MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01d 189 Deduction based on reducti...
pm2.6 190 Theorem *2.6 of [Whitehead...
pm2.61 191 Theorem *2.61 of [Whitehea...
pm2.65 192 Theorem *2.65 of [Whitehea...
pm2.65i 193 Inference for proof by con...
pm2.21dd 194 A contradiction implies an...
pm2.65d 195 Deduction for proof by con...
mto 196 The rule of modus tollens....
mtod 197 Modus tollens deduction. ...
mtoi 198 Modus tollens inference. ...
mt2 199 A rule similar to modus to...
mt3 200 A rule similar to modus to...
peirce 201 Peirce's axiom. A non-int...
looinv 202 The Inversion Axiom of the...
bijust0 203 A self-implication (see ~ ...
bijust 204 Theorem used to justify th...
impbi 207 Property of the biconditio...
impbii 208 Infer an equivalence from ...
impbidd 209 Deduce an equivalence from...
impbid21d 210 Deduce an equivalence from...
impbid 211 Deduce an equivalence from...
dfbi1 212 Relate the biconditional c...
dfbi1ALT 213 Alternate proof of ~ dfbi1...
biimp 214 Property of the biconditio...
biimpi 215 Infer an implication from ...
sylbi 216 A mixed syllogism inferenc...
sylib 217 A mixed syllogism inferenc...
sylbb 218 A mixed syllogism inferenc...
biimpr 219 Property of the biconditio...
bicom1 220 Commutative law for the bi...
bicom 221 Commutative law for the bi...
bicomd 222 Commute two sides of a bic...
bicomi 223 Inference from commutative...
impbid1 224 Infer an equivalence from ...
impbid2 225 Infer an equivalence from ...
impcon4bid 226 A variation on ~ impbid wi...
biimpri 227 Infer a converse implicati...
biimpd 228 Deduce an implication from...
mpbi 229 An inference from a bicond...
mpbir 230 An inference from a bicond...
mpbid 231 A deduction from a bicondi...
mpbii 232 An inference from a nested...
sylibr 233 A mixed syllogism inferenc...
sylbir 234 A mixed syllogism inferenc...
sylbbr 235 A mixed syllogism inferenc...
sylbb1 236 A mixed syllogism inferenc...
sylbb2 237 A mixed syllogism inferenc...
sylibd 238 A syllogism deduction. (C...
sylbid 239 A syllogism deduction. (C...
mpbidi 240 A deduction from a bicondi...
biimtrid 241 A mixed syllogism inferenc...
biimtrrid 242 A mixed syllogism inferenc...
imbitrid 243 A mixed syllogism inferenc...
syl5ibcom 244 A mixed syllogism inferenc...
imbitrrid 245 A mixed syllogism inferenc...
syl5ibrcom 246 A mixed syllogism inferenc...
biimprd 247 Deduce a converse implicat...
biimpcd 248 Deduce a commuted implicat...
biimprcd 249 Deduce a converse commuted...
imbitrdi 250 A mixed syllogism inferenc...
imbitrrdi 251 A mixed syllogism inferenc...
biimtrdi 252 A mixed syllogism inferenc...
syl6bi 253 A mixed syllogism inferenc...
syl6bir 254 A mixed syllogism inferenc...
syl7bi 255 A mixed syllogism inferenc...
syl8ib 256 A syllogism rule of infere...
mpbird 257 A deduction from a bicondi...
mpbiri 258 An inference from a nested...
sylibrd 259 A syllogism deduction. (C...
sylbird 260 A syllogism deduction. (C...
biid 261 Principle of identity for ...
biidd 262 Principle of identity with...
pm5.1im 263 Two propositions are equiv...
2th 264 Two truths are equivalent....
2thd 265 Two truths are equivalent....
monothetic 266 Two self-implications (see...
ibi 267 Inference that converts a ...
ibir 268 Inference that converts a ...
ibd 269 Deduction that converts a ...
pm5.74 270 Distribution of implicatio...
pm5.74i 271 Distribution of implicatio...
pm5.74ri 272 Distribution of implicatio...
pm5.74d 273 Distribution of implicatio...
pm5.74rd 274 Distribution of implicatio...
bitri 275 An inference from transiti...
bitr2i 276 An inference from transiti...
bitr3i 277 An inference from transiti...
bitr4i 278 An inference from transiti...
bitrd 279 Deduction form of ~ bitri ...
bitr2d 280 Deduction form of ~ bitr2i...
bitr3d 281 Deduction form of ~ bitr3i...
bitr4d 282 Deduction form of ~ bitr4i...
bitrid 283 A syllogism inference from...
bitr2id 284 A syllogism inference from...
bitr3id 285 A syllogism inference from...
bitr3di 286 A syllogism inference from...
bitrdi 287 A syllogism inference from...
bitr2di 288 A syllogism inference from...
bitr4di 289 A syllogism inference from...
bitr4id 290 A syllogism inference from...
3imtr3i 291 A mixed syllogism inferenc...
3imtr4i 292 A mixed syllogism inferenc...
3imtr3d 293 More general version of ~ ...
3imtr4d 294 More general version of ~ ...
3imtr3g 295 More general version of ~ ...
3imtr4g 296 More general version of ~ ...
3bitri 297 A chained inference from t...
3bitrri 298 A chained inference from t...
3bitr2i 299 A chained inference from t...
3bitr2ri 300 A chained inference from t...
3bitr3i 301 A chained inference from t...
3bitr3ri 302 A chained inference from t...
3bitr4i 303 A chained inference from t...
3bitr4ri 304 A chained inference from t...
3bitrd 305 Deduction from transitivit...
3bitrrd 306 Deduction from transitivit...
3bitr2d 307 Deduction from transitivit...
3bitr2rd 308 Deduction from transitivit...
3bitr3d 309 Deduction from transitivit...
3bitr3rd 310 Deduction from transitivit...
3bitr4d 311 Deduction from transitivit...
3bitr4rd 312 Deduction from transitivit...
3bitr3g 313 More general version of ~ ...
3bitr4g 314 More general version of ~ ...
notnotb 315 Double negation. Theorem ...
con34b 316 A biconditional form of co...
con4bid 317 A contraposition deduction...
notbid 318 Deduction negating both si...
notbi 319 Contraposition. Theorem *...
notbii 320 Negate both sides of a log...
con4bii 321 A contraposition inference...
mtbi 322 An inference from a bicond...
mtbir 323 An inference from a bicond...
mtbid 324 A deduction from a bicondi...
mtbird 325 A deduction from a bicondi...
mtbii 326 An inference from a bicond...
mtbiri 327 An inference from a bicond...
sylnib 328 A mixed syllogism inferenc...
sylnibr 329 A mixed syllogism inferenc...
sylnbi 330 A mixed syllogism inferenc...
sylnbir 331 A mixed syllogism inferenc...
xchnxbi 332 Replacement of a subexpres...
xchnxbir 333 Replacement of a subexpres...
xchbinx 334 Replacement of a subexpres...
xchbinxr 335 Replacement of a subexpres...
imbi2i 336 Introduce an antecedent to...
bibi2i 337 Inference adding a bicondi...
bibi1i 338 Inference adding a bicondi...
bibi12i 339 The equivalence of two equ...
imbi2d 340 Deduction adding an antece...
imbi1d 341 Deduction adding a consequ...
bibi2d 342 Deduction adding a bicondi...
bibi1d 343 Deduction adding a bicondi...
imbi12d 344 Deduction joining two equi...
bibi12d 345 Deduction joining two equi...
imbi12 346 Closed form of ~ imbi12i ....
imbi1 347 Theorem *4.84 of [Whitehea...
imbi2 348 Theorem *4.85 of [Whitehea...
imbi1i 349 Introduce a consequent to ...
imbi12i 350 Join two logical equivalen...
bibi1 351 Theorem *4.86 of [Whitehea...
bitr3 352 Closed nested implication ...
con2bi 353 Contraposition. Theorem *...
con2bid 354 A contraposition deduction...
con1bid 355 A contraposition deduction...
con1bii 356 A contraposition inference...
con2bii 357 A contraposition inference...
con1b 358 Contraposition. Bidirecti...
con2b 359 Contraposition. Bidirecti...
biimt 360 A wff is equivalent to its...
pm5.5 361 Theorem *5.5 of [Whitehead...
a1bi 362 Inference introducing a th...
mt2bi 363 A false consequent falsifi...
mtt 364 Modus-tollens-like theorem...
imnot 365 If a proposition is false,...
pm5.501 366 Theorem *5.501 of [Whitehe...
ibib 367 Implication in terms of im...
ibibr 368 Implication in terms of im...
tbt 369 A wff is equivalent to its...
nbn2 370 The negation of a wff is e...
bibif 371 Transfer negation via an e...
nbn 372 The negation of a wff is e...
nbn3 373 Transfer falsehood via equ...
pm5.21im 374 Two propositions are equiv...
2false 375 Two falsehoods are equival...
2falsed 376 Two falsehoods are equival...
pm5.21ni 377 Two propositions implying ...
pm5.21nii 378 Eliminate an antecedent im...
pm5.21ndd 379 Eliminate an antecedent im...
bija 380 Combine antecedents into a...
pm5.18 381 Theorem *5.18 of [Whitehea...
xor3 382 Two ways to express "exclu...
nbbn 383 Move negation outside of b...
biass 384 Associative law for the bi...
biluk 385 Lukasiewicz's shortest axi...
pm5.19 386 Theorem *5.19 of [Whitehea...
bi2.04 387 Logical equivalence of com...
pm5.4 388 Antecedent absorption impl...
imdi 389 Distributive law for impli...
pm5.41 390 Theorem *5.41 of [Whitehea...
imbibi 391 The antecedent of one side...
pm4.8 392 Theorem *4.8 of [Whitehead...
pm4.81 393 A formula is equivalent to...
imim21b 394 Simplify an implication be...
pm4.63 397 Theorem *4.63 of [Whitehea...
pm4.67 398 Theorem *4.67 of [Whitehea...
imnan 399 Express an implication in ...
imnani 400 Infer an implication from ...
iman 401 Implication in terms of co...
pm3.24 402 Law of noncontradiction. ...
annim 403 Express a conjunction in t...
pm4.61 404 Theorem *4.61 of [Whitehea...
pm4.65 405 Theorem *4.65 of [Whitehea...
imp 406 Importation inference. (C...
impcom 407 Importation inference with...
con3dimp 408 Variant of ~ con3d with im...
mpnanrd 409 Eliminate the right side o...
impd 410 Importation deduction. (C...
impcomd 411 Importation deduction with...
ex 412 Exportation inference. (T...
expcom 413 Exportation inference with...
expdcom 414 Commuted form of ~ expd . ...
expd 415 Exportation deduction. (C...
expcomd 416 Deduction form of ~ expcom...
imp31 417 An importation inference. ...
imp32 418 An importation inference. ...
exp31 419 An exportation inference. ...
exp32 420 An exportation inference. ...
imp4b 421 An importation inference. ...
imp4a 422 An importation inference. ...
imp4c 423 An importation inference. ...
imp4d 424 An importation inference. ...
imp41 425 An importation inference. ...
imp42 426 An importation inference. ...
imp43 427 An importation inference. ...
imp44 428 An importation inference. ...
imp45 429 An importation inference. ...
exp4b 430 An exportation inference. ...
exp4a 431 An exportation inference. ...
exp4c 432 An exportation inference. ...
exp4d 433 An exportation inference. ...
exp41 434 An exportation inference. ...
exp42 435 An exportation inference. ...
exp43 436 An exportation inference. ...
exp44 437 An exportation inference. ...
exp45 438 An exportation inference. ...
imp5d 439 An importation inference. ...
imp5a 440 An importation inference. ...
imp5g 441 An importation inference. ...
imp55 442 An importation inference. ...
imp511 443 An importation inference. ...
exp5c 444 An exportation inference. ...
exp5j 445 An exportation inference. ...
exp5l 446 An exportation inference. ...
exp53 447 An exportation inference. ...
pm3.3 448 Theorem *3.3 (Exp) of [Whi...
pm3.31 449 Theorem *3.31 (Imp) of [Wh...
impexp 450 Import-export theorem. Pa...
impancom 451 Mixed importation/commutat...
expdimp 452 A deduction version of exp...
expimpd 453 Exportation followed by a ...
impr 454 Import a wff into a right ...
impl 455 Export a wff from a left c...
expr 456 Export a wff from a right ...
expl 457 Export a wff from a left c...
ancoms 458 Inference commuting conjun...
pm3.22 459 Theorem *3.22 of [Whitehea...
ancom 460 Commutative law for conjun...
ancomd 461 Commutation of conjuncts i...
biancomi 462 Commuting conjunction in a...
biancomd 463 Commuting conjunction in a...
ancomst 464 Closed form of ~ ancoms . ...
ancomsd 465 Deduction commuting conjun...
anasss 466 Associative law for conjun...
anassrs 467 Associative law for conjun...
anass 468 Associative law for conjun...
pm3.2 469 Join antecedents with conj...
pm3.2i 470 Infer conjunction of premi...
pm3.21 471 Join antecedents with conj...
pm3.43i 472 Nested conjunction of ante...
pm3.43 473 Theorem *3.43 (Comp) of [W...
dfbi2 474 A theorem similar to the s...
dfbi 475 Definition ~ df-bi rewritt...
biimpa 476 Importation inference from...
biimpar 477 Importation inference from...
biimpac 478 Importation inference from...
biimparc 479 Importation inference from...
adantr 480 Inference adding a conjunc...
adantl 481 Inference adding a conjunc...
simpl 482 Elimination of a conjunct....
simpli 483 Inference eliminating a co...
simpr 484 Elimination of a conjunct....
simpri 485 Inference eliminating a co...
intnan 486 Introduction of conjunct i...
intnanr 487 Introduction of conjunct i...
intnand 488 Introduction of conjunct i...
intnanrd 489 Introduction of conjunct i...
adantld 490 Deduction adding a conjunc...
adantrd 491 Deduction adding a conjunc...
pm3.41 492 Theorem *3.41 of [Whitehea...
pm3.42 493 Theorem *3.42 of [Whitehea...
simpld 494 Deduction eliminating a co...
simprd 495 Deduction eliminating a co...
simprbi 496 Deduction eliminating a co...
simplbi 497 Deduction eliminating a co...
simprbda 498 Deduction eliminating a co...
simplbda 499 Deduction eliminating a co...
simplbi2 500 Deduction eliminating a co...
simplbi2comt 501 Closed form of ~ simplbi2c...
simplbi2com 502 A deduction eliminating a ...
simpl2im 503 Implication from an elimin...
simplbiim 504 Implication from an elimin...
impel 505 An inference for implicati...
mpan9 506 Modus ponens conjoining di...
sylan9 507 Nested syllogism inference...
sylan9r 508 Nested syllogism inference...
sylan9bb 509 Nested syllogism inference...
sylan9bbr 510 Nested syllogism inference...
jca 511 Deduce conjunction of the ...
jcad 512 Deduction conjoining the c...
jca2 513 Inference conjoining the c...
jca31 514 Join three consequents. (...
jca32 515 Join three consequents. (...
jcai 516 Deduction replacing implic...
jcab 517 Distributive law for impli...
pm4.76 518 Theorem *4.76 of [Whitehea...
jctil 519 Inference conjoining a the...
jctir 520 Inference conjoining a the...
jccir 521 Inference conjoining a con...
jccil 522 Inference conjoining a con...
jctl 523 Inference conjoining a the...
jctr 524 Inference conjoining a the...
jctild 525 Deduction conjoining a the...
jctird 526 Deduction conjoining a the...
iba 527 Introduction of antecedent...
ibar 528 Introduction of antecedent...
biantru 529 A wff is equivalent to its...
biantrur 530 A wff is equivalent to its...
biantrud 531 A wff is equivalent to its...
biantrurd 532 A wff is equivalent to its...
bianfi 533 A wff conjoined with false...
bianfd 534 A wff conjoined with false...
baib 535 Move conjunction outside o...
baibr 536 Move conjunction outside o...
rbaibr 537 Move conjunction outside o...
rbaib 538 Move conjunction outside o...
baibd 539 Move conjunction outside o...
rbaibd 540 Move conjunction outside o...
bianabs 541 Absorb a hypothesis into t...
pm5.44 542 Theorem *5.44 of [Whitehea...
pm5.42 543 Theorem *5.42 of [Whitehea...
ancl 544 Conjoin antecedent to left...
anclb 545 Conjoin antecedent to left...
ancr 546 Conjoin antecedent to righ...
ancrb 547 Conjoin antecedent to righ...
ancli 548 Deduction conjoining antec...
ancri 549 Deduction conjoining antec...
ancld 550 Deduction conjoining antec...
ancrd 551 Deduction conjoining antec...
impac 552 Importation with conjuncti...
anc2l 553 Conjoin antecedent to left...
anc2r 554 Conjoin antecedent to righ...
anc2li 555 Deduction conjoining antec...
anc2ri 556 Deduction conjoining antec...
pm4.71 557 Implication in terms of bi...
pm4.71r 558 Implication in terms of bi...
pm4.71i 559 Inference converting an im...
pm4.71ri 560 Inference converting an im...
pm4.71d 561 Deduction converting an im...
pm4.71rd 562 Deduction converting an im...
pm4.24 563 Theorem *4.24 of [Whitehea...
anidm 564 Idempotent law for conjunc...
anidmdbi 565 Conjunction idempotence wi...
anidms 566 Inference from idempotent ...
imdistan 567 Distribution of implicatio...
imdistani 568 Distribution of implicatio...
imdistanri 569 Distribution of implicatio...
imdistand 570 Distribution of implicatio...
imdistanda 571 Distribution of implicatio...
pm5.3 572 Theorem *5.3 of [Whitehead...
pm5.32 573 Distribution of implicatio...
pm5.32i 574 Distribution of implicatio...
pm5.32ri 575 Distribution of implicatio...
pm5.32d 576 Distribution of implicatio...
pm5.32rd 577 Distribution of implicatio...
pm5.32da 578 Distribution of implicatio...
sylan 579 A syllogism inference. (C...
sylanb 580 A syllogism inference. (C...
sylanbr 581 A syllogism inference. (C...
sylanbrc 582 Syllogism inference. (Con...
syl2anc 583 Syllogism inference combin...
syl2anc2 584 Double syllogism inference...
sylancl 585 Syllogism inference combin...
sylancr 586 Syllogism inference combin...
sylancom 587 Syllogism inference with c...
sylanblc 588 Syllogism inference combin...
sylanblrc 589 Syllogism inference combin...
syldan 590 A syllogism deduction with...
sylbida 591 A syllogism deduction. (C...
sylan2 592 A syllogism inference. (C...
sylan2b 593 A syllogism inference. (C...
sylan2br 594 A syllogism inference. (C...
syl2an 595 A double syllogism inferen...
syl2anr 596 A double syllogism inferen...
syl2anb 597 A double syllogism inferen...
syl2anbr 598 A double syllogism inferen...
sylancb 599 A syllogism inference comb...
sylancbr 600 A syllogism inference comb...
syldanl 601 A syllogism deduction with...
syland 602 A syllogism deduction. (C...
sylani 603 A syllogism inference. (C...
sylan2d 604 A syllogism deduction. (C...
sylan2i 605 A syllogism inference. (C...
syl2ani 606 A syllogism inference. (C...
syl2and 607 A syllogism deduction. (C...
anim12d 608 Conjoin antecedents and co...
anim12d1 609 Variant of ~ anim12d where...
anim1d 610 Add a conjunct to right of...
anim2d 611 Add a conjunct to left of ...
anim12i 612 Conjoin antecedents and co...
anim12ci 613 Variant of ~ anim12i with ...
anim1i 614 Introduce conjunct to both...
anim1ci 615 Introduce conjunct to both...
anim2i 616 Introduce conjunct to both...
anim12ii 617 Conjoin antecedents and co...
anim12dan 618 Conjoin antecedents and co...
im2anan9 619 Deduction joining nested i...
im2anan9r 620 Deduction joining nested i...
pm3.45 621 Theorem *3.45 (Fact) of [W...
anbi2i 622 Introduce a left conjunct ...
anbi1i 623 Introduce a right conjunct...
anbi2ci 624 Variant of ~ anbi2i with c...
anbi1ci 625 Variant of ~ anbi1i with c...
anbi12i 626 Conjoin both sides of two ...
anbi12ci 627 Variant of ~ anbi12i with ...
anbi2d 628 Deduction adding a left co...
anbi1d 629 Deduction adding a right c...
anbi12d 630 Deduction joining two equi...
anbi1 631 Introduce a right conjunct...
anbi2 632 Introduce a left conjunct ...
anbi1cd 633 Introduce a proposition as...
an2anr 634 Double commutation in conj...
pm4.38 635 Theorem *4.38 of [Whitehea...
bi2anan9 636 Deduction joining two equi...
bi2anan9r 637 Deduction joining two equi...
bi2bian9 638 Deduction joining two bico...
bianass 639 An inference to merge two ...
bianassc 640 An inference to merge two ...
an21 641 Swap two conjuncts. (Cont...
an12 642 Swap two conjuncts. Note ...
an32 643 A rearrangement of conjunc...
an13 644 A rearrangement of conjunc...
an31 645 A rearrangement of conjunc...
an12s 646 Swap two conjuncts in ante...
ancom2s 647 Inference commuting a nest...
an13s 648 Swap two conjuncts in ante...
an32s 649 Swap two conjuncts in ante...
ancom1s 650 Inference commuting a nest...
an31s 651 Swap two conjuncts in ante...
anass1rs 652 Commutative-associative la...
an4 653 Rearrangement of 4 conjunc...
an42 654 Rearrangement of 4 conjunc...
an43 655 Rearrangement of 4 conjunc...
an3 656 A rearrangement of conjunc...
an4s 657 Inference rearranging 4 co...
an42s 658 Inference rearranging 4 co...
anabs1 659 Absorption into embedded c...
anabs5 660 Absorption into embedded c...
anabs7 661 Absorption into embedded c...
anabsan 662 Absorption of antecedent w...
anabss1 663 Absorption of antecedent i...
anabss4 664 Absorption of antecedent i...
anabss5 665 Absorption of antecedent i...
anabsi5 666 Absorption of antecedent i...
anabsi6 667 Absorption of antecedent i...
anabsi7 668 Absorption of antecedent i...
anabsi8 669 Absorption of antecedent i...
anabss7 670 Absorption of antecedent i...
anabsan2 671 Absorption of antecedent w...
anabss3 672 Absorption of antecedent i...
anandi 673 Distribution of conjunctio...
anandir 674 Distribution of conjunctio...
anandis 675 Inference that undistribut...
anandirs 676 Inference that undistribut...
sylanl1 677 A syllogism inference. (C...
sylanl2 678 A syllogism inference. (C...
sylanr1 679 A syllogism inference. (C...
sylanr2 680 A syllogism inference. (C...
syl6an 681 A syllogism deduction comb...
syl2an2r 682 ~ syl2anr with antecedents...
syl2an2 683 ~ syl2an with antecedents ...
mpdan 684 An inference based on modu...
mpancom 685 An inference based on modu...
mpidan 686 A deduction which "stacks"...
mpan 687 An inference based on modu...
mpan2 688 An inference based on modu...
mp2an 689 An inference based on modu...
mp4an 690 An inference based on modu...
mpan2d 691 A deduction based on modus...
mpand 692 A deduction based on modus...
mpani 693 An inference based on modu...
mpan2i 694 An inference based on modu...
mp2ani 695 An inference based on modu...
mp2and 696 A deduction based on modus...
mpanl1 697 An inference based on modu...
mpanl2 698 An inference based on modu...
mpanl12 699 An inference based on modu...
mpanr1 700 An inference based on modu...
mpanr2 701 An inference based on modu...
mpanr12 702 An inference based on modu...
mpanlr1 703 An inference based on modu...
mpbirand 704 Detach truth from conjunct...
mpbiran2d 705 Detach truth from conjunct...
mpbiran 706 Detach truth from conjunct...
mpbiran2 707 Detach truth from conjunct...
mpbir2an 708 Detach a conjunction of tr...
mpbi2and 709 Detach a conjunction of tr...
mpbir2and 710 Detach a conjunction of tr...
adantll 711 Deduction adding a conjunc...
adantlr 712 Deduction adding a conjunc...
adantrl 713 Deduction adding a conjunc...
adantrr 714 Deduction adding a conjunc...
adantlll 715 Deduction adding a conjunc...
adantllr 716 Deduction adding a conjunc...
adantlrl 717 Deduction adding a conjunc...
adantlrr 718 Deduction adding a conjunc...
adantrll 719 Deduction adding a conjunc...
adantrlr 720 Deduction adding a conjunc...
adantrrl 721 Deduction adding a conjunc...
adantrrr 722 Deduction adding a conjunc...
ad2antrr 723 Deduction adding two conju...
ad2antlr 724 Deduction adding two conju...
ad2antrl 725 Deduction adding two conju...
ad2antll 726 Deduction adding conjuncts...
ad3antrrr 727 Deduction adding three con...
ad3antlr 728 Deduction adding three con...
ad4antr 729 Deduction adding 4 conjunc...
ad4antlr 730 Deduction adding 4 conjunc...
ad5antr 731 Deduction adding 5 conjunc...
ad5antlr 732 Deduction adding 5 conjunc...
ad6antr 733 Deduction adding 6 conjunc...
ad6antlr 734 Deduction adding 6 conjunc...
ad7antr 735 Deduction adding 7 conjunc...
ad7antlr 736 Deduction adding 7 conjunc...
ad8antr 737 Deduction adding 8 conjunc...
ad8antlr 738 Deduction adding 8 conjunc...
ad9antr 739 Deduction adding 9 conjunc...
ad9antlr 740 Deduction adding 9 conjunc...
ad10antr 741 Deduction adding 10 conjun...
ad10antlr 742 Deduction adding 10 conjun...
ad2ant2l 743 Deduction adding two conju...
ad2ant2r 744 Deduction adding two conju...
ad2ant2lr 745 Deduction adding two conju...
ad2ant2rl 746 Deduction adding two conju...
adantl3r 747 Deduction adding 1 conjunc...
ad4ant13 748 Deduction adding conjuncts...
ad4ant14 749 Deduction adding conjuncts...
ad4ant23 750 Deduction adding conjuncts...
ad4ant24 751 Deduction adding conjuncts...
adantl4r 752 Deduction adding 1 conjunc...
ad5ant12 753 Deduction adding conjuncts...
ad5ant13 754 Deduction adding conjuncts...
ad5ant14 755 Deduction adding conjuncts...
ad5ant15 756 Deduction adding conjuncts...
ad5ant23 757 Deduction adding conjuncts...
ad5ant24 758 Deduction adding conjuncts...
ad5ant25 759 Deduction adding conjuncts...
adantl5r 760 Deduction adding 1 conjunc...
adantl6r 761 Deduction adding 1 conjunc...
pm3.33 762 Theorem *3.33 (Syll) of [W...
pm3.34 763 Theorem *3.34 (Syll) of [W...
simpll 764 Simplification of a conjun...
simplld 765 Deduction form of ~ simpll...
simplr 766 Simplification of a conjun...
simplrd 767 Deduction eliminating a do...
simprl 768 Simplification of a conjun...
simprld 769 Deduction eliminating a do...
simprr 770 Simplification of a conjun...
simprrd 771 Deduction form of ~ simprr...
simplll 772 Simplification of a conjun...
simpllr 773 Simplification of a conjun...
simplrl 774 Simplification of a conjun...
simplrr 775 Simplification of a conjun...
simprll 776 Simplification of a conjun...
simprlr 777 Simplification of a conjun...
simprrl 778 Simplification of a conjun...
simprrr 779 Simplification of a conjun...
simp-4l 780 Simplification of a conjun...
simp-4r 781 Simplification of a conjun...
simp-5l 782 Simplification of a conjun...
simp-5r 783 Simplification of a conjun...
simp-6l 784 Simplification of a conjun...
simp-6r 785 Simplification of a conjun...
simp-7l 786 Simplification of a conjun...
simp-7r 787 Simplification of a conjun...
simp-8l 788 Simplification of a conjun...
simp-8r 789 Simplification of a conjun...
simp-9l 790 Simplification of a conjun...
simp-9r 791 Simplification of a conjun...
simp-10l 792 Simplification of a conjun...
simp-10r 793 Simplification of a conjun...
simp-11l 794 Simplification of a conjun...
simp-11r 795 Simplification of a conjun...
pm2.01da 796 Deduction based on reducti...
pm2.18da 797 Deduction based on reducti...
impbida 798 Deduce an equivalence from...
pm5.21nd 799 Eliminate an antecedent im...
pm3.35 800 Conjunctive detachment. T...
pm5.74da 801 Distribution of implicatio...
bitr 802 Theorem *4.22 of [Whitehea...
biantr 803 A transitive law of equiva...
pm4.14 804 Theorem *4.14 of [Whitehea...
pm3.37 805 Theorem *3.37 (Transp) of ...
anim12 806 Conjoin antecedents and co...
pm3.4 807 Conjunction implies implic...
exbiri 808 Inference form of ~ exbir ...
pm2.61ian 809 Elimination of an antecede...
pm2.61dan 810 Elimination of an antecede...
pm2.61ddan 811 Elimination of two anteced...
pm2.61dda 812 Elimination of two anteced...
mtand 813 A modus tollens deduction....
pm2.65da 814 Deduction for proof by con...
condan 815 Proof by contradiction. (...
biadan 816 An implication is equivale...
biadani 817 Inference associated with ...
biadaniALT 818 Alternate proof of ~ biada...
biadanii 819 Inference associated with ...
biadanid 820 Deduction associated with ...
pm5.1 821 Two propositions are equiv...
pm5.21 822 Two propositions are equiv...
pm5.35 823 Theorem *5.35 of [Whitehea...
abai 824 Introduce one conjunct as ...
pm4.45im 825 Conjunction with implicati...
impimprbi 826 An implication and its rev...
nan 827 Theorem to move a conjunct...
pm5.31 828 Theorem *5.31 of [Whitehea...
pm5.31r 829 Variant of ~ pm5.31 . (Co...
pm4.15 830 Theorem *4.15 of [Whitehea...
pm5.36 831 Theorem *5.36 of [Whitehea...
annotanannot 832 A conjunction with a negat...
pm5.33 833 Theorem *5.33 of [Whitehea...
syl12anc 834 Syllogism combined with co...
syl21anc 835 Syllogism combined with co...
syl22anc 836 Syllogism combined with co...
syl1111anc 837 Four-hypothesis eliminatio...
syldbl2 838 Stacked hypotheseis implie...
mpsyl4anc 839 An elimination deduction. ...
pm4.87 840 Theorem *4.87 of [Whitehea...
bimsc1 841 Removal of conjunct from o...
a2and 842 Deduction distributing a c...
animpimp2impd 843 Deduction deriving nested ...
pm4.64 846 Theorem *4.64 of [Whitehea...
pm4.66 847 Theorem *4.66 of [Whitehea...
pm2.53 848 Theorem *2.53 of [Whitehea...
pm2.54 849 Theorem *2.54 of [Whitehea...
imor 850 Implication in terms of di...
imori 851 Infer disjunction from imp...
imorri 852 Infer implication from dis...
pm4.62 853 Theorem *4.62 of [Whitehea...
jaoi 854 Inference disjoining the a...
jao1i 855 Add a disjunct in the ante...
jaod 856 Deduction disjoining the a...
mpjaod 857 Eliminate a disjunction in...
ori 858 Infer implication from dis...
orri 859 Infer disjunction from imp...
orrd 860 Deduce disjunction from im...
ord 861 Deduce implication from di...
orci 862 Deduction introducing a di...
olci 863 Deduction introducing a di...
orc 864 Introduction of a disjunct...
olc 865 Introduction of a disjunct...
pm1.4 866 Axiom *1.4 of [WhiteheadRu...
orcom 867 Commutative law for disjun...
orcomd 868 Commutation of disjuncts i...
orcoms 869 Commutation of disjuncts i...
orcd 870 Deduction introducing a di...
olcd 871 Deduction introducing a di...
orcs 872 Deduction eliminating disj...
olcs 873 Deduction eliminating disj...
olcnd 874 A lemma for Conjunctive No...
unitreslOLD 875 Obsolete version of ~ olcn...
orcnd 876 A lemma for Conjunctive No...
mtord 877 A modus tollens deduction ...
pm3.2ni 878 Infer negated disjunction ...
pm2.45 879 Theorem *2.45 of [Whitehea...
pm2.46 880 Theorem *2.46 of [Whitehea...
pm2.47 881 Theorem *2.47 of [Whitehea...
pm2.48 882 Theorem *2.48 of [Whitehea...
pm2.49 883 Theorem *2.49 of [Whitehea...
norbi 884 If neither of two proposit...
nbior 885 If two propositions are no...
orel1 886 Elimination of disjunction...
pm2.25 887 Theorem *2.25 of [Whitehea...
orel2 888 Elimination of disjunction...
pm2.67-2 889 Slight generalization of T...
pm2.67 890 Theorem *2.67 of [Whitehea...
curryax 891 A non-intuitionistic posit...
exmid 892 Law of excluded middle, al...
exmidd 893 Law of excluded middle in ...
pm2.1 894 Theorem *2.1 of [Whitehead...
pm2.13 895 Theorem *2.13 of [Whitehea...
pm2.621 896 Theorem *2.621 of [Whitehe...
pm2.62 897 Theorem *2.62 of [Whitehea...
pm2.68 898 Theorem *2.68 of [Whitehea...
dfor2 899 Logical 'or' expressed in ...
pm2.07 900 Theorem *2.07 of [Whitehea...
pm1.2 901 Axiom *1.2 of [WhiteheadRu...
oridm 902 Idempotent law for disjunc...
pm4.25 903 Theorem *4.25 of [Whitehea...
pm2.4 904 Theorem *2.4 of [Whitehead...
pm2.41 905 Theorem *2.41 of [Whitehea...
orim12i 906 Disjoin antecedents and co...
orim1i 907 Introduce disjunct to both...
orim2i 908 Introduce disjunct to both...
orim12dALT 909 Alternate proof of ~ orim1...
orbi2i 910 Inference adding a left di...
orbi1i 911 Inference adding a right d...
orbi12i 912 Infer the disjunction of t...
orbi2d 913 Deduction adding a left di...
orbi1d 914 Deduction adding a right d...
orbi1 915 Theorem *4.37 of [Whitehea...
orbi12d 916 Deduction joining two equi...
pm1.5 917 Axiom *1.5 (Assoc) of [Whi...
or12 918 Swap two disjuncts. (Cont...
orass 919 Associative law for disjun...
pm2.31 920 Theorem *2.31 of [Whitehea...
pm2.32 921 Theorem *2.32 of [Whitehea...
pm2.3 922 Theorem *2.3 of [Whitehead...
or32 923 A rearrangement of disjunc...
or4 924 Rearrangement of 4 disjunc...
or42 925 Rearrangement of 4 disjunc...
orordi 926 Distribution of disjunctio...
orordir 927 Distribution of disjunctio...
orimdi 928 Disjunction distributes ov...
pm2.76 929 Theorem *2.76 of [Whitehea...
pm2.85 930 Theorem *2.85 of [Whitehea...
pm2.75 931 Theorem *2.75 of [Whitehea...
pm4.78 932 Implication distributes ov...
biort 933 A disjunction with a true ...
biorf 934 A wff is equivalent to its...
biortn 935 A wff is equivalent to its...
biorfi 936 A wff is equivalent to its...
pm2.26 937 Theorem *2.26 of [Whitehea...
pm2.63 938 Theorem *2.63 of [Whitehea...
pm2.64 939 Theorem *2.64 of [Whitehea...
pm2.42 940 Theorem *2.42 of [Whitehea...
pm5.11g 941 A general instance of Theo...
pm5.11 942 Theorem *5.11 of [Whitehea...
pm5.12 943 Theorem *5.12 of [Whitehea...
pm5.14 944 Theorem *5.14 of [Whitehea...
pm5.13 945 Theorem *5.13 of [Whitehea...
pm5.55 946 Theorem *5.55 of [Whitehea...
pm4.72 947 Implication in terms of bi...
imimorb 948 Simplify an implication be...
oibabs 949 Absorption of disjunction ...
orbidi 950 Disjunction distributes ov...
pm5.7 951 Disjunction distributes ov...
jaao 952 Inference conjoining and d...
jaoa 953 Inference disjoining and c...
jaoian 954 Inference disjoining the a...
jaodan 955 Deduction disjoining the a...
mpjaodan 956 Eliminate a disjunction in...
pm3.44 957 Theorem *3.44 of [Whitehea...
jao 958 Disjunction of antecedents...
jaob 959 Disjunction of antecedents...
pm4.77 960 Theorem *4.77 of [Whitehea...
pm3.48 961 Theorem *3.48 of [Whitehea...
orim12d 962 Disjoin antecedents and co...
orim1d 963 Disjoin antecedents and co...
orim2d 964 Disjoin antecedents and co...
orim2 965 Axiom *1.6 (Sum) of [White...
pm2.38 966 Theorem *2.38 of [Whitehea...
pm2.36 967 Theorem *2.36 of [Whitehea...
pm2.37 968 Theorem *2.37 of [Whitehea...
pm2.81 969 Theorem *2.81 of [Whitehea...
pm2.8 970 Theorem *2.8 of [Whitehead...
pm2.73 971 Theorem *2.73 of [Whitehea...
pm2.74 972 Theorem *2.74 of [Whitehea...
pm2.82 973 Theorem *2.82 of [Whitehea...
pm4.39 974 Theorem *4.39 of [Whitehea...
animorl 975 Conjunction implies disjun...
animorr 976 Conjunction implies disjun...
animorlr 977 Conjunction implies disjun...
animorrl 978 Conjunction implies disjun...
ianor 979 Negated conjunction in ter...
anor 980 Conjunction in terms of di...
ioran 981 Negated disjunction in ter...
pm4.52 982 Theorem *4.52 of [Whitehea...
pm4.53 983 Theorem *4.53 of [Whitehea...
pm4.54 984 Theorem *4.54 of [Whitehea...
pm4.55 985 Theorem *4.55 of [Whitehea...
pm4.56 986 Theorem *4.56 of [Whitehea...
oran 987 Disjunction in terms of co...
pm4.57 988 Theorem *4.57 of [Whitehea...
pm3.1 989 Theorem *3.1 of [Whitehead...
pm3.11 990 Theorem *3.11 of [Whitehea...
pm3.12 991 Theorem *3.12 of [Whitehea...
pm3.13 992 Theorem *3.13 of [Whitehea...
pm3.14 993 Theorem *3.14 of [Whitehea...
pm4.44 994 Theorem *4.44 of [Whitehea...
pm4.45 995 Theorem *4.45 of [Whitehea...
orabs 996 Absorption of redundant in...
oranabs 997 Absorb a disjunct into a c...
pm5.61 998 Theorem *5.61 of [Whitehea...
pm5.6 999 Conjunction in antecedent ...
orcanai 1000 Change disjunction in cons...
pm4.79 1001 Theorem *4.79 of [Whitehea...
pm5.53 1002 Theorem *5.53 of [Whitehea...
ordi 1003 Distributive law for disju...
ordir 1004 Distributive law for disju...
andi 1005 Distributive law for conju...
andir 1006 Distributive law for conju...
orddi 1007 Double distributive law fo...
anddi 1008 Double distributive law fo...
pm5.17 1009 Theorem *5.17 of [Whitehea...
pm5.15 1010 Theorem *5.15 of [Whitehea...
pm5.16 1011 Theorem *5.16 of [Whitehea...
xor 1012 Two ways to express exclus...
nbi2 1013 Two ways to express "exclu...
xordi 1014 Conjunction distributes ov...
pm5.54 1015 Theorem *5.54 of [Whitehea...
pm5.62 1016 Theorem *5.62 of [Whitehea...
pm5.63 1017 Theorem *5.63 of [Whitehea...
niabn 1018 Miscellaneous inference re...
ninba 1019 Miscellaneous inference re...
pm4.43 1020 Theorem *4.43 of [Whitehea...
pm4.82 1021 Theorem *4.82 of [Whitehea...
pm4.83 1022 Theorem *4.83 of [Whitehea...
pclem6 1023 Negation inferred from emb...
bigolden 1024 Dijkstra-Scholten's Golden...
pm5.71 1025 Theorem *5.71 of [Whitehea...
pm5.75 1026 Theorem *5.75 of [Whitehea...
ecase2d 1027 Deduction for elimination ...
ecase2dOLD 1028 Obsolete version of ~ ecas...
ecase3 1029 Inference for elimination ...
ecase 1030 Inference for elimination ...
ecase3d 1031 Deduction for elimination ...
ecased 1032 Deduction for elimination ...
ecase3ad 1033 Deduction for elimination ...
ecase3adOLD 1034 Obsolete version of ~ ecas...
ccase 1035 Inference for combining ca...
ccased 1036 Deduction for combining ca...
ccase2 1037 Inference for combining ca...
4cases 1038 Inference eliminating two ...
4casesdan 1039 Deduction eliminating two ...
cases 1040 Case disjunction according...
dedlem0a 1041 Lemma for an alternate ver...
dedlem0b 1042 Lemma for an alternate ver...
dedlema 1043 Lemma for weak deduction t...
dedlemb 1044 Lemma for weak deduction t...
cases2 1045 Case disjunction according...
cases2ALT 1046 Alternate proof of ~ cases...
dfbi3 1047 An alternate definition of...
pm5.24 1048 Theorem *5.24 of [Whitehea...
4exmid 1049 The disjunction of the fou...
consensus 1050 The consensus theorem. Th...
pm4.42 1051 Theorem *4.42 of [Whitehea...
prlem1 1052 A specialized lemma for se...
prlem2 1053 A specialized lemma for se...
oplem1 1054 A specialized lemma for se...
dn1 1055 A single axiom for Boolean...
bianir 1056 A closed form of ~ mpbir ,...
jaoi2 1057 Inference removing a negat...
jaoi3 1058 Inference separating a dis...
ornld 1059 Selecting one statement fr...
dfifp2 1062 Alternate definition of th...
dfifp3 1063 Alternate definition of th...
dfifp4 1064 Alternate definition of th...
dfifp5 1065 Alternate definition of th...
dfifp6 1066 Alternate definition of th...
dfifp7 1067 Alternate definition of th...
ifpdfbi 1068 Define the biconditional a...
anifp 1069 The conditional operator i...
ifpor 1070 The conditional operator i...
ifpn 1071 Conditional operator for t...
ifpnOLD 1072 Obsolete version of ~ ifpn...
ifptru 1073 Value of the conditional o...
ifpfal 1074 Value of the conditional o...
ifpid 1075 Value of the conditional o...
casesifp 1076 Version of ~ cases express...
ifpbi123d 1077 Equivalence deduction for ...
ifpbi123dOLD 1078 Obsolete version of ~ ifpb...
ifpbi23d 1079 Equivalence deduction for ...
ifpimpda 1080 Separation of the values o...
1fpid3 1081 The value of the condition...
elimh 1082 Hypothesis builder for the...
dedt 1083 The weak deduction theorem...
con3ALT 1084 Proof of ~ con3 from its a...
3orass 1089 Associative law for triple...
3orel1 1090 Partial elimination of a t...
3orrot 1091 Rotation law for triple di...
3orcoma 1092 Commutation law for triple...
3orcomb 1093 Commutation law for triple...
3anass 1094 Associative law for triple...
3anan12 1095 Convert triple conjunction...
3anan32 1096 Convert triple conjunction...
3ancoma 1097 Commutation law for triple...
3ancomb 1098 Commutation law for triple...
3anrot 1099 Rotation law for triple co...
3anrev 1100 Reversal law for triple co...
anandi3 1101 Distribution of triple con...
anandi3r 1102 Distribution of triple con...
3anidm 1103 Idempotent law for conjunc...
3an4anass 1104 Associative law for four c...
3ioran 1105 Negated triple disjunction...
3ianor 1106 Negated triple conjunction...
3anor 1107 Triple conjunction express...
3oran 1108 Triple disjunction in term...
3impa 1109 Importation from double to...
3imp 1110 Importation inference. (C...
3imp31 1111 The importation inference ...
3imp231 1112 Importation inference. (C...
3imp21 1113 The importation inference ...
3impb 1114 Importation from double to...
3impib 1115 Importation to triple conj...
3impia 1116 Importation to triple conj...
3expa 1117 Exportation from triple to...
3exp 1118 Exportation inference. (C...
3expb 1119 Exportation from triple to...
3expia 1120 Exportation from triple co...
3expib 1121 Exportation from triple co...
3com12 1122 Commutation in antecedent....
3com13 1123 Commutation in antecedent....
3comr 1124 Commutation in antecedent....
3com23 1125 Commutation in antecedent....
3coml 1126 Commutation in antecedent....
3jca 1127 Join consequents with conj...
3jcad 1128 Deduction conjoining the c...
3adant1 1129 Deduction adding a conjunc...
3adant2 1130 Deduction adding a conjunc...
3adant3 1131 Deduction adding a conjunc...
3ad2ant1 1132 Deduction adding conjuncts...
3ad2ant2 1133 Deduction adding conjuncts...
3ad2ant3 1134 Deduction adding conjuncts...
simp1 1135 Simplification of triple c...
simp2 1136 Simplification of triple c...
simp3 1137 Simplification of triple c...
simp1i 1138 Infer a conjunct from a tr...
simp2i 1139 Infer a conjunct from a tr...
simp3i 1140 Infer a conjunct from a tr...
simp1d 1141 Deduce a conjunct from a t...
simp2d 1142 Deduce a conjunct from a t...
simp3d 1143 Deduce a conjunct from a t...
simp1bi 1144 Deduce a conjunct from a t...
simp2bi 1145 Deduce a conjunct from a t...
simp3bi 1146 Deduce a conjunct from a t...
3simpa 1147 Simplification of triple c...
3simpb 1148 Simplification of triple c...
3simpc 1149 Simplification of triple c...
3anim123i 1150 Join antecedents and conse...
3anim1i 1151 Add two conjuncts to antec...
3anim2i 1152 Add two conjuncts to antec...
3anim3i 1153 Add two conjuncts to antec...
3anbi123i 1154 Join 3 biconditionals with...
3orbi123i 1155 Join 3 biconditionals with...
3anbi1i 1156 Inference adding two conju...
3anbi2i 1157 Inference adding two conju...
3anbi3i 1158 Inference adding two conju...
syl3an 1159 A triple syllogism inferen...
syl3anb 1160 A triple syllogism inferen...
syl3anbr 1161 A triple syllogism inferen...
syl3an1 1162 A syllogism inference. (C...
syl3an2 1163 A syllogism inference. (C...
syl3an3 1164 A syllogism inference. (C...
3adantl1 1165 Deduction adding a conjunc...
3adantl2 1166 Deduction adding a conjunc...
3adantl3 1167 Deduction adding a conjunc...
3adantr1 1168 Deduction adding a conjunc...
3adantr2 1169 Deduction adding a conjunc...
3adantr3 1170 Deduction adding a conjunc...
ad4ant123 1171 Deduction adding conjuncts...
ad4ant124 1172 Deduction adding conjuncts...
ad4ant134 1173 Deduction adding conjuncts...
ad4ant234 1174 Deduction adding conjuncts...
3adant1l 1175 Deduction adding a conjunc...
3adant1r 1176 Deduction adding a conjunc...
3adant2l 1177 Deduction adding a conjunc...
3adant2r 1178 Deduction adding a conjunc...
3adant3l 1179 Deduction adding a conjunc...
3adant3r 1180 Deduction adding a conjunc...
3adant3r1 1181 Deduction adding a conjunc...
3adant3r2 1182 Deduction adding a conjunc...
3adant3r3 1183 Deduction adding a conjunc...
3ad2antl1 1184 Deduction adding conjuncts...
3ad2antl2 1185 Deduction adding conjuncts...
3ad2antl3 1186 Deduction adding conjuncts...
3ad2antr1 1187 Deduction adding conjuncts...
3ad2antr2 1188 Deduction adding conjuncts...
3ad2antr3 1189 Deduction adding conjuncts...
simpl1 1190 Simplification of conjunct...
simpl2 1191 Simplification of conjunct...
simpl3 1192 Simplification of conjunct...
simpr1 1193 Simplification of conjunct...
simpr2 1194 Simplification of conjunct...
simpr3 1195 Simplification of conjunct...
simp1l 1196 Simplification of triple c...
simp1r 1197 Simplification of triple c...
simp2l 1198 Simplification of triple c...
simp2r 1199 Simplification of triple c...
simp3l 1200 Simplification of triple c...
simp3r 1201 Simplification of triple c...
simp11 1202 Simplification of doubly t...
simp12 1203 Simplification of doubly t...
simp13 1204 Simplification of doubly t...
simp21 1205 Simplification of doubly t...
simp22 1206 Simplification of doubly t...
simp23 1207 Simplification of doubly t...
simp31 1208 Simplification of doubly t...
simp32 1209 Simplification of doubly t...
simp33 1210 Simplification of doubly t...
simpll1 1211 Simplification of conjunct...
simpll2 1212 Simplification of conjunct...
simpll3 1213 Simplification of conjunct...
simplr1 1214 Simplification of conjunct...
simplr2 1215 Simplification of conjunct...
simplr3 1216 Simplification of conjunct...
simprl1 1217 Simplification of conjunct...
simprl2 1218 Simplification of conjunct...
simprl3 1219 Simplification of conjunct...
simprr1 1220 Simplification of conjunct...
simprr2 1221 Simplification of conjunct...
simprr3 1222 Simplification of conjunct...
simpl1l 1223 Simplification of conjunct...
simpl1r 1224 Simplification of conjunct...
simpl2l 1225 Simplification of conjunct...
simpl2r 1226 Simplification of conjunct...
simpl3l 1227 Simplification of conjunct...
simpl3r 1228 Simplification of conjunct...
simpr1l 1229 Simplification of conjunct...
simpr1r 1230 Simplification of conjunct...
simpr2l 1231 Simplification of conjunct...
simpr2r 1232 Simplification of conjunct...
simpr3l 1233 Simplification of conjunct...
simpr3r 1234 Simplification of conjunct...
simp1ll 1235 Simplification of conjunct...
simp1lr 1236 Simplification of conjunct...
simp1rl 1237 Simplification of conjunct...
simp1rr 1238 Simplification of conjunct...
simp2ll 1239 Simplification of conjunct...
simp2lr 1240 Simplification of conjunct...
simp2rl 1241 Simplification of conjunct...
simp2rr 1242 Simplification of conjunct...
simp3ll 1243 Simplification of conjunct...
simp3lr 1244 Simplification of conjunct...
simp3rl 1245 Simplification of conjunct...
simp3rr 1246 Simplification of conjunct...
simpl11 1247 Simplification of conjunct...
simpl12 1248 Simplification of conjunct...
simpl13 1249 Simplification of conjunct...
simpl21 1250 Simplification of conjunct...
simpl22 1251 Simplification of conjunct...
simpl23 1252 Simplification of conjunct...
simpl31 1253 Simplification of conjunct...
simpl32 1254 Simplification of conjunct...
simpl33 1255 Simplification of conjunct...
simpr11 1256 Simplification of conjunct...
simpr12 1257 Simplification of conjunct...
simpr13 1258 Simplification of conjunct...
simpr21 1259 Simplification of conjunct...
simpr22 1260 Simplification of conjunct...
simpr23 1261 Simplification of conjunct...
simpr31 1262 Simplification of conjunct...
simpr32 1263 Simplification of conjunct...
simpr33 1264 Simplification of conjunct...
simp1l1 1265 Simplification of conjunct...
simp1l2 1266 Simplification of conjunct...
simp1l3 1267 Simplification of conjunct...
simp1r1 1268 Simplification of conjunct...
simp1r2 1269 Simplification of conjunct...
simp1r3 1270 Simplification of conjunct...
simp2l1 1271 Simplification of conjunct...
simp2l2 1272 Simplification of conjunct...
simp2l3 1273 Simplification of conjunct...
simp2r1 1274 Simplification of conjunct...
simp2r2 1275 Simplification of conjunct...
simp2r3 1276 Simplification of conjunct...
simp3l1 1277 Simplification of conjunct...
simp3l2 1278 Simplification of conjunct...
simp3l3 1279 Simplification of conjunct...
simp3r1 1280 Simplification of conjunct...
simp3r2 1281 Simplification of conjunct...
simp3r3 1282 Simplification of conjunct...
simp11l 1283 Simplification of conjunct...
simp11r 1284 Simplification of conjunct...
simp12l 1285 Simplification of conjunct...
simp12r 1286 Simplification of conjunct...
simp13l 1287 Simplification of conjunct...
simp13r 1288 Simplification of conjunct...
simp21l 1289 Simplification of conjunct...
simp21r 1290 Simplification of conjunct...
simp22l 1291 Simplification of conjunct...
simp22r 1292 Simplification of conjunct...
simp23l 1293 Simplification of conjunct...
simp23r 1294 Simplification of conjunct...
simp31l 1295 Simplification of conjunct...
simp31r 1296 Simplification of conjunct...
simp32l 1297 Simplification of conjunct...
simp32r 1298 Simplification of conjunct...
simp33l 1299 Simplification of conjunct...
simp33r 1300 Simplification of conjunct...
simp111 1301 Simplification of conjunct...
simp112 1302 Simplification of conjunct...
simp113 1303 Simplification of conjunct...
simp121 1304 Simplification of conjunct...
simp122 1305 Simplification of conjunct...
simp123 1306 Simplification of conjunct...
simp131 1307 Simplification of conjunct...
simp132 1308 Simplification of conjunct...
simp133 1309 Simplification of conjunct...
simp211 1310 Simplification of conjunct...
simp212 1311 Simplification of conjunct...
simp213 1312 Simplification of conjunct...
simp221 1313 Simplification of conjunct...
simp222 1314 Simplification of conjunct...
simp223 1315 Simplification of conjunct...
simp231 1316 Simplification of conjunct...
simp232 1317 Simplification of conjunct...
simp233 1318 Simplification of conjunct...
simp311 1319 Simplification of conjunct...
simp312 1320 Simplification of conjunct...
simp313 1321 Simplification of conjunct...
simp321 1322 Simplification of conjunct...
simp322 1323 Simplification of conjunct...
simp323 1324 Simplification of conjunct...
simp331 1325 Simplification of conjunct...
simp332 1326 Simplification of conjunct...
simp333 1327 Simplification of conjunct...
3anibar 1328 Remove a hypothesis from t...
3mix1 1329 Introduction in triple dis...
3mix2 1330 Introduction in triple dis...
3mix3 1331 Introduction in triple dis...
3mix1i 1332 Introduction in triple dis...
3mix2i 1333 Introduction in triple dis...
3mix3i 1334 Introduction in triple dis...
3mix1d 1335 Deduction introducing trip...
3mix2d 1336 Deduction introducing trip...
3mix3d 1337 Deduction introducing trip...
3pm3.2i 1338 Infer conjunction of premi...
pm3.2an3 1339 Version of ~ pm3.2 for a t...
mpbir3an 1340 Detach a conjunction of tr...
mpbir3and 1341 Detach a conjunction of tr...
syl3anbrc 1342 Syllogism inference. (Con...
syl21anbrc 1343 Syllogism inference. (Con...
3imp3i2an 1344 An elimination deduction. ...
ex3 1345 Apply ~ ex to a hypothesis...
3imp1 1346 Importation to left triple...
3impd 1347 Importation deduction for ...
3imp2 1348 Importation to right tripl...
3impdi 1349 Importation inference (und...
3impdir 1350 Importation inference (und...
3exp1 1351 Exportation from left trip...
3expd 1352 Exportation deduction for ...
3exp2 1353 Exportation from right tri...
exp5o 1354 A triple exportation infer...
exp516 1355 A triple exportation infer...
exp520 1356 A triple exportation infer...
3impexp 1357 Version of ~ impexp for a ...
3an1rs 1358 Swap conjuncts. (Contribu...
3anassrs 1359 Associative law for conjun...
ad5ant245 1360 Deduction adding conjuncts...
ad5ant234 1361 Deduction adding conjuncts...
ad5ant235 1362 Deduction adding conjuncts...
ad5ant123 1363 Deduction adding conjuncts...
ad5ant124 1364 Deduction adding conjuncts...
ad5ant125 1365 Deduction adding conjuncts...
ad5ant134 1366 Deduction adding conjuncts...
ad5ant135 1367 Deduction adding conjuncts...
ad5ant145 1368 Deduction adding conjuncts...
ad5ant2345 1369 Deduction adding conjuncts...
syl3anc 1370 Syllogism combined with co...
syl13anc 1371 Syllogism combined with co...
syl31anc 1372 Syllogism combined with co...
syl112anc 1373 Syllogism combined with co...
syl121anc 1374 Syllogism combined with co...
syl211anc 1375 Syllogism combined with co...
syl23anc 1376 Syllogism combined with co...
syl32anc 1377 Syllogism combined with co...
syl122anc 1378 Syllogism combined with co...
syl212anc 1379 Syllogism combined with co...
syl221anc 1380 Syllogism combined with co...
syl113anc 1381 Syllogism combined with co...
syl131anc 1382 Syllogism combined with co...
syl311anc 1383 Syllogism combined with co...
syl33anc 1384 Syllogism combined with co...
syl222anc 1385 Syllogism combined with co...
syl123anc 1386 Syllogism combined with co...
syl132anc 1387 Syllogism combined with co...
syl213anc 1388 Syllogism combined with co...
syl231anc 1389 Syllogism combined with co...
syl312anc 1390 Syllogism combined with co...
syl321anc 1391 Syllogism combined with co...
syl133anc 1392 Syllogism combined with co...
syl313anc 1393 Syllogism combined with co...
syl331anc 1394 Syllogism combined with co...
syl223anc 1395 Syllogism combined with co...
syl232anc 1396 Syllogism combined with co...
syl322anc 1397 Syllogism combined with co...
syl233anc 1398 Syllogism combined with co...
syl323anc 1399 Syllogism combined with co...
syl332anc 1400 Syllogism combined with co...
syl333anc 1401 A syllogism inference comb...
syl3an1b 1402 A syllogism inference. (C...
syl3an2b 1403 A syllogism inference. (C...
syl3an3b 1404 A syllogism inference. (C...
syl3an1br 1405 A syllogism inference. (C...
syl3an2br 1406 A syllogism inference. (C...
syl3an3br 1407 A syllogism inference. (C...
syld3an3 1408 A syllogism inference. (C...
syld3an1 1409 A syllogism inference. (C...
syld3an2 1410 A syllogism inference. (C...
syl3anl1 1411 A syllogism inference. (C...
syl3anl2 1412 A syllogism inference. (C...
syl3anl3 1413 A syllogism inference. (C...
syl3anl 1414 A triple syllogism inferen...
syl3anr1 1415 A syllogism inference. (C...
syl3anr2 1416 A syllogism inference. (C...
syl3anr3 1417 A syllogism inference. (C...
3anidm12 1418 Inference from idempotent ...
3anidm13 1419 Inference from idempotent ...
3anidm23 1420 Inference from idempotent ...
syl2an3an 1421 ~ syl3an with antecedents ...
syl2an23an 1422 Deduction related to ~ syl...
3ori 1423 Infer implication from tri...
3jao 1424 Disjunction of three antec...
3jaob 1425 Disjunction of three antec...
3jaoi 1426 Disjunction of three antec...
3jaod 1427 Disjunction of three antec...
3jaoian 1428 Disjunction of three antec...
3jaodan 1429 Disjunction of three antec...
mpjao3dan 1430 Eliminate a three-way disj...
mpjao3danOLD 1431 Obsolete version of ~ mpja...
3jaao 1432 Inference conjoining and d...
syl3an9b 1433 Nested syllogism inference...
3orbi123d 1434 Deduction joining 3 equiva...
3anbi123d 1435 Deduction joining 3 equiva...
3anbi12d 1436 Deduction conjoining and a...
3anbi13d 1437 Deduction conjoining and a...
3anbi23d 1438 Deduction conjoining and a...
3anbi1d 1439 Deduction adding conjuncts...
3anbi2d 1440 Deduction adding conjuncts...
3anbi3d 1441 Deduction adding conjuncts...
3anim123d 1442 Deduction joining 3 implic...
3orim123d 1443 Deduction joining 3 implic...
an6 1444 Rearrangement of 6 conjunc...
3an6 1445 Analogue of ~ an4 for trip...
3or6 1446 Analogue of ~ or4 for trip...
mp3an1 1447 An inference based on modu...
mp3an2 1448 An inference based on modu...
mp3an3 1449 An inference based on modu...
mp3an12 1450 An inference based on modu...
mp3an13 1451 An inference based on modu...
mp3an23 1452 An inference based on modu...
mp3an1i 1453 An inference based on modu...
mp3anl1 1454 An inference based on modu...
mp3anl2 1455 An inference based on modu...
mp3anl3 1456 An inference based on modu...
mp3anr1 1457 An inference based on modu...
mp3anr2 1458 An inference based on modu...
mp3anr3 1459 An inference based on modu...
mp3an 1460 An inference based on modu...
mpd3an3 1461 An inference based on modu...
mpd3an23 1462 An inference based on modu...
mp3and 1463 A deduction based on modus...
mp3an12i 1464 ~ mp3an with antecedents i...
mp3an2i 1465 ~ mp3an with antecedents i...
mp3an3an 1466 ~ mp3an with antecedents i...
mp3an2ani 1467 An elimination deduction. ...
biimp3a 1468 Infer implication from a l...
biimp3ar 1469 Infer implication from a l...
3anandis 1470 Inference that undistribut...
3anandirs 1471 Inference that undistribut...
ecase23d 1472 Deduction for elimination ...
3ecase 1473 Inference for elimination ...
3bior1fd 1474 A disjunction is equivalen...
3bior1fand 1475 A disjunction is equivalen...
3bior2fd 1476 A wff is equivalent to its...
3biant1d 1477 A conjunction is equivalen...
intn3an1d 1478 Introduction of a triple c...
intn3an2d 1479 Introduction of a triple c...
intn3an3d 1480 Introduction of a triple c...
an3andi 1481 Distribution of conjunctio...
an33rean 1482 Rearrange a 9-fold conjunc...
an33reanOLD 1483 Obsolete version of ~ an33...
3orel2 1484 Partial elimination of a t...
3orel3 1485 Partial elimination of a t...
3orel13 1486 Elimination of two disjunc...
3pm3.2ni 1487 Triple negated disjunction...
nanan 1490 Conjunction in terms of al...
dfnan2 1491 Alternative denial in term...
nanor 1492 Alternative denial in term...
nancom 1493 Alternative denial is comm...
nannan 1494 Nested alternative denials...
nanim 1495 Implication in terms of al...
nannot 1496 Negation in terms of alter...
nanbi 1497 Biconditional in terms of ...
nanbi1 1498 Introduce a right anti-con...
nanbi2 1499 Introduce a left anti-conj...
nanbi12 1500 Join two logical equivalen...
nanbi1i 1501 Introduce a right anti-con...
nanbi2i 1502 Introduce a left anti-conj...
nanbi12i 1503 Join two logical equivalen...
nanbi1d 1504 Introduce a right anti-con...
nanbi2d 1505 Introduce a left anti-conj...
nanbi12d 1506 Join two logical equivalen...
nanass 1507 A characterization of when...
xnor 1510 Two ways to write XNOR (ex...
xorcom 1511 The connector ` \/_ ` is c...
xorcomOLD 1512 Obsolete version of ~ xorc...
xorass 1513 The connector ` \/_ ` is a...
excxor 1514 This tautology shows that ...
xor2 1515 Two ways to express "exclu...
xoror 1516 Exclusive disjunction impl...
xornan 1517 Exclusive disjunction impl...
xornan2 1518 XOR implies NAND (written ...
xorneg2 1519 The connector ` \/_ ` is n...
xorneg1 1520 The connector ` \/_ ` is n...
xorneg 1521 The connector ` \/_ ` is u...
xorbi12i 1522 Equality property for excl...
xorbi12iOLD 1523 Obsolete version of ~ xorb...
xorbi12d 1524 Equality property for excl...
anxordi 1525 Conjunction distributes ov...
xorexmid 1526 Exclusive-or variant of th...
norcom 1529 The connector ` -\/ ` is c...
norcomOLD 1530 Obsolete version of ~ norc...
nornot 1531 ` -. ` is expressible via ...
noran 1532 ` /\ ` is expressible via ...
noror 1533 ` \/ ` is expressible via ...
norasslem1 1534 This lemma shows the equiv...
norasslem2 1535 This lemma specializes ~ b...
norasslem3 1536 This lemma specializes ~ b...
norass 1537 A characterization of when...
trujust 1542 Soundness justification th...
tru 1544 The truth value ` T. ` is ...
dftru2 1545 An alternate definition of...
trut 1546 A proposition is equivalen...
mptru 1547 Eliminate ` T. ` as an ant...
tbtru 1548 A proposition is equivalen...
bitru 1549 A theorem is equivalent to...
trud 1550 Anything implies ` T. ` . ...
truan 1551 True can be removed from a...
fal 1554 The truth value ` F. ` is ...
nbfal 1555 The negation of a proposit...
bifal 1556 A contradiction is equival...
falim 1557 The truth value ` F. ` imp...
falimd 1558 The truth value ` F. ` imp...
dfnot 1559 Given falsum ` F. ` , we c...
inegd 1560 Negation introduction rule...
efald 1561 Deduction based on reducti...
pm2.21fal 1562 If a wff and its negation ...
truimtru 1563 A ` -> ` identity. (Contr...
truimfal 1564 A ` -> ` identity. (Contr...
falimtru 1565 A ` -> ` identity. (Contr...
falimfal 1566 A ` -> ` identity. (Contr...
nottru 1567 A ` -. ` identity. (Contr...
notfal 1568 A ` -. ` identity. (Contr...
trubitru 1569 A ` <-> ` identity. (Cont...
falbitru 1570 A ` <-> ` identity. (Cont...
trubifal 1571 A ` <-> ` identity. (Cont...
falbifal 1572 A ` <-> ` identity. (Cont...
truantru 1573 A ` /\ ` identity. (Contr...
truanfal 1574 A ` /\ ` identity. (Contr...
falantru 1575 A ` /\ ` identity. (Contr...
falanfal 1576 A ` /\ ` identity. (Contr...
truortru 1577 A ` \/ ` identity. (Contr...
truorfal 1578 A ` \/ ` identity. (Contr...
falortru 1579 A ` \/ ` identity. (Contr...
falorfal 1580 A ` \/ ` identity. (Contr...
trunantru 1581 A ` -/\ ` identity. (Cont...
trunanfal 1582 A ` -/\ ` identity. (Cont...
falnantru 1583 A ` -/\ ` identity. (Cont...
falnanfal 1584 A ` -/\ ` identity. (Cont...
truxortru 1585 A ` \/_ ` identity. (Cont...
truxorfal 1586 A ` \/_ ` identity. (Cont...
falxortru 1587 A ` \/_ ` identity. (Cont...
falxorfal 1588 A ` \/_ ` identity. (Cont...
trunortru 1589 A ` -\/ ` identity. (Cont...
trunorfal 1590 A ` -\/ ` identity. (Cont...
falnortru 1591 A ` -\/ ` identity. (Cont...
falnorfal 1592 A ` -\/ ` identity. (Cont...
hadbi123d 1595 Equality theorem for the a...
hadbi123i 1596 Equality theorem for the a...
hadass 1597 Associative law for the ad...
hadbi 1598 The adder sum is the same ...
hadcoma 1599 Commutative law for the ad...
hadcomb 1600 Commutative law for the ad...
hadrot 1601 Rotation law for the adder...
hadnot 1602 The adder sum distributes ...
had1 1603 If the first input is true...
had0 1604 If the first input is fals...
hadifp 1605 The value of the adder sum...
cador 1608 The adder carry in disjunc...
cadan 1609 The adder carry in conjunc...
cadbi123d 1610 Equality theorem for the a...
cadbi123i 1611 Equality theorem for the a...
cadcoma 1612 Commutative law for the ad...
cadcomb 1613 Commutative law for the ad...
cadrot 1614 Rotation law for the adder...
cadnot 1615 The adder carry distribute...
cad11 1616 If (at least) two inputs a...
cad1 1617 If one input is true, then...
cad0 1618 If one input is false, the...
cad0OLD 1619 Obsolete version of ~ cad0...
cadifp 1620 The value of the carry is,...
cadtru 1621 The adder carry is true as...
minimp 1622 A single axiom for minimal...
minimp-syllsimp 1623 Derivation of Syll-Simp ( ...
minimp-ax1 1624 Derivation of ~ ax-1 from ...
minimp-ax2c 1625 Derivation of a commuted f...
minimp-ax2 1626 Derivation of ~ ax-2 from ...
minimp-pm2.43 1627 Derivation of ~ pm2.43 (al...
impsingle 1628 The shortest single axiom ...
impsingle-step4 1629 Derivation of impsingle-st...
impsingle-step8 1630 Derivation of impsingle-st...
impsingle-ax1 1631 Derivation of impsingle-ax...
impsingle-step15 1632 Derivation of impsingle-st...
impsingle-step18 1633 Derivation of impsingle-st...
impsingle-step19 1634 Derivation of impsingle-st...
impsingle-step20 1635 Derivation of impsingle-st...
impsingle-step21 1636 Derivation of impsingle-st...
impsingle-step22 1637 Derivation of impsingle-st...
impsingle-step25 1638 Derivation of impsingle-st...
impsingle-imim1 1639 Derivation of impsingle-im...
impsingle-peirce 1640 Derivation of impsingle-pe...
tarski-bernays-ax2 1641 Derivation of ~ ax-2 from ...
meredith 1642 Carew Meredith's sole axio...
merlem1 1643 Step 3 of Meredith's proof...
merlem2 1644 Step 4 of Meredith's proof...
merlem3 1645 Step 7 of Meredith's proof...
merlem4 1646 Step 8 of Meredith's proof...
merlem5 1647 Step 11 of Meredith's proo...
merlem6 1648 Step 12 of Meredith's proo...
merlem7 1649 Between steps 14 and 15 of...
merlem8 1650 Step 15 of Meredith's proo...
merlem9 1651 Step 18 of Meredith's proo...
merlem10 1652 Step 19 of Meredith's proo...
merlem11 1653 Step 20 of Meredith's proo...
merlem12 1654 Step 28 of Meredith's proo...
merlem13 1655 Step 35 of Meredith's proo...
luk-1 1656 1 of 3 axioms for proposit...
luk-2 1657 2 of 3 axioms for proposit...
luk-3 1658 3 of 3 axioms for proposit...
luklem1 1659 Used to rederive standard ...
luklem2 1660 Used to rederive standard ...
luklem3 1661 Used to rederive standard ...
luklem4 1662 Used to rederive standard ...
luklem5 1663 Used to rederive standard ...
luklem6 1664 Used to rederive standard ...
luklem7 1665 Used to rederive standard ...
luklem8 1666 Used to rederive standard ...
ax1 1667 Standard propositional axi...
ax2 1668 Standard propositional axi...
ax3 1669 Standard propositional axi...
nic-dfim 1670 This theorem "defines" imp...
nic-dfneg 1671 This theorem "defines" neg...
nic-mp 1672 Derive Nicod's rule of mod...
nic-mpALT 1673 A direct proof of ~ nic-mp...
nic-ax 1674 Nicod's axiom derived from...
nic-axALT 1675 A direct proof of ~ nic-ax...
nic-imp 1676 Inference for ~ nic-mp usi...
nic-idlem1 1677 Lemma for ~ nic-id . (Con...
nic-idlem2 1678 Lemma for ~ nic-id . Infe...
nic-id 1679 Theorem ~ id expressed wit...
nic-swap 1680 The connector ` -/\ ` is s...
nic-isw1 1681 Inference version of ~ nic...
nic-isw2 1682 Inference for swapping nes...
nic-iimp1 1683 Inference version of ~ nic...
nic-iimp2 1684 Inference version of ~ nic...
nic-idel 1685 Inference to remove the tr...
nic-ich 1686 Chained inference. (Contr...
nic-idbl 1687 Double the terms. Since d...
nic-bijust 1688 Biconditional justificatio...
nic-bi1 1689 Inference to extract one s...
nic-bi2 1690 Inference to extract the o...
nic-stdmp 1691 Derive the standard modus ...
nic-luk1 1692 Proof of ~ luk-1 from ~ ni...
nic-luk2 1693 Proof of ~ luk-2 from ~ ni...
nic-luk3 1694 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1695 This alternative axiom for...
lukshefth1 1696 Lemma for ~ renicax . (Co...
lukshefth2 1697 Lemma for ~ renicax . (Co...
renicax 1698 A rederivation of ~ nic-ax...
tbw-bijust 1699 Justification for ~ tbw-ne...
tbw-negdf 1700 The definition of negation...
tbw-ax1 1701 The first of four axioms i...
tbw-ax2 1702 The second of four axioms ...
tbw-ax3 1703 The third of four axioms i...
tbw-ax4 1704 The fourth of four axioms ...
tbwsyl 1705 Used to rederive the Lukas...
tbwlem1 1706 Used to rederive the Lukas...
tbwlem2 1707 Used to rederive the Lukas...
tbwlem3 1708 Used to rederive the Lukas...
tbwlem4 1709 Used to rederive the Lukas...
tbwlem5 1710 Used to rederive the Lukas...
re1luk1 1711 ~ luk-1 derived from the T...
re1luk2 1712 ~ luk-2 derived from the T...
re1luk3 1713 ~ luk-3 derived from the T...
merco1 1714 A single axiom for proposi...
merco1lem1 1715 Used to rederive the Tarsk...
retbwax4 1716 ~ tbw-ax4 rederived from ~...
retbwax2 1717 ~ tbw-ax2 rederived from ~...
merco1lem2 1718 Used to rederive the Tarsk...
merco1lem3 1719 Used to rederive the Tarsk...
merco1lem4 1720 Used to rederive the Tarsk...
merco1lem5 1721 Used to rederive the Tarsk...
merco1lem6 1722 Used to rederive the Tarsk...
merco1lem7 1723 Used to rederive the Tarsk...
retbwax3 1724 ~ tbw-ax3 rederived from ~...
merco1lem8 1725 Used to rederive the Tarsk...
merco1lem9 1726 Used to rederive the Tarsk...
merco1lem10 1727 Used to rederive the Tarsk...
merco1lem11 1728 Used to rederive the Tarsk...
merco1lem12 1729 Used to rederive the Tarsk...
merco1lem13 1730 Used to rederive the Tarsk...
merco1lem14 1731 Used to rederive the Tarsk...
merco1lem15 1732 Used to rederive the Tarsk...
merco1lem16 1733 Used to rederive the Tarsk...
merco1lem17 1734 Used to rederive the Tarsk...
merco1lem18 1735 Used to rederive the Tarsk...
retbwax1 1736 ~ tbw-ax1 rederived from ~...
merco2 1737 A single axiom for proposi...
mercolem1 1738 Used to rederive the Tarsk...
mercolem2 1739 Used to rederive the Tarsk...
mercolem3 1740 Used to rederive the Tarsk...
mercolem4 1741 Used to rederive the Tarsk...
mercolem5 1742 Used to rederive the Tarsk...
mercolem6 1743 Used to rederive the Tarsk...
mercolem7 1744 Used to rederive the Tarsk...
mercolem8 1745 Used to rederive the Tarsk...
re1tbw1 1746 ~ tbw-ax1 rederived from ~...
re1tbw2 1747 ~ tbw-ax2 rederived from ~...
re1tbw3 1748 ~ tbw-ax3 rederived from ~...
re1tbw4 1749 ~ tbw-ax4 rederived from ~...
rb-bijust 1750 Justification for ~ rb-imd...
rb-imdf 1751 The definition of implicat...
anmp 1752 Modus ponens for ` { \/ , ...
rb-ax1 1753 The first of four axioms i...
rb-ax2 1754 The second of four axioms ...
rb-ax3 1755 The third of four axioms i...
rb-ax4 1756 The fourth of four axioms ...
rbsyl 1757 Used to rederive the Lukas...
rblem1 1758 Used to rederive the Lukas...
rblem2 1759 Used to rederive the Lukas...
rblem3 1760 Used to rederive the Lukas...
rblem4 1761 Used to rederive the Lukas...
rblem5 1762 Used to rederive the Lukas...
rblem6 1763 Used to rederive the Lukas...
rblem7 1764 Used to rederive the Lukas...
re1axmp 1765 ~ ax-mp derived from Russe...
re2luk1 1766 ~ luk-1 derived from Russe...
re2luk2 1767 ~ luk-2 derived from Russe...
re2luk3 1768 ~ luk-3 derived from Russe...
mptnan 1769 Modus ponendo tollens 1, o...
mptxor 1770 Modus ponendo tollens 2, o...
mtpor 1771 Modus tollendo ponens (inc...
mtpxor 1772 Modus tollendo ponens (ori...
stoic1a 1773 Stoic logic Thema 1 (part ...
stoic1b 1774 Stoic logic Thema 1 (part ...
stoic2a 1775 Stoic logic Thema 2 versio...
stoic2b 1776 Stoic logic Thema 2 versio...
stoic3 1777 Stoic logic Thema 3. Stat...
stoic4a 1778 Stoic logic Thema 4 versio...
stoic4b 1779 Stoic logic Thema 4 versio...
alnex 1782 Universal quantification o...
eximal 1783 An equivalence between an ...
nf2 1786 Alternate definition of no...
nf3 1787 Alternate definition of no...
nf4 1788 Alternate definition of no...
nfi 1789 Deduce that ` x ` is not f...
nfri 1790 Consequence of the definit...
nfd 1791 Deduce that ` x ` is not f...
nfrd 1792 Consequence of the definit...
nftht 1793 Closed form of ~ nfth . (...
nfntht 1794 Closed form of ~ nfnth . ...
nfntht2 1795 Closed form of ~ nfnth . ...
gen2 1797 Generalization applied twi...
mpg 1798 Modus ponens combined with...
mpgbi 1799 Modus ponens on biconditio...
mpgbir 1800 Modus ponens on biconditio...
nex 1801 Generalization rule for ne...
nfth 1802 No variable is (effectivel...
nfnth 1803 No variable is (effectivel...
hbth 1804 No variable is (effectivel...
nftru 1805 The true constant has no f...
nffal 1806 The false constant has no ...
sptruw 1807 Version of ~ sp when ` ph ...
altru 1808 For all sets, ` T. ` is tr...
alfal 1809 For all sets, ` -. F. ` is...
alim 1811 Restatement of Axiom ~ ax-...
alimi 1812 Inference quantifying both...
2alimi 1813 Inference doubly quantifyi...
ala1 1814 Add an antecedent in a uni...
al2im 1815 Closed form of ~ al2imi . ...
al2imi 1816 Inference quantifying ante...
alanimi 1817 Variant of ~ al2imi with c...
alimdh 1818 Deduction form of Theorem ...
albi 1819 Theorem 19.15 of [Margaris...
albii 1820 Inference adding universal...
2albii 1821 Inference adding two unive...
3albii 1822 Inference adding three uni...
sylgt 1823 Closed form of ~ sylg . (...
sylg 1824 A syllogism combined with ...
alrimih 1825 Inference form of Theorem ...
hbxfrbi 1826 A utility lemma to transfe...
alex 1827 Universal quantifier in te...
exnal 1828 Existential quantification...
2nalexn 1829 Part of theorem *11.5 in [...
2exnaln 1830 Theorem *11.22 in [Whitehe...
2nexaln 1831 Theorem *11.25 in [Whitehe...
alimex 1832 An equivalence between an ...
aleximi 1833 A variant of ~ al2imi : in...
alexbii 1834 Biconditional form of ~ al...
exim 1835 Theorem 19.22 of [Margaris...
eximi 1836 Inference adding existenti...
2eximi 1837 Inference adding two exist...
eximii 1838 Inference associated with ...
exa1 1839 Add an antecedent in an ex...
19.38 1840 Theorem 19.38 of [Margaris...
19.38a 1841 Under a nonfreeness hypoth...
19.38b 1842 Under a nonfreeness hypoth...
imnang 1843 Quantified implication in ...
alinexa 1844 A transformation of quanti...
exnalimn 1845 Existential quantification...
alexn 1846 A relationship between two...
2exnexn 1847 Theorem *11.51 in [Whitehe...
exbi 1848 Theorem 19.18 of [Margaris...
exbii 1849 Inference adding existenti...
2exbii 1850 Inference adding two exist...
3exbii 1851 Inference adding three exi...
nfbiit 1852 Equivalence theorem for th...
nfbii 1853 Equality theorem for the n...
nfxfr 1854 A utility lemma to transfe...
nfxfrd 1855 A utility lemma to transfe...
nfnbi 1856 A variable is nonfree in a...
nfnbiOLD 1857 Obsolete version of ~ nfnb...
nfnt 1858 If a variable is nonfree i...
nfn 1859 Inference associated with ...
nfnd 1860 Deduction associated with ...
exanali 1861 A transformation of quanti...
2exanali 1862 Theorem *11.521 in [Whiteh...
exancom 1863 Commutation of conjunction...
exan 1864 Place a conjunct in the sc...
alrimdh 1865 Deduction form of Theorem ...
eximdh 1866 Deduction from Theorem 19....
nexdh 1867 Deduction for generalizati...
albidh 1868 Formula-building rule for ...
exbidh 1869 Formula-building rule for ...
exsimpl 1870 Simplification of an exist...
exsimpr 1871 Simplification of an exist...
19.26 1872 Theorem 19.26 of [Margaris...
19.26-2 1873 Theorem ~ 19.26 with two q...
19.26-3an 1874 Theorem ~ 19.26 with tripl...
19.29 1875 Theorem 19.29 of [Margaris...
19.29r 1876 Variation of ~ 19.29 . (C...
19.29r2 1877 Variation of ~ 19.29r with...
19.29x 1878 Variation of ~ 19.29 with ...
19.35 1879 Theorem 19.35 of [Margaris...
19.35i 1880 Inference associated with ...
19.35ri 1881 Inference associated with ...
19.25 1882 Theorem 19.25 of [Margaris...
19.30 1883 Theorem 19.30 of [Margaris...
19.43 1884 Theorem 19.43 of [Margaris...
19.43OLD 1885 Obsolete proof of ~ 19.43 ...
19.33 1886 Theorem 19.33 of [Margaris...
19.33b 1887 The antecedent provides a ...
19.40 1888 Theorem 19.40 of [Margaris...
19.40-2 1889 Theorem *11.42 in [Whitehe...
19.40b 1890 The antecedent provides a ...
albiim 1891 Split a biconditional and ...
2albiim 1892 Split a biconditional and ...
exintrbi 1893 Add/remove a conjunct in t...
exintr 1894 Introduce a conjunct in th...
alsyl 1895 Universally quantified and...
nfimd 1896 If in a context ` x ` is n...
nfimt 1897 Closed form of ~ nfim and ...
nfim 1898 If ` x ` is not free in ` ...
nfand 1899 If in a context ` x ` is n...
nf3and 1900 Deduction form of bound-va...
nfan 1901 If ` x ` is not free in ` ...
nfnan 1902 If ` x ` is not free in ` ...
nf3an 1903 If ` x ` is not free in ` ...
nfbid 1904 If in a context ` x ` is n...
nfbi 1905 If ` x ` is not free in ` ...
nfor 1906 If ` x ` is not free in ` ...
nf3or 1907 If ` x ` is not free in ` ...
empty 1908 Two characterizations of t...
emptyex 1909 On the empty domain, any e...
emptyal 1910 On the empty domain, any u...
emptynf 1911 On the empty domain, any v...
ax5d 1913 Version of ~ ax-5 with ant...
ax5e 1914 A rephrasing of ~ ax-5 usi...
ax5ea 1915 If a formula holds for som...
nfv 1916 If ` x ` is not present in...
nfvd 1917 ~ nfv with antecedent. Us...
alimdv 1918 Deduction form of Theorem ...
eximdv 1919 Deduction form of Theorem ...
2alimdv 1920 Deduction form of Theorem ...
2eximdv 1921 Deduction form of Theorem ...
albidv 1922 Formula-building rule for ...
exbidv 1923 Formula-building rule for ...
nfbidv 1924 An equality theorem for no...
2albidv 1925 Formula-building rule for ...
2exbidv 1926 Formula-building rule for ...
3exbidv 1927 Formula-building rule for ...
4exbidv 1928 Formula-building rule for ...
alrimiv 1929 Inference form of Theorem ...
alrimivv 1930 Inference form of Theorem ...
alrimdv 1931 Deduction form of Theorem ...
exlimiv 1932 Inference form of Theorem ...
exlimiiv 1933 Inference (Rule C) associa...
exlimivv 1934 Inference form of Theorem ...
exlimdv 1935 Deduction form of Theorem ...
exlimdvv 1936 Deduction form of Theorem ...
exlimddv 1937 Existential elimination ru...
nexdv 1938 Deduction for generalizati...
2ax5 1939 Quantification of two vari...
stdpc5v 1940 Version of ~ stdpc5 with a...
19.21v 1941 Version of ~ 19.21 with a ...
19.32v 1942 Version of ~ 19.32 with a ...
19.31v 1943 Version of ~ 19.31 with a ...
19.23v 1944 Version of ~ 19.23 with a ...
19.23vv 1945 Theorem ~ 19.23v extended ...
pm11.53v 1946 Version of ~ pm11.53 with ...
19.36imv 1947 One direction of ~ 19.36v ...
19.36imvOLD 1948 Obsolete version of ~ 19.3...
19.36iv 1949 Inference associated with ...
19.37imv 1950 One direction of ~ 19.37v ...
19.37iv 1951 Inference associated with ...
19.41v 1952 Version of ~ 19.41 with a ...
19.41vv 1953 Version of ~ 19.41 with tw...
19.41vvv 1954 Version of ~ 19.41 with th...
19.41vvvv 1955 Version of ~ 19.41 with fo...
19.42v 1956 Version of ~ 19.42 with a ...
exdistr 1957 Distribution of existentia...
exdistrv 1958 Distribute a pair of exist...
4exdistrv 1959 Distribute two pairs of ex...
19.42vv 1960 Version of ~ 19.42 with tw...
exdistr2 1961 Distribution of existentia...
19.42vvv 1962 Version of ~ 19.42 with th...
3exdistr 1963 Distribution of existentia...
4exdistr 1964 Distribution of existentia...
weq 1965 Extend wff definition to i...
speimfw 1966 Specialization, with addit...
speimfwALT 1967 Alternate proof of ~ speim...
spimfw 1968 Specialization, with addit...
ax12i 1969 Inference that has ~ ax-12...
ax6v 1971 Axiom B7 of [Tarski] p. 75...
ax6ev 1972 At least one individual ex...
spimw 1973 Specialization. Lemma 8 o...
spimew 1974 Existential introduction, ...
speiv 1975 Inference from existential...
speivw 1976 Version of ~ spei with a d...
exgen 1977 Rule of existential genera...
extru 1978 There exists a variable su...
19.2 1979 Theorem 19.2 of [Margaris]...
19.2d 1980 Deduction associated with ...
19.8w 1981 Weak version of ~ 19.8a an...
spnfw 1982 Weak version of ~ sp . Us...
spvw 1983 Version of ~ sp when ` x `...
19.3v 1984 Version of ~ 19.3 with a d...
19.8v 1985 Version of ~ 19.8a with a ...
19.9v 1986 Version of ~ 19.9 with a d...
19.39 1987 Theorem 19.39 of [Margaris...
19.24 1988 Theorem 19.24 of [Margaris...
19.34 1989 Theorem 19.34 of [Margaris...
19.36v 1990 Version of ~ 19.36 with a ...
19.12vvv 1991 Version of ~ 19.12vv with ...
19.27v 1992 Version of ~ 19.27 with a ...
19.28v 1993 Version of ~ 19.28 with a ...
19.37v 1994 Version of ~ 19.37 with a ...
19.44v 1995 Version of ~ 19.44 with a ...
19.45v 1996 Version of ~ 19.45 with a ...
spimevw 1997 Existential introduction, ...
spimvw 1998 A weak form of specializat...
spvv 1999 Specialization, using impl...
spfalw 2000 Version of ~ sp when ` ph ...
chvarvv 2001 Implicit substitution of `...
equs4v 2002 Version of ~ equs4 with a ...
alequexv 2003 Version of ~ equs4v with i...
exsbim 2004 One direction of the equiv...
equsv 2005 If a formula does not cont...
equsalvw 2006 Version of ~ equsalv with ...
equsexvw 2007 Version of ~ equsexv with ...
cbvaliw 2008 Change bound variable. Us...
cbvalivw 2009 Change bound variable. Us...
ax7v 2011 Weakened version of ~ ax-7...
ax7v1 2012 First of two weakened vers...
ax7v2 2013 Second of two weakened ver...
equid 2014 Identity law for equality....
nfequid 2015 Bound-variable hypothesis ...
equcomiv 2016 Weaker form of ~ equcomi w...
ax6evr 2017 A commuted form of ~ ax6ev...
ax7 2018 Proof of ~ ax-7 from ~ ax7...
equcomi 2019 Commutative law for equali...
equcom 2020 Commutative law for equali...
equcomd 2021 Deduction form of ~ equcom...
equcoms 2022 An inference commuting equ...
equtr 2023 A transitive law for equal...
equtrr 2024 A transitive law for equal...
equeuclr 2025 Commuted version of ~ eque...
equeucl 2026 Equality is a left-Euclide...
equequ1 2027 An equivalence law for equ...
equequ2 2028 An equivalence law for equ...
equtr2 2029 Equality is a left-Euclide...
stdpc6 2030 One of the two equality ax...
equvinv 2031 A variable introduction la...
equvinva 2032 A modified version of the ...
equvelv 2033 A biconditional form of ~ ...
ax13b 2034 An equivalence between two...
spfw 2035 Weak version of ~ sp . Us...
spw 2036 Weak version of the specia...
cbvalw 2037 Change bound variable. Us...
cbvalvw 2038 Change bound variable. Us...
cbvexvw 2039 Change bound variable. Us...
cbvaldvaw 2040 Rule used to change the bo...
cbvexdvaw 2041 Rule used to change the bo...
cbval2vw 2042 Rule used to change bound ...
cbvex2vw 2043 Rule used to change bound ...
cbvex4vw 2044 Rule used to change bound ...
alcomiw 2045 Weak version of ~ ax-11 . ...
alcomw 2046 Weak version of ~ alcom an...
hbn1fw 2047 Weak version of ~ ax-10 fr...
hbn1w 2048 Weak version of ~ hbn1 . ...
hba1w 2049 Weak version of ~ hba1 . ...
hbe1w 2050 Weak version of ~ hbe1 . ...
hbalw 2051 Weak version of ~ hbal . ...
19.8aw 2052 If a formula is true, then...
exexw 2053 Existential quantification...
spaev 2054 A special instance of ~ sp...
cbvaev 2055 Change bound variable in a...
aevlem0 2056 Lemma for ~ aevlem . Inst...
aevlem 2057 Lemma for ~ aev and ~ axc1...
aeveq 2058 The antecedent ` A. x x = ...
aev 2059 A "distinctor elimination"...
aev2 2060 A version of ~ aev with tw...
hbaev 2061 All variables are effectiv...
naev 2062 If some set variables can ...
naev2 2063 Generalization of ~ hbnaev...
hbnaev 2064 Any variable is free in ` ...
sbjust 2065 Justification theorem for ...
sbt 2068 A substitution into a theo...
sbtru 2069 The result of substituting...
stdpc4 2070 The specialization axiom o...
sbtALT 2071 Alternate proof of ~ sbt ,...
2stdpc4 2072 A double specialization us...
sbi1 2073 Distribute substitution ov...
spsbim 2074 Distribute substitution ov...
spsbbi 2075 Biconditional property for...
sbimi 2076 Distribute substitution ov...
sb2imi 2077 Distribute substitution ov...
sbbii 2078 Infer substitution into bo...
2sbbii 2079 Infer double substitution ...
sbimdv 2080 Deduction substituting bot...
sbbidv 2081 Deduction substituting bot...
sban 2082 Conjunction inside and out...
sb3an 2083 Threefold conjunction insi...
spsbe 2084 Existential generalization...
sbequ 2085 Equality property for subs...
sbequi 2086 An equality theorem for su...
sb6 2087 Alternate definition of su...
2sb6 2088 Equivalence for double sub...
sb1v 2089 One direction of ~ sb5 , p...
sbv 2090 Substitution for a variabl...
sbcom4 2091 Commutativity law for subs...
pm11.07 2092 Axiom *11.07 in [Whitehead...
sbrimvw 2093 Substitution in an implica...
sbievw 2094 Conversion of implicit sub...
sbiedvw 2095 Conversion of implicit sub...
2sbievw 2096 Conversion of double impli...
sbcom3vv 2097 Substituting ` y ` for ` x...
sbievw2 2098 ~ sbievw applied twice, av...
sbco2vv 2099 A composition law for subs...
equsb3 2100 Substitution in an equalit...
equsb3r 2101 Substitution applied to th...
equsb1v 2102 Substitution applied to an...
nsb 2103 Any substitution in an alw...
sbn1 2104 One direction of ~ sbn , u...
wel 2106 Extend wff definition to i...
ax8v 2108 Weakened version of ~ ax-8...
ax8v1 2109 First of two weakened vers...
ax8v2 2110 Second of two weakened ver...
ax8 2111 Proof of ~ ax-8 from ~ ax8...
elequ1 2112 An identity law for the no...
elsb1 2113 Substitution for the first...
cleljust 2114 When the class variables i...
ax9v 2116 Weakened version of ~ ax-9...
ax9v1 2117 First of two weakened vers...
ax9v2 2118 Second of two weakened ver...
ax9 2119 Proof of ~ ax-9 from ~ ax9...
elequ2 2120 An identity law for the no...
elequ2g 2121 A form of ~ elequ2 with a ...
elsb2 2122 Substitution for the secon...
ax6dgen 2123 Tarski's system uses the w...
ax10w 2124 Weak version of ~ ax-10 fr...
ax11w 2125 Weak version of ~ ax-11 fr...
ax11dgen 2126 Degenerate instance of ~ a...
ax12wlem 2127 Lemma for weak version of ...
ax12w 2128 Weak version of ~ ax-12 fr...
ax12dgen 2129 Degenerate instance of ~ a...
ax12wdemo 2130 Example of an application ...
ax13w 2131 Weak version (principal in...
ax13dgen1 2132 Degenerate instance of ~ a...
ax13dgen2 2133 Degenerate instance of ~ a...
ax13dgen3 2134 Degenerate instance of ~ a...
ax13dgen4 2135 Degenerate instance of ~ a...
hbn1 2137 Alias for ~ ax-10 to be us...
hbe1 2138 The setvar ` x ` is not fr...
hbe1a 2139 Dual statement of ~ hbe1 ....
nf5-1 2140 One direction of ~ nf5 can...
nf5i 2141 Deduce that ` x ` is not f...
nf5dh 2142 Deduce that ` x ` is not f...
nf5dv 2143 Apply the definition of no...
nfnaew 2144 All variables are effectiv...
nfnaewOLD 2145 Obsolete version of ~ nfna...
nfe1 2146 The setvar ` x ` is not fr...
nfa1 2147 The setvar ` x ` is not fr...
nfna1 2148 A convenience theorem part...
nfia1 2149 Lemma 23 of [Monk2] p. 114...
nfnf1 2150 The setvar ` x ` is not fr...
modal5 2151 The analogue in our predic...
nfs1v 2152 The setvar ` x ` is not fr...
alcoms 2154 Swap quantifiers in an ant...
alcom 2155 Theorem 19.5 of [Margaris]...
alrot3 2156 Theorem *11.21 in [Whitehe...
alrot4 2157 Rotate four universal quan...
sbal 2158 Move universal quantifier ...
sbalv 2159 Quantify with new variable...
sbcom2 2160 Commutativity law for subs...
excom 2161 Theorem 19.11 of [Margaris...
excomim 2162 One direction of Theorem 1...
excom13 2163 Swap 1st and 3rd existenti...
exrot3 2164 Rotate existential quantif...
exrot4 2165 Rotate existential quantif...
hbal 2166 If ` x ` is not free in ` ...
hbald 2167 Deduction form of bound-va...
hbsbw 2168 If ` z ` is not free in ` ...
nfa2 2169 Lemma 24 of [Monk2] p. 114...
ax12v 2171 This is essentially Axiom ...
ax12v2 2172 It is possible to remove a...
19.8a 2173 If a wff is true, it is tr...
19.8ad 2174 If a wff is true, it is tr...
sp 2175 Specialization. A univers...
spi 2176 Inference rule of universa...
sps 2177 Generalization of antecede...
2sp 2178 A double specialization (s...
spsd 2179 Deduction generalizing ant...
19.2g 2180 Theorem 19.2 of [Margaris]...
19.21bi 2181 Inference form of ~ 19.21 ...
19.21bbi 2182 Inference removing two uni...
19.23bi 2183 Inference form of Theorem ...
nexr 2184 Inference associated with ...
qexmid 2185 Quantified excluded middle...
nf5r 2186 Consequence of the definit...
nf5ri 2187 Consequence of the definit...
nf5rd 2188 Consequence of the definit...
spimedv 2189 Deduction version of ~ spi...
spimefv 2190 Version of ~ spime with a ...
nfim1 2191 A closed form of ~ nfim . ...
nfan1 2192 A closed form of ~ nfan . ...
19.3t 2193 Closed form of ~ 19.3 and ...
19.3 2194 A wff may be quantified wi...
19.9d 2195 A deduction version of one...
19.9t 2196 Closed form of ~ 19.9 and ...
19.9 2197 A wff may be existentially...
19.21t 2198 Closed form of Theorem 19....
19.21 2199 Theorem 19.21 of [Margaris...
stdpc5 2200 An axiom scheme of standar...
19.21-2 2201 Version of ~ 19.21 with tw...
19.23t 2202 Closed form of Theorem 19....
19.23 2203 Theorem 19.23 of [Margaris...
alimd 2204 Deduction form of Theorem ...
alrimi 2205 Inference form of Theorem ...
alrimdd 2206 Deduction form of Theorem ...
alrimd 2207 Deduction form of Theorem ...
eximd 2208 Deduction form of Theorem ...
exlimi 2209 Inference associated with ...
exlimd 2210 Deduction form of Theorem ...
exlimimdd 2211 Existential elimination ru...
exlimdd 2212 Existential elimination ru...
nexd 2213 Deduction for generalizati...
albid 2214 Formula-building rule for ...
exbid 2215 Formula-building rule for ...
nfbidf 2216 An equality theorem for ef...
19.16 2217 Theorem 19.16 of [Margaris...
19.17 2218 Theorem 19.17 of [Margaris...
19.27 2219 Theorem 19.27 of [Margaris...
19.28 2220 Theorem 19.28 of [Margaris...
19.19 2221 Theorem 19.19 of [Margaris...
19.36 2222 Theorem 19.36 of [Margaris...
19.36i 2223 Inference associated with ...
19.37 2224 Theorem 19.37 of [Margaris...
19.32 2225 Theorem 19.32 of [Margaris...
19.31 2226 Theorem 19.31 of [Margaris...
19.41 2227 Theorem 19.41 of [Margaris...
19.42 2228 Theorem 19.42 of [Margaris...
19.44 2229 Theorem 19.44 of [Margaris...
19.45 2230 Theorem 19.45 of [Margaris...
spimfv 2231 Specialization, using impl...
chvarfv 2232 Implicit substitution of `...
cbv3v2 2233 Version of ~ cbv3 with two...
sbalex 2234 Equivalence of two ways to...
sb4av 2235 Version of ~ sb4a with a d...
sbimd 2236 Deduction substituting bot...
sbbid 2237 Deduction substituting bot...
2sbbid 2238 Deduction doubly substitut...
sbequ1 2239 An equality theorem for su...
sbequ2 2240 An equality theorem for su...
stdpc7 2241 One of the two equality ax...
sbequ12 2242 An equality theorem for su...
sbequ12r 2243 An equality theorem for su...
sbelx 2244 Elimination of substitutio...
sbequ12a 2245 An equality theorem for su...
sbid 2246 An identity theorem for su...
sbcov 2247 A composition law for subs...
sb6a 2248 Equivalence for substituti...
sbid2vw 2249 Reverting substitution yie...
axc16g 2250 Generalization of ~ axc16 ...
axc16 2251 Proof of older axiom ~ ax-...
axc16gb 2252 Biconditional strengthenin...
axc16nf 2253 If ~ dtru is false, then t...
axc11v 2254 Version of ~ axc11 with a ...
axc11rv 2255 Version of ~ axc11r with a...
drsb2 2256 Formula-building lemma for...
equsalv 2257 An equivalence related to ...
equsexv 2258 An equivalence related to ...
equsexvOLD 2259 Obsolete version of ~ equs...
sbft 2260 Substitution has no effect...
sbf 2261 Substitution for a variabl...
sbf2 2262 Substitution has no effect...
sbh 2263 Substitution for a variabl...
hbs1 2264 The setvar ` x ` is not fr...
nfs1f 2265 If ` x ` is not free in ` ...
sb5 2266 Alternate definition of su...
sb5OLD 2267 Obsolete version of ~ sb5 ...
sb56OLD 2268 Obsolete version of ~ sbal...
equs5av 2269 A property related to subs...
2sb5 2270 Equivalence for double sub...
sbco4lem 2271 Lemma for ~ sbco4 . It re...
sbco4lemOLD 2272 Obsolete version of ~ sbco...
sbco4 2273 Two ways of exchanging two...
dfsb7 2274 An alternate definition of...
sbn 2275 Negation inside and outsid...
sbex 2276 Move existential quantifie...
nf5 2277 Alternate definition of ~ ...
nf6 2278 An alternate definition of...
nf5d 2279 Deduce that ` x ` is not f...
nf5di 2280 Since the converse holds b...
19.9h 2281 A wff may be existentially...
19.21h 2282 Theorem 19.21 of [Margaris...
19.23h 2283 Theorem 19.23 of [Margaris...
exlimih 2284 Inference associated with ...
exlimdh 2285 Deduction form of Theorem ...
equsalhw 2286 Version of ~ equsalh with ...
equsexhv 2287 An equivalence related to ...
hba1 2288 The setvar ` x ` is not fr...
hbnt 2289 Closed theorem version of ...
hbn 2290 If ` x ` is not free in ` ...
hbnd 2291 Deduction form of bound-va...
hbim1 2292 A closed form of ~ hbim . ...
hbimd 2293 Deduction form of bound-va...
hbim 2294 If ` x ` is not free in ` ...
hban 2295 If ` x ` is not free in ` ...
hb3an 2296 If ` x ` is not free in ` ...
sbi2 2297 Introduction of implicatio...
sbim 2298 Implication inside and out...
sbrim 2299 Substitution in an implica...
sbrimOLD 2300 Obsolete version of ~ sbri...
sblim 2301 Substitution in an implica...
sbor 2302 Disjunction inside and out...
sbbi 2303 Equivalence inside and out...
sblbis 2304 Introduce left bicondition...
sbrbis 2305 Introduce right biconditio...
sbrbif 2306 Introduce right biconditio...
sbiev 2307 Conversion of implicit sub...
sbiedw 2308 Conversion of implicit sub...
axc7 2309 Show that the original axi...
axc7e 2310 Abbreviated version of ~ a...
modal-b 2311 The analogue in our predic...
19.9ht 2312 A closed version of ~ 19.9...
axc4 2313 Show that the original axi...
axc4i 2314 Inference version of ~ axc...
nfal 2315 If ` x ` is not free in ` ...
nfex 2316 If ` x ` is not free in ` ...
hbex 2317 If ` x ` is not free in ` ...
nfnf 2318 If ` x ` is not free in ` ...
19.12 2319 Theorem 19.12 of [Margaris...
nfald 2320 Deduction form of ~ nfal ....
nfexd 2321 If ` x ` is not free in ` ...
nfsbv 2322 If ` z ` is not free in ` ...
nfsbvOLD 2323 Obsolete version of ~ nfsb...
hbsbwOLD 2324 Obsolete version of ~ hbsb...
sbco2v 2325 A composition law for subs...
aaan 2326 Distribute universal quant...
aaanOLD 2327 Obsolete version of ~ aaan...
eeor 2328 Distribute existential qua...
eeorOLD 2329 Obsolete version of ~ eeor...
cbv3v 2330 Rule used to change bound ...
cbv1v 2331 Rule used to change bound ...
cbv2w 2332 Rule used to change bound ...
cbvaldw 2333 Deduction used to change b...
cbvexdw 2334 Deduction used to change b...
cbv3hv 2335 Rule used to change bound ...
cbvalv1 2336 Rule used to change bound ...
cbvexv1 2337 Rule used to change bound ...
cbval2v 2338 Rule used to change bound ...
cbvex2v 2339 Rule used to change bound ...
dvelimhw 2340 Proof of ~ dvelimh without...
pm11.53 2341 Theorem *11.53 in [Whitehe...
19.12vv 2342 Special case of ~ 19.12 wh...
eean 2343 Distribute existential qua...
eeanv 2344 Distribute a pair of exist...
eeeanv 2345 Distribute three existenti...
ee4anv 2346 Distribute two pairs of ex...
sb8v 2347 Substitution of variable i...
sb8f 2348 Substitution of variable i...
sb8fOLD 2349 Obsolete version of ~ sb8f...
sb8ef 2350 Substitution of variable i...
2sb8ef 2351 An equivalent expression f...
sb6rfv 2352 Reversed substitution. Ve...
sbnf2 2353 Two ways of expressing " `...
exsb 2354 An equivalent expression f...
2exsb 2355 An equivalent expression f...
sbbib 2356 Reversal of substitution. ...
sbbibvv 2357 Reversal of substitution. ...
cbvsbv 2358 Change the bound variable ...
cbvsbvf 2359 Change the bound variable ...
cleljustALT 2360 Alternate proof of ~ clelj...
cleljustALT2 2361 Alternate proof of ~ clelj...
equs5aALT 2362 Alternate proof of ~ equs5...
equs5eALT 2363 Alternate proof of ~ equs5...
axc11r 2364 Same as ~ axc11 but with r...
dral1v 2365 Formula-building lemma for...
dral1vOLD 2366 Obsolete version of ~ dral...
drex1v 2367 Formula-building lemma for...
drnf1v 2368 Formula-building lemma for...
drnf1vOLD 2369 Obsolete version of ~ drnf...
ax13v 2371 A weaker version of ~ ax-1...
ax13lem1 2372 A version of ~ ax13v with ...
ax13 2373 Derive ~ ax-13 from ~ ax13...
ax13lem2 2374 Lemma for ~ nfeqf2 . This...
nfeqf2 2375 An equation between setvar...
dveeq2 2376 Quantifier introduction wh...
nfeqf1 2377 An equation between setvar...
dveeq1 2378 Quantifier introduction wh...
nfeqf 2379 A variable is effectively ...
axc9 2380 Derive set.mm's original ~...
ax6e 2381 At least one individual ex...
ax6 2382 Theorem showing that ~ ax-...
axc10 2383 Show that the original axi...
spimt 2384 Closed theorem form of ~ s...
spim 2385 Specialization, using impl...
spimed 2386 Deduction version of ~ spi...
spime 2387 Existential introduction, ...
spimv 2388 A version of ~ spim with a...
spimvALT 2389 Alternate proof of ~ spimv...
spimev 2390 Distinct-variable version ...
spv 2391 Specialization, using impl...
spei 2392 Inference from existential...
chvar 2393 Implicit substitution of `...
chvarv 2394 Implicit substitution of `...
cbv3 2395 Rule used to change bound ...
cbval 2396 Rule used to change bound ...
cbvex 2397 Rule used to change bound ...
cbvalv 2398 Rule used to change bound ...
cbvexv 2399 Rule used to change bound ...
cbv1 2400 Rule used to change bound ...
cbv2 2401 Rule used to change bound ...
cbv3h 2402 Rule used to change bound ...
cbv1h 2403 Rule used to change bound ...
cbv2h 2404 Rule used to change bound ...
cbvald 2405 Deduction used to change b...
cbvexd 2406 Deduction used to change b...
cbvaldva 2407 Rule used to change the bo...
cbvexdva 2408 Rule used to change the bo...
cbval2 2409 Rule used to change bound ...
cbvex2 2410 Rule used to change bound ...
cbval2vv 2411 Rule used to change bound ...
cbvex2vv 2412 Rule used to change bound ...
cbvex4v 2413 Rule used to change bound ...
equs4 2414 Lemma used in proofs of im...
equsal 2415 An equivalence related to ...
equsex 2416 An equivalence related to ...
equsexALT 2417 Alternate proof of ~ equse...
equsalh 2418 An equivalence related to ...
equsexh 2419 An equivalence related to ...
axc15 2420 Derivation of set.mm's ori...
ax12 2421 Rederivation of Axiom ~ ax...
ax12b 2422 A bidirectional version of...
ax13ALT 2423 Alternate proof of ~ ax13 ...
axc11n 2424 Derive set.mm's original ~...
aecom 2425 Commutation law for identi...
aecoms 2426 A commutation rule for ide...
naecoms 2427 A commutation rule for dis...
axc11 2428 Show that ~ ax-c11 can be ...
hbae 2429 All variables are effectiv...
hbnae 2430 All variables are effectiv...
nfae 2431 All variables are effectiv...
nfnae 2432 All variables are effectiv...
hbnaes 2433 Rule that applies ~ hbnae ...
axc16i 2434 Inference with ~ axc16 as ...
axc16nfALT 2435 Alternate proof of ~ axc16...
dral2 2436 Formula-building lemma for...
dral1 2437 Formula-building lemma for...
dral1ALT 2438 Alternate proof of ~ dral1...
drex1 2439 Formula-building lemma for...
drex2 2440 Formula-building lemma for...
drnf1 2441 Formula-building lemma for...
drnf2 2442 Formula-building lemma for...
nfald2 2443 Variation on ~ nfald which...
nfexd2 2444 Variation on ~ nfexd which...
exdistrf 2445 Distribution of existentia...
dvelimf 2446 Version of ~ dvelimv witho...
dvelimdf 2447 Deduction form of ~ dvelim...
dvelimh 2448 Version of ~ dvelim withou...
dvelim 2449 This theorem can be used t...
dvelimv 2450 Similar to ~ dvelim with f...
dvelimnf 2451 Version of ~ dvelim using ...
dveeq2ALT 2452 Alternate proof of ~ dveeq...
equvini 2453 A variable introduction la...
equvel 2454 A variable elimination law...
equs5a 2455 A property related to subs...
equs5e 2456 A property related to subs...
equs45f 2457 Two ways of expressing sub...
equs5 2458 Lemma used in proofs of su...
dveel1 2459 Quantifier introduction wh...
dveel2 2460 Quantifier introduction wh...
axc14 2461 Axiom ~ ax-c14 is redundan...
sb6x 2462 Equivalence involving subs...
sbequ5 2463 Substitution does not chan...
sbequ6 2464 Substitution does not chan...
sb5rf 2465 Reversed substitution. Us...
sb6rf 2466 Reversed substitution. Fo...
ax12vALT 2467 Alternate proof of ~ ax12v...
2ax6elem 2468 We can always find values ...
2ax6e 2469 We can always find values ...
2sb5rf 2470 Reversed double substituti...
2sb6rf 2471 Reversed double substituti...
sbel2x 2472 Elimination of double subs...
sb4b 2473 Simplified definition of s...
sb3b 2474 Simplified definition of s...
sb3 2475 One direction of a simplif...
sb1 2476 One direction of a simplif...
sb2 2477 One direction of a simplif...
sb4a 2478 A version of one implicati...
dfsb1 2479 Alternate definition of su...
hbsb2 2480 Bound-variable hypothesis ...
nfsb2 2481 Bound-variable hypothesis ...
hbsb2a 2482 Special case of a bound-va...
sb4e 2483 One direction of a simplif...
hbsb2e 2484 Special case of a bound-va...
hbsb3 2485 If ` y ` is not free in ` ...
nfs1 2486 If ` y ` is not free in ` ...
axc16ALT 2487 Alternate proof of ~ axc16...
axc16gALT 2488 Alternate proof of ~ axc16...
equsb1 2489 Substitution applied to an...
equsb2 2490 Substitution applied to an...
dfsb2 2491 An alternate definition of...
dfsb3 2492 An alternate definition of...
drsb1 2493 Formula-building lemma for...
sb2ae 2494 In the case of two success...
sb6f 2495 Equivalence for substituti...
sb5f 2496 Equivalence for substituti...
nfsb4t 2497 A variable not free in a p...
nfsb4 2498 A variable not free in a p...
sbequ8 2499 Elimination of equality fr...
sbie 2500 Conversion of implicit sub...
sbied 2501 Conversion of implicit sub...
sbiedv 2502 Conversion of implicit sub...
2sbiev 2503 Conversion of double impli...
sbcom3 2504 Substituting ` y ` for ` x...
sbco 2505 A composition law for subs...
sbid2 2506 An identity law for substi...
sbid2v 2507 An identity law for substi...
sbidm 2508 An idempotent law for subs...
sbco2 2509 A composition law for subs...
sbco2d 2510 A composition law for subs...
sbco3 2511 A composition law for subs...
sbcom 2512 A commutativity law for su...
sbtrt 2513 Partially closed form of ~...
sbtr 2514 A partial converse to ~ sb...
sb8 2515 Substitution of variable i...
sb8e 2516 Substitution of variable i...
sb9 2517 Commutation of quantificat...
sb9i 2518 Commutation of quantificat...
sbhb 2519 Two ways of expressing " `...
nfsbd 2520 Deduction version of ~ nfs...
nfsb 2521 If ` z ` is not free in ` ...
hbsb 2522 If ` z ` is not free in ` ...
sb7f 2523 This version of ~ dfsb7 do...
sb7h 2524 This version of ~ dfsb7 do...
sb10f 2525 Hao Wang's identity axiom ...
sbal1 2526 Check out ~ sbal for a ver...
sbal2 2527 Move quantifier in and out...
2sb8e 2528 An equivalent expression f...
dfmoeu 2529 An elementary proof of ~ m...
dfeumo 2530 An elementary proof showin...
mojust 2532 Soundness justification th...
nexmo 2534 Nonexistence implies uniqu...
exmo 2535 Any proposition holds for ...
moabs 2536 Absorption of existence co...
moim 2537 The at-most-one quantifier...
moimi 2538 The at-most-one quantifier...
moimdv 2539 The at-most-one quantifier...
mobi 2540 Equivalence theorem for th...
mobii 2541 Formula-building rule for ...
mobidv 2542 Formula-building rule for ...
mobid 2543 Formula-building rule for ...
moa1 2544 If an implication holds fo...
moan 2545 "At most one" is still the...
moani 2546 "At most one" is still tru...
moor 2547 "At most one" is still the...
mooran1 2548 "At most one" imports disj...
mooran2 2549 "At most one" exports disj...
nfmo1 2550 Bound-variable hypothesis ...
nfmod2 2551 Bound-variable hypothesis ...
nfmodv 2552 Bound-variable hypothesis ...
nfmov 2553 Bound-variable hypothesis ...
nfmod 2554 Bound-variable hypothesis ...
nfmo 2555 Bound-variable hypothesis ...
mof 2556 Version of ~ df-mo with di...
mo3 2557 Alternate definition of th...
mo 2558 Equivalent definitions of ...
mo4 2559 At-most-one quantifier exp...
mo4f 2560 At-most-one quantifier exp...
eu3v 2563 An alternate way to expres...
eujust 2564 Soundness justification th...
eujustALT 2565 Alternate proof of ~ eujus...
eu6lem 2566 Lemma of ~ eu6im . A diss...
eu6 2567 Alternate definition of th...
eu6im 2568 One direction of ~ eu6 nee...
euf 2569 Version of ~ eu6 with disj...
euex 2570 Existential uniqueness imp...
eumo 2571 Existential uniqueness imp...
eumoi 2572 Uniqueness inferred from e...
exmoeub 2573 Existence implies that uni...
exmoeu 2574 Existence is equivalent to...
moeuex 2575 Uniqueness implies that ex...
moeu 2576 Uniqueness is equivalent t...
eubi 2577 Equivalence theorem for th...
eubii 2578 Introduce unique existenti...
eubidv 2579 Formula-building rule for ...
eubid 2580 Formula-building rule for ...
nfeu1 2581 Bound-variable hypothesis ...
nfeu1ALT 2582 Alternate proof of ~ nfeu1...
nfeud2 2583 Bound-variable hypothesis ...
nfeudw 2584 Bound-variable hypothesis ...
nfeud 2585 Bound-variable hypothesis ...
nfeuw 2586 Bound-variable hypothesis ...
nfeu 2587 Bound-variable hypothesis ...
dfeu 2588 Rederive ~ df-eu from the ...
dfmo 2589 Rederive ~ df-mo from the ...
euequ 2590 There exists a unique set ...
sb8eulem 2591 Lemma. Factor out the com...
sb8euv 2592 Variable substitution in u...
sb8eu 2593 Variable substitution in u...
sb8mo 2594 Variable substitution for ...
cbvmovw 2595 Change bound variable. Us...
cbvmow 2596 Rule used to change bound ...
cbvmowOLD 2597 Obsolete version of ~ cbvm...
cbvmo 2598 Rule used to change bound ...
cbveuvw 2599 Change bound variable. Us...
cbveuw 2600 Version of ~ cbveu with a ...
cbveuwOLD 2601 Obsolete version of ~ cbve...
cbveu 2602 Rule used to change bound ...
cbveuALT 2603 Alternative proof of ~ cbv...
eu2 2604 An alternate way of defini...
eu1 2605 An alternate way to expres...
euor 2606 Introduce a disjunct into ...
euorv 2607 Introduce a disjunct into ...
euor2 2608 Introduce or eliminate a d...
sbmo 2609 Substitution into an at-mo...
eu4 2610 Uniqueness using implicit ...
euimmo 2611 Existential uniqueness imp...
euim 2612 Add unique existential qua...
moanimlem 2613 Factor out the common proo...
moanimv 2614 Introduction of a conjunct...
moanim 2615 Introduction of a conjunct...
euan 2616 Introduction of a conjunct...
moanmo 2617 Nested at-most-one quantif...
moaneu 2618 Nested at-most-one and uni...
euanv 2619 Introduction of a conjunct...
mopick 2620 "At most one" picks a vari...
moexexlem 2621 Factor out the proof skele...
2moexv 2622 Double quantification with...
moexexvw 2623 "At most one" double quant...
2moswapv 2624 A condition allowing to sw...
2euswapv 2625 A condition allowing to sw...
2euexv 2626 Double quantification with...
2exeuv 2627 Double existential uniquen...
eupick 2628 Existential uniqueness "pi...
eupicka 2629 Version of ~ eupick with c...
eupickb 2630 Existential uniqueness "pi...
eupickbi 2631 Theorem *14.26 in [Whitehe...
mopick2 2632 "At most one" can show the...
moexex 2633 "At most one" double quant...
moexexv 2634 "At most one" double quant...
2moex 2635 Double quantification with...
2euex 2636 Double quantification with...
2eumo 2637 Nested unique existential ...
2eu2ex 2638 Double existential uniquen...
2moswap 2639 A condition allowing to sw...
2euswap 2640 A condition allowing to sw...
2exeu 2641 Double existential uniquen...
2mo2 2642 Two ways of expressing "th...
2mo 2643 Two ways of expressing "th...
2mos 2644 Double "there exists at mo...
2eu1 2645 Double existential uniquen...
2eu1v 2646 Double existential uniquen...
2eu2 2647 Double existential uniquen...
2eu3 2648 Double existential uniquen...
2eu4 2649 This theorem provides us w...
2eu5 2650 An alternate definition of...
2eu6 2651 Two equivalent expressions...
2eu7 2652 Two equivalent expressions...
2eu8 2653 Two equivalent expressions...
euae 2654 Two ways to express "exact...
exists1 2655 Two ways to express "exact...
exists2 2656 A condition implying that ...
barbara 2657 "Barbara", one of the fund...
celarent 2658 "Celarent", one of the syl...
darii 2659 "Darii", one of the syllog...
dariiALT 2660 Alternate proof of ~ darii...
ferio 2661 "Ferio" ("Ferioque"), one ...
barbarilem 2662 Lemma for ~ barbari and th...
barbari 2663 "Barbari", one of the syll...
barbariALT 2664 Alternate proof of ~ barba...
celaront 2665 "Celaront", one of the syl...
cesare 2666 "Cesare", one of the syllo...
camestres 2667 "Camestres", one of the sy...
festino 2668 "Festino", one of the syll...
festinoALT 2669 Alternate proof of ~ festi...
baroco 2670 "Baroco", one of the syllo...
barocoALT 2671 Alternate proof of ~ festi...
cesaro 2672 "Cesaro", one of the syllo...
camestros 2673 "Camestros", one of the sy...
datisi 2674 "Datisi", one of the syllo...
disamis 2675 "Disamis", one of the syll...
ferison 2676 "Ferison", one of the syll...
bocardo 2677 "Bocardo", one of the syll...
darapti 2678 "Darapti", one of the syll...
daraptiALT 2679 Alternate proof of ~ darap...
felapton 2680 "Felapton", one of the syl...
calemes 2681 "Calemes", one of the syll...
dimatis 2682 "Dimatis", one of the syll...
fresison 2683 "Fresison", one of the syl...
calemos 2684 "Calemos", one of the syll...
fesapo 2685 "Fesapo", one of the syllo...
bamalip 2686 "Bamalip", one of the syll...
axia1 2687 Left 'and' elimination (in...
axia2 2688 Right 'and' elimination (i...
axia3 2689 'And' introduction (intuit...
axin1 2690 'Not' introduction (intuit...
axin2 2691 'Not' elimination (intuiti...
axio 2692 Definition of 'or' (intuit...
axi4 2693 Specialization (intuitioni...
axi5r 2694 Converse of ~ axc4 (intuit...
axial 2695 The setvar ` x ` is not fr...
axie1 2696 The setvar ` x ` is not fr...
axie2 2697 A key property of existent...
axi9 2698 Axiom of existence (intuit...
axi10 2699 Axiom of Quantifier Substi...
axi12 2700 Axiom of Quantifier Introd...
axbnd 2701 Axiom of Bundling (intuiti...
axexte 2703 The axiom of extensionalit...
axextg 2704 A generalization of the ax...
axextb 2705 A bidirectional version of...
axextmo 2706 There exists at most one s...
nulmo 2707 There exists at most one e...
eleq1ab 2710 Extension (in the sense of...
cleljustab 2711 Extension of ~ cleljust fr...
abid 2712 Simplification of class ab...
vexwt 2713 A standard theorem of pred...
vexw 2714 If ` ph ` is a theorem, th...
vextru 2715 Every setvar is a member o...
nfsab1 2716 Bound-variable hypothesis ...
hbab1 2717 Bound-variable hypothesis ...
hbab1OLD 2718 Obsolete version of ~ hbab...
hbab 2719 Bound-variable hypothesis ...
hbabg 2720 Bound-variable hypothesis ...
nfsab 2721 Bound-variable hypothesis ...
nfsabg 2722 Bound-variable hypothesis ...
dfcleq 2724 The defining characterizat...
cvjust 2725 Every set is a class. Pro...
ax9ALT 2726 Proof of ~ ax-9 from Tarsk...
eleq2w2 2727 A weaker version of ~ eleq...
eqriv 2728 Infer equality of classes ...
eqrdv 2729 Deduce equality of classes...
eqrdav 2730 Deduce equality of classes...
eqid 2731 Law of identity (reflexivi...
eqidd 2732 Class identity law with an...
eqeq1d 2733 Deduction from equality to...
eqeq1dALT 2734 Alternate proof of ~ eqeq1...
eqeq1 2735 Equality implies equivalen...
eqeq1i 2736 Inference from equality to...
eqcomd 2737 Deduction from commutative...
eqcom 2738 Commutative law for class ...
eqcoms 2739 Inference applying commuta...
eqcomi 2740 Inference from commutative...
neqcomd 2741 Commute an inequality. (C...
eqeq2d 2742 Deduction from equality to...
eqeq2 2743 Equality implies equivalen...
eqeq2i 2744 Inference from equality to...
eqeqan12d 2745 A useful inference for sub...
eqeqan12rd 2746 A useful inference for sub...
eqeq12d 2747 A useful inference for sub...
eqeq12 2748 Equality relationship amon...
eqeq12i 2749 A useful inference for sub...
eqeq12OLD 2750 Obsolete version of ~ eqeq...
eqeq12dOLD 2751 Obsolete version of ~ eqeq...
eqeqan12dOLD 2752 Obsolete version of ~ eqeq...
eqeqan12dALT 2753 Alternate proof of ~ eqeqa...
eqtr 2754 Transitive law for class e...
eqtr2 2755 A transitive law for class...
eqtr2OLD 2756 Obsolete version of eqtr2 ...
eqtr3 2757 A transitive law for class...
eqtr3OLD 2758 Obsolete version of ~ eqtr...
eqtri 2759 An equality transitivity i...
eqtr2i 2760 An equality transitivity i...
eqtr3i 2761 An equality transitivity i...
eqtr4i 2762 An equality transitivity i...
3eqtri 2763 An inference from three ch...
3eqtrri 2764 An inference from three ch...
3eqtr2i 2765 An inference from three ch...
3eqtr2ri 2766 An inference from three ch...
3eqtr3i 2767 An inference from three ch...
3eqtr3ri 2768 An inference from three ch...
3eqtr4i 2769 An inference from three ch...
3eqtr4ri 2770 An inference from three ch...
eqtrd 2771 An equality transitivity d...
eqtr2d 2772 An equality transitivity d...
eqtr3d 2773 An equality transitivity e...
eqtr4d 2774 An equality transitivity e...
3eqtrd 2775 A deduction from three cha...
3eqtrrd 2776 A deduction from three cha...
3eqtr2d 2777 A deduction from three cha...
3eqtr2rd 2778 A deduction from three cha...
3eqtr3d 2779 A deduction from three cha...
3eqtr3rd 2780 A deduction from three cha...
3eqtr4d 2781 A deduction from three cha...
3eqtr4rd 2782 A deduction from three cha...
eqtrid 2783 An equality transitivity d...
eqtr2id 2784 An equality transitivity d...
eqtr3id 2785 An equality transitivity d...
eqtr3di 2786 An equality transitivity d...
eqtrdi 2787 An equality transitivity d...
eqtr2di 2788 An equality transitivity d...
eqtr4di 2789 An equality transitivity d...
eqtr4id 2790 An equality transitivity d...
sylan9eq 2791 An equality transitivity d...
sylan9req 2792 An equality transitivity d...
sylan9eqr 2793 An equality transitivity d...
3eqtr3g 2794 A chained equality inferen...
3eqtr3a 2795 A chained equality inferen...
3eqtr4g 2796 A chained equality inferen...
3eqtr4a 2797 A chained equality inferen...
eq2tri 2798 A compound transitive infe...
abbi 2799 Equivalent formulas yield ...
abbidv 2800 Equivalent wff's yield equ...
abbii 2801 Equivalent wff's yield equ...
abbid 2802 Equivalent wff's yield equ...
abbib 2803 Equal class abstractions r...
cbvabv 2804 Rule used to change bound ...
cbvabw 2805 Rule used to change bound ...
cbvabwOLD 2806 Obsolete version of ~ cbva...
cbvab 2807 Rule used to change bound ...
eqabbw 2808 Version of ~ eqabb using i...
dfclel 2810 Characterization of the el...
elex2 2811 If a class contains anothe...
issetlem 2812 Lemma for ~ elisset and ~ ...
elissetv 2813 An element of a class exis...
elisset 2814 An element of a class exis...
eleq1w 2815 Weaker version of ~ eleq1 ...
eleq2w 2816 Weaker version of ~ eleq2 ...
eleq1d 2817 Deduction from equality to...
eleq2d 2818 Deduction from equality to...
eleq2dALT 2819 Alternate proof of ~ eleq2...
eleq1 2820 Equality implies equivalen...
eleq2 2821 Equality implies equivalen...
eleq12 2822 Equality implies equivalen...
eleq1i 2823 Inference from equality to...
eleq2i 2824 Inference from equality to...
eleq12i 2825 Inference from equality to...
eleq12d 2826 Deduction from equality to...
eleq1a 2827 A transitive-type law rela...
eqeltri 2828 Substitution of equal clas...
eqeltrri 2829 Substitution of equal clas...
eleqtri 2830 Substitution of equal clas...
eleqtrri 2831 Substitution of equal clas...
eqeltrd 2832 Substitution of equal clas...
eqeltrrd 2833 Deduction that substitutes...
eleqtrd 2834 Deduction that substitutes...
eleqtrrd 2835 Deduction that substitutes...
eqeltrid 2836 A membership and equality ...
eqeltrrid 2837 A membership and equality ...
eleqtrid 2838 A membership and equality ...
eleqtrrid 2839 A membership and equality ...
eqeltrdi 2840 A membership and equality ...
eqeltrrdi 2841 A membership and equality ...
eleqtrdi 2842 A membership and equality ...
eleqtrrdi 2843 A membership and equality ...
3eltr3i 2844 Substitution of equal clas...
3eltr4i 2845 Substitution of equal clas...
3eltr3d 2846 Substitution of equal clas...
3eltr4d 2847 Substitution of equal clas...
3eltr3g 2848 Substitution of equal clas...
3eltr4g 2849 Substitution of equal clas...
eleq2s 2850 Substitution of equal clas...
eqneltri 2851 If a class is not an eleme...
eqneltrd 2852 If a class is not an eleme...
eqneltrrd 2853 If a class is not an eleme...
neleqtrd 2854 If a class is not an eleme...
neleqtrrd 2855 If a class is not an eleme...
nelneq 2856 A way of showing two class...
nelneq2 2857 A way of showing two class...
eqsb1 2858 Substitution for the left-...
clelsb1 2859 Substitution for the first...
clelsb2 2860 Substitution for the secon...
clelsb2OLD 2861 Obsolete version of ~ clel...
cleqh 2862 Establish equality between...
hbxfreq 2863 A utility lemma to transfe...
hblem 2864 Change the free variable o...
hblemg 2865 Change the free variable o...
eqabdv 2866 Deduction from a wff to a ...
eqabcdv 2867 Deduction from a wff to a ...
eqabi 2868 Equality of a class variab...
abid1 2869 Every class is equal to a ...
abid2 2870 A simplification of class ...
eqab 2871 One direction of ~ eqabb i...
eqabb 2872 Equality of a class variab...
eqabbOLD 2873 Obsolete version of ~ eqab...
eqabcb 2874 Equality of a class variab...
eqabrd 2875 Equality of a class variab...
eqabri 2876 Equality of a class variab...
eqabcri 2877 Equality of a class variab...
clelab 2878 Membership of a class vari...
clelabOLD 2879 Obsolete version of ~ clel...
clabel 2880 Membership of a class abst...
sbab 2881 The right-hand side of the...
nfcjust 2883 Justification theorem for ...
nfci 2885 Deduce that a class ` A ` ...
nfcii 2886 Deduce that a class ` A ` ...
nfcr 2887 Consequence of the not-fre...
nfcrALT 2888 Alternate version of ~ nfc...
nfcri 2889 Consequence of the not-fre...
nfcd 2890 Deduce that a class ` A ` ...
nfcrd 2891 Consequence of the not-fre...
nfcriOLD 2892 Obsolete version of ~ nfcr...
nfcriOLDOLD 2893 Obsolete version of ~ nfcr...
nfcrii 2894 Consequence of the not-fre...
nfcriiOLD 2895 Obsolete version of ~ nfcr...
nfcriOLDOLDOLD 2896 Obsolete version of ~ nfcr...
nfceqdf 2897 An equality theorem for ef...
nfceqdfOLD 2898 Obsolete version of ~ nfce...
nfceqi 2899 Equality theorem for class...
nfcxfr 2900 A utility lemma to transfe...
nfcxfrd 2901 A utility lemma to transfe...
nfcv 2902 If ` x ` is disjoint from ...
nfcvd 2903 If ` x ` is disjoint from ...
nfab1 2904 Bound-variable hypothesis ...
nfnfc1 2905 The setvar ` x ` is bound ...
clelsb1fw 2906 Substitution for the first...
clelsb1f 2907 Substitution for the first...
nfab 2908 Bound-variable hypothesis ...
nfabg 2909 Bound-variable hypothesis ...
nfaba1 2910 Bound-variable hypothesis ...
nfaba1g 2911 Bound-variable hypothesis ...
nfeqd 2912 Hypothesis builder for equ...
nfeld 2913 Hypothesis builder for ele...
nfnfc 2914 Hypothesis builder for ` F...
nfeq 2915 Hypothesis builder for equ...
nfel 2916 Hypothesis builder for ele...
nfeq1 2917 Hypothesis builder for equ...
nfel1 2918 Hypothesis builder for ele...
nfeq2 2919 Hypothesis builder for equ...
nfel2 2920 Hypothesis builder for ele...
drnfc1 2921 Formula-building lemma for...
drnfc1OLD 2922 Obsolete version of ~ drnf...
drnfc2 2923 Formula-building lemma for...
drnfc2OLD 2924 Obsolete version of ~ drnf...
nfabdw 2925 Bound-variable hypothesis ...
nfabdwOLD 2926 Obsolete version of ~ nfab...
nfabd 2927 Bound-variable hypothesis ...
nfabd2 2928 Bound-variable hypothesis ...
dvelimdc 2929 Deduction form of ~ dvelim...
dvelimc 2930 Version of ~ dvelim for cl...
nfcvf 2931 If ` x ` and ` y ` are dis...
nfcvf2 2932 If ` x ` and ` y ` are dis...
cleqf 2933 Establish equality between...
eqabf 2934 Equality of a class variab...
abid2f 2935 A simplification of class ...
abid2fOLD 2936 Obsolete version of ~ abid...
sbabel 2937 Theorem to move a substitu...
sbabelOLD 2938 Obsolete version of ~ sbab...
neii 2941 Inference associated with ...
neir 2942 Inference associated with ...
nne 2943 Negation of inequality. (...
neneqd 2944 Deduction eliminating ineq...
neneq 2945 From inequality to non-equ...
neqned 2946 If it is not the case that...
neqne 2947 From non-equality to inequ...
neirr 2948 No class is unequal to its...
exmidne 2949 Excluded middle with equal...
eqneqall 2950 A contradiction concerning...
nonconne 2951 Law of noncontradiction wi...
necon3ad 2952 Contrapositive law deducti...
necon3bd 2953 Contrapositive law deducti...
necon2ad 2954 Contrapositive inference f...
necon2bd 2955 Contrapositive inference f...
necon1ad 2956 Contrapositive deduction f...
necon1bd 2957 Contrapositive deduction f...
necon4ad 2958 Contrapositive inference f...
necon4bd 2959 Contrapositive inference f...
necon3d 2960 Contrapositive law deducti...
necon1d 2961 Contrapositive law deducti...
necon2d 2962 Contrapositive inference f...
necon4d 2963 Contrapositive inference f...
necon3ai 2964 Contrapositive inference f...
necon3aiOLD 2965 Obsolete version of ~ neco...
necon3bi 2966 Contrapositive inference f...
necon1ai 2967 Contrapositive inference f...
necon1bi 2968 Contrapositive inference f...
necon2ai 2969 Contrapositive inference f...
necon2bi 2970 Contrapositive inference f...
necon4ai 2971 Contrapositive inference f...
necon3i 2972 Contrapositive inference f...
necon1i 2973 Contrapositive inference f...
necon2i 2974 Contrapositive inference f...
necon4i 2975 Contrapositive inference f...
necon3abid 2976 Deduction from equality to...
necon3bbid 2977 Deduction from equality to...
necon1abid 2978 Contrapositive deduction f...
necon1bbid 2979 Contrapositive inference f...
necon4abid 2980 Contrapositive law deducti...
necon4bbid 2981 Contrapositive law deducti...
necon2abid 2982 Contrapositive deduction f...
necon2bbid 2983 Contrapositive deduction f...
necon3bid 2984 Deduction from equality to...
necon4bid 2985 Contrapositive law deducti...
necon3abii 2986 Deduction from equality to...
necon3bbii 2987 Deduction from equality to...
necon1abii 2988 Contrapositive inference f...
necon1bbii 2989 Contrapositive inference f...
necon2abii 2990 Contrapositive inference f...
necon2bbii 2991 Contrapositive inference f...
necon3bii 2992 Inference from equality to...
necom 2993 Commutation of inequality....
necomi 2994 Inference from commutative...
necomd 2995 Deduction from commutative...
nesym 2996 Characterization of inequa...
nesymi 2997 Inference associated with ...
nesymir 2998 Inference associated with ...
neeq1d 2999 Deduction for inequality. ...
neeq2d 3000 Deduction for inequality. ...
neeq12d 3001 Deduction for inequality. ...
neeq1 3002 Equality theorem for inequ...
neeq2 3003 Equality theorem for inequ...
neeq1i 3004 Inference for inequality. ...
neeq2i 3005 Inference for inequality. ...
neeq12i 3006 Inference for inequality. ...
eqnetrd 3007 Substitution of equal clas...
eqnetrrd 3008 Substitution of equal clas...
neeqtrd 3009 Substitution of equal clas...
eqnetri 3010 Substitution of equal clas...
eqnetrri 3011 Substitution of equal clas...
neeqtri 3012 Substitution of equal clas...
neeqtrri 3013 Substitution of equal clas...
neeqtrrd 3014 Substitution of equal clas...
eqnetrrid 3015 A chained equality inferen...
3netr3d 3016 Substitution of equality i...
3netr4d 3017 Substitution of equality i...
3netr3g 3018 Substitution of equality i...
3netr4g 3019 Substitution of equality i...
nebi 3020 Contraposition law for ine...
pm13.18 3021 Theorem *13.18 in [Whitehe...
pm13.181 3022 Theorem *13.181 in [Whiteh...
pm13.181OLD 3023 Obsolete version of ~ pm13...
pm2.61ine 3024 Inference eliminating an i...
pm2.21ddne 3025 A contradiction implies an...
pm2.61ne 3026 Deduction eliminating an i...
pm2.61dne 3027 Deduction eliminating an i...
pm2.61dane 3028 Deduction eliminating an i...
pm2.61da2ne 3029 Deduction eliminating two ...
pm2.61da3ne 3030 Deduction eliminating thre...
pm2.61iine 3031 Equality version of ~ pm2....
mteqand 3032 A modus tollens deduction ...
neor 3033 Logical OR with an equalit...
neanior 3034 A De Morgan's law for ineq...
ne3anior 3035 A De Morgan's law for ineq...
neorian 3036 A De Morgan's law for ineq...
nemtbir 3037 An inference from an inequ...
nelne1 3038 Two classes are different ...
nelne2 3039 Two classes are different ...
nelelne 3040 Two classes are different ...
neneor 3041 If two classes are differe...
nfne 3042 Bound-variable hypothesis ...
nfned 3043 Bound-variable hypothesis ...
nabbib 3044 Not equivalent wff's corre...
neli 3047 Inference associated with ...
nelir 3048 Inference associated with ...
nelcon3d 3049 Contrapositive law deducti...
neleq12d 3050 Equality theorem for negat...
neleq1 3051 Equality theorem for negat...
neleq2 3052 Equality theorem for negat...
nfnel 3053 Bound-variable hypothesis ...
nfneld 3054 Bound-variable hypothesis ...
nnel 3055 Negation of negated member...
elnelne1 3056 Two classes are different ...
elnelne2 3057 Two classes are different ...
pm2.24nel 3058 A contradiction concerning...
pm2.61danel 3059 Deduction eliminating an e...
rgen 3062 Generalization rule for re...
ralel 3063 All elements of a class ar...
rgenw 3064 Generalization rule for re...
rgen2w 3065 Generalization rule for re...
mprg 3066 Modus ponens combined with...
mprgbir 3067 Modus ponens on biconditio...
raln 3068 Restricted universally qua...
ralnex 3071 Relationship between restr...
dfrex2 3072 Relationship between restr...
nrex 3073 Inference adding restricte...
alral 3074 Universal quantification i...
rexex 3075 Restricted existence impli...
rextru 3076 Two ways of expressing tha...
ralimi2 3077 Inference quantifying both...
reximi2 3078 Inference quantifying both...
ralimia 3079 Inference quantifying both...
reximia 3080 Inference quantifying both...
ralimiaa 3081 Inference quantifying both...
ralimi 3082 Inference quantifying both...
reximi 3083 Inference quantifying both...
ral2imi 3084 Inference quantifying ante...
ralim 3085 Distribution of restricted...
rexim 3086 Theorem 19.22 of [Margaris...
reximiaOLD 3087 Obsolete version of ~ rexi...
ralbii2 3088 Inference adding different...
rexbii2 3089 Inference adding different...
ralbiia 3090 Inference adding restricte...
rexbiia 3091 Inference adding restricte...
ralbii 3092 Inference adding restricte...
rexbii 3093 Inference adding restricte...
ralanid 3094 Cancellation law for restr...
rexanid 3095 Cancellation law for restr...
ralcom3 3096 A commutation law for rest...
ralcom3OLD 3097 Obsolete version of ~ ralc...
dfral2 3098 Relationship between restr...
rexnal 3099 Relationship between restr...
ralinexa 3100 A transformation of restri...
rexanali 3101 A transformation of restri...
ralbi 3102 Distribute a restricted un...
rexbi 3103 Distribute restricted quan...
rexbiOLD 3104 Obsolete version of ~ rexb...
ralrexbid 3105 Formula-building rule for ...
ralrexbidOLD 3106 Obsolete version of ~ ralr...
r19.35 3107 Restricted quantifier vers...
r19.35OLD 3108 Obsolete version of ~ 19.3...
r19.26m 3109 Version of ~ 19.26 and ~ r...
r19.26 3110 Restricted quantifier vers...
r19.26-3 3111 Version of ~ r19.26 with t...
ralbiim 3112 Split a biconditional and ...
r19.29 3113 Restricted quantifier vers...
r19.29OLD 3114 Obsolete version of ~ r19....
r19.29r 3115 Restricted quantifier vers...
r19.29rOLD 3116 Obsolete version of ~ r19....
r19.29imd 3117 Theorem 19.29 of [Margaris...
r19.40 3118 Restricted quantifier vers...
r19.30 3119 Restricted quantifier vers...
r19.30OLD 3120 Obsolete version of ~ 19.3...
r19.43 3121 Restricted quantifier vers...
2ralimi 3122 Inference quantifying both...
3ralimi 3123 Inference quantifying both...
4ralimi 3124 Inference quantifying both...
5ralimi 3125 Inference quantifying both...
6ralimi 3126 Inference quantifying both...
2ralbii 3127 Inference adding two restr...
2rexbii 3128 Inference adding two restr...
3ralbii 3129 Inference adding three res...
4ralbii 3130 Inference adding four rest...
2ralbiim 3131 Split a biconditional and ...
ralnex2 3132 Relationship between two r...
ralnex3 3133 Relationship between three...
rexnal2 3134 Relationship between two r...
rexnal3 3135 Relationship between three...
nrexralim 3136 Negation of a complex pred...
r19.26-2 3137 Restricted quantifier vers...
2r19.29 3138 Theorem ~ r19.29 with two ...
r19.29d2r 3139 Theorem 19.29 of [Margaris...
r19.29d2rOLD 3140 Obsolete version of ~ r19....
r2allem 3141 Lemma factoring out common...
r2exlem 3142 Lemma factoring out common...
hbralrimi 3143 Inference from Theorem 19....
ralrimiv 3144 Inference from Theorem 19....
ralrimiva 3145 Inference from Theorem 19....
rexlimiva 3146 Inference from Theorem 19....
rexlimiv 3147 Inference from Theorem 19....
nrexdv 3148 Deduction adding restricte...
ralrimivw 3149 Inference from Theorem 19....
rexlimivw 3150 Weaker version of ~ rexlim...
ralrimdv 3151 Inference from Theorem 19....
rexlimdv 3152 Inference from Theorem 19....
ralrimdva 3153 Inference from Theorem 19....
rexlimdva 3154 Inference from Theorem 19....
rexlimdvaa 3155 Inference from Theorem 19....
rexlimdva2 3156 Inference from Theorem 19....
r19.29an 3157 A commonly used pattern in...
rexlimdv3a 3158 Inference from Theorem 19....
rexlimdvw 3159 Inference from Theorem 19....
rexlimddv 3160 Restricted existential eli...
r19.29a 3161 A commonly used pattern in...
ralimdv2 3162 Inference quantifying both...
reximdv2 3163 Deduction quantifying both...
reximdvai 3164 Deduction quantifying both...
reximdvaiOLD 3165 Obsolete version of ~ rexi...
ralimdva 3166 Deduction quantifying both...
reximdva 3167 Deduction quantifying both...
ralimdv 3168 Deduction quantifying both...
reximdv 3169 Deduction from Theorem 19....
reximddv 3170 Deduction from Theorem 19....
reximssdv 3171 Derivation of a restricted...
ralbidv2 3172 Formula-building rule for ...
rexbidv2 3173 Formula-building rule for ...
ralbidva 3174 Formula-building rule for ...
rexbidva 3175 Formula-building rule for ...
ralbidv 3176 Formula-building rule for ...
rexbidv 3177 Formula-building rule for ...
r19.21v 3178 Restricted quantifier vers...
r19.21vOLD 3179 Obsolete version of ~ r19....
r19.37v 3180 Restricted quantifier vers...
r19.23v 3181 Restricted quantifier vers...
r19.36v 3182 Restricted quantifier vers...
rexlimivOLD 3183 Obsolete version of ~ rexl...
rexlimivaOLD 3184 Obsolete version of ~ rexl...
rexlimivwOLD 3185 Obsolete version of ~ rexl...
r19.27v 3186 Restricted quantitifer ver...
r19.41v 3187 Restricted quantifier vers...
r19.28v 3188 Restricted quantifier vers...
r19.42v 3189 Restricted quantifier vers...
r19.32v 3190 Restricted quantifier vers...
r19.45v 3191 Restricted quantifier vers...
r19.44v 3192 One direction of a restric...
r2al 3193 Double restricted universa...
r2ex 3194 Double restricted existent...
r3al 3195 Triple restricted universa...
rgen2 3196 Generalization rule for re...
ralrimivv 3197 Inference from Theorem 19....
rexlimivv 3198 Inference from Theorem 19....
ralrimivva 3199 Inference from Theorem 19....
ralrimdvv 3200 Inference from Theorem 19....
rgen3 3201 Generalization rule for re...
ralrimivvva 3202 Inference from Theorem 19....
ralimdvva 3203 Deduction doubly quantifyi...
reximdvva 3204 Deduction doubly quantifyi...
ralimdvv 3205 Deduction doubly quantifyi...
ralimd4v 3206 Deduction quadrupally quan...
ralimd6v 3207 Deduction sextupally quant...
ralrimdvva 3208 Inference from Theorem 19....
rexlimdvv 3209 Inference from Theorem 19....
rexlimdvva 3210 Inference from Theorem 19....
reximddv2 3211 Double deduction from Theo...
r19.29vva 3212 A commonly used pattern ba...
r19.29vvaOLD 3213 Obsolete version of ~ r19....
2rexbiia 3214 Inference adding two restr...
2ralbidva 3215 Formula-building rule for ...
2rexbidva 3216 Formula-building rule for ...
2ralbidv 3217 Formula-building rule for ...
2rexbidv 3218 Formula-building rule for ...
rexralbidv 3219 Formula-building rule for ...
3ralbidv 3220 Formula-building rule for ...
4ralbidv 3221 Formula-building rule for ...
6ralbidv 3222 Formula-building rule for ...
r19.41vv 3223 Version of ~ r19.41v with ...
reeanlem 3224 Lemma factoring out common...
reeanv 3225 Rearrange restricted exist...
3reeanv 3226 Rearrange three restricted...
2ralor 3227 Distribute restricted univ...
2ralorOLD 3228 Obsolete version of ~ 2ral...
risset 3229 Two ways to say " ` A ` be...
nelb 3230 A definition of ` -. A e. ...
nelbOLD 3231 Obsolete version of ~ nelb...
rspw 3232 Restricted specialization....
cbvralvw 3233 Change the bound variable ...
cbvrexvw 3234 Change the bound variable ...
cbvraldva 3235 Rule used to change the bo...
cbvrexdva 3236 Rule used to change the bo...
cbvral2vw 3237 Change bound variables of ...
cbvrex2vw 3238 Change bound variables of ...
cbvral3vw 3239 Change bound variables of ...
cbvral4vw 3240 Change bound variables of ...
cbvral6vw 3241 Change bound variables of ...
cbvral8vw 3242 Change bound variables of ...
rsp 3243 Restricted specialization....
rspa 3244 Restricted specialization....
rspe 3245 Restricted specialization....
rspec 3246 Specialization rule for re...
r19.21bi 3247 Inference from Theorem 19....
r19.21be 3248 Inference from Theorem 19....
r19.21t 3249 Restricted quantifier vers...
r19.21 3250 Restricted quantifier vers...
r19.23t 3251 Closed theorem form of ~ r...
r19.23 3252 Restricted quantifier vers...
ralrimi 3253 Inference from Theorem 19....
ralrimia 3254 Inference from Theorem 19....
rexlimi 3255 Restricted quantifier vers...
ralimdaa 3256 Deduction quantifying both...
reximdai 3257 Deduction from Theorem 19....
r19.37 3258 Restricted quantifier vers...
r19.41 3259 Restricted quantifier vers...
ralrimd 3260 Inference from Theorem 19....
rexlimd2 3261 Version of ~ rexlimd with ...
rexlimd 3262 Deduction form of ~ rexlim...
r19.29af2 3263 A commonly used pattern ba...
r19.29af 3264 A commonly used pattern ba...
reximd2a 3265 Deduction quantifying both...
ralbida 3266 Formula-building rule for ...
ralbidaOLD 3267 Obsolete version of ~ ralb...
rexbida 3268 Formula-building rule for ...
ralbid 3269 Formula-building rule for ...
rexbid 3270 Formula-building rule for ...
rexbidvALT 3271 Alternate proof of ~ rexbi...
rexbidvaALT 3272 Alternate proof of ~ rexbi...
rsp2 3273 Restricted specialization,...
rsp2e 3274 Restricted specialization....
rspec2 3275 Specialization rule for re...
rspec3 3276 Specialization rule for re...
r2alf 3277 Double restricted universa...
r2exf 3278 Double restricted existent...
2ralbida 3279 Formula-building rule for ...
nfra1 3280 The setvar ` x ` is not fr...
nfre1 3281 The setvar ` x ` is not fr...
ralcom4 3282 Commutation of restricted ...
ralcom4OLD 3283 Obsolete version of ~ ralc...
rexcom4 3284 Commutation of restricted ...
ralcom 3285 Commutation of restricted ...
rexcom 3286 Commutation of restricted ...
rexcomOLD 3287 Obsolete version of ~ rexc...
rexcom4a 3288 Specialized existential co...
ralrot3 3289 Rotate three restricted un...
ralcom13 3290 Swap first and third restr...
ralcom13OLD 3291 Obsolete version of ~ ralc...
rexcom13 3292 Swap first and third restr...
rexrot4 3293 Rotate four restricted exi...
2ex2rexrot 3294 Rotate two existential qua...
nfra2w 3295 Similar to Lemma 24 of [Mo...
nfra2wOLD 3296 Obsolete version of ~ nfra...
hbra1 3297 The setvar ` x ` is not fr...
ralcomf 3298 Commutation of restricted ...
rexcomf 3299 Commutation of restricted ...
cbvralfw 3300 Rule used to change bound ...
cbvrexfw 3301 Rule used to change bound ...
cbvralw 3302 Rule used to change bound ...
cbvrexw 3303 Rule used to change bound ...
hbral 3304 Bound-variable hypothesis ...
nfraldw 3305 Deduction version of ~ nfr...
nfrexdw 3306 Deduction version of ~ nfr...
nfralw 3307 Bound-variable hypothesis ...
nfralwOLD 3308 Obsolete version of ~ nfra...
nfrexw 3309 Bound-variable hypothesis ...
r19.12 3310 Restricted quantifier vers...
r19.12OLD 3311 Obsolete version of ~ 19.1...
reean 3312 Rearrange restricted exist...
cbvralsvw 3313 Change bound variable by u...
cbvrexsvw 3314 Change bound variable by u...
cbvralsvwOLD 3315 Obsolete version of ~ cbvr...
cbvrexsvwOLD 3316 Obsolete version of ~ cbvr...
nfraldwOLD 3317 Obsolete version of ~ nfra...
nfra2wOLDOLD 3318 Obsolete version of ~ nfra...
cbvralfwOLD 3319 Obsolete version of ~ cbvr...
rexeq 3320 Equality theorem for restr...
raleq 3321 Equality theorem for restr...
raleqi 3322 Equality inference for res...
rexeqi 3323 Equality inference for res...
raleqdv 3324 Equality deduction for res...
rexeqdv 3325 Equality deduction for res...
raleqbidva 3326 Equality deduction for res...
rexeqbidva 3327 Equality deduction for res...
raleqbidvv 3328 Version of ~ raleqbidv wit...
raleqbidvvOLD 3329 Obsolete version of ~ rale...
rexeqbidvv 3330 Version of ~ rexeqbidv wit...
rexeqbidvvOLD 3331 Obsolete version of ~ rexe...
raleqbi1dv 3332 Equality deduction for res...
rexeqbi1dv 3333 Equality deduction for res...
raleqOLD 3334 Obsolete version of ~ rale...
rexeqOLD 3335 Obsolete version of ~ rale...
raleleq 3336 All elements of a class ar...
raleqbii 3337 Equality deduction for res...
rexeqbii 3338 Equality deduction for res...
raleleqOLD 3339 Obsolete version of ~ rale...
raleleqALT 3340 Alternate proof of ~ ralel...
raleqbidv 3341 Equality deduction for res...
rexeqbidv 3342 Equality deduction for res...
cbvraldva2 3343 Rule used to change the bo...
cbvrexdva2 3344 Rule used to change the bo...
cbvrexdva2OLD 3345 Obsolete version of ~ cbvr...
cbvraldvaOLD 3346 Obsolete version of ~ cbvr...
cbvrexdvaOLD 3347 Obsolete version of ~ cbvr...
raleqf 3348 Equality theorem for restr...
rexeqf 3349 Equality theorem for restr...
rexeqfOLD 3350 Obsolete version of ~ rexe...
raleqbid 3351 Equality deduction for res...
rexeqbid 3352 Equality deduction for res...
sbralie 3353 Implicit to explicit subst...
sbralieALT 3354 Alternative shorter proof ...
cbvralf 3355 Rule used to change bound ...
cbvrexf 3356 Rule used to change bound ...
cbvral 3357 Rule used to change bound ...
cbvrex 3358 Rule used to change bound ...
cbvralv 3359 Change the bound variable ...
cbvrexv 3360 Change the bound variable ...
cbvralsv 3361 Change bound variable by u...
cbvrexsv 3362 Change bound variable by u...
cbvral2v 3363 Change bound variables of ...
cbvrex2v 3364 Change bound variables of ...
cbvral3v 3365 Change bound variables of ...
rgen2a 3366 Generalization rule for re...
nfrald 3367 Deduction version of ~ nfr...
nfrexd 3368 Deduction version of ~ nfr...
nfral 3369 Bound-variable hypothesis ...
nfrex 3370 Bound-variable hypothesis ...
nfra2 3371 Similar to Lemma 24 of [Mo...
ralcom2 3372 Commutation of restricted ...
reu5 3377 Restricted uniqueness in t...
reurmo 3378 Restricted existential uni...
reurex 3379 Restricted unique existenc...
mormo 3380 Unrestricted "at most one"...
rmobiia 3381 Formula-building rule for ...
reubiia 3382 Formula-building rule for ...
rmobii 3383 Formula-building rule for ...
reubii 3384 Formula-building rule for ...
rmoanid 3385 Cancellation law for restr...
reuanid 3386 Cancellation law for restr...
rmoanidOLD 3387 Obsolete version of ~ rmoa...
reuanidOLD 3388 Obsolete version of ~ reua...
2reu2rex 3389 Double restricted existent...
rmobidva 3390 Formula-building rule for ...
reubidva 3391 Formula-building rule for ...
rmobidv 3392 Formula-building rule for ...
reubidv 3393 Formula-building rule for ...
reueubd 3394 Restricted existential uni...
rmo5 3395 Restricted "at most one" i...
nrexrmo 3396 Nonexistence implies restr...
moel 3397 "At most one" element in a...
cbvrmovw 3398 Change the bound variable ...
cbvreuvw 3399 Change the bound variable ...
moelOLD 3400 Obsolete version of ~ moel...
rmobida 3401 Formula-building rule for ...
reubida 3402 Formula-building rule for ...
rmobidvaOLD 3403 Obsolete version of ~ rmob...
cbvrmow 3404 Change the bound variable ...
cbvreuw 3405 Change the bound variable ...
nfrmo1 3406 The setvar ` x ` is not fr...
nfreu1 3407 The setvar ` x ` is not fr...
nfrmow 3408 Bound-variable hypothesis ...
nfreuw 3409 Bound-variable hypothesis ...
cbvrmowOLD 3410 Obsolete version of ~ cbvr...
cbvreuwOLD 3411 Obsolete version of ~ cbvr...
cbvreuvwOLD 3412 Obsolete version of ~ cbvr...
rmoeq1 3413 Equality theorem for restr...
reueq1 3414 Equality theorem for restr...
rmoeq1OLD 3415 Obsolete version of ~ rmoe...
reueq1OLD 3416 Obsolete version of ~ reue...
rmoeqd 3417 Equality deduction for res...
reueqd 3418 Equality deduction for res...
rmoeq1f 3419 Equality theorem for restr...
reueq1f 3420 Equality theorem for restr...
nfreuwOLD 3421 Obsolete version of ~ nfre...
nfrmowOLD 3422 Obsolete version of ~ nfrm...
cbvreu 3423 Change the bound variable ...
cbvrmo 3424 Change the bound variable ...
cbvrmov 3425 Change the bound variable ...
cbvreuv 3426 Change the bound variable ...
nfrmod 3427 Deduction version of ~ nfr...
nfreud 3428 Deduction version of ~ nfr...
nfrmo 3429 Bound-variable hypothesis ...
nfreu 3430 Bound-variable hypothesis ...
rabbidva2 3433 Equivalent wff's yield equ...
rabbia2 3434 Equivalent wff's yield equ...
rabbiia 3435 Equivalent formulas yield ...
rabbiiaOLD 3436 Obsolete version of ~ rabb...
rabbii 3437 Equivalent wff's correspon...
rabbidva 3438 Equivalent wff's yield equ...
rabbidv 3439 Equivalent wff's yield equ...
rabswap 3440 Swap with a membership rel...
cbvrabv 3441 Rule to change the bound v...
rabeqcda 3442 When ` ps ` is always true...
rabeqc 3443 A restricted class abstrac...
rabeqi 3444 Equality theorem for restr...
rabeq 3445 Equality theorem for restr...
rabeqdv 3446 Equality of restricted cla...
rabeqbidva 3447 Equality of restricted cla...
rabeqbidv 3448 Equality of restricted cla...
rabrabi 3449 Abstract builder restricte...
nfrab1 3450 The abstraction variable i...
rabid 3451 An "identity" law of concr...
rabidim1 3452 Membership in a restricted...
reqabi 3453 Inference from equality of...
rabrab 3454 Abstract builder restricte...
rabrabiOLD 3455 Obsolete version of ~ rabr...
rabbida4 3456 Version of ~ rabbidva2 wit...
rabbida 3457 Equivalent wff's yield equ...
rabbid 3458 Version of ~ rabbidv with ...
rabeqd 3459 Deduction form of ~ rabeq ...
rabeqbida 3460 Version of ~ rabeqbidva wi...
rabbi 3461 Equivalent wff's correspon...
rabid2f 3462 An "identity" law for rest...
rabid2 3463 An "identity" law for rest...
rabid2OLD 3464 Obsolete version of ~ rabi...
rabeqf 3465 Equality theorem for restr...
cbvrabw 3466 Rule to change the bound v...
nfrabw 3467 A variable not free in a w...
nfrabwOLD 3468 Obsolete version of ~ nfra...
rabbidaOLD 3469 Obsolete version of ~ rabb...
rabeqiOLD 3470 Obsolete version of ~ rabe...
nfrab 3471 A variable not free in a w...
cbvrab 3472 Rule to change the bound v...
vjust 3474 Justification theorem for ...
dfv2 3476 Alternate definition of th...
vex 3477 All setvar variables are s...
vexOLD 3478 Obsolete version of ~ vex ...
elv 3479 If a proposition is implie...
elvd 3480 If a proposition is implie...
el2v 3481 If a proposition is implie...
eqv 3482 The universe contains ever...
eqvf 3483 The universe contains ever...
abv 3484 The class of sets verifyin...
abvALT 3485 Alternate proof of ~ abv ,...
isset 3486 Two ways to express that "...
issetft 3487 Closed theorem form of ~ i...
issetf 3488 A version of ~ isset that ...
isseti 3489 A way to say " ` A ` is a ...
issetri 3490 A way to say " ` A ` is a ...
eqvisset 3491 A class equal to a variabl...
elex 3492 If a class is a member of ...
elexi 3493 If a class is a member of ...
elexd 3494 If a class is a member of ...
elex2OLD 3495 Obsolete version of ~ elex...
elex22 3496 If two classes each contai...
prcnel 3497 A proper class doesn't bel...
ralv 3498 A universal quantifier res...
rexv 3499 An existential quantifier ...
reuv 3500 A unique existential quant...
rmov 3501 An at-most-one quantifier ...
rabab 3502 A class abstraction restri...
rexcom4b 3503 Specialized existential co...
ceqsal1t 3504 One direction of ~ ceqsalt...
ceqsalt 3505 Closed theorem version of ...
ceqsralt 3506 Restricted quantifier vers...
ceqsalg 3507 A representation of explic...
ceqsalgALT 3508 Alternate proof of ~ ceqsa...
ceqsal 3509 A representation of explic...
ceqsalALT 3510 A representation of explic...
ceqsalv 3511 A representation of explic...
ceqsalvOLD 3512 Obsolete version of ~ ceqs...
ceqsralv 3513 Restricted quantifier vers...
ceqsralvOLD 3514 Obsolete version of ~ ceqs...
gencl 3515 Implicit substitution for ...
2gencl 3516 Implicit substitution for ...
3gencl 3517 Implicit substitution for ...
cgsexg 3518 Implicit substitution infe...
cgsex2g 3519 Implicit substitution infe...
cgsex4g 3520 An implicit substitution i...
cgsex4gOLD 3521 Obsolete version of ~ cgse...
cgsex4gOLDOLD 3522 Obsolete version of ~ cgse...
ceqsex 3523 Elimination of an existent...
ceqsexOLD 3524 Obsolete version of ~ ceqs...
ceqsexv 3525 Elimination of an existent...
ceqsexvOLD 3526 Obsolete version of ~ ceqs...
ceqsexvOLDOLD 3527 Obsolete version of ~ ceqs...
ceqsexv2d 3528 Elimination of an existent...
ceqsex2 3529 Elimination of two existen...
ceqsex2v 3530 Elimination of two existen...
ceqsex3v 3531 Elimination of three exist...
ceqsex4v 3532 Elimination of four existe...
ceqsex6v 3533 Elimination of six existen...
ceqsex8v 3534 Elimination of eight exist...
gencbvex 3535 Change of bound variable u...
gencbvex2 3536 Restatement of ~ gencbvex ...
gencbval 3537 Change of bound variable u...
sbhypf 3538 Introduce an explicit subs...
sbhypfOLD 3539 Obsolete version of ~ sbhy...
vtoclgft 3540 Closed theorem form of ~ v...
vtocleg 3541 Implicit substitution of a...
vtoclg 3542 Implicit substitution of a...
vtocle 3543 Implicit substitution of a...
vtoclbg 3544 Implicit substitution of a...
vtocl 3545 Implicit substitution of a...
vtocldf 3546 Implicit substitution of a...
vtocld 3547 Implicit substitution of a...
vtocldOLD 3548 Obsolete version of ~ vtoc...
vtocl2d 3549 Implicit substitution of t...
vtoclef 3550 Implicit substitution of a...
vtoclf 3551 Implicit substitution of a...
vtoclfOLD 3552 Obsolete version of ~ vtoc...
vtoclALT 3553 Alternate proof of ~ vtocl...
vtocl2 3554 Implicit substitution of c...
vtocl3 3555 Implicit substitution of c...
vtoclb 3556 Implicit substitution of a...
vtoclgf 3557 Implicit substitution of a...
vtoclg1f 3558 Version of ~ vtoclgf with ...
vtoclgOLD 3559 Obsolete version of ~ vtoc...
vtoclgOLDOLD 3560 Obsolete version of ~ vtoc...
vtocl2gf 3561 Implicit substitution of a...
vtocl3gf 3562 Implicit substitution of a...
vtocl2g 3563 Implicit substitution of 2...
vtocl3g 3564 Implicit substitution of a...
vtoclgaf 3565 Implicit substitution of a...
vtoclga 3566 Implicit substitution of a...
vtocl2ga 3567 Implicit substitution of 2...
vtocl2gaf 3568 Implicit substitution of 2...
vtocl3gaf 3569 Implicit substitution of 3...
vtocl3ga 3570 Implicit substitution of 3...
vtocl3gaOLD 3571 Obsolete version of ~ vtoc...
vtocl4g 3572 Implicit substitution of 4...
vtocl4ga 3573 Implicit substitution of 4...
vtoclegft 3574 Implicit substitution of a...
vtoclegftOLD 3575 Obsolete version of ~ vtoc...
vtoclri 3576 Implicit substitution of a...
spcimgft 3577 A closed version of ~ spci...
spcgft 3578 A closed version of ~ spcg...
spcimgf 3579 Rule of specialization, us...
spcimegf 3580 Existential specialization...
spcgf 3581 Rule of specialization, us...
spcegf 3582 Existential specialization...
spcimdv 3583 Restricted specialization,...
spcdv 3584 Rule of specialization, us...
spcimedv 3585 Restricted existential spe...
spcgv 3586 Rule of specialization, us...
spcegv 3587 Existential specialization...
spcedv 3588 Existential specialization...
spc2egv 3589 Existential specialization...
spc2gv 3590 Specialization with two qu...
spc2ed 3591 Existential specialization...
spc2d 3592 Specialization with 2 quan...
spc3egv 3593 Existential specialization...
spc3gv 3594 Specialization with three ...
spcv 3595 Rule of specialization, us...
spcev 3596 Existential specialization...
spc2ev 3597 Existential specialization...
rspct 3598 A closed version of ~ rspc...
rspcdf 3599 Restricted specialization,...
rspc 3600 Restricted specialization,...
rspce 3601 Restricted existential spe...
rspcimdv 3602 Restricted specialization,...
rspcimedv 3603 Restricted existential spe...
rspcdv 3604 Restricted specialization,...
rspcedv 3605 Restricted existential spe...
rspcebdv 3606 Restricted existential spe...
rspcdv2 3607 Restricted specialization,...
rspcv 3608 Restricted specialization,...
rspccv 3609 Restricted specialization,...
rspcva 3610 Restricted specialization,...
rspccva 3611 Restricted specialization,...
rspcev 3612 Restricted existential spe...
rspcdva 3613 Restricted specialization,...
rspcedvd 3614 Restricted existential spe...
rspcedvdw 3615 Version of ~ rspcedvd wher...
rspcime 3616 Prove a restricted existen...
rspceaimv 3617 Restricted existential spe...
rspcedeq1vd 3618 Restricted existential spe...
rspcedeq2vd 3619 Restricted existential spe...
rspc2 3620 Restricted specialization ...
rspc2gv 3621 Restricted specialization ...
rspc2v 3622 2-variable restricted spec...
rspc2va 3623 2-variable restricted spec...
rspc2ev 3624 2-variable restricted exis...
2rspcedvdw 3625 Double application of ~ rs...
rspc2dv 3626 2-variable restricted spec...
rspc3v 3627 3-variable restricted spec...
rspc3ev 3628 3-variable restricted exis...
rspc3dv 3629 3-variable restricted spec...
rspc4v 3630 4-variable restricted spec...
rspc6v 3631 6-variable restricted spec...
rspc8v 3632 8-variable restricted spec...
rspceeqv 3633 Restricted existential spe...
ralxpxfr2d 3634 Transfer a universal quant...
rexraleqim 3635 Statement following from e...
eqvincg 3636 A variable introduction la...
eqvinc 3637 A variable introduction la...
eqvincf 3638 A variable introduction la...
alexeqg 3639 Two ways to express substi...
ceqex 3640 Equality implies equivalen...
ceqsexg 3641 A representation of explic...
ceqsexgv 3642 Elimination of an existent...
ceqsrexv 3643 Elimination of a restricte...
ceqsrexbv 3644 Elimination of a restricte...
ceqsralbv 3645 Elimination of a restricte...
ceqsrex2v 3646 Elimination of a restricte...
clel2g 3647 Alternate definition of me...
clel2gOLD 3648 Obsolete version of ~ clel...
clel2 3649 Alternate definition of me...
clel3g 3650 Alternate definition of me...
clel3 3651 Alternate definition of me...
clel4g 3652 Alternate definition of me...
clel4 3653 Alternate definition of me...
clel4OLD 3654 Obsolete version of ~ clel...
clel5 3655 Alternate definition of cl...
pm13.183 3656 Compare theorem *13.183 in...
rr19.3v 3657 Restricted quantifier vers...
rr19.28v 3658 Restricted quantifier vers...
elab6g 3659 Membership in a class abst...
elabd2 3660 Membership in a class abst...
elabd3 3661 Membership in a class abst...
elabgt 3662 Membership in a class abst...
elabgtOLD 3663 Obsolete version of ~ elab...
elabgf 3664 Membership in a class abst...
elabf 3665 Membership in a class abst...
elabg 3666 Membership in a class abst...
elabgOLD 3667 Obsolete version of ~ elab...
elab 3668 Membership in a class abst...
elabOLD 3669 Obsolete version of ~ elab...
elab2g 3670 Membership in a class abst...
elabd 3671 Explicit demonstration the...
elab2 3672 Membership in a class abst...
elab4g 3673 Membership in a class abst...
elab3gf 3674 Membership in a class abst...
elab3g 3675 Membership in a class abst...
elab3 3676 Membership in a class abst...
elrabi 3677 Implication for the member...
elrabiOLD 3678 Obsolete version of ~ elra...
elrabf 3679 Membership in a restricted...
rabtru 3680 Abstract builder using the...
rabeqcOLD 3681 Obsolete version of ~ rabe...
elrab3t 3682 Membership in a restricted...
elrab 3683 Membership in a restricted...
elrab3 3684 Membership in a restricted...
elrabd 3685 Membership in a restricted...
elrab2 3686 Membership in a restricted...
ralab 3687 Universal quantification o...
ralabOLD 3688 Obsolete version of ~ rala...
ralrab 3689 Universal quantification o...
rexab 3690 Existential quantification...
rexabOLD 3691 Obsolete version of ~ rexa...
rexrab 3692 Existential quantification...
ralab2 3693 Universal quantification o...
ralrab2 3694 Universal quantification o...
rexab2 3695 Existential quantification...
rexrab2 3696 Existential quantification...
reurab 3697 Restricted existential uni...
abidnf 3698 Identity used to create cl...
dedhb 3699 A deduction theorem for co...
class2seteq 3700 Writing a set as a class a...
nelrdva 3701 Deduce negative membership...
eqeu 3702 A condition which implies ...
moeq 3703 There exists at most one s...
eueq 3704 A class is a set if and on...
eueqi 3705 There exists a unique set ...
eueq2 3706 Equality has existential u...
eueq3 3707 Equality has existential u...
moeq3 3708 "At most one" property of ...
mosub 3709 "At most one" remains true...
mo2icl 3710 Theorem for inferring "at ...
mob2 3711 Consequence of "at most on...
moi2 3712 Consequence of "at most on...
mob 3713 Equality implied by "at mo...
moi 3714 Equality implied by "at mo...
morex 3715 Derive membership from uni...
euxfr2w 3716 Transfer existential uniqu...
euxfrw 3717 Transfer existential uniqu...
euxfr2 3718 Transfer existential uniqu...
euxfr 3719 Transfer existential uniqu...
euind 3720 Existential uniqueness via...
reu2 3721 A way to express restricte...
reu6 3722 A way to express restricte...
reu3 3723 A way to express restricte...
reu6i 3724 A condition which implies ...
eqreu 3725 A condition which implies ...
rmo4 3726 Restricted "at most one" u...
reu4 3727 Restricted uniqueness usin...
reu7 3728 Restricted uniqueness usin...
reu8 3729 Restricted uniqueness usin...
rmo3f 3730 Restricted "at most one" u...
rmo4f 3731 Restricted "at most one" u...
reu2eqd 3732 Deduce equality from restr...
reueq 3733 Equality has existential u...
rmoeq 3734 Equality's restricted exis...
rmoan 3735 Restricted "at most one" s...
rmoim 3736 Restricted "at most one" i...
rmoimia 3737 Restricted "at most one" i...
rmoimi 3738 Restricted "at most one" i...
rmoimi2 3739 Restricted "at most one" i...
2reu5a 3740 Double restricted existent...
reuimrmo 3741 Restricted uniqueness impl...
2reuswap 3742 A condition allowing swap ...
2reuswap2 3743 A condition allowing swap ...
reuxfrd 3744 Transfer existential uniqu...
reuxfr 3745 Transfer existential uniqu...
reuxfr1d 3746 Transfer existential uniqu...
reuxfr1ds 3747 Transfer existential uniqu...
reuxfr1 3748 Transfer existential uniqu...
reuind 3749 Existential uniqueness via...
2rmorex 3750 Double restricted quantifi...
2reu5lem1 3751 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3752 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3753 Lemma for ~ 2reu5 . This ...
2reu5 3754 Double restricted existent...
2reurmo 3755 Double restricted quantifi...
2reurex 3756 Double restricted quantifi...
2rmoswap 3757 A condition allowing to sw...
2rexreu 3758 Double restricted existent...
cdeqi 3761 Deduce conditional equalit...
cdeqri 3762 Property of conditional eq...
cdeqth 3763 Deduce conditional equalit...
cdeqnot 3764 Distribute conditional equ...
cdeqal 3765 Distribute conditional equ...
cdeqab 3766 Distribute conditional equ...
cdeqal1 3767 Distribute conditional equ...
cdeqab1 3768 Distribute conditional equ...
cdeqim 3769 Distribute conditional equ...
cdeqcv 3770 Conditional equality for s...
cdeqeq 3771 Distribute conditional equ...
cdeqel 3772 Distribute conditional equ...
nfcdeq 3773 If we have a conditional e...
nfccdeq 3774 Variation of ~ nfcdeq for ...
rru 3775 Relative version of Russel...
ru 3776 Russell's Paradox. Propos...
dfsbcq 3779 Proper substitution of a c...
dfsbcq2 3780 This theorem, which is sim...
sbsbc 3781 Show that ~ df-sb and ~ df...
sbceq1d 3782 Equality theorem for class...
sbceq1dd 3783 Equality theorem for class...
sbceqbid 3784 Equality theorem for class...
sbc8g 3785 This is the closest we can...
sbc2or 3786 The disjunction of two equ...
sbcex 3787 By our definition of prope...
sbceq1a 3788 Equality theorem for class...
sbceq2a 3789 Equality theorem for class...
spsbc 3790 Specialization: if a formu...
spsbcd 3791 Specialization: if a formu...
sbcth 3792 A substitution into a theo...
sbcthdv 3793 Deduction version of ~ sbc...
sbcid 3794 An identity theorem for su...
nfsbc1d 3795 Deduction version of ~ nfs...
nfsbc1 3796 Bound-variable hypothesis ...
nfsbc1v 3797 Bound-variable hypothesis ...
nfsbcdw 3798 Deduction version of ~ nfs...
nfsbcw 3799 Bound-variable hypothesis ...
sbccow 3800 A composition law for clas...
nfsbcd 3801 Deduction version of ~ nfs...
nfsbc 3802 Bound-variable hypothesis ...
sbcco 3803 A composition law for clas...
sbcco2 3804 A composition law for clas...
sbc5 3805 An equivalence for class s...
sbc5ALT 3806 Alternate proof of ~ sbc5 ...
sbc6g 3807 An equivalence for class s...
sbc6gOLD 3808 Obsolete version of ~ sbc6...
sbc6 3809 An equivalence for class s...
sbc7 3810 An equivalence for class s...
cbvsbcw 3811 Change bound variables in ...
cbvsbcvw 3812 Change the bound variable ...
cbvsbc 3813 Change bound variables in ...
cbvsbcv 3814 Change the bound variable ...
sbciegft 3815 Conversion of implicit sub...
sbciegf 3816 Conversion of implicit sub...
sbcieg 3817 Conversion of implicit sub...
sbciegOLD 3818 Obsolete version of ~ sbci...
sbcie2g 3819 Conversion of implicit sub...
sbcie 3820 Conversion of implicit sub...
sbciedf 3821 Conversion of implicit sub...
sbcied 3822 Conversion of implicit sub...
sbciedOLD 3823 Obsolete version of ~ sbci...
sbcied2 3824 Conversion of implicit sub...
elrabsf 3825 Membership in a restricted...
eqsbc1 3826 Substitution for the left-...
sbcng 3827 Move negation in and out o...
sbcimg 3828 Distribution of class subs...
sbcan 3829 Distribution of class subs...
sbcor 3830 Distribution of class subs...
sbcbig 3831 Distribution of class subs...
sbcn1 3832 Move negation in and out o...
sbcim1 3833 Distribution of class subs...
sbcim1OLD 3834 Obsolete version of ~ sbci...
sbcbid 3835 Formula-building deduction...
sbcbidv 3836 Formula-building deduction...
sbcbii 3837 Formula-building inference...
sbcbi1 3838 Distribution of class subs...
sbcbi2 3839 Substituting into equivale...
sbcbi2OLD 3840 Obsolete proof of ~ sbcbi2...
sbcal 3841 Move universal quantifier ...
sbcex2 3842 Move existential quantifie...
sbceqal 3843 Class version of one impli...
sbceqalOLD 3844 Obsolete version of ~ sbce...
sbeqalb 3845 Theorem *14.121 in [Whiteh...
eqsbc2 3846 Substitution for the right...
sbc3an 3847 Distribution of class subs...
sbcel1v 3848 Class substitution into a ...
sbcel2gv 3849 Class substitution into a ...
sbcel21v 3850 Class substitution into a ...
sbcimdv 3851 Substitution analogue of T...
sbcimdvOLD 3852 Obsolete version of ~ sbci...
sbctt 3853 Substitution for a variabl...
sbcgf 3854 Substitution for a variabl...
sbc19.21g 3855 Substitution for a variabl...
sbcg 3856 Substitution for a variabl...
sbcgOLD 3857 Obsolete version of ~ sbcg...
sbcgfi 3858 Substitution for a variabl...
sbc2iegf 3859 Conversion of implicit sub...
sbc2ie 3860 Conversion of implicit sub...
sbc2ieOLD 3861 Obsolete version of ~ sbc2...
sbc2iedv 3862 Conversion of implicit sub...
sbc3ie 3863 Conversion of implicit sub...
sbccomlem 3864 Lemma for ~ sbccom . (Con...
sbccom 3865 Commutative law for double...
sbcralt 3866 Interchange class substitu...
sbcrext 3867 Interchange class substitu...
sbcralg 3868 Interchange class substitu...
sbcrex 3869 Interchange class substitu...
sbcreu 3870 Interchange class substitu...
reu8nf 3871 Restricted uniqueness usin...
sbcabel 3872 Interchange class substitu...
rspsbc 3873 Restricted quantifier vers...
rspsbca 3874 Restricted quantifier vers...
rspesbca 3875 Existence form of ~ rspsbc...
spesbc 3876 Existence form of ~ spsbc ...
spesbcd 3877 form of ~ spsbc . (Contri...
sbcth2 3878 A substitution into a theo...
ra4v 3879 Version of ~ ra4 with a di...
ra4 3880 Restricted quantifier vers...
rmo2 3881 Alternate definition of re...
rmo2i 3882 Condition implying restric...
rmo3 3883 Restricted "at most one" u...
rmob 3884 Consequence of "at most on...
rmoi 3885 Consequence of "at most on...
rmob2 3886 Consequence of "restricted...
rmoi2 3887 Consequence of "restricted...
rmoanim 3888 Introduction of a conjunct...
rmoanimALT 3889 Alternate proof of ~ rmoan...
reuan 3890 Introduction of a conjunct...
2reu1 3891 Double restricted existent...
2reu2 3892 Double restricted existent...
csb2 3895 Alternate expression for t...
csbeq1 3896 Analogue of ~ dfsbcq for p...
csbeq1d 3897 Equality deduction for pro...
csbeq2 3898 Substituting into equivale...
csbeq2d 3899 Formula-building deduction...
csbeq2dv 3900 Formula-building deduction...
csbeq2i 3901 Formula-building inference...
csbeq12dv 3902 Formula-building inference...
cbvcsbw 3903 Change bound variables in ...
cbvcsb 3904 Change bound variables in ...
cbvcsbv 3905 Change the bound variable ...
csbid 3906 Analogue of ~ sbid for pro...
csbeq1a 3907 Equality theorem for prope...
csbcow 3908 Composition law for chaine...
csbco 3909 Composition law for chaine...
csbtt 3910 Substitution doesn't affec...
csbconstgf 3911 Substitution doesn't affec...
csbconstg 3912 Substitution doesn't affec...
csbconstgOLD 3913 Obsolete version of ~ csbc...
csbgfi 3914 Substitution for a variabl...
csbconstgi 3915 The proper substitution of...
nfcsb1d 3916 Bound-variable hypothesis ...
nfcsb1 3917 Bound-variable hypothesis ...
nfcsb1v 3918 Bound-variable hypothesis ...
nfcsbd 3919 Deduction version of ~ nfc...
nfcsbw 3920 Bound-variable hypothesis ...
nfcsb 3921 Bound-variable hypothesis ...
csbhypf 3922 Introduce an explicit subs...
csbiebt 3923 Conversion of implicit sub...
csbiedf 3924 Conversion of implicit sub...
csbieb 3925 Bidirectional conversion b...
csbiebg 3926 Bidirectional conversion b...
csbiegf 3927 Conversion of implicit sub...
csbief 3928 Conversion of implicit sub...
csbie 3929 Conversion of implicit sub...
csbieOLD 3930 Obsolete version of ~ csbi...
csbied 3931 Conversion of implicit sub...
csbiedOLD 3932 Obsolete version of ~ csbi...
csbied2 3933 Conversion of implicit sub...
csbie2t 3934 Conversion of implicit sub...
csbie2 3935 Conversion of implicit sub...
csbie2g 3936 Conversion of implicit sub...
cbvrabcsfw 3937 Version of ~ cbvrabcsf wit...
cbvralcsf 3938 A more general version of ...
cbvrexcsf 3939 A more general version of ...
cbvreucsf 3940 A more general version of ...
cbvrabcsf 3941 A more general version of ...
cbvralv2 3942 Rule used to change the bo...
cbvrexv2 3943 Rule used to change the bo...
rspc2vd 3944 Deduction version of 2-var...
difjust 3950 Soundness justification th...
unjust 3952 Soundness justification th...
injust 3954 Soundness justification th...
dfin5 3956 Alternate definition for t...
dfdif2 3957 Alternate definition of cl...
eldif 3958 Expansion of membership in...
eldifd 3959 If a class is in one class...
eldifad 3960 If a class is in the diffe...
eldifbd 3961 If a class is in the diffe...
elneeldif 3962 The elements of a set diff...
velcomp 3963 Characterization of setvar...
elin 3964 Expansion of membership in...
dfss 3966 Variant of subclass defini...
dfss2 3968 Alternate definition of th...
dfss2OLD 3969 Obsolete version of ~ dfss...
dfss3 3970 Alternate definition of su...
dfss6 3971 Alternate definition of su...
dfss2f 3972 Equivalence for subclass r...
dfss3f 3973 Equivalence for subclass r...
nfss 3974 If ` x ` is not free in ` ...
ssel 3975 Membership relationships f...
sselOLD 3976 Obsolete version of ~ ssel...
ssel2 3977 Membership relationships f...
sseli 3978 Membership implication fro...
sselii 3979 Membership inference from ...
sselid 3980 Membership inference from ...
sseld 3981 Membership deduction from ...
sselda 3982 Membership deduction from ...
sseldd 3983 Membership inference from ...
ssneld 3984 If a class is not in anoth...
ssneldd 3985 If an element is not in a ...
ssriv 3986 Inference based on subclas...
ssrd 3987 Deduction based on subclas...
ssrdv 3988 Deduction based on subclas...
sstr2 3989 Transitivity of subclass r...
sstr 3990 Transitivity of subclass r...
sstri 3991 Subclass transitivity infe...
sstrd 3992 Subclass transitivity dedu...
sstrid 3993 Subclass transitivity dedu...
sstrdi 3994 Subclass transitivity dedu...
sylan9ss 3995 A subclass transitivity de...
sylan9ssr 3996 A subclass transitivity de...
eqss 3997 The subclass relationship ...
eqssi 3998 Infer equality from two su...
eqssd 3999 Equality deduction from tw...
sssseq 4000 If a class is a subclass o...
eqrd 4001 Deduce equality of classes...
eqri 4002 Infer equality of classes ...
eqelssd 4003 Equality deduction from su...
ssid 4004 Any class is a subclass of...
ssidd 4005 Weakening of ~ ssid . (Co...
ssv 4006 Any class is a subclass of...
sseq1 4007 Equality theorem for subcl...
sseq2 4008 Equality theorem for the s...
sseq12 4009 Equality theorem for the s...
sseq1i 4010 An equality inference for ...
sseq2i 4011 An equality inference for ...
sseq12i 4012 An equality inference for ...
sseq1d 4013 An equality deduction for ...
sseq2d 4014 An equality deduction for ...
sseq12d 4015 An equality deduction for ...
eqsstri 4016 Substitution of equality i...
eqsstrri 4017 Substitution of equality i...
sseqtri 4018 Substitution of equality i...
sseqtrri 4019 Substitution of equality i...
eqsstrd 4020 Substitution of equality i...
eqsstrrd 4021 Substitution of equality i...
sseqtrd 4022 Substitution of equality i...
sseqtrrd 4023 Substitution of equality i...
3sstr3i 4024 Substitution of equality i...
3sstr4i 4025 Substitution of equality i...
3sstr3g 4026 Substitution of equality i...
3sstr4g 4027 Substitution of equality i...
3sstr3d 4028 Substitution of equality i...
3sstr4d 4029 Substitution of equality i...
eqsstrid 4030 A chained subclass and equ...
eqsstrrid 4031 A chained subclass and equ...
sseqtrdi 4032 A chained subclass and equ...
sseqtrrdi 4033 A chained subclass and equ...
sseqtrid 4034 Subclass transitivity dedu...
sseqtrrid 4035 Subclass transitivity dedu...
eqsstrdi 4036 A chained subclass and equ...
eqsstrrdi 4037 A chained subclass and equ...
eqimssd 4038 Equality implies inclusion...
eqimsscd 4039 Equality implies inclusion...
eqimss 4040 Equality implies inclusion...
eqimss2 4041 Equality implies inclusion...
eqimssi 4042 Infer subclass relationshi...
eqimss2i 4043 Infer subclass relationshi...
nssne1 4044 Two classes are different ...
nssne2 4045 Two classes are different ...
nss 4046 Negation of subclass relat...
nelss 4047 Demonstrate by witnesses t...
ssrexf 4048 Restricted existential qua...
ssrmof 4049 "At most one" existential ...
ssralv 4050 Quantification restricted ...
ssrexv 4051 Existential quantification...
ss2ralv 4052 Two quantifications restri...
ss2rexv 4053 Two existential quantifica...
ralss 4054 Restricted universal quant...
rexss 4055 Restricted existential qua...
ss2ab 4056 Class abstractions in a su...
abss 4057 Class abstraction in a sub...
ssab 4058 Subclass of a class abstra...
ssabral 4059 The relation for a subclas...
ss2abdv 4060 Deduction of abstraction s...
ss2abdvALT 4061 Alternate proof of ~ ss2ab...
ss2abdvOLD 4062 Obsolete version of ~ ss2a...
ss2abi 4063 Inference of abstraction s...
ss2abiOLD 4064 Obsolete version of ~ ss2a...
abssdv 4065 Deduction of abstraction s...
abssdvOLD 4066 Obsolete version of ~ abss...
abssi 4067 Inference of abstraction s...
ss2rab 4068 Restricted abstraction cla...
rabss 4069 Restricted class abstracti...
ssrab 4070 Subclass of a restricted c...
ssrabdv 4071 Subclass of a restricted c...
rabssdv 4072 Subclass of a restricted c...
ss2rabdv 4073 Deduction of restricted ab...
ss2rabi 4074 Inference of restricted ab...
rabss2 4075 Subclass law for restricte...
ssab2 4076 Subclass relation for the ...
ssrab2 4077 Subclass relation for a re...
ssrab2OLD 4078 Obsolete version of ~ ssra...
rabss3d 4079 Subclass law for restricte...
ssrab3 4080 Subclass relation for a re...
rabssrabd 4081 Subclass of a restricted c...
ssrabeq 4082 If the restricting class o...
rabssab 4083 A restricted class is a su...
uniiunlem 4084 A subset relationship usef...
dfpss2 4085 Alternate definition of pr...
dfpss3 4086 Alternate definition of pr...
psseq1 4087 Equality theorem for prope...
psseq2 4088 Equality theorem for prope...
psseq1i 4089 An equality inference for ...
psseq2i 4090 An equality inference for ...
psseq12i 4091 An equality inference for ...
psseq1d 4092 An equality deduction for ...
psseq2d 4093 An equality deduction for ...
psseq12d 4094 An equality deduction for ...
pssss 4095 A proper subclass is a sub...
pssne 4096 Two classes in a proper su...
pssssd 4097 Deduce subclass from prope...
pssned 4098 Proper subclasses are uneq...
sspss 4099 Subclass in terms of prope...
pssirr 4100 Proper subclass is irrefle...
pssn2lp 4101 Proper subclass has no 2-c...
sspsstri 4102 Two ways of stating tricho...
ssnpss 4103 Partial trichotomy law for...
psstr 4104 Transitive law for proper ...
sspsstr 4105 Transitive law for subclas...
psssstr 4106 Transitive law for subclas...
psstrd 4107 Proper subclass inclusion ...
sspsstrd 4108 Transitivity involving sub...
psssstrd 4109 Transitivity involving sub...
npss 4110 A class is not a proper su...
ssnelpss 4111 A subclass missing a membe...
ssnelpssd 4112 Subclass inclusion with on...
ssexnelpss 4113 If there is an element of ...
dfdif3 4114 Alternate definition of cl...
difeq1 4115 Equality theorem for class...
difeq2 4116 Equality theorem for class...
difeq12 4117 Equality theorem for class...
difeq1i 4118 Inference adding differenc...
difeq2i 4119 Inference adding differenc...
difeq12i 4120 Equality inference for cla...
difeq1d 4121 Deduction adding differenc...
difeq2d 4122 Deduction adding differenc...
difeq12d 4123 Equality deduction for cla...
difeqri 4124 Inference from membership ...
nfdif 4125 Bound-variable hypothesis ...
eldifi 4126 Implication of membership ...
eldifn 4127 Implication of membership ...
elndif 4128 A set does not belong to a...
neldif 4129 Implication of membership ...
difdif 4130 Double class difference. ...
difss 4131 Subclass relationship for ...
difssd 4132 A difference of two classe...
difss2 4133 If a class is contained in...
difss2d 4134 If a class is contained in...
ssdifss 4135 Preservation of a subclass...
ddif 4136 Double complement under un...
ssconb 4137 Contraposition law for sub...
sscon 4138 Contraposition law for sub...
ssdif 4139 Difference law for subsets...
ssdifd 4140 If ` A ` is contained in `...
sscond 4141 If ` A ` is contained in `...
ssdifssd 4142 If ` A ` is contained in `...
ssdif2d 4143 If ` A ` is contained in `...
raldifb 4144 Restricted universal quant...
rexdifi 4145 Restricted existential qua...
complss 4146 Complementation reverses i...
compleq 4147 Two classes are equal if a...
elun 4148 Expansion of membership in...
elunnel1 4149 A member of a union that i...
elunnel2 4150 A member of a union that i...
uneqri 4151 Inference from membership ...
unidm 4152 Idempotent law for union o...
uncom 4153 Commutative law for union ...
equncom 4154 If a class equals the unio...
equncomi 4155 Inference form of ~ equnco...
uneq1 4156 Equality theorem for the u...
uneq2 4157 Equality theorem for the u...
uneq12 4158 Equality theorem for the u...
uneq1i 4159 Inference adding union to ...
uneq2i 4160 Inference adding union to ...
uneq12i 4161 Equality inference for the...
uneq1d 4162 Deduction adding union to ...
uneq2d 4163 Deduction adding union to ...
uneq12d 4164 Equality deduction for the...
nfun 4165 Bound-variable hypothesis ...
unass 4166 Associative law for union ...
un12 4167 A rearrangement of union. ...
un23 4168 A rearrangement of union. ...
un4 4169 A rearrangement of the uni...
unundi 4170 Union distributes over its...
unundir 4171 Union distributes over its...
ssun1 4172 Subclass relationship for ...
ssun2 4173 Subclass relationship for ...
ssun3 4174 Subclass law for union of ...
ssun4 4175 Subclass law for union of ...
elun1 4176 Membership law for union o...
elun2 4177 Membership law for union o...
elunant 4178 A statement is true for ev...
unss1 4179 Subclass law for union of ...
ssequn1 4180 A relationship between sub...
unss2 4181 Subclass law for union of ...
unss12 4182 Subclass law for union of ...
ssequn2 4183 A relationship between sub...
unss 4184 The union of two subclasse...
unssi 4185 An inference showing the u...
unssd 4186 A deduction showing the un...
unssad 4187 If ` ( A u. B ) ` is conta...
unssbd 4188 If ` ( A u. B ) ` is conta...
ssun 4189 A condition that implies i...
rexun 4190 Restricted existential qua...
ralunb 4191 Restricted quantification ...
ralun 4192 Restricted quantification ...
elini 4193 Membership in an intersect...
elind 4194 Deduce membership in an in...
elinel1 4195 Membership in an intersect...
elinel2 4196 Membership in an intersect...
elin2 4197 Membership in a class defi...
elin1d 4198 Elementhood in the first s...
elin2d 4199 Elementhood in the first s...
elin3 4200 Membership in a class defi...
incom 4201 Commutative law for inters...
ineqcom 4202 Two ways of expressing tha...
ineqcomi 4203 Two ways of expressing tha...
ineqri 4204 Inference from membership ...
ineq1 4205 Equality theorem for inter...
ineq2 4206 Equality theorem for inter...
ineq12 4207 Equality theorem for inter...
ineq1i 4208 Equality inference for int...
ineq2i 4209 Equality inference for int...
ineq12i 4210 Equality inference for int...
ineq1d 4211 Equality deduction for int...
ineq2d 4212 Equality deduction for int...
ineq12d 4213 Equality deduction for int...
ineqan12d 4214 Equality deduction for int...
sseqin2 4215 A relationship between sub...
nfin 4216 Bound-variable hypothesis ...
rabbi2dva 4217 Deduction from a wff to a ...
inidm 4218 Idempotent law for interse...
inass 4219 Associative law for inters...
in12 4220 A rearrangement of interse...
in32 4221 A rearrangement of interse...
in13 4222 A rearrangement of interse...
in31 4223 A rearrangement of interse...
inrot 4224 Rotate the intersection of...
in4 4225 Rearrangement of intersect...
inindi 4226 Intersection distributes o...
inindir 4227 Intersection distributes o...
inss1 4228 The intersection of two cl...
inss2 4229 The intersection of two cl...
ssin 4230 Subclass of intersection. ...
ssini 4231 An inference showing that ...
ssind 4232 A deduction showing that a...
ssrin 4233 Add right intersection to ...
sslin 4234 Add left intersection to s...
ssrind 4235 Add right intersection to ...
ss2in 4236 Intersection of subclasses...
ssinss1 4237 Intersection preserves sub...
inss 4238 Inclusion of an intersecti...
rexin 4239 Restricted existential qua...
dfss7 4240 Alternate definition of su...
symdifcom 4243 Symmetric difference commu...
symdifeq1 4244 Equality theorem for symme...
symdifeq2 4245 Equality theorem for symme...
nfsymdif 4246 Hypothesis builder for sym...
elsymdif 4247 Membership in a symmetric ...
dfsymdif4 4248 Alternate definition of th...
elsymdifxor 4249 Membership in a symmetric ...
dfsymdif2 4250 Alternate definition of th...
symdifass 4251 Symmetric difference is as...
difsssymdif 4252 The symmetric difference c...
difsymssdifssd 4253 If the symmetric differenc...
unabs 4254 Absorption law for union. ...
inabs 4255 Absorption law for interse...
nssinpss 4256 Negation of subclass expre...
nsspssun 4257 Negation of subclass expre...
dfss4 4258 Subclass defined in terms ...
dfun2 4259 An alternate definition of...
dfin2 4260 An alternate definition of...
difin 4261 Difference with intersecti...
ssdifim 4262 Implication of a class dif...
ssdifsym 4263 Symmetric class difference...
dfss5 4264 Alternate definition of su...
dfun3 4265 Union defined in terms of ...
dfin3 4266 Intersection defined in te...
dfin4 4267 Alternate definition of th...
invdif 4268 Intersection with universa...
indif 4269 Intersection with class di...
indif2 4270 Bring an intersection in a...
indif1 4271 Bring an intersection in a...
indifcom 4272 Commutation law for inters...
indi 4273 Distributive law for inter...
undi 4274 Distributive law for union...
indir 4275 Distributive law for inter...
undir 4276 Distributive law for union...
unineq 4277 Infer equality from equali...
uneqin 4278 Equality of union and inte...
difundi 4279 Distributive law for class...
difundir 4280 Distributive law for class...
difindi 4281 Distributive law for class...
difindir 4282 Distributive law for class...
indifdi 4283 Distribute intersection ov...
indifdir 4284 Distribute intersection ov...
indifdirOLD 4285 Obsolete version of ~ indi...
difdif2 4286 Class difference by a clas...
undm 4287 De Morgan's law for union....
indm 4288 De Morgan's law for inters...
difun1 4289 A relationship involving d...
undif3 4290 An equality involving clas...
difin2 4291 Represent a class differen...
dif32 4292 Swap second and third argu...
difabs 4293 Absorption-like law for cl...
sscon34b 4294 Relative complementation r...
rcompleq 4295 Two subclasses are equal i...
dfsymdif3 4296 Alternate definition of th...
unabw 4297 Union of two class abstrac...
unab 4298 Union of two class abstrac...
inab 4299 Intersection of two class ...
difab 4300 Difference of two class ab...
abanssl 4301 A class abstraction with a...
abanssr 4302 A class abstraction with a...
notabw 4303 A class abstraction define...
notab 4304 A class abstraction define...
unrab 4305 Union of two restricted cl...
inrab 4306 Intersection of two restri...
inrab2 4307 Intersection with a restri...
difrab 4308 Difference of two restrict...
dfrab3 4309 Alternate definition of re...
dfrab2 4310 Alternate definition of re...
notrab 4311 Complementation of restric...
dfrab3ss 4312 Restricted class abstracti...
rabun2 4313 Abstraction restricted to ...
reuun2 4314 Transfer uniqueness to a s...
reuss2 4315 Transfer uniqueness to a s...
reuss 4316 Transfer uniqueness to a s...
reuun1 4317 Transfer uniqueness to a s...
reupick 4318 Restricted uniqueness "pic...
reupick3 4319 Restricted uniqueness "pic...
reupick2 4320 Restricted uniqueness "pic...
euelss 4321 Transfer uniqueness of an ...
dfnul4 4324 Alternate definition of th...
dfnul2 4325 Alternate definition of th...
dfnul3 4326 Alternate definition of th...
dfnul2OLD 4327 Obsolete version of ~ dfnu...
dfnul3OLD 4328 Obsolete version of ~ dfnu...
dfnul4OLD 4329 Obsolete version of ~ dfnu...
noel 4330 The empty set has no eleme...
noelOLD 4331 Obsolete version of ~ noel...
nel02 4332 The empty set has no eleme...
n0i 4333 If a class has elements, t...
ne0i 4334 If a class has elements, t...
ne0d 4335 Deduction form of ~ ne0i ....
n0ii 4336 If a class has elements, t...
ne0ii 4337 If a class has elements, t...
vn0 4338 The universal class is not...
vn0ALT 4339 Alternate proof of ~ vn0 ....
eq0f 4340 A class is equal to the em...
neq0f 4341 A class is not empty if an...
n0f 4342 A class is nonempty if and...
eq0 4343 A class is equal to the em...
eq0ALT 4344 Alternate proof of ~ eq0 ....
neq0 4345 A class is not empty if an...
n0 4346 A class is nonempty if and...
eq0OLDOLD 4347 Obsolete version of ~ eq0 ...
neq0OLD 4348 Obsolete version of ~ neq0...
n0OLD 4349 Obsolete version of ~ n0 a...
nel0 4350 From the general negation ...
reximdva0 4351 Restricted existence deduc...
rspn0 4352 Specialization for restric...
rspn0OLD 4353 Obsolete version of ~ rspn...
n0rex 4354 There is an element in a n...
ssn0rex 4355 There is an element in a c...
n0moeu 4356 A case of equivalence of "...
rex0 4357 Vacuous restricted existen...
reu0 4358 Vacuous restricted uniquen...
rmo0 4359 Vacuous restricted at-most...
0el 4360 Membership of the empty se...
n0el 4361 Negated membership of the ...
eqeuel 4362 A condition which implies ...
ssdif0 4363 Subclass expressed in term...
difn0 4364 If the difference of two s...
pssdifn0 4365 A proper subclass has a no...
pssdif 4366 A proper subclass has a no...
ndisj 4367 Express that an intersecti...
difin0ss 4368 Difference, intersection, ...
inssdif0 4369 Intersection, subclass, an...
difid 4370 The difference between a c...
difidALT 4371 Alternate proof of ~ difid...
dif0 4372 The difference between a c...
ab0w 4373 The class of sets verifyin...
ab0 4374 The class of sets verifyin...
ab0OLD 4375 Obsolete version of ~ ab0 ...
ab0ALT 4376 Alternate proof of ~ ab0 ,...
dfnf5 4377 Characterization of nonfre...
ab0orv 4378 The class abstraction defi...
ab0orvALT 4379 Alternate proof of ~ ab0or...
abn0 4380 Nonempty class abstraction...
abn0OLD 4381 Obsolete version of ~ abn0...
rab0 4382 Any restricted class abstr...
rabeq0w 4383 Condition for a restricted...
rabeq0 4384 Condition for a restricted...
rabn0 4385 Nonempty restricted class ...
rabxm 4386 Law of excluded middle, in...
rabnc 4387 Law of noncontradiction, i...
elneldisj 4388 The set of elements ` s ` ...
elnelun 4389 The union of the set of el...
un0 4390 The union of a class with ...
in0 4391 The intersection of a clas...
0un 4392 The union of the empty set...
0in 4393 The intersection of the em...
inv1 4394 The intersection of a clas...
unv 4395 The union of a class with ...
0ss 4396 The null set is a subset o...
ss0b 4397 Any subset of the empty se...
ss0 4398 Any subset of the empty se...
sseq0 4399 A subclass of an empty cla...
ssn0 4400 A class with a nonempty su...
0dif 4401 The difference between the...
abf 4402 A class abstraction determ...
abfOLD 4403 Obsolete version of ~ abf ...
eq0rdv 4404 Deduction for equality to ...
eq0rdvALT 4405 Alternate proof of ~ eq0rd...
csbprc 4406 The proper substitution of...
csb0 4407 The proper substitution of...
sbcel12 4408 Distribute proper substitu...
sbceqg 4409 Distribute proper substitu...
sbceqi 4410 Distribution of class subs...
sbcnel12g 4411 Distribute proper substitu...
sbcne12 4412 Distribute proper substitu...
sbcel1g 4413 Move proper substitution i...
sbceq1g 4414 Move proper substitution t...
sbcel2 4415 Move proper substitution i...
sbceq2g 4416 Move proper substitution t...
csbcom 4417 Commutative law for double...
sbcnestgfw 4418 Nest the composition of tw...
csbnestgfw 4419 Nest the composition of tw...
sbcnestgw 4420 Nest the composition of tw...
csbnestgw 4421 Nest the composition of tw...
sbcco3gw 4422 Composition of two substit...
sbcnestgf 4423 Nest the composition of tw...
csbnestgf 4424 Nest the composition of tw...
sbcnestg 4425 Nest the composition of tw...
csbnestg 4426 Nest the composition of tw...
sbcco3g 4427 Composition of two substit...
csbco3g 4428 Composition of two class s...
csbnest1g 4429 Nest the composition of tw...
csbidm 4430 Idempotent law for class s...
csbvarg 4431 The proper substitution of...
csbvargi 4432 The proper substitution of...
sbccsb 4433 Substitution into a wff ex...
sbccsb2 4434 Substitution into a wff ex...
rspcsbela 4435 Special case related to ~ ...
sbnfc2 4436 Two ways of expressing " `...
csbab 4437 Move substitution into a c...
csbun 4438 Distribution of class subs...
csbin 4439 Distribute proper substitu...
csbie2df 4440 Conversion of implicit sub...
2nreu 4441 If there are two different...
un00 4442 Two classes are empty iff ...
vss 4443 Only the universal class h...
0pss 4444 The null set is a proper s...
npss0 4445 No set is a proper subset ...
pssv 4446 Any non-universal class is...
disj 4447 Two ways of saying that tw...
disjOLD 4448 Obsolete version of ~ disj...
disjr 4449 Two ways of saying that tw...
disj1 4450 Two ways of saying that tw...
reldisj 4451 Two ways of saying that tw...
reldisjOLD 4452 Obsolete version of ~ reld...
disj3 4453 Two ways of saying that tw...
disjne 4454 Members of disjoint sets a...
disjeq0 4455 Two disjoint sets are equa...
disjel 4456 A set can't belong to both...
disj2 4457 Two ways of saying that tw...
disj4 4458 Two ways of saying that tw...
ssdisj 4459 Intersection with a subcla...
disjpss 4460 A class is a proper subset...
undisj1 4461 The union of disjoint clas...
undisj2 4462 The union of disjoint clas...
ssindif0 4463 Subclass expressed in term...
inelcm 4464 The intersection of classe...
minel 4465 A minimum element of a cla...
undif4 4466 Distribute union over diff...
disjssun 4467 Subset relation for disjoi...
vdif0 4468 Universal class equality i...
difrab0eq 4469 If the difference between ...
pssnel 4470 A proper subclass has a me...
disjdif 4471 A class and its relative c...
disjdifr 4472 A class and its relative c...
difin0 4473 The difference of a class ...
unvdif 4474 The union of a class and i...
undif1 4475 Absorption of difference b...
undif2 4476 Absorption of difference b...
undifabs 4477 Absorption of difference b...
inundif 4478 The intersection and class...
disjdif2 4479 The difference of a class ...
difun2 4480 Absorption of union by dif...
undif 4481 Union of complementary par...
undifr 4482 Union of complementary par...
undifrOLD 4483 Obsolete version of ~ undi...
undif5 4484 An equality involving clas...
ssdifin0 4485 A subset of a difference d...
ssdifeq0 4486 A class is a subclass of i...
ssundif 4487 A condition equivalent to ...
difcom 4488 Swap the arguments of a cl...
pssdifcom1 4489 Two ways to express overla...
pssdifcom2 4490 Two ways to express non-co...
difdifdir 4491 Distributive law for class...
uneqdifeq 4492 Two ways to say that ` A `...
raldifeq 4493 Equality theorem for restr...
r19.2z 4494 Theorem 19.2 of [Margaris]...
r19.2zb 4495 A response to the notion t...
r19.3rz 4496 Restricted quantification ...
r19.28z 4497 Restricted quantifier vers...
r19.3rzv 4498 Restricted quantification ...
r19.9rzv 4499 Restricted quantification ...
r19.28zv 4500 Restricted quantifier vers...
r19.37zv 4501 Restricted quantifier vers...
r19.45zv 4502 Restricted version of Theo...
r19.44zv 4503 Restricted version of Theo...
r19.27z 4504 Restricted quantifier vers...
r19.27zv 4505 Restricted quantifier vers...
r19.36zv 4506 Restricted quantifier vers...
ralidmw 4507 Idempotent law for restric...
rzal 4508 Vacuous quantification is ...
rzalALT 4509 Alternate proof of ~ rzal ...
rexn0 4510 Restricted existential qua...
ralidm 4511 Idempotent law for restric...
ral0 4512 Vacuous universal quantifi...
ralf0 4513 The quantification of a fa...
rexn0OLD 4514 Obsolete version of ~ rexn...
ralidmOLD 4515 Obsolete version of ~ rali...
ral0OLD 4516 Obsolete version of ~ ral0...
ralf0OLD 4517 Obsolete version of ~ ralf...
ralnralall 4518 A contradiction concerning...
falseral0 4519 A false statement can only...
raaan 4520 Rearrange restricted quant...
raaanv 4521 Rearrange restricted quant...
sbss 4522 Set substitution into the ...
sbcssg 4523 Distribute proper substitu...
raaan2 4524 Rearrange restricted quant...
2reu4lem 4525 Lemma for ~ 2reu4 . (Cont...
2reu4 4526 Definition of double restr...
csbdif 4527 Distribution of class subs...
dfif2 4530 An alternate definition of...
dfif6 4531 An alternate definition of...
ifeq1 4532 Equality theorem for condi...
ifeq2 4533 Equality theorem for condi...
iftrue 4534 Value of the conditional o...
iftruei 4535 Inference associated with ...
iftrued 4536 Value of the conditional o...
iffalse 4537 Value of the conditional o...
iffalsei 4538 Inference associated with ...
iffalsed 4539 Value of the conditional o...
ifnefalse 4540 When values are unequal, b...
ifsb 4541 Distribute a function over...
dfif3 4542 Alternate definition of th...
dfif4 4543 Alternate definition of th...
dfif5 4544 Alternate definition of th...
ifssun 4545 A conditional class is inc...
ifeq12 4546 Equality theorem for condi...
ifeq1d 4547 Equality deduction for con...
ifeq2d 4548 Equality deduction for con...
ifeq12d 4549 Equality deduction for con...
ifbi 4550 Equivalence theorem for co...
ifbid 4551 Equivalence deduction for ...
ifbieq1d 4552 Equivalence/equality deduc...
ifbieq2i 4553 Equivalence/equality infer...
ifbieq2d 4554 Equivalence/equality deduc...
ifbieq12i 4555 Equivalence deduction for ...
ifbieq12d 4556 Equivalence deduction for ...
nfifd 4557 Deduction form of ~ nfif ....
nfif 4558 Bound-variable hypothesis ...
ifeq1da 4559 Conditional equality. (Co...
ifeq2da 4560 Conditional equality. (Co...
ifeq12da 4561 Equivalence deduction for ...
ifbieq12d2 4562 Equivalence deduction for ...
ifclda 4563 Conditional closure. (Con...
ifeqda 4564 Separation of the values o...
elimif 4565 Elimination of a condition...
ifbothda 4566 A wff ` th ` containing a ...
ifboth 4567 A wff ` th ` containing a ...
ifid 4568 Identical true and false a...
eqif 4569 Expansion of an equality w...
ifval 4570 Another expression of the ...
elif 4571 Membership in a conditiona...
ifel 4572 Membership of a conditiona...
ifcl 4573 Membership (closure) of a ...
ifcld 4574 Membership (closure) of a ...
ifcli 4575 Inference associated with ...
ifexd 4576 Existence of the condition...
ifexg 4577 Existence of the condition...
ifex 4578 Existence of the condition...
ifeqor 4579 The possible values of a c...
ifnot 4580 Negating the first argumen...
ifan 4581 Rewrite a conjunction in a...
ifor 4582 Rewrite a disjunction in a...
2if2 4583 Resolve two nested conditi...
ifcomnan 4584 Commute the conditions in ...
csbif 4585 Distribute proper substitu...
dedth 4586 Weak deduction theorem tha...
dedth2h 4587 Weak deduction theorem eli...
dedth3h 4588 Weak deduction theorem eli...
dedth4h 4589 Weak deduction theorem eli...
dedth2v 4590 Weak deduction theorem for...
dedth3v 4591 Weak deduction theorem for...
dedth4v 4592 Weak deduction theorem for...
elimhyp 4593 Eliminate a hypothesis con...
elimhyp2v 4594 Eliminate a hypothesis con...
elimhyp3v 4595 Eliminate a hypothesis con...
elimhyp4v 4596 Eliminate a hypothesis con...
elimel 4597 Eliminate a membership hyp...
elimdhyp 4598 Version of ~ elimhyp where...
keephyp 4599 Transform a hypothesis ` p...
keephyp2v 4600 Keep a hypothesis containi...
keephyp3v 4601 Keep a hypothesis containi...
pwjust 4603 Soundness justification th...
elpwg 4605 Membership in a power clas...
elpw 4606 Membership in a power clas...
velpw 4607 Setvar variable membership...
elpwd 4608 Membership in a power clas...
elpwi 4609 Subset relation implied by...
elpwb 4610 Characterization of the el...
elpwid 4611 An element of a power clas...
elelpwi 4612 If ` A ` belongs to a part...
sspw 4613 The powerclass preserves i...
sspwi 4614 The powerclass preserves i...
sspwd 4615 The powerclass preserves i...
pweq 4616 Equality theorem for power...
pweqALT 4617 Alternate proof of ~ pweq ...
pweqi 4618 Equality inference for pow...
pweqd 4619 Equality deduction for pow...
pwunss 4620 The power class of the uni...
nfpw 4621 Bound-variable hypothesis ...
pwidg 4622 A set is an element of its...
pwidb 4623 A class is an element of i...
pwid 4624 A set is a member of its p...
pwss 4625 Subclass relationship for ...
pwundif 4626 Break up the power class o...
snjust 4627 Soundness justification th...
sneq 4638 Equality theorem for singl...
sneqi 4639 Equality inference for sin...
sneqd 4640 Equality deduction for sin...
dfsn2 4641 Alternate definition of si...
elsng 4642 There is exactly one eleme...
elsn 4643 There is exactly one eleme...
velsn 4644 There is only one element ...
elsni 4645 There is at most one eleme...
absn 4646 Condition for a class abst...
dfpr2 4647 Alternate definition of a ...
dfsn2ALT 4648 Alternate definition of si...
elprg 4649 A member of a pair of clas...
elpri 4650 If a class is an element o...
elpr 4651 A member of a pair of clas...
elpr2g 4652 A member of a pair of sets...
elpr2 4653 A member of a pair of sets...
elpr2OLD 4654 Obsolete version of ~ elpr...
nelpr2 4655 If a class is not an eleme...
nelpr1 4656 If a class is not an eleme...
nelpri 4657 If an element doesn't matc...
prneli 4658 If an element doesn't matc...
nelprd 4659 If an element doesn't matc...
eldifpr 4660 Membership in a set with t...
rexdifpr 4661 Restricted existential qua...
snidg 4662 A set is a member of its s...
snidb 4663 A class is a set iff it is...
snid 4664 A set is a member of its s...
vsnid 4665 A setvar variable is a mem...
elsn2g 4666 There is exactly one eleme...
elsn2 4667 There is exactly one eleme...
nelsn 4668 If a class is not equal to...
rabeqsn 4669 Conditions for a restricte...
rabsssn 4670 Conditions for a restricte...
rabeqsnd 4671 Conditions for a restricte...
ralsnsg 4672 Substitution expressed in ...
rexsns 4673 Restricted existential qua...
rexsngf 4674 Restricted existential qua...
ralsngf 4675 Restricted universal quant...
reusngf 4676 Restricted existential uni...
ralsng 4677 Substitution expressed in ...
rexsng 4678 Restricted existential qua...
reusng 4679 Restricted existential uni...
2ralsng 4680 Substitution expressed in ...
ralsngOLD 4681 Obsolete version of ~ rals...
rexsngOLD 4682 Obsolete version of ~ rexs...
rexreusng 4683 Restricted existential uni...
exsnrex 4684 There is a set being the e...
ralsn 4685 Convert a universal quanti...
rexsn 4686 Convert an existential qua...
elpwunsn 4687 Membership in an extension...
eqoreldif 4688 An element of a set is eit...
eltpg 4689 Members of an unordered tr...
eldiftp 4690 Membership in a set with t...
eltpi 4691 A member of an unordered t...
eltp 4692 A member of an unordered t...
dftp2 4693 Alternate definition of un...
nfpr 4694 Bound-variable hypothesis ...
ifpr 4695 Membership of a conditiona...
ralprgf 4696 Convert a restricted unive...
rexprgf 4697 Convert a restricted exist...
ralprg 4698 Convert a restricted unive...
ralprgOLD 4699 Obsolete version of ~ ralp...
rexprg 4700 Convert a restricted exist...
rexprgOLD 4701 Obsolete version of ~ rexp...
raltpg 4702 Convert a restricted unive...
rextpg 4703 Convert a restricted exist...
ralpr 4704 Convert a restricted unive...
rexpr 4705 Convert a restricted exist...
reuprg0 4706 Convert a restricted exist...
reuprg 4707 Convert a restricted exist...
reurexprg 4708 Convert a restricted exist...
raltp 4709 Convert a universal quanti...
rextp 4710 Convert an existential qua...
nfsn 4711 Bound-variable hypothesis ...
csbsng 4712 Distribute proper substitu...
csbprg 4713 Distribute proper substitu...
elinsn 4714 If the intersection of two...
disjsn 4715 Intersection with the sing...
disjsn2 4716 Two distinct singletons ar...
disjpr2 4717 Two completely distinct un...
disjprsn 4718 The disjoint intersection ...
disjtpsn 4719 The disjoint intersection ...
disjtp2 4720 Two completely distinct un...
snprc 4721 The singleton of a proper ...
snnzb 4722 A singleton is nonempty if...
rmosn 4723 A restricted at-most-one q...
r19.12sn 4724 Special case of ~ r19.12 w...
rabsn 4725 Condition where a restrict...
rabsnifsb 4726 A restricted class abstrac...
rabsnif 4727 A restricted class abstrac...
rabrsn 4728 A restricted class abstrac...
euabsn2 4729 Another way to express exi...
euabsn 4730 Another way to express exi...
reusn 4731 A way to express restricte...
absneu 4732 Restricted existential uni...
rabsneu 4733 Restricted existential uni...
eusn 4734 Two ways to express " ` A ...
rabsnt 4735 Truth implied by equality ...
prcom 4736 Commutative law for unorde...
preq1 4737 Equality theorem for unord...
preq2 4738 Equality theorem for unord...
preq12 4739 Equality theorem for unord...
preq1i 4740 Equality inference for uno...
preq2i 4741 Equality inference for uno...
preq12i 4742 Equality inference for uno...
preq1d 4743 Equality deduction for uno...
preq2d 4744 Equality deduction for uno...
preq12d 4745 Equality deduction for uno...
tpeq1 4746 Equality theorem for unord...
tpeq2 4747 Equality theorem for unord...
tpeq3 4748 Equality theorem for unord...
tpeq1d 4749 Equality theorem for unord...
tpeq2d 4750 Equality theorem for unord...
tpeq3d 4751 Equality theorem for unord...
tpeq123d 4752 Equality theorem for unord...
tprot 4753 Rotation of the elements o...
tpcoma 4754 Swap 1st and 2nd members o...
tpcomb 4755 Swap 2nd and 3rd members o...
tpass 4756 Split off the first elemen...
qdass 4757 Two ways to write an unord...
qdassr 4758 Two ways to write an unord...
tpidm12 4759 Unordered triple ` { A , A...
tpidm13 4760 Unordered triple ` { A , B...
tpidm23 4761 Unordered triple ` { A , B...
tpidm 4762 Unordered triple ` { A , A...
tppreq3 4763 An unordered triple is an ...
prid1g 4764 An unordered pair contains...
prid2g 4765 An unordered pair contains...
prid1 4766 An unordered pair contains...
prid2 4767 An unordered pair contains...
ifpprsnss 4768 An unordered pair is a sin...
prprc1 4769 A proper class vanishes in...
prprc2 4770 A proper class vanishes in...
prprc 4771 An unordered pair containi...
tpid1 4772 One of the three elements ...
tpid1g 4773 Closed theorem form of ~ t...
tpid2 4774 One of the three elements ...
tpid2g 4775 Closed theorem form of ~ t...
tpid3g 4776 Closed theorem form of ~ t...
tpid3 4777 One of the three elements ...
snnzg 4778 The singleton of a set is ...
snn0d 4779 The singleton of a set is ...
snnz 4780 The singleton of a set is ...
prnz 4781 A pair containing a set is...
prnzg 4782 A pair containing a set is...
tpnz 4783 An unordered triple contai...
tpnzd 4784 An unordered triple contai...
raltpd 4785 Convert a universal quanti...
snssb 4786 Characterization of the in...
snssg 4787 The singleton formed on a ...
snssgOLD 4788 Obsolete version of ~ snss...
snss 4789 The singleton of an elemen...
eldifsn 4790 Membership in a set with a...
ssdifsn 4791 Subset of a set with an el...
elpwdifsn 4792 A subset of a set is an el...
eldifsni 4793 Membership in a set with a...
eldifsnneq 4794 An element of a difference...
neldifsn 4795 The class ` A ` is not in ...
neldifsnd 4796 The class ` A ` is not in ...
rexdifsn 4797 Restricted existential qua...
raldifsni 4798 Rearrangement of a propert...
raldifsnb 4799 Restricted universal quant...
eldifvsn 4800 A set is an element of the...
difsn 4801 An element not in a set ca...
difprsnss 4802 Removal of a singleton fro...
difprsn1 4803 Removal of a singleton fro...
difprsn2 4804 Removal of a singleton fro...
diftpsn3 4805 Removal of a singleton fro...
difpr 4806 Removing two elements as p...
tpprceq3 4807 An unordered triple is an ...
tppreqb 4808 An unordered triple is an ...
difsnb 4809 ` ( B \ { A } ) ` equals `...
difsnpss 4810 ` ( B \ { A } ) ` is a pro...
snssi 4811 The singleton of an elemen...
snssd 4812 The singleton of an elemen...
difsnid 4813 If we remove a single elem...
eldifeldifsn 4814 An element of a difference...
pw0 4815 Compute the power set of t...
pwpw0 4816 Compute the power set of t...
snsspr1 4817 A singleton is a subset of...
snsspr2 4818 A singleton is a subset of...
snsstp1 4819 A singleton is a subset of...
snsstp2 4820 A singleton is a subset of...
snsstp3 4821 A singleton is a subset of...
prssg 4822 A pair of elements of a cl...
prss 4823 A pair of elements of a cl...
prssi 4824 A pair of elements of a cl...
prssd 4825 Deduction version of ~ prs...
prsspwg 4826 An unordered pair belongs ...
ssprss 4827 A pair as subset of a pair...
ssprsseq 4828 A proper pair is a subset ...
sssn 4829 The subsets of a singleton...
ssunsn2 4830 The property of being sand...
ssunsn 4831 Possible values for a set ...
eqsn 4832 Two ways to express that a...
issn 4833 A sufficient condition for...
n0snor2el 4834 A nonempty set is either a...
ssunpr 4835 Possible values for a set ...
sspr 4836 The subsets of a pair. (C...
sstp 4837 The subsets of an unordere...
tpss 4838 An unordered triple of ele...
tpssi 4839 An unordered triple of ele...
sneqrg 4840 Closed form of ~ sneqr . ...
sneqr 4841 If the singletons of two s...
snsssn 4842 If a singleton is a subset...
mosneq 4843 There exists at most one s...
sneqbg 4844 Two singletons of sets are...
snsspw 4845 The singleton of a class i...
prsspw 4846 An unordered pair belongs ...
preq1b 4847 Biconditional equality lem...
preq2b 4848 Biconditional equality lem...
preqr1 4849 Reverse equality lemma for...
preqr2 4850 Reverse equality lemma for...
preq12b 4851 Equality relationship for ...
opthpr 4852 An unordered pair has the ...
preqr1g 4853 Reverse equality lemma for...
preq12bg 4854 Closed form of ~ preq12b ....
prneimg 4855 Two pairs are not equal if...
prnebg 4856 A (proper) pair is not equ...
pr1eqbg 4857 A (proper) pair is equal t...
pr1nebg 4858 A (proper) pair is not equ...
preqsnd 4859 Equivalence for a pair equ...
prnesn 4860 A proper unordered pair is...
prneprprc 4861 A proper unordered pair is...
preqsn 4862 Equivalence for a pair equ...
preq12nebg 4863 Equality relationship for ...
prel12g 4864 Equality of two unordered ...
opthprneg 4865 An unordered pair has the ...
elpreqprlem 4866 Lemma for ~ elpreqpr . (C...
elpreqpr 4867 Equality and membership ru...
elpreqprb 4868 A set is an element of an ...
elpr2elpr 4869 For an element ` A ` of an...
dfopif 4870 Rewrite ~ df-op using ` if...
dfopg 4871 Value of the ordered pair ...
dfop 4872 Value of an ordered pair w...
opeq1 4873 Equality theorem for order...
opeq2 4874 Equality theorem for order...
opeq12 4875 Equality theorem for order...
opeq1i 4876 Equality inference for ord...
opeq2i 4877 Equality inference for ord...
opeq12i 4878 Equality inference for ord...
opeq1d 4879 Equality deduction for ord...
opeq2d 4880 Equality deduction for ord...
opeq12d 4881 Equality deduction for ord...
oteq1 4882 Equality theorem for order...
oteq2 4883 Equality theorem for order...
oteq3 4884 Equality theorem for order...
oteq1d 4885 Equality deduction for ord...
oteq2d 4886 Equality deduction for ord...
oteq3d 4887 Equality deduction for ord...
oteq123d 4888 Equality deduction for ord...
nfop 4889 Bound-variable hypothesis ...
nfopd 4890 Deduction version of bound...
csbopg 4891 Distribution of class subs...
opidg 4892 The ordered pair ` <. A , ...
opid 4893 The ordered pair ` <. A , ...
ralunsn 4894 Restricted quantification ...
2ralunsn 4895 Double restricted quantifi...
opprc 4896 Expansion of an ordered pa...
opprc1 4897 Expansion of an ordered pa...
opprc2 4898 Expansion of an ordered pa...
oprcl 4899 If an ordered pair has an ...
pwsn 4900 The power set of a singlet...
pwsnOLD 4901 Obsolete version of ~ pwsn...
pwpr 4902 The power set of an unorde...
pwtp 4903 The power set of an unorde...
pwpwpw0 4904 Compute the power set of t...
pwv 4905 The power class of the uni...
prproe 4906 For an element of a proper...
3elpr2eq 4907 If there are three element...
dfuni2 4910 Alternate definition of cl...
eluni 4911 Membership in class union....
eluni2 4912 Membership in class union....
elunii 4913 Membership in class union....
nfunid 4914 Deduction version of ~ nfu...
nfuni 4915 Bound-variable hypothesis ...
uniss 4916 Subclass relationship for ...
unissi 4917 Subclass relationship for ...
unissd 4918 Subclass relationship for ...
unieq 4919 Equality theorem for class...
unieqOLD 4920 Obsolete version of ~ unie...
unieqi 4921 Inference of equality of t...
unieqd 4922 Deduction of equality of t...
eluniab 4923 Membership in union of a c...
elunirab 4924 Membership in union of a c...
uniprg 4925 The union of a pair is the...
unipr 4926 The union of a pair is the...
uniprOLD 4927 Obsolete version of ~ unip...
uniprgOLD 4928 Obsolete version of ~ unip...
unisng 4929 A set equals the union of ...
unisn 4930 A set equals the union of ...
unisnv 4931 A set equals the union of ...
unisn3 4932 Union of a singleton in th...
dfnfc2 4933 An alternative statement o...
uniun 4934 The class union of the uni...
uniin 4935 The class union of the int...
ssuni 4936 Subclass relationship for ...
uni0b 4937 The union of a set is empt...
uni0c 4938 The union of a set is empt...
uni0 4939 The union of the empty set...
csbuni 4940 Distribute proper substitu...
elssuni 4941 An element of a class is a...
unissel 4942 Condition turning a subcla...
unissb 4943 Relationship involving mem...
unissbOLD 4944 Obsolete version of ~ unis...
uniss2 4945 A subclass condition on th...
unidif 4946 If the difference ` A \ B ...
ssunieq 4947 Relationship implying unio...
unimax 4948 Any member of a class is t...
pwuni 4949 A class is a subclass of t...
dfint2 4952 Alternate definition of cl...
inteq 4953 Equality law for intersect...
inteqi 4954 Equality inference for cla...
inteqd 4955 Equality deduction for cla...
elint 4956 Membership in class inters...
elint2 4957 Membership in class inters...
elintg 4958 Membership in class inters...
elinti 4959 Membership in class inters...
nfint 4960 Bound-variable hypothesis ...
elintabg 4961 Two ways of saying a set i...
elintab 4962 Membership in the intersec...
elintabOLD 4963 Obsolete version of ~ elin...
elintrab 4964 Membership in the intersec...
elintrabg 4965 Membership in the intersec...
int0 4966 The intersection of the em...
intss1 4967 An element of a class incl...
ssint 4968 Subclass of a class inters...
ssintab 4969 Subclass of the intersecti...
ssintub 4970 Subclass of the least uppe...
ssmin 4971 Subclass of the minimum va...
intmin 4972 Any member of a class is t...
intss 4973 Intersection of subclasses...
intssuni 4974 The intersection of a none...
ssintrab 4975 Subclass of the intersecti...
unissint 4976 If the union of a class is...
intssuni2 4977 Subclass relationship for ...
intminss 4978 Under subset ordering, the...
intmin2 4979 Any set is the smallest of...
intmin3 4980 Under subset ordering, the...
intmin4 4981 Elimination of a conjunct ...
intab 4982 The intersection of a spec...
int0el 4983 The intersection of a clas...
intun 4984 The class intersection of ...
intprg 4985 The intersection of a pair...
intpr 4986 The intersection of a pair...
intprOLD 4987 Obsolete version of ~ intp...
intprgOLD 4988 Obsolete version of ~ intp...
intsng 4989 Intersection of a singleto...
intsn 4990 The intersection of a sing...
uniintsn 4991 Two ways to express " ` A ...
uniintab 4992 The union and the intersec...
intunsn 4993 Theorem joining a singleto...
rint0 4994 Relative intersection of a...
elrint 4995 Membership in a restricted...
elrint2 4996 Membership in a restricted...
eliun 5001 Membership in indexed unio...
eliin 5002 Membership in indexed inte...
eliuni 5003 Membership in an indexed u...
iuncom 5004 Commutation of indexed uni...
iuncom4 5005 Commutation of union with ...
iunconst 5006 Indexed union of a constan...
iinconst 5007 Indexed intersection of a ...
iuneqconst 5008 Indexed union of identical...
iuniin 5009 Law combining indexed unio...
iinssiun 5010 An indexed intersection is...
iunss1 5011 Subclass theorem for index...
iinss1 5012 Subclass theorem for index...
iuneq1 5013 Equality theorem for index...
iineq1 5014 Equality theorem for index...
ss2iun 5015 Subclass theorem for index...
iuneq2 5016 Equality theorem for index...
iineq2 5017 Equality theorem for index...
iuneq2i 5018 Equality inference for ind...
iineq2i 5019 Equality inference for ind...
iineq2d 5020 Equality deduction for ind...
iuneq2dv 5021 Equality deduction for ind...
iineq2dv 5022 Equality deduction for ind...
iuneq12df 5023 Equality deduction for ind...
iuneq1d 5024 Equality theorem for index...
iuneq12d 5025 Equality deduction for ind...
iuneq2d 5026 Equality deduction for ind...
nfiun 5027 Bound-variable hypothesis ...
nfiin 5028 Bound-variable hypothesis ...
nfiung 5029 Bound-variable hypothesis ...
nfiing 5030 Bound-variable hypothesis ...
nfiu1 5031 Bound-variable hypothesis ...
nfii1 5032 Bound-variable hypothesis ...
dfiun2g 5033 Alternate definition of in...
dfiun2gOLD 5034 Obsolete version of ~ dfiu...
dfiin2g 5035 Alternate definition of in...
dfiun2 5036 Alternate definition of in...
dfiin2 5037 Alternate definition of in...
dfiunv2 5038 Define double indexed unio...
cbviun 5039 Rule used to change the bo...
cbviin 5040 Change bound variables in ...
cbviung 5041 Rule used to change the bo...
cbviing 5042 Change bound variables in ...
cbviunv 5043 Rule used to change the bo...
cbviinv 5044 Change bound variables in ...
cbviunvg 5045 Rule used to change the bo...
cbviinvg 5046 Change bound variables in ...
iunssf 5047 Subset theorem for an inde...
iunss 5048 Subset theorem for an inde...
ssiun 5049 Subset implication for an ...
ssiun2 5050 Identity law for subset of...
ssiun2s 5051 Subset relationship for an...
iunss2 5052 A subclass condition on th...
iunssd 5053 Subset theorem for an inde...
iunab 5054 The indexed union of a cla...
iunrab 5055 The indexed union of a res...
iunxdif2 5056 Indexed union with a class...
ssiinf 5057 Subset theorem for an inde...
ssiin 5058 Subset theorem for an inde...
iinss 5059 Subset implication for an ...
iinss2 5060 An indexed intersection is...
uniiun 5061 Class union in terms of in...
intiin 5062 Class intersection in term...
iunid 5063 An indexed union of single...
iunidOLD 5064 Obsolete version of ~ iuni...
iun0 5065 An indexed union of the em...
0iun 5066 An empty indexed union is ...
0iin 5067 An empty indexed intersect...
viin 5068 Indexed intersection with ...
iunsn 5069 Indexed union of a singlet...
iunn0 5070 There is a nonempty class ...
iinab 5071 Indexed intersection of a ...
iinrab 5072 Indexed intersection of a ...
iinrab2 5073 Indexed intersection of a ...
iunin2 5074 Indexed union of intersect...
iunin1 5075 Indexed union of intersect...
iinun2 5076 Indexed intersection of un...
iundif2 5077 Indexed union of class dif...
iindif1 5078 Indexed intersection of cl...
2iunin 5079 Rearrange indexed unions o...
iindif2 5080 Indexed intersection of cl...
iinin2 5081 Indexed intersection of in...
iinin1 5082 Indexed intersection of in...
iinvdif 5083 The indexed intersection o...
elriin 5084 Elementhood in a relative ...
riin0 5085 Relative intersection of a...
riinn0 5086 Relative intersection of a...
riinrab 5087 Relative intersection of a...
symdif0 5088 Symmetric difference with ...
symdifv 5089 The symmetric difference w...
symdifid 5090 The symmetric difference o...
iinxsng 5091 A singleton index picks ou...
iinxprg 5092 Indexed intersection with ...
iunxsng 5093 A singleton index picks ou...
iunxsn 5094 A singleton index picks ou...
iunxsngf 5095 A singleton index picks ou...
iunun 5096 Separate a union in an ind...
iunxun 5097 Separate a union in the in...
iunxdif3 5098 An indexed union where som...
iunxprg 5099 A pair index picks out two...
iunxiun 5100 Separate an indexed union ...
iinuni 5101 A relationship involving u...
iununi 5102 A relationship involving u...
sspwuni 5103 Subclass relationship for ...
pwssb 5104 Two ways to express a coll...
elpwpw 5105 Characterization of the el...
pwpwab 5106 The double power class wri...
pwpwssunieq 5107 The class of sets whose un...
elpwuni 5108 Relationship for power cla...
iinpw 5109 The power class of an inte...
iunpwss 5110 Inclusion of an indexed un...
intss2 5111 A nonempty intersection of...
rintn0 5112 Relative intersection of a...
dfdisj2 5115 Alternate definition for d...
disjss2 5116 If each element of a colle...
disjeq2 5117 Equality theorem for disjo...
disjeq2dv 5118 Equality deduction for dis...
disjss1 5119 A subset of a disjoint col...
disjeq1 5120 Equality theorem for disjo...
disjeq1d 5121 Equality theorem for disjo...
disjeq12d 5122 Equality theorem for disjo...
cbvdisj 5123 Change bound variables in ...
cbvdisjv 5124 Change bound variables in ...
nfdisjw 5125 Bound-variable hypothesis ...
nfdisj 5126 Bound-variable hypothesis ...
nfdisj1 5127 Bound-variable hypothesis ...
disjor 5128 Two ways to say that a col...
disjors 5129 Two ways to say that a col...
disji2 5130 Property of a disjoint col...
disji 5131 Property of a disjoint col...
invdisj 5132 If there is a function ` C...
invdisjrabw 5133 Version of ~ invdisjrab wi...
invdisjrab 5134 The restricted class abstr...
disjiun 5135 A disjoint collection yiel...
disjord 5136 Conditions for a collectio...
disjiunb 5137 Two ways to say that a col...
disjiund 5138 Conditions for a collectio...
sndisj 5139 Any collection of singleto...
0disj 5140 Any collection of empty se...
disjxsn 5141 A singleton collection is ...
disjx0 5142 An empty collection is dis...
disjprgw 5143 Version of ~ disjprg with ...
disjprg 5144 A pair collection is disjo...
disjxiun 5145 An indexed union of a disj...
disjxun 5146 The union of two disjoint ...
disjss3 5147 Expand a disjoint collecti...
breq 5150 Equality theorem for binar...
breq1 5151 Equality theorem for a bin...
breq2 5152 Equality theorem for a bin...
breq12 5153 Equality theorem for a bin...
breqi 5154 Equality inference for bin...
breq1i 5155 Equality inference for a b...
breq2i 5156 Equality inference for a b...
breq12i 5157 Equality inference for a b...
breq1d 5158 Equality deduction for a b...
breqd 5159 Equality deduction for a b...
breq2d 5160 Equality deduction for a b...
breq12d 5161 Equality deduction for a b...
breq123d 5162 Equality deduction for a b...
breqdi 5163 Equality deduction for a b...
breqan12d 5164 Equality deduction for a b...
breqan12rd 5165 Equality deduction for a b...
eqnbrtrd 5166 Substitution of equal clas...
nbrne1 5167 Two classes are different ...
nbrne2 5168 Two classes are different ...
eqbrtri 5169 Substitution of equal clas...
eqbrtrd 5170 Substitution of equal clas...
eqbrtrri 5171 Substitution of equal clas...
eqbrtrrd 5172 Substitution of equal clas...
breqtri 5173 Substitution of equal clas...
breqtrd 5174 Substitution of equal clas...
breqtrri 5175 Substitution of equal clas...
breqtrrd 5176 Substitution of equal clas...
3brtr3i 5177 Substitution of equality i...
3brtr4i 5178 Substitution of equality i...
3brtr3d 5179 Substitution of equality i...
3brtr4d 5180 Substitution of equality i...
3brtr3g 5181 Substitution of equality i...
3brtr4g 5182 Substitution of equality i...
eqbrtrid 5183 A chained equality inferen...
eqbrtrrid 5184 A chained equality inferen...
breqtrid 5185 A chained equality inferen...
breqtrrid 5186 A chained equality inferen...
eqbrtrdi 5187 A chained equality inferen...
eqbrtrrdi 5188 A chained equality inferen...
breqtrdi 5189 A chained equality inferen...
breqtrrdi 5190 A chained equality inferen...
ssbrd 5191 Deduction from a subclass ...
ssbr 5192 Implication from a subclas...
ssbri 5193 Inference from a subclass ...
nfbrd 5194 Deduction version of bound...
nfbr 5195 Bound-variable hypothesis ...
brab1 5196 Relationship between a bin...
br0 5197 The empty binary relation ...
brne0 5198 If two sets are in a binar...
brun 5199 The union of two binary re...
brin 5200 The intersection of two re...
brdif 5201 The difference of two bina...
sbcbr123 5202 Move substitution in and o...
sbcbr 5203 Move substitution in and o...
sbcbr12g 5204 Move substitution in and o...
sbcbr1g 5205 Move substitution in and o...
sbcbr2g 5206 Move substitution in and o...
brsymdif 5207 Characterization of the sy...
brralrspcev 5208 Restricted existential spe...
brimralrspcev 5209 Restricted existential spe...
opabss 5212 The collection of ordered ...
opabbid 5213 Equivalent wff's yield equ...
opabbidv 5214 Equivalent wff's yield equ...
opabbii 5215 Equivalent wff's yield equ...
nfopabd 5216 Bound-variable hypothesis ...
nfopab 5217 Bound-variable hypothesis ...
nfopab1 5218 The first abstraction vari...
nfopab2 5219 The second abstraction var...
cbvopab 5220 Rule used to change bound ...
cbvopabv 5221 Rule used to change bound ...
cbvopabvOLD 5222 Obsolete version of ~ cbvo...
cbvopab1 5223 Change first bound variabl...
cbvopab1g 5224 Change first bound variabl...
cbvopab2 5225 Change second bound variab...
cbvopab1s 5226 Change first bound variabl...
cbvopab1v 5227 Rule used to change the fi...
cbvopab1vOLD 5228 Obsolete version of ~ cbvo...
cbvopab2v 5229 Rule used to change the se...
unopab 5230 Union of two ordered pair ...
mpteq12da 5233 An equality inference for ...
mpteq12df 5234 An equality inference for ...
mpteq12dfOLD 5235 Obsolete version of ~ mpte...
mpteq12f 5236 An equality theorem for th...
mpteq12dva 5237 An equality inference for ...
mpteq12dvaOLD 5238 Obsolete version of ~ mpte...
mpteq12dv 5239 An equality inference for ...
mpteq12 5240 An equality theorem for th...
mpteq1 5241 An equality theorem for th...
mpteq1OLD 5242 Obsolete version of ~ mpte...
mpteq1d 5243 An equality theorem for th...
mpteq1i 5244 An equality theorem for th...
mpteq1iOLD 5245 Obsolete version of ~ mpte...
mpteq2da 5246 Slightly more general equa...
mpteq2daOLD 5247 Obsolete version of ~ mpte...
mpteq2dva 5248 Slightly more general equa...
mpteq2dvaOLD 5249 Obsolete version of ~ mpte...
mpteq2dv 5250 An equality inference for ...
mpteq2ia 5251 An equality inference for ...
mpteq2iaOLD 5252 Obsolete version of ~ mpte...
mpteq2i 5253 An equality inference for ...
mpteq12i 5254 An equality inference for ...
nfmpt 5255 Bound-variable hypothesis ...
nfmpt1 5256 Bound-variable hypothesis ...
cbvmptf 5257 Rule to change the bound v...
cbvmptfg 5258 Rule to change the bound v...
cbvmpt 5259 Rule to change the bound v...
cbvmptg 5260 Rule to change the bound v...
cbvmptv 5261 Rule to change the bound v...
cbvmptvOLD 5262 Obsolete version of ~ cbvm...
cbvmptvg 5263 Rule to change the bound v...
mptv 5264 Function with universal do...
dftr2 5267 An alternate way of defini...
dftr2c 5268 Variant of ~ dftr2 with co...
dftr5 5269 An alternate way of defini...
dftr5OLD 5270 Obsolete version of ~ dftr...
dftr3 5271 An alternate way of defini...
dftr4 5272 An alternate way of defini...
treq 5273 Equality theorem for the t...
trel 5274 In a transitive class, the...
trel3 5275 In a transitive class, the...
trss 5276 An element of a transitive...
trin 5277 The intersection of transi...
tr0 5278 The empty set is transitiv...
trv 5279 The universe is transitive...
triun 5280 An indexed union of a clas...
truni 5281 The union of a class of tr...
triin 5282 An indexed intersection of...
trint 5283 The intersection of a clas...
trintss 5284 Any nonempty transitive cl...
axrep1 5286 The version of the Axiom o...
axreplem 5287 Lemma for ~ axrep2 and ~ a...
axrep2 5288 Axiom of Replacement expre...
axrep3 5289 Axiom of Replacement sligh...
axrep4 5290 A more traditional version...
axrep5 5291 Axiom of Replacement (simi...
axrep6 5292 A condensed form of ~ ax-r...
axrep6g 5293 ~ axrep6 in class notation...
zfrepclf 5294 An inference based on the ...
zfrep3cl 5295 An inference based on the ...
zfrep4 5296 A version of Replacement u...
axsepgfromrep 5297 A more general version ~ a...
axsep 5298 Axiom scheme of separation...
axsepg 5300 A more general version of ...
zfauscl 5301 Separation Scheme (Aussond...
bm1.3ii 5302 Convert implication to equ...
ax6vsep 5303 Derive ~ ax6v (a weakened ...
axnulALT 5304 Alternate proof of ~ axnul...
axnul 5305 The Null Set Axiom of ZF s...
0ex 5307 The Null Set Axiom of ZF s...
al0ssb 5308 The empty set is the uniqu...
sseliALT 5309 Alternate proof of ~ sseli...
csbexg 5310 The existence of proper su...
csbex 5311 The existence of proper su...
unisn2 5312 A version of ~ unisn witho...
nalset 5313 No set contains all sets. ...
vnex 5314 The universal class does n...
vprc 5315 The universal class is not...
nvel 5316 The universal class does n...
inex1 5317 Separation Scheme (Aussond...
inex2 5318 Separation Scheme (Aussond...
inex1g 5319 Closed-form, generalized S...
inex2g 5320 Sufficient condition for a...
ssex 5321 The subset of a set is als...
ssexi 5322 The subset of a set is als...
ssexg 5323 The subset of a set is als...
ssexd 5324 A subclass of a set is a s...
prcssprc 5325 The superclass of a proper...
sselpwd 5326 Elementhood to a power set...
difexg 5327 Existence of a difference....
difexi 5328 Existence of a difference,...
difexd 5329 Existence of a difference....
zfausab 5330 Separation Scheme (Aussond...
rabexg 5331 Separation Scheme in terms...
rabex 5332 Separation Scheme in terms...
rabexd 5333 Separation Scheme in terms...
rabex2 5334 Separation Scheme in terms...
rab2ex 5335 A class abstraction based ...
elssabg 5336 Membership in a class abst...
intex 5337 The intersection of a none...
intnex 5338 If a class intersection is...
intexab 5339 The intersection of a none...
intexrab 5340 The intersection of a none...
iinexg 5341 The existence of a class i...
intabs 5342 Absorption of a redundant ...
inuni 5343 The intersection of a unio...
elpw2g 5344 Membership in a power clas...
elpw2 5345 Membership in a power clas...
elpwi2 5346 Membership in a power clas...
elpwi2OLD 5347 Obsolete version of ~ elpw...
axpweq 5348 Two equivalent ways to exp...
pwnss 5349 The power set of a set is ...
pwne 5350 No set equals its power se...
difelpw 5351 A difference is an element...
rabelpw 5352 A restricted class abstrac...
class2set 5353 The class of elements of `...
0elpw 5354 Every power class contains...
pwne0 5355 A power class is never emp...
0nep0 5356 The empty set and its powe...
0inp0 5357 Something cannot be equal ...
unidif0 5358 The removal of the empty s...
eqsnuniex 5359 If a class is equal to the...
iin0 5360 An indexed intersection of...
notzfaus 5361 In the Separation Scheme ~...
intv 5362 The intersection of the un...
zfpow 5364 Axiom of Power Sets expres...
axpow2 5365 A variant of the Axiom of ...
axpow3 5366 A variant of the Axiom of ...
elALT2 5367 Alternate proof of ~ el us...
dtruALT2 5368 Alternate proof of ~ dtru ...
dtrucor 5369 Corollary of ~ dtru . Thi...
dtrucor2 5370 The theorem form of the de...
dvdemo1 5371 Demonstration of a theorem...
dvdemo2 5372 Demonstration of a theorem...
nfnid 5373 A setvar variable is not f...
nfcvb 5374 The "distinctor" expressio...
vpwex 5375 Power set axiom: the power...
pwexg 5376 Power set axiom expressed ...
pwexd 5377 Deduction version of the p...
pwex 5378 Power set axiom expressed ...
pwel 5379 Quantitative version of ~ ...
abssexg 5380 Existence of a class of su...
snexALT 5381 Alternate proof of ~ snex ...
p0ex 5382 The power set of the empty...
p0exALT 5383 Alternate proof of ~ p0ex ...
pp0ex 5384 The power set of the power...
ord3ex 5385 The ordinal number 3 is a ...
dtruALT 5386 Alternate proof of ~ dtru ...
axc16b 5387 This theorem shows that Ax...
eunex 5388 Existential uniqueness imp...
eusv1 5389 Two ways to express single...
eusvnf 5390 Even if ` x ` is free in `...
eusvnfb 5391 Two ways to say that ` A (...
eusv2i 5392 Two ways to express single...
eusv2nf 5393 Two ways to express single...
eusv2 5394 Two ways to express single...
reusv1 5395 Two ways to express single...
reusv2lem1 5396 Lemma for ~ reusv2 . (Con...
reusv2lem2 5397 Lemma for ~ reusv2 . (Con...
reusv2lem3 5398 Lemma for ~ reusv2 . (Con...
reusv2lem4 5399 Lemma for ~ reusv2 . (Con...
reusv2lem5 5400 Lemma for ~ reusv2 . (Con...
reusv2 5401 Two ways to express single...
reusv3i 5402 Two ways of expressing exi...
reusv3 5403 Two ways to express single...
eusv4 5404 Two ways to express single...
alxfr 5405 Transfer universal quantif...
ralxfrd 5406 Transfer universal quantif...
rexxfrd 5407 Transfer universal quantif...
ralxfr2d 5408 Transfer universal quantif...
rexxfr2d 5409 Transfer universal quantif...
ralxfrd2 5410 Transfer universal quantif...
rexxfrd2 5411 Transfer existence from a ...
ralxfr 5412 Transfer universal quantif...
ralxfrALT 5413 Alternate proof of ~ ralxf...
rexxfr 5414 Transfer existence from a ...
rabxfrd 5415 Membership in a restricted...
rabxfr 5416 Membership in a restricted...
reuhypd 5417 A theorem useful for elimi...
reuhyp 5418 A theorem useful for elimi...
zfpair 5419 The Axiom of Pairing of Ze...
axprALT 5420 Alternate proof of ~ axpr ...
axprlem1 5421 Lemma for ~ axpr . There ...
axprlem2 5422 Lemma for ~ axpr . There ...
axprlem3 5423 Lemma for ~ axpr . Elimin...
axprlem4 5424 Lemma for ~ axpr . The fi...
axprlem5 5425 Lemma for ~ axpr . The se...
axpr 5426 Unabbreviated version of t...
zfpair2 5428 Derive the abbreviated ver...
vsnex 5429 A singleton built on a set...
snexg 5430 A singleton built on a set...
snex 5431 A singleton is a set. The...
prex 5432 The Axiom of Pairing using...
exel 5433 There exist two sets, one ...
exexneq 5434 There exist two different ...
exneq 5435 Given any set (the " ` y `...
dtru 5436 Given any set (the " ` y `...
el 5437 Any set is an element of s...
sels 5438 If a class is a set, then ...
selsALT 5439 Alternate proof of ~ sels ...
elALT 5440 Alternate proof of ~ el , ...
dtruOLD 5441 Obsolete proof of ~ dtru a...
snelpwg 5442 A singleton of a set is a ...
snelpwi 5443 If a set is a member of a ...
snelpwiOLD 5444 Obsolete version of ~ snel...
snelpw 5445 A singleton of a set is a ...
prelpw 5446 An unordered pair of two s...
prelpwi 5447 If two sets are members of...
rext 5448 A theorem similar to exten...
sspwb 5449 The powerclass constructio...
unipw 5450 A class equals the union o...
univ 5451 The union of the universe ...
pwtr 5452 A class is transitive iff ...
ssextss 5453 An extensionality-like pri...
ssext 5454 An extensionality-like pri...
nssss 5455 Negation of subclass relat...
pweqb 5456 Classes are equal if and o...
intidg 5457 The intersection of all se...
intidOLD 5458 Obsolete version of ~ inti...
moabex 5459 "At most one" existence im...
rmorabex 5460 Restricted "at most one" e...
euabex 5461 The abstraction of a wff w...
nnullss 5462 A nonempty class (even if ...
exss 5463 Restricted existence in a ...
opex 5464 An ordered pair of classes...
otex 5465 An ordered triple of class...
elopg 5466 Characterization of the el...
elop 5467 Characterization of the el...
opi1 5468 One of the two elements in...
opi2 5469 One of the two elements of...
opeluu 5470 Each member of an ordered ...
op1stb 5471 Extract the first member o...
brv 5472 Two classes are always in ...
opnz 5473 An ordered pair is nonempt...
opnzi 5474 An ordered pair is nonempt...
opth1 5475 Equality of the first memb...
opth 5476 The ordered pair theorem. ...
opthg 5477 Ordered pair theorem. ` C ...
opth1g 5478 Equality of the first memb...
opthg2 5479 Ordered pair theorem. (Co...
opth2 5480 Ordered pair theorem. (Co...
opthneg 5481 Two ordered pairs are not ...
opthne 5482 Two ordered pairs are not ...
otth2 5483 Ordered triple theorem, wi...
otth 5484 Ordered triple theorem. (...
otthg 5485 Ordered triple theorem, cl...
otthne 5486 Contrapositive of the orde...
eqvinop 5487 A variable introduction la...
sbcop1 5488 The proper substitution of...
sbcop 5489 The proper substitution of...
copsexgw 5490 Version of ~ copsexg with ...
copsexg 5491 Substitution of class ` A ...
copsex2t 5492 Closed theorem form of ~ c...
copsex2g 5493 Implicit substitution infe...
copsex2gOLD 5494 Obsolete version of ~ cops...
copsex4g 5495 An implicit substitution i...
0nelop 5496 A property of ordered pair...
opwo0id 5497 An ordered pair is equal t...
opeqex 5498 Equivalence of existence i...
oteqex2 5499 Equivalence of existence i...
oteqex 5500 Equivalence of existence i...
opcom 5501 An ordered pair commutes i...
moop2 5502 "At most one" property of ...
opeqsng 5503 Equivalence for an ordered...
opeqsn 5504 Equivalence for an ordered...
opeqpr 5505 Equivalence for an ordered...
snopeqop 5506 Equivalence for an ordered...
propeqop 5507 Equivalence for an ordered...
propssopi 5508 If a pair of ordered pairs...
snopeqopsnid 5509 Equivalence for an ordered...
mosubopt 5510 "At most one" remains true...
mosubop 5511 "At most one" remains true...
euop2 5512 Transfer existential uniqu...
euotd 5513 Prove existential uniquene...
opthwiener 5514 Justification theorem for ...
uniop 5515 The union of an ordered pa...
uniopel 5516 Ordered pair membership is...
opthhausdorff 5517 Justification theorem for ...
opthhausdorff0 5518 Justification theorem for ...
otsndisj 5519 The singletons consisting ...
otiunsndisj 5520 The union of singletons co...
iunopeqop 5521 Implication of an ordered ...
brsnop 5522 Binary relation for an ord...
brtp 5523 A necessary and sufficient...
opabidw 5524 The law of concretion. Sp...
opabid 5525 The law of concretion. Sp...
elopabw 5526 Membership in a class abst...
elopab 5527 Membership in a class abst...
rexopabb 5528 Restricted existential qua...
vopelopabsb 5529 The law of concretion in t...
opelopabsb 5530 The law of concretion in t...
brabsb 5531 The law of concretion in t...
opelopabt 5532 Closed theorem form of ~ o...
opelopabga 5533 The law of concretion. Th...
brabga 5534 The law of concretion for ...
opelopab2a 5535 Ordered pair membership in...
opelopaba 5536 The law of concretion. Th...
braba 5537 The law of concretion for ...
opelopabg 5538 The law of concretion. Th...
brabg 5539 The law of concretion for ...
opelopabgf 5540 The law of concretion. Th...
opelopab2 5541 Ordered pair membership in...
opelopab 5542 The law of concretion. Th...
brab 5543 The law of concretion for ...
opelopabaf 5544 The law of concretion. Th...
opelopabf 5545 The law of concretion. Th...
ssopab2 5546 Equivalence of ordered pai...
ssopab2bw 5547 Equivalence of ordered pai...
eqopab2bw 5548 Equivalence of ordered pai...
ssopab2b 5549 Equivalence of ordered pai...
ssopab2i 5550 Inference of ordered pair ...
ssopab2dv 5551 Inference of ordered pair ...
eqopab2b 5552 Equivalence of ordered pai...
opabn0 5553 Nonempty ordered pair clas...
opab0 5554 Empty ordered pair class a...
csbopab 5555 Move substitution into a c...
csbopabgALT 5556 Move substitution into a c...
csbmpt12 5557 Move substitution into a m...
csbmpt2 5558 Move substitution into the...
iunopab 5559 Move indexed union inside ...
iunopabOLD 5560 Obsolete version of ~ iuno...
elopabr 5561 Membership in an ordered-p...
elopabran 5562 Membership in an ordered-p...
elopabrOLD 5563 Obsolete version of ~ elop...
rbropapd 5564 Properties of a pair in an...
rbropap 5565 Properties of a pair in a ...
2rbropap 5566 Properties of a pair in a ...
0nelopab 5567 The empty set is never an ...
0nelopabOLD 5568 Obsolete version of ~ 0nel...
brabv 5569 If two classes are in a re...
pwin 5570 The power class of the int...
pwssun 5571 The power class of the uni...
pwun 5572 The power class of the uni...
dfid4 5575 The identity function expr...
dfid2 5576 Alternate definition of th...
dfid3 5577 A stronger version of ~ df...
dfid2OLD 5578 Obsolete version of ~ dfid...
epelg 5581 The membership relation an...
epeli 5582 The membership relation an...
epel 5583 The membership relation an...
0sn0ep 5584 An example for the members...
epn0 5585 The membership relation is...
poss 5590 Subset theorem for the par...
poeq1 5591 Equality theorem for parti...
poeq2 5592 Equality theorem for parti...
nfpo 5593 Bound-variable hypothesis ...
nfso 5594 Bound-variable hypothesis ...
pocl 5595 Characteristic properties ...
poclOLD 5596 Obsolete version of ~ pocl...
ispod 5597 Sufficient conditions for ...
swopolem 5598 Perform the substitutions ...
swopo 5599 A strict weak order is a p...
poirr 5600 A partial order is irrefle...
potr 5601 A partial order is a trans...
po2nr 5602 A partial order has no 2-c...
po3nr 5603 A partial order has no 3-c...
po2ne 5604 Two sets related by a part...
po0 5605 Any relation is a partial ...
pofun 5606 The inverse image of a par...
sopo 5607 A strict linear order is a...
soss 5608 Subset theorem for the str...
soeq1 5609 Equality theorem for the s...
soeq2 5610 Equality theorem for the s...
sonr 5611 A strict order relation is...
sotr 5612 A strict order relation is...
solin 5613 A strict order relation is...
so2nr 5614 A strict order relation ha...
so3nr 5615 A strict order relation ha...
sotric 5616 A strict order relation sa...
sotrieq 5617 Trichotomy law for strict ...
sotrieq2 5618 Trichotomy law for strict ...
soasym 5619 Asymmetry law for strict o...
sotr2 5620 A transitivity relation. ...
issod 5621 An irreflexive, transitive...
issoi 5622 An irreflexive, transitive...
isso2i 5623 Deduce strict ordering fro...
so0 5624 Any relation is a strict o...
somo 5625 A totally ordered set has ...
sotrine 5626 Trichotomy law for strict ...
sotr3 5627 Transitivity law for stric...
dffr6 5634 Alternate definition of ~ ...
frd 5635 A nonempty subset of an ` ...
fri 5636 A nonempty subset of an ` ...
friOLD 5637 Obsolete version of ~ fri ...
seex 5638 The ` R ` -preimage of an ...
exse 5639 Any relation on a set is s...
dffr2 5640 Alternate definition of we...
dffr2ALT 5641 Alternate proof of ~ dffr2...
frc 5642 Property of well-founded r...
frss 5643 Subset theorem for the wel...
sess1 5644 Subset theorem for the set...
sess2 5645 Subset theorem for the set...
freq1 5646 Equality theorem for the w...
freq2 5647 Equality theorem for the w...
seeq1 5648 Equality theorem for the s...
seeq2 5649 Equality theorem for the s...
nffr 5650 Bound-variable hypothesis ...
nfse 5651 Bound-variable hypothesis ...
nfwe 5652 Bound-variable hypothesis ...
frirr 5653 A well-founded relation is...
fr2nr 5654 A well-founded relation ha...
fr0 5655 Any relation is well-found...
frminex 5656 If an element of a well-fo...
efrirr 5657 A well-founded class does ...
efrn2lp 5658 A well-founded class conta...
epse 5659 The membership relation is...
tz7.2 5660 Similar to Theorem 7.2 of ...
dfepfr 5661 An alternate way of saying...
epfrc 5662 A subset of a well-founded...
wess 5663 Subset theorem for the wel...
weeq1 5664 Equality theorem for the w...
weeq2 5665 Equality theorem for the w...
wefr 5666 A well-ordering is well-fo...
weso 5667 A well-ordering is a stric...
wecmpep 5668 The elements of a class we...
wetrep 5669 On a class well-ordered by...
wefrc 5670 A nonempty subclass of a c...
we0 5671 Any relation is a well-ord...
wereu 5672 A nonempty subset of an ` ...
wereu2 5673 A nonempty subclass of an ...
xpeq1 5690 Equality theorem for Carte...
xpss12 5691 Subset theorem for Cartesi...
xpss 5692 A Cartesian product is inc...
inxpssres 5693 Intersection with a Cartes...
relxp 5694 A Cartesian product is a r...
xpss1 5695 Subset relation for Cartes...
xpss2 5696 Subset relation for Cartes...
xpeq2 5697 Equality theorem for Carte...
elxpi 5698 Membership in a Cartesian ...
elxp 5699 Membership in a Cartesian ...
elxp2 5700 Membership in a Cartesian ...
xpeq12 5701 Equality theorem for Carte...
xpeq1i 5702 Equality inference for Car...
xpeq2i 5703 Equality inference for Car...
xpeq12i 5704 Equality inference for Car...
xpeq1d 5705 Equality deduction for Car...
xpeq2d 5706 Equality deduction for Car...
xpeq12d 5707 Equality deduction for Car...
sqxpeqd 5708 Equality deduction for a C...
nfxp 5709 Bound-variable hypothesis ...
0nelxp 5710 The empty set is not a mem...
0nelelxp 5711 A member of a Cartesian pr...
opelxp 5712 Ordered pair membership in...
opelxpi 5713 Ordered pair membership in...
opelxpii 5714 Ordered pair membership in...
opelxpd 5715 Ordered pair membership in...
opelvv 5716 Ordered pair membership in...
opelvvg 5717 Ordered pair membership in...
opelxp1 5718 The first member of an ord...
opelxp2 5719 The second member of an or...
otelxp 5720 Ordered triple membership ...
otelxp1 5721 The first member of an ord...
otel3xp 5722 An ordered triple is an el...
opabssxpd 5723 An ordered-pair class abst...
rabxp 5724 Class abstraction restrict...
brxp 5725 Binary relation on a Carte...
pwvrel 5726 A set is a binary relation...
pwvabrel 5727 The powerclass of the cart...
brrelex12 5728 Two classes related by a b...
brrelex1 5729 If two classes are related...
brrelex2 5730 If two classes are related...
brrelex12i 5731 Two classes that are relat...
brrelex1i 5732 The first argument of a bi...
brrelex2i 5733 The second argument of a b...
nprrel12 5734 Proper classes are not rel...
nprrel 5735 No proper class is related...
0nelrel0 5736 A binary relation does not...
0nelrel 5737 A binary relation does not...
fconstmpt 5738 Representation of a consta...
vtoclr 5739 Variable to class conversi...
opthprc 5740 Justification theorem for ...
brel 5741 Two things in a binary rel...
elxp3 5742 Membership in a Cartesian ...
opeliunxp 5743 Membership in a union of C...
xpundi 5744 Distributive law for Carte...
xpundir 5745 Distributive law for Carte...
xpiundi 5746 Distributive law for Carte...
xpiundir 5747 Distributive law for Carte...
iunxpconst 5748 Membership in a union of C...
xpun 5749 The Cartesian product of t...
elvv 5750 Membership in universal cl...
elvvv 5751 Membership in universal cl...
elvvuni 5752 An ordered pair contains i...
brinxp2 5753 Intersection of binary rel...
brinxp 5754 Intersection of binary rel...
opelinxp 5755 Ordered pair element in an...
poinxp 5756 Intersection of partial or...
soinxp 5757 Intersection of total orde...
frinxp 5758 Intersection of well-found...
seinxp 5759 Intersection of set-like r...
weinxp 5760 Intersection of well-order...
posn 5761 Partial ordering of a sing...
sosn 5762 Strict ordering on a singl...
frsn 5763 Founded relation on a sing...
wesn 5764 Well-ordering of a singlet...
elopaelxp 5765 Membership in an ordered-p...
elopaelxpOLD 5766 Obsolete version of ~ elop...
bropaex12 5767 Two classes related by an ...
opabssxp 5768 An abstraction relation is...
brab2a 5769 The law of concretion for ...
optocl 5770 Implicit substitution of c...
2optocl 5771 Implicit substitution of c...
3optocl 5772 Implicit substitution of c...
opbrop 5773 Ordered pair membership in...
0xp 5774 The Cartesian product with...
csbxp 5775 Distribute proper substitu...
releq 5776 Equality theorem for the r...
releqi 5777 Equality inference for the...
releqd 5778 Equality deduction for the...
nfrel 5779 Bound-variable hypothesis ...
sbcrel 5780 Distribute proper substitu...
relss 5781 Subclass theorem for relat...
ssrel 5782 A subclass relationship de...
ssrelOLD 5783 Obsolete version of ~ ssre...
eqrel 5784 Extensionality principle f...
ssrel2 5785 A subclass relationship de...
ssrel3 5786 Subclass relation in anoth...
relssi 5787 Inference from subclass pr...
relssdv 5788 Deduction from subclass pr...
eqrelriv 5789 Inference from extensional...
eqrelriiv 5790 Inference from extensional...
eqbrriv 5791 Inference from extensional...
eqrelrdv 5792 Deduce equality of relatio...
eqbrrdv 5793 Deduction from extensional...
eqbrrdiv 5794 Deduction from extensional...
eqrelrdv2 5795 A version of ~ eqrelrdv . ...
ssrelrel 5796 A subclass relationship de...
eqrelrel 5797 Extensionality principle f...
elrel 5798 A member of a relation is ...
rel0 5799 The empty set is a relatio...
nrelv 5800 The universal class is not...
relsng 5801 A singleton is a relation ...
relsnb 5802 An at-most-singleton is a ...
relsnopg 5803 A singleton of an ordered ...
relsn 5804 A singleton is a relation ...
relsnop 5805 A singleton of an ordered ...
copsex2gb 5806 Implicit substitution infe...
copsex2ga 5807 Implicit substitution infe...
elopaba 5808 Membership in an ordered-p...
xpsspw 5809 A Cartesian product is inc...
unixpss 5810 The double class union of ...
relun 5811 The union of two relations...
relin1 5812 The intersection with a re...
relin2 5813 The intersection with a re...
relinxp 5814 Intersection with a Cartes...
reldif 5815 A difference cutting down ...
reliun 5816 An indexed union is a rela...
reliin 5817 An indexed intersection is...
reluni 5818 The union of a class is a ...
relint 5819 The intersection of a clas...
relopabiv 5820 A class of ordered pairs i...
relopabv 5821 A class of ordered pairs i...
relopabi 5822 A class of ordered pairs i...
relopabiALT 5823 Alternate proof of ~ relop...
relopab 5824 A class of ordered pairs i...
mptrel 5825 The maps-to notation alway...
reli 5826 The identity relation is a...
rele 5827 The membership relation is...
opabid2 5828 A relation expressed as an...
inopab 5829 Intersection of two ordere...
difopab 5830 Difference of two ordered-...
difopabOLD 5831 Obsolete version of ~ difo...
inxp 5832 Intersection of two Cartes...
xpindi 5833 Distributive law for Carte...
xpindir 5834 Distributive law for Carte...
xpiindi 5835 Distributive law for Carte...
xpriindi 5836 Distributive law for Carte...
eliunxp 5837 Membership in a union of C...
opeliunxp2 5838 Membership in a union of C...
raliunxp 5839 Write a double restricted ...
rexiunxp 5840 Write a double restricted ...
ralxp 5841 Universal quantification r...
rexxp 5842 Existential quantification...
exopxfr 5843 Transfer ordered-pair exis...
exopxfr2 5844 Transfer ordered-pair exis...
djussxp 5845 Disjoint union is a subset...
ralxpf 5846 Version of ~ ralxp with bo...
rexxpf 5847 Version of ~ rexxp with bo...
iunxpf 5848 Indexed union on a Cartesi...
opabbi2dv 5849 Deduce equality of a relat...
relop 5850 A necessary and sufficient...
ideqg 5851 For sets, the identity rel...
ideq 5852 For sets, the identity rel...
ididg 5853 A set is identical to itse...
issetid 5854 Two ways of expressing set...
coss1 5855 Subclass theorem for compo...
coss2 5856 Subclass theorem for compo...
coeq1 5857 Equality theorem for compo...
coeq2 5858 Equality theorem for compo...
coeq1i 5859 Equality inference for com...
coeq2i 5860 Equality inference for com...
coeq1d 5861 Equality deduction for com...
coeq2d 5862 Equality deduction for com...
coeq12i 5863 Equality inference for com...
coeq12d 5864 Equality deduction for com...
nfco 5865 Bound-variable hypothesis ...
brcog 5866 Ordered pair membership in...
opelco2g 5867 Ordered pair membership in...
brcogw 5868 Ordered pair membership in...
eqbrrdva 5869 Deduction from extensional...
brco 5870 Binary relation on a compo...
opelco 5871 Ordered pair membership in...
cnvss 5872 Subset theorem for convers...
cnveq 5873 Equality theorem for conve...
cnveqi 5874 Equality inference for con...
cnveqd 5875 Equality deduction for con...
elcnv 5876 Membership in a converse r...
elcnv2 5877 Membership in a converse r...
nfcnv 5878 Bound-variable hypothesis ...
brcnvg 5879 The converse of a binary r...
opelcnvg 5880 Ordered-pair membership in...
opelcnv 5881 Ordered-pair membership in...
brcnv 5882 The converse of a binary r...
csbcnv 5883 Move class substitution in...
csbcnvgALT 5884 Move class substitution in...
cnvco 5885 Distributive law of conver...
cnvuni 5886 The converse of a class un...
dfdm3 5887 Alternate definition of do...
dfrn2 5888 Alternate definition of ra...
dfrn3 5889 Alternate definition of ra...
elrn2g 5890 Membership in a range. (C...
elrng 5891 Membership in a range. (C...
elrn2 5892 Membership in a range. (C...
elrn 5893 Membership in a range. (C...
ssrelrn 5894 If a relation is a subset ...
dfdm4 5895 Alternate definition of do...
dfdmf 5896 Definition of domain, usin...
csbdm 5897 Distribute proper substitu...
eldmg 5898 Domain membership. Theore...
eldm2g 5899 Domain membership. Theore...
eldm 5900 Membership in a domain. T...
eldm2 5901 Membership in a domain. T...
dmss 5902 Subset theorem for domain....
dmeq 5903 Equality theorem for domai...
dmeqi 5904 Equality inference for dom...
dmeqd 5905 Equality deduction for dom...
opeldmd 5906 Membership of first of an ...
opeldm 5907 Membership of first of an ...
breldm 5908 Membership of first of a b...
breldmg 5909 Membership of first of a b...
dmun 5910 The domain of a union is t...
dmin 5911 The domain of an intersect...
breldmd 5912 Membership of first of a b...
dmiun 5913 The domain of an indexed u...
dmuni 5914 The domain of a union. Pa...
dmopab 5915 The domain of a class of o...
dmopabelb 5916 A set is an element of the...
dmopab2rex 5917 The domain of an ordered p...
dmopabss 5918 Upper bound for the domain...
dmopab3 5919 The domain of a restricted...
dm0 5920 The domain of the empty se...
dmi 5921 The domain of the identity...
dmv 5922 The domain of the universe...
dmep 5923 The domain of the membersh...
dm0rn0 5924 An empty domain is equival...
rn0 5925 The range of the empty set...
rnep 5926 The range of the membershi...
reldm0 5927 A relation is empty iff it...
dmxp 5928 The domain of a Cartesian ...
dmxpid 5929 The domain of a Cartesian ...
dmxpin 5930 The domain of the intersec...
xpid11 5931 The Cartesian square is a ...
dmcnvcnv 5932 The domain of the double c...
rncnvcnv 5933 The range of the double co...
elreldm 5934 The first member of an ord...
rneq 5935 Equality theorem for range...
rneqi 5936 Equality inference for ran...
rneqd 5937 Equality deduction for ran...
rnss 5938 Subset theorem for range. ...
rnssi 5939 Subclass inference for ran...
brelrng 5940 The second argument of a b...
brelrn 5941 The second argument of a b...
opelrn 5942 Membership of second membe...
releldm 5943 The first argument of a bi...
relelrn 5944 The second argument of a b...
releldmb 5945 Membership in a domain. (...
relelrnb 5946 Membership in a range. (C...
releldmi 5947 The first argument of a bi...
relelrni 5948 The second argument of a b...
dfrnf 5949 Definition of range, using...
nfdm 5950 Bound-variable hypothesis ...
nfrn 5951 Bound-variable hypothesis ...
dmiin 5952 Domain of an intersection....
rnopab 5953 The range of a class of or...
rnmpt 5954 The range of a function in...
elrnmpt 5955 The range of a function in...
elrnmpt1s 5956 Elementhood in an image se...
elrnmpt1 5957 Elementhood in an image se...
elrnmptg 5958 Membership in the range of...
elrnmpti 5959 Membership in the range of...
elrnmptd 5960 The range of a function in...
elrnmptdv 5961 Elementhood in the range o...
elrnmpt2d 5962 Elementhood in the range o...
dfiun3g 5963 Alternate definition of in...
dfiin3g 5964 Alternate definition of in...
dfiun3 5965 Alternate definition of in...
dfiin3 5966 Alternate definition of in...
riinint 5967 Express a relative indexed...
relrn0 5968 A relation is empty iff it...
dmrnssfld 5969 The domain and range of a ...
dmcoss 5970 Domain of a composition. ...
rncoss 5971 Range of a composition. (...
dmcosseq 5972 Domain of a composition. ...
dmcoeq 5973 Domain of a composition. ...
rncoeq 5974 Range of a composition. (...
reseq1 5975 Equality theorem for restr...
reseq2 5976 Equality theorem for restr...
reseq1i 5977 Equality inference for res...
reseq2i 5978 Equality inference for res...
reseq12i 5979 Equality inference for res...
reseq1d 5980 Equality deduction for res...
reseq2d 5981 Equality deduction for res...
reseq12d 5982 Equality deduction for res...
nfres 5983 Bound-variable hypothesis ...
csbres 5984 Distribute proper substitu...
res0 5985 A restriction to the empty...
dfres3 5986 Alternate definition of re...
opelres 5987 Ordered pair elementhood i...
brres 5988 Binary relation on a restr...
opelresi 5989 Ordered pair membership in...
brresi 5990 Binary relation on a restr...
opres 5991 Ordered pair membership in...
resieq 5992 A restricted identity rela...
opelidres 5993 ` <. A , A >. ` belongs to...
resres 5994 The restriction of a restr...
resundi 5995 Distributive law for restr...
resundir 5996 Distributive law for restr...
resindi 5997 Class restriction distribu...
resindir 5998 Class restriction distribu...
inres 5999 Move intersection into cla...
resdifcom 6000 Commutative law for restri...
resiun1 6001 Distribution of restrictio...
resiun2 6002 Distribution of restrictio...
dmres 6003 The domain of a restrictio...
ssdmres 6004 A domain restricted to a s...
dmresexg 6005 The domain of a restrictio...
resss 6006 A class includes its restr...
rescom 6007 Commutative law for restri...
ssres 6008 Subclass theorem for restr...
ssres2 6009 Subclass theorem for restr...
relres 6010 A restriction is a relatio...
resabs1 6011 Absorption law for restric...
resabs1d 6012 Absorption law for restric...
resabs2 6013 Absorption law for restric...
residm 6014 Idempotent law for restric...
resima 6015 A restriction to an image....
resima2 6016 Image under a restricted c...
rnresss 6017 The range of a restriction...
xpssres 6018 Restriction of a constant ...
elinxp 6019 Membership in an intersect...
elres 6020 Membership in a restrictio...
elsnres 6021 Membership in restriction ...
relssres 6022 Simplification law for res...
dmressnsn 6023 The domain of a restrictio...
eldmressnsn 6024 The element of the domain ...
eldmeldmressn 6025 An element of the domain (...
resdm 6026 A relation restricted to i...
resexg 6027 The restriction of a set i...
resexd 6028 The restriction of a set i...
resex 6029 The restriction of a set i...
resindm 6030 When restricting a relatio...
resdmdfsn 6031 Restricting a relation to ...
reldisjun 6032 Split a relation into two ...
relresdm1 6033 Restriction of a disjoint ...
resopab 6034 Restriction of a class abs...
iss 6035 A subclass of the identity...
resopab2 6036 Restriction of a class abs...
resmpt 6037 Restriction of the mapping...
resmpt3 6038 Unconditional restriction ...
resmptf 6039 Restriction of the mapping...
resmptd 6040 Restriction of the mapping...
dfres2 6041 Alternate definition of th...
mptss 6042 Sufficient condition for i...
elidinxp 6043 Characterization of the el...
elidinxpid 6044 Characterization of the el...
elrid 6045 Characterization of the el...
idinxpres 6046 The intersection of the id...
idinxpresid 6047 The intersection of the id...
idssxp 6048 A diagonal set as a subset...
opabresid 6049 The restricted identity re...
mptresid 6050 The restricted identity re...
dmresi 6051 The domain of a restricted...
restidsing 6052 Restriction of the identit...
iresn0n0 6053 The identity function rest...
imaeq1 6054 Equality theorem for image...
imaeq2 6055 Equality theorem for image...
imaeq1i 6056 Equality theorem for image...
imaeq2i 6057 Equality theorem for image...
imaeq1d 6058 Equality theorem for image...
imaeq2d 6059 Equality theorem for image...
imaeq12d 6060 Equality theorem for image...
dfima2 6061 Alternate definition of im...
dfima3 6062 Alternate definition of im...
elimag 6063 Membership in an image. T...
elima 6064 Membership in an image. T...
elima2 6065 Membership in an image. T...
elima3 6066 Membership in an image. T...
nfima 6067 Bound-variable hypothesis ...
nfimad 6068 Deduction version of bound...
imadmrn 6069 The image of the domain of...
imassrn 6070 The image of a class is a ...
mptima 6071 Image of a function in map...
mptimass 6072 Image of a function in map...
imai 6073 Image under the identity r...
rnresi 6074 The range of the restricte...
resiima 6075 The image of a restriction...
ima0 6076 Image of the empty set. T...
0ima 6077 Image under the empty rela...
csbima12 6078 Move class substitution in...
imadisj 6079 A class whose image under ...
cnvimass 6080 A preimage under any class...
cnvimarndm 6081 The preimage of the range ...
imasng 6082 The image of a singleton. ...
relimasn 6083 The image of a singleton. ...
elrelimasn 6084 Elementhood in the image o...
elimasng1 6085 Membership in an image of ...
elimasn1 6086 Membership in an image of ...
elimasng 6087 Membership in an image of ...
elimasn 6088 Membership in an image of ...
elimasngOLD 6089 Obsolete version of ~ elim...
elimasni 6090 Membership in an image of ...
args 6091 Two ways to express the cl...
elinisegg 6092 Membership in the inverse ...
eliniseg 6093 Membership in the inverse ...
epin 6094 Any set is equal to its pr...
epini 6095 Any set is equal to its pr...
iniseg 6096 An idiom that signifies an...
inisegn0 6097 Nonemptiness of an initial...
dffr3 6098 Alternate definition of we...
dfse2 6099 Alternate definition of se...
imass1 6100 Subset theorem for image. ...
imass2 6101 Subset theorem for image. ...
ndmima 6102 The image of a singleton o...
relcnv 6103 A converse is a relation. ...
relbrcnvg 6104 When ` R ` is a relation, ...
eliniseg2 6105 Eliminate the class existe...
relbrcnv 6106 When ` R ` is a relation, ...
relco 6107 A composition is a relatio...
cotrg 6108 Two ways of saying that th...
cotrgOLD 6109 Obsolete version of ~ cotr...
cotrgOLDOLD 6110 Obsolete version of ~ cotr...
cotr 6111 Two ways of saying a relat...
idrefALT 6112 Alternate proof of ~ idref...
cnvsym 6113 Two ways of saying a relat...
cnvsymOLD 6114 Obsolete proof of ~ cnvsym...
cnvsymOLDOLD 6115 Obsolete proof of ~ cnvsym...
intasym 6116 Two ways of saying a relat...
asymref 6117 Two ways of saying a relat...
asymref2 6118 Two ways of saying a relat...
intirr 6119 Two ways of saying a relat...
brcodir 6120 Two ways of saying that tw...
codir 6121 Two ways of saying a relat...
qfto 6122 A quantifier-free way of e...
xpidtr 6123 A Cartesian square is a tr...
trin2 6124 The intersection of two tr...
poirr2 6125 A partial order is irrefle...
trinxp 6126 The relation induced by a ...
soirri 6127 A strict order relation is...
sotri 6128 A strict order relation is...
son2lpi 6129 A strict order relation ha...
sotri2 6130 A transitivity relation. ...
sotri3 6131 A transitivity relation. ...
poleloe 6132 Express "less than or equa...
poltletr 6133 Transitive law for general...
somin1 6134 Property of a minimum in a...
somincom 6135 Commutativity of minimum i...
somin2 6136 Property of a minimum in a...
soltmin 6137 Being less than a minimum,...
cnvopab 6138 The converse of a class ab...
mptcnv 6139 The converse of a mapping ...
cnv0 6140 The converse of the empty ...
cnvi 6141 The converse of the identi...
cnvun 6142 The converse of a union is...
cnvdif 6143 Distributive law for conve...
cnvin 6144 Distributive law for conve...
rnun 6145 Distributive law for range...
rnin 6146 The range of an intersecti...
rniun 6147 The range of an indexed un...
rnuni 6148 The range of a union. Par...
imaundi 6149 Distributive law for image...
imaundir 6150 The image of a union. (Co...
cnvimassrndm 6151 The preimage of a superset...
dminss 6152 An upper bound for interse...
imainss 6153 An upper bound for interse...
inimass 6154 The image of an intersecti...
inimasn 6155 The intersection of the im...
cnvxp 6156 The converse of a Cartesia...
xp0 6157 The Cartesian product with...
xpnz 6158 The Cartesian product of n...
xpeq0 6159 At least one member of an ...
xpdisj1 6160 Cartesian products with di...
xpdisj2 6161 Cartesian products with di...
xpsndisj 6162 Cartesian products with tw...
difxp 6163 Difference of Cartesian pr...
difxp1 6164 Difference law for Cartesi...
difxp2 6165 Difference law for Cartesi...
djudisj 6166 Disjoint unions with disjo...
xpdifid 6167 The set of distinct couple...
resdisj 6168 A double restriction to di...
rnxp 6169 The range of a Cartesian p...
dmxpss 6170 The domain of a Cartesian ...
rnxpss 6171 The range of a Cartesian p...
rnxpid 6172 The range of a Cartesian s...
ssxpb 6173 A Cartesian product subcla...
xp11 6174 The Cartesian product of n...
xpcan 6175 Cancellation law for Carte...
xpcan2 6176 Cancellation law for Carte...
ssrnres 6177 Two ways to express surjec...
rninxp 6178 Two ways to express surjec...
dminxp 6179 Two ways to express totali...
imainrect 6180 Image by a restricted and ...
xpima 6181 Direct image by a Cartesia...
xpima1 6182 Direct image by a Cartesia...
xpima2 6183 Direct image by a Cartesia...
xpimasn 6184 Direct image of a singleto...
sossfld 6185 The base set of a strict o...
sofld 6186 The base set of a nonempty...
cnvcnv3 6187 The set of all ordered pai...
dfrel2 6188 Alternate definition of re...
dfrel4v 6189 A relation can be expresse...
dfrel4 6190 A relation can be expresse...
cnvcnv 6191 The double converse of a c...
cnvcnv2 6192 The double converse of a c...
cnvcnvss 6193 The double converse of a c...
cnvrescnv 6194 Two ways to express the co...
cnveqb 6195 Equality theorem for conve...
cnveq0 6196 A relation empty iff its c...
dfrel3 6197 Alternate definition of re...
elid 6198 Characterization of the el...
dmresv 6199 The domain of a universal ...
rnresv 6200 The range of a universal r...
dfrn4 6201 Range defined in terms of ...
csbrn 6202 Distribute proper substitu...
rescnvcnv 6203 The restriction of the dou...
cnvcnvres 6204 The double converse of the...
imacnvcnv 6205 The image of the double co...
dmsnn0 6206 The domain of a singleton ...
rnsnn0 6207 The range of a singleton i...
dmsn0 6208 The domain of the singleto...
cnvsn0 6209 The converse of the single...
dmsn0el 6210 The domain of a singleton ...
relsn2 6211 A singleton is a relation ...
dmsnopg 6212 The domain of a singleton ...
dmsnopss 6213 The domain of a singleton ...
dmpropg 6214 The domain of an unordered...
dmsnop 6215 The domain of a singleton ...
dmprop 6216 The domain of an unordered...
dmtpop 6217 The domain of an unordered...
cnvcnvsn 6218 Double converse of a singl...
dmsnsnsn 6219 The domain of the singleto...
rnsnopg 6220 The range of a singleton o...
rnpropg 6221 The range of a pair of ord...
cnvsng 6222 Converse of a singleton of...
rnsnop 6223 The range of a singleton o...
op1sta 6224 Extract the first member o...
cnvsn 6225 Converse of a singleton of...
op2ndb 6226 Extract the second member ...
op2nda 6227 Extract the second member ...
opswap 6228 Swap the members of an ord...
cnvresima 6229 An image under the convers...
resdm2 6230 A class restricted to its ...
resdmres 6231 Restriction to the domain ...
resresdm 6232 A restriction by an arbitr...
imadmres 6233 The image of the domain of...
resdmss 6234 Subset relationship for th...
resdifdi 6235 Distributive law for restr...
resdifdir 6236 Distributive law for restr...
mptpreima 6237 The preimage of a function...
mptiniseg 6238 Converse singleton image o...
dmmpt 6239 The domain of the mapping ...
dmmptss 6240 The domain of a mapping is...
dmmptg 6241 The domain of the mapping ...
rnmpt0f 6242 The range of a function in...
rnmptn0 6243 The range of a function in...
dfco2 6244 Alternate definition of a ...
dfco2a 6245 Generalization of ~ dfco2 ...
coundi 6246 Class composition distribu...
coundir 6247 Class composition distribu...
cores 6248 Restricted first member of...
resco 6249 Associative law for the re...
imaco 6250 Image of the composition o...
rnco 6251 The range of the compositi...
rnco2 6252 The range of the compositi...
dmco 6253 The domain of a compositio...
coeq0 6254 A composition of two relat...
coiun 6255 Composition with an indexe...
cocnvcnv1 6256 A composition is not affec...
cocnvcnv2 6257 A composition is not affec...
cores2 6258 Absorption of a reverse (p...
co02 6259 Composition with the empty...
co01 6260 Composition with the empty...
coi1 6261 Composition with the ident...
coi2 6262 Composition with the ident...
coires1 6263 Composition with a restric...
coass 6264 Associative law for class ...
relcnvtrg 6265 General form of ~ relcnvtr...
relcnvtr 6266 A relation is transitive i...
relssdmrn 6267 A relation is included in ...
relssdmrnOLD 6268 Obsolete version of ~ rels...
resssxp 6269 If the ` R ` -image of a c...
cnvssrndm 6270 The converse is a subset o...
cossxp 6271 Composition as a subset of...
relrelss 6272 Two ways to describe the s...
unielrel 6273 The membership relation fo...
relfld 6274 The double union of a rela...
relresfld 6275 Restriction of a relation ...
relcoi2 6276 Composition with the ident...
relcoi1 6277 Composition with the ident...
unidmrn 6278 The double union of the co...
relcnvfld 6279 if ` R ` is a relation, it...
dfdm2 6280 Alternate definition of do...
unixp 6281 The double class union of ...
unixp0 6282 A Cartesian product is emp...
unixpid 6283 Field of a Cartesian squar...
ressn 6284 Restriction of a class to ...
cnviin 6285 The converse of an interse...
cnvpo 6286 The converse of a partial ...
cnvso 6287 The converse of a strict o...
xpco 6288 Composition of two Cartesi...
xpcoid 6289 Composition of two Cartesi...
elsnxp 6290 Membership in a Cartesian ...
reu3op 6291 There is a unique ordered ...
reuop 6292 There is a unique ordered ...
opreu2reurex 6293 There is a unique ordered ...
opreu2reu 6294 If there is a unique order...
dfpo2 6295 Quantifier-free definition...
csbcog 6296 Distribute proper substitu...
snres0 6297 Condition for restriction ...
imaindm 6298 The image is unaffected by...
predeq123 6301 Equality theorem for the p...
predeq1 6302 Equality theorem for the p...
predeq2 6303 Equality theorem for the p...
predeq3 6304 Equality theorem for the p...
nfpred 6305 Bound-variable hypothesis ...
csbpredg 6306 Move class substitution in...
predpredss 6307 If ` A ` is a subset of ` ...
predss 6308 The predecessor class of `...
sspred 6309 Another subset/predecessor...
dfpred2 6310 An alternate definition of...
dfpred3 6311 An alternate definition of...
dfpred3g 6312 An alternate definition of...
elpredgg 6313 Membership in a predecesso...
elpredg 6314 Membership in a predecesso...
elpredimg 6315 Membership in a predecesso...
elpredim 6316 Membership in a predecesso...
elpred 6317 Membership in a predecesso...
predexg 6318 The predecessor class exis...
predasetexOLD 6319 Obsolete form of ~ predexg...
dffr4 6320 Alternate definition of we...
predel 6321 Membership in the predeces...
predbrg 6322 Closed form of ~ elpredim ...
predtrss 6323 If ` R ` is transitive ove...
predpo 6324 Property of the predecesso...
predso 6325 Property of the predecesso...
setlikespec 6326 If ` R ` is set-like in ` ...
predidm 6327 Idempotent law for the pre...
predin 6328 Intersection law for prede...
predun 6329 Union law for predecessor ...
preddif 6330 Difference law for predece...
predep 6331 The predecessor under the ...
trpred 6332 The class of predecessors ...
preddowncl 6333 A property of classes that...
predpoirr 6334 Given a partial ordering, ...
predfrirr 6335 Given a well-founded relat...
pred0 6336 The predecessor class over...
dfse3 6337 Alternate definition of se...
predrelss 6338 Subset carries from relati...
predprc 6339 The predecessor of a prope...
predres 6340 Predecessor class is unaff...
frpomin 6341 Every nonempty (possibly p...
frpomin2 6342 Every nonempty (possibly p...
frpoind 6343 The principle of well-foun...
frpoinsg 6344 Well-Founded Induction Sch...
frpoins2fg 6345 Well-Founded Induction sch...
frpoins2g 6346 Well-Founded Induction sch...
frpoins3g 6347 Well-Founded Induction sch...
tz6.26 6348 All nonempty subclasses of...
tz6.26OLD 6349 Obsolete proof of ~ tz6.26...
tz6.26i 6350 All nonempty subclasses of...
wfi 6351 The Principle of Well-Orde...
wfiOLD 6352 Obsolete proof of ~ wfi as...
wfii 6353 The Principle of Well-Orde...
wfisg 6354 Well-Ordered Induction Sch...
wfisgOLD 6355 Obsolete version of ~ wfis...
wfis 6356 Well-Ordered Induction Sch...
wfis2fg 6357 Well-Ordered Induction Sch...
wfis2fgOLD 6358 Obsolete version of ~ wfis...
wfis2f 6359 Well-Ordered Induction sch...
wfis2g 6360 Well-Ordered Induction Sch...
wfis2 6361 Well-Ordered Induction sch...
wfis3 6362 Well-Ordered Induction sch...
ordeq 6371 Equality theorem for the o...
elong 6372 An ordinal number is an or...
elon 6373 An ordinal number is an or...
eloni 6374 An ordinal number has the ...
elon2 6375 An ordinal number is an or...
limeq 6376 Equality theorem for the l...
ordwe 6377 Membership well-orders eve...
ordtr 6378 An ordinal class is transi...
ordfr 6379 Membership is well-founded...
ordelss 6380 An element of an ordinal c...
trssord 6381 A transitive subclass of a...
ordirr 6382 No ordinal class is a memb...
nordeq 6383 A member of an ordinal cla...
ordn2lp 6384 An ordinal class cannot be...
tz7.5 6385 A nonempty subclass of an ...
ordelord 6386 An element of an ordinal c...
tron 6387 The class of all ordinal n...
ordelon 6388 An element of an ordinal c...
onelon 6389 An element of an ordinal n...
tz7.7 6390 A transitive class belongs...
ordelssne 6391 For ordinal classes, membe...
ordelpss 6392 For ordinal classes, membe...
ordsseleq 6393 For ordinal classes, inclu...
ordin 6394 The intersection of two or...
onin 6395 The intersection of two or...
ordtri3or 6396 A trichotomy law for ordin...
ordtri1 6397 A trichotomy law for ordin...
ontri1 6398 A trichotomy law for ordin...
ordtri2 6399 A trichotomy law for ordin...
ordtri3 6400 A trichotomy law for ordin...
ordtri4 6401 A trichotomy law for ordin...
orddisj 6402 An ordinal class and its s...
onfr 6403 The ordinal class is well-...
onelpss 6404 Relationship between membe...
onsseleq 6405 Relationship between subse...
onelss 6406 An element of an ordinal n...
ordtr1 6407 Transitive law for ordinal...
ordtr2 6408 Transitive law for ordinal...
ordtr3 6409 Transitive law for ordinal...
ontr1 6410 Transitive law for ordinal...
ontr2 6411 Transitive law for ordinal...
onelssex 6412 Ordinal less than is equiv...
ordunidif 6413 The union of an ordinal st...
ordintdif 6414 If ` B ` is smaller than `...
onintss 6415 If a property is true for ...
oneqmini 6416 A way to show that an ordi...
ord0 6417 The empty set is an ordina...
0elon 6418 The empty set is an ordina...
ord0eln0 6419 A nonempty ordinal contain...
on0eln0 6420 An ordinal number contains...
dflim2 6421 An alternate definition of...
inton 6422 The intersection of the cl...
nlim0 6423 The empty set is not a lim...
limord 6424 A limit ordinal is ordinal...
limuni 6425 A limit ordinal is its own...
limuni2 6426 The union of a limit ordin...
0ellim 6427 A limit ordinal contains t...
limelon 6428 A limit ordinal class that...
onn0 6429 The class of all ordinal n...
suceq 6430 Equality of successors. (...
elsuci 6431 Membership in a successor....
elsucg 6432 Membership in a successor....
elsuc2g 6433 Variant of membership in a...
elsuc 6434 Membership in a successor....
elsuc2 6435 Membership in a successor....
nfsuc 6436 Bound-variable hypothesis ...
elelsuc 6437 Membership in a successor....
sucel 6438 Membership of a successor ...
suc0 6439 The successor of the empty...
sucprc 6440 A proper class is its own ...
unisucs 6441 The union of the successor...
unisucg 6442 A transitive class is equa...
unisuc 6443 A transitive class is equa...
sssucid 6444 A class is included in its...
sucidg 6445 Part of Proposition 7.23 o...
sucid 6446 A set belongs to its succe...
nsuceq0 6447 No successor is empty. (C...
eqelsuc 6448 A set belongs to the succe...
iunsuc 6449 Inductive definition for t...
suctr 6450 The successor of a transit...
trsuc 6451 A set whose successor belo...
trsucss 6452 A member of the successor ...
ordsssuc 6453 An ordinal is a subset of ...
onsssuc 6454 A subset of an ordinal num...
ordsssuc2 6455 An ordinal subset of an or...
onmindif 6456 When its successor is subt...
ordnbtwn 6457 There is no set between an...
onnbtwn 6458 There is no set between an...
sucssel 6459 A set whose successor is a...
orddif 6460 Ordinal derived from its s...
orduniss 6461 An ordinal class includes ...
ordtri2or 6462 A trichotomy law for ordin...
ordtri2or2 6463 A trichotomy law for ordin...
ordtri2or3 6464 A consequence of total ord...
ordelinel 6465 The intersection of two or...
ordssun 6466 Property of a subclass of ...
ordequn 6467 The maximum (i.e. union) o...
ordun 6468 The maximum (i.e., union) ...
onunel 6469 The union of two ordinals ...
ordunisssuc 6470 A subclass relationship fo...
suc11 6471 The successor operation be...
onun2 6472 The union of two ordinals ...
ontr 6473 An ordinal number is a tra...
onunisuc 6474 An ordinal number is equal...
onordi 6475 An ordinal number is an or...
ontrciOLD 6476 Obsolete version of ~ ontr...
onirri 6477 An ordinal number is not a...
oneli 6478 A member of an ordinal num...
onelssi 6479 A member of an ordinal num...
onssneli 6480 An ordering law for ordina...
onssnel2i 6481 An ordering law for ordina...
onelini 6482 An element of an ordinal n...
oneluni 6483 An ordinal number equals i...
onunisuci 6484 An ordinal number is equal...
onsseli 6485 Subset is equivalent to me...
onun2i 6486 The union of two ordinal n...
unizlim 6487 An ordinal equal to its ow...
on0eqel 6488 An ordinal number either e...
snsn0non 6489 The singleton of the singl...
onxpdisj 6490 Ordinal numbers and ordere...
onnev 6491 The class of ordinal numbe...
onnevOLD 6492 Obsolete version of ~ onne...
iotajust 6494 Soundness justification th...
dfiota2 6496 Alternate definition for d...
nfiota1 6497 Bound-variable hypothesis ...
nfiotadw 6498 Deduction version of ~ nfi...
nfiotaw 6499 Bound-variable hypothesis ...
nfiotad 6500 Deduction version of ~ nfi...
nfiota 6501 Bound-variable hypothesis ...
cbviotaw 6502 Change bound variables in ...
cbviotavw 6503 Change bound variables in ...
cbviotavwOLD 6504 Obsolete version of ~ cbvi...
cbviota 6505 Change bound variables in ...
cbviotav 6506 Change bound variables in ...
sb8iota 6507 Variable substitution in d...
iotaeq 6508 Equality theorem for descr...
iotabi 6509 Equivalence theorem for de...
uniabio 6510 Part of Theorem 8.17 in [Q...
iotaval2 6511 Version of ~ iotaval using...
iotauni2 6512 Version of ~ iotauni using...
iotanul2 6513 Version of ~ iotanul using...
iotaval 6514 Theorem 8.19 in [Quine] p....
iotassuni 6515 The ` iota ` class is a su...
iotaex 6516 Theorem 8.23 in [Quine] p....
iotavalOLD 6517 Obsolete version of ~ iota...
iotauni 6518 Equivalence between two di...
iotaint 6519 Equivalence between two di...
iota1 6520 Property of iota. (Contri...
iotanul 6521 Theorem 8.22 in [Quine] p....
iotassuniOLD 6522 Obsolete version of ~ iota...
iotaexOLD 6523 Obsolete version of ~ iota...
iota4 6524 Theorem *14.22 in [Whitehe...
iota4an 6525 Theorem *14.23 in [Whitehe...
iota5 6526 A method for computing iot...
iotabidv 6527 Formula-building deduction...
iotabii 6528 Formula-building deduction...
iotacl 6529 Membership law for descrip...
iota2df 6530 A condition that allows to...
iota2d 6531 A condition that allows to...
iota2 6532 The unique element such th...
iotan0 6533 Representation of "the uni...
sniota 6534 A class abstraction with a...
dfiota4 6535 The ` iota ` operation usi...
csbiota 6536 Class substitution within ...
dffun2 6553 Alternate definition of a ...
dffun2OLD 6554 Obsolete version of ~ dffu...
dffun2OLDOLD 6555 Obsolete version of ~ dffu...
dffun6 6556 Alternate definition of a ...
dffun3 6557 Alternate definition of fu...
dffun3OLD 6558 Obsolete version of ~ dffu...
dffun4 6559 Alternate definition of a ...
dffun5 6560 Alternate definition of fu...
dffun6f 6561 Definition of function, us...
dffun6OLD 6562 Obsolete version of ~ dffu...
funmo 6563 A function has at most one...
funmoOLD 6564 Obsolete version of ~ funm...
funrel 6565 A function is a relation. ...
0nelfun 6566 A function does not contai...
funss 6567 Subclass theorem for funct...
funeq 6568 Equality theorem for funct...
funeqi 6569 Equality inference for the...
funeqd 6570 Equality deduction for the...
nffun 6571 Bound-variable hypothesis ...
sbcfung 6572 Distribute proper substitu...
funeu 6573 There is exactly one value...
funeu2 6574 There is exactly one value...
dffun7 6575 Alternate definition of a ...
dffun8 6576 Alternate definition of a ...
dffun9 6577 Alternate definition of a ...
funfn 6578 A class is a function if a...
funfnd 6579 A function is a function o...
funi 6580 The identity relation is a...
nfunv 6581 The universal class is not...
funopg 6582 A Kuratowski ordered pair ...
funopab 6583 A class of ordered pairs i...
funopabeq 6584 A class of ordered pairs o...
funopab4 6585 A class of ordered pairs o...
funmpt 6586 A function in maps-to nota...
funmpt2 6587 Functionality of a class g...
funco 6588 The composition of two fun...
funresfunco 6589 Composition of two functio...
funres 6590 A restriction of a functio...
funresd 6591 A restriction of a functio...
funssres 6592 The restriction of a funct...
fun2ssres 6593 Equality of restrictions o...
funun 6594 The union of functions wit...
fununmo 6595 If the union of classes is...
fununfun 6596 If the union of classes is...
fundif 6597 A function with removed el...
funcnvsn 6598 The converse singleton of ...
funsng 6599 A singleton of an ordered ...
fnsng 6600 Functionality and domain o...
funsn 6601 A singleton of an ordered ...
funprg 6602 A set of two pairs is a fu...
funtpg 6603 A set of three pairs is a ...
funpr 6604 A function with a domain o...
funtp 6605 A function with a domain o...
fnsn 6606 Functionality and domain o...
fnprg 6607 Function with a domain of ...
fntpg 6608 Function with a domain of ...
fntp 6609 A function with a domain o...
funcnvpr 6610 The converse pair of order...
funcnvtp 6611 The converse triple of ord...
funcnvqp 6612 The converse quadruple of ...
fun0 6613 The empty set is a functio...
funcnv0 6614 The converse of the empty ...
funcnvcnv 6615 The double converse of a f...
funcnv2 6616 A simpler equivalence for ...
funcnv 6617 The converse of a class is...
funcnv3 6618 A condition showing a clas...
fun2cnv 6619 The double converse of a c...
svrelfun 6620 A single-valued relation i...
fncnv 6621 Single-rootedness (see ~ f...
fun11 6622 Two ways of stating that `...
fununi 6623 The union of a chain (with...
funin 6624 The intersection with a fu...
funres11 6625 The restriction of a one-t...
funcnvres 6626 The converse of a restrict...
cnvresid 6627 Converse of a restricted i...
funcnvres2 6628 The converse of a restrict...
funimacnv 6629 The image of the preimage ...
funimass1 6630 A kind of contraposition l...
funimass2 6631 A kind of contraposition l...
imadif 6632 The image of a difference ...
imain 6633 The image of an intersecti...
funimaexg 6634 Axiom of Replacement using...
funimaexgOLD 6635 Obsolete version of ~ funi...
funimaex 6636 The image of a set under a...
isarep1 6637 Part of a study of the Axi...
isarep1OLD 6638 Obsolete version of ~ isar...
isarep2 6639 Part of a study of the Axi...
fneq1 6640 Equality theorem for funct...
fneq2 6641 Equality theorem for funct...
fneq1d 6642 Equality deduction for fun...
fneq2d 6643 Equality deduction for fun...
fneq12d 6644 Equality deduction for fun...
fneq12 6645 Equality theorem for funct...
fneq1i 6646 Equality inference for fun...
fneq2i 6647 Equality inference for fun...
nffn 6648 Bound-variable hypothesis ...
fnfun 6649 A function with domain is ...
fnfund 6650 A function with domain is ...
fnrel 6651 A function with domain is ...
fndm 6652 The domain of a function. ...
fndmi 6653 The domain of a function. ...
fndmd 6654 The domain of a function. ...
funfni 6655 Inference to convert a fun...
fndmu 6656 A function has a unique do...
fnbr 6657 The first argument of bina...
fnop 6658 The first argument of an o...
fneu 6659 There is exactly one value...
fneu2 6660 There is exactly one value...
fnunres1 6661 Restriction of a disjoint ...
fnunres2 6662 Restriction of a disjoint ...
fnun 6663 The union of two functions...
fnund 6664 The union of two functions...
fnunop 6665 Extension of a function wi...
fncofn 6666 Composition of a function ...
fnco 6667 Composition of two functio...
fncoOLD 6668 Obsolete version of ~ fnco...
fnresdm 6669 A function does not change...
fnresdisj 6670 A function restricted to a...
2elresin 6671 Membership in two function...
fnssresb 6672 Restriction of a function ...
fnssres 6673 Restriction of a function ...
fnssresd 6674 Restriction of a function ...
fnresin1 6675 Restriction of a function'...
fnresin2 6676 Restriction of a function'...
fnres 6677 An equivalence for functio...
idfn 6678 The identity relation is a...
fnresi 6679 The restricted identity re...
fnima 6680 The image of a function's ...
fn0 6681 A function with empty doma...
fnimadisj 6682 A class that is disjoint w...
fnimaeq0 6683 Images under a function ne...
dfmpt3 6684 Alternate definition for t...
mptfnf 6685 The maps-to notation defin...
fnmptf 6686 The maps-to notation defin...
fnopabg 6687 Functionality and domain o...
fnopab 6688 Functionality and domain o...
mptfng 6689 The maps-to notation defin...
fnmpt 6690 The maps-to notation defin...
fnmptd 6691 The maps-to notation defin...
mpt0 6692 A mapping operation with e...
fnmpti 6693 Functionality and domain o...
dmmpti 6694 Domain of the mapping oper...
dmmptd 6695 The domain of the mapping ...
mptun 6696 Union of mappings which ar...
partfun 6697 Rewrite a function defined...
feq1 6698 Equality theorem for funct...
feq2 6699 Equality theorem for funct...
feq3 6700 Equality theorem for funct...
feq23 6701 Equality theorem for funct...
feq1d 6702 Equality deduction for fun...
feq2d 6703 Equality deduction for fun...
feq3d 6704 Equality deduction for fun...
feq12d 6705 Equality deduction for fun...
feq123d 6706 Equality deduction for fun...
feq123 6707 Equality theorem for funct...
feq1i 6708 Equality inference for fun...
feq2i 6709 Equality inference for fun...
feq12i 6710 Equality inference for fun...
feq23i 6711 Equality inference for fun...
feq23d 6712 Equality deduction for fun...
nff 6713 Bound-variable hypothesis ...
sbcfng 6714 Distribute proper substitu...
sbcfg 6715 Distribute proper substitu...
elimf 6716 Eliminate a mapping hypoth...
ffn 6717 A mapping is a function wi...
ffnd 6718 A mapping is a function wi...
dffn2 6719 Any function is a mapping ...
ffun 6720 A mapping is a function. ...
ffund 6721 A mapping is a function, d...
frel 6722 A mapping is a relation. ...
freld 6723 A mapping is a relation. ...
frn 6724 The range of a mapping. (...
frnd 6725 Deduction form of ~ frn . ...
fdm 6726 The domain of a mapping. ...
fdmOLD 6727 Obsolete version of ~ fdm ...
fdmd 6728 Deduction form of ~ fdm . ...
fdmi 6729 Inference associated with ...
dffn3 6730 A function maps to its ran...
ffrn 6731 A function maps to its ran...
ffrnb 6732 Characterization of a func...
ffrnbd 6733 A function maps to its ran...
fss 6734 Expanding the codomain of ...
fssd 6735 Expanding the codomain of ...
fssdmd 6736 Expressing that a class is...
fssdm 6737 Expressing that a class is...
fimass 6738 The image of a class under...
fimacnv 6739 The preimage of the codoma...
fcof 6740 Composition of a function ...
fco 6741 Composition of two functio...
fcoOLD 6742 Obsolete version of ~ fco ...
fcod 6743 Composition of two mapping...
fco2 6744 Functionality of a composi...
fssxp 6745 A mapping is a class of or...
funssxp 6746 Two ways of specifying a p...
ffdm 6747 A mapping is a partial fun...
ffdmd 6748 The domain of a function. ...
fdmrn 6749 A different way to write `...
funcofd 6750 Composition of two functio...
fco3OLD 6751 Obsolete version of ~ func...
opelf 6752 The members of an ordered ...
fun 6753 The union of two functions...
fun2 6754 The union of two functions...
fun2d 6755 The union of functions wit...
fnfco 6756 Composition of two functio...
fssres 6757 Restriction of a function ...
fssresd 6758 Restriction of a function ...
fssres2 6759 Restriction of a restricte...
fresin 6760 An identity for the mappin...
resasplit 6761 If two functions agree on ...
fresaun 6762 The union of two functions...
fresaunres2 6763 From the union of two func...
fresaunres1 6764 From the union of two func...
fcoi1 6765 Composition of a mapping a...
fcoi2 6766 Composition of restricted ...
feu 6767 There is exactly one value...
fcnvres 6768 The converse of a restrict...
fimacnvdisj 6769 The preimage of a class di...
fint 6770 Function into an intersect...
fin 6771 Mapping into an intersecti...
f0 6772 The empty function. (Cont...
f00 6773 A class is a function with...
f0bi 6774 A function with empty doma...
f0dom0 6775 A function is empty iff it...
f0rn0 6776 If there is no element in ...
fconst 6777 A Cartesian product with a...
fconstg 6778 A Cartesian product with a...
fnconstg 6779 A Cartesian product with a...
fconst6g 6780 Constant function with loo...
fconst6 6781 A constant function as a m...
f1eq1 6782 Equality theorem for one-t...
f1eq2 6783 Equality theorem for one-t...
f1eq3 6784 Equality theorem for one-t...
nff1 6785 Bound-variable hypothesis ...
dff12 6786 Alternate definition of a ...
f1f 6787 A one-to-one mapping is a ...
f1fn 6788 A one-to-one mapping is a ...
f1fun 6789 A one-to-one mapping is a ...
f1rel 6790 A one-to-one onto mapping ...
f1dm 6791 The domain of a one-to-one...
f1dmOLD 6792 Obsolete version of ~ f1dm...
f1ss 6793 A function that is one-to-...
f1ssr 6794 A function that is one-to-...
f1ssres 6795 A function that is one-to-...
f1resf1 6796 The restriction of an inje...
f1cnvcnv 6797 Two ways to express that a...
f1cof1 6798 Composition of two one-to-...
f1co 6799 Composition of one-to-one ...
f1coOLD 6800 Obsolete version of ~ f1co...
foeq1 6801 Equality theorem for onto ...
foeq2 6802 Equality theorem for onto ...
foeq3 6803 Equality theorem for onto ...
nffo 6804 Bound-variable hypothesis ...
fof 6805 An onto mapping is a mappi...
fofun 6806 An onto mapping is a funct...
fofn 6807 An onto mapping is a funct...
forn 6808 The codomain of an onto fu...
dffo2 6809 Alternate definition of an...
foima 6810 The image of the domain of...
dffn4 6811 A function maps onto its r...
funforn 6812 A function maps its domain...
fodmrnu 6813 An onto function has uniqu...
fimadmfo 6814 A function is a function o...
fores 6815 Restriction of an onto fun...
fimadmfoALT 6816 Alternate proof of ~ fimad...
focnvimacdmdm 6817 The preimage of the codoma...
focofo 6818 Composition of onto functi...
foco 6819 Composition of onto functi...
foconst 6820 A nonzero constant functio...
f1oeq1 6821 Equality theorem for one-t...
f1oeq2 6822 Equality theorem for one-t...
f1oeq3 6823 Equality theorem for one-t...
f1oeq23 6824 Equality theorem for one-t...
f1eq123d 6825 Equality deduction for one...
foeq123d 6826 Equality deduction for ont...
f1oeq123d 6827 Equality deduction for one...
f1oeq1d 6828 Equality deduction for one...
f1oeq2d 6829 Equality deduction for one...
f1oeq3d 6830 Equality deduction for one...
nff1o 6831 Bound-variable hypothesis ...
f1of1 6832 A one-to-one onto mapping ...
f1of 6833 A one-to-one onto mapping ...
f1ofn 6834 A one-to-one onto mapping ...
f1ofun 6835 A one-to-one onto mapping ...
f1orel 6836 A one-to-one onto mapping ...
f1odm 6837 The domain of a one-to-one...
dff1o2 6838 Alternate definition of on...
dff1o3 6839 Alternate definition of on...
f1ofo 6840 A one-to-one onto function...
dff1o4 6841 Alternate definition of on...
dff1o5 6842 Alternate definition of on...
f1orn 6843 A one-to-one function maps...
f1f1orn 6844 A one-to-one function maps...
f1ocnv 6845 The converse of a one-to-o...
f1ocnvb 6846 A relation is a one-to-one...
f1ores 6847 The restriction of a one-t...
f1orescnv 6848 The converse of a one-to-o...
f1imacnv 6849 Preimage of an image. (Co...
foimacnv 6850 A reverse version of ~ f1i...
foun 6851 The union of two onto func...
f1oun 6852 The union of two one-to-on...
f1un 6853 The union of two one-to-on...
resdif 6854 The restriction of a one-t...
resin 6855 The restriction of a one-t...
f1oco 6856 Composition of one-to-one ...
f1cnv 6857 The converse of an injecti...
funcocnv2 6858 Composition with the conve...
fococnv2 6859 The composition of an onto...
f1ococnv2 6860 The composition of a one-t...
f1cocnv2 6861 Composition of an injectiv...
f1ococnv1 6862 The composition of a one-t...
f1cocnv1 6863 Composition of an injectiv...
funcoeqres 6864 Express a constraint on a ...
f1ssf1 6865 A subset of an injective f...
f10 6866 The empty set maps one-to-...
f10d 6867 The empty set maps one-to-...
f1o00 6868 One-to-one onto mapping of...
fo00 6869 Onto mapping of the empty ...
f1o0 6870 One-to-one onto mapping of...
f1oi 6871 A restriction of the ident...
f1ovi 6872 The identity relation is a...
f1osn 6873 A singleton of an ordered ...
f1osng 6874 A singleton of an ordered ...
f1sng 6875 A singleton of an ordered ...
fsnd 6876 A singleton of an ordered ...
f1oprswap 6877 A two-element swap is a bi...
f1oprg 6878 An unordered pair of order...
tz6.12-2 6879 Function value when ` F ` ...
fveu 6880 The value of a function at...
brprcneu 6881 If ` A ` is a proper class...
brprcneuALT 6882 Alternate proof of ~ brprc...
fvprc 6883 A function's value at a pr...
fvprcALT 6884 Alternate proof of ~ fvprc...
rnfvprc 6885 The range of a function va...
fv2 6886 Alternate definition of fu...
dffv3 6887 A definition of function v...
dffv4 6888 The previous definition of...
elfv 6889 Membership in a function v...
fveq1 6890 Equality theorem for funct...
fveq2 6891 Equality theorem for funct...
fveq1i 6892 Equality inference for fun...
fveq1d 6893 Equality deduction for fun...
fveq2i 6894 Equality inference for fun...
fveq2d 6895 Equality deduction for fun...
2fveq3 6896 Equality theorem for neste...
fveq12i 6897 Equality deduction for fun...
fveq12d 6898 Equality deduction for fun...
fveqeq2d 6899 Equality deduction for fun...
fveqeq2 6900 Equality deduction for fun...
nffv 6901 Bound-variable hypothesis ...
nffvmpt1 6902 Bound-variable hypothesis ...
nffvd 6903 Deduction version of bound...
fvex 6904 The value of a class exist...
fvexi 6905 The value of a class exist...
fvexd 6906 The value of a class exist...
fvif 6907 Move a conditional outside...
iffv 6908 Move a conditional outside...
fv3 6909 Alternate definition of th...
fvres 6910 The value of a restricted ...
fvresd 6911 The value of a restricted ...
funssfv 6912 The value of a member of t...
tz6.12c 6913 Corollary of Theorem 6.12(...
tz6.12-1 6914 Function value. Theorem 6...
tz6.12-1OLD 6915 Obsolete version of ~ tz6....
tz6.12 6916 Function value. Theorem 6...
tz6.12f 6917 Function value, using boun...
tz6.12cOLD 6918 Obsolete version of ~ tz6....
tz6.12i 6919 Corollary of Theorem 6.12(...
fvbr0 6920 Two possibilities for the ...
fvrn0 6921 A function value is a memb...
fvn0fvelrn 6922 If the value of a function...
elfvunirn 6923 A function value is a subs...
fvssunirn 6924 The result of a function v...
fvssunirnOLD 6925 Obsolete version of ~ fvss...
ndmfv 6926 The value of a class outsi...
ndmfvrcl 6927 Reverse closure law for fu...
elfvdm 6928 If a function value has a ...
elfvex 6929 If a function value has a ...
elfvexd 6930 If a function value has a ...
eliman0 6931 A nonempty function value ...
nfvres 6932 The value of a non-member ...
nfunsn 6933 If the restriction of a cl...
fvfundmfvn0 6934 If the "value of a class" ...
0fv 6935 Function value of the empt...
fv2prc 6936 A function value of a func...
elfv2ex 6937 If a function value of a f...
fveqres 6938 Equal values imply equal v...
csbfv12 6939 Move class substitution in...
csbfv2g 6940 Move class substitution in...
csbfv 6941 Substitution for a functio...
funbrfv 6942 The second argument of a b...
funopfv 6943 The second element in an o...
fnbrfvb 6944 Equivalence of function va...
fnopfvb 6945 Equivalence of function va...
funbrfvb 6946 Equivalence of function va...
funopfvb 6947 Equivalence of function va...
fnbrfvb2 6948 Version of ~ fnbrfvb for f...
funbrfv2b 6949 Function value in terms of...
dffn5 6950 Representation of a functi...
fnrnfv 6951 The range of a function ex...
fvelrnb 6952 A member of a function's r...
foelcdmi 6953 A member of a surjective f...
dfimafn 6954 Alternate definition of th...
dfimafn2 6955 Alternate definition of th...
funimass4 6956 Membership relation for th...
fvelima 6957 Function value in an image...
funimassd 6958 Sufficient condition for t...
fvelimad 6959 Function value in an image...
feqmptd 6960 Deduction form of ~ dffn5 ...
feqresmpt 6961 Express a restricted funct...
feqmptdf 6962 Deduction form of ~ dffn5f...
dffn5f 6963 Representation of a functi...
fvelimab 6964 Function value in an image...
fvelimabd 6965 Deduction form of ~ fvelim...
unima 6966 Image of a union. (Contri...
fvi 6967 The value of the identity ...
fviss 6968 The value of the identity ...
fniinfv 6969 The indexed intersection o...
fnsnfv 6970 Singleton of function valu...
fnsnfvOLD 6971 Obsolete version of ~ fnsn...
opabiotafun 6972 Define a function whose va...
opabiotadm 6973 Define a function whose va...
opabiota 6974 Define a function whose va...
fnimapr 6975 The image of a pair under ...
ssimaex 6976 The existence of a subimag...
ssimaexg 6977 The existence of a subimag...
funfv 6978 A simplified expression fo...
funfv2 6979 The value of a function. ...
funfv2f 6980 The value of a function. ...
fvun 6981 Value of the union of two ...
fvun1 6982 The value of a union when ...
fvun2 6983 The value of a union when ...
fvun1d 6984 The value of a union when ...
fvun2d 6985 The value of a union when ...
dffv2 6986 Alternate definition of fu...
dmfco 6987 Domains of a function comp...
fvco2 6988 Value of a function compos...
fvco 6989 Value of a function compos...
fvco3 6990 Value of a function compos...
fvco3d 6991 Value of a function compos...
fvco4i 6992 Conditions for a compositi...
fvopab3g 6993 Value of a function given ...
fvopab3ig 6994 Value of a function given ...
brfvopabrbr 6995 The binary relation of a f...
fvmptg 6996 Value of a function given ...
fvmpti 6997 Value of a function given ...
fvmpt 6998 Value of a function given ...
fvmpt2f 6999 Value of a function given ...
fvtresfn 7000 Functionality of a tuple-r...
fvmpts 7001 Value of a function given ...
fvmpt3 7002 Value of a function given ...
fvmpt3i 7003 Value of a function given ...
fvmptdf 7004 Deduction version of ~ fvm...
fvmptd 7005 Deduction version of ~ fvm...
fvmptd2 7006 Deduction version of ~ fvm...
mptrcl 7007 Reverse closure for a mapp...
fvmpt2i 7008 Value of a function given ...
fvmpt2 7009 Value of a function given ...
fvmptss 7010 If all the values of the m...
fvmpt2d 7011 Deduction version of ~ fvm...
fvmptex 7012 Express a function ` F ` w...
fvmptd3f 7013 Alternate deduction versio...
fvmptd2f 7014 Alternate deduction versio...
fvmptdv 7015 Alternate deduction versio...
fvmptdv2 7016 Alternate deduction versio...
mpteqb 7017 Bidirectional equality the...
fvmptt 7018 Closed theorem form of ~ f...
fvmptf 7019 Value of a function given ...
fvmptnf 7020 The value of a function gi...
fvmptd3 7021 Deduction version of ~ fvm...
fvmptn 7022 This somewhat non-intuitiv...
fvmptss2 7023 A mapping always evaluates...
elfvmptrab1w 7024 Implications for the value...
elfvmptrab1 7025 Implications for the value...
elfvmptrab 7026 Implications for the value...
fvopab4ndm 7027 Value of a function given ...
fvmptndm 7028 Value of a function given ...
fvmptrabfv 7029 Value of a function mappin...
fvopab5 7030 The value of a function th...
fvopab6 7031 Value of a function given ...
eqfnfv 7032 Equality of functions is d...
eqfnfv2 7033 Equality of functions is d...
eqfnfv3 7034 Derive equality of functio...
eqfnfvd 7035 Deduction for equality of ...
eqfnfv2f 7036 Equality of functions is d...
eqfunfv 7037 Equality of functions is d...
eqfnun 7038 Two functions on ` A u. B ...
fvreseq0 7039 Equality of restricted fun...
fvreseq1 7040 Equality of a function res...
fvreseq 7041 Equality of restricted fun...
fnmptfvd 7042 A function with a given do...
fndmdif 7043 Two ways to express the lo...
fndmdifcom 7044 The difference set between...
fndmdifeq0 7045 The difference set of two ...
fndmin 7046 Two ways to express the lo...
fneqeql 7047 Two functions are equal if...
fneqeql2 7048 Two functions are equal if...
fnreseql 7049 Two functions are equal on...
chfnrn 7050 The range of a choice func...
funfvop 7051 Ordered pair with function...
funfvbrb 7052 Two ways to say that ` A `...
fvimacnvi 7053 A member of a preimage is ...
fvimacnv 7054 The argument of a function...
funimass3 7055 A kind of contraposition l...
funimass5 7056 A subclass of a preimage i...
funconstss 7057 Two ways of specifying tha...
fvimacnvALT 7058 Alternate proof of ~ fvima...
elpreima 7059 Membership in the preimage...
elpreimad 7060 Membership in the preimage...
fniniseg 7061 Membership in the preimage...
fncnvima2 7062 Inverse images under funct...
fniniseg2 7063 Inverse point images under...
unpreima 7064 Preimage of a union. (Con...
inpreima 7065 Preimage of an intersectio...
difpreima 7066 Preimage of a difference. ...
respreima 7067 The preimage of a restrict...
cnvimainrn 7068 The preimage of the inters...
sspreima 7069 The preimage of a subset i...
iinpreima 7070 Preimage of an intersectio...
intpreima 7071 Preimage of an intersectio...
fimacnvOLD 7072 Obsolete version of ~ fima...
fimacnvinrn 7073 Taking the converse image ...
fimacnvinrn2 7074 Taking the converse image ...
rescnvimafod 7075 The restriction of a funct...
fvn0ssdmfun 7076 If a class' function value...
fnopfv 7077 Ordered pair with function...
fvelrn 7078 A function's value belongs...
nelrnfvne 7079 A function value cannot be...
fveqdmss 7080 If the empty set is not co...
fveqressseq 7081 If the empty set is not co...
fnfvelrn 7082 A function's value belongs...
ffvelcdm 7083 A function's value belongs...
fnfvelrnd 7084 A function's value belongs...
ffvelcdmi 7085 A function's value belongs...
ffvelcdmda 7086 A function's value belongs...
ffvelcdmd 7087 A function's value belongs...
rexrn 7088 Restricted existential qua...
ralrn 7089 Restricted universal quant...
elrnrexdm 7090 For any element in the ran...
elrnrexdmb 7091 For any element in the ran...
eldmrexrn 7092 For any element in the dom...
eldmrexrnb 7093 For any element in the dom...
fvcofneq 7094 The values of two function...
ralrnmptw 7095 A restricted quantifier ov...
rexrnmptw 7096 A restricted quantifier ov...
ralrnmpt 7097 A restricted quantifier ov...
rexrnmpt 7098 A restricted quantifier ov...
f0cli 7099 Unconditional closure of a...
dff2 7100 Alternate definition of a ...
dff3 7101 Alternate definition of a ...
dff4 7102 Alternate definition of a ...
dffo3 7103 An onto mapping expressed ...
dffo4 7104 Alternate definition of an...
dffo5 7105 Alternate definition of an...
exfo 7106 A relation equivalent to t...
dffo3f 7107 An onto mapping expressed ...
foelrn 7108 Property of a surjective f...
foelrnf 7109 Property of a surjective f...
foco2 7110 If a composition of two fu...
fmpt 7111 Functionality of the mappi...
f1ompt 7112 Express bijection for a ma...
fmpti 7113 Functionality of the mappi...
fvmptelcdm 7114 The value of a function at...
fmptd 7115 Domain and codomain of the...
fmpttd 7116 Version of ~ fmptd with in...
fmpt3d 7117 Domain and codomain of the...
fmptdf 7118 A version of ~ fmptd using...
fompt 7119 Express being onto for a m...
ffnfv 7120 A function maps to a class...
ffnfvf 7121 A function maps to a class...
fnfvrnss 7122 An upper bound for range d...
fcdmssb 7123 A function is a function i...
rnmptss 7124 The range of an operation ...
fmpt2d 7125 Domain and codomain of the...
ffvresb 7126 A necessary and sufficient...
f1oresrab 7127 Build a bijection between ...
f1ossf1o 7128 Restricting a bijection, w...
fmptco 7129 Composition of two functio...
fmptcof 7130 Version of ~ fmptco where ...
fmptcos 7131 Composition of two functio...
cofmpt 7132 Express composition of a m...
fcompt 7133 Express composition of two...
fcoconst 7134 Composition with a constan...
fsn 7135 A function maps a singleto...
fsn2 7136 A function that maps a sin...
fsng 7137 A function maps a singleto...
fsn2g 7138 A function that maps a sin...
xpsng 7139 The Cartesian product of t...
xpprsng 7140 The Cartesian product of a...
xpsn 7141 The Cartesian product of t...
f1o2sn 7142 A singleton consisting in ...
residpr 7143 Restriction of the identit...
dfmpt 7144 Alternate definition for t...
fnasrn 7145 A function expressed as th...
idref 7146 Two ways to state that a r...
funiun 7147 A function is a union of s...
funopsn 7148 If a function is an ordere...
funop 7149 An ordered pair is a funct...
funopdmsn 7150 The domain of a function w...
funsndifnop 7151 A singleton of an ordered ...
funsneqopb 7152 A singleton of an ordered ...
ressnop0 7153 If ` A ` is not in ` C ` ,...
fpr 7154 A function with a domain o...
fprg 7155 A function with a domain o...
ftpg 7156 A function with a domain o...
ftp 7157 A function with a domain o...
fnressn 7158 A function restricted to a...
funressn 7159 A function restricted to a...
fressnfv 7160 The value of a function re...
fvrnressn 7161 If the value of a function...
fvressn 7162 The value of a function re...
fvn0fvelrnOLD 7163 Obsolete version of ~ fvn0...
fvconst 7164 The value of a constant fu...
fnsnr 7165 If a class belongs to a fu...
fnsnb 7166 A function whose domain is...
fmptsn 7167 Express a singleton functi...
fmptsng 7168 Express a singleton functi...
fmptsnd 7169 Express a singleton functi...
fmptap 7170 Append an additional value...
fmptapd 7171 Append an additional value...
fmptpr 7172 Express a pair function in...
fvresi 7173 The value of a restricted ...
fninfp 7174 Express the class of fixed...
fnelfp 7175 Property of a fixed point ...
fndifnfp 7176 Express the class of non-f...
fnelnfp 7177 Property of a non-fixed po...
fnnfpeq0 7178 A function is the identity...
fvunsn 7179 Remove an ordered pair not...
fvsng 7180 The value of a singleton o...
fvsn 7181 The value of a singleton o...
fvsnun1 7182 The value of a function wi...
fvsnun2 7183 The value of a function wi...
fnsnsplit 7184 Split a function into a si...
fsnunf 7185 Adjoining a point to a fun...
fsnunf2 7186 Adjoining a point to a pun...
fsnunfv 7187 Recover the added point fr...
fsnunres 7188 Recover the original funct...
funresdfunsn 7189 Restricting a function to ...
fvpr1g 7190 The value of a function wi...
fvpr2g 7191 The value of a function wi...
fvpr2gOLD 7192 Obsolete version of ~ fvpr...
fvpr1 7193 The value of a function wi...
fvpr1OLD 7194 Obsolete version of ~ fvpr...
fvpr2 7195 The value of a function wi...
fvpr2OLD 7196 Obsolete version of ~ fvpr...
fprb 7197 A condition for functionho...
fvtp1 7198 The first value of a funct...
fvtp2 7199 The second value of a func...
fvtp3 7200 The third value of a funct...
fvtp1g 7201 The value of a function wi...
fvtp2g 7202 The value of a function wi...
fvtp3g 7203 The value of a function wi...
tpres 7204 An unordered triple of ord...
fvconst2g 7205 The value of a constant fu...
fconst2g 7206 A constant function expres...
fvconst2 7207 The value of a constant fu...
fconst2 7208 A constant function expres...
fconst5 7209 Two ways to express that a...
rnmptc 7210 Range of a constant functi...
rnmptcOLD 7211 Obsolete version of ~ rnmp...
fnprb 7212 A function whose domain ha...
fntpb 7213 A function whose domain ha...
fnpr2g 7214 A function whose domain ha...
fpr2g 7215 A function that maps a pai...
fconstfv 7216 A constant function expres...
fconst3 7217 Two ways to express a cons...
fconst4 7218 Two ways to express a cons...
resfunexg 7219 The restriction of a funct...
resiexd 7220 The restriction of the ide...
fnex 7221 If the domain of a functio...
fnexd 7222 If the domain of a functio...
funex 7223 If the domain of a functio...
opabex 7224 Existence of a function ex...
mptexg 7225 If the domain of a functio...
mptexgf 7226 If the domain of a functio...
mptex 7227 If the domain of a functio...
mptexd 7228 If the domain of a functio...
mptrabex 7229 If the domain of a functio...
fex 7230 If the domain of a mapping...
fexd 7231 If the domain of a mapping...
mptfvmpt 7232 A function in maps-to nota...
eufnfv 7233 A function is uniquely det...
funfvima 7234 A function's value in a pr...
funfvima2 7235 A function's value in an i...
funfvima2d 7236 A function's value in a pr...
fnfvima 7237 The function value of an o...
fnfvimad 7238 A function's value belongs...
resfvresima 7239 The value of the function ...
funfvima3 7240 A class including a functi...
rexima 7241 Existential quantification...
ralima 7242 Universal quantification u...
fvclss 7243 Upper bound for the class ...
elabrex 7244 Elementhood in an image se...
elabrexg 7245 Elementhood in an image se...
abrexco 7246 Composition of two image m...
imaiun 7247 The image of an indexed un...
imauni 7248 The image of a union is th...
fniunfv 7249 The indexed union of a fun...
funiunfv 7250 The indexed union of a fun...
funiunfvf 7251 The indexed union of a fun...
eluniima 7252 Membership in the union of...
elunirn 7253 Membership in the union of...
elunirnALT 7254 Alternate proof of ~ eluni...
elunirn2OLD 7255 Obsolete version of ~ elfv...
fnunirn 7256 Membership in a union of s...
dff13 7257 A one-to-one function in t...
dff13f 7258 A one-to-one function in t...
f1veqaeq 7259 If the values of a one-to-...
f1cofveqaeq 7260 If the values of a composi...
f1cofveqaeqALT 7261 Alternate proof of ~ f1cof...
2f1fvneq 7262 If two one-to-one function...
f1mpt 7263 Express injection for a ma...
f1fveq 7264 Equality of function value...
f1elima 7265 Membership in the image of...
f1imass 7266 Taking images under a one-...
f1imaeq 7267 Taking images under a one-...
f1imapss 7268 Taking images under a one-...
fpropnf1 7269 A function, given by an un...
f1dom3fv3dif 7270 The function values for a ...
f1dom3el3dif 7271 The codomain of a 1-1 func...
dff14a 7272 A one-to-one function in t...
dff14b 7273 A one-to-one function in t...
f12dfv 7274 A one-to-one function with...
f13dfv 7275 A one-to-one function with...
dff1o6 7276 A one-to-one onto function...
f1ocnvfv1 7277 The converse value of the ...
f1ocnvfv2 7278 The value of the converse ...
f1ocnvfv 7279 Relationship between the v...
f1ocnvfvb 7280 Relationship between the v...
nvof1o 7281 An involution is a bijecti...
nvocnv 7282 The converse of an involut...
f1cdmsn 7283 If a one-to-one function w...
fsnex 7284 Relate a function with a s...
f1prex 7285 Relate a one-to-one functi...
f1ocnvdm 7286 The value of the converse ...
f1ocnvfvrneq 7287 If the values of a one-to-...
fcof1 7288 An application is injectiv...
fcofo 7289 An application is surjecti...
cbvfo 7290 Change bound variable betw...
cbvexfo 7291 Change bound variable betw...
cocan1 7292 An injection is left-cance...
cocan2 7293 A surjection is right-canc...
fcof1oinvd 7294 Show that a function is th...
fcof1od 7295 A function is bijective if...
2fcoidinvd 7296 Show that a function is th...
fcof1o 7297 Show that two functions ar...
2fvcoidd 7298 Show that the composition ...
2fvidf1od 7299 A function is bijective if...
2fvidinvd 7300 Show that two functions ar...
foeqcnvco 7301 Condition for function equ...
f1eqcocnv 7302 Condition for function equ...
f1eqcocnvOLD 7303 Obsolete version of ~ f1eq...
fveqf1o 7304 Given a bijection ` F ` , ...
nf1const 7305 A constant function from a...
nf1oconst 7306 A constant function from a...
f1ofvswap 7307 Swapping two values in a b...
fliftrel 7308 ` F ` , a function lift, i...
fliftel 7309 Elementhood in the relatio...
fliftel1 7310 Elementhood in the relatio...
fliftcnv 7311 Converse of the relation `...
fliftfun 7312 The function ` F ` is the ...
fliftfund 7313 The function ` F ` is the ...
fliftfuns 7314 The function ` F ` is the ...
fliftf 7315 The domain and range of th...
fliftval 7316 The value of the function ...
isoeq1 7317 Equality theorem for isomo...
isoeq2 7318 Equality theorem for isomo...
isoeq3 7319 Equality theorem for isomo...
isoeq4 7320 Equality theorem for isomo...
isoeq5 7321 Equality theorem for isomo...
nfiso 7322 Bound-variable hypothesis ...
isof1o 7323 An isomorphism is a one-to...
isof1oidb 7324 A function is a bijection ...
isof1oopb 7325 A function is a bijection ...
isorel 7326 An isomorphism connects bi...
soisores 7327 Express the condition of i...
soisoi 7328 Infer isomorphism from one...
isoid 7329 Identity law for isomorphi...
isocnv 7330 Converse law for isomorphi...
isocnv2 7331 Converse law for isomorphi...
isocnv3 7332 Complementation law for is...
isores2 7333 An isomorphism from one we...
isores1 7334 An isomorphism from one we...
isores3 7335 Induced isomorphism on a s...
isotr 7336 Composition (transitive) l...
isomin 7337 Isomorphisms preserve mini...
isoini 7338 Isomorphisms preserve init...
isoini2 7339 Isomorphisms are isomorphi...
isofrlem 7340 Lemma for ~ isofr . (Cont...
isoselem 7341 Lemma for ~ isose . (Cont...
isofr 7342 An isomorphism preserves w...
isose 7343 An isomorphism preserves s...
isofr2 7344 A weak form of ~ isofr tha...
isopolem 7345 Lemma for ~ isopo . (Cont...
isopo 7346 An isomorphism preserves t...
isosolem 7347 Lemma for ~ isoso . (Cont...
isoso 7348 An isomorphism preserves t...
isowe 7349 An isomorphism preserves t...
isowe2 7350 A weak form of ~ isowe tha...
f1oiso 7351 Any one-to-one onto functi...
f1oiso2 7352 Any one-to-one onto functi...
f1owe 7353 Well-ordering of isomorphi...
weniso 7354 A set-like well-ordering h...
weisoeq 7355 Thus, there is at most one...
weisoeq2 7356 Thus, there is at most one...
knatar 7357 The Knaster-Tarski theorem...
fvresval 7358 The value of a restricted ...
funeldmb 7359 If ` (/) ` is not part of ...
eqfunresadj 7360 Law for adjoining an eleme...
eqfunressuc 7361 Law for equality of restri...
fnssintima 7362 Condition for subset of an...
imaeqsexv 7363 Substitute a function valu...
imaeqsalv 7364 Substitute a function valu...
canth 7365 No set ` A ` is equinumero...
ncanth 7366 Cantor's theorem fails for...
riotaeqdv 7369 Formula-building deduction...
riotabidv 7370 Formula-building deduction...
riotaeqbidv 7371 Equality deduction for res...
riotaex 7372 Restricted iota is a set. ...
riotav 7373 An iota restricted to the ...
riotauni 7374 Restricted iota in terms o...
nfriota1 7375 The abstraction variable i...
nfriotadw 7376 Deduction version of ~ nfr...
cbvriotaw 7377 Change bound variable in a...
cbvriotavw 7378 Change bound variable in a...
cbvriotavwOLD 7379 Obsolete version of ~ cbvr...
nfriotad 7380 Deduction version of ~ nfr...
nfriota 7381 A variable not free in a w...
cbvriota 7382 Change bound variable in a...
cbvriotav 7383 Change bound variable in a...
csbriota 7384 Interchange class substitu...
riotacl2 7385 Membership law for "the un...
riotacl 7386 Closure of restricted iota...
riotasbc 7387 Substitution law for descr...
riotabidva 7388 Equivalent wff's yield equ...
riotabiia 7389 Equivalent wff's yield equ...
riota1 7390 Property of restricted iot...
riota1a 7391 Property of iota. (Contri...
riota2df 7392 A deduction version of ~ r...
riota2f 7393 This theorem shows a condi...
riota2 7394 This theorem shows a condi...
riotaeqimp 7395 If two restricted iota des...
riotaprop 7396 Properties of a restricted...
riota5f 7397 A method for computing res...
riota5 7398 A method for computing res...
riotass2 7399 Restriction of a unique el...
riotass 7400 Restriction of a unique el...
moriotass 7401 Restriction of a unique el...
snriota 7402 A restricted class abstrac...
riotaxfrd 7403 Change the variable ` x ` ...
eusvobj2 7404 Specify the same property ...
eusvobj1 7405 Specify the same object in...
f1ofveu 7406 There is one domain elemen...
f1ocnvfv3 7407 Value of the converse of a...
riotaund 7408 Restricted iota equals the...
riotassuni 7409 The restricted iota class ...
riotaclb 7410 Bidirectional closure of r...
riotarab 7411 Restricted iota of a restr...
oveq 7418 Equality theorem for opera...
oveq1 7419 Equality theorem for opera...
oveq2 7420 Equality theorem for opera...
oveq12 7421 Equality theorem for opera...
oveq1i 7422 Equality inference for ope...
oveq2i 7423 Equality inference for ope...
oveq12i 7424 Equality inference for ope...
oveqi 7425 Equality inference for ope...
oveq123i 7426 Equality inference for ope...
oveq1d 7427 Equality deduction for ope...
oveq2d 7428 Equality deduction for ope...
oveqd 7429 Equality deduction for ope...
oveq12d 7430 Equality deduction for ope...
oveqan12d 7431 Equality deduction for ope...
oveqan12rd 7432 Equality deduction for ope...
oveq123d 7433 Equality deduction for ope...
fvoveq1d 7434 Equality deduction for nes...
fvoveq1 7435 Equality theorem for neste...
ovanraleqv 7436 Equality theorem for a con...
imbrov2fvoveq 7437 Equality theorem for neste...
ovrspc2v 7438 If an operation value is e...
oveqrspc2v 7439 Restricted specialization ...
oveqdr 7440 Equality of two operations...
nfovd 7441 Deduction version of bound...
nfov 7442 Bound-variable hypothesis ...
oprabidw 7443 The law of concretion. Sp...
oprabid 7444 The law of concretion. Sp...
ovex 7445 The result of an operation...
ovexi 7446 The result of an operation...
ovexd 7447 The result of an operation...
ovssunirn 7448 The result of an operation...
0ov 7449 Operation value of the emp...
ovprc 7450 The value of an operation ...
ovprc1 7451 The value of an operation ...
ovprc2 7452 The value of an operation ...
ovrcl 7453 Reverse closure for an ope...
csbov123 7454 Move class substitution in...
csbov 7455 Move class substitution in...
csbov12g 7456 Move class substitution in...
csbov1g 7457 Move class substitution in...
csbov2g 7458 Move class substitution in...
rspceov 7459 A frequently used special ...
elovimad 7460 Elementhood of the image s...
fnbrovb 7461 Value of a binary operatio...
fnotovb 7462 Equivalence of operation v...
opabbrex 7463 A collection of ordered pa...
opabresex2 7464 Restrictions of a collecti...
opabresex2d 7465 Obsolete version of ~ opab...
fvmptopab 7466 The function value of a ma...
fvmptopabOLD 7467 Obsolete version of ~ fvmp...
f1opr 7468 Condition for an operation...
brfvopab 7469 The classes involved in a ...
dfoprab2 7470 Class abstraction for oper...
reloprab 7471 An operation class abstrac...
oprabv 7472 If a pair and a class are ...
nfoprab1 7473 The abstraction variables ...
nfoprab2 7474 The abstraction variables ...
nfoprab3 7475 The abstraction variables ...
nfoprab 7476 Bound-variable hypothesis ...
oprabbid 7477 Equivalent wff's yield equ...
oprabbidv 7478 Equivalent wff's yield equ...
oprabbii 7479 Equivalent wff's yield equ...
ssoprab2 7480 Equivalence of ordered pai...
ssoprab2b 7481 Equivalence of ordered pai...
eqoprab2bw 7482 Equivalence of ordered pai...
eqoprab2b 7483 Equivalence of ordered pai...
mpoeq123 7484 An equality theorem for th...
mpoeq12 7485 An equality theorem for th...
mpoeq123dva 7486 An equality deduction for ...
mpoeq123dv 7487 An equality deduction for ...
mpoeq123i 7488 An equality inference for ...
mpoeq3dva 7489 Slightly more general equa...
mpoeq3ia 7490 An equality inference for ...
mpoeq3dv 7491 An equality deduction for ...
nfmpo1 7492 Bound-variable hypothesis ...
nfmpo2 7493 Bound-variable hypothesis ...
nfmpo 7494 Bound-variable hypothesis ...
0mpo0 7495 A mapping operation with e...
mpo0v 7496 A mapping operation with e...
mpo0 7497 A mapping operation with e...
oprab4 7498 Two ways to state the doma...
cbvoprab1 7499 Rule used to change first ...
cbvoprab2 7500 Change the second bound va...
cbvoprab12 7501 Rule used to change first ...
cbvoprab12v 7502 Rule used to change first ...
cbvoprab3 7503 Rule used to change the th...
cbvoprab3v 7504 Rule used to change the th...
cbvmpox 7505 Rule to change the bound v...
cbvmpo 7506 Rule to change the bound v...
cbvmpov 7507 Rule to change the bound v...
elimdelov 7508 Eliminate a hypothesis whi...
ovif 7509 Move a conditional outside...
ovif2 7510 Move a conditional outside...
ovif12 7511 Move a conditional outside...
ifov 7512 Move a conditional outside...
dmoprab 7513 The domain of an operation...
dmoprabss 7514 The domain of an operation...
rnoprab 7515 The range of an operation ...
rnoprab2 7516 The range of a restricted ...
reldmoprab 7517 The domain of an operation...
oprabss 7518 Structure of an operation ...
eloprabga 7519 The law of concretion for ...
eloprabgaOLD 7520 Obsolete version of ~ elop...
eloprabg 7521 The law of concretion for ...
ssoprab2i 7522 Inference of operation cla...
mpov 7523 Operation with universal d...
mpomptx 7524 Express a two-argument fun...
mpompt 7525 Express a two-argument fun...
mpodifsnif 7526 A mapping with two argumen...
mposnif 7527 A mapping with two argumen...
fconstmpo 7528 Representation of a consta...
resoprab 7529 Restriction of an operatio...
resoprab2 7530 Restriction of an operator...
resmpo 7531 Restriction of the mapping...
funoprabg 7532 "At most one" is a suffici...
funoprab 7533 "At most one" is a suffici...
fnoprabg 7534 Functionality and domain o...
mpofun 7535 The maps-to notation for a...
mpofunOLD 7536 Obsolete version of ~ mpof...
fnoprab 7537 Functionality and domain o...
ffnov 7538 An operation maps to a cla...
fovcld 7539 Closure law for an operati...
fovcl 7540 Closure law for an operati...
eqfnov 7541 Equality of two operations...
eqfnov2 7542 Two operators with the sam...
fnov 7543 Representation of a functi...
mpo2eqb 7544 Bidirectional equality the...
rnmpo 7545 The range of an operation ...
reldmmpo 7546 The domain of an operation...
elrnmpog 7547 Membership in the range of...
elrnmpo 7548 Membership in the range of...
elrnmpores 7549 Membership in the range of...
ralrnmpo 7550 A restricted quantifier ov...
rexrnmpo 7551 A restricted quantifier ov...
ovid 7552 The value of an operation ...
ovidig 7553 The value of an operation ...
ovidi 7554 The value of an operation ...
ov 7555 The value of an operation ...
ovigg 7556 The value of an operation ...
ovig 7557 The value of an operation ...
ovmpt4g 7558 Value of a function given ...
ovmpos 7559 Value of a function given ...
ov2gf 7560 The value of an operation ...
ovmpodxf 7561 Value of an operation give...
ovmpodx 7562 Value of an operation give...
ovmpod 7563 Value of an operation give...
ovmpox 7564 The value of an operation ...
ovmpoga 7565 Value of an operation give...
ovmpoa 7566 Value of an operation give...
ovmpodf 7567 Alternate deduction versio...
ovmpodv 7568 Alternate deduction versio...
ovmpodv2 7569 Alternate deduction versio...
ovmpog 7570 Value of an operation give...
ovmpo 7571 Value of an operation give...
ovmpot 7572 The value of an operation ...
fvmpopr2d 7573 Value of an operation give...
ov3 7574 The value of an operation ...
ov6g 7575 The value of an operation ...
ovg 7576 The value of an operation ...
ovres 7577 The value of a restricted ...
ovresd 7578 Lemma for converting metri...
oprres 7579 The restriction of an oper...
oprssov 7580 The value of a member of t...
fovcdm 7581 An operation's value belon...
fovcdmda 7582 An operation's value belon...
fovcdmd 7583 An operation's value belon...
fnrnov 7584 The range of an operation ...
foov 7585 An onto mapping of an oper...
fnovrn 7586 An operation's value belon...
ovelrn 7587 A member of an operation's...
funimassov 7588 Membership relation for th...
ovelimab 7589 Operation value in an imag...
ovima0 7590 An operation value is a me...
ovconst2 7591 The value of a constant op...
oprssdm 7592 Domain of closure of an op...
nssdmovg 7593 The value of an operation ...
ndmovg 7594 The value of an operation ...
ndmov 7595 The value of an operation ...
ndmovcl 7596 The closure of an operatio...
ndmovrcl 7597 Reverse closure law, when ...
ndmovcom 7598 Any operation is commutati...
ndmovass 7599 Any operation is associati...
ndmovdistr 7600 Any operation is distribut...
ndmovord 7601 Elimination of redundant a...
ndmovordi 7602 Elimination of redundant a...
caovclg 7603 Convert an operation closu...
caovcld 7604 Convert an operation closu...
caovcl 7605 Convert an operation closu...
caovcomg 7606 Convert an operation commu...
caovcomd 7607 Convert an operation commu...
caovcom 7608 Convert an operation commu...
caovassg 7609 Convert an operation assoc...
caovassd 7610 Convert an operation assoc...
caovass 7611 Convert an operation assoc...
caovcang 7612 Convert an operation cance...
caovcand 7613 Convert an operation cance...
caovcanrd 7614 Commute the arguments of a...
caovcan 7615 Convert an operation cance...
caovordig 7616 Convert an operation order...
caovordid 7617 Convert an operation order...
caovordg 7618 Convert an operation order...
caovordd 7619 Convert an operation order...
caovord2d 7620 Operation ordering law wit...
caovord3d 7621 Ordering law. (Contribute...
caovord 7622 Convert an operation order...
caovord2 7623 Operation ordering law wit...
caovord3 7624 Ordering law. (Contribute...
caovdig 7625 Convert an operation distr...
caovdid 7626 Convert an operation distr...
caovdir2d 7627 Convert an operation distr...
caovdirg 7628 Convert an operation rever...
caovdird 7629 Convert an operation distr...
caovdi 7630 Convert an operation distr...
caov32d 7631 Rearrange arguments in a c...
caov12d 7632 Rearrange arguments in a c...
caov31d 7633 Rearrange arguments in a c...
caov13d 7634 Rearrange arguments in a c...
caov4d 7635 Rearrange arguments in a c...
caov411d 7636 Rearrange arguments in a c...
caov42d 7637 Rearrange arguments in a c...
caov32 7638 Rearrange arguments in a c...
caov12 7639 Rearrange arguments in a c...
caov31 7640 Rearrange arguments in a c...
caov13 7641 Rearrange arguments in a c...
caov4 7642 Rearrange arguments in a c...
caov411 7643 Rearrange arguments in a c...
caov42 7644 Rearrange arguments in a c...
caovdir 7645 Reverse distributive law. ...
caovdilem 7646 Lemma used by real number ...
caovlem2 7647 Lemma used in real number ...
caovmo 7648 Uniqueness of inverse elem...
imaeqexov 7649 Substitute an operation va...
imaeqalov 7650 Substitute an operation va...
mpondm0 7651 The value of an operation ...
elmpocl 7652 If a two-parameter class i...
elmpocl1 7653 If a two-parameter class i...
elmpocl2 7654 If a two-parameter class i...
elovmpo 7655 Utility lemma for two-para...
elovmporab 7656 Implications for the value...
elovmporab1w 7657 Implications for the value...
elovmporab1 7658 Implications for the value...
2mpo0 7659 If the operation value of ...
relmptopab 7660 Any function to sets of or...
f1ocnvd 7661 Describe an implicit one-t...
f1od 7662 Describe an implicit one-t...
f1ocnv2d 7663 Describe an implicit one-t...
f1o2d 7664 Describe an implicit one-t...
f1opw2 7665 A one-to-one mapping induc...
f1opw 7666 A one-to-one mapping induc...
elovmpt3imp 7667 If the value of a function...
ovmpt3rab1 7668 The value of an operation ...
ovmpt3rabdm 7669 If the value of a function...
elovmpt3rab1 7670 Implications for the value...
elovmpt3rab 7671 Implications for the value...
ofeqd 7676 Equality theorem for funct...
ofeq 7677 Equality theorem for funct...
ofreq 7678 Equality theorem for funct...
ofexg 7679 A function operation restr...
nfof 7680 Hypothesis builder for fun...
nfofr 7681 Hypothesis builder for fun...
ofrfvalg 7682 Value of a relation applie...
offval 7683 Value of an operation appl...
ofrfval 7684 Value of a relation applie...
ofval 7685 Evaluate a function operat...
ofrval 7686 Exhibit a function relatio...
offn 7687 The function operation pro...
offun 7688 The function operation pro...
offval2f 7689 The function operation exp...
ofmresval 7690 Value of a restriction of ...
fnfvof 7691 Function value of a pointw...
off 7692 The function operation pro...
ofres 7693 Restrict the operands of a...
offval2 7694 The function operation exp...
ofrfval2 7695 The function relation acti...
ofmpteq 7696 Value of a pointwise opera...
ofco 7697 The composition of a funct...
offveq 7698 Convert an identity of the...
offveqb 7699 Equivalent expressions for...
ofc1 7700 Left operation by a consta...
ofc2 7701 Right operation by a const...
ofc12 7702 Function operation on two ...
caofref 7703 Transfer a reflexive law t...
caofinvl 7704 Transfer a left inverse la...
caofid0l 7705 Transfer a left identity l...
caofid0r 7706 Transfer a right identity ...
caofid1 7707 Transfer a right absorptio...
caofid2 7708 Transfer a right absorptio...
caofcom 7709 Transfer a commutative law...
caofrss 7710 Transfer a relation subset...
caofass 7711 Transfer an associative la...
caoftrn 7712 Transfer a transitivity la...
caofdi 7713 Transfer a distributive la...
caofdir 7714 Transfer a reverse distrib...
caonncan 7715 Transfer ~ nncan -shaped l...
relrpss 7718 The proper subset relation...
brrpssg 7719 The proper subset relation...
brrpss 7720 The proper subset relation...
porpss 7721 Every class is partially o...
sorpss 7722 Express strict ordering un...
sorpssi 7723 Property of a chain of set...
sorpssun 7724 A chain of sets is closed ...
sorpssin 7725 A chain of sets is closed ...
sorpssuni 7726 In a chain of sets, a maxi...
sorpssint 7727 In a chain of sets, a mini...
sorpsscmpl 7728 The componentwise compleme...
zfun 7730 Axiom of Union expressed w...
axun2 7731 A variant of the Axiom of ...
uniex2 7732 The Axiom of Union using t...
vuniex 7733 The union of a setvar is a...
uniexg 7734 The ZF Axiom of Union in c...
uniex 7735 The Axiom of Union in clas...
uniexd 7736 Deduction version of the Z...
unex 7737 The union of two sets is a...
tpex 7738 An unordered triple of cla...
unexb 7739 Existence of union is equi...
unexg 7740 A union of two sets is a s...
xpexg 7741 The Cartesian product of t...
xpexd 7742 The Cartesian product of t...
3xpexg 7743 The Cartesian product of t...
xpex 7744 The Cartesian product of t...
unexd 7745 The union of two sets is a...
sqxpexg 7746 The Cartesian square of a ...
abnexg 7747 Sufficient condition for a...
abnex 7748 Sufficient condition for a...
snnex 7749 The class of all singleton...
pwnex 7750 The class of all power set...
difex2 7751 If the subtrahend of a cla...
difsnexi 7752 If the difference of a cla...
uniuni 7753 Expression for double unio...
uniexr 7754 Converse of the Axiom of U...
uniexb 7755 The Axiom of Union and its...
pwexr 7756 Converse of the Axiom of P...
pwexb 7757 The Axiom of Power Sets an...
elpwpwel 7758 A class belongs to a doubl...
eldifpw 7759 Membership in a power clas...
elpwun 7760 Membership in the power cl...
pwuncl 7761 Power classes are closed u...
iunpw 7762 An indexed union of a powe...
fr3nr 7763 A well-founded relation ha...
epne3 7764 A well-founded class conta...
dfwe2 7765 Alternate definition of we...
epweon 7766 The membership relation we...
epweonALT 7767 Alternate proof of ~ epweo...
ordon 7768 The class of all ordinal n...
onprc 7769 No set contains all ordina...
ssorduni 7770 The union of a class of or...
ssonuni 7771 The union of a set of ordi...
ssonunii 7772 The union of a set of ordi...
ordeleqon 7773 A way to express the ordin...
ordsson 7774 Any ordinal class is a sub...
dford5 7775 A class is ordinal iff it ...
onss 7776 An ordinal number is a sub...
predon 7777 The predecessor of an ordi...
predonOLD 7778 Obsolete version of ~ pred...
ssonprc 7779 Two ways of saying a class...
onuni 7780 The union of an ordinal nu...
orduni 7781 The union of an ordinal cl...
onint 7782 The intersection (infimum)...
onint0 7783 The intersection of a clas...
onssmin 7784 A nonempty class of ordina...
onminesb 7785 If a property is true for ...
onminsb 7786 If a property is true for ...
oninton 7787 The intersection of a none...
onintrab 7788 The intersection of a clas...
onintrab2 7789 An existence condition equ...
onnmin 7790 No member of a set of ordi...
onnminsb 7791 An ordinal number smaller ...
oneqmin 7792 A way to show that an ordi...
uniordint 7793 The union of a set of ordi...
onminex 7794 If a wff is true for an or...
sucon 7795 The class of all ordinal n...
sucexb 7796 A successor exists iff its...
sucexg 7797 The successor of a set is ...
sucex 7798 The successor of a set is ...
onmindif2 7799 The minimum of a class of ...
ordsuci 7800 The successor of an ordina...
sucexeloni 7801 If the successor of an ord...
sucexeloniOLD 7802 Obsolete version of ~ suce...
onsuc 7803 The successor of an ordina...
suceloniOLD 7804 Obsolete version of ~ onsu...
ordsuc 7805 A class is ordinal if and ...
ordsucOLD 7806 Obsolete version of ~ ords...
ordpwsuc 7807 The collection of ordinals...
onpwsuc 7808 The collection of ordinal ...
onsucb 7809 A class is an ordinal numb...
ordsucss 7810 The successor of an elemen...
onpsssuc 7811 An ordinal number is a pro...
ordelsuc 7812 A set belongs to an ordina...
onsucmin 7813 The successor of an ordina...
ordsucelsuc 7814 Membership is inherited by...
ordsucsssuc 7815 The subclass relationship ...
ordsucuniel 7816 Given an element ` A ` of ...
ordsucun 7817 The successor of the maxim...
ordunpr 7818 The maximum of two ordinal...
ordunel 7819 The maximum of two ordinal...
onsucuni 7820 A class of ordinal numbers...
ordsucuni 7821 An ordinal class is a subc...
orduniorsuc 7822 An ordinal class is either...
unon 7823 The class of all ordinal n...
ordunisuc 7824 An ordinal class is equal ...
orduniss2 7825 The union of the ordinal s...
onsucuni2 7826 A successor ordinal is the...
0elsuc 7827 The successor of an ordina...
limon 7828 The class of ordinal numbe...
onuniorsuc 7829 An ordinal number is eithe...
onssi 7830 An ordinal number is a sub...
onsuci 7831 The successor of an ordina...
onuniorsuciOLD 7832 Obsolete version of ~ onun...
onuninsuci 7833 An ordinal is equal to its...
onsucssi 7834 A set belongs to an ordina...
nlimsucg 7835 A successor is not a limit...
orduninsuc 7836 An ordinal class is equal ...
ordunisuc2 7837 An ordinal equal to its un...
ordzsl 7838 An ordinal is zero, a succ...
onzsl 7839 An ordinal number is zero,...
dflim3 7840 An alternate definition of...
dflim4 7841 An alternate definition of...
limsuc 7842 The successor of a member ...
limsssuc 7843 A class includes a limit o...
nlimon 7844 Two ways to express the cl...
limuni3 7845 The union of a nonempty cl...
tfi 7846 The Principle of Transfini...
tfisg 7847 A closed form of ~ tfis . ...
tfis 7848 Transfinite Induction Sche...
tfis2f 7849 Transfinite Induction Sche...
tfis2 7850 Transfinite Induction Sche...
tfis3 7851 Transfinite Induction Sche...
tfisi 7852 A transfinite induction sc...
tfinds 7853 Principle of Transfinite I...
tfindsg 7854 Transfinite Induction (inf...
tfindsg2 7855 Transfinite Induction (inf...
tfindes 7856 Transfinite Induction with...
tfinds2 7857 Transfinite Induction (inf...
tfinds3 7858 Principle of Transfinite I...
dfom2 7861 An alternate definition of...
elom 7862 Membership in omega. The ...
omsson 7863 Omega is a subset of ` On ...
limomss 7864 The class of natural numbe...
nnon 7865 A natural number is an ord...
nnoni 7866 A natural number is an ord...
nnord 7867 A natural number is ordina...
trom 7868 The class of finite ordina...
ordom 7869 The class of finite ordina...
elnn 7870 A member of a natural numb...
omon 7871 The class of natural numbe...
omelon2 7872 Omega is an ordinal number...
nnlim 7873 A natural number is not a ...
omssnlim 7874 The class of natural numbe...
limom 7875 Omega is a limit ordinal. ...
peano2b 7876 A class belongs to omega i...
nnsuc 7877 A nonzero natural number i...
omsucne 7878 A natural number is not th...
ssnlim 7879 An ordinal subclass of non...
omsinds 7880 Strong (or "total") induct...
omsindsOLD 7881 Obsolete version of ~ omsi...
omun 7882 The union of two finite or...
peano1 7883 Zero is a natural number. ...
peano1OLD 7884 Obsolete version of ~ pean...
peano2 7885 The successor of any natur...
peano3 7886 The successor of any natur...
peano4 7887 Two natural numbers are eq...
peano5 7888 The induction postulate: a...
peano5OLD 7889 Obsolete version of ~ pean...
nn0suc 7890 A natural number is either...
find 7891 The Principle of Finite In...
findOLD 7892 Obsolete version of ~ find...
finds 7893 Principle of Finite Induct...
findsg 7894 Principle of Finite Induct...
finds2 7895 Principle of Finite Induct...
finds1 7896 Principle of Finite Induct...
findes 7897 Finite induction with expl...
dmexg 7898 The domain of a set is a s...
rnexg 7899 The range of a set is a se...
dmexd 7900 The domain of a set is a s...
fndmexd 7901 If a function is a set, it...
dmfex 7902 If a mapping is a set, its...
fndmexb 7903 The domain of a function i...
fdmexb 7904 The domain of a function i...
dmfexALT 7905 Alternate proof of ~ dmfex...
dmex 7906 The domain of a set is a s...
rnex 7907 The range of a set is a se...
iprc 7908 The identity function is a...
resiexg 7909 The existence of a restric...
imaexg 7910 The image of a set is a se...
imaex 7911 The image of a set is a se...
exse2 7912 Any set relation is set-li...
xpexr 7913 If a Cartesian product is ...
xpexr2 7914 If a nonempty Cartesian pr...
xpexcnv 7915 A condition where the conv...
soex 7916 If the relation in a stric...
elxp4 7917 Membership in a Cartesian ...
elxp5 7918 Membership in a Cartesian ...
cnvexg 7919 The converse of a set is a...
cnvex 7920 The converse of a set is a...
relcnvexb 7921 A relation is a set iff it...
f1oexrnex 7922 If the range of a 1-1 onto...
f1oexbi 7923 There is a one-to-one onto...
coexg 7924 The composition of two set...
coex 7925 The composition of two set...
funcnvuni 7926 The union of a chain (with...
fun11uni 7927 The union of a chain (with...
fex2 7928 A function with bounded do...
fabexg 7929 Existence of a set of func...
fabex 7930 Existence of a set of func...
f1oabexg 7931 The class of all 1-1-onto ...
fiunlem 7932 Lemma for ~ fiun and ~ f1i...
fiun 7933 The union of a chain (with...
f1iun 7934 The union of a chain (with...
fviunfun 7935 The function value of an i...
ffoss 7936 Relationship between a map...
f11o 7937 Relationship between one-t...
resfunexgALT 7938 Alternate proof of ~ resfu...
cofunexg 7939 Existence of a composition...
cofunex2g 7940 Existence of a composition...
fnexALT 7941 Alternate proof of ~ fnex ...
funexw 7942 Weak version of ~ funex th...
mptexw 7943 Weak version of ~ mptex th...
funrnex 7944 If the domain of a functio...
zfrep6 7945 A version of the Axiom of ...
focdmex 7946 If the domain of an onto f...
f1dmex 7947 If the codomain of a one-t...
f1ovv 7948 The codomain/range of a 1-...
fvclex 7949 Existence of the class of ...
fvresex 7950 Existence of the class of ...
abrexexg 7951 Existence of a class abstr...
abrexexgOLD 7952 Obsolete version of ~ abre...
abrexex 7953 Existence of a class abstr...
iunexg 7954 The existence of an indexe...
abrexex2g 7955 Existence of an existentia...
opabex3d 7956 Existence of an ordered pa...
opabex3rd 7957 Existence of an ordered pa...
opabex3 7958 Existence of an ordered pa...
iunex 7959 The existence of an indexe...
abrexex2 7960 Existence of an existentia...
abexssex 7961 Existence of a class abstr...
abexex 7962 A condition where a class ...
f1oweALT 7963 Alternate proof of ~ f1owe...
wemoiso 7964 Thus, there is at most one...
wemoiso2 7965 Thus, there is at most one...
oprabexd 7966 Existence of an operator a...
oprabex 7967 Existence of an operation ...
oprabex3 7968 Existence of an operation ...
oprabrexex2 7969 Existence of an existentia...
ab2rexex 7970 Existence of a class abstr...
ab2rexex2 7971 Existence of an existentia...
xpexgALT 7972 Alternate proof of ~ xpexg...
offval3 7973 General value of ` ( F oF ...
offres 7974 Pointwise combination comm...
ofmres 7975 Equivalent expressions for...
ofmresex 7976 Existence of a restriction...
1stval 7981 The value of the function ...
2ndval 7982 The value of the function ...
1stnpr 7983 Value of the first-member ...
2ndnpr 7984 Value of the second-member...
1st0 7985 The value of the first-mem...
2nd0 7986 The value of the second-me...
op1st 7987 Extract the first member o...
op2nd 7988 Extract the second member ...
op1std 7989 Extract the first member o...
op2ndd 7990 Extract the second member ...
op1stg 7991 Extract the first member o...
op2ndg 7992 Extract the second member ...
ot1stg 7993 Extract the first member o...
ot2ndg 7994 Extract the second member ...
ot3rdg 7995 Extract the third member o...
1stval2 7996 Alternate value of the fun...
2ndval2 7997 Alternate value of the fun...
oteqimp 7998 The components of an order...
fo1st 7999 The ` 1st ` function maps ...
fo2nd 8000 The ` 2nd ` function maps ...
br1steqg 8001 Uniqueness condition for t...
br2ndeqg 8002 Uniqueness condition for t...
f1stres 8003 Mapping of a restriction o...
f2ndres 8004 Mapping of a restriction o...
fo1stres 8005 Onto mapping of a restrict...
fo2ndres 8006 Onto mapping of a restrict...
1st2val 8007 Value of an alternate defi...
2nd2val 8008 Value of an alternate defi...
1stcof 8009 Composition of the first m...
2ndcof 8010 Composition of the second ...
xp1st 8011 Location of the first elem...
xp2nd 8012 Location of the second ele...
elxp6 8013 Membership in a Cartesian ...
elxp7 8014 Membership in a Cartesian ...
eqopi 8015 Equality with an ordered p...
xp2 8016 Representation of Cartesia...
unielxp 8017 The membership relation fo...
1st2nd2 8018 Reconstruction of a member...
1st2ndb 8019 Reconstruction of an order...
xpopth 8020 An ordered pair theorem fo...
eqop 8021 Two ways to express equali...
eqop2 8022 Two ways to express equali...
op1steq 8023 Two ways of expressing tha...
opreuopreu 8024 There is a unique ordered ...
el2xptp 8025 A member of a nested Carte...
el2xptp0 8026 A member of a nested Carte...
el2xpss 8027 Version of ~ elrel for tri...
2nd1st 8028 Swap the members of an ord...
1st2nd 8029 Reconstruction of a member...
1stdm 8030 The first ordered pair com...
2ndrn 8031 The second ordered pair co...
1st2ndbr 8032 Express an element of a re...
releldm2 8033 Two ways of expressing mem...
reldm 8034 An expression for the doma...
releldmdifi 8035 One way of expressing memb...
funfv1st2nd 8036 The function value for the...
funelss 8037 If the first component of ...
funeldmdif 8038 Two ways of expressing mem...
sbcopeq1a 8039 Equality theorem for subst...
csbopeq1a 8040 Equality theorem for subst...
sbcoteq1a 8041 Equality theorem for subst...
dfopab2 8042 A way to define an ordered...
dfoprab3s 8043 A way to define an operati...
dfoprab3 8044 Operation class abstractio...
dfoprab4 8045 Operation class abstractio...
dfoprab4f 8046 Operation class abstractio...
opabex2 8047 Condition for an operation...
opabn1stprc 8048 An ordered-pair class abst...
opiota 8049 The property of a uniquely...
cnvoprab 8050 The converse of a class ab...
dfxp3 8051 Define the Cartesian produ...
elopabi 8052 A consequence of membershi...
eloprabi 8053 A consequence of membershi...
mpomptsx 8054 Express a two-argument fun...
mpompts 8055 Express a two-argument fun...
dmmpossx 8056 The domain of a mapping is...
fmpox 8057 Functionality, domain and ...
fmpo 8058 Functionality, domain and ...
fnmpo 8059 Functionality and domain o...
fnmpoi 8060 Functionality and domain o...
dmmpo 8061 Domain of a class given by...
ovmpoelrn 8062 An operation's value belon...
dmmpoga 8063 Domain of an operation giv...
dmmpogaOLD 8064 Obsolete version of ~ dmmp...
dmmpog 8065 Domain of an operation giv...
mpoexxg 8066 Existence of an operation ...
mpoexg 8067 Existence of an operation ...
mpoexga 8068 If the domain of an operat...
mpoexw 8069 Weak version of ~ mpoex th...
mpoex 8070 If the domain of an operat...
mptmpoopabbrd 8071 The operation value of a f...
mptmpoopabovd 8072 The operation value of a f...
mptmpoopabbrdOLD 8073 Obsolete version of ~ mptm...
mptmpoopabovdOLD 8074 Obsolete version of ~ mptm...
el2mpocsbcl 8075 If the operation value of ...
el2mpocl 8076 If the operation value of ...
fnmpoovd 8077 A function with a Cartesia...
offval22 8078 The function operation exp...
brovpreldm 8079 If a binary relation holds...
bropopvvv 8080 If a binary relation holds...
bropfvvvvlem 8081 Lemma for ~ bropfvvvv . (...
bropfvvvv 8082 If a binary relation holds...
ovmptss 8083 If all the values of the m...
relmpoopab 8084 Any function to sets of or...
fmpoco 8085 Composition of two functio...
oprabco 8086 Composition of a function ...
oprab2co 8087 Composition of operator ab...
df1st2 8088 An alternate possible defi...
df2nd2 8089 An alternate possible defi...
1stconst 8090 The mapping of a restricti...
2ndconst 8091 The mapping of a restricti...
dfmpo 8092 Alternate definition for t...
mposn 8093 An operation (in maps-to n...
curry1 8094 Composition with ` ``' ( 2...
curry1val 8095 The value of a curried fun...
curry1f 8096 Functionality of a curried...
curry2 8097 Composition with ` ``' ( 1...
curry2f 8098 Functionality of a curried...
curry2val 8099 The value of a curried fun...
cnvf1olem 8100 Lemma for ~ cnvf1o . (Con...
cnvf1o 8101 Describe a function that m...
fparlem1 8102 Lemma for ~ fpar . (Contr...
fparlem2 8103 Lemma for ~ fpar . (Contr...
fparlem3 8104 Lemma for ~ fpar . (Contr...
fparlem4 8105 Lemma for ~ fpar . (Contr...
fpar 8106 Merge two functions in par...
fsplit 8107 A function that can be use...
fsplitfpar 8108 Merge two functions with a...
offsplitfpar 8109 Express the function opera...
f2ndf 8110 The ` 2nd ` (second compon...
fo2ndf 8111 The ` 2nd ` (second compon...
f1o2ndf1 8112 The ` 2nd ` (second compon...
opco1 8113 Value of an operation prec...
opco2 8114 Value of an operation prec...
opco1i 8115 Inference form of ~ opco1 ...
frxp 8116 A lexicographical ordering...
xporderlem 8117 Lemma for lexicographical ...
poxp 8118 A lexicographical ordering...
soxp 8119 A lexicographical ordering...
wexp 8120 A lexicographical ordering...
fnwelem 8121 Lemma for ~ fnwe . (Contr...
fnwe 8122 A variant on lexicographic...
fnse 8123 Condition for the well-ord...
fvproj 8124 Value of a function on ord...
fimaproj 8125 Image of a cartesian produ...
ralxpes 8126 A version of ~ ralxp with ...
ralxp3f 8127 Restricted for all over a ...
ralxp3 8128 Restricted for all over a ...
ralxp3es 8129 Restricted for-all over a ...
frpoins3xpg 8130 Special case of founded pa...
frpoins3xp3g 8131 Special case of founded pa...
xpord2lem 8132 Lemma for Cartesian produc...
poxp2 8133 Another way of partially o...
frxp2 8134 Another way of giving a we...
xpord2pred 8135 Calculate the predecessor ...
sexp2 8136 Condition for the relation...
xpord2indlem 8137 Induction over the Cartesi...
xpord2ind 8138 Induction over the Cartesi...
xpord3lem 8139 Lemma for triple ordering....
poxp3 8140 Triple Cartesian product p...
frxp3 8141 Give well-foundedness over...
xpord3pred 8142 Calculate the predecsessor...
sexp3 8143 Show that the triple order...
xpord3inddlem 8144 Induction over the triple ...
xpord3indd 8145 Induction over the triple ...
xpord3ind 8146 Induction over the triple ...
orderseqlem 8147 Lemma for ~ poseq and ~ so...
poseq 8148 A partial ordering of ordi...
soseq 8149 A linear ordering of ordin...
suppval 8152 The value of the operation...
supp0prc 8153 The support of a class is ...
suppvalbr 8154 The value of the operation...
supp0 8155 The support of the empty s...
suppval1 8156 The value of the operation...
suppvalfng 8157 The value of the operation...
suppvalfn 8158 The value of the operation...
elsuppfng 8159 An element of the support ...
elsuppfn 8160 An element of the support ...
cnvimadfsn 8161 The support of functions "...
suppimacnvss 8162 The support of functions "...
suppimacnv 8163 Support sets of functions ...
fsuppeq 8164 Two ways of writing the su...
fsuppeqg 8165 Version of ~ fsuppeq avoid...
suppssdm 8166 The support of a function ...
suppsnop 8167 The support of a singleton...
snopsuppss 8168 The support of a singleton...
fvn0elsupp 8169 If the function value for ...
fvn0elsuppb 8170 The function value for a g...
rexsupp 8171 Existential quantification...
ressuppss 8172 The support of the restric...
suppun 8173 The support of a class/fun...
ressuppssdif 8174 The support of the restric...
mptsuppdifd 8175 The support of a function ...
mptsuppd 8176 The support of a function ...
extmptsuppeq 8177 The support of an extended...
suppfnss 8178 The support of a function ...
funsssuppss 8179 The support of a function ...
fnsuppres 8180 Two ways to express restri...
fnsuppeq0 8181 The support of a function ...
fczsupp0 8182 The support of a constant ...
suppss 8183 Show that the support of a...
suppssOLD 8184 Obsolete version of ~ supp...
suppssr 8185 A function is zero outside...
suppssrg 8186 A function is zero outside...
suppssov1 8187 Formula building theorem f...
suppssof1 8188 Formula building theorem f...
suppss2 8189 Show that the support of a...
suppsssn 8190 Show that the support of a...
suppssfv 8191 Formula building theorem f...
suppofssd 8192 Condition for the support ...
suppofss1d 8193 Condition for the support ...
suppofss2d 8194 Condition for the support ...
suppco 8195 The support of the composi...
suppcoss 8196 The support of the composi...
supp0cosupp0 8197 The support of the composi...
imacosupp 8198 The image of the support o...
opeliunxp2f 8199 Membership in a union of C...
mpoxeldm 8200 If there is an element of ...
mpoxneldm 8201 If the first argument of a...
mpoxopn0yelv 8202 If there is an element of ...
mpoxopynvov0g 8203 If the second argument of ...
mpoxopxnop0 8204 If the first argument of a...
mpoxopx0ov0 8205 If the first argument of a...
mpoxopxprcov0 8206 If the components of the f...
mpoxopynvov0 8207 If the second argument of ...
mpoxopoveq 8208 Value of an operation give...
mpoxopovel 8209 Element of the value of an...
mpoxopoveqd 8210 Value of an operation give...
brovex 8211 A binary relation of the v...
brovmpoex 8212 A binary relation of the v...
sprmpod 8213 The extension of a binary ...
tposss 8216 Subset theorem for transpo...
tposeq 8217 Equality theorem for trans...
tposeqd 8218 Equality theorem for trans...
tposssxp 8219 The transposition is a sub...
reltpos 8220 The transposition is a rel...
brtpos2 8221 Value of the transposition...
brtpos0 8222 The behavior of ` tpos ` w...
reldmtpos 8223 Necessary and sufficient c...
brtpos 8224 The transposition swaps ar...
ottpos 8225 The transposition swaps th...
relbrtpos 8226 The transposition swaps ar...
dmtpos 8227 The domain of ` tpos F ` w...
rntpos 8228 The range of ` tpos F ` wh...
tposexg 8229 The transposition of a set...
ovtpos 8230 The transposition swaps th...
tposfun 8231 The transposition of a fun...
dftpos2 8232 Alternate definition of ` ...
dftpos3 8233 Alternate definition of ` ...
dftpos4 8234 Alternate definition of ` ...
tpostpos 8235 Value of the double transp...
tpostpos2 8236 Value of the double transp...
tposfn2 8237 The domain of a transposit...
tposfo2 8238 Condition for a surjective...
tposf2 8239 The domain and codomain of...
tposf12 8240 Condition for an injective...
tposf1o2 8241 Condition of a bijective t...
tposfo 8242 The domain and codomain/ra...
tposf 8243 The domain and codomain of...
tposfn 8244 Functionality of a transpo...
tpos0 8245 Transposition of the empty...
tposco 8246 Transposition of a composi...
tpossym 8247 Two ways to say a function...
tposeqi 8248 Equality theorem for trans...
tposex 8249 A transposition is a set. ...
nftpos 8250 Hypothesis builder for tra...
tposoprab 8251 Transposition of a class o...
tposmpo 8252 Transposition of a two-arg...
tposconst 8253 The transposition of a con...
mpocurryd 8258 The currying of an operati...
mpocurryvald 8259 The value of a curried ope...
fvmpocurryd 8260 The value of the value of ...
pwuninel2 8263 Direct proof of ~ pwuninel...
pwuninel 8264 The power set of the union...
undefval 8265 Value of the undefined val...
undefnel2 8266 The undefined value genera...
undefnel 8267 The undefined value genera...
undefne0 8268 The undefined value genera...
frecseq123 8271 Equality theorem for the w...
nffrecs 8272 Bound-variable hypothesis ...
csbfrecsg 8273 Move class substitution in...
fpr3g 8274 Functions defined by well-...
frrlem1 8275 Lemma for well-founded rec...
frrlem2 8276 Lemma for well-founded rec...
frrlem3 8277 Lemma for well-founded rec...
frrlem4 8278 Lemma for well-founded rec...
frrlem5 8279 Lemma for well-founded rec...
frrlem6 8280 Lemma for well-founded rec...
frrlem7 8281 Lemma for well-founded rec...
frrlem8 8282 Lemma for well-founded rec...
frrlem9 8283 Lemma for well-founded rec...
frrlem10 8284 Lemma for well-founded rec...
frrlem11 8285 Lemma for well-founded rec...
frrlem12 8286 Lemma for well-founded rec...
frrlem13 8287 Lemma for well-founded rec...
frrlem14 8288 Lemma for well-founded rec...
fprlem1 8289 Lemma for well-founded rec...
fprlem2 8290 Lemma for well-founded rec...
fpr2a 8291 Weak version of ~ fpr2 whi...
fpr1 8292 Law of well-founded recurs...
fpr2 8293 Law of well-founded recurs...
fpr3 8294 Law of well-founded recurs...
frrrel 8295 Show without using the axi...
frrdmss 8296 Show without using the axi...
frrdmcl 8297 Show without using the axi...
fprfung 8298 A "function" defined by we...
fprresex 8299 The restriction of a funct...
dfwrecsOLD 8302 Obsolete definition of the...
wrecseq123 8303 General equality theorem f...
wrecseq123OLD 8304 Obsolete version of ~ wrec...
nfwrecs 8305 Bound-variable hypothesis ...
nfwrecsOLD 8306 Obsolete proof of ~ nfwrec...
wrecseq1 8307 Equality theorem for the w...
wrecseq2 8308 Equality theorem for the w...
wrecseq3 8309 Equality theorem for the w...
csbwrecsg 8310 Move class substitution in...
wfr3g 8311 Functions defined by well-...
wfrlem1OLD 8312 Lemma for well-ordered rec...
wfrlem2OLD 8313 Lemma for well-ordered rec...
wfrlem3OLD 8314 Lemma for well-ordered rec...
wfrlem3OLDa 8315 Lemma for well-ordered rec...
wfrlem4OLD 8316 Lemma for well-ordered rec...
wfrlem5OLD 8317 Lemma for well-ordered rec...
wfrrelOLD 8318 Obsolete proof of ~ wfrrel...
wfrdmssOLD 8319 Obsolete proof of ~ wfrdms...
wfrlem8OLD 8320 Lemma for well-ordered rec...
wfrdmclOLD 8321 Obsolete version of ~ wfrd...
wfrlem10OLD 8322 Lemma for well-ordered rec...
wfrfunOLD 8323 Obsolete proof of ~ wfrfun...
wfrlem12OLD 8324 Lemma for well-ordered rec...
wfrlem13OLD 8325 Lemma for well-ordered rec...
wfrlem14OLD 8326 Lemma for well-ordered rec...
wfrlem15OLD 8327 Lemma for well-ordered rec...
wfrlem16OLD 8328 Lemma for well-ordered rec...
wfrlem17OLD 8329 Without using ~ ax-rep , s...
wfr2aOLD 8330 Obsolete version of ~ wfr2...
wfr1OLD 8331 Obsolete version of ~ wfr1...
wfr2OLD 8332 Obsolete version of ~ wfr2...
wfrrel 8333 The well-ordered recursion...
wfrdmss 8334 The domain of the well-ord...
wfrdmcl 8335 The predecessor class of a...
wfrfun 8336 The "function" generated b...
wfrresex 8337 Show without using the axi...
wfr2a 8338 A weak version of ~ wfr2 w...
wfr1 8339 The Principle of Well-Orde...
wfr2 8340 The Principle of Well-Orde...
wfr3 8341 The principle of Well-Orde...
wfr3OLD 8342 Obsolete form of ~ wfr3 as...
iunon 8343 The indexed union of a set...
iinon 8344 The nonempty indexed inter...
onfununi 8345 A property of functions on...
onovuni 8346 A variant of ~ onfununi fo...
onoviun 8347 A variant of ~ onovuni wit...
onnseq 8348 There are no length ` _om ...
dfsmo2 8351 Alternate definition of a ...
issmo 8352 Conditions for which ` A `...
issmo2 8353 Alternate definition of a ...
smoeq 8354 Equality theorem for stric...
smodm 8355 The domain of a strictly m...
smores 8356 A strictly monotone functi...
smores3 8357 A strictly monotone functi...
smores2 8358 A strictly monotone ordina...
smodm2 8359 The domain of a strictly m...
smofvon2 8360 The function values of a s...
iordsmo 8361 The identity relation rest...
smo0 8362 The null set is a strictly...
smofvon 8363 If ` B ` is a strictly mon...
smoel 8364 If ` x ` is less than ` y ...
smoiun 8365 The value of a strictly mo...
smoiso 8366 If ` F ` is an isomorphism...
smoel2 8367 A strictly monotone ordina...
smo11 8368 A strictly monotone ordina...
smoord 8369 A strictly monotone ordina...
smoword 8370 A strictly monotone ordina...
smogt 8371 A strictly monotone ordina...
smocdmdom 8372 The codomain of a strictly...
smoiso2 8373 The strictly monotone ordi...
dfrecs3 8376 The old definition of tran...
dfrecs3OLD 8377 Obsolete version of ~ dfre...
recseq 8378 Equality theorem for ` rec...
nfrecs 8379 Bound-variable hypothesis ...
tfrlem1 8380 A technical lemma for tran...
tfrlem3a 8381 Lemma for transfinite recu...
tfrlem3 8382 Lemma for transfinite recu...
tfrlem4 8383 Lemma for transfinite recu...
tfrlem5 8384 Lemma for transfinite recu...
recsfval 8385 Lemma for transfinite recu...
tfrlem6 8386 Lemma for transfinite recu...
tfrlem7 8387 Lemma for transfinite recu...
tfrlem8 8388 Lemma for transfinite recu...
tfrlem9 8389 Lemma for transfinite recu...
tfrlem9a 8390 Lemma for transfinite recu...
tfrlem10 8391 Lemma for transfinite recu...
tfrlem11 8392 Lemma for transfinite recu...
tfrlem12 8393 Lemma for transfinite recu...
tfrlem13 8394 Lemma for transfinite recu...
tfrlem14 8395 Lemma for transfinite recu...
tfrlem15 8396 Lemma for transfinite recu...
tfrlem16 8397 Lemma for finite recursion...
tfr1a 8398 A weak version of ~ tfr1 w...
tfr2a 8399 A weak version of ~ tfr2 w...
tfr2b 8400 Without assuming ~ ax-rep ...
tfr1 8401 Principle of Transfinite R...
tfr2 8402 Principle of Transfinite R...
tfr3 8403 Principle of Transfinite R...
tfr1ALT 8404 Alternate proof of ~ tfr1 ...
tfr2ALT 8405 Alternate proof of ~ tfr2 ...
tfr3ALT 8406 Alternate proof of ~ tfr3 ...
recsfnon 8407 Strong transfinite recursi...
recsval 8408 Strong transfinite recursi...
tz7.44lem1 8409 The ordered pair abstracti...
tz7.44-1 8410 The value of ` F ` at ` (/...
tz7.44-2 8411 The value of ` F ` at a su...
tz7.44-3 8412 The value of ` F ` at a li...
rdgeq1 8415 Equality theorem for the r...
rdgeq2 8416 Equality theorem for the r...
rdgeq12 8417 Equality theorem for the r...
nfrdg 8418 Bound-variable hypothesis ...
rdglem1 8419 Lemma used with the recurs...
rdgfun 8420 The recursive definition g...
rdgdmlim 8421 The domain of the recursiv...
rdgfnon 8422 The recursive definition g...
rdgvalg 8423 Value of the recursive def...
rdgval 8424 Value of the recursive def...
rdg0 8425 The initial value of the r...
rdgseg 8426 The initial segments of th...
rdgsucg 8427 The value of the recursive...
rdgsuc 8428 The value of the recursive...
rdglimg 8429 The value of the recursive...
rdglim 8430 The value of the recursive...
rdg0g 8431 The initial value of the r...
rdgsucmptf 8432 The value of the recursive...
rdgsucmptnf 8433 The value of the recursive...
rdgsucmpt2 8434 This version of ~ rdgsucmp...
rdgsucmpt 8435 The value of the recursive...
rdglim2 8436 The value of the recursive...
rdglim2a 8437 The value of the recursive...
rdg0n 8438 If ` A ` is a proper class...
frfnom 8439 The function generated by ...
fr0g 8440 The initial value resultin...
frsuc 8441 The successor value result...
frsucmpt 8442 The successor value result...
frsucmptn 8443 The value of the finite re...
frsucmpt2 8444 The successor value result...
tz7.48lem 8445 A way of showing an ordina...
tz7.48-2 8446 Proposition 7.48(2) of [Ta...
tz7.48-1 8447 Proposition 7.48(1) of [Ta...
tz7.48-3 8448 Proposition 7.48(3) of [Ta...
tz7.49 8449 Proposition 7.49 of [Takeu...
tz7.49c 8450 Corollary of Proposition 7...
seqomlem0 8453 Lemma for ` seqom ` . Cha...
seqomlem1 8454 Lemma for ` seqom ` . The...
seqomlem2 8455 Lemma for ` seqom ` . (Co...
seqomlem3 8456 Lemma for ` seqom ` . (Co...
seqomlem4 8457 Lemma for ` seqom ` . (Co...
seqomeq12 8458 Equality theorem for ` seq...
fnseqom 8459 An index-aware recursive d...
seqom0g 8460 Value of an index-aware re...
seqomsuc 8461 Value of an index-aware re...
omsucelsucb 8462 Membership is inherited by...
df1o2 8477 Expanded value of the ordi...
df2o3 8478 Expanded value of the ordi...
df2o2 8479 Expanded value of the ordi...
1oex 8480 Ordinal 1 is a set. (Cont...
2oex 8481 ` 2o ` is a set. (Contrib...
1on 8482 Ordinal 1 is an ordinal nu...
1onOLD 8483 Obsolete version of ~ 1on ...
2on 8484 Ordinal 2 is an ordinal nu...
2onOLD 8485 Obsolete version of ~ 2on ...
2on0 8486 Ordinal two is not zero. ...
ord3 8487 Ordinal 3 is an ordinal cl...
3on 8488 Ordinal 3 is an ordinal nu...
4on 8489 Ordinal 4 is an ordinal nu...
1oexOLD 8490 Obsolete version of ~ 1oex...
2oexOLD 8491 Obsolete version of ~ 2oex...
1n0 8492 Ordinal one is not equal t...
nlim1 8493 1 is not a limit ordinal. ...
nlim2 8494 2 is not a limit ordinal. ...
xp01disj 8495 Cartesian products with th...
xp01disjl 8496 Cartesian products with th...
ordgt0ge1 8497 Two ways to express that a...
ordge1n0 8498 An ordinal greater than or...
el1o 8499 Membership in ordinal one....
ord1eln01 8500 An ordinal that is not 0 o...
ord2eln012 8501 An ordinal that is not 0, ...
1ellim 8502 A limit ordinal contains 1...
2ellim 8503 A limit ordinal contains 2...
dif1o 8504 Two ways to say that ` A `...
ondif1 8505 Two ways to say that ` A `...
ondif2 8506 Two ways to say that ` A `...
2oconcl 8507 Closure of the pair swappi...
0lt1o 8508 Ordinal zero is less than ...
dif20el 8509 An ordinal greater than on...
0we1 8510 The empty set is a well-or...
brwitnlem 8511 Lemma for relations which ...
fnoa 8512 Functionality and domain o...
fnom 8513 Functionality and domain o...
fnoe 8514 Functionality and domain o...
oav 8515 Value of ordinal addition....
omv 8516 Value of ordinal multiplic...
oe0lem 8517 A helper lemma for ~ oe0 a...
oev 8518 Value of ordinal exponenti...
oevn0 8519 Value of ordinal exponenti...
oa0 8520 Addition with zero. Propo...
om0 8521 Ordinal multiplication wit...
oe0m 8522 Value of zero raised to an...
om0x 8523 Ordinal multiplication wit...
oe0m0 8524 Ordinal exponentiation wit...
oe0m1 8525 Ordinal exponentiation wit...
oe0 8526 Ordinal exponentiation wit...
oev2 8527 Alternate value of ordinal...
oasuc 8528 Addition with successor. ...
oesuclem 8529 Lemma for ~ oesuc . (Cont...
omsuc 8530 Multiplication with succes...
oesuc 8531 Ordinal exponentiation wit...
onasuc 8532 Addition with successor. ...
onmsuc 8533 Multiplication with succes...
onesuc 8534 Exponentiation with a succ...
oa1suc 8535 Addition with 1 is same as...
oalim 8536 Ordinal addition with a li...
omlim 8537 Ordinal multiplication wit...
oelim 8538 Ordinal exponentiation wit...
oacl 8539 Closure law for ordinal ad...
omcl 8540 Closure law for ordinal mu...
oecl 8541 Closure law for ordinal ex...
oa0r 8542 Ordinal addition with zero...
om0r 8543 Ordinal multiplication wit...
o1p1e2 8544 1 + 1 = 2 for ordinal numb...
o2p2e4 8545 2 + 2 = 4 for ordinal numb...
om1 8546 Ordinal multiplication wit...
om1r 8547 Ordinal multiplication wit...
oe1 8548 Ordinal exponentiation wit...
oe1m 8549 Ordinal exponentiation wit...
oaordi 8550 Ordering property of ordin...
oaord 8551 Ordering property of ordin...
oacan 8552 Left cancellation law for ...
oaword 8553 Weak ordering property of ...
oawordri 8554 Weak ordering property of ...
oaord1 8555 An ordinal is less than it...
oaword1 8556 An ordinal is less than or...
oaword2 8557 An ordinal is less than or...
oawordeulem 8558 Lemma for ~ oawordex . (C...
oawordeu 8559 Existence theorem for weak...
oawordexr 8560 Existence theorem for weak...
oawordex 8561 Existence theorem for weak...
oaordex 8562 Existence theorem for orde...
oa00 8563 An ordinal sum is zero iff...
oalimcl 8564 The ordinal sum with a lim...
oaass 8565 Ordinal addition is associ...
oarec 8566 Recursive definition of or...
oaf1o 8567 Left addition by a constan...
oacomf1olem 8568 Lemma for ~ oacomf1o . (C...
oacomf1o 8569 Define a bijection from ` ...
omordi 8570 Ordering property of ordin...
omord2 8571 Ordering property of ordin...
omord 8572 Ordering property of ordin...
omcan 8573 Left cancellation law for ...
omword 8574 Weak ordering property of ...
omwordi 8575 Weak ordering property of ...
omwordri 8576 Weak ordering property of ...
omword1 8577 An ordinal is less than or...
omword2 8578 An ordinal is less than or...
om00 8579 The product of two ordinal...
om00el 8580 The product of two nonzero...
omordlim 8581 Ordering involving the pro...
omlimcl 8582 The product of any nonzero...
odi 8583 Distributive law for ordin...
omass 8584 Multiplication of ordinal ...
oneo 8585 If an ordinal number is ev...
omeulem1 8586 Lemma for ~ omeu : existen...
omeulem2 8587 Lemma for ~ omeu : uniquen...
omopth2 8588 An ordered pair-like theor...
omeu 8589 The division algorithm for...
oen0 8590 Ordinal exponentiation wit...
oeordi 8591 Ordering law for ordinal e...
oeord 8592 Ordering property of ordin...
oecan 8593 Left cancellation law for ...
oeword 8594 Weak ordering property of ...
oewordi 8595 Weak ordering property of ...
oewordri 8596 Weak ordering property of ...
oeworde 8597 Ordinal exponentiation com...
oeordsuc 8598 Ordering property of ordin...
oelim2 8599 Ordinal exponentiation wit...
oeoalem 8600 Lemma for ~ oeoa . (Contr...
oeoa 8601 Sum of exponents law for o...
oeoelem 8602 Lemma for ~ oeoe . (Contr...
oeoe 8603 Product of exponents law f...
oelimcl 8604 The ordinal exponential wi...
oeeulem 8605 Lemma for ~ oeeu . (Contr...
oeeui 8606 The division algorithm for...
oeeu 8607 The division algorithm for...
nna0 8608 Addition with zero. Theor...
nnm0 8609 Multiplication with zero. ...
nnasuc 8610 Addition with successor. ...
nnmsuc 8611 Multiplication with succes...
nnesuc 8612 Exponentiation with a succ...
nna0r 8613 Addition to zero. Remark ...
nnm0r 8614 Multiplication with zero. ...
nnacl 8615 Closure of addition of nat...
nnmcl 8616 Closure of multiplication ...
nnecl 8617 Closure of exponentiation ...
nnacli 8618 ` _om ` is closed under ad...
nnmcli 8619 ` _om ` is closed under mu...
nnarcl 8620 Reverse closure law for ad...
nnacom 8621 Addition of natural number...
nnaordi 8622 Ordering property of addit...
nnaord 8623 Ordering property of addit...
nnaordr 8624 Ordering property of addit...
nnawordi 8625 Adding to both sides of an...
nnaass 8626 Addition of natural number...
nndi 8627 Distributive law for natur...
nnmass 8628 Multiplication of natural ...
nnmsucr 8629 Multiplication with succes...
nnmcom 8630 Multiplication of natural ...
nnaword 8631 Weak ordering property of ...
nnacan 8632 Cancellation law for addit...
nnaword1 8633 Weak ordering property of ...
nnaword2 8634 Weak ordering property of ...
nnmordi 8635 Ordering property of multi...
nnmord 8636 Ordering property of multi...
nnmword 8637 Weak ordering property of ...
nnmcan 8638 Cancellation law for multi...
nnmwordi 8639 Weak ordering property of ...
nnmwordri 8640 Weak ordering property of ...
nnawordex 8641 Equivalence for weak order...
nnaordex 8642 Equivalence for ordering. ...
1onn 8643 The ordinal 1 is a natural...
1onnALT 8644 Shorter proof of ~ 1onn us...
2onn 8645 The ordinal 2 is a natural...
2onnALT 8646 Shorter proof of ~ 2onn us...
3onn 8647 The ordinal 3 is a natural...
4onn 8648 The ordinal 4 is a natural...
1one2o 8649 Ordinal one is not ordinal...
oaabslem 8650 Lemma for ~ oaabs . (Cont...
oaabs 8651 Ordinal addition absorbs a...
oaabs2 8652 The absorption law ~ oaabs...
omabslem 8653 Lemma for ~ omabs . (Cont...
omabs 8654 Ordinal multiplication is ...
nnm1 8655 Multiply an element of ` _...
nnm2 8656 Multiply an element of ` _...
nn2m 8657 Multiply an element of ` _...
nnneo 8658 If a natural number is eve...
nneob 8659 A natural number is even i...
omsmolem 8660 Lemma for ~ omsmo . (Cont...
omsmo 8661 A strictly monotonic ordin...
omopthlem1 8662 Lemma for ~ omopthi . (Co...
omopthlem2 8663 Lemma for ~ omopthi . (Co...
omopthi 8664 An ordered pair theorem fo...
omopth 8665 An ordered pair theorem fo...
nnasmo 8666 There is at most one left ...
eldifsucnn 8667 Condition for membership i...
on2recsfn 8670 Show that double recursion...
on2recsov 8671 Calculate the value of the...
on2ind 8672 Double induction over ordi...
on3ind 8673 Triple induction over ordi...
coflton 8674 Cofinality theorem for ord...
cofon1 8675 Cofinality theorem for ord...
cofon2 8676 Cofinality theorem for ord...
cofonr 8677 Inverse cofinality law for...
naddfn 8678 Natural addition is a func...
naddcllem 8679 Lemma for ordinal addition...
naddcl 8680 Closure law for natural ad...
naddov 8681 The value of natural addit...
naddov2 8682 Alternate expression for n...
naddov3 8683 Alternate expression for n...
naddf 8684 Function statement for nat...
naddcom 8685 Natural addition commutes....
naddrid 8686 Ordinal zero is the additi...
naddlid 8687 Ordinal zero is the additi...
naddssim 8688 Ordinal less-than-or-equal...
naddelim 8689 Ordinal less-than is prese...
naddel1 8690 Ordinal less-than is not a...
naddel2 8691 Ordinal less-than is not a...
naddss1 8692 Ordinal less-than-or-equal...
naddss2 8693 Ordinal less-than-or-equal...
naddword1 8694 Weak-ordering principle fo...
naddword2 8695 Weak-ordering principle fo...
naddunif 8696 Uniformity theorem for nat...
naddasslem1 8697 Lemma for ~ naddass . Exp...
naddasslem2 8698 Lemma for ~ naddass . Exp...
naddass 8699 Natural ordinal addition i...
nadd32 8700 Commutative/associative la...
nadd4 8701 Rearragement of terms in a...
nadd42 8702 Rearragement of terms in a...
naddel12 8703 Natural addition to both s...
dfer2 8708 Alternate definition of eq...
dfec2 8710 Alternate definition of ` ...
ecexg 8711 An equivalence class modul...
ecexr 8712 A nonempty equivalence cla...
ereq1 8714 Equality theorem for equiv...
ereq2 8715 Equality theorem for equiv...
errel 8716 An equivalence relation is...
erdm 8717 The domain of an equivalen...
ercl 8718 Elementhood in the field o...
ersym 8719 An equivalence relation is...
ercl2 8720 Elementhood in the field o...
ersymb 8721 An equivalence relation is...
ertr 8722 An equivalence relation is...
ertrd 8723 A transitivity relation fo...
ertr2d 8724 A transitivity relation fo...
ertr3d 8725 A transitivity relation fo...
ertr4d 8726 A transitivity relation fo...
erref 8727 An equivalence relation is...
ercnv 8728 The converse of an equival...
errn 8729 The range and domain of an...
erssxp 8730 An equivalence relation is...
erex 8731 An equivalence relation is...
erexb 8732 An equivalence relation is...
iserd 8733 A reflexive, symmetric, tr...
iseri 8734 A reflexive, symmetric, tr...
iseriALT 8735 Alternate proof of ~ iseri...
brdifun 8736 Evaluate the incomparabili...
swoer 8737 Incomparability under a st...
swoord1 8738 The incomparability equiva...
swoord2 8739 The incomparability equiva...
swoso 8740 If the incomparability rel...
eqerlem 8741 Lemma for ~ eqer . (Contr...
eqer 8742 Equivalence relation invol...
ider 8743 The identity relation is a...
0er 8744 The empty set is an equiva...
eceq1 8745 Equality theorem for equiv...
eceq1d 8746 Equality theorem for equiv...
eceq2 8747 Equality theorem for equiv...
eceq2i 8748 Equality theorem for the `...
eceq2d 8749 Equality theorem for the `...
elecg 8750 Membership in an equivalen...
elec 8751 Membership in an equivalen...
relelec 8752 Membership in an equivalen...
ecss 8753 An equivalence class is a ...
ecdmn0 8754 A representative of a none...
ereldm 8755 Equality of equivalence cl...
erth 8756 Basic property of equivale...
erth2 8757 Basic property of equivale...
erthi 8758 Basic property of equivale...
erdisj 8759 Equivalence classes do not...
ecidsn 8760 An equivalence class modul...
qseq1 8761 Equality theorem for quoti...
qseq2 8762 Equality theorem for quoti...
qseq2i 8763 Equality theorem for quoti...
qseq2d 8764 Equality theorem for quoti...
qseq12 8765 Equality theorem for quoti...
elqsg 8766 Closed form of ~ elqs . (...
elqs 8767 Membership in a quotient s...
elqsi 8768 Membership in a quotient s...
elqsecl 8769 Membership in a quotient s...
ecelqsg 8770 Membership of an equivalen...
ecelqsi 8771 Membership of an equivalen...
ecopqsi 8772 "Closure" law for equivale...
qsexg 8773 A quotient set exists. (C...
qsex 8774 A quotient set exists. (C...
uniqs 8775 The union of a quotient se...
qsss 8776 A quotient set is a set of...
uniqs2 8777 The union of a quotient se...
snec 8778 The singleton of an equiva...
ecqs 8779 Equivalence class in terms...
ecid 8780 A set is equal to its cose...
qsid 8781 A set is equal to its quot...
ectocld 8782 Implicit substitution of c...
ectocl 8783 Implicit substitution of c...
elqsn0 8784 A quotient set does not co...
ecelqsdm 8785 Membership of an equivalen...
xpider 8786 A Cartesian square is an e...
iiner 8787 The intersection of a none...
riiner 8788 The relative intersection ...
erinxp 8789 A restricted equivalence r...
ecinxp 8790 Restrict the relation in a...
qsinxp 8791 Restrict the equivalence r...
qsdisj 8792 Members of a quotient set ...
qsdisj2 8793 A quotient set is a disjoi...
qsel 8794 If an element of a quotien...
uniinqs 8795 Class union distributes ov...
qliftlem 8796 Lemma for theorems about a...
qliftrel 8797 ` F ` , a function lift, i...
qliftel 8798 Elementhood in the relatio...
qliftel1 8799 Elementhood in the relatio...
qliftfun 8800 The function ` F ` is the ...
qliftfund 8801 The function ` F ` is the ...
qliftfuns 8802 The function ` F ` is the ...
qliftf 8803 The domain and codomain of...
qliftval 8804 The value of the function ...
ecoptocl 8805 Implicit substitution of c...
2ecoptocl 8806 Implicit substitution of c...
3ecoptocl 8807 Implicit substitution of c...
brecop 8808 Binary relation on a quoti...
brecop2 8809 Binary relation on a quoti...
eroveu 8810 Lemma for ~ erov and ~ ero...
erovlem 8811 Lemma for ~ erov and ~ ero...
erov 8812 The value of an operation ...
eroprf 8813 Functionality of an operat...
erov2 8814 The value of an operation ...
eroprf2 8815 Functionality of an operat...
ecopoveq 8816 This is the first of sever...
ecopovsym 8817 Assuming the operation ` F...
ecopovtrn 8818 Assuming that operation ` ...
ecopover 8819 Assuming that operation ` ...
eceqoveq 8820 Equality of equivalence re...
ecovcom 8821 Lemma used to transfer a c...
ecovass 8822 Lemma used to transfer an ...
ecovdi 8823 Lemma used to transfer a d...
mapprc 8828 When ` A ` is a proper cla...
pmex 8829 The class of all partial f...
mapex 8830 The class of all functions...
fnmap 8831 Set exponentiation has a u...
fnpm 8832 Partial function exponenti...
reldmmap 8833 Set exponentiation is a we...
mapvalg 8834 The value of set exponenti...
pmvalg 8835 The value of the partial m...
mapval 8836 The value of set exponenti...
elmapg 8837 Membership relation for se...
elmapd 8838 Deduction form of ~ elmapg...
elmapdd 8839 Deduction associated with ...
mapdm0 8840 The empty set is the only ...
elpmg 8841 The predicate "is a partia...
elpm2g 8842 The predicate "is a partia...
elpm2r 8843 Sufficient condition for b...
elpmi 8844 A partial function is a fu...
pmfun 8845 A partial function is a fu...
elmapex 8846 Eliminate antecedent for m...
elmapi 8847 A mapping is a function, f...
mapfset 8848 If ` B ` is a set, the val...
mapssfset 8849 The value of the set expon...
mapfoss 8850 The value of the set expon...
fsetsspwxp 8851 The class of all functions...
fset0 8852 The set of functions from ...
fsetdmprc0 8853 The set of functions with ...
fsetex 8854 The set of functions betwe...
f1setex 8855 The set of injections betw...
fosetex 8856 The set of surjections bet...
f1osetex 8857 The set of bijections betw...
fsetfcdm 8858 The class of functions wit...
fsetfocdm 8859 The class of functions wit...
fsetprcnex 8860 The class of all functions...
fsetcdmex 8861 The class of all functions...
fsetexb 8862 The class of all functions...
elmapfn 8863 A mapping is a function wi...
elmapfun 8864 A mapping is always a func...
elmapssres 8865 A restricted mapping is a ...
fpmg 8866 A total function is a part...
pmss12g 8867 Subset relation for the se...
pmresg 8868 Elementhood of a restricte...
elmap 8869 Membership relation for se...
mapval2 8870 Alternate expression for t...
elpm 8871 The predicate "is a partia...
elpm2 8872 The predicate "is a partia...
fpm 8873 A total function is a part...
mapsspm 8874 Set exponentiation is a su...
pmsspw 8875 Partial maps are a subset ...
mapsspw 8876 Set exponentiation is a su...
mapfvd 8877 The value of a function th...
elmapresaun 8878 ~ fresaun transposed to ma...
fvmptmap 8879 Special case of ~ fvmpt fo...
map0e 8880 Set exponentiation with an...
map0b 8881 Set exponentiation with an...
map0g 8882 Set exponentiation is empt...
0map0sn0 8883 The set of mappings of the...
mapsnd 8884 The value of set exponenti...
map0 8885 Set exponentiation is empt...
mapsn 8886 The value of set exponenti...
mapss 8887 Subset inheritance for set...
fdiagfn 8888 Functionality of the diago...
fvdiagfn 8889 Functionality of the diago...
mapsnconst 8890 Every singleton map is a c...
mapsncnv 8891 Expression for the inverse...
mapsnf1o2 8892 Explicit bijection between...
mapsnf1o3 8893 Explicit bijection in the ...
ralxpmap 8894 Quantification over functi...
dfixp 8897 Eliminate the expression `...
ixpsnval 8898 The value of an infinite C...
elixp2 8899 Membership in an infinite ...
fvixp 8900 Projection of a factor of ...
ixpfn 8901 A nuple is a function. (C...
elixp 8902 Membership in an infinite ...
elixpconst 8903 Membership in an infinite ...
ixpconstg 8904 Infinite Cartesian product...
ixpconst 8905 Infinite Cartesian product...
ixpeq1 8906 Equality theorem for infin...
ixpeq1d 8907 Equality theorem for infin...
ss2ixp 8908 Subclass theorem for infin...
ixpeq2 8909 Equality theorem for infin...
ixpeq2dva 8910 Equality theorem for infin...
ixpeq2dv 8911 Equality theorem for infin...
cbvixp 8912 Change bound variable in a...
cbvixpv 8913 Change bound variable in a...
nfixpw 8914 Bound-variable hypothesis ...
nfixp 8915 Bound-variable hypothesis ...
nfixp1 8916 The index variable in an i...
ixpprc 8917 A cartesian product of pro...
ixpf 8918 A member of an infinite Ca...
uniixp 8919 The union of an infinite C...
ixpexg 8920 The existence of an infini...
ixpin 8921 The intersection of two in...
ixpiin 8922 The indexed intersection o...
ixpint 8923 The intersection of a coll...
ixp0x 8924 An infinite Cartesian prod...
ixpssmap2g 8925 An infinite Cartesian prod...
ixpssmapg 8926 An infinite Cartesian prod...
0elixp 8927 Membership of the empty se...
ixpn0 8928 The infinite Cartesian pro...
ixp0 8929 The infinite Cartesian pro...
ixpssmap 8930 An infinite Cartesian prod...
resixp 8931 Restriction of an element ...
undifixp 8932 Union of two projections o...
mptelixpg 8933 Condition for an explicit ...
resixpfo 8934 Restriction of elements of...
elixpsn 8935 Membership in a class of s...
ixpsnf1o 8936 A bijection between a clas...
mapsnf1o 8937 A bijection between a set ...
boxriin 8938 A rectangular subset of a ...
boxcutc 8939 The relative complement of...
relen 8948 Equinumerosity is a relati...
reldom 8949 Dominance is a relation. ...
relsdom 8950 Strict dominance is a rela...
encv 8951 If two classes are equinum...
breng 8952 Equinumerosity relation. ...
bren 8953 Equinumerosity relation. ...
brenOLD 8954 Obsolete version of ~ bren...
brdom2g 8955 Dominance relation. This ...
brdomg 8956 Dominance relation. (Cont...
brdomgOLD 8957 Obsolete version of ~ brdo...
brdomi 8958 Dominance relation. (Cont...
brdomiOLD 8959 Obsolete version of ~ brdo...
brdom 8960 Dominance relation. (Cont...
domen 8961 Dominance in terms of equi...
domeng 8962 Dominance in terms of equi...
ctex 8963 A countable set is a set. ...
f1oen4g 8964 The domain and range of a ...
f1dom4g 8965 The domain of a one-to-one...
f1oen3g 8966 The domain and range of a ...
f1dom3g 8967 The domain of a one-to-one...
f1oen2g 8968 The domain and range of a ...
f1dom2g 8969 The domain of a one-to-one...
f1dom2gOLD 8970 Obsolete version of ~ f1do...
f1oeng 8971 The domain and range of a ...
f1domg 8972 The domain of a one-to-one...
f1oen 8973 The domain and range of a ...
f1dom 8974 The domain of a one-to-one...
brsdom 8975 Strict dominance relation,...
isfi 8976 Express " ` A ` is finite"...
enssdom 8977 Equinumerosity implies dom...
dfdom2 8978 Alternate definition of do...
endom 8979 Equinumerosity implies dom...
sdomdom 8980 Strict dominance implies d...
sdomnen 8981 Strict dominance implies n...
brdom2 8982 Dominance in terms of stri...
bren2 8983 Equinumerosity expressed i...
enrefg 8984 Equinumerosity is reflexiv...
enref 8985 Equinumerosity is reflexiv...
eqeng 8986 Equality implies equinumer...
domrefg 8987 Dominance is reflexive. (...
en2d 8988 Equinumerosity inference f...
en3d 8989 Equinumerosity inference f...
en2i 8990 Equinumerosity inference f...
en3i 8991 Equinumerosity inference f...
dom2lem 8992 A mapping (first hypothesi...
dom2d 8993 A mapping (first hypothesi...
dom3d 8994 A mapping (first hypothesi...
dom2 8995 A mapping (first hypothesi...
dom3 8996 A mapping (first hypothesi...
idssen 8997 Equality implies equinumer...
domssl 8998 If ` A ` is a subset of ` ...
domssr 8999 If ` C ` is a superset of ...
ssdomg 9000 A set dominates its subset...
ener 9001 Equinumerosity is an equiv...
ensymb 9002 Symmetry of equinumerosity...
ensym 9003 Symmetry of equinumerosity...
ensymi 9004 Symmetry of equinumerosity...
ensymd 9005 Symmetry of equinumerosity...
entr 9006 Transitivity of equinumero...
domtr 9007 Transitivity of dominance ...
entri 9008 A chained equinumerosity i...
entr2i 9009 A chained equinumerosity i...
entr3i 9010 A chained equinumerosity i...
entr4i 9011 A chained equinumerosity i...
endomtr 9012 Transitivity of equinumero...
domentr 9013 Transitivity of dominance ...
f1imaeng 9014 If a function is one-to-on...
f1imaen2g 9015 If a function is one-to-on...
f1imaen 9016 If a function is one-to-on...
en0 9017 The empty set is equinumer...
en0OLD 9018 Obsolete version of ~ en0 ...
en0ALT 9019 Shorter proof of ~ en0 , d...
en0r 9020 The empty set is equinumer...
ensn1 9021 A singleton is equinumerou...
ensn1OLD 9022 Obsolete version of ~ ensn...
ensn1g 9023 A singleton is equinumerou...
enpr1g 9024 ` { A , A } ` has only one...
en1 9025 A set is equinumerous to o...
en1OLD 9026 Obsolete version of ~ en1 ...
en1b 9027 A set is equinumerous to o...
en1bOLD 9028 Obsolete version of ~ en1b...
reuen1 9029 Two ways to express "exact...
euen1 9030 Two ways to express "exact...
euen1b 9031 Two ways to express " ` A ...
en1uniel 9032 A singleton contains its s...
en1unielOLD 9033 Obsolete version of ~ en1u...
2dom 9034 A set that dominates ordin...
fundmen 9035 A function is equinumerous...
fundmeng 9036 A function is equinumerous...
cnven 9037 A relational set is equinu...
cnvct 9038 If a set is countable, so ...
fndmeng 9039 A function is equinumerate...
mapsnend 9040 Set exponentiation to a si...
mapsnen 9041 Set exponentiation to a si...
snmapen 9042 Set exponentiation: a sing...
snmapen1 9043 Set exponentiation: a sing...
map1 9044 Set exponentiation: ordina...
en2sn 9045 Two singletons are equinum...
en2snOLD 9046 Obsolete version of ~ en2s...
en2snOLDOLD 9047 Obsolete version of ~ en2s...
snfi 9048 A singleton is finite. (C...
fiprc 9049 The class of finite sets i...
unen 9050 Equinumerosity of union of...
enrefnn 9051 Equinumerosity is reflexiv...
en2prd 9052 Two unordered pairs are eq...
enpr2d 9053 A pair with distinct eleme...
enpr2dOLD 9054 Obsolete version of ~ enpr...
ssct 9055 Any subset of a countable ...
ssctOLD 9056 Obsolete version of ~ ssct...
difsnen 9057 All decrements of a set ar...
domdifsn 9058 Dominance over a set with ...
xpsnen 9059 A set is equinumerous to i...
xpsneng 9060 A set is equinumerous to i...
xp1en 9061 One times a cardinal numbe...
endisj 9062 Any two sets are equinumer...
undom 9063 Dominance law for union. ...
undomOLD 9064 Obsolete version of ~ undo...
xpcomf1o 9065 The canonical bijection fr...
xpcomco 9066 Composition with the bijec...
xpcomen 9067 Commutative law for equinu...
xpcomeng 9068 Commutative law for equinu...
xpsnen2g 9069 A set is equinumerous to i...
xpassen 9070 Associative law for equinu...
xpdom2 9071 Dominance law for Cartesia...
xpdom2g 9072 Dominance law for Cartesia...
xpdom1g 9073 Dominance law for Cartesia...
xpdom3 9074 A set is dominated by its ...
xpdom1 9075 Dominance law for Cartesia...
domunsncan 9076 A singleton cancellation l...
omxpenlem 9077 Lemma for ~ omxpen . (Con...
omxpen 9078 The cardinal and ordinal p...
omf1o 9079 Construct an explicit bije...
pw2f1olem 9080 Lemma for ~ pw2f1o . (Con...
pw2f1o 9081 The power set of a set is ...
pw2eng 9082 The power set of a set is ...
pw2en 9083 The power set of a set is ...
fopwdom 9084 Covering implies injection...
enfixsn 9085 Given two equipollent sets...
sucdom2OLD 9086 Obsolete version of ~ sucd...
sbthlem1 9087 Lemma for ~ sbth . (Contr...
sbthlem2 9088 Lemma for ~ sbth . (Contr...
sbthlem3 9089 Lemma for ~ sbth . (Contr...
sbthlem4 9090 Lemma for ~ sbth . (Contr...
sbthlem5 9091 Lemma for ~ sbth . (Contr...
sbthlem6 9092 Lemma for ~ sbth . (Contr...
sbthlem7 9093 Lemma for ~ sbth . (Contr...
sbthlem8 9094 Lemma for ~ sbth . (Contr...
sbthlem9 9095 Lemma for ~ sbth . (Contr...
sbthlem10 9096 Lemma for ~ sbth . (Contr...
sbth 9097 Schroeder-Bernstein Theore...
sbthb 9098 Schroeder-Bernstein Theore...
sbthcl 9099 Schroeder-Bernstein Theore...
dfsdom2 9100 Alternate definition of st...
brsdom2 9101 Alternate definition of st...
sdomnsym 9102 Strict dominance is asymme...
domnsym 9103 Theorem 22(i) of [Suppes] ...
0domg 9104 Any set dominates the empt...
0domgOLD 9105 Obsolete version of ~ 0dom...
dom0 9106 A set dominated by the emp...
dom0OLD 9107 Obsolete version of ~ dom0...
0sdomg 9108 A set strictly dominates t...
0sdomgOLD 9109 Obsolete version of ~ 0sdo...
0dom 9110 Any set dominates the empt...
0sdom 9111 A set strictly dominates t...
sdom0 9112 The empty set does not str...
sdom0OLD 9113 Obsolete version of ~ sdom...
sdomdomtr 9114 Transitivity of strict dom...
sdomentr 9115 Transitivity of strict dom...
domsdomtr 9116 Transitivity of dominance ...
ensdomtr 9117 Transitivity of equinumero...
sdomirr 9118 Strict dominance is irrefl...
sdomtr 9119 Strict dominance is transi...
sdomn2lp 9120 Strict dominance has no 2-...
enen1 9121 Equality-like theorem for ...
enen2 9122 Equality-like theorem for ...
domen1 9123 Equality-like theorem for ...
domen2 9124 Equality-like theorem for ...
sdomen1 9125 Equality-like theorem for ...
sdomen2 9126 Equality-like theorem for ...
domtriord 9127 Dominance is trichotomous ...
sdomel 9128 For ordinals, strict domin...
sdomdif 9129 The difference of a set fr...
onsdominel 9130 An ordinal with more eleme...
domunsn 9131 Dominance over a set with ...
fodomr 9132 There exists a mapping fro...
pwdom 9133 Injection of sets implies ...
canth2 9134 Cantor's Theorem. No set ...
canth2g 9135 Cantor's theorem with the ...
2pwuninel 9136 The power set of the power...
2pwne 9137 No set equals the power se...
disjen 9138 A stronger form of ~ pwuni...
disjenex 9139 Existence version of ~ dis...
domss2 9140 A corollary of ~ disjenex ...
domssex2 9141 A corollary of ~ disjenex ...
domssex 9142 Weakening of ~ domssex2 to...
xpf1o 9143 Construct a bijection on a...
xpen 9144 Equinumerosity law for Car...
mapen 9145 Two set exponentiations ar...
mapdom1 9146 Order-preserving property ...
mapxpen 9147 Equinumerosity law for dou...
xpmapenlem 9148 Lemma for ~ xpmapen . (Co...
xpmapen 9149 Equinumerosity law for set...
mapunen 9150 Equinumerosity law for set...
map2xp 9151 A cardinal power with expo...
mapdom2 9152 Order-preserving property ...
mapdom3 9153 Set exponentiation dominat...
pwen 9154 If two sets are equinumero...
ssenen 9155 Equinumerosity of equinume...
limenpsi 9156 A limit ordinal is equinum...
limensuci 9157 A limit ordinal is equinum...
limensuc 9158 A limit ordinal is equinum...
infensuc 9159 Any infinite ordinal is eq...
dif1enlem 9160 Lemma for ~ rexdif1en and ...
dif1enlemOLD 9161 Obsolete version of ~ dif1...
rexdif1en 9162 If a set is equinumerous t...
rexdif1enOLD 9163 Obsolete version of ~ rexd...
dif1en 9164 If a set ` A ` is equinume...
dif1ennn 9165 If a set ` A ` is equinume...
dif1enOLD 9166 Obsolete version of ~ dif1...
findcard 9167 Schema for induction on th...
findcard2 9168 Schema for induction on th...
findcard2s 9169 Variation of ~ findcard2 r...
findcard2d 9170 Deduction version of ~ fin...
nnfi 9171 Natural numbers are finite...
pssnn 9172 A proper subset of a natur...
ssnnfi 9173 A subset of a natural numb...
ssnnfiOLD 9174 Obsolete version of ~ ssnn...
0fin 9175 The empty set is finite. ...
unfi 9176 The union of two finite se...
ssfi 9177 A subset of a finite set i...
ssfiALT 9178 Shorter proof of ~ ssfi us...
imafi 9179 Images of finite sets are ...
pwfir 9180 If the power set of a set ...
pwfilem 9181 Lemma for ~ pwfi . (Contr...
pwfi 9182 The power set of a finite ...
diffi 9183 If ` A ` is finite, ` ( A ...
cnvfi 9184 If a set is finite, its co...
fnfi 9185 A version of ~ fnex for fi...
f1oenfi 9186 If the domain of a one-to-...
f1oenfirn 9187 If the range of a one-to-o...
f1domfi 9188 If the codomain of a one-t...
f1domfi2 9189 If the domain of a one-to-...
enreffi 9190 Equinumerosity is reflexiv...
ensymfib 9191 Symmetry of equinumerosity...
entrfil 9192 Transitivity of equinumero...
enfii 9193 A set equinumerous to a fi...
enfi 9194 Equinumerous sets have the...
enfiALT 9195 Shorter proof of ~ enfi us...
domfi 9196 A set dominated by a finit...
entrfi 9197 Transitivity of equinumero...
entrfir 9198 Transitivity of equinumero...
domtrfil 9199 Transitivity of dominance ...
domtrfi 9200 Transitivity of dominance ...
domtrfir 9201 Transitivity of dominance ...
f1imaenfi 9202 If a function is one-to-on...
ssdomfi 9203 A finite set dominates its...
ssdomfi2 9204 A set dominates its finite...
sbthfilem 9205 Lemma for ~ sbthfi . (Con...
sbthfi 9206 Schroeder-Bernstein Theore...
domnsymfi 9207 If a set dominates a finit...
sdomdomtrfi 9208 Transitivity of strict dom...
domsdomtrfi 9209 Transitivity of dominance ...
sucdom2 9210 Strict dominance of a set ...
phplem1 9211 Lemma for Pigeonhole Princ...
phplem2 9212 Lemma for Pigeonhole Princ...
nneneq 9213 Two equinumerous natural n...
php 9214 Pigeonhole Principle. A n...
php2 9215 Corollary of Pigeonhole Pr...
php3 9216 Corollary of Pigeonhole Pr...
php4 9217 Corollary of the Pigeonhol...
php5 9218 Corollary of the Pigeonhol...
phpeqd 9219 Corollary of the Pigeonhol...
nndomog 9220 Cardinal ordering agrees w...
phplem1OLD 9221 Obsolete lemma for ~ php a...
phplem2OLD 9222 Obsolete lemma for ~ php a...
phplem3OLD 9223 Obsolete version of ~ phpl...
phplem4OLD 9224 Obsolete version of ~ phpl...
nneneqOLD 9225 Obsolete version of ~ nnen...
phpOLD 9226 Obsolete version of ~ php ...
php2OLD 9227 Obsolete version of ~ php2...
php3OLD 9228 Obsolete version of ~ php3...
phpeqdOLD 9229 Obsolete version of ~ phpe...
nndomogOLD 9230 Obsolete version of ~ nndo...
snnen2oOLD 9231 Obsolete version of ~ snne...
onomeneq 9232 An ordinal number equinume...
onomeneqOLD 9233 Obsolete version of ~ onom...
onfin 9234 An ordinal number is finit...
onfin2 9235 A set is a natural number ...
nnfiOLD 9236 Obsolete version of ~ nnfi...
nndomo 9237 Cardinal ordering agrees w...
nnsdomo 9238 Cardinal ordering agrees w...
sucdom 9239 Strict dominance of a set ...
sucdomOLD 9240 Obsolete version of ~ sucd...
snnen2o 9241 A singleton ` { A } ` is n...
0sdom1dom 9242 Strict dominance over 0 is...
0sdom1domALT 9243 Alternate proof of ~ 0sdom...
1sdom2 9244 Ordinal 1 is strictly domi...
1sdom2ALT 9245 Alternate proof of ~ 1sdom...
sdom1 9246 A set has less than one me...
sdom1OLD 9247 Obsolete version of ~ sdom...
modom 9248 Two ways to express "at mo...
modom2 9249 Two ways to express "at mo...
rex2dom 9250 A set that has at least 2 ...
1sdom2dom 9251 Strict dominance over 1 is...
1sdom 9252 A set that strictly domina...
1sdomOLD 9253 Obsolete version of ~ 1sdo...
unxpdomlem1 9254 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 9255 Lemma for ~ unxpdom . (Co...
unxpdomlem3 9256 Lemma for ~ unxpdom . (Co...
unxpdom 9257 Cartesian product dominate...
unxpdom2 9258 Corollary of ~ unxpdom . ...
sucxpdom 9259 Cartesian product dominate...
pssinf 9260 A set equinumerous to a pr...
fisseneq 9261 A finite set is equal to i...
ominf 9262 The set of natural numbers...
ominfOLD 9263 Obsolete version of ~ omin...
isinf 9264 Any set that is not finite...
isinfOLD 9265 Obsolete version of ~ isin...
fineqvlem 9266 Lemma for ~ fineqv . (Con...
fineqv 9267 If the Axiom of Infinity i...
enfiiOLD 9268 Obsolete version of ~ enfi...
pssnnOLD 9269 Obsolete version of ~ pssn...
xpfir 9270 The components of a nonemp...
ssfid 9271 A subset of a finite set i...
infi 9272 The intersection of two se...
rabfi 9273 A restricted class built f...
finresfin 9274 The restriction of a finit...
f1finf1o 9275 Any injection from one fin...
f1finf1oOLD 9276 Obsolete version of ~ f1fi...
nfielex 9277 If a class is not finite, ...
en1eqsn 9278 A set with one element is ...
en1eqsnOLD 9279 Obsolete version of ~ en1e...
en1eqsnbi 9280 A set containing an elemen...
dif1ennnALT 9281 Alternate proof of ~ dif1e...
enp1ilem 9282 Lemma for uses of ~ enp1i ...
enp1i 9283 Proof induction for ~ en2 ...
enp1iOLD 9284 Obsolete version of ~ enp1...
en2 9285 A set equinumerous to ordi...
en3 9286 A set equinumerous to ordi...
en4 9287 A set equinumerous to ordi...
findcard2OLD 9288 Obsolete version of ~ find...
findcard3 9289 Schema for strong inductio...
findcard3OLD 9290 Obsolete version of ~ find...
ac6sfi 9291 A version of ~ ac6s for fi...
frfi 9292 A partial order is well-fo...
fimax2g 9293 A finite set has a maximum...
fimaxg 9294 A finite set has a maximum...
fisupg 9295 Lemma showing existence an...
wofi 9296 A total order on a finite ...
ordunifi 9297 The maximum of a finite co...
nnunifi 9298 The union (supremum) of a ...
unblem1 9299 Lemma for ~ unbnn . After...
unblem2 9300 Lemma for ~ unbnn . The v...
unblem3 9301 Lemma for ~ unbnn . The v...
unblem4 9302 Lemma for ~ unbnn . The f...
unbnn 9303 Any unbounded subset of na...
unbnn2 9304 Version of ~ unbnn that do...
isfinite2 9305 Any set strictly dominated...
nnsdomg 9306 Omega strictly dominates a...
nnsdomgOLD 9307 Obsolete version of ~ nnsd...
isfiniteg 9308 A set is finite iff it is ...
infsdomnn 9309 An infinite set strictly d...
infsdomnnOLD 9310 Obsolete version of ~ infs...
infn0 9311 An infinite set is not emp...
infn0ALT 9312 Shorter proof of ~ infn0 u...
fin2inf 9313 This (useless) theorem, wh...
unfilem1 9314 Lemma for proving that the...
unfilem2 9315 Lemma for proving that the...
unfilem3 9316 Lemma for proving that the...
unfiOLD 9317 Obsolete version of ~ unfi...
unfir 9318 If a union is finite, the ...
unfi2 9319 The union of two finite se...
difinf 9320 An infinite set ` A ` minu...
xpfi 9321 The Cartesian product of t...
xpfiOLD 9322 Obsolete version of ~ xpfi...
3xpfi 9323 The Cartesian product of t...
domunfican 9324 A finite set union cancell...
infcntss 9325 Every infinite set has a d...
prfi 9326 An unordered pair is finit...
tpfi 9327 An unordered triple is fin...
fiint 9328 Equivalent ways of stating...
fodomfi 9329 An onto function implies d...
fodomfib 9330 Equivalence of an onto map...
fofinf1o 9331 Any surjection from one fi...
rneqdmfinf1o 9332 Any function from a finite...
fidomdm 9333 Any finite set dominates i...
dmfi 9334 The domain of a finite set...
fundmfibi 9335 A function is finite if an...
resfnfinfin 9336 The restriction of a funct...
residfi 9337 A restricted identity func...
cnvfiALT 9338 Shorter proof of ~ cnvfi u...
rnfi 9339 The range of a finite set ...
f1dmvrnfibi 9340 A one-to-one function whos...
f1vrnfibi 9341 A one-to-one function whic...
fofi 9342 If an onto function has a ...
f1fi 9343 If a 1-to-1 function has a...
iunfi 9344 The finite union of finite...
unifi 9345 The finite union of finite...
unifi2 9346 The finite union of finite...
infssuni 9347 If an infinite set ` A ` i...
unirnffid 9348 The union of the range of ...
imafiALT 9349 Shorter proof of ~ imafi u...
pwfilemOLD 9350 Obsolete version of ~ pwfi...
pwfiOLD 9351 Obsolete version of ~ pwfi...
mapfi 9352 Set exponentiation of fini...
ixpfi 9353 A Cartesian product of fin...
ixpfi2 9354 A Cartesian product of fin...
mptfi 9355 A finite mapping set is fi...
abrexfi 9356 An image set from a finite...
cnvimamptfin 9357 A preimage of a mapping wi...
elfpw 9358 Membership in a class of f...
unifpw 9359 A set is the union of its ...
f1opwfi 9360 A one-to-one mapping induc...
fissuni 9361 A finite subset of a union...
fipreima 9362 Given a finite subset ` A ...
finsschain 9363 A finite subset of the uni...
indexfi 9364 If for every element of a ...
relfsupp 9367 The property of a function...
relprcnfsupp 9368 A proper class is never fi...
isfsupp 9369 The property of a class to...
isfsuppd 9370 Deduction form of ~ isfsup...
funisfsupp 9371 The property of a function...
fsuppimp 9372 Implications of a class be...
fsuppimpd 9373 A finitely supported funct...
fisuppfi 9374 A function on a finite set...
fidmfisupp 9375 A function with a finite d...
fdmfisuppfi 9376 The support of a function ...
fdmfifsupp 9377 A function with a finite d...
fsuppmptdm 9378 A mapping with a finite do...
fndmfisuppfi 9379 The support of a function ...
fndmfifsupp 9380 A function with a finite d...
suppeqfsuppbi 9381 If two functions have the ...
suppssfifsupp 9382 If the support of a functi...
fsuppsssupp 9383 If the support of a functi...
fsuppxpfi 9384 The cartesian product of t...
fczfsuppd 9385 A constant function with v...
fsuppun 9386 The union of two finitely ...
fsuppunfi 9387 The union of the support o...
fsuppunbi 9388 If the union of two classe...
0fsupp 9389 The empty set is a finitel...
snopfsupp 9390 A singleton containing an ...
funsnfsupp 9391 Finite support for a funct...
fsuppres 9392 The restriction of a finit...
fmptssfisupp 9393 The restriction of a mappi...
ressuppfi 9394 If the support of the rest...
resfsupp 9395 If the restriction of a fu...
resfifsupp 9396 The restriction of a funct...
ffsuppbi 9397 Two ways of saying that a ...
fsuppmptif 9398 A function mapping an argu...
sniffsupp 9399 A function mapping all but...
fsuppcolem 9400 Lemma for ~ fsuppco . For...
fsuppco 9401 The composition of a 1-1 f...
fsuppco2 9402 The composition of a funct...
fsuppcor 9403 The composition of a funct...
mapfienlem1 9404 Lemma 1 for ~ mapfien . (...
mapfienlem2 9405 Lemma 2 for ~ mapfien . (...
mapfienlem3 9406 Lemma 3 for ~ mapfien . (...
mapfien 9407 A bijection of the base se...
mapfien2 9408 Equinumerousity relation f...
fival 9411 The set of all the finite ...
elfi 9412 Specific properties of an ...
elfi2 9413 The empty intersection nee...
elfir 9414 Sufficient condition for a...
intrnfi 9415 Sufficient condition for t...
iinfi 9416 An indexed intersection of...
inelfi 9417 The intersection of two se...
ssfii 9418 Any element of a set ` A `...
fi0 9419 The set of finite intersec...
fieq0 9420 A set is empty iff the cla...
fiin 9421 The elements of ` ( fi `` ...
dffi2 9422 The set of finite intersec...
fiss 9423 Subset relationship for fu...
inficl 9424 A set which is closed unde...
fipwuni 9425 The set of finite intersec...
fisn 9426 A singleton is closed unde...
fiuni 9427 The union of the finite in...
fipwss 9428 If a set is a family of su...
elfiun 9429 A finite intersection of e...
dffi3 9430 The set of finite intersec...
fifo 9431 Describe a surjection from...
marypha1lem 9432 Core induction for Philip ...
marypha1 9433 (Philip) Hall's marriage t...
marypha2lem1 9434 Lemma for ~ marypha2 . Pr...
marypha2lem2 9435 Lemma for ~ marypha2 . Pr...
marypha2lem3 9436 Lemma for ~ marypha2 . Pr...
marypha2lem4 9437 Lemma for ~ marypha2 . Pr...
marypha2 9438 Version of ~ marypha1 usin...
dfsup2 9443 Quantifier-free definition...
supeq1 9444 Equality theorem for supre...
supeq1d 9445 Equality deduction for sup...
supeq1i 9446 Equality inference for sup...
supeq2 9447 Equality theorem for supre...
supeq3 9448 Equality theorem for supre...
supeq123d 9449 Equality deduction for sup...
nfsup 9450 Hypothesis builder for sup...
supmo 9451 Any class ` B ` has at mos...
supexd 9452 A supremum is a set. (Con...
supeu 9453 A supremum is unique. Sim...
supval2 9454 Alternate expression for t...
eqsup 9455 Sufficient condition for a...
eqsupd 9456 Sufficient condition for a...
supcl 9457 A supremum belongs to its ...
supub 9458 A supremum is an upper bou...
suplub 9459 A supremum is the least up...
suplub2 9460 Bidirectional form of ~ su...
supnub 9461 An upper bound is not less...
supex 9462 A supremum is a set. (Con...
sup00 9463 The supremum under an empt...
sup0riota 9464 The supremum of an empty s...
sup0 9465 The supremum of an empty s...
supmax 9466 The greatest element of a ...
fisup2g 9467 A finite set satisfies the...
fisupcl 9468 A nonempty finite set cont...
supgtoreq 9469 The supremum of a finite s...
suppr 9470 The supremum of a pair. (...
supsn 9471 The supremum of a singleto...
supisolem 9472 Lemma for ~ supiso . (Con...
supisoex 9473 Lemma for ~ supiso . (Con...
supiso 9474 Image of a supremum under ...
infeq1 9475 Equality theorem for infim...
infeq1d 9476 Equality deduction for inf...
infeq1i 9477 Equality inference for inf...
infeq2 9478 Equality theorem for infim...
infeq3 9479 Equality theorem for infim...
infeq123d 9480 Equality deduction for inf...
nfinf 9481 Hypothesis builder for inf...
infexd 9482 An infimum is a set. (Con...
eqinf 9483 Sufficient condition for a...
eqinfd 9484 Sufficient condition for a...
infval 9485 Alternate expression for t...
infcllem 9486 Lemma for ~ infcl , ~ infl...
infcl 9487 An infimum belongs to its ...
inflb 9488 An infimum is a lower boun...
infglb 9489 An infimum is the greatest...
infglbb 9490 Bidirectional form of ~ in...
infnlb 9491 A lower bound is not great...
infex 9492 An infimum is a set. (Con...
infmin 9493 The smallest element of a ...
infmo 9494 Any class ` B ` has at mos...
infeu 9495 An infimum is unique. (Co...
fimin2g 9496 A finite set has a minimum...
fiming 9497 A finite set has a minimum...
fiinfg 9498 Lemma showing existence an...
fiinf2g 9499 A finite set satisfies the...
fiinfcl 9500 A nonempty finite set cont...
infltoreq 9501 The infimum of a finite se...
infpr 9502 The infimum of a pair. (C...
infsupprpr 9503 The infimum of a proper pa...
infsn 9504 The infimum of a singleton...
inf00 9505 The infimum regarding an e...
infempty 9506 The infimum of an empty se...
infiso 9507 Image of an infimum under ...
dfoi 9510 Rewrite ~ df-oi with abbre...
oieq1 9511 Equality theorem for ordin...
oieq2 9512 Equality theorem for ordin...
nfoi 9513 Hypothesis builder for ord...
ordiso2 9514 Generalize ~ ordiso to pro...
ordiso 9515 Order-isomorphic ordinal n...
ordtypecbv 9516 Lemma for ~ ordtype . (Co...
ordtypelem1 9517 Lemma for ~ ordtype . (Co...
ordtypelem2 9518 Lemma for ~ ordtype . (Co...
ordtypelem3 9519 Lemma for ~ ordtype . (Co...
ordtypelem4 9520 Lemma for ~ ordtype . (Co...
ordtypelem5 9521 Lemma for ~ ordtype . (Co...
ordtypelem6 9522 Lemma for ~ ordtype . (Co...
ordtypelem7 9523 Lemma for ~ ordtype . ` ra...
ordtypelem8 9524 Lemma for ~ ordtype . (Co...
ordtypelem9 9525 Lemma for ~ ordtype . Eit...
ordtypelem10 9526 Lemma for ~ ordtype . Usi...
oi0 9527 Definition of the ordinal ...
oicl 9528 The order type of the well...
oif 9529 The order isomorphism of t...
oiiso2 9530 The order isomorphism of t...
ordtype 9531 For any set-like well-orde...
oiiniseg 9532 ` ran F ` is an initial se...
ordtype2 9533 For any set-like well-orde...
oiexg 9534 The order isomorphism on a...
oion 9535 The order type of the well...
oiiso 9536 The order isomorphism of t...
oien 9537 The order type of a well-o...
oieu 9538 Uniqueness of the unique o...
oismo 9539 When ` A ` is a subclass o...
oiid 9540 The order type of an ordin...
hartogslem1 9541 Lemma for ~ hartogs . (Co...
hartogslem2 9542 Lemma for ~ hartogs . (Co...
hartogs 9543 The class of ordinals domi...
wofib 9544 The only sets which are we...
wemaplem1 9545 Value of the lexicographic...
wemaplem2 9546 Lemma for ~ wemapso . Tra...
wemaplem3 9547 Lemma for ~ wemapso . Tra...
wemappo 9548 Construct lexicographic or...
wemapsolem 9549 Lemma for ~ wemapso . (Co...
wemapso 9550 Construct lexicographic or...
wemapso2lem 9551 Lemma for ~ wemapso2 . (C...
wemapso2 9552 An alternative to having a...
card2on 9553 The alternate definition o...
card2inf 9554 The alternate definition o...
harf 9557 Functionality of the Harto...
harcl 9558 Values of the Hartogs func...
harval 9559 Function value of the Hart...
elharval 9560 The Hartogs number of a se...
harndom 9561 The Hartogs number of a se...
harword 9562 Weak ordering property of ...
relwdom 9565 Weak dominance is a relati...
brwdom 9566 Property of weak dominance...
brwdomi 9567 Property of weak dominance...
brwdomn0 9568 Weak dominance over nonemp...
0wdom 9569 Any set weakly dominates t...
fowdom 9570 An onto function implies w...
wdomref 9571 Reflexivity of weak domina...
brwdom2 9572 Alternate characterization...
domwdom 9573 Weak dominance is implied ...
wdomtr 9574 Transitivity of weak domin...
wdomen1 9575 Equality-like theorem for ...
wdomen2 9576 Equality-like theorem for ...
wdompwdom 9577 Weak dominance strengthens...
canthwdom 9578 Cantor's Theorem, stated u...
wdom2d 9579 Deduce weak dominance from...
wdomd 9580 Deduce weak dominance from...
brwdom3 9581 Condition for weak dominan...
brwdom3i 9582 Weak dominance implies exi...
unwdomg 9583 Weak dominance of a (disjo...
xpwdomg 9584 Weak dominance of a Cartes...
wdomima2g 9585 A set is weakly dominant o...
wdomimag 9586 A set is weakly dominant o...
unxpwdom2 9587 Lemma for ~ unxpwdom . (C...
unxpwdom 9588 If a Cartesian product is ...
ixpiunwdom 9589 Describe an onto function ...
harwdom 9590 The value of the Hartogs f...
axreg2 9592 Axiom of Regularity expres...
zfregcl 9593 The Axiom of Regularity wi...
zfreg 9594 The Axiom of Regularity us...
elirrv 9595 The membership relation is...
elirr 9596 No class is a member of it...
elneq 9597 A class is not equal to an...
nelaneq 9598 A class is not an element ...
epinid0 9599 The membership relation an...
sucprcreg 9600 A class is equal to its su...
ruv 9601 The Russell class is equal...
ruALT 9602 Alternate proof of ~ ru , ...
disjcsn 9603 A class is disjoint from i...
zfregfr 9604 The membership relation is...
en2lp 9605 No class has 2-cycle membe...
elnanel 9606 Two classes are not elemen...
cnvepnep 9607 The membership (epsilon) r...
epnsym 9608 The membership (epsilon) r...
elnotel 9609 A class cannot be an eleme...
elnel 9610 A class cannot be an eleme...
en3lplem1 9611 Lemma for ~ en3lp . (Cont...
en3lplem2 9612 Lemma for ~ en3lp . (Cont...
en3lp 9613 No class has 3-cycle membe...
preleqg 9614 Equality of two unordered ...
preleq 9615 Equality of two unordered ...
preleqALT 9616 Alternate proof of ~ prele...
opthreg 9617 Theorem for alternate repr...
suc11reg 9618 The successor operation be...
dford2 9619 Assuming ~ ax-reg , an ord...
inf0 9620 Existence of ` _om ` impli...
inf1 9621 Variation of Axiom of Infi...
inf2 9622 Variation of Axiom of Infi...
inf3lema 9623 Lemma for our Axiom of Inf...
inf3lemb 9624 Lemma for our Axiom of Inf...
inf3lemc 9625 Lemma for our Axiom of Inf...
inf3lemd 9626 Lemma for our Axiom of Inf...
inf3lem1 9627 Lemma for our Axiom of Inf...
inf3lem2 9628 Lemma for our Axiom of Inf...
inf3lem3 9629 Lemma for our Axiom of Inf...
inf3lem4 9630 Lemma for our Axiom of Inf...
inf3lem5 9631 Lemma for our Axiom of Inf...
inf3lem6 9632 Lemma for our Axiom of Inf...
inf3lem7 9633 Lemma for our Axiom of Inf...
inf3 9634 Our Axiom of Infinity ~ ax...
infeq5i 9635 Half of ~ infeq5 . (Contr...
infeq5 9636 The statement "there exist...
zfinf 9638 Axiom of Infinity expresse...
axinf2 9639 A standard version of Axio...
zfinf2 9641 A standard version of the ...
omex 9642 The existence of omega (th...
axinf 9643 The first version of the A...
inf5 9644 The statement "there exist...
omelon 9645 Omega is an ordinal number...
dfom3 9646 The class of natural numbe...
elom3 9647 A simplification of ~ elom...
dfom4 9648 A simplification of ~ df-o...
dfom5 9649 ` _om ` is the smallest li...
oancom 9650 Ordinal addition is not co...
isfinite 9651 A set is finite iff it is ...
fict 9652 A finite set is countable ...
nnsdom 9653 A natural number is strict...
omenps 9654 Omega is equinumerous to a...
omensuc 9655 The set of natural numbers...
infdifsn 9656 Removing a singleton from ...
infdiffi 9657 Removing a finite set from...
unbnn3 9658 Any unbounded subset of na...
noinfep 9659 Using the Axiom of Regular...
cantnffval 9662 The value of the Cantor no...
cantnfdm 9663 The domain of the Cantor n...
cantnfvalf 9664 Lemma for ~ cantnf . The ...
cantnfs 9665 Elementhood in the set of ...
cantnfcl 9666 Basic properties of the or...
cantnfval 9667 The value of the Cantor no...
cantnfval2 9668 Alternate expression for t...
cantnfsuc 9669 The value of the recursive...
cantnfle 9670 A lower bound on the ` CNF...
cantnflt 9671 An upper bound on the part...
cantnflt2 9672 An upper bound on the ` CN...
cantnff 9673 The ` CNF ` function is a ...
cantnf0 9674 The value of the zero func...
cantnfrescl 9675 A function is finitely sup...
cantnfres 9676 The ` CNF ` function respe...
cantnfp1lem1 9677 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9678 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9679 Lemma for ~ cantnfp1 . (C...
cantnfp1 9680 If ` F ` is created by add...
oemapso 9681 The relation ` T ` is a st...
oemapval 9682 Value of the relation ` T ...
oemapvali 9683 If ` F < G ` , then there ...
cantnflem1a 9684 Lemma for ~ cantnf . (Con...
cantnflem1b 9685 Lemma for ~ cantnf . (Con...
cantnflem1c 9686 Lemma for ~ cantnf . (Con...
cantnflem1d 9687 Lemma for ~ cantnf . (Con...
cantnflem1 9688 Lemma for ~ cantnf . This...
cantnflem2 9689 Lemma for ~ cantnf . (Con...
cantnflem3 9690 Lemma for ~ cantnf . Here...
cantnflem4 9691 Lemma for ~ cantnf . Comp...
cantnf 9692 The Cantor Normal Form the...
oemapwe 9693 The lexicographic order on...
cantnffval2 9694 An alternate definition of...
cantnff1o 9695 Simplify the isomorphism o...
wemapwe 9696 Construct lexicographic or...
oef1o 9697 A bijection of the base se...
cnfcomlem 9698 Lemma for ~ cnfcom . (Con...
cnfcom 9699 Any ordinal ` B ` is equin...
cnfcom2lem 9700 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9701 Any nonzero ordinal ` B ` ...
cnfcom3lem 9702 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9703 Any infinite ordinal ` B `...
cnfcom3clem 9704 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9705 Wrap the construction of ~...
ttrcleq 9708 Equality theorem for trans...
nfttrcld 9709 Bound variable hypothesis ...
nfttrcl 9710 Bound variable hypothesis ...
relttrcl 9711 The transitive closure of ...
brttrcl 9712 Characterization of elemen...
brttrcl2 9713 Characterization of elemen...
ssttrcl 9714 If ` R ` is a relation, th...
ttrcltr 9715 The transitive closure of ...
ttrclresv 9716 The transitive closure of ...
ttrclco 9717 Composition law for the tr...
cottrcl 9718 Composition law for the tr...
ttrclss 9719 If ` R ` is a subclass of ...
dmttrcl 9720 The domain of a transitive...
rnttrcl 9721 The range of a transitive ...
ttrclexg 9722 If ` R ` is a set, then so...
dfttrcl2 9723 When ` R ` is a set and a ...
ttrclselem1 9724 Lemma for ~ ttrclse . Sho...
ttrclselem2 9725 Lemma for ~ ttrclse . Sho...
ttrclse 9726 If ` R ` is set-like over ...
trcl 9727 For any set ` A ` , show t...
tz9.1 9728 Every set has a transitive...
tz9.1c 9729 Alternate expression for t...
epfrs 9730 The strong form of the Axi...
zfregs 9731 The strong form of the Axi...
zfregs2 9732 Alternate strong form of t...
setind 9733 Set (epsilon) induction. ...
setind2 9734 Set (epsilon) induction, s...
tcvalg 9737 Value of the transitive cl...
tcid 9738 Defining property of the t...
tctr 9739 Defining property of the t...
tcmin 9740 Defining property of the t...
tc2 9741 A variant of the definitio...
tcsni 9742 The transitive closure of ...
tcss 9743 The transitive closure fun...
tcel 9744 The transitive closure fun...
tcidm 9745 The transitive closure fun...
tc0 9746 The transitive closure of ...
tc00 9747 The transitive closure is ...
frmin 9748 Every (possibly proper) su...
frind 9749 A subclass of a well-found...
frinsg 9750 Well-Founded Induction Sch...
frins 9751 Well-Founded Induction Sch...
frins2f 9752 Well-Founded Induction sch...
frins2 9753 Well-Founded Induction sch...
frins3 9754 Well-Founded Induction sch...
frr3g 9755 Functions defined by well-...
frrlem15 9756 Lemma for general well-fou...
frrlem16 9757 Lemma for general well-fou...
frr1 9758 Law of general well-founde...
frr2 9759 Law of general well-founde...
frr3 9760 Law of general well-founde...
r1funlim 9765 The cumulative hierarchy o...
r1fnon 9766 The cumulative hierarchy o...
r10 9767 Value of the cumulative hi...
r1sucg 9768 Value of the cumulative hi...
r1suc 9769 Value of the cumulative hi...
r1limg 9770 Value of the cumulative hi...
r1lim 9771 Value of the cumulative hi...
r1fin 9772 The first ` _om ` levels o...
r1sdom 9773 Each stage in the cumulati...
r111 9774 The cumulative hierarchy i...
r1tr 9775 The cumulative hierarchy o...
r1tr2 9776 The union of a cumulative ...
r1ordg 9777 Ordering relation for the ...
r1ord3g 9778 Ordering relation for the ...
r1ord 9779 Ordering relation for the ...
r1ord2 9780 Ordering relation for the ...
r1ord3 9781 Ordering relation for the ...
r1sssuc 9782 The value of the cumulativ...
r1pwss 9783 Each set of the cumulative...
r1sscl 9784 Each set of the cumulative...
r1val1 9785 The value of the cumulativ...
tz9.12lem1 9786 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9787 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9788 Lemma for ~ tz9.12 . (Con...
tz9.12 9789 A set is well-founded if a...
tz9.13 9790 Every set is well-founded,...
tz9.13g 9791 Every set is well-founded,...
rankwflemb 9792 Two ways of saying a set i...
rankf 9793 The domain and codomain of...
rankon 9794 The rank of a set is an or...
r1elwf 9795 Any member of the cumulati...
rankvalb 9796 Value of the rank function...
rankr1ai 9797 One direction of ~ rankr1a...
rankvaln 9798 Value of the rank function...
rankidb 9799 Identity law for the rank ...
rankdmr1 9800 A rank is a member of the ...
rankr1ag 9801 A version of ~ rankr1a tha...
rankr1bg 9802 A relationship between ran...
r1rankidb 9803 Any set is a subset of the...
r1elssi 9804 The range of the ` R1 ` fu...
r1elss 9805 The range of the ` R1 ` fu...
pwwf 9806 A power set is well-founde...
sswf 9807 A subset of a well-founded...
snwf 9808 A singleton is well-founde...
unwf 9809 A binary union is well-fou...
prwf 9810 An unordered pair is well-...
opwf 9811 An ordered pair is well-fo...
unir1 9812 The cumulative hierarchy o...
jech9.3 9813 Every set belongs to some ...
rankwflem 9814 Every set is well-founded,...
rankval 9815 Value of the rank function...
rankvalg 9816 Value of the rank function...
rankval2 9817 Value of an alternate defi...
uniwf 9818 A union is well-founded if...
rankr1clem 9819 Lemma for ~ rankr1c . (Co...
rankr1c 9820 A relationship between the...
rankidn 9821 A relationship between the...
rankpwi 9822 The rank of a power set. ...
rankelb 9823 The membership relation is...
wfelirr 9824 A well-founded set is not ...
rankval3b 9825 The value of the rank func...
ranksnb 9826 The rank of a singleton. ...
rankonidlem 9827 Lemma for ~ rankonid . (C...
rankonid 9828 The rank of an ordinal num...
onwf 9829 The ordinals are all well-...
onssr1 9830 Initial segments of the or...
rankr1g 9831 A relationship between the...
rankid 9832 Identity law for the rank ...
rankr1 9833 A relationship between the...
ssrankr1 9834 A relationship between an ...
rankr1a 9835 A relationship between ran...
r1val2 9836 The value of the cumulativ...
r1val3 9837 The value of the cumulativ...
rankel 9838 The membership relation is...
rankval3 9839 The value of the rank func...
bndrank 9840 Any class whose elements h...
unbndrank 9841 The elements of a proper c...
rankpw 9842 The rank of a power set. ...
ranklim 9843 The rank of a set belongs ...
r1pw 9844 A stronger property of ` R...
r1pwALT 9845 Alternate shorter proof of...
r1pwcl 9846 The cumulative hierarchy o...
rankssb 9847 The subset relation is inh...
rankss 9848 The subset relation is inh...
rankunb 9849 The rank of the union of t...
rankprb 9850 The rank of an unordered p...
rankopb 9851 The rank of an ordered pai...
rankuni2b 9852 The value of the rank func...
ranksn 9853 The rank of a singleton. ...
rankuni2 9854 The rank of a union. Part...
rankun 9855 The rank of the union of t...
rankpr 9856 The rank of an unordered p...
rankop 9857 The rank of an ordered pai...
r1rankid 9858 Any set is a subset of the...
rankeq0b 9859 A set is empty iff its ran...
rankeq0 9860 A set is empty iff its ran...
rankr1id 9861 The rank of the hierarchy ...
rankuni 9862 The rank of a union. Part...
rankr1b 9863 A relationship between ran...
ranksuc 9864 The rank of a successor. ...
rankuniss 9865 Upper bound of the rank of...
rankval4 9866 The rank of a set is the s...
rankbnd 9867 The rank of a set is bound...
rankbnd2 9868 The rank of a set is bound...
rankc1 9869 A relationship that can be...
rankc2 9870 A relationship that can be...
rankelun 9871 Rank membership is inherit...
rankelpr 9872 Rank membership is inherit...
rankelop 9873 Rank membership is inherit...
rankxpl 9874 A lower bound on the rank ...
rankxpu 9875 An upper bound on the rank...
rankfu 9876 An upper bound on the rank...
rankmapu 9877 An upper bound on the rank...
rankxplim 9878 The rank of a Cartesian pr...
rankxplim2 9879 If the rank of a Cartesian...
rankxplim3 9880 The rank of a Cartesian pr...
rankxpsuc 9881 The rank of a Cartesian pr...
tcwf 9882 The transitive closure fun...
tcrank 9883 This theorem expresses two...
scottex 9884 Scott's trick collects all...
scott0 9885 Scott's trick collects all...
scottexs 9886 Theorem scheme version of ...
scott0s 9887 Theorem scheme version of ...
cplem1 9888 Lemma for the Collection P...
cplem2 9889 Lemma for the Collection P...
cp 9890 Collection Principle. Thi...
bnd 9891 A very strong generalizati...
bnd2 9892 A variant of the Boundedne...
kardex 9893 The collection of all sets...
karden 9894 If we allow the Axiom of R...
htalem 9895 Lemma for defining an emul...
hta 9896 A ZFC emulation of Hilbert...
djueq12 9903 Equality theorem for disjo...
djueq1 9904 Equality theorem for disjo...
djueq2 9905 Equality theorem for disjo...
nfdju 9906 Bound-variable hypothesis ...
djuex 9907 The disjoint union of sets...
djuexb 9908 The disjoint union of two ...
djulcl 9909 Left closure of disjoint u...
djurcl 9910 Right closure of disjoint ...
djulf1o 9911 The left injection functio...
djurf1o 9912 The right injection functi...
inlresf 9913 The left injection restric...
inlresf1 9914 The left injection restric...
inrresf 9915 The right injection restri...
inrresf1 9916 The right injection restri...
djuin 9917 The images of any classes ...
djur 9918 A member of a disjoint uni...
djuss 9919 A disjoint union is a subc...
djuunxp 9920 The union of a disjoint un...
djuexALT 9921 Alternate proof of ~ djuex...
eldju1st 9922 The first component of an ...
eldju2ndl 9923 The second component of an...
eldju2ndr 9924 The second component of an...
djuun 9925 The disjoint union of two ...
1stinl 9926 The first component of the...
2ndinl 9927 The second component of th...
1stinr 9928 The first component of the...
2ndinr 9929 The second component of th...
updjudhf 9930 The mapping of an element ...
updjudhcoinlf 9931 The composition of the map...
updjudhcoinrg 9932 The composition of the map...
updjud 9933 Universal property of the ...
cardf2 9942 The cardinality function i...
cardon 9943 The cardinal number of a s...
isnum2 9944 A way to express well-orde...
isnumi 9945 A set equinumerous to an o...
ennum 9946 Equinumerous sets are equi...
finnum 9947 Every finite set is numera...
onenon 9948 Every ordinal number is nu...
tskwe 9949 A Tarski set is well-order...
xpnum 9950 The cartesian product of n...
cardval3 9951 An alternate definition of...
cardid2 9952 Any numerable set is equin...
isnum3 9953 A set is numerable iff it ...
oncardval 9954 The value of the cardinal ...
oncardid 9955 Any ordinal number is equi...
cardonle 9956 The cardinal of an ordinal...
card0 9957 The cardinality of the emp...
cardidm 9958 The cardinality function i...
oncard 9959 A set is a cardinal number...
ficardom 9960 The cardinal number of a f...
ficardid 9961 A finite set is equinumero...
cardnn 9962 The cardinality of a natur...
cardnueq0 9963 The empty set is the only ...
cardne 9964 No member of a cardinal nu...
carden2a 9965 If two sets have equal non...
carden2b 9966 If two sets are equinumero...
card1 9967 A set has cardinality one ...
cardsn 9968 A singleton has cardinalit...
carddomi2 9969 Two sets have the dominanc...
sdomsdomcardi 9970 A set strictly dominates i...
cardlim 9971 An infinite cardinal is a ...
cardsdomelir 9972 A cardinal strictly domina...
cardsdomel 9973 A cardinal strictly domina...
iscard 9974 Two ways to express the pr...
iscard2 9975 Two ways to express the pr...
carddom2 9976 Two numerable sets have th...
harcard 9977 The class of ordinal numbe...
cardprclem 9978 Lemma for ~ cardprc . (Co...
cardprc 9979 The class of all cardinal ...
carduni 9980 The union of a set of card...
cardiun 9981 The indexed union of a set...
cardennn 9982 If ` A ` is equinumerous t...
cardsucinf 9983 The cardinality of the suc...
cardsucnn 9984 The cardinality of the suc...
cardom 9985 The set of natural numbers...
carden2 9986 Two numerable sets are equ...
cardsdom2 9987 A numerable set is strictl...
domtri2 9988 Trichotomy of dominance fo...
nnsdomel 9989 Strict dominance and eleme...
cardval2 9990 An alternate version of th...
isinffi 9991 An infinite set contains s...
fidomtri 9992 Trichotomy of dominance wi...
fidomtri2 9993 Trichotomy of dominance wi...
harsdom 9994 The Hartogs number of a we...
onsdom 9995 Any well-orderable set is ...
harval2 9996 An alternate expression fo...
harsucnn 9997 The next cardinal after a ...
cardmin2 9998 The smallest ordinal that ...
pm54.43lem 9999 In Theorem *54.43 of [Whit...
pm54.43 10000 Theorem *54.43 of [Whitehe...
enpr2 10001 An unordered pair with dis...
pr2nelemOLD 10002 Obsolete version of ~ enpr...
pr2ne 10003 If an unordered pair has t...
pr2neOLD 10004 Obsolete version of ~ pr2n...
prdom2 10005 An unordered pair has at m...
en2eqpr 10006 Building a set with two el...
en2eleq 10007 Express a set of pair card...
en2other2 10008 Taking the other element t...
dif1card 10009 The cardinality of a nonem...
leweon 10010 Lexicographical order is a...
r0weon 10011 A set-like well-ordering o...
infxpenlem 10012 Lemma for ~ infxpen . (Co...
infxpen 10013 Every infinite ordinal is ...
xpomen 10014 The Cartesian product of o...
xpct 10015 The cartesian product of t...
infxpidm2 10016 Every infinite well-ordera...
infxpenc 10017 A canonical version of ~ i...
infxpenc2lem1 10018 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 10019 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 10020 Lemma for ~ infxpenc2 . (...
infxpenc2 10021 Existence form of ~ infxpe...
iunmapdisj 10022 The union ` U_ n e. C ( A ...
fseqenlem1 10023 Lemma for ~ fseqen . (Con...
fseqenlem2 10024 Lemma for ~ fseqen . (Con...
fseqdom 10025 One half of ~ fseqen . (C...
fseqen 10026 A set that is equinumerous...
infpwfidom 10027 The collection of finite s...
dfac8alem 10028 Lemma for ~ dfac8a . If t...
dfac8a 10029 Numeration theorem: every ...
dfac8b 10030 The well-ordering theorem:...
dfac8clem 10031 Lemma for ~ dfac8c . (Con...
dfac8c 10032 If the union of a set is w...
ac10ct 10033 A proof of the well-orderi...
ween 10034 A set is numerable iff it ...
ac5num 10035 A version of ~ ac5b with t...
ondomen 10036 If a set is dominated by a...
numdom 10037 A set dominated by a numer...
ssnum 10038 A subset of a numerable se...
onssnum 10039 All subsets of the ordinal...
indcardi 10040 Indirect strong induction ...
acnrcl 10041 Reverse closure for the ch...
acneq 10042 Equality theorem for the c...
isacn 10043 The property of being a ch...
acni 10044 The property of being a ch...
acni2 10045 The property of being a ch...
acni3 10046 The property of being a ch...
acnlem 10047 Construct a mapping satisf...
numacn 10048 A well-orderable set has c...
finacn 10049 Every set has finite choic...
acndom 10050 A set with long choice seq...
acnnum 10051 A set ` X ` which has choi...
acnen 10052 The class of choice sets o...
acndom2 10053 A set smaller than one wit...
acnen2 10054 The class of sets with cho...
fodomacn 10055 A version of ~ fodom that ...
fodomnum 10056 A version of ~ fodom that ...
fonum 10057 A surjection maps numerabl...
numwdom 10058 A surjection maps numerabl...
fodomfi2 10059 Onto functions define domi...
wdomfil 10060 Weak dominance agrees with...
infpwfien 10061 Any infinite well-orderabl...
inffien 10062 The set of finite intersec...
wdomnumr 10063 Weak dominance agrees with...
alephfnon 10064 The aleph function is a fu...
aleph0 10065 The first infinite cardina...
alephlim 10066 Value of the aleph functio...
alephsuc 10067 Value of the aleph functio...
alephon 10068 An aleph is an ordinal num...
alephcard 10069 Every aleph is a cardinal ...
alephnbtwn 10070 No cardinal can be sandwic...
alephnbtwn2 10071 No set has equinumerosity ...
alephordilem1 10072 Lemma for ~ alephordi . (...
alephordi 10073 Strict ordering property o...
alephord 10074 Ordering property of the a...
alephord2 10075 Ordering property of the a...
alephord2i 10076 Ordering property of the a...
alephord3 10077 Ordering property of the a...
alephsucdom 10078 A set dominated by an alep...
alephsuc2 10079 An alternate representatio...
alephdom 10080 Relationship between inclu...
alephgeom 10081 Every aleph is greater tha...
alephislim 10082 Every aleph is a limit ord...
aleph11 10083 The aleph function is one-...
alephf1 10084 The aleph function is a on...
alephsdom 10085 If an ordinal is smaller t...
alephdom2 10086 A dominated initial ordina...
alephle 10087 The argument of the aleph ...
cardaleph 10088 Given any transfinite card...
cardalephex 10089 Every transfinite cardinal...
infenaleph 10090 An infinite numerable set ...
isinfcard 10091 Two ways to express the pr...
iscard3 10092 Two ways to express the pr...
cardnum 10093 Two ways to express the cl...
alephinit 10094 An infinite initial ordina...
carduniima 10095 The union of the image of ...
cardinfima 10096 If a mapping to cardinals ...
alephiso 10097 Aleph is an order isomorph...
alephprc 10098 The class of all transfini...
alephsson 10099 The class of transfinite c...
unialeph 10100 The union of the class of ...
alephsmo 10101 The aleph function is stri...
alephf1ALT 10102 Alternate proof of ~ aleph...
alephfplem1 10103 Lemma for ~ alephfp . (Co...
alephfplem2 10104 Lemma for ~ alephfp . (Co...
alephfplem3 10105 Lemma for ~ alephfp . (Co...
alephfplem4 10106 Lemma for ~ alephfp . (Co...
alephfp 10107 The aleph function has a f...
alephfp2 10108 The aleph function has at ...
alephval3 10109 An alternate way to expres...
alephsucpw2 10110 The power set of an aleph ...
mappwen 10111 Power rule for cardinal ar...
finnisoeu 10112 A finite totally ordered s...
iunfictbso 10113 Countability of a countabl...
aceq1 10116 Equivalence of two version...
aceq0 10117 Equivalence of two version...
aceq2 10118 Equivalence of two version...
aceq3lem 10119 Lemma for ~ dfac3 . (Cont...
dfac3 10120 Equivalence of two version...
dfac4 10121 Equivalence of two version...
dfac5lem1 10122 Lemma for ~ dfac5 . (Cont...
dfac5lem2 10123 Lemma for ~ dfac5 . (Cont...
dfac5lem3 10124 Lemma for ~ dfac5 . (Cont...
dfac5lem4 10125 Lemma for ~ dfac5 . (Cont...
dfac5lem5 10126 Lemma for ~ dfac5 . (Cont...
dfac5 10127 Equivalence of two version...
dfac2a 10128 Our Axiom of Choice (in th...
dfac2b 10129 Axiom of Choice (first for...
dfac2 10130 Axiom of Choice (first for...
dfac7 10131 Equivalence of the Axiom o...
dfac0 10132 Equivalence of two version...
dfac1 10133 Equivalence of two version...
dfac8 10134 A proof of the equivalency...
dfac9 10135 Equivalence of the axiom o...
dfac10 10136 Axiom of Choice equivalent...
dfac10c 10137 Axiom of Choice equivalent...
dfac10b 10138 Axiom of Choice equivalent...
acacni 10139 A choice equivalent: every...
dfacacn 10140 A choice equivalent: every...
dfac13 10141 The axiom of choice holds ...
dfac12lem1 10142 Lemma for ~ dfac12 . (Con...
dfac12lem2 10143 Lemma for ~ dfac12 . (Con...
dfac12lem3 10144 Lemma for ~ dfac12 . (Con...
dfac12r 10145 The axiom of choice holds ...
dfac12k 10146 Equivalence of ~ dfac12 an...
dfac12a 10147 The axiom of choice holds ...
dfac12 10148 The axiom of choice holds ...
kmlem1 10149 Lemma for 5-quantifier AC ...
kmlem2 10150 Lemma for 5-quantifier AC ...
kmlem3 10151 Lemma for 5-quantifier AC ...
kmlem4 10152 Lemma for 5-quantifier AC ...
kmlem5 10153 Lemma for 5-quantifier AC ...
kmlem6 10154 Lemma for 5-quantifier AC ...
kmlem7 10155 Lemma for 5-quantifier AC ...
kmlem8 10156 Lemma for 5-quantifier AC ...
kmlem9 10157 Lemma for 5-quantifier AC ...
kmlem10 10158 Lemma for 5-quantifier AC ...
kmlem11 10159 Lemma for 5-quantifier AC ...
kmlem12 10160 Lemma for 5-quantifier AC ...
kmlem13 10161 Lemma for 5-quantifier AC ...
kmlem14 10162 Lemma for 5-quantifier AC ...
kmlem15 10163 Lemma for 5-quantifier AC ...
kmlem16 10164 Lemma for 5-quantifier AC ...
dfackm 10165 Equivalence of the Axiom o...
undjudom 10166 Cardinal addition dominate...
endjudisj 10167 Equinumerosity of a disjoi...
djuen 10168 Disjoint unions of equinum...
djuenun 10169 Disjoint union is equinume...
dju1en 10170 Cardinal addition with car...
dju1dif 10171 Adding and subtracting one...
dju1p1e2 10172 1+1=2 for cardinal number ...
dju1p1e2ALT 10173 Alternate proof of ~ dju1p...
dju0en 10174 Cardinal addition with car...
xp2dju 10175 Two times a cardinal numbe...
djucomen 10176 Commutative law for cardin...
djuassen 10177 Associative law for cardin...
xpdjuen 10178 Cardinal multiplication di...
mapdjuen 10179 Sum of exponents law for c...
pwdjuen 10180 Sum of exponents law for c...
djudom1 10181 Ordering law for cardinal ...
djudom2 10182 Ordering law for cardinal ...
djudoml 10183 A set is dominated by its ...
djuxpdom 10184 Cartesian product dominate...
djufi 10185 The disjoint union of two ...
cdainflem 10186 Any partition of omega int...
djuinf 10187 A set is infinite iff the ...
infdju1 10188 An infinite set is equinum...
pwdju1 10189 The sum of a powerset with...
pwdjuidm 10190 If the natural numbers inj...
djulepw 10191 If ` A ` is idempotent und...
onadju 10192 The cardinal and ordinal s...
cardadju 10193 The cardinal sum is equinu...
djunum 10194 The disjoint union of two ...
unnum 10195 The union of two numerable...
nnadju 10196 The cardinal and ordinal s...
nnadjuALT 10197 Shorter proof of ~ nnadju ...
ficardadju 10198 The disjoint union of fini...
ficardun 10199 The cardinality of the uni...
ficardunOLD 10200 Obsolete version of ~ fica...
ficardun2 10201 The cardinality of the uni...
ficardun2OLD 10202 Obsolete version of ~ fica...
pwsdompw 10203 Lemma for ~ domtriom . Th...
unctb 10204 The union of two countable...
infdjuabs 10205 Absorption law for additio...
infunabs 10206 An infinite set is equinum...
infdju 10207 The sum of two cardinal nu...
infdif 10208 The cardinality of an infi...
infdif2 10209 Cardinality ordering for a...
infxpdom 10210 Dominance law for multipli...
infxpabs 10211 Absorption law for multipl...
infunsdom1 10212 The union of two sets that...
infunsdom 10213 The union of two sets that...
infxp 10214 Absorption law for multipl...
pwdjudom 10215 A property of dominance ov...
infpss 10216 Every infinite set has an ...
infmap2 10217 An exponentiation law for ...
ackbij2lem1 10218 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 10219 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 10220 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 10221 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 10222 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 10223 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 10224 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 10225 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 10226 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 10227 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 10228 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 10229 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 10230 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 10231 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 10232 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 10233 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 10234 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 10235 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 10236 Lemma for ~ ackbij1 . (Co...
ackbij1 10237 The Ackermann bijection, p...
ackbij1b 10238 The Ackermann bijection, p...
ackbij2lem2 10239 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 10240 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 10241 Lemma for ~ ackbij2 . (Co...
ackbij2 10242 The Ackermann bijection, p...
r1om 10243 The set of hereditarily fi...
fictb 10244 A set is countable iff its...
cflem 10245 A lemma used to simplify c...
cfval 10246 Value of the cofinality fu...
cff 10247 Cofinality is a function o...
cfub 10248 An upper bound on cofinali...
cflm 10249 Value of the cofinality fu...
cf0 10250 Value of the cofinality fu...
cardcf 10251 Cofinality is a cardinal n...
cflecard 10252 Cofinality is bounded by t...
cfle 10253 Cofinality is bounded by i...
cfon 10254 The cofinality of any set ...
cfeq0 10255 Only the ordinal zero has ...
cfsuc 10256 Value of the cofinality fu...
cff1 10257 There is always a map from...
cfflb 10258 If there is a cofinal map ...
cfval2 10259 Another expression for the...
coflim 10260 A simpler expression for t...
cflim3 10261 Another expression for the...
cflim2 10262 The cofinality function is...
cfom 10263 Value of the cofinality fu...
cfss 10264 There is a cofinal subset ...
cfslb 10265 Any cofinal subset of ` A ...
cfslbn 10266 Any subset of ` A ` smalle...
cfslb2n 10267 Any small collection of sm...
cofsmo 10268 Any cofinal map implies th...
cfsmolem 10269 Lemma for ~ cfsmo . (Cont...
cfsmo 10270 The map in ~ cff1 can be a...
cfcoflem 10271 Lemma for ~ cfcof , showin...
coftr 10272 If there is a cofinal map ...
cfcof 10273 If there is a cofinal map ...
cfidm 10274 The cofinality function is...
alephsing 10275 The cofinality of a limit ...
sornom 10276 The range of a single-step...
isfin1a 10291 Definition of a Ia-finite ...
fin1ai 10292 Property of a Ia-finite se...
isfin2 10293 Definition of a II-finite ...
fin2i 10294 Property of a II-finite se...
isfin3 10295 Definition of a III-finite...
isfin4 10296 Definition of a IV-finite ...
fin4i 10297 Infer that a set is IV-inf...
isfin5 10298 Definition of a V-finite s...
isfin6 10299 Definition of a VI-finite ...
isfin7 10300 Definition of a VII-finite...
sdom2en01 10301 A set with less than two e...
infpssrlem1 10302 Lemma for ~ infpssr . (Co...
infpssrlem2 10303 Lemma for ~ infpssr . (Co...
infpssrlem3 10304 Lemma for ~ infpssr . (Co...
infpssrlem4 10305 Lemma for ~ infpssr . (Co...
infpssrlem5 10306 Lemma for ~ infpssr . (Co...
infpssr 10307 Dedekind infinity implies ...
fin4en1 10308 Dedekind finite is a cardi...
ssfin4 10309 Dedekind finite sets have ...
domfin4 10310 A set dominated by a Dedek...
ominf4 10311 ` _om ` is Dedekind infini...
infpssALT 10312 Alternate proof of ~ infps...
isfin4-2 10313 Alternate definition of IV...
isfin4p1 10314 Alternate definition of IV...
fin23lem7 10315 Lemma for ~ isfin2-2 . Th...
fin23lem11 10316 Lemma for ~ isfin2-2 . (C...
fin2i2 10317 A II-finite set contains m...
isfin2-2 10318 ` Fin2 ` expressed in term...
ssfin2 10319 A subset of a II-finite se...
enfin2i 10320 II-finiteness is a cardina...
fin23lem24 10321 Lemma for ~ fin23 . In a ...
fincssdom 10322 In a chain of finite sets,...
fin23lem25 10323 Lemma for ~ fin23 . In a ...
fin23lem26 10324 Lemma for ~ fin23lem22 . ...
fin23lem23 10325 Lemma for ~ fin23lem22 . ...
fin23lem22 10326 Lemma for ~ fin23 but coul...
fin23lem27 10327 The mapping constructed in...
isfin3ds 10328 Property of a III-finite s...
ssfin3ds 10329 A subset of a III-finite s...
fin23lem12 10330 The beginning of the proof...
fin23lem13 10331 Lemma for ~ fin23 . Each ...
fin23lem14 10332 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10333 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10334 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10335 Lemma for ~ fin23 . The f...
fin23lem20 10336 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10337 Lemma for ~ fin23 . By ? ...
fin23lem21 10338 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10339 Lemma for ~ fin23 . The r...
fin23lem29 10340 Lemma for ~ fin23 . The r...
fin23lem30 10341 Lemma for ~ fin23 . The r...
fin23lem31 10342 Lemma for ~ fin23 . The r...
fin23lem32 10343 Lemma for ~ fin23 . Wrap ...
fin23lem33 10344 Lemma for ~ fin23 . Disch...
fin23lem34 10345 Lemma for ~ fin23 . Estab...
fin23lem35 10346 Lemma for ~ fin23 . Stric...
fin23lem36 10347 Lemma for ~ fin23 . Weak ...
fin23lem38 10348 Lemma for ~ fin23 . The c...
fin23lem39 10349 Lemma for ~ fin23 . Thus,...
fin23lem40 10350 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10351 Lemma for ~ fin23 . A set...
isf32lem1 10352 Lemma for ~ isfin3-2 . De...
isf32lem2 10353 Lemma for ~ isfin3-2 . No...
isf32lem3 10354 Lemma for ~ isfin3-2 . Be...
isf32lem4 10355 Lemma for ~ isfin3-2 . Be...
isf32lem5 10356 Lemma for ~ isfin3-2 . Th...
isf32lem6 10357 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10358 Lemma for ~ isfin3-2 . Di...
isf32lem8 10359 Lemma for ~ isfin3-2 . K ...
isf32lem9 10360 Lemma for ~ isfin3-2 . Co...
isf32lem10 10361 Lemma for isfin3-2 . Writ...
isf32lem11 10362 Lemma for ~ isfin3-2 . Re...
isf32lem12 10363 Lemma for ~ isfin3-2 . (C...
isfin32i 10364 One half of ~ isfin3-2 . ...
isf33lem 10365 Lemma for ~ isfin3-3 . (C...
isfin3-2 10366 Weakly Dedekind-infinite s...
isfin3-3 10367 Weakly Dedekind-infinite s...
fin33i 10368 Inference from ~ isfin3-3 ...
compsscnvlem 10369 Lemma for ~ compsscnv . (...
compsscnv 10370 Complementation on a power...
isf34lem1 10371 Lemma for ~ isfin3-4 . (C...
isf34lem2 10372 Lemma for ~ isfin3-4 . (C...
compssiso 10373 Complementation is an anti...
isf34lem3 10374 Lemma for ~ isfin3-4 . (C...
compss 10375 Express image under of the...
isf34lem4 10376 Lemma for ~ isfin3-4 . (C...
isf34lem5 10377 Lemma for ~ isfin3-4 . (C...
isf34lem7 10378 Lemma for ~ isfin3-4 . (C...
isf34lem6 10379 Lemma for ~ isfin3-4 . (C...
fin34i 10380 Inference from ~ isfin3-4 ...
isfin3-4 10381 Weakly Dedekind-infinite s...
fin11a 10382 Every I-finite set is Ia-f...
enfin1ai 10383 Ia-finiteness is a cardina...
isfin1-2 10384 A set is finite in the usu...
isfin1-3 10385 A set is I-finite iff ever...
isfin1-4 10386 A set is I-finite iff ever...
dffin1-5 10387 Compact quantifier-free ve...
fin23 10388 Every II-finite set (every...
fin34 10389 Every III-finite set is IV...
isfin5-2 10390 Alternate definition of V-...
fin45 10391 Every IV-finite set is V-f...
fin56 10392 Every V-finite set is VI-f...
fin17 10393 Every I-finite set is VII-...
fin67 10394 Every VI-finite set is VII...
isfin7-2 10395 A set is VII-finite iff it...
fin71num 10396 A well-orderable set is VI...
dffin7-2 10397 Class form of ~ isfin7-2 ....
dfacfin7 10398 Axiom of Choice equivalent...
fin1a2lem1 10399 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10400 Lemma for ~ fin1a2 . The ...
fin1a2lem3 10401 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10402 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10403 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10404 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10405 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10406 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10407 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10408 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10409 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10410 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10411 Lemma for ~ fin1a2 . (Con...
fin12 10412 Weak theorem which skips I...
fin1a2s 10413 An II-infinite set can hav...
fin1a2 10414 Every Ia-finite set is II-...
itunifval 10415 Function value of iterated...
itunifn 10416 Functionality of the itera...
ituni0 10417 A zero-fold iterated union...
itunisuc 10418 Successor iterated union. ...
itunitc1 10419 Each union iterate is a me...
itunitc 10420 The union of all union ite...
ituniiun 10421 Unwrap an iterated union f...
hsmexlem7 10422 Lemma for ~ hsmex . Prope...
hsmexlem8 10423 Lemma for ~ hsmex . Prope...
hsmexlem9 10424 Lemma for ~ hsmex . Prope...
hsmexlem1 10425 Lemma for ~ hsmex . Bound...
hsmexlem2 10426 Lemma for ~ hsmex . Bound...
hsmexlem3 10427 Lemma for ~ hsmex . Clear...
hsmexlem4 10428 Lemma for ~ hsmex . The c...
hsmexlem5 10429 Lemma for ~ hsmex . Combi...
hsmexlem6 10430 Lemma for ~ hsmex . (Cont...
hsmex 10431 The collection of heredita...
hsmex2 10432 The set of hereditary size...
hsmex3 10433 The set of hereditary size...
axcc2lem 10435 Lemma for ~ axcc2 . (Cont...
axcc2 10436 A possibly more useful ver...
axcc3 10437 A possibly more useful ver...
axcc4 10438 A version of ~ axcc3 that ...
acncc 10439 An ~ ax-cc equivalent: eve...
axcc4dom 10440 Relax the constraint on ~ ...
domtriomlem 10441 Lemma for ~ domtriom . (C...
domtriom 10442 Trichotomy of equinumerosi...
fin41 10443 Under countable choice, th...
dominf 10444 A nonempty set that is a s...
dcomex 10446 The Axiom of Dependent Cho...
axdc2lem 10447 Lemma for ~ axdc2 . We co...
axdc2 10448 An apparent strengthening ...
axdc3lem 10449 The class ` S ` of finite ...
axdc3lem2 10450 Lemma for ~ axdc3 . We ha...
axdc3lem3 10451 Simple substitution lemma ...
axdc3lem4 10452 Lemma for ~ axdc3 . We ha...
axdc3 10453 Dependent Choice. Axiom D...
axdc4lem 10454 Lemma for ~ axdc4 . (Cont...
axdc4 10455 A more general version of ...
axcclem 10456 Lemma for ~ axcc . (Contr...
axcc 10457 Although CC can be proven ...
zfac 10459 Axiom of Choice expressed ...
ac2 10460 Axiom of Choice equivalent...
ac3 10461 Axiom of Choice using abbr...
axac3 10463 This theorem asserts that ...
ackm 10464 A remarkable equivalent to...
axac2 10465 Derive ~ ax-ac2 from ~ ax-...
axac 10466 Derive ~ ax-ac from ~ ax-a...
axaci 10467 Apply a choice equivalent....
cardeqv 10468 All sets are well-orderabl...
numth3 10469 All sets are well-orderabl...
numth2 10470 Numeration theorem: any se...
numth 10471 Numeration theorem: every ...
ac7 10472 An Axiom of Choice equival...
ac7g 10473 An Axiom of Choice equival...
ac4 10474 Equivalent of Axiom of Cho...
ac4c 10475 Equivalent of Axiom of Cho...
ac5 10476 An Axiom of Choice equival...
ac5b 10477 Equivalent of Axiom of Cho...
ac6num 10478 A version of ~ ac6 which t...
ac6 10479 Equivalent of Axiom of Cho...
ac6c4 10480 Equivalent of Axiom of Cho...
ac6c5 10481 Equivalent of Axiom of Cho...
ac9 10482 An Axiom of Choice equival...
ac6s 10483 Equivalent of Axiom of Cho...
ac6n 10484 Equivalent of Axiom of Cho...
ac6s2 10485 Generalization of the Axio...
ac6s3 10486 Generalization of the Axio...
ac6sg 10487 ~ ac6s with sethood as ant...
ac6sf 10488 Version of ~ ac6 with boun...
ac6s4 10489 Generalization of the Axio...
ac6s5 10490 Generalization of the Axio...
ac8 10491 An Axiom of Choice equival...
ac9s 10492 An Axiom of Choice equival...
numthcor 10493 Any set is strictly domina...
weth 10494 Well-ordering theorem: any...
zorn2lem1 10495 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10496 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10497 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10498 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10499 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10500 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10501 Lemma for ~ zorn2 . (Cont...
zorn2g 10502 Zorn's Lemma of [Monk1] p....
zorng 10503 Zorn's Lemma. If the unio...
zornn0g 10504 Variant of Zorn's lemma ~ ...
zorn2 10505 Zorn's Lemma of [Monk1] p....
zorn 10506 Zorn's Lemma. If the unio...
zornn0 10507 Variant of Zorn's lemma ~ ...
ttukeylem1 10508 Lemma for ~ ttukey . Expa...
ttukeylem2 10509 Lemma for ~ ttukey . A pr...
ttukeylem3 10510 Lemma for ~ ttukey . (Con...
ttukeylem4 10511 Lemma for ~ ttukey . (Con...
ttukeylem5 10512 Lemma for ~ ttukey . The ...
ttukeylem6 10513 Lemma for ~ ttukey . (Con...
ttukeylem7 10514 Lemma for ~ ttukey . (Con...
ttukey2g 10515 The Teichmüller-Tukey...
ttukeyg 10516 The Teichmüller-Tukey...
ttukey 10517 The Teichmüller-Tukey...
axdclem 10518 Lemma for ~ axdc . (Contr...
axdclem2 10519 Lemma for ~ axdc . Using ...
axdc 10520 This theorem derives ~ ax-...
fodomg 10521 An onto function implies d...
fodom 10522 An onto function implies d...
dmct 10523 The domain of a countable ...
rnct 10524 The range of a countable s...
fodomb 10525 Equivalence of an onto map...
wdomac 10526 When assuming AC, weak and...
brdom3 10527 Equivalence to a dominance...
brdom5 10528 An equivalence to a domina...
brdom4 10529 An equivalence to a domina...
brdom7disj 10530 An equivalence to a domina...
brdom6disj 10531 An equivalence to a domina...
fin71ac 10532 Once we allow AC, the "str...
imadomg 10533 An image of a function und...
fimact 10534 The image by a function of...
fnrndomg 10535 The range of a function is...
fnct 10536 If the domain of a functio...
mptct 10537 A countable mapping set is...
iunfo 10538 Existence of an onto funct...
iundom2g 10539 An upper bound for the car...
iundomg 10540 An upper bound for the car...
iundom 10541 An upper bound for the car...
unidom 10542 An upper bound for the car...
uniimadom 10543 An upper bound for the car...
uniimadomf 10544 An upper bound for the car...
cardval 10545 The value of the cardinal ...
cardid 10546 Any set is equinumerous to...
cardidg 10547 Any set is equinumerous to...
cardidd 10548 Any set is equinumerous to...
cardf 10549 The cardinality function i...
carden 10550 Two sets are equinumerous ...
cardeq0 10551 Only the empty set has car...
unsnen 10552 Equinumerosity of a set wi...
carddom 10553 Two sets have the dominanc...
cardsdom 10554 Two sets have the strict d...
domtri 10555 Trichotomy law for dominan...
entric 10556 Trichotomy of equinumerosi...
entri2 10557 Trichotomy of dominance an...
entri3 10558 Trichotomy of dominance. ...
sdomsdomcard 10559 A set strictly dominates i...
canth3 10560 Cantor's theorem in terms ...
infxpidm 10561 Every infinite class is eq...
ondomon 10562 The class of ordinals domi...
cardmin 10563 The smallest ordinal that ...
ficard 10564 A set is finite iff its ca...
infinf 10565 Equivalence between two in...
unirnfdomd 10566 The union of the range of ...
konigthlem 10567 Lemma for ~ konigth . (Co...
konigth 10568 Konig's Theorem. If ` m (...
alephsucpw 10569 The power set of an aleph ...
aleph1 10570 The set exponentiation of ...
alephval2 10571 An alternate way to expres...
dominfac 10572 A nonempty set that is a s...
iunctb 10573 The countable union of cou...
unictb 10574 The countable union of cou...
infmap 10575 An exponentiation law for ...
alephadd 10576 The sum of two alephs is t...
alephmul 10577 The product of two alephs ...
alephexp1 10578 An exponentiation law for ...
alephsuc3 10579 An alternate representatio...
alephexp2 10580 An expression equinumerous...
alephreg 10581 A successor aleph is regul...
pwcfsdom 10582 A corollary of Konig's The...
cfpwsdom 10583 A corollary of Konig's The...
alephom 10584 From ~ canth2 , we know th...
smobeth 10585 The beth function is stric...
nd1 10586 A lemma for proving condit...
nd2 10587 A lemma for proving condit...
nd3 10588 A lemma for proving condit...
nd4 10589 A lemma for proving condit...
axextnd 10590 A version of the Axiom of ...
axrepndlem1 10591 Lemma for the Axiom of Rep...
axrepndlem2 10592 Lemma for the Axiom of Rep...
axrepnd 10593 A version of the Axiom of ...
axunndlem1 10594 Lemma for the Axiom of Uni...
axunnd 10595 A version of the Axiom of ...
axpowndlem1 10596 Lemma for the Axiom of Pow...
axpowndlem2 10597 Lemma for the Axiom of Pow...
axpowndlem3 10598 Lemma for the Axiom of Pow...
axpowndlem4 10599 Lemma for the Axiom of Pow...
axpownd 10600 A version of the Axiom of ...
axregndlem1 10601 Lemma for the Axiom of Reg...
axregndlem2 10602 Lemma for the Axiom of Reg...
axregnd 10603 A version of the Axiom of ...
axinfndlem1 10604 Lemma for the Axiom of Inf...
axinfnd 10605 A version of the Axiom of ...
axacndlem1 10606 Lemma for the Axiom of Cho...
axacndlem2 10607 Lemma for the Axiom of Cho...
axacndlem3 10608 Lemma for the Axiom of Cho...
axacndlem4 10609 Lemma for the Axiom of Cho...
axacndlem5 10610 Lemma for the Axiom of Cho...
axacnd 10611 A version of the Axiom of ...
zfcndext 10612 Axiom of Extensionality ~ ...
zfcndrep 10613 Axiom of Replacement ~ ax-...
zfcndun 10614 Axiom of Union ~ ax-un , r...
zfcndpow 10615 Axiom of Power Sets ~ ax-p...
zfcndreg 10616 Axiom of Regularity ~ ax-r...
zfcndinf 10617 Axiom of Infinity ~ ax-inf...
zfcndac 10618 Axiom of Choice ~ ax-ac , ...
elgch 10621 Elementhood in the collect...
fingch 10622 A finite set is a GCH-set....
gchi 10623 The only GCH-sets which ha...
gchen1 10624 If ` A <_ B < ~P A ` , and...
gchen2 10625 If ` A < B <_ ~P A ` , and...
gchor 10626 If ` A <_ B <_ ~P A ` , an...
engch 10627 The property of being a GC...
gchdomtri 10628 Under certain conditions, ...
fpwwe2cbv 10629 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10630 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10631 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10632 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10633 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10634 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10635 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10636 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10637 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10638 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10639 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10640 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10641 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10642 Given any function ` F ` f...
fpwwecbv 10643 Lemma for ~ fpwwe . (Cont...
fpwwelem 10644 Lemma for ~ fpwwe . (Cont...
fpwwe 10645 Given any function ` F ` f...
canth4 10646 An "effective" form of Can...
canthnumlem 10647 Lemma for ~ canthnum . (C...
canthnum 10648 The set of well-orderable ...
canthwelem 10649 Lemma for ~ canthwe . (Co...
canthwe 10650 The set of well-orders of ...
canthp1lem1 10651 Lemma for ~ canthp1 . (Co...
canthp1lem2 10652 Lemma for ~ canthp1 . (Co...
canthp1 10653 A slightly stronger form o...
finngch 10654 The exclusion of finite se...
gchdju1 10655 An infinite GCH-set is ide...
gchinf 10656 An infinite GCH-set is Ded...
pwfseqlem1 10657 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10658 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10659 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10660 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10661 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10662 Lemma for ~ pwfseq . Alth...
pwfseq 10663 The powerset of a Dedekind...
pwxpndom2 10664 The powerset of a Dedekind...
pwxpndom 10665 The powerset of a Dedekind...
pwdjundom 10666 The powerset of a Dedekind...
gchdjuidm 10667 An infinite GCH-set is ide...
gchxpidm 10668 An infinite GCH-set is ide...
gchpwdom 10669 A relationship between dom...
gchaleph 10670 If ` ( aleph `` A ) ` is a...
gchaleph2 10671 If ` ( aleph `` A ) ` and ...
hargch 10672 If ` A + ~~ ~P A ` , then ...
alephgch 10673 If ` ( aleph `` suc A ) ` ...
gch2 10674 It is sufficient to requir...
gch3 10675 An equivalent formulation ...
gch-kn 10676 The equivalence of two ver...
gchaclem 10677 Lemma for ~ gchac (obsolet...
gchhar 10678 A "local" form of ~ gchac ...
gchacg 10679 A "local" form of ~ gchac ...
gchac 10680 The Generalized Continuum ...
elwina 10685 Conditions of weak inacces...
elina 10686 Conditions of strong inacc...
winaon 10687 A weakly inaccessible card...
inawinalem 10688 Lemma for ~ inawina . (Co...
inawina 10689 Every strongly inaccessibl...
omina 10690 ` _om ` is a strongly inac...
winacard 10691 A weakly inaccessible card...
winainflem 10692 A weakly inaccessible card...
winainf 10693 A weakly inaccessible card...
winalim 10694 A weakly inaccessible card...
winalim2 10695 A nontrivial weakly inacce...
winafp 10696 A nontrivial weakly inacce...
winafpi 10697 This theorem, which states...
gchina 10698 Assuming the GCH, weakly a...
iswun 10703 Properties of a weak unive...
wuntr 10704 A weak universe is transit...
wununi 10705 A weak universe is closed ...
wunpw 10706 A weak universe is closed ...
wunelss 10707 The elements of a weak uni...
wunpr 10708 A weak universe is closed ...
wunun 10709 A weak universe is closed ...
wuntp 10710 A weak universe is closed ...
wunss 10711 A weak universe is closed ...
wunin 10712 A weak universe is closed ...
wundif 10713 A weak universe is closed ...
wunint 10714 A weak universe is closed ...
wunsn 10715 A weak universe is closed ...
wunsuc 10716 A weak universe is closed ...
wun0 10717 A weak universe contains t...
wunr1om 10718 A weak universe is infinit...
wunom 10719 A weak universe contains a...
wunfi 10720 A weak universe contains a...
wunop 10721 A weak universe is closed ...
wunot 10722 A weak universe is closed ...
wunxp 10723 A weak universe is closed ...
wunpm 10724 A weak universe is closed ...
wunmap 10725 A weak universe is closed ...
wunf 10726 A weak universe is closed ...
wundm 10727 A weak universe is closed ...
wunrn 10728 A weak universe is closed ...
wuncnv 10729 A weak universe is closed ...
wunres 10730 A weak universe is closed ...
wunfv 10731 A weak universe is closed ...
wunco 10732 A weak universe is closed ...
wuntpos 10733 A weak universe is closed ...
intwun 10734 The intersection of a coll...
r1limwun 10735 Each limit stage in the cu...
r1wunlim 10736 The weak universes in the ...
wunex2 10737 Construct a weak universe ...
wunex 10738 Construct a weak universe ...
uniwun 10739 Every set is contained in ...
wunex3 10740 Construct a weak universe ...
wuncval 10741 Value of the weak universe...
wuncid 10742 The weak universe closure ...
wunccl 10743 The weak universe closure ...
wuncss 10744 The weak universe closure ...
wuncidm 10745 The weak universe closure ...
wuncval2 10746 Our earlier expression for...
eltskg 10749 Properties of a Tarski cla...
eltsk2g 10750 Properties of a Tarski cla...
tskpwss 10751 First axiom of a Tarski cl...
tskpw 10752 Second axiom of a Tarski c...
tsken 10753 Third axiom of a Tarski cl...
0tsk 10754 The empty set is a (transi...
tsksdom 10755 An element of a Tarski cla...
tskssel 10756 A part of a Tarski class s...
tskss 10757 The subsets of an element ...
tskin 10758 The intersection of two el...
tsksn 10759 A singleton of an element ...
tsktrss 10760 A transitive element of a ...
tsksuc 10761 If an element of a Tarski ...
tsk0 10762 A nonempty Tarski class co...
tsk1 10763 One is an element of a non...
tsk2 10764 Two is an element of a non...
2domtsk 10765 If a Tarski class is not e...
tskr1om 10766 A nonempty Tarski class is...
tskr1om2 10767 A nonempty Tarski class co...
tskinf 10768 A nonempty Tarski class is...
tskpr 10769 If ` A ` and ` B ` are mem...
tskop 10770 If ` A ` and ` B ` are mem...
tskxpss 10771 A Cartesian product of two...
tskwe2 10772 A Tarski class is well-ord...
inttsk 10773 The intersection of a coll...
inar1 10774 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10775 Alternate proof of ~ r1om ...
rankcf 10776 Any set must be at least a...
inatsk 10777 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10778 The set of hereditarily fi...
tskord 10779 A Tarski class contains al...
tskcard 10780 An even more direct relati...
r1tskina 10781 There is a direct relation...
tskuni 10782 The union of an element of...
tskwun 10783 A nonempty transitive Tars...
tskint 10784 The intersection of an ele...
tskun 10785 The union of two elements ...
tskxp 10786 The Cartesian product of t...
tskmap 10787 Set exponentiation is an e...
tskurn 10788 A transitive Tarski class ...
elgrug 10791 Properties of a Grothendie...
grutr 10792 A Grothendieck universe is...
gruelss 10793 A Grothendieck universe is...
grupw 10794 A Grothendieck universe co...
gruss 10795 Any subset of an element o...
grupr 10796 A Grothendieck universe co...
gruurn 10797 A Grothendieck universe co...
gruiun 10798 If ` B ( x ) ` is a family...
gruuni 10799 A Grothendieck universe co...
grurn 10800 A Grothendieck universe co...
gruima 10801 A Grothendieck universe co...
gruel 10802 Any element of an element ...
grusn 10803 A Grothendieck universe co...
gruop 10804 A Grothendieck universe co...
gruun 10805 A Grothendieck universe co...
gruxp 10806 A Grothendieck universe co...
grumap 10807 A Grothendieck universe co...
gruixp 10808 A Grothendieck universe co...
gruiin 10809 A Grothendieck universe co...
gruf 10810 A Grothendieck universe co...
gruen 10811 A Grothendieck universe co...
gruwun 10812 A nonempty Grothendieck un...
intgru 10813 The intersection of a fami...
ingru 10814 The intersection of a univ...
wfgru 10815 The wellfounded part of a ...
grudomon 10816 Each ordinal that is compa...
gruina 10817 If a Grothendieck universe...
grur1a 10818 A characterization of Grot...
grur1 10819 A characterization of Grot...
grutsk1 10820 Grothendieck universes are...
grutsk 10821 Grothendieck universes are...
axgroth5 10823 The Tarski-Grothendieck ax...
axgroth2 10824 Alternate version of the T...
grothpw 10825 Derive the Axiom of Power ...
grothpwex 10826 Derive the Axiom of Power ...
axgroth6 10827 The Tarski-Grothendieck ax...
grothomex 10828 The Tarski-Grothendieck Ax...
grothac 10829 The Tarski-Grothendieck Ax...
axgroth3 10830 Alternate version of the T...
axgroth4 10831 Alternate version of the T...
grothprimlem 10832 Lemma for ~ grothprim . E...
grothprim 10833 The Tarski-Grothendieck Ax...
grothtsk 10834 The Tarski-Grothendieck Ax...
inaprc 10835 An equivalent to the Tarsk...
tskmval 10838 Value of our tarski map. ...
tskmid 10839 The set ` A ` is an elemen...
tskmcl 10840 A Tarski class that contai...
sstskm 10841 Being a part of ` ( tarski...
eltskm 10842 Belonging to ` ( tarskiMap...
elni 10875 Membership in the class of...
elni2 10876 Membership in the class of...
pinn 10877 A positive integer is a na...
pion 10878 A positive integer is an o...
piord 10879 A positive integer is ordi...
niex 10880 The class of positive inte...
0npi 10881 The empty set is not a pos...
1pi 10882 Ordinal 'one' is a positiv...
addpiord 10883 Positive integer addition ...
mulpiord 10884 Positive integer multiplic...
mulidpi 10885 1 is an identity element f...
ltpiord 10886 Positive integer 'less tha...
ltsopi 10887 Positive integer 'less tha...
ltrelpi 10888 Positive integer 'less tha...
dmaddpi 10889 Domain of addition on posi...
dmmulpi 10890 Domain of multiplication o...
addclpi 10891 Closure of addition of pos...
mulclpi 10892 Closure of multiplication ...
addcompi 10893 Addition of positive integ...
addasspi 10894 Addition of positive integ...
mulcompi 10895 Multiplication of positive...
mulasspi 10896 Multiplication of positive...
distrpi 10897 Multiplication of positive...
addcanpi 10898 Addition cancellation law ...
mulcanpi 10899 Multiplication cancellatio...
addnidpi 10900 There is no identity eleme...
ltexpi 10901 Ordering on positive integ...
ltapi 10902 Ordering property of addit...
ltmpi 10903 Ordering property of multi...
1lt2pi 10904 One is less than two (one ...
nlt1pi 10905 No positive integer is les...
indpi 10906 Principle of Finite Induct...
enqbreq 10918 Equivalence relation for p...
enqbreq2 10919 Equivalence relation for p...
enqer 10920 The equivalence relation f...
enqex 10921 The equivalence relation f...
nqex 10922 The class of positive frac...
0nnq 10923 The empty set is not a pos...
elpqn 10924 Each positive fraction is ...
ltrelnq 10925 Positive fraction 'less th...
pinq 10926 The representatives of pos...
1nq 10927 The positive fraction 'one...
nqereu 10928 There is a unique element ...
nqerf 10929 Corollary of ~ nqereu : th...
nqercl 10930 Corollary of ~ nqereu : cl...
nqerrel 10931 Any member of ` ( N. X. N....
nqerid 10932 Corollary of ~ nqereu : th...
enqeq 10933 Corollary of ~ nqereu : if...
nqereq 10934 The function ` /Q ` acts a...
addpipq2 10935 Addition of positive fract...
addpipq 10936 Addition of positive fract...
addpqnq 10937 Addition of positive fract...
mulpipq2 10938 Multiplication of positive...
mulpipq 10939 Multiplication of positive...
mulpqnq 10940 Multiplication of positive...
ordpipq 10941 Ordering of positive fract...
ordpinq 10942 Ordering of positive fract...
addpqf 10943 Closure of addition on pos...
addclnq 10944 Closure of addition on pos...
mulpqf 10945 Closure of multiplication ...
mulclnq 10946 Closure of multiplication ...
addnqf 10947 Domain of addition on posi...
mulnqf 10948 Domain of multiplication o...
addcompq 10949 Addition of positive fract...
addcomnq 10950 Addition of positive fract...
mulcompq 10951 Multiplication of positive...
mulcomnq 10952 Multiplication of positive...
adderpqlem 10953 Lemma for ~ adderpq . (Co...
mulerpqlem 10954 Lemma for ~ mulerpq . (Co...
adderpq 10955 Addition is compatible wit...
mulerpq 10956 Multiplication is compatib...
addassnq 10957 Addition of positive fract...
mulassnq 10958 Multiplication of positive...
mulcanenq 10959 Lemma for distributive law...
distrnq 10960 Multiplication of positive...
1nqenq 10961 The equivalence class of r...
mulidnq 10962 Multiplication identity el...
recmulnq 10963 Relationship between recip...
recidnq 10964 A positive fraction times ...
recclnq 10965 Closure law for positive f...
recrecnq 10966 Reciprocal of reciprocal o...
dmrecnq 10967 Domain of reciprocal on po...
ltsonq 10968 'Less than' is a strict or...
lterpq 10969 Compatibility of ordering ...
ltanq 10970 Ordering property of addit...
ltmnq 10971 Ordering property of multi...
1lt2nq 10972 One is less than two (one ...
ltaddnq 10973 The sum of two fractions i...
ltexnq 10974 Ordering on positive fract...
halfnq 10975 One-half of any positive f...
nsmallnq 10976 The is no smallest positiv...
ltbtwnnq 10977 There exists a number betw...
ltrnq 10978 Ordering property of recip...
archnq 10979 For any fraction, there is...
npex 10985 The class of positive real...
elnp 10986 Membership in positive rea...
elnpi 10987 Membership in positive rea...
prn0 10988 A positive real is not emp...
prpssnq 10989 A positive real is a subse...
elprnq 10990 A positive real is a set o...
0npr 10991 The empty set is not a pos...
prcdnq 10992 A positive real is closed ...
prub 10993 A positive fraction not in...
prnmax 10994 A positive real has no lar...
npomex 10995 A simplifying observation,...
prnmadd 10996 A positive real has no lar...
ltrelpr 10997 Positive real 'less than' ...
genpv 10998 Value of general operation...
genpelv 10999 Membership in value of gen...
genpprecl 11000 Pre-closure law for genera...
genpdm 11001 Domain of general operatio...
genpn0 11002 The result of an operation...
genpss 11003 The result of an operation...
genpnnp 11004 The result of an operation...
genpcd 11005 Downward closure of an ope...
genpnmax 11006 An operation on positive r...
genpcl 11007 Closure of an operation on...
genpass 11008 Associativity of an operat...
plpv 11009 Value of addition on posit...
mpv 11010 Value of multiplication on...
dmplp 11011 Domain of addition on posi...
dmmp 11012 Domain of multiplication o...
nqpr 11013 The canonical embedding of...
1pr 11014 The positive real number '...
addclprlem1 11015 Lemma to prove downward cl...
addclprlem2 11016 Lemma to prove downward cl...
addclpr 11017 Closure of addition on pos...
mulclprlem 11018 Lemma to prove downward cl...
mulclpr 11019 Closure of multiplication ...
addcompr 11020 Addition of positive reals...
addasspr 11021 Addition of positive reals...
mulcompr 11022 Multiplication of positive...
mulasspr 11023 Multiplication of positive...
distrlem1pr 11024 Lemma for distributive law...
distrlem4pr 11025 Lemma for distributive law...
distrlem5pr 11026 Lemma for distributive law...
distrpr 11027 Multiplication of positive...
1idpr 11028 1 is an identity element f...
ltprord 11029 Positive real 'less than' ...
psslinpr 11030 Proper subset is a linear ...
ltsopr 11031 Positive real 'less than' ...
prlem934 11032 Lemma 9-3.4 of [Gleason] p...
ltaddpr 11033 The sum of two positive re...
ltaddpr2 11034 The sum of two positive re...
ltexprlem1 11035 Lemma for Proposition 9-3....
ltexprlem2 11036 Lemma for Proposition 9-3....
ltexprlem3 11037 Lemma for Proposition 9-3....
ltexprlem4 11038 Lemma for Proposition 9-3....
ltexprlem5 11039 Lemma for Proposition 9-3....
ltexprlem6 11040 Lemma for Proposition 9-3....
ltexprlem7 11041 Lemma for Proposition 9-3....
ltexpri 11042 Proposition 9-3.5(iv) of [...
ltaprlem 11043 Lemma for Proposition 9-3....
ltapr 11044 Ordering property of addit...
addcanpr 11045 Addition cancellation law ...
prlem936 11046 Lemma 9-3.6 of [Gleason] p...
reclem2pr 11047 Lemma for Proposition 9-3....
reclem3pr 11048 Lemma for Proposition 9-3....
reclem4pr 11049 Lemma for Proposition 9-3....
recexpr 11050 The reciprocal of a positi...
suplem1pr 11051 The union of a nonempty, b...
suplem2pr 11052 The union of a set of posi...
supexpr 11053 The union of a nonempty, b...
enrer 11062 The equivalence relation f...
nrex1 11063 The class of signed reals ...
enrbreq 11064 Equivalence relation for s...
enreceq 11065 Equivalence class equality...
enrex 11066 The equivalence relation f...
ltrelsr 11067 Signed real 'less than' is...
addcmpblnr 11068 Lemma showing compatibilit...
mulcmpblnrlem 11069 Lemma used in lemma showin...
mulcmpblnr 11070 Lemma showing compatibilit...
prsrlem1 11071 Decomposing signed reals i...
addsrmo 11072 There is at most one resul...
mulsrmo 11073 There is at most one resul...
addsrpr 11074 Addition of signed reals i...
mulsrpr 11075 Multiplication of signed r...
ltsrpr 11076 Ordering of signed reals i...
gt0srpr 11077 Greater than zero in terms...
0nsr 11078 The empty set is not a sig...
0r 11079 The constant ` 0R ` is a s...
1sr 11080 The constant ` 1R ` is a s...
m1r 11081 The constant ` -1R ` is a ...
addclsr 11082 Closure of addition on sig...
mulclsr 11083 Closure of multiplication ...
dmaddsr 11084 Domain of addition on sign...
dmmulsr 11085 Domain of multiplication o...
addcomsr 11086 Addition of signed reals i...
addasssr 11087 Addition of signed reals i...
mulcomsr 11088 Multiplication of signed r...
mulasssr 11089 Multiplication of signed r...
distrsr 11090 Multiplication of signed r...
m1p1sr 11091 Minus one plus one is zero...
m1m1sr 11092 Minus one times minus one ...
ltsosr 11093 Signed real 'less than' is...
0lt1sr 11094 0 is less than 1 for signe...
1ne0sr 11095 1 and 0 are distinct for s...
0idsr 11096 The signed real number 0 i...
1idsr 11097 1 is an identity element f...
00sr 11098 A signed real times 0 is 0...
ltasr 11099 Ordering property of addit...
pn0sr 11100 A signed real plus its neg...
negexsr 11101 Existence of negative sign...
recexsrlem 11102 The reciprocal of a positi...
addgt0sr 11103 The sum of two positive si...
mulgt0sr 11104 The product of two positiv...
sqgt0sr 11105 The square of a nonzero si...
recexsr 11106 The reciprocal of a nonzer...
mappsrpr 11107 Mapping from positive sign...
ltpsrpr 11108 Mapping of order from posi...
map2psrpr 11109 Equivalence for positive s...
supsrlem 11110 Lemma for supremum theorem...
supsr 11111 A nonempty, bounded set of...
opelcn 11128 Ordered pair membership in...
opelreal 11129 Ordered pair membership in...
elreal 11130 Membership in class of rea...
elreal2 11131 Ordered pair membership in...
0ncn 11132 The empty set is not a com...
ltrelre 11133 'Less than' is a relation ...
addcnsr 11134 Addition of complex number...
mulcnsr 11135 Multiplication of complex ...
eqresr 11136 Equality of real numbers i...
addresr 11137 Addition of real numbers i...
mulresr 11138 Multiplication of real num...
ltresr 11139 Ordering of real subset of...
ltresr2 11140 Ordering of real subset of...
dfcnqs 11141 Technical trick to permit ...
addcnsrec 11142 Technical trick to permit ...
mulcnsrec 11143 Technical trick to permit ...
axaddf 11144 Addition is an operation o...
axmulf 11145 Multiplication is an opera...
axcnex 11146 The complex numbers form a...
axresscn 11147 The real numbers are a sub...
ax1cn 11148 1 is a complex number. Ax...
axicn 11149 ` _i ` is a complex number...
axaddcl 11150 Closure law for addition o...
axaddrcl 11151 Closure law for addition i...
axmulcl 11152 Closure law for multiplica...
axmulrcl 11153 Closure law for multiplica...
axmulcom 11154 Multiplication of complex ...
axaddass 11155 Addition of complex number...
axmulass 11156 Multiplication of complex ...
axdistr 11157 Distributive law for compl...
axi2m1 11158 i-squared equals -1 (expre...
ax1ne0 11159 1 and 0 are distinct. Axi...
ax1rid 11160 ` 1 ` is an identity eleme...
axrnegex 11161 Existence of negative of r...
axrrecex 11162 Existence of reciprocal of...
axcnre 11163 A complex number can be ex...
axpre-lttri 11164 Ordering on reals satisfie...
axpre-lttrn 11165 Ordering on reals is trans...
axpre-ltadd 11166 Ordering property of addit...
axpre-mulgt0 11167 The product of two positiv...
axpre-sup 11168 A nonempty, bounded-above ...
wuncn 11169 A weak universe containing...
cnex 11195 Alias for ~ ax-cnex . See...
addcl 11196 Alias for ~ ax-addcl , for...
readdcl 11197 Alias for ~ ax-addrcl , fo...
mulcl 11198 Alias for ~ ax-mulcl , for...
remulcl 11199 Alias for ~ ax-mulrcl , fo...
mulcom 11200 Alias for ~ ax-mulcom , fo...
addass 11201 Alias for ~ ax-addass , fo...
mulass 11202 Alias for ~ ax-mulass , fo...
adddi 11203 Alias for ~ ax-distr , for...
recn 11204 A real number is a complex...
reex 11205 The real numbers form a se...
reelprrecn 11206 Reals are a subset of the ...
cnelprrecn 11207 Complex numbers are a subs...
mpomulf 11208 Multiplication is an opera...
elimne0 11209 Hypothesis for weak deduct...
adddir 11210 Distributive law for compl...
0cn 11211 Zero is a complex number. ...
0cnd 11212 Zero is a complex number, ...
c0ex 11213 Zero is a set. (Contribut...
1cnd 11214 One is a complex number, d...
1ex 11215 One is a set. (Contribute...
cnre 11216 Alias for ~ ax-cnre , for ...
mulrid 11217 The number 1 is an identit...
mullid 11218 Identity law for multiplic...
1re 11219 The number 1 is real. Thi...
1red 11220 The number 1 is real, dedu...
0re 11221 The number 0 is real. Rem...
0red 11222 The number 0 is real, dedu...
mulridi 11223 Identity law for multiplic...
mullidi 11224 Identity law for multiplic...
addcli 11225 Closure law for addition. ...
mulcli 11226 Closure law for multiplica...
mulcomi 11227 Commutative law for multip...
mulcomli 11228 Commutative law for multip...
addassi 11229 Associative law for additi...
mulassi 11230 Associative law for multip...
adddii 11231 Distributive law (left-dis...
adddiri 11232 Distributive law (right-di...
recni 11233 A real number is a complex...
readdcli 11234 Closure law for addition o...
remulcli 11235 Closure law for multiplica...
mulridd 11236 Identity law for multiplic...
mullidd 11237 Identity law for multiplic...
addcld 11238 Closure law for addition. ...
mulcld 11239 Closure law for multiplica...
mulcomd 11240 Commutative law for multip...
addassd 11241 Associative law for additi...
mulassd 11242 Associative law for multip...
adddid 11243 Distributive law (left-dis...
adddird 11244 Distributive law (right-di...
adddirp1d 11245 Distributive law, plus 1 v...
joinlmuladdmuld 11246 Join AB+CB into (A+C) on L...
recnd 11247 Deduction from real number...
readdcld 11248 Closure law for addition o...
remulcld 11249 Closure law for multiplica...
pnfnre 11260 Plus infinity is not a rea...
pnfnre2 11261 Plus infinity is not a rea...
mnfnre 11262 Minus infinity is not a re...
ressxr 11263 The standard reals are a s...
rexpssxrxp 11264 The Cartesian product of s...
rexr 11265 A standard real is an exte...
0xr 11266 Zero is an extended real. ...
renepnf 11267 No (finite) real equals pl...
renemnf 11268 No real equals minus infin...
rexrd 11269 A standard real is an exte...
renepnfd 11270 No (finite) real equals pl...
renemnfd 11271 No real equals minus infin...
pnfex 11272 Plus infinity exists. (Co...
pnfxr 11273 Plus infinity belongs to t...
pnfnemnf 11274 Plus and minus infinity ar...
mnfnepnf 11275 Minus and plus infinity ar...
mnfxr 11276 Minus infinity belongs to ...
rexri 11277 A standard real is an exte...
1xr 11278 ` 1 ` is an extended real ...
renfdisj 11279 The reals and the infiniti...
ltrelxr 11280 "Less than" is a relation ...
ltrel 11281 "Less than" is a relation....
lerelxr 11282 "Less than or equal to" is...
lerel 11283 "Less than or equal to" is...
xrlenlt 11284 "Less than or equal to" ex...
xrlenltd 11285 "Less than or equal to" ex...
xrltnle 11286 "Less than" expressed in t...
xrnltled 11287 "Not less than" implies "l...
ssxr 11288 The three (non-exclusive) ...
ltxrlt 11289 The standard less-than ` <...
axlttri 11290 Ordering on reals satisfie...
axlttrn 11291 Ordering on reals is trans...
axltadd 11292 Ordering property of addit...
axmulgt0 11293 The product of two positiv...
axsup 11294 A nonempty, bounded-above ...
lttr 11295 Alias for ~ axlttrn , for ...
mulgt0 11296 The product of two positiv...
lenlt 11297 'Less than or equal to' ex...
ltnle 11298 'Less than' expressed in t...
ltso 11299 'Less than' is a strict or...
gtso 11300 'Greater than' is a strict...
lttri2 11301 Consequence of trichotomy....
lttri3 11302 Trichotomy law for 'less t...
lttri4 11303 Trichotomy law for 'less t...
letri3 11304 Trichotomy law. (Contribu...
leloe 11305 'Less than or equal to' ex...
eqlelt 11306 Equality in terms of 'less...
ltle 11307 'Less than' implies 'less ...
leltne 11308 'Less than or equal to' im...
lelttr 11309 Transitive law. (Contribu...
leltletr 11310 Transitive law, weaker for...
ltletr 11311 Transitive law. (Contribu...
ltleletr 11312 Transitive law, weaker for...
letr 11313 Transitive law. (Contribu...
ltnr 11314 'Less than' is irreflexive...
leid 11315 'Less than or equal to' is...
ltne 11316 'Less than' implies not eq...
ltnsym 11317 'Less than' is not symmetr...
ltnsym2 11318 'Less than' is antisymmetr...
letric 11319 Trichotomy law. (Contribu...
ltlen 11320 'Less than' expressed in t...
eqle 11321 Equality implies 'less tha...
eqled 11322 Equality implies 'less tha...
ltadd2 11323 Addition to both sides of ...
ne0gt0 11324 A nonzero nonnegative numb...
lecasei 11325 Ordering elimination by ca...
lelttric 11326 Trichotomy law. (Contribu...
ltlecasei 11327 Ordering elimination by ca...
ltnri 11328 'Less than' is irreflexive...
eqlei 11329 Equality implies 'less tha...
eqlei2 11330 Equality implies 'less tha...
gtneii 11331 'Less than' implies not eq...
ltneii 11332 'Greater than' implies not...
lttri2i 11333 Consequence of trichotomy....
lttri3i 11334 Consequence of trichotomy....
letri3i 11335 Consequence of trichotomy....
leloei 11336 'Less than or equal to' in...
ltleni 11337 'Less than' expressed in t...
ltnsymi 11338 'Less than' is not symmetr...
lenlti 11339 'Less than or equal to' in...
ltnlei 11340 'Less than' in terms of 'l...
ltlei 11341 'Less than' implies 'less ...
ltleii 11342 'Less than' implies 'less ...
ltnei 11343 'Less than' implies not eq...
letrii 11344 Trichotomy law for 'less t...
lttri 11345 'Less than' is transitive....
lelttri 11346 'Less than or equal to', '...
ltletri 11347 'Less than', 'less than or...
letri 11348 'Less than or equal to' is...
le2tri3i 11349 Extended trichotomy law fo...
ltadd2i 11350 Addition to both sides of ...
mulgt0i 11351 The product of two positiv...
mulgt0ii 11352 The product of two positiv...
ltnrd 11353 'Less than' is irreflexive...
gtned 11354 'Less than' implies not eq...
ltned 11355 'Greater than' implies not...
ne0gt0d 11356 A nonzero nonnegative numb...
lttrid 11357 Ordering on reals satisfie...
lttri2d 11358 Consequence of trichotomy....
lttri3d 11359 Consequence of trichotomy....
lttri4d 11360 Trichotomy law for 'less t...
letri3d 11361 Consequence of trichotomy....
leloed 11362 'Less than or equal to' in...
eqleltd 11363 Equality in terms of 'less...
ltlend 11364 'Less than' expressed in t...
lenltd 11365 'Less than or equal to' in...
ltnled 11366 'Less than' in terms of 'l...
ltled 11367 'Less than' implies 'less ...
ltnsymd 11368 'Less than' implies 'less ...
nltled 11369 'Not less than ' implies '...
lensymd 11370 'Less than or equal to' im...
letrid 11371 Trichotomy law for 'less t...
leltned 11372 'Less than or equal to' im...
leneltd 11373 'Less than or equal to' an...
mulgt0d 11374 The product of two positiv...
ltadd2d 11375 Addition to both sides of ...
letrd 11376 Transitive law deduction f...
lelttrd 11377 Transitive law deduction f...
ltadd2dd 11378 Addition to both sides of ...
ltletrd 11379 Transitive law deduction f...
lttrd 11380 Transitive law deduction f...
lelttrdi 11381 If a number is less than a...
dedekind 11382 The Dedekind cut theorem. ...
dedekindle 11383 The Dedekind cut theorem, ...
mul12 11384 Commutative/associative la...
mul32 11385 Commutative/associative la...
mul31 11386 Commutative/associative la...
mul4 11387 Rearrangement of 4 factors...
mul4r 11388 Rearrangement of 4 factors...
muladd11 11389 A simple product of sums e...
1p1times 11390 Two times a number. (Cont...
peano2cn 11391 A theorem for complex numb...
peano2re 11392 A theorem for reals analog...
readdcan 11393 Cancellation law for addit...
00id 11394 ` 0 ` is its own additive ...
mul02lem1 11395 Lemma for ~ mul02 . If an...
mul02lem2 11396 Lemma for ~ mul02 . Zero ...
mul02 11397 Multiplication by ` 0 ` . ...
mul01 11398 Multiplication by ` 0 ` . ...
addrid 11399 ` 0 ` is an additive ident...
cnegex 11400 Existence of the negative ...
cnegex2 11401 Existence of a left invers...
addlid 11402 ` 0 ` is a left identity f...
addcan 11403 Cancellation law for addit...
addcan2 11404 Cancellation law for addit...
addcom 11405 Addition commutes. This u...
addridi 11406 ` 0 ` is an additive ident...
addlidi 11407 ` 0 ` is a left identity f...
mul02i 11408 Multiplication by 0. Theo...
mul01i 11409 Multiplication by ` 0 ` . ...
addcomi 11410 Addition commutes. Based ...
addcomli 11411 Addition commutes. (Contr...
addcani 11412 Cancellation law for addit...
addcan2i 11413 Cancellation law for addit...
mul12i 11414 Commutative/associative la...
mul32i 11415 Commutative/associative la...
mul4i 11416 Rearrangement of 4 factors...
mul02d 11417 Multiplication by 0. Theo...
mul01d 11418 Multiplication by ` 0 ` . ...
addridd 11419 ` 0 ` is an additive ident...
addlidd 11420 ` 0 ` is a left identity f...
addcomd 11421 Addition commutes. Based ...
addcand 11422 Cancellation law for addit...
addcan2d 11423 Cancellation law for addit...
addcanad 11424 Cancelling a term on the l...
addcan2ad 11425 Cancelling a term on the r...
addneintrd 11426 Introducing a term on the ...
addneintr2d 11427 Introducing a term on the ...
mul12d 11428 Commutative/associative la...
mul32d 11429 Commutative/associative la...
mul31d 11430 Commutative/associative la...
mul4d 11431 Rearrangement of 4 factors...
muladd11r 11432 A simple product of sums e...
comraddd 11433 Commute RHS addition, in d...
ltaddneg 11434 Adding a negative number t...
ltaddnegr 11435 Adding a negative number t...
add12 11436 Commutative/associative la...
add32 11437 Commutative/associative la...
add32r 11438 Commutative/associative la...
add4 11439 Rearrangement of 4 terms i...
add42 11440 Rearrangement of 4 terms i...
add12i 11441 Commutative/associative la...
add32i 11442 Commutative/associative la...
add4i 11443 Rearrangement of 4 terms i...
add42i 11444 Rearrangement of 4 terms i...
add12d 11445 Commutative/associative la...
add32d 11446 Commutative/associative la...
add4d 11447 Rearrangement of 4 terms i...
add42d 11448 Rearrangement of 4 terms i...
0cnALT 11453 Alternate proof of ~ 0cn w...
0cnALT2 11454 Alternate proof of ~ 0cnAL...
negeu 11455 Existential uniqueness of ...
subval 11456 Value of subtraction, whic...
negeq 11457 Equality theorem for negat...
negeqi 11458 Equality inference for neg...
negeqd 11459 Equality deduction for neg...
nfnegd 11460 Deduction version of ~ nfn...
nfneg 11461 Bound-variable hypothesis ...
csbnegg 11462 Move class substitution in...
negex 11463 A negative is a set. (Con...
subcl 11464 Closure law for subtractio...
negcl 11465 Closure law for negative. ...
negicn 11466 ` -u _i ` is a complex num...
subf 11467 Subtraction is an operatio...
subadd 11468 Relationship between subtr...
subadd2 11469 Relationship between subtr...
subsub23 11470 Swap subtrahend and result...
pncan 11471 Cancellation law for subtr...
pncan2 11472 Cancellation law for subtr...
pncan3 11473 Subtraction and addition o...
npcan 11474 Cancellation law for subtr...
addsubass 11475 Associative-type law for a...
addsub 11476 Law for addition and subtr...
subadd23 11477 Commutative/associative la...
addsub12 11478 Commutative/associative la...
2addsub 11479 Law for subtraction and ad...
addsubeq4 11480 Relation between sums and ...
pncan3oi 11481 Subtraction and addition o...
mvrraddi 11482 Move the right term in a s...
mvlladdi 11483 Move the left term in a su...
subid 11484 Subtraction of a number fr...
subid1 11485 Identity law for subtracti...
npncan 11486 Cancellation law for subtr...
nppcan 11487 Cancellation law for subtr...
nnpcan 11488 Cancellation law for subtr...
nppcan3 11489 Cancellation law for subtr...
subcan2 11490 Cancellation law for subtr...
subeq0 11491 If the difference between ...
npncan2 11492 Cancellation law for subtr...
subsub2 11493 Law for double subtraction...
nncan 11494 Cancellation law for subtr...
subsub 11495 Law for double subtraction...
nppcan2 11496 Cancellation law for subtr...
subsub3 11497 Law for double subtraction...
subsub4 11498 Law for double subtraction...
sub32 11499 Swap the second and third ...
nnncan 11500 Cancellation law for subtr...
nnncan1 11501 Cancellation law for subtr...
nnncan2 11502 Cancellation law for subtr...
npncan3 11503 Cancellation law for subtr...
pnpcan 11504 Cancellation law for mixed...
pnpcan2 11505 Cancellation law for mixed...
pnncan 11506 Cancellation law for mixed...
ppncan 11507 Cancellation law for mixed...
addsub4 11508 Rearrangement of 4 terms i...
subadd4 11509 Rearrangement of 4 terms i...
sub4 11510 Rearrangement of 4 terms i...
neg0 11511 Minus 0 equals 0. (Contri...
negid 11512 Addition of a number and i...
negsub 11513 Relationship between subtr...
subneg 11514 Relationship between subtr...
negneg 11515 A number is equal to the n...
neg11 11516 Negative is one-to-one. (...
negcon1 11517 Negative contraposition la...
negcon2 11518 Negative contraposition la...
negeq0 11519 A number is zero iff its n...
subcan 11520 Cancellation law for subtr...
negsubdi 11521 Distribution of negative o...
negdi 11522 Distribution of negative o...
negdi2 11523 Distribution of negative o...
negsubdi2 11524 Distribution of negative o...
neg2sub 11525 Relationship between subtr...
renegcli 11526 Closure law for negative o...
resubcli 11527 Closure law for subtractio...
renegcl 11528 Closure law for negative o...
resubcl 11529 Closure law for subtractio...
negreb 11530 The negative of a real is ...
peano2cnm 11531 "Reverse" second Peano pos...
peano2rem 11532 "Reverse" second Peano pos...
negcli 11533 Closure law for negative. ...
negidi 11534 Addition of a number and i...
negnegi 11535 A number is equal to the n...
subidi 11536 Subtraction of a number fr...
subid1i 11537 Identity law for subtracti...
negne0bi 11538 A number is nonzero iff it...
negrebi 11539 The negative of a real is ...
negne0i 11540 The negative of a nonzero ...
subcli 11541 Closure law for subtractio...
pncan3i 11542 Subtraction and addition o...
negsubi 11543 Relationship between subtr...
subnegi 11544 Relationship between subtr...
subeq0i 11545 If the difference between ...
neg11i 11546 Negative is one-to-one. (...
negcon1i 11547 Negative contraposition la...
negcon2i 11548 Negative contraposition la...
negdii 11549 Distribution of negative o...
negsubdii 11550 Distribution of negative o...
negsubdi2i 11551 Distribution of negative o...
subaddi 11552 Relationship between subtr...
subadd2i 11553 Relationship between subtr...
subaddrii 11554 Relationship between subtr...
subsub23i 11555 Swap subtrahend and result...
addsubassi 11556 Associative-type law for s...
addsubi 11557 Law for subtraction and ad...
subcani 11558 Cancellation law for subtr...
subcan2i 11559 Cancellation law for subtr...
pnncani 11560 Cancellation law for mixed...
addsub4i 11561 Rearrangement of 4 terms i...
0reALT 11562 Alternate proof of ~ 0re ....
negcld 11563 Closure law for negative. ...
subidd 11564 Subtraction of a number fr...
subid1d 11565 Identity law for subtracti...
negidd 11566 Addition of a number and i...
negnegd 11567 A number is equal to the n...
negeq0d 11568 A number is zero iff its n...
negne0bd 11569 A number is nonzero iff it...
negcon1d 11570 Contraposition law for una...
negcon1ad 11571 Contraposition law for una...
neg11ad 11572 The negatives of two compl...
negned 11573 If two complex numbers are...
negne0d 11574 The negative of a nonzero ...
negrebd 11575 The negative of a real is ...
subcld 11576 Closure law for subtractio...
pncand 11577 Cancellation law for subtr...
pncan2d 11578 Cancellation law for subtr...
pncan3d 11579 Subtraction and addition o...
npcand 11580 Cancellation law for subtr...
nncand 11581 Cancellation law for subtr...
negsubd 11582 Relationship between subtr...
subnegd 11583 Relationship between subtr...
subeq0d 11584 If the difference between ...
subne0d 11585 Two unequal numbers have n...
subeq0ad 11586 The difference of two comp...
subne0ad 11587 If the difference of two c...
neg11d 11588 If the difference between ...
negdid 11589 Distribution of negative o...
negdi2d 11590 Distribution of negative o...
negsubdid 11591 Distribution of negative o...
negsubdi2d 11592 Distribution of negative o...
neg2subd 11593 Relationship between subtr...
subaddd 11594 Relationship between subtr...
subadd2d 11595 Relationship between subtr...
addsubassd 11596 Associative-type law for s...
addsubd 11597 Law for subtraction and ad...
subadd23d 11598 Commutative/associative la...
addsub12d 11599 Commutative/associative la...
npncand 11600 Cancellation law for subtr...
nppcand 11601 Cancellation law for subtr...
nppcan2d 11602 Cancellation law for subtr...
nppcan3d 11603 Cancellation law for subtr...
subsubd 11604 Law for double subtraction...
subsub2d 11605 Law for double subtraction...
subsub3d 11606 Law for double subtraction...
subsub4d 11607 Law for double subtraction...
sub32d 11608 Swap the second and third ...
nnncand 11609 Cancellation law for subtr...
nnncan1d 11610 Cancellation law for subtr...
nnncan2d 11611 Cancellation law for subtr...
npncan3d 11612 Cancellation law for subtr...
pnpcand 11613 Cancellation law for mixed...
pnpcan2d 11614 Cancellation law for mixed...
pnncand 11615 Cancellation law for mixed...
ppncand 11616 Cancellation law for mixed...
subcand 11617 Cancellation law for subtr...
subcan2d 11618 Cancellation law for subtr...
subcanad 11619 Cancellation law for subtr...
subneintrd 11620 Introducing subtraction on...
subcan2ad 11621 Cancellation law for subtr...
subneintr2d 11622 Introducing subtraction on...
addsub4d 11623 Rearrangement of 4 terms i...
subadd4d 11624 Rearrangement of 4 terms i...
sub4d 11625 Rearrangement of 4 terms i...
2addsubd 11626 Law for subtraction and ad...
addsubeq4d 11627 Relation between sums and ...
subeqxfrd 11628 Transfer two terms of a su...
mvlraddd 11629 Move the right term in a s...
mvlladdd 11630 Move the left term in a su...
mvrraddd 11631 Move the right term in a s...
mvrladdd 11632 Move the left term in a su...
assraddsubd 11633 Associate RHS addition-sub...
subaddeqd 11634 Transfer two terms of a su...
addlsub 11635 Left-subtraction: Subtrac...
addrsub 11636 Right-subtraction: Subtra...
subexsub 11637 A subtraction law: Exchan...
addid0 11638 If adding a number to a an...
addn0nid 11639 Adding a nonzero number to...
pnpncand 11640 Addition/subtraction cance...
subeqrev 11641 Reverse the order of subtr...
addeq0 11642 Two complex numbers add up...
pncan1 11643 Cancellation law for addit...
npcan1 11644 Cancellation law for subtr...
subeq0bd 11645 If two complex numbers are...
renegcld 11646 Closure law for negative o...
resubcld 11647 Closure law for subtractio...
negn0 11648 The image under negation o...
negf1o 11649 Negation is an isomorphism...
kcnktkm1cn 11650 k times k minus 1 is a com...
muladd 11651 Product of two sums. (Con...
subdi 11652 Distribution of multiplica...
subdir 11653 Distribution of multiplica...
ine0 11654 The imaginary unit ` _i ` ...
mulneg1 11655 Product with negative is n...
mulneg2 11656 The product with a negativ...
mulneg12 11657 Swap the negative sign in ...
mul2neg 11658 Product of two negatives. ...
submul2 11659 Convert a subtraction to a...
mulm1 11660 Product with minus one is ...
addneg1mul 11661 Addition with product with...
mulsub 11662 Product of two differences...
mulsub2 11663 Swap the order of subtract...
mulm1i 11664 Product with minus one is ...
mulneg1i 11665 Product with negative is n...
mulneg2i 11666 Product with negative is n...
mul2negi 11667 Product of two negatives. ...
subdii 11668 Distribution of multiplica...
subdiri 11669 Distribution of multiplica...
muladdi 11670 Product of two sums. (Con...
mulm1d 11671 Product with minus one is ...
mulneg1d 11672 Product with negative is n...
mulneg2d 11673 Product with negative is n...
mul2negd 11674 Product of two negatives. ...
subdid 11675 Distribution of multiplica...
subdird 11676 Distribution of multiplica...
muladdd 11677 Product of two sums. (Con...
mulsubd 11678 Product of two differences...
muls1d 11679 Multiplication by one minu...
mulsubfacd 11680 Multiplication followed by...
addmulsub 11681 The product of a sum and a...
subaddmulsub 11682 The difference with a prod...
mulsubaddmulsub 11683 A special difference of a ...
gt0ne0 11684 Positive implies nonzero. ...
lt0ne0 11685 A number which is less tha...
ltadd1 11686 Addition to both sides of ...
leadd1 11687 Addition to both sides of ...
leadd2 11688 Addition to both sides of ...
ltsubadd 11689 'Less than' relationship b...
ltsubadd2 11690 'Less than' relationship b...
lesubadd 11691 'Less than or equal to' re...
lesubadd2 11692 'Less than or equal to' re...
ltaddsub 11693 'Less than' relationship b...
ltaddsub2 11694 'Less than' relationship b...
leaddsub 11695 'Less than or equal to' re...
leaddsub2 11696 'Less than or equal to' re...
suble 11697 Swap subtrahends in an ine...
lesub 11698 Swap subtrahends in an ine...
ltsub23 11699 'Less than' relationship b...
ltsub13 11700 'Less than' relationship b...
le2add 11701 Adding both sides of two '...
ltleadd 11702 Adding both sides of two o...
leltadd 11703 Adding both sides of two o...
lt2add 11704 Adding both sides of two '...
addgt0 11705 The sum of 2 positive numb...
addgegt0 11706 The sum of nonnegative and...
addgtge0 11707 The sum of nonnegative and...
addge0 11708 The sum of 2 nonnegative n...
ltaddpos 11709 Adding a positive number t...
ltaddpos2 11710 Adding a positive number t...
ltsubpos 11711 Subtracting a positive num...
posdif 11712 Comparison of two numbers ...
lesub1 11713 Subtraction from both side...
lesub2 11714 Subtraction of both sides ...
ltsub1 11715 Subtraction from both side...
ltsub2 11716 Subtraction of both sides ...
lt2sub 11717 Subtracting both sides of ...
le2sub 11718 Subtracting both sides of ...
ltneg 11719 Negative of both sides of ...
ltnegcon1 11720 Contraposition of negative...
ltnegcon2 11721 Contraposition of negative...
leneg 11722 Negative of both sides of ...
lenegcon1 11723 Contraposition of negative...
lenegcon2 11724 Contraposition of negative...
lt0neg1 11725 Comparison of a number and...
lt0neg2 11726 Comparison of a number and...
le0neg1 11727 Comparison of a number and...
le0neg2 11728 Comparison of a number and...
addge01 11729 A number is less than or e...
addge02 11730 A number is less than or e...
add20 11731 Two nonnegative numbers ar...
subge0 11732 Nonnegative subtraction. ...
suble0 11733 Nonpositive subtraction. ...
leaddle0 11734 The sum of a real number a...
subge02 11735 Nonnegative subtraction. ...
lesub0 11736 Lemma to show a nonnegativ...
mulge0 11737 The product of two nonnega...
mullt0 11738 The product of two negativ...
msqgt0 11739 A nonzero square is positi...
msqge0 11740 A square is nonnegative. ...
0lt1 11741 0 is less than 1. Theorem...
0le1 11742 0 is less than or equal to...
relin01 11743 An interval law for less t...
ltordlem 11744 Lemma for ~ ltord1 . (Con...
ltord1 11745 Infer an ordering relation...
leord1 11746 Infer an ordering relation...
eqord1 11747 A strictly increasing real...
ltord2 11748 Infer an ordering relation...
leord2 11749 Infer an ordering relation...
eqord2 11750 A strictly decreasing real...
wloglei 11751 Form of ~ wlogle where bot...
wlogle 11752 If the predicate ` ch ( x ...
leidi 11753 'Less than or equal to' is...
gt0ne0i 11754 Positive means nonzero (us...
gt0ne0ii 11755 Positive implies nonzero. ...
msqgt0i 11756 A nonzero square is positi...
msqge0i 11757 A square is nonnegative. ...
addgt0i 11758 Addition of 2 positive num...
addge0i 11759 Addition of 2 nonnegative ...
addgegt0i 11760 Addition of nonnegative an...
addgt0ii 11761 Addition of 2 positive num...
add20i 11762 Two nonnegative numbers ar...
ltnegi 11763 Negative of both sides of ...
lenegi 11764 Negative of both sides of ...
ltnegcon2i 11765 Contraposition of negative...
mulge0i 11766 The product of two nonnega...
lesub0i 11767 Lemma to show a nonnegativ...
ltaddposi 11768 Adding a positive number t...
posdifi 11769 Comparison of two numbers ...
ltnegcon1i 11770 Contraposition of negative...
lenegcon1i 11771 Contraposition of negative...
subge0i 11772 Nonnegative subtraction. ...
ltadd1i 11773 Addition to both sides of ...
leadd1i 11774 Addition to both sides of ...
leadd2i 11775 Addition to both sides of ...
ltsubaddi 11776 'Less than' relationship b...
lesubaddi 11777 'Less than or equal to' re...
ltsubadd2i 11778 'Less than' relationship b...
lesubadd2i 11779 'Less than or equal to' re...
ltaddsubi 11780 'Less than' relationship b...
lt2addi 11781 Adding both side of two in...
le2addi 11782 Adding both side of two in...
gt0ne0d 11783 Positive implies nonzero. ...
lt0ne0d 11784 Something less than zero i...
leidd 11785 'Less than or equal to' is...
msqgt0d 11786 A nonzero square is positi...
msqge0d 11787 A square is nonnegative. ...
lt0neg1d 11788 Comparison of a number and...
lt0neg2d 11789 Comparison of a number and...
le0neg1d 11790 Comparison of a number and...
le0neg2d 11791 Comparison of a number and...
addgegt0d 11792 Addition of nonnegative an...
addgtge0d 11793 Addition of positive and n...
addgt0d 11794 Addition of 2 positive num...
addge0d 11795 Addition of 2 nonnegative ...
mulge0d 11796 The product of two nonnega...
ltnegd 11797 Negative of both sides of ...
lenegd 11798 Negative of both sides of ...
ltnegcon1d 11799 Contraposition of negative...
ltnegcon2d 11800 Contraposition of negative...
lenegcon1d 11801 Contraposition of negative...
lenegcon2d 11802 Contraposition of negative...
ltaddposd 11803 Adding a positive number t...
ltaddpos2d 11804 Adding a positive number t...
ltsubposd 11805 Subtracting a positive num...
posdifd 11806 Comparison of two numbers ...
addge01d 11807 A number is less than or e...
addge02d 11808 A number is less than or e...
subge0d 11809 Nonnegative subtraction. ...
suble0d 11810 Nonpositive subtraction. ...
subge02d 11811 Nonnegative subtraction. ...
ltadd1d 11812 Addition to both sides of ...
leadd1d 11813 Addition to both sides of ...
leadd2d 11814 Addition to both sides of ...
ltsubaddd 11815 'Less than' relationship b...
lesubaddd 11816 'Less than or equal to' re...
ltsubadd2d 11817 'Less than' relationship b...
lesubadd2d 11818 'Less than or equal to' re...
ltaddsubd 11819 'Less than' relationship b...
ltaddsub2d 11820 'Less than' relationship b...
leaddsub2d 11821 'Less than or equal to' re...
subled 11822 Swap subtrahends in an ine...
lesubd 11823 Swap subtrahends in an ine...
ltsub23d 11824 'Less than' relationship b...
ltsub13d 11825 'Less than' relationship b...
lesub1d 11826 Subtraction from both side...
lesub2d 11827 Subtraction of both sides ...
ltsub1d 11828 Subtraction from both side...
ltsub2d 11829 Subtraction of both sides ...
ltadd1dd 11830 Addition to both sides of ...
ltsub1dd 11831 Subtraction from both side...
ltsub2dd 11832 Subtraction of both sides ...
leadd1dd 11833 Addition to both sides of ...
leadd2dd 11834 Addition to both sides of ...
lesub1dd 11835 Subtraction from both side...
lesub2dd 11836 Subtraction of both sides ...
lesub3d 11837 The result of subtracting ...
le2addd 11838 Adding both side of two in...
le2subd 11839 Subtracting both sides of ...
ltleaddd 11840 Adding both sides of two o...
leltaddd 11841 Adding both sides of two o...
lt2addd 11842 Adding both side of two in...
lt2subd 11843 Subtracting both sides of ...
possumd 11844 Condition for a positive s...
sublt0d 11845 When a subtraction gives a...
ltaddsublt 11846 Addition and subtraction o...
1le1 11847 One is less than or equal ...
ixi 11848 ` _i ` times itself is min...
recextlem1 11849 Lemma for ~ recex . (Cont...
recextlem2 11850 Lemma for ~ recex . (Cont...
recex 11851 Existence of reciprocal of...
mulcand 11852 Cancellation law for multi...
mulcan2d 11853 Cancellation law for multi...
mulcanad 11854 Cancellation of a nonzero ...
mulcan2ad 11855 Cancellation of a nonzero ...
mulcan 11856 Cancellation law for multi...
mulcan2 11857 Cancellation law for multi...
mulcani 11858 Cancellation law for multi...
mul0or 11859 If a product is zero, one ...
mulne0b 11860 The product of two nonzero...
mulne0 11861 The product of two nonzero...
mulne0i 11862 The product of two nonzero...
muleqadd 11863 Property of numbers whose ...
receu 11864 Existential uniqueness of ...
mulnzcnopr 11865 Multiplication maps nonzer...
msq0i 11866 A number is zero iff its s...
mul0ori 11867 If a product is zero, one ...
msq0d 11868 A number is zero iff its s...
mul0ord 11869 If a product is zero, one ...
mulne0bd 11870 The product of two nonzero...
mulne0d 11871 The product of two nonzero...
mulcan1g 11872 A generalized form of the ...
mulcan2g 11873 A generalized form of the ...
mulne0bad 11874 A factor of a nonzero comp...
mulne0bbd 11875 A factor of a nonzero comp...
1div0 11878 You can't divide by zero, ...
divval 11879 Value of division: if ` A ...
divmul 11880 Relationship between divis...
divmul2 11881 Relationship between divis...
divmul3 11882 Relationship between divis...
divcl 11883 Closure law for division. ...
reccl 11884 Closure law for reciprocal...
divcan2 11885 A cancellation law for div...
divcan1 11886 A cancellation law for div...
diveq0 11887 A ratio is zero iff the nu...
divne0b 11888 The ratio of nonzero numbe...
divne0 11889 The ratio of nonzero numbe...
recne0 11890 The reciprocal of a nonzer...
recid 11891 Multiplication of a number...
recid2 11892 Multiplication of a number...
divrec 11893 Relationship between divis...
divrec2 11894 Relationship between divis...
divass 11895 An associative law for div...
div23 11896 A commutative/associative ...
div32 11897 A commutative/associative ...
div13 11898 A commutative/associative ...
div12 11899 A commutative/associative ...
divmulass 11900 An associative law for div...
divmulasscom 11901 An associative/commutative...
divdir 11902 Distribution of division o...
divcan3 11903 A cancellation law for div...
divcan4 11904 A cancellation law for div...
div11 11905 One-to-one relationship fo...
divid 11906 A number divided by itself...
div0 11907 Division into zero is zero...
div1 11908 A number divided by 1 is i...
1div1e1 11909 1 divided by 1 is 1. (Con...
diveq1 11910 Equality in terms of unit ...
divneg 11911 Move negative sign inside ...
muldivdir 11912 Distribution of division o...
divsubdir 11913 Distribution of division o...
subdivcomb1 11914 Bring a term in a subtract...
subdivcomb2 11915 Bring a term in a subtract...
recrec 11916 A number is equal to the r...
rec11 11917 Reciprocal is one-to-one. ...
rec11r 11918 Mutual reciprocals. (Cont...
divmuldiv 11919 Multiplication of two rati...
divdivdiv 11920 Division of two ratios. T...
divcan5 11921 Cancellation of common fac...
divmul13 11922 Swap the denominators in t...
divmul24 11923 Swap the numerators in the...
divmuleq 11924 Cross-multiply in an equal...
recdiv 11925 The reciprocal of a ratio....
divcan6 11926 Cancellation of inverted f...
divdiv32 11927 Swap denominators in a div...
divcan7 11928 Cancel equal divisors in a...
dmdcan 11929 Cancellation law for divis...
divdiv1 11930 Division into a fraction. ...
divdiv2 11931 Division by a fraction. (...
recdiv2 11932 Division into a reciprocal...
ddcan 11933 Cancellation in a double d...
divadddiv 11934 Addition of two ratios. T...
divsubdiv 11935 Subtraction of two ratios....
conjmul 11936 Two numbers whose reciproc...
rereccl 11937 Closure law for reciprocal...
redivcl 11938 Closure law for division o...
eqneg 11939 A number equal to its nega...
eqnegd 11940 A complex number equals it...
eqnegad 11941 If a complex number equals...
div2neg 11942 Quotient of two negatives....
divneg2 11943 Move negative sign inside ...
recclzi 11944 Closure law for reciprocal...
recne0zi 11945 The reciprocal of a nonzer...
recidzi 11946 Multiplication of a number...
div1i 11947 A number divided by 1 is i...
eqnegi 11948 A number equal to its nega...
reccli 11949 Closure law for reciprocal...
recidi 11950 Multiplication of a number...
recreci 11951 A number is equal to the r...
dividi 11952 A number divided by itself...
div0i 11953 Division into zero is zero...
divclzi 11954 Closure law for division. ...
divcan1zi 11955 A cancellation law for div...
divcan2zi 11956 A cancellation law for div...
divreczi 11957 Relationship between divis...
divcan3zi 11958 A cancellation law for div...
divcan4zi 11959 A cancellation law for div...
rec11i 11960 Reciprocal is one-to-one. ...
divcli 11961 Closure law for division. ...
divcan2i 11962 A cancellation law for div...
divcan1i 11963 A cancellation law for div...
divreci 11964 Relationship between divis...
divcan3i 11965 A cancellation law for div...
divcan4i 11966 A cancellation law for div...
divne0i 11967 The ratio of nonzero numbe...
rec11ii 11968 Reciprocal is one-to-one. ...
divasszi 11969 An associative law for div...
divmulzi 11970 Relationship between divis...
divdirzi 11971 Distribution of division o...
divdiv23zi 11972 Swap denominators in a div...
divmuli 11973 Relationship between divis...
divdiv32i 11974 Swap denominators in a div...
divassi 11975 An associative law for div...
divdiri 11976 Distribution of division o...
div23i 11977 A commutative/associative ...
div11i 11978 One-to-one relationship fo...
divmuldivi 11979 Multiplication of two rati...
divmul13i 11980 Swap denominators of two r...
divadddivi 11981 Addition of two ratios. T...
divdivdivi 11982 Division of two ratios. T...
rerecclzi 11983 Closure law for reciprocal...
rereccli 11984 Closure law for reciprocal...
redivclzi 11985 Closure law for division o...
redivcli 11986 Closure law for division o...
div1d 11987 A number divided by 1 is i...
reccld 11988 Closure law for reciprocal...
recne0d 11989 The reciprocal of a nonzer...
recidd 11990 Multiplication of a number...
recid2d 11991 Multiplication of a number...
recrecd 11992 A number is equal to the r...
dividd 11993 A number divided by itself...
div0d 11994 Division into zero is zero...
divcld 11995 Closure law for division. ...
divcan1d 11996 A cancellation law for div...
divcan2d 11997 A cancellation law for div...
divrecd 11998 Relationship between divis...
divrec2d 11999 Relationship between divis...
divcan3d 12000 A cancellation law for div...
divcan4d 12001 A cancellation law for div...
diveq0d 12002 A ratio is zero iff the nu...
diveq1d 12003 Equality in terms of unit ...
diveq1ad 12004 The quotient of two comple...
diveq0ad 12005 A fraction of complex numb...
divne1d 12006 If two complex numbers are...
divne0bd 12007 A ratio is zero iff the nu...
divnegd 12008 Move negative sign inside ...
divneg2d 12009 Move negative sign inside ...
div2negd 12010 Quotient of two negatives....
divne0d 12011 The ratio of nonzero numbe...
recdivd 12012 The reciprocal of a ratio....
recdiv2d 12013 Division into a reciprocal...
divcan6d 12014 Cancellation of inverted f...
ddcand 12015 Cancellation in a double d...
rec11d 12016 Reciprocal is one-to-one. ...
divmuld 12017 Relationship between divis...
div32d 12018 A commutative/associative ...
div13d 12019 A commutative/associative ...
divdiv32d 12020 Swap denominators in a div...
divcan5d 12021 Cancellation of common fac...
divcan5rd 12022 Cancellation of common fac...
divcan7d 12023 Cancel equal divisors in a...
dmdcand 12024 Cancellation law for divis...
dmdcan2d 12025 Cancellation law for divis...
divdiv1d 12026 Division into a fraction. ...
divdiv2d 12027 Division by a fraction. (...
divmul2d 12028 Relationship between divis...
divmul3d 12029 Relationship between divis...
divassd 12030 An associative law for div...
div12d 12031 A commutative/associative ...
div23d 12032 A commutative/associative ...
divdird 12033 Distribution of division o...
divsubdird 12034 Distribution of division o...
div11d 12035 One-to-one relationship fo...
divmuldivd 12036 Multiplication of two rati...
divmul13d 12037 Swap denominators of two r...
divmul24d 12038 Swap the numerators in the...
divadddivd 12039 Addition of two ratios. T...
divsubdivd 12040 Subtraction of two ratios....
divmuleqd 12041 Cross-multiply in an equal...
divdivdivd 12042 Division of two ratios. T...
diveq1bd 12043 If two complex numbers are...
div2sub 12044 Swap the order of subtract...
div2subd 12045 Swap subtrahend and minuen...
rereccld 12046 Closure law for reciprocal...
redivcld 12047 Closure law for division o...
subrec 12048 Subtraction of reciprocals...
subreci 12049 Subtraction of reciprocals...
subrecd 12050 Subtraction of reciprocals...
mvllmuld 12051 Move the left term in a pr...
mvllmuli 12052 Move the left term in a pr...
ldiv 12053 Left-division. (Contribut...
rdiv 12054 Right-division. (Contribu...
mdiv 12055 A division law. (Contribu...
lineq 12056 Solution of a (scalar) lin...
elimgt0 12057 Hypothesis for weak deduct...
elimge0 12058 Hypothesis for weak deduct...
ltp1 12059 A number is less than itse...
lep1 12060 A number is less than or e...
ltm1 12061 A number minus 1 is less t...
lem1 12062 A number minus 1 is less t...
letrp1 12063 A transitive property of '...
p1le 12064 A transitive property of p...
recgt0 12065 The reciprocal of a positi...
prodgt0 12066 Infer that a multiplicand ...
prodgt02 12067 Infer that a multiplier is...
ltmul1a 12068 Lemma for ~ ltmul1 . Mult...
ltmul1 12069 Multiplication of both sid...
ltmul2 12070 Multiplication of both sid...
lemul1 12071 Multiplication of both sid...
lemul2 12072 Multiplication of both sid...
lemul1a 12073 Multiplication of both sid...
lemul2a 12074 Multiplication of both sid...
ltmul12a 12075 Comparison of product of t...
lemul12b 12076 Comparison of product of t...
lemul12a 12077 Comparison of product of t...
mulgt1 12078 The product of two numbers...
ltmulgt11 12079 Multiplication by a number...
ltmulgt12 12080 Multiplication by a number...
lemulge11 12081 Multiplication by a number...
lemulge12 12082 Multiplication by a number...
ltdiv1 12083 Division of both sides of ...
lediv1 12084 Division of both sides of ...
gt0div 12085 Division of a positive num...
ge0div 12086 Division of a nonnegative ...
divgt0 12087 The ratio of two positive ...
divge0 12088 The ratio of nonnegative a...
mulge0b 12089 A condition for multiplica...
mulle0b 12090 A condition for multiplica...
mulsuble0b 12091 A condition for multiplica...
ltmuldiv 12092 'Less than' relationship b...
ltmuldiv2 12093 'Less than' relationship b...
ltdivmul 12094 'Less than' relationship b...
ledivmul 12095 'Less than or equal to' re...
ltdivmul2 12096 'Less than' relationship b...
lt2mul2div 12097 'Less than' relationship b...
ledivmul2 12098 'Less than or equal to' re...
lemuldiv 12099 'Less than or equal' relat...
lemuldiv2 12100 'Less than or equal' relat...
ltrec 12101 The reciprocal of both sid...
lerec 12102 The reciprocal of both sid...
lt2msq1 12103 Lemma for ~ lt2msq . (Con...
lt2msq 12104 Two nonnegative numbers co...
ltdiv2 12105 Division of a positive num...
ltrec1 12106 Reciprocal swap in a 'less...
lerec2 12107 Reciprocal swap in a 'less...
ledivdiv 12108 Invert ratios of positive ...
lediv2 12109 Division of a positive num...
ltdiv23 12110 Swap denominator with othe...
lediv23 12111 Swap denominator with othe...
lediv12a 12112 Comparison of ratio of two...
lediv2a 12113 Division of both sides of ...
reclt1 12114 The reciprocal of a positi...
recgt1 12115 The reciprocal of a positi...
recgt1i 12116 The reciprocal of a number...
recp1lt1 12117 Construct a number less th...
recreclt 12118 Given a positive number ` ...
le2msq 12119 The square function on non...
msq11 12120 The square of a nonnegativ...
ledivp1 12121 "Less than or equal to" an...
squeeze0 12122 If a nonnegative number is...
ltp1i 12123 A number is less than itse...
recgt0i 12124 The reciprocal of a positi...
recgt0ii 12125 The reciprocal of a positi...
prodgt0i 12126 Infer that a multiplicand ...
divgt0i 12127 The ratio of two positive ...
divge0i 12128 The ratio of nonnegative a...
ltreci 12129 The reciprocal of both sid...
lereci 12130 The reciprocal of both sid...
lt2msqi 12131 The square function on non...
le2msqi 12132 The square function on non...
msq11i 12133 The square of a nonnegativ...
divgt0i2i 12134 The ratio of two positive ...
ltrecii 12135 The reciprocal of both sid...
divgt0ii 12136 The ratio of two positive ...
ltmul1i 12137 Multiplication of both sid...
ltdiv1i 12138 Division of both sides of ...
ltmuldivi 12139 'Less than' relationship b...
ltmul2i 12140 Multiplication of both sid...
lemul1i 12141 Multiplication of both sid...
lemul2i 12142 Multiplication of both sid...
ltdiv23i 12143 Swap denominator with othe...
ledivp1i 12144 "Less than or equal to" an...
ltdivp1i 12145 Less-than and division rel...
ltdiv23ii 12146 Swap denominator with othe...
ltmul1ii 12147 Multiplication of both sid...
ltdiv1ii 12148 Division of both sides of ...
ltp1d 12149 A number is less than itse...
lep1d 12150 A number is less than or e...
ltm1d 12151 A number minus 1 is less t...
lem1d 12152 A number minus 1 is less t...
recgt0d 12153 The reciprocal of a positi...
divgt0d 12154 The ratio of two positive ...
mulgt1d 12155 The product of two numbers...
lemulge11d 12156 Multiplication by a number...
lemulge12d 12157 Multiplication by a number...
lemul1ad 12158 Multiplication of both sid...
lemul2ad 12159 Multiplication of both sid...
ltmul12ad 12160 Comparison of product of t...
lemul12ad 12161 Comparison of product of t...
lemul12bd 12162 Comparison of product of t...
fimaxre 12163 A finite set of real numbe...
fimaxre2 12164 A nonempty finite set of r...
fimaxre3 12165 A nonempty finite set of r...
fiminre 12166 A nonempty finite set of r...
fiminre2 12167 A nonempty finite set of r...
negfi 12168 The negation of a finite s...
lbreu 12169 If a set of reals contains...
lbcl 12170 If a set of reals contains...
lble 12171 If a set of reals contains...
lbinf 12172 If a set of reals contains...
lbinfcl 12173 If a set of reals contains...
lbinfle 12174 If a set of reals contains...
sup2 12175 A nonempty, bounded-above ...
sup3 12176 A version of the completen...
infm3lem 12177 Lemma for ~ infm3 . (Cont...
infm3 12178 The completeness axiom for...
suprcl 12179 Closure of supremum of a n...
suprub 12180 A member of a nonempty bou...
suprubd 12181 Natural deduction form of ...
suprcld 12182 Natural deduction form of ...
suprlub 12183 The supremum of a nonempty...
suprnub 12184 An upper bound is not less...
suprleub 12185 The supremum of a nonempty...
supaddc 12186 The supremum function dist...
supadd 12187 The supremum function dist...
supmul1 12188 The supremum function dist...
supmullem1 12189 Lemma for ~ supmul . (Con...
supmullem2 12190 Lemma for ~ supmul . (Con...
supmul 12191 The supremum function dist...
sup3ii 12192 A version of the completen...
suprclii 12193 Closure of supremum of a n...
suprubii 12194 A member of a nonempty bou...
suprlubii 12195 The supremum of a nonempty...
suprnubii 12196 An upper bound is not less...
suprleubii 12197 The supremum of a nonempty...
riotaneg 12198 The negative of the unique...
negiso 12199 Negation is an order anti-...
dfinfre 12200 The infimum of a set of re...
infrecl 12201 Closure of infimum of a no...
infrenegsup 12202 The infimum of a set of re...
infregelb 12203 Any lower bound of a nonem...
infrelb 12204 If a nonempty set of real ...
infrefilb 12205 The infimum of a finite se...
supfirege 12206 The supremum of a finite s...
inelr 12207 The imaginary unit ` _i ` ...
rimul 12208 A real number times the im...
cru 12209 The representation of comp...
crne0 12210 The real representation of...
creur 12211 The real part of a complex...
creui 12212 The imaginary part of a co...
cju 12213 The complex conjugate of a...
ofsubeq0 12214 Function analogue of ~ sub...
ofnegsub 12215 Function analogue of ~ neg...
ofsubge0 12216 Function analogue of ~ sub...
nnexALT 12219 Alternate proof of ~ nnex ...
peano5nni 12220 Peano's inductive postulat...
nnssre 12221 The positive integers are ...
nnsscn 12222 The positive integers are ...
nnex 12223 The set of positive intege...
nnre 12224 A positive integer is a re...
nncn 12225 A positive integer is a co...
nnrei 12226 A positive integer is a re...
nncni 12227 A positive integer is a co...
1nn 12228 Peano postulate: 1 is a po...
peano2nn 12229 Peano postulate: a success...
dfnn2 12230 Alternate definition of th...
dfnn3 12231 Alternate definition of th...
nnred 12232 A positive integer is a re...
nncnd 12233 A positive integer is a co...
peano2nnd 12234 Peano postulate: a success...
nnind 12235 Principle of Mathematical ...
nnindALT 12236 Principle of Mathematical ...
nnindd 12237 Principle of Mathematical ...
nn1m1nn 12238 Every positive integer is ...
nn1suc 12239 If a statement holds for 1...
nnaddcl 12240 Closure of addition of pos...
nnmulcl 12241 Closure of multiplication ...
nnmulcli 12242 Closure of multiplication ...
nnmtmip 12243 "Minus times minus is plus...
nn2ge 12244 There exists a positive in...
nnge1 12245 A positive integer is one ...
nngt1ne1 12246 A positive integer is grea...
nnle1eq1 12247 A positive integer is less...
nngt0 12248 A positive integer is posi...
nnnlt1 12249 A positive integer is not ...
nnnle0 12250 A positive integer is not ...
nnne0 12251 A positive integer is nonz...
nnneneg 12252 No positive integer is equ...
0nnn 12253 Zero is not a positive int...
0nnnALT 12254 Alternate proof of ~ 0nnn ...
nnne0ALT 12255 Alternate version of ~ nnn...
nngt0i 12256 A positive integer is posi...
nnne0i 12257 A positive integer is nonz...
nndivre 12258 The quotient of a real and...
nnrecre 12259 The reciprocal of a positi...
nnrecgt0 12260 The reciprocal of a positi...
nnsub 12261 Subtraction of positive in...
nnsubi 12262 Subtraction of positive in...
nndiv 12263 Two ways to express " ` A ...
nndivtr 12264 Transitive property of div...
nnge1d 12265 A positive integer is one ...
nngt0d 12266 A positive integer is posi...
nnne0d 12267 A positive integer is nonz...
nnrecred 12268 The reciprocal of a positi...
nnaddcld 12269 Closure of addition of pos...
nnmulcld 12270 Closure of multiplication ...
nndivred 12271 A positive integer is one ...
0ne1 12288 Zero is different from one...
1m1e0 12289 One minus one equals zero....
2nn 12290 2 is a positive integer. ...
2re 12291 The number 2 is real. (Co...
2cn 12292 The number 2 is a complex ...
2cnALT 12293 Alternate proof of ~ 2cn ....
2ex 12294 The number 2 is a set. (C...
2cnd 12295 The number 2 is a complex ...
3nn 12296 3 is a positive integer. ...
3re 12297 The number 3 is real. (Co...
3cn 12298 The number 3 is a complex ...
3ex 12299 The number 3 is a set. (C...
4nn 12300 4 is a positive integer. ...
4re 12301 The number 4 is real. (Co...
4cn 12302 The number 4 is a complex ...
5nn 12303 5 is a positive integer. ...
5re 12304 The number 5 is real. (Co...
5cn 12305 The number 5 is a complex ...
6nn 12306 6 is a positive integer. ...
6re 12307 The number 6 is real. (Co...
6cn 12308 The number 6 is a complex ...
7nn 12309 7 is a positive integer. ...
7re 12310 The number 7 is real. (Co...
7cn 12311 The number 7 is a complex ...
8nn 12312 8 is a positive integer. ...
8re 12313 The number 8 is real. (Co...
8cn 12314 The number 8 is a complex ...
9nn 12315 9 is a positive integer. ...
9re 12316 The number 9 is real. (Co...
9cn 12317 The number 9 is a complex ...
0le0 12318 Zero is nonnegative. (Con...
0le2 12319 The number 0 is less than ...
2pos 12320 The number 2 is positive. ...
2ne0 12321 The number 2 is nonzero. ...
3pos 12322 The number 3 is positive. ...
3ne0 12323 The number 3 is nonzero. ...
4pos 12324 The number 4 is positive. ...
4ne0 12325 The number 4 is nonzero. ...
5pos 12326 The number 5 is positive. ...
6pos 12327 The number 6 is positive. ...
7pos 12328 The number 7 is positive. ...
8pos 12329 The number 8 is positive. ...
9pos 12330 The number 9 is positive. ...
neg1cn 12331 -1 is a complex number. (...
neg1rr 12332 -1 is a real number. (Con...
neg1ne0 12333 -1 is nonzero. (Contribut...
neg1lt0 12334 -1 is less than 0. (Contr...
negneg1e1 12335 ` -u -u 1 ` is 1. (Contri...
1pneg1e0 12336 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12337 0 minus 0 equals 0. (Cont...
1m0e1 12338 1 - 0 = 1. (Contributed b...
0p1e1 12339 0 + 1 = 1. (Contributed b...
fv0p1e1 12340 Function value at ` N + 1 ...
1p0e1 12341 1 + 0 = 1. (Contributed b...
1p1e2 12342 1 + 1 = 2. (Contributed b...
2m1e1 12343 2 - 1 = 1. The result is ...
1e2m1 12344 1 = 2 - 1. (Contributed b...
3m1e2 12345 3 - 1 = 2. (Contributed b...
4m1e3 12346 4 - 1 = 3. (Contributed b...
5m1e4 12347 5 - 1 = 4. (Contributed b...
6m1e5 12348 6 - 1 = 5. (Contributed b...
7m1e6 12349 7 - 1 = 6. (Contributed b...
8m1e7 12350 8 - 1 = 7. (Contributed b...
9m1e8 12351 9 - 1 = 8. (Contributed b...
2p2e4 12352 Two plus two equals four. ...
2times 12353 Two times a number. (Cont...
times2 12354 A number times 2. (Contri...
2timesi 12355 Two times a number. (Cont...
times2i 12356 A number times 2. (Contri...
2txmxeqx 12357 Two times a complex number...
2div2e1 12358 2 divided by 2 is 1. (Con...
2p1e3 12359 2 + 1 = 3. (Contributed b...
1p2e3 12360 1 + 2 = 3. For a shorter ...
1p2e3ALT 12361 Alternate proof of ~ 1p2e3...
3p1e4 12362 3 + 1 = 4. (Contributed b...
4p1e5 12363 4 + 1 = 5. (Contributed b...
5p1e6 12364 5 + 1 = 6. (Contributed b...
6p1e7 12365 6 + 1 = 7. (Contributed b...
7p1e8 12366 7 + 1 = 8. (Contributed b...
8p1e9 12367 8 + 1 = 9. (Contributed b...
3p2e5 12368 3 + 2 = 5. (Contributed b...
3p3e6 12369 3 + 3 = 6. (Contributed b...
4p2e6 12370 4 + 2 = 6. (Contributed b...
4p3e7 12371 4 + 3 = 7. (Contributed b...
4p4e8 12372 4 + 4 = 8. (Contributed b...
5p2e7 12373 5 + 2 = 7. (Contributed b...
5p3e8 12374 5 + 3 = 8. (Contributed b...
5p4e9 12375 5 + 4 = 9. (Contributed b...
6p2e8 12376 6 + 2 = 8. (Contributed b...
6p3e9 12377 6 + 3 = 9. (Contributed b...
7p2e9 12378 7 + 2 = 9. (Contributed b...
1t1e1 12379 1 times 1 equals 1. (Cont...
2t1e2 12380 2 times 1 equals 2. (Cont...
2t2e4 12381 2 times 2 equals 4. (Cont...
3t1e3 12382 3 times 1 equals 3. (Cont...
3t2e6 12383 3 times 2 equals 6. (Cont...
3t3e9 12384 3 times 3 equals 9. (Cont...
4t2e8 12385 4 times 2 equals 8. (Cont...
2t0e0 12386 2 times 0 equals 0. (Cont...
4d2e2 12387 One half of four is two. ...
1lt2 12388 1 is less than 2. (Contri...
2lt3 12389 2 is less than 3. (Contri...
1lt3 12390 1 is less than 3. (Contri...
3lt4 12391 3 is less than 4. (Contri...
2lt4 12392 2 is less than 4. (Contri...
1lt4 12393 1 is less than 4. (Contri...
4lt5 12394 4 is less than 5. (Contri...
3lt5 12395 3 is less than 5. (Contri...
2lt5 12396 2 is less than 5. (Contri...
1lt5 12397 1 is less than 5. (Contri...
5lt6 12398 5 is less than 6. (Contri...
4lt6 12399 4 is less than 6. (Contri...
3lt6 12400 3 is less than 6. (Contri...
2lt6 12401 2 is less than 6. (Contri...
1lt6 12402 1 is less than 6. (Contri...
6lt7 12403 6 is less than 7. (Contri...
5lt7 12404 5 is less than 7. (Contri...
4lt7 12405 4 is less than 7. (Contri...
3lt7 12406 3 is less than 7. (Contri...
2lt7 12407 2 is less than 7. (Contri...
1lt7 12408 1 is less than 7. (Contri...
7lt8 12409 7 is less than 8. (Contri...
6lt8 12410 6 is less than 8. (Contri...
5lt8 12411 5 is less than 8. (Contri...
4lt8 12412 4 is less than 8. (Contri...
3lt8 12413 3 is less than 8. (Contri...
2lt8 12414 2 is less than 8. (Contri...
1lt8 12415 1 is less than 8. (Contri...
8lt9 12416 8 is less than 9. (Contri...
7lt9 12417 7 is less than 9. (Contri...
6lt9 12418 6 is less than 9. (Contri...
5lt9 12419 5 is less than 9. (Contri...
4lt9 12420 4 is less than 9. (Contri...
3lt9 12421 3 is less than 9. (Contri...
2lt9 12422 2 is less than 9. (Contri...
1lt9 12423 1 is less than 9. (Contri...
0ne2 12424 0 is not equal to 2. (Con...
1ne2 12425 1 is not equal to 2. (Con...
1le2 12426 1 is less than or equal to...
2cnne0 12427 2 is a nonzero complex num...
2rene0 12428 2 is a nonzero real number...
1le3 12429 1 is less than or equal to...
neg1mulneg1e1 12430 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12431 One-half is real. (Contri...
halfcn 12432 One-half is a complex numb...
halfgt0 12433 One-half is greater than z...
halfge0 12434 One-half is not negative. ...
halflt1 12435 One-half is less than one....
1mhlfehlf 12436 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12437 An eighth of four thirds i...
halfpm6th 12438 One half plus or minus one...
it0e0 12439 i times 0 equals 0. (Cont...
2mulicn 12440 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12441 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12442 Closure of half of a numbe...
rehalfcl 12443 Real closure of half. (Co...
half0 12444 Half of a number is zero i...
2halves 12445 Two halves make a whole. ...
halfpos2 12446 A number is positive iff i...
halfpos 12447 A positive number is great...
halfnneg2 12448 A number is nonnegative if...
halfaddsubcl 12449 Closure of half-sum and ha...
halfaddsub 12450 Sum and difference of half...
subhalfhalf 12451 Subtracting the half of a ...
lt2halves 12452 A sum is less than the who...
addltmul 12453 Sum is less than product f...
nominpos 12454 There is no smallest posit...
avglt1 12455 Ordering property for aver...
avglt2 12456 Ordering property for aver...
avgle1 12457 Ordering property for aver...
avgle2 12458 Ordering property for aver...
avgle 12459 The average of two numbers...
2timesd 12460 Two times a number. (Cont...
times2d 12461 A number times 2. (Contri...
halfcld 12462 Closure of half of a numbe...
2halvesd 12463 Two halves make a whole. ...
rehalfcld 12464 Real closure of half. (Co...
lt2halvesd 12465 A sum is less than the who...
rehalfcli 12466 Half a real number is real...
lt2addmuld 12467 If two real numbers are le...
add1p1 12468 Adding two times 1 to a nu...
sub1m1 12469 Subtracting two times 1 fr...
cnm2m1cnm3 12470 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12471 A complex number increased...
div4p1lem1div2 12472 An integer greater than 5,...
nnunb 12473 The set of positive intege...
arch 12474 Archimedean property of re...
nnrecl 12475 There exists a positive in...
bndndx 12476 A bounded real sequence ` ...
elnn0 12479 Nonnegative integers expre...
nnssnn0 12480 Positive naturals are a su...
nn0ssre 12481 Nonnegative integers are a...
nn0sscn 12482 Nonnegative integers are a...
nn0ex 12483 The set of nonnegative int...
nnnn0 12484 A positive integer is a no...
nnnn0i 12485 A positive integer is a no...
nn0re 12486 A nonnegative integer is a...
nn0cn 12487 A nonnegative integer is a...
nn0rei 12488 A nonnegative integer is a...
nn0cni 12489 A nonnegative integer is a...
dfn2 12490 The set of positive intege...
elnnne0 12491 The positive integer prope...
0nn0 12492 0 is a nonnegative integer...
1nn0 12493 1 is a nonnegative integer...
2nn0 12494 2 is a nonnegative integer...
3nn0 12495 3 is a nonnegative integer...
4nn0 12496 4 is a nonnegative integer...
5nn0 12497 5 is a nonnegative integer...
6nn0 12498 6 is a nonnegative integer...
7nn0 12499 7 is a nonnegative integer...
8nn0 12500 8 is a nonnegative integer...
9nn0 12501 9 is a nonnegative integer...
nn0ge0 12502 A nonnegative integer is g...
nn0nlt0 12503 A nonnegative integer is n...
nn0ge0i 12504 Nonnegative integers are n...
nn0le0eq0 12505 A nonnegative integer is l...
nn0p1gt0 12506 A nonnegative integer incr...
nnnn0addcl 12507 A positive integer plus a ...
nn0nnaddcl 12508 A nonnegative integer plus...
0mnnnnn0 12509 The result of subtracting ...
un0addcl 12510 If ` S ` is closed under a...
un0mulcl 12511 If ` S ` is closed under m...
nn0addcl 12512 Closure of addition of non...
nn0mulcl 12513 Closure of multiplication ...
nn0addcli 12514 Closure of addition of non...
nn0mulcli 12515 Closure of multiplication ...
nn0p1nn 12516 A nonnegative integer plus...
peano2nn0 12517 Second Peano postulate for...
nnm1nn0 12518 A positive integer minus 1...
elnn0nn 12519 The nonnegative integer pr...
elnnnn0 12520 The positive integer prope...
elnnnn0b 12521 The positive integer prope...
elnnnn0c 12522 The positive integer prope...
nn0addge1 12523 A number is less than or e...
nn0addge2 12524 A number is less than or e...
nn0addge1i 12525 A number is less than or e...
nn0addge2i 12526 A number is less than or e...
nn0sub 12527 Subtraction of nonnegative...
ltsubnn0 12528 Subtracting a nonnegative ...
nn0negleid 12529 A nonnegative integer is g...
difgtsumgt 12530 If the difference of a rea...
nn0le2xi 12531 A nonnegative integer is l...
nn0lele2xi 12532 'Less than or equal to' im...
fcdmnn0supp 12533 Two ways to write the supp...
fcdmnn0fsupp 12534 A function into ` NN0 ` is...
fcdmnn0suppg 12535 Version of ~ fcdmnn0supp a...
fcdmnn0fsuppg 12536 Version of ~ fcdmnn0fsupp ...
nnnn0d 12537 A positive integer is a no...
nn0red 12538 A nonnegative integer is a...
nn0cnd 12539 A nonnegative integer is a...
nn0ge0d 12540 A nonnegative integer is g...
nn0addcld 12541 Closure of addition of non...
nn0mulcld 12542 Closure of multiplication ...
nn0readdcl 12543 Closure law for addition o...
nn0n0n1ge2 12544 A nonnegative integer whic...
nn0n0n1ge2b 12545 A nonnegative integer is n...
nn0ge2m1nn 12546 If a nonnegative integer i...
nn0ge2m1nn0 12547 If a nonnegative integer i...
nn0nndivcl 12548 Closure law for dividing o...
elxnn0 12551 An extended nonnegative in...
nn0ssxnn0 12552 The standard nonnegative i...
nn0xnn0 12553 A standard nonnegative int...
xnn0xr 12554 An extended nonnegative in...
0xnn0 12555 Zero is an extended nonneg...
pnf0xnn0 12556 Positive infinity is an ex...
nn0nepnf 12557 No standard nonnegative in...
nn0xnn0d 12558 A standard nonnegative int...
nn0nepnfd 12559 No standard nonnegative in...
xnn0nemnf 12560 No extended nonnegative in...
xnn0xrnemnf 12561 The extended nonnegative i...
xnn0nnn0pnf 12562 An extended nonnegative in...
elz 12565 Membership in the set of i...
nnnegz 12566 The negative of a positive...
zre 12567 An integer is a real. (Co...
zcn 12568 An integer is a complex nu...
zrei 12569 An integer is a real numbe...
zssre 12570 The integers are a subset ...
zsscn 12571 The integers are a subset ...
zex 12572 The set of integers exists...
elnnz 12573 Positive integer property ...
0z 12574 Zero is an integer. (Cont...
0zd 12575 Zero is an integer, deduct...
elnn0z 12576 Nonnegative integer proper...
elznn0nn 12577 Integer property expressed...
elznn0 12578 Integer property expressed...
elznn 12579 Integer property expressed...
zle0orge1 12580 There is no integer in the...
elz2 12581 Membership in the set of i...
dfz2 12582 Alternative definition of ...
zexALT 12583 Alternate proof of ~ zex ....
nnz 12584 A positive integer is an i...
nnssz 12585 Positive integers are a su...
nn0ssz 12586 Nonnegative integers are a...
nnzOLD 12587 Obsolete version of ~ nnz ...
nn0z 12588 A nonnegative integer is a...
nn0zd 12589 A nonnegative integer is a...
nnzd 12590 A positive integer is an i...
nnzi 12591 A positive integer is an i...
nn0zi 12592 A nonnegative integer is a...
elnnz1 12593 Positive integer property ...
znnnlt1 12594 An integer is not a positi...
nnzrab 12595 Positive integers expresse...
nn0zrab 12596 Nonnegative integers expre...
1z 12597 One is an integer. (Contr...
1zzd 12598 One is an integer, deducti...
2z 12599 2 is an integer. (Contrib...
3z 12600 3 is an integer. (Contrib...
4z 12601 4 is an integer. (Contrib...
znegcl 12602 Closure law for negative i...
neg1z 12603 -1 is an integer. (Contri...
znegclb 12604 A complex number is an int...
nn0negz 12605 The negative of a nonnegat...
nn0negzi 12606 The negative of a nonnegat...
zaddcl 12607 Closure of addition of int...
peano2z 12608 Second Peano postulate gen...
zsubcl 12609 Closure of subtraction of ...
peano2zm 12610 "Reverse" second Peano pos...
zletr 12611 Transitive law of ordering...
zrevaddcl 12612 Reverse closure law for ad...
znnsub 12613 The positive difference of...
znn0sub 12614 The nonnegative difference...
nzadd 12615 The sum of a real number n...
zmulcl 12616 Closure of multiplication ...
zltp1le 12617 Integer ordering relation....
zleltp1 12618 Integer ordering relation....
zlem1lt 12619 Integer ordering relation....
zltlem1 12620 Integer ordering relation....
zgt0ge1 12621 An integer greater than ` ...
nnleltp1 12622 Positive integer ordering ...
nnltp1le 12623 Positive integer ordering ...
nnaddm1cl 12624 Closure of addition of pos...
nn0ltp1le 12625 Nonnegative integer orderi...
nn0leltp1 12626 Nonnegative integer orderi...
nn0ltlem1 12627 Nonnegative integer orderi...
nn0sub2 12628 Subtraction of nonnegative...
nn0lt10b 12629 A nonnegative integer less...
nn0lt2 12630 A nonnegative integer less...
nn0le2is012 12631 A nonnegative integer whic...
nn0lem1lt 12632 Nonnegative integer orderi...
nnlem1lt 12633 Positive integer ordering ...
nnltlem1 12634 Positive integer ordering ...
nnm1ge0 12635 A positive integer decreas...
nn0ge0div 12636 Division of a nonnegative ...
zdiv 12637 Two ways to express " ` M ...
zdivadd 12638 Property of divisibility: ...
zdivmul 12639 Property of divisibility: ...
zextle 12640 An extensionality-like pro...
zextlt 12641 An extensionality-like pro...
recnz 12642 The reciprocal of a number...
btwnnz 12643 A number between an intege...
gtndiv 12644 A larger number does not d...
halfnz 12645 One-half is not an integer...
3halfnz 12646 Three halves is not an int...
suprzcl 12647 The supremum of a bounded-...
prime 12648 Two ways to express " ` A ...
msqznn 12649 The square of a nonzero in...
zneo 12650 No even integer equals an ...
nneo 12651 A positive integer is even...
nneoi 12652 A positive integer is even...
zeo 12653 An integer is even or odd....
zeo2 12654 An integer is even or odd ...
peano2uz2 12655 Second Peano postulate for...
peano5uzi 12656 Peano's inductive postulat...
peano5uzti 12657 Peano's inductive postulat...
dfuzi 12658 An expression for the uppe...
uzind 12659 Induction on the upper int...
uzind2 12660 Induction on the upper int...
uzind3 12661 Induction on the upper int...
nn0ind 12662 Principle of Mathematical ...
nn0indALT 12663 Principle of Mathematical ...
nn0indd 12664 Principle of Mathematical ...
fzind 12665 Induction on the integers ...
fnn0ind 12666 Induction on the integers ...
nn0ind-raph 12667 Principle of Mathematical ...
zindd 12668 Principle of Mathematical ...
fzindd 12669 Induction on the integers ...
btwnz 12670 Any real number can be san...
zred 12671 An integer is a real numbe...
zcnd 12672 An integer is a complex nu...
znegcld 12673 Closure law for negative i...
peano2zd 12674 Deduction from second Pean...
zaddcld 12675 Closure of addition of int...
zsubcld 12676 Closure of subtraction of ...
zmulcld 12677 Closure of multiplication ...
znnn0nn 12678 The negative of a negative...
zadd2cl 12679 Increasing an integer by 2...
zriotaneg 12680 The negative of the unique...
suprfinzcl 12681 The supremum of a nonempty...
9p1e10 12684 9 + 1 = 10. (Contributed ...
dfdec10 12685 Version of the definition ...
decex 12686 A decimal number is a set....
deceq1 12687 Equality theorem for the d...
deceq2 12688 Equality theorem for the d...
deceq1i 12689 Equality theorem for the d...
deceq2i 12690 Equality theorem for the d...
deceq12i 12691 Equality theorem for the d...
numnncl 12692 Closure for a numeral (wit...
num0u 12693 Add a zero in the units pl...
num0h 12694 Add a zero in the higher p...
numcl 12695 Closure for a decimal inte...
numsuc 12696 The successor of a decimal...
deccl 12697 Closure for a numeral. (C...
10nn 12698 10 is a positive integer. ...
10pos 12699 The number 10 is positive....
10nn0 12700 10 is a nonnegative intege...
10re 12701 The number 10 is real. (C...
decnncl 12702 Closure for a numeral. (C...
dec0u 12703 Add a zero in the units pl...
dec0h 12704 Add a zero in the higher p...
numnncl2 12705 Closure for a decimal inte...
decnncl2 12706 Closure for a decimal inte...
numlt 12707 Comparing two decimal inte...
numltc 12708 Comparing two decimal inte...
le9lt10 12709 A "decimal digit" (i.e. a ...
declt 12710 Comparing two decimal inte...
decltc 12711 Comparing two decimal inte...
declth 12712 Comparing two decimal inte...
decsuc 12713 The successor of a decimal...
3declth 12714 Comparing two decimal inte...
3decltc 12715 Comparing two decimal inte...
decle 12716 Comparing two decimal inte...
decleh 12717 Comparing two decimal inte...
declei 12718 Comparing a digit to a dec...
numlti 12719 Comparing a digit to a dec...
declti 12720 Comparing a digit to a dec...
decltdi 12721 Comparing a digit to a dec...
numsucc 12722 The successor of a decimal...
decsucc 12723 The successor of a decimal...
1e0p1 12724 The successor of zero. (C...
dec10p 12725 Ten plus an integer. (Con...
numma 12726 Perform a multiply-add of ...
nummac 12727 Perform a multiply-add of ...
numma2c 12728 Perform a multiply-add of ...
numadd 12729 Add two decimal integers `...
numaddc 12730 Add two decimal integers `...
nummul1c 12731 The product of a decimal i...
nummul2c 12732 The product of a decimal i...
decma 12733 Perform a multiply-add of ...
decmac 12734 Perform a multiply-add of ...
decma2c 12735 Perform a multiply-add of ...
decadd 12736 Add two numerals ` M ` and...
decaddc 12737 Add two numerals ` M ` and...
decaddc2 12738 Add two numerals ` M ` and...
decrmanc 12739 Perform a multiply-add of ...
decrmac 12740 Perform a multiply-add of ...
decaddm10 12741 The sum of two multiples o...
decaddi 12742 Add two numerals ` M ` and...
decaddci 12743 Add two numerals ` M ` and...
decaddci2 12744 Add two numerals ` M ` and...
decsubi 12745 Difference between a numer...
decmul1 12746 The product of a numeral w...
decmul1c 12747 The product of a numeral w...
decmul2c 12748 The product of a numeral w...
decmulnc 12749 The product of a numeral w...
11multnc 12750 The product of 11 (as nume...
decmul10add 12751 A multiplication of a numb...
6p5lem 12752 Lemma for ~ 6p5e11 and rel...
5p5e10 12753 5 + 5 = 10. (Contributed ...
6p4e10 12754 6 + 4 = 10. (Contributed ...
6p5e11 12755 6 + 5 = 11. (Contributed ...
6p6e12 12756 6 + 6 = 12. (Contributed ...
7p3e10 12757 7 + 3 = 10. (Contributed ...
7p4e11 12758 7 + 4 = 11. (Contributed ...
7p5e12 12759 7 + 5 = 12. (Contributed ...
7p6e13 12760 7 + 6 = 13. (Contributed ...
7p7e14 12761 7 + 7 = 14. (Contributed ...
8p2e10 12762 8 + 2 = 10. (Contributed ...
8p3e11 12763 8 + 3 = 11. (Contributed ...
8p4e12 12764 8 + 4 = 12. (Contributed ...
8p5e13 12765 8 + 5 = 13. (Contributed ...
8p6e14 12766 8 + 6 = 14. (Contributed ...
8p7e15 12767 8 + 7 = 15. (Contributed ...
8p8e16 12768 8 + 8 = 16. (Contributed ...
9p2e11 12769 9 + 2 = 11. (Contributed ...
9p3e12 12770 9 + 3 = 12. (Contributed ...
9p4e13 12771 9 + 4 = 13. (Contributed ...
9p5e14 12772 9 + 5 = 14. (Contributed ...
9p6e15 12773 9 + 6 = 15. (Contributed ...
9p7e16 12774 9 + 7 = 16. (Contributed ...
9p8e17 12775 9 + 8 = 17. (Contributed ...
9p9e18 12776 9 + 9 = 18. (Contributed ...
10p10e20 12777 10 + 10 = 20. (Contribute...
10m1e9 12778 10 - 1 = 9. (Contributed ...
4t3lem 12779 Lemma for ~ 4t3e12 and rel...
4t3e12 12780 4 times 3 equals 12. (Con...
4t4e16 12781 4 times 4 equals 16. (Con...
5t2e10 12782 5 times 2 equals 10. (Con...
5t3e15 12783 5 times 3 equals 15. (Con...
5t4e20 12784 5 times 4 equals 20. (Con...
5t5e25 12785 5 times 5 equals 25. (Con...
6t2e12 12786 6 times 2 equals 12. (Con...
6t3e18 12787 6 times 3 equals 18. (Con...
6t4e24 12788 6 times 4 equals 24. (Con...
6t5e30 12789 6 times 5 equals 30. (Con...
6t6e36 12790 6 times 6 equals 36. (Con...
7t2e14 12791 7 times 2 equals 14. (Con...
7t3e21 12792 7 times 3 equals 21. (Con...
7t4e28 12793 7 times 4 equals 28. (Con...
7t5e35 12794 7 times 5 equals 35. (Con...
7t6e42 12795 7 times 6 equals 42. (Con...
7t7e49 12796 7 times 7 equals 49. (Con...
8t2e16 12797 8 times 2 equals 16. (Con...
8t3e24 12798 8 times 3 equals 24. (Con...
8t4e32 12799 8 times 4 equals 32. (Con...
8t5e40 12800 8 times 5 equals 40. (Con...
8t6e48 12801 8 times 6 equals 48. (Con...
8t7e56 12802 8 times 7 equals 56. (Con...
8t8e64 12803 8 times 8 equals 64. (Con...
9t2e18 12804 9 times 2 equals 18. (Con...
9t3e27 12805 9 times 3 equals 27. (Con...
9t4e36 12806 9 times 4 equals 36. (Con...
9t5e45 12807 9 times 5 equals 45. (Con...
9t6e54 12808 9 times 6 equals 54. (Con...
9t7e63 12809 9 times 7 equals 63. (Con...
9t8e72 12810 9 times 8 equals 72. (Con...
9t9e81 12811 9 times 9 equals 81. (Con...
9t11e99 12812 9 times 11 equals 99. (Co...
9lt10 12813 9 is less than 10. (Contr...
8lt10 12814 8 is less than 10. (Contr...
7lt10 12815 7 is less than 10. (Contr...
6lt10 12816 6 is less than 10. (Contr...
5lt10 12817 5 is less than 10. (Contr...
4lt10 12818 4 is less than 10. (Contr...
3lt10 12819 3 is less than 10. (Contr...
2lt10 12820 2 is less than 10. (Contr...
1lt10 12821 1 is less than 10. (Contr...
decbin0 12822 Decompose base 4 into base...
decbin2 12823 Decompose base 4 into base...
decbin3 12824 Decompose base 4 into base...
halfthird 12825 Half minus a third. (Cont...
5recm6rec 12826 One fifth minus one sixth....
uzval 12829 The value of the upper int...
uzf 12830 The domain and codomain of...
eluz1 12831 Membership in the upper se...
eluzel2 12832 Implication of membership ...
eluz2 12833 Membership in an upper set...
eluzmn 12834 Membership in an earlier u...
eluz1i 12835 Membership in an upper set...
eluzuzle 12836 An integer in an upper set...
eluzelz 12837 A member of an upper set o...
eluzelre 12838 A member of an upper set o...
eluzelcn 12839 A member of an upper set o...
eluzle 12840 Implication of membership ...
eluz 12841 Membership in an upper set...
uzid 12842 Membership of the least me...
uzidd 12843 Membership of the least me...
uzn0 12844 The upper integers are all...
uztrn 12845 Transitive law for sets of...
uztrn2 12846 Transitive law for sets of...
uzneg 12847 Contraposition law for upp...
uzssz 12848 An upper set of integers i...
uzssre 12849 An upper set of integers i...
uzss 12850 Subset relationship for tw...
uztric 12851 Totality of the ordering r...
uz11 12852 The upper integers functio...
eluzp1m1 12853 Membership in the next upp...
eluzp1l 12854 Strict ordering implied by...
eluzp1p1 12855 Membership in the next upp...
eluzadd 12856 Membership in a later uppe...
eluzsub 12857 Membership in an earlier u...
eluzaddi 12858 Membership in a later uppe...
eluzaddiOLD 12859 Obsolete version of ~ eluz...
eluzsubi 12860 Membership in an earlier u...
eluzsubiOLD 12861 Obsolete version of ~ eluz...
eluzaddOLD 12862 Obsolete version of ~ eluz...
eluzsubOLD 12863 Obsolete version of ~ eluz...
subeluzsub 12864 Membership of a difference...
uzm1 12865 Choices for an element of ...
uznn0sub 12866 The nonnegative difference...
uzin 12867 Intersection of two upper ...
uzp1 12868 Choices for an element of ...
nn0uz 12869 Nonnegative integers expre...
nnuz 12870 Positive integers expresse...
elnnuz 12871 A positive integer express...
elnn0uz 12872 A nonnegative integer expr...
eluz2nn 12873 An integer greater than or...
eluz4eluz2 12874 An integer greater than or...
eluz4nn 12875 An integer greater than or...
eluzge2nn0 12876 If an integer is greater t...
eluz2n0 12877 An integer greater than or...
uzuzle23 12878 An integer in the upper se...
eluzge3nn 12879 If an integer is greater t...
uz3m2nn 12880 An integer greater than or...
1eluzge0 12881 1 is an integer greater th...
2eluzge0 12882 2 is an integer greater th...
2eluzge1 12883 2 is an integer greater th...
uznnssnn 12884 The upper integers startin...
raluz 12885 Restricted universal quant...
raluz2 12886 Restricted universal quant...
rexuz 12887 Restricted existential qua...
rexuz2 12888 Restricted existential qua...
2rexuz 12889 Double existential quantif...
peano2uz 12890 Second Peano postulate for...
peano2uzs 12891 Second Peano postulate for...
peano2uzr 12892 Reversed second Peano axio...
uzaddcl 12893 Addition closure law for a...
nn0pzuz 12894 The sum of a nonnegative i...
uzind4 12895 Induction on the upper set...
uzind4ALT 12896 Induction on the upper set...
uzind4s 12897 Induction on the upper set...
uzind4s2 12898 Induction on the upper set...
uzind4i 12899 Induction on the upper int...
uzwo 12900 Well-ordering principle: a...
uzwo2 12901 Well-ordering principle: a...
nnwo 12902 Well-ordering principle: a...
nnwof 12903 Well-ordering principle: a...
nnwos 12904 Well-ordering principle: a...
indstr 12905 Strong Mathematical Induct...
eluznn0 12906 Membership in a nonnegativ...
eluznn 12907 Membership in a positive u...
eluz2b1 12908 Two ways to say "an intege...
eluz2gt1 12909 An integer greater than or...
eluz2b2 12910 Two ways to say "an intege...
eluz2b3 12911 Two ways to say "an intege...
uz2m1nn 12912 One less than an integer g...
1nuz2 12913 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12914 A positive integer is eith...
uz2mulcl 12915 Closure of multiplication ...
indstr2 12916 Strong Mathematical Induct...
uzinfi 12917 Extract the lower bound of...
nninf 12918 The infimum of the set of ...
nn0inf 12919 The infimum of the set of ...
infssuzle 12920 The infimum of a subset of...
infssuzcl 12921 The infimum of a subset of...
ublbneg 12922 The image under negation o...
eqreznegel 12923 Two ways to express the im...
supminf 12924 The supremum of a bounded-...
lbzbi 12925 If a set of reals is bound...
zsupss 12926 Any nonempty bounded subse...
suprzcl2 12927 The supremum of a bounded-...
suprzub 12928 The supremum of a bounded-...
uzsupss 12929 Any bounded subset of an u...
nn01to3 12930 A (nonnegative) integer be...
nn0ge2m1nnALT 12931 Alternate proof of ~ nn0ge...
uzwo3 12932 Well-ordering principle: a...
zmin 12933 There is a unique smallest...
zmax 12934 There is a unique largest ...
zbtwnre 12935 There is a unique integer ...
rebtwnz 12936 There is a unique greatest...
elq 12939 Membership in the set of r...
qmulz 12940 If ` A ` is rational, then...
znq 12941 The ratio of an integer an...
qre 12942 A rational number is a rea...
zq 12943 An integer is a rational n...
qred 12944 A rational number is a rea...
zssq 12945 The integers are a subset ...
nn0ssq 12946 The nonnegative integers a...
nnssq 12947 The positive integers are ...
qssre 12948 The rationals are a subset...
qsscn 12949 The rationals are a subset...
qex 12950 The set of rational number...
nnq 12951 A positive integer is rati...
qcn 12952 A rational number is a com...
qexALT 12953 Alternate proof of ~ qex ....
qaddcl 12954 Closure of addition of rat...
qnegcl 12955 Closure law for the negati...
qmulcl 12956 Closure of multiplication ...
qsubcl 12957 Closure of subtraction of ...
qreccl 12958 Closure of reciprocal of r...
qdivcl 12959 Closure of division of rat...
qrevaddcl 12960 Reverse closure law for ad...
nnrecq 12961 The reciprocal of a positi...
irradd 12962 The sum of an irrational n...
irrmul 12963 The product of an irration...
elpq 12964 A positive rational is the...
elpqb 12965 A class is a positive rati...
rpnnen1lem2 12966 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12967 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12968 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12969 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12970 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12971 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12972 One half of ~ rpnnen , whe...
reexALT 12973 Alternate proof of ~ reex ...
cnref1o 12974 There is a natural one-to-...
cnexALT 12975 The set of complex numbers...
xrex 12976 The set of extended reals ...
addex 12977 The addition operation is ...
mulex 12978 The multiplication operati...
elrp 12981 Membership in the set of p...
elrpii 12982 Membership in the set of p...
1rp 12983 1 is a positive real. (Co...
2rp 12984 2 is a positive real. (Co...
3rp 12985 3 is a positive real. (Co...
rpssre 12986 The positive reals are a s...
rpre 12987 A positive real is a real....
rpxr 12988 A positive real is an exte...
rpcn 12989 A positive real is a compl...
nnrp 12990 A positive integer is a po...
rpgt0 12991 A positive real is greater...
rpge0 12992 A positive real is greater...
rpregt0 12993 A positive real is a posit...
rprege0 12994 A positive real is a nonne...
rpne0 12995 A positive real is nonzero...
rprene0 12996 A positive real is a nonze...
rpcnne0 12997 A positive real is a nonze...
rpcndif0 12998 A positive real number is ...
ralrp 12999 Quantification over positi...
rexrp 13000 Quantification over positi...
rpaddcl 13001 Closure law for addition o...
rpmulcl 13002 Closure law for multiplica...
rpmtmip 13003 "Minus times minus is plus...
rpdivcl 13004 Closure law for division o...
rpreccl 13005 Closure law for reciprocat...
rphalfcl 13006 Closure law for half of a ...
rpgecl 13007 A number greater than or e...
rphalflt 13008 Half of a positive real is...
rerpdivcl 13009 Closure law for division o...
ge0p1rp 13010 A nonnegative number plus ...
rpneg 13011 Either a nonzero real or i...
negelrp 13012 Elementhood of a negation ...
negelrpd 13013 The negation of a negative...
0nrp 13014 Zero is not a positive rea...
ltsubrp 13015 Subtracting a positive rea...
ltaddrp 13016 Adding a positive number t...
difrp 13017 Two ways to say one number...
elrpd 13018 Membership in the set of p...
nnrpd 13019 A positive integer is a po...
zgt1rpn0n1 13020 An integer greater than 1 ...
rpred 13021 A positive real is a real....
rpxrd 13022 A positive real is an exte...
rpcnd 13023 A positive real is a compl...
rpgt0d 13024 A positive real is greater...
rpge0d 13025 A positive real is greater...
rpne0d 13026 A positive real is nonzero...
rpregt0d 13027 A positive real is real an...
rprege0d 13028 A positive real is real an...
rprene0d 13029 A positive real is a nonze...
rpcnne0d 13030 A positive real is a nonze...
rpreccld 13031 Closure law for reciprocat...
rprecred 13032 Closure law for reciprocat...
rphalfcld 13033 Closure law for half of a ...
reclt1d 13034 The reciprocal of a positi...
recgt1d 13035 The reciprocal of a positi...
rpaddcld 13036 Closure law for addition o...
rpmulcld 13037 Closure law for multiplica...
rpdivcld 13038 Closure law for division o...
ltrecd 13039 The reciprocal of both sid...
lerecd 13040 The reciprocal of both sid...
ltrec1d 13041 Reciprocal swap in a 'less...
lerec2d 13042 Reciprocal swap in a 'less...
lediv2ad 13043 Division of both sides of ...
ltdiv2d 13044 Division of a positive num...
lediv2d 13045 Division of a positive num...
ledivdivd 13046 Invert ratios of positive ...
divge1 13047 The ratio of a number over...
divlt1lt 13048 A real number divided by a...
divle1le 13049 A real number divided by a...
ledivge1le 13050 If a number is less than o...
ge0p1rpd 13051 A nonnegative number plus ...
rerpdivcld 13052 Closure law for division o...
ltsubrpd 13053 Subtracting a positive rea...
ltaddrpd 13054 Adding a positive number t...
ltaddrp2d 13055 Adding a positive number t...
ltmulgt11d 13056 Multiplication by a number...
ltmulgt12d 13057 Multiplication by a number...
gt0divd 13058 Division of a positive num...
ge0divd 13059 Division of a nonnegative ...
rpgecld 13060 A number greater than or e...
divge0d 13061 The ratio of nonnegative a...
ltmul1d 13062 The ratio of nonnegative a...
ltmul2d 13063 Multiplication of both sid...
lemul1d 13064 Multiplication of both sid...
lemul2d 13065 Multiplication of both sid...
ltdiv1d 13066 Division of both sides of ...
lediv1d 13067 Division of both sides of ...
ltmuldivd 13068 'Less than' relationship b...
ltmuldiv2d 13069 'Less than' relationship b...
lemuldivd 13070 'Less than or equal to' re...
lemuldiv2d 13071 'Less than or equal to' re...
ltdivmuld 13072 'Less than' relationship b...
ltdivmul2d 13073 'Less than' relationship b...
ledivmuld 13074 'Less than or equal to' re...
ledivmul2d 13075 'Less than or equal to' re...
ltmul1dd 13076 The ratio of nonnegative a...
ltmul2dd 13077 Multiplication of both sid...
ltdiv1dd 13078 Division of both sides of ...
lediv1dd 13079 Division of both sides of ...
lediv12ad 13080 Comparison of ratio of two...
mul2lt0rlt0 13081 If the result of a multipl...
mul2lt0rgt0 13082 If the result of a multipl...
mul2lt0llt0 13083 If the result of a multipl...
mul2lt0lgt0 13084 If the result of a multipl...
mul2lt0bi 13085 If the result of a multipl...
prodge0rd 13086 Infer that a multiplicand ...
prodge0ld 13087 Infer that a multiplier is...
ltdiv23d 13088 Swap denominator with othe...
lediv23d 13089 Swap denominator with othe...
lt2mul2divd 13090 The ratio of nonnegative a...
nnledivrp 13091 Division of a positive int...
nn0ledivnn 13092 Division of a nonnegative ...
addlelt 13093 If the sum of a real numbe...
ltxr 13100 The 'less than' binary rel...
elxr 13101 Membership in the set of e...
xrnemnf 13102 An extended real other tha...
xrnepnf 13103 An extended real other tha...
xrltnr 13104 The extended real 'less th...
ltpnf 13105 Any (finite) real is less ...
ltpnfd 13106 Any (finite) real is less ...
0ltpnf 13107 Zero is less than plus inf...
mnflt 13108 Minus infinity is less tha...
mnfltd 13109 Minus infinity is less tha...
mnflt0 13110 Minus infinity is less tha...
mnfltpnf 13111 Minus infinity is less tha...
mnfltxr 13112 Minus infinity is less tha...
pnfnlt 13113 No extended real is greate...
nltmnf 13114 No extended real is less t...
pnfge 13115 Plus infinity is an upper ...
xnn0n0n1ge2b 13116 An extended nonnegative in...
0lepnf 13117 0 less than or equal to po...
xnn0ge0 13118 An extended nonnegative in...
mnfle 13119 Minus infinity is less tha...
mnfled 13120 Minus infinity is less tha...
xrltnsym 13121 Ordering on the extended r...
xrltnsym2 13122 'Less than' is antisymmetr...
xrlttri 13123 Ordering on the extended r...
xrlttr 13124 Ordering on the extended r...
xrltso 13125 'Less than' is a strict or...
xrlttri2 13126 Trichotomy law for 'less t...
xrlttri3 13127 Trichotomy law for 'less t...
xrleloe 13128 'Less than or equal' expre...
xrleltne 13129 'Less than or equal to' im...
xrltlen 13130 'Less than' expressed in t...
dfle2 13131 Alternative definition of ...
dflt2 13132 Alternative definition of ...
xrltle 13133 'Less than' implies 'less ...
xrltled 13134 'Less than' implies 'less ...
xrleid 13135 'Less than or equal to' is...
xrleidd 13136 'Less than or equal to' is...
xrletri 13137 Trichotomy law for extende...
xrletri3 13138 Trichotomy law for extende...
xrletrid 13139 Trichotomy law for extende...
xrlelttr 13140 Transitive law for orderin...
xrltletr 13141 Transitive law for orderin...
xrletr 13142 Transitive law for orderin...
xrlttrd 13143 Transitive law for orderin...
xrlelttrd 13144 Transitive law for orderin...
xrltletrd 13145 Transitive law for orderin...
xrletrd 13146 Transitive law for orderin...
xrltne 13147 'Less than' implies not eq...
nltpnft 13148 An extended real is not le...
xgepnf 13149 An extended real which is ...
ngtmnft 13150 An extended real is not gr...
xlemnf 13151 An extended real which is ...
xrrebnd 13152 An extended real is real i...
xrre 13153 A way of proving that an e...
xrre2 13154 An extended real between t...
xrre3 13155 A way of proving that an e...
ge0gtmnf 13156 A nonnegative extended rea...
ge0nemnf 13157 A nonnegative extended rea...
xrrege0 13158 A nonnegative extended rea...
xrmax1 13159 An extended real is less t...
xrmax2 13160 An extended real is less t...
xrmin1 13161 The minimum of two extende...
xrmin2 13162 The minimum of two extende...
xrmaxeq 13163 The maximum of two extende...
xrmineq 13164 The minimum of two extende...
xrmaxlt 13165 Two ways of saying the max...
xrltmin 13166 Two ways of saying an exte...
xrmaxle 13167 Two ways of saying the max...
xrlemin 13168 Two ways of saying a numbe...
max1 13169 A number is less than or e...
max1ALT 13170 A number is less than or e...
max2 13171 A number is less than or e...
2resupmax 13172 The supremum of two real n...
min1 13173 The minimum of two numbers...
min2 13174 The minimum of two numbers...
maxle 13175 Two ways of saying the max...
lemin 13176 Two ways of saying a numbe...
maxlt 13177 Two ways of saying the max...
ltmin 13178 Two ways of saying a numbe...
lemaxle 13179 A real number which is les...
max0sub 13180 Decompose a real number in...
ifle 13181 An if statement transforms...
z2ge 13182 There exists an integer gr...
qbtwnre 13183 The rational numbers are d...
qbtwnxr 13184 The rational numbers are d...
qsqueeze 13185 If a nonnegative real is l...
qextltlem 13186 Lemma for ~ qextlt and qex...
qextlt 13187 An extensionality-like pro...
qextle 13188 An extensionality-like pro...
xralrple 13189 Show that ` A ` is less th...
alrple 13190 Show that ` A ` is less th...
xnegeq 13191 Equality of two extended n...
xnegex 13192 A negative extended real e...
xnegpnf 13193 Minus ` +oo ` . Remark of...
xnegmnf 13194 Minus ` -oo ` . Remark of...
rexneg 13195 Minus a real number. Rema...
xneg0 13196 The negative of zero. (Co...
xnegcl 13197 Closure of extended real n...
xnegneg 13198 Extended real version of ~...
xneg11 13199 Extended real version of ~...
xltnegi 13200 Forward direction of ~ xlt...
xltneg 13201 Extended real version of ~...
xleneg 13202 Extended real version of ~...
xlt0neg1 13203 Extended real version of ~...
xlt0neg2 13204 Extended real version of ~...
xle0neg1 13205 Extended real version of ~...
xle0neg2 13206 Extended real version of ~...
xaddval 13207 Value of the extended real...
xaddf 13208 The extended real addition...
xmulval 13209 Value of the extended real...
xaddpnf1 13210 Addition of positive infin...
xaddpnf2 13211 Addition of positive infin...
xaddmnf1 13212 Addition of negative infin...
xaddmnf2 13213 Addition of negative infin...
pnfaddmnf 13214 Addition of positive and n...
mnfaddpnf 13215 Addition of negative and p...
rexadd 13216 The extended real addition...
rexsub 13217 Extended real subtraction ...
rexaddd 13218 The extended real addition...
xnn0xaddcl 13219 The extended nonnegative i...
xaddnemnf 13220 Closure of extended real a...
xaddnepnf 13221 Closure of extended real a...
xnegid 13222 Extended real version of ~...
xaddcl 13223 The extended real addition...
xaddcom 13224 The extended real addition...
xaddrid 13225 Extended real version of ~...
xaddlid 13226 Extended real version of ~...
xaddridd 13227 ` 0 ` is a right identity ...
xnn0lem1lt 13228 Extended nonnegative integ...
xnn0lenn0nn0 13229 An extended nonnegative in...
xnn0le2is012 13230 An extended nonnegative in...
xnn0xadd0 13231 The sum of two extended no...
xnegdi 13232 Extended real version of ~...
xaddass 13233 Associativity of extended ...
xaddass2 13234 Associativity of extended ...
xpncan 13235 Extended real version of ~...
xnpcan 13236 Extended real version of ~...
xleadd1a 13237 Extended real version of ~...
xleadd2a 13238 Commuted form of ~ xleadd1...
xleadd1 13239 Weakened version of ~ xlea...
xltadd1 13240 Extended real version of ~...
xltadd2 13241 Extended real version of ~...
xaddge0 13242 The sum of nonnegative ext...
xle2add 13243 Extended real version of ~...
xlt2add 13244 Extended real version of ~...
xsubge0 13245 Extended real version of ~...
xposdif 13246 Extended real version of ~...
xlesubadd 13247 Under certain conditions, ...
xmullem 13248 Lemma for ~ rexmul . (Con...
xmullem2 13249 Lemma for ~ xmulneg1 . (C...
xmulcom 13250 Extended real multiplicati...
xmul01 13251 Extended real version of ~...
xmul02 13252 Extended real version of ~...
xmulneg1 13253 Extended real version of ~...
xmulneg2 13254 Extended real version of ~...
rexmul 13255 The extended real multipli...
xmulf 13256 The extended real multipli...
xmulcl 13257 Closure of extended real m...
xmulpnf1 13258 Multiplication by plus inf...
xmulpnf2 13259 Multiplication by plus inf...
xmulmnf1 13260 Multiplication by minus in...
xmulmnf2 13261 Multiplication by minus in...
xmulpnf1n 13262 Multiplication by plus inf...
xmulrid 13263 Extended real version of ~...
xmullid 13264 Extended real version of ~...
xmulm1 13265 Extended real version of ~...
xmulasslem2 13266 Lemma for ~ xmulass . (Co...
xmulgt0 13267 Extended real version of ~...
xmulge0 13268 Extended real version of ~...
xmulasslem 13269 Lemma for ~ xmulass . (Co...
xmulasslem3 13270 Lemma for ~ xmulass . (Co...
xmulass 13271 Associativity of the exten...
xlemul1a 13272 Extended real version of ~...
xlemul2a 13273 Extended real version of ~...
xlemul1 13274 Extended real version of ~...
xlemul2 13275 Extended real version of ~...
xltmul1 13276 Extended real version of ~...
xltmul2 13277 Extended real version of ~...
xadddilem 13278 Lemma for ~ xadddi . (Con...
xadddi 13279 Distributive property for ...
xadddir 13280 Commuted version of ~ xadd...
xadddi2 13281 The assumption that the mu...
xadddi2r 13282 Commuted version of ~ xadd...
x2times 13283 Extended real version of ~...
xnegcld 13284 Closure of extended real n...
xaddcld 13285 The extended real addition...
xmulcld 13286 Closure of extended real m...
xadd4d 13287 Rearrangement of 4 terms i...
xnn0add4d 13288 Rearrangement of 4 terms i...
xrsupexmnf 13289 Adding minus infinity to a...
xrinfmexpnf 13290 Adding plus infinity to a ...
xrsupsslem 13291 Lemma for ~ xrsupss . (Co...
xrinfmsslem 13292 Lemma for ~ xrinfmss . (C...
xrsupss 13293 Any subset of extended rea...
xrinfmss 13294 Any subset of extended rea...
xrinfmss2 13295 Any subset of extended rea...
xrub 13296 By quantifying only over r...
supxr 13297 The supremum of a set of e...
supxr2 13298 The supremum of a set of e...
supxrcl 13299 The supremum of an arbitra...
supxrun 13300 The supremum of the union ...
supxrmnf 13301 Adding minus infinity to a...
supxrpnf 13302 The supremum of a set of e...
supxrunb1 13303 The supremum of an unbound...
supxrunb2 13304 The supremum of an unbound...
supxrbnd1 13305 The supremum of a bounded-...
supxrbnd2 13306 The supremum of a bounded-...
xrsup0 13307 The supremum of an empty s...
supxrub 13308 A member of a set of exten...
supxrlub 13309 The supremum of a set of e...
supxrleub 13310 The supremum of a set of e...
supxrre 13311 The real and extended real...
supxrbnd 13312 The supremum of a bounded-...
supxrgtmnf 13313 The supremum of a nonempty...
supxrre1 13314 The supremum of a nonempty...
supxrre2 13315 The supremum of a nonempty...
supxrss 13316 Smaller sets of extended r...
infxrcl 13317 The infimum of an arbitrar...
infxrlb 13318 A member of a set of exten...
infxrgelb 13319 The infimum of a set of ex...
infxrre 13320 The real and extended real...
infxrmnf 13321 The infinimum of a set of ...
xrinf0 13322 The infimum of the empty s...
infxrss 13323 Larger sets of extended re...
reltre 13324 For all real numbers there...
rpltrp 13325 For all positive real numb...
reltxrnmnf 13326 For all extended real numb...
infmremnf 13327 The infimum of the reals i...
infmrp1 13328 The infimum of the positiv...
ixxval 13337 Value of the interval func...
elixx1 13338 Membership in an interval ...
ixxf 13339 The set of intervals of ex...
ixxex 13340 The set of intervals of ex...
ixxssxr 13341 The set of intervals of ex...
elixx3g 13342 Membership in a set of ope...
ixxssixx 13343 An interval is a subset of...
ixxdisj 13344 Split an interval into dis...
ixxun 13345 Split an interval into two...
ixxin 13346 Intersection of two interv...
ixxss1 13347 Subset relationship for in...
ixxss2 13348 Subset relationship for in...
ixxss12 13349 Subset relationship for in...
ixxub 13350 Extract the upper bound of...
ixxlb 13351 Extract the lower bound of...
iooex 13352 The set of open intervals ...
iooval 13353 Value of the open interval...
ioo0 13354 An empty open interval of ...
ioon0 13355 An open interval of extend...
ndmioo 13356 The open interval function...
iooid 13357 An open interval with iden...
elioo3g 13358 Membership in a set of ope...
elioore 13359 A member of an open interv...
lbioo 13360 An open interval does not ...
ubioo 13361 An open interval does not ...
iooval2 13362 Value of the open interval...
iooin 13363 Intersection of two open i...
iooss1 13364 Subset relationship for op...
iooss2 13365 Subset relationship for op...
iocval 13366 Value of the open-below, c...
icoval 13367 Value of the closed-below,...
iccval 13368 Value of the closed interv...
elioo1 13369 Membership in an open inte...
elioo2 13370 Membership in an open inte...
elioc1 13371 Membership in an open-belo...
elico1 13372 Membership in a closed-bel...
elicc1 13373 Membership in a closed int...
iccid 13374 A closed interval with ide...
ico0 13375 An empty open interval of ...
ioc0 13376 An empty open interval of ...
icc0 13377 An empty closed interval o...
dfrp2 13378 Alternate definition of th...
elicod 13379 Membership in a left-close...
icogelb 13380 An element of a left-close...
elicore 13381 A member of a left-closed ...
ubioc1 13382 The upper bound belongs to...
lbico1 13383 The lower bound belongs to...
iccleub 13384 An element of a closed int...
iccgelb 13385 An element of a closed int...
elioo5 13386 Membership in an open inte...
eliooxr 13387 A nonempty open interval s...
eliooord 13388 Ordering implied by a memb...
elioo4g 13389 Membership in an open inte...
ioossre 13390 An open interval is a set ...
ioosscn 13391 An open interval is a set ...
elioc2 13392 Membership in an open-belo...
elico2 13393 Membership in a closed-bel...
elicc2 13394 Membership in a closed rea...
elicc2i 13395 Inference for membership i...
elicc4 13396 Membership in a closed rea...
iccss 13397 Condition for a closed int...
iccssioo 13398 Condition for a closed int...
icossico 13399 Condition for a closed-bel...
iccss2 13400 Condition for a closed int...
iccssico 13401 Condition for a closed int...
iccssioo2 13402 Condition for a closed int...
iccssico2 13403 Condition for a closed int...
ioomax 13404 The open interval from min...
iccmax 13405 The closed interval from m...
ioopos 13406 The set of positive reals ...
ioorp 13407 The set of positive reals ...
iooshf 13408 Shift the arguments of the...
iocssre 13409 A closed-above interval wi...
icossre 13410 A closed-below interval wi...
iccssre 13411 A closed real interval is ...
iccssxr 13412 A closed interval is a set...
iocssxr 13413 An open-below, closed-abov...
icossxr 13414 A closed-below, open-above...
ioossicc 13415 An open interval is a subs...
iccssred 13416 A closed real interval is ...
eliccxr 13417 A member of a closed inter...
icossicc 13418 A closed-below, open-above...
iocssicc 13419 A closed-above, open-below...
ioossico 13420 An open interval is a subs...
iocssioo 13421 Condition for a closed int...
icossioo 13422 Condition for a closed int...
ioossioo 13423 Condition for an open inte...
iccsupr 13424 A nonempty subset of a clo...
elioopnf 13425 Membership in an unbounded...
elioomnf 13426 Membership in an unbounded...
elicopnf 13427 Membership in a closed unb...
repos 13428 Two ways of saying that a ...
ioof 13429 The set of open intervals ...
iccf 13430 The set of closed interval...
unirnioo 13431 The union of the range of ...
dfioo2 13432 Alternate definition of th...
ioorebas 13433 Open intervals are element...
xrge0neqmnf 13434 A nonnegative extended rea...
xrge0nre 13435 An extended real which is ...
elrege0 13436 The predicate "is a nonneg...
nn0rp0 13437 A nonnegative integer is a...
rge0ssre 13438 Nonnegative real numbers a...
elxrge0 13439 Elementhood in the set of ...
0e0icopnf 13440 0 is a member of ` ( 0 [,)...
0e0iccpnf 13441 0 is a member of ` ( 0 [,]...
ge0addcl 13442 The nonnegative reals are ...
ge0mulcl 13443 The nonnegative reals are ...
ge0xaddcl 13444 The nonnegative reals are ...
ge0xmulcl 13445 The nonnegative extended r...
lbicc2 13446 The lower bound of a close...
ubicc2 13447 The upper bound of a close...
elicc01 13448 Membership in the closed r...
elunitrn 13449 The closed unit interval i...
elunitcn 13450 The closed unit interval i...
0elunit 13451 Zero is an element of the ...
1elunit 13452 One is an element of the c...
iooneg 13453 Membership in a negated op...
iccneg 13454 Membership in a negated cl...
icoshft 13455 A shifted real is a member...
icoshftf1o 13456 Shifting a closed-below, o...
icoun 13457 The union of two adjacent ...
icodisj 13458 Adjacent left-closed right...
ioounsn 13459 The union of an open inter...
snunioo 13460 The closure of one end of ...
snunico 13461 The closure of the open en...
snunioc 13462 The closure of the open en...
prunioo 13463 The closure of an open rea...
ioodisj 13464 If the upper bound of one ...
ioojoin 13465 Join two open intervals to...
difreicc 13466 The class difference of ` ...
iccsplit 13467 Split a closed interval in...
iccshftr 13468 Membership in a shifted in...
iccshftri 13469 Membership in a shifted in...
iccshftl 13470 Membership in a shifted in...
iccshftli 13471 Membership in a shifted in...
iccdil 13472 Membership in a dilated in...
iccdili 13473 Membership in a dilated in...
icccntr 13474 Membership in a contracted...
icccntri 13475 Membership in a contracted...
divelunit 13476 A condition for a ratio to...
lincmb01cmp 13477 A linear combination of tw...
iccf1o 13478 Describe a bijection from ...
iccen 13479 Any nontrivial closed inte...
xov1plusxeqvd 13480 A complex number ` X ` is ...
unitssre 13481 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13482 The closed unit interval i...
supicc 13483 Supremum of a bounded set ...
supiccub 13484 The supremum of a bounded ...
supicclub 13485 The supremum of a bounded ...
supicclub2 13486 The supremum of a bounded ...
zltaddlt1le 13487 The sum of an integer and ...
xnn0xrge0 13488 An extended nonnegative in...
fzval 13491 The value of a finite set ...
fzval2 13492 An alternative way of expr...
fzf 13493 Establish the domain and c...
elfz1 13494 Membership in a finite set...
elfz 13495 Membership in a finite set...
elfz2 13496 Membership in a finite set...
elfzd 13497 Membership in a finite set...
elfz5 13498 Membership in a finite set...
elfz4 13499 Membership in a finite set...
elfzuzb 13500 Membership in a finite set...
eluzfz 13501 Membership in a finite set...
elfzuz 13502 A member of a finite set o...
elfzuz3 13503 Membership in a finite set...
elfzel2 13504 Membership in a finite set...
elfzel1 13505 Membership in a finite set...
elfzelz 13506 A member of a finite set o...
elfzelzd 13507 A member of a finite set o...
fzssz 13508 A finite sequence of integ...
elfzle1 13509 A member of a finite set o...
elfzle2 13510 A member of a finite set o...
elfzuz2 13511 Implication of membership ...
elfzle3 13512 Membership in a finite set...
eluzfz1 13513 Membership in a finite set...
eluzfz2 13514 Membership in a finite set...
eluzfz2b 13515 Membership in a finite set...
elfz3 13516 Membership in a finite set...
elfz1eq 13517 Membership in a finite set...
elfzubelfz 13518 If there is a member in a ...
peano2fzr 13519 A Peano-postulate-like the...
fzn0 13520 Properties of a finite int...
fz0 13521 A finite set of sequential...
fzn 13522 A finite set of sequential...
fzen 13523 A shifted finite set of se...
fz1n 13524 A 1-based finite set of se...
0nelfz1 13525 0 is not an element of a f...
0fz1 13526 Two ways to say a finite 1...
fz10 13527 There are no integers betw...
uzsubsubfz 13528 Membership of an integer g...
uzsubsubfz1 13529 Membership of an integer g...
ige3m2fz 13530 Membership of an integer g...
fzsplit2 13531 Split a finite interval of...
fzsplit 13532 Split a finite interval of...
fzdisj 13533 Condition for two finite i...
fz01en 13534 0-based and 1-based finite...
elfznn 13535 A member of a finite set o...
elfz1end 13536 A nonempty finite range of...
fz1ssnn 13537 A finite set of positive i...
fznn0sub 13538 Subtraction closure for a ...
fzmmmeqm 13539 Subtracting the difference...
fzaddel 13540 Membership of a sum in a f...
fzadd2 13541 Membership of a sum in a f...
fzsubel 13542 Membership of a difference...
fzopth 13543 A finite set of sequential...
fzass4 13544 Two ways to express a nond...
fzss1 13545 Subset relationship for fi...
fzss2 13546 Subset relationship for fi...
fzssuz 13547 A finite set of sequential...
fzsn 13548 A finite interval of integ...
fzssp1 13549 Subset relationship for fi...
fzssnn 13550 Finite sets of sequential ...
ssfzunsnext 13551 A subset of a finite seque...
ssfzunsn 13552 A subset of a finite seque...
fzsuc 13553 Join a successor to the en...
fzpred 13554 Join a predecessor to the ...
fzpreddisj 13555 A finite set of sequential...
elfzp1 13556 Append an element to a fin...
fzp1ss 13557 Subset relationship for fi...
fzelp1 13558 Membership in a set of seq...
fzp1elp1 13559 Add one to an element of a...
fznatpl1 13560 Shift membership in a fini...
fzpr 13561 A finite interval of integ...
fztp 13562 A finite interval of integ...
fz12pr 13563 An integer range between 1...
fzsuc2 13564 Join a successor to the en...
fzp1disj 13565 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13566 Remove a successor from th...
fzprval 13567 Two ways of defining the f...
fztpval 13568 Two ways of defining the f...
fzrev 13569 Reversal of start and end ...
fzrev2 13570 Reversal of start and end ...
fzrev2i 13571 Reversal of start and end ...
fzrev3 13572 The "complement" of a memb...
fzrev3i 13573 The "complement" of a memb...
fznn 13574 Finite set of sequential i...
elfz1b 13575 Membership in a 1-based fi...
elfz1uz 13576 Membership in a 1-based fi...
elfzm11 13577 Membership in a finite set...
uzsplit 13578 Express an upper integer s...
uzdisj 13579 The first ` N ` elements o...
fseq1p1m1 13580 Add/remove an item to/from...
fseq1m1p1 13581 Add/remove an item to/from...
fz1sbc 13582 Quantification over a one-...
elfzp1b 13583 An integer is a member of ...
elfzm1b 13584 An integer is a member of ...
elfzp12 13585 Options for membership in ...
fzm1 13586 Choices for an element of ...
fzneuz 13587 No finite set of sequentia...
fznuz 13588 Disjointness of the upper ...
uznfz 13589 Disjointness of the upper ...
fzp1nel 13590 One plus the upper bound o...
fzrevral 13591 Reversal of scanning order...
fzrevral2 13592 Reversal of scanning order...
fzrevral3 13593 Reversal of scanning order...
fzshftral 13594 Shift the scanning order i...
ige2m1fz1 13595 Membership of an integer g...
ige2m1fz 13596 Membership in a 0-based fi...
elfz2nn0 13597 Membership in a finite set...
fznn0 13598 Characterization of a fini...
elfznn0 13599 A member of a finite set o...
elfz3nn0 13600 The upper bound of a nonem...
fz0ssnn0 13601 Finite sets of sequential ...
fz1ssfz0 13602 Subset relationship for fi...
0elfz 13603 0 is an element of a finit...
nn0fz0 13604 A nonnegative integer is a...
elfz0add 13605 An element of a finite set...
fz0sn 13606 An integer range from 0 to...
fz0tp 13607 An integer range from 0 to...
fz0to3un2pr 13608 An integer range from 0 to...
fz0to4untppr 13609 An integer range from 0 to...
elfz0ubfz0 13610 An element of a finite set...
elfz0fzfz0 13611 A member of a finite set o...
fz0fzelfz0 13612 If a member of a finite se...
fznn0sub2 13613 Subtraction closure for a ...
uzsubfz0 13614 Membership of an integer g...
fz0fzdiffz0 13615 The difference of an integ...
elfzmlbm 13616 Subtracting the lower boun...
elfzmlbp 13617 Subtracting the lower boun...
fzctr 13618 Lemma for theorems about t...
difelfzle 13619 The difference of two inte...
difelfznle 13620 The difference of two inte...
nn0split 13621 Express the set of nonnega...
nn0disj 13622 The first ` N + 1 ` elemen...
fz0sn0fz1 13623 A finite set of sequential...
fvffz0 13624 The function value of a fu...
1fv 13625 A function on a singleton....
4fvwrd4 13626 The first four function va...
2ffzeq 13627 Two functions over 0-based...
preduz 13628 The value of the predecess...
prednn 13629 The value of the predecess...
prednn0 13630 The value of the predecess...
predfz 13631 Calculate the predecessor ...
fzof 13634 Functionality of the half-...
elfzoel1 13635 Reverse closure for half-o...
elfzoel2 13636 Reverse closure for half-o...
elfzoelz 13637 Reverse closure for half-o...
fzoval 13638 Value of the half-open int...
elfzo 13639 Membership in a half-open ...
elfzo2 13640 Membership in a half-open ...
elfzouz 13641 Membership in a half-open ...
nelfzo 13642 An integer not being a mem...
fzolb 13643 The left endpoint of a hal...
fzolb2 13644 The left endpoint of a hal...
elfzole1 13645 A member in a half-open in...
elfzolt2 13646 A member in a half-open in...
elfzolt3 13647 Membership in a half-open ...
elfzolt2b 13648 A member in a half-open in...
elfzolt3b 13649 Membership in a half-open ...
elfzop1le2 13650 A member in a half-open in...
fzonel 13651 A half-open range does not...
elfzouz2 13652 The upper bound of a half-...
elfzofz 13653 A half-open range is conta...
elfzo3 13654 Express membership in a ha...
fzon0 13655 A half-open integer interv...
fzossfz 13656 A half-open range is conta...
fzossz 13657 A half-open integer interv...
fzon 13658 A half-open set of sequent...
fzo0n 13659 A half-open range of nonne...
fzonlt0 13660 A half-open integer range ...
fzo0 13661 Half-open sets with equal ...
fzonnsub 13662 If ` K < N ` then ` N - K ...
fzonnsub2 13663 If ` M < N ` then ` N - M ...
fzoss1 13664 Subset relationship for ha...
fzoss2 13665 Subset relationship for ha...
fzossrbm1 13666 Subset of a half-open rang...
fzo0ss1 13667 Subset relationship for ha...
fzossnn0 13668 A half-open integer range ...
fzospliti 13669 One direction of splitting...
fzosplit 13670 Split a half-open integer ...
fzodisj 13671 Abutting half-open integer...
fzouzsplit 13672 Split an upper integer set...
fzouzdisj 13673 A half-open integer range ...
fzoun 13674 A half-open integer range ...
fzodisjsn 13675 A half-open integer range ...
prinfzo0 13676 The intersection of a half...
lbfzo0 13677 An integer is strictly gre...
elfzo0 13678 Membership in a half-open ...
elfzo0z 13679 Membership in a half-open ...
nn0p1elfzo 13680 A nonnegative integer incr...
elfzo0le 13681 A member in a half-open ra...
elfzonn0 13682 A member of a half-open ra...
fzonmapblen 13683 The result of subtracting ...
fzofzim 13684 If a nonnegative integer i...
fz1fzo0m1 13685 Translation of one between...
fzossnn 13686 Half-open integer ranges s...
elfzo1 13687 Membership in a half-open ...
fzo1fzo0n0 13688 An integer between 1 and a...
fzo0n0 13689 A half-open integer range ...
fzoaddel 13690 Translate membership in a ...
fzo0addel 13691 Translate membership in a ...
fzo0addelr 13692 Translate membership in a ...
fzoaddel2 13693 Translate membership in a ...
elfzoext 13694 Membership of an integer i...
elincfzoext 13695 Membership of an increased...
fzosubel 13696 Translate membership in a ...
fzosubel2 13697 Membership in a translated...
fzosubel3 13698 Membership in a translated...
eluzgtdifelfzo 13699 Membership of the differen...
ige2m2fzo 13700 Membership of an integer g...
fzocatel 13701 Translate membership in a ...
ubmelfzo 13702 If an integer in a 1-based...
elfzodifsumelfzo 13703 If an integer is in a half...
elfzom1elp1fzo 13704 Membership of an integer i...
elfzom1elfzo 13705 Membership in a half-open ...
fzval3 13706 Expressing a closed intege...
fz0add1fz1 13707 Translate membership in a ...
fzosn 13708 Expressing a singleton as ...
elfzomin 13709 Membership of an integer i...
zpnn0elfzo 13710 Membership of an integer i...
zpnn0elfzo1 13711 Membership of an integer i...
fzosplitsnm1 13712 Removing a singleton from ...
elfzonlteqm1 13713 If an element of a half-op...
fzonn0p1 13714 A nonnegative integer is e...
fzossfzop1 13715 A half-open range of nonne...
fzonn0p1p1 13716 If a nonnegative integer i...
elfzom1p1elfzo 13717 Increasing an element of a...
fzo0ssnn0 13718 Half-open integer ranges s...
fzo01 13719 Expressing the singleton o...
fzo12sn 13720 A 1-based half-open intege...
fzo13pr 13721 A 1-based half-open intege...
fzo0to2pr 13722 A half-open integer range ...
fzo0to3tp 13723 A half-open integer range ...
fzo0to42pr 13724 A half-open integer range ...
fzo1to4tp 13725 A half-open integer range ...
fzo0sn0fzo1 13726 A half-open range of nonne...
elfzo0l 13727 A member of a half-open ra...
fzoend 13728 The endpoint of a half-ope...
fzo0end 13729 The endpoint of a zero-bas...
ssfzo12 13730 Subset relationship for ha...
ssfzoulel 13731 If a half-open integer ran...
ssfzo12bi 13732 Subset relationship for ha...
ubmelm1fzo 13733 The result of subtracting ...
fzofzp1 13734 If a point is in a half-op...
fzofzp1b 13735 If a point is in a half-op...
elfzom1b 13736 An integer is a member of ...
elfzom1elp1fzo1 13737 Membership of a nonnegativ...
elfzo1elm1fzo0 13738 Membership of a positive i...
elfzonelfzo 13739 If an element of a half-op...
fzonfzoufzol 13740 If an element of a half-op...
elfzomelpfzo 13741 An integer increased by an...
elfznelfzo 13742 A value in a finite set of...
elfznelfzob 13743 A value in a finite set of...
peano2fzor 13744 A Peano-postulate-like the...
fzosplitsn 13745 Extending a half-open rang...
fzosplitpr 13746 Extending a half-open inte...
fzosplitprm1 13747 Extending a half-open inte...
fzosplitsni 13748 Membership in a half-open ...
fzisfzounsn 13749 A finite interval of integ...
elfzr 13750 A member of a finite inter...
elfzlmr 13751 A member of a finite inter...
elfz0lmr 13752 A member of a finite inter...
fzostep1 13753 Two possibilities for a nu...
fzoshftral 13754 Shift the scanning order i...
fzind2 13755 Induction on the integers ...
fvinim0ffz 13756 The function values for th...
injresinjlem 13757 Lemma for ~ injresinj . (...
injresinj 13758 A function whose restricti...
subfzo0 13759 The difference between two...
flval 13764 Value of the floor (greate...
flcl 13765 The floor (greatest intege...
reflcl 13766 The floor (greatest intege...
fllelt 13767 A basic property of the fl...
flcld 13768 The floor (greatest intege...
flle 13769 A basic property of the fl...
flltp1 13770 A basic property of the fl...
fllep1 13771 A basic property of the fl...
fraclt1 13772 The fractional part of a r...
fracle1 13773 The fractional part of a r...
fracge0 13774 The fractional part of a r...
flge 13775 The floor function value i...
fllt 13776 The floor function value i...
flflp1 13777 Move floor function betwee...
flid 13778 An integer is its own floo...
flidm 13779 The floor function is idem...
flidz 13780 A real number equals its f...
flltnz 13781 The floor of a non-integer...
flwordi 13782 Ordering relation for the ...
flword2 13783 Ordering relation for the ...
flval2 13784 An alternate way to define...
flval3 13785 An alternate way to define...
flbi 13786 A condition equivalent to ...
flbi2 13787 A condition equivalent to ...
adddivflid 13788 The floor of a sum of an i...
ico01fl0 13789 The floor of a real number...
flge0nn0 13790 The floor of a number grea...
flge1nn 13791 The floor of a number grea...
fldivnn0 13792 The floor function of a di...
refldivcl 13793 The floor function of a di...
divfl0 13794 The floor of a fraction is...
fladdz 13795 An integer can be moved in...
flzadd 13796 An integer can be moved in...
flmulnn0 13797 Move a nonnegative integer...
btwnzge0 13798 A real bounded between an ...
2tnp1ge0ge0 13799 Two times an integer plus ...
flhalf 13800 Ordering relation for the ...
fldivle 13801 The floor function of a di...
fldivnn0le 13802 The floor function of a di...
flltdivnn0lt 13803 The floor function of a di...
ltdifltdiv 13804 If the dividend of a divis...
fldiv4p1lem1div2 13805 The floor of an integer eq...
fldiv4lem1div2uz2 13806 The floor of an integer gr...
fldiv4lem1div2 13807 The floor of a positive in...
ceilval 13808 The value of the ceiling f...
dfceil2 13809 Alternative definition of ...
ceilval2 13810 The value of the ceiling f...
ceicl 13811 The ceiling function retur...
ceilcl 13812 Closure of the ceiling fun...
ceilcld 13813 Closure of the ceiling fun...
ceige 13814 The ceiling of a real numb...
ceilge 13815 The ceiling of a real numb...
ceilged 13816 The ceiling of a real numb...
ceim1l 13817 One less than the ceiling ...
ceilm1lt 13818 One less than the ceiling ...
ceile 13819 The ceiling of a real numb...
ceille 13820 The ceiling of a real numb...
ceilid 13821 An integer is its own ceil...
ceilidz 13822 A real number equals its c...
flleceil 13823 The floor of a real number...
fleqceilz 13824 A real number is an intege...
quoremz 13825 Quotient and remainder of ...
quoremnn0 13826 Quotient and remainder of ...
quoremnn0ALT 13827 Alternate proof of ~ quore...
intfrac2 13828 Decompose a real into inte...
intfracq 13829 Decompose a rational numbe...
fldiv 13830 Cancellation of the embedd...
fldiv2 13831 Cancellation of an embedde...
fznnfl 13832 Finite set of sequential i...
uzsup 13833 An upper set of integers i...
ioopnfsup 13834 An upper set of reals is u...
icopnfsup 13835 An upper set of reals is u...
rpsup 13836 The positive reals are unb...
resup 13837 The real numbers are unbou...
xrsup 13838 The extended real numbers ...
modval 13841 The value of the modulo op...
modvalr 13842 The value of the modulo op...
modcl 13843 Closure law for the modulo...
flpmodeq 13844 Partition of a division in...
modcld 13845 Closure law for the modulo...
mod0 13846 ` A mod B ` is zero iff ` ...
mulmod0 13847 The product of an integer ...
negmod0 13848 ` A ` is divisible by ` B ...
modge0 13849 The modulo operation is no...
modlt 13850 The modulo operation is le...
modelico 13851 Modular reduction produces...
moddiffl 13852 Value of the modulo operat...
moddifz 13853 The modulo operation diffe...
modfrac 13854 The fractional part of a n...
flmod 13855 The floor function express...
intfrac 13856 Break a number into its in...
zmod10 13857 An integer modulo 1 is 0. ...
zmod1congr 13858 Two arbitrary integers are...
modmulnn 13859 Move a positive integer in...
modvalp1 13860 The value of the modulo op...
zmodcl 13861 Closure law for the modulo...
zmodcld 13862 Closure law for the modulo...
zmodfz 13863 An integer mod ` B ` lies ...
zmodfzo 13864 An integer mod ` B ` lies ...
zmodfzp1 13865 An integer mod ` B ` lies ...
modid 13866 Identity law for modulo. ...
modid0 13867 A positive real number mod...
modid2 13868 Identity law for modulo. ...
zmodid2 13869 Identity law for modulo re...
zmodidfzo 13870 Identity law for modulo re...
zmodidfzoimp 13871 Identity law for modulo re...
0mod 13872 Special case: 0 modulo a p...
1mod 13873 Special case: 1 modulo a r...
modabs 13874 Absorption law for modulo....
modabs2 13875 Absorption law for modulo....
modcyc 13876 The modulo operation is pe...
modcyc2 13877 The modulo operation is pe...
modadd1 13878 Addition property of the m...
modaddabs 13879 Absorption law for modulo....
modaddmod 13880 The sum of a real number m...
muladdmodid 13881 The sum of a positive real...
mulp1mod1 13882 The product of an integer ...
modmuladd 13883 Decomposition of an intege...
modmuladdim 13884 Implication of a decomposi...
modmuladdnn0 13885 Implication of a decomposi...
negmod 13886 The negation of a number m...
m1modnnsub1 13887 Minus one modulo a positiv...
m1modge3gt1 13888 Minus one modulo an intege...
addmodid 13889 The sum of a positive inte...
addmodidr 13890 The sum of a positive inte...
modadd2mod 13891 The sum of a real number m...
modm1p1mod0 13892 If a real number modulo a ...
modltm1p1mod 13893 If a real number modulo a ...
modmul1 13894 Multiplication property of...
modmul12d 13895 Multiplication property of...
modnegd 13896 Negation property of the m...
modadd12d 13897 Additive property of the m...
modsub12d 13898 Subtraction property of th...
modsubmod 13899 The difference of a real n...
modsubmodmod 13900 The difference of a real n...
2txmodxeq0 13901 Two times a positive real ...
2submod 13902 If a real number is betwee...
modifeq2int 13903 If a nonnegative integer i...
modaddmodup 13904 The sum of an integer modu...
modaddmodlo 13905 The sum of an integer modu...
modmulmod 13906 The product of a real numb...
modmulmodr 13907 The product of an integer ...
modaddmulmod 13908 The sum of a real number a...
moddi 13909 Distribute multiplication ...
modsubdir 13910 Distribute the modulo oper...
modeqmodmin 13911 A real number equals the d...
modirr 13912 A number modulo an irratio...
modfzo0difsn 13913 For a number within a half...
modsumfzodifsn 13914 The sum of a number within...
modlteq 13915 Two nonnegative integers l...
addmodlteq 13916 Two nonnegative integers l...
om2uz0i 13917 The mapping ` G ` is a one...
om2uzsuci 13918 The value of ` G ` (see ~ ...
om2uzuzi 13919 The value ` G ` (see ~ om2...
om2uzlti 13920 Less-than relation for ` G...
om2uzlt2i 13921 The mapping ` G ` (see ~ o...
om2uzrani 13922 Range of ` G ` (see ~ om2u...
om2uzf1oi 13923 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13924 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13925 An alternative definition ...
om2uzrdg 13926 A helper lemma for the val...
uzrdglem 13927 A helper lemma for the val...
uzrdgfni 13928 The recursive definition g...
uzrdg0i 13929 Initial value of a recursi...
uzrdgsuci 13930 Successor value of a recur...
ltweuz 13931 ` < ` is a well-founded re...
ltwenn 13932 Less than well-orders the ...
ltwefz 13933 Less than well-orders a se...
uzenom 13934 An upper integer set is de...
uzinf 13935 An upper integer set is in...
nnnfi 13936 The set of positive intege...
uzrdgxfr 13937 Transfer the value of the ...
fzennn 13938 The cardinality of a finit...
fzen2 13939 The cardinality of a finit...
cardfz 13940 The cardinality of a finit...
hashgf1o 13941 ` G ` maps ` _om ` one-to-...
fzfi 13942 A finite interval of integ...
fzfid 13943 Commonly used special case...
fzofi 13944 Half-open integer sets are...
fsequb 13945 The values of a finite rea...
fsequb2 13946 The values of a finite rea...
fseqsupcl 13947 The values of a finite rea...
fseqsupubi 13948 The values of a finite rea...
nn0ennn 13949 The nonnegative integers a...
nnenom 13950 The set of positive intege...
nnct 13951 ` NN ` is countable. (Con...
uzindi 13952 Indirect strong induction ...
axdc4uzlem 13953 Lemma for ~ axdc4uz . (Co...
axdc4uz 13954 A version of ~ axdc4 that ...
ssnn0fi 13955 A subset of the nonnegativ...
rabssnn0fi 13956 A subset of the nonnegativ...
uzsinds 13957 Strong (or "total") induct...
nnsinds 13958 Strong (or "total") induct...
nn0sinds 13959 Strong (or "total") induct...
fsuppmapnn0fiublem 13960 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13961 If all functions of a fini...
fsuppmapnn0fiubex 13962 If all functions of a fini...
fsuppmapnn0fiub0 13963 If all functions of a fini...
suppssfz 13964 Condition for a function o...
fsuppmapnn0ub 13965 If a function over the non...
fsuppmapnn0fz 13966 If a function over the non...
mptnn0fsupp 13967 A mapping from the nonnega...
mptnn0fsuppd 13968 A mapping from the nonnega...
mptnn0fsuppr 13969 A finitely supported mappi...
f13idfv 13970 A one-to-one function with...
seqex 13973 Existence of the sequence ...
seqeq1 13974 Equality theorem for the s...
seqeq2 13975 Equality theorem for the s...
seqeq3 13976 Equality theorem for the s...
seqeq1d 13977 Equality deduction for the...
seqeq2d 13978 Equality deduction for the...
seqeq3d 13979 Equality deduction for the...
seqeq123d 13980 Equality deduction for the...
nfseq 13981 Hypothesis builder for the...
seqval 13982 Value of the sequence buil...
seqfn 13983 The sequence builder funct...
seq1 13984 Value of the sequence buil...
seq1i 13985 Value of the sequence buil...
seqp1 13986 Value of the sequence buil...
seqexw 13987 Weak version of ~ seqex th...
seqp1d 13988 Value of the sequence buil...
seqp1iOLD 13989 Obsolete version of ~ seqp...
seqm1 13990 Value of the sequence buil...
seqcl2 13991 Closure properties of the ...
seqf2 13992 Range of the recursive seq...
seqcl 13993 Closure properties of the ...
seqf 13994 Range of the recursive seq...
seqfveq2 13995 Equality of sequences. (C...
seqfeq2 13996 Equality of sequences. (C...
seqfveq 13997 Equality of sequences. (C...
seqfeq 13998 Equality of sequences. (C...
seqshft2 13999 Shifting the index set of ...
seqres 14000 Restricting its characteri...
serf 14001 An infinite series of comp...
serfre 14002 An infinite series of real...
monoord 14003 Ordering relation for a mo...
monoord2 14004 Ordering relation for a mo...
sermono 14005 The partial sums in an inf...
seqsplit 14006 Split a sequence into two ...
seq1p 14007 Removing the first term fr...
seqcaopr3 14008 Lemma for ~ seqcaopr2 . (...
seqcaopr2 14009 The sum of two infinite se...
seqcaopr 14010 The sum of two infinite se...
seqf1olem2a 14011 Lemma for ~ seqf1o . (Con...
seqf1olem1 14012 Lemma for ~ seqf1o . (Con...
seqf1olem2 14013 Lemma for ~ seqf1o . (Con...
seqf1o 14014 Rearrange a sum via an arb...
seradd 14015 The sum of two infinite se...
sersub 14016 The difference of two infi...
seqid3 14017 A sequence that consists e...
seqid 14018 Discarding the first few t...
seqid2 14019 The last few partial sums ...
seqhomo 14020 Apply a homomorphism to a ...
seqz 14021 If the operation ` .+ ` ha...
seqfeq4 14022 Equality of series under d...
seqfeq3 14023 Equality of series under d...
seqdistr 14024 The distributive property ...
ser0 14025 The value of the partial s...
ser0f 14026 A zero-valued infinite ser...
serge0 14027 A finite sum of nonnegativ...
serle 14028 Comparison of partial sums...
ser1const 14029 Value of the partial serie...
seqof 14030 Distribute function operat...
seqof2 14031 Distribute function operat...
expval 14034 Value of exponentiation to...
expnnval 14035 Value of exponentiation to...
exp0 14036 Value of a complex number ...
0exp0e1 14037 The zeroth power of zero e...
exp1 14038 Value of a complex number ...
expp1 14039 Value of a complex number ...
expneg 14040 Value of a complex number ...
expneg2 14041 Value of a complex number ...
expn1 14042 A complex number raised to...
expcllem 14043 Lemma for proving nonnegat...
expcl2lem 14044 Lemma for proving integer ...
nnexpcl 14045 Closure of exponentiation ...
nn0expcl 14046 Closure of exponentiation ...
zexpcl 14047 Closure of exponentiation ...
qexpcl 14048 Closure of exponentiation ...
reexpcl 14049 Closure of exponentiation ...
expcl 14050 Closure law for nonnegativ...
rpexpcl 14051 Closure law for integer ex...
qexpclz 14052 Closure of integer exponen...
reexpclz 14053 Closure of integer exponen...
expclzlem 14054 Lemma for ~ expclz . (Con...
expclz 14055 Closure law for integer ex...
m1expcl2 14056 Closure of integer exponen...
m1expcl 14057 Closure of exponentiation ...
zexpcld 14058 Closure of exponentiation ...
nn0expcli 14059 Closure of exponentiation ...
nn0sqcl 14060 The square of a nonnegativ...
expm1t 14061 Exponentiation in terms of...
1exp 14062 Value of 1 raised to an in...
expeq0 14063 A positive integer power i...
expne0 14064 A positive integer power i...
expne0i 14065 An integer power is nonzer...
expgt0 14066 A positive real raised to ...
expnegz 14067 Value of a nonzero complex...
0exp 14068 Value of zero raised to a ...
expge0 14069 A nonnegative real raised ...
expge1 14070 A real greater than or equ...
expgt1 14071 A real greater than 1 rais...
mulexp 14072 Nonnegative integer expone...
mulexpz 14073 Integer exponentiation of ...
exprec 14074 Integer exponentiation of ...
expadd 14075 Sum of exponents law for n...
expaddzlem 14076 Lemma for ~ expaddz . (Co...
expaddz 14077 Sum of exponents law for i...
expmul 14078 Product of exponents law f...
expmulz 14079 Product of exponents law f...
m1expeven 14080 Exponentiation of negative...
expsub 14081 Exponent subtraction law f...
expp1z 14082 Value of a nonzero complex...
expm1 14083 Value of a nonzero complex...
expdiv 14084 Nonnegative integer expone...
sqval 14085 Value of the square of a c...
sqneg 14086 The square of the negative...
sqsubswap 14087 Swap the order of subtract...
sqcl 14088 Closure of square. (Contr...
sqmul 14089 Distribution of squaring o...
sqeq0 14090 A complex number is zero i...
sqdiv 14091 Distribution of squaring o...
sqdivid 14092 The square of a nonzero co...
sqne0 14093 A complex number is nonzer...
resqcl 14094 Closure of squaring in rea...
resqcld 14095 Closure of squaring in rea...
sqgt0 14096 The square of a nonzero re...
sqn0rp 14097 The square of a nonzero re...
nnsqcl 14098 The positive naturals are ...
zsqcl 14099 Integers are closed under ...
qsqcl 14100 The square of a rational i...
sq11 14101 The square function is one...
nn0sq11 14102 The square function is one...
lt2sq 14103 The square function is inc...
le2sq 14104 The square function is non...
le2sq2 14105 The square function is non...
sqge0 14106 The square of a real is no...
sqge0d 14107 The square of a real is no...
zsqcl2 14108 The square of an integer i...
0expd 14109 Value of zero raised to a ...
exp0d 14110 Value of a complex number ...
exp1d 14111 Value of a complex number ...
expeq0d 14112 If a positive integer powe...
sqvald 14113 Value of square. Inferenc...
sqcld 14114 Closure of square. (Contr...
sqeq0d 14115 A number is zero iff its s...
expcld 14116 Closure law for nonnegativ...
expp1d 14117 Value of a complex number ...
expaddd 14118 Sum of exponents law for n...
expmuld 14119 Product of exponents law f...
sqrecd 14120 Square of reciprocal is re...
expclzd 14121 Closure law for integer ex...
expne0d 14122 A nonnegative integer powe...
expnegd 14123 Value of a nonzero complex...
exprecd 14124 An integer power of a reci...
expp1zd 14125 Value of a nonzero complex...
expm1d 14126 Value of a nonzero complex...
expsubd 14127 Exponent subtraction law f...
sqmuld 14128 Distribution of squaring o...
sqdivd 14129 Distribution of squaring o...
expdivd 14130 Nonnegative integer expone...
mulexpd 14131 Nonnegative integer expone...
znsqcld 14132 The square of a nonzero in...
reexpcld 14133 Closure of exponentiation ...
expge0d 14134 A nonnegative real raised ...
expge1d 14135 A real greater than or equ...
ltexp2a 14136 Exponent ordering relation...
expmordi 14137 Base ordering relationship...
rpexpmord 14138 Base ordering relationship...
expcan 14139 Cancellation law for integ...
ltexp2 14140 Strict ordering law for ex...
leexp2 14141 Ordering law for exponenti...
leexp2a 14142 Weak ordering relationship...
ltexp2r 14143 The integer powers of a fi...
leexp2r 14144 Weak ordering relationship...
leexp1a 14145 Weak base ordering relatio...
exple1 14146 A real between 0 and 1 inc...
expubnd 14147 An upper bound on ` A ^ N ...
sumsqeq0 14148 The sum of two squres of r...
sqvali 14149 Value of square. Inferenc...
sqcli 14150 Closure of square. (Contr...
sqeq0i 14151 A complex number is zero i...
sqrecii 14152 The square of a reciprocal...
sqmuli 14153 Distribution of squaring o...
sqdivi 14154 Distribution of squaring o...
resqcli 14155 Closure of square in reals...
sqgt0i 14156 The square of a nonzero re...
sqge0i 14157 The square of a real is no...
lt2sqi 14158 The square function on non...
le2sqi 14159 The square function on non...
sq11i 14160 The square function is one...
sq0 14161 The square of 0 is 0. (Co...
sq0i 14162 If a number is zero, then ...
sq0id 14163 If a number is zero, then ...
sq1 14164 The square of 1 is 1. (Co...
neg1sqe1 14165 The square of ` -u 1 ` is ...
sq2 14166 The square of 2 is 4. (Co...
sq3 14167 The square of 3 is 9. (Co...
sq4e2t8 14168 The square of 4 is 2 times...
cu2 14169 The cube of 2 is 8. (Cont...
irec 14170 The reciprocal of ` _i ` ....
i2 14171 ` _i ` squared. (Contribu...
i3 14172 ` _i ` cubed. (Contribute...
i4 14173 ` _i ` to the fourth power...
nnlesq 14174 A positive integer is less...
zzlesq 14175 An integer is less than or...
iexpcyc 14176 Taking ` _i ` to the ` K `...
expnass 14177 A counterexample showing t...
sqlecan 14178 Cancel one factor of a squ...
subsq 14179 Factor the difference of t...
subsq2 14180 Express the difference of ...
binom2i 14181 The square of a binomial. ...
subsqi 14182 Factor the difference of t...
sqeqori 14183 The squares of two complex...
subsq0i 14184 The two solutions to the d...
sqeqor 14185 The squares of two complex...
binom2 14186 The square of a binomial. ...
binom21 14187 Special case of ~ binom2 w...
binom2sub 14188 Expand the square of a sub...
binom2sub1 14189 Special case of ~ binom2su...
binom2subi 14190 Expand the square of a sub...
mulbinom2 14191 The square of a binomial w...
binom3 14192 The cube of a binomial. (...
sq01 14193 If a complex number equals...
zesq 14194 An integer is even iff its...
nnesq 14195 A positive integer is even...
crreczi 14196 Reciprocal of a complex nu...
bernneq 14197 Bernoulli's inequality, du...
bernneq2 14198 Variation of Bernoulli's i...
bernneq3 14199 A corollary of ~ bernneq ....
expnbnd 14200 Exponentiation with a base...
expnlbnd 14201 The reciprocal of exponent...
expnlbnd2 14202 The reciprocal of exponent...
expmulnbnd 14203 Exponentiation with a base...
digit2 14204 Two ways to express the ` ...
digit1 14205 Two ways to express the ` ...
modexp 14206 Exponentiation property of...
discr1 14207 A nonnegative quadratic fo...
discr 14208 If a quadratic polynomial ...
expnngt1 14209 If an integer power with a...
expnngt1b 14210 An integer power with an i...
sqoddm1div8 14211 A squared odd number minus...
nnsqcld 14212 The naturals are closed un...
nnexpcld 14213 Closure of exponentiation ...
nn0expcld 14214 Closure of exponentiation ...
rpexpcld 14215 Closure law for exponentia...
ltexp2rd 14216 The power of a positive nu...
reexpclzd 14217 Closure of exponentiation ...
sqgt0d 14218 The square of a nonzero re...
ltexp2d 14219 Ordering relationship for ...
leexp2d 14220 Ordering law for exponenti...
expcand 14221 Ordering relationship for ...
leexp2ad 14222 Ordering relationship for ...
leexp2rd 14223 Ordering relationship for ...
lt2sqd 14224 The square function on non...
le2sqd 14225 The square function on non...
sq11d 14226 The square function is one...
mulsubdivbinom2 14227 The square of a binomial w...
muldivbinom2 14228 The square of a binomial w...
sq10 14229 The square of 10 is 100. ...
sq10e99m1 14230 The square of 10 is 99 plu...
3dec 14231 A "decimal constructor" wh...
nn0le2msqi 14232 The square function on non...
nn0opthlem1 14233 A rather pretty lemma for ...
nn0opthlem2 14234 Lemma for ~ nn0opthi . (C...
nn0opthi 14235 An ordered pair theorem fo...
nn0opth2i 14236 An ordered pair theorem fo...
nn0opth2 14237 An ordered pair theorem fo...
facnn 14240 Value of the factorial fun...
fac0 14241 The factorial of 0. (Cont...
fac1 14242 The factorial of 1. (Cont...
facp1 14243 The factorial of a success...
fac2 14244 The factorial of 2. (Cont...
fac3 14245 The factorial of 3. (Cont...
fac4 14246 The factorial of 4. (Cont...
facnn2 14247 Value of the factorial fun...
faccl 14248 Closure of the factorial f...
faccld 14249 Closure of the factorial f...
facmapnn 14250 The factorial function res...
facne0 14251 The factorial function is ...
facdiv 14252 A positive integer divides...
facndiv 14253 No positive integer (great...
facwordi 14254 Ordering property of facto...
faclbnd 14255 A lower bound for the fact...
faclbnd2 14256 A lower bound for the fact...
faclbnd3 14257 A lower bound for the fact...
faclbnd4lem1 14258 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 14259 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 14260 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 14261 Lemma for ~ faclbnd4 . Pr...
faclbnd4 14262 Variant of ~ faclbnd5 prov...
faclbnd5 14263 The factorial function gro...
faclbnd6 14264 Geometric lower bound for ...
facubnd 14265 An upper bound for the fac...
facavg 14266 The product of two factori...
bcval 14269 Value of the binomial coef...
bcval2 14270 Value of the binomial coef...
bcval3 14271 Value of the binomial coef...
bcval4 14272 Value of the binomial coef...
bcrpcl 14273 Closure of the binomial co...
bccmpl 14274 "Complementing" its second...
bcn0 14275 ` N ` choose 0 is 1. Rema...
bc0k 14276 The binomial coefficient "...
bcnn 14277 ` N ` choose ` N ` is 1. ...
bcn1 14278 Binomial coefficient: ` N ...
bcnp1n 14279 Binomial coefficient: ` N ...
bcm1k 14280 The proportion of one bino...
bcp1n 14281 The proportion of one bino...
bcp1nk 14282 The proportion of one bino...
bcval5 14283 Write out the top and bott...
bcn2 14284 Binomial coefficient: ` N ...
bcp1m1 14285 Compute the binomial coeff...
bcpasc 14286 Pascal's rule for the bino...
bccl 14287 A binomial coefficient, in...
bccl2 14288 A binomial coefficient, in...
bcn2m1 14289 Compute the binomial coeff...
bcn2p1 14290 Compute the binomial coeff...
permnn 14291 The number of permutations...
bcnm1 14292 The binomial coefficent of...
4bc3eq4 14293 The value of four choose t...
4bc2eq6 14294 The value of four choose t...
hashkf 14297 The finite part of the siz...
hashgval 14298 The value of the ` # ` fun...
hashginv 14299 The converse of ` G ` maps...
hashinf 14300 The value of the ` # ` fun...
hashbnd 14301 If ` A ` has size bounded ...
hashfxnn0 14302 The size function is a fun...
hashf 14303 The size function maps all...
hashxnn0 14304 The value of the hash func...
hashresfn 14305 Restriction of the domain ...
dmhashres 14306 Restriction of the domain ...
hashnn0pnf 14307 The value of the hash func...
hashnnn0genn0 14308 If the size of a set is no...
hashnemnf 14309 The size of a set is never...
hashv01gt1 14310 The size of a set is eithe...
hashfz1 14311 The set ` ( 1 ... N ) ` ha...
hashen 14312 Two finite sets have the s...
hasheni 14313 Equinumerous sets have the...
hasheqf1o 14314 The size of two finite set...
fiinfnf1o 14315 There is no bijection betw...
hasheqf1oi 14316 The size of two sets is eq...
hashf1rn 14317 The size of a finite set w...
hasheqf1od 14318 The size of two sets is eq...
fz1eqb 14319 Two possibly-empty 1-based...
hashcard 14320 The size function of the c...
hashcl 14321 Closure of the ` # ` funct...
hashxrcl 14322 Extended real closure of t...
hashclb 14323 Reverse closure of the ` #...
nfile 14324 The size of any infinite s...
hashvnfin 14325 A set of finite size is a ...
hashnfinnn0 14326 The size of an infinite se...
isfinite4 14327 A finite set is equinumero...
hasheq0 14328 Two ways of saying a set i...
hashneq0 14329 Two ways of saying a set i...
hashgt0n0 14330 If the size of a set is gr...
hashnncl 14331 Positive natural closure o...
hash0 14332 The empty set has size zer...
hashelne0d 14333 A set with an element has ...
hashsng 14334 The size of a singleton. ...
hashen1 14335 A set has size 1 if and on...
hash1elsn 14336 A set of size 1 with a kno...
hashrabrsn 14337 The size of a restricted c...
hashrabsn01 14338 The size of a restricted c...
hashrabsn1 14339 If the size of a restricte...
hashfn 14340 A function is equinumerous...
fseq1hash 14341 The value of the size func...
hashgadd 14342 ` G ` maps ordinal additio...
hashgval2 14343 A short expression for the...
hashdom 14344 Dominance relation for the...
hashdomi 14345 Non-strict order relation ...
hashsdom 14346 Strict dominance relation ...
hashun 14347 The size of the union of d...
hashun2 14348 The size of the union of f...
hashun3 14349 The size of the union of f...
hashinfxadd 14350 The extended real addition...
hashunx 14351 The size of the union of d...
hashge0 14352 The cardinality of a set i...
hashgt0 14353 The cardinality of a nonem...
hashge1 14354 The cardinality of a nonem...
1elfz0hash 14355 1 is an element of the fin...
hashnn0n0nn 14356 If a nonnegative integer i...
hashunsng 14357 The size of the union of a...
hashunsngx 14358 The size of the union of a...
hashunsnggt 14359 The size of a set is great...
hashprg 14360 The size of an unordered p...
elprchashprn2 14361 If one element of an unord...
hashprb 14362 The size of an unordered p...
hashprdifel 14363 The elements of an unorder...
prhash2ex 14364 There is (at least) one se...
hashle00 14365 If the size of a set is le...
hashgt0elex 14366 If the size of a set is gr...
hashgt0elexb 14367 The size of a set is great...
hashp1i 14368 Size of a finite ordinal. ...
hash1 14369 Size of a finite ordinal. ...
hash2 14370 Size of a finite ordinal. ...
hash3 14371 Size of a finite ordinal. ...
hash4 14372 Size of a finite ordinal. ...
pr0hash2ex 14373 There is (at least) one se...
hashss 14374 The size of a subset is le...
prsshashgt1 14375 The size of a superset of ...
hashin 14376 The size of the intersecti...
hashssdif 14377 The size of the difference...
hashdif 14378 The size of the difference...
hashdifsn 14379 The size of the difference...
hashdifpr 14380 The size of the difference...
hashsn01 14381 The size of a singleton is...
hashsnle1 14382 The size of a singleton is...
hashsnlei 14383 Get an upper bound on a co...
hash1snb 14384 The size of a set is 1 if ...
euhash1 14385 The size of a set is 1 in ...
hash1n0 14386 If the size of a set is 1 ...
hashgt12el 14387 In a set with more than on...
hashgt12el2 14388 In a set with more than on...
hashgt23el 14389 A set with more than two e...
hashunlei 14390 Get an upper bound on a co...
hashsslei 14391 Get an upper bound on a co...
hashfz 14392 Value of the numeric cardi...
fzsdom2 14393 Condition for finite range...
hashfzo 14394 Cardinality of a half-open...
hashfzo0 14395 Cardinality of a half-open...
hashfzp1 14396 Value of the numeric cardi...
hashfz0 14397 Value of the numeric cardi...
hashxplem 14398 Lemma for ~ hashxp . (Con...
hashxp 14399 The size of the Cartesian ...
hashmap 14400 The size of the set expone...
hashpw 14401 The size of the power set ...
hashfun 14402 A finite set is a function...
hashres 14403 The number of elements of ...
hashreshashfun 14404 The number of elements of ...
hashimarn 14405 The size of the image of a...
hashimarni 14406 If the size of the image o...
hashfundm 14407 The size of a set function...
hashf1dmrn 14408 The size of the domain of ...
resunimafz0 14409 TODO-AV: Revise using ` F...
fnfz0hash 14410 The size of a function on ...
ffz0hash 14411 The size of a function on ...
fnfz0hashnn0 14412 The size of a function on ...
ffzo0hash 14413 The size of a function on ...
fnfzo0hash 14414 The size of a function on ...
fnfzo0hashnn0 14415 The value of the size func...
hashbclem 14416 Lemma for ~ hashbc : induc...
hashbc 14417 The binomial coefficient c...
hashfacen 14418 The number of bijections b...
hashfacenOLD 14419 Obsolete version of ~ hash...
hashf1lem1 14420 Lemma for ~ hashf1 . (Con...
hashf1lem1OLD 14421 Obsolete version of ~ hash...
hashf1lem2 14422 Lemma for ~ hashf1 . (Con...
hashf1 14423 The permutation number ` |...
hashfac 14424 A factorial counts the num...
leiso 14425 Two ways to write a strict...
leisorel 14426 Version of ~ isorel for st...
fz1isolem 14427 Lemma for ~ fz1iso . (Con...
fz1iso 14428 Any finite ordered set has...
ishashinf 14429 Any set that is not finite...
seqcoll 14430 The function ` F ` contain...
seqcoll2 14431 The function ` F ` contain...
phphashd 14432 Corollary of the Pigeonhol...
phphashrd 14433 Corollary of the Pigeonhol...
hashprlei 14434 An unordered pair has at m...
hash2pr 14435 A set of size two is an un...
hash2prde 14436 A set of size two is an un...
hash2exprb 14437 A set of size two is an un...
hash2prb 14438 A set of size two is a pro...
prprrab 14439 The set of proper pairs of...
nehash2 14440 The cardinality of a set w...
hash2prd 14441 A set of size two is an un...
hash2pwpr 14442 If the size of a subset of...
hashle2pr 14443 A nonempty set of size les...
hashle2prv 14444 A nonempty subset of a pow...
pr2pwpr 14445 The set of subsets of a pa...
hashge2el2dif 14446 A set with size at least 2...
hashge2el2difr 14447 A set with at least 2 diff...
hashge2el2difb 14448 A set has size at least 2 ...
hashdmpropge2 14449 The size of the domain of ...
hashtplei 14450 An unordered triple has at...
hashtpg 14451 The size of an unordered t...
hashge3el3dif 14452 A set with size at least 3...
elss2prb 14453 An element of the set of s...
hash2sspr 14454 A subset of size two is an...
exprelprel 14455 If there is an element of ...
hash3tr 14456 A set of size three is an ...
hash1to3 14457 If the size of a set is be...
fundmge2nop0 14458 A function with a domain c...
fundmge2nop 14459 A function with a domain c...
fun2dmnop0 14460 A function with a domain c...
fun2dmnop 14461 A function with a domain c...
hashdifsnp1 14462 If the size of a set is a ...
fi1uzind 14463 Properties of an ordered p...
brfi1uzind 14464 Properties of a binary rel...
brfi1ind 14465 Properties of a binary rel...
brfi1indALT 14466 Alternate proof of ~ brfi1...
opfi1uzind 14467 Properties of an ordered p...
opfi1ind 14468 Properties of an ordered p...
iswrd 14471 Property of being a word o...
wrdval 14472 Value of the set of words ...
iswrdi 14473 A zero-based sequence is a...
wrdf 14474 A word is a zero-based seq...
iswrdb 14475 A word over an alphabet is...
wrddm 14476 The indices of a word (i.e...
sswrd 14477 The set of words respects ...
snopiswrd 14478 A singleton of an ordered ...
wrdexg 14479 The set of words over a se...
wrdexb 14480 The set of words over a se...
wrdexi 14481 The set of words over a se...
wrdsymbcl 14482 A symbol within a word ove...
wrdfn 14483 A word is a function with ...
wrdv 14484 A word over an alphabet is...
wrdlndm 14485 The length of a word is no...
iswrdsymb 14486 An arbitrary word is a wor...
wrdfin 14487 A word is a finite set. (...
lencl 14488 The length of a word is a ...
lennncl 14489 The length of a nonempty w...
wrdffz 14490 A word is a function from ...
wrdeq 14491 Equality theorem for the s...
wrdeqi 14492 Equality theorem for the s...
iswrddm0 14493 A function with empty doma...
wrd0 14494 The empty set is a word (t...
0wrd0 14495 The empty word is the only...
ffz0iswrd 14496 A sequence with zero-based...
wrdsymb 14497 A word is a word over the ...
nfwrd 14498 Hypothesis builder for ` W...
csbwrdg 14499 Class substitution for the...
wrdnval 14500 Words of a fixed length ar...
wrdmap 14501 Words as a mapping. (Cont...
hashwrdn 14502 If there is only a finite ...
wrdnfi 14503 If there is only a finite ...
wrdsymb0 14504 A symbol at a position "ou...
wrdlenge1n0 14505 A word with length at leas...
len0nnbi 14506 The length of a word is a ...
wrdlenge2n0 14507 A word with length at leas...
wrdsymb1 14508 The first symbol of a none...
wrdlen1 14509 A word of length 1 starts ...
fstwrdne 14510 The first symbol of a none...
fstwrdne0 14511 The first symbol of a none...
eqwrd 14512 Two words are equal iff th...
elovmpowrd 14513 Implications for the value...
elovmptnn0wrd 14514 Implications for the value...
wrdred1 14515 A word truncated by a symb...
wrdred1hash 14516 The length of a word trunc...
lsw 14519 Extract the last symbol of...
lsw0 14520 The last symbol of an empt...
lsw0g 14521 The last symbol of an empt...
lsw1 14522 The last symbol of a word ...
lswcl 14523 Closure of the last symbol...
lswlgt0cl 14524 The last symbol of a nonem...
ccatfn 14527 The concatenation operator...
ccatfval 14528 Value of the concatenation...
ccatcl 14529 The concatenation of two w...
ccatlen 14530 The length of a concatenat...
ccat0 14531 The concatenation of two w...
ccatval1 14532 Value of a symbol in the l...
ccatval2 14533 Value of a symbol in the r...
ccatval3 14534 Value of a symbol in the r...
elfzelfzccat 14535 An element of a finite set...
ccatvalfn 14536 The concatenation of two w...
ccatsymb 14537 The symbol at a given posi...
ccatfv0 14538 The first symbol of a conc...
ccatval1lsw 14539 The last symbol of the lef...
ccatval21sw 14540 The first symbol of the ri...
ccatlid 14541 Concatenation of a word by...
ccatrid 14542 Concatenation of a word by...
ccatass 14543 Associative law for concat...
ccatrn 14544 The range of a concatenate...
ccatidid 14545 Concatenation of the empty...
lswccatn0lsw 14546 The last symbol of a word ...
lswccat0lsw 14547 The last symbol of a word ...
ccatalpha 14548 A concatenation of two arb...
ccatrcl1 14549 Reverse closure of a conca...
ids1 14552 Identity function protecti...
s1val 14553 Value of a singleton word....
s1rn 14554 The range of a singleton w...
s1eq 14555 Equality theorem for a sin...
s1eqd 14556 Equality theorem for a sin...
s1cl 14557 A singleton word is a word...
s1cld 14558 A singleton word is a word...
s1prc 14559 Value of a singleton word ...
s1cli 14560 A singleton word is a word...
s1len 14561 Length of a singleton word...
s1nz 14562 A singleton word is not th...
s1dm 14563 The domain of a singleton ...
s1dmALT 14564 Alternate version of ~ s1d...
s1fv 14565 Sole symbol of a singleton...
lsws1 14566 The last symbol of a singl...
eqs1 14567 A word of length 1 is a si...
wrdl1exs1 14568 A word of length 1 is a si...
wrdl1s1 14569 A word of length 1 is a si...
s111 14570 The singleton word functio...
ccatws1cl 14571 The concatenation of a wor...
ccatws1clv 14572 The concatenation of a wor...
ccat2s1cl 14573 The concatenation of two s...
ccats1alpha 14574 A concatenation of a word ...
ccatws1len 14575 The length of the concaten...
ccatws1lenp1b 14576 The length of a word is ` ...
wrdlenccats1lenm1 14577 The length of a word is th...
ccat2s1len 14578 The length of the concaten...
ccatw2s1cl 14579 The concatenation of a wor...
ccatw2s1len 14580 The length of the concaten...
ccats1val1 14581 Value of a symbol in the l...
ccats1val2 14582 Value of the symbol concat...
ccat1st1st 14583 The first symbol of a word...
ccat2s1p1 14584 Extract the first of two c...
ccat2s1p2 14585 Extract the second of two ...
ccatw2s1ass 14586 Associative law for a conc...
ccatws1n0 14587 The concatenation of a wor...
ccatws1ls 14588 The last symbol of the con...
lswccats1 14589 The last symbol of a word ...
lswccats1fst 14590 The last symbol of a nonem...
ccatw2s1p1 14591 Extract the symbol of the ...
ccatw2s1p2 14592 Extract the second of two ...
ccat2s1fvw 14593 Extract a symbol of a word...
ccat2s1fst 14594 The first symbol of the co...
swrdnznd 14597 The value of a subword ope...
swrdval 14598 Value of a subword. (Cont...
swrd00 14599 A zero length substring. ...
swrdcl 14600 Closure of the subword ext...
swrdval2 14601 Value of the subword extra...
swrdlen 14602 Length of an extracted sub...
swrdfv 14603 A symbol in an extracted s...
swrdfv0 14604 The first symbol in an ext...
swrdf 14605 A subword of a word is a f...
swrdvalfn 14606 Value of the subword extra...
swrdrn 14607 The range of a subword of ...
swrdlend 14608 The value of the subword e...
swrdnd 14609 The value of the subword e...
swrdnd2 14610 Value of the subword extra...
swrdnnn0nd 14611 The value of a subword ope...
swrdnd0 14612 The value of a subword ope...
swrd0 14613 A subword of an empty set ...
swrdrlen 14614 Length of a right-anchored...
swrdlen2 14615 Length of an extracted sub...
swrdfv2 14616 A symbol in an extracted s...
swrdwrdsymb 14617 A subword is a word over t...
swrdsb0eq 14618 Two subwords with the same...
swrdsbslen 14619 Two subwords with the same...
swrdspsleq 14620 Two words have a common su...
swrds1 14621 Extract a single symbol fr...
swrdlsw 14622 Extract the last single sy...
ccatswrd 14623 Joining two adjacent subwo...
swrdccat2 14624 Recover the right half of ...
pfxnndmnd 14627 The value of a prefix oper...
pfxval 14628 Value of a prefix operatio...
pfx00 14629 The zero length prefix is ...
pfx0 14630 A prefix of an empty set i...
pfxval0 14631 Value of a prefix operatio...
pfxcl 14632 Closure of the prefix extr...
pfxmpt 14633 Value of the prefix extrac...
pfxres 14634 Value of the subword extra...
pfxf 14635 A prefix of a word is a fu...
pfxfn 14636 Value of the prefix extrac...
pfxfv 14637 A symbol in a prefix of a ...
pfxlen 14638 Length of a prefix. (Cont...
pfxid 14639 A word is a prefix of itse...
pfxrn 14640 The range of a prefix of a...
pfxn0 14641 A prefix consisting of at ...
pfxnd 14642 The value of a prefix oper...
pfxnd0 14643 The value of a prefix oper...
pfxwrdsymb 14644 A prefix of a word is a wo...
addlenrevpfx 14645 The sum of the lengths of ...
addlenpfx 14646 The sum of the lengths of ...
pfxfv0 14647 The first symbol of a pref...
pfxtrcfv 14648 A symbol in a word truncat...
pfxtrcfv0 14649 The first symbol in a word...
pfxfvlsw 14650 The last symbol in a nonem...
pfxeq 14651 The prefixes of two words ...
pfxtrcfvl 14652 The last symbol in a word ...
pfxsuffeqwrdeq 14653 Two words are equal if and...
pfxsuff1eqwrdeq 14654 Two (nonempty) words are e...
disjwrdpfx 14655 Sets of words are disjoint...
ccatpfx 14656 Concatenating a prefix wit...
pfxccat1 14657 Recover the left half of a...
pfx1 14658 The prefix of length one o...
swrdswrdlem 14659 Lemma for ~ swrdswrd . (C...
swrdswrd 14660 A subword of a subword is ...
pfxswrd 14661 A prefix of a subword is a...
swrdpfx 14662 A subword of a prefix is a...
pfxpfx 14663 A prefix of a prefix is a ...
pfxpfxid 14664 A prefix of a prefix with ...
pfxcctswrd 14665 The concatenation of the p...
lenpfxcctswrd 14666 The length of the concaten...
lenrevpfxcctswrd 14667 The length of the concaten...
pfxlswccat 14668 Reconstruct a nonempty wor...
ccats1pfxeq 14669 The last symbol of a word ...
ccats1pfxeqrex 14670 There exists a symbol such...
ccatopth 14671 An ~ opth -like theorem fo...
ccatopth2 14672 An ~ opth -like theorem fo...
ccatlcan 14673 Concatenation of words is ...
ccatrcan 14674 Concatenation of words is ...
wrdeqs1cat 14675 Decompose a nonempty word ...
cats1un 14676 Express a word with an ext...
wrdind 14677 Perform induction over the...
wrd2ind 14678 Perform induction over the...
swrdccatfn 14679 The subword of a concatena...
swrdccatin1 14680 The subword of a concatena...
pfxccatin12lem4 14681 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14682 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14683 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14684 The subword of a concatena...
pfxccatin12lem2c 14685 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14686 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14687 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14688 The subword of a concatena...
pfxccat3 14689 The subword of a concatena...
swrdccat 14690 The subword of a concatena...
pfxccatpfx1 14691 A prefix of a concatenatio...
pfxccatpfx2 14692 A prefix of a concatenatio...
pfxccat3a 14693 A prefix of a concatenatio...
swrdccat3blem 14694 Lemma for ~ swrdccat3b . ...
swrdccat3b 14695 A suffix of a concatenatio...
pfxccatid 14696 A prefix of a concatenatio...
ccats1pfxeqbi 14697 A word is a prefix of a wo...
swrdccatin1d 14698 The subword of a concatena...
swrdccatin2d 14699 The subword of a concatena...
pfxccatin12d 14700 The subword of a concatena...
reuccatpfxs1lem 14701 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14702 There is a unique word hav...
reuccatpfxs1v 14703 There is a unique word hav...
splval 14706 Value of the substring rep...
splcl 14707 Closure of the substring r...
splid 14708 Splicing a subword for the...
spllen 14709 The length of a splice. (...
splfv1 14710 Symbols to the left of a s...
splfv2a 14711 Symbols within the replace...
splval2 14712 Value of a splice, assumin...
revval 14715 Value of the word reversin...
revcl 14716 The reverse of a word is a...
revlen 14717 The reverse of a word has ...
revfv 14718 Reverse of a word at a poi...
rev0 14719 The empty word is its own ...
revs1 14720 Singleton words are their ...
revccat 14721 Antiautomorphic property o...
revrev 14722 Reversal is an involution ...
reps 14725 Construct a function mappi...
repsundef 14726 A function mapping a half-...
repsconst 14727 Construct a function mappi...
repsf 14728 The constructed function m...
repswsymb 14729 The symbols of a "repeated...
repsw 14730 A function mapping a half-...
repswlen 14731 The length of a "repeated ...
repsw0 14732 The "repeated symbol word"...
repsdf2 14733 Alternative definition of ...
repswsymball 14734 All the symbols of a "repe...
repswsymballbi 14735 A word is a "repeated symb...
repswfsts 14736 The first symbol of a none...
repswlsw 14737 The last symbol of a nonem...
repsw1 14738 The "repeated symbol word"...
repswswrd 14739 A subword of a "repeated s...
repswpfx 14740 A prefix of a repeated sym...
repswccat 14741 The concatenation of two "...
repswrevw 14742 The reverse of a "repeated...
cshfn 14745 Perform a cyclical shift f...
cshword 14746 Perform a cyclical shift f...
cshnz 14747 A cyclical shift is the em...
0csh0 14748 Cyclically shifting an emp...
cshw0 14749 A word cyclically shifted ...
cshwmodn 14750 Cyclically shifting a word...
cshwsublen 14751 Cyclically shifting a word...
cshwn 14752 A word cyclically shifted ...
cshwcl 14753 A cyclically shifted word ...
cshwlen 14754 The length of a cyclically...
cshwf 14755 A cyclically shifted word ...
cshwfn 14756 A cyclically shifted word ...
cshwrn 14757 The range of a cyclically ...
cshwidxmod 14758 The symbol at a given inde...
cshwidxmodr 14759 The symbol at a given inde...
cshwidx0mod 14760 The symbol at index 0 of a...
cshwidx0 14761 The symbol at index 0 of a...
cshwidxm1 14762 The symbol at index ((n-N)...
cshwidxm 14763 The symbol at index (n-N) ...
cshwidxn 14764 The symbol at index (n-1) ...
cshf1 14765 Cyclically shifting a word...
cshinj 14766 If a word is injectiv (reg...
repswcshw 14767 A cyclically shifted "repe...
2cshw 14768 Cyclically shifting a word...
2cshwid 14769 Cyclically shifting a word...
lswcshw 14770 The last symbol of a word ...
2cshwcom 14771 Cyclically shifting a word...
cshwleneq 14772 If the results of cyclical...
3cshw 14773 Cyclically shifting a word...
cshweqdif2 14774 If cyclically shifting two...
cshweqdifid 14775 If cyclically shifting a w...
cshweqrep 14776 If cyclically shifting a w...
cshw1 14777 If cyclically shifting a w...
cshw1repsw 14778 If cyclically shifting a w...
cshwsexa 14779 The class of (different!) ...
cshwsexaOLD 14780 Obsolete version of ~ cshw...
2cshwcshw 14781 If a word is a cyclically ...
scshwfzeqfzo 14782 For a nonempty word the se...
cshwcshid 14783 A cyclically shifted word ...
cshwcsh2id 14784 A cyclically shifted word ...
cshimadifsn 14785 The image of a cyclically ...
cshimadifsn0 14786 The image of a cyclically ...
wrdco 14787 Mapping a word by a functi...
lenco 14788 Length of a mapped word is...
s1co 14789 Mapping of a singleton wor...
revco 14790 Mapping of words (i.e., a ...
ccatco 14791 Mapping of words commutes ...
cshco 14792 Mapping of words commutes ...
swrdco 14793 Mapping of words commutes ...
pfxco 14794 Mapping of words commutes ...
lswco 14795 Mapping of (nonempty) word...
repsco 14796 Mapping of words commutes ...
cats1cld 14811 Closure of concatenation w...
cats1co 14812 Closure of concatenation w...
cats1cli 14813 Closure of concatenation w...
cats1fvn 14814 The last symbol of a conca...
cats1fv 14815 A symbol other than the la...
cats1len 14816 The length of concatenatio...
cats1cat 14817 Closure of concatenation w...
cats2cat 14818 Closure of concatenation o...
s2eqd 14819 Equality theorem for a dou...
s3eqd 14820 Equality theorem for a len...
s4eqd 14821 Equality theorem for a len...
s5eqd 14822 Equality theorem for a len...
s6eqd 14823 Equality theorem for a len...
s7eqd 14824 Equality theorem for a len...
s8eqd 14825 Equality theorem for a len...
s3eq2 14826 Equality theorem for a len...
s2cld 14827 A doubleton word is a word...
s3cld 14828 A length 3 string is a wor...
s4cld 14829 A length 4 string is a wor...
s5cld 14830 A length 5 string is a wor...
s6cld 14831 A length 6 string is a wor...
s7cld 14832 A length 7 string is a wor...
s8cld 14833 A length 7 string is a wor...
s2cl 14834 A doubleton word is a word...
s3cl 14835 A length 3 string is a wor...
s2cli 14836 A doubleton word is a word...
s3cli 14837 A length 3 string is a wor...
s4cli 14838 A length 4 string is a wor...
s5cli 14839 A length 5 string is a wor...
s6cli 14840 A length 6 string is a wor...
s7cli 14841 A length 7 string is a wor...
s8cli 14842 A length 8 string is a wor...
s2fv0 14843 Extract the first symbol f...
s2fv1 14844 Extract the second symbol ...
s2len 14845 The length of a doubleton ...
s2dm 14846 The domain of a doubleton ...
s3fv0 14847 Extract the first symbol f...
s3fv1 14848 Extract the second symbol ...
s3fv2 14849 Extract the third symbol f...
s3len 14850 The length of a length 3 s...
s4fv0 14851 Extract the first symbol f...
s4fv1 14852 Extract the second symbol ...
s4fv2 14853 Extract the third symbol f...
s4fv3 14854 Extract the fourth symbol ...
s4len 14855 The length of a length 4 s...
s5len 14856 The length of a length 5 s...
s6len 14857 The length of a length 6 s...
s7len 14858 The length of a length 7 s...
s8len 14859 The length of a length 8 s...
lsws2 14860 The last symbol of a doubl...
lsws3 14861 The last symbol of a 3 let...
lsws4 14862 The last symbol of a 4 let...
s2prop 14863 A length 2 word is an unor...
s2dmALT 14864 Alternate version of ~ s2d...
s3tpop 14865 A length 3 word is an unor...
s4prop 14866 A length 4 word is a union...
s3fn 14867 A length 3 word is a funct...
funcnvs1 14868 The converse of a singleto...
funcnvs2 14869 The converse of a length 2...
funcnvs3 14870 The converse of a length 3...
funcnvs4 14871 The converse of a length 4...
s2f1o 14872 A length 2 word with mutua...
f1oun2prg 14873 A union of unordered pairs...
s4f1o 14874 A length 4 word with mutua...
s4dom 14875 The domain of a length 4 w...
s2co 14876 Mapping a doubleton word b...
s3co 14877 Mapping a length 3 string ...
s0s1 14878 Concatenation of fixed len...
s1s2 14879 Concatenation of fixed len...
s1s3 14880 Concatenation of fixed len...
s1s4 14881 Concatenation of fixed len...
s1s5 14882 Concatenation of fixed len...
s1s6 14883 Concatenation of fixed len...
s1s7 14884 Concatenation of fixed len...
s2s2 14885 Concatenation of fixed len...
s4s2 14886 Concatenation of fixed len...
s4s3 14887 Concatenation of fixed len...
s4s4 14888 Concatenation of fixed len...
s3s4 14889 Concatenation of fixed len...
s2s5 14890 Concatenation of fixed len...
s5s2 14891 Concatenation of fixed len...
s2eq2s1eq 14892 Two length 2 words are equ...
s2eq2seq 14893 Two length 2 words are equ...
s3eqs2s1eq 14894 Two length 3 words are equ...
s3eq3seq 14895 Two length 3 words are equ...
swrds2 14896 Extract two adjacent symbo...
swrds2m 14897 Extract two adjacent symbo...
wrdlen2i 14898 Implications of a word of ...
wrd2pr2op 14899 A word of length two repre...
wrdlen2 14900 A word of length two. (Co...
wrdlen2s2 14901 A word of length two as do...
wrdl2exs2 14902 A word of length two is a ...
pfx2 14903 A prefix of length two. (...
wrd3tpop 14904 A word of length three rep...
wrdlen3s3 14905 A word of length three as ...
repsw2 14906 The "repeated symbol word"...
repsw3 14907 The "repeated symbol word"...
swrd2lsw 14908 Extract the last two symbo...
2swrd2eqwrdeq 14909 Two words of length at lea...
ccatw2s1ccatws2 14910 The concatenation of a wor...
ccat2s1fvwALT 14911 Alternate proof of ~ ccat2...
wwlktovf 14912 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14913 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14914 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14915 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14916 There is a bijection betwe...
eqwrds3 14917 A word is equal with a len...
wrdl3s3 14918 A word of length 3 is a le...
s3sndisj 14919 The singletons consisting ...
s3iunsndisj 14920 The union of singletons co...
ofccat 14921 Letterwise operations on w...
ofs1 14922 Letterwise operations on a...
ofs2 14923 Letterwise operations on a...
coss12d 14924 Subset deduction for compo...
trrelssd 14925 The composition of subclas...
xpcogend 14926 The most interesting case ...
xpcoidgend 14927 If two classes are not dis...
cotr2g 14928 Two ways of saying that th...
cotr2 14929 Two ways of saying a relat...
cotr3 14930 Two ways of saying a relat...
coemptyd 14931 Deduction about compositio...
xptrrel 14932 The cross product is alway...
0trrel 14933 The empty class is a trans...
cleq1lem 14934 Equality implies bijection...
cleq1 14935 Equality of relations impl...
clsslem 14936 The closure of a subclass ...
trcleq1 14941 Equality of relations impl...
trclsslem 14942 The transitive closure (as...
trcleq2lem 14943 Equality implies bijection...
cvbtrcl 14944 Change of bound variable i...
trcleq12lem 14945 Equality implies bijection...
trclexlem 14946 Existence of relation impl...
trclublem 14947 If a relation exists then ...
trclubi 14948 The Cartesian product of t...
trclubgi 14949 The union with the Cartesi...
trclub 14950 The Cartesian product of t...
trclubg 14951 The union with the Cartesi...
trclfv 14952 The transitive closure of ...
brintclab 14953 Two ways to express a bina...
brtrclfv 14954 Two ways of expressing the...
brcnvtrclfv 14955 Two ways of expressing the...
brtrclfvcnv 14956 Two ways of expressing the...
brcnvtrclfvcnv 14957 Two ways of expressing the...
trclfvss 14958 The transitive closure (as...
trclfvub 14959 The transitive closure of ...
trclfvlb 14960 The transitive closure of ...
trclfvcotr 14961 The transitive closure of ...
trclfvlb2 14962 The transitive closure of ...
trclfvlb3 14963 The transitive closure of ...
cotrtrclfv 14964 The transitive closure of ...
trclidm 14965 The transitive closure of ...
trclun 14966 Transitive closure of a un...
trclfvg 14967 The value of the transitiv...
trclfvcotrg 14968 The value of the transitiv...
reltrclfv 14969 The transitive closure of ...
dmtrclfv 14970 The domain of the transiti...
reldmrelexp 14973 The domain of the repeated...
relexp0g 14974 A relation composed zero t...
relexp0 14975 A relation composed zero t...
relexp0d 14976 A relation composed zero t...
relexpsucnnr 14977 A reduction for relation e...
relexp1g 14978 A relation composed once i...
dfid5 14979 Identity relation is equal...
dfid6 14980 Identity relation expresse...
relexp1d 14981 A relation composed once i...
relexpsucnnl 14982 A reduction for relation e...
relexpsucl 14983 A reduction for relation e...
relexpsucr 14984 A reduction for relation e...
relexpsucrd 14985 A reduction for relation e...
relexpsucld 14986 A reduction for relation e...
relexpcnv 14987 Commutation of converse an...
relexpcnvd 14988 Commutation of converse an...
relexp0rel 14989 The exponentiation of a cl...
relexprelg 14990 The exponentiation of a cl...
relexprel 14991 The exponentiation of a re...
relexpreld 14992 The exponentiation of a re...
relexpnndm 14993 The domain of an exponenti...
relexpdmg 14994 The domain of an exponenti...
relexpdm 14995 The domain of an exponenti...
relexpdmd 14996 The domain of an exponenti...
relexpnnrn 14997 The range of an exponentia...
relexprng 14998 The range of an exponentia...
relexprn 14999 The range of an exponentia...
relexprnd 15000 The range of an exponentia...
relexpfld 15001 The field of an exponentia...
relexpfldd 15002 The field of an exponentia...
relexpaddnn 15003 Relation composition becom...
relexpuzrel 15004 The exponentiation of a cl...
relexpaddg 15005 Relation composition becom...
relexpaddd 15006 Relation composition becom...
rtrclreclem1 15009 The reflexive, transitive ...
dfrtrclrec2 15010 If two elements are connec...
rtrclreclem2 15011 The reflexive, transitive ...
rtrclreclem3 15012 The reflexive, transitive ...
rtrclreclem4 15013 The reflexive, transitive ...
dfrtrcl2 15014 The two definitions ` t* `...
relexpindlem 15015 Principle of transitive in...
relexpind 15016 Principle of transitive in...
rtrclind 15017 Principle of transitive in...
shftlem 15020 Two ways to write a shifte...
shftuz 15021 A shift of the upper integ...
shftfval 15022 The value of the sequence ...
shftdm 15023 Domain of a relation shift...
shftfib 15024 Value of a fiber of the re...
shftfn 15025 Functionality and domain o...
shftval 15026 Value of a sequence shifte...
shftval2 15027 Value of a sequence shifte...
shftval3 15028 Value of a sequence shifte...
shftval4 15029 Value of a sequence shifte...
shftval5 15030 Value of a shifted sequenc...
shftf 15031 Functionality of a shifted...
2shfti 15032 Composite shift operations...
shftidt2 15033 Identity law for the shift...
shftidt 15034 Identity law for the shift...
shftcan1 15035 Cancellation law for the s...
shftcan2 15036 Cancellation law for the s...
seqshft 15037 Shifting the index set of ...
sgnval 15040 Value of the signum functi...
sgn0 15041 The signum of 0 is 0. (Co...
sgnp 15042 The signum of a positive e...
sgnrrp 15043 The signum of a positive r...
sgn1 15044 The signum of 1 is 1. (Co...
sgnpnf 15045 The signum of ` +oo ` is 1...
sgnn 15046 The signum of a negative e...
sgnmnf 15047 The signum of ` -oo ` is -...
cjval 15054 The value of the conjugate...
cjth 15055 The defining property of t...
cjf 15056 Domain and codomain of the...
cjcl 15057 The conjugate of a complex...
reval 15058 The value of the real part...
imval 15059 The value of the imaginary...
imre 15060 The imaginary part of a co...
reim 15061 The real part of a complex...
recl 15062 The real part of a complex...
imcl 15063 The imaginary part of a co...
ref 15064 Domain and codomain of the...
imf 15065 Domain and codomain of the...
crre 15066 The real part of a complex...
crim 15067 The real part of a complex...
replim 15068 Reconstruct a complex numb...
remim 15069 Value of the conjugate of ...
reim0 15070 The imaginary part of a re...
reim0b 15071 A number is real iff its i...
rereb 15072 A number is real iff it eq...
mulre 15073 A product with a nonzero r...
rere 15074 A real number equals its r...
cjreb 15075 A number is real iff it eq...
recj 15076 Real part of a complex con...
reneg 15077 Real part of negative. (C...
readd 15078 Real part distributes over...
resub 15079 Real part distributes over...
remullem 15080 Lemma for ~ remul , ~ immu...
remul 15081 Real part of a product. (...
remul2 15082 Real part of a product. (...
rediv 15083 Real part of a division. ...
imcj 15084 Imaginary part of a comple...
imneg 15085 The imaginary part of a ne...
imadd 15086 Imaginary part distributes...
imsub 15087 Imaginary part distributes...
immul 15088 Imaginary part of a produc...
immul2 15089 Imaginary part of a produc...
imdiv 15090 Imaginary part of a divisi...
cjre 15091 A real number equals its c...
cjcj 15092 The conjugate of the conju...
cjadd 15093 Complex conjugate distribu...
cjmul 15094 Complex conjugate distribu...
ipcnval 15095 Standard inner product on ...
cjmulrcl 15096 A complex number times its...
cjmulval 15097 A complex number times its...
cjmulge0 15098 A complex number times its...
cjneg 15099 Complex conjugate of negat...
addcj 15100 A number plus its conjugat...
cjsub 15101 Complex conjugate distribu...
cjexp 15102 Complex conjugate of posit...
imval2 15103 The imaginary part of a nu...
re0 15104 The real part of zero. (C...
im0 15105 The imaginary part of zero...
re1 15106 The real part of one. (Co...
im1 15107 The imaginary part of one....
rei 15108 The real part of ` _i ` . ...
imi 15109 The imaginary part of ` _i...
cj0 15110 The conjugate of zero. (C...
cji 15111 The complex conjugate of t...
cjreim 15112 The conjugate of a represe...
cjreim2 15113 The conjugate of the repre...
cj11 15114 Complex conjugate is a one...
cjne0 15115 A number is nonzero iff it...
cjdiv 15116 Complex conjugate distribu...
cnrecnv 15117 The inverse to the canonic...
sqeqd 15118 A deduction for showing tw...
recli 15119 The real part of a complex...
imcli 15120 The imaginary part of a co...
cjcli 15121 Closure law for complex co...
replimi 15122 Construct a complex number...
cjcji 15123 The conjugate of the conju...
reim0bi 15124 A number is real iff its i...
rerebi 15125 A real number equals its r...
cjrebi 15126 A number is real iff it eq...
recji 15127 Real part of a complex con...
imcji 15128 Imaginary part of a comple...
cjmulrcli 15129 A complex number times its...
cjmulvali 15130 A complex number times its...
cjmulge0i 15131 A complex number times its...
renegi 15132 Real part of negative. (C...
imnegi 15133 Imaginary part of negative...
cjnegi 15134 Complex conjugate of negat...
addcji 15135 A number plus its conjugat...
readdi 15136 Real part distributes over...
imaddi 15137 Imaginary part distributes...
remuli 15138 Real part of a product. (...
immuli 15139 Imaginary part of a produc...
cjaddi 15140 Complex conjugate distribu...
cjmuli 15141 Complex conjugate distribu...
ipcni 15142 Standard inner product on ...
cjdivi 15143 Complex conjugate distribu...
crrei 15144 The real part of a complex...
crimi 15145 The imaginary part of a co...
recld 15146 The real part of a complex...
imcld 15147 The imaginary part of a co...
cjcld 15148 Closure law for complex co...
replimd 15149 Construct a complex number...
remimd 15150 Value of the conjugate of ...
cjcjd 15151 The conjugate of the conju...
reim0bd 15152 A number is real iff its i...
rerebd 15153 A real number equals its r...
cjrebd 15154 A number is real iff it eq...
cjne0d 15155 A number is nonzero iff it...
recjd 15156 Real part of a complex con...
imcjd 15157 Imaginary part of a comple...
cjmulrcld 15158 A complex number times its...
cjmulvald 15159 A complex number times its...
cjmulge0d 15160 A complex number times its...
renegd 15161 Real part of negative. (C...
imnegd 15162 Imaginary part of negative...
cjnegd 15163 Complex conjugate of negat...
addcjd 15164 A number plus its conjugat...
cjexpd 15165 Complex conjugate of posit...
readdd 15166 Real part distributes over...
imaddd 15167 Imaginary part distributes...
resubd 15168 Real part distributes over...
imsubd 15169 Imaginary part distributes...
remuld 15170 Real part of a product. (...
immuld 15171 Imaginary part of a produc...
cjaddd 15172 Complex conjugate distribu...
cjmuld 15173 Complex conjugate distribu...
ipcnd 15174 Standard inner product on ...
cjdivd 15175 Complex conjugate distribu...
rered 15176 A real number equals its r...
reim0d 15177 The imaginary part of a re...
cjred 15178 A real number equals its c...
remul2d 15179 Real part of a product. (...
immul2d 15180 Imaginary part of a produc...
redivd 15181 Real part of a division. ...
imdivd 15182 Imaginary part of a divisi...
crred 15183 The real part of a complex...
crimd 15184 The imaginary part of a co...
sqrtval 15189 Value of square root funct...
absval 15190 The absolute value (modulu...
rennim 15191 A real number does not lie...
cnpart 15192 The specification of restr...
sqrt0 15193 The square root of zero is...
01sqrexlem1 15194 Lemma for ~ 01sqrex . (Co...
01sqrexlem2 15195 Lemma for ~ 01sqrex . (Co...
01sqrexlem3 15196 Lemma for ~ 01sqrex . (Co...
01sqrexlem4 15197 Lemma for ~ 01sqrex . (Co...
01sqrexlem5 15198 Lemma for ~ 01sqrex . (Co...
01sqrexlem6 15199 Lemma for ~ 01sqrex . (Co...
01sqrexlem7 15200 Lemma for ~ 01sqrex . (Co...
01sqrex 15201 Existence of a square root...
resqrex 15202 Existence of a square root...
sqrmo 15203 Uniqueness for the square ...
resqreu 15204 Existence and uniqueness f...
resqrtcl 15205 Closure of the square root...
resqrtthlem 15206 Lemma for ~ resqrtth . (C...
resqrtth 15207 Square root theorem over t...
remsqsqrt 15208 Square of square root. (C...
sqrtge0 15209 The square root function i...
sqrtgt0 15210 The square root function i...
sqrtmul 15211 Square root distributes ov...
sqrtle 15212 Square root is monotonic. ...
sqrtlt 15213 Square root is strictly mo...
sqrt11 15214 The square root function i...
sqrt00 15215 A square root is zero iff ...
rpsqrtcl 15216 The square root of a posit...
sqrtdiv 15217 Square root distributes ov...
sqrtneglem 15218 The square root of a negat...
sqrtneg 15219 The square root of a negat...
sqrtsq2 15220 Relationship between squar...
sqrtsq 15221 Square root of square. (C...
sqrtmsq 15222 Square root of square. (C...
sqrt1 15223 The square root of 1 is 1....
sqrt4 15224 The square root of 4 is 2....
sqrt9 15225 The square root of 9 is 3....
sqrt2gt1lt2 15226 The square root of 2 is bo...
sqrtm1 15227 The imaginary unit is the ...
nn0sqeq1 15228 A natural number with squa...
absneg 15229 Absolute value of the oppo...
abscl 15230 Real closure of absolute v...
abscj 15231 The absolute value of a nu...
absvalsq 15232 Square of value of absolut...
absvalsq2 15233 Square of value of absolut...
sqabsadd 15234 Square of absolute value o...
sqabssub 15235 Square of absolute value o...
absval2 15236 Value of absolute value fu...
abs0 15237 The absolute value of 0. ...
absi 15238 The absolute value of the ...
absge0 15239 Absolute value is nonnegat...
absrpcl 15240 The absolute value of a no...
abs00 15241 The absolute value of a nu...
abs00ad 15242 A complex number is zero i...
abs00bd 15243 If a complex number is zer...
absreimsq 15244 Square of the absolute val...
absreim 15245 Absolute value of a number...
absmul 15246 Absolute value distributes...
absdiv 15247 Absolute value distributes...
absid 15248 A nonnegative number is it...
abs1 15249 The absolute value of one ...
absnid 15250 A negative number is the n...
leabs 15251 A real number is less than...
absor 15252 The absolute value of a re...
absre 15253 Absolute value of a real n...
absresq 15254 Square of the absolute val...
absmod0 15255 ` A ` is divisible by ` B ...
absexp 15256 Absolute value of positive...
absexpz 15257 Absolute value of integer ...
abssq 15258 Square can be moved in and...
sqabs 15259 The squares of two reals a...
absrele 15260 The absolute value of a co...
absimle 15261 The absolute value of a co...
max0add 15262 The sum of the positive an...
absz 15263 A real number is an intege...
nn0abscl 15264 The absolute value of an i...
zabscl 15265 The absolute value of an i...
abslt 15266 Absolute value and 'less t...
absle 15267 Absolute value and 'less t...
abssubne0 15268 If the absolute value of a...
absdiflt 15269 The absolute value of a di...
absdifle 15270 The absolute value of a di...
elicc4abs 15271 Membership in a symmetric ...
lenegsq 15272 Comparison to a nonnegativ...
releabs 15273 The real part of a number ...
recval 15274 Reciprocal expressed with ...
absidm 15275 The absolute value functio...
absgt0 15276 The absolute value of a no...
nnabscl 15277 The absolute value of a no...
abssub 15278 Swapping order of subtract...
abssubge0 15279 Absolute value of a nonneg...
abssuble0 15280 Absolute value of a nonpos...
absmax 15281 The maximum of two numbers...
abstri 15282 Triangle inequality for ab...
abs3dif 15283 Absolute value of differen...
abs2dif 15284 Difference of absolute val...
abs2dif2 15285 Difference of absolute val...
abs2difabs 15286 Absolute value of differen...
abs1m 15287 For any complex number, th...
recan 15288 Cancellation law involving...
absf 15289 Mapping domain and codomai...
abs3lem 15290 Lemma involving absolute v...
abslem2 15291 Lemma involving absolute v...
rddif 15292 The difference between a r...
absrdbnd 15293 Bound on the absolute valu...
fzomaxdiflem 15294 Lemma for ~ fzomaxdif . (...
fzomaxdif 15295 A bound on the separation ...
uzin2 15296 The upper integers are clo...
rexanuz 15297 Combine two different uppe...
rexanre 15298 Combine two different uppe...
rexfiuz 15299 Combine finitely many diff...
rexuz3 15300 Restrict the base of the u...
rexanuz2 15301 Combine two different uppe...
r19.29uz 15302 A version of ~ 19.29 for u...
r19.2uz 15303 A version of ~ r19.2z for ...
rexuzre 15304 Convert an upper real quan...
rexico 15305 Restrict the base of an up...
cau3lem 15306 Lemma for ~ cau3 . (Contr...
cau3 15307 Convert between three-quan...
cau4 15308 Change the base of a Cauch...
caubnd2 15309 A Cauchy sequence of compl...
caubnd 15310 A Cauchy sequence of compl...
sqreulem 15311 Lemma for ~ sqreu : write ...
sqreu 15312 Existence and uniqueness f...
sqrtcl 15313 Closure of the square root...
sqrtthlem 15314 Lemma for ~ sqrtth . (Con...
sqrtf 15315 Mapping domain and codomai...
sqrtth 15316 Square root theorem over t...
sqrtrege0 15317 The square root function m...
eqsqrtor 15318 Solve an equation containi...
eqsqrtd 15319 A deduction for showing th...
eqsqrt2d 15320 A deduction for showing th...
amgm2 15321 Arithmetic-geometric mean ...
sqrtthi 15322 Square root theorem. Theo...
sqrtcli 15323 The square root of a nonne...
sqrtgt0i 15324 The square root of a posit...
sqrtmsqi 15325 Square root of square. (C...
sqrtsqi 15326 Square root of square. (C...
sqsqrti 15327 Square of square root. (C...
sqrtge0i 15328 The square root of a nonne...
absidi 15329 A nonnegative number is it...
absnidi 15330 A negative number is the n...
leabsi 15331 A real number is less than...
absori 15332 The absolute value of a re...
absrei 15333 Absolute value of a real n...
sqrtpclii 15334 The square root of a posit...
sqrtgt0ii 15335 The square root of a posit...
sqrt11i 15336 The square root function i...
sqrtmuli 15337 Square root distributes ov...
sqrtmulii 15338 Square root distributes ov...
sqrtmsq2i 15339 Relationship between squar...
sqrtlei 15340 Square root is monotonic. ...
sqrtlti 15341 Square root is strictly mo...
abslti 15342 Absolute value and 'less t...
abslei 15343 Absolute value and 'less t...
cnsqrt00 15344 A square root of a complex...
absvalsqi 15345 Square of value of absolut...
absvalsq2i 15346 Square of value of absolut...
abscli 15347 Real closure of absolute v...
absge0i 15348 Absolute value is nonnegat...
absval2i 15349 Value of absolute value fu...
abs00i 15350 The absolute value of a nu...
absgt0i 15351 The absolute value of a no...
absnegi 15352 Absolute value of negative...
abscji 15353 The absolute value of a nu...
releabsi 15354 The real part of a number ...
abssubi 15355 Swapping order of subtract...
absmuli 15356 Absolute value distributes...
sqabsaddi 15357 Square of absolute value o...
sqabssubi 15358 Square of absolute value o...
absdivzi 15359 Absolute value distributes...
abstrii 15360 Triangle inequality for ab...
abs3difi 15361 Absolute value of differen...
abs3lemi 15362 Lemma involving absolute v...
rpsqrtcld 15363 The square root of a posit...
sqrtgt0d 15364 The square root of a posit...
absnidd 15365 A negative number is the n...
leabsd 15366 A real number is less than...
absord 15367 The absolute value of a re...
absred 15368 Absolute value of a real n...
resqrtcld 15369 The square root of a nonne...
sqrtmsqd 15370 Square root of square. (C...
sqrtsqd 15371 Square root of square. (C...
sqrtge0d 15372 The square root of a nonne...
sqrtnegd 15373 The square root of a negat...
absidd 15374 A nonnegative number is it...
sqrtdivd 15375 Square root distributes ov...
sqrtmuld 15376 Square root distributes ov...
sqrtsq2d 15377 Relationship between squar...
sqrtled 15378 Square root is monotonic. ...
sqrtltd 15379 Square root is strictly mo...
sqr11d 15380 The square root function i...
absltd 15381 Absolute value and 'less t...
absled 15382 Absolute value and 'less t...
abssubge0d 15383 Absolute value of a nonneg...
abssuble0d 15384 Absolute value of a nonpos...
absdifltd 15385 The absolute value of a di...
absdifled 15386 The absolute value of a di...
icodiamlt 15387 Two elements in a half-ope...
abscld 15388 Real closure of absolute v...
sqrtcld 15389 Closure of the square root...
sqrtrege0d 15390 The real part of the squar...
sqsqrtd 15391 Square root theorem. Theo...
msqsqrtd 15392 Square root theorem. Theo...
sqr00d 15393 A square root is zero iff ...
absvalsqd 15394 Square of value of absolut...
absvalsq2d 15395 Square of value of absolut...
absge0d 15396 Absolute value is nonnegat...
absval2d 15397 Value of absolute value fu...
abs00d 15398 The absolute value of a nu...
absne0d 15399 The absolute value of a nu...
absrpcld 15400 The absolute value of a no...
absnegd 15401 Absolute value of negative...
abscjd 15402 The absolute value of a nu...
releabsd 15403 The real part of a number ...
absexpd 15404 Absolute value of positive...
abssubd 15405 Swapping order of subtract...
absmuld 15406 Absolute value distributes...
absdivd 15407 Absolute value distributes...
abstrid 15408 Triangle inequality for ab...
abs2difd 15409 Difference of absolute val...
abs2dif2d 15410 Difference of absolute val...
abs2difabsd 15411 Absolute value of differen...
abs3difd 15412 Absolute value of differen...
abs3lemd 15413 Lemma involving absolute v...
reusq0 15414 A complex number is the sq...
bhmafibid1cn 15415 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15416 The Brahmagupta-Fibonacci ...
bhmafibid1 15417 The Brahmagupta-Fibonacci ...
bhmafibid2 15418 The Brahmagupta-Fibonacci ...
limsupgord 15421 Ordering property of the s...
limsupcl 15422 Closure of the superior li...
limsupval 15423 The superior limit of an i...
limsupgf 15424 Closure of the superior li...
limsupgval 15425 Value of the superior limi...
limsupgle 15426 The defining property of t...
limsuple 15427 The defining property of t...
limsuplt 15428 The defining property of t...
limsupval2 15429 The superior limit, relati...
limsupgre 15430 If a sequence of real numb...
limsupbnd1 15431 If a sequence is eventuall...
limsupbnd2 15432 If a sequence is eventuall...
climrel 15441 The limit relation is a re...
rlimrel 15442 The limit relation is a re...
clim 15443 Express the predicate: Th...
rlim 15444 Express the predicate: Th...
rlim2 15445 Rewrite ~ rlim for a mappi...
rlim2lt 15446 Use strictly less-than in ...
rlim3 15447 Restrict the range of the ...
climcl 15448 Closure of the limit of a ...
rlimpm 15449 Closure of a function with...
rlimf 15450 Closure of a function with...
rlimss 15451 Domain closure of a functi...
rlimcl 15452 Closure of the limit of a ...
clim2 15453 Express the predicate: Th...
clim2c 15454 Express the predicate ` F ...
clim0 15455 Express the predicate ` F ...
clim0c 15456 Express the predicate ` F ...
rlim0 15457 Express the predicate ` B ...
rlim0lt 15458 Use strictly less-than in ...
climi 15459 Convergence of a sequence ...
climi2 15460 Convergence of a sequence ...
climi0 15461 Convergence of a sequence ...
rlimi 15462 Convergence at infinity of...
rlimi2 15463 Convergence at infinity of...
ello1 15464 Elementhood in the set of ...
ello12 15465 Elementhood in the set of ...
ello12r 15466 Sufficient condition for e...
lo1f 15467 An eventually upper bounde...
lo1dm 15468 An eventually upper bounde...
lo1bdd 15469 The defining property of a...
ello1mpt 15470 Elementhood in the set of ...
ello1mpt2 15471 Elementhood in the set of ...
ello1d 15472 Sufficient condition for e...
lo1bdd2 15473 If an eventually bounded f...
lo1bddrp 15474 Refine ~ o1bdd2 to give a ...
elo1 15475 Elementhood in the set of ...
elo12 15476 Elementhood in the set of ...
elo12r 15477 Sufficient condition for e...
o1f 15478 An eventually bounded func...
o1dm 15479 An eventually bounded func...
o1bdd 15480 The defining property of a...
lo1o1 15481 A function is eventually b...
lo1o12 15482 A function is eventually b...
elo1mpt 15483 Elementhood in the set of ...
elo1mpt2 15484 Elementhood in the set of ...
elo1d 15485 Sufficient condition for e...
o1lo1 15486 A real function is eventua...
o1lo12 15487 A lower bounded real funct...
o1lo1d 15488 A real eventually bounded ...
icco1 15489 Derive eventual boundednes...
o1bdd2 15490 If an eventually bounded f...
o1bddrp 15491 Refine ~ o1bdd2 to give a ...
climconst 15492 An (eventually) constant s...
rlimconst 15493 A constant sequence conver...
rlimclim1 15494 Forward direction of ~ rli...
rlimclim 15495 A sequence on an upper int...
climrlim2 15496 Produce a real limit from ...
climconst2 15497 A constant sequence conver...
climz 15498 The zero sequence converge...
rlimuni 15499 A real function whose doma...
rlimdm 15500 Two ways to express that a...
climuni 15501 An infinite sequence of co...
fclim 15502 The limit relation is func...
climdm 15503 Two ways to express that a...
climeu 15504 An infinite sequence of co...
climreu 15505 An infinite sequence of co...
climmo 15506 An infinite sequence of co...
rlimres 15507 The restriction of a funct...
lo1res 15508 The restriction of an even...
o1res 15509 The restriction of an even...
rlimres2 15510 The restriction of a funct...
lo1res2 15511 The restriction of a funct...
o1res2 15512 The restriction of a funct...
lo1resb 15513 The restriction of a funct...
rlimresb 15514 The restriction of a funct...
o1resb 15515 The restriction of a funct...
climeq 15516 Two functions that are eve...
lo1eq 15517 Two functions that are eve...
rlimeq 15518 Two functions that are eve...
o1eq 15519 Two functions that are eve...
climmpt 15520 Exhibit a function ` G ` w...
2clim 15521 If two sequences converge ...
climmpt2 15522 Relate an integer limit on...
climshftlem 15523 A shifted function converg...
climres 15524 A function restricted to u...
climshft 15525 A shifted function converg...
serclim0 15526 The zero series converges ...
rlimcld2 15527 If ` D ` is a closed set i...
rlimrege0 15528 The limit of a sequence of...
rlimrecl 15529 The limit of a real sequen...
rlimge0 15530 The limit of a sequence of...
climshft2 15531 A shifted function converg...
climrecl 15532 The limit of a convergent ...
climge0 15533 A nonnegative sequence con...
climabs0 15534 Convergence to zero of the...
o1co 15535 Sufficient condition for t...
o1compt 15536 Sufficient condition for t...
rlimcn1 15537 Image of a limit under a c...
rlimcn1b 15538 Image of a limit under a c...
rlimcn3 15539 Image of a limit under a c...
rlimcn2 15540 Image of a limit under a c...
climcn1 15541 Image of a limit under a c...
climcn2 15542 Image of a limit under a c...
addcn2 15543 Complex number addition is...
subcn2 15544 Complex number subtraction...
mulcn2 15545 Complex number multiplicat...
reccn2 15546 The reciprocal function is...
cn1lem 15547 A sufficient condition for...
abscn2 15548 The absolute value functio...
cjcn2 15549 The complex conjugate func...
recn2 15550 The real part function is ...
imcn2 15551 The imaginary part functio...
climcn1lem 15552 The limit of a continuous ...
climabs 15553 Limit of the absolute valu...
climcj 15554 Limit of the complex conju...
climre 15555 Limit of the real part of ...
climim 15556 Limit of the imaginary par...
rlimmptrcl 15557 Reverse closure for a real...
rlimabs 15558 Limit of the absolute valu...
rlimcj 15559 Limit of the complex conju...
rlimre 15560 Limit of the real part of ...
rlimim 15561 Limit of the imaginary par...
o1of2 15562 Show that a binary operati...
o1add 15563 The sum of two eventually ...
o1mul 15564 The product of two eventua...
o1sub 15565 The difference of two even...
rlimo1 15566 Any function with a finite...
rlimdmo1 15567 A convergent function is e...
o1rlimmul 15568 The product of an eventual...
o1const 15569 A constant function is eve...
lo1const 15570 A constant function is eve...
lo1mptrcl 15571 Reverse closure for an eve...
o1mptrcl 15572 Reverse closure for an eve...
o1add2 15573 The sum of two eventually ...
o1mul2 15574 The product of two eventua...
o1sub2 15575 The product of two eventua...
lo1add 15576 The sum of two eventually ...
lo1mul 15577 The product of an eventual...
lo1mul2 15578 The product of an eventual...
o1dif 15579 If the difference of two f...
lo1sub 15580 The difference of an event...
climadd 15581 Limit of the sum of two co...
climmul 15582 Limit of the product of tw...
climsub 15583 Limit of the difference of...
climaddc1 15584 Limit of a constant ` C ` ...
climaddc2 15585 Limit of a constant ` C ` ...
climmulc2 15586 Limit of a sequence multip...
climsubc1 15587 Limit of a constant ` C ` ...
climsubc2 15588 Limit of a constant ` C ` ...
climle 15589 Comparison of the limits o...
climsqz 15590 Convergence of a sequence ...
climsqz2 15591 Convergence of a sequence ...
rlimadd 15592 Limit of the sum of two co...
rlimaddOLD 15593 Obsolete version of ~ rlim...
rlimsub 15594 Limit of the difference of...
rlimmul 15595 Limit of the product of tw...
rlimmulOLD 15596 Obsolete version of ~ rlim...
rlimdiv 15597 Limit of the quotient of t...
rlimneg 15598 Limit of the negative of a...
rlimle 15599 Comparison of the limits o...
rlimsqzlem 15600 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15601 Convergence of a sequence ...
rlimsqz2 15602 Convergence of a sequence ...
lo1le 15603 Transfer eventual upper bo...
o1le 15604 Transfer eventual boundedn...
rlimno1 15605 A function whose inverse c...
clim2ser 15606 The limit of an infinite s...
clim2ser2 15607 The limit of an infinite s...
iserex 15608 An infinite series converg...
isermulc2 15609 Multiplication of an infin...
climlec2 15610 Comparison of a constant t...
iserle 15611 Comparison of the limits o...
iserge0 15612 The limit of an infinite s...
climub 15613 The limit of a monotonic s...
climserle 15614 The partial sums of a conv...
isershft 15615 Index shift of the limit o...
isercolllem1 15616 Lemma for ~ isercoll . (C...
isercolllem2 15617 Lemma for ~ isercoll . (C...
isercolllem3 15618 Lemma for ~ isercoll . (C...
isercoll 15619 Rearrange an infinite seri...
isercoll2 15620 Generalize ~ isercoll so t...
climsup 15621 A bounded monotonic sequen...
climcau 15622 A converging sequence of c...
climbdd 15623 A converging sequence of c...
caucvgrlem 15624 Lemma for ~ caurcvgr . (C...
caurcvgr 15625 A Cauchy sequence of real ...
caucvgrlem2 15626 Lemma for ~ caucvgr . (Co...
caucvgr 15627 A Cauchy sequence of compl...
caurcvg 15628 A Cauchy sequence of real ...
caurcvg2 15629 A Cauchy sequence of real ...
caucvg 15630 A Cauchy sequence of compl...
caucvgb 15631 A function is convergent i...
serf0 15632 If an infinite series conv...
iseraltlem1 15633 Lemma for ~ iseralt . A d...
iseraltlem2 15634 Lemma for ~ iseralt . The...
iseraltlem3 15635 Lemma for ~ iseralt . Fro...
iseralt 15636 The alternating series tes...
sumex 15639 A sum is a set. (Contribu...
sumeq1 15640 Equality theorem for a sum...
nfsum1 15641 Bound-variable hypothesis ...
nfsum 15642 Bound-variable hypothesis ...
sumeq2w 15643 Equality theorem for sum, ...
sumeq2ii 15644 Equality theorem for sum, ...
sumeq2 15645 Equality theorem for sum. ...
cbvsum 15646 Change bound variable in a...
cbvsumv 15647 Change bound variable in a...
cbvsumi 15648 Change bound variable in a...
sumeq1i 15649 Equality inference for sum...
sumeq2i 15650 Equality inference for sum...
sumeq12i 15651 Equality inference for sum...
sumeq1d 15652 Equality deduction for sum...
sumeq2d 15653 Equality deduction for sum...
sumeq2dv 15654 Equality deduction for sum...
sumeq2sdv 15655 Equality deduction for sum...
2sumeq2dv 15656 Equality deduction for dou...
sumeq12dv 15657 Equality deduction for sum...
sumeq12rdv 15658 Equality deduction for sum...
sum2id 15659 The second class argument ...
sumfc 15660 A lemma to facilitate conv...
fz1f1o 15661 A lemma for working with f...
sumrblem 15662 Lemma for ~ sumrb . (Cont...
fsumcvg 15663 The sequence of partial su...
sumrb 15664 Rebase the starting point ...
summolem3 15665 Lemma for ~ summo . (Cont...
summolem2a 15666 Lemma for ~ summo . (Cont...
summolem2 15667 Lemma for ~ summo . (Cont...
summo 15668 A sum has at most one limi...
zsum 15669 Series sum with index set ...
isum 15670 Series sum with an upper i...
fsum 15671 The value of a sum over a ...
sum0 15672 Any sum over the empty set...
sumz 15673 Any sum of zero over a sum...
fsumf1o 15674 Re-index a finite sum usin...
sumss 15675 Change the index set to a ...
fsumss 15676 Change the index set to a ...
sumss2 15677 Change the index set of a ...
fsumcvg2 15678 The sequence of partial su...
fsumsers 15679 Special case of series sum...
fsumcvg3 15680 A finite sum is convergent...
fsumser 15681 A finite sum expressed in ...
fsumcl2lem 15682 - Lemma for finite sum clo...
fsumcllem 15683 - Lemma for finite sum clo...
fsumcl 15684 Closure of a finite sum of...
fsumrecl 15685 Closure of a finite sum of...
fsumzcl 15686 Closure of a finite sum of...
fsumnn0cl 15687 Closure of a finite sum of...
fsumrpcl 15688 Closure of a finite sum of...
fsumclf 15689 Closure of a finite sum of...
fsumzcl2 15690 A finite sum with integer ...
fsumadd 15691 The sum of two finite sums...
fsumsplit 15692 Split a sum into two parts...
fsumsplitf 15693 Split a sum into two parts...
sumsnf 15694 A sum of a singleton is th...
fsumsplitsn 15695 Separate out a term in a f...
fsumsplit1 15696 Separate out a term in a f...
sumsn 15697 A sum of a singleton is th...
fsum1 15698 The finite sum of ` A ( k ...
sumpr 15699 A sum over a pair is the s...
sumtp 15700 A sum over a triple is the...
sumsns 15701 A sum of a singleton is th...
fsumm1 15702 Separate out the last term...
fzosump1 15703 Separate out the last term...
fsum1p 15704 Separate out the first ter...
fsummsnunz 15705 A finite sum all of whose ...
fsumsplitsnun 15706 Separate out a term in a f...
fsump1 15707 The addition of the next t...
isumclim 15708 An infinite sum equals the...
isumclim2 15709 A converging series conver...
isumclim3 15710 The sequence of partial fi...
sumnul 15711 The sum of a non-convergen...
isumcl 15712 The sum of a converging in...
isummulc2 15713 An infinite sum multiplied...
isummulc1 15714 An infinite sum multiplied...
isumdivc 15715 An infinite sum divided by...
isumrecl 15716 The sum of a converging in...
isumge0 15717 An infinite sum of nonnega...
isumadd 15718 Addition of infinite sums....
sumsplit 15719 Split a sum into two parts...
fsump1i 15720 Optimized version of ~ fsu...
fsum2dlem 15721 Lemma for ~ fsum2d - induc...
fsum2d 15722 Write a double sum as a su...
fsumxp 15723 Combine two sums into a si...
fsumcnv 15724 Transform a region of summ...
fsumcom2 15725 Interchange order of summa...
fsumcom 15726 Interchange order of summa...
fsum0diaglem 15727 Lemma for ~ fsum0diag . (...
fsum0diag 15728 Two ways to express "the s...
mptfzshft 15729 1-1 onto function in maps-...
fsumrev 15730 Reversal of a finite sum. ...
fsumshft 15731 Index shift of a finite su...
fsumshftm 15732 Negative index shift of a ...
fsumrev2 15733 Reversal of a finite sum. ...
fsum0diag2 15734 Two ways to express "the s...
fsummulc2 15735 A finite sum multiplied by...
fsummulc1 15736 A finite sum multiplied by...
fsumdivc 15737 A finite sum divided by a ...
fsumneg 15738 Negation of a finite sum. ...
fsumsub 15739 Split a finite sum over a ...
fsum2mul 15740 Separate the nested sum of...
fsumconst 15741 The sum of constant terms ...
fsumdifsnconst 15742 The sum of constant terms ...
modfsummodslem1 15743 Lemma 1 for ~ modfsummods ...
modfsummods 15744 Induction step for ~ modfs...
modfsummod 15745 A finite sum modulo a posi...
fsumge0 15746 If all of the terms of a f...
fsumless 15747 A shorter sum of nonnegati...
fsumge1 15748 A sum of nonnegative numbe...
fsum00 15749 A sum of nonnegative numbe...
fsumle 15750 If all of the terms of fin...
fsumlt 15751 If every term in one finit...
fsumabs 15752 Generalized triangle inequ...
telfsumo 15753 Sum of a telescoping serie...
telfsumo2 15754 Sum of a telescoping serie...
telfsum 15755 Sum of a telescoping serie...
telfsum2 15756 Sum of a telescoping serie...
fsumparts 15757 Summation by parts. (Cont...
fsumrelem 15758 Lemma for ~ fsumre , ~ fsu...
fsumre 15759 The real part of a sum. (...
fsumim 15760 The imaginary part of a su...
fsumcj 15761 The complex conjugate of a...
fsumrlim 15762 Limit of a finite sum of c...
fsumo1 15763 The finite sum of eventual...
o1fsum 15764 If ` A ( k ) ` is O(1), th...
seqabs 15765 Generalized triangle inequ...
iserabs 15766 Generalized triangle inequ...
cvgcmp 15767 A comparison test for conv...
cvgcmpub 15768 An upper bound for the lim...
cvgcmpce 15769 A comparison test for conv...
abscvgcvg 15770 An absolutely convergent s...
climfsum 15771 Limit of a finite sum of c...
fsumiun 15772 Sum over a disjoint indexe...
hashiun 15773 The cardinality of a disjo...
hash2iun 15774 The cardinality of a neste...
hash2iun1dif1 15775 The cardinality of a neste...
hashrabrex 15776 The number of elements in ...
hashuni 15777 The cardinality of a disjo...
qshash 15778 The cardinality of a set w...
ackbijnn 15779 Translate the Ackermann bi...
binomlem 15780 Lemma for ~ binom (binomia...
binom 15781 The binomial theorem: ` ( ...
binom1p 15782 Special case of the binomi...
binom11 15783 Special case of the binomi...
binom1dif 15784 A summation for the differ...
bcxmaslem1 15785 Lemma for ~ bcxmas . (Con...
bcxmas 15786 Parallel summation (Christ...
incexclem 15787 Lemma for ~ incexc . (Con...
incexc 15788 The inclusion/exclusion pr...
incexc2 15789 The inclusion/exclusion pr...
isumshft 15790 Index shift of an infinite...
isumsplit 15791 Split off the first ` N ` ...
isum1p 15792 The infinite sum of a conv...
isumnn0nn 15793 Sum from 0 to infinity in ...
isumrpcl 15794 The infinite sum of positi...
isumle 15795 Comparison of two infinite...
isumless 15796 A finite sum of nonnegativ...
isumsup2 15797 An infinite sum of nonnega...
isumsup 15798 An infinite sum of nonnega...
isumltss 15799 A partial sum of a series ...
climcndslem1 15800 Lemma for ~ climcnds : bou...
climcndslem2 15801 Lemma for ~ climcnds : bou...
climcnds 15802 The Cauchy condensation te...
divrcnv 15803 The sequence of reciprocal...
divcnv 15804 The sequence of reciprocal...
flo1 15805 The floor function satisfi...
divcnvshft 15806 Limit of a ratio function....
supcvg 15807 Extract a sequence ` f ` i...
infcvgaux1i 15808 Auxiliary theorem for appl...
infcvgaux2i 15809 Auxiliary theorem for appl...
harmonic 15810 The harmonic series ` H ` ...
arisum 15811 Arithmetic series sum of t...
arisum2 15812 Arithmetic series sum of t...
trireciplem 15813 Lemma for ~ trirecip . Sh...
trirecip 15814 The sum of the reciprocals...
expcnv 15815 A sequence of powers of a ...
explecnv 15816 A sequence of terms conver...
geoserg 15817 The value of the finite ge...
geoser 15818 The value of the finite ge...
pwdif 15819 The difference of two numb...
pwm1geoser 15820 The n-th power of a number...
geolim 15821 The partial sums in the in...
geolim2 15822 The partial sums in the ge...
georeclim 15823 The limit of a geometric s...
geo2sum 15824 The value of the finite ge...
geo2sum2 15825 The value of the finite ge...
geo2lim 15826 The value of the infinite ...
geomulcvg 15827 The geometric series conve...
geoisum 15828 The infinite sum of ` 1 + ...
geoisumr 15829 The infinite sum of recipr...
geoisum1 15830 The infinite sum of ` A ^ ...
geoisum1c 15831 The infinite sum of ` A x....
0.999... 15832 The recurring decimal 0.99...
geoihalfsum 15833 Prove that the infinite ge...
cvgrat 15834 Ratio test for convergence...
mertenslem1 15835 Lemma for ~ mertens . (Co...
mertenslem2 15836 Lemma for ~ mertens . (Co...
mertens 15837 Mertens' theorem. If ` A ...
prodf 15838 An infinite product of com...
clim2prod 15839 The limit of an infinite p...
clim2div 15840 The limit of an infinite p...
prodfmul 15841 The product of two infinit...
prodf1 15842 The value of the partial p...
prodf1f 15843 A one-valued infinite prod...
prodfclim1 15844 The constant one product c...
prodfn0 15845 No term of a nonzero infin...
prodfrec 15846 The reciprocal of an infin...
prodfdiv 15847 The quotient of two infini...
ntrivcvg 15848 A non-trivially converging...
ntrivcvgn0 15849 A product that converges t...
ntrivcvgfvn0 15850 Any value of a product seq...
ntrivcvgtail 15851 A tail of a non-trivially ...
ntrivcvgmullem 15852 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15853 The product of two non-tri...
prodex 15856 A product is a set. (Cont...
prodeq1f 15857 Equality theorem for a pro...
prodeq1 15858 Equality theorem for a pro...
nfcprod1 15859 Bound-variable hypothesis ...
nfcprod 15860 Bound-variable hypothesis ...
prodeq2w 15861 Equality theorem for produ...
prodeq2ii 15862 Equality theorem for produ...
prodeq2 15863 Equality theorem for produ...
cbvprod 15864 Change bound variable in a...
cbvprodv 15865 Change bound variable in a...
cbvprodi 15866 Change bound variable in a...
prodeq1i 15867 Equality inference for pro...
prodeq2i 15868 Equality inference for pro...
prodeq12i 15869 Equality inference for pro...
prodeq1d 15870 Equality deduction for pro...
prodeq2d 15871 Equality deduction for pro...
prodeq2dv 15872 Equality deduction for pro...
prodeq2sdv 15873 Equality deduction for pro...
2cprodeq2dv 15874 Equality deduction for dou...
prodeq12dv 15875 Equality deduction for pro...
prodeq12rdv 15876 Equality deduction for pro...
prod2id 15877 The second class argument ...
prodrblem 15878 Lemma for ~ prodrb . (Con...
fprodcvg 15879 The sequence of partial pr...
prodrblem2 15880 Lemma for ~ prodrb . (Con...
prodrb 15881 Rebase the starting point ...
prodmolem3 15882 Lemma for ~ prodmo . (Con...
prodmolem2a 15883 Lemma for ~ prodmo . (Con...
prodmolem2 15884 Lemma for ~ prodmo . (Con...
prodmo 15885 A product has at most one ...
zprod 15886 Series product with index ...
iprod 15887 Series product with an upp...
zprodn0 15888 Nonzero series product wit...
iprodn0 15889 Nonzero series product wit...
fprod 15890 The value of a product ove...
fprodntriv 15891 A non-triviality lemma for...
prod0 15892 A product over the empty s...
prod1 15893 Any product of one over a ...
prodfc 15894 A lemma to facilitate conv...
fprodf1o 15895 Re-index a finite product ...
prodss 15896 Change the index set to a ...
fprodss 15897 Change the index set to a ...
fprodser 15898 A finite product expressed...
fprodcl2lem 15899 Finite product closure lem...
fprodcllem 15900 Finite product closure lem...
fprodcl 15901 Closure of a finite produc...
fprodrecl 15902 Closure of a finite produc...
fprodzcl 15903 Closure of a finite produc...
fprodnncl 15904 Closure of a finite produc...
fprodrpcl 15905 Closure of a finite produc...
fprodnn0cl 15906 Closure of a finite produc...
fprodcllemf 15907 Finite product closure lem...
fprodreclf 15908 Closure of a finite produc...
fprodmul 15909 The product of two finite ...
fproddiv 15910 The quotient of two finite...
prodsn 15911 A product of a singleton i...
fprod1 15912 A finite product of only o...
prodsnf 15913 A product of a singleton i...
climprod1 15914 The limit of a product ove...
fprodsplit 15915 Split a finite product int...
fprodm1 15916 Separate out the last term...
fprod1p 15917 Separate out the first ter...
fprodp1 15918 Multiply in the last term ...
fprodm1s 15919 Separate out the last term...
fprodp1s 15920 Multiply in the last term ...
prodsns 15921 A product of the singleton...
fprodfac 15922 Factorial using product no...
fprodabs 15923 The absolute value of a fi...
fprodeq0 15924 Any finite product contain...
fprodshft 15925 Shift the index of a finit...
fprodrev 15926 Reversal of a finite produ...
fprodconst 15927 The product of constant te...
fprodn0 15928 A finite product of nonzer...
fprod2dlem 15929 Lemma for ~ fprod2d - indu...
fprod2d 15930 Write a double product as ...
fprodxp 15931 Combine two products into ...
fprodcnv 15932 Transform a product region...
fprodcom2 15933 Interchange order of multi...
fprodcom 15934 Interchange product order....
fprod0diag 15935 Two ways to express "the p...
fproddivf 15936 The quotient of two finite...
fprodsplitf 15937 Split a finite product int...
fprodsplitsn 15938 Separate out a term in a f...
fprodsplit1f 15939 Separate out a term in a f...
fprodn0f 15940 A finite product of nonzer...
fprodclf 15941 Closure of a finite produc...
fprodge0 15942 If all the terms of a fini...
fprodeq0g 15943 Any finite product contain...
fprodge1 15944 If all of the terms of a f...
fprodle 15945 If all the terms of two fi...
fprodmodd 15946 If all factors of two fini...
iprodclim 15947 An infinite product equals...
iprodclim2 15948 A converging product conve...
iprodclim3 15949 The sequence of partial fi...
iprodcl 15950 The product of a non-trivi...
iprodrecl 15951 The product of a non-trivi...
iprodmul 15952 Multiplication of infinite...
risefacval 15957 The value of the rising fa...
fallfacval 15958 The value of the falling f...
risefacval2 15959 One-based value of rising ...
fallfacval2 15960 One-based value of falling...
fallfacval3 15961 A product representation o...
risefaccllem 15962 Lemma for rising factorial...
fallfaccllem 15963 Lemma for falling factoria...
risefaccl 15964 Closure law for rising fac...
fallfaccl 15965 Closure law for falling fa...
rerisefaccl 15966 Closure law for rising fac...
refallfaccl 15967 Closure law for falling fa...
nnrisefaccl 15968 Closure law for rising fac...
zrisefaccl 15969 Closure law for rising fac...
zfallfaccl 15970 Closure law for falling fa...
nn0risefaccl 15971 Closure law for rising fac...
rprisefaccl 15972 Closure law for rising fac...
risefallfac 15973 A relationship between ris...
fallrisefac 15974 A relationship between fal...
risefall0lem 15975 Lemma for ~ risefac0 and ~...
risefac0 15976 The value of the rising fa...
fallfac0 15977 The value of the falling f...
risefacp1 15978 The value of the rising fa...
fallfacp1 15979 The value of the falling f...
risefacp1d 15980 The value of the rising fa...
fallfacp1d 15981 The value of the falling f...
risefac1 15982 The value of rising factor...
fallfac1 15983 The value of falling facto...
risefacfac 15984 Relate rising factorial to...
fallfacfwd 15985 The forward difference of ...
0fallfac 15986 The value of the zero fall...
0risefac 15987 The value of the zero risi...
binomfallfaclem1 15988 Lemma for ~ binomfallfac ....
binomfallfaclem2 15989 Lemma for ~ binomfallfac ....
binomfallfac 15990 A version of the binomial ...
binomrisefac 15991 A version of the binomial ...
fallfacval4 15992 Represent the falling fact...
bcfallfac 15993 Binomial coefficient in te...
fallfacfac 15994 Relate falling factorial t...
bpolylem 15997 Lemma for ~ bpolyval . (C...
bpolyval 15998 The value of the Bernoulli...
bpoly0 15999 The value of the Bernoulli...
bpoly1 16000 The value of the Bernoulli...
bpolycl 16001 Closure law for Bernoulli ...
bpolysum 16002 A sum for Bernoulli polyno...
bpolydiflem 16003 Lemma for ~ bpolydif . (C...
bpolydif 16004 Calculate the difference b...
fsumkthpow 16005 A closed-form expression f...
bpoly2 16006 The Bernoulli polynomials ...
bpoly3 16007 The Bernoulli polynomials ...
bpoly4 16008 The Bernoulli polynomials ...
fsumcube 16009 Express the sum of cubes i...
eftcl 16022 Closure of a term in the s...
reeftcl 16023 The terms of the series ex...
eftabs 16024 The absolute value of a te...
eftval 16025 The value of a term in the...
efcllem 16026 Lemma for ~ efcl . The se...
ef0lem 16027 The series defining the ex...
efval 16028 Value of the exponential f...
esum 16029 Value of Euler's constant ...
eff 16030 Domain and codomain of the...
efcl 16031 Closure law for the expone...
efval2 16032 Value of the exponential f...
efcvg 16033 The series that defines th...
efcvgfsum 16034 Exponential function conve...
reefcl 16035 The exponential function i...
reefcld 16036 The exponential function i...
ere 16037 Euler's constant ` _e ` = ...
ege2le3 16038 Lemma for ~ egt2lt3 . (Co...
ef0 16039 Value of the exponential f...
efcj 16040 The exponential of a compl...
efaddlem 16041 Lemma for ~ efadd (exponen...
efadd 16042 Sum of exponents law for e...
fprodefsum 16043 Move the exponential funct...
efcan 16044 Cancellation law for expon...
efne0 16045 The exponential of a compl...
efneg 16046 The exponential of the opp...
eff2 16047 The exponential function m...
efsub 16048 Difference of exponents la...
efexp 16049 The exponential of an inte...
efzval 16050 Value of the exponential f...
efgt0 16051 The exponential of a real ...
rpefcl 16052 The exponential of a real ...
rpefcld 16053 The exponential of a real ...
eftlcvg 16054 The tail series of the exp...
eftlcl 16055 Closure of the sum of an i...
reeftlcl 16056 Closure of the sum of an i...
eftlub 16057 An upper bound on the abso...
efsep 16058 Separate out the next term...
effsumlt 16059 The partial sums of the se...
eft0val 16060 The value of the first ter...
ef4p 16061 Separate out the first fou...
efgt1p2 16062 The exponential of a posit...
efgt1p 16063 The exponential of a posit...
efgt1 16064 The exponential of a posit...
eflt 16065 The exponential function o...
efle 16066 The exponential function o...
reef11 16067 The exponential function o...
reeff1 16068 The exponential function m...
eflegeo 16069 The exponential function o...
sinval 16070 Value of the sine function...
cosval 16071 Value of the cosine functi...
sinf 16072 Domain and codomain of the...
cosf 16073 Domain and codomain of the...
sincl 16074 Closure of the sine functi...
coscl 16075 Closure of the cosine func...
tanval 16076 Value of the tangent funct...
tancl 16077 The closure of the tangent...
sincld 16078 Closure of the sine functi...
coscld 16079 Closure of the cosine func...
tancld 16080 Closure of the tangent fun...
tanval2 16081 Express the tangent functi...
tanval3 16082 Express the tangent functi...
resinval 16083 The sine of a real number ...
recosval 16084 The cosine of a real numbe...
efi4p 16085 Separate out the first fou...
resin4p 16086 Separate out the first fou...
recos4p 16087 Separate out the first fou...
resincl 16088 The sine of a real number ...
recoscl 16089 The cosine of a real numbe...
retancl 16090 The closure of the tangent...
resincld 16091 Closure of the sine functi...
recoscld 16092 Closure of the cosine func...
retancld 16093 Closure of the tangent fun...
sinneg 16094 The sine of a negative is ...
cosneg 16095 The cosines of a number an...
tanneg 16096 The tangent of a negative ...
sin0 16097 Value of the sine function...
cos0 16098 Value of the cosine functi...
tan0 16099 The value of the tangent f...
efival 16100 The exponential function i...
efmival 16101 The exponential function i...
sinhval 16102 Value of the hyperbolic si...
coshval 16103 Value of the hyperbolic co...
resinhcl 16104 The hyperbolic sine of a r...
rpcoshcl 16105 The hyperbolic cosine of a...
recoshcl 16106 The hyperbolic cosine of a...
retanhcl 16107 The hyperbolic tangent of ...
tanhlt1 16108 The hyperbolic tangent of ...
tanhbnd 16109 The hyperbolic tangent of ...
efeul 16110 Eulerian representation of...
efieq 16111 The exponentials of two im...
sinadd 16112 Addition formula for sine....
cosadd 16113 Addition formula for cosin...
tanaddlem 16114 A useful intermediate step...
tanadd 16115 Addition formula for tange...
sinsub 16116 Sine of difference. (Cont...
cossub 16117 Cosine of difference. (Co...
addsin 16118 Sum of sines. (Contribute...
subsin 16119 Difference of sines. (Con...
sinmul 16120 Product of sines can be re...
cosmul 16121 Product of cosines can be ...
addcos 16122 Sum of cosines. (Contribu...
subcos 16123 Difference of cosines. (C...
sincossq 16124 Sine squared plus cosine s...
sin2t 16125 Double-angle formula for s...
cos2t 16126 Double-angle formula for c...
cos2tsin 16127 Double-angle formula for c...
sinbnd 16128 The sine of a real number ...
cosbnd 16129 The cosine of a real numbe...
sinbnd2 16130 The sine of a real number ...
cosbnd2 16131 The cosine of a real numbe...
ef01bndlem 16132 Lemma for ~ sin01bnd and ~...
sin01bnd 16133 Bounds on the sine of a po...
cos01bnd 16134 Bounds on the cosine of a ...
cos1bnd 16135 Bounds on the cosine of 1....
cos2bnd 16136 Bounds on the cosine of 2....
sinltx 16137 The sine of a positive rea...
sin01gt0 16138 The sine of a positive rea...
cos01gt0 16139 The cosine of a positive r...
sin02gt0 16140 The sine of a positive rea...
sincos1sgn 16141 The signs of the sine and ...
sincos2sgn 16142 The signs of the sine and ...
sin4lt0 16143 The sine of 4 is negative....
absefi 16144 The absolute value of the ...
absef 16145 The absolute value of the ...
absefib 16146 A complex number is real i...
efieq1re 16147 A number whose imaginary e...
demoivre 16148 De Moivre's Formula. Proo...
demoivreALT 16149 Alternate proof of ~ demoi...
eirrlem 16152 Lemma for ~ eirr . (Contr...
eirr 16153 ` _e ` is irrational. (Co...
egt2lt3 16154 Euler's constant ` _e ` = ...
epos 16155 Euler's constant ` _e ` is...
epr 16156 Euler's constant ` _e ` is...
ene0 16157 ` _e ` is not 0. (Contrib...
ene1 16158 ` _e ` is not 1. (Contrib...
xpnnen 16159 The Cartesian product of t...
znnen 16160 The set of integers and th...
qnnen 16161 The rational numbers are c...
rpnnen2lem1 16162 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 16163 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 16164 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 16165 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 16166 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 16167 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 16168 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 16169 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 16170 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 16171 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 16172 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 16173 Lemma for ~ rpnnen2 . (Co...
rpnnen2 16174 The other half of ~ rpnnen...
rpnnen 16175 The cardinality of the con...
rexpen 16176 The real numbers are equin...
cpnnen 16177 The complex numbers are eq...
rucALT 16178 Alternate proof of ~ ruc ....
ruclem1 16179 Lemma for ~ ruc (the reals...
ruclem2 16180 Lemma for ~ ruc . Orderin...
ruclem3 16181 Lemma for ~ ruc . The con...
ruclem4 16182 Lemma for ~ ruc . Initial...
ruclem6 16183 Lemma for ~ ruc . Domain ...
ruclem7 16184 Lemma for ~ ruc . Success...
ruclem8 16185 Lemma for ~ ruc . The int...
ruclem9 16186 Lemma for ~ ruc . The fir...
ruclem10 16187 Lemma for ~ ruc . Every f...
ruclem11 16188 Lemma for ~ ruc . Closure...
ruclem12 16189 Lemma for ~ ruc . The sup...
ruclem13 16190 Lemma for ~ ruc . There i...
ruc 16191 The set of positive intege...
resdomq 16192 The set of rationals is st...
aleph1re 16193 There are at least aleph-o...
aleph1irr 16194 There are at least aleph-o...
cnso 16195 The complex numbers can be...
sqrt2irrlem 16196 Lemma for ~ sqrt2irr . Th...
sqrt2irr 16197 The square root of 2 is ir...
sqrt2re 16198 The square root of 2 exist...
sqrt2irr0 16199 The square root of 2 is an...
nthruc 16200 The sequence ` NN ` , ` ZZ...
nthruz 16201 The sequence ` NN ` , ` NN...
divides 16204 Define the divides relatio...
dvdsval2 16205 One nonzero integer divide...
dvdsval3 16206 One nonzero integer divide...
dvdszrcl 16207 Reverse closure for the di...
dvdsmod0 16208 If a positive integer divi...
p1modz1 16209 If a number greater than 1...
dvdsmodexp 16210 If a positive integer divi...
nndivdvds 16211 Strong form of ~ dvdsval2 ...
nndivides 16212 Definition of the divides ...
moddvds 16213 Two ways to say ` A == B `...
modm1div 16214 An integer greater than on...
dvds0lem 16215 A lemma to assist theorems...
dvds1lem 16216 A lemma to assist theorems...
dvds2lem 16217 A lemma to assist theorems...
iddvds 16218 An integer divides itself....
1dvds 16219 1 divides any integer. Th...
dvds0 16220 Any integer divides 0. Th...
negdvdsb 16221 An integer divides another...
dvdsnegb 16222 An integer divides another...
absdvdsb 16223 An integer divides another...
dvdsabsb 16224 An integer divides another...
0dvds 16225 Only 0 is divisible by 0. ...
dvdsmul1 16226 An integer divides a multi...
dvdsmul2 16227 An integer divides a multi...
iddvdsexp 16228 An integer divides a posit...
muldvds1 16229 If a product divides an in...
muldvds2 16230 If a product divides an in...
dvdscmul 16231 Multiplication by a consta...
dvdsmulc 16232 Multiplication by a consta...
dvdscmulr 16233 Cancellation law for the d...
dvdsmulcr 16234 Cancellation law for the d...
summodnegmod 16235 The sum of two integers mo...
modmulconst 16236 Constant multiplication in...
dvds2ln 16237 If an integer divides each...
dvds2add 16238 If an integer divides each...
dvds2sub 16239 If an integer divides each...
dvds2addd 16240 Deduction form of ~ dvds2a...
dvds2subd 16241 Deduction form of ~ dvds2s...
dvdstr 16242 The divides relation is tr...
dvdstrd 16243 The divides relation is tr...
dvdsmultr1 16244 If an integer divides anot...
dvdsmultr1d 16245 Deduction form of ~ dvdsmu...
dvdsmultr2 16246 If an integer divides anot...
dvdsmultr2d 16247 Deduction form of ~ dvdsmu...
ordvdsmul 16248 If an integer divides eith...
dvdssub2 16249 If an integer divides a di...
dvdsadd 16250 An integer divides another...
dvdsaddr 16251 An integer divides another...
dvdssub 16252 An integer divides another...
dvdssubr 16253 An integer divides another...
dvdsadd2b 16254 Adding a multiple of the b...
dvdsaddre2b 16255 Adding a multiple of the b...
fsumdvds 16256 If every term in a sum is ...
dvdslelem 16257 Lemma for ~ dvdsle . (Con...
dvdsle 16258 The divisors of a positive...
dvdsleabs 16259 The divisors of a nonzero ...
dvdsleabs2 16260 Transfer divisibility to a...
dvdsabseq 16261 If two integers divide eac...
dvdseq 16262 If two nonnegative integer...
divconjdvds 16263 If a nonzero integer ` M `...
dvdsdivcl 16264 The complement of a diviso...
dvdsflip 16265 An involution of the divis...
dvdsssfz1 16266 The set of divisors of a n...
dvds1 16267 The only nonnegative integ...
alzdvds 16268 Only 0 is divisible by all...
dvdsext 16269 Poset extensionality for d...
fzm1ndvds 16270 No number between ` 1 ` an...
fzo0dvdseq 16271 Zero is the only one of th...
fzocongeq 16272 Two different elements of ...
addmodlteqALT 16273 Two nonnegative integers l...
dvdsfac 16274 A positive integer divides...
dvdsexp2im 16275 If an integer divides anot...
dvdsexp 16276 A power divides a power wi...
dvdsmod 16277 Any number ` K ` whose mod...
mulmoddvds 16278 If an integer is divisible...
3dvds 16279 A rule for divisibility by...
3dvdsdec 16280 A decimal number is divisi...
3dvds2dec 16281 A decimal number is divisi...
fprodfvdvdsd 16282 A finite product of intege...
fproddvdsd 16283 A finite product of intege...
evenelz 16284 An even number is an integ...
zeo3 16285 An integer is even or odd....
zeo4 16286 An integer is even or odd ...
zeneo 16287 No even integer equals an ...
odd2np1lem 16288 Lemma for ~ odd2np1 . (Co...
odd2np1 16289 An integer is odd iff it i...
even2n 16290 An integer is even iff it ...
oddm1even 16291 An integer is odd iff its ...
oddp1even 16292 An integer is odd iff its ...
oexpneg 16293 The exponential of the neg...
mod2eq0even 16294 An integer is 0 modulo 2 i...
mod2eq1n2dvds 16295 An integer is 1 modulo 2 i...
oddnn02np1 16296 A nonnegative integer is o...
oddge22np1 16297 An integer greater than on...
evennn02n 16298 A nonnegative integer is e...
evennn2n 16299 A positive integer is even...
2tp1odd 16300 A number which is twice an...
mulsucdiv2z 16301 An integer multiplied with...
sqoddm1div8z 16302 A squared odd number minus...
2teven 16303 A number which is twice an...
zeo5 16304 An integer is either even ...
evend2 16305 An integer is even iff its...
oddp1d2 16306 An integer is odd iff its ...
zob 16307 Alternate characterization...
oddm1d2 16308 An integer is odd iff its ...
ltoddhalfle 16309 An integer is less than ha...
halfleoddlt 16310 An integer is greater than...
opoe 16311 The sum of two odds is eve...
omoe 16312 The difference of two odds...
opeo 16313 The sum of an odd and an e...
omeo 16314 The difference of an odd a...
z0even 16315 2 divides 0. That means 0...
n2dvds1 16316 2 does not divide 1. That...
n2dvdsm1 16317 2 does not divide -1. Tha...
z2even 16318 2 divides 2. That means 2...
n2dvds3 16319 2 does not divide 3. That...
z4even 16320 2 divides 4. That means 4...
4dvdseven 16321 An integer which is divisi...
m1expe 16322 Exponentiation of -1 by an...
m1expo 16323 Exponentiation of -1 by an...
m1exp1 16324 Exponentiation of negative...
nn0enne 16325 A positive integer is an e...
nn0ehalf 16326 The half of an even nonneg...
nnehalf 16327 The half of an even positi...
nn0onn 16328 An odd nonnegative integer...
nn0o1gt2 16329 An odd nonnegative integer...
nno 16330 An alternate characterizat...
nn0o 16331 An alternate characterizat...
nn0ob 16332 Alternate characterization...
nn0oddm1d2 16333 A positive integer is odd ...
nnoddm1d2 16334 A positive integer is odd ...
sumeven 16335 If every term in a sum is ...
sumodd 16336 If every term in a sum is ...
evensumodd 16337 If every term in a sum wit...
oddsumodd 16338 If every term in a sum wit...
pwp1fsum 16339 The n-th power of a number...
oddpwp1fsum 16340 An odd power of a number i...
divalglem0 16341 Lemma for ~ divalg . (Con...
divalglem1 16342 Lemma for ~ divalg . (Con...
divalglem2 16343 Lemma for ~ divalg . (Con...
divalglem4 16344 Lemma for ~ divalg . (Con...
divalglem5 16345 Lemma for ~ divalg . (Con...
divalglem6 16346 Lemma for ~ divalg . (Con...
divalglem7 16347 Lemma for ~ divalg . (Con...
divalglem8 16348 Lemma for ~ divalg . (Con...
divalglem9 16349 Lemma for ~ divalg . (Con...
divalglem10 16350 Lemma for ~ divalg . (Con...
divalg 16351 The division algorithm (th...
divalgb 16352 Express the division algor...
divalg2 16353 The division algorithm (th...
divalgmod 16354 The result of the ` mod ` ...
divalgmodcl 16355 The result of the ` mod ` ...
modremain 16356 The result of the modulo o...
ndvdssub 16357 Corollary of the division ...
ndvdsadd 16358 Corollary of the division ...
ndvdsp1 16359 Special case of ~ ndvdsadd...
ndvdsi 16360 A quick test for non-divis...
flodddiv4 16361 The floor of an odd intege...
fldivndvdslt 16362 The floor of an integer di...
flodddiv4lt 16363 The floor of an odd number...
flodddiv4t2lthalf 16364 The floor of an odd number...
bitsfval 16369 Expand the definition of t...
bitsval 16370 Expand the definition of t...
bitsval2 16371 Expand the definition of t...
bitsss 16372 The set of bits of an inte...
bitsf 16373 The ` bits ` function is a...
bits0 16374 Value of the zeroth bit. ...
bits0e 16375 The zeroth bit of an even ...
bits0o 16376 The zeroth bit of an odd n...
bitsp1 16377 The ` M + 1 ` -th bit of `...
bitsp1e 16378 The ` M + 1 ` -th bit of `...
bitsp1o 16379 The ` M + 1 ` -th bit of `...
bitsfzolem 16380 Lemma for ~ bitsfzo . (Co...
bitsfzo 16381 The bits of a number are a...
bitsmod 16382 Truncating the bit sequenc...
bitsfi 16383 Every number is associated...
bitscmp 16384 The bit complement of ` N ...
0bits 16385 The bits of zero. (Contri...
m1bits 16386 The bits of negative one. ...
bitsinv1lem 16387 Lemma for ~ bitsinv1 . (C...
bitsinv1 16388 There is an explicit inver...
bitsinv2 16389 There is an explicit inver...
bitsf1ocnv 16390 The ` bits ` function rest...
bitsf1o 16391 The ` bits ` function rest...
bitsf1 16392 The ` bits ` function is a...
2ebits 16393 The bits of a power of two...
bitsinv 16394 The inverse of the ` bits ...
bitsinvp1 16395 Recursive definition of th...
sadadd2lem2 16396 The core of the proof of ~...
sadfval 16398 Define the addition of two...
sadcf 16399 The carry sequence is a se...
sadc0 16400 The initial element of the...
sadcp1 16401 The carry sequence (which ...
sadval 16402 The full adder sequence is...
sadcaddlem 16403 Lemma for ~ sadcadd . (Co...
sadcadd 16404 Non-recursive definition o...
sadadd2lem 16405 Lemma for ~ sadadd2 . (Co...
sadadd2 16406 Sum of initial segments of...
sadadd3 16407 Sum of initial segments of...
sadcl 16408 The sum of two sequences i...
sadcom 16409 The adder sequence functio...
saddisjlem 16410 Lemma for ~ sadadd . (Con...
saddisj 16411 The sum of disjoint sequen...
sadaddlem 16412 Lemma for ~ sadadd . (Con...
sadadd 16413 For sequences that corresp...
sadid1 16414 The adder sequence functio...
sadid2 16415 The adder sequence functio...
sadasslem 16416 Lemma for ~ sadass . (Con...
sadass 16417 Sequence addition is assoc...
sadeq 16418 Any element of a sequence ...
bitsres 16419 Restrict the bits of a num...
bitsuz 16420 The bits of a number are a...
bitsshft 16421 Shifting a bit sequence to...
smufval 16423 The multiplication of two ...
smupf 16424 The sequence of partial su...
smup0 16425 The initial element of the...
smupp1 16426 The initial element of the...
smuval 16427 Define the addition of two...
smuval2 16428 The partial sum sequence s...
smupvallem 16429 If ` A ` only has elements...
smucl 16430 The product of two sequenc...
smu01lem 16431 Lemma for ~ smu01 and ~ sm...
smu01 16432 Multiplication of a sequen...
smu02 16433 Multiplication of a sequen...
smupval 16434 Rewrite the elements of th...
smup1 16435 Rewrite ~ smupp1 using onl...
smueqlem 16436 Any element of a sequence ...
smueq 16437 Any element of a sequence ...
smumullem 16438 Lemma for ~ smumul . (Con...
smumul 16439 For sequences that corresp...
gcdval 16442 The value of the ` gcd ` o...
gcd0val 16443 The value, by convention, ...
gcdn0val 16444 The value of the ` gcd ` o...
gcdcllem1 16445 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16446 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16447 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16448 Closure of the ` gcd ` ope...
gcddvds 16449 The gcd of two integers di...
dvdslegcd 16450 An integer which divides b...
nndvdslegcd 16451 A positive integer which d...
gcdcl 16452 Closure of the ` gcd ` ope...
gcdnncl 16453 Closure of the ` gcd ` ope...
gcdcld 16454 Closure of the ` gcd ` ope...
gcd2n0cl 16455 Closure of the ` gcd ` ope...
zeqzmulgcd 16456 An integer is the product ...
divgcdz 16457 An integer divided by the ...
gcdf 16458 Domain and codomain of the...
gcdcom 16459 The ` gcd ` operator is co...
gcdcomd 16460 The ` gcd ` operator is co...
divgcdnn 16461 A positive integer divided...
divgcdnnr 16462 A positive integer divided...
gcdeq0 16463 The gcd of two integers is...
gcdn0gt0 16464 The gcd of two integers is...
gcd0id 16465 The gcd of 0 and an intege...
gcdid0 16466 The gcd of an integer and ...
nn0gcdid0 16467 The gcd of a nonnegative i...
gcdneg 16468 Negating one operand of th...
neggcd 16469 Negating one operand of th...
gcdaddmlem 16470 Lemma for ~ gcdaddm . (Co...
gcdaddm 16471 Adding a multiple of one o...
gcdadd 16472 The GCD of two numbers is ...
gcdid 16473 The gcd of a number and it...
gcd1 16474 The gcd of a number with 1...
gcdabs1 16475 ` gcd ` of the absolute va...
gcdabs2 16476 ` gcd ` of the absolute va...
gcdabs 16477 The gcd of two integers is...
gcdabsOLD 16478 Obsolete version of ~ gcda...
modgcd 16479 The gcd remains unchanged ...
1gcd 16480 The GCD of one and an inte...
gcdmultipled 16481 The greatest common diviso...
gcdmultiplez 16482 The GCD of a multiple of a...
gcdmultiple 16483 The GCD of a multiple of a...
dvdsgcdidd 16484 The greatest common diviso...
6gcd4e2 16485 The greatest common diviso...
bezoutlem1 16486 Lemma for ~ bezout . (Con...
bezoutlem2 16487 Lemma for ~ bezout . (Con...
bezoutlem3 16488 Lemma for ~ bezout . (Con...
bezoutlem4 16489 Lemma for ~ bezout . (Con...
bezout 16490 Bézout's identity: ...
dvdsgcd 16491 An integer which divides e...
dvdsgcdb 16492 Biconditional form of ~ dv...
dfgcd2 16493 Alternate definition of th...
gcdass 16494 Associative law for ` gcd ...
mulgcd 16495 Distribute multiplication ...
absmulgcd 16496 Distribute absolute value ...
mulgcdr 16497 Reverse distribution law f...
gcddiv 16498 Division law for GCD. (Con...
gcdzeq 16499 A positive integer ` A ` i...
gcdeq 16500 ` A ` is equal to its gcd ...
dvdssqim 16501 Unidirectional form of ~ d...
dvdsmulgcd 16502 A divisibility equivalent ...
rpmulgcd 16503 If ` K ` and ` M ` are rel...
rplpwr 16504 If ` A ` and ` B ` are rel...
rprpwr 16505 If ` A ` and ` B ` are rel...
rppwr 16506 If ` A ` and ` B ` are rel...
sqgcd 16507 Square distributes over gc...
dvdssqlem 16508 Lemma for ~ dvdssq . (Con...
dvdssq 16509 Two numbers are divisible ...
bezoutr 16510 Partial converse to ~ bezo...
bezoutr1 16511 Converse of ~ bezout for w...
nn0seqcvgd 16512 A strictly-decreasing nonn...
seq1st 16513 A sequence whose iteration...
algr0 16514 The value of the algorithm...
algrf 16515 An algorithm is a step fun...
algrp1 16516 The value of the algorithm...
alginv 16517 If ` I ` is an invariant o...
algcvg 16518 One way to prove that an a...
algcvgblem 16519 Lemma for ~ algcvgb . (Co...
algcvgb 16520 Two ways of expressing tha...
algcvga 16521 The countdown function ` C...
algfx 16522 If ` F ` reaches a fixed p...
eucalgval2 16523 The value of the step func...
eucalgval 16524 Euclid's Algorithm ~ eucal...
eucalgf 16525 Domain and codomain of the...
eucalginv 16526 The invariant of the step ...
eucalglt 16527 The second member of the s...
eucalgcvga 16528 Once Euclid's Algorithm ha...
eucalg 16529 Euclid's Algorithm compute...
lcmval 16534 Value of the ` lcm ` opera...
lcmcom 16535 The ` lcm ` operator is co...
lcm0val 16536 The value, by convention, ...
lcmn0val 16537 The value of the ` lcm ` o...
lcmcllem 16538 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16539 Closure of the ` lcm ` ope...
dvdslcm 16540 The lcm of two integers is...
lcmledvds 16541 A positive integer which b...
lcmeq0 16542 The lcm of two integers is...
lcmcl 16543 Closure of the ` lcm ` ope...
gcddvdslcm 16544 The greatest common diviso...
lcmneg 16545 Negating one operand of th...
neglcm 16546 Negating one operand of th...
lcmabs 16547 The lcm of two integers is...
lcmgcdlem 16548 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16549 The product of two numbers...
lcmdvds 16550 The lcm of two integers di...
lcmid 16551 The lcm of an integer and ...
lcm1 16552 The lcm of an integer and ...
lcmgcdnn 16553 The product of two positiv...
lcmgcdeq 16554 Two integers' absolute val...
lcmdvdsb 16555 Biconditional form of ~ lc...
lcmass 16556 Associative law for ` lcm ...
3lcm2e6woprm 16557 The least common multiple ...
6lcm4e12 16558 The least common multiple ...
absproddvds 16559 The absolute value of the ...
absprodnn 16560 The absolute value of the ...
fissn0dvds 16561 For each finite subset of ...
fissn0dvdsn0 16562 For each finite subset of ...
lcmfval 16563 Value of the ` _lcm ` func...
lcmf0val 16564 The value, by convention, ...
lcmfn0val 16565 The value of the ` _lcm ` ...
lcmfnnval 16566 The value of the ` _lcm ` ...
lcmfcllem 16567 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16568 Closure of the ` _lcm ` fu...
lcmfpr 16569 The value of the ` _lcm ` ...
lcmfcl 16570 Closure of the ` _lcm ` fu...
lcmfnncl 16571 Closure of the ` _lcm ` fu...
lcmfeq0b 16572 The least common multiple ...
dvdslcmf 16573 The least common multiple ...
lcmfledvds 16574 A positive integer which i...
lcmf 16575 Characterization of the le...
lcmf0 16576 The least common multiple ...
lcmfsn 16577 The least common multiple ...
lcmftp 16578 The least common multiple ...
lcmfunsnlem1 16579 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16580 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16581 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16582 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16583 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16584 The least common multiple ...
lcmfdvdsb 16585 Biconditional form of ~ lc...
lcmfunsn 16586 The ` _lcm ` function for ...
lcmfun 16587 The ` _lcm ` function for ...
lcmfass 16588 Associative law for the ` ...
lcmf2a3a4e12 16589 The least common multiple ...
lcmflefac 16590 The least common multiple ...
coprmgcdb 16591 Two positive integers are ...
ncoprmgcdne1b 16592 Two positive integers are ...
ncoprmgcdgt1b 16593 Two positive integers are ...
coprmdvds1 16594 If two positive integers a...
coprmdvds 16595 Euclid's Lemma (see ProofW...
coprmdvds2 16596 If an integer is divisible...
mulgcddvds 16597 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16598 If ` M ` is relatively pri...
qredeq 16599 Two equal reduced fraction...
qredeu 16600 Every rational number has ...
rpmul 16601 If ` K ` is relatively pri...
rpdvds 16602 If ` K ` is relatively pri...
coprmprod 16603 The product of the element...
coprmproddvdslem 16604 Lemma for ~ coprmproddvds ...
coprmproddvds 16605 If a positive integer is d...
congr 16606 Definition of congruence b...
divgcdcoprm0 16607 Integers divided by gcd ar...
divgcdcoprmex 16608 Integers divided by gcd ar...
cncongr1 16609 One direction of the bicon...
cncongr2 16610 The other direction of the...
cncongr 16611 Cancellability of Congruen...
cncongrcoprm 16612 Corollary 1 of Cancellabil...
isprm 16615 The predicate "is a prime ...
prmnn 16616 A prime number is a positi...
prmz 16617 A prime number is an integ...
prmssnn 16618 The prime numbers are a su...
prmex 16619 The set of prime numbers e...
0nprm 16620 0 is not a prime number. ...
1nprm 16621 1 is not a prime number. ...
1idssfct 16622 The positive divisors of a...
isprm2lem 16623 Lemma for ~ isprm2 . (Con...
isprm2 16624 The predicate "is a prime ...
isprm3 16625 The predicate "is a prime ...
isprm4 16626 The predicate "is a prime ...
prmind2 16627 A variation on ~ prmind as...
prmind 16628 Perform induction over the...
dvdsprime 16629 If ` M ` divides a prime, ...
nprm 16630 A product of two integers ...
nprmi 16631 An inference for composite...
dvdsnprmd 16632 If a number is divisible b...
prm2orodd 16633 A prime number is either 2...
2prm 16634 2 is a prime number. (Con...
2mulprm 16635 A multiple of two is prime...
3prm 16636 3 is a prime number. (Con...
4nprm 16637 4 is not a prime number. ...
prmuz2 16638 A prime number is an integ...
prmgt1 16639 A prime number is an integ...
prmm2nn0 16640 Subtracting 2 from a prime...
oddprmgt2 16641 An odd prime is greater th...
oddprmge3 16642 An odd prime is greater th...
ge2nprmge4 16643 A composite integer greate...
sqnprm 16644 A square is never prime. ...
dvdsprm 16645 An integer greater than or...
exprmfct 16646 Every integer greater than...
prmdvdsfz 16647 Each integer greater than ...
nprmdvds1 16648 No prime number divides 1....
isprm5 16649 One need only check prime ...
isprm7 16650 One need only check prime ...
maxprmfct 16651 The set of prime factors o...
divgcdodd 16652 Either ` A / ( A gcd B ) `...
coprm 16653 A prime number either divi...
prmrp 16654 Unequal prime numbers are ...
euclemma 16655 Euclid's lemma. A prime n...
isprm6 16656 A number is prime iff it s...
prmdvdsexp 16657 A prime divides a positive...
prmdvdsexpb 16658 A prime divides a positive...
prmdvdsexpr 16659 If a prime divides a nonne...
prmdvdssq 16660 Condition for a prime divi...
prmdvdssqOLD 16661 Obsolete version of ~ prmd...
prmexpb 16662 Two positive prime powers ...
prmfac1 16663 The factorial of a number ...
rpexp 16664 If two numbers ` A ` and `...
rpexp1i 16665 Relative primality passes ...
rpexp12i 16666 Relative primality passes ...
prmndvdsfaclt 16667 A prime number does not di...
prmdvdsncoprmbd 16668 Two positive integers are ...
ncoprmlnprm 16669 If two positive integers a...
cncongrprm 16670 Corollary 2 of Cancellabil...
isevengcd2 16671 The predicate "is an even ...
isoddgcd1 16672 The predicate "is an odd n...
3lcm2e6 16673 The least common multiple ...
qnumval 16678 Value of the canonical num...
qdenval 16679 Value of the canonical den...
qnumdencl 16680 Lemma for ~ qnumcl and ~ q...
qnumcl 16681 The canonical numerator of...
qdencl 16682 The canonical denominator ...
fnum 16683 Canonical numerator define...
fden 16684 Canonical denominator defi...
qnumdenbi 16685 Two numbers are the canoni...
qnumdencoprm 16686 The canonical representati...
qeqnumdivden 16687 Recover a rational number ...
qmuldeneqnum 16688 Multiplying a rational by ...
divnumden 16689 Calculate the reduced form...
divdenle 16690 Reducing a quotient never ...
qnumgt0 16691 A rational is positive iff...
qgt0numnn 16692 A rational is positive iff...
nn0gcdsq 16693 Squaring commutes with GCD...
zgcdsq 16694 ~ nn0gcdsq extended to int...
numdensq 16695 Squaring a rational square...
numsq 16696 Square commutes with canon...
densq 16697 Square commutes with canon...
qden1elz 16698 A rational is an integer i...
zsqrtelqelz 16699 If an integer has a ration...
nonsq 16700 Any integer strictly betwe...
phival 16705 Value of the Euler ` phi `...
phicl2 16706 Bounds and closure for the...
phicl 16707 Closure for the value of t...
phibndlem 16708 Lemma for ~ phibnd . (Con...
phibnd 16709 A slightly tighter bound o...
phicld 16710 Closure for the value of t...
phi1 16711 Value of the Euler ` phi `...
dfphi2 16712 Alternate definition of th...
hashdvds 16713 The number of numbers in a...
phiprmpw 16714 Value of the Euler ` phi `...
phiprm 16715 Value of the Euler ` phi `...
crth 16716 The Chinese Remainder Theo...
phimullem 16717 Lemma for ~ phimul . (Con...
phimul 16718 The Euler ` phi ` function...
eulerthlem1 16719 Lemma for ~ eulerth . (Co...
eulerthlem2 16720 Lemma for ~ eulerth . (Co...
eulerth 16721 Euler's theorem, a general...
fermltl 16722 Fermat's little theorem. ...
prmdiv 16723 Show an explicit expressio...
prmdiveq 16724 The modular inverse of ` A...
prmdivdiv 16725 The (modular) inverse of t...
hashgcdlem 16726 A correspondence between e...
hashgcdeq 16727 Number of initial positive...
phisum 16728 The divisor sum identity o...
odzval 16729 Value of the order functio...
odzcllem 16730 - Lemma for ~ odzcl , show...
odzcl 16731 The order of a group eleme...
odzid 16732 Any element raised to the ...
odzdvds 16733 The only powers of ` A ` t...
odzphi 16734 The order of any group ele...
modprm1div 16735 A prime number divides an ...
m1dvdsndvds 16736 If an integer minus 1 is d...
modprminv 16737 Show an explicit expressio...
modprminveq 16738 The modular inverse of ` A...
vfermltl 16739 Variant of Fermat's little...
vfermltlALT 16740 Alternate proof of ~ vferm...
powm2modprm 16741 If an integer minus 1 is d...
reumodprminv 16742 For any prime number and f...
modprm0 16743 For two positive integers ...
nnnn0modprm0 16744 For a positive integer and...
modprmn0modprm0 16745 For an integer not being 0...
coprimeprodsq 16746 If three numbers are copri...
coprimeprodsq2 16747 If three numbers are copri...
oddprm 16748 A prime not equal to ` 2 `...
nnoddn2prm 16749 A prime not equal to ` 2 `...
oddn2prm 16750 A prime not equal to ` 2 `...
nnoddn2prmb 16751 A number is a prime number...
prm23lt5 16752 A prime less than 5 is eit...
prm23ge5 16753 A prime is either 2 or 3 o...
pythagtriplem1 16754 Lemma for ~ pythagtrip . ...
pythagtriplem2 16755 Lemma for ~ pythagtrip . ...
pythagtriplem3 16756 Lemma for ~ pythagtrip . ...
pythagtriplem4 16757 Lemma for ~ pythagtrip . ...
pythagtriplem10 16758 Lemma for ~ pythagtrip . ...
pythagtriplem6 16759 Lemma for ~ pythagtrip . ...
pythagtriplem7 16760 Lemma for ~ pythagtrip . ...
pythagtriplem8 16761 Lemma for ~ pythagtrip . ...
pythagtriplem9 16762 Lemma for ~ pythagtrip . ...
pythagtriplem11 16763 Lemma for ~ pythagtrip . ...
pythagtriplem12 16764 Lemma for ~ pythagtrip . ...
pythagtriplem13 16765 Lemma for ~ pythagtrip . ...
pythagtriplem14 16766 Lemma for ~ pythagtrip . ...
pythagtriplem15 16767 Lemma for ~ pythagtrip . ...
pythagtriplem16 16768 Lemma for ~ pythagtrip . ...
pythagtriplem17 16769 Lemma for ~ pythagtrip . ...
pythagtriplem18 16770 Lemma for ~ pythagtrip . ...
pythagtriplem19 16771 Lemma for ~ pythagtrip . ...
pythagtrip 16772 Parameterize the Pythagore...
iserodd 16773 Collect the odd terms in a...
pclem 16776 - Lemma for the prime powe...
pcprecl 16777 Closure of the prime power...
pcprendvds 16778 Non-divisibility property ...
pcprendvds2 16779 Non-divisibility property ...
pcpre1 16780 Value of the prime power p...
pcpremul 16781 Multiplicative property of...
pcval 16782 The value of the prime pow...
pceulem 16783 Lemma for ~ pceu . (Contr...
pceu 16784 Uniqueness for the prime p...
pczpre 16785 Connect the prime count pr...
pczcl 16786 Closure of the prime power...
pccl 16787 Closure of the prime power...
pccld 16788 Closure of the prime power...
pcmul 16789 Multiplication property of...
pcdiv 16790 Division property of the p...
pcqmul 16791 Multiplication property of...
pc0 16792 The value of the prime pow...
pc1 16793 Value of the prime count f...
pcqcl 16794 Closure of the general pri...
pcqdiv 16795 Division property of the p...
pcrec 16796 Prime power of a reciproca...
pcexp 16797 Prime power of an exponent...
pcxnn0cl 16798 Extended nonnegative integ...
pcxcl 16799 Extended real closure of t...
pcge0 16800 The prime count of an inte...
pczdvds 16801 Defining property of the p...
pcdvds 16802 Defining property of the p...
pczndvds 16803 Defining property of the p...
pcndvds 16804 Defining property of the p...
pczndvds2 16805 The remainder after dividi...
pcndvds2 16806 The remainder after dividi...
pcdvdsb 16807 ` P ^ A ` divides ` N ` if...
pcelnn 16808 There are a positive numbe...
pceq0 16809 There are zero powers of a...
pcidlem 16810 The prime count of a prime...
pcid 16811 The prime count of a prime...
pcneg 16812 The prime count of a negat...
pcabs 16813 The prime count of an abso...
pcdvdstr 16814 The prime count increases ...
pcgcd1 16815 The prime count of a GCD i...
pcgcd 16816 The prime count of a GCD i...
pc2dvds 16817 A characterization of divi...
pc11 16818 The prime count function, ...
pcz 16819 The prime count function c...
pcprmpw2 16820 Self-referential expressio...
pcprmpw 16821 Self-referential expressio...
dvdsprmpweq 16822 If a positive integer divi...
dvdsprmpweqnn 16823 If an integer greater than...
dvdsprmpweqle 16824 If a positive integer divi...
difsqpwdvds 16825 If the difference of two s...
pcaddlem 16826 Lemma for ~ pcadd . The o...
pcadd 16827 An inequality for the prim...
pcadd2 16828 The inequality of ~ pcadd ...
pcmptcl 16829 Closure for the prime powe...
pcmpt 16830 Construct a function with ...
pcmpt2 16831 Dividing two prime count m...
pcmptdvds 16832 The partial products of th...
pcprod 16833 The product of the primes ...
sumhash 16834 The sum of 1 over a set is...
fldivp1 16835 The difference between the...
pcfaclem 16836 Lemma for ~ pcfac . (Cont...
pcfac 16837 Calculate the prime count ...
pcbc 16838 Calculate the prime count ...
qexpz 16839 If a power of a rational n...
expnprm 16840 A second or higher power o...
oddprmdvds 16841 Every positive integer whi...
prmpwdvds 16842 A relation involving divis...
pockthlem 16843 Lemma for ~ pockthg . (Co...
pockthg 16844 The generalized Pocklingto...
pockthi 16845 Pocklington's theorem, whi...
unbenlem 16846 Lemma for ~ unben . (Cont...
unben 16847 An unbounded set of positi...
infpnlem1 16848 Lemma for ~ infpn . The s...
infpnlem2 16849 Lemma for ~ infpn . For a...
infpn 16850 There exist infinitely man...
infpn2 16851 There exist infinitely man...
prmunb 16852 The primes are unbounded. ...
prminf 16853 There are an infinite numb...
prmreclem1 16854 Lemma for ~ prmrec . Prop...
prmreclem2 16855 Lemma for ~ prmrec . Ther...
prmreclem3 16856 Lemma for ~ prmrec . The ...
prmreclem4 16857 Lemma for ~ prmrec . Show...
prmreclem5 16858 Lemma for ~ prmrec . Here...
prmreclem6 16859 Lemma for ~ prmrec . If t...
prmrec 16860 The sum of the reciprocals...
1arithlem1 16861 Lemma for ~ 1arith . (Con...
1arithlem2 16862 Lemma for ~ 1arith . (Con...
1arithlem3 16863 Lemma for ~ 1arith . (Con...
1arithlem4 16864 Lemma for ~ 1arith . (Con...
1arith 16865 Fundamental theorem of ari...
1arith2 16866 Fundamental theorem of ari...
elgz 16869 Elementhood in the gaussia...
gzcn 16870 A gaussian integer is a co...
zgz 16871 An integer is a gaussian i...
igz 16872 ` _i ` is a gaussian integ...
gznegcl 16873 The gaussian integers are ...
gzcjcl 16874 The gaussian integers are ...
gzaddcl 16875 The gaussian integers are ...
gzmulcl 16876 The gaussian integers are ...
gzreim 16877 Construct a gaussian integ...
gzsubcl 16878 The gaussian integers are ...
gzabssqcl 16879 The squared norm of a gaus...
4sqlem5 16880 Lemma for ~ 4sq . (Contri...
4sqlem6 16881 Lemma for ~ 4sq . (Contri...
4sqlem7 16882 Lemma for ~ 4sq . (Contri...
4sqlem8 16883 Lemma for ~ 4sq . (Contri...
4sqlem9 16884 Lemma for ~ 4sq . (Contri...
4sqlem10 16885 Lemma for ~ 4sq . (Contri...
4sqlem1 16886 Lemma for ~ 4sq . The set...
4sqlem2 16887 Lemma for ~ 4sq . Change ...
4sqlem3 16888 Lemma for ~ 4sq . Suffici...
4sqlem4a 16889 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16890 Lemma for ~ 4sq . We can ...
mul4sqlem 16891 Lemma for ~ mul4sq : algeb...
mul4sq 16892 Euler's four-square identi...
4sqlem11 16893 Lemma for ~ 4sq . Use the...
4sqlem12 16894 Lemma for ~ 4sq . For any...
4sqlem13 16895 Lemma for ~ 4sq . (Contri...
4sqlem14 16896 Lemma for ~ 4sq . (Contri...
4sqlem15 16897 Lemma for ~ 4sq . (Contri...
4sqlem16 16898 Lemma for ~ 4sq . (Contri...
4sqlem17 16899 Lemma for ~ 4sq . (Contri...
4sqlem18 16900 Lemma for ~ 4sq . Inducti...
4sqlem19 16901 Lemma for ~ 4sq . The pro...
4sq 16902 Lagrange's four-square the...
vdwapfval 16909 Define the arithmetic prog...
vdwapf 16910 The arithmetic progression...
vdwapval 16911 Value of the arithmetic pr...
vdwapun 16912 Remove the first element o...
vdwapid1 16913 The first element of an ar...
vdwap0 16914 Value of a length-1 arithm...
vdwap1 16915 Value of a length-1 arithm...
vdwmc 16916 The predicate " The ` <. R...
vdwmc2 16917 Expand out the definition ...
vdwpc 16918 The predicate " The colori...
vdwlem1 16919 Lemma for ~ vdw . (Contri...
vdwlem2 16920 Lemma for ~ vdw . (Contri...
vdwlem3 16921 Lemma for ~ vdw . (Contri...
vdwlem4 16922 Lemma for ~ vdw . (Contri...
vdwlem5 16923 Lemma for ~ vdw . (Contri...
vdwlem6 16924 Lemma for ~ vdw . (Contri...
vdwlem7 16925 Lemma for ~ vdw . (Contri...
vdwlem8 16926 Lemma for ~ vdw . (Contri...
vdwlem9 16927 Lemma for ~ vdw . (Contri...
vdwlem10 16928 Lemma for ~ vdw . Set up ...
vdwlem11 16929 Lemma for ~ vdw . (Contri...
vdwlem12 16930 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16931 Lemma for ~ vdw . Main in...
vdw 16932 Van der Waerden's theorem....
vdwnnlem1 16933 Corollary of ~ vdw , and l...
vdwnnlem2 16934 Lemma for ~ vdwnn . The s...
vdwnnlem3 16935 Lemma for ~ vdwnn . (Cont...
vdwnn 16936 Van der Waerden's theorem,...
ramtlecl 16938 The set ` T ` of numbers w...
hashbcval 16940 Value of the "binomial set...
hashbccl 16941 The binomial set is a fini...
hashbcss 16942 Subset relation for the bi...
hashbc0 16943 The set of subsets of size...
hashbc2 16944 The size of the binomial s...
0hashbc 16945 There are no subsets of th...
ramval 16946 The value of the Ramsey nu...
ramcl2lem 16947 Lemma for extended real cl...
ramtcl 16948 The Ramsey number has the ...
ramtcl2 16949 The Ramsey number is an in...
ramtub 16950 The Ramsey number is a low...
ramub 16951 The Ramsey number is a low...
ramub2 16952 It is sufficient to check ...
rami 16953 The defining property of a...
ramcl2 16954 The Ramsey number is eithe...
ramxrcl 16955 The Ramsey number is an ex...
ramubcl 16956 If the Ramsey number is up...
ramlb 16957 Establish a lower bound on...
0ram 16958 The Ramsey number when ` M...
0ram2 16959 The Ramsey number when ` M...
ram0 16960 The Ramsey number when ` R...
0ramcl 16961 Lemma for ~ ramcl : Exist...
ramz2 16962 The Ramsey number when ` F...
ramz 16963 The Ramsey number when ` F...
ramub1lem1 16964 Lemma for ~ ramub1 . (Con...
ramub1lem2 16965 Lemma for ~ ramub1 . (Con...
ramub1 16966 Inductive step for Ramsey'...
ramcl 16967 Ramsey's theorem: the Rams...
ramsey 16968 Ramsey's theorem with the ...
prmoval 16971 Value of the primorial fun...
prmocl 16972 Closure of the primorial f...
prmone0 16973 The primorial function is ...
prmo0 16974 The primorial of 0. (Cont...
prmo1 16975 The primorial of 1. (Cont...
prmop1 16976 The primorial of a success...
prmonn2 16977 Value of the primorial fun...
prmo2 16978 The primorial of 2. (Cont...
prmo3 16979 The primorial of 3. (Cont...
prmdvdsprmo 16980 The primorial of a number ...
prmdvdsprmop 16981 The primorial of a number ...
fvprmselelfz 16982 The value of the prime sel...
fvprmselgcd1 16983 The greatest common diviso...
prmolefac 16984 The primorial of a positiv...
prmodvdslcmf 16985 The primorial of a nonnega...
prmolelcmf 16986 The primorial of a positiv...
prmgaplem1 16987 Lemma for ~ prmgap : The ...
prmgaplem2 16988 Lemma for ~ prmgap : The ...
prmgaplcmlem1 16989 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 16990 Lemma for ~ prmgaplcm : T...
prmgaplem3 16991 Lemma for ~ prmgap . (Con...
prmgaplem4 16992 Lemma for ~ prmgap . (Con...
prmgaplem5 16993 Lemma for ~ prmgap : for e...
prmgaplem6 16994 Lemma for ~ prmgap : for e...
prmgaplem7 16995 Lemma for ~ prmgap . (Con...
prmgaplem8 16996 Lemma for ~ prmgap . (Con...
prmgap 16997 The prime gap theorem: for...
prmgaplcm 16998 Alternate proof of ~ prmga...
prmgapprmolem 16999 Lemma for ~ prmgapprmo : ...
prmgapprmo 17000 Alternate proof of ~ prmga...
dec2dvds 17001 Divisibility by two is obv...
dec5dvds 17002 Divisibility by five is ob...
dec5dvds2 17003 Divisibility by five is ob...
dec5nprm 17004 Divisibility by five is ob...
dec2nprm 17005 Divisibility by two is obv...
modxai 17006 Add exponents in a power m...
mod2xi 17007 Double exponents in a powe...
modxp1i 17008 Add one to an exponent in ...
mod2xnegi 17009 Version of ~ mod2xi with a...
modsubi 17010 Subtract from within a mod...
gcdi 17011 Calculate a GCD via Euclid...
gcdmodi 17012 Calculate a GCD via Euclid...
decexp2 17013 Calculate a power of two. ...
numexp0 17014 Calculate an integer power...
numexp1 17015 Calculate an integer power...
numexpp1 17016 Calculate an integer power...
numexp2x 17017 Double an integer power. ...
decsplit0b 17018 Split a decimal number int...
decsplit0 17019 Split a decimal number int...
decsplit1 17020 Split a decimal number int...
decsplit 17021 Split a decimal number int...
karatsuba 17022 The Karatsuba multiplicati...
2exp4 17023 Two to the fourth power is...
2exp5 17024 Two to the fifth power is ...
2exp6 17025 Two to the sixth power is ...
2exp7 17026 Two to the seventh power i...
2exp8 17027 Two to the eighth power is...
2exp11 17028 Two to the eleventh power ...
2exp16 17029 Two to the sixteenth power...
3exp3 17030 Three to the third power i...
2expltfac 17031 The factorial grows faster...
cshwsidrepsw 17032 If cyclically shifting a w...
cshwsidrepswmod0 17033 If cyclically shifting a w...
cshwshashlem1 17034 If cyclically shifting a w...
cshwshashlem2 17035 If cyclically shifting a w...
cshwshashlem3 17036 If cyclically shifting a w...
cshwsdisj 17037 The singletons resulting b...
cshwsiun 17038 The set of (different!) wo...
cshwsex 17039 The class of (different!) ...
cshws0 17040 The size of the set of (di...
cshwrepswhash1 17041 The size of the set of (di...
cshwshashnsame 17042 If a word (not consisting ...
cshwshash 17043 If a word has a length bei...
prmlem0 17044 Lemma for ~ prmlem1 and ~ ...
prmlem1a 17045 A quick proof skeleton to ...
prmlem1 17046 A quick proof skeleton to ...
5prm 17047 5 is a prime number. (Con...
6nprm 17048 6 is not a prime number. ...
7prm 17049 7 is a prime number. (Con...
8nprm 17050 8 is not a prime number. ...
9nprm 17051 9 is not a prime number. ...
10nprm 17052 10 is not a prime number. ...
11prm 17053 11 is a prime number. (Co...
13prm 17054 13 is a prime number. (Co...
17prm 17055 17 is a prime number. (Co...
19prm 17056 19 is a prime number. (Co...
23prm 17057 23 is a prime number. (Co...
prmlem2 17058 Our last proving session g...
37prm 17059 37 is a prime number. (Co...
43prm 17060 43 is a prime number. (Co...
83prm 17061 83 is a prime number. (Co...
139prm 17062 139 is a prime number. (C...
163prm 17063 163 is a prime number. (C...
317prm 17064 317 is a prime number. (C...
631prm 17065 631 is a prime number. (C...
prmo4 17066 The primorial of 4. (Cont...
prmo5 17067 The primorial of 5. (Cont...
prmo6 17068 The primorial of 6. (Cont...
1259lem1 17069 Lemma for ~ 1259prm . Cal...
1259lem2 17070 Lemma for ~ 1259prm . Cal...
1259lem3 17071 Lemma for ~ 1259prm . Cal...
1259lem4 17072 Lemma for ~ 1259prm . Cal...
1259lem5 17073 Lemma for ~ 1259prm . Cal...
1259prm 17074 1259 is a prime number. (...
2503lem1 17075 Lemma for ~ 2503prm . Cal...
2503lem2 17076 Lemma for ~ 2503prm . Cal...
2503lem3 17077 Lemma for ~ 2503prm . Cal...
2503prm 17078 2503 is a prime number. (...
4001lem1 17079 Lemma for ~ 4001prm . Cal...
4001lem2 17080 Lemma for ~ 4001prm . Cal...
4001lem3 17081 Lemma for ~ 4001prm . Cal...
4001lem4 17082 Lemma for ~ 4001prm . Cal...
4001prm 17083 4001 is a prime number. (...
brstruct 17086 The structure relation is ...
isstruct2 17087 The property of being a st...
structex 17088 A structure is a set. (Co...
structn0fun 17089 A structure without the em...
isstruct 17090 The property of being a st...
structcnvcnv 17091 Two ways to express the re...
structfung 17092 The converse of the conver...
structfun 17093 Convert between two kinds ...
structfn 17094 Convert between two kinds ...
strleun 17095 Combine two structures int...
strle1 17096 Make a structure from a si...
strle2 17097 Make a structure from a pa...
strle3 17098 Make a structure from a tr...
sbcie2s 17099 A special version of class...
sbcie3s 17100 A special version of class...
reldmsets 17103 The structure override ope...
setsvalg 17104 Value of the structure rep...
setsval 17105 Value of the structure rep...
fvsetsid 17106 The value of the structure...
fsets 17107 The structure replacement ...
setsdm 17108 The domain of a structure ...
setsfun 17109 A structure with replaceme...
setsfun0 17110 A structure with replaceme...
setsn0fun 17111 The value of the structure...
setsstruct2 17112 An extensible structure wi...
setsexstruct2 17113 An extensible structure wi...
setsstruct 17114 An extensible structure wi...
wunsets 17115 Closure of structure repla...
setsres 17116 The structure replacement ...
setsabs 17117 Replacing the same compone...
setscom 17118 Different components can b...
sloteq 17121 Equality theorem for the `...
slotfn 17122 A slot is a function on se...
strfvnd 17123 Deduction version of ~ str...
strfvn 17124 Value of a structure compo...
strfvss 17125 A structure component extr...
wunstr 17126 Closure of a structure ind...
str0 17127 All components of the empt...
strfvi 17128 Structure slot extractors ...
fveqprc 17129 Lemma for showing the equa...
oveqprc 17130 Lemma for showing the equa...
wunndx 17133 Closure of the index extra...
ndxarg 17134 Get the numeric argument f...
ndxid 17135 A structure component extr...
strndxid 17136 The value of a structure c...
setsidvald 17137 Value of the structure rep...
setsidvaldOLD 17138 Obsolete version of ~ sets...
strfvd 17139 Deduction version of ~ str...
strfv2d 17140 Deduction version of ~ str...
strfv2 17141 A variation on ~ strfv to ...
strfv 17142 Extract a structure compon...
strfv3 17143 Variant on ~ strfv for lar...
strssd 17144 Deduction version of ~ str...
strss 17145 Propagate component extrac...
setsid 17146 Value of the structure rep...
setsnid 17147 Value of the structure rep...
setsnidOLD 17148 Obsolete proof of ~ setsni...
baseval 17151 Value of the base set extr...
baseid 17152 Utility theorem: index-ind...
basfn 17153 The base set extractor is ...
base0 17154 The base set of the empty ...
elbasfv 17155 Utility theorem: reverse c...
elbasov 17156 Utility theorem: reverse c...
strov2rcl 17157 Partial reverse closure fo...
basendx 17158 Index value of the base se...
basendxnn 17159 The index value of the bas...
basendxnnOLD 17160 Obsolete proof of ~ basend...
basndxelwund 17161 The index of the base set ...
basprssdmsets 17162 The pair of the base index...
opelstrbas 17163 The base set of a structur...
1strstr 17164 A constructed one-slot str...
1strstr1 17165 A constructed one-slot str...
1strbas 17166 The base set of a construc...
1strbasOLD 17167 Obsolete proof of ~ 1strba...
1strwunbndx 17168 A constructed one-slot str...
1strwun 17169 A constructed one-slot str...
1strwunOLD 17170 Obsolete version of ~ 1str...
2strstr 17171 A constructed two-slot str...
2strbas 17172 The base set of a construc...
2strop 17173 The other slot of a constr...
2strstr1 17174 A constructed two-slot str...
2strstr1OLD 17175 Obsolete version of ~ 2str...
2strbas1 17176 The base set of a construc...
2strop1 17177 The other slot of a constr...
reldmress 17180 The structure restriction ...
ressval 17181 Value of structure restric...
ressid2 17182 General behavior of trivia...
ressval2 17183 Value of nontrivial struct...
ressbas 17184 Base set of a structure re...
ressbasOLD 17185 Obsolete proof of ~ ressba...
ressbasssg 17186 The base set of a restrict...
ressbas2 17187 Base set of a structure re...
ressbasss 17188 The base set of a restrict...
ressbasssOLD 17189 Obsolete proof of ~ ressba...
ressbasss2 17190 The base set of a restrict...
resseqnbas 17191 The components of an exten...
resslemOLD 17192 Obsolete version of ~ ress...
ress0 17193 All restrictions of the nu...
ressid 17194 Behavior of trivial restri...
ressinbas 17195 Restriction only cares abo...
ressval3d 17196 Value of structure restric...
ressval3dOLD 17197 Obsolete version of ~ ress...
ressress 17198 Restriction composition la...
ressabs 17199 Restriction absorption law...
wunress 17200 Closure of structure restr...
wunressOLD 17201 Obsolete proof of ~ wunres...
plusgndx 17228 Index value of the ~ df-pl...
plusgid 17229 Utility theorem: index-ind...
plusgndxnn 17230 The index of the slot for ...
basendxltplusgndx 17231 The index of the slot for ...
basendxnplusgndx 17232 The slot for the base set ...
basendxnplusgndxOLD 17233 Obsolete version of ~ base...
grpstr 17234 A constructed group is a s...
grpstrndx 17235 A constructed group is a s...
grpbase 17236 The base set of a construc...
grpbaseOLD 17237 Obsolete version of ~ grpb...
grpplusg 17238 The operation of a constru...
grpplusgOLD 17239 Obsolete version of ~ grpp...
ressplusg 17240 ` +g ` is unaffected by re...
grpbasex 17241 The base of an explicitly ...
grpplusgx 17242 The operation of an explic...
mulrndx 17243 Index value of the ~ df-mu...
mulridx 17244 Utility theorem: index-ind...
basendxnmulrndx 17245 The slot for the base set ...
basendxnmulrndxOLD 17246 Obsolete proof of ~ basend...
plusgndxnmulrndx 17247 The slot for the group (ad...
rngstr 17248 A constructed ring is a st...
rngbase 17249 The base set of a construc...
rngplusg 17250 The additive operation of ...
rngmulr 17251 The multiplicative operati...
starvndx 17252 Index value of the ~ df-st...
starvid 17253 Utility theorem: index-ind...
starvndxnbasendx 17254 The slot for the involutio...
starvndxnplusgndx 17255 The slot for the involutio...
starvndxnmulrndx 17256 The slot for the involutio...
ressmulr 17257 ` .r ` is unaffected by re...
ressstarv 17258 ` *r ` is unaffected by re...
srngstr 17259 A constructed star ring is...
srngbase 17260 The base set of a construc...
srngplusg 17261 The addition operation of ...
srngmulr 17262 The multiplication operati...
srnginvl 17263 The involution function of...
scandx 17264 Index value of the ~ df-sc...
scaid 17265 Utility theorem: index-ind...
scandxnbasendx 17266 The slot for the scalar is...
scandxnplusgndx 17267 The slot for the scalar fi...
scandxnmulrndx 17268 The slot for the scalar fi...
vscandx 17269 Index value of the ~ df-vs...
vscaid 17270 Utility theorem: index-ind...
vscandxnbasendx 17271 The slot for the scalar pr...
vscandxnplusgndx 17272 The slot for the scalar pr...
vscandxnmulrndx 17273 The slot for the scalar pr...
vscandxnscandx 17274 The slot for the scalar pr...
lmodstr 17275 A constructed left module ...
lmodbase 17276 The base set of a construc...
lmodplusg 17277 The additive operation of ...
lmodsca 17278 The set of scalars of a co...
lmodvsca 17279 The scalar product operati...
ipndx 17280 Index value of the ~ df-ip...
ipid 17281 Utility theorem: index-ind...
ipndxnbasendx 17282 The slot for the inner pro...
ipndxnplusgndx 17283 The slot for the inner pro...
ipndxnmulrndx 17284 The slot for the inner pro...
slotsdifipndx 17285 The slot for the scalar is...
ipsstr 17286 Lemma to shorten proofs of...
ipsbase 17287 The base set of a construc...
ipsaddg 17288 The additive operation of ...
ipsmulr 17289 The multiplicative operati...
ipssca 17290 The set of scalars of a co...
ipsvsca 17291 The scalar product operati...
ipsip 17292 The multiplicative operati...
resssca 17293 ` Scalar ` is unaffected b...
ressvsca 17294 ` .s ` is unaffected by re...
ressip 17295 The inner product is unaff...
phlstr 17296 A constructed pre-Hilbert ...
phlbase 17297 The base set of a construc...
phlplusg 17298 The additive operation of ...
phlsca 17299 The ring of scalars of a c...
phlvsca 17300 The scalar product operati...
phlip 17301 The inner product (Hermiti...
tsetndx 17302 Index value of the ~ df-ts...
tsetid 17303 Utility theorem: index-ind...
tsetndxnn 17304 The index of the slot for ...
basendxlttsetndx 17305 The index of the slot for ...
tsetndxnbasendx 17306 The slot for the topology ...
tsetndxnplusgndx 17307 The slot for the topology ...
tsetndxnmulrndx 17308 The slot for the topology ...
tsetndxnstarvndx 17309 The slot for the topology ...
slotstnscsi 17310 The slots ` Scalar ` , ` ....
topgrpstr 17311 A constructed topological ...
topgrpbas 17312 The base set of a construc...
topgrpplusg 17313 The additive operation of ...
topgrptset 17314 The topology of a construc...
resstset 17315 ` TopSet ` is unaffected b...
plendx 17316 Index value of the ~ df-pl...
pleid 17317 Utility theorem: self-refe...
plendxnn 17318 The index value of the ord...
basendxltplendx 17319 The index value of the ` B...
plendxnbasendx 17320 The slot for the order is ...
plendxnplusgndx 17321 The slot for the "less tha...
plendxnmulrndx 17322 The slot for the "less tha...
plendxnscandx 17323 The slot for the "less tha...
plendxnvscandx 17324 The slot for the "less tha...
slotsdifplendx 17325 The index of the slot for ...
otpsstr 17326 Functionality of a topolog...
otpsbas 17327 The base set of a topologi...
otpstset 17328 The open sets of a topolog...
otpsle 17329 The order of a topological...
ressle 17330 ` le ` is unaffected by re...
ocndx 17331 Index value of the ~ df-oc...
ocid 17332 Utility theorem: index-ind...
basendxnocndx 17333 The slot for the orthocomp...
plendxnocndx 17334 The slot for the orthocomp...
dsndx 17335 Index value of the ~ df-ds...
dsid 17336 Utility theorem: index-ind...
dsndxnn 17337 The index of the slot for ...
basendxltdsndx 17338 The index of the slot for ...
dsndxnbasendx 17339 The slot for the distance ...
dsndxnplusgndx 17340 The slot for the distance ...
dsndxnmulrndx 17341 The slot for the distance ...
slotsdnscsi 17342 The slots ` Scalar ` , ` ....
dsndxntsetndx 17343 The slot for the distance ...
slotsdifdsndx 17344 The index of the slot for ...
unifndx 17345 Index value of the ~ df-un...
unifid 17346 Utility theorem: index-ind...
unifndxnn 17347 The index of the slot for ...
basendxltunifndx 17348 The index of the slot for ...
unifndxnbasendx 17349 The slot for the uniform s...
unifndxntsetndx 17350 The slot for the uniform s...
slotsdifunifndx 17351 The index of the slot for ...
ressunif 17352 ` UnifSet ` is unaffected ...
odrngstr 17353 Functionality of an ordere...
odrngbas 17354 The base set of an ordered...
odrngplusg 17355 The addition operation of ...
odrngmulr 17356 The multiplication operati...
odrngtset 17357 The open sets of an ordere...
odrngle 17358 The order of an ordered me...
odrngds 17359 The metric of an ordered m...
ressds 17360 ` dist ` is unaffected by ...
homndx 17361 Index value of the ~ df-ho...
homid 17362 Utility theorem: index-ind...
ccondx 17363 Index value of the ~ df-cc...
ccoid 17364 Utility theorem: index-ind...
slotsbhcdif 17365 The slots ` Base ` , ` Hom...
slotsbhcdifOLD 17366 Obsolete proof of ~ slotsb...
slotsdifplendx2 17367 The index of the slot for ...
slotsdifocndx 17368 The index of the slot for ...
resshom 17369 ` Hom ` is unaffected by r...
ressco 17370 ` comp ` is unaffected by ...
restfn 17375 The subspace topology oper...
topnfn 17376 The topology extractor fun...
restval 17377 The subspace topology indu...
elrest 17378 The predicate "is an open ...
elrestr 17379 Sufficient condition for b...
0rest 17380 Value of the structure res...
restid2 17381 The subspace topology over...
restsspw 17382 The subspace topology is a...
firest 17383 The finite intersections o...
restid 17384 The subspace topology of t...
topnval 17385 Value of the topology extr...
topnid 17386 Value of the topology extr...
topnpropd 17387 The topology extractor fun...
reldmprds 17399 The structure product is a...
prdsbasex 17401 Lemma for structure produc...
imasvalstr 17402 An image structure value i...
prdsvalstr 17403 Structure product value is...
prdsbaslem 17404 Lemma for ~ prdsbas and si...
prdsvallem 17405 Lemma for ~ prdsval . (Co...
prdsval 17406 Value of the structure pro...
prdssca 17407 Scalar ring of a structure...
prdsbas 17408 Base set of a structure pr...
prdsplusg 17409 Addition in a structure pr...
prdsmulr 17410 Multiplication in a struct...
prdsvsca 17411 Scalar multiplication in a...
prdsip 17412 Inner product in a structu...
prdsle 17413 Structure product weak ord...
prdsless 17414 Closure of the order relat...
prdsds 17415 Structure product distance...
prdsdsfn 17416 Structure product distance...
prdstset 17417 Structure product topology...
prdshom 17418 Structure product hom-sets...
prdsco 17419 Structure product composit...
prdsbas2 17420 The base set of a structur...
prdsbasmpt 17421 A constructed tuple is a p...
prdsbasfn 17422 Points in the structure pr...
prdsbasprj 17423 Each point in a structure ...
prdsplusgval 17424 Value of a componentwise s...
prdsplusgfval 17425 Value of a structure produ...
prdsmulrval 17426 Value of a componentwise r...
prdsmulrfval 17427 Value of a structure produ...
prdsleval 17428 Value of the product order...
prdsdsval 17429 Value of the metric in a s...
prdsvscaval 17430 Scalar multiplication in a...
prdsvscafval 17431 Scalar multiplication of a...
prdsbas3 17432 The base set of an indexed...
prdsbasmpt2 17433 A constructed tuple is a p...
prdsbascl 17434 An element of the base has...
prdsdsval2 17435 Value of the metric in a s...
prdsdsval3 17436 Value of the metric in a s...
pwsval 17437 Value of a structure power...
pwsbas 17438 Base set of a structure po...
pwselbasb 17439 Membership in the base set...
pwselbas 17440 An element of a structure ...
pwsplusgval 17441 Value of addition in a str...
pwsmulrval 17442 Value of multiplication in...
pwsle 17443 Ordering in a structure po...
pwsleval 17444 Ordering in a structure po...
pwsvscafval 17445 Scalar multiplication in a...
pwsvscaval 17446 Scalar multiplication of a...
pwssca 17447 The ring of scalars of a s...
pwsdiagel 17448 Membership of diagonal ele...
pwssnf1o 17449 Triviality of singleton po...
imasval 17462 Value of an image structur...
imasbas 17463 The base set of an image s...
imasds 17464 The distance function of a...
imasdsfn 17465 The distance function is a...
imasdsval 17466 The distance function of a...
imasdsval2 17467 The distance function of a...
imasplusg 17468 The group operation in an ...
imasmulr 17469 The ring multiplication in...
imassca 17470 The scalar field of an ima...
imasvsca 17471 The scalar multiplication ...
imasip 17472 The inner product of an im...
imastset 17473 The topology of an image s...
imasle 17474 The ordering of an image s...
f1ocpbllem 17475 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17476 An injection is compatible...
f1ovscpbl 17477 An injection is compatible...
f1olecpbl 17478 An injection is compatible...
imasaddfnlem 17479 The image structure operat...
imasaddvallem 17480 The operation of an image ...
imasaddflem 17481 The image set operations a...
imasaddfn 17482 The image structure's grou...
imasaddval 17483 The value of an image stru...
imasaddf 17484 The image structure's grou...
imasmulfn 17485 The image structure's ring...
imasmulval 17486 The value of an image stru...
imasmulf 17487 The image structure's ring...
imasvscafn 17488 The image structure's scal...
imasvscaval 17489 The value of an image stru...
imasvscaf 17490 The image structure's scal...
imasless 17491 The order relation defined...
imasleval 17492 The value of the image str...
qusval 17493 Value of a quotient struct...
quslem 17494 The function in ~ qusval i...
qusin 17495 Restrict the equivalence r...
qusbas 17496 Base set of a quotient str...
quss 17497 The scalar field of a quot...
divsfval 17498 Value of the function in ~...
ercpbllem 17499 Lemma for ~ ercpbl . (Con...
ercpbl 17500 Translate the function com...
erlecpbl 17501 Translate the relation com...
qusaddvallem 17502 Value of an operation defi...
qusaddflem 17503 The operation of a quotien...
qusaddval 17504 The addition in a quotient...
qusaddf 17505 The addition in a quotient...
qusmulval 17506 The multiplication in a qu...
qusmulf 17507 The multiplication in a qu...
fnpr2o 17508 Function with a domain of ...
fnpr2ob 17509 Biconditional version of ~...
fvpr0o 17510 The value of a function wi...
fvpr1o 17511 The value of a function wi...
fvprif 17512 The value of the pair func...
xpsfrnel 17513 Elementhood in the target ...
xpsfeq 17514 A function on ` 2o ` is de...
xpsfrnel2 17515 Elementhood in the target ...
xpscf 17516 Equivalent condition for t...
xpsfval 17517 The value of the function ...
xpsff1o 17518 The function appearing in ...
xpsfrn 17519 A short expression for the...
xpsff1o2 17520 The function appearing in ...
xpsval 17521 Value of the binary struct...
xpsrnbas 17522 The indexed structure prod...
xpsbas 17523 The base set of the binary...
xpsaddlem 17524 Lemma for ~ xpsadd and ~ x...
xpsadd 17525 Value of the addition oper...
xpsmul 17526 Value of the multiplicatio...
xpssca 17527 Value of the scalar field ...
xpsvsca 17528 Value of the scalar multip...
xpsless 17529 Closure of the ordering in...
xpsle 17530 Value of the ordering in a...
ismre 17539 Property of being a Moore ...
fnmre 17540 The Moore collection gener...
mresspw 17541 A Moore collection is a su...
mress 17542 A Moore-closed subset is a...
mre1cl 17543 In any Moore collection th...
mreintcl 17544 A nonempty collection of c...
mreiincl 17545 A nonempty indexed interse...
mrerintcl 17546 The relative intersection ...
mreriincl 17547 The relative intersection ...
mreincl 17548 Two closed sets have a clo...
mreuni 17549 Since the entire base set ...
mreunirn 17550 Two ways to express the no...
ismred 17551 Properties that determine ...
ismred2 17552 Properties that determine ...
mremre 17553 The Moore collections of s...
submre 17554 The subcollection of a clo...
mrcflem 17555 The domain and codomain of...
fnmrc 17556 Moore-closure is a well-be...
mrcfval 17557 Value of the function expr...
mrcf 17558 The Moore closure is a fun...
mrcval 17559 Evaluation of the Moore cl...
mrccl 17560 The Moore closure of a set...
mrcsncl 17561 The Moore closure of a sin...
mrcid 17562 The closure of a closed se...
mrcssv 17563 The closure of a set is a ...
mrcidb 17564 A set is closed iff it is ...
mrcss 17565 Closure preserves subset o...
mrcssid 17566 The closure of a set is a ...
mrcidb2 17567 A set is closed iff it con...
mrcidm 17568 The closure operation is i...
mrcsscl 17569 The closure is the minimal...
mrcuni 17570 Idempotence of closure und...
mrcun 17571 Idempotence of closure und...
mrcssvd 17572 The Moore closure of a set...
mrcssd 17573 Moore closure preserves su...
mrcssidd 17574 A set is contained in its ...
mrcidmd 17575 Moore closure is idempoten...
mressmrcd 17576 In a Moore system, if a se...
submrc 17577 In a closure system which ...
mrieqvlemd 17578 In a Moore system, if ` Y ...
mrisval 17579 Value of the set of indepe...
ismri 17580 Criterion for a set to be ...
ismri2 17581 Criterion for a subset of ...
ismri2d 17582 Criterion for a subset of ...
ismri2dd 17583 Definition of independence...
mriss 17584 An independent set of a Mo...
mrissd 17585 An independent set of a Mo...
ismri2dad 17586 Consequence of a set in a ...
mrieqvd 17587 In a Moore system, a set i...
mrieqv2d 17588 In a Moore system, a set i...
mrissmrcd 17589 In a Moore system, if an i...
mrissmrid 17590 In a Moore system, subsets...
mreexd 17591 In a Moore system, the clo...
mreexmrid 17592 In a Moore system whose cl...
mreexexlemd 17593 This lemma is used to gene...
mreexexlem2d 17594 Used in ~ mreexexlem4d to ...
mreexexlem3d 17595 Base case of the induction...
mreexexlem4d 17596 Induction step of the indu...
mreexexd 17597 Exchange-type theorem. In...
mreexdomd 17598 In a Moore system whose cl...
mreexfidimd 17599 In a Moore system whose cl...
isacs 17600 A set is an algebraic clos...
acsmre 17601 Algebraic closure systems ...
isacs2 17602 In the definition of an al...
acsfiel 17603 A set is closed in an alge...
acsfiel2 17604 A set is closed in an alge...
acsmred 17605 An algebraic closure syste...
isacs1i 17606 A closure system determine...
mreacs 17607 Algebraicity is a composab...
acsfn 17608 Algebraicity of a conditio...
acsfn0 17609 Algebraicity of a point cl...
acsfn1 17610 Algebraicity of a one-argu...
acsfn1c 17611 Algebraicity of a one-argu...
acsfn2 17612 Algebraicity of a two-argu...
iscat 17621 The predicate "is a catego...
iscatd 17622 Properties that determine ...
catidex 17623 Each object in a category ...
catideu 17624 Each object in a category ...
cidfval 17625 Each object in a category ...
cidval 17626 Each object in a category ...
cidffn 17627 The identity arrow constru...
cidfn 17628 The identity arrow operato...
catidd 17629 Deduce the identity arrow ...
iscatd2 17630 Version of ~ iscatd with a...
catidcl 17631 Each object in a category ...
catlid 17632 Left identity property of ...
catrid 17633 Right identity property of...
catcocl 17634 Closure of a composition a...
catass 17635 Associativity of compositi...
catcone0 17636 Composition of non-empty h...
0catg 17637 Any structure with an empt...
0cat 17638 The empty set is a categor...
homffval 17639 Value of the functionalize...
fnhomeqhomf 17640 If the Hom-set operation i...
homfval 17641 Value of the functionalize...
homffn 17642 The functionalized Hom-set...
homfeq 17643 Condition for two categori...
homfeqd 17644 If two structures have the...
homfeqbas 17645 Deduce equality of base se...
homfeqval 17646 Value of the functionalize...
comfffval 17647 Value of the functionalize...
comffval 17648 Value of the functionalize...
comfval 17649 Value of the functionalize...
comfffval2 17650 Value of the functionalize...
comffval2 17651 Value of the functionalize...
comfval2 17652 Value of the functionalize...
comfffn 17653 The functionalized composi...
comffn 17654 The functionalized composi...
comfeq 17655 Condition for two categori...
comfeqd 17656 Condition for two categori...
comfeqval 17657 Equality of two compositio...
catpropd 17658 Two structures with the sa...
cidpropd 17659 Two structures with the sa...
oppcval 17662 Value of the opposite cate...
oppchomfval 17663 Hom-sets of the opposite c...
oppchomfvalOLD 17664 Obsolete proof of ~ oppcho...
oppchom 17665 Hom-sets of the opposite c...
oppccofval 17666 Composition in the opposit...
oppcco 17667 Composition in the opposit...
oppcbas 17668 Base set of an opposite ca...
oppcbasOLD 17669 Obsolete version of ~ oppc...
oppccatid 17670 Lemma for ~ oppccat . (Co...
oppchomf 17671 Hom-sets of the opposite c...
oppcid 17672 Identity function of an op...
oppccat 17673 An opposite category is a ...
2oppcbas 17674 The double opposite catego...
2oppchomf 17675 The double opposite catego...
2oppccomf 17676 The double opposite catego...
oppchomfpropd 17677 If two categories have the...
oppccomfpropd 17678 If two categories have the...
oppccatf 17679 ` oppCat ` restricted to `...
monfval 17684 Definition of a monomorphi...
ismon 17685 Definition of a monomorphi...
ismon2 17686 Write out the monomorphism...
monhom 17687 A monomorphism is a morphi...
moni 17688 Property of a monomorphism...
monpropd 17689 If two categories have the...
oppcmon 17690 A monomorphism in the oppo...
oppcepi 17691 An epimorphism in the oppo...
isepi 17692 Definition of an epimorphi...
isepi2 17693 Write out the epimorphism ...
epihom 17694 An epimorphism is a morphi...
epii 17695 Property of an epimorphism...
sectffval 17702 Value of the section opera...
sectfval 17703 Value of the section relat...
sectss 17704 The section relation is a ...
issect 17705 The property " ` F ` is a ...
issect2 17706 Property of being a sectio...
sectcan 17707 If ` G ` is a section of `...
sectco 17708 Composition of two section...
isofval 17709 Function value of the func...
invffval 17710 Value of the inverse relat...
invfval 17711 Value of the inverse relat...
isinv 17712 Value of the inverse relat...
invss 17713 The inverse relation is a ...
invsym 17714 The inverse relation is sy...
invsym2 17715 The inverse relation is sy...
invfun 17716 The inverse relation is a ...
isoval 17717 The isomorphisms are the d...
inviso1 17718 If ` G ` is an inverse to ...
inviso2 17719 If ` G ` is an inverse to ...
invf 17720 The inverse relation is a ...
invf1o 17721 The inverse relation is a ...
invinv 17722 The inverse of the inverse...
invco 17723 The composition of two iso...
dfiso2 17724 Alternate definition of an...
dfiso3 17725 Alternate definition of an...
inveq 17726 If there are two inverses ...
isofn 17727 The function value of the ...
isohom 17728 An isomorphism is a homomo...
isoco 17729 The composition of two iso...
oppcsect 17730 A section in the opposite ...
oppcsect2 17731 A section in the opposite ...
oppcinv 17732 An inverse in the opposite...
oppciso 17733 An isomorphism in the oppo...
sectmon 17734 If ` F ` is a section of `...
monsect 17735 If ` F ` is a monomorphism...
sectepi 17736 If ` F ` is a section of `...
episect 17737 If ` F ` is an epimorphism...
sectid 17738 The identity is a section ...
invid 17739 The inverse of the identit...
idiso 17740 The identity is an isomorp...
idinv 17741 The inverse of the identit...
invisoinvl 17742 The inverse of an isomorph...
invisoinvr 17743 The inverse of an isomorph...
invcoisoid 17744 The inverse of an isomorph...
isocoinvid 17745 The inverse of an isomorph...
rcaninv 17746 Right cancellation of an i...
cicfval 17749 The set of isomorphic obje...
brcic 17750 The relation "is isomorphi...
cic 17751 Objects ` X ` and ` Y ` in...
brcici 17752 Prove that two objects are...
cicref 17753 Isomorphism is reflexive. ...
ciclcl 17754 Isomorphism implies the le...
cicrcl 17755 Isomorphism implies the ri...
cicsym 17756 Isomorphism is symmetric. ...
cictr 17757 Isomorphism is transitive....
cicer 17758 Isomorphism is an equivale...
sscrel 17765 The subcategory subset rel...
brssc 17766 The subcategory subset rel...
sscpwex 17767 An analogue of ~ pwex for ...
subcrcl 17768 Reverse closure for the su...
sscfn1 17769 The subcategory subset rel...
sscfn2 17770 The subcategory subset rel...
ssclem 17771 Lemma for ~ ssc1 and simil...
isssc 17772 Value of the subcategory s...
ssc1 17773 Infer subset relation on o...
ssc2 17774 Infer subset relation on m...
sscres 17775 Any function restricted to...
sscid 17776 The subcategory subset rel...
ssctr 17777 The subcategory subset rel...
ssceq 17778 The subcategory subset rel...
rescval 17779 Value of the category rest...
rescval2 17780 Value of the category rest...
rescbas 17781 Base set of the category r...
rescbasOLD 17782 Obsolete version of ~ resc...
reschom 17783 Hom-sets of the category r...
reschomf 17784 Hom-sets of the category r...
rescco 17785 Composition in the categor...
resccoOLD 17786 Obsolete proof of ~ rescco...
rescabs 17787 Restriction absorption law...
rescabsOLD 17788 Obsolete proof of ~ seqp1d...
rescabs2 17789 Restriction absorption law...
issubc 17790 Elementhood in the set of ...
issubc2 17791 Elementhood in the set of ...
0ssc 17792 For any category ` C ` , t...
0subcat 17793 For any category ` C ` , t...
catsubcat 17794 For any category ` C ` , `...
subcssc 17795 An element in the set of s...
subcfn 17796 An element in the set of s...
subcss1 17797 The objects of a subcatego...
subcss2 17798 The morphisms of a subcate...
subcidcl 17799 The identity of the origin...
subccocl 17800 A subcategory is closed un...
subccatid 17801 A subcategory is a categor...
subcid 17802 The identity in a subcateg...
subccat 17803 A subcategory is a categor...
issubc3 17804 Alternate definition of a ...
fullsubc 17805 The full subcategory gener...
fullresc 17806 The category formed by str...
resscat 17807 A category restricted to a...
subsubc 17808 A subcategory of a subcate...
relfunc 17817 The set of functors is a r...
funcrcl 17818 Reverse closure for a func...
isfunc 17819 Value of the set of functo...
isfuncd 17820 Deduce that an operation i...
funcf1 17821 The object part of a funct...
funcixp 17822 The morphism part of a fun...
funcf2 17823 The morphism part of a fun...
funcfn2 17824 The morphism part of a fun...
funcid 17825 A functor maps each identi...
funcco 17826 A functor maps composition...
funcsect 17827 The image of a section und...
funcinv 17828 The image of an inverse un...
funciso 17829 The image of an isomorphis...
funcoppc 17830 A functor on categories yi...
idfuval 17831 Value of the identity func...
idfu2nd 17832 Value of the morphism part...
idfu2 17833 Value of the morphism part...
idfu1st 17834 Value of the object part o...
idfu1 17835 Value of the object part o...
idfucl 17836 The identity functor is a ...
cofuval 17837 Value of the composition o...
cofu1st 17838 Value of the object part o...
cofu1 17839 Value of the object part o...
cofu2nd 17840 Value of the morphism part...
cofu2 17841 Value of the morphism part...
cofuval2 17842 Value of the composition o...
cofucl 17843 The composition of two fun...
cofuass 17844 Functor composition is ass...
cofulid 17845 The identity functor is a ...
cofurid 17846 The identity functor is a ...
resfval 17847 Value of the functor restr...
resfval2 17848 Value of the functor restr...
resf1st 17849 Value of the functor restr...
resf2nd 17850 Value of the functor restr...
funcres 17851 A functor restricted to a ...
funcres2b 17852 Condition for a functor to...
funcres2 17853 A functor into a restricte...
wunfunc 17854 A weak universe is closed ...
wunfuncOLD 17855 Obsolete proof of ~ wunfun...
funcpropd 17856 If two categories have the...
funcres2c 17857 Condition for a functor to...
fullfunc 17862 A full functor is a functo...
fthfunc 17863 A faithful functor is a fu...
relfull 17864 The set of full functors i...
relfth 17865 The set of faithful functo...
isfull 17866 Value of the set of full f...
isfull2 17867 Equivalent condition for a...
fullfo 17868 The morphism map of a full...
fulli 17869 The morphism map of a full...
isfth 17870 Value of the set of faithf...
isfth2 17871 Equivalent condition for a...
isffth2 17872 A fully faithful functor i...
fthf1 17873 The morphism map of a fait...
fthi 17874 The morphism map of a fait...
ffthf1o 17875 The morphism map of a full...
fullpropd 17876 If two categories have the...
fthpropd 17877 If two categories have the...
fulloppc 17878 The opposite functor of a ...
fthoppc 17879 The opposite functor of a ...
ffthoppc 17880 The opposite functor of a ...
fthsect 17881 A faithful functor reflect...
fthinv 17882 A faithful functor reflect...
fthmon 17883 A faithful functor reflect...
fthepi 17884 A faithful functor reflect...
ffthiso 17885 A fully faithful functor r...
fthres2b 17886 Condition for a faithful f...
fthres2c 17887 Condition for a faithful f...
fthres2 17888 A faithful functor into a ...
idffth 17889 The identity functor is a ...
cofull 17890 The composition of two ful...
cofth 17891 The composition of two fai...
coffth 17892 The composition of two ful...
rescfth 17893 The inclusion functor from...
ressffth 17894 The inclusion functor from...
fullres2c 17895 Condition for a full funct...
ffthres2c 17896 Condition for a fully fait...
fnfuc 17901 The ` FuncCat ` operation ...
natfval 17902 Value of the function givi...
isnat 17903 Property of being a natura...
isnat2 17904 Property of being a natura...
natffn 17905 The natural transformation...
natrcl 17906 Reverse closure for a natu...
nat1st2nd 17907 Rewrite the natural transf...
natixp 17908 A natural transformation i...
natcl 17909 A component of a natural t...
natfn 17910 A natural transformation i...
nati 17911 Naturality property of a n...
wunnat 17912 A weak universe is closed ...
wunnatOLD 17913 Obsolete proof of ~ wunnat...
catstr 17914 A category structure is a ...
fucval 17915 Value of the functor categ...
fuccofval 17916 Value of the functor categ...
fucbas 17917 The objects of the functor...
fuchom 17918 The morphisms in the funct...
fuchomOLD 17919 Obsolete proof of ~ fuchom...
fucco 17920 Value of the composition o...
fuccoval 17921 Value of the functor categ...
fuccocl 17922 The composition of two nat...
fucidcl 17923 The identity natural trans...
fuclid 17924 Left identity of natural t...
fucrid 17925 Right identity of natural ...
fucass 17926 Associativity of natural t...
fuccatid 17927 The functor category is a ...
fuccat 17928 The functor category is a ...
fucid 17929 The identity morphism in t...
fucsect 17930 Two natural transformation...
fucinv 17931 Two natural transformation...
invfuc 17932 If ` V ( x ) ` is an inver...
fuciso 17933 A natural transformation i...
natpropd 17934 If two categories have the...
fucpropd 17935 If two categories have the...
initofn 17942 ` InitO ` is a function on...
termofn 17943 ` TermO ` is a function on...
zeroofn 17944 ` ZeroO ` is a function on...
initorcl 17945 Reverse closure for an ini...
termorcl 17946 Reverse closure for a term...
zeroorcl 17947 Reverse closure for a zero...
initoval 17948 The value of the initial o...
termoval 17949 The value of the terminal ...
zerooval 17950 The value of the zero obje...
isinito 17951 The predicate "is an initi...
istermo 17952 The predicate "is a termin...
iszeroo 17953 The predicate "is a zero o...
isinitoi 17954 Implication of a class bei...
istermoi 17955 Implication of a class bei...
initoid 17956 For an initial object, the...
termoid 17957 For a terminal object, the...
dfinito2 17958 An initial object is a ter...
dftermo2 17959 A terminal object is an in...
dfinito3 17960 An alternate definition of...
dftermo3 17961 An alternate definition of...
initoo 17962 An initial object is an ob...
termoo 17963 A terminal object is an ob...
iszeroi 17964 Implication of a class bei...
2initoinv 17965 Morphisms between two init...
initoeu1 17966 Initial objects are essent...
initoeu1w 17967 Initial objects are essent...
initoeu2lem0 17968 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 17969 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 17970 Lemma 2 for ~ initoeu2 . ...
initoeu2 17971 Initial objects are essent...
2termoinv 17972 Morphisms between two term...
termoeu1 17973 Terminal objects are essen...
termoeu1w 17974 Terminal objects are essen...
homarcl 17983 Reverse closure for an arr...
homafval 17984 Value of the disjointified...
homaf 17985 Functionality of the disjo...
homaval 17986 Value of the disjointified...
elhoma 17987 Value of the disjointified...
elhomai 17988 Produce an arrow from a mo...
elhomai2 17989 Produce an arrow from a mo...
homarcl2 17990 Reverse closure for the do...
homarel 17991 An arrow is an ordered pai...
homa1 17992 The first component of an ...
homahom2 17993 The second component of an...
homahom 17994 The second component of an...
homadm 17995 The domain of an arrow wit...
homacd 17996 The codomain of an arrow w...
homadmcd 17997 Decompose an arrow into do...
arwval 17998 The set of arrows is the u...
arwrcl 17999 The first component of an ...
arwhoma 18000 An arrow is contained in t...
homarw 18001 A hom-set is a subset of t...
arwdm 18002 The domain of an arrow is ...
arwcd 18003 The codomain of an arrow i...
dmaf 18004 The domain function is a f...
cdaf 18005 The codomain function is a...
arwhom 18006 The second component of an...
arwdmcd 18007 Decompose an arrow into do...
idafval 18012 Value of the identity arro...
idaval 18013 Value of the identity arro...
ida2 18014 Morphism part of the ident...
idahom 18015 Domain and codomain of the...
idadm 18016 Domain of the identity arr...
idacd 18017 Codomain of the identity a...
idaf 18018 The identity arrow functio...
coafval 18019 The value of the compositi...
eldmcoa 18020 A pair ` <. G , F >. ` is ...
dmcoass 18021 The domain of composition ...
homdmcoa 18022 If ` F : X --> Y ` and ` G...
coaval 18023 Value of composition for c...
coa2 18024 The morphism part of arrow...
coahom 18025 The composition of two com...
coapm 18026 Composition of arrows is a...
arwlid 18027 Left identity of a categor...
arwrid 18028 Right identity of a catego...
arwass 18029 Associativity of compositi...
setcval 18032 Value of the category of s...
setcbas 18033 Set of objects of the cate...
setchomfval 18034 Set of arrows of the categ...
setchom 18035 Set of arrows of the categ...
elsetchom 18036 A morphism of sets is a fu...
setccofval 18037 Composition in the categor...
setcco 18038 Composition in the categor...
setccatid 18039 Lemma for ~ setccat . (Co...
setccat 18040 The category of sets is a ...
setcid 18041 The identity arrow in the ...
setcmon 18042 A monomorphism of sets is ...
setcepi 18043 An epimorphism of sets is ...
setcsect 18044 A section in the category ...
setcinv 18045 An inverse in the category...
setciso 18046 An isomorphism in the cate...
resssetc 18047 The restriction of the cat...
funcsetcres2 18048 A functor into a smaller c...
setc2obas 18049 ` (/) ` and ` 1o ` are dis...
setc2ohom 18050 ` ( SetCat `` 2o ) ` is a ...
cat1lem 18051 The category of sets in a ...
cat1 18052 The definition of category...
catcval 18055 Value of the category of c...
catcbas 18056 Set of objects of the cate...
catchomfval 18057 Set of arrows of the categ...
catchom 18058 Set of arrows of the categ...
catccofval 18059 Composition in the categor...
catcco 18060 Composition in the categor...
catccatid 18061 Lemma for ~ catccat . (Co...
catcid 18062 The identity arrow in the ...
catccat 18063 The category of categories...
resscatc 18064 The restriction of the cat...
catcisolem 18065 Lemma for ~ catciso . (Co...
catciso 18066 A functor is an isomorphis...
catcbascl 18067 An element of the base set...
catcslotelcl 18068 A slot entry of an element...
catcbaselcl 18069 The base set of an element...
catchomcl 18070 The Hom-set of an element ...
catcccocl 18071 The composition operation ...
catcoppccl 18072 The category of categories...
catcoppcclOLD 18073 Obsolete proof of ~ catcop...
catcfuccl 18074 The category of categories...
catcfucclOLD 18075 Obsolete proof of ~ catcfu...
fncnvimaeqv 18076 The inverse images of the ...
bascnvimaeqv 18077 The inverse image of the u...
estrcval 18080 Value of the category of e...
estrcbas 18081 Set of objects of the cate...
estrchomfval 18082 Set of morphisms ("arrows"...
estrchom 18083 The morphisms between exte...
elestrchom 18084 A morphism between extensi...
estrccofval 18085 Composition in the categor...
estrcco 18086 Composition in the categor...
estrcbasbas 18087 An element of the base set...
estrccatid 18088 Lemma for ~ estrccat . (C...
estrccat 18089 The category of extensible...
estrcid 18090 The identity arrow in the ...
estrchomfn 18091 The Hom-set operation in t...
estrchomfeqhom 18092 The functionalized Hom-set...
estrreslem1 18093 Lemma 1 for ~ estrres . (...
estrreslem1OLD 18094 Obsolete version of ~ estr...
estrreslem2 18095 Lemma 2 for ~ estrres . (...
estrres 18096 Any restriction of a categ...
funcestrcsetclem1 18097 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 18098 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 18099 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 18100 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 18101 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 18102 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 18103 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 18104 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 18105 Lemma 9 for ~ funcestrcset...
funcestrcsetc 18106 The "natural forgetful fun...
fthestrcsetc 18107 The "natural forgetful fun...
fullestrcsetc 18108 The "natural forgetful fun...
equivestrcsetc 18109 The "natural forgetful fun...
setc1strwun 18110 A constructed one-slot str...
funcsetcestrclem1 18111 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 18112 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 18113 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 18114 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 18115 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 18116 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 18117 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 18118 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 18119 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 18120 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 18121 The "embedding functor" fr...
fthsetcestrc 18122 The "embedding functor" fr...
fullsetcestrc 18123 The "embedding functor" fr...
embedsetcestrc 18124 The "embedding functor" fr...
fnxpc 18133 The binary product of cate...
xpcval 18134 Value of the binary produc...
xpcbas 18135 Set of objects of the bina...
xpchomfval 18136 Set of morphisms of the bi...
xpchom 18137 Set of morphisms of the bi...
relxpchom 18138 A hom-set in the binary pr...
xpccofval 18139 Value of composition in th...
xpcco 18140 Value of composition in th...
xpcco1st 18141 Value of composition in th...
xpcco2nd 18142 Value of composition in th...
xpchom2 18143 Value of the set of morphi...
xpcco2 18144 Value of composition in th...
xpccatid 18145 The product of two categor...
xpcid 18146 The identity morphism in t...
xpccat 18147 The product of two categor...
1stfval 18148 Value of the first project...
1stf1 18149 Value of the first project...
1stf2 18150 Value of the first project...
2ndfval 18151 Value of the first project...
2ndf1 18152 Value of the first project...
2ndf2 18153 Value of the first project...
1stfcl 18154 The first projection funct...
2ndfcl 18155 The second projection func...
prfval 18156 Value of the pairing funct...
prf1 18157 Value of the pairing funct...
prf2fval 18158 Value of the pairing funct...
prf2 18159 Value of the pairing funct...
prfcl 18160 The pairing of functors ` ...
prf1st 18161 Cancellation of pairing wi...
prf2nd 18162 Cancellation of pairing wi...
1st2ndprf 18163 Break a functor into a pro...
catcxpccl 18164 The category of categories...
catcxpcclOLD 18165 Obsolete proof of ~ catcxp...
xpcpropd 18166 If two categories have the...
evlfval 18175 Value of the evaluation fu...
evlf2 18176 Value of the evaluation fu...
evlf2val 18177 Value of the evaluation na...
evlf1 18178 Value of the evaluation fu...
evlfcllem 18179 Lemma for ~ evlfcl . (Con...
evlfcl 18180 The evaluation functor is ...
curfval 18181 Value of the curry functor...
curf1fval 18182 Value of the object part o...
curf1 18183 Value of the object part o...
curf11 18184 Value of the double evalua...
curf12 18185 The partially evaluated cu...
curf1cl 18186 The partially evaluated cu...
curf2 18187 Value of the curry functor...
curf2val 18188 Value of a component of th...
curf2cl 18189 The curry functor at a mor...
curfcl 18190 The curry functor of a fun...
curfpropd 18191 If two categories have the...
uncfval 18192 Value of the uncurry funct...
uncfcl 18193 The uncurry operation take...
uncf1 18194 Value of the uncurry funct...
uncf2 18195 Value of the uncurry funct...
curfuncf 18196 Cancellation of curry with...
uncfcurf 18197 Cancellation of uncurry wi...
diagval 18198 Define the diagonal functo...
diagcl 18199 The diagonal functor is a ...
diag1cl 18200 The constant functor of ` ...
diag11 18201 Value of the constant func...
diag12 18202 Value of the constant func...
diag2 18203 Value of the diagonal func...
diag2cl 18204 The diagonal functor at a ...
curf2ndf 18205 As shown in ~ diagval , th...
hofval 18210 Value of the Hom functor, ...
hof1fval 18211 The object part of the Hom...
hof1 18212 The object part of the Hom...
hof2fval 18213 The morphism part of the H...
hof2val 18214 The morphism part of the H...
hof2 18215 The morphism part of the H...
hofcllem 18216 Lemma for ~ hofcl . (Cont...
hofcl 18217 Closure of the Hom functor...
oppchofcl 18218 Closure of the opposite Ho...
yonval 18219 Value of the Yoneda embedd...
yoncl 18220 The Yoneda embedding is a ...
yon1cl 18221 The Yoneda embedding at an...
yon11 18222 Value of the Yoneda embedd...
yon12 18223 Value of the Yoneda embedd...
yon2 18224 Value of the Yoneda embedd...
hofpropd 18225 If two categories have the...
yonpropd 18226 If two categories have the...
oppcyon 18227 Value of the opposite Yone...
oyoncl 18228 The opposite Yoneda embedd...
oyon1cl 18229 The opposite Yoneda embedd...
yonedalem1 18230 Lemma for ~ yoneda . (Con...
yonedalem21 18231 Lemma for ~ yoneda . (Con...
yonedalem3a 18232 Lemma for ~ yoneda . (Con...
yonedalem4a 18233 Lemma for ~ yoneda . (Con...
yonedalem4b 18234 Lemma for ~ yoneda . (Con...
yonedalem4c 18235 Lemma for ~ yoneda . (Con...
yonedalem22 18236 Lemma for ~ yoneda . (Con...
yonedalem3b 18237 Lemma for ~ yoneda . (Con...
yonedalem3 18238 Lemma for ~ yoneda . (Con...
yonedainv 18239 The Yoneda Lemma with expl...
yonffthlem 18240 Lemma for ~ yonffth . (Co...
yoneda 18241 The Yoneda Lemma. There i...
yonffth 18242 The Yoneda Lemma. The Yon...
yoniso 18243 If the codomain is recover...
oduval 18246 Value of an order dual str...
oduleval 18247 Value of the less-equal re...
oduleg 18248 Truth of the less-equal re...
odubas 18249 Base set of an order dual ...
odubasOLD 18250 Obsolete proof of ~ odubas...
isprs 18255 Property of being a preord...
prslem 18256 Lemma for ~ prsref and ~ p...
prsref 18257 "Less than or equal to" is...
prstr 18258 "Less than or equal to" is...
isdrs 18259 Property of being a direct...
drsdir 18260 Direction of a directed se...
drsprs 18261 A directed set is a proset...
drsbn0 18262 The base of a directed set...
drsdirfi 18263 Any _finite_ number of ele...
isdrs2 18264 Directed sets may be defin...
ispos 18272 The predicate "is a poset"...
ispos2 18273 A poset is an antisymmetri...
posprs 18274 A poset is a proset. (Con...
posi 18275 Lemma for poset properties...
posref 18276 A poset ordering is reflex...
posasymb 18277 A poset ordering is asymme...
postr 18278 A poset ordering is transi...
0pos 18279 Technical lemma to simplif...
0posOLD 18280 Obsolete proof of ~ 0pos a...
isposd 18281 Properties that determine ...
isposi 18282 Properties that determine ...
isposix 18283 Properties that determine ...
isposixOLD 18284 Obsolete proof of ~ isposi...
pospropd 18285 Posethood is determined on...
odupos 18286 Being a poset is a self-du...
oduposb 18287 Being a poset is a self-du...
pltfval 18289 Value of the less-than rel...
pltval 18290 Less-than relation. ( ~ d...
pltle 18291 "Less than" implies "less ...
pltne 18292 The "less than" relation i...
pltirr 18293 The "less than" relation i...
pleval2i 18294 One direction of ~ pleval2...
pleval2 18295 "Less than or equal to" in...
pltnle 18296 "Less than" implies not co...
pltval3 18297 Alternate expression for t...
pltnlt 18298 The less-than relation imp...
pltn2lp 18299 The less-than relation has...
plttr 18300 The less-than relation is ...
pltletr 18301 Transitive law for chained...
plelttr 18302 Transitive law for chained...
pospo 18303 Write a poset structure in...
lubfval 18308 Value of the least upper b...
lubdm 18309 Domain of the least upper ...
lubfun 18310 The LUB is a function. (C...
lubeldm 18311 Member of the domain of th...
lubelss 18312 A member of the domain of ...
lubeu 18313 Unique existence proper of...
lubval 18314 Value of the least upper b...
lubcl 18315 The least upper bound func...
lubprop 18316 Properties of greatest low...
luble 18317 The greatest lower bound i...
lublecllem 18318 Lemma for ~ lublecl and ~ ...
lublecl 18319 The set of all elements le...
lubid 18320 The LUB of elements less t...
glbfval 18321 Value of the greatest lowe...
glbdm 18322 Domain of the greatest low...
glbfun 18323 The GLB is a function. (C...
glbeldm 18324 Member of the domain of th...
glbelss 18325 A member of the domain of ...
glbeu 18326 Unique existence proper of...
glbval 18327 Value of the greatest lowe...
glbcl 18328 The least upper bound func...
glbprop 18329 Properties of greatest low...
glble 18330 The greatest lower bound i...
joinfval 18331 Value of join function for...
joinfval2 18332 Value of join function for...
joindm 18333 Domain of join function fo...
joindef 18334 Two ways to say that a joi...
joinval 18335 Join value. Since both si...
joincl 18336 Closure of join of element...
joindmss 18337 Subset property of domain ...
joinval2lem 18338 Lemma for ~ joinval2 and ~...
joinval2 18339 Value of join for a poset ...
joineu 18340 Uniqueness of join of elem...
joinlem 18341 Lemma for join properties....
lejoin1 18342 A join's first argument is...
lejoin2 18343 A join's second argument i...
joinle 18344 A join is less than or equ...
meetfval 18345 Value of meet function for...
meetfval2 18346 Value of meet function for...
meetdm 18347 Domain of meet function fo...
meetdef 18348 Two ways to say that a mee...
meetval 18349 Meet value. Since both si...
meetcl 18350 Closure of meet of element...
meetdmss 18351 Subset property of domain ...
meetval2lem 18352 Lemma for ~ meetval2 and ~...
meetval2 18353 Value of meet for a poset ...
meeteu 18354 Uniqueness of meet of elem...
meetlem 18355 Lemma for meet properties....
lemeet1 18356 A meet's first argument is...
lemeet2 18357 A meet's second argument i...
meetle 18358 A meet is less than or equ...
joincomALT 18359 The join of a poset is com...
joincom 18360 The join of a poset is com...
meetcomALT 18361 The meet of a poset is com...
meetcom 18362 The meet of a poset is com...
join0 18363 Lemma for ~ odumeet . (Co...
meet0 18364 Lemma for ~ odujoin . (Co...
odulub 18365 Least upper bounds in a du...
odujoin 18366 Joins in a dual order are ...
oduglb 18367 Greatest lower bounds in a...
odumeet 18368 Meets in a dual order are ...
poslubmo 18369 Least upper bounds in a po...
posglbmo 18370 Greatest lower bounds in a...
poslubd 18371 Properties which determine...
poslubdg 18372 Properties which determine...
posglbdg 18373 Properties which determine...
istos 18376 The predicate "is a toset"...
tosso 18377 Write the totally ordered ...
tospos 18378 A Toset is a Poset. (Cont...
tleile 18379 In a Toset, any two elemen...
tltnle 18380 In a Toset, "less than" is...
p0val 18385 Value of poset zero. (Con...
p1val 18386 Value of poset zero. (Con...
p0le 18387 Any element is less than o...
ple1 18388 Any element is less than o...
islat 18391 The predicate "is a lattic...
odulatb 18392 Being a lattice is self-du...
odulat 18393 Being a lattice is self-du...
latcl2 18394 The join and meet of any t...
latlem 18395 Lemma for lattice properti...
latpos 18396 A lattice is a poset. (Co...
latjcl 18397 Closure of join operation ...
latmcl 18398 Closure of meet operation ...
latref 18399 A lattice ordering is refl...
latasymb 18400 A lattice ordering is asym...
latasym 18401 A lattice ordering is asym...
lattr 18402 A lattice ordering is tran...
latasymd 18403 Deduce equality from latti...
lattrd 18404 A lattice ordering is tran...
latjcom 18405 The join of a lattice comm...
latlej1 18406 A join's first argument is...
latlej2 18407 A join's second argument i...
latjle12 18408 A join is less than or equ...
latleeqj1 18409 "Less than or equal to" in...
latleeqj2 18410 "Less than or equal to" in...
latjlej1 18411 Add join to both sides of ...
latjlej2 18412 Add join to both sides of ...
latjlej12 18413 Add join to both sides of ...
latnlej 18414 An idiom to express that a...
latnlej1l 18415 An idiom to express that a...
latnlej1r 18416 An idiom to express that a...
latnlej2 18417 An idiom to express that a...
latnlej2l 18418 An idiom to express that a...
latnlej2r 18419 An idiom to express that a...
latjidm 18420 Lattice join is idempotent...
latmcom 18421 The join of a lattice comm...
latmle1 18422 A meet is less than or equ...
latmle2 18423 A meet is less than or equ...
latlem12 18424 An element is less than or...
latleeqm1 18425 "Less than or equal to" in...
latleeqm2 18426 "Less than or equal to" in...
latmlem1 18427 Add meet to both sides of ...
latmlem2 18428 Add meet to both sides of ...
latmlem12 18429 Add join to both sides of ...
latnlemlt 18430 Negation of "less than or ...
latnle 18431 Equivalent expressions for...
latmidm 18432 Lattice meet is idempotent...
latabs1 18433 Lattice absorption law. F...
latabs2 18434 Lattice absorption law. F...
latledi 18435 An ortholattice is distrib...
latmlej11 18436 Ordering of a meet and joi...
latmlej12 18437 Ordering of a meet and joi...
latmlej21 18438 Ordering of a meet and joi...
latmlej22 18439 Ordering of a meet and joi...
lubsn 18440 The least upper bound of a...
latjass 18441 Lattice join is associativ...
latj12 18442 Swap 1st and 2nd members o...
latj32 18443 Swap 2nd and 3rd members o...
latj13 18444 Swap 1st and 3rd members o...
latj31 18445 Swap 2nd and 3rd members o...
latjrot 18446 Rotate lattice join of 3 c...
latj4 18447 Rearrangement of lattice j...
latj4rot 18448 Rotate lattice join of 4 c...
latjjdi 18449 Lattice join distributes o...
latjjdir 18450 Lattice join distributes o...
mod1ile 18451 The weak direction of the ...
mod2ile 18452 The weak direction of the ...
latmass 18453 Lattice meet is associativ...
latdisdlem 18454 Lemma for ~ latdisd . (Co...
latdisd 18455 In a lattice, joins distri...
isclat 18458 The predicate "is a comple...
clatpos 18459 A complete lattice is a po...
clatlem 18460 Lemma for properties of a ...
clatlubcl 18461 Any subset of the base set...
clatlubcl2 18462 Any subset of the base set...
clatglbcl 18463 Any subset of the base set...
clatglbcl2 18464 Any subset of the base set...
oduclatb 18465 Being a complete lattice i...
clatl 18466 A complete lattice is a la...
isglbd 18467 Properties that determine ...
lublem 18468 Lemma for the least upper ...
lubub 18469 The LUB of a complete latt...
lubl 18470 The LUB of a complete latt...
lubss 18471 Subset law for least upper...
lubel 18472 An element of a set is les...
lubun 18473 The LUB of a union. (Cont...
clatglb 18474 Properties of greatest low...
clatglble 18475 The greatest lower bound i...
clatleglb 18476 Two ways of expressing "le...
clatglbss 18477 Subset law for greatest lo...
isdlat 18480 Property of being a distri...
dlatmjdi 18481 In a distributive lattice,...
dlatl 18482 A distributive lattice is ...
odudlatb 18483 The dual of a distributive...
dlatjmdi 18484 In a distributive lattice,...
ipostr 18487 The structure of ~ df-ipo ...
ipoval 18488 Value of the inclusion pos...
ipobas 18489 Base set of the inclusion ...
ipolerval 18490 Relation of the inclusion ...
ipotset 18491 Topology of the inclusion ...
ipole 18492 Weak order condition of th...
ipolt 18493 Strict order condition of ...
ipopos 18494 The inclusion poset on a f...
isipodrs 18495 Condition for a family of ...
ipodrscl 18496 Direction by inclusion as ...
ipodrsfi 18497 Finite upper bound propert...
fpwipodrs 18498 The finite subsets of any ...
ipodrsima 18499 The monotone image of a di...
isacs3lem 18500 An algebraic closure syste...
acsdrsel 18501 An algebraic closure syste...
isacs4lem 18502 In a closure system in whi...
isacs5lem 18503 If closure commutes with d...
acsdrscl 18504 In an algebraic closure sy...
acsficl 18505 A closure in an algebraic ...
isacs5 18506 A closure system is algebr...
isacs4 18507 A closure system is algebr...
isacs3 18508 A closure system is algebr...
acsficld 18509 In an algebraic closure sy...
acsficl2d 18510 In an algebraic closure sy...
acsfiindd 18511 In an algebraic closure sy...
acsmapd 18512 In an algebraic closure sy...
acsmap2d 18513 In an algebraic closure sy...
acsinfd 18514 In an algebraic closure sy...
acsdomd 18515 In an algebraic closure sy...
acsinfdimd 18516 In an algebraic closure sy...
acsexdimd 18517 In an algebraic closure sy...
mrelatglb 18518 Greatest lower bounds in a...
mrelatglb0 18519 The empty intersection in ...
mrelatlub 18520 Least upper bounds in a Mo...
mreclatBAD 18521 A Moore space is a complet...
isps 18526 The predicate "is a poset"...
psrel 18527 A poset is a relation. (C...
psref2 18528 A poset is antisymmetric a...
pstr2 18529 A poset is transitive. (C...
pslem 18530 Lemma for ~ psref and othe...
psdmrn 18531 The domain and range of a ...
psref 18532 A poset is reflexive. (Co...
psrn 18533 The range of a poset equal...
psasym 18534 A poset is antisymmetric. ...
pstr 18535 A poset is transitive. (C...
cnvps 18536 The converse of a poset is...
cnvpsb 18537 The converse of a poset is...
psss 18538 Any subset of a partially ...
psssdm2 18539 Field of a subposet. (Con...
psssdm 18540 Field of a subposet. (Con...
istsr 18541 The predicate is a toset. ...
istsr2 18542 The predicate is a toset. ...
tsrlin 18543 A toset is a linear order....
tsrlemax 18544 Two ways of saying a numbe...
tsrps 18545 A toset is a poset. (Cont...
cnvtsr 18546 The converse of a toset is...
tsrss 18547 Any subset of a totally or...
ledm 18548 The domain of ` <_ ` is ` ...
lern 18549 The range of ` <_ ` is ` R...
lefld 18550 The field of the 'less or ...
letsr 18551 The "less than or equal to...
isdir 18556 A condition for a relation...
reldir 18557 A direction is a relation....
dirdm 18558 A direction's domain is eq...
dirref 18559 A direction is reflexive. ...
dirtr 18560 A direction is transitive....
dirge 18561 For any two elements of a ...
tsrdir 18562 A totally ordered set is a...
ismgm 18567 The predicate "is a magma"...
ismgmn0 18568 The predicate "is a magma"...
mgmcl 18569 Closure of the operation o...
isnmgm 18570 A condition for a structur...
mgmsscl 18571 If the base set of a magma...
plusffval 18572 The group addition operati...
plusfval 18573 The group addition operati...
plusfeq 18574 If the addition operation ...
plusffn 18575 The group addition operati...
mgmplusf 18576 The group addition functio...
mgmpropd 18577 If two structures have the...
ismgmd 18578 Deduce a magma from its pr...
issstrmgm 18579 Characterize a substructur...
intopsn 18580 The internal operation for...
mgmb1mgm1 18581 The only magma with a base...
mgm0 18582 Any set with an empty base...
mgm0b 18583 The structure with an empt...
mgm1 18584 The structure with one ele...
opifismgm 18585 A structure with a group a...
mgmidmo 18586 A two-sided identity eleme...
grpidval 18587 The value of the identity ...
grpidpropd 18588 If two structures have the...
fn0g 18589 The group zero extractor i...
0g0 18590 The identity element funct...
ismgmid 18591 The identity element of a ...
mgmidcl 18592 The identity element of a ...
mgmlrid 18593 The identity element of a ...
ismgmid2 18594 Show that a given element ...
lidrideqd 18595 If there is a left and rig...
lidrididd 18596 If there is a left and rig...
grpidd 18597 Deduce the identity elemen...
mgmidsssn0 18598 Property of the set of ide...
grprinvlem 18599 Lemma for ~ grpinva . (Co...
grpinva 18600 Deduce right inverse from ...
grprida 18601 Deduce right identity from...
gsumvalx 18602 Expand out the substitutio...
gsumval 18603 Expand out the substitutio...
gsumpropd 18604 The group sum depends only...
gsumpropd2lem 18605 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18606 A stronger version of ~ gs...
gsummgmpropd 18607 A stronger version of ~ gs...
gsumress 18608 The group sum in a substru...
gsumval1 18609 Value of the group sum ope...
gsum0 18610 Value of the empty group s...
gsumval2a 18611 Value of the group sum ope...
gsumval2 18612 Value of the group sum ope...
gsumsplit1r 18613 Splitting off the rightmos...
gsumprval 18614 Value of the group sum ope...
gsumpr12val 18615 Value of the group sum ope...
mgmhmrcl 18620 Reverse closure of a magma...
submgmrcl 18621 Reverse closure for submag...
ismgmhm 18622 Property of a magma homomo...
mgmhmf 18623 A magma homomorphism is a ...
mgmhmpropd 18624 Magma homomorphism depends...
mgmhmlin 18625 A magma homomorphism prese...
mgmhmf1o 18626 A magma homomorphism is bi...
idmgmhm 18627 The identity homomorphism ...
issubmgm 18628 Expand definition of a sub...
issubmgm2 18629 Submagmas are subsets that...
rabsubmgmd 18630 Deduction for proving that...
submgmss 18631 Submagmas are subsets of t...
submgmid 18632 Every magma is trivially a...
submgmcl 18633 Submagmas are closed under...
submgmmgm 18634 Submagmas are themselves m...
submgmbas 18635 The base set of a submagma...
subsubmgm 18636 A submagma of a submagma i...
resmgmhm 18637 Restriction of a magma hom...
resmgmhm2 18638 One direction of ~ resmgmh...
resmgmhm2b 18639 Restriction of the codomai...
mgmhmco 18640 The composition of magma h...
mgmhmima 18641 The homomorphic image of a...
mgmhmeql 18642 The equalizer of two magma...
submgmacs 18643 Submagmas are an algebraic...
issgrp 18646 The predicate "is a semigr...
issgrpv 18647 The predicate "is a semigr...
issgrpn0 18648 The predicate "is a semigr...
isnsgrp 18649 A condition for a structur...
sgrpmgm 18650 A semigroup is a magma. (...
sgrpass 18651 A semigroup operation is a...
sgrpcl 18652 Closure of the operation o...
sgrp0 18653 Any set with an empty base...
sgrp0b 18654 The structure with an empt...
sgrp1 18655 The structure with one ele...
issgrpd 18656 Deduce a semigroup from it...
sgrppropd 18657 If two structures are sets...
prdsplusgsgrpcl 18658 Structure product pointwis...
prdssgrpd 18659 The product of a family of...
ismnddef 18662 The predicate "is a monoid...
ismnd 18663 The predicate "is a monoid...
isnmnd 18664 A condition for a structur...
sgrpidmnd 18665 A semigroup with an identi...
mndsgrp 18666 A monoid is a semigroup. ...
mndmgm 18667 A monoid is a magma. (Con...
mndcl 18668 Closure of the operation o...
mndass 18669 A monoid operation is asso...
mndid 18670 A monoid has a two-sided i...
mndideu 18671 The two-sided identity ele...
mnd32g 18672 Commutative/associative la...
mnd12g 18673 Commutative/associative la...
mnd4g 18674 Commutative/associative la...
mndidcl 18675 The identity element of a ...
mndbn0 18676 The base set of a monoid i...
hashfinmndnn 18677 A finite monoid has positi...
mndplusf 18678 The group addition operati...
mndlrid 18679 A monoid's identity elemen...
mndlid 18680 The identity element of a ...
mndrid 18681 The identity element of a ...
ismndd 18682 Deduce a monoid from its p...
mndpfo 18683 The addition operation of ...
mndfo 18684 The addition operation of ...
mndpropd 18685 If two structures have the...
mndprop 18686 If two structures have the...
issubmnd 18687 Characterize a submonoid b...
ress0g 18688 ` 0g ` is unaffected by re...
submnd0 18689 The zero of a submonoid is...
mndinvmod 18690 Uniqueness of an inverse e...
prdsplusgcl 18691 Structure product pointwis...
prdsidlem 18692 Characterization of identi...
prdsmndd 18693 The product of a family of...
prds0g 18694 Zero in a product of monoi...
pwsmnd 18695 The structure power of a m...
pws0g 18696 Zero in a structure power ...
imasmnd2 18697 The image structure of a m...
imasmnd 18698 The image structure of a m...
imasmndf1 18699 The image of a monoid unde...
xpsmnd 18700 The binary product of mono...
xpsmnd0 18701 The identity element of a ...
mnd1 18702 The (smallest) structure r...
mnd1id 18703 The singleton element of a...
ismhm 18708 Property of a monoid homom...
ismhmd 18709 Deduction version of ~ ism...
mhmrcl1 18710 Reverse closure of a monoi...
mhmrcl2 18711 Reverse closure of a monoi...
mhmf 18712 A monoid homomorphism is a...
ismhm0 18713 Property of a monoid homom...
mhmismgmhm 18714 Each monoid homomorphism i...
mhmpropd 18715 Monoid homomorphism depend...
mhmlin 18716 A monoid homomorphism comm...
mhm0 18717 A monoid homomorphism pres...
idmhm 18718 The identity homomorphism ...
mhmf1o 18719 A monoid homomorphism is b...
submrcl 18720 Reverse closure for submon...
issubm 18721 Expand definition of a sub...
issubm2 18722 Submonoids are subsets tha...
issubmndb 18723 The submonoid predicate. ...
issubmd 18724 Deduction for proving a su...
mndissubm 18725 If the base set of a monoi...
resmndismnd 18726 If the base set of a monoi...
submss 18727 Submonoids are subsets of ...
submid 18728 Every monoid is trivially ...
subm0cl 18729 Submonoids contain zero. ...
submcl 18730 Submonoids are closed unde...
submmnd 18731 Submonoids are themselves ...
submbas 18732 The base set of a submonoi...
subm0 18733 Submonoids have the same i...
subsubm 18734 A submonoid of a submonoid...
0subm 18735 The zero submonoid of an a...
insubm 18736 The intersection of two su...
0mhm 18737 The constant zero linear f...
resmhm 18738 Restriction of a monoid ho...
resmhm2 18739 One direction of ~ resmhm2...
resmhm2b 18740 Restriction of the codomai...
mhmco 18741 The composition of monoid ...
mhmimalem 18742 Lemma for ~ mhmima and sim...
mhmima 18743 The homomorphic image of a...
mhmeql 18744 The equalizer of two monoi...
submacs 18745 Submonoids are an algebrai...
mndind 18746 Induction in a monoid. In...
prdspjmhm 18747 A projection from a produc...
pwspjmhm 18748 A projection from a struct...
pwsdiagmhm 18749 Diagonal monoid homomorphi...
pwsco1mhm 18750 Right composition with a f...
pwsco2mhm 18751 Left composition with a mo...
gsumvallem2 18752 Lemma for properties of th...
gsumsubm 18753 Evaluate a group sum in a ...
gsumz 18754 Value of a group sum over ...
gsumwsubmcl 18755 Closure of the composite i...
gsumws1 18756 A singleton composite reco...
gsumwcl 18757 Closure of the composite o...
gsumsgrpccat 18758 Homomorphic property of no...
gsumccat 18759 Homomorphic property of co...
gsumws2 18760 Valuation of a pair in a m...
gsumccatsn 18761 Homomorphic property of co...
gsumspl 18762 The primary purpose of the...
gsumwmhm 18763 Behavior of homomorphisms ...
gsumwspan 18764 The submonoid generated by...
frmdval 18769 Value of the free monoid c...
frmdbas 18770 The base set of a free mon...
frmdelbas 18771 An element of the base set...
frmdplusg 18772 The monoid operation of a ...
frmdadd 18773 Value of the monoid operat...
vrmdfval 18774 The canonical injection fr...
vrmdval 18775 The value of the generatin...
vrmdf 18776 The mapping from the index...
frmdmnd 18777 A free monoid is a monoid....
frmd0 18778 The identity of the free m...
frmdsssubm 18779 The set of words taking va...
frmdgsum 18780 Any word in a free monoid ...
frmdss2 18781 A subset of generators is ...
frmdup1 18782 Any assignment of the gene...
frmdup2 18783 The evaluation map has the...
frmdup3lem 18784 Lemma for ~ frmdup3 . (Co...
frmdup3 18785 Universal property of the ...
efmnd 18788 The monoid of endofunction...
efmndbas 18789 The base set of the monoid...
efmndbasabf 18790 The base set of the monoid...
elefmndbas 18791 Two ways of saying a funct...
elefmndbas2 18792 Two ways of saying a funct...
efmndbasf 18793 Elements in the monoid of ...
efmndhash 18794 The monoid of endofunction...
efmndbasfi 18795 The monoid of endofunction...
efmndfv 18796 The function value of an e...
efmndtset 18797 The topology of the monoid...
efmndplusg 18798 The group operation of a m...
efmndov 18799 The value of the group ope...
efmndcl 18800 The group operation of the...
efmndtopn 18801 The topology of the monoid...
symggrplem 18802 Lemma for ~ symggrp and ~ ...
efmndmgm 18803 The monoid of endofunction...
efmndsgrp 18804 The monoid of endofunction...
ielefmnd 18805 The identity function rest...
efmndid 18806 The identity function rest...
efmndmnd 18807 The monoid of endofunction...
efmnd0nmnd 18808 Even the monoid of endofun...
efmndbas0 18809 The base set of the monoid...
efmnd1hash 18810 The monoid of endofunction...
efmnd1bas 18811 The monoid of endofunction...
efmnd2hash 18812 The monoid of endofunction...
submefmnd 18813 If the base set of a monoi...
sursubmefmnd 18814 The set of surjective endo...
injsubmefmnd 18815 The set of injective endof...
idressubmefmnd 18816 The singleton containing o...
idresefmnd 18817 The structure with the sin...
smndex1ibas 18818 The modulo function ` I ` ...
smndex1iidm 18819 The modulo function ` I ` ...
smndex1gbas 18820 The constant functions ` (...
smndex1gid 18821 The composition of a const...
smndex1igid 18822 The composition of the mod...
smndex1basss 18823 The modulo function ` I ` ...
smndex1bas 18824 The base set of the monoid...
smndex1mgm 18825 The monoid of endofunction...
smndex1sgrp 18826 The monoid of endofunction...
smndex1mndlem 18827 Lemma for ~ smndex1mnd and...
smndex1mnd 18828 The monoid of endofunction...
smndex1id 18829 The modulo function ` I ` ...
smndex1n0mnd 18830 The identity of the monoid...
nsmndex1 18831 The base set ` B ` of the ...
smndex2dbas 18832 The doubling function ` D ...
smndex2dnrinv 18833 The doubling function ` D ...
smndex2hbas 18834 The halving functions ` H ...
smndex2dlinvh 18835 The halving functions ` H ...
mgm2nsgrplem1 18836 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18837 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18838 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18839 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18840 A small magma (with two el...
sgrp2nmndlem1 18841 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18842 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18843 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18844 A small semigroup (with tw...
sgrp2rid2ex 18845 A small semigroup (with tw...
sgrp2nmndlem4 18846 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18847 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18848 A small semigroup (with tw...
mgmnsgrpex 18849 There is a magma which is ...
sgrpnmndex 18850 There is a semigroup which...
sgrpssmgm 18851 The class of all semigroup...
mndsssgrp 18852 The class of all monoids i...
pwmndgplus 18853 The operation of the monoi...
pwmndid 18854 The identity of the monoid...
pwmnd 18855 The power set of a class `...
isgrp 18862 The predicate "is a group"...
grpmnd 18863 A group is a monoid. (Con...
grpcl 18864 Closure of the operation o...
grpass 18865 A group operation is assoc...
grpinvex 18866 Every member of a group ha...
grpideu 18867 The two-sided identity ele...
grpassd 18868 A group operation is assoc...
grpmndd 18869 A group is a monoid. (Con...
grpcld 18870 Closure of the operation o...
grpplusf 18871 The group addition operati...
grpplusfo 18872 The group addition operati...
resgrpplusfrn 18873 The underlying set of a gr...
grppropd 18874 If two structures have the...
grpprop 18875 If two structures have the...
grppropstr 18876 Generalize a specific 2-el...
grpss 18877 Show that a structure exte...
isgrpd2e 18878 Deduce a group from its pr...
isgrpd2 18879 Deduce a group from its pr...
isgrpde 18880 Deduce a group from its pr...
isgrpd 18881 Deduce a group from its pr...
isgrpi 18882 Properties that determine ...
grpsgrp 18883 A group is a semigroup. (...
dfgrp2 18884 Alternate definition of a ...
dfgrp2e 18885 Alternate definition of a ...
isgrpix 18886 Properties that determine ...
grpidcl 18887 The identity element of a ...
grpbn0 18888 The base set of a group is...
grplid 18889 The identity element of a ...
grprid 18890 The identity element of a ...
grplidd 18891 The identity element of a ...
grpridd 18892 The identity element of a ...
grpn0 18893 A group is not empty. (Co...
hashfingrpnn 18894 A finite group has positiv...
grprcan 18895 Right cancellation law for...
grpinveu 18896 The left inverse element o...
grpid 18897 Two ways of saying that an...
isgrpid2 18898 Properties showing that an...
grpidd2 18899 Deduce the identity elemen...
grpinvfval 18900 The inverse function of a ...
grpinvfvalALT 18901 Shorter proof of ~ grpinvf...
grpinvval 18902 The inverse of a group ele...
grpinvfn 18903 Functionality of the group...
grpinvfvi 18904 The group inverse function...
grpsubfval 18905 Group subtraction (divisio...
grpsubfvalALT 18906 Shorter proof of ~ grpsubf...
grpsubval 18907 Group subtraction (divisio...
grpinvf 18908 The group inversion operat...
grpinvcl 18909 A group element's inverse ...
grpinvcld 18910 A group element's inverse ...
grplinv 18911 The left inverse of a grou...
grprinv 18912 The right inverse of a gro...
grpinvid1 18913 The inverse of a group ele...
grpinvid2 18914 The inverse of a group ele...
isgrpinv 18915 Properties showing that a ...
grplinvd 18916 The left inverse of a grou...
grprinvd 18917 The right inverse of a gro...
grplrinv 18918 In a group, every member h...
grpidinv2 18919 A group's properties using...
grpidinv 18920 A group has a left and rig...
grpinvid 18921 The inverse of the identit...
grplcan 18922 Left cancellation law for ...
grpasscan1 18923 An associative cancellatio...
grpasscan2 18924 An associative cancellatio...
grpidrcan 18925 If right adding an element...
grpidlcan 18926 If left adding an element ...
grpinvinv 18927 Double inverse law for gro...
grpinvcnv 18928 The group inverse is its o...
grpinv11 18929 The group inverse is one-t...
grpinvf1o 18930 The group inverse is a one...
grpinvnz 18931 The inverse of a nonzero g...
grpinvnzcl 18932 The inverse of a nonzero g...
grpsubinv 18933 Subtraction of an inverse....
grplmulf1o 18934 Left multiplication by a g...
grpinvpropd 18935 If two structures have the...
grpidssd 18936 If the base set of a group...
grpinvssd 18937 If the base set of a group...
grpinvadd 18938 The inverse of the group o...
grpsubf 18939 Functionality of group sub...
grpsubcl 18940 Closure of group subtracti...
grpsubrcan 18941 Right cancellation law for...
grpinvsub 18942 Inverse of a group subtrac...
grpinvval2 18943 A ~ df-neg -like equation ...
grpsubid 18944 Subtraction of a group ele...
grpsubid1 18945 Subtraction of the identit...
grpsubeq0 18946 If the difference between ...
grpsubadd0sub 18947 Subtraction expressed as a...
grpsubadd 18948 Relationship between group...
grpsubsub 18949 Double group subtraction. ...
grpaddsubass 18950 Associative-type law for g...
grppncan 18951 Cancellation law for subtr...
grpnpcan 18952 Cancellation law for subtr...
grpsubsub4 18953 Double group subtraction (...
grppnpcan2 18954 Cancellation law for mixed...
grpnpncan 18955 Cancellation law for group...
grpnpncan0 18956 Cancellation law for group...
grpnnncan2 18957 Cancellation law for group...
dfgrp3lem 18958 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18959 Alternate definition of a ...
dfgrp3e 18960 Alternate definition of a ...
grplactfval 18961 The left group action of e...
grplactval 18962 The value of the left grou...
grplactcnv 18963 The left group action of e...
grplactf1o 18964 The left group action of e...
grpsubpropd 18965 Weak property deduction fo...
grpsubpropd2 18966 Strong property deduction ...
grp1 18967 The (smallest) structure r...
grp1inv 18968 The inverse function of th...
prdsinvlem 18969 Characterization of invers...
prdsgrpd 18970 The product of a family of...
prdsinvgd 18971 Negation in a product of g...
pwsgrp 18972 A structure power of a gro...
pwsinvg 18973 Negation in a group power....
pwssub 18974 Subtraction in a group pow...
imasgrp2 18975 The image structure of a g...
imasgrp 18976 The image structure of a g...
imasgrpf1 18977 The image of a group under...
qusgrp2 18978 Prove that a quotient stru...
xpsgrp 18979 The binary product of grou...
xpsinv 18980 Value of the negation oper...
xpsgrpsub 18981 Value of the subtraction o...
mhmlem 18982 Lemma for ~ mhmmnd and ~ g...
mhmid 18983 A surjective monoid morphi...
mhmmnd 18984 The image of a monoid ` G ...
mhmfmhm 18985 The function fulfilling th...
ghmgrp 18986 The image of a group ` G `...
mulgfval 18989 Group multiple (exponentia...
mulgfvalALT 18990 Shorter proof of ~ mulgfva...
mulgval 18991 Value of the group multipl...
mulgfn 18992 Functionality of the group...
mulgfvi 18993 The group multiple operati...
mulg0 18994 Group multiple (exponentia...
mulgnn 18995 Group multiple (exponentia...
mulgnngsum 18996 Group multiple (exponentia...
mulgnn0gsum 18997 Group multiple (exponentia...
mulg1 18998 Group multiple (exponentia...
mulgnnp1 18999 Group multiple (exponentia...
mulg2 19000 Group multiple (exponentia...
mulgnegnn 19001 Group multiple (exponentia...
mulgnn0p1 19002 Group multiple (exponentia...
mulgnnsubcl 19003 Closure of the group multi...
mulgnn0subcl 19004 Closure of the group multi...
mulgsubcl 19005 Closure of the group multi...
mulgnncl 19006 Closure of the group multi...
mulgnn0cl 19007 Closure of the group multi...
mulgcl 19008 Closure of the group multi...
mulgneg 19009 Group multiple (exponentia...
mulgnegneg 19010 The inverse of a negative ...
mulgm1 19011 Group multiple (exponentia...
mulgnn0cld 19012 Closure of the group multi...
mulgcld 19013 Deduction associated with ...
mulgaddcomlem 19014 Lemma for ~ mulgaddcom . ...
mulgaddcom 19015 The group multiple operato...
mulginvcom 19016 The group multiple operato...
mulginvinv 19017 The group multiple operato...
mulgnn0z 19018 A group multiple of the id...
mulgz 19019 A group multiple of the id...
mulgnndir 19020 Sum of group multiples, fo...
mulgnn0dir 19021 Sum of group multiples, ge...
mulgdirlem 19022 Lemma for ~ mulgdir . (Co...
mulgdir 19023 Sum of group multiples, ge...
mulgp1 19024 Group multiple (exponentia...
mulgneg2 19025 Group multiple (exponentia...
mulgnnass 19026 Product of group multiples...
mulgnn0ass 19027 Product of group multiples...
mulgass 19028 Product of group multiples...
mulgassr 19029 Reversed product of group ...
mulgmodid 19030 Casting out multiples of t...
mulgsubdir 19031 Distribution of group mult...
mhmmulg 19032 A homomorphism of monoids ...
mulgpropd 19033 Two structures with the sa...
submmulgcl 19034 Closure of the group multi...
submmulg 19035 A group multiple is the sa...
pwsmulg 19036 Value of a group multiple ...
issubg 19043 The subgroup predicate. (...
subgss 19044 A subgroup is a subset. (...
subgid 19045 A group is a subgroup of i...
subggrp 19046 A subgroup is a group. (C...
subgbas 19047 The base of the restricted...
subgrcl 19048 Reverse closure for the su...
subg0 19049 A subgroup of a group must...
subginv 19050 The inverse of an element ...
subg0cl 19051 The group identity is an e...
subginvcl 19052 The inverse of an element ...
subgcl 19053 A subgroup is closed under...
subgsubcl 19054 A subgroup is closed under...
subgsub 19055 The subtraction of element...
subgmulgcl 19056 Closure of the group multi...
subgmulg 19057 A group multiple is the sa...
issubg2 19058 Characterize the subgroups...
issubgrpd2 19059 Prove a subgroup by closur...
issubgrpd 19060 Prove a subgroup by closur...
issubg3 19061 A subgroup is a symmetric ...
issubg4 19062 A subgroup is a nonempty s...
grpissubg 19063 If the base set of a group...
resgrpisgrp 19064 If the base set of a group...
subgsubm 19065 A subgroup is a submonoid....
subsubg 19066 A subgroup of a subgroup i...
subgint 19067 The intersection of a none...
0subg 19068 The zero subgroup of an ar...
0subgOLD 19069 Obsolete version of ~ 0sub...
trivsubgd 19070 The only subgroup of a tri...
trivsubgsnd 19071 The only subgroup of a tri...
isnsg 19072 Property of being a normal...
isnsg2 19073 Weaken the condition of ~ ...
nsgbi 19074 Defining property of a nor...
nsgsubg 19075 A normal subgroup is a sub...
nsgconj 19076 The conjugation of an elem...
isnsg3 19077 A subgroup is normal iff t...
subgacs 19078 Subgroups are an algebraic...
nsgacs 19079 Normal subgroups form an a...
elnmz 19080 Elementhood in the normali...
nmzbi 19081 Defining property of the n...
nmzsubg 19082 The normalizer N_G(S) of a...
ssnmz 19083 A subgroup is a subset of ...
isnsg4 19084 A subgroup is normal iff i...
nmznsg 19085 Any subgroup is a normal s...
0nsg 19086 The zero subgroup is norma...
nsgid 19087 The whole group is a norma...
0idnsgd 19088 The whole group and the ze...
trivnsgd 19089 The only normal subgroup o...
triv1nsgd 19090 A trivial group has exactl...
1nsgtrivd 19091 A group with exactly one n...
releqg 19092 The left coset equivalence...
eqgfval 19093 Value of the subgroup left...
eqgval 19094 Value of the subgroup left...
eqger 19095 The subgroup coset equival...
eqglact 19096 A left coset can be expres...
eqgid 19097 The left coset containing ...
eqgen 19098 Each coset is equipotent t...
eqgcpbl 19099 The subgroup coset equival...
quselbas 19100 Membership in the base set...
quseccl0 19101 Closure of the quotient ma...
qusgrp 19102 If ` Y ` is a normal subgr...
quseccl 19103 Closure of the quotient ma...
qusadd 19104 Value of the group operati...
qus0 19105 Value of the group identit...
qusinv 19106 Value of the group inverse...
qussub 19107 Value of the group subtrac...
ecqusaddd 19108 Addition of equivalence cl...
ecqusaddcl 19109 Closure of the addition in...
lagsubg2 19110 Lagrange's theorem for fin...
lagsubg 19111 Lagrange's theorem for Gro...
eqg0subg 19112 The coset equivalence rela...
eqg0subgecsn 19113 The equivalence classes mo...
qus0subgbas 19114 The base set of a quotient...
qus0subgadd 19115 The addition in a quotient...
cycsubmel 19116 Characterization of an ele...
cycsubmcl 19117 The set of nonnegative int...
cycsubm 19118 The set of nonnegative int...
cyccom 19119 Condition for an operation...
cycsubmcom 19120 The operation of a monoid ...
cycsubggend 19121 The cyclic subgroup genera...
cycsubgcl 19122 The set of integer powers ...
cycsubgss 19123 The cyclic subgroup genera...
cycsubg 19124 The cyclic group generated...
cycsubgcld 19125 The cyclic subgroup genera...
cycsubg2 19126 The subgroup generated by ...
cycsubg2cl 19127 Any multiple of an element...
reldmghm 19130 Lemma for group homomorphi...
isghm 19131 Property of being a homomo...
isghm3 19132 Property of a group homomo...
ghmgrp1 19133 A group homomorphism is on...
ghmgrp2 19134 A group homomorphism is on...
ghmf 19135 A group homomorphism is a ...
ghmlin 19136 A homomorphism of groups i...
ghmid 19137 A homomorphism of groups p...
ghminv 19138 A homomorphism of groups p...
ghmsub 19139 Linearity of subtraction t...
isghmd 19140 Deduction for a group homo...
ghmmhm 19141 A group homomorphism is a ...
ghmmhmb 19142 Group homomorphisms and mo...
ghmmulg 19143 A homomorphism of monoids ...
ghmrn 19144 The range of a homomorphis...
0ghm 19145 The constant zero linear f...
idghm 19146 The identity homomorphism ...
resghm 19147 Restriction of a homomorph...
resghm2 19148 One direction of ~ resghm2...
resghm2b 19149 Restriction of the codomai...
ghmghmrn 19150 A group homomorphism from ...
ghmco 19151 The composition of group h...
ghmima 19152 The image of a subgroup un...
ghmpreima 19153 The inverse image of a sub...
ghmeql 19154 The equalizer of two group...
ghmnsgima 19155 The image of a normal subg...
ghmnsgpreima 19156 The inverse image of a nor...
ghmker 19157 The kernel of a homomorphi...
ghmeqker 19158 Two source points map to t...
pwsdiagghm 19159 Diagonal homomorphism into...
f1ghm0to0 19160 If a group homomorphism ` ...
ghmf1 19161 Two ways of saying a group...
kerf1ghm 19162 A group homomorphism ` F `...
ghmf1o 19163 A bijective group homomorp...
conjghm 19164 Conjugation is an automorp...
conjsubg 19165 A conjugated subgroup is a...
conjsubgen 19166 A conjugated subgroup is e...
conjnmz 19167 A subgroup is unchanged un...
conjnmzb 19168 Alternative condition for ...
conjnsg 19169 A normal subgroup is uncha...
qusghm 19170 If ` Y ` is a normal subgr...
ghmpropd 19171 Group homomorphism depends...
gimfn 19176 The group isomorphism func...
isgim 19177 An isomorphism of groups i...
gimf1o 19178 An isomorphism of groups i...
gimghm 19179 An isomorphism of groups i...
isgim2 19180 A group isomorphism is a h...
subggim 19181 Behavior of subgroups unde...
gimcnv 19182 The converse of a bijectiv...
gimco 19183 The composition of group i...
gim0to0 19184 A group isomorphism maps t...
brgic 19185 The relation "is isomorphi...
brgici 19186 Prove isomorphic by an exp...
gicref 19187 Isomorphism is reflexive. ...
giclcl 19188 Isomorphism implies the le...
gicrcl 19189 Isomorphism implies the ri...
gicsym 19190 Isomorphism is symmetric. ...
gictr 19191 Isomorphism is transitive....
gicer 19192 Isomorphism is an equivale...
gicen 19193 Isomorphic groups have equ...
gicsubgen 19194 A less trivial example of ...
isga 19197 The predicate "is a (left)...
gagrp 19198 The left argument of a gro...
gaset 19199 The right argument of a gr...
gagrpid 19200 The identity of the group ...
gaf 19201 The mapping of the group a...
gafo 19202 A group action is onto its...
gaass 19203 An "associative" property ...
ga0 19204 The action of a group on t...
gaid 19205 The trivial action of a gr...
subgga 19206 A subgroup acts on its par...
gass 19207 A subset of a group action...
gasubg 19208 The restriction of a group...
gaid2 19209 A group operation is a lef...
galcan 19210 The action of a particular...
gacan 19211 Group inverses cancel in a...
gapm 19212 The action of a particular...
gaorb 19213 The orbit equivalence rela...
gaorber 19214 The orbit equivalence rela...
gastacl 19215 The stabilizer subgroup in...
gastacos 19216 Write the coset relation f...
orbstafun 19217 Existence and uniqueness f...
orbstaval 19218 Value of the function at a...
orbsta 19219 The Orbit-Stabilizer theor...
orbsta2 19220 Relation between the size ...
cntrval 19225 Substitute definition of t...
cntzfval 19226 First level substitution f...
cntzval 19227 Definition substitution fo...
elcntz 19228 Elementhood in the central...
cntzel 19229 Membership in a centralize...
cntzsnval 19230 Special substitution for t...
elcntzsn 19231 Value of the centralizer o...
sscntz 19232 A centralizer expression f...
cntzrcl 19233 Reverse closure for elemen...
cntzssv 19234 The centralizer is uncondi...
cntzi 19235 Membership in a centralize...
elcntr 19236 Elementhood in the center ...
cntrss 19237 The center is a subset of ...
cntri 19238 Defining property of the c...
resscntz 19239 Centralizer in a substruct...
cntzsgrpcl 19240 Centralizers are closed un...
cntz2ss 19241 Centralizers reverse the s...
cntzrec 19242 Reciprocity relationship f...
cntziinsn 19243 Express any centralizer as...
cntzsubm 19244 Centralizers in a monoid a...
cntzsubg 19245 Centralizers in a group ar...
cntzidss 19246 If the elements of ` S ` c...
cntzmhm 19247 Centralizers in a monoid a...
cntzmhm2 19248 Centralizers in a monoid a...
cntrsubgnsg 19249 A central subgroup is norm...
cntrnsg 19250 The center of a group is a...
oppgval 19253 Value of the opposite grou...
oppgplusfval 19254 Value of the addition oper...
oppgplus 19255 Value of the addition oper...
setsplusg 19256 The other components of an...
oppglemOLD 19257 Obsolete version of ~ sets...
oppgbas 19258 Base set of an opposite gr...
oppgbasOLD 19259 Obsolete version of ~ oppg...
oppgtset 19260 Topology of an opposite gr...
oppgtsetOLD 19261 Obsolete version of ~ oppg...
oppgtopn 19262 Topology of an opposite gr...
oppgmnd 19263 The opposite of a monoid i...
oppgmndb 19264 Bidirectional form of ~ op...
oppgid 19265 Zero in a monoid is a symm...
oppggrp 19266 The opposite of a group is...
oppggrpb 19267 Bidirectional form of ~ op...
oppginv 19268 Inverses in a group are a ...
invoppggim 19269 The inverse is an antiauto...
oppggic 19270 Every group is (naturally)...
oppgsubm 19271 Being a submonoid is a sym...
oppgsubg 19272 Being a subgroup is a symm...
oppgcntz 19273 A centralizer in a group i...
oppgcntr 19274 The center of a group is t...
gsumwrev 19275 A sum in an opposite monoi...
symgval 19278 The value of the symmetric...
permsetexOLD 19279 Obsolete version of ~ f1os...
symgbas 19280 The base set of the symmet...
symgbasexOLD 19281 Obsolete as of 8-Aug-2024....
elsymgbas2 19282 Two ways of saying a funct...
elsymgbas 19283 Two ways of saying a funct...
symgbasf1o 19284 Elements in the symmetric ...
symgbasf 19285 A permutation (element of ...
symgbasmap 19286 A permutation (element of ...
symghash 19287 The symmetric group on ` n...
symgbasfi 19288 The symmetric group on a f...
symgfv 19289 The function value of a pe...
symgfvne 19290 The function values of a p...
symgressbas 19291 The symmetric group on ` A...
symgplusg 19292 The group operation of a s...
symgov 19293 The value of the group ope...
symgcl 19294 The group operation of the...
idresperm 19295 The identity function rest...
symgmov1 19296 For a permutation of a set...
symgmov2 19297 For a permutation of a set...
symgbas0 19298 The base set of the symmet...
symg1hash 19299 The symmetric group on a s...
symg1bas 19300 The symmetric group on a s...
symg2hash 19301 The symmetric group on a (...
symg2bas 19302 The symmetric group on a p...
0symgefmndeq 19303 The symmetric group on the...
snsymgefmndeq 19304 The symmetric group on a s...
symgpssefmnd 19305 For a set ` A ` with more ...
symgvalstruct 19306 The value of the symmetric...
symgvalstructOLD 19307 Obsolete proof of ~ symgva...
symgsubmefmnd 19308 The symmetric group on a s...
symgtset 19309 The topology of the symmet...
symggrp 19310 The symmetric group on a s...
symgid 19311 The group identity element...
symginv 19312 The group inverse in the s...
symgsubmefmndALT 19313 The symmetric group on a s...
galactghm 19314 The currying of a group ac...
lactghmga 19315 The converse of ~ galactgh...
symgtopn 19316 The topology of the symmet...
symgga 19317 The symmetric group induce...
pgrpsubgsymgbi 19318 Every permutation group is...
pgrpsubgsymg 19319 Every permutation group is...
idressubgsymg 19320 The singleton containing o...
idrespermg 19321 The structure with the sin...
cayleylem1 19322 Lemma for ~ cayley . (Con...
cayleylem2 19323 Lemma for ~ cayley . (Con...
cayley 19324 Cayley's Theorem (construc...
cayleyth 19325 Cayley's Theorem (existenc...
symgfix2 19326 If a permutation does not ...
symgextf 19327 The extension of a permuta...
symgextfv 19328 The function value of the ...
symgextfve 19329 The function value of the ...
symgextf1lem 19330 Lemma for ~ symgextf1 . (...
symgextf1 19331 The extension of a permuta...
symgextfo 19332 The extension of a permuta...
symgextf1o 19333 The extension of a permuta...
symgextsymg 19334 The extension of a permuta...
symgextres 19335 The restriction of the ext...
gsumccatsymgsn 19336 Homomorphic property of co...
gsmsymgrfixlem1 19337 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 19338 The composition of permuta...
fvcosymgeq 19339 The values of two composit...
gsmsymgreqlem1 19340 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 19341 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 19342 Two combination of permuta...
symgfixelq 19343 A permutation of a set fix...
symgfixels 19344 The restriction of a permu...
symgfixelsi 19345 The restriction of a permu...
symgfixf 19346 The mapping of a permutati...
symgfixf1 19347 The mapping of a permutati...
symgfixfolem1 19348 Lemma 1 for ~ symgfixfo . ...
symgfixfo 19349 The mapping of a permutati...
symgfixf1o 19350 The mapping of a permutati...
f1omvdmvd 19353 A permutation of any class...
f1omvdcnv 19354 A permutation and its inve...
mvdco 19355 Composing two permutations...
f1omvdconj 19356 Conjugation of a permutati...
f1otrspeq 19357 A transposition is charact...
f1omvdco2 19358 If exactly one of two perm...
f1omvdco3 19359 If a point is moved by exa...
pmtrfval 19360 The function generating tr...
pmtrval 19361 A generated transposition,...
pmtrfv 19362 General value of mapping a...
pmtrprfv 19363 In a transposition of two ...
pmtrprfv3 19364 In a transposition of two ...
pmtrf 19365 Functionality of a transpo...
pmtrmvd 19366 A transposition moves prec...
pmtrrn 19367 Transposing two points giv...
pmtrfrn 19368 A transposition (as a kind...
pmtrffv 19369 Mapping of a point under a...
pmtrrn2 19370 For any transposition ther...
pmtrfinv 19371 A transposition function i...
pmtrfmvdn0 19372 A transposition moves at l...
pmtrff1o 19373 A transposition function i...
pmtrfcnv 19374 A transposition function i...
pmtrfb 19375 An intrinsic characterizat...
pmtrfconj 19376 Any conjugate of a transpo...
symgsssg 19377 The symmetric group has su...
symgfisg 19378 The symmetric group has a ...
symgtrf 19379 Transpositions are element...
symggen 19380 The span of the transposit...
symggen2 19381 A finite permutation group...
symgtrinv 19382 To invert a permutation re...
pmtr3ncomlem1 19383 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 19384 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 19385 Transpositions over sets w...
pmtrdifellem1 19386 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19387 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19388 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19389 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19390 A transposition of element...
pmtrdifwrdellem1 19391 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19392 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19393 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19394 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19395 A sequence of transpositio...
pmtrdifwrdel2 19396 A sequence of transpositio...
pmtrprfval 19397 The transpositions on a pa...
pmtrprfvalrn 19398 The range of the transposi...
psgnunilem1 19403 Lemma for ~ psgnuni . Giv...
psgnunilem5 19404 Lemma for ~ psgnuni . It ...
psgnunilem2 19405 Lemma for ~ psgnuni . Ind...
psgnunilem3 19406 Lemma for ~ psgnuni . Any...
psgnunilem4 19407 Lemma for ~ psgnuni . An ...
m1expaddsub 19408 Addition and subtraction o...
psgnuni 19409 If the same permutation ca...
psgnfval 19410 Function definition of the...
psgnfn 19411 Functionality and domain o...
psgndmsubg 19412 The finitary permutations ...
psgneldm 19413 Property of being a finita...
psgneldm2 19414 The finitary permutations ...
psgneldm2i 19415 A sequence of transpositio...
psgneu 19416 A finitary permutation has...
psgnval 19417 Value of the permutation s...
psgnvali 19418 A finitary permutation has...
psgnvalii 19419 Any representation of a pe...
psgnpmtr 19420 All transpositions are odd...
psgn0fv0 19421 The permutation sign funct...
sygbasnfpfi 19422 The class of non-fixed poi...
psgnfvalfi 19423 Function definition of the...
psgnvalfi 19424 Value of the permutation s...
psgnran 19425 The range of the permutati...
gsmtrcl 19426 The group sum of transposi...
psgnfitr 19427 A permutation of a finite ...
psgnfieu 19428 A permutation of a finite ...
pmtrsn 19429 The value of the transposi...
psgnsn 19430 The permutation sign funct...
psgnprfval 19431 The permutation sign funct...
psgnprfval1 19432 The permutation sign of th...
psgnprfval2 19433 The permutation sign of th...
odfval 19442 Value of the order functio...
odfvalALT 19443 Shorter proof of ~ odfval ...
odval 19444 Second substitution for th...
odlem1 19445 The group element order is...
odcl 19446 The order of a group eleme...
odf 19447 Functionality of the group...
odid 19448 Any element to the power o...
odlem2 19449 Any positive annihilator o...
odmodnn0 19450 Reduce the argument of a g...
mndodconglem 19451 Lemma for ~ mndodcong . (...
mndodcong 19452 If two multipliers are con...
mndodcongi 19453 If two multipliers are con...
oddvdsnn0 19454 The only multiples of ` A ...
odnncl 19455 If a nonzero multiple of a...
odmod 19456 Reduce the argument of a g...
oddvds 19457 The only multiples of ` A ...
oddvdsi 19458 Any group element is annih...
odcong 19459 If two multipliers are con...
odeq 19460 The ~ oddvds property uniq...
odval2 19461 A non-conditional definiti...
odcld 19462 The order of a group eleme...
odm1inv 19463 The (order-1)th multiple o...
odmulgid 19464 A relationship between the...
odmulg2 19465 The order of a multiple di...
odmulg 19466 Relationship between the o...
odmulgeq 19467 A multiple of a point of f...
odbezout 19468 If ` N ` is coprime to the...
od1 19469 The order of the group ide...
odeq1 19470 The group identity is the ...
odinv 19471 The order of the inverse o...
odf1 19472 The multiples of an elemen...
odinf 19473 The multiples of an elemen...
dfod2 19474 An alternative definition ...
odcl2 19475 The order of an element of...
oddvds2 19476 The order of an element of...
finodsubmsubg 19477 A submonoid whose elements...
0subgALT 19478 A shorter proof of ~ 0subg...
submod 19479 The order of an element is...
subgod 19480 The order of an element is...
odsubdvds 19481 The order of an element of...
odf1o1 19482 An element with zero order...
odf1o2 19483 An element with nonzero or...
odhash 19484 An element of zero order g...
odhash2 19485 If an element has nonzero ...
odhash3 19486 An element which generates...
odngen 19487 A cyclic subgroup of size ...
gexval 19488 Value of the exponent of a...
gexlem1 19489 The group element order is...
gexcl 19490 The exponent of a group is...
gexid 19491 Any element to the power o...
gexlem2 19492 Any positive annihilator o...
gexdvdsi 19493 Any group element is annih...
gexdvds 19494 The only ` N ` that annihi...
gexdvds2 19495 An integer divides the gro...
gexod 19496 Any group element is annih...
gexcl3 19497 If the order of every grou...
gexnnod 19498 Every group element has fi...
gexcl2 19499 The exponent of a finite g...
gexdvds3 19500 The exponent of a finite g...
gex1 19501 A group or monoid has expo...
ispgp 19502 A group is a ` P ` -group ...
pgpprm 19503 Reverse closure for the fi...
pgpgrp 19504 Reverse closure for the se...
pgpfi1 19505 A finite group with order ...
pgp0 19506 The identity subgroup is a...
subgpgp 19507 A subgroup of a p-group is...
sylow1lem1 19508 Lemma for ~ sylow1 . The ...
sylow1lem2 19509 Lemma for ~ sylow1 . The ...
sylow1lem3 19510 Lemma for ~ sylow1 . One ...
sylow1lem4 19511 Lemma for ~ sylow1 . The ...
sylow1lem5 19512 Lemma for ~ sylow1 . Usin...
sylow1 19513 Sylow's first theorem. If...
odcau 19514 Cauchy's theorem for the o...
pgpfi 19515 The converse to ~ pgpfi1 ....
pgpfi2 19516 Alternate version of ~ pgp...
pgphash 19517 The order of a p-group. (...
isslw 19518 The property of being a Sy...
slwprm 19519 Reverse closure for the fi...
slwsubg 19520 A Sylow ` P ` -subgroup is...
slwispgp 19521 Defining property of a Syl...
slwpss 19522 A proper superset of a Syl...
slwpgp 19523 A Sylow ` P ` -subgroup is...
pgpssslw 19524 Every ` P ` -subgroup is c...
slwn0 19525 Every finite group contain...
subgslw 19526 A Sylow subgroup that is c...
sylow2alem1 19527 Lemma for ~ sylow2a . An ...
sylow2alem2 19528 Lemma for ~ sylow2a . All...
sylow2a 19529 A named lemma of Sylow's s...
sylow2blem1 19530 Lemma for ~ sylow2b . Eva...
sylow2blem2 19531 Lemma for ~ sylow2b . Lef...
sylow2blem3 19532 Sylow's second theorem. P...
sylow2b 19533 Sylow's second theorem. A...
slwhash 19534 A sylow subgroup has cardi...
fislw 19535 The sylow subgroups of a f...
sylow2 19536 Sylow's second theorem. S...
sylow3lem1 19537 Lemma for ~ sylow3 , first...
sylow3lem2 19538 Lemma for ~ sylow3 , first...
sylow3lem3 19539 Lemma for ~ sylow3 , first...
sylow3lem4 19540 Lemma for ~ sylow3 , first...
sylow3lem5 19541 Lemma for ~ sylow3 , secon...
sylow3lem6 19542 Lemma for ~ sylow3 , secon...
sylow3 19543 Sylow's third theorem. Th...
lsmfval 19548 The subgroup sum function ...
lsmvalx 19549 Subspace sum value (for a ...
lsmelvalx 19550 Subspace sum membership (f...
lsmelvalix 19551 Subspace sum membership (f...
oppglsm 19552 The subspace sum operation...
lsmssv 19553 Subgroup sum is a subset o...
lsmless1x 19554 Subset implies subgroup su...
lsmless2x 19555 Subset implies subgroup su...
lsmub1x 19556 Subgroup sum is an upper b...
lsmub2x 19557 Subgroup sum is an upper b...
lsmval 19558 Subgroup sum value (for a ...
lsmelval 19559 Subgroup sum membership (f...
lsmelvali 19560 Subgroup sum membership (f...
lsmelvalm 19561 Subgroup sum membership an...
lsmelvalmi 19562 Membership of vector subtr...
lsmsubm 19563 The sum of two commuting s...
lsmsubg 19564 The sum of two commuting s...
lsmcom2 19565 Subgroup sum commutes. (C...
smndlsmidm 19566 The direct product is idem...
lsmub1 19567 Subgroup sum is an upper b...
lsmub2 19568 Subgroup sum is an upper b...
lsmunss 19569 Union of subgroups is a su...
lsmless1 19570 Subset implies subgroup su...
lsmless2 19571 Subset implies subgroup su...
lsmless12 19572 Subset implies subgroup su...
lsmidm 19573 Subgroup sum is idempotent...
lsmlub 19574 The least upper bound prop...
lsmss1 19575 Subgroup sum with a subset...
lsmss1b 19576 Subgroup sum with a subset...
lsmss2 19577 Subgroup sum with a subset...
lsmss2b 19578 Subgroup sum with a subset...
lsmass 19579 Subgroup sum is associativ...
mndlsmidm 19580 Subgroup sum is idempotent...
lsm01 19581 Subgroup sum with the zero...
lsm02 19582 Subgroup sum with the zero...
subglsm 19583 The subgroup sum evaluated...
lssnle 19584 Equivalent expressions for...
lsmmod 19585 The modular law holds for ...
lsmmod2 19586 Modular law dual for subgr...
lsmpropd 19587 If two structures have the...
cntzrecd 19588 Commute the "subgroups com...
lsmcntz 19589 The "subgroups commute" pr...
lsmcntzr 19590 The "subgroups commute" pr...
lsmdisj 19591 Disjointness from a subgro...
lsmdisj2 19592 Association of the disjoin...
lsmdisj3 19593 Association of the disjoin...
lsmdisjr 19594 Disjointness from a subgro...
lsmdisj2r 19595 Association of the disjoin...
lsmdisj3r 19596 Association of the disjoin...
lsmdisj2a 19597 Association of the disjoin...
lsmdisj2b 19598 Association of the disjoin...
lsmdisj3a 19599 Association of the disjoin...
lsmdisj3b 19600 Association of the disjoin...
subgdisj1 19601 Vectors belonging to disjo...
subgdisj2 19602 Vectors belonging to disjo...
subgdisjb 19603 Vectors belonging to disjo...
pj1fval 19604 The left projection functi...
pj1val 19605 The left projection functi...
pj1eu 19606 Uniqueness of a left proje...
pj1f 19607 The left projection functi...
pj2f 19608 The right projection funct...
pj1id 19609 Any element of a direct su...
pj1eq 19610 Any element of a direct su...
pj1lid 19611 The left projection functi...
pj1rid 19612 The left projection functi...
pj1ghm 19613 The left projection functi...
pj1ghm2 19614 The left projection functi...
lsmhash 19615 The order of the direct pr...
efgmval 19622 Value of the formal invers...
efgmf 19623 The formal inverse operati...
efgmnvl 19624 The inversion function on ...
efgrcl 19625 Lemma for ~ efgval . (Con...
efglem 19626 Lemma for ~ efgval . (Con...
efgval 19627 Value of the free group co...
efger 19628 Value of the free group co...
efgi 19629 Value of the free group co...
efgi0 19630 Value of the free group co...
efgi1 19631 Value of the free group co...
efgtf 19632 Value of the free group co...
efgtval 19633 Value of the extension fun...
efgval2 19634 Value of the free group co...
efgi2 19635 Value of the free group co...
efgtlen 19636 Value of the free group co...
efginvrel2 19637 The inverse of the reverse...
efginvrel1 19638 The inverse of the reverse...
efgsf 19639 Value of the auxiliary fun...
efgsdm 19640 Elementhood in the domain ...
efgsval 19641 Value of the auxiliary fun...
efgsdmi 19642 Property of the last link ...
efgsval2 19643 Value of the auxiliary fun...
efgsrel 19644 The start and end of any e...
efgs1 19645 A singleton of an irreduci...
efgs1b 19646 Every extension sequence e...
efgsp1 19647 If ` F ` is an extension s...
efgsres 19648 An initial segment of an e...
efgsfo 19649 For any word, there is a s...
efgredlema 19650 The reduced word that form...
efgredlemf 19651 Lemma for ~ efgredleme . ...
efgredlemg 19652 Lemma for ~ efgred . (Con...
efgredleme 19653 Lemma for ~ efgred . (Con...
efgredlemd 19654 The reduced word that form...
efgredlemc 19655 The reduced word that form...
efgredlemb 19656 The reduced word that form...
efgredlem 19657 The reduced word that form...
efgred 19658 The reduced word that form...
efgrelexlema 19659 If two words ` A , B ` are...
efgrelexlemb 19660 If two words ` A , B ` are...
efgrelex 19661 If two words ` A , B ` are...
efgredeu 19662 There is a unique reduced ...
efgred2 19663 Two extension sequences ha...
efgcpbllema 19664 Lemma for ~ efgrelex . De...
efgcpbllemb 19665 Lemma for ~ efgrelex . Sh...
efgcpbl 19666 Two extension sequences ha...
efgcpbl2 19667 Two extension sequences ha...
frgpval 19668 Value of the free group co...
frgpcpbl 19669 Compatibility of the group...
frgp0 19670 The free group is a group....
frgpeccl 19671 Closure of the quotient ma...
frgpgrp 19672 The free group is a group....
frgpadd 19673 Addition in the free group...
frgpinv 19674 The inverse of an element ...
frgpmhm 19675 The "natural map" from wor...
vrgpfval 19676 The canonical injection fr...
vrgpval 19677 The value of the generatin...
vrgpf 19678 The mapping from the index...
vrgpinv 19679 The inverse of a generatin...
frgpuptf 19680 Any assignment of the gene...
frgpuptinv 19681 Any assignment of the gene...
frgpuplem 19682 Any assignment of the gene...
frgpupf 19683 Any assignment of the gene...
frgpupval 19684 Any assignment of the gene...
frgpup1 19685 Any assignment of the gene...
frgpup2 19686 The evaluation map has the...
frgpup3lem 19687 The evaluation map has the...
frgpup3 19688 Universal property of the ...
0frgp 19689 The free group on zero gen...
isabl 19694 The predicate "is an Abeli...
ablgrp 19695 An Abelian group is a grou...
ablgrpd 19696 An Abelian group is a grou...
ablcmn 19697 An Abelian group is a comm...
ablcmnd 19698 An Abelian group is a comm...
iscmn 19699 The predicate "is a commut...
isabl2 19700 The predicate "is an Abeli...
cmnpropd 19701 If two structures have the...
ablpropd 19702 If two structures have the...
ablprop 19703 If two structures have the...
iscmnd 19704 Properties that determine ...
isabld 19705 Properties that determine ...
isabli 19706 Properties that determine ...
cmnmnd 19707 A commutative monoid is a ...
cmncom 19708 A commutative monoid is co...
ablcom 19709 An Abelian group operation...
cmn32 19710 Commutative/associative la...
cmn4 19711 Commutative/associative la...
cmn12 19712 Commutative/associative la...
abl32 19713 Commutative/associative la...
cmnmndd 19714 A commutative monoid is a ...
cmnbascntr 19715 The base set of a commutat...
rinvmod 19716 Uniqueness of a right inve...
ablinvadd 19717 The inverse of an Abelian ...
ablsub2inv 19718 Abelian group subtraction ...
ablsubadd 19719 Relationship between Abeli...
ablsub4 19720 Commutative/associative su...
abladdsub4 19721 Abelian group addition/sub...
abladdsub 19722 Associative-type law for g...
ablsubadd23 19723 Commutative/associative la...
ablsubaddsub 19724 Double subtraction and add...
ablpncan2 19725 Cancellation law for subtr...
ablpncan3 19726 A cancellation law for Abe...
ablsubsub 19727 Law for double subtraction...
ablsubsub4 19728 Law for double subtraction...
ablpnpcan 19729 Cancellation law for mixed...
ablnncan 19730 Cancellation law for group...
ablsub32 19731 Swap the second and third ...
ablnnncan 19732 Cancellation law for group...
ablnnncan1 19733 Cancellation law for group...
ablsubsub23 19734 Swap subtrahend and result...
mulgnn0di 19735 Group multiple of a sum, f...
mulgdi 19736 Group multiple of a sum. ...
mulgmhm 19737 The map from ` x ` to ` n ...
mulgghm 19738 The map from ` x ` to ` n ...
mulgsubdi 19739 Group multiple of a differ...
ghmfghm 19740 The function fulfilling th...
ghmcmn 19741 The image of a commutative...
ghmabl 19742 The image of an abelian gr...
invghm 19743 The inversion map is a gro...
eqgabl 19744 Value of the subgroup cose...
qusecsub 19745 Two subgroup cosets are eq...
subgabl 19746 A subgroup of an abelian g...
subcmn 19747 A submonoid of a commutati...
submcmn 19748 A submonoid of a commutati...
submcmn2 19749 A submonoid is commutative...
cntzcmn 19750 The centralizer of any sub...
cntzcmnss 19751 Any subset in a commutativ...
cntrcmnd 19752 The center of a monoid is ...
cntrabl 19753 The center of a group is a...
cntzspan 19754 If the generators commute,...
cntzcmnf 19755 Discharge the centralizer ...
ghmplusg 19756 The pointwise sum of two l...
ablnsg 19757 Every subgroup of an abeli...
odadd1 19758 The order of a product in ...
odadd2 19759 The order of a product in ...
odadd 19760 The order of a product is ...
gex2abl 19761 A group with exponent 2 (o...
gexexlem 19762 Lemma for ~ gexex . (Cont...
gexex 19763 In an abelian group with f...
torsubg 19764 The set of all elements of...
oddvdssubg 19765 The set of all elements wh...
lsmcomx 19766 Subgroup sum commutes (ext...
ablcntzd 19767 All subgroups in an abelia...
lsmcom 19768 Subgroup sum commutes. (C...
lsmsubg2 19769 The sum of two subgroups i...
lsm4 19770 Commutative/associative la...
prdscmnd 19771 The product of a family of...
prdsabld 19772 The product of a family of...
pwscmn 19773 The structure power on a c...
pwsabl 19774 The structure power on an ...
qusabl 19775 If ` Y ` is a subgroup of ...
abl1 19776 The (smallest) structure r...
abln0 19777 Abelian groups (and theref...
cnaddablx 19778 The complex numbers are an...
cnaddabl 19779 The complex numbers are an...
cnaddid 19780 The group identity element...
cnaddinv 19781 Value of the group inverse...
zaddablx 19782 The integers are an Abelia...
frgpnabllem1 19783 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19784 Lemma for ~ frgpnabl . (C...
frgpnabl 19785 The free group on two or m...
imasabl 19786 The image structure of an ...
iscyg 19789 Definition of a cyclic gro...
iscyggen 19790 The property of being a cy...
iscyggen2 19791 The property of being a cy...
iscyg2 19792 A cyclic group is a group ...
cyggeninv 19793 The inverse of a cyclic ge...
cyggenod 19794 An element is the generato...
cyggenod2 19795 In an infinite cyclic grou...
iscyg3 19796 Definition of a cyclic gro...
iscygd 19797 Definition of a cyclic gro...
iscygodd 19798 Show that a group with an ...
cycsubmcmn 19799 The set of nonnegative int...
cyggrp 19800 A cyclic group is a group....
cygabl 19801 A cyclic group is abelian....
cygctb 19802 A cyclic group is countabl...
0cyg 19803 The trivial group is cycli...
prmcyg 19804 A group with prime order i...
lt6abl 19805 A group with fewer than ` ...
ghmcyg 19806 The image of a cyclic grou...
cyggex2 19807 The exponent of a cyclic g...
cyggex 19808 The exponent of a finite c...
cyggexb 19809 A finite abelian group is ...
giccyg 19810 Cyclicity is a group prope...
cycsubgcyg 19811 The cyclic subgroup genera...
cycsubgcyg2 19812 The cyclic subgroup genera...
gsumval3a 19813 Value of the group sum ope...
gsumval3eu 19814 The group sum as defined i...
gsumval3lem1 19815 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19816 Lemma 2 for ~ gsumval3 . ...
gsumval3 19817 Value of the group sum ope...
gsumcllem 19818 Lemma for ~ gsumcl and rel...
gsumzres 19819 Extend a finite group sum ...
gsumzcl2 19820 Closure of a finite group ...
gsumzcl 19821 Closure of a finite group ...
gsumzf1o 19822 Re-index a finite group su...
gsumres 19823 Extend a finite group sum ...
gsumcl2 19824 Closure of a finite group ...
gsumcl 19825 Closure of a finite group ...
gsumf1o 19826 Re-index a finite group su...
gsumreidx 19827 Re-index a finite group su...
gsumzsubmcl 19828 Closure of a group sum in ...
gsumsubmcl 19829 Closure of a group sum in ...
gsumsubgcl 19830 Closure of a group sum in ...
gsumzaddlem 19831 The sum of two group sums....
gsumzadd 19832 The sum of two group sums....
gsumadd 19833 The sum of two group sums....
gsummptfsadd 19834 The sum of two group sums ...
gsummptfidmadd 19835 The sum of two group sums ...
gsummptfidmadd2 19836 The sum of two group sums ...
gsumzsplit 19837 Split a group sum into two...
gsumsplit 19838 Split a group sum into two...
gsumsplit2 19839 Split a group sum into two...
gsummptfidmsplit 19840 Split a group sum expresse...
gsummptfidmsplitres 19841 Split a group sum expresse...
gsummptfzsplit 19842 Split a group sum expresse...
gsummptfzsplitl 19843 Split a group sum expresse...
gsumconst 19844 Sum of a constant series. ...
gsumconstf 19845 Sum of a constant series. ...
gsummptshft 19846 Index shift of a finite gr...
gsumzmhm 19847 Apply a group homomorphism...
gsummhm 19848 Apply a group homomorphism...
gsummhm2 19849 Apply a group homomorphism...
gsummptmhm 19850 Apply a group homomorphism...
gsummulglem 19851 Lemma for ~ gsummulg and ~...
gsummulg 19852 Nonnegative multiple of a ...
gsummulgz 19853 Integer multiple of a grou...
gsumzoppg 19854 The opposite of a group su...
gsumzinv 19855 Inverse of a group sum. (...
gsuminv 19856 Inverse of a group sum. (...
gsummptfidminv 19857 Inverse of a group sum exp...
gsumsub 19858 The difference of two grou...
gsummptfssub 19859 The difference of two grou...
gsummptfidmsub 19860 The difference of two grou...
gsumsnfd 19861 Group sum of a singleton, ...
gsumsnd 19862 Group sum of a singleton, ...
gsumsnf 19863 Group sum of a singleton, ...
gsumsn 19864 Group sum of a singleton. ...
gsumpr 19865 Group sum of a pair. (Con...
gsumzunsnd 19866 Append an element to a fin...
gsumunsnfd 19867 Append an element to a fin...
gsumunsnd 19868 Append an element to a fin...
gsumunsnf 19869 Append an element to a fin...
gsumunsn 19870 Append an element to a fin...
gsumdifsnd 19871 Extract a summand from a f...
gsumpt 19872 Sum of a family that is no...
gsummptf1o 19873 Re-index a finite group su...
gsummptun 19874 Group sum of a disjoint un...
gsummpt1n0 19875 If only one summand in a f...
gsummptif1n0 19876 If only one summand in a f...
gsummptcl 19877 Closure of a finite group ...
gsummptfif1o 19878 Re-index a finite group su...
gsummptfzcl 19879 Closure of a finite group ...
gsum2dlem1 19880 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19881 Lemma for ~ gsum2d . (Con...
gsum2d 19882 Write a sum over a two-dim...
gsum2d2lem 19883 Lemma for ~ gsum2d2 : show...
gsum2d2 19884 Write a group sum over a t...
gsumcom2 19885 Two-dimensional commutatio...
gsumxp 19886 Write a group sum over a c...
gsumcom 19887 Commute the arguments of a...
gsumcom3 19888 A commutative law for fini...
gsumcom3fi 19889 A commutative law for fini...
gsumxp2 19890 Write a group sum over a c...
prdsgsum 19891 Finite commutative sums in...
pwsgsum 19892 Finite commutative sums in...
fsfnn0gsumfsffz 19893 Replacing a finitely suppo...
nn0gsumfz 19894 Replacing a finitely suppo...
nn0gsumfz0 19895 Replacing a finitely suppo...
gsummptnn0fz 19896 A final group sum over a f...
gsummptnn0fzfv 19897 A final group sum over a f...
telgsumfzslem 19898 Lemma for ~ telgsumfzs (in...
telgsumfzs 19899 Telescoping group sum rang...
telgsumfz 19900 Telescoping group sum rang...
telgsumfz0s 19901 Telescoping finite group s...
telgsumfz0 19902 Telescoping finite group s...
telgsums 19903 Telescoping finitely suppo...
telgsum 19904 Telescoping finitely suppo...
reldmdprd 19909 The domain of the internal...
dmdprd 19910 The domain of definition o...
dmdprdd 19911 Show that a given family i...
dprddomprc 19912 A family of subgroups inde...
dprddomcld 19913 If a family of subgroups i...
dprdval0prc 19914 The internal direct produc...
dprdval 19915 The value of the internal ...
eldprd 19916 A class ` A ` is an intern...
dprdgrp 19917 Reverse closure for the in...
dprdf 19918 The function ` S ` is a fa...
dprdf2 19919 The function ` S ` is a fa...
dprdcntz 19920 The function ` S ` is a fa...
dprddisj 19921 The function ` S ` is a fa...
dprdw 19922 The property of being a fi...
dprdwd 19923 A mapping being a finitely...
dprdff 19924 A finitely supported funct...
dprdfcl 19925 A finitely supported funct...
dprdffsupp 19926 A finitely supported funct...
dprdfcntz 19927 A function on the elements...
dprdssv 19928 The internal direct produc...
dprdfid 19929 A function mapping all but...
eldprdi 19930 The domain of definition o...
dprdfinv 19931 Take the inverse of a grou...
dprdfadd 19932 Take the sum of group sums...
dprdfsub 19933 Take the difference of gro...
dprdfeq0 19934 The zero function is the o...
dprdf11 19935 Two group sums over a dire...
dprdsubg 19936 The internal direct produc...
dprdub 19937 Each factor is a subset of...
dprdlub 19938 The direct product is smal...
dprdspan 19939 The direct product is the ...
dprdres 19940 Restriction of a direct pr...
dprdss 19941 Create a direct product by...
dprdz 19942 A family consisting entire...
dprd0 19943 The empty family is an int...
dprdf1o 19944 Rearrange the index set of...
dprdf1 19945 Rearrange the index set of...
subgdmdprd 19946 A direct product in a subg...
subgdprd 19947 A direct product in a subg...
dprdsn 19948 A singleton family is an i...
dmdprdsplitlem 19949 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19950 The function ` S ` is a fa...
dprddisj2 19951 The function ` S ` is a fa...
dprd2dlem2 19952 The direct product of a co...
dprd2dlem1 19953 The direct product of a co...
dprd2da 19954 The direct product of a co...
dprd2db 19955 The direct product of a co...
dprd2d2 19956 The direct product of a co...
dmdprdsplit2lem 19957 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 19958 The direct product splits ...
dmdprdsplit 19959 The direct product splits ...
dprdsplit 19960 The direct product is the ...
dmdprdpr 19961 A singleton family is an i...
dprdpr 19962 A singleton family is an i...
dpjlem 19963 Lemma for theorems about d...
dpjcntz 19964 The two subgroups that app...
dpjdisj 19965 The two subgroups that app...
dpjlsm 19966 The two subgroups that app...
dpjfval 19967 Value of the direct produc...
dpjval 19968 Value of the direct produc...
dpjf 19969 The ` X ` -th index projec...
dpjidcl 19970 The key property of projec...
dpjeq 19971 Decompose a group sum into...
dpjid 19972 The key property of projec...
dpjlid 19973 The ` X ` -th index projec...
dpjrid 19974 The ` Y ` -th index projec...
dpjghm 19975 The direct product is the ...
dpjghm2 19976 The direct product is the ...
ablfacrplem 19977 Lemma for ~ ablfacrp2 . (...
ablfacrp 19978 A finite abelian group who...
ablfacrp2 19979 The factors ` K , L ` of ~...
ablfac1lem 19980 Lemma for ~ ablfac1b . Sa...
ablfac1a 19981 The factors of ~ ablfac1b ...
ablfac1b 19982 Any abelian group is the d...
ablfac1c 19983 The factors of ~ ablfac1b ...
ablfac1eulem 19984 Lemma for ~ ablfac1eu . (...
ablfac1eu 19985 The factorization of ~ abl...
pgpfac1lem1 19986 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 19987 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 19988 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 19989 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 19990 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 19991 Lemma for ~ pgpfac1 . (Co...
pgpfac1 19992 Factorization of a finite ...
pgpfaclem1 19993 Lemma for ~ pgpfac . (Con...
pgpfaclem2 19994 Lemma for ~ pgpfac . (Con...
pgpfaclem3 19995 Lemma for ~ pgpfac . (Con...
pgpfac 19996 Full factorization of a fi...
ablfaclem1 19997 Lemma for ~ ablfac . (Con...
ablfaclem2 19998 Lemma for ~ ablfac . (Con...
ablfaclem3 19999 Lemma for ~ ablfac . (Con...
ablfac 20000 The Fundamental Theorem of...
ablfac2 20001 Choose generators for each...
issimpg 20004 The predicate "is a simple...
issimpgd 20005 Deduce a simple group from...
simpggrp 20006 A simple group is a group....
simpggrpd 20007 A simple group is a group....
simpg2nsg 20008 A simple group has two nor...
trivnsimpgd 20009 Trivial groups are not sim...
simpgntrivd 20010 Simple groups are nontrivi...
simpgnideld 20011 A simple group contains a ...
simpgnsgd 20012 The only normal subgroups ...
simpgnsgeqd 20013 A normal subgroup of a sim...
2nsgsimpgd 20014 If any normal subgroup of ...
simpgnsgbid 20015 A nontrivial group is simp...
ablsimpnosubgd 20016 A subgroup of an abelian s...
ablsimpg1gend 20017 An abelian simple group is...
ablsimpgcygd 20018 An abelian simple group is...
ablsimpgfindlem1 20019 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 20020 Lemma for ~ ablsimpgfind ....
cycsubggenodd 20021 Relationship between the o...
ablsimpgfind 20022 An abelian simple group is...
fincygsubgd 20023 The subgroup referenced in...
fincygsubgodd 20024 Calculate the order of a s...
fincygsubgodexd 20025 A finite cyclic group has ...
prmgrpsimpgd 20026 A group of prime order is ...
ablsimpgprmd 20027 An abelian simple group ha...
ablsimpgd 20028 An abelian group is simple...
fnmgp 20031 The multiplicative group o...
mgpval 20032 Value of the multiplicatio...
mgpplusg 20033 Value of the group operati...
mgplemOLD 20034 Obsolete version of ~ sets...
mgpbas 20035 Base set of the multiplica...
mgpbasOLD 20036 Obsolete version of ~ mgpb...
mgpsca 20037 The multiplication monoid ...
mgpscaOLD 20038 Obsolete version of ~ mgps...
mgptset 20039 Topology component of the ...
mgptsetOLD 20040 Obsolete version of ~ mgpt...
mgptopn 20041 Topology of the multiplica...
mgpds 20042 Distance function of the m...
mgpdsOLD 20043 Obsolete version of ~ mgpd...
mgpress 20044 Subgroup commutes with the...
mgpressOLD 20045 Obsolete version of ~ mgpr...
prdsmgp 20046 The multiplicative monoid ...
isrng 20049 The predicate "is a non-un...
rngabl 20050 A non-unital ring is an (a...
rngmgp 20051 A non-unital ring is a sem...
rngmgpf 20052 Restricted functionality o...
rnggrp 20053 A non-unital ring is a (ad...
rngass 20054 Associative law for the mu...
rngdi 20055 Distributive law for the m...
rngdir 20056 Distributive law for the m...
rngacl 20057 Closure of the addition op...
rng0cl 20058 The zero element of a non-...
rngcl 20059 Closure of the multiplicat...
rnglz 20060 The zero of a non-unital r...
rngrz 20061 The zero of a non-unital r...
rngmneg1 20062 Negation of a product in a...
rngmneg2 20063 Negation of a product in a...
rngm2neg 20064 Double negation of a produ...
rngansg 20065 Every additive subgroup of...
rngsubdi 20066 Ring multiplication distri...
rngsubdir 20067 Ring multiplication distri...
isrngd 20068 Properties that determine ...
rngpropd 20069 If two structures have the...
prdsmulrngcl 20070 Closure of the multiplicat...
prdsrngd 20071 A product of non-unital ri...
imasrng 20072 The image structure of a n...
imasrngf1 20073 The image of a non-unital ...
xpsrngd 20074 A product of two non-unita...
qusrng 20075 The quotient structure of ...
ringidval 20078 The value of the unity ele...
dfur2 20079 The multiplicative identit...
ringurd 20080 Deduce the unity element o...
issrg 20083 The predicate "is a semiri...
srgcmn 20084 A semiring is a commutativ...
srgmnd 20085 A semiring is a monoid. (...
srgmgp 20086 A semiring is a monoid und...
srgdilem 20087 Lemma for ~ srgdi and ~ sr...
srgcl 20088 Closure of the multiplicat...
srgass 20089 Associative law for the mu...
srgideu 20090 The unity element of a sem...
srgfcl 20091 Functionality of the multi...
srgdi 20092 Distributive law for the m...
srgdir 20093 Distributive law for the m...
srgidcl 20094 The unity element of a sem...
srg0cl 20095 The zero element of a semi...
srgidmlem 20096 Lemma for ~ srglidm and ~ ...
srglidm 20097 The unity element of a sem...
srgridm 20098 The unity element of a sem...
issrgid 20099 Properties showing that an...
srgacl 20100 Closure of the addition op...
srgcom 20101 Commutativity of the addit...
srgrz 20102 The zero of a semiring is ...
srglz 20103 The zero of a semiring is ...
srgisid 20104 In a semiring, the only le...
o2timesd 20105 An element of a ring-like ...
rglcom4d 20106 Restricted commutativity o...
srgo2times 20107 A semiring element plus it...
srgcom4lem 20108 Lemma for ~ srgcom4 . Thi...
srgcom4 20109 Restricted commutativity o...
srg1zr 20110 The only semiring with a b...
srgen1zr 20111 The only semiring with one...
srgmulgass 20112 An associative property be...
srgpcomp 20113 If two elements of a semir...
srgpcompp 20114 If two elements of a semir...
srgpcomppsc 20115 If two elements of a semir...
srglmhm 20116 Left-multiplication in a s...
srgrmhm 20117 Right-multiplication in a ...
srgsummulcr 20118 A finite semiring sum mult...
sgsummulcl 20119 A finite semiring sum mult...
srg1expzeq1 20120 The exponentiation (by a n...
srgbinomlem1 20121 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 20122 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 20123 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 20124 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 20125 Lemma for ~ srgbinom . In...
srgbinom 20126 The binomial theorem for c...
csrgbinom 20127 The binomial theorem for c...
isring 20132 The predicate "is a (unita...
ringgrp 20133 A ring is a group. (Contr...
ringmgp 20134 A ring is a monoid under m...
iscrng 20135 A commutative ring is a ri...
crngmgp 20136 A commutative ring's multi...
ringgrpd 20137 A ring is a group. (Contr...
ringmnd 20138 A ring is a monoid under a...
ringmgm 20139 A ring is a magma. (Contr...
crngring 20140 A commutative ring is a ri...
crngringd 20141 A commutative ring is a ri...
crnggrpd 20142 A commutative ring is a gr...
mgpf 20143 Restricted functionality o...
ringdilem 20144 Properties of a unital rin...
ringcl 20145 Closure of the multiplicat...
crngcom 20146 A commutative ring's multi...
iscrng2 20147 A commutative ring is a ri...
ringass 20148 Associative law for multip...
ringideu 20149 The unity element of a rin...
crngbascntr 20150 The base set of a commutat...
ringassd 20151 Associative law for multip...
ringcld 20152 Closure of the multiplicat...
ringdi 20153 Distributive law for the m...
ringdir 20154 Distributive law for the m...
ringidcl 20155 The unity element of a rin...
ring0cl 20156 The zero element of a ring...
ringidmlem 20157 Lemma for ~ ringlidm and ~...
ringlidm 20158 The unity element of a rin...
ringridm 20159 The unity element of a rin...
isringid 20160 Properties showing that an...
ringlidmd 20161 The unity element of a rin...
ringridmd 20162 The unity element of a rin...
ringid 20163 The multiplication operati...
ringo2times 20164 A ring element plus itself...
ringadd2 20165 A ring element plus itself...
ringidss 20166 A subset of the multiplica...
ringacl 20167 Closure of the addition op...
ringcomlem 20168 Lemma for ~ ringcom . Thi...
ringcom 20169 Commutativity of the addit...
ringabl 20170 A ring is an Abelian group...
ringcmn 20171 A ring is a commutative mo...
ringabld 20172 A ring is an Abelian group...
ringcmnd 20173 A ring is a commutative mo...
ringrng 20174 A unital ring is a non-uni...
ringssrng 20175 The unital rings are non-u...
isringrng 20176 The predicate "is a unital...
ringpropd 20177 If two structures have the...
crngpropd 20178 If two structures have the...
ringprop 20179 If two structures have the...
isringd 20180 Properties that determine ...
iscrngd 20181 Properties that determine ...
ringlz 20182 The zero of a unital ring ...
ringrz 20183 The zero of a unital ring ...
ringlzd 20184 The zero of a unital ring ...
ringrzd 20185 The zero of a unital ring ...
ringsrg 20186 Any ring is also a semirin...
ring1eq0 20187 If one and zero are equal,...
ring1ne0 20188 If a ring has at least two...
ringinvnz1ne0 20189 In a unital ring, a left i...
ringinvnzdiv 20190 In a unital ring, a left i...
ringnegl 20191 Negation in a ring is the ...
ringnegr 20192 Negation in a ring is the ...
ringmneg1 20193 Negation of a product in a...
ringmneg2 20194 Negation of a product in a...
ringm2neg 20195 Double negation of a produ...
ringsubdi 20196 Ring multiplication distri...
ringsubdir 20197 Ring multiplication distri...
mulgass2 20198 An associative property be...
ring1 20199 The (smallest) structure r...
ringn0 20200 Rings exist. (Contributed...
ringlghm 20201 Left-multiplication in a r...
ringrghm 20202 Right-multiplication in a ...
gsummulc1OLD 20203 Obsolete version of ~ gsum...
gsummulc2OLD 20204 Obsolete version of ~ gsum...
gsummulc1 20205 A finite ring sum multipli...
gsummulc2 20206 A finite ring sum multipli...
gsummgp0 20207 If one factor in a finite ...
gsumdixp 20208 Distribute a binary produc...
prdsmulrcl 20209 A structure product of rin...
prdsringd 20210 A product of rings is a ri...
prdscrngd 20211 A product of commutative r...
prds1 20212 Value of the ring unity in...
pwsring 20213 A structure power of a rin...
pws1 20214 Value of the ring unity in...
pwscrng 20215 A structure power of a com...
pwsmgp 20216 The multiplicative group o...
pwspjmhmmgpd 20217 The projection given by ~ ...
pwsexpg 20218 Value of a group exponenti...
imasring 20219 The image structure of a r...
imasringf1 20220 The image of a ring under ...
xpsringd 20221 A product of two rings is ...
xpsring1d 20222 The multiplicative identit...
qusring2 20223 The quotient structure of ...
crngbinom 20224 The binomial theorem for c...
opprval 20227 Value of the opposite ring...
opprmulfval 20228 Value of the multiplicatio...
opprmul 20229 Value of the multiplicatio...
crngoppr 20230 In a commutative ring, the...
opprlem 20231 Lemma for ~ opprbas and ~ ...
opprlemOLD 20232 Obsolete version of ~ oppr...
opprbas 20233 Base set of an opposite ri...
opprbasOLD 20234 Obsolete proof of ~ opprba...
oppradd 20235 Addition operation of an o...
oppraddOLD 20236 Obsolete proof of ~ opprba...
opprrng 20237 An opposite non-unital rin...
opprrngb 20238 A class is a non-unital ri...
opprring 20239 An opposite ring is a ring...
opprringb 20240 Bidirectional form of ~ op...
oppr0 20241 Additive identity of an op...
oppr1 20242 Multiplicative identity of...
opprneg 20243 The negative function in a...
opprsubg 20244 Being a subgroup is a symm...
mulgass3 20245 An associative property be...
reldvdsr 20252 The divides relation is a ...
dvdsrval 20253 Value of the divides relat...
dvdsr 20254 Value of the divides relat...
dvdsr2 20255 Value of the divides relat...
dvdsrmul 20256 A left-multiple of ` X ` i...
dvdsrcl 20257 Closure of a dividing elem...
dvdsrcl2 20258 Closure of a dividing elem...
dvdsrid 20259 An element in a (unital) r...
dvdsrtr 20260 Divisibility is transitive...
dvdsrmul1 20261 The divisibility relation ...
dvdsrneg 20262 An element divides its neg...
dvdsr01 20263 In a ring, zero is divisib...
dvdsr02 20264 Only zero is divisible by ...
isunit 20265 Property of being a unit o...
1unit 20266 The multiplicative identit...
unitcl 20267 A unit is an element of th...
unitss 20268 The set of units is contai...
opprunit 20269 Being a unit is a symmetri...
crngunit 20270 Property of being a unit i...
dvdsunit 20271 A divisor of a unit is a u...
unitmulcl 20272 The product of units is a ...
unitmulclb 20273 Reversal of ~ unitmulcl in...
unitgrpbas 20274 The base set of the group ...
unitgrp 20275 The group of units is a gr...
unitabl 20276 The group of units of a co...
unitgrpid 20277 The identity of the group ...
unitsubm 20278 The group of units is a su...
invrfval 20281 Multiplicative inverse fun...
unitinvcl 20282 The inverse of a unit exis...
unitinvinv 20283 The inverse of the inverse...
ringinvcl 20284 The inverse of a unit is a...
unitlinv 20285 A unit times its inverse i...
unitrinv 20286 A unit times its inverse i...
1rinv 20287 The inverse of the ring un...
0unit 20288 The additive identity is a...
unitnegcl 20289 The negative of a unit is ...
ringunitnzdiv 20290 In a unitary ring, a unit ...
ring1nzdiv 20291 In a unitary ring, the rin...
dvrfval 20294 Division operation in a ri...
dvrval 20295 Division operation in a ri...
dvrcl 20296 Closure of division operat...
unitdvcl 20297 The units are closed under...
dvrid 20298 A ring element divided by ...
dvr1 20299 A ring element divided by ...
dvrass 20300 An associative law for div...
dvrcan1 20301 A cancellation law for div...
dvrcan3 20302 A cancellation law for div...
dvreq1 20303 Equality in terms of ratio...
dvrdir 20304 Distributive law for the d...
rdivmuldivd 20305 Multiplication of two rati...
ringinvdv 20306 Write the inverse function...
rngidpropd 20307 The ring unity depends onl...
dvdsrpropd 20308 The divisibility relation ...
unitpropd 20309 The set of units depends o...
invrpropd 20310 The ring inverse function ...
isirred 20311 An irreducible element of ...
isnirred 20312 The property of being a no...
isirred2 20313 Expand out the class diffe...
opprirred 20314 Irreducibility is symmetri...
irredn0 20315 The additive identity is n...
irredcl 20316 An irreducible element is ...
irrednu 20317 An irreducible element is ...
irredn1 20318 The multiplicative identit...
irredrmul 20319 The product of an irreduci...
irredlmul 20320 The product of a unit and ...
irredmul 20321 If product of two elements...
irredneg 20322 The negative of an irreduc...
irrednegb 20323 An element is irreducible ...
rnghmrcl 20330 Reverse closure of a non-u...
rnghmfn 20331 The mapping of two non-uni...
rnghmval 20332 The set of the non-unital ...
isrnghm 20333 A function is a non-unital...
isrnghmmul 20334 A function is a non-unital...
rnghmmgmhm 20335 A non-unital ring homomorp...
rnghmval2 20336 The non-unital ring homomo...
isrngim 20337 An isomorphism of non-unit...
rngimrcl 20338 Reverse closure for an iso...
rnghmghm 20339 A non-unital ring homomorp...
rnghmf 20340 A ring homomorphism is a f...
rnghmmul 20341 A homomorphism of non-unit...
isrnghm2d 20342 Demonstration of non-unita...
isrnghmd 20343 Demonstration of non-unita...
rnghmf1o 20344 A non-unital ring homomorp...
isrngim2 20345 An isomorphism of non-unit...
rngimf1o 20346 An isomorphism of non-unit...
rngimrnghm 20347 An isomorphism of non-unit...
rngimcnv 20348 The converse of an isomorp...
rnghmco 20349 The composition of non-uni...
idrnghm 20350 The identity homomorphism ...
c0mgm 20351 The constant mapping to ze...
c0mhm 20352 The constant mapping to ze...
c0ghm 20353 The constant mapping to ze...
c0snmgmhm 20354 The constant mapping to ze...
c0snmhm 20355 The constant mapping to ze...
c0snghm 20356 The constant mapping to ze...
rngisomfv1 20357 If there is a non-unital r...
rngisom1 20358 If there is a non-unital r...
rngisomring 20359 If there is a non-unital r...
rngisomring1 20360 If there is a non-unital r...
dfrhm2 20366 The property of a ring hom...
rhmrcl1 20368 Reverse closure of a ring ...
rhmrcl2 20369 Reverse closure of a ring ...
isrhm 20370 A function is a ring homom...
rhmmhm 20371 A ring homomorphism is a h...
rhmisrnghm 20372 Each unital ring homomorph...
isrim0OLD 20373 Obsolete version of ~ isri...
rimrcl 20374 Reverse closure for an iso...
isrim0 20375 A ring isomorphism is a ho...
rhmghm 20376 A ring homomorphism is an ...
rhmf 20377 A ring homomorphism is a f...
rhmmul 20378 A homomorphism of rings pr...
isrhm2d 20379 Demonstration of ring homo...
isrhmd 20380 Demonstration of ring homo...
rhm1 20381 Ring homomorphisms are req...
idrhm 20382 The identity homomorphism ...
rhmf1o 20383 A ring homomorphism is bij...
isrim 20384 An isomorphism of rings is...
isrimOLD 20385 Obsolete version of ~ isri...
rimf1o 20386 An isomorphism of rings is...
rimrhmOLD 20387 Obsolete version of ~ rimr...
rimrhm 20388 A ring isomorphism is a ho...
rimgim 20389 An isomorphism of rings is...
rimisrngim 20390 Each unital ring isomorphi...
rhmfn 20391 The mapping of two rings t...
rhmval 20392 The ring homomorphisms bet...
rhmco 20393 The composition of ring ho...
pwsco1rhm 20394 Right composition with a f...
pwsco2rhm 20395 Left composition with a ri...
brric 20396 The relation "is isomorphi...
brrici 20397 Prove isomorphic by an exp...
brric2 20398 The relation "is isomorphi...
ricgic 20399 If two rings are (ring) is...
rhmdvdsr 20400 A ring homomorphism preser...
rhmopp 20401 A ring homomorphism is als...
elrhmunit 20402 Ring homomorphisms preserv...
rhmunitinv 20403 Ring homomorphisms preserv...
isnzr 20406 Property of a nonzero ring...
nzrnz 20407 One and zero are different...
nzrring 20408 A nonzero ring is a ring. ...
nzrringOLD 20409 Obsolete version of ~ nzrr...
isnzr2 20410 Equivalent characterizatio...
isnzr2hash 20411 Equivalent characterizatio...
opprnzr 20412 The opposite of a nonzero ...
ringelnzr 20413 A ring is nonzero if it ha...
nzrunit 20414 A unit is nonzero in any n...
0ringnnzr 20415 A ring is a zero ring iff ...
0ring 20416 If a ring has only one ele...
0ringdif 20417 A zero ring is a ring whic...
0ringbas 20418 The base set of a zero rin...
0ring01eq 20419 In a ring with only one el...
01eq0ring 20420 If the zero and the identi...
01eq0ringOLD 20421 Obsolete version of ~ 01eq...
0ring01eqbi 20422 In a unital ring the zero ...
0ring1eq0 20423 In a zero ring, a ring whi...
c0rhm 20424 The constant mapping to ze...
c0rnghm 20425 The constant mapping to ze...
zrrnghm 20426 The constant mapping to ze...
islring 20429 The predicate "is a local ...
lringnzr 20430 A local ring is a nonzero ...
lringring 20431 A local ring is a ring. (...
lringnz 20432 A local ring is a nonzero ...
lringuplu 20433 If the sum of two elements...
issubrng 20436 The subring of non-unital ...
subrngss 20437 A subring is a subset. (C...
subrngid 20438 Every non-unital ring is a...
subrngrng 20439 A subring is a non-unital ...
subrngrcl 20440 Reverse closure for a subr...
subrngsubg 20441 A subring is a subgroup. ...
subrngringnsg 20442 A subring is a normal subg...
subrngbas 20443 Base set of a subring stru...
subrng0 20444 A subring always has the s...
subrngacl 20445 A subring is closed under ...
subrngmcl 20446 A subgroup is closed under...
issubrng2 20447 Characterize the subrings ...
opprsubrng 20448 Being a subring is a symme...
subrngint 20449 The intersection of a none...
subrngin 20450 The intersection of two su...
subrngmre 20451 The subrings of a non-unit...
subsubrng 20452 A subring of a subring is ...
subsubrng2 20453 The set of subrings of a s...
rhmimasubrnglem 20454 Lemma for ~ rhmimasubrng :...
rhmimasubrng 20455 The homomorphic image of a...
cntzsubrng 20456 Centralizers in a non-unit...
subrngpropd 20457 If two structures have the...
issubrg 20462 The subring predicate. (C...
subrgss 20463 A subring is a subset. (C...
subrgid 20464 Every ring is a subring of...
subrgring 20465 A subring is a ring. (Con...
subrgcrng 20466 A subring of a commutative...
subrgrcl 20467 Reverse closure for a subr...
subrgsubg 20468 A subring is a subgroup. ...
subrgsubrng 20469 A subring of a unital ring...
subrg0 20470 A subring always has the s...
subrg1cl 20471 A subring contains the mul...
subrgbas 20472 Base set of a subring stru...
subrg1 20473 A subring always has the s...
subrgacl 20474 A subring is closed under ...
subrgmcl 20475 A subgroup is closed under...
subrgsubm 20476 A subring is a submonoid o...
subrgdvds 20477 If an element divides anot...
subrguss 20478 A unit of a subring is a u...
subrginv 20479 A subring always has the s...
subrgdv 20480 A subring always has the s...
subrgunit 20481 An element of a ring is a ...
subrgugrp 20482 The units of a subring for...
issubrg2 20483 Characterize the subrings ...
opprsubrg 20484 Being a subring is a symme...
subrgnzr 20485 A subring of a nonzero rin...
subrgint 20486 The intersection of a none...
subrgin 20487 The intersection of two su...
subrgmre 20488 The subrings of a ring are...
subsubrg 20489 A subring of a subring is ...
subsubrg2 20490 The set of subrings of a s...
issubrg3 20491 A subring is an additive s...
resrhm 20492 Restriction of a ring homo...
resrhm2b 20493 Restriction of the codomai...
rhmeql 20494 The equalizer of two ring ...
rhmima 20495 The homomorphic image of a...
rnrhmsubrg 20496 The range of a ring homomo...
cntzsubr 20497 Centralizers in a ring are...
pwsdiagrhm 20498 Diagonal homomorphism into...
subrgpropd 20499 If two structures have the...
rhmpropd 20500 Ring homomorphism depends ...
isdrng 20505 The predicate "is a divisi...
drngunit 20506 Elementhood in the set of ...
drngui 20507 The set of units of a divi...
drngring 20508 A division ring is a ring....
drngringd 20509 A division ring is a ring....
drnggrpd 20510 A division ring is a group...
drnggrp 20511 A division ring is a group...
isfld 20512 A field is a commutative d...
flddrngd 20513 A field is a division ring...
fldcrngd 20514 A field is a commutative r...
isdrng2 20515 A division ring can equiva...
drngprop 20516 If two structures have the...
drngmgp 20517 A division ring contains a...
drngmcl 20518 The product of two nonzero...
drngid 20519 A division ring's unity is...
drngunz 20520 A division ring's unity is...
drngnzr 20521 All division rings are non...
drngid2 20522 Properties showing that an...
drnginvrcl 20523 Closure of the multiplicat...
drnginvrn0 20524 The multiplicative inverse...
drnginvrcld 20525 Closure of the multiplicat...
drnginvrl 20526 Property of the multiplica...
drnginvrr 20527 Property of the multiplica...
drnginvrld 20528 Property of the multiplica...
drnginvrrd 20529 Property of the multiplica...
drngmul0or 20530 A product is zero iff one ...
drngmulne0 20531 A product is nonzero iff b...
drngmuleq0 20532 An element is zero iff its...
opprdrng 20533 The opposite of a division...
isdrngd 20534 Properties that characteri...
isdrngrd 20535 Properties that characteri...
isdrngdOLD 20536 Obsolete version of ~ isdr...
isdrngrdOLD 20537 Obsolete version of ~ isdr...
drngpropd 20538 If two structures have the...
fldpropd 20539 If two structures have the...
rng1nnzr 20540 The (smallest) structure r...
ring1zr 20541 The only (unital) ring wit...
rngen1zr 20542 The only (unital) ring wit...
ringen1zr 20543 The only unital ring with ...
rng1nfld 20544 The zero ring is not a fie...
issubdrg 20545 Characterize the subfields...
issdrg 20548 Property of a division sub...
sdrgrcl 20549 Reverse closure for a sub-...
sdrgdrng 20550 A sub-division-ring is a d...
sdrgsubrg 20551 A sub-division-ring is a s...
sdrgid 20552 Every division ring is a d...
sdrgss 20553 A division subring is a su...
sdrgbas 20554 Base set of a sub-division...
issdrg2 20555 Property of a division sub...
sdrgunit 20556 A unit of a sub-division-r...
imadrhmcl 20557 The image of a (nontrivial...
fldsdrgfld 20558 A sub-division-ring of a f...
acsfn1p 20559 Construction of a closure ...
subrgacs 20560 Closure property of subrin...
sdrgacs 20561 Closure property of divisi...
cntzsdrg 20562 Centralizers in division r...
subdrgint 20563 The intersection of a none...
sdrgint 20564 The intersection of a none...
primefld 20565 The smallest sub division ...
primefld0cl 20566 The prime field contains t...
primefld1cl 20567 The prime field contains t...
abvfval 20570 Value of the set of absolu...
isabv 20571 Elementhood in the set of ...
isabvd 20572 Properties that determine ...
abvrcl 20573 Reverse closure for the ab...
abvfge0 20574 An absolute value is a fun...
abvf 20575 An absolute value is a fun...
abvcl 20576 An absolute value is a fun...
abvge0 20577 The absolute value of a nu...
abveq0 20578 The value of an absolute v...
abvne0 20579 The absolute value of a no...
abvgt0 20580 The absolute value of a no...
abvmul 20581 An absolute value distribu...
abvtri 20582 An absolute value satisfie...
abv0 20583 The absolute value of zero...
abv1z 20584 The absolute value of one ...
abv1 20585 The absolute value of one ...
abvneg 20586 The absolute value of a ne...
abvsubtri 20587 An absolute value satisfie...
abvrec 20588 The absolute value distrib...
abvdiv 20589 The absolute value distrib...
abvdom 20590 Any ring with an absolute ...
abvres 20591 The restriction of an abso...
abvtrivd 20592 The trivial absolute value...
abvtriv 20593 The trivial absolute value...
abvpropd 20594 If two structures have the...
staffval 20599 The functionalization of t...
stafval 20600 The functionalization of t...
staffn 20601 The functionalization is e...
issrng 20602 The predicate "is a star r...
srngrhm 20603 The involution function in...
srngring 20604 A star ring is a ring. (C...
srngcnv 20605 The involution function in...
srngf1o 20606 The involution function in...
srngcl 20607 The involution function in...
srngnvl 20608 The involution function in...
srngadd 20609 The involution function in...
srngmul 20610 The involution function in...
srng1 20611 The conjugate of the ring ...
srng0 20612 The conjugate of the ring ...
issrngd 20613 Properties that determine ...
idsrngd 20614 A commutative ring is a st...
islmod 20619 The predicate "is a left m...
lmodlema 20620 Lemma for properties of a ...
islmodd 20621 Properties that determine ...
lmodgrp 20622 A left module is a group. ...
lmodring 20623 The scalar component of a ...
lmodfgrp 20624 The scalar component of a ...
lmodgrpd 20625 A left module is a group. ...
lmodbn0 20626 The base set of a left mod...
lmodacl 20627 Closure of ring addition f...
lmodmcl 20628 Closure of ring multiplica...
lmodsn0 20629 The set of scalars in a le...
lmodvacl 20630 Closure of vector addition...
lmodass 20631 Left module vector sum is ...
lmodlcan 20632 Left cancellation law for ...
lmodvscl 20633 Closure of scalar product ...
lmodvscld 20634 Closure of scalar product ...
scaffval 20635 The scalar multiplication ...
scafval 20636 The scalar multiplication ...
scafeq 20637 If the scalar multiplicati...
scaffn 20638 The scalar multiplication ...
lmodscaf 20639 The scalar multiplication ...
lmodvsdi 20640 Distributive law for scala...
lmodvsdir 20641 Distributive law for scala...
lmodvsass 20642 Associative law for scalar...
lmod0cl 20643 The ring zero in a left mo...
lmod1cl 20644 The ring unity in a left m...
lmodvs1 20645 Scalar product with the ri...
lmod0vcl 20646 The zero vector is a vecto...
lmod0vlid 20647 Left identity law for the ...
lmod0vrid 20648 Right identity law for the...
lmod0vid 20649 Identity equivalent to the...
lmod0vs 20650 Zero times a vector is the...
lmodvs0 20651 Anything times the zero ve...
lmodvsmmulgdi 20652 Distributive law for a gro...
lmodfopnelem1 20653 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20654 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20655 The (functionalized) opera...
lcomf 20656 A linear-combination sum i...
lcomfsupp 20657 A linear-combination sum i...
lmodvnegcl 20658 Closure of vector negative...
lmodvnegid 20659 Addition of a vector with ...
lmodvneg1 20660 Minus 1 times a vector is ...
lmodvsneg 20661 Multiplication of a vector...
lmodvsubcl 20662 Closure of vector subtract...
lmodcom 20663 Left module vector sum is ...
lmodabl 20664 A left module is an abelia...
lmodcmn 20665 A left module is a commuta...
lmodnegadd 20666 Distribute negation throug...
lmod4 20667 Commutative/associative la...
lmodvsubadd 20668 Relationship between vecto...
lmodvaddsub4 20669 Vector addition/subtractio...
lmodvpncan 20670 Addition/subtraction cance...
lmodvnpcan 20671 Cancellation law for vecto...
lmodvsubval2 20672 Value of vector subtractio...
lmodsubvs 20673 Subtraction of a scalar pr...
lmodsubdi 20674 Scalar multiplication dist...
lmodsubdir 20675 Scalar multiplication dist...
lmodsubeq0 20676 If the difference between ...
lmodsubid 20677 Subtraction of a vector fr...
lmodvsghm 20678 Scalar multiplication of t...
lmodprop2d 20679 If two structures have the...
lmodpropd 20680 If two structures have the...
gsumvsmul 20681 Pull a scalar multiplicati...
mptscmfsupp0 20682 A mapping to a scalar prod...
mptscmfsuppd 20683 A function mapping to a sc...
rmodislmodlem 20684 Lemma for ~ rmodislmod . ...
rmodislmod 20685 The right module ` R ` ind...
rmodislmodOLD 20686 Obsolete version of ~ rmod...
lssset 20689 The set of all (not necess...
islss 20690 The predicate "is a subspa...
islssd 20691 Properties that determine ...
lssss 20692 A subspace is a set of vec...
lssel 20693 A subspace member is a vec...
lss1 20694 The set of vectors in a le...
lssuni 20695 The union of all subspaces...
lssn0 20696 A subspace is not empty. ...
00lss 20697 The empty structure has no...
lsscl 20698 Closure property of a subs...
lssvsubcl 20699 Closure of vector subtract...
lssvancl1 20700 Non-closure: if one vector...
lssvancl2 20701 Non-closure: if one vector...
lss0cl 20702 The zero vector belongs to...
lsssn0 20703 The singleton of the zero ...
lss0ss 20704 The zero subspace is inclu...
lssle0 20705 No subspace is smaller tha...
lssne0 20706 A nonzero subspace has a n...
lssvneln0 20707 A vector ` X ` which doesn...
lssneln0 20708 A vector ` X ` which doesn...
lssssr 20709 Conclude subspace ordering...
lssvacl 20710 Closure of vector addition...
lssvscl 20711 Closure of scalar product ...
lssvnegcl 20712 Closure of negative vector...
lsssubg 20713 All subspaces are subgroup...
lsssssubg 20714 All subspaces are subgroup...
islss3 20715 A linear subspace of a mod...
lsslmod 20716 A submodule is a module. ...
lsslss 20717 The subspaces of a subspac...
islss4 20718 A linear subspace is a sub...
lss1d 20719 One-dimensional subspace (...
lssintcl 20720 The intersection of a none...
lssincl 20721 The intersection of two su...
lssmre 20722 The subspaces of a module ...
lssacs 20723 Submodules are an algebrai...
prdsvscacl 20724 Pointwise scalar multiplic...
prdslmodd 20725 The product of a family of...
pwslmod 20726 A structure power of a lef...
lspfval 20729 The span function for a le...
lspf 20730 The span function on a lef...
lspval 20731 The span of a set of vecto...
lspcl 20732 The span of a set of vecto...
lspsncl 20733 The span of a singleton is...
lspprcl 20734 The span of a pair is a su...
lsptpcl 20735 The span of an unordered t...
lspsnsubg 20736 The span of a singleton is...
00lsp 20737 ~ fvco4i lemma for linear ...
lspid 20738 The span of a subspace is ...
lspssv 20739 A span is a set of vectors...
lspss 20740 Span preserves subset orde...
lspssid 20741 A set of vectors is a subs...
lspidm 20742 The span of a set of vecto...
lspun 20743 The span of union is the s...
lspssp 20744 If a set of vectors is a s...
mrclsp 20745 Moore closure generalizes ...
lspsnss 20746 The span of the singleton ...
lspsnel3 20747 A member of the span of th...
lspprss 20748 The span of a pair of vect...
lspsnid 20749 A vector belongs to the sp...
lspsnel6 20750 Relationship between a vec...
lspsnel5 20751 Relationship between a vec...
lspsnel5a 20752 Relationship between a vec...
lspprid1 20753 A member of a pair of vect...
lspprid2 20754 A member of a pair of vect...
lspprvacl 20755 The sum of two vectors bel...
lssats2 20756 A way to express atomistic...
lspsneli 20757 A scalar product with a ve...
lspsn 20758 Span of the singleton of a...
lspsnel 20759 Member of span of the sing...
lspsnvsi 20760 Span of a scalar product o...
lspsnss2 20761 Comparable spans of single...
lspsnneg 20762 Negation does not change t...
lspsnsub 20763 Swapping subtraction order...
lspsn0 20764 Span of the singleton of t...
lsp0 20765 Span of the empty set. (C...
lspuni0 20766 Union of the span of the e...
lspun0 20767 The span of a union with t...
lspsneq0 20768 Span of the singleton is t...
lspsneq0b 20769 Equal singleton spans impl...
lmodindp1 20770 Two independent (non-colin...
lsslsp 20771 Spans in submodules corres...
lss0v 20772 The zero vector in a submo...
lsspropd 20773 If two structures have the...
lsppropd 20774 If two structures have the...
reldmlmhm 20781 Lemma for module homomorph...
lmimfn 20782 Lemma for module isomorphi...
islmhm 20783 Property of being a homomo...
islmhm3 20784 Property of a module homom...
lmhmlem 20785 Non-quantified consequence...
lmhmsca 20786 A homomorphism of left mod...
lmghm 20787 A homomorphism of left mod...
lmhmlmod2 20788 A homomorphism of left mod...
lmhmlmod1 20789 A homomorphism of left mod...
lmhmf 20790 A homomorphism of left mod...
lmhmlin 20791 A homomorphism of left mod...
lmodvsinv 20792 Multiplication of a vector...
lmodvsinv2 20793 Multiplying a negated vect...
islmhm2 20794 A one-equation proof of li...
islmhmd 20795 Deduction for a module hom...
0lmhm 20796 The constant zero linear f...
idlmhm 20797 The identity function on a...
invlmhm 20798 The negative function on a...
lmhmco 20799 The composition of two mod...
lmhmplusg 20800 The pointwise sum of two l...
lmhmvsca 20801 The pointwise scalar produ...
lmhmf1o 20802 A bijective module homomor...
lmhmima 20803 The image of a subspace un...
lmhmpreima 20804 The inverse image of a sub...
lmhmlsp 20805 Homomorphisms preserve spa...
lmhmrnlss 20806 The range of a homomorphis...
lmhmkerlss 20807 The kernel of a homomorphi...
reslmhm 20808 Restriction of a homomorph...
reslmhm2 20809 Expansion of the codomain ...
reslmhm2b 20810 Expansion of the codomain ...
lmhmeql 20811 The equalizer of two modul...
lspextmo 20812 A linear function is compl...
pwsdiaglmhm 20813 Diagonal homomorphism into...
pwssplit0 20814 Splitting for structure po...
pwssplit1 20815 Splitting for structure po...
pwssplit2 20816 Splitting for structure po...
pwssplit3 20817 Splitting for structure po...
islmim 20818 An isomorphism of left mod...
lmimf1o 20819 An isomorphism of left mod...
lmimlmhm 20820 An isomorphism of modules ...
lmimgim 20821 An isomorphism of modules ...
islmim2 20822 An isomorphism of left mod...
lmimcnv 20823 The converse of a bijectiv...
brlmic 20824 The relation "is isomorphi...
brlmici 20825 Prove isomorphic by an exp...
lmiclcl 20826 Isomorphism implies the le...
lmicrcl 20827 Isomorphism implies the ri...
lmicsym 20828 Module isomorphism is symm...
lmhmpropd 20829 Module homomorphism depend...
islbs 20832 The predicate " ` B ` is a...
lbsss 20833 A basis is a set of vector...
lbsel 20834 An element of a basis is a...
lbssp 20835 The span of a basis is the...
lbsind 20836 A basis is linearly indepe...
lbsind2 20837 A basis is linearly indepe...
lbspss 20838 No proper subset of a basi...
lsmcl 20839 The sum of two subspaces i...
lsmspsn 20840 Member of subspace sum of ...
lsmelval2 20841 Subspace sum membership in...
lsmsp 20842 Subspace sum in terms of s...
lsmsp2 20843 Subspace sum of spans of s...
lsmssspx 20844 Subspace sum (in its exten...
lsmpr 20845 The span of a pair of vect...
lsppreli 20846 A vector expressed as a su...
lsmelpr 20847 Two ways to say that a vec...
lsppr0 20848 The span of a vector paire...
lsppr 20849 Span of a pair of vectors....
lspprel 20850 Member of the span of a pa...
lspprabs 20851 Absorption of vector sum i...
lspvadd 20852 The span of a vector sum i...
lspsntri 20853 Triangle-type inequality f...
lspsntrim 20854 Triangle-type inequality f...
lbspropd 20855 If two structures have the...
pj1lmhm 20856 The left projection functi...
pj1lmhm2 20857 The left projection functi...
islvec 20860 The predicate "is a left v...
lvecdrng 20861 The set of scalars of a le...
lveclmod 20862 A left vector space is a l...
lveclmodd 20863 A vector space is a left m...
lvecgrpd 20864 A vector space is a group....
lsslvec 20865 A vector subspace is a vec...
lmhmlvec 20866 The property for modules t...
lvecvs0or 20867 If a scalar product is zer...
lvecvsn0 20868 A scalar product is nonzer...
lssvs0or 20869 If a scalar product belong...
lvecvscan 20870 Cancellation law for scala...
lvecvscan2 20871 Cancellation law for scala...
lvecinv 20872 Invert coefficient of scal...
lspsnvs 20873 A nonzero scalar product d...
lspsneleq 20874 Membership relation that i...
lspsncmp 20875 Comparable spans of nonzer...
lspsnne1 20876 Two ways to express that v...
lspsnne2 20877 Two ways to express that v...
lspsnnecom 20878 Swap two vectors with diff...
lspabs2 20879 Absorption law for span of...
lspabs3 20880 Absorption law for span of...
lspsneq 20881 Equal spans of singletons ...
lspsneu 20882 Nonzero vectors with equal...
lspsnel4 20883 A member of the span of th...
lspdisj 20884 The span of a vector not i...
lspdisjb 20885 A nonzero vector is not in...
lspdisj2 20886 Unequal spans are disjoint...
lspfixed 20887 Show membership in the spa...
lspexch 20888 Exchange property for span...
lspexchn1 20889 Exchange property for span...
lspexchn2 20890 Exchange property for span...
lspindpi 20891 Partial independence prope...
lspindp1 20892 Alternate way to say 3 vec...
lspindp2l 20893 Alternate way to say 3 vec...
lspindp2 20894 Alternate way to say 3 vec...
lspindp3 20895 Independence of 2 vectors ...
lspindp4 20896 (Partial) independence of ...
lvecindp 20897 Compute the ` X ` coeffici...
lvecindp2 20898 Sums of independent vector...
lspsnsubn0 20899 Unequal singleton spans im...
lsmcv 20900 Subspace sum has the cover...
lspsolvlem 20901 Lemma for ~ lspsolv . (Co...
lspsolv 20902 If ` X ` is in the span of...
lssacsex 20903 In a vector space, subspac...
lspsnat 20904 There is no subspace stric...
lspsncv0 20905 The span of a singleton co...
lsppratlem1 20906 Lemma for ~ lspprat . Let...
lsppratlem2 20907 Lemma for ~ lspprat . Sho...
lsppratlem3 20908 Lemma for ~ lspprat . In ...
lsppratlem4 20909 Lemma for ~ lspprat . In ...
lsppratlem5 20910 Lemma for ~ lspprat . Com...
lsppratlem6 20911 Lemma for ~ lspprat . Neg...
lspprat 20912 A proper subspace of the s...
islbs2 20913 An equivalent formulation ...
islbs3 20914 An equivalent formulation ...
lbsacsbs 20915 Being a basis in a vector ...
lvecdim 20916 The dimension theorem for ...
lbsextlem1 20917 Lemma for ~ lbsext . The ...
lbsextlem2 20918 Lemma for ~ lbsext . Sinc...
lbsextlem3 20919 Lemma for ~ lbsext . A ch...
lbsextlem4 20920 Lemma for ~ lbsext . ~ lbs...
lbsextg 20921 For any linearly independe...
lbsext 20922 For any linearly independe...
lbsexg 20923 Every vector space has a b...
lbsex 20924 Every vector space has a b...
lvecprop2d 20925 If two structures have the...
lvecpropd 20926 If two structures have the...
sraval 20935 Lemma for ~ srabase throug...
sralem 20936 Lemma for ~ srabase and si...
sralemOLD 20937 Obsolete version of ~ sral...
srabase 20938 Base set of a subring alge...
srabaseOLD 20939 Obsolete proof of ~ srabas...
sraaddg 20940 Additive operation of a su...
sraaddgOLD 20941 Obsolete proof of ~ sraadd...
sramulr 20942 Multiplicative operation o...
sramulrOLD 20943 Obsolete proof of ~ sramul...
srasca 20944 The set of scalars of a su...
srascaOLD 20945 Obsolete proof of ~ srasca...
sravsca 20946 The scalar product operati...
sravscaOLD 20947 Obsolete proof of ~ sravsc...
sraip 20948 The inner product operatio...
sratset 20949 Topology component of a su...
sratsetOLD 20950 Obsolete proof of ~ sratse...
sratopn 20951 Topology component of a su...
srads 20952 Distance function of a sub...
sradsOLD 20953 Obsolete proof of ~ srads ...
sraring 20954 Condition for a subring al...
sralmod 20955 The subring algebra is a l...
sralmod0 20956 The subring module inherit...
issubrgd 20957 Prove a subring by closure...
rlmfn 20958 ` ringLMod ` is a function...
rlmval 20959 Value of the ring module. ...
lidlval 20960 Value of the set of ring i...
rspval 20961 Value of the ring span fun...
rlmval2 20962 Value of the ring module e...
rlmbas 20963 Base set of the ring modul...
rlmplusg 20964 Vector addition in the rin...
rlm0 20965 Zero vector in the ring mo...
rlmsub 20966 Subtraction in the ring mo...
rlmmulr 20967 Ring multiplication in the...
rlmsca 20968 Scalars in the ring module...
rlmsca2 20969 Scalars in the ring module...
rlmvsca 20970 Scalar multiplication in t...
rlmtopn 20971 Topology component of the ...
rlmds 20972 Metric component of the ri...
rlmlmod 20973 The ring module is a modul...
rlmlvec 20974 The ring module over a div...
rlmlsm 20975 Subgroup sum of the ring m...
rlmvneg 20976 Vector negation in the rin...
rlmscaf 20977 Functionalized scalar mult...
ixpsnbasval 20978 The value of an infinite C...
lidlss 20979 An ideal is a subset of th...
lidlssbas 20980 The base set of the restri...
lidlbas 20981 A (left) ideal of a ring i...
islidl 20982 Predicate of being a (left...
rnglidlmcl 20983 A (left) ideal containing ...
rngridlmcl 20984 A right ideal (which is a ...
lidl0cl 20985 An ideal contains 0. (Con...
lidlacl 20986 An ideal is closed under a...
lidlnegcl 20987 An ideal contains negative...
lidlsubg 20988 An ideal is a subgroup of ...
lidlsubcl 20989 An ideal is closed under s...
lidlmcl 20990 An ideal is closed under l...
lidl1el 20991 An ideal contains 1 iff it...
dflidl2lem 20992 Lemma for ~ dflidl2 : a su...
dflidl2 20993 Alternate (the usual textb...
lidl0 20994 Every ring contains a zero...
lidl1 20995 Every ring contains a unit...
lidlacs 20996 The ideal system is an alg...
rspcl 20997 The span of a set of ring ...
rspssid 20998 The span of a set of ring ...
rsp1 20999 The span of the identity e...
rsp0 21000 The span of the zero eleme...
rspssp 21001 The ideal span of a set of...
mrcrsp 21002 Moore closure generalizes ...
lidlnz 21003 A nonzero ideal contains a...
drngnidl 21004 A division ring has only t...
lidlrsppropd 21005 The left ideals and ring s...
2idlval 21008 Definition of a two-sided ...
isridl 21009 A right ideal is a left id...
df2idl2 21010 Alternate (the usual textb...
ridl0 21011 Every ring contains a zero...
ridl1 21012 Every ring contains a unit...
2idl0 21013 Every ring contains a zero...
2idl1 21014 Every ring contains a unit...
2idlelb 21015 Membership in a two-sided ...
2idllidld 21016 A two-sided ideal is a lef...
2idlridld 21017 A two-sided ideal is a rig...
2idlss 21018 A two-sided ideal is a sub...
2idlbas 21019 The base set of a two-side...
2idlelbas 21020 The base set of a two-side...
2idlcpblrng 21021 The coset equivalence rela...
2idlcpbl 21022 The coset equivalence rela...
qus1 21023 The multiplicative identit...
qusring 21024 If ` S ` is a two-sided id...
qusrhm 21025 If ` S ` is a two-sided id...
qusmul2 21026 Value of the ring operatio...
crngridl 21027 In a commutative ring, the...
crng2idl 21028 In a commutative ring, a t...
qusmulrng 21029 Value of the multiplicatio...
quscrng 21030 The quotient of a commutat...
dflidl2rng 21031 Alternate (the usual textb...
isridlrng 21032 A right ideal is a left id...
rnglidl0 21033 Every non-unital ring cont...
rnglidl1 21034 The base set of every non-...
rnglidlmmgm 21035 The multiplicative group o...
rnglidlmsgrp 21036 The multiplicative group o...
rnglidlrng 21037 A (left) ideal of a non-un...
df2idl2rng 21038 Alternate (the usual textb...
rng2idlsubrng 21039 A two-sided ideal of a non...
rng2idlnsg 21040 A two-sided ideal of a non...
rng2idl0 21041 The zero (additive identit...
rng2idlsubgsubrng 21042 A two-sided ideal of a non...
rng2idlsubgnsg 21043 A two-sided ideal of a non...
rng2idlsubg0 21044 The zero (additive identit...
qus2idrng 21045 The quotient of a non-unit...
rngqiprng1elbas 21046 The ring unity of a two-si...
rngqiprngghmlem1 21047 Lemma 1 for ~ rngqiprngghm...
rngqiprngghmlem2 21048 Lemma 2 for ~ rngqiprngghm...
rngqiprngghmlem3 21049 Lemma 3 for ~ rngqiprngghm...
rngqiprngimfolem 21050 Lemma for ~ rngqiprngimfo ...
rngqiprnglinlem1 21051 Lemma 1 for ~ rngqiprnglin...
rngqiprnglinlem2 21052 Lemma 2 for ~ rngqiprnglin...
rngqiprnglinlem3 21053 Lemma 3 for ~ rngqiprnglin...
rngqiprngimf1lem 21054 Lemma for ~ rngqiprngimf1 ...
rngqipbas 21055 The base set of the produc...
rngqiprng 21056 The product of the quotien...
rngqiprngimf 21057 ` F ` is a function from (...
rngqiprngimfv 21058 The value of the function ...
rngqiprngghm 21059 ` F ` is a homomorphism of...
rngqiprngimf1 21060 ` F ` is a one-to-one func...
rngqiprngimfo 21061 ` F ` is a function from (...
rngqiprnglin 21062 ` F ` is linear with respe...
rngqiprngho 21063 ` F ` is a homomorphism of...
rngqiprngim 21064 ` F ` is an isomorphism of...
rng2idl1cntr 21065 The unity of a two-sided i...
rngringbdlem1 21066 In a unital ring, the quot...
rngringbdlem2 21067 A non-unital ring is unita...
rngringbd 21068 A non-unital ring is unita...
ring2idlqus 21069 For every unital ring ther...
ring2idlqusb 21070 A non-unital ring is unita...
rngqiprngfulem1 21071 Lemma 1 for ~ rngqiprngfu ...
rngqiprngfulem2 21072 Lemma 2 for ~ rngqiprngfu ...
rngqiprngfulem3 21073 Lemma 3 for ~ rngqiprngfu ...
rngqiprngfulem4 21074 Lemma 4 for ~ rngqiprngfu ...
rngqiprngfulem5 21075 Lemma 5 for ~ rngqiprngfu ...
rngqipring1 21076 The ring unity of the prod...
rngqiprngfu 21077 The function value of ` F ...
rngqiprngu 21078 If a non-unital ring has a...
ring2idlqus1 21079 If a non-unital ring has a...
lpival 21084 Value of the set of princi...
islpidl 21085 Property of being a princi...
lpi0 21086 The zero ideal is always p...
lpi1 21087 The unit ideal is always p...
islpir 21088 Principal ideal rings are ...
lpiss 21089 Principal ideals are a sub...
islpir2 21090 Principal ideal rings are ...
lpirring 21091 Principal ideal rings are ...
drnglpir 21092 Division rings are princip...
rspsn 21093 Membership in principal id...
lidldvgen 21094 An element generates an id...
lpigen 21095 An ideal is principal iff ...
rrgval 21104 Value of the set or left-r...
isrrg 21105 Membership in the set of l...
rrgeq0i 21106 Property of a left-regular...
rrgeq0 21107 Left-multiplication by a l...
rrgsupp 21108 Left multiplication by a l...
rrgss 21109 Left-regular elements are ...
unitrrg 21110 Units are regular elements...
isdomn 21111 Expand definition of a dom...
domnnzr 21112 A domain is a nonzero ring...
domnring 21113 A domain is a ring. (Cont...
domneq0 21114 In a domain, a product is ...
domnmuln0 21115 In a domain, a product of ...
isdomn2 21116 A ring is a domain iff all...
domnrrg 21117 In a domain, any nonzero e...
isdomn5 21118 The right conjunct in the ...
isdomn4 21119 A ring is a domain iff it ...
opprdomn 21120 The opposite of a domain i...
abvn0b 21121 Another characterization o...
drngdomn 21122 A division ring is a domai...
isidom 21123 An integral domain is a co...
fldidom 21124 A field is an integral dom...
fldidomOLD 21125 Obsolete version of ~ fldi...
fidomndrnglem 21126 Lemma for ~ fidomndrng . ...
fidomndrng 21127 A finite domain is a divis...
fiidomfld 21128 A finite integral domain i...
cnfldstr 21147 The field of complex numbe...
cnfldex 21148 The field of complex numbe...
cnfldbas 21149 The base set of the field ...
cnfldadd 21150 The addition operation of ...
cnfldmul 21151 The multiplication operati...
cnfldcj 21152 The conjugation operation ...
cnfldtset 21153 The topology component of ...
cnfldle 21154 The ordering of the field ...
cnfldds 21155 The metric of the field of...
cnfldunif 21156 The uniform structure comp...
cnfldfun 21157 The field of complex numbe...
cnfldfunALT 21158 The field of complex numbe...
cnfldfunALTOLD 21159 Obsolete proof of ~ cnfldf...
xrsstr 21160 The extended real structur...
xrsex 21161 The extended real structur...
xrsbas 21162 The base set of the extend...
xrsadd 21163 The addition operation of ...
xrsmul 21164 The multiplication operati...
xrstset 21165 The topology component of ...
xrsle 21166 The ordering of the extend...
cncrng 21167 The complex numbers form a...
cnring 21168 The complex numbers form a...
xrsmcmn 21169 The "multiplicative group"...
cnfld0 21170 Zero is the zero element o...
cnfld1 21171 One is the unity element o...
cnfldneg 21172 The additive inverse in th...
cnfldplusf 21173 The functionalized additio...
cnfldsub 21174 The subtraction operator i...
cndrng 21175 The complex numbers form a...
cnflddiv 21176 The division operation in ...
cnfldinv 21177 The multiplicative inverse...
cnfldmulg 21178 The group multiple functio...
cnfldexp 21179 The exponentiation operato...
cnsrng 21180 The complex numbers form a...
xrsmgm 21181 The "additive group" of th...
xrsnsgrp 21182 The "additive group" of th...
xrsmgmdifsgrp 21183 The "additive group" of th...
xrs1mnd 21184 The extended real numbers,...
xrs10 21185 The zero of the extended r...
xrs1cmn 21186 The extended real numbers ...
xrge0subm 21187 The nonnegative extended r...
xrge0cmn 21188 The nonnegative extended r...
xrsds 21189 The metric of the extended...
xrsdsval 21190 The metric of the extended...
xrsdsreval 21191 The metric of the extended...
xrsdsreclblem 21192 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 21193 The metric of the extended...
cnsubmlem 21194 Lemma for ~ nn0subm and fr...
cnsubglem 21195 Lemma for ~ resubdrg and f...
cnsubrglem 21196 Lemma for ~ resubdrg and f...
cnsubdrglem 21197 Lemma for ~ resubdrg and f...
qsubdrg 21198 The rational numbers form ...
zsubrg 21199 The integers form a subrin...
gzsubrg 21200 The gaussian integers form...
nn0subm 21201 The nonnegative integers f...
rege0subm 21202 The nonnegative reals form...
absabv 21203 The regular absolute value...
zsssubrg 21204 The integers are a subset ...
qsssubdrg 21205 The rational numbers are a...
cnsubrg 21206 There are no subrings of t...
cnmgpabl 21207 The unit group of the comp...
cnmgpid 21208 The group identity element...
cnmsubglem 21209 Lemma for ~ rpmsubg and fr...
rpmsubg 21210 The positive reals form a ...
gzrngunitlem 21211 Lemma for ~ gzrngunit . (...
gzrngunit 21212 The units on ` ZZ [ _i ] `...
gsumfsum 21213 Relate a group sum on ` CC...
regsumfsum 21214 Relate a group sum on ` ( ...
expmhm 21215 Exponentiation is a monoid...
nn0srg 21216 The nonnegative integers f...
rge0srg 21217 The nonnegative real numbe...
zringcrng 21220 The ring of integers is a ...
zringring 21221 The ring of integers is a ...
zringrng 21222 The ring of integers is a ...
zringabl 21223 The ring of integers is an...
zringgrp 21224 The ring of integers is an...
zringbas 21225 The integers are the base ...
zringplusg 21226 The addition operation of ...
zringsub 21227 The subtraction of element...
zringmulg 21228 The multiplication (group ...
zringmulr 21229 The multiplication operati...
zring0 21230 The zero element of the ri...
zring1 21231 The unity element of the r...
zringnzr 21232 The ring of integers is a ...
dvdsrzring 21233 Ring divisibility in the r...
zringlpirlem1 21234 Lemma for ~ zringlpir . A...
zringlpirlem2 21235 Lemma for ~ zringlpir . A...
zringlpirlem3 21236 Lemma for ~ zringlpir . A...
zringinvg 21237 The additive inverse of an...
zringunit 21238 The units of ` ZZ ` are th...
zringlpir 21239 The integers are a princip...
zringndrg 21240 The integers are not a div...
zringcyg 21241 The integers are a cyclic ...
zringsubgval 21242 Subtraction in the ring of...
zringmpg 21243 The multiplicative group o...
prmirredlem 21244 A positive integer is irre...
dfprm2 21245 The positive irreducible e...
prmirred 21246 The irreducible elements o...
expghm 21247 Exponentiation is a group ...
mulgghm2 21248 The powers of a group elem...
mulgrhm 21249 The powers of the element ...
mulgrhm2 21250 The powers of the element ...
pzriprnglem1 21251 Lemma 1 for ~ pzriprng : `...
pzriprnglem2 21252 Lemma 2 for ~ pzriprng : ...
pzriprnglem3 21253 Lemma 3 for ~ pzriprng : ...
pzriprnglem4 21254 Lemma 4 for ~ pzriprng : `...
pzriprnglem5 21255 Lemma 5 for ~ pzriprng : `...
pzriprnglem6 21256 Lemma 6 for ~ pzriprng : `...
pzriprnglem7 21257 Lemma 7 for ~ pzriprng : `...
pzriprnglem8 21258 Lemma 8 for ~ pzriprng : `...
pzriprnglem9 21259 Lemma 9 for ~ pzriprng : ...
pzriprnglem10 21260 Lemma 10 for ~ pzriprng : ...
pzriprnglem11 21261 Lemma 11 for ~ pzriprng : ...
pzriprnglem12 21262 Lemma 12 for ~ pzriprng : ...
pzriprnglem13 21263 Lemma 13 for ~ pzriprng : ...
pzriprnglem14 21264 Lemma 14 for ~ pzriprng : ...
pzriprngALT 21265 The non-unital ring ` ( ZZ...
pzriprng1ALT 21266 The ring unity of the ring...
pzriprng 21267 The non-unital ring ` ( ZZ...
pzriprng1 21268 The ring unity of the ring...
zrhval 21277 Define the unique homomorp...
zrhval2 21278 Alternate value of the ` Z...
zrhmulg 21279 Value of the ` ZRHom ` hom...
zrhrhmb 21280 The ` ZRHom ` homomorphism...
zrhrhm 21281 The ` ZRHom ` homomorphism...
zrh1 21282 Interpretation of 1 in a r...
zrh0 21283 Interpretation of 0 in a r...
zrhpropd 21284 The ` ZZ ` ring homomorphi...
zlmval 21285 Augment an abelian group w...
zlmlem 21286 Lemma for ~ zlmbas and ~ z...
zlmlemOLD 21287 Obsolete version of ~ zlml...
zlmbas 21288 Base set of a ` ZZ ` -modu...
zlmbasOLD 21289 Obsolete version of ~ zlmb...
zlmplusg 21290 Group operation of a ` ZZ ...
zlmplusgOLD 21291 Obsolete version of ~ zlmb...
zlmmulr 21292 Ring operation of a ` ZZ `...
zlmmulrOLD 21293 Obsolete version of ~ zlmb...
zlmsca 21294 Scalar ring of a ` ZZ ` -m...
zlmvsca 21295 Scalar multiplication oper...
zlmlmod 21296 The ` ZZ ` -module operati...
chrval 21297 Definition substitution of...
chrcl 21298 Closure of the characteris...
chrid 21299 The canonical ` ZZ ` ring ...
chrdvds 21300 The ` ZZ ` ring homomorphi...
chrcong 21301 If two integers are congru...
chrnzr 21302 Nonzero rings are precisel...
chrrhm 21303 The characteristic restric...
domnchr 21304 The characteristic of a do...
znlidl 21305 The set ` n ZZ ` is an ide...
zncrng2 21306 The value of the ` Z/nZ ` ...
znval 21307 The value of the ` Z/nZ ` ...
znle 21308 The value of the ` Z/nZ ` ...
znval2 21309 Self-referential expressio...
znbaslem 21310 Lemma for ~ znbas . (Cont...
znbaslemOLD 21311 Obsolete version of ~ znba...
znbas2 21312 The base set of ` Z/nZ ` i...
znbas2OLD 21313 Obsolete version of ~ znba...
znadd 21314 The additive structure of ...
znaddOLD 21315 Obsolete version of ~ znad...
znmul 21316 The multiplicative structu...
znmulOLD 21317 Obsolete version of ~ znad...
znzrh 21318 The ` ZZ ` ring homomorphi...
znbas 21319 The base set of ` Z/nZ ` s...
zncrng 21320 ` Z/nZ ` is a commutative ...
znzrh2 21321 The ` ZZ ` ring homomorphi...
znzrhval 21322 The ` ZZ ` ring homomorphi...
znzrhfo 21323 The ` ZZ ` ring homomorphi...
zncyg 21324 The group ` ZZ / n ZZ ` is...
zndvds 21325 Express equality of equiva...
zndvds0 21326 Special case of ~ zndvds w...
znf1o 21327 The function ` F ` enumera...
zzngim 21328 The ` ZZ ` ring homomorphi...
znle2 21329 The ordering of the ` Z/nZ...
znleval 21330 The ordering of the ` Z/nZ...
znleval2 21331 The ordering of the ` Z/nZ...
zntoslem 21332 Lemma for ~ zntos . (Cont...
zntos 21333 The ` Z/nZ ` structure is ...
znhash 21334 The ` Z/nZ ` structure has...
znfi 21335 The ` Z/nZ ` structure is ...
znfld 21336 The ` Z/nZ ` structure is ...
znidomb 21337 The ` Z/nZ ` structure is ...
znchr 21338 Cyclic rings are defined b...
znunit 21339 The units of ` Z/nZ ` are ...
znunithash 21340 The size of the unit group...
znrrg 21341 The regular elements of ` ...
cygznlem1 21342 Lemma for ~ cygzn . (Cont...
cygznlem2a 21343 Lemma for ~ cygzn . (Cont...
cygznlem2 21344 Lemma for ~ cygzn . (Cont...
cygznlem3 21345 A cyclic group with ` n ` ...
cygzn 21346 A cyclic group with ` n ` ...
cygth 21347 The "fundamental theorem o...
cyggic 21348 Cyclic groups are isomorph...
frgpcyg 21349 A free group is cyclic iff...
cnmsgnsubg 21350 The signs form a multiplic...
cnmsgnbas 21351 The base set of the sign s...
cnmsgngrp 21352 The group of signs under m...
psgnghm 21353 The sign is a homomorphism...
psgnghm2 21354 The sign is a homomorphism...
psgninv 21355 The sign of a permutation ...
psgnco 21356 Multiplicativity of the pe...
zrhpsgnmhm 21357 Embedding of permutation s...
zrhpsgninv 21358 The embedded sign of a per...
evpmss 21359 Even permutations are perm...
psgnevpmb 21360 A class is an even permuta...
psgnodpm 21361 A permutation which is odd...
psgnevpm 21362 A permutation which is eve...
psgnodpmr 21363 If a permutation has sign ...
zrhpsgnevpm 21364 The sign of an even permut...
zrhpsgnodpm 21365 The sign of an odd permuta...
cofipsgn 21366 Composition of any class `...
zrhpsgnelbas 21367 Embedding of permutation s...
zrhcopsgnelbas 21368 Embedding of permutation s...
evpmodpmf1o 21369 The function for performin...
pmtrodpm 21370 A transposition is an odd ...
psgnfix1 21371 A permutation of a finite ...
psgnfix2 21372 A permutation of a finite ...
psgndiflemB 21373 Lemma 1 for ~ psgndif . (...
psgndiflemA 21374 Lemma 2 for ~ psgndif . (...
psgndif 21375 Embedding of permutation s...
copsgndif 21376 Embedding of permutation s...
rebase 21379 The base of the field of r...
remulg 21380 The multiplication (group ...
resubdrg 21381 The real numbers form a di...
resubgval 21382 Subtraction in the field o...
replusg 21383 The addition operation of ...
remulr 21384 The multiplication operati...
re0g 21385 The zero element of the fi...
re1r 21386 The unity element of the f...
rele2 21387 The ordering relation of t...
relt 21388 The ordering relation of t...
reds 21389 The distance of the field ...
redvr 21390 The division operation of ...
retos 21391 The real numbers are a tot...
refld 21392 The real numbers form a fi...
refldcj 21393 The conjugation operation ...
resrng 21394 The real numbers form a st...
regsumsupp 21395 The group sum over the rea...
rzgrp 21396 The quotient group ` RR / ...
isphl 21401 The predicate "is a genera...
phllvec 21402 A pre-Hilbert space is a l...
phllmod 21403 A pre-Hilbert space is a l...
phlsrng 21404 The scalar ring of a pre-H...
phllmhm 21405 The inner product of a pre...
ipcl 21406 Closure of the inner produ...
ipcj 21407 Conjugate of an inner prod...
iporthcom 21408 Orthogonality (meaning inn...
ip0l 21409 Inner product with a zero ...
ip0r 21410 Inner product with a zero ...
ipeq0 21411 The inner product of a vec...
ipdir 21412 Distributive law for inner...
ipdi 21413 Distributive law for inner...
ip2di 21414 Distributive law for inner...
ipsubdir 21415 Distributive law for inner...
ipsubdi 21416 Distributive law for inner...
ip2subdi 21417 Distributive law for inner...
ipass 21418 Associative law for inner ...
ipassr 21419 "Associative" law for seco...
ipassr2 21420 "Associative" law for inne...
ipffval 21421 The inner product operatio...
ipfval 21422 The inner product operatio...
ipfeq 21423 If the inner product opera...
ipffn 21424 The inner product operatio...
phlipf 21425 The inner product operatio...
ip2eq 21426 Two vectors are equal iff ...
isphld 21427 Properties that determine ...
phlpropd 21428 If two structures have the...
ssipeq 21429 The inner product on a sub...
phssipval 21430 The inner product on a sub...
phssip 21431 The inner product (as a fu...
phlssphl 21432 A subspace of an inner pro...
ocvfval 21439 The orthocomplement operat...
ocvval 21440 Value of the orthocompleme...
elocv 21441 Elementhood in the orthoco...
ocvi 21442 Property of a member of th...
ocvss 21443 The orthocomplement of a s...
ocvocv 21444 A set is contained in its ...
ocvlss 21445 The orthocomplement of a s...
ocv2ss 21446 Orthocomplements reverse s...
ocvin 21447 An orthocomplement has tri...
ocvsscon 21448 Two ways to say that ` S `...
ocvlsp 21449 The orthocomplement of a l...
ocv0 21450 The orthocomplement of the...
ocvz 21451 The orthocomplement of the...
ocv1 21452 The orthocomplement of the...
unocv 21453 The orthocomplement of a u...
iunocv 21454 The orthocomplement of an ...
cssval 21455 The set of closed subspace...
iscss 21456 The predicate "is a closed...
cssi 21457 Property of a closed subsp...
cssss 21458 A closed subspace is a sub...
iscss2 21459 It is sufficient to prove ...
ocvcss 21460 The orthocomplement of any...
cssincl 21461 The zero subspace is a clo...
css0 21462 The zero subspace is a clo...
css1 21463 The whole space is a close...
csslss 21464 A closed subspace of a pre...
lsmcss 21465 A subset of a pre-Hilbert ...
cssmre 21466 The closed subspaces of a ...
mrccss 21467 The Moore closure correspo...
thlval 21468 Value of the Hilbert latti...
thlbas 21469 Base set of the Hilbert la...
thlbasOLD 21470 Obsolete proof of ~ thlbas...
thlle 21471 Ordering on the Hilbert la...
thlleOLD 21472 Obsolete proof of ~ thlle ...
thlleval 21473 Ordering on the Hilbert la...
thloc 21474 Orthocomplement on the Hil...
pjfval 21481 The value of the projectio...
pjdm 21482 A subspace is in the domai...
pjpm 21483 The projection map is a pa...
pjfval2 21484 Value of the projection ma...
pjval 21485 Value of the projection ma...
pjdm2 21486 A subspace is in the domai...
pjff 21487 A projection is a linear o...
pjf 21488 A projection is a function...
pjf2 21489 A projection is a function...
pjfo 21490 A projection is a surjecti...
pjcss 21491 A projection subspace is a...
ocvpj 21492 The orthocomplement of a p...
ishil 21493 The predicate "is a Hilber...
ishil2 21494 The predicate "is a Hilber...
isobs 21495 The predicate "is an ortho...
obsip 21496 The inner product of two e...
obsipid 21497 A basis element has length...
obsrcl 21498 Reverse closure for an ort...
obsss 21499 An orthonormal basis is a ...
obsne0 21500 A basis element is nonzero...
obsocv 21501 An orthonormal basis has t...
obs2ocv 21502 The double orthocomplement...
obselocv 21503 A basis element is in the ...
obs2ss 21504 A basis has no proper subs...
obslbs 21505 An orthogonal basis is a l...
reldmdsmm 21508 The direct sum is a well-b...
dsmmval 21509 Value of the module direct...
dsmmbase 21510 Base set of the module dir...
dsmmval2 21511 Self-referential definitio...
dsmmbas2 21512 Base set of the direct sum...
dsmmfi 21513 For finite products, the d...
dsmmelbas 21514 Membership in the finitely...
dsmm0cl 21515 The all-zero vector is con...
dsmmacl 21516 The finite hull is closed ...
prdsinvgd2 21517 Negation of a single coord...
dsmmsubg 21518 The finite hull of a produ...
dsmmlss 21519 The finite hull of a produ...
dsmmlmod 21520 The direct sum of a family...
frlmval 21523 Value of the "free module"...
frlmlmod 21524 The free module is a modul...
frlmpws 21525 The free module as a restr...
frlmlss 21526 The base set of the free m...
frlmpwsfi 21527 The finite free module is ...
frlmsca 21528 The ring of scalars of a f...
frlm0 21529 Zero in a free module (rin...
frlmbas 21530 Base set of the free modul...
frlmelbas 21531 Membership in the base set...
frlmrcl 21532 If a free module is inhabi...
frlmbasfsupp 21533 Elements of the free modul...
frlmbasmap 21534 Elements of the free modul...
frlmbasf 21535 Elements of the free modul...
frlmlvec 21536 The free module over a div...
frlmfibas 21537 The base set of the finite...
elfrlmbasn0 21538 If the dimension of a free...
frlmplusgval 21539 Addition in a free module....
frlmsubgval 21540 Subtraction in a free modu...
frlmvscafval 21541 Scalar multiplication in a...
frlmvplusgvalc 21542 Coordinates of a sum with ...
frlmvscaval 21543 Coordinates of a scalar mu...
frlmplusgvalb 21544 Addition in a free module ...
frlmvscavalb 21545 Scalar multiplication in a...
frlmvplusgscavalb 21546 Addition combined with sca...
frlmgsum 21547 Finite commutative sums in...
frlmsplit2 21548 Restriction is homomorphic...
frlmsslss 21549 A subset of a free module ...
frlmsslss2 21550 A subset of a free module ...
frlmbas3 21551 An element of the base set...
mpofrlmd 21552 Elements of the free modul...
frlmip 21553 The inner product of a fre...
frlmipval 21554 The inner product of a fre...
frlmphllem 21555 Lemma for ~ frlmphl . (Co...
frlmphl 21556 Conditions for a free modu...
uvcfval 21559 Value of the unit-vector g...
uvcval 21560 Value of a single unit vec...
uvcvval 21561 Value of a unit vector coo...
uvcvvcl 21562 A coordinate of a unit vec...
uvcvvcl2 21563 A unit vector coordinate i...
uvcvv1 21564 The unit vector is one at ...
uvcvv0 21565 The unit vector is zero at...
uvcff 21566 Domain and codomain of the...
uvcf1 21567 In a nonzero ring, each un...
uvcresum 21568 Any element of a free modu...
frlmssuvc1 21569 A scalar multiple of a uni...
frlmssuvc2 21570 A nonzero scalar multiple ...
frlmsslsp 21571 A subset of a free module ...
frlmlbs 21572 The unit vectors comprise ...
frlmup1 21573 Any assignment of unit vec...
frlmup2 21574 The evaluation map has the...
frlmup3 21575 The range of such an evalu...
frlmup4 21576 Universal property of the ...
ellspd 21577 The elements of the span o...
elfilspd 21578 Simplified version of ~ el...
rellindf 21583 The independent-family pre...
islinds 21584 Property of an independent...
linds1 21585 An independent set of vect...
linds2 21586 An independent set of vect...
islindf 21587 Property of an independent...
islinds2 21588 Expanded property of an in...
islindf2 21589 Property of an independent...
lindff 21590 Functional property of a l...
lindfind 21591 A linearly independent fam...
lindsind 21592 A linearly independent set...
lindfind2 21593 In a linearly independent ...
lindsind2 21594 In a linearly independent ...
lindff1 21595 A linearly independent fam...
lindfrn 21596 The range of an independen...
f1lindf 21597 Rearranging and deleting e...
lindfres 21598 Any restriction of an inde...
lindsss 21599 Any subset of an independe...
f1linds 21600 A family constructed from ...
islindf3 21601 In a nonzero ring, indepen...
lindfmm 21602 Linear independence of a f...
lindsmm 21603 Linear independence of a s...
lindsmm2 21604 The monomorphic image of a...
lsslindf 21605 Linear independence is unc...
lsslinds 21606 Linear independence is unc...
islbs4 21607 A basis is an independent ...
lbslinds 21608 A basis is independent. (...
islinds3 21609 A subset is linearly indep...
islinds4 21610 A set is independent in a ...
lmimlbs 21611 The isomorphic image of a ...
lmiclbs 21612 Having a basis is an isomo...
islindf4 21613 A family is independent if...
islindf5 21614 A family is independent if...
indlcim 21615 An independent, spanning f...
lbslcic 21616 A module with a basis is i...
lmisfree 21617 A module has a basis iff i...
lvecisfrlm 21618 Every vector space is isom...
lmimco 21619 The composition of two iso...
lmictra 21620 Module isomorphism is tran...
uvcf1o 21621 In a nonzero ring, the map...
uvcendim 21622 In a nonzero ring, the num...
frlmisfrlm 21623 A free module is isomorphi...
frlmiscvec 21624 Every free module is isomo...
isassa 21631 The properties of an assoc...
assalem 21632 The properties of an assoc...
assaass 21633 Left-associative property ...
assaassr 21634 Right-associative property...
assalmod 21635 An associative algebra is ...
assaring 21636 An associative algebra is ...
assasca 21637 The scalars of an associat...
assa2ass 21638 Left- and right-associativ...
isassad 21639 Sufficient condition for b...
issubassa3 21640 A subring that is also a s...
issubassa 21641 The subalgebras of an asso...
sraassab 21642 A subring algebra is an as...
sraassa 21643 The subring algebra over a...
sraassaOLD 21644 Obsolete version of ~ sraa...
rlmassa 21645 The ring module over a com...
assapropd 21646 If two structures have the...
aspval 21647 Value of the algebraic clo...
asplss 21648 The algebraic span of a se...
aspid 21649 The algebraic span of a su...
aspsubrg 21650 The algebraic span of a se...
aspss 21651 Span preserves subset orde...
aspssid 21652 A set of vectors is a subs...
asclfval 21653 Function value of the alge...
asclval 21654 Value of a mapped algebra ...
asclfn 21655 Unconditional functionalit...
asclf 21656 The algebra scalars functi...
asclghm 21657 The algebra scalars functi...
ascl0 21658 The scalar 0 embedded into...
ascl1 21659 The scalar 1 embedded into...
asclmul1 21660 Left multiplication by a l...
asclmul2 21661 Right multiplication by a ...
ascldimul 21662 The algebra scalars functi...
asclinvg 21663 The group inverse (negatio...
asclrhm 21664 The scalar injection is a ...
rnascl 21665 The set of injected scalar...
issubassa2 21666 A subring of a unital alge...
rnasclsubrg 21667 The scalar multiples of th...
rnasclmulcl 21668 (Vector) multiplication is...
rnasclassa 21669 The scalar multiples of th...
ressascl 21670 The injection of scalars i...
asclpropd 21671 If two structures have the...
aspval2 21672 The algebraic closure is t...
assamulgscmlem1 21673 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21674 Lemma for ~ assamulgscm (i...
assamulgscm 21675 Exponentiation of a scalar...
zlmassa 21676 The ` ZZ ` -module operati...
reldmpsr 21687 The multivariate power ser...
psrval 21688 Value of the multivariate ...
psrvalstr 21689 The multivariate power ser...
psrbag 21690 Elementhood in the set of ...
psrbagf 21691 A finite bag is a function...
psrbagfOLD 21692 Obsolete version of ~ psrb...
psrbagfsupp 21693 Finite bags have finite su...
psrbagfsuppOLD 21694 Obsolete version of ~ psrb...
snifpsrbag 21695 A bag containing one eleme...
fczpsrbag 21696 The constant function equa...
psrbaglesupp 21697 The support of a dominated...
psrbaglesuppOLD 21698 Obsolete version of ~ psrb...
psrbaglecl 21699 The set of finite bags is ...
psrbagleclOLD 21700 Obsolete version of ~ psrb...
psrbagaddcl 21701 The sum of two finite bags...
psrbagaddclOLD 21702 Obsolete version of ~ psrb...
psrbagcon 21703 The analogue of the statem...
psrbagconOLD 21704 Obsolete version of ~ psrb...
psrbaglefi 21705 There are finitely many ba...
psrbaglefiOLD 21706 Obsolete version of ~ psrb...
psrbagconcl 21707 The complement of a bag is...
psrbagconclOLD 21708 Obsolete version of ~ psrb...
psrbagconf1o 21709 Bag complementation is a b...
psrbagconf1oOLD 21710 Obsolete version of ~ psrb...
gsumbagdiaglemOLD 21711 Obsolete version of ~ gsum...
gsumbagdiagOLD 21712 Obsolete version of ~ gsum...
psrass1lemOLD 21713 Obsolete version of ~ psra...
gsumbagdiaglem 21714 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21715 Two-dimensional commutatio...
psrass1lem 21716 A group sum commutation us...
psrbas 21717 The base set of the multiv...
psrelbas 21718 An element of the set of p...
psrelbasfun 21719 An element of the set of p...
psrplusg 21720 The addition operation of ...
psradd 21721 The addition operation of ...
psraddcl 21722 Closure of the power serie...
psrmulr 21723 The multiplication operati...
psrmulfval 21724 The multiplication operati...
psrmulval 21725 The multiplication operati...
psrmulcllem 21726 Closure of the power serie...
psrmulcl 21727 Closure of the power serie...
psrsca 21728 The scalar field of the mu...
psrvscafval 21729 The scalar multiplication ...
psrvsca 21730 The scalar multiplication ...
psrvscaval 21731 The scalar multiplication ...
psrvscacl 21732 Closure of the power serie...
psr0cl 21733 The zero element of the ri...
psr0lid 21734 The zero element of the ri...
psrnegcl 21735 The negative function in t...
psrlinv 21736 The negative function in t...
psrgrp 21737 The ring of power series i...
psrgrpOLD 21738 Obsolete proof of ~ psrgrp...
psr0 21739 The zero element of the ri...
psrneg 21740 The negative function of t...
psrlmod 21741 The ring of power series i...
psr1cl 21742 The identity element of th...
psrlidm 21743 The identity element of th...
psrridm 21744 The identity element of th...
psrass1 21745 Associative identity for t...
psrdi 21746 Distributive law for the r...
psrdir 21747 Distributive law for the r...
psrass23l 21748 Associative identity for t...
psrcom 21749 Commutative law for the ri...
psrass23 21750 Associative identities for...
psrring 21751 The ring of power series i...
psr1 21752 The identity element of th...
psrcrng 21753 The ring of power series i...
psrassa 21754 The ring of power series i...
resspsrbas 21755 A restricted power series ...
resspsradd 21756 A restricted power series ...
resspsrmul 21757 A restricted power series ...
resspsrvsca 21758 A restricted power series ...
subrgpsr 21759 A subring of the base ring...
mvrfval 21760 Value of the generating el...
mvrval 21761 Value of the generating el...
mvrval2 21762 Value of the generating el...
mvrid 21763 The ` X i ` -th coefficien...
mvrf 21764 The power series variable ...
mvrf1 21765 The power series variable ...
mvrcl2 21766 A power series variable is...
reldmmpl 21767 The multivariate polynomia...
mplval 21768 Value of the set of multiv...
mplbas 21769 Base set of the set of mul...
mplelbas 21770 Property of being a polyno...
mvrcl 21771 A power series variable is...
mvrf2 21772 The power series/polynomia...
mplrcl 21773 Reverse closure for the po...
mplelsfi 21774 A polynomial treated as a ...
mplval2 21775 Self-referential expressio...
mplbasss 21776 The set of polynomials is ...
mplelf 21777 A polynomial is defined as...
mplsubglem 21778 If ` A ` is an ideal of se...
mpllsslem 21779 If ` A ` is an ideal of su...
mplsubglem2 21780 Lemma for ~ mplsubg and ~ ...
mplsubg 21781 The set of polynomials is ...
mpllss 21782 The set of polynomials is ...
mplsubrglem 21783 Lemma for ~ mplsubrg . (C...
mplsubrg 21784 The set of polynomials is ...
mpl0 21785 The zero polynomial. (Con...
mplplusg 21786 Value of addition in a pol...
mplmulr 21787 Value of multiplication in...
mpladd 21788 The addition operation on ...
mplneg 21789 The negative function on m...
mplmul 21790 The multiplication operati...
mpl1 21791 The identity element of th...
mplsca 21792 The scalar field of a mult...
mplvsca2 21793 The scalar multiplication ...
mplvsca 21794 The scalar multiplication ...
mplvscaval 21795 The scalar multiplication ...
mplgrp 21796 The polynomial ring is a g...
mpllmod 21797 The polynomial ring is a l...
mplring 21798 The polynomial ring is a r...
mpllvec 21799 The polynomial ring is a v...
mplcrng 21800 The polynomial ring is a c...
mplassa 21801 The polynomial ring is an ...
ressmplbas2 21802 The base set of a restrict...
ressmplbas 21803 A restricted polynomial al...
ressmpladd 21804 A restricted polynomial al...
ressmplmul 21805 A restricted polynomial al...
ressmplvsca 21806 A restricted power series ...
subrgmpl 21807 A subring of the base ring...
subrgmvr 21808 The variables in a subring...
subrgmvrf 21809 The variables in a polynom...
mplmon 21810 A monomial is a polynomial...
mplmonmul 21811 The product of two monomia...
mplcoe1 21812 Decompose a polynomial int...
mplcoe3 21813 Decompose a monomial in on...
mplcoe5lem 21814 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21815 Decompose a monomial into ...
mplcoe2 21816 Decompose a monomial into ...
mplbas2 21817 An alternative expression ...
ltbval 21818 Value of the well-order on...
ltbwe 21819 The finite bag order is a ...
reldmopsr 21820 Lemma for ordered power se...
opsrval 21821 The value of the "ordered ...
opsrle 21822 An alternative expression ...
opsrval2 21823 Self-referential expressio...
opsrbaslem 21824 Get a component of the ord...
opsrbaslemOLD 21825 Obsolete version of ~ opsr...
opsrbas 21826 The base set of the ordere...
opsrbasOLD 21827 Obsolete version of ~ opsr...
opsrplusg 21828 The addition operation of ...
opsrplusgOLD 21829 Obsolete version of ~ opsr...
opsrmulr 21830 The multiplication operati...
opsrmulrOLD 21831 Obsolete version of ~ opsr...
opsrvsca 21832 The scalar product operati...
opsrvscaOLD 21833 Obsolete version of ~ opsr...
opsrsca 21834 The scalar ring of the ord...
opsrscaOLD 21835 Obsolete version of ~ opsr...
opsrtoslem1 21836 Lemma for ~ opsrtos . (Co...
opsrtoslem2 21837 Lemma for ~ opsrtos . (Co...
opsrtos 21838 The ordered power series s...
opsrso 21839 The ordered power series s...
opsrcrng 21840 The ring of ordered power ...
opsrassa 21841 The ring of ordered power ...
mplmon2 21842 Express a scaled monomial....
psrbag0 21843 The empty bag is a bag. (...
psrbagsn 21844 A singleton bag is a bag. ...
mplascl 21845 Value of the scalar inject...
mplasclf 21846 The scalar injection is a ...
subrgascl 21847 The scalar injection funct...
subrgasclcl 21848 The scalars in a polynomia...
mplmon2cl 21849 A scaled monomial is a pol...
mplmon2mul 21850 Product of scaled monomial...
mplind 21851 Prove a property of polyno...
mplcoe4 21852 Decompose a polynomial int...
evlslem4 21857 The support of a tensor pr...
psrbagev1 21858 A bag of multipliers provi...
psrbagev1OLD 21859 Obsolete version of ~ psrb...
psrbagev2 21860 Closure of a sum using a b...
psrbagev2OLD 21861 Obsolete version of ~ psrb...
evlslem2 21862 A linear function on the p...
evlslem3 21863 Lemma for ~ evlseu . Poly...
evlslem6 21864 Lemma for ~ evlseu . Fini...
evlslem1 21865 Lemma for ~ evlseu , give ...
evlseu 21866 For a given interpretation...
reldmevls 21867 Well-behaved binary operat...
mpfrcl 21868 Reverse closure for the se...
evlsval 21869 Value of the polynomial ev...
evlsval2 21870 Characterizing properties ...
evlsrhm 21871 Polynomial evaluation is a...
evlssca 21872 Polynomial evaluation maps...
evlsvar 21873 Polynomial evaluation maps...
evlsgsumadd 21874 Polynomial evaluation maps...
evlsgsummul 21875 Polynomial evaluation maps...
evlspw 21876 Polynomial evaluation for ...
evlsvarpw 21877 Polynomial evaluation for ...
evlval 21878 Value of the simple/same r...
evlrhm 21879 The simple evaluation map ...
evlsscasrng 21880 The evaluation of a scalar...
evlsca 21881 Simple polynomial evaluati...
evlsvarsrng 21882 The evaluation of the vari...
evlvar 21883 Simple polynomial evaluati...
mpfconst 21884 Constants are multivariate...
mpfproj 21885 Projections are multivaria...
mpfsubrg 21886 Polynomial functions are a...
mpff 21887 Polynomial functions are f...
mpfaddcl 21888 The sum of multivariate po...
mpfmulcl 21889 The product of multivariat...
mpfind 21890 Prove a property of polyno...
selvffval 21899 Value of the "variable sel...
selvfval 21900 Value of the "variable sel...
selvval 21901 Value of the "variable sel...
mhpfval 21902 Value of the "homogeneous ...
mhpval 21903 Value of the "homogeneous ...
ismhp 21904 Property of being a homoge...
ismhp2 21905 Deduce a homogeneous polyn...
ismhp3 21906 A polynomial is homogeneou...
mhpmpl 21907 A homogeneous polynomial i...
mhpdeg 21908 All nonzero terms of a hom...
mhp0cl 21909 The zero polynomial is hom...
mhpsclcl 21910 A scalar (or constant) pol...
mhpvarcl 21911 A power series variable is...
mhpmulcl 21912 A product of homogeneous p...
mhppwdeg 21913 Degree of a homogeneous po...
mhpaddcl 21914 Homogeneous polynomials ar...
mhpinvcl 21915 Homogeneous polynomials ar...
mhpsubg 21916 Homogeneous polynomials fo...
mhpvscacl 21917 Homogeneous polynomials ar...
mhplss 21918 Homogeneous polynomials fo...
psr1baslem 21929 The set of finite bags on ...
psr1val 21930 Value of the ring of univa...
psr1crng 21931 The ring of univariate pow...
psr1assa 21932 The ring of univariate pow...
psr1tos 21933 The ordered power series s...
psr1bas2 21934 The base set of the ring o...
psr1bas 21935 The base set of the ring o...
vr1val 21936 The value of the generator...
vr1cl2 21937 The variable ` X ` is a me...
ply1val 21938 The value of the set of un...
ply1bas 21939 The value of the base set ...
ply1lss 21940 Univariate polynomials for...
ply1subrg 21941 Univariate polynomials for...
ply1crng 21942 The ring of univariate pol...
ply1assa 21943 The ring of univariate pol...
psr1bascl 21944 A univariate power series ...
psr1basf 21945 Univariate power series ba...
ply1basf 21946 Univariate polynomial base...
ply1bascl 21947 A univariate polynomial is...
ply1bascl2 21948 A univariate polynomial is...
coe1fval 21949 Value of the univariate po...
coe1fv 21950 Value of an evaluated coef...
fvcoe1 21951 Value of a multivariate co...
coe1fval3 21952 Univariate power series co...
coe1f2 21953 Functionality of univariat...
coe1fval2 21954 Univariate polynomial coef...
coe1f 21955 Functionality of univariat...
coe1fvalcl 21956 A coefficient of a univari...
coe1sfi 21957 Finite support of univaria...
coe1fsupp 21958 The coefficient vector of ...
mptcoe1fsupp 21959 A mapping involving coeffi...
coe1ae0 21960 The coefficient vector of ...
vr1cl 21961 The generator of a univari...
opsr0 21962 Zero in the ordered power ...
opsr1 21963 One in the ordered power s...
psr1plusg 21964 Value of addition in a uni...
psr1vsca 21965 Value of scalar multiplica...
psr1mulr 21966 Value of multiplication in...
ply1plusg 21967 Value of addition in a uni...
ply1vsca 21968 Value of scalar multiplica...
ply1mulr 21969 Value of multiplication in...
ply1ass23l 21970 Associative identity with ...
ressply1bas2 21971 The base set of a restrict...
ressply1bas 21972 A restricted polynomial al...
ressply1add 21973 A restricted polynomial al...
ressply1mul 21974 A restricted polynomial al...
ressply1vsca 21975 A restricted power series ...
subrgply1 21976 A subring of the base ring...
gsumply1subr 21977 Evaluate a group sum in a ...
psrbaspropd 21978 Property deduction for pow...
psrplusgpropd 21979 Property deduction for pow...
mplbaspropd 21980 Property deduction for pol...
psropprmul 21981 Reversing multiplication i...
ply1opprmul 21982 Reversing multiplication i...
00ply1bas 21983 Lemma for ~ ply1basfvi and...
ply1basfvi 21984 Protection compatibility o...
ply1plusgfvi 21985 Protection compatibility o...
ply1baspropd 21986 Property deduction for uni...
ply1plusgpropd 21987 Property deduction for uni...
opsrring 21988 Ordered power series form ...
opsrlmod 21989 Ordered power series form ...
psr1ring 21990 Univariate power series fo...
ply1ring 21991 Univariate polynomials for...
psr1lmod 21992 Univariate power series fo...
psr1sca 21993 Scalars of a univariate po...
psr1sca2 21994 Scalars of a univariate po...
ply1lmod 21995 Univariate polynomials for...
ply1sca 21996 Scalars of a univariate po...
ply1sca2 21997 Scalars of a univariate po...
ply1mpl0 21998 The univariate polynomial ...
ply10s0 21999 Zero times a univariate po...
ply1mpl1 22000 The univariate polynomial ...
ply1ascl 22001 The univariate polynomial ...
subrg1ascl 22002 The scalar injection funct...
subrg1asclcl 22003 The scalars in a polynomia...
subrgvr1 22004 The variables in a subring...
subrgvr1cl 22005 The variables in a polynom...
coe1z 22006 The coefficient vector of ...
coe1add 22007 The coefficient vector of ...
coe1addfv 22008 A particular coefficient o...
coe1subfv 22009 A particular coefficient o...
coe1mul2lem1 22010 An equivalence for ~ coe1m...
coe1mul2lem2 22011 An equivalence for ~ coe1m...
coe1mul2 22012 The coefficient vector of ...
coe1mul 22013 The coefficient vector of ...
ply1moncl 22014 Closure of the expression ...
ply1tmcl 22015 Closure of the expression ...
coe1tm 22016 Coefficient vector of a po...
coe1tmfv1 22017 Nonzero coefficient of a p...
coe1tmfv2 22018 Zero coefficient of a poly...
coe1tmmul2 22019 Coefficient vector of a po...
coe1tmmul 22020 Coefficient vector of a po...
coe1tmmul2fv 22021 Function value of a right-...
coe1pwmul 22022 Coefficient vector of a po...
coe1pwmulfv 22023 Function value of a right-...
ply1scltm 22024 A scalar is a term with ze...
coe1sclmul 22025 Coefficient vector of a po...
coe1sclmulfv 22026 A single coefficient of a ...
coe1sclmul2 22027 Coefficient vector of a po...
ply1sclf 22028 A scalar polynomial is a p...
ply1sclcl 22029 The value of the algebra s...
coe1scl 22030 Coefficient vector of a sc...
ply1sclid 22031 Recover the base scalar fr...
ply1sclf1 22032 The polynomial scalar func...
ply1scl0 22033 The zero scalar is zero. ...
ply1scl0OLD 22034 Obsolete version of ~ ply1...
ply1scln0 22035 Nonzero scalars create non...
ply1scl1 22036 The one scalar is the unit...
ply1scl1OLD 22037 Obsolete version of ~ ply1...
ply1idvr1 22038 The identity of a polynomi...
cply1mul 22039 The product of two constan...
ply1coefsupp 22040 The decomposition of a uni...
ply1coe 22041 Decompose a univariate pol...
eqcoe1ply1eq 22042 Two polynomials over the s...
ply1coe1eq 22043 Two polynomials over the s...
cply1coe0 22044 All but the first coeffici...
cply1coe0bi 22045 A polynomial is constant (...
coe1fzgsumdlem 22046 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 22047 Value of an evaluated coef...
gsumsmonply1 22048 A finite group sum of scal...
gsummoncoe1 22049 A coefficient of the polyn...
gsumply1eq 22050 Two univariate polynomials...
lply1binom 22051 The binomial theorem for l...
lply1binomsc 22052 The binomial theorem for l...
reldmevls1 22057 Well-behaved binary operat...
ply1frcl 22058 Reverse closure for the se...
evls1fval 22059 Value of the univariate po...
evls1val 22060 Value of the univariate po...
evls1rhmlem 22061 Lemma for ~ evl1rhm and ~ ...
evls1rhm 22062 Polynomial evaluation is a...
evls1sca 22063 Univariate polynomial eval...
evls1gsumadd 22064 Univariate polynomial eval...
evls1gsummul 22065 Univariate polynomial eval...
evls1pw 22066 Univariate polynomial eval...
evls1varpw 22067 Univariate polynomial eval...
evl1fval 22068 Value of the simple/same r...
evl1val 22069 Value of the simple/same r...
evl1fval1lem 22070 Lemma for ~ evl1fval1 . (...
evl1fval1 22071 Value of the simple/same r...
evl1rhm 22072 Polynomial evaluation is a...
fveval1fvcl 22073 The function value of the ...
evl1sca 22074 Polynomial evaluation maps...
evl1scad 22075 Polynomial evaluation buil...
evl1var 22076 Polynomial evaluation maps...
evl1vard 22077 Polynomial evaluation buil...
evls1var 22078 Univariate polynomial eval...
evls1scasrng 22079 The evaluation of a scalar...
evls1varsrng 22080 The evaluation of the vari...
evl1addd 22081 Polynomial evaluation buil...
evl1subd 22082 Polynomial evaluation buil...
evl1muld 22083 Polynomial evaluation buil...
evl1vsd 22084 Polynomial evaluation buil...
evl1expd 22085 Polynomial evaluation buil...
pf1const 22086 Constants are polynomial f...
pf1id 22087 The identity is a polynomi...
pf1subrg 22088 Polynomial functions are a...
pf1rcl 22089 Reverse closure for the se...
pf1f 22090 Polynomial functions are f...
mpfpf1 22091 Convert a multivariate pol...
pf1mpf 22092 Convert a univariate polyn...
pf1addcl 22093 The sum of multivariate po...
pf1mulcl 22094 The product of multivariat...
pf1ind 22095 Prove a property of polyno...
evl1gsumdlem 22096 Lemma for ~ evl1gsumd (ind...
evl1gsumd 22097 Polynomial evaluation buil...
evl1gsumadd 22098 Univariate polynomial eval...
evl1gsumaddval 22099 Value of a univariate poly...
evl1gsummul 22100 Univariate polynomial eval...
evl1varpw 22101 Univariate polynomial eval...
evl1varpwval 22102 Value of a univariate poly...
evl1scvarpw 22103 Univariate polynomial eval...
evl1scvarpwval 22104 Value of a univariate poly...
evl1gsummon 22105 Value of a univariate poly...
mamufval 22108 Functional value of the ma...
mamuval 22109 Multiplication of two matr...
mamufv 22110 A cell in the multiplicati...
mamudm 22111 The domain of the matrix m...
mamufacex 22112 Every solution of the equa...
mamures 22113 Rows in a matrix product a...
mndvcl 22114 Tuple-wise additive closur...
mndvass 22115 Tuple-wise associativity i...
mndvlid 22116 Tuple-wise left identity i...
mndvrid 22117 Tuple-wise right identity ...
grpvlinv 22118 Tuple-wise left inverse in...
grpvrinv 22119 Tuple-wise right inverse i...
mhmvlin 22120 Tuple extension of monoid ...
ringvcl 22121 Tuple-wise multiplication ...
mamucl 22122 Operation closure of matri...
mamuass 22123 Matrix multiplication is a...
mamudi 22124 Matrix multiplication dist...
mamudir 22125 Matrix multiplication dist...
mamuvs1 22126 Matrix multiplication dist...
mamuvs2 22127 Matrix multiplication dist...
matbas0pc 22130 There is no matrix with a ...
matbas0 22131 There is no matrix for a n...
matval 22132 Value of the matrix algebr...
matrcl 22133 Reverse closure for the ma...
matbas 22134 The matrix ring has the sa...
matplusg 22135 The matrix ring has the sa...
matsca 22136 The matrix ring has the sa...
matscaOLD 22137 Obsolete proof of ~ matsca...
matvsca 22138 The matrix ring has the sa...
matvscaOLD 22139 Obsolete proof of ~ matvsc...
mat0 22140 The matrix ring has the sa...
matinvg 22141 The matrix ring has the sa...
mat0op 22142 Value of a zero matrix as ...
matsca2 22143 The scalars of the matrix ...
matbas2 22144 The base set of the matrix...
matbas2i 22145 A matrix is a function. (...
matbas2d 22146 The base set of the matrix...
eqmat 22147 Two square matrices of the...
matecl 22148 Each entry (according to W...
matecld 22149 Each entry (according to W...
matplusg2 22150 Addition in the matrix rin...
matvsca2 22151 Scalar multiplication in t...
matlmod 22152 The matrix ring is a linea...
matgrp 22153 The matrix ring is a group...
matvscl 22154 Closure of the scalar mult...
matsubg 22155 The matrix ring has the sa...
matplusgcell 22156 Addition in the matrix rin...
matsubgcell 22157 Subtraction in the matrix ...
matinvgcell 22158 Additive inversion in the ...
matvscacell 22159 Scalar multiplication in t...
matgsum 22160 Finite commutative sums in...
matmulr 22161 Multiplication in the matr...
mamumat1cl 22162 The identity matrix (as op...
mat1comp 22163 The components of the iden...
mamulid 22164 The identity matrix (as op...
mamurid 22165 The identity matrix (as op...
matring 22166 Existence of the matrix ri...
matassa 22167 Existence of the matrix al...
matmulcell 22168 Multiplication in the matr...
mpomatmul 22169 Multiplication of two N x ...
mat1 22170 Value of an identity matri...
mat1ov 22171 Entries of an identity mat...
mat1bas 22172 The identity matrix is a m...
matsc 22173 The identity matrix multip...
ofco2 22174 Distribution law for the f...
oftpos 22175 The transposition of the v...
mattposcl 22176 The transpose of a square ...
mattpostpos 22177 The transpose of the trans...
mattposvs 22178 The transposition of a mat...
mattpos1 22179 The transposition of the i...
tposmap 22180 The transposition of an I ...
mamutpos 22181 Behavior of transposes in ...
mattposm 22182 Multiplying two transposed...
matgsumcl 22183 Closure of a group sum ove...
madetsumid 22184 The identity summand in th...
matepmcl 22185 Each entry of a matrix wit...
matepm2cl 22186 Each entry of a matrix wit...
madetsmelbas 22187 A summand of the determina...
madetsmelbas2 22188 A summand of the determina...
mat0dimbas0 22189 The empty set is the one a...
mat0dim0 22190 The zero of the algebra of...
mat0dimid 22191 The identity of the algebr...
mat0dimscm 22192 The scalar multiplication ...
mat0dimcrng 22193 The algebra of matrices wi...
mat1dimelbas 22194 A matrix with dimension 1 ...
mat1dimbas 22195 A matrix with dimension 1 ...
mat1dim0 22196 The zero of the algebra of...
mat1dimid 22197 The identity of the algebr...
mat1dimscm 22198 The scalar multiplication ...
mat1dimmul 22199 The ring multiplication in...
mat1dimcrng 22200 The algebra of matrices wi...
mat1f1o 22201 There is a 1-1 function fr...
mat1rhmval 22202 The value of the ring homo...
mat1rhmelval 22203 The value of the ring homo...
mat1rhmcl 22204 The value of the ring homo...
mat1f 22205 There is a function from a...
mat1ghm 22206 There is a group homomorph...
mat1mhm 22207 There is a monoid homomorp...
mat1rhm 22208 There is a ring homomorphi...
mat1rngiso 22209 There is a ring isomorphis...
mat1ric 22210 A ring is isomorphic to th...
dmatval 22215 The set of ` N ` x ` N ` d...
dmatel 22216 A ` N ` x ` N ` diagonal m...
dmatmat 22217 An ` N ` x ` N ` diagonal ...
dmatid 22218 The identity matrix is a d...
dmatelnd 22219 An extradiagonal entry of ...
dmatmul 22220 The product of two diagona...
dmatsubcl 22221 The difference of two diag...
dmatsgrp 22222 The set of diagonal matric...
dmatmulcl 22223 The product of two diagona...
dmatsrng 22224 The set of diagonal matric...
dmatcrng 22225 The subring of diagonal ma...
dmatscmcl 22226 The multiplication of a di...
scmatval 22227 The set of ` N ` x ` N ` s...
scmatel 22228 An ` N ` x ` N ` scalar ma...
scmatscmid 22229 A scalar matrix can be exp...
scmatscmide 22230 An entry of a scalar matri...
scmatscmiddistr 22231 Distributive law for scala...
scmatmat 22232 An ` N ` x ` N ` scalar ma...
scmate 22233 An entry of an ` N ` x ` N...
scmatmats 22234 The set of an ` N ` x ` N ...
scmateALT 22235 Alternate proof of ~ scmat...
scmatscm 22236 The multiplication of a ma...
scmatid 22237 The identity matrix is a s...
scmatdmat 22238 A scalar matrix is a diago...
scmataddcl 22239 The sum of two scalar matr...
scmatsubcl 22240 The difference of two scal...
scmatmulcl 22241 The product of two scalar ...
scmatsgrp 22242 The set of scalar matrices...
scmatsrng 22243 The set of scalar matrices...
scmatcrng 22244 The subring of scalar matr...
scmatsgrp1 22245 The set of scalar matrices...
scmatsrng1 22246 The set of scalar matrices...
smatvscl 22247 Closure of the scalar mult...
scmatlss 22248 The set of scalar matrices...
scmatstrbas 22249 The set of scalar matrices...
scmatrhmval 22250 The value of the ring homo...
scmatrhmcl 22251 The value of the ring homo...
scmatf 22252 There is a function from a...
scmatfo 22253 There is a function from a...
scmatf1 22254 There is a 1-1 function fr...
scmatf1o 22255 There is a bijection betwe...
scmatghm 22256 There is a group homomorph...
scmatmhm 22257 There is a monoid homomorp...
scmatrhm 22258 There is a ring homomorphi...
scmatrngiso 22259 There is a ring isomorphis...
scmatric 22260 A ring is isomorphic to ev...
mat0scmat 22261 The empty matrix over a ri...
mat1scmat 22262 A 1-dimensional matrix ove...
mvmulfval 22265 Functional value of the ma...
mvmulval 22266 Multiplication of a vector...
mvmulfv 22267 A cell/element in the vect...
mavmulval 22268 Multiplication of a vector...
mavmulfv 22269 A cell/element in the vect...
mavmulcl 22270 Multiplication of an NxN m...
1mavmul 22271 Multiplication of the iden...
mavmulass 22272 Associativity of the multi...
mavmuldm 22273 The domain of the matrix v...
mavmulsolcl 22274 Every solution of the equa...
mavmul0 22275 Multiplication of a 0-dime...
mavmul0g 22276 The result of the 0-dimens...
mvmumamul1 22277 The multiplication of an M...
mavmumamul1 22278 The multiplication of an N...
marrepfval 22283 First substitution for the...
marrepval0 22284 Second substitution for th...
marrepval 22285 Third substitution for the...
marrepeval 22286 An entry of a matrix with ...
marrepcl 22287 Closure of the row replace...
marepvfval 22288 First substitution for the...
marepvval0 22289 Second substitution for th...
marepvval 22290 Third substitution for the...
marepveval 22291 An entry of a matrix with ...
marepvcl 22292 Closure of the column repl...
ma1repvcl 22293 Closure of the column repl...
ma1repveval 22294 An entry of an identity ma...
mulmarep1el 22295 Element by element multipl...
mulmarep1gsum1 22296 The sum of element by elem...
mulmarep1gsum2 22297 The sum of element by elem...
1marepvmarrepid 22298 Replacing the ith row by 0...
submabas 22301 Any subset of the index se...
submafval 22302 First substitution for a s...
submaval0 22303 Second substitution for a ...
submaval 22304 Third substitution for a s...
submaeval 22305 An entry of a submatrix of...
1marepvsma1 22306 The submatrix of the ident...
mdetfval 22309 First substitution for the...
mdetleib 22310 Full substitution of our d...
mdetleib2 22311 Leibniz' formula can also ...
nfimdetndef 22312 The determinant is not def...
mdetfval1 22313 First substitution of an a...
mdetleib1 22314 Full substitution of an al...
mdet0pr 22315 The determinant function f...
mdet0f1o 22316 The determinant function f...
mdet0fv0 22317 The determinant of the emp...
mdetf 22318 Functionality of the deter...
mdetcl 22319 The determinant evaluates ...
m1detdiag 22320 The determinant of a 1-dim...
mdetdiaglem 22321 Lemma for ~ mdetdiag . Pr...
mdetdiag 22322 The determinant of a diago...
mdetdiagid 22323 The determinant of a diago...
mdet1 22324 The determinant of the ide...
mdetrlin 22325 The determinant function i...
mdetrsca 22326 The determinant function i...
mdetrsca2 22327 The determinant function i...
mdetr0 22328 The determinant of a matri...
mdet0 22329 The determinant of the zer...
mdetrlin2 22330 The determinant function i...
mdetralt 22331 The determinant function i...
mdetralt2 22332 The determinant function i...
mdetero 22333 The determinant function i...
mdettpos 22334 Determinant is invariant u...
mdetunilem1 22335 Lemma for ~ mdetuni . (Co...
mdetunilem2 22336 Lemma for ~ mdetuni . (Co...
mdetunilem3 22337 Lemma for ~ mdetuni . (Co...
mdetunilem4 22338 Lemma for ~ mdetuni . (Co...
mdetunilem5 22339 Lemma for ~ mdetuni . (Co...
mdetunilem6 22340 Lemma for ~ mdetuni . (Co...
mdetunilem7 22341 Lemma for ~ mdetuni . (Co...
mdetunilem8 22342 Lemma for ~ mdetuni . (Co...
mdetunilem9 22343 Lemma for ~ mdetuni . (Co...
mdetuni0 22344 Lemma for ~ mdetuni . (Co...
mdetuni 22345 According to the definitio...
mdetmul 22346 Multiplicativity of the de...
m2detleiblem1 22347 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 22348 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 22349 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 22350 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 22351 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 22352 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 22353 Lemma 4 for ~ m2detleib . ...
m2detleib 22354 Leibniz' Formula for 2x2-m...
mndifsplit 22359 Lemma for ~ maducoeval2 . ...
madufval 22360 First substitution for the...
maduval 22361 Second substitution for th...
maducoeval 22362 An entry of the adjunct (c...
maducoeval2 22363 An entry of the adjunct (c...
maduf 22364 Creating the adjunct of ma...
madutpos 22365 The adjuct of a transposed...
madugsum 22366 The determinant of a matri...
madurid 22367 Multiplying a matrix with ...
madulid 22368 Multiplying the adjunct of...
minmar1fval 22369 First substitution for the...
minmar1val0 22370 Second substitution for th...
minmar1val 22371 Third substitution for the...
minmar1eval 22372 An entry of a matrix for a...
minmar1marrep 22373 The minor matrix is a spec...
minmar1cl 22374 Closure of the row replace...
maducoevalmin1 22375 The coefficients of an adj...
symgmatr01lem 22376 Lemma for ~ symgmatr01 . ...
symgmatr01 22377 Applying a permutation tha...
gsummatr01lem1 22378 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 22379 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 22380 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 22381 Lemma 2 for ~ gsummatr01 ....
gsummatr01 22382 Lemma 1 for ~ smadiadetlem...
marep01ma 22383 Replacing a row of a squar...
smadiadetlem0 22384 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 22385 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 22386 Lemma 1a for ~ smadiadet :...
smadiadetlem2 22387 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 22388 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 22389 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 22390 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 22391 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 22392 Lemma 4 for ~ smadiadet . ...
smadiadet 22393 The determinant of a subma...
smadiadetglem1 22394 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 22395 Lemma 2 for ~ smadiadetg ....
smadiadetg 22396 The determinant of a squar...
smadiadetg0 22397 Lemma for ~ smadiadetr : v...
smadiadetr 22398 The determinant of a squar...
invrvald 22399 If a matrix multiplied wit...
matinv 22400 The inverse of a matrix is...
matunit 22401 A matrix is a unit in the ...
slesolvec 22402 Every solution of a system...
slesolinv 22403 The solution of a system o...
slesolinvbi 22404 The solution of a system o...
slesolex 22405 Every system of linear equ...
cramerimplem1 22406 Lemma 1 for ~ cramerimp : ...
cramerimplem2 22407 Lemma 2 for ~ cramerimp : ...
cramerimplem3 22408 Lemma 3 for ~ cramerimp : ...
cramerimp 22409 One direction of Cramer's ...
cramerlem1 22410 Lemma 1 for ~ cramer . (C...
cramerlem2 22411 Lemma 2 for ~ cramer . (C...
cramerlem3 22412 Lemma 3 for ~ cramer . (C...
cramer0 22413 Special case of Cramer's r...
cramer 22414 Cramer's rule. According ...
pmatring 22415 The set of polynomial matr...
pmatlmod 22416 The set of polynomial matr...
pmatassa 22417 The set of polynomial matr...
pmat0op 22418 The zero polynomial matrix...
pmat1op 22419 The identity polynomial ma...
pmat1ovd 22420 Entries of the identity po...
pmat0opsc 22421 The zero polynomial matrix...
pmat1opsc 22422 The identity polynomial ma...
pmat1ovscd 22423 Entries of the identity po...
pmatcoe1fsupp 22424 For a polynomial matrix th...
1pmatscmul 22425 The scalar product of the ...
cpmat 22432 Value of the constructor o...
cpmatpmat 22433 A constant polynomial matr...
cpmatel 22434 Property of a constant pol...
cpmatelimp 22435 Implication of a set being...
cpmatel2 22436 Another property of a cons...
cpmatelimp2 22437 Another implication of a s...
1elcpmat 22438 The identity of the ring o...
cpmatacl 22439 The set of all constant po...
cpmatinvcl 22440 The set of all constant po...
cpmatmcllem 22441 Lemma for ~ cpmatmcl . (C...
cpmatmcl 22442 The set of all constant po...
cpmatsubgpmat 22443 The set of all constant po...
cpmatsrgpmat 22444 The set of all constant po...
0elcpmat 22445 The zero of the ring of al...
mat2pmatfval 22446 Value of the matrix transf...
mat2pmatval 22447 The result of a matrix tra...
mat2pmatvalel 22448 A (matrix) element of the ...
mat2pmatbas 22449 The result of a matrix tra...
mat2pmatbas0 22450 The result of a matrix tra...
mat2pmatf 22451 The matrix transformation ...
mat2pmatf1 22452 The matrix transformation ...
mat2pmatghm 22453 The transformation of matr...
mat2pmatmul 22454 The transformation of matr...
mat2pmat1 22455 The transformation of the ...
mat2pmatmhm 22456 The transformation of matr...
mat2pmatrhm 22457 The transformation of matr...
mat2pmatlin 22458 The transformation of matr...
0mat2pmat 22459 The transformed zero matri...
idmatidpmat 22460 The transformed identity m...
d0mat2pmat 22461 The transformed empty set ...
d1mat2pmat 22462 The transformation of a ma...
mat2pmatscmxcl 22463 A transformed matrix multi...
m2cpm 22464 The result of a matrix tra...
m2cpmf 22465 The matrix transformation ...
m2cpmf1 22466 The matrix transformation ...
m2cpmghm 22467 The transformation of matr...
m2cpmmhm 22468 The transformation of matr...
m2cpmrhm 22469 The transformation of matr...
m2pmfzmap 22470 The transformed values of ...
m2pmfzgsumcl 22471 Closure of the sum of scal...
cpm2mfval 22472 Value of the inverse matri...
cpm2mval 22473 The result of an inverse m...
cpm2mvalel 22474 A (matrix) element of the ...
cpm2mf 22475 The inverse matrix transfo...
m2cpminvid 22476 The inverse transformation...
m2cpminvid2lem 22477 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 22478 The transformation applied...
m2cpmfo 22479 The matrix transformation ...
m2cpmf1o 22480 The matrix transformation ...
m2cpmrngiso 22481 The transformation of matr...
matcpmric 22482 The ring of matrices over ...
m2cpminv 22483 The inverse matrix transfo...
m2cpminv0 22484 The inverse matrix transfo...
decpmatval0 22487 The matrix consisting of t...
decpmatval 22488 The matrix consisting of t...
decpmate 22489 An entry of the matrix con...
decpmatcl 22490 Closure of the decompositi...
decpmataa0 22491 The matrix consisting of t...
decpmatfsupp 22492 The mapping to the matrice...
decpmatid 22493 The matrix consisting of t...
decpmatmullem 22494 Lemma for ~ decpmatmul . ...
decpmatmul 22495 The matrix consisting of t...
decpmatmulsumfsupp 22496 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 22497 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 22498 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 22499 Write a polynomial matrix ...
pmatcollpw2lem 22500 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 22501 Write a polynomial matrix ...
monmatcollpw 22502 The matrix consisting of t...
pmatcollpwlem 22503 Lemma for ~ pmatcollpw . ...
pmatcollpw 22504 Write a polynomial matrix ...
pmatcollpwfi 22505 Write a polynomial matrix ...
pmatcollpw3lem 22506 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 22507 Write a polynomial matrix ...
pmatcollpw3fi 22508 Write a polynomial matrix ...
pmatcollpw3fi1lem1 22509 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 22510 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 22511 Write a polynomial matrix ...
pmatcollpwscmatlem1 22512 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 22513 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 22514 Write a scalar matrix over...
pm2mpf1lem 22517 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 22518 Value of the transformatio...
pm2mpfval 22519 A polynomial matrix transf...
pm2mpcl 22520 The transformation of poly...
pm2mpf 22521 The transformation of poly...
pm2mpf1 22522 The transformation of poly...
pm2mpcoe1 22523 A coefficient of the polyn...
idpm2idmp 22524 The transformation of the ...
mptcoe1matfsupp 22525 The mapping extracting the...
mply1topmatcllem 22526 Lemma for ~ mply1topmatcl ...
mply1topmatval 22527 A polynomial over matrices...
mply1topmatcl 22528 A polynomial over matrices...
mp2pm2mplem1 22529 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 22530 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 22531 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 22532 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 22533 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 22534 A polynomial over matrices...
pm2mpghmlem2 22535 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 22536 Lemma 1 for pm2mpghm . (C...
pm2mpfo 22537 The transformation of poly...
pm2mpf1o 22538 The transformation of poly...
pm2mpghm 22539 The transformation of poly...
pm2mpgrpiso 22540 The transformation of poly...
pm2mpmhmlem1 22541 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 22542 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 22543 The transformation of poly...
pm2mprhm 22544 The transformation of poly...
pm2mprngiso 22545 The transformation of poly...
pmmpric 22546 The ring of polynomial mat...
monmat2matmon 22547 The transformation of a po...
pm2mp 22548 The transformation of a su...
chmatcl 22551 Closure of the characteris...
chmatval 22552 The entries of the charact...
chpmatfval 22553 Value of the characteristi...
chpmatval 22554 The characteristic polynom...
chpmatply1 22555 The characteristic polynom...
chpmatval2 22556 The characteristic polynom...
chpmat0d 22557 The characteristic polynom...
chpmat1dlem 22558 Lemma for ~ chpmat1d . (C...
chpmat1d 22559 The characteristic polynom...
chpdmatlem0 22560 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 22561 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 22562 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 22563 Lemma 3 for ~ chpdmat . (...
chpdmat 22564 The characteristic polynom...
chpscmat 22565 The characteristic polynom...
chpscmat0 22566 The characteristic polynom...
chpscmatgsumbin 22567 The characteristic polynom...
chpscmatgsummon 22568 The characteristic polynom...
chp0mat 22569 The characteristic polynom...
chpidmat 22570 The characteristic polynom...
chmaidscmat 22571 The characteristic polynom...
fvmptnn04if 22572 The function values of a m...
fvmptnn04ifa 22573 The function value of a ma...
fvmptnn04ifb 22574 The function value of a ma...
fvmptnn04ifc 22575 The function value of a ma...
fvmptnn04ifd 22576 The function value of a ma...
chfacfisf 22577 The "characteristic factor...
chfacfisfcpmat 22578 The "characteristic factor...
chfacffsupp 22579 The "characteristic factor...
chfacfscmulcl 22580 Closure of a scaled value ...
chfacfscmul0 22581 A scaled value of the "cha...
chfacfscmulfsupp 22582 A mapping of scaled values...
chfacfscmulgsum 22583 Breaking up a sum of value...
chfacfpmmulcl 22584 Closure of the value of th...
chfacfpmmul0 22585 The value of the "characte...
chfacfpmmulfsupp 22586 A mapping of values of the...
chfacfpmmulgsum 22587 Breaking up a sum of value...
chfacfpmmulgsum2 22588 Breaking up a sum of value...
cayhamlem1 22589 Lemma 1 for ~ cayleyhamilt...
cpmadurid 22590 The right-hand fundamental...
cpmidgsum 22591 Representation of the iden...
cpmidgsumm2pm 22592 Representation of the iden...
cpmidpmatlem1 22593 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 22594 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 22595 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 22596 Representation of the iden...
cpmadugsumlemB 22597 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 22598 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 22599 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 22600 The product of the charact...
cpmadugsum 22601 The product of the charact...
cpmidgsum2 22602 Representation of the iden...
cpmidg2sum 22603 Equality of two sums repre...
cpmadumatpolylem1 22604 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 22605 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 22606 The product of the charact...
cayhamlem2 22607 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 22608 Lemma for ~ chcoeffeq . (...
chcoeffeq 22609 The coefficients of the ch...
cayhamlem3 22610 Lemma for ~ cayhamlem4 . ...
cayhamlem4 22611 Lemma for ~ cayleyhamilton...
cayleyhamilton0 22612 The Cayley-Hamilton theore...
cayleyhamilton 22613 The Cayley-Hamilton theore...
cayleyhamiltonALT 22614 Alternate proof of ~ cayle...
cayleyhamilton1 22615 The Cayley-Hamilton theore...
istopg 22618 Express the predicate " ` ...
istop2g 22619 Express the predicate " ` ...
uniopn 22620 The union of a subset of a...
iunopn 22621 The indexed union of a sub...
inopn 22622 The intersection of two op...
fitop 22623 A topology is closed under...
fiinopn 22624 The intersection of a none...
iinopn 22625 The intersection of a none...
unopn 22626 The union of two open sets...
0opn 22627 The empty set is an open s...
0ntop 22628 The empty set is not a top...
topopn 22629 The underlying set of a to...
eltopss 22630 A member of a topology is ...
riinopn 22631 A finite indexed relative ...
rintopn 22632 A finite relative intersec...
istopon 22635 Property of being a topolo...
topontop 22636 A topology on a given base...
toponuni 22637 The base set of a topology...
topontopi 22638 A topology on a given base...
toponunii 22639 The base set of a topology...
toptopon 22640 Alternative definition of ...
toptopon2 22641 A topology is the same thi...
topontopon 22642 A topology on a set is a t...
funtopon 22643 The class ` TopOn ` is a f...
toponrestid 22644 Given a topology on a set,...
toponsspwpw 22645 The set of topologies on a...
dmtopon 22646 The domain of ` TopOn ` is...
fntopon 22647 The class ` TopOn ` is a f...
toprntopon 22648 A topology is the same thi...
toponmax 22649 The base set of a topology...
toponss 22650 A member of a topology is ...
toponcom 22651 If ` K ` is a topology on ...
toponcomb 22652 Biconditional form of ~ to...
topgele 22653 The topologies over the sa...
topsn 22654 The only topology on a sin...
istps 22657 Express the predicate "is ...
istps2 22658 Express the predicate "is ...
tpsuni 22659 The base set of a topologi...
tpstop 22660 The topology extractor on ...
tpspropd 22661 A topological space depend...
tpsprop2d 22662 A topological space depend...
topontopn 22663 Express the predicate "is ...
tsettps 22664 If the topology component ...
istpsi 22665 Properties that determine ...
eltpsg 22666 Properties that determine ...
eltpsgOLD 22667 Obsolete version of ~ eltp...
eltpsi 22668 Properties that determine ...
isbasisg 22671 Express the predicate "the...
isbasis2g 22672 Express the predicate "the...
isbasis3g 22673 Express the predicate "the...
basis1 22674 Property of a basis. (Con...
basis2 22675 Property of a basis. (Con...
fiinbas 22676 If a set is closed under f...
basdif0 22677 A basis is not affected by...
baspartn 22678 A disjoint system of sets ...
tgval 22679 The topology generated by ...
tgval2 22680 Definition of a topology g...
eltg 22681 Membership in a topology g...
eltg2 22682 Membership in a topology g...
eltg2b 22683 Membership in a topology g...
eltg4i 22684 An open set in a topology ...
eltg3i 22685 The union of a set of basi...
eltg3 22686 Membership in a topology g...
tgval3 22687 Alternate expression for t...
tg1 22688 Property of a member of a ...
tg2 22689 Property of a member of a ...
bastg 22690 A member of a basis is a s...
unitg 22691 The topology generated by ...
tgss 22692 Subset relation for genera...
tgcl 22693 Show that a basis generate...
tgclb 22694 The property ~ tgcl can be...
tgtopon 22695 A basis generates a topolo...
topbas 22696 A topology is its own basi...
tgtop 22697 A topology is its own basi...
eltop 22698 Membership in a topology, ...
eltop2 22699 Membership in a topology. ...
eltop3 22700 Membership in a topology. ...
fibas 22701 A collection of finite int...
tgdom 22702 A space has no more open s...
tgiun 22703 The indexed union of a set...
tgidm 22704 The topology generator fun...
bastop 22705 Two ways to express that a...
tgtop11 22706 The topology generation fu...
0top 22707 The singleton of the empty...
en1top 22708 ` { (/) } ` is the only to...
en2top 22709 If a topology has two elem...
tgss3 22710 A criterion for determinin...
tgss2 22711 A criterion for determinin...
basgen 22712 Given a topology ` J ` , s...
basgen2 22713 Given a topology ` J ` , s...
2basgen 22714 Conditions that determine ...
tgfiss 22715 If a subbase is included i...
tgdif0 22716 A generated topology is no...
bastop1 22717 A subset of a topology is ...
bastop2 22718 A version of ~ bastop1 tha...
distop 22719 The discrete topology on a...
topnex 22720 The class of all topologie...
distopon 22721 The discrete topology on a...
sn0topon 22722 The singleton of the empty...
sn0top 22723 The singleton of the empty...
indislem 22724 A lemma to eliminate some ...
indistopon 22725 The indiscrete topology on...
indistop 22726 The indiscrete topology on...
indisuni 22727 The base set of the indisc...
fctop 22728 The finite complement topo...
fctop2 22729 The finite complement topo...
cctop 22730 The countable complement t...
ppttop 22731 The particular point topol...
pptbas 22732 The particular point topol...
epttop 22733 The excluded point topolog...
indistpsx 22734 The indiscrete topology on...
indistps 22735 The indiscrete topology on...
indistps2 22736 The indiscrete topology on...
indistpsALT 22737 The indiscrete topology on...
indistpsALTOLD 22738 Obsolete version of ~ indi...
indistps2ALT 22739 The indiscrete topology on...
distps 22740 The discrete topology on a...
fncld 22747 The closed-set generator i...
cldval 22748 The set of closed sets of ...
ntrfval 22749 The interior function on t...
clsfval 22750 The closure function on th...
cldrcl 22751 Reverse closure of the clo...
iscld 22752 The predicate "the class `...
iscld2 22753 A subset of the underlying...
cldss 22754 A closed set is a subset o...
cldss2 22755 The set of closed sets is ...
cldopn 22756 The complement of a closed...
isopn2 22757 A subset of the underlying...
opncld 22758 The complement of an open ...
difopn 22759 The difference of a closed...
topcld 22760 The underlying set of a to...
ntrval 22761 The interior of a subset o...
clsval 22762 The closure of a subset of...
0cld 22763 The empty set is closed. ...
iincld 22764 The indexed intersection o...
intcld 22765 The intersection of a set ...
uncld 22766 The union of two closed se...
cldcls 22767 A closed subset equals its...
incld 22768 The intersection of two cl...
riincld 22769 An indexed relative inters...
iuncld 22770 A finite indexed union of ...
unicld 22771 A finite union of closed s...
clscld 22772 The closure of a subset of...
clsf 22773 The closure function is a ...
ntropn 22774 The interior of a subset o...
clsval2 22775 Express closure in terms o...
ntrval2 22776 Interior expressed in term...
ntrdif 22777 An interior of a complemen...
clsdif 22778 A closure of a complement ...
clsss 22779 Subset relationship for cl...
ntrss 22780 Subset relationship for in...
sscls 22781 A subset of a topology's u...
ntrss2 22782 A subset includes its inte...
ssntr 22783 An open subset of a set is...
clsss3 22784 The closure of a subset of...
ntrss3 22785 The interior of a subset o...
ntrin 22786 A pairwise intersection of...
cmclsopn 22787 The complement of a closur...
cmntrcld 22788 The complement of an inter...
iscld3 22789 A subset is closed iff it ...
iscld4 22790 A subset is closed iff it ...
isopn3 22791 A subset is open iff it eq...
clsidm 22792 The closure operation is i...
ntridm 22793 The interior operation is ...
clstop 22794 The closure of a topology'...
ntrtop 22795 The interior of a topology...
0ntr 22796 A subset with an empty int...
clsss2 22797 If a subset is included in...
elcls 22798 Membership in a closure. ...
elcls2 22799 Membership in a closure. ...
clsndisj 22800 Any open set containing a ...
ntrcls0 22801 A subset whose closure has...
ntreq0 22802 Two ways to say that a sub...
cldmre 22803 The closed sets of a topol...
mrccls 22804 Moore closure generalizes ...
cls0 22805 The closure of the empty s...
ntr0 22806 The interior of the empty ...
isopn3i 22807 An open subset equals its ...
elcls3 22808 Membership in a closure in...
opncldf1 22809 A bijection useful for con...
opncldf2 22810 The values of the open-clo...
opncldf3 22811 The values of the converse...
isclo 22812 A set ` A ` is clopen iff ...
isclo2 22813 A set ` A ` is clopen iff ...
discld 22814 The open sets of a discret...
sn0cld 22815 The closed sets of the top...
indiscld 22816 The closed sets of an indi...
mretopd 22817 A Moore collection which i...
toponmre 22818 The topologies over a give...
cldmreon 22819 The closed sets of a topol...
iscldtop 22820 A family is the closed set...
mreclatdemoBAD 22821 The closed subspaces of a ...
neifval 22824 Value of the neighborhood ...
neif 22825 The neighborhood function ...
neiss2 22826 A set with a neighborhood ...
neival 22827 Value of the set of neighb...
isnei 22828 The predicate "the class `...
neiint 22829 An intuitive definition of...
isneip 22830 The predicate "the class `...
neii1 22831 A neighborhood is included...
neisspw 22832 The neighborhoods of any s...
neii2 22833 Property of a neighborhood...
neiss 22834 Any neighborhood of a set ...
ssnei 22835 A set is included in any o...
elnei 22836 A point belongs to any of ...
0nnei 22837 The empty set is not a nei...
neips 22838 A neighborhood of a set is...
opnneissb 22839 An open set is a neighborh...
opnssneib 22840 Any superset of an open se...
ssnei2 22841 Any subset ` M ` of ` X ` ...
neindisj 22842 Any neighborhood of an ele...
opnneiss 22843 An open set is a neighborh...
opnneip 22844 An open set is a neighborh...
opnnei 22845 A set is open iff it is a ...
tpnei 22846 The underlying set of a to...
neiuni 22847 The union of the neighborh...
neindisj2 22848 A point ` P ` belongs to t...
topssnei 22849 A finer topology has more ...
innei 22850 The intersection of two ne...
opnneiid 22851 Only an open set is a neig...
neissex 22852 For any neighborhood ` N `...
0nei 22853 The empty set is a neighbo...
neipeltop 22854 Lemma for ~ neiptopreu . ...
neiptopuni 22855 Lemma for ~ neiptopreu . ...
neiptoptop 22856 Lemma for ~ neiptopreu . ...
neiptopnei 22857 Lemma for ~ neiptopreu . ...
neiptopreu 22858 If, to each element ` P ` ...
lpfval 22863 The limit point function o...
lpval 22864 The set of limit points of...
islp 22865 The predicate "the class `...
lpsscls 22866 The limit points of a subs...
lpss 22867 The limit points of a subs...
lpdifsn 22868 ` P ` is a limit point of ...
lpss3 22869 Subset relationship for li...
islp2 22870 The predicate " ` P ` is a...
islp3 22871 The predicate " ` P ` is a...
maxlp 22872 A point is a limit point o...
clslp 22873 The closure of a subset of...
islpi 22874 A point belonging to a set...
cldlp 22875 A subset of a topological ...
isperf 22876 Definition of a perfect sp...
isperf2 22877 Definition of a perfect sp...
isperf3 22878 A perfect space is a topol...
perflp 22879 The limit points of a perf...
perfi 22880 Property of a perfect spac...
perftop 22881 A perfect space is a topol...
restrcl 22882 Reverse closure for the su...
restbas 22883 A subspace topology basis ...
tgrest 22884 A subspace can be generate...
resttop 22885 A subspace topology is a t...
resttopon 22886 A subspace topology is a t...
restuni 22887 The underlying set of a su...
stoig 22888 The topological space buil...
restco 22889 Composition of subspaces. ...
restabs 22890 Equivalence of being a sub...
restin 22891 When the subspace region i...
restuni2 22892 The underlying set of a su...
resttopon2 22893 The underlying set of a su...
rest0 22894 The subspace topology indu...
restsn 22895 The only subspace topology...
restsn2 22896 The subspace topology indu...
restcld 22897 A closed set of a subspace...
restcldi 22898 A closed set is closed in ...
restcldr 22899 A set which is closed in t...
restopnb 22900 If ` B ` is an open subset...
ssrest 22901 If ` K ` is a finer topolo...
restopn2 22902 If ` A ` is open, then ` B...
restdis 22903 A subspace of a discrete t...
restfpw 22904 The restriction of the set...
neitr 22905 The neighborhood of a trac...
restcls 22906 A closure in a subspace to...
restntr 22907 An interior in a subspace ...
restlp 22908 The limit points of a subs...
restperf 22909 Perfection of a subspace. ...
perfopn 22910 An open subset of a perfec...
resstopn 22911 The topology of a restrict...
resstps 22912 A restricted topological s...
ordtbaslem 22913 Lemma for ~ ordtbas . In ...
ordtval 22914 Value of the order topolog...
ordtuni 22915 Value of the order topolog...
ordtbas2 22916 Lemma for ~ ordtbas . (Co...
ordtbas 22917 In a total order, the fini...
ordttopon 22918 Value of the order topolog...
ordtopn1 22919 An upward ray ` ( P , +oo ...
ordtopn2 22920 A downward ray ` ( -oo , P...
ordtopn3 22921 An open interval ` ( A , B...
ordtcld1 22922 A downward ray ` ( -oo , P...
ordtcld2 22923 An upward ray ` [ P , +oo ...
ordtcld3 22924 A closed interval ` [ A , ...
ordttop 22925 The order topology is a to...
ordtcnv 22926 The order dual generates t...
ordtrest 22927 The subspace topology of a...
ordtrest2lem 22928 Lemma for ~ ordtrest2 . (...
ordtrest2 22929 An interval-closed set ` A...
letopon 22930 The topology of the extend...
letop 22931 The topology of the extend...
letopuni 22932 The topology of the extend...
xrstopn 22933 The topology component of ...
xrstps 22934 The extended real number s...
leordtvallem1 22935 Lemma for ~ leordtval . (...
leordtvallem2 22936 Lemma for ~ leordtval . (...
leordtval2 22937 The topology of the extend...
leordtval 22938 The topology of the extend...
iccordt 22939 A closed interval is close...
iocpnfordt 22940 An unbounded above open in...
icomnfordt 22941 An unbounded above open in...
iooordt 22942 An open interval is open i...
reordt 22943 The real numbers are an op...
lecldbas 22944 The set of closed interval...
pnfnei 22945 A neighborhood of ` +oo ` ...
mnfnei 22946 A neighborhood of ` -oo ` ...
ordtrestixx 22947 The restriction of the les...
ordtresticc 22948 The restriction of the les...
lmrel 22955 The topological space conv...
lmrcl 22956 Reverse closure for the co...
lmfval 22957 The relation "sequence ` f...
cnfval 22958 The set of all continuous ...
cnpfval 22959 The function mapping the p...
iscn 22960 The predicate "the class `...
cnpval 22961 The set of all functions f...
iscnp 22962 The predicate "the class `...
iscn2 22963 The predicate "the class `...
iscnp2 22964 The predicate "the class `...
cntop1 22965 Reverse closure for a cont...
cntop2 22966 Reverse closure for a cont...
cnptop1 22967 Reverse closure for a func...
cnptop2 22968 Reverse closure for a func...
iscnp3 22969 The predicate "the class `...
cnprcl 22970 Reverse closure for a func...
cnf 22971 A continuous function is a...
cnpf 22972 A continuous function at p...
cnpcl 22973 The value of a continuous ...
cnf2 22974 A continuous function is a...
cnpf2 22975 A continuous function at p...
cnprcl2 22976 Reverse closure for a func...
tgcn 22977 The continuity predicate w...
tgcnp 22978 The "continuous at a point...
subbascn 22979 The continuity predicate w...
ssidcn 22980 The identity function is a...
cnpimaex 22981 Property of a function con...
idcn 22982 A restricted identity func...
lmbr 22983 Express the binary relatio...
lmbr2 22984 Express the binary relatio...
lmbrf 22985 Express the binary relatio...
lmconst 22986 A constant sequence conver...
lmcvg 22987 Convergence property of a ...
iscnp4 22988 The predicate "the class `...
cnpnei 22989 A condition for continuity...
cnima 22990 An open subset of the codo...
cnco 22991 The composition of two con...
cnpco 22992 The composition of a funct...
cnclima 22993 A closed subset of the cod...
iscncl 22994 A characterization of a co...
cncls2i 22995 Property of the preimage o...
cnntri 22996 Property of the preimage o...
cnclsi 22997 Property of the image of a...
cncls2 22998 Continuity in terms of clo...
cncls 22999 Continuity in terms of clo...
cnntr 23000 Continuity in terms of int...
cnss1 23001 If the topology ` K ` is f...
cnss2 23002 If the topology ` K ` is f...
cncnpi 23003 A continuous function is c...
cnsscnp 23004 The set of continuous func...
cncnp 23005 A continuous function is c...
cncnp2 23006 A continuous function is c...
cnnei 23007 Continuity in terms of nei...
cnconst2 23008 A constant function is con...
cnconst 23009 A constant function is con...
cnrest 23010 Continuity of a restrictio...
cnrest2 23011 Equivalence of continuity ...
cnrest2r 23012 Equivalence of continuity ...
cnpresti 23013 One direction of ~ cnprest...
cnprest 23014 Equivalence of continuity ...
cnprest2 23015 Equivalence of point-conti...
cndis 23016 Every function is continuo...
cnindis 23017 Every function is continuo...
cnpdis 23018 If ` A ` is an isolated po...
paste 23019 Pasting lemma. If ` A ` a...
lmfpm 23020 If ` F ` converges, then `...
lmfss 23021 Inclusion of a function ha...
lmcl 23022 Closure of a limit. (Cont...
lmss 23023 Limit on a subspace. (Con...
sslm 23024 A finer topology has fewer...
lmres 23025 A function converges iff i...
lmff 23026 If ` F ` converges, there ...
lmcls 23027 Any convergent sequence of...
lmcld 23028 Any convergent sequence of...
lmcnp 23029 The image of a convergent ...
lmcn 23030 The image of a convergent ...
ist0 23045 The predicate "is a T_0 sp...
ist1 23046 The predicate "is a T_1 sp...
ishaus 23047 The predicate "is a Hausdo...
iscnrm 23048 The property of being comp...
t0sep 23049 Any two topologically indi...
t0dist 23050 Any two distinct points in...
t1sncld 23051 In a T_1 space, singletons...
t1ficld 23052 In a T_1 space, finite set...
hausnei 23053 Neighborhood property of a...
t0top 23054 A T_0 space is a topologic...
t1top 23055 A T_1 space is a topologic...
haustop 23056 A Hausdorff space is a top...
isreg 23057 The predicate "is a regula...
regtop 23058 A regular space is a topol...
regsep 23059 In a regular space, every ...
isnrm 23060 The predicate "is a normal...
nrmtop 23061 A normal space is a topolo...
cnrmtop 23062 A completely normal space ...
iscnrm2 23063 The property of being comp...
ispnrm 23064 The property of being perf...
pnrmnrm 23065 A perfectly normal space i...
pnrmtop 23066 A perfectly normal space i...
pnrmcld 23067 A closed set in a perfectl...
pnrmopn 23068 An open set in a perfectly...
ist0-2 23069 The predicate "is a T_0 sp...
ist0-3 23070 The predicate "is a T_0 sp...
cnt0 23071 The preimage of a T_0 topo...
ist1-2 23072 An alternate characterizat...
t1t0 23073 A T_1 space is a T_0 space...
ist1-3 23074 A space is T_1 iff every p...
cnt1 23075 The preimage of a T_1 topo...
ishaus2 23076 Express the predicate " ` ...
haust1 23077 A Hausdorff space is a T_1...
hausnei2 23078 The Hausdorff condition st...
cnhaus 23079 The preimage of a Hausdorf...
nrmsep3 23080 In a normal space, given a...
nrmsep2 23081 In a normal space, any two...
nrmsep 23082 In a normal space, disjoin...
isnrm2 23083 An alternate characterizat...
isnrm3 23084 A topological space is nor...
cnrmi 23085 A subspace of a completely...
cnrmnrm 23086 A completely normal space ...
restcnrm 23087 A subspace of a completely...
resthauslem 23088 Lemma for ~ resthaus and s...
lpcls 23089 The limit points of the cl...
perfcls 23090 A subset of a perfect spac...
restt0 23091 A subspace of a T_0 topolo...
restt1 23092 A subspace of a T_1 topolo...
resthaus 23093 A subspace of a Hausdorff ...
t1sep2 23094 Any two points in a T_1 sp...
t1sep 23095 Any two distinct points in...
sncld 23096 A singleton is closed in a...
sshauslem 23097 Lemma for ~ sshaus and sim...
sst0 23098 A topology finer than a T_...
sst1 23099 A topology finer than a T_...
sshaus 23100 A topology finer than a Ha...
regsep2 23101 In a regular space, a clos...
isreg2 23102 A topological space is reg...
dnsconst 23103 If a continuous mapping to...
ordtt1 23104 The order topology is T_1 ...
lmmo 23105 A sequence in a Hausdorff ...
lmfun 23106 The convergence relation i...
dishaus 23107 A discrete topology is Hau...
ordthauslem 23108 Lemma for ~ ordthaus . (C...
ordthaus 23109 The order topology of a to...
xrhaus 23110 The topology of the extend...
iscmp 23113 The predicate "is a compac...
cmpcov 23114 An open cover of a compact...
cmpcov2 23115 Rewrite ~ cmpcov for the c...
cmpcovf 23116 Combine ~ cmpcov with ~ ac...
cncmp 23117 Compactness is respected b...
fincmp 23118 A finite topology is compa...
0cmp 23119 The singleton of the empty...
cmptop 23120 A compact topology is a to...
rncmp 23121 The image of a compact set...
imacmp 23122 The image of a compact set...
discmp 23123 A discrete topology is com...
cmpsublem 23124 Lemma for ~ cmpsub . (Con...
cmpsub 23125 Two equivalent ways of des...
tgcmp 23126 A topology generated by a ...
cmpcld 23127 A closed subset of a compa...
uncmp 23128 The union of two compact s...
fiuncmp 23129 A finite union of compact ...
sscmp 23130 A subset of a compact topo...
hauscmplem 23131 Lemma for ~ hauscmp . (Co...
hauscmp 23132 A compact subspace of a T2...
cmpfi 23133 If a topology is compact a...
cmpfii 23134 In a compact topology, a s...
bwth 23135 The glorious Bolzano-Weier...
isconn 23138 The predicate ` J ` is a c...
isconn2 23139 The predicate ` J ` is a c...
connclo 23140 The only nonempty clopen s...
conndisj 23141 If a topology is connected...
conntop 23142 A connected topology is a ...
indisconn 23143 The indiscrete topology (o...
dfconn2 23144 An alternate definition of...
connsuba 23145 Connectedness for a subspa...
connsub 23146 Two equivalent ways of say...
cnconn 23147 Connectedness is respected...
nconnsubb 23148 Disconnectedness for a sub...
connsubclo 23149 If a clopen set meets a co...
connima 23150 The image of a connected s...
conncn 23151 A continuous function from...
iunconnlem 23152 Lemma for ~ iunconn . (Co...
iunconn 23153 The indexed union of conne...
unconn 23154 The union of two connected...
clsconn 23155 The closure of a connected...
conncompid 23156 The connected component co...
conncompconn 23157 The connected component co...
conncompss 23158 The connected component co...
conncompcld 23159 The connected component co...
conncompclo 23160 The connected component co...
t1connperf 23161 A connected T_1 space is p...
is1stc 23166 The predicate "is a first-...
is1stc2 23167 An equivalent way of sayin...
1stctop 23168 A first-countable topology...
1stcclb 23169 A property of points in a ...
1stcfb 23170 For any point ` A ` in a f...
is2ndc 23171 The property of being seco...
2ndctop 23172 A second-countable topolog...
2ndci 23173 A countable basis generate...
2ndcsb 23174 Having a countable subbase...
2ndcredom 23175 A second-countable space h...
2ndc1stc 23176 A second-countable space i...
1stcrestlem 23177 Lemma for ~ 1stcrest . (C...
1stcrest 23178 A subspace of a first-coun...
2ndcrest 23179 A subspace of a second-cou...
2ndcctbss 23180 If a topology is second-co...
2ndcdisj 23181 Any disjoint family of ope...
2ndcdisj2 23182 Any disjoint collection of...
2ndcomap 23183 A surjective continuous op...
2ndcsep 23184 A second-countable topolog...
dis2ndc 23185 A discrete space is second...
1stcelcls 23186 A point belongs to the clo...
1stccnp 23187 A mapping is continuous at...
1stccn 23188 A mapping ` X --> Y ` , wh...
islly 23193 The property of being a lo...
isnlly 23194 The property of being an n...
llyeq 23195 Equality theorem for the `...
nllyeq 23196 Equality theorem for the `...
llytop 23197 A locally ` A ` space is a...
nllytop 23198 A locally ` A ` space is a...
llyi 23199 The property of a locally ...
nllyi 23200 The property of an n-local...
nlly2i 23201 Eliminate the neighborhood...
llynlly 23202 A locally ` A ` space is n...
llyssnlly 23203 A locally ` A ` space is n...
llyss 23204 The "locally" predicate re...
nllyss 23205 The "n-locally" predicate ...
subislly 23206 The property of a subspace...
restnlly 23207 If the property ` A ` pass...
restlly 23208 If the property ` A ` pass...
islly2 23209 An alternative expression ...
llyrest 23210 An open subspace of a loca...
nllyrest 23211 An open subspace of an n-l...
loclly 23212 If ` A ` is a local proper...
llyidm 23213 Idempotence of the "locall...
nllyidm 23214 Idempotence of the "n-loca...
toplly 23215 A topology is locally a to...
topnlly 23216 A topology is n-locally a ...
hauslly 23217 A Hausdorff space is local...
hausnlly 23218 A Hausdorff space is n-loc...
hausllycmp 23219 A compact Hausdorff space ...
cldllycmp 23220 A closed subspace of a loc...
lly1stc 23221 First-countability is a lo...
dislly 23222 The discrete space ` ~P X ...
disllycmp 23223 A discrete space is locall...
dis1stc 23224 A discrete space is first-...
hausmapdom 23225 If ` X ` is a first-counta...
hauspwdom 23226 Simplify the cardinal ` A ...
refrel 23233 Refinement is a relation. ...
isref 23234 The property of being a re...
refbas 23235 A refinement covers the sa...
refssex 23236 Every set in a refinement ...
ssref 23237 A subcover is a refinement...
refref 23238 Reflexivity of refinement....
reftr 23239 Refinement is transitive. ...
refun0 23240 Adding the empty set prese...
isptfin 23241 The statement "is a point-...
islocfin 23242 The statement "is a locall...
finptfin 23243 A finite cover is a point-...
ptfinfin 23244 A point covered by a point...
finlocfin 23245 A finite cover of a topolo...
locfintop 23246 A locally finite cover cov...
locfinbas 23247 A locally finite cover mus...
locfinnei 23248 A point covered by a local...
lfinpfin 23249 A locally finite cover is ...
lfinun 23250 Adding a finite set preser...
locfincmp 23251 For a compact space, the l...
unisngl 23252 Taking the union of the se...
dissnref 23253 The set of singletons is a...
dissnlocfin 23254 The set of singletons is l...
locfindis 23255 The locally finite covers ...
locfincf 23256 A locally finite cover in ...
comppfsc 23257 A space where every open c...
kgenval 23260 Value of the compact gener...
elkgen 23261 Value of the compact gener...
kgeni 23262 Property of the open sets ...
kgentopon 23263 The compact generator gene...
kgenuni 23264 The base set of the compac...
kgenftop 23265 The compact generator gene...
kgenf 23266 The compact generator is a...
kgentop 23267 A compactly generated spac...
kgenss 23268 The compact generator gene...
kgenhaus 23269 The compact generator gene...
kgencmp 23270 The compact generator topo...
kgencmp2 23271 The compact generator topo...
kgenidm 23272 The compact generator is i...
iskgen2 23273 A space is compactly gener...
iskgen3 23274 Derive the usual definitio...
llycmpkgen2 23275 A locally compact space is...
cmpkgen 23276 A compact space is compact...
llycmpkgen 23277 A locally compact space is...
1stckgenlem 23278 The one-point compactifica...
1stckgen 23279 A first-countable space is...
kgen2ss 23280 The compact generator pres...
kgencn 23281 A function from a compactl...
kgencn2 23282 A function ` F : J --> K `...
kgencn3 23283 The set of continuous func...
kgen2cn 23284 A continuous function is a...
txval 23289 Value of the binary topolo...
txuni2 23290 The underlying set of the ...
txbasex 23291 The basis for the product ...
txbas 23292 The set of Cartesian produ...
eltx 23293 A set in a product is open...
txtop 23294 The product of two topolog...
ptval 23295 The value of the product t...
ptpjpre1 23296 The preimage of a projecti...
elpt 23297 Elementhood in the bases o...
elptr 23298 A basic open set in the pr...
elptr2 23299 A basic open set in the pr...
ptbasid 23300 The base set of the produc...
ptuni2 23301 The base set for the produ...
ptbasin 23302 The basis for a product to...
ptbasin2 23303 The basis for a product to...
ptbas 23304 The basis for a product to...
ptpjpre2 23305 The basis for a product to...
ptbasfi 23306 The basis for the product ...
pttop 23307 The product topology is a ...
ptopn 23308 A basic open set in the pr...
ptopn2 23309 A sub-basic open set in th...
xkotf 23310 Functionality of function ...
xkobval 23311 Alternative expression for...
xkoval 23312 Value of the compact-open ...
xkotop 23313 The compact-open topology ...
xkoopn 23314 A basic open set of the co...
txtopi 23315 The product of two topolog...
txtopon 23316 The underlying set of the ...
txuni 23317 The underlying set of the ...
txunii 23318 The underlying set of the ...
ptuni 23319 The base set for the produ...
ptunimpt 23320 Base set of a product topo...
pttopon 23321 The base set for the produ...
pttoponconst 23322 The base set for a product...
ptuniconst 23323 The base set for a product...
xkouni 23324 The base set of the compac...
xkotopon 23325 The base set of the compac...
ptval2 23326 The value of the product t...
txopn 23327 The product of two open se...
txcld 23328 The product of two closed ...
txcls 23329 Closure of a rectangle in ...
txss12 23330 Subset property of the top...
txbasval 23331 It is sufficient to consid...
neitx 23332 The Cartesian product of t...
txcnpi 23333 Continuity of a two-argume...
tx1cn 23334 Continuity of the first pr...
tx2cn 23335 Continuity of the second p...
ptpjcn 23336 Continuity of a projection...
ptpjopn 23337 The projection map is an o...
ptcld 23338 A closed box in the produc...
ptcldmpt 23339 A closed box in the produc...
ptclsg 23340 The closure of a box in th...
ptcls 23341 The closure of a box in th...
dfac14lem 23342 Lemma for ~ dfac14 . By e...
dfac14 23343 Theorem ~ ptcls is an equi...
xkoccn 23344 The "constant function" fu...
txcnp 23345 If two functions are conti...
ptcnplem 23346 Lemma for ~ ptcnp . (Cont...
ptcnp 23347 If every projection of a f...
upxp 23348 Universal property of the ...
txcnmpt 23349 A map into the product of ...
uptx 23350 Universal property of the ...
txcn 23351 A map into the product of ...
ptcn 23352 If every projection of a f...
prdstopn 23353 Topology of a structure pr...
prdstps 23354 A structure product of top...
pwstps 23355 A structure power of a top...
txrest 23356 The subspace of a topologi...
txdis 23357 The topological product of...
txindislem 23358 Lemma for ~ txindis . (Co...
txindis 23359 The topological product of...
txdis1cn 23360 A function is jointly cont...
txlly 23361 If the property ` A ` is p...
txnlly 23362 If the property ` A ` is p...
pthaus 23363 The product of a collectio...
ptrescn 23364 Restriction is a continuou...
txtube 23365 The "tube lemma". If ` X ...
txcmplem1 23366 Lemma for ~ txcmp . (Cont...
txcmplem2 23367 Lemma for ~ txcmp . (Cont...
txcmp 23368 The topological product of...
txcmpb 23369 The topological product of...
hausdiag 23370 A topology is Hausdorff if...
hauseqlcld 23371 In a Hausdorff topology, t...
txhaus 23372 The topological product of...
txlm 23373 Two sequences converge iff...
lmcn2 23374 The image of a convergent ...
tx1stc 23375 The topological product of...
tx2ndc 23376 The topological product of...
txkgen 23377 The topological product of...
xkohaus 23378 If the codomain space is H...
xkoptsub 23379 The compact-open topology ...
xkopt 23380 The compact-open topology ...
xkopjcn 23381 Continuity of a projection...
xkoco1cn 23382 If ` F ` is a continuous f...
xkoco2cn 23383 If ` F ` is a continuous f...
xkococnlem 23384 Continuity of the composit...
xkococn 23385 Continuity of the composit...
cnmptid 23386 The identity function is c...
cnmptc 23387 A constant function is con...
cnmpt11 23388 The composition of continu...
cnmpt11f 23389 The composition of continu...
cnmpt1t 23390 The composition of continu...
cnmpt12f 23391 The composition of continu...
cnmpt12 23392 The composition of continu...
cnmpt1st 23393 The projection onto the fi...
cnmpt2nd 23394 The projection onto the se...
cnmpt2c 23395 A constant function is con...
cnmpt21 23396 The composition of continu...
cnmpt21f 23397 The composition of continu...
cnmpt2t 23398 The composition of continu...
cnmpt22 23399 The composition of continu...
cnmpt22f 23400 The composition of continu...
cnmpt1res 23401 The restriction of a conti...
cnmpt2res 23402 The restriction of a conti...
cnmptcom 23403 The argument converse of a...
cnmptkc 23404 The curried first projecti...
cnmptkp 23405 The evaluation of the inne...
cnmptk1 23406 The composition of a curri...
cnmpt1k 23407 The composition of a one-a...
cnmptkk 23408 The composition of two cur...
xkofvcn 23409 Joint continuity of the fu...
cnmptk1p 23410 The evaluation of a currie...
cnmptk2 23411 The uncurrying of a currie...
xkoinjcn 23412 Continuity of "injection",...
cnmpt2k 23413 The currying of a two-argu...
txconn 23414 The topological product of...
imasnopn 23415 If a relation graph is ope...
imasncld 23416 If a relation graph is clo...
imasncls 23417 If a relation graph is clo...
qtopval 23420 Value of the quotient topo...
qtopval2 23421 Value of the quotient topo...
elqtop 23422 Value of the quotient topo...
qtopres 23423 The quotient topology is u...
qtoptop2 23424 The quotient topology is a...
qtoptop 23425 The quotient topology is a...
elqtop2 23426 Value of the quotient topo...
qtopuni 23427 The base set of the quotie...
elqtop3 23428 Value of the quotient topo...
qtoptopon 23429 The base set of the quotie...
qtopid 23430 A quotient map is a contin...
idqtop 23431 The quotient topology indu...
qtopcmplem 23432 Lemma for ~ qtopcmp and ~ ...
qtopcmp 23433 A quotient of a compact sp...
qtopconn 23434 A quotient of a connected ...
qtopkgen 23435 A quotient of a compactly ...
basqtop 23436 An injection maps bases to...
tgqtop 23437 An injection maps generate...
qtopcld 23438 The property of being a cl...
qtopcn 23439 Universal property of a qu...
qtopss 23440 A surjective continuous fu...
qtopeu 23441 Universal property of the ...
qtoprest 23442 If ` A ` is a saturated op...
qtopomap 23443 If ` F ` is a surjective c...
qtopcmap 23444 If ` F ` is a surjective c...
imastopn 23445 The topology of an image s...
imastps 23446 The image of a topological...
qustps 23447 A quotient structure is a ...
kqfval 23448 Value of the function appe...
kqfeq 23449 Two points in the Kolmogor...
kqffn 23450 The topological indistingu...
kqval 23451 Value of the quotient topo...
kqtopon 23452 The Kolmogorov quotient is...
kqid 23453 The topological indistingu...
ist0-4 23454 The topological indistingu...
kqfvima 23455 When the image set is open...
kqsat 23456 Any open set is saturated ...
kqdisj 23457 A version of ~ imain for t...
kqcldsat 23458 Any closed set is saturate...
kqopn 23459 The topological indistingu...
kqcld 23460 The topological indistingu...
kqt0lem 23461 Lemma for ~ kqt0 . (Contr...
isr0 23462 The property " ` J ` is an...
r0cld 23463 The analogue of the T_1 ax...
regr1lem 23464 Lemma for ~ regr1 . (Cont...
regr1lem2 23465 A Kolmogorov quotient of a...
kqreglem1 23466 A Kolmogorov quotient of a...
kqreglem2 23467 If the Kolmogorov quotient...
kqnrmlem1 23468 A Kolmogorov quotient of a...
kqnrmlem2 23469 If the Kolmogorov quotient...
kqtop 23470 The Kolmogorov quotient is...
kqt0 23471 The Kolmogorov quotient is...
kqf 23472 The Kolmogorov quotient is...
r0sep 23473 The separation property of...
nrmr0reg 23474 A normal R_0 space is also...
regr1 23475 A regular space is R_1, wh...
kqreg 23476 The Kolmogorov quotient of...
kqnrm 23477 The Kolmogorov quotient of...
hmeofn 23482 The set of homeomorphisms ...
hmeofval 23483 The set of all the homeomo...
ishmeo 23484 The predicate F is a homeo...
hmeocn 23485 A homeomorphism is continu...
hmeocnvcn 23486 The converse of a homeomor...
hmeocnv 23487 The converse of a homeomor...
hmeof1o2 23488 A homeomorphism is a 1-1-o...
hmeof1o 23489 A homeomorphism is a 1-1-o...
hmeoima 23490 The image of an open set b...
hmeoopn 23491 Homeomorphisms preserve op...
hmeocld 23492 Homeomorphisms preserve cl...
hmeocls 23493 Homeomorphisms preserve cl...
hmeontr 23494 Homeomorphisms preserve in...
hmeoimaf1o 23495 The function mapping open ...
hmeores 23496 The restriction of a homeo...
hmeoco 23497 The composite of two homeo...
idhmeo 23498 The identity function is a...
hmeocnvb 23499 The converse of a homeomor...
hmeoqtop 23500 A homeomorphism is a quoti...
hmph 23501 Express the predicate ` J ...
hmphi 23502 If there is a homeomorphis...
hmphtop 23503 Reverse closure for the ho...
hmphtop1 23504 The relation "being homeom...
hmphtop2 23505 The relation "being homeom...
hmphref 23506 "Is homeomorphic to" is re...
hmphsym 23507 "Is homeomorphic to" is sy...
hmphtr 23508 "Is homeomorphic to" is tr...
hmpher 23509 "Is homeomorphic to" is an...
hmphen 23510 Homeomorphisms preserve th...
hmphsymb 23511 "Is homeomorphic to" is sy...
haushmphlem 23512 Lemma for ~ haushmph and s...
cmphmph 23513 Compactness is a topologic...
connhmph 23514 Connectedness is a topolog...
t0hmph 23515 T_0 is a topological prope...
t1hmph 23516 T_1 is a topological prope...
haushmph 23517 Hausdorff-ness is a topolo...
reghmph 23518 Regularity is a topologica...
nrmhmph 23519 Normality is a topological...
hmph0 23520 A topology homeomorphic to...
hmphdis 23521 Homeomorphisms preserve to...
hmphindis 23522 Homeomorphisms preserve to...
indishmph 23523 Equinumerous sets equipped...
hmphen2 23524 Homeomorphisms preserve th...
cmphaushmeo 23525 A continuous bijection fro...
ordthmeolem 23526 Lemma for ~ ordthmeo . (C...
ordthmeo 23527 An order isomorphism is a ...
txhmeo 23528 Lift a pair of homeomorphi...
txswaphmeolem 23529 Show inverse for the "swap...
txswaphmeo 23530 There is a homeomorphism f...
pt1hmeo 23531 The canonical homeomorphis...
ptuncnv 23532 Exhibit the converse funct...
ptunhmeo 23533 Define a homeomorphism fro...
xpstopnlem1 23534 The function ` F ` used in...
xpstps 23535 A binary product of topolo...
xpstopnlem2 23536 Lemma for ~ xpstopn . (Co...
xpstopn 23537 The topology on a binary p...
ptcmpfi 23538 A topological product of f...
xkocnv 23539 The inverse of the "curryi...
xkohmeo 23540 The Exponential Law for to...
qtopf1 23541 If a quotient map is injec...
qtophmeo 23542 If two functions on a base...
t0kq 23543 A topological space is T_0...
kqhmph 23544 A topological space is T_0...
ist1-5lem 23545 Lemma for ~ ist1-5 and sim...
t1r0 23546 A T_1 space is R_0. That ...
ist1-5 23547 A topological space is T_1...
ishaus3 23548 A topological space is Hau...
nrmreg 23549 A normal T_1 space is regu...
reghaus 23550 A regular T_0 space is Hau...
nrmhaus 23551 A T_1 normal space is Haus...
elmptrab 23552 Membership in a one-parame...
elmptrab2 23553 Membership in a one-parame...
isfbas 23554 The predicate " ` F ` is a...
fbasne0 23555 There are no empty filter ...
0nelfb 23556 No filter base contains th...
fbsspw 23557 A filter base on a set is ...
fbelss 23558 An element of the filter b...
fbdmn0 23559 The domain of a filter bas...
isfbas2 23560 The predicate " ` F ` is a...
fbasssin 23561 A filter base contains sub...
fbssfi 23562 A filter base contains sub...
fbssint 23563 A filter base contains sub...
fbncp 23564 A filter base does not con...
fbun 23565 A necessary and sufficient...
fbfinnfr 23566 No filter base containing ...
opnfbas 23567 The collection of open sup...
trfbas2 23568 Conditions for the trace o...
trfbas 23569 Conditions for the trace o...
isfil 23572 The predicate "is a filter...
filfbas 23573 A filter is a filter base....
0nelfil 23574 The empty set doesn't belo...
fileln0 23575 An element of a filter is ...
filsspw 23576 A filter is a subset of th...
filelss 23577 An element of a filter is ...
filss 23578 A filter is closed under t...
filin 23579 A filter is closed under t...
filtop 23580 The underlying set belongs...
isfil2 23581 Derive the standard axioms...
isfildlem 23582 Lemma for ~ isfild . (Con...
isfild 23583 Sufficient condition for a...
filfi 23584 A filter is closed under t...
filinn0 23585 The intersection of two el...
filintn0 23586 A filter has the finite in...
filn0 23587 The empty set is not a fil...
infil 23588 The intersection of two fi...
snfil 23589 A singleton is a filter. ...
fbasweak 23590 A filter base on any set i...
snfbas 23591 Condition for a singleton ...
fsubbas 23592 A condition for a set to g...
fbasfip 23593 A filter base has the fini...
fbunfip 23594 A helpful lemma for showin...
fgval 23595 The filter generating clas...
elfg 23596 A condition for elements o...
ssfg 23597 A filter base is a subset ...
fgss 23598 A bigger base generates a ...
fgss2 23599 A condition for a filter t...
fgfil 23600 A filter generates itself....
elfilss 23601 An element belongs to a fi...
filfinnfr 23602 No filter containing a fin...
fgcl 23603 A generated filter is a fi...
fgabs 23604 Absorption law for filter ...
neifil 23605 The neighborhoods of a non...
filunibas 23606 Recover the base set from ...
filunirn 23607 Two ways to express a filt...
filconn 23608 A filter gives rise to a c...
fbasrn 23609 Given a filter on a domain...
filuni 23610 The union of a nonempty se...
trfil1 23611 Conditions for the trace o...
trfil2 23612 Conditions for the trace o...
trfil3 23613 Conditions for the trace o...
trfilss 23614 If ` A ` is a member of th...
fgtr 23615 If ` A ` is a member of th...
trfg 23616 The trace operation and th...
trnei 23617 The trace, over a set ` A ...
cfinfil 23618 Relative complements of th...
csdfil 23619 The set of all elements wh...
supfil 23620 The supersets of a nonempt...
zfbas 23621 The set of upper sets of i...
uzrest 23622 The restriction of the set...
uzfbas 23623 The set of upper sets of i...
isufil 23628 The property of being an u...
ufilfil 23629 An ultrafilter is a filter...
ufilss 23630 For any subset of the base...
ufilb 23631 The complement is in an ul...
ufilmax 23632 Any filter finer than an u...
isufil2 23633 The maximal property of an...
ufprim 23634 An ultrafilter is a prime ...
trufil 23635 Conditions for the trace o...
filssufilg 23636 A filter is contained in s...
filssufil 23637 A filter is contained in s...
isufl 23638 Define the (strong) ultraf...
ufli 23639 Property of a set that sat...
numufl 23640 Consequence of ~ filssufil...
fiufl 23641 A finite set satisfies the...
acufl 23642 The axiom of choice implie...
ssufl 23643 If ` Y ` is a subset of ` ...
ufileu 23644 If the ultrafilter contain...
filufint 23645 A filter is equal to the i...
uffix 23646 Lemma for ~ fixufil and ~ ...
fixufil 23647 The condition describing a...
uffixfr 23648 An ultrafilter is either f...
uffix2 23649 A classification of fixed ...
uffixsn 23650 The singleton of the gener...
ufildom1 23651 An ultrafilter is generate...
uffinfix 23652 An ultrafilter containing ...
cfinufil 23653 An ultrafilter is free iff...
ufinffr 23654 An infinite subset is cont...
ufilen 23655 Any infinite set has an ul...
ufildr 23656 An ultrafilter gives rise ...
fin1aufil 23657 There are no definable fre...
fmval 23668 Introduce a function that ...
fmfil 23669 A mapping filter is a filt...
fmf 23670 Pushing-forward via a func...
fmss 23671 A finer filter produces a ...
elfm 23672 An element of a mapping fi...
elfm2 23673 An element of a mapping fi...
fmfg 23674 The image filter of a filt...
elfm3 23675 An alternate formulation o...
imaelfm 23676 An image of a filter eleme...
rnelfmlem 23677 Lemma for ~ rnelfm . (Con...
rnelfm 23678 A condition for a filter t...
fmfnfmlem1 23679 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23680 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23681 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23682 Lemma for ~ fmfnfm . (Con...
fmfnfm 23683 A filter finer than an ima...
fmufil 23684 An image filter of an ultr...
fmid 23685 The filter map applied to ...
fmco 23686 Composition of image filte...
ufldom 23687 The ultrafilter lemma prop...
flimval 23688 The set of limit points of...
elflim2 23689 The predicate "is a limit ...
flimtop 23690 Reverse closure for the li...
flimneiss 23691 A filter contains the neig...
flimnei 23692 A filter contains all of t...
flimelbas 23693 A limit point of a filter ...
flimfil 23694 Reverse closure for the li...
flimtopon 23695 Reverse closure for the li...
elflim 23696 The predicate "is a limit ...
flimss2 23697 A limit point of a filter ...
flimss1 23698 A limit point of a filter ...
neiflim 23699 A point is a limit point o...
flimopn 23700 The condition for being a ...
fbflim 23701 A condition for a filter t...
fbflim2 23702 A condition for a filter b...
flimclsi 23703 The convergent points of a...
hausflimlem 23704 If ` A ` and ` B ` are bot...
hausflimi 23705 One direction of ~ hausfli...
hausflim 23706 A condition for a topology...
flimcf 23707 Fineness is properly chara...
flimrest 23708 The set of limit points in...
flimclslem 23709 Lemma for ~ flimcls . (Co...
flimcls 23710 Closure in terms of filter...
flimsncls 23711 If ` A ` is a limit point ...
hauspwpwf1 23712 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23713 If ` X ` is a Hausdorff sp...
flffval 23714 Given a topology and a fil...
flfval 23715 Given a function from a fi...
flfnei 23716 The property of being a li...
flfneii 23717 A neighborhood of a limit ...
isflf 23718 The property of being a li...
flfelbas 23719 A limit point of a functio...
flffbas 23720 Limit points of a function...
flftg 23721 Limit points of a function...
hausflf 23722 If a function has its valu...
hausflf2 23723 If a convergent function h...
cnpflfi 23724 Forward direction of ~ cnp...
cnpflf2 23725 ` F ` is continuous at poi...
cnpflf 23726 Continuity of a function a...
cnflf 23727 A function is continuous i...
cnflf2 23728 A function is continuous i...
flfcnp 23729 A continuous function pres...
lmflf 23730 The topological limit rela...
txflf 23731 Two sequences converge in ...
flfcnp2 23732 The image of a convergent ...
fclsval 23733 The set of all cluster poi...
isfcls 23734 A cluster point of a filte...
fclsfil 23735 Reverse closure for the cl...
fclstop 23736 Reverse closure for the cl...
fclstopon 23737 Reverse closure for the cl...
isfcls2 23738 A cluster point of a filte...
fclsopn 23739 Write the cluster point co...
fclsopni 23740 An open neighborhood of a ...
fclselbas 23741 A cluster point is in the ...
fclsneii 23742 A neighborhood of a cluste...
fclssscls 23743 The set of cluster points ...
fclsnei 23744 Cluster points in terms of...
supnfcls 23745 The filter of supersets of...
fclsbas 23746 Cluster points in terms of...
fclsss1 23747 A finer topology has fewer...
fclsss2 23748 A finer filter has fewer c...
fclsrest 23749 The set of cluster points ...
fclscf 23750 Characterization of finene...
flimfcls 23751 A limit point is a cluster...
fclsfnflim 23752 A filter clusters at a poi...
flimfnfcls 23753 A filter converges to a po...
fclscmpi 23754 Forward direction of ~ fcl...
fclscmp 23755 A space is compact iff eve...
uffclsflim 23756 The cluster points of an u...
ufilcmp 23757 A space is compact iff eve...
fcfval 23758 The set of cluster points ...
isfcf 23759 The property of being a cl...
fcfnei 23760 The property of being a cl...
fcfelbas 23761 A cluster point of a funct...
fcfneii 23762 A neighborhood of a cluste...
flfssfcf 23763 A limit point of a functio...
uffcfflf 23764 If the domain filter is an...
cnpfcfi 23765 Lemma for ~ cnpfcf . If a...
cnpfcf 23766 A function ` F ` is contin...
cnfcf 23767 Continuity of a function i...
flfcntr 23768 A continuous function's va...
alexsublem 23769 Lemma for ~ alexsub . (Co...
alexsub 23770 The Alexander Subbase Theo...
alexsubb 23771 Biconditional form of the ...
alexsubALTlem1 23772 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23773 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23774 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23775 Lemma for ~ alexsubALT . ...
alexsubALT 23776 The Alexander Subbase Theo...
ptcmplem1 23777 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23778 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23779 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23780 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23781 Lemma for ~ ptcmp . (Cont...
ptcmpg 23782 Tychonoff's theorem: The ...
ptcmp 23783 Tychonoff's theorem: The ...
cnextval 23786 The function applying cont...
cnextfval 23787 The continuous extension o...
cnextrel 23788 In the general case, a con...
cnextfun 23789 If the target space is Hau...
cnextfvval 23790 The value of the continuou...
cnextf 23791 Extension by continuity. ...
cnextcn 23792 Extension by continuity. ...
cnextfres1 23793 ` F ` and its extension by...
cnextfres 23794 ` F ` and its extension by...
istmd 23799 The predicate "is a topolo...
tmdmnd 23800 A topological monoid is a ...
tmdtps 23801 A topological monoid is a ...
istgp 23802 The predicate "is a topolo...
tgpgrp 23803 A topological group is a g...
tgptmd 23804 A topological group is a t...
tgptps 23805 A topological group is a t...
tmdtopon 23806 The topology of a topologi...
tgptopon 23807 The topology of a topologi...
tmdcn 23808 In a topological monoid, t...
tgpcn 23809 In a topological group, th...
tgpinv 23810 In a topological group, th...
grpinvhmeo 23811 The inverse function in a ...
cnmpt1plusg 23812 Continuity of the group su...
cnmpt2plusg 23813 Continuity of the group su...
tmdcn2 23814 Write out the definition o...
tgpsubcn 23815 In a topological group, th...
istgp2 23816 A group with a topology is...
tmdmulg 23817 In a topological monoid, t...
tgpmulg 23818 In a topological group, th...
tgpmulg2 23819 In a topological monoid, t...
tmdgsum 23820 In a topological monoid, t...
tmdgsum2 23821 For any neighborhood ` U `...
oppgtmd 23822 The opposite of a topologi...
oppgtgp 23823 The opposite of a topologi...
distgp 23824 Any group equipped with th...
indistgp 23825 Any group equipped with th...
efmndtmd 23826 The monoid of endofunction...
tmdlactcn 23827 The left group action of e...
tgplacthmeo 23828 The left group action of e...
submtmd 23829 A submonoid of a topologic...
subgtgp 23830 A subgroup of a topologica...
symgtgp 23831 The symmetric group is a t...
subgntr 23832 A subgroup of a topologica...
opnsubg 23833 An open subgroup of a topo...
clssubg 23834 The closure of a subgroup ...
clsnsg 23835 The closure of a normal su...
cldsubg 23836 A subgroup of finite index...
tgpconncompeqg 23837 The connected component co...
tgpconncomp 23838 The identity component, th...
tgpconncompss 23839 The identity component is ...
ghmcnp 23840 A group homomorphism on to...
snclseqg 23841 The coset of the closure o...
tgphaus 23842 A topological group is Hau...
tgpt1 23843 Hausdorff and T1 are equiv...
tgpt0 23844 Hausdorff and T0 are equiv...
qustgpopn 23845 A quotient map in a topolo...
qustgplem 23846 Lemma for ~ qustgp . (Con...
qustgp 23847 The quotient of a topologi...
qustgphaus 23848 The quotient of a topologi...
prdstmdd 23849 The product of a family of...
prdstgpd 23850 The product of a family of...
tsmsfbas 23853 The collection of all sets...
tsmslem1 23854 The finite partial sums of...
tsmsval2 23855 Definition of the topologi...
tsmsval 23856 Definition of the topologi...
tsmspropd 23857 The group sum depends only...
eltsms 23858 The property of being a su...
tsmsi 23859 The property of being a su...
tsmscl 23860 A sum in a topological gro...
haustsms 23861 In a Hausdorff topological...
haustsms2 23862 In a Hausdorff topological...
tsmscls 23863 One half of ~ tgptsmscls ,...
tsmsgsum 23864 The convergent points of a...
tsmsid 23865 If a sum is finite, the us...
haustsmsid 23866 In a Hausdorff topological...
tsms0 23867 The sum of zero is zero. ...
tsmssubm 23868 Evaluate an infinite group...
tsmsres 23869 Extend an infinite group s...
tsmsf1o 23870 Re-index an infinite group...
tsmsmhm 23871 Apply a continuous group h...
tsmsadd 23872 The sum of two infinite gr...
tsmsinv 23873 Inverse of an infinite gro...
tsmssub 23874 The difference of two infi...
tgptsmscls 23875 A sum in a topological gro...
tgptsmscld 23876 The set of limit points to...
tsmssplit 23877 Split a topological group ...
tsmsxplem1 23878 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 23879 Lemma for ~ tsmsxp . (Con...
tsmsxp 23880 Write a sum over a two-dim...
istrg 23889 Express the predicate " ` ...
trgtmd 23890 The multiplicative monoid ...
istdrg 23891 Express the predicate " ` ...
tdrgunit 23892 The unit group of a topolo...
trgtgp 23893 A topological ring is a to...
trgtmd2 23894 A topological ring is a to...
trgtps 23895 A topological ring is a to...
trgring 23896 A topological ring is a ri...
trggrp 23897 A topological ring is a gr...
tdrgtrg 23898 A topological division rin...
tdrgdrng 23899 A topological division rin...
tdrgring 23900 A topological division rin...
tdrgtmd 23901 A topological division rin...
tdrgtps 23902 A topological division rin...
istdrg2 23903 A topological-ring divisio...
mulrcn 23904 The functionalization of t...
invrcn2 23905 The multiplicative inverse...
invrcn 23906 The multiplicative inverse...
cnmpt1mulr 23907 Continuity of ring multipl...
cnmpt2mulr 23908 Continuity of ring multipl...
dvrcn 23909 The division function is c...
istlm 23910 The predicate " ` W ` is a...
vscacn 23911 The scalar multiplication ...
tlmtmd 23912 A topological module is a ...
tlmtps 23913 A topological module is a ...
tlmlmod 23914 A topological module is a ...
tlmtrg 23915 The scalar ring of a topol...
tlmscatps 23916 The scalar ring of a topol...
istvc 23917 A topological vector space...
tvctdrg 23918 The scalar field of a topo...
cnmpt1vsca 23919 Continuity of scalar multi...
cnmpt2vsca 23920 Continuity of scalar multi...
tlmtgp 23921 A topological vector space...
tvctlm 23922 A topological vector space...
tvclmod 23923 A topological vector space...
tvclvec 23924 A topological vector space...
ustfn 23927 The defined uniform struct...
ustval 23928 The class of all uniform s...
isust 23929 The predicate " ` U ` is a...
ustssxp 23930 Entourages are subsets of ...
ustssel 23931 A uniform structure is upw...
ustbasel 23932 The full set is always an ...
ustincl 23933 A uniform structure is clo...
ustdiag 23934 The diagonal set is includ...
ustinvel 23935 If ` V ` is an entourage, ...
ustexhalf 23936 For each entourage ` V ` t...
ustrel 23937 The elements of uniform st...
ustfilxp 23938 A uniform structure on a n...
ustne0 23939 A uniform structure cannot...
ustssco 23940 In an uniform structure, a...
ustexsym 23941 In an uniform structure, f...
ustex2sym 23942 In an uniform structure, f...
ustex3sym 23943 In an uniform structure, f...
ustref 23944 Any element of the base se...
ust0 23945 The unique uniform structu...
ustn0 23946 The empty set is not an un...
ustund 23947 If two intersecting sets `...
ustelimasn 23948 Any point ` A ` is near en...
ustneism 23949 For a point ` A ` in ` X `...
elrnustOLD 23950 Obsolete version of ~ elfv...
ustbas2 23951 Second direction for ~ ust...
ustuni 23952 The set union of a uniform...
ustbas 23953 Recover the base of an uni...
ustimasn 23954 Lemma for ~ ustuqtop . (C...
trust 23955 The trace of a uniform str...
utopval 23958 The topology induced by a ...
elutop 23959 Open sets in the topology ...
utoptop 23960 The topology induced by a ...
utopbas 23961 The base of the topology i...
utoptopon 23962 Topology induced by a unif...
restutop 23963 Restriction of a topology ...
restutopopn 23964 The restriction of the top...
ustuqtoplem 23965 Lemma for ~ ustuqtop . (C...
ustuqtop0 23966 Lemma for ~ ustuqtop . (C...
ustuqtop1 23967 Lemma for ~ ustuqtop , sim...
ustuqtop2 23968 Lemma for ~ ustuqtop . (C...
ustuqtop3 23969 Lemma for ~ ustuqtop , sim...
ustuqtop4 23970 Lemma for ~ ustuqtop . (C...
ustuqtop5 23971 Lemma for ~ ustuqtop . (C...
ustuqtop 23972 For a given uniform struct...
utopsnneiplem 23973 The neighborhoods of a poi...
utopsnneip 23974 The neighborhoods of a poi...
utopsnnei 23975 Images of singletons by en...
utop2nei 23976 For any symmetrical entour...
utop3cls 23977 Relation between a topolog...
utopreg 23978 All Hausdorff uniform spac...
ussval 23985 The uniform structure on u...
ussid 23986 In case the base of the ` ...
isusp 23987 The predicate ` W ` is a u...
ressuss 23988 Value of the uniform struc...
ressust 23989 The uniform structure of a...
ressusp 23990 The restriction of a unifo...
tusval 23991 The value of the uniform s...
tuslem 23992 Lemma for ~ tusbas , ~ tus...
tuslemOLD 23993 Obsolete proof of ~ tuslem...
tusbas 23994 The base set of a construc...
tusunif 23995 The uniform structure of a...
tususs 23996 The uniform structure of a...
tustopn 23997 The topology induced by a ...
tususp 23998 A constructed uniform spac...
tustps 23999 A constructed uniform spac...
uspreg 24000 If a uniform space is Haus...
ucnval 24003 The set of all uniformly c...
isucn 24004 The predicate " ` F ` is a...
isucn2 24005 The predicate " ` F ` is a...
ucnimalem 24006 Reformulate the ` G ` func...
ucnima 24007 An equivalent statement of...
ucnprima 24008 The preimage by a uniforml...
iducn 24009 The identity is uniformly ...
cstucnd 24010 A constant function is uni...
ucncn 24011 Uniform continuity implies...
iscfilu 24014 The predicate " ` F ` is a...
cfilufbas 24015 A Cauchy filter base is a ...
cfiluexsm 24016 For a Cauchy filter base a...
fmucndlem 24017 Lemma for ~ fmucnd . (Con...
fmucnd 24018 The image of a Cauchy filt...
cfilufg 24019 The filter generated by a ...
trcfilu 24020 Condition for the trace of...
cfiluweak 24021 A Cauchy filter base is al...
neipcfilu 24022 In an uniform space, a nei...
iscusp 24025 The predicate " ` W ` is a...
cuspusp 24026 A complete uniform space i...
cuspcvg 24027 In a complete uniform spac...
iscusp2 24028 The predicate " ` W ` is a...
cnextucn 24029 Extension by continuity. ...
ucnextcn 24030 Extension by continuity. ...
ispsmet 24031 Express the predicate " ` ...
psmetdmdm 24032 Recover the base set from ...
psmetf 24033 The distance function of a...
psmetcl 24034 Closure of the distance fu...
psmet0 24035 The distance function of a...
psmettri2 24036 Triangle inequality for th...
psmetsym 24037 The distance function of a...
psmettri 24038 Triangle inequality for th...
psmetge0 24039 The distance function of a...
psmetxrge0 24040 The distance function of a...
psmetres2 24041 Restriction of a pseudomet...
psmetlecl 24042 Real closure of an extende...
distspace 24043 A set ` X ` together with ...
ismet 24050 Express the predicate " ` ...
isxmet 24051 Express the predicate " ` ...
ismeti 24052 Properties that determine ...
isxmetd 24053 Properties that determine ...
isxmet2d 24054 It is safe to only require...
metflem 24055 Lemma for ~ metf and other...
xmetf 24056 Mapping of the distance fu...
metf 24057 Mapping of the distance fu...
xmetcl 24058 Closure of the distance fu...
metcl 24059 Closure of the distance fu...
ismet2 24060 An extended metric is a me...
metxmet 24061 A metric is an extended me...
xmetdmdm 24062 Recover the base set from ...
metdmdm 24063 Recover the base set from ...
xmetunirn 24064 Two ways to express an ext...
xmeteq0 24065 The value of an extended m...
meteq0 24066 The value of a metric is z...
xmettri2 24067 Triangle inequality for th...
mettri2 24068 Triangle inequality for th...
xmet0 24069 The distance function of a...
met0 24070 The distance function of a...
xmetge0 24071 The distance function of a...
metge0 24072 The distance function of a...
xmetlecl 24073 Real closure of an extende...
xmetsym 24074 The distance function of a...
xmetpsmet 24075 An extended metric is a ps...
xmettpos 24076 The distance function of a...
metsym 24077 The distance function of a...
xmettri 24078 Triangle inequality for th...
mettri 24079 Triangle inequality for th...
xmettri3 24080 Triangle inequality for th...
mettri3 24081 Triangle inequality for th...
xmetrtri 24082 One half of the reverse tr...
xmetrtri2 24083 The reverse triangle inequ...
metrtri 24084 Reverse triangle inequalit...
xmetgt0 24085 The distance function of a...
metgt0 24086 The distance function of a...
metn0 24087 A metric space is nonempty...
xmetres2 24088 Restriction of an extended...
metreslem 24089 Lemma for ~ metres . (Con...
metres2 24090 Lemma for ~ metres . (Con...
xmetres 24091 A restriction of an extend...
metres 24092 A restriction of a metric ...
0met 24093 The empty metric. (Contri...
prdsdsf 24094 The product metric is a fu...
prdsxmetlem 24095 The product metric is an e...
prdsxmet 24096 The product metric is an e...
prdsmet 24097 The product metric is a me...
ressprdsds 24098 Restriction of a product m...
resspwsds 24099 Restriction of a power met...
imasdsf1olem 24100 Lemma for ~ imasdsf1o . (...
imasdsf1o 24101 The distance function is t...
imasf1oxmet 24102 The image of an extended m...
imasf1omet 24103 The image of a metric is a...
xpsdsfn 24104 Closure of the metric in a...
xpsdsfn2 24105 Closure of the metric in a...
xpsxmetlem 24106 Lemma for ~ xpsxmet . (Co...
xpsxmet 24107 A product metric of extend...
xpsdsval 24108 Value of the metric in a b...
xpsmet 24109 The direct product of two ...
blfvalps 24110 The value of the ball func...
blfval 24111 The value of the ball func...
blvalps 24112 The ball around a point ` ...
blval 24113 The ball around a point ` ...
elblps 24114 Membership in a ball. (Co...
elbl 24115 Membership in a ball. (Co...
elbl2ps 24116 Membership in a ball. (Co...
elbl2 24117 Membership in a ball. (Co...
elbl3ps 24118 Membership in a ball, with...
elbl3 24119 Membership in a ball, with...
blcomps 24120 Commute the arguments to t...
blcom 24121 Commute the arguments to t...
xblpnfps 24122 The infinity ball in an ex...
xblpnf 24123 The infinity ball in an ex...
blpnf 24124 The infinity ball in a sta...
bldisj 24125 Two balls are disjoint if ...
blgt0 24126 A nonempty ball implies th...
bl2in 24127 Two balls are disjoint if ...
xblss2ps 24128 One ball is contained in a...
xblss2 24129 One ball is contained in a...
blss2ps 24130 One ball is contained in a...
blss2 24131 One ball is contained in a...
blhalf 24132 A ball of radius ` R / 2 `...
blfps 24133 Mapping of a ball. (Contr...
blf 24134 Mapping of a ball. (Contr...
blrnps 24135 Membership in the range of...
blrn 24136 Membership in the range of...
xblcntrps 24137 A ball contains its center...
xblcntr 24138 A ball contains its center...
blcntrps 24139 A ball contains its center...
blcntr 24140 A ball contains its center...
xbln0 24141 A ball is nonempty iff the...
bln0 24142 A ball is not empty. (Con...
blelrnps 24143 A ball belongs to the set ...
blelrn 24144 A ball belongs to the set ...
blssm 24145 A ball is a subset of the ...
unirnblps 24146 The union of the set of ba...
unirnbl 24147 The union of the set of ba...
blin 24148 The intersection of two ba...
ssblps 24149 The size of a ball increas...
ssbl 24150 The size of a ball increas...
blssps 24151 Any point ` P ` in a ball ...
blss 24152 Any point ` P ` in a ball ...
blssexps 24153 Two ways to express the ex...
blssex 24154 Two ways to express the ex...
ssblex 24155 A nested ball exists whose...
blin2 24156 Given any two balls and a ...
blbas 24157 The balls of a metric spac...
blres 24158 A ball in a restricted met...
xmeterval 24159 Value of the "finitely sep...
xmeter 24160 The "finitely separated" r...
xmetec 24161 The equivalence classes un...
blssec 24162 A ball centered at ` P ` i...
blpnfctr 24163 The infinity ball in an ex...
xmetresbl 24164 An extended metric restric...
mopnval 24165 An open set is a subset of...
mopntopon 24166 The set of open sets of a ...
mopntop 24167 The set of open sets of a ...
mopnuni 24168 The union of all open sets...
elmopn 24169 The defining property of a...
mopnfss 24170 The family of open sets of...
mopnm 24171 The base set of a metric s...
elmopn2 24172 A defining property of an ...
mopnss 24173 An open set of a metric sp...
isxms 24174 Express the predicate " ` ...
isxms2 24175 Express the predicate " ` ...
isms 24176 Express the predicate " ` ...
isms2 24177 Express the predicate " ` ...
xmstopn 24178 The topology component of ...
mstopn 24179 The topology component of ...
xmstps 24180 An extended metric space i...
msxms 24181 A metric space is an exten...
mstps 24182 A metric space is a topolo...
xmsxmet 24183 The distance function, sui...
msmet 24184 The distance function, sui...
msf 24185 The distance function of a...
xmsxmet2 24186 The distance function, sui...
msmet2 24187 The distance function, sui...
mscl 24188 Closure of the distance fu...
xmscl 24189 Closure of the distance fu...
xmsge0 24190 The distance function in a...
xmseq0 24191 The distance between two p...
xmssym 24192 The distance function in a...
xmstri2 24193 Triangle inequality for th...
mstri2 24194 Triangle inequality for th...
xmstri 24195 Triangle inequality for th...
mstri 24196 Triangle inequality for th...
xmstri3 24197 Triangle inequality for th...
mstri3 24198 Triangle inequality for th...
msrtri 24199 Reverse triangle inequalit...
xmspropd 24200 Property deduction for an ...
mspropd 24201 Property deduction for a m...
setsmsbas 24202 The base set of a construc...
setsmsbasOLD 24203 Obsolete proof of ~ setsms...
setsmsds 24204 The distance function of a...
setsmsdsOLD 24205 Obsolete proof of ~ setsms...
setsmstset 24206 The topology of a construc...
setsmstopn 24207 The topology of a construc...
setsxms 24208 The constructed metric spa...
setsms 24209 The constructed metric spa...
tmsval 24210 For any metric there is an...
tmslem 24211 Lemma for ~ tmsbas , ~ tms...
tmslemOLD 24212 Obsolete version of ~ tmsl...
tmsbas 24213 The base set of a construc...
tmsds 24214 The metric of a constructe...
tmstopn 24215 The topology of a construc...
tmsxms 24216 The constructed metric spa...
tmsms 24217 The constructed metric spa...
imasf1obl 24218 The image of a metric spac...
imasf1oxms 24219 The image of a metric spac...
imasf1oms 24220 The image of a metric spac...
prdsbl 24221 A ball in the product metr...
mopni 24222 An open set of a metric sp...
mopni2 24223 An open set of a metric sp...
mopni3 24224 An open set of a metric sp...
blssopn 24225 The balls of a metric spac...
unimopn 24226 The union of a collection ...
mopnin 24227 The intersection of two op...
mopn0 24228 The empty set is an open s...
rnblopn 24229 A ball of a metric space i...
blopn 24230 A ball of a metric space i...
neibl 24231 The neighborhoods around a...
blnei 24232 A ball around a point is a...
lpbl 24233 Every ball around a limit ...
blsscls2 24234 A smaller closed ball is c...
blcld 24235 A "closed ball" in a metri...
blcls 24236 The closure of an open bal...
blsscls 24237 If two concentric balls ha...
metss 24238 Two ways of saying that me...
metequiv 24239 Two ways of saying that tw...
metequiv2 24240 If there is a sequence of ...
metss2lem 24241 Lemma for ~ metss2 . (Con...
metss2 24242 If the metric ` D ` is "st...
comet 24243 The composition of an exte...
stdbdmetval 24244 Value of the standard boun...
stdbdxmet 24245 The standard bounded metri...
stdbdmet 24246 The standard bounded metri...
stdbdbl 24247 The standard bounded metri...
stdbdmopn 24248 The standard bounded metri...
mopnex 24249 The topology generated by ...
methaus 24250 The topology generated by ...
met1stc 24251 The topology generated by ...
met2ndci 24252 A separable metric space (...
met2ndc 24253 A metric space is second-c...
metrest 24254 Two alternate formulations...
ressxms 24255 The restriction of a metri...
ressms 24256 The restriction of a metri...
prdsmslem1 24257 Lemma for ~ prdsms . The ...
prdsxmslem1 24258 Lemma for ~ prdsms . The ...
prdsxmslem2 24259 Lemma for ~ prdsxms . The...
prdsxms 24260 The indexed product struct...
prdsms 24261 The indexed product struct...
pwsxms 24262 A power of an extended met...
pwsms 24263 A power of a metric space ...
xpsxms 24264 A binary product of metric...
xpsms 24265 A binary product of metric...
tmsxps 24266 Express the product of two...
tmsxpsmopn 24267 Express the product of two...
tmsxpsval 24268 Value of the product of tw...
tmsxpsval2 24269 Value of the product of tw...
metcnp3 24270 Two ways to express that `...
metcnp 24271 Two ways to say a mapping ...
metcnp2 24272 Two ways to say a mapping ...
metcn 24273 Two ways to say a mapping ...
metcnpi 24274 Epsilon-delta property of ...
metcnpi2 24275 Epsilon-delta property of ...
metcnpi3 24276 Epsilon-delta property of ...
txmetcnp 24277 Continuity of a binary ope...
txmetcn 24278 Continuity of a binary ope...
metuval 24279 Value of the uniform struc...
metustel 24280 Define a filter base ` F `...
metustss 24281 Range of the elements of t...
metustrel 24282 Elements of the filter bas...
metustto 24283 Any two elements of the fi...
metustid 24284 The identity diagonal is i...
metustsym 24285 Elements of the filter bas...
metustexhalf 24286 For any element ` A ` of t...
metustfbas 24287 The filter base generated ...
metust 24288 The uniform structure gene...
cfilucfil 24289 Given a metric ` D ` and a...
metuust 24290 The uniform structure gene...
cfilucfil2 24291 Given a metric ` D ` and a...
blval2 24292 The ball around a point ` ...
elbl4 24293 Membership in a ball, alte...
metuel 24294 Elementhood in the uniform...
metuel2 24295 Elementhood in the uniform...
metustbl 24296 The "section" image of an ...
psmetutop 24297 The topology induced by a ...
xmetutop 24298 The topology induced by a ...
xmsusp 24299 If the uniform set of a me...
restmetu 24300 The uniform structure gene...
metucn 24301 Uniform continuity in metr...
dscmet 24302 The discrete metric on any...
dscopn 24303 The discrete metric genera...
nrmmetd 24304 Show that a group norm gen...
abvmet 24305 An absolute value ` F ` ge...
nmfval 24318 The value of the norm func...
nmval 24319 The value of the norm as t...
nmfval0 24320 The value of the norm func...
nmfval2 24321 The value of the norm func...
nmval2 24322 The value of the norm on a...
nmf2 24323 The norm on a metric group...
nmpropd 24324 Weak property deduction fo...
nmpropd2 24325 Strong property deduction ...
isngp 24326 The property of being a no...
isngp2 24327 The property of being a no...
isngp3 24328 The property of being a no...
ngpgrp 24329 A normed group is a group....
ngpms 24330 A normed group is a metric...
ngpxms 24331 A normed group is an exten...
ngptps 24332 A normed group is a topolo...
ngpmet 24333 The (induced) metric of a ...
ngpds 24334 Value of the distance func...
ngpdsr 24335 Value of the distance func...
ngpds2 24336 Write the distance between...
ngpds2r 24337 Write the distance between...
ngpds3 24338 Write the distance between...
ngpds3r 24339 Write the distance between...
ngprcan 24340 Cancel right addition insi...
ngplcan 24341 Cancel left addition insid...
isngp4 24342 Express the property of be...
ngpinvds 24343 Two elements are the same ...
ngpsubcan 24344 Cancel right subtraction i...
nmf 24345 The norm on a normed group...
nmcl 24346 The norm of a normed group...
nmge0 24347 The norm of a normed group...
nmeq0 24348 The identity is the only e...
nmne0 24349 The norm of a nonzero elem...
nmrpcl 24350 The norm of a nonzero elem...
nminv 24351 The norm of a negated elem...
nmmtri 24352 The triangle inequality fo...
nmsub 24353 The norm of the difference...
nmrtri 24354 Reverse triangle inequalit...
nm2dif 24355 Inequality for the differe...
nmtri 24356 The triangle inequality fo...
nmtri2 24357 Triangle inequality for th...
ngpi 24358 The properties of a normed...
nm0 24359 Norm of the identity eleme...
nmgt0 24360 The norm of a nonzero elem...
sgrim 24361 The induced metric on a su...
sgrimval 24362 The induced metric on a su...
subgnm 24363 The norm in a subgroup. (...
subgnm2 24364 A substructure assigns the...
subgngp 24365 A normed group restricted ...
ngptgp 24366 A normed abelian group is ...
ngppropd 24367 Property deduction for a n...
reldmtng 24368 The function ` toNrmGrp ` ...
tngval 24369 Value of the function whic...
tnglem 24370 Lemma for ~ tngbas and sim...
tnglemOLD 24371 Obsolete version of ~ tngl...
tngbas 24372 The base set of a structur...
tngbasOLD 24373 Obsolete proof of ~ tngbas...
tngplusg 24374 The group addition of a st...
tngplusgOLD 24375 Obsolete proof of ~ tngplu...
tng0 24376 The group identity of a st...
tngmulr 24377 The ring multiplication of...
tngmulrOLD 24378 Obsolete proof of ~ tngmul...
tngsca 24379 The scalar ring of a struc...
tngscaOLD 24380 Obsolete proof of ~ tngsca...
tngvsca 24381 The scalar multiplication ...
tngvscaOLD 24382 Obsolete proof of ~ tngvsc...
tngip 24383 The inner product operatio...
tngipOLD 24384 Obsolete proof of ~ tngip ...
tngds 24385 The metric function of a s...
tngdsOLD 24386 Obsolete proof of ~ tngds ...
tngtset 24387 The topology generated by ...
tngtopn 24388 The topology generated by ...
tngnm 24389 The topology generated by ...
tngngp2 24390 A norm turns a group into ...
tngngpd 24391 Derive the axioms for a no...
tngngp 24392 Derive the axioms for a no...
tnggrpr 24393 If a structure equipped wi...
tngngp3 24394 Alternate definition of a ...
nrmtngdist 24395 The augmentation of a norm...
nrmtngnrm 24396 The augmentation of a norm...
tngngpim 24397 The induced metric of a no...
isnrg 24398 A normed ring is a ring wi...
nrgabv 24399 The norm of a normed ring ...
nrgngp 24400 A normed ring is a normed ...
nrgring 24401 A normed ring is a ring. ...
nmmul 24402 The norm of a product in a...
nrgdsdi 24403 Distribute a distance calc...
nrgdsdir 24404 Distribute a distance calc...
nm1 24405 The norm of one in a nonze...
unitnmn0 24406 The norm of a unit is nonz...
nminvr 24407 The norm of an inverse in ...
nmdvr 24408 The norm of a division in ...
nrgdomn 24409 A nonzero normed ring is a...
nrgtgp 24410 A normed ring is a topolog...
subrgnrg 24411 A normed ring restricted t...
tngnrg 24412 Given any absolute value o...
isnlm 24413 A normed (left) module is ...
nmvs 24414 Defining property of a nor...
nlmngp 24415 A normed module is a norme...
nlmlmod 24416 A normed module is a left ...
nlmnrg 24417 The scalar component of a ...
nlmngp2 24418 The scalar component of a ...
nlmdsdi 24419 Distribute a distance calc...
nlmdsdir 24420 Distribute a distance calc...
nlmmul0or 24421 If a scalar product is zer...
sranlm 24422 The subring algebra over a...
nlmvscnlem2 24423 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 24424 Lemma for ~ nlmvscn . (Co...
nlmvscn 24425 The scalar multiplication ...
rlmnlm 24426 The ring module over a nor...
rlmnm 24427 The norm function in the r...
nrgtrg 24428 A normed ring is a topolog...
nrginvrcnlem 24429 Lemma for ~ nrginvrcn . C...
nrginvrcn 24430 The ring inverse function ...
nrgtdrg 24431 A normed division ring is ...
nlmtlm 24432 A normed module is a topol...
isnvc 24433 A normed vector space is j...
nvcnlm 24434 A normed vector space is a...
nvclvec 24435 A normed vector space is a...
nvclmod 24436 A normed vector space is a...
isnvc2 24437 A normed vector space is j...
nvctvc 24438 A normed vector space is a...
lssnlm 24439 A subspace of a normed mod...
lssnvc 24440 A subspace of a normed vec...
rlmnvc 24441 The ring module over a nor...
ngpocelbl 24442 Membership of an off-cente...
nmoffn 24449 The function producing ope...
reldmnghm 24450 Lemma for normed group hom...
reldmnmhm 24451 Lemma for module homomorph...
nmofval 24452 Value of the operator norm...
nmoval 24453 Value of the operator norm...
nmogelb 24454 Property of the operator n...
nmolb 24455 Any upper bound on the val...
nmolb2d 24456 Any upper bound on the val...
nmof 24457 The operator norm is a fun...
nmocl 24458 The operator norm of an op...
nmoge0 24459 The operator norm of an op...
nghmfval 24460 A normed group homomorphis...
isnghm 24461 A normed group homomorphis...
isnghm2 24462 A normed group homomorphis...
isnghm3 24463 A normed group homomorphis...
bddnghm 24464 A bounded group homomorphi...
nghmcl 24465 A normed group homomorphis...
nmoi 24466 The operator norm achieves...
nmoix 24467 The operator norm is a bou...
nmoi2 24468 The operator norm is a bou...
nmoleub 24469 The operator norm, defined...
nghmrcl1 24470 Reverse closure for a norm...
nghmrcl2 24471 Reverse closure for a norm...
nghmghm 24472 A normed group homomorphis...
nmo0 24473 The operator norm of the z...
nmoeq0 24474 The operator norm is zero ...
nmoco 24475 An upper bound on the oper...
nghmco 24476 The composition of normed ...
nmotri 24477 Triangle inequality for th...
nghmplusg 24478 The sum of two bounded lin...
0nghm 24479 The zero operator is a nor...
nmoid 24480 The operator norm of the i...
idnghm 24481 The identity operator is a...
nmods 24482 Upper bound for the distan...
nghmcn 24483 A normed group homomorphis...
isnmhm 24484 A normed module homomorphi...
nmhmrcl1 24485 Reverse closure for a norm...
nmhmrcl2 24486 Reverse closure for a norm...
nmhmlmhm 24487 A normed module homomorphi...
nmhmnghm 24488 A normed module homomorphi...
nmhmghm 24489 A normed module homomorphi...
isnmhm2 24490 A normed module homomorphi...
nmhmcl 24491 A normed module homomorphi...
idnmhm 24492 The identity operator is a...
0nmhm 24493 The zero operator is a bou...
nmhmco 24494 The composition of bounded...
nmhmplusg 24495 The sum of two bounded lin...
qtopbaslem 24496 The set of open intervals ...
qtopbas 24497 The set of open intervals ...
retopbas 24498 A basis for the standard t...
retop 24499 The standard topology on t...
uniretop 24500 The underlying set of the ...
retopon 24501 The standard topology on t...
retps 24502 The standard topological s...
iooretop 24503 Open intervals are open se...
icccld 24504 Closed intervals are close...
icopnfcld 24505 Right-unbounded closed int...
iocmnfcld 24506 Left-unbounded closed inte...
qdensere 24507 ` QQ ` is dense in the sta...
cnmetdval 24508 Value of the distance func...
cnmet 24509 The absolute value metric ...
cnxmet 24510 The absolute value metric ...
cnbl0 24511 Two ways to write the open...
cnblcld 24512 Two ways to write the clos...
cnfldms 24513 The complex number field i...
cnfldxms 24514 The complex number field i...
cnfldtps 24515 The complex number field i...
cnfldnm 24516 The norm of the field of c...
cnngp 24517 The complex numbers form a...
cnnrg 24518 The complex numbers form a...
cnfldtopn 24519 The topology of the comple...
cnfldtopon 24520 The topology of the comple...
cnfldtop 24521 The topology of the comple...
cnfldhaus 24522 The topology of the comple...
unicntop 24523 The underlying set of the ...
cnopn 24524 The set of complex numbers...
zringnrg 24525 The ring of integers is a ...
remetdval 24526 Value of the distance func...
remet 24527 The absolute value metric ...
rexmet 24528 The absolute value metric ...
bl2ioo 24529 A ball in terms of an open...
ioo2bl 24530 An open interval of reals ...
ioo2blex 24531 An open interval of reals ...
blssioo 24532 The balls of the standard ...
tgioo 24533 The topology generated by ...
qdensere2 24534 ` QQ ` is dense in ` RR ` ...
blcvx 24535 An open ball in the comple...
rehaus 24536 The standard topology on t...
tgqioo 24537 The topology generated by ...
re2ndc 24538 The standard topology on t...
resubmet 24539 The subspace topology indu...
tgioo2 24540 The standard topology on t...
rerest 24541 The subspace topology indu...
tgioo3 24542 The standard topology on t...
xrtgioo 24543 The topology on the extend...
xrrest 24544 The subspace topology indu...
xrrest2 24545 The subspace topology indu...
xrsxmet 24546 The metric on the extended...
xrsdsre 24547 The metric on the extended...
xrsblre 24548 Any ball of the metric of ...
xrsmopn 24549 The metric on the extended...
zcld 24550 The integers are a closed ...
recld2 24551 The real numbers are a clo...
zcld2 24552 The integers are a closed ...
zdis 24553 The integers are a discret...
sszcld 24554 Every subset of the intege...
reperflem 24555 A subset of the real numbe...
reperf 24556 The real numbers are a per...
cnperf 24557 The complex numbers are a ...
iccntr 24558 The interior of a closed i...
icccmplem1 24559 Lemma for ~ icccmp . (Con...
icccmplem2 24560 Lemma for ~ icccmp . (Con...
icccmplem3 24561 Lemma for ~ icccmp . (Con...
icccmp 24562 A closed interval in ` RR ...
reconnlem1 24563 Lemma for ~ reconn . Conn...
reconnlem2 24564 Lemma for ~ reconn . (Con...
reconn 24565 A subset of the reals is c...
retopconn 24566 Corollary of ~ reconn . T...
iccconn 24567 A closed interval is conne...
opnreen 24568 Every nonempty open set is...
rectbntr0 24569 A countable subset of the ...
xrge0gsumle 24570 A finite sum in the nonneg...
xrge0tsms 24571 Any finite or infinite sum...
xrge0tsms2 24572 Any finite or infinite sum...
metdcnlem 24573 The metric function of a m...
xmetdcn2 24574 The metric function of an ...
xmetdcn 24575 The metric function of an ...
metdcn2 24576 The metric function of a m...
metdcn 24577 The metric function of a m...
msdcn 24578 The metric function of a m...
cnmpt1ds 24579 Continuity of the metric f...
cnmpt2ds 24580 Continuity of the metric f...
nmcn 24581 The norm of a normed group...
ngnmcncn 24582 The norm of a normed group...
abscn 24583 The absolute value functio...
metdsval 24584 Value of the "distance to ...
metdsf 24585 The distance from a point ...
metdsge 24586 The distance from the poin...
metds0 24587 If a point is in a set, it...
metdstri 24588 A generalization of the tr...
metdsle 24589 The distance from a point ...
metdsre 24590 The distance from a point ...
metdseq0 24591 The distance from a point ...
metdscnlem 24592 Lemma for ~ metdscn . (Co...
metdscn 24593 The function ` F ` which g...
metdscn2 24594 The function ` F ` which g...
metnrmlem1a 24595 Lemma for ~ metnrm . (Con...
metnrmlem1 24596 Lemma for ~ metnrm . (Con...
metnrmlem2 24597 Lemma for ~ metnrm . (Con...
metnrmlem3 24598 Lemma for ~ metnrm . (Con...
metnrm 24599 A metric space is normal. ...
metreg 24600 A metric space is regular....
addcnlem 24601 Lemma for ~ addcn , ~ subc...
addcn 24602 Complex number addition is...
subcn 24603 Complex number subtraction...
mulcn 24604 Complex number multiplicat...
divcnOLD 24605 Obsolete version of ~ divc...
mpomulcn 24606 Complex number multiplicat...
divcn 24607 Complex number division is...
cnfldtgp 24608 The complex numbers form a...
fsumcn 24609 A finite sum of functions ...
fsum2cn 24610 Version of ~ fsumcn for tw...
expcn 24611 The power function on comp...
divccn 24612 Division by a nonzero cons...
expcnOLD 24613 Obsolete version of ~ expc...
divccnOLD 24614 Obsolete version of ~ divc...
sqcn 24615 The square function on com...
iitopon 24620 The unit interval is a top...
iitop 24621 The unit interval is a top...
iiuni 24622 The base set of the unit i...
dfii2 24623 Alternate definition of th...
dfii3 24624 Alternate definition of th...
dfii4 24625 Alternate definition of th...
dfii5 24626 The unit interval expresse...
iicmp 24627 The unit interval is compa...
iiconn 24628 The unit interval is conne...
cncfval 24629 The value of the continuou...
elcncf 24630 Membership in the set of c...
elcncf2 24631 Version of ~ elcncf with a...
cncfrss 24632 Reverse closure of the con...
cncfrss2 24633 Reverse closure of the con...
cncff 24634 A continuous complex funct...
cncfi 24635 Defining property of a con...
elcncf1di 24636 Membership in the set of c...
elcncf1ii 24637 Membership in the set of c...
rescncf 24638 A continuous complex funct...
cncfcdm 24639 Change the codomain of a c...
cncfss 24640 The set of continuous func...
climcncf 24641 Image of a limit under a c...
abscncf 24642 Absolute value is continuo...
recncf 24643 Real part is continuous. ...
imcncf 24644 Imaginary part is continuo...
cjcncf 24645 Complex conjugate is conti...
mulc1cncf 24646 Multiplication by a consta...
divccncf 24647 Division by a constant is ...
cncfco 24648 The composition of two con...
cncfcompt2 24649 Composition of continuous ...
cncfmet 24650 Relate complex function co...
cncfcn 24651 Relate complex function co...
cncfcn1 24652 Relate complex function co...
cncfmptc 24653 A constant function is a c...
cncfmptid 24654 The identity function is a...
cncfmpt1f 24655 Composition of continuous ...
cncfmpt2f 24656 Composition of continuous ...
cncfmpt2ss 24657 Composition of continuous ...
addccncf 24658 Adding a constant is a con...
idcncf 24659 The identity function is a...
sub1cncf 24660 Subtracting a constant is ...
sub2cncf 24661 Subtraction from a constan...
cdivcncf 24662 Division with a constant n...
negcncf 24663 The negative function is c...
negcncfOLD 24664 Obsolete version of ~ negc...
negfcncf 24665 The negative of a continuo...
abscncfALT 24666 Absolute value is continuo...
cncfcnvcn 24667 Rewrite ~ cmphaushmeo for ...
expcncf 24668 The power function on comp...
cnmptre 24669 Lemma for ~ iirevcn and re...
cnmpopc 24670 Piecewise definition of a ...
iirev 24671 Reverse the unit interval....
iirevcn 24672 The reversion function is ...
iihalf1 24673 Map the first half of ` II...
iihalf1cn 24674 The first half function is...
iihalf1cnOLD 24675 Obsolete version of ~ iiha...
iihalf2 24676 Map the second half of ` I...
iihalf2cn 24677 The second half function i...
iihalf2cnOLD 24678 Obsolete version of ~ iiha...
elii1 24679 Divide the unit interval i...
elii2 24680 Divide the unit interval i...
iimulcl 24681 The unit interval is close...
iimulcn 24682 Multiplication is a contin...
iimulcnOLD 24683 Obsolete version of ~ iimu...
icoopnst 24684 A half-open interval start...
iocopnst 24685 A half-open interval endin...
icchmeo 24686 The natural bijection from...
icchmeoOLD 24687 Obsolete version of ~ icch...
icopnfcnv 24688 Define a bijection from ` ...
icopnfhmeo 24689 The defined bijection from...
iccpnfcnv 24690 Define a bijection from ` ...
iccpnfhmeo 24691 The defined bijection from...
xrhmeo 24692 The bijection from ` [ -u ...
xrhmph 24693 The extended reals are hom...
xrcmp 24694 The topology of the extend...
xrconn 24695 The topology of the extend...
icccvx 24696 A linear combination of tw...
oprpiece1res1 24697 Restriction to the first p...
oprpiece1res2 24698 Restriction to the second ...
cnrehmeo 24699 The canonical bijection fr...
cnrehmeoOLD 24700 Obsolete version of ~ cnre...
cnheiborlem 24701 Lemma for ~ cnheibor . (C...
cnheibor 24702 Heine-Borel theorem for co...
cnllycmp 24703 The topology on the comple...
rellycmp 24704 The topology on the reals ...
bndth 24705 The Boundedness Theorem. ...
evth 24706 The Extreme Value Theorem....
evth2 24707 The Extreme Value Theorem,...
lebnumlem1 24708 Lemma for ~ lebnum . The ...
lebnumlem2 24709 Lemma for ~ lebnum . As a...
lebnumlem3 24710 Lemma for ~ lebnum . By t...
lebnum 24711 The Lebesgue number lemma,...
xlebnum 24712 Generalize ~ lebnum to ext...
lebnumii 24713 Specialize the Lebesgue nu...
ishtpy 24719 Membership in the class of...
htpycn 24720 A homotopy is a continuous...
htpyi 24721 A homotopy evaluated at it...
ishtpyd 24722 Deduction for membership i...
htpycom 24723 Given a homotopy from ` F ...
htpyid 24724 A homotopy from a function...
htpyco1 24725 Compose a homotopy with a ...
htpyco2 24726 Compose a homotopy with a ...
htpycc 24727 Concatenate two homotopies...
isphtpy 24728 Membership in the class of...
phtpyhtpy 24729 A path homotopy is a homot...
phtpycn 24730 A path homotopy is a conti...
phtpyi 24731 Membership in the class of...
phtpy01 24732 Two path-homotopic paths h...
isphtpyd 24733 Deduction for membership i...
isphtpy2d 24734 Deduction for membership i...
phtpycom 24735 Given a homotopy from ` F ...
phtpyid 24736 A homotopy from a path to ...
phtpyco2 24737 Compose a path homotopy wi...
phtpycc 24738 Concatenate two path homot...
phtpcrel 24740 The path homotopy relation...
isphtpc 24741 The relation "is path homo...
phtpcer 24742 Path homotopy is an equiva...
phtpc01 24743 Path homotopic paths have ...
reparphti 24744 Lemma for ~ reparpht . (C...
reparphtiOLD 24745 Obsolete version of ~ repa...
reparpht 24746 Reparametrization lemma. ...
phtpcco2 24747 Compose a path homotopy wi...
pcofval 24758 The value of the path conc...
pcoval 24759 The concatenation of two p...
pcovalg 24760 Evaluate the concatenation...
pcoval1 24761 Evaluate the concatenation...
pco0 24762 The starting point of a pa...
pco1 24763 The ending point of a path...
pcoval2 24764 Evaluate the concatenation...
pcocn 24765 The concatenation of two p...
copco 24766 The composition of a conca...
pcohtpylem 24767 Lemma for ~ pcohtpy . (Co...
pcohtpy 24768 Homotopy invariance of pat...
pcoptcl 24769 A constant function is a p...
pcopt 24770 Concatenation with a point...
pcopt2 24771 Concatenation with a point...
pcoass 24772 Order of concatenation doe...
pcorevcl 24773 Closure for a reversed pat...
pcorevlem 24774 Lemma for ~ pcorev . Prov...
pcorev 24775 Concatenation with the rev...
pcorev2 24776 Concatenation with the rev...
pcophtb 24777 The path homotopy equivale...
om1val 24778 The definition of the loop...
om1bas 24779 The base set of the loop s...
om1elbas 24780 Elementhood in the base se...
om1addcl 24781 Closure of the group opera...
om1plusg 24782 The group operation (which...
om1tset 24783 The topology of the loop s...
om1opn 24784 The topology of the loop s...
pi1val 24785 The definition of the fund...
pi1bas 24786 The base set of the fundam...
pi1blem 24787 Lemma for ~ pi1buni . (Co...
pi1buni 24788 Another way to write the l...
pi1bas2 24789 The base set of the fundam...
pi1eluni 24790 Elementhood in the base se...
pi1bas3 24791 The base set of the fundam...
pi1cpbl 24792 The group operation, loop ...
elpi1 24793 The elements of the fundam...
elpi1i 24794 The elements of the fundam...
pi1addf 24795 The group operation of ` p...
pi1addval 24796 The concatenation of two p...
pi1grplem 24797 Lemma for ~ pi1grp . (Con...
pi1grp 24798 The fundamental group is a...
pi1id 24799 The identity element of th...
pi1inv 24800 An inverse in the fundamen...
pi1xfrf 24801 Functionality of the loop ...
pi1xfrval 24802 The value of the loop tran...
pi1xfr 24803 Given a path ` F ` and its...
pi1xfrcnvlem 24804 Given a path ` F ` between...
pi1xfrcnv 24805 Given a path ` F ` between...
pi1xfrgim 24806 The mapping ` G ` between ...
pi1cof 24807 Functionality of the loop ...
pi1coval 24808 The value of the loop tran...
pi1coghm 24809 The mapping ` G ` between ...
isclm 24812 A subcomplex module is a l...
clmsca 24813 The ring of scalars ` F ` ...
clmsubrg 24814 The base set of the ring o...
clmlmod 24815 A subcomplex module is a l...
clmgrp 24816 A subcomplex module is an ...
clmabl 24817 A subcomplex module is an ...
clmring 24818 The scalar ring of a subco...
clmfgrp 24819 The scalar ring of a subco...
clm0 24820 The zero of the scalar rin...
clm1 24821 The identity of the scalar...
clmadd 24822 The addition of the scalar...
clmmul 24823 The multiplication of the ...
clmcj 24824 The conjugation of the sca...
isclmi 24825 Reverse direction of ~ isc...
clmzss 24826 The scalar ring of a subco...
clmsscn 24827 The scalar ring of a subco...
clmsub 24828 Subtraction in the scalar ...
clmneg 24829 Negation in the scalar rin...
clmneg1 24830 Minus one is in the scalar...
clmabs 24831 Norm in the scalar ring of...
clmacl 24832 Closure of ring addition f...
clmmcl 24833 Closure of ring multiplica...
clmsubcl 24834 Closure of ring subtractio...
lmhmclm 24835 The domain of a linear ope...
clmvscl 24836 Closure of scalar product ...
clmvsass 24837 Associative law for scalar...
clmvscom 24838 Commutative law for the sc...
clmvsdir 24839 Distributive law for scala...
clmvsdi 24840 Distributive law for scala...
clmvs1 24841 Scalar product with ring u...
clmvs2 24842 A vector plus itself is tw...
clm0vs 24843 Zero times a vector is the...
clmopfne 24844 The (functionalized) opera...
isclmp 24845 The predicate "is a subcom...
isclmi0 24846 Properties that determine ...
clmvneg1 24847 Minus 1 times a vector is ...
clmvsneg 24848 Multiplication of a vector...
clmmulg 24849 The group multiple functio...
clmsubdir 24850 Scalar multiplication dist...
clmpm1dir 24851 Subtractive distributive l...
clmnegneg 24852 Double negative of a vecto...
clmnegsubdi2 24853 Distribution of negative o...
clmsub4 24854 Rearrangement of 4 terms i...
clmvsrinv 24855 A vector minus itself. (C...
clmvslinv 24856 Minus a vector plus itself...
clmvsubval 24857 Value of vector subtractio...
clmvsubval2 24858 Value of vector subtractio...
clmvz 24859 Two ways to express the ne...
zlmclm 24860 The ` ZZ ` -module operati...
clmzlmvsca 24861 The scalar product of a su...
nmoleub2lem 24862 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 24863 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 24864 Lemma for ~ nmoleub2a and ...
nmoleub2a 24865 The operator norm is the s...
nmoleub2b 24866 The operator norm is the s...
nmoleub3 24867 The operator norm is the s...
nmhmcn 24868 A linear operator over a n...
cmodscexp 24869 The powers of ` _i ` belon...
cmodscmulexp 24870 The scalar product of a ve...
cvslvec 24873 A subcomplex vector space ...
cvsclm 24874 A subcomplex vector space ...
iscvs 24875 A subcomplex vector space ...
iscvsp 24876 The predicate "is a subcom...
iscvsi 24877 Properties that determine ...
cvsi 24878 The properties of a subcom...
cvsunit 24879 Unit group of the scalar r...
cvsdiv 24880 Division of the scalar rin...
cvsdivcl 24881 The scalar field of a subc...
cvsmuleqdivd 24882 An equality involving rati...
cvsdiveqd 24883 An equality involving rati...
cnlmodlem1 24884 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 24885 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 24886 Lemma 3 for ~ cnlmod . (C...
cnlmod4 24887 Lemma 4 for ~ cnlmod . (C...
cnlmod 24888 The set of complex numbers...
cnstrcvs 24889 The set of complex numbers...
cnrbas 24890 The set of complex numbers...
cnrlmod 24891 The complex left module of...
cnrlvec 24892 The complex left module of...
cncvs 24893 The complex left module of...
recvs 24894 The field of the real numb...
recvsOLD 24895 Obsolete version of ~ recv...
qcvs 24896 The field of rational numb...
zclmncvs 24897 The ring of integers as le...
isncvsngp 24898 A normed subcomplex vector...
isncvsngpd 24899 Properties that determine ...
ncvsi 24900 The properties of a normed...
ncvsprp 24901 Proportionality property o...
ncvsge0 24902 The norm of a scalar produ...
ncvsm1 24903 The norm of the opposite o...
ncvsdif 24904 The norm of the difference...
ncvspi 24905 The norm of a vector plus ...
ncvs1 24906 From any nonzero vector of...
cnrnvc 24907 The module of complex numb...
cnncvs 24908 The module of complex numb...
cnnm 24909 The norm of the normed sub...
ncvspds 24910 Value of the distance func...
cnindmet 24911 The metric induced on the ...
cnncvsaddassdemo 24912 Derive the associative law...
cnncvsmulassdemo 24913 Derive the associative law...
cnncvsabsnegdemo 24914 Derive the absolute value ...
iscph 24919 A subcomplex pre-Hilbert s...
cphphl 24920 A subcomplex pre-Hilbert s...
cphnlm 24921 A subcomplex pre-Hilbert s...
cphngp 24922 A subcomplex pre-Hilbert s...
cphlmod 24923 A subcomplex pre-Hilbert s...
cphlvec 24924 A subcomplex pre-Hilbert s...
cphnvc 24925 A subcomplex pre-Hilbert s...
cphsubrglem 24926 Lemma for ~ cphsubrg . (C...
cphreccllem 24927 Lemma for ~ cphreccl . (C...
cphsca 24928 A subcomplex pre-Hilbert s...
cphsubrg 24929 The scalar field of a subc...
cphreccl 24930 The scalar field of a subc...
cphdivcl 24931 The scalar field of a subc...
cphcjcl 24932 The scalar field of a subc...
cphsqrtcl 24933 The scalar field of a subc...
cphabscl 24934 The scalar field of a subc...
cphsqrtcl2 24935 The scalar field of a subc...
cphsqrtcl3 24936 If the scalar field of a s...
cphqss 24937 The scalar field of a subc...
cphclm 24938 A subcomplex pre-Hilbert s...
cphnmvs 24939 Norm of a scalar product. ...
cphipcl 24940 An inner product is a memb...
cphnmfval 24941 The value of the norm in a...
cphnm 24942 The square of the norm is ...
nmsq 24943 The square of the norm is ...
cphnmf 24944 The norm of a vector is a ...
cphnmcl 24945 The norm of a vector is a ...
reipcl 24946 An inner product of an ele...
ipge0 24947 The inner product in a sub...
cphipcj 24948 Conjugate of an inner prod...
cphipipcj 24949 An inner product times its...
cphorthcom 24950 Orthogonality (meaning inn...
cphip0l 24951 Inner product with a zero ...
cphip0r 24952 Inner product with a zero ...
cphipeq0 24953 The inner product of a vec...
cphdir 24954 Distributive law for inner...
cphdi 24955 Distributive law for inner...
cph2di 24956 Distributive law for inner...
cphsubdir 24957 Distributive law for inner...
cphsubdi 24958 Distributive law for inner...
cph2subdi 24959 Distributive law for inner...
cphass 24960 Associative law for inner ...
cphassr 24961 "Associative" law for seco...
cph2ass 24962 Move scalar multiplication...
cphassi 24963 Associative law for the fi...
cphassir 24964 "Associative" law for the ...
cphpyth 24965 The pythagorean theorem fo...
tcphex 24966 Lemma for ~ tcphbas and si...
tcphval 24967 Define a function to augme...
tcphbas 24968 The base set of a subcompl...
tchplusg 24969 The addition operation of ...
tcphsub 24970 The subtraction operation ...
tcphmulr 24971 The ring operation of a su...
tcphsca 24972 The scalar field of a subc...
tcphvsca 24973 The scalar multiplication ...
tcphip 24974 The inner product of a sub...
tcphtopn 24975 The topology of a subcompl...
tcphphl 24976 Augmentation of a subcompl...
tchnmfval 24977 The norm of a subcomplex p...
tcphnmval 24978 The norm of a subcomplex p...
cphtcphnm 24979 The norm of a norm-augment...
tcphds 24980 The distance of a pre-Hilb...
phclm 24981 A pre-Hilbert space whose ...
tcphcphlem3 24982 Lemma for ~ tcphcph : real...
ipcau2 24983 The Cauchy-Schwarz inequal...
tcphcphlem1 24984 Lemma for ~ tcphcph : the ...
tcphcphlem2 24985 Lemma for ~ tcphcph : homo...
tcphcph 24986 The standard definition of...
ipcau 24987 The Cauchy-Schwarz inequal...
nmparlem 24988 Lemma for ~ nmpar . (Cont...
nmpar 24989 A subcomplex pre-Hilbert s...
cphipval2 24990 Value of the inner product...
4cphipval2 24991 Four times the inner produ...
cphipval 24992 Value of the inner product...
ipcnlem2 24993 The inner product operatio...
ipcnlem1 24994 The inner product operatio...
ipcn 24995 The inner product operatio...
cnmpt1ip 24996 Continuity of inner produc...
cnmpt2ip 24997 Continuity of inner produc...
csscld 24998 A "closed subspace" in a s...
clsocv 24999 The orthogonal complement ...
cphsscph 25000 A subspace of a subcomplex...
lmmbr 25007 Express the binary relatio...
lmmbr2 25008 Express the binary relatio...
lmmbr3 25009 Express the binary relatio...
lmmcvg 25010 Convergence property of a ...
lmmbrf 25011 Express the binary relatio...
lmnn 25012 A condition that implies c...
cfilfval 25013 The set of Cauchy filters ...
iscfil 25014 The property of being a Ca...
iscfil2 25015 The property of being a Ca...
cfilfil 25016 A Cauchy filter is a filte...
cfili 25017 Property of a Cauchy filte...
cfil3i 25018 A Cauchy filter contains b...
cfilss 25019 A filter finer than a Cauc...
fgcfil 25020 The Cauchy filter conditio...
fmcfil 25021 The Cauchy filter conditio...
iscfil3 25022 A filter is Cauchy iff it ...
cfilfcls 25023 Similar to ultrafilters ( ...
caufval 25024 The set of Cauchy sequence...
iscau 25025 Express the property " ` F...
iscau2 25026 Express the property " ` F...
iscau3 25027 Express the Cauchy sequenc...
iscau4 25028 Express the property " ` F...
iscauf 25029 Express the property " ` F...
caun0 25030 A metric with a Cauchy seq...
caufpm 25031 Inclusion of a Cauchy sequ...
caucfil 25032 A Cauchy sequence predicat...
iscmet 25033 The property " ` D ` is a ...
cmetcvg 25034 The convergence of a Cauch...
cmetmet 25035 A complete metric space is...
cmetmeti 25036 A complete metric space is...
cmetcaulem 25037 Lemma for ~ cmetcau . (Co...
cmetcau 25038 The convergence of a Cauch...
iscmet3lem3 25039 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 25040 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 25041 Lemma for ~ iscmet3 . (Co...
iscmet3 25042 The property " ` D ` is a ...
iscmet2 25043 A metric ` D ` is complete...
cfilresi 25044 A Cauchy filter on a metri...
cfilres 25045 Cauchy filter on a metric ...
caussi 25046 Cauchy sequence on a metri...
causs 25047 Cauchy sequence on a metri...
equivcfil 25048 If the metric ` D ` is "st...
equivcau 25049 If the metric ` D ` is "st...
lmle 25050 If the distance from each ...
nglmle 25051 If the norm of each member...
lmclim 25052 Relate a limit on the metr...
lmclimf 25053 Relate a limit on the metr...
metelcls 25054 A point belongs to the clo...
metcld 25055 A subset of a metric space...
metcld2 25056 A subset of a metric space...
caubl 25057 Sufficient condition to en...
caublcls 25058 The convergent point of a ...
metcnp4 25059 Two ways to say a mapping ...
metcn4 25060 Two ways to say a mapping ...
iscmet3i 25061 Properties that determine ...
lmcau 25062 Every convergent sequence ...
flimcfil 25063 Every convergent filter in...
metsscmetcld 25064 A complete subspace of a m...
cmetss 25065 A subspace of a complete m...
equivcmet 25066 If two metrics are strongl...
relcmpcmet 25067 If ` D ` is a metric space...
cmpcmet 25068 A compact metric space is ...
cfilucfil3 25069 Given a metric ` D ` and a...
cfilucfil4 25070 Given a metric ` D ` and a...
cncmet 25071 The set of complex numbers...
recmet 25072 The real numbers are a com...
bcthlem1 25073 Lemma for ~ bcth . Substi...
bcthlem2 25074 Lemma for ~ bcth . The ba...
bcthlem3 25075 Lemma for ~ bcth . The li...
bcthlem4 25076 Lemma for ~ bcth . Given ...
bcthlem5 25077 Lemma for ~ bcth . The pr...
bcth 25078 Baire's Category Theorem. ...
bcth2 25079 Baire's Category Theorem, ...
bcth3 25080 Baire's Category Theorem, ...
isbn 25087 A Banach space is a normed...
bnsca 25088 The scalar field of a Bana...
bnnvc 25089 A Banach space is a normed...
bnnlm 25090 A Banach space is a normed...
bnngp 25091 A Banach space is a normed...
bnlmod 25092 A Banach space is a left m...
bncms 25093 A Banach space is a comple...
iscms 25094 A complete metric space is...
cmscmet 25095 The induced metric on a co...
bncmet 25096 The induced metric on Bana...
cmsms 25097 A complete metric space is...
cmspropd 25098 Property deduction for a c...
cmssmscld 25099 The restriction of a metri...
cmsss 25100 The restriction of a compl...
lssbn 25101 A subspace of a Banach spa...
cmetcusp1 25102 If the uniform set of a co...
cmetcusp 25103 The uniform space generate...
cncms 25104 The field of complex numbe...
cnflduss 25105 The uniform structure of t...
cnfldcusp 25106 The field of complex numbe...
resscdrg 25107 The real numbers are a sub...
cncdrg 25108 The only complete subfield...
srabn 25109 The subring algebra over a...
rlmbn 25110 The ring module over a com...
ishl 25111 The predicate "is a subcom...
hlbn 25112 Every subcomplex Hilbert s...
hlcph 25113 Every subcomplex Hilbert s...
hlphl 25114 Every subcomplex Hilbert s...
hlcms 25115 Every subcomplex Hilbert s...
hlprlem 25116 Lemma for ~ hlpr . (Contr...
hlress 25117 The scalar field of a subc...
hlpr 25118 The scalar field of a subc...
ishl2 25119 A Hilbert space is a compl...
cphssphl 25120 A Banach subspace of a sub...
cmslssbn 25121 A complete linear subspace...
cmscsscms 25122 A closed subspace of a com...
bncssbn 25123 A closed subspace of a Ban...
cssbn 25124 A complete subspace of a n...
csschl 25125 A complete subspace of a c...
cmslsschl 25126 A complete linear subspace...
chlcsschl 25127 A closed subspace of a sub...
retopn 25128 The topology of the real n...
recms 25129 The real numbers form a co...
reust 25130 The Uniform structure of t...
recusp 25131 The real numbers form a co...
rrxval 25136 Value of the generalized E...
rrxbase 25137 The base of the generalize...
rrxprds 25138 Expand the definition of t...
rrxip 25139 The inner product of the g...
rrxnm 25140 The norm of the generalize...
rrxcph 25141 Generalized Euclidean real...
rrxds 25142 The distance over generali...
rrxvsca 25143 The scalar product over ge...
rrxplusgvscavalb 25144 The result of the addition...
rrxsca 25145 The field of real numbers ...
rrx0 25146 The zero ("origin") in a g...
rrx0el 25147 The zero ("origin") in a g...
csbren 25148 Cauchy-Schwarz-Bunjakovsky...
trirn 25149 Triangle inequality in R^n...
rrxf 25150 Euclidean vectors as funct...
rrxfsupp 25151 Euclidean vectors are of f...
rrxsuppss 25152 Support of Euclidean vecto...
rrxmvallem 25153 Support of the function us...
rrxmval 25154 The value of the Euclidean...
rrxmfval 25155 The value of the Euclidean...
rrxmetlem 25156 Lemma for ~ rrxmet . (Con...
rrxmet 25157 Euclidean space is a metri...
rrxdstprj1 25158 The distance between two p...
rrxbasefi 25159 The base of the generalize...
rrxdsfi 25160 The distance over generali...
rrxmetfi 25161 Euclidean space is a metri...
rrxdsfival 25162 The value of the Euclidean...
ehlval 25163 Value of the Euclidean spa...
ehlbase 25164 The base of the Euclidean ...
ehl0base 25165 The base of the Euclidean ...
ehl0 25166 The Euclidean space of dim...
ehleudis 25167 The Euclidean distance fun...
ehleudisval 25168 The value of the Euclidean...
ehl1eudis 25169 The Euclidean distance fun...
ehl1eudisval 25170 The value of the Euclidean...
ehl2eudis 25171 The Euclidean distance fun...
ehl2eudisval 25172 The value of the Euclidean...
minveclem1 25173 Lemma for ~ minvec . The ...
minveclem4c 25174 Lemma for ~ minvec . The ...
minveclem2 25175 Lemma for ~ minvec . Any ...
minveclem3a 25176 Lemma for ~ minvec . ` D `...
minveclem3b 25177 Lemma for ~ minvec . The ...
minveclem3 25178 Lemma for ~ minvec . The ...
minveclem4a 25179 Lemma for ~ minvec . ` F `...
minveclem4b 25180 Lemma for ~ minvec . The ...
minveclem4 25181 Lemma for ~ minvec . The ...
minveclem5 25182 Lemma for ~ minvec . Disc...
minveclem6 25183 Lemma for ~ minvec . Any ...
minveclem7 25184 Lemma for ~ minvec . Sinc...
minvec 25185 Minimizing vector theorem,...
pjthlem1 25186 Lemma for ~ pjth . (Contr...
pjthlem2 25187 Lemma for ~ pjth . (Contr...
pjth 25188 Projection Theorem: Any H...
pjth2 25189 Projection Theorem with ab...
cldcss 25190 Corollary of the Projectio...
cldcss2 25191 Corollary of the Projectio...
hlhil 25192 Corollary of the Projectio...
addcncf 25193 The addition of two contin...
subcncf 25194 The addition of two contin...
mulcncf 25195 The multiplication of two ...
mulcncfOLD 25196 Obsolete version of ~ mulc...
divcncf 25197 The quotient of two contin...
pmltpclem1 25198 Lemma for ~ pmltpc . (Con...
pmltpclem2 25199 Lemma for ~ pmltpc . (Con...
pmltpc 25200 Any function on the reals ...
ivthlem1 25201 Lemma for ~ ivth . The se...
ivthlem2 25202 Lemma for ~ ivth . Show t...
ivthlem3 25203 Lemma for ~ ivth , the int...
ivth 25204 The intermediate value the...
ivth2 25205 The intermediate value the...
ivthle 25206 The intermediate value the...
ivthle2 25207 The intermediate value the...
ivthicc 25208 The interval between any t...
evthicc 25209 Specialization of the Extr...
evthicc2 25210 Combine ~ ivthicc with ~ e...
cniccbdd 25211 A continuous function on a...
ovolfcl 25216 Closure for the interval e...
ovolfioo 25217 Unpack the interval coveri...
ovolficc 25218 Unpack the interval coveri...
ovolficcss 25219 Any (closed) interval cove...
ovolfsval 25220 The value of the interval ...
ovolfsf 25221 Closure for the interval l...
ovolsf 25222 Closure for the partial su...
ovolval 25223 The value of the outer mea...
elovolmlem 25224 Lemma for ~ elovolm and re...
elovolm 25225 Elementhood in the set ` M...
elovolmr 25226 Sufficient condition for e...
ovolmge0 25227 The set ` M ` is composed ...
ovolcl 25228 The volume of a set is an ...
ovollb 25229 The outer volume is a lowe...
ovolgelb 25230 The outer volume is the gr...
ovolge0 25231 The volume of a set is alw...
ovolf 25232 The domain and codomain of...
ovollecl 25233 If an outer volume is boun...
ovolsslem 25234 Lemma for ~ ovolss . (Con...
ovolss 25235 The volume of a set is mon...
ovolsscl 25236 If a set is contained in a...
ovolssnul 25237 A subset of a nullset is n...
ovollb2lem 25238 Lemma for ~ ovollb2 . (Co...
ovollb2 25239 It is often more convenien...
ovolctb 25240 The volume of a denumerabl...
ovolq 25241 The rational numbers have ...
ovolctb2 25242 The volume of a countable ...
ovol0 25243 The empty set has 0 outer ...
ovolfi 25244 A finite set has 0 outer L...
ovolsn 25245 A singleton has 0 outer Le...
ovolunlem1a 25246 Lemma for ~ ovolun . (Con...
ovolunlem1 25247 Lemma for ~ ovolun . (Con...
ovolunlem2 25248 Lemma for ~ ovolun . (Con...
ovolun 25249 The Lebesgue outer measure...
ovolunnul 25250 Adding a nullset does not ...
ovolfiniun 25251 The Lebesgue outer measure...
ovoliunlem1 25252 Lemma for ~ ovoliun . (Co...
ovoliunlem2 25253 Lemma for ~ ovoliun . (Co...
ovoliunlem3 25254 Lemma for ~ ovoliun . (Co...
ovoliun 25255 The Lebesgue outer measure...
ovoliun2 25256 The Lebesgue outer measure...
ovoliunnul 25257 A countable union of nulls...
shft2rab 25258 If ` B ` is a shift of ` A...
ovolshftlem1 25259 Lemma for ~ ovolshft . (C...
ovolshftlem2 25260 Lemma for ~ ovolshft . (C...
ovolshft 25261 The Lebesgue outer measure...
sca2rab 25262 If ` B ` is a scale of ` A...
ovolscalem1 25263 Lemma for ~ ovolsca . (Co...
ovolscalem2 25264 Lemma for ~ ovolshft . (C...
ovolsca 25265 The Lebesgue outer measure...
ovolicc1 25266 The measure of a closed in...
ovolicc2lem1 25267 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 25268 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 25269 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 25270 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 25271 Lemma for ~ ovolicc2 . (C...
ovolicc2 25272 The measure of a closed in...
ovolicc 25273 The measure of a closed in...
ovolicopnf 25274 The measure of a right-unb...
ovolre 25275 The measure of the real nu...
ismbl 25276 The predicate " ` A ` is L...
ismbl2 25277 From ~ ovolun , it suffice...
volres 25278 A self-referencing abbrevi...
volf 25279 The domain and codomain of...
mblvol 25280 The volume of a measurable...
mblss 25281 A measurable set is a subs...
mblsplit 25282 The defining property of m...
volss 25283 The Lebesgue measure is mo...
cmmbl 25284 The complement of a measur...
nulmbl 25285 A nullset is measurable. ...
nulmbl2 25286 A set of outer measure zer...
unmbl 25287 A union of measurable sets...
shftmbl 25288 A shift of a measurable se...
0mbl 25289 The empty set is measurabl...
rembl 25290 The set of all real number...
unidmvol 25291 The union of the Lebesgue ...
inmbl 25292 An intersection of measura...
difmbl 25293 A difference of measurable...
finiunmbl 25294 A finite union of measurab...
volun 25295 The Lebesgue measure funct...
volinun 25296 Addition of non-disjoint s...
volfiniun 25297 The volume of a disjoint f...
iundisj 25298 Rewrite a countable union ...
iundisj2 25299 A disjoint union is disjoi...
voliunlem1 25300 Lemma for ~ voliun . (Con...
voliunlem2 25301 Lemma for ~ voliun . (Con...
voliunlem3 25302 Lemma for ~ voliun . (Con...
iunmbl 25303 The measurable sets are cl...
voliun 25304 The Lebesgue measure funct...
volsuplem 25305 Lemma for ~ volsup . (Con...
volsup 25306 The volume of the limit of...
iunmbl2 25307 The measurable sets are cl...
ioombl1lem1 25308 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 25309 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 25310 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 25311 Lemma for ~ ioombl1 . (Co...
ioombl1 25312 An open right-unbounded in...
icombl1 25313 A closed unbounded-above i...
icombl 25314 A closed-below, open-above...
ioombl 25315 An open real interval is m...
iccmbl 25316 A closed real interval is ...
iccvolcl 25317 A closed real interval has...
ovolioo 25318 The measure of an open int...
volioo 25319 The measure of an open int...
ioovolcl 25320 An open real interval has ...
ovolfs2 25321 Alternative expression for...
ioorcl2 25322 An open interval with fini...
ioorf 25323 Define a function from ope...
ioorval 25324 Define a function from ope...
ioorinv2 25325 The function ` F ` is an "...
ioorinv 25326 The function ` F ` is an "...
ioorcl 25327 The function ` F ` does no...
uniiccdif 25328 A union of closed interval...
uniioovol 25329 A disjoint union of open i...
uniiccvol 25330 An almost-disjoint union o...
uniioombllem1 25331 Lemma for ~ uniioombl . (...
uniioombllem2a 25332 Lemma for ~ uniioombl . (...
uniioombllem2 25333 Lemma for ~ uniioombl . (...
uniioombllem3a 25334 Lemma for ~ uniioombl . (...
uniioombllem3 25335 Lemma for ~ uniioombl . (...
uniioombllem4 25336 Lemma for ~ uniioombl . (...
uniioombllem5 25337 Lemma for ~ uniioombl . (...
uniioombllem6 25338 Lemma for ~ uniioombl . (...
uniioombl 25339 A disjoint union of open i...
uniiccmbl 25340 An almost-disjoint union o...
dyadf 25341 The function ` F ` returns...
dyadval 25342 Value of the dyadic ration...
dyadovol 25343 Volume of a dyadic rationa...
dyadss 25344 Two closed dyadic rational...
dyaddisjlem 25345 Lemma for ~ dyaddisj . (C...
dyaddisj 25346 Two closed dyadic rational...
dyadmaxlem 25347 Lemma for ~ dyadmax . (Co...
dyadmax 25348 Any nonempty set of dyadic...
dyadmbllem 25349 Lemma for ~ dyadmbl . (Co...
dyadmbl 25350 Any union of dyadic ration...
opnmbllem 25351 Lemma for ~ opnmbl . (Con...
opnmbl 25352 All open sets are measurab...
opnmblALT 25353 All open sets are measurab...
subopnmbl 25354 Sets which are open in a m...
volsup2 25355 The volume of ` A ` is the...
volcn 25356 The function formed by res...
volivth 25357 The Intermediate Value The...
vitalilem1 25358 Lemma for ~ vitali . (Con...
vitalilem2 25359 Lemma for ~ vitali . (Con...
vitalilem3 25360 Lemma for ~ vitali . (Con...
vitalilem4 25361 Lemma for ~ vitali . (Con...
vitalilem5 25362 Lemma for ~ vitali . (Con...
vitali 25363 If the reals can be well-o...
ismbf1 25374 The predicate " ` F ` is a...
mbff 25375 A measurable function is a...
mbfdm 25376 The domain of a measurable...
mbfconstlem 25377 Lemma for ~ mbfconst and r...
ismbf 25378 The predicate " ` F ` is a...
ismbfcn 25379 A complex function is meas...
mbfima 25380 Definitional property of a...
mbfimaicc 25381 The preimage of any closed...
mbfimasn 25382 The preimage of a point un...
mbfconst 25383 A constant function is mea...
mbf0 25384 The empty function is meas...
mbfid 25385 The identity function is m...
mbfmptcl 25386 Lemma for the ` MblFn ` pr...
mbfdm2 25387 The domain of a measurable...
ismbfcn2 25388 A complex function is meas...
ismbfd 25389 Deduction to prove measura...
ismbf2d 25390 Deduction to prove measura...
mbfeqalem1 25391 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 25392 Lemma for ~ mbfeqa . (Con...
mbfeqa 25393 If two functions are equal...
mbfres 25394 The restriction of a measu...
mbfres2 25395 Measurability of a piecewi...
mbfss 25396 Change the domain of a mea...
mbfmulc2lem 25397 Multiplication by a consta...
mbfmulc2re 25398 Multiplication by a consta...
mbfmax 25399 The maximum of two functio...
mbfneg 25400 The negative of a measurab...
mbfpos 25401 The positive part of a mea...
mbfposr 25402 Converse to ~ mbfpos . (C...
mbfposb 25403 A function is measurable i...
ismbf3d 25404 Simplified form of ~ ismbf...
mbfimaopnlem 25405 Lemma for ~ mbfimaopn . (...
mbfimaopn 25406 The preimage of any open s...
mbfimaopn2 25407 The preimage of any set op...
cncombf 25408 The composition of a conti...
cnmbf 25409 A continuous function is m...
mbfaddlem 25410 The sum of two measurable ...
mbfadd 25411 The sum of two measurable ...
mbfsub 25412 The difference of two meas...
mbfmulc2 25413 A complex constant times a...
mbfsup 25414 The supremum of a sequence...
mbfinf 25415 The infimum of a sequence ...
mbflimsup 25416 The limit supremum of a se...
mbflimlem 25417 The pointwise limit of a s...
mbflim 25418 The pointwise limit of a s...
0pval 25421 The zero function evaluate...
0plef 25422 Two ways to say that the f...
0pledm 25423 Adjust the domain of the l...
isi1f 25424 The predicate " ` F ` is a...
i1fmbf 25425 Simple functions are measu...
i1ff 25426 A simple function is a fun...
i1frn 25427 A simple function has fini...
i1fima 25428 Any preimage of a simple f...
i1fima2 25429 Any preimage of a simple f...
i1fima2sn 25430 Preimage of a singleton. ...
i1fd 25431 A simplified set of assump...
i1f0rn 25432 Any simple function takes ...
itg1val 25433 The value of the integral ...
itg1val2 25434 The value of the integral ...
itg1cl 25435 Closure of the integral on...
itg1ge0 25436 Closure of the integral on...
i1f0 25437 The zero function is simpl...
itg10 25438 The zero function has zero...
i1f1lem 25439 Lemma for ~ i1f1 and ~ itg...
i1f1 25440 Base case simple functions...
itg11 25441 The integral of an indicat...
itg1addlem1 25442 Decompose a preimage, whic...
i1faddlem 25443 Decompose the preimage of ...
i1fmullem 25444 Decompose the preimage of ...
i1fadd 25445 The sum of two simple func...
i1fmul 25446 The pointwise product of t...
itg1addlem2 25447 Lemma for ~ itg1add . The...
itg1addlem3 25448 Lemma for ~ itg1add . (Co...
itg1addlem4 25449 Lemma for ~ itg1add . (Co...
itg1addlem4OLD 25450 Obsolete version of ~ itg1...
itg1addlem5 25451 Lemma for ~ itg1add . (Co...
itg1add 25452 The integral of a sum of s...
i1fmulclem 25453 Decompose the preimage of ...
i1fmulc 25454 A nonnegative constant tim...
itg1mulc 25455 The integral of a constant...
i1fres 25456 The "restriction" of a sim...
i1fpos 25457 The positive part of a sim...
i1fposd 25458 Deduction form of ~ i1fpos...
i1fsub 25459 The difference of two simp...
itg1sub 25460 The integral of a differen...
itg10a 25461 The integral of a simple f...
itg1ge0a 25462 The integral of an almost ...
itg1lea 25463 Approximate version of ~ i...
itg1le 25464 If one simple function dom...
itg1climres 25465 Restricting the simple fun...
mbfi1fseqlem1 25466 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 25467 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 25468 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 25469 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 25470 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 25471 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 25472 A characterization of meas...
mbfi1flimlem 25473 Lemma for ~ mbfi1flim . (...
mbfi1flim 25474 Any real measurable functi...
mbfmullem2 25475 Lemma for ~ mbfmul . (Con...
mbfmullem 25476 Lemma for ~ mbfmul . (Con...
mbfmul 25477 The product of two measura...
itg2lcl 25478 The set of lower sums is a...
itg2val 25479 Value of the integral on n...
itg2l 25480 Elementhood in the set ` L...
itg2lr 25481 Sufficient condition for e...
xrge0f 25482 A real function is a nonne...
itg2cl 25483 The integral of a nonnegat...
itg2ub 25484 The integral of a nonnegat...
itg2leub 25485 Any upper bound on the int...
itg2ge0 25486 The integral of a nonnegat...
itg2itg1 25487 The integral of a nonnegat...
itg20 25488 The integral of the zero f...
itg2lecl 25489 If an ` S.2 ` integral is ...
itg2le 25490 If one function dominates ...
itg2const 25491 Integral of a constant fun...
itg2const2 25492 When the base set of a con...
itg2seq 25493 Definitional property of t...
itg2uba 25494 Approximate version of ~ i...
itg2lea 25495 Approximate version of ~ i...
itg2eqa 25496 Approximate equality of in...
itg2mulclem 25497 Lemma for ~ itg2mulc . (C...
itg2mulc 25498 The integral of a nonnegat...
itg2splitlem 25499 Lemma for ~ itg2split . (...
itg2split 25500 The ` S.2 ` integral split...
itg2monolem1 25501 Lemma for ~ itg2mono . We...
itg2monolem2 25502 Lemma for ~ itg2mono . (C...
itg2monolem3 25503 Lemma for ~ itg2mono . (C...
itg2mono 25504 The Monotone Convergence T...
itg2i1fseqle 25505 Subject to the conditions ...
itg2i1fseq 25506 Subject to the conditions ...
itg2i1fseq2 25507 In an extension to the res...
itg2i1fseq3 25508 Special case of ~ itg2i1fs...
itg2addlem 25509 Lemma for ~ itg2add . (Co...
itg2add 25510 The ` S.2 ` integral is li...
itg2gt0 25511 If the function ` F ` is s...
itg2cnlem1 25512 Lemma for ~ itgcn . (Cont...
itg2cnlem2 25513 Lemma for ~ itgcn . (Cont...
itg2cn 25514 A sort of absolute continu...
ibllem 25515 Conditioned equality theor...
isibl 25516 The predicate " ` F ` is i...
isibl2 25517 The predicate " ` F ` is i...
iblmbf 25518 An integrable function is ...
iblitg 25519 If a function is integrabl...
dfitg 25520 Evaluate the class substit...
itgex 25521 An integral is a set. (Co...
itgeq1f 25522 Equality theorem for an in...
itgeq1 25523 Equality theorem for an in...
nfitg1 25524 Bound-variable hypothesis ...
nfitg 25525 Bound-variable hypothesis ...
cbvitg 25526 Change bound variable in a...
cbvitgv 25527 Change bound variable in a...
itgeq2 25528 Equality theorem for an in...
itgresr 25529 The domain of an integral ...
itg0 25530 The integral of anything o...
itgz 25531 The integral of zero on an...
itgeq2dv 25532 Equality theorem for an in...
itgmpt 25533 Change bound variable in a...
itgcl 25534 The integral of an integra...
itgvallem 25535 Substitution lemma. (Cont...
itgvallem3 25536 Lemma for ~ itgposval and ...
ibl0 25537 The zero function is integ...
iblcnlem1 25538 Lemma for ~ iblcnlem . (C...
iblcnlem 25539 Expand out the universal q...
itgcnlem 25540 Expand out the sum in ~ df...
iblrelem 25541 Integrability of a real fu...
iblposlem 25542 Lemma for ~ iblpos . (Con...
iblpos 25543 Integrability of a nonnega...
iblre 25544 Integrability of a real fu...
itgrevallem1 25545 Lemma for ~ itgposval and ...
itgposval 25546 The integral of a nonnegat...
itgreval 25547 Decompose the integral of ...
itgrecl 25548 Real closure of an integra...
iblcn 25549 Integrability of a complex...
itgcnval 25550 Decompose the integral of ...
itgre 25551 Real part of an integral. ...
itgim 25552 Imaginary part of an integ...
iblneg 25553 The negative of an integra...
itgneg 25554 Negation of an integral. ...
iblss 25555 A subset of an integrable ...
iblss2 25556 Change the domain of an in...
itgitg2 25557 Transfer an integral using...
i1fibl 25558 A simple function is integ...
itgitg1 25559 Transfer an integral using...
itgle 25560 Monotonicity of an integra...
itgge0 25561 The integral of a positive...
itgss 25562 Expand the set of an integ...
itgss2 25563 Expand the set of an integ...
itgeqa 25564 Approximate equality of in...
itgss3 25565 Expand the set of an integ...
itgioo 25566 Equality of integrals on o...
itgless 25567 Expand the integral of a n...
iblconst 25568 A constant function is int...
itgconst 25569 Integral of a constant fun...
ibladdlem 25570 Lemma for ~ ibladd . (Con...
ibladd 25571 Add two integrals over the...
iblsub 25572 Subtract two integrals ove...
itgaddlem1 25573 Lemma for ~ itgadd . (Con...
itgaddlem2 25574 Lemma for ~ itgadd . (Con...
itgadd 25575 Add two integrals over the...
itgsub 25576 Subtract two integrals ove...
itgfsum 25577 Take a finite sum of integ...
iblabslem 25578 Lemma for ~ iblabs . (Con...
iblabs 25579 The absolute value of an i...
iblabsr 25580 A measurable function is i...
iblmulc2 25581 Multiply an integral by a ...
itgmulc2lem1 25582 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 25583 Lemma for ~ itgmulc2 : rea...
itgmulc2 25584 Multiply an integral by a ...
itgabs 25585 The triangle inequality fo...
itgsplit 25586 The ` S. ` integral splits...
itgspliticc 25587 The ` S. ` integral splits...
itgsplitioo 25588 The ` S. ` integral splits...
bddmulibl 25589 A bounded function times a...
bddibl 25590 A bounded function is inte...
cniccibl 25591 A continuous function on a...
bddiblnc 25592 Choice-free proof of ~ bdd...
cnicciblnc 25593 Choice-free proof of ~ cni...
itggt0 25594 The integral of a strictly...
itgcn 25595 Transfer ~ itg2cn to the f...
ditgeq1 25598 Equality theorem for the d...
ditgeq2 25599 Equality theorem for the d...
ditgeq3 25600 Equality theorem for the d...
ditgeq3dv 25601 Equality theorem for the d...
ditgex 25602 A directed integral is a s...
ditg0 25603 Value of the directed inte...
cbvditg 25604 Change bound variable in a...
cbvditgv 25605 Change bound variable in a...
ditgpos 25606 Value of the directed inte...
ditgneg 25607 Value of the directed inte...
ditgcl 25608 Closure of a directed inte...
ditgswap 25609 Reverse a directed integra...
ditgsplitlem 25610 Lemma for ~ ditgsplit . (...
ditgsplit 25611 This theorem is the raison...
reldv 25620 The derivative function is...
limcvallem 25621 Lemma for ~ ellimc . (Con...
limcfval 25622 Value and set bounds on th...
ellimc 25623 Value of the limit predica...
limcrcl 25624 Reverse closure for the li...
limccl 25625 Closure of the limit opera...
limcdif 25626 It suffices to consider fu...
ellimc2 25627 Write the definition of a ...
limcnlp 25628 If ` B ` is not a limit po...
ellimc3 25629 Write the epsilon-delta de...
limcflflem 25630 Lemma for ~ limcflf . (Co...
limcflf 25631 The limit operator can be ...
limcmo 25632 If ` B ` is a limit point ...
limcmpt 25633 Express the limit operator...
limcmpt2 25634 Express the limit operator...
limcresi 25635 Any limit of ` F ` is also...
limcres 25636 If ` B ` is an interior po...
cnplimc 25637 A function is continuous a...
cnlimc 25638 ` F ` is a continuous func...
cnlimci 25639 If ` F ` is a continuous f...
cnmptlimc 25640 If ` F ` is a continuous f...
limccnp 25641 If the limit of ` F ` at `...
limccnp2 25642 The image of a convergent ...
limcco 25643 Composition of two limits....
limciun 25644 A point is a limit of ` F ...
limcun 25645 A point is a limit of ` F ...
dvlem 25646 Closure for a difference q...
dvfval 25647 Value and set bounds on th...
eldv 25648 The differentiable predica...
dvcl 25649 The derivative function ta...
dvbssntr 25650 The set of differentiable ...
dvbss 25651 The set of differentiable ...
dvbsss 25652 The set of differentiable ...
perfdvf 25653 The derivative is a functi...
recnprss 25654 Both ` RR ` and ` CC ` are...
recnperf 25655 Both ` RR ` and ` CC ` are...
dvfg 25656 Explicitly write out the f...
dvf 25657 The derivative is a functi...
dvfcn 25658 The derivative is a functi...
dvreslem 25659 Lemma for ~ dvres . (Cont...
dvres2lem 25660 Lemma for ~ dvres2 . (Con...
dvres 25661 Restriction of a derivativ...
dvres2 25662 Restriction of the base se...
dvres3 25663 Restriction of a complex d...
dvres3a 25664 Restriction of a complex d...
dvidlem 25665 Lemma for ~ dvid and ~ dvc...
dvmptresicc 25666 Derivative of a function r...
dvconst 25667 Derivative of a constant f...
dvid 25668 Derivative of the identity...
dvcnp 25669 The difference quotient is...
dvcnp2 25670 A function is continuous a...
dvcnp2OLD 25671 Obsolete version of ~ dvcn...
dvcn 25672 A differentiable function ...
dvnfval 25673 Value of the iterated deri...
dvnff 25674 The iterated derivative is...
dvn0 25675 Zero times iterated deriva...
dvnp1 25676 Successor iterated derivat...
dvn1 25677 One times iterated derivat...
dvnf 25678 The N-times derivative is ...
dvnbss 25679 The set of N-times differe...
dvnadd 25680 The ` N ` -th derivative o...
dvn2bss 25681 An N-times differentiable ...
dvnres 25682 Multiple derivative versio...
cpnfval 25683 Condition for n-times cont...
fncpn 25684 The ` C^n ` object is a fu...
elcpn 25685 Condition for n-times cont...
cpnord 25686 ` C^n ` conditions are ord...
cpncn 25687 A ` C^n ` function is cont...
cpnres 25688 The restriction of a ` C^n...
dvaddbr 25689 The sum rule for derivativ...
dvmulbr 25690 The product rule for deriv...
dvmulbrOLD 25691 Obsolete version of ~ dvmu...
dvadd 25692 The sum rule for derivativ...
dvmul 25693 The product rule for deriv...
dvaddf 25694 The sum rule for everywher...
dvmulf 25695 The product rule for every...
dvcmul 25696 The product rule when one ...
dvcmulf 25697 The product rule when one ...
dvcobr 25698 The chain rule for derivat...
dvcobrOLD 25699 Obsolete version of ~ dvco...
dvco 25700 The chain rule for derivat...
dvcof 25701 The chain rule for everywh...
dvcjbr 25702 The derivative of the conj...
dvcj 25703 The derivative of the conj...
dvfre 25704 The derivative of a real f...
dvnfre 25705 The ` N ` -th derivative o...
dvexp 25706 Derivative of a power func...
dvexp2 25707 Derivative of an exponenti...
dvrec 25708 Derivative of the reciproc...
dvmptres3 25709 Function-builder for deriv...
dvmptid 25710 Function-builder for deriv...
dvmptc 25711 Function-builder for deriv...
dvmptcl 25712 Closure lemma for ~ dvmptc...
dvmptadd 25713 Function-builder for deriv...
dvmptmul 25714 Function-builder for deriv...
dvmptres2 25715 Function-builder for deriv...
dvmptres 25716 Function-builder for deriv...
dvmptcmul 25717 Function-builder for deriv...
dvmptdivc 25718 Function-builder for deriv...
dvmptneg 25719 Function-builder for deriv...
dvmptsub 25720 Function-builder for deriv...
dvmptcj 25721 Function-builder for deriv...
dvmptre 25722 Function-builder for deriv...
dvmptim 25723 Function-builder for deriv...
dvmptntr 25724 Function-builder for deriv...
dvmptco 25725 Function-builder for deriv...
dvrecg 25726 Derivative of the reciproc...
dvmptdiv 25727 Function-builder for deriv...
dvmptfsum 25728 Function-builder for deriv...
dvcnvlem 25729 Lemma for ~ dvcnvre . (Co...
dvcnv 25730 A weak version of ~ dvcnvr...
dvexp3 25731 Derivative of an exponenti...
dveflem 25732 Derivative of the exponent...
dvef 25733 Derivative of the exponent...
dvsincos 25734 Derivative of the sine and...
dvsin 25735 Derivative of the sine fun...
dvcos 25736 Derivative of the cosine f...
dvferm1lem 25737 Lemma for ~ dvferm . (Con...
dvferm1 25738 One-sided version of ~ dvf...
dvferm2lem 25739 Lemma for ~ dvferm . (Con...
dvferm2 25740 One-sided version of ~ dvf...
dvferm 25741 Fermat's theorem on statio...
rollelem 25742 Lemma for ~ rolle . (Cont...
rolle 25743 Rolle's theorem. If ` F `...
cmvth 25744 Cauchy's Mean Value Theore...
mvth 25745 The Mean Value Theorem. I...
dvlip 25746 A function with derivative...
dvlipcn 25747 A complex function with de...
dvlip2 25748 Combine the results of ~ d...
c1liplem1 25749 Lemma for ~ c1lip1 . (Con...
c1lip1 25750 C^1 functions are Lipschit...
c1lip2 25751 C^1 functions are Lipschit...
c1lip3 25752 C^1 functions are Lipschit...
dveq0 25753 If a continuous function h...
dv11cn 25754 Two functions defined on a...
dvgt0lem1 25755 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25756 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25757 A function on a closed int...
dvlt0 25758 A function on a closed int...
dvge0 25759 A function on a closed int...
dvle 25760 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25761 Lemma for ~ dvivth . (Con...
dvivthlem2 25762 Lemma for ~ dvivth . (Con...
dvivth 25763 Darboux' theorem, or the i...
dvne0 25764 A function on a closed int...
dvne0f1 25765 A function on a closed int...
lhop1lem 25766 Lemma for ~ lhop1 . (Cont...
lhop1 25767 L'Hôpital's Rule for...
lhop2 25768 L'Hôpital's Rule for...
lhop 25769 L'Hôpital's Rule. I...
dvcnvrelem1 25770 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25771 Lemma for ~ dvcnvre . (Co...
dvcnvre 25772 The derivative rule for in...
dvcvx 25773 A real function with stric...
dvfsumle 25774 Compare a finite sum to an...
dvfsumge 25775 Compare a finite sum to an...
dvfsumabs 25776 Compare a finite sum to an...
dvmptrecl 25777 Real closure of a derivati...
dvfsumrlimf 25778 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25779 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25780 Lemma for ~ dvfsumrlim . ...
dvfsumlem3 25781 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25782 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25783 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25784 Compare a finite sum to an...
dvfsumrlim2 25785 Compare a finite sum to an...
dvfsumrlim3 25786 Conjoin the statements of ...
dvfsum2 25787 The reverse of ~ dvfsumrli...
ftc1lem1 25788 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 25789 Lemma for ~ ftc1 . (Contr...
ftc1a 25790 The Fundamental Theorem of...
ftc1lem3 25791 Lemma for ~ ftc1 . (Contr...
ftc1lem4 25792 Lemma for ~ ftc1 . (Contr...
ftc1lem5 25793 Lemma for ~ ftc1 . (Contr...
ftc1lem6 25794 Lemma for ~ ftc1 . (Contr...
ftc1 25795 The Fundamental Theorem of...
ftc1cn 25796 Strengthen the assumptions...
ftc2 25797 The Fundamental Theorem of...
ftc2ditglem 25798 Lemma for ~ ftc2ditg . (C...
ftc2ditg 25799 Directed integral analogue...
itgparts 25800 Integration by parts. If ...
itgsubstlem 25801 Lemma for ~ itgsubst . (C...
itgsubst 25802 Integration by ` u ` -subs...
itgpowd 25803 The integral of a monomial...
reldmmdeg 25808 Multivariate degree is a b...
tdeglem1 25809 Functionality of the total...
tdeglem1OLD 25810 Obsolete version of ~ tdeg...
tdeglem3 25811 Additivity of the total de...
tdeglem3OLD 25812 Obsolete version of ~ tdeg...
tdeglem4 25813 There is only one multi-in...
tdeglem4OLD 25814 Obsolete version of ~ tdeg...
tdeglem2 25815 Simplification of total de...
mdegfval 25816 Value of the multivariate ...
mdegval 25817 Value of the multivariate ...
mdegleb 25818 Property of being of limit...
mdeglt 25819 If there is an upper limit...
mdegldg 25820 A nonzero polynomial has s...
mdegxrcl 25821 Closure of polynomial degr...
mdegxrf 25822 Functionality of polynomia...
mdegcl 25823 Sharp closure for multivar...
mdeg0 25824 Degree of the zero polynom...
mdegnn0cl 25825 Degree of a nonzero polyno...
degltlem1 25826 Theorem on arithmetic of e...
degltp1le 25827 Theorem on arithmetic of e...
mdegaddle 25828 The degree of a sum is at ...
mdegvscale 25829 The degree of a scalar mul...
mdegvsca 25830 The degree of a scalar mul...
mdegle0 25831 A polynomial has nonpositi...
mdegmullem 25832 Lemma for ~ mdegmulle2 . ...
mdegmulle2 25833 The multivariate degree of...
deg1fval 25834 Relate univariate polynomi...
deg1xrf 25835 Functionality of univariat...
deg1xrcl 25836 Closure of univariate poly...
deg1cl 25837 Sharp closure of univariat...
mdegpropd 25838 Property deduction for pol...
deg1fvi 25839 Univariate polynomial degr...
deg1propd 25840 Property deduction for pol...
deg1z 25841 Degree of the zero univari...
deg1nn0cl 25842 Degree of a nonzero univar...
deg1n0ima 25843 Degree image of a set of p...
deg1nn0clb 25844 A polynomial is nonzero if...
deg1lt0 25845 A polynomial is zero iff i...
deg1ldg 25846 A nonzero univariate polyn...
deg1ldgn 25847 An index at which a polyno...
deg1ldgdomn 25848 A nonzero univariate polyn...
deg1leb 25849 Property of being of limit...
deg1val 25850 Value of the univariate de...
deg1lt 25851 If the degree of a univari...
deg1ge 25852 Conversely, a nonzero coef...
coe1mul3 25853 The coefficient vector of ...
coe1mul4 25854 Value of the "leading" coe...
deg1addle 25855 The degree of a sum is at ...
deg1addle2 25856 If both factors have degre...
deg1add 25857 Exact degree of a sum of t...
deg1vscale 25858 The degree of a scalar tim...
deg1vsca 25859 The degree of a scalar tim...
deg1invg 25860 The degree of the negated ...
deg1suble 25861 The degree of a difference...
deg1sub 25862 Exact degree of a differen...
deg1mulle2 25863 Produce a bound on the pro...
deg1sublt 25864 Subtraction of two polynom...
deg1le0 25865 A polynomial has nonpositi...
deg1sclle 25866 A scalar polynomial has no...
deg1scl 25867 A nonzero scalar polynomia...
deg1mul2 25868 Degree of multiplication o...
deg1mul3 25869 Degree of multiplication o...
deg1mul3le 25870 Degree of multiplication o...
deg1tmle 25871 Limiting degree of a polyn...
deg1tm 25872 Exact degree of a polynomi...
deg1pwle 25873 Limiting degree of a varia...
deg1pw 25874 Exact degree of a variable...
ply1nz 25875 Univariate polynomials ove...
ply1nzb 25876 Univariate polynomials are...
ply1domn 25877 Corollary of ~ deg1mul2 : ...
ply1idom 25878 The ring of univariate pol...
ply1divmo 25889 Uniqueness of a quotient i...
ply1divex 25890 Lemma for ~ ply1divalg : e...
ply1divalg 25891 The division algorithm for...
ply1divalg2 25892 Reverse the order of multi...
uc1pval 25893 Value of the set of unitic...
isuc1p 25894 Being a unitic polynomial....
mon1pval 25895 Value of the set of monic ...
ismon1p 25896 Being a monic polynomial. ...
uc1pcl 25897 Unitic polynomials are pol...
mon1pcl 25898 Monic polynomials are poly...
uc1pn0 25899 Unitic polynomials are not...
mon1pn0 25900 Monic polynomials are not ...
uc1pdeg 25901 Unitic polynomials have no...
uc1pldg 25902 Unitic polynomials have un...
mon1pldg 25903 Unitic polynomials have on...
mon1puc1p 25904 Monic polynomials are unit...
uc1pmon1p 25905 Make a unitic polynomial m...
deg1submon1p 25906 The difference of two moni...
q1pval 25907 Value of the univariate po...
q1peqb 25908 Characterizing property of...
q1pcl 25909 Closure of the quotient by...
r1pval 25910 Value of the polynomial re...
r1pcl 25911 Closure of remainder follo...
r1pdeglt 25912 The remainder has a degree...
r1pid 25913 Express the original polyn...
dvdsq1p 25914 Divisibility in a polynomi...
dvdsr1p 25915 Divisibility in a polynomi...
ply1remlem 25916 A term of the form ` x - N...
ply1rem 25917 The polynomial remainder t...
facth1 25918 The factor theorem and its...
fta1glem1 25919 Lemma for ~ fta1g . (Cont...
fta1glem2 25920 Lemma for ~ fta1g . (Cont...
fta1g 25921 The one-sided fundamental ...
fta1blem 25922 Lemma for ~ fta1b . (Cont...
fta1b 25923 The assumption that ` R ` ...
drnguc1p 25924 Over a division ring, all ...
ig1peu 25925 There is a unique monic po...
ig1pval 25926 Substitutions for the poly...
ig1pval2 25927 Generator of the zero idea...
ig1pval3 25928 Characterizing properties ...
ig1pcl 25929 The monic generator of an ...
ig1pdvds 25930 The monic generator of an ...
ig1prsp 25931 Any ideal of polynomials o...
ply1lpir 25932 The ring of polynomials ov...
ply1pid 25933 The polynomials over a fie...
plyco0 25942 Two ways to say that a fun...
plyval 25943 Value of the polynomial se...
plybss 25944 Reverse closure of the par...
elply 25945 Definition of a polynomial...
elply2 25946 The coefficient function c...
plyun0 25947 The set of polynomials is ...
plyf 25948 The polynomial is a functi...
plyss 25949 The polynomial set functio...
plyssc 25950 Every polynomial ring is c...
elplyr 25951 Sufficient condition for e...
elplyd 25952 Sufficient condition for e...
ply1termlem 25953 Lemma for ~ ply1term . (C...
ply1term 25954 A one-term polynomial. (C...
plypow 25955 A power is a polynomial. ...
plyconst 25956 A constant function is a p...
ne0p 25957 A test to show that a poly...
ply0 25958 The zero function is a pol...
plyid 25959 The identity function is a...
plyeq0lem 25960 Lemma for ~ plyeq0 . If `...
plyeq0 25961 If a polynomial is zero at...
plypf1 25962 Write the set of complex p...
plyaddlem1 25963 Derive the coefficient fun...
plymullem1 25964 Derive the coefficient fun...
plyaddlem 25965 Lemma for ~ plyadd . (Con...
plymullem 25966 Lemma for ~ plymul . (Con...
plyadd 25967 The sum of two polynomials...
plymul 25968 The product of two polynom...
plysub 25969 The difference of two poly...
plyaddcl 25970 The sum of two polynomials...
plymulcl 25971 The product of two polynom...
plysubcl 25972 The difference of two poly...
coeval 25973 Value of the coefficient f...
coeeulem 25974 Lemma for ~ coeeu . (Cont...
coeeu 25975 Uniqueness of the coeffici...
coelem 25976 Lemma for properties of th...
coeeq 25977 If ` A ` satisfies the pro...
dgrval 25978 Value of the degree functi...
dgrlem 25979 Lemma for ~ dgrcl and simi...
coef 25980 The domain and codomain of...
coef2 25981 The domain and codomain of...
coef3 25982 The domain and codomain of...
dgrcl 25983 The degree of any polynomi...
dgrub 25984 If the ` M ` -th coefficie...
dgrub2 25985 All the coefficients above...
dgrlb 25986 If all the coefficients ab...
coeidlem 25987 Lemma for ~ coeid . (Cont...
coeid 25988 Reconstruct a polynomial a...
coeid2 25989 Reconstruct a polynomial a...
coeid3 25990 Reconstruct a polynomial a...
plyco 25991 The composition of two pol...
coeeq2 25992 Compute the coefficient fu...
dgrle 25993 Given an explicit expressi...
dgreq 25994 If the highest term in a p...
0dgr 25995 A constant function has de...
0dgrb 25996 A function has degree zero...
dgrnznn 25997 A nonzero polynomial with ...
coefv0 25998 The result of evaluating a...
coeaddlem 25999 Lemma for ~ coeadd and ~ d...
coemullem 26000 Lemma for ~ coemul and ~ d...
coeadd 26001 The coefficient function o...
coemul 26002 A coefficient of a product...
coe11 26003 The coefficient function i...
coemulhi 26004 The leading coefficient of...
coemulc 26005 The coefficient function i...
coe0 26006 The coefficients of the ze...
coesub 26007 The coefficient function o...
coe1termlem 26008 The coefficient function o...
coe1term 26009 The coefficient function o...
dgr1term 26010 The degree of a monomial. ...
plycn 26011 A polynomial is a continuo...
plycnOLD 26012 Obsolete version of ~ plyc...
dgr0 26013 The degree of the zero pol...
coeidp 26014 The coefficients of the id...
dgrid 26015 The degree of the identity...
dgreq0 26016 The leading coefficient of...
dgrlt 26017 Two ways to say that the d...
dgradd 26018 The degree of a sum of pol...
dgradd2 26019 The degree of a sum of pol...
dgrmul2 26020 The degree of a product of...
dgrmul 26021 The degree of a product of...
dgrmulc 26022 Scalar multiplication by a...
dgrsub 26023 The degree of a difference...
dgrcolem1 26024 The degree of a compositio...
dgrcolem2 26025 Lemma for ~ dgrco . (Cont...
dgrco 26026 The degree of a compositio...
plycjlem 26027 Lemma for ~ plycj and ~ co...
plycj 26028 The double conjugation of ...
coecj 26029 Double conjugation of a po...
plyrecj 26030 A polynomial with real coe...
plymul0or 26031 Polynomial multiplication ...
ofmulrt 26032 The set of roots of a prod...
plyreres 26033 Real-coefficient polynomia...
dvply1 26034 Derivative of a polynomial...
dvply2g 26035 The derivative of a polyno...
dvply2 26036 The derivative of a polyno...
dvnply2 26037 Polynomials have polynomia...
dvnply 26038 Polynomials have polynomia...
plycpn 26039 Polynomials are smooth. (...
quotval 26042 Value of the quotient func...
plydivlem1 26043 Lemma for ~ plydivalg . (...
plydivlem2 26044 Lemma for ~ plydivalg . (...
plydivlem3 26045 Lemma for ~ plydivex . Ba...
plydivlem4 26046 Lemma for ~ plydivex . In...
plydivex 26047 Lemma for ~ plydivalg . (...
plydiveu 26048 Lemma for ~ plydivalg . (...
plydivalg 26049 The division algorithm on ...
quotlem 26050 Lemma for properties of th...
quotcl 26051 The quotient of two polyno...
quotcl2 26052 Closure of the quotient fu...
quotdgr 26053 Remainder property of the ...
plyremlem 26054 Closure of a linear factor...
plyrem 26055 The polynomial remainder t...
facth 26056 The factor theorem. If a ...
fta1lem 26057 Lemma for ~ fta1 . (Contr...
fta1 26058 The easy direction of the ...
quotcan 26059 Exact division with a mult...
vieta1lem1 26060 Lemma for ~ vieta1 . (Con...
vieta1lem2 26061 Lemma for ~ vieta1 : induc...
vieta1 26062 The first-order Vieta's fo...
plyexmo 26063 An infinite set of values ...
elaa 26066 Elementhood in the set of ...
aacn 26067 An algebraic number is a c...
aasscn 26068 The algebraic numbers are ...
elqaalem1 26069 Lemma for ~ elqaa . The f...
elqaalem2 26070 Lemma for ~ elqaa . (Cont...
elqaalem3 26071 Lemma for ~ elqaa . (Cont...
elqaa 26072 The set of numbers generat...
qaa 26073 Every rational number is a...
qssaa 26074 The rational numbers are c...
iaa 26075 The imaginary unit is alge...
aareccl 26076 The reciprocal of an algeb...
aacjcl 26077 The conjugate of an algebr...
aannenlem1 26078 Lemma for ~ aannen . (Con...
aannenlem2 26079 Lemma for ~ aannen . (Con...
aannenlem3 26080 The algebraic numbers are ...
aannen 26081 The algebraic numbers are ...
aalioulem1 26082 Lemma for ~ aaliou . An i...
aalioulem2 26083 Lemma for ~ aaliou . (Con...
aalioulem3 26084 Lemma for ~ aaliou . (Con...
aalioulem4 26085 Lemma for ~ aaliou . (Con...
aalioulem5 26086 Lemma for ~ aaliou . (Con...
aalioulem6 26087 Lemma for ~ aaliou . (Con...
aaliou 26088 Liouville's theorem on dio...
geolim3 26089 Geometric series convergen...
aaliou2 26090 Liouville's approximation ...
aaliou2b 26091 Liouville's approximation ...
aaliou3lem1 26092 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 26093 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 26094 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 26095 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 26096 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 26097 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 26098 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 26099 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 26100 Example of a "Liouville nu...
aaliou3 26101 Example of a "Liouville nu...
taylfvallem1 26106 Lemma for ~ taylfval . (C...
taylfvallem 26107 Lemma for ~ taylfval . (C...
taylfval 26108 Define the Taylor polynomi...
eltayl 26109 Value of the Taylor series...
taylf 26110 The Taylor series defines ...
tayl0 26111 The Taylor series is alway...
taylplem1 26112 Lemma for ~ taylpfval and ...
taylplem2 26113 Lemma for ~ taylpfval and ...
taylpfval 26114 Define the Taylor polynomi...
taylpf 26115 The Taylor polynomial is a...
taylpval 26116 Value of the Taylor polyno...
taylply2 26117 The Taylor polynomial is a...
taylply 26118 The Taylor polynomial is a...
dvtaylp 26119 The derivative of the Tayl...
dvntaylp 26120 The ` M ` -th derivative o...
dvntaylp0 26121 The first ` N ` derivative...
taylthlem1 26122 Lemma for ~ taylth . This...
taylthlem2 26123 Lemma for ~ taylth . (Con...
taylth 26124 Taylor's theorem. The Tay...
ulmrel 26127 The uniform limit relation...
ulmscl 26128 Closure of the base set in...
ulmval 26129 Express the predicate: Th...
ulmcl 26130 Closure of a uniform limit...
ulmf 26131 Closure of a uniform limit...
ulmpm 26132 Closure of a uniform limit...
ulmf2 26133 Closure of a uniform limit...
ulm2 26134 Simplify ~ ulmval when ` F...
ulmi 26135 The uniform limit property...
ulmclm 26136 A uniform limit of functio...
ulmres 26137 A sequence of functions co...
ulmshftlem 26138 Lemma for ~ ulmshft . (Co...
ulmshft 26139 A sequence of functions co...
ulm0 26140 Every function converges u...
ulmuni 26141 A sequence of functions un...
ulmdm 26142 Two ways to express that a...
ulmcaulem 26143 Lemma for ~ ulmcau and ~ u...
ulmcau 26144 A sequence of functions co...
ulmcau2 26145 A sequence of functions co...
ulmss 26146 A uniform limit of functio...
ulmbdd 26147 A uniform limit of bounded...
ulmcn 26148 A uniform limit of continu...
ulmdvlem1 26149 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 26150 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 26151 Lemma for ~ ulmdv . (Cont...
ulmdv 26152 If ` F ` is a sequence of ...
mtest 26153 The Weierstrass M-test. I...
mtestbdd 26154 Given the hypotheses of th...
mbfulm 26155 A uniform limit of measura...
iblulm 26156 A uniform limit of integra...
itgulm 26157 A uniform limit of integra...
itgulm2 26158 A uniform limit of integra...
pserval 26159 Value of the function ` G ...
pserval2 26160 Value of the function ` G ...
psergf 26161 The sequence of terms in t...
radcnvlem1 26162 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 26163 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 26164 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 26165 Zero is always a convergen...
radcnvcl 26166 The radius of convergence ...
radcnvlt1 26167 If ` X ` is within the ope...
radcnvlt2 26168 If ` X ` is within the ope...
radcnvle 26169 If ` X ` is a convergent p...
dvradcnv 26170 The radius of convergence ...
pserulm 26171 If ` S ` is a region conta...
psercn2 26172 Since by ~ pserulm the ser...
psercnlem2 26173 Lemma for ~ psercn . (Con...
psercnlem1 26174 Lemma for ~ psercn . (Con...
psercn 26175 An infinite series converg...
pserdvlem1 26176 Lemma for ~ pserdv . (Con...
pserdvlem2 26177 Lemma for ~ pserdv . (Con...
pserdv 26178 The derivative of a power ...
pserdv2 26179 The derivative of a power ...
abelthlem1 26180 Lemma for ~ abelth . (Con...
abelthlem2 26181 Lemma for ~ abelth . The ...
abelthlem3 26182 Lemma for ~ abelth . (Con...
abelthlem4 26183 Lemma for ~ abelth . (Con...
abelthlem5 26184 Lemma for ~ abelth . (Con...
abelthlem6 26185 Lemma for ~ abelth . (Con...
abelthlem7a 26186 Lemma for ~ abelth . (Con...
abelthlem7 26187 Lemma for ~ abelth . (Con...
abelthlem8 26188 Lemma for ~ abelth . (Con...
abelthlem9 26189 Lemma for ~ abelth . By a...
abelth 26190 Abel's theorem. If the po...
abelth2 26191 Abel's theorem, restricted...
efcn 26192 The exponential function i...
sincn 26193 Sine is continuous. (Cont...
coscn 26194 Cosine is continuous. (Co...
reeff1olem 26195 Lemma for ~ reeff1o . (Co...
reeff1o 26196 The real exponential funct...
reefiso 26197 The exponential function o...
efcvx 26198 The exponential function o...
reefgim 26199 The exponential function i...
pilem1 26200 Lemma for ~ pire , ~ pigt2...
pilem2 26201 Lemma for ~ pire , ~ pigt2...
pilem3 26202 Lemma for ~ pire , ~ pigt2...
pigt2lt4 26203 ` _pi ` is between 2 and 4...
sinpi 26204 The sine of ` _pi ` is 0. ...
pire 26205 ` _pi ` is a real number. ...
picn 26206 ` _pi ` is a complex numbe...
pipos 26207 ` _pi ` is positive. (Con...
pirp 26208 ` _pi ` is a positive real...
negpicn 26209 ` -u _pi ` is a real numbe...
sinhalfpilem 26210 Lemma for ~ sinhalfpi and ...
halfpire 26211 ` _pi / 2 ` is real. (Con...
neghalfpire 26212 ` -u _pi / 2 ` is real. (...
neghalfpirx 26213 ` -u _pi / 2 ` is an exten...
pidiv2halves 26214 Adding ` _pi / 2 ` to itse...
sinhalfpi 26215 The sine of ` _pi / 2 ` is...
coshalfpi 26216 The cosine of ` _pi / 2 ` ...
cosneghalfpi 26217 The cosine of ` -u _pi / 2...
efhalfpi 26218 The exponential of ` _i _p...
cospi 26219 The cosine of ` _pi ` is `...
efipi 26220 The exponential of ` _i x....
eulerid 26221 Euler's identity. (Contri...
sin2pi 26222 The sine of ` 2 _pi ` is 0...
cos2pi 26223 The cosine of ` 2 _pi ` is...
ef2pi 26224 The exponential of ` 2 _pi...
ef2kpi 26225 If ` K ` is an integer, th...
efper 26226 The exponential function i...
sinperlem 26227 Lemma for ~ sinper and ~ c...
sinper 26228 The sine function is perio...
cosper 26229 The cosine function is per...
sin2kpi 26230 If ` K ` is an integer, th...
cos2kpi 26231 If ` K ` is an integer, th...
sin2pim 26232 Sine of a number subtracte...
cos2pim 26233 Cosine of a number subtrac...
sinmpi 26234 Sine of a number less ` _p...
cosmpi 26235 Cosine of a number less ` ...
sinppi 26236 Sine of a number plus ` _p...
cosppi 26237 Cosine of a number plus ` ...
efimpi 26238 The exponential function a...
sinhalfpip 26239 The sine of ` _pi / 2 ` pl...
sinhalfpim 26240 The sine of ` _pi / 2 ` mi...
coshalfpip 26241 The cosine of ` _pi / 2 ` ...
coshalfpim 26242 The cosine of ` _pi / 2 ` ...
ptolemy 26243 Ptolemy's Theorem. This t...
sincosq1lem 26244 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 26245 The signs of the sine and ...
sincosq2sgn 26246 The signs of the sine and ...
sincosq3sgn 26247 The signs of the sine and ...
sincosq4sgn 26248 The signs of the sine and ...
coseq00topi 26249 Location of the zeroes of ...
coseq0negpitopi 26250 Location of the zeroes of ...
tanrpcl 26251 Positive real closure of t...
tangtx 26252 The tangent function is gr...
tanabsge 26253 The tangent function is gr...
sinq12gt0 26254 The sine of a number stric...
sinq12ge0 26255 The sine of a number betwe...
sinq34lt0t 26256 The sine of a number stric...
cosq14gt0 26257 The cosine of a number str...
cosq14ge0 26258 The cosine of a number bet...
sincosq1eq 26259 Complementarity of the sin...
sincos4thpi 26260 The sine and cosine of ` _...
tan4thpi 26261 The tangent of ` _pi / 4 `...
sincos6thpi 26262 The sine and cosine of ` _...
sincos3rdpi 26263 The sine and cosine of ` _...
pigt3 26264 ` _pi ` is greater than 3....
pige3 26265 ` _pi ` is greater than or...
pige3ALT 26266 Alternate proof of ~ pige3...
abssinper 26267 The absolute value of sine...
sinkpi 26268 The sine of an integer mul...
coskpi 26269 The absolute value of the ...
sineq0 26270 A complex number whose sin...
coseq1 26271 A complex number whose cos...
cos02pilt1 26272 Cosine is less than one be...
cosq34lt1 26273 Cosine is less than one in...
efeq1 26274 A complex number whose exp...
cosne0 26275 The cosine function has no...
cosordlem 26276 Lemma for ~ cosord . (Con...
cosord 26277 Cosine is decreasing over ...
cos0pilt1 26278 Cosine is between minus on...
cos11 26279 Cosine is one-to-one over ...
sinord 26280 Sine is increasing over th...
recosf1o 26281 The cosine function is a b...
resinf1o 26282 The sine function is a bij...
tanord1 26283 The tangent function is st...
tanord 26284 The tangent function is st...
tanregt0 26285 The real part of the tange...
negpitopissre 26286 The interval ` ( -u _pi (,...
efgh 26287 The exponential function o...
efif1olem1 26288 Lemma for ~ efif1o . (Con...
efif1olem2 26289 Lemma for ~ efif1o . (Con...
efif1olem3 26290 Lemma for ~ efif1o . (Con...
efif1olem4 26291 The exponential function o...
efif1o 26292 The exponential function o...
efifo 26293 The exponential function o...
eff1olem 26294 The exponential function m...
eff1o 26295 The exponential function m...
efabl 26296 The image of a subgroup of...
efsubm 26297 The image of a subgroup of...
circgrp 26298 The circle group ` T ` is ...
circsubm 26299 The circle group ` T ` is ...
logrn 26304 The range of the natural l...
ellogrn 26305 Write out the property ` A...
dflog2 26306 The natural logarithm func...
relogrn 26307 The range of the natural l...
logrncn 26308 The range of the natural l...
eff1o2 26309 The exponential function r...
logf1o 26310 The natural logarithm func...
dfrelog 26311 The natural logarithm func...
relogf1o 26312 The natural logarithm func...
logrncl 26313 Closure of the natural log...
logcl 26314 Closure of the natural log...
logimcl 26315 Closure of the imaginary p...
logcld 26316 The logarithm of a nonzero...
logimcld 26317 The imaginary part of the ...
logimclad 26318 The imaginary part of the ...
abslogimle 26319 The imaginary part of the ...
logrnaddcl 26320 The range of the natural l...
relogcl 26321 Closure of the natural log...
eflog 26322 Relationship between the n...
logeq0im1 26323 If the logarithm of a numb...
logccne0 26324 The logarithm isn't 0 if i...
logne0 26325 Logarithm of a non-1 posit...
reeflog 26326 Relationship between the n...
logef 26327 Relationship between the n...
relogef 26328 Relationship between the n...
logeftb 26329 Relationship between the n...
relogeftb 26330 Relationship between the n...
log1 26331 The natural logarithm of `...
loge 26332 The natural logarithm of `...
logneg 26333 The natural logarithm of a...
logm1 26334 The natural logarithm of n...
lognegb 26335 If a number has imaginary ...
relogoprlem 26336 Lemma for ~ relogmul and ~...
relogmul 26337 The natural logarithm of t...
relogdiv 26338 The natural logarithm of t...
explog 26339 Exponentiation of a nonzer...
reexplog 26340 Exponentiation of a positi...
relogexp 26341 The natural logarithm of p...
relog 26342 Real part of a logarithm. ...
relogiso 26343 The natural logarithm func...
reloggim 26344 The natural logarithm is a...
logltb 26345 The natural logarithm func...
logfac 26346 The logarithm of a factori...
eflogeq 26347 Solve an equation involvin...
logleb 26348 Natural logarithm preserve...
rplogcl 26349 Closure of the logarithm f...
logge0 26350 The logarithm of a number ...
logcj 26351 The natural logarithm dist...
efiarg 26352 The exponential of the "ar...
cosargd 26353 The cosine of the argument...
cosarg0d 26354 The cosine of the argument...
argregt0 26355 Closure of the argument of...
argrege0 26356 Closure of the argument of...
argimgt0 26357 Closure of the argument of...
argimlt0 26358 Closure of the argument of...
logimul 26359 Multiplying a number by ` ...
logneg2 26360 The logarithm of the negat...
logmul2 26361 Generalization of ~ relogm...
logdiv2 26362 Generalization of ~ relogd...
abslogle 26363 Bound on the magnitude of ...
tanarg 26364 The basic relation between...
logdivlti 26365 The ` log x / x ` function...
logdivlt 26366 The ` log x / x ` function...
logdivle 26367 The ` log x / x ` function...
relogcld 26368 Closure of the natural log...
reeflogd 26369 Relationship between the n...
relogmuld 26370 The natural logarithm of t...
relogdivd 26371 The natural logarithm of t...
logled 26372 Natural logarithm preserve...
relogefd 26373 Relationship between the n...
rplogcld 26374 Closure of the logarithm f...
logge0d 26375 The logarithm of a number ...
logge0b 26376 The logarithm of a number ...
loggt0b 26377 The logarithm of a number ...
logle1b 26378 The logarithm of a number ...
loglt1b 26379 The logarithm of a number ...
divlogrlim 26380 The inverse logarithm func...
logno1 26381 The logarithm function is ...
dvrelog 26382 The derivative of the real...
relogcn 26383 The real logarithm functio...
ellogdm 26384 Elementhood in the "contin...
logdmn0 26385 A number in the continuous...
logdmnrp 26386 A number in the continuous...
logdmss 26387 The continuity domain of `...
logcnlem2 26388 Lemma for ~ logcn . (Cont...
logcnlem3 26389 Lemma for ~ logcn . (Cont...
logcnlem4 26390 Lemma for ~ logcn . (Cont...
logcnlem5 26391 Lemma for ~ logcn . (Cont...
logcn 26392 The logarithm function is ...
dvloglem 26393 Lemma for ~ dvlog . (Cont...
logdmopn 26394 The "continuous domain" of...
logf1o2 26395 The logarithm maps its con...
dvlog 26396 The derivative of the comp...
dvlog2lem 26397 Lemma for ~ dvlog2 . (Con...
dvlog2 26398 The derivative of the comp...
advlog 26399 The antiderivative of the ...
advlogexp 26400 The antiderivative of a po...
efopnlem1 26401 Lemma for ~ efopn . (Cont...
efopnlem2 26402 Lemma for ~ efopn . (Cont...
efopn 26403 The exponential map is an ...
logtayllem 26404 Lemma for ~ logtayl . (Co...
logtayl 26405 The Taylor series for ` -u...
logtaylsum 26406 The Taylor series for ` -u...
logtayl2 26407 Power series expression fo...
logccv 26408 The natural logarithm func...
cxpval 26409 Value of the complex power...
cxpef 26410 Value of the complex power...
0cxp 26411 Value of the complex power...
cxpexpz 26412 Relate the complex power f...
cxpexp 26413 Relate the complex power f...
logcxp 26414 Logarithm of a complex pow...
cxp0 26415 Value of the complex power...
cxp1 26416 Value of the complex power...
1cxp 26417 Value of the complex power...
ecxp 26418 Write the exponential func...
cxpcl 26419 Closure of the complex pow...
recxpcl 26420 Real closure of the comple...
rpcxpcl 26421 Positive real closure of t...
cxpne0 26422 Complex exponentiation is ...
cxpeq0 26423 Complex exponentiation is ...
cxpadd 26424 Sum of exponents law for c...
cxpp1 26425 Value of a nonzero complex...
cxpneg 26426 Value of a complex number ...
cxpsub 26427 Exponent subtraction law f...
cxpge0 26428 Nonnegative exponentiation...
mulcxplem 26429 Lemma for ~ mulcxp . (Con...
mulcxp 26430 Complex exponentiation of ...
cxprec 26431 Complex exponentiation of ...
divcxp 26432 Complex exponentiation of ...
cxpmul 26433 Product of exponents law f...
cxpmul2 26434 Product of exponents law f...
cxproot 26435 The complex power function...
cxpmul2z 26436 Generalize ~ cxpmul2 to ne...
abscxp 26437 Absolute value of a power,...
abscxp2 26438 Absolute value of a power,...
cxplt 26439 Ordering property for comp...
cxple 26440 Ordering property for comp...
cxplea 26441 Ordering property for comp...
cxple2 26442 Ordering property for comp...
cxplt2 26443 Ordering property for comp...
cxple2a 26444 Ordering property for comp...
cxplt3 26445 Ordering property for comp...
cxple3 26446 Ordering property for comp...
cxpsqrtlem 26447 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 26448 The complex exponential fu...
logsqrt 26449 Logarithm of a square root...
cxp0d 26450 Value of the complex power...
cxp1d 26451 Value of the complex power...
1cxpd 26452 Value of the complex power...
cxpcld 26453 Closure of the complex pow...
cxpmul2d 26454 Product of exponents law f...
0cxpd 26455 Value of the complex power...
cxpexpzd 26456 Relate the complex power f...
cxpefd 26457 Value of the complex power...
cxpne0d 26458 Complex exponentiation is ...
cxpp1d 26459 Value of a nonzero complex...
cxpnegd 26460 Value of a complex number ...
cxpmul2zd 26461 Generalize ~ cxpmul2 to ne...
cxpaddd 26462 Sum of exponents law for c...
cxpsubd 26463 Exponent subtraction law f...
cxpltd 26464 Ordering property for comp...
cxpled 26465 Ordering property for comp...
cxplead 26466 Ordering property for comp...
divcxpd 26467 Complex exponentiation of ...
recxpcld 26468 Positive real closure of t...
cxpge0d 26469 Nonnegative exponentiation...
cxple2ad 26470 Ordering property for comp...
cxplt2d 26471 Ordering property for comp...
cxple2d 26472 Ordering property for comp...
mulcxpd 26473 Complex exponentiation of ...
recxpf1lem 26474 Complex exponentiation on ...
cxpsqrtth 26475 Square root theorem over t...
2irrexpq 26476 There exist irrational num...
cxprecd 26477 Complex exponentiation of ...
rpcxpcld 26478 Positive real closure of t...
logcxpd 26479 Logarithm of a complex pow...
cxplt3d 26480 Ordering property for comp...
cxple3d 26481 Ordering property for comp...
cxpmuld 26482 Product of exponents law f...
cxpgt0d 26483 A positive real raised to ...
cxpcom 26484 Commutative law for real e...
dvcxp1 26485 The derivative of a comple...
dvcxp2 26486 The derivative of a comple...
dvsqrt 26487 The derivative of the real...
dvcncxp1 26488 Derivative of complex powe...
dvcnsqrt 26489 Derivative of square root ...
cxpcn 26490 Domain of continuity of th...
cxpcn2 26491 Continuity of the complex ...
cxpcn3lem 26492 Lemma for ~ cxpcn3 . (Con...
cxpcn3 26493 Extend continuity of the c...
resqrtcn 26494 Continuity of the real squ...
sqrtcn 26495 Continuity of the square r...
cxpaddlelem 26496 Lemma for ~ cxpaddle . (C...
cxpaddle 26497 Ordering property for comp...
abscxpbnd 26498 Bound on the absolute valu...
root1id 26499 Property of an ` N ` -th r...
root1eq1 26500 The only powers of an ` N ...
root1cj 26501 Within the ` N ` -th roots...
cxpeq 26502 Solve an equation involvin...
loglesqrt 26503 An upper bound on the loga...
logreclem 26504 Symmetry of the natural lo...
logrec 26505 Logarithm of a reciprocal ...
logbval 26508 Define the value of the ` ...
logbcl 26509 General logarithm closure....
logbid1 26510 General logarithm is 1 whe...
logb1 26511 The logarithm of ` 1 ` to ...
elogb 26512 The general logarithm of a...
logbchbase 26513 Change of base for logarit...
relogbval 26514 Value of the general logar...
relogbcl 26515 Closure of the general log...
relogbzcl 26516 Closure of the general log...
relogbreexp 26517 Power law for the general ...
relogbzexp 26518 Power law for the general ...
relogbmul 26519 The logarithm of the produ...
relogbmulexp 26520 The logarithm of the produ...
relogbdiv 26521 The logarithm of the quoti...
relogbexp 26522 Identity law for general l...
nnlogbexp 26523 Identity law for general l...
logbrec 26524 Logarithm of a reciprocal ...
logbleb 26525 The general logarithm func...
logblt 26526 The general logarithm func...
relogbcxp 26527 Identity law for the gener...
cxplogb 26528 Identity law for the gener...
relogbcxpb 26529 The logarithm is the inver...
logbmpt 26530 The general logarithm to a...
logbf 26531 The general logarithm to a...
logbfval 26532 The general logarithm of a...
relogbf 26533 The general logarithm to a...
logblog 26534 The general logarithm to t...
logbgt0b 26535 The logarithm of a positiv...
logbgcd1irr 26536 The logarithm of an intege...
2logb9irr 26537 Example for ~ logbgcd1irr ...
logbprmirr 26538 The logarithm of a prime t...
2logb3irr 26539 Example for ~ logbprmirr ....
2logb9irrALT 26540 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 26541 The square root of two to ...
2irrexpqALT 26542 Alternate proof of ~ 2irre...
angval 26543 Define the angle function,...
angcan 26544 Cancel a constant multipli...
angneg 26545 Cancel a negative sign in ...
angvald 26546 The (signed) angle between...
angcld 26547 The (signed) angle between...
angrteqvd 26548 Two vectors are at a right...
cosangneg2d 26549 The cosine of the angle be...
angrtmuld 26550 Perpendicularity of two ve...
ang180lem1 26551 Lemma for ~ ang180 . Show...
ang180lem2 26552 Lemma for ~ ang180 . Show...
ang180lem3 26553 Lemma for ~ ang180 . Sinc...
ang180lem4 26554 Lemma for ~ ang180 . Redu...
ang180lem5 26555 Lemma for ~ ang180 : Redu...
ang180 26556 The sum of angles ` m A B ...
lawcoslem1 26557 Lemma for ~ lawcos . Here...
lawcos 26558 Law of cosines (also known...
pythag 26559 Pythagorean theorem. Give...
isosctrlem1 26560 Lemma for ~ isosctr . (Co...
isosctrlem2 26561 Lemma for ~ isosctr . Cor...
isosctrlem3 26562 Lemma for ~ isosctr . Cor...
isosctr 26563 Isosceles triangle theorem...
ssscongptld 26564 If two triangles have equa...
affineequiv 26565 Equivalence between two wa...
affineequiv2 26566 Equivalence between two wa...
affineequiv3 26567 Equivalence between two wa...
affineequiv4 26568 Equivalence between two wa...
affineequivne 26569 Equivalence between two wa...
angpieqvdlem 26570 Equivalence used in the pr...
angpieqvdlem2 26571 Equivalence used in ~ angp...
angpined 26572 If the angle at ABC is ` _...
angpieqvd 26573 The angle ABC is ` _pi ` i...
chordthmlem 26574 If ` M ` is the midpoint o...
chordthmlem2 26575 If M is the midpoint of AB...
chordthmlem3 26576 If M is the midpoint of AB...
chordthmlem4 26577 If P is on the segment AB ...
chordthmlem5 26578 If P is on the segment AB ...
chordthm 26579 The intersecting chords th...
heron 26580 Heron's formula gives the ...
quad2 26581 The quadratic equation, wi...
quad 26582 The quadratic equation. (...
1cubrlem 26583 The cube roots of unity. ...
1cubr 26584 The cube roots of unity. ...
dcubic1lem 26585 Lemma for ~ dcubic1 and ~ ...
dcubic2 26586 Reverse direction of ~ dcu...
dcubic1 26587 Forward direction of ~ dcu...
dcubic 26588 Solutions to the depressed...
mcubic 26589 Solutions to a monic cubic...
cubic2 26590 The solution to the genera...
cubic 26591 The cubic equation, which ...
binom4 26592 Work out a quartic binomia...
dquartlem1 26593 Lemma for ~ dquart . (Con...
dquartlem2 26594 Lemma for ~ dquart . (Con...
dquart 26595 Solve a depressed quartic ...
quart1cl 26596 Closure lemmas for ~ quart...
quart1lem 26597 Lemma for ~ quart1 . (Con...
quart1 26598 Depress a quartic equation...
quartlem1 26599 Lemma for ~ quart . (Cont...
quartlem2 26600 Closure lemmas for ~ quart...
quartlem3 26601 Closure lemmas for ~ quart...
quartlem4 26602 Closure lemmas for ~ quart...
quart 26603 The quartic equation, writ...
asinlem 26610 The argument to the logari...
asinlem2 26611 The argument to the logari...
asinlem3a 26612 Lemma for ~ asinlem3 . (C...
asinlem3 26613 The argument to the logari...
asinf 26614 Domain and codomain of the...
asincl 26615 Closure for the arcsin fun...
acosf 26616 Domain and codoamin of the...
acoscl 26617 Closure for the arccos fun...
atandm 26618 Since the property is a li...
atandm2 26619 This form of ~ atandm is a...
atandm3 26620 A compact form of ~ atandm...
atandm4 26621 A compact form of ~ atandm...
atanf 26622 Domain and codoamin of the...
atancl 26623 Closure for the arctan fun...
asinval 26624 Value of the arcsin functi...
acosval 26625 Value of the arccos functi...
atanval 26626 Value of the arctan functi...
atanre 26627 A real number is in the do...
asinneg 26628 The arcsine function is od...
acosneg 26629 The negative symmetry rela...
efiasin 26630 The exponential of the arc...
sinasin 26631 The arcsine function is an...
cosacos 26632 The arccosine function is ...
asinsinlem 26633 Lemma for ~ asinsin . (Co...
asinsin 26634 The arcsine function compo...
acoscos 26635 The arccosine function is ...
asin1 26636 The arcsine of ` 1 ` is ` ...
acos1 26637 The arccosine of ` 1 ` is ...
reasinsin 26638 The arcsine function compo...
asinsinb 26639 Relationship between sine ...
acoscosb 26640 Relationship between cosin...
asinbnd 26641 The arcsine function has r...
acosbnd 26642 The arccosine function has...
asinrebnd 26643 Bounds on the arcsine func...
asinrecl 26644 The arcsine function is re...
acosrecl 26645 The arccosine function is ...
cosasin 26646 The cosine of the arcsine ...
sinacos 26647 The sine of the arccosine ...
atandmneg 26648 The domain of the arctange...
atanneg 26649 The arctangent function is...
atan0 26650 The arctangent of zero is ...
atandmcj 26651 The arctangent function di...
atancj 26652 The arctangent function di...
atanrecl 26653 The arctangent function is...
efiatan 26654 Value of the exponential o...
atanlogaddlem 26655 Lemma for ~ atanlogadd . ...
atanlogadd 26656 The rule ` sqrt ( z w ) = ...
atanlogsublem 26657 Lemma for ~ atanlogsub . ...
atanlogsub 26658 A variation on ~ atanlogad...
efiatan2 26659 Value of the exponential o...
2efiatan 26660 Value of the exponential o...
tanatan 26661 The arctangent function is...
atandmtan 26662 The tangent function has r...
cosatan 26663 The cosine of an arctangen...
cosatanne0 26664 The arctangent function ha...
atantan 26665 The arctangent function is...
atantanb 26666 Relationship between tange...
atanbndlem 26667 Lemma for ~ atanbnd . (Co...
atanbnd 26668 The arctangent function is...
atanord 26669 The arctangent function is...
atan1 26670 The arctangent of ` 1 ` is...
bndatandm 26671 A point in the open unit d...
atans 26672 The "domain of continuity"...
atans2 26673 It suffices to show that `...
atansopn 26674 The domain of continuity o...
atansssdm 26675 The domain of continuity o...
ressatans 26676 The real number line is a ...
dvatan 26677 The derivative of the arct...
atancn 26678 The arctangent is a contin...
atantayl 26679 The Taylor series for ` ar...
atantayl2 26680 The Taylor series for ` ar...
atantayl3 26681 The Taylor series for ` ar...
leibpilem1 26682 Lemma for ~ leibpi . (Con...
leibpilem2 26683 The Leibniz formula for ` ...
leibpi 26684 The Leibniz formula for ` ...
leibpisum 26685 The Leibniz formula for ` ...
log2cnv 26686 Using the Taylor series fo...
log2tlbnd 26687 Bound the error term in th...
log2ublem1 26688 Lemma for ~ log2ub . The ...
log2ublem2 26689 Lemma for ~ log2ub . (Con...
log2ublem3 26690 Lemma for ~ log2ub . In d...
log2ub 26691 ` log 2 ` is less than ` 2...
log2le1 26692 ` log 2 ` is less than ` 1...
birthdaylem1 26693 Lemma for ~ birthday . (C...
birthdaylem2 26694 For general ` N ` and ` K ...
birthdaylem3 26695 For general ` N ` and ` K ...
birthday 26696 The Birthday Problem. The...
dmarea 26699 The domain of the area fun...
areambl 26700 The fibers of a measurable...
areass 26701 A measurable region is a s...
dfarea 26702 Rewrite ~ df-area self-ref...
areaf 26703 Area measurement is a func...
areacl 26704 The area of a measurable r...
areage0 26705 The area of a measurable r...
areaval 26706 The area of a measurable r...
rlimcnp 26707 Relate a limit of a real-v...
rlimcnp2 26708 Relate a limit of a real-v...
rlimcnp3 26709 Relate a limit of a real-v...
xrlimcnp 26710 Relate a limit of a real-v...
efrlim 26711 The limit of the sequence ...
dfef2 26712 The limit of the sequence ...
cxplim 26713 A power to a negative expo...
sqrtlim 26714 The inverse square root fu...
rlimcxp 26715 Any power to a positive ex...
o1cxp 26716 An eventually bounded func...
cxp2limlem 26717 A linear factor grows slow...
cxp2lim 26718 Any power grows slower tha...
cxploglim 26719 The logarithm grows slower...
cxploglim2 26720 Every power of the logarit...
divsqrtsumlem 26721 Lemma for ~ divsqrsum and ...
divsqrsumf 26722 The function ` F ` used in...
divsqrsum 26723 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26724 A bound on the distance of...
divsqrtsumo1 26725 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26726 Closure of a 0-1 linear co...
scvxcvx 26727 A strictly convex function...
jensenlem1 26728 Lemma for ~ jensen . (Con...
jensenlem2 26729 Lemma for ~ jensen . (Con...
jensen 26730 Jensen's inequality, a fin...
amgmlem 26731 Lemma for ~ amgm . (Contr...
amgm 26732 Inequality of arithmetic a...
logdifbnd 26735 Bound on the difference of...
logdiflbnd 26736 Lower bound on the differe...
emcllem1 26737 Lemma for ~ emcl . The se...
emcllem2 26738 Lemma for ~ emcl . ` F ` i...
emcllem3 26739 Lemma for ~ emcl . The fu...
emcllem4 26740 Lemma for ~ emcl . The di...
emcllem5 26741 Lemma for ~ emcl . The pa...
emcllem6 26742 Lemma for ~ emcl . By the...
emcllem7 26743 Lemma for ~ emcl and ~ har...
emcl 26744 Closure and bounds for the...
harmonicbnd 26745 A bound on the harmonic se...
harmonicbnd2 26746 A bound on the harmonic se...
emre 26747 The Euler-Mascheroni const...
emgt0 26748 The Euler-Mascheroni const...
harmonicbnd3 26749 A bound on the harmonic se...
harmoniclbnd 26750 A bound on the harmonic se...
harmonicubnd 26751 A bound on the harmonic se...
harmonicbnd4 26752 The asymptotic behavior of...
fsumharmonic 26753 Bound a finite sum based o...
zetacvg 26756 The zeta series is converg...
eldmgm 26763 Elementhood in the set of ...
dmgmaddn0 26764 If ` A ` is not a nonposit...
dmlogdmgm 26765 If ` A ` is in the continu...
rpdmgm 26766 A positive real number is ...
dmgmn0 26767 If ` A ` is not a nonposit...
dmgmaddnn0 26768 If ` A ` is not a nonposit...
dmgmdivn0 26769 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26770 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26771 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26772 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26773 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26774 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26775 The series ` G ` is unifor...
lgamgulm 26776 The series ` G ` is unifor...
lgamgulm2 26777 Rewrite the limit of the s...
lgambdd 26778 The log-Gamma function is ...
lgamucov 26779 The ` U ` regions used in ...
lgamucov2 26780 The ` U ` regions used in ...
lgamcvglem 26781 Lemma for ~ lgamf and ~ lg...
lgamcl 26782 The log-Gamma function is ...
lgamf 26783 The log-Gamma function is ...
gamf 26784 The Gamma function is a co...
gamcl 26785 The exponential of the log...
eflgam 26786 The exponential of the log...
gamne0 26787 The Gamma function is neve...
igamval 26788 Value of the inverse Gamma...
igamz 26789 Value of the inverse Gamma...
igamgam 26790 Value of the inverse Gamma...
igamlgam 26791 Value of the inverse Gamma...
igamf 26792 Closure of the inverse Gam...
igamcl 26793 Closure of the inverse Gam...
gamigam 26794 The Gamma function is the ...
lgamcvg 26795 The series ` G ` converges...
lgamcvg2 26796 The series ` G ` converges...
gamcvg 26797 The pointwise exponential ...
lgamp1 26798 The functional equation of...
gamp1 26799 The functional equation of...
gamcvg2lem 26800 Lemma for ~ gamcvg2 . (Co...
gamcvg2 26801 An infinite product expres...
regamcl 26802 The Gamma function is real...
relgamcl 26803 The log-Gamma function is ...
rpgamcl 26804 The log-Gamma function is ...
lgam1 26805 The log-Gamma function at ...
gam1 26806 The log-Gamma function at ...
facgam 26807 The Gamma function general...
gamfac 26808 The Gamma function general...
wilthlem1 26809 The only elements that are...
wilthlem2 26810 Lemma for ~ wilth : induct...
wilthlem3 26811 Lemma for ~ wilth . Here ...
wilth 26812 Wilson's theorem. A numbe...
wilthimp 26813 The forward implication of...
ftalem1 26814 Lemma for ~ fta : "growth...
ftalem2 26815 Lemma for ~ fta . There e...
ftalem3 26816 Lemma for ~ fta . There e...
ftalem4 26817 Lemma for ~ fta : Closure...
ftalem5 26818 Lemma for ~ fta : Main pr...
ftalem6 26819 Lemma for ~ fta : Dischar...
ftalem7 26820 Lemma for ~ fta . Shift t...
fta 26821 The Fundamental Theorem of...
basellem1 26822 Lemma for ~ basel . Closu...
basellem2 26823 Lemma for ~ basel . Show ...
basellem3 26824 Lemma for ~ basel . Using...
basellem4 26825 Lemma for ~ basel . By ~ ...
basellem5 26826 Lemma for ~ basel . Using...
basellem6 26827 Lemma for ~ basel . The f...
basellem7 26828 Lemma for ~ basel . The f...
basellem8 26829 Lemma for ~ basel . The f...
basellem9 26830 Lemma for ~ basel . Since...
basel 26831 The sum of the inverse squ...
efnnfsumcl 26844 Finite sum closure in the ...
ppisval 26845 The set of primes less tha...
ppisval2 26846 The set of primes less tha...
ppifi 26847 The set of primes less tha...
prmdvdsfi 26848 The set of prime divisors ...
chtf 26849 Domain and codoamin of the...
chtcl 26850 Real closure of the Chebys...
chtval 26851 Value of the Chebyshev fun...
efchtcl 26852 The Chebyshev function is ...
chtge0 26853 The Chebyshev function is ...
vmaval 26854 Value of the von Mangoldt ...
isppw 26855 Two ways to say that ` A `...
isppw2 26856 Two ways to say that ` A `...
vmappw 26857 Value of the von Mangoldt ...
vmaprm 26858 Value of the von Mangoldt ...
vmacl 26859 Closure for the von Mangol...
vmaf 26860 Functionality of the von M...
efvmacl 26861 The von Mangoldt is closed...
vmage0 26862 The von Mangoldt function ...
chpval 26863 Value of the second Chebys...
chpf 26864 Functionality of the secon...
chpcl 26865 Closure for the second Che...
efchpcl 26866 The second Chebyshev funct...
chpge0 26867 The second Chebyshev funct...
ppival 26868 Value of the prime-countin...
ppival2 26869 Value of the prime-countin...
ppival2g 26870 Value of the prime-countin...
ppif 26871 Domain and codomain of the...
ppicl 26872 Real closure of the prime-...
muval 26873 The value of the Möbi...
muval1 26874 The value of the Möbi...
muval2 26875 The value of the Möbi...
isnsqf 26876 Two ways to say that a num...
issqf 26877 Two ways to say that a num...
sqfpc 26878 The prime count of a squar...
dvdssqf 26879 A divisor of a squarefree ...
sqf11 26880 A squarefree number is com...
muf 26881 The Möbius function i...
mucl 26882 Closure of the Möbius...
sgmval 26883 The value of the divisor f...
sgmval2 26884 The value of the divisor f...
0sgm 26885 The value of the sum-of-di...
sgmf 26886 The divisor function is a ...
sgmcl 26887 Closure of the divisor fun...
sgmnncl 26888 Closure of the divisor fun...
mule1 26889 The Möbius function t...
chtfl 26890 The Chebyshev function doe...
chpfl 26891 The second Chebyshev funct...
ppiprm 26892 The prime-counting functio...
ppinprm 26893 The prime-counting functio...
chtprm 26894 The Chebyshev function at ...
chtnprm 26895 The Chebyshev function at ...
chpp1 26896 The second Chebyshev funct...
chtwordi 26897 The Chebyshev function is ...
chpwordi 26898 The second Chebyshev funct...
chtdif 26899 The difference of the Cheb...
efchtdvds 26900 The exponentiated Chebyshe...
ppifl 26901 The prime-counting functio...
ppip1le 26902 The prime-counting functio...
ppiwordi 26903 The prime-counting functio...
ppidif 26904 The difference of the prim...
ppi1 26905 The prime-counting functio...
cht1 26906 The Chebyshev function at ...
vma1 26907 The von Mangoldt function ...
chp1 26908 The second Chebyshev funct...
ppi1i 26909 Inference form of ~ ppiprm...
ppi2i 26910 Inference form of ~ ppinpr...
ppi2 26911 The prime-counting functio...
ppi3 26912 The prime-counting functio...
cht2 26913 The Chebyshev function at ...
cht3 26914 The Chebyshev function at ...
ppinncl 26915 Closure of the prime-count...
chtrpcl 26916 Closure of the Chebyshev f...
ppieq0 26917 The prime-counting functio...
ppiltx 26918 The prime-counting functio...
prmorcht 26919 Relate the primorial (prod...
mumullem1 26920 Lemma for ~ mumul . A mul...
mumullem2 26921 Lemma for ~ mumul . The p...
mumul 26922 The Möbius function i...
sqff1o 26923 There is a bijection from ...
fsumdvdsdiaglem 26924 A "diagonal commutation" o...
fsumdvdsdiag 26925 A "diagonal commutation" o...
fsumdvdscom 26926 A double commutation of di...
dvdsppwf1o 26927 A bijection from the divis...
dvdsflf1o 26928 A bijection from the numbe...
dvdsflsumcom 26929 A sum commutation from ` s...
fsumfldivdiaglem 26930 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 26931 The right-hand side of ~ d...
musum 26932 The sum of the Möbius...
musumsum 26933 Evaluate a collapsing sum ...
muinv 26934 The Möbius inversion ...
dvdsmulf1o 26935 If ` M ` and ` N ` are two...
fsumdvdsmul 26936 Product of two divisor sum...
sgmppw 26937 The value of the divisor f...
0sgmppw 26938 A prime power ` P ^ K ` ha...
1sgmprm 26939 The sum of divisors for a ...
1sgm2ppw 26940 The sum of the divisors of...
sgmmul 26941 The divisor function for f...
ppiublem1 26942 Lemma for ~ ppiub . (Cont...
ppiublem2 26943 A prime greater than ` 3 `...
ppiub 26944 An upper bound on the prim...
vmalelog 26945 The von Mangoldt function ...
chtlepsi 26946 The first Chebyshev functi...
chprpcl 26947 Closure of the second Cheb...
chpeq0 26948 The second Chebyshev funct...
chteq0 26949 The first Chebyshev functi...
chtleppi 26950 Upper bound on the ` theta...
chtublem 26951 Lemma for ~ chtub . (Cont...
chtub 26952 An upper bound on the Cheb...
fsumvma 26953 Rewrite a sum over the von...
fsumvma2 26954 Apply ~ fsumvma for the co...
pclogsum 26955 The logarithmic analogue o...
vmasum 26956 The sum of the von Mangold...
logfac2 26957 Another expression for the...
chpval2 26958 Express the second Chebysh...
chpchtsum 26959 The second Chebyshev funct...
chpub 26960 An upper bound on the seco...
logfacubnd 26961 A simple upper bound on th...
logfaclbnd 26962 A lower bound on the logar...
logfacbnd3 26963 Show the stronger statemen...
logfacrlim 26964 Combine the estimates ~ lo...
logexprlim 26965 The sum ` sum_ n <_ x , lo...
logfacrlim2 26966 Write out ~ logfacrlim as ...
mersenne 26967 A Mersenne prime is a prim...
perfect1 26968 Euclid's contribution to t...
perfectlem1 26969 Lemma for ~ perfect . (Co...
perfectlem2 26970 Lemma for ~ perfect . (Co...
perfect 26971 The Euclid-Euler theorem, ...
dchrval 26974 Value of the group of Diri...
dchrbas 26975 Base set of the group of D...
dchrelbas 26976 A Dirichlet character is a...
dchrelbas2 26977 A Dirichlet character is a...
dchrelbas3 26978 A Dirichlet character is a...
dchrelbasd 26979 A Dirichlet character is a...
dchrrcl 26980 Reverse closure for a Diri...
dchrmhm 26981 A Dirichlet character is a...
dchrf 26982 A Dirichlet character is a...
dchrelbas4 26983 A Dirichlet character is a...
dchrzrh1 26984 Value of a Dirichlet chara...
dchrzrhcl 26985 A Dirichlet character take...
dchrzrhmul 26986 A Dirichlet character is c...
dchrplusg 26987 Group operation on the gro...
dchrmul 26988 Group operation on the gro...
dchrmulcl 26989 Closure of the group opera...
dchrn0 26990 A Dirichlet character is n...
dchr1cl 26991 Closure of the principal D...
dchrmullid 26992 Left identity for the prin...
dchrinvcl 26993 Closure of the group inver...
dchrabl 26994 The set of Dirichlet chara...
dchrfi 26995 The group of Dirichlet cha...
dchrghm 26996 A Dirichlet character rest...
dchr1 26997 Value of the principal Dir...
dchreq 26998 A Dirichlet character is d...
dchrresb 26999 A Dirichlet character is d...
dchrabs 27000 A Dirichlet character take...
dchrinv 27001 The inverse of a Dirichlet...
dchrabs2 27002 A Dirichlet character take...
dchr1re 27003 The principal Dirichlet ch...
dchrptlem1 27004 Lemma for ~ dchrpt . (Con...
dchrptlem2 27005 Lemma for ~ dchrpt . (Con...
dchrptlem3 27006 Lemma for ~ dchrpt . (Con...
dchrpt 27007 For any element other than...
dchrsum2 27008 An orthogonality relation ...
dchrsum 27009 An orthogonality relation ...
sumdchr2 27010 Lemma for ~ sumdchr . (Co...
dchrhash 27011 There are exactly ` phi ( ...
sumdchr 27012 An orthogonality relation ...
dchr2sum 27013 An orthogonality relation ...
sum2dchr 27014 An orthogonality relation ...
bcctr 27015 Value of the central binom...
pcbcctr 27016 Prime count of a central b...
bcmono 27017 The binomial coefficient i...
bcmax 27018 The binomial coefficient t...
bcp1ctr 27019 Ratio of two central binom...
bclbnd 27020 A bound on the binomial co...
efexple 27021 Convert a bound on a power...
bpos1lem 27022 Lemma for ~ bpos1 . (Cont...
bpos1 27023 Bertrand's postulate, chec...
bposlem1 27024 An upper bound on the prim...
bposlem2 27025 There are no odd primes in...
bposlem3 27026 Lemma for ~ bpos . Since ...
bposlem4 27027 Lemma for ~ bpos . (Contr...
bposlem5 27028 Lemma for ~ bpos . Bound ...
bposlem6 27029 Lemma for ~ bpos . By usi...
bposlem7 27030 Lemma for ~ bpos . The fu...
bposlem8 27031 Lemma for ~ bpos . Evalua...
bposlem9 27032 Lemma for ~ bpos . Derive...
bpos 27033 Bertrand's postulate: ther...
zabsle1 27036 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 27037 When ` a ` is coprime to t...
lgslem2 27038 The set ` Z ` of all integ...
lgslem3 27039 The set ` Z ` of all integ...
lgslem4 27040 Lemma for ~ lgsfcl2 . (Co...
lgsval 27041 Value of the Legendre symb...
lgsfval 27042 Value of the function ` F ...
lgsfcl2 27043 The function ` F ` is clos...
lgscllem 27044 The Legendre symbol is an ...
lgsfcl 27045 Closure of the function ` ...
lgsfle1 27046 The function ` F ` has mag...
lgsval2lem 27047 Lemma for ~ lgsval2 . (Co...
lgsval4lem 27048 Lemma for ~ lgsval4 . (Co...
lgscl2 27049 The Legendre symbol is an ...
lgs0 27050 The Legendre symbol when t...
lgscl 27051 The Legendre symbol is an ...
lgsle1 27052 The Legendre symbol has ab...
lgsval2 27053 The Legendre symbol at a p...
lgs2 27054 The Legendre symbol at ` 2...
lgsval3 27055 The Legendre symbol at an ...
lgsvalmod 27056 The Legendre symbol is equ...
lgsval4 27057 Restate ~ lgsval for nonze...
lgsfcl3 27058 Closure of the function ` ...
lgsval4a 27059 Same as ~ lgsval4 for posi...
lgscl1 27060 The value of the Legendre ...
lgsneg 27061 The Legendre symbol is eit...
lgsneg1 27062 The Legendre symbol for no...
lgsmod 27063 The Legendre (Jacobi) symb...
lgsdilem 27064 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 27065 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 27066 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 27067 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 27068 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 27069 Lemma for ~ lgsdir2 . (Co...
lgsdir2 27070 The Legendre symbol is com...
lgsdirprm 27071 The Legendre symbol is com...
lgsdir 27072 The Legendre symbol is com...
lgsdilem2 27073 Lemma for ~ lgsdi . (Cont...
lgsdi 27074 The Legendre symbol is com...
lgsne0 27075 The Legendre symbol is non...
lgsabs1 27076 The Legendre symbol is non...
lgssq 27077 The Legendre symbol at a s...
lgssq2 27078 The Legendre symbol at a s...
lgsprme0 27079 The Legendre symbol at any...
1lgs 27080 The Legendre symbol at ` 1...
lgs1 27081 The Legendre symbol at ` 1...
lgsmodeq 27082 The Legendre (Jacobi) symb...
lgsmulsqcoprm 27083 The Legendre (Jacobi) symb...
lgsdirnn0 27084 Variation on ~ lgsdir vali...
lgsdinn0 27085 Variation on ~ lgsdi valid...
lgsqrlem1 27086 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 27087 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 27088 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 27089 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 27090 Lemma for ~ lgsqr . (Cont...
lgsqr 27091 The Legendre symbol for od...
lgsqrmod 27092 If the Legendre symbol of ...
lgsqrmodndvds 27093 If the Legendre symbol of ...
lgsdchrval 27094 The Legendre symbol functi...
lgsdchr 27095 The Legendre symbol functi...
gausslemma2dlem0a 27096 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 27097 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 27098 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 27099 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 27100 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 27101 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 27102 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 27103 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 27104 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 27105 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 27106 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 27107 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 27108 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 27109 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 27110 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 27111 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 27112 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 27113 Lemma 7 for ~ gausslemma2d...
gausslemma2d 27114 Gauss' Lemma (see also the...
lgseisenlem1 27115 Lemma for ~ lgseisen . If...
lgseisenlem2 27116 Lemma for ~ lgseisen . Th...
lgseisenlem3 27117 Lemma for ~ lgseisen . (C...
lgseisenlem4 27118 Lemma for ~ lgseisen . Th...
lgseisen 27119 Eisenstein's lemma, an exp...
lgsquadlem1 27120 Lemma for ~ lgsquad . Cou...
lgsquadlem2 27121 Lemma for ~ lgsquad . Cou...
lgsquadlem3 27122 Lemma for ~ lgsquad . (Co...
lgsquad 27123 The Law of Quadratic Recip...
lgsquad2lem1 27124 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 27125 Lemma for ~ lgsquad2 . (C...
lgsquad2 27126 Extend ~ lgsquad to coprim...
lgsquad3 27127 Extend ~ lgsquad2 to integ...
m1lgs 27128 The first supplement to th...
2lgslem1a1 27129 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 27130 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 27131 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 27132 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 27133 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 27134 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 27135 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 27136 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 27137 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 27138 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 27139 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 27140 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 27141 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 27142 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 27143 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 27144 Lemma 3 for ~ 2lgs . (Con...
2lgs2 27145 The Legendre symbol for ` ...
2lgslem4 27146 Lemma 4 for ~ 2lgs : speci...
2lgs 27147 The second supplement to t...
2lgsoddprmlem1 27148 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 27149 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 27150 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 27151 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 27152 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 27153 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 27154 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 27155 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 27156 The second supplement to t...
2sqlem1 27157 Lemma for ~ 2sq . (Contri...
2sqlem2 27158 Lemma for ~ 2sq . (Contri...
mul2sq 27159 Fibonacci's identity (actu...
2sqlem3 27160 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 27161 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 27162 Lemma for ~ 2sq . If a nu...
2sqlem6 27163 Lemma for ~ 2sq . If a nu...
2sqlem7 27164 Lemma for ~ 2sq . (Contri...
2sqlem8a 27165 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 27166 Lemma for ~ 2sq . (Contri...
2sqlem9 27167 Lemma for ~ 2sq . (Contri...
2sqlem10 27168 Lemma for ~ 2sq . Every f...
2sqlem11 27169 Lemma for ~ 2sq . (Contri...
2sq 27170 All primes of the form ` 4...
2sqblem 27171 Lemma for ~ 2sqb . (Contr...
2sqb 27172 The converse to ~ 2sq . (...
2sq2 27173 ` 2 ` is the sum of square...
2sqn0 27174 If the sum of two squares ...
2sqcoprm 27175 If the sum of two squares ...
2sqmod 27176 Given two decompositions o...
2sqmo 27177 There exists at most one d...
2sqnn0 27178 All primes of the form ` 4...
2sqnn 27179 All primes of the form ` 4...
addsq2reu 27180 For each complex number ` ...
addsqn2reu 27181 For each complex number ` ...
addsqrexnreu 27182 For each complex number, t...
addsqnreup 27183 There is no unique decompo...
addsq2nreurex 27184 For each complex number ` ...
addsqn2reurex2 27185 For each complex number ` ...
2sqreulem1 27186 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 27187 Lemma for ~ 2sqreult . (C...
2sqreultblem 27188 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 27189 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 27190 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 27191 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 27192 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 27193 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 27194 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 27195 Lemma 2 for ~ 2sqreunn . ...
2sqreu 27196 There exists a unique deco...
2sqreunn 27197 There exists a unique deco...
2sqreult 27198 There exists a unique deco...
2sqreultb 27199 There exists a unique deco...
2sqreunnlt 27200 There exists a unique deco...
2sqreunnltb 27201 There exists a unique deco...
2sqreuop 27202 There exists a unique deco...
2sqreuopnn 27203 There exists a unique deco...
2sqreuoplt 27204 There exists a unique deco...
2sqreuopltb 27205 There exists a unique deco...
2sqreuopnnlt 27206 There exists a unique deco...
2sqreuopnnltb 27207 There exists a unique deco...
2sqreuopb 27208 There exists a unique deco...
chebbnd1lem1 27209 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 27210 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 27211 Lemma for ~ chebbnd1 : get...
chebbnd1 27212 The Chebyshev bound: The ...
chtppilimlem1 27213 Lemma for ~ chtppilim . (...
chtppilimlem2 27214 Lemma for ~ chtppilim . (...
chtppilim 27215 The ` theta ` function is ...
chto1ub 27216 The ` theta ` function is ...
chebbnd2 27217 The Chebyshev bound, part ...
chto1lb 27218 The ` theta ` function is ...
chpchtlim 27219 The ` psi ` and ` theta ` ...
chpo1ub 27220 The ` psi ` function is up...
chpo1ubb 27221 The ` psi ` function is up...
vmadivsum 27222 The sum of the von Mangold...
vmadivsumb 27223 Give a total bound on the ...
rplogsumlem1 27224 Lemma for ~ rplogsum . (C...
rplogsumlem2 27225 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 27226 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 27227 Lemma for ~ rpvmasum . Ca...
dchrisumlema 27228 Lemma for ~ dchrisum . Le...
dchrisumlem1 27229 Lemma for ~ dchrisum . Le...
dchrisumlem2 27230 Lemma for ~ dchrisum . Le...
dchrisumlem3 27231 Lemma for ~ dchrisum . Le...
dchrisum 27232 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 27233 Lemma for ~ dchrmusum and ...
dchrmusum2 27234 The sum of the Möbius...
dchrvmasumlem1 27235 An alternative expression ...
dchrvmasum2lem 27236 Give an expression for ` l...
dchrvmasum2if 27237 Combine the results of ~ d...
dchrvmasumlem2 27238 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 27239 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 27240 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 27241 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 27242 Lemma for ~ dchrvmasum . ...
dchrvmasumif 27243 An asymptotic approximatio...
dchrvmaeq0 27244 The set ` W ` is the colle...
dchrisum0fval 27245 Value of the function ` F ...
dchrisum0fmul 27246 The function ` F ` , the d...
dchrisum0ff 27247 The function ` F ` is a re...
dchrisum0flblem1 27248 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 27249 Lemma for ~ dchrisum0flb ....
dchrisum0flb 27250 The divisor sum of a real ...
dchrisum0fno1 27251 The sum ` sum_ k <_ x , F ...
rpvmasum2 27252 A partial result along the...
dchrisum0re 27253 Suppose ` X ` is a non-pri...
dchrisum0lema 27254 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 27255 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 27256 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 27257 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 27258 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 27259 Lemma for ~ dchrisum0 . (...
dchrisum0 27260 The sum ` sum_ n e. NN , X...
dchrisumn0 27261 The sum ` sum_ n e. NN , X...
dchrmusumlem 27262 The sum of the Möbius...
dchrvmasumlem 27263 The sum of the Möbius...
dchrmusum 27264 The sum of the Möbius...
dchrvmasum 27265 The sum of the von Mangold...
rpvmasum 27266 The sum of the von Mangold...
rplogsum 27267 The sum of ` log p / p ` o...
dirith2 27268 Dirichlet's theorem: there...
dirith 27269 Dirichlet's theorem: there...
mudivsum 27270 Asymptotic formula for ` s...
mulogsumlem 27271 Lemma for ~ mulogsum . (C...
mulogsum 27272 Asymptotic formula for ...
logdivsum 27273 Asymptotic analysis of ...
mulog2sumlem1 27274 Asymptotic formula for ...
mulog2sumlem2 27275 Lemma for ~ mulog2sum . (...
mulog2sumlem3 27276 Lemma for ~ mulog2sum . (...
mulog2sum 27277 Asymptotic formula for ...
vmalogdivsum2 27278 The sum ` sum_ n <_ x , La...
vmalogdivsum 27279 The sum ` sum_ n <_ x , La...
2vmadivsumlem 27280 Lemma for ~ 2vmadivsum . ...
2vmadivsum 27281 The sum ` sum_ m n <_ x , ...
logsqvma 27282 A formula for ` log ^ 2 ( ...
logsqvma2 27283 The Möbius inverse of...
log2sumbnd 27284 Bound on the difference be...
selberglem1 27285 Lemma for ~ selberg . Est...
selberglem2 27286 Lemma for ~ selberg . (Co...
selberglem3 27287 Lemma for ~ selberg . Est...
selberg 27288 Selberg's symmetry formula...
selbergb 27289 Convert eventual boundedne...
selberg2lem 27290 Lemma for ~ selberg2 . Eq...
selberg2 27291 Selberg's symmetry formula...
selberg2b 27292 Convert eventual boundedne...
chpdifbndlem1 27293 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 27294 Lemma for ~ chpdifbnd . (...
chpdifbnd 27295 A bound on the difference ...
logdivbnd 27296 A bound on a sum of logs, ...
selberg3lem1 27297 Introduce a log weighting ...
selberg3lem2 27298 Lemma for ~ selberg3 . Eq...
selberg3 27299 Introduce a log weighting ...
selberg4lem1 27300 Lemma for ~ selberg4 . Eq...
selberg4 27301 The Selberg symmetry formu...
pntrval 27302 Define the residual of the...
pntrf 27303 Functionality of the resid...
pntrmax 27304 There is a bound on the re...
pntrsumo1 27305 A bound on a sum over ` R ...
pntrsumbnd 27306 A bound on a sum over ` R ...
pntrsumbnd2 27307 A bound on a sum over ` R ...
selbergr 27308 Selberg's symmetry formula...
selberg3r 27309 Selberg's symmetry formula...
selberg4r 27310 Selberg's symmetry formula...
selberg34r 27311 The sum of ~ selberg3r and...
pntsval 27312 Define the "Selberg functi...
pntsf 27313 Functionality of the Selbe...
selbergs 27314 Selberg's symmetry formula...
selbergsb 27315 Selberg's symmetry formula...
pntsval2 27316 The Selberg function can b...
pntrlog2bndlem1 27317 The sum of ~ selberg3r and...
pntrlog2bndlem2 27318 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 27319 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 27320 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 27321 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 27322 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 27323 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 27324 A bound on ` R ( x ) log ^...
pntpbnd1a 27325 Lemma for ~ pntpbnd . (Co...
pntpbnd1 27326 Lemma for ~ pntpbnd . (Co...
pntpbnd2 27327 Lemma for ~ pntpbnd . (Co...
pntpbnd 27328 Lemma for ~ pnt . Establi...
pntibndlem1 27329 Lemma for ~ pntibnd . (Co...
pntibndlem2a 27330 Lemma for ~ pntibndlem2 . ...
pntibndlem2 27331 Lemma for ~ pntibnd . The...
pntibndlem3 27332 Lemma for ~ pntibnd . Pac...
pntibnd 27333 Lemma for ~ pnt . Establi...
pntlemd 27334 Lemma for ~ pnt . Closure...
pntlemc 27335 Lemma for ~ pnt . Closure...
pntlema 27336 Lemma for ~ pnt . Closure...
pntlemb 27337 Lemma for ~ pnt . Unpack ...
pntlemg 27338 Lemma for ~ pnt . Closure...
pntlemh 27339 Lemma for ~ pnt . Bounds ...
pntlemn 27340 Lemma for ~ pnt . The "na...
pntlemq 27341 Lemma for ~ pntlemj . (Co...
pntlemr 27342 Lemma for ~ pntlemj . (Co...
pntlemj 27343 Lemma for ~ pnt . The ind...
pntlemi 27344 Lemma for ~ pnt . Elimina...
pntlemf 27345 Lemma for ~ pnt . Add up ...
pntlemk 27346 Lemma for ~ pnt . Evaluat...
pntlemo 27347 Lemma for ~ pnt . Combine...
pntleme 27348 Lemma for ~ pnt . Package...
pntlem3 27349 Lemma for ~ pnt . Equatio...
pntlemp 27350 Lemma for ~ pnt . Wrappin...
pntleml 27351 Lemma for ~ pnt . Equatio...
pnt3 27352 The Prime Number Theorem, ...
pnt2 27353 The Prime Number Theorem, ...
pnt 27354 The Prime Number Theorem: ...
abvcxp 27355 Raising an absolute value ...
padicfval 27356 Value of the p-adic absolu...
padicval 27357 Value of the p-adic absolu...
ostth2lem1 27358 Lemma for ~ ostth2 , altho...
qrngbas 27359 The base set of the field ...
qdrng 27360 The rationals form a divis...
qrng0 27361 The zero element of the fi...
qrng1 27362 The unity element of the f...
qrngneg 27363 The additive inverse in th...
qrngdiv 27364 The division operation in ...
qabvle 27365 By using induction on ` N ...
qabvexp 27366 Induct the product rule ~ ...
ostthlem1 27367 Lemma for ~ ostth . If tw...
ostthlem2 27368 Lemma for ~ ostth . Refin...
qabsabv 27369 The regular absolute value...
padicabv 27370 The p-adic absolute value ...
padicabvf 27371 The p-adic absolute value ...
padicabvcxp 27372 All positive powers of the...
ostth1 27373 - Lemma for ~ ostth : triv...
ostth2lem2 27374 Lemma for ~ ostth2 . (Con...
ostth2lem3 27375 Lemma for ~ ostth2 . (Con...
ostth2lem4 27376 Lemma for ~ ostth2 . (Con...
ostth2 27377 - Lemma for ~ ostth : regu...
ostth3 27378 - Lemma for ~ ostth : p-ad...
ostth 27379 Ostrowski's theorem, which...
elno 27386 Membership in the surreals...
sltval 27387 The value of the surreal l...
bdayval 27388 The value of the birthday ...
nofun 27389 A surreal is a function. ...
nodmon 27390 The domain of a surreal is...
norn 27391 The range of a surreal is ...
nofnbday 27392 A surreal is a function ov...
nodmord 27393 The domain of a surreal ha...
elno2 27394 An alternative condition f...
elno3 27395 Another condition for memb...
sltval2 27396 Alternate expression for s...
nofv 27397 The function value of a su...
nosgnn0 27398 ` (/) ` is not a surreal s...
nosgnn0i 27399 If ` X ` is a surreal sign...
noreson 27400 The restriction of a surre...
sltintdifex 27401 If ` A
sltres 27402 If the restrictions of two...
noxp1o 27403 The Cartesian product of a...
noseponlem 27404 Lemma for ~ nosepon . Con...
nosepon 27405 Given two unequal surreals...
noextend 27406 Extending a surreal by one...
noextendseq 27407 Extend a surreal by a sequ...
noextenddif 27408 Calculate the place where ...
noextendlt 27409 Extending a surreal with a...
noextendgt 27410 Extending a surreal with a...
nolesgn2o 27411 Given ` A ` less-than or e...
nolesgn2ores 27412 Given ` A ` less-than or e...
nogesgn1o 27413 Given ` A ` greater than o...
nogesgn1ores 27414 Given ` A ` greater than o...
sltsolem1 27415 Lemma for ~ sltso . The "...
sltso 27416 Less-than totally orders t...
bdayfo 27417 The birthday function maps...
fvnobday 27418 The value of a surreal at ...
nosepnelem 27419 Lemma for ~ nosepne . (Co...
nosepne 27420 The value of two non-equal...
nosep1o 27421 If the value of a surreal ...
nosep2o 27422 If the value of a surreal ...
nosepdmlem 27423 Lemma for ~ nosepdm . (Co...
nosepdm 27424 The first place two surrea...
nosepeq 27425 The values of two surreals...
nosepssdm 27426 Given two non-equal surrea...
nodenselem4 27427 Lemma for ~ nodense . Sho...
nodenselem5 27428 Lemma for ~ nodense . If ...
nodenselem6 27429 The restriction of a surre...
nodenselem7 27430 Lemma for ~ nodense . ` A ...
nodenselem8 27431 Lemma for ~ nodense . Giv...
nodense 27432 Given two distinct surreal...
bdayimaon 27433 Lemma for full-eta propert...
nolt02olem 27434 Lemma for ~ nolt02o . If ...
nolt02o 27435 Given ` A ` less-than ` B ...
nogt01o 27436 Given ` A ` greater than `...
noresle 27437 Restriction law for surrea...
nomaxmo 27438 A class of surreals has at...
nominmo 27439 A class of surreals has at...
nosupprefixmo 27440 In any class of surreals, ...
noinfprefixmo 27441 In any class of surreals, ...
nosupcbv 27442 Lemma to change bound vari...
nosupno 27443 The next several theorems ...
nosupdm 27444 The domain of the surreal ...
nosupbday 27445 Birthday bounding law for ...
nosupfv 27446 The value of surreal supre...
nosupres 27447 A restriction law for surr...
nosupbnd1lem1 27448 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 27449 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 27450 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 27451 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 27452 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 27453 Lemma for ~ nosupbnd1 . E...
nosupbnd1 27454 Bounding law from below fo...
nosupbnd2lem1 27455 Bounding law from above wh...
nosupbnd2 27456 Bounding law from above fo...
noinfcbv 27457 Change bound variables for...
noinfno 27458 The next several theorems ...
noinfdm 27459 Next, we calculate the dom...
noinfbday 27460 Birthday bounding law for ...
noinffv 27461 The value of surreal infim...
noinfres 27462 The restriction of surreal...
noinfbnd1lem1 27463 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 27464 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 27465 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 27466 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 27467 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 27468 Lemma for ~ noinfbnd1 . E...
noinfbnd1 27469 Bounding law from above fo...
noinfbnd2lem1 27470 Bounding law from below wh...
noinfbnd2 27471 Bounding law from below fo...
nosupinfsep 27472 Given two sets of surreals...
noetasuplem1 27473 Lemma for ~ noeta . Estab...
noetasuplem2 27474 Lemma for ~ noeta . The r...
noetasuplem3 27475 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 27476 Lemma for ~ noeta . When ...
noetainflem1 27477 Lemma for ~ noeta . Estab...
noetainflem2 27478 Lemma for ~ noeta . The r...
noetainflem3 27479 Lemma for ~ noeta . ` W ` ...
noetainflem4 27480 Lemma for ~ noeta . If ` ...
noetalem1 27481 Lemma for ~ noeta . Eithe...
noetalem2 27482 Lemma for ~ noeta . The f...
noeta 27483 The full-eta axiom for the...
sltirr 27486 Surreal less-than is irref...
slttr 27487 Surreal less-than is trans...
sltasym 27488 Surreal less-than is asymm...
sltlin 27489 Surreal less-than obeys tr...
slttrieq2 27490 Trichotomy law for surreal...
slttrine 27491 Trichotomy law for surreal...
slenlt 27492 Surreal less-than or equal...
sltnle 27493 Surreal less-than in terms...
sleloe 27494 Surreal less-than or equal...
sletri3 27495 Trichotomy law for surreal...
sltletr 27496 Surreal transitive law. (...
slelttr 27497 Surreal transitive law. (...
sletr 27498 Surreal transitive law. (...
slttrd 27499 Surreal less-than is trans...
sltletrd 27500 Surreal less-than is trans...
slelttrd 27501 Surreal less-than is trans...
sletrd 27502 Surreal less-than or equal...
slerflex 27503 Surreal less-than or equal...
sletric 27504 Surreal trichotomy law. (...
maxs1 27505 A surreal is less than or ...
maxs2 27506 A surreal is less than or ...
mins1 27507 The minimum of two surreal...
mins2 27508 The minimum of two surreal...
sltled 27509 Surreal less-than implies ...
sltne 27510 Surreal less-than implies ...
bdayfun 27511 The birthday function is a...
bdayfn 27512 The birthday function is a...
bdaydm 27513 The birthday function's do...
bdayrn 27514 The birthday function's ra...
bdayelon 27515 The value of the birthday ...
nocvxminlem 27516 Lemma for ~ nocvxmin . Gi...
nocvxmin 27517 Given a nonempty convex cl...
noprc 27518 The surreal numbers are a ...
noeta2 27523 A version of ~ noeta with ...
brsslt 27524 Binary relation form of th...
ssltex1 27525 The first argument of surr...
ssltex2 27526 The second argument of sur...
ssltss1 27527 The first argument of surr...
ssltss2 27528 The second argument of sur...
ssltsep 27529 The separation property of...
ssltd 27530 Deduce surreal set less-th...
ssltsn 27531 Surreal set less-than of t...
ssltsepc 27532 Two elements of separated ...
ssltsepcd 27533 Two elements of separated ...
sssslt1 27534 Relation between surreal s...
sssslt2 27535 Relation between surreal s...
nulsslt 27536 The empty set is less-than...
nulssgt 27537 The empty set is greater t...
conway 27538 Conway's Simplicity Theore...
scutval 27539 The value of the surreal c...
scutcut 27540 Cut properties of the surr...
scutcl 27541 Closure law for surreal cu...
scutcld 27542 Closure law for surreal cu...
scutbday 27543 The birthday of the surrea...
eqscut 27544 Condition for equality to ...
eqscut2 27545 Condition for equality to ...
sslttr 27546 Transitive law for surreal...
ssltun1 27547 Union law for surreal set ...
ssltun2 27548 Union law for surreal set ...
scutun12 27549 Union law for surreal cuts...
dmscut 27550 The domain of the surreal ...
scutf 27551 Functionality statement fo...
etasslt 27552 A restatement of ~ noeta u...
etasslt2 27553 A version of ~ etasslt wit...
scutbdaybnd 27554 An upper bound on the birt...
scutbdaybnd2 27555 An upper bound on the birt...
scutbdaybnd2lim 27556 An upper bound on the birt...
scutbdaylt 27557 If a surreal lies in a gap...
slerec 27558 A comparison law for surre...
sltrec 27559 A comparison law for surre...
ssltdisj 27560 If ` A ` preceeds ` B ` , ...
0sno 27565 Surreal zero is a surreal....
1sno 27566 Surreal one is a surreal. ...
bday0s 27567 Calculate the birthday of ...
0slt1s 27568 Surreal zero is less than ...
bday0b 27569 The only surreal with birt...
bday1s 27570 The birthday of surreal on...
cuteq0 27571 Condition for a surreal cu...
cuteq1 27572 Condition for a surreal cu...
sgt0ne0 27573 A positive surreal is not ...
sgt0ne0d 27574 A positive surreal is not ...
madeval 27585 The value of the made by f...
madeval2 27586 Alternative characterizati...
oldval 27587 The value of the old optio...
newval 27588 The value of the new optio...
madef 27589 The made function is a fun...
oldf 27590 The older function is a fu...
newf 27591 The new function is a func...
old0 27592 No surreal is older than `...
madessno 27593 Made sets are surreals. (...
oldssno 27594 Old sets are surreals. (C...
newssno 27595 New sets are surreals. (C...
leftval 27596 The value of the left opti...
rightval 27597 The value of the right opt...
leftf 27598 The functionality of the l...
rightf 27599 The functionality of the r...
elmade 27600 Membership in the made fun...
elmade2 27601 Membership in the made fun...
elold 27602 Membership in an old set. ...
ssltleft 27603 A surreal is greater than ...
ssltright 27604 A surreal is less than its...
lltropt 27605 The left options of a surr...
made0 27606 The only surreal made on d...
new0 27607 The only surreal new on da...
old1 27608 The only surreal older tha...
madess 27609 If ` A ` is less than or e...
oldssmade 27610 The older-than set is a su...
leftssold 27611 The left options are a sub...
rightssold 27612 The right options are a su...
leftssno 27613 The left set of a surreal ...
rightssno 27614 The right set of a surreal...
madecut 27615 Given a section that is a ...
madeun 27616 The made set is the union ...
madeoldsuc 27617 The made set is the old se...
oldsuc 27618 The value of the old set a...
oldlim 27619 The value of the old set a...
madebdayim 27620 If a surreal is a member o...
oldbdayim 27621 If ` X ` is in the old set...
oldirr 27622 No surreal is a member of ...
leftirr 27623 No surreal is a member of ...
rightirr 27624 No surreal is a member of ...
left0s 27625 The left set of ` 0s ` is ...
right0s 27626 The right set of ` 0s ` is...
left1s 27627 The left set of ` 1s ` is ...
right1s 27628 The right set of ` 1s ` is...
lrold 27629 The union of the left and ...
madebdaylemold 27630 Lemma for ~ madebday . If...
madebdaylemlrcut 27631 Lemma for ~ madebday . If...
madebday 27632 A surreal is part of the s...
oldbday 27633 A surreal is part of the s...
newbday 27634 A surreal is an element of...
lrcut 27635 A surreal is equal to the ...
scutfo 27636 The surreal cut function i...
sltn0 27637 If ` X ` is less than ` Y ...
lruneq 27638 If two surreals share a bi...
sltlpss 27639 If two surreals share a bi...
slelss 27640 If two surreals ` A ` and ...
0elold 27641 Zero is in the old set of ...
0elleft 27642 Zero is in the left set of...
0elright 27643 Zero is in the right set o...
cofsslt 27644 If every element of ` A ` ...
coinitsslt 27645 If ` B ` is coinitial with...
cofcut1 27646 If ` C ` is cofinal with `...
cofcut1d 27647 If ` C ` is cofinal with `...
cofcut2 27648 If ` A ` and ` C ` are mut...
cofcut2d 27649 If ` A ` and ` C ` are mut...
cofcutr 27650 If ` X ` is the cut of ` A...
cofcutr1d 27651 If ` X ` is the cut of ` A...
cofcutr2d 27652 If ` X ` is the cut of ` A...
cofcutrtime 27653 If ` X ` is the cut of ` A...
cofcutrtime1d 27654 If ` X ` is a timely cut o...
cofcutrtime2d 27655 If ` X ` is a timely cut o...
cofss 27656 Cofinality for a subset. ...
coiniss 27657 Coinitiality for a subset....
cutlt 27658 Eliminating all elements b...
cutpos 27659 Reduce the elements of a c...
lrrecval 27662 The next step in the devel...
lrrecval2 27663 Next, we establish an alte...
lrrecpo 27664 Now, we establish that ` R...
lrrecse 27665 Next, we show that ` R ` i...
lrrecfr 27666 Now we show that ` R ` is ...
lrrecpred 27667 Finally, we calculate the ...
noinds 27668 Induction principle for a ...
norecfn 27669 Surreal recursion over one...
norecov 27670 Calculate the value of the...
noxpordpo 27673 To get through most of the...
noxpordfr 27674 Next we establish the foun...
noxpordse 27675 Next we establish the set-...
noxpordpred 27676 Next we calculate the pred...
no2indslem 27677 Double induction on surrea...
no2inds 27678 Double induction on surrea...
norec2fn 27679 The double-recursion opera...
norec2ov 27680 The value of the double-re...
no3inds 27681 Triple induction over surr...
addsfn 27684 Surreal addition is a func...
addsval 27685 The value of surreal addit...
addsval2 27686 The value of surreal addit...
addsrid 27687 Surreal addition to zero i...
addsridd 27688 Surreal addition to zero i...
addscom 27689 Surreal addition commutes....
addscomd 27690 Surreal addition commutes....
addslid 27691 Surreal addition to zero i...
addsproplem1 27692 Lemma for surreal addition...
addsproplem2 27693 Lemma for surreal addition...
addsproplem3 27694 Lemma for surreal addition...
addsproplem4 27695 Lemma for surreal addition...
addsproplem5 27696 Lemma for surreal addition...
addsproplem6 27697 Lemma for surreal addition...
addsproplem7 27698 Lemma for surreal addition...
addsprop 27699 Inductively show that surr...
addscutlem 27700 Lemma for ~ addscut . Sho...
addscut 27701 Demonstrate the cut proper...
addscut2 27702 Show that the cut involved...
addscld 27703 Surreal numbers are closed...
addscl 27704 Surreal numbers are closed...
addsf 27705 Function statement for sur...
addsfo 27706 Surreal addition is onto. ...
peano2no 27707 A theorem for surreals tha...
sltadd1im 27708 Surreal less-than is prese...
sltadd2im 27709 Surreal less-than is prese...
sleadd1im 27710 Surreal less-than or equal...
sleadd2im 27711 Surreal less-than or equal...
sleadd1 27712 Addition to both sides of ...
sleadd2 27713 Addition to both sides of ...
sltadd2 27714 Addition to both sides of ...
sltadd1 27715 Addition to both sides of ...
addscan2 27716 Cancellation law for surre...
addscan1 27717 Cancellation law for surre...
sleadd1d 27718 Addition to both sides of ...
sleadd2d 27719 Addition to both sides of ...
sltadd2d 27720 Addition to both sides of ...
sltadd1d 27721 Addition to both sides of ...
addscan2d 27722 Cancellation law for surre...
addscan1d 27723 Cancellation law for surre...
addsuniflem 27724 Lemma for ~ addsunif . St...
addsunif 27725 Uniformity theorem for sur...
addsasslem1 27726 Lemma for addition associa...
addsasslem2 27727 Lemma for addition associa...
addsass 27728 Surreal addition is associ...
addsassd 27729 Surreal addition is associ...
adds32d 27730 Commutative/associative la...
adds12d 27731 Commutative/associative la...
adds4d 27732 Rearrangement of four term...
adds42d 27733 Rearrangement of four term...
negsfn 27738 Surreal negation is a func...
subsfn 27739 Surreal subtraction is a f...
negsval 27740 The value of the surreal n...
negs0s 27741 Negative surreal zero is s...
negsproplem1 27742 Lemma for surreal negation...
negsproplem2 27743 Lemma for surreal negation...
negsproplem3 27744 Lemma for surreal negation...
negsproplem4 27745 Lemma for surreal negation...
negsproplem5 27746 Lemma for surreal negation...
negsproplem6 27747 Lemma for surreal negation...
negsproplem7 27748 Lemma for surreal negation...
negsprop 27749 Show closure and ordering ...
negscl 27750 The surreals are closed un...
negscld 27751 The surreals are closed un...
sltnegim 27752 The forward direction of t...
negscut 27753 The cut properties of surr...
negscut2 27754 The cut that defines surre...
negsid 27755 Surreal addition of a numb...
negsidd 27756 Surreal addition of a numb...
negsex 27757 Every surreal has a negati...
negnegs 27758 A surreal is equal to the ...
sltneg 27759 Negative of both sides of ...
sleneg 27760 Negative of both sides of ...
sltnegd 27761 Negative of both sides of ...
slenegd 27762 Negative of both sides of ...
negs11 27763 Surreal negation is one-to...
negsdi 27764 Distribution of surreal ne...
slt0neg2d 27765 Comparison of a surreal an...
negsf 27766 Function statement for sur...
negsfo 27767 Function statement for sur...
negsf1o 27768 Surreal negation is a bije...
negsunif 27769 Uniformity property for su...
negsbdaylem 27770 Lemma for ~ negsbday . Bo...
negsbday 27771 Negation of a surreal numb...
subsval 27772 The value of surreal subtr...
subsvald 27773 The value of surreal subtr...
subscl 27774 Closure law for surreal su...
subscld 27775 Closure law for surreal su...
subsid1 27776 Identity law for subtracti...
subsid 27777 Subtraction of a surreal f...
subadds 27778 Relationship between addit...
subaddsd 27779 Relationship between addit...
pncans 27780 Cancellation law for surre...
pncan3s 27781 Subtraction and addition o...
npcans 27782 Cancellation law for surre...
sltsub1 27783 Subtraction from both side...
sltsub2 27784 Subtraction from both side...
sltsub1d 27785 Subtraction from both side...
sltsub2d 27786 Subtraction from both side...
negsubsdi2d 27787 Distribution of negative o...
addsubsassd 27788 Associative-type law for s...
addsubsd 27789 Law for surreal addition a...
sltsubsubbd 27790 Equivalence for the surrea...
sltsubsub2bd 27791 Equivalence for the surrea...
sltsubsub3bd 27792 Equivalence for the surrea...
slesubsubbd 27793 Equivalence for the surrea...
slesubsub2bd 27794 Equivalence for the surrea...
slesubsub3bd 27795 Equivalence for the surrea...
sltsubaddd 27796 Surreal less-than relation...
sltsubadd2d 27797 Surreal less-than relation...
sltaddsubd 27798 Surreal less-than relation...
sltaddsub2d 27799 Surreal less-than relation...
subsubs4d 27800 Law for double surreal sub...
posdifsd 27801 Comparison of two surreals...
mulsfn 27804 Surreal multiplication is ...
mulsval 27805 The value of surreal multi...
mulsval2lem 27806 Lemma for ~ mulsval2 . Ch...
mulsval2 27807 The value of surreal multi...
muls01 27808 Surreal multiplication by ...
mulsrid 27809 Surreal one is a right ide...
mulsridd 27810 Surreal one is a right ide...
mulsproplemcbv 27811 Lemma for surreal multipli...
mulsproplem1 27812 Lemma for surreal multipli...
mulsproplem2 27813 Lemma for surreal multipli...
mulsproplem3 27814 Lemma for surreal multipli...
mulsproplem4 27815 Lemma for surreal multipli...
mulsproplem5 27816 Lemma for surreal multipli...
mulsproplem6 27817 Lemma for surreal multipli...
mulsproplem7 27818 Lemma for surreal multipli...
mulsproplem8 27819 Lemma for surreal multipli...
mulsproplem9 27820 Lemma for surreal multipli...
mulsproplem10 27821 Lemma for surreal multipli...
mulsproplem11 27822 Lemma for surreal multipli...
mulsproplem12 27823 Lemma for surreal multipli...
mulsproplem13 27824 Lemma for surreal multipli...
mulsproplem14 27825 Lemma for surreal multipli...
mulsprop 27826 Surreals are closed under ...
mulscutlem 27827 Lemma for ~ mulscut . Sta...
mulscut 27828 Show the cut properties of...
mulscut2 27829 Show that the cut involved...
mulscl 27830 The surreals are closed un...
mulscld 27831 The surreals are closed un...
sltmul 27832 An ordering relationship f...
sltmuld 27833 An ordering relationship f...
slemuld 27834 An ordering relationship f...
mulscom 27835 Surreal multiplication com...
mulscomd 27836 Surreal multiplication com...
muls02 27837 Surreal multiplication by ...
mulslid 27838 Surreal one is a left iden...
mulslidd 27839 Surreal one is a left iden...
mulsgt0 27840 The product of two positiv...
mulsgt0d 27841 The product of two positiv...
ssltmul1 27842 One surreal set less-than ...
ssltmul2 27843 One surreal set less-than ...
mulsuniflem 27844 Lemma for ~ mulsunif . St...
mulsunif 27845 Surreal multiplication has...
addsdilem1 27846 Lemma for surreal distribu...
addsdilem2 27847 Lemma for surreal distribu...
addsdilem3 27848 Lemma for ~ addsdi . Show...
addsdilem4 27849 Lemma for ~ addsdi . Show...
addsdi 27850 Distributive law for surre...
addsdid 27851 Distributive law for surre...
addsdird 27852 Distributive law for surre...
subsdid 27853 Distribution of surreal mu...
subsdird 27854 Distribution of surreal mu...
mulnegs1d 27855 Product with negative is n...
mulnegs2d 27856 Product with negative is n...
mul2negsd 27857 Surreal product of two neg...
mulsasslem1 27858 Lemma for ~ mulsass . Exp...
mulsasslem2 27859 Lemma for ~ mulsass . Exp...
mulsasslem3 27860 Lemma for ~ mulsass . Dem...
mulsass 27861 Associative law for surrea...
mulsassd 27862 Associative law for surrea...
sltmul2 27863 Multiplication of both sid...
sltmul2d 27864 Multiplication of both sid...
sltmul1d 27865 Multiplication of both sid...
slemul2d 27866 Multiplication of both sid...
slemul1d 27867 Multiplication of both sid...
sltmulneg1d 27868 Multiplication of both sid...
sltmulneg2d 27869 Multiplication of both sid...
mulscan2dlem 27870 Lemma for ~ mulscan2d . C...
mulscan2d 27871 Cancellation of surreal mu...
mulscan1d 27872 Cancellation of surreal mu...
muls12d 27873 Commutative/associative la...
divsmo 27874 Uniqueness of surreal inve...
divsval 27877 The value of surreal divis...
norecdiv 27878 If a surreal has a recipro...
noreceuw 27879 If a surreal has a recipro...
divsmulw 27880 Relationship between surre...
divsmulwd 27881 Relationship between surre...
divsclw 27882 Weak division closure law....
divsclwd 27883 Weak division closure law....
divscan2wd 27884 A weak cancellation law fo...
divscan1wd 27885 A weak cancellation law fo...
sltdivmulwd 27886 Surreal less-than relation...
sltdivmul2wd 27887 Surreal less-than relation...
sltmuldivwd 27888 Surreal less-than relation...
sltmuldiv2wd 27889 Surreal less-than relation...
divsasswd 27890 An associative law for sur...
divs1 27891 A surreal divided by one i...
precsexlemcbv 27892 Lemma for surreal reciproc...
precsexlem1 27893 Lemma for surreal reciproc...
precsexlem2 27894 Lemma for surreal reciproc...
precsexlem3 27895 Lemma for surreal reciproc...
precsexlem4 27896 Lemma for surreal reciproc...
precsexlem5 27897 Lemma for surreal reciproc...
precsexlem6 27898 Lemma for surreal reciproc...
precsexlem7 27899 Lemma for surreal reciproc...
precsexlem8 27900 Lemma for surreal reciproc...
precsexlem9 27901 Lemma for surreal reciproc...
precsexlem10 27902 Lemma for surreal reciproc...
precsexlem11 27903 Lemma for surreal reciproc...
precsex 27904 Every positive surreal has...
recsex 27905 A non-zero surreal has a r...
recsexd 27906 A non-zero surreal has a r...
divsmul 27907 Relationship between surre...
divsmuld 27908 Relationship between surre...
divscl 27909 Surreal division closure l...
divscld 27910 Surreal division closure l...
divscan2d 27911 A cancellation law for sur...
divscan1d 27912 A cancellation law for sur...
sltdivmuld 27913 Surreal less-than relation...
sltdivmul2d 27914 Surreal less-than relation...
sltmuldivd 27915 Surreal less-than relation...
sltmuldiv2d 27916 Surreal less-than relation...
divsassd 27917 An associative law for sur...
elons 27920 Membership in the class of...
onssno 27921 The surreal ordinals are a...
onsno 27922 A surreal ordinal is a sur...
0ons 27923 Surreal zero is a surreal ...
1ons 27924 Surreal one is a surreal o...
elons2 27925 A surreal is ordinal iff i...
elons2d 27926 The cut of any set of surr...
sltonold 27927 The class of ordinals less...
sltonex 27928 The class of ordinals less...
onscutleft 27929 A surreal ordinal is equal...
n0sex 27934 The set of all non-negativ...
nnsex 27935 The set of all positive su...
peano5n0s 27936 Peano's inductive postulat...
n0ssno 27937 The non-negative surreal i...
nnssn0s 27938 The positive surreal integ...
nnssno 27939 The positive surreal integ...
0n0s 27940 Peano postulate: ` 0s ` is...
peano2n0s 27941 Peano postulate: the succe...
dfn0s2 27942 Alternate definition of th...
n0sind 27943 Principle of Mathematical ...
n0scut 27944 A cut form for surreal nat...
n0ons 27945 A surreal natural is a sur...
itvndx 27956 Index value of the Interva...
lngndx 27957 Index value of the "line" ...
itvid 27958 Utility theorem: index-ind...
lngid 27959 Utility theorem: index-ind...
slotsinbpsd 27960 The slots ` Base ` , ` +g ...
slotslnbpsd 27961 The slots ` Base ` , ` +g ...
lngndxnitvndx 27962 The slot for the line is n...
trkgstr 27963 Functionality of a Tarski ...
trkgbas 27964 The base set of a Tarski g...
trkgdist 27965 The measure of a distance ...
trkgitv 27966 The congruence relation in...
istrkgc 27973 Property of being a Tarski...
istrkgb 27974 Property of being a Tarski...
istrkgcb 27975 Property of being a Tarski...
istrkge 27976 Property of fulfilling Euc...
istrkgl 27977 Building lines from the se...
istrkgld 27978 Property of fulfilling the...
istrkg2ld 27979 Property of fulfilling the...
istrkg3ld 27980 Property of fulfilling the...
axtgcgrrflx 27981 Axiom of reflexivity of co...
axtgcgrid 27982 Axiom of identity of congr...
axtgsegcon 27983 Axiom of segment construct...
axtg5seg 27984 Five segments axiom, Axiom...
axtgbtwnid 27985 Identity of Betweenness. ...
axtgpasch 27986 Axiom of (Inner) Pasch, Ax...
axtgcont1 27987 Axiom of Continuity. Axio...
axtgcont 27988 Axiom of Continuity. Axio...
axtglowdim2 27989 Lower dimension axiom for ...
axtgupdim2 27990 Upper dimension axiom for ...
axtgeucl 27991 Euclid's Axiom. Axiom A10...
tgjustf 27992 Given any function ` F ` ,...
tgjustr 27993 Given any equivalence rela...
tgjustc1 27994 A justification for using ...
tgjustc2 27995 A justification for using ...
tgcgrcomimp 27996 Congruence commutes on the...
tgcgrcomr 27997 Congruence commutes on the...
tgcgrcoml 27998 Congruence commutes on the...
tgcgrcomlr 27999 Congruence commutes on bot...
tgcgreqb 28000 Congruence and equality. ...
tgcgreq 28001 Congruence and equality. ...
tgcgrneq 28002 Congruence and equality. ...
tgcgrtriv 28003 Degenerate segments are co...
tgcgrextend 28004 Link congruence over a pai...
tgsegconeq 28005 Two points that satisfy th...
tgbtwntriv2 28006 Betweenness always holds f...
tgbtwncom 28007 Betweenness commutes. The...
tgbtwncomb 28008 Betweenness commutes, bico...
tgbtwnne 28009 Betweenness and inequality...
tgbtwntriv1 28010 Betweenness always holds f...
tgbtwnswapid 28011 If you can swap the first ...
tgbtwnintr 28012 Inner transitivity law for...
tgbtwnexch3 28013 Exchange the first endpoin...
tgbtwnouttr2 28014 Outer transitivity law for...
tgbtwnexch2 28015 Exchange the outer point o...
tgbtwnouttr 28016 Outer transitivity law for...
tgbtwnexch 28017 Outer transitivity law for...
tgtrisegint 28018 A line segment between two...
tglowdim1 28019 Lower dimension axiom for ...
tglowdim1i 28020 Lower dimension axiom for ...
tgldimor 28021 Excluded-middle like state...
tgldim0eq 28022 In dimension zero, any two...
tgldim0itv 28023 In dimension zero, any two...
tgldim0cgr 28024 In dimension zero, any two...
tgbtwndiff 28025 There is always a ` c ` di...
tgdim01 28026 In geometries of dimension...
tgifscgr 28027 Inner five segment congrue...
tgcgrsub 28028 Removing identical parts f...
iscgrg 28031 The congruence property fo...
iscgrgd 28032 The property for two seque...
iscgrglt 28033 The property for two seque...
trgcgrg 28034 The property for two trian...
trgcgr 28035 Triangle congruence. (Con...
ercgrg 28036 The shape congruence relat...
tgcgrxfr 28037 A line segment can be divi...
cgr3id 28038 Reflexivity law for three-...
cgr3simp1 28039 Deduce segment congruence ...
cgr3simp2 28040 Deduce segment congruence ...
cgr3simp3 28041 Deduce segment congruence ...
cgr3swap12 28042 Permutation law for three-...
cgr3swap23 28043 Permutation law for three-...
cgr3swap13 28044 Permutation law for three-...
cgr3rotr 28045 Permutation law for three-...
cgr3rotl 28046 Permutation law for three-...
trgcgrcom 28047 Commutative law for three-...
cgr3tr 28048 Transitivity law for three...
tgbtwnxfr 28049 A condition for extending ...
tgcgr4 28050 Two quadrilaterals to be c...
isismt 28053 Property of being an isome...
ismot 28054 Property of being an isome...
motcgr 28055 Property of a motion: dist...
idmot 28056 The identity is a motion. ...
motf1o 28057 Motions are bijections. (...
motcl 28058 Closure of motions. (Cont...
motco 28059 The composition of two mot...
cnvmot 28060 The converse of a motion i...
motplusg 28061 The operation for motions ...
motgrp 28062 The motions of a geometry ...
motcgrg 28063 Property of a motion: dist...
motcgr3 28064 Property of a motion: dist...
tglng 28065 Lines of a Tarski Geometry...
tglnfn 28066 Lines as functions. (Cont...
tglnunirn 28067 Lines are sets of points. ...
tglnpt 28068 Lines are sets of points. ...
tglngne 28069 It takes two different poi...
tglngval 28070 The line going through poi...
tglnssp 28071 Lines are subset of the ge...
tgellng 28072 Property of lying on the l...
tgcolg 28073 We choose the notation ` (...
btwncolg1 28074 Betweenness implies coline...
btwncolg2 28075 Betweenness implies coline...
btwncolg3 28076 Betweenness implies coline...
colcom 28077 Swapping the points defini...
colrot1 28078 Rotating the points defini...
colrot2 28079 Rotating the points defini...
ncolcom 28080 Swapping non-colinear poin...
ncolrot1 28081 Rotating non-colinear poin...
ncolrot2 28082 Rotating non-colinear poin...
tgdim01ln 28083 In geometries of dimension...
ncoltgdim2 28084 If there are three non-col...
lnxfr 28085 Transfer law for colineari...
lnext 28086 Extend a line with a missi...
tgfscgr 28087 Congruence law for the gen...
lncgr 28088 Congruence rule for lines....
lnid 28089 Identity law for points on...
tgidinside 28090 Law for finding a point in...
tgbtwnconn1lem1 28091 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 28092 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 28093 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 28094 Connectivity law for betwe...
tgbtwnconn2 28095 Another connectivity law f...
tgbtwnconn3 28096 Inner connectivity law for...
tgbtwnconnln3 28097 Derive colinearity from be...
tgbtwnconn22 28098 Double connectivity law fo...
tgbtwnconnln1 28099 Derive colinearity from be...
tgbtwnconnln2 28100 Derive colinearity from be...
legval 28103 Value of the less-than rel...
legov 28104 Value of the less-than rel...
legov2 28105 An equivalent definition o...
legid 28106 Reflexivity of the less-th...
btwnleg 28107 Betweenness implies less-t...
legtrd 28108 Transitivity of the less-t...
legtri3 28109 Equality from the less-tha...
legtrid 28110 Trichotomy law for the les...
leg0 28111 Degenerated (zero-length) ...
legeq 28112 Deduce equality from "less...
legbtwn 28113 Deduce betweenness from "l...
tgcgrsub2 28114 Removing identical parts f...
ltgseg 28115 The set ` E ` denotes the ...
ltgov 28116 Strict "shorter than" geom...
legov3 28117 An equivalent definition o...
legso 28118 The "shorter than" relatio...
ishlg 28121 Rays : Definition 6.1 of ...
hlcomb 28122 The half-line relation com...
hlcomd 28123 The half-line relation com...
hlne1 28124 The half-line relation imp...
hlne2 28125 The half-line relation imp...
hlln 28126 The half-line relation imp...
hleqnid 28127 The endpoint does not belo...
hlid 28128 The half-line relation is ...
hltr 28129 The half-line relation is ...
hlbtwn 28130 Betweenness is a sufficien...
btwnhl1 28131 Deduce half-line from betw...
btwnhl2 28132 Deduce half-line from betw...
btwnhl 28133 Swap betweenness for a hal...
lnhl 28134 Either a point ` C ` on th...
hlcgrex 28135 Construct a point on a hal...
hlcgreulem 28136 Lemma for ~ hlcgreu . (Co...
hlcgreu 28137 The point constructed in ~...
btwnlng1 28138 Betweenness implies coline...
btwnlng2 28139 Betweenness implies coline...
btwnlng3 28140 Betweenness implies coline...
lncom 28141 Swapping the points defini...
lnrot1 28142 Rotating the points defini...
lnrot2 28143 Rotating the points defini...
ncolne1 28144 Non-colinear points are di...
ncolne2 28145 Non-colinear points are di...
tgisline 28146 The property of being a pr...
tglnne 28147 It takes two different poi...
tglndim0 28148 There are no lines in dime...
tgelrnln 28149 The property of being a pr...
tglineeltr 28150 Transitivity law for lines...
tglineelsb2 28151 If ` S ` lies on PQ , then...
tglinerflx1 28152 Reflexivity law for line m...
tglinerflx2 28153 Reflexivity law for line m...
tglinecom 28154 Commutativity law for line...
tglinethru 28155 If ` A ` is a line contain...
tghilberti1 28156 There is a line through an...
tghilberti2 28157 There is at most one line ...
tglinethrueu 28158 There is a unique line goi...
tglnne0 28159 A line ` A ` has at least ...
tglnpt2 28160 Find a second point on a l...
tglineintmo 28161 Two distinct lines interse...
tglineineq 28162 Two distinct lines interse...
tglineneq 28163 Given three non-colinear p...
tglineinteq 28164 Two distinct lines interse...
ncolncol 28165 Deduce non-colinearity fro...
coltr 28166 A transitivity law for col...
coltr3 28167 A transitivity law for col...
colline 28168 Three points are colinear ...
tglowdim2l 28169 Reformulation of the lower...
tglowdim2ln 28170 There is always one point ...
mirreu3 28173 Existential uniqueness of ...
mirval 28174 Value of the point inversi...
mirfv 28175 Value of the point inversi...
mircgr 28176 Property of the image by t...
mirbtwn 28177 Property of the image by t...
ismir 28178 Property of the image by t...
mirf 28179 Point inversion as functio...
mircl 28180 Closure of the point inver...
mirmir 28181 The point inversion functi...
mircom 28182 Variation on ~ mirmir . (...
mirreu 28183 Any point has a unique ant...
mireq 28184 Equality deduction for poi...
mirinv 28185 The only invariant point o...
mirne 28186 Mirror of non-center point...
mircinv 28187 The center point is invari...
mirf1o 28188 The point inversion functi...
miriso 28189 The point inversion functi...
mirbtwni 28190 Point inversion preserves ...
mirbtwnb 28191 Point inversion preserves ...
mircgrs 28192 Point inversion preserves ...
mirmir2 28193 Point inversion of a point...
mirmot 28194 Point investion is a motio...
mirln 28195 If two points are on the s...
mirln2 28196 If a point and its mirror ...
mirconn 28197 Point inversion of connect...
mirhl 28198 If two points ` X ` and ` ...
mirbtwnhl 28199 If the center of the point...
mirhl2 28200 Deduce half-line relation ...
mircgrextend 28201 Link congruence over a pai...
mirtrcgr 28202 Point inversion of one poi...
mirauto 28203 Point inversion preserves ...
miduniq 28204 Uniqueness of the middle p...
miduniq1 28205 Uniqueness of the middle p...
miduniq2 28206 If two point inversions co...
colmid 28207 Colinearity and equidistan...
symquadlem 28208 Lemma of the symetrial qua...
krippenlem 28209 Lemma for ~ krippen . We ...
krippen 28210 Krippenlemma (German for c...
midexlem 28211 Lemma for the existence of...
israg 28216 Property for 3 points A, B...
ragcom 28217 Commutative rule for right...
ragcol 28218 The right angle property i...
ragmir 28219 Right angle property is pr...
mirrag 28220 Right angle is conserved b...
ragtrivb 28221 Trivial right angle. Theo...
ragflat2 28222 Deduce equality from two r...
ragflat 28223 Deduce equality from two r...
ragtriva 28224 Trivial right angle. Theo...
ragflat3 28225 Right angle and colinearit...
ragcgr 28226 Right angle and colinearit...
motrag 28227 Right angles are preserved...
ragncol 28228 Right angle implies non-co...
perpln1 28229 Derive a line from perpend...
perpln2 28230 Derive a line from perpend...
isperp 28231 Property for 2 lines A, B ...
perpcom 28232 The "perpendicular" relati...
perpneq 28233 Two perpendicular lines ar...
isperp2 28234 Property for 2 lines A, B,...
isperp2d 28235 One direction of ~ isperp2...
ragperp 28236 Deduce that two lines are ...
footexALT 28237 Alternative version of ~ f...
footexlem1 28238 Lemma for ~ footex . (Con...
footexlem2 28239 Lemma for ~ footex . (Con...
footex 28240 From a point ` C ` outside...
foot 28241 From a point ` C ` outside...
footne 28242 Uniqueness of the foot poi...
footeq 28243 Uniqueness of the foot poi...
hlperpnel 28244 A point on a half-line whi...
perprag 28245 Deduce a right angle from ...
perpdragALT 28246 Deduce a right angle from ...
perpdrag 28247 Deduce a right angle from ...
colperp 28248 Deduce a perpendicularity ...
colperpexlem1 28249 Lemma for ~ colperp . Fir...
colperpexlem2 28250 Lemma for ~ colperpex . S...
colperpexlem3 28251 Lemma for ~ colperpex . C...
colperpex 28252 In dimension 2 and above, ...
mideulem2 28253 Lemma for ~ opphllem , whi...
opphllem 28254 Lemma 8.24 of [Schwabhause...
mideulem 28255 Lemma for ~ mideu . We ca...
midex 28256 Existence of the midpoint,...
mideu 28257 Existence and uniqueness o...
islnopp 28258 The property for two point...
islnoppd 28259 Deduce that ` A ` and ` B ...
oppne1 28260 Points lying on opposite s...
oppne2 28261 Points lying on opposite s...
oppne3 28262 Points lying on opposite s...
oppcom 28263 Commutativity rule for "op...
opptgdim2 28264 If two points opposite to ...
oppnid 28265 The "opposite to a line" r...
opphllem1 28266 Lemma for ~ opphl . (Cont...
opphllem2 28267 Lemma for ~ opphl . Lemma...
opphllem3 28268 Lemma for ~ opphl : We as...
opphllem4 28269 Lemma for ~ opphl . (Cont...
opphllem5 28270 Second part of Lemma 9.4 o...
opphllem6 28271 First part of Lemma 9.4 of...
oppperpex 28272 Restating ~ colperpex usin...
opphl 28273 If two points ` A ` and ` ...
outpasch 28274 Axiom of Pasch, outer form...
hlpasch 28275 An application of the axio...
ishpg 28278 Value of the half-plane re...
hpgbr 28279 Half-planes : property for...
hpgne1 28280 Points on the open half pl...
hpgne2 28281 Points on the open half pl...
lnopp2hpgb 28282 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 28283 If two points lie on the o...
hpgerlem 28284 Lemma for the proof that t...
hpgid 28285 The half-plane relation is...
hpgcom 28286 The half-plane relation co...
hpgtr 28287 The half-plane relation is...
colopp 28288 Opposite sides of a line f...
colhp 28289 Half-plane relation for co...
hphl 28290 If two points are on the s...
midf 28295 Midpoint as a function. (...
midcl 28296 Closure of the midpoint. ...
ismidb 28297 Property of the midpoint. ...
midbtwn 28298 Betweenness of midpoint. ...
midcgr 28299 Congruence of midpoint. (...
midid 28300 Midpoint of a null segment...
midcom 28301 Commutativity rule for the...
mirmid 28302 Point inversion preserves ...
lmieu 28303 Uniqueness of the line mir...
lmif 28304 Line mirror as a function....
lmicl 28305 Closure of the line mirror...
islmib 28306 Property of the line mirro...
lmicom 28307 The line mirroring functio...
lmilmi 28308 Line mirroring is an invol...
lmireu 28309 Any point has a unique ant...
lmieq 28310 Equality deduction for lin...
lmiinv 28311 The invariants of the line...
lmicinv 28312 The mirroring line is an i...
lmimid 28313 If we have a right angle, ...
lmif1o 28314 The line mirroring functio...
lmiisolem 28315 Lemma for ~ lmiiso . (Con...
lmiiso 28316 The line mirroring functio...
lmimot 28317 Line mirroring is a motion...
hypcgrlem1 28318 Lemma for ~ hypcgr , case ...
hypcgrlem2 28319 Lemma for ~ hypcgr , case ...
hypcgr 28320 If the catheti of two righ...
lmiopp 28321 Line mirroring produces po...
lnperpex 28322 Existence of a perpendicul...
trgcopy 28323 Triangle construction: a c...
trgcopyeulem 28324 Lemma for ~ trgcopyeu . (...
trgcopyeu 28325 Triangle construction: a c...
iscgra 28328 Property for two angles AB...
iscgra1 28329 A special version of ~ isc...
iscgrad 28330 Sufficient conditions for ...
cgrane1 28331 Angles imply inequality. ...
cgrane2 28332 Angles imply inequality. ...
cgrane3 28333 Angles imply inequality. ...
cgrane4 28334 Angles imply inequality. ...
cgrahl1 28335 Angle congruence is indepe...
cgrahl2 28336 Angle congruence is indepe...
cgracgr 28337 First direction of proposi...
cgraid 28338 Angle congruence is reflex...
cgraswap 28339 Swap rays in a congruence ...
cgrcgra 28340 Triangle congruence implie...
cgracom 28341 Angle congruence commutes....
cgratr 28342 Angle congruence is transi...
flatcgra 28343 Flat angles are congruent....
cgraswaplr 28344 Swap both side of angle co...
cgrabtwn 28345 Angle congruence preserves...
cgrahl 28346 Angle congruence preserves...
cgracol 28347 Angle congruence preserves...
cgrancol 28348 Angle congruence preserves...
dfcgra2 28349 This is the full statement...
sacgr 28350 Supplementary angles of co...
oacgr 28351 Vertical angle theorem. V...
acopy 28352 Angle construction. Theor...
acopyeu 28353 Angle construction. Theor...
isinag 28357 Property for point ` X ` t...
isinagd 28358 Sufficient conditions for ...
inagflat 28359 Any point lies in a flat a...
inagswap 28360 Swap the order of the half...
inagne1 28361 Deduce inequality from the...
inagne2 28362 Deduce inequality from the...
inagne3 28363 Deduce inequality from the...
inaghl 28364 The "point lie in angle" r...
isleag 28366 Geometrical "less than" pr...
isleagd 28367 Sufficient condition for "...
leagne1 28368 Deduce inequality from the...
leagne2 28369 Deduce inequality from the...
leagne3 28370 Deduce inequality from the...
leagne4 28371 Deduce inequality from the...
cgrg3col4 28372 Lemma 11.28 of [Schwabhaus...
tgsas1 28373 First congruence theorem: ...
tgsas 28374 First congruence theorem: ...
tgsas2 28375 First congruence theorem: ...
tgsas3 28376 First congruence theorem: ...
tgasa1 28377 Second congruence theorem:...
tgasa 28378 Second congruence theorem:...
tgsss1 28379 Third congruence theorem: ...
tgsss2 28380 Third congruence theorem: ...
tgsss3 28381 Third congruence theorem: ...
dfcgrg2 28382 Congruence for two triangl...
isoas 28383 Congruence theorem for iso...
iseqlg 28386 Property of a triangle bei...
iseqlgd 28387 Condition for a triangle t...
f1otrgds 28388 Convenient lemma for ~ f1o...
f1otrgitv 28389 Convenient lemma for ~ f1o...
f1otrg 28390 A bijection between bases ...
f1otrge 28391 A bijection between bases ...
ttgval 28394 Define a function to augme...
ttgvalOLD 28395 Obsolete proof of ~ ttgval...
ttglem 28396 Lemma for ~ ttgbas , ~ ttg...
ttglemOLD 28397 Obsolete version of ~ ttgl...
ttgbas 28398 The base set of a subcompl...
ttgbasOLD 28399 Obsolete proof of ~ ttgbas...
ttgplusg 28400 The addition operation of ...
ttgplusgOLD 28401 Obsolete proof of ~ ttgplu...
ttgsub 28402 The subtraction operation ...
ttgvsca 28403 The scalar product of a su...
ttgvscaOLD 28404 Obsolete proof of ~ ttgvsc...
ttgds 28405 The metric of a subcomplex...
ttgdsOLD 28406 Obsolete proof of ~ ttgds ...
ttgitvval 28407 Betweenness for a subcompl...
ttgelitv 28408 Betweenness for a subcompl...
ttgbtwnid 28409 Any subcomplex module equi...
ttgcontlem1 28410 Lemma for % ttgcont . (Co...
xmstrkgc 28411 Any metric space fulfills ...
cchhllem 28412 Lemma for chlbas and chlvs...
cchhllemOLD 28413 Obsolete version of ~ cchh...
elee 28420 Membership in a Euclidean ...
mptelee 28421 A condition for a mapping ...
eleenn 28422 If ` A ` is in ` ( EE `` N...
eleei 28423 The forward direction of ~...
eedimeq 28424 A point belongs to at most...
brbtwn 28425 The binary relation form o...
brcgr 28426 The binary relation form o...
fveere 28427 The function value of a po...
fveecn 28428 The function value of a po...
eqeefv 28429 Two points are equal iff t...
eqeelen 28430 Two points are equal iff t...
brbtwn2 28431 Alternate characterization...
colinearalglem1 28432 Lemma for ~ colinearalg . ...
colinearalglem2 28433 Lemma for ~ colinearalg . ...
colinearalglem3 28434 Lemma for ~ colinearalg . ...
colinearalglem4 28435 Lemma for ~ colinearalg . ...
colinearalg 28436 An algebraic characterizat...
eleesub 28437 Membership of a subtractio...
eleesubd 28438 Membership of a subtractio...
axdimuniq 28439 The unique dimension axiom...
axcgrrflx 28440 ` A ` is as far from ` B `...
axcgrtr 28441 Congruence is transitive. ...
axcgrid 28442 If there is no distance be...
axsegconlem1 28443 Lemma for ~ axsegcon . Ha...
axsegconlem2 28444 Lemma for ~ axsegcon . Sh...
axsegconlem3 28445 Lemma for ~ axsegcon . Sh...
axsegconlem4 28446 Lemma for ~ axsegcon . Sh...
axsegconlem5 28447 Lemma for ~ axsegcon . Sh...
axsegconlem6 28448 Lemma for ~ axsegcon . Sh...
axsegconlem7 28449 Lemma for ~ axsegcon . Sh...
axsegconlem8 28450 Lemma for ~ axsegcon . Sh...
axsegconlem9 28451 Lemma for ~ axsegcon . Sh...
axsegconlem10 28452 Lemma for ~ axsegcon . Sh...
axsegcon 28453 Any segment ` A B ` can be...
ax5seglem1 28454 Lemma for ~ ax5seg . Rexp...
ax5seglem2 28455 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 28456 Lemma for ~ ax5seg . (Con...
ax5seglem3 28457 Lemma for ~ ax5seg . Comb...
ax5seglem4 28458 Lemma for ~ ax5seg . Give...
ax5seglem5 28459 Lemma for ~ ax5seg . If `...
ax5seglem6 28460 Lemma for ~ ax5seg . Give...
ax5seglem7 28461 Lemma for ~ ax5seg . An a...
ax5seglem8 28462 Lemma for ~ ax5seg . Use ...
ax5seglem9 28463 Lemma for ~ ax5seg . Take...
ax5seg 28464 The five segment axiom. T...
axbtwnid 28465 Points are indivisible. T...
axpaschlem 28466 Lemma for ~ axpasch . Set...
axpasch 28467 The inner Pasch axiom. Ta...
axlowdimlem1 28468 Lemma for ~ axlowdim . Es...
axlowdimlem2 28469 Lemma for ~ axlowdim . Sh...
axlowdimlem3 28470 Lemma for ~ axlowdim . Se...
axlowdimlem4 28471 Lemma for ~ axlowdim . Se...
axlowdimlem5 28472 Lemma for ~ axlowdim . Sh...
axlowdimlem6 28473 Lemma for ~ axlowdim . Sh...
axlowdimlem7 28474 Lemma for ~ axlowdim . Se...
axlowdimlem8 28475 Lemma for ~ axlowdim . Ca...
axlowdimlem9 28476 Lemma for ~ axlowdim . Ca...
axlowdimlem10 28477 Lemma for ~ axlowdim . Se...
axlowdimlem11 28478 Lemma for ~ axlowdim . Ca...
axlowdimlem12 28479 Lemma for ~ axlowdim . Ca...
axlowdimlem13 28480 Lemma for ~ axlowdim . Es...
axlowdimlem14 28481 Lemma for ~ axlowdim . Ta...
axlowdimlem15 28482 Lemma for ~ axlowdim . Se...
axlowdimlem16 28483 Lemma for ~ axlowdim . Se...
axlowdimlem17 28484 Lemma for ~ axlowdim . Es...
axlowdim1 28485 The lower dimension axiom ...
axlowdim2 28486 The lower two-dimensional ...
axlowdim 28487 The general lower dimensio...
axeuclidlem 28488 Lemma for ~ axeuclid . Ha...
axeuclid 28489 Euclid's axiom. Take an a...
axcontlem1 28490 Lemma for ~ axcont . Chan...
axcontlem2 28491 Lemma for ~ axcont . The ...
axcontlem3 28492 Lemma for ~ axcont . Give...
axcontlem4 28493 Lemma for ~ axcont . Give...
axcontlem5 28494 Lemma for ~ axcont . Comp...
axcontlem6 28495 Lemma for ~ axcont . Stat...
axcontlem7 28496 Lemma for ~ axcont . Give...
axcontlem8 28497 Lemma for ~ axcont . A po...
axcontlem9 28498 Lemma for ~ axcont . Give...
axcontlem10 28499 Lemma for ~ axcont . Give...
axcontlem11 28500 Lemma for ~ axcont . Elim...
axcontlem12 28501 Lemma for ~ axcont . Elim...
axcont 28502 The axiom of continuity. ...
eengv 28505 The value of the Euclidean...
eengstr 28506 The Euclidean geometry as ...
eengbas 28507 The Base of the Euclidean ...
ebtwntg 28508 The betweenness relation u...
ecgrtg 28509 The congruence relation us...
elntg 28510 The line definition in the...
elntg2 28511 The line definition in the...
eengtrkg 28512 The geometry structure for...
eengtrkge 28513 The geometry structure for...
edgfid 28516 Utility theorem: index-ind...
edgfndx 28517 Index value of the ~ df-ed...
edgfndxnn 28518 The index value of the edg...
edgfndxid 28519 The value of the edge func...
edgfndxidOLD 28520 Obsolete version of ~ edgf...
basendxltedgfndx 28521 The index value of the ` B...
baseltedgfOLD 28522 Obsolete proof of ~ basend...
basendxnedgfndx 28523 The slots ` Base ` and ` ....
vtxval 28528 The set of vertices of a g...
iedgval 28529 The set of indexed edges o...
1vgrex 28530 A graph with at least one ...
opvtxval 28531 The set of vertices of a g...
opvtxfv 28532 The set of vertices of a g...
opvtxov 28533 The set of vertices of a g...
opiedgval 28534 The set of indexed edges o...
opiedgfv 28535 The set of indexed edges o...
opiedgov 28536 The set of indexed edges o...
opvtxfvi 28537 The set of vertices of a g...
opiedgfvi 28538 The set of indexed edges o...
funvtxdmge2val 28539 The set of vertices of an ...
funiedgdmge2val 28540 The set of indexed edges o...
funvtxdm2val 28541 The set of vertices of an ...
funiedgdm2val 28542 The set of indexed edges o...
funvtxval0 28543 The set of vertices of an ...
basvtxval 28544 The set of vertices of a g...
edgfiedgval 28545 The set of indexed edges o...
funvtxval 28546 The set of vertices of a g...
funiedgval 28547 The set of indexed edges o...
structvtxvallem 28548 Lemma for ~ structvtxval a...
structvtxval 28549 The set of vertices of an ...
structiedg0val 28550 The set of indexed edges o...
structgrssvtxlem 28551 Lemma for ~ structgrssvtx ...
structgrssvtx 28552 The set of vertices of a g...
structgrssiedg 28553 The set of indexed edges o...
struct2grstr 28554 A graph represented as an ...
struct2grvtx 28555 The set of vertices of a g...
struct2griedg 28556 The set of indexed edges o...
graop 28557 Any representation of a gr...
grastruct 28558 Any representation of a gr...
gropd 28559 If any representation of a...
grstructd 28560 If any representation of a...
gropeld 28561 If any representation of a...
grstructeld 28562 If any representation of a...
setsvtx 28563 The vertices of a structur...
setsiedg 28564 The (indexed) edges of a s...
snstrvtxval 28565 The set of vertices of a g...
snstriedgval 28566 The set of indexed edges o...
vtxval0 28567 Degenerated case 1 for ver...
iedgval0 28568 Degenerated case 1 for edg...
vtxvalsnop 28569 Degenerated case 2 for ver...
iedgvalsnop 28570 Degenerated case 2 for edg...
vtxval3sn 28571 Degenerated case 3 for ver...
iedgval3sn 28572 Degenerated case 3 for edg...
vtxvalprc 28573 Degenerated case 4 for ver...
iedgvalprc 28574 Degenerated case 4 for edg...
edgval 28577 The edges of a graph. (Co...
iedgedg 28578 An indexed edge is an edge...
edgopval 28579 The edges of a graph repre...
edgov 28580 The edges of a graph repre...
edgstruct 28581 The edges of a graph repre...
edgiedgb 28582 A set is an edge iff it is...
edg0iedg0 28583 There is no edge in a grap...
isuhgr 28588 The predicate "is an undir...
isushgr 28589 The predicate "is an undir...
uhgrf 28590 The edge function of an un...
ushgrf 28591 The edge function of an un...
uhgrss 28592 An edge is a subset of ver...
uhgreq12g 28593 If two sets have the same ...
uhgrfun 28594 The edge function of an un...
uhgrn0 28595 An edge is a nonempty subs...
lpvtx 28596 The endpoints of a loop (w...
ushgruhgr 28597 An undirected simple hyper...
isuhgrop 28598 The property of being an u...
uhgr0e 28599 The empty graph, with vert...
uhgr0vb 28600 The null graph, with no ve...
uhgr0 28601 The null graph represented...
uhgrun 28602 The union ` U ` of two (un...
uhgrunop 28603 The union of two (undirect...
ushgrun 28604 The union ` U ` of two (un...
ushgrunop 28605 The union of two (undirect...
uhgrstrrepe 28606 Replacing (or adding) the ...
incistruhgr 28607 An _incidence structure_ `...
isupgr 28612 The property of being an u...
wrdupgr 28613 The property of being an u...
upgrf 28614 The edge function of an un...
upgrfn 28615 The edge function of an un...
upgrss 28616 An edge is a subset of ver...
upgrn0 28617 An edge is a nonempty subs...
upgrle 28618 An edge of an undirected p...
upgrfi 28619 An edge is a finite subset...
upgrex 28620 An edge is an unordered pa...
upgrbi 28621 Show that an unordered pai...
upgrop 28622 A pseudograph represented ...
isumgr 28623 The property of being an u...
isumgrs 28624 The simplified property of...
wrdumgr 28625 The property of being an u...
umgrf 28626 The edge function of an un...
umgrfn 28627 The edge function of an un...
umgredg2 28628 An edge of a multigraph ha...
umgrbi 28629 Show that an unordered pai...
upgruhgr 28630 An undirected pseudograph ...
umgrupgr 28631 An undirected multigraph i...
umgruhgr 28632 An undirected multigraph i...
upgrle2 28633 An edge of an undirected p...
umgrnloopv 28634 In a multigraph, there is ...
umgredgprv 28635 In a multigraph, an edge i...
umgrnloop 28636 In a multigraph, there is ...
umgrnloop0 28637 A multigraph has no loops....
umgr0e 28638 The empty graph, with vert...
upgr0e 28639 The empty graph, with vert...
upgr1elem 28640 Lemma for ~ upgr1e and ~ u...
upgr1e 28641 A pseudograph with one edg...
upgr0eop 28642 The empty graph, with vert...
upgr1eop 28643 A pseudograph with one edg...
upgr0eopALT 28644 Alternate proof of ~ upgr0...
upgr1eopALT 28645 Alternate proof of ~ upgr1...
upgrun 28646 The union ` U ` of two pse...
upgrunop 28647 The union of two pseudogra...
umgrun 28648 The union ` U ` of two mul...
umgrunop 28649 The union of two multigrap...
umgrislfupgrlem 28650 Lemma for ~ umgrislfupgr a...
umgrislfupgr 28651 A multigraph is a loop-fre...
lfgredgge2 28652 An edge of a loop-free gra...
lfgrnloop 28653 A loop-free graph has no l...
uhgredgiedgb 28654 In a hypergraph, a set is ...
uhgriedg0edg0 28655 A hypergraph has no edges ...
uhgredgn0 28656 An edge of a hypergraph is...
edguhgr 28657 An edge of a hypergraph is...
uhgredgrnv 28658 An edge of a hypergraph co...
uhgredgss 28659 The set of edges of a hype...
upgredgss 28660 The set of edges of a pseu...
umgredgss 28661 The set of edges of a mult...
edgupgr 28662 Properties of an edge of a...
edgumgr 28663 Properties of an edge of a...
uhgrvtxedgiedgb 28664 In a hypergraph, a vertex ...
upgredg 28665 For each edge in a pseudog...
umgredg 28666 For each edge in a multigr...
upgrpredgv 28667 An edge of a pseudograph a...
umgrpredgv 28668 An edge of a multigraph al...
upgredg2vtx 28669 For a vertex incident to a...
upgredgpr 28670 If a proper pair (of verti...
edglnl 28671 The edges incident with a ...
numedglnl 28672 The number of edges incide...
umgredgne 28673 An edge of a multigraph al...
umgrnloop2 28674 A multigraph has no loops....
umgredgnlp 28675 An edge of a multigraph is...
isuspgr 28680 The property of being a si...
isusgr 28681 The property of being a si...
uspgrf 28682 The edge function of a sim...
usgrf 28683 The edge function of a sim...
isusgrs 28684 The property of being a si...
usgrfs 28685 The edge function of a sim...
usgrfun 28686 The edge function of a sim...
usgredgss 28687 The set of edges of a simp...
edgusgr 28688 An edge of a simple graph ...
isuspgrop 28689 The property of being an u...
isusgrop 28690 The property of being an u...
usgrop 28691 A simple graph represented...
isausgr 28692 The property of an unorder...
ausgrusgrb 28693 The equivalence of the def...
usgrausgri 28694 A simple graph represented...
ausgrumgri 28695 If an alternatively define...
ausgrusgri 28696 The equivalence of the def...
usgrausgrb 28697 The equivalence of the def...
usgredgop 28698 An edge of a simple graph ...
usgrf1o 28699 The edge function of a sim...
usgrf1 28700 The edge function of a sim...
uspgrf1oedg 28701 The edge function of a sim...
usgrss 28702 An edge is a subset of ver...
uspgrushgr 28703 A simple pseudograph is an...
uspgrupgr 28704 A simple pseudograph is an...
uspgrupgrushgr 28705 A graph is a simple pseudo...
usgruspgr 28706 A simple graph is a simple...
usgrumgr 28707 A simple graph is an undir...
usgrumgruspgr 28708 A graph is a simple graph ...
usgruspgrb 28709 A class is a simple graph ...
usgrupgr 28710 A simple graph is an undir...
usgruhgr 28711 A simple graph is an undir...
usgrislfuspgr 28712 A simple graph is a loop-f...
uspgrun 28713 The union ` U ` of two sim...
uspgrunop 28714 The union of two simple ps...
usgrun 28715 The union ` U ` of two sim...
usgrunop 28716 The union of two simple gr...
usgredg2 28717 The value of the "edge fun...
usgredg2ALT 28718 Alternate proof of ~ usgre...
usgredgprv 28719 In a simple graph, an edge...
usgredgprvALT 28720 Alternate proof of ~ usgre...
usgredgppr 28721 An edge of a simple graph ...
usgrpredgv 28722 An edge of a simple graph ...
edgssv2 28723 An edge of a simple graph ...
usgredg 28724 For each edge in a simple ...
usgrnloopv 28725 In a simple graph, there i...
usgrnloopvALT 28726 Alternate proof of ~ usgrn...
usgrnloop 28727 In a simple graph, there i...
usgrnloopALT 28728 Alternate proof of ~ usgrn...
usgrnloop0 28729 A simple graph has no loop...
usgrnloop0ALT 28730 Alternate proof of ~ usgrn...
usgredgne 28731 An edge of a simple graph ...
usgrf1oedg 28732 The edge function of a sim...
uhgr2edg 28733 If a vertex is adjacent to...
umgr2edg 28734 If a vertex is adjacent to...
usgr2edg 28735 If a vertex is adjacent to...
umgr2edg1 28736 If a vertex is adjacent to...
usgr2edg1 28737 If a vertex is adjacent to...
umgrvad2edg 28738 If a vertex is adjacent to...
umgr2edgneu 28739 If a vertex is adjacent to...
usgrsizedg 28740 In a simple graph, the siz...
usgredg3 28741 The value of the "edge fun...
usgredg4 28742 For a vertex incident to a...
usgredgreu 28743 For a vertex incident to a...
usgredg2vtx 28744 For a vertex incident to a...
uspgredg2vtxeu 28745 For a vertex incident to a...
usgredg2vtxeu 28746 For a vertex incident to a...
usgredg2vtxeuALT 28747 Alternate proof of ~ usgre...
uspgredg2vlem 28748 Lemma for ~ uspgredg2v . ...
uspgredg2v 28749 In a simple pseudograph, t...
usgredg2vlem1 28750 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 28751 Lemma 2 for ~ usgredg2v . ...
usgredg2v 28752 In a simple graph, the map...
usgriedgleord 28753 Alternate version of ~ usg...
ushgredgedg 28754 In a simple hypergraph the...
usgredgedg 28755 In a simple graph there is...
ushgredgedgloop 28756 In a simple hypergraph the...
uspgredgleord 28757 In a simple pseudograph th...
usgredgleord 28758 In a simple graph the numb...
usgredgleordALT 28759 Alternate proof for ~ usgr...
usgrstrrepe 28760 Replacing (or adding) the ...
usgr0e 28761 The empty graph, with vert...
usgr0vb 28762 The null graph, with no ve...
uhgr0v0e 28763 The null graph, with no ve...
uhgr0vsize0 28764 The size of a hypergraph w...
uhgr0edgfi 28765 A graph of order 0 (i.e. w...
usgr0v 28766 The null graph, with no ve...
uhgr0vusgr 28767 The null graph, with no ve...
usgr0 28768 The null graph represented...
uspgr1e 28769 A simple pseudograph with ...
usgr1e 28770 A simple graph with one ed...
usgr0eop 28771 The empty graph, with vert...
uspgr1eop 28772 A simple pseudograph with ...
uspgr1ewop 28773 A simple pseudograph with ...
uspgr1v1eop 28774 A simple pseudograph with ...
usgr1eop 28775 A simple graph with (at le...
uspgr2v1e2w 28776 A simple pseudograph with ...
usgr2v1e2w 28777 A simple graph with two ve...
edg0usgr 28778 A class without edges is a...
lfuhgr1v0e 28779 A loop-free hypergraph wit...
usgr1vr 28780 A simple graph with one ve...
usgr1v 28781 A class with one (or no) v...
usgr1v0edg 28782 A class with one (or no) v...
usgrexmpldifpr 28783 Lemma for ~ usgrexmpledg :...
usgrexmplef 28784 Lemma for ~ usgrexmpl . (...
usgrexmpllem 28785 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 28786 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 28787 The edges ` { 0 , 1 } , { ...
usgrexmpl 28788 ` G ` is a simple graph of...
griedg0prc 28789 The class of empty graphs ...
griedg0ssusgr 28790 The class of all simple gr...
usgrprc 28791 The class of simple graphs...
relsubgr 28794 The class of the subgraph ...
subgrv 28795 If a class is a subgraph o...
issubgr 28796 The property of a set to b...
issubgr2 28797 The property of a set to b...
subgrprop 28798 The properties of a subgra...
subgrprop2 28799 The properties of a subgra...
uhgrissubgr 28800 The property of a hypergra...
subgrprop3 28801 The properties of a subgra...
egrsubgr 28802 An empty graph consisting ...
0grsubgr 28803 The null graph (represente...
0uhgrsubgr 28804 The null graph (as hypergr...
uhgrsubgrself 28805 A hypergraph is a subgraph...
subgrfun 28806 The edge function of a sub...
subgruhgrfun 28807 The edge function of a sub...
subgreldmiedg 28808 An element of the domain o...
subgruhgredgd 28809 An edge of a subgraph of a...
subumgredg2 28810 An edge of a subgraph of a...
subuhgr 28811 A subgraph of a hypergraph...
subupgr 28812 A subgraph of a pseudograp...
subumgr 28813 A subgraph of a multigraph...
subusgr 28814 A subgraph of a simple gra...
uhgrspansubgrlem 28815 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 28816 A spanning subgraph ` S ` ...
uhgrspan 28817 A spanning subgraph ` S ` ...
upgrspan 28818 A spanning subgraph ` S ` ...
umgrspan 28819 A spanning subgraph ` S ` ...
usgrspan 28820 A spanning subgraph ` S ` ...
uhgrspanop 28821 A spanning subgraph of a h...
upgrspanop 28822 A spanning subgraph of a p...
umgrspanop 28823 A spanning subgraph of a m...
usgrspanop 28824 A spanning subgraph of a s...
uhgrspan1lem1 28825 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 28826 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 28827 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 28828 The induced subgraph ` S `...
upgrreslem 28829 Lemma for ~ upgrres . (Co...
umgrreslem 28830 Lemma for ~ umgrres and ~ ...
upgrres 28831 A subgraph obtained by rem...
umgrres 28832 A subgraph obtained by rem...
usgrres 28833 A subgraph obtained by rem...
upgrres1lem1 28834 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 28835 Lemma for ~ umgrres1 . (C...
upgrres1lem2 28836 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 28837 Lemma 3 for ~ upgrres1 . ...
upgrres1 28838 A pseudograph obtained by ...
umgrres1 28839 A multigraph obtained by r...
usgrres1 28840 Restricting a simple graph...
isfusgr 28843 The property of being a fi...
fusgrvtxfi 28844 A finite simple graph has ...
isfusgrf1 28845 The property of being a fi...
isfusgrcl 28846 The property of being a fi...
fusgrusgr 28847 A finite simple graph is a...
opfusgr 28848 A finite simple graph repr...
usgredgffibi 28849 The number of edges in a s...
fusgredgfi 28850 In a finite simple graph t...
usgr1v0e 28851 The size of a (finite) sim...
usgrfilem 28852 In a finite simple graph, ...
fusgrfisbase 28853 Induction base for ~ fusgr...
fusgrfisstep 28854 Induction step in ~ fusgrf...
fusgrfis 28855 A finite simple graph is o...
fusgrfupgrfs 28856 A finite simple graph is a...
nbgrprc0 28859 The set of neighbors is em...
nbgrcl 28860 If a class ` X ` has at le...
nbgrval 28861 The set of neighbors of a ...
dfnbgr2 28862 Alternate definition of th...
dfnbgr3 28863 Alternate definition of th...
nbgrnvtx0 28864 If a class ` X ` is not a ...
nbgrel 28865 Characterization of a neig...
nbgrisvtx 28866 Every neighbor ` N ` of a ...
nbgrssvtx 28867 The neighbors of a vertex ...
nbuhgr 28868 The set of neighbors of a ...
nbupgr 28869 The set of neighbors of a ...
nbupgrel 28870 A neighbor of a vertex in ...
nbumgrvtx 28871 The set of neighbors of a ...
nbumgr 28872 The set of neighbors of an...
nbusgrvtx 28873 The set of neighbors of a ...
nbusgr 28874 The set of neighbors of an...
nbgr2vtx1edg 28875 If a graph has two vertice...
nbuhgr2vtx1edgblem 28876 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 28877 If a hypergraph has two ve...
nbusgreledg 28878 A class/vertex is a neighb...
uhgrnbgr0nb 28879 A vertex which is not endp...
nbgr0vtxlem 28880 Lemma for ~ nbgr0vtx and ~...
nbgr0vtx 28881 In a null graph (with no v...
nbgr0edg 28882 In an empty graph (with no...
nbgr1vtx 28883 In a graph with one vertex...
nbgrnself 28884 A vertex in a graph is not...
nbgrnself2 28885 A class ` X ` is not a nei...
nbgrssovtx 28886 The neighbors of a vertex ...
nbgrssvwo2 28887 The neighbors of a vertex ...
nbgrsym 28888 In a graph, the neighborho...
nbupgrres 28889 The neighborhood of a vert...
usgrnbcnvfv 28890 Applying the edge function...
nbusgredgeu 28891 For each neighbor of a ver...
edgnbusgreu 28892 For each edge incident to ...
nbusgredgeu0 28893 For each neighbor of a ver...
nbusgrf1o0 28894 The mapping of neighbors o...
nbusgrf1o1 28895 The set of neighbors of a ...
nbusgrf1o 28896 The set of neighbors of a ...
nbedgusgr 28897 The number of neighbors of...
edgusgrnbfin 28898 The number of neighbors of...
nbusgrfi 28899 The class of neighbors of ...
nbfiusgrfi 28900 The class of neighbors of ...
hashnbusgrnn0 28901 The number of neighbors of...
nbfusgrlevtxm1 28902 The number of neighbors of...
nbfusgrlevtxm2 28903 If there is a vertex which...
nbusgrvtxm1 28904 If the number of neighbors...
nb3grprlem1 28905 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 28906 Lemma 2 for ~ nb3grpr . (...
nb3grpr 28907 The neighbors of a vertex ...
nb3grpr2 28908 The neighbors of a vertex ...
nb3gr2nb 28909 If the neighbors of two ve...
uvtxval 28912 The set of all universal v...
uvtxel 28913 A universal vertex, i.e. a...
uvtxisvtx 28914 A universal vertex is a ve...
uvtxssvtx 28915 The set of the universal v...
vtxnbuvtx 28916 A universal vertex has all...
uvtxnbgrss 28917 A universal vertex has all...
uvtxnbgrvtx 28918 A universal vertex is neig...
uvtx0 28919 There is no universal vert...
isuvtx 28920 The set of all universal v...
uvtxel1 28921 Characterization of a univ...
uvtx01vtx 28922 If a graph/class has no ed...
uvtx2vtx1edg 28923 If a graph has two vertice...
uvtx2vtx1edgb 28924 If a hypergraph has two ve...
uvtxnbgr 28925 A universal vertex has all...
uvtxnbgrb 28926 A vertex is universal iff ...
uvtxusgr 28927 The set of all universal v...
uvtxusgrel 28928 A universal vertex, i.e. a...
uvtxnm1nbgr 28929 A universal vertex has ` n...
nbusgrvtxm1uvtx 28930 If the number of neighbors...
uvtxnbvtxm1 28931 A universal vertex has ` n...
nbupgruvtxres 28932 The neighborhood of a univ...
uvtxupgrres 28933 A universal vertex is univ...
cplgruvtxb 28938 A graph ` G ` is complete ...
prcliscplgr 28939 A proper class (representi...
iscplgr 28940 The property of being a co...
iscplgrnb 28941 A graph is complete iff al...
iscplgredg 28942 A graph ` G ` is complete ...
iscusgr 28943 The property of being a co...
cusgrusgr 28944 A complete simple graph is...
cusgrcplgr 28945 A complete simple graph is...
iscusgrvtx 28946 A simple graph is complete...
cusgruvtxb 28947 A simple graph is complete...
iscusgredg 28948 A simple graph is complete...
cusgredg 28949 In a complete simple graph...
cplgr0 28950 The null graph (with no ve...
cusgr0 28951 The null graph (with no ve...
cplgr0v 28952 A null graph (with no vert...
cusgr0v 28953 A graph with no vertices a...
cplgr1vlem 28954 Lemma for ~ cplgr1v and ~ ...
cplgr1v 28955 A graph with one vertex is...
cusgr1v 28956 A graph with one vertex an...
cplgr2v 28957 An undirected hypergraph w...
cplgr2vpr 28958 An undirected hypergraph w...
nbcplgr 28959 In a complete graph, each ...
cplgr3v 28960 A pseudograph with three (...
cusgr3vnbpr 28961 The neighbors of a vertex ...
cplgrop 28962 A complete graph represent...
cusgrop 28963 A complete simple graph re...
cusgrexilem1 28964 Lemma 1 for ~ cusgrexi . ...
usgrexilem 28965 Lemma for ~ usgrexi . (Co...
usgrexi 28966 An arbitrary set regarded ...
cusgrexilem2 28967 Lemma 2 for ~ cusgrexi . ...
cusgrexi 28968 An arbitrary set ` V ` reg...
cusgrexg 28969 For each set there is a se...
structtousgr 28970 Any (extensible) structure...
structtocusgr 28971 Any (extensible) structure...
cffldtocusgr 28972 The field of complex numbe...
cusgrres 28973 Restricting a complete sim...
cusgrsizeindb0 28974 Base case of the induction...
cusgrsizeindb1 28975 Base case of the induction...
cusgrsizeindslem 28976 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 28977 Part 1 of induction step i...
cusgrsize2inds 28978 Induction step in ~ cusgrs...
cusgrsize 28979 The size of a finite compl...
cusgrfilem1 28980 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 28981 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 28982 Lemma 3 for ~ cusgrfi . (...
cusgrfi 28983 If the size of a complete ...
usgredgsscusgredg 28984 A simple graph is a subgra...
usgrsscusgr 28985 A simple graph is a subgra...
sizusglecusglem1 28986 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 28987 Lemma 2 for ~ sizusglecusg...
sizusglecusg 28988 The size of a simple graph...
fusgrmaxsize 28989 The maximum size of a fini...
vtxdgfval 28992 The value of the vertex de...
vtxdgval 28993 The degree of a vertex. (...
vtxdgfival 28994 The degree of a vertex for...
vtxdgop 28995 The vertex degree expresse...
vtxdgf 28996 The vertex degree function...
vtxdgelxnn0 28997 The degree of a vertex is ...
vtxdg0v 28998 The degree of a vertex in ...
vtxdg0e 28999 The degree of a vertex in ...
vtxdgfisnn0 29000 The degree of a vertex in ...
vtxdgfisf 29001 The vertex degree function...
vtxdeqd 29002 Equality theorem for the v...
vtxduhgr0e 29003 The degree of a vertex in ...
vtxdlfuhgr1v 29004 The degree of the vertex i...
vdumgr0 29005 A vertex in a multigraph h...
vtxdun 29006 The degree of a vertex in ...
vtxdfiun 29007 The degree of a vertex in ...
vtxduhgrun 29008 The degree of a vertex in ...
vtxduhgrfiun 29009 The degree of a vertex in ...
vtxdlfgrval 29010 The value of the vertex de...
vtxdumgrval 29011 The value of the vertex de...
vtxdusgrval 29012 The value of the vertex de...
vtxd0nedgb 29013 A vertex has degree 0 iff ...
vtxdushgrfvedglem 29014 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 29015 The value of the vertex de...
vtxdusgrfvedg 29016 The value of the vertex de...
vtxduhgr0nedg 29017 If a vertex in a hypergrap...
vtxdumgr0nedg 29018 If a vertex in a multigrap...
vtxduhgr0edgnel 29019 A vertex in a hypergraph h...
vtxdusgr0edgnel 29020 A vertex in a simple graph...
vtxdusgr0edgnelALT 29021 Alternate proof of ~ vtxdu...
vtxdgfusgrf 29022 The vertex degree function...
vtxdgfusgr 29023 In a finite simple graph, ...
fusgrn0degnn0 29024 In a nonempty, finite grap...
1loopgruspgr 29025 A graph with one edge whic...
1loopgredg 29026 The set of edges in a grap...
1loopgrnb0 29027 In a graph (simple pseudog...
1loopgrvd2 29028 The vertex degree of a one...
1loopgrvd0 29029 The vertex degree of a one...
1hevtxdg0 29030 The vertex degree of verte...
1hevtxdg1 29031 The vertex degree of verte...
1hegrvtxdg1 29032 The vertex degree of a gra...
1hegrvtxdg1r 29033 The vertex degree of a gra...
1egrvtxdg1 29034 The vertex degree of a one...
1egrvtxdg1r 29035 The vertex degree of a one...
1egrvtxdg0 29036 The vertex degree of a one...
p1evtxdeqlem 29037 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 29038 If an edge ` E ` which doe...
p1evtxdp1 29039 If an edge ` E ` (not bein...
uspgrloopvtx 29040 The set of vertices in a g...
uspgrloopvtxel 29041 A vertex in a graph (simpl...
uspgrloopiedg 29042 The set of edges in a grap...
uspgrloopedg 29043 The set of edges in a grap...
uspgrloopnb0 29044 In a graph (simple pseudog...
uspgrloopvd2 29045 The vertex degree of a one...
umgr2v2evtx 29046 The set of vertices in a m...
umgr2v2evtxel 29047 A vertex in a multigraph w...
umgr2v2eiedg 29048 The edge function in a mul...
umgr2v2eedg 29049 The set of edges in a mult...
umgr2v2e 29050 A multigraph with two edge...
umgr2v2enb1 29051 In a multigraph with two e...
umgr2v2evd2 29052 In a multigraph with two e...
hashnbusgrvd 29053 In a simple graph, the num...
usgruvtxvdb 29054 In a finite simple graph w...
vdiscusgrb 29055 A finite simple graph with...
vdiscusgr 29056 In a finite complete simpl...
vtxdusgradjvtx 29057 The degree of a vertex in ...
usgrvd0nedg 29058 If a vertex in a simple gr...
uhgrvd00 29059 If every vertex in a hyper...
usgrvd00 29060 If every vertex in a simpl...
vdegp1ai 29061 The induction step for a v...
vdegp1bi 29062 The induction step for a v...
vdegp1ci 29063 The induction step for a v...
vtxdginducedm1lem1 29064 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 29065 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 29066 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 29067 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 29068 The degree of a vertex ` v...
vtxdginducedm1fi 29069 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 29070 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 29071 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 29072 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 29073 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 29074 Induction step of ~ finsum...
finsumvtxdg2size 29075 The sum of the degrees of ...
fusgr1th 29076 The sum of the degrees of ...
finsumvtxdgeven 29077 The sum of the degrees of ...
vtxdgoddnumeven 29078 The number of vertices of ...
fusgrvtxdgonume 29079 The number of vertices of ...
isrgr 29084 The property of a class be...
rgrprop 29085 The properties of a k-regu...
isrusgr 29086 The property of being a k-...
rusgrprop 29087 The properties of a k-regu...
rusgrrgr 29088 A k-regular simple graph i...
rusgrusgr 29089 A k-regular simple graph i...
finrusgrfusgr 29090 A finite regular simple gr...
isrusgr0 29091 The property of being a k-...
rusgrprop0 29092 The properties of a k-regu...
usgreqdrusgr 29093 If all vertices in a simpl...
fusgrregdegfi 29094 In a nonempty finite simpl...
fusgrn0eqdrusgr 29095 If all vertices in a nonem...
frusgrnn0 29096 In a nonempty finite k-reg...
0edg0rgr 29097 A graph is 0-regular if it...
uhgr0edg0rgr 29098 A hypergraph is 0-regular ...
uhgr0edg0rgrb 29099 A hypergraph is 0-regular ...
usgr0edg0rusgr 29100 A simple graph is 0-regula...
0vtxrgr 29101 A null graph (with no vert...
0vtxrusgr 29102 A graph with no vertices a...
0uhgrrusgr 29103 The null graph as hypergra...
0grrusgr 29104 The null graph represented...
0grrgr 29105 The null graph represented...
cusgrrusgr 29106 A complete simple graph wi...
cusgrm1rusgr 29107 A finite simple graph with...
rusgrpropnb 29108 The properties of a k-regu...
rusgrpropedg 29109 The properties of a k-regu...
rusgrpropadjvtx 29110 The properties of a k-regu...
rusgrnumwrdl2 29111 In a k-regular simple grap...
rusgr1vtxlem 29112 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 29113 If a k-regular simple grap...
rgrusgrprc 29114 The class of 0-regular sim...
rusgrprc 29115 The class of 0-regular sim...
rgrprc 29116 The class of 0-regular gra...
rgrprcx 29117 The class of 0-regular gra...
rgrx0ndm 29118 0 is not in the domain of ...
rgrx0nd 29119 The potentially alternativ...
ewlksfval 29126 The set of s-walks of edge...
isewlk 29127 Conditions for a function ...
ewlkprop 29128 Properties of an s-walk of...
ewlkinedg 29129 The intersection (common v...
ewlkle 29130 An s-walk of edges is also...
upgrewlkle2 29131 In a pseudograph, there is...
wkslem1 29132 Lemma 1 for walks to subst...
wkslem2 29133 Lemma 2 for walks to subst...
wksfval 29134 The set of walks (in an un...
iswlk 29135 Properties of a pair of fu...
wlkprop 29136 Properties of a walk. (Co...
wlkv 29137 The classes involved in a ...
iswlkg 29138 Generalization of ~ iswlk ...
wlkf 29139 The mapping enumerating th...
wlkcl 29140 A walk has length ` # ( F ...
wlkp 29141 The mapping enumerating th...
wlkpwrd 29142 The sequence of vertices o...
wlklenvp1 29143 The number of vertices of ...
wksv 29144 The class of walks is a se...
wksvOLD 29145 Obsolete version of ~ wksv...
wlkn0 29146 The sequence of vertices o...
wlklenvm1 29147 The number of edges of a w...
ifpsnprss 29148 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 29149 Each pair of adjacent vert...
wlkvtxiedg 29150 The vertices of a walk are...
relwlk 29151 The set ` ( Walks `` G ) `...
wlkvv 29152 If there is at least one w...
wlkop 29153 A walk is an ordered pair....
wlkcpr 29154 A walk as class with two c...
wlk2f 29155 If there is a walk ` W ` t...
wlkcomp 29156 A walk expressed by proper...
wlkcompim 29157 Implications for the prope...
wlkelwrd 29158 The components of a walk a...
wlkeq 29159 Conditions for two walks (...
edginwlk 29160 The value of the edge func...
upgredginwlk 29161 The value of the edge func...
iedginwlk 29162 The value of the edge func...
wlkl1loop 29163 A walk of length 1 from a ...
wlk1walk 29164 A walk is a 1-walk "on the...
wlk1ewlk 29165 A walk is an s-walk "on th...
upgriswlk 29166 Properties of a pair of fu...
upgrwlkedg 29167 The edges of a walk in a p...
upgrwlkcompim 29168 Implications for the prope...
wlkvtxedg 29169 The vertices of a walk are...
upgrwlkvtxedg 29170 The pairs of connected ver...
uspgr2wlkeq 29171 Conditions for two walks w...
uspgr2wlkeq2 29172 Conditions for two walks w...
uspgr2wlkeqi 29173 Conditions for two walks w...
umgrwlknloop 29174 In a multigraph, each walk...
wlkResOLD 29175 Obsolete version of ~ opab...
wlkv0 29176 If there is a walk in the ...
g0wlk0 29177 There is no walk in a null...
0wlk0 29178 There is no walk for the e...
wlk0prc 29179 There is no walk in a null...
wlklenvclwlk 29180 The number of vertices in ...
wlkson 29181 The set of walks between t...
iswlkon 29182 Properties of a pair of fu...
wlkonprop 29183 Properties of a walk betwe...
wlkpvtx 29184 A walk connects vertices. ...
wlkepvtx 29185 The endpoints of a walk ar...
wlkoniswlk 29186 A walk between two vertice...
wlkonwlk 29187 A walk is a walk between i...
wlkonwlk1l 29188 A walk is a walk from its ...
wlksoneq1eq2 29189 Two walks with identical s...
wlkonl1iedg 29190 If there is a walk between...
wlkon2n0 29191 The length of a walk betwe...
2wlklem 29192 Lemma for theorems for wal...
upgr2wlk 29193 Properties of a pair of fu...
wlkreslem 29194 Lemma for ~ wlkres . (Con...
wlkres 29195 The restriction ` <. H , Q...
redwlklem 29196 Lemma for ~ redwlk . (Con...
redwlk 29197 A walk ending at the last ...
wlkp1lem1 29198 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 29199 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 29200 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 29201 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 29202 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 29203 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 29204 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 29205 Lemma for ~ wlkp1 . (Cont...
wlkp1 29206 Append one path segment (e...
wlkdlem1 29207 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 29208 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 29209 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 29210 Lemma 4 for ~ wlkd . (Con...
wlkd 29211 Two words representing a w...
lfgrwlkprop 29212 Two adjacent vertices in a...
lfgriswlk 29213 Conditions for a pair of f...
lfgrwlknloop 29214 In a loop-free graph, each...
reltrls 29219 The set ` ( Trails `` G ) ...
trlsfval 29220 The set of trails (in an u...
istrl 29221 Conditions for a pair of c...
trliswlk 29222 A trail is a walk. (Contr...
trlf1 29223 The enumeration ` F ` of a...
trlreslem 29224 Lemma for ~ trlres . Form...
trlres 29225 The restriction ` <. H , Q...
upgrtrls 29226 The set of trails in a pse...
upgristrl 29227 Properties of a pair of fu...
upgrf1istrl 29228 Properties of a pair of a ...
wksonproplem 29229 Lemma for theorems for pro...
wksonproplemOLD 29230 Obsolete version of ~ wkso...
trlsonfval 29231 The set of trails between ...
istrlson 29232 Properties of a pair of fu...
trlsonprop 29233 Properties of a trail betw...
trlsonistrl 29234 A trail between two vertic...
trlsonwlkon 29235 A trail between two vertic...
trlontrl 29236 A trail is a trail between...
relpths 29245 The set ` ( Paths `` G ) `...
pthsfval 29246 The set of paths (in an un...
spthsfval 29247 The set of simple paths (i...
ispth 29248 Conditions for a pair of c...
isspth 29249 Conditions for a pair of c...
pthistrl 29250 A path is a trail (in an u...
spthispth 29251 A simple path is a path (i...
pthiswlk 29252 A path is a walk (in an un...
spthiswlk 29253 A simple path is a walk (i...
pthdivtx 29254 The inner vertices of a pa...
pthdadjvtx 29255 The adjacent vertices of a...
2pthnloop 29256 A path of length at least ...
upgr2pthnlp 29257 A path of length at least ...
spthdifv 29258 The vertices of a simple p...
spthdep 29259 A simple path (at least of...
pthdepisspth 29260 A path with different star...
upgrwlkdvdelem 29261 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 29262 In a pseudograph, all edge...
upgrspthswlk 29263 The set of simple paths in...
upgrwlkdvspth 29264 A walk consisting of diffe...
pthsonfval 29265 The set of paths between t...
spthson 29266 The set of simple paths be...
ispthson 29267 Properties of a pair of fu...
isspthson 29268 Properties of a pair of fu...
pthsonprop 29269 Properties of a path betwe...
spthonprop 29270 Properties of a simple pat...
pthonispth 29271 A path between two vertice...
pthontrlon 29272 A path between two vertice...
pthonpth 29273 A path is a path between i...
isspthonpth 29274 A pair of functions is a s...
spthonisspth 29275 A simple path between to v...
spthonpthon 29276 A simple path between two ...
spthonepeq 29277 The endpoints of a simple ...
uhgrwkspthlem1 29278 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 29279 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 29280 Any walk of length 1 betwe...
usgr2wlkneq 29281 The vertices and edges are...
usgr2wlkspthlem1 29282 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 29283 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 29284 In a simple graph, any wal...
usgr2trlncl 29285 In a simple graph, any tra...
usgr2trlspth 29286 In a simple graph, any tra...
usgr2pthspth 29287 In a simple graph, any pat...
usgr2pthlem 29288 Lemma for ~ usgr2pth . (C...
usgr2pth 29289 In a simple graph, there i...
usgr2pth0 29290 In a simply graph, there i...
pthdlem1 29291 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 29292 Lemma for ~ pthdlem2 . (C...
pthdlem2 29293 Lemma 2 for ~ pthd . (Con...
pthd 29294 Two words representing a t...
clwlks 29297 The set of closed walks (i...
isclwlk 29298 A pair of functions repres...
clwlkiswlk 29299 A closed walk is a walk (i...
clwlkwlk 29300 Closed walks are walks (in...
clwlkswks 29301 Closed walks are walks (in...
isclwlke 29302 Properties of a pair of fu...
isclwlkupgr 29303 Properties of a pair of fu...
clwlkcomp 29304 A closed walk expressed by...
clwlkcompim 29305 Implications for the prope...
upgrclwlkcompim 29306 Implications for the prope...
clwlkcompbp 29307 Basic properties of the co...
clwlkl1loop 29308 A closed walk of length 1 ...
crcts 29313 The set of circuits (in an...
cycls 29314 The set of cycles (in an u...
iscrct 29315 Sufficient and necessary c...
iscycl 29316 Sufficient and necessary c...
crctprop 29317 The properties of a circui...
cyclprop 29318 The properties of a cycle:...
crctisclwlk 29319 A circuit is a closed walk...
crctistrl 29320 A circuit is a trail. (Co...
crctiswlk 29321 A circuit is a walk. (Con...
cyclispth 29322 A cycle is a path. (Contr...
cycliswlk 29323 A cycle is a walk. (Contr...
cycliscrct 29324 A cycle is a circuit. (Co...
cyclnspth 29325 A (non-trivial) cycle is n...
cyclispthon 29326 A cycle is a path starting...
lfgrn1cycl 29327 In a loop-free graph there...
usgr2trlncrct 29328 In a simple graph, any tra...
umgrn1cycl 29329 In a multigraph graph (wit...
uspgrn2crct 29330 In a simple pseudograph th...
usgrn2cycl 29331 In a simple graph there ar...
crctcshwlkn0lem1 29332 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 29333 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 29334 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 29335 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 29336 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 29337 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 29338 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 29339 Lemma for ~ crctcsh . (Co...
crctcshlem2 29340 Lemma for ~ crctcsh . (Co...
crctcshlem3 29341 Lemma for ~ crctcsh . (Co...
crctcshlem4 29342 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 29343 Cyclically shifting the in...
crctcshwlk 29344 Cyclically shifting the in...
crctcshtrl 29345 Cyclically shifting the in...
crctcsh 29346 Cyclically shifting the in...
wwlks 29357 The set of walks (in an un...
iswwlks 29358 A word over the set of ver...
wwlksn 29359 The set of walks (in an un...
iswwlksn 29360 A word over the set of ver...
wwlksnprcl 29361 Derivation of the length o...
iswwlksnx 29362 Properties of a word to re...
wwlkbp 29363 Basic properties of a walk...
wwlknbp 29364 Basic properties of a walk...
wwlknp 29365 Properties of a set being ...
wwlknbp1 29366 Other basic properties of ...
wwlknvtx 29367 The symbols of a word ` W ...
wwlknllvtx 29368 If a word ` W ` represents...
wwlknlsw 29369 If a word represents a wal...
wspthsn 29370 The set of simple paths of...
iswspthn 29371 An element of the set of s...
wspthnp 29372 Properties of a set being ...
wwlksnon 29373 The set of walks of a fixe...
wspthsnon 29374 The set of simple paths of...
iswwlksnon 29375 The set of walks of a fixe...
wwlksnon0 29376 Sufficient conditions for ...
wwlksonvtx 29377 If a word ` W ` represents...
iswspthsnon 29378 The set of simple paths of...
wwlknon 29379 An element of the set of w...
wspthnon 29380 An element of the set of s...
wspthnonp 29381 Properties of a set being ...
wspthneq1eq2 29382 Two simple paths with iden...
wwlksn0s 29383 The set of all walks as wo...
wwlkssswrd 29384 Walks (represented by word...
wwlksn0 29385 A walk of length 0 is repr...
0enwwlksnge1 29386 In graphs without edges, t...
wwlkswwlksn 29387 A walk of a fixed length a...
wwlkssswwlksn 29388 The walks of a fixed lengt...
wlkiswwlks1 29389 The sequence of vertices i...
wlklnwwlkln1 29390 The sequence of vertices i...
wlkiswwlks2lem1 29391 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 29392 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 29393 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 29394 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 29395 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 29396 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 29397 A walk as word corresponds...
wlkiswwlks 29398 A walk as word corresponds...
wlkiswwlksupgr2 29399 A walk as word corresponds...
wlkiswwlkupgr 29400 A walk as word corresponds...
wlkswwlksf1o 29401 The mapping of (ordinary) ...
wlkswwlksen 29402 The set of walks as words ...
wwlksm1edg 29403 Removing the trailing edge...
wlklnwwlkln2lem 29404 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 29405 A walk of length ` N ` as ...
wlklnwwlkn 29406 A walk of length ` N ` as ...
wlklnwwlklnupgr2 29407 A walk of length ` N ` as ...
wlklnwwlknupgr 29408 A walk of length ` N ` as ...
wlknewwlksn 29409 If a walk in a pseudograph...
wlknwwlksnbij 29410 The mapping ` ( t e. T |->...
wlknwwlksnen 29411 In a simple pseudograph, t...
wlknwwlksneqs 29412 The set of walks of a fixe...
wwlkseq 29413 Equality of two walks (as ...
wwlksnred 29414 Reduction of a walk (as wo...
wwlksnext 29415 Extension of a walk (as wo...
wwlksnextbi 29416 Extension of a walk (as wo...
wwlksnredwwlkn 29417 For each walk (as word) of...
wwlksnredwwlkn0 29418 For each walk (as word) of...
wwlksnextwrd 29419 Lemma for ~ wwlksnextbij ....
wwlksnextfun 29420 Lemma for ~ wwlksnextbij ....
wwlksnextinj 29421 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 29422 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 29423 Lemma for ~ wwlksnextbij ....
wwlksnextbij 29424 There is a bijection betwe...
wwlksnexthasheq 29425 The number of the extensio...
disjxwwlksn 29426 Sets of walks (as words) e...
wwlksnndef 29427 Conditions for ` WWalksN `...
wwlksnfi 29428 The number of walks repres...
wlksnfi 29429 The number of walks of fix...
wlksnwwlknvbij 29430 There is a bijection betwe...
wwlksnextproplem1 29431 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 29432 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 29433 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 29434 Adding additional properti...
disjxwwlkn 29435 Sets of walks (as words) e...
hashwwlksnext 29436 Number of walks (as words)...
wwlksnwwlksnon 29437 A walk of fixed length is ...
wspthsnwspthsnon 29438 A simple path of fixed len...
wspthsnonn0vne 29439 If the set of simple paths...
wspthsswwlkn 29440 The set of simple paths of...
wspthnfi 29441 In a finite graph, the set...
wwlksnonfi 29442 In a finite graph, the set...
wspthsswwlknon 29443 The set of simple paths of...
wspthnonfi 29444 In a finite graph, the set...
wspniunwspnon 29445 The set of nonempty simple...
wspn0 29446 If there are no vertices, ...
2wlkdlem1 29447 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 29448 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 29449 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 29450 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 29451 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 29452 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 29453 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 29454 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 29455 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 29456 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 29457 Lemma 10 for ~ 3wlkd . (C...
2wlkd 29458 Construction of a walk fro...
2wlkond 29459 A walk of length 2 from on...
2trld 29460 Construction of a trail fr...
2trlond 29461 A trail of length 2 from o...
2pthd 29462 A path of length 2 from on...
2spthd 29463 A simple path of length 2 ...
2pthond 29464 A simple path of length 2 ...
2pthon3v 29465 For a vertex adjacent to t...
umgr2adedgwlklem 29466 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 29467 In a multigraph, two adjac...
umgr2adedgwlkon 29468 In a multigraph, two adjac...
umgr2adedgwlkonALT 29469 Alternate proof for ~ umgr...
umgr2adedgspth 29470 In a multigraph, two adjac...
umgr2wlk 29471 In a multigraph, there is ...
umgr2wlkon 29472 For each pair of adjacent ...
elwwlks2s3 29473 A walk of length 2 as word...
midwwlks2s3 29474 There is a vertex between ...
wwlks2onv 29475 If a length 3 string repre...
elwwlks2ons3im 29476 A walk as word of length 2...
elwwlks2ons3 29477 For each walk of length 2 ...
s3wwlks2on 29478 A length 3 string which re...
umgrwwlks2on 29479 A walk of length 2 between...
wwlks2onsym 29480 There is a walk of length ...
elwwlks2on 29481 A walk of length 2 between...
elwspths2on 29482 A simple path of length 2 ...
wpthswwlks2on 29483 For two different vertices...
2wspdisj 29484 All simple paths of length...
2wspiundisj 29485 All simple paths of length...
usgr2wspthons3 29486 A simple path of length 2 ...
usgr2wspthon 29487 A simple path of length 2 ...
elwwlks2 29488 A walk of length 2 between...
elwspths2spth 29489 A simple path of length 2 ...
rusgrnumwwlkl1 29490 In a k-regular graph, ther...
rusgrnumwwlkslem 29491 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 29492 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 29493 Induction base 0 for ~ rus...
rusgrnumwwlkb1 29494 Induction base 1 for ~ rus...
rusgr0edg 29495 Special case for graphs wi...
rusgrnumwwlks 29496 Induction step for ~ rusgr...
rusgrnumwwlk 29497 In a ` K `-regular graph, ...
rusgrnumwwlkg 29498 In a ` K `-regular graph, ...
rusgrnumwlkg 29499 In a k-regular graph, the ...
clwwlknclwwlkdif 29500 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 29501 In a ` K `-regular graph, ...
clwwlk 29504 The set of closed walks (i...
isclwwlk 29505 Properties of a word to re...
clwwlkbp 29506 Basic properties of a clos...
clwwlkgt0 29507 There is no empty closed w...
clwwlksswrd 29508 Closed walks (represented ...
clwwlk1loop 29509 A closed walk of length 1 ...
clwwlkccatlem 29510 Lemma for ~ clwwlkccat : i...
clwwlkccat 29511 The concatenation of two w...
umgrclwwlkge2 29512 A closed walk in a multigr...
clwlkclwwlklem2a1 29513 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 29514 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 29515 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 29516 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 29517 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 29518 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 29519 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 29520 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 29521 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 29522 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 29523 A closed walk as word of l...
clwlkclwwlk2 29524 A closed walk corresponds ...
clwlkclwwlkflem 29525 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 29526 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 29527 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 29528 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 29529 ` F ` is a function from t...
clwlkclwwlkfo 29530 ` F ` is a function from t...
clwlkclwwlkf1 29531 ` F ` is a one-to-one func...
clwlkclwwlkf1o 29532 ` F ` is a bijection betwe...
clwlkclwwlken 29533 The set of the nonempty cl...
clwwisshclwwslemlem 29534 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 29535 Lemma for ~ clwwisshclwws ...
clwwisshclwws 29536 Cyclically shifting a clos...
clwwisshclwwsn 29537 Cyclically shifting a clos...
erclwwlkrel 29538 ` .~ ` is a relation. (Co...
erclwwlkeq 29539 Two classes are equivalent...
erclwwlkeqlen 29540 If two classes are equival...
erclwwlkref 29541 ` .~ ` is a reflexive rela...
erclwwlksym 29542 ` .~ ` is a symmetric rela...
erclwwlktr 29543 ` .~ ` is a transitive rel...
erclwwlk 29544 ` .~ ` is an equivalence r...
clwwlkn 29547 The set of closed walks of...
isclwwlkn 29548 A word over the set of ver...
clwwlkn0 29549 There is no closed walk of...
clwwlkneq0 29550 Sufficient conditions for ...
clwwlkclwwlkn 29551 A closed walk of a fixed l...
clwwlksclwwlkn 29552 The closed walks of a fixe...
clwwlknlen 29553 The length of a word repre...
clwwlknnn 29554 The length of a closed wal...
clwwlknwrd 29555 A closed walk of a fixed l...
clwwlknbp 29556 Basic properties of a clos...
isclwwlknx 29557 Characterization of a word...
clwwlknp 29558 Properties of a set being ...
clwwlknwwlksn 29559 A word representing a clos...
clwwlknlbonbgr1 29560 The last but one vertex in...
clwwlkinwwlk 29561 If the initial vertex of a...
clwwlkn1 29562 A closed walk of length 1 ...
loopclwwlkn1b 29563 The singleton word consist...
clwwlkn1loopb 29564 A word represents a closed...
clwwlkn2 29565 A closed walk of length 2 ...
clwwlknfi 29566 If there is only a finite ...
clwwlkel 29567 Obtaining a closed walk (a...
clwwlkf 29568 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 29569 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 29570 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 29571 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 29572 F is a 1-1 onto function, ...
clwwlken 29573 The set of closed walks of...
clwwlknwwlkncl 29574 Obtaining a closed walk (a...
clwwlkwwlksb 29575 A nonempty word over verti...
clwwlknwwlksnb 29576 A word over vertices repre...
clwwlkext2edg 29577 If a word concatenated wit...
wwlksext2clwwlk 29578 If a word represents a wal...
wwlksubclwwlk 29579 Any prefix of a word repre...
clwwnisshclwwsn 29580 Cyclically shifting a clos...
eleclclwwlknlem1 29581 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 29582 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 29583 The set of cyclical shifts...
clwwlknccat 29584 The concatenation of two w...
umgr2cwwk2dif 29585 If a word represents a clo...
umgr2cwwkdifex 29586 If a word represents a clo...
erclwwlknrel 29587 ` .~ ` is a relation. (Co...
erclwwlkneq 29588 Two classes are equivalent...
erclwwlkneqlen 29589 If two classes are equival...
erclwwlknref 29590 ` .~ ` is a reflexive rela...
erclwwlknsym 29591 ` .~ ` is a symmetric rela...
erclwwlkntr 29592 ` .~ ` is a transitive rel...
erclwwlkn 29593 ` .~ ` is an equivalence r...
qerclwwlknfi 29594 The quotient set of the se...
hashclwwlkn0 29595 The number of closed walks...
eclclwwlkn1 29596 An equivalence class accor...
eleclclwwlkn 29597 A member of an equivalence...
hashecclwwlkn1 29598 The size of every equivale...
umgrhashecclwwlk 29599 The size of every equivale...
fusgrhashclwwlkn 29600 The size of the set of clo...
clwwlkndivn 29601 The size of the set of clo...
clwlknf1oclwwlknlem1 29602 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 29603 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 29604 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 29605 There is a one-to-one onto...
clwlkssizeeq 29606 The size of the set of clo...
clwlksndivn 29607 The size of the set of clo...
clwwlknonmpo 29610 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 29611 The set of closed walks on...
isclwwlknon 29612 A word over the set of ver...
clwwlk0on0 29613 There is no word over the ...
clwwlknon0 29614 Sufficient conditions for ...
clwwlknonfin 29615 In a finite graph ` G ` , ...
clwwlknonel 29616 Characterization of a word...
clwwlknonccat 29617 The concatenation of two w...
clwwlknon1 29618 The set of closed walks on...
clwwlknon1loop 29619 If there is a loop at vert...
clwwlknon1nloop 29620 If there is no loop at ver...
clwwlknon1sn 29621 The set of (closed) walks ...
clwwlknon1le1 29622 There is at most one (clos...
clwwlknon2 29623 The set of closed walks on...
clwwlknon2x 29624 The set of closed walks on...
s2elclwwlknon2 29625 Sufficient conditions of a...
clwwlknon2num 29626 In a ` K `-regular graph `...
clwwlknonwwlknonb 29627 A word over vertices repre...
clwwlknonex2lem1 29628 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 29629 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 29630 Extending a closed walk ` ...
clwwlknonex2e 29631 Extending a closed walk ` ...
clwwlknondisj 29632 The sets of closed walks o...
clwwlknun 29633 The set of closed walks of...
clwwlkvbij 29634 There is a bijection betwe...
0ewlk 29635 The empty set (empty seque...
1ewlk 29636 A sequence of 1 edge is an...
0wlk 29637 A pair of an empty set (of...
is0wlk 29638 A pair of an empty set (of...
0wlkonlem1 29639 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 29640 Lemma 2 for ~ 0wlkon and ~...
0wlkon 29641 A walk of length 0 from a ...
0wlkons1 29642 A walk of length 0 from a ...
0trl 29643 A pair of an empty set (of...
is0trl 29644 A pair of an empty set (of...
0trlon 29645 A trail of length 0 from a...
0pth 29646 A pair of an empty set (of...
0spth 29647 A pair of an empty set (of...
0pthon 29648 A path of length 0 from a ...
0pthon1 29649 A path of length 0 from a ...
0pthonv 29650 For each vertex there is a...
0clwlk 29651 A pair of an empty set (of...
0clwlkv 29652 Any vertex (more precisely...
0clwlk0 29653 There is no closed walk in...
0crct 29654 A pair of an empty set (of...
0cycl 29655 A pair of an empty set (of...
1pthdlem1 29656 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 29657 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 29658 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 29659 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 29660 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 29661 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 29662 In a graph with two vertic...
1trld 29663 In a graph with two vertic...
1pthd 29664 In a graph with two vertic...
1pthond 29665 In a graph with two vertic...
upgr1wlkdlem1 29666 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 29667 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 29668 In a pseudograph with two ...
upgr1trld 29669 In a pseudograph with two ...
upgr1pthd 29670 In a pseudograph with two ...
upgr1pthond 29671 In a pseudograph with two ...
lppthon 29672 A loop (which is an edge a...
lp1cycl 29673 A loop (which is an edge a...
1pthon2v 29674 For each pair of adjacent ...
1pthon2ve 29675 For each pair of adjacent ...
wlk2v2elem1 29676 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 29677 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 29678 In a graph with two vertic...
ntrl2v2e 29679 A walk which is not a trai...
3wlkdlem1 29680 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 29681 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 29682 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 29683 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 29684 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 29685 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 29686 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 29687 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 29688 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 29689 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 29690 Lemma 10 for ~ 3wlkd . (C...
3wlkd 29691 Construction of a walk fro...
3wlkond 29692 A walk of length 3 from on...
3trld 29693 Construction of a trail fr...
3trlond 29694 A trail of length 3 from o...
3pthd 29695 A path of length 3 from on...
3pthond 29696 A path of length 3 from on...
3spthd 29697 A simple path of length 3 ...
3spthond 29698 A simple path of length 3 ...
3cycld 29699 Construction of a 3-cycle ...
3cyclpd 29700 Construction of a 3-cycle ...
upgr3v3e3cycl 29701 If there is a cycle of len...
uhgr3cyclexlem 29702 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 29703 If there are three differe...
umgr3cyclex 29704 If there are three (differ...
umgr3v3e3cycl 29705 If and only if there is a ...
upgr4cycl4dv4e 29706 If there is a cycle of len...
dfconngr1 29709 Alternative definition of ...
isconngr 29710 The property of being a co...
isconngr1 29711 The property of being a co...
cusconngr 29712 A complete hypergraph is c...
0conngr 29713 A graph without vertices i...
0vconngr 29714 A graph without vertices i...
1conngr 29715 A graph with (at most) one...
conngrv2edg 29716 A vertex in a connected gr...
vdn0conngrumgrv2 29717 A vertex in a connected mu...
releupth 29720 The set ` ( EulerPaths `` ...
eupths 29721 The Eulerian paths on the ...
iseupth 29722 The property " ` <. F , P ...
iseupthf1o 29723 The property " ` <. F , P ...
eupthi 29724 Properties of an Eulerian ...
eupthf1o 29725 The ` F ` function in an E...
eupthfi 29726 Any graph with an Eulerian...
eupthseg 29727 The ` N ` -th edge in an e...
upgriseupth 29728 The property " ` <. F , P ...
upgreupthi 29729 Properties of an Eulerian ...
upgreupthseg 29730 The ` N ` -th edge in an e...
eupthcl 29731 An Eulerian path has lengt...
eupthistrl 29732 An Eulerian path is a trai...
eupthiswlk 29733 An Eulerian path is a walk...
eupthpf 29734 The ` P ` function in an E...
eupth0 29735 There is an Eulerian path ...
eupthres 29736 The restriction ` <. H , Q...
eupthp1 29737 Append one path segment to...
eupth2eucrct 29738 Append one path segment to...
eupth2lem1 29739 Lemma for ~ eupth2 . (Con...
eupth2lem2 29740 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 29741 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 29742 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 29743 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 29744 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 29745 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 29746 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 29747 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 29748 Formerly part of proof of ...
eupth2lem3lem1 29749 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 29750 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 29751 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 29752 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 29753 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 29754 Formerly part of proof of ...
eupth2lem3lem7 29755 Lemma for ~ eupth2lem3 : ...
eupthvdres 29756 Formerly part of proof of ...
eupth2lem3 29757 Lemma for ~ eupth2 . (Con...
eupth2lemb 29758 Lemma for ~ eupth2 (induct...
eupth2lems 29759 Lemma for ~ eupth2 (induct...
eupth2 29760 The only vertices of odd d...
eulerpathpr 29761 A graph with an Eulerian p...
eulerpath 29762 A pseudograph with an Eule...
eulercrct 29763 A pseudograph with an Eule...
eucrctshift 29764 Cyclically shifting the in...
eucrct2eupth1 29765 Removing one edge ` ( I ``...
eucrct2eupth 29766 Removing one edge ` ( I ``...
konigsbergvtx 29767 The set of vertices of the...
konigsbergiedg 29768 The indexed edges of the K...
konigsbergiedgw 29769 The indexed edges of the K...
konigsbergssiedgwpr 29770 Each subset of the indexed...
konigsbergssiedgw 29771 Each subset of the indexed...
konigsbergumgr 29772 The Königsberg graph ...
konigsberglem1 29773 Lemma 1 for ~ konigsberg :...
konigsberglem2 29774 Lemma 2 for ~ konigsberg :...
konigsberglem3 29775 Lemma 3 for ~ konigsberg :...
konigsberglem4 29776 Lemma 4 for ~ konigsberg :...
konigsberglem5 29777 Lemma 5 for ~ konigsberg :...
konigsberg 29778 The Königsberg Bridge...
isfrgr 29781 The property of being a fr...
frgrusgr 29782 A friendship graph is a si...
frgr0v 29783 Any null graph (set with n...
frgr0vb 29784 Any null graph (without ve...
frgruhgr0v 29785 Any null graph (without ve...
frgr0 29786 The null graph (graph with...
frcond1 29787 The friendship condition: ...
frcond2 29788 The friendship condition: ...
frgreu 29789 Variant of ~ frcond2 : An...
frcond3 29790 The friendship condition, ...
frcond4 29791 The friendship condition, ...
frgr1v 29792 Any graph with (at most) o...
nfrgr2v 29793 Any graph with two (differ...
frgr3vlem1 29794 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 29795 Lemma 2 for ~ frgr3v . (C...
frgr3v 29796 Any graph with three verti...
1vwmgr 29797 Every graph with one verte...
3vfriswmgrlem 29798 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 29799 Every friendship graph wit...
1to2vfriswmgr 29800 Every friendship graph wit...
1to3vfriswmgr 29801 Every friendship graph wit...
1to3vfriendship 29802 The friendship theorem for...
2pthfrgrrn 29803 Between any two (different...
2pthfrgrrn2 29804 Between any two (different...
2pthfrgr 29805 Between any two (different...
3cyclfrgrrn1 29806 Every vertex in a friendsh...
3cyclfrgrrn 29807 Every vertex in a friendsh...
3cyclfrgrrn2 29808 Every vertex in a friendsh...
3cyclfrgr 29809 Every vertex in a friendsh...
4cycl2v2nb 29810 In a (maybe degenerate) 4-...
4cycl2vnunb 29811 In a 4-cycle, two distinct...
n4cyclfrgr 29812 There is no 4-cycle in a f...
4cyclusnfrgr 29813 A graph with a 4-cycle is ...
frgrnbnb 29814 If two neighbors ` U ` and...
frgrconngr 29815 A friendship graph is conn...
vdgn0frgrv2 29816 A vertex in a friendship g...
vdgn1frgrv2 29817 Any vertex in a friendship...
vdgn1frgrv3 29818 Any vertex in a friendship...
vdgfrgrgt2 29819 Any vertex in a friendship...
frgrncvvdeqlem1 29820 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 29821 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 29822 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 29823 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 29824 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 29825 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 29826 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 29827 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 29828 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 29829 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 29830 In a friendship graph, two...
frgrwopreglem4a 29831 In a friendship graph any ...
frgrwopreglem5a 29832 If a friendship graph has ...
frgrwopreglem1 29833 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 29834 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 29835 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 29836 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 29837 According to statement 5 i...
frgrwopregbsn 29838 According to statement 5 i...
frgrwopreg1 29839 According to statement 5 i...
frgrwopreg2 29840 According to statement 5 i...
frgrwopreglem5lem 29841 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 29842 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 29843 Alternate direct proof of ...
frgrwopreg 29844 In a friendship graph ther...
frgrregorufr0 29845 In a friendship graph ther...
frgrregorufr 29846 If there is a vertex havin...
frgrregorufrg 29847 If there is a vertex havin...
frgr2wwlkeu 29848 For two different vertices...
frgr2wwlkn0 29849 In a friendship graph, the...
frgr2wwlk1 29850 In a friendship graph, the...
frgr2wsp1 29851 In a friendship graph, the...
frgr2wwlkeqm 29852 If there is a (simple) pat...
frgrhash2wsp 29853 The number of simple paths...
fusgreg2wsplem 29854 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 29855 The set of paths of length...
fusgreghash2wspv 29856 According to statement 7 i...
fusgreg2wsp 29857 In a finite simple graph, ...
2wspmdisj 29858 The sets of paths of lengt...
fusgreghash2wsp 29859 In a finite k-regular grap...
frrusgrord0lem 29860 Lemma for ~ frrusgrord0 . ...
frrusgrord0 29861 If a nonempty finite frien...
frrusgrord 29862 If a nonempty finite frien...
numclwwlk2lem1lem 29863 Lemma for ~ numclwwlk2lem1...
2clwwlklem 29864 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 29865 If the initial vertex of a...
clwwnonrepclwwnon 29866 If the initial vertex of a...
2clwwlk2clwwlklem 29867 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 29868 Value of operation ` C ` ,...
2clwwlk2 29869 The set ` ( X C 2 ) ` of d...
2clwwlkel 29870 Characterization of an ele...
2clwwlk2clwwlk 29871 An element of the value of...
numclwwlk1lem2foalem 29872 Lemma for ~ numclwwlk1lem2...
extwwlkfab 29873 The set ` ( X C N ) ` of d...
extwwlkfabel 29874 Characterization of an ele...
numclwwlk1lem2foa 29875 Going forth and back from ...
numclwwlk1lem2f 29876 ` T ` is a function, mappi...
numclwwlk1lem2fv 29877 Value of the function ` T ...
numclwwlk1lem2f1 29878 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 29879 ` T ` is an onto function....
numclwwlk1lem2f1o 29880 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 29881 The set of double loops of...
numclwwlk1 29882 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 29883 ` F ` is a bijection betwe...
clwwlknonclwlknonen 29884 The sets of the two repres...
dlwwlknondlwlknonf1olem1 29885 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 29886 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 29887 The sets of the two repres...
wlkl0 29888 There is exactly one walk ...
clwlknon2num 29889 There are k walks of lengt...
numclwlk1lem1 29890 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 29891 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 29892 Statement 9 in [Huneke] p....
numclwwlkovh0 29893 Value of operation ` H ` ,...
numclwwlkovh 29894 Value of operation ` H ` ,...
numclwwlkovq 29895 Value of operation ` Q ` ,...
numclwwlkqhash 29896 In a ` K `-regular graph, ...
numclwwlk2lem1 29897 In a friendship graph, for...
numclwlk2lem2f 29898 ` R ` is a function mappin...
numclwlk2lem2fv 29899 Value of the function ` R ...
numclwlk2lem2f1o 29900 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 29901 In a friendship graph, the...
numclwwlk2 29902 Statement 10 in [Huneke] p...
numclwwlk3lem1 29903 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 29904 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 29905 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 29906 Statement 12 in [Huneke] p...
numclwwlk4 29907 The total number of closed...
numclwwlk5lem 29908 Lemma for ~ numclwwlk5 . ...
numclwwlk5 29909 Statement 13 in [Huneke] p...
numclwwlk7lem 29910 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 29911 For a prime divisor ` P ` ...
numclwwlk7 29912 Statement 14 in [Huneke] p...
numclwwlk8 29913 The size of the set of clo...
frgrreggt1 29914 If a finite nonempty frien...
frgrreg 29915 If a finite nonempty frien...
frgrregord013 29916 If a finite friendship gra...
frgrregord13 29917 If a nonempty finite frien...
frgrogt3nreg 29918 If a finite friendship gra...
friendshipgt3 29919 The friendship theorem for...
friendship 29920 The friendship theorem: I...
conventions 29921

H...

conventions-labels 29922

...

conventions-comments 29923

...

natded 29924 Here are typical n...
ex-natded5.2 29925 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 29926 A more efficient proof of ...
ex-natded5.2i 29927 The same as ~ ex-natded5.2...
ex-natded5.3 29928 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 29929 A more efficient proof of ...
ex-natded5.3i 29930 The same as ~ ex-natded5.3...
ex-natded5.5 29931 Theorem 5.5 of [Clemente] ...
ex-natded5.7 29932 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 29933 A more efficient proof of ...
ex-natded5.8 29934 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 29935 A more efficient proof of ...
ex-natded5.13 29936 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 29937 A more efficient proof of ...
ex-natded9.20 29938 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 29939 A more efficient proof of ...
ex-natded9.26 29940 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 29941 A more efficient proof of ...
ex-or 29942 Example for ~ df-or . Exa...
ex-an 29943 Example for ~ df-an . Exa...
ex-dif 29944 Example for ~ df-dif . Ex...
ex-un 29945 Example for ~ df-un . Exa...
ex-in 29946 Example for ~ df-in . Exa...
ex-uni 29947 Example for ~ df-uni . Ex...
ex-ss 29948 Example for ~ df-ss . Exa...
ex-pss 29949 Example for ~ df-pss . Ex...
ex-pw 29950 Example for ~ df-pw . Exa...
ex-pr 29951 Example for ~ df-pr . (Co...
ex-br 29952 Example for ~ df-br . Exa...
ex-opab 29953 Example for ~ df-opab . E...
ex-eprel 29954 Example for ~ df-eprel . ...
ex-id 29955 Example for ~ df-id . Exa...
ex-po 29956 Example for ~ df-po . Exa...
ex-xp 29957 Example for ~ df-xp . Exa...
ex-cnv 29958 Example for ~ df-cnv . Ex...
ex-co 29959 Example for ~ df-co . Exa...
ex-dm 29960 Example for ~ df-dm . Exa...
ex-rn 29961 Example for ~ df-rn . Exa...
ex-res 29962 Example for ~ df-res . Ex...
ex-ima 29963 Example for ~ df-ima . Ex...
ex-fv 29964 Example for ~ df-fv . Exa...
ex-1st 29965 Example for ~ df-1st . Ex...
ex-2nd 29966 Example for ~ df-2nd . Ex...
1kp2ke3k 29967 Example for ~ df-dec , 100...
ex-fl 29968 Example for ~ df-fl . Exa...
ex-ceil 29969 Example for ~ df-ceil . (...
ex-mod 29970 Example for ~ df-mod . (C...
ex-exp 29971 Example for ~ df-exp . (C...
ex-fac 29972 Example for ~ df-fac . (C...
ex-bc 29973 Example for ~ df-bc . (Co...
ex-hash 29974 Example for ~ df-hash . (...
ex-sqrt 29975 Example for ~ df-sqrt . (...
ex-abs 29976 Example for ~ df-abs . (C...
ex-dvds 29977 Example for ~ df-dvds : 3 ...
ex-gcd 29978 Example for ~ df-gcd . (C...
ex-lcm 29979 Example for ~ df-lcm . (C...
ex-prmo 29980 Example for ~ df-prmo : ` ...
aevdemo 29981 Proof illustrating the com...
ex-ind-dvds 29982 Example of a proof by indu...
ex-fpar 29983 Formalized example provide...
avril1 29984 Poisson d'Avril's Theorem....
2bornot2b 29985 The law of excluded middle...
helloworld 29986 The classic "Hello world" ...
1p1e2apr1 29987 One plus one equals two. ...
eqid1 29988 Law of identity (reflexivi...
1div0apr 29989 Division by zero is forbid...
topnfbey 29990 Nothing seems to be imposs...
9p10ne21 29991 9 + 10 is not equal to 21....
9p10ne21fool 29992 9 + 10 equals 21. This as...
nrt2irr 29994 The ` N ` -th root of 2 is...
isplig 29997 The predicate "is a planar...
ispligb 29998 The predicate "is a planar...
tncp 29999 In any planar incidence ge...
l2p 30000 For any line in a planar i...
lpni 30001 For any line in a planar i...
nsnlplig 30002 There is no "one-point lin...
nsnlpligALT 30003 Alternate version of ~ nsn...
n0lplig 30004 There is no "empty line" i...
n0lpligALT 30005 Alternate version of ~ n0l...
eulplig 30006 Through two distinct point...
pliguhgr 30007 Any planar incidence geome...
dummylink 30008 Alias for ~ a1ii that may ...
id1 30009 Alias for ~ idALT that may...
isgrpo 30018 The predicate "is a group ...
isgrpoi 30019 Properties that determine ...
grpofo 30020 A group operation maps ont...
grpocl 30021 Closure law for a group op...
grpolidinv 30022 A group has a left identit...
grpon0 30023 The base set of a group is...
grpoass 30024 A group operation is assoc...
grpoidinvlem1 30025 Lemma for ~ grpoidinv . (...
grpoidinvlem2 30026 Lemma for ~ grpoidinv . (...
grpoidinvlem3 30027 Lemma for ~ grpoidinv . (...
grpoidinvlem4 30028 Lemma for ~ grpoidinv . (...
grpoidinv 30029 A group has a left and rig...
grpoideu 30030 The left identity element ...
grporndm 30031 A group's range in terms o...
0ngrp 30032 The empty set is not a gro...
gidval 30033 The value of the identity ...
grpoidval 30034 Lemma for ~ grpoidcl and o...
grpoidcl 30035 The identity element of a ...
grpoidinv2 30036 A group's properties using...
grpolid 30037 The identity element of a ...
grporid 30038 The identity element of a ...
grporcan 30039 Right cancellation law for...
grpoinveu 30040 The left inverse element o...
grpoid 30041 Two ways of saying that an...
grporn 30042 The range of a group opera...
grpoinvfval 30043 The inverse function of a ...
grpoinvval 30044 The inverse of a group ele...
grpoinvcl 30045 A group element's inverse ...
grpoinv 30046 The properties of a group ...
grpolinv 30047 The left inverse of a grou...
grporinv 30048 The right inverse of a gro...
grpoinvid1 30049 The inverse of a group ele...
grpoinvid2 30050 The inverse of a group ele...
grpolcan 30051 Left cancellation law for ...
grpo2inv 30052 Double inverse law for gro...
grpoinvf 30053 Mapping of the inverse fun...
grpoinvop 30054 The inverse of the group o...
grpodivfval 30055 Group division (or subtrac...
grpodivval 30056 Group division (or subtrac...
grpodivinv 30057 Group division by an inver...
grpoinvdiv 30058 Inverse of a group divisio...
grpodivf 30059 Mapping for group division...
grpodivcl 30060 Closure of group division ...
grpodivdiv 30061 Double group division. (C...
grpomuldivass 30062 Associative-type law for m...
grpodivid 30063 Division of a group member...
grponpcan 30064 Cancellation law for group...
isablo 30067 The predicate "is an Abeli...
ablogrpo 30068 An Abelian group operation...
ablocom 30069 An Abelian group operation...
ablo32 30070 Commutative/associative la...
ablo4 30071 Commutative/associative la...
isabloi 30072 Properties that determine ...
ablomuldiv 30073 Law for group multiplicati...
ablodivdiv 30074 Law for double group divis...
ablodivdiv4 30075 Law for double group divis...
ablodiv32 30076 Swap the second and third ...
ablonncan 30077 Cancellation law for group...
ablonnncan1 30078 Cancellation law for group...
vcrel 30081 The class of all complex v...
vciOLD 30082 Obsolete version of ~ cvsi...
vcsm 30083 Functionality of th scalar...
vccl 30084 Closure of the scalar prod...
vcidOLD 30085 Identity element for the s...
vcdi 30086 Distributive law for the s...
vcdir 30087 Distributive law for the s...
vcass 30088 Associative law for the sc...
vc2OLD 30089 A vector plus itself is tw...
vcablo 30090 Vector addition is an Abel...
vcgrp 30091 Vector addition is a group...
vclcan 30092 Left cancellation law for ...
vczcl 30093 The zero vector is a vecto...
vc0rid 30094 The zero vector is a right...
vc0 30095 Zero times a vector is the...
vcz 30096 Anything times the zero ve...
vcm 30097 Minus 1 times a vector is ...
isvclem 30098 Lemma for ~ isvcOLD . (Co...
vcex 30099 The components of a comple...
isvcOLD 30100 The predicate "is a comple...
isvciOLD 30101 Properties that determine ...
cnaddabloOLD 30102 Obsolete version of ~ cnad...
cnidOLD 30103 Obsolete version of ~ cnad...
cncvcOLD 30104 Obsolete version of ~ cncv...
nvss 30114 Structure of the class of ...
nvvcop 30115 A normed complex vector sp...
nvrel 30123 The class of all normed co...
vafval 30124 Value of the function for ...
bafval 30125 Value of the function for ...
smfval 30126 Value of the function for ...
0vfval 30127 Value of the function for ...
nmcvfval 30128 Value of the norm function...
nvop2 30129 A normed complex vector sp...
nvvop 30130 The vector space component...
isnvlem 30131 Lemma for ~ isnv . (Contr...
nvex 30132 The components of a normed...
isnv 30133 The predicate "is a normed...
isnvi 30134 Properties that determine ...
nvi 30135 The properties of a normed...
nvvc 30136 The vector space component...
nvablo 30137 The vector addition operat...
nvgrp 30138 The vector addition operat...
nvgf 30139 Mapping for the vector add...
nvsf 30140 Mapping for the scalar mul...
nvgcl 30141 Closure law for the vector...
nvcom 30142 The vector addition (group...
nvass 30143 The vector addition (group...
nvadd32 30144 Commutative/associative la...
nvrcan 30145 Right cancellation law for...
nvadd4 30146 Rearrangement of 4 terms i...
nvscl 30147 Closure law for the scalar...
nvsid 30148 Identity element for the s...
nvsass 30149 Associative law for the sc...
nvscom 30150 Commutative law for the sc...
nvdi 30151 Distributive law for the s...
nvdir 30152 Distributive law for the s...
nv2 30153 A vector plus itself is tw...
vsfval 30154 Value of the function for ...
nvzcl 30155 Closure law for the zero v...
nv0rid 30156 The zero vector is a right...
nv0lid 30157 The zero vector is a left ...
nv0 30158 Zero times a vector is the...
nvsz 30159 Anything times the zero ve...
nvinv 30160 Minus 1 times a vector is ...
nvinvfval 30161 Function for the negative ...
nvm 30162 Vector subtraction in term...
nvmval 30163 Value of vector subtractio...
nvmval2 30164 Value of vector subtractio...
nvmfval 30165 Value of the function for ...
nvmf 30166 Mapping for the vector sub...
nvmcl 30167 Closure law for the vector...
nvnnncan1 30168 Cancellation law for vecto...
nvmdi 30169 Distributive law for scala...
nvnegneg 30170 Double negative of a vecto...
nvmul0or 30171 If a scalar product is zer...
nvrinv 30172 A vector minus itself. (C...
nvlinv 30173 Minus a vector plus itself...
nvpncan2 30174 Cancellation law for vecto...
nvpncan 30175 Cancellation law for vecto...
nvaddsub 30176 Commutative/associative la...
nvnpcan 30177 Cancellation law for a nor...
nvaddsub4 30178 Rearrangement of 4 terms i...
nvmeq0 30179 The difference between two...
nvmid 30180 A vector minus itself is t...
nvf 30181 Mapping for the norm funct...
nvcl 30182 The norm of a normed compl...
nvcli 30183 The norm of a normed compl...
nvs 30184 Proportionality property o...
nvsge0 30185 The norm of a scalar produ...
nvm1 30186 The norm of the negative o...
nvdif 30187 The norm of the difference...
nvpi 30188 The norm of a vector plus ...
nvz0 30189 The norm of a zero vector ...
nvz 30190 The norm of a vector is ze...
nvtri 30191 Triangle inequality for th...
nvmtri 30192 Triangle inequality for th...
nvabs 30193 Norm difference property o...
nvge0 30194 The norm of a normed compl...
nvgt0 30195 A nonzero norm is positive...
nv1 30196 From any nonzero vector, c...
nvop 30197 A complex inner product sp...
cnnv 30198 The set of complex numbers...
cnnvg 30199 The vector addition (group...
cnnvba 30200 The base set of the normed...
cnnvs 30201 The scalar product operati...
cnnvnm 30202 The norm operation of the ...
cnnvm 30203 The vector subtraction ope...
elimnv 30204 Hypothesis elimination lem...
elimnvu 30205 Hypothesis elimination lem...
imsval 30206 Value of the induced metri...
imsdval 30207 Value of the induced metri...
imsdval2 30208 Value of the distance func...
nvnd 30209 The norm of a normed compl...
imsdf 30210 Mapping for the induced me...
imsmetlem 30211 Lemma for ~ imsmet . (Con...
imsmet 30212 The induced metric of a no...
imsxmet 30213 The induced metric of a no...
cnims 30214 The metric induced on the ...
vacn 30215 Vector addition is jointly...
nmcvcn 30216 The norm of a normed compl...
nmcnc 30217 The norm of a normed compl...
smcnlem 30218 Lemma for ~ smcn . (Contr...
smcn 30219 Scalar multiplication is j...
vmcn 30220 Vector subtraction is join...
dipfval 30223 The inner product function...
ipval 30224 Value of the inner product...
ipval2lem2 30225 Lemma for ~ ipval3 . (Con...
ipval2lem3 30226 Lemma for ~ ipval3 . (Con...
ipval2lem4 30227 Lemma for ~ ipval3 . (Con...
ipval2 30228 Expansion of the inner pro...
4ipval2 30229 Four times the inner produ...
ipval3 30230 Expansion of the inner pro...
ipidsq 30231 The inner product of a vec...
ipnm 30232 Norm expressed in terms of...
dipcl 30233 An inner product is a comp...
ipf 30234 Mapping for the inner prod...
dipcj 30235 The complex conjugate of a...
ipipcj 30236 An inner product times its...
diporthcom 30237 Orthogonality (meaning inn...
dip0r 30238 Inner product with a zero ...
dip0l 30239 Inner product with a zero ...
ipz 30240 The inner product of a vec...
dipcn 30241 Inner product is jointly c...
sspval 30244 The set of all subspaces o...
isssp 30245 The predicate "is a subspa...
sspid 30246 A normed complex vector sp...
sspnv 30247 A subspace is a normed com...
sspba 30248 The base set of a subspace...
sspg 30249 Vector addition on a subsp...
sspgval 30250 Vector addition on a subsp...
ssps 30251 Scalar multiplication on a...
sspsval 30252 Scalar multiplication on a...
sspmlem 30253 Lemma for ~ sspm and other...
sspmval 30254 Vector addition on a subsp...
sspm 30255 Vector subtraction on a su...
sspz 30256 The zero vector of a subsp...
sspn 30257 The norm on a subspace is ...
sspnval 30258 The norm on a subspace in ...
sspimsval 30259 The induced metric on a su...
sspims 30260 The induced metric on a su...
lnoval 30273 The set of linear operator...
islno 30274 The predicate "is a linear...
lnolin 30275 Basic linearity property o...
lnof 30276 A linear operator is a map...
lno0 30277 The value of a linear oper...
lnocoi 30278 The composition of two lin...
lnoadd 30279 Addition property of a lin...
lnosub 30280 Subtraction property of a ...
lnomul 30281 Scalar multiplication prop...
nvo00 30282 Two ways to express a zero...
nmoofval 30283 The operator norm function...
nmooval 30284 The operator norm function...
nmosetre 30285 The set in the supremum of...
nmosetn0 30286 The set in the supremum of...
nmoxr 30287 The norm of an operator is...
nmooge0 30288 The norm of an operator is...
nmorepnf 30289 The norm of an operator is...
nmoreltpnf 30290 The norm of any operator i...
nmogtmnf 30291 The norm of an operator is...
nmoolb 30292 A lower bound for an opera...
nmoubi 30293 An upper bound for an oper...
nmoub3i 30294 An upper bound for an oper...
nmoub2i 30295 An upper bound for an oper...
nmobndi 30296 Two ways to express that a...
nmounbi 30297 Two ways two express that ...
nmounbseqi 30298 An unbounded operator dete...
nmounbseqiALT 30299 Alternate shorter proof of...
nmobndseqi 30300 A bounded sequence determi...
nmobndseqiALT 30301 Alternate shorter proof of...
bloval 30302 The class of bounded linea...
isblo 30303 The predicate "is a bounde...
isblo2 30304 The predicate "is a bounde...
bloln 30305 A bounded operator is a li...
blof 30306 A bounded operator is an o...
nmblore 30307 The norm of a bounded oper...
0ofval 30308 The zero operator between ...
0oval 30309 Value of the zero operator...
0oo 30310 The zero operator is an op...
0lno 30311 The zero operator is linea...
nmoo0 30312 The operator norm of the z...
0blo 30313 The zero operator is a bou...
nmlno0lem 30314 Lemma for ~ nmlno0i . (Co...
nmlno0i 30315 The norm of a linear opera...
nmlno0 30316 The norm of a linear opera...
nmlnoubi 30317 An upper bound for the ope...
nmlnogt0 30318 The norm of a nonzero line...
lnon0 30319 The domain of a nonzero li...
nmblolbii 30320 A lower bound for the norm...
nmblolbi 30321 A lower bound for the norm...
isblo3i 30322 The predicate "is a bounde...
blo3i 30323 Properties that determine ...
blometi 30324 Upper bound for the distan...
blocnilem 30325 Lemma for ~ blocni and ~ l...
blocni 30326 A linear operator is conti...
lnocni 30327 If a linear operator is co...
blocn 30328 A linear operator is conti...
blocn2 30329 A bounded linear operator ...
ajfval 30330 The adjoint function. (Co...
hmoval 30331 The set of Hermitian (self...
ishmo 30332 The predicate "is a hermit...
phnv 30335 Every complex inner produc...
phrel 30336 The class of all complex i...
phnvi 30337 Every complex inner produc...
isphg 30338 The predicate "is a comple...
phop 30339 A complex inner product sp...
cncph 30340 The set of complex numbers...
elimph 30341 Hypothesis elimination lem...
elimphu 30342 Hypothesis elimination lem...
isph 30343 The predicate "is an inner...
phpar2 30344 The parallelogram law for ...
phpar 30345 The parallelogram law for ...
ip0i 30346 A slight variant of Equati...
ip1ilem 30347 Lemma for ~ ip1i . (Contr...
ip1i 30348 Equation 6.47 of [Ponnusam...
ip2i 30349 Equation 6.48 of [Ponnusam...
ipdirilem 30350 Lemma for ~ ipdiri . (Con...
ipdiri 30351 Distributive law for inner...
ipasslem1 30352 Lemma for ~ ipassi . Show...
ipasslem2 30353 Lemma for ~ ipassi . Show...
ipasslem3 30354 Lemma for ~ ipassi . Show...
ipasslem4 30355 Lemma for ~ ipassi . Show...
ipasslem5 30356 Lemma for ~ ipassi . Show...
ipasslem7 30357 Lemma for ~ ipassi . Show...
ipasslem8 30358 Lemma for ~ ipassi . By ~...
ipasslem9 30359 Lemma for ~ ipassi . Conc...
ipasslem10 30360 Lemma for ~ ipassi . Show...
ipasslem11 30361 Lemma for ~ ipassi . Show...
ipassi 30362 Associative law for inner ...
dipdir 30363 Distributive law for inner...
dipdi 30364 Distributive law for inner...
ip2dii 30365 Inner product of two sums....
dipass 30366 Associative law for inner ...
dipassr 30367 "Associative" law for seco...
dipassr2 30368 "Associative" law for inne...
dipsubdir 30369 Distributive law for inner...
dipsubdi 30370 Distributive law for inner...
pythi 30371 The Pythagorean theorem fo...
siilem1 30372 Lemma for ~ sii . (Contri...
siilem2 30373 Lemma for ~ sii . (Contri...
siii 30374 Inference from ~ sii . (C...
sii 30375 Obsolete version of ~ ipca...
ipblnfi 30376 A function ` F ` generated...
ip2eqi 30377 Two vectors are equal iff ...
phoeqi 30378 A condition implying that ...
ajmoi 30379 Every operator has at most...
ajfuni 30380 The adjoint function is a ...
ajfun 30381 The adjoint function is a ...
ajval 30382 Value of the adjoint funct...
iscbn 30385 A complex Banach space is ...
cbncms 30386 The induced metric on comp...
bnnv 30387 Every complex Banach space...
bnrel 30388 The class of all complex B...
bnsscmcl 30389 A subspace of a Banach spa...
cnbn 30390 The set of complex numbers...
ubthlem1 30391 Lemma for ~ ubth . The fu...
ubthlem2 30392 Lemma for ~ ubth . Given ...
ubthlem3 30393 Lemma for ~ ubth . Prove ...
ubth 30394 Uniform Boundedness Theore...
minvecolem1 30395 Lemma for ~ minveco . The...
minvecolem2 30396 Lemma for ~ minveco . Any...
minvecolem3 30397 Lemma for ~ minveco . The...
minvecolem4a 30398 Lemma for ~ minveco . ` F ...
minvecolem4b 30399 Lemma for ~ minveco . The...
minvecolem4c 30400 Lemma for ~ minveco . The...
minvecolem4 30401 Lemma for ~ minveco . The...
minvecolem5 30402 Lemma for ~ minveco . Dis...
minvecolem6 30403 Lemma for ~ minveco . Any...
minvecolem7 30404 Lemma for ~ minveco . Sin...
minveco 30405 Minimizing vector theorem,...
ishlo 30408 The predicate "is a comple...
hlobn 30409 Every complex Hilbert spac...
hlph 30410 Every complex Hilbert spac...
hlrel 30411 The class of all complex H...
hlnv 30412 Every complex Hilbert spac...
hlnvi 30413 Every complex Hilbert spac...
hlvc 30414 Every complex Hilbert spac...
hlcmet 30415 The induced metric on a co...
hlmet 30416 The induced metric on a co...
hlpar2 30417 The parallelogram law sati...
hlpar 30418 The parallelogram law sati...
hlex 30419 The base set of a Hilbert ...
hladdf 30420 Mapping for Hilbert space ...
hlcom 30421 Hilbert space vector addit...
hlass 30422 Hilbert space vector addit...
hl0cl 30423 The Hilbert space zero vec...
hladdid 30424 Hilbert space addition wit...
hlmulf 30425 Mapping for Hilbert space ...
hlmulid 30426 Hilbert space scalar multi...
hlmulass 30427 Hilbert space scalar multi...
hldi 30428 Hilbert space scalar multi...
hldir 30429 Hilbert space scalar multi...
hlmul0 30430 Hilbert space scalar multi...
hlipf 30431 Mapping for Hilbert space ...
hlipcj 30432 Conjugate law for Hilbert ...
hlipdir 30433 Distributive law for Hilbe...
hlipass 30434 Associative law for Hilber...
hlipgt0 30435 The inner product of a Hil...
hlcompl 30436 Completeness of a Hilbert ...
cnchl 30437 The set of complex numbers...
htthlem 30438 Lemma for ~ htth . The co...
htth 30439 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 30495 The group (addition) opera...
h2hsm 30496 The scalar product operati...
h2hnm 30497 The norm function of Hilbe...
h2hvs 30498 The vector subtraction ope...
h2hmetdval 30499 Value of the distance func...
h2hcau 30500 The Cauchy sequences of Hi...
h2hlm 30501 The limit sequences of Hil...
axhilex-zf 30502 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 30503 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 30504 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 30505 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 30506 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 30507 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 30508 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 30509 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 30510 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 30511 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 30512 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 30513 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 30514 Derive Axiom ~ ax-hfi from...
axhis1-zf 30515 Derive Axiom ~ ax-his1 fro...
axhis2-zf 30516 Derive Axiom ~ ax-his2 fro...
axhis3-zf 30517 Derive Axiom ~ ax-his3 fro...
axhis4-zf 30518 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 30519 Derive Axiom ~ ax-hcompl f...
hvmulex 30532 The Hilbert space scalar p...
hvaddcl 30533 Closure of vector addition...
hvmulcl 30534 Closure of scalar multipli...
hvmulcli 30535 Closure inference for scal...
hvsubf 30536 Mapping domain and codomai...
hvsubval 30537 Value of vector subtractio...
hvsubcl 30538 Closure of vector subtract...
hvaddcli 30539 Closure of vector addition...
hvcomi 30540 Commutation of vector addi...
hvsubvali 30541 Value of vector subtractio...
hvsubcli 30542 Closure of vector subtract...
ifhvhv0 30543 Prove ` if ( A e. ~H , A ,...
hvaddlid 30544 Addition with the zero vec...
hvmul0 30545 Scalar multiplication with...
hvmul0or 30546 If a scalar product is zer...
hvsubid 30547 Subtraction of a vector fr...
hvnegid 30548 Addition of negative of a ...
hv2neg 30549 Two ways to express the ne...
hvaddlidi 30550 Addition with the zero vec...
hvnegidi 30551 Addition of negative of a ...
hv2negi 30552 Two ways to express the ne...
hvm1neg 30553 Convert minus one times a ...
hvaddsubval 30554 Value of vector addition i...
hvadd32 30555 Commutative/associative la...
hvadd12 30556 Commutative/associative la...
hvadd4 30557 Hilbert vector space addit...
hvsub4 30558 Hilbert vector space addit...
hvaddsub12 30559 Commutative/associative la...
hvpncan 30560 Addition/subtraction cance...
hvpncan2 30561 Addition/subtraction cance...
hvaddsubass 30562 Associativity of sum and d...
hvpncan3 30563 Subtraction and addition o...
hvmulcom 30564 Scalar multiplication comm...
hvsubass 30565 Hilbert vector space assoc...
hvsub32 30566 Hilbert vector space commu...
hvmulassi 30567 Scalar multiplication asso...
hvmulcomi 30568 Scalar multiplication comm...
hvmul2negi 30569 Double negative in scalar ...
hvsubdistr1 30570 Scalar multiplication dist...
hvsubdistr2 30571 Scalar multiplication dist...
hvdistr1i 30572 Scalar multiplication dist...
hvsubdistr1i 30573 Scalar multiplication dist...
hvassi 30574 Hilbert vector space assoc...
hvadd32i 30575 Hilbert vector space commu...
hvsubassi 30576 Hilbert vector space assoc...
hvsub32i 30577 Hilbert vector space commu...
hvadd12i 30578 Hilbert vector space commu...
hvadd4i 30579 Hilbert vector space addit...
hvsubsub4i 30580 Hilbert vector space addit...
hvsubsub4 30581 Hilbert vector space addit...
hv2times 30582 Two times a vector. (Cont...
hvnegdii 30583 Distribution of negative o...
hvsubeq0i 30584 If the difference between ...
hvsubcan2i 30585 Vector cancellation law. ...
hvaddcani 30586 Cancellation law for vecto...
hvsubaddi 30587 Relationship between vecto...
hvnegdi 30588 Distribution of negative o...
hvsubeq0 30589 If the difference between ...
hvaddeq0 30590 If the sum of two vectors ...
hvaddcan 30591 Cancellation law for vecto...
hvaddcan2 30592 Cancellation law for vecto...
hvmulcan 30593 Cancellation law for scala...
hvmulcan2 30594 Cancellation law for scala...
hvsubcan 30595 Cancellation law for vecto...
hvsubcan2 30596 Cancellation law for vecto...
hvsub0 30597 Subtraction of a zero vect...
hvsubadd 30598 Relationship between vecto...
hvaddsub4 30599 Hilbert vector space addit...
hicl 30601 Closure of inner product. ...
hicli 30602 Closure inference for inne...
his5 30607 Associative law for inner ...
his52 30608 Associative law for inner ...
his35 30609 Move scalar multiplication...
his35i 30610 Move scalar multiplication...
his7 30611 Distributive law for inner...
hiassdi 30612 Distributive/associative l...
his2sub 30613 Distributive law for inner...
his2sub2 30614 Distributive law for inner...
hire 30615 A necessary and sufficient...
hiidrcl 30616 Real closure of inner prod...
hi01 30617 Inner product with the 0 v...
hi02 30618 Inner product with the 0 v...
hiidge0 30619 Inner product with self is...
his6 30620 Zero inner product with se...
his1i 30621 Conjugate law for inner pr...
abshicom 30622 Commuted inner products ha...
hial0 30623 A vector whose inner produ...
hial02 30624 A vector whose inner produ...
hisubcomi 30625 Two vector subtractions si...
hi2eq 30626 Lemma used to prove equali...
hial2eq 30627 Two vectors whose inner pr...
hial2eq2 30628 Two vectors whose inner pr...
orthcom 30629 Orthogonality commutes. (...
normlem0 30630 Lemma used to derive prope...
normlem1 30631 Lemma used to derive prope...
normlem2 30632 Lemma used to derive prope...
normlem3 30633 Lemma used to derive prope...
normlem4 30634 Lemma used to derive prope...
normlem5 30635 Lemma used to derive prope...
normlem6 30636 Lemma used to derive prope...
normlem7 30637 Lemma used to derive prope...
normlem8 30638 Lemma used to derive prope...
normlem9 30639 Lemma used to derive prope...
normlem7tALT 30640 Lemma used to derive prope...
bcseqi 30641 Equality case of Bunjakova...
normlem9at 30642 Lemma used to derive prope...
dfhnorm2 30643 Alternate definition of th...
normf 30644 The norm function maps fro...
normval 30645 The value of the norm of a...
normcl 30646 Real closure of the norm o...
normge0 30647 The norm of a vector is no...
normgt0 30648 The norm of nonzero vector...
norm0 30649 The norm of a zero vector....
norm-i 30650 Theorem 3.3(i) of [Beran] ...
normne0 30651 A norm is nonzero iff its ...
normcli 30652 Real closure of the norm o...
normsqi 30653 The square of a norm. (Co...
norm-i-i 30654 Theorem 3.3(i) of [Beran] ...
normsq 30655 The square of a norm. (Co...
normsub0i 30656 Two vectors are equal iff ...
normsub0 30657 Two vectors are equal iff ...
norm-ii-i 30658 Triangle inequality for no...
norm-ii 30659 Triangle inequality for no...
norm-iii-i 30660 Theorem 3.3(iii) of [Beran...
norm-iii 30661 Theorem 3.3(iii) of [Beran...
normsubi 30662 Negative doesn't change th...
normpythi 30663 Analogy to Pythagorean the...
normsub 30664 Swapping order of subtract...
normneg 30665 The norm of a vector equal...
normpyth 30666 Analogy to Pythagorean the...
normpyc 30667 Corollary to Pythagorean t...
norm3difi 30668 Norm of differences around...
norm3adifii 30669 Norm of differences around...
norm3lem 30670 Lemma involving norm of di...
norm3dif 30671 Norm of differences around...
norm3dif2 30672 Norm of differences around...
norm3lemt 30673 Lemma involving norm of di...
norm3adifi 30674 Norm of differences around...
normpari 30675 Parallelogram law for norm...
normpar 30676 Parallelogram law for norm...
normpar2i 30677 Corollary of parallelogram...
polid2i 30678 Generalized polarization i...
polidi 30679 Polarization identity. Re...
polid 30680 Polarization identity. Re...
hilablo 30681 Hilbert space vector addit...
hilid 30682 The group identity element...
hilvc 30683 Hilbert space is a complex...
hilnormi 30684 Hilbert space norm in term...
hilhhi 30685 Deduce the structure of Hi...
hhnv 30686 Hilbert space is a normed ...
hhva 30687 The group (addition) opera...
hhba 30688 The base set of Hilbert sp...
hh0v 30689 The zero vector of Hilbert...
hhsm 30690 The scalar product operati...
hhvs 30691 The vector subtraction ope...
hhnm 30692 The norm function of Hilbe...
hhims 30693 The induced metric of Hilb...
hhims2 30694 Hilbert space distance met...
hhmet 30695 The induced metric of Hilb...
hhxmet 30696 The induced metric of Hilb...
hhmetdval 30697 Value of the distance func...
hhip 30698 The inner product operatio...
hhph 30699 The Hilbert space of the H...
bcsiALT 30700 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 30701 Bunjakovaskij-Cauchy-Schwa...
bcs 30702 Bunjakovaskij-Cauchy-Schwa...
bcs2 30703 Corollary of the Bunjakova...
bcs3 30704 Corollary of the Bunjakova...
hcau 30705 Member of the set of Cauch...
hcauseq 30706 A Cauchy sequences on a Hi...
hcaucvg 30707 A Cauchy sequence on a Hil...
seq1hcau 30708 A sequence on a Hilbert sp...
hlimi 30709 Express the predicate: Th...
hlimseqi 30710 A sequence with a limit on...
hlimveci 30711 Closure of the limit of a ...
hlimconvi 30712 Convergence of a sequence ...
hlim2 30713 The limit of a sequence on...
hlimadd 30714 Limit of the sum of two se...
hilmet 30715 The Hilbert space norm det...
hilxmet 30716 The Hilbert space norm det...
hilmetdval 30717 Value of the distance func...
hilims 30718 Hilbert space distance met...
hhcau 30719 The Cauchy sequences of Hi...
hhlm 30720 The limit sequences of Hil...
hhcmpl 30721 Lemma used for derivation ...
hilcompl 30722 Lemma used for derivation ...
hhcms 30724 The Hilbert space induced ...
hhhl 30725 The Hilbert space structur...
hilcms 30726 The Hilbert space norm det...
hilhl 30727 The Hilbert space of the H...
issh 30729 Subspace ` H ` of a Hilber...
issh2 30730 Subspace ` H ` of a Hilber...
shss 30731 A subspace is a subset of ...
shel 30732 A member of a subspace of ...
shex 30733 The set of subspaces of a ...
shssii 30734 A closed subspace of a Hil...
sheli 30735 A member of a subspace of ...
shelii 30736 A member of a subspace of ...
sh0 30737 The zero vector belongs to...
shaddcl 30738 Closure of vector addition...
shmulcl 30739 Closure of vector scalar m...
issh3 30740 Subspace ` H ` of a Hilber...
shsubcl 30741 Closure of vector subtract...
isch 30743 Closed subspace ` H ` of a...
isch2 30744 Closed subspace ` H ` of a...
chsh 30745 A closed subspace is a sub...
chsssh 30746 Closed subspaces are subsp...
chex 30747 The set of closed subspace...
chshii 30748 A closed subspace is a sub...
ch0 30749 The zero vector belongs to...
chss 30750 A closed subspace of a Hil...
chel 30751 A member of a closed subsp...
chssii 30752 A closed subspace of a Hil...
cheli 30753 A member of a closed subsp...
chelii 30754 A member of a closed subsp...
chlimi 30755 The limit property of a cl...
hlim0 30756 The zero sequence in Hilbe...
hlimcaui 30757 If a sequence in Hilbert s...
hlimf 30758 Function-like behavior of ...
hlimuni 30759 A Hilbert space sequence c...
hlimreui 30760 The limit of a Hilbert spa...
hlimeui 30761 The limit of a Hilbert spa...
isch3 30762 A Hilbert subspace is clos...
chcompl 30763 Completeness of a closed s...
helch 30764 The Hilbert lattice one (w...
ifchhv 30765 Prove ` if ( A e. CH , A ,...
helsh 30766 Hilbert space is a subspac...
shsspwh 30767 Subspaces are subsets of H...
chsspwh 30768 Closed subspaces are subse...
hsn0elch 30769 The zero subspace belongs ...
norm1 30770 From any nonzero Hilbert s...
norm1exi 30771 A normalized vector exists...
norm1hex 30772 A normalized vector can ex...
elch0 30775 Membership in zero for clo...
h0elch 30776 The zero subspace is a clo...
h0elsh 30777 The zero subspace is a sub...
hhssva 30778 The vector addition operat...
hhsssm 30779 The scalar multiplication ...
hhssnm 30780 The norm operation on a su...
issubgoilem 30781 Lemma for ~ hhssabloilem ....
hhssabloilem 30782 Lemma for ~ hhssabloi . F...
hhssabloi 30783 Abelian group property of ...
hhssablo 30784 Abelian group property of ...
hhssnv 30785 Normed complex vector spac...
hhssnvt 30786 Normed complex vector spac...
hhsst 30787 A member of ` SH ` is a su...
hhshsslem1 30788 Lemma for ~ hhsssh . (Con...
hhshsslem2 30789 Lemma for ~ hhsssh . (Con...
hhsssh 30790 The predicate " ` H ` is a...
hhsssh2 30791 The predicate " ` H ` is a...
hhssba 30792 The base set of a subspace...
hhssvs 30793 The vector subtraction ope...
hhssvsf 30794 Mapping of the vector subt...
hhssims 30795 Induced metric of a subspa...
hhssims2 30796 Induced metric of a subspa...
hhssmet 30797 Induced metric of a subspa...
hhssmetdval 30798 Value of the distance func...
hhsscms 30799 The induced metric of a cl...
hhssbnOLD 30800 Obsolete version of ~ cssb...
ocval 30801 Value of orthogonal comple...
ocel 30802 Membership in orthogonal c...
shocel 30803 Membership in orthogonal c...
ocsh 30804 The orthogonal complement ...
shocsh 30805 The orthogonal complement ...
ocss 30806 An orthogonal complement i...
shocss 30807 An orthogonal complement i...
occon 30808 Contraposition law for ort...
occon2 30809 Double contraposition for ...
occon2i 30810 Double contraposition for ...
oc0 30811 The zero vector belongs to...
ocorth 30812 Members of a subset and it...
shocorth 30813 Members of a subspace and ...
ococss 30814 Inclusion in complement of...
shococss 30815 Inclusion in complement of...
shorth 30816 Members of orthogonal subs...
ocin 30817 Intersection of a Hilbert ...
occon3 30818 Hilbert lattice contraposi...
ocnel 30819 A nonzero vector in the co...
chocvali 30820 Value of the orthogonal co...
shuni 30821 Two subspaces with trivial...
chocunii 30822 Lemma for uniqueness part ...
pjhthmo 30823 Projection Theorem, unique...
occllem 30824 Lemma for ~ occl . (Contr...
occl 30825 Closure of complement of H...
shoccl 30826 Closure of complement of H...
choccl 30827 Closure of complement of H...
choccli 30828 Closure of ` CH ` orthocom...
shsval 30833 Value of subspace sum of t...
shsss 30834 The subspace sum is a subs...
shsel 30835 Membership in the subspace...
shsel3 30836 Membership in the subspace...
shseli 30837 Membership in subspace sum...
shscli 30838 Closure of subspace sum. ...
shscl 30839 Closure of subspace sum. ...
shscom 30840 Commutative law for subspa...
shsva 30841 Vector sum belongs to subs...
shsel1 30842 A subspace sum contains a ...
shsel2 30843 A subspace sum contains a ...
shsvs 30844 Vector subtraction belongs...
shsub1 30845 Subspace sum is an upper b...
shsub2 30846 Subspace sum is an upper b...
choc0 30847 The orthocomplement of the...
choc1 30848 The orthocomplement of the...
chocnul 30849 Orthogonal complement of t...
shintcli 30850 Closure of intersection of...
shintcl 30851 The intersection of a none...
chintcli 30852 The intersection of a none...
chintcl 30853 The intersection (infimum)...
spanval 30854 Value of the linear span o...
hsupval 30855 Value of supremum of set o...
chsupval 30856 The value of the supremum ...
spancl 30857 The span of a subset of Hi...
elspancl 30858 A member of a span is a ve...
shsupcl 30859 Closure of the subspace su...
hsupcl 30860 Closure of supremum of set...
chsupcl 30861 Closure of supremum of sub...
hsupss 30862 Subset relation for suprem...
chsupss 30863 Subset relation for suprem...
hsupunss 30864 The union of a set of Hilb...
chsupunss 30865 The union of a set of clos...
spanss2 30866 A subset of Hilbert space ...
shsupunss 30867 The union of a set of subs...
spanid 30868 A subspace of Hilbert spac...
spanss 30869 Ordering relationship for ...
spanssoc 30870 The span of a subset of Hi...
sshjval 30871 Value of join for subsets ...
shjval 30872 Value of join in ` SH ` . ...
chjval 30873 Value of join in ` CH ` . ...
chjvali 30874 Value of join in ` CH ` . ...
sshjval3 30875 Value of join for subsets ...
sshjcl 30876 Closure of join for subset...
shjcl 30877 Closure of join in ` SH ` ...
chjcl 30878 Closure of join in ` CH ` ...
shjcom 30879 Commutative law for Hilber...
shless 30880 Subset implies subset of s...
shlej1 30881 Add disjunct to both sides...
shlej2 30882 Add disjunct to both sides...
shincli 30883 Closure of intersection of...
shscomi 30884 Commutative law for subspa...
shsvai 30885 Vector sum belongs to subs...
shsel1i 30886 A subspace sum contains a ...
shsel2i 30887 A subspace sum contains a ...
shsvsi 30888 Vector subtraction belongs...
shunssi 30889 Union is smaller than subs...
shunssji 30890 Union is smaller than Hilb...
shsleji 30891 Subspace sum is smaller th...
shjcomi 30892 Commutative law for join i...
shsub1i 30893 Subspace sum is an upper b...
shsub2i 30894 Subspace sum is an upper b...
shub1i 30895 Hilbert lattice join is an...
shjcli 30896 Closure of ` CH ` join. (...
shjshcli 30897 ` SH ` closure of join. (...
shlessi 30898 Subset implies subset of s...
shlej1i 30899 Add disjunct to both sides...
shlej2i 30900 Add disjunct to both sides...
shslej 30901 Subspace sum is smaller th...
shincl 30902 Closure of intersection of...
shub1 30903 Hilbert lattice join is an...
shub2 30904 A subspace is a subset of ...
shsidmi 30905 Idempotent law for Hilbert...
shslubi 30906 The least upper bound law ...
shlesb1i 30907 Hilbert lattice ordering i...
shsval2i 30908 An alternate way to expres...
shsval3i 30909 An alternate way to expres...
shmodsi 30910 The modular law holds for ...
shmodi 30911 The modular law is implied...
pjhthlem1 30912 Lemma for ~ pjhth . (Cont...
pjhthlem2 30913 Lemma for ~ pjhth . (Cont...
pjhth 30914 Projection Theorem: Any H...
pjhtheu 30915 Projection Theorem: Any H...
pjhfval 30917 The value of the projectio...
pjhval 30918 Value of a projection. (C...
pjpreeq 30919 Equality with a projection...
pjeq 30920 Equality with a projection...
axpjcl 30921 Closure of a projection in...
pjhcl 30922 Closure of a projection in...
omlsilem 30923 Lemma for orthomodular law...
omlsii 30924 Subspace inference form of...
omlsi 30925 Subspace form of orthomodu...
ococi 30926 Complement of complement o...
ococ 30927 Complement of complement o...
dfch2 30928 Alternate definition of th...
ococin 30929 The double complement is t...
hsupval2 30930 Alternate definition of su...
chsupval2 30931 The value of the supremum ...
sshjval2 30932 Value of join in the set o...
chsupid 30933 A subspace is the supremum...
chsupsn 30934 Value of supremum of subse...
shlub 30935 Hilbert lattice join is th...
shlubi 30936 Hilbert lattice join is th...
pjhtheu2 30937 Uniqueness of ` y ` for th...
pjcli 30938 Closure of a projection in...
pjhcli 30939 Closure of a projection in...
pjpjpre 30940 Decomposition of a vector ...
axpjpj 30941 Decomposition of a vector ...
pjclii 30942 Closure of a projection in...
pjhclii 30943 Closure of a projection in...
pjpj0i 30944 Decomposition of a vector ...
pjpji 30945 Decomposition of a vector ...
pjpjhth 30946 Projection Theorem: Any H...
pjpjhthi 30947 Projection Theorem: Any H...
pjop 30948 Orthocomplement projection...
pjpo 30949 Projection in terms of ort...
pjopi 30950 Orthocomplement projection...
pjpoi 30951 Projection in terms of ort...
pjoc1i 30952 Projection of a vector in ...
pjchi 30953 Projection of a vector in ...
pjoccl 30954 The part of a vector that ...
pjoc1 30955 Projection of a vector in ...
pjomli 30956 Subspace form of orthomodu...
pjoml 30957 Subspace form of orthomodu...
pjococi 30958 Proof of orthocomplement t...
pjoc2i 30959 Projection of a vector in ...
pjoc2 30960 Projection of a vector in ...
sh0le 30961 The zero subspace is the s...
ch0le 30962 The zero subspace is the s...
shle0 30963 No subspace is smaller tha...
chle0 30964 No Hilbert lattice element...
chnlen0 30965 A Hilbert lattice element ...
ch0pss 30966 The zero subspace is a pro...
orthin 30967 The intersection of orthog...
ssjo 30968 The lattice join of a subs...
shne0i 30969 A nonzero subspace has a n...
shs0i 30970 Hilbert subspace sum with ...
shs00i 30971 Two subspaces are zero iff...
ch0lei 30972 The closed subspace zero i...
chle0i 30973 No Hilbert closed subspace...
chne0i 30974 A nonzero closed subspace ...
chocini 30975 Intersection of a closed s...
chj0i 30976 Join with lattice zero in ...
chm1i 30977 Meet with lattice one in `...
chjcli 30978 Closure of ` CH ` join. (...
chsleji 30979 Subspace sum is smaller th...
chseli 30980 Membership in subspace sum...
chincli 30981 Closure of Hilbert lattice...
chsscon3i 30982 Hilbert lattice contraposi...
chsscon1i 30983 Hilbert lattice contraposi...
chsscon2i 30984 Hilbert lattice contraposi...
chcon2i 30985 Hilbert lattice contraposi...
chcon1i 30986 Hilbert lattice contraposi...
chcon3i 30987 Hilbert lattice contraposi...
chunssji 30988 Union is smaller than ` CH...
chjcomi 30989 Commutative law for join i...
chub1i 30990 ` CH ` join is an upper bo...
chub2i 30991 ` CH ` join is an upper bo...
chlubi 30992 Hilbert lattice join is th...
chlubii 30993 Hilbert lattice join is th...
chlej1i 30994 Add join to both sides of ...
chlej2i 30995 Add join to both sides of ...
chlej12i 30996 Add join to both sides of ...
chlejb1i 30997 Hilbert lattice ordering i...
chdmm1i 30998 De Morgan's law for meet i...
chdmm2i 30999 De Morgan's law for meet i...
chdmm3i 31000 De Morgan's law for meet i...
chdmm4i 31001 De Morgan's law for meet i...
chdmj1i 31002 De Morgan's law for join i...
chdmj2i 31003 De Morgan's law for join i...
chdmj3i 31004 De Morgan's law for join i...
chdmj4i 31005 De Morgan's law for join i...
chnlei 31006 Equivalent expressions for...
chjassi 31007 Associative law for Hilber...
chj00i 31008 Two Hilbert lattice elemen...
chjoi 31009 The join of a closed subsp...
chj1i 31010 Join with Hilbert lattice ...
chm0i 31011 Meet with Hilbert lattice ...
chm0 31012 Meet with Hilbert lattice ...
shjshsi 31013 Hilbert lattice join equal...
shjshseli 31014 A closed subspace sum equa...
chne0 31015 A nonzero closed subspace ...
chocin 31016 Intersection of a closed s...
chssoc 31017 A closed subspace less tha...
chj0 31018 Join with Hilbert lattice ...
chslej 31019 Subspace sum is smaller th...
chincl 31020 Closure of Hilbert lattice...
chsscon3 31021 Hilbert lattice contraposi...
chsscon1 31022 Hilbert lattice contraposi...
chsscon2 31023 Hilbert lattice contraposi...
chpsscon3 31024 Hilbert lattice contraposi...
chpsscon1 31025 Hilbert lattice contraposi...
chpsscon2 31026 Hilbert lattice contraposi...
chjcom 31027 Commutative law for Hilber...
chub1 31028 Hilbert lattice join is gr...
chub2 31029 Hilbert lattice join is gr...
chlub 31030 Hilbert lattice join is th...
chlej1 31031 Add join to both sides of ...
chlej2 31032 Add join to both sides of ...
chlejb1 31033 Hilbert lattice ordering i...
chlejb2 31034 Hilbert lattice ordering i...
chnle 31035 Equivalent expressions for...
chjo 31036 The join of a closed subsp...
chabs1 31037 Hilbert lattice absorption...
chabs2 31038 Hilbert lattice absorption...
chabs1i 31039 Hilbert lattice absorption...
chabs2i 31040 Hilbert lattice absorption...
chjidm 31041 Idempotent law for Hilbert...
chjidmi 31042 Idempotent law for Hilbert...
chj12i 31043 A rearrangement of Hilbert...
chj4i 31044 Rearrangement of the join ...
chjjdiri 31045 Hilbert lattice join distr...
chdmm1 31046 De Morgan's law for meet i...
chdmm2 31047 De Morgan's law for meet i...
chdmm3 31048 De Morgan's law for meet i...
chdmm4 31049 De Morgan's law for meet i...
chdmj1 31050 De Morgan's law for join i...
chdmj2 31051 De Morgan's law for join i...
chdmj3 31052 De Morgan's law for join i...
chdmj4 31053 De Morgan's law for join i...
chjass 31054 Associative law for Hilber...
chj12 31055 A rearrangement of Hilbert...
chj4 31056 Rearrangement of the join ...
ledii 31057 An ortholattice is distrib...
lediri 31058 An ortholattice is distrib...
lejdii 31059 An ortholattice is distrib...
lejdiri 31060 An ortholattice is distrib...
ledi 31061 An ortholattice is distrib...
spansn0 31062 The span of the singleton ...
span0 31063 The span of the empty set ...
elspani 31064 Membership in the span of ...
spanuni 31065 The span of a union is the...
spanun 31066 The span of a union is the...
sshhococi 31067 The join of two Hilbert sp...
hne0 31068 Hilbert space has a nonzer...
chsup0 31069 The supremum of the empty ...
h1deoi 31070 Membership in orthocomplem...
h1dei 31071 Membership in 1-dimensiona...
h1did 31072 A generating vector belong...
h1dn0 31073 A nonzero vector generates...
h1de2i 31074 Membership in 1-dimensiona...
h1de2bi 31075 Membership in 1-dimensiona...
h1de2ctlem 31076 Lemma for ~ h1de2ci . (Co...
h1de2ci 31077 Membership in 1-dimensiona...
spansni 31078 The span of a singleton in...
elspansni 31079 Membership in the span of ...
spansn 31080 The span of a singleton in...
spansnch 31081 The span of a Hilbert spac...
spansnsh 31082 The span of a Hilbert spac...
spansnchi 31083 The span of a singleton in...
spansnid 31084 A vector belongs to the sp...
spansnmul 31085 A scalar product with a ve...
elspansncl 31086 A member of a span of a si...
elspansn 31087 Membership in the span of ...
elspansn2 31088 Membership in the span of ...
spansncol 31089 The singletons of collinea...
spansneleqi 31090 Membership relation implie...
spansneleq 31091 Membership relation that i...
spansnss 31092 The span of the singleton ...
elspansn3 31093 A member of the span of th...
elspansn4 31094 A span membership conditio...
elspansn5 31095 A vector belonging to both...
spansnss2 31096 The span of the singleton ...
normcan 31097 Cancellation-type law that...
pjspansn 31098 A projection on the span o...
spansnpji 31099 A subset of Hilbert space ...
spanunsni 31100 The span of the union of a...
spanpr 31101 The span of a pair of vect...
h1datomi 31102 A 1-dimensional subspace i...
h1datom 31103 A 1-dimensional subspace i...
cmbr 31105 Binary relation expressing...
pjoml2i 31106 Variation of orthomodular ...
pjoml3i 31107 Variation of orthomodular ...
pjoml4i 31108 Variation of orthomodular ...
pjoml5i 31109 The orthomodular law. Rem...
pjoml6i 31110 An equivalent of the ortho...
cmbri 31111 Binary relation expressing...
cmcmlem 31112 Commutation is symmetric. ...
cmcmi 31113 Commutation is symmetric. ...
cmcm2i 31114 Commutation with orthocomp...
cmcm3i 31115 Commutation with orthocomp...
cmcm4i 31116 Commutation with orthocomp...
cmbr2i 31117 Alternate definition of th...
cmcmii 31118 Commutation is symmetric. ...
cmcm2ii 31119 Commutation with orthocomp...
cmcm3ii 31120 Commutation with orthocomp...
cmbr3i 31121 Alternate definition for t...
cmbr4i 31122 Alternate definition for t...
lecmi 31123 Comparable Hilbert lattice...
lecmii 31124 Comparable Hilbert lattice...
cmj1i 31125 A Hilbert lattice element ...
cmj2i 31126 A Hilbert lattice element ...
cmm1i 31127 A Hilbert lattice element ...
cmm2i 31128 A Hilbert lattice element ...
cmbr3 31129 Alternate definition for t...
cm0 31130 The zero Hilbert lattice e...
cmidi 31131 The commutes relation is r...
pjoml2 31132 Variation of orthomodular ...
pjoml3 31133 Variation of orthomodular ...
pjoml5 31134 The orthomodular law. Rem...
cmcm 31135 Commutation is symmetric. ...
cmcm3 31136 Commutation with orthocomp...
cmcm2 31137 Commutation with orthocomp...
lecm 31138 Comparable Hilbert lattice...
fh1 31139 Foulis-Holland Theorem. I...
fh2 31140 Foulis-Holland Theorem. I...
cm2j 31141 A lattice element that com...
fh1i 31142 Foulis-Holland Theorem. I...
fh2i 31143 Foulis-Holland Theorem. I...
fh3i 31144 Variation of the Foulis-Ho...
fh4i 31145 Variation of the Foulis-Ho...
cm2ji 31146 A lattice element that com...
cm2mi 31147 A lattice element that com...
qlax1i 31148 One of the equations showi...
qlax2i 31149 One of the equations showi...
qlax3i 31150 One of the equations showi...
qlax4i 31151 One of the equations showi...
qlax5i 31152 One of the equations showi...
qlaxr1i 31153 One of the conditions show...
qlaxr2i 31154 One of the conditions show...
qlaxr4i 31155 One of the conditions show...
qlaxr5i 31156 One of the conditions show...
qlaxr3i 31157 A variation of the orthomo...
chscllem1 31158 Lemma for ~ chscl . (Cont...
chscllem2 31159 Lemma for ~ chscl . (Cont...
chscllem3 31160 Lemma for ~ chscl . (Cont...
chscllem4 31161 Lemma for ~ chscl . (Cont...
chscl 31162 The subspace sum of two cl...
osumi 31163 If two closed subspaces of...
osumcori 31164 Corollary of ~ osumi . (C...
osumcor2i 31165 Corollary of ~ osumi , sho...
osum 31166 If two closed subspaces of...
spansnji 31167 The subspace sum of a clos...
spansnj 31168 The subspace sum of a clos...
spansnscl 31169 The subspace sum of a clos...
sumspansn 31170 The sum of two vectors bel...
spansnm0i 31171 The meet of different one-...
nonbooli 31172 A Hilbert lattice with two...
spansncvi 31173 Hilbert space has the cove...
spansncv 31174 Hilbert space has the cove...
5oalem1 31175 Lemma for orthoarguesian l...
5oalem2 31176 Lemma for orthoarguesian l...
5oalem3 31177 Lemma for orthoarguesian l...
5oalem4 31178 Lemma for orthoarguesian l...
5oalem5 31179 Lemma for orthoarguesian l...
5oalem6 31180 Lemma for orthoarguesian l...
5oalem7 31181 Lemma for orthoarguesian l...
5oai 31182 Orthoarguesian law 5OA. Th...
3oalem1 31183 Lemma for 3OA (weak) ortho...
3oalem2 31184 Lemma for 3OA (weak) ortho...
3oalem3 31185 Lemma for 3OA (weak) ortho...
3oalem4 31186 Lemma for 3OA (weak) ortho...
3oalem5 31187 Lemma for 3OA (weak) ortho...
3oalem6 31188 Lemma for 3OA (weak) ortho...
3oai 31189 3OA (weak) orthoarguesian ...
pjorthi 31190 Projection components on o...
pjch1 31191 Property of identity proje...
pjo 31192 The orthogonal projection....
pjcompi 31193 Component of a projection....
pjidmi 31194 A projection is idempotent...
pjadjii 31195 A projection is self-adjoi...
pjaddii 31196 Projection of vector sum i...
pjinormii 31197 The inner product of a pro...
pjmulii 31198 Projection of (scalar) pro...
pjsubii 31199 Projection of vector diffe...
pjsslem 31200 Lemma for subset relations...
pjss2i 31201 Subset relationship for pr...
pjssmii 31202 Projection meet property. ...
pjssge0ii 31203 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 31204 Theorem 4.5(v)<->(vi) of [...
pjcji 31205 The projection on a subspa...
pjadji 31206 A projection is self-adjoi...
pjaddi 31207 Projection of vector sum i...
pjinormi 31208 The inner product of a pro...
pjsubi 31209 Projection of vector diffe...
pjmuli 31210 Projection of scalar produ...
pjige0i 31211 The inner product of a pro...
pjige0 31212 The inner product of a pro...
pjcjt2 31213 The projection on a subspa...
pj0i 31214 The projection of the zero...
pjch 31215 Projection of a vector in ...
pjid 31216 The projection of a vector...
pjvec 31217 The set of vectors belongi...
pjocvec 31218 The set of vectors belongi...
pjocini 31219 Membership of projection i...
pjini 31220 Membership of projection i...
pjjsi 31221 A sufficient condition for...
pjfni 31222 Functionality of a project...
pjrni 31223 The range of a projection....
pjfoi 31224 A projection maps onto its...
pjfi 31225 The mapping of a projectio...
pjvi 31226 The value of a projection ...
pjhfo 31227 A projection maps onto its...
pjrn 31228 The range of a projection....
pjhf 31229 The mapping of a projectio...
pjfn 31230 Functionality of a project...
pjsumi 31231 The projection on a subspa...
pj11i 31232 One-to-one correspondence ...
pjdsi 31233 Vector decomposition into ...
pjds3i 31234 Vector decomposition into ...
pj11 31235 One-to-one correspondence ...
pjmfn 31236 Functionality of the proje...
pjmf1 31237 The projector function map...
pjoi0 31238 The inner product of proje...
pjoi0i 31239 The inner product of proje...
pjopythi 31240 Pythagorean theorem for pr...
pjopyth 31241 Pythagorean theorem for pr...
pjnormi 31242 The norm of the projection...
pjpythi 31243 Pythagorean theorem for pr...
pjneli 31244 If a vector does not belon...
pjnorm 31245 The norm of the projection...
pjpyth 31246 Pythagorean theorem for pr...
pjnel 31247 If a vector does not belon...
pjnorm2 31248 A vector belongs to the su...
mayete3i 31249 Mayet's equation E_3. Par...
mayetes3i 31250 Mayet's equation E^*_3, de...
hosmval 31256 Value of the sum of two Hi...
hommval 31257 Value of the scalar produc...
hodmval 31258 Value of the difference of...
hfsmval 31259 Value of the sum of two Hi...
hfmmval 31260 Value of the scalar produc...
hosval 31261 Value of the sum of two Hi...
homval 31262 Value of the scalar produc...
hodval 31263 Value of the difference of...
hfsval 31264 Value of the sum of two Hi...
hfmval 31265 Value of the scalar produc...
hoscl 31266 Closure of the sum of two ...
homcl 31267 Closure of the scalar prod...
hodcl 31268 Closure of the difference ...
ho0val 31271 Value of the zero Hilbert ...
ho0f 31272 Functionality of the zero ...
df0op2 31273 Alternate definition of Hi...
dfiop2 31274 Alternate definition of Hi...
hoif 31275 Functionality of the Hilbe...
hoival 31276 The value of the Hilbert s...
hoico1 31277 Composition with the Hilbe...
hoico2 31278 Composition with the Hilbe...
hoaddcl 31279 The sum of Hilbert space o...
homulcl 31280 The scalar product of a Hi...
hoeq 31281 Equality of Hilbert space ...
hoeqi 31282 Equality of Hilbert space ...
hoscli 31283 Closure of Hilbert space o...
hodcli 31284 Closure of Hilbert space o...
hocoi 31285 Composition of Hilbert spa...
hococli 31286 Closure of composition of ...
hocofi 31287 Mapping of composition of ...
hocofni 31288 Functionality of compositi...
hoaddcli 31289 Mapping of sum of Hilbert ...
hosubcli 31290 Mapping of difference of H...
hoaddfni 31291 Functionality of sum of Hi...
hosubfni 31292 Functionality of differenc...
hoaddcomi 31293 Commutativity of sum of Hi...
hosubcl 31294 Mapping of difference of H...
hoaddcom 31295 Commutativity of sum of Hi...
hodsi 31296 Relationship between Hilbe...
hoaddassi 31297 Associativity of sum of Hi...
hoadd12i 31298 Commutative/associative la...
hoadd32i 31299 Commutative/associative la...
hocadddiri 31300 Distributive law for Hilbe...
hocsubdiri 31301 Distributive law for Hilbe...
ho2coi 31302 Double composition of Hilb...
hoaddass 31303 Associativity of sum of Hi...
hoadd32 31304 Commutative/associative la...
hoadd4 31305 Rearrangement of 4 terms i...
hocsubdir 31306 Distributive law for Hilbe...
hoaddridi 31307 Sum of a Hilbert space ope...
hodidi 31308 Difference of a Hilbert sp...
ho0coi 31309 Composition of the zero op...
hoid1i 31310 Composition of Hilbert spa...
hoid1ri 31311 Composition of Hilbert spa...
hoaddrid 31312 Sum of a Hilbert space ope...
hodid 31313 Difference of a Hilbert sp...
hon0 31314 A Hilbert space operator i...
hodseqi 31315 Subtraction and addition o...
ho0subi 31316 Subtraction of Hilbert spa...
honegsubi 31317 Relationship between Hilbe...
ho0sub 31318 Subtraction of Hilbert spa...
hosubid1 31319 The zero operator subtract...
honegsub 31320 Relationship between Hilbe...
homullid 31321 An operator equals its sca...
homco1 31322 Associative law for scalar...
homulass 31323 Scalar product associative...
hoadddi 31324 Scalar product distributiv...
hoadddir 31325 Scalar product reverse dis...
homul12 31326 Swap first and second fact...
honegneg 31327 Double negative of a Hilbe...
hosubneg 31328 Relationship between opera...
hosubdi 31329 Scalar product distributiv...
honegdi 31330 Distribution of negative o...
honegsubdi 31331 Distribution of negative o...
honegsubdi2 31332 Distribution of negative o...
hosubsub2 31333 Law for double subtraction...
hosub4 31334 Rearrangement of 4 terms i...
hosubadd4 31335 Rearrangement of 4 terms i...
hoaddsubass 31336 Associative-type law for a...
hoaddsub 31337 Law for operator addition ...
hosubsub 31338 Law for double subtraction...
hosubsub4 31339 Law for double subtraction...
ho2times 31340 Two times a Hilbert space ...
hoaddsubassi 31341 Associativity of sum and d...
hoaddsubi 31342 Law for sum and difference...
hosd1i 31343 Hilbert space operator sum...
hosd2i 31344 Hilbert space operator sum...
hopncani 31345 Hilbert space operator can...
honpcani 31346 Hilbert space operator can...
hosubeq0i 31347 If the difference between ...
honpncani 31348 Hilbert space operator can...
ho01i 31349 A condition implying that ...
ho02i 31350 A condition implying that ...
hoeq1 31351 A condition implying that ...
hoeq2 31352 A condition implying that ...
adjmo 31353 Every Hilbert space operat...
adjsym 31354 Symmetry property of an ad...
eigrei 31355 A necessary and sufficient...
eigre 31356 A necessary and sufficient...
eigposi 31357 A sufficient condition (fi...
eigorthi 31358 A necessary and sufficient...
eigorth 31359 A necessary and sufficient...
nmopval 31377 Value of the norm of a Hil...
elcnop 31378 Property defining a contin...
ellnop 31379 Property defining a linear...
lnopf 31380 A linear Hilbert space ope...
elbdop 31381 Property defining a bounde...
bdopln 31382 A bounded linear Hilbert s...
bdopf 31383 A bounded linear Hilbert s...
nmopsetretALT 31384 The set in the supremum of...
nmopsetretHIL 31385 The set in the supremum of...
nmopsetn0 31386 The set in the supremum of...
nmopxr 31387 The norm of a Hilbert spac...
nmoprepnf 31388 The norm of a Hilbert spac...
nmopgtmnf 31389 The norm of a Hilbert spac...
nmopreltpnf 31390 The norm of a Hilbert spac...
nmopre 31391 The norm of a bounded oper...
elbdop2 31392 Property defining a bounde...
elunop 31393 Property defining a unitar...
elhmop 31394 Property defining a Hermit...
hmopf 31395 A Hermitian operator is a ...
hmopex 31396 The class of Hermitian ope...
nmfnval 31397 Value of the norm of a Hil...
nmfnsetre 31398 The set in the supremum of...
nmfnsetn0 31399 The set in the supremum of...
nmfnxr 31400 The norm of any Hilbert sp...
nmfnrepnf 31401 The norm of a Hilbert spac...
nlfnval 31402 Value of the null space of...
elcnfn 31403 Property defining a contin...
ellnfn 31404 Property defining a linear...
lnfnf 31405 A linear Hilbert space fun...
dfadj2 31406 Alternate definition of th...
funadj 31407 Functionality of the adjoi...
dmadjss 31408 The domain of the adjoint ...
dmadjop 31409 A member of the domain of ...
adjeu 31410 Elementhood in the domain ...
adjval 31411 Value of the adjoint funct...
adjval2 31412 Value of the adjoint funct...
cnvadj 31413 The adjoint function equal...
funcnvadj 31414 The converse of the adjoin...
adj1o 31415 The adjoint function maps ...
dmadjrn 31416 The adjoint of an operator...
eigvecval 31417 The set of eigenvectors of...
eigvalfval 31418 The eigenvalues of eigenve...
specval 31419 The value of the spectrum ...
speccl 31420 The spectrum of an operato...
hhlnoi 31421 The linear operators of Hi...
hhnmoi 31422 The norm of an operator in...
hhbloi 31423 A bounded linear operator ...
hh0oi 31424 The zero operator in Hilbe...
hhcno 31425 The continuous operators o...
hhcnf 31426 The continuous functionals...
dmadjrnb 31427 The adjoint of an operator...
nmoplb 31428 A lower bound for an opera...
nmopub 31429 An upper bound for an oper...
nmopub2tALT 31430 An upper bound for an oper...
nmopub2tHIL 31431 An upper bound for an oper...
nmopge0 31432 The norm of any Hilbert sp...
nmopgt0 31433 A linear Hilbert space ope...
cnopc 31434 Basic continuity property ...
lnopl 31435 Basic linearity property o...
unop 31436 Basic inner product proper...
unopf1o 31437 A unitary operator in Hilb...
unopnorm 31438 A unitary operator is idem...
cnvunop 31439 The inverse (converse) of ...
unopadj 31440 The inverse (converse) of ...
unoplin 31441 A unitary operator is line...
counop 31442 The composition of two uni...
hmop 31443 Basic inner product proper...
hmopre 31444 The inner product of the v...
nmfnlb 31445 A lower bound for a functi...
nmfnleub 31446 An upper bound for the nor...
nmfnleub2 31447 An upper bound for the nor...
nmfnge0 31448 The norm of any Hilbert sp...
elnlfn 31449 Membership in the null spa...
elnlfn2 31450 Membership in the null spa...
cnfnc 31451 Basic continuity property ...
lnfnl 31452 Basic linearity property o...
adjcl 31453 Closure of the adjoint of ...
adj1 31454 Property of an adjoint Hil...
adj2 31455 Property of an adjoint Hil...
adjeq 31456 A property that determines...
adjadj 31457 Double adjoint. Theorem 3...
adjvalval 31458 Value of the value of the ...
unopadj2 31459 The adjoint of a unitary o...
hmopadj 31460 A Hermitian operator is se...
hmdmadj 31461 Every Hermitian operator h...
hmopadj2 31462 An operator is Hermitian i...
hmoplin 31463 A Hermitian operator is li...
brafval 31464 The bra of a vector, expre...
braval 31465 A bra-ket juxtaposition, e...
braadd 31466 Linearity property of bra ...
bramul 31467 Linearity property of bra ...
brafn 31468 The bra function is a func...
bralnfn 31469 The Dirac bra function is ...
bracl 31470 Closure of the bra functio...
bra0 31471 The Dirac bra of the zero ...
brafnmul 31472 Anti-linearity property of...
kbfval 31473 The outer product of two v...
kbop 31474 The outer product of two v...
kbval 31475 The value of the operator ...
kbmul 31476 Multiplication property of...
kbpj 31477 If a vector ` A ` has norm...
eleigvec 31478 Membership in the set of e...
eleigvec2 31479 Membership in the set of e...
eleigveccl 31480 Closure of an eigenvector ...
eigvalval 31481 The eigenvalue of an eigen...
eigvalcl 31482 An eigenvalue is a complex...
eigvec1 31483 Property of an eigenvector...
eighmre 31484 The eigenvalues of a Hermi...
eighmorth 31485 Eigenvectors of a Hermitia...
nmopnegi 31486 Value of the norm of the n...
lnop0 31487 The value of a linear Hilb...
lnopmul 31488 Multiplicative property of...
lnopli 31489 Basic scalar product prope...
lnopfi 31490 A linear Hilbert space ope...
lnop0i 31491 The value of a linear Hilb...
lnopaddi 31492 Additive property of a lin...
lnopmuli 31493 Multiplicative property of...
lnopaddmuli 31494 Sum/product property of a ...
lnopsubi 31495 Subtraction property for a...
lnopsubmuli 31496 Subtraction/product proper...
lnopmulsubi 31497 Product/subtraction proper...
homco2 31498 Move a scalar product out ...
idunop 31499 The identity function (res...
0cnop 31500 The identically zero funct...
0cnfn 31501 The identically zero funct...
idcnop 31502 The identity function (res...
idhmop 31503 The Hilbert space identity...
0hmop 31504 The identically zero funct...
0lnop 31505 The identically zero funct...
0lnfn 31506 The identically zero funct...
nmop0 31507 The norm of the zero opera...
nmfn0 31508 The norm of the identicall...
hmopbdoptHIL 31509 A Hermitian operator is a ...
hoddii 31510 Distributive law for Hilbe...
hoddi 31511 Distributive law for Hilbe...
nmop0h 31512 The norm of any operator o...
idlnop 31513 The identity function (res...
0bdop 31514 The identically zero opera...
adj0 31515 Adjoint of the zero operat...
nmlnop0iALT 31516 A linear operator with a z...
nmlnop0iHIL 31517 A linear operator with a z...
nmlnopgt0i 31518 A linear Hilbert space ope...
nmlnop0 31519 A linear operator with a z...
nmlnopne0 31520 A linear operator with a n...
lnopmi 31521 The scalar product of a li...
lnophsi 31522 The sum of two linear oper...
lnophdi 31523 The difference of two line...
lnopcoi 31524 The composition of two lin...
lnopco0i 31525 The composition of a linea...
lnopeq0lem1 31526 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 31527 Lemma for ~ lnopeq0i . (C...
lnopeq0i 31528 A condition implying that ...
lnopeqi 31529 Two linear Hilbert space o...
lnopeq 31530 Two linear Hilbert space o...
lnopunilem1 31531 Lemma for ~ lnopunii . (C...
lnopunilem2 31532 Lemma for ~ lnopunii . (C...
lnopunii 31533 If a linear operator (whos...
elunop2 31534 An operator is unitary iff...
nmopun 31535 Norm of a unitary Hilbert ...
unopbd 31536 A unitary operator is a bo...
lnophmlem1 31537 Lemma for ~ lnophmi . (Co...
lnophmlem2 31538 Lemma for ~ lnophmi . (Co...
lnophmi 31539 A linear operator is Hermi...
lnophm 31540 A linear operator is Hermi...
hmops 31541 The sum of two Hermitian o...
hmopm 31542 The scalar product of a He...
hmopd 31543 The difference of two Herm...
hmopco 31544 The composition of two com...
nmbdoplbi 31545 A lower bound for the norm...
nmbdoplb 31546 A lower bound for the norm...
nmcexi 31547 Lemma for ~ nmcopexi and ~...
nmcopexi 31548 The norm of a continuous l...
nmcoplbi 31549 A lower bound for the norm...
nmcopex 31550 The norm of a continuous l...
nmcoplb 31551 A lower bound for the norm...
nmophmi 31552 The norm of the scalar pro...
bdophmi 31553 The scalar product of a bo...
lnconi 31554 Lemma for ~ lnopconi and ~...
lnopconi 31555 A condition equivalent to ...
lnopcon 31556 A condition equivalent to ...
lnopcnbd 31557 A linear operator is conti...
lncnopbd 31558 A continuous linear operat...
lncnbd 31559 A continuous linear operat...
lnopcnre 31560 A linear operator is conti...
lnfnli 31561 Basic property of a linear...
lnfnfi 31562 A linear Hilbert space fun...
lnfn0i 31563 The value of a linear Hilb...
lnfnaddi 31564 Additive property of a lin...
lnfnmuli 31565 Multiplicative property of...
lnfnaddmuli 31566 Sum/product property of a ...
lnfnsubi 31567 Subtraction property for a...
lnfn0 31568 The value of a linear Hilb...
lnfnmul 31569 Multiplicative property of...
nmbdfnlbi 31570 A lower bound for the norm...
nmbdfnlb 31571 A lower bound for the norm...
nmcfnexi 31572 The norm of a continuous l...
nmcfnlbi 31573 A lower bound for the norm...
nmcfnex 31574 The norm of a continuous l...
nmcfnlb 31575 A lower bound of the norm ...
lnfnconi 31576 A condition equivalent to ...
lnfncon 31577 A condition equivalent to ...
lnfncnbd 31578 A linear functional is con...
imaelshi 31579 The image of a subspace un...
rnelshi 31580 The range of a linear oper...
nlelshi 31581 The null space of a linear...
nlelchi 31582 The null space of a contin...
riesz3i 31583 A continuous linear functi...
riesz4i 31584 A continuous linear functi...
riesz4 31585 A continuous linear functi...
riesz1 31586 Part 1 of the Riesz repres...
riesz2 31587 Part 2 of the Riesz repres...
cnlnadjlem1 31588 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 31589 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 31590 Lemma for ~ cnlnadji . By...
cnlnadjlem4 31591 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 31592 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 31593 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 31594 Lemma for ~ cnlnadji . He...
cnlnadjlem8 31595 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 31596 Lemma for ~ cnlnadji . ` F...
cnlnadji 31597 Every continuous linear op...
cnlnadjeui 31598 Every continuous linear op...
cnlnadjeu 31599 Every continuous linear op...
cnlnadj 31600 Every continuous linear op...
cnlnssadj 31601 Every continuous linear Hi...
bdopssadj 31602 Every bounded linear Hilbe...
bdopadj 31603 Every bounded linear Hilbe...
adjbdln 31604 The adjoint of a bounded l...
adjbdlnb 31605 An operator is bounded and...
adjbd1o 31606 The mapping of adjoints of...
adjlnop 31607 The adjoint of an operator...
adjsslnop 31608 Every operator with an adj...
nmopadjlei 31609 Property of the norm of an...
nmopadjlem 31610 Lemma for ~ nmopadji . (C...
nmopadji 31611 Property of the norm of an...
adjeq0 31612 An operator is zero iff it...
adjmul 31613 The adjoint of the scalar ...
adjadd 31614 The adjoint of the sum of ...
nmoptrii 31615 Triangle inequality for th...
nmopcoi 31616 Upper bound for the norm o...
bdophsi 31617 The sum of two bounded lin...
bdophdi 31618 The difference between two...
bdopcoi 31619 The composition of two bou...
nmoptri2i 31620 Triangle-type inequality f...
adjcoi 31621 The adjoint of a compositi...
nmopcoadji 31622 The norm of an operator co...
nmopcoadj2i 31623 The norm of an operator co...
nmopcoadj0i 31624 An operator composed with ...
unierri 31625 If we approximate a chain ...
branmfn 31626 The norm of the bra functi...
brabn 31627 The bra of a vector is a b...
rnbra 31628 The set of bras equals the...
bra11 31629 The bra function maps vect...
bracnln 31630 A bra is a continuous line...
cnvbraval 31631 Value of the converse of t...
cnvbracl 31632 Closure of the converse of...
cnvbrabra 31633 The converse bra of the br...
bracnvbra 31634 The bra of the converse br...
bracnlnval 31635 The vector that a continuo...
cnvbramul 31636 Multiplication property of...
kbass1 31637 Dirac bra-ket associative ...
kbass2 31638 Dirac bra-ket associative ...
kbass3 31639 Dirac bra-ket associative ...
kbass4 31640 Dirac bra-ket associative ...
kbass5 31641 Dirac bra-ket associative ...
kbass6 31642 Dirac bra-ket associative ...
leopg 31643 Ordering relation for posi...
leop 31644 Ordering relation for oper...
leop2 31645 Ordering relation for oper...
leop3 31646 Operator ordering in terms...
leoppos 31647 Binary relation defining a...
leoprf2 31648 The ordering relation for ...
leoprf 31649 The ordering relation for ...
leopsq 31650 The square of a Hermitian ...
0leop 31651 The zero operator is a pos...
idleop 31652 The identity operator is a...
leopadd 31653 The sum of two positive op...
leopmuli 31654 The scalar product of a no...
leopmul 31655 The scalar product of a po...
leopmul2i 31656 Scalar product applied to ...
leoptri 31657 The positive operator orde...
leoptr 31658 The positive operator orde...
leopnmid 31659 A bounded Hermitian operat...
nmopleid 31660 A nonzero, bounded Hermiti...
opsqrlem1 31661 Lemma for opsqri . (Contr...
opsqrlem2 31662 Lemma for opsqri . ` F `` ...
opsqrlem3 31663 Lemma for opsqri . (Contr...
opsqrlem4 31664 Lemma for opsqri . (Contr...
opsqrlem5 31665 Lemma for opsqri . (Contr...
opsqrlem6 31666 Lemma for opsqri . (Contr...
pjhmopi 31667 A projector is a Hermitian...
pjlnopi 31668 A projector is a linear op...
pjnmopi 31669 The operator norm of a pro...
pjbdlni 31670 A projector is a bounded l...
pjhmop 31671 A projection is a Hermitia...
hmopidmchi 31672 An idempotent Hermitian op...
hmopidmpji 31673 An idempotent Hermitian op...
hmopidmch 31674 An idempotent Hermitian op...
hmopidmpj 31675 An idempotent Hermitian op...
pjsdii 31676 Distributive law for Hilbe...
pjddii 31677 Distributive law for Hilbe...
pjsdi2i 31678 Chained distributive law f...
pjcoi 31679 Composition of projections...
pjcocli 31680 Closure of composition of ...
pjcohcli 31681 Closure of composition of ...
pjadjcoi 31682 Adjoint of composition of ...
pjcofni 31683 Functionality of compositi...
pjss1coi 31684 Subset relationship for pr...
pjss2coi 31685 Subset relationship for pr...
pjssmi 31686 Projection meet property. ...
pjssge0i 31687 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 31688 Theorem 4.5(v)<->(vi) of [...
pjnormssi 31689 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 31690 Composition of projections...
pjscji 31691 The projection of orthogon...
pjssumi 31692 The projection on a subspa...
pjssposi 31693 Projector ordering can be ...
pjordi 31694 The definition of projecto...
pjssdif2i 31695 The projection subspace of...
pjssdif1i 31696 A necessary and sufficient...
pjimai 31697 The image of a projection....
pjidmcoi 31698 A projection is idempotent...
pjoccoi 31699 Composition of projections...
pjtoi 31700 Subspace sum of projection...
pjoci 31701 Projection of orthocomplem...
pjidmco 31702 A projection operator is i...
dfpjop 31703 Definition of projection o...
pjhmopidm 31704 Two ways to express the se...
elpjidm 31705 A projection operator is i...
elpjhmop 31706 A projection operator is H...
0leopj 31707 A projector is a positive ...
pjadj2 31708 A projector is self-adjoin...
pjadj3 31709 A projector is self-adjoin...
elpjch 31710 Reconstruction of the subs...
elpjrn 31711 Reconstruction of the subs...
pjinvari 31712 A closed subspace ` H ` wi...
pjin1i 31713 Lemma for Theorem 1.22 of ...
pjin2i 31714 Lemma for Theorem 1.22 of ...
pjin3i 31715 Lemma for Theorem 1.22 of ...
pjclem1 31716 Lemma for projection commu...
pjclem2 31717 Lemma for projection commu...
pjclem3 31718 Lemma for projection commu...
pjclem4a 31719 Lemma for projection commu...
pjclem4 31720 Lemma for projection commu...
pjci 31721 Two subspaces commute iff ...
pjcmul1i 31722 A necessary and sufficient...
pjcmul2i 31723 The projection subspace of...
pjcohocli 31724 Closure of composition of ...
pjadj2coi 31725 Adjoint of double composit...
pj2cocli 31726 Closure of double composit...
pj3lem1 31727 Lemma for projection tripl...
pj3si 31728 Stronger projection triple...
pj3i 31729 Projection triplet theorem...
pj3cor1i 31730 Projection triplet corolla...
pjs14i 31731 Theorem S-14 of Watanabe, ...
isst 31734 Property of a state. (Con...
ishst 31735 Property of a complex Hilb...
sticl 31736 ` [ 0 , 1 ] ` closure of t...
stcl 31737 Real closure of the value ...
hstcl 31738 Closure of the value of a ...
hst1a 31739 Unit value of a Hilbert-sp...
hstel2 31740 Properties of a Hilbert-sp...
hstorth 31741 Orthogonality property of ...
hstosum 31742 Orthogonal sum property of...
hstoc 31743 Sum of a Hilbert-space-val...
hstnmoc 31744 Sum of norms of a Hilbert-...
stge0 31745 The value of a state is no...
stle1 31746 The value of a state is le...
hstle1 31747 The norm of the value of a...
hst1h 31748 The norm of a Hilbert-spac...
hst0h 31749 The norm of a Hilbert-spac...
hstpyth 31750 Pythagorean property of a ...
hstle 31751 Ordering property of a Hil...
hstles 31752 Ordering property of a Hil...
hstoh 31753 A Hilbert-space-valued sta...
hst0 31754 A Hilbert-space-valued sta...
sthil 31755 The value of a state at th...
stj 31756 The value of a state on a ...
sto1i 31757 The state of a subspace pl...
sto2i 31758 The state of the orthocomp...
stge1i 31759 If a state is greater than...
stle0i 31760 If a state is less than or...
stlei 31761 Ordering law for states. ...
stlesi 31762 Ordering law for states. ...
stji1i 31763 Join of components of Sasa...
stm1i 31764 State of component of unit...
stm1ri 31765 State of component of unit...
stm1addi 31766 Sum of states whose meet i...
staddi 31767 If the sum of 2 states is ...
stm1add3i 31768 Sum of states whose meet i...
stadd3i 31769 If the sum of 3 states is ...
st0 31770 The state of the zero subs...
strlem1 31771 Lemma for strong state the...
strlem2 31772 Lemma for strong state the...
strlem3a 31773 Lemma for strong state the...
strlem3 31774 Lemma for strong state the...
strlem4 31775 Lemma for strong state the...
strlem5 31776 Lemma for strong state the...
strlem6 31777 Lemma for strong state the...
stri 31778 Strong state theorem. The...
strb 31779 Strong state theorem (bidi...
hstrlem2 31780 Lemma for strong set of CH...
hstrlem3a 31781 Lemma for strong set of CH...
hstrlem3 31782 Lemma for strong set of CH...
hstrlem4 31783 Lemma for strong set of CH...
hstrlem5 31784 Lemma for strong set of CH...
hstrlem6 31785 Lemma for strong set of CH...
hstri 31786 Hilbert space admits a str...
hstrbi 31787 Strong CH-state theorem (b...
largei 31788 A Hilbert lattice admits a...
jplem1 31789 Lemma for Jauch-Piron theo...
jplem2 31790 Lemma for Jauch-Piron theo...
jpi 31791 The function ` S ` , that ...
golem1 31792 Lemma for Godowski's equat...
golem2 31793 Lemma for Godowski's equat...
goeqi 31794 Godowski's equation, shown...
stcltr1i 31795 Property of a strong class...
stcltr2i 31796 Property of a strong class...
stcltrlem1 31797 Lemma for strong classical...
stcltrlem2 31798 Lemma for strong classical...
stcltrthi 31799 Theorem for classically st...
cvbr 31803 Binary relation expressing...
cvbr2 31804 Binary relation expressing...
cvcon3 31805 Contraposition law for the...
cvpss 31806 The covers relation implie...
cvnbtwn 31807 The covers relation implie...
cvnbtwn2 31808 The covers relation implie...
cvnbtwn3 31809 The covers relation implie...
cvnbtwn4 31810 The covers relation implie...
cvnsym 31811 The covers relation is not...
cvnref 31812 The covers relation is not...
cvntr 31813 The covers relation is not...
spansncv2 31814 Hilbert space has the cove...
mdbr 31815 Binary relation expressing...
mdi 31816 Consequence of the modular...
mdbr2 31817 Binary relation expressing...
mdbr3 31818 Binary relation expressing...
mdbr4 31819 Binary relation expressing...
dmdbr 31820 Binary relation expressing...
dmdmd 31821 The dual modular pair prop...
mddmd 31822 The modular pair property ...
dmdi 31823 Consequence of the dual mo...
dmdbr2 31824 Binary relation expressing...
dmdi2 31825 Consequence of the dual mo...
dmdbr3 31826 Binary relation expressing...
dmdbr4 31827 Binary relation expressing...
dmdi4 31828 Consequence of the dual mo...
dmdbr5 31829 Binary relation expressing...
mddmd2 31830 Relationship between modul...
mdsl0 31831 A sublattice condition tha...
ssmd1 31832 Ordering implies the modul...
ssmd2 31833 Ordering implies the modul...
ssdmd1 31834 Ordering implies the dual ...
ssdmd2 31835 Ordering implies the dual ...
dmdsl3 31836 Sublattice mapping for a d...
mdsl3 31837 Sublattice mapping for a m...
mdslle1i 31838 Order preservation of the ...
mdslle2i 31839 Order preservation of the ...
mdslj1i 31840 Join preservation of the o...
mdslj2i 31841 Meet preservation of the r...
mdsl1i 31842 If the modular pair proper...
mdsl2i 31843 If the modular pair proper...
mdsl2bi 31844 If the modular pair proper...
cvmdi 31845 The covering property impl...
mdslmd1lem1 31846 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 31847 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 31848 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 31849 Lemma for ~ mdslmd1i . (C...
mdslmd1i 31850 Preservation of the modula...
mdslmd2i 31851 Preservation of the modula...
mdsldmd1i 31852 Preservation of the dual m...
mdslmd3i 31853 Modular pair conditions th...
mdslmd4i 31854 Modular pair condition tha...
csmdsymi 31855 Cross-symmetry implies M-s...
mdexchi 31856 An exchange lemma for modu...
cvmd 31857 The covering property impl...
cvdmd 31858 The covering property impl...
ela 31860 Atoms in a Hilbert lattice...
elat2 31861 Expanded membership relati...
elatcv0 31862 A Hilbert lattice element ...
atcv0 31863 An atom covers the zero su...
atssch 31864 Atoms are a subset of the ...
atelch 31865 An atom is a Hilbert latti...
atne0 31866 An atom is not the Hilbert...
atss 31867 A lattice element smaller ...
atsseq 31868 Two atoms in a subset rela...
atcveq0 31869 A Hilbert lattice element ...
h1da 31870 A 1-dimensional subspace i...
spansna 31871 The span of the singleton ...
sh1dle 31872 A 1-dimensional subspace i...
ch1dle 31873 A 1-dimensional subspace i...
atom1d 31874 The 1-dimensional subspace...
superpos 31875 Superposition Principle. ...
chcv1 31876 The Hilbert lattice has th...
chcv2 31877 The Hilbert lattice has th...
chjatom 31878 The join of a closed subsp...
shatomici 31879 The lattice of Hilbert sub...
hatomici 31880 The Hilbert lattice is ato...
hatomic 31881 A Hilbert lattice is atomi...
shatomistici 31882 The lattice of Hilbert sub...
hatomistici 31883 ` CH ` is atomistic, i.e. ...
chpssati 31884 Two Hilbert lattice elemen...
chrelati 31885 The Hilbert lattice is rel...
chrelat2i 31886 A consequence of relative ...
cvati 31887 If a Hilbert lattice eleme...
cvbr4i 31888 An alternate way to expres...
cvexchlem 31889 Lemma for ~ cvexchi . (Co...
cvexchi 31890 The Hilbert lattice satisf...
chrelat2 31891 A consequence of relative ...
chrelat3 31892 A consequence of relative ...
chrelat3i 31893 A consequence of the relat...
chrelat4i 31894 A consequence of relative ...
cvexch 31895 The Hilbert lattice satisf...
cvp 31896 The Hilbert lattice satisf...
atnssm0 31897 The meet of a Hilbert latt...
atnemeq0 31898 The meet of distinct atoms...
atssma 31899 The meet with an atom's su...
atcv0eq 31900 Two atoms covering the zer...
atcv1 31901 Two atoms covering the zer...
atexch 31902 The Hilbert lattice satisf...
atomli 31903 An assertion holding in at...
atoml2i 31904 An assertion holding in at...
atordi 31905 An ordering law for a Hilb...
atcvatlem 31906 Lemma for ~ atcvati . (Co...
atcvati 31907 A nonzero Hilbert lattice ...
atcvat2i 31908 A Hilbert lattice element ...
atord 31909 An ordering law for a Hilb...
atcvat2 31910 A Hilbert lattice element ...
chirredlem1 31911 Lemma for ~ chirredi . (C...
chirredlem2 31912 Lemma for ~ chirredi . (C...
chirredlem3 31913 Lemma for ~ chirredi . (C...
chirredlem4 31914 Lemma for ~ chirredi . (C...
chirredi 31915 The Hilbert lattice is irr...
chirred 31916 The Hilbert lattice is irr...
atcvat3i 31917 A condition implying that ...
atcvat4i 31918 A condition implying exist...
atdmd 31919 Two Hilbert lattice elemen...
atmd 31920 Two Hilbert lattice elemen...
atmd2 31921 Two Hilbert lattice elemen...
atabsi 31922 Absorption of an incompara...
atabs2i 31923 Absorption of an incompara...
mdsymlem1 31924 Lemma for ~ mdsymi . (Con...
mdsymlem2 31925 Lemma for ~ mdsymi . (Con...
mdsymlem3 31926 Lemma for ~ mdsymi . (Con...
mdsymlem4 31927 Lemma for ~ mdsymi . This...
mdsymlem5 31928 Lemma for ~ mdsymi . (Con...
mdsymlem6 31929 Lemma for ~ mdsymi . This...
mdsymlem7 31930 Lemma for ~ mdsymi . Lemm...
mdsymlem8 31931 Lemma for ~ mdsymi . Lemm...
mdsymi 31932 M-symmetry of the Hilbert ...
mdsym 31933 M-symmetry of the Hilbert ...
dmdsym 31934 Dual M-symmetry of the Hil...
atdmd2 31935 Two Hilbert lattice elemen...
sumdmdii 31936 If the subspace sum of two...
cmmdi 31937 Commuting subspaces form a...
cmdmdi 31938 Commuting subspaces form a...
sumdmdlem 31939 Lemma for ~ sumdmdi . The...
sumdmdlem2 31940 Lemma for ~ sumdmdi . (Co...
sumdmdi 31941 The subspace sum of two Hi...
dmdbr4ati 31942 Dual modular pair property...
dmdbr5ati 31943 Dual modular pair property...
dmdbr6ati 31944 Dual modular pair property...
dmdbr7ati 31945 Dual modular pair property...
mdoc1i 31946 Orthocomplements form a mo...
mdoc2i 31947 Orthocomplements form a mo...
dmdoc1i 31948 Orthocomplements form a du...
dmdoc2i 31949 Orthocomplements form a du...
mdcompli 31950 A condition equivalent to ...
dmdcompli 31951 A condition equivalent to ...
mddmdin0i 31952 If dual modular implies mo...
cdjreui 31953 A member of the sum of dis...
cdj1i 31954 Two ways to express " ` A ...
cdj3lem1 31955 A property of " ` A ` and ...
cdj3lem2 31956 Lemma for ~ cdj3i . Value...
cdj3lem2a 31957 Lemma for ~ cdj3i . Closu...
cdj3lem2b 31958 Lemma for ~ cdj3i . The f...
cdj3lem3 31959 Lemma for ~ cdj3i . Value...
cdj3lem3a 31960 Lemma for ~ cdj3i . Closu...
cdj3lem3b 31961 Lemma for ~ cdj3i . The s...
cdj3i 31962 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 31963 (_This theorem is a dummy ...
sa-abvi 31964 A theorem about the univer...
xfree 31965 A partial converse to ~ 19...
xfree2 31966 A partial converse to ~ 19...
addltmulALT 31967 A proof readability experi...
bian1d 31968 Adding a superfluous conju...
or3di 31969 Distributive law for disju...
or3dir 31970 Distributive law for disju...
3o1cs 31971 Deduction eliminating disj...
3o2cs 31972 Deduction eliminating disj...
3o3cs 31973 Deduction eliminating disj...
13an22anass 31974 Associative law for four c...
sbc2iedf 31975 Conversion of implicit sub...
rspc2daf 31976 Double restricted speciali...
ralcom4f 31977 Commutation of restricted ...
rexcom4f 31978 Commutation of restricted ...
19.9d2rf 31979 A deduction version of one...
19.9d2r 31980 A deduction version of one...
r19.29ffa 31981 A commonly used pattern ba...
eqtrb 31982 A transposition of equalit...
eqelbid 31983 A variable elimination law...
opsbc2ie 31984 Conversion of implicit sub...
opreu2reuALT 31985 Correspondence between uni...
2reucom 31988 Double restricted existent...
2reu2rex1 31989 Double restricted existent...
2reureurex 31990 Double restricted existent...
2reu2reu2 31991 Double restricted existent...
opreu2reu1 31992 Equivalent definition of t...
sq2reunnltb 31993 There exists a unique deco...
addsqnot2reu 31994 For each complex number ` ...
sbceqbidf 31995 Equality theorem for class...
sbcies 31996 A special version of class...
mo5f 31997 Alternate definition of "a...
nmo 31998 Negation of "at most one"....
reuxfrdf 31999 Transfer existential uniqu...
rexunirn 32000 Restricted existential qua...
rmoxfrd 32001 Transfer "at most one" res...
rmoun 32002 "At most one" restricted e...
rmounid 32003 A case where an "at most o...
riotaeqbidva 32004 Equivalent wff's yield equ...
dmrab 32005 Domain of a restricted cla...
difrab2 32006 Difference of two restrict...
rabexgfGS 32007 Separation Scheme in terms...
rabsnel 32008 Truth implied by equality ...
eqrrabd 32009 Deduce equality with a res...
foresf1o 32010 From a surjective function...
rabfodom 32011 Domination relation for re...
abrexdomjm 32012 An indexed set is dominate...
abrexdom2jm 32013 An indexed set is dominate...
abrexexd 32014 Existence of a class abstr...
elabreximd 32015 Class substitution in an i...
elabreximdv 32016 Class substitution in an i...
abrexss 32017 A necessary condition for ...
elunsn 32018 Elementhood to a union wit...
nelun 32019 Negated membership for a u...
snsssng 32020 If a singleton is a subset...
inin 32021 Intersection with an inter...
inindif 32022 See ~ inundif . (Contribu...
difininv 32023 Condition for the intersec...
difeq 32024 Rewriting an equation with...
eqdif 32025 If both set differences of...
indifbi 32026 Two ways to express equali...
diffib 32027 Case where ~ diffi is a bi...
difxp1ss 32028 Difference law for Cartesi...
difxp2ss 32029 Difference law for Cartesi...
indifundif 32030 A remarkable equation with...
elpwincl1 32031 Closure of intersection wi...
elpwdifcl 32032 Closure of class differenc...
elpwiuncl 32033 Closure of indexed union w...
eqsnd 32034 Deduce that a set is a sin...
elpreq 32035 Equality wihin a pair. (C...
nelpr 32036 A set ` A ` not in a pair ...
inpr0 32037 Rewrite an empty intersect...
neldifpr1 32038 The first element of a pai...
neldifpr2 32039 The second element of a pa...
unidifsnel 32040 The other element of a pai...
unidifsnne 32041 The other element of a pai...
ifeqeqx 32042 An equality theorem tailor...
elimifd 32043 Elimination of a condition...
elim2if 32044 Elimination of two conditi...
elim2ifim 32045 Elimination of two conditi...
ifeq3da 32046 Given an expression ` C ` ...
ifnetrue 32047 Deduce truth from a condit...
ifnefals 32048 Deduce falsehood from a co...
ifnebib 32049 The converse of ~ ifbi hol...
uniinn0 32050 Sufficient and necessary c...
uniin1 32051 Union of intersection. Ge...
uniin2 32052 Union of intersection. Ge...
difuncomp 32053 Express a class difference...
elpwunicl 32054 Closure of a set union wit...
cbviunf 32055 Rule used to change the bo...
iuneq12daf 32056 Equality deduction for ind...
iunin1f 32057 Indexed union of intersect...
ssiun3 32058 Subset equivalence for an ...
ssiun2sf 32059 Subset relationship for an...
iuninc 32060 The union of an increasing...
iundifdifd 32061 The intersection of a set ...
iundifdif 32062 The intersection of a set ...
iunrdx 32063 Re-index an indexed union....
iunpreima 32064 Preimage of an indexed uni...
iunrnmptss 32065 A subset relation for an i...
iunxunsn 32066 Appending a set to an inde...
iunxunpr 32067 Appending two sets to an i...
iinabrex 32068 Rewriting an indexed inter...
disjnf 32069 In case ` x ` is not free ...
cbvdisjf 32070 Change bound variables in ...
disjss1f 32071 A subset of a disjoint col...
disjeq1f 32072 Equality theorem for disjo...
disjxun0 32073 Simplify a disjoint union....
disjdifprg 32074 A trivial partition into a...
disjdifprg2 32075 A trivial partition of a s...
disji2f 32076 Property of a disjoint col...
disjif 32077 Property of a disjoint col...
disjorf 32078 Two ways to say that a col...
disjorsf 32079 Two ways to say that a col...
disjif2 32080 Property of a disjoint col...
disjabrex 32081 Rewriting a disjoint colle...
disjabrexf 32082 Rewriting a disjoint colle...
disjpreima 32083 A preimage of a disjoint s...
disjrnmpt 32084 Rewriting a disjoint colle...
disjin 32085 If a collection is disjoin...
disjin2 32086 If a collection is disjoin...
disjxpin 32087 Derive a disjunction over ...
iundisjf 32088 Rewrite a countable union ...
iundisj2f 32089 A disjoint union is disjoi...
disjrdx 32090 Re-index a disjunct collec...
disjex 32091 Two ways to say that two c...
disjexc 32092 A variant of ~ disjex , ap...
disjunsn 32093 Append an element to a dis...
disjun0 32094 Adding the empty element p...
disjiunel 32095 A set of elements B of a d...
disjuniel 32096 A set of elements B of a d...
xpdisjres 32097 Restriction of a constant ...
opeldifid 32098 Ordered pair elementhood o...
difres 32099 Case when class difference...
imadifxp 32100 Image of the difference wi...
relfi 32101 A relation (set) is finite...
0res 32102 Restriction of the empty f...
fcoinver 32103 Build an equivalence relat...
fcoinvbr 32104 Binary relation for the eq...
brabgaf 32105 The law of concretion for ...
brelg 32106 Two things in a binary rel...
br8d 32107 Substitution for an eight-...
opabdm 32108 Domain of an ordered-pair ...
opabrn 32109 Range of an ordered-pair c...
opabssi 32110 Sufficient condition for a...
opabid2ss 32111 One direction of ~ opabid2...
ssrelf 32112 A subclass relationship de...
eqrelrd2 32113 A version of ~ eqrelrdv2 w...
erbr3b 32114 Biconditional for equivale...
iunsnima 32115 Image of a singleton by an...
iunsnima2 32116 Version of ~ iunsnima with...
ac6sf2 32117 Alternate version of ~ ac6...
fnresin 32118 Restriction of a function ...
f1o3d 32119 Describe an implicit one-t...
eldmne0 32120 A function of nonempty dom...
f1rnen 32121 Equinumerosity of the rang...
rinvf1o 32122 Sufficient conditions for ...
fresf1o 32123 Conditions for a restricti...
nfpconfp 32124 The set of fixed points of...
fmptco1f1o 32125 The action of composing (t...
cofmpt2 32126 Express composition of a m...
f1mptrn 32127 Express injection for a ma...
dfimafnf 32128 Alternate definition of th...
funimass4f 32129 Membership relation for th...
elimampt 32130 Membership in the image of...
suppss2f 32131 Show that the support of a...
ofrn 32132 The range of the function ...
ofrn2 32133 The range of the function ...
off2 32134 The function operation pro...
ofresid 32135 Applying an operation rest...
fimarab 32136 Expressing the image of a ...
unipreima 32137 Preimage of a class union....
opfv 32138 Value of a function produc...
xppreima 32139 The preimage of a Cartesia...
2ndimaxp 32140 Image of a cartesian produ...
djussxp2 32141 Stronger version of ~ djus...
2ndresdju 32142 The ` 2nd ` function restr...
2ndresdjuf1o 32143 The ` 2nd ` function restr...
xppreima2 32144 The preimage of a Cartesia...
abfmpunirn 32145 Membership in a union of a...
rabfmpunirn 32146 Membership in a union of a...
abfmpeld 32147 Membership in an element o...
abfmpel 32148 Membership in an element o...
fmptdF 32149 Domain and codomain of the...
fmptcof2 32150 Composition of two functio...
fcomptf 32151 Express composition of two...
acunirnmpt 32152 Axiom of choice for the un...
acunirnmpt2 32153 Axiom of choice for the un...
acunirnmpt2f 32154 Axiom of choice for the un...
aciunf1lem 32155 Choice in an index union. ...
aciunf1 32156 Choice in an index union. ...
ofoprabco 32157 Function operation as a co...
ofpreima 32158 Express the preimage of a ...
ofpreima2 32159 Express the preimage of a ...
funcnvmpt 32160 Condition for a function i...
funcnv5mpt 32161 Two ways to say that a fun...
funcnv4mpt 32162 Two ways to say that a fun...
preimane 32163 Different elements have di...
fnpreimac 32164 Choose a set ` x ` contain...
fgreu 32165 Exactly one point of a fun...
fcnvgreu 32166 If the converse of a relat...
rnmposs 32167 The range of an operation ...
mptssALT 32168 Deduce subset relation of ...
dfcnv2 32169 Alternative definition of ...
fnimatp 32170 The image of an unordered ...
rnexd 32171 The range of a set is a se...
imaexd 32172 The image of a set is a se...
mpomptxf 32173 Express a two-argument fun...
suppovss 32174 A bound for the support of...
fvdifsupp 32175 Function value is zero out...
suppiniseg 32176 Relation between the suppo...
fsuppinisegfi 32177 The initial segment ` ( ``...
fressupp 32178 The restriction of a funct...
fdifsuppconst 32179 A function is a zero const...
ressupprn 32180 The range of a function re...
supppreima 32181 Express the support of a f...
fsupprnfi 32182 Finite support implies fin...
mptiffisupp 32183 Conditions for a mapping f...
cosnopne 32184 Composition of two ordered...
cosnop 32185 Composition of two ordered...
cnvprop 32186 Converse of a pair of orde...
brprop 32187 Binary relation for a pair...
mptprop 32188 Rewrite pairs of ordered p...
coprprop 32189 Composition of two pairs o...
gtiso 32190 Two ways to write a strict...
isoun 32191 Infer an isomorphism from ...
disjdsct 32192 A disjoint collection is d...
df1stres 32193 Definition for a restricti...
df2ndres 32194 Definition for a restricti...
1stpreimas 32195 The preimage of a singleto...
1stpreima 32196 The preimage by ` 1st ` is...
2ndpreima 32197 The preimage by ` 2nd ` is...
curry2ima 32198 The image of a curried fun...
preiman0 32199 The preimage of a nonempty...
intimafv 32200 The intersection of an ima...
ecref 32201 All elements are in their ...
supssd 32202 Inequality deduction for s...
infssd 32203 Inequality deduction for i...
imafi2 32204 The image by a finite set ...
unifi3 32205 If a union is finite, then...
snct 32206 A singleton is countable. ...
prct 32207 An unordered pair is count...
mpocti 32208 An operation is countable ...
abrexct 32209 An image set of a countabl...
mptctf 32210 A countable mapping set is...
abrexctf 32211 An image set of a countabl...
padct 32212 Index a countable set with...
cnvoprabOLD 32213 The converse of a class ab...
f1od2 32214 Sufficient condition for a...
fcobij 32215 Composing functions with a...
fcobijfs 32216 Composing finitely support...
suppss3 32217 Deduce a function's suppor...
fsuppcurry1 32218 Finite support of a currie...
fsuppcurry2 32219 Finite support of a currie...
offinsupp1 32220 Finite support for a funct...
ffs2 32221 Rewrite a function's suppo...
ffsrn 32222 The range of a finitely su...
resf1o 32223 Restriction of functions t...
maprnin 32224 Restricting the range of t...
fpwrelmapffslem 32225 Lemma for ~ fpwrelmapffs ....
fpwrelmap 32226 Define a canonical mapping...
fpwrelmapffs 32227 Define a canonical mapping...
creq0 32228 The real representation of...
1nei 32229 The imaginary unit ` _i ` ...
1neg1t1neg1 32230 An integer unit times itse...
nnmulge 32231 Multiplying by a positive ...
lt2addrd 32232 If the right-hand side of ...
xrlelttric 32233 Trichotomy law for extende...
xaddeq0 32234 Two extended reals which a...
xrinfm 32235 The extended real numbers ...
le2halvesd 32236 A sum is less than the who...
xraddge02 32237 A number is less than or e...
xrge0addge 32238 A number is less than or e...
xlt2addrd 32239 If the right-hand side of ...
xrsupssd 32240 Inequality deduction for s...
xrge0infss 32241 Any subset of nonnegative ...
xrge0infssd 32242 Inequality deduction for i...
xrge0addcld 32243 Nonnegative extended reals...
xrge0subcld 32244 Condition for closure of n...
infxrge0lb 32245 A member of a set of nonne...
infxrge0glb 32246 The infimum of a set of no...
infxrge0gelb 32247 The infimum of a set of no...
xrofsup 32248 The supremum is preserved ...
supxrnemnf 32249 The supremum of a nonempty...
xnn0gt0 32250 Nonzero extended nonnegati...
xnn01gt 32251 An extended nonnegative in...
nn0xmulclb 32252 Finite multiplication in t...
joiniooico 32253 Disjoint joining an open i...
ubico 32254 A right-open interval does...
xeqlelt 32255 Equality in terms of 'less...
eliccelico 32256 Relate elementhood to a cl...
elicoelioo 32257 Relate elementhood to a cl...
iocinioc2 32258 Intersection between two o...
xrdifh 32259 Class difference of a half...
iocinif 32260 Relate intersection of two...
difioo 32261 The difference between two...
difico 32262 The difference between two...
uzssico 32263 Upper integer sets are a s...
fz2ssnn0 32264 A finite set of sequential...
nndiffz1 32265 Upper set of the positive ...
ssnnssfz 32266 For any finite subset of `...
fzne1 32267 Elementhood in a finite se...
fzm1ne1 32268 Elementhood of an integer ...
fzspl 32269 Split the last element of ...
fzdif2 32270 Split the last element of ...
fzodif2 32271 Split the last element of ...
fzodif1 32272 Set difference of two half...
fzsplit3 32273 Split a finite interval of...
bcm1n 32274 The proportion of one bino...
iundisjfi 32275 Rewrite a countable union ...
iundisj2fi 32276 A disjoint union is disjoi...
iundisjcnt 32277 Rewrite a countable union ...
iundisj2cnt 32278 A countable disjoint union...
fzone1 32279 Elementhood in a half-open...
fzom1ne1 32280 Elementhood in a half-open...
f1ocnt 32281 Given a countable set ` A ...
fz1nnct 32282 NN and integer ranges star...
fz1nntr 32283 NN and integer ranges star...
nn0difffzod 32284 A nonnegative integer that...
suppssnn0 32285 Show that the support of a...
hashunif 32286 The cardinality of a disjo...
hashxpe 32287 The size of the Cartesian ...
hashgt1 32288 Restate "set contains at l...
dvdszzq 32289 Divisibility for an intege...
prmdvdsbc 32290 Condition for a prime numb...
numdenneg 32291 Numerator and denominator ...
divnumden2 32292 Calculate the reduced form...
nnindf 32293 Principle of Mathematical ...
nn0min 32294 Extracting the minimum pos...
subne0nn 32295 A nonnegative difference i...
ltesubnnd 32296 Subtracting an integer num...
fprodeq02 32297 If one of the factors is z...
pr01ssre 32298 The range of the indicator...
fprodex01 32299 A product of factors equal...
prodpr 32300 A product over a pair is t...
prodtp 32301 A product over a triple is...
fsumub 32302 An upper bound for a term ...
fsumiunle 32303 Upper bound for a sum of n...
dfdec100 32304 Split the hundreds from a ...
dp2eq1 32307 Equality theorem for the d...
dp2eq2 32308 Equality theorem for the d...
dp2eq1i 32309 Equality theorem for the d...
dp2eq2i 32310 Equality theorem for the d...
dp2eq12i 32311 Equality theorem for the d...
dp20u 32312 Add a zero in the tenths (...
dp20h 32313 Add a zero in the unit pla...
dp2cl 32314 Closure for the decimal fr...
dp2clq 32315 Closure for a decimal frac...
rpdp2cl 32316 Closure for a decimal frac...
rpdp2cl2 32317 Closure for a decimal frac...
dp2lt10 32318 Decimal fraction builds re...
dp2lt 32319 Comparing two decimal frac...
dp2ltsuc 32320 Comparing a decimal fracti...
dp2ltc 32321 Comparing two decimal expa...
dpval 32324 Define the value of the de...
dpcl 32325 Prove that the closure of ...
dpfrac1 32326 Prove a simple equivalence...
dpval2 32327 Value of the decimal point...
dpval3 32328 Value of the decimal point...
dpmul10 32329 Multiply by 10 a decimal e...
decdiv10 32330 Divide a decimal number by...
dpmul100 32331 Multiply by 100 a decimal ...
dp3mul10 32332 Multiply by 10 a decimal e...
dpmul1000 32333 Multiply by 1000 a decimal...
dpval3rp 32334 Value of the decimal point...
dp0u 32335 Add a zero in the tenths p...
dp0h 32336 Remove a zero in the units...
rpdpcl 32337 Closure of the decimal poi...
dplt 32338 Comparing two decimal expa...
dplti 32339 Comparing a decimal expans...
dpgti 32340 Comparing a decimal expans...
dpltc 32341 Comparing two decimal inte...
dpexpp1 32342 Add one zero to the mantis...
0dp2dp 32343 Multiply by 10 a decimal e...
dpadd2 32344 Addition with one decimal,...
dpadd 32345 Addition with one decimal....
dpadd3 32346 Addition with two decimals...
dpmul 32347 Multiplication with one de...
dpmul4 32348 An upper bound to multipli...
threehalves 32349 Example theorem demonstrat...
1mhdrd 32350 Example theorem demonstrat...
xdivval 32353 Value of division: the (un...
xrecex 32354 Existence of reciprocal of...
xmulcand 32355 Cancellation law for exten...
xreceu 32356 Existential uniqueness of ...
xdivcld 32357 Closure law for the extend...
xdivcl 32358 Closure law for the extend...
xdivmul 32359 Relationship between divis...
rexdiv 32360 The extended real division...
xdivrec 32361 Relationship between divis...
xdivid 32362 A number divided by itself...
xdiv0 32363 Division into zero is zero...
xdiv0rp 32364 Division into zero is zero...
eliccioo 32365 Membership in a closed int...
elxrge02 32366 Elementhood in the set of ...
xdivpnfrp 32367 Plus infinity divided by a...
rpxdivcld 32368 Closure law for extended d...
xrpxdivcld 32369 Closure law for extended d...
wrdfd 32370 A word is a zero-based seq...
wrdres 32371 Condition for the restrict...
wrdsplex 32372 Existence of a split of a ...
pfx1s2 32373 The prefix of length 1 of ...
pfxrn2 32374 The range of a prefix of a...
pfxrn3 32375 Express the range of a pre...
pfxf1 32376 Condition for a prefix to ...
s1f1 32377 Conditions for a length 1 ...
s2rn 32378 Range of a length 2 string...
s2f1 32379 Conditions for a length 2 ...
s3rn 32380 Range of a length 3 string...
s3f1 32381 Conditions for a length 3 ...
s3clhash 32382 Closure of the words of le...
ccatf1 32383 Conditions for a concatena...
pfxlsw2ccat 32384 Reconstruct a word from it...
wrdt2ind 32385 Perform an induction over ...
swrdrn2 32386 The range of a subword is ...
swrdrn3 32387 Express the range of a sub...
swrdf1 32388 Condition for a subword to...
swrdrndisj 32389 Condition for the range of...
splfv3 32390 Symbols to the right of a ...
1cshid 32391 Cyclically shifting a sing...
cshw1s2 32392 Cyclically shifting a leng...
cshwrnid 32393 Cyclically shifting a word...
cshf1o 32394 Condition for the cyclic s...
ressplusf 32395 The group operation functi...
ressnm 32396 The norm in a restricted s...
abvpropd2 32397 Weaker version of ~ abvpro...
oppgle 32398 less-than relation of an o...
oppgleOLD 32399 Obsolete version of ~ oppg...
oppglt 32400 less-than relation of an o...
ressprs 32401 The restriction of a prose...
oduprs 32402 Being a proset is a self-d...
posrasymb 32403 A poset ordering is asymet...
resspos 32404 The restriction of a Poset...
resstos 32405 The restriction of a Toset...
odutos 32406 Being a toset is a self-du...
tlt2 32407 In a Toset, two elements m...
tlt3 32408 In a Toset, two elements m...
trleile 32409 In a Toset, two elements m...
toslublem 32410 Lemma for ~ toslub and ~ x...
toslub 32411 In a toset, the lowest upp...
tosglblem 32412 Lemma for ~ tosglb and ~ x...
tosglb 32413 Same theorem as ~ toslub ,...
clatp0cl 32414 The poset zero of a comple...
clatp1cl 32415 The poset one of a complet...
mntoval 32420 Operation value of the mon...
ismnt 32421 Express the statement " ` ...
ismntd 32422 Property of being a monoto...
mntf 32423 A monotone function is a f...
mgcoval 32424 Operation value of the mon...
mgcval 32425 Monotone Galois connection...
mgcf1 32426 The lower adjoint ` F ` of...
mgcf2 32427 The upper adjoint ` G ` of...
mgccole1 32428 An inequality for the kern...
mgccole2 32429 Inequality for the closure...
mgcmnt1 32430 The lower adjoint ` F ` of...
mgcmnt2 32431 The upper adjoint ` G ` of...
mgcmntco 32432 A Galois connection like s...
dfmgc2lem 32433 Lemma for dfmgc2, backward...
dfmgc2 32434 Alternate definition of th...
mgcmnt1d 32435 Galois connection implies ...
mgcmnt2d 32436 Galois connection implies ...
mgccnv 32437 The inverse Galois connect...
pwrssmgc 32438 Given a function ` F ` , e...
mgcf1olem1 32439 Property of a Galois conne...
mgcf1olem2 32440 Property of a Galois conne...
mgcf1o 32441 Given a Galois connection,...
xrs0 32444 The zero of the extended r...
xrslt 32445 The "strictly less than" r...
xrsinvgval 32446 The inversion operation in...
xrsmulgzz 32447 The "multiple" function in...
xrstos 32448 The extended real numbers ...
xrsclat 32449 The extended real numbers ...
xrsp0 32450 The poset 0 of the extende...
xrsp1 32451 The poset 1 of the extende...
ressmulgnn 32452 Values for the group multi...
ressmulgnn0 32453 Values for the group multi...
xrge0base 32454 The base of the extended n...
xrge00 32455 The zero of the extended n...
xrge0plusg 32456 The additive law of the ex...
xrge0le 32457 The "less than or equal to...
xrge0mulgnn0 32458 The group multiple functio...
xrge0addass 32459 Associativity of extended ...
xrge0addgt0 32460 The sum of nonnegative and...
xrge0adddir 32461 Right-distributivity of ex...
xrge0adddi 32462 Left-distributivity of ext...
xrge0npcan 32463 Extended nonnegative real ...
fsumrp0cl 32464 Closure of a finite sum of...
abliso 32465 The image of an Abelian gr...
lmhmghmd 32466 A module homomorphism is a...
mhmimasplusg 32467 Value of the operation of ...
lmhmimasvsca 32468 Value of the scalar produc...
gsumsubg 32469 The group sum in a subgrou...
gsumsra 32470 The group sum in a subring...
gsummpt2co 32471 Split a finite sum into a ...
gsummpt2d 32472 Express a finite sum over ...
lmodvslmhm 32473 Scalar multiplication in a...
gsumvsmul1 32474 Pull a scalar multiplicati...
gsummptres 32475 Extend a finite group sum ...
gsummptres2 32476 Extend a finite group sum ...
gsumzresunsn 32477 Append an element to a fin...
gsumpart 32478 Express a group sum as a d...
gsumhashmul 32479 Express a group sum by gro...
xrge0tsmsd 32480 Any finite or infinite sum...
xrge0tsmsbi 32481 Any limit of a finite or i...
xrge0tsmseq 32482 Any limit of a finite or i...
cntzun 32483 The centralizer of a union...
cntzsnid 32484 The centralizer of the ide...
cntrcrng 32485 The center of a ring is a ...
isomnd 32490 A (left) ordered monoid is...
isogrp 32491 A (left-)ordered group is ...
ogrpgrp 32492 A left-ordered group is a ...
omndmnd 32493 A left-ordered monoid is a...
omndtos 32494 A left-ordered monoid is a...
omndadd 32495 In an ordered monoid, the ...
omndaddr 32496 In a right ordered monoid,...
omndadd2d 32497 In a commutative left orde...
omndadd2rd 32498 In a left- and right- orde...
submomnd 32499 A submonoid of an ordered ...
xrge0omnd 32500 The nonnegative extended r...
omndmul2 32501 In an ordered monoid, the ...
omndmul3 32502 In an ordered monoid, the ...
omndmul 32503 In a commutative ordered m...
ogrpinv0le 32504 In an ordered group, the o...
ogrpsub 32505 In an ordered group, the o...
ogrpaddlt 32506 In an ordered group, stric...
ogrpaddltbi 32507 In a right ordered group, ...
ogrpaddltrd 32508 In a right ordered group, ...
ogrpaddltrbid 32509 In a right ordered group, ...
ogrpsublt 32510 In an ordered group, stric...
ogrpinv0lt 32511 In an ordered group, the o...
ogrpinvlt 32512 In an ordered group, the o...
gsumle 32513 A finite sum in an ordered...
symgfcoeu 32514 Uniqueness property of per...
symgcom 32515 Two permutations ` X ` and...
symgcom2 32516 Two permutations ` X ` and...
symgcntz 32517 All elements of a (finite)...
odpmco 32518 The composition of two odd...
symgsubg 32519 The value of the group sub...
pmtrprfv2 32520 In a transposition of two ...
pmtrcnel 32521 Composing a permutation ` ...
pmtrcnel2 32522 Variation on ~ pmtrcnel . ...
pmtrcnelor 32523 Composing a permutation ` ...
pmtridf1o 32524 Transpositions of ` X ` an...
pmtridfv1 32525 Value at X of the transpos...
pmtridfv2 32526 Value at Y of the transpos...
psgnid 32527 Permutation sign of the id...
psgndmfi 32528 For a finite base set, the...
pmtrto1cl 32529 Useful lemma for the follo...
psgnfzto1stlem 32530 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 32531 Value of our permutation `...
fzto1st1 32532 Special case where the per...
fzto1st 32533 The function moving one el...
fzto1stinvn 32534 Value of the inverse of ou...
psgnfzto1st 32535 The permutation sign for m...
tocycval 32538 Value of the cycle builder...
tocycfv 32539 Function value of a permut...
tocycfvres1 32540 A cyclic permutation is a ...
tocycfvres2 32541 A cyclic permutation is th...
cycpmfvlem 32542 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 32543 Value of a cycle function ...
cycpmfv2 32544 Value of a cycle function ...
cycpmfv3 32545 Values outside of the orbi...
cycpmcl 32546 Cyclic permutations are pe...
tocycf 32547 The permutation cycle buil...
tocyc01 32548 Permutation cycles built f...
cycpm2tr 32549 A cyclic permutation of 2 ...
cycpm2cl 32550 Closure for the 2-cycles. ...
cyc2fv1 32551 Function value of a 2-cycl...
cyc2fv2 32552 Function value of a 2-cycl...
trsp2cyc 32553 Exhibit the word a transpo...
cycpmco2f1 32554 The word U used in ~ cycpm...
cycpmco2rn 32555 The orbit of the compositi...
cycpmco2lem1 32556 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 32557 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 32558 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 32559 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 32560 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 32561 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 32562 Lemma for ~ cycpmco2 . (C...
cycpmco2 32563 The composition of a cycli...
cyc2fvx 32564 Function value of a 2-cycl...
cycpm3cl 32565 Closure of the 3-cycles in...
cycpm3cl2 32566 Closure of the 3-cycles in...
cyc3fv1 32567 Function value of a 3-cycl...
cyc3fv2 32568 Function value of a 3-cycl...
cyc3fv3 32569 Function value of a 3-cycl...
cyc3co2 32570 Represent a 3-cycle as a c...
cycpmconjvlem 32571 Lemma for ~ cycpmconjv . ...
cycpmconjv 32572 A formula for computing co...
cycpmrn 32573 The range of the word used...
tocyccntz 32574 All elements of a (finite)...
evpmval 32575 Value of the set of even p...
cnmsgn0g 32576 The neutral element of the...
evpmsubg 32577 The alternating group is a...
evpmid 32578 The identity is an even pe...
altgnsg 32579 The alternating group ` ( ...
cyc3evpm 32580 3-Cycles are even permutat...
cyc3genpmlem 32581 Lemma for ~ cyc3genpm . (...
cyc3genpm 32582 The alternating group ` A ...
cycpmgcl 32583 Cyclic permutations are pe...
cycpmconjslem1 32584 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 32585 Lemma for ~ cycpmconjs . ...
cycpmconjs 32586 All cycles of the same len...
cyc3conja 32587 All 3-cycles are conjugate...
sgnsv 32590 The sign mapping. (Contri...
sgnsval 32591 The sign value. (Contribu...
sgnsf 32592 The sign function. (Contr...
inftmrel 32597 The infinitesimal relation...
isinftm 32598 Express ` x ` is infinites...
isarchi 32599 Express the predicate " ` ...
pnfinf 32600 Plus infinity is an infini...
xrnarchi 32601 The completed real line is...
isarchi2 32602 Alternative way to express...
submarchi 32603 A submonoid is archimedean...
isarchi3 32604 This is the usual definiti...
archirng 32605 Property of Archimedean or...
archirngz 32606 Property of Archimedean le...
archiexdiv 32607 In an Archimedean group, g...
archiabllem1a 32608 Lemma for ~ archiabl : In...
archiabllem1b 32609 Lemma for ~ archiabl . (C...
archiabllem1 32610 Archimedean ordered groups...
archiabllem2a 32611 Lemma for ~ archiabl , whi...
archiabllem2c 32612 Lemma for ~ archiabl . (C...
archiabllem2b 32613 Lemma for ~ archiabl . (C...
archiabllem2 32614 Archimedean ordered groups...
archiabl 32615 Archimedean left- and righ...
isslmd 32618 The predicate "is a semimo...
slmdlema 32619 Lemma for properties of a ...
lmodslmd 32620 Left semimodules generaliz...
slmdcmn 32621 A semimodule is a commutat...
slmdmnd 32622 A semimodule is a monoid. ...
slmdsrg 32623 The scalar component of a ...
slmdbn0 32624 The base set of a semimodu...
slmdacl 32625 Closure of ring addition f...
slmdmcl 32626 Closure of ring multiplica...
slmdsn0 32627 The set of scalars in a se...
slmdvacl 32628 Closure of vector addition...
slmdass 32629 Semiring left module vecto...
slmdvscl 32630 Closure of scalar product ...
slmdvsdi 32631 Distributive law for scala...
slmdvsdir 32632 Distributive law for scala...
slmdvsass 32633 Associative law for scalar...
slmd0cl 32634 The ring zero in a semimod...
slmd1cl 32635 The ring unity in a semiri...
slmdvs1 32636 Scalar product with ring u...
slmd0vcl 32637 The zero vector is a vecto...
slmd0vlid 32638 Left identity law for the ...
slmd0vrid 32639 Right identity law for the...
slmd0vs 32640 Zero times a vector is the...
slmdvs0 32641 Anything times the zero ve...
gsumvsca1 32642 Scalar product of a finite...
gsumvsca2 32643 Scalar product of a finite...
prmsimpcyc 32644 A group of prime order is ...
idomdomd 32645 An integral domain is a do...
idomringd 32646 An integral domain is a ri...
domnlcan 32647 Left-cancellation law for ...
idomrcan 32648 Right-cancellation law for...
urpropd 32649 Sufficient condition for r...
0ringsubrg 32650 A subring of a zero ring i...
dvdschrmulg 32651 In a ring, any multiple of...
freshmansdream 32652 For a prime number ` P ` ,...
frobrhm 32653 In a commutative ring with...
ress1r 32654 ` 1r ` is unaffected by re...
ringinvval 32655 The ring inverse expressed...
dvrcan5 32656 Cancellation law for commo...
subrgchr 32657 If ` A ` is a subring of `...
rmfsupp2 32658 A mapping of a multiplicat...
eufndx 32661 Index value of the Euclide...
eufid 32662 Utility theorem: index-ind...
ringinveu 32665 If a ring unit element ` X...
isdrng4 32666 A division ring is a ring ...
rndrhmcl 32667 The image of a division ri...
sdrgdvcl 32668 A sub-division-ring is clo...
sdrginvcl 32669 A sub-division-ring is clo...
primefldchr 32670 The characteristic of a pr...
fldgenval 32673 Value of the field generat...
fldgenssid 32674 The field generated by a s...
fldgensdrg 32675 A generated subfield is a ...
fldgenssv 32676 A generated subfield is a ...
fldgenss 32677 Generated subfields preser...
fldgenidfld 32678 The subfield generated by ...
fldgenssp 32679 The field generated by a s...
fldgenid 32680 The subfield of a field ` ...
fldgenfld 32681 A generated subfield is a ...
primefldgen1 32682 The prime field of a divis...
1fldgenq 32683 The field of rational numb...
isorng 32688 An ordered ring is a ring ...
orngring 32689 An ordered ring is a ring....
orngogrp 32690 An ordered ring is an orde...
isofld 32691 An ordered field is a fiel...
orngmul 32692 In an ordered ring, the or...
orngsqr 32693 In an ordered ring, all sq...
ornglmulle 32694 In an ordered ring, multip...
orngrmulle 32695 In an ordered ring, multip...
ornglmullt 32696 In an ordered ring, multip...
orngrmullt 32697 In an ordered ring, multip...
orngmullt 32698 In an ordered ring, the st...
ofldfld 32699 An ordered field is a fiel...
ofldtos 32700 An ordered field is a tota...
orng0le1 32701 In an ordered ring, the ri...
ofldlt1 32702 In an ordered field, the r...
ofldchr 32703 The characteristic of an o...
suborng 32704 Every subring of an ordere...
subofld 32705 Every subfield of an order...
isarchiofld 32706 Axiom of Archimedes : a ch...
rhmdvd 32707 A ring homomorphism preser...
kerunit 32708 If a unit element lies in ...
reldmresv 32711 The scalar restriction is ...
resvval 32712 Value of structure restric...
resvid2 32713 General behavior of trivia...
resvval2 32714 Value of nontrivial struct...
resvsca 32715 Base set of a structure re...
resvlem 32716 Other elements of a scalar...
resvlemOLD 32717 Obsolete version of ~ resv...
resvbas 32718 ` Base ` is unaffected by ...
resvbasOLD 32719 Obsolete proof of ~ resvba...
resvplusg 32720 ` +g ` is unaffected by sc...
resvplusgOLD 32721 Obsolete proof of ~ resvpl...
resvvsca 32722 ` .s ` is unaffected by sc...
resvvscaOLD 32723 Obsolete proof of ~ resvvs...
resvmulr 32724 ` .r ` is unaffected by sc...
resvmulrOLD 32725 Obsolete proof of ~ resvmu...
resv0g 32726 ` 0g ` is unaffected by sc...
resv1r 32727 ` 1r ` is unaffected by sc...
resvcmn 32728 Scalar restriction preserv...
gzcrng 32729 The gaussian integers form...
reofld 32730 The real numbers form an o...
nn0omnd 32731 The nonnegative integers f...
rearchi 32732 The field of the real numb...
nn0archi 32733 The monoid of the nonnegat...
xrge0slmod 32734 The extended nonnegative r...
qusker 32735 The kernel of a quotient m...
eqgvscpbl 32736 The left coset equivalence...
qusvscpbl 32737 The quotient map distribut...
qusvsval 32738 Value of the scalar multip...
imaslmod 32739 The image structure of a l...
imasmhm 32740 Given a function ` F ` wit...
imasghm 32741 Given a function ` F ` wit...
imasrhm 32742 Given a function ` F ` wit...
imaslmhm 32743 Given a function ` F ` wit...
quslmod 32744 If ` G ` is a submodule in...
quslmhm 32745 If ` G ` is a submodule of...
quslvec 32746 If ` S ` is a vector subsp...
ecxpid 32747 The equivalence class of a...
eqg0el 32748 Equivalence class of a quo...
qsxpid 32749 The quotient set of a cart...
qusxpid 32750 The Group quotient equival...
qustriv 32751 The quotient of a group ` ...
qustrivr 32752 Converse of ~ qustriv . (...
fermltlchr 32753 A generalization of Fermat...
znfermltl 32754 Fermat's little theorem in...
islinds5 32755 A set is linearly independ...
ellspds 32756 Variation on ~ ellspd . (...
0ellsp 32757 Zero is in all spans. (Co...
0nellinds 32758 The group identity cannot ...
rspsnel 32759 Membership in a principal ...
rspsnid 32760 A principal ideal contains...
elrsp 32761 Write the elements of a ri...
rspidlid 32762 The ideal span of an ideal...
pidlnz 32763 A principal ideal generate...
dvdsruassoi 32764 If two elements ` X ` and ...
dvdsruasso 32765 Two elements ` X ` and ` Y...
dvdsrspss 32766 In a ring, an element ` X ...
rspsnasso 32767 Two elements ` X ` and ` Y...
lbslsp 32768 Any element of a left modu...
lindssn 32769 Any singleton of a nonzero...
lindflbs 32770 Conditions for an independ...
islbs5 32771 An equivalent formulation ...
linds2eq 32772 Deduce equality of element...
lindfpropd 32773 Property deduction for lin...
lindspropd 32774 Property deduction for lin...
elgrplsmsn 32775 Membership in a sumset wit...
lsmsnorb 32776 The sumset of a group with...
lsmsnorb2 32777 The sumset of a single ele...
elringlsm 32778 Membership in a product of...
elringlsmd 32779 Membership in a product of...
ringlsmss 32780 Closure of the product of ...
ringlsmss1 32781 The product of an ideal ` ...
ringlsmss2 32782 The product with an ideal ...
lsmsnpridl 32783 The product of the ring wi...
lsmsnidl 32784 The product of the ring wi...
lsmidllsp 32785 The sum of two ideals is t...
lsmidl 32786 The sum of two ideals is a...
lsmssass 32787 Group sum is associative, ...
grplsm0l 32788 Sumset with the identity s...
grplsmid 32789 The direct sum of an eleme...
qusmul 32790 Value of the ring operatio...
quslsm 32791 Express the image by the q...
qusbas2 32792 Alternate definition of th...
qus0g 32793 The identity element of a ...
qusima 32794 The image of a subgroup by...
qusrn 32795 The natural map from eleme...
nsgqus0 32796 A normal subgroup ` N ` is...
nsgmgclem 32797 Lemma for ~ nsgmgc . (Con...
nsgmgc 32798 There is a monotone Galois...
nsgqusf1olem1 32799 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 32800 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 32801 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 32802 The canonical projection h...
ghmquskerlem1 32803 Lemma for ~ ghmqusker (Con...
ghmquskerco 32804 In the case of theorem ~ g...
ghmquskerlem2 32805 Lemma for ~ ghmqusker . (...
ghmquskerlem3 32806 The mapping ` H ` induced ...
ghmqusker 32807 A surjective group homomor...
gicqusker 32808 The image ` H ` of a group...
lmhmqusker 32809 A surjective module homomo...
lmicqusker 32810 The image ` H ` of a modul...
intlidl 32811 The intersection of a none...
rhmpreimaidl 32812 The preimage of an ideal b...
kerlidl 32813 The kernel of a ring homom...
0ringidl 32814 The zero ideal is the only...
pidlnzb 32815 A principal ideal is nonze...
lidlunitel 32816 If an ideal ` I ` contains...
unitpidl1 32817 The ideal ` I ` generated ...
rhmquskerlem 32818 The mapping ` J ` induced ...
rhmqusker 32819 A surjective ring homomorp...
ricqusker 32820 The image ` H ` of a ring ...
elrspunidl 32821 Elementhood in the span of...
elrspunsn 32822 Membership to the span of ...
lidlincl 32823 Ideals are closed under in...
idlinsubrg 32824 The intersection between a...
rhmimaidl 32825 The image of an ideal ` I ...
drngidl 32826 A nonzero ring is a divisi...
drngidlhash 32827 A ring is a division ring ...
prmidlval 32830 The class of prime ideals ...
isprmidl 32831 The predicate "is a prime ...
prmidlnr 32832 A prime ideal is a proper ...
prmidl 32833 The main property of a pri...
prmidl2 32834 A condition that shows an ...
idlmulssprm 32835 Let ` P ` be a prime ideal...
pridln1 32836 A proper ideal cannot cont...
prmidlidl 32837 A prime ideal is an ideal....
prmidlssidl 32838 Prime ideals as a subset o...
lidlnsg 32839 An ideal is a normal subgr...
cringm4 32840 Commutative/associative la...
isprmidlc 32841 The predicate "is prime id...
prmidlc 32842 Property of a prime ideal ...
0ringprmidl 32843 The trivial ring does not ...
prmidl0 32844 The zero ideal of a commut...
rhmpreimaprmidl 32845 The preimage of a prime id...
qsidomlem1 32846 If the quotient ring of a ...
qsidomlem2 32847 A quotient by a prime idea...
qsidom 32848 An ideal ` I ` in the comm...
qsnzr 32849 A quotient of a non-zero r...
mxidlval 32852 The set of maximal ideals ...
ismxidl 32853 The predicate "is a maxima...
mxidlidl 32854 A maximal ideal is an idea...
mxidlnr 32855 A maximal ideal is proper....
mxidlmax 32856 A maximal ideal is a maxim...
mxidln1 32857 One is not contained in an...
mxidlnzr 32858 A ring with a maximal idea...
mxidlmaxv 32859 An ideal ` I ` strictly co...
crngmxidl 32860 In a commutative ring, max...
mxidlprm 32861 Every maximal ideal is pri...
mxidlirredi 32862 In an integral domain, the...
mxidlirred 32863 In a principal ideal domai...
ssmxidllem 32864 The set ` P ` used in the ...
ssmxidl 32865 Let ` R ` be a ring, and l...
drnglidl1ne0 32866 In a nonzero ring, the zer...
drng0mxidl 32867 In a division ring, the ze...
drngmxidl 32868 The zero ideal is the only...
krull 32869 Krull's theorem: Any nonz...
mxidlnzrb 32870 A ring is nonzero if and o...
opprabs 32871 The opposite ring of the o...
oppreqg 32872 Group coset equivalence re...
opprnsg 32873 Normal subgroups of the op...
opprlidlabs 32874 The ideals of the opposite...
oppr2idl 32875 Two sided ideal of the opp...
opprmxidlabs 32876 The maximal ideal of the o...
opprqusbas 32877 The base of the quotient o...
opprqusplusg 32878 The group operation of the...
opprqus0g 32879 The group identity element...
opprqusmulr 32880 The multiplication operati...
opprqus1r 32881 The ring unity of the quot...
opprqusdrng 32882 The quotient of the opposi...
qsdrngilem 32883 Lemma for ~ qsdrngi . (Co...
qsdrngi 32884 A quotient by a maximal le...
qsdrnglem2 32885 Lemma for ~ qsdrng . (Con...
qsdrng 32886 An ideal ` M ` is both lef...
qsfld 32887 An ideal ` M ` in the comm...
mxidlprmALT 32888 Every maximal ideal is pri...
idlsrgstr 32891 A constructed semiring of ...
idlsrgval 32892 Lemma for ~ idlsrgbas thro...
idlsrgbas 32893 Base of the ideals of a ri...
idlsrgplusg 32894 Additive operation of the ...
idlsrg0g 32895 The zero ideal is the addi...
idlsrgmulr 32896 Multiplicative operation o...
idlsrgtset 32897 Topology component of the ...
idlsrgmulrval 32898 Value of the ring multipli...
idlsrgmulrcl 32899 Ideals of a ring ` R ` are...
idlsrgmulrss1 32900 In a commutative ring, the...
idlsrgmulrss2 32901 The product of two ideals ...
idlsrgmulrssin 32902 In a commutative ring, the...
idlsrgmnd 32903 The ideals of a ring form ...
idlsrgcmnd 32904 The ideals of a ring form ...
isufd 32907 The property of being a Un...
rprmval 32908 The prime elements of a ri...
isrprm 32909 Property for ` P ` to be a...
asclmulg 32910 Apply group multiplication...
0ringmon1p 32911 There are no monic polynom...
fply1 32912 Conditions for a function ...
ply1lvec 32913 In a division ring, the un...
ply1scleq 32914 Equality of a constant pol...
evls1fn 32915 Functionality of the subri...
evls1dm 32916 The domain of the subring ...
evls1fvf 32917 The subring evaluation fun...
evls1scafv 32918 Value of the univariate po...
evls1expd 32919 Univariate polynomial eval...
evls1varpwval 32920 Univariate polynomial eval...
evls1fpws 32921 Evaluation of a univariate...
ressply1evl 32922 Evaluation of a univariate...
evls1addd 32923 Univariate polynomial eval...
evls1muld 32924 Univariate polynomial eval...
evls1vsca 32925 Univariate polynomial eval...
ressdeg1 32926 The degree of a univariate...
ply1ascl0 32927 The zero scalar as a polyn...
ply1ascl1 32928 The multiplicative unit sc...
ply1asclunit 32929 A non-zero scalar polynomi...
deg1le0eq0 32930 A polynomial with nonposit...
ressply10g 32931 A restricted polynomial al...
ressply1mon1p 32932 The monic polynomials of a...
ressply1invg 32933 An element of a restricted...
ressply1sub 32934 A restricted polynomial al...
asclply1subcl 32935 Closure of the algebra sca...
ply1chr 32936 The characteristic of a po...
ply1fermltlchr 32937 Fermat's little theorem fo...
ply1fermltl 32938 Fermat's little theorem fo...
coe1mon 32939 Coefficient vector of a mo...
ply1moneq 32940 Two monomials are equal if...
ply1degltel 32941 Characterize elementhood i...
ply1degleel 32942 Characterize elementhood i...
ply1degltlss 32943 The space ` S ` of the uni...
gsummoncoe1fzo 32944 A coefficient of the polyn...
ply1gsumz 32945 If a polynomial given as a...
deg1addlt 32946 If both factors have degre...
ig1pnunit 32947 The polynomial ideal gener...
ig1pmindeg 32948 The polynomial ideal gener...
q1pdir 32949 Distribution of univariate...
q1pvsca 32950 Scalar multiplication prop...
r1pvsca 32951 Scalar multiplication prop...
r1p0 32952 Polynomial remainder opera...
r1pcyc 32953 The polynomial remainder o...
r1padd1 32954 Addition property of the p...
r1pid2 32955 Identity law for polynomia...
r1plmhm 32956 The univariate polynomial ...
r1pquslmic 32957 The univariate polynomial ...
sra1r 32958 The unity element of a sub...
sradrng 32959 Condition for a subring al...
srasubrg 32960 A subring of the original ...
sralvec 32961 Given a sub division ring ...
srafldlvec 32962 Given a subfield ` F ` of ...
resssra 32963 The subring algebra of a r...
lsssra 32964 A subring is a subspace of...
drgext0g 32965 The additive neutral eleme...
drgextvsca 32966 The scalar multiplication ...
drgext0gsca 32967 The additive neutral eleme...
drgextsubrg 32968 The scalar field is a subr...
drgextlsp 32969 The scalar field is a subs...
drgextgsum 32970 Group sum in a division ri...
lvecdimfi 32971 Finite version of ~ lvecdi...
dimval 32974 The dimension of a vector ...
dimvalfi 32975 The dimension of a vector ...
dimcl 32976 Closure of the vector spac...
lmimdim 32977 Module isomorphisms preser...
lmicdim 32978 Module isomorphisms preser...
lvecdim0i 32979 A vector space of dimensio...
lvecdim0 32980 A vector space of dimensio...
lssdimle 32981 The dimension of a linear ...
dimpropd 32982 If two structures have the...
rlmdim 32983 The left vector space indu...
rgmoddimOLD 32984 Obsolete version of ~ rlmd...
frlmdim 32985 Dimension of a free left m...
tnglvec 32986 Augmenting a structure wit...
tngdim 32987 Dimension of a left vector...
rrxdim 32988 Dimension of the generaliz...
matdim 32989 Dimension of the space of ...
lbslsat 32990 A nonzero vector ` X ` is ...
lsatdim 32991 A line, spanned by a nonze...
drngdimgt0 32992 The dimension of a vector ...
lmhmlvec2 32993 A homomorphism of left vec...
kerlmhm 32994 The kernel of a vector spa...
imlmhm 32995 The image of a vector spac...
ply1degltdimlem 32996 Lemma for ~ ply1degltdim ....
ply1degltdim 32997 The space ` S ` of the uni...
lindsunlem 32998 Lemma for ~ lindsun . (Co...
lindsun 32999 Condition for the union of...
lbsdiflsp0 33000 The linear spans of two di...
dimkerim 33001 Given a linear map ` F ` b...
qusdimsum 33002 Let ` W ` be a vector spac...
fedgmullem1 33003 Lemma for ~ fedgmul . (Co...
fedgmullem2 33004 Lemma for ~ fedgmul . (Co...
fedgmul 33005 The multiplicativity formu...
relfldext 33014 The field extension is a r...
brfldext 33015 The field extension relati...
ccfldextrr 33016 The field of the complex n...
fldextfld1 33017 A field extension is only ...
fldextfld2 33018 A field extension is only ...
fldextsubrg 33019 Field extension implies a ...
fldextress 33020 Field extension implies a ...
brfinext 33021 The finite field extension...
extdgval 33022 Value of the field extensi...
fldextsralvec 33023 The subring algebra associ...
extdgcl 33024 Closure of the field exten...
extdggt0 33025 Degrees of field extension...
fldexttr 33026 Field extension is a trans...
fldextid 33027 The field extension relati...
extdgid 33028 A trivial field extension ...
extdgmul 33029 The multiplicativity formu...
finexttrb 33030 The extension ` E ` of ` K...
extdg1id 33031 If the degree of the exten...
extdg1b 33032 The degree of the extensio...
fldextchr 33033 The characteristic of a su...
evls1fldgencl 33034 Closure of the subring pol...
ccfldsrarelvec 33035 The subring algebra of the...
ccfldextdgrr 33036 The degree of the field ex...
irngval 33039 The elements of a field ` ...
elirng 33040 Property for an element ` ...
irngss 33041 All elements of a subring ...
irngssv 33042 An integral element is an ...
0ringirng 33043 A zero ring ` R ` has no i...
irngnzply1lem 33044 In the case of a field ` E...
irngnzply1 33045 In the case of a field ` E...
evls1fvcl 33048 Variant of ~ fveval1fvcl f...
evls1maprhm 33049 The function ` F ` mapping...
evls1maplmhm 33050 The function ` F ` mapping...
evls1maprnss 33051 The function ` F ` mapping...
ply1annidllem 33052 Write the set ` Q ` of pol...
ply1annidl 33053 The set ` Q ` of polynomia...
ply1annnr 33054 The set ` Q ` of polynomia...
ply1annig1p 33055 The ideal ` Q ` of polynom...
minplyval 33056 Expand the value of the mi...
minplycl 33057 The minimal polynomial is ...
ply1annprmidl 33058 The set ` Q ` of polynomia...
minplyirredlem 33059 Lemma for ~ minplyirred . ...
minplyirred 33060 A nonzero minimal polynomi...
irngnminplynz 33061 Integral elements have non...
minplym1p 33062 A minimal polynomial is mo...
algextdeglem1 33063 Lemma for ~ algextdeg . (...
algextdeglem2 33064 Lemma for ~ algextdeg . (...
algextdeglem3 33065 Lemma for ~ algextdeg . (...
algextdeglem4 33066 Lemma for ~ algextdeg . (...
algextdeglem5 33067 Lemma for ~ algextdeg . (...
algextdeglem6 33068 Lemma for ~ algextdeg . (...
algextdeglem7 33069 Lemma for ~ algextdeg . (...
algextdeglem8 33070 Lemma for ~ algextdeg . (...
algextdeg 33071 The degree of an algebraic...
smatfval 33074 Value of the submatrix. (...
smatrcl 33075 Closure of the rectangular...
smatlem 33076 Lemma for the next theorem...
smattl 33077 Entries of a submatrix, to...
smattr 33078 Entries of a submatrix, to...
smatbl 33079 Entries of a submatrix, bo...
smatbr 33080 Entries of a submatrix, bo...
smatcl 33081 Closure of the square subm...
matmpo 33082 Write a square matrix as a...
1smat1 33083 The submatrix of the ident...
submat1n 33084 One case where the submatr...
submatres 33085 Special case where the sub...
submateqlem1 33086 Lemma for ~ submateq . (C...
submateqlem2 33087 Lemma for ~ submateq . (C...
submateq 33088 Sufficient condition for t...
submatminr1 33089 If we take a submatrix by ...
lmatval 33092 Value of the literal matri...
lmatfval 33093 Entries of a literal matri...
lmatfvlem 33094 Useful lemma to extract li...
lmatcl 33095 Closure of the literal mat...
lmat22lem 33096 Lemma for ~ lmat22e11 and ...
lmat22e11 33097 Entry of a 2x2 literal mat...
lmat22e12 33098 Entry of a 2x2 literal mat...
lmat22e21 33099 Entry of a 2x2 literal mat...
lmat22e22 33100 Entry of a 2x2 literal mat...
lmat22det 33101 The determinant of a liter...
mdetpmtr1 33102 The determinant of a matri...
mdetpmtr2 33103 The determinant of a matri...
mdetpmtr12 33104 The determinant of a matri...
mdetlap1 33105 A Laplace expansion of the...
madjusmdetlem1 33106 Lemma for ~ madjusmdet . ...
madjusmdetlem2 33107 Lemma for ~ madjusmdet . ...
madjusmdetlem3 33108 Lemma for ~ madjusmdet . ...
madjusmdetlem4 33109 Lemma for ~ madjusmdet . ...
madjusmdet 33110 Express the cofactor of th...
mdetlap 33111 Laplace expansion of the d...
ist0cld 33112 The predicate "is a T_0 sp...
txomap 33113 Given two open maps ` F ` ...
qtopt1 33114 If every equivalence class...
qtophaus 33115 If an open map's graph in ...
circtopn 33116 The topology of the unit c...
circcn 33117 The function gluing the re...
reff 33118 For any cover refinement, ...
locfinreflem 33119 A locally finite refinemen...
locfinref 33120 A locally finite refinemen...
iscref 33123 The property that every op...
crefeq 33124 Equality theorem for the "...
creftop 33125 A space where every open c...
crefi 33126 The property that every op...
crefdf 33127 A formulation of ~ crefi e...
crefss 33128 The "every open cover has ...
cmpcref 33129 Equivalent definition of c...
cmpfiref 33130 Every open cover of a Comp...
ldlfcntref 33133 Every open cover of a Lind...
ispcmp 33136 The predicate "is a paraco...
cmppcmp 33137 Every compact space is par...
dispcmp 33138 Every discrete space is pa...
pcmplfin 33139 Given a paracompact topolo...
pcmplfinf 33140 Given a paracompact topolo...
rspecval 33143 Value of the spectrum of t...
rspecbas 33144 The prime ideals form the ...
rspectset 33145 Topology component of the ...
rspectopn 33146 The topology component of ...
zarcls0 33147 The closure of the identit...
zarcls1 33148 The unit ideal ` B ` is th...
zarclsun 33149 The union of two closed se...
zarclsiin 33150 In a Zariski topology, the...
zarclsint 33151 The intersection of a fami...
zarclssn 33152 The closed points of Zaris...
zarcls 33153 The open sets of the Zaris...
zartopn 33154 The Zariski topology is a ...
zartop 33155 The Zariski topology is a ...
zartopon 33156 The points of the Zariski ...
zar0ring 33157 The Zariski Topology of th...
zart0 33158 The Zariski topology is T_...
zarmxt1 33159 The Zariski topology restr...
zarcmplem 33160 Lemma for ~ zarcmp . (Con...
zarcmp 33161 The Zariski topology is co...
rspectps 33162 The spectrum of a ring ` R...
rhmpreimacnlem 33163 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 33164 The function mapping a pri...
metidval 33169 Value of the metric identi...
metidss 33170 As a relation, the metric ...
metidv 33171 ` A ` and ` B ` identify b...
metideq 33172 Basic property of the metr...
metider 33173 The metric identification ...
pstmval 33174 Value of the metric induce...
pstmfval 33175 Function value of the metr...
pstmxmet 33176 The metric induced by a ps...
hauseqcn 33177 In a Hausdorff topology, t...
elunitge0 33178 An element of the closed u...
unitssxrge0 33179 The closed unit interval i...
unitdivcld 33180 Necessary conditions for a...
iistmd 33181 The closed unit interval f...
unicls 33182 The union of the closed se...
tpr2tp 33183 The usual topology on ` ( ...
tpr2uni 33184 The usual topology on ` ( ...
xpinpreima 33185 Rewrite the cartesian prod...
xpinpreima2 33186 Rewrite the cartesian prod...
sqsscirc1 33187 The complex square of side...
sqsscirc2 33188 The complex square of side...
cnre2csqlem 33189 Lemma for ~ cnre2csqima . ...
cnre2csqima 33190 Image of a centered square...
tpr2rico 33191 For any point of an open s...
cnvordtrestixx 33192 The restriction of the 'gr...
prsdm 33193 Domain of the relation of ...
prsrn 33194 Range of the relation of a...
prsss 33195 Relation of a subproset. ...
prsssdm 33196 Domain of a subproset rela...
ordtprsval 33197 Value of the order topolog...
ordtprsuni 33198 Value of the order topolog...
ordtcnvNEW 33199 The order dual generates t...
ordtrestNEW 33200 The subspace topology of a...
ordtrest2NEWlem 33201 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 33202 An interval-closed set ` A...
ordtconnlem1 33203 Connectedness in the order...
ordtconn 33204 Connectedness in the order...
mndpluscn 33205 A mapping that is both a h...
mhmhmeotmd 33206 Deduce a Topological Monoi...
rmulccn 33207 Multiplication by a real c...
raddcn 33208 Addition in the real numbe...
xrmulc1cn 33209 The operation multiplying ...
fmcncfil 33210 The image of a Cauchy filt...
xrge0hmph 33211 The extended nonnegative r...
xrge0iifcnv 33212 Define a bijection from ` ...
xrge0iifcv 33213 The defined function's val...
xrge0iifiso 33214 The defined bijection from...
xrge0iifhmeo 33215 Expose a homeomorphism fro...
xrge0iifhom 33216 The defined function from ...
xrge0iif1 33217 Condition for the defined ...
xrge0iifmhm 33218 The defined function from ...
xrge0pluscn 33219 The addition operation of ...
xrge0mulc1cn 33220 The operation multiplying ...
xrge0tps 33221 The extended nonnegative r...
xrge0topn 33222 The topology of the extend...
xrge0haus 33223 The topology of the extend...
xrge0tmd 33224 The extended nonnegative r...
xrge0tmdALT 33225 Alternate proof of ~ xrge0...
lmlim 33226 Relate a limit in a given ...
lmlimxrge0 33227 Relate a limit in the nonn...
rge0scvg 33228 Implication of convergence...
fsumcvg4 33229 A serie with finite suppor...
pnfneige0 33230 A neighborhood of ` +oo ` ...
lmxrge0 33231 Express "sequence ` F ` co...
lmdvg 33232 If a monotonic sequence of...
lmdvglim 33233 If a monotonic real number...
pl1cn 33234 A univariate polynomial is...
zringnm 33237 The norm (function) for a ...
zzsnm 33238 The norm of the ring of th...
zlm0 33239 Zero of a ` ZZ ` -module. ...
zlm1 33240 Unity element of a ` ZZ ` ...
zlmds 33241 Distance in a ` ZZ ` -modu...
zlmdsOLD 33242 Obsolete proof of ~ zlmds ...
zlmtset 33243 Topology in a ` ZZ ` -modu...
zlmtsetOLD 33244 Obsolete proof of ~ zlmtse...
zlmnm 33245 Norm of a ` ZZ ` -module (...
zhmnrg 33246 The ` ZZ ` -module built f...
nmmulg 33247 The norm of a group produc...
zrhnm 33248 The norm of the image by `...
cnzh 33249 The ` ZZ ` -module of ` CC...
rezh 33250 The ` ZZ ` -module of ` RR...
qqhval 33253 Value of the canonical hom...
zrhf1ker 33254 The kernel of the homomorp...
zrhchr 33255 The kernel of the homomorp...
zrhker 33256 The kernel of the homomorp...
zrhunitpreima 33257 The preimage by ` ZRHom ` ...
elzrhunit 33258 Condition for the image by...
elzdif0 33259 Lemma for ~ qqhval2 . (Co...
qqhval2lem 33260 Lemma for ~ qqhval2 . (Co...
qqhval2 33261 Value of the canonical hom...
qqhvval 33262 Value of the canonical hom...
qqh0 33263 The image of ` 0 ` by the ...
qqh1 33264 The image of ` 1 ` by the ...
qqhf 33265 ` QQHom ` as a function. ...
qqhvq 33266 The image of a quotient by...
qqhghm 33267 The ` QQHom ` homomorphism...
qqhrhm 33268 The ` QQHom ` homomorphism...
qqhnm 33269 The norm of the image by `...
qqhcn 33270 The ` QQHom ` homomorphism...
qqhucn 33271 The ` QQHom ` homomorphism...
rrhval 33275 Value of the canonical hom...
rrhcn 33276 If the topology of ` R ` i...
rrhf 33277 If the topology of ` R ` i...
isrrext 33279 Express the property " ` R...
rrextnrg 33280 An extension of ` RR ` is ...
rrextdrg 33281 An extension of ` RR ` is ...
rrextnlm 33282 The norm of an extension o...
rrextchr 33283 The ring characteristic of...
rrextcusp 33284 An extension of ` RR ` is ...
rrexttps 33285 An extension of ` RR ` is ...
rrexthaus 33286 The topology of an extensi...
rrextust 33287 The uniformity of an exten...
rerrext 33288 The field of the real numb...
cnrrext 33289 The field of the complex n...
qqtopn 33290 The topology of the field ...
rrhfe 33291 If ` R ` is an extension o...
rrhcne 33292 If ` R ` is an extension o...
rrhqima 33293 The ` RRHom ` homomorphism...
rrh0 33294 The image of ` 0 ` by the ...
xrhval 33297 The value of the embedding...
zrhre 33298 The ` ZRHom ` homomorphism...
qqhre 33299 The ` QQHom ` homomorphism...
rrhre 33300 The ` RRHom ` homomorphism...
relmntop 33303 Manifold is a relation. (...
ismntoplly 33304 Property of being a manifo...
ismntop 33305 Property of being a manifo...
nexple 33306 A lower bound for an expon...
indv 33309 Value of the indicator fun...
indval 33310 Value of the indicator fun...
indval2 33311 Alternate value of the ind...
indf 33312 An indicator function as a...
indfval 33313 Value of the indicator fun...
ind1 33314 Value of the indicator fun...
ind0 33315 Value of the indicator fun...
ind1a 33316 Value of the indicator fun...
indpi1 33317 Preimage of the singleton ...
indsum 33318 Finite sum of a product wi...
indsumin 33319 Finite sum of a product wi...
prodindf 33320 The product of indicators ...
indf1o 33321 The bijection between a po...
indpreima 33322 A function with range ` { ...
indf1ofs 33323 The bijection between fini...
esumex 33326 An extended sum is a set b...
esumcl 33327 Closure for extended sum i...
esumeq12dvaf 33328 Equality deduction for ext...
esumeq12dva 33329 Equality deduction for ext...
esumeq12d 33330 Equality deduction for ext...
esumeq1 33331 Equality theorem for an ex...
esumeq1d 33332 Equality theorem for an ex...
esumeq2 33333 Equality theorem for exten...
esumeq2d 33334 Equality deduction for ext...
esumeq2dv 33335 Equality deduction for ext...
esumeq2sdv 33336 Equality deduction for ext...
nfesum1 33337 Bound-variable hypothesis ...
nfesum2 33338 Bound-variable hypothesis ...
cbvesum 33339 Change bound variable in a...
cbvesumv 33340 Change bound variable in a...
esumid 33341 Identify the extended sum ...
esumgsum 33342 A finite extended sum is t...
esumval 33343 Develop the value of the e...
esumel 33344 The extended sum is a limi...
esumnul 33345 Extended sum over the empt...
esum0 33346 Extended sum of zero. (Co...
esumf1o 33347 Re-index an extended sum u...
esumc 33348 Convert from the collectio...
esumrnmpt 33349 Rewrite an extended sum in...
esumsplit 33350 Split an extended sum into...
esummono 33351 Extended sum is monotonic....
esumpad 33352 Extend an extended sum by ...
esumpad2 33353 Remove zeroes from an exte...
esumadd 33354 Addition of infinite sums....
esumle 33355 If all of the terms of an ...
gsumesum 33356 Relate a group sum on ` ( ...
esumlub 33357 The extended sum is the lo...
esumaddf 33358 Addition of infinite sums....
esumlef 33359 If all of the terms of an ...
esumcst 33360 The extended sum of a cons...
esumsnf 33361 The extended sum of a sing...
esumsn 33362 The extended sum of a sing...
esumpr 33363 Extended sum over a pair. ...
esumpr2 33364 Extended sum over a pair, ...
esumrnmpt2 33365 Rewrite an extended sum in...
esumfzf 33366 Formulating a partial exte...
esumfsup 33367 Formulating an extended su...
esumfsupre 33368 Formulating an extended su...
esumss 33369 Change the index set to a ...
esumpinfval 33370 The value of the extended ...
esumpfinvallem 33371 Lemma for ~ esumpfinval . ...
esumpfinval 33372 The value of the extended ...
esumpfinvalf 33373 Same as ~ esumpfinval , mi...
esumpinfsum 33374 The value of the extended ...
esumpcvgval 33375 The value of the extended ...
esumpmono 33376 The partial sums in an ext...
esumcocn 33377 Lemma for ~ esummulc2 and ...
esummulc1 33378 An extended sum multiplied...
esummulc2 33379 An extended sum multiplied...
esumdivc 33380 An extended sum divided by...
hashf2 33381 Lemma for ~ hasheuni . (C...
hasheuni 33382 The cardinality of a disjo...
esumcvg 33383 The sequence of partial su...
esumcvg2 33384 Simpler version of ~ esumc...
esumcvgsum 33385 The value of the extended ...
esumsup 33386 Express an extended sum as...
esumgect 33387 "Send ` n ` to ` +oo ` " i...
esumcvgre 33388 All terms of a converging ...
esum2dlem 33389 Lemma for ~ esum2d (finite...
esum2d 33390 Write a double extended su...
esumiun 33391 Sum over a nonnecessarily ...
ofceq 33394 Equality theorem for funct...
ofcfval 33395 Value of an operation appl...
ofcval 33396 Evaluate a function/consta...
ofcfn 33397 The function operation pro...
ofcfeqd2 33398 Equality theorem for funct...
ofcfval3 33399 General value of ` ( F oFC...
ofcf 33400 The function/constant oper...
ofcfval2 33401 The function operation exp...
ofcfval4 33402 The function/constant oper...
ofcc 33403 Left operation by a consta...
ofcof 33404 Relate function operation ...
sigaex 33407 Lemma for ~ issiga and ~ i...
sigaval 33408 The set of sigma-algebra w...
issiga 33409 An alternative definition ...
isrnsiga 33410 The property of being a si...
0elsiga 33411 A sigma-algebra contains t...
baselsiga 33412 A sigma-algebra contains i...
sigasspw 33413 A sigma-algebra is a set o...
sigaclcu 33414 A sigma-algebra is closed ...
sigaclcuni 33415 A sigma-algebra is closed ...
sigaclfu 33416 A sigma-algebra is closed ...
sigaclcu2 33417 A sigma-algebra is closed ...
sigaclfu2 33418 A sigma-algebra is closed ...
sigaclcu3 33419 A sigma-algebra is closed ...
issgon 33420 Property of being a sigma-...
sgon 33421 A sigma-algebra is a sigma...
elsigass 33422 An element of a sigma-alge...
elrnsiga 33423 Dropping the base informat...
isrnsigau 33424 The property of being a si...
unielsiga 33425 A sigma-algebra contains i...
dmvlsiga 33426 Lebesgue-measurable subset...
pwsiga 33427 Any power set forms a sigm...
prsiga 33428 The smallest possible sigm...
sigaclci 33429 A sigma-algebra is closed ...
difelsiga 33430 A sigma-algebra is closed ...
unelsiga 33431 A sigma-algebra is closed ...
inelsiga 33432 A sigma-algebra is closed ...
sigainb 33433 Building a sigma-algebra f...
insiga 33434 The intersection of a coll...
sigagenval 33437 Value of the generated sig...
sigagensiga 33438 A generated sigma-algebra ...
sgsiga 33439 A generated sigma-algebra ...
unisg 33440 The sigma-algebra generate...
dmsigagen 33441 A sigma-algebra can be gen...
sssigagen 33442 A set is a subset of the s...
sssigagen2 33443 A subset of the generating...
elsigagen 33444 Any element of a set is al...
elsigagen2 33445 Any countable union of ele...
sigagenss 33446 The generated sigma-algebr...
sigagenss2 33447 Sufficient condition for i...
sigagenid 33448 The sigma-algebra generate...
ispisys 33449 The property of being a pi...
ispisys2 33450 The property of being a pi...
inelpisys 33451 Pi-systems are closed unde...
sigapisys 33452 All sigma-algebras are pi-...
isldsys 33453 The property of being a la...
pwldsys 33454 The power set of the unive...
unelldsys 33455 Lambda-systems are closed ...
sigaldsys 33456 All sigma-algebras are lam...
ldsysgenld 33457 The intersection of all la...
sigapildsyslem 33458 Lemma for ~ sigapildsys . ...
sigapildsys 33459 Sigma-algebra are exactly ...
ldgenpisyslem1 33460 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 33461 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 33462 Lemma for ~ ldgenpisys . ...
ldgenpisys 33463 The lambda system ` E ` ge...
dynkin 33464 Dynkin's lambda-pi theorem...
isros 33465 The property of being a ri...
rossspw 33466 A ring of sets is a collec...
0elros 33467 A ring of sets contains th...
unelros 33468 A ring of sets is closed u...
difelros 33469 A ring of sets is closed u...
inelros 33470 A ring of sets is closed u...
fiunelros 33471 A ring of sets is closed u...
issros 33472 The property of being a se...
srossspw 33473 A semiring of sets is a co...
0elsros 33474 A semiring of sets contain...
inelsros 33475 A semiring of sets is clos...
diffiunisros 33476 In semiring of sets, compl...
rossros 33477 Rings of sets are semiring...
brsiga 33480 The Borel Algebra on real ...
brsigarn 33481 The Borel Algebra is a sig...
brsigasspwrn 33482 The Borel Algebra is a set...
unibrsiga 33483 The union of the Borel Alg...
cldssbrsiga 33484 A Borel Algebra contains a...
sxval 33487 Value of the product sigma...
sxsiga 33488 A product sigma-algebra is...
sxsigon 33489 A product sigma-algebra is...
sxuni 33490 The base set of a product ...
elsx 33491 The cartesian product of t...
measbase 33494 The base set of a measure ...
measval 33495 The value of the ` measure...
ismeas 33496 The property of being a me...
isrnmeas 33497 The property of being a me...
dmmeas 33498 The domain of a measure is...
measbasedom 33499 The base set of a measure ...
measfrge0 33500 A measure is a function ov...
measfn 33501 A measure is a function on...
measvxrge0 33502 The values of a measure ar...
measvnul 33503 The measure of the empty s...
measge0 33504 A measure is nonnegative. ...
measle0 33505 If the measure of a given ...
measvun 33506 The measure of a countable...
measxun2 33507 The measure the union of t...
measun 33508 The measure the union of t...
measvunilem 33509 Lemma for ~ measvuni . (C...
measvunilem0 33510 Lemma for ~ measvuni . (C...
measvuni 33511 The measure of a countable...
measssd 33512 A measure is monotone with...
measunl 33513 A measure is sub-additive ...
measiuns 33514 The measure of the union o...
measiun 33515 A measure is sub-additive....
meascnbl 33516 A measure is continuous fr...
measinblem 33517 Lemma for ~ measinb . (Co...
measinb 33518 Building a measure restric...
measres 33519 Building a measure restric...
measinb2 33520 Building a measure restric...
measdivcst 33521 Division of a measure by a...
measdivcstALTV 33522 Alternate version of ~ mea...
cntmeas 33523 The Counting measure is a ...
pwcntmeas 33524 The counting measure is a ...
cntnevol 33525 Counting and Lebesgue meas...
voliune 33526 The Lebesgue measure funct...
volfiniune 33527 The Lebesgue measure funct...
volmeas 33528 The Lebesgue measure is a ...
ddeval1 33531 Value of the delta measure...
ddeval0 33532 Value of the delta measure...
ddemeas 33533 The Dirac delta measure is...
relae 33537 'almost everywhere' is a r...
brae 33538 'almost everywhere' relati...
braew 33539 'almost everywhere' relati...
truae 33540 A truth holds almost every...
aean 33541 A conjunction holds almost...
faeval 33543 Value of the 'almost every...
relfae 33544 The 'almost everywhere' bu...
brfae 33545 'almost everywhere' relati...
ismbfm 33548 The predicate " ` F ` is a...
elunirnmbfm 33549 The property of being a me...
mbfmfun 33550 A measurable function is a...
mbfmf 33551 A measurable function as a...
isanmbfmOLD 33552 Obsolete version of ~ isan...
mbfmcnvima 33553 The preimage by a measurab...
isanmbfm 33554 The predicate to be a meas...
mbfmbfmOLD 33555 A measurable function to a...
mbfmbfm 33556 A measurable function to a...
mbfmcst 33557 A constant function is mea...
1stmbfm 33558 The first projection map i...
2ndmbfm 33559 The second projection map ...
imambfm 33560 If the sigma-algebra in th...
cnmbfm 33561 A continuous function is m...
mbfmco 33562 The composition of two mea...
mbfmco2 33563 The pair building of two m...
mbfmvolf 33564 Measurable functions with ...
elmbfmvol2 33565 Measurable functions with ...
mbfmcnt 33566 All functions are measurab...
br2base 33567 The base set for the gener...
dya2ub 33568 An upper bound for a dyadi...
sxbrsigalem0 33569 The closed half-spaces of ...
sxbrsigalem3 33570 The sigma-algebra generate...
dya2iocival 33571 The function ` I ` returns...
dya2iocress 33572 Dyadic intervals are subse...
dya2iocbrsiga 33573 Dyadic intervals are Borel...
dya2icobrsiga 33574 Dyadic intervals are Borel...
dya2icoseg 33575 For any point and any clos...
dya2icoseg2 33576 For any point and any open...
dya2iocrfn 33577 The function returning dya...
dya2iocct 33578 The dyadic rectangle set i...
dya2iocnrect 33579 For any point of an open r...
dya2iocnei 33580 For any point of an open s...
dya2iocuni 33581 Every open set of ` ( RR X...
dya2iocucvr 33582 The dyadic rectangular set...
sxbrsigalem1 33583 The Borel algebra on ` ( R...
sxbrsigalem2 33584 The sigma-algebra generate...
sxbrsigalem4 33585 The Borel algebra on ` ( R...
sxbrsigalem5 33586 First direction for ~ sxbr...
sxbrsigalem6 33587 First direction for ~ sxbr...
sxbrsiga 33588 The product sigma-algebra ...
omsval 33591 Value of the function mapp...
omsfval 33592 Value of the outer measure...
omscl 33593 A closure lemma for the co...
omsf 33594 A constructed outer measur...
oms0 33595 A constructed outer measur...
omsmon 33596 A constructed outer measur...
omssubaddlem 33597 For any small margin ` E `...
omssubadd 33598 A constructed outer measur...
carsgval 33601 Value of the Caratheodory ...
carsgcl 33602 Closure of the Caratheodor...
elcarsg 33603 Property of being a Carath...
baselcarsg 33604 The universe set, ` O ` , ...
0elcarsg 33605 The empty set is Caratheod...
carsguni 33606 The union of all Caratheod...
elcarsgss 33607 Caratheodory measurable se...
difelcarsg 33608 The Caratheodory measurabl...
inelcarsg 33609 The Caratheodory measurabl...
unelcarsg 33610 The Caratheodory-measurabl...
difelcarsg2 33611 The Caratheodory-measurabl...
carsgmon 33612 Utility lemma: Apply mono...
carsgsigalem 33613 Lemma for the following th...
fiunelcarsg 33614 The Caratheodory measurabl...
carsgclctunlem1 33615 Lemma for ~ carsgclctun . ...
carsggect 33616 The outer measure is count...
carsgclctunlem2 33617 Lemma for ~ carsgclctun . ...
carsgclctunlem3 33618 Lemma for ~ carsgclctun . ...
carsgclctun 33619 The Caratheodory measurabl...
carsgsiga 33620 The Caratheodory measurabl...
omsmeas 33621 The restriction of a const...
pmeasmono 33622 This theorem's hypotheses ...
pmeasadd 33623 A premeasure on a ring of ...
itgeq12dv 33624 Equality theorem for an in...
sitgval 33630 Value of the simple functi...
issibf 33631 The predicate " ` F ` is a...
sibf0 33632 The constant zero function...
sibfmbl 33633 A simple function is measu...
sibff 33634 A simple function is a fun...
sibfrn 33635 A simple function has fini...
sibfima 33636 Any preimage of a singleto...
sibfinima 33637 The measure of the interse...
sibfof 33638 Applying function operatio...
sitgfval 33639 Value of the Bochner integ...
sitgclg 33640 Closure of the Bochner int...
sitgclbn 33641 Closure of the Bochner int...
sitgclcn 33642 Closure of the Bochner int...
sitgclre 33643 Closure of the Bochner int...
sitg0 33644 The integral of the consta...
sitgf 33645 The integral for simple fu...
sitgaddlemb 33646 Lemma for * sitgadd . (Co...
sitmval 33647 Value of the simple functi...
sitmfval 33648 Value of the integral dist...
sitmcl 33649 Closure of the integral di...
sitmf 33650 The integral metric as a f...
oddpwdc 33652 Lemma for ~ eulerpart . T...
oddpwdcv 33653 Lemma for ~ eulerpart : va...
eulerpartlemsv1 33654 Lemma for ~ eulerpart . V...
eulerpartlemelr 33655 Lemma for ~ eulerpart . (...
eulerpartlemsv2 33656 Lemma for ~ eulerpart . V...
eulerpartlemsf 33657 Lemma for ~ eulerpart . (...
eulerpartlems 33658 Lemma for ~ eulerpart . (...
eulerpartlemsv3 33659 Lemma for ~ eulerpart . V...
eulerpartlemgc 33660 Lemma for ~ eulerpart . (...
eulerpartleme 33661 Lemma for ~ eulerpart . (...
eulerpartlemv 33662 Lemma for ~ eulerpart . (...
eulerpartlemo 33663 Lemma for ~ eulerpart : ` ...
eulerpartlemd 33664 Lemma for ~ eulerpart : ` ...
eulerpartlem1 33665 Lemma for ~ eulerpart . (...
eulerpartlemb 33666 Lemma for ~ eulerpart . T...
eulerpartlemt0 33667 Lemma for ~ eulerpart . (...
eulerpartlemf 33668 Lemma for ~ eulerpart : O...
eulerpartlemt 33669 Lemma for ~ eulerpart . (...
eulerpartgbij 33670 Lemma for ~ eulerpart : T...
eulerpartlemgv 33671 Lemma for ~ eulerpart : va...
eulerpartlemr 33672 Lemma for ~ eulerpart . (...
eulerpartlemmf 33673 Lemma for ~ eulerpart . (...
eulerpartlemgvv 33674 Lemma for ~ eulerpart : va...
eulerpartlemgu 33675 Lemma for ~ eulerpart : R...
eulerpartlemgh 33676 Lemma for ~ eulerpart : T...
eulerpartlemgf 33677 Lemma for ~ eulerpart : I...
eulerpartlemgs2 33678 Lemma for ~ eulerpart : T...
eulerpartlemn 33679 Lemma for ~ eulerpart . (...
eulerpart 33680 Euler's theorem on partiti...
subiwrd 33683 Lemma for ~ sseqp1 . (Con...
subiwrdlen 33684 Length of a subword of an ...
iwrdsplit 33685 Lemma for ~ sseqp1 . (Con...
sseqval 33686 Value of the strong sequen...
sseqfv1 33687 Value of the strong sequen...
sseqfn 33688 A strong recursive sequenc...
sseqmw 33689 Lemma for ~ sseqf amd ~ ss...
sseqf 33690 A strong recursive sequenc...
sseqfres 33691 The first elements in the ...
sseqfv2 33692 Value of the strong sequen...
sseqp1 33693 Value of the strong sequen...
fiblem 33696 Lemma for ~ fib0 , ~ fib1 ...
fib0 33697 Value of the Fibonacci seq...
fib1 33698 Value of the Fibonacci seq...
fibp1 33699 Value of the Fibonacci seq...
fib2 33700 Value of the Fibonacci seq...
fib3 33701 Value of the Fibonacci seq...
fib4 33702 Value of the Fibonacci seq...
fib5 33703 Value of the Fibonacci seq...
fib6 33704 Value of the Fibonacci seq...
elprob 33707 The property of being a pr...
domprobmeas 33708 A probability measure is a...
domprobsiga 33709 The domain of a probabilit...
probtot 33710 The probability of the uni...
prob01 33711 A probability is an elemen...
probnul 33712 The probability of the emp...
unveldomd 33713 The universe is an element...
unveldom 33714 The universe is an element...
nuleldmp 33715 The empty set is an elemen...
probcun 33716 The probability of the uni...
probun 33717 The probability of the uni...
probdif 33718 The probability of the dif...
probinc 33719 A probability law is incre...
probdsb 33720 The probability of the com...
probmeasd 33721 A probability measure is a...
probvalrnd 33722 The value of a probability...
probtotrnd 33723 The probability of the uni...
totprobd 33724 Law of total probability, ...
totprob 33725 Law of total probability. ...
probfinmeasb 33726 Build a probability measur...
probfinmeasbALTV 33727 Alternate version of ~ pro...
probmeasb 33728 Build a probability from a...
cndprobval 33731 The value of the condition...
cndprobin 33732 An identity linking condit...
cndprob01 33733 The conditional probabilit...
cndprobtot 33734 The conditional probabilit...
cndprobnul 33735 The conditional probabilit...
cndprobprob 33736 The conditional probabilit...
bayesth 33737 Bayes Theorem. (Contribut...
rrvmbfm 33740 A real-valued random varia...
isrrvv 33741 Elementhood to the set of ...
rrvvf 33742 A real-valued random varia...
rrvfn 33743 A real-valued random varia...
rrvdm 33744 The domain of a random var...
rrvrnss 33745 The range of a random vari...
rrvf2 33746 A real-valued random varia...
rrvdmss 33747 The domain of a random var...
rrvfinvima 33748 For a real-value random va...
0rrv 33749 The constant function equa...
rrvadd 33750 The sum of two random vari...
rrvmulc 33751 A random variable multipli...
rrvsum 33752 An indexed sum of random v...
orvcval 33755 Value of the preimage mapp...
orvcval2 33756 Another way to express the...
elorvc 33757 Elementhood of a preimage....
orvcval4 33758 The value of the preimage ...
orvcoel 33759 If the relation produces o...
orvccel 33760 If the relation produces c...
elorrvc 33761 Elementhood of a preimage ...
orrvcval4 33762 The value of the preimage ...
orrvcoel 33763 If the relation produces o...
orrvccel 33764 If the relation produces c...
orvcgteel 33765 Preimage maps produced by ...
orvcelval 33766 Preimage maps produced by ...
orvcelel 33767 Preimage maps produced by ...
dstrvval 33768 The value of the distribut...
dstrvprob 33769 The distribution of a rand...
orvclteel 33770 Preimage maps produced by ...
dstfrvel 33771 Elementhood of preimage ma...
dstfrvunirn 33772 The limit of all preimage ...
orvclteinc 33773 Preimage maps produced by ...
dstfrvinc 33774 A cumulative distribution ...
dstfrvclim1 33775 The limit of the cumulativ...
coinfliplem 33776 Division in the extended r...
coinflipprob 33777 The ` P ` we defined for c...
coinflipspace 33778 The space of our coin-flip...
coinflipuniv 33779 The universe of our coin-f...
coinfliprv 33780 The ` X ` we defined for c...
coinflippv 33781 The probability of heads i...
coinflippvt 33782 The probability of tails i...
ballotlemoex 33783 ` O ` is a set. (Contribu...
ballotlem1 33784 The size of the universe i...
ballotlemelo 33785 Elementhood in ` O ` . (C...
ballotlem2 33786 The probability that the f...
ballotlemfval 33787 The value of ` F ` . (Con...
ballotlemfelz 33788 ` ( F `` C ) ` has values ...
ballotlemfp1 33789 If the ` J ` th ballot is ...
ballotlemfc0 33790 ` F ` takes value 0 betwee...
ballotlemfcc 33791 ` F ` takes value 0 betwee...
ballotlemfmpn 33792 ` ( F `` C ) ` finishes co...
ballotlemfval0 33793 ` ( F `` C ) ` always star...
ballotleme 33794 Elements of ` E ` . (Cont...
ballotlemodife 33795 Elements of ` ( O \ E ) ` ...
ballotlem4 33796 If the first pick is a vot...
ballotlem5 33797 If A is not ahead througho...
ballotlemi 33798 Value of ` I ` for a given...
ballotlemiex 33799 Properties of ` ( I `` C )...
ballotlemi1 33800 The first tie cannot be re...
ballotlemii 33801 The first tie cannot be re...
ballotlemsup 33802 The set of zeroes of ` F `...
ballotlemimin 33803 ` ( I `` C ) ` is the firs...
ballotlemic 33804 If the first vote is for B...
ballotlem1c 33805 If the first vote is for A...
ballotlemsval 33806 Value of ` S ` . (Contrib...
ballotlemsv 33807 Value of ` S ` evaluated a...
ballotlemsgt1 33808 ` S ` maps values less tha...
ballotlemsdom 33809 Domain of ` S ` for a give...
ballotlemsel1i 33810 The range ` ( 1 ... ( I ``...
ballotlemsf1o 33811 The defined ` S ` is a bij...
ballotlemsi 33812 The image by ` S ` of the ...
ballotlemsima 33813 The image by ` S ` of an i...
ballotlemieq 33814 If two countings share the...
ballotlemrval 33815 Value of ` R ` . (Contrib...
ballotlemscr 33816 The image of ` ( R `` C ) ...
ballotlemrv 33817 Value of ` R ` evaluated a...
ballotlemrv1 33818 Value of ` R ` before the ...
ballotlemrv2 33819 Value of ` R ` after the t...
ballotlemro 33820 Range of ` R ` is included...
ballotlemgval 33821 Expand the value of ` .^ `...
ballotlemgun 33822 A property of the defined ...
ballotlemfg 33823 Express the value of ` ( F...
ballotlemfrc 33824 Express the value of ` ( F...
ballotlemfrci 33825 Reverse counting preserves...
ballotlemfrceq 33826 Value of ` F ` for a rever...
ballotlemfrcn0 33827 Value of ` F ` for a rever...
ballotlemrc 33828 Range of ` R ` . (Contrib...
ballotlemirc 33829 Applying ` R ` does not ch...
ballotlemrinv0 33830 Lemma for ~ ballotlemrinv ...
ballotlemrinv 33831 ` R ` is its own inverse :...
ballotlem1ri 33832 When the vote on the first...
ballotlem7 33833 ` R ` is a bijection betwe...
ballotlem8 33834 There are as many counting...
ballotth 33835 Bertrand's ballot problem ...
sgncl 33836 Closure of the signum. (C...
sgnclre 33837 Closure of the signum. (C...
sgnneg 33838 Negation of the signum. (...
sgn3da 33839 A conditional containing a...
sgnmul 33840 Signum of a product. (Con...
sgnmulrp2 33841 Multiplication by a positi...
sgnsub 33842 Subtraction of a number of...
sgnnbi 33843 Negative signum. (Contrib...
sgnpbi 33844 Positive signum. (Contrib...
sgn0bi 33845 Zero signum. (Contributed...
sgnsgn 33846 Signum is idempotent. (Co...
sgnmulsgn 33847 If two real numbers are of...
sgnmulsgp 33848 If two real numbers are of...
fzssfzo 33849 Condition for an integer i...
gsumncl 33850 Closure of a group sum in ...
gsumnunsn 33851 Closure of a group sum in ...
ccatmulgnn0dir 33852 Concatenation of words fol...
ofcccat 33853 Letterwise operations on w...
ofcs1 33854 Letterwise operations on a...
ofcs2 33855 Letterwise operations on a...
plymul02 33856 Product of a polynomial wi...
plymulx0 33857 Coefficients of a polynomi...
plymulx 33858 Coefficients of a polynomi...
plyrecld 33859 Closure of a polynomial wi...
signsplypnf 33860 The quotient of a polynomi...
signsply0 33861 Lemma for the rule of sign...
signspval 33862 The value of the skipping ...
signsw0glem 33863 Neutral element property o...
signswbase 33864 The base of ` W ` is the u...
signswplusg 33865 The operation of ` W ` . ...
signsw0g 33866 The neutral element of ` W...
signswmnd 33867 ` W ` is a monoid structur...
signswrid 33868 The zero-skipping operatio...
signswlid 33869 The zero-skipping operatio...
signswn0 33870 The zero-skipping operatio...
signswch 33871 The zero-skipping operatio...
signslema 33872 Computational part of ~~? ...
signstfv 33873 Value of the zero-skipping...
signstfval 33874 Value of the zero-skipping...
signstcl 33875 Closure of the zero skippi...
signstf 33876 The zero skipping sign wor...
signstlen 33877 Length of the zero skippin...
signstf0 33878 Sign of a single letter wo...
signstfvn 33879 Zero-skipping sign in a wo...
signsvtn0 33880 If the last letter is nonz...
signstfvp 33881 Zero-skipping sign in a wo...
signstfvneq0 33882 In case the first letter i...
signstfvcl 33883 Closure of the zero skippi...
signstfvc 33884 Zero-skipping sign in a wo...
signstres 33885 Restriction of a zero skip...
signstfveq0a 33886 Lemma for ~ signstfveq0 . ...
signstfveq0 33887 In case the last letter is...
signsvvfval 33888 The value of ` V ` , which...
signsvvf 33889 ` V ` is a function. (Con...
signsvf0 33890 There is no change of sign...
signsvf1 33891 In a single-letter word, w...
signsvfn 33892 Number of changes in a wor...
signsvtp 33893 Adding a letter of the sam...
signsvtn 33894 Adding a letter of a diffe...
signsvfpn 33895 Adding a letter of the sam...
signsvfnn 33896 Adding a letter of a diffe...
signlem0 33897 Adding a zero as the highe...
signshf 33898 ` H ` , corresponding to t...
signshwrd 33899 ` H ` , corresponding to t...
signshlen 33900 Length of ` H ` , correspo...
signshnz 33901 ` H ` is not the empty wor...
efcld 33902 Closure law for the expone...
iblidicc 33903 The identity function is i...
rpsqrtcn 33904 Continuity of the real pos...
divsqrtid 33905 A real number divided by i...
cxpcncf1 33906 The power function on comp...
efmul2picn 33907 Multiplying by ` ( _i x. (...
fct2relem 33908 Lemma for ~ ftc2re . (Con...
ftc2re 33909 The Fundamental Theorem of...
fdvposlt 33910 Functions with a positive ...
fdvneggt 33911 Functions with a negative ...
fdvposle 33912 Functions with a nonnegati...
fdvnegge 33913 Functions with a nonpositi...
prodfzo03 33914 A product of three factors...
actfunsnf1o 33915 The action ` F ` of extend...
actfunsnrndisj 33916 The action ` F ` of extend...
itgexpif 33917 The basis for the circle m...
fsum2dsub 33918 Lemma for ~ breprexp - Re-...
reprval 33921 Value of the representatio...
repr0 33922 There is exactly one repre...
reprf 33923 Members of the representat...
reprsum 33924 Sums of values of the memb...
reprle 33925 Upper bound to the terms i...
reprsuc 33926 Express the representation...
reprfi 33927 Bounded representations ar...
reprss 33928 Representations with terms...
reprinrn 33929 Representations with term ...
reprlt 33930 There are no representatio...
hashreprin 33931 Express a sum of represent...
reprgt 33932 There are no representatio...
reprinfz1 33933 For the representation of ...
reprfi2 33934 Corollary of ~ reprinfz1 ....
reprfz1 33935 Corollary of ~ reprinfz1 ....
hashrepr 33936 Develop the number of repr...
reprpmtf1o 33937 Transposing ` 0 ` and ` X ...
reprdifc 33938 Express the representation...
chpvalz 33939 Value of the second Chebys...
chtvalz 33940 Value of the Chebyshev fun...
breprexplema 33941 Lemma for ~ breprexp (indu...
breprexplemb 33942 Lemma for ~ breprexp (clos...
breprexplemc 33943 Lemma for ~ breprexp (indu...
breprexp 33944 Express the ` S ` th power...
breprexpnat 33945 Express the ` S ` th power...
vtsval 33948 Value of the Vinogradov tr...
vtscl 33949 Closure of the Vinogradov ...
vtsprod 33950 Express the Vinogradov tri...
circlemeth 33951 The Hardy, Littlewood and ...
circlemethnat 33952 The Hardy, Littlewood and ...
circlevma 33953 The Circle Method, where t...
circlemethhgt 33954 The circle method, where t...
hgt750lemc 33958 An upper bound to the summ...
hgt750lemd 33959 An upper bound to the summ...
hgt749d 33960 A deduction version of ~ a...
logdivsqrle 33961 Conditions for ` ( ( log `...
hgt750lem 33962 Lemma for ~ tgoldbachgtd ....
hgt750lem2 33963 Decimal multiplication gal...
hgt750lemf 33964 Lemma for the statement 7....
hgt750lemg 33965 Lemma for the statement 7....
oddprm2 33966 Two ways to write the set ...
hgt750lemb 33967 An upper bound on the cont...
hgt750lema 33968 An upper bound on the cont...
hgt750leme 33969 An upper bound on the cont...
tgoldbachgnn 33970 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 33971 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 33972 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 33973 Odd integers greater than ...
tgoldbachgt 33974 Odd integers greater than ...
istrkg2d 33977 Property of fulfilling dim...
axtglowdim2ALTV 33978 Alternate version of ~ axt...
axtgupdim2ALTV 33979 Alternate version of ~ axt...
afsval 33982 Value of the AFS relation ...
brafs 33983 Binary relation form of th...
tg5segofs 33984 Rephrase ~ axtg5seg using ...
lpadval 33987 Value of the ` leftpad ` f...
lpadlem1 33988 Lemma for the ` leftpad ` ...
lpadlem3 33989 Lemma for ~ lpadlen1 . (C...
lpadlen1 33990 Length of a left-padded wo...
lpadlem2 33991 Lemma for the ` leftpad ` ...
lpadlen2 33992 Length of a left-padded wo...
lpadmax 33993 Length of a left-padded wo...
lpadleft 33994 The contents of prefix of ...
lpadright 33995 The suffix of a left-padde...
bnj170 34008 ` /\ ` -manipulation. (Co...
bnj240 34009 ` /\ ` -manipulation. (Co...
bnj248 34010 ` /\ ` -manipulation. (Co...
bnj250 34011 ` /\ ` -manipulation. (Co...
bnj251 34012 ` /\ ` -manipulation. (Co...
bnj252 34013 ` /\ ` -manipulation. (Co...
bnj253 34014 ` /\ ` -manipulation. (Co...
bnj255 34015 ` /\ ` -manipulation. (Co...
bnj256 34016 ` /\ ` -manipulation. (Co...
bnj257 34017 ` /\ ` -manipulation. (Co...
bnj258 34018 ` /\ ` -manipulation. (Co...
bnj268 34019 ` /\ ` -manipulation. (Co...
bnj290 34020 ` /\ ` -manipulation. (Co...
bnj291 34021 ` /\ ` -manipulation. (Co...
bnj312 34022 ` /\ ` -manipulation. (Co...
bnj334 34023 ` /\ ` -manipulation. (Co...
bnj345 34024 ` /\ ` -manipulation. (Co...
bnj422 34025 ` /\ ` -manipulation. (Co...
bnj432 34026 ` /\ ` -manipulation. (Co...
bnj446 34027 ` /\ ` -manipulation. (Co...
bnj23 34028 First-order logic and set ...
bnj31 34029 First-order logic and set ...
bnj62 34030 First-order logic and set ...
bnj89 34031 First-order logic and set ...
bnj90 34032 First-order logic and set ...
bnj101 34033 First-order logic and set ...
bnj105 34034 First-order logic and set ...
bnj115 34035 First-order logic and set ...
bnj132 34036 First-order logic and set ...
bnj133 34037 First-order logic and set ...
bnj156 34038 First-order logic and set ...
bnj158 34039 First-order logic and set ...
bnj168 34040 First-order logic and set ...
bnj206 34041 First-order logic and set ...
bnj216 34042 First-order logic and set ...
bnj219 34043 First-order logic and set ...
bnj226 34044 First-order logic and set ...
bnj228 34045 First-order logic and set ...
bnj519 34046 First-order logic and set ...
bnj524 34047 First-order logic and set ...
bnj525 34048 First-order logic and set ...
bnj534 34049 First-order logic and set ...
bnj538 34050 First-order logic and set ...
bnj529 34051 First-order logic and set ...
bnj551 34052 First-order logic and set ...
bnj563 34053 First-order logic and set ...
bnj564 34054 First-order logic and set ...
bnj593 34055 First-order logic and set ...
bnj596 34056 First-order logic and set ...
bnj610 34057 Pass from equality ( ` x =...
bnj642 34058 ` /\ ` -manipulation. (Co...
bnj643 34059 ` /\ ` -manipulation. (Co...
bnj645 34060 ` /\ ` -manipulation. (Co...
bnj658 34061 ` /\ ` -manipulation. (Co...
bnj667 34062 ` /\ ` -manipulation. (Co...
bnj705 34063 ` /\ ` -manipulation. (Co...
bnj706 34064 ` /\ ` -manipulation. (Co...
bnj707 34065 ` /\ ` -manipulation. (Co...
bnj708 34066 ` /\ ` -manipulation. (Co...
bnj721 34067 ` /\ ` -manipulation. (Co...
bnj832 34068 ` /\ ` -manipulation. (Co...
bnj835 34069 ` /\ ` -manipulation. (Co...
bnj836 34070 ` /\ ` -manipulation. (Co...
bnj837 34071 ` /\ ` -manipulation. (Co...
bnj769 34072 ` /\ ` -manipulation. (Co...
bnj770 34073 ` /\ ` -manipulation. (Co...
bnj771 34074 ` /\ ` -manipulation. (Co...
bnj887 34075 ` /\ ` -manipulation. (Co...
bnj918 34076 First-order logic and set ...
bnj919 34077 First-order logic and set ...
bnj923 34078 First-order logic and set ...
bnj927 34079 First-order logic and set ...
bnj931 34080 First-order logic and set ...
bnj937 34081 First-order logic and set ...
bnj941 34082 First-order logic and set ...
bnj945 34083 Technical lemma for ~ bnj6...
bnj946 34084 First-order logic and set ...
bnj951 34085 ` /\ ` -manipulation. (Co...
bnj956 34086 First-order logic and set ...
bnj976 34087 First-order logic and set ...
bnj982 34088 First-order logic and set ...
bnj1019 34089 First-order logic and set ...
bnj1023 34090 First-order logic and set ...
bnj1095 34091 First-order logic and set ...
bnj1096 34092 First-order logic and set ...
bnj1098 34093 First-order logic and set ...
bnj1101 34094 First-order logic and set ...
bnj1113 34095 First-order logic and set ...
bnj1109 34096 First-order logic and set ...
bnj1131 34097 First-order logic and set ...
bnj1138 34098 First-order logic and set ...
bnj1142 34099 First-order logic and set ...
bnj1143 34100 First-order logic and set ...
bnj1146 34101 First-order logic and set ...
bnj1149 34102 First-order logic and set ...
bnj1185 34103 First-order logic and set ...
bnj1196 34104 First-order logic and set ...
bnj1198 34105 First-order logic and set ...
bnj1209 34106 First-order logic and set ...
bnj1211 34107 First-order logic and set ...
bnj1213 34108 First-order logic and set ...
bnj1212 34109 First-order logic and set ...
bnj1219 34110 First-order logic and set ...
bnj1224 34111 First-order logic and set ...
bnj1230 34112 First-order logic and set ...
bnj1232 34113 First-order logic and set ...
bnj1235 34114 First-order logic and set ...
bnj1239 34115 First-order logic and set ...
bnj1238 34116 First-order logic and set ...
bnj1241 34117 First-order logic and set ...
bnj1247 34118 First-order logic and set ...
bnj1254 34119 First-order logic and set ...
bnj1262 34120 First-order logic and set ...
bnj1266 34121 First-order logic and set ...
bnj1265 34122 First-order logic and set ...
bnj1275 34123 First-order logic and set ...
bnj1276 34124 First-order logic and set ...
bnj1292 34125 First-order logic and set ...
bnj1293 34126 First-order logic and set ...
bnj1294 34127 First-order logic and set ...
bnj1299 34128 First-order logic and set ...
bnj1304 34129 First-order logic and set ...
bnj1316 34130 First-order logic and set ...
bnj1317 34131 First-order logic and set ...
bnj1322 34132 First-order logic and set ...
bnj1340 34133 First-order logic and set ...
bnj1345 34134 First-order logic and set ...
bnj1350 34135 First-order logic and set ...
bnj1351 34136 First-order logic and set ...
bnj1352 34137 First-order logic and set ...
bnj1361 34138 First-order logic and set ...
bnj1366 34139 First-order logic and set ...
bnj1379 34140 First-order logic and set ...
bnj1383 34141 First-order logic and set ...
bnj1385 34142 First-order logic and set ...
bnj1386 34143 First-order logic and set ...
bnj1397 34144 First-order logic and set ...
bnj1400 34145 First-order logic and set ...
bnj1405 34146 First-order logic and set ...
bnj1422 34147 First-order logic and set ...
bnj1424 34148 First-order logic and set ...
bnj1436 34149 First-order logic and set ...
bnj1441 34150 First-order logic and set ...
bnj1441g 34151 First-order logic and set ...
bnj1454 34152 First-order logic and set ...
bnj1459 34153 First-order logic and set ...
bnj1464 34154 Conversion of implicit sub...
bnj1465 34155 First-order logic and set ...
bnj1468 34156 Conversion of implicit sub...
bnj1476 34157 First-order logic and set ...
bnj1502 34158 First-order logic and set ...
bnj1503 34159 First-order logic and set ...
bnj1517 34160 First-order logic and set ...
bnj1521 34161 First-order logic and set ...
bnj1533 34162 First-order logic and set ...
bnj1534 34163 First-order logic and set ...
bnj1536 34164 First-order logic and set ...
bnj1538 34165 First-order logic and set ...
bnj1541 34166 First-order logic and set ...
bnj1542 34167 First-order logic and set ...
bnj110 34168 Well-founded induction res...
bnj157 34169 Well-founded induction res...
bnj66 34170 Technical lemma for ~ bnj6...
bnj91 34171 First-order logic and set ...
bnj92 34172 First-order logic and set ...
bnj93 34173 Technical lemma for ~ bnj9...
bnj95 34174 Technical lemma for ~ bnj1...
bnj96 34175 Technical lemma for ~ bnj1...
bnj97 34176 Technical lemma for ~ bnj1...
bnj98 34177 Technical lemma for ~ bnj1...
bnj106 34178 First-order logic and set ...
bnj118 34179 First-order logic and set ...
bnj121 34180 First-order logic and set ...
bnj124 34181 Technical lemma for ~ bnj1...
bnj125 34182 Technical lemma for ~ bnj1...
bnj126 34183 Technical lemma for ~ bnj1...
bnj130 34184 Technical lemma for ~ bnj1...
bnj149 34185 Technical lemma for ~ bnj1...
bnj150 34186 Technical lemma for ~ bnj1...
bnj151 34187 Technical lemma for ~ bnj1...
bnj154 34188 Technical lemma for ~ bnj1...
bnj155 34189 Technical lemma for ~ bnj1...
bnj153 34190 Technical lemma for ~ bnj8...
bnj207 34191 Technical lemma for ~ bnj8...
bnj213 34192 First-order logic and set ...
bnj222 34193 Technical lemma for ~ bnj2...
bnj229 34194 Technical lemma for ~ bnj5...
bnj517 34195 Technical lemma for ~ bnj5...
bnj518 34196 Technical lemma for ~ bnj8...
bnj523 34197 Technical lemma for ~ bnj8...
bnj526 34198 Technical lemma for ~ bnj8...
bnj528 34199 Technical lemma for ~ bnj8...
bnj535 34200 Technical lemma for ~ bnj8...
bnj539 34201 Technical lemma for ~ bnj8...
bnj540 34202 Technical lemma for ~ bnj8...
bnj543 34203 Technical lemma for ~ bnj8...
bnj544 34204 Technical lemma for ~ bnj8...
bnj545 34205 Technical lemma for ~ bnj8...
bnj546 34206 Technical lemma for ~ bnj8...
bnj548 34207 Technical lemma for ~ bnj8...
bnj553 34208 Technical lemma for ~ bnj8...
bnj554 34209 Technical lemma for ~ bnj8...
bnj556 34210 Technical lemma for ~ bnj8...
bnj557 34211 Technical lemma for ~ bnj8...
bnj558 34212 Technical lemma for ~ bnj8...
bnj561 34213 Technical lemma for ~ bnj8...
bnj562 34214 Technical lemma for ~ bnj8...
bnj570 34215 Technical lemma for ~ bnj8...
bnj571 34216 Technical lemma for ~ bnj8...
bnj605 34217 Technical lemma. This lem...
bnj581 34218 Technical lemma for ~ bnj5...
bnj589 34219 Technical lemma for ~ bnj8...
bnj590 34220 Technical lemma for ~ bnj8...
bnj591 34221 Technical lemma for ~ bnj8...
bnj594 34222 Technical lemma for ~ bnj8...
bnj580 34223 Technical lemma for ~ bnj5...
bnj579 34224 Technical lemma for ~ bnj8...
bnj602 34225 Equality theorem for the `...
bnj607 34226 Technical lemma for ~ bnj8...
bnj609 34227 Technical lemma for ~ bnj8...
bnj611 34228 Technical lemma for ~ bnj8...
bnj600 34229 Technical lemma for ~ bnj8...
bnj601 34230 Technical lemma for ~ bnj8...
bnj852 34231 Technical lemma for ~ bnj6...
bnj864 34232 Technical lemma for ~ bnj6...
bnj865 34233 Technical lemma for ~ bnj6...
bnj873 34234 Technical lemma for ~ bnj6...
bnj849 34235 Technical lemma for ~ bnj6...
bnj882 34236 Definition (using hypothes...
bnj18eq1 34237 Equality theorem for trans...
bnj893 34238 Property of ` _trCl ` . U...
bnj900 34239 Technical lemma for ~ bnj6...
bnj906 34240 Property of ` _trCl ` . (...
bnj908 34241 Technical lemma for ~ bnj6...
bnj911 34242 Technical lemma for ~ bnj6...
bnj916 34243 Technical lemma for ~ bnj6...
bnj917 34244 Technical lemma for ~ bnj6...
bnj934 34245 Technical lemma for ~ bnj6...
bnj929 34246 Technical lemma for ~ bnj6...
bnj938 34247 Technical lemma for ~ bnj6...
bnj944 34248 Technical lemma for ~ bnj6...
bnj953 34249 Technical lemma for ~ bnj6...
bnj958 34250 Technical lemma for ~ bnj6...
bnj1000 34251 Technical lemma for ~ bnj8...
bnj965 34252 Technical lemma for ~ bnj8...
bnj964 34253 Technical lemma for ~ bnj6...
bnj966 34254 Technical lemma for ~ bnj6...
bnj967 34255 Technical lemma for ~ bnj6...
bnj969 34256 Technical lemma for ~ bnj6...
bnj970 34257 Technical lemma for ~ bnj6...
bnj910 34258 Technical lemma for ~ bnj6...
bnj978 34259 Technical lemma for ~ bnj6...
bnj981 34260 Technical lemma for ~ bnj6...
bnj983 34261 Technical lemma for ~ bnj6...
bnj984 34262 Technical lemma for ~ bnj6...
bnj985v 34263 Version of ~ bnj985 with a...
bnj985 34264 Technical lemma for ~ bnj6...
bnj986 34265 Technical lemma for ~ bnj6...
bnj996 34266 Technical lemma for ~ bnj6...
bnj998 34267 Technical lemma for ~ bnj6...
bnj999 34268 Technical lemma for ~ bnj6...
bnj1001 34269 Technical lemma for ~ bnj6...
bnj1006 34270 Technical lemma for ~ bnj6...
bnj1014 34271 Technical lemma for ~ bnj6...
bnj1015 34272 Technical lemma for ~ bnj6...
bnj1018g 34273 Version of ~ bnj1018 with ...
bnj1018 34274 Technical lemma for ~ bnj6...
bnj1020 34275 Technical lemma for ~ bnj6...
bnj1021 34276 Technical lemma for ~ bnj6...
bnj907 34277 Technical lemma for ~ bnj6...
bnj1029 34278 Property of ` _trCl ` . (...
bnj1033 34279 Technical lemma for ~ bnj6...
bnj1034 34280 Technical lemma for ~ bnj6...
bnj1039 34281 Technical lemma for ~ bnj6...
bnj1040 34282 Technical lemma for ~ bnj6...
bnj1047 34283 Technical lemma for ~ bnj6...
bnj1049 34284 Technical lemma for ~ bnj6...
bnj1052 34285 Technical lemma for ~ bnj6...
bnj1053 34286 Technical lemma for ~ bnj6...
bnj1071 34287 Technical lemma for ~ bnj6...
bnj1083 34288 Technical lemma for ~ bnj6...
bnj1090 34289 Technical lemma for ~ bnj6...
bnj1093 34290 Technical lemma for ~ bnj6...
bnj1097 34291 Technical lemma for ~ bnj6...
bnj1110 34292 Technical lemma for ~ bnj6...
bnj1112 34293 Technical lemma for ~ bnj6...
bnj1118 34294 Technical lemma for ~ bnj6...
bnj1121 34295 Technical lemma for ~ bnj6...
bnj1123 34296 Technical lemma for ~ bnj6...
bnj1030 34297 Technical lemma for ~ bnj6...
bnj1124 34298 Property of ` _trCl ` . (...
bnj1133 34299 Technical lemma for ~ bnj6...
bnj1128 34300 Technical lemma for ~ bnj6...
bnj1127 34301 Property of ` _trCl ` . (...
bnj1125 34302 Property of ` _trCl ` . (...
bnj1145 34303 Technical lemma for ~ bnj6...
bnj1147 34304 Property of ` _trCl ` . (...
bnj1137 34305 Property of ` _trCl ` . (...
bnj1148 34306 Property of ` _pred ` . (...
bnj1136 34307 Technical lemma for ~ bnj6...
bnj1152 34308 Technical lemma for ~ bnj6...
bnj1154 34309 Property of ` Fr ` . (Con...
bnj1171 34310 Technical lemma for ~ bnj6...
bnj1172 34311 Technical lemma for ~ bnj6...
bnj1173 34312 Technical lemma for ~ bnj6...
bnj1174 34313 Technical lemma for ~ bnj6...
bnj1175 34314 Technical lemma for ~ bnj6...
bnj1176 34315 Technical lemma for ~ bnj6...
bnj1177 34316 Technical lemma for ~ bnj6...
bnj1186 34317 Technical lemma for ~ bnj6...
bnj1190 34318 Technical lemma for ~ bnj6...
bnj1189 34319 Technical lemma for ~ bnj6...
bnj69 34320 Existence of a minimal ele...
bnj1228 34321 Existence of a minimal ele...
bnj1204 34322 Well-founded induction. T...
bnj1234 34323 Technical lemma for ~ bnj6...
bnj1245 34324 Technical lemma for ~ bnj6...
bnj1256 34325 Technical lemma for ~ bnj6...
bnj1259 34326 Technical lemma for ~ bnj6...
bnj1253 34327 Technical lemma for ~ bnj6...
bnj1279 34328 Technical lemma for ~ bnj6...
bnj1286 34329 Technical lemma for ~ bnj6...
bnj1280 34330 Technical lemma for ~ bnj6...
bnj1296 34331 Technical lemma for ~ bnj6...
bnj1309 34332 Technical lemma for ~ bnj6...
bnj1307 34333 Technical lemma for ~ bnj6...
bnj1311 34334 Technical lemma for ~ bnj6...
bnj1318 34335 Technical lemma for ~ bnj6...
bnj1326 34336 Technical lemma for ~ bnj6...
bnj1321 34337 Technical lemma for ~ bnj6...
bnj1364 34338 Property of ` _FrSe ` . (...
bnj1371 34339 Technical lemma for ~ bnj6...
bnj1373 34340 Technical lemma for ~ bnj6...
bnj1374 34341 Technical lemma for ~ bnj6...
bnj1384 34342 Technical lemma for ~ bnj6...
bnj1388 34343 Technical lemma for ~ bnj6...
bnj1398 34344 Technical lemma for ~ bnj6...
bnj1413 34345 Property of ` _trCl ` . (...
bnj1408 34346 Technical lemma for ~ bnj1...
bnj1414 34347 Property of ` _trCl ` . (...
bnj1415 34348 Technical lemma for ~ bnj6...
bnj1416 34349 Technical lemma for ~ bnj6...
bnj1418 34350 Property of ` _pred ` . (...
bnj1417 34351 Technical lemma for ~ bnj6...
bnj1421 34352 Technical lemma for ~ bnj6...
bnj1444 34353 Technical lemma for ~ bnj6...
bnj1445 34354 Technical lemma for ~ bnj6...
bnj1446 34355 Technical lemma for ~ bnj6...
bnj1447 34356 Technical lemma for ~ bnj6...
bnj1448 34357 Technical lemma for ~ bnj6...
bnj1449 34358 Technical lemma for ~ bnj6...
bnj1442 34359 Technical lemma for ~ bnj6...
bnj1450 34360 Technical lemma for ~ bnj6...
bnj1423 34361 Technical lemma for ~ bnj6...
bnj1452 34362 Technical lemma for ~ bnj6...
bnj1466 34363 Technical lemma for ~ bnj6...
bnj1467 34364 Technical lemma for ~ bnj6...
bnj1463 34365 Technical lemma for ~ bnj6...
bnj1489 34366 Technical lemma for ~ bnj6...
bnj1491 34367 Technical lemma for ~ bnj6...
bnj1312 34368 Technical lemma for ~ bnj6...
bnj1493 34369 Technical lemma for ~ bnj6...
bnj1497 34370 Technical lemma for ~ bnj6...
bnj1498 34371 Technical lemma for ~ bnj6...
bnj60 34372 Well-founded recursion, pa...
bnj1514 34373 Technical lemma for ~ bnj1...
bnj1518 34374 Technical lemma for ~ bnj1...
bnj1519 34375 Technical lemma for ~ bnj1...
bnj1520 34376 Technical lemma for ~ bnj1...
bnj1501 34377 Technical lemma for ~ bnj1...
bnj1500 34378 Well-founded recursion, pa...
bnj1525 34379 Technical lemma for ~ bnj1...
bnj1529 34380 Technical lemma for ~ bnj1...
bnj1523 34381 Technical lemma for ~ bnj1...
bnj1522 34382 Well-founded recursion, pa...
exdifsn 34383 There exists an element in...
srcmpltd 34384 If a statement is true for...
prsrcmpltd 34385 If a statement is true for...
dff15 34386 A one-to-one function in t...
f1resveqaeq 34387 If a function restricted t...
f1resrcmplf1dlem 34388 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 34389 If a function's restrictio...
funen1cnv 34390 If a function is equinumer...
fnrelpredd 34391 A function that preserves ...
cardpred 34392 The cardinality function p...
nummin 34393 Every nonempty class of nu...
fineqvrep 34394 If the Axiom of Infinity i...
fineqvpow 34395 If the Axiom of Infinity i...
fineqvac 34396 If the Axiom of Infinity i...
fineqvacALT 34397 Shorter proof of ~ fineqva...
zltp1ne 34398 Integer ordering relation....
nnltp1ne 34399 Positive integer ordering ...
nn0ltp1ne 34400 Nonnegative integer orderi...
0nn0m1nnn0 34401 A number is zero if and on...
f1resfz0f1d 34402 If a function with a seque...
fisshasheq 34403 A finite set is equal to i...
hashf1dmcdm 34404 The size of the domain of ...
revpfxsfxrev 34405 The reverse of a prefix of...
swrdrevpfx 34406 A subword expressed in ter...
lfuhgr 34407 A hypergraph is loop-free ...
lfuhgr2 34408 A hypergraph is loop-free ...
lfuhgr3 34409 A hypergraph is loop-free ...
cplgredgex 34410 Any two (distinct) vertice...
cusgredgex 34411 Any two (distinct) vertice...
cusgredgex2 34412 Any two distinct vertices ...
pfxwlk 34413 A prefix of a walk is a wa...
revwlk 34414 The reverse of a walk is a...
revwlkb 34415 Two words represent a walk...
swrdwlk 34416 Two matching subwords of a...
pthhashvtx 34417 A graph containing a path ...
pthisspthorcycl 34418 A path is either a simple ...
spthcycl 34419 A walk is a trivial path i...
usgrgt2cycl 34420 A non-trivial cycle in a s...
usgrcyclgt2v 34421 A simple graph with a non-...
subgrwlk 34422 If a walk exists in a subg...
subgrtrl 34423 If a trail exists in a sub...
subgrpth 34424 If a path exists in a subg...
subgrcycl 34425 If a cycle exists in a sub...
cusgr3cyclex 34426 Every complete simple grap...
loop1cycl 34427 A hypergraph has a cycle o...
2cycld 34428 Construction of a 2-cycle ...
2cycl2d 34429 Construction of a 2-cycle ...
umgr2cycllem 34430 Lemma for ~ umgr2cycl . (...
umgr2cycl 34431 A multigraph with two dist...
dfacycgr1 34434 An alternate definition of...
isacycgr 34435 The property of being an a...
isacycgr1 34436 The property of being an a...
acycgrcycl 34437 Any cycle in an acyclic gr...
acycgr0v 34438 A null graph (with no vert...
acycgr1v 34439 A multigraph with one vert...
acycgr2v 34440 A simple graph with two ve...
prclisacycgr 34441 A proper class (representi...
acycgrislfgr 34442 An acyclic hypergraph is a...
upgracycumgr 34443 An acyclic pseudograph is ...
umgracycusgr 34444 An acyclic multigraph is a...
upgracycusgr 34445 An acyclic pseudograph is ...
cusgracyclt3v 34446 A complete simple graph is...
pthacycspth 34447 A path in an acyclic graph...
acycgrsubgr 34448 The subgraph of an acyclic...
quartfull 34455 The quartic equation, writ...
deranglem 34456 Lemma for derangements. (...
derangval 34457 Define the derangement fun...
derangf 34458 The derangement number is ...
derang0 34459 The derangement number of ...
derangsn 34460 The derangement number of ...
derangenlem 34461 One half of ~ derangen . ...
derangen 34462 The derangement number is ...
subfacval 34463 The subfactorial is define...
derangen2 34464 Write the derangement numb...
subfacf 34465 The subfactorial is a func...
subfaclefac 34466 The subfactorial is less t...
subfac0 34467 The subfactorial at zero. ...
subfac1 34468 The subfactorial at one. ...
subfacp1lem1 34469 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 34470 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 34471 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 34472 Lemma for ~ subfacp1 . In...
subfacp1lem4 34473 Lemma for ~ subfacp1 . Th...
subfacp1lem5 34474 Lemma for ~ subfacp1 . In...
subfacp1lem6 34475 Lemma for ~ subfacp1 . By...
subfacp1 34476 A two-term recurrence for ...
subfacval2 34477 A closed-form expression f...
subfaclim 34478 The subfactorial converges...
subfacval3 34479 Another closed form expres...
derangfmla 34480 The derangements formula, ...
erdszelem1 34481 Lemma for ~ erdsze . (Con...
erdszelem2 34482 Lemma for ~ erdsze . (Con...
erdszelem3 34483 Lemma for ~ erdsze . (Con...
erdszelem4 34484 Lemma for ~ erdsze . (Con...
erdszelem5 34485 Lemma for ~ erdsze . (Con...
erdszelem6 34486 Lemma for ~ erdsze . (Con...
erdszelem7 34487 Lemma for ~ erdsze . (Con...
erdszelem8 34488 Lemma for ~ erdsze . (Con...
erdszelem9 34489 Lemma for ~ erdsze . (Con...
erdszelem10 34490 Lemma for ~ erdsze . (Con...
erdszelem11 34491 Lemma for ~ erdsze . (Con...
erdsze 34492 The ErdÅ‘s-Szekeres th...
erdsze2lem1 34493 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 34494 Lemma for ~ erdsze2 . (Co...
erdsze2 34495 Generalize the statement o...
kur14lem1 34496 Lemma for ~ kur14 . (Cont...
kur14lem2 34497 Lemma for ~ kur14 . Write...
kur14lem3 34498 Lemma for ~ kur14 . A clo...
kur14lem4 34499 Lemma for ~ kur14 . Compl...
kur14lem5 34500 Lemma for ~ kur14 . Closu...
kur14lem6 34501 Lemma for ~ kur14 . If ` ...
kur14lem7 34502 Lemma for ~ kur14 : main p...
kur14lem8 34503 Lemma for ~ kur14 . Show ...
kur14lem9 34504 Lemma for ~ kur14 . Since...
kur14lem10 34505 Lemma for ~ kur14 . Disch...
kur14 34506 Kuratowski's closure-compl...
ispconn 34513 The property of being a pa...
pconncn 34514 The property of being a pa...
pconntop 34515 A simply connected space i...
issconn 34516 The property of being a si...
sconnpconn 34517 A simply connected space i...
sconntop 34518 A simply connected space i...
sconnpht 34519 A closed path in a simply ...
cnpconn 34520 An image of a path-connect...
pconnconn 34521 A path-connected space is ...
txpconn 34522 The topological product of...
ptpconn 34523 The topological product of...
indispconn 34524 The indiscrete topology (o...
connpconn 34525 A connected and locally pa...
qtoppconn 34526 A quotient of a path-conne...
pconnpi1 34527 All fundamental groups in ...
sconnpht2 34528 Any two paths in a simply ...
sconnpi1 34529 A path-connected topologic...
txsconnlem 34530 Lemma for ~ txsconn . (Co...
txsconn 34531 The topological product of...
cvxpconn 34532 A convex subset of the com...
cvxsconn 34533 A convex subset of the com...
blsconn 34534 An open ball in the comple...
cnllysconn 34535 The topology of the comple...
resconn 34536 A subset of ` RR ` is simp...
ioosconn 34537 An open interval is simply...
iccsconn 34538 A closed interval is simpl...
retopsconn 34539 The real numbers are simpl...
iccllysconn 34540 A closed interval is local...
rellysconn 34541 The real numbers are local...
iisconn 34542 The unit interval is simpl...
iillysconn 34543 The unit interval is local...
iinllyconn 34544 The unit interval is local...
fncvm 34547 Lemma for covering maps. ...
cvmscbv 34548 Change bound variables in ...
iscvm 34549 The property of being a co...
cvmtop1 34550 Reverse closure for a cove...
cvmtop2 34551 Reverse closure for a cove...
cvmcn 34552 A covering map is a contin...
cvmcov 34553 Property of a covering map...
cvmsrcl 34554 Reverse closure for an eve...
cvmsi 34555 One direction of ~ cvmsval...
cvmsval 34556 Elementhood in the set ` S...
cvmsss 34557 An even covering is a subs...
cvmsn0 34558 An even covering is nonemp...
cvmsuni 34559 An even covering of ` U ` ...
cvmsdisj 34560 An even covering of ` U ` ...
cvmshmeo 34561 Every element of an even c...
cvmsf1o 34562 ` F ` , localized to an el...
cvmscld 34563 The sets of an even coveri...
cvmsss2 34564 An open subset of an evenl...
cvmcov2 34565 The covering map property ...
cvmseu 34566 Every element in ` U. T ` ...
cvmsiota 34567 Identify the unique elemen...
cvmopnlem 34568 Lemma for ~ cvmopn . (Con...
cvmfolem 34569 Lemma for ~ cvmfo . (Cont...
cvmopn 34570 A covering map is an open ...
cvmliftmolem1 34571 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 34572 Lemma for ~ cvmliftmo . (...
cvmliftmoi 34573 A lift of a continuous fun...
cvmliftmo 34574 A lift of a continuous fun...
cvmliftlem1 34575 Lemma for ~ cvmlift . In ...
cvmliftlem2 34576 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 34577 Lemma for ~ cvmlift . Sin...
cvmliftlem4 34578 Lemma for ~ cvmlift . The...
cvmliftlem5 34579 Lemma for ~ cvmlift . Def...
cvmliftlem6 34580 Lemma for ~ cvmlift . Ind...
cvmliftlem7 34581 Lemma for ~ cvmlift . Pro...
cvmliftlem8 34582 Lemma for ~ cvmlift . The...
cvmliftlem9 34583 Lemma for ~ cvmlift . The...
cvmliftlem10 34584 Lemma for ~ cvmlift . The...
cvmliftlem11 34585 Lemma for ~ cvmlift . (Co...
cvmliftlem13 34586 Lemma for ~ cvmlift . The...
cvmliftlem14 34587 Lemma for ~ cvmlift . Put...
cvmliftlem15 34588 Lemma for ~ cvmlift . Dis...
cvmlift 34589 One of the important prope...
cvmfo 34590 A covering map is an onto ...
cvmliftiota 34591 Write out a function ` H `...
cvmlift2lem1 34592 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 34593 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 34594 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 34595 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 34596 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 34597 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 34598 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 34599 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 34600 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 34601 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 34602 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 34603 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 34604 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 34605 Lemma for ~ cvmlift2 . (C...
cvmlift2 34606 A two-dimensional version ...
cvmliftphtlem 34607 Lemma for ~ cvmliftpht . ...
cvmliftpht 34608 If ` G ` and ` H ` are pat...
cvmlift3lem1 34609 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 34610 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 34611 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 34612 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 34613 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 34614 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 34615 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 34616 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 34617 Lemma for ~ cvmlift2 . (C...
cvmlift3 34618 A general version of ~ cvm...
snmlff 34619 The function ` F ` from ~ ...
snmlfval 34620 The function ` F ` from ~ ...
snmlval 34621 The property " ` A ` is si...
snmlflim 34622 If ` A ` is simply normal,...
goel 34637 A "Godel-set of membership...
goelel3xp 34638 A "Godel-set of membership...
goeleq12bg 34639 Two "Godel-set of membersh...
gonafv 34640 The "Godel-set for the She...
goaleq12d 34641 Equality of the "Godel-set...
gonanegoal 34642 The Godel-set for the Shef...
satf 34643 The satisfaction predicate...
satfsucom 34644 The satisfaction predicate...
satfn 34645 The satisfaction predicate...
satom 34646 The satisfaction predicate...
satfvsucom 34647 The satisfaction predicate...
satfv0 34648 The value of the satisfact...
satfvsuclem1 34649 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 34650 Lemma 2 for ~ satfvsuc . ...
satfvsuc 34651 The value of the satisfact...
satfv1lem 34652 Lemma for ~ satfv1 . (Con...
satfv1 34653 The value of the satisfact...
satfsschain 34654 The binary relation of a s...
satfvsucsuc 34655 The satisfaction predicate...
satfbrsuc 34656 The binary relation of a s...
satfrel 34657 The value of the satisfact...
satfdmlem 34658 Lemma for ~ satfdm . (Con...
satfdm 34659 The domain of the satisfac...
satfrnmapom 34660 The range of the satisfact...
satfv0fun 34661 The value of the satisfact...
satf0 34662 The satisfaction predicate...
satf0sucom 34663 The satisfaction predicate...
satf00 34664 The value of the satisfact...
satf0suclem 34665 Lemma for ~ satf0suc , ~ s...
satf0suc 34666 The value of the satisfact...
satf0op 34667 An element of a value of t...
satf0n0 34668 The value of the satisfact...
sat1el2xp 34669 The first component of an ...
fmlafv 34670 The valid Godel formulas o...
fmla 34671 The set of all valid Godel...
fmla0 34672 The valid Godel formulas o...
fmla0xp 34673 The valid Godel formulas o...
fmlasuc0 34674 The valid Godel formulas o...
fmlafvel 34675 A class is a valid Godel f...
fmlasuc 34676 The valid Godel formulas o...
fmla1 34677 The valid Godel formulas o...
isfmlasuc 34678 The characterization of a ...
fmlasssuc 34679 The Godel formulas of heig...
fmlaomn0 34680 The empty set is not a God...
fmlan0 34681 The empty set is not a God...
gonan0 34682 The "Godel-set of NAND" is...
goaln0 34683 The "Godel-set of universa...
gonarlem 34684 Lemma for ~ gonar (inducti...
gonar 34685 If the "Godel-set of NAND"...
goalrlem 34686 Lemma for ~ goalr (inducti...
goalr 34687 If the "Godel-set of unive...
fmla0disjsuc 34688 The set of valid Godel for...
fmlasucdisj 34689 The valid Godel formulas o...
satfdmfmla 34690 The domain of the satisfac...
satffunlem 34691 Lemma for ~ satffunlem1lem...
satffunlem1lem1 34692 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 34693 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 34694 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 34695 The domain of an ordered p...
satffunlem2lem2 34696 Lemma 2 for ~ satffunlem2 ...
satffunlem1 34697 Lemma 1 for ~ satffun : in...
satffunlem2 34698 Lemma 2 for ~ satffun : in...
satffun 34699 The value of the satisfact...
satff 34700 The satisfaction predicate...
satfun 34701 The satisfaction predicate...
satfvel 34702 An element of the value of...
satfv0fvfmla0 34703 The value of the satisfact...
satefv 34704 The simplified satisfactio...
sate0 34705 The simplified satisfactio...
satef 34706 The simplified satisfactio...
sate0fv0 34707 A simplified satisfaction ...
satefvfmla0 34708 The simplified satisfactio...
sategoelfvb 34709 Characterization of a valu...
sategoelfv 34710 Condition of a valuation `...
ex-sategoelel 34711 Example of a valuation of ...
ex-sategoel 34712 Instance of ~ sategoelfv f...
satfv1fvfmla1 34713 The value of the satisfact...
2goelgoanfmla1 34714 Two Godel-sets of membersh...
satefvfmla1 34715 The simplified satisfactio...
ex-sategoelelomsuc 34716 Example of a valuation of ...
ex-sategoelel12 34717 Example of a valuation of ...
prv 34718 The "proves" relation on a...
elnanelprv 34719 The wff ` ( A e. B -/\ B e...
prv0 34720 Every wff encoded as ` U `...
prv1n 34721 No wff encoded as a Godel-...
mvtval 34790 The set of variable typeco...
mrexval 34791 The set of "raw expression...
mexval 34792 The set of expressions, wh...
mexval2 34793 The set of expressions, wh...
mdvval 34794 The set of disjoint variab...
mvrsval 34795 The set of variables in an...
mvrsfpw 34796 The set of variables in an...
mrsubffval 34797 The substitution of some v...
mrsubfval 34798 The substitution of some v...
mrsubval 34799 The substitution of some v...
mrsubcv 34800 The value of a substituted...
mrsubvr 34801 The value of a substituted...
mrsubff 34802 A substitution is a functi...
mrsubrn 34803 Although it is defined for...
mrsubff1 34804 When restricted to complet...
mrsubff1o 34805 When restricted to complet...
mrsub0 34806 The value of the substitut...
mrsubf 34807 A substitution is a functi...
mrsubccat 34808 Substitution distributes o...
mrsubcn 34809 A substitution does not ch...
elmrsubrn 34810 Characterization of the su...
mrsubco 34811 The composition of two sub...
mrsubvrs 34812 The set of variables in a ...
msubffval 34813 A substitution applied to ...
msubfval 34814 A substitution applied to ...
msubval 34815 A substitution applied to ...
msubrsub 34816 A substitution applied to ...
msubty 34817 The type of a substituted ...
elmsubrn 34818 Characterization of substi...
msubrn 34819 Although it is defined for...
msubff 34820 A substitution is a functi...
msubco 34821 The composition of two sub...
msubf 34822 A substitution is a functi...
mvhfval 34823 Value of the function mapp...
mvhval 34824 Value of the function mapp...
mpstval 34825 A pre-statement is an orde...
elmpst 34826 Property of being a pre-st...
msrfval 34827 Value of the reduct of a p...
msrval 34828 Value of the reduct of a p...
mpstssv 34829 A pre-statement is an orde...
mpst123 34830 Decompose a pre-statement ...
mpstrcl 34831 The elements of a pre-stat...
msrf 34832 The reduct of a pre-statem...
msrrcl 34833 If ` X ` and ` Y ` have th...
mstaval 34834 Value of the set of statem...
msrid 34835 The reduct of a statement ...
msrfo 34836 The reduct of a pre-statem...
mstapst 34837 A statement is a pre-state...
elmsta 34838 Property of being a statem...
ismfs 34839 A formal system is a tuple...
mfsdisj 34840 The constants and variable...
mtyf2 34841 The type function maps var...
mtyf 34842 The type function maps var...
mvtss 34843 The set of variable typeco...
maxsta 34844 An axiom is a statement. ...
mvtinf 34845 Each variable typecode has...
msubff1 34846 When restricted to complet...
msubff1o 34847 When restricted to complet...
mvhf 34848 The function mapping varia...
mvhf1 34849 The function mapping varia...
msubvrs 34850 The set of variables in a ...
mclsrcl 34851 Reverse closure for the cl...
mclsssvlem 34852 Lemma for ~ mclsssv . (Co...
mclsval 34853 The function mapping varia...
mclsssv 34854 The closure of a set of ex...
ssmclslem 34855 Lemma for ~ ssmcls . (Con...
vhmcls 34856 All variable hypotheses ar...
ssmcls 34857 The original expressions a...
ss2mcls 34858 The closure is monotonic u...
mclsax 34859 The closure is closed unde...
mclsind 34860 Induction theorem for clos...
mppspstlem 34861 Lemma for ~ mppspst . (Co...
mppsval 34862 Definition of a provable p...
elmpps 34863 Definition of a provable p...
mppspst 34864 A provable pre-statement i...
mthmval 34865 A theorem is a pre-stateme...
elmthm 34866 A theorem is a pre-stateme...
mthmi 34867 A statement whose reduct i...
mthmsta 34868 A theorem is a pre-stateme...
mppsthm 34869 A provable pre-statement i...
mthmblem 34870 Lemma for ~ mthmb . (Cont...
mthmb 34871 If two statements have the...
mthmpps 34872 Given a theorem, there is ...
mclsppslem 34873 The closure is closed unde...
mclspps 34874 The closure is closed unde...
problem1 34949 Practice problem 1. Clues...
problem2 34950 Practice problem 2. Clues...
problem3 34951 Practice problem 3. Clues...
problem4 34952 Practice problem 4. Clues...
problem5 34953 Practice problem 5. Clues...
quad3 34954 Variant of quadratic equat...
climuzcnv 34955 Utility lemma to convert b...
sinccvglem 34956 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 34957 ` ( ( sin `` x ) / x ) ~~>...
circum 34958 The circumference of a cir...
elfzm12 34959 Membership in a curtailed ...
nn0seqcvg 34960 A strictly-decreasing nonn...
lediv2aALT 34961 Division of both sides of ...
abs2sqlei 34962 The absolute values of two...
abs2sqlti 34963 The absolute values of two...
abs2sqle 34964 The absolute values of two...
abs2sqlt 34965 The absolute values of two...
abs2difi 34966 Difference of absolute val...
abs2difabsi 34967 Absolute value of differen...
currybi 34968 Biconditional version of C...
axextprim 34975 ~ ax-ext without distinct ...
axrepprim 34976 ~ ax-rep without distinct ...
axunprim 34977 ~ ax-un without distinct v...
axpowprim 34978 ~ ax-pow without distinct ...
axregprim 34979 ~ ax-reg without distinct ...
axinfprim 34980 ~ ax-inf without distinct ...
axacprim 34981 ~ ax-ac without distinct v...
untelirr 34982 We call a class "untanged"...
untuni 34983 The union of a class is un...
untsucf 34984 If a class is untangled, t...
unt0 34985 The null set is untangled....
untint 34986 If there is an untangled e...
efrunt 34987 If ` A ` is well-founded b...
untangtr 34988 A transitive class is unta...
3jaodd 34989 Double deduction form of ~...
3orit 34990 Closed form of ~ 3ori . (...
biimpexp 34991 A biconditional in the ant...
nepss 34992 Two classes are unequal if...
3ccased 34993 Triple disjunction form of...
dfso3 34994 Expansion of the definitio...
brtpid1 34995 A binary relation involvin...
brtpid2 34996 A binary relation involvin...
brtpid3 34997 A binary relation involvin...
iota5f 34998 A method for computing iot...
jath 34999 Closed form of ~ ja . Pro...
xpab 35000 Cartesian product of two c...
nnuni 35001 The union of a finite ordi...
sqdivzi 35002 Distribution of square ove...
supfz 35003 The supremum of a finite s...
inffz 35004 The infimum of a finite se...
fz0n 35005 The sequence ` ( 0 ... ( N...
shftvalg 35006 Value of a sequence shifte...
divcnvlin 35007 Limit of the ratio of two ...
climlec3 35008 Comparison of a constant t...
logi 35009 Calculate the logarithm of...
iexpire 35010 ` _i ` raised to itself is...
bcneg1 35011 The binomial coefficent ov...
bcm1nt 35012 The proportion of one bion...
bcprod 35013 A product identity for bin...
bccolsum 35014 A column-sum rule for bino...
iprodefisumlem 35015 Lemma for ~ iprodefisum . ...
iprodefisum 35016 Applying the exponential f...
iprodgam 35017 An infinite product versio...
faclimlem1 35018 Lemma for ~ faclim . Clos...
faclimlem2 35019 Lemma for ~ faclim . Show...
faclimlem3 35020 Lemma for ~ faclim . Alge...
faclim 35021 An infinite product expres...
iprodfac 35022 An infinite product expres...
faclim2 35023 Another factorial limit du...
gcd32 35024 Swap the second and third ...
gcdabsorb 35025 Absorption law for gcd. (...
dftr6 35026 A potential definition of ...
coep 35027 Composition with the membe...
coepr 35028 Composition with the conve...
dffr5 35029 A quantifier-free definiti...
dfso2 35030 Quantifier-free definition...
br8 35031 Substitution for an eight-...
br6 35032 Substitution for a six-pla...
br4 35033 Substitution for a four-pl...
cnvco1 35034 Another distributive law o...
cnvco2 35035 Another distributive law o...
eldm3 35036 Quantifier-free definition...
elrn3 35037 Quantifier-free definition...
pocnv 35038 The converse of a partial ...
socnv 35039 The converse of a strict o...
sotrd 35040 Transitivity law for stric...
elintfv 35041 Membership in an intersect...
funpsstri 35042 A condition for subset tri...
fundmpss 35043 If a class ` F ` is a prop...
funsseq 35044 Given two functions with e...
fununiq 35045 The uniqueness condition o...
funbreq 35046 An equality condition for ...
br1steq 35047 Uniqueness condition for t...
br2ndeq 35048 Uniqueness condition for t...
dfdm5 35049 Definition of domain in te...
dfrn5 35050 Definition of range in ter...
opelco3 35051 Alternate way of saying th...
elima4 35052 Quantifier-free expression...
fv1stcnv 35053 The value of the converse ...
fv2ndcnv 35054 The value of the converse ...
setinds 35055 Principle of set induction...
setinds2f 35056 ` _E ` induction schema, u...
setinds2 35057 ` _E ` induction schema, u...
elpotr 35058 A class of transitive sets...
dford5reg 35059 Given ~ ax-reg , an ordina...
dfon2lem1 35060 Lemma for ~ dfon2 . (Cont...
dfon2lem2 35061 Lemma for ~ dfon2 . (Cont...
dfon2lem3 35062 Lemma for ~ dfon2 . All s...
dfon2lem4 35063 Lemma for ~ dfon2 . If tw...
dfon2lem5 35064 Lemma for ~ dfon2 . Two s...
dfon2lem6 35065 Lemma for ~ dfon2 . A tra...
dfon2lem7 35066 Lemma for ~ dfon2 . All e...
dfon2lem8 35067 Lemma for ~ dfon2 . The i...
dfon2lem9 35068 Lemma for ~ dfon2 . A cla...
dfon2 35069 ` On ` consists of all set...
rdgprc0 35070 The value of the recursive...
rdgprc 35071 The value of the recursive...
dfrdg2 35072 Alternate definition of th...
dfrdg3 35073 Generalization of ~ dfrdg2...
axextdfeq 35074 A version of ~ ax-ext for ...
ax8dfeq 35075 A version of ~ ax-8 for us...
axextdist 35076 ~ ax-ext with distinctors ...
axextbdist 35077 ~ axextb with distinctors ...
19.12b 35078 Version of ~ 19.12vv with ...
exnel 35079 There is always a set not ...
distel 35080 Distinctors in terms of me...
axextndbi 35081 ~ axextnd as a bicondition...
hbntg 35082 A more general form of ~ h...
hbimtg 35083 A more general and closed ...
hbaltg 35084 A more general and closed ...
hbng 35085 A more general form of ~ h...
hbimg 35086 A more general form of ~ h...
wsuceq123 35091 Equality theorem for well-...
wsuceq1 35092 Equality theorem for well-...
wsuceq2 35093 Equality theorem for well-...
wsuceq3 35094 Equality theorem for well-...
nfwsuc 35095 Bound-variable hypothesis ...
wlimeq12 35096 Equality theorem for the l...
wlimeq1 35097 Equality theorem for the l...
wlimeq2 35098 Equality theorem for the l...
nfwlim 35099 Bound-variable hypothesis ...
elwlim 35100 Membership in the limit cl...
wzel 35101 The zero of a well-founded...
wsuclem 35102 Lemma for the supremum pro...
wsucex 35103 Existence theorem for well...
wsuccl 35104 If ` X ` is a set with an ...
wsuclb 35105 A well-founded successor i...
wlimss 35106 The class of limit points ...
txpss3v 35155 A tail Cartesian product i...
txprel 35156 A tail Cartesian product i...
brtxp 35157 Characterize a ternary rel...
brtxp2 35158 The binary relation over a...
dfpprod2 35159 Expanded definition of par...
pprodcnveq 35160 A converse law for paralle...
pprodss4v 35161 The parallel product is a ...
brpprod 35162 Characterize a quaternary ...
brpprod3a 35163 Condition for parallel pro...
brpprod3b 35164 Condition for parallel pro...
relsset 35165 The subset class is a bina...
brsset 35166 For sets, the ` SSet ` bin...
idsset 35167 ` _I ` is equal to the int...
eltrans 35168 Membership in the class of...
dfon3 35169 A quantifier-free definiti...
dfon4 35170 Another quantifier-free de...
brtxpsd 35171 Expansion of a common form...
brtxpsd2 35172 Another common abbreviatio...
brtxpsd3 35173 A third common abbreviatio...
relbigcup 35174 The ` Bigcup ` relationshi...
brbigcup 35175 Binary relation over ` Big...
dfbigcup2 35176 ` Bigcup ` using maps-to n...
fobigcup 35177 ` Bigcup ` maps the univer...
fnbigcup 35178 ` Bigcup ` is a function o...
fvbigcup 35179 For sets, ` Bigcup ` yield...
elfix 35180 Membership in the fixpoint...
elfix2 35181 Alternative membership in ...
dffix2 35182 The fixpoints of a class i...
fixssdm 35183 The fixpoints of a class a...
fixssrn 35184 The fixpoints of a class a...
fixcnv 35185 The fixpoints of a class a...
fixun 35186 The fixpoint operator dist...
ellimits 35187 Membership in the class of...
limitssson 35188 The class of all limit ord...
dfom5b 35189 A quantifier-free definiti...
sscoid 35190 A condition for subset and...
dffun10 35191 Another potential definiti...
elfuns 35192 Membership in the class of...
elfunsg 35193 Closed form of ~ elfuns . ...
brsingle 35194 The binary relation form o...
elsingles 35195 Membership in the class of...
fnsingle 35196 The singleton relationship...
fvsingle 35197 The value of the singleton...
dfsingles2 35198 Alternate definition of th...
snelsingles 35199 A singleton is a member of...
dfiota3 35200 A definition of iota using...
dffv5 35201 Another quantifier-free de...
unisnif 35202 Express union of singleton...
brimage 35203 Binary relation form of th...
brimageg 35204 Closed form of ~ brimage ....
funimage 35205 ` Image A ` is a function....
fnimage 35206 ` Image R ` is a function ...
imageval 35207 The image functor in maps-...
fvimage 35208 Value of the image functor...
brcart 35209 Binary relation form of th...
brdomain 35210 Binary relation form of th...
brrange 35211 Binary relation form of th...
brdomaing 35212 Closed form of ~ brdomain ...
brrangeg 35213 Closed form of ~ brrange ....
brimg 35214 Binary relation form of th...
brapply 35215 Binary relation form of th...
brcup 35216 Binary relation form of th...
brcap 35217 Binary relation form of th...
brsuccf 35218 Binary relation form of th...
funpartlem 35219 Lemma for ~ funpartfun . ...
funpartfun 35220 The functional part of ` F...
funpartss 35221 The functional part of ` F...
funpartfv 35222 The function value of the ...
fullfunfnv 35223 The full functional part o...
fullfunfv 35224 The function value of the ...
brfullfun 35225 A binary relation form con...
brrestrict 35226 Binary relation form of th...
dfrecs2 35227 A quantifier-free definiti...
dfrdg4 35228 A quantifier-free definiti...
dfint3 35229 Quantifier-free definition...
imagesset 35230 The Image functor applied ...
brub 35231 Binary relation form of th...
brlb 35232 Binary relation form of th...
altopex 35237 Alternative ordered pairs ...
altopthsn 35238 Two alternate ordered pair...
altopeq12 35239 Equality for alternate ord...
altopeq1 35240 Equality for alternate ord...
altopeq2 35241 Equality for alternate ord...
altopth1 35242 Equality of the first memb...
altopth2 35243 Equality of the second mem...
altopthg 35244 Alternate ordered pair the...
altopthbg 35245 Alternate ordered pair the...
altopth 35246 The alternate ordered pair...
altopthb 35247 Alternate ordered pair the...
altopthc 35248 Alternate ordered pair the...
altopthd 35249 Alternate ordered pair the...
altxpeq1 35250 Equality for alternate Car...
altxpeq2 35251 Equality for alternate Car...
elaltxp 35252 Membership in alternate Ca...
altopelaltxp 35253 Alternate ordered pair mem...
altxpsspw 35254 An inclusion rule for alte...
altxpexg 35255 The alternate Cartesian pr...
rankaltopb 35256 Compute the rank of an alt...
nfaltop 35257 Bound-variable hypothesis ...
sbcaltop 35258 Distribution of class subs...
cgrrflx2d 35261 Deduction form of ~ axcgrr...
cgrtr4d 35262 Deduction form of ~ axcgrt...
cgrtr4and 35263 Deduction form of ~ axcgrt...
cgrrflx 35264 Reflexivity law for congru...
cgrrflxd 35265 Deduction form of ~ cgrrfl...
cgrcomim 35266 Congruence commutes on the...
cgrcom 35267 Congruence commutes betwee...
cgrcomand 35268 Deduction form of ~ cgrcom...
cgrtr 35269 Transitivity law for congr...
cgrtrand 35270 Deduction form of ~ cgrtr ...
cgrtr3 35271 Transitivity law for congr...
cgrtr3and 35272 Deduction form of ~ cgrtr3...
cgrcoml 35273 Congruence commutes on the...
cgrcomr 35274 Congruence commutes on the...
cgrcomlr 35275 Congruence commutes on bot...
cgrcomland 35276 Deduction form of ~ cgrcom...
cgrcomrand 35277 Deduction form of ~ cgrcom...
cgrcomlrand 35278 Deduction form of ~ cgrcom...
cgrtriv 35279 Degenerate segments are co...
cgrid2 35280 Identity law for congruenc...
cgrdegen 35281 Two congruent segments are...
brofs 35282 Binary relation form of th...
5segofs 35283 Rephrase ~ ax5seg using th...
ofscom 35284 The outer five segment pre...
cgrextend 35285 Link congruence over a pai...
cgrextendand 35286 Deduction form of ~ cgrext...
segconeq 35287 Two points that satisfy th...
segconeu 35288 Existential uniqueness ver...
btwntriv2 35289 Betweenness always holds f...
btwncomim 35290 Betweenness commutes. Imp...
btwncom 35291 Betweenness commutes. (Co...
btwncomand 35292 Deduction form of ~ btwnco...
btwntriv1 35293 Betweenness always holds f...
btwnswapid 35294 If you can swap the first ...
btwnswapid2 35295 If you can swap arguments ...
btwnintr 35296 Inner transitivity law for...
btwnexch3 35297 Exchange the first endpoin...
btwnexch3and 35298 Deduction form of ~ btwnex...
btwnouttr2 35299 Outer transitivity law for...
btwnexch2 35300 Exchange the outer point o...
btwnouttr 35301 Outer transitivity law for...
btwnexch 35302 Outer transitivity law for...
btwnexchand 35303 Deduction form of ~ btwnex...
btwndiff 35304 There is always a ` c ` di...
trisegint 35305 A line segment between two...
funtransport 35308 The ` TransportTo ` relati...
fvtransport 35309 Calculate the value of the...
transportcl 35310 Closure law for segment tr...
transportprops 35311 Calculate the defining pro...
brifs 35320 Binary relation form of th...
ifscgr 35321 Inner five segment congrue...
cgrsub 35322 Removing identical parts f...
brcgr3 35323 Binary relation form of th...
cgr3permute3 35324 Permutation law for three-...
cgr3permute1 35325 Permutation law for three-...
cgr3permute2 35326 Permutation law for three-...
cgr3permute4 35327 Permutation law for three-...
cgr3permute5 35328 Permutation law for three-...
cgr3tr4 35329 Transitivity law for three...
cgr3com 35330 Commutativity law for thre...
cgr3rflx 35331 Identity law for three-pla...
cgrxfr 35332 A line segment can be divi...
btwnxfr 35333 A condition for extending ...
colinrel 35334 Colinearity is a relations...
brcolinear2 35335 Alternate colinearity bina...
brcolinear 35336 The binary relation form o...
colinearex 35337 The colinear predicate exi...
colineardim1 35338 If ` A ` is colinear with ...
colinearperm1 35339 Permutation law for coline...
colinearperm3 35340 Permutation law for coline...
colinearperm2 35341 Permutation law for coline...
colinearperm4 35342 Permutation law for coline...
colinearperm5 35343 Permutation law for coline...
colineartriv1 35344 Trivial case of colinearit...
colineartriv2 35345 Trivial case of colinearit...
btwncolinear1 35346 Betweenness implies coline...
btwncolinear2 35347 Betweenness implies coline...
btwncolinear3 35348 Betweenness implies coline...
btwncolinear4 35349 Betweenness implies coline...
btwncolinear5 35350 Betweenness implies coline...
btwncolinear6 35351 Betweenness implies coline...
colinearxfr 35352 Transfer law for colineari...
lineext 35353 Extend a line with a missi...
brofs2 35354 Change some conditions for...
brifs2 35355 Change some conditions for...
brfs 35356 Binary relation form of th...
fscgr 35357 Congruence law for the gen...
linecgr 35358 Congruence rule for lines....
linecgrand 35359 Deduction form of ~ linecg...
lineid 35360 Identity law for points on...
idinside 35361 Law for finding a point in...
endofsegid 35362 If ` A ` , ` B ` , and ` C...
endofsegidand 35363 Deduction form of ~ endofs...
btwnconn1lem1 35364 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 35365 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 35366 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 35367 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 35368 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 35369 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 35370 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 35371 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 35372 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 35373 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 35374 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 35375 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 35376 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 35377 Lemma for ~ btwnconn1 . F...
btwnconn1 35378 Connectitivy law for betwe...
btwnconn2 35379 Another connectivity law f...
btwnconn3 35380 Inner connectivity law for...
midofsegid 35381 If two points fall in the ...
segcon2 35382 Generalization of ~ axsegc...
brsegle 35385 Binary relation form of th...
brsegle2 35386 Alternate characterization...
seglecgr12im 35387 Substitution law for segme...
seglecgr12 35388 Substitution law for segme...
seglerflx 35389 Segment comparison is refl...
seglemin 35390 Any segment is at least as...
segletr 35391 Segment less than is trans...
segleantisym 35392 Antisymmetry law for segme...
seglelin 35393 Linearity law for segment ...
btwnsegle 35394 If ` B ` falls between ` A...
colinbtwnle 35395 Given three colinear point...
broutsideof 35398 Binary relation form of ` ...
broutsideof2 35399 Alternate form of ` Outsid...
outsidene1 35400 Outsideness implies inequa...
outsidene2 35401 Outsideness implies inequa...
btwnoutside 35402 A principle linking outsid...
broutsideof3 35403 Characterization of outsid...
outsideofrflx 35404 Reflexivity of outsideness...
outsideofcom 35405 Commutativity law for outs...
outsideoftr 35406 Transitivity law for outsi...
outsideofeq 35407 Uniqueness law for ` Outsi...
outsideofeu 35408 Given a nondegenerate ray,...
outsidele 35409 Relate ` OutsideOf ` to ` ...
outsideofcol 35410 Outside of implies colinea...
funray 35417 Show that the ` Ray ` rela...
fvray 35418 Calculate the value of the...
funline 35419 Show that the ` Line ` rel...
linedegen 35420 When ` Line ` is applied w...
fvline 35421 Calculate the value of the...
liness 35422 A line is a subset of the ...
fvline2 35423 Alternate definition of a ...
lineunray 35424 A line is composed of a po...
lineelsb2 35425 If ` S ` lies on ` P Q ` ,...
linerflx1 35426 Reflexivity law for line m...
linecom 35427 Commutativity law for line...
linerflx2 35428 Reflexivity law for line m...
ellines 35429 Membership in the set of a...
linethru 35430 If ` A ` is a line contain...
hilbert1.1 35431 There is a line through an...
hilbert1.2 35432 There is at most one line ...
linethrueu 35433 There is a unique line goi...
lineintmo 35434 Two distinct lines interse...
fwddifval 35439 Calculate the value of the...
fwddifnval 35440 The value of the forward d...
fwddifn0 35441 The value of the n-iterate...
fwddifnp1 35442 The value of the n-iterate...
rankung 35443 The rank of the union of t...
ranksng 35444 The rank of a singleton. ...
rankelg 35445 The membership relation is...
rankpwg 35446 The rank of a power set. ...
rank0 35447 The rank of the empty set ...
rankeq1o 35448 The only set with rank ` 1...
elhf 35451 Membership in the heredita...
elhf2 35452 Alternate form of membersh...
elhf2g 35453 Hereditarily finiteness vi...
0hf 35454 The empty set is a heredit...
hfun 35455 The union of two HF sets i...
hfsn 35456 The singleton of an HF set...
hfadj 35457 Adjoining one HF element t...
hfelhf 35458 Any member of an HF set is...
hftr 35459 The class of all hereditar...
hfext 35460 Extensionality for HF sets...
hfuni 35461 The union of an HF set is ...
hfpw 35462 The power class of an HF s...
hfninf 35463 ` _om ` is not hereditaril...
mpomulex 35464 The multiplication operati...
gg-psercn2 35465 Since by ~ pserulm the ser...
gg-rmulccn 35466 Multiplication by a real c...
gg-cmvth 35467 Cauchy's Mean Value Theore...
gg-cnfldex 35468 The field of complex numbe...
gg-dvfsumle 35469 Compare a finite sum to an...
gg-dvfsumlem2 35470 Lemma for ~ dvfsumrlim . ...
gg-cxpcn 35471 Domain of continuity of th...
mpoaddf 35472 Addition is an operation o...
mpoaddex 35473 The addition operation is ...
gg-dfcnfld 35474 Alternative definition of ...
gg-cnfldstr 35475 The field of complex numbe...
gg-cnfldbas 35476 The base set of the field ...
mpocnfldadd 35477 The addition operation of ...
mpocnfldmul 35478 The multiplication operati...
gg-cnfldcj 35479 The conjugation operation ...
gg-cnfldtset 35480 The topology component of ...
gg-cnfldle 35481 The ordering of the field ...
gg-cnfldds 35482 The metric of the field of...
gg-cnfldunif 35483 The uniform structure comp...
gg-cnfldfun 35484 The field of complex numbe...
gg-cnfldfunALT 35485 The field of complex numbe...
gg-cffldtocusgr 35486 The field of complex numbe...
gg-cncrng 35487 The complex numbers form a...
gg-cnfld1 35488 One is the unity element o...
a1i14 35489 Add two antecedents to a w...
a1i24 35490 Add two antecedents to a w...
exp5d 35491 An exportation inference. ...
exp5g 35492 An exportation inference. ...
exp5k 35493 An exportation inference. ...
exp56 35494 An exportation inference. ...
exp58 35495 An exportation inference. ...
exp510 35496 An exportation inference. ...
exp511 35497 An exportation inference. ...
exp512 35498 An exportation inference. ...
3com12d 35499 Commutation in consequent....
imp5p 35500 A triple importation infer...
imp5q 35501 A triple importation infer...
ecase13d 35502 Deduction for elimination ...
subtr 35503 Transitivity of implicit s...
subtr2 35504 Transitivity of implicit s...
trer 35505 A relation intersected wit...
elicc3 35506 An equivalent membership c...
finminlem 35507 A useful lemma about finit...
gtinf 35508 Any number greater than an...
opnrebl 35509 A set is open in the stand...
opnrebl2 35510 A set is open in the stand...
nn0prpwlem 35511 Lemma for ~ nn0prpw . Use...
nn0prpw 35512 Two nonnegative integers a...
topbnd 35513 Two equivalent expressions...
opnbnd 35514 A set is open iff it is di...
cldbnd 35515 A set is closed iff it con...
ntruni 35516 A union of interiors is a ...
clsun 35517 A pairwise union of closur...
clsint2 35518 The closure of an intersec...
opnregcld 35519 A set is regularly closed ...
cldregopn 35520 A set if regularly open if...
neiin 35521 Two neighborhoods intersec...
hmeoclda 35522 Homeomorphisms preserve cl...
hmeocldb 35523 Homeomorphisms preserve cl...
ivthALT 35524 An alternate proof of the ...
fnerel 35527 Fineness is a relation. (...
isfne 35528 The predicate " ` B ` is f...
isfne4 35529 The predicate " ` B ` is f...
isfne4b 35530 A condition for a topology...
isfne2 35531 The predicate " ` B ` is f...
isfne3 35532 The predicate " ` B ` is f...
fnebas 35533 A finer cover covers the s...
fnetg 35534 A finer cover generates a ...
fnessex 35535 If ` B ` is finer than ` A...
fneuni 35536 If ` B ` is finer than ` A...
fneint 35537 If a cover is finer than a...
fness 35538 A cover is finer than its ...
fneref 35539 Reflexivity of the finenes...
fnetr 35540 Transitivity of the finene...
fneval 35541 Two covers are finer than ...
fneer 35542 Fineness intersected with ...
topfne 35543 Fineness for covers corres...
topfneec 35544 A cover is equivalent to a...
topfneec2 35545 A topology is precisely id...
fnessref 35546 A cover is finer iff it ha...
refssfne 35547 A cover is a refinement if...
neibastop1 35548 A collection of neighborho...
neibastop2lem 35549 Lemma for ~ neibastop2 . ...
neibastop2 35550 In the topology generated ...
neibastop3 35551 The topology generated by ...
topmtcl 35552 The meet of a collection o...
topmeet 35553 Two equivalent formulation...
topjoin 35554 Two equivalent formulation...
fnemeet1 35555 The meet of a collection o...
fnemeet2 35556 The meet of equivalence cl...
fnejoin1 35557 Join of equivalence classe...
fnejoin2 35558 Join of equivalence classe...
fgmin 35559 Minimality property of a g...
neifg 35560 The neighborhood filter of...
tailfval 35561 The tail function for a di...
tailval 35562 The tail of an element in ...
eltail 35563 An element of a tail. (Co...
tailf 35564 The tail function of a dir...
tailini 35565 A tail contains its initia...
tailfb 35566 The collection of tails of...
filnetlem1 35567 Lemma for ~ filnet . Chan...
filnetlem2 35568 Lemma for ~ filnet . The ...
filnetlem3 35569 Lemma for ~ filnet . (Con...
filnetlem4 35570 Lemma for ~ filnet . (Con...
filnet 35571 A filter has the same conv...
tb-ax1 35572 The first of three axioms ...
tb-ax2 35573 The second of three axioms...
tb-ax3 35574 The third of three axioms ...
tbsyl 35575 The weak syllogism from Ta...
re1ax2lem 35576 Lemma for ~ re1ax2 . (Con...
re1ax2 35577 ~ ax-2 rederived from the ...
naim1 35578 Constructor theorem for ` ...
naim2 35579 Constructor theorem for ` ...
naim1i 35580 Constructor rule for ` -/\...
naim2i 35581 Constructor rule for ` -/\...
naim12i 35582 Constructor rule for ` -/\...
nabi1i 35583 Constructor rule for ` -/\...
nabi2i 35584 Constructor rule for ` -/\...
nabi12i 35585 Constructor rule for ` -/\...
df3nandALT1 35588 The double nand expressed ...
df3nandALT2 35589 The double nand expressed ...
andnand1 35590 Double and in terms of dou...
imnand2 35591 An ` -> ` nand relation. ...
nalfal 35592 Not all sets hold ` F. ` a...
nexntru 35593 There does not exist a set...
nexfal 35594 There does not exist a set...
neufal 35595 There does not exist exact...
neutru 35596 There does not exist exact...
nmotru 35597 There does not exist at mo...
mofal 35598 There exist at most one se...
nrmo 35599 "At most one" restricted e...
meran1 35600 A single axiom for proposi...
meran2 35601 A single axiom for proposi...
meran3 35602 A single axiom for proposi...
waj-ax 35603 A single axiom for proposi...
lukshef-ax2 35604 A single axiom for proposi...
arg-ax 35605 A single axiom for proposi...
negsym1 35606 In the paper "On Variable ...
imsym1 35607 A symmetry with ` -> ` . ...
bisym1 35608 A symmetry with ` <-> ` . ...
consym1 35609 A symmetry with ` /\ ` . ...
dissym1 35610 A symmetry with ` \/ ` . ...
nandsym1 35611 A symmetry with ` -/\ ` . ...
unisym1 35612 A symmetry with ` A. ` . ...
exisym1 35613 A symmetry with ` E. ` . ...
unqsym1 35614 A symmetry with ` E! ` . ...
amosym1 35615 A symmetry with ` E* ` . ...
subsym1 35616 A symmetry with ` [ x / y ...
ontopbas 35617 An ordinal number is a top...
onsstopbas 35618 The class of ordinal numbe...
onpsstopbas 35619 The class of ordinal numbe...
ontgval 35620 The topology generated fro...
ontgsucval 35621 The topology generated fro...
onsuctop 35622 A successor ordinal number...
onsuctopon 35623 One of the topologies on a...
ordtoplem 35624 Membership of the class of...
ordtop 35625 An ordinal is a topology i...
onsucconni 35626 A successor ordinal number...
onsucconn 35627 A successor ordinal number...
ordtopconn 35628 An ordinal topology is con...
onintopssconn 35629 An ordinal topology is con...
onsuct0 35630 A successor ordinal number...
ordtopt0 35631 An ordinal topology is T_0...
onsucsuccmpi 35632 The successor of a success...
onsucsuccmp 35633 The successor of a success...
limsucncmpi 35634 The successor of a limit o...
limsucncmp 35635 The successor of a limit o...
ordcmp 35636 An ordinal topology is com...
ssoninhaus 35637 The ordinal topologies ` 1...
onint1 35638 The ordinal T_1 spaces are...
oninhaus 35639 The ordinal Hausdorff spac...
fveleq 35640 Please add description her...
findfvcl 35641 Please add description her...
findreccl 35642 Please add description her...
findabrcl 35643 Please add description her...
nnssi2 35644 Convert a theorem for real...
nnssi3 35645 Convert a theorem for real...
nndivsub 35646 Please add description her...
nndivlub 35647 A factor of a positive int...
ee7.2aOLD 35650 Lemma for Euclid's Element...
dnival 35651 Value of the "distance to ...
dnicld1 35652 Closure theorem for the "d...
dnicld2 35653 Closure theorem for the "d...
dnif 35654 The "distance to nearest i...
dnizeq0 35655 The distance to nearest in...
dnizphlfeqhlf 35656 The distance to nearest in...
rddif2 35657 Variant of ~ rddif . (Con...
dnibndlem1 35658 Lemma for ~ dnibnd . (Con...
dnibndlem2 35659 Lemma for ~ dnibnd . (Con...
dnibndlem3 35660 Lemma for ~ dnibnd . (Con...
dnibndlem4 35661 Lemma for ~ dnibnd . (Con...
dnibndlem5 35662 Lemma for ~ dnibnd . (Con...
dnibndlem6 35663 Lemma for ~ dnibnd . (Con...
dnibndlem7 35664 Lemma for ~ dnibnd . (Con...
dnibndlem8 35665 Lemma for ~ dnibnd . (Con...
dnibndlem9 35666 Lemma for ~ dnibnd . (Con...
dnibndlem10 35667 Lemma for ~ dnibnd . (Con...
dnibndlem11 35668 Lemma for ~ dnibnd . (Con...
dnibndlem12 35669 Lemma for ~ dnibnd . (Con...
dnibndlem13 35670 Lemma for ~ dnibnd . (Con...
dnibnd 35671 The "distance to nearest i...
dnicn 35672 The "distance to nearest i...
knoppcnlem1 35673 Lemma for ~ knoppcn . (Co...
knoppcnlem2 35674 Lemma for ~ knoppcn . (Co...
knoppcnlem3 35675 Lemma for ~ knoppcn . (Co...
knoppcnlem4 35676 Lemma for ~ knoppcn . (Co...
knoppcnlem5 35677 Lemma for ~ knoppcn . (Co...
knoppcnlem6 35678 Lemma for ~ knoppcn . (Co...
knoppcnlem7 35679 Lemma for ~ knoppcn . (Co...
knoppcnlem8 35680 Lemma for ~ knoppcn . (Co...
knoppcnlem9 35681 Lemma for ~ knoppcn . (Co...
knoppcnlem10 35682 Lemma for ~ knoppcn . (Co...
knoppcnlem11 35683 Lemma for ~ knoppcn . (Co...
knoppcn 35684 The continuous nowhere dif...
knoppcld 35685 Closure theorem for Knopp'...
unblimceq0lem 35686 Lemma for ~ unblimceq0 . ...
unblimceq0 35687 If ` F ` is unbounded near...
unbdqndv1 35688 If the difference quotient...
unbdqndv2lem1 35689 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 35690 Lemma for ~ unbdqndv2 . (...
unbdqndv2 35691 Variant of ~ unbdqndv1 wit...
knoppndvlem1 35692 Lemma for ~ knoppndv . (C...
knoppndvlem2 35693 Lemma for ~ knoppndv . (C...
knoppndvlem3 35694 Lemma for ~ knoppndv . (C...
knoppndvlem4 35695 Lemma for ~ knoppndv . (C...
knoppndvlem5 35696 Lemma for ~ knoppndv . (C...
knoppndvlem6 35697 Lemma for ~ knoppndv . (C...
knoppndvlem7 35698 Lemma for ~ knoppndv . (C...
knoppndvlem8 35699 Lemma for ~ knoppndv . (C...
knoppndvlem9 35700 Lemma for ~ knoppndv . (C...
knoppndvlem10 35701 Lemma for ~ knoppndv . (C...
knoppndvlem11 35702 Lemma for ~ knoppndv . (C...
knoppndvlem12 35703 Lemma for ~ knoppndv . (C...
knoppndvlem13 35704 Lemma for ~ knoppndv . (C...
knoppndvlem14 35705 Lemma for ~ knoppndv . (C...
knoppndvlem15 35706 Lemma for ~ knoppndv . (C...
knoppndvlem16 35707 Lemma for ~ knoppndv . (C...
knoppndvlem17 35708 Lemma for ~ knoppndv . (C...
knoppndvlem18 35709 Lemma for ~ knoppndv . (C...
knoppndvlem19 35710 Lemma for ~ knoppndv . (C...
knoppndvlem20 35711 Lemma for ~ knoppndv . (C...
knoppndvlem21 35712 Lemma for ~ knoppndv . (C...
knoppndvlem22 35713 Lemma for ~ knoppndv . (C...
knoppndv 35714 The continuous nowhere dif...
knoppf 35715 Knopp's function is a func...
knoppcn2 35716 Variant of ~ knoppcn with ...
cnndvlem1 35717 Lemma for ~ cnndv . (Cont...
cnndvlem2 35718 Lemma for ~ cnndv . (Cont...
cnndv 35719 There exists a continuous ...
bj-mp2c 35720 A double modus ponens infe...
bj-mp2d 35721 A double modus ponens infe...
bj-0 35722 A syntactic theorem. See ...
bj-1 35723 In this proof, the use of ...
bj-a1k 35724 Weakening of ~ ax-1 . As ...
bj-poni 35725 Inference associated with ...
bj-nnclav 35726 When ` F. ` is substituted...
bj-nnclavi 35727 Inference associated with ...
bj-nnclavc 35728 Commuted form of ~ bj-nncl...
bj-nnclavci 35729 Inference associated with ...
bj-jarrii 35730 Inference associated with ...
bj-imim21 35731 The propositional function...
bj-imim21i 35732 Inference associated with ...
bj-peircestab 35733 Over minimal implicational...
bj-stabpeirce 35734 This minimal implicational...
bj-syl66ib 35735 A mixed syllogism inferenc...
bj-orim2 35736 Proof of ~ orim2 from the ...
bj-currypeirce 35737 Curry's axiom ~ curryax (a...
bj-peircecurry 35738 Peirce's axiom ~ peirce im...
bj-animbi 35739 Conjunction in terms of im...
bj-currypara 35740 Curry's paradox. Note tha...
bj-con2com 35741 A commuted form of the con...
bj-con2comi 35742 Inference associated with ...
bj-pm2.01i 35743 Inference associated with ...
bj-nimn 35744 If a formula is true, then...
bj-nimni 35745 Inference associated with ...
bj-peircei 35746 Inference associated with ...
bj-looinvi 35747 Inference associated with ...
bj-looinvii 35748 Inference associated with ...
bj-mt2bi 35749 Version of ~ mt2 where the...
bj-ntrufal 35750 The negation of a theorem ...
bj-fal 35751 Shortening of ~ fal using ...
bj-jaoi1 35752 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 35753 Shortens ~ consensus (110>...
bj-dfbi4 35754 Alternate definition of th...
bj-dfbi5 35755 Alternate definition of th...
bj-dfbi6 35756 Alternate definition of th...
bj-bijust0ALT 35757 Alternate proof of ~ bijus...
bj-bijust00 35758 A self-implication does no...
bj-consensus 35759 Version of ~ consensus exp...
bj-consensusALT 35760 Alternate proof of ~ bj-co...
bj-df-ifc 35761 Candidate definition for t...
bj-dfif 35762 Alternate definition of th...
bj-ififc 35763 A biconditional connecting...
bj-imbi12 35764 Uncurried (imported) form ...
bj-biorfi 35765 This should be labeled "bi...
bj-falor 35766 Dual of ~ truan (which has...
bj-falor2 35767 Dual of ~ truan . (Contri...
bj-bibibi 35768 A property of the bicondit...
bj-imn3ani 35769 Duplication of ~ bnj1224 ....
bj-andnotim 35770 Two ways of expressing a c...
bj-bi3ant 35771 This used to be in the mai...
bj-bisym 35772 This used to be in the mai...
bj-bixor 35773 Equivalence of two ternary...
bj-axdd2 35774 This implication, proved u...
bj-axd2d 35775 This implication, proved u...
bj-axtd 35776 This implication, proved f...
bj-gl4 35777 In a normal modal logic, t...
bj-axc4 35778 Over minimal calculus, the...
prvlem1 35783 An elementary property of ...
prvlem2 35784 An elementary property of ...
bj-babygodel 35785 See the section header com...
bj-babylob 35786 See the section header com...
bj-godellob 35787 Proof of Gödel's theo...
bj-genr 35788 Generalization rule on the...
bj-genl 35789 Generalization rule on the...
bj-genan 35790 Generalization rule on a c...
bj-mpgs 35791 From a closed form theorem...
bj-2alim 35792 Closed form of ~ 2alimi . ...
bj-2exim 35793 Closed form of ~ 2eximi . ...
bj-alanim 35794 Closed form of ~ alanimi ....
bj-2albi 35795 Closed form of ~ 2albii . ...
bj-notalbii 35796 Equivalence of universal q...
bj-2exbi 35797 Closed form of ~ 2exbii . ...
bj-3exbi 35798 Closed form of ~ 3exbii . ...
bj-sylgt2 35799 Uncurried (imported) form ...
bj-alrimg 35800 The general form of the *a...
bj-alrimd 35801 A slightly more general ~ ...
bj-sylget 35802 Dual statement of ~ sylgt ...
bj-sylget2 35803 Uncurried (imported) form ...
bj-exlimg 35804 The general form of the *e...
bj-sylge 35805 Dual statement of ~ sylg (...
bj-exlimd 35806 A slightly more general ~ ...
bj-nfimexal 35807 A weak from of nonfreeness...
bj-alexim 35808 Closed form of ~ aleximi ....
bj-nexdh 35809 Closed form of ~ nexdh (ac...
bj-nexdh2 35810 Uncurried (imported) form ...
bj-hbxfrbi 35811 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 35812 Version of ~ bj-hbxfrbi wi...
bj-exalim 35813 Distribute quantifiers ove...
bj-exalimi 35814 An inference for distribut...
bj-exalims 35815 Distributing quantifiers o...
bj-exalimsi 35816 An inference for distribut...
bj-ax12ig 35817 A lemma used to prove a we...
bj-ax12i 35818 A weakening of ~ bj-ax12ig...
bj-nfimt 35819 Closed form of ~ nfim and ...
bj-cbvalimt 35820 A lemma in closed form use...
bj-cbveximt 35821 A lemma in closed form use...
bj-eximALT 35822 Alternate proof of ~ exim ...
bj-aleximiALT 35823 Alternate proof of ~ alexi...
bj-eximcom 35824 A commuted form of ~ exim ...
bj-ax12wlem 35825 A lemma used to prove a we...
bj-cbvalim 35826 A lemma used to prove ~ bj...
bj-cbvexim 35827 A lemma used to prove ~ bj...
bj-cbvalimi 35828 An equality-free general i...
bj-cbveximi 35829 An equality-free general i...
bj-cbval 35830 Changing a bound variable ...
bj-cbvex 35831 Changing a bound variable ...
bj-ssbeq 35834 Substitution in an equalit...
bj-ssblem1 35835 A lemma for the definiens ...
bj-ssblem2 35836 An instance of ~ ax-11 pro...
bj-ax12v 35837 A weaker form of ~ ax-12 a...
bj-ax12 35838 Remove a DV condition from...
bj-ax12ssb 35839 Axiom ~ bj-ax12 expressed ...
bj-19.41al 35840 Special case of ~ 19.41 pr...
bj-equsexval 35841 Special case of ~ equsexv ...
bj-subst 35842 Proof of ~ sbalex from cor...
bj-ssbid2 35843 A special case of ~ sbequ2...
bj-ssbid2ALT 35844 Alternate proof of ~ bj-ss...
bj-ssbid1 35845 A special case of ~ sbequ1...
bj-ssbid1ALT 35846 Alternate proof of ~ bj-ss...
bj-ax6elem1 35847 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 35848 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 35849 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 35850 Closed form of ~ spimvw . ...
bj-spnfw 35851 Theorem close to a closed ...
bj-cbvexiw 35852 Change bound variable. Th...
bj-cbvexivw 35853 Change bound variable. Th...
bj-modald 35854 A short form of the axiom ...
bj-denot 35855 A weakening of ~ ax-6 and ...
bj-eqs 35856 A lemma for substitutions,...
bj-cbvexw 35857 Change bound variable. Th...
bj-ax12w 35858 The general statement that...
bj-ax89 35859 A theorem which could be u...
bj-elequ12 35860 An identity law for the no...
bj-cleljusti 35861 One direction of ~ cleljus...
bj-alcomexcom 35862 Commutation of two existen...
bj-hbalt 35863 Closed form of ~ hbal . W...
axc11n11 35864 Proof of ~ axc11n from { ~...
axc11n11r 35865 Proof of ~ axc11n from { ~...
bj-axc16g16 35866 Proof of ~ axc16g from { ~...
bj-ax12v3 35867 A weak version of ~ ax-12 ...
bj-ax12v3ALT 35868 Alternate proof of ~ bj-ax...
bj-sb 35869 A weak variant of ~ sbid2 ...
bj-modalbe 35870 The predicate-calculus ver...
bj-spst 35871 Closed form of ~ sps . On...
bj-19.21bit 35872 Closed form of ~ 19.21bi ....
bj-19.23bit 35873 Closed form of ~ 19.23bi ....
bj-nexrt 35874 Closed form of ~ nexr . C...
bj-alrim 35875 Closed form of ~ alrimi . ...
bj-alrim2 35876 Uncurried (imported) form ...
bj-nfdt0 35877 A theorem close to a close...
bj-nfdt 35878 Closed form of ~ nf5d and ...
bj-nexdt 35879 Closed form of ~ nexd . (...
bj-nexdvt 35880 Closed form of ~ nexdv . ...
bj-alexbiex 35881 Adding a second quantifier...
bj-exexbiex 35882 Adding a second quantifier...
bj-alalbial 35883 Adding a second quantifier...
bj-exalbial 35884 Adding a second quantifier...
bj-19.9htbi 35885 Strengthening ~ 19.9ht by ...
bj-hbntbi 35886 Strengthening ~ hbnt by re...
bj-biexal1 35887 A general FOL biconditiona...
bj-biexal2 35888 When ` ph ` is substituted...
bj-biexal3 35889 When ` ph ` is substituted...
bj-bialal 35890 When ` ph ` is substituted...
bj-biexex 35891 When ` ph ` is substituted...
bj-hbext 35892 Closed form of ~ hbex . (...
bj-nfalt 35893 Closed form of ~ nfal . (...
bj-nfext 35894 Closed form of ~ nfex . (...
bj-eeanvw 35895 Version of ~ exdistrv with...
bj-modal4 35896 First-order logic form of ...
bj-modal4e 35897 First-order logic form of ...
bj-modalb 35898 A short form of the axiom ...
bj-wnf1 35899 When ` ph ` is substituted...
bj-wnf2 35900 When ` ph ` is substituted...
bj-wnfanf 35901 When ` ph ` is substituted...
bj-wnfenf 35902 When ` ph ` is substituted...
bj-substax12 35903 Equivalent form of the axi...
bj-substw 35904 Weak form of the LHS of ~ ...
bj-nnfbi 35907 If two formulas are equiva...
bj-nnfbd 35908 If two formulas are equiva...
bj-nnfbii 35909 If two formulas are equiva...
bj-nnfa 35910 Nonfreeness implies the eq...
bj-nnfad 35911 Nonfreeness implies the eq...
bj-nnfai 35912 Nonfreeness implies the eq...
bj-nnfe 35913 Nonfreeness implies the eq...
bj-nnfed 35914 Nonfreeness implies the eq...
bj-nnfei 35915 Nonfreeness implies the eq...
bj-nnfea 35916 Nonfreeness implies the eq...
bj-nnfead 35917 Nonfreeness implies the eq...
bj-nnfeai 35918 Nonfreeness implies the eq...
bj-dfnnf2 35919 Alternate definition of ~ ...
bj-nnfnfTEMP 35920 New nonfreeness implies ol...
bj-wnfnf 35921 When ` ph ` is substituted...
bj-nnfnt 35922 A variable is nonfree in a...
bj-nnftht 35923 A variable is nonfree in a...
bj-nnfth 35924 A variable is nonfree in a...
bj-nnfnth 35925 A variable is nonfree in t...
bj-nnfim1 35926 A consequence of nonfreene...
bj-nnfim2 35927 A consequence of nonfreene...
bj-nnfim 35928 Nonfreeness in the anteced...
bj-nnfimd 35929 Nonfreeness in the anteced...
bj-nnfan 35930 Nonfreeness in both conjun...
bj-nnfand 35931 Nonfreeness in both conjun...
bj-nnfor 35932 Nonfreeness in both disjun...
bj-nnford 35933 Nonfreeness in both disjun...
bj-nnfbit 35934 Nonfreeness in both sides ...
bj-nnfbid 35935 Nonfreeness in both sides ...
bj-nnfv 35936 A non-occurring variable i...
bj-nnf-alrim 35937 Proof of the closed form o...
bj-nnf-exlim 35938 Proof of the closed form o...
bj-dfnnf3 35939 Alternate definition of no...
bj-nfnnfTEMP 35940 New nonfreeness is equival...
bj-nnfa1 35941 See ~ nfa1 . (Contributed...
bj-nnfe1 35942 See ~ nfe1 . (Contributed...
bj-19.12 35943 See ~ 19.12 . Could be la...
bj-nnflemaa 35944 One of four lemmas for non...
bj-nnflemee 35945 One of four lemmas for non...
bj-nnflemae 35946 One of four lemmas for non...
bj-nnflemea 35947 One of four lemmas for non...
bj-nnfalt 35948 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 35949 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 35950 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 35951 Statement ~ 19.21t proved ...
bj-19.23t 35952 Statement ~ 19.23t proved ...
bj-19.36im 35953 One direction of ~ 19.36 f...
bj-19.37im 35954 One direction of ~ 19.37 f...
bj-19.42t 35955 Closed form of ~ 19.42 fro...
bj-19.41t 35956 Closed form of ~ 19.41 fro...
bj-sbft 35957 Version of ~ sbft using ` ...
bj-pm11.53vw 35958 Version of ~ pm11.53v with...
bj-pm11.53v 35959 Version of ~ pm11.53v with...
bj-pm11.53a 35960 A variant of ~ pm11.53v . ...
bj-equsvt 35961 A variant of ~ equsv . (C...
bj-equsalvwd 35962 Variant of ~ equsalvw . (...
bj-equsexvwd 35963 Variant of ~ equsexvw . (...
bj-sbievwd 35964 Variant of ~ sbievw . (Co...
bj-axc10 35965 Alternate proof of ~ axc10...
bj-alequex 35966 A fol lemma. See ~ aleque...
bj-spimt2 35967 A step in the proof of ~ s...
bj-cbv3ta 35968 Closed form of ~ cbv3 . (...
bj-cbv3tb 35969 Closed form of ~ cbv3 . (...
bj-hbsb3t 35970 A theorem close to a close...
bj-hbsb3 35971 Shorter proof of ~ hbsb3 ....
bj-nfs1t 35972 A theorem close to a close...
bj-nfs1t2 35973 A theorem close to a close...
bj-nfs1 35974 Shorter proof of ~ nfs1 (t...
bj-axc10v 35975 Version of ~ axc10 with a ...
bj-spimtv 35976 Version of ~ spimt with a ...
bj-cbv3hv2 35977 Version of ~ cbv3h with tw...
bj-cbv1hv 35978 Version of ~ cbv1h with a ...
bj-cbv2hv 35979 Version of ~ cbv2h with a ...
bj-cbv2v 35980 Version of ~ cbv2 with a d...
bj-cbvaldv 35981 Version of ~ cbvald with a...
bj-cbvexdv 35982 Version of ~ cbvexd with a...
bj-cbval2vv 35983 Version of ~ cbval2vv with...
bj-cbvex2vv 35984 Version of ~ cbvex2vv with...
bj-cbvaldvav 35985 Version of ~ cbvaldva with...
bj-cbvexdvav 35986 Version of ~ cbvexdva with...
bj-cbvex4vv 35987 Version of ~ cbvex4v with ...
bj-equsalhv 35988 Version of ~ equsalh with ...
bj-axc11nv 35989 Version of ~ axc11n with a...
bj-aecomsv 35990 Version of ~ aecoms with a...
bj-axc11v 35991 Version of ~ axc11 with a ...
bj-drnf2v 35992 Version of ~ drnf2 with a ...
bj-equs45fv 35993 Version of ~ equs45f with ...
bj-hbs1 35994 Version of ~ hbsb2 with a ...
bj-nfs1v 35995 Version of ~ nfsb2 with a ...
bj-hbsb2av 35996 Version of ~ hbsb2a with a...
bj-hbsb3v 35997 Version of ~ hbsb3 with a ...
bj-nfsab1 35998 Remove dependency on ~ ax-...
bj-dtrucor2v 35999 Version of ~ dtrucor2 with...
bj-hbaeb2 36000 Biconditional version of a...
bj-hbaeb 36001 Biconditional version of ~...
bj-hbnaeb 36002 Biconditional version of ~...
bj-dvv 36003 A special instance of ~ bj...
bj-equsal1t 36004 Duplication of ~ wl-equsal...
bj-equsal1ti 36005 Inference associated with ...
bj-equsal1 36006 One direction of ~ equsal ...
bj-equsal2 36007 One direction of ~ equsal ...
bj-equsal 36008 Shorter proof of ~ equsal ...
stdpc5t 36009 Closed form of ~ stdpc5 . ...
bj-stdpc5 36010 More direct proof of ~ std...
2stdpc5 36011 A double ~ stdpc5 (one dir...
bj-19.21t0 36012 Proof of ~ 19.21t from ~ s...
exlimii 36013 Inference associated with ...
ax11-pm 36014 Proof of ~ ax-11 similar t...
ax6er 36015 Commuted form of ~ ax6e . ...
exlimiieq1 36016 Inferring a theorem when i...
exlimiieq2 36017 Inferring a theorem when i...
ax11-pm2 36018 Proof of ~ ax-11 from the ...
bj-sbsb 36019 Biconditional showing two ...
bj-dfsb2 36020 Alternate (dual) definitio...
bj-sbf3 36021 Substitution has no effect...
bj-sbf4 36022 Substitution has no effect...
bj-sbnf 36023 Move nonfree predicate in ...
bj-eu3f 36024 Version of ~ eu3v where th...
bj-sblem1 36025 Lemma for substitution. (...
bj-sblem2 36026 Lemma for substitution. (...
bj-sblem 36027 Lemma for substitution. (...
bj-sbievw1 36028 Lemma for substitution. (...
bj-sbievw2 36029 Lemma for substitution. (...
bj-sbievw 36030 Lemma for substitution. C...
bj-sbievv 36031 Version of ~ sbie with a s...
bj-moeub 36032 Uniqueness is equivalent t...
bj-sbidmOLD 36033 Obsolete proof of ~ sbidm ...
bj-dvelimdv 36034 Deduction form of ~ dvelim...
bj-dvelimdv1 36035 Curried (exported) form of...
bj-dvelimv 36036 A version of ~ dvelim usin...
bj-nfeel2 36037 Nonfreeness in a membershi...
bj-axc14nf 36038 Proof of a version of ~ ax...
bj-axc14 36039 Alternate proof of ~ axc14...
mobidvALT 36040 Alternate proof of ~ mobid...
sbn1ALT 36041 Alternate proof of ~ sbn1 ...
eliminable1 36042 A theorem used to prove th...
eliminable2a 36043 A theorem used to prove th...
eliminable2b 36044 A theorem used to prove th...
eliminable2c 36045 A theorem used to prove th...
eliminable3a 36046 A theorem used to prove th...
eliminable3b 36047 A theorem used to prove th...
eliminable-velab 36048 A theorem used to prove th...
eliminable-veqab 36049 A theorem used to prove th...
eliminable-abeqv 36050 A theorem used to prove th...
eliminable-abeqab 36051 A theorem used to prove th...
eliminable-abelv 36052 A theorem used to prove th...
eliminable-abelab 36053 A theorem used to prove th...
bj-denoteslem 36054 Lemma for ~ bj-denotes . ...
bj-denotes 36055 This would be the justific...
bj-issettru 36056 Weak version of ~ isset wi...
bj-elabtru 36057 This is as close as we can...
bj-issetwt 36058 Closed form of ~ bj-issetw...
bj-issetw 36059 The closest one can get to...
bj-elissetALT 36060 Alternate proof of ~ eliss...
bj-issetiv 36061 Version of ~ bj-isseti wit...
bj-isseti 36062 Version of ~ isseti with a...
bj-ralvw 36063 A weak version of ~ ralv n...
bj-rexvw 36064 A weak version of ~ rexv n...
bj-rababw 36065 A weak version of ~ rabab ...
bj-rexcom4bv 36066 Version of ~ rexcom4b and ...
bj-rexcom4b 36067 Remove from ~ rexcom4b dep...
bj-ceqsalt0 36068 The FOL content of ~ ceqsa...
bj-ceqsalt1 36069 The FOL content of ~ ceqsa...
bj-ceqsalt 36070 Remove from ~ ceqsalt depe...
bj-ceqsaltv 36071 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 36072 The FOL content of ~ ceqsa...
bj-ceqsalg 36073 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 36074 Alternate proof of ~ bj-ce...
bj-ceqsalgv 36075 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 36076 Alternate proof of ~ bj-ce...
bj-ceqsal 36077 Remove from ~ ceqsal depen...
bj-ceqsalv 36078 Remove from ~ ceqsalv depe...
bj-spcimdv 36079 Remove from ~ spcimdv depe...
bj-spcimdvv 36080 Remove from ~ spcimdv depe...
elelb 36081 Equivalence between two co...
bj-pwvrelb 36082 Characterization of the el...
bj-nfcsym 36083 The nonfreeness quantifier...
bj-sbeqALT 36084 Substitution in an equalit...
bj-sbeq 36085 Distribute proper substitu...
bj-sbceqgALT 36086 Distribute proper substitu...
bj-csbsnlem 36087 Lemma for ~ bj-csbsn (in t...
bj-csbsn 36088 Substitution in a singleto...
bj-sbel1 36089 Version of ~ sbcel1g when ...
bj-abv 36090 The class of sets verifyin...
bj-abvALT 36091 Alternate version of ~ bj-...
bj-ab0 36092 The class of sets verifyin...
bj-abf 36093 Shorter proof of ~ abf (wh...
bj-csbprc 36094 More direct proof of ~ csb...
bj-exlimvmpi 36095 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 36096 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 36097 Lemma for theorems of the ...
bj-exlimmpbir 36098 Lemma for theorems of the ...
bj-vtoclf 36099 Remove dependency on ~ ax-...
bj-vtocl 36100 Remove dependency on ~ ax-...
bj-vtoclg1f1 36101 The FOL content of ~ vtocl...
bj-vtoclg1f 36102 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 36103 Version of ~ bj-vtoclg1f w...
bj-vtoclg 36104 A version of ~ vtoclg with...
bj-rabeqbid 36105 Version of ~ rabeqbidv wit...
bj-seex 36106 Version of ~ seex with a d...
bj-nfcf 36107 Version of ~ df-nfc with a...
bj-zfauscl 36108 General version of ~ zfaus...
bj-elabd2ALT 36109 Alternate proof of ~ elabd...
bj-unrab 36110 Generalization of ~ unrab ...
bj-inrab 36111 Generalization of ~ inrab ...
bj-inrab2 36112 Shorter proof of ~ inrab ....
bj-inrab3 36113 Generalization of ~ dfrab3...
bj-rabtr 36114 Restricted class abstracti...
bj-rabtrALT 36115 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 36116 Proof of ~ bj-rabtr found ...
bj-gabss 36119 Inclusion of generalized c...
bj-gabssd 36120 Inclusion of generalized c...
bj-gabeqd 36121 Equality of generalized cl...
bj-gabeqis 36122 Equality of generalized cl...
bj-elgab 36123 Elements of a generalized ...
bj-gabima 36124 Generalized class abstract...
bj-ru0 36127 The FOL part of Russell's ...
bj-ru1 36128 A version of Russell's par...
bj-ru 36129 Remove dependency on ~ ax-...
currysetlem 36130 Lemma for ~ currysetlem , ...
curryset 36131 Curry's paradox in set the...
currysetlem1 36132 Lemma for ~ currysetALT . ...
currysetlem2 36133 Lemma for ~ currysetALT . ...
currysetlem3 36134 Lemma for ~ currysetALT . ...
currysetALT 36135 Alternate proof of ~ curry...
bj-n0i 36136 Inference associated with ...
bj-disjsn01 36137 Disjointness of the single...
bj-0nel1 36138 The empty set does not bel...
bj-1nel0 36139 ` 1o ` does not belong to ...
bj-xpimasn 36140 The image of a singleton, ...
bj-xpima1sn 36141 The image of a singleton b...
bj-xpima1snALT 36142 Alternate proof of ~ bj-xp...
bj-xpima2sn 36143 The image of a singleton b...
bj-xpnzex 36144 If the first factor of a p...
bj-xpexg2 36145 Curried (exported) form of...
bj-xpnzexb 36146 If the first factor of a p...
bj-cleq 36147 Substitution property for ...
bj-snsetex 36148 The class of sets "whose s...
bj-clexab 36149 Sethood of certain classes...
bj-sngleq 36152 Substitution property for ...
bj-elsngl 36153 Characterization of the el...
bj-snglc 36154 Characterization of the el...
bj-snglss 36155 The singletonization of a ...
bj-0nelsngl 36156 The empty set is not a mem...
bj-snglinv 36157 Inverse of singletonizatio...
bj-snglex 36158 A class is a set if and on...
bj-tageq 36161 Substitution property for ...
bj-eltag 36162 Characterization of the el...
bj-0eltag 36163 The empty set belongs to t...
bj-tagn0 36164 The tagging of a class is ...
bj-tagss 36165 The tagging of a class is ...
bj-snglsstag 36166 The singletonization is in...
bj-sngltagi 36167 The singletonization is in...
bj-sngltag 36168 The singletonization and t...
bj-tagci 36169 Characterization of the el...
bj-tagcg 36170 Characterization of the el...
bj-taginv 36171 Inverse of tagging. (Cont...
bj-tagex 36172 A class is a set if and on...
bj-xtageq 36173 The products of a given cl...
bj-xtagex 36174 The product of a set and t...
bj-projeq 36177 Substitution property for ...
bj-projeq2 36178 Substitution property for ...
bj-projun 36179 The class projection on a ...
bj-projex 36180 Sethood of the class proje...
bj-projval 36181 Value of the class project...
bj-1upleq 36184 Substitution property for ...
bj-pr1eq 36187 Substitution property for ...
bj-pr1un 36188 The first projection prese...
bj-pr1val 36189 Value of the first project...
bj-pr11val 36190 Value of the first project...
bj-pr1ex 36191 Sethood of the first proje...
bj-1uplth 36192 The characteristic propert...
bj-1uplex 36193 A monuple is a set if and ...
bj-1upln0 36194 A monuple is nonempty. (C...
bj-2upleq 36197 Substitution property for ...
bj-pr21val 36198 Value of the first project...
bj-pr2eq 36201 Substitution property for ...
bj-pr2un 36202 The second projection pres...
bj-pr2val 36203 Value of the second projec...
bj-pr22val 36204 Value of the second projec...
bj-pr2ex 36205 Sethood of the second proj...
bj-2uplth 36206 The characteristic propert...
bj-2uplex 36207 A couple is a set if and o...
bj-2upln0 36208 A couple is nonempty. (Co...
bj-2upln1upl 36209 A couple is never equal to...
bj-rcleqf 36210 Relative version of ~ cleq...
bj-rcleq 36211 Relative version of ~ dfcl...
bj-reabeq 36212 Relative form of ~ eqabb ....
bj-disj2r 36213 Relative version of ~ ssdi...
bj-sscon 36214 Contraposition law for rel...
bj-abex 36215 Two ways of stating that t...
bj-clex 36216 Two ways of stating that a...
bj-axsn 36217 Two ways of stating the ax...
bj-snexg 36219 A singleton built on a set...
bj-snex 36220 A singleton is a set. See...
bj-axbun 36221 Two ways of stating the ax...
bj-unexg 36223 Existence of binary unions...
bj-prexg 36224 Existence of unordered pai...
bj-prex 36225 Existence of unordered pai...
bj-axadj 36226 Two ways of stating the ax...
bj-adjg1 36228 Existence of the result of...
bj-snfromadj 36229 Singleton from adjunction ...
bj-prfromadj 36230 Unordered pair from adjunc...
bj-adjfrombun 36231 Adjunction from singleton ...
eleq2w2ALT 36232 Alternate proof of ~ eleq2...
bj-clel3gALT 36233 Alternate proof of ~ clel3...
bj-pw0ALT 36234 Alternate proof of ~ pw0 ....
bj-sselpwuni 36235 Quantitative version of ~ ...
bj-unirel 36236 Quantitative version of ~ ...
bj-elpwg 36237 If the intersection of two...
bj-velpwALT 36238 This theorem ~ bj-velpwALT...
bj-elpwgALT 36239 Alternate proof of ~ elpwg...
bj-vjust 36240 Justification theorem for ...
bj-nul 36241 Two formulations of the ax...
bj-nuliota 36242 Definition of the empty se...
bj-nuliotaALT 36243 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 36244 Alternate proof of ~ vtocl...
bj-elsn12g 36245 Join of ~ elsng and ~ elsn...
bj-elsnb 36246 Biconditional version of ~...
bj-pwcfsdom 36247 Remove hypothesis from ~ p...
bj-grur1 36248 Remove hypothesis from ~ g...
bj-bm1.3ii 36249 The extension of a predica...
bj-dfid2ALT 36250 Alternate version of ~ dfi...
bj-0nelopab 36251 The empty set is never an ...
bj-brrelex12ALT 36252 Two classes related by a b...
bj-epelg 36253 The membership relation an...
bj-epelb 36254 Two classes are related by...
bj-nsnid 36255 A set does not contain the...
bj-rdg0gALT 36256 Alternate proof of ~ rdg0g...
bj-evaleq 36257 Equality theorem for the `...
bj-evalfun 36258 The evaluation at a class ...
bj-evalfn 36259 The evaluation at a class ...
bj-evalval 36260 Value of the evaluation at...
bj-evalid 36261 The evaluation at a set of...
bj-ndxarg 36262 Proof of ~ ndxarg from ~ b...
bj-evalidval 36263 Closed general form of ~ s...
bj-rest00 36266 An elementwise intersectio...
bj-restsn 36267 An elementwise intersectio...
bj-restsnss 36268 Special case of ~ bj-rests...
bj-restsnss2 36269 Special case of ~ bj-rests...
bj-restsn0 36270 An elementwise intersectio...
bj-restsn10 36271 Special case of ~ bj-rests...
bj-restsnid 36272 The elementwise intersecti...
bj-rest10 36273 An elementwise intersectio...
bj-rest10b 36274 Alternate version of ~ bj-...
bj-restn0 36275 An elementwise intersectio...
bj-restn0b 36276 Alternate version of ~ bj-...
bj-restpw 36277 The elementwise intersecti...
bj-rest0 36278 An elementwise intersectio...
bj-restb 36279 An elementwise intersectio...
bj-restv 36280 An elementwise intersectio...
bj-resta 36281 An elementwise intersectio...
bj-restuni 36282 The union of an elementwis...
bj-restuni2 36283 The union of an elementwis...
bj-restreg 36284 A reformulation of the axi...
bj-raldifsn 36285 All elements in a set sati...
bj-0int 36286 If ` A ` is a collection o...
bj-mooreset 36287 A Moore collection is a se...
bj-ismoore 36290 Characterization of Moore ...
bj-ismoored0 36291 Necessary condition to be ...
bj-ismoored 36292 Necessary condition to be ...
bj-ismoored2 36293 Necessary condition to be ...
bj-ismooredr 36294 Sufficient condition to be...
bj-ismooredr2 36295 Sufficient condition to be...
bj-discrmoore 36296 The powerclass ` ~P A ` is...
bj-0nmoore 36297 The empty set is not a Moo...
bj-snmoore 36298 A singleton is a Moore col...
bj-snmooreb 36299 A singleton is a Moore col...
bj-prmoore 36300 A pair formed of two neste...
bj-0nelmpt 36301 The empty set is not an el...
bj-mptval 36302 Value of a function given ...
bj-dfmpoa 36303 An equivalent definition o...
bj-mpomptALT 36304 Alternate proof of ~ mpomp...
setsstrset 36321 Relation between ~ df-sets...
bj-nfald 36322 Variant of ~ nfald . (Con...
bj-nfexd 36323 Variant of ~ nfexd . (Con...
copsex2d 36324 Implicit substitution dedu...
copsex2b 36325 Biconditional form of ~ co...
opelopabd 36326 Membership of an ordere pa...
opelopabb 36327 Membership of an ordered p...
opelopabbv 36328 Membership of an ordered p...
bj-opelrelex 36329 The coordinates of an orde...
bj-opelresdm 36330 If an ordered pair is in a...
bj-brresdm 36331 If two classes are related...
brabd0 36332 Expressing that two sets a...
brabd 36333 Expressing that two sets a...
bj-brab2a1 36334 "Unbounded" version of ~ b...
bj-opabssvv 36335 A variant of ~ relopabiv (...
bj-funidres 36336 The restricted identity re...
bj-opelidb 36337 Characterization of the or...
bj-opelidb1 36338 Characterization of the or...
bj-inexeqex 36339 Lemma for ~ bj-opelid (but...
bj-elsn0 36340 If the intersection of two...
bj-opelid 36341 Characterization of the or...
bj-ideqg 36342 Characterization of the cl...
bj-ideqgALT 36343 Alternate proof of ~ bj-id...
bj-ideqb 36344 Characterization of classe...
bj-idres 36345 Alternate expression for t...
bj-opelidres 36346 Characterization of the or...
bj-idreseq 36347 Sufficient condition for t...
bj-idreseqb 36348 Characterization for two c...
bj-ideqg1 36349 For sets, the identity rel...
bj-ideqg1ALT 36350 Alternate proof of bj-ideq...
bj-opelidb1ALT 36351 Characterization of the co...
bj-elid3 36352 Characterization of the co...
bj-elid4 36353 Characterization of the el...
bj-elid5 36354 Characterization of the el...
bj-elid6 36355 Characterization of the el...
bj-elid7 36356 Characterization of the el...
bj-diagval 36359 Value of the functionalize...
bj-diagval2 36360 Value of the functionalize...
bj-eldiag 36361 Characterization of the el...
bj-eldiag2 36362 Characterization of the el...
bj-imdirvallem 36365 Lemma for ~ bj-imdirval an...
bj-imdirval 36366 Value of the functionalize...
bj-imdirval2lem 36367 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 36368 Value of the functionalize...
bj-imdirval3 36369 Value of the functionalize...
bj-imdiridlem 36370 Lemma for ~ bj-imdirid and...
bj-imdirid 36371 Functorial property of the...
bj-opelopabid 36372 Membership in an ordered-p...
bj-opabco 36373 Composition of ordered-pai...
bj-xpcossxp 36374 The composition of two Car...
bj-imdirco 36375 Functorial property of the...
bj-iminvval 36378 Value of the functionalize...
bj-iminvval2 36379 Value of the functionalize...
bj-iminvid 36380 Functorial property of the...
bj-inftyexpitaufo 36387 The function ` inftyexpita...
bj-inftyexpitaudisj 36390 An element of the circle a...
bj-inftyexpiinv 36393 Utility theorem for the in...
bj-inftyexpiinj 36394 Injectivity of the paramet...
bj-inftyexpidisj 36395 An element of the circle a...
bj-ccinftydisj 36398 The circle at infinity is ...
bj-elccinfty 36399 A lemma for infinite exten...
bj-ccssccbar 36402 Complex numbers are extend...
bj-ccinftyssccbar 36403 Infinite extended complex ...
bj-pinftyccb 36406 The class ` pinfty ` is an...
bj-pinftynrr 36407 The extended complex numbe...
bj-minftyccb 36410 The class ` minfty ` is an...
bj-minftynrr 36411 The extended complex numbe...
bj-pinftynminfty 36412 The extended complex numbe...
bj-rrhatsscchat 36421 The real projective line i...
bj-imafv 36436 If the direct image of a s...
bj-funun 36437 Value of a function expres...
bj-fununsn1 36438 Value of a function expres...
bj-fununsn2 36439 Value of a function expres...
bj-fvsnun1 36440 The value of a function wi...
bj-fvsnun2 36441 The value of a function wi...
bj-fvmptunsn1 36442 Value of a function expres...
bj-fvmptunsn2 36443 Value of a function expres...
bj-iomnnom 36444 The canonical bijection fr...
bj-smgrpssmgm 36453 Semigroups are magmas. (C...
bj-smgrpssmgmel 36454 Semigroups are magmas (ele...
bj-mndsssmgrp 36455 Monoids are semigroups. (...
bj-mndsssmgrpel 36456 Monoids are semigroups (el...
bj-cmnssmnd 36457 Commutative monoids are mo...
bj-cmnssmndel 36458 Commutative monoids are mo...
bj-grpssmnd 36459 Groups are monoids. (Cont...
bj-grpssmndel 36460 Groups are monoids (elemen...
bj-ablssgrp 36461 Abelian groups are groups....
bj-ablssgrpel 36462 Abelian groups are groups ...
bj-ablsscmn 36463 Abelian groups are commuta...
bj-ablsscmnel 36464 Abelian groups are commuta...
bj-modssabl 36465 (The additive groups of) m...
bj-vecssmod 36466 Vector spaces are modules....
bj-vecssmodel 36467 Vector spaces are modules ...
bj-finsumval0 36470 Value of a finite sum. (C...
bj-fvimacnv0 36471 Variant of ~ fvimacnv wher...
bj-isvec 36472 The predicate "is a vector...
bj-fldssdrng 36473 Fields are division rings....
bj-flddrng 36474 Fields are division rings ...
bj-rrdrg 36475 The field of real numbers ...
bj-isclm 36476 The predicate "is a subcom...
bj-isrvec 36479 The predicate "is a real v...
bj-rvecmod 36480 Real vector spaces are mod...
bj-rvecssmod 36481 Real vector spaces are mod...
bj-rvecrr 36482 The field of scalars of a ...
bj-isrvecd 36483 The predicate "is a real v...
bj-rvecvec 36484 Real vector spaces are vec...
bj-isrvec2 36485 The predicate "is a real v...
bj-rvecssvec 36486 Real vector spaces are vec...
bj-rveccmod 36487 Real vector spaces are sub...
bj-rvecsscmod 36488 Real vector spaces are sub...
bj-rvecsscvec 36489 Real vector spaces are sub...
bj-rveccvec 36490 Real vector spaces are sub...
bj-rvecssabl 36491 (The additive groups of) r...
bj-rvecabl 36492 (The additive groups of) r...
bj-subcom 36493 A consequence of commutati...
bj-lineqi 36494 Solution of a (scalar) lin...
bj-bary1lem 36495 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 36496 Lemma for bj-bary1: comput...
bj-bary1 36497 Barycentric coordinates in...
bj-endval 36500 Value of the monoid of end...
bj-endbase 36501 Base set of the monoid of ...
bj-endcomp 36502 Composition law of the mon...
bj-endmnd 36503 The monoid of endomorphism...
taupilem3 36504 Lemma for tau-related theo...
taupilemrplb 36505 A set of positive reals ha...
taupilem1 36506 Lemma for ~ taupi . A pos...
taupilem2 36507 Lemma for ~ taupi . The s...
taupi 36508 Relationship between ` _ta...
dfgcd3 36509 Alternate definition of th...
irrdifflemf 36510 Lemma for ~ irrdiff . The...
irrdiff 36511 The irrationals are exactl...
iccioo01 36512 The closed unit interval i...
csbrecsg 36513 Move class substitution in...
csbrdgg 36514 Move class substitution in...
csboprabg 36515 Move class substitution in...
csbmpo123 36516 Move class substitution in...
con1bii2 36517 A contraposition inference...
con2bii2 36518 A contraposition inference...
vtoclefex 36519 Implicit substitution of a...
rnmptsn 36520 The range of a function ma...
f1omptsnlem 36521 This is the core of the pr...
f1omptsn 36522 A function mapping to sing...
mptsnunlem 36523 This is the core of the pr...
mptsnun 36524 A class ` B ` is equal to ...
dissneqlem 36525 This is the core of the pr...
dissneq 36526 Any topology that contains...
exlimim 36527 Closed form of ~ exlimimd ...
exlimimd 36528 Existential elimination ru...
exellim 36529 Closed form of ~ exellimdd...
exellimddv 36530 Eliminate an antecedent wh...
topdifinfindis 36531 Part of Exercise 3 of [Mun...
topdifinffinlem 36532 This is the core of the pr...
topdifinffin 36533 Part of Exercise 3 of [Mun...
topdifinf 36534 Part of Exercise 3 of [Mun...
topdifinfeq 36535 Two different ways of defi...
icorempo 36536 Closed-below, open-above i...
icoreresf 36537 Closed-below, open-above i...
icoreval 36538 Value of the closed-below,...
icoreelrnab 36539 Elementhood in the set of ...
isbasisrelowllem1 36540 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 36541 Lemma for ~ isbasisrelowl ...
icoreclin 36542 The set of closed-below, o...
isbasisrelowl 36543 The set of all closed-belo...
icoreunrn 36544 The union of all closed-be...
istoprelowl 36545 The set of all closed-belo...
icoreelrn 36546 A class abstraction which ...
iooelexlt 36547 An element of an open inte...
relowlssretop 36548 The lower limit topology o...
relowlpssretop 36549 The lower limit topology o...
sucneqond 36550 Inequality of an ordinal s...
sucneqoni 36551 Inequality of an ordinal s...
onsucuni3 36552 If an ordinal number has a...
1oequni2o 36553 The ordinal number ` 1o ` ...
rdgsucuni 36554 If an ordinal number has a...
rdgeqoa 36555 If a recursive function wi...
elxp8 36556 Membership in a Cartesian ...
cbveud 36557 Deduction used to change b...
cbvreud 36558 Deduction used to change b...
difunieq 36559 The difference of unions i...
inunissunidif 36560 Theorem about subsets of t...
rdgellim 36561 Elementhood in a recursive...
rdglimss 36562 A recursive definition at ...
rdgssun 36563 In a recursive definition ...
exrecfnlem 36564 Lemma for ~ exrecfn . (Co...
exrecfn 36565 Theorem about the existenc...
exrecfnpw 36566 For any base set, a set wh...
finorwe 36567 If the Axiom of Infinity i...
dffinxpf 36570 This theorem is the same a...
finxpeq1 36571 Equality theorem for Carte...
finxpeq2 36572 Equality theorem for Carte...
csbfinxpg 36573 Distribute proper substitu...
finxpreclem1 36574 Lemma for ` ^^ ` recursion...
finxpreclem2 36575 Lemma for ` ^^ ` recursion...
finxp0 36576 The value of Cartesian exp...
finxp1o 36577 The value of Cartesian exp...
finxpreclem3 36578 Lemma for ` ^^ ` recursion...
finxpreclem4 36579 Lemma for ` ^^ ` recursion...
finxpreclem5 36580 Lemma for ` ^^ ` recursion...
finxpreclem6 36581 Lemma for ` ^^ ` recursion...
finxpsuclem 36582 Lemma for ~ finxpsuc . (C...
finxpsuc 36583 The value of Cartesian exp...
finxp2o 36584 The value of Cartesian exp...
finxp3o 36585 The value of Cartesian exp...
finxpnom 36586 Cartesian exponentiation w...
finxp00 36587 Cartesian exponentiation o...
iunctb2 36588 Using the axiom of countab...
domalom 36589 A class which dominates ev...
isinf2 36590 The converse of ~ isinf . ...
ctbssinf 36591 Using the axiom of choice,...
ralssiun 36592 The index set of an indexe...
nlpineqsn 36593 For every point ` p ` of a...
nlpfvineqsn 36594 Given a subset ` A ` of ` ...
fvineqsnf1 36595 A theorem about functions ...
fvineqsneu 36596 A theorem about functions ...
fvineqsneq 36597 A theorem about functions ...
pibp16 36598 Property P000016 of pi-bas...
pibp19 36599 Property P000019 of pi-bas...
pibp21 36600 Property P000021 of pi-bas...
pibt1 36601 Theorem T000001 of pi-base...
pibt2 36602 Theorem T000002 of pi-base...
wl-section-prop 36603 Intuitionistic logic is no...
wl-section-boot 36607 In this section, I provide...
wl-luk-imim1i 36608 Inference adding common co...
wl-luk-syl 36609 An inference version of th...
wl-luk-imtrid 36610 A syllogism rule of infere...
wl-luk-pm2.18d 36611 Deduction based on reducti...
wl-luk-con4i 36612 Inference rule. Copy of ~...
wl-luk-pm2.24i 36613 Inference rule. Copy of ~...
wl-luk-a1i 36614 Inference rule. Copy of ~...
wl-luk-mpi 36615 A nested modus ponens infe...
wl-luk-imim2i 36616 Inference adding common an...
wl-luk-imtrdi 36617 A syllogism rule of infere...
wl-luk-ax3 36618 ~ ax-3 proved from Lukasie...
wl-luk-ax1 36619 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 36620 This theorem, called "Asse...
wl-luk-com12 36621 Inference that swaps (comm...
wl-luk-pm2.21 36622 From a wff and its negatio...
wl-luk-con1i 36623 A contraposition inference...
wl-luk-ja 36624 Inference joining the ante...
wl-luk-imim2 36625 A closed form of syllogism...
wl-luk-a1d 36626 Deduction introducing an e...
wl-luk-ax2 36627 ~ ax-2 proved from Lukasie...
wl-luk-id 36628 Principle of identity. Th...
wl-luk-notnotr 36629 Converse of double negatio...
wl-luk-pm2.04 36630 Swap antecedents. Theorem...
wl-section-impchain 36631 An implication like ` ( ps...
wl-impchain-mp-x 36632 This series of theorems pr...
wl-impchain-mp-0 36633 This theorem is the start ...
wl-impchain-mp-1 36634 This theorem is in fact a ...
wl-impchain-mp-2 36635 This theorem is in fact a ...
wl-impchain-com-1.x 36636 It is often convenient to ...
wl-impchain-com-1.1 36637 A degenerate form of antec...
wl-impchain-com-1.2 36638 This theorem is in fact a ...
wl-impchain-com-1.3 36639 This theorem is in fact a ...
wl-impchain-com-1.4 36640 This theorem is in fact a ...
wl-impchain-com-n.m 36641 This series of theorems al...
wl-impchain-com-2.3 36642 This theorem is in fact a ...
wl-impchain-com-2.4 36643 This theorem is in fact a ...
wl-impchain-com-3.2.1 36644 This theorem is in fact a ...
wl-impchain-a1-x 36645 If an implication chain is...
wl-impchain-a1-1 36646 Inference rule, a copy of ...
wl-impchain-a1-2 36647 Inference rule, a copy of ...
wl-impchain-a1-3 36648 Inference rule, a copy of ...
wl-ifp-ncond1 36649 If one case of an ` if- ` ...
wl-ifp-ncond2 36650 If one case of an ` if- ` ...
wl-ifpimpr 36651 If one case of an ` if- ` ...
wl-ifp4impr 36652 If one case of an ` if- ` ...
wl-df-3xor 36653 Alternative definition of ...
wl-df3xor2 36654 Alternative definition of ...
wl-df3xor3 36655 Alternative form of ~ wl-d...
wl-3xortru 36656 If the first input is true...
wl-3xorfal 36657 If the first input is fals...
wl-3xorbi 36658 Triple xor can be replaced...
wl-3xorbi2 36659 Alternative form of ~ wl-3...
wl-3xorbi123d 36660 Equivalence theorem for tr...
wl-3xorbi123i 36661 Equivalence theorem for tr...
wl-3xorrot 36662 Rotation law for triple xo...
wl-3xorcoma 36663 Commutative law for triple...
wl-3xorcomb 36664 Commutative law for triple...
wl-3xornot1 36665 Flipping the first input f...
wl-3xornot 36666 Triple xor distributes ove...
wl-1xor 36667 In the recursive scheme ...
wl-2xor 36668 In the recursive scheme ...
wl-df-3mintru2 36669 Alternative definition of ...
wl-df2-3mintru2 36670 The adder carry in disjunc...
wl-df3-3mintru2 36671 The adder carry in conjunc...
wl-df4-3mintru2 36672 An alternative definition ...
wl-1mintru1 36673 Using the recursion formul...
wl-1mintru2 36674 Using the recursion formul...
wl-2mintru1 36675 Using the recursion formul...
wl-2mintru2 36676 Using the recursion formul...
wl-df3maxtru1 36677 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 36679 A version of ~ ax-wl-13v w...
wl-mps 36680 Replacing a nested consequ...
wl-syls1 36681 Replacing a nested consequ...
wl-syls2 36682 Replacing a nested anteced...
wl-embant 36683 A true wff can always be a...
wl-orel12 36684 In a conjunctive normal fo...
wl-cases2-dnf 36685 A particular instance of ~...
wl-cbvmotv 36686 Change bound variable. Us...
wl-moteq 36687 Change bound variable. Us...
wl-motae 36688 Change bound variable. Us...
wl-moae 36689 Two ways to express "at mo...
wl-euae 36690 Two ways to express "exact...
wl-nax6im 36691 The following series of th...
wl-hbae1 36692 This specialization of ~ h...
wl-naevhba1v 36693 An instance of ~ hbn1w app...
wl-spae 36694 Prove an instance of ~ sp ...
wl-speqv 36695 Under the assumption ` -. ...
wl-19.8eqv 36696 Under the assumption ` -. ...
wl-19.2reqv 36697 Under the assumption ` -. ...
wl-nfalv 36698 If ` x ` is not present in...
wl-nfimf1 36699 An antecedent is irrelevan...
wl-nfae1 36700 Unlike ~ nfae , this speci...
wl-nfnae1 36701 Unlike ~ nfnae , this spec...
wl-aetr 36702 A transitive law for varia...
wl-axc11r 36703 Same as ~ axc11r , but usi...
wl-dral1d 36704 A version of ~ dral1 with ...
wl-cbvalnaed 36705 ~ wl-cbvalnae with a conte...
wl-cbvalnae 36706 A more general version of ...
wl-exeq 36707 The semantics of ` E. x y ...
wl-aleq 36708 The semantics of ` A. x y ...
wl-nfeqfb 36709 Extend ~ nfeqf to an equiv...
wl-nfs1t 36710 If ` y ` is not free in ` ...
wl-equsalvw 36711 Version of ~ equsalv with ...
wl-equsald 36712 Deduction version of ~ equ...
wl-equsal 36713 A useful equivalence relat...
wl-equsal1t 36714 The expression ` x = y ` i...
wl-equsalcom 36715 This simple equivalence ea...
wl-equsal1i 36716 The antecedent ` x = y ` i...
wl-sb6rft 36717 A specialization of ~ wl-e...
wl-cbvalsbi 36718 Change bounded variables i...
wl-sbrimt 36719 Substitution with a variab...
wl-sblimt 36720 Substitution with a variab...
wl-sb8t 36721 Substitution of variable i...
wl-sb8et 36722 Substitution of variable i...
wl-sbhbt 36723 Closed form of ~ sbhb . C...
wl-sbnf1 36724 Two ways expressing that `...
wl-equsb3 36725 ~ equsb3 with a distinctor...
wl-equsb4 36726 Substitution applied to an...
wl-2sb6d 36727 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 36728 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 36729 Lemma used to prove ~ wl-s...
wl-sbcom2d 36730 Version of ~ sbcom2 with a...
wl-sbalnae 36731 A theorem used in eliminat...
wl-sbal1 36732 A theorem used in eliminat...
wl-sbal2 36733 Move quantifier in and out...
wl-2spsbbi 36734 ~ spsbbi applied twice. (...
wl-lem-exsb 36735 This theorem provides a ba...
wl-lem-nexmo 36736 This theorem provides a ba...
wl-lem-moexsb 36737 The antecedent ` A. x ( ph...
wl-alanbii 36738 This theorem extends ~ ala...
wl-mo2df 36739 Version of ~ mof with a co...
wl-mo2tf 36740 Closed form of ~ mof with ...
wl-eudf 36741 Version of ~ eu6 with a co...
wl-eutf 36742 Closed form of ~ eu6 with ...
wl-euequf 36743 ~ euequ proved with a dist...
wl-mo2t 36744 Closed form of ~ mof . (C...
wl-mo3t 36745 Closed form of ~ mo3 . (C...
wl-sb8eut 36746 Substitution of variable i...
wl-sb8mot 36747 Substitution of variable i...
wl-issetft 36748 A closed form of ~ issetf ...
wl-axc11rc11 36749 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 36751 A transitive law for varia...
wl-ax11-lem2 36752 Lemma. (Contributed by Wo...
wl-ax11-lem3 36753 Lemma. (Contributed by Wo...
wl-ax11-lem4 36754 Lemma. (Contributed by Wo...
wl-ax11-lem5 36755 Lemma. (Contributed by Wo...
wl-ax11-lem6 36756 Lemma. (Contributed by Wo...
wl-ax11-lem7 36757 Lemma. (Contributed by Wo...
wl-ax11-lem8 36758 Lemma. (Contributed by Wo...
wl-ax11-lem9 36759 The easy part when ` x ` c...
wl-ax11-lem10 36760 We now have prepared every...
wl-clabv 36761 Variant of ~ df-clab , whe...
wl-dfclab 36762 Rederive ~ df-clab from ~ ...
wl-clabtv 36763 Using class abstraction in...
wl-clabt 36764 Using class abstraction in...
rabiun 36765 Abstraction restricted to ...
iundif1 36766 Indexed union of class dif...
imadifss 36767 The difference of images i...
cureq 36768 Equality theorem for curry...
unceq 36769 Equality theorem for uncur...
curf 36770 Functional property of cur...
uncf 36771 Functional property of unc...
curfv 36772 Value of currying. (Contr...
uncov 36773 Value of uncurrying. (Con...
curunc 36774 Currying of uncurrying. (...
unccur 36775 Uncurrying of currying. (...
phpreu 36776 Theorem related to pigeonh...
finixpnum 36777 A finite Cartesian product...
fin2solem 36778 Lemma for ~ fin2so . (Con...
fin2so 36779 Any totally ordered Tarski...
ltflcei 36780 Theorem to move the floor ...
leceifl 36781 Theorem to move the floor ...
sin2h 36782 Half-angle rule for sine. ...
cos2h 36783 Half-angle rule for cosine...
tan2h 36784 Half-angle rule for tangen...
lindsadd 36785 In a vector space, the uni...
lindsdom 36786 A linearly independent set...
lindsenlbs 36787 A maximal linearly indepen...
matunitlindflem1 36788 One direction of ~ matunit...
matunitlindflem2 36789 One direction of ~ matunit...
matunitlindf 36790 A matrix over a field is i...
ptrest 36791 Expressing a restriction o...
ptrecube 36792 Any point in an open set o...
poimirlem1 36793 Lemma for ~ poimir - the v...
poimirlem2 36794 Lemma for ~ poimir - conse...
poimirlem3 36795 Lemma for ~ poimir to add ...
poimirlem4 36796 Lemma for ~ poimir connect...
poimirlem5 36797 Lemma for ~ poimir to esta...
poimirlem6 36798 Lemma for ~ poimir establi...
poimirlem7 36799 Lemma for ~ poimir , simil...
poimirlem8 36800 Lemma for ~ poimir , estab...
poimirlem9 36801 Lemma for ~ poimir , estab...
poimirlem10 36802 Lemma for ~ poimir establi...
poimirlem11 36803 Lemma for ~ poimir connect...
poimirlem12 36804 Lemma for ~ poimir connect...
poimirlem13 36805 Lemma for ~ poimir - for a...
poimirlem14 36806 Lemma for ~ poimir - for a...
poimirlem15 36807 Lemma for ~ poimir , that ...
poimirlem16 36808 Lemma for ~ poimir establi...
poimirlem17 36809 Lemma for ~ poimir establi...
poimirlem18 36810 Lemma for ~ poimir stating...
poimirlem19 36811 Lemma for ~ poimir establi...
poimirlem20 36812 Lemma for ~ poimir establi...
poimirlem21 36813 Lemma for ~ poimir stating...
poimirlem22 36814 Lemma for ~ poimir , that ...
poimirlem23 36815 Lemma for ~ poimir , two w...
poimirlem24 36816 Lemma for ~ poimir , two w...
poimirlem25 36817 Lemma for ~ poimir stating...
poimirlem26 36818 Lemma for ~ poimir showing...
poimirlem27 36819 Lemma for ~ poimir showing...
poimirlem28 36820 Lemma for ~ poimir , a var...
poimirlem29 36821 Lemma for ~ poimir connect...
poimirlem30 36822 Lemma for ~ poimir combini...
poimirlem31 36823 Lemma for ~ poimir , assig...
poimirlem32 36824 Lemma for ~ poimir , combi...
poimir 36825 Poincare-Miranda theorem. ...
broucube 36826 Brouwer - or as Kulpa call...
heicant 36827 Heine-Cantor theorem: a co...
opnmbllem0 36828 Lemma for ~ ismblfin ; cou...
mblfinlem1 36829 Lemma for ~ ismblfin , ord...
mblfinlem2 36830 Lemma for ~ ismblfin , eff...
mblfinlem3 36831 The difference between two...
mblfinlem4 36832 Backward direction of ~ is...
ismblfin 36833 Measurability in terms of ...
ovoliunnfl 36834 ~ ovoliun is incompatible ...
ex-ovoliunnfl 36835 Demonstration of ~ ovoliun...
voliunnfl 36836 ~ voliun is incompatible w...
volsupnfl 36837 ~ volsup is incompatible w...
mbfresfi 36838 Measurability of a piecewi...
mbfposadd 36839 If the sum of two measurab...
cnambfre 36840 A real-valued, a.e. contin...
dvtanlem 36841 Lemma for ~ dvtan - the do...
dvtan 36842 Derivative of tangent. (C...
itg2addnclem 36843 An alternate expression fo...
itg2addnclem2 36844 Lemma for ~ itg2addnc . T...
itg2addnclem3 36845 Lemma incomprehensible in ...
itg2addnc 36846 Alternate proof of ~ itg2a...
itg2gt0cn 36847 ~ itg2gt0 holds on functio...
ibladdnclem 36848 Lemma for ~ ibladdnc ; cf ...
ibladdnc 36849 Choice-free analogue of ~ ...
itgaddnclem1 36850 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 36851 Lemma for ~ itgaddnc ; cf....
itgaddnc 36852 Choice-free analogue of ~ ...
iblsubnc 36853 Choice-free analogue of ~ ...
itgsubnc 36854 Choice-free analogue of ~ ...
iblabsnclem 36855 Lemma for ~ iblabsnc ; cf....
iblabsnc 36856 Choice-free analogue of ~ ...
iblmulc2nc 36857 Choice-free analogue of ~ ...
itgmulc2nclem1 36858 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 36859 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 36860 Choice-free analogue of ~ ...
itgabsnc 36861 Choice-free analogue of ~ ...
itggt0cn 36862 ~ itggt0 holds for continu...
ftc1cnnclem 36863 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 36864 Choice-free proof of ~ ftc...
ftc1anclem1 36865 Lemma for ~ ftc1anc - the ...
ftc1anclem2 36866 Lemma for ~ ftc1anc - rest...
ftc1anclem3 36867 Lemma for ~ ftc1anc - the ...
ftc1anclem4 36868 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 36869 Lemma for ~ ftc1anc , the ...
ftc1anclem6 36870 Lemma for ~ ftc1anc - cons...
ftc1anclem7 36871 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 36872 Lemma for ~ ftc1anc . (Co...
ftc1anc 36873 ~ ftc1a holds for function...
ftc2nc 36874 Choice-free proof of ~ ftc...
asindmre 36875 Real part of domain of dif...
dvasin 36876 Derivative of arcsine. (C...
dvacos 36877 Derivative of arccosine. ...
dvreasin 36878 Real derivative of arcsine...
dvreacos 36879 Real derivative of arccosi...
areacirclem1 36880 Antiderivative of cross-se...
areacirclem2 36881 Endpoint-inclusive continu...
areacirclem3 36882 Integrability of cross-sec...
areacirclem4 36883 Endpoint-inclusive continu...
areacirclem5 36884 Finding the cross-section ...
areacirc 36885 The area of a circle of ra...
unirep 36886 Define a quantity whose de...
cover2 36887 Two ways of expressing the...
cover2g 36888 Two ways of expressing the...
brabg2 36889 Relation by a binary relat...
opelopab3 36890 Ordered pair membership in...
cocanfo 36891 Cancellation of a surjecti...
brresi2 36892 Restriction of a binary re...
fnopabeqd 36893 Equality deduction for fun...
fvopabf4g 36894 Function value of an opera...
fnopabco 36895 Composition of a function ...
opropabco 36896 Composition of an operator...
cocnv 36897 Composition with a functio...
f1ocan1fv 36898 Cancel a composition by a ...
f1ocan2fv 36899 Cancel a composition by th...
inixp 36900 Intersection of Cartesian ...
upixp 36901 Universal property of the ...
abrexdom 36902 An indexed set is dominate...
abrexdom2 36903 An indexed set is dominate...
ac6gf 36904 Axiom of Choice. (Contrib...
indexa 36905 If for every element of an...
indexdom 36906 If for every element of an...
frinfm 36907 A subset of a well-founded...
welb 36908 A nonempty subset of a wel...
supex2g 36909 Existence of supremum. (C...
supclt 36910 Closure of supremum. (Con...
supubt 36911 Upper bound property of su...
filbcmb 36912 Combine a finite set of lo...
fzmul 36913 Membership of a product in...
sdclem2 36914 Lemma for ~ sdc . (Contri...
sdclem1 36915 Lemma for ~ sdc . (Contri...
sdc 36916 Strong dependent choice. ...
fdc 36917 Finite version of dependen...
fdc1 36918 Variant of ~ fdc with no s...
seqpo 36919 Two ways to say that a seq...
incsequz 36920 An increasing sequence of ...
incsequz2 36921 An increasing sequence of ...
nnubfi 36922 A bounded above set of pos...
nninfnub 36923 An infinite set of positiv...
subspopn 36924 An open set is open in the...
neificl 36925 Neighborhoods are closed u...
lpss2 36926 Limit points of a subset a...
metf1o 36927 Use a bijection with a met...
blssp 36928 A ball in the subspace met...
mettrifi 36929 Generalized triangle inequ...
lmclim2 36930 A sequence in a metric spa...
geomcau 36931 If the distance between co...
caures 36932 The restriction of a Cauch...
caushft 36933 A shifted Cauchy sequence ...
constcncf 36934 A constant function is a c...
cnres2 36935 The restriction of a conti...
cnresima 36936 A continuous function is c...
cncfres 36937 A continuous function on c...
istotbnd 36941 The predicate "is a totall...
istotbnd2 36942 The predicate "is a totall...
istotbnd3 36943 A metric space is totally ...
totbndmet 36944 The predicate "totally bou...
0totbnd 36945 The metric (there is only ...
sstotbnd2 36946 Condition for a subset of ...
sstotbnd 36947 Condition for a subset of ...
sstotbnd3 36948 Use a net that is not nece...
totbndss 36949 A subset of a totally boun...
equivtotbnd 36950 If the metric ` M ` is "st...
isbnd 36952 The predicate "is a bounde...
bndmet 36953 A bounded metric space is ...
isbndx 36954 A "bounded extended metric...
isbnd2 36955 The predicate "is a bounde...
isbnd3 36956 A metric space is bounded ...
isbnd3b 36957 A metric space is bounded ...
bndss 36958 A subset of a bounded metr...
blbnd 36959 A ball is bounded. (Contr...
ssbnd 36960 A subset of a metric space...
totbndbnd 36961 A totally bounded metric s...
equivbnd 36962 If the metric ` M ` is "st...
bnd2lem 36963 Lemma for ~ equivbnd2 and ...
equivbnd2 36964 If balls are totally bound...
prdsbnd 36965 The product metric over fi...
prdstotbnd 36966 The product metric over fi...
prdsbnd2 36967 If balls are totally bound...
cntotbnd 36968 A subset of the complex nu...
cnpwstotbnd 36969 A subset of ` A ^ I ` , wh...
ismtyval 36972 The set of isometries betw...
isismty 36973 The condition "is an isome...
ismtycnv 36974 The inverse of an isometry...
ismtyima 36975 The image of a ball under ...
ismtyhmeolem 36976 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 36977 An isometry is a homeomorp...
ismtybndlem 36978 Lemma for ~ ismtybnd . (C...
ismtybnd 36979 Isometries preserve bounde...
ismtyres 36980 A restriction of an isomet...
heibor1lem 36981 Lemma for ~ heibor1 . A c...
heibor1 36982 One half of ~ heibor , tha...
heiborlem1 36983 Lemma for ~ heibor . We w...
heiborlem2 36984 Lemma for ~ heibor . Subs...
heiborlem3 36985 Lemma for ~ heibor . Usin...
heiborlem4 36986 Lemma for ~ heibor . Usin...
heiborlem5 36987 Lemma for ~ heibor . The ...
heiborlem6 36988 Lemma for ~ heibor . Sinc...
heiborlem7 36989 Lemma for ~ heibor . Sinc...
heiborlem8 36990 Lemma for ~ heibor . The ...
heiborlem9 36991 Lemma for ~ heibor . Disc...
heiborlem10 36992 Lemma for ~ heibor . The ...
heibor 36993 Generalized Heine-Borel Th...
bfplem1 36994 Lemma for ~ bfp . The seq...
bfplem2 36995 Lemma for ~ bfp . Using t...
bfp 36996 Banach fixed point theorem...
rrnval 36999 The n-dimensional Euclidea...
rrnmval 37000 The value of the Euclidean...
rrnmet 37001 Euclidean space is a metri...
rrndstprj1 37002 The distance between two p...
rrndstprj2 37003 Bound on the distance betw...
rrncmslem 37004 Lemma for ~ rrncms . (Con...
rrncms 37005 Euclidean space is complet...
repwsmet 37006 The supremum metric on ` R...
rrnequiv 37007 The supremum metric on ` R...
rrntotbnd 37008 A set in Euclidean space i...
rrnheibor 37009 Heine-Borel theorem for Eu...
ismrer1 37010 An isometry between ` RR `...
reheibor 37011 Heine-Borel theorem for re...
iccbnd 37012 A closed interval in ` RR ...
icccmpALT 37013 A closed interval in ` RR ...
isass 37018 The predicate "is an assoc...
isexid 37019 The predicate ` G ` has a ...
ismgmOLD 37022 Obsolete version of ~ ismg...
clmgmOLD 37023 Obsolete version of ~ mgmc...
opidonOLD 37024 Obsolete version of ~ mndp...
rngopidOLD 37025 Obsolete version of ~ mndp...
opidon2OLD 37026 Obsolete version of ~ mndp...
isexid2 37027 If ` G e. ( Magma i^i ExId...
exidu1 37028 Uniqueness of the left and...
idrval 37029 The value of the identity ...
iorlid 37030 A magma right and left ide...
cmpidelt 37031 A magma right and left ide...
smgrpismgmOLD 37034 Obsolete version of ~ sgrp...
issmgrpOLD 37035 Obsolete version of ~ issg...
smgrpmgm 37036 A semigroup is a magma. (...
smgrpassOLD 37037 Obsolete version of ~ sgrp...
mndoissmgrpOLD 37040 Obsolete version of ~ mnds...
mndoisexid 37041 A monoid has an identity e...
mndoismgmOLD 37042 Obsolete version of ~ mndm...
mndomgmid 37043 A monoid is a magma with a...
ismndo 37044 The predicate "is a monoid...
ismndo1 37045 The predicate "is a monoid...
ismndo2 37046 The predicate "is a monoid...
grpomndo 37047 A group is a monoid. (Con...
exidcl 37048 Closure of the binary oper...
exidreslem 37049 Lemma for ~ exidres and ~ ...
exidres 37050 The restriction of a binar...
exidresid 37051 The restriction of a binar...
ablo4pnp 37052 A commutative/associative ...
grpoeqdivid 37053 Two group elements are equ...
grposnOLD 37054 The group operation for th...
elghomlem1OLD 37057 Obsolete as of 15-Mar-2020...
elghomlem2OLD 37058 Obsolete as of 15-Mar-2020...
elghomOLD 37059 Obsolete version of ~ isgh...
ghomlinOLD 37060 Obsolete version of ~ ghml...
ghomidOLD 37061 Obsolete version of ~ ghmi...
ghomf 37062 Mapping property of a grou...
ghomco 37063 The composition of two gro...
ghomdiv 37064 Group homomorphisms preser...
grpokerinj 37065 A group homomorphism is in...
relrngo 37068 The class of all unital ri...
isrngo 37069 The predicate "is a (unita...
isrngod 37070 Conditions that determine ...
rngoi 37071 The properties of a unital...
rngosm 37072 Functionality of the multi...
rngocl 37073 Closure of the multiplicat...
rngoid 37074 The multiplication operati...
rngoideu 37075 The unity element of a rin...
rngodi 37076 Distributive law for the m...
rngodir 37077 Distributive law for the m...
rngoass 37078 Associative law for the mu...
rngo2 37079 A ring element plus itself...
rngoablo 37080 A ring's addition operatio...
rngoablo2 37081 In a unital ring the addit...
rngogrpo 37082 A ring's addition operatio...
rngone0 37083 The base set of a ring is ...
rngogcl 37084 Closure law for the additi...
rngocom 37085 The addition operation of ...
rngoaass 37086 The addition operation of ...
rngoa32 37087 The addition operation of ...
rngoa4 37088 Rearrangement of 4 terms i...
rngorcan 37089 Right cancellation law for...
rngolcan 37090 Left cancellation law for ...
rngo0cl 37091 A ring has an additive ide...
rngo0rid 37092 The additive identity of a...
rngo0lid 37093 The additive identity of a...
rngolz 37094 The zero of a unital ring ...
rngorz 37095 The zero of a unital ring ...
rngosn3 37096 Obsolete as of 25-Jan-2020...
rngosn4 37097 Obsolete as of 25-Jan-2020...
rngosn6 37098 Obsolete as of 25-Jan-2020...
rngonegcl 37099 A ring is closed under neg...
rngoaddneg1 37100 Adding the negative in a r...
rngoaddneg2 37101 Adding the negative in a r...
rngosub 37102 Subtraction in a ring, in ...
rngmgmbs4 37103 The range of an internal o...
rngodm1dm2 37104 In a unital ring the domai...
rngorn1 37105 In a unital ring the range...
rngorn1eq 37106 In a unital ring the range...
rngomndo 37107 In a unital ring the multi...
rngoidmlem 37108 The unity element of a rin...
rngolidm 37109 The unity element of a rin...
rngoridm 37110 The unity element of a rin...
rngo1cl 37111 The unity element of a rin...
rngoueqz 37112 Obsolete as of 23-Jan-2020...
rngonegmn1l 37113 Negation in a ring is the ...
rngonegmn1r 37114 Negation in a ring is the ...
rngoneglmul 37115 Negation of a product in a...
rngonegrmul 37116 Negation of a product in a...
rngosubdi 37117 Ring multiplication distri...
rngosubdir 37118 Ring multiplication distri...
zerdivemp1x 37119 In a unital ring a left in...
isdivrngo 37122 The predicate "is a divisi...
drngoi 37123 The properties of a divisi...
gidsn 37124 Obsolete as of 23-Jan-2020...
zrdivrng 37125 The zero ring is not a div...
dvrunz 37126 In a division ring the rin...
isgrpda 37127 Properties that determine ...
isdrngo1 37128 The predicate "is a divisi...
divrngcl 37129 The product of two nonzero...
isdrngo2 37130 A division ring is a ring ...
isdrngo3 37131 A division ring is a ring ...
rngohomval 37136 The set of ring homomorphi...
isrngohom 37137 The predicate "is a ring h...
rngohomf 37138 A ring homomorphism is a f...
rngohomcl 37139 Closure law for a ring hom...
rngohom1 37140 A ring homomorphism preser...
rngohomadd 37141 Ring homomorphisms preserv...
rngohommul 37142 Ring homomorphisms preserv...
rngogrphom 37143 A ring homomorphism is a g...
rngohom0 37144 A ring homomorphism preser...
rngohomsub 37145 Ring homomorphisms preserv...
rngohomco 37146 The composition of two rin...
rngokerinj 37147 A ring homomorphism is inj...
rngoisoval 37149 The set of ring isomorphis...
isrngoiso 37150 The predicate "is a ring i...
rngoiso1o 37151 A ring isomorphism is a bi...
rngoisohom 37152 A ring isomorphism is a ri...
rngoisocnv 37153 The inverse of a ring isom...
rngoisoco 37154 The composition of two rin...
isriscg 37156 The ring isomorphism relat...
isrisc 37157 The ring isomorphism relat...
risc 37158 The ring isomorphism relat...
risci 37159 Determine that two rings a...
riscer 37160 Ring isomorphism is an equ...
iscom2 37167 A device to add commutativ...
iscrngo 37168 The predicate "is a commut...
iscrngo2 37169 The predicate "is a commut...
iscringd 37170 Conditions that determine ...
flddivrng 37171 A field is a division ring...
crngorngo 37172 A commutative ring is a ri...
crngocom 37173 The multiplication operati...
crngm23 37174 Commutative/associative la...
crngm4 37175 Commutative/associative la...
fldcrngo 37176 A field is a commutative r...
isfld2 37177 The predicate "is a field"...
crngohomfo 37178 The image of a homomorphis...
idlval 37185 The class of ideals of a r...
isidl 37186 The predicate "is an ideal...
isidlc 37187 The predicate "is an ideal...
idlss 37188 An ideal of ` R ` is a sub...
idlcl 37189 An element of an ideal is ...
idl0cl 37190 An ideal contains ` 0 ` . ...
idladdcl 37191 An ideal is closed under a...
idllmulcl 37192 An ideal is closed under m...
idlrmulcl 37193 An ideal is closed under m...
idlnegcl 37194 An ideal is closed under n...
idlsubcl 37195 An ideal is closed under s...
rngoidl 37196 A ring ` R ` is an ` R ` i...
0idl 37197 The set containing only ` ...
1idl 37198 Two ways of expressing the...
0rngo 37199 In a ring, ` 0 = 1 ` iff t...
divrngidl 37200 The only ideals in a divis...
intidl 37201 The intersection of a none...
inidl 37202 The intersection of two id...
unichnidl 37203 The union of a nonempty ch...
keridl 37204 The kernel of a ring homom...
pridlval 37205 The class of prime ideals ...
ispridl 37206 The predicate "is a prime ...
pridlidl 37207 A prime ideal is an ideal....
pridlnr 37208 A prime ideal is a proper ...
pridl 37209 The main property of a pri...
ispridl2 37210 A condition that shows an ...
maxidlval 37211 The set of maximal ideals ...
ismaxidl 37212 The predicate "is a maxima...
maxidlidl 37213 A maximal ideal is an idea...
maxidlnr 37214 A maximal ideal is proper....
maxidlmax 37215 A maximal ideal is a maxim...
maxidln1 37216 One is not contained in an...
maxidln0 37217 A ring with a maximal idea...
isprrngo 37222 The predicate "is a prime ...
prrngorngo 37223 A prime ring is a ring. (...
smprngopr 37224 A simple ring (one whose o...
divrngpr 37225 A division ring is a prime...
isdmn 37226 The predicate "is a domain...
isdmn2 37227 The predicate "is a domain...
dmncrng 37228 A domain is a commutative ...
dmnrngo 37229 A domain is a ring. (Cont...
flddmn 37230 A field is a domain. (Con...
igenval 37233 The ideal generated by a s...
igenss 37234 A set is a subset of the i...
igenidl 37235 The ideal generated by a s...
igenmin 37236 The ideal generated by a s...
igenidl2 37237 The ideal generated by an ...
igenval2 37238 The ideal generated by a s...
prnc 37239 A principal ideal (an idea...
isfldidl 37240 Determine if a ring is a f...
isfldidl2 37241 Determine if a ring is a f...
ispridlc 37242 The predicate "is a prime ...
pridlc 37243 Property of a prime ideal ...
pridlc2 37244 Property of a prime ideal ...
pridlc3 37245 Property of a prime ideal ...
isdmn3 37246 The predicate "is a domain...
dmnnzd 37247 A domain has no zero-divis...
dmncan1 37248 Cancellation law for domai...
dmncan2 37249 Cancellation law for domai...
efald2 37250 A proof by contradiction. ...
notbinot1 37251 Simplification rule of neg...
bicontr 37252 Biconditional of its own n...
impor 37253 An equivalent formula for ...
orfa 37254 The falsum ` F. ` can be r...
notbinot2 37255 Commutation rule between n...
biimpor 37256 A rewriting rule for bicon...
orfa1 37257 Add a contradicting disjun...
orfa2 37258 Remove a contradicting dis...
bifald 37259 Infer the equivalence to a...
orsild 37260 A lemma for not-or-not eli...
orsird 37261 A lemma for not-or-not eli...
cnf1dd 37262 A lemma for Conjunctive No...
cnf2dd 37263 A lemma for Conjunctive No...
cnfn1dd 37264 A lemma for Conjunctive No...
cnfn2dd 37265 A lemma for Conjunctive No...
or32dd 37266 A rearrangement of disjunc...
notornotel1 37267 A lemma for not-or-not eli...
notornotel2 37268 A lemma for not-or-not eli...
contrd 37269 A proof by contradiction, ...
an12i 37270 An inference from commutin...
exmid2 37271 An excluded middle law. (...
selconj 37272 An inference for selecting...
truconj 37273 Add true as a conjunct. (...
orel 37274 An inference for disjuncti...
negel 37275 An inference for negation ...
botel 37276 An inference for bottom el...
tradd 37277 Add top ad a conjunct. (C...
gm-sbtru 37278 Substitution does not chan...
sbfal 37279 Substitution does not chan...
sbcani 37280 Distribution of class subs...
sbcori 37281 Distribution of class subs...
sbcimi 37282 Distribution of class subs...
sbcni 37283 Move class substitution in...
sbali 37284 Discard class substitution...
sbexi 37285 Discard class substitution...
sbcalf 37286 Move universal quantifier ...
sbcexf 37287 Move existential quantifie...
sbcalfi 37288 Move universal quantifier ...
sbcexfi 37289 Move existential quantifie...
spsbcdi 37290 A lemma for eliminating a ...
alrimii 37291 A lemma for introducing a ...
spesbcdi 37292 A lemma for introducing an...
exlimddvf 37293 A lemma for eliminating an...
exlimddvfi 37294 A lemma for eliminating an...
sbceq1ddi 37295 A lemma for eliminating in...
sbccom2lem 37296 Lemma for ~ sbccom2 . (Co...
sbccom2 37297 Commutative law for double...
sbccom2f 37298 Commutative law for double...
sbccom2fi 37299 Commutative law for double...
csbcom2fi 37300 Commutative law for double...
fald 37301 Refutation of falsity, in ...
tsim1 37302 A Tseitin axiom for logica...
tsim2 37303 A Tseitin axiom for logica...
tsim3 37304 A Tseitin axiom for logica...
tsbi1 37305 A Tseitin axiom for logica...
tsbi2 37306 A Tseitin axiom for logica...
tsbi3 37307 A Tseitin axiom for logica...
tsbi4 37308 A Tseitin axiom for logica...
tsxo1 37309 A Tseitin axiom for logica...
tsxo2 37310 A Tseitin axiom for logica...
tsxo3 37311 A Tseitin axiom for logica...
tsxo4 37312 A Tseitin axiom for logica...
tsan1 37313 A Tseitin axiom for logica...
tsan2 37314 A Tseitin axiom for logica...
tsan3 37315 A Tseitin axiom for logica...
tsna1 37316 A Tseitin axiom for logica...
tsna2 37317 A Tseitin axiom for logica...
tsna3 37318 A Tseitin axiom for logica...
tsor1 37319 A Tseitin axiom for logica...
tsor2 37320 A Tseitin axiom for logica...
tsor3 37321 A Tseitin axiom for logica...
ts3an1 37322 A Tseitin axiom for triple...
ts3an2 37323 A Tseitin axiom for triple...
ts3an3 37324 A Tseitin axiom for triple...
ts3or1 37325 A Tseitin axiom for triple...
ts3or2 37326 A Tseitin axiom for triple...
ts3or3 37327 A Tseitin axiom for triple...
iuneq2f 37328 Equality deduction for ind...
rabeq12f 37329 Equality deduction for res...
csbeq12 37330 Equality deduction for sub...
sbeqi 37331 Equality deduction for sub...
ralbi12f 37332 Equality deduction for res...
oprabbi 37333 Equality deduction for cla...
mpobi123f 37334 Equality deduction for map...
iuneq12f 37335 Equality deduction for ind...
iineq12f 37336 Equality deduction for ind...
opabbi 37337 Equality deduction for cla...
mptbi12f 37338 Equality deduction for map...
orcomdd 37339 Commutativity of logic dis...
scottexf 37340 A version of ~ scottex wit...
scott0f 37341 A version of ~ scott0 with...
scottn0f 37342 A version of ~ scott0f wit...
ac6s3f 37343 Generalization of the Axio...
ac6s6 37344 Generalization of the Axio...
ac6s6f 37345 Generalization of the Axio...
el2v1 37389 New way ( ~ elv , and the ...
el3v 37390 New way ( ~ elv , and the ...
el3v1 37391 New way ( ~ elv , and the ...
el3v2 37392 New way ( ~ elv , and the ...
el3v3 37393 New way ( ~ elv , and the ...
el3v12 37394 New way ( ~ elv , and the ...
el3v13 37395 New way ( ~ elv , and the ...
el3v23 37396 New way ( ~ elv , and the ...
anan 37397 Multiple commutations in c...
triantru3 37398 A wff is equivalent to its...
bianbi 37399 Exchanging conjunction in ...
bianim 37400 Exchanging conjunction in ...
biorfd 37401 A wff is equivalent to its...
eqbrtr 37402 Substitution of equal clas...
eqbrb 37403 Substitution of equal clas...
eqeltr 37404 Substitution of equal clas...
eqelb 37405 Substitution of equal clas...
eqeqan2d 37406 Implication of introducing...
suceqsneq 37407 One-to-one relationship be...
sucdifsn2 37408 Absorption of union with a...
sucdifsn 37409 The difference between the...
disjresin 37410 The restriction to a disjo...
disjresdisj 37411 The intersection of restri...
disjresdif 37412 The difference between res...
disjresundif 37413 Lemma for ~ ressucdifsn2 ....
ressucdifsn2 37414 The difference between res...
ressucdifsn 37415 The difference between res...
inres2 37416 Two ways of expressing the...
coideq 37417 Equality theorem for compo...
nexmo1 37418 If there is no case where ...
ralin 37419 Restricted universal quant...
r2alan 37420 Double restricted universa...
ssrabi 37421 Inference of restricted ab...
rabbieq 37422 Equivalent wff's correspon...
rabimbieq 37423 Restricted equivalent wff'...
abeqin 37424 Intersection with class ab...
abeqinbi 37425 Intersection with class ab...
rabeqel 37426 Class element of a restric...
eqrelf 37427 The equality connective be...
br1cnvinxp 37428 Binary relation on the con...
releleccnv 37429 Elementhood in a converse ...
releccnveq 37430 Equality of converse ` R `...
opelvvdif 37431 Negated elementhood of ord...
vvdifopab 37432 Ordered-pair class abstrac...
brvdif 37433 Binary relation with unive...
brvdif2 37434 Binary relation with unive...
brvvdif 37435 Binary relation with the c...
brvbrvvdif 37436 Binary relation with the c...
brcnvep 37437 The converse of the binary...
elecALTV 37438 Elementhood in the ` R ` -...
brcnvepres 37439 Restricted converse epsilo...
brres2 37440 Binary relation on a restr...
br1cnvres 37441 Binary relation on the con...
eldmres 37442 Elementhood in the domain ...
elrnres 37443 Element of the range of a ...
eldmressnALTV 37444 Element of the domain of a...
elrnressn 37445 Element of the range of a ...
eldm4 37446 Elementhood in a domain. ...
eldmres2 37447 Elementhood in the domain ...
eceq1i 37448 Equality theorem for ` C `...
elecres 37449 Elementhood in the restric...
ecres 37450 Restricted coset of ` B ` ...
ecres2 37451 The restricted coset of ` ...
eccnvepres 37452 Restricted converse epsilo...
eleccnvep 37453 Elementhood in the convers...
eccnvep 37454 The converse epsilon coset...
extep 37455 Property of epsilon relati...
disjeccnvep 37456 Property of the epsilon re...
eccnvepres2 37457 The restricted converse ep...
eccnvepres3 37458 Condition for a restricted...
eldmqsres 37459 Elementhood in a restricte...
eldmqsres2 37460 Elementhood in a restricte...
qsss1 37461 Subclass theorem for quoti...
qseq1i 37462 Equality theorem for quoti...
qseq1d 37463 Equality theorem for quoti...
brinxprnres 37464 Binary relation on a restr...
inxprnres 37465 Restriction of a class as ...
dfres4 37466 Alternate definition of th...
exan3 37467 Equivalent expressions wit...
exanres 37468 Equivalent expressions wit...
exanres3 37469 Equivalent expressions wit...
exanres2 37470 Equivalent expressions wit...
cnvepres 37471 Restricted converse epsilo...
eqrel2 37472 Equality of relations. (C...
rncnv 37473 Range of converse is the d...
dfdm6 37474 Alternate definition of do...
dfrn6 37475 Alternate definition of ra...
rncnvepres 37476 The range of the restricte...
dmecd 37477 Equality of the coset of `...
dmec2d 37478 Equality of the coset of `...
brid 37479 Property of the identity b...
ideq2 37480 For sets, the identity bin...
idresssidinxp 37481 Condition for the identity...
idreseqidinxp 37482 Condition for the identity...
extid 37483 Property of identity relat...
inxpss 37484 Two ways to say that an in...
idinxpss 37485 Two ways to say that an in...
ref5 37486 Two ways to say that an in...
inxpss3 37487 Two ways to say that an in...
inxpss2 37488 Two ways to say that inter...
inxpssidinxp 37489 Two ways to say that inter...
idinxpssinxp 37490 Two ways to say that inter...
idinxpssinxp2 37491 Identity intersection with...
idinxpssinxp3 37492 Identity intersection with...
idinxpssinxp4 37493 Identity intersection with...
relcnveq3 37494 Two ways of saying a relat...
relcnveq 37495 Two ways of saying a relat...
relcnveq2 37496 Two ways of saying a relat...
relcnveq4 37497 Two ways of saying a relat...
qsresid 37498 Simplification of a specia...
n0elqs 37499 Two ways of expressing tha...
n0elqs2 37500 Two ways of expressing tha...
ecex2 37501 Condition for a coset to b...
uniqsALTV 37502 The union of a quotient se...
imaexALTV 37503 Existence of an image of a...
ecexALTV 37504 Existence of a coset, like...
rnresequniqs 37505 The range of a restriction...
n0el2 37506 Two ways of expressing tha...
cnvepresex 37507 Sethood condition for the ...
eccnvepex 37508 The converse epsilon coset...
cnvepimaex 37509 The image of converse epsi...
cnvepima 37510 The image of converse epsi...
inex3 37511 Sufficient condition for t...
inxpex 37512 Sufficient condition for a...
eqres 37513 Converting a class constan...
brrabga 37514 The law of concretion for ...
brcnvrabga 37515 The law of concretion for ...
opideq 37516 Equality conditions for or...
iss2 37517 A subclass of the identity...
eldmcnv 37518 Elementhood in a domain of...
dfrel5 37519 Alternate definition of th...
dfrel6 37520 Alternate definition of th...
cnvresrn 37521 Converse restricted to ran...
relssinxpdmrn 37522 Subset of restriction, spe...
cnvref4 37523 Two ways to say that a rel...
cnvref5 37524 Two ways to say that a rel...
ecin0 37525 Two ways of saying that th...
ecinn0 37526 Two ways of saying that th...
ineleq 37527 Equivalence of restricted ...
inecmo 37528 Equivalence of a double re...
inecmo2 37529 Equivalence of a double re...
ineccnvmo 37530 Equivalence of a double re...
alrmomorn 37531 Equivalence of an "at most...
alrmomodm 37532 Equivalence of an "at most...
ineccnvmo2 37533 Equivalence of a double un...
inecmo3 37534 Equivalence of a double un...
moeu2 37535 Uniqueness is equivalent t...
mopickr 37536 "At most one" picks a vari...
moantr 37537 Sufficient condition for t...
brabidgaw 37538 The law of concretion for ...
brabidga 37539 The law of concretion for ...
inxp2 37540 Intersection with a Cartes...
opabf 37541 A class abstraction of a c...
ec0 37542 The empty-coset of a class...
0qs 37543 Quotient set with the empt...
brcnvin 37544 Intersection with a conver...
xrnss3v 37546 A range Cartesian product ...
xrnrel 37547 A range Cartesian product ...
brxrn 37548 Characterize a ternary rel...
brxrn2 37549 A characterization of the ...
dfxrn2 37550 Alternate definition of th...
xrneq1 37551 Equality theorem for the r...
xrneq1i 37552 Equality theorem for the r...
xrneq1d 37553 Equality theorem for the r...
xrneq2 37554 Equality theorem for the r...
xrneq2i 37555 Equality theorem for the r...
xrneq2d 37556 Equality theorem for the r...
xrneq12 37557 Equality theorem for the r...
xrneq12i 37558 Equality theorem for the r...
xrneq12d 37559 Equality theorem for the r...
elecxrn 37560 Elementhood in the ` ( R |...
ecxrn 37561 The ` ( R |X. S ) ` -coset...
disjressuc2 37562 Double restricted quantifi...
disjecxrn 37563 Two ways of saying that ` ...
disjecxrncnvep 37564 Two ways of saying that co...
disjsuc2 37565 Double restricted quantifi...
xrninxp 37566 Intersection of a range Ca...
xrninxp2 37567 Intersection of a range Ca...
xrninxpex 37568 Sufficient condition for t...
inxpxrn 37569 Two ways to express the in...
br1cnvxrn2 37570 The converse of a binary r...
elec1cnvxrn2 37571 Elementhood in the convers...
rnxrn 37572 Range of the range Cartesi...
rnxrnres 37573 Range of a range Cartesian...
rnxrncnvepres 37574 Range of a range Cartesian...
rnxrnidres 37575 Range of a range Cartesian...
xrnres 37576 Two ways to express restri...
xrnres2 37577 Two ways to express restri...
xrnres3 37578 Two ways to express restri...
xrnres4 37579 Two ways to express restri...
xrnresex 37580 Sufficient condition for a...
xrnidresex 37581 Sufficient condition for a...
xrncnvepresex 37582 Sufficient condition for a...
brin2 37583 Binary relation on an inte...
brin3 37584 Binary relation on an inte...
dfcoss2 37587 Alternate definition of th...
dfcoss3 37588 Alternate definition of th...
dfcoss4 37589 Alternate definition of th...
cosscnv 37590 Class of cosets by the con...
coss1cnvres 37591 Class of cosets by the con...
coss2cnvepres 37592 Special case of ~ coss1cnv...
cossex 37593 If ` A ` is a set then the...
cosscnvex 37594 If ` A ` is a set then the...
1cosscnvepresex 37595 Sufficient condition for a...
1cossxrncnvepresex 37596 Sufficient condition for a...
relcoss 37597 Cosets by ` R ` is a relat...
relcoels 37598 Coelements on ` A ` is a r...
cossss 37599 Subclass theorem for the c...
cosseq 37600 Equality theorem for the c...
cosseqi 37601 Equality theorem for the c...
cosseqd 37602 Equality theorem for the c...
1cossres 37603 The class of cosets by a r...
dfcoels 37604 Alternate definition of th...
brcoss 37605 ` A ` and ` B ` are cosets...
brcoss2 37606 Alternate form of the ` A ...
brcoss3 37607 Alternate form of the ` A ...
brcosscnvcoss 37608 For sets, the ` A ` and ` ...
brcoels 37609 ` B ` and ` C ` are coelem...
cocossss 37610 Two ways of saying that co...
cnvcosseq 37611 The converse of cosets by ...
br2coss 37612 Cosets by ` ,~ R ` binary ...
br1cossres 37613 ` B ` and ` C ` are cosets...
br1cossres2 37614 ` B ` and ` C ` are cosets...
brressn 37615 Binary relation on a restr...
ressn2 37616 A class ' R ' restricted t...
refressn 37617 Any class ' R ' restricted...
antisymressn 37618 Every class ' R ' restrict...
trressn 37619 Any class ' R ' restricted...
relbrcoss 37620 ` A ` and ` B ` are cosets...
br1cossinres 37621 ` B ` and ` C ` are cosets...
br1cossxrnres 37622 ` <. B , C >. ` and ` <. D...
br1cossinidres 37623 ` B ` and ` C ` are cosets...
br1cossincnvepres 37624 ` B ` and ` C ` are cosets...
br1cossxrnidres 37625 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 37626 ` <. B , C >. ` and ` <. D...
dmcoss3 37627 The domain of cosets is th...
dmcoss2 37628 The domain of cosets is th...
rncossdmcoss 37629 The range of cosets is the...
dm1cosscnvepres 37630 The domain of cosets of th...
dmcoels 37631 The domain of coelements i...
eldmcoss 37632 Elementhood in the domain ...
eldmcoss2 37633 Elementhood in the domain ...
eldm1cossres 37634 Elementhood in the domain ...
eldm1cossres2 37635 Elementhood in the domain ...
refrelcosslem 37636 Lemma for the left side of...
refrelcoss3 37637 The class of cosets by ` R...
refrelcoss2 37638 The class of cosets by ` R...
symrelcoss3 37639 The class of cosets by ` R...
symrelcoss2 37640 The class of cosets by ` R...
cossssid 37641 Equivalent expressions for...
cossssid2 37642 Equivalent expressions for...
cossssid3 37643 Equivalent expressions for...
cossssid4 37644 Equivalent expressions for...
cossssid5 37645 Equivalent expressions for...
brcosscnv 37646 ` A ` and ` B ` are cosets...
brcosscnv2 37647 ` A ` and ` B ` are cosets...
br1cosscnvxrn 37648 ` A ` and ` B ` are cosets...
1cosscnvxrn 37649 Cosets by the converse ran...
cosscnvssid3 37650 Equivalent expressions for...
cosscnvssid4 37651 Equivalent expressions for...
cosscnvssid5 37652 Equivalent expressions for...
coss0 37653 Cosets by the empty set ar...
cossid 37654 Cosets by the identity rel...
cosscnvid 37655 Cosets by the converse ide...
trcoss 37656 Sufficient condition for t...
eleccossin 37657 Two ways of saying that th...
trcoss2 37658 Equivalent expressions for...
elrels2 37660 The element of the relatio...
elrelsrel 37661 The element of the relatio...
elrelsrelim 37662 The element of the relatio...
elrels5 37663 Equivalent expressions for...
elrels6 37664 Equivalent expressions for...
elrelscnveq3 37665 Two ways of saying a relat...
elrelscnveq 37666 Two ways of saying a relat...
elrelscnveq2 37667 Two ways of saying a relat...
elrelscnveq4 37668 Two ways of saying a relat...
cnvelrels 37669 The converse of a set is a...
cosselrels 37670 Cosets of sets are element...
cosscnvelrels 37671 Cosets of converse sets ar...
dfssr2 37673 Alternate definition of th...
relssr 37674 The subset relation is a r...
brssr 37675 The subset relation and su...
brssrid 37676 Any set is a subset of its...
issetssr 37677 Two ways of expressing set...
brssrres 37678 Restricted subset binary r...
br1cnvssrres 37679 Restricted converse subset...
brcnvssr 37680 The converse of a subset r...
brcnvssrid 37681 Any set is a converse subs...
br1cossxrncnvssrres 37682 ` <. B , C >. ` and ` <. D...
extssr 37683 Property of subset relatio...
dfrefrels2 37687 Alternate definition of th...
dfrefrels3 37688 Alternate definition of th...
dfrefrel2 37689 Alternate definition of th...
dfrefrel3 37690 Alternate definition of th...
dfrefrel5 37691 Alternate definition of th...
elrefrels2 37692 Element of the class of re...
elrefrels3 37693 Element of the class of re...
elrefrelsrel 37694 For sets, being an element...
refreleq 37695 Equality theorem for refle...
refrelid 37696 Identity relation is refle...
refrelcoss 37697 The class of cosets by ` R...
refrelressn 37698 Any class ' R ' restricted...
dfcnvrefrels2 37702 Alternate definition of th...
dfcnvrefrels3 37703 Alternate definition of th...
dfcnvrefrel2 37704 Alternate definition of th...
dfcnvrefrel3 37705 Alternate definition of th...
dfcnvrefrel4 37706 Alternate definition of th...
dfcnvrefrel5 37707 Alternate definition of th...
elcnvrefrels2 37708 Element of the class of co...
elcnvrefrels3 37709 Element of the class of co...
elcnvrefrelsrel 37710 For sets, being an element...
cnvrefrelcoss2 37711 Necessary and sufficient c...
cosselcnvrefrels2 37712 Necessary and sufficient c...
cosselcnvrefrels3 37713 Necessary and sufficient c...
cosselcnvrefrels4 37714 Necessary and sufficient c...
cosselcnvrefrels5 37715 Necessary and sufficient c...
dfsymrels2 37719 Alternate definition of th...
dfsymrels3 37720 Alternate definition of th...
dfsymrels4 37721 Alternate definition of th...
dfsymrels5 37722 Alternate definition of th...
dfsymrel2 37723 Alternate definition of th...
dfsymrel3 37724 Alternate definition of th...
dfsymrel4 37725 Alternate definition of th...
dfsymrel5 37726 Alternate definition of th...
elsymrels2 37727 Element of the class of sy...
elsymrels3 37728 Element of the class of sy...
elsymrels4 37729 Element of the class of sy...
elsymrels5 37730 Element of the class of sy...
elsymrelsrel 37731 For sets, being an element...
symreleq 37732 Equality theorem for symme...
symrelim 37733 Symmetric relation implies...
symrelcoss 37734 The class of cosets by ` R...
idsymrel 37735 The identity relation is s...
epnsymrel 37736 The membership (epsilon) r...
symrefref2 37737 Symmetry is a sufficient c...
symrefref3 37738 Symmetry is a sufficient c...
refsymrels2 37739 Elements of the class of r...
refsymrels3 37740 Elements of the class of r...
refsymrel2 37741 A relation which is reflex...
refsymrel3 37742 A relation which is reflex...
elrefsymrels2 37743 Elements of the class of r...
elrefsymrels3 37744 Elements of the class of r...
elrefsymrelsrel 37745 For sets, being an element...
dftrrels2 37749 Alternate definition of th...
dftrrels3 37750 Alternate definition of th...
dftrrel2 37751 Alternate definition of th...
dftrrel3 37752 Alternate definition of th...
eltrrels2 37753 Element of the class of tr...
eltrrels3 37754 Element of the class of tr...
eltrrelsrel 37755 For sets, being an element...
trreleq 37756 Equality theorem for the t...
trrelressn 37757 Any class ' R ' restricted...
dfeqvrels2 37762 Alternate definition of th...
dfeqvrels3 37763 Alternate definition of th...
dfeqvrel2 37764 Alternate definition of th...
dfeqvrel3 37765 Alternate definition of th...
eleqvrels2 37766 Element of the class of eq...
eleqvrels3 37767 Element of the class of eq...
eleqvrelsrel 37768 For sets, being an element...
elcoeleqvrels 37769 Elementhood in the coeleme...
elcoeleqvrelsrel 37770 For sets, being an element...
eqvrelrel 37771 An equivalence relation is...
eqvrelrefrel 37772 An equivalence relation is...
eqvrelsymrel 37773 An equivalence relation is...
eqvreltrrel 37774 An equivalence relation is...
eqvrelim 37775 Equivalence relation impli...
eqvreleq 37776 Equality theorem for equiv...
eqvreleqi 37777 Equality theorem for equiv...
eqvreleqd 37778 Equality theorem for equiv...
eqvrelsym 37779 An equivalence relation is...
eqvrelsymb 37780 An equivalence relation is...
eqvreltr 37781 An equivalence relation is...
eqvreltrd 37782 A transitivity relation fo...
eqvreltr4d 37783 A transitivity relation fo...
eqvrelref 37784 An equivalence relation is...
eqvrelth 37785 Basic property of equivale...
eqvrelcl 37786 Elementhood in the field o...
eqvrelthi 37787 Basic property of equivale...
eqvreldisj 37788 Equivalence classes do not...
qsdisjALTV 37789 Elements of a quotient set...
eqvrelqsel 37790 If an element of a quotien...
eqvrelcoss 37791 Two ways to express equiva...
eqvrelcoss3 37792 Two ways to express equiva...
eqvrelcoss2 37793 Two ways to express equiva...
eqvrelcoss4 37794 Two ways to express equiva...
dfcoeleqvrels 37795 Alternate definition of th...
dfcoeleqvrel 37796 Alternate definition of th...
brredunds 37800 Binary relation on the cla...
brredundsredund 37801 For sets, binary relation ...
redundss3 37802 Implication of redundancy ...
redundeq1 37803 Equivalence of redundancy ...
redundpim3 37804 Implication of redundancy ...
redundpbi1 37805 Equivalence of redundancy ...
refrelsredund4 37806 The naive version of the c...
refrelsredund2 37807 The naive version of the c...
refrelsredund3 37808 The naive version of the c...
refrelredund4 37809 The naive version of the d...
refrelredund2 37810 The naive version of the d...
refrelredund3 37811 The naive version of the d...
dmqseq 37814 Equality theorem for domai...
dmqseqi 37815 Equality theorem for domai...
dmqseqd 37816 Equality theorem for domai...
dmqseqeq1 37817 Equality theorem for domai...
dmqseqeq1i 37818 Equality theorem for domai...
dmqseqeq1d 37819 Equality theorem for domai...
brdmqss 37820 The domain quotient binary...
brdmqssqs 37821 If ` A ` and ` R ` are set...
n0eldmqs 37822 The empty set is not an el...
n0eldmqseq 37823 The empty set is not an el...
n0elim 37824 Implication of that the em...
n0el3 37825 Two ways of expressing tha...
cnvepresdmqss 37826 The domain quotient binary...
cnvepresdmqs 37827 The domain quotient predic...
unidmqs 37828 The range of a relation is...
unidmqseq 37829 The union of the domain qu...
dmqseqim 37830 If the domain quotient of ...
dmqseqim2 37831 Lemma for ~ erimeq2 . (Co...
releldmqs 37832 Elementhood in the domain ...
eldmqs1cossres 37833 Elementhood in the domain ...
releldmqscoss 37834 Elementhood in the domain ...
dmqscoelseq 37835 Two ways to express the eq...
dmqs1cosscnvepreseq 37836 Two ways to express the eq...
brers 37841 Binary equivalence relatio...
dferALTV2 37842 Equivalence relation with ...
erALTVeq1 37843 Equality theorem for equiv...
erALTVeq1i 37844 Equality theorem for equiv...
erALTVeq1d 37845 Equality theorem for equiv...
dfcomember 37846 Alternate definition of th...
dfcomember2 37847 Alternate definition of th...
dfcomember3 37848 Alternate definition of th...
eqvreldmqs 37849 Two ways to express comemb...
eqvreldmqs2 37850 Two ways to express comemb...
brerser 37851 Binary equivalence relatio...
erimeq2 37852 Equivalence relation on it...
erimeq 37853 Equivalence relation on it...
dffunsALTV 37857 Alternate definition of th...
dffunsALTV2 37858 Alternate definition of th...
dffunsALTV3 37859 Alternate definition of th...
dffunsALTV4 37860 Alternate definition of th...
dffunsALTV5 37861 Alternate definition of th...
dffunALTV2 37862 Alternate definition of th...
dffunALTV3 37863 Alternate definition of th...
dffunALTV4 37864 Alternate definition of th...
dffunALTV5 37865 Alternate definition of th...
elfunsALTV 37866 Elementhood in the class o...
elfunsALTV2 37867 Elementhood in the class o...
elfunsALTV3 37868 Elementhood in the class o...
elfunsALTV4 37869 Elementhood in the class o...
elfunsALTV5 37870 Elementhood in the class o...
elfunsALTVfunALTV 37871 The element of the class o...
funALTVfun 37872 Our definition of the func...
funALTVss 37873 Subclass theorem for funct...
funALTVeq 37874 Equality theorem for funct...
funALTVeqi 37875 Equality inference for the...
funALTVeqd 37876 Equality deduction for the...
dfdisjs 37882 Alternate definition of th...
dfdisjs2 37883 Alternate definition of th...
dfdisjs3 37884 Alternate definition of th...
dfdisjs4 37885 Alternate definition of th...
dfdisjs5 37886 Alternate definition of th...
dfdisjALTV 37887 Alternate definition of th...
dfdisjALTV2 37888 Alternate definition of th...
dfdisjALTV3 37889 Alternate definition of th...
dfdisjALTV4 37890 Alternate definition of th...
dfdisjALTV5 37891 Alternate definition of th...
dfeldisj2 37892 Alternate definition of th...
dfeldisj3 37893 Alternate definition of th...
dfeldisj4 37894 Alternate definition of th...
dfeldisj5 37895 Alternate definition of th...
eldisjs 37896 Elementhood in the class o...
eldisjs2 37897 Elementhood in the class o...
eldisjs3 37898 Elementhood in the class o...
eldisjs4 37899 Elementhood in the class o...
eldisjs5 37900 Elementhood in the class o...
eldisjsdisj 37901 The element of the class o...
eleldisjs 37902 Elementhood in the disjoin...
eleldisjseldisj 37903 The element of the disjoin...
disjrel 37904 Disjoint relation is a rel...
disjss 37905 Subclass theorem for disjo...
disjssi 37906 Subclass theorem for disjo...
disjssd 37907 Subclass theorem for disjo...
disjeq 37908 Equality theorem for disjo...
disjeqi 37909 Equality theorem for disjo...
disjeqd 37910 Equality theorem for disjo...
disjdmqseqeq1 37911 Lemma for the equality the...
eldisjss 37912 Subclass theorem for disjo...
eldisjssi 37913 Subclass theorem for disjo...
eldisjssd 37914 Subclass theorem for disjo...
eldisjeq 37915 Equality theorem for disjo...
eldisjeqi 37916 Equality theorem for disjo...
eldisjeqd 37917 Equality theorem for disjo...
disjres 37918 Disjoint restriction. (Co...
eldisjn0elb 37919 Two forms of disjoint elem...
disjxrn 37920 Two ways of saying that a ...
disjxrnres5 37921 Disjoint range Cartesian p...
disjorimxrn 37922 Disjointness condition for...
disjimxrn 37923 Disjointness condition for...
disjimres 37924 Disjointness condition for...
disjimin 37925 Disjointness condition for...
disjiminres 37926 Disjointness condition for...
disjimxrnres 37927 Disjointness condition for...
disjALTV0 37928 The null class is disjoint...
disjALTVid 37929 The class of identity rela...
disjALTVidres 37930 The class of identity rela...
disjALTVinidres 37931 The intersection with rest...
disjALTVxrnidres 37932 The class of range Cartesi...
disjsuc 37933 Disjoint range Cartesian p...
dfantisymrel4 37935 Alternate definition of th...
dfantisymrel5 37936 Alternate definition of th...
antisymrelres 37937 (Contributed by Peter Mazs...
antisymrelressn 37938 (Contributed by Peter Mazs...
dfpart2 37943 Alternate definition of th...
dfmembpart2 37944 Alternate definition of th...
brparts 37945 Binary partitions relation...
brparts2 37946 Binary partitions relation...
brpartspart 37947 Binary partition and the p...
parteq1 37948 Equality theorem for parti...
parteq2 37949 Equality theorem for parti...
parteq12 37950 Equality theorem for parti...
parteq1i 37951 Equality theorem for parti...
parteq1d 37952 Equality theorem for parti...
partsuc2 37953 Property of the partition....
partsuc 37954 Property of the partition....
disjim 37955 The "Divide et Aequivalere...
disjimi 37956 Every disjoint relation ge...
detlem 37957 If a relation is disjoint,...
eldisjim 37958 If the elements of ` A ` a...
eldisjim2 37959 Alternate form of ~ eldisj...
eqvrel0 37960 The null class is an equiv...
det0 37961 The cosets by the null cla...
eqvrelcoss0 37962 The cosets by the null cla...
eqvrelid 37963 The identity relation is a...
eqvrel1cossidres 37964 The cosets by a restricted...
eqvrel1cossinidres 37965 The cosets by an intersect...
eqvrel1cossxrnidres 37966 The cosets by a range Cart...
detid 37967 The cosets by the identity...
eqvrelcossid 37968 The cosets by the identity...
detidres 37969 The cosets by the restrict...
detinidres 37970 The cosets by the intersec...
detxrnidres 37971 The cosets by the range Ca...
disjlem14 37972 Lemma for ~ disjdmqseq , ~...
disjlem17 37973 Lemma for ~ disjdmqseq , ~...
disjlem18 37974 Lemma for ~ disjdmqseq , ~...
disjlem19 37975 Lemma for ~ disjdmqseq , ~...
disjdmqsss 37976 Lemma for ~ disjdmqseq via...
disjdmqscossss 37977 Lemma for ~ disjdmqseq via...
disjdmqs 37978 If a relation is disjoint,...
disjdmqseq 37979 If a relation is disjoint,...
eldisjn0el 37980 Special case of ~ disjdmqs...
partim2 37981 Disjoint relation on its n...
partim 37982 Partition implies equivale...
partimeq 37983 Partition implies that the...
eldisjlem19 37984 Special case of ~ disjlem1...
membpartlem19 37985 Together with ~ disjlem19 ...
petlem 37986 If you can prove that the ...
petlemi 37987 If you can prove disjointn...
pet02 37988 Class ` A ` is a partition...
pet0 37989 Class ` A ` is a partition...
petid2 37990 Class ` A ` is a partition...
petid 37991 A class is a partition by ...
petidres2 37992 Class ` A ` is a partition...
petidres 37993 A class is a partition by ...
petinidres2 37994 Class ` A ` is a partition...
petinidres 37995 A class is a partition by ...
petxrnidres2 37996 Class ` A ` is a partition...
petxrnidres 37997 A class is a partition by ...
eqvreldisj1 37998 The elements of the quotie...
eqvreldisj2 37999 The elements of the quotie...
eqvreldisj3 38000 The elements of the quotie...
eqvreldisj4 38001 Intersection with the conv...
eqvreldisj5 38002 Range Cartesian product wi...
eqvrelqseqdisj2 38003 Implication of ~ eqvreldis...
fences3 38004 Implication of ~ eqvrelqse...
eqvrelqseqdisj3 38005 Implication of ~ eqvreldis...
eqvrelqseqdisj4 38006 Lemma for ~ petincnvepres2...
eqvrelqseqdisj5 38007 Lemma for the Partition-Eq...
mainer 38008 The Main Theorem of Equiva...
partimcomember 38009 Partition with general ` R...
mpet3 38010 Member Partition-Equivalen...
cpet2 38011 The conventional form of t...
cpet 38012 The conventional form of M...
mpet 38013 Member Partition-Equivalen...
mpet2 38014 Member Partition-Equivalen...
mpets2 38015 Member Partition-Equivalen...
mpets 38016 Member Partition-Equivalen...
mainpart 38017 Partition with general ` R...
fences 38018 The Theorem of Fences by E...
fences2 38019 The Theorem of Fences by E...
mainer2 38020 The Main Theorem of Equiva...
mainerim 38021 Every equivalence relation...
petincnvepres2 38022 A partition-equivalence th...
petincnvepres 38023 The shortest form of a par...
pet2 38024 Partition-Equivalence Theo...
pet 38025 Partition-Equivalence Theo...
pets 38026 Partition-Equivalence Theo...
prtlem60 38027 Lemma for ~ prter3 . (Con...
bicomdd 38028 Commute two sides of a bic...
jca2r 38029 Inference conjoining the c...
jca3 38030 Inference conjoining the c...
prtlem70 38031 Lemma for ~ prter3 : a rea...
ibdr 38032 Reverse of ~ ibd . (Contr...
prtlem100 38033 Lemma for ~ prter3 . (Con...
prtlem5 38034 Lemma for ~ prter1 , ~ prt...
prtlem80 38035 Lemma for ~ prter2 . (Con...
brabsb2 38036 A closed form of ~ brabsb ...
eqbrrdv2 38037 Other version of ~ eqbrrdi...
prtlem9 38038 Lemma for ~ prter3 . (Con...
prtlem10 38039 Lemma for ~ prter3 . (Con...
prtlem11 38040 Lemma for ~ prter2 . (Con...
prtlem12 38041 Lemma for ~ prtex and ~ pr...
prtlem13 38042 Lemma for ~ prter1 , ~ prt...
prtlem16 38043 Lemma for ~ prtex , ~ prte...
prtlem400 38044 Lemma for ~ prter2 and als...
erprt 38047 The quotient set of an equ...
prtlem14 38048 Lemma for ~ prter1 , ~ prt...
prtlem15 38049 Lemma for ~ prter1 and ~ p...
prtlem17 38050 Lemma for ~ prter2 . (Con...
prtlem18 38051 Lemma for ~ prter2 . (Con...
prtlem19 38052 Lemma for ~ prter2 . (Con...
prter1 38053 Every partition generates ...
prtex 38054 The equivalence relation g...
prter2 38055 The quotient set of the eq...
prter3 38056 For every partition there ...
axc5 38067 This theorem repeats ~ sp ...
ax4fromc4 38068 Rederivation of Axiom ~ ax...
ax10fromc7 38069 Rederivation of Axiom ~ ax...
ax6fromc10 38070 Rederivation of Axiom ~ ax...
hba1-o 38071 The setvar ` x ` is not fr...
axc4i-o 38072 Inference version of ~ ax-...
equid1 38073 Proof of ~ equid from our ...
equcomi1 38074 Proof of ~ equcomi from ~ ...
aecom-o 38075 Commutation law for identi...
aecoms-o 38076 A commutation rule for ide...
hbae-o 38077 All variables are effectiv...
dral1-o 38078 Formula-building lemma for...
ax12fromc15 38079 Rederivation of Axiom ~ ax...
ax13fromc9 38080 Derive ~ ax-13 from ~ ax-c...
ax5ALT 38081 Axiom to quantify a variab...
sps-o 38082 Generalization of antecede...
hbequid 38083 Bound-variable hypothesis ...
nfequid-o 38084 Bound-variable hypothesis ...
axc5c7 38085 Proof of a single axiom th...
axc5c7toc5 38086 Rederivation of ~ ax-c5 fr...
axc5c7toc7 38087 Rederivation of ~ ax-c7 fr...
axc711 38088 Proof of a single axiom th...
nfa1-o 38089 ` x ` is not free in ` A. ...
axc711toc7 38090 Rederivation of ~ ax-c7 fr...
axc711to11 38091 Rederivation of ~ ax-11 fr...
axc5c711 38092 Proof of a single axiom th...
axc5c711toc5 38093 Rederivation of ~ ax-c5 fr...
axc5c711toc7 38094 Rederivation of ~ ax-c7 fr...
axc5c711to11 38095 Rederivation of ~ ax-11 fr...
equidqe 38096 ~ equid with existential q...
axc5sp1 38097 A special case of ~ ax-c5 ...
equidq 38098 ~ equid with universal qua...
equid1ALT 38099 Alternate proof of ~ equid...
axc11nfromc11 38100 Rederivation of ~ ax-c11n ...
naecoms-o 38101 A commutation rule for dis...
hbnae-o 38102 All variables are effectiv...
dvelimf-o 38103 Proof of ~ dvelimh that us...
dral2-o 38104 Formula-building lemma for...
aev-o 38105 A "distinctor elimination"...
ax5eq 38106 Theorem to add distinct qu...
dveeq2-o 38107 Quantifier introduction wh...
axc16g-o 38108 A generalization of Axiom ...
dveeq1-o 38109 Quantifier introduction wh...
dveeq1-o16 38110 Version of ~ dveeq1 using ...
ax5el 38111 Theorem to add distinct qu...
axc11n-16 38112 This theorem shows that, g...
dveel2ALT 38113 Alternate proof of ~ dveel...
ax12f 38114 Basis step for constructin...
ax12eq 38115 Basis step for constructin...
ax12el 38116 Basis step for constructin...
ax12indn 38117 Induction step for constru...
ax12indi 38118 Induction step for constru...
ax12indalem 38119 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 38120 Alternate proof of ~ ax12i...
ax12inda2 38121 Induction step for constru...
ax12inda 38122 Induction step for constru...
ax12v2-o 38123 Rederivation of ~ ax-c15 f...
ax12a2-o 38124 Derive ~ ax-c15 from a hyp...
axc11-o 38125 Show that ~ ax-c11 can be ...
fsumshftd 38126 Index shift of a finite su...
riotaclbgBAD 38128 Closure of restricted iota...
riotaclbBAD 38129 Closure of restricted iota...
riotasvd 38130 Deduction version of ~ rio...
riotasv2d 38131 Value of description binde...
riotasv2s 38132 The value of description b...
riotasv 38133 Value of description binde...
riotasv3d 38134 A property ` ch ` holding ...
elimhyps 38135 A version of ~ elimhyp usi...
dedths 38136 A version of weak deductio...
renegclALT 38137 Closure law for negative o...
elimhyps2 38138 Generalization of ~ elimhy...
dedths2 38139 Generalization of ~ dedths...
nfcxfrdf 38140 A utility lemma to transfe...
nfded 38141 A deduction theorem that c...
nfded2 38142 A deduction theorem that c...
nfunidALT2 38143 Deduction version of ~ nfu...
nfunidALT 38144 Deduction version of ~ nfu...
nfopdALT 38145 Deduction version of bound...
cnaddcom 38146 Recover the commutative la...
toycom 38147 Show the commutative law f...
lshpset 38152 The set of all hyperplanes...
islshp 38153 The predicate "is a hyperp...
islshpsm 38154 Hyperplane properties expr...
lshplss 38155 A hyperplane is a subspace...
lshpne 38156 A hyperplane is not equal ...
lshpnel 38157 A hyperplane's generating ...
lshpnelb 38158 The subspace sum of a hype...
lshpnel2N 38159 Condition that determines ...
lshpne0 38160 The member of the span in ...
lshpdisj 38161 A hyperplane and the span ...
lshpcmp 38162 If two hyperplanes are com...
lshpinN 38163 The intersection of two di...
lsatset 38164 The set of all 1-dim subsp...
islsat 38165 The predicate "is a 1-dim ...
lsatlspsn2 38166 The span of a nonzero sing...
lsatlspsn 38167 The span of a nonzero sing...
islsati 38168 A 1-dim subspace (atom) (o...
lsateln0 38169 A 1-dim subspace (atom) (o...
lsatlss 38170 The set of 1-dim subspaces...
lsatlssel 38171 An atom is a subspace. (C...
lsatssv 38172 An atom is a set of vector...
lsatn0 38173 A 1-dim subspace (atom) of...
lsatspn0 38174 The span of a vector is an...
lsator0sp 38175 The span of a vector is ei...
lsatssn0 38176 A subspace (or any class) ...
lsatcmp 38177 If two atoms are comparabl...
lsatcmp2 38178 If an atom is included in ...
lsatel 38179 A nonzero vector in an ato...
lsatelbN 38180 A nonzero vector in an ato...
lsat2el 38181 Two atoms sharing a nonzer...
lsmsat 38182 Convert comparison of atom...
lsatfixedN 38183 Show equality with the spa...
lsmsatcv 38184 Subspace sum has the cover...
lssatomic 38185 The lattice of subspaces i...
lssats 38186 The lattice of subspaces i...
lpssat 38187 Two subspaces in a proper ...
lrelat 38188 Subspaces are relatively a...
lssatle 38189 The ordering of two subspa...
lssat 38190 Two subspaces in a proper ...
islshpat 38191 Hyperplane properties expr...
lcvfbr 38194 The covers relation for a ...
lcvbr 38195 The covers relation for a ...
lcvbr2 38196 The covers relation for a ...
lcvbr3 38197 The covers relation for a ...
lcvpss 38198 The covers relation implie...
lcvnbtwn 38199 The covers relation implie...
lcvntr 38200 The covers relation is not...
lcvnbtwn2 38201 The covers relation implie...
lcvnbtwn3 38202 The covers relation implie...
lsmcv2 38203 Subspace sum has the cover...
lcvat 38204 If a subspace covers anoth...
lsatcv0 38205 An atom covers the zero su...
lsatcveq0 38206 A subspace covered by an a...
lsat0cv 38207 A subspace is an atom iff ...
lcvexchlem1 38208 Lemma for ~ lcvexch . (Co...
lcvexchlem2 38209 Lemma for ~ lcvexch . (Co...
lcvexchlem3 38210 Lemma for ~ lcvexch . (Co...
lcvexchlem4 38211 Lemma for ~ lcvexch . (Co...
lcvexchlem5 38212 Lemma for ~ lcvexch . (Co...
lcvexch 38213 Subspaces satisfy the exch...
lcvp 38214 Covering property of Defin...
lcv1 38215 Covering property of a sub...
lcv2 38216 Covering property of a sub...
lsatexch 38217 The atom exchange property...
lsatnle 38218 The meet of a subspace and...
lsatnem0 38219 The meet of distinct atoms...
lsatexch1 38220 The atom exch1ange propert...
lsatcv0eq 38221 If the sum of two atoms co...
lsatcv1 38222 Two atoms covering the zer...
lsatcvatlem 38223 Lemma for ~ lsatcvat . (C...
lsatcvat 38224 A nonzero subspace less th...
lsatcvat2 38225 A subspace covered by the ...
lsatcvat3 38226 A condition implying that ...
islshpcv 38227 Hyperplane properties expr...
l1cvpat 38228 A subspace covered by the ...
l1cvat 38229 Create an atom under an el...
lshpat 38230 Create an atom under a hyp...
lflset 38233 The set of linear function...
islfl 38234 The predicate "is a linear...
lfli 38235 Property of a linear funct...
islfld 38236 Properties that determine ...
lflf 38237 A linear functional is a f...
lflcl 38238 A linear functional value ...
lfl0 38239 A linear functional is zer...
lfladd 38240 Property of a linear funct...
lflsub 38241 Property of a linear funct...
lflmul 38242 Property of a linear funct...
lfl0f 38243 The zero function is a fun...
lfl1 38244 A nonzero functional has a...
lfladdcl 38245 Closure of addition of two...
lfladdcom 38246 Commutativity of functiona...
lfladdass 38247 Associativity of functiona...
lfladd0l 38248 Functional addition with t...
lflnegcl 38249 Closure of the negative of...
lflnegl 38250 A functional plus its nega...
lflvscl 38251 Closure of a scalar produc...
lflvsdi1 38252 Distributive law for (righ...
lflvsdi2 38253 Reverse distributive law f...
lflvsdi2a 38254 Reverse distributive law f...
lflvsass 38255 Associative law for (right...
lfl0sc 38256 The (right vector space) s...
lflsc0N 38257 The scalar product with th...
lfl1sc 38258 The (right vector space) s...
lkrfval 38261 The kernel of a functional...
lkrval 38262 Value of the kernel of a f...
ellkr 38263 Membership in the kernel o...
lkrval2 38264 Value of the kernel of a f...
ellkr2 38265 Membership in the kernel o...
lkrcl 38266 A member of the kernel of ...
lkrf0 38267 The value of a functional ...
lkr0f 38268 The kernel of the zero fun...
lkrlss 38269 The kernel of a linear fun...
lkrssv 38270 The kernel of a linear fun...
lkrsc 38271 The kernel of a nonzero sc...
lkrscss 38272 The kernel of a scalar pro...
eqlkr 38273 Two functionals with the s...
eqlkr2 38274 Two functionals with the s...
eqlkr3 38275 Two functionals with the s...
lkrlsp 38276 The subspace sum of a kern...
lkrlsp2 38277 The subspace sum of a kern...
lkrlsp3 38278 The subspace sum of a kern...
lkrshp 38279 The kernel of a nonzero fu...
lkrshp3 38280 The kernels of nonzero fun...
lkrshpor 38281 The kernel of a functional...
lkrshp4 38282 A kernel is a hyperplane i...
lshpsmreu 38283 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 38284 Lemma for ~ lshpkrex . Th...
lshpkrlem2 38285 Lemma for ~ lshpkrex . Th...
lshpkrlem3 38286 Lemma for ~ lshpkrex . De...
lshpkrlem4 38287 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 38288 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 38289 Lemma for ~ lshpkrex . Sh...
lshpkrcl 38290 The set ` G ` defined by h...
lshpkr 38291 The kernel of functional `...
lshpkrex 38292 There exists a functional ...
lshpset2N 38293 The set of all hyperplanes...
islshpkrN 38294 The predicate "is a hyperp...
lfl1dim 38295 Equivalent expressions for...
lfl1dim2N 38296 Equivalent expressions for...
ldualset 38299 Define the (left) dual of ...
ldualvbase 38300 The vectors of a dual spac...
ldualelvbase 38301 Utility theorem for conver...
ldualfvadd 38302 Vector addition in the dua...
ldualvadd 38303 Vector addition in the dua...
ldualvaddcl 38304 The value of vector additi...
ldualvaddval 38305 The value of the value of ...
ldualsca 38306 The ring of scalars of the...
ldualsbase 38307 Base set of scalar ring fo...
ldualsaddN 38308 Scalar addition for the du...
ldualsmul 38309 Scalar multiplication for ...
ldualfvs 38310 Scalar product operation f...
ldualvs 38311 Scalar product operation v...
ldualvsval 38312 Value of scalar product op...
ldualvscl 38313 The scalar product operati...
ldualvaddcom 38314 Commutative law for vector...
ldualvsass 38315 Associative law for scalar...
ldualvsass2 38316 Associative law for scalar...
ldualvsdi1 38317 Distributive law for scala...
ldualvsdi2 38318 Reverse distributive law f...
ldualgrplem 38319 Lemma for ~ ldualgrp . (C...
ldualgrp 38320 The dual of a vector space...
ldual0 38321 The zero scalar of the dua...
ldual1 38322 The unit scalar of the dua...
ldualneg 38323 The negative of a scalar o...
ldual0v 38324 The zero vector of the dua...
ldual0vcl 38325 The dual zero vector is a ...
lduallmodlem 38326 Lemma for ~ lduallmod . (...
lduallmod 38327 The dual of a left module ...
lduallvec 38328 The dual of a left vector ...
ldualvsub 38329 The value of vector subtra...
ldualvsubcl 38330 Closure of vector subtract...
ldualvsubval 38331 The value of the value of ...
ldualssvscl 38332 Closure of scalar product ...
ldualssvsubcl 38333 Closure of vector subtract...
ldual0vs 38334 Scalar zero times a functi...
lkr0f2 38335 The kernel of the zero fun...
lduallkr3 38336 The kernels of nonzero fun...
lkrpssN 38337 Proper subset relation bet...
lkrin 38338 Intersection of the kernel...
eqlkr4 38339 Two functionals with the s...
ldual1dim 38340 Equivalent expressions for...
ldualkrsc 38341 The kernel of a nonzero sc...
lkrss 38342 The kernel of a scalar pro...
lkrss2N 38343 Two functionals with kerne...
lkreqN 38344 Proportional functionals h...
lkrlspeqN 38345 Condition for colinear fun...
isopos 38354 The predicate "is an ortho...
opposet 38355 Every orthoposet is a pose...
oposlem 38356 Lemma for orthoposet prope...
op01dm 38357 Conditions necessary for z...
op0cl 38358 An orthoposet has a zero e...
op1cl 38359 An orthoposet has a unity ...
op0le 38360 Orthoposet zero is less th...
ople0 38361 An element less than or eq...
opnlen0 38362 An element not less than a...
lub0N 38363 The least upper bound of t...
opltn0 38364 A lattice element greater ...
ople1 38365 Any element is less than t...
op1le 38366 If the orthoposet unity is...
glb0N 38367 The greatest lower bound o...
opoccl 38368 Closure of orthocomplement...
opococ 38369 Double negative law for or...
opcon3b 38370 Contraposition law for ort...
opcon2b 38371 Orthocomplement contraposi...
opcon1b 38372 Orthocomplement contraposi...
oplecon3 38373 Contraposition law for ort...
oplecon3b 38374 Contraposition law for ort...
oplecon1b 38375 Contraposition law for str...
opoc1 38376 Orthocomplement of orthopo...
opoc0 38377 Orthocomplement of orthopo...
opltcon3b 38378 Contraposition law for str...
opltcon1b 38379 Contraposition law for str...
opltcon2b 38380 Contraposition law for str...
opexmid 38381 Law of excluded middle for...
opnoncon 38382 Law of contradiction for o...
riotaocN 38383 The orthocomplement of the...
cmtfvalN 38384 Value of commutes relation...
cmtvalN 38385 Equivalence for commutes r...
isolat 38386 The predicate "is an ortho...
ollat 38387 An ortholattice is a latti...
olop 38388 An ortholattice is an orth...
olposN 38389 An ortholattice is a poset...
isolatiN 38390 Properties that determine ...
oldmm1 38391 De Morgan's law for meet i...
oldmm2 38392 De Morgan's law for meet i...
oldmm3N 38393 De Morgan's law for meet i...
oldmm4 38394 De Morgan's law for meet i...
oldmj1 38395 De Morgan's law for join i...
oldmj2 38396 De Morgan's law for join i...
oldmj3 38397 De Morgan's law for join i...
oldmj4 38398 De Morgan's law for join i...
olj01 38399 An ortholattice element jo...
olj02 38400 An ortholattice element jo...
olm11 38401 The meet of an ortholattic...
olm12 38402 The meet of an ortholattic...
latmassOLD 38403 Ortholattice meet is assoc...
latm12 38404 A rearrangement of lattice...
latm32 38405 A rearrangement of lattice...
latmrot 38406 Rotate lattice meet of 3 c...
latm4 38407 Rearrangement of lattice m...
latmmdiN 38408 Lattice meet distributes o...
latmmdir 38409 Lattice meet distributes o...
olm01 38410 Meet with lattice zero is ...
olm02 38411 Meet with lattice zero is ...
isoml 38412 The predicate "is an ortho...
isomliN 38413 Properties that determine ...
omlol 38414 An orthomodular lattice is...
omlop 38415 An orthomodular lattice is...
omllat 38416 An orthomodular lattice is...
omllaw 38417 The orthomodular law. (Co...
omllaw2N 38418 Variation of orthomodular ...
omllaw3 38419 Orthomodular law equivalen...
omllaw4 38420 Orthomodular law equivalen...
omllaw5N 38421 The orthomodular law. Rem...
cmtcomlemN 38422 Lemma for ~ cmtcomN . ( ~...
cmtcomN 38423 Commutation is symmetric. ...
cmt2N 38424 Commutation with orthocomp...
cmt3N 38425 Commutation with orthocomp...
cmt4N 38426 Commutation with orthocomp...
cmtbr2N 38427 Alternate definition of th...
cmtbr3N 38428 Alternate definition for t...
cmtbr4N 38429 Alternate definition for t...
lecmtN 38430 Ordered elements commute. ...
cmtidN 38431 Any element commutes with ...
omlfh1N 38432 Foulis-Holland Theorem, pa...
omlfh3N 38433 Foulis-Holland Theorem, pa...
omlmod1i2N 38434 Analogue of modular law ~ ...
omlspjN 38435 Contraction of a Sasaki pr...
cvrfval 38442 Value of covers relation "...
cvrval 38443 Binary relation expressing...
cvrlt 38444 The covers relation implie...
cvrnbtwn 38445 There is no element betwee...
ncvr1 38446 No element covers the latt...
cvrletrN 38447 Property of an element abo...
cvrval2 38448 Binary relation expressing...
cvrnbtwn2 38449 The covers relation implie...
cvrnbtwn3 38450 The covers relation implie...
cvrcon3b 38451 Contraposition law for the...
cvrle 38452 The covers relation implie...
cvrnbtwn4 38453 The covers relation implie...
cvrnle 38454 The covers relation implie...
cvrne 38455 The covers relation implie...
cvrnrefN 38456 The covers relation is not...
cvrcmp 38457 If two lattice elements th...
cvrcmp2 38458 If two lattice elements co...
pats 38459 The set of atoms in a pose...
isat 38460 The predicate "is an atom"...
isat2 38461 The predicate "is an atom"...
atcvr0 38462 An atom covers zero. ( ~ ...
atbase 38463 An atom is a member of the...
atssbase 38464 The set of atoms is a subs...
0ltat 38465 An atom is greater than ze...
leatb 38466 A poset element less than ...
leat 38467 A poset element less than ...
leat2 38468 A nonzero poset element le...
leat3 38469 A poset element less than ...
meetat 38470 The meet of any element wi...
meetat2 38471 The meet of any element wi...
isatl 38473 The predicate "is an atomi...
atllat 38474 An atomic lattice is a lat...
atlpos 38475 An atomic lattice is a pos...
atl0dm 38476 Condition necessary for ze...
atl0cl 38477 An atomic lattice has a ze...
atl0le 38478 Orthoposet zero is less th...
atlle0 38479 An element less than or eq...
atlltn0 38480 A lattice element greater ...
isat3 38481 The predicate "is an atom"...
atn0 38482 An atom is not zero. ( ~ ...
atnle0 38483 An atom is not less than o...
atlen0 38484 A lattice element is nonze...
atcmp 38485 If two atoms are comparabl...
atncmp 38486 Frequently-used variation ...
atnlt 38487 Two atoms cannot satisfy t...
atcvreq0 38488 An element covered by an a...
atncvrN 38489 Two atoms cannot satisfy t...
atlex 38490 Every nonzero element of a...
atnle 38491 Two ways of expressing "an...
atnem0 38492 The meet of distinct atoms...
atlatmstc 38493 An atomic, complete, ortho...
atlatle 38494 The ordering of two Hilber...
atlrelat1 38495 An atomistic lattice with ...
iscvlat 38497 The predicate "is an atomi...
iscvlat2N 38498 The predicate "is an atomi...
cvlatl 38499 An atomic lattice with the...
cvllat 38500 An atomic lattice with the...
cvlposN 38501 An atomic lattice with the...
cvlexch1 38502 An atomic covering lattice...
cvlexch2 38503 An atomic covering lattice...
cvlexchb1 38504 An atomic covering lattice...
cvlexchb2 38505 An atomic covering lattice...
cvlexch3 38506 An atomic covering lattice...
cvlexch4N 38507 An atomic covering lattice...
cvlatexchb1 38508 A version of ~ cvlexchb1 f...
cvlatexchb2 38509 A version of ~ cvlexchb2 f...
cvlatexch1 38510 Atom exchange property. (...
cvlatexch2 38511 Atom exchange property. (...
cvlatexch3 38512 Atom exchange property. (...
cvlcvr1 38513 The covering property. Pr...
cvlcvrp 38514 A Hilbert lattice satisfie...
cvlatcvr1 38515 An atom is covered by its ...
cvlatcvr2 38516 An atom is covered by its ...
cvlsupr2 38517 Two equivalent ways of exp...
cvlsupr3 38518 Two equivalent ways of exp...
cvlsupr4 38519 Consequence of superpositi...
cvlsupr5 38520 Consequence of superpositi...
cvlsupr6 38521 Consequence of superpositi...
cvlsupr7 38522 Consequence of superpositi...
cvlsupr8 38523 Consequence of superpositi...
ishlat1 38526 The predicate "is a Hilber...
ishlat2 38527 The predicate "is a Hilber...
ishlat3N 38528 The predicate "is a Hilber...
ishlatiN 38529 Properties that determine ...
hlomcmcv 38530 A Hilbert lattice is ortho...
hloml 38531 A Hilbert lattice is ortho...
hlclat 38532 A Hilbert lattice is compl...
hlcvl 38533 A Hilbert lattice is an at...
hlatl 38534 A Hilbert lattice is atomi...
hlol 38535 A Hilbert lattice is an or...
hlop 38536 A Hilbert lattice is an or...
hllat 38537 A Hilbert lattice is a lat...
hllatd 38538 Deduction form of ~ hllat ...
hlomcmat 38539 A Hilbert lattice is ortho...
hlpos 38540 A Hilbert lattice is a pos...
hlatjcl 38541 Closure of join operation....
hlatjcom 38542 Commutatitivity of join op...
hlatjidm 38543 Idempotence of join operat...
hlatjass 38544 Lattice join is associativ...
hlatj12 38545 Swap 1st and 2nd members o...
hlatj32 38546 Swap 2nd and 3rd members o...
hlatjrot 38547 Rotate lattice join of 3 c...
hlatj4 38548 Rearrangement of lattice j...
hlatlej1 38549 A join's first argument is...
hlatlej2 38550 A join's second argument i...
glbconN 38551 De Morgan's law for GLB an...
glbconNOLD 38552 Obsolete version of ~ glbc...
glbconxN 38553 De Morgan's law for GLB an...
atnlej1 38554 If an atom is not less tha...
atnlej2 38555 If an atom is not less tha...
hlsuprexch 38556 A Hilbert lattice has the ...
hlexch1 38557 A Hilbert lattice has the ...
hlexch2 38558 A Hilbert lattice has the ...
hlexchb1 38559 A Hilbert lattice has the ...
hlexchb2 38560 A Hilbert lattice has the ...
hlsupr 38561 A Hilbert lattice has the ...
hlsupr2 38562 A Hilbert lattice has the ...
hlhgt4 38563 A Hilbert lattice has a he...
hlhgt2 38564 A Hilbert lattice has a he...
hl0lt1N 38565 Lattice 0 is less than lat...
hlexch3 38566 A Hilbert lattice has the ...
hlexch4N 38567 A Hilbert lattice has the ...
hlatexchb1 38568 A version of ~ hlexchb1 fo...
hlatexchb2 38569 A version of ~ hlexchb2 fo...
hlatexch1 38570 Atom exchange property. (...
hlatexch2 38571 Atom exchange property. (...
hlatmstcOLDN 38572 An atomic, complete, ortho...
hlatle 38573 The ordering of two Hilber...
hlateq 38574 The equality of two Hilber...
hlrelat1 38575 An atomistic lattice with ...
hlrelat5N 38576 An atomistic lattice with ...
hlrelat 38577 A Hilbert lattice is relat...
hlrelat2 38578 A consequence of relative ...
exatleN 38579 A condition for an atom to...
hl2at 38580 A Hilbert lattice has at l...
atex 38581 At least one atom exists. ...
intnatN 38582 If the intersection with a...
2llnne2N 38583 Condition implying that tw...
2llnneN 38584 Condition implying that tw...
cvr1 38585 A Hilbert lattice has the ...
cvr2N 38586 Less-than and covers equiv...
hlrelat3 38587 The Hilbert lattice is rel...
cvrval3 38588 Binary relation expressing...
cvrval4N 38589 Binary relation expressing...
cvrval5 38590 Binary relation expressing...
cvrp 38591 A Hilbert lattice satisfie...
atcvr1 38592 An atom is covered by its ...
atcvr2 38593 An atom is covered by its ...
cvrexchlem 38594 Lemma for ~ cvrexch . ( ~...
cvrexch 38595 A Hilbert lattice satisfie...
cvratlem 38596 Lemma for ~ cvrat . ( ~ a...
cvrat 38597 A nonzero Hilbert lattice ...
ltltncvr 38598 A chained strong ordering ...
ltcvrntr 38599 Non-transitive condition f...
cvrntr 38600 The covers relation is not...
atcvr0eq 38601 The covers relation is not...
lnnat 38602 A line (the join of two di...
atcvrj0 38603 Two atoms covering the zer...
cvrat2 38604 A Hilbert lattice element ...
atcvrneN 38605 Inequality derived from at...
atcvrj1 38606 Condition for an atom to b...
atcvrj2b 38607 Condition for an atom to b...
atcvrj2 38608 Condition for an atom to b...
atleneN 38609 Inequality derived from at...
atltcvr 38610 An equivalence of less-tha...
atle 38611 Any nonzero element has an...
atlt 38612 Two atoms are unequal iff ...
atlelt 38613 Transfer less-than relatio...
2atlt 38614 Given an atom less than an...
atexchcvrN 38615 Atom exchange property. V...
atexchltN 38616 Atom exchange property. V...
cvrat3 38617 A condition implying that ...
cvrat4 38618 A condition implying exist...
cvrat42 38619 Commuted version of ~ cvra...
2atjm 38620 The meet of a line (expres...
atbtwn 38621 Property of a 3rd atom ` R...
atbtwnexOLDN 38622 There exists a 3rd atom ` ...
atbtwnex 38623 Given atoms ` P ` in ` X `...
3noncolr2 38624 Two ways to express 3 non-...
3noncolr1N 38625 Two ways to express 3 non-...
hlatcon3 38626 Atom exchange combined wit...
hlatcon2 38627 Atom exchange combined wit...
4noncolr3 38628 A way to express 4 non-col...
4noncolr2 38629 A way to express 4 non-col...
4noncolr1 38630 A way to express 4 non-col...
athgt 38631 A Hilbert lattice, whose h...
3dim0 38632 There exists a 3-dimension...
3dimlem1 38633 Lemma for ~ 3dim1 . (Cont...
3dimlem2 38634 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 38635 Lemma for ~ 3dim3 . (Cont...
3dimlem3 38636 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 38637 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 38638 Lemma for ~ 3dim3 . (Cont...
3dimlem4 38639 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 38640 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 38641 Lemma for ~ 3dim1 . (Cont...
3dim1 38642 Construct a 3-dimensional ...
3dim2 38643 Construct 2 new layers on ...
3dim3 38644 Construct a new layer on t...
2dim 38645 Generate a height-3 elemen...
1dimN 38646 An atom is covered by a he...
1cvrco 38647 The orthocomplement of an ...
1cvratex 38648 There exists an atom less ...
1cvratlt 38649 An atom less than or equal...
1cvrjat 38650 An element covered by the ...
1cvrat 38651 Create an atom under an el...
ps-1 38652 The join of two atoms ` R ...
ps-2 38653 Lattice analogue for the p...
2atjlej 38654 Two atoms are different if...
hlatexch3N 38655 Rearrange join of atoms in...
hlatexch4 38656 Exchange 2 atoms. (Contri...
ps-2b 38657 Variation of projective ge...
3atlem1 38658 Lemma for ~ 3at . (Contri...
3atlem2 38659 Lemma for ~ 3at . (Contri...
3atlem3 38660 Lemma for ~ 3at . (Contri...
3atlem4 38661 Lemma for ~ 3at . (Contri...
3atlem5 38662 Lemma for ~ 3at . (Contri...
3atlem6 38663 Lemma for ~ 3at . (Contri...
3atlem7 38664 Lemma for ~ 3at . (Contri...
3at 38665 Any three non-colinear ato...
llnset 38680 The set of lattice lines i...
islln 38681 The predicate "is a lattic...
islln4 38682 The predicate "is a lattic...
llni 38683 Condition implying a latti...
llnbase 38684 A lattice line is a lattic...
islln3 38685 The predicate "is a lattic...
islln2 38686 The predicate "is a lattic...
llni2 38687 The join of two different ...
llnnleat 38688 An atom cannot majorize a ...
llnneat 38689 A lattice line is not an a...
2atneat 38690 The join of two distinct a...
llnn0 38691 A lattice line is nonzero....
islln2a 38692 The predicate "is a lattic...
llnle 38693 Any element greater than 0...
atcvrlln2 38694 An atom under a line is co...
atcvrlln 38695 An element covering an ato...
llnexatN 38696 Given an atom on a line, t...
llncmp 38697 If two lattice lines are c...
llnnlt 38698 Two lattice lines cannot s...
2llnmat 38699 Two intersecting lines int...
2at0mat0 38700 Special case of ~ 2atmat0 ...
2atmat0 38701 The meet of two unequal li...
2atm 38702 An atom majorized by two d...
ps-2c 38703 Variation of projective ge...
lplnset 38704 The set of lattice planes ...
islpln 38705 The predicate "is a lattic...
islpln4 38706 The predicate "is a lattic...
lplni 38707 Condition implying a latti...
islpln3 38708 The predicate "is a lattic...
lplnbase 38709 A lattice plane is a latti...
islpln5 38710 The predicate "is a lattic...
islpln2 38711 The predicate "is a lattic...
lplni2 38712 The join of 3 different at...
lvolex3N 38713 There is an atom outside o...
llnmlplnN 38714 The intersection of a line...
lplnle 38715 Any element greater than 0...
lplnnle2at 38716 A lattice line (or atom) c...
lplnnleat 38717 A lattice plane cannot maj...
lplnnlelln 38718 A lattice plane is not les...
2atnelpln 38719 The join of two atoms is n...
lplnneat 38720 No lattice plane is an ato...
lplnnelln 38721 No lattice plane is a latt...
lplnn0N 38722 A lattice plane is nonzero...
islpln2a 38723 The predicate "is a lattic...
islpln2ah 38724 The predicate "is a lattic...
lplnriaN 38725 Property of a lattice plan...
lplnribN 38726 Property of a lattice plan...
lplnric 38727 Property of a lattice plan...
lplnri1 38728 Property of a lattice plan...
lplnri2N 38729 Property of a lattice plan...
lplnri3N 38730 Property of a lattice plan...
lplnllnneN 38731 Two lattice lines defined ...
llncvrlpln2 38732 A lattice line under a lat...
llncvrlpln 38733 An element covering a latt...
2lplnmN 38734 If the join of two lattice...
2llnmj 38735 The meet of two lattice li...
2atmat 38736 The meet of two intersecti...
lplncmp 38737 If two lattice planes are ...
lplnexatN 38738 Given a lattice line on a ...
lplnexllnN 38739 Given an atom on a lattice...
lplnnlt 38740 Two lattice planes cannot ...
2llnjaN 38741 The join of two different ...
2llnjN 38742 The join of two different ...
2llnm2N 38743 The meet of two different ...
2llnm3N 38744 Two lattice lines in a lat...
2llnm4 38745 Two lattice lines that maj...
2llnmeqat 38746 An atom equals the interse...
lvolset 38747 The set of 3-dim lattice v...
islvol 38748 The predicate "is a 3-dim ...
islvol4 38749 The predicate "is a 3-dim ...
lvoli 38750 Condition implying a 3-dim...
islvol3 38751 The predicate "is a 3-dim ...
lvoli3 38752 Condition implying a 3-dim...
lvolbase 38753 A 3-dim lattice volume is ...
islvol5 38754 The predicate "is a 3-dim ...
islvol2 38755 The predicate "is a 3-dim ...
lvoli2 38756 The join of 4 different at...
lvolnle3at 38757 A lattice plane (or lattic...
lvolnleat 38758 An atom cannot majorize a ...
lvolnlelln 38759 A lattice line cannot majo...
lvolnlelpln 38760 A lattice plane cannot maj...
3atnelvolN 38761 The join of 3 atoms is not...
2atnelvolN 38762 The join of two atoms is n...
lvolneatN 38763 No lattice volume is an at...
lvolnelln 38764 No lattice volume is a lat...
lvolnelpln 38765 No lattice volume is a lat...
lvoln0N 38766 A lattice volume is nonzer...
islvol2aN 38767 The predicate "is a lattic...
4atlem0a 38768 Lemma for ~ 4at . (Contri...
4atlem0ae 38769 Lemma for ~ 4at . (Contri...
4atlem0be 38770 Lemma for ~ 4at . (Contri...
4atlem3 38771 Lemma for ~ 4at . Break i...
4atlem3a 38772 Lemma for ~ 4at . Break i...
4atlem3b 38773 Lemma for ~ 4at . Break i...
4atlem4a 38774 Lemma for ~ 4at . Frequen...
4atlem4b 38775 Lemma for ~ 4at . Frequen...
4atlem4c 38776 Lemma for ~ 4at . Frequen...
4atlem4d 38777 Lemma for ~ 4at . Frequen...
4atlem9 38778 Lemma for ~ 4at . Substit...
4atlem10a 38779 Lemma for ~ 4at . Substit...
4atlem10b 38780 Lemma for ~ 4at . Substit...
4atlem10 38781 Lemma for ~ 4at . Combine...
4atlem11a 38782 Lemma for ~ 4at . Substit...
4atlem11b 38783 Lemma for ~ 4at . Substit...
4atlem11 38784 Lemma for ~ 4at . Combine...
4atlem12a 38785 Lemma for ~ 4at . Substit...
4atlem12b 38786 Lemma for ~ 4at . Substit...
4atlem12 38787 Lemma for ~ 4at . Combine...
4at 38788 Four atoms determine a lat...
4at2 38789 Four atoms determine a lat...
lplncvrlvol2 38790 A lattice line under a lat...
lplncvrlvol 38791 An element covering a latt...
lvolcmp 38792 If two lattice planes are ...
lvolnltN 38793 Two lattice volumes cannot...
2lplnja 38794 The join of two different ...
2lplnj 38795 The join of two different ...
2lplnm2N 38796 The meet of two different ...
2lplnmj 38797 The meet of two lattice pl...
dalemkehl 38798 Lemma for ~ dath . Freque...
dalemkelat 38799 Lemma for ~ dath . Freque...
dalemkeop 38800 Lemma for ~ dath . Freque...
dalempea 38801 Lemma for ~ dath . Freque...
dalemqea 38802 Lemma for ~ dath . Freque...
dalemrea 38803 Lemma for ~ dath . Freque...
dalemsea 38804 Lemma for ~ dath . Freque...
dalemtea 38805 Lemma for ~ dath . Freque...
dalemuea 38806 Lemma for ~ dath . Freque...
dalemyeo 38807 Lemma for ~ dath . Freque...
dalemzeo 38808 Lemma for ~ dath . Freque...
dalemclpjs 38809 Lemma for ~ dath . Freque...
dalemclqjt 38810 Lemma for ~ dath . Freque...
dalemclrju 38811 Lemma for ~ dath . Freque...
dalem-clpjq 38812 Lemma for ~ dath . Freque...
dalemceb 38813 Lemma for ~ dath . Freque...
dalempeb 38814 Lemma for ~ dath . Freque...
dalemqeb 38815 Lemma for ~ dath . Freque...
dalemreb 38816 Lemma for ~ dath . Freque...
dalemseb 38817 Lemma for ~ dath . Freque...
dalemteb 38818 Lemma for ~ dath . Freque...
dalemueb 38819 Lemma for ~ dath . Freque...
dalempjqeb 38820 Lemma for ~ dath . Freque...
dalemsjteb 38821 Lemma for ~ dath . Freque...
dalemtjueb 38822 Lemma for ~ dath . Freque...
dalemqrprot 38823 Lemma for ~ dath . Freque...
dalemyeb 38824 Lemma for ~ dath . Freque...
dalemcnes 38825 Lemma for ~ dath . Freque...
dalempnes 38826 Lemma for ~ dath . Freque...
dalemqnet 38827 Lemma for ~ dath . Freque...
dalempjsen 38828 Lemma for ~ dath . Freque...
dalemply 38829 Lemma for ~ dath . Freque...
dalemsly 38830 Lemma for ~ dath . Freque...
dalemswapyz 38831 Lemma for ~ dath . Swap t...
dalemrot 38832 Lemma for ~ dath . Rotate...
dalemrotyz 38833 Lemma for ~ dath . Rotate...
dalem1 38834 Lemma for ~ dath . Show t...
dalemcea 38835 Lemma for ~ dath . Freque...
dalem2 38836 Lemma for ~ dath . Show t...
dalemdea 38837 Lemma for ~ dath . Freque...
dalemeea 38838 Lemma for ~ dath . Freque...
dalem3 38839 Lemma for ~ dalemdnee . (...
dalem4 38840 Lemma for ~ dalemdnee . (...
dalemdnee 38841 Lemma for ~ dath . Axis o...
dalem5 38842 Lemma for ~ dath . Atom `...
dalem6 38843 Lemma for ~ dath . Analog...
dalem7 38844 Lemma for ~ dath . Analog...
dalem8 38845 Lemma for ~ dath . Plane ...
dalem-cly 38846 Lemma for ~ dalem9 . Cent...
dalem9 38847 Lemma for ~ dath . Since ...
dalem10 38848 Lemma for ~ dath . Atom `...
dalem11 38849 Lemma for ~ dath . Analog...
dalem12 38850 Lemma for ~ dath . Analog...
dalem13 38851 Lemma for ~ dalem14 . (Co...
dalem14 38852 Lemma for ~ dath . Planes...
dalem15 38853 Lemma for ~ dath . The ax...
dalem16 38854 Lemma for ~ dath . The at...
dalem17 38855 Lemma for ~ dath . When p...
dalem18 38856 Lemma for ~ dath . Show t...
dalem19 38857 Lemma for ~ dath . Show t...
dalemccea 38858 Lemma for ~ dath . Freque...
dalemddea 38859 Lemma for ~ dath . Freque...
dalem-ccly 38860 Lemma for ~ dath . Freque...
dalem-ddly 38861 Lemma for ~ dath . Freque...
dalemccnedd 38862 Lemma for ~ dath . Freque...
dalemclccjdd 38863 Lemma for ~ dath . Freque...
dalemcceb 38864 Lemma for ~ dath . Freque...
dalemswapyzps 38865 Lemma for ~ dath . Swap t...
dalemrotps 38866 Lemma for ~ dath . Rotate...
dalemcjden 38867 Lemma for ~ dath . Show t...
dalem20 38868 Lemma for ~ dath . Show t...
dalem21 38869 Lemma for ~ dath . Show t...
dalem22 38870 Lemma for ~ dath . Show t...
dalem23 38871 Lemma for ~ dath . Show t...
dalem24 38872 Lemma for ~ dath . Show t...
dalem25 38873 Lemma for ~ dath . Show t...
dalem27 38874 Lemma for ~ dath . Show t...
dalem28 38875 Lemma for ~ dath . Lemma ...
dalem29 38876 Lemma for ~ dath . Analog...
dalem30 38877 Lemma for ~ dath . Analog...
dalem31N 38878 Lemma for ~ dath . Analog...
dalem32 38879 Lemma for ~ dath . Analog...
dalem33 38880 Lemma for ~ dath . Analog...
dalem34 38881 Lemma for ~ dath . Analog...
dalem35 38882 Lemma for ~ dath . Analog...
dalem36 38883 Lemma for ~ dath . Analog...
dalem37 38884 Lemma for ~ dath . Analog...
dalem38 38885 Lemma for ~ dath . Plane ...
dalem39 38886 Lemma for ~ dath . Auxili...
dalem40 38887 Lemma for ~ dath . Analog...
dalem41 38888 Lemma for ~ dath . (Contr...
dalem42 38889 Lemma for ~ dath . Auxili...
dalem43 38890 Lemma for ~ dath . Planes...
dalem44 38891 Lemma for ~ dath . Dummy ...
dalem45 38892 Lemma for ~ dath . Dummy ...
dalem46 38893 Lemma for ~ dath . Analog...
dalem47 38894 Lemma for ~ dath . Analog...
dalem48 38895 Lemma for ~ dath . Analog...
dalem49 38896 Lemma for ~ dath . Analog...
dalem50 38897 Lemma for ~ dath . Analog...
dalem51 38898 Lemma for ~ dath . Constr...
dalem52 38899 Lemma for ~ dath . Lines ...
dalem53 38900 Lemma for ~ dath . The au...
dalem54 38901 Lemma for ~ dath . Line `...
dalem55 38902 Lemma for ~ dath . Lines ...
dalem56 38903 Lemma for ~ dath . Analog...
dalem57 38904 Lemma for ~ dath . Axis o...
dalem58 38905 Lemma for ~ dath . Analog...
dalem59 38906 Lemma for ~ dath . Analog...
dalem60 38907 Lemma for ~ dath . ` B ` i...
dalem61 38908 Lemma for ~ dath . Show t...
dalem62 38909 Lemma for ~ dath . Elimin...
dalem63 38910 Lemma for ~ dath . Combin...
dath 38911 Desargues's theorem of pro...
dath2 38912 Version of Desargues's the...
lineset 38913 The set of lines in a Hilb...
isline 38914 The predicate "is a line"....
islinei 38915 Condition implying "is a l...
pointsetN 38916 The set of points in a Hil...
ispointN 38917 The predicate "is a point"...
atpointN 38918 The singleton of an atom i...
psubspset 38919 The set of projective subs...
ispsubsp 38920 The predicate "is a projec...
ispsubsp2 38921 The predicate "is a projec...
psubspi 38922 Property of a projective s...
psubspi2N 38923 Property of a projective s...
0psubN 38924 The empty set is a project...
snatpsubN 38925 The singleton of an atom i...
pointpsubN 38926 A point (singleton of an a...
linepsubN 38927 A line is a projective sub...
atpsubN 38928 The set of all atoms is a ...
psubssat 38929 A projective subspace cons...
psubatN 38930 A member of a projective s...
pmapfval 38931 The projective map of a Hi...
pmapval 38932 Value of the projective ma...
elpmap 38933 Member of a projective map...
pmapssat 38934 The projective map of a Hi...
pmapssbaN 38935 A weakening of ~ pmapssat ...
pmaple 38936 The projective map of a Hi...
pmap11 38937 The projective map of a Hi...
pmapat 38938 The projective map of an a...
elpmapat 38939 Member of the projective m...
pmap0 38940 Value of the projective ma...
pmapeq0 38941 A projective map value is ...
pmap1N 38942 Value of the projective ma...
pmapsub 38943 The projective map of a Hi...
pmapglbx 38944 The projective map of the ...
pmapglb 38945 The projective map of the ...
pmapglb2N 38946 The projective map of the ...
pmapglb2xN 38947 The projective map of the ...
pmapmeet 38948 The projective map of a me...
isline2 38949 Definition of line in term...
linepmap 38950 A line described with a pr...
isline3 38951 Definition of line in term...
isline4N 38952 Definition of line in term...
lneq2at 38953 A line equals the join of ...
lnatexN 38954 There is an atom in a line...
lnjatN 38955 Given an atom in a line, t...
lncvrelatN 38956 A lattice element covered ...
lncvrat 38957 A line covers the atoms it...
lncmp 38958 If two lines are comparabl...
2lnat 38959 Two intersecting lines int...
2atm2atN 38960 Two joins with a common at...
2llnma1b 38961 Generalization of ~ 2llnma...
2llnma1 38962 Two different intersecting...
2llnma3r 38963 Two different intersecting...
2llnma2 38964 Two different intersecting...
2llnma2rN 38965 Two different intersecting...
cdlema1N 38966 A condition for required f...
cdlema2N 38967 A condition for required f...
cdlemblem 38968 Lemma for ~ cdlemb . (Con...
cdlemb 38969 Given two atoms not less t...
paddfval 38972 Projective subspace sum op...
paddval 38973 Projective subspace sum op...
elpadd 38974 Member of a projective sub...
elpaddn0 38975 Member of projective subsp...
paddvaln0N 38976 Projective subspace sum op...
elpaddri 38977 Condition implying members...
elpaddatriN 38978 Condition implying members...
elpaddat 38979 Membership in a projective...
elpaddatiN 38980 Consequence of membership ...
elpadd2at 38981 Membership in a projective...
elpadd2at2 38982 Membership in a projective...
paddunssN 38983 Projective subspace sum in...
elpadd0 38984 Member of projective subsp...
paddval0 38985 Projective subspace sum wi...
padd01 38986 Projective subspace sum wi...
padd02 38987 Projective subspace sum wi...
paddcom 38988 Projective subspace sum co...
paddssat 38989 A projective subspace sum ...
sspadd1 38990 A projective subspace sum ...
sspadd2 38991 A projective subspace sum ...
paddss1 38992 Subset law for projective ...
paddss2 38993 Subset law for projective ...
paddss12 38994 Subset law for projective ...
paddasslem1 38995 Lemma for ~ paddass . (Co...
paddasslem2 38996 Lemma for ~ paddass . (Co...
paddasslem3 38997 Lemma for ~ paddass . Res...
paddasslem4 38998 Lemma for ~ paddass . Com...
paddasslem5 38999 Lemma for ~ paddass . Sho...
paddasslem6 39000 Lemma for ~ paddass . (Co...
paddasslem7 39001 Lemma for ~ paddass . Com...
paddasslem8 39002 Lemma for ~ paddass . (Co...
paddasslem9 39003 Lemma for ~ paddass . Com...
paddasslem10 39004 Lemma for ~ paddass . Use...
paddasslem11 39005 Lemma for ~ paddass . The...
paddasslem12 39006 Lemma for ~ paddass . The...
paddasslem13 39007 Lemma for ~ paddass . The...
paddasslem14 39008 Lemma for ~ paddass . Rem...
paddasslem15 39009 Lemma for ~ paddass . Use...
paddasslem16 39010 Lemma for ~ paddass . Use...
paddasslem17 39011 Lemma for ~ paddass . The...
paddasslem18 39012 Lemma for ~ paddass . Com...
paddass 39013 Projective subspace sum is...
padd12N 39014 Commutative/associative la...
padd4N 39015 Rearrangement of 4 terms i...
paddidm 39016 Projective subspace sum is...
paddclN 39017 The projective sum of two ...
paddssw1 39018 Subset law for projective ...
paddssw2 39019 Subset law for projective ...
paddss 39020 Subset law for projective ...
pmodlem1 39021 Lemma for ~ pmod1i . (Con...
pmodlem2 39022 Lemma for ~ pmod1i . (Con...
pmod1i 39023 The modular law holds in a...
pmod2iN 39024 Dual of the modular law. ...
pmodN 39025 The modular law for projec...
pmodl42N 39026 Lemma derived from modular...
pmapjoin 39027 The projective map of the ...
pmapjat1 39028 The projective map of the ...
pmapjat2 39029 The projective map of the ...
pmapjlln1 39030 The projective map of the ...
hlmod1i 39031 A version of the modular l...
atmod1i1 39032 Version of modular law ~ p...
atmod1i1m 39033 Version of modular law ~ p...
atmod1i2 39034 Version of modular law ~ p...
llnmod1i2 39035 Version of modular law ~ p...
atmod2i1 39036 Version of modular law ~ p...
atmod2i2 39037 Version of modular law ~ p...
llnmod2i2 39038 Version of modular law ~ p...
atmod3i1 39039 Version of modular law tha...
atmod3i2 39040 Version of modular law tha...
atmod4i1 39041 Version of modular law tha...
atmod4i2 39042 Version of modular law tha...
llnexchb2lem 39043 Lemma for ~ llnexchb2 . (...
llnexchb2 39044 Line exchange property (co...
llnexch2N 39045 Line exchange property (co...
dalawlem1 39046 Lemma for ~ dalaw . Speci...
dalawlem2 39047 Lemma for ~ dalaw . Utili...
dalawlem3 39048 Lemma for ~ dalaw . First...
dalawlem4 39049 Lemma for ~ dalaw . Secon...
dalawlem5 39050 Lemma for ~ dalaw . Speci...
dalawlem6 39051 Lemma for ~ dalaw . First...
dalawlem7 39052 Lemma for ~ dalaw . Secon...
dalawlem8 39053 Lemma for ~ dalaw . Speci...
dalawlem9 39054 Lemma for ~ dalaw . Speci...
dalawlem10 39055 Lemma for ~ dalaw . Combi...
dalawlem11 39056 Lemma for ~ dalaw . First...
dalawlem12 39057 Lemma for ~ dalaw . Secon...
dalawlem13 39058 Lemma for ~ dalaw . Speci...
dalawlem14 39059 Lemma for ~ dalaw . Combi...
dalawlem15 39060 Lemma for ~ dalaw . Swap ...
dalaw 39061 Desargues's law, derived f...
pclfvalN 39064 The projective subspace cl...
pclvalN 39065 Value of the projective su...
pclclN 39066 Closure of the projective ...
elpclN 39067 Membership in the projecti...
elpcliN 39068 Implication of membership ...
pclssN 39069 Ordering is preserved by s...
pclssidN 39070 A set of atoms is included...
pclidN 39071 The projective subspace cl...
pclbtwnN 39072 A projective subspace sand...
pclunN 39073 The projective subspace cl...
pclun2N 39074 The projective subspace cl...
pclfinN 39075 The projective subspace cl...
pclcmpatN 39076 The set of projective subs...
polfvalN 39079 The projective subspace po...
polvalN 39080 Value of the projective su...
polval2N 39081 Alternate expression for v...
polsubN 39082 The polarity of a set of a...
polssatN 39083 The polarity of a set of a...
pol0N 39084 The polarity of the empty ...
pol1N 39085 The polarity of the whole ...
2pol0N 39086 The closed subspace closur...
polpmapN 39087 The polarity of a projecti...
2polpmapN 39088 Double polarity of a proje...
2polvalN 39089 Value of double polarity. ...
2polssN 39090 A set of atoms is a subset...
3polN 39091 Triple polarity cancels to...
polcon3N 39092 Contraposition law for pol...
2polcon4bN 39093 Contraposition law for pol...
polcon2N 39094 Contraposition law for pol...
polcon2bN 39095 Contraposition law for pol...
pclss2polN 39096 The projective subspace cl...
pcl0N 39097 The projective subspace cl...
pcl0bN 39098 The projective subspace cl...
pmaplubN 39099 The LUB of a projective ma...
sspmaplubN 39100 A set of atoms is a subset...
2pmaplubN 39101 Double projective map of a...
paddunN 39102 The closure of the project...
poldmj1N 39103 De Morgan's law for polari...
pmapj2N 39104 The projective map of the ...
pmapocjN 39105 The projective map of the ...
polatN 39106 The polarity of the single...
2polatN 39107 Double polarity of the sin...
pnonsingN 39108 The intersection of a set ...
psubclsetN 39111 The set of closed projecti...
ispsubclN 39112 The predicate "is a closed...
psubcliN 39113 Property of a closed proje...
psubcli2N 39114 Property of a closed proje...
psubclsubN 39115 A closed projective subspa...
psubclssatN 39116 A closed projective subspa...
pmapidclN 39117 Projective map of the LUB ...
0psubclN 39118 The empty set is a closed ...
1psubclN 39119 The set of all atoms is a ...
atpsubclN 39120 A point (singleton of an a...
pmapsubclN 39121 A projective map value is ...
ispsubcl2N 39122 Alternate predicate for "i...
psubclinN 39123 The intersection of two cl...
paddatclN 39124 The projective sum of a cl...
pclfinclN 39125 The projective subspace cl...
linepsubclN 39126 A line is a closed project...
polsubclN 39127 A polarity is a closed pro...
poml4N 39128 Orthomodular law for proje...
poml5N 39129 Orthomodular law for proje...
poml6N 39130 Orthomodular law for proje...
osumcllem1N 39131 Lemma for ~ osumclN . (Co...
osumcllem2N 39132 Lemma for ~ osumclN . (Co...
osumcllem3N 39133 Lemma for ~ osumclN . (Co...
osumcllem4N 39134 Lemma for ~ osumclN . (Co...
osumcllem5N 39135 Lemma for ~ osumclN . (Co...
osumcllem6N 39136 Lemma for ~ osumclN . Use...
osumcllem7N 39137 Lemma for ~ osumclN . (Co...
osumcllem8N 39138 Lemma for ~ osumclN . (Co...
osumcllem9N 39139 Lemma for ~ osumclN . (Co...
osumcllem10N 39140 Lemma for ~ osumclN . Con...
osumcllem11N 39141 Lemma for ~ osumclN . (Co...
osumclN 39142 Closure of orthogonal sum....
pmapojoinN 39143 For orthogonal elements, p...
pexmidN 39144 Excluded middle law for cl...
pexmidlem1N 39145 Lemma for ~ pexmidN . Hol...
pexmidlem2N 39146 Lemma for ~ pexmidN . (Co...
pexmidlem3N 39147 Lemma for ~ pexmidN . Use...
pexmidlem4N 39148 Lemma for ~ pexmidN . (Co...
pexmidlem5N 39149 Lemma for ~ pexmidN . (Co...
pexmidlem6N 39150 Lemma for ~ pexmidN . (Co...
pexmidlem7N 39151 Lemma for ~ pexmidN . Con...
pexmidlem8N 39152 Lemma for ~ pexmidN . The...
pexmidALTN 39153 Excluded middle law for cl...
pl42lem1N 39154 Lemma for ~ pl42N . (Cont...
pl42lem2N 39155 Lemma for ~ pl42N . (Cont...
pl42lem3N 39156 Lemma for ~ pl42N . (Cont...
pl42lem4N 39157 Lemma for ~ pl42N . (Cont...
pl42N 39158 Law holding in a Hilbert l...
watfvalN 39167 The W atoms function. (Co...
watvalN 39168 Value of the W atoms funct...
iswatN 39169 The predicate "is a W atom...
lhpset 39170 The set of co-atoms (latti...
islhp 39171 The predicate "is a co-ato...
islhp2 39172 The predicate "is a co-ato...
lhpbase 39173 A co-atom is a member of t...
lhp1cvr 39174 The lattice unity covers a...
lhplt 39175 An atom under a co-atom is...
lhp2lt 39176 The join of two atoms unde...
lhpexlt 39177 There exists an atom less ...
lhp0lt 39178 A co-atom is greater than ...
lhpn0 39179 A co-atom is nonzero. TOD...
lhpexle 39180 There exists an atom under...
lhpexnle 39181 There exists an atom not u...
lhpexle1lem 39182 Lemma for ~ lhpexle1 and o...
lhpexle1 39183 There exists an atom under...
lhpexle2lem 39184 Lemma for ~ lhpexle2 . (C...
lhpexle2 39185 There exists atom under a ...
lhpexle3lem 39186 There exists atom under a ...
lhpexle3 39187 There exists atom under a ...
lhpex2leN 39188 There exist at least two d...
lhpoc 39189 The orthocomplement of a c...
lhpoc2N 39190 The orthocomplement of an ...
lhpocnle 39191 The orthocomplement of a c...
lhpocat 39192 The orthocomplement of a c...
lhpocnel 39193 The orthocomplement of a c...
lhpocnel2 39194 The orthocomplement of a c...
lhpjat1 39195 The join of a co-atom (hyp...
lhpjat2 39196 The join of a co-atom (hyp...
lhpj1 39197 The join of a co-atom (hyp...
lhpmcvr 39198 The meet of a lattice hype...
lhpmcvr2 39199 Alternate way to express t...
lhpmcvr3 39200 Specialization of ~ lhpmcv...
lhpmcvr4N 39201 Specialization of ~ lhpmcv...
lhpmcvr5N 39202 Specialization of ~ lhpmcv...
lhpmcvr6N 39203 Specialization of ~ lhpmcv...
lhpm0atN 39204 If the meet of a lattice h...
lhpmat 39205 An element covered by the ...
lhpmatb 39206 An element covered by the ...
lhp2at0 39207 Join and meet with differe...
lhp2atnle 39208 Inequality for 2 different...
lhp2atne 39209 Inequality for joins with ...
lhp2at0nle 39210 Inequality for 2 different...
lhp2at0ne 39211 Inequality for joins with ...
lhpelim 39212 Eliminate an atom not unde...
lhpmod2i2 39213 Modular law for hyperplane...
lhpmod6i1 39214 Modular law for hyperplane...
lhprelat3N 39215 The Hilbert lattice is rel...
cdlemb2 39216 Given two atoms not under ...
lhple 39217 Property of a lattice elem...
lhpat 39218 Create an atom under a co-...
lhpat4N 39219 Property of an atom under ...
lhpat2 39220 Create an atom under a co-...
lhpat3 39221 There is only one atom und...
4atexlemk 39222 Lemma for ~ 4atexlem7 . (...
4atexlemw 39223 Lemma for ~ 4atexlem7 . (...
4atexlempw 39224 Lemma for ~ 4atexlem7 . (...
4atexlemp 39225 Lemma for ~ 4atexlem7 . (...
4atexlemq 39226 Lemma for ~ 4atexlem7 . (...
4atexlems 39227 Lemma for ~ 4atexlem7 . (...
4atexlemt 39228 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 39229 Lemma for ~ 4atexlem7 . (...
4atexlempnq 39230 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 39231 Lemma for ~ 4atexlem7 . (...
4atexlemkl 39232 Lemma for ~ 4atexlem7 . (...
4atexlemkc 39233 Lemma for ~ 4atexlem7 . (...
4atexlemwb 39234 Lemma for ~ 4atexlem7 . (...
4atexlempsb 39235 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 39236 Lemma for ~ 4atexlem7 . (...
4atexlempns 39237 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 39238 Lemma for ~ 4atexlem7 . S...
4atexlemu 39239 Lemma for ~ 4atexlem7 . (...
4atexlemv 39240 Lemma for ~ 4atexlem7 . (...
4atexlemunv 39241 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 39242 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 39243 Lemma for ~ 4atexlem7 . (...
4atexlemc 39244 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 39245 Lemma for ~ 4atexlem7 . (...
4atexlemex2 39246 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 39247 Lemma for ~ 4atexlem7 . (...
4atexlemex4 39248 Lemma for ~ 4atexlem7 . S...
4atexlemex6 39249 Lemma for ~ 4atexlem7 . (...
4atexlem7 39250 Whenever there are at leas...
4atex 39251 Whenever there are at leas...
4atex2 39252 More general version of ~ ...
4atex2-0aOLDN 39253 Same as ~ 4atex2 except th...
4atex2-0bOLDN 39254 Same as ~ 4atex2 except th...
4atex2-0cOLDN 39255 Same as ~ 4atex2 except th...
4atex3 39256 More general version of ~ ...
lautset 39257 The set of lattice automor...
islaut 39258 The predicate "is a lattic...
lautle 39259 Less-than or equal propert...
laut1o 39260 A lattice automorphism is ...
laut11 39261 One-to-one property of a l...
lautcl 39262 A lattice automorphism val...
lautcnvclN 39263 Reverse closure of a latti...
lautcnvle 39264 Less-than or equal propert...
lautcnv 39265 The converse of a lattice ...
lautlt 39266 Less-than property of a la...
lautcvr 39267 Covering property of a lat...
lautj 39268 Meet property of a lattice...
lautm 39269 Meet property of a lattice...
lauteq 39270 A lattice automorphism arg...
idlaut 39271 The identity function is a...
lautco 39272 The composition of two lat...
pautsetN 39273 The set of projective auto...
ispautN 39274 The predicate "is a projec...
ldilfset 39283 The mapping from fiducial ...
ldilset 39284 The set of lattice dilatio...
isldil 39285 The predicate "is a lattic...
ldillaut 39286 A lattice dilation is an a...
ldil1o 39287 A lattice dilation is a on...
ldilval 39288 Value of a lattice dilatio...
idldil 39289 The identity function is a...
ldilcnv 39290 The converse of a lattice ...
ldilco 39291 The composition of two lat...
ltrnfset 39292 The set of all lattice tra...
ltrnset 39293 The set of lattice transla...
isltrn 39294 The predicate "is a lattic...
isltrn2N 39295 The predicate "is a lattic...
ltrnu 39296 Uniqueness property of a l...
ltrnldil 39297 A lattice translation is a...
ltrnlaut 39298 A lattice translation is a...
ltrn1o 39299 A lattice translation is a...
ltrncl 39300 Closure of a lattice trans...
ltrn11 39301 One-to-one property of a l...
ltrncnvnid 39302 If a translation is differ...
ltrncoidN 39303 Two translations are equal...
ltrnle 39304 Less-than or equal propert...
ltrncnvleN 39305 Less-than or equal propert...
ltrnm 39306 Lattice translation of a m...
ltrnj 39307 Lattice translation of a m...
ltrncvr 39308 Covering property of a lat...
ltrnval1 39309 Value of a lattice transla...
ltrnid 39310 A lattice translation is t...
ltrnnid 39311 If a lattice translation i...
ltrnatb 39312 The lattice translation of...
ltrncnvatb 39313 The converse of the lattic...
ltrnel 39314 The lattice translation of...
ltrnat 39315 The lattice translation of...
ltrncnvat 39316 The converse of the lattic...
ltrncnvel 39317 The converse of the lattic...
ltrncoelN 39318 Composition of lattice tra...
ltrncoat 39319 Composition of lattice tra...
ltrncoval 39320 Two ways to express value ...
ltrncnv 39321 The converse of a lattice ...
ltrn11at 39322 Frequently used one-to-one...
ltrneq2 39323 The equality of two transl...
ltrneq 39324 The equality of two transl...
idltrn 39325 The identity function is a...
ltrnmw 39326 Property of lattice transl...
dilfsetN 39327 The mapping from fiducial ...
dilsetN 39328 The set of dilations for a...
isdilN 39329 The predicate "is a dilati...
trnfsetN 39330 The mapping from fiducial ...
trnsetN 39331 The set of translations fo...
istrnN 39332 The predicate "is a transl...
trlfset 39335 The set of all traces of l...
trlset 39336 The set of traces of latti...
trlval 39337 The value of the trace of ...
trlval2 39338 The value of the trace of ...
trlcl 39339 Closure of the trace of a ...
trlcnv 39340 The trace of the converse ...
trljat1 39341 The value of a translation...
trljat2 39342 The value of a translation...
trljat3 39343 The value of a translation...
trlat 39344 If an atom differs from it...
trl0 39345 If an atom not under the f...
trlator0 39346 The trace of a lattice tra...
trlatn0 39347 The trace of a lattice tra...
trlnidat 39348 The trace of a lattice tra...
ltrnnidn 39349 If a lattice translation i...
ltrnideq 39350 Property of the identity l...
trlid0 39351 The trace of the identity ...
trlnidatb 39352 A lattice translation is n...
trlid0b 39353 A lattice translation is t...
trlnid 39354 Different translations wit...
ltrn2ateq 39355 Property of the equality o...
ltrnateq 39356 If any atom (under ` W ` )...
ltrnatneq 39357 If any atom (under ` W ` )...
ltrnatlw 39358 If the value of an atom eq...
trlle 39359 The trace of a lattice tra...
trlne 39360 The trace of a lattice tra...
trlnle 39361 The atom not under the fid...
trlval3 39362 The value of the trace of ...
trlval4 39363 The value of the trace of ...
trlval5 39364 The value of the trace of ...
arglem1N 39365 Lemma for Desargues's law....
cdlemc1 39366 Part of proof of Lemma C i...
cdlemc2 39367 Part of proof of Lemma C i...
cdlemc3 39368 Part of proof of Lemma C i...
cdlemc4 39369 Part of proof of Lemma C i...
cdlemc5 39370 Lemma for ~ cdlemc . (Con...
cdlemc6 39371 Lemma for ~ cdlemc . (Con...
cdlemc 39372 Lemma C in [Crawley] p. 11...
cdlemd1 39373 Part of proof of Lemma D i...
cdlemd2 39374 Part of proof of Lemma D i...
cdlemd3 39375 Part of proof of Lemma D i...
cdlemd4 39376 Part of proof of Lemma D i...
cdlemd5 39377 Part of proof of Lemma D i...
cdlemd6 39378 Part of proof of Lemma D i...
cdlemd7 39379 Part of proof of Lemma D i...
cdlemd8 39380 Part of proof of Lemma D i...
cdlemd9 39381 Part of proof of Lemma D i...
cdlemd 39382 If two translations agree ...
ltrneq3 39383 Two translations agree at ...
cdleme00a 39384 Part of proof of Lemma E i...
cdleme0aa 39385 Part of proof of Lemma E i...
cdleme0a 39386 Part of proof of Lemma E i...
cdleme0b 39387 Part of proof of Lemma E i...
cdleme0c 39388 Part of proof of Lemma E i...
cdleme0cp 39389 Part of proof of Lemma E i...
cdleme0cq 39390 Part of proof of Lemma E i...
cdleme0dN 39391 Part of proof of Lemma E i...
cdleme0e 39392 Part of proof of Lemma E i...
cdleme0fN 39393 Part of proof of Lemma E i...
cdleme0gN 39394 Part of proof of Lemma E i...
cdlemeulpq 39395 Part of proof of Lemma E i...
cdleme01N 39396 Part of proof of Lemma E i...
cdleme02N 39397 Part of proof of Lemma E i...
cdleme0ex1N 39398 Part of proof of Lemma E i...
cdleme0ex2N 39399 Part of proof of Lemma E i...
cdleme0moN 39400 Part of proof of Lemma E i...
cdleme1b 39401 Part of proof of Lemma E i...
cdleme1 39402 Part of proof of Lemma E i...
cdleme2 39403 Part of proof of Lemma E i...
cdleme3b 39404 Part of proof of Lemma E i...
cdleme3c 39405 Part of proof of Lemma E i...
cdleme3d 39406 Part of proof of Lemma E i...
cdleme3e 39407 Part of proof of Lemma E i...
cdleme3fN 39408 Part of proof of Lemma E i...
cdleme3g 39409 Part of proof of Lemma E i...
cdleme3h 39410 Part of proof of Lemma E i...
cdleme3fa 39411 Part of proof of Lemma E i...
cdleme3 39412 Part of proof of Lemma E i...
cdleme4 39413 Part of proof of Lemma E i...
cdleme4a 39414 Part of proof of Lemma E i...
cdleme5 39415 Part of proof of Lemma E i...
cdleme6 39416 Part of proof of Lemma E i...
cdleme7aa 39417 Part of proof of Lemma E i...
cdleme7a 39418 Part of proof of Lemma E i...
cdleme7b 39419 Part of proof of Lemma E i...
cdleme7c 39420 Part of proof of Lemma E i...
cdleme7d 39421 Part of proof of Lemma E i...
cdleme7e 39422 Part of proof of Lemma E i...
cdleme7ga 39423 Part of proof of Lemma E i...
cdleme7 39424 Part of proof of Lemma E i...
cdleme8 39425 Part of proof of Lemma E i...
cdleme9a 39426 Part of proof of Lemma E i...
cdleme9b 39427 Utility lemma for Lemma E ...
cdleme9 39428 Part of proof of Lemma E i...
cdleme10 39429 Part of proof of Lemma E i...
cdleme8tN 39430 Part of proof of Lemma E i...
cdleme9taN 39431 Part of proof of Lemma E i...
cdleme9tN 39432 Part of proof of Lemma E i...
cdleme10tN 39433 Part of proof of Lemma E i...
cdleme16aN 39434 Part of proof of Lemma E i...
cdleme11a 39435 Part of proof of Lemma E i...
cdleme11c 39436 Part of proof of Lemma E i...
cdleme11dN 39437 Part of proof of Lemma E i...
cdleme11e 39438 Part of proof of Lemma E i...
cdleme11fN 39439 Part of proof of Lemma E i...
cdleme11g 39440 Part of proof of Lemma E i...
cdleme11h 39441 Part of proof of Lemma E i...
cdleme11j 39442 Part of proof of Lemma E i...
cdleme11k 39443 Part of proof of Lemma E i...
cdleme11l 39444 Part of proof of Lemma E i...
cdleme11 39445 Part of proof of Lemma E i...
cdleme12 39446 Part of proof of Lemma E i...
cdleme13 39447 Part of proof of Lemma E i...
cdleme14 39448 Part of proof of Lemma E i...
cdleme15a 39449 Part of proof of Lemma E i...
cdleme15b 39450 Part of proof of Lemma E i...
cdleme15c 39451 Part of proof of Lemma E i...
cdleme15d 39452 Part of proof of Lemma E i...
cdleme15 39453 Part of proof of Lemma E i...
cdleme16b 39454 Part of proof of Lemma E i...
cdleme16c 39455 Part of proof of Lemma E i...
cdleme16d 39456 Part of proof of Lemma E i...
cdleme16e 39457 Part of proof of Lemma E i...
cdleme16f 39458 Part of proof of Lemma E i...
cdleme16g 39459 Part of proof of Lemma E i...
cdleme16 39460 Part of proof of Lemma E i...
cdleme17a 39461 Part of proof of Lemma E i...
cdleme17b 39462 Lemma leading to ~ cdleme1...
cdleme17c 39463 Part of proof of Lemma E i...
cdleme17d1 39464 Part of proof of Lemma E i...
cdleme0nex 39465 Part of proof of Lemma E i...
cdleme18a 39466 Part of proof of Lemma E i...
cdleme18b 39467 Part of proof of Lemma E i...
cdleme18c 39468 Part of proof of Lemma E i...
cdleme22gb 39469 Utility lemma for Lemma E ...
cdleme18d 39470 Part of proof of Lemma E i...
cdlemesner 39471 Part of proof of Lemma E i...
cdlemedb 39472 Part of proof of Lemma E i...
cdlemeda 39473 Part of proof of Lemma E i...
cdlemednpq 39474 Part of proof of Lemma E i...
cdlemednuN 39475 Part of proof of Lemma E i...
cdleme20zN 39476 Part of proof of Lemma E i...
cdleme20y 39477 Part of proof of Lemma E i...
cdleme19a 39478 Part of proof of Lemma E i...
cdleme19b 39479 Part of proof of Lemma E i...
cdleme19c 39480 Part of proof of Lemma E i...
cdleme19d 39481 Part of proof of Lemma E i...
cdleme19e 39482 Part of proof of Lemma E i...
cdleme19f 39483 Part of proof of Lemma E i...
cdleme20aN 39484 Part of proof of Lemma E i...
cdleme20bN 39485 Part of proof of Lemma E i...
cdleme20c 39486 Part of proof of Lemma E i...
cdleme20d 39487 Part of proof of Lemma E i...
cdleme20e 39488 Part of proof of Lemma E i...
cdleme20f 39489 Part of proof of Lemma E i...
cdleme20g 39490 Part of proof of Lemma E i...
cdleme20h 39491 Part of proof of Lemma E i...
cdleme20i 39492 Part of proof of Lemma E i...
cdleme20j 39493 Part of proof of Lemma E i...
cdleme20k 39494 Part of proof of Lemma E i...
cdleme20l1 39495 Part of proof of Lemma E i...
cdleme20l2 39496 Part of proof of Lemma E i...
cdleme20l 39497 Part of proof of Lemma E i...
cdleme20m 39498 Part of proof of Lemma E i...
cdleme20 39499 Combine ~ cdleme19f and ~ ...
cdleme21a 39500 Part of proof of Lemma E i...
cdleme21b 39501 Part of proof of Lemma E i...
cdleme21c 39502 Part of proof of Lemma E i...
cdleme21at 39503 Part of proof of Lemma E i...
cdleme21ct 39504 Part of proof of Lemma E i...
cdleme21d 39505 Part of proof of Lemma E i...
cdleme21e 39506 Part of proof of Lemma E i...
cdleme21f 39507 Part of proof of Lemma E i...
cdleme21g 39508 Part of proof of Lemma E i...
cdleme21h 39509 Part of proof of Lemma E i...
cdleme21i 39510 Part of proof of Lemma E i...
cdleme21j 39511 Combine ~ cdleme20 and ~ c...
cdleme21 39512 Part of proof of Lemma E i...
cdleme21k 39513 Eliminate ` S =/= T ` cond...
cdleme22aa 39514 Part of proof of Lemma E i...
cdleme22a 39515 Part of proof of Lemma E i...
cdleme22b 39516 Part of proof of Lemma E i...
cdleme22cN 39517 Part of proof of Lemma E i...
cdleme22d 39518 Part of proof of Lemma E i...
cdleme22e 39519 Part of proof of Lemma E i...
cdleme22eALTN 39520 Part of proof of Lemma E i...
cdleme22f 39521 Part of proof of Lemma E i...
cdleme22f2 39522 Part of proof of Lemma E i...
cdleme22g 39523 Part of proof of Lemma E i...
cdleme23a 39524 Part of proof of Lemma E i...
cdleme23b 39525 Part of proof of Lemma E i...
cdleme23c 39526 Part of proof of Lemma E i...
cdleme24 39527 Quantified version of ~ cd...
cdleme25a 39528 Lemma for ~ cdleme25b . (...
cdleme25b 39529 Transform ~ cdleme24 . TO...
cdleme25c 39530 Transform ~ cdleme25b . (...
cdleme25dN 39531 Transform ~ cdleme25c . (...
cdleme25cl 39532 Show closure of the unique...
cdleme25cv 39533 Change bound variables in ...
cdleme26e 39534 Part of proof of Lemma E i...
cdleme26ee 39535 Part of proof of Lemma E i...
cdleme26eALTN 39536 Part of proof of Lemma E i...
cdleme26fALTN 39537 Part of proof of Lemma E i...
cdleme26f 39538 Part of proof of Lemma E i...
cdleme26f2ALTN 39539 Part of proof of Lemma E i...
cdleme26f2 39540 Part of proof of Lemma E i...
cdleme27cl 39541 Part of proof of Lemma E i...
cdleme27a 39542 Part of proof of Lemma E i...
cdleme27b 39543 Lemma for ~ cdleme27N . (...
cdleme27N 39544 Part of proof of Lemma E i...
cdleme28a 39545 Lemma for ~ cdleme25b . T...
cdleme28b 39546 Lemma for ~ cdleme25b . T...
cdleme28c 39547 Part of proof of Lemma E i...
cdleme28 39548 Quantified version of ~ cd...
cdleme29ex 39549 Lemma for ~ cdleme29b . (...
cdleme29b 39550 Transform ~ cdleme28 . (C...
cdleme29c 39551 Transform ~ cdleme28b . (...
cdleme29cl 39552 Show closure of the unique...
cdleme30a 39553 Part of proof of Lemma E i...
cdleme31so 39554 Part of proof of Lemma E i...
cdleme31sn 39555 Part of proof of Lemma E i...
cdleme31sn1 39556 Part of proof of Lemma E i...
cdleme31se 39557 Part of proof of Lemma D i...
cdleme31se2 39558 Part of proof of Lemma D i...
cdleme31sc 39559 Part of proof of Lemma E i...
cdleme31sde 39560 Part of proof of Lemma D i...
cdleme31snd 39561 Part of proof of Lemma D i...
cdleme31sdnN 39562 Part of proof of Lemma E i...
cdleme31sn1c 39563 Part of proof of Lemma E i...
cdleme31sn2 39564 Part of proof of Lemma E i...
cdleme31fv 39565 Part of proof of Lemma E i...
cdleme31fv1 39566 Part of proof of Lemma E i...
cdleme31fv1s 39567 Part of proof of Lemma E i...
cdleme31fv2 39568 Part of proof of Lemma E i...
cdleme31id 39569 Part of proof of Lemma E i...
cdlemefrs29pre00 39570 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 39571 TODO fix comment. (Contri...
cdlemefrs29bpre1 39572 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 39573 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 39574 TODO: NOT USED? Show clo...
cdlemefrs32fva 39575 Part of proof of Lemma E i...
cdlemefrs32fva1 39576 Part of proof of Lemma E i...
cdlemefr29exN 39577 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 39578 Part of proof of Lemma E i...
cdlemefr32sn2aw 39579 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 39580 Show closure of ` [_ R / s...
cdlemefr29bpre0N 39581 TODO fix comment. (Contri...
cdlemefr29clN 39582 Show closure of the unique...
cdleme43frv1snN 39583 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 39584 Part of proof of Lemma E i...
cdlemefr32fva1 39585 Part of proof of Lemma E i...
cdlemefr31fv1 39586 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 39587 FIX COMMENT. TODO: see if ...
cdlemefs27cl 39588 Part of proof of Lemma E i...
cdlemefs32sn1aw 39589 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 39590 Show closure of ` [_ R / s...
cdlemefs29bpre0N 39591 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 39592 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 39593 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 39594 Show closure of the unique...
cdleme43fsv1snlem 39595 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 39596 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 39597 Part of proof of Lemma E i...
cdlemefs32fva1 39598 Part of proof of Lemma E i...
cdlemefs31fv1 39599 Value of ` ( F `` R ) ` wh...
cdlemefr44 39600 Value of f(r) when r is an...
cdlemefs44 39601 Value of f_s(r) when r is ...
cdlemefr45 39602 Value of f(r) when r is an...
cdlemefr45e 39603 Explicit expansion of ~ cd...
cdlemefs45 39604 Value of f_s(r) when r is ...
cdlemefs45ee 39605 Explicit expansion of ~ cd...
cdlemefs45eN 39606 Explicit expansion of ~ cd...
cdleme32sn1awN 39607 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 39608 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 39609 Show that ` [_ R / s ]_ N ...
cdleme32snaw 39610 Show that ` [_ R / s ]_ N ...
cdleme32snb 39611 Show closure of ` [_ R / s...
cdleme32fva 39612 Part of proof of Lemma D i...
cdleme32fva1 39613 Part of proof of Lemma D i...
cdleme32fvaw 39614 Show that ` ( F `` R ) ` i...
cdleme32fvcl 39615 Part of proof of Lemma D i...
cdleme32a 39616 Part of proof of Lemma D i...
cdleme32b 39617 Part of proof of Lemma D i...
cdleme32c 39618 Part of proof of Lemma D i...
cdleme32d 39619 Part of proof of Lemma D i...
cdleme32e 39620 Part of proof of Lemma D i...
cdleme32f 39621 Part of proof of Lemma D i...
cdleme32le 39622 Part of proof of Lemma D i...
cdleme35a 39623 Part of proof of Lemma E i...
cdleme35fnpq 39624 Part of proof of Lemma E i...
cdleme35b 39625 Part of proof of Lemma E i...
cdleme35c 39626 Part of proof of Lemma E i...
cdleme35d 39627 Part of proof of Lemma E i...
cdleme35e 39628 Part of proof of Lemma E i...
cdleme35f 39629 Part of proof of Lemma E i...
cdleme35g 39630 Part of proof of Lemma E i...
cdleme35h 39631 Part of proof of Lemma E i...
cdleme35h2 39632 Part of proof of Lemma E i...
cdleme35sn2aw 39633 Part of proof of Lemma E i...
cdleme35sn3a 39634 Part of proof of Lemma E i...
cdleme36a 39635 Part of proof of Lemma E i...
cdleme36m 39636 Part of proof of Lemma E i...
cdleme37m 39637 Part of proof of Lemma E i...
cdleme38m 39638 Part of proof of Lemma E i...
cdleme38n 39639 Part of proof of Lemma E i...
cdleme39a 39640 Part of proof of Lemma E i...
cdleme39n 39641 Part of proof of Lemma E i...
cdleme40m 39642 Part of proof of Lemma E i...
cdleme40n 39643 Part of proof of Lemma E i...
cdleme40v 39644 Part of proof of Lemma E i...
cdleme40w 39645 Part of proof of Lemma E i...
cdleme42a 39646 Part of proof of Lemma E i...
cdleme42c 39647 Part of proof of Lemma E i...
cdleme42d 39648 Part of proof of Lemma E i...
cdleme41sn3aw 39649 Part of proof of Lemma E i...
cdleme41sn4aw 39650 Part of proof of Lemma E i...
cdleme41snaw 39651 Part of proof of Lemma E i...
cdleme41fva11 39652 Part of proof of Lemma E i...
cdleme42b 39653 Part of proof of Lemma E i...
cdleme42e 39654 Part of proof of Lemma E i...
cdleme42f 39655 Part of proof of Lemma E i...
cdleme42g 39656 Part of proof of Lemma E i...
cdleme42h 39657 Part of proof of Lemma E i...
cdleme42i 39658 Part of proof of Lemma E i...
cdleme42k 39659 Part of proof of Lemma E i...
cdleme42ke 39660 Part of proof of Lemma E i...
cdleme42keg 39661 Part of proof of Lemma E i...
cdleme42mN 39662 Part of proof of Lemma E i...
cdleme42mgN 39663 Part of proof of Lemma E i...
cdleme43aN 39664 Part of proof of Lemma E i...
cdleme43bN 39665 Lemma for Lemma E in [Craw...
cdleme43cN 39666 Part of proof of Lemma E i...
cdleme43dN 39667 Part of proof of Lemma E i...
cdleme46f2g2 39668 Conversion for ` G ` to re...
cdleme46f2g1 39669 Conversion for ` G ` to re...
cdleme17d2 39670 Part of proof of Lemma E i...
cdleme17d3 39671 TODO: FIX COMMENT. (Contr...
cdleme17d4 39672 TODO: FIX COMMENT. (Contr...
cdleme17d 39673 Part of proof of Lemma E i...
cdleme48fv 39674 Part of proof of Lemma D i...
cdleme48fvg 39675 Remove ` P =/= Q ` conditi...
cdleme46fvaw 39676 Show that ` ( F `` R ) ` i...
cdleme48bw 39677 TODO: fix comment. TODO: ...
cdleme48b 39678 TODO: fix comment. (Contr...
cdleme46frvlpq 39679 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 39680 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 39681 TODO: fix comment. (Contr...
cdleme4gfv 39682 Part of proof of Lemma D i...
cdlemeg47b 39683 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 39684 Value of g_s(r) when r is ...
cdlemeg47rv2 39685 Value of g_s(r) when r is ...
cdlemeg49le 39686 Part of proof of Lemma D i...
cdlemeg46bOLDN 39687 TODO FIX COMMENT. (Contrib...
cdlemeg46c 39688 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 39689 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 39690 Value of g_s(r) when r is ...
cdlemeg46fvaw 39691 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 39692 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 39693 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 39694 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 39695 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 39696 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 39697 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 39698 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 39699 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 39700 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 39701 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 39702 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 39703 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 39704 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 39705 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 39706 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 39707 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 39708 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 39709 TODO FIX COMMENT p. 116 pe...
cdleme48d 39710 TODO: fix comment. (Contr...
cdleme48gfv1 39711 TODO: fix comment. (Contr...
cdleme48gfv 39712 TODO: fix comment. (Contr...
cdleme48fgv 39713 TODO: fix comment. (Contr...
cdlemeg49lebilem 39714 Part of proof of Lemma D i...
cdleme50lebi 39715 Part of proof of Lemma D i...
cdleme50eq 39716 Part of proof of Lemma D i...
cdleme50f 39717 Part of proof of Lemma D i...
cdleme50f1 39718 Part of proof of Lemma D i...
cdleme50rnlem 39719 Part of proof of Lemma D i...
cdleme50rn 39720 Part of proof of Lemma D i...
cdleme50f1o 39721 Part of proof of Lemma D i...
cdleme50laut 39722 Part of proof of Lemma D i...
cdleme50ldil 39723 Part of proof of Lemma D i...
cdleme50trn1 39724 Part of proof that ` F ` i...
cdleme50trn2a 39725 Part of proof that ` F ` i...
cdleme50trn2 39726 Part of proof that ` F ` i...
cdleme50trn12 39727 Part of proof that ` F ` i...
cdleme50trn3 39728 Part of proof that ` F ` i...
cdleme50trn123 39729 Part of proof that ` F ` i...
cdleme51finvfvN 39730 Part of proof of Lemma E i...
cdleme51finvN 39731 Part of proof of Lemma E i...
cdleme50ltrn 39732 Part of proof of Lemma E i...
cdleme51finvtrN 39733 Part of proof of Lemma E i...
cdleme50ex 39734 Part of Lemma E in [Crawle...
cdleme 39735 Lemma E in [Crawley] p. 11...
cdlemf1 39736 Part of Lemma F in [Crawle...
cdlemf2 39737 Part of Lemma F in [Crawle...
cdlemf 39738 Lemma F in [Crawley] p. 11...
cdlemfnid 39739 ~ cdlemf with additional c...
cdlemftr3 39740 Special case of ~ cdlemf s...
cdlemftr2 39741 Special case of ~ cdlemf s...
cdlemftr1 39742 Part of proof of Lemma G o...
cdlemftr0 39743 Special case of ~ cdlemf s...
trlord 39744 The ordering of two Hilber...
cdlemg1a 39745 Shorter expression for ` G...
cdlemg1b2 39746 This theorem can be used t...
cdlemg1idlemN 39747 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 39748 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 39749 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 39750 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 39751 This theorem can be used t...
cdlemg1idN 39752 Version of ~ cdleme31id wi...
ltrniotafvawN 39753 Version of ~ cdleme46fvaw ...
ltrniotacl 39754 Version of ~ cdleme50ltrn ...
ltrniotacnvN 39755 Version of ~ cdleme51finvt...
ltrniotaval 39756 Value of the unique transl...
ltrniotacnvval 39757 Converse value of the uniq...
ltrniotaidvalN 39758 Value of the unique transl...
ltrniotavalbN 39759 Value of the unique transl...
cdlemeiota 39760 A translation is uniquely ...
cdlemg1ci2 39761 Any function of the form o...
cdlemg1cN 39762 Any translation belongs to...
cdlemg1cex 39763 Any translation is one of ...
cdlemg2cN 39764 Any translation belongs to...
cdlemg2dN 39765 This theorem can be used t...
cdlemg2cex 39766 Any translation is one of ...
cdlemg2ce 39767 Utility theorem to elimina...
cdlemg2jlemOLDN 39768 Part of proof of Lemma E i...
cdlemg2fvlem 39769 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 39770 ~ cdleme42keg with simpler...
cdlemg2idN 39771 Version of ~ cdleme31id wi...
cdlemg3a 39772 Part of proof of Lemma G i...
cdlemg2jOLDN 39773 TODO: Replace this with ~...
cdlemg2fv 39774 Value of a translation in ...
cdlemg2fv2 39775 Value of a translation in ...
cdlemg2k 39776 ~ cdleme42keg with simpler...
cdlemg2kq 39777 ~ cdlemg2k with ` P ` and ...
cdlemg2l 39778 TODO: FIX COMMENT. (Contr...
cdlemg2m 39779 TODO: FIX COMMENT. (Contr...
cdlemg5 39780 TODO: Is there a simpler ...
cdlemb3 39781 Given two atoms not under ...
cdlemg7fvbwN 39782 Properties of a translatio...
cdlemg4a 39783 TODO: FIX COMMENT If fg(p...
cdlemg4b1 39784 TODO: FIX COMMENT. (Contr...
cdlemg4b2 39785 TODO: FIX COMMENT. (Contr...
cdlemg4b12 39786 TODO: FIX COMMENT. (Contr...
cdlemg4c 39787 TODO: FIX COMMENT. (Contr...
cdlemg4d 39788 TODO: FIX COMMENT. (Contr...
cdlemg4e 39789 TODO: FIX COMMENT. (Contr...
cdlemg4f 39790 TODO: FIX COMMENT. (Contr...
cdlemg4g 39791 TODO: FIX COMMENT. (Contr...
cdlemg4 39792 TODO: FIX COMMENT. (Contr...
cdlemg6a 39793 TODO: FIX COMMENT. TODO: ...
cdlemg6b 39794 TODO: FIX COMMENT. TODO: ...
cdlemg6c 39795 TODO: FIX COMMENT. (Contr...
cdlemg6d 39796 TODO: FIX COMMENT. (Contr...
cdlemg6e 39797 TODO: FIX COMMENT. (Contr...
cdlemg6 39798 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 39799 Value of a translation com...
cdlemg7aN 39800 TODO: FIX COMMENT. (Contr...
cdlemg7N 39801 TODO: FIX COMMENT. (Contr...
cdlemg8a 39802 TODO: FIX COMMENT. (Contr...
cdlemg8b 39803 TODO: FIX COMMENT. (Contr...
cdlemg8c 39804 TODO: FIX COMMENT. (Contr...
cdlemg8d 39805 TODO: FIX COMMENT. (Contr...
cdlemg8 39806 TODO: FIX COMMENT. (Contr...
cdlemg9a 39807 TODO: FIX COMMENT. (Contr...
cdlemg9b 39808 The triples ` <. P , ( F `...
cdlemg9 39809 The triples ` <. P , ( F `...
cdlemg10b 39810 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 39811 TODO: FIX COMMENT. TODO: ...
cdlemg11a 39812 TODO: FIX COMMENT. (Contr...
cdlemg11aq 39813 TODO: FIX COMMENT. TODO: ...
cdlemg10c 39814 TODO: FIX COMMENT. TODO: ...
cdlemg10a 39815 TODO: FIX COMMENT. (Contr...
cdlemg10 39816 TODO: FIX COMMENT. (Contr...
cdlemg11b 39817 TODO: FIX COMMENT. (Contr...
cdlemg12a 39818 TODO: FIX COMMENT. (Contr...
cdlemg12b 39819 The triples ` <. P , ( F `...
cdlemg12c 39820 The triples ` <. P , ( F `...
cdlemg12d 39821 TODO: FIX COMMENT. (Contr...
cdlemg12e 39822 TODO: FIX COMMENT. (Contr...
cdlemg12f 39823 TODO: FIX COMMENT. (Contr...
cdlemg12g 39824 TODO: FIX COMMENT. TODO: ...
cdlemg12 39825 TODO: FIX COMMENT. (Contr...
cdlemg13a 39826 TODO: FIX COMMENT. (Contr...
cdlemg13 39827 TODO: FIX COMMENT. (Contr...
cdlemg14f 39828 TODO: FIX COMMENT. (Contr...
cdlemg14g 39829 TODO: FIX COMMENT. (Contr...
cdlemg15a 39830 Eliminate the ` ( F `` P )...
cdlemg15 39831 Eliminate the ` ( (...
cdlemg16 39832 Part of proof of Lemma G o...
cdlemg16ALTN 39833 This version of ~ cdlemg16...
cdlemg16z 39834 Eliminate ` ( ( F `...
cdlemg16zz 39835 Eliminate ` P =/= Q ` from...
cdlemg17a 39836 TODO: FIX COMMENT. (Contr...
cdlemg17b 39837 Part of proof of Lemma G i...
cdlemg17dN 39838 TODO: fix comment. (Contr...
cdlemg17dALTN 39839 Same as ~ cdlemg17dN with ...
cdlemg17e 39840 TODO: fix comment. (Contr...
cdlemg17f 39841 TODO: fix comment. (Contr...
cdlemg17g 39842 TODO: fix comment. (Contr...
cdlemg17h 39843 TODO: fix comment. (Contr...
cdlemg17i 39844 TODO: fix comment. (Contr...
cdlemg17ir 39845 TODO: fix comment. (Contr...
cdlemg17j 39846 TODO: fix comment. (Contr...
cdlemg17pq 39847 Utility theorem for swappi...
cdlemg17bq 39848 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 39849 ~ cdlemg17i with ` P ` and...
cdlemg17irq 39850 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 39851 ~ cdlemg17j with ` P ` and...
cdlemg17 39852 Part of Lemma G of [Crawle...
cdlemg18a 39853 Show two lines are differe...
cdlemg18b 39854 Lemma for ~ cdlemg18c . T...
cdlemg18c 39855 Show two lines intersect a...
cdlemg18d 39856 Show two lines intersect a...
cdlemg18 39857 Show two lines intersect a...
cdlemg19a 39858 Show two lines intersect a...
cdlemg19 39859 Show two lines intersect a...
cdlemg20 39860 Show two lines intersect a...
cdlemg21 39861 Version of cdlemg19 with `...
cdlemg22 39862 ~ cdlemg21 with ` ( F `` P...
cdlemg24 39863 Combine ~ cdlemg16z and ~ ...
cdlemg37 39864 Use ~ cdlemg8 to eliminate...
cdlemg25zz 39865 ~ cdlemg16zz restated for ...
cdlemg26zz 39866 ~ cdlemg16zz restated for ...
cdlemg27a 39867 For use with case when ` (...
cdlemg28a 39868 Part of proof of Lemma G o...
cdlemg31b0N 39869 TODO: Fix comment. (Cont...
cdlemg31b0a 39870 TODO: Fix comment. (Cont...
cdlemg27b 39871 TODO: Fix comment. (Cont...
cdlemg31a 39872 TODO: fix comment. (Contr...
cdlemg31b 39873 TODO: fix comment. (Contr...
cdlemg31c 39874 Show that when ` N ` is an...
cdlemg31d 39875 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 39876 TODO: Fix comment. (Cont...
cdlemg33c0 39877 TODO: Fix comment. (Cont...
cdlemg28b 39878 Part of proof of Lemma G o...
cdlemg28 39879 Part of proof of Lemma G o...
cdlemg29 39880 Eliminate ` ( F `` P ) =/=...
cdlemg33a 39881 TODO: Fix comment. (Cont...
cdlemg33b 39882 TODO: Fix comment. (Cont...
cdlemg33c 39883 TODO: Fix comment. (Cont...
cdlemg33d 39884 TODO: Fix comment. (Cont...
cdlemg33e 39885 TODO: Fix comment. (Cont...
cdlemg33 39886 Combine ~ cdlemg33b , ~ cd...
cdlemg34 39887 Use cdlemg33 to eliminate ...
cdlemg35 39888 TODO: Fix comment. TODO:...
cdlemg36 39889 Use cdlemg35 to eliminate ...
cdlemg38 39890 Use ~ cdlemg37 to eliminat...
cdlemg39 39891 Eliminate ` =/= ` conditio...
cdlemg40 39892 Eliminate ` P =/= Q ` cond...
cdlemg41 39893 Convert ~ cdlemg40 to func...
ltrnco 39894 The composition of two tra...
trlcocnv 39895 Swap the arguments of the ...
trlcoabs 39896 Absorption into a composit...
trlcoabs2N 39897 Absorption of the trace of...
trlcoat 39898 The trace of a composition...
trlcocnvat 39899 Commonly used special case...
trlconid 39900 The composition of two dif...
trlcolem 39901 Lemma for ~ trlco . (Cont...
trlco 39902 The trace of a composition...
trlcone 39903 If two translations have d...
cdlemg42 39904 Part of proof of Lemma G o...
cdlemg43 39905 Part of proof of Lemma G o...
cdlemg44a 39906 Part of proof of Lemma G o...
cdlemg44b 39907 Eliminate ` ( F `` P ) =/=...
cdlemg44 39908 Part of proof of Lemma G o...
cdlemg47a 39909 TODO: fix comment. TODO: ...
cdlemg46 39910 Part of proof of Lemma G o...
cdlemg47 39911 Part of proof of Lemma G o...
cdlemg48 39912 Eliminate ` h ` from ~ cdl...
ltrncom 39913 Composition is commutative...
ltrnco4 39914 Rearrange a composition of...
trljco 39915 Trace joined with trace of...
trljco2 39916 Trace joined with trace of...
tgrpfset 39919 The translation group maps...
tgrpset 39920 The translation group for ...
tgrpbase 39921 The base set of the transl...
tgrpopr 39922 The group operation of the...
tgrpov 39923 The group operation value ...
tgrpgrplem 39924 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 39925 The translation group is a...
tgrpabl 39926 The translation group is a...
tendofset 39933 The set of all trace-prese...
tendoset 39934 The set of trace-preservin...
istendo 39935 The predicate "is a trace-...
tendotp 39936 Trace-preserving property ...
istendod 39937 Deduce the predicate "is a...
tendof 39938 Functionality of a trace-p...
tendoeq1 39939 Condition determining equa...
tendovalco 39940 Value of composition of tr...
tendocoval 39941 Value of composition of en...
tendocl 39942 Closure of a trace-preserv...
tendoco2 39943 Distribution of compositio...
tendoidcl 39944 The identity is a trace-pr...
tendo1mul 39945 Multiplicative identity mu...
tendo1mulr 39946 Multiplicative identity mu...
tendococl 39947 The composition of two tra...
tendoid 39948 The identity value of a tr...
tendoeq2 39949 Condition determining equa...
tendoplcbv 39950 Define sum operation for t...
tendopl 39951 Value of endomorphism sum ...
tendopl2 39952 Value of result of endomor...
tendoplcl2 39953 Value of result of endomor...
tendoplco2 39954 Value of result of endomor...
tendopltp 39955 Trace-preserving property ...
tendoplcl 39956 Endomorphism sum is a trac...
tendoplcom 39957 The endomorphism sum opera...
tendoplass 39958 The endomorphism sum opera...
tendodi1 39959 Endomorphism composition d...
tendodi2 39960 Endomorphism composition d...
tendo0cbv 39961 Define additive identity f...
tendo02 39962 Value of additive identity...
tendo0co2 39963 The additive identity trac...
tendo0tp 39964 Trace-preserving property ...
tendo0cl 39965 The additive identity is a...
tendo0pl 39966 Property of the additive i...
tendo0plr 39967 Property of the additive i...
tendoicbv 39968 Define inverse function fo...
tendoi 39969 Value of inverse endomorph...
tendoi2 39970 Value of additive inverse ...
tendoicl 39971 Closure of the additive in...
tendoipl 39972 Property of the additive i...
tendoipl2 39973 Property of the additive i...
erngfset 39974 The division rings on trac...
erngset 39975 The division ring on trace...
erngbase 39976 The base set of the divisi...
erngfplus 39977 Ring addition operation. ...
erngplus 39978 Ring addition operation. ...
erngplus2 39979 Ring addition operation. ...
erngfmul 39980 Ring multiplication operat...
erngmul 39981 Ring addition operation. ...
erngfset-rN 39982 The division rings on trac...
erngset-rN 39983 The division ring on trace...
erngbase-rN 39984 The base set of the divisi...
erngfplus-rN 39985 Ring addition operation. ...
erngplus-rN 39986 Ring addition operation. ...
erngplus2-rN 39987 Ring addition operation. ...
erngfmul-rN 39988 Ring multiplication operat...
erngmul-rN 39989 Ring addition operation. ...
cdlemh1 39990 Part of proof of Lemma H o...
cdlemh2 39991 Part of proof of Lemma H o...
cdlemh 39992 Lemma H of [Crawley] p. 11...
cdlemi1 39993 Part of proof of Lemma I o...
cdlemi2 39994 Part of proof of Lemma I o...
cdlemi 39995 Lemma I of [Crawley] p. 11...
cdlemj1 39996 Part of proof of Lemma J o...
cdlemj2 39997 Part of proof of Lemma J o...
cdlemj3 39998 Part of proof of Lemma J o...
tendocan 39999 Cancellation law: if the v...
tendoid0 40000 A trace-preserving endomor...
tendo0mul 40001 Additive identity multipli...
tendo0mulr 40002 Additive identity multipli...
tendo1ne0 40003 The identity (unity) is no...
tendoconid 40004 The composition (product) ...
tendotr 40005 The trace of the value of ...
cdlemk1 40006 Part of proof of Lemma K o...
cdlemk2 40007 Part of proof of Lemma K o...
cdlemk3 40008 Part of proof of Lemma K o...
cdlemk4 40009 Part of proof of Lemma K o...
cdlemk5a 40010 Part of proof of Lemma K o...
cdlemk5 40011 Part of proof of Lemma K o...
cdlemk6 40012 Part of proof of Lemma K o...
cdlemk8 40013 Part of proof of Lemma K o...
cdlemk9 40014 Part of proof of Lemma K o...
cdlemk9bN 40015 Part of proof of Lemma K o...
cdlemki 40016 Part of proof of Lemma K o...
cdlemkvcl 40017 Part of proof of Lemma K o...
cdlemk10 40018 Part of proof of Lemma K o...
cdlemksv 40019 Part of proof of Lemma K o...
cdlemksel 40020 Part of proof of Lemma K o...
cdlemksat 40021 Part of proof of Lemma K o...
cdlemksv2 40022 Part of proof of Lemma K o...
cdlemk7 40023 Part of proof of Lemma K o...
cdlemk11 40024 Part of proof of Lemma K o...
cdlemk12 40025 Part of proof of Lemma K o...
cdlemkoatnle 40026 Utility lemma. (Contribut...
cdlemk13 40027 Part of proof of Lemma K o...
cdlemkole 40028 Utility lemma. (Contribut...
cdlemk14 40029 Part of proof of Lemma K o...
cdlemk15 40030 Part of proof of Lemma K o...
cdlemk16a 40031 Part of proof of Lemma K o...
cdlemk16 40032 Part of proof of Lemma K o...
cdlemk17 40033 Part of proof of Lemma K o...
cdlemk1u 40034 Part of proof of Lemma K o...
cdlemk5auN 40035 Part of proof of Lemma K o...
cdlemk5u 40036 Part of proof of Lemma K o...
cdlemk6u 40037 Part of proof of Lemma K o...
cdlemkj 40038 Part of proof of Lemma K o...
cdlemkuvN 40039 Part of proof of Lemma K o...
cdlemkuel 40040 Part of proof of Lemma K o...
cdlemkuat 40041 Part of proof of Lemma K o...
cdlemkuv2 40042 Part of proof of Lemma K o...
cdlemk18 40043 Part of proof of Lemma K o...
cdlemk19 40044 Part of proof of Lemma K o...
cdlemk7u 40045 Part of proof of Lemma K o...
cdlemk11u 40046 Part of proof of Lemma K o...
cdlemk12u 40047 Part of proof of Lemma K o...
cdlemk21N 40048 Part of proof of Lemma K o...
cdlemk20 40049 Part of proof of Lemma K o...
cdlemkoatnle-2N 40050 Utility lemma. (Contribut...
cdlemk13-2N 40051 Part of proof of Lemma K o...
cdlemkole-2N 40052 Utility lemma. (Contribut...
cdlemk14-2N 40053 Part of proof of Lemma K o...
cdlemk15-2N 40054 Part of proof of Lemma K o...
cdlemk16-2N 40055 Part of proof of Lemma K o...
cdlemk17-2N 40056 Part of proof of Lemma K o...
cdlemkj-2N 40057 Part of proof of Lemma K o...
cdlemkuv-2N 40058 Part of proof of Lemma K o...
cdlemkuel-2N 40059 Part of proof of Lemma K o...
cdlemkuv2-2 40060 Part of proof of Lemma K o...
cdlemk18-2N 40061 Part of proof of Lemma K o...
cdlemk19-2N 40062 Part of proof of Lemma K o...
cdlemk7u-2N 40063 Part of proof of Lemma K o...
cdlemk11u-2N 40064 Part of proof of Lemma K o...
cdlemk12u-2N 40065 Part of proof of Lemma K o...
cdlemk21-2N 40066 Part of proof of Lemma K o...
cdlemk20-2N 40067 Part of proof of Lemma K o...
cdlemk22 40068 Part of proof of Lemma K o...
cdlemk30 40069 Part of proof of Lemma K o...
cdlemkuu 40070 Convert between function a...
cdlemk31 40071 Part of proof of Lemma K o...
cdlemk32 40072 Part of proof of Lemma K o...
cdlemkuel-3 40073 Part of proof of Lemma K o...
cdlemkuv2-3N 40074 Part of proof of Lemma K o...
cdlemk18-3N 40075 Part of proof of Lemma K o...
cdlemk22-3 40076 Part of proof of Lemma K o...
cdlemk23-3 40077 Part of proof of Lemma K o...
cdlemk24-3 40078 Part of proof of Lemma K o...
cdlemk25-3 40079 Part of proof of Lemma K o...
cdlemk26b-3 40080 Part of proof of Lemma K o...
cdlemk26-3 40081 Part of proof of Lemma K o...
cdlemk27-3 40082 Part of proof of Lemma K o...
cdlemk28-3 40083 Part of proof of Lemma K o...
cdlemk33N 40084 Part of proof of Lemma K o...
cdlemk34 40085 Part of proof of Lemma K o...
cdlemk29-3 40086 Part of proof of Lemma K o...
cdlemk35 40087 Part of proof of Lemma K o...
cdlemk36 40088 Part of proof of Lemma K o...
cdlemk37 40089 Part of proof of Lemma K o...
cdlemk38 40090 Part of proof of Lemma K o...
cdlemk39 40091 Part of proof of Lemma K o...
cdlemk40 40092 TODO: fix comment. (Contr...
cdlemk40t 40093 TODO: fix comment. (Contr...
cdlemk40f 40094 TODO: fix comment. (Contr...
cdlemk41 40095 Part of proof of Lemma K o...
cdlemkfid1N 40096 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 40097 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 40098 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 40099 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 40100 TODO: is this useful or sh...
cdlemky 40101 Part of proof of Lemma K o...
cdlemkyu 40102 Convert between function a...
cdlemkyuu 40103 ~ cdlemkyu with some hypot...
cdlemk11ta 40104 Part of proof of Lemma K o...
cdlemk19ylem 40105 Lemma for ~ cdlemk19y . (...
cdlemk11tb 40106 Part of proof of Lemma K o...
cdlemk19y 40107 ~ cdlemk19 with simpler hy...
cdlemkid3N 40108 Lemma for ~ cdlemkid . (C...
cdlemkid4 40109 Lemma for ~ cdlemkid . (C...
cdlemkid5 40110 Lemma for ~ cdlemkid . (C...
cdlemkid 40111 The value of the tau funct...
cdlemk35s 40112 Substitution version of ~ ...
cdlemk35s-id 40113 Substitution version of ~ ...
cdlemk39s 40114 Substitution version of ~ ...
cdlemk39s-id 40115 Substitution version of ~ ...
cdlemk42 40116 Part of proof of Lemma K o...
cdlemk19xlem 40117 Lemma for ~ cdlemk19x . (...
cdlemk19x 40118 ~ cdlemk19 with simpler hy...
cdlemk42yN 40119 Part of proof of Lemma K o...
cdlemk11tc 40120 Part of proof of Lemma K o...
cdlemk11t 40121 Part of proof of Lemma K o...
cdlemk45 40122 Part of proof of Lemma K o...
cdlemk46 40123 Part of proof of Lemma K o...
cdlemk47 40124 Part of proof of Lemma K o...
cdlemk48 40125 Part of proof of Lemma K o...
cdlemk49 40126 Part of proof of Lemma K o...
cdlemk50 40127 Part of proof of Lemma K o...
cdlemk51 40128 Part of proof of Lemma K o...
cdlemk52 40129 Part of proof of Lemma K o...
cdlemk53a 40130 Lemma for ~ cdlemk53 . (C...
cdlemk53b 40131 Lemma for ~ cdlemk53 . (C...
cdlemk53 40132 Part of proof of Lemma K o...
cdlemk54 40133 Part of proof of Lemma K o...
cdlemk55a 40134 Lemma for ~ cdlemk55 . (C...
cdlemk55b 40135 Lemma for ~ cdlemk55 . (C...
cdlemk55 40136 Part of proof of Lemma K o...
cdlemkyyN 40137 Part of proof of Lemma K o...
cdlemk43N 40138 Part of proof of Lemma K o...
cdlemk35u 40139 Substitution version of ~ ...
cdlemk55u1 40140 Lemma for ~ cdlemk55u . (...
cdlemk55u 40141 Part of proof of Lemma K o...
cdlemk39u1 40142 Lemma for ~ cdlemk39u . (...
cdlemk39u 40143 Part of proof of Lemma K o...
cdlemk19u1 40144 ~ cdlemk19 with simpler hy...
cdlemk19u 40145 Part of Lemma K of [Crawle...
cdlemk56 40146 Part of Lemma K of [Crawle...
cdlemk19w 40147 Use a fixed element to eli...
cdlemk56w 40148 Use a fixed element to eli...
cdlemk 40149 Lemma K of [Crawley] p. 11...
tendoex 40150 Generalization of Lemma K ...
cdleml1N 40151 Part of proof of Lemma L o...
cdleml2N 40152 Part of proof of Lemma L o...
cdleml3N 40153 Part of proof of Lemma L o...
cdleml4N 40154 Part of proof of Lemma L o...
cdleml5N 40155 Part of proof of Lemma L o...
cdleml6 40156 Part of proof of Lemma L o...
cdleml7 40157 Part of proof of Lemma L o...
cdleml8 40158 Part of proof of Lemma L o...
cdleml9 40159 Part of proof of Lemma L o...
dva1dim 40160 Two expressions for the 1-...
dvhb1dimN 40161 Two expressions for the 1-...
erng1lem 40162 Value of the endomorphism ...
erngdvlem1 40163 Lemma for ~ eringring . (...
erngdvlem2N 40164 Lemma for ~ eringring . (...
erngdvlem3 40165 Lemma for ~ eringring . (...
erngdvlem4 40166 Lemma for ~ erngdv . (Con...
eringring 40167 An endomorphism ring is a ...
erngdv 40168 An endomorphism ring is a ...
erng0g 40169 The division ring zero of ...
erng1r 40170 The division ring unity of...
erngdvlem1-rN 40171 Lemma for ~ eringring . (...
erngdvlem2-rN 40172 Lemma for ~ eringring . (...
erngdvlem3-rN 40173 Lemma for ~ eringring . (...
erngdvlem4-rN 40174 Lemma for ~ erngdv . (Con...
erngring-rN 40175 An endomorphism ring is a ...
erngdv-rN 40176 An endomorphism ring is a ...
dvafset 40179 The constructed partial ve...
dvaset 40180 The constructed partial ve...
dvasca 40181 The ring base set of the c...
dvabase 40182 The ring base set of the c...
dvafplusg 40183 Ring addition operation fo...
dvaplusg 40184 Ring addition operation fo...
dvaplusgv 40185 Ring addition operation fo...
dvafmulr 40186 Ring multiplication operat...
dvamulr 40187 Ring multiplication operat...
dvavbase 40188 The vectors (vector base s...
dvafvadd 40189 The vector sum operation f...
dvavadd 40190 Ring addition operation fo...
dvafvsca 40191 Ring addition operation fo...
dvavsca 40192 Ring addition operation fo...
tendospcl 40193 Closure of endomorphism sc...
tendospass 40194 Associative law for endomo...
tendospdi1 40195 Forward distributive law f...
tendocnv 40196 Converse of a trace-preser...
tendospdi2 40197 Reverse distributive law f...
tendospcanN 40198 Cancellation law for trace...
dvaabl 40199 The constructed partial ve...
dvalveclem 40200 Lemma for ~ dvalvec . (Co...
dvalvec 40201 The constructed partial ve...
dva0g 40202 The zero vector of partial...
diaffval 40205 The partial isomorphism A ...
diafval 40206 The partial isomorphism A ...
diaval 40207 The partial isomorphism A ...
diaelval 40208 Member of the partial isom...
diafn 40209 Functionality and domain o...
diadm 40210 Domain of the partial isom...
diaeldm 40211 Member of domain of the pa...
diadmclN 40212 A member of domain of the ...
diadmleN 40213 A member of domain of the ...
dian0 40214 The value of the partial i...
dia0eldmN 40215 The lattice zero belongs t...
dia1eldmN 40216 The fiducial hyperplane (t...
diass 40217 The value of the partial i...
diael 40218 A member of the value of t...
diatrl 40219 Trace of a member of the p...
diaelrnN 40220 Any value of the partial i...
dialss 40221 The value of partial isomo...
diaord 40222 The partial isomorphism A ...
dia11N 40223 The partial isomorphism A ...
diaf11N 40224 The partial isomorphism A ...
diaclN 40225 Closure of partial isomorp...
diacnvclN 40226 Closure of partial isomorp...
dia0 40227 The value of the partial i...
dia1N 40228 The value of the partial i...
dia1elN 40229 The largest subspace in th...
diaglbN 40230 Partial isomorphism A of a...
diameetN 40231 Partial isomorphism A of a...
diainN 40232 Inverse partial isomorphis...
diaintclN 40233 The intersection of partia...
diasslssN 40234 The partial isomorphism A ...
diassdvaN 40235 The partial isomorphism A ...
dia1dim 40236 Two expressions for the 1-...
dia1dim2 40237 Two expressions for a 1-di...
dia1dimid 40238 A vector (translation) bel...
dia2dimlem1 40239 Lemma for ~ dia2dim . Sho...
dia2dimlem2 40240 Lemma for ~ dia2dim . Def...
dia2dimlem3 40241 Lemma for ~ dia2dim . Def...
dia2dimlem4 40242 Lemma for ~ dia2dim . Sho...
dia2dimlem5 40243 Lemma for ~ dia2dim . The...
dia2dimlem6 40244 Lemma for ~ dia2dim . Eli...
dia2dimlem7 40245 Lemma for ~ dia2dim . Eli...
dia2dimlem8 40246 Lemma for ~ dia2dim . Eli...
dia2dimlem9 40247 Lemma for ~ dia2dim . Eli...
dia2dimlem10 40248 Lemma for ~ dia2dim . Con...
dia2dimlem11 40249 Lemma for ~ dia2dim . Con...
dia2dimlem12 40250 Lemma for ~ dia2dim . Obt...
dia2dimlem13 40251 Lemma for ~ dia2dim . Eli...
dia2dim 40252 A two-dimensional subspace...
dvhfset 40255 The constructed full vecto...
dvhset 40256 The constructed full vecto...
dvhsca 40257 The ring of scalars of the...
dvhbase 40258 The ring base set of the c...
dvhfplusr 40259 Ring addition operation fo...
dvhfmulr 40260 Ring multiplication operat...
dvhmulr 40261 Ring multiplication operat...
dvhvbase 40262 The vectors (vector base s...
dvhelvbasei 40263 Vector membership in the c...
dvhvaddcbv 40264 Change bound variables to ...
dvhvaddval 40265 The vector sum operation f...
dvhfvadd 40266 The vector sum operation f...
dvhvadd 40267 The vector sum operation f...
dvhopvadd 40268 The vector sum operation f...
dvhopvadd2 40269 The vector sum operation f...
dvhvaddcl 40270 Closure of the vector sum ...
dvhvaddcomN 40271 Commutativity of vector su...
dvhvaddass 40272 Associativity of vector su...
dvhvscacbv 40273 Change bound variables to ...
dvhvscaval 40274 The scalar product operati...
dvhfvsca 40275 Scalar product operation f...
dvhvsca 40276 Scalar product operation f...
dvhopvsca 40277 Scalar product operation f...
dvhvscacl 40278 Closure of the scalar prod...
tendoinvcl 40279 Closure of multiplicative ...
tendolinv 40280 Left multiplicative invers...
tendorinv 40281 Right multiplicative inver...
dvhgrp 40282 The full vector space ` U ...
dvhlveclem 40283 Lemma for ~ dvhlvec . TOD...
dvhlvec 40284 The full vector space ` U ...
dvhlmod 40285 The full vector space ` U ...
dvh0g 40286 The zero vector of vector ...
dvheveccl 40287 Properties of a unit vecto...
dvhopclN 40288 Closure of a ` DVecH ` vec...
dvhopaddN 40289 Sum of ` DVecH ` vectors e...
dvhopspN 40290 Scalar product of ` DVecH ...
dvhopN 40291 Decompose a ` DVecH ` vect...
dvhopellsm 40292 Ordered pair membership in...
cdlemm10N 40293 The image of the map ` G `...
docaffvalN 40296 Subspace orthocomplement f...
docafvalN 40297 Subspace orthocomplement f...
docavalN 40298 Subspace orthocomplement f...
docaclN 40299 Closure of subspace orthoc...
diaocN 40300 Value of partial isomorphi...
doca2N 40301 Double orthocomplement of ...
doca3N 40302 Double orthocomplement of ...
dvadiaN 40303 Any closed subspace is a m...
diarnN 40304 Partial isomorphism A maps...
diaf1oN 40305 The partial isomorphism A ...
djaffvalN 40308 Subspace join for ` DVecA ...
djafvalN 40309 Subspace join for ` DVecA ...
djavalN 40310 Subspace join for ` DVecA ...
djaclN 40311 Closure of subspace join f...
djajN 40312 Transfer lattice join to `...
dibffval 40315 The partial isomorphism B ...
dibfval 40316 The partial isomorphism B ...
dibval 40317 The partial isomorphism B ...
dibopelvalN 40318 Member of the partial isom...
dibval2 40319 Value of the partial isomo...
dibopelval2 40320 Member of the partial isom...
dibval3N 40321 Value of the partial isomo...
dibelval3 40322 Member of the partial isom...
dibopelval3 40323 Member of the partial isom...
dibelval1st 40324 Membership in value of the...
dibelval1st1 40325 Membership in value of the...
dibelval1st2N 40326 Membership in value of the...
dibelval2nd 40327 Membership in value of the...
dibn0 40328 The value of the partial i...
dibfna 40329 Functionality and domain o...
dibdiadm 40330 Domain of the partial isom...
dibfnN 40331 Functionality and domain o...
dibdmN 40332 Domain of the partial isom...
dibeldmN 40333 Member of domain of the pa...
dibord 40334 The isomorphism B for a la...
dib11N 40335 The isomorphism B for a la...
dibf11N 40336 The partial isomorphism A ...
dibclN 40337 Closure of partial isomorp...
dibvalrel 40338 The value of partial isomo...
dib0 40339 The value of partial isomo...
dib1dim 40340 Two expressions for the 1-...
dibglbN 40341 Partial isomorphism B of a...
dibintclN 40342 The intersection of partia...
dib1dim2 40343 Two expressions for a 1-di...
dibss 40344 The partial isomorphism B ...
diblss 40345 The value of partial isomo...
diblsmopel 40346 Membership in subspace sum...
dicffval 40349 The partial isomorphism C ...
dicfval 40350 The partial isomorphism C ...
dicval 40351 The partial isomorphism C ...
dicopelval 40352 Membership in value of the...
dicelvalN 40353 Membership in value of the...
dicval2 40354 The partial isomorphism C ...
dicelval3 40355 Member of the partial isom...
dicopelval2 40356 Membership in value of the...
dicelval2N 40357 Membership in value of the...
dicfnN 40358 Functionality and domain o...
dicdmN 40359 Domain of the partial isom...
dicvalrelN 40360 The value of partial isomo...
dicssdvh 40361 The partial isomorphism C ...
dicelval1sta 40362 Membership in value of the...
dicelval1stN 40363 Membership in value of the...
dicelval2nd 40364 Membership in value of the...
dicvaddcl 40365 Membership in value of the...
dicvscacl 40366 Membership in value of the...
dicn0 40367 The value of the partial i...
diclss 40368 The value of partial isomo...
diclspsn 40369 The value of isomorphism C...
cdlemn2 40370 Part of proof of Lemma N o...
cdlemn2a 40371 Part of proof of Lemma N o...
cdlemn3 40372 Part of proof of Lemma N o...
cdlemn4 40373 Part of proof of Lemma N o...
cdlemn4a 40374 Part of proof of Lemma N o...
cdlemn5pre 40375 Part of proof of Lemma N o...
cdlemn5 40376 Part of proof of Lemma N o...
cdlemn6 40377 Part of proof of Lemma N o...
cdlemn7 40378 Part of proof of Lemma N o...
cdlemn8 40379 Part of proof of Lemma N o...
cdlemn9 40380 Part of proof of Lemma N o...
cdlemn10 40381 Part of proof of Lemma N o...
cdlemn11a 40382 Part of proof of Lemma N o...
cdlemn11b 40383 Part of proof of Lemma N o...
cdlemn11c 40384 Part of proof of Lemma N o...
cdlemn11pre 40385 Part of proof of Lemma N o...
cdlemn11 40386 Part of proof of Lemma N o...
cdlemn 40387 Lemma N of [Crawley] p. 12...
dihordlem6 40388 Part of proof of Lemma N o...
dihordlem7 40389 Part of proof of Lemma N o...
dihordlem7b 40390 Part of proof of Lemma N o...
dihjustlem 40391 Part of proof after Lemma ...
dihjust 40392 Part of proof after Lemma ...
dihord1 40393 Part of proof after Lemma ...
dihord2a 40394 Part of proof after Lemma ...
dihord2b 40395 Part of proof after Lemma ...
dihord2cN 40396 Part of proof after Lemma ...
dihord11b 40397 Part of proof after Lemma ...
dihord10 40398 Part of proof after Lemma ...
dihord11c 40399 Part of proof after Lemma ...
dihord2pre 40400 Part of proof after Lemma ...
dihord2pre2 40401 Part of proof after Lemma ...
dihord2 40402 Part of proof after Lemma ...
dihffval 40405 The isomorphism H for a la...
dihfval 40406 Isomorphism H for a lattic...
dihval 40407 Value of isomorphism H for...
dihvalc 40408 Value of isomorphism H for...
dihlsscpre 40409 Closure of isomorphism H f...
dihvalcqpre 40410 Value of isomorphism H for...
dihvalcq 40411 Value of isomorphism H for...
dihvalb 40412 Value of isomorphism H for...
dihopelvalbN 40413 Ordered pair member of the...
dihvalcqat 40414 Value of isomorphism H for...
dih1dimb 40415 Two expressions for a 1-di...
dih1dimb2 40416 Isomorphism H at an atom u...
dih1dimc 40417 Isomorphism H at an atom n...
dib2dim 40418 Extend ~ dia2dim to partia...
dih2dimb 40419 Extend ~ dib2dim to isomor...
dih2dimbALTN 40420 Extend ~ dia2dim to isomor...
dihopelvalcqat 40421 Ordered pair member of the...
dihvalcq2 40422 Value of isomorphism H for...
dihopelvalcpre 40423 Member of value of isomorp...
dihopelvalc 40424 Member of value of isomorp...
dihlss 40425 The value of isomorphism H...
dihss 40426 The value of isomorphism H...
dihssxp 40427 An isomorphism H value is ...
dihopcl 40428 Closure of an ordered pair...
xihopellsmN 40429 Ordered pair membership in...
dihopellsm 40430 Ordered pair membership in...
dihord6apre 40431 Part of proof that isomorp...
dihord3 40432 The isomorphism H for a la...
dihord4 40433 The isomorphism H for a la...
dihord5b 40434 Part of proof that isomorp...
dihord6b 40435 Part of proof that isomorp...
dihord6a 40436 Part of proof that isomorp...
dihord5apre 40437 Part of proof that isomorp...
dihord5a 40438 Part of proof that isomorp...
dihord 40439 The isomorphism H is order...
dih11 40440 The isomorphism H is one-t...
dihf11lem 40441 Functionality of the isomo...
dihf11 40442 The isomorphism H for a la...
dihfn 40443 Functionality and domain o...
dihdm 40444 Domain of isomorphism H. (...
dihcl 40445 Closure of isomorphism H. ...
dihcnvcl 40446 Closure of isomorphism H c...
dihcnvid1 40447 The converse isomorphism o...
dihcnvid2 40448 The isomorphism of a conve...
dihcnvord 40449 Ordering property for conv...
dihcnv11 40450 The converse of isomorphis...
dihsslss 40451 The isomorphism H maps to ...
dihrnlss 40452 The isomorphism H maps to ...
dihrnss 40453 The isomorphism H maps to ...
dihvalrel 40454 The value of isomorphism H...
dih0 40455 The value of isomorphism H...
dih0bN 40456 A lattice element is zero ...
dih0vbN 40457 A vector is zero iff its s...
dih0cnv 40458 The isomorphism H converse...
dih0rn 40459 The zero subspace belongs ...
dih0sb 40460 A subspace is zero iff the...
dih1 40461 The value of isomorphism H...
dih1rn 40462 The full vector space belo...
dih1cnv 40463 The isomorphism H converse...
dihwN 40464 Value of isomorphism H at ...
dihmeetlem1N 40465 Isomorphism H of a conjunc...
dihglblem5apreN 40466 A conjunction property of ...
dihglblem5aN 40467 A conjunction property of ...
dihglblem2aN 40468 Lemma for isomorphism H of...
dihglblem2N 40469 The GLB of a set of lattic...
dihglblem3N 40470 Isomorphism H of a lattice...
dihglblem3aN 40471 Isomorphism H of a lattice...
dihglblem4 40472 Isomorphism H of a lattice...
dihglblem5 40473 Isomorphism H of a lattice...
dihmeetlem2N 40474 Isomorphism H of a conjunc...
dihglbcpreN 40475 Isomorphism H of a lattice...
dihglbcN 40476 Isomorphism H of a lattice...
dihmeetcN 40477 Isomorphism H of a lattice...
dihmeetbN 40478 Isomorphism H of a lattice...
dihmeetbclemN 40479 Lemma for isomorphism H of...
dihmeetlem3N 40480 Lemma for isomorphism H of...
dihmeetlem4preN 40481 Lemma for isomorphism H of...
dihmeetlem4N 40482 Lemma for isomorphism H of...
dihmeetlem5 40483 Part of proof that isomorp...
dihmeetlem6 40484 Lemma for isomorphism H of...
dihmeetlem7N 40485 Lemma for isomorphism H of...
dihjatc1 40486 Lemma for isomorphism H of...
dihjatc2N 40487 Isomorphism H of join with...
dihjatc3 40488 Isomorphism H of join with...
dihmeetlem8N 40489 Lemma for isomorphism H of...
dihmeetlem9N 40490 Lemma for isomorphism H of...
dihmeetlem10N 40491 Lemma for isomorphism H of...
dihmeetlem11N 40492 Lemma for isomorphism H of...
dihmeetlem12N 40493 Lemma for isomorphism H of...
dihmeetlem13N 40494 Lemma for isomorphism H of...
dihmeetlem14N 40495 Lemma for isomorphism H of...
dihmeetlem15N 40496 Lemma for isomorphism H of...
dihmeetlem16N 40497 Lemma for isomorphism H of...
dihmeetlem17N 40498 Lemma for isomorphism H of...
dihmeetlem18N 40499 Lemma for isomorphism H of...
dihmeetlem19N 40500 Lemma for isomorphism H of...
dihmeetlem20N 40501 Lemma for isomorphism H of...
dihmeetALTN 40502 Isomorphism H of a lattice...
dih1dimatlem0 40503 Lemma for ~ dih1dimat . (...
dih1dimatlem 40504 Lemma for ~ dih1dimat . (...
dih1dimat 40505 Any 1-dimensional subspace...
dihlsprn 40506 The span of a vector belon...
dihlspsnssN 40507 A subspace included in a 1...
dihlspsnat 40508 The inverse isomorphism H ...
dihatlat 40509 The isomorphism H of an at...
dihat 40510 There exists at least one ...
dihpN 40511 The value of isomorphism H...
dihlatat 40512 The reverse isomorphism H ...
dihatexv 40513 There is a nonzero vector ...
dihatexv2 40514 There is a nonzero vector ...
dihglblem6 40515 Isomorphism H of a lattice...
dihglb 40516 Isomorphism H of a lattice...
dihglb2 40517 Isomorphism H of a lattice...
dihmeet 40518 Isomorphism H of a lattice...
dihintcl 40519 The intersection of closed...
dihmeetcl 40520 Closure of closed subspace...
dihmeet2 40521 Reverse isomorphism H of a...
dochffval 40524 Subspace orthocomplement f...
dochfval 40525 Subspace orthocomplement f...
dochval 40526 Subspace orthocomplement f...
dochval2 40527 Subspace orthocomplement f...
dochcl 40528 Closure of subspace orthoc...
dochlss 40529 A subspace orthocomplement...
dochssv 40530 A subspace orthocomplement...
dochfN 40531 Domain and codomain of the...
dochvalr 40532 Orthocomplement of a close...
doch0 40533 Orthocomplement of the zer...
doch1 40534 Orthocomplement of the uni...
dochoc0 40535 The zero subspace is close...
dochoc1 40536 The unit subspace (all vec...
dochvalr2 40537 Orthocomplement of a close...
dochvalr3 40538 Orthocomplement of a close...
doch2val2 40539 Double orthocomplement for...
dochss 40540 Subset law for orthocomple...
dochocss 40541 Double negative law for or...
dochoc 40542 Double negative law for or...
dochsscl 40543 If a set of vectors is inc...
dochoccl 40544 A set of vectors is closed...
dochord 40545 Ordering law for orthocomp...
dochord2N 40546 Ordering law for orthocomp...
dochord3 40547 Ordering law for orthocomp...
doch11 40548 Orthocomplement is one-to-...
dochsordN 40549 Strict ordering law for or...
dochn0nv 40550 An orthocomplement is nonz...
dihoml4c 40551 Version of ~ dihoml4 with ...
dihoml4 40552 Orthomodular law for const...
dochspss 40553 The span of a set of vecto...
dochocsp 40554 The span of an orthocomple...
dochspocN 40555 The span of an orthocomple...
dochocsn 40556 The double orthocomplement...
dochsncom 40557 Swap vectors in an orthoco...
dochsat 40558 The double orthocomplement...
dochshpncl 40559 If a hyperplane is not clo...
dochlkr 40560 Equivalent conditions for ...
dochkrshp 40561 The closure of a kernel is...
dochkrshp2 40562 Properties of the closure ...
dochkrshp3 40563 Properties of the closure ...
dochkrshp4 40564 Properties of the closure ...
dochdmj1 40565 De Morgan-like law for sub...
dochnoncon 40566 Law of noncontradiction. ...
dochnel2 40567 A nonzero member of a subs...
dochnel 40568 A nonzero vector doesn't b...
djhffval 40571 Subspace join for ` DVecH ...
djhfval 40572 Subspace join for ` DVecH ...
djhval 40573 Subspace join for ` DVecH ...
djhval2 40574 Value of subspace join for...
djhcl 40575 Closure of subspace join f...
djhlj 40576 Transfer lattice join to `...
djhljjN 40577 Lattice join in terms of `...
djhjlj 40578 ` DVecH ` vector space clo...
djhj 40579 ` DVecH ` vector space clo...
djhcom 40580 Subspace join commutes. (...
djhspss 40581 Subspace span of union is ...
djhsumss 40582 Subspace sum is a subset o...
dihsumssj 40583 The subspace sum of two is...
djhunssN 40584 Subspace union is a subset...
dochdmm1 40585 De Morgan-like law for clo...
djhexmid 40586 Excluded middle property o...
djh01 40587 Closed subspace join with ...
djh02 40588 Closed subspace join with ...
djhlsmcl 40589 A closed subspace sum equa...
djhcvat42 40590 A covering property. ( ~ ...
dihjatb 40591 Isomorphism H of lattice j...
dihjatc 40592 Isomorphism H of lattice j...
dihjatcclem1 40593 Lemma for isomorphism H of...
dihjatcclem2 40594 Lemma for isomorphism H of...
dihjatcclem3 40595 Lemma for ~ dihjatcc . (C...
dihjatcclem4 40596 Lemma for isomorphism H of...
dihjatcc 40597 Isomorphism H of lattice j...
dihjat 40598 Isomorphism H of lattice j...
dihprrnlem1N 40599 Lemma for ~ dihprrn , show...
dihprrnlem2 40600 Lemma for ~ dihprrn . (Co...
dihprrn 40601 The span of a vector pair ...
djhlsmat 40602 The sum of two subspace at...
dihjat1lem 40603 Subspace sum of a closed s...
dihjat1 40604 Subspace sum of a closed s...
dihsmsprn 40605 Subspace sum of a closed s...
dihjat2 40606 The subspace sum of a clos...
dihjat3 40607 Isomorphism H of lattice j...
dihjat4 40608 Transfer the subspace sum ...
dihjat6 40609 Transfer the subspace sum ...
dihsmsnrn 40610 The subspace sum of two si...
dihsmatrn 40611 The subspace sum of a clos...
dihjat5N 40612 Transfer lattice join with...
dvh4dimat 40613 There is an atom that is o...
dvh3dimatN 40614 There is an atom that is o...
dvh2dimatN 40615 Given an atom, there exist...
dvh1dimat 40616 There exists an atom. (Co...
dvh1dim 40617 There exists a nonzero vec...
dvh4dimlem 40618 Lemma for ~ dvh4dimN . (C...
dvhdimlem 40619 Lemma for ~ dvh2dim and ~ ...
dvh2dim 40620 There is a vector that is ...
dvh3dim 40621 There is a vector that is ...
dvh4dimN 40622 There is a vector that is ...
dvh3dim2 40623 There is a vector that is ...
dvh3dim3N 40624 There is a vector that is ...
dochsnnz 40625 The orthocomplement of a s...
dochsatshp 40626 The orthocomplement of a s...
dochsatshpb 40627 The orthocomplement of a s...
dochsnshp 40628 The orthocomplement of a n...
dochshpsat 40629 A hyperplane is closed iff...
dochkrsat 40630 The orthocomplement of a k...
dochkrsat2 40631 The orthocomplement of a k...
dochsat0 40632 The orthocomplement of a k...
dochkrsm 40633 The subspace sum of a clos...
dochexmidat 40634 Special case of excluded m...
dochexmidlem1 40635 Lemma for ~ dochexmid . H...
dochexmidlem2 40636 Lemma for ~ dochexmid . (...
dochexmidlem3 40637 Lemma for ~ dochexmid . U...
dochexmidlem4 40638 Lemma for ~ dochexmid . (...
dochexmidlem5 40639 Lemma for ~ dochexmid . (...
dochexmidlem6 40640 Lemma for ~ dochexmid . (...
dochexmidlem7 40641 Lemma for ~ dochexmid . C...
dochexmidlem8 40642 Lemma for ~ dochexmid . T...
dochexmid 40643 Excluded middle law for cl...
dochsnkrlem1 40644 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 40645 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 40646 Lemma for ~ dochsnkr . (C...
dochsnkr 40647 A (closed) kernel expresse...
dochsnkr2 40648 Kernel of the explicit fun...
dochsnkr2cl 40649 The ` X ` determining func...
dochflcl 40650 Closure of the explicit fu...
dochfl1 40651 The value of the explicit ...
dochfln0 40652 The value of a functional ...
dochkr1 40653 A nonzero functional has a...
dochkr1OLDN 40654 A nonzero functional has a...
lpolsetN 40657 The set of polarities of a...
islpolN 40658 The predicate "is a polari...
islpoldN 40659 Properties that determine ...
lpolfN 40660 Functionality of a polarit...
lpolvN 40661 The polarity of the whole ...
lpolconN 40662 Contraposition property of...
lpolsatN 40663 The polarity of an atomic ...
lpolpolsatN 40664 Property of a polarity. (...
dochpolN 40665 The subspace orthocompleme...
lcfl1lem 40666 Property of a functional w...
lcfl1 40667 Property of a functional w...
lcfl2 40668 Property of a functional w...
lcfl3 40669 Property of a functional w...
lcfl4N 40670 Property of a functional w...
lcfl5 40671 Property of a functional w...
lcfl5a 40672 Property of a functional w...
lcfl6lem 40673 Lemma for ~ lcfl6 . A fun...
lcfl7lem 40674 Lemma for ~ lcfl7N . If t...
lcfl6 40675 Property of a functional w...
lcfl7N 40676 Property of a functional w...
lcfl8 40677 Property of a functional w...
lcfl8a 40678 Property of a functional w...
lcfl8b 40679 Property of a nonzero func...
lcfl9a 40680 Property implying that a f...
lclkrlem1 40681 The set of functionals hav...
lclkrlem2a 40682 Lemma for ~ lclkr . Use ~...
lclkrlem2b 40683 Lemma for ~ lclkr . (Cont...
lclkrlem2c 40684 Lemma for ~ lclkr . (Cont...
lclkrlem2d 40685 Lemma for ~ lclkr . (Cont...
lclkrlem2e 40686 Lemma for ~ lclkr . The k...
lclkrlem2f 40687 Lemma for ~ lclkr . Const...
lclkrlem2g 40688 Lemma for ~ lclkr . Compa...
lclkrlem2h 40689 Lemma for ~ lclkr . Elimi...
lclkrlem2i 40690 Lemma for ~ lclkr . Elimi...
lclkrlem2j 40691 Lemma for ~ lclkr . Kerne...
lclkrlem2k 40692 Lemma for ~ lclkr . Kerne...
lclkrlem2l 40693 Lemma for ~ lclkr . Elimi...
lclkrlem2m 40694 Lemma for ~ lclkr . Const...
lclkrlem2n 40695 Lemma for ~ lclkr . (Cont...
lclkrlem2o 40696 Lemma for ~ lclkr . When ...
lclkrlem2p 40697 Lemma for ~ lclkr . When ...
lclkrlem2q 40698 Lemma for ~ lclkr . The s...
lclkrlem2r 40699 Lemma for ~ lclkr . When ...
lclkrlem2s 40700 Lemma for ~ lclkr . Thus,...
lclkrlem2t 40701 Lemma for ~ lclkr . We el...
lclkrlem2u 40702 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 40703 Lemma for ~ lclkr . When ...
lclkrlem2w 40704 Lemma for ~ lclkr . This ...
lclkrlem2x 40705 Lemma for ~ lclkr . Elimi...
lclkrlem2y 40706 Lemma for ~ lclkr . Resta...
lclkrlem2 40707 The set of functionals hav...
lclkr 40708 The set of functionals wit...
lcfls1lem 40709 Property of a functional w...
lcfls1N 40710 Property of a functional w...
lcfls1c 40711 Property of a functional w...
lclkrslem1 40712 The set of functionals hav...
lclkrslem2 40713 The set of functionals hav...
lclkrs 40714 The set of functionals hav...
lclkrs2 40715 The set of functionals wit...
lcfrvalsnN 40716 Reconstruction from the du...
lcfrlem1 40717 Lemma for ~ lcfr . Note t...
lcfrlem2 40718 Lemma for ~ lcfr . (Contr...
lcfrlem3 40719 Lemma for ~ lcfr . (Contr...
lcfrlem4 40720 Lemma for ~ lcfr . (Contr...
lcfrlem5 40721 Lemma for ~ lcfr . The se...
lcfrlem6 40722 Lemma for ~ lcfr . Closur...
lcfrlem7 40723 Lemma for ~ lcfr . Closur...
lcfrlem8 40724 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 40725 Lemma for ~ lcf1o . (This...
lcf1o 40726 Define a function ` J ` th...
lcfrlem10 40727 Lemma for ~ lcfr . (Contr...
lcfrlem11 40728 Lemma for ~ lcfr . (Contr...
lcfrlem12N 40729 Lemma for ~ lcfr . (Contr...
lcfrlem13 40730 Lemma for ~ lcfr . (Contr...
lcfrlem14 40731 Lemma for ~ lcfr . (Contr...
lcfrlem15 40732 Lemma for ~ lcfr . (Contr...
lcfrlem16 40733 Lemma for ~ lcfr . (Contr...
lcfrlem17 40734 Lemma for ~ lcfr . Condit...
lcfrlem18 40735 Lemma for ~ lcfr . (Contr...
lcfrlem19 40736 Lemma for ~ lcfr . (Contr...
lcfrlem20 40737 Lemma for ~ lcfr . (Contr...
lcfrlem21 40738 Lemma for ~ lcfr . (Contr...
lcfrlem22 40739 Lemma for ~ lcfr . (Contr...
lcfrlem23 40740 Lemma for ~ lcfr . TODO: ...
lcfrlem24 40741 Lemma for ~ lcfr . (Contr...
lcfrlem25 40742 Lemma for ~ lcfr . Specia...
lcfrlem26 40743 Lemma for ~ lcfr . Specia...
lcfrlem27 40744 Lemma for ~ lcfr . Specia...
lcfrlem28 40745 Lemma for ~ lcfr . TODO: ...
lcfrlem29 40746 Lemma for ~ lcfr . (Contr...
lcfrlem30 40747 Lemma for ~ lcfr . (Contr...
lcfrlem31 40748 Lemma for ~ lcfr . (Contr...
lcfrlem32 40749 Lemma for ~ lcfr . (Contr...
lcfrlem33 40750 Lemma for ~ lcfr . (Contr...
lcfrlem34 40751 Lemma for ~ lcfr . (Contr...
lcfrlem35 40752 Lemma for ~ lcfr . (Contr...
lcfrlem36 40753 Lemma for ~ lcfr . (Contr...
lcfrlem37 40754 Lemma for ~ lcfr . (Contr...
lcfrlem38 40755 Lemma for ~ lcfr . Combin...
lcfrlem39 40756 Lemma for ~ lcfr . Elimin...
lcfrlem40 40757 Lemma for ~ lcfr . Elimin...
lcfrlem41 40758 Lemma for ~ lcfr . Elimin...
lcfrlem42 40759 Lemma for ~ lcfr . Elimin...
lcfr 40760 Reconstruction of a subspa...
lcdfval 40763 Dual vector space of funct...
lcdval 40764 Dual vector space of funct...
lcdval2 40765 Dual vector space of funct...
lcdlvec 40766 The dual vector space of f...
lcdlmod 40767 The dual vector space of f...
lcdvbase 40768 Vector base set of a dual ...
lcdvbasess 40769 The vector base set of the...
lcdvbaselfl 40770 A vector in the base set o...
lcdvbasecl 40771 Closure of the value of a ...
lcdvadd 40772 Vector addition for the cl...
lcdvaddval 40773 The value of the value of ...
lcdsca 40774 The ring of scalars of the...
lcdsbase 40775 Base set of scalar ring fo...
lcdsadd 40776 Scalar addition for the cl...
lcdsmul 40777 Scalar multiplication for ...
lcdvs 40778 Scalar product for the clo...
lcdvsval 40779 Value of scalar product op...
lcdvscl 40780 The scalar product operati...
lcdlssvscl 40781 Closure of scalar product ...
lcdvsass 40782 Associative law for scalar...
lcd0 40783 The zero scalar of the clo...
lcd1 40784 The unit scalar of the clo...
lcdneg 40785 The unit scalar of the clo...
lcd0v 40786 The zero functional in the...
lcd0v2 40787 The zero functional in the...
lcd0vvalN 40788 Value of the zero function...
lcd0vcl 40789 Closure of the zero functi...
lcd0vs 40790 A scalar zero times a func...
lcdvs0N 40791 A scalar times the zero fu...
lcdvsub 40792 The value of vector subtra...
lcdvsubval 40793 The value of the value of ...
lcdlss 40794 Subspaces of a dual vector...
lcdlss2N 40795 Subspaces of a dual vector...
lcdlsp 40796 Span in the set of functio...
lcdlkreqN 40797 Colinear functionals have ...
lcdlkreq2N 40798 Colinear functionals have ...
mapdffval 40801 Projectivity from vector s...
mapdfval 40802 Projectivity from vector s...
mapdval 40803 Value of projectivity from...
mapdvalc 40804 Value of projectivity from...
mapdval2N 40805 Value of projectivity from...
mapdval3N 40806 Value of projectivity from...
mapdval4N 40807 Value of projectivity from...
mapdval5N 40808 Value of projectivity from...
mapdordlem1a 40809 Lemma for ~ mapdord . (Co...
mapdordlem1bN 40810 Lemma for ~ mapdord . (Co...
mapdordlem1 40811 Lemma for ~ mapdord . (Co...
mapdordlem2 40812 Lemma for ~ mapdord . Ord...
mapdord 40813 Ordering property of the m...
mapd11 40814 The map defined by ~ df-ma...
mapddlssN 40815 The mapping of a subspace ...
mapdsn 40816 Value of the map defined b...
mapdsn2 40817 Value of the map defined b...
mapdsn3 40818 Value of the map defined b...
mapd1dim2lem1N 40819 Value of the map defined b...
mapdrvallem2 40820 Lemma for ~ mapdrval . TO...
mapdrvallem3 40821 Lemma for ~ mapdrval . (C...
mapdrval 40822 Given a dual subspace ` R ...
mapd1o 40823 The map defined by ~ df-ma...
mapdrn 40824 Range of the map defined b...
mapdunirnN 40825 Union of the range of the ...
mapdrn2 40826 Range of the map defined b...
mapdcnvcl 40827 Closure of the converse of...
mapdcl 40828 Closure the value of the m...
mapdcnvid1N 40829 Converse of the value of t...
mapdsord 40830 Strong ordering property o...
mapdcl2 40831 The mapping of a subspace ...
mapdcnvid2 40832 Value of the converse of t...
mapdcnvordN 40833 Ordering property of the c...
mapdcnv11N 40834 The converse of the map de...
mapdcv 40835 Covering property of the c...
mapdincl 40836 Closure of dual subspace i...
mapdin 40837 Subspace intersection is p...
mapdlsmcl 40838 Closure of dual subspace s...
mapdlsm 40839 Subspace sum is preserved ...
mapd0 40840 Projectivity map of the ze...
mapdcnvatN 40841 Atoms are preserved by the...
mapdat 40842 Atoms are preserved by the...
mapdspex 40843 The map of a span equals t...
mapdn0 40844 Transfer nonzero property ...
mapdncol 40845 Transfer non-colinearity f...
mapdindp 40846 Transfer (part of) vector ...
mapdpglem1 40847 Lemma for ~ mapdpg . Baer...
mapdpglem2 40848 Lemma for ~ mapdpg . Baer...
mapdpglem2a 40849 Lemma for ~ mapdpg . (Con...
mapdpglem3 40850 Lemma for ~ mapdpg . Baer...
mapdpglem4N 40851 Lemma for ~ mapdpg . (Con...
mapdpglem5N 40852 Lemma for ~ mapdpg . (Con...
mapdpglem6 40853 Lemma for ~ mapdpg . Baer...
mapdpglem8 40854 Lemma for ~ mapdpg . Baer...
mapdpglem9 40855 Lemma for ~ mapdpg . Baer...
mapdpglem10 40856 Lemma for ~ mapdpg . Baer...
mapdpglem11 40857 Lemma for ~ mapdpg . (Con...
mapdpglem12 40858 Lemma for ~ mapdpg . TODO...
mapdpglem13 40859 Lemma for ~ mapdpg . (Con...
mapdpglem14 40860 Lemma for ~ mapdpg . (Con...
mapdpglem15 40861 Lemma for ~ mapdpg . (Con...
mapdpglem16 40862 Lemma for ~ mapdpg . Baer...
mapdpglem17N 40863 Lemma for ~ mapdpg . Baer...
mapdpglem18 40864 Lemma for ~ mapdpg . Baer...
mapdpglem19 40865 Lemma for ~ mapdpg . Baer...
mapdpglem20 40866 Lemma for ~ mapdpg . Baer...
mapdpglem21 40867 Lemma for ~ mapdpg . (Con...
mapdpglem22 40868 Lemma for ~ mapdpg . Baer...
mapdpglem23 40869 Lemma for ~ mapdpg . Baer...
mapdpglem30a 40870 Lemma for ~ mapdpg . (Con...
mapdpglem30b 40871 Lemma for ~ mapdpg . (Con...
mapdpglem25 40872 Lemma for ~ mapdpg . Baer...
mapdpglem26 40873 Lemma for ~ mapdpg . Baer...
mapdpglem27 40874 Lemma for ~ mapdpg . Baer...
mapdpglem29 40875 Lemma for ~ mapdpg . Baer...
mapdpglem28 40876 Lemma for ~ mapdpg . Baer...
mapdpglem30 40877 Lemma for ~ mapdpg . Baer...
mapdpglem31 40878 Lemma for ~ mapdpg . Baer...
mapdpglem24 40879 Lemma for ~ mapdpg . Exis...
mapdpglem32 40880 Lemma for ~ mapdpg . Uniq...
mapdpg 40881 Part 1 of proof of the fir...
baerlem3lem1 40882 Lemma for ~ baerlem3 . (C...
baerlem5alem1 40883 Lemma for ~ baerlem5a . (...
baerlem5blem1 40884 Lemma for ~ baerlem5b . (...
baerlem3lem2 40885 Lemma for ~ baerlem3 . (C...
baerlem5alem2 40886 Lemma for ~ baerlem5a . (...
baerlem5blem2 40887 Lemma for ~ baerlem5b . (...
baerlem3 40888 An equality that holds whe...
baerlem5a 40889 An equality that holds whe...
baerlem5b 40890 An equality that holds whe...
baerlem5amN 40891 An equality that holds whe...
baerlem5bmN 40892 An equality that holds whe...
baerlem5abmN 40893 An equality that holds whe...
mapdindp0 40894 Vector independence lemma....
mapdindp1 40895 Vector independence lemma....
mapdindp2 40896 Vector independence lemma....
mapdindp3 40897 Vector independence lemma....
mapdindp4 40898 Vector independence lemma....
mapdhval 40899 Lemmma for ~~? mapdh . (C...
mapdhval0 40900 Lemmma for ~~? mapdh . (C...
mapdhval2 40901 Lemmma for ~~? mapdh . (C...
mapdhcl 40902 Lemmma for ~~? mapdh . (C...
mapdheq 40903 Lemmma for ~~? mapdh . Th...
mapdheq2 40904 Lemmma for ~~? mapdh . On...
mapdheq2biN 40905 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 40906 Lemma for ~ mapdheq4 . Pa...
mapdheq4 40907 Lemma for ~~? mapdh . Par...
mapdh6lem1N 40908 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 40909 Lemma for ~ mapdh6N . Par...
mapdh6aN 40910 Lemma for ~ mapdh6N . Par...
mapdh6b0N 40911 Lemmma for ~ mapdh6N . (C...
mapdh6bN 40912 Lemmma for ~ mapdh6N . (C...
mapdh6cN 40913 Lemmma for ~ mapdh6N . (C...
mapdh6dN 40914 Lemmma for ~ mapdh6N . (C...
mapdh6eN 40915 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 40916 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 40917 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 40918 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 40919 Lemmma for ~ mapdh6N . El...
mapdh6jN 40920 Lemmma for ~ mapdh6N . El...
mapdh6kN 40921 Lemmma for ~ mapdh6N . El...
mapdh6N 40922 Part (6) of [Baer] p. 47 l...
mapdh7eN 40923 Part (7) of [Baer] p. 48 l...
mapdh7cN 40924 Part (7) of [Baer] p. 48 l...
mapdh7dN 40925 Part (7) of [Baer] p. 48 l...
mapdh7fN 40926 Part (7) of [Baer] p. 48 l...
mapdh75e 40927 Part (7) of [Baer] p. 48 l...
mapdh75cN 40928 Part (7) of [Baer] p. 48 l...
mapdh75d 40929 Part (7) of [Baer] p. 48 l...
mapdh75fN 40930 Part (7) of [Baer] p. 48 l...
hvmapffval 40933 Map from nonzero vectors t...
hvmapfval 40934 Map from nonzero vectors t...
hvmapval 40935 Value of map from nonzero ...
hvmapvalvalN 40936 Value of value of map (i.e...
hvmapidN 40937 The value of the vector to...
hvmap1o 40938 The vector to functional m...
hvmapclN 40939 Closure of the vector to f...
hvmap1o2 40940 The vector to functional m...
hvmapcl2 40941 Closure of the vector to f...
hvmaplfl 40942 The vector to functional m...
hvmaplkr 40943 Kernel of the vector to fu...
mapdhvmap 40944 Relationship between ` map...
lspindp5 40945 Obtain an independent vect...
hdmaplem1 40946 Lemma to convert a frequen...
hdmaplem2N 40947 Lemma to convert a frequen...
hdmaplem3 40948 Lemma to convert a frequen...
hdmaplem4 40949 Lemma to convert a frequen...
mapdh8a 40950 Part of Part (8) in [Baer]...
mapdh8aa 40951 Part of Part (8) in [Baer]...
mapdh8ab 40952 Part of Part (8) in [Baer]...
mapdh8ac 40953 Part of Part (8) in [Baer]...
mapdh8ad 40954 Part of Part (8) in [Baer]...
mapdh8b 40955 Part of Part (8) in [Baer]...
mapdh8c 40956 Part of Part (8) in [Baer]...
mapdh8d0N 40957 Part of Part (8) in [Baer]...
mapdh8d 40958 Part of Part (8) in [Baer]...
mapdh8e 40959 Part of Part (8) in [Baer]...
mapdh8g 40960 Part of Part (8) in [Baer]...
mapdh8i 40961 Part of Part (8) in [Baer]...
mapdh8j 40962 Part of Part (8) in [Baer]...
mapdh8 40963 Part (8) in [Baer] p. 48. ...
mapdh9a 40964 Lemma for part (9) in [Bae...
mapdh9aOLDN 40965 Lemma for part (9) in [Bae...
hdmap1ffval 40970 Preliminary map from vecto...
hdmap1fval 40971 Preliminary map from vecto...
hdmap1vallem 40972 Value of preliminary map f...
hdmap1val 40973 Value of preliminary map f...
hdmap1val0 40974 Value of preliminary map f...
hdmap1val2 40975 Value of preliminary map f...
hdmap1eq 40976 The defining equation for ...
hdmap1cbv 40977 Frequently used lemma to c...
hdmap1valc 40978 Connect the value of the p...
hdmap1cl 40979 Convert closure theorem ~ ...
hdmap1eq2 40980 Convert ~ mapdheq2 to use ...
hdmap1eq4N 40981 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 40982 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 40983 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 40984 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 40985 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 40986 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 40987 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 40988 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 40989 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 40990 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 40991 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 40992 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 40993 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 40994 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 40995 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 40996 Part (6) of [Baer] p. 47 l...
hdmap1eulem 40997 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 40998 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 40999 Convert ~ mapdh9a to use t...
hdmap1euOLDN 41000 Convert ~ mapdh9aOLDN to u...
hdmapffval 41001 Map from vectors to functi...
hdmapfval 41002 Map from vectors to functi...
hdmapval 41003 Value of map from vectors ...
hdmapfnN 41004 Functionality of map from ...
hdmapcl 41005 Closure of map from vector...
hdmapval2lem 41006 Lemma for ~ hdmapval2 . (...
hdmapval2 41007 Value of map from vectors ...
hdmapval0 41008 Value of map from vectors ...
hdmapeveclem 41009 Lemma for ~ hdmapevec . T...
hdmapevec 41010 Value of map from vectors ...
hdmapevec2 41011 The inner product of the r...
hdmapval3lemN 41012 Value of map from vectors ...
hdmapval3N 41013 Value of map from vectors ...
hdmap10lem 41014 Lemma for ~ hdmap10 . (Co...
hdmap10 41015 Part 10 in [Baer] p. 48 li...
hdmap11lem1 41016 Lemma for ~ hdmapadd . (C...
hdmap11lem2 41017 Lemma for ~ hdmapadd . (C...
hdmapadd 41018 Part 11 in [Baer] p. 48 li...
hdmapeq0 41019 Part of proof of part 12 i...
hdmapnzcl 41020 Nonzero vector closure of ...
hdmapneg 41021 Part of proof of part 12 i...
hdmapsub 41022 Part of proof of part 12 i...
hdmap11 41023 Part of proof of part 12 i...
hdmaprnlem1N 41024 Part of proof of part 12 i...
hdmaprnlem3N 41025 Part of proof of part 12 i...
hdmaprnlem3uN 41026 Part of proof of part 12 i...
hdmaprnlem4tN 41027 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 41028 Part of proof of part 12 i...
hdmaprnlem6N 41029 Part of proof of part 12 i...
hdmaprnlem7N 41030 Part of proof of part 12 i...
hdmaprnlem8N 41031 Part of proof of part 12 i...
hdmaprnlem9N 41032 Part of proof of part 12 i...
hdmaprnlem3eN 41033 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 41034 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 41035 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 41036 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 41037 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 41038 Lemma for ~ hdmaprnN . In...
hdmaprnN 41039 Part of proof of part 12 i...
hdmapf1oN 41040 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 41041 Prior to part 14 in [Baer]...
hdmap14lem2a 41042 Prior to part 14 in [Baer]...
hdmap14lem1 41043 Prior to part 14 in [Baer]...
hdmap14lem2N 41044 Prior to part 14 in [Baer]...
hdmap14lem3 41045 Prior to part 14 in [Baer]...
hdmap14lem4a 41046 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 41047 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 41048 Case where ` F ` is zero. ...
hdmap14lem7 41049 Combine cases of ` F ` . ...
hdmap14lem8 41050 Part of proof of part 14 i...
hdmap14lem9 41051 Part of proof of part 14 i...
hdmap14lem10 41052 Part of proof of part 14 i...
hdmap14lem11 41053 Part of proof of part 14 i...
hdmap14lem12 41054 Lemma for proof of part 14...
hdmap14lem13 41055 Lemma for proof of part 14...
hdmap14lem14 41056 Part of proof of part 14 i...
hdmap14lem15 41057 Part of proof of part 14 i...
hgmapffval 41060 Map from the scalar divisi...
hgmapfval 41061 Map from the scalar divisi...
hgmapval 41062 Value of map from the scal...
hgmapfnN 41063 Functionality of scalar si...
hgmapcl 41064 Closure of scalar sigma ma...
hgmapdcl 41065 Closure of the vector spac...
hgmapvs 41066 Part 15 of [Baer] p. 50 li...
hgmapval0 41067 Value of the scalar sigma ...
hgmapval1 41068 Value of the scalar sigma ...
hgmapadd 41069 Part 15 of [Baer] p. 50 li...
hgmapmul 41070 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 41071 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 41072 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 41073 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 41074 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 41075 Lemma for ~ hgmaprnN . El...
hgmaprnN 41076 Part of proof of part 16 i...
hgmap11 41077 The scalar sigma map is on...
hgmapf1oN 41078 The scalar sigma map is a ...
hgmapeq0 41079 The scalar sigma map is ze...
hdmapipcl 41080 The inner product (Hermiti...
hdmapln1 41081 Linearity property that wi...
hdmaplna1 41082 Additive property of first...
hdmaplns1 41083 Subtraction property of fi...
hdmaplnm1 41084 Multiplicative property of...
hdmaplna2 41085 Additive property of secon...
hdmapglnm2 41086 g-linear property of secon...
hdmapgln2 41087 g-linear property that wil...
hdmaplkr 41088 Kernel of the vector to du...
hdmapellkr 41089 Membership in the kernel (...
hdmapip0 41090 Zero property that will be...
hdmapip1 41091 Construct a proportional v...
hdmapip0com 41092 Commutation property of Ba...
hdmapinvlem1 41093 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 41094 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 41095 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 41096 Part 1.1 of Proposition 1 ...
hdmapglem5 41097 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 41098 Involution property of sca...
hgmapvvlem2 41099 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 41100 Lemma for ~ hgmapvv . Eli...
hgmapvv 41101 Value of a double involuti...
hdmapglem7a 41102 Lemma for ~ hdmapg . (Con...
hdmapglem7b 41103 Lemma for ~ hdmapg . (Con...
hdmapglem7 41104 Lemma for ~ hdmapg . Line...
hdmapg 41105 Apply the scalar sigma fun...
hdmapoc 41106 Express our constructed or...
hlhilset 41109 The final Hilbert space co...
hlhilsca 41110 The scalar of the final co...
hlhilbase 41111 The base set of the final ...
hlhilplus 41112 The vector addition for th...
hlhilslem 41113 Lemma for ~ hlhilsbase etc...
hlhilslemOLD 41114 Obsolete version of ~ hlhi...
hlhilsbase 41115 The scalar base set of the...
hlhilsbaseOLD 41116 Obsolete version of ~ hlhi...
hlhilsplus 41117 Scalar addition for the fi...
hlhilsplusOLD 41118 Obsolete version of ~ hlhi...
hlhilsmul 41119 Scalar multiplication for ...
hlhilsmulOLD 41120 Obsolete version of ~ hlhi...
hlhilsbase2 41121 The scalar base set of the...
hlhilsplus2 41122 Scalar addition for the fi...
hlhilsmul2 41123 Scalar multiplication for ...
hlhils0 41124 The scalar ring zero for t...
hlhils1N 41125 The scalar ring unity for ...
hlhilvsca 41126 The scalar product for the...
hlhilip 41127 Inner product operation fo...
hlhilipval 41128 Value of inner product ope...
hlhilnvl 41129 The involution operation o...
hlhillvec 41130 The final constructed Hilb...
hlhildrng 41131 The star division ring for...
hlhilsrnglem 41132 Lemma for ~ hlhilsrng . (...
hlhilsrng 41133 The star division ring for...
hlhil0 41134 The zero vector for the fi...
hlhillsm 41135 The vector sum operation f...
hlhilocv 41136 The orthocomplement for th...
hlhillcs 41137 The closed subspaces of th...
hlhilphllem 41138 Lemma for ~ hlhil . (Cont...
hlhilhillem 41139 Lemma for ~ hlhil . (Cont...
hlathil 41140 Construction of a Hilbert ...
iscsrg 41143 A commutative semiring is ...
leexp1ad 41144 Weak base ordering relatio...
relogbcld 41145 Closure of the general log...
relogbexpd 41146 Identity law for general l...
relogbzexpd 41147 Power law for the general ...
logblebd 41148 The general logarithm is m...
uzindd 41149 Induction on the upper int...
fzadd2d 41150 Membership of a sum in a f...
zltlem1d 41151 Integer ordering relation,...
zltp1led 41152 Integer ordering relation,...
fzne2d 41153 Elementhood in a finite se...
eqfnfv2d2 41154 Equality of functions is d...
fzsplitnd 41155 Split a finite interval of...
fzsplitnr 41156 Split a finite interval of...
addassnni 41157 Associative law for additi...
addcomnni 41158 Commutative law for additi...
mulassnni 41159 Associative law for multip...
mulcomnni 41160 Commutative law for multip...
gcdcomnni 41161 Commutative law for gcd. ...
gcdnegnni 41162 Negation invariance for gc...
neggcdnni 41163 Negation invariance for gc...
bccl2d 41164 Closure of the binomial co...
recbothd 41165 Take reciprocal on both si...
gcdmultiplei 41166 The GCD of a multiple of a...
gcdaddmzz2nni 41167 Adding a multiple of one o...
gcdaddmzz2nncomi 41168 Adding a multiple of one o...
gcdnncli 41169 Closure of the gcd operato...
muldvds1d 41170 If a product divides an in...
muldvds2d 41171 If a product divides an in...
nndivdvdsd 41172 A positive integer divides...
nnproddivdvdsd 41173 A product of natural numbe...
coprmdvds2d 41174 If an integer is divisible...
12gcd5e1 41175 The gcd of 12 and 5 is 1. ...
60gcd6e6 41176 The gcd of 60 and 6 is 6. ...
60gcd7e1 41177 The gcd of 60 and 7 is 1. ...
420gcd8e4 41178 The gcd of 420 and 8 is 4....
lcmeprodgcdi 41179 Calculate the least common...
12lcm5e60 41180 The lcm of 12 and 5 is 60....
60lcm6e60 41181 The lcm of 60 and 6 is 60....
60lcm7e420 41182 The lcm of 60 and 7 is 420...
420lcm8e840 41183 The lcm of 420 and 8 is 84...
lcmfunnnd 41184 Useful equation to calcula...
lcm1un 41185 Least common multiple of n...
lcm2un 41186 Least common multiple of n...
lcm3un 41187 Least common multiple of n...
lcm4un 41188 Least common multiple of n...
lcm5un 41189 Least common multiple of n...
lcm6un 41190 Least common multiple of n...
lcm7un 41191 Least common multiple of n...
lcm8un 41192 Least common multiple of n...
3factsumint1 41193 Move constants out of inte...
3factsumint2 41194 Move constants out of inte...
3factsumint3 41195 Move constants out of inte...
3factsumint4 41196 Move constants out of inte...
3factsumint 41197 Helpful equation for lcm i...
resopunitintvd 41198 Restrict continuous functi...
resclunitintvd 41199 Restrict continuous functi...
resdvopclptsd 41200 Restrict derivative on uni...
lcmineqlem1 41201 Part of lcm inequality lem...
lcmineqlem2 41202 Part of lcm inequality lem...
lcmineqlem3 41203 Part of lcm inequality lem...
lcmineqlem4 41204 Part of lcm inequality lem...
lcmineqlem5 41205 Technical lemma for recipr...
lcmineqlem6 41206 Part of lcm inequality lem...
lcmineqlem7 41207 Derivative of 1-x for chai...
lcmineqlem8 41208 Derivative of (1-x)^(N-M)....
lcmineqlem9 41209 (1-x)^(N-M) is continuous....
lcmineqlem10 41210 Induction step of ~ lcmine...
lcmineqlem11 41211 Induction step, continuati...
lcmineqlem12 41212 Base case for induction. ...
lcmineqlem13 41213 Induction proof for lcm in...
lcmineqlem14 41214 Technical lemma for inequa...
lcmineqlem15 41215 F times the least common m...
lcmineqlem16 41216 Technical divisibility lem...
lcmineqlem17 41217 Inequality of 2^{2n}. (Co...
lcmineqlem18 41218 Technical lemma to shift f...
lcmineqlem19 41219 Dividing implies inequalit...
lcmineqlem20 41220 Inequality for lcm lemma. ...
lcmineqlem21 41221 The lcm inequality lemma w...
lcmineqlem22 41222 The lcm inequality lemma w...
lcmineqlem23 41223 Penultimate step to the lc...
lcmineqlem 41224 The least common multiple ...
3exp7 41225 3 to the power of 7 equals...
3lexlogpow5ineq1 41226 First inequality in inequa...
3lexlogpow5ineq2 41227 Second inequality in inequ...
3lexlogpow5ineq4 41228 Sharper logarithm inequali...
3lexlogpow5ineq3 41229 Combined inequality chain ...
3lexlogpow2ineq1 41230 Result for bound in AKS in...
3lexlogpow2ineq2 41231 Result for bound in AKS in...
3lexlogpow5ineq5 41232 Result for bound in AKS in...
intlewftc 41233 Inequality inference by in...
aks4d1lem1 41234 Technical lemma to reduce ...
aks4d1p1p1 41235 Exponential law for finite...
dvrelog2 41236 The derivative of the loga...
dvrelog3 41237 The derivative of the loga...
dvrelog2b 41238 Derivative of the binary l...
0nonelalab 41239 Technical lemma for open i...
dvrelogpow2b 41240 Derivative of the power of...
aks4d1p1p3 41241 Bound of a ceiling of the ...
aks4d1p1p2 41242 Rewrite ` A ` in more suit...
aks4d1p1p4 41243 Technical step for inequal...
dvle2 41244 Collapsed ~ dvle . (Contr...
aks4d1p1p6 41245 Inequality lift to differe...
aks4d1p1p7 41246 Bound of intermediary of i...
aks4d1p1p5 41247 Show inequality for existe...
aks4d1p1 41248 Show inequality for existe...
aks4d1p2 41249 Technical lemma for existe...
aks4d1p3 41250 There exists a small enoug...
aks4d1p4 41251 There exists a small enoug...
aks4d1p5 41252 Show that ` N ` and ` R ` ...
aks4d1p6 41253 The maximal prime power ex...
aks4d1p7d1 41254 Technical step in AKS lemm...
aks4d1p7 41255 Technical step in AKS lemm...
aks4d1p8d1 41256 If a prime divides one num...
aks4d1p8d2 41257 Any prime power dividing a...
aks4d1p8d3 41258 The remainder of a divisio...
aks4d1p8 41259 Show that ` N ` and ` R ` ...
aks4d1p9 41260 Show that the order is bou...
aks4d1 41261 Lemma 4.1 from ~ https://w...
fldhmf1 41262 A field homomorphism is in...
aks6d1c2p1 41263 In the AKS-theorem the sub...
aks6d1c2p2 41264 Injective condition for co...
5bc2eq10 41265 The value of 5 choose 2. ...
facp2 41266 The factorial of a success...
2np3bcnp1 41267 Part of induction step for...
2ap1caineq 41268 Inequality for Theorem 6.6...
sticksstones1 41269 Different strictly monoton...
sticksstones2 41270 The range function on stri...
sticksstones3 41271 The range function on stri...
sticksstones4 41272 Equinumerosity lemma for s...
sticksstones5 41273 Count the number of strict...
sticksstones6 41274 Function induces an order ...
sticksstones7 41275 Closure property of sticks...
sticksstones8 41276 Establish mapping between ...
sticksstones9 41277 Establish mapping between ...
sticksstones10 41278 Establish mapping between ...
sticksstones11 41279 Establish bijective mappin...
sticksstones12a 41280 Establish bijective mappin...
sticksstones12 41281 Establish bijective mappin...
sticksstones13 41282 Establish bijective mappin...
sticksstones14 41283 Sticks and stones with def...
sticksstones15 41284 Sticks and stones with alm...
sticksstones16 41285 Sticks and stones with col...
sticksstones17 41286 Extend sticks and stones t...
sticksstones18 41287 Extend sticks and stones t...
sticksstones19 41288 Extend sticks and stones t...
sticksstones20 41289 Lift sticks and stones to ...
sticksstones21 41290 Lift sticks and stones to ...
sticksstones22 41291 Non-exhaustive sticks and ...
metakunt1 41292 A is an endomapping. (Con...
metakunt2 41293 A is an endomapping. (Con...
metakunt3 41294 Value of A. (Contributed b...
metakunt4 41295 Value of A. (Contributed b...
metakunt5 41296 C is the left inverse for ...
metakunt6 41297 C is the left inverse for ...
metakunt7 41298 C is the left inverse for ...
metakunt8 41299 C is the left inverse for ...
metakunt9 41300 C is the left inverse for ...
metakunt10 41301 C is the right inverse for...
metakunt11 41302 C is the right inverse for...
metakunt12 41303 C is the right inverse for...
metakunt13 41304 C is the right inverse for...
metakunt14 41305 A is a primitive permutati...
metakunt15 41306 Construction of another pe...
metakunt16 41307 Construction of another pe...
metakunt17 41308 The union of three disjoin...
metakunt18 41309 Disjoint domains and codom...
metakunt19 41310 Domains on restrictions of...
metakunt20 41311 Show that B coincides on t...
metakunt21 41312 Show that B coincides on t...
metakunt22 41313 Show that B coincides on t...
metakunt23 41314 B coincides on the union o...
metakunt24 41315 Technical condition such t...
metakunt25 41316 B is a permutation. (Cont...
metakunt26 41317 Construction of one soluti...
metakunt27 41318 Construction of one soluti...
metakunt28 41319 Construction of one soluti...
metakunt29 41320 Construction of one soluti...
metakunt30 41321 Construction of one soluti...
metakunt31 41322 Construction of one soluti...
metakunt32 41323 Construction of one soluti...
metakunt33 41324 Construction of one soluti...
metakunt34 41325 ` D ` is a permutation. (...
andiff 41326 Adding biconditional when ...
fac2xp3 41327 Factorial of 2x+3, sublemm...
prodsplit 41328 Product split into two fac...
2xp3dxp2ge1d 41329 2x+3 is greater than or eq...
factwoffsmonot 41330 A factorial with offset is...
ioin9i8 41331 Miscellaneous inference cr...
jaodd 41332 Double deduction form of ~...
syl3an12 41333 A double syllogism inferen...
sbtd 41334 A true statement is true u...
sbor2 41335 One direction of ~ sbor , ...
19.9dev 41336 ~ 19.9d in the case of an ...
3rspcedvdw 41337 Triple application of ~ rs...
3rspcedvd 41338 Triple application of ~ rs...
rabdif 41339 Move difference in and out...
sn-axrep5v 41340 A condensed form of ~ axre...
sn-axprlem3 41341 ~ axprlem3 using only Tars...
sn-exelALT 41342 Alternate proof of ~ exel ...
ss2ab1 41343 Class abstractions in a su...
ssabdv 41344 Deduction of abstraction s...
sn-iotalem 41345 An unused lemma showing th...
sn-iotalemcor 41346 Corollary of ~ sn-iotalem ...
abbi1sn 41347 Originally part of ~ uniab...
brif1 41348 Move a relation inside and...
brif2 41349 Move a relation inside and...
brif12 41350 Move a relation inside and...
pssexg 41351 The proper subset of a set...
pssn0 41352 A proper superset is nonem...
psspwb 41353 Classes are proper subclas...
xppss12 41354 Proper subset theorem for ...
coexd 41355 The composition of two set...
elpwbi 41356 Membership in a power set,...
imaopab 41357 The image of a class of or...
fnsnbt 41358 A function's domain is a s...
fnimasnd 41359 The image of a function by...
fvmptd4 41360 Deduction version of ~ fvm...
eqresfnbd 41361 Property of being the rest...
f1o2d2 41362 Sufficient condition for a...
fmpocos 41363 Composition of two functio...
ovmpogad 41364 Value of an operation give...
ofun 41365 A function operation of un...
dfqs2 41366 Alternate definition of qu...
dfqs3 41367 Alternate definition of qu...
qseq12d 41368 Equality theorem for quoti...
qsalrel 41369 The quotient set is equal ...
fsuppfund 41370 A finitely supported funct...
fsuppsssuppgd 41371 If the support of a functi...
fsuppss 41372 A subset of a finitely sup...
elmapssresd 41373 A restricted mapping is a ...
mapcod 41374 Compose two mappings. (Co...
fzosumm1 41375 Separate out the last term...
ccatcan2d 41376 Cancellation law for conca...
nelsubginvcld 41377 The inverse of a non-subgr...
nelsubgcld 41378 A non-subgroup-member plus...
nelsubgsubcld 41379 A non-subgroup-member minu...
rnasclg 41380 The set of injected scalar...
frlmfielbas 41381 The vectors of a finite fr...
frlmfzwrd 41382 A vector of a module with ...
frlmfzowrd 41383 A vector of a module with ...
frlmfzolen 41384 The dimension of a vector ...
frlmfzowrdb 41385 The vectors of a module wi...
frlmfzoccat 41386 The concatenation of two v...
frlmvscadiccat 41387 Scalar multiplication dist...
grpasscan2d 41388 An associative cancellatio...
grpcominv1 41389 If two elements commute, t...
grpcominv2 41390 If two elements commute, t...
finsubmsubg 41391 A submonoid of a finite gr...
crngcomd 41392 Multiplication is commutat...
crng12d 41393 Commutative/associative la...
imacrhmcl 41394 The image of a commutative...
rimrcl1 41395 Reverse closure of a ring ...
rimrcl2 41396 Reverse closure of a ring ...
rimcnv 41397 The converse of a ring iso...
rimco 41398 The composition of ring is...
ricsym 41399 Ring isomorphism is symmet...
rictr 41400 Ring isomorphism is transi...
riccrng1 41401 Ring isomorphism preserves...
riccrng 41402 A ring is commutative if a...
drnginvrn0d 41403 A multiplicative inverse i...
drngmulcanad 41404 Cancellation of a nonzero ...
drngmulcan2ad 41405 Cancellation of a nonzero ...
drnginvmuld 41406 Inverse of a nonzero produ...
ricdrng1 41407 A ring isomorphism maps a ...
ricdrng 41408 A ring is a division ring ...
ricfld 41409 A ring is a field if and o...
lvecgrp 41410 A vector space is a group....
lvecring 41411 The scalar component of a ...
frlm0vald 41412 All coordinates of the zer...
frlmsnic 41413 Given a free module with a...
uvccl 41414 A unit vector is a vector....
uvcn0 41415 A unit vector is nonzero. ...
pwselbasr 41416 The reverse direction of ~...
pwsgprod 41417 Finite products in a power...
psrbagres 41418 Restrict a bag of variable...
mpllmodd 41419 The polynomial ring is a l...
mplringd 41420 The polynomial ring is a r...
mplcrngd 41421 The polynomial ring is a c...
mplsubrgcl 41422 An element of a polynomial...
mhmcompl 41423 The composition of a monoi...
rhmmpllem1 41424 Lemma for ~ rhmmpl . A su...
rhmmpllem2 41425 Lemma for ~ rhmmpl . A su...
mhmcoaddmpl 41426 Show that the ring homomor...
rhmcomulmpl 41427 Show that the ring homomor...
rhmmpl 41428 Provide a ring homomorphis...
mplascl0 41429 The zero scalar as a polyn...
mplascl1 41430 The one scalar as a polyno...
mplmapghm 41431 The function ` H ` mapping...
evl0 41432 The zero polynomial evalua...
evlscl 41433 A polynomial over the ring...
evlsval3 41434 Give a formula for the pol...
evlsvval 41435 Give a formula for the eva...
evlsvvvallem 41436 Lemma for ~ evlsvvval akin...
evlsvvvallem2 41437 Lemma for theorems using ~...
evlsvvval 41438 Give a formula for the eva...
evlsscaval 41439 Polynomial evaluation buil...
evlsvarval 41440 Polynomial evaluation buil...
evlsbagval 41441 Polynomial evaluation buil...
evlsexpval 41442 Polynomial evaluation buil...
evlsaddval 41443 Polynomial evaluation buil...
evlsmulval 41444 Polynomial evaluation buil...
evlsmaprhm 41445 The function ` F ` mapping...
evlsevl 41446 Evaluation in a subring is...
evlcl 41447 A polynomial over the ring...
evlvvval 41448 Give a formula for the eva...
evlvvvallem 41449 Lemma for theorems using ~...
evladdval 41450 Polynomial evaluation buil...
evlmulval 41451 Polynomial evaluation buil...
selvcllem1 41452 ` T ` is an associative al...
selvcllem2 41453 ` D ` is a ring homomorphi...
selvcllem3 41454 The third argument passed ...
selvcllemh 41455 Apply the third argument (...
selvcllem4 41456 The fourth argument passed...
selvcllem5 41457 The fifth argument passed ...
selvcl 41458 Closure of the "variable s...
selvval2 41459 Value of the "variable sel...
selvvvval 41460 Recover the original polyn...
evlselvlem 41461 Lemma for ~ evlselv . Use...
evlselv 41462 Evaluating a selection of ...
selvadd 41463 The "variable selection" f...
selvmul 41464 The "variable selection" f...
fsuppind 41465 Induction on functions ` F...
fsuppssindlem1 41466 Lemma for ~ fsuppssind . ...
fsuppssindlem2 41467 Lemma for ~ fsuppssind . ...
fsuppssind 41468 Induction on functions ` F...
mhpind 41469 The homogeneous polynomial...
evlsmhpvvval 41470 Give a formula for the eva...
mhphflem 41471 Lemma for ~ mhphf . Add s...
mhphf 41472 A homogeneous polynomial d...
mhphf2 41473 A homogeneous polynomial d...
mhphf3 41474 A homogeneous polynomial d...
mhphf4 41475 A homogeneous polynomial d...
c0exALT 41476 Alternate proof of ~ c0ex ...
0cnALT3 41477 Alternate proof of ~ 0cn u...
elre0re 41478 Specialized version of ~ 0...
1t1e1ALT 41479 Alternate proof of ~ 1t1e1...
remulcan2d 41480 ~ mulcan2d for real number...
readdridaddlidd 41481 Given some real number ` B...
sn-1ne2 41482 A proof of ~ 1ne2 without ...
nnn1suc 41483 A positive integer that is...
nnadd1com 41484 Addition with 1 is commuta...
nnaddcom 41485 Addition is commutative fo...
nnaddcomli 41486 Version of ~ addcomli for ...
nnadddir 41487 Right-distributivity for n...
nnmul1com 41488 Multiplication with 1 is c...
nnmulcom 41489 Multiplication is commutat...
mvrrsubd 41490 Move a subtraction in the ...
laddrotrd 41491 Rotate the variables right...
raddcom12d 41492 Swap the first two variabl...
lsubrotld 41493 Rotate the variables left ...
lsubcom23d 41494 Swap the second and third ...
addsubeq4com 41495 Relation between sums and ...
sqsumi 41496 A sum squared. (Contribut...
negn0nposznnd 41497 Lemma for ~ dffltz . (Con...
sqmid3api 41498 Value of the square of the...
decaddcom 41499 Commute ones place in addi...
sqn5i 41500 The square of a number end...
sqn5ii 41501 The square of a number end...
decpmulnc 41502 Partial products algorithm...
decpmul 41503 Partial products algorithm...
sqdeccom12 41504 The square of a number in ...
sq3deccom12 41505 Variant of ~ sqdeccom12 wi...
4t5e20 41506 4 times 5 equals 20. (Con...
sq9 41507 The square of 9 is 81. (C...
235t711 41508 Calculate a product by lon...
ex-decpmul 41509 Example usage of ~ decpmul...
fz1sumconst 41510 The sum of ` N ` constant ...
fz1sump1 41511 Add one more term to a sum...
oddnumth 41512 The Odd Number Theorem. T...
nicomachus 41513 Nicomachus's Theorem. The...
sumcubes 41514 The sum of the first ` N `...
oexpreposd 41515 Lemma for ~ dffltz . TODO...
ltexp1d 41516 ~ ltmul1d for exponentiati...
ltexp1dd 41517 Raising both sides of 'les...
exp11nnd 41518 ~ sq11d for positive real ...
exp11d 41519 ~ exp11nnd for nonzero int...
0dvds0 41520 0 divides 0. (Contributed...
absdvdsabsb 41521 Divisibility is invariant ...
dvdsexpim 41522 ~ dvdssqim generalized to ...
gcdnn0id 41523 The ` gcd ` of a nonnegati...
gcdle1d 41524 The greatest common diviso...
gcdle2d 41525 The greatest common diviso...
dvdsexpad 41526 Deduction associated with ...
nn0rppwr 41527 If ` A ` and ` B ` are rel...
expgcd 41528 Exponentiation distributes...
nn0expgcd 41529 Exponentiation distributes...
zexpgcd 41530 Exponentiation distributes...
numdenexp 41531 ~ numdensq extended to non...
numexp 41532 ~ numsq extended to nonneg...
denexp 41533 ~ densq extended to nonneg...
dvdsexpnn 41534 ~ dvdssqlem generalized to...
dvdsexpnn0 41535 ~ dvdsexpnn generalized to...
dvdsexpb 41536 ~ dvdssq generalized to po...
posqsqznn 41537 When a positive rational s...
zrtelqelz 41538 ~ zsqrtelqelz generalized ...
zrtdvds 41539 A positive integer root di...
rtprmirr 41540 The root of a prime number...
resubval 41543 Value of real subtraction,...
renegeulemv 41544 Lemma for ~ renegeu and si...
renegeulem 41545 Lemma for ~ renegeu and si...
renegeu 41546 Existential uniqueness of ...
rernegcl 41547 Closure law for negative r...
renegadd 41548 Relationship between real ...
renegid 41549 Addition of a real number ...
reneg0addlid 41550 Negative zero is a left ad...
resubeulem1 41551 Lemma for ~ resubeu . A v...
resubeulem2 41552 Lemma for ~ resubeu . A v...
resubeu 41553 Existential uniqueness of ...
rersubcl 41554 Closure for real subtracti...
resubadd 41555 Relation between real subt...
resubaddd 41556 Relationship between subtr...
resubf 41557 Real subtraction is an ope...
repncan2 41558 Addition and subtraction o...
repncan3 41559 Addition and subtraction o...
readdsub 41560 Law for addition and subtr...
reladdrsub 41561 Move LHS of a sum into RHS...
reltsub1 41562 Subtraction from both side...
reltsubadd2 41563 'Less than' relationship b...
resubcan2 41564 Cancellation law for real ...
resubsub4 41565 Law for double subtraction...
rennncan2 41566 Cancellation law for real ...
renpncan3 41567 Cancellation law for real ...
repnpcan 41568 Cancellation law for addit...
reppncan 41569 Cancellation law for mixed...
resubidaddlidlem 41570 Lemma for ~ resubidaddlid ...
resubidaddlid 41571 Any real number subtracted...
resubdi 41572 Distribution of multiplica...
re1m1e0m0 41573 Equality of two left-addit...
sn-00idlem1 41574 Lemma for ~ sn-00id . (Co...
sn-00idlem2 41575 Lemma for ~ sn-00id . (Co...
sn-00idlem3 41576 Lemma for ~ sn-00id . (Co...
sn-00id 41577 ~ 00id proven without ~ ax...
re0m0e0 41578 Real number version of ~ 0...
readdlid 41579 Real number version of ~ a...
sn-addlid 41580 ~ addlid without ~ ax-mulc...
remul02 41581 Real number version of ~ m...
sn-0ne2 41582 ~ 0ne2 without ~ ax-mulcom...
remul01 41583 Real number version of ~ m...
resubid 41584 Subtraction of a real numb...
readdrid 41585 Real number version of ~ a...
resubid1 41586 Real number version of ~ s...
renegneg 41587 A real number is equal to ...
readdcan2 41588 Commuted version of ~ read...
renegid2 41589 Commuted version of ~ rene...
remulneg2d 41590 Product with negative is n...
sn-it0e0 41591 Proof of ~ it0e0 without ~...
sn-negex12 41592 A combination of ~ cnegex ...
sn-negex 41593 Proof of ~ cnegex without ...
sn-negex2 41594 Proof of ~ cnegex2 without...
sn-addcand 41595 ~ addcand without ~ ax-mul...
sn-addrid 41596 ~ addrid without ~ ax-mulc...
sn-addcan2d 41597 ~ addcan2d without ~ ax-mu...
reixi 41598 ~ ixi without ~ ax-mulcom ...
rei4 41599 ~ i4 without ~ ax-mulcom ....
sn-addid0 41600 A number that sums to itse...
sn-mul01 41601 ~ mul01 without ~ ax-mulco...
sn-subeu 41602 ~ negeu without ~ ax-mulco...
sn-subcl 41603 ~ subcl without ~ ax-mulco...
sn-subf 41604 ~ subf without ~ ax-mulcom...
resubeqsub 41605 Equivalence between real s...
subresre 41606 Subtraction restricted to ...
addinvcom 41607 A number commutes with its...
remulinvcom 41608 A left multiplicative inve...
remullid 41609 Commuted version of ~ ax-1...
sn-1ticom 41610 Lemma for ~ sn-mullid and ...
sn-mullid 41611 ~ mullid without ~ ax-mulc...
it1ei 41612 ` 1 ` is a multiplicative ...
ipiiie0 41613 The multiplicative inverse...
remulcand 41614 Commuted version of ~ remu...
sn-0tie0 41615 Lemma for ~ sn-mul02 . Co...
sn-mul02 41616 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 41617 ~ ltaddpos without ~ ax-mu...
sn-ltaddneg 41618 ~ ltaddneg without ~ ax-mu...
reposdif 41619 Comparison of two numbers ...
relt0neg1 41620 Comparison of a real and i...
relt0neg2 41621 Comparison of a real and i...
sn-addlt0d 41622 The sum of negative number...
sn-addgt0d 41623 The sum of positive number...
sn-nnne0 41624 ~ nnne0 without ~ ax-mulco...
reelznn0nn 41625 ~ elznn0nn restated using ...
nn0addcom 41626 Addition is commutative fo...
zaddcomlem 41627 Lemma for ~ zaddcom . (Co...
zaddcom 41628 Addition is commutative fo...
renegmulnnass 41629 Move multiplication by a n...
nn0mulcom 41630 Multiplication is commutat...
zmulcomlem 41631 Lemma for ~ zmulcom . (Co...
zmulcom 41632 Multiplication is commutat...
mulgt0con1dlem 41633 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 41634 Counterpart to ~ mulgt0con...
mulgt0con2d 41635 Lemma for ~ mulgt0b2d and ...
mulgt0b2d 41636 Biconditional, deductive f...
sn-ltmul2d 41637 ~ ltmul2d without ~ ax-mul...
sn-0lt1 41638 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 41639 ~ ltp1 without ~ ax-mulcom...
reneg1lt0 41640 Lemma for ~ sn-inelr . (C...
sn-inelr 41641 ~ inelr without ~ ax-mulco...
itrere 41642 ` _i ` times a real is rea...
retire 41643 Commuted version of ~ itre...
cnreeu 41644 The reals in the expressio...
sn-sup2 41645 ~ sup2 with exactly the sa...
prjspval 41648 Value of the projective sp...
prjsprel 41649 Utility theorem regarding ...
prjspertr 41650 The relation in ` PrjSp ` ...
prjsperref 41651 The relation in ` PrjSp ` ...
prjspersym 41652 The relation in ` PrjSp ` ...
prjsper 41653 The relation used to defin...
prjspreln0 41654 Two nonzero vectors are eq...
prjspvs 41655 A nonzero multiple of a ve...
prjsprellsp 41656 Two vectors are equivalent...
prjspeclsp 41657 The vectors equivalent to ...
prjspval2 41658 Alternate definition of pr...
prjspnval 41661 Value of the n-dimensional...
prjspnerlem 41662 A lemma showing that the e...
prjspnval2 41663 Value of the n-dimensional...
prjspner 41664 The relation used to defin...
prjspnvs 41665 A nonzero multiple of a ve...
prjspnssbas 41666 A projective point spans a...
prjspnn0 41667 A projective point is none...
0prjspnlem 41668 Lemma for ~ 0prjspn . The...
prjspnfv01 41669 Any vector is equivalent t...
prjspner01 41670 Any vector is equivalent t...
prjspner1 41671 Two vectors whose zeroth c...
0prjspnrel 41672 In the zero-dimensional pr...
0prjspn 41673 A zero-dimensional project...
prjcrvfval 41676 Value of the projective cu...
prjcrvval 41677 Value of the projective cu...
prjcrv0 41678 The "curve" (zero set) cor...
dffltz 41679 Fermat's Last Theorem (FLT...
fltmul 41680 A counterexample to FLT st...
fltdiv 41681 A counterexample to FLT st...
flt0 41682 A counterexample for FLT d...
fltdvdsabdvdsc 41683 Any factor of both ` A ` a...
fltabcoprmex 41684 A counterexample to FLT im...
fltaccoprm 41685 A counterexample to FLT wi...
fltbccoprm 41686 A counterexample to FLT wi...
fltabcoprm 41687 A counterexample to FLT wi...
infdesc 41688 Infinite descent. The hyp...
fltne 41689 If a counterexample to FLT...
flt4lem 41690 Raising a number to the fo...
flt4lem1 41691 Satisfy the antecedent use...
flt4lem2 41692 If ` A ` is even, ` B ` is...
flt4lem3 41693 Equivalent to ~ pythagtrip...
flt4lem4 41694 If the product of two copr...
flt4lem5 41695 In the context of the lemm...
flt4lem5elem 41696 Version of ~ fltaccoprm an...
flt4lem5a 41697 Part 1 of Equation 1 of ...
flt4lem5b 41698 Part 2 of Equation 1 of ...
flt4lem5c 41699 Part 2 of Equation 2 of ...
flt4lem5d 41700 Part 3 of Equation 2 of ...
flt4lem5e 41701 Satisfy the hypotheses of ...
flt4lem5f 41702 Final equation of ~...
flt4lem6 41703 Remove shared factors in a...
flt4lem7 41704 Convert ~ flt4lem5f into a...
nna4b4nsq 41705 Strengthening of Fermat's ...
fltltc 41706 ` ( C ^ N ) ` is the large...
fltnltalem 41707 Lemma for ~ fltnlta . A l...
fltnlta 41708 In a Fermat counterexample...
iddii 41709 Version of ~ a1ii with the...
bicomdALT 41710 Alternate proof of ~ bicom...
elabgw 41711 Membership in a class abst...
elab2gw 41712 Membership in a class abst...
elrab2w 41713 Membership in a restricted...
ruvALT 41714 Alternate proof of ~ ruv w...
sn-wcdeq 41715 Alternative to ~ wcdeq and...
sq45 41716 45 squared is 2025. (Cont...
sum9cubes 41717 The sum of the first nine ...
acos1half 41718 The arccosine of ` 1 / 2 `...
aprilfools2025 41719 An abuse of notation. (Co...
binom2d 41720 Deduction form of binom2. ...
cu3addd 41721 Cube of sum of three numbe...
sqnegd 41722 The square of the negative...
negexpidd 41723 The sum of a real number t...
rexlimdv3d 41724 An extended version of ~ r...
3cubeslem1 41725 Lemma for ~ 3cubes . (Con...
3cubeslem2 41726 Lemma for ~ 3cubes . Used...
3cubeslem3l 41727 Lemma for ~ 3cubes . (Con...
3cubeslem3r 41728 Lemma for ~ 3cubes . (Con...
3cubeslem3 41729 Lemma for ~ 3cubes . (Con...
3cubeslem4 41730 Lemma for ~ 3cubes . This...
3cubes 41731 Every rational number is a...
rntrclfvOAI 41732 The range of the transitiv...
moxfr 41733 Transfer at-most-one betwe...
imaiinfv 41734 Indexed intersection of an...
elrfi 41735 Elementhood in a set of re...
elrfirn 41736 Elementhood in a set of re...
elrfirn2 41737 Elementhood in a set of re...
cmpfiiin 41738 In a compact topology, a s...
ismrcd1 41739 Any function from the subs...
ismrcd2 41740 Second half of ~ ismrcd1 ....
istopclsd 41741 A closure function which s...
ismrc 41742 A function is a Moore clos...
isnacs 41745 Expand definition of Noeth...
nacsfg 41746 In a Noetherian-type closu...
isnacs2 41747 Express Noetherian-type cl...
mrefg2 41748 Slight variation on finite...
mrefg3 41749 Slight variation on finite...
nacsacs 41750 A closure system of Noethe...
isnacs3 41751 A choice-free order equiva...
incssnn0 41752 Transitivity induction of ...
nacsfix 41753 An increasing sequence of ...
constmap 41754 A constant (represented wi...
mapco2g 41755 Renaming indices in a tupl...
mapco2 41756 Post-composition (renaming...
mapfzcons 41757 Extending a one-based mapp...
mapfzcons1 41758 Recover prefix mapping fro...
mapfzcons1cl 41759 A nonempty mapping has a p...
mapfzcons2 41760 Recover added element from...
mptfcl 41761 Interpret range of a maps-...
mzpclval 41766 Substitution lemma for ` m...
elmzpcl 41767 Double substitution lemma ...
mzpclall 41768 The set of all functions w...
mzpcln0 41769 Corollary of ~ mzpclall : ...
mzpcl1 41770 Defining property 1 of a p...
mzpcl2 41771 Defining property 2 of a p...
mzpcl34 41772 Defining properties 3 and ...
mzpval 41773 Value of the ` mzPoly ` fu...
dmmzp 41774 ` mzPoly ` is defined for ...
mzpincl 41775 Polynomial closedness is a...
mzpconst 41776 Constant functions are pol...
mzpf 41777 A polynomial function is a...
mzpproj 41778 A projection function is p...
mzpadd 41779 The pointwise sum of two p...
mzpmul 41780 The pointwise product of t...
mzpconstmpt 41781 A constant function expres...
mzpaddmpt 41782 Sum of polynomial function...
mzpmulmpt 41783 Product of polynomial func...
mzpsubmpt 41784 The difference of two poly...
mzpnegmpt 41785 Negation of a polynomial f...
mzpexpmpt 41786 Raise a polynomial functio...
mzpindd 41787 "Structural" induction to ...
mzpmfp 41788 Relationship between multi...
mzpsubst 41789 Substituting polynomials f...
mzprename 41790 Simplified version of ~ mz...
mzpresrename 41791 A polynomial is a polynomi...
mzpcompact2lem 41792 Lemma for ~ mzpcompact2 . ...
mzpcompact2 41793 Polynomials are finitary o...
coeq0i 41794 ~ coeq0 but without explic...
fzsplit1nn0 41795 Split a finite 1-based set...
eldiophb 41798 Initial expression of Diop...
eldioph 41799 Condition for a set to be ...
diophrw 41800 Renaming and adding unused...
eldioph2lem1 41801 Lemma for ~ eldioph2 . Co...
eldioph2lem2 41802 Lemma for ~ eldioph2 . Co...
eldioph2 41803 Construct a Diophantine se...
eldioph2b 41804 While Diophantine sets wer...
eldiophelnn0 41805 Remove antecedent on ` B `...
eldioph3b 41806 Define Diophantine sets in...
eldioph3 41807 Inference version of ~ eld...
ellz1 41808 Membership in a lower set ...
lzunuz 41809 The union of a lower set o...
fz1eqin 41810 Express a one-based finite...
lzenom 41811 Lower integers are countab...
elmapresaunres2 41812 ~ fresaunres2 transposed t...
diophin 41813 If two sets are Diophantin...
diophun 41814 If two sets are Diophantin...
eldiophss 41815 Diophantine sets are sets ...
diophrex 41816 Projecting a Diophantine s...
eq0rabdioph 41817 This is the first of a num...
eqrabdioph 41818 Diophantine set builder fo...
0dioph 41819 The null set is Diophantin...
vdioph 41820 The "universal" set (as la...
anrabdioph 41821 Diophantine set builder fo...
orrabdioph 41822 Diophantine set builder fo...
3anrabdioph 41823 Diophantine set builder fo...
3orrabdioph 41824 Diophantine set builder fo...
2sbcrex 41825 Exchange an existential qu...
sbcrexgOLD 41826 Interchange class substitu...
2sbcrexOLD 41827 Exchange an existential qu...
sbc2rex 41828 Exchange a substitution wi...
sbc2rexgOLD 41829 Exchange a substitution wi...
sbc4rex 41830 Exchange a substitution wi...
sbc4rexgOLD 41831 Exchange a substitution wi...
sbcrot3 41832 Rotate a sequence of three...
sbcrot5 41833 Rotate a sequence of five ...
sbccomieg 41834 Commute two explicit subst...
rexrabdioph 41835 Diophantine set builder fo...
rexfrabdioph 41836 Diophantine set builder fo...
2rexfrabdioph 41837 Diophantine set builder fo...
3rexfrabdioph 41838 Diophantine set builder fo...
4rexfrabdioph 41839 Diophantine set builder fo...
6rexfrabdioph 41840 Diophantine set builder fo...
7rexfrabdioph 41841 Diophantine set builder fo...
rabdiophlem1 41842 Lemma for arithmetic dioph...
rabdiophlem2 41843 Lemma for arithmetic dioph...
elnn0rabdioph 41844 Diophantine set builder fo...
rexzrexnn0 41845 Rewrite an existential qua...
lerabdioph 41846 Diophantine set builder fo...
eluzrabdioph 41847 Diophantine set builder fo...
elnnrabdioph 41848 Diophantine set builder fo...
ltrabdioph 41849 Diophantine set builder fo...
nerabdioph 41850 Diophantine set builder fo...
dvdsrabdioph 41851 Divisibility is a Diophant...
eldioph4b 41852 Membership in ` Dioph ` ex...
eldioph4i 41853 Forward-only version of ~ ...
diophren 41854 Change variables in a Diop...
rabrenfdioph 41855 Change variable numbers in...
rabren3dioph 41856 Change variable numbers in...
fphpd 41857 Pigeonhole principle expre...
fphpdo 41858 Pigeonhole principle for s...
ctbnfien 41859 An infinite subset of a co...
fiphp3d 41860 Infinite pigeonhole princi...
rencldnfilem 41861 Lemma for ~ rencldnfi . (...
rencldnfi 41862 A set of real numbers whic...
irrapxlem1 41863 Lemma for ~ irrapx1 . Div...
irrapxlem2 41864 Lemma for ~ irrapx1 . Two...
irrapxlem3 41865 Lemma for ~ irrapx1 . By ...
irrapxlem4 41866 Lemma for ~ irrapx1 . Eli...
irrapxlem5 41867 Lemma for ~ irrapx1 . Swi...
irrapxlem6 41868 Lemma for ~ irrapx1 . Exp...
irrapx1 41869 Dirichlet's approximation ...
pellexlem1 41870 Lemma for ~ pellex . Arit...
pellexlem2 41871 Lemma for ~ pellex . Arit...
pellexlem3 41872 Lemma for ~ pellex . To e...
pellexlem4 41873 Lemma for ~ pellex . Invo...
pellexlem5 41874 Lemma for ~ pellex . Invo...
pellexlem6 41875 Lemma for ~ pellex . Doin...
pellex 41876 Every Pell equation has a ...
pell1qrval 41887 Value of the set of first-...
elpell1qr 41888 Membership in a first-quad...
pell14qrval 41889 Value of the set of positi...
elpell14qr 41890 Membership in the set of p...
pell1234qrval 41891 Value of the set of genera...
elpell1234qr 41892 Membership in the set of g...
pell1234qrre 41893 General Pell solutions are...
pell1234qrne0 41894 No solution to a Pell equa...
pell1234qrreccl 41895 General solutions of the P...
pell1234qrmulcl 41896 General solutions of the P...
pell14qrss1234 41897 A positive Pell solution i...
pell14qrre 41898 A positive Pell solution i...
pell14qrne0 41899 A positive Pell solution i...
pell14qrgt0 41900 A positive Pell solution i...
pell14qrrp 41901 A positive Pell solution i...
pell1234qrdich 41902 A general Pell solution is...
elpell14qr2 41903 A number is a positive Pel...
pell14qrmulcl 41904 Positive Pell solutions ar...
pell14qrreccl 41905 Positive Pell solutions ar...
pell14qrdivcl 41906 Positive Pell solutions ar...
pell14qrexpclnn0 41907 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 41908 Positive Pell solutions ar...
pell1qrss14 41909 First-quadrant Pell soluti...
pell14qrdich 41910 A positive Pell solution i...
pell1qrge1 41911 A Pell solution in the fir...
pell1qr1 41912 1 is a Pell solution and i...
elpell1qr2 41913 The first quadrant solutio...
pell1qrgaplem 41914 Lemma for ~ pell1qrgap . ...
pell1qrgap 41915 First-quadrant Pell soluti...
pell14qrgap 41916 Positive Pell solutions ar...
pell14qrgapw 41917 Positive Pell solutions ar...
pellqrexplicit 41918 Condition for a calculated...
infmrgelbi 41919 Any lower bound of a nonem...
pellqrex 41920 There is a nontrivial solu...
pellfundval 41921 Value of the fundamental s...
pellfundre 41922 The fundamental solution o...
pellfundge 41923 Lower bound on the fundame...
pellfundgt1 41924 Weak lower bound on the Pe...
pellfundlb 41925 A nontrivial first quadran...
pellfundglb 41926 If a real is larger than t...
pellfundex 41927 The fundamental solution a...
pellfund14gap 41928 There are no solutions bet...
pellfundrp 41929 The fundamental Pell solut...
pellfundne1 41930 The fundamental Pell solut...
reglogcl 41931 General logarithm is a rea...
reglogltb 41932 General logarithm preserve...
reglogleb 41933 General logarithm preserve...
reglogmul 41934 Multiplication law for gen...
reglogexp 41935 Power law for general log....
reglogbas 41936 General log of the base is...
reglog1 41937 General log of 1 is 0. (C...
reglogexpbas 41938 General log of a power of ...
pellfund14 41939 Every positive Pell soluti...
pellfund14b 41940 The positive Pell solution...
rmxfval 41945 Value of the X sequence. ...
rmyfval 41946 Value of the Y sequence. ...
rmspecsqrtnq 41947 The discriminant used to d...
rmspecnonsq 41948 The discriminant used to d...
qirropth 41949 This lemma implements the ...
rmspecfund 41950 The base of exponent used ...
rmxyelqirr 41951 The solutions used to cons...
rmxyelqirrOLD 41952 Obsolete version of ~ rmxy...
rmxypairf1o 41953 The function used to extra...
rmxyelxp 41954 Lemma for ~ frmx and ~ frm...
frmx 41955 The X sequence is a nonneg...
frmy 41956 The Y sequence is an integ...
rmxyval 41957 Main definition of the X a...
rmspecpos 41958 The discriminant used to d...
rmxycomplete 41959 The X and Y sequences take...
rmxynorm 41960 The X and Y sequences defi...
rmbaserp 41961 The base of exponentiation...
rmxyneg 41962 Negation law for X and Y s...
rmxyadd 41963 Addition formula for X and...
rmxy1 41964 Value of the X and Y seque...
rmxy0 41965 Value of the X and Y seque...
rmxneg 41966 Negation law (even functio...
rmx0 41967 Value of X sequence at 0. ...
rmx1 41968 Value of X sequence at 1. ...
rmxadd 41969 Addition formula for X seq...
rmyneg 41970 Negation formula for Y seq...
rmy0 41971 Value of Y sequence at 0. ...
rmy1 41972 Value of Y sequence at 1. ...
rmyadd 41973 Addition formula for Y seq...
rmxp1 41974 Special addition-of-1 form...
rmyp1 41975 Special addition of 1 form...
rmxm1 41976 Subtraction of 1 formula f...
rmym1 41977 Subtraction of 1 formula f...
rmxluc 41978 The X sequence is a Lucas ...
rmyluc 41979 The Y sequence is a Lucas ...
rmyluc2 41980 Lucas sequence property of...
rmxdbl 41981 "Double-angle formula" for...
rmydbl 41982 "Double-angle formula" for...
monotuz 41983 A function defined on an u...
monotoddzzfi 41984 A function which is odd an...
monotoddzz 41985 A function (given implicit...
oddcomabszz 41986 An odd function which take...
2nn0ind 41987 Induction on nonnegative i...
zindbi 41988 Inductively transfer a pro...
rmxypos 41989 For all nonnegative indice...
ltrmynn0 41990 The Y-sequence is strictly...
ltrmxnn0 41991 The X-sequence is strictly...
lermxnn0 41992 The X-sequence is monotoni...
rmxnn 41993 The X-sequence is defined ...
ltrmy 41994 The Y-sequence is strictly...
rmyeq0 41995 Y is zero only at zero. (...
rmyeq 41996 Y is one-to-one. (Contrib...
lermy 41997 Y is monotonic (non-strict...
rmynn 41998 ` rmY ` is positive for po...
rmynn0 41999 ` rmY ` is nonnegative for...
rmyabs 42000 ` rmY ` commutes with ` ab...
jm2.24nn 42001 X(n) is strictly greater t...
jm2.17a 42002 First half of lemma 2.17 o...
jm2.17b 42003 Weak form of the second ha...
jm2.17c 42004 Second half of lemma 2.17 ...
jm2.24 42005 Lemma 2.24 of [JonesMatija...
rmygeid 42006 Y(n) increases faster than...
congtr 42007 A wff of the form ` A || (...
congadd 42008 If two pairs of numbers ar...
congmul 42009 If two pairs of numbers ar...
congsym 42010 Congruence mod ` A ` is a ...
congneg 42011 If two integers are congru...
congsub 42012 If two pairs of numbers ar...
congid 42013 Every integer is congruent...
mzpcong 42014 Polynomials commute with c...
congrep 42015 Every integer is congruent...
congabseq 42016 If two integers are congru...
acongid 42017 A wff like that in this th...
acongsym 42018 Symmetry of alternating co...
acongneg2 42019 Negate right side of alter...
acongtr 42020 Transitivity of alternatin...
acongeq12d 42021 Substitution deduction for...
acongrep 42022 Every integer is alternati...
fzmaxdif 42023 Bound on the difference be...
fzneg 42024 Reflection of a finite ran...
acongeq 42025 Two numbers in the fundame...
dvdsacongtr 42026 Alternating congruence pas...
coprmdvdsb 42027 Multiplication by a coprim...
modabsdifz 42028 Divisibility in terms of m...
dvdsabsmod0 42029 Divisibility in terms of m...
jm2.18 42030 Theorem 2.18 of [JonesMati...
jm2.19lem1 42031 Lemma for ~ jm2.19 . X an...
jm2.19lem2 42032 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 42033 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 42034 Lemma for ~ jm2.19 . Exte...
jm2.19 42035 Lemma 2.19 of [JonesMatija...
jm2.21 42036 Lemma for ~ jm2.20nn . Ex...
jm2.22 42037 Lemma for ~ jm2.20nn . Ap...
jm2.23 42038 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 42039 Lemma 2.20 of [JonesMatija...
jm2.25lem1 42040 Lemma for ~ jm2.26 . (Con...
jm2.25 42041 Lemma for ~ jm2.26 . Rema...
jm2.26a 42042 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 42043 Lemma for ~ jm2.26 . Use ...
jm2.26 42044 Lemma 2.26 of [JonesMatija...
jm2.15nn0 42045 Lemma 2.15 of [JonesMatija...
jm2.16nn0 42046 Lemma 2.16 of [JonesMatija...
jm2.27a 42047 Lemma for ~ jm2.27 . Reve...
jm2.27b 42048 Lemma for ~ jm2.27 . Expa...
jm2.27c 42049 Lemma for ~ jm2.27 . Forw...
jm2.27 42050 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 42051 Lemma for ~ rmydioph . Su...
jm2.27dlem2 42052 Lemma for ~ rmydioph . Th...
jm2.27dlem3 42053 Lemma for ~ rmydioph . In...
jm2.27dlem4 42054 Lemma for ~ rmydioph . In...
jm2.27dlem5 42055 Lemma for ~ rmydioph . Us...
rmydioph 42056 ~ jm2.27 restated in terms...
rmxdiophlem 42057 X can be expressed in term...
rmxdioph 42058 X is a Diophantine functio...
jm3.1lem1 42059 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 42060 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 42061 Lemma for ~ jm3.1 . (Cont...
jm3.1 42062 Diophantine expression for...
expdiophlem1 42063 Lemma for ~ expdioph . Fu...
expdiophlem2 42064 Lemma for ~ expdioph . Ex...
expdioph 42065 The exponential function i...
setindtr 42066 Set induction for sets con...
setindtrs 42067 Set induction scheme witho...
dford3lem1 42068 Lemma for ~ dford3 . (Con...
dford3lem2 42069 Lemma for ~ dford3 . (Con...
dford3 42070 Ordinals are precisely the...
dford4 42071 ~ dford3 expressed in prim...
wopprc 42072 Unrelated: Wiener pairs t...
rpnnen3lem 42073 Lemma for ~ rpnnen3 . (Co...
rpnnen3 42074 Dedekind cut injection of ...
axac10 42075 Characterization of choice...
harinf 42076 The Hartogs number of an i...
wdom2d2 42077 Deduction for weak dominan...
ttac 42078 Tarski's theorem about cho...
pw2f1ocnv 42079 Define a bijection between...
pw2f1o2 42080 Define a bijection between...
pw2f1o2val 42081 Function value of the ~ pw...
pw2f1o2val2 42082 Membership in a mapped set...
soeq12d 42083 Equality deduction for tot...
freq12d 42084 Equality deduction for fou...
weeq12d 42085 Equality deduction for wel...
limsuc2 42086 Limit ordinals in the sens...
wepwsolem 42087 Transfer an ordering on ch...
wepwso 42088 A well-ordering induces a ...
dnnumch1 42089 Define an enumeration of a...
dnnumch2 42090 Define an enumeration (wea...
dnnumch3lem 42091 Value of the ordinal injec...
dnnumch3 42092 Define an injection from a...
dnwech 42093 Define a well-ordering fro...
fnwe2val 42094 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 42095 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 42096 Lemma for ~ fnwe2 . An el...
fnwe2lem3 42097 Lemma for ~ fnwe2 . Trich...
fnwe2 42098 A well-ordering can be con...
aomclem1 42099 Lemma for ~ dfac11 . This...
aomclem2 42100 Lemma for ~ dfac11 . Succ...
aomclem3 42101 Lemma for ~ dfac11 . Succ...
aomclem4 42102 Lemma for ~ dfac11 . Limi...
aomclem5 42103 Lemma for ~ dfac11 . Comb...
aomclem6 42104 Lemma for ~ dfac11 . Tran...
aomclem7 42105 Lemma for ~ dfac11 . ` ( R...
aomclem8 42106 Lemma for ~ dfac11 . Perf...
dfac11 42107 The right-hand side of thi...
kelac1 42108 Kelley's choice, basic for...
kelac2lem 42109 Lemma for ~ kelac2 and ~ d...
kelac2 42110 Kelley's choice, most comm...
dfac21 42111 Tychonoff's theorem is a c...
islmodfg 42114 Property of a finitely gen...
islssfg 42115 Property of a finitely gen...
islssfg2 42116 Property of a finitely gen...
islssfgi 42117 Finitely spanned subspaces...
fglmod 42118 Finitely generated left mo...
lsmfgcl 42119 The sum of two finitely ge...
islnm 42122 Property of being a Noethe...
islnm2 42123 Property of being a Noethe...
lnmlmod 42124 A Noetherian left module i...
lnmlssfg 42125 A submodule of Noetherian ...
lnmlsslnm 42126 All submodules of a Noethe...
lnmfg 42127 A Noetherian left module i...
kercvrlsm 42128 The domain of a linear fun...
lmhmfgima 42129 A homomorphism maps finite...
lnmepi 42130 Epimorphic images of Noeth...
lmhmfgsplit 42131 If the kernel and range of...
lmhmlnmsplit 42132 If the kernel and range of...
lnmlmic 42133 Noetherian is an invariant...
pwssplit4 42134 Splitting for structure po...
filnm 42135 Finite left modules are No...
pwslnmlem0 42136 Zeroeth powers are Noether...
pwslnmlem1 42137 First powers are Noetheria...
pwslnmlem2 42138 A sum of powers is Noether...
pwslnm 42139 Finite powers of Noetheria...
unxpwdom3 42140 Weaker version of ~ unxpwd...
pwfi2f1o 42141 The ~ pw2f1o bijection rel...
pwfi2en 42142 Finitely supported indicat...
frlmpwfi 42143 Formal linear combinations...
gicabl 42144 Being Abelian is a group i...
imasgim 42145 A relabeling of the elemen...
isnumbasgrplem1 42146 A set which is equipollent...
harn0 42147 The Hartogs number of a se...
numinfctb 42148 A numerable infinite set c...
isnumbasgrplem2 42149 If the (to be thought of a...
isnumbasgrplem3 42150 Every nonempty numerable s...
isnumbasabl 42151 A set is numerable iff it ...
isnumbasgrp 42152 A set is numerable iff it ...
dfacbasgrp 42153 A choice equivalent in abs...
islnr 42156 Property of a left-Noether...
lnrring 42157 Left-Noetherian rings are ...
lnrlnm 42158 Left-Noetherian rings have...
islnr2 42159 Property of being a left-N...
islnr3 42160 Relate left-Noetherian rin...
lnr2i 42161 Given an ideal in a left-N...
lpirlnr 42162 Left principal ideal rings...
lnrfrlm 42163 Finite-dimensional free mo...
lnrfg 42164 Finitely-generated modules...
lnrfgtr 42165 A submodule of a finitely ...
hbtlem1 42168 Value of the leading coeff...
hbtlem2 42169 Leading coefficient ideals...
hbtlem7 42170 Functionality of leading c...
hbtlem4 42171 The leading ideal function...
hbtlem3 42172 The leading ideal function...
hbtlem5 42173 The leading ideal function...
hbtlem6 42174 There is a finite set of p...
hbt 42175 The Hilbert Basis Theorem ...
dgrsub2 42180 Subtracting two polynomial...
elmnc 42181 Property of a monic polyno...
mncply 42182 A monic polynomial is a po...
mnccoe 42183 A monic polynomial has lea...
mncn0 42184 A monic polynomial is not ...
dgraaval 42189 Value of the degree functi...
dgraalem 42190 Properties of the degree o...
dgraacl 42191 Closure of the degree func...
dgraaf 42192 Degree function on algebra...
dgraaub 42193 Upper bound on degree of a...
dgraa0p 42194 A rational polynomial of d...
mpaaeu 42195 An algebraic number has ex...
mpaaval 42196 Value of the minimal polyn...
mpaalem 42197 Properties of the minimal ...
mpaacl 42198 Minimal polynomial is a po...
mpaadgr 42199 Minimal polynomial has deg...
mpaaroot 42200 The minimal polynomial of ...
mpaamn 42201 Minimal polynomial is moni...
itgoval 42206 Value of the integral-over...
aaitgo 42207 The standard algebraic num...
itgoss 42208 An integral element is int...
itgocn 42209 All integral elements are ...
cnsrexpcl 42210 Exponentiation is closed i...
fsumcnsrcl 42211 Finite sums are closed in ...
cnsrplycl 42212 Polynomials are closed in ...
rgspnval 42213 Value of the ring-span of ...
rgspncl 42214 The ring-span of a set is ...
rgspnssid 42215 The ring-span of a set con...
rgspnmin 42216 The ring-span is contained...
rgspnid 42217 The span of a subring is i...
rngunsnply 42218 Adjoining one element to a...
flcidc 42219 Finite linear combinations...
algstr 42222 Lemma to shorten proofs of...
algbase 42223 The base set of a construc...
algaddg 42224 The additive operation of ...
algmulr 42225 The multiplicative operati...
algsca 42226 The set of scalars of a co...
algvsca 42227 The scalar product operati...
mendval 42228 Value of the module endomo...
mendbas 42229 Base set of the module end...
mendplusgfval 42230 Addition in the module end...
mendplusg 42231 A specific addition in the...
mendmulrfval 42232 Multiplication in the modu...
mendmulr 42233 A specific multiplication ...
mendsca 42234 The module endomorphism al...
mendvscafval 42235 Scalar multiplication in t...
mendvsca 42236 A specific scalar multipli...
mendring 42237 The module endomorphism al...
mendlmod 42238 The module endomorphism al...
mendassa 42239 The module endomorphism al...
idomrootle 42240 No element of an integral ...
idomodle 42241 Limit on the number of ` N...
fiuneneq 42242 Two finite sets of equal s...
idomsubgmo 42243 The units of an integral d...
proot1mul 42244 Any primitive ` N ` -th ro...
proot1hash 42245 If an integral domain has ...
proot1ex 42246 The complex field has prim...
isdomn3 42249 Nonzero elements form a mu...
mon1pid 42250 Monicity and degree of the...
mon1psubm 42251 Monic polynomials are a mu...
deg1mhm 42252 Homomorphic property of th...
cytpfn 42253 Functionality of the cyclo...
cytpval 42254 Substitutions for the Nth ...
fgraphopab 42255 Express a function as a su...
fgraphxp 42256 Express a function as a su...
hausgraph 42257 The graph of a continuous ...
r1sssucd 42262 Deductive form of ~ r1sssu...
iocunico 42263 Split an open interval int...
iocinico 42264 The intersection of two se...
iocmbl 42265 An open-below, closed-abov...
cnioobibld 42266 A bounded, continuous func...
arearect 42267 The area of a rectangle wh...
areaquad 42268 The area of a quadrilatera...
uniel 42269 Two ways to say a union is...
unielss 42270 Two ways to say the union ...
unielid 42271 Two ways to say the union ...
ssunib 42272 Two ways to say a class is...
rp-intrabeq 42273 Equality theorem for supre...
rp-unirabeq 42274 Equality theorem for infim...
onmaxnelsup 42275 Two ways to say the maximu...
onsupneqmaxlim0 42276 If the supremum of a class...
onsupcl2 42277 The supremum of a set of o...
onuniintrab 42278 The union of a set of ordi...
onintunirab 42279 The intersection of a non-...
onsupnmax 42280 If the union of a class of...
onsupuni 42281 The supremum of a set of o...
onsupuni2 42282 The supremum of a set of o...
onsupintrab 42283 The supremum of a set of o...
onsupintrab2 42284 The supremum of a set of o...
onsupcl3 42285 The supremum of a set of o...
onsupex3 42286 The supremum of a set of o...
onuniintrab2 42287 The union of a set of ordi...
oninfint 42288 The infimum of a non-empty...
oninfunirab 42289 The infimum of a non-empty...
oninfcl2 42290 The infimum of a non-empty...
onsupmaxb 42291 The union of a class of or...
onexgt 42292 For any ordinal, there is ...
onexomgt 42293 For any ordinal, there is ...
omlimcl2 42294 The product of a limit ord...
onexlimgt 42295 For any ordinal, there is ...
onexoegt 42296 For any ordinal, there is ...
oninfex2 42297 The infimum of a non-empty...
onsupeqmax 42298 Condition when the supremu...
onsupeqnmax 42299 Condition when the supremu...
onsuplub 42300 The supremum of a set of o...
onsupnub 42301 An upper bound of a set of...
onfisupcl 42302 Sufficient condition when ...
onelord 42303 Every element of a ordinal...
onepsuc 42304 Every ordinal is less than...
epsoon 42305 The ordinals are strictly ...
epirron 42306 The strict order on the or...
oneptr 42307 The strict order on the or...
oneltr 42308 The elementhood relation o...
oneptri 42309 The strict, complete (line...
oneltri 42310 The elementhood relation o...
ordeldif 42311 Membership in the differen...
ordeldifsucon 42312 Membership in the differen...
ordeldif1o 42313 Membership in the differen...
ordne0gt0 42314 Ordinal zero is less than ...
ondif1i 42315 Ordinal zero is less than ...
onsucelab 42316 The successor of every ord...
dflim6 42317 A limit ordinal is a non-z...
limnsuc 42318 A limit ordinal is not an ...
onsucss 42319 If one ordinal is less tha...
ordnexbtwnsuc 42320 For any distinct pair of o...
orddif0suc 42321 For any distinct pair of o...
onsucf1lem 42322 For ordinals, the successo...
onsucf1olem 42323 The successor operation is...
onsucrn 42324 The successor operation is...
onsucf1o 42325 The successor operation is...
dflim7 42326 A limit ordinal is a non-z...
onov0suclim 42327 Compactly express rules fo...
oa0suclim 42328 Closed form expression of ...
om0suclim 42329 Closed form expression of ...
oe0suclim 42330 Closed form expression of ...
oaomoecl 42331 The operations of addition...
onsupsucismax 42332 If the union of a set of o...
onsssupeqcond 42333 If for every element of a ...
limexissup 42334 An ordinal which is a limi...
limiun 42335 A limit ordinal is the uni...
limexissupab 42336 An ordinal which is a limi...
om1om1r 42337 Ordinal one is both a left...
oe0rif 42338 Ordinal zero raised to any...
oasubex 42339 While subtraction can't be...
nnamecl 42340 Natural numbers are closed...
onsucwordi 42341 The successor operation pr...
oalim2cl 42342 The ordinal sum of any ord...
oaltublim 42343 Given ` C ` is a limit ord...
oaordi3 42344 Ordinal addition of the sa...
oaord3 42345 When the same ordinal is a...
1oaomeqom 42346 Ordinal one plus omega is ...
oaabsb 42347 The right addend absorbs t...
oaordnrex 42348 When omega is added on the...
oaordnr 42349 When the same ordinal is a...
omge1 42350 Any non-zero ordinal produ...
omge2 42351 Any non-zero ordinal produ...
omlim2 42352 The non-zero product with ...
omord2lim 42353 Given a limit ordinal, the...
omord2i 42354 Ordinal multiplication of ...
omord2com 42355 When the same non-zero ord...
2omomeqom 42356 Ordinal two times omega is...
omnord1ex 42357 When omega is multiplied o...
omnord1 42358 When the same non-zero ord...
oege1 42359 Any non-zero ordinal power...
oege2 42360 Any power of an ordinal at...
rp-oelim2 42361 The power of an ordinal at...
oeord2lim 42362 Given a limit ordinal, the...
oeord2i 42363 Ordinal exponentiation of ...
oeord2com 42364 When the same base at leas...
nnoeomeqom 42365 Any natural number at leas...
df3o2 42366 Ordinal 3 is the unordered...
df3o3 42367 Ordinal 3, fully expanded....
oenord1ex 42368 When ordinals two and thre...
oenord1 42369 When two ordinals (both at...
oaomoencom 42370 Ordinal addition, multipli...
oenassex 42371 Ordinal two raised to two ...
oenass 42372 Ordinal exponentiation is ...
cantnftermord 42373 For terms of the form of a...
cantnfub 42374 Given a finite number of t...
cantnfub2 42375 Given a finite number of t...
bropabg 42376 Equivalence for two classe...
cantnfresb 42377 A Cantor normal form which...
cantnf2 42378 For every ordinal, ` A ` ,...
oawordex2 42379 If ` C ` is between ` A ` ...
nnawordexg 42380 If an ordinal, ` B ` , is ...
succlg 42381 Closure law for ordinal su...
dflim5 42382 A limit ordinal is either ...
oacl2g 42383 Closure law for ordinal ad...
onmcl 42384 If an ordinal is less than...
omabs2 42385 Ordinal multiplication by ...
omcl2 42386 Closure law for ordinal mu...
omcl3g 42387 Closure law for ordinal mu...
ordsssucb 42388 An ordinal number is less ...
tfsconcatlem 42389 Lemma for ~ tfsconcatun . ...
tfsconcatun 42390 The concatenation of two t...
tfsconcatfn 42391 The concatenation of two t...
tfsconcatfv1 42392 An early value of the conc...
tfsconcatfv2 42393 A latter value of the conc...
tfsconcatfv 42394 The value of the concatena...
tfsconcatrn 42395 The range of the concatena...
tfsconcatfo 42396 The concatenation of two t...
tfsconcatb0 42397 The concatentation with th...
tfsconcat0i 42398 The concatentation with th...
tfsconcat0b 42399 The concatentation with th...
tfsconcat00 42400 The concatentation of two ...
tfsconcatrev 42401 If the domain of a transfi...
tfsconcatrnss12 42402 The range of the concatena...
tfsconcatrnss 42403 The concatenation of trans...
tfsconcatrnsson 42404 The concatenation of trans...
tfsnfin 42405 A transfinite sequence is ...
rp-tfslim 42406 The limit of a sequence of...
ofoafg 42407 Addition operator for func...
ofoaf 42408 Addition operator for func...
ofoafo 42409 Addition operator for func...
ofoacl 42410 Closure law for component ...
ofoaid1 42411 Identity law for component...
ofoaid2 42412 Identity law for component...
ofoaass 42413 Component-wise addition of...
ofoacom 42414 Component-wise addition of...
naddcnff 42415 Addition operator for Cant...
naddcnffn 42416 Addition operator for Cant...
naddcnffo 42417 Addition of Cantor normal ...
naddcnfcl 42418 Closure law for component-...
naddcnfcom 42419 Component-wise ordinal add...
naddcnfid1 42420 Identity law for component...
naddcnfid2 42421 Identity law for component...
naddcnfass 42422 Component-wise addition of...
onsucunifi 42423 The successor to the union...
sucunisn 42424 The successor to the union...
onsucunipr 42425 The successor to the union...
onsucunitp 42426 The successor to the union...
oaun3lem1 42427 The class of all ordinal s...
oaun3lem2 42428 The class of all ordinal s...
oaun3lem3 42429 The class of all ordinal s...
oaun3lem4 42430 The class of all ordinal s...
rp-abid 42431 Two ways to express a clas...
oadif1lem 42432 Express the set difference...
oadif1 42433 Express the set difference...
oaun2 42434 Ordinal addition as a unio...
oaun3 42435 Ordinal addition as a unio...
naddov4 42436 Alternate expression for n...
nadd2rabtr 42437 The set of ordinals which ...
nadd2rabord 42438 The set of ordinals which ...
nadd2rabex 42439 The class of ordinals whic...
nadd2rabon 42440 The set of ordinals which ...
nadd1rabtr 42441 The set of ordinals which ...
nadd1rabord 42442 The set of ordinals which ...
nadd1rabex 42443 The class of ordinals whic...
nadd1rabon 42444 The set of ordinals which ...
nadd1suc 42445 Natural addition with 1 is...
naddsuc2 42446 Natural addition with succ...
naddass1 42447 Natural addition of ordina...
naddgeoa 42448 Natural addition results i...
naddonnn 42449 Natural addition with a na...
naddwordnexlem0 42450 When ` A ` is the sum of a...
naddwordnexlem1 42451 When ` A ` is the sum of a...
naddwordnexlem2 42452 When ` A ` is the sum of a...
naddwordnexlem3 42453 When ` A ` is the sum of a...
oawordex3 42454 When ` A ` is the sum of a...
naddwordnexlem4 42455 When ` A ` is the sum of a...
ordsssucim 42456 If an ordinal is less than...
insucid 42457 The intersection of a clas...
om2 42458 Two ways to double an ordi...
oaltom 42459 Multiplication eventually ...
oe2 42460 Two ways to square an ordi...
omltoe 42461 Exponentiation eventually ...
abeqabi 42462 Generalized condition for ...
abpr 42463 Condition for a class abst...
abtp 42464 Condition for a class abst...
ralopabb 42465 Restricted universal quant...
fpwfvss 42466 Functions into a powerset ...
sdomne0 42467 A class that strictly domi...
sdomne0d 42468 A class that strictly domi...
safesnsupfiss 42469 If ` B ` is a finite subse...
safesnsupfiub 42470 If ` B ` is a finite subse...
safesnsupfidom1o 42471 If ` B ` is a finite subse...
safesnsupfilb 42472 If ` B ` is a finite subse...
isoeq145d 42473 Equality deduction for iso...
resisoeq45d 42474 Equality deduction for equ...
negslem1 42475 An equivalence between ide...
nvocnvb 42476 Equivalence to saying the ...
rp-brsslt 42477 Binary relation form of a ...
nla0002 42478 Extending a linear order t...
nla0003 42479 Extending a linear order t...
nla0001 42480 Extending a linear order t...
faosnf0.11b 42481 ` B ` is called a non-limi...
dfno2 42482 A surreal number, in the f...
onnog 42483 Every ordinal maps to a su...
onnobdayg 42484 Every ordinal maps to a su...
bdaybndex 42485 Bounds formed from the bir...
bdaybndbday 42486 Bounds formed from the bir...
onno 42487 Every ordinal maps to a su...
onnoi 42488 Every ordinal maps to a su...
0no 42489 Ordinal zero maps to a sur...
1no 42490 Ordinal one maps to a surr...
2no 42491 Ordinal two maps to a surr...
3no 42492 Ordinal three maps to a su...
4no 42493 Ordinal four maps to a sur...
fnimafnex 42494 The functional image of a ...
nlimsuc 42495 A successor is not a limit...
nlim1NEW 42496 1 is not a limit ordinal. ...
nlim2NEW 42497 2 is not a limit ordinal. ...
nlim3 42498 3 is not a limit ordinal. ...
nlim4 42499 4 is not a limit ordinal. ...
oa1un 42500 Given ` A e. On ` , let ` ...
oa1cl 42501 ` A +o 1o ` is in ` On ` ....
0finon 42502 0 is a finite ordinal. Se...
1finon 42503 1 is a finite ordinal. Se...
2finon 42504 2 is a finite ordinal. Se...
3finon 42505 3 is a finite ordinal. Se...
4finon 42506 4 is a finite ordinal. Se...
finona1cl 42507 The finite ordinals are cl...
finonex 42508 The finite ordinals are a ...
fzunt 42509 Union of two adjacent fini...
fzuntd 42510 Union of two adjacent fini...
fzunt1d 42511 Union of two overlapping f...
fzuntgd 42512 Union of two adjacent or o...
ifpan123g 42513 Conjunction of conditional...
ifpan23 42514 Conjunction of conditional...
ifpdfor2 42515 Define or in terms of cond...
ifporcor 42516 Corollary of commutation o...
ifpdfan2 42517 Define and with conditiona...
ifpancor 42518 Corollary of commutation o...
ifpdfor 42519 Define or in terms of cond...
ifpdfan 42520 Define and with conditiona...
ifpbi2 42521 Equivalence theorem for co...
ifpbi3 42522 Equivalence theorem for co...
ifpim1 42523 Restate implication as con...
ifpnot 42524 Restate negated wff as con...
ifpid2 42525 Restate wff as conditional...
ifpim2 42526 Restate implication as con...
ifpbi23 42527 Equivalence theorem for co...
ifpbiidcor 42528 Restatement of ~ biid . (...
ifpbicor 42529 Corollary of commutation o...
ifpxorcor 42530 Corollary of commutation o...
ifpbi1 42531 Equivalence theorem for co...
ifpnot23 42532 Negation of conditional lo...
ifpnotnotb 42533 Factor conditional logic o...
ifpnorcor 42534 Corollary of commutation o...
ifpnancor 42535 Corollary of commutation o...
ifpnot23b 42536 Negation of conditional lo...
ifpbiidcor2 42537 Restatement of ~ biid . (...
ifpnot23c 42538 Negation of conditional lo...
ifpnot23d 42539 Negation of conditional lo...
ifpdfnan 42540 Define nand as conditional...
ifpdfxor 42541 Define xor as conditional ...
ifpbi12 42542 Equivalence theorem for co...
ifpbi13 42543 Equivalence theorem for co...
ifpbi123 42544 Equivalence theorem for co...
ifpidg 42545 Restate wff as conditional...
ifpid3g 42546 Restate wff as conditional...
ifpid2g 42547 Restate wff as conditional...
ifpid1g 42548 Restate wff as conditional...
ifpim23g 42549 Restate implication as con...
ifpim3 42550 Restate implication as con...
ifpnim1 42551 Restate negated implicatio...
ifpim4 42552 Restate implication as con...
ifpnim2 42553 Restate negated implicatio...
ifpim123g 42554 Implication of conditional...
ifpim1g 42555 Implication of conditional...
ifp1bi 42556 Substitute the first eleme...
ifpbi1b 42557 When the first variable is...
ifpimimb 42558 Factor conditional logic o...
ifpororb 42559 Factor conditional logic o...
ifpananb 42560 Factor conditional logic o...
ifpnannanb 42561 Factor conditional logic o...
ifpor123g 42562 Disjunction of conditional...
ifpimim 42563 Consequnce of implication....
ifpbibib 42564 Factor conditional logic o...
ifpxorxorb 42565 Factor conditional logic o...
rp-fakeimass 42566 A special case where impli...
rp-fakeanorass 42567 A special case where a mix...
rp-fakeoranass 42568 A special case where a mix...
rp-fakeinunass 42569 A special case where a mix...
rp-fakeuninass 42570 A special case where a mix...
rp-isfinite5 42571 A set is said to be finite...
rp-isfinite6 42572 A set is said to be finite...
intabssd 42573 When for each element ` y ...
eu0 42574 There is only one empty se...
epelon2 42575 Over the ordinal numbers, ...
ontric3g 42576 For all ` x , y e. On ` , ...
dfsucon 42577 ` A ` is called a successo...
snen1g 42578 A singleton is equinumerou...
snen1el 42579 A singleton is equinumerou...
sn1dom 42580 A singleton is dominated b...
pr2dom 42581 An unordered pair is domin...
tr3dom 42582 An unordered triple is dom...
ensucne0 42583 A class equinumerous to a ...
ensucne0OLD 42584 A class equinumerous to a ...
dfom6 42585 Let ` _om ` be defined to ...
infordmin 42586 ` _om ` is the smallest in...
iscard4 42587 Two ways to express the pr...
minregex 42588 Given any cardinal number ...
minregex2 42589 Given any cardinal number ...
iscard5 42590 Two ways to express the pr...
elrncard 42591 Let us define a cardinal n...
harval3 42592 ` ( har `` A ) ` is the le...
harval3on 42593 For any ordinal number ` A...
omssrncard 42594 All natural numbers are ca...
0iscard 42595 0 is a cardinal number. (...
1iscard 42596 1 is a cardinal number. (...
omiscard 42597 ` _om ` is a cardinal numb...
sucomisnotcard 42598 ` _om +o 1o ` is not a car...
nna1iscard 42599 For any natural number, th...
har2o 42600 The least cardinal greater...
en2pr 42601 A class is equinumerous to...
pr2cv 42602 If an unordered pair is eq...
pr2el1 42603 If an unordered pair is eq...
pr2cv1 42604 If an unordered pair is eq...
pr2el2 42605 If an unordered pair is eq...
pr2cv2 42606 If an unordered pair is eq...
pren2 42607 An unordered pair is equin...
pr2eldif1 42608 If an unordered pair is eq...
pr2eldif2 42609 If an unordered pair is eq...
pren2d 42610 A pair of two distinct set...
aleph1min 42611 ` ( aleph `` 1o ) ` is the...
alephiso2 42612 ` aleph ` is a strictly or...
alephiso3 42613 ` aleph ` is a strictly or...
pwelg 42614 The powerclass is an eleme...
pwinfig 42615 The powerclass of an infin...
pwinfi2 42616 The powerclass of an infin...
pwinfi3 42617 The powerclass of an infin...
pwinfi 42618 The powerclass of an infin...
fipjust 42619 A definition of the finite...
cllem0 42620 The class of all sets with...
superficl 42621 The class of all supersets...
superuncl 42622 The class of all supersets...
ssficl 42623 The class of all subsets o...
ssuncl 42624 The class of all subsets o...
ssdifcl 42625 The class of all subsets o...
sssymdifcl 42626 The class of all subsets o...
fiinfi 42627 If two classes have the fi...
rababg 42628 Condition when restricted ...
elinintab 42629 Two ways of saying a set i...
elmapintrab 42630 Two ways to say a set is a...
elinintrab 42631 Two ways of saying a set i...
inintabss 42632 Upper bound on intersectio...
inintabd 42633 Value of the intersection ...
xpinintabd 42634 Value of the intersection ...
relintabex 42635 If the intersection of a c...
elcnvcnvintab 42636 Two ways of saying a set i...
relintab 42637 Value of the intersection ...
nonrel 42638 A non-relation is equal to...
elnonrel 42639 Only an ordered pair where...
cnvssb 42640 Subclass theorem for conve...
relnonrel 42641 The non-relation part of a...
cnvnonrel 42642 The converse of the non-re...
brnonrel 42643 A non-relation cannot rela...
dmnonrel 42644 The domain of the non-rela...
rnnonrel 42645 The range of the non-relat...
resnonrel 42646 A restriction of the non-r...
imanonrel 42647 An image under the non-rel...
cononrel1 42648 Composition with the non-r...
cononrel2 42649 Composition with the non-r...
elmapintab 42650 Two ways to say a set is a...
fvnonrel 42651 The function value of any ...
elinlem 42652 Two ways to say a set is a...
elcnvcnvlem 42653 Two ways to say a set is a...
cnvcnvintabd 42654 Value of the relationship ...
elcnvlem 42655 Two ways to say a set is a...
elcnvintab 42656 Two ways of saying a set i...
cnvintabd 42657 Value of the converse of t...
undmrnresiss 42658 Two ways of saying the ide...
reflexg 42659 Two ways of saying a relat...
cnvssco 42660 A condition weaker than re...
refimssco 42661 Reflexive relations are su...
cleq2lem 42662 Equality implies bijection...
cbvcllem 42663 Change of bound variable i...
clublem 42664 If a superset ` Y ` of ` X...
clss2lem 42665 The closure of a property ...
dfid7 42666 Definition of identity rel...
mptrcllem 42667 Show two versions of a clo...
cotrintab 42668 The intersection of a clas...
rclexi 42669 The reflexive closure of a...
rtrclexlem 42670 Existence of relation impl...
rtrclex 42671 The reflexive-transitive c...
trclubgNEW 42672 If a relation exists then ...
trclubNEW 42673 If a relation exists then ...
trclexi 42674 The transitive closure of ...
rtrclexi 42675 The reflexive-transitive c...
clrellem 42676 When the property ` ps ` h...
clcnvlem 42677 When ` A ` , an upper boun...
cnvtrucl0 42678 The converse of the trivia...
cnvrcl0 42679 The converse of the reflex...
cnvtrcl0 42680 The converse of the transi...
dmtrcl 42681 The domain of the transiti...
rntrcl 42682 The range of the transitiv...
dfrtrcl5 42683 Definition of reflexive-tr...
trcleq2lemRP 42684 Equality implies bijection...
sqrtcvallem1 42685 Two ways of saying a compl...
reabsifneg 42686 Alternate expression for t...
reabsifnpos 42687 Alternate expression for t...
reabsifpos 42688 Alternate expression for t...
reabsifnneg 42689 Alternate expression for t...
reabssgn 42690 Alternate expression for t...
sqrtcvallem2 42691 Equivalent to saying that ...
sqrtcvallem3 42692 Equivalent to saying that ...
sqrtcvallem4 42693 Equivalent to saying that ...
sqrtcvallem5 42694 Equivalent to saying that ...
sqrtcval 42695 Explicit formula for the c...
sqrtcval2 42696 Explicit formula for the c...
resqrtval 42697 Real part of the complex s...
imsqrtval 42698 Imaginary part of the comp...
resqrtvalex 42699 Example for ~ resqrtval . ...
imsqrtvalex 42700 Example for ~ imsqrtval . ...
al3im 42701 Version of ~ ax-4 for a ne...
intima0 42702 Two ways of expressing the...
elimaint 42703 Element of image of inters...
cnviun 42704 Converse of indexed union....
imaiun1 42705 The image of an indexed un...
coiun1 42706 Composition with an indexe...
elintima 42707 Element of intersection of...
intimass 42708 The image under the inters...
intimass2 42709 The image under the inters...
intimag 42710 Requirement for the image ...
intimasn 42711 Two ways to express the im...
intimasn2 42712 Two ways to express the im...
ss2iundf 42713 Subclass theorem for index...
ss2iundv 42714 Subclass theorem for index...
cbviuneq12df 42715 Rule used to change the bo...
cbviuneq12dv 42716 Rule used to change the bo...
conrel1d 42717 Deduction about compositio...
conrel2d 42718 Deduction about compositio...
trrelind 42719 The intersection of transi...
xpintrreld 42720 The intersection of a tran...
restrreld 42721 The restriction of a trans...
trrelsuperreldg 42722 Concrete construction of a...
trficl 42723 The class of all transitiv...
cnvtrrel 42724 The converse of a transiti...
trrelsuperrel2dg 42725 Concrete construction of a...
dfrcl2 42728 Reflexive closure of a rel...
dfrcl3 42729 Reflexive closure of a rel...
dfrcl4 42730 Reflexive closure of a rel...
relexp2 42731 A set operated on by the r...
relexpnul 42732 If the domain and range of...
eliunov2 42733 Membership in the indexed ...
eltrclrec 42734 Membership in the indexed ...
elrtrclrec 42735 Membership in the indexed ...
briunov2 42736 Two classes related by the...
brmptiunrelexpd 42737 If two elements are connec...
fvmptiunrelexplb0d 42738 If the indexed union range...
fvmptiunrelexplb0da 42739 If the indexed union range...
fvmptiunrelexplb1d 42740 If the indexed union range...
brfvid 42741 If two elements are connec...
brfvidRP 42742 If two elements are connec...
fvilbd 42743 A set is a subset of its i...
fvilbdRP 42744 A set is a subset of its i...
brfvrcld 42745 If two elements are connec...
brfvrcld2 42746 If two elements are connec...
fvrcllb0d 42747 A restriction of the ident...
fvrcllb0da 42748 A restriction of the ident...
fvrcllb1d 42749 A set is a subset of its i...
brtrclrec 42750 Two classes related by the...
brrtrclrec 42751 Two classes related by the...
briunov2uz 42752 Two classes related by the...
eliunov2uz 42753 Membership in the indexed ...
ov2ssiunov2 42754 Any particular operator va...
relexp0eq 42755 The zeroth power of relati...
iunrelexp0 42756 Simplification of zeroth p...
relexpxpnnidm 42757 Any positive power of a Ca...
relexpiidm 42758 Any power of any restricti...
relexpss1d 42759 The relational power of a ...
comptiunov2i 42760 The composition two indexe...
corclrcl 42761 The reflexive closure is i...
iunrelexpmin1 42762 The indexed union of relat...
relexpmulnn 42763 With exponents limited to ...
relexpmulg 42764 With ordered exponents, th...
trclrelexplem 42765 The union of relational po...
iunrelexpmin2 42766 The indexed union of relat...
relexp01min 42767 With exponents limited to ...
relexp1idm 42768 Repeated raising a relatio...
relexp0idm 42769 Repeated raising a relatio...
relexp0a 42770 Absorption law for zeroth ...
relexpxpmin 42771 The composition of powers ...
relexpaddss 42772 The composition of two pow...
iunrelexpuztr 42773 The indexed union of relat...
dftrcl3 42774 Transitive closure of a re...
brfvtrcld 42775 If two elements are connec...
fvtrcllb1d 42776 A set is a subset of its i...
trclfvcom 42777 The transitive closure of ...
cnvtrclfv 42778 The converse of the transi...
cotrcltrcl 42779 The transitive closure is ...
trclimalb2 42780 Lower bound for image unde...
brtrclfv2 42781 Two ways to indicate two e...
trclfvdecomr 42782 The transitive closure of ...
trclfvdecoml 42783 The transitive closure of ...
dmtrclfvRP 42784 The domain of the transiti...
rntrclfvRP 42785 The range of the transitiv...
rntrclfv 42786 The range of the transitiv...
dfrtrcl3 42787 Reflexive-transitive closu...
brfvrtrcld 42788 If two elements are connec...
fvrtrcllb0d 42789 A restriction of the ident...
fvrtrcllb0da 42790 A restriction of the ident...
fvrtrcllb1d 42791 A set is a subset of its i...
dfrtrcl4 42792 Reflexive-transitive closu...
corcltrcl 42793 The composition of the ref...
cortrcltrcl 42794 Composition with the refle...
corclrtrcl 42795 Composition with the refle...
cotrclrcl 42796 The composition of the ref...
cortrclrcl 42797 Composition with the refle...
cotrclrtrcl 42798 Composition with the refle...
cortrclrtrcl 42799 The reflexive-transitive c...
frege77d 42800 If the images of both ` { ...
frege81d 42801 If the image of ` U ` is a...
frege83d 42802 If the image of the union ...
frege96d 42803 If ` C ` follows ` A ` in ...
frege87d 42804 If the images of both ` { ...
frege91d 42805 If ` B ` follows ` A ` in ...
frege97d 42806 If ` A ` contains all elem...
frege98d 42807 If ` C ` follows ` A ` and...
frege102d 42808 If either ` A ` and ` C ` ...
frege106d 42809 If ` B ` follows ` A ` in ...
frege108d 42810 If either ` A ` and ` C ` ...
frege109d 42811 If ` A ` contains all elem...
frege114d 42812 If either ` R ` relates ` ...
frege111d 42813 If either ` A ` and ` C ` ...
frege122d 42814 If ` F ` is a function, ` ...
frege124d 42815 If ` F ` is a function, ` ...
frege126d 42816 If ` F ` is a function, ` ...
frege129d 42817 If ` F ` is a function and...
frege131d 42818 If ` F ` is a function and...
frege133d 42819 If ` F ` is a function and...
dfxor4 42820 Express exclusive-or in te...
dfxor5 42821 Express exclusive-or in te...
df3or2 42822 Express triple-or in terms...
df3an2 42823 Express triple-and in term...
nev 42824 Express that not every set...
0pssin 42825 Express that an intersecti...
dfhe2 42828 The property of relation `...
dfhe3 42829 The property of relation `...
heeq12 42830 Equality law for relations...
heeq1 42831 Equality law for relations...
heeq2 42832 Equality law for relations...
sbcheg 42833 Distribute proper substitu...
hess 42834 Subclass law for relations...
xphe 42835 Any Cartesian product is h...
0he 42836 The empty relation is here...
0heALT 42837 The empty relation is here...
he0 42838 Any relation is hereditary...
unhe1 42839 The union of two relations...
snhesn 42840 Any singleton is hereditar...
idhe 42841 The identity relation is h...
psshepw 42842 The relation between sets ...
sshepw 42843 The relation between sets ...
rp-simp2-frege 42846 Simplification of triple c...
rp-simp2 42847 Simplification of triple c...
rp-frege3g 42848 Add antecedent to ~ ax-fre...
frege3 42849 Add antecedent to ~ ax-fre...
rp-misc1-frege 42850 Double-use of ~ ax-frege2 ...
rp-frege24 42851 Introducing an embedded an...
rp-frege4g 42852 Deduction related to distr...
frege4 42853 Special case of closed for...
frege5 42854 A closed form of ~ syl . ...
rp-7frege 42855 Distribute antecedent and ...
rp-4frege 42856 Elimination of a nested an...
rp-6frege 42857 Elimination of a nested an...
rp-8frege 42858 Eliminate antecedent when ...
rp-frege25 42859 Closed form for ~ a1dd . ...
frege6 42860 A closed form of ~ imim2d ...
axfrege8 42861 Swap antecedents. Identic...
frege7 42862 A closed form of ~ syl6 . ...
frege26 42864 Identical to ~ idd . Prop...
frege27 42865 We cannot (at the same tim...
frege9 42866 Closed form of ~ syl with ...
frege12 42867 A closed form of ~ com23 ....
frege11 42868 Elimination of a nested an...
frege24 42869 Closed form for ~ a1d . D...
frege16 42870 A closed form of ~ com34 ....
frege25 42871 Closed form for ~ a1dd . ...
frege18 42872 Closed form of a syllogism...
frege22 42873 A closed form of ~ com45 ....
frege10 42874 Result commuting anteceden...
frege17 42875 A closed form of ~ com3l ....
frege13 42876 A closed form of ~ com3r ....
frege14 42877 Closed form of a deduction...
frege19 42878 A closed form of ~ syl6 . ...
frege23 42879 Syllogism followed by rota...
frege15 42880 A closed form of ~ com4r ....
frege21 42881 Replace antecedent in ante...
frege20 42882 A closed form of ~ syl8 . ...
axfrege28 42883 Contraposition. Identical...
frege29 42885 Closed form of ~ con3d . ...
frege30 42886 Commuted, closed form of ~...
axfrege31 42887 Identical to ~ notnotr . ...
frege32 42889 Deduce ~ con1 from ~ con3 ...
frege33 42890 If ` ph ` or ` ps ` takes ...
frege34 42891 If as a consequence of the...
frege35 42892 Commuted, closed form of ~...
frege36 42893 The case in which ` ps ` i...
frege37 42894 If ` ch ` is a necessary c...
frege38 42895 Identical to ~ pm2.21 . P...
frege39 42896 Syllogism between ~ pm2.18...
frege40 42897 Anything implies ~ pm2.18 ...
axfrege41 42898 Identical to ~ notnot . A...
frege42 42900 Not not ~ id . Propositio...
frege43 42901 If there is a choice only ...
frege44 42902 Similar to a commuted ~ pm...
frege45 42903 Deduce ~ pm2.6 from ~ con1...
frege46 42904 If ` ps ` holds when ` ph ...
frege47 42905 Deduce consequence follows...
frege48 42906 Closed form of syllogism w...
frege49 42907 Closed form of deduction w...
frege50 42908 Closed form of ~ jaoi . P...
frege51 42909 Compare with ~ jaod . Pro...
axfrege52a 42910 Justification for ~ ax-fre...
frege52aid 42912 The case when the content ...
frege53aid 42913 Specialization of ~ frege5...
frege53a 42914 Lemma for ~ frege55a . Pr...
axfrege54a 42915 Justification for ~ ax-fre...
frege54cor0a 42917 Synonym for logical equiva...
frege54cor1a 42918 Reflexive equality. (Cont...
frege55aid 42919 Lemma for ~ frege57aid . ...
frege55lem1a 42920 Necessary deduction regard...
frege55lem2a 42921 Core proof of Proposition ...
frege55a 42922 Proposition 55 of [Frege18...
frege55cor1a 42923 Proposition 55 of [Frege18...
frege56aid 42924 Lemma for ~ frege57aid . ...
frege56a 42925 Proposition 56 of [Frege18...
frege57aid 42926 This is the all imporant f...
frege57a 42927 Analogue of ~ frege57aid ....
axfrege58a 42928 Identical to ~ anifp . Ju...
frege58acor 42930 Lemma for ~ frege59a . (C...
frege59a 42931 A kind of Aristotelian inf...
frege60a 42932 Swap antecedents of ~ ax-f...
frege61a 42933 Lemma for ~ frege65a . Pr...
frege62a 42934 A kind of Aristotelian inf...
frege63a 42935 Proposition 63 of [Frege18...
frege64a 42936 Lemma for ~ frege65a . Pr...
frege65a 42937 A kind of Aristotelian inf...
frege66a 42938 Swap antecedents of ~ freg...
frege67a 42939 Lemma for ~ frege68a . Pr...
frege68a 42940 Combination of applying a ...
axfrege52c 42941 Justification for ~ ax-fre...
frege52b 42943 The case when the content ...
frege53b 42944 Lemma for frege102 (via ~ ...
axfrege54c 42945 Reflexive equality of clas...
frege54b 42947 Reflexive equality of sets...
frege54cor1b 42948 Reflexive equality. (Cont...
frege55lem1b 42949 Necessary deduction regard...
frege55lem2b 42950 Lemma for ~ frege55b . Co...
frege55b 42951 Lemma for ~ frege57b . Pr...
frege56b 42952 Lemma for ~ frege57b . Pr...
frege57b 42953 Analogue of ~ frege57aid ....
axfrege58b 42954 If ` A. x ph ` is affirmed...
frege58bid 42956 If ` A. x ph ` is affirmed...
frege58bcor 42957 Lemma for ~ frege59b . (C...
frege59b 42958 A kind of Aristotelian inf...
frege60b 42959 Swap antecedents of ~ ax-f...
frege61b 42960 Lemma for ~ frege65b . Pr...
frege62b 42961 A kind of Aristotelian inf...
frege63b 42962 Lemma for ~ frege91 . Pro...
frege64b 42963 Lemma for ~ frege65b . Pr...
frege65b 42964 A kind of Aristotelian inf...
frege66b 42965 Swap antecedents of ~ freg...
frege67b 42966 Lemma for ~ frege68b . Pr...
frege68b 42967 Combination of applying a ...
frege53c 42968 Proposition 53 of [Frege18...
frege54cor1c 42969 Reflexive equality. (Cont...
frege55lem1c 42970 Necessary deduction regard...
frege55lem2c 42971 Core proof of Proposition ...
frege55c 42972 Proposition 55 of [Frege18...
frege56c 42973 Lemma for ~ frege57c . Pr...
frege57c 42974 Swap order of implication ...
frege58c 42975 Principle related to ~ sp ...
frege59c 42976 A kind of Aristotelian inf...
frege60c 42977 Swap antecedents of ~ freg...
frege61c 42978 Lemma for ~ frege65c . Pr...
frege62c 42979 A kind of Aristotelian inf...
frege63c 42980 Analogue of ~ frege63b . ...
frege64c 42981 Lemma for ~ frege65c . Pr...
frege65c 42982 A kind of Aristotelian inf...
frege66c 42983 Swap antecedents of ~ freg...
frege67c 42984 Lemma for ~ frege68c . Pr...
frege68c 42985 Combination of applying a ...
dffrege69 42986 If from the proposition th...
frege70 42987 Lemma for ~ frege72 . Pro...
frege71 42988 Lemma for ~ frege72 . Pro...
frege72 42989 If property ` A ` is hered...
frege73 42990 Lemma for ~ frege87 . Pro...
frege74 42991 If ` X ` has a property ` ...
frege75 42992 If from the proposition th...
dffrege76 42993 If from the two propositio...
frege77 42994 If ` Y ` follows ` X ` in ...
frege78 42995 Commuted form of ~ frege77...
frege79 42996 Distributed form of ~ freg...
frege80 42997 Add additional condition t...
frege81 42998 If ` X ` has a property ` ...
frege82 42999 Closed-form deduction base...
frege83 43000 Apply commuted form of ~ f...
frege84 43001 Commuted form of ~ frege81...
frege85 43002 Commuted form of ~ frege77...
frege86 43003 Conclusion about element o...
frege87 43004 If ` Z ` is a result of an...
frege88 43005 Commuted form of ~ frege87...
frege89 43006 One direction of ~ dffrege...
frege90 43007 Add antecedent to ~ frege8...
frege91 43008 Every result of an applica...
frege92 43009 Inference from ~ frege91 ....
frege93 43010 Necessary condition for tw...
frege94 43011 Looking one past a pair re...
frege95 43012 Looking one past a pair re...
frege96 43013 Every result of an applica...
frege97 43014 The property of following ...
frege98 43015 If ` Y ` follows ` X ` and...
dffrege99 43016 If ` Z ` is identical with...
frege100 43017 One direction of ~ dffrege...
frege101 43018 Lemma for ~ frege102 . Pr...
frege102 43019 If ` Z ` belongs to the ` ...
frege103 43020 Proposition 103 of [Frege1...
frege104 43021 Proposition 104 of [Frege1...
frege105 43022 Proposition 105 of [Frege1...
frege106 43023 Whatever follows ` X ` in ...
frege107 43024 Proposition 107 of [Frege1...
frege108 43025 If ` Y ` belongs to the ` ...
frege109 43026 The property of belonging ...
frege110 43027 Proposition 110 of [Frege1...
frege111 43028 If ` Y ` belongs to the ` ...
frege112 43029 Identity implies belonging...
frege113 43030 Proposition 113 of [Frege1...
frege114 43031 If ` X ` belongs to the ` ...
dffrege115 43032 If from the circumstance t...
frege116 43033 One direction of ~ dffrege...
frege117 43034 Lemma for ~ frege118 . Pr...
frege118 43035 Simplified application of ...
frege119 43036 Lemma for ~ frege120 . Pr...
frege120 43037 Simplified application of ...
frege121 43038 Lemma for ~ frege122 . Pr...
frege122 43039 If ` X ` is a result of an...
frege123 43040 Lemma for ~ frege124 . Pr...
frege124 43041 If ` X ` is a result of an...
frege125 43042 Lemma for ~ frege126 . Pr...
frege126 43043 If ` M ` follows ` Y ` in ...
frege127 43044 Communte antecedents of ~ ...
frege128 43045 Lemma for ~ frege129 . Pr...
frege129 43046 If the procedure ` R ` is ...
frege130 43047 Lemma for ~ frege131 . Pr...
frege131 43048 If the procedure ` R ` is ...
frege132 43049 Lemma for ~ frege133 . Pr...
frege133 43050 If the procedure ` R ` is ...
enrelmap 43051 The set of all possible re...
enrelmapr 43052 The set of all possible re...
enmappw 43053 The set of all mappings fr...
enmappwid 43054 The set of all mappings fr...
rfovd 43055 Value of the operator, ` (...
rfovfvd 43056 Value of the operator, ` (...
rfovfvfvd 43057 Value of the operator, ` (...
rfovcnvf1od 43058 Properties of the operator...
rfovcnvd 43059 Value of the converse of t...
rfovf1od 43060 The value of the operator,...
rfovcnvfvd 43061 Value of the converse of t...
fsovd 43062 Value of the operator, ` (...
fsovrfovd 43063 The operator which gives a...
fsovfvd 43064 Value of the operator, ` (...
fsovfvfvd 43065 Value of the operator, ` (...
fsovfd 43066 The operator, ` ( A O B ) ...
fsovcnvlem 43067 The ` O ` operator, which ...
fsovcnvd 43068 The value of the converse ...
fsovcnvfvd 43069 The value of the converse ...
fsovf1od 43070 The value of ` ( A O B ) `...
dssmapfvd 43071 Value of the duality opera...
dssmapfv2d 43072 Value of the duality opera...
dssmapfv3d 43073 Value of the duality opera...
dssmapnvod 43074 For any base set ` B ` the...
dssmapf1od 43075 For any base set ` B ` the...
dssmap2d 43076 For any base set ` B ` the...
or3or 43077 Decompose disjunction into...
andi3or 43078 Distribute over triple dis...
uneqsn 43079 If a union of classes is e...
brfvimex 43080 If a binary relation holds...
brovmptimex 43081 If a binary relation holds...
brovmptimex1 43082 If a binary relation holds...
brovmptimex2 43083 If a binary relation holds...
brcoffn 43084 Conditions allowing the de...
brcofffn 43085 Conditions allowing the de...
brco2f1o 43086 Conditions allowing the de...
brco3f1o 43087 Conditions allowing the de...
ntrclsbex 43088 If (pseudo-)interior and (...
ntrclsrcomplex 43089 The relative complement of...
neik0imk0p 43090 Kuratowski's K0 axiom impl...
ntrk2imkb 43091 If an interior function is...
ntrkbimka 43092 If the interiors of disjoi...
ntrk0kbimka 43093 If the interiors of disjoi...
clsk3nimkb 43094 If the base set is not emp...
clsk1indlem0 43095 The ansatz closure functio...
clsk1indlem2 43096 The ansatz closure functio...
clsk1indlem3 43097 The ansatz closure functio...
clsk1indlem4 43098 The ansatz closure functio...
clsk1indlem1 43099 The ansatz closure functio...
clsk1independent 43100 For generalized closure fu...
neik0pk1imk0 43101 Kuratowski's K0' and K1 ax...
isotone1 43102 Two different ways to say ...
isotone2 43103 Two different ways to say ...
ntrk1k3eqk13 43104 An interior function is bo...
ntrclsf1o 43105 If (pseudo-)interior and (...
ntrclsnvobr 43106 If (pseudo-)interior and (...
ntrclsiex 43107 If (pseudo-)interior and (...
ntrclskex 43108 If (pseudo-)interior and (...
ntrclsfv1 43109 If (pseudo-)interior and (...
ntrclsfv2 43110 If (pseudo-)interior and (...
ntrclselnel1 43111 If (pseudo-)interior and (...
ntrclselnel2 43112 If (pseudo-)interior and (...
ntrclsfv 43113 The value of the interior ...
ntrclsfveq1 43114 If interior and closure fu...
ntrclsfveq2 43115 If interior and closure fu...
ntrclsfveq 43116 If interior and closure fu...
ntrclsss 43117 If interior and closure fu...
ntrclsneine0lem 43118 If (pseudo-)interior and (...
ntrclsneine0 43119 If (pseudo-)interior and (...
ntrclscls00 43120 If (pseudo-)interior and (...
ntrclsiso 43121 If (pseudo-)interior and (...
ntrclsk2 43122 An interior function is co...
ntrclskb 43123 The interiors of disjoint ...
ntrclsk3 43124 The intersection of interi...
ntrclsk13 43125 The interior of the inters...
ntrclsk4 43126 Idempotence of the interio...
ntrneibex 43127 If (pseudo-)interior and (...
ntrneircomplex 43128 The relative complement of...
ntrneif1o 43129 If (pseudo-)interior and (...
ntrneiiex 43130 If (pseudo-)interior and (...
ntrneinex 43131 If (pseudo-)interior and (...
ntrneicnv 43132 If (pseudo-)interior and (...
ntrneifv1 43133 If (pseudo-)interior and (...
ntrneifv2 43134 If (pseudo-)interior and (...
ntrneiel 43135 If (pseudo-)interior and (...
ntrneifv3 43136 The value of the neighbors...
ntrneineine0lem 43137 If (pseudo-)interior and (...
ntrneineine1lem 43138 If (pseudo-)interior and (...
ntrneifv4 43139 The value of the interior ...
ntrneiel2 43140 Membership in iterated int...
ntrneineine0 43141 If (pseudo-)interior and (...
ntrneineine1 43142 If (pseudo-)interior and (...
ntrneicls00 43143 If (pseudo-)interior and (...
ntrneicls11 43144 If (pseudo-)interior and (...
ntrneiiso 43145 If (pseudo-)interior and (...
ntrneik2 43146 An interior function is co...
ntrneix2 43147 An interior (closure) func...
ntrneikb 43148 The interiors of disjoint ...
ntrneixb 43149 The interiors (closures) o...
ntrneik3 43150 The intersection of interi...
ntrneix3 43151 The closure of the union o...
ntrneik13 43152 The interior of the inters...
ntrneix13 43153 The closure of the union o...
ntrneik4w 43154 Idempotence of the interio...
ntrneik4 43155 Idempotence of the interio...
clsneibex 43156 If (pseudo-)closure and (p...
clsneircomplex 43157 The relative complement of...
clsneif1o 43158 If a (pseudo-)closure func...
clsneicnv 43159 If a (pseudo-)closure func...
clsneikex 43160 If closure and neighborhoo...
clsneinex 43161 If closure and neighborhoo...
clsneiel1 43162 If a (pseudo-)closure func...
clsneiel2 43163 If a (pseudo-)closure func...
clsneifv3 43164 Value of the neighborhoods...
clsneifv4 43165 Value of the closure (inte...
neicvgbex 43166 If (pseudo-)neighborhood a...
neicvgrcomplex 43167 The relative complement of...
neicvgf1o 43168 If neighborhood and conver...
neicvgnvo 43169 If neighborhood and conver...
neicvgnvor 43170 If neighborhood and conver...
neicvgmex 43171 If the neighborhoods and c...
neicvgnex 43172 If the neighborhoods and c...
neicvgel1 43173 A subset being an element ...
neicvgel2 43174 The complement of a subset...
neicvgfv 43175 The value of the neighborh...
ntrrn 43176 The range of the interior ...
ntrf 43177 The interior function of a...
ntrf2 43178 The interior function is a...
ntrelmap 43179 The interior function is a...
clsf2 43180 The closure function is a ...
clselmap 43181 The closure function is a ...
dssmapntrcls 43182 The interior and closure o...
dssmapclsntr 43183 The closure and interior o...
gneispa 43184 Each point ` p ` of the ne...
gneispb 43185 Given a neighborhood ` N `...
gneispace2 43186 The predicate that ` F ` i...
gneispace3 43187 The predicate that ` F ` i...
gneispace 43188 The predicate that ` F ` i...
gneispacef 43189 A generic neighborhood spa...
gneispacef2 43190 A generic neighborhood spa...
gneispacefun 43191 A generic neighborhood spa...
gneispacern 43192 A generic neighborhood spa...
gneispacern2 43193 A generic neighborhood spa...
gneispace0nelrn 43194 A generic neighborhood spa...
gneispace0nelrn2 43195 A generic neighborhood spa...
gneispace0nelrn3 43196 A generic neighborhood spa...
gneispaceel 43197 Every neighborhood of a po...
gneispaceel2 43198 Every neighborhood of a po...
gneispacess 43199 All supersets of a neighbo...
gneispacess2 43200 All supersets of a neighbo...
k0004lem1 43201 Application of ~ ssin to r...
k0004lem2 43202 A mapping with a particula...
k0004lem3 43203 When the value of a mappin...
k0004val 43204 The topological simplex of...
k0004ss1 43205 The topological simplex of...
k0004ss2 43206 The topological simplex of...
k0004ss3 43207 The topological simplex of...
k0004val0 43208 The topological simplex of...
inductionexd 43209 Simple induction example. ...
wwlemuld 43210 Natural deduction form of ...
leeq1d 43211 Specialization of ~ breq1d...
leeq2d 43212 Specialization of ~ breq2d...
absmulrposd 43213 Specialization of absmuld ...
imadisjld 43214 Natural dduction form of o...
imadisjlnd 43215 Natural deduction form of ...
wnefimgd 43216 The image of a mapping fro...
fco2d 43217 Natural deduction form of ...
wfximgfd 43218 The value of a function on...
extoimad 43219 If |f(x)| <= C for all x t...
imo72b2lem0 43220 Lemma for ~ imo72b2 . (Co...
suprleubrd 43221 Natural deduction form of ...
imo72b2lem2 43222 Lemma for ~ imo72b2 . (Co...
suprlubrd 43223 Natural deduction form of ...
imo72b2lem1 43224 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 43225 'Less than or equal to' re...
lemuldiv4d 43226 'Less than or equal to' re...
imo72b2 43227 IMO 1972 B2. (14th Intern...
int-addcomd 43228 AdditionCommutativity gene...
int-addassocd 43229 AdditionAssociativity gene...
int-addsimpd 43230 AdditionSimplification gen...
int-mulcomd 43231 MultiplicationCommutativit...
int-mulassocd 43232 MultiplicationAssociativit...
int-mulsimpd 43233 MultiplicationSimplificati...
int-leftdistd 43234 AdditionMultiplicationLeft...
int-rightdistd 43235 AdditionMultiplicationRigh...
int-sqdefd 43236 SquareDefinition generator...
int-mul11d 43237 First MultiplicationOne ge...
int-mul12d 43238 Second MultiplicationOne g...
int-add01d 43239 First AdditionZero generat...
int-add02d 43240 Second AdditionZero genera...
int-sqgeq0d 43241 SquareGEQZero generator ru...
int-eqprincd 43242 PrincipleOfEquality genera...
int-eqtransd 43243 EqualityTransitivity gener...
int-eqmvtd 43244 EquMoveTerm generator rule...
int-eqineqd 43245 EquivalenceImpliesDoubleIn...
int-ineqmvtd 43246 IneqMoveTerm generator rul...
int-ineq1stprincd 43247 FirstPrincipleOfInequality...
int-ineq2ndprincd 43248 SecondPrincipleOfInequalit...
int-ineqtransd 43249 InequalityTransitivity gen...
unitadd 43250 Theorem used in conjunctio...
gsumws3 43251 Valuation of a length 3 wo...
gsumws4 43252 Valuation of a length 4 wo...
amgm2d 43253 Arithmetic-geometric mean ...
amgm3d 43254 Arithmetic-geometric mean ...
amgm4d 43255 Arithmetic-geometric mean ...
spALT 43256 ~ sp can be proven from th...
elnelneqd 43257 Two classes are not equal ...
elnelneq2d 43258 Two classes are not equal ...
rr-spce 43259 Prove an existential. (Co...
rexlimdvaacbv 43260 Unpack a restricted existe...
rexlimddvcbvw 43261 Unpack a restricted existe...
rexlimddvcbv 43262 Unpack a restricted existe...
rr-elrnmpt3d 43263 Elementhood in an image se...
finnzfsuppd 43264 If a function is zero outs...
rr-phpd 43265 Equivalent of ~ php withou...
suceqd 43266 Deduction associated with ...
tfindsd 43267 Deduction associated with ...
mnringvald 43270 Value of the monoid ring f...
mnringnmulrd 43271 Components of a monoid rin...
mnringnmulrdOLD 43272 Obsolete version of ~ mnri...
mnringbased 43273 The base set of a monoid r...
mnringbasedOLD 43274 Obsolete version of ~ mnri...
mnringbaserd 43275 The base set of a monoid r...
mnringelbased 43276 Membership in the base set...
mnringbasefd 43277 Elements of a monoid ring ...
mnringbasefsuppd 43278 Elements of a monoid ring ...
mnringaddgd 43279 The additive operation of ...
mnringaddgdOLD 43280 Obsolete version of ~ mnri...
mnring0gd 43281 The additive identity of a...
mnring0g2d 43282 The additive identity of a...
mnringmulrd 43283 The ring product of a mono...
mnringscad 43284 The scalar ring of a monoi...
mnringscadOLD 43285 Obsolete version of ~ mnri...
mnringvscad 43286 The scalar product of a mo...
mnringvscadOLD 43287 Obsolete version of ~ mnri...
mnringlmodd 43288 Monoid rings are left modu...
mnringmulrvald 43289 Value of multiplication in...
mnringmulrcld 43290 Monoid rings are closed un...
gru0eld 43291 A nonempty Grothendieck un...
grusucd 43292 Grothendieck universes are...
r1rankcld 43293 Any rank of the cumulative...
grur1cld 43294 Grothendieck universes are...
grurankcld 43295 Grothendieck universes are...
grurankrcld 43296 If a Grothendieck universe...
scotteqd 43299 Equality theorem for the S...
scotteq 43300 Closed form of ~ scotteqd ...
nfscott 43301 Bound-variable hypothesis ...
scottabf 43302 Value of the Scott operati...
scottab 43303 Value of the Scott operati...
scottabes 43304 Value of the Scott operati...
scottss 43305 Scott's trick produces a s...
elscottab 43306 An element of the output o...
scottex2 43307 ~ scottex expressed using ...
scotteld 43308 The Scott operation sends ...
scottelrankd 43309 Property of a Scott's tric...
scottrankd 43310 Rank of a nonempty Scott's...
gruscottcld 43311 If a Grothendieck universe...
dfcoll2 43314 Alternate definition of th...
colleq12d 43315 Equality theorem for the c...
colleq1 43316 Equality theorem for the c...
colleq2 43317 Equality theorem for the c...
nfcoll 43318 Bound-variable hypothesis ...
collexd 43319 The output of the collecti...
cpcolld 43320 Property of the collection...
cpcoll2d 43321 ~ cpcolld with an extra ex...
grucollcld 43322 A Grothendieck universe co...
ismnu 43323 The hypothesis of this the...
mnuop123d 43324 Operations of a minimal un...
mnussd 43325 Minimal universes are clos...
mnuss2d 43326 ~ mnussd with arguments pr...
mnu0eld 43327 A nonempty minimal univers...
mnuop23d 43328 Second and third operation...
mnupwd 43329 Minimal universes are clos...
mnusnd 43330 Minimal universes are clos...
mnuprssd 43331 A minimal universe contain...
mnuprss2d 43332 Special case of ~ mnuprssd...
mnuop3d 43333 Third operation of a minim...
mnuprdlem1 43334 Lemma for ~ mnuprd . (Con...
mnuprdlem2 43335 Lemma for ~ mnuprd . (Con...
mnuprdlem3 43336 Lemma for ~ mnuprd . (Con...
mnuprdlem4 43337 Lemma for ~ mnuprd . Gene...
mnuprd 43338 Minimal universes are clos...
mnuunid 43339 Minimal universes are clos...
mnuund 43340 Minimal universes are clos...
mnutrcld 43341 Minimal universes contain ...
mnutrd 43342 Minimal universes are tran...
mnurndlem1 43343 Lemma for ~ mnurnd . (Con...
mnurndlem2 43344 Lemma for ~ mnurnd . Dedu...
mnurnd 43345 Minimal universes contain ...
mnugrud 43346 Minimal universes are Grot...
grumnudlem 43347 Lemma for ~ grumnud . (Co...
grumnud 43348 Grothendieck universes are...
grumnueq 43349 The class of Grothendieck ...
expandan 43350 Expand conjunction to prim...
expandexn 43351 Expand an existential quan...
expandral 43352 Expand a restricted univer...
expandrexn 43353 Expand a restricted existe...
expandrex 43354 Expand a restricted existe...
expanduniss 43355 Expand ` U. A C_ B ` to pr...
ismnuprim 43356 Express the predicate on `...
rr-grothprimbi 43357 Express "every set is cont...
inagrud 43358 Inaccessible levels of the...
inaex 43359 Assuming the Tarski-Grothe...
gruex 43360 Assuming the Tarski-Grothe...
rr-groth 43361 An equivalent of ~ ax-grot...
rr-grothprim 43362 An equivalent of ~ ax-grot...
ismnushort 43363 Express the predicate on `...
dfuniv2 43364 Alternative definition of ...
rr-grothshortbi 43365 Express "every set is cont...
rr-grothshort 43366 A shorter equivalent of ~ ...
nanorxor 43367 'nand' is equivalent to th...
undisjrab 43368 Union of two disjoint rest...
iso0 43369 The empty set is an ` R , ...
ssrecnpr 43370 ` RR ` is a subset of both...
seff 43371 Let set ` S ` be the real ...
sblpnf 43372 The infinity ball in the a...
prmunb2 43373 The primes are unbounded. ...
dvgrat 43374 Ratio test for divergence ...
cvgdvgrat 43375 Ratio test for convergence...
radcnvrat 43376 Let ` L ` be the limit, if...
reldvds 43377 The divides relation is in...
nznngen 43378 All positive integers in t...
nzss 43379 The set of multiples of _m...
nzin 43380 The intersection of the se...
nzprmdif 43381 Subtract one prime's multi...
hashnzfz 43382 Special case of ~ hashdvds...
hashnzfz2 43383 Special case of ~ hashnzfz...
hashnzfzclim 43384 As the upper bound ` K ` o...
caofcan 43385 Transfer a cancellation la...
ofsubid 43386 Function analogue of ~ sub...
ofmul12 43387 Function analogue of ~ mul...
ofdivrec 43388 Function analogue of ~ div...
ofdivcan4 43389 Function analogue of ~ div...
ofdivdiv2 43390 Function analogue of ~ div...
lhe4.4ex1a 43391 Example of the Fundamental...
dvsconst 43392 Derivative of a constant f...
dvsid 43393 Derivative of the identity...
dvsef 43394 Derivative of the exponent...
expgrowthi 43395 Exponential growth and dec...
dvconstbi 43396 The derivative of a functi...
expgrowth 43397 Exponential growth and dec...
bccval 43400 Value of the generalized b...
bcccl 43401 Closure of the generalized...
bcc0 43402 The generalized binomial c...
bccp1k 43403 Generalized binomial coeff...
bccm1k 43404 Generalized binomial coeff...
bccn0 43405 Generalized binomial coeff...
bccn1 43406 Generalized binomial coeff...
bccbc 43407 The binomial coefficient a...
uzmptshftfval 43408 When ` F ` is a maps-to fu...
dvradcnv2 43409 The radius of convergence ...
binomcxplemwb 43410 Lemma for ~ binomcxp . Th...
binomcxplemnn0 43411 Lemma for ~ binomcxp . Wh...
binomcxplemrat 43412 Lemma for ~ binomcxp . As...
binomcxplemfrat 43413 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 43414 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 43415 Lemma for ~ binomcxp . By...
binomcxplemcvg 43416 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 43417 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 43418 Lemma for ~ binomcxp . Wh...
binomcxp 43419 Generalize the binomial th...
pm10.12 43420 Theorem *10.12 in [Whitehe...
pm10.14 43421 Theorem *10.14 in [Whitehe...
pm10.251 43422 Theorem *10.251 in [Whiteh...
pm10.252 43423 Theorem *10.252 in [Whiteh...
pm10.253 43424 Theorem *10.253 in [Whiteh...
albitr 43425 Theorem *10.301 in [Whiteh...
pm10.42 43426 Theorem *10.42 in [Whitehe...
pm10.52 43427 Theorem *10.52 in [Whitehe...
pm10.53 43428 Theorem *10.53 in [Whitehe...
pm10.541 43429 Theorem *10.541 in [Whiteh...
pm10.542 43430 Theorem *10.542 in [Whiteh...
pm10.55 43431 Theorem *10.55 in [Whitehe...
pm10.56 43432 Theorem *10.56 in [Whitehe...
pm10.57 43433 Theorem *10.57 in [Whitehe...
2alanimi 43434 Removes two universal quan...
2al2imi 43435 Removes two universal quan...
pm11.11 43436 Theorem *11.11 in [Whitehe...
pm11.12 43437 Theorem *11.12 in [Whitehe...
19.21vv 43438 Compare Theorem *11.3 in [...
2alim 43439 Theorem *11.32 in [Whitehe...
2albi 43440 Theorem *11.33 in [Whitehe...
2exim 43441 Theorem *11.34 in [Whitehe...
2exbi 43442 Theorem *11.341 in [Whiteh...
spsbce-2 43443 Theorem *11.36 in [Whitehe...
19.33-2 43444 Theorem *11.421 in [Whiteh...
19.36vv 43445 Theorem *11.43 in [Whitehe...
19.31vv 43446 Theorem *11.44 in [Whitehe...
19.37vv 43447 Theorem *11.46 in [Whitehe...
19.28vv 43448 Theorem *11.47 in [Whitehe...
pm11.52 43449 Theorem *11.52 in [Whitehe...
aaanv 43450 Theorem *11.56 in [Whitehe...
pm11.57 43451 Theorem *11.57 in [Whitehe...
pm11.58 43452 Theorem *11.58 in [Whitehe...
pm11.59 43453 Theorem *11.59 in [Whitehe...
pm11.6 43454 Theorem *11.6 in [Whitehea...
pm11.61 43455 Theorem *11.61 in [Whitehe...
pm11.62 43456 Theorem *11.62 in [Whitehe...
pm11.63 43457 Theorem *11.63 in [Whitehe...
pm11.7 43458 Theorem *11.7 in [Whitehea...
pm11.71 43459 Theorem *11.71 in [Whitehe...
sbeqal1 43460 If ` x = y ` always implie...
sbeqal1i 43461 Suppose you know ` x = y `...
sbeqal2i 43462 If ` x = y ` implies ` x =...
axc5c4c711 43463 Proof of a theorem that ca...
axc5c4c711toc5 43464 Rederivation of ~ sp from ...
axc5c4c711toc4 43465 Rederivation of ~ axc4 fro...
axc5c4c711toc7 43466 Rederivation of ~ axc7 fro...
axc5c4c711to11 43467 Rederivation of ~ ax-11 fr...
axc11next 43468 This theorem shows that, g...
pm13.13a 43469 One result of theorem *13....
pm13.13b 43470 Theorem *13.13 in [Whitehe...
pm13.14 43471 Theorem *13.14 in [Whitehe...
pm13.192 43472 Theorem *13.192 in [Whiteh...
pm13.193 43473 Theorem *13.193 in [Whiteh...
pm13.194 43474 Theorem *13.194 in [Whiteh...
pm13.195 43475 Theorem *13.195 in [Whiteh...
pm13.196a 43476 Theorem *13.196 in [Whiteh...
2sbc6g 43477 Theorem *13.21 in [Whitehe...
2sbc5g 43478 Theorem *13.22 in [Whitehe...
iotain 43479 Equivalence between two di...
iotaexeu 43480 The iota class exists. Th...
iotasbc 43481 Definition *14.01 in [Whit...
iotasbc2 43482 Theorem *14.111 in [Whiteh...
pm14.12 43483 Theorem *14.12 in [Whitehe...
pm14.122a 43484 Theorem *14.122 in [Whiteh...
pm14.122b 43485 Theorem *14.122 in [Whiteh...
pm14.122c 43486 Theorem *14.122 in [Whiteh...
pm14.123a 43487 Theorem *14.123 in [Whiteh...
pm14.123b 43488 Theorem *14.123 in [Whiteh...
pm14.123c 43489 Theorem *14.123 in [Whiteh...
pm14.18 43490 Theorem *14.18 in [Whitehe...
iotaequ 43491 Theorem *14.2 in [Whitehea...
iotavalb 43492 Theorem *14.202 in [Whiteh...
iotasbc5 43493 Theorem *14.205 in [Whiteh...
pm14.24 43494 Theorem *14.24 in [Whitehe...
iotavalsb 43495 Theorem *14.242 in [Whiteh...
sbiota1 43496 Theorem *14.25 in [Whitehe...
sbaniota 43497 Theorem *14.26 in [Whitehe...
eubiOLD 43498 Obsolete proof of ~ eubi a...
iotasbcq 43499 Theorem *14.272 in [Whiteh...
elnev 43500 Any set that contains one ...
rusbcALT 43501 A version of Russell's par...
compeq 43502 Equality between two ways ...
compne 43503 The complement of ` A ` is...
compab 43504 Two ways of saying "the co...
conss2 43505 Contrapositive law for sub...
conss1 43506 Contrapositive law for sub...
ralbidar 43507 More general form of ~ ral...
rexbidar 43508 More general form of ~ rex...
dropab1 43509 Theorem to aid use of the ...
dropab2 43510 Theorem to aid use of the ...
ipo0 43511 If the identity relation p...
ifr0 43512 A class that is founded by...
ordpss 43513 ~ ordelpss with an anteced...
fvsb 43514 Explicit substitution of a...
fveqsb 43515 Implicit substitution of a...
xpexb 43516 A Cartesian product exists...
trelpss 43517 An element of a transitive...
addcomgi 43518 Generalization of commutat...
addrval 43528 Value of the operation of ...
subrval 43529 Value of the operation of ...
mulvval 43530 Value of the operation of ...
addrfv 43531 Vector addition at a value...
subrfv 43532 Vector subtraction at a va...
mulvfv 43533 Scalar multiplication at a...
addrfn 43534 Vector addition produces a...
subrfn 43535 Vector subtraction produce...
mulvfn 43536 Scalar multiplication prod...
addrcom 43537 Vector addition is commuta...
idiALT 43541 Placeholder for ~ idi . T...
exbir 43542 Exportation implication al...
3impexpbicom 43543 Version of ~ 3impexp where...
3impexpbicomi 43544 Inference associated with ...
bi1imp 43545 Importation inference simi...
bi2imp 43546 Importation inference simi...
bi3impb 43547 Similar to ~ 3impb with im...
bi3impa 43548 Similar to ~ 3impa with im...
bi23impib 43549 ~ 3impib with the inner im...
bi13impib 43550 ~ 3impib with the outer im...
bi123impib 43551 ~ 3impib with the implicat...
bi13impia 43552 ~ 3impia with the outer im...
bi123impia 43553 ~ 3impia with the implicat...
bi33imp12 43554 ~ 3imp with innermost impl...
bi23imp13 43555 ~ 3imp with middle implica...
bi13imp23 43556 ~ 3imp with outermost impl...
bi13imp2 43557 Similar to ~ 3imp except t...
bi12imp3 43558 Similar to ~ 3imp except a...
bi23imp1 43559 Similar to ~ 3imp except a...
bi123imp0 43560 Similar to ~ 3imp except a...
4animp1 43561 A single hypothesis unific...
4an31 43562 A rearrangement of conjunc...
4an4132 43563 A rearrangement of conjunc...
expcomdg 43564 Biconditional form of ~ ex...
iidn3 43565 ~ idn3 without virtual ded...
ee222 43566 ~ e222 without virtual ded...
ee3bir 43567 Right-biconditional form o...
ee13 43568 ~ e13 without virtual dedu...
ee121 43569 ~ e121 without virtual ded...
ee122 43570 ~ e122 without virtual ded...
ee333 43571 ~ e333 without virtual ded...
ee323 43572 ~ e323 without virtual ded...
3ornot23 43573 If the second and third di...
orbi1r 43574 ~ orbi1 with order of disj...
3orbi123 43575 ~ pm4.39 with a 3-conjunct...
syl5imp 43576 Closed form of ~ syl5 . D...
impexpd 43577 The following User's Proof...
com3rgbi 43578 The following User's Proof...
impexpdcom 43579 The following User's Proof...
ee1111 43580 Non-virtual deduction form...
pm2.43bgbi 43581 Logical equivalence of a 2...
pm2.43cbi 43582 Logical equivalence of a 3...
ee233 43583 Non-virtual deduction form...
imbi13 43584 Join three logical equival...
ee33 43585 Non-virtual deduction form...
con5 43586 Biconditional contrapositi...
con5i 43587 Inference form of ~ con5 ....
exlimexi 43588 Inference similar to Theor...
sb5ALT 43589 Equivalence for substituti...
eexinst01 43590 ~ exinst01 without virtual...
eexinst11 43591 ~ exinst11 without virtual...
vk15.4j 43592 Excercise 4j of Unit 15 of...
notnotrALT 43593 Converse of double negatio...
con3ALT2 43594 Contraposition. Alternate...
ssralv2 43595 Quantification restricted ...
sbc3or 43596 ~ sbcor with a 3-disjuncts...
alrim3con13v 43597 Closed form of ~ alrimi wi...
rspsbc2 43598 ~ rspsbc with two quantify...
sbcoreleleq 43599 Substitution of a setvar v...
tratrb 43600 If a class is transitive a...
ordelordALT 43601 An element of an ordinal c...
sbcim2g 43602 Distribution of class subs...
sbcbi 43603 Implication form of ~ sbcb...
trsbc 43604 Formula-building inference...
truniALT 43605 The union of a class of tr...
onfrALTlem5 43606 Lemma for ~ onfrALT . (Co...
onfrALTlem4 43607 Lemma for ~ onfrALT . (Co...
onfrALTlem3 43608 Lemma for ~ onfrALT . (Co...
ggen31 43609 ~ gen31 without virtual de...
onfrALTlem2 43610 Lemma for ~ onfrALT . (Co...
cbvexsv 43611 A theorem pertaining to th...
onfrALTlem1 43612 Lemma for ~ onfrALT . (Co...
onfrALT 43613 The membership relation is...
19.41rg 43614 Closed form of right-to-le...
opelopab4 43615 Ordered pair membership in...
2pm13.193 43616 ~ pm13.193 for two variabl...
hbntal 43617 A closed form of ~ hbn . ~...
hbimpg 43618 A closed form of ~ hbim . ...
hbalg 43619 Closed form of ~ hbal . D...
hbexg 43620 Closed form of ~ nfex . D...
ax6e2eq 43621 Alternate form of ~ ax6e f...
ax6e2nd 43622 If at least two sets exist...
ax6e2ndeq 43623 "At least two sets exist" ...
2sb5nd 43624 Equivalence for double sub...
2uasbanh 43625 Distribute the unabbreviat...
2uasban 43626 Distribute the unabbreviat...
e2ebind 43627 Absorption of an existenti...
elpwgded 43628 ~ elpwgdedVD in convention...
trelded 43629 Deduction form of ~ trel ....
jaoded 43630 Deduction form of ~ jao . ...
sbtT 43631 A substitution into a theo...
not12an2impnot1 43632 If a double conjunction is...
in1 43635 Inference form of ~ df-vd1...
iin1 43636 ~ in1 without virtual dedu...
dfvd1ir 43637 Inference form of ~ df-vd1...
idn1 43638 Virtual deduction identity...
dfvd1imp 43639 Left-to-right part of defi...
dfvd1impr 43640 Right-to-left part of defi...
dfvd2 43643 Definition of a 2-hypothes...
dfvd2an 43646 Definition of a 2-hypothes...
dfvd2ani 43647 Inference form of ~ dfvd2a...
dfvd2anir 43648 Right-to-left inference fo...
dfvd2i 43649 Inference form of ~ dfvd2 ...
dfvd2ir 43650 Right-to-left inference fo...
dfvd3 43655 Definition of a 3-hypothes...
dfvd3i 43656 Inference form of ~ dfvd3 ...
dfvd3ir 43657 Right-to-left inference fo...
dfvd3an 43658 Definition of a 3-hypothes...
dfvd3ani 43659 Inference form of ~ dfvd3a...
dfvd3anir 43660 Right-to-left inference fo...
vd01 43661 A virtual hypothesis virtu...
vd02 43662 Two virtual hypotheses vir...
vd03 43663 A theorem is virtually inf...
vd12 43664 A virtual deduction with 1...
vd13 43665 A virtual deduction with 1...
vd23 43666 A virtual deduction with 2...
dfvd2imp 43667 The virtual deduction form...
dfvd2impr 43668 A 2-antecedent nested impl...
in2 43669 The virtual deduction intr...
int2 43670 The virtual deduction intr...
iin2 43671 ~ in2 without virtual dedu...
in2an 43672 The virtual deduction intr...
in3 43673 The virtual deduction intr...
iin3 43674 ~ in3 without virtual dedu...
in3an 43675 The virtual deduction intr...
int3 43676 The virtual deduction intr...
idn2 43677 Virtual deduction identity...
iden2 43678 Virtual deduction identity...
idn3 43679 Virtual deduction identity...
gen11 43680 Virtual deduction generali...
gen11nv 43681 Virtual deduction generali...
gen12 43682 Virtual deduction generali...
gen21 43683 Virtual deduction generali...
gen21nv 43684 Virtual deduction form of ...
gen31 43685 Virtual deduction generali...
gen22 43686 Virtual deduction generali...
ggen22 43687 ~ gen22 without virtual de...
exinst 43688 Existential Instantiation....
exinst01 43689 Existential Instantiation....
exinst11 43690 Existential Instantiation....
e1a 43691 A Virtual deduction elimin...
el1 43692 A Virtual deduction elimin...
e1bi 43693 Biconditional form of ~ e1...
e1bir 43694 Right biconditional form o...
e2 43695 A virtual deduction elimin...
e2bi 43696 Biconditional form of ~ e2...
e2bir 43697 Right biconditional form o...
ee223 43698 ~ e223 without virtual ded...
e223 43699 A virtual deduction elimin...
e222 43700 A virtual deduction elimin...
e220 43701 A virtual deduction elimin...
ee220 43702 ~ e220 without virtual ded...
e202 43703 A virtual deduction elimin...
ee202 43704 ~ e202 without virtual ded...
e022 43705 A virtual deduction elimin...
ee022 43706 ~ e022 without virtual ded...
e002 43707 A virtual deduction elimin...
ee002 43708 ~ e002 without virtual ded...
e020 43709 A virtual deduction elimin...
ee020 43710 ~ e020 without virtual ded...
e200 43711 A virtual deduction elimin...
ee200 43712 ~ e200 without virtual ded...
e221 43713 A virtual deduction elimin...
ee221 43714 ~ e221 without virtual ded...
e212 43715 A virtual deduction elimin...
ee212 43716 ~ e212 without virtual ded...
e122 43717 A virtual deduction elimin...
e112 43718 A virtual deduction elimin...
ee112 43719 ~ e112 without virtual ded...
e121 43720 A virtual deduction elimin...
e211 43721 A virtual deduction elimin...
ee211 43722 ~ e211 without virtual ded...
e210 43723 A virtual deduction elimin...
ee210 43724 ~ e210 without virtual ded...
e201 43725 A virtual deduction elimin...
ee201 43726 ~ e201 without virtual ded...
e120 43727 A virtual deduction elimin...
ee120 43728 Virtual deduction rule ~ e...
e021 43729 A virtual deduction elimin...
ee021 43730 ~ e021 without virtual ded...
e012 43731 A virtual deduction elimin...
ee012 43732 ~ e012 without virtual ded...
e102 43733 A virtual deduction elimin...
ee102 43734 ~ e102 without virtual ded...
e22 43735 A virtual deduction elimin...
e22an 43736 Conjunction form of ~ e22 ...
ee22an 43737 ~ e22an without virtual de...
e111 43738 A virtual deduction elimin...
e1111 43739 A virtual deduction elimin...
e110 43740 A virtual deduction elimin...
ee110 43741 ~ e110 without virtual ded...
e101 43742 A virtual deduction elimin...
ee101 43743 ~ e101 without virtual ded...
e011 43744 A virtual deduction elimin...
ee011 43745 ~ e011 without virtual ded...
e100 43746 A virtual deduction elimin...
ee100 43747 ~ e100 without virtual ded...
e010 43748 A virtual deduction elimin...
ee010 43749 ~ e010 without virtual ded...
e001 43750 A virtual deduction elimin...
ee001 43751 ~ e001 without virtual ded...
e11 43752 A virtual deduction elimin...
e11an 43753 Conjunction form of ~ e11 ...
ee11an 43754 ~ e11an without virtual de...
e01 43755 A virtual deduction elimin...
e01an 43756 Conjunction form of ~ e01 ...
ee01an 43757 ~ e01an without virtual de...
e10 43758 A virtual deduction elimin...
e10an 43759 Conjunction form of ~ e10 ...
ee10an 43760 ~ e10an without virtual de...
e02 43761 A virtual deduction elimin...
e02an 43762 Conjunction form of ~ e02 ...
ee02an 43763 ~ e02an without virtual de...
eel021old 43764 ~ el021old without virtual...
el021old 43765 A virtual deduction elimin...
eel132 43766 ~ syl2an with antecedents ...
eel000cT 43767 An elimination deduction. ...
eel0TT 43768 An elimination deduction. ...
eelT00 43769 An elimination deduction. ...
eelTTT 43770 An elimination deduction. ...
eelT11 43771 An elimination deduction. ...
eelT1 43772 Syllogism inference combin...
eelT12 43773 An elimination deduction. ...
eelTT1 43774 An elimination deduction. ...
eelT01 43775 An elimination deduction. ...
eel0T1 43776 An elimination deduction. ...
eel12131 43777 An elimination deduction. ...
eel2131 43778 ~ syl2an with antecedents ...
eel3132 43779 ~ syl2an with antecedents ...
eel0321old 43780 ~ el0321old without virtua...
el0321old 43781 A virtual deduction elimin...
eel2122old 43782 ~ el2122old without virtua...
el2122old 43783 A virtual deduction elimin...
eel0000 43784 Elimination rule similar t...
eel00001 43785 An elimination deduction. ...
eel00000 43786 Elimination rule similar ~...
eel11111 43787 Five-hypothesis eliminatio...
e12 43788 A virtual deduction elimin...
e12an 43789 Conjunction form of ~ e12 ...
el12 43790 Virtual deduction form of ...
e20 43791 A virtual deduction elimin...
e20an 43792 Conjunction form of ~ e20 ...
ee20an 43793 ~ e20an without virtual de...
e21 43794 A virtual deduction elimin...
e21an 43795 Conjunction form of ~ e21 ...
ee21an 43796 ~ e21an without virtual de...
e333 43797 A virtual deduction elimin...
e33 43798 A virtual deduction elimin...
e33an 43799 Conjunction form of ~ e33 ...
ee33an 43800 ~ e33an without virtual de...
e3 43801 Meta-connective form of ~ ...
e3bi 43802 Biconditional form of ~ e3...
e3bir 43803 Right biconditional form o...
e03 43804 A virtual deduction elimin...
ee03 43805 ~ e03 without virtual dedu...
e03an 43806 Conjunction form of ~ e03 ...
ee03an 43807 Conjunction form of ~ ee03...
e30 43808 A virtual deduction elimin...
ee30 43809 ~ e30 without virtual dedu...
e30an 43810 A virtual deduction elimin...
ee30an 43811 Conjunction form of ~ ee30...
e13 43812 A virtual deduction elimin...
e13an 43813 A virtual deduction elimin...
ee13an 43814 ~ e13an without virtual de...
e31 43815 A virtual deduction elimin...
ee31 43816 ~ e31 without virtual dedu...
e31an 43817 A virtual deduction elimin...
ee31an 43818 ~ e31an without virtual de...
e23 43819 A virtual deduction elimin...
e23an 43820 A virtual deduction elimin...
ee23an 43821 ~ e23an without virtual de...
e32 43822 A virtual deduction elimin...
ee32 43823 ~ e32 without virtual dedu...
e32an 43824 A virtual deduction elimin...
ee32an 43825 ~ e33an without virtual de...
e123 43826 A virtual deduction elimin...
ee123 43827 ~ e123 without virtual ded...
el123 43828 A virtual deduction elimin...
e233 43829 A virtual deduction elimin...
e323 43830 A virtual deduction elimin...
e000 43831 A virtual deduction elimin...
e00 43832 Elimination rule identical...
e00an 43833 Elimination rule identical...
eel00cT 43834 An elimination deduction. ...
eelTT 43835 An elimination deduction. ...
e0a 43836 Elimination rule identical...
eelT 43837 An elimination deduction. ...
eel0cT 43838 An elimination deduction. ...
eelT0 43839 An elimination deduction. ...
e0bi 43840 Elimination rule identical...
e0bir 43841 Elimination rule identical...
uun0.1 43842 Convention notation form o...
un0.1 43843 ` T. ` is the constant tru...
uunT1 43844 A deduction unionizing a n...
uunT1p1 43845 A deduction unionizing a n...
uunT21 43846 A deduction unionizing a n...
uun121 43847 A deduction unionizing a n...
uun121p1 43848 A deduction unionizing a n...
uun132 43849 A deduction unionizing a n...
uun132p1 43850 A deduction unionizing a n...
anabss7p1 43851 A deduction unionizing a n...
un10 43852 A unionizing deduction. (...
un01 43853 A unionizing deduction. (...
un2122 43854 A deduction unionizing a n...
uun2131 43855 A deduction unionizing a n...
uun2131p1 43856 A deduction unionizing a n...
uunTT1 43857 A deduction unionizing a n...
uunTT1p1 43858 A deduction unionizing a n...
uunTT1p2 43859 A deduction unionizing a n...
uunT11 43860 A deduction unionizing a n...
uunT11p1 43861 A deduction unionizing a n...
uunT11p2 43862 A deduction unionizing a n...
uunT12 43863 A deduction unionizing a n...
uunT12p1 43864 A deduction unionizing a n...
uunT12p2 43865 A deduction unionizing a n...
uunT12p3 43866 A deduction unionizing a n...
uunT12p4 43867 A deduction unionizing a n...
uunT12p5 43868 A deduction unionizing a n...
uun111 43869 A deduction unionizing a n...
3anidm12p1 43870 A deduction unionizing a n...
3anidm12p2 43871 A deduction unionizing a n...
uun123 43872 A deduction unionizing a n...
uun123p1 43873 A deduction unionizing a n...
uun123p2 43874 A deduction unionizing a n...
uun123p3 43875 A deduction unionizing a n...
uun123p4 43876 A deduction unionizing a n...
uun2221 43877 A deduction unionizing a n...
uun2221p1 43878 A deduction unionizing a n...
uun2221p2 43879 A deduction unionizing a n...
3impdirp1 43880 A deduction unionizing a n...
3impcombi 43881 A 1-hypothesis proposition...
trsspwALT 43882 Virtual deduction proof of...
trsspwALT2 43883 Virtual deduction proof of...
trsspwALT3 43884 Short predicate calculus p...
sspwtr 43885 Virtual deduction proof of...
sspwtrALT 43886 Virtual deduction proof of...
sspwtrALT2 43887 Short predicate calculus p...
pwtrVD 43888 Virtual deduction proof of...
pwtrrVD 43889 Virtual deduction proof of...
suctrALT 43890 The successor of a transit...
snssiALTVD 43891 Virtual deduction proof of...
snssiALT 43892 If a class is an element o...
snsslVD 43893 Virtual deduction proof of...
snssl 43894 If a singleton is a subcla...
snelpwrVD 43895 Virtual deduction proof of...
unipwrVD 43896 Virtual deduction proof of...
unipwr 43897 A class is a subclass of t...
sstrALT2VD 43898 Virtual deduction proof of...
sstrALT2 43899 Virtual deduction proof of...
suctrALT2VD 43900 Virtual deduction proof of...
suctrALT2 43901 Virtual deduction proof of...
elex2VD 43902 Virtual deduction proof of...
elex22VD 43903 Virtual deduction proof of...
eqsbc2VD 43904 Virtual deduction proof of...
zfregs2VD 43905 Virtual deduction proof of...
tpid3gVD 43906 Virtual deduction proof of...
en3lplem1VD 43907 Virtual deduction proof of...
en3lplem2VD 43908 Virtual deduction proof of...
en3lpVD 43909 Virtual deduction proof of...
simplbi2VD 43910 Virtual deduction proof of...
3ornot23VD 43911 Virtual deduction proof of...
orbi1rVD 43912 Virtual deduction proof of...
bitr3VD 43913 Virtual deduction proof of...
3orbi123VD 43914 Virtual deduction proof of...
sbc3orgVD 43915 Virtual deduction proof of...
19.21a3con13vVD 43916 Virtual deduction proof of...
exbirVD 43917 Virtual deduction proof of...
exbiriVD 43918 Virtual deduction proof of...
rspsbc2VD 43919 Virtual deduction proof of...
3impexpVD 43920 Virtual deduction proof of...
3impexpbicomVD 43921 Virtual deduction proof of...
3impexpbicomiVD 43922 Virtual deduction proof of...
sbcoreleleqVD 43923 Virtual deduction proof of...
hbra2VD 43924 Virtual deduction proof of...
tratrbVD 43925 Virtual deduction proof of...
al2imVD 43926 Virtual deduction proof of...
syl5impVD 43927 Virtual deduction proof of...
idiVD 43928 Virtual deduction proof of...
ancomstVD 43929 Closed form of ~ ancoms . ...
ssralv2VD 43930 Quantification restricted ...
ordelordALTVD 43931 An element of an ordinal c...
equncomVD 43932 If a class equals the unio...
equncomiVD 43933 Inference form of ~ equnco...
sucidALTVD 43934 A set belongs to its succe...
sucidALT 43935 A set belongs to its succe...
sucidVD 43936 A set belongs to its succe...
imbi12VD 43937 Implication form of ~ imbi...
imbi13VD 43938 Join three logical equival...
sbcim2gVD 43939 Distribution of class subs...
sbcbiVD 43940 Implication form of ~ sbcb...
trsbcVD 43941 Formula-building inference...
truniALTVD 43942 The union of a class of tr...
ee33VD 43943 Non-virtual deduction form...
trintALTVD 43944 The intersection of a clas...
trintALT 43945 The intersection of a clas...
undif3VD 43946 The first equality of Exer...
sbcssgVD 43947 Virtual deduction proof of...
csbingVD 43948 Virtual deduction proof of...
onfrALTlem5VD 43949 Virtual deduction proof of...
onfrALTlem4VD 43950 Virtual deduction proof of...
onfrALTlem3VD 43951 Virtual deduction proof of...
simplbi2comtVD 43952 Virtual deduction proof of...
onfrALTlem2VD 43953 Virtual deduction proof of...
onfrALTlem1VD 43954 Virtual deduction proof of...
onfrALTVD 43955 Virtual deduction proof of...
csbeq2gVD 43956 Virtual deduction proof of...
csbsngVD 43957 Virtual deduction proof of...
csbxpgVD 43958 Virtual deduction proof of...
csbresgVD 43959 Virtual deduction proof of...
csbrngVD 43960 Virtual deduction proof of...
csbima12gALTVD 43961 Virtual deduction proof of...
csbunigVD 43962 Virtual deduction proof of...
csbfv12gALTVD 43963 Virtual deduction proof of...
con5VD 43964 Virtual deduction proof of...
relopabVD 43965 Virtual deduction proof of...
19.41rgVD 43966 Virtual deduction proof of...
2pm13.193VD 43967 Virtual deduction proof of...
hbimpgVD 43968 Virtual deduction proof of...
hbalgVD 43969 Virtual deduction proof of...
hbexgVD 43970 Virtual deduction proof of...
ax6e2eqVD 43971 The following User's Proof...
ax6e2ndVD 43972 The following User's Proof...
ax6e2ndeqVD 43973 The following User's Proof...
2sb5ndVD 43974 The following User's Proof...
2uasbanhVD 43975 The following User's Proof...
e2ebindVD 43976 The following User's Proof...
sb5ALTVD 43977 The following User's Proof...
vk15.4jVD 43978 The following User's Proof...
notnotrALTVD 43979 The following User's Proof...
con3ALTVD 43980 The following User's Proof...
elpwgdedVD 43981 Membership in a power clas...
sspwimp 43982 If a class is a subclass o...
sspwimpVD 43983 The following User's Proof...
sspwimpcf 43984 If a class is a subclass o...
sspwimpcfVD 43985 The following User's Proof...
suctrALTcf 43986 The sucessor of a transiti...
suctrALTcfVD 43987 The following User's Proof...
suctrALT3 43988 The successor of a transit...
sspwimpALT 43989 If a class is a subclass o...
unisnALT 43990 A set equals the union of ...
notnotrALT2 43991 Converse of double negatio...
sspwimpALT2 43992 If a class is a subclass o...
e2ebindALT 43993 Absorption of an existenti...
ax6e2ndALT 43994 If at least two sets exist...
ax6e2ndeqALT 43995 "At least two sets exist" ...
2sb5ndALT 43996 Equivalence for double sub...
chordthmALT 43997 The intersecting chords th...
isosctrlem1ALT 43998 Lemma for ~ isosctr . Thi...
iunconnlem2 43999 The indexed union of conne...
iunconnALT 44000 The indexed union of conne...
sineq0ALT 44001 A complex number whose sin...
evth2f 44002 A version of ~ evth2 using...
elunif 44003 A version of ~ eluni using...
rzalf 44004 A version of ~ rzal using ...
fvelrnbf 44005 A version of ~ fvelrnb usi...
rfcnpre1 44006 If F is a continuous funct...
ubelsupr 44007 If U belongs to A and U is...
fsumcnf 44008 A finite sum of functions ...
mulltgt0 44009 The product of a negative ...
rspcegf 44010 A version of ~ rspcev usin...
rabexgf 44011 A version of ~ rabexg usin...
fcnre 44012 A function continuous with...
sumsnd 44013 A sum of a singleton is th...
evthf 44014 A version of ~ evth using ...
cnfex 44015 The class of continuous fu...
fnchoice 44016 For a finite set, a choice...
refsumcn 44017 A finite sum of continuous...
rfcnpre2 44018 If ` F ` is a continuous f...
cncmpmax 44019 When the hypothesis for th...
rfcnpre3 44020 If F is a continuous funct...
rfcnpre4 44021 If F is a continuous funct...
sumpair 44022 Sum of two distinct comple...
rfcnnnub 44023 Given a real continuous fu...
refsum2cnlem1 44024 This is the core Lemma for...
refsum2cn 44025 The sum of two continuus r...
adantlllr 44026 Deduction adding a conjunc...
3adantlr3 44027 Deduction adding a conjunc...
3adantll2 44028 Deduction adding a conjunc...
3adantll3 44029 Deduction adding a conjunc...
ssnel 44030 If not element of a set, t...
sncldre 44031 A singleton is closed w.r....
n0p 44032 A polynomial with a nonzer...
pm2.65ni 44033 Inference rule for proof b...
pwssfi 44034 Every element of the power...
iuneq2df 44035 Equality deduction for ind...
nnfoctb 44036 There exists a mapping fro...
ssinss1d 44037 Intersection preserves sub...
elpwinss 44038 An element of the powerset...
unidmex 44039 If ` F ` is a set, then ` ...
ndisj2 44040 A non-disjointness conditi...
zenom 44041 The set of integer numbers...
uzwo4 44042 Well-ordering principle: a...
unisn0 44043 The union of the singleton...
ssin0 44044 If two classes are disjoin...
inabs3 44045 Absorption law for interse...
pwpwuni 44046 Relationship between power...
disjiun2 44047 In a disjoint collection, ...
0pwfi 44048 The empty set is in any po...
ssinss2d 44049 Intersection preserves sub...
zct 44050 The set of integer numbers...
pwfin0 44051 A finite set always belong...
uzct 44052 An upper integer set is co...
iunxsnf 44053 A singleton index picks ou...
fiiuncl 44054 If a set is closed under t...
iunp1 44055 The addition of the next s...
fiunicl 44056 If a set is closed under t...
ixpeq2d 44057 Equality theorem for infin...
disjxp1 44058 The sets of a cartesian pr...
disjsnxp 44059 The sets in the cartesian ...
eliind 44060 Membership in indexed inte...
rspcef 44061 Restricted existential spe...
inn0f 44062 A nonempty intersection. ...
ixpssmapc 44063 An infinite Cartesian prod...
inn0 44064 A nonempty intersection. ...
elintd 44065 Membership in class inters...
ssdf 44066 A sufficient condition for...
brneqtrd 44067 Substitution of equal clas...
ssnct 44068 A set containing an uncoun...
ssuniint 44069 Sufficient condition for b...
elintdv 44070 Membership in class inters...
ssd 44071 A sufficient condition for...
ralimralim 44072 Introducing any antecedent...
snelmap 44073 Membership of the element ...
xrnmnfpnf 44074 An extended real that is n...
nelrnmpt 44075 Non-membership in the rang...
iuneq1i 44076 Equality theorem for index...
nssrex 44077 Negation of subclass relat...
ssinc 44078 Inclusion relation for a m...
ssdec 44079 Inclusion relation for a m...
elixpconstg 44080 Membership in an infinite ...
iineq1d 44081 Equality theorem for index...
metpsmet 44082 A metric is a pseudometric...
ixpssixp 44083 Subclass theorem for infin...
ballss3 44084 A sufficient condition for...
iunincfi 44085 Given a sequence of increa...
nsstr 44086 If it's not a subclass, it...
rexanuz3 44087 Combine two different uppe...
cbvmpo2 44088 Rule to change the second ...
cbvmpo1 44089 Rule to change the first b...
eliuniin 44090 Indexed union of indexed i...
ssabf 44091 Subclass of a class abstra...
pssnssi 44092 A proper subclass does not...
rabidim2 44093 Membership in a restricted...
eluni2f 44094 Membership in class union....
eliin2f 44095 Membership in indexed inte...
nssd 44096 Negation of subclass relat...
iineq12dv 44097 Equality deduction for ind...
supxrcld 44098 The supremum of an arbitra...
elrestd 44099 A sufficient condition for...
eliuniincex 44100 Counterexample to show tha...
eliincex 44101 Counterexample to show tha...
eliinid 44102 Membership in an indexed i...
abssf 44103 Class abstraction in a sub...
supxrubd 44104 A member of a set of exten...
ssrabf 44105 Subclass of a restricted c...
ssrabdf 44106 Subclass of a restricted c...
eliin2 44107 Membership in indexed inte...
ssrab2f 44108 Subclass relation for a re...
restuni3 44109 The underlying set of a su...
rabssf 44110 Restricted class abstracti...
eliuniin2 44111 Indexed union of indexed i...
restuni4 44112 The underlying set of a su...
restuni6 44113 The underlying set of a su...
restuni5 44114 The underlying set of a su...
unirestss 44115 The union of an elementwis...
iniin1 44116 Indexed intersection of in...
iniin2 44117 Indexed intersection of in...
cbvrabv2 44118 A more general version of ...
cbvrabv2w 44119 A more general version of ...
iinssiin 44120 Subset implication for an ...
eliind2 44121 Membership in indexed inte...
iinssd 44122 Subset implication for an ...
rabbida2 44123 Equivalent wff's yield equ...
iinexd 44124 The existence of an indexe...
rabexf 44125 Separation Scheme in terms...
rabbida3 44126 Equivalent wff's yield equ...
r19.36vf 44127 Restricted quantifier vers...
raleqd 44128 Equality deduction for res...
iinssf 44129 Subset implication for an ...
iinssdf 44130 Subset implication for an ...
resabs2i 44131 Absorption law for restric...
ssdf2 44132 A sufficient condition for...
rabssd 44133 Restricted class abstracti...
rexnegd 44134 Minus a real number. (Con...
rexlimd3 44135 * Inference from Theorem 1...
resabs1i 44136 Absorption law for restric...
nel1nelin 44137 Membership in an intersect...
nel2nelin 44138 Membership in an intersect...
nel1nelini 44139 Membership in an intersect...
nel2nelini 44140 Membership in an intersect...
eliunid 44141 Membership in indexed unio...
reximddv3 44142 Deduction from Theorem 19....
reximdd 44143 Deduction from Theorem 19....
unfid 44144 The union of two finite se...
inopnd 44145 The intersection of two op...
ss2rabdf 44146 Deduction of restricted ab...
restopn3 44147 If ` A ` is open, then ` A...
restopnssd 44148 A topology restricted to a...
restsubel 44149 A subset belongs in the sp...
toprestsubel 44150 A subset is open in the to...
rabidd 44151 An "identity" law of concr...
iunssdf 44152 Subset theorem for an inde...
iinss2d 44153 Subset implication for an ...
r19.3rzf 44154 Restricted quantification ...
r19.28zf 44155 Restricted quantifier vers...
iindif2f 44156 Indexed intersection of cl...
ralfal 44157 Two ways of expressing emp...
archd 44158 Archimedean property of re...
eliund 44159 Membership in indexed unio...
nimnbi 44160 If an implication is false...
nimnbi2 44161 If an implication is false...
notbicom 44162 Commutative law for the ne...
rexeqif 44163 Equality inference for res...
rspced 44164 Restricted existential spe...
feq1dd 44165 Equality deduction for fun...
fnresdmss 44166 A function does not change...
fmptsnxp 44167 Maps-to notation and Carte...
fvmpt2bd 44168 Value of a function given ...
rnmptfi 44169 The range of a function wi...
fresin2 44170 Restriction of a function ...
ffi 44171 A function with finite dom...
suprnmpt 44172 An explicit bound for the ...
rnffi 44173 The range of a function wi...
mptelpm 44174 A function in maps-to nota...
rnmptpr 44175 Range of a function define...
resmpti 44176 Restriction of the mapping...
founiiun 44177 Union expressed as an inde...
rnresun 44178 Distribution law for range...
elrnmptf 44179 The range of a function in...
rnmptssrn 44180 Inclusion relation for two...
disjf1 44181 A 1 to 1 mapping built fro...
rnsnf 44182 The range of a function wh...
wessf1ornlem 44183 Given a function ` F ` on ...
wessf1orn 44184 Given a function ` F ` on ...
nelrnres 44185 If ` A ` is not in the ran...
disjrnmpt2 44186 Disjointness of the range ...
elrnmpt1sf 44187 Elementhood in an image se...
founiiun0 44188 Union expressed as an inde...
disjf1o 44189 A bijection built from dis...
disjinfi 44190 Only a finite number of di...
fvovco 44191 Value of the composition o...
ssnnf1octb 44192 There exists a bijection b...
nnf1oxpnn 44193 There is a bijection betwe...
rnmptssd 44194 The range of a function gi...
projf1o 44195 A biijection from a set to...
fvmap 44196 Function value for a membe...
fvixp2 44197 Projection of a factor of ...
choicefi 44198 For a finite set, a choice...
mpct 44199 The exponentiation of a co...
cnmetcoval 44200 Value of the distance func...
fcomptss 44201 Express composition of two...
elmapsnd 44202 Membership in a set expone...
mapss2 44203 Subset inheritance for set...
fsneq 44204 Equality condition for two...
difmap 44205 Difference of two sets exp...
unirnmap 44206 Given a subset of a set ex...
inmap 44207 Intersection of two sets e...
fcoss 44208 Composition of two mapping...
fsneqrn 44209 Equality condition for two...
difmapsn 44210 Difference of two sets exp...
mapssbi 44211 Subset inheritance for set...
unirnmapsn 44212 Equality theorem for a sub...
iunmapss 44213 The indexed union of set e...
ssmapsn 44214 A subset ` C ` of a set ex...
iunmapsn 44215 The indexed union of set e...
absfico 44216 Mapping domain and codomai...
icof 44217 The set of left-closed rig...
elpmrn 44218 The range of a partial fun...
imaexi 44219 The image of a set is a se...
axccdom 44220 Relax the constraint on ax...
dmmptdff 44221 The domain of the mapping ...
dmmptdf 44222 The domain of the mapping ...
elpmi2 44223 The domain of a partial fu...
dmrelrnrel 44224 A relation preserving func...
fvcod 44225 Value of a function compos...
elrnmpoid 44226 Membership in the range of...
axccd 44227 An alternative version of ...
axccd2 44228 An alternative version of ...
fimassd 44229 The image of a class is a ...
feqresmptf 44230 Express a restricted funct...
elrnmpt1d 44231 Elementhood in an image se...
dmresss 44232 The domain of a restrictio...
dmmptssf 44233 The domain of a mapping is...
dmmptdf2 44234 The domain of the mapping ...
dmuz 44235 Domain of the upper intege...
fmptd2f 44236 Domain and codomain of the...
mpteq1df 44237 An equality theorem for th...
mpteq1dfOLD 44238 Obsolete version of ~ mpte...
mptexf 44239 If the domain of a functio...
fvmpt4 44240 Value of a function given ...
fmptf 44241 Functionality of the mappi...
resimass 44242 The image of a restriction...
mptssid 44243 The mapping operation expr...
mptfnd 44244 The maps-to notation defin...
mpteq12daOLD 44245 Obsolete version of ~ mpte...
rnmptlb 44246 Boundness below of the ran...
rnmptbddlem 44247 Boundness of the range of ...
rnmptbdd 44248 Boundness of the range of ...
funimaeq 44249 Membership relation for th...
rnmptssf 44250 The range of a function gi...
rnmptbd2lem 44251 Boundness below of the ran...
rnmptbd2 44252 Boundness below of the ran...
infnsuprnmpt 44253 The indexed infimum of rea...
suprclrnmpt 44254 Closure of the indexed sup...
suprubrnmpt2 44255 A member of a nonempty ind...
suprubrnmpt 44256 A member of a nonempty ind...
rnmptssdf 44257 The range of a function gi...
rnmptbdlem 44258 Boundness above of the ran...
rnmptbd 44259 Boundness above of the ran...
rnmptss2 44260 The range of a function gi...
elmptima 44261 The image of a function in...
ralrnmpt3 44262 A restricted quantifier ov...
fvelima2 44263 Function value in an image...
rnmptssbi 44264 The range of a function gi...
imass2d 44265 Subset theorem for image. ...
imassmpt 44266 Membership relation for th...
fpmd 44267 A total function is a part...
fconst7 44268 An alternative way to expr...
fnmptif 44269 Functionality and domain o...
dmmptif 44270 Domain of the mapping oper...
mpteq2dfa 44271 Slightly more general equa...
dmmpt1 44272 The domain of the mapping ...
fmptff 44273 Functionality of the mappi...
fvmptelcdmf 44274 The value of a function at...
fmptdff 44275 A version of ~ fmptd using...
fvmpt2df 44276 Deduction version of ~ fvm...
rn1st 44277 The range of a function wi...
rnmptssff 44278 The range of a function gi...
rnmptssdff 44279 The range of a function gi...
fvmpt4d 44280 Value of a function given ...
sub2times 44281 Subtracting from a number,...
nnxrd 44282 A natural number is an ext...
nnxr 44283 A natural number is an ext...
abssubrp 44284 The distance of two distin...
elfzfzo 44285 Relationship between membe...
oddfl 44286 Odd number representation ...
abscosbd 44287 Bound for the absolute val...
mul13d 44288 Commutative/associative la...
negpilt0 44289 Negative ` _pi ` is negati...
dstregt0 44290 A complex number ` A ` tha...
subadd4b 44291 Rearrangement of 4 terms i...
xrlttri5d 44292 Not equal and not larger i...
neglt 44293 The negative of a positive...
zltlesub 44294 If an integer ` N ` is les...
divlt0gt0d 44295 The ratio of a negative nu...
subsub23d 44296 Swap subtrahend and result...
2timesgt 44297 Double of a positive real ...
reopn 44298 The reals are open with re...
sub31 44299 Swap the first and third t...
nnne1ge2 44300 A positive integer which i...
lefldiveq 44301 A closed enough, smaller r...
negsubdi3d 44302 Distribution of negative o...
ltdiv2dd 44303 Division of a positive num...
abssinbd 44304 Bound for the absolute val...
halffl 44305 Floor of ` ( 1 / 2 ) ` . ...
monoords 44306 Ordering relation for a st...
hashssle 44307 The size of a subset of a ...
lttri5d 44308 Not equal and not larger i...
fzisoeu 44309 A finite ordered set has a...
lt3addmuld 44310 If three real numbers are ...
absnpncan2d 44311 Triangular inequality, com...
fperiodmullem 44312 A function with period ` T...
fperiodmul 44313 A function with period T i...
upbdrech 44314 Choice of an upper bound f...
lt4addmuld 44315 If four real numbers are l...
absnpncan3d 44316 Triangular inequality, com...
upbdrech2 44317 Choice of an upper bound f...
ssfiunibd 44318 A finite union of bounded ...
fzdifsuc2 44319 Remove a successor from th...
fzsscn 44320 A finite sequence of integ...
divcan8d 44321 A cancellation law for div...
dmmcand 44322 Cancellation law for divis...
fzssre 44323 A finite sequence of integ...
bccld 44324 A binomial coefficient, in...
leadd12dd 44325 Addition to both sides of ...
fzssnn0 44326 A finite set of sequential...
xreqle 44327 Equality implies 'less tha...
xaddlidd 44328 ` 0 ` is a left identity f...
xadd0ge 44329 A number is less than or e...
elfzolem1 44330 A member in a half-open in...
xrgtned 44331 'Greater than' implies not...
xrleneltd 44332 'Less than or equal to' an...
xaddcomd 44333 The extended real addition...
supxrre3 44334 The supremum of a nonempty...
uzfissfz 44335 For any finite subset of t...
xleadd2d 44336 Addition of extended reals...
suprltrp 44337 The supremum of a nonempty...
xleadd1d 44338 Addition of extended reals...
xreqled 44339 Equality implies 'less tha...
xrgepnfd 44340 An extended real greater t...
xrge0nemnfd 44341 A nonnegative extended rea...
supxrgere 44342 If a real number can be ap...
iuneqfzuzlem 44343 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 44344 If two unions indexed by u...
xle2addd 44345 Adding both side of two in...
supxrgelem 44346 If an extended real number...
supxrge 44347 If an extended real number...
suplesup 44348 If any element of ` A ` ca...
infxrglb 44349 The infimum of a set of ex...
xadd0ge2 44350 A number is less than or e...
nepnfltpnf 44351 An extended real that is n...
ltadd12dd 44352 Addition to both sides of ...
nemnftgtmnft 44353 An extended real that is n...
xrgtso 44354 'Greater than' is a strict...
rpex 44355 The positive reals form a ...
xrge0ge0 44356 A nonnegative extended rea...
xrssre 44357 A subset of extended reals...
ssuzfz 44358 A finite subset of the upp...
absfun 44359 The absolute value is a fu...
infrpge 44360 The infimum of a nonempty,...
xrlexaddrp 44361 If an extended real number...
supsubc 44362 The supremum function dist...
xralrple2 44363 Show that ` A ` is less th...
nnuzdisj 44364 The first ` N ` elements o...
ltdivgt1 44365 Divsion by a number greate...
xrltned 44366 'Less than' implies not eq...
nnsplit 44367 Express the set of positiv...
divdiv3d 44368 Division into a fraction. ...
abslt2sqd 44369 Comparison of the square o...
qenom 44370 The set of rational number...
qct 44371 The set of rational number...
xrltnled 44372 'Less than' in terms of 'l...
lenlteq 44373 'less than or equal to' bu...
xrred 44374 An extended real that is n...
rr2sscn2 44375 The cartesian square of ` ...
infxr 44376 The infimum of a set of ex...
infxrunb2 44377 The infimum of an unbounde...
infxrbnd2 44378 The infimum of a bounded-b...
infleinflem1 44379 Lemma for ~ infleinf , cas...
infleinflem2 44380 Lemma for ~ infleinf , whe...
infleinf 44381 If any element of ` B ` ca...
xralrple4 44382 Show that ` A ` is less th...
xralrple3 44383 Show that ` A ` is less th...
eluzelzd 44384 A member of an upper set o...
suplesup2 44385 If any element of ` A ` is...
recnnltrp 44386 ` N ` is a natural number ...
nnn0 44387 The set of positive intege...
fzct 44388 A finite set of sequential...
rpgtrecnn 44389 Any positive real number i...
fzossuz 44390 A half-open integer interv...
infxrrefi 44391 The real and extended real...
xrralrecnnle 44392 Show that ` A ` is less th...
fzoct 44393 A finite set of sequential...
frexr 44394 A function taking real val...
nnrecrp 44395 The reciprocal of a positi...
reclt0d 44396 The reciprocal of a negati...
lt0neg1dd 44397 If a number is negative, i...
infxrcld 44398 The infimum of an arbitrar...
xrralrecnnge 44399 Show that ` A ` is less th...
reclt0 44400 The reciprocal of a negati...
ltmulneg 44401 Multiplying by a negative ...
allbutfi 44402 For all but finitely many....
ltdiv23neg 44403 Swap denominator with othe...
xreqnltd 44404 A consequence of trichotom...
mnfnre2 44405 Minus infinity is not a re...
zssxr 44406 The integers are a subset ...
fisupclrnmpt 44407 A nonempty finite indexed ...
supxrunb3 44408 The supremum of an unbound...
elfzod 44409 Membership in a half-open ...
fimaxre4 44410 A nonempty finite set of r...
ren0 44411 The set of reals is nonemp...
eluzelz2 44412 A member of an upper set o...
resabs2d 44413 Absorption law for restric...
uzid2 44414 Membership of the least me...
supxrleubrnmpt 44415 The supremum of a nonempty...
uzssre2 44416 An upper set of integers i...
uzssd 44417 Subset relationship for tw...
eluzd 44418 Membership in an upper set...
infxrlbrnmpt2 44419 A member of a nonempty ind...
xrre4 44420 An extended real is real i...
uz0 44421 The upper integers functio...
eluzelz2d 44422 A member of an upper set o...
infleinf2 44423 If any element in ` B ` is...
unb2ltle 44424 "Unbounded below" expresse...
uzidd2 44425 Membership of the least me...
uzssd2 44426 Subset relationship for tw...
rexabslelem 44427 An indexed set of absolute...
rexabsle 44428 An indexed set of absolute...
allbutfiinf 44429 Given a "for all but finit...
supxrrernmpt 44430 The real and extended real...
suprleubrnmpt 44431 The supremum of a nonempty...
infrnmptle 44432 An indexed infimum of exte...
infxrunb3 44433 The infimum of an unbounde...
uzn0d 44434 The upper integers are all...
uzssd3 44435 Subset relationship for tw...
rexabsle2 44436 An indexed set of absolute...
infxrunb3rnmpt 44437 The infimum of an unbounde...
supxrre3rnmpt 44438 The indexed supremum of a ...
uzublem 44439 A set of reals, indexed by...
uzub 44440 A set of reals, indexed by...
ssrexr 44441 A subset of the reals is a...
supxrmnf2 44442 Removing minus infinity fr...
supxrcli 44443 The supremum of an arbitra...
uzid3 44444 Membership of the least me...
infxrlesupxr 44445 The supremum of a nonempty...
xnegeqd 44446 Equality of two extended n...
xnegrecl 44447 The extended real negative...
xnegnegi 44448 Extended real version of ~...
xnegeqi 44449 Equality of two extended n...
nfxnegd 44450 Deduction version of ~ nfx...
xnegnegd 44451 Extended real version of ~...
uzred 44452 An upper integer is a real...
xnegcli 44453 Closure of extended real n...
supminfrnmpt 44454 The indexed supremum of a ...
infxrpnf 44455 Adding plus infinity to a ...
infxrrnmptcl 44456 The infimum of an arbitrar...
leneg2d 44457 Negative of one side of 'l...
supxrltinfxr 44458 The supremum of the empty ...
max1d 44459 A number is less than or e...
supxrleubrnmptf 44460 The supremum of a nonempty...
nleltd 44461 'Not less than or equal to...
zxrd 44462 An integer is an extended ...
infxrgelbrnmpt 44463 The infimum of an indexed ...
rphalfltd 44464 Half of a positive real is...
uzssz2 44465 An upper set of integers i...
leneg3d 44466 Negative of one side of 'l...
max2d 44467 A number is less than or e...
uzn0bi 44468 The upper integers functio...
xnegrecl2 44469 If the extended real negat...
nfxneg 44470 Bound-variable hypothesis ...
uzxrd 44471 An upper integer is an ext...
infxrpnf2 44472 Removing plus infinity fro...
supminfxr 44473 The extended real suprema ...
infrpgernmpt 44474 The infimum of a nonempty,...
xnegre 44475 An extended real is real i...
xnegrecl2d 44476 If the extended real negat...
uzxr 44477 An upper integer is an ext...
supminfxr2 44478 The extended real suprema ...
xnegred 44479 An extended real is real i...
supminfxrrnmpt 44480 The indexed supremum of a ...
min1d 44481 The minimum of two numbers...
min2d 44482 The minimum of two numbers...
pnfged 44483 Plus infinity is an upper ...
xrnpnfmnf 44484 An extended real that is n...
uzsscn 44485 An upper set of integers i...
absimnre 44486 The absolute value of the ...
uzsscn2 44487 An upper set of integers i...
xrtgcntopre 44488 The standard topologies on...
absimlere 44489 The absolute value of the ...
rpssxr 44490 The positive reals are a s...
monoordxrv 44491 Ordering relation for a mo...
monoordxr 44492 Ordering relation for a mo...
monoord2xrv 44493 Ordering relation for a mo...
monoord2xr 44494 Ordering relation for a mo...
xrpnf 44495 An extended real is plus i...
xlenegcon1 44496 Extended real version of ~...
xlenegcon2 44497 Extended real version of ~...
pimxrneun 44498 The preimage of a set of e...
caucvgbf 44499 A function is convergent i...
cvgcau 44500 A convergent function is C...
cvgcaule 44501 A convergent function is C...
rexanuz2nf 44502 A simple counterexample re...
gtnelioc 44503 A real number larger than ...
ioossioc 44504 An open interval is a subs...
ioondisj2 44505 A condition for two open i...
ioondisj1 44506 A condition for two open i...
ioogtlb 44507 An element of a closed int...
evthiccabs 44508 Extreme Value Theorem on y...
ltnelicc 44509 A real number smaller than...
eliood 44510 Membership in an open real...
iooabslt 44511 An upper bound for the dis...
gtnelicc 44512 A real number greater than...
iooinlbub 44513 An open interval has empty...
iocgtlb 44514 An element of a left-open ...
iocleub 44515 An element of a left-open ...
eliccd 44516 Membership in a closed rea...
eliccre 44517 A member of a closed inter...
eliooshift 44518 Element of an open interva...
eliocd 44519 Membership in a left-open ...
icoltub 44520 An element of a left-close...
eliocre 44521 A member of a left-open ri...
iooltub 44522 An element of an open inte...
ioontr 44523 The interior of an interva...
snunioo1 44524 The closure of one end of ...
lbioc 44525 A left-open right-closed i...
ioomidp 44526 The midpoint is an element...
iccdifioo 44527 If the open inverval is re...
iccdifprioo 44528 An open interval is the cl...
ioossioobi 44529 Biconditional form of ~ io...
iccshift 44530 A closed interval shifted ...
iccsuble 44531 An upper bound to the dist...
iocopn 44532 A left-open right-closed i...
eliccelioc 44533 Membership in a closed int...
iooshift 44534 An open interval shifted b...
iccintsng 44535 Intersection of two adiace...
icoiccdif 44536 Left-closed right-open int...
icoopn 44537 A left-closed right-open i...
icoub 44538 A left-closed, right-open ...
eliccxrd 44539 Membership in a closed rea...
pnfel0pnf 44540 ` +oo ` is a nonnegative e...
eliccnelico 44541 An element of a closed int...
eliccelicod 44542 A member of a closed inter...
ge0xrre 44543 A nonnegative extended rea...
ge0lere 44544 A nonnegative extended Rea...
elicores 44545 Membership in a left-close...
inficc 44546 The infimum of a nonempty ...
qinioo 44547 The rational numbers are d...
lenelioc 44548 A real number smaller than...
ioonct 44549 A nonempty open interval i...
xrgtnelicc 44550 A real number greater than...
iccdificc 44551 The difference of two clos...
iocnct 44552 A nonempty left-open, righ...
iccnct 44553 A closed interval, with mo...
iooiinicc 44554 A closed interval expresse...
iccgelbd 44555 An element of a closed int...
iooltubd 44556 An element of an open inte...
icoltubd 44557 An element of a left-close...
qelioo 44558 The rational numbers are d...
tgqioo2 44559 Every open set of reals is...
iccleubd 44560 An element of a closed int...
elioored 44561 A member of an open interv...
ioogtlbd 44562 An element of a closed int...
ioofun 44563 ` (,) ` is a function. (C...
icomnfinre 44564 A left-closed, right-open,...
sqrlearg 44565 The square compared with i...
ressiocsup 44566 If the supremum belongs to...
ressioosup 44567 If the supremum does not b...
iooiinioc 44568 A left-open, right-closed ...
ressiooinf 44569 If the infimum does not be...
icogelbd 44570 An element of a left-close...
iocleubd 44571 An element of a left-open ...
uzinico 44572 An upper interval of integ...
preimaiocmnf 44573 Preimage of a right-closed...
uzinico2 44574 An upper interval of integ...
uzinico3 44575 An upper interval of integ...
icossico2 44576 Condition for a closed-bel...
dmico 44577 The domain of the closed-b...
ndmico 44578 The closed-below, open-abo...
uzubioo 44579 The upper integers are unb...
uzubico 44580 The upper integers are unb...
uzubioo2 44581 The upper integers are unb...
uzubico2 44582 The upper integers are unb...
iocgtlbd 44583 An element of a left-open ...
xrtgioo2 44584 The topology on the extend...
tgioo4 44585 The standard topology on t...
fsummulc1f 44586 Closure of a finite sum of...
fsumnncl 44587 Closure of a nonempty, fin...
fsumge0cl 44588 The finite sum of nonnegat...
fsumf1of 44589 Re-index a finite sum usin...
fsumiunss 44590 Sum over a disjoint indexe...
fsumreclf 44591 Closure of a finite sum of...
fsumlessf 44592 A shorter sum of nonnegati...
fsumsupp0 44593 Finite sum of function val...
fsumsermpt 44594 A finite sum expressed in ...
fmul01 44595 Multiplying a finite numbe...
fmulcl 44596 If ' Y ' is closed under t...
fmuldfeqlem1 44597 induction step for the pro...
fmuldfeq 44598 X and Z are two equivalent...
fmul01lt1lem1 44599 Given a finite multiplicat...
fmul01lt1lem2 44600 Given a finite multiplicat...
fmul01lt1 44601 Given a finite multiplicat...
cncfmptss 44602 A continuous complex funct...
rrpsscn 44603 The positive reals are a s...
mulc1cncfg 44604 A version of ~ mulc1cncf u...
infrglb 44605 The infimum of a nonempty ...
expcnfg 44606 If ` F ` is a complex cont...
prodeq2ad 44607 Equality deduction for pro...
fprodsplit1 44608 Separate out a term in a f...
fprodexp 44609 Positive integer exponenti...
fprodabs2 44610 The absolute value of a fi...
fprod0 44611 A finite product with a ze...
mccllem 44612 * Induction step for ~ mcc...
mccl 44613 A multinomial coefficient,...
fprodcnlem 44614 A finite product of functi...
fprodcn 44615 A finite product of functi...
clim1fr1 44616 A class of sequences of fr...
isumneg 44617 Negation of a converging s...
climrec 44618 Limit of the reciprocal of...
climmulf 44619 A version of ~ climmul usi...
climexp 44620 The limit of natural power...
climinf 44621 A bounded monotonic noninc...
climsuselem1 44622 The subsequence index ` I ...
climsuse 44623 A subsequence ` G ` of a c...
climrecf 44624 A version of ~ climrec usi...
climneg 44625 Complex limit of the negat...
climinff 44626 A version of ~ climinf usi...
climdivf 44627 Limit of the ratio of two ...
climreeq 44628 If ` F ` is a real functio...
ellimciota 44629 An explicit value for the ...
climaddf 44630 A version of ~ climadd usi...
mullimc 44631 Limit of the product of tw...
ellimcabssub0 44632 An equivalent condition fo...
limcdm0 44633 If a function has empty do...
islptre 44634 An equivalence condition f...
limccog 44635 Limit of the composition o...
limciccioolb 44636 The limit of a function at...
climf 44637 Express the predicate: Th...
mullimcf 44638 Limit of the multiplicatio...
constlimc 44639 Limit of constant function...
rexlim2d 44640 Inference removing two res...
idlimc 44641 Limit of the identity func...
divcnvg 44642 The sequence of reciprocal...
limcperiod 44643 If ` F ` is a periodic fun...
limcrecl 44644 If ` F ` is a real-valued ...
sumnnodd 44645 A series indexed by ` NN `...
lptioo2 44646 The upper bound of an open...
lptioo1 44647 The lower bound of an open...
elprn1 44648 A member of an unordered p...
elprn2 44649 A member of an unordered p...
limcmptdm 44650 The domain of a maps-to fu...
clim2f 44651 Express the predicate: Th...
limcicciooub 44652 The limit of a function at...
ltmod 44653 A sufficient condition for...
islpcn 44654 A characterization for a l...
lptre2pt 44655 If a set in the real line ...
limsupre 44656 If a sequence is bounded, ...
limcresiooub 44657 The left limit doesn't cha...
limcresioolb 44658 The right limit doesn't ch...
limcleqr 44659 If the left and the right ...
lptioo2cn 44660 The upper bound of an open...
lptioo1cn 44661 The lower bound of an open...
neglimc 44662 Limit of the negative func...
addlimc 44663 Sum of two limits. (Contr...
0ellimcdiv 44664 If the numerator converges...
clim2cf 44665 Express the predicate ` F ...
limclner 44666 For a limit point, both fr...
sublimc 44667 Subtraction of two limits....
reclimc 44668 Limit of the reciprocal of...
clim0cf 44669 Express the predicate ` F ...
limclr 44670 For a limit point, both fr...
divlimc 44671 Limit of the quotient of t...
expfac 44672 Factorial grows faster tha...
climconstmpt 44673 A constant sequence conver...
climresmpt 44674 A function restricted to u...
climsubmpt 44675 Limit of the difference of...
climsubc2mpt 44676 Limit of the difference of...
climsubc1mpt 44677 Limit of the difference of...
fnlimfv 44678 The value of the limit fun...
climreclf 44679 The limit of a convergent ...
climeldmeq 44680 Two functions that are eve...
climf2 44681 Express the predicate: Th...
fnlimcnv 44682 The sequence of function v...
climeldmeqmpt 44683 Two functions that are eve...
climfveq 44684 Two functions that are eve...
clim2f2 44685 Express the predicate: Th...
climfveqmpt 44686 Two functions that are eve...
climd 44687 Express the predicate: Th...
clim2d 44688 The limit of complex numbe...
fnlimfvre 44689 The limit function of real...
allbutfifvre 44690 Given a sequence of real-v...
climleltrp 44691 The limit of complex numbe...
fnlimfvre2 44692 The limit function of real...
fnlimf 44693 The limit function of real...
fnlimabslt 44694 A sequence of function val...
climfveqf 44695 Two functions that are eve...
climmptf 44696 Exhibit a function ` G ` w...
climfveqmpt3 44697 Two functions that are eve...
climeldmeqf 44698 Two functions that are eve...
climreclmpt 44699 The limit of B convergent ...
limsupref 44700 If a sequence is bounded, ...
limsupbnd1f 44701 If a sequence is eventuall...
climbddf 44702 A converging sequence of c...
climeqf 44703 Two functions that are eve...
climeldmeqmpt3 44704 Two functions that are eve...
limsupcld 44705 Closure of the superior li...
climfv 44706 The limit of a convergent ...
limsupval3 44707 The superior limit of an i...
climfveqmpt2 44708 Two functions that are eve...
limsup0 44709 The superior limit of the ...
climeldmeqmpt2 44710 Two functions that are eve...
limsupresre 44711 The supremum limit of a fu...
climeqmpt 44712 Two functions that are eve...
climfvd 44713 The limit of a convergent ...
limsuplesup 44714 An upper bound for the sup...
limsupresico 44715 The superior limit doesn't...
limsuppnfdlem 44716 If the restriction of a fu...
limsuppnfd 44717 If the restriction of a fu...
limsupresuz 44718 If the real part of the do...
limsupub 44719 If the limsup is not ` +oo...
limsupres 44720 The superior limit of a re...
climinf2lem 44721 A convergent, nonincreasin...
climinf2 44722 A convergent, nonincreasin...
limsupvaluz 44723 The superior limit, when t...
limsupresuz2 44724 If the domain of a functio...
limsuppnflem 44725 If the restriction of a fu...
limsuppnf 44726 If the restriction of a fu...
limsupubuzlem 44727 If the limsup is not ` +oo...
limsupubuz 44728 For a real-valued function...
climinf2mpt 44729 A bounded below, monotonic...
climinfmpt 44730 A bounded below, monotonic...
climinf3 44731 A convergent, nonincreasin...
limsupvaluzmpt 44732 The superior limit, when t...
limsupequzmpt2 44733 Two functions that are eve...
limsupubuzmpt 44734 If the limsup is not ` +oo...
limsupmnflem 44735 The superior limit of a fu...
limsupmnf 44736 The superior limit of a fu...
limsupequzlem 44737 Two functions that are eve...
limsupequz 44738 Two functions that are eve...
limsupre2lem 44739 Given a function on the ex...
limsupre2 44740 Given a function on the ex...
limsupmnfuzlem 44741 The superior limit of a fu...
limsupmnfuz 44742 The superior limit of a fu...
limsupequzmptlem 44743 Two functions that are eve...
limsupequzmpt 44744 Two functions that are eve...
limsupre2mpt 44745 Given a function on the ex...
limsupequzmptf 44746 Two functions that are eve...
limsupre3lem 44747 Given a function on the ex...
limsupre3 44748 Given a function on the ex...
limsupre3mpt 44749 Given a function on the ex...
limsupre3uzlem 44750 Given a function on the ex...
limsupre3uz 44751 Given a function on the ex...
limsupreuz 44752 Given a function on the re...
limsupvaluz2 44753 The superior limit, when t...
limsupreuzmpt 44754 Given a function on the re...
supcnvlimsup 44755 If a function on a set of ...
supcnvlimsupmpt 44756 If a function on a set of ...
0cnv 44757 If ` (/) ` is a complex nu...
climuzlem 44758 Express the predicate: Th...
climuz 44759 Express the predicate: Th...
lmbr3v 44760 Express the binary relatio...
climisp 44761 If a sequence converges to...
lmbr3 44762 Express the binary relatio...
climrescn 44763 A sequence converging w.r....
climxrrelem 44764 If a sequence ranging over...
climxrre 44765 If a sequence ranging over...
limsuplt2 44768 The defining property of t...
liminfgord 44769 Ordering property of the i...
limsupvald 44770 The superior limit of a se...
limsupresicompt 44771 The superior limit doesn't...
limsupcli 44772 Closure of the superior li...
liminfgf 44773 Closure of the inferior li...
liminfval 44774 The inferior limit of a se...
climlimsup 44775 A sequence of real numbers...
limsupge 44776 The defining property of t...
liminfgval 44777 Value of the inferior limi...
liminfcl 44778 Closure of the inferior li...
liminfvald 44779 The inferior limit of a se...
liminfval5 44780 The inferior limit of an i...
limsupresxr 44781 The superior limit of a fu...
liminfresxr 44782 The inferior limit of a fu...
liminfval2 44783 The superior limit, relati...
climlimsupcex 44784 Counterexample for ~ climl...
liminfcld 44785 Closure of the inferior li...
liminfresico 44786 The inferior limit doesn't...
limsup10exlem 44787 The range of the given fun...
limsup10ex 44788 The superior limit of a fu...
liminf10ex 44789 The inferior limit of a fu...
liminflelimsuplem 44790 The superior limit is grea...
liminflelimsup 44791 The superior limit is grea...
limsupgtlem 44792 For any positive real, the...
limsupgt 44793 Given a sequence of real n...
liminfresre 44794 The inferior limit of a fu...
liminfresicompt 44795 The inferior limit doesn't...
liminfltlimsupex 44796 An example where the ` lim...
liminfgelimsup 44797 The inferior limit is grea...
liminfvalxr 44798 Alternate definition of ` ...
liminfresuz 44799 If the real part of the do...
liminflelimsupuz 44800 The superior limit is grea...
liminfvalxrmpt 44801 Alternate definition of ` ...
liminfresuz2 44802 If the domain of a functio...
liminfgelimsupuz 44803 The inferior limit is grea...
liminfval4 44804 Alternate definition of ` ...
liminfval3 44805 Alternate definition of ` ...
liminfequzmpt2 44806 Two functions that are eve...
liminfvaluz 44807 Alternate definition of ` ...
liminf0 44808 The inferior limit of the ...
limsupval4 44809 Alternate definition of ` ...
liminfvaluz2 44810 Alternate definition of ` ...
liminfvaluz3 44811 Alternate definition of ` ...
liminflelimsupcex 44812 A counterexample for ~ lim...
limsupvaluz3 44813 Alternate definition of ` ...
liminfvaluz4 44814 Alternate definition of ` ...
limsupvaluz4 44815 Alternate definition of ` ...
climliminflimsupd 44816 If a sequence of real numb...
liminfreuzlem 44817 Given a function on the re...
liminfreuz 44818 Given a function on the re...
liminfltlem 44819 Given a sequence of real n...
liminflt 44820 Given a sequence of real n...
climliminf 44821 A sequence of real numbers...
liminflimsupclim 44822 A sequence of real numbers...
climliminflimsup 44823 A sequence of real numbers...
climliminflimsup2 44824 A sequence of real numbers...
climliminflimsup3 44825 A sequence of real numbers...
climliminflimsup4 44826 A sequence of real numbers...
limsupub2 44827 A extended real valued fun...
limsupubuz2 44828 A sequence with values in ...
xlimpnfxnegmnf 44829 A sequence converges to ` ...
liminflbuz2 44830 A sequence with values in ...
liminfpnfuz 44831 The inferior limit of a fu...
liminflimsupxrre 44832 A sequence with values in ...
xlimrel 44835 The limit on extended real...
xlimres 44836 A function converges iff i...
xlimcl 44837 The limit of a sequence of...
rexlimddv2 44838 Restricted existential eli...
xlimclim 44839 Given a sequence of reals,...
xlimconst 44840 A constant sequence conver...
climxlim 44841 A converging sequence in t...
xlimbr 44842 Express the binary relatio...
fuzxrpmcn 44843 A function mapping from an...
cnrefiisplem 44844 Lemma for ~ cnrefiisp (som...
cnrefiisp 44845 A non-real, complex number...
xlimxrre 44846 If a sequence ranging over...
xlimmnfvlem1 44847 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 44848 Lemma for ~ xlimmnf : the ...
xlimmnfv 44849 A function converges to mi...
xlimconst2 44850 A sequence that eventually...
xlimpnfvlem1 44851 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 44852 Lemma for ~ xlimpnfv : the...
xlimpnfv 44853 A function converges to pl...
xlimclim2lem 44854 Lemma for ~ xlimclim2 . H...
xlimclim2 44855 Given a sequence of extend...
xlimmnf 44856 A function converges to mi...
xlimpnf 44857 A function converges to pl...
xlimmnfmpt 44858 A function converges to pl...
xlimpnfmpt 44859 A function converges to pl...
climxlim2lem 44860 In this lemma for ~ climxl...
climxlim2 44861 A sequence of extended rea...
dfxlim2v 44862 An alternative definition ...
dfxlim2 44863 An alternative definition ...
climresd 44864 A function restricted to u...
climresdm 44865 A real function converges ...
dmclimxlim 44866 A real valued sequence tha...
xlimmnflimsup2 44867 A sequence of extended rea...
xlimuni 44868 An infinite sequence conve...
xlimclimdm 44869 A sequence of extended rea...
xlimfun 44870 The convergence relation o...
xlimmnflimsup 44871 If a sequence of extended ...
xlimdm 44872 Two ways to express that a...
xlimpnfxnegmnf2 44873 A sequence converges to ` ...
xlimresdm 44874 A function converges in th...
xlimpnfliminf 44875 If a sequence of extended ...
xlimpnfliminf2 44876 A sequence of extended rea...
xlimliminflimsup 44877 A sequence of extended rea...
xlimlimsupleliminf 44878 A sequence of extended rea...
coseq0 44879 A complex number whose cos...
sinmulcos 44880 Multiplication formula for...
coskpi2 44881 The cosine of an integer m...
cosnegpi 44882 The cosine of negative ` _...
sinaover2ne0 44883 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 44884 The cosine of an integer m...
mulcncff 44885 The multiplication of two ...
cncfmptssg 44886 A continuous complex funct...
constcncfg 44887 A constant function is a c...
idcncfg 44888 The identity function is a...
cncfshift 44889 A periodic continuous func...
resincncf 44890 ` sin ` restricted to real...
addccncf2 44891 Adding a constant is a con...
0cnf 44892 The empty set is a continu...
fsumcncf 44893 The finite sum of continuo...
cncfperiod 44894 A periodic continuous func...
subcncff 44895 The subtraction of two con...
negcncfg 44896 The opposite of a continuo...
cnfdmsn 44897 A function with a singleto...
cncfcompt 44898 Composition of continuous ...
addcncff 44899 The sum of two continuous ...
ioccncflimc 44900 Limit at the upper bound o...
cncfuni 44901 A complex function on a su...
icccncfext 44902 A continuous function on a...
cncficcgt0 44903 A the absolute value of a ...
icocncflimc 44904 Limit at the lower bound, ...
cncfdmsn 44905 A complex function with a ...
divcncff 44906 The quotient of two contin...
cncfshiftioo 44907 A periodic continuous func...
cncfiooicclem1 44908 A continuous function ` F ...
cncfiooicc 44909 A continuous function ` F ...
cncfiooiccre 44910 A continuous function ` F ...
cncfioobdlem 44911 ` G ` actually extends ` F...
cncfioobd 44912 A continuous function ` F ...
jumpncnp 44913 Jump discontinuity or disc...
cxpcncf2 44914 The complex power function...
fprodcncf 44915 The finite product of cont...
add1cncf 44916 Addition to a constant is ...
add2cncf 44917 Addition to a constant is ...
sub1cncfd 44918 Subtracting a constant is ...
sub2cncfd 44919 Subtraction from a constan...
fprodsub2cncf 44920 ` F ` is continuous. (Con...
fprodadd2cncf 44921 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 44922 The sequence ` S ` of fini...
fprodsubrecnncnv 44923 The sequence ` S ` of fini...
fprodaddrecnncnvlem 44924 The sequence ` S ` of fini...
fprodaddrecnncnv 44925 The sequence ` S ` of fini...
dvsinexp 44926 The derivative of sin^N . ...
dvcosre 44927 The real derivative of the...
dvsinax 44928 Derivative exercise: the d...
dvsubf 44929 The subtraction rule for e...
dvmptconst 44930 Function-builder for deriv...
dvcnre 44931 From complex differentiati...
dvmptidg 44932 Function-builder for deriv...
dvresntr 44933 Function-builder for deriv...
fperdvper 44934 The derivative of a period...
dvasinbx 44935 Derivative exercise: the d...
dvresioo 44936 Restriction of a derivativ...
dvdivf 44937 The quotient rule for ever...
dvdivbd 44938 A sufficient condition for...
dvsubcncf 44939 A sufficient condition for...
dvmulcncf 44940 A sufficient condition for...
dvcosax 44941 Derivative exercise: the d...
dvdivcncf 44942 A sufficient condition for...
dvbdfbdioolem1 44943 Given a function with boun...
dvbdfbdioolem2 44944 A function on an open inte...
dvbdfbdioo 44945 A function on an open inte...
ioodvbdlimc1lem1 44946 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 44947 Limit at the lower bound o...
ioodvbdlimc1 44948 A real function with bound...
ioodvbdlimc2lem 44949 Limit at the upper bound o...
ioodvbdlimc2 44950 A real function with bound...
dvdmsscn 44951 ` X ` is a subset of ` CC ...
dvmptmulf 44952 Function-builder for deriv...
dvnmptdivc 44953 Function-builder for itera...
dvdsn1add 44954 If ` K ` divides ` N ` but...
dvxpaek 44955 Derivative of the polynomi...
dvnmptconst 44956 The ` N ` -th derivative o...
dvnxpaek 44957 The ` n ` -th derivative o...
dvnmul 44958 Function-builder for the `...
dvmptfprodlem 44959 Induction step for ~ dvmpt...
dvmptfprod 44960 Function-builder for deriv...
dvnprodlem1 44961 ` D ` is bijective. (Cont...
dvnprodlem2 44962 Induction step for ~ dvnpr...
dvnprodlem3 44963 The multinomial formula fo...
dvnprod 44964 The multinomial formula fo...
itgsin0pilem1 44965 Calculation of the integra...
ibliccsinexp 44966 sin^n on a closed interval...
itgsin0pi 44967 Calculation of the integra...
iblioosinexp 44968 sin^n on an open integral ...
itgsinexplem1 44969 Integration by parts is ap...
itgsinexp 44970 A recursive formula for th...
iblconstmpt 44971 A constant function is int...
itgeq1d 44972 Equality theorem for an in...
mbfres2cn 44973 Measurability of a piecewi...
vol0 44974 The measure of the empty s...
ditgeqiooicc 44975 A function ` F ` on an ope...
volge0 44976 The volume of a set is alw...
cnbdibl 44977 A continuous bounded funct...
snmbl 44978 A singleton is measurable....
ditgeq3d 44979 Equality theorem for the d...
iblempty 44980 The empty function is inte...
iblsplit 44981 The union of two integrabl...
volsn 44982 A singleton has 0 Lebesgue...
itgvol0 44983 If the domani is negligibl...
itgcoscmulx 44984 Exercise: the integral of ...
iblsplitf 44985 A version of ~ iblsplit us...
ibliooicc 44986 If a function is integrabl...
volioc 44987 The measure of a left-open...
iblspltprt 44988 If a function is integrabl...
itgsincmulx 44989 Exercise: the integral of ...
itgsubsticclem 44990 lemma for ~ itgsubsticc . ...
itgsubsticc 44991 Integration by u-substitut...
itgioocnicc 44992 The integral of a piecewis...
iblcncfioo 44993 A continuous function ` F ...
itgspltprt 44994 The ` S. ` integral splits...
itgiccshift 44995 The integral of a function...
itgperiod 44996 The integral of a periodic...
itgsbtaddcnst 44997 Integral substitution, add...
volico 44998 The measure of left-closed...
sublevolico 44999 The Lebesgue measure of a ...
dmvolss 45000 Lebesgue measurable sets a...
ismbl3 45001 The predicate " ` A ` is L...
volioof 45002 The function that assigns ...
ovolsplit 45003 The Lebesgue outer measure...
fvvolioof 45004 The function value of the ...
volioore 45005 The measure of an open int...
fvvolicof 45006 The function value of the ...
voliooico 45007 An open interval and a lef...
ismbl4 45008 The predicate " ` A ` is L...
volioofmpt 45009 ` ( ( vol o. (,) ) o. F ) ...
volicoff 45010 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 45011 The Lebesgue measure of op...
volicofmpt 45012 ` ( ( vol o. [,) ) o. F ) ...
volicc 45013 The Lebesgue measure of a ...
voliccico 45014 A closed interval and a le...
mbfdmssre 45015 The domain of a measurable...
stoweidlem1 45016 Lemma for ~ stoweid . Thi...
stoweidlem2 45017 lemma for ~ stoweid : here...
stoweidlem3 45018 Lemma for ~ stoweid : if `...
stoweidlem4 45019 Lemma for ~ stoweid : a cl...
stoweidlem5 45020 There exists a δ as ...
stoweidlem6 45021 Lemma for ~ stoweid : two ...
stoweidlem7 45022 This lemma is used to prov...
stoweidlem8 45023 Lemma for ~ stoweid : two ...
stoweidlem9 45024 Lemma for ~ stoweid : here...
stoweidlem10 45025 Lemma for ~ stoweid . Thi...
stoweidlem11 45026 This lemma is used to prov...
stoweidlem12 45027 Lemma for ~ stoweid . Thi...
stoweidlem13 45028 Lemma for ~ stoweid . Thi...
stoweidlem14 45029 There exists a ` k ` as in...
stoweidlem15 45030 This lemma is used to prov...
stoweidlem16 45031 Lemma for ~ stoweid . The...
stoweidlem17 45032 This lemma proves that the...
stoweidlem18 45033 This theorem proves Lemma ...
stoweidlem19 45034 If a set of real functions...
stoweidlem20 45035 If a set A of real functio...
stoweidlem21 45036 Once the Stone Weierstrass...
stoweidlem22 45037 If a set of real functions...
stoweidlem23 45038 This lemma is used to prov...
stoweidlem24 45039 This lemma proves that for...
stoweidlem25 45040 This lemma proves that for...
stoweidlem26 45041 This lemma is used to prov...
stoweidlem27 45042 This lemma is used to prov...
stoweidlem28 45043 There exists a δ as ...
stoweidlem29 45044 When the hypothesis for th...
stoweidlem30 45045 This lemma is used to prov...
stoweidlem31 45046 This lemma is used to prov...
stoweidlem32 45047 If a set A of real functio...
stoweidlem33 45048 If a set of real functions...
stoweidlem34 45049 This lemma proves that for...
stoweidlem35 45050 This lemma is used to prov...
stoweidlem36 45051 This lemma is used to prov...
stoweidlem37 45052 This lemma is used to prov...
stoweidlem38 45053 This lemma is used to prov...
stoweidlem39 45054 This lemma is used to prov...
stoweidlem40 45055 This lemma proves that q_n...
stoweidlem41 45056 This lemma is used to prov...
stoweidlem42 45057 This lemma is used to prov...
stoweidlem43 45058 This lemma is used to prov...
stoweidlem44 45059 This lemma is used to prov...
stoweidlem45 45060 This lemma proves that, gi...
stoweidlem46 45061 This lemma proves that set...
stoweidlem47 45062 Subtracting a constant fro...
stoweidlem48 45063 This lemma is used to prov...
stoweidlem49 45064 There exists a function q_...
stoweidlem50 45065 This lemma proves that set...
stoweidlem51 45066 There exists a function x ...
stoweidlem52 45067 There exists a neighborhoo...
stoweidlem53 45068 This lemma is used to prov...
stoweidlem54 45069 There exists a function ` ...
stoweidlem55 45070 This lemma proves the exis...
stoweidlem56 45071 This theorem proves Lemma ...
stoweidlem57 45072 There exists a function x ...
stoweidlem58 45073 This theorem proves Lemma ...
stoweidlem59 45074 This lemma proves that the...
stoweidlem60 45075 This lemma proves that the...
stoweidlem61 45076 This lemma proves that the...
stoweidlem62 45077 This theorem proves the St...
stoweid 45078 This theorem proves the St...
stowei 45079 This theorem proves the St...
wallispilem1 45080 ` I ` is monotone: increas...
wallispilem2 45081 A first set of properties ...
wallispilem3 45082 I maps to real values. (C...
wallispilem4 45083 ` F ` maps to explicit exp...
wallispilem5 45084 The sequence ` H ` converg...
wallispi 45085 Wallis' formula for Ï€ :...
wallispi2lem1 45086 An intermediate step betwe...
wallispi2lem2 45087 Two expressions are proven...
wallispi2 45088 An alternative version of ...
stirlinglem1 45089 A simple limit of fraction...
stirlinglem2 45090 ` A ` maps to positive rea...
stirlinglem3 45091 Long but simple algebraic ...
stirlinglem4 45092 Algebraic manipulation of ...
stirlinglem5 45093 If ` T ` is between ` 0 ` ...
stirlinglem6 45094 A series that converges to...
stirlinglem7 45095 Algebraic manipulation of ...
stirlinglem8 45096 If ` A ` converges to ` C ...
stirlinglem9 45097 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 45098 A bound for any B(N)-B(N +...
stirlinglem11 45099 ` B ` is decreasing. (Con...
stirlinglem12 45100 The sequence ` B ` is boun...
stirlinglem13 45101 ` B ` is decreasing and ha...
stirlinglem14 45102 The sequence ` A ` converg...
stirlinglem15 45103 The Stirling's formula is ...
stirling 45104 Stirling's approximation f...
stirlingr 45105 Stirling's approximation f...
dirkerval 45106 The N_th Dirichlet Kernel....
dirker2re 45107 The Dirichlet Kernel value...
dirkerdenne0 45108 The Dirichlet Kernel denom...
dirkerval2 45109 The N_th Dirichlet Kernel ...
dirkerre 45110 The Dirichlet Kernel at an...
dirkerper 45111 the Dirichlet Kernel has p...
dirkerf 45112 For any natural number ` N...
dirkertrigeqlem1 45113 Sum of an even number of a...
dirkertrigeqlem2 45114 Trigonomic equality lemma ...
dirkertrigeqlem3 45115 Trigonometric equality lem...
dirkertrigeq 45116 Trigonometric equality for...
dirkeritg 45117 The definite integral of t...
dirkercncflem1 45118 If ` Y ` is a multiple of ...
dirkercncflem2 45119 Lemma used to prove that t...
dirkercncflem3 45120 The Dirichlet Kernel is co...
dirkercncflem4 45121 The Dirichlet Kernel is co...
dirkercncf 45122 For any natural number ` N...
fourierdlem1 45123 A partition interval is a ...
fourierdlem2 45124 Membership in a partition....
fourierdlem3 45125 Membership in a partition....
fourierdlem4 45126 ` E ` is a function that m...
fourierdlem5 45127 ` S ` is a function. (Con...
fourierdlem6 45128 ` X ` is in the periodic p...
fourierdlem7 45129 The difference between the...
fourierdlem8 45130 A partition interval is a ...
fourierdlem9 45131 ` H ` is a complex functio...
fourierdlem10 45132 Condition on the bounds of...
fourierdlem11 45133 If there is a partition, t...
fourierdlem12 45134 A point of a partition is ...
fourierdlem13 45135 Value of ` V ` in terms of...
fourierdlem14 45136 Given the partition ` V ` ...
fourierdlem15 45137 The range of the partition...
fourierdlem16 45138 The coefficients of the fo...
fourierdlem17 45139 The defined ` L ` is actua...
fourierdlem18 45140 The function ` S ` is cont...
fourierdlem19 45141 If two elements of ` D ` h...
fourierdlem20 45142 Every interval in the part...
fourierdlem21 45143 The coefficients of the fo...
fourierdlem22 45144 The coefficients of the fo...
fourierdlem23 45145 If ` F ` is continuous and...
fourierdlem24 45146 A sufficient condition for...
fourierdlem25 45147 If ` C ` is not in the ran...
fourierdlem26 45148 Periodic image of a point ...
fourierdlem27 45149 A partition open interval ...
fourierdlem28 45150 Derivative of ` ( F `` ( X...
fourierdlem29 45151 Explicit function value fo...
fourierdlem30 45152 Sum of three small pieces ...
fourierdlem31 45153 If ` A ` is finite and for...
fourierdlem32 45154 Limit of a continuous func...
fourierdlem33 45155 Limit of a continuous func...
fourierdlem34 45156 A partition is one to one....
fourierdlem35 45157 There is a single point in...
fourierdlem36 45158 ` F ` is an isomorphism. ...
fourierdlem37 45159 ` I ` is a function that m...
fourierdlem38 45160 The function ` F ` is cont...
fourierdlem39 45161 Integration by parts of ...
fourierdlem40 45162 ` H ` is a continuous func...
fourierdlem41 45163 Lemma used to prove that e...
fourierdlem42 45164 The set of points in a mov...
fourierdlem43 45165 ` K ` is a real function. ...
fourierdlem44 45166 A condition for having ` (...
fourierdlem46 45167 The function ` F ` has a l...
fourierdlem47 45168 For ` r ` large enough, th...
fourierdlem48 45169 The given periodic functio...
fourierdlem49 45170 The given periodic functio...
fourierdlem50 45171 Continuity of ` O ` and it...
fourierdlem51 45172 ` X ` is in the periodic p...
fourierdlem52 45173 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 45174 The limit of ` F ( s ) ` a...
fourierdlem54 45175 Given a partition ` Q ` an...
fourierdlem55 45176 ` U ` is a real function. ...
fourierdlem56 45177 Derivative of the ` K ` fu...
fourierdlem57 45178 The derivative of ` O ` . ...
fourierdlem58 45179 The derivative of ` K ` is...
fourierdlem59 45180 The derivative of ` H ` is...
fourierdlem60 45181 Given a differentiable fun...
fourierdlem61 45182 Given a differentiable fun...
fourierdlem62 45183 The function ` K ` is cont...
fourierdlem63 45184 The upper bound of interva...
fourierdlem64 45185 The partition ` V ` is fin...
fourierdlem65 45186 The distance of two adjace...
fourierdlem66 45187 Value of the ` G ` functio...
fourierdlem67 45188 ` G ` is a function. (Con...
fourierdlem68 45189 The derivative of ` O ` is...
fourierdlem69 45190 A piecewise continuous fun...
fourierdlem70 45191 A piecewise continuous fun...
fourierdlem71 45192 A periodic piecewise conti...
fourierdlem72 45193 The derivative of ` O ` is...
fourierdlem73 45194 A version of the Riemann L...
fourierdlem74 45195 Given a piecewise smooth f...
fourierdlem75 45196 Given a piecewise smooth f...
fourierdlem76 45197 Continuity of ` O ` and it...
fourierdlem77 45198 If ` H ` is bounded, then ...
fourierdlem78 45199 ` G ` is continuous when r...
fourierdlem79 45200 ` E ` projects every inter...
fourierdlem80 45201 The derivative of ` O ` is...
fourierdlem81 45202 The integral of a piecewis...
fourierdlem82 45203 Integral by substitution, ...
fourierdlem83 45204 The fourier partial sum fo...
fourierdlem84 45205 If ` F ` is piecewise coni...
fourierdlem85 45206 Limit of the function ` G ...
fourierdlem86 45207 Continuity of ` O ` and it...
fourierdlem87 45208 The integral of ` G ` goes...
fourierdlem88 45209 Given a piecewise continuo...
fourierdlem89 45210 Given a piecewise continuo...
fourierdlem90 45211 Given a piecewise continuo...
fourierdlem91 45212 Given a piecewise continuo...
fourierdlem92 45213 The integral of a piecewis...
fourierdlem93 45214 Integral by substitution (...
fourierdlem94 45215 For a piecewise smooth fun...
fourierdlem95 45216 Algebraic manipulation of ...
fourierdlem96 45217 limit for ` F ` at the low...
fourierdlem97 45218 ` F ` is continuous on the...
fourierdlem98 45219 ` F ` is continuous on the...
fourierdlem99 45220 limit for ` F ` at the upp...
fourierdlem100 45221 A piecewise continuous fun...
fourierdlem101 45222 Integral by substitution f...
fourierdlem102 45223 For a piecewise smooth fun...
fourierdlem103 45224 The half lower part of the...
fourierdlem104 45225 The half upper part of the...
fourierdlem105 45226 A piecewise continuous fun...
fourierdlem106 45227 For a piecewise smooth fun...
fourierdlem107 45228 The integral of a piecewis...
fourierdlem108 45229 The integral of a piecewis...
fourierdlem109 45230 The integral of a piecewis...
fourierdlem110 45231 The integral of a piecewis...
fourierdlem111 45232 The fourier partial sum fo...
fourierdlem112 45233 Here abbreviations (local ...
fourierdlem113 45234 Fourier series convergence...
fourierdlem114 45235 Fourier series convergence...
fourierdlem115 45236 Fourier serier convergence...
fourierd 45237 Fourier series convergence...
fourierclimd 45238 Fourier series convergence...
fourierclim 45239 Fourier series convergence...
fourier 45240 Fourier series convergence...
fouriercnp 45241 If ` F ` is continuous at ...
fourier2 45242 Fourier series convergence...
sqwvfoura 45243 Fourier coefficients for t...
sqwvfourb 45244 Fourier series ` B ` coeff...
fourierswlem 45245 The Fourier series for the...
fouriersw 45246 Fourier series convergence...
fouriercn 45247 If the derivative of ` F `...
elaa2lem 45248 Elementhood in the set of ...
elaa2 45249 Elementhood in the set of ...
etransclem1 45250 ` H ` is a function. (Con...
etransclem2 45251 Derivative of ` G ` . (Co...
etransclem3 45252 The given ` if ` term is a...
etransclem4 45253 ` F ` expressed as a finit...
etransclem5 45254 A change of bound variable...
etransclem6 45255 A change of bound variable...
etransclem7 45256 The given product is an in...
etransclem8 45257 ` F ` is a function. (Con...
etransclem9 45258 If ` K ` divides ` N ` but...
etransclem10 45259 The given ` if ` term is a...
etransclem11 45260 A change of bound variable...
etransclem12 45261 ` C ` applied to ` N ` . ...
etransclem13 45262 ` F ` applied to ` Y ` . ...
etransclem14 45263 Value of the term ` T ` , ...
etransclem15 45264 Value of the term ` T ` , ...
etransclem16 45265 Every element in the range...
etransclem17 45266 The ` N ` -th derivative o...
etransclem18 45267 The given function is inte...
etransclem19 45268 The ` N ` -th derivative o...
etransclem20 45269 ` H ` is smooth. (Contrib...
etransclem21 45270 The ` N ` -th derivative o...
etransclem22 45271 The ` N ` -th derivative o...
etransclem23 45272 This is the claim proof in...
etransclem24 45273 ` P ` divides the I -th de...
etransclem25 45274 ` P ` factorial divides th...
etransclem26 45275 Every term in the sum of t...
etransclem27 45276 The ` N ` -th derivative o...
etransclem28 45277 ` ( P - 1 ) ` factorial di...
etransclem29 45278 The ` N ` -th derivative o...
etransclem30 45279 The ` N ` -th derivative o...
etransclem31 45280 The ` N ` -th derivative o...
etransclem32 45281 This is the proof for the ...
etransclem33 45282 ` F ` is smooth. (Contrib...
etransclem34 45283 The ` N ` -th derivative o...
etransclem35 45284 ` P ` does not divide the ...
etransclem36 45285 The ` N ` -th derivative o...
etransclem37 45286 ` ( P - 1 ) ` factorial di...
etransclem38 45287 ` P ` divides the I -th de...
etransclem39 45288 ` G ` is a function. (Con...
etransclem40 45289 The ` N ` -th derivative o...
etransclem41 45290 ` P ` does not divide the ...
etransclem42 45291 The ` N ` -th derivative o...
etransclem43 45292 ` G ` is a continuous func...
etransclem44 45293 The given finite sum is no...
etransclem45 45294 ` K ` is an integer. (Con...
etransclem46 45295 This is the proof for equa...
etransclem47 45296 ` _e ` is transcendental. ...
etransclem48 45297 ` _e ` is transcendental. ...
etransc 45298 ` _e ` is transcendental. ...
rrxtopn 45299 The topology of the genera...
rrxngp 45300 Generalized Euclidean real...
rrxtps 45301 Generalized Euclidean real...
rrxtopnfi 45302 The topology of the n-dime...
rrxtopon 45303 The topology on generalize...
rrxtop 45304 The topology on generalize...
rrndistlt 45305 Given two points in the sp...
rrxtoponfi 45306 The topology on n-dimensio...
rrxunitopnfi 45307 The base set of the standa...
rrxtopn0 45308 The topology of the zero-d...
qndenserrnbllem 45309 n-dimensional rational num...
qndenserrnbl 45310 n-dimensional rational num...
rrxtopn0b 45311 The topology of the zero-d...
qndenserrnopnlem 45312 n-dimensional rational num...
qndenserrnopn 45313 n-dimensional rational num...
qndenserrn 45314 n-dimensional rational num...
rrxsnicc 45315 A multidimensional singlet...
rrnprjdstle 45316 The distance between two p...
rrndsmet 45317 ` D ` is a metric for the ...
rrndsxmet 45318 ` D ` is an extended metri...
ioorrnopnlem 45319 The a point in an indexed ...
ioorrnopn 45320 The indexed product of ope...
ioorrnopnxrlem 45321 Given a point ` F ` that b...
ioorrnopnxr 45322 The indexed product of ope...
issal 45329 Express the predicate " ` ...
pwsal 45330 The power set of a given s...
salunicl 45331 SAlg sigma-algebra is clos...
saluncl 45332 The union of two sets in a...
prsal 45333 The pair of the empty set ...
saldifcl 45334 The complement of an eleme...
0sal 45335 The empty set belongs to e...
salgenval 45336 The sigma-algebra generate...
saliunclf 45337 SAlg sigma-algebra is clos...
saliuncl 45338 SAlg sigma-algebra is clos...
salincl 45339 The intersection of two se...
saluni 45340 A set is an element of any...
saliinclf 45341 SAlg sigma-algebra is clos...
saliincl 45342 SAlg sigma-algebra is clos...
saldifcl2 45343 The difference of two elem...
intsaluni 45344 The union of an arbitrary ...
intsal 45345 The arbitrary intersection...
salgenn0 45346 The set used in the defini...
salgencl 45347 ` SalGen ` actually genera...
issald 45348 Sufficient condition to pr...
salexct 45349 An example of nontrivial s...
sssalgen 45350 A set is a subset of the s...
salgenss 45351 The sigma-algebra generate...
salgenuni 45352 The base set of the sigma-...
issalgend 45353 One side of ~ dfsalgen2 . ...
salexct2 45354 An example of a subset tha...
unisalgen 45355 The union of a set belongs...
dfsalgen2 45356 Alternate characterization...
salexct3 45357 An example of a sigma-alge...
salgencntex 45358 This counterexample shows ...
salgensscntex 45359 This counterexample shows ...
issalnnd 45360 Sufficient condition to pr...
dmvolsal 45361 Lebesgue measurable sets f...
saldifcld 45362 The complement of an eleme...
saluncld 45363 The union of two sets in a...
salgencld 45364 ` SalGen ` actually genera...
0sald 45365 The empty set belongs to e...
iooborel 45366 An open interval is a Bore...
salincld 45367 The intersection of two se...
salunid 45368 A set is an element of any...
unisalgen2 45369 The union of a set belongs...
bor1sal 45370 The Borel sigma-algebra on...
iocborel 45371 A left-open, right-closed ...
subsaliuncllem 45372 A subspace sigma-algebra i...
subsaliuncl 45373 A subspace sigma-algebra i...
subsalsal 45374 A subspace sigma-algebra i...
subsaluni 45375 A set belongs to the subsp...
salrestss 45376 A sigma-algebra restricted...
sge0rnre 45379 When ` sum^ ` is applied t...
fge0icoicc 45380 If ` F ` maps to nonnegati...
sge0val 45381 The value of the sum of no...
fge0npnf 45382 If ` F ` maps to nonnegati...
sge0rnn0 45383 The range used in the defi...
sge0vald 45384 The value of the sum of no...
fge0iccico 45385 A range of nonnegative ext...
gsumge0cl 45386 Closure of group sum, for ...
sge0reval 45387 Value of the sum of nonneg...
sge0pnfval 45388 If a term in the sum of no...
fge0iccre 45389 A range of nonnegative ext...
sge0z 45390 Any nonnegative extended s...
sge00 45391 The sum of nonnegative ext...
fsumlesge0 45392 Every finite subsum of non...
sge0revalmpt 45393 Value of the sum of nonneg...
sge0sn 45394 A sum of a nonnegative ext...
sge0tsms 45395 ` sum^ ` applied to a nonn...
sge0cl 45396 The arbitrary sum of nonne...
sge0f1o 45397 Re-index a nonnegative ext...
sge0snmpt 45398 A sum of a nonnegative ext...
sge0ge0 45399 The sum of nonnegative ext...
sge0xrcl 45400 The arbitrary sum of nonne...
sge0repnf 45401 The of nonnegative extende...
sge0fsum 45402 The arbitrary sum of a fin...
sge0rern 45403 If the sum of nonnegative ...
sge0supre 45404 If the arbitrary sum of no...
sge0fsummpt 45405 The arbitrary sum of a fin...
sge0sup 45406 The arbitrary sum of nonne...
sge0less 45407 A shorter sum of nonnegati...
sge0rnbnd 45408 The range used in the defi...
sge0pr 45409 Sum of a pair of nonnegati...
sge0gerp 45410 The arbitrary sum of nonne...
sge0pnffigt 45411 If the sum of nonnegative ...
sge0ssre 45412 If a sum of nonnegative ex...
sge0lefi 45413 A sum of nonnegative exten...
sge0lessmpt 45414 A shorter sum of nonnegati...
sge0ltfirp 45415 If the sum of nonnegative ...
sge0prle 45416 The sum of a pair of nonne...
sge0gerpmpt 45417 The arbitrary sum of nonne...
sge0resrnlem 45418 The sum of nonnegative ext...
sge0resrn 45419 The sum of nonnegative ext...
sge0ssrempt 45420 If a sum of nonnegative ex...
sge0resplit 45421 ` sum^ ` splits into two p...
sge0le 45422 If all of the terms of sum...
sge0ltfirpmpt 45423 If the extended sum of non...
sge0split 45424 Split a sum of nonnegative...
sge0lempt 45425 If all of the terms of sum...
sge0splitmpt 45426 Split a sum of nonnegative...
sge0ss 45427 Change the index set to a ...
sge0iunmptlemfi 45428 Sum of nonnegative extende...
sge0p1 45429 The addition of the next t...
sge0iunmptlemre 45430 Sum of nonnegative extende...
sge0fodjrnlem 45431 Re-index a nonnegative ext...
sge0fodjrn 45432 Re-index a nonnegative ext...
sge0iunmpt 45433 Sum of nonnegative extende...
sge0iun 45434 Sum of nonnegative extende...
sge0nemnf 45435 The generalized sum of non...
sge0rpcpnf 45436 The sum of an infinite num...
sge0rernmpt 45437 If the sum of nonnegative ...
sge0lefimpt 45438 A sum of nonnegative exten...
nn0ssge0 45439 Nonnegative integers are n...
sge0clmpt 45440 The generalized sum of non...
sge0ltfirpmpt2 45441 If the extended sum of non...
sge0isum 45442 If a series of nonnegative...
sge0xrclmpt 45443 The generalized sum of non...
sge0xp 45444 Combine two generalized su...
sge0isummpt 45445 If a series of nonnegative...
sge0ad2en 45446 The value of the infinite ...
sge0isummpt2 45447 If a series of nonnegative...
sge0xaddlem1 45448 The extended addition of t...
sge0xaddlem2 45449 The extended addition of t...
sge0xadd 45450 The extended addition of t...
sge0fsummptf 45451 The generalized sum of a f...
sge0snmptf 45452 A sum of a nonnegative ext...
sge0ge0mpt 45453 The sum of nonnegative ext...
sge0repnfmpt 45454 The of nonnegative extende...
sge0pnffigtmpt 45455 If the generalized sum of ...
sge0splitsn 45456 Separate out a term in a g...
sge0pnffsumgt 45457 If the sum of nonnegative ...
sge0gtfsumgt 45458 If the generalized sum of ...
sge0uzfsumgt 45459 If a real number is smalle...
sge0pnfmpt 45460 If a term in the sum of no...
sge0seq 45461 A series of nonnegative re...
sge0reuz 45462 Value of the generalized s...
sge0reuzb 45463 Value of the generalized s...
ismea 45466 Express the predicate " ` ...
dmmeasal 45467 The domain of a measure is...
meaf 45468 A measure is a function th...
mea0 45469 The measure of the empty s...
nnfoctbdjlem 45470 There exists a mapping fro...
nnfoctbdj 45471 There exists a mapping fro...
meadjuni 45472 The measure of the disjoin...
meacl 45473 The measure of a set is a ...
iundjiunlem 45474 The sets in the sequence `...
iundjiun 45475 Given a sequence ` E ` of ...
meaxrcl 45476 The measure of a set is an...
meadjun 45477 The measure of the union o...
meassle 45478 The measure of a set is gr...
meaunle 45479 The measure of the union o...
meadjiunlem 45480 The sum of nonnegative ext...
meadjiun 45481 The measure of the disjoin...
ismeannd 45482 Sufficient condition to pr...
meaiunlelem 45483 The measure of the union o...
meaiunle 45484 The measure of the union o...
psmeasurelem 45485 ` M ` applied to a disjoin...
psmeasure 45486 Point supported measure, R...
voliunsge0lem 45487 The Lebesgue measure funct...
voliunsge0 45488 The Lebesgue measure funct...
volmea 45489 The Lebesgue measure on th...
meage0 45490 If the measure of a measur...
meadjunre 45491 The measure of the union o...
meassre 45492 If the measure of a measur...
meale0eq0 45493 A measure that is less tha...
meadif 45494 The measure of the differe...
meaiuninclem 45495 Measures are continuous fr...
meaiuninc 45496 Measures are continuous fr...
meaiuninc2 45497 Measures are continuous fr...
meaiunincf 45498 Measures are continuous fr...
meaiuninc3v 45499 Measures are continuous fr...
meaiuninc3 45500 Measures are continuous fr...
meaiininclem 45501 Measures are continuous fr...
meaiininc 45502 Measures are continuous fr...
meaiininc2 45503 Measures are continuous fr...
caragenval 45508 The sigma-algebra generate...
isome 45509 Express the predicate " ` ...
caragenel 45510 Membership in the Caratheo...
omef 45511 An outer measure is a func...
ome0 45512 The outer measure of the e...
omessle 45513 The outer measure of a set...
omedm 45514 The domain of an outer mea...
caragensplit 45515 If ` E ` is in the set gen...
caragenelss 45516 An element of the Caratheo...
carageneld 45517 Membership in the Caratheo...
omecl 45518 The outer measure of a set...
caragenss 45519 The sigma-algebra generate...
omeunile 45520 The outer measure of the u...
caragen0 45521 The empty set belongs to a...
omexrcl 45522 The outer measure of a set...
caragenunidm 45523 The base set of an outer m...
caragensspw 45524 The sigma-algebra generate...
omessre 45525 If the outer measure of a ...
caragenuni 45526 The base set of the sigma-...
caragenuncllem 45527 The Caratheodory's constru...
caragenuncl 45528 The Caratheodory's constru...
caragendifcl 45529 The Caratheodory's constru...
caragenfiiuncl 45530 The Caratheodory's constru...
omeunle 45531 The outer measure of the u...
omeiunle 45532 The outer measure of the i...
omelesplit 45533 The outer measure of a set...
omeiunltfirp 45534 If the outer measure of a ...
omeiunlempt 45535 The outer measure of the i...
carageniuncllem1 45536 The outer measure of ` A i...
carageniuncllem2 45537 The Caratheodory's constru...
carageniuncl 45538 The Caratheodory's constru...
caragenunicl 45539 The Caratheodory's constru...
caragensal 45540 Caratheodory's method gene...
caratheodorylem1 45541 Lemma used to prove that C...
caratheodorylem2 45542 Caratheodory's constructio...
caratheodory 45543 Caratheodory's constructio...
0ome 45544 The map that assigns 0 to ...
isomenndlem 45545 ` O ` is sub-additive w.r....
isomennd 45546 Sufficient condition to pr...
caragenel2d 45547 Membership in the Caratheo...
omege0 45548 If the outer measure of a ...
omess0 45549 If the outer measure of a ...
caragencmpl 45550 A measure built with the C...
vonval 45555 Value of the Lebesgue meas...
ovnval 45556 Value of the Lebesgue oute...
elhoi 45557 Membership in a multidimen...
icoresmbl 45558 A closed-below, open-above...
hoissre 45559 The projection of a half-o...
ovnval2 45560 Value of the Lebesgue oute...
volicorecl 45561 The Lebesgue measure of a ...
hoiprodcl 45562 The pre-measure of half-op...
hoicvr 45563 ` I ` is a countable set o...
hoissrrn 45564 A half-open interval is a ...
ovn0val 45565 The Lebesgue outer measure...
ovnn0val 45566 The value of a (multidimen...
ovnval2b 45567 Value of the Lebesgue oute...
volicorescl 45568 The Lebesgue measure of a ...
ovnprodcl 45569 The product used in the de...
hoiprodcl2 45570 The pre-measure of half-op...
hoicvrrex 45571 Any subset of the multidim...
ovnsupge0 45572 The set used in the defini...
ovnlecvr 45573 Given a subset of multidim...
ovnpnfelsup 45574 ` +oo ` is an element of t...
ovnsslelem 45575 The (multidimensional, non...
ovnssle 45576 The (multidimensional) Leb...
ovnlerp 45577 The Lebesgue outer measure...
ovnf 45578 The Lebesgue outer measure...
ovncvrrp 45579 The Lebesgue outer measure...
ovn0lem 45580 For any finite dimension, ...
ovn0 45581 For any finite dimension, ...
ovncl 45582 The Lebesgue outer measure...
ovn02 45583 For the zero-dimensional s...
ovnxrcl 45584 The Lebesgue outer measure...
ovnsubaddlem1 45585 The Lebesgue outer measure...
ovnsubaddlem2 45586 ` ( voln* `` X ) ` is suba...
ovnsubadd 45587 ` ( voln* `` X ) ` is suba...
ovnome 45588 ` ( voln* `` X ) ` is an o...
vonmea 45589 ` ( voln `` X ) ` is a mea...
volicon0 45590 The measure of a nonempty ...
hsphoif 45591 ` H ` is a function (that ...
hoidmvval 45592 The dimensional volume of ...
hoissrrn2 45593 A half-open interval is a ...
hsphoival 45594 ` H ` is a function (that ...
hoiprodcl3 45595 The pre-measure of half-op...
volicore 45596 The Lebesgue measure of a ...
hoidmvcl 45597 The dimensional volume of ...
hoidmv0val 45598 The dimensional volume of ...
hoidmvn0val 45599 The dimensional volume of ...
hsphoidmvle2 45600 The dimensional volume of ...
hsphoidmvle 45601 The dimensional volume of ...
hoidmvval0 45602 The dimensional volume of ...
hoiprodp1 45603 The dimensional volume of ...
sge0hsphoire 45604 If the generalized sum of ...
hoidmvval0b 45605 The dimensional volume of ...
hoidmv1lelem1 45606 The supremum of ` U ` belo...
hoidmv1lelem2 45607 This is the contradiction ...
hoidmv1lelem3 45608 The dimensional volume of ...
hoidmv1le 45609 The dimensional volume of ...
hoidmvlelem1 45610 The supremum of ` U ` belo...
hoidmvlelem2 45611 This is the contradiction ...
hoidmvlelem3 45612 This is the contradiction ...
hoidmvlelem4 45613 The dimensional volume of ...
hoidmvlelem5 45614 The dimensional volume of ...
hoidmvle 45615 The dimensional volume of ...
ovnhoilem1 45616 The Lebesgue outer measure...
ovnhoilem2 45617 The Lebesgue outer measure...
ovnhoi 45618 The Lebesgue outer measure...
dmovn 45619 The domain of the Lebesgue...
hoicoto2 45620 The half-open interval exp...
dmvon 45621 Lebesgue measurable n-dime...
hoi2toco 45622 The half-open interval exp...
hoidifhspval 45623 ` D ` is a function that r...
hspval 45624 The value of the half-spac...
ovnlecvr2 45625 Given a subset of multidim...
ovncvr2 45626 ` B ` and ` T ` are the le...
dmovnsal 45627 The domain of the Lebesgue...
unidmovn 45628 Base set of the n-dimensio...
rrnmbl 45629 The set of n-dimensional R...
hoidifhspval2 45630 ` D ` is a function that r...
hspdifhsp 45631 A n-dimensional half-open ...
unidmvon 45632 Base set of the n-dimensio...
hoidifhspf 45633 ` D ` is a function that r...
hoidifhspval3 45634 ` D ` is a function that r...
hoidifhspdmvle 45635 The dimensional volume of ...
voncmpl 45636 The Lebesgue measure is co...
hoiqssbllem1 45637 The center of the n-dimens...
hoiqssbllem2 45638 The center of the n-dimens...
hoiqssbllem3 45639 A n-dimensional ball conta...
hoiqssbl 45640 A n-dimensional ball conta...
hspmbllem1 45641 Any half-space of the n-di...
hspmbllem2 45642 Any half-space of the n-di...
hspmbllem3 45643 Any half-space of the n-di...
hspmbl 45644 Any half-space of the n-di...
hoimbllem 45645 Any n-dimensional half-ope...
hoimbl 45646 Any n-dimensional half-ope...
opnvonmbllem1 45647 The half-open interval exp...
opnvonmbllem2 45648 An open subset of the n-di...
opnvonmbl 45649 An open subset of the n-di...
opnssborel 45650 Open sets of a generalized...
borelmbl 45651 All Borel subsets of the n...
volicorege0 45652 The Lebesgue measure of a ...
isvonmbl 45653 The predicate " ` A ` is m...
mblvon 45654 The n-dimensional Lebesgue...
vonmblss 45655 n-dimensional Lebesgue mea...
volico2 45656 The measure of left-closed...
vonmblss2 45657 n-dimensional Lebesgue mea...
ovolval2lem 45658 The value of the Lebesgue ...
ovolval2 45659 The value of the Lebesgue ...
ovnsubadd2lem 45660 ` ( voln* `` X ) ` is suba...
ovnsubadd2 45661 ` ( voln* `` X ) ` is suba...
ovolval3 45662 The value of the Lebesgue ...
ovnsplit 45663 The n-dimensional Lebesgue...
ovolval4lem1 45664 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 45665 The value of the Lebesgue ...
ovolval4 45666 The value of the Lebesgue ...
ovolval5lem1 45667 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 45668 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 45669 The value of the Lebesgue ...
ovolval5 45670 The value of the Lebesgue ...
ovnovollem1 45671 if ` F ` is a cover of ` B...
ovnovollem2 45672 if ` I ` is a cover of ` (...
ovnovollem3 45673 The 1-dimensional Lebesgue...
ovnovol 45674 The 1-dimensional Lebesgue...
vonvolmbllem 45675 If a subset ` B ` of real ...
vonvolmbl 45676 A subset of Real numbers i...
vonvol 45677 The 1-dimensional Lebesgue...
vonvolmbl2 45678 A subset ` X ` of the spac...
vonvol2 45679 The 1-dimensional Lebesgue...
hoimbl2 45680 Any n-dimensional half-ope...
voncl 45681 The Lebesgue measure of a ...
vonhoi 45682 The Lebesgue outer measure...
vonxrcl 45683 The Lebesgue measure of a ...
ioosshoi 45684 A n-dimensional open inter...
vonn0hoi 45685 The Lebesgue outer measure...
von0val 45686 The Lebesgue measure (for ...
vonhoire 45687 The Lebesgue measure of a ...
iinhoiicclem 45688 A n-dimensional closed int...
iinhoiicc 45689 A n-dimensional closed int...
iunhoiioolem 45690 A n-dimensional open inter...
iunhoiioo 45691 A n-dimensional open inter...
ioovonmbl 45692 Any n-dimensional open int...
iccvonmbllem 45693 Any n-dimensional closed i...
iccvonmbl 45694 Any n-dimensional closed i...
vonioolem1 45695 The sequence of the measur...
vonioolem2 45696 The n-dimensional Lebesgue...
vonioo 45697 The n-dimensional Lebesgue...
vonicclem1 45698 The sequence of the measur...
vonicclem2 45699 The n-dimensional Lebesgue...
vonicc 45700 The n-dimensional Lebesgue...
snvonmbl 45701 A n-dimensional singleton ...
vonn0ioo 45702 The n-dimensional Lebesgue...
vonn0icc 45703 The n-dimensional Lebesgue...
ctvonmbl 45704 Any n-dimensional countabl...
vonn0ioo2 45705 The n-dimensional Lebesgue...
vonsn 45706 The n-dimensional Lebesgue...
vonn0icc2 45707 The n-dimensional Lebesgue...
vonct 45708 The n-dimensional Lebesgue...
vitali2 45709 There are non-measurable s...
pimltmnf2f 45712 Given a real-valued functi...
pimltmnf2 45713 Given a real-valued functi...
preimagelt 45714 The preimage of a right-op...
preimalegt 45715 The preimage of a left-ope...
pimconstlt0 45716 Given a constant function,...
pimconstlt1 45717 Given a constant function,...
pimltpnff 45718 Given a real-valued functi...
pimltpnf 45719 Given a real-valued functi...
pimgtpnf2f 45720 Given a real-valued functi...
pimgtpnf2 45721 Given a real-valued functi...
salpreimagelt 45722 If all the preimages of le...
pimrecltpos 45723 The preimage of an unbound...
salpreimalegt 45724 If all the preimages of ri...
pimiooltgt 45725 The preimage of an open in...
preimaicomnf 45726 Preimage of an open interv...
pimltpnf2f 45727 Given a real-valued functi...
pimltpnf2 45728 Given a real-valued functi...
pimgtmnf2 45729 Given a real-valued functi...
pimdecfgtioc 45730 Given a nonincreasing func...
pimincfltioc 45731 Given a nondecreasing func...
pimdecfgtioo 45732 Given a nondecreasing func...
pimincfltioo 45733 Given a nondecreasing func...
preimaioomnf 45734 Preimage of an open interv...
preimageiingt 45735 A preimage of a left-close...
preimaleiinlt 45736 A preimage of a left-open,...
pimgtmnff 45737 Given a real-valued functi...
pimgtmnf 45738 Given a real-valued functi...
pimrecltneg 45739 The preimage of an unbound...
salpreimagtge 45740 If all the preimages of le...
salpreimaltle 45741 If all the preimages of ri...
issmflem 45742 The predicate " ` F ` is a...
issmf 45743 The predicate " ` F ` is a...
salpreimalelt 45744 If all the preimages of ri...
salpreimagtlt 45745 If all the preimages of le...
smfpreimalt 45746 Given a function measurabl...
smff 45747 A function measurable w.r....
smfdmss 45748 The domain of a function m...
issmff 45749 The predicate " ` F ` is a...
issmfd 45750 A sufficient condition for...
smfpreimaltf 45751 Given a function measurabl...
issmfdf 45752 A sufficient condition for...
sssmf 45753 The restriction of a sigma...
mbfresmf 45754 A real-valued measurable f...
cnfsmf 45755 A continuous function is m...
incsmflem 45756 A nondecreasing function i...
incsmf 45757 A real-valued, nondecreasi...
smfsssmf 45758 If a function is measurabl...
issmflelem 45759 The predicate " ` F ` is a...
issmfle 45760 The predicate " ` F ` is a...
smfpimltmpt 45761 Given a function measurabl...
smfpimltxr 45762 Given a function measurabl...
issmfdmpt 45763 A sufficient condition for...
smfconst 45764 Given a sigma-algebra over...
sssmfmpt 45765 The restriction of a sigma...
cnfrrnsmf 45766 A function, continuous fro...
smfid 45767 The identity function is B...
bormflebmf 45768 A Borel measurable functio...
smfpreimale 45769 Given a function measurabl...
issmfgtlem 45770 The predicate " ` F ` is a...
issmfgt 45771 The predicate " ` F ` is a...
issmfled 45772 A sufficient condition for...
smfpimltxrmptf 45773 Given a function measurabl...
smfpimltxrmpt 45774 Given a function measurabl...
smfmbfcex 45775 A constant function, with ...
issmfgtd 45776 A sufficient condition for...
smfpreimagt 45777 Given a function measurabl...
smfaddlem1 45778 Given the sum of two funct...
smfaddlem2 45779 The sum of two sigma-measu...
smfadd 45780 The sum of two sigma-measu...
decsmflem 45781 A nonincreasing function i...
decsmf 45782 A real-valued, nonincreasi...
smfpreimagtf 45783 Given a function measurabl...
issmfgelem 45784 The predicate " ` F ` is a...
issmfge 45785 The predicate " ` F ` is a...
smflimlem1 45786 Lemma for the proof that t...
smflimlem2 45787 Lemma for the proof that t...
smflimlem3 45788 The limit of sigma-measura...
smflimlem4 45789 Lemma for the proof that t...
smflimlem5 45790 Lemma for the proof that t...
smflimlem6 45791 Lemma for the proof that t...
smflim 45792 The limit of sigma-measura...
nsssmfmbflem 45793 The sigma-measurable funct...
nsssmfmbf 45794 The sigma-measurable funct...
smfpimgtxr 45795 Given a function measurabl...
smfpimgtmpt 45796 Given a function measurabl...
smfpreimage 45797 Given a function measurabl...
mbfpsssmf 45798 Real-valued measurable fun...
smfpimgtxrmptf 45799 Given a function measurabl...
smfpimgtxrmpt 45800 Given a function measurabl...
smfpimioompt 45801 Given a function measurabl...
smfpimioo 45802 Given a function measurabl...
smfresal 45803 Given a sigma-measurable f...
smfrec 45804 The reciprocal of a sigma-...
smfres 45805 The restriction of sigma-m...
smfmullem1 45806 The multiplication of two ...
smfmullem2 45807 The multiplication of two ...
smfmullem3 45808 The multiplication of two ...
smfmullem4 45809 The multiplication of two ...
smfmul 45810 The multiplication of two ...
smfmulc1 45811 A sigma-measurable functio...
smfdiv 45812 The fraction of two sigma-...
smfpimbor1lem1 45813 Every open set belongs to ...
smfpimbor1lem2 45814 Given a sigma-measurable f...
smfpimbor1 45815 Given a sigma-measurable f...
smf2id 45816 Twice the identity functio...
smfco 45817 The composition of a Borel...
smfneg 45818 The negative of a sigma-me...
smffmptf 45819 A function measurable w.r....
smffmpt 45820 A function measurable w.r....
smflim2 45821 The limit of a sequence of...
smfpimcclem 45822 Lemma for ~ smfpimcc given...
smfpimcc 45823 Given a countable set of s...
issmfle2d 45824 A sufficient condition for...
smflimmpt 45825 The limit of a sequence of...
smfsuplem1 45826 The supremum of a countabl...
smfsuplem2 45827 The supremum of a countabl...
smfsuplem3 45828 The supremum of a countabl...
smfsup 45829 The supremum of a countabl...
smfsupmpt 45830 The supremum of a countabl...
smfsupxr 45831 The supremum of a countabl...
smfinflem 45832 The infimum of a countable...
smfinf 45833 The infimum of a countable...
smfinfmpt 45834 The infimum of a countable...
smflimsuplem1 45835 If ` H ` converges, the ` ...
smflimsuplem2 45836 The superior limit of a se...
smflimsuplem3 45837 The limit of the ` ( H `` ...
smflimsuplem4 45838 If ` H ` converges, the ` ...
smflimsuplem5 45839 ` H ` converges to the sup...
smflimsuplem6 45840 The superior limit of a se...
smflimsuplem7 45841 The superior limit of a se...
smflimsuplem8 45842 The superior limit of a se...
smflimsup 45843 The superior limit of a se...
smflimsupmpt 45844 The superior limit of a se...
smfliminflem 45845 The inferior limit of a co...
smfliminf 45846 The inferior limit of a co...
smfliminfmpt 45847 The inferior limit of a co...
adddmmbl 45848 If two functions have doma...
adddmmbl2 45849 If two functions have doma...
muldmmbl 45850 If two functions have doma...
muldmmbl2 45851 If two functions have doma...
smfdmmblpimne 45852 If a measurable function w...
smfdivdmmbl 45853 If a functions and a sigma...
smfpimne 45854 Given a function measurabl...
smfpimne2 45855 Given a function measurabl...
smfdivdmmbl2 45856 If a functions and a sigma...
fsupdm 45857 The domain of the sup func...
fsupdm2 45858 The domain of the sup func...
smfsupdmmbllem 45859 If a countable set of sigm...
smfsupdmmbl 45860 If a countable set of sigm...
finfdm 45861 The domain of the inf func...
finfdm2 45862 The domain of the inf func...
smfinfdmmbllem 45863 If a countable set of sigm...
smfinfdmmbl 45864 If a countable set of sigm...
sigarval 45865 Define the signed area by ...
sigarim 45866 Signed area takes value in...
sigarac 45867 Signed area is anticommuta...
sigaraf 45868 Signed area is additive by...
sigarmf 45869 Signed area is additive (w...
sigaras 45870 Signed area is additive by...
sigarms 45871 Signed area is additive (w...
sigarls 45872 Signed area is linear by t...
sigarid 45873 Signed area of a flat para...
sigarexp 45874 Expand the signed area for...
sigarperm 45875 Signed area ` ( A - C ) G ...
sigardiv 45876 If signed area between vec...
sigarimcd 45877 Signed area takes value in...
sigariz 45878 If signed area is zero, th...
sigarcol 45879 Given three points ` A ` ,...
sharhght 45880 Let ` A B C ` be a triangl...
sigaradd 45881 Subtracting (double) area ...
cevathlem1 45882 Ceva's theorem first lemma...
cevathlem2 45883 Ceva's theorem second lemm...
cevath 45884 Ceva's theorem. Let ` A B...
simpcntrab 45885 The center of a simple gro...
et-ltneverrefl 45886 Less-than class is never r...
et-equeucl 45887 Alternative proof that equ...
et-sqrtnegnre 45888 The square root of a negat...
natlocalincr 45889 Global monotonicity on hal...
natglobalincr 45890 Local monotonicity on half...
upwordnul 45893 Empty set is an increasing...
upwordisword 45894 Any increasing sequence is...
singoutnword 45895 Singleton with character o...
singoutnupword 45896 Singleton with character o...
upwordsing 45897 Singleton is an increasing...
upwordsseti 45898 Strictly increasing sequen...
tworepnotupword 45899 Concatenation of identical...
upwrdfi 45900 There is a finite number o...
hirstL-ax3 45901 The third axiom of a syste...
ax3h 45902 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 45903 A closed form showing (a i...
aibandbiaiaiffb 45904 A closed form showing (a i...
notatnand 45905 Do not use. Use intnanr i...
aistia 45906 Given a is equivalent to `...
aisfina 45907 Given a is equivalent to `...
bothtbothsame 45908 Given both a, b are equiva...
bothfbothsame 45909 Given both a, b are equiva...
aiffbbtat 45910 Given a is equivalent to b...
aisbbisfaisf 45911 Given a is equivalent to b...
axorbtnotaiffb 45912 Given a is exclusive to b,...
aiffnbandciffatnotciffb 45913 Given a is equivalent to (...
axorbciffatcxorb 45914 Given a is equivalent to (...
aibnbna 45915 Given a implies b, (not b)...
aibnbaif 45916 Given a implies b, not b, ...
aiffbtbat 45917 Given a is equivalent to b...
astbstanbst 45918 Given a is equivalent to T...
aistbistaandb 45919 Given a is equivalent to T...
aisbnaxb 45920 Given a is equivalent to b...
atbiffatnnb 45921 If a implies b, then a imp...
bisaiaisb 45922 Application of bicom1 with...
atbiffatnnbalt 45923 If a implies b, then a imp...
abnotbtaxb 45924 Assuming a, not b, there e...
abnotataxb 45925 Assuming not a, b, there e...
conimpf 45926 Assuming a, not b, and a i...
conimpfalt 45927 Assuming a, not b, and a i...
aistbisfiaxb 45928 Given a is equivalent to T...
aisfbistiaxb 45929 Given a is equivalent to F...
aifftbifffaibif 45930 Given a is equivalent to T...
aifftbifffaibifff 45931 Given a is equivalent to T...
atnaiana 45932 Given a, it is not the cas...
ainaiaandna 45933 Given a, a implies it is n...
abcdta 45934 Given (((a and b) and c) a...
abcdtb 45935 Given (((a and b) and c) a...
abcdtc 45936 Given (((a and b) and c) a...
abcdtd 45937 Given (((a and b) and c) a...
abciffcbatnabciffncba 45938 Operands in a biconditiona...
abciffcbatnabciffncbai 45939 Operands in a biconditiona...
nabctnabc 45940 not ( a -> ( b /\ c ) ) we...
jabtaib 45941 For when pm3.4 lacks a pm3...
onenotinotbothi 45942 From one negated implicati...
twonotinotbothi 45943 From these two negated imp...
clifte 45944 show d is the same as an i...
cliftet 45945 show d is the same as an i...
clifteta 45946 show d is the same as an i...
cliftetb 45947 show d is the same as an i...
confun 45948 Given the hypotheses there...
confun2 45949 Confun simplified to two p...
confun3 45950 Confun's more complex form...
confun4 45951 An attempt at derivative. ...
confun5 45952 An attempt at derivative. ...
plcofph 45953 Given, a,b and a "definiti...
pldofph 45954 Given, a,b c, d, "definiti...
plvcofph 45955 Given, a,b,d, and "definit...
plvcofphax 45956 Given, a,b,d, and "definit...
plvofpos 45957 rh is derivable because ON...
mdandyv0 45958 Given the equivalences set...
mdandyv1 45959 Given the equivalences set...
mdandyv2 45960 Given the equivalences set...
mdandyv3 45961 Given the equivalences set...
mdandyv4 45962 Given the equivalences set...
mdandyv5 45963 Given the equivalences set...
mdandyv6 45964 Given the equivalences set...
mdandyv7 45965 Given the equivalences set...
mdandyv8 45966 Given the equivalences set...
mdandyv9 45967 Given the equivalences set...
mdandyv10 45968 Given the equivalences set...
mdandyv11 45969 Given the equivalences set...
mdandyv12 45970 Given the equivalences set...
mdandyv13 45971 Given the equivalences set...
mdandyv14 45972 Given the equivalences set...
mdandyv15 45973 Given the equivalences set...
mdandyvr0 45974 Given the equivalences set...
mdandyvr1 45975 Given the equivalences set...
mdandyvr2 45976 Given the equivalences set...
mdandyvr3 45977 Given the equivalences set...
mdandyvr4 45978 Given the equivalences set...
mdandyvr5 45979 Given the equivalences set...
mdandyvr6 45980 Given the equivalences set...
mdandyvr7 45981 Given the equivalences set...
mdandyvr8 45982 Given the equivalences set...
mdandyvr9 45983 Given the equivalences set...
mdandyvr10 45984 Given the equivalences set...
mdandyvr11 45985 Given the equivalences set...
mdandyvr12 45986 Given the equivalences set...
mdandyvr13 45987 Given the equivalences set...
mdandyvr14 45988 Given the equivalences set...
mdandyvr15 45989 Given the equivalences set...
mdandyvrx0 45990 Given the exclusivities se...
mdandyvrx1 45991 Given the exclusivities se...
mdandyvrx2 45992 Given the exclusivities se...
mdandyvrx3 45993 Given the exclusivities se...
mdandyvrx4 45994 Given the exclusivities se...
mdandyvrx5 45995 Given the exclusivities se...
mdandyvrx6 45996 Given the exclusivities se...
mdandyvrx7 45997 Given the exclusivities se...
mdandyvrx8 45998 Given the exclusivities se...
mdandyvrx9 45999 Given the exclusivities se...
mdandyvrx10 46000 Given the exclusivities se...
mdandyvrx11 46001 Given the exclusivities se...
mdandyvrx12 46002 Given the exclusivities se...
mdandyvrx13 46003 Given the exclusivities se...
mdandyvrx14 46004 Given the exclusivities se...
mdandyvrx15 46005 Given the exclusivities se...
H15NH16TH15IH16 46006 Given 15 hypotheses and a ...
dandysum2p2e4 46007 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 46008 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 46009 Replacement of a nested an...
adh-minim 46010 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 46011 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 46012 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 46013 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 46014 Fourth lemma for the deriv...
adh-minim-ax1 46015 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 46016 Fifth lemma for the deriva...
adh-minim-ax2-lem6 46017 Sixth lemma for the deriva...
adh-minim-ax2c 46018 Derivation of a commuted f...
adh-minim-ax2 46019 Derivation of ~ ax-2 from ...
adh-minim-idALT 46020 Derivation of ~ id (reflex...
adh-minim-pm2.43 46021 Derivation of ~ pm2.43 Whi...
adh-minimp 46022 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 46023 First lemma for the deriva...
adh-minimp-jarr-lem2 46024 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 46025 Third lemma for the deriva...
adh-minimp-sylsimp 46026 Derivation of ~ jarr (also...
adh-minimp-ax1 46027 Derivation of ~ ax-1 from ...
adh-minimp-imim1 46028 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 46029 Derivation of a commuted f...
adh-minimp-ax2-lem4 46030 Fourth lemma for the deriv...
adh-minimp-ax2 46031 Derivation of ~ ax-2 from ...
adh-minimp-idALT 46032 Derivation of ~ id (reflex...
adh-minimp-pm2.43 46033 Derivation of ~ pm2.43 Whi...
n0nsn2el 46034 If a class with one elemen...
eusnsn 46035 There is a unique element ...
absnsb 46036 If the class abstraction `...
euabsneu 46037 Another way to express exi...
elprneb 46038 An element of a proper uno...
oppr 46039 Equality for ordered pairs...
opprb 46040 Equality for unordered pai...
or2expropbilem1 46041 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 46042 Lemma 2 for ~ or2expropbi ...
or2expropbi 46043 If two classes are strictl...
eubrv 46044 If there is a unique set w...
eubrdm 46045 If there is a unique set w...
eldmressn 46046 Element of the domain of a...
iota0def 46047 Example for a defined iota...
iota0ndef 46048 Example for an undefined i...
fveqvfvv 46049 If a function's value at a...
fnresfnco 46050 Composition of two functio...
funcoressn 46051 A composition restricted t...
funressnfv 46052 A restriction to a singlet...
funressndmfvrn 46053 The value of a function ` ...
funressnvmo 46054 A function restricted to a...
funressnmo 46055 A function restricted to a...
funressneu 46056 There is exactly one value...
fresfo 46057 Conditions for a restricti...
fsetsniunop 46058 The class of all functions...
fsetabsnop 46059 The class of all functions...
fsetsnf 46060 The mapping of an element ...
fsetsnf1 46061 The mapping of an element ...
fsetsnfo 46062 The mapping of an element ...
fsetsnf1o 46063 The mapping of an element ...
fsetsnprcnex 46064 The class of all functions...
cfsetssfset 46065 The class of constant func...
cfsetsnfsetfv 46066 The function value of the ...
cfsetsnfsetf 46067 The mapping of the class o...
cfsetsnfsetf1 46068 The mapping of the class o...
cfsetsnfsetfo 46069 The mapping of the class o...
cfsetsnfsetf1o 46070 The mapping of the class o...
fsetprcnexALT 46071 First version of proof for...
fcoreslem1 46072 Lemma 1 for ~ fcores . (C...
fcoreslem2 46073 Lemma 2 for ~ fcores . (C...
fcoreslem3 46074 Lemma 3 for ~ fcores . (C...
fcoreslem4 46075 Lemma 4 for ~ fcores . (C...
fcores 46076 Every composite function `...
fcoresf1lem 46077 Lemma for ~ fcoresf1 . (C...
fcoresf1 46078 If a composition is inject...
fcoresf1b 46079 A composition is injective...
fcoresfo 46080 If a composition is surjec...
fcoresfob 46081 A composition is surjectiv...
fcoresf1ob 46082 A composition is bijective...
f1cof1blem 46083 Lemma for ~ f1cof1b and ~ ...
f1cof1b 46084 If the range of ` F ` equa...
funfocofob 46085 If the domain of a functio...
fnfocofob 46086 If the domain of a functio...
focofob 46087 If the domain of a functio...
f1ocof1ob 46088 If the range of ` F ` equa...
f1ocof1ob2 46089 If the range of ` F ` equa...
aiotajust 46091 Soundness justification th...
dfaiota2 46093 Alternate definition of th...
reuabaiotaiota 46094 The iota and the alternate...
reuaiotaiota 46095 The iota and the alternate...
aiotaexb 46096 The alternate iota over a ...
aiotavb 46097 The alternate iota over a ...
aiotaint 46098 This is to ~ df-aiota what...
dfaiota3 46099 Alternate definition of ` ...
iotan0aiotaex 46100 If the iota over a wff ` p...
aiotaexaiotaiota 46101 The alternate iota over a ...
aiotaval 46102 Theorem 8.19 in [Quine] p....
aiota0def 46103 Example for a defined alte...
aiota0ndef 46104 Example for an undefined a...
r19.32 46105 Theorem 19.32 of [Margaris...
rexsb 46106 An equivalent expression f...
rexrsb 46107 An equivalent expression f...
2rexsb 46108 An equivalent expression f...
2rexrsb 46109 An equivalent expression f...
cbvral2 46110 Change bound variables of ...
cbvrex2 46111 Change bound variables of ...
ralndv1 46112 Example for a theorem abou...
ralndv2 46113 Second example for a theor...
reuf1odnf 46114 There is exactly one eleme...
reuf1od 46115 There is exactly one eleme...
euoreqb 46116 There is a set which is eq...
2reu3 46117 Double restricted existent...
2reu7 46118 Two equivalent expressions...
2reu8 46119 Two equivalent expressions...
2reu8i 46120 Implication of a double re...
2reuimp0 46121 Implication of a double re...
2reuimp 46122 Implication of a double re...
ralbinrald 46129 Elemination of a restricte...
nvelim 46130 If a class is the universa...
alneu 46131 If a statement holds for a...
eu2ndop1stv 46132 If there is a unique secon...
dfateq12d 46133 Equality deduction for "de...
nfdfat 46134 Bound-variable hypothesis ...
dfdfat2 46135 Alternate definition of th...
fundmdfat 46136 A function is defined at a...
dfatprc 46137 A function is not defined ...
dfatelrn 46138 The value of a function ` ...
dfafv2 46139 Alternative definition of ...
afveq12d 46140 Equality deduction for fun...
afveq1 46141 Equality theorem for funct...
afveq2 46142 Equality theorem for funct...
nfafv 46143 Bound-variable hypothesis ...
csbafv12g 46144 Move class substitution in...
afvfundmfveq 46145 If a class is a function r...
afvnfundmuv 46146 If a set is not in the dom...
ndmafv 46147 The value of a class outsi...
afvvdm 46148 If the function value of a...
nfunsnafv 46149 If the restriction of a cl...
afvvfunressn 46150 If the function value of a...
afvprc 46151 A function's value at a pr...
afvvv 46152 If a function's value at a...
afvpcfv0 46153 If the value of the altern...
afvnufveq 46154 The value of the alternati...
afvvfveq 46155 The value of the alternati...
afv0fv0 46156 If the value of the altern...
afvfvn0fveq 46157 If the function's value at...
afv0nbfvbi 46158 The function's value at an...
afvfv0bi 46159 The function's value at an...
afveu 46160 The value of a function at...
fnbrafvb 46161 Equivalence of function va...
fnopafvb 46162 Equivalence of function va...
funbrafvb 46163 Equivalence of function va...
funopafvb 46164 Equivalence of function va...
funbrafv 46165 The second argument of a b...
funbrafv2b 46166 Function value in terms of...
dfafn5a 46167 Representation of a functi...
dfafn5b 46168 Representation of a functi...
fnrnafv 46169 The range of a function ex...
afvelrnb 46170 A member of a function's r...
afvelrnb0 46171 A member of a function's r...
dfaimafn 46172 Alternate definition of th...
dfaimafn2 46173 Alternate definition of th...
afvelima 46174 Function value in an image...
afvelrn 46175 A function's value belongs...
fnafvelrn 46176 A function's value belongs...
fafvelcdm 46177 A function's value belongs...
ffnafv 46178 A function maps to a class...
afvres 46179 The value of a restricted ...
tz6.12-afv 46180 Function value. Theorem 6...
tz6.12-1-afv 46181 Function value (Theorem 6....
dmfcoafv 46182 Domains of a function comp...
afvco2 46183 Value of a function compos...
rlimdmafv 46184 Two ways to express that a...
aoveq123d 46185 Equality deduction for ope...
nfaov 46186 Bound-variable hypothesis ...
csbaovg 46187 Move class substitution in...
aovfundmoveq 46188 If a class is a function r...
aovnfundmuv 46189 If an ordered pair is not ...
ndmaov 46190 The value of an operation ...
ndmaovg 46191 The value of an operation ...
aovvdm 46192 If the operation value of ...
nfunsnaov 46193 If the restriction of a cl...
aovvfunressn 46194 If the operation value of ...
aovprc 46195 The value of an operation ...
aovrcl 46196 Reverse closure for an ope...
aovpcov0 46197 If the alternative value o...
aovnuoveq 46198 The alternative value of t...
aovvoveq 46199 The alternative value of t...
aov0ov0 46200 If the alternative value o...
aovovn0oveq 46201 If the operation's value a...
aov0nbovbi 46202 The operation's value on a...
aovov0bi 46203 The operation's value on a...
rspceaov 46204 A frequently used special ...
fnotaovb 46205 Equivalence of operation v...
ffnaov 46206 An operation maps to a cla...
faovcl 46207 Closure law for an operati...
aovmpt4g 46208 Value of a function given ...
aoprssdm 46209 Domain of closure of an op...
ndmaovcl 46210 The "closure" of an operat...
ndmaovrcl 46211 Reverse closure law, in co...
ndmaovcom 46212 Any operation is commutati...
ndmaovass 46213 Any operation is associati...
ndmaovdistr 46214 Any operation is distribut...
dfatafv2iota 46217 If a function is defined a...
ndfatafv2 46218 The alternate function val...
ndfatafv2undef 46219 The alternate function val...
dfatafv2ex 46220 The alternate function val...
afv2ex 46221 The alternate function val...
afv2eq12d 46222 Equality deduction for fun...
afv2eq1 46223 Equality theorem for funct...
afv2eq2 46224 Equality theorem for funct...
nfafv2 46225 Bound-variable hypothesis ...
csbafv212g 46226 Move class substitution in...
fexafv2ex 46227 The alternate function val...
ndfatafv2nrn 46228 The alternate function val...
ndmafv2nrn 46229 The value of a class outsi...
funressndmafv2rn 46230 The alternate function val...
afv2ndefb 46231 Two ways to say that an al...
nfunsnafv2 46232 If the restriction of a cl...
afv2prc 46233 A function's value at a pr...
dfatafv2rnb 46234 The alternate function val...
afv2orxorb 46235 If a set is in the range o...
dmafv2rnb 46236 The alternate function val...
fundmafv2rnb 46237 The alternate function val...
afv2elrn 46238 An alternate function valu...
afv20defat 46239 If the alternate function ...
fnafv2elrn 46240 An alternate function valu...
fafv2elcdm 46241 An alternate function valu...
fafv2elrnb 46242 An alternate function valu...
fcdmvafv2v 46243 If the codomain of a funct...
tz6.12-2-afv2 46244 Function value when ` F ` ...
afv2eu 46245 The value of a function at...
afv2res 46246 The value of a restricted ...
tz6.12-afv2 46247 Function value (Theorem 6....
tz6.12-1-afv2 46248 Function value (Theorem 6....
tz6.12c-afv2 46249 Corollary of Theorem 6.12(...
tz6.12i-afv2 46250 Corollary of Theorem 6.12(...
funressnbrafv2 46251 The second argument of a b...
dfatbrafv2b 46252 Equivalence of function va...
dfatopafv2b 46253 Equivalence of function va...
funbrafv2 46254 The second argument of a b...
fnbrafv2b 46255 Equivalence of function va...
fnopafv2b 46256 Equivalence of function va...
funbrafv22b 46257 Equivalence of function va...
funopafv2b 46258 Equivalence of function va...
dfatsnafv2 46259 Singleton of function valu...
dfafv23 46260 A definition of function v...
dfatdmfcoafv2 46261 Domain of a function compo...
dfatcolem 46262 Lemma for ~ dfatco . (Con...
dfatco 46263 The predicate "defined at"...
afv2co2 46264 Value of a function compos...
rlimdmafv2 46265 Two ways to express that a...
dfafv22 46266 Alternate definition of ` ...
afv2ndeffv0 46267 If the alternate function ...
dfatafv2eqfv 46268 If a function is defined a...
afv2rnfveq 46269 If the alternate function ...
afv20fv0 46270 If the alternate function ...
afv2fvn0fveq 46271 If the function's value at...
afv2fv0 46272 If the function's value at...
afv2fv0b 46273 The function's value at an...
afv2fv0xorb 46274 If a set is in the range o...
an4com24 46275 Rearrangement of 4 conjunc...
3an4ancom24 46276 Commutative law for a conj...
4an21 46277 Rearrangement of 4 conjunc...
dfnelbr2 46280 Alternate definition of th...
nelbr 46281 The binary relation of a s...
nelbrim 46282 If a set is related to ano...
nelbrnel 46283 A set is related to anothe...
nelbrnelim 46284 If a set is related to ano...
ralralimp 46285 Selecting one of two alter...
otiunsndisjX 46286 The union of singletons co...
fvifeq 46287 Equality of function value...
rnfdmpr 46288 The range of a one-to-one ...
imarnf1pr 46289 The image of the range of ...
funop1 46290 A function is an ordered p...
fun2dmnopgexmpl 46291 A function with a domain c...
opabresex0d 46292 A collection of ordered pa...
opabbrfex0d 46293 A collection of ordered pa...
opabresexd 46294 A collection of ordered pa...
opabbrfexd 46295 A collection of ordered pa...
f1oresf1orab 46296 Build a bijection by restr...
f1oresf1o 46297 Build a bijection by restr...
f1oresf1o2 46298 Build a bijection by restr...
fvmptrab 46299 Value of a function mappin...
fvmptrabdm 46300 Value of a function mappin...
cnambpcma 46301 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 46302 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 46303 The sum of two complex num...
leaddsuble 46304 Addition and subtraction o...
2leaddle2 46305 If two real numbers are le...
ltnltne 46306 Variant of trichotomy law ...
p1lep2 46307 A real number increasd by ...
ltsubsubaddltsub 46308 If the result of subtracti...
zm1nn 46309 An integer minus 1 is posi...
readdcnnred 46310 The sum of a real number a...
resubcnnred 46311 The difference of a real n...
recnmulnred 46312 The product of a real numb...
cndivrenred 46313 The quotient of an imagina...
sqrtnegnre 46314 The square root of a negat...
nn0resubcl 46315 Closure law for subtractio...
zgeltp1eq 46316 If an integer is between a...
1t10e1p1e11 46317 11 is 1 times 10 to the po...
deccarry 46318 Add 1 to a 2 digit number ...
eluzge0nn0 46319 If an integer is greater t...
nltle2tri 46320 Negated extended trichotom...
ssfz12 46321 Subset relationship for fi...
elfz2z 46322 Membership of an integer i...
2elfz3nn0 46323 If there are two elements ...
fz0addcom 46324 The addition of two member...
2elfz2melfz 46325 If the sum of two integers...
fz0addge0 46326 The sum of two integers in...
elfzlble 46327 Membership of an integer i...
elfzelfzlble 46328 Membership of an element o...
fzopred 46329 Join a predecessor to the ...
fzopredsuc 46330 Join a predecessor and a s...
1fzopredsuc 46331 Join 0 and a successor to ...
el1fzopredsuc 46332 An element of an open inte...
subsubelfzo0 46333 Subtracting a difference f...
fzoopth 46334 A half-open integer range ...
2ffzoeq 46335 Two functions over a half-...
m1mod0mod1 46336 An integer decreased by 1 ...
elmod2 46337 An integer modulo 2 is eit...
smonoord 46338 Ordering relation for a st...
fsummsndifre 46339 A finite sum with one of i...
fsumsplitsndif 46340 Separate out a term in a f...
fsummmodsndifre 46341 A finite sum of summands m...
fsummmodsnunz 46342 A finite sum of summands m...
setsidel 46343 The injected slot is an el...
setsnidel 46344 The injected slot is an el...
setsv 46345 The value of the structure...
preimafvsnel 46346 The preimage of a function...
preimafvn0 46347 The preimage of a function...
uniimafveqt 46348 The union of the image of ...
uniimaprimaeqfv 46349 The union of the image of ...
setpreimafvex 46350 The class ` P ` of all pre...
elsetpreimafvb 46351 The characterization of an...
elsetpreimafv 46352 An element of the class ` ...
elsetpreimafvssdm 46353 An element of the class ` ...
fvelsetpreimafv 46354 There is an element in a p...
preimafvelsetpreimafv 46355 The preimage of a function...
preimafvsspwdm 46356 The class ` P ` of all pre...
0nelsetpreimafv 46357 The empty set is not an el...
elsetpreimafvbi 46358 An element of the preimage...
elsetpreimafveqfv 46359 The elements of the preima...
eqfvelsetpreimafv 46360 If an element of the domai...
elsetpreimafvrab 46361 An element of the preimage...
imaelsetpreimafv 46362 The image of an element of...
uniimaelsetpreimafv 46363 The union of the image of ...
elsetpreimafveq 46364 If two preimages of functi...
fundcmpsurinjlem1 46365 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 46366 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 46367 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 46368 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 46369 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 46370 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 46371 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 46372 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 46373 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 46374 Every function ` F : A -->...
fundcmpsurinjpreimafv 46375 Every function ` F : A -->...
fundcmpsurinj 46376 Every function ` F : A -->...
fundcmpsurbijinj 46377 Every function ` F : A -->...
fundcmpsurinjimaid 46378 Every function ` F : A -->...
fundcmpsurinjALT 46379 Alternate proof of ~ fundc...
iccpval 46382 Partition consisting of a ...
iccpart 46383 A special partition. Corr...
iccpartimp 46384 Implications for a class b...
iccpartres 46385 The restriction of a parti...
iccpartxr 46386 If there is a partition, t...
iccpartgtprec 46387 If there is a partition, t...
iccpartipre 46388 If there is a partition, t...
iccpartiltu 46389 If there is a partition, t...
iccpartigtl 46390 If there is a partition, t...
iccpartlt 46391 If there is a partition, t...
iccpartltu 46392 If there is a partition, t...
iccpartgtl 46393 If there is a partition, t...
iccpartgt 46394 If there is a partition, t...
iccpartleu 46395 If there is a partition, t...
iccpartgel 46396 If there is a partition, t...
iccpartrn 46397 If there is a partition, t...
iccpartf 46398 The range of the partition...
iccpartel 46399 If there is a partition, t...
iccelpart 46400 An element of any partitio...
iccpartiun 46401 A half-open interval of ex...
icceuelpartlem 46402 Lemma for ~ icceuelpart . ...
icceuelpart 46403 An element of a partitione...
iccpartdisj 46404 The segments of a partitio...
iccpartnel 46405 A point of a partition is ...
fargshiftfv 46406 If a class is a function, ...
fargshiftf 46407 If a class is a function, ...
fargshiftf1 46408 If a function is 1-1, then...
fargshiftfo 46409 If a function is onto, the...
fargshiftfva 46410 The values of a shifted fu...
lswn0 46411 The last symbol of a not e...
nfich1 46414 The first interchangeable ...
nfich2 46415 The second interchangeable...
ichv 46416 Setvar variables are inter...
ichf 46417 Setvar variables are inter...
ichid 46418 A setvar variable is alway...
icht 46419 A theorem is interchangeab...
ichbidv 46420 Formula building rule for ...
ichcircshi 46421 The setvar variables are i...
ichan 46422 If two setvar variables ar...
ichn 46423 Negation does not affect i...
ichim 46424 Formula building rule for ...
dfich2 46425 Alternate definition of th...
ichcom 46426 The interchangeability of ...
ichbi12i 46427 Equivalence for interchang...
icheqid 46428 In an equality for the sam...
icheq 46429 In an equality of setvar v...
ichnfimlem 46430 Lemma for ~ ichnfim : A s...
ichnfim 46431 If in an interchangeabilit...
ichnfb 46432 If ` x ` and ` y ` are int...
ichal 46433 Move a universal quantifie...
ich2al 46434 Two setvar variables are a...
ich2ex 46435 Two setvar variables are a...
ichexmpl1 46436 Example for interchangeabl...
ichexmpl2 46437 Example for interchangeabl...
ich2exprop 46438 If the setvar variables ar...
ichnreuop 46439 If the setvar variables ar...
ichreuopeq 46440 If the setvar variables ar...
sprid 46441 Two identical representati...
elsprel 46442 An unordered pair is an el...
spr0nelg 46443 The empty set is not an el...
sprval 46446 The set of all unordered p...
sprvalpw 46447 The set of all unordered p...
sprssspr 46448 The set of all unordered p...
spr0el 46449 The empty set is not an un...
sprvalpwn0 46450 The set of all unordered p...
sprel 46451 An element of the set of a...
prssspr 46452 An element of a subset of ...
prelspr 46453 An unordered pair of eleme...
prsprel 46454 The elements of a pair fro...
prsssprel 46455 The elements of a pair fro...
sprvalpwle2 46456 The set of all unordered p...
sprsymrelfvlem 46457 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 46458 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 46459 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 46460 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 46461 The value of the function ...
sprsymrelf 46462 The mapping ` F ` is a fun...
sprsymrelf1 46463 The mapping ` F ` is a one...
sprsymrelfo 46464 The mapping ` F ` is a fun...
sprsymrelf1o 46465 The mapping ` F ` is a bij...
sprbisymrel 46466 There is a bijection betwe...
sprsymrelen 46467 The class ` P ` of subsets...
prpair 46468 Characterization of a prop...
prproropf1olem0 46469 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 46470 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 46471 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 46472 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 46473 Lemma 4 for ~ prproropf1o ...
prproropf1o 46474 There is a bijection betwe...
prproropen 46475 The set of proper pairs an...
prproropreud 46476 There is exactly one order...
pairreueq 46477 Two equivalent representat...
paireqne 46478 Two sets are not equal iff...
prprval 46481 The set of all proper unor...
prprvalpw 46482 The set of all proper unor...
prprelb 46483 An element of the set of a...
prprelprb 46484 A set is an element of the...
prprspr2 46485 The set of all proper unor...
prprsprreu 46486 There is a unique proper u...
prprreueq 46487 There is a unique proper u...
sbcpr 46488 The proper substitution of...
reupr 46489 There is a unique unordere...
reuprpr 46490 There is a unique proper u...
poprelb 46491 Equality for unordered pai...
2exopprim 46492 The existence of an ordere...
reuopreuprim 46493 There is a unique unordere...
fmtno 46496 The ` N ` th Fermat number...
fmtnoge3 46497 Each Fermat number is grea...
fmtnonn 46498 Each Fermat number is a po...
fmtnom1nn 46499 A Fermat number minus one ...
fmtnoodd 46500 Each Fermat number is odd....
fmtnorn 46501 A Fermat number is a funct...
fmtnof1 46502 The enumeration of the Fer...
fmtnoinf 46503 The set of Fermat numbers ...
fmtnorec1 46504 The first recurrence relat...
sqrtpwpw2p 46505 The floor of the square ro...
fmtnosqrt 46506 The floor of the square ro...
fmtno0 46507 The ` 0 ` th Fermat number...
fmtno1 46508 The ` 1 ` st Fermat number...
fmtnorec2lem 46509 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 46510 The second recurrence rela...
fmtnodvds 46511 Any Fermat number divides ...
goldbachthlem1 46512 Lemma 1 for ~ goldbachth ....
goldbachthlem2 46513 Lemma 2 for ~ goldbachth ....
goldbachth 46514 Goldbach's theorem: Two d...
fmtnorec3 46515 The third recurrence relat...
fmtnorec4 46516 The fourth recurrence rela...
fmtno2 46517 The ` 2 ` nd Fermat number...
fmtno3 46518 The ` 3 ` rd Fermat number...
fmtno4 46519 The ` 4 ` th Fermat number...
fmtno5lem1 46520 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 46521 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 46522 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 46523 Lemma 4 for ~ fmtno5 . (C...
fmtno5 46524 The ` 5 ` th Fermat number...
fmtno0prm 46525 The ` 0 ` th Fermat number...
fmtno1prm 46526 The ` 1 ` st Fermat number...
fmtno2prm 46527 The ` 2 ` nd Fermat number...
257prm 46528 257 is a prime number (the...
fmtno3prm 46529 The ` 3 ` rd Fermat number...
odz2prm2pw 46530 Any power of two is coprim...
fmtnoprmfac1lem 46531 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 46532 Divisor of Fermat number (...
fmtnoprmfac2lem1 46533 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 46534 Divisor of Fermat number (...
fmtnofac2lem 46535 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 46536 Divisor of Fermat number (...
fmtnofac1 46537 Divisor of Fermat number (...
fmtno4sqrt 46538 The floor of the square ro...
fmtno4prmfac 46539 If P was a (prime) factor ...
fmtno4prmfac193 46540 If P was a (prime) factor ...
fmtno4nprmfac193 46541 193 is not a (prime) facto...
fmtno4prm 46542 The ` 4 `-th Fermat number...
65537prm 46543 65537 is a prime number (t...
fmtnofz04prm 46544 The first five Fermat numb...
fmtnole4prm 46545 The first five Fermat numb...
fmtno5faclem1 46546 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 46547 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 46548 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 46549 The factorisation of the `...
fmtno5nprm 46550 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 46551 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 46552 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 46553 The mapping of a Fermat nu...
prmdvdsfmtnof1 46554 The mapping of a Fermat nu...
prminf2 46555 The set of prime numbers i...
2pwp1prm 46556 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 46557 Every prime number of the ...
m2prm 46558 The second Mersenne number...
m3prm 46559 The third Mersenne number ...
flsqrt 46560 A condition equivalent to ...
flsqrt5 46561 The floor of the square ro...
3ndvds4 46562 3 does not divide 4. (Con...
139prmALT 46563 139 is a prime number. In...
31prm 46564 31 is a prime number. In ...
m5prm 46565 The fifth Mersenne number ...
127prm 46566 127 is a prime number. (C...
m7prm 46567 The seventh Mersenne numbe...
m11nprm 46568 The eleventh Mersenne numb...
mod42tp1mod8 46569 If a number is ` 3 ` modul...
sfprmdvdsmersenne 46570 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 46571 If ` P ` is a Sophie Germa...
lighneallem1 46572 Lemma 1 for ~ lighneal . ...
lighneallem2 46573 Lemma 2 for ~ lighneal . ...
lighneallem3 46574 Lemma 3 for ~ lighneal . ...
lighneallem4a 46575 Lemma 1 for ~ lighneallem4...
lighneallem4b 46576 Lemma 2 for ~ lighneallem4...
lighneallem4 46577 Lemma 3 for ~ lighneal . ...
lighneal 46578 If a power of a prime ` P ...
modexp2m1d 46579 The square of an integer w...
proththdlem 46580 Lemma for ~ proththd . (C...
proththd 46581 Proth's theorem (1878). I...
5tcu2e40 46582 5 times the cube of 2 is 4...
3exp4mod41 46583 3 to the fourth power is -...
41prothprmlem1 46584 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 46585 Lemma 2 for ~ 41prothprm ....
41prothprm 46586 41 is a _Proth prime_. (C...
quad1 46587 A condition for a quadrati...
requad01 46588 A condition for a quadrati...
requad1 46589 A condition for a quadrati...
requad2 46590 A condition for a quadrati...
iseven 46595 The predicate "is an even ...
isodd 46596 The predicate "is an odd n...
evenz 46597 An even number is an integ...
oddz 46598 An odd number is an intege...
evendiv2z 46599 The result of dividing an ...
oddp1div2z 46600 The result of dividing an ...
oddm1div2z 46601 The result of dividing an ...
isodd2 46602 The predicate "is an odd n...
dfodd2 46603 Alternate definition for o...
dfodd6 46604 Alternate definition for o...
dfeven4 46605 Alternate definition for e...
evenm1odd 46606 The predecessor of an even...
evenp1odd 46607 The successor of an even n...
oddp1eveni 46608 The successor of an odd nu...
oddm1eveni 46609 The predecessor of an odd ...
evennodd 46610 An even number is not an o...
oddneven 46611 An odd number is not an ev...
enege 46612 The negative of an even nu...
onego 46613 The negative of an odd num...
m1expevenALTV 46614 Exponentiation of -1 by an...
m1expoddALTV 46615 Exponentiation of -1 by an...
dfeven2 46616 Alternate definition for e...
dfodd3 46617 Alternate definition for o...
iseven2 46618 The predicate "is an even ...
isodd3 46619 The predicate "is an odd n...
2dvdseven 46620 2 divides an even number. ...
m2even 46621 A multiple of 2 is an even...
2ndvdsodd 46622 2 does not divide an odd n...
2dvdsoddp1 46623 2 divides an odd number in...
2dvdsoddm1 46624 2 divides an odd number de...
dfeven3 46625 Alternate definition for e...
dfodd4 46626 Alternate definition for o...
dfodd5 46627 Alternate definition for o...
zefldiv2ALTV 46628 The floor of an even numbe...
zofldiv2ALTV 46629 The floor of an odd numer ...
oddflALTV 46630 Odd number representation ...
iseven5 46631 The predicate "is an even ...
isodd7 46632 The predicate "is an odd n...
dfeven5 46633 Alternate definition for e...
dfodd7 46634 Alternate definition for o...
gcd2odd1 46635 The greatest common diviso...
zneoALTV 46636 No even integer equals an ...
zeoALTV 46637 An integer is even or odd....
zeo2ALTV 46638 An integer is even or odd ...
nneoALTV 46639 A positive integer is even...
nneoiALTV 46640 A positive integer is even...
odd2np1ALTV 46641 An integer is odd iff it i...
oddm1evenALTV 46642 An integer is odd iff its ...
oddp1evenALTV 46643 An integer is odd iff its ...
oexpnegALTV 46644 The exponential of the neg...
oexpnegnz 46645 The exponential of the neg...
bits0ALTV 46646 Value of the zeroth bit. ...
bits0eALTV 46647 The zeroth bit of an even ...
bits0oALTV 46648 The zeroth bit of an odd n...
divgcdoddALTV 46649 Either ` A / ( A gcd B ) `...
opoeALTV 46650 The sum of two odds is eve...
opeoALTV 46651 The sum of an odd and an e...
omoeALTV 46652 The difference of two odds...
omeoALTV 46653 The difference of an odd a...
oddprmALTV 46654 A prime not equal to ` 2 `...
0evenALTV 46655 0 is an even number. (Con...
0noddALTV 46656 0 is not an odd number. (...
1oddALTV 46657 1 is an odd number. (Cont...
1nevenALTV 46658 1 is not an even number. ...
2evenALTV 46659 2 is an even number. (Con...
2noddALTV 46660 2 is not an odd number. (...
nn0o1gt2ALTV 46661 An odd nonnegative integer...
nnoALTV 46662 An alternate characterizat...
nn0oALTV 46663 An alternate characterizat...
nn0e 46664 An alternate characterizat...
nneven 46665 An alternate characterizat...
nn0onn0exALTV 46666 For each odd nonnegative i...
nn0enn0exALTV 46667 For each even nonnegative ...
nnennexALTV 46668 For each even positive int...
nnpw2evenALTV 46669 2 to the power of a positi...
epoo 46670 The sum of an even and an ...
emoo 46671 The difference of an even ...
epee 46672 The sum of two even number...
emee 46673 The difference of two even...
evensumeven 46674 If a summand is even, the ...
3odd 46675 3 is an odd number. (Cont...
4even 46676 4 is an even number. (Con...
5odd 46677 5 is an odd number. (Cont...
6even 46678 6 is an even number. (Con...
7odd 46679 7 is an odd number. (Cont...
8even 46680 8 is an even number. (Con...
evenprm2 46681 A prime number is even iff...
oddprmne2 46682 Every prime number not bei...
oddprmuzge3 46683 A prime number which is od...
evenltle 46684 If an even number is great...
odd2prm2 46685 If an odd number is the su...
even3prm2 46686 If an even number is the s...
mogoldbblem 46687 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 46688 Lemma for ~ perfectALTV . ...
perfectALTVlem2 46689 Lemma for ~ perfectALTV . ...
perfectALTV 46690 The Euclid-Euler theorem, ...
fppr 46693 The set of Fermat pseudopr...
fpprmod 46694 The set of Fermat pseudopr...
fpprel 46695 A Fermat pseudoprime to th...
fpprbasnn 46696 The base of a Fermat pseud...
fpprnn 46697 A Fermat pseudoprime to th...
fppr2odd 46698 A Fermat pseudoprime to th...
11t31e341 46699 341 is the product of 11 a...
2exp340mod341 46700 Eight to the eighth power ...
341fppr2 46701 341 is the (smallest) _Pou...
4fppr1 46702 4 is the (smallest) Fermat...
8exp8mod9 46703 Eight to the eighth power ...
9fppr8 46704 9 is the (smallest) Fermat...
dfwppr 46705 Alternate definition of a ...
fpprwppr 46706 A Fermat pseudoprime to th...
fpprwpprb 46707 An integer ` X ` which is ...
fpprel2 46708 An alternate definition fo...
nfermltl8rev 46709 Fermat's little theorem wi...
nfermltl2rev 46710 Fermat's little theorem wi...
nfermltlrev 46711 Fermat's little theorem re...
isgbe 46718 The predicate "is an even ...
isgbow 46719 The predicate "is a weak o...
isgbo 46720 The predicate "is an odd G...
gbeeven 46721 An even Goldbach number is...
gbowodd 46722 A weak odd Goldbach number...
gbogbow 46723 A (strong) odd Goldbach nu...
gboodd 46724 An odd Goldbach number is ...
gbepos 46725 Any even Goldbach number i...
gbowpos 46726 Any weak odd Goldbach numb...
gbopos 46727 Any odd Goldbach number is...
gbegt5 46728 Any even Goldbach number i...
gbowgt5 46729 Any weak odd Goldbach numb...
gbowge7 46730 Any weak odd Goldbach numb...
gboge9 46731 Any odd Goldbach number is...
gbege6 46732 Any even Goldbach number i...
gbpart6 46733 The Goldbach partition of ...
gbpart7 46734 The (weak) Goldbach partit...
gbpart8 46735 The Goldbach partition of ...
gbpart9 46736 The (strong) Goldbach part...
gbpart11 46737 The (strong) Goldbach part...
6gbe 46738 6 is an even Goldbach numb...
7gbow 46739 7 is a weak odd Goldbach n...
8gbe 46740 8 is an even Goldbach numb...
9gbo 46741 9 is an odd Goldbach numbe...
11gbo 46742 11 is an odd Goldbach numb...
stgoldbwt 46743 If the strong ternary Gold...
sbgoldbwt 46744 If the strong binary Goldb...
sbgoldbst 46745 If the strong binary Goldb...
sbgoldbaltlem1 46746 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 46747 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 46748 An alternate (related to t...
sbgoldbb 46749 If the strong binary Goldb...
sgoldbeven3prm 46750 If the binary Goldbach con...
sbgoldbm 46751 If the strong binary Goldb...
mogoldbb 46752 If the modern version of t...
sbgoldbmb 46753 The strong binary Goldbach...
sbgoldbo 46754 If the strong binary Goldb...
nnsum3primes4 46755 4 is the sum of at most 3 ...
nnsum4primes4 46756 4 is the sum of at most 4 ...
nnsum3primesprm 46757 Every prime is "the sum of...
nnsum4primesprm 46758 Every prime is "the sum of...
nnsum3primesgbe 46759 Any even Goldbach number i...
nnsum4primesgbe 46760 Any even Goldbach number i...
nnsum3primesle9 46761 Every integer greater than...
nnsum4primesle9 46762 Every integer greater than...
nnsum4primesodd 46763 If the (weak) ternary Gold...
nnsum4primesoddALTV 46764 If the (strong) ternary Go...
evengpop3 46765 If the (weak) ternary Gold...
evengpoap3 46766 If the (strong) ternary Go...
nnsum4primeseven 46767 If the (weak) ternary Gold...
nnsum4primesevenALTV 46768 If the (strong) ternary Go...
wtgoldbnnsum4prm 46769 If the (weak) ternary Gold...
stgoldbnnsum4prm 46770 If the (strong) ternary Go...
bgoldbnnsum3prm 46771 If the binary Goldbach con...
bgoldbtbndlem1 46772 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 46773 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 46774 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 46775 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 46776 If the binary Goldbach con...
tgoldbachgtALTV 46779 Variant of Thierry Arnoux'...
bgoldbachlt 46780 The binary Goldbach conjec...
tgblthelfgott 46782 The ternary Goldbach conje...
tgoldbachlt 46783 The ternary Goldbach conje...
tgoldbach 46784 The ternary Goldbach conje...
isomgrrel 46789 The isomorphy relation for...
isomgr 46790 The isomorphy relation for...
isisomgr 46791 Implications of two graphs...
isomgreqve 46792 A set is isomorphic to a h...
isomushgr 46793 The isomorphy relation for...
isomuspgrlem1 46794 Lemma 1 for ~ isomuspgr . ...
isomuspgrlem2a 46795 Lemma 1 for ~ isomuspgrlem...
isomuspgrlem2b 46796 Lemma 2 for ~ isomuspgrlem...
isomuspgrlem2c 46797 Lemma 3 for ~ isomuspgrlem...
isomuspgrlem2d 46798 Lemma 4 for ~ isomuspgrlem...
isomuspgrlem2e 46799 Lemma 5 for ~ isomuspgrlem...
isomuspgrlem2 46800 Lemma 2 for ~ isomuspgr . ...
isomuspgr 46801 The isomorphy relation for...
isomgrref 46802 The isomorphy relation is ...
isomgrsym 46803 The isomorphy relation is ...
isomgrsymb 46804 The isomorphy relation is ...
isomgrtrlem 46805 Lemma for ~ isomgrtr . (C...
isomgrtr 46806 The isomorphy relation is ...
strisomgrop 46807 A graph represented as an ...
ushrisomgr 46808 A simple hypergraph (with ...
1hegrlfgr 46809 A graph ` G ` with one hyp...
upwlksfval 46812 The set of simple walks (i...
isupwlk 46813 Properties of a pair of fu...
isupwlkg 46814 Generalization of ~ isupwl...
upwlkbprop 46815 Basic properties of a simp...
upwlkwlk 46816 A simple walk is a walk. ...
upgrwlkupwlk 46817 In a pseudograph, a walk i...
upgrwlkupwlkb 46818 In a pseudograph, the defi...
upgrisupwlkALT 46819 Alternate proof of ~ upgri...
upgredgssspr 46820 The set of edges of a pseu...
uspgropssxp 46821 The set ` G ` of "simple p...
uspgrsprfv 46822 The value of the function ...
uspgrsprf 46823 The mapping ` F ` is a fun...
uspgrsprf1 46824 The mapping ` F ` is a one...
uspgrsprfo 46825 The mapping ` F ` is a fun...
uspgrsprf1o 46826 The mapping ` F ` is a bij...
uspgrex 46827 The class ` G ` of all "si...
uspgrbispr 46828 There is a bijection betwe...
uspgrspren 46829 The set ` G ` of the "simp...
uspgrymrelen 46830 The set ` G ` of the "simp...
uspgrbisymrel 46831 There is a bijection betwe...
uspgrbisymrelALT 46832 Alternate proof of ~ uspgr...
ovn0dmfun 46833 If a class operation value...
xpsnopab 46834 A Cartesian product with a...
xpiun 46835 A Cartesian product expres...
ovn0ssdmfun 46836 If a class' operation valu...
fnxpdmdm 46837 The domain of the domain o...
cnfldsrngbas 46838 The base set of a subring ...
cnfldsrngadd 46839 The group addition operati...
cnfldsrngmul 46840 The ring multiplication op...
plusfreseq 46841 If the empty set is not co...
mgmplusfreseq 46842 If the empty set is not co...
0mgm 46843 A set with an empty base s...
opmpoismgm 46844 A structure with a group a...
copissgrp 46845 A structure with a constan...
copisnmnd 46846 A structure with a constan...
0nodd 46847 0 is not an odd integer. ...
1odd 46848 1 is an odd integer. (Con...
2nodd 46849 2 is not an odd integer. ...
oddibas 46850 Lemma 1 for ~ oddinmgm : ...
oddiadd 46851 Lemma 2 for ~ oddinmgm : ...
oddinmgm 46852 The structure of all odd i...
nnsgrpmgm 46853 The structure of positive ...
nnsgrp 46854 The structure of positive ...
nnsgrpnmnd 46855 The structure of positive ...
nn0mnd 46856 The set of nonnegative int...
gsumsplit2f 46857 Split a group sum into two...
gsumdifsndf 46858 Extract a summand from a f...
gsumfsupp 46859 A group sum of a family ca...
iscllaw 46866 The predicate "is a closed...
iscomlaw 46867 The predicate "is a commut...
clcllaw 46868 Closure of a closed operat...
isasslaw 46869 The predicate "is an assoc...
asslawass 46870 Associativity of an associ...
mgmplusgiopALT 46871 Slot 2 (group operation) o...
sgrpplusgaopALT 46872 Slot 2 (group operation) o...
intopval 46879 The internal (binary) oper...
intop 46880 An internal (binary) opera...
clintopval 46881 The closed (internal binar...
assintopval 46882 The associative (closed in...
assintopmap 46883 The associative (closed in...
isclintop 46884 The predicate "is a closed...
clintop 46885 A closed (internal binary)...
assintop 46886 An associative (closed int...
isassintop 46887 The predicate "is an assoc...
clintopcllaw 46888 The closure law holds for ...
assintopcllaw 46889 The closure low holds for ...
assintopasslaw 46890 The associative low holds ...
assintopass 46891 An associative (closed int...
ismgmALT 46900 The predicate "is a magma"...
iscmgmALT 46901 The predicate "is a commut...
issgrpALT 46902 The predicate "is a semigr...
iscsgrpALT 46903 The predicate "is a commut...
mgm2mgm 46904 Equivalence of the two def...
sgrp2sgrp 46905 Equivalence of the two def...
idfusubc0 46906 The identity functor for a...
idfusubc 46907 The identity functor for a...
inclfusubc 46908 The "inclusion functor" fr...
lmod0rng 46909 If the scalar ring of a mo...
nzrneg1ne0 46910 The additive inverse of th...
nrhmzr 46911 There is no ring homomorph...
lidldomn1 46912 If a (left) ideal (which i...
lidlabl 46913 A (left) ideal of a ring i...
lidlrng 46914 A (left) ideal of a ring i...
zlidlring 46915 The zero (left) ideal of a...
uzlidlring 46916 Only the zero (left) ideal...
lidldomnnring 46917 A (left) ideal of a domain...
0even 46918 0 is an even integer. (Co...
1neven 46919 1 is not an even integer. ...
2even 46920 2 is an even integer. (Co...
2zlidl 46921 The even integers are a (l...
2zrng 46922 The ring of integers restr...
2zrngbas 46923 The base set of R is the s...
2zrngadd 46924 The group addition operati...
2zrng0 46925 The additive identity of R...
2zrngamgm 46926 R is an (additive) magma. ...
2zrngasgrp 46927 R is an (additive) semigro...
2zrngamnd 46928 R is an (additive) monoid....
2zrngacmnd 46929 R is a commutative (additi...
2zrngagrp 46930 R is an (additive) group. ...
2zrngaabl 46931 R is an (additive) abelian...
2zrngmul 46932 The ring multiplication op...
2zrngmmgm 46933 R is a (multiplicative) ma...
2zrngmsgrp 46934 R is a (multiplicative) se...
2zrngALT 46935 The ring of integers restr...
2zrngnmlid 46936 R has no multiplicative (l...
2zrngnmrid 46937 R has no multiplicative (r...
2zrngnmlid2 46938 R has no multiplicative (l...
2zrngnring 46939 R is not a unital ring. (...
cznrnglem 46940 Lemma for ~ cznrng : The ...
cznabel 46941 The ring constructed from ...
cznrng 46942 The ring constructed from ...
cznnring 46943 The ring constructed from ...
rngcvalALTV 46948 Value of the category of n...
rngcval 46949 Value of the category of n...
rnghmresfn 46950 The class of non-unital ri...
rnghmresel 46951 An element of the non-unit...
rngcbas 46952 Set of objects of the cate...
rngchomfval 46953 Set of arrows of the categ...
rngchom 46954 Set of arrows of the categ...
elrngchom 46955 A morphism of non-unital r...
rngchomfeqhom 46956 The functionalized Hom-set...
rngccofval 46957 Composition in the categor...
rngcco 46958 Composition in the categor...
dfrngc2 46959 Alternate definition of th...
rnghmsscmap2 46960 The non-unital ring homomo...
rnghmsscmap 46961 The non-unital ring homomo...
rnghmsubcsetclem1 46962 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 46963 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 46964 The non-unital ring homomo...
rngccat 46965 The category of non-unital...
rngcid 46966 The identity arrow in the ...
rngcsect 46967 A section in the category ...
rngcinv 46968 An inverse in the category...
rngciso 46969 An isomorphism in the cate...
rngcbasALTV 46970 Set of objects of the cate...
rngchomfvalALTV 46971 Set of arrows of the categ...
rngchomALTV 46972 Set of arrows of the categ...
elrngchomALTV 46973 A morphism of non-unital r...
rngccofvalALTV 46974 Composition in the categor...
rngccoALTV 46975 Composition in the categor...
rngccatidALTV 46976 Lemma for ~ rngccatALTV . ...
rngccatALTV 46977 The category of non-unital...
rngcidALTV 46978 The identity arrow in the ...
rngcsectALTV 46979 A section in the category ...
rngcinvALTV 46980 An inverse in the category...
rngcisoALTV 46981 An isomorphism in the cate...
rngchomffvalALTV 46982 The value of the functiona...
rngchomrnghmresALTV 46983 The value of the functiona...
rngcifuestrc 46984 The "inclusion functor" fr...
funcrngcsetc 46985 The "natural forgetful fun...
funcrngcsetcALT 46986 Alternate proof of ~ funcr...
zrinitorngc 46987 The zero ring is an initia...
zrtermorngc 46988 The zero ring is a termina...
zrzeroorngc 46989 The zero ring is a zero ob...
ringcvalALTV 46994 Value of the category of r...
ringcval 46995 Value of the category of u...
rhmresfn 46996 The class of unital ring h...
rhmresel 46997 An element of the unital r...
ringcbas 46998 Set of objects of the cate...
ringchomfval 46999 Set of arrows of the categ...
ringchom 47000 Set of arrows of the categ...
elringchom 47001 A morphism of unital rings...
ringchomfeqhom 47002 The functionalized Hom-set...
ringccofval 47003 Composition in the categor...
ringcco 47004 Composition in the categor...
dfringc2 47005 Alternate definition of th...
rhmsscmap2 47006 The unital ring homomorphi...
rhmsscmap 47007 The unital ring homomorphi...
rhmsubcsetclem1 47008 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 47009 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 47010 The unital ring homomorphi...
ringccat 47011 The category of unital rin...
ringcid 47012 The identity arrow in the ...
rhmsscrnghm 47013 The unital ring homomorphi...
rhmsubcrngclem1 47014 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 47015 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 47016 The unital ring homomorphi...
rngcresringcat 47017 The restriction of the cat...
ringcsect 47018 A section in the category ...
ringcinv 47019 An inverse in the category...
ringciso 47020 An isomorphism in the cate...
ringcbasbas 47021 An element of the base set...
funcringcsetc 47022 The "natural forgetful fun...
funcringcsetcALTV2lem1 47023 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 47024 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 47025 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 47026 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 47027 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 47028 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 47029 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 47030 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 47031 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 47032 The "natural forgetful fun...
ringcbasALTV 47033 Set of objects of the cate...
ringchomfvalALTV 47034 Set of arrows of the categ...
ringchomALTV 47035 Set of arrows of the categ...
elringchomALTV 47036 A morphism of rings is a f...
ringccofvalALTV 47037 Composition in the categor...
ringccoALTV 47038 Composition in the categor...
ringccatidALTV 47039 Lemma for ~ ringccatALTV ....
ringccatALTV 47040 The category of rings is a...
ringcidALTV 47041 The identity arrow in the ...
ringcsectALTV 47042 A section in the category ...
ringcinvALTV 47043 An inverse in the category...
ringcisoALTV 47044 An isomorphism in the cate...
ringcbasbasALTV 47045 An element of the base set...
funcringcsetclem1ALTV 47046 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 47047 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 47048 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 47049 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 47050 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 47051 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 47052 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 47053 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 47054 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 47055 The "natural forgetful fun...
irinitoringc 47056 The ring of integers is an...
zrtermoringc 47057 The zero ring is a termina...
zrninitoringc 47058 The zero ring is not an in...
nzerooringczr 47059 There is no zero object in...
srhmsubclem1 47060 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 47061 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 47062 Lemma 3 for ~ srhmsubc . ...
srhmsubc 47063 According to ~ df-subc , t...
sringcat 47064 The restriction of the cat...
crhmsubc 47065 According to ~ df-subc , t...
cringcat 47066 The restriction of the cat...
drhmsubc 47067 According to ~ df-subc , t...
drngcat 47068 The restriction of the cat...
fldcat 47069 The restriction of the cat...
fldc 47070 The restriction of the cat...
fldhmsubc 47071 According to ~ df-subc , t...
rngcrescrhm 47072 The category of non-unital...
rhmsubclem1 47073 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 47074 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 47075 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 47076 Lemma 4 for ~ rhmsubc . (...
rhmsubc 47077 According to ~ df-subc , t...
rhmsubccat 47078 The restriction of the cat...
srhmsubcALTVlem1 47079 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 47080 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 47081 According to ~ df-subc , t...
sringcatALTV 47082 The restriction of the cat...
crhmsubcALTV 47083 According to ~ df-subc , t...
cringcatALTV 47084 The restriction of the cat...
drhmsubcALTV 47085 According to ~ df-subc , t...
drngcatALTV 47086 The restriction of the cat...
fldcatALTV 47087 The restriction of the cat...
fldcALTV 47088 The restriction of the cat...
fldhmsubcALTV 47089 According to ~ df-subc , t...
rngcrescrhmALTV 47090 The category of non-unital...
rhmsubcALTVlem1 47091 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 47092 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 47093 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 47094 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 47095 According to ~ df-subc , t...
rhmsubcALTVcat 47096 The restriction of the cat...
opeliun2xp 47097 Membership of an ordered p...
eliunxp2 47098 Membership in a union of C...
mpomptx2 47099 Express a two-argument fun...
cbvmpox2 47100 Rule to change the bound v...
dmmpossx2 47101 The domain of a mapping is...
mpoexxg2 47102 Existence of an operation ...
ovmpordxf 47103 Value of an operation give...
ovmpordx 47104 Value of an operation give...
ovmpox2 47105 The value of an operation ...
fdmdifeqresdif 47106 The restriction of a condi...
offvalfv 47107 The function operation exp...
ofaddmndmap 47108 The function operation app...
mapsnop 47109 A singleton of an ordered ...
fprmappr 47110 A function with a domain o...
mapprop 47111 An unordered pair containi...
ztprmneprm 47112 A prime is not an integer ...
2t6m3t4e0 47113 2 times 6 minus 3 times 4 ...
ssnn0ssfz 47114 For any finite subset of `...
nn0sumltlt 47115 If the sum of two nonnegat...
bcpascm1 47116 Pascal's rule for the bino...
altgsumbc 47117 The sum of binomial coeffi...
altgsumbcALT 47118 Alternate proof of ~ altgs...
zlmodzxzlmod 47119 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 47120 An element of the (base se...
zlmodzxz0 47121 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 47122 The scalar multiplication ...
zlmodzxzadd 47123 The addition of the ` ZZ `...
zlmodzxzsubm 47124 The subtraction of the ` Z...
zlmodzxzsub 47125 The subtraction of the ` Z...
mgpsumunsn 47126 Extract a summand/factor f...
mgpsumz 47127 If the group sum for the m...
mgpsumn 47128 If the group sum for the m...
exple2lt6 47129 A nonnegative integer to t...
pgrple2abl 47130 Every symmetric group on a...
pgrpgt2nabl 47131 Every symmetric group on a...
invginvrid 47132 Identity for a multiplicat...
rmsupp0 47133 The support of a mapping o...
domnmsuppn0 47134 The support of a mapping o...
rmsuppss 47135 The support of a mapping o...
mndpsuppss 47136 The support of a mapping o...
scmsuppss 47137 The support of a mapping o...
rmsuppfi 47138 The support of a mapping o...
rmfsupp 47139 A mapping of a multiplicat...
mndpsuppfi 47140 The support of a mapping o...
mndpfsupp 47141 A mapping of a scalar mult...
scmsuppfi 47142 The support of a mapping o...
scmfsupp 47143 A mapping of a scalar mult...
suppmptcfin 47144 The support of a mapping w...
mptcfsupp 47145 A mapping with value 0 exc...
fsuppmptdmf 47146 A mapping with a finite do...
lmodvsmdi 47147 Multiple distributive law ...
gsumlsscl 47148 Closure of a group sum in ...
assaascl0 47149 The scalar 0 embedded into...
assaascl1 47150 The scalar 1 embedded into...
ply1vr1smo 47151 The variable in a polynomi...
ply1sclrmsm 47152 The ring multiplication of...
coe1id 47153 Coefficient vector of the ...
coe1sclmulval 47154 The value of the coefficie...
ply1mulgsumlem1 47155 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 47156 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 47157 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 47158 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 47159 The product of two polynom...
evl1at0 47160 Polynomial evaluation for ...
evl1at1 47161 Polynomial evaluation for ...
linply1 47162 A term of the form ` x - C...
lineval 47163 A term of the form ` x - C...
linevalexample 47164 The polynomial ` x - 3 ` o...
dmatALTval 47169 The algebra of ` N ` x ` N...
dmatALTbas 47170 The base set of the algebr...
dmatALTbasel 47171 An element of the base set...
dmatbas 47172 The set of all ` N ` x ` N...
lincop 47177 A linear combination as op...
lincval 47178 The value of a linear comb...
dflinc2 47179 Alternative definition of ...
lcoop 47180 A linear combination as op...
lcoval 47181 The value of a linear comb...
lincfsuppcl 47182 A linear combination of ve...
linccl 47183 A linear combination of ve...
lincval0 47184 The value of an empty line...
lincvalsng 47185 The linear combination ove...
lincvalsn 47186 The linear combination ove...
lincvalpr 47187 The linear combination ove...
lincval1 47188 The linear combination ove...
lcosn0 47189 Properties of a linear com...
lincvalsc0 47190 The linear combination whe...
lcoc0 47191 Properties of a linear com...
linc0scn0 47192 If a set contains the zero...
lincdifsn 47193 A vector is a linear combi...
linc1 47194 A vector is a linear combi...
lincellss 47195 A linear combination of a ...
lco0 47196 The set of empty linear co...
lcoel0 47197 The zero vector is always ...
lincsum 47198 The sum of two linear comb...
lincscm 47199 A linear combinations mult...
lincsumcl 47200 The sum of two linear comb...
lincscmcl 47201 The multiplication of a li...
lincsumscmcl 47202 The sum of a linear combin...
lincolss 47203 According to the statement...
ellcoellss 47204 Every linear combination o...
lcoss 47205 A set of vectors of a modu...
lspsslco 47206 Lemma for ~ lspeqlco . (C...
lcosslsp 47207 Lemma for ~ lspeqlco . (C...
lspeqlco 47208 Equivalence of a _span_ of...
rellininds 47212 The class defining the rel...
linindsv 47214 The classes of the module ...
islininds 47215 The property of being a li...
linindsi 47216 The implications of being ...
linindslinci 47217 The implications of being ...
islinindfis 47218 The property of being a li...
islinindfiss 47219 The property of being a li...
linindscl 47220 A linearly independent set...
lindepsnlininds 47221 A linearly dependent subse...
islindeps 47222 The property of being a li...
lincext1 47223 Property 1 of an extension...
lincext2 47224 Property 2 of an extension...
lincext3 47225 Property 3 of an extension...
lindslinindsimp1 47226 Implication 1 for ~ lindsl...
lindslinindimp2lem1 47227 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 47228 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 47229 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 47230 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 47231 Lemma 5 for ~ lindslininds...
lindslinindsimp2 47232 Implication 2 for ~ lindsl...
lindslininds 47233 Equivalence of definitions...
linds0 47234 The empty set is always a ...
el0ldep 47235 A set containing the zero ...
el0ldepsnzr 47236 A set containing the zero ...
lindsrng01 47237 Any subset of a module is ...
lindszr 47238 Any subset of a module ove...
snlindsntorlem 47239 Lemma for ~ snlindsntor . ...
snlindsntor 47240 A singleton is linearly in...
ldepsprlem 47241 Lemma for ~ ldepspr . (Co...
ldepspr 47242 If a vector is a scalar mu...
lincresunit3lem3 47243 Lemma 3 for ~ lincresunit3...
lincresunitlem1 47244 Lemma 1 for properties of ...
lincresunitlem2 47245 Lemma for properties of a ...
lincresunit1 47246 Property 1 of a specially ...
lincresunit2 47247 Property 2 of a specially ...
lincresunit3lem1 47248 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 47249 Lemma 2 for ~ lincresunit3...
lincresunit3 47250 Property 3 of a specially ...
lincreslvec3 47251 Property 3 of a specially ...
islindeps2 47252 Conditions for being a lin...
islininds2 47253 Implication of being a lin...
isldepslvec2 47254 Alternative definition of ...
lindssnlvec 47255 A singleton not containing...
lmod1lem1 47256 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 47257 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 47258 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 47259 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 47260 Lemma 5 for ~ lmod1 . (Co...
lmod1 47261 The (smallest) structure r...
lmod1zr 47262 The (smallest) structure r...
lmod1zrnlvec 47263 There is a (left) module (...
lmodn0 47264 Left modules exist. (Cont...
zlmodzxzequa 47265 Example of an equation wit...
zlmodzxznm 47266 Example of a linearly depe...
zlmodzxzldeplem 47267 A and B are not equal. (C...
zlmodzxzequap 47268 Example of an equation wit...
zlmodzxzldeplem1 47269 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 47270 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 47271 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 47272 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 47273 { A , B } is a linearly de...
ldepsnlinclem1 47274 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 47275 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 47276 The class of all (left) ve...
ldepsnlinc 47277 The reverse implication of...
ldepslinc 47278 For (left) vector spaces, ...
suppdm 47279 If the range of a function...
eluz2cnn0n1 47280 An integer greater than 1 ...
divge1b 47281 The ratio of a real number...
divgt1b 47282 The ratio of a real number...
ltsubaddb 47283 Equivalence for the "less ...
ltsubsubb 47284 Equivalence for the "less ...
ltsubadd2b 47285 Equivalence for the "less ...
divsub1dir 47286 Distribution of division o...
expnegico01 47287 An integer greater than 1 ...
elfzolborelfzop1 47288 An element of a half-open ...
pw2m1lepw2m1 47289 2 to the power of a positi...
zgtp1leeq 47290 If an integer is between a...
flsubz 47291 An integer can be moved in...
fldivmod 47292 Expressing the floor of a ...
mod0mul 47293 If an integer is 0 modulo ...
modn0mul 47294 If an integer is not 0 mod...
m1modmmod 47295 An integer decreased by 1 ...
difmodm1lt 47296 The difference between an ...
nn0onn0ex 47297 For each odd nonnegative i...
nn0enn0ex 47298 For each even nonnegative ...
nnennex 47299 For each even positive int...
nneop 47300 A positive integer is even...
nneom 47301 A positive integer is even...
nn0eo 47302 A nonnegative integer is e...
nnpw2even 47303 2 to the power of a positi...
zefldiv2 47304 The floor of an even integ...
zofldiv2 47305 The floor of an odd intege...
nn0ofldiv2 47306 The floor of an odd nonneg...
flnn0div2ge 47307 The floor of a positive in...
flnn0ohalf 47308 The floor of the half of a...
logcxp0 47309 Logarithm of a complex pow...
regt1loggt0 47310 The natural logarithm for ...
fdivval 47313 The quotient of two functi...
fdivmpt 47314 The quotient of two functi...
fdivmptf 47315 The quotient of two functi...
refdivmptf 47316 The quotient of two functi...
fdivpm 47317 The quotient of two functi...
refdivpm 47318 The quotient of two functi...
fdivmptfv 47319 The function value of a qu...
refdivmptfv 47320 The function value of a qu...
bigoval 47323 Set of functions of order ...
elbigofrcl 47324 Reverse closure of the "bi...
elbigo 47325 Properties of a function o...
elbigo2 47326 Properties of a function o...
elbigo2r 47327 Sufficient condition for a...
elbigof 47328 A function of order G(x) i...
elbigodm 47329 The domain of a function o...
elbigoimp 47330 The defining property of a...
elbigolo1 47331 A function (into the posit...
rege1logbrege0 47332 The general logarithm, wit...
rege1logbzge0 47333 The general logarithm, wit...
fllogbd 47334 A real number is between t...
relogbmulbexp 47335 The logarithm of the produ...
relogbdivb 47336 The logarithm of the quoti...
logbge0b 47337 The logarithm of a number ...
logblt1b 47338 The logarithm of a number ...
fldivexpfllog2 47339 The floor of a positive re...
nnlog2ge0lt1 47340 A positive integer is 1 if...
logbpw2m1 47341 The floor of the binary lo...
fllog2 47342 The floor of the binary lo...
blenval 47345 The binary length of an in...
blen0 47346 The binary length of 0. (...
blenn0 47347 The binary length of a "nu...
blenre 47348 The binary length of a pos...
blennn 47349 The binary length of a pos...
blennnelnn 47350 The binary length of a pos...
blennn0elnn 47351 The binary length of a non...
blenpw2 47352 The binary length of a pow...
blenpw2m1 47353 The binary length of a pow...
nnpw2blen 47354 A positive integer is betw...
nnpw2blenfzo 47355 A positive integer is betw...
nnpw2blenfzo2 47356 A positive integer is eith...
nnpw2pmod 47357 Every positive integer can...
blen1 47358 The binary length of 1. (...
blen2 47359 The binary length of 2. (...
nnpw2p 47360 Every positive integer can...
nnpw2pb 47361 A number is a positive int...
blen1b 47362 The binary length of a non...
blennnt2 47363 The binary length of a pos...
nnolog2flm1 47364 The floor of the binary lo...
blennn0em1 47365 The binary length of the h...
blennngt2o2 47366 The binary length of an od...
blengt1fldiv2p1 47367 The binary length of an in...
blennn0e2 47368 The binary length of an ev...
digfval 47371 Operation to obtain the ` ...
digval 47372 The ` K ` th digit of a no...
digvalnn0 47373 The ` K ` th digit of a no...
nn0digval 47374 The ` K ` th digit of a no...
dignn0fr 47375 The digits of the fraction...
dignn0ldlem 47376 Lemma for ~ dignnld . (Co...
dignnld 47377 The leading digits of a po...
dig2nn0ld 47378 The leading digits of a po...
dig2nn1st 47379 The first (relevant) digit...
dig0 47380 All digits of 0 are 0. (C...
digexp 47381 The ` K ` th digit of a po...
dig1 47382 All but one digits of 1 ar...
0dig1 47383 The ` 0 ` th digit of 1 is...
0dig2pr01 47384 The integers 0 and 1 corre...
dig2nn0 47385 A digit of a nonnegative i...
0dig2nn0e 47386 The last bit of an even in...
0dig2nn0o 47387 The last bit of an odd int...
dig2bits 47388 The ` K ` th digit of a no...
dignn0flhalflem1 47389 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 47390 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 47391 The digits of the half of ...
dignn0flhalf 47392 The digits of the rounded ...
nn0sumshdiglemA 47393 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 47394 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 47395 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 47396 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 47397 A nonnegative integer can ...
nn0mulfsum 47398 Trivial algorithm to calcu...
nn0mullong 47399 Standard algorithm (also k...
naryfval 47402 The set of the n-ary (endo...
naryfvalixp 47403 The set of the n-ary (endo...
naryfvalel 47404 An n-ary (endo)function on...
naryrcl 47405 Reverse closure for n-ary ...
naryfvalelfv 47406 The value of an n-ary (end...
naryfvalelwrdf 47407 An n-ary (endo)function on...
0aryfvalel 47408 A nullary (endo)function o...
0aryfvalelfv 47409 The value of a nullary (en...
1aryfvalel 47410 A unary (endo)function on ...
fv1arycl 47411 Closure of a unary (endo)f...
1arympt1 47412 A unary (endo)function in ...
1arympt1fv 47413 The value of a unary (endo...
1arymaptfv 47414 The value of the mapping o...
1arymaptf 47415 The mapping of unary (endo...
1arymaptf1 47416 The mapping of unary (endo...
1arymaptfo 47417 The mapping of unary (endo...
1arymaptf1o 47418 The mapping of unary (endo...
1aryenef 47419 The set of unary (endo)fun...
1aryenefmnd 47420 The set of unary (endo)fun...
2aryfvalel 47421 A binary (endo)function on...
fv2arycl 47422 Closure of a binary (endo)...
2arympt 47423 A binary (endo)function in...
2arymptfv 47424 The value of a binary (end...
2arymaptfv 47425 The value of the mapping o...
2arymaptf 47426 The mapping of binary (end...
2arymaptf1 47427 The mapping of binary (end...
2arymaptfo 47428 The mapping of binary (end...
2arymaptf1o 47429 The mapping of binary (end...
2aryenef 47430 The set of binary (endo)fu...
itcoval 47435 The value of the function ...
itcoval0 47436 A function iterated zero t...
itcoval1 47437 A function iterated once. ...
itcoval2 47438 A function iterated twice....
itcoval3 47439 A function iterated three ...
itcoval0mpt 47440 A mapping iterated zero ti...
itcovalsuc 47441 The value of the function ...
itcovalsucov 47442 The value of the function ...
itcovalendof 47443 The n-th iterate of an end...
itcovalpclem1 47444 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 47445 Lemma 2 for ~ itcovalpc : ...
itcovalpc 47446 The value of the function ...
itcovalt2lem2lem1 47447 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 47448 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 47449 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 47450 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 47451 The value of the function ...
ackvalsuc1mpt 47452 The Ackermann function at ...
ackvalsuc1 47453 The Ackermann function at ...
ackval0 47454 The Ackermann function at ...
ackval1 47455 The Ackermann function at ...
ackval2 47456 The Ackermann function at ...
ackval3 47457 The Ackermann function at ...
ackendofnn0 47458 The Ackermann function at ...
ackfnnn0 47459 The Ackermann function at ...
ackval0val 47460 The Ackermann function at ...
ackvalsuc0val 47461 The Ackermann function at ...
ackvalsucsucval 47462 The Ackermann function at ...
ackval0012 47463 The Ackermann function at ...
ackval1012 47464 The Ackermann function at ...
ackval2012 47465 The Ackermann function at ...
ackval3012 47466 The Ackermann function at ...
ackval40 47467 The Ackermann function at ...
ackval41a 47468 The Ackermann function at ...
ackval41 47469 The Ackermann function at ...
ackval42 47470 The Ackermann function at ...
ackval42a 47471 The Ackermann function at ...
ackval50 47472 The Ackermann function at ...
fv1prop 47473 The function value of unor...
fv2prop 47474 The function value of unor...
submuladdmuld 47475 Transformation of a sum of...
affinecomb1 47476 Combination of two real af...
affinecomb2 47477 Combination of two real af...
affineid 47478 Identity of an affine comb...
1subrec1sub 47479 Subtract the reciprocal of...
resum2sqcl 47480 The sum of two squares of ...
resum2sqgt0 47481 The sum of the square of a...
resum2sqrp 47482 The sum of the square of a...
resum2sqorgt0 47483 The sum of the square of t...
reorelicc 47484 Membership in and outside ...
rrx2pxel 47485 The x-coordinate of a poin...
rrx2pyel 47486 The y-coordinate of a poin...
prelrrx2 47487 An unordered pair of order...
prelrrx2b 47488 An unordered pair of order...
rrx2pnecoorneor 47489 If two different points ` ...
rrx2pnedifcoorneor 47490 If two different points ` ...
rrx2pnedifcoorneorr 47491 If two different points ` ...
rrx2xpref1o 47492 There is a bijection betwe...
rrx2xpreen 47493 The set of points in the t...
rrx2plord 47494 The lexicographical orderi...
rrx2plord1 47495 The lexicographical orderi...
rrx2plord2 47496 The lexicographical orderi...
rrx2plordisom 47497 The set of points in the t...
rrx2plordso 47498 The lexicographical orderi...
ehl2eudisval0 47499 The Euclidean distance of ...
ehl2eudis0lt 47500 An upper bound of the Eucl...
lines 47505 The lines passing through ...
line 47506 The line passing through t...
rrxlines 47507 Definition of lines passin...
rrxline 47508 The line passing through t...
rrxlinesc 47509 Definition of lines passin...
rrxlinec 47510 The line passing through t...
eenglngeehlnmlem1 47511 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 47512 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 47513 The line definition in the...
rrx2line 47514 The line passing through t...
rrx2vlinest 47515 The vertical line passing ...
rrx2linest 47516 The line passing through t...
rrx2linesl 47517 The line passing through t...
rrx2linest2 47518 The line passing through t...
elrrx2linest2 47519 The line passing through t...
spheres 47520 The spheres for given cent...
sphere 47521 A sphere with center ` X `...
rrxsphere 47522 The sphere with center ` M...
2sphere 47523 The sphere with center ` M...
2sphere0 47524 The sphere around the orig...
line2ylem 47525 Lemma for ~ line2y . This...
line2 47526 Example for a line ` G ` p...
line2xlem 47527 Lemma for ~ line2x . This...
line2x 47528 Example for a horizontal l...
line2y 47529 Example for a vertical lin...
itsclc0lem1 47530 Lemma for theorems about i...
itsclc0lem2 47531 Lemma for theorems about i...
itsclc0lem3 47532 Lemma for theorems about i...
itscnhlc0yqe 47533 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 47534 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 47535 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 47536 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 47537 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 47538 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 47539 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 47540 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 47541 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 47542 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 47543 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 47544 Lemma for ~ itsclc0 . Sol...
itsclc0 47545 The intersection points of...
itsclc0b 47546 The intersection points of...
itsclinecirc0 47547 The intersection points of...
itsclinecirc0b 47548 The intersection points of...
itsclinecirc0in 47549 The intersection points of...
itsclquadb 47550 Quadratic equation for the...
itsclquadeu 47551 Quadratic equation for the...
2itscplem1 47552 Lemma 1 for ~ 2itscp . (C...
2itscplem2 47553 Lemma 2 for ~ 2itscp . (C...
2itscplem3 47554 Lemma D for ~ 2itscp . (C...
2itscp 47555 A condition for a quadrati...
itscnhlinecirc02plem1 47556 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 47557 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 47558 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 47559 Intersection of a nonhoriz...
inlinecirc02plem 47560 Lemma for ~ inlinecirc02p ...
inlinecirc02p 47561 Intersection of a line wit...
inlinecirc02preu 47562 Intersection of a line wit...
pm4.71da 47563 Deduction converting a bic...
logic1 47564 Distribution of implicatio...
logic1a 47565 Variant of ~ logic1 . (Co...
logic2 47566 Variant of ~ logic1 . (Co...
pm5.32dav 47567 Distribution of implicatio...
pm5.32dra 47568 Reverse distribution of im...
exp12bd 47569 The import-export theorem ...
mpbiran3d 47570 Equivalence with a conjunc...
mpbiran4d 47571 Equivalence with a conjunc...
dtrucor3 47572 An example of how ~ ax-5 w...
ralbidb 47573 Formula-building rule for ...
ralbidc 47574 Formula-building rule for ...
r19.41dv 47575 A complex deduction form o...
rspceb2dv 47576 Restricted existential spe...
rmotru 47577 Two ways of expressing "at...
reutru 47578 Two ways of expressing "ex...
reutruALT 47579 Alternate proof for ~ reut...
ssdisjd 47580 Subset preserves disjointn...
ssdisjdr 47581 Subset preserves disjointn...
disjdifb 47582 Relative complement is ant...
predisj 47583 Preimages of disjoint sets...
vsn 47584 The singleton of the unive...
mosn 47585 "At most one" element in a...
mo0 47586 "At most one" element in a...
mosssn 47587 "At most one" element in a...
mo0sn 47588 Two ways of expressing "at...
mosssn2 47589 Two ways of expressing "at...
unilbss 47590 Superclass of the greatest...
inpw 47591 Two ways of expressing a c...
mof0 47592 There is at most one funct...
mof02 47593 A variant of ~ mof0 . (Co...
mof0ALT 47594 Alternate proof for ~ mof0...
eufsnlem 47595 There is exactly one funct...
eufsn 47596 There is exactly one funct...
eufsn2 47597 There is exactly one funct...
mofsn 47598 There is at most one funct...
mofsn2 47599 There is at most one funct...
mofsssn 47600 There is at most one funct...
mofmo 47601 There is at most one funct...
mofeu 47602 The uniqueness of a functi...
elfvne0 47603 If a function value has a ...
fdomne0 47604 A function with non-empty ...
f1sn2g 47605 A function that maps a sin...
f102g 47606 A function that maps the e...
f1mo 47607 A function that maps a set...
f002 47608 A function with an empty c...
map0cor 47609 A function exists iff an e...
fvconstr 47610 Two ways of expressing ` A...
fvconstrn0 47611 Two ways of expressing ` A...
fvconstr2 47612 Two ways of expressing ` A...
fvconst0ci 47613 A constant function's valu...
fvconstdomi 47614 A constant function's valu...
f1omo 47615 There is at most one eleme...
f1omoALT 47616 There is at most one eleme...
iccin 47617 Intersection of two closed...
iccdisj2 47618 If the upper bound of one ...
iccdisj 47619 If the upper bound of one ...
mreuniss 47620 The union of a collection ...
clduni 47621 The union of closed sets i...
opncldeqv 47622 Conditions on open sets ar...
opndisj 47623 Two ways of saying that tw...
clddisj 47624 Two ways of saying that tw...
neircl 47625 Reverse closure of the nei...
opnneilem 47626 Lemma factoring out common...
opnneir 47627 If something is true for a...
opnneirv 47628 A variant of ~ opnneir wit...
opnneilv 47629 The converse of ~ opnneir ...
opnneil 47630 A variant of ~ opnneilv . ...
opnneieqv 47631 The equivalence between ne...
opnneieqvv 47632 The equivalence between ne...
restcls2lem 47633 A closed set in a subspace...
restcls2 47634 A closed set in a subspace...
restclsseplem 47635 Lemma for ~ restclssep . ...
restclssep 47636 Two disjoint closed sets i...
cnneiima 47637 Given a continuous functio...
iooii 47638 Open intervals are open se...
icccldii 47639 Closed intervals are close...
i0oii 47640 ` ( 0 [,) A ) ` is open in...
io1ii 47641 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 47642 Lemma for ~ sepnsepo . (C...
sepnsepolem2 47643 Open neighborhood and neig...
sepnsepo 47644 Open neighborhood and neig...
sepdisj 47645 Separated sets are disjoin...
seposep 47646 If two sets are separated ...
sepcsepo 47647 If two sets are separated ...
sepfsepc 47648 If two sets are separated ...
seppsepf 47649 If two sets are precisely ...
seppcld 47650 If two sets are precisely ...
isnrm4 47651 A topological space is nor...
dfnrm2 47652 A topological space is nor...
dfnrm3 47653 A topological space is nor...
iscnrm3lem1 47654 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 47655 Lemma for ~ iscnrm3 provin...
iscnrm3lem3 47656 Lemma for ~ iscnrm3lem4 . ...
iscnrm3lem4 47657 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 47658 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 47659 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 47660 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 47661 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 47662 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 47663 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 47664 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 47665 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 47666 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 47667 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 47668 Lemma for ~ iscnrm3r . Di...
iscnrm3r 47669 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 47670 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 47671 Lemma for ~ iscnrm3l . If...
iscnrm3l 47672 Lemma for ~ iscnrm3 . Giv...
iscnrm3 47673 A completely normal topolo...
iscnrm3v 47674 A topology is completely n...
iscnrm4 47675 A completely normal topolo...
isprsd 47676 Property of being a preord...
lubeldm2 47677 Member of the domain of th...
glbeldm2 47678 Member of the domain of th...
lubeldm2d 47679 Member of the domain of th...
glbeldm2d 47680 Member of the domain of th...
lubsscl 47681 If a subset of ` S ` conta...
glbsscl 47682 If a subset of ` S ` conta...
lubprlem 47683 Lemma for ~ lubprdm and ~ ...
lubprdm 47684 The set of two comparable ...
lubpr 47685 The LUB of the set of two ...
glbprlem 47686 Lemma for ~ glbprdm and ~ ...
glbprdm 47687 The set of two comparable ...
glbpr 47688 The GLB of the set of two ...
joindm2 47689 The join of any two elemen...
joindm3 47690 The join of any two elemen...
meetdm2 47691 The meet of any two elemen...
meetdm3 47692 The meet of any two elemen...
posjidm 47693 Poset join is idempotent. ...
posmidm 47694 Poset meet is idempotent. ...
toslat 47695 A toset is a lattice. (Co...
isclatd 47696 The predicate "is a comple...
intubeu 47697 Existential uniqueness of ...
unilbeu 47698 Existential uniqueness of ...
ipolublem 47699 Lemma for ~ ipolubdm and ~...
ipolubdm 47700 The domain of the LUB of t...
ipolub 47701 The LUB of the inclusion p...
ipoglblem 47702 Lemma for ~ ipoglbdm and ~...
ipoglbdm 47703 The domain of the GLB of t...
ipoglb 47704 The GLB of the inclusion p...
ipolub0 47705 The LUB of the empty set i...
ipolub00 47706 The LUB of the empty set i...
ipoglb0 47707 The GLB of the empty set i...
mrelatlubALT 47708 Least upper bounds in a Mo...
mrelatglbALT 47709 Greatest lower bounds in a...
mreclat 47710 A Moore space is a complet...
topclat 47711 A topology is a complete l...
toplatglb0 47712 The empty intersection in ...
toplatlub 47713 Least upper bounds in a to...
toplatglb 47714 Greatest lower bounds in a...
toplatjoin 47715 Joins in a topology are re...
toplatmeet 47716 Meets in a topology are re...
topdlat 47717 A topology is a distributi...
catprslem 47718 Lemma for ~ catprs . (Con...
catprs 47719 A preorder can be extracte...
catprs2 47720 A category equipped with t...
catprsc 47721 A construction of the preo...
catprsc2 47722 An alternate construction ...
endmndlem 47723 A diagonal hom-set in a ca...
idmon 47724 An identity arrow, or an i...
idepi 47725 An identity arrow, or an i...
funcf2lem 47726 A utility theorem for prov...
isthinc 47729 The predicate "is a thin c...
isthinc2 47730 A thin category is a categ...
isthinc3 47731 A thin category is a categ...
thincc 47732 A thin category is a categ...
thinccd 47733 A thin category is a categ...
thincssc 47734 A thin category is a categ...
isthincd2lem1 47735 Lemma for ~ isthincd2 and ...
thincmo2 47736 Morphisms in the same hom-...
thincmo 47737 There is at most one morph...
thincmoALT 47738 Alternate proof for ~ thin...
thincmod 47739 At most one morphism in ea...
thincn0eu 47740 In a thin category, a hom-...
thincid 47741 In a thin category, a morp...
thincmon 47742 In a thin category, all mo...
thincepi 47743 In a thin category, all mo...
isthincd2lem2 47744 Lemma for ~ isthincd2 . (...
isthincd 47745 The predicate "is a thin c...
isthincd2 47746 The predicate " ` C ` is a...
oppcthin 47747 The opposite category of a...
subthinc 47748 A subcategory of a thin ca...
functhinclem1 47749 Lemma for ~ functhinc . G...
functhinclem2 47750 Lemma for ~ functhinc . (...
functhinclem3 47751 Lemma for ~ functhinc . T...
functhinclem4 47752 Lemma for ~ functhinc . O...
functhinc 47753 A functor to a thin catego...
fullthinc 47754 A functor to a thin catego...
fullthinc2 47755 A full functor to a thin c...
thincfth 47756 A functor from a thin cate...
thincciso 47757 Two thin categories are is...
0thincg 47758 Any structure with an empt...
0thinc 47759 The empty category (see ~ ...
indthinc 47760 An indiscrete category in ...
indthincALT 47761 An alternate proof for ~ i...
prsthinc 47762 Preordered sets as categor...
setcthin 47763 A category of sets all of ...
setc2othin 47764 The category ` ( SetCat ``...
thincsect 47765 In a thin category, one mo...
thincsect2 47766 In a thin category, ` F ` ...
thincinv 47767 In a thin category, ` F ` ...
thinciso 47768 In a thin category, ` F : ...
thinccic 47769 In a thin category, two ob...
prstcval 47772 Lemma for ~ prstcnidlem an...
prstcnidlem 47773 Lemma for ~ prstcnid and ~...
prstcnid 47774 Components other than ` Ho...
prstcbas 47775 The base set is unchanged....
prstcleval 47776 Value of the less-than-or-...
prstclevalOLD 47777 Obsolete proof of ~ prstcl...
prstcle 47778 Value of the less-than-or-...
prstcocval 47779 Orthocomplementation is un...
prstcocvalOLD 47780 Obsolete proof of ~ prstco...
prstcoc 47781 Orthocomplementation is un...
prstchomval 47782 Hom-sets of the constructe...
prstcprs 47783 The category is a preorder...
prstcthin 47784 The preordered set is equi...
prstchom 47785 Hom-sets of the constructe...
prstchom2 47786 Hom-sets of the constructe...
prstchom2ALT 47787 Hom-sets of the constructe...
postcpos 47788 The converted category is ...
postcposALT 47789 Alternate proof for ~ post...
postc 47790 The converted category is ...
mndtcval 47793 Value of the category buil...
mndtcbasval 47794 The base set of the catego...
mndtcbas 47795 The category built from a ...
mndtcob 47796 Lemma for ~ mndtchom and ~...
mndtcbas2 47797 Two objects in a category ...
mndtchom 47798 The only hom-set of the ca...
mndtcco 47799 The composition of the cat...
mndtcco2 47800 The composition of the cat...
mndtccatid 47801 Lemma for ~ mndtccat and ~...
mndtccat 47802 The function value is a ca...
mndtcid 47803 The identity morphism, or ...
grptcmon 47804 All morphisms in a categor...
grptcepi 47805 All morphisms in a categor...
nfintd 47806 Bound-variable hypothesis ...
nfiund 47807 Bound-variable hypothesis ...
nfiundg 47808 Bound-variable hypothesis ...
iunord 47809 The indexed union of a col...
iunordi 47810 The indexed union of a col...
spd 47811 Specialization deduction, ...
spcdvw 47812 A version of ~ spcdv where...
tfis2d 47813 Transfinite Induction Sche...
bnd2d 47814 Deduction form of ~ bnd2 ....
dffun3f 47815 Alternate definition of fu...
setrecseq 47818 Equality theorem for set r...
nfsetrecs 47819 Bound-variable hypothesis ...
setrec1lem1 47820 Lemma for ~ setrec1 . Thi...
setrec1lem2 47821 Lemma for ~ setrec1 . If ...
setrec1lem3 47822 Lemma for ~ setrec1 . If ...
setrec1lem4 47823 Lemma for ~ setrec1 . If ...
setrec1 47824 This is the first of two f...
setrec2fun 47825 This is the second of two ...
setrec2lem1 47826 Lemma for ~ setrec2 . The...
setrec2lem2 47827 Lemma for ~ setrec2 . The...
setrec2 47828 This is the second of two ...
setrec2v 47829 Version of ~ setrec2 with ...
setrec2mpt 47830 Version of ~ setrec2 where...
setis 47831 Version of ~ setrec2 expre...
elsetrecslem 47832 Lemma for ~ elsetrecs . A...
elsetrecs 47833 A set ` A ` is an element ...
setrecsss 47834 The ` setrecs ` operator r...
setrecsres 47835 A recursively generated cl...
vsetrec 47836 Construct ` _V ` using set...
0setrec 47837 If a function sends the em...
onsetreclem1 47838 Lemma for ~ onsetrec . (C...
onsetreclem2 47839 Lemma for ~ onsetrec . (C...
onsetreclem3 47840 Lemma for ~ onsetrec . (C...
onsetrec 47841 Construct ` On ` using set...
elpglem1 47844 Lemma for ~ elpg . (Contr...
elpglem2 47845 Lemma for ~ elpg . (Contr...
elpglem3 47846 Lemma for ~ elpg . (Contr...
elpg 47847 Membership in the class of...
pgindlem 47848 Lemma for ~ pgind . (Cont...
pgindnf 47849 Version of ~ pgind with ex...
pgind 47850 Induction on partizan game...
sbidd 47851 An identity theorem for su...
sbidd-misc 47852 An identity theorem for su...
gte-lte 47857 Simple relationship betwee...
gt-lt 47858 Simple relationship betwee...
gte-lteh 47859 Relationship between ` <_ ...
gt-lth 47860 Relationship between ` < `...
ex-gt 47861 Simple example of ` > ` , ...
ex-gte 47862 Simple example of ` >_ ` ,...
sinhval-named 47869 Value of the named sinh fu...
coshval-named 47870 Value of the named cosh fu...
tanhval-named 47871 Value of the named tanh fu...
sinh-conventional 47872 Conventional definition of...
sinhpcosh 47873 Prove that ` ( sinh `` A )...
secval 47880 Value of the secant functi...
cscval 47881 Value of the cosecant func...
cotval 47882 Value of the cotangent fun...
seccl 47883 The closure of the secant ...
csccl 47884 The closure of the cosecan...
cotcl 47885 The closure of the cotange...
reseccl 47886 The closure of the secant ...
recsccl 47887 The closure of the cosecan...
recotcl 47888 The closure of the cotange...
recsec 47889 The reciprocal of secant i...
reccsc 47890 The reciprocal of cosecant...
reccot 47891 The reciprocal of cotangen...
rectan 47892 The reciprocal of tangent ...
sec0 47893 The value of the secant fu...
onetansqsecsq 47894 Prove the tangent squared ...
cotsqcscsq 47895 Prove the tangent squared ...
ifnmfalse 47896 If A is not a member of B,...
logb2aval 47897 Define the value of the ` ...
comraddi 47904 Commute RHS addition. See...
mvlraddi 47905 Move the right term in a s...
mvrladdi 47906 Move the left term in a su...
assraddsubi 47907 Associate RHS addition-sub...
joinlmuladdmuli 47908 Join AB+CB into (A+C) on L...
joinlmulsubmuld 47909 Join AB-CB into (A-C) on L...
joinlmulsubmuli 47910 Join AB-CB into (A-C) on L...
mvlrmuld 47911 Move the right term in a p...
mvlrmuli 47912 Move the right term in a p...
i2linesi 47913 Solve for the intersection...
i2linesd 47914 Solve for the intersection...
alimp-surprise 47915 Demonstrate that when usin...
alimp-no-surprise 47916 There is no "surprise" in ...
empty-surprise 47917 Demonstrate that when usin...
empty-surprise2 47918 "Prove" that false is true...
eximp-surprise 47919 Show what implication insi...
eximp-surprise2 47920 Show that "there exists" w...
alsconv 47925 There is an equivalence be...
alsi1d 47926 Deduction rule: Given "al...
alsi2d 47927 Deduction rule: Given "al...
alsc1d 47928 Deduction rule: Given "al...
alsc2d 47929 Deduction rule: Given "al...
alscn0d 47930 Deduction rule: Given "al...
alsi-no-surprise 47931 Demonstrate that there is ...
5m4e1 47932 Prove that 5 - 4 = 1. (Co...
2p2ne5 47933 Prove that ` 2 + 2 =/= 5 `...
resolution 47934 Resolution rule. This is ...
testable 47935 In classical logic all wff...
aacllem 47936 Lemma for other theorems a...
amgmwlem 47937 Weighted version of ~ amgm...
amgmlemALT 47938 Alternate proof of ~ amgml...
amgmw2d 47939 Weighted arithmetic-geomet...
young2d 47940 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator