List of Theorems
Ref | Description
|
idi 1 |
(_Note_: This inference r... |
a1ii 2 |
(_Note_: This inference r... |
mp2 9 |
A double modus ponens infe... |
mp2b 10 |
A double modus ponens infe... |
a1i 11 |
Inference introducing an a... |
2a1i 12 |
Inference introducing two ... |
mp1i 13 |
Inference detaching an ant... |
a2i 14 |
Inference distributing an ... |
mpd 15 |
A modus ponens deduction. ... |
imim2i 16 |
Inference adding common an... |
syl 17 |
An inference version of th... |
3syl 18 |
Inference chaining two syl... |
4syl 19 |
Inference chaining three s... |
mpi 20 |
A nested modus ponens infe... |
mpisyl 21 |
A syllogism combined with ... |
id 22 |
Principle of identity. Th... |
idALT 23 |
Alternate proof of ~ id . ... |
idd 24 |
Principle of identity ~ id... |
a1d 25 |
Deduction introducing an e... |
2a1d 26 |
Deduction introducing two ... |
a1i13 27 |
Add two antecedents to a w... |
2a1 28 |
A double form of ~ ax-1 . ... |
a2d 29 |
Deduction distributing an ... |
sylcom 30 |
Syllogism inference with c... |
syl5com 31 |
Syllogism inference with c... |
com12 32 |
Inference that swaps (comm... |
syl11 33 |
A syllogism inference. Co... |
syl5 34 |
A syllogism rule of infere... |
syl6 35 |
A syllogism rule of infere... |
syl56 36 |
Combine ~ syl5 and ~ syl6 ... |
syl6com 37 |
Syllogism inference with c... |
mpcom 38 |
Modus ponens inference wit... |
syli 39 |
Syllogism inference with c... |
syl2im 40 |
Replace two antecedents. ... |
syl2imc 41 |
A commuted version of ~ sy... |
pm2.27 42 |
This theorem, sometimes ca... |
mpdd 43 |
A nested modus ponens dedu... |
mpid 44 |
A nested modus ponens dedu... |
mpdi 45 |
A nested modus ponens dedu... |
mpii 46 |
A doubly nested modus pone... |
syld 47 |
Syllogism deduction. Dedu... |
syldc 48 |
Syllogism deduction. Comm... |
mp2d 49 |
A double modus ponens dedu... |
a1dd 50 |
Double deduction introduci... |
2a1dd 51 |
Double deduction introduci... |
pm2.43i 52 |
Inference absorbing redund... |
pm2.43d 53 |
Deduction absorbing redund... |
pm2.43a 54 |
Inference absorbing redund... |
pm2.43b 55 |
Inference absorbing redund... |
pm2.43 56 |
Absorption of redundant an... |
imim2d 57 |
Deduction adding nested an... |
imim2 58 |
A closed form of syllogism... |
embantd 59 |
Deduction embedding an ant... |
3syld 60 |
Triple syllogism deduction... |
sylsyld 61 |
A double syllogism inferen... |
imim12i 62 |
Inference joining two impl... |
imim1i 63 |
Inference adding common co... |
imim3i 64 |
Inference adding three nes... |
sylc 65 |
A syllogism inference comb... |
syl3c 66 |
A syllogism inference comb... |
syl6mpi 67 |
A syllogism inference. (C... |
mpsyl 68 |
Modus ponens combined with... |
mpsylsyld 69 |
Modus ponens combined with... |
syl6c 70 |
Inference combining ~ syl6... |
syl6ci 71 |
A syllogism inference comb... |
syldd 72 |
Nested syllogism deduction... |
syl5d 73 |
A nested syllogism deducti... |
syl7 74 |
A syllogism rule of infere... |
syl6d 75 |
A nested syllogism deducti... |
syl8 76 |
A syllogism rule of infere... |
syl9 77 |
A nested syllogism inferen... |
syl9r 78 |
A nested syllogism inferen... |
syl10 79 |
A nested syllogism inferen... |
a1ddd 80 |
Triple deduction introduci... |
imim12d 81 |
Deduction combining antece... |
imim1d 82 |
Deduction adding nested co... |
imim1 83 |
A closed form of syllogism... |
pm2.83 84 |
Theorem *2.83 of [Whitehea... |
peirceroll 85 |
Over minimal implicational... |
com23 86 |
Commutation of antecedents... |
com3r 87 |
Commutation of antecedents... |
com13 88 |
Commutation of antecedents... |
com3l 89 |
Commutation of antecedents... |
pm2.04 90 |
Swap antecedents. Theorem... |
com34 91 |
Commutation of antecedents... |
com4l 92 |
Commutation of antecedents... |
com4t 93 |
Commutation of antecedents... |
com4r 94 |
Commutation of antecedents... |
com24 95 |
Commutation of antecedents... |
com14 96 |
Commutation of antecedents... |
com45 97 |
Commutation of antecedents... |
com35 98 |
Commutation of antecedents... |
com25 99 |
Commutation of antecedents... |
com5l 100 |
Commutation of antecedents... |
com15 101 |
Commutation of antecedents... |
com52l 102 |
Commutation of antecedents... |
com52r 103 |
Commutation of antecedents... |
com5r 104 |
Commutation of antecedents... |
imim12 105 |
Closed form of ~ imim12i a... |
jarr 106 |
Elimination of a nested an... |
jarri 107 |
Inference associated with ... |
pm2.86d 108 |
Deduction associated with ... |
pm2.86 109 |
Converse of Axiom ~ ax-2 .... |
pm2.86i 110 |
Inference associated with ... |
loolin 111 |
The Linearity Axiom of the... |
loowoz 112 |
An alternate for the Linea... |
con4 113 |
Alias for ~ ax-3 to be use... |
con4i 114 |
Inference associated with ... |
con4d 115 |
Deduction associated with ... |
mt4 116 |
The rule of modus tollens.... |
mt4d 117 |
Modus tollens deduction. ... |
mt4i 118 |
Modus tollens inference. ... |
pm2.21i 119 |
A contradiction implies an... |
pm2.24ii 120 |
A contradiction implies an... |
pm2.21d 121 |
A contradiction implies an... |
pm2.21ddALT 122 |
Alternate proof of ~ pm2.2... |
pm2.21 123 |
From a wff and its negatio... |
pm2.24 124 |
Theorem *2.24 of [Whitehea... |
jarl 125 |
Elimination of a nested an... |
jarli 126 |
Inference associated with ... |
pm2.18d 127 |
Deduction form of the Clav... |
pm2.18 128 |
Clavius law, or "consequen... |
pm2.18OLD 129 |
Obsolete version of ~ pm2.... |
pm2.18dOLD 130 |
Obsolete version of ~ pm2.... |
pm2.18i 131 |
Inference associated with ... |
notnotr 132 |
Double negation eliminatio... |
notnotri 133 |
Inference associated with ... |
notnotriALT 134 |
Alternate proof of ~ notno... |
notnotrd 135 |
Deduction associated with ... |
con2d 136 |
A contraposition deduction... |
con2 137 |
Contraposition. Theorem *... |
mt2d 138 |
Modus tollens deduction. ... |
mt2i 139 |
Modus tollens inference. ... |
nsyl3 140 |
A negated syllogism infere... |
con2i 141 |
A contraposition inference... |
nsyl 142 |
A negated syllogism infere... |
nsyl2 143 |
A negated syllogism infere... |
notnot 144 |
Double negation introducti... |
notnoti 145 |
Inference associated with ... |
notnotd 146 |
Deduction associated with ... |
con1d 147 |
A contraposition deduction... |
con1 148 |
Contraposition. Theorem *... |
con1i 149 |
A contraposition inference... |
mt3d 150 |
Modus tollens deduction. ... |
mt3i 151 |
Modus tollens inference. ... |
nsyl2OLD 152 |
Obsolete version of ~ nsyl... |
pm2.24i 153 |
Inference associated with ... |
pm2.24d 154 |
Deduction form of ~ pm2.24... |
con3d 155 |
A contraposition deduction... |
con3 156 |
Contraposition. Theorem *... |
con3i 157 |
A contraposition inference... |
con3rr3 158 |
Rotate through consequent ... |
nsyld 159 |
A negated syllogism deduct... |
nsyli 160 |
A negated syllogism infere... |
nsyl4 161 |
A negated syllogism infere... |
nsyl5 162 |
A negated syllogism infere... |
pm3.2im 163 |
Theorem *3.2 of [Whitehead... |
jc 164 |
Deduction joining the cons... |
jcn 165 |
Theorem joining the conseq... |
jcnd 166 |
Deduction joining the cons... |
impi 167 |
An importation inference. ... |
expi 168 |
An exportation inference. ... |
simprim 169 |
Simplification. Similar t... |
simplim 170 |
Simplification. Similar t... |
pm2.5g 171 |
General instance of Theore... |
pm2.5 172 |
Theorem *2.5 of [Whitehead... |
conax1 173 |
Contrapositive of ~ ax-1 .... |
conax1k 174 |
Weakening of ~ conax1 . G... |
pm2.51 175 |
Theorem *2.51 of [Whitehea... |
pm2.52 176 |
Theorem *2.52 of [Whitehea... |
pm2.521g 177 |
A general instance of Theo... |
pm2.521g2 178 |
A general instance of Theo... |
pm2.521 179 |
Theorem *2.521 of [Whitehe... |
expt 180 |
Exportation theorem ~ pm3.... |
impt 181 |
Importation theorem ~ pm3.... |
pm2.61d 182 |
Deduction eliminating an a... |
pm2.61d1 183 |
Inference eliminating an a... |
pm2.61d2 184 |
Inference eliminating an a... |
pm2.61i 185 |
Inference eliminating an a... |
pm2.61ii 186 |
Inference eliminating two ... |
pm2.61nii 187 |
Inference eliminating two ... |
pm2.61iii 188 |
Inference eliminating thre... |
ja 189 |
Inference joining the ante... |
jad 190 |
Deduction form of ~ ja . ... |
pm2.61iOLD 191 |
Obsolete version of ~ pm2.... |
pm2.01 192 |
Weak Clavius law. If a fo... |
pm2.01d 193 |
Deduction based on reducti... |
pm2.6 194 |
Theorem *2.6 of [Whitehead... |
pm2.61 195 |
Theorem *2.61 of [Whitehea... |
pm2.65 196 |
Theorem *2.65 of [Whitehea... |
pm2.65i 197 |
Inference for proof by con... |
pm2.21dd 198 |
A contradiction implies an... |
pm2.65d 199 |
Deduction for proof by con... |
mto 200 |
The rule of modus tollens.... |
mtod 201 |
Modus tollens deduction. ... |
mtoi 202 |
Modus tollens inference. ... |
mt2 203 |
A rule similar to modus to... |
mt3 204 |
A rule similar to modus to... |
peirce 205 |
Peirce's axiom. A non-int... |
looinv 206 |
The Inversion Axiom of the... |
bijust0 207 |
A self-implication (see ~ ... |
bijust 208 |
Theorem used to justify th... |
impbi 211 |
Property of the biconditio... |
impbii 212 |
Infer an equivalence from ... |
impbidd 213 |
Deduce an equivalence from... |
impbid21d 214 |
Deduce an equivalence from... |
impbid 215 |
Deduce an equivalence from... |
dfbi1 216 |
Relate the biconditional c... |
dfbi1ALT 217 |
Alternate proof of ~ dfbi1... |
biimp 218 |
Property of the biconditio... |
biimpi 219 |
Infer an implication from ... |
sylbi 220 |
A mixed syllogism inferenc... |
sylib 221 |
A mixed syllogism inferenc... |
sylbb 222 |
A mixed syllogism inferenc... |
biimpr 223 |
Property of the biconditio... |
bicom1 224 |
Commutative law for the bi... |
bicom 225 |
Commutative law for the bi... |
bicomd 226 |
Commute two sides of a bic... |
bicomi 227 |
Inference from commutative... |
impbid1 228 |
Infer an equivalence from ... |
impbid2 229 |
Infer an equivalence from ... |
impcon4bid 230 |
A variation on ~ impbid wi... |
biimpri 231 |
Infer a converse implicati... |
biimpd 232 |
Deduce an implication from... |
mpbi 233 |
An inference from a bicond... |
mpbir 234 |
An inference from a bicond... |
mpbid 235 |
A deduction from a bicondi... |
mpbii 236 |
An inference from a nested... |
sylibr 237 |
A mixed syllogism inferenc... |
sylbir 238 |
A mixed syllogism inferenc... |
sylbbr 239 |
A mixed syllogism inferenc... |
sylbb1 240 |
A mixed syllogism inferenc... |
sylbb2 241 |
A mixed syllogism inferenc... |
sylibd 242 |
A syllogism deduction. (C... |
sylbid 243 |
A syllogism deduction. (C... |
mpbidi 244 |
A deduction from a bicondi... |
syl5bi 245 |
A mixed syllogism inferenc... |
syl5bir 246 |
A mixed syllogism inferenc... |
syl5ib 247 |
A mixed syllogism inferenc... |
syl5ibcom 248 |
A mixed syllogism inferenc... |
syl5ibr 249 |
A mixed syllogism inferenc... |
syl5ibrcom 250 |
A mixed syllogism inferenc... |
biimprd 251 |
Deduce a converse implicat... |
biimpcd 252 |
Deduce a commuted implicat... |
biimprcd 253 |
Deduce a converse commuted... |
syl6ib 254 |
A mixed syllogism inferenc... |
syl6ibr 255 |
A mixed syllogism inferenc... |
syl6bi 256 |
A mixed syllogism inferenc... |
syl6bir 257 |
A mixed syllogism inferenc... |
syl7bi 258 |
A mixed syllogism inferenc... |
syl8ib 259 |
A syllogism rule of infere... |
mpbird 260 |
A deduction from a bicondi... |
mpbiri 261 |
An inference from a nested... |
sylibrd 262 |
A syllogism deduction. (C... |
sylbird 263 |
A syllogism deduction. (C... |
biid 264 |
Principle of identity for ... |
biidd 265 |
Principle of identity with... |
pm5.1im 266 |
Two propositions are equiv... |
2th 267 |
Two truths are equivalent.... |
2thd 268 |
Two truths are equivalent.... |
monothetic 269 |
Two self-implications (see... |
ibi 270 |
Inference that converts a ... |
ibir 271 |
Inference that converts a ... |
ibd 272 |
Deduction that converts a ... |
pm5.74 273 |
Distribution of implicatio... |
pm5.74i 274 |
Distribution of implicatio... |
pm5.74ri 275 |
Distribution of implicatio... |
pm5.74d 276 |
Distribution of implicatio... |
pm5.74rd 277 |
Distribution of implicatio... |
bitri 278 |
An inference from transiti... |
bitr2i 279 |
An inference from transiti... |
bitr3i 280 |
An inference from transiti... |
bitr4i 281 |
An inference from transiti... |
bitrd 282 |
Deduction form of ~ bitri ... |
bitr2d 283 |
Deduction form of ~ bitr2i... |
bitr3d 284 |
Deduction form of ~ bitr3i... |
bitr4d 285 |
Deduction form of ~ bitr4i... |
syl5bb 286 |
A syllogism inference from... |
syl5rbb 287 |
A syllogism inference from... |
bitr3id 288 |
A syllogism inference from... |
bitr3di 289 |
A syllogism inference from... |
bitrdi 290 |
A syllogism inference from... |
bitr2di 291 |
A syllogism inference from... |
bitr4di 292 |
A syllogism inference from... |
bitr4id 293 |
A syllogism inference from... |
3imtr3i 294 |
A mixed syllogism inferenc... |
3imtr4i 295 |
A mixed syllogism inferenc... |
3imtr3d 296 |
More general version of ~ ... |
3imtr4d 297 |
More general version of ~ ... |
3imtr3g 298 |
More general version of ~ ... |
3imtr4g 299 |
More general version of ~ ... |
3bitri 300 |
A chained inference from t... |
3bitrri 301 |
A chained inference from t... |
3bitr2i 302 |
A chained inference from t... |
3bitr2ri 303 |
A chained inference from t... |
3bitr3i 304 |
A chained inference from t... |
3bitr3ri 305 |
A chained inference from t... |
3bitr4i 306 |
A chained inference from t... |
3bitr4ri 307 |
A chained inference from t... |
3bitrd 308 |
Deduction from transitivit... |
3bitrrd 309 |
Deduction from transitivit... |
3bitr2d 310 |
Deduction from transitivit... |
3bitr2rd 311 |
Deduction from transitivit... |
3bitr3d 312 |
Deduction from transitivit... |
3bitr3rd 313 |
Deduction from transitivit... |
3bitr4d 314 |
Deduction from transitivit... |
3bitr4rd 315 |
Deduction from transitivit... |
3bitr3g 316 |
More general version of ~ ... |
3bitr4g 317 |
More general version of ~ ... |
notnotb 318 |
Double negation. Theorem ... |
con34b 319 |
A biconditional form of co... |
con4bid 320 |
A contraposition deduction... |
notbid 321 |
Deduction negating both si... |
notbi 322 |
Contraposition. Theorem *... |
notbii 323 |
Negate both sides of a log... |
con4bii 324 |
A contraposition inference... |
mtbi 325 |
An inference from a bicond... |
mtbir 326 |
An inference from a bicond... |
mtbid 327 |
A deduction from a bicondi... |
mtbird 328 |
A deduction from a bicondi... |
mtbii 329 |
An inference from a bicond... |
mtbiri 330 |
An inference from a bicond... |
sylnib 331 |
A mixed syllogism inferenc... |
sylnibr 332 |
A mixed syllogism inferenc... |
sylnbi 333 |
A mixed syllogism inferenc... |
sylnbir 334 |
A mixed syllogism inferenc... |
xchnxbi 335 |
Replacement of a subexpres... |
xchnxbir 336 |
Replacement of a subexpres... |
xchbinx 337 |
Replacement of a subexpres... |
xchbinxr 338 |
Replacement of a subexpres... |
imbi2i 339 |
Introduce an antecedent to... |
jcndOLD 340 |
Obsolete version of ~ jcnd... |
bibi2i 341 |
Inference adding a bicondi... |
bibi1i 342 |
Inference adding a bicondi... |
bibi12i 343 |
The equivalence of two equ... |
imbi2d 344 |
Deduction adding an antece... |
imbi1d 345 |
Deduction adding a consequ... |
bibi2d 346 |
Deduction adding a bicondi... |
bibi1d 347 |
Deduction adding a bicondi... |
imbi12d 348 |
Deduction joining two equi... |
bibi12d 349 |
Deduction joining two equi... |
imbi12 350 |
Closed form of ~ imbi12i .... |
imbi1 351 |
Theorem *4.84 of [Whitehea... |
imbi2 352 |
Theorem *4.85 of [Whitehea... |
imbi1i 353 |
Introduce a consequent to ... |
imbi12i 354 |
Join two logical equivalen... |
bibi1 355 |
Theorem *4.86 of [Whitehea... |
bitr3 356 |
Closed nested implication ... |
con2bi 357 |
Contraposition. Theorem *... |
con2bid 358 |
A contraposition deduction... |
con1bid 359 |
A contraposition deduction... |
con1bii 360 |
A contraposition inference... |
con2bii 361 |
A contraposition inference... |
con1b 362 |
Contraposition. Bidirecti... |
con2b 363 |
Contraposition. Bidirecti... |
biimt 364 |
A wff is equivalent to its... |
pm5.5 365 |
Theorem *5.5 of [Whitehead... |
a1bi 366 |
Inference introducing a th... |
mt2bi 367 |
A false consequent falsifi... |
mtt 368 |
Modus-tollens-like theorem... |
imnot 369 |
If a proposition is false,... |
pm5.501 370 |
Theorem *5.501 of [Whitehe... |
ibib 371 |
Implication in terms of im... |
ibibr 372 |
Implication in terms of im... |
tbt 373 |
A wff is equivalent to its... |
nbn2 374 |
The negation of a wff is e... |
bibif 375 |
Transfer negation via an e... |
nbn 376 |
The negation of a wff is e... |
nbn3 377 |
Transfer falsehood via equ... |
pm5.21im 378 |
Two propositions are equiv... |
2false 379 |
Two falsehoods are equival... |
2falsed 380 |
Two falsehoods are equival... |
2falsedOLD 381 |
Obsolete version of ~ 2fal... |
pm5.21ni 382 |
Two propositions implying ... |
pm5.21nii 383 |
Eliminate an antecedent im... |
pm5.21ndd 384 |
Eliminate an antecedent im... |
bija 385 |
Combine antecedents into a... |
pm5.18 386 |
Theorem *5.18 of [Whitehea... |
xor3 387 |
Two ways to express "exclu... |
nbbn 388 |
Move negation outside of b... |
biass 389 |
Associative law for the bi... |
biluk 390 |
Lukasiewicz's shortest axi... |
pm5.19 391 |
Theorem *5.19 of [Whitehea... |
bi2.04 392 |
Logical equivalence of com... |
pm5.4 393 |
Antecedent absorption impl... |
imdi 394 |
Distributive law for impli... |
pm5.41 395 |
Theorem *5.41 of [Whitehea... |
pm4.8 396 |
Theorem *4.8 of [Whitehead... |
pm4.81 397 |
A formula is equivalent to... |
imim21b 398 |
Simplify an implication be... |
pm4.63 401 |
Theorem *4.63 of [Whitehea... |
pm4.67 402 |
Theorem *4.67 of [Whitehea... |
imnan 403 |
Express an implication in ... |
imnani 404 |
Infer an implication from ... |
iman 405 |
Implication in terms of co... |
pm3.24 406 |
Law of noncontradiction. ... |
annim 407 |
Express a conjunction in t... |
pm4.61 408 |
Theorem *4.61 of [Whitehea... |
pm4.65 409 |
Theorem *4.65 of [Whitehea... |
imp 410 |
Importation inference. (C... |
impcom 411 |
Importation inference with... |
con3dimp 412 |
Variant of ~ con3d with im... |
mpnanrd 413 |
Eliminate the right side o... |
impd 414 |
Importation deduction. (C... |
impcomd 415 |
Importation deduction with... |
ex 416 |
Exportation inference. (T... |
expcom 417 |
Exportation inference with... |
expdcom 418 |
Commuted form of ~ expd . ... |
expd 419 |
Exportation deduction. (C... |
expcomd 420 |
Deduction form of ~ expcom... |
imp31 421 |
An importation inference. ... |
imp32 422 |
An importation inference. ... |
exp31 423 |
An exportation inference. ... |
exp32 424 |
An exportation inference. ... |
imp4b 425 |
An importation inference. ... |
imp4a 426 |
An importation inference. ... |
imp4c 427 |
An importation inference. ... |
imp4d 428 |
An importation inference. ... |
imp41 429 |
An importation inference. ... |
imp42 430 |
An importation inference. ... |
imp43 431 |
An importation inference. ... |
imp44 432 |
An importation inference. ... |
imp45 433 |
An importation inference. ... |
exp4b 434 |
An exportation inference. ... |
exp4a 435 |
An exportation inference. ... |
exp4c 436 |
An exportation inference. ... |
exp4d 437 |
An exportation inference. ... |
exp41 438 |
An exportation inference. ... |
exp42 439 |
An exportation inference. ... |
exp43 440 |
An exportation inference. ... |
exp44 441 |
An exportation inference. ... |
exp45 442 |
An exportation inference. ... |
imp5d 443 |
An importation inference. ... |
imp5a 444 |
An importation inference. ... |
imp5g 445 |
An importation inference. ... |
imp55 446 |
An importation inference. ... |
imp511 447 |
An importation inference. ... |
exp5c 448 |
An exportation inference. ... |
exp5j 449 |
An exportation inference. ... |
exp5l 450 |
An exportation inference. ... |
exp53 451 |
An exportation inference. ... |
pm3.3 452 |
Theorem *3.3 (Exp) of [Whi... |
pm3.31 453 |
Theorem *3.31 (Imp) of [Wh... |
impexp 454 |
Import-export theorem. Pa... |
impancom 455 |
Mixed importation/commutat... |
expdimp 456 |
A deduction version of exp... |
expimpd 457 |
Exportation followed by a ... |
impr 458 |
Import a wff into a right ... |
impl 459 |
Export a wff from a left c... |
expr 460 |
Export a wff from a right ... |
expl 461 |
Export a wff from a left c... |
ancoms 462 |
Inference commuting conjun... |
pm3.22 463 |
Theorem *3.22 of [Whitehea... |
ancom 464 |
Commutative law for conjun... |
ancomd 465 |
Commutation of conjuncts i... |
biancomi 466 |
Commuting conjunction in a... |
biancomd 467 |
Commuting conjunction in a... |
ancomst 468 |
Closed form of ~ ancoms . ... |
ancomsd 469 |
Deduction commuting conjun... |
anasss 470 |
Associative law for conjun... |
anassrs 471 |
Associative law for conjun... |
anass 472 |
Associative law for conjun... |
pm3.2 473 |
Join antecedents with conj... |
pm3.2i 474 |
Infer conjunction of premi... |
pm3.21 475 |
Join antecedents with conj... |
pm3.43i 476 |
Nested conjunction of ante... |
pm3.43 477 |
Theorem *3.43 (Comp) of [W... |
dfbi2 478 |
A theorem similar to the s... |
dfbi 479 |
Definition ~ df-bi rewritt... |
biimpa 480 |
Importation inference from... |
biimpar 481 |
Importation inference from... |
biimpac 482 |
Importation inference from... |
biimparc 483 |
Importation inference from... |
adantr 484 |
Inference adding a conjunc... |
adantl 485 |
Inference adding a conjunc... |
simpl 486 |
Elimination of a conjunct.... |
simpli 487 |
Inference eliminating a co... |
simpr 488 |
Elimination of a conjunct.... |
simpri 489 |
Inference eliminating a co... |
intnan 490 |
Introduction of conjunct i... |
intnanr 491 |
Introduction of conjunct i... |
intnand 492 |
Introduction of conjunct i... |
intnanrd 493 |
Introduction of conjunct i... |
adantld 494 |
Deduction adding a conjunc... |
adantrd 495 |
Deduction adding a conjunc... |
pm3.41 496 |
Theorem *3.41 of [Whitehea... |
pm3.42 497 |
Theorem *3.42 of [Whitehea... |
simpld 498 |
Deduction eliminating a co... |
simprd 499 |
Deduction eliminating a co... |
simprbi 500 |
Deduction eliminating a co... |
simplbi 501 |
Deduction eliminating a co... |
simprbda 502 |
Deduction eliminating a co... |
simplbda 503 |
Deduction eliminating a co... |
simplbi2 504 |
Deduction eliminating a co... |
simplbi2comt 505 |
Closed form of ~ simplbi2c... |
simplbi2com 506 |
A deduction eliminating a ... |
simpl2im 507 |
Implication from an elimin... |
simplbiim 508 |
Implication from an elimin... |
impel 509 |
An inference for implicati... |
mpan9 510 |
Modus ponens conjoining di... |
sylan9 511 |
Nested syllogism inference... |
sylan9r 512 |
Nested syllogism inference... |
sylan9bb 513 |
Nested syllogism inference... |
sylan9bbr 514 |
Nested syllogism inference... |
jca 515 |
Deduce conjunction of the ... |
jcad 516 |
Deduction conjoining the c... |
jca2 517 |
Inference conjoining the c... |
jca31 518 |
Join three consequents. (... |
jca32 519 |
Join three consequents. (... |
jcai 520 |
Deduction replacing implic... |
jcab 521 |
Distributive law for impli... |
pm4.76 522 |
Theorem *4.76 of [Whitehea... |
jctil 523 |
Inference conjoining a the... |
jctir 524 |
Inference conjoining a the... |
jccir 525 |
Inference conjoining a con... |
jccil 526 |
Inference conjoining a con... |
jctl 527 |
Inference conjoining a the... |
jctr 528 |
Inference conjoining a the... |
jctild 529 |
Deduction conjoining a the... |
jctird 530 |
Deduction conjoining a the... |
iba 531 |
Introduction of antecedent... |
ibar 532 |
Introduction of antecedent... |
biantru 533 |
A wff is equivalent to its... |
biantrur 534 |
A wff is equivalent to its... |
biantrud 535 |
A wff is equivalent to its... |
biantrurd 536 |
A wff is equivalent to its... |
bianfi 537 |
A wff conjoined with false... |
bianfd 538 |
A wff conjoined with false... |
baib 539 |
Move conjunction outside o... |
baibr 540 |
Move conjunction outside o... |
rbaibr 541 |
Move conjunction outside o... |
rbaib 542 |
Move conjunction outside o... |
baibd 543 |
Move conjunction outside o... |
rbaibd 544 |
Move conjunction outside o... |
bianabs 545 |
Absorb a hypothesis into t... |
pm5.44 546 |
Theorem *5.44 of [Whitehea... |
pm5.42 547 |
Theorem *5.42 of [Whitehea... |
ancl 548 |
Conjoin antecedent to left... |
anclb 549 |
Conjoin antecedent to left... |
ancr 550 |
Conjoin antecedent to righ... |
ancrb 551 |
Conjoin antecedent to righ... |
ancli 552 |
Deduction conjoining antec... |
ancri 553 |
Deduction conjoining antec... |
ancld 554 |
Deduction conjoining antec... |
ancrd 555 |
Deduction conjoining antec... |
impac 556 |
Importation with conjuncti... |
anc2l 557 |
Conjoin antecedent to left... |
anc2r 558 |
Conjoin antecedent to righ... |
anc2li 559 |
Deduction conjoining antec... |
anc2ri 560 |
Deduction conjoining antec... |
pm4.71 561 |
Implication in terms of bi... |
pm4.71r 562 |
Implication in terms of bi... |
pm4.71i 563 |
Inference converting an im... |
pm4.71ri 564 |
Inference converting an im... |
pm4.71d 565 |
Deduction converting an im... |
pm4.71rd 566 |
Deduction converting an im... |
pm4.24 567 |
Theorem *4.24 of [Whitehea... |
anidm 568 |
Idempotent law for conjunc... |
anidmdbi 569 |
Conjunction idempotence wi... |
anidms 570 |
Inference from idempotent ... |
imdistan 571 |
Distribution of implicatio... |
imdistani 572 |
Distribution of implicatio... |
imdistanri 573 |
Distribution of implicatio... |
imdistand 574 |
Distribution of implicatio... |
imdistanda 575 |
Distribution of implicatio... |
pm5.3 576 |
Theorem *5.3 of [Whitehead... |
pm5.32 577 |
Distribution of implicatio... |
pm5.32i 578 |
Distribution of implicatio... |
pm5.32ri 579 |
Distribution of implicatio... |
pm5.32d 580 |
Distribution of implicatio... |
pm5.32rd 581 |
Distribution of implicatio... |
pm5.32da 582 |
Distribution of implicatio... |
sylan 583 |
A syllogism inference. (C... |
sylanb 584 |
A syllogism inference. (C... |
sylanbr 585 |
A syllogism inference. (C... |
sylanbrc 586 |
Syllogism inference. (Con... |
syl2anc 587 |
Syllogism inference combin... |
syl2anc2 588 |
Double syllogism inference... |
sylancl 589 |
Syllogism inference combin... |
sylancr 590 |
Syllogism inference combin... |
sylancom 591 |
Syllogism inference with c... |
sylanblc 592 |
Syllogism inference combin... |
sylanblrc 593 |
Syllogism inference combin... |
syldan 594 |
A syllogism deduction with... |
sylbida 595 |
A syllogism deduction. (C... |
sylan2 596 |
A syllogism inference. (C... |
sylan2b 597 |
A syllogism inference. (C... |
sylan2br 598 |
A syllogism inference. (C... |
syl2an 599 |
A double syllogism inferen... |
syl2anr 600 |
A double syllogism inferen... |
syl2anb 601 |
A double syllogism inferen... |
syl2anbr 602 |
A double syllogism inferen... |
sylancb 603 |
A syllogism inference comb... |
sylancbr 604 |
A syllogism inference comb... |
syldanl 605 |
A syllogism deduction with... |
syland 606 |
A syllogism deduction. (C... |
sylani 607 |
A syllogism inference. (C... |
sylan2d 608 |
A syllogism deduction. (C... |
sylan2i 609 |
A syllogism inference. (C... |
syl2ani 610 |
A syllogism inference. (C... |
syl2and 611 |
A syllogism deduction. (C... |
anim12d 612 |
Conjoin antecedents and co... |
anim12d1 613 |
Variant of ~ anim12d where... |
anim1d 614 |
Add a conjunct to right of... |
anim2d 615 |
Add a conjunct to left of ... |
anim12i 616 |
Conjoin antecedents and co... |
anim12ci 617 |
Variant of ~ anim12i with ... |
anim1i 618 |
Introduce conjunct to both... |
anim1ci 619 |
Introduce conjunct to both... |
anim2i 620 |
Introduce conjunct to both... |
anim12ii 621 |
Conjoin antecedents and co... |
anim12dan 622 |
Conjoin antecedents and co... |
im2anan9 623 |
Deduction joining nested i... |
im2anan9r 624 |
Deduction joining nested i... |
pm3.45 625 |
Theorem *3.45 (Fact) of [W... |
anbi2i 626 |
Introduce a left conjunct ... |
anbi1i 627 |
Introduce a right conjunct... |
anbi2ci 628 |
Variant of ~ anbi2i with c... |
anbi1ci 629 |
Variant of ~ anbi1i with c... |
anbi12i 630 |
Conjoin both sides of two ... |
anbi12ci 631 |
Variant of ~ anbi12i with ... |
anbi2d 632 |
Deduction adding a left co... |
anbi1d 633 |
Deduction adding a right c... |
anbi12d 634 |
Deduction joining two equi... |
anbi1 635 |
Introduce a right conjunct... |
anbi2 636 |
Introduce a left conjunct ... |
anbi1cd 637 |
Introduce a proposition as... |
pm4.38 638 |
Theorem *4.38 of [Whitehea... |
bi2anan9 639 |
Deduction joining two equi... |
bi2anan9r 640 |
Deduction joining two equi... |
bi2bian9 641 |
Deduction joining two bico... |
bianass 642 |
An inference to merge two ... |
bianassc 643 |
An inference to merge two ... |
an21 644 |
Swap two conjuncts. (Cont... |
an12 645 |
Swap two conjuncts. Note ... |
an32 646 |
A rearrangement of conjunc... |
an13 647 |
A rearrangement of conjunc... |
an31 648 |
A rearrangement of conjunc... |
an12s 649 |
Swap two conjuncts in ante... |
ancom2s 650 |
Inference commuting a nest... |
an13s 651 |
Swap two conjuncts in ante... |
an32s 652 |
Swap two conjuncts in ante... |
ancom1s 653 |
Inference commuting a nest... |
an31s 654 |
Swap two conjuncts in ante... |
anass1rs 655 |
Commutative-associative la... |
an4 656 |
Rearrangement of 4 conjunc... |
an42 657 |
Rearrangement of 4 conjunc... |
an43 658 |
Rearrangement of 4 conjunc... |
an3 659 |
A rearrangement of conjunc... |
an4s 660 |
Inference rearranging 4 co... |
an42s 661 |
Inference rearranging 4 co... |
anabs1 662 |
Absorption into embedded c... |
anabs5 663 |
Absorption into embedded c... |
anabs7 664 |
Absorption into embedded c... |
anabsan 665 |
Absorption of antecedent w... |
anabss1 666 |
Absorption of antecedent i... |
anabss4 667 |
Absorption of antecedent i... |
anabss5 668 |
Absorption of antecedent i... |
anabsi5 669 |
Absorption of antecedent i... |
anabsi6 670 |
Absorption of antecedent i... |
anabsi7 671 |
Absorption of antecedent i... |
anabsi8 672 |
Absorption of antecedent i... |
anabss7 673 |
Absorption of antecedent i... |
anabsan2 674 |
Absorption of antecedent w... |
anabss3 675 |
Absorption of antecedent i... |
anandi 676 |
Distribution of conjunctio... |
anandir 677 |
Distribution of conjunctio... |
anandis 678 |
Inference that undistribut... |
anandirs 679 |
Inference that undistribut... |
sylanl1 680 |
A syllogism inference. (C... |
sylanl2 681 |
A syllogism inference. (C... |
sylanr1 682 |
A syllogism inference. (C... |
sylanr2 683 |
A syllogism inference. (C... |
syl6an 684 |
A syllogism deduction comb... |
syl2an2r 685 |
~ syl2anr with antecedents... |
syl2an2 686 |
~ syl2an with antecedents ... |
mpdan 687 |
An inference based on modu... |
mpancom 688 |
An inference based on modu... |
mpidan 689 |
A deduction which "stacks"... |
mpan 690 |
An inference based on modu... |
mpan2 691 |
An inference based on modu... |
mp2an 692 |
An inference based on modu... |
mp4an 693 |
An inference based on modu... |
mpan2d 694 |
A deduction based on modus... |
mpand 695 |
A deduction based on modus... |
mpani 696 |
An inference based on modu... |
mpan2i 697 |
An inference based on modu... |
mp2ani 698 |
An inference based on modu... |
mp2and 699 |
A deduction based on modus... |
mpanl1 700 |
An inference based on modu... |
mpanl2 701 |
An inference based on modu... |
mpanl12 702 |
An inference based on modu... |
mpanr1 703 |
An inference based on modu... |
mpanr2 704 |
An inference based on modu... |
mpanr12 705 |
An inference based on modu... |
mpanlr1 706 |
An inference based on modu... |
mpbirand 707 |
Detach truth from conjunct... |
mpbiran2d 708 |
Detach truth from conjunct... |
mpbiran 709 |
Detach truth from conjunct... |
mpbiran2 710 |
Detach truth from conjunct... |
mpbir2an 711 |
Detach a conjunction of tr... |
mpbi2and 712 |
Detach a conjunction of tr... |
mpbir2and 713 |
Detach a conjunction of tr... |
adantll 714 |
Deduction adding a conjunc... |
adantlr 715 |
Deduction adding a conjunc... |
adantrl 716 |
Deduction adding a conjunc... |
adantrr 717 |
Deduction adding a conjunc... |
adantlll 718 |
Deduction adding a conjunc... |
adantllr 719 |
Deduction adding a conjunc... |
adantlrl 720 |
Deduction adding a conjunc... |
adantlrr 721 |
Deduction adding a conjunc... |
adantrll 722 |
Deduction adding a conjunc... |
adantrlr 723 |
Deduction adding a conjunc... |
adantrrl 724 |
Deduction adding a conjunc... |
adantrrr 725 |
Deduction adding a conjunc... |
ad2antrr 726 |
Deduction adding two conju... |
ad2antlr 727 |
Deduction adding two conju... |
ad2antrl 728 |
Deduction adding two conju... |
ad2antll 729 |
Deduction adding conjuncts... |
ad3antrrr 730 |
Deduction adding three con... |
ad3antlr 731 |
Deduction adding three con... |
ad4antr 732 |
Deduction adding 4 conjunc... |
ad4antlr 733 |
Deduction adding 4 conjunc... |
ad5antr 734 |
Deduction adding 5 conjunc... |
ad5antlr 735 |
Deduction adding 5 conjunc... |
ad6antr 736 |
Deduction adding 6 conjunc... |
ad6antlr 737 |
Deduction adding 6 conjunc... |
ad7antr 738 |
Deduction adding 7 conjunc... |
ad7antlr 739 |
Deduction adding 7 conjunc... |
ad8antr 740 |
Deduction adding 8 conjunc... |
ad8antlr 741 |
Deduction adding 8 conjunc... |
ad9antr 742 |
Deduction adding 9 conjunc... |
ad9antlr 743 |
Deduction adding 9 conjunc... |
ad10antr 744 |
Deduction adding 10 conjun... |
ad10antlr 745 |
Deduction adding 10 conjun... |
ad2ant2l 746 |
Deduction adding two conju... |
ad2ant2r 747 |
Deduction adding two conju... |
ad2ant2lr 748 |
Deduction adding two conju... |
ad2ant2rl 749 |
Deduction adding two conju... |
adantl3r 750 |
Deduction adding 1 conjunc... |
ad4ant13 751 |
Deduction adding conjuncts... |
ad4ant14 752 |
Deduction adding conjuncts... |
ad4ant23 753 |
Deduction adding conjuncts... |
ad4ant24 754 |
Deduction adding conjuncts... |
adantl4r 755 |
Deduction adding 1 conjunc... |
ad5ant12 756 |
Deduction adding conjuncts... |
ad5ant13 757 |
Deduction adding conjuncts... |
ad5ant14 758 |
Deduction adding conjuncts... |
ad5ant15 759 |
Deduction adding conjuncts... |
ad5ant23 760 |
Deduction adding conjuncts... |
ad5ant24 761 |
Deduction adding conjuncts... |
ad5ant25 762 |
Deduction adding conjuncts... |
adantl5r 763 |
Deduction adding 1 conjunc... |
adantl6r 764 |
Deduction adding 1 conjunc... |
pm3.33 765 |
Theorem *3.33 (Syll) of [W... |
pm3.34 766 |
Theorem *3.34 (Syll) of [W... |
simpll 767 |
Simplification of a conjun... |
simplld 768 |
Deduction form of ~ simpll... |
simplr 769 |
Simplification of a conjun... |
simplrd 770 |
Deduction eliminating a do... |
simprl 771 |
Simplification of a conjun... |
simprld 772 |
Deduction eliminating a do... |
simprr 773 |
Simplification of a conjun... |
simprrd 774 |
Deduction form of ~ simprr... |
simplll 775 |
Simplification of a conjun... |
simpllr 776 |
Simplification of a conjun... |
simplrl 777 |
Simplification of a conjun... |
simplrr 778 |
Simplification of a conjun... |
simprll 779 |
Simplification of a conjun... |
simprlr 780 |
Simplification of a conjun... |
simprrl 781 |
Simplification of a conjun... |
simprrr 782 |
Simplification of a conjun... |
simp-4l 783 |
Simplification of a conjun... |
simp-4r 784 |
Simplification of a conjun... |
simp-5l 785 |
Simplification of a conjun... |
simp-5r 786 |
Simplification of a conjun... |
simp-6l 787 |
Simplification of a conjun... |
simp-6r 788 |
Simplification of a conjun... |
simp-7l 789 |
Simplification of a conjun... |
simp-7r 790 |
Simplification of a conjun... |
simp-8l 791 |
Simplification of a conjun... |
simp-8r 792 |
Simplification of a conjun... |
simp-9l 793 |
Simplification of a conjun... |
simp-9r 794 |
Simplification of a conjun... |
simp-10l 795 |
Simplification of a conjun... |
simp-10r 796 |
Simplification of a conjun... |
simp-11l 797 |
Simplification of a conjun... |
simp-11r 798 |
Simplification of a conjun... |
pm2.01da 799 |
Deduction based on reducti... |
pm2.18da 800 |
Deduction based on reducti... |
impbida 801 |
Deduce an equivalence from... |
pm5.21nd 802 |
Eliminate an antecedent im... |
pm3.35 803 |
Conjunctive detachment. T... |
pm5.74da 804 |
Distribution of implicatio... |
bitr 805 |
Theorem *4.22 of [Whitehea... |
biantr 806 |
A transitive law of equiva... |
pm4.14 807 |
Theorem *4.14 of [Whitehea... |
pm3.37 808 |
Theorem *3.37 (Transp) of ... |
anim12 809 |
Conjoin antecedents and co... |
pm3.4 810 |
Conjunction implies implic... |
exbiri 811 |
Inference form of ~ exbir ... |
pm2.61ian 812 |
Elimination of an antecede... |
pm2.61dan 813 |
Elimination of an antecede... |
pm2.61ddan 814 |
Elimination of two anteced... |
pm2.61dda 815 |
Elimination of two anteced... |
mtand 816 |
A modus tollens deduction.... |
pm2.65da 817 |
Deduction for proof by con... |
condan 818 |
Proof by contradiction. (... |
biadan 819 |
An implication is equivale... |
biadani 820 |
Inference associated with ... |
biadaniALT 821 |
Alternate proof of ~ biada... |
biadanii 822 |
Inference associated with ... |
pm5.1 823 |
Two propositions are equiv... |
pm5.21 824 |
Two propositions are equiv... |
pm5.35 825 |
Theorem *5.35 of [Whitehea... |
abai 826 |
Introduce one conjunct as ... |
pm4.45im 827 |
Conjunction with implicati... |
impimprbi 828 |
An implication and its rev... |
nan 829 |
Theorem to move a conjunct... |
pm5.31 830 |
Theorem *5.31 of [Whitehea... |
pm5.31r 831 |
Variant of ~ pm5.31 . (Co... |
pm4.15 832 |
Theorem *4.15 of [Whitehea... |
pm5.36 833 |
Theorem *5.36 of [Whitehea... |
annotanannot 834 |
A conjunction with a negat... |
pm5.33 835 |
Theorem *5.33 of [Whitehea... |
syl12anc 836 |
Syllogism combined with co... |
syl21anc 837 |
Syllogism combined with co... |
syl22anc 838 |
Syllogism combined with co... |
syl1111anc 839 |
Four-hypothesis eliminatio... |
syldbl2 840 |
Stacked hypotheseis implie... |
mpsyl4anc 841 |
An elimination deduction. ... |
pm4.87 842 |
Theorem *4.87 of [Whitehea... |
bimsc1 843 |
Removal of conjunct from o... |
a2and 844 |
Deduction distributing a c... |
animpimp2impd 845 |
Deduction deriving nested ... |
pm4.64 848 |
Theorem *4.64 of [Whitehea... |
pm4.66 849 |
Theorem *4.66 of [Whitehea... |
pm2.53 850 |
Theorem *2.53 of [Whitehea... |
pm2.54 851 |
Theorem *2.54 of [Whitehea... |
imor 852 |
Implication in terms of di... |
imori 853 |
Infer disjunction from imp... |
imorri 854 |
Infer implication from dis... |
pm4.62 855 |
Theorem *4.62 of [Whitehea... |
jaoi 856 |
Inference disjoining the a... |
jao1i 857 |
Add a disjunct in the ante... |
jaod 858 |
Deduction disjoining the a... |
mpjaod 859 |
Eliminate a disjunction in... |
ori 860 |
Infer implication from dis... |
orri 861 |
Infer disjunction from imp... |
orrd 862 |
Deduce disjunction from im... |
ord 863 |
Deduce implication from di... |
orci 864 |
Deduction introducing a di... |
olci 865 |
Deduction introducing a di... |
orc 866 |
Introduction of a disjunct... |
olc 867 |
Introduction of a disjunct... |
pm1.4 868 |
Axiom *1.4 of [WhiteheadRu... |
orcom 869 |
Commutative law for disjun... |
orcomd 870 |
Commutation of disjuncts i... |
orcoms 871 |
Commutation of disjuncts i... |
orcd 872 |
Deduction introducing a di... |
olcd 873 |
Deduction introducing a di... |
orcs 874 |
Deduction eliminating disj... |
olcs 875 |
Deduction eliminating disj... |
olcnd 876 |
A lemma for Conjunctive No... |
unitreslOLD 877 |
Obsolete version of ~ olcn... |
orcnd 878 |
A lemma for Conjunctive No... |
mtord 879 |
A modus tollens deduction ... |
pm3.2ni 880 |
Infer negated disjunction ... |
pm2.45 881 |
Theorem *2.45 of [Whitehea... |
pm2.46 882 |
Theorem *2.46 of [Whitehea... |
pm2.47 883 |
Theorem *2.47 of [Whitehea... |
pm2.48 884 |
Theorem *2.48 of [Whitehea... |
pm2.49 885 |
Theorem *2.49 of [Whitehea... |
norbi 886 |
If neither of two proposit... |
nbior 887 |
If two propositions are no... |
orel1 888 |
Elimination of disjunction... |
pm2.25 889 |
Theorem *2.25 of [Whitehea... |
orel2 890 |
Elimination of disjunction... |
pm2.67-2 891 |
Slight generalization of T... |
pm2.67 892 |
Theorem *2.67 of [Whitehea... |
curryax 893 |
A non-intuitionistic posit... |
exmid 894 |
Law of excluded middle, al... |
exmidd 895 |
Law of excluded middle in ... |
pm2.1 896 |
Theorem *2.1 of [Whitehead... |
pm2.13 897 |
Theorem *2.13 of [Whitehea... |
pm2.621 898 |
Theorem *2.621 of [Whitehe... |
pm2.62 899 |
Theorem *2.62 of [Whitehea... |
pm2.68 900 |
Theorem *2.68 of [Whitehea... |
dfor2 901 |
Logical 'or' expressed in ... |
pm2.07 902 |
Theorem *2.07 of [Whitehea... |
pm1.2 903 |
Axiom *1.2 of [WhiteheadRu... |
oridm 904 |
Idempotent law for disjunc... |
pm4.25 905 |
Theorem *4.25 of [Whitehea... |
pm2.4 906 |
Theorem *2.4 of [Whitehead... |
pm2.41 907 |
Theorem *2.41 of [Whitehea... |
orim12i 908 |
Disjoin antecedents and co... |
orim1i 909 |
Introduce disjunct to both... |
orim2i 910 |
Introduce disjunct to both... |
orim12dALT 911 |
Alternate proof of ~ orim1... |
orbi2i 912 |
Inference adding a left di... |
orbi1i 913 |
Inference adding a right d... |
orbi12i 914 |
Infer the disjunction of t... |
orbi2d 915 |
Deduction adding a left di... |
orbi1d 916 |
Deduction adding a right d... |
orbi1 917 |
Theorem *4.37 of [Whitehea... |
orbi12d 918 |
Deduction joining two equi... |
pm1.5 919 |
Axiom *1.5 (Assoc) of [Whi... |
or12 920 |
Swap two disjuncts. (Cont... |
orass 921 |
Associative law for disjun... |
pm2.31 922 |
Theorem *2.31 of [Whitehea... |
pm2.32 923 |
Theorem *2.32 of [Whitehea... |
pm2.3 924 |
Theorem *2.3 of [Whitehead... |
or32 925 |
A rearrangement of disjunc... |
or4 926 |
Rearrangement of 4 disjunc... |
or42 927 |
Rearrangement of 4 disjunc... |
orordi 928 |
Distribution of disjunctio... |
orordir 929 |
Distribution of disjunctio... |
orimdi 930 |
Disjunction distributes ov... |
pm2.76 931 |
Theorem *2.76 of [Whitehea... |
pm2.85 932 |
Theorem *2.85 of [Whitehea... |
pm2.75 933 |
Theorem *2.75 of [Whitehea... |
pm4.78 934 |
Implication distributes ov... |
biort 935 |
A disjunction with a true ... |
biorf 936 |
A wff is equivalent to its... |
biortn 937 |
A wff is equivalent to its... |
biorfi 938 |
A wff is equivalent to its... |
pm2.26 939 |
Theorem *2.26 of [Whitehea... |
pm2.63 940 |
Theorem *2.63 of [Whitehea... |
pm2.64 941 |
Theorem *2.64 of [Whitehea... |
pm2.42 942 |
Theorem *2.42 of [Whitehea... |
pm5.11g 943 |
A general instance of Theo... |
pm5.11 944 |
Theorem *5.11 of [Whitehea... |
pm5.12 945 |
Theorem *5.12 of [Whitehea... |
pm5.14 946 |
Theorem *5.14 of [Whitehea... |
pm5.13 947 |
Theorem *5.13 of [Whitehea... |
pm5.55 948 |
Theorem *5.55 of [Whitehea... |
pm4.72 949 |
Implication in terms of bi... |
imimorb 950 |
Simplify an implication be... |
oibabs 951 |
Absorption of disjunction ... |
orbidi 952 |
Disjunction distributes ov... |
pm5.7 953 |
Disjunction distributes ov... |
jaao 954 |
Inference conjoining and d... |
jaoa 955 |
Inference disjoining and c... |
jaoian 956 |
Inference disjoining the a... |
jaodan 957 |
Deduction disjoining the a... |
mpjaodan 958 |
Eliminate a disjunction in... |
pm3.44 959 |
Theorem *3.44 of [Whitehea... |
jao 960 |
Disjunction of antecedents... |
jaob 961 |
Disjunction of antecedents... |
pm4.77 962 |
Theorem *4.77 of [Whitehea... |
pm3.48 963 |
Theorem *3.48 of [Whitehea... |
orim12d 964 |
Disjoin antecedents and co... |
orim1d 965 |
Disjoin antecedents and co... |
orim2d 966 |
Disjoin antecedents and co... |
orim2 967 |
Axiom *1.6 (Sum) of [White... |
pm2.38 968 |
Theorem *2.38 of [Whitehea... |
pm2.36 969 |
Theorem *2.36 of [Whitehea... |
pm2.37 970 |
Theorem *2.37 of [Whitehea... |
pm2.81 971 |
Theorem *2.81 of [Whitehea... |
pm2.8 972 |
Theorem *2.8 of [Whitehead... |
pm2.73 973 |
Theorem *2.73 of [Whitehea... |
pm2.74 974 |
Theorem *2.74 of [Whitehea... |
pm2.82 975 |
Theorem *2.82 of [Whitehea... |
pm4.39 976 |
Theorem *4.39 of [Whitehea... |
animorl 977 |
Conjunction implies disjun... |
animorr 978 |
Conjunction implies disjun... |
animorlr 979 |
Conjunction implies disjun... |
animorrl 980 |
Conjunction implies disjun... |
ianor 981 |
Negated conjunction in ter... |
anor 982 |
Conjunction in terms of di... |
ioran 983 |
Negated disjunction in ter... |
pm4.52 984 |
Theorem *4.52 of [Whitehea... |
pm4.53 985 |
Theorem *4.53 of [Whitehea... |
pm4.54 986 |
Theorem *4.54 of [Whitehea... |
pm4.55 987 |
Theorem *4.55 of [Whitehea... |
pm4.56 988 |
Theorem *4.56 of [Whitehea... |
oran 989 |
Disjunction in terms of co... |
pm4.57 990 |
Theorem *4.57 of [Whitehea... |
pm3.1 991 |
Theorem *3.1 of [Whitehead... |
pm3.11 992 |
Theorem *3.11 of [Whitehea... |
pm3.12 993 |
Theorem *3.12 of [Whitehea... |
pm3.13 994 |
Theorem *3.13 of [Whitehea... |
pm3.14 995 |
Theorem *3.14 of [Whitehea... |
pm4.44 996 |
Theorem *4.44 of [Whitehea... |
pm4.45 997 |
Theorem *4.45 of [Whitehea... |
orabs 998 |
Absorption of redundant in... |
oranabs 999 |
Absorb a disjunct into a c... |
pm5.61 1000 |
Theorem *5.61 of [Whitehea... |
pm5.6 1001 |
Conjunction in antecedent ... |
orcanai 1002 |
Change disjunction in cons... |
pm4.79 1003 |
Theorem *4.79 of [Whitehea... |
pm5.53 1004 |
Theorem *5.53 of [Whitehea... |
ordi 1005 |
Distributive law for disju... |
ordir 1006 |
Distributive law for disju... |
andi 1007 |
Distributive law for conju... |
andir 1008 |
Distributive law for conju... |
orddi 1009 |
Double distributive law fo... |
anddi 1010 |
Double distributive law fo... |
pm5.17 1011 |
Theorem *5.17 of [Whitehea... |
pm5.15 1012 |
Theorem *5.15 of [Whitehea... |
pm5.16 1013 |
Theorem *5.16 of [Whitehea... |
xor 1014 |
Two ways to express exclus... |
nbi2 1015 |
Two ways to express "exclu... |
xordi 1016 |
Conjunction distributes ov... |
pm5.54 1017 |
Theorem *5.54 of [Whitehea... |
pm5.62 1018 |
Theorem *5.62 of [Whitehea... |
pm5.63 1019 |
Theorem *5.63 of [Whitehea... |
niabn 1020 |
Miscellaneous inference re... |
ninba 1021 |
Miscellaneous inference re... |
pm4.43 1022 |
Theorem *4.43 of [Whitehea... |
pm4.82 1023 |
Theorem *4.82 of [Whitehea... |
pm4.83 1024 |
Theorem *4.83 of [Whitehea... |
pclem6 1025 |
Negation inferred from emb... |
bigolden 1026 |
Dijkstra-Scholten's Golden... |
pm5.71 1027 |
Theorem *5.71 of [Whitehea... |
pm5.75 1028 |
Theorem *5.75 of [Whitehea... |
ecase2d 1029 |
Deduction for elimination ... |
ecase2dOLD 1030 |
Obsolete version of ~ ecas... |
ecase3 1031 |
Inference for elimination ... |
ecase 1032 |
Inference for elimination ... |
ecase3d 1033 |
Deduction for elimination ... |
ecased 1034 |
Deduction for elimination ... |
ecase3ad 1035 |
Deduction for elimination ... |
ecase3adOLD 1036 |
Obsolete version of ~ ecas... |
ccase 1037 |
Inference for combining ca... |
ccased 1038 |
Deduction for combining ca... |
ccase2 1039 |
Inference for combining ca... |
4cases 1040 |
Inference eliminating two ... |
4casesdan 1041 |
Deduction eliminating two ... |
cases 1042 |
Case disjunction according... |
dedlem0a 1043 |
Lemma for an alternate ver... |
dedlem0b 1044 |
Lemma for an alternate ver... |
dedlema 1045 |
Lemma for weak deduction t... |
dedlemb 1046 |
Lemma for weak deduction t... |
cases2 1047 |
Case disjunction according... |
cases2ALT 1048 |
Alternate proof of ~ cases... |
dfbi3 1049 |
An alternate definition of... |
pm5.24 1050 |
Theorem *5.24 of [Whitehea... |
4exmid 1051 |
The disjunction of the fou... |
consensus 1052 |
The consensus theorem. Th... |
pm4.42 1053 |
Theorem *4.42 of [Whitehea... |
prlem1 1054 |
A specialized lemma for se... |
prlem2 1055 |
A specialized lemma for se... |
oplem1 1056 |
A specialized lemma for se... |
dn1 1057 |
A single axiom for Boolean... |
bianir 1058 |
A closed form of ~ mpbir ,... |
jaoi2 1059 |
Inference removing a negat... |
jaoi3 1060 |
Inference separating a dis... |
ornld 1061 |
Selecting one statement fr... |
dfifp2 1064 |
Alternate definition of th... |
dfifp3 1065 |
Alternate definition of th... |
dfifp4 1066 |
Alternate definition of th... |
dfifp5 1067 |
Alternate definition of th... |
dfifp6 1068 |
Alternate definition of th... |
dfifp7 1069 |
Alternate definition of th... |
ifpdfbi 1070 |
Define the biconditional a... |
anifp 1071 |
The conditional operator i... |
ifpor 1072 |
The conditional operator i... |
ifpn 1073 |
Conditional operator for t... |
ifpnOLD 1074 |
Obsolete version of ~ ifpn... |
ifptru 1075 |
Value of the conditional o... |
ifpfal 1076 |
Value of the conditional o... |
ifpid 1077 |
Value of the conditional o... |
casesifp 1078 |
Version of ~ cases express... |
ifpbi123d 1079 |
Equivalence deduction for ... |
ifpbi123dOLD 1080 |
Obsolete version of ~ ifpb... |
ifpbi23d 1081 |
Equivalence deduction for ... |
ifpimpda 1082 |
Separation of the values o... |
1fpid3 1083 |
The value of the condition... |
elimh 1084 |
Hypothesis builder for the... |
dedt 1085 |
The weak deduction theorem... |
con3ALT 1086 |
Proof of ~ con3 from its a... |
3orass 1091 |
Associative law for triple... |
3orel1 1092 |
Partial elimination of a t... |
3orrot 1093 |
Rotation law for triple di... |
3orcoma 1094 |
Commutation law for triple... |
3orcomb 1095 |
Commutation law for triple... |
3anass 1096 |
Associative law for triple... |
3anan12 1097 |
Convert triple conjunction... |
3anan32 1098 |
Convert triple conjunction... |
3ancoma 1099 |
Commutation law for triple... |
3ancomb 1100 |
Commutation law for triple... |
3anrot 1101 |
Rotation law for triple co... |
3anrev 1102 |
Reversal law for triple co... |
anandi3 1103 |
Distribution of triple con... |
anandi3r 1104 |
Distribution of triple con... |
3anidm 1105 |
Idempotent law for conjunc... |
3an4anass 1106 |
Associative law for four c... |
3ioran 1107 |
Negated triple disjunction... |
3ianor 1108 |
Negated triple conjunction... |
3anor 1109 |
Triple conjunction express... |
3oran 1110 |
Triple disjunction in term... |
3impa 1111 |
Importation from double to... |
3imp 1112 |
Importation inference. (C... |
3imp31 1113 |
The importation inference ... |
3imp231 1114 |
Importation inference. (C... |
3imp21 1115 |
The importation inference ... |
3impb 1116 |
Importation from double to... |
3impib 1117 |
Importation to triple conj... |
3impia 1118 |
Importation to triple conj... |
3expa 1119 |
Exportation from triple to... |
3exp 1120 |
Exportation inference. (C... |
3expb 1121 |
Exportation from triple to... |
3expia 1122 |
Exportation from triple co... |
3expib 1123 |
Exportation from triple co... |
3com12 1124 |
Commutation in antecedent.... |
3com13 1125 |
Commutation in antecedent.... |
3comr 1126 |
Commutation in antecedent.... |
3com23 1127 |
Commutation in antecedent.... |
3coml 1128 |
Commutation in antecedent.... |
3jca 1129 |
Join consequents with conj... |
3jcad 1130 |
Deduction conjoining the c... |
3adant1 1131 |
Deduction adding a conjunc... |
3adant2 1132 |
Deduction adding a conjunc... |
3adant3 1133 |
Deduction adding a conjunc... |
3ad2ant1 1134 |
Deduction adding conjuncts... |
3ad2ant2 1135 |
Deduction adding conjuncts... |
3ad2ant3 1136 |
Deduction adding conjuncts... |
simp1 1137 |
Simplification of triple c... |
simp2 1138 |
Simplification of triple c... |
simp3 1139 |
Simplification of triple c... |
simp1i 1140 |
Infer a conjunct from a tr... |
simp2i 1141 |
Infer a conjunct from a tr... |
simp3i 1142 |
Infer a conjunct from a tr... |
simp1d 1143 |
Deduce a conjunct from a t... |
simp2d 1144 |
Deduce a conjunct from a t... |
simp3d 1145 |
Deduce a conjunct from a t... |
simp1bi 1146 |
Deduce a conjunct from a t... |
simp2bi 1147 |
Deduce a conjunct from a t... |
simp3bi 1148 |
Deduce a conjunct from a t... |
3simpa 1149 |
Simplification of triple c... |
3simpb 1150 |
Simplification of triple c... |
3simpc 1151 |
Simplification of triple c... |
3anim123i 1152 |
Join antecedents and conse... |
3anim1i 1153 |
Add two conjuncts to antec... |
3anim2i 1154 |
Add two conjuncts to antec... |
3anim3i 1155 |
Add two conjuncts to antec... |
3anbi123i 1156 |
Join 3 biconditionals with... |
3orbi123i 1157 |
Join 3 biconditionals with... |
3anbi1i 1158 |
Inference adding two conju... |
3anbi2i 1159 |
Inference adding two conju... |
3anbi3i 1160 |
Inference adding two conju... |
syl3an 1161 |
A triple syllogism inferen... |
syl3anb 1162 |
A triple syllogism inferen... |
syl3anbr 1163 |
A triple syllogism inferen... |
syl3an1 1164 |
A syllogism inference. (C... |
syl3an2 1165 |
A syllogism inference. (C... |
syl3an3 1166 |
A syllogism inference. (C... |
3adantl1 1167 |
Deduction adding a conjunc... |
3adantl2 1168 |
Deduction adding a conjunc... |
3adantl3 1169 |
Deduction adding a conjunc... |
3adantr1 1170 |
Deduction adding a conjunc... |
3adantr2 1171 |
Deduction adding a conjunc... |
3adantr3 1172 |
Deduction adding a conjunc... |
ad4ant123 1173 |
Deduction adding conjuncts... |
ad4ant124 1174 |
Deduction adding conjuncts... |
ad4ant134 1175 |
Deduction adding conjuncts... |
ad4ant234 1176 |
Deduction adding conjuncts... |
3adant1l 1177 |
Deduction adding a conjunc... |
3adant1r 1178 |
Deduction adding a conjunc... |
3adant2l 1179 |
Deduction adding a conjunc... |
3adant2r 1180 |
Deduction adding a conjunc... |
3adant3l 1181 |
Deduction adding a conjunc... |
3adant3r 1182 |
Deduction adding a conjunc... |
3adant3r1 1183 |
Deduction adding a conjunc... |
3adant3r2 1184 |
Deduction adding a conjunc... |
3adant3r3 1185 |
Deduction adding a conjunc... |
3ad2antl1 1186 |
Deduction adding conjuncts... |
3ad2antl2 1187 |
Deduction adding conjuncts... |
3ad2antl3 1188 |
Deduction adding conjuncts... |
3ad2antr1 1189 |
Deduction adding conjuncts... |
3ad2antr2 1190 |
Deduction adding conjuncts... |
3ad2antr3 1191 |
Deduction adding conjuncts... |
simpl1 1192 |
Simplification of conjunct... |
simpl2 1193 |
Simplification of conjunct... |
simpl3 1194 |
Simplification of conjunct... |
simpr1 1195 |
Simplification of conjunct... |
simpr2 1196 |
Simplification of conjunct... |
simpr3 1197 |
Simplification of conjunct... |
simp1l 1198 |
Simplification of triple c... |
simp1r 1199 |
Simplification of triple c... |
simp2l 1200 |
Simplification of triple c... |
simp2r 1201 |
Simplification of triple c... |
simp3l 1202 |
Simplification of triple c... |
simp3r 1203 |
Simplification of triple c... |
simp11 1204 |
Simplification of doubly t... |
simp12 1205 |
Simplification of doubly t... |
simp13 1206 |
Simplification of doubly t... |
simp21 1207 |
Simplification of doubly t... |
simp22 1208 |
Simplification of doubly t... |
simp23 1209 |
Simplification of doubly t... |
simp31 1210 |
Simplification of doubly t... |
simp32 1211 |
Simplification of doubly t... |
simp33 1212 |
Simplification of doubly t... |
simpll1 1213 |
Simplification of conjunct... |
simpll2 1214 |
Simplification of conjunct... |
simpll3 1215 |
Simplification of conjunct... |
simplr1 1216 |
Simplification of conjunct... |
simplr2 1217 |
Simplification of conjunct... |
simplr3 1218 |
Simplification of conjunct... |
simprl1 1219 |
Simplification of conjunct... |
simprl2 1220 |
Simplification of conjunct... |
simprl3 1221 |
Simplification of conjunct... |
simprr1 1222 |
Simplification of conjunct... |
simprr2 1223 |
Simplification of conjunct... |
simprr3 1224 |
Simplification of conjunct... |
simpl1l 1225 |
Simplification of conjunct... |
simpl1r 1226 |
Simplification of conjunct... |
simpl2l 1227 |
Simplification of conjunct... |
simpl2r 1228 |
Simplification of conjunct... |
simpl3l 1229 |
Simplification of conjunct... |
simpl3r 1230 |
Simplification of conjunct... |
simpr1l 1231 |
Simplification of conjunct... |
simpr1r 1232 |
Simplification of conjunct... |
simpr2l 1233 |
Simplification of conjunct... |
simpr2r 1234 |
Simplification of conjunct... |
simpr3l 1235 |
Simplification of conjunct... |
simpr3r 1236 |
Simplification of conjunct... |
simp1ll 1237 |
Simplification of conjunct... |
simp1lr 1238 |
Simplification of conjunct... |
simp1rl 1239 |
Simplification of conjunct... |
simp1rr 1240 |
Simplification of conjunct... |
simp2ll 1241 |
Simplification of conjunct... |
simp2lr 1242 |
Simplification of conjunct... |
simp2rl 1243 |
Simplification of conjunct... |
simp2rr 1244 |
Simplification of conjunct... |
simp3ll 1245 |
Simplification of conjunct... |
simp3lr 1246 |
Simplification of conjunct... |
simp3rl 1247 |
Simplification of conjunct... |
simp3rr 1248 |
Simplification of conjunct... |
simpl11 1249 |
Simplification of conjunct... |
simpl12 1250 |
Simplification of conjunct... |
simpl13 1251 |
Simplification of conjunct... |
simpl21 1252 |
Simplification of conjunct... |
simpl22 1253 |
Simplification of conjunct... |
simpl23 1254 |
Simplification of conjunct... |
simpl31 1255 |
Simplification of conjunct... |
simpl32 1256 |
Simplification of conjunct... |
simpl33 1257 |
Simplification of conjunct... |
simpr11 1258 |
Simplification of conjunct... |
simpr12 1259 |
Simplification of conjunct... |
simpr13 1260 |
Simplification of conjunct... |
simpr21 1261 |
Simplification of conjunct... |
simpr22 1262 |
Simplification of conjunct... |
simpr23 1263 |
Simplification of conjunct... |
simpr31 1264 |
Simplification of conjunct... |
simpr32 1265 |
Simplification of conjunct... |
simpr33 1266 |
Simplification of conjunct... |
simp1l1 1267 |
Simplification of conjunct... |
simp1l2 1268 |
Simplification of conjunct... |
simp1l3 1269 |
Simplification of conjunct... |
simp1r1 1270 |
Simplification of conjunct... |
simp1r2 1271 |
Simplification of conjunct... |
simp1r3 1272 |
Simplification of conjunct... |
simp2l1 1273 |
Simplification of conjunct... |
simp2l2 1274 |
Simplification of conjunct... |
simp2l3 1275 |
Simplification of conjunct... |
simp2r1 1276 |
Simplification of conjunct... |
simp2r2 1277 |
Simplification of conjunct... |
simp2r3 1278 |
Simplification of conjunct... |
simp3l1 1279 |
Simplification of conjunct... |
simp3l2 1280 |
Simplification of conjunct... |
simp3l3 1281 |
Simplification of conjunct... |
simp3r1 1282 |
Simplification of conjunct... |
simp3r2 1283 |
Simplification of conjunct... |
simp3r3 1284 |
Simplification of conjunct... |
simp11l 1285 |
Simplification of conjunct... |
simp11r 1286 |
Simplification of conjunct... |
simp12l 1287 |
Simplification of conjunct... |
simp12r 1288 |
Simplification of conjunct... |
simp13l 1289 |
Simplification of conjunct... |
simp13r 1290 |
Simplification of conjunct... |
simp21l 1291 |
Simplification of conjunct... |
simp21r 1292 |
Simplification of conjunct... |
simp22l 1293 |
Simplification of conjunct... |
simp22r 1294 |
Simplification of conjunct... |
simp23l 1295 |
Simplification of conjunct... |
simp23r 1296 |
Simplification of conjunct... |
simp31l 1297 |
Simplification of conjunct... |
simp31r 1298 |
Simplification of conjunct... |
simp32l 1299 |
Simplification of conjunct... |
simp32r 1300 |
Simplification of conjunct... |
simp33l 1301 |
Simplification of conjunct... |
simp33r 1302 |
Simplification of conjunct... |
simp111 1303 |
Simplification of conjunct... |
simp112 1304 |
Simplification of conjunct... |
simp113 1305 |
Simplification of conjunct... |
simp121 1306 |
Simplification of conjunct... |
simp122 1307 |
Simplification of conjunct... |
simp123 1308 |
Simplification of conjunct... |
simp131 1309 |
Simplification of conjunct... |
simp132 1310 |
Simplification of conjunct... |
simp133 1311 |
Simplification of conjunct... |
simp211 1312 |
Simplification of conjunct... |
simp212 1313 |
Simplification of conjunct... |
simp213 1314 |
Simplification of conjunct... |
simp221 1315 |
Simplification of conjunct... |
simp222 1316 |
Simplification of conjunct... |
simp223 1317 |
Simplification of conjunct... |
simp231 1318 |
Simplification of conjunct... |
simp232 1319 |
Simplification of conjunct... |
simp233 1320 |
Simplification of conjunct... |
simp311 1321 |
Simplification of conjunct... |
simp312 1322 |
Simplification of conjunct... |
simp313 1323 |
Simplification of conjunct... |
simp321 1324 |
Simplification of conjunct... |
simp322 1325 |
Simplification of conjunct... |
simp323 1326 |
Simplification of conjunct... |
simp331 1327 |
Simplification of conjunct... |
simp332 1328 |
Simplification of conjunct... |
simp333 1329 |
Simplification of conjunct... |
3anibar 1330 |
Remove a hypothesis from t... |
3mix1 1331 |
Introduction in triple dis... |
3mix2 1332 |
Introduction in triple dis... |
3mix3 1333 |
Introduction in triple dis... |
3mix1i 1334 |
Introduction in triple dis... |
3mix2i 1335 |
Introduction in triple dis... |
3mix3i 1336 |
Introduction in triple dis... |
3mix1d 1337 |
Deduction introducing trip... |
3mix2d 1338 |
Deduction introducing trip... |
3mix3d 1339 |
Deduction introducing trip... |
3pm3.2i 1340 |
Infer conjunction of premi... |
pm3.2an3 1341 |
Version of ~ pm3.2 for a t... |
mpbir3an 1342 |
Detach a conjunction of tr... |
mpbir3and 1343 |
Detach a conjunction of tr... |
syl3anbrc 1344 |
Syllogism inference. (Con... |
syl21anbrc 1345 |
Syllogism inference. (Con... |
3imp3i2an 1346 |
An elimination deduction. ... |
ex3 1347 |
Apply ~ ex to a hypothesis... |
3imp1 1348 |
Importation to left triple... |
3impd 1349 |
Importation deduction for ... |
3imp2 1350 |
Importation to right tripl... |
3impdi 1351 |
Importation inference (und... |
3impdir 1352 |
Importation inference (und... |
3exp1 1353 |
Exportation from left trip... |
3expd 1354 |
Exportation deduction for ... |
3exp2 1355 |
Exportation from right tri... |
exp5o 1356 |
A triple exportation infer... |
exp516 1357 |
A triple exportation infer... |
exp520 1358 |
A triple exportation infer... |
3impexp 1359 |
Version of ~ impexp for a ... |
3an1rs 1360 |
Swap conjuncts. (Contribu... |
3anassrs 1361 |
Associative law for conjun... |
ad5ant245 1362 |
Deduction adding conjuncts... |
ad5ant234 1363 |
Deduction adding conjuncts... |
ad5ant235 1364 |
Deduction adding conjuncts... |
ad5ant123 1365 |
Deduction adding conjuncts... |
ad5ant124 1366 |
Deduction adding conjuncts... |
ad5ant125 1367 |
Deduction adding conjuncts... |
ad5ant134 1368 |
Deduction adding conjuncts... |
ad5ant135 1369 |
Deduction adding conjuncts... |
ad5ant145 1370 |
Deduction adding conjuncts... |
ad5ant2345 1371 |
Deduction adding conjuncts... |
syl3anc 1372 |
Syllogism combined with co... |
syl13anc 1373 |
Syllogism combined with co... |
syl31anc 1374 |
Syllogism combined with co... |
syl112anc 1375 |
Syllogism combined with co... |
syl121anc 1376 |
Syllogism combined with co... |
syl211anc 1377 |
Syllogism combined with co... |
syl23anc 1378 |
Syllogism combined with co... |
syl32anc 1379 |
Syllogism combined with co... |
syl122anc 1380 |
Syllogism combined with co... |
syl212anc 1381 |
Syllogism combined with co... |
syl221anc 1382 |
Syllogism combined with co... |
syl113anc 1383 |
Syllogism combined with co... |
syl131anc 1384 |
Syllogism combined with co... |
syl311anc 1385 |
Syllogism combined with co... |
syl33anc 1386 |
Syllogism combined with co... |
syl222anc 1387 |
Syllogism combined with co... |
syl123anc 1388 |
Syllogism combined with co... |
syl132anc 1389 |
Syllogism combined with co... |
syl213anc 1390 |
Syllogism combined with co... |
syl231anc 1391 |
Syllogism combined with co... |
syl312anc 1392 |
Syllogism combined with co... |
syl321anc 1393 |
Syllogism combined with co... |
syl133anc 1394 |
Syllogism combined with co... |
syl313anc 1395 |
Syllogism combined with co... |
syl331anc 1396 |
Syllogism combined with co... |
syl223anc 1397 |
Syllogism combined with co... |
syl232anc 1398 |
Syllogism combined with co... |
syl322anc 1399 |
Syllogism combined with co... |
syl233anc 1400 |
Syllogism combined with co... |
syl323anc 1401 |
Syllogism combined with co... |
syl332anc 1402 |
Syllogism combined with co... |
syl333anc 1403 |
A syllogism inference comb... |
syl3an1b 1404 |
A syllogism inference. (C... |
syl3an2b 1405 |
A syllogism inference. (C... |
syl3an3b 1406 |
A syllogism inference. (C... |
syl3an1br 1407 |
A syllogism inference. (C... |
syl3an2br 1408 |
A syllogism inference. (C... |
syl3an3br 1409 |
A syllogism inference. (C... |
syld3an3 1410 |
A syllogism inference. (C... |
syld3an1 1411 |
A syllogism inference. (C... |
syld3an2 1412 |
A syllogism inference. (C... |
syl3anl1 1413 |
A syllogism inference. (C... |
syl3anl2 1414 |
A syllogism inference. (C... |
syl3anl3 1415 |
A syllogism inference. (C... |
syl3anl 1416 |
A triple syllogism inferen... |
syl3anr1 1417 |
A syllogism inference. (C... |
syl3anr2 1418 |
A syllogism inference. (C... |
syl3anr3 1419 |
A syllogism inference. (C... |
3anidm12 1420 |
Inference from idempotent ... |
3anidm13 1421 |
Inference from idempotent ... |
3anidm23 1422 |
Inference from idempotent ... |
syl2an3an 1423 |
~ syl3an with antecedents ... |
syl2an23an 1424 |
Deduction related to ~ syl... |
3ori 1425 |
Infer implication from tri... |
3jao 1426 |
Disjunction of three antec... |
3jaob 1427 |
Disjunction of three antec... |
3jaoi 1428 |
Disjunction of three antec... |
3jaod 1429 |
Disjunction of three antec... |
3jaoian 1430 |
Disjunction of three antec... |
3jaodan 1431 |
Disjunction of three antec... |
mpjao3dan 1432 |
Eliminate a three-way disj... |
mpjao3danOLD 1433 |
Obsolete version of ~ mpja... |
3jaao 1434 |
Inference conjoining and d... |
syl3an9b 1435 |
Nested syllogism inference... |
3orbi123d 1436 |
Deduction joining 3 equiva... |
3anbi123d 1437 |
Deduction joining 3 equiva... |
3anbi12d 1438 |
Deduction conjoining and a... |
3anbi13d 1439 |
Deduction conjoining and a... |
3anbi23d 1440 |
Deduction conjoining and a... |
3anbi1d 1441 |
Deduction adding conjuncts... |
3anbi2d 1442 |
Deduction adding conjuncts... |
3anbi3d 1443 |
Deduction adding conjuncts... |
3anim123d 1444 |
Deduction joining 3 implic... |
3orim123d 1445 |
Deduction joining 3 implic... |
an6 1446 |
Rearrangement of 6 conjunc... |
3an6 1447 |
Analogue of ~ an4 for trip... |
3or6 1448 |
Analogue of ~ or4 for trip... |
mp3an1 1449 |
An inference based on modu... |
mp3an2 1450 |
An inference based on modu... |
mp3an3 1451 |
An inference based on modu... |
mp3an12 1452 |
An inference based on modu... |
mp3an13 1453 |
An inference based on modu... |
mp3an23 1454 |
An inference based on modu... |
mp3an1i 1455 |
An inference based on modu... |
mp3anl1 1456 |
An inference based on modu... |
mp3anl2 1457 |
An inference based on modu... |
mp3anl3 1458 |
An inference based on modu... |
mp3anr1 1459 |
An inference based on modu... |
mp3anr2 1460 |
An inference based on modu... |
mp3anr3 1461 |
An inference based on modu... |
mp3an 1462 |
An inference based on modu... |
mpd3an3 1463 |
An inference based on modu... |
mpd3an23 1464 |
An inference based on modu... |
mp3and 1465 |
A deduction based on modus... |
mp3an12i 1466 |
~ mp3an with antecedents i... |
mp3an2i 1467 |
~ mp3an with antecedents i... |
mp3an3an 1468 |
~ mp3an with antecedents i... |
mp3an2ani 1469 |
An elimination deduction. ... |
biimp3a 1470 |
Infer implication from a l... |
biimp3ar 1471 |
Infer implication from a l... |
3anandis 1472 |
Inference that undistribut... |
3anandirs 1473 |
Inference that undistribut... |
ecase23d 1474 |
Deduction for elimination ... |
3ecase 1475 |
Inference for elimination ... |
3bior1fd 1476 |
A disjunction is equivalen... |
3bior1fand 1477 |
A disjunction is equivalen... |
3bior2fd 1478 |
A wff is equivalent to its... |
3biant1d 1479 |
A conjunction is equivalen... |
intn3an1d 1480 |
Introduction of a triple c... |
intn3an2d 1481 |
Introduction of a triple c... |
intn3an3d 1482 |
Introduction of a triple c... |
an3andi 1483 |
Distribution of conjunctio... |
an33rean 1484 |
Rearrange a 9-fold conjunc... |
an33reanOLD 1485 |
Obsolete version of ~ an33... |
nanan 1488 |
Conjunction in terms of al... |
dfnan2 1489 |
Alternative denial in term... |
nanor 1490 |
Alternative denial in term... |
nancom 1491 |
Alternative denial is comm... |
nannan 1492 |
Nested alternative denials... |
nanim 1493 |
Implication in terms of al... |
nannot 1494 |
Negation in terms of alter... |
nanbi 1495 |
Biconditional in terms of ... |
nanbi1 1496 |
Introduce a right anti-con... |
nanbi2 1497 |
Introduce a left anti-conj... |
nanbi12 1498 |
Join two logical equivalen... |
nanbi1i 1499 |
Introduce a right anti-con... |
nanbi2i 1500 |
Introduce a left anti-conj... |
nanbi12i 1501 |
Join two logical equivalen... |
nanbi1d 1502 |
Introduce a right anti-con... |
nanbi2d 1503 |
Introduce a left anti-conj... |
nanbi12d 1504 |
Join two logical equivalen... |
nanass 1505 |
A characterization of when... |
xnor 1508 |
Two ways to write XNOR (ex... |
xorcom 1509 |
The connector ` \/_ ` is c... |
xorcomOLD 1510 |
Obsolete version of ~ xorc... |
xorass 1511 |
The connector ` \/_ ` is a... |
excxor 1512 |
This tautology shows that ... |
xor2 1513 |
Two ways to express "exclu... |
xoror 1514 |
Exclusive disjunction impl... |
xornan 1515 |
Exclusive disjunction impl... |
xornan2 1516 |
XOR implies NAND (written ... |
xorneg2 1517 |
The connector ` \/_ ` is n... |
xorneg1 1518 |
The connector ` \/_ ` is n... |
xorneg 1519 |
The connector ` \/_ ` is u... |
xorbi12i 1520 |
Equality property for excl... |
xorbi12iOLD 1521 |
Obsolete version of ~ xorb... |
xorbi12d 1522 |
Equality property for excl... |
anxordi 1523 |
Conjunction distributes ov... |
xorexmid 1524 |
Exclusive-or variant of th... |
norcom 1527 |
The connector ` -\/ ` is c... |
norcomOLD 1528 |
Obsolete version of ~ norc... |
nornot 1529 |
` -. ` is expressible via ... |
nornotOLD 1530 |
Obsolete version of ~ norn... |
noran 1531 |
` /\ ` is expressible via ... |
noranOLD 1532 |
Obsolete version of ~ nora... |
noror 1533 |
` \/ ` is expressible via ... |
nororOLD 1534 |
Obsolete version of ~ noro... |
norasslem1 1535 |
This lemma shows the equiv... |
norasslem2 1536 |
This lemma specializes ~ b... |
norasslem3 1537 |
This lemma specializes ~ b... |
norass 1538 |
A characterization of when... |
norassOLD 1539 |
Obsolete version of ~ nora... |
trujust 1544 |
Soundness justification th... |
tru 1546 |
The truth value ` T. ` is ... |
dftru2 1547 |
An alternate definition of... |
trut 1548 |
A proposition is equivalen... |
mptru 1549 |
Eliminate ` T. ` as an ant... |
tbtru 1550 |
A proposition is equivalen... |
bitru 1551 |
A theorem is equivalent to... |
trud 1552 |
Anything implies ` T. ` . ... |
truan 1553 |
True can be removed from a... |
fal 1556 |
The truth value ` F. ` is ... |
nbfal 1557 |
The negation of a proposit... |
bifal 1558 |
A contradiction is equival... |
falim 1559 |
The truth value ` F. ` imp... |
falimd 1560 |
The truth value ` F. ` imp... |
dfnot 1561 |
Given falsum ` F. ` , we c... |
inegd 1562 |
Negation introduction rule... |
efald 1563 |
Deduction based on reducti... |
pm2.21fal 1564 |
If a wff and its negation ... |
truimtru 1565 |
A ` -> ` identity. (Contr... |
truimfal 1566 |
A ` -> ` identity. (Contr... |
falimtru 1567 |
A ` -> ` identity. (Contr... |
falimfal 1568 |
A ` -> ` identity. (Contr... |
nottru 1569 |
A ` -. ` identity. (Contr... |
notfal 1570 |
A ` -. ` identity. (Contr... |
trubitru 1571 |
A ` <-> ` identity. (Cont... |
falbitru 1572 |
A ` <-> ` identity. (Cont... |
trubifal 1573 |
A ` <-> ` identity. (Cont... |
falbifal 1574 |
A ` <-> ` identity. (Cont... |
truantru 1575 |
A ` /\ ` identity. (Contr... |
truanfal 1576 |
A ` /\ ` identity. (Contr... |
falantru 1577 |
A ` /\ ` identity. (Contr... |
falanfal 1578 |
A ` /\ ` identity. (Contr... |
truortru 1579 |
A ` \/ ` identity. (Contr... |
truorfal 1580 |
A ` \/ ` identity. (Contr... |
falortru 1581 |
A ` \/ ` identity. (Contr... |
falorfal 1582 |
A ` \/ ` identity. (Contr... |
trunantru 1583 |
A ` -/\ ` identity. (Cont... |
trunanfal 1584 |
A ` -/\ ` identity. (Cont... |
falnantru 1585 |
A ` -/\ ` identity. (Cont... |
falnanfal 1586 |
A ` -/\ ` identity. (Cont... |
truxortru 1587 |
A ` \/_ ` identity. (Cont... |
truxorfal 1588 |
A ` \/_ ` identity. (Cont... |
falxortru 1589 |
A ` \/_ ` identity. (Cont... |
falxorfal 1590 |
A ` \/_ ` identity. (Cont... |
trunortru 1591 |
A ` -\/ ` identity. (Cont... |
trunortruOLD 1592 |
Obsolete version of ~ trun... |
trunorfal 1593 |
A ` -\/ ` identity. (Cont... |
trunorfalOLD 1594 |
Obsolete version of ~ trun... |
falnortru 1595 |
A ` -\/ ` identity. (Cont... |
falnorfal 1596 |
A ` -\/ ` identity. (Cont... |
falnorfalOLD 1597 |
Obsolete version of ~ faln... |
hadbi123d 1600 |
Equality theorem for the a... |
hadbi123i 1601 |
Equality theorem for the a... |
hadass 1602 |
Associative law for the ad... |
hadbi 1603 |
The adder sum is the same ... |
hadcoma 1604 |
Commutative law for the ad... |
hadcomaOLD 1605 |
Obsolete version of ~ hadc... |
hadcomb 1606 |
Commutative law for the ad... |
hadrot 1607 |
Rotation law for the adder... |
hadnot 1608 |
The adder sum distributes ... |
had1 1609 |
If the first input is true... |
had0 1610 |
If the first input is fals... |
hadifp 1611 |
The value of the adder sum... |
cador 1614 |
The adder carry in disjunc... |
cadan 1615 |
The adder carry in conjunc... |
cadbi123d 1616 |
Equality theorem for the a... |
cadbi123i 1617 |
Equality theorem for the a... |
cadcoma 1618 |
Commutative law for the ad... |
cadcomb 1619 |
Commutative law for the ad... |
cadrot 1620 |
Rotation law for the adder... |
cadnot 1621 |
The adder carry distribute... |
cad11 1622 |
If (at least) two inputs a... |
cad1 1623 |
If one input is true, then... |
cad0 1624 |
If one input is false, the... |
cad0OLD 1625 |
Obsolete version of ~ cad0... |
cadifp 1626 |
The value of the carry is,... |
cadtru 1627 |
The adder carry is true as... |
minimp 1628 |
A single axiom for minimal... |
minimp-syllsimp 1629 |
Derivation of Syll-Simp ( ... |
minimp-ax1 1630 |
Derivation of ~ ax-1 from ... |
minimp-ax2c 1631 |
Derivation of a commuted f... |
minimp-ax2 1632 |
Derivation of ~ ax-2 from ... |
minimp-pm2.43 1633 |
Derivation of ~ pm2.43 (al... |
impsingle 1634 |
The shortest single axiom ... |
impsingle-step4 1635 |
Derivation of impsingle-st... |
impsingle-step8 1636 |
Derivation of impsingle-st... |
impsingle-ax1 1637 |
Derivation of impsingle-ax... |
impsingle-step15 1638 |
Derivation of impsingle-st... |
impsingle-step18 1639 |
Derivation of impsingle-st... |
impsingle-step19 1640 |
Derivation of impsingle-st... |
impsingle-step20 1641 |
Derivation of impsingle-st... |
impsingle-step21 1642 |
Derivation of impsingle-st... |
impsingle-step22 1643 |
Derivation of impsingle-st... |
impsingle-step25 1644 |
Derivation of impsingle-st... |
impsingle-imim1 1645 |
Derivation of impsingle-im... |
impsingle-peirce 1646 |
Derivation of impsingle-pe... |
tarski-bernays-ax2 1647 |
Derivation of ~ ax-2 from ... |
meredith 1648 |
Carew Meredith's sole axio... |
merlem1 1649 |
Step 3 of Meredith's proof... |
merlem2 1650 |
Step 4 of Meredith's proof... |
merlem3 1651 |
Step 7 of Meredith's proof... |
merlem4 1652 |
Step 8 of Meredith's proof... |
merlem5 1653 |
Step 11 of Meredith's proo... |
merlem6 1654 |
Step 12 of Meredith's proo... |
merlem7 1655 |
Between steps 14 and 15 of... |
merlem8 1656 |
Step 15 of Meredith's proo... |
merlem9 1657 |
Step 18 of Meredith's proo... |
merlem10 1658 |
Step 19 of Meredith's proo... |
merlem11 1659 |
Step 20 of Meredith's proo... |
merlem12 1660 |
Step 28 of Meredith's proo... |
merlem13 1661 |
Step 35 of Meredith's proo... |
luk-1 1662 |
1 of 3 axioms for proposit... |
luk-2 1663 |
2 of 3 axioms for proposit... |
luk-3 1664 |
3 of 3 axioms for proposit... |
luklem1 1665 |
Used to rederive standard ... |
luklem2 1666 |
Used to rederive standard ... |
luklem3 1667 |
Used to rederive standard ... |
luklem4 1668 |
Used to rederive standard ... |
luklem5 1669 |
Used to rederive standard ... |
luklem6 1670 |
Used to rederive standard ... |
luklem7 1671 |
Used to rederive standard ... |
luklem8 1672 |
Used to rederive standard ... |
ax1 1673 |
Standard propositional axi... |
ax2 1674 |
Standard propositional axi... |
ax3 1675 |
Standard propositional axi... |
nic-dfim 1676 |
This theorem "defines" imp... |
nic-dfneg 1677 |
This theorem "defines" neg... |
nic-mp 1678 |
Derive Nicod's rule of mod... |
nic-mpALT 1679 |
A direct proof of ~ nic-mp... |
nic-ax 1680 |
Nicod's axiom derived from... |
nic-axALT 1681 |
A direct proof of ~ nic-ax... |
nic-imp 1682 |
Inference for ~ nic-mp usi... |
nic-idlem1 1683 |
Lemma for ~ nic-id . (Con... |
nic-idlem2 1684 |
Lemma for ~ nic-id . Infe... |
nic-id 1685 |
Theorem ~ id expressed wit... |
nic-swap 1686 |
The connector ` -/\ ` is s... |
nic-isw1 1687 |
Inference version of ~ nic... |
nic-isw2 1688 |
Inference for swapping nes... |
nic-iimp1 1689 |
Inference version of ~ nic... |
nic-iimp2 1690 |
Inference version of ~ nic... |
nic-idel 1691 |
Inference to remove the tr... |
nic-ich 1692 |
Chained inference. (Contr... |
nic-idbl 1693 |
Double the terms. Since d... |
nic-bijust 1694 |
Biconditional justificatio... |
nic-bi1 1695 |
Inference to extract one s... |
nic-bi2 1696 |
Inference to extract the o... |
nic-stdmp 1697 |
Derive the standard modus ... |
nic-luk1 1698 |
Proof of ~ luk-1 from ~ ni... |
nic-luk2 1699 |
Proof of ~ luk-2 from ~ ni... |
nic-luk3 1700 |
Proof of ~ luk-3 from ~ ni... |
lukshef-ax1 1701 |
This alternative axiom for... |
lukshefth1 1702 |
Lemma for ~ renicax . (Co... |
lukshefth2 1703 |
Lemma for ~ renicax . (Co... |
renicax 1704 |
A rederivation of ~ nic-ax... |
tbw-bijust 1705 |
Justification for ~ tbw-ne... |
tbw-negdf 1706 |
The definition of negation... |
tbw-ax1 1707 |
The first of four axioms i... |
tbw-ax2 1708 |
The second of four axioms ... |
tbw-ax3 1709 |
The third of four axioms i... |
tbw-ax4 1710 |
The fourth of four axioms ... |
tbwsyl 1711 |
Used to rederive the Lukas... |
tbwlem1 1712 |
Used to rederive the Lukas... |
tbwlem2 1713 |
Used to rederive the Lukas... |
tbwlem3 1714 |
Used to rederive the Lukas... |
tbwlem4 1715 |
Used to rederive the Lukas... |
tbwlem5 1716 |
Used to rederive the Lukas... |
re1luk1 1717 |
~ luk-1 derived from the T... |
re1luk2 1718 |
~ luk-2 derived from the T... |
re1luk3 1719 |
~ luk-3 derived from the T... |
merco1 1720 |
A single axiom for proposi... |
merco1lem1 1721 |
Used to rederive the Tarsk... |
retbwax4 1722 |
~ tbw-ax4 rederived from ~... |
retbwax2 1723 |
~ tbw-ax2 rederived from ~... |
merco1lem2 1724 |
Used to rederive the Tarsk... |
merco1lem3 1725 |
Used to rederive the Tarsk... |
merco1lem4 1726 |
Used to rederive the Tarsk... |
merco1lem5 1727 |
Used to rederive the Tarsk... |
merco1lem6 1728 |
Used to rederive the Tarsk... |
merco1lem7 1729 |
Used to rederive the Tarsk... |
retbwax3 1730 |
~ tbw-ax3 rederived from ~... |
merco1lem8 1731 |
Used to rederive the Tarsk... |
merco1lem9 1732 |
Used to rederive the Tarsk... |
merco1lem10 1733 |
Used to rederive the Tarsk... |
merco1lem11 1734 |
Used to rederive the Tarsk... |
merco1lem12 1735 |
Used to rederive the Tarsk... |
merco1lem13 1736 |
Used to rederive the Tarsk... |
merco1lem14 1737 |
Used to rederive the Tarsk... |
merco1lem15 1738 |
Used to rederive the Tarsk... |
merco1lem16 1739 |
Used to rederive the Tarsk... |
merco1lem17 1740 |
Used to rederive the Tarsk... |
merco1lem18 1741 |
Used to rederive the Tarsk... |
retbwax1 1742 |
~ tbw-ax1 rederived from ~... |
merco2 1743 |
A single axiom for proposi... |
mercolem1 1744 |
Used to rederive the Tarsk... |
mercolem2 1745 |
Used to rederive the Tarsk... |
mercolem3 1746 |
Used to rederive the Tarsk... |
mercolem4 1747 |
Used to rederive the Tarsk... |
mercolem5 1748 |
Used to rederive the Tarsk... |
mercolem6 1749 |
Used to rederive the Tarsk... |
mercolem7 1750 |
Used to rederive the Tarsk... |
mercolem8 1751 |
Used to rederive the Tarsk... |
re1tbw1 1752 |
~ tbw-ax1 rederived from ~... |
re1tbw2 1753 |
~ tbw-ax2 rederived from ~... |
re1tbw3 1754 |
~ tbw-ax3 rederived from ~... |
re1tbw4 1755 |
~ tbw-ax4 rederived from ~... |
rb-bijust 1756 |
Justification for ~ rb-imd... |
rb-imdf 1757 |
The definition of implicat... |
anmp 1758 |
Modus ponens for ` { \/ , ... |
rb-ax1 1759 |
The first of four axioms i... |
rb-ax2 1760 |
The second of four axioms ... |
rb-ax3 1761 |
The third of four axioms i... |
rb-ax4 1762 |
The fourth of four axioms ... |
rbsyl 1763 |
Used to rederive the Lukas... |
rblem1 1764 |
Used to rederive the Lukas... |
rblem2 1765 |
Used to rederive the Lukas... |
rblem3 1766 |
Used to rederive the Lukas... |
rblem4 1767 |
Used to rederive the Lukas... |
rblem5 1768 |
Used to rederive the Lukas... |
rblem6 1769 |
Used to rederive the Lukas... |
rblem7 1770 |
Used to rederive the Lukas... |
re1axmp 1771 |
~ ax-mp derived from Russe... |
re2luk1 1772 |
~ luk-1 derived from Russe... |
re2luk2 1773 |
~ luk-2 derived from Russe... |
re2luk3 1774 |
~ luk-3 derived from Russe... |
mptnan 1775 |
Modus ponendo tollens 1, o... |
mptxor 1776 |
Modus ponendo tollens 2, o... |
mtpor 1777 |
Modus tollendo ponens (inc... |
mtpxor 1778 |
Modus tollendo ponens (ori... |
stoic1a 1779 |
Stoic logic Thema 1 (part ... |
stoic1b 1780 |
Stoic logic Thema 1 (part ... |
stoic2a 1781 |
Stoic logic Thema 2 versio... |
stoic2b 1782 |
Stoic logic Thema 2 versio... |
stoic3 1783 |
Stoic logic Thema 3. Stat... |
stoic4a 1784 |
Stoic logic Thema 4 versio... |
stoic4b 1785 |
Stoic logic Thema 4 versio... |
alnex 1788 |
Universal quantification o... |
eximal 1789 |
An equivalence between an ... |
nf2 1792 |
Alternate definition of no... |
nf3 1793 |
Alternate definition of no... |
nf4 1794 |
Alternate definition of no... |
nfi 1795 |
Deduce that ` x ` is not f... |
nfri 1796 |
Consequence of the definit... |
nfd 1797 |
Deduce that ` x ` is not f... |
nfrd 1798 |
Consequence of the definit... |
nftht 1799 |
Closed form of ~ nfth . (... |
nfntht 1800 |
Closed form of ~ nfnth . ... |
nfntht2 1801 |
Closed form of ~ nfnth . ... |
gen2 1803 |
Generalization applied twi... |
mpg 1804 |
Modus ponens combined with... |
mpgbi 1805 |
Modus ponens on biconditio... |
mpgbir 1806 |
Modus ponens on biconditio... |
nex 1807 |
Generalization rule for ne... |
nfth 1808 |
No variable is (effectivel... |
nfnth 1809 |
No variable is (effectivel... |
hbth 1810 |
No variable is (effectivel... |
nftru 1811 |
The true constant has no f... |
nffal 1812 |
The false constant has no ... |
sptruw 1813 |
Version of ~ sp when ` ph ... |
altru 1814 |
For all sets, ` T. ` is tr... |
alfal 1815 |
For all sets, ` -. F. ` is... |
alim 1817 |
Restatement of Axiom ~ ax-... |
alimi 1818 |
Inference quantifying both... |
2alimi 1819 |
Inference doubly quantifyi... |
ala1 1820 |
Add an antecedent in a uni... |
al2im 1821 |
Closed form of ~ al2imi . ... |
al2imi 1822 |
Inference quantifying ante... |
alanimi 1823 |
Variant of ~ al2imi with c... |
alimdh 1824 |
Deduction form of Theorem ... |
albi 1825 |
Theorem 19.15 of [Margaris... |
albii 1826 |
Inference adding universal... |
2albii 1827 |
Inference adding two unive... |
sylgt 1828 |
Closed form of ~ sylg . (... |
sylg 1829 |
A syllogism combined with ... |
alrimih 1830 |
Inference form of Theorem ... |
hbxfrbi 1831 |
A utility lemma to transfe... |
alex 1832 |
Universal quantifier in te... |
exnal 1833 |
Existential quantification... |
2nalexn 1834 |
Part of theorem *11.5 in [... |
2exnaln 1835 |
Theorem *11.22 in [Whitehe... |
2nexaln 1836 |
Theorem *11.25 in [Whitehe... |
alimex 1837 |
An equivalence between an ... |
aleximi 1838 |
A variant of ~ al2imi : in... |
alexbii 1839 |
Biconditional form of ~ al... |
exim 1840 |
Theorem 19.22 of [Margaris... |
eximi 1841 |
Inference adding existenti... |
2eximi 1842 |
Inference adding two exist... |
eximii 1843 |
Inference associated with ... |
exa1 1844 |
Add an antecedent in an ex... |
19.38 1845 |
Theorem 19.38 of [Margaris... |
19.38a 1846 |
Under a nonfreeness hypoth... |
19.38b 1847 |
Under a nonfreeness hypoth... |
imnang 1848 |
Quantified implication in ... |
alinexa 1849 |
A transformation of quanti... |
exnalimn 1850 |
Existential quantification... |
alexn 1851 |
A relationship between two... |
2exnexn 1852 |
Theorem *11.51 in [Whitehe... |
exbi 1853 |
Theorem 19.18 of [Margaris... |
exbii 1854 |
Inference adding existenti... |
2exbii 1855 |
Inference adding two exist... |
3exbii 1856 |
Inference adding three exi... |
nfbiit 1857 |
Equivalence theorem for th... |
nfbii 1858 |
Equality theorem for the n... |
nfxfr 1859 |
A utility lemma to transfe... |
nfxfrd 1860 |
A utility lemma to transfe... |
nfnbi 1861 |
A variable is nonfree in a... |
nfnt 1862 |
If a variable is nonfree i... |
nfn 1863 |
Inference associated with ... |
nfnd 1864 |
Deduction associated with ... |
exanali 1865 |
A transformation of quanti... |
2exanali 1866 |
Theorem *11.521 in [Whiteh... |
exancom 1867 |
Commutation of conjunction... |
exan 1868 |
Place a conjunct in the sc... |
alrimdh 1869 |
Deduction form of Theorem ... |
eximdh 1870 |
Deduction from Theorem 19.... |
nexdh 1871 |
Deduction for generalizati... |
albidh 1872 |
Formula-building rule for ... |
exbidh 1873 |
Formula-building rule for ... |
exsimpl 1874 |
Simplification of an exist... |
exsimpr 1875 |
Simplification of an exist... |
19.26 1876 |
Theorem 19.26 of [Margaris... |
19.26-2 1877 |
Theorem ~ 19.26 with two q... |
19.26-3an 1878 |
Theorem ~ 19.26 with tripl... |
19.29 1879 |
Theorem 19.29 of [Margaris... |
19.29r 1880 |
Variation of ~ 19.29 . (C... |
19.29r2 1881 |
Variation of ~ 19.29r with... |
19.29x 1882 |
Variation of ~ 19.29 with ... |
19.35 1883 |
Theorem 19.35 of [Margaris... |
19.35i 1884 |
Inference associated with ... |
19.35ri 1885 |
Inference associated with ... |
19.25 1886 |
Theorem 19.25 of [Margaris... |
19.30 1887 |
Theorem 19.30 of [Margaris... |
19.43 1888 |
Theorem 19.43 of [Margaris... |
19.43OLD 1889 |
Obsolete proof of ~ 19.43 ... |
19.33 1890 |
Theorem 19.33 of [Margaris... |
19.33b 1891 |
The antecedent provides a ... |
19.40 1892 |
Theorem 19.40 of [Margaris... |
19.40-2 1893 |
Theorem *11.42 in [Whitehe... |
19.40b 1894 |
The antecedent provides a ... |
albiim 1895 |
Split a biconditional and ... |
2albiim 1896 |
Split a biconditional and ... |
exintrbi 1897 |
Add/remove a conjunct in t... |
exintr 1898 |
Introduce a conjunct in th... |
alsyl 1899 |
Universally quantified and... |
nfimd 1900 |
If in a context ` x ` is n... |
nfimt 1901 |
Closed form of ~ nfim and ... |
nfim 1902 |
If ` x ` is not free in ` ... |
nfand 1903 |
If in a context ` x ` is n... |
nf3and 1904 |
Deduction form of bound-va... |
nfan 1905 |
If ` x ` is not free in ` ... |
nfnan 1906 |
If ` x ` is not free in ` ... |
nf3an 1907 |
If ` x ` is not free in ` ... |
nfbid 1908 |
If in a context ` x ` is n... |
nfbi 1909 |
If ` x ` is not free in ` ... |
nfor 1910 |
If ` x ` is not free in ` ... |
nf3or 1911 |
If ` x ` is not free in ` ... |
empty 1912 |
Two characterizations of t... |
emptyex 1913 |
On the empty domain, any e... |
emptyal 1914 |
On the empty domain, any u... |
emptynf 1915 |
On the empty domain, any v... |
ax5d 1917 |
Version of ~ ax-5 with ant... |
ax5e 1918 |
A rephrasing of ~ ax-5 usi... |
ax5ea 1919 |
If a formula holds for som... |
nfv 1920 |
If ` x ` is not present in... |
nfvd 1921 |
~ nfv with antecedent. Us... |
alimdv 1922 |
Deduction form of Theorem ... |
eximdv 1923 |
Deduction form of Theorem ... |
2alimdv 1924 |
Deduction form of Theorem ... |
2eximdv 1925 |
Deduction form of Theorem ... |
albidv 1926 |
Formula-building rule for ... |
exbidv 1927 |
Formula-building rule for ... |
nfbidv 1928 |
An equality theorem for no... |
2albidv 1929 |
Formula-building rule for ... |
2exbidv 1930 |
Formula-building rule for ... |
3exbidv 1931 |
Formula-building rule for ... |
4exbidv 1932 |
Formula-building rule for ... |
alrimiv 1933 |
Inference form of Theorem ... |
alrimivv 1934 |
Inference form of Theorem ... |
alrimdv 1935 |
Deduction form of Theorem ... |
exlimiv 1936 |
Inference form of Theorem ... |
exlimiiv 1937 |
Inference (Rule C) associa... |
exlimivv 1938 |
Inference form of Theorem ... |
exlimdv 1939 |
Deduction form of Theorem ... |
exlimdvv 1940 |
Deduction form of Theorem ... |
exlimddv 1941 |
Existential elimination ru... |
nexdv 1942 |
Deduction for generalizati... |
2ax5 1943 |
Quantification of two vari... |
stdpc5v 1944 |
Version of ~ stdpc5 with a... |
19.21v 1945 |
Version of ~ 19.21 with a ... |
19.32v 1946 |
Version of ~ 19.32 with a ... |
19.31v 1947 |
Version of ~ 19.31 with a ... |
19.23v 1948 |
Version of ~ 19.23 with a ... |
19.23vv 1949 |
Theorem ~ 19.23v extended ... |
pm11.53v 1950 |
Version of ~ pm11.53 with ... |
19.36imv 1951 |
One direction of ~ 19.36v ... |
19.36imvOLD 1952 |
Obsolete version of ~ 19.3... |
19.36iv 1953 |
Inference associated with ... |
19.37imv 1954 |
One direction of ~ 19.37v ... |
19.37iv 1955 |
Inference associated with ... |
19.41v 1956 |
Version of ~ 19.41 with a ... |
19.41vv 1957 |
Version of ~ 19.41 with tw... |
19.41vvv 1958 |
Version of ~ 19.41 with th... |
19.41vvvv 1959 |
Version of ~ 19.41 with fo... |
19.42v 1960 |
Version of ~ 19.42 with a ... |
exdistr 1961 |
Distribution of existentia... |
exdistrv 1962 |
Distribute a pair of exist... |
4exdistrv 1963 |
Distribute two pairs of ex... |
19.42vv 1964 |
Version of ~ 19.42 with tw... |
exdistr2 1965 |
Distribution of existentia... |
19.42vvv 1966 |
Version of ~ 19.42 with th... |
3exdistr 1967 |
Distribution of existentia... |
4exdistr 1968 |
Distribution of existentia... |
weq 1969 |
Extend wff definition to i... |
speimfw 1970 |
Specialization, with addit... |
speimfwALT 1971 |
Alternate proof of ~ speim... |
spimfw 1972 |
Specialization, with addit... |
ax12i 1973 |
Inference that has ~ ax-12... |
ax6v 1975 |
Axiom B7 of [Tarski] p. 75... |
ax6ev 1976 |
At least one individual ex... |
spimw 1977 |
Specialization. Lemma 8 o... |
spimew 1978 |
Existential introduction, ... |
spimehOLD 1979 |
Obsolete version of ~ spim... |
speiv 1980 |
Inference from existential... |
speivw 1981 |
Version of ~ spei with a d... |
exgen 1982 |
Rule of existential genera... |
exgenOLD 1983 |
Obsolete version of ~ exge... |
extru 1984 |
There exists a variable su... |
19.2 1985 |
Theorem 19.2 of [Margaris]... |
19.2d 1986 |
Deduction associated with ... |
19.8w 1987 |
Weak version of ~ 19.8a an... |
spnfw 1988 |
Weak version of ~ sp . Us... |
spvw 1989 |
Version of ~ sp when ` x `... |
19.3v 1990 |
Version of ~ 19.3 with a d... |
19.8v 1991 |
Version of ~ 19.8a with a ... |
19.9v 1992 |
Version of ~ 19.9 with a d... |
19.3vOLD 1993 |
Obsolete version of ~ 19.3... |
spvwOLD 1994 |
Obsolete version of ~ spvw... |
19.39 1995 |
Theorem 19.39 of [Margaris... |
19.24 1996 |
Theorem 19.24 of [Margaris... |
19.34 1997 |
Theorem 19.34 of [Margaris... |
19.36v 1998 |
Version of ~ 19.36 with a ... |
19.12vvv 1999 |
Version of ~ 19.12vv with ... |
19.27v 2000 |
Version of ~ 19.27 with a ... |
19.28v 2001 |
Version of ~ 19.28 with a ... |
19.37v 2002 |
Version of ~ 19.37 with a ... |
19.44v 2003 |
Version of ~ 19.44 with a ... |
19.45v 2004 |
Version of ~ 19.45 with a ... |
spimevw 2005 |
Existential introduction, ... |
spimvw 2006 |
A weak form of specializat... |
spvv 2007 |
Specialization, using impl... |
spfalw 2008 |
Version of ~ sp when ` ph ... |
chvarvv 2009 |
Implicit substitution of `... |
equs4v 2010 |
Version of ~ equs4 with a ... |
alequexv 2011 |
Version of ~ equs4v with i... |
exsbim 2012 |
One direction of the equiv... |
equsv 2013 |
If a formula does not cont... |
equsalvw 2014 |
Version of ~ equsalv with ... |
equsexvw 2015 |
Version of ~ equsexv with ... |
equsexvwOLD 2016 |
Obsolete version of ~ equs... |
cbvaliw 2017 |
Change bound variable. Us... |
cbvalivw 2018 |
Change bound variable. Us... |
ax7v 2020 |
Weakened version of ~ ax-7... |
ax7v1 2021 |
First of two weakened vers... |
ax7v2 2022 |
Second of two weakened ver... |
equid 2023 |
Identity law for equality.... |
nfequid 2024 |
Bound-variable hypothesis ... |
equcomiv 2025 |
Weaker form of ~ equcomi w... |
ax6evr 2026 |
A commuted form of ~ ax6ev... |
ax7 2027 |
Proof of ~ ax-7 from ~ ax7... |
equcomi 2028 |
Commutative law for equali... |
equcom 2029 |
Commutative law for equali... |
equcomd 2030 |
Deduction form of ~ equcom... |
equcoms 2031 |
An inference commuting equ... |
equtr 2032 |
A transitive law for equal... |
equtrr 2033 |
A transitive law for equal... |
equeuclr 2034 |
Commuted version of ~ eque... |
equeucl 2035 |
Equality is a left-Euclide... |
equequ1 2036 |
An equivalence law for equ... |
equequ2 2037 |
An equivalence law for equ... |
equtr2 2038 |
Equality is a left-Euclide... |
stdpc6 2039 |
One of the two equality ax... |
equvinv 2040 |
A variable introduction la... |
equvinva 2041 |
A modified version of the ... |
equvelv 2042 |
A biconditional form of ~ ... |
ax13b 2043 |
An equivalence between two... |
spfw 2044 |
Weak version of ~ sp . Us... |
spw 2045 |
Weak version of the specia... |
cbvalw 2046 |
Change bound variable. Us... |
cbvalvw 2047 |
Change bound variable. Us... |
cbvexvw 2048 |
Change bound variable. Us... |
cbvaldvaw 2049 |
Rule used to change the bo... |
cbvexdvaw 2050 |
Rule used to change the bo... |
cbval2vw 2051 |
Rule used to change bound ... |
cbvex2vw 2052 |
Rule used to change bound ... |
cbvex4vw 2053 |
Rule used to change bound ... |
alcomiw 2054 |
Weak version of ~ alcom . ... |
alcomiwOLD 2055 |
Obsolete version of ~ alco... |
hbn1fw 2056 |
Weak version of ~ ax-10 fr... |
hbn1w 2057 |
Weak version of ~ hbn1 . ... |
hba1w 2058 |
Weak version of ~ hba1 . ... |
hbe1w 2059 |
Weak version of ~ hbe1 . ... |
hbalw 2060 |
Weak version of ~ hbal . ... |
spaev 2061 |
A special instance of ~ sp... |
cbvaev 2062 |
Change bound variable in a... |
aevlem0 2063 |
Lemma for ~ aevlem . Inst... |
aevlem 2064 |
Lemma for ~ aev and ~ axc1... |
aeveq 2065 |
The antecedent ` A. x x = ... |
aev 2066 |
A "distinctor elimination"... |
aev2 2067 |
A version of ~ aev with tw... |
hbaev 2068 |
All variables are effectiv... |
naev 2069 |
If some set variables can ... |
naev2 2070 |
Generalization of ~ hbnaev... |
hbnaev 2071 |
Any variable is free in ` ... |
sbjust 2072 |
Justification theorem for ... |
sbt 2075 |
A substitution into a theo... |
sbtru 2076 |
The result of substituting... |
stdpc4 2077 |
The specialization axiom o... |
sbtALT 2078 |
Alternate proof of ~ sbt ,... |
2stdpc4 2079 |
A double specialization us... |
sbi1 2080 |
Distribute substitution ov... |
spsbim 2081 |
Distribute substitution ov... |
spsbbi 2082 |
Biconditional property for... |
sbimi 2083 |
Distribute substitution ov... |
sb2imi 2084 |
Distribute substitution ov... |
sbbii 2085 |
Infer substitution into bo... |
2sbbii 2086 |
Infer double substitution ... |
sbimdv 2087 |
Deduction substituting bot... |
sbbidv 2088 |
Deduction substituting bot... |
sban 2089 |
Conjunction inside and out... |
sb3an 2090 |
Threefold conjunction insi... |
spsbe 2091 |
Existential generalization... |
sbequ 2092 |
Equality property for subs... |
sbequi 2093 |
An equality theorem for su... |
sb6 2094 |
Alternate definition of su... |
2sb6 2095 |
Equivalence for double sub... |
sb1v 2096 |
One direction of ~ sb5 , p... |
sbv 2097 |
Substitution for a variabl... |
sbcom4 2098 |
Commutativity law for subs... |
pm11.07 2099 |
Axiom *11.07 in [Whitehead... |
sbrimvlem 2100 |
Common proof template for ... |
sbrimvw 2101 |
Substitution in an implica... |
sbievw 2102 |
Conversion of implicit sub... |
sbiedvw 2103 |
Conversion of implicit sub... |
2sbievw 2104 |
Conversion of double impli... |
sbcom3vv 2105 |
Substituting ` y ` for ` x... |
sbievw2 2106 |
~ sbievw applied twice, av... |
sbco2vv 2107 |
A composition law for subs... |
equsb3 2108 |
Substitution in an equalit... |
equsb3r 2109 |
Substitution applied to th... |
equsb1v 2110 |
Substitution applied to an... |
nsb 2111 |
Any substitution in an alw... |
sbn1 2112 |
One direction of ~ sbn , u... |
wel 2114 |
Extend wff definition to i... |
ax8v 2116 |
Weakened version of ~ ax-8... |
ax8v1 2117 |
First of two weakened vers... |
ax8v2 2118 |
Second of two weakened ver... |
ax8 2119 |
Proof of ~ ax-8 from ~ ax8... |
elequ1 2120 |
An identity law for the no... |
elsb3 2121 |
Substitution applied to an... |
cleljust 2122 |
When the class variables i... |
ax9v 2124 |
Weakened version of ~ ax-9... |
ax9v1 2125 |
First of two weakened vers... |
ax9v2 2126 |
Second of two weakened ver... |
ax9 2127 |
Proof of ~ ax-9 from ~ ax9... |
elequ2 2128 |
An identity law for the no... |
elsb4 2129 |
Substitution applied to an... |
elequ2g 2130 |
A form of ~ elequ2 with a ... |
ax6dgen 2131 |
Tarski's system uses the w... |
ax10w 2132 |
Weak version of ~ ax-10 fr... |
ax11w 2133 |
Weak version of ~ ax-11 fr... |
ax11dgen 2134 |
Degenerate instance of ~ a... |
ax12wlem 2135 |
Lemma for weak version of ... |
ax12w 2136 |
Weak version of ~ ax-12 fr... |
ax12dgen 2137 |
Degenerate instance of ~ a... |
ax12wdemo 2138 |
Example of an application ... |
ax13w 2139 |
Weak version (principal in... |
ax13dgen1 2140 |
Degenerate instance of ~ a... |
ax13dgen2 2141 |
Degenerate instance of ~ a... |
ax13dgen3 2142 |
Degenerate instance of ~ a... |
ax13dgen4 2143 |
Degenerate instance of ~ a... |
hbn1 2145 |
Alias for ~ ax-10 to be us... |
hbe1 2146 |
The setvar ` x ` is not fr... |
hbe1a 2147 |
Dual statement of ~ hbe1 .... |
nf5-1 2148 |
One direction of ~ nf5 can... |
nf5i 2149 |
Deduce that ` x ` is not f... |
nf5dh 2150 |
Deduce that ` x ` is not f... |
nf5dv 2151 |
Apply the definition of no... |
nfnaew 2152 |
All variables are effectiv... |
nfnaewOLD 2153 |
Obsolete version of ~ nfna... |
nfe1 2154 |
The setvar ` x ` is not fr... |
nfa1 2155 |
The setvar ` x ` is not fr... |
nfna1 2156 |
A convenience theorem part... |
nfia1 2157 |
Lemma 23 of [Monk2] p. 114... |
nfnf1 2158 |
The setvar ` x ` is not fr... |
modal5 2159 |
The analogue in our predic... |
nfs1v 2160 |
The setvar ` x ` is not fr... |
alcoms 2162 |
Swap quantifiers in an ant... |
alcom 2163 |
Theorem 19.5 of [Margaris]... |
alrot3 2164 |
Theorem *11.21 in [Whitehe... |
alrot4 2165 |
Rotate four universal quan... |
sbal 2166 |
Move universal quantifier ... |
sbalv 2167 |
Quantify with new variable... |
sbcom2 2168 |
Commutativity law for subs... |
excom 2169 |
Theorem 19.11 of [Margaris... |
excomim 2170 |
One direction of Theorem 1... |
excom13 2171 |
Swap 1st and 3rd existenti... |
exrot3 2172 |
Rotate existential quantif... |
exrot4 2173 |
Rotate existential quantif... |
hbal 2174 |
If ` x ` is not free in ` ... |
hbald 2175 |
Deduction form of bound-va... |
hbsbw 2176 |
If ` z ` is not free in ` ... |
nfa2 2177 |
Lemma 24 of [Monk2] p. 114... |
ax12v 2179 |
This is essentially Axiom ... |
ax12v2 2180 |
It is possible to remove a... |
19.8a 2181 |
If a wff is true, it is tr... |
19.8ad 2182 |
If a wff is true, it is tr... |
sp 2183 |
Specialization. A univers... |
spi 2184 |
Inference rule of universa... |
sps 2185 |
Generalization of antecede... |
2sp 2186 |
A double specialization (s... |
spsd 2187 |
Deduction generalizing ant... |
19.2g 2188 |
Theorem 19.2 of [Margaris]... |
19.21bi 2189 |
Inference form of ~ 19.21 ... |
19.21bbi 2190 |
Inference removing two uni... |
19.23bi 2191 |
Inference form of Theorem ... |
nexr 2192 |
Inference associated with ... |
qexmid 2193 |
Quantified excluded middle... |
nf5r 2194 |
Consequence of the definit... |
nf5rOLD 2195 |
Obsolete version of ~ nfrd... |
nf5ri 2196 |
Consequence of the definit... |
nf5rd 2197 |
Consequence of the definit... |
spimedv 2198 |
Deduction version of ~ spi... |
spimefv 2199 |
Version of ~ spime with a ... |
nfim1 2200 |
A closed form of ~ nfim . ... |
nfan1 2201 |
A closed form of ~ nfan . ... |
19.3t 2202 |
Closed form of ~ 19.3 and ... |
19.3 2203 |
A wff may be quantified wi... |
19.9d 2204 |
A deduction version of one... |
19.9t 2205 |
Closed form of ~ 19.9 and ... |
19.9 2206 |
A wff may be existentially... |
19.21t 2207 |
Closed form of Theorem 19.... |
19.21 2208 |
Theorem 19.21 of [Margaris... |
stdpc5 2209 |
An axiom scheme of standar... |
19.21-2 2210 |
Version of ~ 19.21 with tw... |
19.23t 2211 |
Closed form of Theorem 19.... |
19.23 2212 |
Theorem 19.23 of [Margaris... |
alimd 2213 |
Deduction form of Theorem ... |
alrimi 2214 |
Inference form of Theorem ... |
alrimdd 2215 |
Deduction form of Theorem ... |
alrimd 2216 |
Deduction form of Theorem ... |
eximd 2217 |
Deduction form of Theorem ... |
exlimi 2218 |
Inference associated with ... |
exlimd 2219 |
Deduction form of Theorem ... |
exlimimdd 2220 |
Existential elimination ru... |
exlimdd 2221 |
Existential elimination ru... |
nexd 2222 |
Deduction for generalizati... |
albid 2223 |
Formula-building rule for ... |
exbid 2224 |
Formula-building rule for ... |
nfbidf 2225 |
An equality theorem for ef... |
19.16 2226 |
Theorem 19.16 of [Margaris... |
19.17 2227 |
Theorem 19.17 of [Margaris... |
19.27 2228 |
Theorem 19.27 of [Margaris... |
19.28 2229 |
Theorem 19.28 of [Margaris... |
19.19 2230 |
Theorem 19.19 of [Margaris... |
19.36 2231 |
Theorem 19.36 of [Margaris... |
19.36i 2232 |
Inference associated with ... |
19.37 2233 |
Theorem 19.37 of [Margaris... |
19.32 2234 |
Theorem 19.32 of [Margaris... |
19.31 2235 |
Theorem 19.31 of [Margaris... |
19.41 2236 |
Theorem 19.41 of [Margaris... |
19.42 2237 |
Theorem 19.42 of [Margaris... |
19.44 2238 |
Theorem 19.44 of [Margaris... |
19.45 2239 |
Theorem 19.45 of [Margaris... |
spimfv 2240 |
Specialization, using impl... |
chvarfv 2241 |
Implicit substitution of `... |
cbv3v2 2242 |
Version of ~ cbv3 with two... |
sbalex 2243 |
Equivalence of two ways to... |
sb4av 2244 |
Version of ~ sb4a with a d... |
sbimd 2245 |
Deduction substituting bot... |
sbbid 2246 |
Deduction substituting bot... |
2sbbid 2247 |
Deduction doubly substitut... |
sbequ1 2248 |
An equality theorem for su... |
sbequ2 2249 |
An equality theorem for su... |
sbequ2OLD 2250 |
Obsolete version of ~ sbeq... |
stdpc7 2251 |
One of the two equality ax... |
sbequ12 2252 |
An equality theorem for su... |
sbequ12r 2253 |
An equality theorem for su... |
sbelx 2254 |
Elimination of substitutio... |
sbequ12a 2255 |
An equality theorem for su... |
sbid 2256 |
An identity theorem for su... |
sbcov 2257 |
A composition law for subs... |
sb6a 2258 |
Equivalence for substituti... |
sbid2vw 2259 |
Reverting substitution yie... |
axc16g 2260 |
Generalization of ~ axc16 ... |
axc16 2261 |
Proof of older axiom ~ ax-... |
axc16gb 2262 |
Biconditional strengthenin... |
axc16nf 2263 |
If ~ dtru is false, then t... |
axc11v 2264 |
Version of ~ axc11 with a ... |
axc11rv 2265 |
Version of ~ axc11r with a... |
drsb2 2266 |
Formula-building lemma for... |
equsalv 2267 |
An equivalence related to ... |
equsexv 2268 |
An equivalence related to ... |
sbft 2269 |
Substitution has no effect... |
sbf 2270 |
Substitution for a variabl... |
sbf2 2271 |
Substitution has no effect... |
sbh 2272 |
Substitution for a variabl... |
hbs1 2273 |
The setvar ` x ` is not fr... |
nfs1f 2274 |
If ` x ` is not free in ` ... |
sb5 2275 |
Alternate definition of su... |
sb5OLD 2276 |
Obsolete version of ~ sb5 ... |
sb56OLD 2277 |
Obsolete version of ~ sbal... |
equs5av 2278 |
A property related to subs... |
2sb5 2279 |
Equivalence for double sub... |
sbco4lem 2280 |
Lemma for ~ sbco4 . It re... |
sbco4 2281 |
Two ways of exchanging two... |
dfsb7 2282 |
An alternate definition of... |
sbn 2283 |
Negation inside and outsid... |
sbex 2284 |
Move existential quantifie... |
nf5 2285 |
Alternate definition of ~ ... |
nf6 2286 |
An alternate definition of... |
nf5d 2287 |
Deduce that ` x ` is not f... |
nf5di 2288 |
Since the converse holds b... |
19.9h 2289 |
A wff may be existentially... |
19.21h 2290 |
Theorem 19.21 of [Margaris... |
19.23h 2291 |
Theorem 19.23 of [Margaris... |
exlimih 2292 |
Inference associated with ... |
exlimdh 2293 |
Deduction form of Theorem ... |
equsalhw 2294 |
Version of ~ equsalh with ... |
equsexhv 2295 |
An equivalence related to ... |
hba1 2296 |
The setvar ` x ` is not fr... |
hbnt 2297 |
Closed theorem version of ... |
hbn 2298 |
If ` x ` is not free in ` ... |
hbnd 2299 |
Deduction form of bound-va... |
hbim1 2300 |
A closed form of ~ hbim . ... |
hbimd 2301 |
Deduction form of bound-va... |
hbim 2302 |
If ` x ` is not free in ` ... |
hban 2303 |
If ` x ` is not free in ` ... |
hb3an 2304 |
If ` x ` is not free in ` ... |
sbi2 2305 |
Introduction of implicatio... |
sbim 2306 |
Implication inside and out... |
sbrim 2307 |
Substitution in an implica... |
sbrimv 2308 |
Substitution in an implica... |
sblim 2309 |
Substitution in an implica... |
sbor 2310 |
Disjunction inside and out... |
sbbi 2311 |
Equivalence inside and out... |
sblbis 2312 |
Introduce left bicondition... |
sbrbis 2313 |
Introduce right biconditio... |
sbrbif 2314 |
Introduce right biconditio... |
sbiev 2315 |
Conversion of implicit sub... |
sbiedw 2316 |
Conversion of implicit sub... |
sbiedwOLD 2317 |
Obsolete version of ~ sbie... |
axc7 2318 |
Show that the original axi... |
axc7e 2319 |
Abbreviated version of ~ a... |
modal-b 2320 |
The analogue in our predic... |
19.9ht 2321 |
A closed version of ~ 19.9... |
axc4 2322 |
Show that the original axi... |
axc4i 2323 |
Inference version of ~ axc... |
nfal 2324 |
If ` x ` is not free in ` ... |
nfex 2325 |
If ` x ` is not free in ` ... |
hbex 2326 |
If ` x ` is not free in ` ... |
nfnf 2327 |
If ` x ` is not free in ` ... |
19.12 2328 |
Theorem 19.12 of [Margaris... |
nfald 2329 |
Deduction form of ~ nfal .... |
nfexd 2330 |
If ` x ` is not free in ` ... |
nfsbv 2331 |
If ` z ` is not free in ` ... |
hbsbwOLD 2332 |
Obsolete version of ~ hbsb... |
sbco2v 2333 |
A composition law for subs... |
aaan 2334 |
Rearrange universal quanti... |
eeor 2335 |
Rearrange existential quan... |
cbv3v 2336 |
Rule used to change bound ... |
cbv1v 2337 |
Rule used to change bound ... |
cbv2w 2338 |
Rule used to change bound ... |
cbvaldw 2339 |
Deduction used to change b... |
cbvexdw 2340 |
Deduction used to change b... |
cbv3hv 2341 |
Rule used to change bound ... |
cbvalv1 2342 |
Rule used to change bound ... |
cbvexv1 2343 |
Rule used to change bound ... |
cbval2v 2344 |
Rule used to change bound ... |
cbval2vOLD 2345 |
Obsolete version of ~ cbva... |
cbvex2v 2346 |
Rule used to change bound ... |
dvelimhw 2347 |
Proof of ~ dvelimh without... |
pm11.53 2348 |
Theorem *11.53 in [Whitehe... |
19.12vv 2349 |
Special case of ~ 19.12 wh... |
eean 2350 |
Rearrange existential quan... |
eeanv 2351 |
Distribute a pair of exist... |
eeeanv 2352 |
Distribute three existenti... |
ee4anv 2353 |
Distribute two pairs of ex... |
sb8v 2354 |
Substitution of variable i... |
sb8ev 2355 |
Substitution of variable i... |
2sb8ev 2356 |
An equivalent expression f... |
sb6rfv 2357 |
Reversed substitution. Ve... |
sbnf2 2358 |
Two ways of expressing " `... |
exsb 2359 |
An equivalent expression f... |
2exsb 2360 |
An equivalent expression f... |
sbbib 2361 |
Reversal of substitution. ... |
sbbibvv 2362 |
Reversal of substitution. ... |
cleljustALT 2363 |
Alternate proof of ~ clelj... |
cleljustALT2 2364 |
Alternate proof of ~ clelj... |
equs5aALT 2365 |
Alternate proof of ~ equs5... |
equs5eALT 2366 |
Alternate proof of ~ equs5... |
axc11r 2367 |
Same as ~ axc11 but with r... |
dral1v 2368 |
Formula-building lemma for... |
drex1v 2369 |
Formula-building lemma for... |
drnf1v 2370 |
Formula-building lemma for... |
ax13v 2372 |
A weaker version of ~ ax-1... |
ax13lem1 2373 |
A version of ~ ax13v with ... |
ax13 2374 |
Derive ~ ax-13 from ~ ax13... |
ax13lem2 2375 |
Lemma for ~ nfeqf2 . This... |
nfeqf2 2376 |
An equation between setvar... |
dveeq2 2377 |
Quantifier introduction wh... |
nfeqf1 2378 |
An equation between setvar... |
dveeq1 2379 |
Quantifier introduction wh... |
nfeqf 2380 |
A variable is effectively ... |
axc9 2381 |
Derive set.mm's original ~... |
ax6e 2382 |
At least one individual ex... |
ax6 2383 |
Theorem showing that ~ ax-... |
axc10 2384 |
Show that the original axi... |
spimt 2385 |
Closed theorem form of ~ s... |
spim 2386 |
Specialization, using impl... |
spimed 2387 |
Deduction version of ~ spi... |
spime 2388 |
Existential introduction, ... |
spimv 2389 |
A version of ~ spim with a... |
spimvALT 2390 |
Alternate proof of ~ spimv... |
spimev 2391 |
Distinct-variable version ... |
spv 2392 |
Specialization, using impl... |
spei 2393 |
Inference from existential... |
chvar 2394 |
Implicit substitution of `... |
chvarv 2395 |
Implicit substitution of `... |
cbv3 2396 |
Rule used to change bound ... |
cbval 2397 |
Rule used to change bound ... |
cbvex 2398 |
Rule used to change bound ... |
cbvalv 2399 |
Rule used to change bound ... |
cbvexv 2400 |
Rule used to change bound ... |
cbv1 2401 |
Rule used to change bound ... |
cbv2 2402 |
Rule used to change bound ... |
cbv3h 2403 |
Rule used to change bound ... |
cbv1h 2404 |
Rule used to change bound ... |
cbv2h 2405 |
Rule used to change bound ... |
cbvald 2406 |
Deduction used to change b... |
cbvexd 2407 |
Deduction used to change b... |
cbvaldva 2408 |
Rule used to change the bo... |
cbvexdva 2409 |
Rule used to change the bo... |
cbval2 2410 |
Rule used to change bound ... |
cbvex2 2411 |
Rule used to change bound ... |
cbval2vv 2412 |
Rule used to change bound ... |
cbvex2vv 2413 |
Rule used to change bound ... |
cbvex4v 2414 |
Rule used to change bound ... |
equs4 2415 |
Lemma used in proofs of im... |
equsal 2416 |
An equivalence related to ... |
equsex 2417 |
An equivalence related to ... |
equsexALT 2418 |
Alternate proof of ~ equse... |
equsalh 2419 |
An equivalence related to ... |
equsexh 2420 |
An equivalence related to ... |
axc15 2421 |
Derivation of set.mm's ori... |
ax12 2422 |
Rederivation of Axiom ~ ax... |
ax12b 2423 |
A bidirectional version of... |
ax13ALT 2424 |
Alternate proof of ~ ax13 ... |
axc11n 2425 |
Derive set.mm's original ~... |
aecom 2426 |
Commutation law for identi... |
aecoms 2427 |
A commutation rule for ide... |
naecoms 2428 |
A commutation rule for dis... |
axc11 2429 |
Show that ~ ax-c11 can be ... |
hbae 2430 |
All variables are effectiv... |
hbnae 2431 |
All variables are effectiv... |
nfae 2432 |
All variables are effectiv... |
nfnae 2433 |
All variables are effectiv... |
hbnaes 2434 |
Rule that applies ~ hbnae ... |
axc16i 2435 |
Inference with ~ axc16 as ... |
axc16nfALT 2436 |
Alternate proof of ~ axc16... |
dral2 2437 |
Formula-building lemma for... |
dral1 2438 |
Formula-building lemma for... |
dral1ALT 2439 |
Alternate proof of ~ dral1... |
drex1 2440 |
Formula-building lemma for... |
drex2 2441 |
Formula-building lemma for... |
drnf1 2442 |
Formula-building lemma for... |
drnf2 2443 |
Formula-building lemma for... |
nfald2 2444 |
Variation on ~ nfald which... |
nfexd2 2445 |
Variation on ~ nfexd which... |
exdistrf 2446 |
Distribution of existentia... |
dvelimf 2447 |
Version of ~ dvelimv witho... |
dvelimdf 2448 |
Deduction form of ~ dvelim... |
dvelimh 2449 |
Version of ~ dvelim withou... |
dvelim 2450 |
This theorem can be used t... |
dvelimv 2451 |
Similar to ~ dvelim with f... |
dvelimnf 2452 |
Version of ~ dvelim using ... |
dveeq2ALT 2453 |
Alternate proof of ~ dveeq... |
equvini 2454 |
A variable introduction la... |
equvel 2455 |
A variable elimination law... |
equs5a 2456 |
A property related to subs... |
equs5e 2457 |
A property related to subs... |
equs45f 2458 |
Two ways of expressing sub... |
equs5 2459 |
Lemma used in proofs of su... |
dveel1 2460 |
Quantifier introduction wh... |
dveel2 2461 |
Quantifier introduction wh... |
axc14 2462 |
Axiom ~ ax-c14 is redundan... |
sb6x 2463 |
Equivalence involving subs... |
sbequ5 2464 |
Substitution does not chan... |
sbequ6 2465 |
Substitution does not chan... |
sb5rf 2466 |
Reversed substitution. Us... |
sb6rf 2467 |
Reversed substitution. Fo... |
ax12vALT 2468 |
Alternate proof of ~ ax12v... |
2ax6elem 2469 |
We can always find values ... |
2ax6e 2470 |
We can always find values ... |
2ax6eOLD 2471 |
Obsolete version of ~ 2ax6... |
2sb5rf 2472 |
Reversed double substituti... |
2sb6rf 2473 |
Reversed double substituti... |
sbel2x 2474 |
Elimination of double subs... |
sb4b 2475 |
Simplified definition of s... |
sb4bOLD 2476 |
Obsolete version of ~ sb4b... |
sb3b 2477 |
Simplified definition of s... |
sb3 2478 |
One direction of a simplif... |
sb1 2479 |
One direction of a simplif... |
sb2 2480 |
One direction of a simplif... |
sb3OLD 2481 |
Obsolete version of ~ sb3 ... |
sb1OLD 2482 |
Obsolete version of ~ sb1 ... |
sb3bOLD 2483 |
Obsolete version of ~ sb3b... |
sb4a 2484 |
A version of one implicati... |
dfsb1 2485 |
Alternate definition of su... |
hbsb2 2486 |
Bound-variable hypothesis ... |
nfsb2 2487 |
Bound-variable hypothesis ... |
hbsb2a 2488 |
Special case of a bound-va... |
sb4e 2489 |
One direction of a simplif... |
hbsb2e 2490 |
Special case of a bound-va... |
hbsb3 2491 |
If ` y ` is not free in ` ... |
nfs1 2492 |
If ` y ` is not free in ` ... |
axc16ALT 2493 |
Alternate proof of ~ axc16... |
axc16gALT 2494 |
Alternate proof of ~ axc16... |
equsb1 2495 |
Substitution applied to an... |
equsb2 2496 |
Substitution applied to an... |
dfsb2 2497 |
An alternate definition of... |
dfsb3 2498 |
An alternate definition of... |
drsb1 2499 |
Formula-building lemma for... |
sb2ae 2500 |
In the case of two success... |
sb6f 2501 |
Equivalence for substituti... |
sb5f 2502 |
Equivalence for substituti... |
nfsb4t 2503 |
A variable not free in a p... |
nfsb4 2504 |
A variable not free in a p... |
sbequ8 2505 |
Elimination of equality fr... |
sbie 2506 |
Conversion of implicit sub... |
sbied 2507 |
Conversion of implicit sub... |
sbiedv 2508 |
Conversion of implicit sub... |
2sbiev 2509 |
Conversion of double impli... |
sbcom3 2510 |
Substituting ` y ` for ` x... |
sbco 2511 |
A composition law for subs... |
sbid2 2512 |
An identity law for substi... |
sbid2v 2513 |
An identity law for substi... |
sbidm 2514 |
An idempotent law for subs... |
sbco2 2515 |
A composition law for subs... |
sbco2d 2516 |
A composition law for subs... |
sbco3 2517 |
A composition law for subs... |
sbcom 2518 |
A commutativity law for su... |
sbtrt 2519 |
Partially closed form of ~... |
sbtr 2520 |
A partial converse to ~ sb... |
sb8 2521 |
Substitution of variable i... |
sb8e 2522 |
Substitution of variable i... |
sb9 2523 |
Commutation of quantificat... |
sb9i 2524 |
Commutation of quantificat... |
sbhb 2525 |
Two ways of expressing " `... |
nfsbd 2526 |
Deduction version of ~ nfs... |
nfsb 2527 |
If ` z ` is not free in ` ... |
nfsbOLD 2528 |
Obsolete version of ~ nfsb... |
hbsb 2529 |
If ` z ` is not free in ` ... |
sb7f 2530 |
This version of ~ dfsb7 do... |
sb7h 2531 |
This version of ~ dfsb7 do... |
sb10f 2532 |
Hao Wang's identity axiom ... |
sbal1 2533 |
Check out ~ sbal for a ver... |
sbal2 2534 |
Move quantifier in and out... |
2sb8e 2535 |
An equivalent expression f... |
dfmoeu 2536 |
An elementary proof of ~ m... |
dfeumo 2537 |
An elementary proof showin... |
mojust 2539 |
Soundness justification th... |
nexmo 2541 |
Nonexistence implies uniqu... |
exmo 2542 |
Any proposition holds for ... |
moabs 2543 |
Absorption of existence co... |
moim 2544 |
The at-most-one quantifier... |
moimi 2545 |
The at-most-one quantifier... |
moimdv 2546 |
The at-most-one quantifier... |
mobi 2547 |
Equivalence theorem for th... |
mobii 2548 |
Formula-building rule for ... |
mobidv 2549 |
Formula-building rule for ... |
mobid 2550 |
Formula-building rule for ... |
moa1 2551 |
If an implication holds fo... |
moan 2552 |
"At most one" is still the... |
moani 2553 |
"At most one" is still tru... |
moor 2554 |
"At most one" is still the... |
mooran1 2555 |
"At most one" imports disj... |
mooran2 2556 |
"At most one" exports disj... |
nfmo1 2557 |
Bound-variable hypothesis ... |
nfmod2 2558 |
Bound-variable hypothesis ... |
nfmodv 2559 |
Bound-variable hypothesis ... |
nfmov 2560 |
Bound-variable hypothesis ... |
nfmod 2561 |
Bound-variable hypothesis ... |
nfmo 2562 |
Bound-variable hypothesis ... |
mof 2563 |
Version of ~ df-mo with di... |
mo3 2564 |
Alternate definition of th... |
mo 2565 |
Equivalent definitions of ... |
mo4 2566 |
At-most-one quantifier exp... |
mo4f 2567 |
At-most-one quantifier exp... |
mo4OLD 2568 |
Obsolete version of ~ mo4 ... |
eu3v 2571 |
An alternate way to expres... |
eujust 2572 |
Soundness justification th... |
eujustALT 2573 |
Alternate proof of ~ eujus... |
eu6lem 2574 |
Lemma of ~ eu6im . A diss... |
eu6 2575 |
Alternate definition of th... |
eu6im 2576 |
One direction of ~ eu6 nee... |
euf 2577 |
Version of ~ eu6 with disj... |
euex 2578 |
Existential uniqueness imp... |
eumo 2579 |
Existential uniqueness imp... |
eumoi 2580 |
Uniqueness inferred from e... |
exmoeub 2581 |
Existence implies that uni... |
exmoeu 2582 |
Existence is equivalent to... |
moeuex 2583 |
Uniqueness implies that ex... |
moeu 2584 |
Uniqueness is equivalent t... |
eubi 2585 |
Equivalence theorem for th... |
eubii 2586 |
Introduce unique existenti... |
eubidv 2587 |
Formula-building rule for ... |
eubid 2588 |
Formula-building rule for ... |
nfeu1 2589 |
Bound-variable hypothesis ... |
nfeu1ALT 2590 |
Alternate proof of ~ nfeu1... |
nfeud2 2591 |
Bound-variable hypothesis ... |
nfeudw 2592 |
Bound-variable hypothesis ... |
nfeud 2593 |
Bound-variable hypothesis ... |
nfeuw 2594 |
Bound-variable hypothesis ... |
nfeu 2595 |
Bound-variable hypothesis ... |
dfeu 2596 |
Rederive ~ df-eu from the ... |
dfmo 2597 |
Rederive ~ df-mo from the ... |
euequ 2598 |
There exists a unique set ... |
sb8eulem 2599 |
Lemma. Factor out the com... |
sb8euv 2600 |
Variable substitution in u... |
sb8eu 2601 |
Variable substitution in u... |
sb8mo 2602 |
Variable substitution for ... |
cbvmovw 2603 |
Change bound variable. Us... |
cbvmow 2604 |
Rule used to change bound ... |
cbvmowOLD 2605 |
Obsolete version of ~ cbvm... |
cbvmo 2606 |
Rule used to change bound ... |
cbveuvw 2607 |
Change bound variable. Us... |
cbveuw 2608 |
Version of ~ cbveu with a ... |
cbveuwOLD 2609 |
Obsolete version of ~ cbve... |
cbveu 2610 |
Rule used to change bound ... |
cbveuALT 2611 |
Alternative proof of ~ cbv... |
eu2 2612 |
An alternate way of defini... |
eu1 2613 |
An alternate way to expres... |
euor 2614 |
Introduce a disjunct into ... |
euorv 2615 |
Introduce a disjunct into ... |
euor2 2616 |
Introduce or eliminate a d... |
sbmo 2617 |
Substitution into an at-mo... |
eu4 2618 |
Uniqueness using implicit ... |
euimmo 2619 |
Existential uniqueness imp... |
euim 2620 |
Add unique existential qua... |
moanimlem 2621 |
Factor out the common proo... |
moanimv 2622 |
Introduction of a conjunct... |
moanim 2623 |
Introduction of a conjunct... |
euan 2624 |
Introduction of a conjunct... |
moanmo 2625 |
Nested at-most-one quantif... |
moaneu 2626 |
Nested at-most-one and uni... |
euanv 2627 |
Introduction of a conjunct... |
mopick 2628 |
"At most one" picks a vari... |
moexexlem 2629 |
Factor out the proof skele... |
2moexv 2630 |
Double quantification with... |
moexexvw 2631 |
"At most one" double quant... |
2moswapv 2632 |
A condition allowing to sw... |
2euswapv 2633 |
A condition allowing to sw... |
2euexv 2634 |
Double quantification with... |
2exeuv 2635 |
Double existential uniquen... |
eupick 2636 |
Existential uniqueness "pi... |
eupicka 2637 |
Version of ~ eupick with c... |
eupickb 2638 |
Existential uniqueness "pi... |
eupickbi 2639 |
Theorem *14.26 in [Whitehe... |
mopick2 2640 |
"At most one" can show the... |
moexex 2641 |
"At most one" double quant... |
moexexv 2642 |
"At most one" double quant... |
2moex 2643 |
Double quantification with... |
2euex 2644 |
Double quantification with... |
2eumo 2645 |
Nested unique existential ... |
2eu2ex 2646 |
Double existential uniquen... |
2moswap 2647 |
A condition allowing to sw... |
2euswap 2648 |
A condition allowing to sw... |
2exeu 2649 |
Double existential uniquen... |
2mo2 2650 |
Two ways of expressing "th... |
2mo 2651 |
Two ways of expressing "th... |
2mos 2652 |
Double "there exists at mo... |
2eu1 2653 |
Double existential uniquen... |
2eu1v 2654 |
Double existential uniquen... |
2eu2 2655 |
Double existential uniquen... |
2eu3 2656 |
Double existential uniquen... |
2eu4 2657 |
This theorem provides us w... |
2eu5 2658 |
An alternate definition of... |
2eu6 2659 |
Two equivalent expressions... |
2eu7 2660 |
Two equivalent expressions... |
2eu8 2661 |
Two equivalent expressions... |
euae 2662 |
Two ways to express "exact... |
exists1 2663 |
Two ways to express "exact... |
exists2 2664 |
A condition implying that ... |
barbara 2665 |
"Barbara", one of the fund... |
celarent 2666 |
"Celarent", one of the syl... |
darii 2667 |
"Darii", one of the syllog... |
dariiALT 2668 |
Alternate proof of ~ darii... |
ferio 2669 |
"Ferio" ("Ferioque"), one ... |
barbarilem 2670 |
Lemma for ~ barbari and th... |
barbari 2671 |
"Barbari", one of the syll... |
barbariALT 2672 |
Alternate proof of ~ barba... |
celaront 2673 |
"Celaront", one of the syl... |
cesare 2674 |
"Cesare", one of the syllo... |
camestres 2675 |
"Camestres", one of the sy... |
festino 2676 |
"Festino", one of the syll... |
festinoALT 2677 |
Alternate proof of ~ festi... |
baroco 2678 |
"Baroco", one of the syllo... |
barocoALT 2679 |
Alternate proof of ~ festi... |
cesaro 2680 |
"Cesaro", one of the syllo... |
camestros 2681 |
"Camestros", one of the sy... |
datisi 2682 |
"Datisi", one of the syllo... |
disamis 2683 |
"Disamis", one of the syll... |
ferison 2684 |
"Ferison", one of the syll... |
bocardo 2685 |
"Bocardo", one of the syll... |
darapti 2686 |
"Darapti", one of the syll... |
daraptiALT 2687 |
Alternate proof of ~ darap... |
felapton 2688 |
"Felapton", one of the syl... |
calemes 2689 |
"Calemes", one of the syll... |
dimatis 2690 |
"Dimatis", one of the syll... |
fresison 2691 |
"Fresison", one of the syl... |
calemos 2692 |
"Calemos", one of the syll... |
fesapo 2693 |
"Fesapo", one of the syllo... |
bamalip 2694 |
"Bamalip", one of the syll... |
axia1 2695 |
Left 'and' elimination (in... |
axia2 2696 |
Right 'and' elimination (i... |
axia3 2697 |
'And' introduction (intuit... |
axin1 2698 |
'Not' introduction (intuit... |
axin2 2699 |
'Not' elimination (intuiti... |
axio 2700 |
Definition of 'or' (intuit... |
axi4 2701 |
Specialization (intuitioni... |
axi5r 2702 |
Converse of ~ axc4 (intuit... |
axial 2703 |
The setvar ` x ` is not fr... |
axie1 2704 |
The setvar ` x ` is not fr... |
axie2 2705 |
A key property of existent... |
axi9 2706 |
Axiom of existence (intuit... |
axi10 2707 |
Axiom of Quantifier Substi... |
axi12 2708 |
Axiom of Quantifier Introd... |
axbnd 2709 |
Axiom of Bundling (intuiti... |
axexte 2711 |
The axiom of extensionalit... |
axextg 2712 |
A generalization of the ax... |
axextb 2713 |
A bidirectional version of... |
axextmo 2714 |
There exists at most one s... |
nulmo 2715 |
There exists at most one e... |
eleq1ab 2718 |
Extension (in the sense of... |
cleljustab 2719 |
Extension of ~ cleljust fr... |
abid 2720 |
Simplification of class ab... |
vexwt 2721 |
A standard theorem of pred... |
vexw 2722 |
If ` ph ` is a theorem, th... |
vextru 2723 |
Every setvar is a member o... |
hbab1 2724 |
Bound-variable hypothesis ... |
nfsab1 2725 |
Bound-variable hypothesis ... |
hbab 2726 |
Bound-variable hypothesis ... |
hbabg 2727 |
Bound-variable hypothesis ... |
nfsab 2728 |
Bound-variable hypothesis ... |
nfsabg 2729 |
Bound-variable hypothesis ... |
dfcleq 2731 |
The defining characterizat... |
cvjust 2732 |
Every set is a class. Pro... |
ax9ALT 2733 |
Proof of ~ ax-9 from Tarsk... |
eleq2w2 2734 |
A weaker version of ~ eleq... |
eqriv 2735 |
Infer equality of classes ... |
eqrdv 2736 |
Deduce equality of classes... |
eqrdav 2737 |
Deduce equality of classes... |
eqid 2738 |
Law of identity (reflexivi... |
eqidd 2739 |
Class identity law with an... |
eqeq1d 2740 |
Deduction from equality to... |
eqeq1dALT 2741 |
Shorter proof of ~ eqeq1d ... |
eqeq1 2742 |
Equality implies equivalen... |
eqeq1i 2743 |
Inference from equality to... |
eqcomd 2744 |
Deduction from commutative... |
eqcom 2745 |
Commutative law for class ... |
eqcoms 2746 |
Inference applying commuta... |
eqcomi 2747 |
Inference from commutative... |
neqcomd 2748 |
Commute an inequality. (C... |
eqeq2d 2749 |
Deduction from equality to... |
eqeq2 2750 |
Equality implies equivalen... |
eqeq2i 2751 |
Inference from equality to... |
eqeq12 2752 |
Equality relationship amon... |
eqeq12i 2753 |
A useful inference for sub... |
eqeq12d 2754 |
A useful inference for sub... |
eqeqan12d 2755 |
A useful inference for sub... |
eqeqan12dALT 2756 |
Alternate proof of ~ eqeqa... |
eqeqan12rd 2757 |
A useful inference for sub... |
eqtr 2758 |
Transitive law for class e... |
eqtr2 2759 |
A transitive law for class... |
eqtr3 2760 |
A transitive law for class... |
eqtri 2761 |
An equality transitivity i... |
eqtr2i 2762 |
An equality transitivity i... |
eqtr3i 2763 |
An equality transitivity i... |
eqtr4i 2764 |
An equality transitivity i... |
3eqtri 2765 |
An inference from three ch... |
3eqtrri 2766 |
An inference from three ch... |
3eqtr2i 2767 |
An inference from three ch... |
3eqtr2ri 2768 |
An inference from three ch... |
3eqtr3i 2769 |
An inference from three ch... |
3eqtr3ri 2770 |
An inference from three ch... |
3eqtr4i 2771 |
An inference from three ch... |
3eqtr4ri 2772 |
An inference from three ch... |
eqtrd 2773 |
An equality transitivity d... |
eqtr2d 2774 |
An equality transitivity d... |
eqtr3d 2775 |
An equality transitivity e... |
eqtr4d 2776 |
An equality transitivity e... |
3eqtrd 2777 |
A deduction from three cha... |
3eqtrrd 2778 |
A deduction from three cha... |
3eqtr2d 2779 |
A deduction from three cha... |
3eqtr2rd 2780 |
A deduction from three cha... |
3eqtr3d 2781 |
A deduction from three cha... |
3eqtr3rd 2782 |
A deduction from three cha... |
3eqtr4d 2783 |
A deduction from three cha... |
3eqtr4rd 2784 |
A deduction from three cha... |
syl5eq 2785 |
An equality transitivity d... |
eqtr2id 2786 |
An equality transitivity d... |
eqtr3id 2787 |
An equality transitivity d... |
syl5reqr 2788 |
An equality transitivity d... |
eqtrdi 2789 |
An equality transitivity d... |
eqtr2di 2790 |
An equality transitivity d... |
eqtr4di 2791 |
An equality transitivity d... |
eqtr4id 2792 |
An equality transitivity d... |
sylan9eq 2793 |
An equality transitivity d... |
sylan9req 2794 |
An equality transitivity d... |
sylan9eqr 2795 |
An equality transitivity d... |
3eqtr3g 2796 |
A chained equality inferen... |
3eqtr3a 2797 |
A chained equality inferen... |
3eqtr4g 2798 |
A chained equality inferen... |
3eqtr4a 2799 |
A chained equality inferen... |
eq2tri 2800 |
A compound transitive infe... |
abbi1 2801 |
Equivalent formulas yield ... |
abbidv 2802 |
Equivalent wff's yield equ... |
abbii 2803 |
Equivalent wff's yield equ... |
abbid 2804 |
Equivalent wff's yield equ... |
abbi 2805 |
Equivalent formulas define... |
cbvabv 2806 |
Rule used to change bound ... |
cbvabw 2807 |
Rule used to change bound ... |
cbvabwOLD 2808 |
Obsolete version of ~ cbva... |
cbvab 2809 |
Rule used to change bound ... |
abeq2w 2810 |
Version of ~ abeq2 using i... |
dfclel 2812 |
Characterization of the el... |
elissetv 2813 |
An element of a class exis... |
elisset 2814 |
An element of a class exis... |
eleq1w 2815 |
Weaker version of ~ eleq1 ... |
eleq2w 2816 |
Weaker version of ~ eleq2 ... |
eleq1d 2817 |
Deduction from equality to... |
eleq2d 2818 |
Deduction from equality to... |
eleq2dALT 2819 |
Alternate proof of ~ eleq2... |
eleq1 2820 |
Equality implies equivalen... |
eleq2 2821 |
Equality implies equivalen... |
eleq12 2822 |
Equality implies equivalen... |
eleq1i 2823 |
Inference from equality to... |
eleq2i 2824 |
Inference from equality to... |
eleq12i 2825 |
Inference from equality to... |
eqneltri 2826 |
If a class is not an eleme... |
eleq12d 2827 |
Deduction from equality to... |
eleq1a 2828 |
A transitive-type law rela... |
eqeltri 2829 |
Substitution of equal clas... |
eqeltrri 2830 |
Substitution of equal clas... |
eleqtri 2831 |
Substitution of equal clas... |
eleqtrri 2832 |
Substitution of equal clas... |
eqeltrd 2833 |
Substitution of equal clas... |
eqeltrrd 2834 |
Deduction that substitutes... |
eleqtrd 2835 |
Deduction that substitutes... |
eleqtrrd 2836 |
Deduction that substitutes... |
eqeltrid 2837 |
A membership and equality ... |
eqeltrrid 2838 |
A membership and equality ... |
eleqtrid 2839 |
A membership and equality ... |
eleqtrrid 2840 |
A membership and equality ... |
eqeltrdi 2841 |
A membership and equality ... |
eqeltrrdi 2842 |
A membership and equality ... |
eleqtrdi 2843 |
A membership and equality ... |
eleqtrrdi 2844 |
A membership and equality ... |
3eltr3i 2845 |
Substitution of equal clas... |
3eltr4i 2846 |
Substitution of equal clas... |
3eltr3d 2847 |
Substitution of equal clas... |
3eltr4d 2848 |
Substitution of equal clas... |
3eltr3g 2849 |
Substitution of equal clas... |
3eltr4g 2850 |
Substitution of equal clas... |
eleq2s 2851 |
Substitution of equal clas... |
eqneltrd 2852 |
If a class is not an eleme... |
eqneltrrd 2853 |
If a class is not an eleme... |
neleqtrd 2854 |
If a class is not an eleme... |
neleqtrrd 2855 |
If a class is not an eleme... |
cleqh 2856 |
Establish equality between... |
nelneq 2857 |
A way of showing two class... |
nelneq2 2858 |
A way of showing two class... |
eqsb3 2859 |
Substitution applied to an... |
clelsb3 2860 |
Substitution applied to an... |
hbxfreq 2861 |
A utility lemma to transfe... |
hblem 2862 |
Change the free variable o... |
hblemg 2863 |
Change the free variable o... |
abeq2 2864 |
Equality of a class variab... |
abeq1 2865 |
Equality of a class variab... |
abeq2d 2866 |
Equality of a class variab... |
abeq2i 2867 |
Equality of a class variab... |
abeq1i 2868 |
Equality of a class variab... |
abbi2dv 2869 |
Deduction from a wff to a ... |
abbi1dv 2870 |
Deduction from a wff to a ... |
abbi2i 2871 |
Equality of a class variab... |
abbiOLD 2872 |
Obsolete proof of ~ abbi a... |
abid1 2873 |
Every class is equal to a ... |
abid2 2874 |
A simplification of class ... |
clelab 2875 |
Membership of a class vari... |
clelabOLD 2876 |
Obsolete version of ~ clel... |
clabel 2877 |
Membership of a class abst... |
sbab 2878 |
The right-hand side of the... |
nfcjust 2880 |
Justification theorem for ... |
nfci 2882 |
Deduce that a class ` A ` ... |
nfcii 2883 |
Deduce that a class ` A ` ... |
nfcr 2884 |
Consequence of the not-fre... |
nfcrALT 2885 |
Alternate version of ~ nfc... |
nfcri 2886 |
Consequence of the not-fre... |
nfcd 2887 |
Deduce that a class ` A ` ... |
nfcrd 2888 |
Consequence of the not-fre... |
nfcriOLD 2889 |
Obsolete version of ~ nfcr... |
nfcriOLDOLD 2890 |
Obsolete version of ~ nfcr... |
nfcrii 2891 |
Consequence of the not-fre... |
nfcriiOLD 2892 |
Obsolete version of ~ nfcr... |
nfcriOLDOLDOLD 2893 |
Obsolete version of ~ nfcr... |
nfceqdf 2894 |
An equality theorem for ef... |
nfceqdfOLD 2895 |
Obsolete version of ~ nfce... |
nfceqi 2896 |
Equality theorem for class... |
nfcxfr 2897 |
A utility lemma to transfe... |
nfcxfrd 2898 |
A utility lemma to transfe... |
nfcv 2899 |
If ` x ` is disjoint from ... |
nfcvd 2900 |
If ` x ` is disjoint from ... |
nfab1 2901 |
Bound-variable hypothesis ... |
nfnfc1 2902 |
The setvar ` x ` is bound ... |
clelsb3fw 2903 |
Substitution applied to an... |
clelsb3f 2904 |
Substitution applied to an... |
nfab 2905 |
Bound-variable hypothesis ... |
nfabg 2906 |
Bound-variable hypothesis ... |
nfaba1 2907 |
Bound-variable hypothesis ... |
nfaba1g 2908 |
Bound-variable hypothesis ... |
nfeqd 2909 |
Hypothesis builder for equ... |
nfeld 2910 |
Hypothesis builder for ele... |
nfnfc 2911 |
Hypothesis builder for ` F... |
nfeq 2912 |
Hypothesis builder for equ... |
nfel 2913 |
Hypothesis builder for ele... |
nfeq1 2914 |
Hypothesis builder for equ... |
nfel1 2915 |
Hypothesis builder for ele... |
nfeq2 2916 |
Hypothesis builder for equ... |
nfel2 2917 |
Hypothesis builder for ele... |
drnfc1 2918 |
Formula-building lemma for... |
drnfc1OLD 2919 |
Obsolete version of ~ drnf... |
drnfc2 2920 |
Formula-building lemma for... |
drnfc2OLD 2921 |
Obsolete version of ~ drnf... |
nfabdw 2922 |
Bound-variable hypothesis ... |
nfabdwOLD 2923 |
Obsolete version of ~ nfab... |
nfabd 2924 |
Bound-variable hypothesis ... |
nfabd2 2925 |
Bound-variable hypothesis ... |
dvelimdc 2926 |
Deduction form of ~ dvelim... |
dvelimc 2927 |
Version of ~ dvelim for cl... |
nfcvf 2928 |
If ` x ` and ` y ` are dis... |
nfcvf2 2929 |
If ` x ` and ` y ` are dis... |
cleqf 2930 |
Establish equality between... |
abid2f 2931 |
A simplification of class ... |
abeq2f 2932 |
Equality of a class variab... |
sbabel 2933 |
Theorem to move a substitu... |
neii 2936 |
Inference associated with ... |
neir 2937 |
Inference associated with ... |
nne 2938 |
Negation of inequality. (... |
neneqd 2939 |
Deduction eliminating ineq... |
neneq 2940 |
From inequality to non-equ... |
neqned 2941 |
If it is not the case that... |
neqne 2942 |
From non-equality to inequ... |
neirr 2943 |
No class is unequal to its... |
exmidne 2944 |
Excluded middle with equal... |
eqneqall 2945 |
A contradiction concerning... |
nonconne 2946 |
Law of noncontradiction wi... |
necon3ad 2947 |
Contrapositive law deducti... |
necon3bd 2948 |
Contrapositive law deducti... |
necon2ad 2949 |
Contrapositive inference f... |
necon2bd 2950 |
Contrapositive inference f... |
necon1ad 2951 |
Contrapositive deduction f... |
necon1bd 2952 |
Contrapositive deduction f... |
necon4ad 2953 |
Contrapositive inference f... |
necon4bd 2954 |
Contrapositive inference f... |
necon3d 2955 |
Contrapositive law deducti... |
necon1d 2956 |
Contrapositive law deducti... |
necon2d 2957 |
Contrapositive inference f... |
necon4d 2958 |
Contrapositive inference f... |
necon3ai 2959 |
Contrapositive inference f... |
necon3bi 2960 |
Contrapositive inference f... |
necon1ai 2961 |
Contrapositive inference f... |
necon1bi 2962 |
Contrapositive inference f... |
necon2ai 2963 |
Contrapositive inference f... |
necon2bi 2964 |
Contrapositive inference f... |
necon4ai 2965 |
Contrapositive inference f... |
necon3i 2966 |
Contrapositive inference f... |
necon1i 2967 |
Contrapositive inference f... |
necon2i 2968 |
Contrapositive inference f... |
necon4i 2969 |
Contrapositive inference f... |
necon3abid 2970 |
Deduction from equality to... |
necon3bbid 2971 |
Deduction from equality to... |
necon1abid 2972 |
Contrapositive deduction f... |
necon1bbid 2973 |
Contrapositive inference f... |
necon4abid 2974 |
Contrapositive law deducti... |
necon4bbid 2975 |
Contrapositive law deducti... |
necon2abid 2976 |
Contrapositive deduction f... |
necon2bbid 2977 |
Contrapositive deduction f... |
necon3bid 2978 |
Deduction from equality to... |
necon4bid 2979 |
Contrapositive law deducti... |
necon3abii 2980 |
Deduction from equality to... |
necon3bbii 2981 |
Deduction from equality to... |
necon1abii 2982 |
Contrapositive inference f... |
necon1bbii 2983 |
Contrapositive inference f... |
necon2abii 2984 |
Contrapositive inference f... |
necon2bbii 2985 |
Contrapositive inference f... |
necon3bii 2986 |
Inference from equality to... |
necom 2987 |
Commutation of inequality.... |
necomi 2988 |
Inference from commutative... |
necomd 2989 |
Deduction from commutative... |
nesym 2990 |
Characterization of inequa... |
nesymi 2991 |
Inference associated with ... |
nesymir 2992 |
Inference associated with ... |
neeq1d 2993 |
Deduction for inequality. ... |
neeq2d 2994 |
Deduction for inequality. ... |
neeq12d 2995 |
Deduction for inequality. ... |
neeq1 2996 |
Equality theorem for inequ... |
neeq2 2997 |
Equality theorem for inequ... |
neeq1i 2998 |
Inference for inequality. ... |
neeq2i 2999 |
Inference for inequality. ... |
neeq12i 3000 |
Inference for inequality. ... |
eqnetrd 3001 |
Substitution of equal clas... |
eqnetrrd 3002 |
Substitution of equal clas... |
neeqtrd 3003 |
Substitution of equal clas... |
eqnetri 3004 |
Substitution of equal clas... |
eqnetrri 3005 |
Substitution of equal clas... |
neeqtri 3006 |
Substitution of equal clas... |
neeqtrri 3007 |
Substitution of equal clas... |
neeqtrrd 3008 |
Substitution of equal clas... |
eqnetrrid 3009 |
A chained equality inferen... |
3netr3d 3010 |
Substitution of equality i... |
3netr4d 3011 |
Substitution of equality i... |
3netr3g 3012 |
Substitution of equality i... |
3netr4g 3013 |
Substitution of equality i... |
nebi 3014 |
Contraposition law for ine... |
pm13.18 3015 |
Theorem *13.18 in [Whitehe... |
pm13.181 3016 |
Theorem *13.181 in [Whiteh... |
pm2.61ine 3017 |
Inference eliminating an i... |
pm2.21ddne 3018 |
A contradiction implies an... |
pm2.61ne 3019 |
Deduction eliminating an i... |
pm2.61dne 3020 |
Deduction eliminating an i... |
pm2.61dane 3021 |
Deduction eliminating an i... |
pm2.61da2ne 3022 |
Deduction eliminating two ... |
pm2.61da3ne 3023 |
Deduction eliminating thre... |
pm2.61iine 3024 |
Equality version of ~ pm2.... |
neor 3025 |
Logical OR with an equalit... |
neanior 3026 |
A De Morgan's law for ineq... |
ne3anior 3027 |
A De Morgan's law for ineq... |
neorian 3028 |
A De Morgan's law for ineq... |
nemtbir 3029 |
An inference from an inequ... |
nelne1 3030 |
Two classes are different ... |
nelne2 3031 |
Two classes are different ... |
nelelne 3032 |
Two classes are different ... |
neneor 3033 |
If two classes are differe... |
nfne 3034 |
Bound-variable hypothesis ... |
nfned 3035 |
Bound-variable hypothesis ... |
nabbi 3036 |
Not equivalent wff's corre... |
mteqand 3037 |
A modus tollens deduction ... |
neli 3040 |
Inference associated with ... |
nelir 3041 |
Inference associated with ... |
neleq12d 3042 |
Equality theorem for negat... |
neleq1 3043 |
Equality theorem for negat... |
neleq2 3044 |
Equality theorem for negat... |
nfnel 3045 |
Bound-variable hypothesis ... |
nfneld 3046 |
Bound-variable hypothesis ... |
nnel 3047 |
Negation of negated member... |
elnelne1 3048 |
Two classes are different ... |
elnelne2 3049 |
Two classes are different ... |
nelcon3d 3050 |
Contrapositive law deducti... |
elnelall 3051 |
A contradiction concerning... |
pm2.61danel 3052 |
Deduction eliminating an e... |
rgen 3063 |
Generalization rule for re... |
ralel 3064 |
All elements of a class ar... |
rgenw 3065 |
Generalization rule for re... |
rgen2w 3066 |
Generalization rule for re... |
mprg 3067 |
Modus ponens combined with... |
mprgbir 3068 |
Modus ponens on biconditio... |
alral 3069 |
Universal quantification i... |
raln 3070 |
Restricted universally qua... |
ral2imi 3071 |
Inference quantifying ante... |
ralimi2 3072 |
Inference quantifying both... |
ralimia 3073 |
Inference quantifying both... |
ralimiaa 3074 |
Inference quantifying both... |
ralimi 3075 |
Inference quantifying both... |
2ralimi 3076 |
Inference quantifying both... |
ralim 3077 |
Distribution of restricted... |
ralbii2 3078 |
Inference adding different... |
ralbiia 3079 |
Inference adding restricte... |
ralbii 3080 |
Inference adding restricte... |
2ralbii 3081 |
Inference adding two restr... |
ralbi 3082 |
Distribute a restricted un... |
ralanid 3083 |
Cancellation law for restr... |
r19.26 3084 |
Restricted quantifier vers... |
r19.26-2 3085 |
Restricted quantifier vers... |
r19.26-3 3086 |
Version of ~ r19.26 with t... |
r19.26m 3087 |
Version of ~ 19.26 and ~ r... |
ralbiim 3088 |
Split a biconditional and ... |
r19.21v 3089 |
Restricted quantifier vers... |
ralimdv2 3090 |
Inference quantifying both... |
ralimdva 3091 |
Deduction quantifying both... |
ralimdv 3092 |
Deduction quantifying both... |
ralimdvva 3093 |
Deduction doubly quantifyi... |
hbralrimi 3094 |
Inference from Theorem 19.... |
ralrimiv 3095 |
Inference from Theorem 19.... |
ralrimiva 3096 |
Inference from Theorem 19.... |
ralrimivw 3097 |
Inference from Theorem 19.... |
r19.27v 3098 |
Restricted quantitifer ver... |
r19.28v 3099 |
Restricted quantifier vers... |
ralrimdv 3100 |
Inference from Theorem 19.... |
ralrimdva 3101 |
Inference from Theorem 19.... |
ralrimivv 3102 |
Inference from Theorem 19.... |
ralrimivva 3103 |
Inference from Theorem 19.... |
ralrimivvva 3104 |
Inference from Theorem 19.... |
ralrimdvv 3105 |
Inference from Theorem 19.... |
ralrimdvva 3106 |
Inference from Theorem 19.... |
ralbidv2 3107 |
Formula-building rule for ... |
ralbidva 3108 |
Formula-building rule for ... |
ralbidv 3109 |
Formula-building rule for ... |
2ralbidva 3110 |
Formula-building rule for ... |
2ralbidv 3111 |
Formula-building rule for ... |
r2allem 3112 |
Lemma factoring out common... |
r2al 3113 |
Double restricted universa... |
r3al 3114 |
Triple restricted universa... |
rgen2 3115 |
Generalization rule for re... |
rgen3 3116 |
Generalization rule for re... |
rsp 3117 |
Restricted specialization.... |
rspa 3118 |
Restricted specialization.... |
rspec 3119 |
Specialization rule for re... |
r19.21bi 3120 |
Inference from Theorem 19.... |
r19.21be 3121 |
Inference from Theorem 19.... |
rspec2 3122 |
Specialization rule for re... |
rspec3 3123 |
Specialization rule for re... |
rsp2 3124 |
Restricted specialization,... |
r19.21t 3125 |
Restricted quantifier vers... |
r19.21 3126 |
Restricted quantifier vers... |
ralrimi 3127 |
Inference from Theorem 19.... |
ralimdaa 3128 |
Deduction quantifying both... |
ralrimd 3129 |
Inference from Theorem 19.... |
nfra1 3130 |
The setvar ` x ` is not fr... |
hbra1 3131 |
The setvar ` x ` is not fr... |
hbral 3132 |
Bound-variable hypothesis ... |
r2alf 3133 |
Double restricted universa... |
nfraldw 3134 |
Deduction version of ~ nfr... |
nfraldwOLD 3135 |
Obsolete version of ~ nfra... |
nfrald 3136 |
Deduction version of ~ nfr... |
nfralw 3137 |
Bound-variable hypothesis ... |
nfral 3138 |
Bound-variable hypothesis ... |
nfra2w 3139 |
Similar to Lemma 24 of [Mo... |
nfra2wOLD 3140 |
Obsolete version of ~ nfra... |
nfra2 3141 |
Similar to Lemma 24 of [Mo... |
rgen2a 3142 |
Generalization rule for re... |
ralbida 3143 |
Formula-building rule for ... |
ralbid 3144 |
Formula-building rule for ... |
2ralbida 3145 |
Formula-building rule for ... |
raleqbii 3146 |
Equality deduction for res... |
ralcom4 3147 |
Commutation of restricted ... |
ralnex 3148 |
Relationship between restr... |
dfral2 3149 |
Relationship between restr... |
rexnal 3150 |
Relationship between restr... |
dfrex2 3151 |
Relationship between restr... |
rexex 3152 |
Restricted existence impli... |
rexim 3153 |
Theorem 19.22 of [Margaris... |
rexbi 3154 |
Distribute restricted quan... |
reximia 3155 |
Inference quantifying both... |
reximi 3156 |
Inference quantifying both... |
reximi2 3157 |
Inference quantifying both... |
rexbii2 3158 |
Inference adding different... |
rexbiia 3159 |
Inference adding restricte... |
rexbii 3160 |
Inference adding restricte... |
2rexbii 3161 |
Inference adding two restr... |
rexcom4 3162 |
Commutation of restricted ... |
2ex2rexrot 3163 |
Rotate two existential qua... |
rexcom4a 3164 |
Specialized existential co... |
rexanid 3165 |
Cancellation law for restr... |
r19.29 3166 |
Restricted quantifier vers... |
r19.29r 3167 |
Restricted quantifier vers... |
r19.29imd 3168 |
Theorem 19.29 of [Margaris... |
rexnal2 3169 |
Relationship between two r... |
rexnal3 3170 |
Relationship between three... |
ralnex2 3171 |
Relationship between two r... |
ralnex3 3172 |
Relationship between three... |
ralinexa 3173 |
A transformation of restri... |
rexanali 3174 |
A transformation of restri... |
nrexralim 3175 |
Negation of a complex pred... |
risset 3176 |
Two ways to say " ` A ` be... |
nelb 3177 |
A definition of ` -. A e. ... |
nrex 3178 |
Inference adding restricte... |
nrexdv 3179 |
Deduction adding restricte... |
reximdv2 3180 |
Deduction quantifying both... |
reximdvai 3181 |
Deduction quantifying both... |
reximdv 3182 |
Deduction from Theorem 19.... |
reximdva 3183 |
Deduction quantifying both... |
reximddv 3184 |
Deduction from Theorem 19.... |
reximssdv 3185 |
Derivation of a restricted... |
reximdvva 3186 |
Deduction doubly quantifyi... |
reximddv2 3187 |
Double deduction from Theo... |
r19.23v 3188 |
Restricted quantifier vers... |
rexlimiv 3189 |
Inference from Theorem 19.... |
rexlimiva 3190 |
Inference from Theorem 19.... |
rexlimivw 3191 |
Weaker version of ~ rexlim... |
rexlimdv 3192 |
Inference from Theorem 19.... |
rexlimdva 3193 |
Inference from Theorem 19.... |
rexlimdvaa 3194 |
Inference from Theorem 19.... |
rexlimdv3a 3195 |
Inference from Theorem 19.... |
rexlimdva2 3196 |
Inference from Theorem 19.... |
r19.29an 3197 |
A commonly used pattern in... |
r19.29a 3198 |
A commonly used pattern in... |
rexlimdvw 3199 |
Inference from Theorem 19.... |
rexlimddv 3200 |
Restricted existential eli... |
rexlimivv 3201 |
Inference from Theorem 19.... |
rexlimdvv 3202 |
Inference from Theorem 19.... |
rexlimdvva 3203 |
Inference from Theorem 19.... |
rexbidv2 3204 |
Formula-building rule for ... |
rexbidva 3205 |
Formula-building rule for ... |
rexbidv 3206 |
Formula-building rule for ... |
2rexbiia 3207 |
Inference adding two restr... |
2rexbidva 3208 |
Formula-building rule for ... |
2rexbidv 3209 |
Formula-building rule for ... |
rexralbidv 3210 |
Formula-building rule for ... |
r2exlem 3211 |
Lemma factoring out common... |
r2ex 3212 |
Double restricted existent... |
rspe 3213 |
Restricted specialization.... |
rsp2e 3214 |
Restricted specialization.... |
nfre1 3215 |
The setvar ` x ` is not fr... |
nfrexd 3216 |
Deduction version of ~ nfr... |
nfrexdg 3217 |
Deduction version of ~ nfr... |
nfrex 3218 |
Bound-variable hypothesis ... |
nfrexg 3219 |
Bound-variable hypothesis ... |
reximdai 3220 |
Deduction from Theorem 19.... |
reximd2a 3221 |
Deduction quantifying both... |
r19.23t 3222 |
Closed theorem form of ~ r... |
r19.23 3223 |
Restricted quantifier vers... |
rexlimi 3224 |
Restricted quantifier vers... |
rexlimd2 3225 |
Version of ~ rexlimd with ... |
rexlimd 3226 |
Deduction form of ~ rexlim... |
rexbida 3227 |
Formula-building rule for ... |
rexbidvaALT 3228 |
Alternate proof of ~ rexbi... |
rexbid 3229 |
Formula-building rule for ... |
rexbidvALT 3230 |
Alternate proof of ~ rexbi... |
ralrexbid 3231 |
Formula-building rule for ... |
ralrexbidOLD 3232 |
Obsolete version of ~ ralr... |
r19.12 3233 |
Restricted quantifier vers... |
r2exf 3234 |
Double restricted existent... |
rexeqbii 3235 |
Equality deduction for res... |
reuanid 3236 |
Cancellation law for restr... |
rmoanid 3237 |
Cancellation law for restr... |
r19.29af2 3238 |
A commonly used pattern ba... |
r19.29af 3239 |
A commonly used pattern ba... |
2r19.29 3240 |
Theorem ~ r19.29 with two ... |
r19.29d2r 3241 |
Theorem 19.29 of [Margaris... |
r19.29vva 3242 |
A commonly used pattern ba... |
r19.30 3243 |
Restricted quantifier vers... |
r19.32v 3244 |
Restricted quantifier vers... |
r19.35 3245 |
Restricted quantifier vers... |
r19.36v 3246 |
Restricted quantifier vers... |
r19.37 3247 |
Restricted quantifier vers... |
r19.37v 3248 |
Restricted quantifier vers... |
r19.40 3249 |
Restricted quantifier vers... |
r19.41v 3250 |
Restricted quantifier vers... |
r19.41 3251 |
Restricted quantifier vers... |
r19.41vv 3252 |
Version of ~ r19.41v with ... |
r19.42v 3253 |
Restricted quantifier vers... |
r19.43 3254 |
Restricted quantifier vers... |
r19.44v 3255 |
One direction of a restric... |
r19.45v 3256 |
Restricted quantifier vers... |
ralcom 3257 |
Commutation of restricted ... |
rexcom 3258 |
Commutation of restricted ... |
ralcomf 3259 |
Commutation of restricted ... |
rexcomf 3260 |
Commutation of restricted ... |
ralcom13 3261 |
Swap first and third restr... |
rexcom13 3262 |
Swap first and third restr... |
ralrot3 3263 |
Rotate three restricted un... |
rexrot4 3264 |
Rotate four restricted exi... |
ralcom2 3265 |
Commutation of restricted ... |
ralcom3 3266 |
A commutation law for rest... |
reeanlem 3267 |
Lemma factoring out common... |
reean 3268 |
Rearrange restricted exist... |
reeanv 3269 |
Rearrange restricted exist... |
3reeanv 3270 |
Rearrange three restricted... |
2ralor 3271 |
Distribute restricted univ... |
nfreu1 3272 |
The setvar ` x ` is not fr... |
nfrmo1 3273 |
The setvar ` x ` is not fr... |
nfreud 3274 |
Deduction version of ~ nfr... |
nfrmod 3275 |
Deduction version of ~ nfr... |
nfreuw 3276 |
Bound-variable hypothesis ... |
nfrmow 3277 |
Bound-variable hypothesis ... |
nfreu 3278 |
Bound-variable hypothesis ... |
nfrmo 3279 |
Bound-variable hypothesis ... |
rabid 3280 |
An "identity" law of concr... |
rabrab 3281 |
Abstract builder restricte... |
rabidim1 3282 |
Membership in a restricted... |
rabid2 3283 |
An "identity" law for rest... |
rabid2f 3284 |
An "identity" law for rest... |
rabbi 3285 |
Equivalent wff's correspon... |
nfrab1 3286 |
The abstraction variable i... |
nfrabw 3287 |
A variable not free in a w... |
nfrab 3288 |
A variable not free in a w... |
reubida 3289 |
Formula-building rule for ... |
reubidva 3290 |
Formula-building rule for ... |
reubidv 3291 |
Formula-building rule for ... |
reubiia 3292 |
Formula-building rule for ... |
reubii 3293 |
Formula-building rule for ... |
rmobida 3294 |
Formula-building rule for ... |
rmobidva 3295 |
Formula-building rule for ... |
rmobidv 3296 |
Formula-building rule for ... |
rmobiia 3297 |
Formula-building rule for ... |
rmobii 3298 |
Formula-building rule for ... |
raleqf 3299 |
Equality theorem for restr... |
rexeqf 3300 |
Equality theorem for restr... |
reueq1f 3301 |
Equality theorem for restr... |
rmoeq1f 3302 |
Equality theorem for restr... |
raleqbidv 3303 |
Equality deduction for res... |
rexeqbidv 3304 |
Equality deduction for res... |
raleqbidvv 3305 |
Version of ~ raleqbidv wit... |
rexeqbidvv 3306 |
Version of ~ rexeqbidv wit... |
raleqbi1dv 3307 |
Equality deduction for res... |
rexeqbi1dv 3308 |
Equality deduction for res... |
raleq 3309 |
Equality theorem for restr... |
rexeq 3310 |
Equality theorem for restr... |
reueq1 3311 |
Equality theorem for restr... |
rmoeq1 3312 |
Equality theorem for restr... |
raleqi 3313 |
Equality inference for res... |
rexeqi 3314 |
Equality inference for res... |
raleqdv 3315 |
Equality deduction for res... |
rexeqdv 3316 |
Equality deduction for res... |
reueqd 3317 |
Equality deduction for res... |
rmoeqd 3318 |
Equality deduction for res... |
raleqbid 3319 |
Equality deduction for res... |
rexeqbid 3320 |
Equality deduction for res... |
raleqbidva 3321 |
Equality deduction for res... |
rexeqbidva 3322 |
Equality deduction for res... |
raleleq 3323 |
All elements of a class ar... |
raleleqALT 3324 |
Alternate proof of ~ ralel... |
moel 3325 |
"At most one" element in a... |
mormo 3326 |
Unrestricted "at most one"... |
reu5 3327 |
Restricted uniqueness in t... |
reurex 3328 |
Restricted unique existenc... |
2reu2rex 3329 |
Double restricted existent... |
reurmo 3330 |
Restricted existential uni... |
rmo5 3331 |
Restricted "at most one" i... |
nrexrmo 3332 |
Nonexistence implies restr... |
reueubd 3333 |
Restricted existential uni... |
cbvralfw 3334 |
Rule used to change bound ... |
cbvralfwOLD 3335 |
Obsolete version of ~ cbvr... |
cbvrexfw 3336 |
Rule used to change bound ... |
cbvralf 3337 |
Rule used to change bound ... |
cbvrexf 3338 |
Rule used to change bound ... |
cbvralw 3339 |
Rule used to change bound ... |
cbvrexw 3340 |
Rule used to change bound ... |
cbvreuw 3341 |
Change the bound variable ... |
cbvrmow 3342 |
Change the bound variable ... |
cbvrmowOLD 3343 |
Obsolete version of ~ cbvr... |
cbvral 3344 |
Rule used to change bound ... |
cbvrex 3345 |
Rule used to change bound ... |
cbvreu 3346 |
Change the bound variable ... |
cbvrmo 3347 |
Change the bound variable ... |
cbvralvw 3348 |
Change the bound variable ... |
cbvrexvw 3349 |
Change the bound variable ... |
cbvrmovw 3350 |
Change the bound variable ... |
cbvreuvw 3351 |
Change the bound variable ... |
cbvreuvwOLD 3352 |
Obsolete version of ~ cbvr... |
cbvralv 3353 |
Change the bound variable ... |
cbvrexv 3354 |
Change the bound variable ... |
cbvreuv 3355 |
Change the bound variable ... |
cbvrmov 3356 |
Change the bound variable ... |
cbvraldva2 3357 |
Rule used to change the bo... |
cbvrexdva2 3358 |
Rule used to change the bo... |
cbvraldva 3359 |
Rule used to change the bo... |
cbvrexdva 3360 |
Rule used to change the bo... |
cbvral2vw 3361 |
Change bound variables of ... |
cbvrex2vw 3362 |
Change bound variables of ... |
cbvral3vw 3363 |
Change bound variables of ... |
cbvral2v 3364 |
Change bound variables of ... |
cbvrex2v 3365 |
Change bound variables of ... |
cbvral3v 3366 |
Change bound variables of ... |
cbvralsvw 3367 |
Change bound variable by u... |
cbvrexsvw 3368 |
Change bound variable by u... |
cbvralsv 3369 |
Change bound variable by u... |
cbvrexsv 3370 |
Change bound variable by u... |
sbralie 3371 |
Implicit to explicit subst... |
rabbiia 3372 |
Equivalent formulas yield ... |
rabbii 3373 |
Equivalent wff's correspon... |
rabbida 3374 |
Equivalent wff's yield equ... |
rabbid 3375 |
Version of ~ rabbidv with ... |
rabbidva2 3376 |
Equivalent wff's yield equ... |
rabbia2 3377 |
Equivalent wff's yield equ... |
rabbidva 3378 |
Equivalent wff's yield equ... |
rabbidvaOLD 3379 |
Obsolete proof of ~ rabbid... |
rabbidv 3380 |
Equivalent wff's yield equ... |
rabeqf 3381 |
Equality theorem for restr... |
rabeqi 3382 |
Equality theorem for restr... |
rabeqiOLD 3383 |
Obsolete version of ~ rabe... |
rabeq 3384 |
Equality theorem for restr... |
rabeqdv 3385 |
Equality of restricted cla... |
rabeqbidv 3386 |
Equality of restricted cla... |
rabeqbidva 3387 |
Equality of restricted cla... |
rabeq2i 3388 |
Inference from equality of... |
rabswap 3389 |
Swap with a membership rel... |
cbvrabw 3390 |
Rule to change the bound v... |
cbvrab 3391 |
Rule to change the bound v... |
cbvrabv 3392 |
Rule to change the bound v... |
rabrabi 3393 |
Abstract builder restricte... |
rabeqcda 3394 |
When ` ps ` is always true... |
ralrimia 3395 |
Inference from Theorem 19.... |
ralimda 3396 |
Deduction quantifying both... |
vjust 3398 |
Justification theorem for ... |
dfv2 3400 |
Alternate definition of th... |
vex 3401 |
All setvar variables are s... |
vexOLD 3402 |
Obsolete version of ~ vex ... |
elv 3403 |
If a proposition is implie... |
elvd 3404 |
If a proposition is implie... |
el2v 3405 |
If a proposition is implie... |
eqv 3406 |
The universe contains ever... |
eqvf 3407 |
The universe contains ever... |
abv 3408 |
The class of sets verifyin... |
abvALT 3409 |
Alternate proof of ~ abv ,... |
isset 3410 |
Two ways to express that "... |
issetf 3411 |
A version of ~ isset that ... |
isseti 3412 |
A way to say " ` A ` is a ... |
issetri 3413 |
A way to say " ` A ` is a ... |
eqvisset 3414 |
A class equal to a variabl... |
elex 3415 |
If a class is a member of ... |
elexi 3416 |
If a class is a member of ... |
elexd 3417 |
If a class is a member of ... |
elex2 3418 |
If a class contains anothe... |
elex22 3419 |
If two classes each contai... |
prcnel 3420 |
A proper class doesn't bel... |
ralv 3421 |
A universal quantifier res... |
rexv 3422 |
An existential quantifier ... |
reuv 3423 |
A unique existential quant... |
rmov 3424 |
An at-most-one quantifier ... |
rabab 3425 |
A class abstraction restri... |
rexcom4b 3426 |
Specialized existential co... |
ceqsalt 3427 |
Closed theorem version of ... |
ceqsralt 3428 |
Restricted quantifier vers... |
ceqsalg 3429 |
A representation of explic... |
ceqsalgALT 3430 |
Alternate proof of ~ ceqsa... |
ceqsal 3431 |
A representation of explic... |
ceqsalv 3432 |
A representation of explic... |
ceqsalvOLD 3433 |
Obsolete version of ~ ceqs... |
ceqsralv 3434 |
Restricted quantifier vers... |
ceqsralvOLD 3435 |
Obsolete version of ~ ceqs... |
gencl 3436 |
Implicit substitution for ... |
2gencl 3437 |
Implicit substitution for ... |
3gencl 3438 |
Implicit substitution for ... |
cgsexg 3439 |
Implicit substitution infe... |
cgsex2g 3440 |
Implicit substitution infe... |
cgsex4g 3441 |
An implicit substitution i... |
cgsex4gOLD 3442 |
Obsolete version of ~ cgse... |
ceqsex 3443 |
Elimination of an existent... |
ceqsexv 3444 |
Elimination of an existent... |
ceqsexv2d 3445 |
Elimination of an existent... |
ceqsex2 3446 |
Elimination of two existen... |
ceqsex2v 3447 |
Elimination of two existen... |
ceqsex3v 3448 |
Elimination of three exist... |
ceqsex4v 3449 |
Elimination of four existe... |
ceqsex6v 3450 |
Elimination of six existen... |
ceqsex8v 3451 |
Elimination of eight exist... |
gencbvex 3452 |
Change of bound variable u... |
gencbvex2 3453 |
Restatement of ~ gencbvex ... |
gencbval 3454 |
Change of bound variable u... |
sbhypf 3455 |
Introduce an explicit subs... |
vtoclgft 3456 |
Closed theorem form of ~ v... |
vtoclgftOLD 3457 |
Obsolete version of ~ vtoc... |
vtocldf 3458 |
Implicit substitution of a... |
vtocld 3459 |
Implicit substitution of a... |
vtocldOLD 3460 |
Obsolete version of ~ vtoc... |
vtocl2d 3461 |
Implicit substitution of t... |
vtoclf 3462 |
Implicit substitution of a... |
vtocl 3463 |
Implicit substitution of a... |
vtoclALT 3464 |
Alternate proof of ~ vtocl... |
vtocl2 3465 |
Implicit substitution of c... |
vtocl3 3466 |
Implicit substitution of c... |
vtoclb 3467 |
Implicit substitution of a... |
vtoclgf 3468 |
Implicit substitution of a... |
vtoclg1f 3469 |
Version of ~ vtoclgf with ... |
vtoclg 3470 |
Implicit substitution of a... |
vtoclgOLD 3471 |
Obsolete version of ~ vtoc... |
vtoclbg 3472 |
Implicit substitution of a... |
vtocl2gf 3473 |
Implicit substitution of a... |
vtocl3gf 3474 |
Implicit substitution of a... |
vtocl2g 3475 |
Implicit substitution of 2... |
vtoclgaf 3476 |
Implicit substitution of a... |
vtoclga 3477 |
Implicit substitution of a... |
vtocl2ga 3478 |
Implicit substitution of 2... |
vtocl2gaf 3479 |
Implicit substitution of 2... |
vtocl3gaf 3480 |
Implicit substitution of 3... |
vtocl3ga 3481 |
Implicit substitution of 3... |
vtocl4g 3482 |
Implicit substitution of 4... |
vtocl4ga 3483 |
Implicit substitution of 4... |
vtocleg 3484 |
Implicit substitution of a... |
vtoclegft 3485 |
Implicit substitution of a... |
vtoclef 3486 |
Implicit substitution of a... |
vtocle 3487 |
Implicit substitution of a... |
vtoclri 3488 |
Implicit substitution of a... |
spcimgft 3489 |
A closed version of ~ spci... |
spcgft 3490 |
A closed version of ~ spcg... |
spcimgf 3491 |
Rule of specialization, us... |
spcimegf 3492 |
Existential specialization... |
spcgf 3493 |
Rule of specialization, us... |
spcegf 3494 |
Existential specialization... |
spcimdv 3495 |
Restricted specialization,... |
spcdv 3496 |
Rule of specialization, us... |
spcimedv 3497 |
Restricted existential spe... |
spcgv 3498 |
Rule of specialization, us... |
spcegv 3499 |
Existential specialization... |
spcedv 3500 |
Existential specialization... |
spc2egv 3501 |
Existential specialization... |
spc2gv 3502 |
Specialization with two qu... |
spc2ed 3503 |
Existential specialization... |
spc2d 3504 |
Specialization with 2 quan... |
spc3egv 3505 |
Existential specialization... |
spc3gv 3506 |
Specialization with three ... |
spcv 3507 |
Rule of specialization, us... |
spcev 3508 |
Existential specialization... |
spc2ev 3509 |
Existential specialization... |
rspct 3510 |
A closed version of ~ rspc... |
rspcdf 3511 |
Restricted specialization,... |
rspc 3512 |
Restricted specialization,... |
rspce 3513 |
Restricted existential spe... |
rspcimdv 3514 |
Restricted specialization,... |
rspcimedv 3515 |
Restricted existential spe... |
rspcdv 3516 |
Restricted specialization,... |
rspcedv 3517 |
Restricted existential spe... |
rspcebdv 3518 |
Restricted existential spe... |
rspcv 3519 |
Restricted specialization,... |
rspcvOLD 3520 |
Obsolete version of ~ rspc... |
rspccv 3521 |
Restricted specialization,... |
rspcva 3522 |
Restricted specialization,... |
rspccva 3523 |
Restricted specialization,... |
rspcev 3524 |
Restricted existential spe... |
rspcevOLD 3525 |
Obsolete version of ~ rspc... |
rspcdva 3526 |
Restricted specialization,... |
rspcedvd 3527 |
Restricted existential spe... |
rspcime 3528 |
Prove a restricted existen... |
rspceaimv 3529 |
Restricted existential spe... |
rspcedeq1vd 3530 |
Restricted existential spe... |
rspcedeq2vd 3531 |
Restricted existential spe... |
rspc2 3532 |
Restricted specialization ... |
rspc2gv 3533 |
Restricted specialization ... |
rspc2v 3534 |
2-variable restricted spec... |
rspc2va 3535 |
2-variable restricted spec... |
rspc2ev 3536 |
2-variable restricted exis... |
rspc3v 3537 |
3-variable restricted spec... |
rspc3ev 3538 |
3-variable restricted exis... |
rspceeqv 3539 |
Restricted existential spe... |
ralxpxfr2d 3540 |
Transfer a universal quant... |
rexraleqim 3541 |
Statement following from e... |
eqvincg 3542 |
A variable introduction la... |
eqvinc 3543 |
A variable introduction la... |
eqvincf 3544 |
A variable introduction la... |
alexeqg 3545 |
Two ways to express substi... |
ceqex 3546 |
Equality implies equivalen... |
ceqsexg 3547 |
A representation of explic... |
ceqsexgv 3548 |
Elimination of an existent... |
ceqsexgvOLD 3549 |
Obsolete version of ~ ceqs... |
ceqsrexv 3550 |
Elimination of a restricte... |
ceqsrexbv 3551 |
Elimination of a restricte... |
ceqsrex2v 3552 |
Elimination of a restricte... |
clel2g 3553 |
Alternate definition of me... |
clel2gOLD 3554 |
Obsolete version of ~ clel... |
clel2 3555 |
Alternate definition of me... |
clel3g 3556 |
Alternate definition of me... |
clel3 3557 |
Alternate definition of me... |
clel4g 3558 |
Alternate definition of me... |
clel4 3559 |
Alternate definition of me... |
clel4OLD 3560 |
Obsolete version of ~ clel... |
clel5 3561 |
Alternate definition of cl... |
pm13.183 3562 |
Compare theorem *13.183 in... |
rr19.3v 3563 |
Restricted quantifier vers... |
rr19.28v 3564 |
Restricted quantifier vers... |
elabgt 3565 |
Membership in a class abst... |
elabgf 3566 |
Membership in a class abst... |
elabf 3567 |
Membership in a class abst... |
elabgw 3568 |
Membership in a class abst... |
elab2gw 3569 |
Membership in a class abst... |
elabg 3570 |
Membership in a class abst... |
elab 3571 |
Membership in a class abst... |
elab2g 3572 |
Membership in a class abst... |
elabd 3573 |
Explicit demonstration the... |
elab2 3574 |
Membership in a class abst... |
elab4g 3575 |
Membership in a class abst... |
elab3gf 3576 |
Membership in a class abst... |
elab3g 3577 |
Membership in a class abst... |
elab3 3578 |
Membership in a class abst... |
elrabi 3579 |
Implication for the member... |
elrabiOLD 3580 |
Obsolete version of ~ elra... |
elrabf 3581 |
Membership in a restricted... |
rabtru 3582 |
Abstract builder using the... |
rabeqc 3583 |
A restricted class abstrac... |
elrab3t 3584 |
Membership in a restricted... |
elrab 3585 |
Membership in a restricted... |
elrab3 3586 |
Membership in a restricted... |
elrabd 3587 |
Membership in a restricted... |
elrab2 3588 |
Membership in a restricted... |
elrab2w 3589 |
Membership in a restricted... |
ralab 3590 |
Universal quantification o... |
ralrab 3591 |
Universal quantification o... |
rexab 3592 |
Existential quantification... |
rexrab 3593 |
Existential quantification... |
ralab2 3594 |
Universal quantification o... |
ralab2OLD 3595 |
Obsolete version of ~ rala... |
ralrab2 3596 |
Universal quantification o... |
rexab2 3597 |
Existential quantification... |
rexab2OLD 3598 |
Obsolete version of ~ rexa... |
rexrab2 3599 |
Existential quantification... |
abidnf 3600 |
Identity used to create cl... |
dedhb 3601 |
A deduction theorem for co... |
nelrdva 3602 |
Deduce negative membership... |
eqeu 3603 |
A condition which implies ... |
moeq 3604 |
There exists at most one s... |
eueq 3605 |
A class is a set if and on... |
eueqi 3606 |
There exists a unique set ... |
eueq2 3607 |
Equality has existential u... |
eueq3 3608 |
Equality has existential u... |
moeq3 3609 |
"At most one" property of ... |
mosub 3610 |
"At most one" remains true... |
mo2icl 3611 |
Theorem for inferring "at ... |
mob2 3612 |
Consequence of "at most on... |
moi2 3613 |
Consequence of "at most on... |
mob 3614 |
Equality implied by "at mo... |
moi 3615 |
Equality implied by "at mo... |
morex 3616 |
Derive membership from uni... |
euxfr2w 3617 |
Transfer existential uniqu... |
euxfrw 3618 |
Transfer existential uniqu... |
euxfr2 3619 |
Transfer existential uniqu... |
euxfr 3620 |
Transfer existential uniqu... |
euind 3621 |
Existential uniqueness via... |
reu2 3622 |
A way to express restricte... |
reu6 3623 |
A way to express restricte... |
reu3 3624 |
A way to express restricte... |
reu6i 3625 |
A condition which implies ... |
eqreu 3626 |
A condition which implies ... |
rmo4 3627 |
Restricted "at most one" u... |
reu4 3628 |
Restricted uniqueness usin... |
reu7 3629 |
Restricted uniqueness usin... |
reu8 3630 |
Restricted uniqueness usin... |
rmo3f 3631 |
Restricted "at most one" u... |
rmo4f 3632 |
Restricted "at most one" u... |
reu2eqd 3633 |
Deduce equality from restr... |
reueq 3634 |
Equality has existential u... |
rmoeq 3635 |
Equality's restricted exis... |
rmoan 3636 |
Restricted "at most one" s... |
rmoim 3637 |
Restricted "at most one" i... |
rmoimia 3638 |
Restricted "at most one" i... |
rmoimi 3639 |
Restricted "at most one" i... |
rmoimi2 3640 |
Restricted "at most one" i... |
2reu5a 3641 |
Double restricted existent... |
reuimrmo 3642 |
Restricted uniqueness impl... |
2reuswap 3643 |
A condition allowing swap ... |
2reuswap2 3644 |
A condition allowing swap ... |
reuxfrd 3645 |
Transfer existential uniqu... |
reuxfr 3646 |
Transfer existential uniqu... |
reuxfr1d 3647 |
Transfer existential uniqu... |
reuxfr1ds 3648 |
Transfer existential uniqu... |
reuxfr1 3649 |
Transfer existential uniqu... |
reuind 3650 |
Existential uniqueness via... |
2rmorex 3651 |
Double restricted quantifi... |
2reu5lem1 3652 |
Lemma for ~ 2reu5 . Note ... |
2reu5lem2 3653 |
Lemma for ~ 2reu5 . (Cont... |
2reu5lem3 3654 |
Lemma for ~ 2reu5 . This ... |
2reu5 3655 |
Double restricted existent... |
2reurex 3656 |
Double restricted quantifi... |
2reurmo 3657 |
Double restricted quantifi... |
2rmoswap 3658 |
A condition allowing to sw... |
2rexreu 3659 |
Double restricted existent... |
cdeqi 3662 |
Deduce conditional equalit... |
cdeqri 3663 |
Property of conditional eq... |
cdeqth 3664 |
Deduce conditional equalit... |
cdeqnot 3665 |
Distribute conditional equ... |
cdeqal 3666 |
Distribute conditional equ... |
cdeqab 3667 |
Distribute conditional equ... |
cdeqal1 3668 |
Distribute conditional equ... |
cdeqab1 3669 |
Distribute conditional equ... |
cdeqim 3670 |
Distribute conditional equ... |
cdeqcv 3671 |
Conditional equality for s... |
cdeqeq 3672 |
Distribute conditional equ... |
cdeqel 3673 |
Distribute conditional equ... |
nfcdeq 3674 |
If we have a conditional e... |
nfccdeq 3675 |
Variation of ~ nfcdeq for ... |
rru 3676 |
Relative version of Russel... |
rruOLD 3677 |
Obsolete version of ~ rru ... |
ru 3678 |
Russell's Paradox. Propos... |
dfsbcq 3681 |
Proper substitution of a c... |
dfsbcq2 3682 |
This theorem, which is sim... |
sbsbc 3683 |
Show that ~ df-sb and ~ df... |
sbceq1d 3684 |
Equality theorem for class... |
sbceq1dd 3685 |
Equality theorem for class... |
sbceqbid 3686 |
Equality theorem for class... |
sbc8g 3687 |
This is the closest we can... |
sbc2or 3688 |
The disjunction of two equ... |
sbcex 3689 |
By our definition of prope... |
sbceq1a 3690 |
Equality theorem for class... |
sbceq2a 3691 |
Equality theorem for class... |
spsbc 3692 |
Specialization: if a formu... |
spsbcd 3693 |
Specialization: if a formu... |
sbcth 3694 |
A substitution into a theo... |
sbcthdv 3695 |
Deduction version of ~ sbc... |
sbcid 3696 |
An identity theorem for su... |
nfsbc1d 3697 |
Deduction version of ~ nfs... |
nfsbc1 3698 |
Bound-variable hypothesis ... |
nfsbc1v 3699 |
Bound-variable hypothesis ... |
nfsbcdw 3700 |
Deduction version of ~ nfs... |
nfsbcw 3701 |
Bound-variable hypothesis ... |
sbccow 3702 |
A composition law for clas... |
nfsbcd 3703 |
Deduction version of ~ nfs... |
nfsbc 3704 |
Bound-variable hypothesis ... |
sbcco 3705 |
A composition law for clas... |
sbcco2 3706 |
A composition law for clas... |
sbc5 3707 |
An equivalence for class s... |
sbc5ALT 3708 |
Alternate proof of ~ sbc5 ... |
sbc6g 3709 |
An equivalence for class s... |
sbc6 3710 |
An equivalence for class s... |
sbc7 3711 |
An equivalence for class s... |
cbvsbcw 3712 |
Change bound variables in ... |
cbvsbcvw 3713 |
Change the bound variable ... |
cbvsbc 3714 |
Change bound variables in ... |
cbvsbcv 3715 |
Change the bound variable ... |
sbciegft 3716 |
Conversion of implicit sub... |
sbciegf 3717 |
Conversion of implicit sub... |
sbcieg 3718 |
Conversion of implicit sub... |
sbcie2g 3719 |
Conversion of implicit sub... |
sbcie 3720 |
Conversion of implicit sub... |
sbciedf 3721 |
Conversion of implicit sub... |
sbcied 3722 |
Conversion of implicit sub... |
sbcied2 3723 |
Conversion of implicit sub... |
elrabsf 3724 |
Membership in a restricted... |
eqsbc3 3725 |
Substitution applied to an... |
sbcng 3726 |
Move negation in and out o... |
sbcimg 3727 |
Distribution of class subs... |
sbcan 3728 |
Distribution of class subs... |
sbcor 3729 |
Distribution of class subs... |
sbcbig 3730 |
Distribution of class subs... |
sbcn1 3731 |
Move negation in and out o... |
sbcim1 3732 |
Distribution of class subs... |
sbcbid 3733 |
Formula-building deduction... |
sbcbidv 3734 |
Formula-building deduction... |
sbcbidvOLD 3735 |
Obsolete version of ~ sbcb... |
sbcbii 3736 |
Formula-building inference... |
sbcbi1 3737 |
Distribution of class subs... |
sbcbi2 3738 |
Substituting into equivale... |
sbcbi2OLD 3739 |
Obsolete proof of ~ sbcbi2... |
sbcal 3740 |
Move universal quantifier ... |
sbcex2 3741 |
Move existential quantifie... |
sbceqal 3742 |
Class version of one impli... |
sbeqalb 3743 |
Theorem *14.121 in [Whiteh... |
eqsbc3r 3744 |
~ eqsbc3 with setvar varia... |
sbc3an 3745 |
Distribution of class subs... |
sbcel1v 3746 |
Class substitution into a ... |
sbcel2gv 3747 |
Class substitution into a ... |
sbcel21v 3748 |
Class substitution into a ... |
sbcimdv 3749 |
Substitution analogue of T... |
sbctt 3750 |
Substitution for a variabl... |
sbcgf 3751 |
Substitution for a variabl... |
sbc19.21g 3752 |
Substitution for a variabl... |
sbcg 3753 |
Substitution for a variabl... |
sbcgfi 3754 |
Substitution for a variabl... |
sbc2iegf 3755 |
Conversion of implicit sub... |
sbc2ie 3756 |
Conversion of implicit sub... |
sbc2iedv 3757 |
Conversion of implicit sub... |
sbc3ie 3758 |
Conversion of implicit sub... |
sbccomlem 3759 |
Lemma for ~ sbccom . (Con... |
sbccom 3760 |
Commutative law for double... |
sbcralt 3761 |
Interchange class substitu... |
sbcrext 3762 |
Interchange class substitu... |
sbcralg 3763 |
Interchange class substitu... |
sbcrex 3764 |
Interchange class substitu... |
sbcreu 3765 |
Interchange class substitu... |
reu8nf 3766 |
Restricted uniqueness usin... |
sbcabel 3767 |
Interchange class substitu... |
rspsbc 3768 |
Restricted quantifier vers... |
rspsbca 3769 |
Restricted quantifier vers... |
rspesbca 3770 |
Existence form of ~ rspsbc... |
spesbc 3771 |
Existence form of ~ spsbc ... |
spesbcd 3772 |
form of ~ spsbc . (Contri... |
sbcth2 3773 |
A substitution into a theo... |
ra4v 3774 |
Version of ~ ra4 with a di... |
ra4 3775 |
Restricted quantifier vers... |
rmo2 3776 |
Alternate definition of re... |
rmo2i 3777 |
Condition implying restric... |
rmo3 3778 |
Restricted "at most one" u... |
rmob 3779 |
Consequence of "at most on... |
rmoi 3780 |
Consequence of "at most on... |
rmob2 3781 |
Consequence of "restricted... |
rmoi2 3782 |
Consequence of "restricted... |
rmoanim 3783 |
Introduction of a conjunct... |
rmoanimALT 3784 |
Alternate proof of ~ rmoan... |
reuan 3785 |
Introduction of a conjunct... |
2reu1 3786 |
Double restricted existent... |
2reu2 3787 |
Double restricted existent... |
csb2 3790 |
Alternate expression for t... |
csbeq1 3791 |
Analogue of ~ dfsbcq for p... |
csbeq1d 3792 |
Equality deduction for pro... |
csbeq2 3793 |
Substituting into equivale... |
csbeq2d 3794 |
Formula-building deduction... |
csbeq2dv 3795 |
Formula-building deduction... |
csbeq2i 3796 |
Formula-building inference... |
csbeq12dv 3797 |
Formula-building inference... |
cbvcsbw 3798 |
Change bound variables in ... |
cbvcsb 3799 |
Change bound variables in ... |
cbvcsbv 3800 |
Change the bound variable ... |
csbid 3801 |
Analogue of ~ sbid for pro... |
csbeq1a 3802 |
Equality theorem for prope... |
csbcow 3803 |
Composition law for chaine... |
csbco 3804 |
Composition law for chaine... |
csbtt 3805 |
Substitution doesn't affec... |
csbconstgf 3806 |
Substitution doesn't affec... |
csbconstg 3807 |
Substitution doesn't affec... |
csbgfi 3808 |
Substitution for a variabl... |
csbconstgi 3809 |
The proper substitution of... |
nfcsb1d 3810 |
Bound-variable hypothesis ... |
nfcsb1 3811 |
Bound-variable hypothesis ... |
nfcsb1v 3812 |
Bound-variable hypothesis ... |
nfcsbd 3813 |
Deduction version of ~ nfc... |
nfcsbw 3814 |
Bound-variable hypothesis ... |
nfcsb 3815 |
Bound-variable hypothesis ... |
csbhypf 3816 |
Introduce an explicit subs... |
csbiebt 3817 |
Conversion of implicit sub... |
csbiedf 3818 |
Conversion of implicit sub... |
csbieb 3819 |
Bidirectional conversion b... |
csbiebg 3820 |
Bidirectional conversion b... |
csbiegf 3821 |
Conversion of implicit sub... |
csbief 3822 |
Conversion of implicit sub... |
csbie 3823 |
Conversion of implicit sub... |
csbied 3824 |
Conversion of implicit sub... |
csbied2 3825 |
Conversion of implicit sub... |
csbie2t 3826 |
Conversion of implicit sub... |
csbie2 3827 |
Conversion of implicit sub... |
csbie2g 3828 |
Conversion of implicit sub... |
cbvrabcsfw 3829 |
Version of ~ cbvrabcsf wit... |
cbvralcsf 3830 |
A more general version of ... |
cbvrexcsf 3831 |
A more general version of ... |
cbvreucsf 3832 |
A more general version of ... |
cbvrabcsf 3833 |
A more general version of ... |
cbvralv2 3834 |
Rule used to change the bo... |
cbvrexv2 3835 |
Rule used to change the bo... |
vtocl2dOLD 3836 |
Obsolete version of ~ vtoc... |
rspc2vd 3837 |
Deduction version of 2-var... |
difjust 3843 |
Soundness justification th... |
unjust 3845 |
Soundness justification th... |
injust 3847 |
Soundness justification th... |
dfin5 3849 |
Alternate definition for t... |
dfdif2 3850 |
Alternate definition of cl... |
eldif 3851 |
Expansion of membership in... |
eldifd 3852 |
If a class is in one class... |
eldifad 3853 |
If a class is in the diffe... |
eldifbd 3854 |
If a class is in the diffe... |
elneeldif 3855 |
The elements of a set diff... |
velcomp 3856 |
Characterization of setvar... |
elin 3857 |
Expansion of membership in... |
dfss 3859 |
Variant of subclass defini... |
dfss2 3861 |
Alternate definition of th... |
dfss2OLD 3862 |
Obsolete version of ~ dfss... |
dfss3 3863 |
Alternate definition of su... |
dfss6 3864 |
Alternate definition of su... |
dfss2f 3865 |
Equivalence for subclass r... |
dfss3f 3866 |
Equivalence for subclass r... |
nfss 3867 |
If ` x ` is not free in ` ... |
ssel 3868 |
Membership relationships f... |
sselOLD 3869 |
Obsolete version of ~ ssel... |
ssel2 3870 |
Membership relationships f... |
sseli 3871 |
Membership implication fro... |
sselii 3872 |
Membership inference from ... |
sseldi 3873 |
Membership inference from ... |
sseld 3874 |
Membership deduction from ... |
sselda 3875 |
Membership deduction from ... |
sseldd 3876 |
Membership inference from ... |
ssneld 3877 |
If a class is not in anoth... |
ssneldd 3878 |
If an element is not in a ... |
ssriv 3879 |
Inference based on subclas... |
ssrd 3880 |
Deduction based on subclas... |
ssrdv 3881 |
Deduction based on subclas... |
sstr2 3882 |
Transitivity of subclass r... |
sstr 3883 |
Transitivity of subclass r... |
sstri 3884 |
Subclass transitivity infe... |
sstrd 3885 |
Subclass transitivity dedu... |
sstrid 3886 |
Subclass transitivity dedu... |
sstrdi 3887 |
Subclass transitivity dedu... |
sylan9ss 3888 |
A subclass transitivity de... |
sylan9ssr 3889 |
A subclass transitivity de... |
eqss 3890 |
The subclass relationship ... |
eqssi 3891 |
Infer equality from two su... |
eqssd 3892 |
Equality deduction from tw... |
sssseq 3893 |
If a class is a subclass o... |
eqrd 3894 |
Deduce equality of classes... |
eqri 3895 |
Infer equality of classes ... |
eqelssd 3896 |
Equality deduction from su... |
ssid 3897 |
Any class is a subclass of... |
ssidd 3898 |
Weakening of ~ ssid . (Co... |
ssv 3899 |
Any class is a subclass of... |
sseq1 3900 |
Equality theorem for subcl... |
sseq2 3901 |
Equality theorem for the s... |
sseq12 3902 |
Equality theorem for the s... |
sseq1i 3903 |
An equality inference for ... |
sseq2i 3904 |
An equality inference for ... |
sseq12i 3905 |
An equality inference for ... |
sseq1d 3906 |
An equality deduction for ... |
sseq2d 3907 |
An equality deduction for ... |
sseq12d 3908 |
An equality deduction for ... |
eqsstri 3909 |
Substitution of equality i... |
eqsstrri 3910 |
Substitution of equality i... |
sseqtri 3911 |
Substitution of equality i... |
sseqtrri 3912 |
Substitution of equality i... |
eqsstrd 3913 |
Substitution of equality i... |
eqsstrrd 3914 |
Substitution of equality i... |
sseqtrd 3915 |
Substitution of equality i... |
sseqtrrd 3916 |
Substitution of equality i... |
3sstr3i 3917 |
Substitution of equality i... |
3sstr4i 3918 |
Substitution of equality i... |
3sstr3g 3919 |
Substitution of equality i... |
3sstr4g 3920 |
Substitution of equality i... |
3sstr3d 3921 |
Substitution of equality i... |
3sstr4d 3922 |
Substitution of equality i... |
eqsstrid 3923 |
A chained subclass and equ... |
eqsstrrid 3924 |
A chained subclass and equ... |
sseqtrdi 3925 |
A chained subclass and equ... |
sseqtrrdi 3926 |
A chained subclass and equ... |
sseqtrid 3927 |
Subclass transitivity dedu... |
sseqtrrid 3928 |
Subclass transitivity dedu... |
eqsstrdi 3929 |
A chained subclass and equ... |
eqsstrrdi 3930 |
A chained subclass and equ... |
eqimss 3931 |
Equality implies the subcl... |
eqimss2 3932 |
Equality implies the subcl... |
eqimssi 3933 |
Infer subclass relationshi... |
eqimss2i 3934 |
Infer subclass relationshi... |
nssne1 3935 |
Two classes are different ... |
nssne2 3936 |
Two classes are different ... |
nss 3937 |
Negation of subclass relat... |
nelss 3938 |
Demonstrate by witnesses t... |
ssrexf 3939 |
Restricted existential qua... |
ssrmof 3940 |
"At most one" existential ... |
ssralv 3941 |
Quantification restricted ... |
ssrexv 3942 |
Existential quantification... |
ss2ralv 3943 |
Two quantifications restri... |
ss2rexv 3944 |
Two existential quantifica... |
ralss 3945 |
Restricted universal quant... |
rexss 3946 |
Restricted existential qua... |
ss2ab 3947 |
Class abstractions in a su... |
abss 3948 |
Class abstraction in a sub... |
ssab 3949 |
Subclass of a class abstra... |
ssabral 3950 |
The relation for a subclas... |
ss2abdv 3951 |
Deduction of abstraction s... |
ss2abdvALT 3952 |
Alternate proof of ~ ss2ab... |
ss2abdvOLD 3953 |
Obsolete version of ~ ss2a... |
ss2abi 3954 |
Inference of abstraction s... |
ss2abiOLD 3955 |
Obsolete version of ~ ss2a... |
abssdv 3956 |
Deduction of abstraction s... |
abssi 3957 |
Inference of abstraction s... |
ss2rab 3958 |
Restricted abstraction cla... |
rabss 3959 |
Restricted class abstracti... |
ssrab 3960 |
Subclass of a restricted c... |
ssrabdv 3961 |
Subclass of a restricted c... |
rabssdv 3962 |
Subclass of a restricted c... |
ss2rabdv 3963 |
Deduction of restricted ab... |
ss2rabi 3964 |
Inference of restricted ab... |
rabss2 3965 |
Subclass law for restricte... |
ssab2 3966 |
Subclass relation for the ... |
ssrab2 3967 |
Subclass relation for a re... |
ssrab2OLD 3968 |
Obsolete version of ~ ssra... |
ssrab3 3969 |
Subclass relation for a re... |
rabssrabd 3970 |
Subclass of a restricted c... |
ssrabeq 3971 |
If the restricting class o... |
rabssab 3972 |
A restricted class is a su... |
uniiunlem 3973 |
A subset relationship usef... |
dfpss2 3974 |
Alternate definition of pr... |
dfpss3 3975 |
Alternate definition of pr... |
psseq1 3976 |
Equality theorem for prope... |
psseq2 3977 |
Equality theorem for prope... |
psseq1i 3978 |
An equality inference for ... |
psseq2i 3979 |
An equality inference for ... |
psseq12i 3980 |
An equality inference for ... |
psseq1d 3981 |
An equality deduction for ... |
psseq2d 3982 |
An equality deduction for ... |
psseq12d 3983 |
An equality deduction for ... |
pssss 3984 |
A proper subclass is a sub... |
pssne 3985 |
Two classes in a proper su... |
pssssd 3986 |
Deduce subclass from prope... |
pssned 3987 |
Proper subclasses are uneq... |
sspss 3988 |
Subclass in terms of prope... |
pssirr 3989 |
Proper subclass is irrefle... |
pssn2lp 3990 |
Proper subclass has no 2-c... |
sspsstri 3991 |
Two ways of stating tricho... |
ssnpss 3992 |
Partial trichotomy law for... |
psstr 3993 |
Transitive law for proper ... |
sspsstr 3994 |
Transitive law for subclas... |
psssstr 3995 |
Transitive law for subclas... |
psstrd 3996 |
Proper subclass inclusion ... |
sspsstrd 3997 |
Transitivity involving sub... |
psssstrd 3998 |
Transitivity involving sub... |
npss 3999 |
A class is not a proper su... |
ssnelpss 4000 |
A subclass missing a membe... |
ssnelpssd 4001 |
Subclass inclusion with on... |
ssexnelpss 4002 |
If there is an element of ... |
dfdif3 4003 |
Alternate definition of cl... |
difeq1 4004 |
Equality theorem for class... |
difeq2 4005 |
Equality theorem for class... |
difeq12 4006 |
Equality theorem for class... |
difeq1i 4007 |
Inference adding differenc... |
difeq2i 4008 |
Inference adding differenc... |
difeq12i 4009 |
Equality inference for cla... |
difeq1d 4010 |
Deduction adding differenc... |
difeq2d 4011 |
Deduction adding differenc... |
difeq12d 4012 |
Equality deduction for cla... |
difeqri 4013 |
Inference from membership ... |
nfdif 4014 |
Bound-variable hypothesis ... |
eldifi 4015 |
Implication of membership ... |
eldifn 4016 |
Implication of membership ... |
elndif 4017 |
A set does not belong to a... |
neldif 4018 |
Implication of membership ... |
difdif 4019 |
Double class difference. ... |
difss 4020 |
Subclass relationship for ... |
difssd 4021 |
A difference of two classe... |
difss2 4022 |
If a class is contained in... |
difss2d 4023 |
If a class is contained in... |
ssdifss 4024 |
Preservation of a subclass... |
ddif 4025 |
Double complement under un... |
ssconb 4026 |
Contraposition law for sub... |
sscon 4027 |
Contraposition law for sub... |
ssdif 4028 |
Difference law for subsets... |
ssdifd 4029 |
If ` A ` is contained in `... |
sscond 4030 |
If ` A ` is contained in `... |
ssdifssd 4031 |
If ` A ` is contained in `... |
ssdif2d 4032 |
If ` A ` is contained in `... |
raldifb 4033 |
Restricted universal quant... |
rexdifi 4034 |
Restricted existential qua... |
complss 4035 |
Complementation reverses i... |
compleq 4036 |
Two classes are equal if a... |
elun 4037 |
Expansion of membership in... |
elunnel1 4038 |
A member of a union that i... |
uneqri 4039 |
Inference from membership ... |
unidm 4040 |
Idempotent law for union o... |
uncom 4041 |
Commutative law for union ... |
equncom 4042 |
If a class equals the unio... |
equncomi 4043 |
Inference form of ~ equnco... |
uneq1 4044 |
Equality theorem for the u... |
uneq2 4045 |
Equality theorem for the u... |
uneq12 4046 |
Equality theorem for the u... |
uneq1i 4047 |
Inference adding union to ... |
uneq2i 4048 |
Inference adding union to ... |
uneq12i 4049 |
Equality inference for the... |
uneq1d 4050 |
Deduction adding union to ... |
uneq2d 4051 |
Deduction adding union to ... |
uneq12d 4052 |
Equality deduction for the... |
nfun 4053 |
Bound-variable hypothesis ... |
unass 4054 |
Associative law for union ... |
un12 4055 |
A rearrangement of union. ... |
un23 4056 |
A rearrangement of union. ... |
un4 4057 |
A rearrangement of the uni... |
unundi 4058 |
Union distributes over its... |
unundir 4059 |
Union distributes over its... |
ssun1 4060 |
Subclass relationship for ... |
ssun2 4061 |
Subclass relationship for ... |
ssun3 4062 |
Subclass law for union of ... |
ssun4 4063 |
Subclass law for union of ... |
elun1 4064 |
Membership law for union o... |
elun2 4065 |
Membership law for union o... |
elunant 4066 |
A statement is true for ev... |
unss1 4067 |
Subclass law for union of ... |
ssequn1 4068 |
A relationship between sub... |
unss2 4069 |
Subclass law for union of ... |
unss12 4070 |
Subclass law for union of ... |
ssequn2 4071 |
A relationship between sub... |
unss 4072 |
The union of two subclasse... |
unssi 4073 |
An inference showing the u... |
unssd 4074 |
A deduction showing the un... |
unssad 4075 |
If ` ( A u. B ) ` is conta... |
unssbd 4076 |
If ` ( A u. B ) ` is conta... |
ssun 4077 |
A condition that implies i... |
rexun 4078 |
Restricted existential qua... |
ralunb 4079 |
Restricted quantification ... |
ralun 4080 |
Restricted quantification ... |
elini 4081 |
Membership in an intersect... |
elind 4082 |
Deduce membership in an in... |
elinel1 4083 |
Membership in an intersect... |
elinel2 4084 |
Membership in an intersect... |
elin2 4085 |
Membership in a class defi... |
elin1d 4086 |
Elementhood in the first s... |
elin2d 4087 |
Elementhood in the first s... |
elin3 4088 |
Membership in a class defi... |
incom 4089 |
Commutative law for inters... |
incomOLD 4090 |
Obsolete version of ~ inco... |
ineqcom 4091 |
Two ways of expressing tha... |
ineqcomi 4092 |
Two ways of expressing tha... |
ineqri 4093 |
Inference from membership ... |
ineq1 4094 |
Equality theorem for inter... |
ineq2 4095 |
Equality theorem for inter... |
ineq12 4096 |
Equality theorem for inter... |
ineq1i 4097 |
Equality inference for int... |
ineq2i 4098 |
Equality inference for int... |
ineq12i 4099 |
Equality inference for int... |
ineq1d 4100 |
Equality deduction for int... |
ineq2d 4101 |
Equality deduction for int... |
ineq12d 4102 |
Equality deduction for int... |
ineqan12d 4103 |
Equality deduction for int... |
sseqin2 4104 |
A relationship between sub... |
nfin 4105 |
Bound-variable hypothesis ... |
rabbi2dva 4106 |
Deduction from a wff to a ... |
inidm 4107 |
Idempotent law for interse... |
inass 4108 |
Associative law for inters... |
in12 4109 |
A rearrangement of interse... |
in32 4110 |
A rearrangement of interse... |
in13 4111 |
A rearrangement of interse... |
in31 4112 |
A rearrangement of interse... |
inrot 4113 |
Rotate the intersection of... |
in4 4114 |
Rearrangement of intersect... |
inindi 4115 |
Intersection distributes o... |
inindir 4116 |
Intersection distributes o... |
inss1 4117 |
The intersection of two cl... |
inss2 4118 |
The intersection of two cl... |
ssin 4119 |
Subclass of intersection. ... |
ssini 4120 |
An inference showing that ... |
ssind 4121 |
A deduction showing that a... |
ssrin 4122 |
Add right intersection to ... |
sslin 4123 |
Add left intersection to s... |
ssrind 4124 |
Add right intersection to ... |
ss2in 4125 |
Intersection of subclasses... |
ssinss1 4126 |
Intersection preserves sub... |
inss 4127 |
Inclusion of an intersecti... |
rexin 4128 |
Restricted existential qua... |
dfss7 4129 |
Alternate definition of su... |
symdifcom 4132 |
Symmetric difference commu... |
symdifeq1 4133 |
Equality theorem for symme... |
symdifeq2 4134 |
Equality theorem for symme... |
nfsymdif 4135 |
Hypothesis builder for sym... |
elsymdif 4136 |
Membership in a symmetric ... |
dfsymdif4 4137 |
Alternate definition of th... |
elsymdifxor 4138 |
Membership in a symmetric ... |
dfsymdif2 4139 |
Alternate definition of th... |
symdifass 4140 |
Symmetric difference is as... |
difsssymdif 4141 |
The symmetric difference c... |
difsymssdifssd 4142 |
If the symmetric differenc... |
unabs 4143 |
Absorption law for union. ... |
inabs 4144 |
Absorption law for interse... |
nssinpss 4145 |
Negation of subclass expre... |
nsspssun 4146 |
Negation of subclass expre... |
dfss4 4147 |
Subclass defined in terms ... |
dfun2 4148 |
An alternate definition of... |
dfin2 4149 |
An alternate definition of... |
difin 4150 |
Difference with intersecti... |
ssdifim 4151 |
Implication of a class dif... |
ssdifsym 4152 |
Symmetric class difference... |
dfss5 4153 |
Alternate definition of su... |
dfun3 4154 |
Union defined in terms of ... |
dfin3 4155 |
Intersection defined in te... |
dfin4 4156 |
Alternate definition of th... |
invdif 4157 |
Intersection with universa... |
indif 4158 |
Intersection with class di... |
indif2 4159 |
Bring an intersection in a... |
indif1 4160 |
Bring an intersection in a... |
indifcom 4161 |
Commutation law for inters... |
indi 4162 |
Distributive law for inter... |
undi 4163 |
Distributive law for union... |
indir 4164 |
Distributive law for inter... |
undir 4165 |
Distributive law for union... |
unineq 4166 |
Infer equality from equali... |
uneqin 4167 |
Equality of union and inte... |
difundi 4168 |
Distributive law for class... |
difundir 4169 |
Distributive law for class... |
difindi 4170 |
Distributive law for class... |
difindir 4171 |
Distributive law for class... |
indifdi 4172 |
Distribute intersection ov... |
indifdir 4173 |
Distribute intersection ov... |
indifdirOLD 4174 |
Obsolete version of ~ indi... |
difdif2 4175 |
Class difference by a clas... |
undm 4176 |
De Morgan's law for union.... |
indm 4177 |
De Morgan's law for inters... |
difun1 4178 |
A relationship involving d... |
undif3 4179 |
An equality involving clas... |
difin2 4180 |
Represent a class differen... |
dif32 4181 |
Swap second and third argu... |
difabs 4182 |
Absorption-like law for cl... |
sscon34b 4183 |
Relative complementation r... |
rcompleq 4184 |
Two subclasses are equal i... |
dfsymdif3 4185 |
Alternate definition of th... |
unab 4186 |
Union of two class abstrac... |
inab 4187 |
Intersection of two class ... |
difab 4188 |
Difference of two class ab... |
abanssl 4189 |
A class abstraction with a... |
abanssr 4190 |
A class abstraction with a... |
notab 4191 |
A class abstraction define... |
unrab 4192 |
Union of two restricted cl... |
inrab 4193 |
Intersection of two restri... |
inrab2 4194 |
Intersection with a restri... |
difrab 4195 |
Difference of two restrict... |
dfrab3 4196 |
Alternate definition of re... |
dfrab2 4197 |
Alternate definition of re... |
notrab 4198 |
Complementation of restric... |
dfrab3ss 4199 |
Restricted class abstracti... |
rabun2 4200 |
Abstraction restricted to ... |
reuss2 4201 |
Transfer uniqueness to a s... |
reuss 4202 |
Transfer uniqueness to a s... |
reuun1 4203 |
Transfer uniqueness to a s... |
reuun2 4204 |
Transfer uniqueness to a s... |
reupick 4205 |
Restricted uniqueness "pic... |
reupick3 4206 |
Restricted uniqueness "pic... |
reupick2 4207 |
Restricted uniqueness "pic... |
euelss 4208 |
Transfer uniqueness of an ... |
dfnul4 4211 |
Alternate definition of th... |
dfnul2 4212 |
Alternate definition of th... |
dfnul3 4213 |
Alternate definition of th... |
dfnul2OLD 4214 |
Obsolete version of ~ dfnu... |
dfnul3OLD 4215 |
Obsolete version of ~ dfnu... |
dfnul4OLD 4216 |
Obsolete version of ~ dfnu... |
noel 4217 |
The empty set has no eleme... |
noelOLD 4218 |
Obsolete version of ~ noel... |
nel02 4219 |
The empty set has no eleme... |
n0i 4220 |
If a class has elements, t... |
ne0i 4221 |
If a class has elements, t... |
ne0d 4222 |
Deduction form of ~ ne0i .... |
n0ii 4223 |
If a class has elements, t... |
ne0ii 4224 |
If a class has elements, t... |
vn0 4225 |
The universal class is not... |
vn0ALT 4226 |
Alternate proof of ~ vn0 .... |
eq0f 4227 |
A class is equal to the em... |
neq0f 4228 |
A class is not empty if an... |
n0f 4229 |
A class is nonempty if and... |
eq0 4230 |
A class is equal to the em... |
eq0ALT 4231 |
Alternate proof of ~ eq0 .... |
neq0 4232 |
A class is not empty if an... |
n0 4233 |
A class is nonempty if and... |
eq0OLDOLD 4234 |
Obsolete version of ~ eq0 ... |
neq0OLD 4235 |
Obsolete version of ~ neq0... |
n0OLD 4236 |
Obsolete version of ~ n0 a... |
nel0 4237 |
From the general negation ... |
reximdva0 4238 |
Restricted existence deduc... |
rspn0 4239 |
Specialization for restric... |
rspn0OLD 4240 |
Obsolete version of ~ rspn... |
n0rex 4241 |
There is an element in a n... |
ssn0rex 4242 |
There is an element in a c... |
n0moeu 4243 |
A case of equivalence of "... |
rex0 4244 |
Vacuous restricted existen... |
reu0 4245 |
Vacuous restricted uniquen... |
rmo0 4246 |
Vacuous restricted at-most... |
0el 4247 |
Membership of the empty se... |
n0el 4248 |
Negated membership of the ... |
eqeuel 4249 |
A condition which implies ... |
ssdif0 4250 |
Subclass expressed in term... |
difn0 4251 |
If the difference of two s... |
pssdifn0 4252 |
A proper subclass has a no... |
pssdif 4253 |
A proper subclass has a no... |
ndisj 4254 |
Express that an intersecti... |
difin0ss 4255 |
Difference, intersection, ... |
inssdif0 4256 |
Intersection, subclass, an... |
difid 4257 |
The difference between a c... |
difidALT 4258 |
Alternate proof of ~ difid... |
dif0 4259 |
The difference between a c... |
ab0 4260 |
The class of sets verifyin... |
ab0OLD 4261 |
Obsolete version of ~ ab0 ... |
ab0ALT 4262 |
Alternate proof of ~ ab0 ,... |
dfnf5 4263 |
Characterization of nonfre... |
ab0orv 4264 |
The class abstraction defi... |
ab0orvALT 4265 |
Alternate proof of ~ ab0or... |
abn0 4266 |
Nonempty class abstraction... |
abn0OLD 4267 |
Obsolete version of ~ abn0... |
rab0 4268 |
Any restricted class abstr... |
rabeq0w 4269 |
Condition for a restricted... |
rabeq0 4270 |
Condition for a restricted... |
rabn0 4271 |
Nonempty restricted class ... |
rabxm 4272 |
Law of excluded middle, in... |
rabnc 4273 |
Law of noncontradiction, i... |
elneldisj 4274 |
The set of elements ` s ` ... |
elnelun 4275 |
The union of the set of el... |
un0 4276 |
The union of a class with ... |
in0 4277 |
The intersection of a clas... |
0un 4278 |
The union of the empty set... |
0in 4279 |
The intersection of the em... |
inv1 4280 |
The intersection of a clas... |
unv 4281 |
The union of a class with ... |
0ss 4282 |
The null set is a subset o... |
ss0b 4283 |
Any subset of the empty se... |
ss0 4284 |
Any subset of the empty se... |
sseq0 4285 |
A subclass of an empty cla... |
ssn0 4286 |
A class with a nonempty su... |
0dif 4287 |
The difference between the... |
abf 4288 |
A class abstraction determ... |
abfOLD 4289 |
Obsolete version of ~ abf ... |
eq0rdv 4290 |
Deduction for equality to ... |
eq0rdvALT 4291 |
Alternate proof of ~ eq0rd... |
csbprc 4292 |
The proper substitution of... |
csb0 4293 |
The proper substitution of... |
csb0OLD 4294 |
Obsolete version of ~ csb0... |
sbcel12 4295 |
Distribute proper substitu... |
sbceqg 4296 |
Distribute proper substitu... |
sbceqi 4297 |
Distribution of class subs... |
sbcnel12g 4298 |
Distribute proper substitu... |
sbcne12 4299 |
Distribute proper substitu... |
sbcel1g 4300 |
Move proper substitution i... |
sbceq1g 4301 |
Move proper substitution t... |
sbcel2 4302 |
Move proper substitution i... |
sbceq2g 4303 |
Move proper substitution t... |
csbcom 4304 |
Commutative law for double... |
sbcnestgfw 4305 |
Nest the composition of tw... |
csbnestgfw 4306 |
Nest the composition of tw... |
sbcnestgw 4307 |
Nest the composition of tw... |
csbnestgw 4308 |
Nest the composition of tw... |
sbcco3gw 4309 |
Composition of two substit... |
sbcnestgf 4310 |
Nest the composition of tw... |
csbnestgf 4311 |
Nest the composition of tw... |
sbcnestg 4312 |
Nest the composition of tw... |
csbnestg 4313 |
Nest the composition of tw... |
sbcco3g 4314 |
Composition of two substit... |
csbco3g 4315 |
Composition of two class s... |
csbnest1g 4316 |
Nest the composition of tw... |
csbidm 4317 |
Idempotent law for class s... |
csbvarg 4318 |
The proper substitution of... |
csbvargi 4319 |
The proper substitution of... |
sbccsb 4320 |
Substitution into a wff ex... |
sbccsb2 4321 |
Substitution into a wff ex... |
rspcsbela 4322 |
Special case related to ~ ... |
sbnfc2 4323 |
Two ways of expressing " `... |
csbab 4324 |
Move substitution into a c... |
csbun 4325 |
Distribution of class subs... |
csbin 4326 |
Distribute proper substitu... |
csbie2df 4327 |
Conversion of implicit sub... |
2nreu 4328 |
If there are two different... |
un00 4329 |
Two classes are empty iff ... |
vss 4330 |
Only the universal class h... |
0pss 4331 |
The null set is a proper s... |
npss0 4332 |
No set is a proper subset ... |
pssv 4333 |
Any non-universal class is... |
disj 4334 |
Two ways of saying that tw... |
disjOLD 4335 |
Obsolete version of ~ disj... |
disjr 4336 |
Two ways of saying that tw... |
disj1 4337 |
Two ways of saying that tw... |
reldisj 4338 |
Two ways of saying that tw... |
reldisjOLD 4339 |
Obsolete version of ~ reld... |
disj3 4340 |
Two ways of saying that tw... |
disjne 4341 |
Members of disjoint sets a... |
disjeq0 4342 |
Two disjoint sets are equa... |
disjel 4343 |
A set can't belong to both... |
disj2 4344 |
Two ways of saying that tw... |
disj4 4345 |
Two ways of saying that tw... |
ssdisj 4346 |
Intersection with a subcla... |
disjpss 4347 |
A class is a proper subset... |
undisj1 4348 |
The union of disjoint clas... |
undisj2 4349 |
The union of disjoint clas... |
ssindif0 4350 |
Subclass expressed in term... |
inelcm 4351 |
The intersection of classe... |
minel 4352 |
A minimum element of a cla... |
undif4 4353 |
Distribute union over diff... |
disjssun 4354 |
Subset relation for disjoi... |
vdif0 4355 |
Universal class equality i... |
difrab0eq 4356 |
If the difference between ... |
pssnel 4357 |
A proper subclass has a me... |
disjdif 4358 |
A class and its relative c... |
disjdifr 4359 |
A class and its relative c... |
difin0 4360 |
The difference of a class ... |
unvdif 4361 |
The union of a class and i... |
undif1 4362 |
Absorption of difference b... |
undif2 4363 |
Absorption of difference b... |
undifabs 4364 |
Absorption of difference b... |
inundif 4365 |
The intersection and class... |
disjdif2 4366 |
The difference of a class ... |
difun2 4367 |
Absorption of union by dif... |
undif 4368 |
Union of complementary par... |
ssdifin0 4369 |
A subset of a difference d... |
ssdifeq0 4370 |
A class is a subclass of i... |
ssundif 4371 |
A condition equivalent to ... |
difcom 4372 |
Swap the arguments of a cl... |
pssdifcom1 4373 |
Two ways to express overla... |
pssdifcom2 4374 |
Two ways to express non-co... |
difdifdir 4375 |
Distributive law for class... |
uneqdifeq 4376 |
Two ways to say that ` A `... |
raldifeq 4377 |
Equality theorem for restr... |
r19.2z 4378 |
Theorem 19.2 of [Margaris]... |
r19.2zb 4379 |
A response to the notion t... |
r19.3rz 4380 |
Restricted quantification ... |
r19.28z 4381 |
Restricted quantifier vers... |
r19.3rzv 4382 |
Restricted quantification ... |
r19.9rzv 4383 |
Restricted quantification ... |
r19.28zv 4384 |
Restricted quantifier vers... |
r19.37zv 4385 |
Restricted quantifier vers... |
r19.45zv 4386 |
Restricted version of Theo... |
r19.44zv 4387 |
Restricted version of Theo... |
r19.27z 4388 |
Restricted quantifier vers... |
r19.27zv 4389 |
Restricted quantifier vers... |
r19.36zv 4390 |
Restricted quantifier vers... |
ralidmw 4391 |
Idempotent law for restric... |
rzal 4392 |
Vacuous quantification is ... |
rzalALT 4393 |
Alternate proof of ~ rzal ... |
rexn0 4394 |
Restricted existential qua... |
ralidm 4395 |
Idempotent law for restric... |
ral0 4396 |
Vacuous universal quantifi... |
ralf0 4397 |
The quantification of a fa... |
rexn0OLD 4398 |
Obsolete version of ~ rexn... |
ralidmOLD 4399 |
Obsolete version of ~ rali... |
ral0OLD 4400 |
Obsolete version of ~ ral0... |
ralf0OLD 4401 |
Obsolete version of ~ ralf... |
ralnralall 4402 |
A contradiction concerning... |
falseral0 4403 |
A false statement can only... |
raaan 4404 |
Rearrange restricted quant... |
raaanv 4405 |
Rearrange restricted quant... |
sbss 4406 |
Set substitution into the ... |
sbcssg 4407 |
Distribute proper substitu... |
raaan2 4408 |
Rearrange restricted quant... |
2reu4lem 4409 |
Lemma for ~ 2reu4 . (Cont... |
2reu4 4410 |
Definition of double restr... |
dfif2 4413 |
An alternate definition of... |
dfif6 4414 |
An alternate definition of... |
ifeq1 4415 |
Equality theorem for condi... |
ifeq2 4416 |
Equality theorem for condi... |
iftrue 4417 |
Value of the conditional o... |
iftruei 4418 |
Inference associated with ... |
iftrued 4419 |
Value of the conditional o... |
iffalse 4420 |
Value of the conditional o... |
iffalsei 4421 |
Inference associated with ... |
iffalsed 4422 |
Value of the conditional o... |
ifnefalse 4423 |
When values are unequal, b... |
ifsb 4424 |
Distribute a function over... |
dfif3 4425 |
Alternate definition of th... |
dfif4 4426 |
Alternate definition of th... |
dfif5 4427 |
Alternate definition of th... |
ifssun 4428 |
A conditional class is inc... |
ifeq12 4429 |
Equality theorem for condi... |
ifeq1d 4430 |
Equality deduction for con... |
ifeq2d 4431 |
Equality deduction for con... |
ifeq12d 4432 |
Equality deduction for con... |
ifbi 4433 |
Equivalence theorem for co... |
ifbid 4434 |
Equivalence deduction for ... |
ifbieq1d 4435 |
Equivalence/equality deduc... |
ifbieq2i 4436 |
Equivalence/equality infer... |
ifbieq2d 4437 |
Equivalence/equality deduc... |
ifbieq12i 4438 |
Equivalence deduction for ... |
ifbieq12d 4439 |
Equivalence deduction for ... |
nfifd 4440 |
Deduction form of ~ nfif .... |
nfif 4441 |
Bound-variable hypothesis ... |
ifeq1da 4442 |
Conditional equality. (Co... |
ifeq2da 4443 |
Conditional equality. (Co... |
ifeq12da 4444 |
Equivalence deduction for ... |
ifbieq12d2 4445 |
Equivalence deduction for ... |
ifclda 4446 |
Conditional closure. (Con... |
ifeqda 4447 |
Separation of the values o... |
elimif 4448 |
Elimination of a condition... |
ifbothda 4449 |
A wff ` th ` containing a ... |
ifboth 4450 |
A wff ` th ` containing a ... |
ifid 4451 |
Identical true and false a... |
eqif 4452 |
Expansion of an equality w... |
ifval 4453 |
Another expression of the ... |
elif 4454 |
Membership in a conditiona... |
ifel 4455 |
Membership of a conditiona... |
ifcl 4456 |
Membership (closure) of a ... |
ifcld 4457 |
Membership (closure) of a ... |
ifcli 4458 |
Inference associated with ... |
ifexd 4459 |
Existence of the condition... |
ifexg 4460 |
Existence of the condition... |
ifex 4461 |
Existence of the condition... |
ifeqor 4462 |
The possible values of a c... |
ifnot 4463 |
Negating the first argumen... |
ifan 4464 |
Rewrite a conjunction in a... |
ifor 4465 |
Rewrite a disjunction in a... |
2if2 4466 |
Resolve two nested conditi... |
ifcomnan 4467 |
Commute the conditions in ... |
csbif 4468 |
Distribute proper substitu... |
dedth 4469 |
Weak deduction theorem tha... |
dedth2h 4470 |
Weak deduction theorem eli... |
dedth3h 4471 |
Weak deduction theorem eli... |
dedth4h 4472 |
Weak deduction theorem eli... |
dedth2v 4473 |
Weak deduction theorem for... |
dedth3v 4474 |
Weak deduction theorem for... |
dedth4v 4475 |
Weak deduction theorem for... |
elimhyp 4476 |
Eliminate a hypothesis con... |
elimhyp2v 4477 |
Eliminate a hypothesis con... |
elimhyp3v 4478 |
Eliminate a hypothesis con... |
elimhyp4v 4479 |
Eliminate a hypothesis con... |
elimel 4480 |
Eliminate a membership hyp... |
elimdhyp 4481 |
Version of ~ elimhyp where... |
keephyp 4482 |
Transform a hypothesis ` p... |
keephyp2v 4483 |
Keep a hypothesis containi... |
keephyp3v 4484 |
Keep a hypothesis containi... |
pwjust 4486 |
Soundness justification th... |
elpwg 4488 |
Membership in a power clas... |
elpw 4489 |
Membership in a power clas... |
velpw 4490 |
Setvar variable membership... |
elpwOLD 4491 |
Obsolete proof of ~ elpw a... |
elpwgOLD 4492 |
Obsolete proof of ~ elpwg ... |
elpwd 4493 |
Membership in a power clas... |
elpwi 4494 |
Subset relation implied by... |
elpwb 4495 |
Characterization of the el... |
elpwid 4496 |
An element of a power clas... |
elelpwi 4497 |
If ` A ` belongs to a part... |
sspw 4498 |
The powerclass preserves i... |
sspwi 4499 |
The powerclass preserves i... |
sspwd 4500 |
The powerclass preserves i... |
pweq 4501 |
Equality theorem for power... |
pweqALT 4502 |
Alternate proof of ~ pweq ... |
pweqi 4503 |
Equality inference for pow... |
pweqd 4504 |
Equality deduction for pow... |
pwunss 4505 |
The power class of the uni... |
nfpw 4506 |
Bound-variable hypothesis ... |
pwidg 4507 |
A set is an element of its... |
pwidb 4508 |
A class is an element of i... |
pwid 4509 |
A set is a member of its p... |
pwss 4510 |
Subclass relationship for ... |
pwundif 4511 |
Break up the power class o... |
snjust 4512 |
Soundness justification th... |
sneq 4523 |
Equality theorem for singl... |
sneqi 4524 |
Equality inference for sin... |
sneqd 4525 |
Equality deduction for sin... |
dfsn2 4526 |
Alternate definition of si... |
elsng 4527 |
There is exactly one eleme... |
elsn 4528 |
There is exactly one eleme... |
velsn 4529 |
There is only one element ... |
elsni 4530 |
There is at most one eleme... |
absn 4531 |
Condition for a class abst... |
dfpr2 4532 |
Alternate definition of a ... |
dfsn2ALT 4533 |
Alternate definition of si... |
elprg 4534 |
A member of a pair of clas... |
elpri 4535 |
If a class is an element o... |
elpr 4536 |
A member of a pair of clas... |
elpr2g 4537 |
A member of a pair of sets... |
elpr2 4538 |
A member of a pair of sets... |
elpr2OLD 4539 |
Obsolete version of ~ elpr... |
nelpr2 4540 |
If a class is not an eleme... |
nelpr1 4541 |
If a class is not an eleme... |
nelpri 4542 |
If an element doesn't matc... |
prneli 4543 |
If an element doesn't matc... |
nelprd 4544 |
If an element doesn't matc... |
eldifpr 4545 |
Membership in a set with t... |
rexdifpr 4546 |
Restricted existential qua... |
snidg 4547 |
A set is a member of its s... |
snidb 4548 |
A class is a set iff it is... |
snid 4549 |
A set is a member of its s... |
vsnid 4550 |
A setvar variable is a mem... |
elsn2g 4551 |
There is exactly one eleme... |
elsn2 4552 |
There is exactly one eleme... |
nelsn 4553 |
If a class is not equal to... |
rabeqsn 4554 |
Conditions for a restricte... |
rabsssn 4555 |
Conditions for a restricte... |
ralsnsg 4556 |
Substitution expressed in ... |
rexsns 4557 |
Restricted existential qua... |
rexsngf 4558 |
Restricted existential qua... |
ralsngf 4559 |
Restricted universal quant... |
reusngf 4560 |
Restricted existential uni... |
ralsng 4561 |
Substitution expressed in ... |
rexsng 4562 |
Restricted existential qua... |
reusng 4563 |
Restricted existential uni... |
2ralsng 4564 |
Substitution expressed in ... |
ralsngOLD 4565 |
Obsolete version of ~ rals... |
rexsngOLD 4566 |
Obsolete version of ~ rexs... |
rexreusng 4567 |
Restricted existential uni... |
exsnrex 4568 |
There is a set being the e... |
ralsn 4569 |
Convert a universal quanti... |
rexsn 4570 |
Convert an existential qua... |
elpwunsn 4571 |
Membership in an extension... |
eqoreldif 4572 |
An element of a set is eit... |
eltpg 4573 |
Members of an unordered tr... |
eldiftp 4574 |
Membership in a set with t... |
eltpi 4575 |
A member of an unordered t... |
eltp 4576 |
A member of an unordered t... |
dftp2 4577 |
Alternate definition of un... |
nfpr 4578 |
Bound-variable hypothesis ... |
ifpr 4579 |
Membership of a conditiona... |
ralprgf 4580 |
Convert a restricted unive... |
rexprgf 4581 |
Convert a restricted exist... |
ralprg 4582 |
Convert a restricted unive... |
ralprgOLD 4583 |
Obsolete version of ~ ralp... |
rexprg 4584 |
Convert a restricted exist... |
rexprgOLD 4585 |
Obsolete version of ~ rexp... |
raltpg 4586 |
Convert a restricted unive... |
rextpg 4587 |
Convert a restricted exist... |
ralpr 4588 |
Convert a restricted unive... |
rexpr 4589 |
Convert a restricted exist... |
reuprg0 4590 |
Convert a restricted exist... |
reuprg 4591 |
Convert a restricted exist... |
reurexprg 4592 |
Convert a restricted exist... |
raltp 4593 |
Convert a universal quanti... |
rextp 4594 |
Convert an existential qua... |
nfsn 4595 |
Bound-variable hypothesis ... |
csbsng 4596 |
Distribute proper substitu... |
csbprg 4597 |
Distribute proper substitu... |
elinsn 4598 |
If the intersection of two... |
disjsn 4599 |
Intersection with the sing... |
disjsn2 4600 |
Two distinct singletons ar... |
disjpr2 4601 |
Two completely distinct un... |
disjprsn 4602 |
The disjoint intersection ... |
disjtpsn 4603 |
The disjoint intersection ... |
disjtp2 4604 |
Two completely distinct un... |
snprc 4605 |
The singleton of a proper ... |
snnzb 4606 |
A singleton is nonempty if... |
rmosn 4607 |
A restricted at-most-one q... |
r19.12sn 4608 |
Special case of ~ r19.12 w... |
rabsn 4609 |
Condition where a restrict... |
rabsnifsb 4610 |
A restricted class abstrac... |
rabsnif 4611 |
A restricted class abstrac... |
rabrsn 4612 |
A restricted class abstrac... |
euabsn2 4613 |
Another way to express exi... |
euabsn 4614 |
Another way to express exi... |
reusn 4615 |
A way to express restricte... |
absneu 4616 |
Restricted existential uni... |
rabsneu 4617 |
Restricted existential uni... |
eusn 4618 |
Two ways to express " ` A ... |
rabsnt 4619 |
Truth implied by equality ... |
prcom 4620 |
Commutative law for unorde... |
preq1 4621 |
Equality theorem for unord... |
preq2 4622 |
Equality theorem for unord... |
preq12 4623 |
Equality theorem for unord... |
preq1i 4624 |
Equality inference for uno... |
preq2i 4625 |
Equality inference for uno... |
preq12i 4626 |
Equality inference for uno... |
preq1d 4627 |
Equality deduction for uno... |
preq2d 4628 |
Equality deduction for uno... |
preq12d 4629 |
Equality deduction for uno... |
tpeq1 4630 |
Equality theorem for unord... |
tpeq2 4631 |
Equality theorem for unord... |
tpeq3 4632 |
Equality theorem for unord... |
tpeq1d 4633 |
Equality theorem for unord... |
tpeq2d 4634 |
Equality theorem for unord... |
tpeq3d 4635 |
Equality theorem for unord... |
tpeq123d 4636 |
Equality theorem for unord... |
tprot 4637 |
Rotation of the elements o... |
tpcoma 4638 |
Swap 1st and 2nd members o... |
tpcomb 4639 |
Swap 2nd and 3rd members o... |
tpass 4640 |
Split off the first elemen... |
qdass 4641 |
Two ways to write an unord... |
qdassr 4642 |
Two ways to write an unord... |
tpidm12 4643 |
Unordered triple ` { A , A... |
tpidm13 4644 |
Unordered triple ` { A , B... |
tpidm23 4645 |
Unordered triple ` { A , B... |
tpidm 4646 |
Unordered triple ` { A , A... |
tppreq3 4647 |
An unordered triple is an ... |
prid1g 4648 |
An unordered pair contains... |
prid2g 4649 |
An unordered pair contains... |
prid1 4650 |
An unordered pair contains... |
prid2 4651 |
An unordered pair contains... |
ifpprsnss 4652 |
An unordered pair is a sin... |
prprc1 4653 |
A proper class vanishes in... |
prprc2 4654 |
A proper class vanishes in... |
prprc 4655 |
An unordered pair containi... |
tpid1 4656 |
One of the three elements ... |
tpid1g 4657 |
Closed theorem form of ~ t... |
tpid2 4658 |
One of the three elements ... |
tpid2g 4659 |
Closed theorem form of ~ t... |
tpid3g 4660 |
Closed theorem form of ~ t... |
tpid3 4661 |
One of the three elements ... |
snnzg 4662 |
The singleton of a set is ... |
snn0d 4663 |
The singleton of a set is ... |
snnz 4664 |
The singleton of a set is ... |
prnz 4665 |
A pair containing a set is... |
prnzg 4666 |
A pair containing a set is... |
tpnz 4667 |
An unordered triple contai... |
tpnzd 4668 |
An unordered triple contai... |
raltpd 4669 |
Convert a universal quanti... |
snssg 4670 |
The singleton of an elemen... |
snss 4671 |
The singleton of an elemen... |
eldifsn 4672 |
Membership in a set with a... |
ssdifsn 4673 |
Subset of a set with an el... |
elpwdifsn 4674 |
A subset of a set is an el... |
eldifsni 4675 |
Membership in a set with a... |
eldifsnneq 4676 |
An element of a difference... |
neldifsn 4677 |
The class ` A ` is not in ... |
neldifsnd 4678 |
The class ` A ` is not in ... |
rexdifsn 4679 |
Restricted existential qua... |
raldifsni 4680 |
Rearrangement of a propert... |
raldifsnb 4681 |
Restricted universal quant... |
eldifvsn 4682 |
A set is an element of the... |
difsn 4683 |
An element not in a set ca... |
difprsnss 4684 |
Removal of a singleton fro... |
difprsn1 4685 |
Removal of a singleton fro... |
difprsn2 4686 |
Removal of a singleton fro... |
diftpsn3 4687 |
Removal of a singleton fro... |
difpr 4688 |
Removing two elements as p... |
tpprceq3 4689 |
An unordered triple is an ... |
tppreqb 4690 |
An unordered triple is an ... |
difsnb 4691 |
` ( B \ { A } ) ` equals `... |
difsnpss 4692 |
` ( B \ { A } ) ` is a pro... |
snssi 4693 |
The singleton of an elemen... |
snssd 4694 |
The singleton of an elemen... |
difsnid 4695 |
If we remove a single elem... |
eldifeldifsn 4696 |
An element of a difference... |
pw0 4697 |
Compute the power set of t... |
pwpw0 4698 |
Compute the power set of t... |
snsspr1 4699 |
A singleton is a subset of... |
snsspr2 4700 |
A singleton is a subset of... |
snsstp1 4701 |
A singleton is a subset of... |
snsstp2 4702 |
A singleton is a subset of... |
snsstp3 4703 |
A singleton is a subset of... |
prssg 4704 |
A pair of elements of a cl... |
prss 4705 |
A pair of elements of a cl... |
prssi 4706 |
A pair of elements of a cl... |
prssd 4707 |
Deduction version of ~ prs... |
prsspwg 4708 |
An unordered pair belongs ... |
ssprss 4709 |
A pair as subset of a pair... |
ssprsseq 4710 |
A proper pair is a subset ... |
sssn 4711 |
The subsets of a singleton... |
ssunsn2 4712 |
The property of being sand... |
ssunsn 4713 |
Possible values for a set ... |
eqsn 4714 |
Two ways to express that a... |
issn 4715 |
A sufficient condition for... |
n0snor2el 4716 |
A nonempty set is either a... |
ssunpr 4717 |
Possible values for a set ... |
sspr 4718 |
The subsets of a pair. (C... |
sstp 4719 |
The subsets of an unordere... |
tpss 4720 |
An unordered triple of ele... |
tpssi 4721 |
An unordered triple of ele... |
sneqrg 4722 |
Closed form of ~ sneqr . ... |
sneqr 4723 |
If the singletons of two s... |
snsssn 4724 |
If a singleton is a subset... |
mosneq 4725 |
There exists at most one s... |
sneqbg 4726 |
Two singletons of sets are... |
snsspw 4727 |
The singleton of a class i... |
prsspw 4728 |
An unordered pair belongs ... |
preq1b 4729 |
Biconditional equality lem... |
preq2b 4730 |
Biconditional equality lem... |
preqr1 4731 |
Reverse equality lemma for... |
preqr2 4732 |
Reverse equality lemma for... |
preq12b 4733 |
Equality relationship for ... |
opthpr 4734 |
An unordered pair has the ... |
preqr1g 4735 |
Reverse equality lemma for... |
preq12bg 4736 |
Closed form of ~ preq12b .... |
prneimg 4737 |
Two pairs are not equal if... |
prnebg 4738 |
A (proper) pair is not equ... |
pr1eqbg 4739 |
A (proper) pair is equal t... |
pr1nebg 4740 |
A (proper) pair is not equ... |
preqsnd 4741 |
Equivalence for a pair equ... |
prnesn 4742 |
A proper unordered pair is... |
prneprprc 4743 |
A proper unordered pair is... |
preqsn 4744 |
Equivalence for a pair equ... |
preq12nebg 4745 |
Equality relationship for ... |
prel12g 4746 |
Equality of two unordered ... |
opthprneg 4747 |
An unordered pair has the ... |
elpreqprlem 4748 |
Lemma for ~ elpreqpr . (C... |
elpreqpr 4749 |
Equality and membership ru... |
elpreqprb 4750 |
A set is an element of an ... |
elpr2elpr 4751 |
For an element ` A ` of an... |
dfopif 4752 |
Rewrite ~ df-op using ` if... |
dfopifOLD 4753 |
Obsolete version of ~ dfop... |
dfopg 4754 |
Value of the ordered pair ... |
dfop 4755 |
Value of an ordered pair w... |
opeq1 4756 |
Equality theorem for order... |
opeq1OLD 4757 |
Obsolete version of ~ opeq... |
opeq2 4758 |
Equality theorem for order... |
opeq2OLD 4759 |
Obsolete version of ~ opeq... |
opeq12 4760 |
Equality theorem for order... |
opeq1i 4761 |
Equality inference for ord... |
opeq2i 4762 |
Equality inference for ord... |
opeq12i 4763 |
Equality inference for ord... |
opeq1d 4764 |
Equality deduction for ord... |
opeq2d 4765 |
Equality deduction for ord... |
opeq12d 4766 |
Equality deduction for ord... |
oteq1 4767 |
Equality theorem for order... |
oteq2 4768 |
Equality theorem for order... |
oteq3 4769 |
Equality theorem for order... |
oteq1d 4770 |
Equality deduction for ord... |
oteq2d 4771 |
Equality deduction for ord... |
oteq3d 4772 |
Equality deduction for ord... |
oteq123d 4773 |
Equality deduction for ord... |
nfop 4774 |
Bound-variable hypothesis ... |
nfopd 4775 |
Deduction version of bound... |
csbopg 4776 |
Distribution of class subs... |
opidg 4777 |
The ordered pair ` <. A , ... |
opid 4778 |
The ordered pair ` <. A , ... |
ralunsn 4779 |
Restricted quantification ... |
2ralunsn 4780 |
Double restricted quantifi... |
opprc 4781 |
Expansion of an ordered pa... |
opprc1 4782 |
Expansion of an ordered pa... |
opprc2 4783 |
Expansion of an ordered pa... |
oprcl 4784 |
If an ordered pair has an ... |
pwsn 4785 |
The power set of a singlet... |
pwsnOLD 4786 |
Obsolete version of ~ pwsn... |
pwpr 4787 |
The power set of an unorde... |
pwtp 4788 |
The power set of an unorde... |
pwpwpw0 4789 |
Compute the power set of t... |
pwv 4790 |
The power class of the uni... |
prproe 4791 |
For an element of a proper... |
3elpr2eq 4792 |
If there are three element... |
dfuni2 4795 |
Alternate definition of cl... |
eluni 4796 |
Membership in class union.... |
eluni2 4797 |
Membership in class union.... |
elunii 4798 |
Membership in class union.... |
nfunid 4799 |
Deduction version of ~ nfu... |
nfuni 4800 |
Bound-variable hypothesis ... |
uniss 4801 |
Subclass relationship for ... |
unissi 4802 |
Subclass relationship for ... |
unissd 4803 |
Subclass relationship for ... |
unieq 4804 |
Equality theorem for class... |
unieqOLD 4805 |
Obsolete version of ~ unie... |
unieqi 4806 |
Inference of equality of t... |
unieqd 4807 |
Deduction of equality of t... |
eluniab 4808 |
Membership in union of a c... |
elunirab 4809 |
Membership in union of a c... |
uniprg 4810 |
The union of a pair is the... |
unipr 4811 |
The union of a pair is the... |
uniprOLD 4812 |
Obsolete version of ~ unip... |
uniprgOLD 4813 |
Obsolete version of ~ unip... |
unisng 4814 |
A set equals the union of ... |
unisn 4815 |
A set equals the union of ... |
unisn3 4816 |
Union of a singleton in th... |
dfnfc2 4817 |
An alternative statement o... |
uniun 4818 |
The class union of the uni... |
uniin 4819 |
The class union of the int... |
ssuni 4820 |
Subclass relationship for ... |
uni0b 4821 |
The union of a set is empt... |
uni0c 4822 |
The union of a set is empt... |
uni0 4823 |
The union of the empty set... |
csbuni 4824 |
Distribute proper substitu... |
elssuni 4825 |
An element of a class is a... |
unissel 4826 |
Condition turning a subcla... |
unissb 4827 |
Relationship involving mem... |
uniss2 4828 |
A subclass condition on th... |
unidif 4829 |
If the difference ` A \ B ... |
ssunieq 4830 |
Relationship implying unio... |
unimax 4831 |
Any member of a class is t... |
pwuni 4832 |
A class is a subclass of t... |
dfint2 4835 |
Alternate definition of cl... |
inteq 4836 |
Equality law for intersect... |
inteqi 4837 |
Equality inference for cla... |
inteqd 4838 |
Equality deduction for cla... |
elint 4839 |
Membership in class inters... |
elint2 4840 |
Membership in class inters... |
elintg 4841 |
Membership in class inters... |
elinti 4842 |
Membership in class inters... |
nfint 4843 |
Bound-variable hypothesis ... |
elintab 4844 |
Membership in the intersec... |
elintrab 4845 |
Membership in the intersec... |
elintrabg 4846 |
Membership in the intersec... |
int0 4847 |
The intersection of the em... |
intss1 4848 |
An element of a class incl... |
ssint 4849 |
Subclass of a class inters... |
ssintab 4850 |
Subclass of the intersecti... |
ssintub 4851 |
Subclass of the least uppe... |
ssmin 4852 |
Subclass of the minimum va... |
intmin 4853 |
Any member of a class is t... |
intss 4854 |
Intersection of subclasses... |
intssuni 4855 |
The intersection of a none... |
ssintrab 4856 |
Subclass of the intersecti... |
unissint 4857 |
If the union of a class is... |
intssuni2 4858 |
Subclass relationship for ... |
intminss 4859 |
Under subset ordering, the... |
intmin2 4860 |
Any set is the smallest of... |
intmin3 4861 |
Under subset ordering, the... |
intmin4 4862 |
Elimination of a conjunct ... |
intab 4863 |
The intersection of a spec... |
int0el 4864 |
The intersection of a clas... |
intun 4865 |
The class intersection of ... |
intprg 4866 |
The intersection of a pair... |
intpr 4867 |
The intersection of a pair... |
intprOLD 4868 |
Obsolete version of ~ intp... |
intprgOLD 4869 |
Obsolete version of ~ intp... |
intsng 4870 |
Intersection of a singleto... |
intsn 4871 |
The intersection of a sing... |
uniintsn 4872 |
Two ways to express " ` A ... |
uniintab 4873 |
The union and the intersec... |
intunsn 4874 |
Theorem joining a singleto... |
rint0 4875 |
Relative intersection of a... |
elrint 4876 |
Membership in a restricted... |
elrint2 4877 |
Membership in a restricted... |
eliun 4882 |
Membership in indexed unio... |
eliin 4883 |
Membership in indexed inte... |
eliuni 4884 |
Membership in an indexed u... |
iuncom 4885 |
Commutation of indexed uni... |
iuncom4 4886 |
Commutation of union with ... |
iunconst 4887 |
Indexed union of a constan... |
iinconst 4888 |
Indexed intersection of a ... |
iuneqconst 4889 |
Indexed union of identical... |
iuniin 4890 |
Law combining indexed unio... |
iinssiun 4891 |
An indexed intersection is... |
iunss1 4892 |
Subclass theorem for index... |
iinss1 4893 |
Subclass theorem for index... |
iuneq1 4894 |
Equality theorem for index... |
iineq1 4895 |
Equality theorem for index... |
ss2iun 4896 |
Subclass theorem for index... |
iuneq2 4897 |
Equality theorem for index... |
iineq2 4898 |
Equality theorem for index... |
iuneq2i 4899 |
Equality inference for ind... |
iineq2i 4900 |
Equality inference for ind... |
iineq2d 4901 |
Equality deduction for ind... |
iuneq2dv 4902 |
Equality deduction for ind... |
iineq2dv 4903 |
Equality deduction for ind... |
iuneq12df 4904 |
Equality deduction for ind... |
iuneq1d 4905 |
Equality theorem for index... |
iuneq12d 4906 |
Equality deduction for ind... |
iuneq2d 4907 |
Equality deduction for ind... |
nfiun 4908 |
Bound-variable hypothesis ... |
nfiin 4909 |
Bound-variable hypothesis ... |
nfiung 4910 |
Bound-variable hypothesis ... |
nfiing 4911 |
Bound-variable hypothesis ... |
nfiu1 4912 |
Bound-variable hypothesis ... |
nfii1 4913 |
Bound-variable hypothesis ... |
dfiun2g 4914 |
Alternate definition of in... |
dfiin2g 4915 |
Alternate definition of in... |
dfiun2 4916 |
Alternate definition of in... |
dfiin2 4917 |
Alternate definition of in... |
dfiunv2 4918 |
Define double indexed unio... |
cbviun 4919 |
Rule used to change the bo... |
cbviin 4920 |
Change bound variables in ... |
cbviung 4921 |
Rule used to change the bo... |
cbviing 4922 |
Change bound variables in ... |
cbviunv 4923 |
Rule used to change the bo... |
cbviinv 4924 |
Change bound variables in ... |
cbviunvg 4925 |
Rule used to change the bo... |
cbviinvg 4926 |
Change bound variables in ... |
iunssf 4927 |
Subset theorem for an inde... |
iunss 4928 |
Subset theorem for an inde... |
ssiun 4929 |
Subset implication for an ... |
ssiun2 4930 |
Identity law for subset of... |
ssiun2s 4931 |
Subset relationship for an... |
iunss2 4932 |
A subclass condition on th... |
iunssd 4933 |
Subset theorem for an inde... |
iunab 4934 |
The indexed union of a cla... |
iunrab 4935 |
The indexed union of a res... |
iunxdif2 4936 |
Indexed union with a class... |
ssiinf 4937 |
Subset theorem for an inde... |
ssiin 4938 |
Subset theorem for an inde... |
iinss 4939 |
Subset implication for an ... |
iinss2 4940 |
An indexed intersection is... |
uniiun 4941 |
Class union in terms of in... |
intiin 4942 |
Class intersection in term... |
iunid 4943 |
An indexed union of single... |
iun0 4944 |
An indexed union of the em... |
0iun 4945 |
An empty indexed union is ... |
0iin 4946 |
An empty indexed intersect... |
viin 4947 |
Indexed intersection with ... |
iunsn 4948 |
Indexed union of a singlet... |
iunn0 4949 |
There is a nonempty class ... |
iinab 4950 |
Indexed intersection of a ... |
iinrab 4951 |
Indexed intersection of a ... |
iinrab2 4952 |
Indexed intersection of a ... |
iunin2 4953 |
Indexed union of intersect... |
iunin1 4954 |
Indexed union of intersect... |
iinun2 4955 |
Indexed intersection of un... |
iundif2 4956 |
Indexed union of class dif... |
iindif1 4957 |
Indexed intersection of cl... |
2iunin 4958 |
Rearrange indexed unions o... |
iindif2 4959 |
Indexed intersection of cl... |
iinin2 4960 |
Indexed intersection of in... |
iinin1 4961 |
Indexed intersection of in... |
iinvdif 4962 |
The indexed intersection o... |
elriin 4963 |
Elementhood in a relative ... |
riin0 4964 |
Relative intersection of a... |
riinn0 4965 |
Relative intersection of a... |
riinrab 4966 |
Relative intersection of a... |
symdif0 4967 |
Symmetric difference with ... |
symdifv 4968 |
The symmetric difference w... |
symdifid 4969 |
The symmetric difference o... |
iinxsng 4970 |
A singleton index picks ou... |
iinxprg 4971 |
Indexed intersection with ... |
iunxsng 4972 |
A singleton index picks ou... |
iunxsn 4973 |
A singleton index picks ou... |
iunxsngf 4974 |
A singleton index picks ou... |
iunun 4975 |
Separate a union in an ind... |
iunxun 4976 |
Separate a union in the in... |
iunxdif3 4977 |
An indexed union where som... |
iunxprg 4978 |
A pair index picks out two... |
iunxiun 4979 |
Separate an indexed union ... |
iinuni 4980 |
A relationship involving u... |
iununi 4981 |
A relationship involving u... |
sspwuni 4982 |
Subclass relationship for ... |
pwssb 4983 |
Two ways to express a coll... |
elpwpw 4984 |
Characterization of the el... |
pwpwab 4985 |
The double power class wri... |
pwpwssunieq 4986 |
The class of sets whose un... |
elpwuni 4987 |
Relationship for power cla... |
iinpw 4988 |
The power class of an inte... |
iunpwss 4989 |
Inclusion of an indexed un... |
intss2 4990 |
A nonempty intersection of... |
rintn0 4991 |
Relative intersection of a... |
dfdisj2 4994 |
Alternate definition for d... |
disjss2 4995 |
If each element of a colle... |
disjeq2 4996 |
Equality theorem for disjo... |
disjeq2dv 4997 |
Equality deduction for dis... |
disjss1 4998 |
A subset of a disjoint col... |
disjeq1 4999 |
Equality theorem for disjo... |
disjeq1d 5000 |
Equality theorem for disjo... |
disjeq12d 5001 |
Equality theorem for disjo... |
cbvdisj 5002 |
Change bound variables in ... |
cbvdisjv 5003 |
Change bound variables in ... |
nfdisjw 5004 |
Bound-variable hypothesis ... |
nfdisj 5005 |
Bound-variable hypothesis ... |
nfdisj1 5006 |
Bound-variable hypothesis ... |
disjor 5007 |
Two ways to say that a col... |
disjors 5008 |
Two ways to say that a col... |
disji2 5009 |
Property of a disjoint col... |
disji 5010 |
Property of a disjoint col... |
invdisj 5011 |
If there is a function ` C... |
invdisjrabw 5012 |
Version of ~ invdisjrab wi... |
invdisjrab 5013 |
The restricted class abstr... |
disjiun 5014 |
A disjoint collection yiel... |
disjord 5015 |
Conditions for a collectio... |
disjiunb 5016 |
Two ways to say that a col... |
disjiund 5017 |
Conditions for a collectio... |
sndisj 5018 |
Any collection of singleto... |
0disj 5019 |
Any collection of empty se... |
disjxsn 5020 |
A singleton collection is ... |
disjx0 5021 |
An empty collection is dis... |
disjprgw 5022 |
Version of ~ disjprg with ... |
disjprg 5023 |
A pair collection is disjo... |
disjxiun 5024 |
An indexed union of a disj... |
disjxun 5025 |
The union of two disjoint ... |
disjss3 5026 |
Expand a disjoint collecti... |
breq 5029 |
Equality theorem for binar... |
breq1 5030 |
Equality theorem for a bin... |
breq2 5031 |
Equality theorem for a bin... |
breq12 5032 |
Equality theorem for a bin... |
breqi 5033 |
Equality inference for bin... |
breq1i 5034 |
Equality inference for a b... |
breq2i 5035 |
Equality inference for a b... |
breq12i 5036 |
Equality inference for a b... |
breq1d 5037 |
Equality deduction for a b... |
breqd 5038 |
Equality deduction for a b... |
breq2d 5039 |
Equality deduction for a b... |
breq12d 5040 |
Equality deduction for a b... |
breq123d 5041 |
Equality deduction for a b... |
breqdi 5042 |
Equality deduction for a b... |
breqan12d 5043 |
Equality deduction for a b... |
breqan12rd 5044 |
Equality deduction for a b... |
eqnbrtrd 5045 |
Substitution of equal clas... |
nbrne1 5046 |
Two classes are different ... |
nbrne2 5047 |
Two classes are different ... |
eqbrtri 5048 |
Substitution of equal clas... |
eqbrtrd 5049 |
Substitution of equal clas... |
eqbrtrri 5050 |
Substitution of equal clas... |
eqbrtrrd 5051 |
Substitution of equal clas... |
breqtri 5052 |
Substitution of equal clas... |
breqtrd 5053 |
Substitution of equal clas... |
breqtrri 5054 |
Substitution of equal clas... |
breqtrrd 5055 |
Substitution of equal clas... |
3brtr3i 5056 |
Substitution of equality i... |
3brtr4i 5057 |
Substitution of equality i... |
3brtr3d 5058 |
Substitution of equality i... |
3brtr4d 5059 |
Substitution of equality i... |
3brtr3g 5060 |
Substitution of equality i... |
3brtr4g 5061 |
Substitution of equality i... |
eqbrtrid 5062 |
A chained equality inferen... |
eqbrtrrid 5063 |
A chained equality inferen... |
breqtrid 5064 |
A chained equality inferen... |
breqtrrid 5065 |
A chained equality inferen... |
eqbrtrdi 5066 |
A chained equality inferen... |
eqbrtrrdi 5067 |
A chained equality inferen... |
breqtrdi 5068 |
A chained equality inferen... |
breqtrrdi 5069 |
A chained equality inferen... |
ssbrd 5070 |
Deduction from a subclass ... |
ssbr 5071 |
Implication from a subclas... |
ssbri 5072 |
Inference from a subclass ... |
nfbrd 5073 |
Deduction version of bound... |
nfbr 5074 |
Bound-variable hypothesis ... |
brab1 5075 |
Relationship between a bin... |
br0 5076 |
The empty binary relation ... |
brne0 5077 |
If two sets are in a binar... |
brun 5078 |
The union of two binary re... |
brin 5079 |
The intersection of two re... |
brdif 5080 |
The difference of two bina... |
sbcbr123 5081 |
Move substitution in and o... |
sbcbr 5082 |
Move substitution in and o... |
sbcbr12g 5083 |
Move substitution in and o... |
sbcbr1g 5084 |
Move substitution in and o... |
sbcbr2g 5085 |
Move substitution in and o... |
brsymdif 5086 |
Characterization of the sy... |
brralrspcev 5087 |
Restricted existential spe... |
brimralrspcev 5088 |
Restricted existential spe... |
opabss 5091 |
The collection of ordered ... |
opabbid 5092 |
Equivalent wff's yield equ... |
opabbidv 5093 |
Equivalent wff's yield equ... |
opabbii 5094 |
Equivalent wff's yield equ... |
nfopab 5095 |
Bound-variable hypothesis ... |
nfopab1 5096 |
The first abstraction vari... |
nfopab2 5097 |
The second abstraction var... |
cbvopab 5098 |
Rule used to change bound ... |
cbvopabv 5099 |
Rule used to change bound ... |
cbvopab1 5100 |
Change first bound variabl... |
cbvopab1g 5101 |
Change first bound variabl... |
cbvopab2 5102 |
Change second bound variab... |
cbvopab1s 5103 |
Change first bound variabl... |
cbvopab1v 5104 |
Rule used to change the fi... |
cbvopab2v 5105 |
Rule used to change the se... |
unopab 5106 |
Union of two ordered pair ... |
mpteq12df 5109 |
An equality inference for ... |
mpteq12f 5110 |
An equality theorem for th... |
mpteq12dva 5111 |
An equality inference for ... |
mpteq12dv 5112 |
An equality inference for ... |
mpteq12dvOLD 5113 |
Obsolete version of ~ mpte... |
mpteq12 5114 |
An equality theorem for th... |
mpteq1 5115 |
An equality theorem for th... |
mpteq1d 5116 |
An equality theorem for th... |
mpteq1i 5117 |
An equality theorem for th... |
mpteq2ia 5118 |
An equality inference for ... |
mpteq2i 5119 |
An equality inference for ... |
mpteq12i 5120 |
An equality inference for ... |
mpteq2da 5121 |
Slightly more general equa... |
mpteq2dva 5122 |
Slightly more general equa... |
mpteq2dv 5123 |
An equality inference for ... |
nfmpt 5124 |
Bound-variable hypothesis ... |
nfmpt1 5125 |
Bound-variable hypothesis ... |
cbvmptf 5126 |
Rule to change the bound v... |
cbvmptfg 5127 |
Rule to change the bound v... |
cbvmpt 5128 |
Rule to change the bound v... |
cbvmptg 5129 |
Rule to change the bound v... |
cbvmptv 5130 |
Rule to change the bound v... |
cbvmptvg 5131 |
Rule to change the bound v... |
mptv 5132 |
Function with universal do... |
dftr2 5135 |
An alternate way of defini... |
dftr5 5136 |
An alternate way of defini... |
dftr3 5137 |
An alternate way of defini... |
dftr4 5138 |
An alternate way of defini... |
treq 5139 |
Equality theorem for the t... |
trel 5140 |
In a transitive class, the... |
trel3 5141 |
In a transitive class, the... |
trss 5142 |
An element of a transitive... |
trin 5143 |
The intersection of transi... |
tr0 5144 |
The empty set is transitiv... |
trv 5145 |
The universe is transitive... |
triun 5146 |
An indexed union of a clas... |
truni 5147 |
The union of a class of tr... |
triin 5148 |
An indexed intersection of... |
trint 5149 |
The intersection of a clas... |
trintss 5150 |
Any nonempty transitive cl... |
axrep1 5152 |
The version of the Axiom o... |
axreplem 5153 |
Lemma for ~ axrep2 and ~ a... |
axrep2 5154 |
Axiom of Replacement expre... |
axrep3 5155 |
Axiom of Replacement sligh... |
axrep4 5156 |
A more traditional version... |
axrep5 5157 |
Axiom of Replacement (simi... |
axrep6 5158 |
A condensed form of ~ ax-r... |
zfrepclf 5159 |
An inference based on the ... |
zfrep3cl 5160 |
An inference based on the ... |
zfrep4 5161 |
A version of Replacement u... |
axsepgfromrep 5162 |
A more general version ~ a... |
axsep 5163 |
Axiom scheme of separation... |
axsepg 5165 |
A more general version of ... |
zfauscl 5166 |
Separation Scheme (Aussond... |
bm1.3ii 5167 |
Convert implication to equ... |
ax6vsep 5168 |
Derive ~ ax6v (a weakened ... |
axnulALT 5169 |
Alternate proof of ~ axnul... |
axnul 5170 |
The Null Set Axiom of ZF s... |
0ex 5172 |
The Null Set Axiom of ZF s... |
al0ssb 5173 |
The empty set is the uniqu... |
sseliALT 5174 |
Alternate proof of ~ sseli... |
csbexg 5175 |
The existence of proper su... |
csbex 5176 |
The existence of proper su... |
unisn2 5177 |
A version of ~ unisn witho... |
nalset 5178 |
No set contains all sets. ... |
vnex 5179 |
The universal class does n... |
vprc 5180 |
The universal class is not... |
nvel 5181 |
The universal class does n... |
inex1 5182 |
Separation Scheme (Aussond... |
inex2 5183 |
Separation Scheme (Aussond... |
inex1g 5184 |
Closed-form, generalized S... |
inex2g 5185 |
Sufficient condition for a... |
ssex 5186 |
The subset of a set is als... |
ssexi 5187 |
The subset of a set is als... |
ssexg 5188 |
The subset of a set is als... |
ssexd 5189 |
A subclass of a set is a s... |
prcssprc 5190 |
The superclass of a proper... |
sselpwd 5191 |
Elementhood to a power set... |
difexg 5192 |
Existence of a difference.... |
difexi 5193 |
Existence of a difference,... |
difexd 5194 |
Existence of a difference.... |
zfausab 5195 |
Separation Scheme (Aussond... |
rabexg 5196 |
Separation Scheme in terms... |
rabex 5197 |
Separation Scheme in terms... |
rabexd 5198 |
Separation Scheme in terms... |
rabex2 5199 |
Separation Scheme in terms... |
rab2ex 5200 |
A class abstraction based ... |
elssabg 5201 |
Membership in a class abst... |
intex 5202 |
The intersection of a none... |
intnex 5203 |
If a class intersection is... |
intexab 5204 |
The intersection of a none... |
intexrab 5205 |
The intersection of a none... |
iinexg 5206 |
The existence of a class i... |
intabs 5207 |
Absorption of a redundant ... |
inuni 5208 |
The intersection of a unio... |
elpw2g 5209 |
Membership in a power clas... |
elpw2 5210 |
Membership in a power clas... |
elpwi2 5211 |
Membership in a power clas... |
elpwi2OLD 5212 |
Obsolete version of ~ elpw... |
pwnss 5213 |
The power set of a set is ... |
pwne 5214 |
No set equals its power se... |
difelpw 5215 |
A difference is an element... |
rabelpw 5216 |
A restricted class abstrac... |
class2set 5217 |
Construct, from any class ... |
class2seteq 5218 |
Equality theorem based on ... |
0elpw 5219 |
Every power class contains... |
pwne0 5220 |
A power class is never emp... |
0nep0 5221 |
The empty set and its powe... |
0inp0 5222 |
Something cannot be equal ... |
unidif0 5223 |
The removal of the empty s... |
iin0 5224 |
An indexed intersection of... |
notzfaus 5225 |
In the Separation Scheme ~... |
notzfausOLD 5226 |
Obsolete proof of ~ notzfa... |
intv 5227 |
The intersection of the un... |
axpweq 5228 |
Two equivalent ways to exp... |
zfpow 5230 |
Axiom of Power Sets expres... |
axpow2 5231 |
A variant of the Axiom of ... |
axpow3 5232 |
A variant of the Axiom of ... |
el 5233 |
Every set is an element of... |
dtru 5234 |
At least two sets exist (o... |
dtrucor 5235 |
Corollary of ~ dtru . Thi... |
dtrucor2 5236 |
The theorem form of the de... |
dvdemo1 5237 |
Demonstration of a theorem... |
dvdemo2 5238 |
Demonstration of a theorem... |
nfnid 5239 |
A setvar variable is not f... |
nfcvb 5240 |
The "distinctor" expressio... |
vpwex 5241 |
Power set axiom: the power... |
pwexg 5242 |
Power set axiom expressed ... |
pwexd 5243 |
Deduction version of the p... |
pwex 5244 |
Power set axiom expressed ... |
pwel 5245 |
Quantitative version of ~ ... |
abssexg 5246 |
Existence of a class of su... |
snexALT 5247 |
Alternate proof of ~ snex ... |
p0ex 5248 |
The power set of the empty... |
p0exALT 5249 |
Alternate proof of ~ p0ex ... |
pp0ex 5250 |
The power set of the power... |
ord3ex 5251 |
The ordinal number 3 is a ... |
dtruALT 5252 |
Alternate proof of ~ dtru ... |
axc16b 5253 |
This theorem shows that Ax... |
eunex 5254 |
Existential uniqueness imp... |
eusv1 5255 |
Two ways to express single... |
eusvnf 5256 |
Even if ` x ` is free in `... |
eusvnfb 5257 |
Two ways to say that ` A (... |
eusv2i 5258 |
Two ways to express single... |
eusv2nf 5259 |
Two ways to express single... |
eusv2 5260 |
Two ways to express single... |
reusv1 5261 |
Two ways to express single... |
reusv2lem1 5262 |
Lemma for ~ reusv2 . (Con... |
reusv2lem2 5263 |
Lemma for ~ reusv2 . (Con... |
reusv2lem3 5264 |
Lemma for ~ reusv2 . (Con... |
reusv2lem4 5265 |
Lemma for ~ reusv2 . (Con... |
reusv2lem5 5266 |
Lemma for ~ reusv2 . (Con... |
reusv2 5267 |
Two ways to express single... |
reusv3i 5268 |
Two ways of expressing exi... |
reusv3 5269 |
Two ways to express single... |
eusv4 5270 |
Two ways to express single... |
alxfr 5271 |
Transfer universal quantif... |
ralxfrd 5272 |
Transfer universal quantif... |
rexxfrd 5273 |
Transfer universal quantif... |
ralxfr2d 5274 |
Transfer universal quantif... |
rexxfr2d 5275 |
Transfer universal quantif... |
ralxfrd2 5276 |
Transfer universal quantif... |
rexxfrd2 5277 |
Transfer existence from a ... |
ralxfr 5278 |
Transfer universal quantif... |
ralxfrALT 5279 |
Alternate proof of ~ ralxf... |
rexxfr 5280 |
Transfer existence from a ... |
rabxfrd 5281 |
Membership in a restricted... |
rabxfr 5282 |
Membership in a restricted... |
reuhypd 5283 |
A theorem useful for elimi... |
reuhyp 5284 |
A theorem useful for elimi... |
zfpair 5285 |
The Axiom of Pairing of Ze... |
axprALT 5286 |
Alternate proof of ~ axpr ... |
axprlem1 5287 |
Lemma for ~ axpr . There ... |
axprlem2 5288 |
Lemma for ~ axpr . There ... |
axprlem3 5289 |
Lemma for ~ axpr . Elimin... |
axprlem4 5290 |
Lemma for ~ axpr . The fi... |
axprlem5 5291 |
Lemma for ~ axpr . The se... |
axpr 5292 |
Unabbreviated version of t... |
zfpair2 5294 |
Derive the abbreviated ver... |
snex 5295 |
A singleton is a set. The... |
prex 5296 |
The Axiom of Pairing using... |
sels 5297 |
If a class is a set, then ... |
elALT 5298 |
Alternate proof of ~ el , ... |
dtruALT2 5299 |
Alternate proof of ~ dtru ... |
snelpwi 5300 |
A singleton of a set belon... |
snelpw 5301 |
A singleton of a set belon... |
prelpw 5302 |
A pair of two sets belongs... |
prelpwi 5303 |
A pair of two sets belongs... |
rext 5304 |
A theorem similar to exten... |
sspwb 5305 |
The powerclass constructio... |
unipw 5306 |
A class equals the union o... |
univ 5307 |
The union of the universe ... |
pwtr 5308 |
A class is transitive iff ... |
ssextss 5309 |
An extensionality-like pri... |
ssext 5310 |
An extensionality-like pri... |
nssss 5311 |
Negation of subclass relat... |
pweqb 5312 |
Classes are equal if and o... |
intid 5313 |
The intersection of all se... |
moabex 5314 |
"At most one" existence im... |
rmorabex 5315 |
Restricted "at most one" e... |
euabex 5316 |
The abstraction of a wff w... |
nnullss 5317 |
A nonempty class (even if ... |
exss 5318 |
Restricted existence in a ... |
opex 5319 |
An ordered pair of classes... |
otex 5320 |
An ordered triple of class... |
elopg 5321 |
Characterization of the el... |
elop 5322 |
Characterization of the el... |
opi1 5323 |
One of the two elements in... |
opi2 5324 |
One of the two elements of... |
opeluu 5325 |
Each member of an ordered ... |
op1stb 5326 |
Extract the first member o... |
brv 5327 |
Two classes are always in ... |
opnz 5328 |
An ordered pair is nonempt... |
opnzi 5329 |
An ordered pair is nonempt... |
opth1 5330 |
Equality of the first memb... |
opth 5331 |
The ordered pair theorem. ... |
opthg 5332 |
Ordered pair theorem. ` C ... |
opth1g 5333 |
Equality of the first memb... |
opthg2 5334 |
Ordered pair theorem. (Co... |
opth2 5335 |
Ordered pair theorem. (Co... |
opthneg 5336 |
Two ordered pairs are not ... |
opthne 5337 |
Two ordered pairs are not ... |
otth2 5338 |
Ordered triple theorem, wi... |
otth 5339 |
Ordered triple theorem. (... |
otthg 5340 |
Ordered triple theorem, cl... |
eqvinop 5341 |
A variable introduction la... |
sbcop1 5342 |
The proper substitution of... |
sbcop 5343 |
The proper substitution of... |
copsexgw 5344 |
Version of ~ copsexg with ... |
copsexg 5345 |
Substitution of class ` A ... |
copsex2t 5346 |
Closed theorem form of ~ c... |
copsex2g 5347 |
Implicit substitution infe... |
copsex2gOLD 5348 |
Obsolete version of ~ cops... |
copsex4g 5349 |
An implicit substitution i... |
0nelop 5350 |
A property of ordered pair... |
opwo0id 5351 |
An ordered pair is equal t... |
opeqex 5352 |
Equivalence of existence i... |
oteqex2 5353 |
Equivalence of existence i... |
oteqex 5354 |
Equivalence of existence i... |
opcom 5355 |
An ordered pair commutes i... |
moop2 5356 |
"At most one" property of ... |
opeqsng 5357 |
Equivalence for an ordered... |
opeqsn 5358 |
Equivalence for an ordered... |
opeqpr 5359 |
Equivalence for an ordered... |
snopeqop 5360 |
Equivalence for an ordered... |
propeqop 5361 |
Equivalence for an ordered... |
propssopi 5362 |
If a pair of ordered pairs... |
snopeqopsnid 5363 |
Equivalence for an ordered... |
mosubopt 5364 |
"At most one" remains true... |
mosubop 5365 |
"At most one" remains true... |
euop2 5366 |
Transfer existential uniqu... |
euotd 5367 |
Prove existential uniquene... |
opthwiener 5368 |
Justification theorem for ... |
uniop 5369 |
The union of an ordered pa... |
uniopel 5370 |
Ordered pair membership is... |
opthhausdorff 5371 |
Justification theorem for ... |
opthhausdorff0 5372 |
Justification theorem for ... |
otsndisj 5373 |
The singletons consisting ... |
otiunsndisj 5374 |
The union of singletons co... |
iunopeqop 5375 |
Implication of an ordered ... |
brsnop 5376 |
Binary relation for an ord... |
opabidw 5377 |
The law of concretion. Sp... |
opabid 5378 |
The law of concretion. Sp... |
elopab 5379 |
Membership in a class abst... |
rexopabb 5380 |
Restricted existential qua... |
vopelopabsb 5381 |
The law of concretion in t... |
opelopabsb 5382 |
The law of concretion in t... |
brabsb 5383 |
The law of concretion in t... |
opelopabt 5384 |
Closed theorem form of ~ o... |
opelopabga 5385 |
The law of concretion. Th... |
brabga 5386 |
The law of concretion for ... |
opelopab2a 5387 |
Ordered pair membership in... |
opelopaba 5388 |
The law of concretion. Th... |
braba 5389 |
The law of concretion for ... |
opelopabg 5390 |
The law of concretion. Th... |
brabg 5391 |
The law of concretion for ... |
opelopabgf 5392 |
The law of concretion. Th... |
opelopab2 5393 |
Ordered pair membership in... |
opelopab 5394 |
The law of concretion. Th... |
brab 5395 |
The law of concretion for ... |
opelopabaf 5396 |
The law of concretion. Th... |
opelopabf 5397 |
The law of concretion. Th... |
ssopab2 5398 |
Equivalence of ordered pai... |
ssopab2bw 5399 |
Equivalence of ordered pai... |
eqopab2bw 5400 |
Equivalence of ordered pai... |
ssopab2b 5401 |
Equivalence of ordered pai... |
ssopab2i 5402 |
Inference of ordered pair ... |
ssopab2dv 5403 |
Inference of ordered pair ... |
eqopab2b 5404 |
Equivalence of ordered pai... |
opabn0 5405 |
Nonempty ordered pair clas... |
opab0 5406 |
Empty ordered pair class a... |
csbopab 5407 |
Move substitution into a c... |
csbopabgALT 5408 |
Move substitution into a c... |
csbmpt12 5409 |
Move substitution into a m... |
csbmpt2 5410 |
Move substitution into the... |
iunopab 5411 |
Move indexed union inside ... |
elopabr 5412 |
Membership in an ordered-p... |
elopabran 5413 |
Membership in an ordered-p... |
rbropapd 5414 |
Properties of a pair in an... |
rbropap 5415 |
Properties of a pair in a ... |
2rbropap 5416 |
Properties of a pair in a ... |
0nelopab 5417 |
The empty set is never an ... |
brabv 5418 |
If two classes are in a re... |
pwin 5419 |
The power class of the int... |
pwunssOLD 5420 |
Obsolete version of ~ pwun... |
pwssun 5421 |
The power class of the uni... |
pwundifOLD 5422 |
Obsolete proof of ~ pwundi... |
pwun 5423 |
The power class of the uni... |
dfid4 5426 |
The identity function expr... |
dfid3 5427 |
A stronger version of ~ df... |
dfid2 5428 |
Alternate definition of th... |
epelg 5431 |
The membership relation an... |
epeli 5432 |
The membership relation an... |
epel 5433 |
The membership relation an... |
0sn0ep 5434 |
An example for the members... |
epn0 5435 |
The membership relation is... |
poss 5440 |
Subset theorem for the par... |
poeq1 5441 |
Equality theorem for parti... |
poeq2 5442 |
Equality theorem for parti... |
nfpo 5443 |
Bound-variable hypothesis ... |
nfso 5444 |
Bound-variable hypothesis ... |
pocl 5445 |
Properties of partial orde... |
ispod 5446 |
Sufficient conditions for ... |
swopolem 5447 |
Perform the substitutions ... |
swopo 5448 |
A strict weak order is a p... |
poirr 5449 |
A partial order relation i... |
potr 5450 |
A partial order relation i... |
po2nr 5451 |
A partial order relation h... |
po3nr 5452 |
A partial order relation h... |
po2ne 5453 |
Two classes which are in a... |
po0 5454 |
Any relation is a partial ... |
pofun 5455 |
A function preserves a par... |
sopo 5456 |
A strict linear order is a... |
soss 5457 |
Subset theorem for the str... |
soeq1 5458 |
Equality theorem for the s... |
soeq2 5459 |
Equality theorem for the s... |
sonr 5460 |
A strict order relation is... |
sotr 5461 |
A strict order relation is... |
solin 5462 |
A strict order relation is... |
so2nr 5463 |
A strict order relation ha... |
so3nr 5464 |
A strict order relation ha... |
sotric 5465 |
A strict order relation sa... |
sotrieq 5466 |
Trichotomy law for strict ... |
sotrieq2 5467 |
Trichotomy law for strict ... |
soasym 5468 |
Asymmetry law for strict o... |
sotr2 5469 |
A transitivity relation. ... |
issod 5470 |
An irreflexive, transitive... |
issoi 5471 |
An irreflexive, transitive... |
isso2i 5472 |
Deduce strict ordering fro... |
so0 5473 |
Any relation is a strict o... |
somo 5474 |
A totally ordered set has ... |
fri 5481 |
Property of well-founded r... |
seex 5482 |
The ` R ` -preimage of an ... |
exse 5483 |
Any relation on a set is s... |
dffr2 5484 |
Alternate definition of we... |
frc 5485 |
Property of well-founded r... |
frss 5486 |
Subset theorem for the wel... |
sess1 5487 |
Subset theorem for the set... |
sess2 5488 |
Subset theorem for the set... |
freq1 5489 |
Equality theorem for the w... |
freq2 5490 |
Equality theorem for the w... |
seeq1 5491 |
Equality theorem for the s... |
seeq2 5492 |
Equality theorem for the s... |
nffr 5493 |
Bound-variable hypothesis ... |
nfse 5494 |
Bound-variable hypothesis ... |
nfwe 5495 |
Bound-variable hypothesis ... |
frirr 5496 |
A well-founded relation is... |
fr2nr 5497 |
A well-founded relation ha... |
fr0 5498 |
Any relation is well-found... |
frminex 5499 |
If an element of a well-fo... |
efrirr 5500 |
A well-founded class does ... |
efrn2lp 5501 |
A well-founded class conta... |
epse 5502 |
The membership relation is... |
tz7.2 5503 |
Similar to Theorem 7.2 of ... |
dfepfr 5504 |
An alternate way of saying... |
epfrc 5505 |
A subset of a well-founded... |
wess 5506 |
Subset theorem for the wel... |
weeq1 5507 |
Equality theorem for the w... |
weeq2 5508 |
Equality theorem for the w... |
wefr 5509 |
A well-ordering is well-fo... |
weso 5510 |
A well-ordering is a stric... |
wecmpep 5511 |
The elements of a class we... |
wetrep 5512 |
On a class well-ordered by... |
wefrc 5513 |
A nonempty subclass of a c... |
we0 5514 |
Any relation is a well-ord... |
wereu 5515 |
A subset of a well-ordered... |
wereu2 5516 |
All nonempty subclasses of... |
xpeq1 5533 |
Equality theorem for Carte... |
xpss12 5534 |
Subset theorem for Cartesi... |
xpss 5535 |
A Cartesian product is inc... |
inxpssres 5536 |
Intersection with a Cartes... |
relxp 5537 |
A Cartesian product is a r... |
xpss1 5538 |
Subset relation for Cartes... |
xpss2 5539 |
Subset relation for Cartes... |
xpeq2 5540 |
Equality theorem for Carte... |
elxpi 5541 |
Membership in a Cartesian ... |
elxp 5542 |
Membership in a Cartesian ... |
elxp2 5543 |
Membership in a Cartesian ... |
xpeq12 5544 |
Equality theorem for Carte... |
xpeq1i 5545 |
Equality inference for Car... |
xpeq2i 5546 |
Equality inference for Car... |
xpeq12i 5547 |
Equality inference for Car... |
xpeq1d 5548 |
Equality deduction for Car... |
xpeq2d 5549 |
Equality deduction for Car... |
xpeq12d 5550 |
Equality deduction for Car... |
sqxpeqd 5551 |
Equality deduction for a C... |
nfxp 5552 |
Bound-variable hypothesis ... |
0nelxp 5553 |
The empty set is not a mem... |
0nelelxp 5554 |
A member of a Cartesian pr... |
opelxp 5555 |
Ordered pair membership in... |
opelxpi 5556 |
Ordered pair membership in... |
opelxpd 5557 |
Ordered pair membership in... |
opelvv 5558 |
Ordered pair membership in... |
opelvvg 5559 |
Ordered pair membership in... |
opelxp1 5560 |
The first member of an ord... |
opelxp2 5561 |
The second member of an or... |
otelxp1 5562 |
The first member of an ord... |
otel3xp 5563 |
An ordered triple is an el... |
opabssxpd 5564 |
An ordered-pair class abst... |
rabxp 5565 |
Class abstraction restrict... |
brxp 5566 |
Binary relation on a Carte... |
pwvrel 5567 |
A set is a binary relation... |
pwvabrel 5568 |
The powerclass of the cart... |
brrelex12 5569 |
Two classes related by a b... |
brrelex1 5570 |
If two classes are related... |
brrelex2 5571 |
If two classes are related... |
brrelex12i 5572 |
Two classes that are relat... |
brrelex1i 5573 |
The first argument of a bi... |
brrelex2i 5574 |
The second argument of a b... |
nprrel12 5575 |
Proper classes are not rel... |
nprrel 5576 |
No proper class is related... |
0nelrel0 5577 |
A binary relation does not... |
0nelrel 5578 |
A binary relation does not... |
fconstmpt 5579 |
Representation of a consta... |
vtoclr 5580 |
Variable to class conversi... |
opthprc 5581 |
Justification theorem for ... |
brel 5582 |
Two things in a binary rel... |
elxp3 5583 |
Membership in a Cartesian ... |
opeliunxp 5584 |
Membership in a union of C... |
xpundi 5585 |
Distributive law for Carte... |
xpundir 5586 |
Distributive law for Carte... |
xpiundi 5587 |
Distributive law for Carte... |
xpiundir 5588 |
Distributive law for Carte... |
iunxpconst 5589 |
Membership in a union of C... |
xpun 5590 |
The Cartesian product of t... |
elvv 5591 |
Membership in universal cl... |
elvvv 5592 |
Membership in universal cl... |
elvvuni 5593 |
An ordered pair contains i... |
brinxp2 5594 |
Intersection of binary rel... |
brinxp 5595 |
Intersection of binary rel... |
opelinxp 5596 |
Ordered pair element in an... |
poinxp 5597 |
Intersection of partial or... |
soinxp 5598 |
Intersection of total orde... |
frinxp 5599 |
Intersection of well-found... |
seinxp 5600 |
Intersection of set-like r... |
weinxp 5601 |
Intersection of well-order... |
posn 5602 |
Partial ordering of a sing... |
sosn 5603 |
Strict ordering on a singl... |
frsn 5604 |
Founded relation on a sing... |
wesn 5605 |
Well-ordering of a singlet... |
elopaelxp 5606 |
Membership in an ordered-p... |
bropaex12 5607 |
Two classes related by an ... |
opabssxp 5608 |
An abstraction relation is... |
brab2a 5609 |
The law of concretion for ... |
optocl 5610 |
Implicit substitution of c... |
2optocl 5611 |
Implicit substitution of c... |
3optocl 5612 |
Implicit substitution of c... |
opbrop 5613 |
Ordered pair membership in... |
0xp 5614 |
The Cartesian product with... |
csbxp 5615 |
Distribute proper substitu... |
releq 5616 |
Equality theorem for the r... |
releqi 5617 |
Equality inference for the... |
releqd 5618 |
Equality deduction for the... |
nfrel 5619 |
Bound-variable hypothesis ... |
sbcrel 5620 |
Distribute proper substitu... |
relss 5621 |
Subclass theorem for relat... |
ssrel 5622 |
A subclass relationship de... |
eqrel 5623 |
Extensionality principle f... |
ssrel2 5624 |
A subclass relationship de... |
relssi 5625 |
Inference from subclass pr... |
relssdv 5626 |
Deduction from subclass pr... |
eqrelriv 5627 |
Inference from extensional... |
eqrelriiv 5628 |
Inference from extensional... |
eqbrriv 5629 |
Inference from extensional... |
eqrelrdv 5630 |
Deduce equality of relatio... |
eqbrrdv 5631 |
Deduction from extensional... |
eqbrrdiv 5632 |
Deduction from extensional... |
eqrelrdv2 5633 |
A version of ~ eqrelrdv . ... |
ssrelrel 5634 |
A subclass relationship de... |
eqrelrel 5635 |
Extensionality principle f... |
elrel 5636 |
A member of a relation is ... |
rel0 5637 |
The empty set is a relatio... |
nrelv 5638 |
The universal class is not... |
relsng 5639 |
A singleton is a relation ... |
relsnb 5640 |
An at-most-singleton is a ... |
relsnopg 5641 |
A singleton of an ordered ... |
relsn 5642 |
A singleton is a relation ... |
relsnop 5643 |
A singleton of an ordered ... |
copsex2gb 5644 |
Implicit substitution infe... |
copsex2ga 5645 |
Implicit substitution infe... |
elopaba 5646 |
Membership in an ordered-p... |
xpsspw 5647 |
A Cartesian product is inc... |
unixpss 5648 |
The double class union of ... |
relun 5649 |
The union of two relations... |
relin1 5650 |
The intersection with a re... |
relin2 5651 |
The intersection with a re... |
relinxp 5652 |
Intersection with a Cartes... |
reldif 5653 |
A difference cutting down ... |
reliun 5654 |
An indexed union is a rela... |
reliin 5655 |
An indexed intersection is... |
reluni 5656 |
The union of a class is a ... |
relint 5657 |
The intersection of a clas... |
relopabiv 5658 |
A class of ordered pairs i... |
relopabv 5659 |
A class of ordered pairs i... |
relopabi 5660 |
A class of ordered pairs i... |
relopabiALT 5661 |
Alternate proof of ~ relop... |
relopab 5662 |
A class of ordered pairs i... |
mptrel 5663 |
The maps-to notation alway... |
reli 5664 |
The identity relation is a... |
rele 5665 |
The membership relation is... |
opabid2 5666 |
A relation expressed as an... |
inopab 5667 |
Intersection of two ordere... |
difopab 5668 |
Difference of two ordered-... |
inxp 5669 |
Intersection of two Cartes... |
xpindi 5670 |
Distributive law for Carte... |
xpindir 5671 |
Distributive law for Carte... |
xpiindi 5672 |
Distributive law for Carte... |
xpriindi 5673 |
Distributive law for Carte... |
eliunxp 5674 |
Membership in a union of C... |
opeliunxp2 5675 |
Membership in a union of C... |
raliunxp 5676 |
Write a double restricted ... |
rexiunxp 5677 |
Write a double restricted ... |
ralxp 5678 |
Universal quantification r... |
rexxp 5679 |
Existential quantification... |
exopxfr 5680 |
Transfer ordered-pair exis... |
exopxfr2 5681 |
Transfer ordered-pair exis... |
djussxp 5682 |
Disjoint union is a subset... |
ralxpf 5683 |
Version of ~ ralxp with bo... |
rexxpf 5684 |
Version of ~ rexxp with bo... |
iunxpf 5685 |
Indexed union on a Cartesi... |
opabbi2dv 5686 |
Deduce equality of a relat... |
relop 5687 |
A necessary and sufficient... |
ideqg 5688 |
For sets, the identity rel... |
ideq 5689 |
For sets, the identity rel... |
ididg 5690 |
A set is identical to itse... |
issetid 5691 |
Two ways of expressing set... |
coss1 5692 |
Subclass theorem for compo... |
coss2 5693 |
Subclass theorem for compo... |
coeq1 5694 |
Equality theorem for compo... |
coeq2 5695 |
Equality theorem for compo... |
coeq1i 5696 |
Equality inference for com... |
coeq2i 5697 |
Equality inference for com... |
coeq1d 5698 |
Equality deduction for com... |
coeq2d 5699 |
Equality deduction for com... |
coeq12i 5700 |
Equality inference for com... |
coeq12d 5701 |
Equality deduction for com... |
nfco 5702 |
Bound-variable hypothesis ... |
brcog 5703 |
Ordered pair membership in... |
opelco2g 5704 |
Ordered pair membership in... |
brcogw 5705 |
Ordered pair membership in... |
eqbrrdva 5706 |
Deduction from extensional... |
brco 5707 |
Binary relation on a compo... |
opelco 5708 |
Ordered pair membership in... |
cnvss 5709 |
Subset theorem for convers... |
cnveq 5710 |
Equality theorem for conve... |
cnveqi 5711 |
Equality inference for con... |
cnveqd 5712 |
Equality deduction for con... |
elcnv 5713 |
Membership in a converse r... |
elcnv2 5714 |
Membership in a converse r... |
nfcnv 5715 |
Bound-variable hypothesis ... |
brcnvg 5716 |
The converse of a binary r... |
opelcnvg 5717 |
Ordered-pair membership in... |
opelcnv 5718 |
Ordered-pair membership in... |
brcnv 5719 |
The converse of a binary r... |
csbcnv 5720 |
Move class substitution in... |
csbcnvgALT 5721 |
Move class substitution in... |
cnvco 5722 |
Distributive law of conver... |
cnvuni 5723 |
The converse of a class un... |
dfdm3 5724 |
Alternate definition of do... |
dfrn2 5725 |
Alternate definition of ra... |
dfrn3 5726 |
Alternate definition of ra... |
elrn2g 5727 |
Membership in a range. (C... |
elrng 5728 |
Membership in a range. (C... |
elrn2 5729 |
Membership in a range. (C... |
elrn 5730 |
Membership in a range. (C... |
ssrelrn 5731 |
If a relation is a subset ... |
dfdm4 5732 |
Alternate definition of do... |
dfdmf 5733 |
Definition of domain, usin... |
csbdm 5734 |
Distribute proper substitu... |
eldmg 5735 |
Domain membership. Theore... |
eldm2g 5736 |
Domain membership. Theore... |
eldm 5737 |
Membership in a domain. T... |
eldm2 5738 |
Membership in a domain. T... |
dmss 5739 |
Subset theorem for domain.... |
dmeq 5740 |
Equality theorem for domai... |
dmeqi 5741 |
Equality inference for dom... |
dmeqd 5742 |
Equality deduction for dom... |
opeldmd 5743 |
Membership of first of an ... |
opeldm 5744 |
Membership of first of an ... |
breldm 5745 |
Membership of first of a b... |
breldmg 5746 |
Membership of first of a b... |
dmun 5747 |
The domain of a union is t... |
dmin 5748 |
The domain of an intersect... |
breldmd 5749 |
Membership of first of a b... |
dmiun 5750 |
The domain of an indexed u... |
dmuni 5751 |
The domain of a union. Pa... |
dmopab 5752 |
The domain of a class of o... |
dmopabelb 5753 |
A set is an element of the... |
dmopab2rex 5754 |
The domain of an ordered p... |
dmopabss 5755 |
Upper bound for the domain... |
dmopab3 5756 |
The domain of a restricted... |
dm0 5757 |
The domain of the empty se... |
dmi 5758 |
The domain of the identity... |
dmv 5759 |
The domain of the universe... |
dmep 5760 |
The domain of the membersh... |
domepOLD 5761 |
Obsolete proof of ~ dmep a... |
dm0rn0 5762 |
An empty domain is equival... |
rn0 5763 |
The range of the empty set... |
rnep 5764 |
The range of the membershi... |
reldm0 5765 |
A relation is empty iff it... |
dmxp 5766 |
The domain of a Cartesian ... |
dmxpid 5767 |
The domain of a Cartesian ... |
dmxpin 5768 |
The domain of the intersec... |
xpid11 5769 |
The Cartesian square is a ... |
dmcnvcnv 5770 |
The domain of the double c... |
rncnvcnv 5771 |
The range of the double co... |
elreldm 5772 |
The first member of an ord... |
rneq 5773 |
Equality theorem for range... |
rneqi 5774 |
Equality inference for ran... |
rneqd 5775 |
Equality deduction for ran... |
rnss 5776 |
Subset theorem for range. ... |
rnssi 5777 |
Subclass inference for ran... |
brelrng 5778 |
The second argument of a b... |
brelrn 5779 |
The second argument of a b... |
opelrn 5780 |
Membership of second membe... |
releldm 5781 |
The first argument of a bi... |
relelrn 5782 |
The second argument of a b... |
releldmb 5783 |
Membership in a domain. (... |
relelrnb 5784 |
Membership in a range. (C... |
releldmi 5785 |
The first argument of a bi... |
relelrni 5786 |
The second argument of a b... |
dfrnf 5787 |
Definition of range, using... |
nfdm 5788 |
Bound-variable hypothesis ... |
nfrn 5789 |
Bound-variable hypothesis ... |
dmiin 5790 |
Domain of an intersection.... |
rnopab 5791 |
The range of a class of or... |
rnmpt 5792 |
The range of a function in... |
elrnmpt 5793 |
The range of a function in... |
elrnmpt1s 5794 |
Elementhood in an image se... |
elrnmpt1 5795 |
Elementhood in an image se... |
elrnmptg 5796 |
Membership in the range of... |
elrnmpti 5797 |
Membership in the range of... |
elrnmptd 5798 |
The range of a function in... |
elrnmptdv 5799 |
Elementhood in the range o... |
elrnmpt2d 5800 |
Elementhood in the range o... |
dfiun3g 5801 |
Alternate definition of in... |
dfiin3g 5802 |
Alternate definition of in... |
dfiun3 5803 |
Alternate definition of in... |
dfiin3 5804 |
Alternate definition of in... |
riinint 5805 |
Express a relative indexed... |
relrn0 5806 |
A relation is empty iff it... |
dmrnssfld 5807 |
The domain and range of a ... |
dmcoss 5808 |
Domain of a composition. ... |
rncoss 5809 |
Range of a composition. (... |
dmcosseq 5810 |
Domain of a composition. ... |
dmcoeq 5811 |
Domain of a composition. ... |
rncoeq 5812 |
Range of a composition. (... |
reseq1 5813 |
Equality theorem for restr... |
reseq2 5814 |
Equality theorem for restr... |
reseq1i 5815 |
Equality inference for res... |
reseq2i 5816 |
Equality inference for res... |
reseq12i 5817 |
Equality inference for res... |
reseq1d 5818 |
Equality deduction for res... |
reseq2d 5819 |
Equality deduction for res... |
reseq12d 5820 |
Equality deduction for res... |
nfres 5821 |
Bound-variable hypothesis ... |
csbres 5822 |
Distribute proper substitu... |
res0 5823 |
A restriction to the empty... |
dfres3 5824 |
Alternate definition of re... |
opelres 5825 |
Ordered pair elementhood i... |
brres 5826 |
Binary relation on a restr... |
opelresi 5827 |
Ordered pair membership in... |
brresi 5828 |
Binary relation on a restr... |
opres 5829 |
Ordered pair membership in... |
resieq 5830 |
A restricted identity rela... |
opelidres 5831 |
` <. A , A >. ` belongs to... |
resres 5832 |
The restriction of a restr... |
resundi 5833 |
Distributive law for restr... |
resundir 5834 |
Distributive law for restr... |
resindi 5835 |
Class restriction distribu... |
resindir 5836 |
Class restriction distribu... |
inres 5837 |
Move intersection into cla... |
resdifcom 5838 |
Commutative law for restri... |
resiun1 5839 |
Distribution of restrictio... |
resiun2 5840 |
Distribution of restrictio... |
dmres 5841 |
The domain of a restrictio... |
ssdmres 5842 |
A domain restricted to a s... |
dmresexg 5843 |
The domain of a restrictio... |
resss 5844 |
A class includes its restr... |
rescom 5845 |
Commutative law for restri... |
ssres 5846 |
Subclass theorem for restr... |
ssres2 5847 |
Subclass theorem for restr... |
relres 5848 |
A restriction is a relatio... |
resabs1 5849 |
Absorption law for restric... |
resabs1d 5850 |
Absorption law for restric... |
resabs2 5851 |
Absorption law for restric... |
residm 5852 |
Idempotent law for restric... |
resima 5853 |
A restriction to an image.... |
resima2 5854 |
Image under a restricted c... |
rnresss 5855 |
The range of a restriction... |
xpssres 5856 |
Restriction of a constant ... |
elinxp 5857 |
Membership in an intersect... |
elres 5858 |
Membership in a restrictio... |
elsnres 5859 |
Membership in restriction ... |
relssres 5860 |
Simplification law for res... |
dmressnsn 5861 |
The domain of a restrictio... |
eldmressnsn 5862 |
The element of the domain ... |
eldmeldmressn 5863 |
An element of the domain (... |
resdm 5864 |
A relation restricted to i... |
resexg 5865 |
The restriction of a set i... |
resexd 5866 |
The restriction of a set i... |
resex 5867 |
The restriction of a set i... |
resindm 5868 |
When restricting a relatio... |
resdmdfsn 5869 |
Restricting a relation to ... |
resopab 5870 |
Restriction of a class abs... |
iss 5871 |
A subclass of the identity... |
resopab2 5872 |
Restriction of a class abs... |
resmpt 5873 |
Restriction of the mapping... |
resmpt3 5874 |
Unconditional restriction ... |
resmptf 5875 |
Restriction of the mapping... |
resmptd 5876 |
Restriction of the mapping... |
dfres2 5877 |
Alternate definition of th... |
mptss 5878 |
Sufficient condition for i... |
elidinxp 5879 |
Characterization of the el... |
elidinxpid 5880 |
Characterization of the el... |
elrid 5881 |
Characterization of the el... |
idinxpres 5882 |
The intersection of the id... |
idinxpresid 5883 |
The intersection of the id... |
idssxp 5884 |
A diagonal set as a subset... |
opabresid 5885 |
The restricted identity re... |
mptresid 5886 |
The restricted identity re... |
opabresidOLD 5887 |
Obsolete version of ~ opab... |
mptresidOLD 5888 |
Obsolete version of ~ mptr... |
dmresi 5889 |
The domain of a restricted... |
restidsing 5890 |
Restriction of the identit... |
iresn0n0 5891 |
The identity function rest... |
imaeq1 5892 |
Equality theorem for image... |
imaeq2 5893 |
Equality theorem for image... |
imaeq1i 5894 |
Equality theorem for image... |
imaeq2i 5895 |
Equality theorem for image... |
imaeq1d 5896 |
Equality theorem for image... |
imaeq2d 5897 |
Equality theorem for image... |
imaeq12d 5898 |
Equality theorem for image... |
dfima2 5899 |
Alternate definition of im... |
dfima3 5900 |
Alternate definition of im... |
elimag 5901 |
Membership in an image. T... |
elima 5902 |
Membership in an image. T... |
elima2 5903 |
Membership in an image. T... |
elima3 5904 |
Membership in an image. T... |
nfima 5905 |
Bound-variable hypothesis ... |
nfimad 5906 |
Deduction version of bound... |
imadmrn 5907 |
The image of the domain of... |
imassrn 5908 |
The image of a class is a ... |
mptima 5909 |
Image of a function in map... |
imai 5910 |
Image under the identity r... |
rnresi 5911 |
The range of the restricte... |
resiima 5912 |
The image of a restriction... |
ima0 5913 |
Image of the empty set. T... |
0ima 5914 |
Image under the empty rela... |
csbima12 5915 |
Move class substitution in... |
imadisj 5916 |
A class whose image under ... |
cnvimass 5917 |
A preimage under any class... |
cnvimarndm 5918 |
The preimage of the range ... |
imasng 5919 |
The image of a singleton. ... |
relimasn 5920 |
The image of a singleton. ... |
elrelimasn 5921 |
Elementhood in the image o... |
elimasn 5922 |
Membership in an image of ... |
elimasng 5923 |
Membership in an image of ... |
elimasni 5924 |
Membership in an image of ... |
args 5925 |
Two ways to express the cl... |
eliniseg 5926 |
Membership in an initial s... |
epini 5927 |
Any set is equal to its pr... |
iniseg 5928 |
An idiom that signifies an... |
inisegn0 5929 |
Nonemptiness of an initial... |
dffr3 5930 |
Alternate definition of we... |
dfse2 5931 |
Alternate definition of se... |
imass1 5932 |
Subset theorem for image. ... |
imass2 5933 |
Subset theorem for image. ... |
ndmima 5934 |
The image of a singleton o... |
relcnv 5935 |
A converse is a relation. ... |
relbrcnvg 5936 |
When ` R ` is a relation, ... |
eliniseg2 5937 |
Eliminate the class existe... |
relbrcnv 5938 |
When ` R ` is a relation, ... |
cotrg 5939 |
Two ways of saying that th... |
cotr 5940 |
Two ways of saying a relat... |
idrefALT 5941 |
Alternate proof of ~ idref... |
cnvsym 5942 |
Two ways of saying a relat... |
intasym 5943 |
Two ways of saying a relat... |
asymref 5944 |
Two ways of saying a relat... |
asymref2 5945 |
Two ways of saying a relat... |
intirr 5946 |
Two ways of saying a relat... |
brcodir 5947 |
Two ways of saying that tw... |
codir 5948 |
Two ways of saying a relat... |
qfto 5949 |
A quantifier-free way of e... |
xpidtr 5950 |
A Cartesian square is a tr... |
trin2 5951 |
The intersection of two tr... |
poirr2 5952 |
A partial order relation i... |
trinxp 5953 |
The relation induced by a ... |
soirri 5954 |
A strict order relation is... |
sotri 5955 |
A strict order relation is... |
son2lpi 5956 |
A strict order relation ha... |
sotri2 5957 |
A transitivity relation. ... |
sotri3 5958 |
A transitivity relation. ... |
poleloe 5959 |
Express "less than or equa... |
poltletr 5960 |
Transitive law for general... |
somin1 5961 |
Property of a minimum in a... |
somincom 5962 |
Commutativity of minimum i... |
somin2 5963 |
Property of a minimum in a... |
soltmin 5964 |
Being less than a minimum,... |
cnvopab 5965 |
The converse of a class ab... |
mptcnv 5966 |
The converse of a mapping ... |
cnv0 5967 |
The converse of the empty ... |
cnvi 5968 |
The converse of the identi... |
cnvun 5969 |
The converse of a union is... |
cnvdif 5970 |
Distributive law for conve... |
cnvin 5971 |
Distributive law for conve... |
rnun 5972 |
Distributive law for range... |
rnin 5973 |
The range of an intersecti... |
rniun 5974 |
The range of an indexed un... |
rnuni 5975 |
The range of a union. Par... |
imaundi 5976 |
Distributive law for image... |
imaundir 5977 |
The image of a union. (Co... |
cnvimassrndm 5978 |
The preimage of a superset... |
dminss 5979 |
An upper bound for interse... |
imainss 5980 |
An upper bound for interse... |
inimass 5981 |
The image of an intersecti... |
inimasn 5982 |
The intersection of the im... |
cnvxp 5983 |
The converse of a Cartesia... |
xp0 5984 |
The Cartesian product with... |
xpnz 5985 |
The Cartesian product of n... |
xpeq0 5986 |
At least one member of an ... |
xpdisj1 5987 |
Cartesian products with di... |
xpdisj2 5988 |
Cartesian products with di... |
xpsndisj 5989 |
Cartesian products with tw... |
difxp 5990 |
Difference of Cartesian pr... |
difxp1 5991 |
Difference law for Cartesi... |
difxp2 5992 |
Difference law for Cartesi... |
djudisj 5993 |
Disjoint unions with disjo... |
xpdifid 5994 |
The set of distinct couple... |
resdisj 5995 |
A double restriction to di... |
rnxp 5996 |
The range of a Cartesian p... |
dmxpss 5997 |
The domain of a Cartesian ... |
rnxpss 5998 |
The range of a Cartesian p... |
rnxpid 5999 |
The range of a Cartesian s... |
ssxpb 6000 |
A Cartesian product subcla... |
xp11 6001 |
The Cartesian product of n... |
xpcan 6002 |
Cancellation law for Carte... |
xpcan2 6003 |
Cancellation law for Carte... |
ssrnres 6004 |
Two ways to express surjec... |
rninxp 6005 |
Two ways to express surjec... |
dminxp 6006 |
Two ways to express totali... |
imainrect 6007 |
Image by a restricted and ... |
xpima 6008 |
Direct image by a Cartesia... |
xpima1 6009 |
Direct image by a Cartesia... |
xpima2 6010 |
Direct image by a Cartesia... |
xpimasn 6011 |
Direct image of a singleto... |
sossfld 6012 |
The base set of a strict o... |
sofld 6013 |
The base set of a nonempty... |
cnvcnv3 6014 |
The set of all ordered pai... |
dfrel2 6015 |
Alternate definition of re... |
dfrel4v 6016 |
A relation can be expresse... |
dfrel4 6017 |
A relation can be expresse... |
cnvcnv 6018 |
The double converse of a c... |
cnvcnv2 6019 |
The double converse of a c... |
cnvcnvss 6020 |
The double converse of a c... |
cnvrescnv 6021 |
Two ways to express the co... |
cnveqb 6022 |
Equality theorem for conve... |
cnveq0 6023 |
A relation empty iff its c... |
dfrel3 6024 |
Alternate definition of re... |
elid 6025 |
Characterization of the el... |
dmresv 6026 |
The domain of a universal ... |
rnresv 6027 |
The range of a universal r... |
dfrn4 6028 |
Range defined in terms of ... |
csbrn 6029 |
Distribute proper substitu... |
rescnvcnv 6030 |
The restriction of the dou... |
cnvcnvres 6031 |
The double converse of the... |
imacnvcnv 6032 |
The image of the double co... |
dmsnn0 6033 |
The domain of a singleton ... |
rnsnn0 6034 |
The range of a singleton i... |
dmsn0 6035 |
The domain of the singleto... |
cnvsn0 6036 |
The converse of the single... |
dmsn0el 6037 |
The domain of a singleton ... |
relsn2 6038 |
A singleton is a relation ... |
dmsnopg 6039 |
The domain of a singleton ... |
dmsnopss 6040 |
The domain of a singleton ... |
dmpropg 6041 |
The domain of an unordered... |
dmsnop 6042 |
The domain of a singleton ... |
dmprop 6043 |
The domain of an unordered... |
dmtpop 6044 |
The domain of an unordered... |
cnvcnvsn 6045 |
Double converse of a singl... |
dmsnsnsn 6046 |
The domain of the singleto... |
rnsnopg 6047 |
The range of a singleton o... |
rnpropg 6048 |
The range of a pair of ord... |
cnvsng 6049 |
Converse of a singleton of... |
rnsnop 6050 |
The range of a singleton o... |
op1sta 6051 |
Extract the first member o... |
cnvsn 6052 |
Converse of a singleton of... |
op2ndb 6053 |
Extract the second member ... |
op2nda 6054 |
Extract the second member ... |
opswap 6055 |
Swap the members of an ord... |
cnvresima 6056 |
An image under the convers... |
resdm2 6057 |
A class restricted to its ... |
resdmres 6058 |
Restriction to the domain ... |
resresdm 6059 |
A restriction by an arbitr... |
imadmres 6060 |
The image of the domain of... |
resdmss 6061 |
Subset relationship for th... |
resdifdi 6062 |
Distributive law for restr... |
resdifdir 6063 |
Distributive law for restr... |
mptpreima 6064 |
The preimage of a function... |
mptiniseg 6065 |
Converse singleton image o... |
dmmpt 6066 |
The domain of the mapping ... |
dmmptss 6067 |
The domain of a mapping is... |
dmmptg 6068 |
The domain of the mapping ... |
rnmpt0f 6069 |
The range of a function in... |
rnmptn0 6070 |
The range of a function in... |
relco 6071 |
A composition is a relatio... |
dfco2 6072 |
Alternate definition of a ... |
dfco2a 6073 |
Generalization of ~ dfco2 ... |
coundi 6074 |
Class composition distribu... |
coundir 6075 |
Class composition distribu... |
cores 6076 |
Restricted first member of... |
resco 6077 |
Associative law for the re... |
imaco 6078 |
Image of the composition o... |
rnco 6079 |
The range of the compositi... |
rnco2 6080 |
The range of the compositi... |
dmco 6081 |
The domain of a compositio... |
coeq0 6082 |
A composition of two relat... |
coiun 6083 |
Composition with an indexe... |
cocnvcnv1 6084 |
A composition is not affec... |
cocnvcnv2 6085 |
A composition is not affec... |
cores2 6086 |
Absorption of a reverse (p... |
co02 6087 |
Composition with the empty... |
co01 6088 |
Composition with the empty... |
coi1 6089 |
Composition with the ident... |
coi2 6090 |
Composition with the ident... |
coires1 6091 |
Composition with a restric... |
coass 6092 |
Associative law for class ... |
relcnvtrg 6093 |
General form of ~ relcnvtr... |
relcnvtr 6094 |
A relation is transitive i... |
relssdmrn 6095 |
A relation is included in ... |
resssxp 6096 |
If the ` R ` -image of a c... |
cnvssrndm 6097 |
The converse is a subset o... |
cossxp 6098 |
Composition as a subset of... |
relrelss 6099 |
Two ways to describe the s... |
unielrel 6100 |
The membership relation fo... |
relfld 6101 |
The double union of a rela... |
relresfld 6102 |
Restriction of a relation ... |
relcoi2 6103 |
Composition with the ident... |
relcoi1 6104 |
Composition with the ident... |
unidmrn 6105 |
The double union of the co... |
relcnvfld 6106 |
if ` R ` is a relation, it... |
dfdm2 6107 |
Alternate definition of do... |
unixp 6108 |
The double class union of ... |
unixp0 6109 |
A Cartesian product is emp... |
unixpid 6110 |
Field of a Cartesian squar... |
ressn 6111 |
Restriction of a class to ... |
cnviin 6112 |
The converse of an interse... |
cnvpo 6113 |
The converse of a partial ... |
cnvso 6114 |
The converse of a strict o... |
xpco 6115 |
Composition of two Cartesi... |
xpcoid 6116 |
Composition of two Cartesi... |
elsnxp 6117 |
Membership in a Cartesian ... |
reu3op 6118 |
There is a unique ordered ... |
reuop 6119 |
There is a unique ordered ... |
opreu2reurex 6120 |
There is a unique ordered ... |
opreu2reu 6121 |
If there is a unique order... |
predeq123 6124 |
Equality theorem for the p... |
predeq1 6125 |
Equality theorem for the p... |
predeq2 6126 |
Equality theorem for the p... |
predeq3 6127 |
Equality theorem for the p... |
nfpred 6128 |
Bound-variable hypothesis ... |
predpredss 6129 |
If ` A ` is a subset of ` ... |
predss 6130 |
The predecessor class of `... |
sspred 6131 |
Another subset/predecessor... |
dfpred2 6132 |
An alternate definition of... |
dfpred3 6133 |
An alternate definition of... |
dfpred3g 6134 |
An alternate definition of... |
elpredim 6135 |
Membership in a predecesso... |
elpred 6136 |
Membership in a predecesso... |
elpredg 6137 |
Membership in a predecesso... |
predasetex 6138 |
The predecessor class exis... |
dffr4 6139 |
Alternate definition of we... |
predel 6140 |
Membership in the predeces... |
predpo 6141 |
Property of the precessor ... |
predso 6142 |
Property of the predecesso... |
predbrg 6143 |
Closed form of ~ elpredim ... |
setlikespec 6144 |
If ` R ` is set-like in ` ... |
predidm 6145 |
Idempotent law for the pre... |
predin 6146 |
Intersection law for prede... |
predun 6147 |
Union law for predecessor ... |
preddif 6148 |
Difference law for predece... |
predep 6149 |
The predecessor under the ... |
preddowncl 6150 |
A property of classes that... |
predpoirr 6151 |
Given a partial ordering, ... |
predfrirr 6152 |
Given a well-founded relat... |
pred0 6153 |
The predecessor class over... |
tz6.26 6154 |
All nonempty subclasses of... |
tz6.26i 6155 |
All nonempty subclasses of... |
wfi 6156 |
The Principle of Well-Foun... |
wfii 6157 |
The Principle of Well-Foun... |
wfisg 6158 |
Well-Founded Induction Sch... |
wfis 6159 |
Well-Founded Induction Sch... |
wfis2fg 6160 |
Well-Founded Induction Sch... |
wfis2f 6161 |
Well Founded Induction sch... |
wfis2g 6162 |
Well-Founded Induction Sch... |
wfis2 6163 |
Well Founded Induction sch... |
wfis3 6164 |
Well Founded Induction sch... |
ordeq 6173 |
Equality theorem for the o... |
elong 6174 |
An ordinal number is an or... |
elon 6175 |
An ordinal number is an or... |
eloni 6176 |
An ordinal number has the ... |
elon2 6177 |
An ordinal number is an or... |
limeq 6178 |
Equality theorem for the l... |
ordwe 6179 |
Membership well-orders eve... |
ordtr 6180 |
An ordinal class is transi... |
ordfr 6181 |
Membership is well-founded... |
ordelss 6182 |
An element of an ordinal c... |
trssord 6183 |
A transitive subclass of a... |
ordirr 6184 |
No ordinal class is a memb... |
nordeq 6185 |
A member of an ordinal cla... |
ordn2lp 6186 |
An ordinal class cannot be... |
tz7.5 6187 |
A nonempty subclass of an ... |
ordelord 6188 |
An element of an ordinal c... |
tron 6189 |
The class of all ordinal n... |
ordelon 6190 |
An element of an ordinal c... |
onelon 6191 |
An element of an ordinal n... |
tz7.7 6192 |
A transitive class belongs... |
ordelssne 6193 |
For ordinal classes, membe... |
ordelpss 6194 |
For ordinal classes, membe... |
ordsseleq 6195 |
For ordinal classes, inclu... |
ordin 6196 |
The intersection of two or... |
onin 6197 |
The intersection of two or... |
ordtri3or 6198 |
A trichotomy law for ordin... |
ordtri1 6199 |
A trichotomy law for ordin... |
ontri1 6200 |
A trichotomy law for ordin... |
ordtri2 6201 |
A trichotomy law for ordin... |
ordtri3 6202 |
A trichotomy law for ordin... |
ordtri4 6203 |
A trichotomy law for ordin... |
orddisj 6204 |
An ordinal class and its s... |
onfr 6205 |
The ordinal class is well-... |
onelpss |