves that set...
stoweidlem51 45502 There exists a function x ...
stoweidlem52 45503 There exists a neighborhoo...
stoweidlem53 45504 This lemma is used to prov...
stoweidlem54 45505 There exists a function ` ...
stoweidlem55 45506 This lemma proves the exis...
stoweidlem56 45507 This theorem proves Lemma ...
stoweidlem57 45508 There exists a function x ...
stoweidlem58 45509 This theorem proves Lemma ...
stoweidlem59 45510 This lemma proves that the...
stoweidlem60 45511 This lemma proves that the...
stoweidlem61 45512 This lemma proves that the...
stoweidlem62 45513 This theorem proves the St...
stoweid 45514 This theorem proves the St...
stowei 45515 This theorem proves the St...
wallispilem1 45516 ` I ` is monotone: increas...
wallispilem2 45517 A first set of properties ...
wallispilem3 45518 I maps to real values. (C...
wallispilem4 45519 ` F ` maps to explicit exp...
wallispilem5 45520 The sequence ` H ` converg...
wallispi 45521 Wallis' formula for Ï€ :...
wallispi2lem1 45522 An intermediate step betwe...
wallispi2lem2 45523 Two expressions are proven...
wallispi2 45524 An alternative version of ...
stirlinglem1 45525 A simple limit of fraction...
stirlinglem2 45526 ` A ` maps to positive rea...
stirlinglem3 45527 Long but simple algebraic ...
stirlinglem4 45528 Algebraic manipulation of ...
stirlinglem5 45529 If ` T ` is between ` 0 ` ...
stirlinglem6 45530 A series that converges to...
stirlinglem7 45531 Algebraic manipulation of ...
stirlinglem8 45532 If ` A ` converges to ` C ...
stirlinglem9 45533 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 45534 A bound for any B(N)-B(N +...
stirlinglem11 45535 ` B ` is decreasing. (Con...
stirlinglem12 45536 The sequence ` B ` is boun...
stirlinglem13 45537 ` B ` is decreasing and ha...
stirlinglem14 45538 The sequence ` A ` converg...
stirlinglem15 45539 The Stirling's formula is ...
stirling 45540 Stirling's approximation f...
stirlingr 45541 Stirling's approximation f...
dirkerval 45542 The N_th Dirichlet Kernel....
dirker2re 45543 The Dirichlet Kernel value...
dirkerdenne0 45544 The Dirichlet Kernel denom...
dirkerval2 45545 The N_th Dirichlet Kernel ...
dirkerre 45546 The Dirichlet Kernel at an...
dirkerper 45547 the Dirichlet Kernel has p...
dirkerf 45548 For any natural number ` N...
dirkertrigeqlem1 45549 Sum of an even number of a...
dirkertrigeqlem2 45550 Trigonomic equality lemma ...
dirkertrigeqlem3 45551 Trigonometric equality lem...
dirkertrigeq 45552 Trigonometric equality for...
dirkeritg 45553 The definite integral of t...
dirkercncflem1 45554 If ` Y ` is a multiple of ...
dirkercncflem2 45555 Lemma used to prove that t...
dirkercncflem3 45556 The Dirichlet Kernel is co...
dirkercncflem4 45557 The Dirichlet Kernel is co...
dirkercncf 45558 For any natural number ` N...
fourierdlem1 45559 A partition interval is a ...
fourierdlem2 45560 Membership in a partition....
fourierdlem3 45561 Membership in a partition....
fourierdlem4 45562 ` E ` is a function that m...
fourierdlem5 45563 ` S ` is a function. (Con...
fourierdlem6 45564 ` X ` is in the periodic p...
fourierdlem7 45565 The difference between the...
fourierdlem8 45566 A partition interval is a ...
fourierdlem9 45567 ` H ` is a complex functio...
fourierdlem10 45568 Condition on the bounds of...
fourierdlem11 45569 If there is a partition, t...
fourierdlem12 45570 A point of a partition is ...
fourierdlem13 45571 Value of ` V ` in terms of...
fourierdlem14 45572 Given the partition ` V ` ...
fourierdlem15 45573 The range of the partition...
fourierdlem16 45574 The coefficients of the fo...
fourierdlem17 45575 The defined ` L ` is actua...
fourierdlem18 45576 The function ` S ` is cont...
fourierdlem19 45577 If two elements of ` D ` h...
fourierdlem20 45578 Every interval in the part...
fourierdlem21 45579 The coefficients of the fo...
fourierdlem22 45580 The coefficients of the fo...
fourierdlem23 45581 If ` F ` is continuous and...
fourierdlem24 45582 A sufficient condition for...
fourierdlem25 45583 If ` C ` is not in the ran...
fourierdlem26 45584 Periodic image of a point ...
fourierdlem27 45585 A partition open interval ...
fourierdlem28 45586 Derivative of ` ( F `` ( X...
fourierdlem29 45587 Explicit function value fo...
fourierdlem30 45588 Sum of three small pieces ...
fourierdlem31 45589 If ` A ` is finite and for...
fourierdlem32 45590 Limit of a continuous func...
fourierdlem33 45591 Limit of a continuous func...
fourierdlem34 45592 A partition is one to one....
fourierdlem35 45593 There is a single point in...
fourierdlem36 45594 ` F ` is an isomorphism. ...
fourierdlem37 45595 ` I ` is a function that m...
fourierdlem38 45596 The function ` F ` is cont...
fourierdlem39 45597 Integration by parts of ...
fourierdlem40 45598 ` H ` is a continuous func...
fourierdlem41 45599 Lemma used to prove that e...
fourierdlem42 45600 The set of points in a mov...
fourierdlem43 45601 ` K ` is a real function. ...
fourierdlem44 45602 A condition for having ` (...
fourierdlem46 45603 The function ` F ` has a l...
fourierdlem47 45604 For ` r ` large enough, th...
fourierdlem48 45605 The given periodic functio...
fourierdlem49 45606 The given periodic functio...
fourierdlem50 45607 Continuity of ` O ` and it...
fourierdlem51 45608 ` X ` is in the periodic p...
fourierdlem52 45609 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 45610 The limit of ` F ( s ) ` a...
fourierdlem54 45611 Given a partition ` Q ` an...
fourierdlem55 45612 ` U ` is a real function. ...
fourierdlem56 45613 Derivative of the ` K ` fu...
fourierdlem57 45614 The derivative of ` O ` . ...
fourierdlem58 45615 The derivative of ` K ` is...
fourierdlem59 45616 The derivative of ` H ` is...
fourierdlem60 45617 Given a differentiable fun...
fourierdlem61 45618 Given a differentiable fun...
fourierdlem62 45619 The function ` K ` is cont...
fourierdlem63 45620 The upper bound of interva...
fourierdlem64 45621 The partition ` V ` is fin...
fourierdlem65 45622 The distance of two adjace...
fourierdlem66 45623 Value of the ` G ` functio...
fourierdlem67 45624 ` G ` is a function. (Con...
fourierdlem68 45625 The derivative of ` O ` is...
fourierdlem69 45626 A piecewise continuous fun...
fourierdlem70 45627 A piecewise continuous fun...
fourierdlem71 45628 A periodic piecewise conti...
fourierdlem72 45629 The derivative of ` O ` is...
fourierdlem73 45630 A version of the Riemann L...
fourierdlem74 45631 Given a piecewise smooth f...
fourierdlem75 45632 Given a piecewise smooth f...
fourierdlem76 45633 Continuity of ` O ` and it...
fourierdlem77 45634 If ` H ` is bounded, then ...
fourierdlem78 45635 ` G ` is continuous when r...
fourierdlem79 45636 ` E ` projects every inter...
fourierdlem80 45637 The derivative of ` O ` is...
fourierdlem81 45638 The integral of a piecewis...
fourierdlem82 45639 Integral by substitution, ...
fourierdlem83 45640 The fourier partial sum fo...
fourierdlem84 45641 If ` F ` is piecewise coni...
fourierdlem85 45642 Limit of the function ` G ...
fourierdlem86 45643 Continuity of ` O ` and it...
fourierdlem87 45644 The integral of ` G ` goes...
fourierdlem88 45645 Given a piecewise continuo...
fourierdlem89 45646 Given a piecewise continuo...
fourierdlem90 45647 Given a piecewise continuo...
fourierdlem91 45648 Given a piecewise continuo...
fourierdlem92 45649 The integral of a piecewis...
fourierdlem93 45650 Integral by substitution (...
fourierdlem94 45651 For a piecewise smooth fun...
fourierdlem95 45652 Algebraic manipulation of ...
fourierdlem96 45653 limit for ` F ` at the low...
fourierdlem97 45654 ` F ` is continuous on the...
fourierdlem98 45655 ` F ` is continuous on the...
fourierdlem99 45656 limit for ` F ` at the upp...
fourierdlem100 45657 A piecewise continuous fun...
fourierdlem101 45658 Integral by substitution f...
fourierdlem102 45659 For a piecewise smooth fun...
fourierdlem103 45660 The half lower part of the...
fourierdlem104 45661 The half upper part of the...
fourierdlem105 45662 A piecewise continuous fun...
fourierdlem106 45663 For a piecewise smooth fun...
fourierdlem107 45664 The integral of a piecewis...
fourierdlem108 45665 The integral of a piecewis...
fourierdlem109 45666 The integral of a piecewis...
fourierdlem110 45667 The integral of a piecewis...
fourierdlem111 45668 The fourier partial sum fo...
fourierdlem112 45669 Here abbreviations (local ...
fourierdlem113 45670 Fourier series convergence...
fourierdlem114 45671 Fourier series convergence...
fourierdlem115 45672 Fourier serier convergence...
fourierd 45673 Fourier series convergence...
fourierclimd 45674 Fourier series convergence...
fourierclim 45675 Fourier series convergence...
fourier 45676 Fourier series convergence...
fouriercnp 45677 If ` F ` is continuous at ...
fourier2 45678 Fourier series convergence...
sqwvfoura 45679 Fourier coefficients for t...
sqwvfourb 45680 Fourier series ` B ` coeff...
fourierswlem 45681 The Fourier series for the...
fouriersw 45682 Fourier series convergence...
fouriercn 45683 If the derivative of ` F `...
elaa2lem 45684 Elementhood in the set of ...
elaa2 45685 Elementhood in the set of ...
etransclem1 45686 ` H ` is a function. (Con...
etransclem2 45687 Derivative of ` G ` . (Co...
etransclem3 45688 The given ` if ` term is a...
etransclem4 45689 ` F ` expressed as a finit...
etransclem5 45690 A change of bound variable...
etransclem6 45691 A change of bound variable...
etransclem7 45692 The given product is an in...
etransclem8 45693 ` F ` is a function. (Con...
etransclem9 45694 If ` K ` divides ` N ` but...
etransclem10 45695 The given ` if ` term is a...
etransclem11 45696 A change of bound variable...
etransclem12 45697 ` C ` applied to ` N ` . ...
etransclem13 45698 ` F ` applied to ` Y ` . ...
etransclem14 45699 Value of the term ` T ` , ...
etransclem15 45700 Value of the term ` T ` , ...
etransclem16 45701 Every element in the range...
etransclem17 45702 The ` N ` -th derivative o...
etransclem18 45703 The given function is inte...
etransclem19 45704 The ` N ` -th derivative o...
etransclem20 45705 ` H ` is smooth. (Contrib...
etransclem21 45706 The ` N ` -th derivative o...
etransclem22 45707 The ` N ` -th derivative o...
etransclem23 45708 This is the claim proof in...
etransclem24 45709 ` P ` divides the I -th de...
etransclem25 45710 ` P ` factorial divides th...
etransclem26 45711 Every term in the sum of t...
etransclem27 45712 The ` N ` -th derivative o...
etransclem28 45713 ` ( P - 1 ) ` factorial di...
etransclem29 45714 The ` N ` -th derivative o...
etransclem30 45715 The ` N ` -th derivative o...
etransclem31 45716 The ` N ` -th derivative o...
etransclem32 45717 This is the proof for the ...
etransclem33 45718 ` F ` is smooth. (Contrib...
etransclem34 45719 The ` N ` -th derivative o...
etransclem35 45720 ` P ` does not divide the ...
etransclem36 45721 The ` N ` -th derivative o...
etransclem37 45722 ` ( P - 1 ) ` factorial di...
etransclem38 45723 ` P ` divides the I -th de...
etransclem39 45724 ` G ` is a function. (Con...
etransclem40 45725 The ` N ` -th derivative o...
etransclem41 45726 ` P ` does not divide the ...
etransclem42 45727 The ` N ` -th derivative o...
etransclem43 45728 ` G ` is a continuous func...
etransclem44 45729 The given finite sum is no...
etransclem45 45730 ` K ` is an integer. (Con...
etransclem46 45731 This is the proof for equa...
etransclem47 45732 ` _e ` is transcendental. ...
etransclem48 45733 ` _e ` is transcendental. ...
etransc 45734 ` _e ` is transcendental. ...
rrxtopn 45735 The topology of the genera...
rrxngp 45736 Generalized Euclidean real...
rrxtps 45737 Generalized Euclidean real...
rrxtopnfi 45738 The topology of the n-dime...
rrxtopon 45739 The topology on generalize...
rrxtop 45740 The topology on generalize...
rrndistlt 45741 Given two points in the sp...
rrxtoponfi 45742 The topology on n-dimensio...
rrxunitopnfi 45743 The base set of the standa...
rrxtopn0 45744 The topology of the zero-d...
qndenserrnbllem 45745 n-dimensional rational num...
qndenserrnbl 45746 n-dimensional rational num...
rrxtopn0b 45747 The topology of the zero-d...
qndenserrnopnlem 45748 n-dimensional rational num...
qndenserrnopn 45749 n-dimensional rational num...
qndenserrn 45750 n-dimensional rational num...
rrxsnicc 45751 A multidimensional singlet...
rrnprjdstle 45752 The distance between two p...
rrndsmet 45753 ` D ` is a metric for the ...
rrndsxmet 45754 ` D ` is an extended metri...
ioorrnopnlem 45755 The a point in an indexed ...
ioorrnopn 45756 The indexed product of ope...
ioorrnopnxrlem 45757 Given a point ` F ` that b...
ioorrnopnxr 45758 The indexed product of ope...
issal 45765 Express the predicate " ` ...
pwsal 45766 The power set of a given s...
salunicl 45767 SAlg sigma-algebra is clos...
saluncl 45768 The union of two sets in a...
prsal 45769 The pair of the empty set ...
saldifcl 45770 The complement of an eleme...
0sal 45771 The empty set belongs to e...
salgenval 45772 The sigma-algebra generate...
saliunclf 45773 SAlg sigma-algebra is clos...
saliuncl 45774 SAlg sigma-algebra is clos...
salincl 45775 The intersection of two se...
saluni 45776 A set is an element of any...
saliinclf 45777 SAlg sigma-algebra is clos...
saliincl 45778 SAlg sigma-algebra is clos...
saldifcl2 45779 The difference of two elem...
intsaluni 45780 The union of an arbitrary ...
intsal 45781 The arbitrary intersection...
salgenn0 45782 The set used in the defini...
salgencl 45783 ` SalGen ` actually genera...
issald 45784 Sufficient condition to pr...
salexct 45785 An example of nontrivial s...
sssalgen 45786 A set is a subset of the s...
salgenss 45787 The sigma-algebra generate...
salgenuni 45788 The base set of the sigma-...
issalgend 45789 One side of ~ dfsalgen2 . ...
salexct2 45790 An example of a subset tha...
unisalgen 45791 The union of a set belongs...
dfsalgen2 45792 Alternate characterization...
salexct3 45793 An example of a sigma-alge...
salgencntex 45794 This counterexample shows ...
salgensscntex 45795 This counterexample shows ...
issalnnd 45796 Sufficient condition to pr...
dmvolsal 45797 Lebesgue measurable sets f...
saldifcld 45798 The complement of an eleme...
saluncld 45799 The union of two sets in a...
salgencld 45800 ` SalGen ` actually genera...
0sald 45801 The empty set belongs to e...
iooborel 45802 An open interval is a Bore...
salincld 45803 The intersection of two se...
salunid 45804 A set is an element of any...
unisalgen2 45805 The union of a set belongs...
bor1sal 45806 The Borel sigma-algebra on...
iocborel 45807 A left-open, right-closed ...
subsaliuncllem 45808 A subspace sigma-algebra i...
subsaliuncl 45809 A subspace sigma-algebra i...
subsalsal 45810 A subspace sigma-algebra i...
subsaluni 45811 A set belongs to the subsp...
salrestss 45812 A sigma-algebra restricted...
sge0rnre 45815 When ` sum^ ` is applied t...
fge0icoicc 45816 If ` F ` maps to nonnegati...
sge0val 45817 The value of the sum of no...
fge0npnf 45818 If ` F ` maps to nonnegati...
sge0rnn0 45819 The range used in the defi...
sge0vald 45820 The value of the sum of no...
fge0iccico 45821 A range of nonnegative ext...
gsumge0cl 45822 Closure of group sum, for ...
sge0reval 45823 Value of the sum of nonneg...
sge0pnfval 45824 If a term in the sum of no...
fge0iccre 45825 A range of nonnegative ext...
sge0z 45826 Any nonnegative extended s...
sge00 45827 The sum of nonnegative ext...
fsumlesge0 45828 Every finite subsum of non...
sge0revalmpt 45829 Value of the sum of nonneg...
sge0sn 45830 A sum of a nonnegative ext...
sge0tsms 45831 ` sum^ ` applied to a nonn...
sge0cl 45832 The arbitrary sum of nonne...
sge0f1o 45833 Re-index a nonnegative ext...
sge0snmpt 45834 A sum of a nonnegative ext...
sge0ge0 45835 The sum of nonnegative ext...
sge0xrcl 45836 The arbitrary sum of nonne...
sge0repnf 45837 The of nonnegative extende...
sge0fsum 45838 The arbitrary sum of a fin...
sge0rern 45839 If the sum of nonnegative ...
sge0supre 45840 If the arbitrary sum of no...
sge0fsummpt 45841 The arbitrary sum of a fin...
sge0sup 45842 The arbitrary sum of nonne...
sge0less 45843 A shorter sum of nonnegati...
sge0rnbnd 45844 The range used in the defi...
sge0pr 45845 Sum of a pair of nonnegati...
sge0gerp 45846 The arbitrary sum of nonne...
sge0pnffigt 45847 If the sum of nonnegative ...
sge0ssre 45848 If a sum of nonnegative ex...
sge0lefi 45849 A sum of nonnegative exten...
sge0lessmpt 45850 A shorter sum of nonnegati...
sge0ltfirp 45851 If the sum of nonnegative ...
sge0prle 45852 The sum of a pair of nonne...
sge0gerpmpt 45853 The arbitrary sum of nonne...
sge0resrnlem 45854 The sum of nonnegative ext...
sge0resrn 45855 The sum of nonnegative ext...
sge0ssrempt 45856 If a sum of nonnegative ex...
sge0resplit 45857 ` sum^ ` splits into two p...
sge0le 45858 If all of the terms of sum...
sge0ltfirpmpt 45859 If the extended sum of non...
sge0split 45860 Split a sum of nonnegative...
sge0lempt 45861 If all of the terms of sum...
sge0splitmpt 45862 Split a sum of nonnegative...
sge0ss 45863 Change the index set to a ...
sge0iunmptlemfi 45864 Sum of nonnegative extende...
sge0p1 45865 The addition of the next t...
sge0iunmptlemre 45866 Sum of nonnegative extende...
sge0fodjrnlem 45867 Re-index a nonnegative ext...
sge0fodjrn 45868 Re-index a nonnegative ext...
sge0iunmpt 45869 Sum of nonnegative extende...
sge0iun 45870 Sum of nonnegative extende...
sge0nemnf 45871 The generalized sum of non...
sge0rpcpnf 45872 The sum of an infinite num...
sge0rernmpt 45873 If the sum of nonnegative ...
sge0lefimpt 45874 A sum of nonnegative exten...
nn0ssge0 45875 Nonnegative integers are n...
sge0clmpt 45876 The generalized sum of non...
sge0ltfirpmpt2 45877 If the extended sum of non...
sge0isum 45878 If a series of nonnegative...
sge0xrclmpt 45879 The generalized sum of non...
sge0xp 45880 Combine two generalized su...
sge0isummpt 45881 If a series of nonnegative...
sge0ad2en 45882 The value of the infinite ...
sge0isummpt2 45883 If a series of nonnegative...
sge0xaddlem1 45884 The extended addition of t...
sge0xaddlem2 45885 The extended addition of t...
sge0xadd 45886 The extended addition of t...
sge0fsummptf 45887 The generalized sum of a f...
sge0snmptf 45888 A sum of a nonnegative ext...
sge0ge0mpt 45889 The sum of nonnegative ext...
sge0repnfmpt 45890 The of nonnegative extende...
sge0pnffigtmpt 45891 If the generalized sum of ...
sge0splitsn 45892 Separate out a term in a g...
sge0pnffsumgt 45893 If the sum of nonnegative ...
sge0gtfsumgt 45894 If the generalized sum of ...
sge0uzfsumgt 45895 If a real number is smalle...
sge0pnfmpt 45896 If a term in the sum of no...
sge0seq 45897 A series of nonnegative re...
sge0reuz 45898 Value of the generalized s...
sge0reuzb 45899 Value of the generalized s...
ismea 45902 Express the predicate " ` ...
dmmeasal 45903 The domain of a measure is...
meaf 45904 A measure is a function th...
mea0 45905 The measure of the empty s...
nnfoctbdjlem 45906 There exists a mapping fro...
nnfoctbdj 45907 There exists a mapping fro...
meadjuni 45908 The measure of the disjoin...
meacl 45909 The measure of a set is a ...
iundjiunlem 45910 The sets in the sequence `...
iundjiun 45911 Given a sequence ` E ` of ...
meaxrcl 45912 The measure of a set is an...
meadjun 45913 The measure of the union o...
meassle 45914 The measure of a set is gr...
meaunle 45915 The measure of the union o...
meadjiunlem 45916 The sum of nonnegative ext...
meadjiun 45917 The measure of the disjoin...
ismeannd 45918 Sufficient condition to pr...
meaiunlelem 45919 The measure of the union o...
meaiunle 45920 The measure of the union o...
psmeasurelem 45921 ` M ` applied to a disjoin...
psmeasure 45922 Point supported measure, R...
voliunsge0lem 45923 The Lebesgue measure funct...
voliunsge0 45924 The Lebesgue measure funct...
volmea 45925 The Lebesgue measure on th...
meage0 45926 If the measure of a measur...
meadjunre 45927 The measure of the union o...
meassre 45928 If the measure of a measur...
meale0eq0 45929 A measure that is less tha...
meadif 45930 The measure of the differe...
meaiuninclem 45931 Measures are continuous fr...
meaiuninc 45932 Measures are continuous fr...
meaiuninc2 45933 Measures are continuous fr...
meaiunincf 45934 Measures are continuous fr...
meaiuninc3v 45935 Measures are continuous fr...
meaiuninc3 45936 Measures are continuous fr...
meaiininclem 45937 Measures are continuous fr...
meaiininc 45938 Measures are continuous fr...
meaiininc2 45939 Measures are continuous fr...
caragenval 45944 The sigma-algebra generate...
isome 45945 Express the predicate " ` ...
caragenel 45946 Membership in the Caratheo...
omef 45947 An outer measure is a func...
ome0 45948 The outer measure of the e...
omessle 45949 The outer measure of a set...
omedm 45950 The domain of an outer mea...
caragensplit 45951 If ` E ` is in the set gen...
caragenelss 45952 An element of the Caratheo...
carageneld 45953 Membership in the Caratheo...
omecl 45954 The outer measure of a set...
caragenss 45955 The sigma-algebra generate...
omeunile 45956 The outer measure of the u...
caragen0 45957 The empty set belongs to a...
omexrcl 45958 The outer measure of a set...
caragenunidm 45959 The base set of an outer m...
caragensspw 45960 The sigma-algebra generate...
omessre 45961 If the outer measure of a ...
caragenuni 45962 The base set of the sigma-...
caragenuncllem 45963 The Caratheodory's constru...
caragenuncl 45964 The Caratheodory's constru...
caragendifcl 45965 The Caratheodory's constru...
caragenfiiuncl 45966 The Caratheodory's constru...
omeunle 45967 The outer measure of the u...
omeiunle 45968 The outer measure of the i...
omelesplit 45969 The outer measure of a set...
omeiunltfirp 45970 If the outer measure of a ...
omeiunlempt 45971 The outer measure of the i...
carageniuncllem1 45972 The outer measure of ` A i...
carageniuncllem2 45973 The Caratheodory's constru...
carageniuncl 45974 The Caratheodory's constru...
caragenunicl 45975 The Caratheodory's constru...
caragensal 45976 Caratheodory's method gene...
caratheodorylem1 45977 Lemma used to prove that C...
caratheodorylem2 45978 Caratheodory's constructio...
caratheodory 45979 Caratheodory's constructio...
0ome 45980 The map that assigns 0 to ...
isomenndlem 45981 ` O ` is sub-additive w.r....
isomennd 45982 Sufficient condition to pr...
caragenel2d 45983 Membership in the Caratheo...
omege0 45984 If the outer measure of a ...
omess0 45985 If the outer measure of a ...
caragencmpl 45986 A measure built with the C...
vonval 45991 Value of the Lebesgue meas...
ovnval 45992 Value of the Lebesgue oute...
elhoi 45993 Membership in a multidimen...
icoresmbl 45994 A closed-below, open-above...
hoissre 45995 The projection of a half-o...
ovnval2 45996 Value of the Lebesgue oute...
volicorecl 45997 The Lebesgue measure of a ...
hoiprodcl 45998 The pre-measure of half-op...
hoicvr 45999 ` I ` is a countable set o...
hoissrrn 46000 A half-open interval is a ...
ovn0val 46001 The Lebesgue outer measure...
ovnn0val 46002 The value of a (multidimen...
ovnval2b 46003 Value of the Lebesgue oute...
volicorescl 46004 The Lebesgue measure of a ...
ovnprodcl 46005 The product used in the de...
hoiprodcl2 46006 The pre-measure of half-op...
hoicvrrex 46007 Any subset of the multidim...
ovnsupge0 46008 The set used in the defini...
ovnlecvr 46009 Given a subset of multidim...
ovnpnfelsup 46010 ` +oo ` is an element of t...
ovnsslelem 46011 The (multidimensional, non...
ovnssle 46012 The (multidimensional) Leb...
ovnlerp 46013 The Lebesgue outer measure...
ovnf 46014 The Lebesgue outer measure...
ovncvrrp 46015 The Lebesgue outer measure...
ovn0lem 46016 For any finite dimension, ...
ovn0 46017 For any finite dimension, ...
ovncl 46018 The Lebesgue outer measure...
ovn02 46019 For the zero-dimensional s...
ovnxrcl 46020 The Lebesgue outer measure...
ovnsubaddlem1 46021 The Lebesgue outer measure...
ovnsubaddlem2 46022 ` ( voln* `` X ) ` is suba...
ovnsubadd 46023 ` ( voln* `` X ) ` is suba...
ovnome 46024 ` ( voln* `` X ) ` is an o...
vonmea 46025 ` ( voln `` X ) ` is a mea...
volicon0 46026 The measure of a nonempty ...
hsphoif 46027 ` H ` is a function (that ...
hoidmvval 46028 The dimensional volume of ...
hoissrrn2 46029 A half-open interval is a ...
hsphoival 46030 ` H ` is a function (that ...
hoiprodcl3 46031 The pre-measure of half-op...
volicore 46032 The Lebesgue measure of a ...
hoidmvcl 46033 The dimensional volume of ...
hoidmv0val 46034 The dimensional volume of ...
hoidmvn0val 46035 The dimensional volume of ...
hsphoidmvle2 46036 The dimensional volume of ...
hsphoidmvle 46037 The dimensional volume of ...
hoidmvval0 46038 The dimensional volume of ...
hoiprodp1 46039 The dimensional volume of ...
sge0hsphoire 46040 If the generalized sum of ...
hoidmvval0b 46041 The dimensional volume of ...
hoidmv1lelem1 46042 The supremum of ` U ` belo...
hoidmv1lelem2 46043 This is the contradiction ...
hoidmv1lelem3 46044 The dimensional volume of ...
hoidmv1le 46045 The dimensional volume of ...
hoidmvlelem1 46046 The supremum of ` U ` belo...
hoidmvlelem2 46047 This is the contradiction ...
hoidmvlelem3 46048 This is the contradiction ...
hoidmvlelem4 46049 The dimensional volume of ...
hoidmvlelem5 46050 The dimensional volume of ...
hoidmvle 46051 The dimensional volume of ...
ovnhoilem1 46052 The Lebesgue outer measure...
ovnhoilem2 46053 The Lebesgue outer measure...
ovnhoi 46054 The Lebesgue outer measure...
dmovn 46055 The domain of the Lebesgue...
hoicoto2 46056 The half-open interval exp...
dmvon 46057 Lebesgue measurable n-dime...
hoi2toco 46058 The half-open interval exp...
hoidifhspval 46059 ` D ` is a function that r...
hspval 46060 The value of the half-spac...
ovnlecvr2 46061 Given a subset of multidim...
ovncvr2 46062 ` B ` and ` T ` are the le...
dmovnsal 46063 The domain of the Lebesgue...
unidmovn 46064 Base set of the n-dimensio...
rrnmbl 46065 The set of n-dimensional R...
hoidifhspval2 46066 ` D ` is a function that r...
hspdifhsp 46067 A n-dimensional half-open ...
unidmvon 46068 Base set of the n-dimensio...
hoidifhspf 46069 ` D ` is a function that r...
hoidifhspval3 46070 ` D ` is a function that r...
hoidifhspdmvle 46071 The dimensional volume of ...
voncmpl 46072 The Lebesgue measure is co...
hoiqssbllem1 46073 The center of the n-dimens...
hoiqssbllem2 46074 The center of the n-dimens...
hoiqssbllem3 46075 A n-dimensional ball conta...
hoiqssbl 46076 A n-dimensional ball conta...
hspmbllem1 46077 Any half-space of the n-di...
hspmbllem2 46078 Any half-space of the n-di...
hspmbllem3 46079 Any half-space of the n-di...
hspmbl 46080 Any half-space of the n-di...
hoimbllem 46081 Any n-dimensional half-ope...
hoimbl 46082 Any n-dimensional half-ope...
opnvonmbllem1 46083 The half-open interval exp...
opnvonmbllem2 46084 An open subset of the n-di...
opnvonmbl 46085 An open subset of the n-di...
opnssborel 46086 Open sets of a generalized...
borelmbl 46087 All Borel subsets of the n...
volicorege0 46088 The Lebesgue measure of a ...
isvonmbl 46089 The predicate " ` A ` is m...
mblvon 46090 The n-dimensional Lebesgue...
vonmblss 46091 n-dimensional Lebesgue mea...
volico2 46092 The measure of left-closed...
vonmblss2 46093 n-dimensional Lebesgue mea...
ovolval2lem 46094 The value of the Lebesgue ...
ovolval2 46095 The value of the Lebesgue ...
ovnsubadd2lem 46096 ` ( voln* `` X ) ` is suba...
ovnsubadd2 46097 ` ( voln* `` X ) ` is suba...
ovolval3 46098 The value of the Lebesgue ...
ovnsplit 46099 The n-dimensional Lebesgue...
ovolval4lem1 46100 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 46101 The value of the Lebesgue ...
ovolval4 46102 The value of the Lebesgue ...
ovolval5lem1 46103 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 46104 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 46105 The value of the Lebesgue ...
ovolval5 46106 The value of the Lebesgue ...
ovnovollem1 46107 if ` F ` is a cover of ` B...
ovnovollem2 46108 if ` I ` is a cover of ` (...
ovnovollem3 46109 The 1-dimensional Lebesgue...
ovnovol 46110 The 1-dimensional Lebesgue...
vonvolmbllem 46111 If a subset ` B ` of real ...
vonvolmbl 46112 A subset of Real numbers i...
vonvol 46113 The 1-dimensional Lebesgue...
vonvolmbl2 46114 A subset ` X ` of the spac...
vonvol2 46115 The 1-dimensional Lebesgue...
hoimbl2 46116 Any n-dimensional half-ope...
voncl 46117 The Lebesgue measure of a ...
vonhoi 46118 The Lebesgue outer measure...
vonxrcl 46119 The Lebesgue measure of a ...
ioosshoi 46120 A n-dimensional open inter...
vonn0hoi 46121 The Lebesgue outer measure...
von0val 46122 The Lebesgue measure (for ...
vonhoire 46123 The Lebesgue measure of a ...
iinhoiicclem 46124 A n-dimensional closed int...
iinhoiicc 46125 A n-dimensional closed int...
iunhoiioolem 46126 A n-dimensional open inter...
iunhoiioo 46127 A n-dimensional open inter...
ioovonmbl 46128 Any n-dimensional open int...
iccvonmbllem 46129 Any n-dimensional closed i...
iccvonmbl 46130 Any n-dimensional closed i...
vonioolem1 46131 The sequence of the measur...
vonioolem2 46132 The n-dimensional Lebesgue...
vonioo 46133 The n-dimensional Lebesgue...
vonicclem1 46134 The sequence of the measur...
vonicclem2 46135 The n-dimensional Lebesgue...
vonicc 46136 The n-dimensional Lebesgue...
snvonmbl 46137 A n-dimensional singleton ...
vonn0ioo 46138 The n-dimensional Lebesgue...
vonn0icc 46139 The n-dimensional Lebesgue...
ctvonmbl 46140 Any n-dimensional countabl...
vonn0ioo2 46141 The n-dimensional Lebesgue...
vonsn 46142 The n-dimensional Lebesgue...
vonn0icc2 46143 The n-dimensional Lebesgue...
vonct 46144 The n-dimensional Lebesgue...
vitali2 46145 There are non-measurable s...
pimltmnf2f 46148 Given a real-valued functi...
pimltmnf2 46149 Given a real-valued functi...
preimagelt 46150 The preimage of a right-op...
preimalegt 46151 The preimage of a left-ope...
pimconstlt0 46152 Given a constant function,...
pimconstlt1 46153 Given a constant function,...
pimltpnff 46154 Given a real-valued functi...
pimltpnf 46155 Given a real-valued functi...
pimgtpnf2f 46156 Given a real-valued functi...
pimgtpnf2 46157 Given a real-valued functi...
salpreimagelt 46158 If all the preimages of le...
pimrecltpos 46159 The preimage of an unbound...
salpreimalegt 46160 If all the preimages of ri...
pimiooltgt 46161 The preimage of an open in...
preimaicomnf 46162 Preimage of an open interv...
pimltpnf2f 46163 Given a real-valued functi...
pimltpnf2 46164 Given a real-valued functi...
pimgtmnf2 46165 Given a real-valued functi...
pimdecfgtioc 46166 Given a nonincreasing func...
pimincfltioc 46167 Given a nondecreasing func...
pimdecfgtioo 46168 Given a nondecreasing func...
pimincfltioo 46169 Given a nondecreasing func...
preimaioomnf 46170 Preimage of an open interv...
preimageiingt 46171 A preimage of a left-close...
preimaleiinlt 46172 A preimage of a left-open,...
pimgtmnff 46173 Given a real-valued functi...
pimgtmnf 46174 Given a real-valued functi...
pimrecltneg 46175 The preimage of an unbound...
salpreimagtge 46176 If all the preimages of le...
salpreimaltle 46177 If all the preimages of ri...
issmflem 46178 The predicate " ` F ` is a...
issmf 46179 The predicate " ` F ` is a...
salpreimalelt 46180 If all the preimages of ri...
salpreimagtlt 46181 If all the preimages of le...
smfpreimalt 46182 Given a function measurabl...
smff 46183 A function measurable w.r....
smfdmss 46184 The domain of a function m...
issmff 46185 The predicate " ` F ` is a...
issmfd 46186 A sufficient condition for...
smfpreimaltf 46187 Given a function measurabl...
issmfdf 46188 A sufficient condition for...
sssmf 46189 The restriction of a sigma...
mbfresmf 46190 A real-valued measurable f...
cnfsmf 46191 A continuous function is m...
incsmflem 46192 A nondecreasing function i...
incsmf 46193 A real-valued, nondecreasi...
smfsssmf 46194 If a function is measurabl...
issmflelem 46195 The predicate " ` F ` is a...
issmfle 46196 The predicate " ` F ` is a...
smfpimltmpt 46197 Given a function measurabl...
smfpimltxr 46198 Given a function measurabl...
issmfdmpt 46199 A sufficient condition for...
smfconst 46200 Given a sigma-algebra over...
sssmfmpt 46201 The restriction of a sigma...
cnfrrnsmf 46202 A function, continuous fro...
smfid 46203 The identity function is B...
bormflebmf 46204 A Borel measurable functio...
smfpreimale 46205 Given a function measurabl...
issmfgtlem 46206 The predicate " ` F ` is a...
issmfgt 46207 The predicate " ` F ` is a...
issmfled 46208 A sufficient condition for...
smfpimltxrmptf 46209 Given a function measurabl...
smfpimltxrmpt 46210 Given a function measurabl...
smfmbfcex 46211 A constant function, with ...
issmfgtd 46212 A sufficient condition for...
smfpreimagt 46213 Given a function measurabl...
smfaddlem1 46214 Given the sum of two funct...
smfaddlem2 46215 The sum of two sigma-measu...
smfadd 46216 The sum of two sigma-measu...
decsmflem 46217 A nonincreasing function i...
decsmf 46218 A real-valued, nonincreasi...
smfpreimagtf 46219 Given a function measurabl...
issmfgelem 46220 The predicate " ` F ` is a...
issmfge 46221 The predicate " ` F ` is a...
smflimlem1 46222 Lemma for the proof that t...
smflimlem2 46223 Lemma for the proof that t...
smflimlem3 46224 The limit of sigma-measura...
smflimlem4 46225 Lemma for the proof that t...
smflimlem5 46226 Lemma for the proof that t...
smflimlem6 46227 Lemma for the proof that t...
smflim 46228 The limit of sigma-measura...
nsssmfmbflem 46229 The sigma-measurable funct...
nsssmfmbf 46230 The sigma-measurable funct...
smfpimgtxr 46231 Given a function measurabl...
smfpimgtmpt 46232 Given a function measurabl...
smfpreimage 46233 Given a function measurabl...
mbfpsssmf 46234 Real-valued measurable fun...
smfpimgtxrmptf 46235 Given a function measurabl...
smfpimgtxrmpt 46236 Given a function measurabl...
smfpimioompt 46237 Given a function measurabl...
smfpimioo 46238 Given a function measurabl...
smfresal 46239 Given a sigma-measurable f...
smfrec 46240 The reciprocal of a sigma-...
smfres 46241 The restriction of sigma-m...
smfmullem1 46242 The multiplication of two ...
smfmullem2 46243 The multiplication of two ...
smfmullem3 46244 The multiplication of two ...
smfmullem4 46245 The multiplication of two ...
smfmul 46246 The multiplication of two ...
smfmulc1 46247 A sigma-measurable functio...
smfdiv 46248 The fraction of two sigma-...
smfpimbor1lem1 46249 Every open set belongs to ...
smfpimbor1lem2 46250 Given a sigma-measurable f...
smfpimbor1 46251 Given a sigma-measurable f...
smf2id 46252 Twice the identity functio...
smfco 46253 The composition of a Borel...
smfneg 46254 The negative of a sigma-me...
smffmptf 46255 A function measurable w.r....
smffmpt 46256 A function measurable w.r....
smflim2 46257 The limit of a sequence of...
smfpimcclem 46258 Lemma for ~ smfpimcc given...
smfpimcc 46259 Given a countable set of s...
issmfle2d 46260 A sufficient condition for...
smflimmpt 46261 The limit of a sequence of...
smfsuplem1 46262 The supremum of a countabl...
smfsuplem2 46263 The supremum of a countabl...
smfsuplem3 46264 The supremum of a countabl...
smfsup 46265 The supremum of a countabl...
smfsupmpt 46266 The supremum of a countabl...
smfsupxr 46267 The supremum of a countabl...
smfinflem 46268 The infimum of a countable...
smfinf 46269 The infimum of a countable...
smfinfmpt 46270 The infimum of a countable...
smflimsuplem1 46271 If ` H ` converges, the ` ...
smflimsuplem2 46272 The superior limit of a se...
smflimsuplem3 46273 The limit of the ` ( H `` ...
smflimsuplem4 46274 If ` H ` converges, the ` ...
smflimsuplem5 46275 ` H ` converges to the sup...
smflimsuplem6 46276 The superior limit of a se...
smflimsuplem7 46277 The superior limit of a se...
smflimsuplem8 46278 The superior limit of a se...
smflimsup 46279 The superior limit of a se...
smflimsupmpt 46280 The superior limit of a se...
smfliminflem 46281 The inferior limit of a co...
smfliminf 46282 The inferior limit of a co...
smfliminfmpt 46283 The inferior limit of a co...
adddmmbl 46284 If two functions have doma...
adddmmbl2 46285 If two functions have doma...
muldmmbl 46286 If two functions have doma...
muldmmbl2 46287 If two functions have doma...
smfdmmblpimne 46288 If a measurable function w...
smfdivdmmbl 46289 If a functions and a sigma...
smfpimne 46290 Given a function measurabl...
smfpimne2 46291 Given a function measurabl...
smfdivdmmbl2 46292 If a functions and a sigma...
fsupdm 46293 The domain of the sup func...
fsupdm2 46294 The domain of the sup func...
smfsupdmmbllem 46295 If a countable set of sigm...
smfsupdmmbl 46296 If a countable set of sigm...
finfdm 46297 The domain of the inf func...
finfdm2 46298 The domain of the inf func...
smfinfdmmbllem 46299 If a countable set of sigm...
smfinfdmmbl 46300 If a countable set of sigm...
sigarval 46301 Define the signed area by ...
sigarim 46302 Signed area takes value in...
sigarac 46303 Signed area is anticommuta...
sigaraf 46304 Signed area is additive by...
sigarmf 46305 Signed area is additive (w...
sigaras 46306 Signed area is additive by...
sigarms 46307 Signed area is additive (w...
sigarls 46308 Signed area is linear by t...
sigarid 46309 Signed area of a flat para...
sigarexp 46310 Expand the signed area for...
sigarperm 46311 Signed area ` ( A - C ) G ...
sigardiv 46312 If signed area between vec...
sigarimcd 46313 Signed area takes value in...
sigariz 46314 If signed area is zero, th...
sigarcol 46315 Given three points ` A ` ,...
sharhght 46316 Let ` A B C ` be a triangl...
sigaradd 46317 Subtracting (double) area ...
cevathlem1 46318 Ceva's theorem first lemma...
cevathlem2 46319 Ceva's theorem second lemm...
cevath 46320 Ceva's theorem. Let ` A B...
simpcntrab 46321 The center of a simple gro...
et-ltneverrefl 46322 Less-than class is never r...
et-equeucl 46323 Alternative proof that equ...
et-sqrtnegnre 46324 The square root of a negat...
natlocalincr 46325 Global monotonicity on hal...
natglobalincr 46326 Local monotonicity on half...
upwordnul 46329 Empty set is an increasing...
upwordisword 46330 Any increasing sequence is...
singoutnword 46331 Singleton with character o...
singoutnupword 46332 Singleton with character o...
upwordsing 46333 Singleton is an increasing...
upwordsseti 46334 Strictly increasing sequen...
tworepnotupword 46335 Concatenation of identical...
upwrdfi 46336 There is a finite number o...
hirstL-ax3 46337 The third axiom of a syste...
ax3h 46338 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 46339 A closed form showing (a i...
aibandbiaiaiffb 46340 A closed form showing (a i...
notatnand 46341 Do not use. Use intnanr i...
aistia 46342 Given a is equivalent to `...
aisfina 46343 Given a is equivalent to `...
bothtbothsame 46344 Given both a, b are equiva...
bothfbothsame 46345 Given both a, b are equiva...
aiffbbtat 46346 Given a is equivalent to b...
aisbbisfaisf 46347 Given a is equivalent to b...
axorbtnotaiffb 46348 Given a is exclusive to b,...
aiffnbandciffatnotciffb 46349 Given a is equivalent to (...
axorbciffatcxorb 46350 Given a is equivalent to (...
aibnbna 46351 Given a implies b, (not b)...
aibnbaif 46352 Given a implies b, not b, ...
aiffbtbat 46353 Given a is equivalent to b...
astbstanbst 46354 Given a is equivalent to T...
aistbistaandb 46355 Given a is equivalent to T...
aisbnaxb 46356 Given a is equivalent to b...
atbiffatnnb 46357 If a implies b, then a imp...
bisaiaisb 46358 Application of bicom1 with...
atbiffatnnbalt 46359 If a implies b, then a imp...
abnotbtaxb 46360 Assuming a, not b, there e...
abnotataxb 46361 Assuming not a, b, there e...
conimpf 46362 Assuming a, not b, and a i...
conimpfalt 46363 Assuming a, not b, and a i...
aistbisfiaxb 46364 Given a is equivalent to T...
aisfbistiaxb 46365 Given a is equivalent to F...
aifftbifffaibif 46366 Given a is equivalent to T...
aifftbifffaibifff 46367 Given a is equivalent to T...
atnaiana 46368 Given a, it is not the cas...
ainaiaandna 46369 Given a, a implies it is n...
abcdta 46370 Given (((a and b) and c) a...
abcdtb 46371 Given (((a and b) and c) a...
abcdtc 46372 Given (((a and b) and c) a...
abcdtd 46373 Given (((a and b) and c) a...
abciffcbatnabciffncba 46374 Operands in a biconditiona...
abciffcbatnabciffncbai 46375 Operands in a biconditiona...
nabctnabc 46376 not ( a -> ( b /\ c ) ) we...
jabtaib 46377 For when pm3.4 lacks a pm3...
onenotinotbothi 46378 From one negated implicati...
twonotinotbothi 46379 From these two negated imp...
clifte 46380 show d is the same as an i...
cliftet 46381 show d is the same as an i...
clifteta 46382 show d is the same as an i...
cliftetb 46383 show d is the same as an i...
confun 46384 Given the hypotheses there...
confun2 46385 Confun simplified to two p...
confun3 46386 Confun's more complex form...
confun4 46387 An attempt at derivative. ...
confun5 46388 An attempt at derivative. ...
plcofph 46389 Given, a,b and a "definiti...
pldofph 46390 Given, a,b c, d, "definiti...
plvcofph 46391 Given, a,b,d, and "definit...
plvcofphax 46392 Given, a,b,d, and "definit...
plvofpos 46393 rh is derivable because ON...
mdandyv0 46394 Given the equivalences set...
mdandyv1 46395 Given the equivalences set...
mdandyv2 46396 Given the equivalences set...
mdandyv3 46397 Given the equivalences set...
mdandyv4 46398 Given the equivalences set...
mdandyv5 46399 Given the equivalences set...
mdandyv6 46400 Given the equivalences set...
mdandyv7 46401 Given the equivalences set...
mdandyv8 46402 Given the equivalences set...
mdandyv9 46403 Given the equivalences set...
mdandyv10 46404 Given the equivalences set...
mdandyv11 46405 Given the equivalences set...
mdandyv12 46406 Given the equivalences set...
mdandyv13 46407 Given the equivalences set...
mdandyv14 46408 Given the equivalences set...
mdandyv15 46409 Given the equivalences set...
mdandyvr0 46410 Given the equivalences set...
mdandyvr1 46411 Given the equivalences set...
mdandyvr2 46412 Given the equivalences set...
mdandyvr3 46413 Given the equivalences set...
mdandyvr4 46414 Given the equivalences set...
mdandyvr5 46415 Given the equivalences set...
mdandyvr6 46416 Given the equivalences set...
mdandyvr7 46417 Given the equivalences set...
mdandyvr8 46418 Given the equivalences set...
mdandyvr9 46419 Given the equivalences set...
mdandyvr10 46420 Given the equivalences set...
mdandyvr11 46421 Given the equivalences set...
mdandyvr12 46422 Given the equivalences set...
mdandyvr13 46423 Given the equivalences set...
mdandyvr14 46424 Given the equivalences set...
mdandyvr15 46425 Given the equivalences set...
mdandyvrx0 46426 Given the exclusivities se...
mdandyvrx1 46427 Given the exclusivities se...
mdandyvrx2 46428 Given the exclusivities se...
mdandyvrx3 46429 Given the exclusivities se...
mdandyvrx4 46430 Given the exclusivities se...
mdandyvrx5 46431 Given the exclusivities se...
mdandyvrx6 46432 Given the exclusivities se...
mdandyvrx7 46433 Given the exclusivities se...
mdandyvrx8 46434 Given the exclusivities se...
mdandyvrx9 46435 Given the exclusivities se...
mdandyvrx10 46436 Given the exclusivities se...
mdandyvrx11 46437 Given the exclusivities se...
mdandyvrx12 46438 Given the exclusivities se...
mdandyvrx13 46439 Given the exclusivities se...
mdandyvrx14 46440 Given the exclusivities se...
mdandyvrx15 46441 Given the exclusivities se...
H15NH16TH15IH16 46442 Given 15 hypotheses and a ...
dandysum2p2e4 46443 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 46444 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 46445 Replacement of a nested an...
adh-minim 46446 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 46447 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 46448 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 46449 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 46450 Fourth lemma for the deriv...
adh-minim-ax1 46451 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 46452 Fifth lemma for the deriva...
adh-minim-ax2-lem6 46453 Sixth lemma for the deriva...
adh-minim-ax2c 46454 Derivation of a commuted f...
adh-minim-ax2 46455 Derivation of ~ ax-2 from ...
adh-minim-idALT 46456 Derivation of ~ id (reflex...
adh-minim-pm2.43 46457 Derivation of ~ pm2.43 Whi...
adh-minimp 46458 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 46459 First lemma for the deriva...
adh-minimp-jarr-lem2 46460 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 46461 Third lemma for the deriva...
adh-minimp-sylsimp 46462 Derivation of ~ jarr (also...
adh-minimp-ax1 46463 Derivation of ~ ax-1 from ...
adh-minimp-imim1 46464 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 46465 Derivation of a commuted f...
adh-minimp-ax2-lem4 46466 Fourth lemma for the deriv...
adh-minimp-ax2 46467 Derivation of ~ ax-2 from ...
adh-minimp-idALT 46468 Derivation of ~ id (reflex...
adh-minimp-pm2.43 46469 Derivation of ~ pm2.43 Whi...
n0nsn2el 46470 If a class with one elemen...
eusnsn 46471 There is a unique element ...
absnsb 46472 If the class abstraction `...
euabsneu 46473 Another way to express exi...
elprneb 46474 An element of a proper uno...
oppr 46475 Equality for ordered pairs...
opprb 46476 Equality for unordered pai...
or2expropbilem1 46477 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 46478 Lemma 2 for ~ or2expropbi ...
or2expropbi 46479 If two classes are strictl...
eubrv 46480 If there is a unique set w...
eubrdm 46481 If there is a unique set w...
eldmressn 46482 Element of the domain of a...
iota0def 46483 Example for a defined iota...
iota0ndef 46484 Example for an undefined i...
fveqvfvv 46485 If a function's value at a...
fnresfnco 46486 Composition of two functio...
funcoressn 46487 A composition restricted t...
funressnfv 46488 A restriction to a singlet...
funressndmfvrn 46489 The value of a function ` ...
funressnvmo 46490 A function restricted to a...
funressnmo 46491 A function restricted to a...
funressneu 46492 There is exactly one value...
fresfo 46493 Conditions for a restricti...
fsetsniunop 46494 The class of all functions...
fsetabsnop 46495 The class of all functions...
fsetsnf 46496 The mapping of an element ...
fsetsnf1 46497 The mapping of an element ...
fsetsnfo 46498 The mapping of an element ...
fsetsnf1o 46499 The mapping of an element ...
fsetsnprcnex 46500 The class of all functions...
cfsetssfset 46501 The class of constant func...
cfsetsnfsetfv 46502 The function value of the ...
cfsetsnfsetf 46503 The mapping of the class o...
cfsetsnfsetf1 46504 The mapping of the class o...
cfsetsnfsetfo 46505 The mapping of the class o...
cfsetsnfsetf1o 46506 The mapping of the class o...
fsetprcnexALT 46507 First version of proof for...
fcoreslem1 46508 Lemma 1 for ~ fcores . (C...
fcoreslem2 46509 Lemma 2 for ~ fcores . (C...
fcoreslem3 46510 Lemma 3 for ~ fcores . (C...
fcoreslem4 46511 Lemma 4 for ~ fcores . (C...
fcores 46512 Every composite function `...
fcoresf1lem 46513 Lemma for ~ fcoresf1 . (C...
fcoresf1 46514 If a composition is inject...
fcoresf1b 46515 A composition is injective...
fcoresfo 46516 If a composition is surjec...
fcoresfob 46517 A composition is surjectiv...
fcoresf1ob 46518 A composition is bijective...
f1cof1blem 46519 Lemma for ~ f1cof1b and ~ ...
f1cof1b 46520 If the range of ` F ` equa...
funfocofob 46521 If the domain of a functio...
fnfocofob 46522 If the domain of a functio...
focofob 46523 If the domain of a functio...
f1ocof1ob 46524 If the range of ` F ` equa...
f1ocof1ob2 46525 If the range of ` F ` equa...
aiotajust 46527 Soundness justification th...
dfaiota2 46529 Alternate definition of th...
reuabaiotaiota 46530 The iota and the alternate...
reuaiotaiota 46531 The iota and the alternate...
aiotaexb 46532 The alternate iota over a ...
aiotavb 46533 The alternate iota over a ...
aiotaint 46534 This is to ~ df-aiota what...
dfaiota3 46535 Alternate definition of ` ...
iotan0aiotaex 46536 If the iota over a wff ` p...
aiotaexaiotaiota 46537 The alternate iota over a ...
aiotaval 46538 Theorem 8.19 in [Quine] p....
aiota0def 46539 Example for a defined alte...
aiota0ndef 46540 Example for an undefined a...
r19.32 46541 Theorem 19.32 of [Margaris...
rexsb 46542 An equivalent expression f...
rexrsb 46543 An equivalent expression f...
2rexsb 46544 An equivalent expression f...
2rexrsb 46545 An equivalent expression f...
cbvral2 46546 Change bound variables of ...
cbvrex2 46547 Change bound variables of ...
ralndv1 46548 Example for a theorem abou...
ralndv2 46549 Second example for a theor...
reuf1odnf 46550 There is exactly one eleme...
reuf1od 46551 There is exactly one eleme...
euoreqb 46552 There is a set which is eq...
2reu3 46553 Double restricted existent...
2reu7 46554 Two equivalent expressions...
2reu8 46555 Two equivalent expressions...
2reu8i 46556 Implication of a double re...
2reuimp0 46557 Implication of a double re...
2reuimp 46558 Implication of a double re...
ralbinrald 46565 Elemination of a restricte...
nvelim 46566 If a class is the universa...
alneu 46567 If a statement holds for a...
eu2ndop1stv 46568 If there is a unique secon...
dfateq12d 46569 Equality deduction for "de...
nfdfat 46570 Bound-variable hypothesis ...
dfdfat2 46571 Alternate definition of th...
fundmdfat 46572 A function is defined at a...
dfatprc 46573 A function is not defined ...
dfatelrn 46574 The value of a function ` ...
dfafv2 46575 Alternative definition of ...
afveq12d 46576 Equality deduction for fun...
afveq1 46577 Equality theorem for funct...
afveq2 46578 Equality theorem for funct...
nfafv 46579 Bound-variable hypothesis ...
csbafv12g 46580 Move class substitution in...
afvfundmfveq 46581 If a class is a function r...
afvnfundmuv 46582 If a set is not in the dom...
ndmafv 46583 The value of a class outsi...
afvvdm 46584 If the function value of a...
nfunsnafv 46585 If the restriction of a cl...
afvvfunressn 46586 If the function value of a...
afvprc 46587 A function's value at a pr...
afvvv 46588 If a function's value at a...
afvpcfv0 46589 If the value of the altern...
afvnufveq 46590 The value of the alternati...
afvvfveq 46591 The value of the alternati...
afv0fv0 46592 If the value of the altern...
afvfvn0fveq 46593 If the function's value at...
afv0nbfvbi 46594 The function's value at an...
afvfv0bi 46595 The function's value at an...
afveu 46596 The value of a function at...
fnbrafvb 46597 Equivalence of function va...
fnopafvb 46598 Equivalence of function va...
funbrafvb 46599 Equivalence of function va...
funopafvb 46600 Equivalence of function va...
funbrafv 46601 The second argument of a b...
funbrafv2b 46602 Function value in terms of...
dfafn5a 46603 Representation of a functi...
dfafn5b 46604 Representation of a functi...
fnrnafv 46605 The range of a function ex...
afvelrnb 46606 A member of a function's r...
afvelrnb0 46607 A member of a function's r...
dfaimafn 46608 Alternate definition of th...
dfaimafn2 46609 Alternate definition of th...
afvelima 46610 Function value in an image...
afvelrn 46611 A function's value belongs...
fnafvelrn 46612 A function's value belongs...
fafvelcdm 46613 A function's value belongs...
ffnafv 46614 A function maps to a class...
afvres 46615 The value of a restricted ...
tz6.12-afv 46616 Function value. Theorem 6...
tz6.12-1-afv 46617 Function value (Theorem 6....
dmfcoafv 46618 Domains of a function comp...
afvco2 46619 Value of a function compos...
rlimdmafv 46620 Two ways to express that a...
aoveq123d 46621 Equality deduction for ope...
nfaov 46622 Bound-variable hypothesis ...
csbaovg 46623 Move class substitution in...
aovfundmoveq 46624 If a class is a function r...
aovnfundmuv 46625 If an ordered pair is not ...
ndmaov 46626 The value of an operation ...
ndmaovg 46627 The value of an operation ...
aovvdm 46628 If the operation value of ...
nfunsnaov 46629 If the restriction of a cl...
aovvfunressn 46630 If the operation value of ...
aovprc 46631 The value of an operation ...
aovrcl 46632 Reverse closure for an ope...
aovpcov0 46633 If the alternative value o...
aovnuoveq 46634 The alternative value of t...
aovvoveq 46635 The alternative value of t...
aov0ov0 46636 If the alternative value o...
aovovn0oveq 46637 If the operation's value a...
aov0nbovbi 46638 The operation's value on a...
aovov0bi 46639 The operation's value on a...
rspceaov 46640 A frequently used special ...
fnotaovb 46641 Equivalence of operation v...
ffnaov 46642 An operation maps to a cla...
faovcl 46643 Closure law for an operati...
aovmpt4g 46644 Value of a function given ...
aoprssdm 46645 Domain of closure of an op...
ndmaovcl 46646 The "closure" of an operat...
ndmaovrcl 46647 Reverse closure law, in co...
ndmaovcom 46648 Any operation is commutati...
ndmaovass 46649 Any operation is associati...
ndmaovdistr 46650 Any operation is distribut...
dfatafv2iota 46653 If a function is defined a...
ndfatafv2 46654 The alternate function val...
ndfatafv2undef 46655 The alternate function val...
dfatafv2ex 46656 The alternate function val...
afv2ex 46657 The alternate function val...
afv2eq12d 46658 Equality deduction for fun...
afv2eq1 46659 Equality theorem for funct...
afv2eq2 46660 Equality theorem for funct...
nfafv2 46661 Bound-variable hypothesis ...
csbafv212g 46662 Move class substitution in...
fexafv2ex 46663 The alternate function val...
ndfatafv2nrn 46664 The alternate function val...
ndmafv2nrn 46665 The value of a class outsi...
funressndmafv2rn 46666 The alternate function val...
afv2ndefb 46667 Two ways to say that an al...
nfunsnafv2 46668 If the restriction of a cl...
afv2prc 46669 A function's value at a pr...
dfatafv2rnb 46670 The alternate function val...
afv2orxorb 46671 If a set is in the range o...
dmafv2rnb 46672 The alternate function val...
fundmafv2rnb 46673 The alternate function val...
afv2elrn 46674 An alternate function valu...
afv20defat 46675 If the alternate function ...
fnafv2elrn 46676 An alternate function valu...
fafv2elcdm 46677 An alternate function valu...
fafv2elrnb 46678 An alternate function valu...
fcdmvafv2v 46679 If the codomain of a funct...
tz6.12-2-afv2 46680 Function value when ` F ` ...
afv2eu 46681 The value of a function at...
afv2res 46682 The value of a restricted ...
tz6.12-afv2 46683 Function value (Theorem 6....
tz6.12-1-afv2 46684 Function value (Theorem 6....
tz6.12c-afv2 46685 Corollary of Theorem 6.12(...
tz6.12i-afv2 46686 Corollary of Theorem 6.12(...
funressnbrafv2 46687 The second argument of a b...
dfatbrafv2b 46688 Equivalence of function va...
dfatopafv2b 46689 Equivalence of function va...
funbrafv2 46690 The second argument of a b...
fnbrafv2b 46691 Equivalence of function va...
fnopafv2b 46692 Equivalence of function va...
funbrafv22b 46693 Equivalence of function va...
funopafv2b 46694 Equivalence of function va...
dfatsnafv2 46695 Singleton of function valu...
dfafv23 46696 A definition of function v...
dfatdmfcoafv2 46697 Domain of a function compo...
dfatcolem 46698 Lemma for ~ dfatco . (Con...
dfatco 46699 The predicate "defined at"...
afv2co2 46700 Value of a function compos...
rlimdmafv2 46701 Two ways to express that a...
dfafv22 46702 Alternate definition of ` ...
afv2ndeffv0 46703 If the alternate function ...
dfatafv2eqfv 46704 If a function is defined a...
afv2rnfveq 46705 If the alternate function ...
afv20fv0 46706 If the alternate function ...
afv2fvn0fveq 46707 If the function's value at...
afv2fv0 46708 If the function's value at...
afv2fv0b 46709 The function's value at an...
afv2fv0xorb 46710 If a set is in the range o...
an4com24 46711 Rearrangement of 4 conjunc...
3an4ancom24 46712 Commutative law for a conj...
4an21 46713 Rearrangement of 4 conjunc...
dfnelbr2 46716 Alternate definition of th...
nelbr 46717 The binary relation of a s...
nelbrim 46718 If a set is related to ano...
nelbrnel 46719 A set is related to anothe...
nelbrnelim 46720 If a set is related to ano...
ralralimp 46721 Selecting one of two alter...
otiunsndisjX 46722 The union of singletons co...
fvifeq 46723 Equality of function value...
rnfdmpr 46724 The range of a one-to-one ...
imarnf1pr 46725 The image of the range of ...
funop1 46726 A function is an ordered p...
fun2dmnopgexmpl 46727 A function with a domain c...
opabresex0d 46728 A collection of ordered pa...
opabbrfex0d 46729 A collection of ordered pa...
opabresexd 46730 A collection of ordered pa...
opabbrfexd 46731 A collection of ordered pa...
f1oresf1orab 46732 Build a bijection by restr...
f1oresf1o 46733 Build a bijection by restr...
f1oresf1o2 46734 Build a bijection by restr...
fvmptrab 46735 Value of a function mappin...
fvmptrabdm 46736 Value of a function mappin...
cnambpcma 46737 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 46738 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 46739 The sum of two complex num...
leaddsuble 46740 Addition and subtraction o...
2leaddle2 46741 If two real numbers are le...
ltnltne 46742 Variant of trichotomy law ...
p1lep2 46743 A real number increasd by ...
ltsubsubaddltsub 46744 If the result of subtracti...
zm1nn 46745 An integer minus 1 is posi...
readdcnnred 46746 The sum of a real number a...
resubcnnred 46747 The difference of a real n...
recnmulnred 46748 The product of a real numb...
cndivrenred 46749 The quotient of an imagina...
sqrtnegnre 46750 The square root of a negat...
nn0resubcl 46751 Closure law for subtractio...
zgeltp1eq 46752 If an integer is between a...
1t10e1p1e11 46753 11 is 1 times 10 to the po...
deccarry 46754 Add 1 to a 2 digit number ...
eluzge0nn0 46755 If an integer is greater t...
nltle2tri 46756 Negated extended trichotom...
ssfz12 46757 Subset relationship for fi...
elfz2z 46758 Membership of an integer i...
2elfz3nn0 46759 If there are two elements ...
fz0addcom 46760 The addition of two member...
2elfz2melfz 46761 If the sum of two integers...
fz0addge0 46762 The sum of two integers in...
elfzlble 46763 Membership of an integer i...
elfzelfzlble 46764 Membership of an element o...
fzopred 46765 Join a predecessor to the ...
fzopredsuc 46766 Join a predecessor and a s...
1fzopredsuc 46767 Join 0 and a successor to ...
el1fzopredsuc 46768 An element of an open inte...
subsubelfzo0 46769 Subtracting a difference f...
fzoopth 46770 A half-open integer range ...
2ffzoeq 46771 Two functions over a half-...
m1mod0mod1 46772 An integer decreased by 1 ...
elmod2 46773 An integer modulo 2 is eit...
smonoord 46774 Ordering relation for a st...
fsummsndifre 46775 A finite sum with one of i...
fsumsplitsndif 46776 Separate out a term in a f...
fsummmodsndifre 46777 A finite sum of summands m...
fsummmodsnunz 46778 A finite sum of summands m...
setsidel 46779 The injected slot is an el...
setsnidel 46780 The injected slot is an el...
setsv 46781 The value of the structure...
preimafvsnel 46782 The preimage of a function...
preimafvn0 46783 The preimage of a function...
uniimafveqt 46784 The union of the image of ...
uniimaprimaeqfv 46785 The union of the image of ...
setpreimafvex 46786 The class ` P ` of all pre...
elsetpreimafvb 46787 The characterization of an...
elsetpreimafv 46788 An element of the class ` ...
elsetpreimafvssdm 46789 An element of the class ` ...
fvelsetpreimafv 46790 There is an element in a p...
preimafvelsetpreimafv 46791 The preimage of a function...
preimafvsspwdm 46792 The class ` P ` of all pre...
0nelsetpreimafv 46793 The empty set is not an el...
elsetpreimafvbi 46794 An element of the preimage...
elsetpreimafveqfv 46795 The elements of the preima...
eqfvelsetpreimafv 46796 If an element of the domai...
elsetpreimafvrab 46797 An element of the preimage...
imaelsetpreimafv 46798 The image of an element of...
uniimaelsetpreimafv 46799 The union of the image of ...
elsetpreimafveq 46800 If two preimages of functi...
fundcmpsurinjlem1 46801 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 46802 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 46803 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 46804 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 46805 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 46806 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 46807 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 46808 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 46809 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 46810 Every function ` F : A -->...
fundcmpsurinjpreimafv 46811 Every function ` F : A -->...
fundcmpsurinj 46812 Every function ` F : A -->...
fundcmpsurbijinj 46813 Every function ` F : A -->...
fundcmpsurinjimaid 46814 Every function ` F : A -->...
fundcmpsurinjALT 46815 Alternate proof of ~ fundc...
iccpval 46818 Partition consisting of a ...
iccpart 46819 A special partition. Corr...
iccpartimp 46820 Implications for a class b...
iccpartres 46821 The restriction of a parti...
iccpartxr 46822 If there is a partition, t...
iccpartgtprec 46823 If there is a partition, t...
iccpartipre 46824 If there is a partition, t...
iccpartiltu 46825 If there is a partition, t...
iccpartigtl 46826 If there is a partition, t...
iccpartlt 46827 If there is a partition, t...
iccpartltu 46828 If there is a partition, t...
iccpartgtl 46829 If there is a partition, t...
iccpartgt 46830 If there is a partition, t...
iccpartleu 46831 If there is a partition, t...
iccpartgel 46832 If there is a partition, t...
iccpartrn 46833 If there is a partition, t...
iccpartf 46834 The range of the partition...
iccpartel 46835 If there is a partition, t...
iccelpart 46836 An element of any partitio...
iccpartiun 46837 A half-open interval of ex...
icceuelpartlem 46838 Lemma for ~ icceuelpart . ...
icceuelpart 46839 An element of a partitione...
iccpartdisj 46840 The segments of a partitio...
iccpartnel 46841 A point of a partition is ...
fargshiftfv 46842 If a class is a function, ...
fargshiftf 46843 If a class is a function, ...
fargshiftf1 46844 If a function is 1-1, then...
fargshiftfo 46845 If a function is onto, the...
fargshiftfva 46846 The values of a shifted fu...
lswn0 46847 The last symbol of a not e...
nfich1 46850 The first interchangeable ...
nfich2 46851 The second interchangeable...
ichv 46852 Setvar variables are inter...
ichf 46853 Setvar variables are inter...
ichid 46854 A setvar variable is alway...
icht 46855 A theorem is interchangeab...
ichbidv 46856 Formula building rule for ...
ichcircshi 46857 The setvar variables are i...
ichan 46858 If two setvar variables ar...
ichn 46859 Negation does not affect i...
ichim 46860 Formula building rule for ...
dfich2 46861 Alternate definition of th...
ichcom 46862 The interchangeability of ...
ichbi12i 46863 Equivalence for interchang...
icheqid 46864 In an equality for the sam...
icheq 46865 In an equality of setvar v...
ichnfimlem 46866 Lemma for ~ ichnfim : A s...
ichnfim 46867 If in an interchangeabilit...
ichnfb 46868 If ` x ` and ` y ` are int...
ichal 46869 Move a universal quantifie...
ich2al 46870 Two setvar variables are a...
ich2ex 46871 Two setvar variables are a...
ichexmpl1 46872 Example for interchangeabl...
ichexmpl2 46873 Example for interchangeabl...
ich2exprop 46874 If the setvar variables ar...
ichnreuop 46875 If the setvar variables ar...
ichreuopeq 46876 If the setvar variables ar...
sprid 46877 Two identical representati...
elsprel 46878 An unordered pair is an el...
spr0nelg 46879 The empty set is not an el...
sprval 46882 The set of all unordered p...
sprvalpw 46883 The set of all unordered p...
sprssspr 46884 The set of all unordered p...
spr0el 46885 The empty set is not an un...
sprvalpwn0 46886 The set of all unordered p...
sprel 46887 An element of the set of a...
prssspr 46888 An element of a subset of ...
prelspr 46889 An unordered pair of eleme...
prsprel 46890 The elements of a pair fro...
prsssprel 46891 The elements of a pair fro...
sprvalpwle2 46892 The set of all unordered p...
sprsymrelfvlem 46893 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 46894 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 46895 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 46896 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 46897 The value of the function ...
sprsymrelf 46898 The mapping ` F ` is a fun...
sprsymrelf1 46899 The mapping ` F ` is a one...
sprsymrelfo 46900 The mapping ` F ` is a fun...
sprsymrelf1o 46901 The mapping ` F ` is a bij...
sprbisymrel 46902 There is a bijection betwe...
sprsymrelen 46903 The class ` P ` of subsets...
prpair 46904 Characterization of a prop...
prproropf1olem0 46905 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 46906 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 46907 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 46908 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 46909 Lemma 4 for ~ prproropf1o ...
prproropf1o 46910 There is a bijection betwe...
prproropen 46911 The set of proper pairs an...
prproropreud 46912 There is exactly one order...
pairreueq 46913 Two equivalent representat...
paireqne 46914 Two sets are not equal iff...
prprval 46917 The set of all proper unor...
prprvalpw 46918 The set of all proper unor...
prprelb 46919 An element of the set of a...
prprelprb 46920 A set is an element of the...
prprspr2 46921 The set of all proper unor...
prprsprreu 46922 There is a unique proper u...
prprreueq 46923 There is a unique proper u...
sbcpr 46924 The proper substitution of...
reupr 46925 There is a unique unordere...
reuprpr 46926 There is a unique proper u...
poprelb 46927 Equality for unordered pai...
2exopprim 46928 The existence of an ordere...
reuopreuprim 46929 There is a unique unordere...
fmtno 46932 The ` N ` th Fermat number...
fmtnoge3 46933 Each Fermat number is grea...
fmtnonn 46934 Each Fermat number is a po...
fmtnom1nn 46935 A Fermat number minus one ...
fmtnoodd 46936 Each Fermat number is odd....
fmtnorn 46937 A Fermat number is a funct...
fmtnof1 46938 The enumeration of the Fer...
fmtnoinf 46939 The set of Fermat numbers ...
fmtnorec1 46940 The first recurrence relat...
sqrtpwpw2p 46941 The floor of the square ro...
fmtnosqrt 46942 The floor of the square ro...
fmtno0 46943 The ` 0 ` th Fermat number...
fmtno1 46944 The ` 1 ` st Fermat number...
fmtnorec2lem 46945 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 46946 The second recurrence rela...
fmtnodvds 46947 Any Fermat number divides ...
goldbachthlem1 46948 Lemma 1 for ~ goldbachth ....
goldbachthlem2 46949 Lemma 2 for ~ goldbachth ....
goldbachth 46950 Goldbach's theorem: Two d...
fmtnorec3 46951 The third recurrence relat...
fmtnorec4 46952 The fourth recurrence rela...
fmtno2 46953 The ` 2 ` nd Fermat number...
fmtno3 46954 The ` 3 ` rd Fermat number...
fmtno4 46955 The ` 4 ` th Fermat number...
fmtno5lem1 46956 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 46957 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 46958 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 46959 Lemma 4 for ~ fmtno5 . (C...
fmtno5 46960 The ` 5 ` th Fermat number...
fmtno0prm 46961 The ` 0 ` th Fermat number...
fmtno1prm 46962 The ` 1 ` st Fermat number...
fmtno2prm 46963 The ` 2 ` nd Fermat number...
257prm 46964 257 is a prime number (the...
fmtno3prm 46965 The ` 3 ` rd Fermat number...
odz2prm2pw 46966 Any power of two is coprim...
fmtnoprmfac1lem 46967 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 46968 Divisor of Fermat number (...
fmtnoprmfac2lem1 46969 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 46970 Divisor of Fermat number (...
fmtnofac2lem 46971 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 46972 Divisor of Fermat number (...
fmtnofac1 46973 Divisor of Fermat number (...
fmtno4sqrt 46974 The floor of the square ro...
fmtno4prmfac 46975 If P was a (prime) factor ...
fmtno4prmfac193 46976 If P was a (prime) factor ...
fmtno4nprmfac193 46977 193 is not a (prime) facto...
fmtno4prm 46978 The ` 4 `-th Fermat number...
65537prm 46979 65537 is a prime number (t...
fmtnofz04prm 46980 The first five Fermat numb...
fmtnole4prm 46981 The first five Fermat numb...
fmtno5faclem1 46982 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 46983 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 46984 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 46985 The factorisation of the `...
fmtno5nprm 46986 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 46987 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 46988 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 46989 The mapping of a Fermat nu...
prmdvdsfmtnof1 46990 The mapping of a Fermat nu...
prminf2 46991 The set of prime numbers i...
2pwp1prm 46992 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 46993 Every prime number of the ...
m2prm 46994 The second Mersenne number...
m3prm 46995 The third Mersenne number ...
flsqrt 46996 A condition equivalent to ...
flsqrt5 46997 The floor of the square ro...
3ndvds4 46998 3 does not divide 4. (Con...
139prmALT 46999 139 is a prime number. In...
31prm 47000 31 is a prime number. In ...
m5prm 47001 The fifth Mersenne number ...
127prm 47002 127 is a prime number. (C...
m7prm 47003 The seventh Mersenne numbe...
m11nprm 47004 The eleventh Mersenne numb...
mod42tp1mod8 47005 If a number is ` 3 ` modul...
sfprmdvdsmersenne 47006 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 47007 If ` P ` is a Sophie Germa...
lighneallem1 47008 Lemma 1 for ~ lighneal . ...
lighneallem2 47009 Lemma 2 for ~ lighneal . ...
lighneallem3 47010 Lemma 3 for ~ lighneal . ...
lighneallem4a 47011 Lemma 1 for ~ lighneallem4...
lighneallem4b 47012 Lemma 2 for ~ lighneallem4...
lighneallem4 47013 Lemma 3 for ~ lighneal . ...
lighneal 47014 If a power of a prime ` P ...
modexp2m1d 47015 The square of an integer w...
proththdlem 47016 Lemma for ~ proththd . (C...
proththd 47017 Proth's theorem (1878). I...
5tcu2e40 47018 5 times the cube of 2 is 4...
3exp4mod41 47019 3 to the fourth power is -...
41prothprmlem1 47020 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 47021 Lemma 2 for ~ 41prothprm ....
41prothprm 47022 41 is a _Proth prime_. (C...
quad1 47023 A condition for a quadrati...
requad01 47024 A condition for a quadrati...
requad1 47025 A condition for a quadrati...
requad2 47026 A condition for a quadrati...
iseven 47031 The predicate "is an even ...
isodd 47032 The predicate "is an odd n...
evenz 47033 An even number is an integ...
oddz 47034 An odd number is an intege...
evendiv2z 47035 The result of dividing an ...
oddp1div2z 47036 The result of dividing an ...
oddm1div2z 47037 The result of dividing an ...
isodd2 47038 The predicate "is an odd n...
dfodd2 47039 Alternate definition for o...
dfodd6 47040 Alternate definition for o...
dfeven4 47041 Alternate definition for e...
evenm1odd 47042 The predecessor of an even...
evenp1odd 47043 The successor of an even n...
oddp1eveni 47044 The successor of an odd nu...
oddm1eveni 47045 The predecessor of an odd ...
evennodd 47046 An even number is not an o...
oddneven 47047 An odd number is not an ev...
enege 47048 The negative of an even nu...
onego 47049 The negative of an odd num...
m1expevenALTV 47050 Exponentiation of -1 by an...
m1expoddALTV 47051 Exponentiation of -1 by an...
dfeven2 47052 Alternate definition for e...
dfodd3 47053 Alternate definition for o...
iseven2 47054 The predicate "is an even ...
isodd3 47055 The predicate "is an odd n...
2dvdseven 47056 2 divides an even number. ...
m2even 47057 A multiple of 2 is an even...
2ndvdsodd 47058 2 does not divide an odd n...
2dvdsoddp1 47059 2 divides an odd number in...
2dvdsoddm1 47060 2 divides an odd number de...
dfeven3 47061 Alternate definition for e...
dfodd4 47062 Alternate definition for o...
dfodd5 47063 Alternate definition for o...
zefldiv2ALTV 47064 The floor of an even numbe...
zofldiv2ALTV 47065 The floor of an odd numer ...
oddflALTV 47066 Odd number representation ...
iseven5 47067 The predicate "is an even ...
isodd7 47068 The predicate "is an odd n...
dfeven5 47069 Alternate definition for e...
dfodd7 47070 Alternate definition for o...
gcd2odd1 47071 The greatest common diviso...
zneoALTV 47072 No even integer equals an ...
zeoALTV 47073 An integer is even or odd....
zeo2ALTV 47074 An integer is even or odd ...
nneoALTV 47075 A positive integer is even...
nneoiALTV 47076 A positive integer is even...
odd2np1ALTV 47077 An integer is odd iff it i...
oddm1evenALTV 47078 An integer is odd iff its ...
oddp1evenALTV 47079 An integer is odd iff its ...
oexpnegALTV 47080 The exponential of the neg...
oexpnegnz 47081 The exponential of the neg...
bits0ALTV 47082 Value of the zeroth bit. ...
bits0eALTV 47083 The zeroth bit of an even ...
bits0oALTV 47084 The zeroth bit of an odd n...
divgcdoddALTV 47085 Either ` A / ( A gcd B ) `...
opoeALTV 47086 The sum of two odds is eve...
opeoALTV 47087 The sum of an odd and an e...
omoeALTV 47088 The difference of two odds...
omeoALTV 47089 The difference of an odd a...
oddprmALTV 47090 A prime not equal to ` 2 `...
0evenALTV 47091 0 is an even number. (Con...
0noddALTV 47092 0 is not an odd number. (...
1oddALTV 47093 1 is an odd number. (Cont...
1nevenALTV 47094 1 is not an even number. ...
2evenALTV 47095 2 is an even number. (Con...
2noddALTV 47096 2 is not an odd number. (...
nn0o1gt2ALTV 47097 An odd nonnegative integer...
nnoALTV 47098 An alternate characterizat...
nn0oALTV 47099 An alternate characterizat...
nn0e 47100 An alternate characterizat...
nneven 47101 An alternate characterizat...
nn0onn0exALTV 47102 For each odd nonnegative i...
nn0enn0exALTV 47103 For each even nonnegative ...
nnennexALTV 47104 For each even positive int...
nnpw2evenALTV 47105 2 to the power of a positi...
epoo 47106 The sum of an even and an ...
emoo 47107 The difference of an even ...
epee 47108 The sum of two even number...
emee 47109 The difference of two even...
evensumeven 47110 If a summand is even, the ...
3odd 47111 3 is an odd number. (Cont...
4even 47112 4 is an even number. (Con...
5odd 47113 5 is an odd number. (Cont...
6even 47114 6 is an even number. (Con...
7odd 47115 7 is an odd number. (Cont...
8even 47116 8 is an even number. (Con...
evenprm2 47117 A prime number is even iff...
oddprmne2 47118 Every prime number not bei...
oddprmuzge3 47119 A prime number which is od...
evenltle 47120 If an even number is great...
odd2prm2 47121 If an odd number is the su...
even3prm2 47122 If an even number is the s...
mogoldbblem 47123 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 47124 Lemma for ~ perfectALTV . ...
perfectALTVlem2 47125 Lemma for ~ perfectALTV . ...
perfectALTV 47126 The Euclid-Euler theorem, ...
fppr 47129 The set of Fermat pseudopr...
fpprmod 47130 The set of Fermat pseudopr...
fpprel 47131 A Fermat pseudoprime to th...
fpprbasnn 47132 The base of a Fermat pseud...
fpprnn 47133 A Fermat pseudoprime to th...
fppr2odd 47134 A Fermat pseudoprime to th...
11t31e341 47135 341 is the product of 11 a...
2exp340mod341 47136 Eight to the eighth power ...
341fppr2 47137 341 is the (smallest) _Pou...
4fppr1 47138 4 is the (smallest) Fermat...
8exp8mod9 47139 Eight to the eighth power ...
9fppr8 47140 9 is the (smallest) Fermat...
dfwppr 47141 Alternate definition of a ...
fpprwppr 47142 A Fermat pseudoprime to th...
fpprwpprb 47143 An integer ` X ` which is ...
fpprel2 47144 An alternate definition fo...
nfermltl8rev 47145 Fermat's little theorem wi...
nfermltl2rev 47146 Fermat's little theorem wi...
nfermltlrev 47147 Fermat's little theorem re...
isgbe 47154 The predicate "is an even ...
isgbow 47155 The predicate "is a weak o...
isgbo 47156 The predicate "is an odd G...
gbeeven 47157 An even Goldbach number is...
gbowodd 47158 A weak odd Goldbach number...
gbogbow 47159 A (strong) odd Goldbach nu...
gboodd 47160 An odd Goldbach number is ...
gbepos 47161 Any even Goldbach number i...
gbowpos 47162 Any weak odd Goldbach numb...
gbopos 47163 Any odd Goldbach number is...
gbegt5 47164 Any even Goldbach number i...
gbowgt5 47165 Any weak odd Goldbach numb...
gbowge7 47166 Any weak odd Goldbach numb...
gboge9 47167 Any odd Goldbach number is...
gbege6 47168 Any even Goldbach number i...
gbpart6 47169 The Goldbach partition of ...
gbpart7 47170 The (weak) Goldbach partit...
gbpart8 47171 The Goldbach partition of ...
gbpart9 47172 The (strong) Goldbach part...
gbpart11 47173 The (strong) Goldbach part...
6gbe 47174 6 is an even Goldbach numb...
7gbow 47175 7 is a weak odd Goldbach n...
8gbe 47176 8 is an even Goldbach numb...
9gbo 47177 9 is an odd Goldbach numbe...
11gbo 47178 11 is an odd Goldbach numb...
stgoldbwt 47179 If the strong ternary Gold...
sbgoldbwt 47180 If the strong binary Goldb...
sbgoldbst 47181 If the strong binary Goldb...
sbgoldbaltlem1 47182 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 47183 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 47184 An alternate (related to t...
sbgoldbb 47185 If the strong binary Goldb...
sgoldbeven3prm 47186 If the binary Goldbach con...
sbgoldbm 47187 If the strong binary Goldb...
mogoldbb 47188 If the modern version of t...
sbgoldbmb 47189 The strong binary Goldbach...
sbgoldbo 47190 If the strong binary Goldb...
nnsum3primes4 47191 4 is the sum of at most 3 ...
nnsum4primes4 47192 4 is the sum of at most 4 ...
nnsum3primesprm 47193 Every prime is "the sum of...
nnsum4primesprm 47194 Every prime is "the sum of...
nnsum3primesgbe 47195 Any even Goldbach number i...
nnsum4primesgbe 47196 Any even Goldbach number i...
nnsum3primesle9 47197 Every integer greater than...
nnsum4primesle9 47198 Every integer greater than...
nnsum4primesodd 47199 If the (weak) ternary Gold...
nnsum4primesoddALTV 47200 If the (strong) ternary Go...
evengpop3 47201 If the (weak) ternary Gold...
evengpoap3 47202 If the (strong) ternary Go...
nnsum4primeseven 47203 If the (weak) ternary Gold...
nnsum4primesevenALTV 47204 If the (strong) ternary Go...
wtgoldbnnsum4prm 47205 If the (weak) ternary Gold...
stgoldbnnsum4prm 47206 If the (strong) ternary Go...
bgoldbnnsum3prm 47207 If the binary Goldbach con...
bgoldbtbndlem1 47208 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 47209 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 47210 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 47211 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 47212 If the binary Goldbach con...
tgoldbachgtALTV 47215 Variant of Thierry Arnoux'...
bgoldbachlt 47216 The binary Goldbach conjec...
tgblthelfgott 47218 The ternary Goldbach conje...
tgoldbachlt 47219 The ternary Goldbach conje...
tgoldbach 47220 The ternary Goldbach conje...
clnbgrprc0 47223 The closed neighborhood is...
clnbgrcl 47224 If a class ` X ` has at le...
clnbgrval 47225 The closed neighborhood of...
dfclnbgr2 47226 Alternate definition of th...
dfclnbgr4 47227 Alternate definition of th...
dfclnbgr3 47228 Alternate definition of th...
clnbgrnvtx0 47229 If a class ` X ` is not a ...
clnbgrel 47230 Characterization of a memb...
clnbgrvtxel 47231 Every vertex ` K ` is a me...
clnbgrisvtx 47232 Every member ` N ` of the ...
clnbgrssvtx 47233 The closed neighborhood of...
clnbgrn0 47234 The closed neighborhood of...
clnbupgr 47235 The closed neighborhood of...
clnbupgrel 47236 A member of the closed nei...
clnbgr0vtx 47237 In a null graph (with no v...
clnbgr0edg 47238 In an empty graph (with no...
clnbgrsym 47239 In a graph, the closed nei...
edgusgrclnbfin 47240 The size of the closed nei...
clnbusgrfi 47241 The closed neighborhood of...
clnbfiusgrfi 47242 The closed neighborhood of...
clnbgrlevtx 47243 The size of the closed nei...
dfsclnbgr2 47244 Alternate definition of th...
sclnbgrel 47245 Characterization of a memb...
sclnbgrelself 47246 A vertex ` N ` is a member...
sclnbgrisvtx 47247 Every member ` X ` of the ...
dfclnbgr5 47248 Alternate definition of th...
dfnbgr5 47249 Alternate definition of th...
dfnbgrss 47250 Subset chain for different...
dfvopnbgr2 47251 Alternate definition of th...
vopnbgrel 47252 Characterization of a memb...
vopnbgrelself 47253 A vertex ` N ` is a member...
dfclnbgr6 47254 Alternate definition of th...
dfnbgr6 47255 Alternate definition of th...
dfsclnbgr6 47256 Alternate definition of a ...
dfnbgrss2 47257 Subset chain for different...
isisubgr 47260 The subgraph induced by a ...
isubgriedg 47261 The edges of an induced su...
isubgrvtxuhgr 47262 The subgraph induced by th...
isubgrvtx 47263 The vertices of an induced...
isubgruhgr 47264 An induced subgraph of a h...
isubgrsubgr 47265 An induced subgraph of a h...
isubgrupgr 47266 An induced subgraph of a p...
isubgrumgr 47267 An induced subgraph of a m...
isubgrusgr 47268 An induced subgraph of a s...
isubgr0uhgr 47269 The subgraph induced by an...
grimfn 47275 The graph isomorphism func...
grimdmrel 47276 The domain of the graph is...
isgrim 47278 An isomorphism of graphs i...
grimprop 47279 Properties of an isomorphi...
grimf1o 47280 An isomorphism of graphs i...
isuspgrim0lem 47281 An isomorphism of simple p...
isuspgrim0 47282 An isomorphism of simple p...
uspgrimprop 47283 An isomorphism of simple p...
isuspgrimlem 47284 Lemma for ~ isuspgrim . (...
isuspgrim 47285 A class is an isomorphism ...
grimidvtxedg 47286 The identity relation rest...
grimid 47287 The identity relation rest...
grimuhgr 47288 If there is a graph isomor...
grimcnv 47289 The converse of a graph is...
grimco 47290 The composition of graph i...
brgric 47291 The relation "is isomorphi...
brgrici 47292 Prove that two graphs are ...
dfgric2 47293 Alternate, explicit defini...
gricbri 47294 Implications of two graphs...
gricushgr 47295 The "is isomorphic to" rel...
gricuspgr 47296 The "is isomorphic to" rel...
gricrel 47297 The "is isomorphic to" rel...
gricref 47298 Graph isomorphism is refle...
gricsym 47299 Graph isomorphism is symme...
gricsymb 47300 Graph isomorphism is symme...
grictr 47301 Graph isomorphism is trans...
gricer 47302 Isomorphism is an equivale...
gricen 47303 Isomorphic graphs have equ...
opstrgric 47304 A graph represented as an ...
ushggricedg 47305 A simple hypergraph (with ...
1hegrlfgr 47306 A graph ` G ` with one hyp...
upwlksfval 47309 The set of simple walks (i...
isupwlk 47310 Properties of a pair of fu...
isupwlkg 47311 Generalization of ~ isupwl...
upwlkbprop 47312 Basic properties of a simp...
upwlkwlk 47313 A simple walk is a walk. ...
upgrwlkupwlk 47314 In a pseudograph, a walk i...
upgrwlkupwlkb 47315 In a pseudograph, the defi...
upgrisupwlkALT 47316 Alternate proof of ~ upgri...
upgredgssspr 47317 The set of edges of a pseu...
uspgropssxp 47318 The set ` G ` of "simple p...
uspgrsprfv 47319 The value of the function ...
uspgrsprf 47320 The mapping ` F ` is a fun...
uspgrsprf1 47321 The mapping ` F ` is a one...
uspgrsprfo 47322 The mapping ` F ` is a fun...
uspgrsprf1o 47323 The mapping ` F ` is a bij...
uspgrex 47324 The class ` G ` of all "si...
uspgrbispr 47325 There is a bijection betwe...
uspgrspren 47326 The set ` G ` of the "simp...
uspgrymrelen 47327 The set ` G ` of the "simp...
uspgrbisymrel 47328 There is a bijection betwe...
uspgrbisymrelALT 47329 Alternate proof of ~ uspgr...
ovn0dmfun 47330 If a class operation value...
xpsnopab 47331 A Cartesian product with a...
xpiun 47332 A Cartesian product expres...
ovn0ssdmfun 47333 If a class' operation valu...
fnxpdmdm 47334 The domain of the domain o...
cnfldsrngbas 47335 The base set of a subring ...
cnfldsrngadd 47336 The group addition operati...
cnfldsrngmul 47337 The ring multiplication op...
plusfreseq 47338 If the empty set is not co...
mgmplusfreseq 47339 If the empty set is not co...
0mgm 47340 A set with an empty base s...
opmpoismgm 47341 A structure with a group a...
copissgrp 47342 A structure with a constan...
copisnmnd 47343 A structure with a constan...
0nodd 47344 0 is not an odd integer. ...
1odd 47345 1 is an odd integer. (Con...
2nodd 47346 2 is not an odd integer. ...
oddibas 47347 Lemma 1 for ~ oddinmgm : ...
oddiadd 47348 Lemma 2 for ~ oddinmgm : ...
oddinmgm 47349 The structure of all odd i...
nnsgrpmgm 47350 The structure of positive ...
nnsgrp 47351 The structure of positive ...
nnsgrpnmnd 47352 The structure of positive ...
nn0mnd 47353 The set of nonnegative int...
gsumsplit2f 47354 Split a group sum into two...
gsumdifsndf 47355 Extract a summand from a f...
gsumfsupp 47356 A group sum of a family ca...
iscllaw 47363 The predicate "is a closed...
iscomlaw 47364 The predicate "is a commut...
clcllaw 47365 Closure of a closed operat...
isasslaw 47366 The predicate "is an assoc...
asslawass 47367 Associativity of an associ...
mgmplusgiopALT 47368 Slot 2 (group operation) o...
sgrpplusgaopALT 47369 Slot 2 (group operation) o...
intopval 47376 The internal (binary) oper...
intop 47377 An internal (binary) opera...
clintopval 47378 The closed (internal binar...
assintopval 47379 The associative (closed in...
assintopmap 47380 The associative (closed in...
isclintop 47381 The predicate "is a closed...
clintop 47382 A closed (internal binary)...
assintop 47383 An associative (closed int...
isassintop 47384 The predicate "is an assoc...
clintopcllaw 47385 The closure law holds for ...
assintopcllaw 47386 The closure low holds for ...
assintopasslaw 47387 The associative low holds ...
assintopass 47388 An associative (closed int...
ismgmALT 47397 The predicate "is a magma"...
iscmgmALT 47398 The predicate "is a commut...
issgrpALT 47399 The predicate "is a semigr...
iscsgrpALT 47400 The predicate "is a commut...
mgm2mgm 47401 Equivalence of the two def...
sgrp2sgrp 47402 Equivalence of the two def...
lmod0rng 47403 If the scalar ring of a mo...
nzrneg1ne0 47404 The additive inverse of th...
lidldomn1 47405 If a (left) ideal (which i...
lidlabl 47406 A (left) ideal of a ring i...
lidlrng 47407 A (left) ideal of a ring i...
zlidlring 47408 The zero (left) ideal of a...
uzlidlring 47409 Only the zero (left) ideal...
lidldomnnring 47410 A (left) ideal of a domain...
0even 47411 0 is an even integer. (Co...
1neven 47412 1 is not an even integer. ...
2even 47413 2 is an even integer. (Co...
2zlidl 47414 The even integers are a (l...
2zrng 47415 The ring of integers restr...
2zrngbas 47416 The base set of R is the s...
2zrngadd 47417 The group addition operati...
2zrng0 47418 The additive identity of R...
2zrngamgm 47419 R is an (additive) magma. ...
2zrngasgrp 47420 R is an (additive) semigro...
2zrngamnd 47421 R is an (additive) monoid....
2zrngacmnd 47422 R is a commutative (additi...
2zrngagrp 47423 R is an (additive) group. ...
2zrngaabl 47424 R is an (additive) abelian...
2zrngmul 47425 The ring multiplication op...
2zrngmmgm 47426 R is a (multiplicative) ma...
2zrngmsgrp 47427 R is a (multiplicative) se...
2zrngALT 47428 The ring of integers restr...
2zrngnmlid 47429 R has no multiplicative (l...
2zrngnmrid 47430 R has no multiplicative (r...
2zrngnmlid2 47431 R has no multiplicative (l...
2zrngnring 47432 R is not a unital ring. (...
cznrnglem 47433 Lemma for ~ cznrng : The ...
cznabel 47434 The ring constructed from ...
cznrng 47435 The ring constructed from ...
cznnring 47436 The ring constructed from ...
rngcvalALTV 47439 Value of the category of n...
rngcbasALTV 47440 Set of objects of the cate...
rngchomfvalALTV 47441 Set of arrows of the categ...
rngchomALTV 47442 Set of arrows of the categ...
elrngchomALTV 47443 A morphism of non-unital r...
rngccofvalALTV 47444 Composition in the categor...
rngccoALTV 47445 Composition in the categor...
rngccatidALTV 47446 Lemma for ~ rngccatALTV . ...
rngccatALTV 47447 The category of non-unital...
rngcidALTV 47448 The identity arrow in the ...
rngcsectALTV 47449 A section in the category ...
rngcinvALTV 47450 An inverse in the category...
rngcisoALTV 47451 An isomorphism in the cate...
rngchomffvalALTV 47452 The value of the functiona...
rngchomrnghmresALTV 47453 The value of the functiona...
rngcrescrhmALTV 47454 The category of non-unital...
rhmsubcALTVlem1 47455 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 47456 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 47457 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 47458 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 47459 According to ~ df-subc , t...
rhmsubcALTVcat 47460 The restriction of the cat...
ringcvalALTV 47463 Value of the category of r...
funcringcsetcALTV2lem1 47464 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 47465 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 47466 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 47467 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 47468 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 47469 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 47470 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 47471 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 47472 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 47473 The "natural forgetful fun...
ringcbasALTV 47474 Set of objects of the cate...
ringchomfvalALTV 47475 Set of arrows of the categ...
ringchomALTV 47476 Set of arrows of the categ...
elringchomALTV 47477 A morphism of rings is a f...
ringccofvalALTV 47478 Composition in the categor...
ringccoALTV 47479 Composition in the categor...
ringccatidALTV 47480 Lemma for ~ ringccatALTV ....
ringccatALTV 47481 The category of rings is a...
ringcidALTV 47482 The identity arrow in the ...
ringcsectALTV 47483 A section in the category ...
ringcinvALTV 47484 An inverse in the category...
ringcisoALTV 47485 An isomorphism in the cate...
ringcbasbasALTV 47486 An element of the base set...
funcringcsetclem1ALTV 47487 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 47488 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 47489 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 47490 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 47491 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 47492 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 47493 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 47494 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 47495 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 47496 The "natural forgetful fun...
srhmsubcALTVlem1 47497 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 47498 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 47499 According to ~ df-subc , t...
sringcatALTV 47500 The restriction of the cat...
crhmsubcALTV 47501 According to ~ df-subc , t...
cringcatALTV 47502 The restriction of the cat...
drhmsubcALTV 47503 According to ~ df-subc , t...
drngcatALTV 47504 The restriction of the cat...
fldcatALTV 47505 The restriction of the cat...
fldcALTV 47506 The restriction of the cat...
fldhmsubcALTV 47507 According to ~ df-subc , t...
opeliun2xp 47508 Membership of an ordered p...
eliunxp2 47509 Membership in a union of C...
mpomptx2 47510 Express a two-argument fun...
cbvmpox2 47511 Rule to change the bound v...
dmmpossx2 47512 The domain of a mapping is...
mpoexxg2 47513 Existence of an operation ...
ovmpordxf 47514 Value of an operation give...
ovmpordx 47515 Value of an operation give...
ovmpox2 47516 The value of an operation ...
fdmdifeqresdif 47517 The restriction of a condi...
offvalfv 47518 The function operation exp...
ofaddmndmap 47519 The function operation app...
mapsnop 47520 A singleton of an ordered ...
fprmappr 47521 A function with a domain o...
mapprop 47522 An unordered pair containi...
ztprmneprm 47523 A prime is not an integer ...
2t6m3t4e0 47524 2 times 6 minus 3 times 4 ...
ssnn0ssfz 47525 For any finite subset of `...
nn0sumltlt 47526 If the sum of two nonnegat...
bcpascm1 47527 Pascal's rule for the bino...
altgsumbc 47528 The sum of binomial coeffi...
altgsumbcALT 47529 Alternate proof of ~ altgs...
zlmodzxzlmod 47530 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 47531 An element of the (base se...
zlmodzxz0 47532 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 47533 The scalar multiplication ...
zlmodzxzadd 47534 The addition of the ` ZZ `...
zlmodzxzsubm 47535 The subtraction of the ` Z...
zlmodzxzsub 47536 The subtraction of the ` Z...
mgpsumunsn 47537 Extract a summand/factor f...
mgpsumz 47538 If the group sum for the m...
mgpsumn 47539 If the group sum for the m...
exple2lt6 47540 A nonnegative integer to t...
pgrple2abl 47541 Every symmetric group on a...
pgrpgt2nabl 47542 Every symmetric group on a...
invginvrid 47543 Identity for a multiplicat...
rmsupp0 47544 The support of a mapping o...
domnmsuppn0 47545 The support of a mapping o...
rmsuppss 47546 The support of a mapping o...
mndpsuppss 47547 The support of a mapping o...
scmsuppss 47548 The support of a mapping o...
rmsuppfi 47549 The support of a mapping o...
rmfsupp 47550 A mapping of a multiplicat...
mndpsuppfi 47551 The support of a mapping o...
mndpfsupp 47552 A mapping of a scalar mult...
scmsuppfi 47553 The support of a mapping o...
scmfsupp 47554 A mapping of a scalar mult...
suppmptcfin 47555 The support of a mapping w...
mptcfsupp 47556 A mapping with value 0 exc...
fsuppmptdmf 47557 A mapping with a finite do...
lmodvsmdi 47558 Multiple distributive law ...
gsumlsscl 47559 Closure of a group sum in ...
assaascl0 47560 The scalar 0 embedded into...
assaascl1 47561 The scalar 1 embedded into...
ply1vr1smo 47562 The variable in a polynomi...
ply1sclrmsm 47563 The ring multiplication of...
coe1id 47564 Coefficient vector of the ...
coe1sclmulval 47565 The value of the coefficie...
ply1mulgsumlem1 47566 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 47567 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 47568 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 47569 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 47570 The product of two polynom...
evl1at0 47571 Polynomial evaluation for ...
evl1at1 47572 Polynomial evaluation for ...
linply1 47573 A term of the form ` x - C...
lineval 47574 A term of the form ` x - C...
linevalexample 47575 The polynomial ` x - 3 ` o...
dmatALTval 47580 The algebra of ` N ` x ` N...
dmatALTbas 47581 The base set of the algebr...
dmatALTbasel 47582 An element of the base set...
dmatbas 47583 The set of all ` N ` x ` N...
lincop 47588 A linear combination as op...
lincval 47589 The value of a linear comb...
dflinc2 47590 Alternative definition of ...
lcoop 47591 A linear combination as op...
lcoval 47592 The value of a linear comb...
lincfsuppcl 47593 A linear combination of ve...
linccl 47594 A linear combination of ve...
lincval0 47595 The value of an empty line...
lincvalsng 47596 The linear combination ove...
lincvalsn 47597 The linear combination ove...
lincvalpr 47598 The linear combination ove...
lincval1 47599 The linear combination ove...
lcosn0 47600 Properties of a linear com...
lincvalsc0 47601 The linear combination whe...
lcoc0 47602 Properties of a linear com...
linc0scn0 47603 If a set contains the zero...
lincdifsn 47604 A vector is a linear combi...
linc1 47605 A vector is a linear combi...
lincellss 47606 A linear combination of a ...
lco0 47607 The set of empty linear co...
lcoel0 47608 The zero vector is always ...
lincsum 47609 The sum of two linear comb...
lincscm 47610 A linear combinations mult...
lincsumcl 47611 The sum of two linear comb...
lincscmcl 47612 The multiplication of a li...
lincsumscmcl 47613 The sum of a linear combin...
lincolss 47614 According to the statement...
ellcoellss 47615 Every linear combination o...
lcoss 47616 A set of vectors of a modu...
lspsslco 47617 Lemma for ~ lspeqlco . (C...
lcosslsp 47618 Lemma for ~ lspeqlco . (C...
lspeqlco 47619 Equivalence of a _span_ of...
rellininds 47623 The class defining the rel...
linindsv 47625 The classes of the module ...
islininds 47626 The property of being a li...
linindsi 47627 The implications of being ...
linindslinci 47628 The implications of being ...
islinindfis 47629 The property of being a li...
islinindfiss 47630 The property of being a li...
linindscl 47631 A linearly independent set...
lindepsnlininds 47632 A linearly dependent subse...
islindeps 47633 The property of being a li...
lincext1 47634 Property 1 of an extension...
lincext2 47635 Property 2 of an extension...
lincext3 47636 Property 3 of an extension...
lindslinindsimp1 47637 Implication 1 for ~ lindsl...
lindslinindimp2lem1 47638 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 47639 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 47640 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 47641 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 47642 Lemma 5 for ~ lindslininds...
lindslinindsimp2 47643 Implication 2 for ~ lindsl...
lindslininds 47644 Equivalence of definitions...
linds0 47645 The empty set is always a ...
el0ldep 47646 A set containing the zero ...
el0ldepsnzr 47647 A set containing the zero ...
lindsrng01 47648 Any subset of a module is ...
lindszr 47649 Any subset of a module ove...
snlindsntorlem 47650 Lemma for ~ snlindsntor . ...
snlindsntor 47651 A singleton is linearly in...
ldepsprlem 47652 Lemma for ~ ldepspr . (Co...
ldepspr 47653 If a vector is a scalar mu...
lincresunit3lem3 47654 Lemma 3 for ~ lincresunit3...
lincresunitlem1 47655 Lemma 1 for properties of ...
lincresunitlem2 47656 Lemma for properties of a ...
lincresunit1 47657 Property 1 of a specially ...
lincresunit2 47658 Property 2 of a specially ...
lincresunit3lem1 47659 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 47660 Lemma 2 for ~ lincresunit3...
lincresunit3 47661 Property 3 of a specially ...
lincreslvec3 47662 Property 3 of a specially ...
islindeps2 47663 Conditions for being a lin...
islininds2 47664 Implication of being a lin...
isldepslvec2 47665 Alternative definition of ...
lindssnlvec 47666 A singleton not containing...
lmod1lem1 47667 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 47668 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 47669 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 47670 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 47671 Lemma 5 for ~ lmod1 . (Co...
lmod1 47672 The (smallest) structure r...
lmod1zr 47673 The (smallest) structure r...
lmod1zrnlvec 47674 There is a (left) module (...
lmodn0 47675 Left modules exist. (Cont...
zlmodzxzequa 47676 Example of an equation wit...
zlmodzxznm 47677 Example of a linearly depe...
zlmodzxzldeplem 47678 A and B are not equal. (C...
zlmodzxzequap 47679 Example of an equation wit...
zlmodzxzldeplem1 47680 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 47681 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 47682 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 47683 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 47684 { A , B } is a linearly de...
ldepsnlinclem1 47685 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 47686 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 47687 The class of all (left) ve...
ldepsnlinc 47688 The reverse implication of...
ldepslinc 47689 For (left) vector spaces, ...
suppdm 47690 If the range of a function...
eluz2cnn0n1 47691 An integer greater than 1 ...
divge1b 47692 The ratio of a real number...
divgt1b 47693 The ratio of a real number...
ltsubaddb 47694 Equivalence for the "less ...
ltsubsubb 47695 Equivalence for the "less ...
ltsubadd2b 47696 Equivalence for the "less ...
divsub1dir 47697 Distribution of division o...
expnegico01 47698 An integer greater than 1 ...
elfzolborelfzop1 47699 An element of a half-open ...
pw2m1lepw2m1 47700 2 to the power of a positi...
zgtp1leeq 47701 If an integer is between a...
flsubz 47702 An integer can be moved in...
fldivmod 47703 Expressing the floor of a ...
mod0mul 47704 If an integer is 0 modulo ...
modn0mul 47705 If an integer is not 0 mod...
m1modmmod 47706 An integer decreased by 1 ...
difmodm1lt 47707 The difference between an ...
nn0onn0ex 47708 For each odd nonnegative i...
nn0enn0ex 47709 For each even nonnegative ...
nnennex 47710 For each even positive int...
nneop 47711 A positive integer is even...
nneom 47712 A positive integer is even...
nn0eo 47713 A nonnegative integer is e...
nnpw2even 47714 2 to the power of a positi...
zefldiv2 47715 The floor of an even integ...
zofldiv2 47716 The floor of an odd intege...
nn0ofldiv2 47717 The floor of an odd nonneg...
flnn0div2ge 47718 The floor of a positive in...
flnn0ohalf 47719 The floor of the half of a...
logcxp0 47720 Logarithm of a complex pow...
regt1loggt0 47721 The natural logarithm for ...
fdivval 47724 The quotient of two functi...
fdivmpt 47725 The quotient of two functi...
fdivmptf 47726 The quotient of two functi...
refdivmptf 47727 The quotient of two functi...
fdivpm 47728 The quotient of two functi...
refdivpm 47729 The quotient of two functi...
fdivmptfv 47730 The function value of a qu...
refdivmptfv 47731 The function value of a qu...
bigoval 47734 Set of functions of order ...
elbigofrcl 47735 Reverse closure of the "bi...
elbigo 47736 Properties of a function o...
elbigo2 47737 Properties of a function o...
elbigo2r 47738 Sufficient condition for a...
elbigof 47739 A function of order G(x) i...
elbigodm 47740 The domain of a function o...
elbigoimp 47741 The defining property of a...
elbigolo1 47742 A function (into the posit...
rege1logbrege0 47743 The general logarithm, wit...
rege1logbzge0 47744 The general logarithm, wit...
fllogbd 47745 A real number is between t...
relogbmulbexp 47746 The logarithm of the produ...
relogbdivb 47747 The logarithm of the quoti...
logbge0b 47748 The logarithm of a number ...
logblt1b 47749 The logarithm of a number ...
fldivexpfllog2 47750 The floor of a positive re...
nnlog2ge0lt1 47751 A positive integer is 1 if...
logbpw2m1 47752 The floor of the binary lo...
fllog2 47753 The floor of the binary lo...
blenval 47756 The binary length of an in...
blen0 47757 The binary length of 0. (...
blenn0 47758 The binary length of a "nu...
blenre 47759 The binary length of a pos...
blennn 47760 The binary length of a pos...
blennnelnn 47761 The binary length of a pos...
blennn0elnn 47762 The binary length of a non...
blenpw2 47763 The binary length of a pow...
blenpw2m1 47764 The binary length of a pow...
nnpw2blen 47765 A positive integer is betw...
nnpw2blenfzo 47766 A positive integer is betw...
nnpw2blenfzo2 47767 A positive integer is eith...
nnpw2pmod 47768 Every positive integer can...
blen1 47769 The binary length of 1. (...
blen2 47770 The binary length of 2. (...
nnpw2p 47771 Every positive integer can...
nnpw2pb 47772 A number is a positive int...
blen1b 47773 The binary length of a non...
blennnt2 47774 The binary length of a pos...
nnolog2flm1 47775 The floor of the binary lo...
blennn0em1 47776 The binary length of the h...
blennngt2o2 47777 The binary length of an od...
blengt1fldiv2p1 47778 The binary length of an in...
blennn0e2 47779 The binary length of an ev...
digfval 47782 Operation to obtain the ` ...
digval 47783 The ` K ` th digit of a no...
digvalnn0 47784 The ` K ` th digit of a no...
nn0digval 47785 The ` K ` th digit of a no...
dignn0fr 47786 The digits of the fraction...
dignn0ldlem 47787 Lemma for ~ dignnld . (Co...
dignnld 47788 The leading digits of a po...
dig2nn0ld 47789 The leading digits of a po...
dig2nn1st 47790 The first (relevant) digit...
dig0 47791 All digits of 0 are 0. (C...
digexp 47792 The ` K ` th digit of a po...
dig1 47793 All but one digits of 1 ar...
0dig1 47794 The ` 0 ` th digit of 1 is...
0dig2pr01 47795 The integers 0 and 1 corre...
dig2nn0 47796 A digit of a nonnegative i...
0dig2nn0e 47797 The last bit of an even in...
0dig2nn0o 47798 The last bit of an odd int...
dig2bits 47799 The ` K ` th digit of a no...
dignn0flhalflem1 47800 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 47801 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 47802 The digits of the half of ...
dignn0flhalf 47803 The digits of the rounded ...
nn0sumshdiglemA 47804 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 47805 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 47806 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 47807 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 47808 A nonnegative integer can ...
nn0mulfsum 47809 Trivial algorithm to calcu...
nn0mullong 47810 Standard algorithm (also k...
naryfval 47813 The set of the n-ary (endo...
naryfvalixp 47814 The set of the n-ary (endo...
naryfvalel 47815 An n-ary (endo)function on...
naryrcl 47816 Reverse closure for n-ary ...
naryfvalelfv 47817 The value of an n-ary (end...
naryfvalelwrdf 47818 An n-ary (endo)function on...
0aryfvalel 47819 A nullary (endo)function o...
0aryfvalelfv 47820 The value of a nullary (en...
1aryfvalel 47821 A unary (endo)function on ...
fv1arycl 47822 Closure of a unary (endo)f...
1arympt1 47823 A unary (endo)function in ...
1arympt1fv 47824 The value of a unary (endo...
1arymaptfv 47825 The value of the mapping o...
1arymaptf 47826 The mapping of unary (endo...
1arymaptf1 47827 The mapping of unary (endo...
1arymaptfo 47828 The mapping of unary (endo...
1arymaptf1o 47829 The mapping of unary (endo...
1aryenef 47830 The set of unary (endo)fun...
1aryenefmnd 47831 The set of unary (endo)fun...
2aryfvalel 47832 A binary (endo)function on...
fv2arycl 47833 Closure of a binary (endo)...
2arympt 47834 A binary (endo)function in...
2arymptfv 47835 The value of a binary (end...
2arymaptfv 47836 The value of the mapping o...
2arymaptf 47837 The mapping of binary (end...
2arymaptf1 47838 The mapping of binary (end...
2arymaptfo 47839 The mapping of binary (end...
2arymaptf1o 47840 The mapping of binary (end...
2aryenef 47841 The set of binary (endo)fu...
itcoval 47846 The value of the function ...
itcoval0 47847 A function iterated zero t...
itcoval1 47848 A function iterated once. ...
itcoval2 47849 A function iterated twice....
itcoval3 47850 A function iterated three ...
itcoval0mpt 47851 A mapping iterated zero ti...
itcovalsuc 47852 The value of the function ...
itcovalsucov 47853 The value of the function ...
itcovalendof 47854 The n-th iterate of an end...
itcovalpclem1 47855 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 47856 Lemma 2 for ~ itcovalpc : ...
itcovalpc 47857 The value of the function ...
itcovalt2lem2lem1 47858 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 47859 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 47860 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 47861 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 47862 The value of the function ...
ackvalsuc1mpt 47863 The Ackermann function at ...
ackvalsuc1 47864 The Ackermann function at ...
ackval0 47865 The Ackermann function at ...
ackval1 47866 The Ackermann function at ...
ackval2 47867 The Ackermann function at ...
ackval3 47868 The Ackermann function at ...
ackendofnn0 47869 The Ackermann function at ...
ackfnnn0 47870 The Ackermann function at ...
ackval0val 47871 The Ackermann function at ...
ackvalsuc0val 47872 The Ackermann function at ...
ackvalsucsucval 47873 The Ackermann function at ...
ackval0012 47874 The Ackermann function at ...
ackval1012 47875 The Ackermann function at ...
ackval2012 47876 The Ackermann function at ...
ackval3012 47877 The Ackermann function at ...
ackval40 47878 The Ackermann function at ...
ackval41a 47879 The Ackermann function at ...
ackval41 47880 The Ackermann function at ...
ackval42 47881 The Ackermann function at ...
ackval42a 47882 The Ackermann function at ...
ackval50 47883 The Ackermann function at ...
fv1prop 47884 The function value of unor...
fv2prop 47885 The function value of unor...
submuladdmuld 47886 Transformation of a sum of...
affinecomb1 47887 Combination of two real af...
affinecomb2 47888 Combination of two real af...
affineid 47889 Identity of an affine comb...
1subrec1sub 47890 Subtract the reciprocal of...
resum2sqcl 47891 The sum of two squares of ...
resum2sqgt0 47892 The sum of the square of a...
resum2sqrp 47893 The sum of the square of a...
resum2sqorgt0 47894 The sum of the square of t...
reorelicc 47895 Membership in and outside ...
rrx2pxel 47896 The x-coordinate of a poin...
rrx2pyel 47897 The y-coordinate of a poin...
prelrrx2 47898 An unordered pair of order...
prelrrx2b 47899 An unordered pair of order...
rrx2pnecoorneor 47900 If two different points ` ...
rrx2pnedifcoorneor 47901 If two different points ` ...
rrx2pnedifcoorneorr 47902 If two different points ` ...
rrx2xpref1o 47903 There is a bijection betwe...
rrx2xpreen 47904 The set of points in the t...
rrx2plord 47905 The lexicographical orderi...
rrx2plord1 47906 The lexicographical orderi...
rrx2plord2 47907 The lexicographical orderi...
rrx2plordisom 47908 The set of points in the t...
rrx2plordso 47909 The lexicographical orderi...
ehl2eudisval0 47910 The Euclidean distance of ...
ehl2eudis0lt 47911 An upper bound of the Eucl...
lines 47916 The lines passing through ...
line 47917 The line passing through t...
rrxlines 47918 Definition of lines passin...
rrxline 47919 The line passing through t...
rrxlinesc 47920 Definition of lines passin...
rrxlinec 47921 The line passing through t...
eenglngeehlnmlem1 47922 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 47923 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 47924 The line definition in the...
rrx2line 47925 The line passing through t...
rrx2vlinest 47926 The vertical line passing ...
rrx2linest 47927 The line passing through t...
rrx2linesl 47928 The line passing through t...
rrx2linest2 47929 The line passing through t...
elrrx2linest2 47930 The line passing through t...
spheres 47931 The spheres for given cent...
sphere 47932 A sphere with center ` X `...
rrxsphere 47933 The sphere with center ` M...
2sphere 47934 The sphere with center ` M...
2sphere0 47935 The sphere around the orig...
line2ylem 47936 Lemma for ~ line2y . This...
line2 47937 Example for a line ` G ` p...
line2xlem 47938 Lemma for ~ line2x . This...
line2x 47939 Example for a horizontal l...
line2y 47940 Example for a vertical lin...
itsclc0lem1 47941 Lemma for theorems about i...
itsclc0lem2 47942 Lemma for theorems about i...
itsclc0lem3 47943 Lemma for theorems about i...
itscnhlc0yqe 47944 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 47945 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 47946 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 47947 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 47948 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 47949 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 47950 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 47951 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 47952 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 47953 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 47954 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 47955 Lemma for ~ itsclc0 . Sol...
itsclc0 47956 The intersection points of...
itsclc0b 47957 The intersection points of...
itsclinecirc0 47958 The intersection points of...
itsclinecirc0b 47959 The intersection points of...
itsclinecirc0in 47960 The intersection points of...
itsclquadb 47961 Quadratic equation for the...
itsclquadeu 47962 Quadratic equation for the...
2itscplem1 47963 Lemma 1 for ~ 2itscp . (C...
2itscplem2 47964 Lemma 2 for ~ 2itscp . (C...
2itscplem3 47965 Lemma D for ~ 2itscp . (C...
2itscp 47966 A condition for a quadrati...
itscnhlinecirc02plem1 47967 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 47968 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 47969 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 47970 Intersection of a nonhoriz...
inlinecirc02plem 47971 Lemma for ~ inlinecirc02p ...
inlinecirc02p 47972 Intersection of a line wit...
inlinecirc02preu 47973 Intersection of a line wit...
pm4.71da 47974 Deduction converting a bic...
logic1 47975 Distribution of implicatio...
logic1a 47976 Variant of ~ logic1 . (Co...
logic2 47977 Variant of ~ logic1 . (Co...
pm5.32dav 47978 Distribution of implicatio...
pm5.32dra 47979 Reverse distribution of im...
exp12bd 47980 The import-export theorem ...
mpbiran3d 47981 Equivalence with a conjunc...
mpbiran4d 47982 Equivalence with a conjunc...
dtrucor3 47983 An example of how ~ ax-5 w...
ralbidb 47984 Formula-building rule for ...
ralbidc 47985 Formula-building rule for ...
r19.41dv 47986 A complex deduction form o...
rmotru 47987 Two ways of expressing "at...
reutru 47988 Two ways of expressing "ex...
reutruALT 47989 Alternate proof for ~ reut...
ssdisjd 47990 Subset preserves disjointn...
ssdisjdr 47991 Subset preserves disjointn...
disjdifb 47992 Relative complement is ant...
predisj 47993 Preimages of disjoint sets...
vsn 47994 The singleton of the unive...
mosn 47995 "At most one" element in a...
mo0 47996 "At most one" element in a...
mosssn 47997 "At most one" element in a...
mo0sn 47998 Two ways of expressing "at...
mosssn2 47999 Two ways of expressing "at...
unilbss 48000 Superclass of the greatest...
inpw 48001 Two ways of expressing a c...
mof0 48002 There is at most one funct...
mof02 48003 A variant of ~ mof0 . (Co...
mof0ALT 48004 Alternate proof for ~ mof0...
eufsnlem 48005 There is exactly one funct...
eufsn 48006 There is exactly one funct...
eufsn2 48007 There is exactly one funct...
mofsn 48008 There is at most one funct...
mofsn2 48009 There is at most one funct...
mofsssn 48010 There is at most one funct...
mofmo 48011 There is at most one funct...
mofeu 48012 The uniqueness of a functi...
elfvne0 48013 If a function value has a ...
fdomne0 48014 A function with non-empty ...
f1sn2g 48015 A function that maps a sin...
f102g 48016 A function that maps the e...
f1mo 48017 A function that maps a set...
f002 48018 A function with an empty c...
map0cor 48019 A function exists iff an e...
fvconstr 48020 Two ways of expressing ` A...
fvconstrn0 48021 Two ways of expressing ` A...
fvconstr2 48022 Two ways of expressing ` A...
fvconst0ci 48023 A constant function's valu...
fvconstdomi 48024 A constant function's valu...
f1omo 48025 There is at most one eleme...
f1omoALT 48026 There is at most one eleme...
iccin 48027 Intersection of two closed...
iccdisj2 48028 If the upper bound of one ...
iccdisj 48029 If the upper bound of one ...
mreuniss 48030 The union of a collection ...
clduni 48031 The union of closed sets i...
opncldeqv 48032 Conditions on open sets ar...
opndisj 48033 Two ways of saying that tw...
clddisj 48034 Two ways of saying that tw...
neircl 48035 Reverse closure of the nei...
opnneilem 48036 Lemma factoring out common...
opnneir 48037 If something is true for a...
opnneirv 48038 A variant of ~ opnneir wit...
opnneilv 48039 The converse of ~ opnneir ...
opnneil 48040 A variant of ~ opnneilv . ...
opnneieqv 48041 The equivalence between ne...
opnneieqvv 48042 The equivalence between ne...
restcls2lem 48043 A closed set in a subspace...
restcls2 48044 A closed set in a subspace...
restclsseplem 48045 Lemma for ~ restclssep . ...
restclssep 48046 Two disjoint closed sets i...
cnneiima 48047 Given a continuous functio...
iooii 48048 Open intervals are open se...
icccldii 48049 Closed intervals are close...
i0oii 48050 ` ( 0 [,) A ) ` is open in...
io1ii 48051 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 48052 Lemma for ~ sepnsepo . (C...
sepnsepolem2 48053 Open neighborhood and neig...
sepnsepo 48054 Open neighborhood and neig...
sepdisj 48055 Separated sets are disjoin...
seposep 48056 If two sets are separated ...
sepcsepo 48057 If two sets are separated ...
sepfsepc 48058 If two sets are separated ...
seppsepf 48059 If two sets are precisely ...
seppcld 48060 If two sets are precisely ...
isnrm4 48061 A topological space is nor...
dfnrm2 48062 A topological space is nor...
dfnrm3 48063 A topological space is nor...
iscnrm3lem1 48064 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 48065 Lemma for ~ iscnrm3 provin...
iscnrm3lem3 48066 Lemma for ~ iscnrm3lem4 . ...
iscnrm3lem4 48067 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 48068 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 48069 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 48070 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 48071 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 48072 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 48073 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 48074 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 48075 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 48076 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 48077 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 48078 Lemma for ~ iscnrm3r . Di...
iscnrm3r 48079 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 48080 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 48081 Lemma for ~ iscnrm3l . If...
iscnrm3l 48082 Lemma for ~ iscnrm3 . Giv...
iscnrm3 48083 A completely normal topolo...
iscnrm3v 48084 A topology is completely n...
iscnrm4 48085 A completely normal topolo...
isprsd 48086 Property of being a preord...
lubeldm2 48087 Member of the domain of th...
glbeldm2 48088 Member of the domain of th...
lubeldm2d 48089 Member of the domain of th...
glbeldm2d 48090 Member of the domain of th...
lubsscl 48091 If a subset of ` S ` conta...
glbsscl 48092 If a subset of ` S ` conta...
lubprlem 48093 Lemma for ~ lubprdm and ~ ...
lubprdm 48094 The set of two comparable ...
lubpr 48095 The LUB of the set of two ...
glbprlem 48096 Lemma for ~ glbprdm and ~ ...
glbprdm 48097 The set of two comparable ...
glbpr 48098 The GLB of the set of two ...
joindm2 48099 The join of any two elemen...
joindm3 48100 The join of any two elemen...
meetdm2 48101 The meet of any two elemen...
meetdm3 48102 The meet of any two elemen...
posjidm 48103 Poset join is idempotent. ...
posmidm 48104 Poset meet is idempotent. ...
toslat 48105 A toset is a lattice. (Co...
isclatd 48106 The predicate "is a comple...
intubeu 48107 Existential uniqueness of ...
unilbeu 48108 Existential uniqueness of ...
ipolublem 48109 Lemma for ~ ipolubdm and ~...
ipolubdm 48110 The domain of the LUB of t...
ipolub 48111 The LUB of the inclusion p...
ipoglblem 48112 Lemma for ~ ipoglbdm and ~...
ipoglbdm 48113 The domain of the GLB of t...
ipoglb 48114 The GLB of the inclusion p...
ipolub0 48115 The LUB of the empty set i...
ipolub00 48116 The LUB of the empty set i...
ipoglb0 48117 The GLB of the empty set i...
mrelatlubALT 48118 Least upper bounds in a Mo...
mrelatglbALT 48119 Greatest lower bounds in a...
mreclat 48120 A Moore space is a complet...
topclat 48121 A topology is a complete l...
toplatglb0 48122 The empty intersection in ...
toplatlub 48123 Least upper bounds in a to...
toplatglb 48124 Greatest lower bounds in a...
toplatjoin 48125 Joins in a topology are re...
toplatmeet 48126 Meets in a topology are re...
topdlat 48127 A topology is a distributi...
catprslem 48128 Lemma for ~ catprs . (Con...
catprs 48129 A preorder can be extracte...
catprs2 48130 A category equipped with t...
catprsc 48131 A construction of the preo...
catprsc2 48132 An alternate construction ...
endmndlem 48133 A diagonal hom-set in a ca...
idmon 48134 An identity arrow, or an i...
idepi 48135 An identity arrow, or an i...
funcf2lem 48136 A utility theorem for prov...
isthinc 48139 The predicate "is a thin c...
isthinc2 48140 A thin category is a categ...
isthinc3 48141 A thin category is a categ...
thincc 48142 A thin category is a categ...
thinccd 48143 A thin category is a categ...
thincssc 48144 A thin category is a categ...
isthincd2lem1 48145 Lemma for ~ isthincd2 and ...
thincmo2 48146 Morphisms in the same hom-...
thincmo 48147 There is at most one morph...
thincmoALT 48148 Alternate proof for ~ thin...
thincmod 48149 At most one morphism in ea...
thincn0eu 48150 In a thin category, a hom-...
thincid 48151 In a thin category, a morp...
thincmon 48152 In a thin category, all mo...
thincepi 48153 In a thin category, all mo...
isthincd2lem2 48154 Lemma for ~ isthincd2 . (...
isthincd 48155 The predicate "is a thin c...
isthincd2 48156 The predicate " ` C ` is a...
oppcthin 48157 The opposite category of a...
subthinc 48158 A subcategory of a thin ca...
functhinclem1 48159 Lemma for ~ functhinc . G...
functhinclem2 48160 Lemma for ~ functhinc . (...
functhinclem3 48161 Lemma for ~ functhinc . T...
functhinclem4 48162 Lemma for ~ functhinc . O...
functhinc 48163 A functor to a thin catego...
fullthinc 48164 A functor to a thin catego...
fullthinc2 48165 A full functor to a thin c...
thincfth 48166 A functor from a thin cate...
thincciso 48167 Two thin categories are is...
0thincg 48168 Any structure with an empt...
0thinc 48169 The empty category (see ~ ...
indthinc 48170 An indiscrete category in ...
indthincALT 48171 An alternate proof for ~ i...
prsthinc 48172 Preordered sets as categor...
setcthin 48173 A category of sets all of ...
setc2othin 48174 The category ` ( SetCat ``...
thincsect 48175 In a thin category, one mo...
thincsect2 48176 In a thin category, ` F ` ...
thincinv 48177 In a thin category, ` F ` ...
thinciso 48178 In a thin category, ` F : ...
thinccic 48179 In a thin category, two ob...
prstcval 48182 Lemma for ~ prstcnidlem an...
prstcnidlem 48183 Lemma for ~ prstcnid and ~...
prstcnid 48184 Components other than ` Ho...
prstcbas 48185 The base set is unchanged....
prstcleval 48186 Value of the less-than-or-...
prstclevalOLD 48187 Obsolete proof of ~ prstcl...
prstcle 48188 Value of the less-than-or-...
prstcocval 48189 Orthocomplementation is un...
prstcocvalOLD 48190 Obsolete proof of ~ prstco...
prstcoc 48191 Orthocomplementation is un...
prstchomval 48192 Hom-sets of the constructe...
prstcprs 48193 The category is a preorder...
prstcthin 48194 The preordered set is equi...
prstchom 48195 Hom-sets of the constructe...
prstchom2 48196 Hom-sets of the constructe...
prstchom2ALT 48197 Hom-sets of the constructe...
postcpos 48198 The converted category is ...
postcposALT 48199 Alternate proof for ~ post...
postc 48200 The converted category is ...
mndtcval 48203 Value of the category buil...
mndtcbasval 48204 The base set of the catego...
mndtcbas 48205 The category built from a ...
mndtcob 48206 Lemma for ~ mndtchom and ~...
mndtcbas2 48207 Two objects in a category ...
mndtchom 48208 The only hom-set of the ca...
mndtcco 48209 The composition of the cat...
mndtcco2 48210 The composition of the cat...
mndtccatid 48211 Lemma for ~ mndtccat and ~...
mndtccat 48212 The function value is a ca...
mndtcid 48213 The identity morphism, or ...
grptcmon 48214 All morphisms in a categor...
grptcepi 48215 All morphisms in a categor...
nfintd 48216 Bound-variable hypothesis ...
nfiund 48217 Bound-variable hypothesis ...
nfiundg 48218 Bound-variable hypothesis ...
iunord 48219 The indexed union of a col...
iunordi 48220 The indexed union of a col...
spd 48221 Specialization deduction, ...
spcdvw 48222 A version of ~ spcdv where...
tfis2d 48223 Transfinite Induction Sche...
bnd2d 48224 Deduction form of ~ bnd2 ....
dffun3f 48225 Alternate definition of fu...
setrecseq 48228 Equality theorem for set r...
nfsetrecs 48229 Bound-variable hypothesis ...
setrec1lem1 48230 Lemma for ~ setrec1 . Thi...
setrec1lem2 48231 Lemma for ~ setrec1 . If ...
setrec1lem3 48232 Lemma for ~ setrec1 . If ...
setrec1lem4 48233 Lemma for ~ setrec1 . If ...
setrec1 48234 This is the first of two f...
setrec2fun 48235 This is the second of two ...
setrec2lem1 48236 Lemma for ~ setrec2 . The...
setrec2lem2 48237 Lemma for ~ setrec2 . The...
setrec2 48238 This is the second of two ...
setrec2v 48239 Version of ~ setrec2 with ...
setrec2mpt 48240 Version of ~ setrec2 where...
setis 48241 Version of ~ setrec2 expre...
elsetrecslem 48242 Lemma for ~ elsetrecs . A...
elsetrecs 48243 A set ` A ` is an element ...
setrecsss 48244 The ` setrecs ` operator r...
setrecsres 48245 A recursively generated cl...
vsetrec 48246 Construct ` _V ` using set...
0setrec 48247 If a function sends the em...
onsetreclem1 48248 Lemma for ~ onsetrec . (C...
onsetreclem2 48249 Lemma for ~ onsetrec . (C...
onsetreclem3 48250 Lemma for ~ onsetrec . (C...
onsetrec 48251 Construct ` On ` using set...
elpglem1 48254 Lemma for ~ elpg . (Contr...
elpglem2 48255 Lemma for ~ elpg . (Contr...
elpglem3 48256 Lemma for ~ elpg . (Contr...
elpg 48257 Membership in the class of...
pgindlem 48258 Lemma for ~ pgind . (Cont...
pgindnf 48259 Version of ~ pgind with ex...
pgind 48260 Induction on partizan game...
sbidd 48261 An identity theorem for su...
sbidd-misc 48262 An identity theorem for su...
gte-lte 48267 Simple relationship betwee...
gt-lt 48268 Simple relationship betwee...
gte-lteh 48269 Relationship between ` <_ ...
gt-lth 48270 Relationship between ` < `...
ex-gt 48271 Simple example of ` > ` , ...
ex-gte 48272 Simple example of ` >_ ` ,...
sinhval-named 48279 Value of the named sinh fu...
coshval-named 48280 Value of the named cosh fu...
tanhval-named 48281 Value of the named tanh fu...
sinh-conventional 48282 Conventional definition of...
sinhpcosh 48283 Prove that ` ( sinh `` A )...
secval 48290 Value of the secant functi...
cscval 48291 Value of the cosecant func...
cotval 48292 Value of the cotangent fun...
seccl 48293 The closure of the secant ...
csccl 48294 The closure of the cosecan...
cotcl 48295 The closure of the cotange...
reseccl 48296 The closure of the secant ...
recsccl 48297 The closure of the cosecan...
recotcl 48298 The closure of the cotange...
recsec 48299 The reciprocal of secant i...
reccsc 48300 The reciprocal of cosecant...
reccot 48301 The reciprocal of cotangen...
rectan 48302 The reciprocal of tangent ...
sec0 48303 The value of the secant fu...
onetansqsecsq 48304 Prove the tangent squared ...
cotsqcscsq 48305 Prove the tangent squared ...
ifnmfalse 48306 If A is not a member of B,...
logb2aval 48307 Define the value of the ` ...
comraddi 48314 Commute RHS addition. See...
mvlraddi 48315 Move the right term in a s...
mvrladdi 48316 Move the left term in a su...
assraddsubi 48317 Associate RHS addition-sub...
joinlmuladdmuli 48318 Join AB+CB into (A+C) on L...
joinlmulsubmuld 48319 Join AB-CB into (A-C) on L...
joinlmulsubmuli 48320 Join AB-CB into (A-C) on L...
mvlrmuld 48321 Move the right term in a p...
mvlrmuli 48322 Move the right term in a p...
i2linesi 48323 Solve for the intersection...
i2linesd 48324 Solve for the intersection...
alimp-surprise 48325 Demonstrate that when usin...
alimp-no-surprise 48326 There is no "surprise" in ...
empty-surprise 48327 Demonstrate that when usin...
empty-surprise2 48328 "Prove" that false is true...
eximp-surprise 48329 Show what implication insi...
eximp-surprise2 48330 Show that "there exists" w...
alsconv 48335 There is an equivalence be...
alsi1d 48336 Deduction rule: Given "al...
alsi2d 48337 Deduction rule: Given "al...
alsc1d 48338 Deduction rule: Given "al...
alsc2d 48339 Deduction rule: Given "al...
alscn0d 48340 Deduction rule: Given "al...
alsi-no-surprise 48341 Demonstrate that there is ...
5m4e1 48342 Prove that 5 - 4 = 1. (Co...
2p2ne5 48343 Prove that ` 2 + 2 =/= 5 `...
resolution 48344 Resolution rule. This is ...
testable 48345 In classical logic all wff...
aacllem 48346 Lemma for other theorems a...
amgmwlem 48347 Weighted version of ~ amgm...
amgmlemALT 48348 Alternate proof of ~ amgml...
amgmw2d 48349 Weighted arithmetic-geomet...
young2d 48350 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator