MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01d 189 Deduction based on reducti...
pm2.6 190 Theorem *2.6 of [Whitehead...
pm2.61 191 Theorem *2.61 of [Whitehea...
pm2.65 192 Theorem *2.65 of [Whitehea...
pm2.65i 193 Inference for proof by con...
pm2.21dd 194 A contradiction implies an...
pm2.65d 195 Deduction for proof by con...
mto 196 The rule of modus tollens....
mtod 197 Modus tollens deduction. ...
mtoi 198 Modus tollens inference. ...
mt2 199 A rule similar to modus to...
mt3 200 A rule similar to modus to...
peirce 201 Peirce's axiom. A non-int...
looinv 202 The Inversion Axiom of the...
bijust0 203 A self-implication (see ~ ...
bijust 204 Theorem used to justify th...
impbi 207 Property of the biconditio...
impbii 208 Infer an equivalence from ...
impbidd 209 Deduce an equivalence from...
impbid21d 210 Deduce an equivalence from...
impbid 211 Deduce an equivalence from...
dfbi1 212 Relate the biconditional c...
dfbi1ALT 213 Alternate proof of ~ dfbi1...
biimp 214 Property of the biconditio...
biimpi 215 Infer an implication from ...
sylbi 216 A mixed syllogism inferenc...
sylib 217 A mixed syllogism inferenc...
sylbb 218 A mixed syllogism inferenc...
biimpr 219 Property of the biconditio...
bicom1 220 Commutative law for the bi...
bicom 221 Commutative law for the bi...
bicomd 222 Commute two sides of a bic...
bicomi 223 Inference from commutative...
impbid1 224 Infer an equivalence from ...
impbid2 225 Infer an equivalence from ...
impcon4bid 226 A variation on ~ impbid wi...
biimpri 227 Infer a converse implicati...
biimpd 228 Deduce an implication from...
mpbi 229 An inference from a bicond...
mpbir 230 An inference from a bicond...
mpbid 231 A deduction from a bicondi...
mpbii 232 An inference from a nested...
sylibr 233 A mixed syllogism inferenc...
sylbir 234 A mixed syllogism inferenc...
sylbbr 235 A mixed syllogism inferenc...
sylbb1 236 A mixed syllogism inferenc...
sylbb2 237 A mixed syllogism inferenc...
sylibd 238 A syllogism deduction. (C...
sylbid 239 A syllogism deduction. (C...
mpbidi 240 A deduction from a bicondi...
syl5bi 241 A mixed syllogism inferenc...
syl5bir 242 A mixed syllogism inferenc...
syl5ib 243 A mixed syllogism inferenc...
syl5ibcom 244 A mixed syllogism inferenc...
syl5ibr 245 A mixed syllogism inferenc...
syl5ibrcom 246 A mixed syllogism inferenc...
biimprd 247 Deduce a converse implicat...
biimpcd 248 Deduce a commuted implicat...
biimprcd 249 Deduce a converse commuted...
syl6ib 250 A mixed syllogism inferenc...
syl6ibr 251 A mixed syllogism inferenc...
syl6bi 252 A mixed syllogism inferenc...
syl6bir 253 A mixed syllogism inferenc...
syl7bi 254 A mixed syllogism inferenc...
syl8ib 255 A syllogism rule of infere...
mpbird 256 A deduction from a bicondi...
mpbiri 257 An inference from a nested...
sylibrd 258 A syllogism deduction. (C...
sylbird 259 A syllogism deduction. (C...
biid 260 Principle of identity for ...
biidd 261 Principle of identity with...
pm5.1im 262 Two propositions are equiv...
2th 263 Two truths are equivalent....
2thd 264 Two truths are equivalent....
monothetic 265 Two self-implications (see...
ibi 266 Inference that converts a ...
ibir 267 Inference that converts a ...
ibd 268 Deduction that converts a ...
pm5.74 269 Distribution of implicatio...
pm5.74i 270 Distribution of implicatio...
pm5.74ri 271 Distribution of implicatio...
pm5.74d 272 Distribution of implicatio...
pm5.74rd 273 Distribution of implicatio...
bitri 274 An inference from transiti...
bitr2i 275 An inference from transiti...
bitr3i 276 An inference from transiti...
bitr4i 277 An inference from transiti...
bitrd 278 Deduction form of ~ bitri ...
bitr2d 279 Deduction form of ~ bitr2i...
bitr3d 280 Deduction form of ~ bitr3i...
bitr4d 281 Deduction form of ~ bitr4i...
syl5bb 282 A syllogism inference from...
bitr2id 283 A syllogism inference from...
bitr3id 284 A syllogism inference from...
bitr3di 285 A syllogism inference from...
bitrdi 286 A syllogism inference from...
bitr2di 287 A syllogism inference from...
bitr4di 288 A syllogism inference from...
bitr4id 289 A syllogism inference from...
3imtr3i 290 A mixed syllogism inferenc...
3imtr4i 291 A mixed syllogism inferenc...
3imtr3d 292 More general version of ~ ...
3imtr4d 293 More general version of ~ ...
3imtr3g 294 More general version of ~ ...
3imtr4g 295 More general version of ~ ...
3bitri 296 A chained inference from t...
3bitrri 297 A chained inference from t...
3bitr2i 298 A chained inference from t...
3bitr2ri 299 A chained inference from t...
3bitr3i 300 A chained inference from t...
3bitr3ri 301 A chained inference from t...
3bitr4i 302 A chained inference from t...
3bitr4ri 303 A chained inference from t...
3bitrd 304 Deduction from transitivit...
3bitrrd 305 Deduction from transitivit...
3bitr2d 306 Deduction from transitivit...
3bitr2rd 307 Deduction from transitivit...
3bitr3d 308 Deduction from transitivit...
3bitr3rd 309 Deduction from transitivit...
3bitr4d 310 Deduction from transitivit...
3bitr4rd 311 Deduction from transitivit...
3bitr3g 312 More general version of ~ ...
3bitr4g 313 More general version of ~ ...
notnotb 314 Double negation. Theorem ...
con34b 315 A biconditional form of co...
con4bid 316 A contraposition deduction...
notbid 317 Deduction negating both si...
notbi 318 Contraposition. Theorem *...
notbii 319 Negate both sides of a log...
con4bii 320 A contraposition inference...
mtbi 321 An inference from a bicond...
mtbir 322 An inference from a bicond...
mtbid 323 A deduction from a bicondi...
mtbird 324 A deduction from a bicondi...
mtbii 325 An inference from a bicond...
mtbiri 326 An inference from a bicond...
sylnib 327 A mixed syllogism inferenc...
sylnibr 328 A mixed syllogism inferenc...
sylnbi 329 A mixed syllogism inferenc...
sylnbir 330 A mixed syllogism inferenc...
xchnxbi 331 Replacement of a subexpres...
xchnxbir 332 Replacement of a subexpres...
xchbinx 333 Replacement of a subexpres...
xchbinxr 334 Replacement of a subexpres...
imbi2i 335 Introduce an antecedent to...
jcndOLD 336 Obsolete version of ~ jcnd...
bibi2i 337 Inference adding a bicondi...
bibi1i 338 Inference adding a bicondi...
bibi12i 339 The equivalence of two equ...
imbi2d 340 Deduction adding an antece...
imbi1d 341 Deduction adding a consequ...
bibi2d 342 Deduction adding a bicondi...
bibi1d 343 Deduction adding a bicondi...
imbi12d 344 Deduction joining two equi...
bibi12d 345 Deduction joining two equi...
imbi12 346 Closed form of ~ imbi12i ....
imbi1 347 Theorem *4.84 of [Whitehea...
imbi2 348 Theorem *4.85 of [Whitehea...
imbi1i 349 Introduce a consequent to ...
imbi12i 350 Join two logical equivalen...
bibi1 351 Theorem *4.86 of [Whitehea...
bitr3 352 Closed nested implication ...
con2bi 353 Contraposition. Theorem *...
con2bid 354 A contraposition deduction...
con1bid 355 A contraposition deduction...
con1bii 356 A contraposition inference...
con2bii 357 A contraposition inference...
con1b 358 Contraposition. Bidirecti...
con2b 359 Contraposition. Bidirecti...
biimt 360 A wff is equivalent to its...
pm5.5 361 Theorem *5.5 of [Whitehead...
a1bi 362 Inference introducing a th...
mt2bi 363 A false consequent falsifi...
mtt 364 Modus-tollens-like theorem...
imnot 365 If a proposition is false,...
pm5.501 366 Theorem *5.501 of [Whitehe...
ibib 367 Implication in terms of im...
ibibr 368 Implication in terms of im...
tbt 369 A wff is equivalent to its...
nbn2 370 The negation of a wff is e...
bibif 371 Transfer negation via an e...
nbn 372 The negation of a wff is e...
nbn3 373 Transfer falsehood via equ...
pm5.21im 374 Two propositions are equiv...
2false 375 Two falsehoods are equival...
2falsed 376 Two falsehoods are equival...
2falsedOLD 377 Obsolete version of ~ 2fal...
pm5.21ni 378 Two propositions implying ...
pm5.21nii 379 Eliminate an antecedent im...
pm5.21ndd 380 Eliminate an antecedent im...
bija 381 Combine antecedents into a...
pm5.18 382 Theorem *5.18 of [Whitehea...
xor3 383 Two ways to express "exclu...
nbbn 384 Move negation outside of b...
biass 385 Associative law for the bi...
biluk 386 Lukasiewicz's shortest axi...
pm5.19 387 Theorem *5.19 of [Whitehea...
bi2.04 388 Logical equivalence of com...
pm5.4 389 Antecedent absorption impl...
imdi 390 Distributive law for impli...
pm5.41 391 Theorem *5.41 of [Whitehea...
pm4.8 392 Theorem *4.8 of [Whitehead...
pm4.81 393 A formula is equivalent to...
imim21b 394 Simplify an implication be...
pm4.63 397 Theorem *4.63 of [Whitehea...
pm4.67 398 Theorem *4.67 of [Whitehea...
imnan 399 Express an implication in ...
imnani 400 Infer an implication from ...
iman 401 Implication in terms of co...
pm3.24 402 Law of noncontradiction. ...
annim 403 Express a conjunction in t...
pm4.61 404 Theorem *4.61 of [Whitehea...
pm4.65 405 Theorem *4.65 of [Whitehea...
imp 406 Importation inference. (C...
impcom 407 Importation inference with...
con3dimp 408 Variant of ~ con3d with im...
mpnanrd 409 Eliminate the right side o...
impd 410 Importation deduction. (C...
impcomd 411 Importation deduction with...
ex 412 Exportation inference. (T...
expcom 413 Exportation inference with...
expdcom 414 Commuted form of ~ expd . ...
expd 415 Exportation deduction. (C...
expcomd 416 Deduction form of ~ expcom...
imp31 417 An importation inference. ...
imp32 418 An importation inference. ...
exp31 419 An exportation inference. ...
exp32 420 An exportation inference. ...
imp4b 421 An importation inference. ...
imp4a 422 An importation inference. ...
imp4c 423 An importation inference. ...
imp4d 424 An importation inference. ...
imp41 425 An importation inference. ...
imp42 426 An importation inference. ...
imp43 427 An importation inference. ...
imp44 428 An importation inference. ...
imp45 429 An importation inference. ...
exp4b 430 An exportation inference. ...
exp4a 431 An exportation inference. ...
exp4c 432 An exportation inference. ...
exp4d 433 An exportation inference. ...
exp41 434 An exportation inference. ...
exp42 435 An exportation inference. ...
exp43 436 An exportation inference. ...
exp44 437 An exportation inference. ...
exp45 438 An exportation inference. ...
imp5d 439 An importation inference. ...
imp5a 440 An importation inference. ...
imp5g 441 An importation inference. ...
imp55 442 An importation inference. ...
imp511 443 An importation inference. ...
exp5c 444 An exportation inference. ...
exp5j 445 An exportation inference. ...
exp5l 446 An exportation inference. ...
exp53 447 An exportation inference. ...
pm3.3 448 Theorem *3.3 (Exp) of [Whi...
pm3.31 449 Theorem *3.31 (Imp) of [Wh...
impexp 450 Import-export theorem. Pa...
impancom 451 Mixed importation/commutat...
expdimp 452 A deduction version of exp...
expimpd 453 Exportation followed by a ...
impr 454 Import a wff into a right ...
impl 455 Export a wff from a left c...
expr 456 Export a wff from a right ...
expl 457 Export a wff from a left c...
ancoms 458 Inference commuting conjun...
pm3.22 459 Theorem *3.22 of [Whitehea...
ancom 460 Commutative law for conjun...
ancomd 461 Commutation of conjuncts i...
biancomi 462 Commuting conjunction in a...
biancomd 463 Commuting conjunction in a...
ancomst 464 Closed form of ~ ancoms . ...
ancomsd 465 Deduction commuting conjun...
anasss 466 Associative law for conjun...
anassrs 467 Associative law for conjun...
anass 468 Associative law for conjun...
pm3.2 469 Join antecedents with conj...
pm3.2i 470 Infer conjunction of premi...
pm3.21 471 Join antecedents with conj...
pm3.43i 472 Nested conjunction of ante...
pm3.43 473 Theorem *3.43 (Comp) of [W...
dfbi2 474 A theorem similar to the s...
dfbi 475 Definition ~ df-bi rewritt...
biimpa 476 Importation inference from...
biimpar 477 Importation inference from...
biimpac 478 Importation inference from...
biimparc 479 Importation inference from...
adantr 480 Inference adding a conjunc...
adantl 481 Inference adding a conjunc...
simpl 482 Elimination of a conjunct....
simpli 483 Inference eliminating a co...
simpr 484 Elimination of a conjunct....
simpri 485 Inference eliminating a co...
intnan 486 Introduction of conjunct i...
intnanr 487 Introduction of conjunct i...
intnand 488 Introduction of conjunct i...
intnanrd 489 Introduction of conjunct i...
adantld 490 Deduction adding a conjunc...
adantrd 491 Deduction adding a conjunc...
pm3.41 492 Theorem *3.41 of [Whitehea...
pm3.42 493 Theorem *3.42 of [Whitehea...
simpld 494 Deduction eliminating a co...
simprd 495 Deduction eliminating a co...
simprbi 496 Deduction eliminating a co...
simplbi 497 Deduction eliminating a co...
simprbda 498 Deduction eliminating a co...
simplbda 499 Deduction eliminating a co...
simplbi2 500 Deduction eliminating a co...
simplbi2comt 501 Closed form of ~ simplbi2c...
simplbi2com 502 A deduction eliminating a ...
simpl2im 503 Implication from an elimin...
simplbiim 504 Implication from an elimin...
impel 505 An inference for implicati...
mpan9 506 Modus ponens conjoining di...
sylan9 507 Nested syllogism inference...
sylan9r 508 Nested syllogism inference...
sylan9bb 509 Nested syllogism inference...
sylan9bbr 510 Nested syllogism inference...
jca 511 Deduce conjunction of the ...
jcad 512 Deduction conjoining the c...
jca2 513 Inference conjoining the c...
jca31 514 Join three consequents. (...
jca32 515 Join three consequents. (...
jcai 516 Deduction replacing implic...
jcab 517 Distributive law for impli...
pm4.76 518 Theorem *4.76 of [Whitehea...
jctil 519 Inference conjoining a the...
jctir 520 Inference conjoining a the...
jccir 521 Inference conjoining a con...
jccil 522 Inference conjoining a con...
jctl 523 Inference conjoining a the...
jctr 524 Inference conjoining a the...
jctild 525 Deduction conjoining a the...
jctird 526 Deduction conjoining a the...
iba 527 Introduction of antecedent...
ibar 528 Introduction of antecedent...
biantru 529 A wff is equivalent to its...
biantrur 530 A wff is equivalent to its...
biantrud 531 A wff is equivalent to its...
biantrurd 532 A wff is equivalent to its...
bianfi 533 A wff conjoined with false...
bianfd 534 A wff conjoined with false...
baib 535 Move conjunction outside o...
baibr 536 Move conjunction outside o...
rbaibr 537 Move conjunction outside o...
rbaib 538 Move conjunction outside o...
baibd 539 Move conjunction outside o...
rbaibd 540 Move conjunction outside o...
bianabs 541 Absorb a hypothesis into t...
pm5.44 542 Theorem *5.44 of [Whitehea...
pm5.42 543 Theorem *5.42 of [Whitehea...
ancl 544 Conjoin antecedent to left...
anclb 545 Conjoin antecedent to left...
ancr 546 Conjoin antecedent to righ...
ancrb 547 Conjoin antecedent to righ...
ancli 548 Deduction conjoining antec...
ancri 549 Deduction conjoining antec...
ancld 550 Deduction conjoining antec...
ancrd 551 Deduction conjoining antec...
impac 552 Importation with conjuncti...
anc2l 553 Conjoin antecedent to left...
anc2r 554 Conjoin antecedent to righ...
anc2li 555 Deduction conjoining antec...
anc2ri 556 Deduction conjoining antec...
pm4.71 557 Implication in terms of bi...
pm4.71r 558 Implication in terms of bi...
pm4.71i 559 Inference converting an im...
pm4.71ri 560 Inference converting an im...
pm4.71d 561 Deduction converting an im...
pm4.71rd 562 Deduction converting an im...
pm4.24 563 Theorem *4.24 of [Whitehea...
anidm 564 Idempotent law for conjunc...
anidmdbi 565 Conjunction idempotence wi...
anidms 566 Inference from idempotent ...
imdistan 567 Distribution of implicatio...
imdistani 568 Distribution of implicatio...
imdistanri 569 Distribution of implicatio...
imdistand 570 Distribution of implicatio...
imdistanda 571 Distribution of implicatio...
pm5.3 572 Theorem *5.3 of [Whitehead...
pm5.32 573 Distribution of implicatio...
pm5.32i 574 Distribution of implicatio...
pm5.32ri 575 Distribution of implicatio...
pm5.32d 576 Distribution of implicatio...
pm5.32rd 577 Distribution of implicatio...
pm5.32da 578 Distribution of implicatio...
sylan 579 A syllogism inference. (C...
sylanb 580 A syllogism inference. (C...
sylanbr 581 A syllogism inference. (C...
sylanbrc 582 Syllogism inference. (Con...
syl2anc 583 Syllogism inference combin...
syl2anc2 584 Double syllogism inference...
sylancl 585 Syllogism inference combin...
sylancr 586 Syllogism inference combin...
sylancom 587 Syllogism inference with c...
sylanblc 588 Syllogism inference combin...
sylanblrc 589 Syllogism inference combin...
syldan 590 A syllogism deduction with...
sylbida 591 A syllogism deduction. (C...
sylan2 592 A syllogism inference. (C...
sylan2b 593 A syllogism inference. (C...
sylan2br 594 A syllogism inference. (C...
syl2an 595 A double syllogism inferen...
syl2anr 596 A double syllogism inferen...
syl2anb 597 A double syllogism inferen...
syl2anbr 598 A double syllogism inferen...
sylancb 599 A syllogism inference comb...
sylancbr 600 A syllogism inference comb...
syldanl 601 A syllogism deduction with...
syland 602 A syllogism deduction. (C...
sylani 603 A syllogism inference. (C...
sylan2d 604 A syllogism deduction. (C...
sylan2i 605 A syllogism inference. (C...
syl2ani 606 A syllogism inference. (C...
syl2and 607 A syllogism deduction. (C...
anim12d 608 Conjoin antecedents and co...
anim12d1 609 Variant of ~ anim12d where...
anim1d 610 Add a conjunct to right of...
anim2d 611 Add a conjunct to left of ...
anim12i 612 Conjoin antecedents and co...
anim12ci 613 Variant of ~ anim12i with ...
anim1i 614 Introduce conjunct to both...
anim1ci 615 Introduce conjunct to both...
anim2i 616 Introduce conjunct to both...
anim12ii 617 Conjoin antecedents and co...
anim12dan 618 Conjoin antecedents and co...
im2anan9 619 Deduction joining nested i...
im2anan9r 620 Deduction joining nested i...
pm3.45 621 Theorem *3.45 (Fact) of [W...
anbi2i 622 Introduce a left conjunct ...
anbi1i 623 Introduce a right conjunct...
anbi2ci 624 Variant of ~ anbi2i with c...
anbi1ci 625 Variant of ~ anbi1i with c...
anbi12i 626 Conjoin both sides of two ...
anbi12ci 627 Variant of ~ anbi12i with ...
anbi2d 628 Deduction adding a left co...
anbi1d 629 Deduction adding a right c...
anbi12d 630 Deduction joining two equi...
anbi1 631 Introduce a right conjunct...
anbi2 632 Introduce a left conjunct ...
anbi1cd 633 Introduce a proposition as...
pm4.38 634 Theorem *4.38 of [Whitehea...
bi2anan9 635 Deduction joining two equi...
bi2anan9r 636 Deduction joining two equi...
bi2bian9 637 Deduction joining two bico...
bianass 638 An inference to merge two ...
bianassc 639 An inference to merge two ...
an21 640 Swap two conjuncts. (Cont...
an12 641 Swap two conjuncts. Note ...
an32 642 A rearrangement of conjunc...
an13 643 A rearrangement of conjunc...
an31 644 A rearrangement of conjunc...
an12s 645 Swap two conjuncts in ante...
ancom2s 646 Inference commuting a nest...
an13s 647 Swap two conjuncts in ante...
an32s 648 Swap two conjuncts in ante...
ancom1s 649 Inference commuting a nest...
an31s 650 Swap two conjuncts in ante...
anass1rs 651 Commutative-associative la...
an4 652 Rearrangement of 4 conjunc...
an42 653 Rearrangement of 4 conjunc...
an43 654 Rearrangement of 4 conjunc...
an3 655 A rearrangement of conjunc...
an4s 656 Inference rearranging 4 co...
an42s 657 Inference rearranging 4 co...
anabs1 658 Absorption into embedded c...
anabs5 659 Absorption into embedded c...
anabs7 660 Absorption into embedded c...
anabsan 661 Absorption of antecedent w...
anabss1 662 Absorption of antecedent i...
anabss4 663 Absorption of antecedent i...
anabss5 664 Absorption of antecedent i...
anabsi5 665 Absorption of antecedent i...
anabsi6 666 Absorption of antecedent i...
anabsi7 667 Absorption of antecedent i...
anabsi8 668 Absorption of antecedent i...
anabss7 669 Absorption of antecedent i...
anabsan2 670 Absorption of antecedent w...
anabss3 671 Absorption of antecedent i...
anandi 672 Distribution of conjunctio...
anandir 673 Distribution of conjunctio...
anandis 674 Inference that undistribut...
anandirs 675 Inference that undistribut...
sylanl1 676 A syllogism inference. (C...
sylanl2 677 A syllogism inference. (C...
sylanr1 678 A syllogism inference. (C...
sylanr2 679 A syllogism inference. (C...
syl6an 680 A syllogism deduction comb...
syl2an2r 681 ~ syl2anr with antecedents...
syl2an2 682 ~ syl2an with antecedents ...
mpdan 683 An inference based on modu...
mpancom 684 An inference based on modu...
mpidan 685 A deduction which "stacks"...
mpan 686 An inference based on modu...
mpan2 687 An inference based on modu...
mp2an 688 An inference based on modu...
mp4an 689 An inference based on modu...
mpan2d 690 A deduction based on modus...
mpand 691 A deduction based on modus...
mpani 692 An inference based on modu...
mpan2i 693 An inference based on modu...
mp2ani 694 An inference based on modu...
mp2and 695 A deduction based on modus...
mpanl1 696 An inference based on modu...
mpanl2 697 An inference based on modu...
mpanl12 698 An inference based on modu...
mpanr1 699 An inference based on modu...
mpanr2 700 An inference based on modu...
mpanr12 701 An inference based on modu...
mpanlr1 702 An inference based on modu...
mpbirand 703 Detach truth from conjunct...
mpbiran2d 704 Detach truth from conjunct...
mpbiran 705 Detach truth from conjunct...
mpbiran2 706 Detach truth from conjunct...
mpbir2an 707 Detach a conjunction of tr...
mpbi2and 708 Detach a conjunction of tr...
mpbir2and 709 Detach a conjunction of tr...
adantll 710 Deduction adding a conjunc...
adantlr 711 Deduction adding a conjunc...
adantrl 712 Deduction adding a conjunc...
adantrr 713 Deduction adding a conjunc...
adantlll 714 Deduction adding a conjunc...
adantllr 715 Deduction adding a conjunc...
adantlrl 716 Deduction adding a conjunc...
adantlrr 717 Deduction adding a conjunc...
adantrll 718 Deduction adding a conjunc...
adantrlr 719 Deduction adding a conjunc...
adantrrl 720 Deduction adding a conjunc...
adantrrr 721 Deduction adding a conjunc...
ad2antrr 722 Deduction adding two conju...
ad2antlr 723 Deduction adding two conju...
ad2antrl 724 Deduction adding two conju...
ad2antll 725 Deduction adding conjuncts...
ad3antrrr 726 Deduction adding three con...
ad3antlr 727 Deduction adding three con...
ad4antr 728 Deduction adding 4 conjunc...
ad4antlr 729 Deduction adding 4 conjunc...
ad5antr 730 Deduction adding 5 conjunc...
ad5antlr 731 Deduction adding 5 conjunc...
ad6antr 732 Deduction adding 6 conjunc...
ad6antlr 733 Deduction adding 6 conjunc...
ad7antr 734 Deduction adding 7 conjunc...
ad7antlr 735 Deduction adding 7 conjunc...
ad8antr 736 Deduction adding 8 conjunc...
ad8antlr 737 Deduction adding 8 conjunc...
ad9antr 738 Deduction adding 9 conjunc...
ad9antlr 739 Deduction adding 9 conjunc...
ad10antr 740 Deduction adding 10 conjun...
ad10antlr 741 Deduction adding 10 conjun...
ad2ant2l 742 Deduction adding two conju...
ad2ant2r 743 Deduction adding two conju...
ad2ant2lr 744 Deduction adding two conju...
ad2ant2rl 745 Deduction adding two conju...
adantl3r 746 Deduction adding 1 conjunc...
ad4ant13 747 Deduction adding conjuncts...
ad4ant14 748 Deduction adding conjuncts...
ad4ant23 749 Deduction adding conjuncts...
ad4ant24 750 Deduction adding conjuncts...
adantl4r 751 Deduction adding 1 conjunc...
ad5ant12 752 Deduction adding conjuncts...
ad5ant13 753 Deduction adding conjuncts...
ad5ant14 754 Deduction adding conjuncts...
ad5ant15 755 Deduction adding conjuncts...
ad5ant23 756 Deduction adding conjuncts...
ad5ant24 757 Deduction adding conjuncts...
ad5ant25 758 Deduction adding conjuncts...
adantl5r 759 Deduction adding 1 conjunc...
adantl6r 760 Deduction adding 1 conjunc...
pm3.33 761 Theorem *3.33 (Syll) of [W...
pm3.34 762 Theorem *3.34 (Syll) of [W...
simpll 763 Simplification of a conjun...
simplld 764 Deduction form of ~ simpll...
simplr 765 Simplification of a conjun...
simplrd 766 Deduction eliminating a do...
simprl 767 Simplification of a conjun...
simprld 768 Deduction eliminating a do...
simprr 769 Simplification of a conjun...
simprrd 770 Deduction form of ~ simprr...
simplll 771 Simplification of a conjun...
simpllr 772 Simplification of a conjun...
simplrl 773 Simplification of a conjun...
simplrr 774 Simplification of a conjun...
simprll 775 Simplification of a conjun...
simprlr 776 Simplification of a conjun...
simprrl 777 Simplification of a conjun...
simprrr 778 Simplification of a conjun...
simp-4l 779 Simplification of a conjun...
simp-4r 780 Simplification of a conjun...
simp-5l 781 Simplification of a conjun...
simp-5r 782 Simplification of a conjun...
simp-6l 783 Simplification of a conjun...
simp-6r 784 Simplification of a conjun...
simp-7l 785 Simplification of a conjun...
simp-7r 786 Simplification of a conjun...
simp-8l 787 Simplification of a conjun...
simp-8r 788 Simplification of a conjun...
simp-9l 789 Simplification of a conjun...
simp-9r 790 Simplification of a conjun...
simp-10l 791 Simplification of a conjun...
simp-10r 792 Simplification of a conjun...
simp-11l 793 Simplification of a conjun...
simp-11r 794 Simplification of a conjun...
pm2.01da 795 Deduction based on reducti...
pm2.18da 796 Deduction based on reducti...
impbida 797 Deduce an equivalence from...
pm5.21nd 798 Eliminate an antecedent im...
pm3.35 799 Conjunctive detachment. T...
pm5.74da 800 Distribution of implicatio...
bitr 801 Theorem *4.22 of [Whitehea...
biantr 802 A transitive law of equiva...
pm4.14 803 Theorem *4.14 of [Whitehea...
pm3.37 804 Theorem *3.37 (Transp) of ...
anim12 805 Conjoin antecedents and co...
pm3.4 806 Conjunction implies implic...
exbiri 807 Inference form of ~ exbir ...
pm2.61ian 808 Elimination of an antecede...
pm2.61dan 809 Elimination of an antecede...
pm2.61ddan 810 Elimination of two anteced...
pm2.61dda 811 Elimination of two anteced...
mtand 812 A modus tollens deduction....
pm2.65da 813 Deduction for proof by con...
condan 814 Proof by contradiction. (...
biadan 815 An implication is equivale...
biadani 816 Inference associated with ...
biadaniALT 817 Alternate proof of ~ biada...
biadanii 818 Inference associated with ...
biadanid 819 Deduction associated with ...
pm5.1 820 Two propositions are equiv...
pm5.21 821 Two propositions are equiv...
pm5.35 822 Theorem *5.35 of [Whitehea...
abai 823 Introduce one conjunct as ...
pm4.45im 824 Conjunction with implicati...
impimprbi 825 An implication and its rev...
nan 826 Theorem to move a conjunct...
pm5.31 827 Theorem *5.31 of [Whitehea...
pm5.31r 828 Variant of ~ pm5.31 . (Co...
pm4.15 829 Theorem *4.15 of [Whitehea...
pm5.36 830 Theorem *5.36 of [Whitehea...
annotanannot 831 A conjunction with a negat...
pm5.33 832 Theorem *5.33 of [Whitehea...
syl12anc 833 Syllogism combined with co...
syl21anc 834 Syllogism combined with co...
syl22anc 835 Syllogism combined with co...
syl1111anc 836 Four-hypothesis eliminatio...
syldbl2 837 Stacked hypotheseis implie...
mpsyl4anc 838 An elimination deduction. ...
pm4.87 839 Theorem *4.87 of [Whitehea...
bimsc1 840 Removal of conjunct from o...
a2and 841 Deduction distributing a c...
animpimp2impd 842 Deduction deriving nested ...
pm4.64 845 Theorem *4.64 of [Whitehea...
pm4.66 846 Theorem *4.66 of [Whitehea...
pm2.53 847 Theorem *2.53 of [Whitehea...
pm2.54 848 Theorem *2.54 of [Whitehea...
imor 849 Implication in terms of di...
imori 850 Infer disjunction from imp...
imorri 851 Infer implication from dis...
pm4.62 852 Theorem *4.62 of [Whitehea...
jaoi 853 Inference disjoining the a...
jao1i 854 Add a disjunct in the ante...
jaod 855 Deduction disjoining the a...
mpjaod 856 Eliminate a disjunction in...
ori 857 Infer implication from dis...
orri 858 Infer disjunction from imp...
orrd 859 Deduce disjunction from im...
ord 860 Deduce implication from di...
orci 861 Deduction introducing a di...
olci 862 Deduction introducing a di...
orc 863 Introduction of a disjunct...
olc 864 Introduction of a disjunct...
pm1.4 865 Axiom *1.4 of [WhiteheadRu...
orcom 866 Commutative law for disjun...
orcomd 867 Commutation of disjuncts i...
orcoms 868 Commutation of disjuncts i...
orcd 869 Deduction introducing a di...
olcd 870 Deduction introducing a di...
orcs 871 Deduction eliminating disj...
olcs 872 Deduction eliminating disj...
olcnd 873 A lemma for Conjunctive No...
unitreslOLD 874 Obsolete version of ~ olcn...
orcnd 875 A lemma for Conjunctive No...
mtord 876 A modus tollens deduction ...
pm3.2ni 877 Infer negated disjunction ...
pm2.45 878 Theorem *2.45 of [Whitehea...
pm2.46 879 Theorem *2.46 of [Whitehea...
pm2.47 880 Theorem *2.47 of [Whitehea...
pm2.48 881 Theorem *2.48 of [Whitehea...
pm2.49 882 Theorem *2.49 of [Whitehea...
norbi 883 If neither of two proposit...
nbior 884 If two propositions are no...
orel1 885 Elimination of disjunction...
pm2.25 886 Theorem *2.25 of [Whitehea...
orel2 887 Elimination of disjunction...
pm2.67-2 888 Slight generalization of T...
pm2.67 889 Theorem *2.67 of [Whitehea...
curryax 890 A non-intuitionistic posit...
exmid 891 Law of excluded middle, al...
exmidd 892 Law of excluded middle in ...
pm2.1 893 Theorem *2.1 of [Whitehead...
pm2.13 894 Theorem *2.13 of [Whitehea...
pm2.621 895 Theorem *2.621 of [Whitehe...
pm2.62 896 Theorem *2.62 of [Whitehea...
pm2.68 897 Theorem *2.68 of [Whitehea...
dfor2 898 Logical 'or' expressed in ...
pm2.07 899 Theorem *2.07 of [Whitehea...
pm1.2 900 Axiom *1.2 of [WhiteheadRu...
oridm 901 Idempotent law for disjunc...
pm4.25 902 Theorem *4.25 of [Whitehea...
pm2.4 903 Theorem *2.4 of [Whitehead...
pm2.41 904 Theorem *2.41 of [Whitehea...
orim12i 905 Disjoin antecedents and co...
orim1i 906 Introduce disjunct to both...
orim2i 907 Introduce disjunct to both...
orim12dALT 908 Alternate proof of ~ orim1...
orbi2i 909 Inference adding a left di...
orbi1i 910 Inference adding a right d...
orbi12i 911 Infer the disjunction of t...
orbi2d 912 Deduction adding a left di...
orbi1d 913 Deduction adding a right d...
orbi1 914 Theorem *4.37 of [Whitehea...
orbi12d 915 Deduction joining two equi...
pm1.5 916 Axiom *1.5 (Assoc) of [Whi...
or12 917 Swap two disjuncts. (Cont...
orass 918 Associative law for disjun...
pm2.31 919 Theorem *2.31 of [Whitehea...
pm2.32 920 Theorem *2.32 of [Whitehea...
pm2.3 921 Theorem *2.3 of [Whitehead...
or32 922 A rearrangement of disjunc...
or4 923 Rearrangement of 4 disjunc...
or42 924 Rearrangement of 4 disjunc...
orordi 925 Distribution of disjunctio...
orordir 926 Distribution of disjunctio...
orimdi 927 Disjunction distributes ov...
pm2.76 928 Theorem *2.76 of [Whitehea...
pm2.85 929 Theorem *2.85 of [Whitehea...
pm2.75 930 Theorem *2.75 of [Whitehea...
pm4.78 931 Implication distributes ov...
biort 932 A disjunction with a true ...
biorf 933 A wff is equivalent to its...
biortn 934 A wff is equivalent to its...
biorfi 935 A wff is equivalent to its...
pm2.26 936 Theorem *2.26 of [Whitehea...
pm2.63 937 Theorem *2.63 of [Whitehea...
pm2.64 938 Theorem *2.64 of [Whitehea...
pm2.42 939 Theorem *2.42 of [Whitehea...
pm5.11g 940 A general instance of Theo...
pm5.11 941 Theorem *5.11 of [Whitehea...
pm5.12 942 Theorem *5.12 of [Whitehea...
pm5.14 943 Theorem *5.14 of [Whitehea...
pm5.13 944 Theorem *5.13 of [Whitehea...
pm5.55 945 Theorem *5.55 of [Whitehea...
pm4.72 946 Implication in terms of bi...
imimorb 947 Simplify an implication be...
oibabs 948 Absorption of disjunction ...
orbidi 949 Disjunction distributes ov...
pm5.7 950 Disjunction distributes ov...
jaao 951 Inference conjoining and d...
jaoa 952 Inference disjoining and c...
jaoian 953 Inference disjoining the a...
jaodan 954 Deduction disjoining the a...
mpjaodan 955 Eliminate a disjunction in...
pm3.44 956 Theorem *3.44 of [Whitehea...
jao 957 Disjunction of antecedents...
jaob 958 Disjunction of antecedents...
pm4.77 959 Theorem *4.77 of [Whitehea...
pm3.48 960 Theorem *3.48 of [Whitehea...
orim12d 961 Disjoin antecedents and co...
orim1d 962 Disjoin antecedents and co...
orim2d 963 Disjoin antecedents and co...
orim2 964 Axiom *1.6 (Sum) of [White...
pm2.38 965 Theorem *2.38 of [Whitehea...
pm2.36 966 Theorem *2.36 of [Whitehea...
pm2.37 967 Theorem *2.37 of [Whitehea...
pm2.81 968 Theorem *2.81 of [Whitehea...
pm2.8 969 Theorem *2.8 of [Whitehead...
pm2.73 970 Theorem *2.73 of [Whitehea...
pm2.74 971 Theorem *2.74 of [Whitehea...
pm2.82 972 Theorem *2.82 of [Whitehea...
pm4.39 973 Theorem *4.39 of [Whitehea...
animorl 974 Conjunction implies disjun...
animorr 975 Conjunction implies disjun...
animorlr 976 Conjunction implies disjun...
animorrl 977 Conjunction implies disjun...
ianor 978 Negated conjunction in ter...
anor 979 Conjunction in terms of di...
ioran 980 Negated disjunction in ter...
pm4.52 981 Theorem *4.52 of [Whitehea...
pm4.53 982 Theorem *4.53 of [Whitehea...
pm4.54 983 Theorem *4.54 of [Whitehea...
pm4.55 984 Theorem *4.55 of [Whitehea...
pm4.56 985 Theorem *4.56 of [Whitehea...
oran 986 Disjunction in terms of co...
pm4.57 987 Theorem *4.57 of [Whitehea...
pm3.1 988 Theorem *3.1 of [Whitehead...
pm3.11 989 Theorem *3.11 of [Whitehea...
pm3.12 990 Theorem *3.12 of [Whitehea...
pm3.13 991 Theorem *3.13 of [Whitehea...
pm3.14 992 Theorem *3.14 of [Whitehea...
pm4.44 993 Theorem *4.44 of [Whitehea...
pm4.45 994 Theorem *4.45 of [Whitehea...
orabs 995 Absorption of redundant in...
oranabs 996 Absorb a disjunct into a c...
pm5.61 997 Theorem *5.61 of [Whitehea...
pm5.6 998 Conjunction in antecedent ...
orcanai 999 Change disjunction in cons...
pm4.79 1000 Theorem *4.79 of [Whitehea...
pm5.53 1001 Theorem *5.53 of [Whitehea...
ordi 1002 Distributive law for disju...
ordir 1003 Distributive law for disju...
andi 1004 Distributive law for conju...
andir 1005 Distributive law for conju...
orddi 1006 Double distributive law fo...
anddi 1007 Double distributive law fo...
pm5.17 1008 Theorem *5.17 of [Whitehea...
pm5.15 1009 Theorem *5.15 of [Whitehea...
pm5.16 1010 Theorem *5.16 of [Whitehea...
xor 1011 Two ways to express exclus...
nbi2 1012 Two ways to express "exclu...
xordi 1013 Conjunction distributes ov...
pm5.54 1014 Theorem *5.54 of [Whitehea...
pm5.62 1015 Theorem *5.62 of [Whitehea...
pm5.63 1016 Theorem *5.63 of [Whitehea...
niabn 1017 Miscellaneous inference re...
ninba 1018 Miscellaneous inference re...
pm4.43 1019 Theorem *4.43 of [Whitehea...
pm4.82 1020 Theorem *4.82 of [Whitehea...
pm4.83 1021 Theorem *4.83 of [Whitehea...
pclem6 1022 Negation inferred from emb...
bigolden 1023 Dijkstra-Scholten's Golden...
pm5.71 1024 Theorem *5.71 of [Whitehea...
pm5.75 1025 Theorem *5.75 of [Whitehea...
ecase2d 1026 Deduction for elimination ...
ecase2dOLD 1027 Obsolete version of ~ ecas...
ecase3 1028 Inference for elimination ...
ecase 1029 Inference for elimination ...
ecase3d 1030 Deduction for elimination ...
ecased 1031 Deduction for elimination ...
ecase3ad 1032 Deduction for elimination ...
ecase3adOLD 1033 Obsolete version of ~ ecas...
ccase 1034 Inference for combining ca...
ccased 1035 Deduction for combining ca...
ccase2 1036 Inference for combining ca...
4cases 1037 Inference eliminating two ...
4casesdan 1038 Deduction eliminating two ...
cases 1039 Case disjunction according...
dedlem0a 1040 Lemma for an alternate ver...
dedlem0b 1041 Lemma for an alternate ver...
dedlema 1042 Lemma for weak deduction t...
dedlemb 1043 Lemma for weak deduction t...
cases2 1044 Case disjunction according...
cases2ALT 1045 Alternate proof of ~ cases...
dfbi3 1046 An alternate definition of...
pm5.24 1047 Theorem *5.24 of [Whitehea...
4exmid 1048 The disjunction of the fou...
consensus 1049 The consensus theorem. Th...
pm4.42 1050 Theorem *4.42 of [Whitehea...
prlem1 1051 A specialized lemma for se...
prlem2 1052 A specialized lemma for se...
oplem1 1053 A specialized lemma for se...
dn1 1054 A single axiom for Boolean...
bianir 1055 A closed form of ~ mpbir ,...
jaoi2 1056 Inference removing a negat...
jaoi3 1057 Inference separating a dis...
ornld 1058 Selecting one statement fr...
dfifp2 1061 Alternate definition of th...
dfifp3 1062 Alternate definition of th...
dfifp4 1063 Alternate definition of th...
dfifp5 1064 Alternate definition of th...
dfifp6 1065 Alternate definition of th...
dfifp7 1066 Alternate definition of th...
ifpdfbi 1067 Define the biconditional a...
anifp 1068 The conditional operator i...
ifpor 1069 The conditional operator i...
ifpn 1070 Conditional operator for t...
ifpnOLD 1071 Obsolete version of ~ ifpn...
ifptru 1072 Value of the conditional o...
ifpfal 1073 Value of the conditional o...
ifpid 1074 Value of the conditional o...
casesifp 1075 Version of ~ cases express...
ifpbi123d 1076 Equivalence deduction for ...
ifpbi123dOLD 1077 Obsolete version of ~ ifpb...
ifpbi23d 1078 Equivalence deduction for ...
ifpimpda 1079 Separation of the values o...
1fpid3 1080 The value of the condition...
elimh 1081 Hypothesis builder for the...
dedt 1082 The weak deduction theorem...
con3ALT 1083 Proof of ~ con3 from its a...
3orass 1088 Associative law for triple...
3orel1 1089 Partial elimination of a t...
3orrot 1090 Rotation law for triple di...
3orcoma 1091 Commutation law for triple...
3orcomb 1092 Commutation law for triple...
3anass 1093 Associative law for triple...
3anan12 1094 Convert triple conjunction...
3anan32 1095 Convert triple conjunction...
3ancoma 1096 Commutation law for triple...
3ancomb 1097 Commutation law for triple...
3anrot 1098 Rotation law for triple co...
3anrev 1099 Reversal law for triple co...
anandi3 1100 Distribution of triple con...
anandi3r 1101 Distribution of triple con...
3anidm 1102 Idempotent law for conjunc...
3an4anass 1103 Associative law for four c...
3ioran 1104 Negated triple disjunction...
3ianor 1105 Negated triple conjunction...
3anor 1106 Triple conjunction express...
3oran 1107 Triple disjunction in term...
3impa 1108 Importation from double to...
3imp 1109 Importation inference. (C...
3imp31 1110 The importation inference ...
3imp231 1111 Importation inference. (C...
3imp21 1112 The importation inference ...
3impb 1113 Importation from double to...
3impib 1114 Importation to triple conj...
3impia 1115 Importation to triple conj...
3expa 1116 Exportation from triple to...
3exp 1117 Exportation inference. (C...
3expb 1118 Exportation from triple to...
3expia 1119 Exportation from triple co...
3expib 1120 Exportation from triple co...
3com12 1121 Commutation in antecedent....
3com13 1122 Commutation in antecedent....
3comr 1123 Commutation in antecedent....
3com23 1124 Commutation in antecedent....
3coml 1125 Commutation in antecedent....
3jca 1126 Join consequents with conj...
3jcad 1127 Deduction conjoining the c...
3adant1 1128 Deduction adding a conjunc...
3adant2 1129 Deduction adding a conjunc...
3adant3 1130 Deduction adding a conjunc...
3ad2ant1 1131 Deduction adding conjuncts...
3ad2ant2 1132 Deduction adding conjuncts...
3ad2ant3 1133 Deduction adding conjuncts...
simp1 1134 Simplification of triple c...
simp2 1135 Simplification of triple c...
simp3 1136 Simplification of triple c...
simp1i 1137 Infer a conjunct from a tr...
simp2i 1138 Infer a conjunct from a tr...
simp3i 1139 Infer a conjunct from a tr...
simp1d 1140 Deduce a conjunct from a t...
simp2d 1141 Deduce a conjunct from a t...
simp3d 1142 Deduce a conjunct from a t...
simp1bi 1143 Deduce a conjunct from a t...
simp2bi 1144 Deduce a conjunct from a t...
simp3bi 1145 Deduce a conjunct from a t...
3simpa 1146 Simplification of triple c...
3simpb 1147 Simplification of triple c...
3simpc 1148 Simplification of triple c...
3anim123i 1149 Join antecedents and conse...
3anim1i 1150 Add two conjuncts to antec...
3anim2i 1151 Add two conjuncts to antec...
3anim3i 1152 Add two conjuncts to antec...
3anbi123i 1153 Join 3 biconditionals with...
3orbi123i 1154 Join 3 biconditionals with...
3anbi1i 1155 Inference adding two conju...
3anbi2i 1156 Inference adding two conju...
3anbi3i 1157 Inference adding two conju...
syl3an 1158 A triple syllogism inferen...
syl3anb 1159 A triple syllogism inferen...
syl3anbr 1160 A triple syllogism inferen...
syl3an1 1161 A syllogism inference. (C...
syl3an2 1162 A syllogism inference. (C...
syl3an3 1163 A syllogism inference. (C...
3adantl1 1164 Deduction adding a conjunc...
3adantl2 1165 Deduction adding a conjunc...
3adantl3 1166 Deduction adding a conjunc...
3adantr1 1167 Deduction adding a conjunc...
3adantr2 1168 Deduction adding a conjunc...
3adantr3 1169 Deduction adding a conjunc...
ad4ant123 1170 Deduction adding conjuncts...
ad4ant124 1171 Deduction adding conjuncts...
ad4ant134 1172 Deduction adding conjuncts...
ad4ant234 1173 Deduction adding conjuncts...
3adant1l 1174 Deduction adding a conjunc...
3adant1r 1175 Deduction adding a conjunc...
3adant2l 1176 Deduction adding a conjunc...
3adant2r 1177 Deduction adding a conjunc...
3adant3l 1178 Deduction adding a conjunc...
3adant3r 1179 Deduction adding a conjunc...
3adant3r1 1180 Deduction adding a conjunc...
3adant3r2 1181 Deduction adding a conjunc...
3adant3r3 1182 Deduction adding a conjunc...
3ad2antl1 1183 Deduction adding conjuncts...
3ad2antl2 1184 Deduction adding conjuncts...
3ad2antl3 1185 Deduction adding conjuncts...
3ad2antr1 1186 Deduction adding conjuncts...
3ad2antr2 1187 Deduction adding conjuncts...
3ad2antr3 1188 Deduction adding conjuncts...
simpl1 1189 Simplification of conjunct...
simpl2 1190 Simplification of conjunct...
simpl3 1191 Simplification of conjunct...
simpr1 1192 Simplification of conjunct...
simpr2 1193 Simplification of conjunct...
simpr3 1194 Simplification of conjunct...
simp1l 1195 Simplification of triple c...
simp1r 1196 Simplification of triple c...
simp2l 1197 Simplification of triple c...
simp2r 1198 Simplification of triple c...
simp3l 1199 Simplification of triple c...
simp3r 1200 Simplification of triple c...
simp11 1201 Simplification of doubly t...
simp12 1202 Simplification of doubly t...
simp13 1203 Simplification of doubly t...
simp21 1204 Simplification of doubly t...
simp22 1205 Simplification of doubly t...
simp23 1206 Simplification of doubly t...
simp31 1207 Simplification of doubly t...
simp32 1208 Simplification of doubly t...
simp33 1209 Simplification of doubly t...
simpll1 1210 Simplification of conjunct...
simpll2 1211 Simplification of conjunct...
simpll3 1212 Simplification of conjunct...
simplr1 1213 Simplification of conjunct...
simplr2 1214 Simplification of conjunct...
simplr3 1215 Simplification of conjunct...
simprl1 1216 Simplification of conjunct...
simprl2 1217 Simplification of conjunct...
simprl3 1218 Simplification of conjunct...
simprr1 1219 Simplification of conjunct...
simprr2 1220 Simplification of conjunct...
simprr3 1221 Simplification of conjunct...
simpl1l 1222 Simplification of conjunct...
simpl1r 1223 Simplification of conjunct...
simpl2l 1224 Simplification of conjunct...
simpl2r 1225 Simplification of conjunct...
simpl3l 1226 Simplification of conjunct...
simpl3r 1227 Simplification of conjunct...
simpr1l 1228 Simplification of conjunct...
simpr1r 1229 Simplification of conjunct...
simpr2l 1230 Simplification of conjunct...
simpr2r 1231 Simplification of conjunct...
simpr3l 1232 Simplification of conjunct...
simpr3r 1233 Simplification of conjunct...
simp1ll 1234 Simplification of conjunct...
simp1lr 1235 Simplification of conjunct...
simp1rl 1236 Simplification of conjunct...
simp1rr 1237 Simplification of conjunct...
simp2ll 1238 Simplification of conjunct...
simp2lr 1239 Simplification of conjunct...
simp2rl 1240 Simplification of conjunct...
simp2rr 1241 Simplification of conjunct...
simp3ll 1242 Simplification of conjunct...
simp3lr 1243 Simplification of conjunct...
simp3rl 1244 Simplification of conjunct...
simp3rr 1245 Simplification of conjunct...
simpl11 1246 Simplification of conjunct...
simpl12 1247 Simplification of conjunct...
simpl13 1248 Simplification of conjunct...
simpl21 1249 Simplification of conjunct...
simpl22 1250 Simplification of conjunct...
simpl23 1251 Simplification of conjunct...
simpl31 1252 Simplification of conjunct...
simpl32 1253 Simplification of conjunct...
simpl33 1254 Simplification of conjunct...
simpr11 1255 Simplification of conjunct...
simpr12 1256 Simplification of conjunct...
simpr13 1257 Simplification of conjunct...
simpr21 1258 Simplification of conjunct...
simpr22 1259 Simplification of conjunct...
simpr23 1260 Simplification of conjunct...
simpr31 1261 Simplification of conjunct...
simpr32 1262 Simplification of conjunct...
simpr33 1263 Simplification of conjunct...
simp1l1 1264 Simplification of conjunct...
simp1l2 1265 Simplification of conjunct...
simp1l3 1266 Simplification of conjunct...
simp1r1 1267 Simplification of conjunct...
simp1r2 1268 Simplification of conjunct...
simp1r3 1269 Simplification of conjunct...
simp2l1 1270 Simplification of conjunct...
simp2l2 1271 Simplification of conjunct...
simp2l3 1272 Simplification of conjunct...
simp2r1 1273 Simplification of conjunct...
simp2r2 1274 Simplification of conjunct...
simp2r3 1275 Simplification of conjunct...
simp3l1 1276 Simplification of conjunct...
simp3l2 1277 Simplification of conjunct...
simp3l3 1278 Simplification of conjunct...
simp3r1 1279 Simplification of conjunct...
simp3r2 1280 Simplification of conjunct...
simp3r3 1281 Simplification of conjunct...
simp11l 1282 Simplification of conjunct...
simp11r 1283 Simplification of conjunct...
simp12l 1284 Simplification of conjunct...
simp12r 1285 Simplification of conjunct...
simp13l 1286 Simplification of conjunct...
simp13r 1287 Simplification of conjunct...
simp21l 1288 Simplification of conjunct...
simp21r 1289 Simplification of conjunct...
simp22l 1290 Simplification of conjunct...
simp22r 1291 Simplification of conjunct...
simp23l 1292 Simplification of conjunct...
simp23r 1293 Simplification of conjunct...
simp31l 1294 Simplification of conjunct...
simp31r 1295 Simplification of conjunct...
simp32l 1296 Simplification of conjunct...
simp32r 1297 Simplification of conjunct...
simp33l 1298 Simplification of conjunct...
simp33r 1299 Simplification of conjunct...
simp111 1300 Simplification of conjunct...
simp112 1301 Simplification of conjunct...
simp113 1302 Simplification of conjunct...
simp121 1303 Simplification of conjunct...
simp122 1304 Simplification of conjunct...
simp123 1305 Simplification of conjunct...
simp131 1306 Simplification of conjunct...
simp132 1307 Simplification of conjunct...
simp133 1308 Simplification of conjunct...
simp211 1309 Simplification of conjunct...
simp212 1310 Simplification of conjunct...
simp213 1311 Simplification of conjunct...
simp221 1312 Simplification of conjunct...
simp222 1313 Simplification of conjunct...
simp223 1314 Simplification of conjunct...
simp231 1315 Simplification of conjunct...
simp232 1316 Simplification of conjunct...
simp233 1317 Simplification of conjunct...
simp311 1318 Simplification of conjunct...
simp312 1319 Simplification of conjunct...
simp313 1320 Simplification of conjunct...
simp321 1321 Simplification of conjunct...
simp322 1322 Simplification of conjunct...
simp323 1323 Simplification of conjunct...
simp331 1324 Simplification of conjunct...
simp332 1325 Simplification of conjunct...
simp333 1326 Simplification of conjunct...
3anibar 1327 Remove a hypothesis from t...
3mix1 1328 Introduction in triple dis...
3mix2 1329 Introduction in triple dis...
3mix3 1330 Introduction in triple dis...
3mix1i 1331 Introduction in triple dis...
3mix2i 1332 Introduction in triple dis...
3mix3i 1333 Introduction in triple dis...
3mix1d 1334 Deduction introducing trip...
3mix2d 1335 Deduction introducing trip...
3mix3d 1336 Deduction introducing trip...
3pm3.2i 1337 Infer conjunction of premi...
pm3.2an3 1338 Version of ~ pm3.2 for a t...
mpbir3an 1339 Detach a conjunction of tr...
mpbir3and 1340 Detach a conjunction of tr...
syl3anbrc 1341 Syllogism inference. (Con...
syl21anbrc 1342 Syllogism inference. (Con...
3imp3i2an 1343 An elimination deduction. ...
ex3 1344 Apply ~ ex to a hypothesis...
3imp1 1345 Importation to left triple...
3impd 1346 Importation deduction for ...
3imp2 1347 Importation to right tripl...
3impdi 1348 Importation inference (und...
3impdir 1349 Importation inference (und...
3exp1 1350 Exportation from left trip...
3expd 1351 Exportation deduction for ...
3exp2 1352 Exportation from right tri...
exp5o 1353 A triple exportation infer...
exp516 1354 A triple exportation infer...
exp520 1355 A triple exportation infer...
3impexp 1356 Version of ~ impexp for a ...
3an1rs 1357 Swap conjuncts. (Contribu...
3anassrs 1358 Associative law for conjun...
ad5ant245 1359 Deduction adding conjuncts...
ad5ant234 1360 Deduction adding conjuncts...
ad5ant235 1361 Deduction adding conjuncts...
ad5ant123 1362 Deduction adding conjuncts...
ad5ant124 1363 Deduction adding conjuncts...
ad5ant125 1364 Deduction adding conjuncts...
ad5ant134 1365 Deduction adding conjuncts...
ad5ant135 1366 Deduction adding conjuncts...
ad5ant145 1367 Deduction adding conjuncts...
ad5ant2345 1368 Deduction adding conjuncts...
syl3anc 1369 Syllogism combined with co...
syl13anc 1370 Syllogism combined with co...
syl31anc 1371 Syllogism combined with co...
syl112anc 1372 Syllogism combined with co...
syl121anc 1373 Syllogism combined with co...
syl211anc 1374 Syllogism combined with co...
syl23anc 1375 Syllogism combined with co...
syl32anc 1376 Syllogism combined with co...
syl122anc 1377 Syllogism combined with co...
syl212anc 1378 Syllogism combined with co...
syl221anc 1379 Syllogism combined with co...
syl113anc 1380 Syllogism combined with co...
syl131anc 1381 Syllogism combined with co...
syl311anc 1382 Syllogism combined with co...
syl33anc 1383 Syllogism combined with co...
syl222anc 1384 Syllogism combined with co...
syl123anc 1385 Syllogism combined with co...
syl132anc 1386 Syllogism combined with co...
syl213anc 1387 Syllogism combined with co...
syl231anc 1388 Syllogism combined with co...
syl312anc 1389 Syllogism combined with co...
syl321anc 1390 Syllogism combined with co...
syl133anc 1391 Syllogism combined with co...
syl313anc 1392 Syllogism combined with co...
syl331anc 1393 Syllogism combined with co...
syl223anc 1394 Syllogism combined with co...
syl232anc 1395 Syllogism combined with co...
syl322anc 1396 Syllogism combined with co...
syl233anc 1397 Syllogism combined with co...
syl323anc 1398 Syllogism combined with co...
syl332anc 1399 Syllogism combined with co...
syl333anc 1400 A syllogism inference comb...
syl3an1b 1401 A syllogism inference. (C...
syl3an2b 1402 A syllogism inference. (C...
syl3an3b 1403 A syllogism inference. (C...
syl3an1br 1404 A syllogism inference. (C...
syl3an2br 1405 A syllogism inference. (C...
syl3an3br 1406 A syllogism inference. (C...
syld3an3 1407 A syllogism inference. (C...
syld3an1 1408 A syllogism inference. (C...
syld3an2 1409 A syllogism inference. (C...
syl3anl1 1410 A syllogism inference. (C...
syl3anl2 1411 A syllogism inference. (C...
syl3anl3 1412 A syllogism inference. (C...
syl3anl 1413 A triple syllogism inferen...
syl3anr1 1414 A syllogism inference. (C...
syl3anr2 1415 A syllogism inference. (C...
syl3anr3 1416 A syllogism inference. (C...
3anidm12 1417 Inference from idempotent ...
3anidm13 1418 Inference from idempotent ...
3anidm23 1419 Inference from idempotent ...
syl2an3an 1420 ~ syl3an with antecedents ...
syl2an23an 1421 Deduction related to ~ syl...
3ori 1422 Infer implication from tri...
3jao 1423 Disjunction of three antec...
3jaob 1424 Disjunction of three antec...
3jaoi 1425 Disjunction of three antec...
3jaod 1426 Disjunction of three antec...
3jaoian 1427 Disjunction of three antec...
3jaodan 1428 Disjunction of three antec...
mpjao3dan 1429 Eliminate a three-way disj...
mpjao3danOLD 1430 Obsolete version of ~ mpja...
3jaao 1431 Inference conjoining and d...
syl3an9b 1432 Nested syllogism inference...
3orbi123d 1433 Deduction joining 3 equiva...
3anbi123d 1434 Deduction joining 3 equiva...
3anbi12d 1435 Deduction conjoining and a...
3anbi13d 1436 Deduction conjoining and a...
3anbi23d 1437 Deduction conjoining and a...
3anbi1d 1438 Deduction adding conjuncts...
3anbi2d 1439 Deduction adding conjuncts...
3anbi3d 1440 Deduction adding conjuncts...
3anim123d 1441 Deduction joining 3 implic...
3orim123d 1442 Deduction joining 3 implic...
an6 1443 Rearrangement of 6 conjunc...
3an6 1444 Analogue of ~ an4 for trip...
3or6 1445 Analogue of ~ or4 for trip...
mp3an1 1446 An inference based on modu...
mp3an2 1447 An inference based on modu...
mp3an3 1448 An inference based on modu...
mp3an12 1449 An inference based on modu...
mp3an13 1450 An inference based on modu...
mp3an23 1451 An inference based on modu...
mp3an1i 1452 An inference based on modu...
mp3anl1 1453 An inference based on modu...
mp3anl2 1454 An inference based on modu...
mp3anl3 1455 An inference based on modu...
mp3anr1 1456 An inference based on modu...
mp3anr2 1457 An inference based on modu...
mp3anr3 1458 An inference based on modu...
mp3an 1459 An inference based on modu...
mpd3an3 1460 An inference based on modu...
mpd3an23 1461 An inference based on modu...
mp3and 1462 A deduction based on modus...
mp3an12i 1463 ~ mp3an with antecedents i...
mp3an2i 1464 ~ mp3an with antecedents i...
mp3an3an 1465 ~ mp3an with antecedents i...
mp3an2ani 1466 An elimination deduction. ...
biimp3a 1467 Infer implication from a l...
biimp3ar 1468 Infer implication from a l...
3anandis 1469 Inference that undistribut...
3anandirs 1470 Inference that undistribut...
ecase23d 1471 Deduction for elimination ...
3ecase 1472 Inference for elimination ...
3bior1fd 1473 A disjunction is equivalen...
3bior1fand 1474 A disjunction is equivalen...
3bior2fd 1475 A wff is equivalent to its...
3biant1d 1476 A conjunction is equivalen...
intn3an1d 1477 Introduction of a triple c...
intn3an2d 1478 Introduction of a triple c...
intn3an3d 1479 Introduction of a triple c...
an3andi 1480 Distribution of conjunctio...
an33rean 1481 Rearrange a 9-fold conjunc...
an33reanOLD 1482 Obsolete version of ~ an33...
nanan 1485 Conjunction in terms of al...
dfnan2 1486 Alternative denial in term...
nanor 1487 Alternative denial in term...
nancom 1488 Alternative denial is comm...
nannan 1489 Nested alternative denials...
nanim 1490 Implication in terms of al...
nannot 1491 Negation in terms of alter...
nanbi 1492 Biconditional in terms of ...
nanbi1 1493 Introduce a right anti-con...
nanbi2 1494 Introduce a left anti-conj...
nanbi12 1495 Join two logical equivalen...
nanbi1i 1496 Introduce a right anti-con...
nanbi2i 1497 Introduce a left anti-conj...
nanbi12i 1498 Join two logical equivalen...
nanbi1d 1499 Introduce a right anti-con...
nanbi2d 1500 Introduce a left anti-conj...
nanbi12d 1501 Join two logical equivalen...
nanass 1502 A characterization of when...
xnor 1505 Two ways to write XNOR (ex...
xorcom 1506 The connector ` \/_ ` is c...
xorcomOLD 1507 Obsolete version of ~ xorc...
xorass 1508 The connector ` \/_ ` is a...
excxor 1509 This tautology shows that ...
xor2 1510 Two ways to express "exclu...
xoror 1511 Exclusive disjunction impl...
xornan 1512 Exclusive disjunction impl...
xornan2 1513 XOR implies NAND (written ...
xorneg2 1514 The connector ` \/_ ` is n...
xorneg1 1515 The connector ` \/_ ` is n...
xorneg 1516 The connector ` \/_ ` is u...
xorbi12i 1517 Equality property for excl...
xorbi12iOLD 1518 Obsolete version of ~ xorb...
xorbi12d 1519 Equality property for excl...
anxordi 1520 Conjunction distributes ov...
xorexmid 1521 Exclusive-or variant of th...
norcom 1524 The connector ` -\/ ` is c...
norcomOLD 1525 Obsolete version of ~ norc...
nornot 1526 ` -. ` is expressible via ...
nornotOLD 1527 Obsolete version of ~ norn...
noran 1528 ` /\ ` is expressible via ...
noranOLD 1529 Obsolete version of ~ nora...
noror 1530 ` \/ ` is expressible via ...
nororOLD 1531 Obsolete version of ~ noro...
norasslem1 1532 This lemma shows the equiv...
norasslem2 1533 This lemma specializes ~ b...
norasslem3 1534 This lemma specializes ~ b...
norass 1535 A characterization of when...
norassOLD 1536 Obsolete version of ~ nora...
trujust 1541 Soundness justification th...
tru 1543 The truth value ` T. ` is ...
dftru2 1544 An alternate definition of...
trut 1545 A proposition is equivalen...
mptru 1546 Eliminate ` T. ` as an ant...
tbtru 1547 A proposition is equivalen...
bitru 1548 A theorem is equivalent to...
trud 1549 Anything implies ` T. ` . ...
truan 1550 True can be removed from a...
fal 1553 The truth value ` F. ` is ...
nbfal 1554 The negation of a proposit...
bifal 1555 A contradiction is equival...
falim 1556 The truth value ` F. ` imp...
falimd 1557 The truth value ` F. ` imp...
dfnot 1558 Given falsum ` F. ` , we c...
inegd 1559 Negation introduction rule...
efald 1560 Deduction based on reducti...
pm2.21fal 1561 If a wff and its negation ...
truimtru 1562 A ` -> ` identity. (Contr...
truimfal 1563 A ` -> ` identity. (Contr...
falimtru 1564 A ` -> ` identity. (Contr...
falimfal 1565 A ` -> ` identity. (Contr...
nottru 1566 A ` -. ` identity. (Contr...
notfal 1567 A ` -. ` identity. (Contr...
trubitru 1568 A ` <-> ` identity. (Cont...
falbitru 1569 A ` <-> ` identity. (Cont...
trubifal 1570 A ` <-> ` identity. (Cont...
falbifal 1571 A ` <-> ` identity. (Cont...
truantru 1572 A ` /\ ` identity. (Contr...
truanfal 1573 A ` /\ ` identity. (Contr...
falantru 1574 A ` /\ ` identity. (Contr...
falanfal 1575 A ` /\ ` identity. (Contr...
truortru 1576 A ` \/ ` identity. (Contr...
truorfal 1577 A ` \/ ` identity. (Contr...
falortru 1578 A ` \/ ` identity. (Contr...
falorfal 1579 A ` \/ ` identity. (Contr...
trunantru 1580 A ` -/\ ` identity. (Cont...
trunanfal 1581 A ` -/\ ` identity. (Cont...
falnantru 1582 A ` -/\ ` identity. (Cont...
falnanfal 1583 A ` -/\ ` identity. (Cont...
truxortru 1584 A ` \/_ ` identity. (Cont...
truxorfal 1585 A ` \/_ ` identity. (Cont...
falxortru 1586 A ` \/_ ` identity. (Cont...
falxorfal 1587 A ` \/_ ` identity. (Cont...
trunortru 1588 A ` -\/ ` identity. (Cont...
trunortruOLD 1589 Obsolete version of ~ trun...
trunorfal 1590 A ` -\/ ` identity. (Cont...
trunorfalOLD 1591 Obsolete version of ~ trun...
falnortru 1592 A ` -\/ ` identity. (Cont...
falnorfal 1593 A ` -\/ ` identity. (Cont...
falnorfalOLD 1594 Obsolete version of ~ faln...
hadbi123d 1597 Equality theorem for the a...
hadbi123i 1598 Equality theorem for the a...
hadass 1599 Associative law for the ad...
hadbi 1600 The adder sum is the same ...
hadcoma 1601 Commutative law for the ad...
hadcomaOLD 1602 Obsolete version of ~ hadc...
hadcomb 1603 Commutative law for the ad...
hadrot 1604 Rotation law for the adder...
hadnot 1605 The adder sum distributes ...
had1 1606 If the first input is true...
had0 1607 If the first input is fals...
hadifp 1608 The value of the adder sum...
cador 1611 The adder carry in disjunc...
cadan 1612 The adder carry in conjunc...
cadbi123d 1613 Equality theorem for the a...
cadbi123i 1614 Equality theorem for the a...
cadcoma 1615 Commutative law for the ad...
cadcomb 1616 Commutative law for the ad...
cadrot 1617 Rotation law for the adder...
cadnot 1618 The adder carry distribute...
cad11 1619 If (at least) two inputs a...
cad1 1620 If one input is true, then...
cad0 1621 If one input is false, the...
cad0OLD 1622 Obsolete version of ~ cad0...
cadifp 1623 The value of the carry is,...
cadtru 1624 The adder carry is true as...
minimp 1625 A single axiom for minimal...
minimp-syllsimp 1626 Derivation of Syll-Simp ( ...
minimp-ax1 1627 Derivation of ~ ax-1 from ...
minimp-ax2c 1628 Derivation of a commuted f...
minimp-ax2 1629 Derivation of ~ ax-2 from ...
minimp-pm2.43 1630 Derivation of ~ pm2.43 (al...
impsingle 1631 The shortest single axiom ...
impsingle-step4 1632 Derivation of impsingle-st...
impsingle-step8 1633 Derivation of impsingle-st...
impsingle-ax1 1634 Derivation of impsingle-ax...
impsingle-step15 1635 Derivation of impsingle-st...
impsingle-step18 1636 Derivation of impsingle-st...
impsingle-step19 1637 Derivation of impsingle-st...
impsingle-step20 1638 Derivation of impsingle-st...
impsingle-step21 1639 Derivation of impsingle-st...
impsingle-step22 1640 Derivation of impsingle-st...
impsingle-step25 1641 Derivation of impsingle-st...
impsingle-imim1 1642 Derivation of impsingle-im...
impsingle-peirce 1643 Derivation of impsingle-pe...
tarski-bernays-ax2 1644 Derivation of ~ ax-2 from ...
meredith 1645 Carew Meredith's sole axio...
merlem1 1646 Step 3 of Meredith's proof...
merlem2 1647 Step 4 of Meredith's proof...
merlem3 1648 Step 7 of Meredith's proof...
merlem4 1649 Step 8 of Meredith's proof...
merlem5 1650 Step 11 of Meredith's proo...
merlem6 1651 Step 12 of Meredith's proo...
merlem7 1652 Between steps 14 and 15 of...
merlem8 1653 Step 15 of Meredith's proo...
merlem9 1654 Step 18 of Meredith's proo...
merlem10 1655 Step 19 of Meredith's proo...
merlem11 1656 Step 20 of Meredith's proo...
merlem12 1657 Step 28 of Meredith's proo...
merlem13 1658 Step 35 of Meredith's proo...
luk-1 1659 1 of 3 axioms for proposit...
luk-2 1660 2 of 3 axioms for proposit...
luk-3 1661 3 of 3 axioms for proposit...
luklem1 1662 Used to rederive standard ...
luklem2 1663 Used to rederive standard ...
luklem3 1664 Used to rederive standard ...
luklem4 1665 Used to rederive standard ...
luklem5 1666 Used to rederive standard ...
luklem6 1667 Used to rederive standard ...
luklem7 1668 Used to rederive standard ...
luklem8 1669 Used to rederive standard ...
ax1 1670 Standard propositional axi...
ax2 1671 Standard propositional axi...
ax3 1672 Standard propositional axi...
nic-dfim 1673 This theorem "defines" imp...
nic-dfneg 1674 This theorem "defines" neg...
nic-mp 1675 Derive Nicod's rule of mod...
nic-mpALT 1676 A direct proof of ~ nic-mp...
nic-ax 1677 Nicod's axiom derived from...
nic-axALT 1678 A direct proof of ~ nic-ax...
nic-imp 1679 Inference for ~ nic-mp usi...
nic-idlem1 1680 Lemma for ~ nic-id . (Con...
nic-idlem2 1681 Lemma for ~ nic-id . Infe...
nic-id 1682 Theorem ~ id expressed wit...
nic-swap 1683 The connector ` -/\ ` is s...
nic-isw1 1684 Inference version of ~ nic...
nic-isw2 1685 Inference for swapping nes...
nic-iimp1 1686 Inference version of ~ nic...
nic-iimp2 1687 Inference version of ~ nic...
nic-idel 1688 Inference to remove the tr...
nic-ich 1689 Chained inference. (Contr...
nic-idbl 1690 Double the terms. Since d...
nic-bijust 1691 Biconditional justificatio...
nic-bi1 1692 Inference to extract one s...
nic-bi2 1693 Inference to extract the o...
nic-stdmp 1694 Derive the standard modus ...
nic-luk1 1695 Proof of ~ luk-1 from ~ ni...
nic-luk2 1696 Proof of ~ luk-2 from ~ ni...
nic-luk3 1697 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1698 This alternative axiom for...
lukshefth1 1699 Lemma for ~ renicax . (Co...
lukshefth2 1700 Lemma for ~ renicax . (Co...
renicax 1701 A rederivation of ~ nic-ax...
tbw-bijust 1702 Justification for ~ tbw-ne...
tbw-negdf 1703 The definition of negation...
tbw-ax1 1704 The first of four axioms i...
tbw-ax2 1705 The second of four axioms ...
tbw-ax3 1706 The third of four axioms i...
tbw-ax4 1707 The fourth of four axioms ...
tbwsyl 1708 Used to rederive the Lukas...
tbwlem1 1709 Used to rederive the Lukas...
tbwlem2 1710 Used to rederive the Lukas...
tbwlem3 1711 Used to rederive the Lukas...
tbwlem4 1712 Used to rederive the Lukas...
tbwlem5 1713 Used to rederive the Lukas...
re1luk1 1714 ~ luk-1 derived from the T...
re1luk2 1715 ~ luk-2 derived from the T...
re1luk3 1716 ~ luk-3 derived from the T...
merco1 1717 A single axiom for proposi...
merco1lem1 1718 Used to rederive the Tarsk...
retbwax4 1719 ~ tbw-ax4 rederived from ~...
retbwax2 1720 ~ tbw-ax2 rederived from ~...
merco1lem2 1721 Used to rederive the Tarsk...
merco1lem3 1722 Used to rederive the Tarsk...
merco1lem4 1723 Used to rederive the Tarsk...
merco1lem5 1724 Used to rederive the Tarsk...
merco1lem6 1725 Used to rederive the Tarsk...
merco1lem7 1726 Used to rederive the Tarsk...
retbwax3 1727 ~ tbw-ax3 rederived from ~...
merco1lem8 1728 Used to rederive the Tarsk...
merco1lem9 1729 Used to rederive the Tarsk...
merco1lem10 1730 Used to rederive the Tarsk...
merco1lem11 1731 Used to rederive the Tarsk...
merco1lem12 1732 Used to rederive the Tarsk...
merco1lem13 1733 Used to rederive the Tarsk...
merco1lem14 1734 Used to rederive the Tarsk...
merco1lem15 1735 Used to rederive the Tarsk...
merco1lem16 1736 Used to rederive the Tarsk...
merco1lem17 1737 Used to rederive the Tarsk...
merco1lem18 1738 Used to rederive the Tarsk...
retbwax1 1739 ~ tbw-ax1 rederived from ~...
merco2 1740 A single axiom for proposi...
mercolem1 1741 Used to rederive the Tarsk...
mercolem2 1742 Used to rederive the Tarsk...
mercolem3 1743 Used to rederive the Tarsk...
mercolem4 1744 Used to rederive the Tarsk...
mercolem5 1745 Used to rederive the Tarsk...
mercolem6 1746 Used to rederive the Tarsk...
mercolem7 1747 Used to rederive the Tarsk...
mercolem8 1748 Used to rederive the Tarsk...
re1tbw1 1749 ~ tbw-ax1 rederived from ~...
re1tbw2 1750 ~ tbw-ax2 rederived from ~...
re1tbw3 1751 ~ tbw-ax3 rederived from ~...
re1tbw4 1752 ~ tbw-ax4 rederived from ~...
rb-bijust 1753 Justification for ~ rb-imd...
rb-imdf 1754 The definition of implicat...
anmp 1755 Modus ponens for ` { \/ , ...
rb-ax1 1756 The first of four axioms i...
rb-ax2 1757 The second of four axioms ...
rb-ax3 1758 The third of four axioms i...
rb-ax4 1759 The fourth of four axioms ...
rbsyl 1760 Used to rederive the Lukas...
rblem1 1761 Used to rederive the Lukas...
rblem2 1762 Used to rederive the Lukas...
rblem3 1763 Used to rederive the Lukas...
rblem4 1764 Used to rederive the Lukas...
rblem5 1765 Used to rederive the Lukas...
rblem6 1766 Used to rederive the Lukas...
rblem7 1767 Used to rederive the Lukas...
re1axmp 1768 ~ ax-mp derived from Russe...
re2luk1 1769 ~ luk-1 derived from Russe...
re2luk2 1770 ~ luk-2 derived from Russe...
re2luk3 1771 ~ luk-3 derived from Russe...
mptnan 1772 Modus ponendo tollens 1, o...
mptxor 1773 Modus ponendo tollens 2, o...
mtpor 1774 Modus tollendo ponens (inc...
mtpxor 1775 Modus tollendo ponens (ori...
stoic1a 1776 Stoic logic Thema 1 (part ...
stoic1b 1777 Stoic logic Thema 1 (part ...
stoic2a 1778 Stoic logic Thema 2 versio...
stoic2b 1779 Stoic logic Thema 2 versio...
stoic3 1780 Stoic logic Thema 3. Stat...
stoic4a 1781 Stoic logic Thema 4 versio...
stoic4b 1782 Stoic logic Thema 4 versio...
alnex 1785 Universal quantification o...
eximal 1786 An equivalence between an ...
nf2 1789 Alternate definition of no...
nf3 1790 Alternate definition of no...
nf4 1791 Alternate definition of no...
nfi 1792 Deduce that ` x ` is not f...
nfri 1793 Consequence of the definit...
nfd 1794 Deduce that ` x ` is not f...
nfrd 1795 Consequence of the definit...
nftht 1796 Closed form of ~ nfth . (...
nfntht 1797 Closed form of ~ nfnth . ...
nfntht2 1798 Closed form of ~ nfnth . ...
gen2 1800 Generalization applied twi...
mpg 1801 Modus ponens combined with...
mpgbi 1802 Modus ponens on biconditio...
mpgbir 1803 Modus ponens on biconditio...
nex 1804 Generalization rule for ne...
nfth 1805 No variable is (effectivel...
nfnth 1806 No variable is (effectivel...
hbth 1807 No variable is (effectivel...
nftru 1808 The true constant has no f...
nffal 1809 The false constant has no ...
sptruw 1810 Version of ~ sp when ` ph ...
altru 1811 For all sets, ` T. ` is tr...
alfal 1812 For all sets, ` -. F. ` is...
alim 1814 Restatement of Axiom ~ ax-...
alimi 1815 Inference quantifying both...
2alimi 1816 Inference doubly quantifyi...
ala1 1817 Add an antecedent in a uni...
al2im 1818 Closed form of ~ al2imi . ...
al2imi 1819 Inference quantifying ante...
alanimi 1820 Variant of ~ al2imi with c...
alimdh 1821 Deduction form of Theorem ...
albi 1822 Theorem 19.15 of [Margaris...
albii 1823 Inference adding universal...
2albii 1824 Inference adding two unive...
sylgt 1825 Closed form of ~ sylg . (...
sylg 1826 A syllogism combined with ...
alrimih 1827 Inference form of Theorem ...
hbxfrbi 1828 A utility lemma to transfe...
alex 1829 Universal quantifier in te...
exnal 1830 Existential quantification...
2nalexn 1831 Part of theorem *11.5 in [...
2exnaln 1832 Theorem *11.22 in [Whitehe...
2nexaln 1833 Theorem *11.25 in [Whitehe...
alimex 1834 An equivalence between an ...
aleximi 1835 A variant of ~ al2imi : in...
alexbii 1836 Biconditional form of ~ al...
exim 1837 Theorem 19.22 of [Margaris...
eximi 1838 Inference adding existenti...
2eximi 1839 Inference adding two exist...
eximii 1840 Inference associated with ...
exa1 1841 Add an antecedent in an ex...
19.38 1842 Theorem 19.38 of [Margaris...
19.38a 1843 Under a nonfreeness hypoth...
19.38b 1844 Under a nonfreeness hypoth...
imnang 1845 Quantified implication in ...
alinexa 1846 A transformation of quanti...
exnalimn 1847 Existential quantification...
alexn 1848 A relationship between two...
2exnexn 1849 Theorem *11.51 in [Whitehe...
exbi 1850 Theorem 19.18 of [Margaris...
exbii 1851 Inference adding existenti...
2exbii 1852 Inference adding two exist...
3exbii 1853 Inference adding three exi...
nfbiit 1854 Equivalence theorem for th...
nfbii 1855 Equality theorem for the n...
nfxfr 1856 A utility lemma to transfe...
nfxfrd 1857 A utility lemma to transfe...
nfnbi 1858 A variable is nonfree in a...
nfnbiOLD 1859 Obsolete version of ~ nfnb...
nfnt 1860 If a variable is nonfree i...
nfn 1861 Inference associated with ...
nfnd 1862 Deduction associated with ...
exanali 1863 A transformation of quanti...
2exanali 1864 Theorem *11.521 in [Whiteh...
exancom 1865 Commutation of conjunction...
exan 1866 Place a conjunct in the sc...
alrimdh 1867 Deduction form of Theorem ...
eximdh 1868 Deduction from Theorem 19....
nexdh 1869 Deduction for generalizati...
albidh 1870 Formula-building rule for ...
exbidh 1871 Formula-building rule for ...
exsimpl 1872 Simplification of an exist...
exsimpr 1873 Simplification of an exist...
19.26 1874 Theorem 19.26 of [Margaris...
19.26-2 1875 Theorem ~ 19.26 with two q...
19.26-3an 1876 Theorem ~ 19.26 with tripl...
19.29 1877 Theorem 19.29 of [Margaris...
19.29r 1878 Variation of ~ 19.29 . (C...
19.29r2 1879 Variation of ~ 19.29r with...
19.29x 1880 Variation of ~ 19.29 with ...
19.35 1881 Theorem 19.35 of [Margaris...
19.35i 1882 Inference associated with ...
19.35ri 1883 Inference associated with ...
19.25 1884 Theorem 19.25 of [Margaris...
19.30 1885 Theorem 19.30 of [Margaris...
19.43 1886 Theorem 19.43 of [Margaris...
19.43OLD 1887 Obsolete proof of ~ 19.43 ...
19.33 1888 Theorem 19.33 of [Margaris...
19.33b 1889 The antecedent provides a ...
19.40 1890 Theorem 19.40 of [Margaris...
19.40-2 1891 Theorem *11.42 in [Whitehe...
19.40b 1892 The antecedent provides a ...
albiim 1893 Split a biconditional and ...
2albiim 1894 Split a biconditional and ...
exintrbi 1895 Add/remove a conjunct in t...
exintr 1896 Introduce a conjunct in th...
alsyl 1897 Universally quantified and...
nfimd 1898 If in a context ` x ` is n...
nfimt 1899 Closed form of ~ nfim and ...
nfim 1900 If ` x ` is not free in ` ...
nfand 1901 If in a context ` x ` is n...
nf3and 1902 Deduction form of bound-va...
nfan 1903 If ` x ` is not free in ` ...
nfnan 1904 If ` x ` is not free in ` ...
nf3an 1905 If ` x ` is not free in ` ...
nfbid 1906 If in a context ` x ` is n...
nfbi 1907 If ` x ` is not free in ` ...
nfor 1908 If ` x ` is not free in ` ...
nf3or 1909 If ` x ` is not free in ` ...
empty 1910 Two characterizations of t...
emptyex 1911 On the empty domain, any e...
emptyal 1912 On the empty domain, any u...
emptynf 1913 On the empty domain, any v...
ax5d 1915 Version of ~ ax-5 with ant...
ax5e 1916 A rephrasing of ~ ax-5 usi...
ax5ea 1917 If a formula holds for som...
nfv 1918 If ` x ` is not present in...
nfvd 1919 ~ nfv with antecedent. Us...
alimdv 1920 Deduction form of Theorem ...
eximdv 1921 Deduction form of Theorem ...
2alimdv 1922 Deduction form of Theorem ...
2eximdv 1923 Deduction form of Theorem ...
albidv 1924 Formula-building rule for ...
exbidv 1925 Formula-building rule for ...
nfbidv 1926 An equality theorem for no...
2albidv 1927 Formula-building rule for ...
2exbidv 1928 Formula-building rule for ...
3exbidv 1929 Formula-building rule for ...
4exbidv 1930 Formula-building rule for ...
alrimiv 1931 Inference form of Theorem ...
alrimivv 1932 Inference form of Theorem ...
alrimdv 1933 Deduction form of Theorem ...
exlimiv 1934 Inference form of Theorem ...
exlimiiv 1935 Inference (Rule C) associa...
exlimivv 1936 Inference form of Theorem ...
exlimdv 1937 Deduction form of Theorem ...
exlimdvv 1938 Deduction form of Theorem ...
exlimddv 1939 Existential elimination ru...
nexdv 1940 Deduction for generalizati...
2ax5 1941 Quantification of two vari...
stdpc5v 1942 Version of ~ stdpc5 with a...
19.21v 1943 Version of ~ 19.21 with a ...
19.32v 1944 Version of ~ 19.32 with a ...
19.31v 1945 Version of ~ 19.31 with a ...
19.23v 1946 Version of ~ 19.23 with a ...
19.23vv 1947 Theorem ~ 19.23v extended ...
pm11.53v 1948 Version of ~ pm11.53 with ...
19.36imv 1949 One direction of ~ 19.36v ...
19.36imvOLD 1950 Obsolete version of ~ 19.3...
19.36iv 1951 Inference associated with ...
19.37imv 1952 One direction of ~ 19.37v ...
19.37iv 1953 Inference associated with ...
19.41v 1954 Version of ~ 19.41 with a ...
19.41vv 1955 Version of ~ 19.41 with tw...
19.41vvv 1956 Version of ~ 19.41 with th...
19.41vvvv 1957 Version of ~ 19.41 with fo...
19.42v 1958 Version of ~ 19.42 with a ...
exdistr 1959 Distribution of existentia...
exdistrv 1960 Distribute a pair of exist...
4exdistrv 1961 Distribute two pairs of ex...
19.42vv 1962 Version of ~ 19.42 with tw...
exdistr2 1963 Distribution of existentia...
19.42vvv 1964 Version of ~ 19.42 with th...
3exdistr 1965 Distribution of existentia...
4exdistr 1966 Distribution of existentia...
weq 1967 Extend wff definition to i...
speimfw 1968 Specialization, with addit...
speimfwALT 1969 Alternate proof of ~ speim...
spimfw 1970 Specialization, with addit...
ax12i 1971 Inference that has ~ ax-12...
ax6v 1973 Axiom B7 of [Tarski] p. 75...
ax6ev 1974 At least one individual ex...
spimw 1975 Specialization. Lemma 8 o...
spimew 1976 Existential introduction, ...
speiv 1977 Inference from existential...
speivw 1978 Version of ~ spei with a d...
exgen 1979 Rule of existential genera...
extru 1980 There exists a variable su...
19.2 1981 Theorem 19.2 of [Margaris]...
19.2d 1982 Deduction associated with ...
19.8w 1983 Weak version of ~ 19.8a an...
spnfw 1984 Weak version of ~ sp . Us...
spvw 1985 Version of ~ sp when ` x `...
19.3v 1986 Version of ~ 19.3 with a d...
19.8v 1987 Version of ~ 19.8a with a ...
19.9v 1988 Version of ~ 19.9 with a d...
19.39 1989 Theorem 19.39 of [Margaris...
19.24 1990 Theorem 19.24 of [Margaris...
19.34 1991 Theorem 19.34 of [Margaris...
19.36v 1992 Version of ~ 19.36 with a ...
19.12vvv 1993 Version of ~ 19.12vv with ...
19.27v 1994 Version of ~ 19.27 with a ...
19.28v 1995 Version of ~ 19.28 with a ...
19.37v 1996 Version of ~ 19.37 with a ...
19.44v 1997 Version of ~ 19.44 with a ...
19.45v 1998 Version of ~ 19.45 with a ...
spimevw 1999 Existential introduction, ...
spimvw 2000 A weak form of specializat...
spvv 2001 Specialization, using impl...
spfalw 2002 Version of ~ sp when ` ph ...
chvarvv 2003 Implicit substitution of `...
equs4v 2004 Version of ~ equs4 with a ...
alequexv 2005 Version of ~ equs4v with i...
exsbim 2006 One direction of the equiv...
equsv 2007 If a formula does not cont...
equsalvw 2008 Version of ~ equsalv with ...
equsexvw 2009 Version of ~ equsexv with ...
cbvaliw 2010 Change bound variable. Us...
cbvalivw 2011 Change bound variable. Us...
ax7v 2013 Weakened version of ~ ax-7...
ax7v1 2014 First of two weakened vers...
ax7v2 2015 Second of two weakened ver...
equid 2016 Identity law for equality....
nfequid 2017 Bound-variable hypothesis ...
equcomiv 2018 Weaker form of ~ equcomi w...
ax6evr 2019 A commuted form of ~ ax6ev...
ax7 2020 Proof of ~ ax-7 from ~ ax7...
equcomi 2021 Commutative law for equali...
equcom 2022 Commutative law for equali...
equcomd 2023 Deduction form of ~ equcom...
equcoms 2024 An inference commuting equ...
equtr 2025 A transitive law for equal...
equtrr 2026 A transitive law for equal...
equeuclr 2027 Commuted version of ~ eque...
equeucl 2028 Equality is a left-Euclide...
equequ1 2029 An equivalence law for equ...
equequ2 2030 An equivalence law for equ...
equtr2 2031 Equality is a left-Euclide...
stdpc6 2032 One of the two equality ax...
equvinv 2033 A variable introduction la...
equvinva 2034 A modified version of the ...
equvelv 2035 A biconditional form of ~ ...
ax13b 2036 An equivalence between two...
spfw 2037 Weak version of ~ sp . Us...
spw 2038 Weak version of the specia...
cbvalw 2039 Change bound variable. Us...
cbvalvw 2040 Change bound variable. Us...
cbvexvw 2041 Change bound variable. Us...
cbvaldvaw 2042 Rule used to change the bo...
cbvexdvaw 2043 Rule used to change the bo...
cbval2vw 2044 Rule used to change bound ...
cbvex2vw 2045 Rule used to change bound ...
cbvex4vw 2046 Rule used to change bound ...
alcomiw 2047 Weak version of ~ alcom . ...
alcomiwOLD 2048 Obsolete version of ~ alco...
hbn1fw 2049 Weak version of ~ ax-10 fr...
hbn1w 2050 Weak version of ~ hbn1 . ...
hba1w 2051 Weak version of ~ hba1 . ...
hbe1w 2052 Weak version of ~ hbe1 . ...
hbalw 2053 Weak version of ~ hbal . ...
19.8aw 2054 If a formula is true, then...
exexw 2055 Existential quantification...
spaev 2056 A special instance of ~ sp...
cbvaev 2057 Change bound variable in a...
aevlem0 2058 Lemma for ~ aevlem . Inst...
aevlem 2059 Lemma for ~ aev and ~ axc1...
aeveq 2060 The antecedent ` A. x x = ...
aev 2061 A "distinctor elimination"...
aev2 2062 A version of ~ aev with tw...
hbaev 2063 All variables are effectiv...
naev 2064 If some set variables can ...
naev2 2065 Generalization of ~ hbnaev...
hbnaev 2066 Any variable is free in ` ...
sbjust 2067 Justification theorem for ...
sbt 2070 A substitution into a theo...
sbtru 2071 The result of substituting...
stdpc4 2072 The specialization axiom o...
sbtALT 2073 Alternate proof of ~ sbt ,...
2stdpc4 2074 A double specialization us...
sbi1 2075 Distribute substitution ov...
spsbim 2076 Distribute substitution ov...
spsbbi 2077 Biconditional property for...
sbimi 2078 Distribute substitution ov...
sb2imi 2079 Distribute substitution ov...
sbbii 2080 Infer substitution into bo...
2sbbii 2081 Infer double substitution ...
sbimdv 2082 Deduction substituting bot...
sbbidv 2083 Deduction substituting bot...
sban 2084 Conjunction inside and out...
sb3an 2085 Threefold conjunction insi...
spsbe 2086 Existential generalization...
sbequ 2087 Equality property for subs...
sbequi 2088 An equality theorem for su...
sb6 2089 Alternate definition of su...
2sb6 2090 Equivalence for double sub...
sb1v 2091 One direction of ~ sb5 , p...
sbv 2092 Substitution for a variabl...
sbcom4 2093 Commutativity law for subs...
pm11.07 2094 Axiom *11.07 in [Whitehead...
sbrimvlem 2095 Common proof template for ...
sbrimvw 2096 Substitution in an implica...
sbievw 2097 Conversion of implicit sub...
sbiedvw 2098 Conversion of implicit sub...
2sbievw 2099 Conversion of double impli...
sbcom3vv 2100 Substituting ` y ` for ` x...
sbievw2 2101 ~ sbievw applied twice, av...
sbco2vv 2102 A composition law for subs...
equsb3 2103 Substitution in an equalit...
equsb3r 2104 Substitution applied to th...
equsb1v 2105 Substitution applied to an...
nsb 2106 Any substitution in an alw...
sbn1 2107 One direction of ~ sbn , u...
wel 2109 Extend wff definition to i...
ax8v 2111 Weakened version of ~ ax-8...
ax8v1 2112 First of two weakened vers...
ax8v2 2113 Second of two weakened ver...
ax8 2114 Proof of ~ ax-8 from ~ ax8...
elequ1 2115 An identity law for the no...
elsb1 2116 Substitution for the first...
cleljust 2117 When the class variables i...
ax9v 2119 Weakened version of ~ ax-9...
ax9v1 2120 First of two weakened vers...
ax9v2 2121 Second of two weakened ver...
ax9 2122 Proof of ~ ax-9 from ~ ax9...
elequ2 2123 An identity law for the no...
elequ2g 2124 A form of ~ elequ2 with a ...
elsb2 2125 Substitution for the secon...
ax6dgen 2126 Tarski's system uses the w...
ax10w 2127 Weak version of ~ ax-10 fr...
ax11w 2128 Weak version of ~ ax-11 fr...
ax11dgen 2129 Degenerate instance of ~ a...
ax12wlem 2130 Lemma for weak version of ...
ax12w 2131 Weak version of ~ ax-12 fr...
ax12dgen 2132 Degenerate instance of ~ a...
ax12wdemo 2133 Example of an application ...
ax13w 2134 Weak version (principal in...
ax13dgen1 2135 Degenerate instance of ~ a...
ax13dgen2 2136 Degenerate instance of ~ a...
ax13dgen3 2137 Degenerate instance of ~ a...
ax13dgen4 2138 Degenerate instance of ~ a...
hbn1 2140 Alias for ~ ax-10 to be us...
hbe1 2141 The setvar ` x ` is not fr...
hbe1a 2142 Dual statement of ~ hbe1 ....
nf5-1 2143 One direction of ~ nf5 can...
nf5i 2144 Deduce that ` x ` is not f...
nf5dh 2145 Deduce that ` x ` is not f...
nf5dv 2146 Apply the definition of no...
nfnaew 2147 All variables are effectiv...
nfnaewOLD 2148 Obsolete version of ~ nfna...
nfe1 2149 The setvar ` x ` is not fr...
nfa1 2150 The setvar ` x ` is not fr...
nfna1 2151 A convenience theorem part...
nfia1 2152 Lemma 23 of [Monk2] p. 114...
nfnf1 2153 The setvar ` x ` is not fr...
modal5 2154 The analogue in our predic...
nfs1v 2155 The setvar ` x ` is not fr...
alcoms 2157 Swap quantifiers in an ant...
alcom 2158 Theorem 19.5 of [Margaris]...
alrot3 2159 Theorem *11.21 in [Whitehe...
alrot4 2160 Rotate four universal quan...
sbal 2161 Move universal quantifier ...
sbalv 2162 Quantify with new variable...
sbcom2 2163 Commutativity law for subs...
excom 2164 Theorem 19.11 of [Margaris...
excomim 2165 One direction of Theorem 1...
excom13 2166 Swap 1st and 3rd existenti...
exrot3 2167 Rotate existential quantif...
exrot4 2168 Rotate existential quantif...
hbal 2169 If ` x ` is not free in ` ...
hbald 2170 Deduction form of bound-va...
hbsbw 2171 If ` z ` is not free in ` ...
nfa2 2172 Lemma 24 of [Monk2] p. 114...
ax12v 2174 This is essentially Axiom ...
ax12v2 2175 It is possible to remove a...
19.8a 2176 If a wff is true, it is tr...
19.8ad 2177 If a wff is true, it is tr...
sp 2178 Specialization. A univers...
spi 2179 Inference rule of universa...
sps 2180 Generalization of antecede...
2sp 2181 A double specialization (s...
spsd 2182 Deduction generalizing ant...
19.2g 2183 Theorem 19.2 of [Margaris]...
19.21bi 2184 Inference form of ~ 19.21 ...
19.21bbi 2185 Inference removing two uni...
19.23bi 2186 Inference form of Theorem ...
nexr 2187 Inference associated with ...
qexmid 2188 Quantified excluded middle...
nf5r 2189 Consequence of the definit...
nf5rOLD 2190 Obsolete version of ~ nfrd...
nf5ri 2191 Consequence of the definit...
nf5rd 2192 Consequence of the definit...
spimedv 2193 Deduction version of ~ spi...
spimefv 2194 Version of ~ spime with a ...
nfim1 2195 A closed form of ~ nfim . ...
nfan1 2196 A closed form of ~ nfan . ...
19.3t 2197 Closed form of ~ 19.3 and ...
19.3 2198 A wff may be quantified wi...
19.9d 2199 A deduction version of one...
19.9t 2200 Closed form of ~ 19.9 and ...
19.9 2201 A wff may be existentially...
19.21t 2202 Closed form of Theorem 19....
19.21 2203 Theorem 19.21 of [Margaris...
stdpc5 2204 An axiom scheme of standar...
19.21-2 2205 Version of ~ 19.21 with tw...
19.23t 2206 Closed form of Theorem 19....
19.23 2207 Theorem 19.23 of [Margaris...
alimd 2208 Deduction form of Theorem ...
alrimi 2209 Inference form of Theorem ...
alrimdd 2210 Deduction form of Theorem ...
alrimd 2211 Deduction form of Theorem ...
eximd 2212 Deduction form of Theorem ...
exlimi 2213 Inference associated with ...
exlimd 2214 Deduction form of Theorem ...
exlimimdd 2215 Existential elimination ru...
exlimdd 2216 Existential elimination ru...
nexd 2217 Deduction for generalizati...
albid 2218 Formula-building rule for ...
exbid 2219 Formula-building rule for ...
nfbidf 2220 An equality theorem for ef...
19.16 2221 Theorem 19.16 of [Margaris...
19.17 2222 Theorem 19.17 of [Margaris...
19.27 2223 Theorem 19.27 of [Margaris...
19.28 2224 Theorem 19.28 of [Margaris...
19.19 2225 Theorem 19.19 of [Margaris...
19.36 2226 Theorem 19.36 of [Margaris...
19.36i 2227 Inference associated with ...
19.37 2228 Theorem 19.37 of [Margaris...
19.32 2229 Theorem 19.32 of [Margaris...
19.31 2230 Theorem 19.31 of [Margaris...
19.41 2231 Theorem 19.41 of [Margaris...
19.42 2232 Theorem 19.42 of [Margaris...
19.44 2233 Theorem 19.44 of [Margaris...
19.45 2234 Theorem 19.45 of [Margaris...
spimfv 2235 Specialization, using impl...
chvarfv 2236 Implicit substitution of `...
cbv3v2 2237 Version of ~ cbv3 with two...
sbalex 2238 Equivalence of two ways to...
sb4av 2239 Version of ~ sb4a with a d...
sbimd 2240 Deduction substituting bot...
sbbid 2241 Deduction substituting bot...
2sbbid 2242 Deduction doubly substitut...
sbequ1 2243 An equality theorem for su...
sbequ2 2244 An equality theorem for su...
sbequ2OLD 2245 Obsolete version of ~ sbeq...
stdpc7 2246 One of the two equality ax...
sbequ12 2247 An equality theorem for su...
sbequ12r 2248 An equality theorem for su...
sbelx 2249 Elimination of substitutio...
sbequ12a 2250 An equality theorem for su...
sbid 2251 An identity theorem for su...
sbcov 2252 A composition law for subs...
sb6a 2253 Equivalence for substituti...
sbid2vw 2254 Reverting substitution yie...
axc16g 2255 Generalization of ~ axc16 ...
axc16 2256 Proof of older axiom ~ ax-...
axc16gb 2257 Biconditional strengthenin...
axc16nf 2258 If ~ dtru is false, then t...
axc11v 2259 Version of ~ axc11 with a ...
axc11rv 2260 Version of ~ axc11r with a...
drsb2 2261 Formula-building lemma for...
equsalv 2262 An equivalence related to ...
equsexv 2263 An equivalence related to ...
equsexvOLD 2264 Obsolete version of ~ equs...
sbft 2265 Substitution has no effect...
sbf 2266 Substitution for a variabl...
sbf2 2267 Substitution has no effect...
sbh 2268 Substitution for a variabl...
hbs1 2269 The setvar ` x ` is not fr...
nfs1f 2270 If ` x ` is not free in ` ...
sb5 2271 Alternate definition of su...
sb5OLD 2272 Obsolete version of ~ sb5 ...
sb56OLD 2273 Obsolete version of ~ sbal...
equs5av 2274 A property related to subs...
2sb5 2275 Equivalence for double sub...
sbco4lem 2276 Lemma for ~ sbco4 . It re...
sbco4lemOLD 2277 Obsolete version of ~ sbco...
sbco4 2278 Two ways of exchanging two...
dfsb7 2279 An alternate definition of...
sbn 2280 Negation inside and outsid...
sbex 2281 Move existential quantifie...
nf5 2282 Alternate definition of ~ ...
nf6 2283 An alternate definition of...
nf5d 2284 Deduce that ` x ` is not f...
nf5di 2285 Since the converse holds b...
19.9h 2286 A wff may be existentially...
19.21h 2287 Theorem 19.21 of [Margaris...
19.23h 2288 Theorem 19.23 of [Margaris...
exlimih 2289 Inference associated with ...
exlimdh 2290 Deduction form of Theorem ...
equsalhw 2291 Version of ~ equsalh with ...
equsexhv 2292 An equivalence related to ...
hba1 2293 The setvar ` x ` is not fr...
hbnt 2294 Closed theorem version of ...
hbn 2295 If ` x ` is not free in ` ...
hbnd 2296 Deduction form of bound-va...
hbim1 2297 A closed form of ~ hbim . ...
hbimd 2298 Deduction form of bound-va...
hbim 2299 If ` x ` is not free in ` ...
hban 2300 If ` x ` is not free in ` ...
hb3an 2301 If ` x ` is not free in ` ...
sbi2 2302 Introduction of implicatio...
sbim 2303 Implication inside and out...
sbrim 2304 Substitution in an implica...
sbrimv 2305 Substitution in an implica...
sblim 2306 Substitution in an implica...
sbor 2307 Disjunction inside and out...
sbbi 2308 Equivalence inside and out...
sblbis 2309 Introduce left bicondition...
sbrbis 2310 Introduce right biconditio...
sbrbif 2311 Introduce right biconditio...
sbiev 2312 Conversion of implicit sub...
sbiedw 2313 Conversion of implicit sub...
sbiedwOLD 2314 Obsolete version of ~ sbie...
axc7 2315 Show that the original axi...
axc7e 2316 Abbreviated version of ~ a...
modal-b 2317 The analogue in our predic...
19.9ht 2318 A closed version of ~ 19.9...
axc4 2319 Show that the original axi...
axc4i 2320 Inference version of ~ axc...
nfal 2321 If ` x ` is not free in ` ...
nfex 2322 If ` x ` is not free in ` ...
hbex 2323 If ` x ` is not free in ` ...
nfnf 2324 If ` x ` is not free in ` ...
19.12 2325 Theorem 19.12 of [Margaris...
nfald 2326 Deduction form of ~ nfal ....
nfexd 2327 If ` x ` is not free in ` ...
nfsbv 2328 If ` z ` is not free in ` ...
nfsbvOLD 2329 Obsolete version of ~ nfsb...
hbsbwOLD 2330 Obsolete version of ~ hbsb...
sbco2v 2331 A composition law for subs...
aaan 2332 Distribute universal quant...
eeor 2333 Distribute existential qua...
cbv3v 2334 Rule used to change bound ...
cbv1v 2335 Rule used to change bound ...
cbv2w 2336 Rule used to change bound ...
cbvaldw 2337 Deduction used to change b...
cbvexdw 2338 Deduction used to change b...
cbv3hv 2339 Rule used to change bound ...
cbvalv1 2340 Rule used to change bound ...
cbvexv1 2341 Rule used to change bound ...
cbval2v 2342 Rule used to change bound ...
cbval2vOLD 2343 Obsolete version of ~ cbva...
cbvex2v 2344 Rule used to change bound ...
dvelimhw 2345 Proof of ~ dvelimh without...
pm11.53 2346 Theorem *11.53 in [Whitehe...
19.12vv 2347 Special case of ~ 19.12 wh...
eean 2348 Distribute existential qua...
eeanv 2349 Distribute a pair of exist...
eeeanv 2350 Distribute three existenti...
ee4anv 2351 Distribute two pairs of ex...
sb8v 2352 Substitution of variable i...
sb8ev 2353 Substitution of variable i...
2sb8ev 2354 An equivalent expression f...
sb6rfv 2355 Reversed substitution. Ve...
sbnf2 2356 Two ways of expressing " `...
exsb 2357 An equivalent expression f...
2exsb 2358 An equivalent expression f...
sbbib 2359 Reversal of substitution. ...
sbbibvv 2360 Reversal of substitution. ...
sbievg 2361 Substitution applied to ex...
cleljustALT 2362 Alternate proof of ~ clelj...
cleljustALT2 2363 Alternate proof of ~ clelj...
equs5aALT 2364 Alternate proof of ~ equs5...
equs5eALT 2365 Alternate proof of ~ equs5...
axc11r 2366 Same as ~ axc11 but with r...
dral1v 2367 Formula-building lemma for...
dral1vOLD 2368 Obsolete version of ~ dral...
drex1v 2369 Formula-building lemma for...
drnf1v 2370 Formula-building lemma for...
drnf1vOLD 2371 Obsolete version of ~ drnf...
ax13v 2373 A weaker version of ~ ax-1...
ax13lem1 2374 A version of ~ ax13v with ...
ax13 2375 Derive ~ ax-13 from ~ ax13...
ax13lem2 2376 Lemma for ~ nfeqf2 . This...
nfeqf2 2377 An equation between setvar...
dveeq2 2378 Quantifier introduction wh...
nfeqf1 2379 An equation between setvar...
dveeq1 2380 Quantifier introduction wh...
nfeqf 2381 A variable is effectively ...
axc9 2382 Derive set.mm's original ~...
ax6e 2383 At least one individual ex...
ax6 2384 Theorem showing that ~ ax-...
axc10 2385 Show that the original axi...
spimt 2386 Closed theorem form of ~ s...
spim 2387 Specialization, using impl...
spimed 2388 Deduction version of ~ spi...
spime 2389 Existential introduction, ...
spimv 2390 A version of ~ spim with a...
spimvALT 2391 Alternate proof of ~ spimv...
spimev 2392 Distinct-variable version ...
spv 2393 Specialization, using impl...
spei 2394 Inference from existential...
chvar 2395 Implicit substitution of `...
chvarv 2396 Implicit substitution of `...
cbv3 2397 Rule used to change bound ...
cbval 2398 Rule used to change bound ...
cbvex 2399 Rule used to change bound ...
cbvalv 2400 Rule used to change bound ...
cbvexv 2401 Rule used to change bound ...
cbv1 2402 Rule used to change bound ...
cbv2 2403 Rule used to change bound ...
cbv3h 2404 Rule used to change bound ...
cbv1h 2405 Rule used to change bound ...
cbv2h 2406 Rule used to change bound ...
cbvald 2407 Deduction used to change b...
cbvexd 2408 Deduction used to change b...
cbvaldva 2409 Rule used to change the bo...
cbvexdva 2410 Rule used to change the bo...
cbval2 2411 Rule used to change bound ...
cbvex2 2412 Rule used to change bound ...
cbval2vv 2413 Rule used to change bound ...
cbvex2vv 2414 Rule used to change bound ...
cbvex4v 2415 Rule used to change bound ...
equs4 2416 Lemma used in proofs of im...
equsal 2417 An equivalence related to ...
equsex 2418 An equivalence related to ...
equsexALT 2419 Alternate proof of ~ equse...
equsalh 2420 An equivalence related to ...
equsexh 2421 An equivalence related to ...
axc15 2422 Derivation of set.mm's ori...
ax12 2423 Rederivation of Axiom ~ ax...
ax12b 2424 A bidirectional version of...
ax13ALT 2425 Alternate proof of ~ ax13 ...
axc11n 2426 Derive set.mm's original ~...
aecom 2427 Commutation law for identi...
aecoms 2428 A commutation rule for ide...
naecoms 2429 A commutation rule for dis...
axc11 2430 Show that ~ ax-c11 can be ...
hbae 2431 All variables are effectiv...
hbnae 2432 All variables are effectiv...
nfae 2433 All variables are effectiv...
nfnae 2434 All variables are effectiv...
hbnaes 2435 Rule that applies ~ hbnae ...
axc16i 2436 Inference with ~ axc16 as ...
axc16nfALT 2437 Alternate proof of ~ axc16...
dral2 2438 Formula-building lemma for...
dral1 2439 Formula-building lemma for...
dral1ALT 2440 Alternate proof of ~ dral1...
drex1 2441 Formula-building lemma for...
drex2 2442 Formula-building lemma for...
drnf1 2443 Formula-building lemma for...
drnf2 2444 Formula-building lemma for...
nfald2 2445 Variation on ~ nfald which...
nfexd2 2446 Variation on ~ nfexd which...
exdistrf 2447 Distribution of existentia...
dvelimf 2448 Version of ~ dvelimv witho...
dvelimdf 2449 Deduction form of ~ dvelim...
dvelimh 2450 Version of ~ dvelim withou...
dvelim 2451 This theorem can be used t...
dvelimv 2452 Similar to ~ dvelim with f...
dvelimnf 2453 Version of ~ dvelim using ...
dveeq2ALT 2454 Alternate proof of ~ dveeq...
equvini 2455 A variable introduction la...
equvel 2456 A variable elimination law...
equs5a 2457 A property related to subs...
equs5e 2458 A property related to subs...
equs45f 2459 Two ways of expressing sub...
equs5 2460 Lemma used in proofs of su...
dveel1 2461 Quantifier introduction wh...
dveel2 2462 Quantifier introduction wh...
axc14 2463 Axiom ~ ax-c14 is redundan...
sb6x 2464 Equivalence involving subs...
sbequ5 2465 Substitution does not chan...
sbequ6 2466 Substitution does not chan...
sb5rf 2467 Reversed substitution. Us...
sb6rf 2468 Reversed substitution. Fo...
ax12vALT 2469 Alternate proof of ~ ax12v...
2ax6elem 2470 We can always find values ...
2ax6e 2471 We can always find values ...
2sb5rf 2472 Reversed double substituti...
2sb6rf 2473 Reversed double substituti...
sbel2x 2474 Elimination of double subs...
sb4b 2475 Simplified definition of s...
sb4bOLD 2476 Obsolete version of ~ sb4b...
sb3b 2477 Simplified definition of s...
sb3 2478 One direction of a simplif...
sb1 2479 One direction of a simplif...
sb2 2480 One direction of a simplif...
sb3OLD 2481 Obsolete version of ~ sb3 ...
sb1OLD 2482 Obsolete version of ~ sb1 ...
sb3bOLD 2483 Obsolete version of ~ sb3b...
sb4a 2484 A version of one implicati...
dfsb1 2485 Alternate definition of su...
hbsb2 2486 Bound-variable hypothesis ...
nfsb2 2487 Bound-variable hypothesis ...
hbsb2a 2488 Special case of a bound-va...
sb4e 2489 One direction of a simplif...
hbsb2e 2490 Special case of a bound-va...
hbsb3 2491 If ` y ` is not free in ` ...
nfs1 2492 If ` y ` is not free in ` ...
axc16ALT 2493 Alternate proof of ~ axc16...
axc16gALT 2494 Alternate proof of ~ axc16...
equsb1 2495 Substitution applied to an...
equsb2 2496 Substitution applied to an...
dfsb2 2497 An alternate definition of...
dfsb3 2498 An alternate definition of...
drsb1 2499 Formula-building lemma for...
sb2ae 2500 In the case of two success...
sb6f 2501 Equivalence for substituti...
sb5f 2502 Equivalence for substituti...
nfsb4t 2503 A variable not free in a p...
nfsb4 2504 A variable not free in a p...
sbequ8 2505 Elimination of equality fr...
sbie 2506 Conversion of implicit sub...
sbied 2507 Conversion of implicit sub...
sbiedv 2508 Conversion of implicit sub...
2sbiev 2509 Conversion of double impli...
sbcom3 2510 Substituting ` y ` for ` x...
sbco 2511 A composition law for subs...
sbid2 2512 An identity law for substi...
sbid2v 2513 An identity law for substi...
sbidm 2514 An idempotent law for subs...
sbco2 2515 A composition law for subs...
sbco2d 2516 A composition law for subs...
sbco3 2517 A composition law for subs...
sbcom 2518 A commutativity law for su...
sbtrt 2519 Partially closed form of ~...
sbtr 2520 A partial converse to ~ sb...
sb8 2521 Substitution of variable i...
sb8e 2522 Substitution of variable i...
sb9 2523 Commutation of quantificat...
sb9i 2524 Commutation of quantificat...
sbhb 2525 Two ways of expressing " `...
nfsbd 2526 Deduction version of ~ nfs...
nfsb 2527 If ` z ` is not free in ` ...
nfsbOLD 2528 Obsolete version of ~ nfsb...
hbsb 2529 If ` z ` is not free in ` ...
sb7f 2530 This version of ~ dfsb7 do...
sb7h 2531 This version of ~ dfsb7 do...
sb10f 2532 Hao Wang's identity axiom ...
sbal1 2533 Check out ~ sbal for a ver...
sbal2 2534 Move quantifier in and out...
2sb8e 2535 An equivalent expression f...
dfmoeu 2536 An elementary proof of ~ m...
dfeumo 2537 An elementary proof showin...
mojust 2539 Soundness justification th...
nexmo 2541 Nonexistence implies uniqu...
exmo 2542 Any proposition holds for ...
moabs 2543 Absorption of existence co...
moim 2544 The at-most-one quantifier...
moimi 2545 The at-most-one quantifier...
moimdv 2546 The at-most-one quantifier...
mobi 2547 Equivalence theorem for th...
mobii 2548 Formula-building rule for ...
mobidv 2549 Formula-building rule for ...
mobid 2550 Formula-building rule for ...
moa1 2551 If an implication holds fo...
moan 2552 "At most one" is still the...
moani 2553 "At most one" is still tru...
moor 2554 "At most one" is still the...
mooran1 2555 "At most one" imports disj...
mooran2 2556 "At most one" exports disj...
nfmo1 2557 Bound-variable hypothesis ...
nfmod2 2558 Bound-variable hypothesis ...
nfmodv 2559 Bound-variable hypothesis ...
nfmov 2560 Bound-variable hypothesis ...
nfmod 2561 Bound-variable hypothesis ...
nfmo 2562 Bound-variable hypothesis ...
mof 2563 Version of ~ df-mo with di...
mo3 2564 Alternate definition of th...
mo 2565 Equivalent definitions of ...
mo4 2566 At-most-one quantifier exp...
mo4f 2567 At-most-one quantifier exp...
eu3v 2570 An alternate way to expres...
eujust 2571 Soundness justification th...
eujustALT 2572 Alternate proof of ~ eujus...
eu6lem 2573 Lemma of ~ eu6im . A diss...
eu6 2574 Alternate definition of th...
eu6im 2575 One direction of ~ eu6 nee...
euf 2576 Version of ~ eu6 with disj...
euex 2577 Existential uniqueness imp...
eumo 2578 Existential uniqueness imp...
eumoi 2579 Uniqueness inferred from e...
exmoeub 2580 Existence implies that uni...
exmoeu 2581 Existence is equivalent to...
moeuex 2582 Uniqueness implies that ex...
moeu 2583 Uniqueness is equivalent t...
eubi 2584 Equivalence theorem for th...
eubii 2585 Introduce unique existenti...
eubidv 2586 Formula-building rule for ...
eubid 2587 Formula-building rule for ...
nfeu1 2588 Bound-variable hypothesis ...
nfeu1ALT 2589 Alternate proof of ~ nfeu1...
nfeud2 2590 Bound-variable hypothesis ...
nfeudw 2591 Bound-variable hypothesis ...
nfeud 2592 Bound-variable hypothesis ...
nfeuw 2593 Bound-variable hypothesis ...
nfeu 2594 Bound-variable hypothesis ...
dfeu 2595 Rederive ~ df-eu from the ...
dfmo 2596 Rederive ~ df-mo from the ...
euequ 2597 There exists a unique set ...
sb8eulem 2598 Lemma. Factor out the com...
sb8euv 2599 Variable substitution in u...
sb8eu 2600 Variable substitution in u...
sb8mo 2601 Variable substitution for ...
cbvmovw 2602 Change bound variable. Us...
cbvmow 2603 Rule used to change bound ...
cbvmowOLD 2604 Obsolete version of ~ cbvm...
cbvmo 2605 Rule used to change bound ...
cbveuvw 2606 Change bound variable. Us...
cbveuw 2607 Version of ~ cbveu with a ...
cbveuwOLD 2608 Obsolete version of ~ cbve...
cbveu 2609 Rule used to change bound ...
cbveuALT 2610 Alternative proof of ~ cbv...
eu2 2611 An alternate way of defini...
eu1 2612 An alternate way to expres...
euor 2613 Introduce a disjunct into ...
euorv 2614 Introduce a disjunct into ...
euor2 2615 Introduce or eliminate a d...
sbmo 2616 Substitution into an at-mo...
eu4 2617 Uniqueness using implicit ...
euimmo 2618 Existential uniqueness imp...
euim 2619 Add unique existential qua...
moanimlem 2620 Factor out the common proo...
moanimv 2621 Introduction of a conjunct...
moanim 2622 Introduction of a conjunct...
euan 2623 Introduction of a conjunct...
moanmo 2624 Nested at-most-one quantif...
moaneu 2625 Nested at-most-one and uni...
euanv 2626 Introduction of a conjunct...
mopick 2627 "At most one" picks a vari...
moexexlem 2628 Factor out the proof skele...
2moexv 2629 Double quantification with...
moexexvw 2630 "At most one" double quant...
2moswapv 2631 A condition allowing to sw...
2euswapv 2632 A condition allowing to sw...
2euexv 2633 Double quantification with...
2exeuv 2634 Double existential uniquen...
eupick 2635 Existential uniqueness "pi...
eupicka 2636 Version of ~ eupick with c...
eupickb 2637 Existential uniqueness "pi...
eupickbi 2638 Theorem *14.26 in [Whitehe...
mopick2 2639 "At most one" can show the...
moexex 2640 "At most one" double quant...
moexexv 2641 "At most one" double quant...
2moex 2642 Double quantification with...
2euex 2643 Double quantification with...
2eumo 2644 Nested unique existential ...
2eu2ex 2645 Double existential uniquen...
2moswap 2646 A condition allowing to sw...
2euswap 2647 A condition allowing to sw...
2exeu 2648 Double existential uniquen...
2mo2 2649 Two ways of expressing "th...
2mo 2650 Two ways of expressing "th...
2mos 2651 Double "there exists at mo...
2eu1 2652 Double existential uniquen...
2eu1v 2653 Double existential uniquen...
2eu2 2654 Double existential uniquen...
2eu3 2655 Double existential uniquen...
2eu4 2656 This theorem provides us w...
2eu5 2657 An alternate definition of...
2eu6 2658 Two equivalent expressions...
2eu7 2659 Two equivalent expressions...
2eu8 2660 Two equivalent expressions...
euae 2661 Two ways to express "exact...
exists1 2662 Two ways to express "exact...
exists2 2663 A condition implying that ...
barbara 2664 "Barbara", one of the fund...
celarent 2665 "Celarent", one of the syl...
darii 2666 "Darii", one of the syllog...
dariiALT 2667 Alternate proof of ~ darii...
ferio 2668 "Ferio" ("Ferioque"), one ...
barbarilem 2669 Lemma for ~ barbari and th...
barbari 2670 "Barbari", one of the syll...
barbariALT 2671 Alternate proof of ~ barba...
celaront 2672 "Celaront", one of the syl...
cesare 2673 "Cesare", one of the syllo...
camestres 2674 "Camestres", one of the sy...
festino 2675 "Festino", one of the syll...
festinoALT 2676 Alternate proof of ~ festi...
baroco 2677 "Baroco", one of the syllo...
barocoALT 2678 Alternate proof of ~ festi...
cesaro 2679 "Cesaro", one of the syllo...
camestros 2680 "Camestros", one of the sy...
datisi 2681 "Datisi", one of the syllo...
disamis 2682 "Disamis", one of the syll...
ferison 2683 "Ferison", one of the syll...
bocardo 2684 "Bocardo", one of the syll...
darapti 2685 "Darapti", one of the syll...
daraptiALT 2686 Alternate proof of ~ darap...
felapton 2687 "Felapton", one of the syl...
calemes 2688 "Calemes", one of the syll...
dimatis 2689 "Dimatis", one of the syll...
fresison 2690 "Fresison", one of the syl...
calemos 2691 "Calemos", one of the syll...
fesapo 2692 "Fesapo", one of the syllo...
bamalip 2693 "Bamalip", one of the syll...
axia1 2694 Left 'and' elimination (in...
axia2 2695 Right 'and' elimination (i...
axia3 2696 'And' introduction (intuit...
axin1 2697 'Not' introduction (intuit...
axin2 2698 'Not' elimination (intuiti...
axio 2699 Definition of 'or' (intuit...
axi4 2700 Specialization (intuitioni...
axi5r 2701 Converse of ~ axc4 (intuit...
axial 2702 The setvar ` x ` is not fr...
axie1 2703 The setvar ` x ` is not fr...
axie2 2704 A key property of existent...
axi9 2705 Axiom of existence (intuit...
axi10 2706 Axiom of Quantifier Substi...
axi12 2707 Axiom of Quantifier Introd...
axbnd 2708 Axiom of Bundling (intuiti...
axexte 2710 The axiom of extensionalit...
axextg 2711 A generalization of the ax...
axextb 2712 A bidirectional version of...
axextmo 2713 There exists at most one s...
nulmo 2714 There exists at most one e...
eleq1ab 2717 Extension (in the sense of...
cleljustab 2718 Extension of ~ cleljust fr...
abid 2719 Simplification of class ab...
vexwt 2720 A standard theorem of pred...
vexw 2721 If ` ph ` is a theorem, th...
vextru 2722 Every setvar is a member o...
nfsab1 2723 Bound-variable hypothesis ...
hbab1 2724 Bound-variable hypothesis ...
hbab1OLD 2725 Obsolete version of ~ hbab...
hbab 2726 Bound-variable hypothesis ...
hbabg 2727 Bound-variable hypothesis ...
nfsab 2728 Bound-variable hypothesis ...
nfsabg 2729 Bound-variable hypothesis ...
dfcleq 2731 The defining characterizat...
cvjust 2732 Every set is a class. Pro...
ax9ALT 2733 Proof of ~ ax-9 from Tarsk...
eleq2w2 2734 A weaker version of ~ eleq...
eqriv 2735 Infer equality of classes ...
eqrdv 2736 Deduce equality of classes...
eqrdav 2737 Deduce equality of classes...
eqid 2738 Law of identity (reflexivi...
eqidd 2739 Class identity law with an...
eqeq1d 2740 Deduction from equality to...
eqeq1dALT 2741 Alternate proof of ~ eqeq1...
eqeq1 2742 Equality implies equivalen...
eqeq1i 2743 Inference from equality to...
eqcomd 2744 Deduction from commutative...
eqcom 2745 Commutative law for class ...
eqcoms 2746 Inference applying commuta...
eqcomi 2747 Inference from commutative...
neqcomd 2748 Commute an inequality. (C...
eqeq2d 2749 Deduction from equality to...
eqeq2 2750 Equality implies equivalen...
eqeq2i 2751 Inference from equality to...
eqeqan12d 2752 A useful inference for sub...
eqeqan12rd 2753 A useful inference for sub...
eqeq12d 2754 A useful inference for sub...
eqeq12 2755 Equality relationship amon...
eqeq12i 2756 A useful inference for sub...
eqeq12OLD 2757 Obsolete version of ~ eqeq...
eqeq12dOLD 2758 Obsolete version of ~ eqeq...
eqeqan12dOLD 2759 Obsolete version of ~ eqeq...
eqeqan12dALT 2760 Alternate proof of ~ eqeqa...
eqtr 2761 Transitive law for class e...
eqtr2 2762 A transitive law for class...
eqtr2OLD 2763 Obsolete version of eqtr2 ...
eqtr3 2764 A transitive law for class...
eqtr3OLD 2765 Obsolete version of ~ eqtr...
eqtri 2766 An equality transitivity i...
eqtr2i 2767 An equality transitivity i...
eqtr3i 2768 An equality transitivity i...
eqtr4i 2769 An equality transitivity i...
3eqtri 2770 An inference from three ch...
3eqtrri 2771 An inference from three ch...
3eqtr2i 2772 An inference from three ch...
3eqtr2ri 2773 An inference from three ch...
3eqtr3i 2774 An inference from three ch...
3eqtr3ri 2775 An inference from three ch...
3eqtr4i 2776 An inference from three ch...
3eqtr4ri 2777 An inference from three ch...
eqtrd 2778 An equality transitivity d...
eqtr2d 2779 An equality transitivity d...
eqtr3d 2780 An equality transitivity e...
eqtr4d 2781 An equality transitivity e...
3eqtrd 2782 A deduction from three cha...
3eqtrrd 2783 A deduction from three cha...
3eqtr2d 2784 A deduction from three cha...
3eqtr2rd 2785 A deduction from three cha...
3eqtr3d 2786 A deduction from three cha...
3eqtr3rd 2787 A deduction from three cha...
3eqtr4d 2788 A deduction from three cha...
3eqtr4rd 2789 A deduction from three cha...
eqtrid 2790 An equality transitivity d...
syl5eq 2791 Renamed to ~ eqtrid . Kep...
eqtr2id 2792 An equality transitivity d...
eqtr3id 2793 An equality transitivity d...
eqtr3di 2794 An equality transitivity d...
eqtrdi 2795 An equality transitivity d...
eqtr2di 2796 An equality transitivity d...
eqtr4di 2797 An equality transitivity d...
eqtr4id 2798 An equality transitivity d...
sylan9eq 2799 An equality transitivity d...
sylan9req 2800 An equality transitivity d...
sylan9eqr 2801 An equality transitivity d...
3eqtr3g 2802 A chained equality inferen...
3eqtr3a 2803 A chained equality inferen...
3eqtr4g 2804 A chained equality inferen...
3eqtr4a 2805 A chained equality inferen...
eq2tri 2806 A compound transitive infe...
abbi1 2807 Equivalent formulas yield ...
abbidv 2808 Equivalent wff's yield equ...
abbii 2809 Equivalent wff's yield equ...
abbid 2810 Equivalent wff's yield equ...
abbi 2811 Equivalent formulas define...
cbvabv 2812 Rule used to change bound ...
cbvabw 2813 Rule used to change bound ...
cbvabwOLD 2814 Obsolete version of ~ cbva...
cbvab 2815 Rule used to change bound ...
abeq2w 2816 Version of ~ abeq2 using i...
dfclel 2818 Characterization of the el...
elissetv 2819 An element of a class exis...
elisset 2820 An element of a class exis...
eleq1w 2821 Weaker version of ~ eleq1 ...
eleq2w 2822 Weaker version of ~ eleq2 ...
eleq1d 2823 Deduction from equality to...
eleq2d 2824 Deduction from equality to...
eleq2dALT 2825 Alternate proof of ~ eleq2...
eleq1 2826 Equality implies equivalen...
eleq2 2827 Equality implies equivalen...
eleq12 2828 Equality implies equivalen...
eleq1i 2829 Inference from equality to...
eleq2i 2830 Inference from equality to...
eleq12i 2831 Inference from equality to...
eqneltri 2832 If a class is not an eleme...
eleq12d 2833 Deduction from equality to...
eleq1a 2834 A transitive-type law rela...
eqeltri 2835 Substitution of equal clas...
eqeltrri 2836 Substitution of equal clas...
eleqtri 2837 Substitution of equal clas...
eleqtrri 2838 Substitution of equal clas...
eqeltrd 2839 Substitution of equal clas...
eqeltrrd 2840 Deduction that substitutes...
eleqtrd 2841 Deduction that substitutes...
eleqtrrd 2842 Deduction that substitutes...
eqeltrid 2843 A membership and equality ...
eqeltrrid 2844 A membership and equality ...
eleqtrid 2845 A membership and equality ...
eleqtrrid 2846 A membership and equality ...
eqeltrdi 2847 A membership and equality ...
eqeltrrdi 2848 A membership and equality ...
eleqtrdi 2849 A membership and equality ...
eleqtrrdi 2850 A membership and equality ...
3eltr3i 2851 Substitution of equal clas...
3eltr4i 2852 Substitution of equal clas...
3eltr3d 2853 Substitution of equal clas...
3eltr4d 2854 Substitution of equal clas...
3eltr3g 2855 Substitution of equal clas...
3eltr4g 2856 Substitution of equal clas...
eleq2s 2857 Substitution of equal clas...
eqneltrd 2858 If a class is not an eleme...
eqneltrrd 2859 If a class is not an eleme...
neleqtrd 2860 If a class is not an eleme...
neleqtrrd 2861 If a class is not an eleme...
cleqh 2862 Establish equality between...
nelneq 2863 A way of showing two class...
nelneq2 2864 A way of showing two class...
eqsb1 2865 Substitution for the left-...
clelsb1 2866 Substitution for the first...
clelsb2 2867 Substitution for the secon...
hbxfreq 2868 A utility lemma to transfe...
hblem 2869 Change the free variable o...
hblemg 2870 Change the free variable o...
abeq2 2871 Equality of a class variab...
abeq1 2872 Equality of a class variab...
abeq2d 2873 Equality of a class variab...
abeq2i 2874 Equality of a class variab...
abeq1i 2875 Equality of a class variab...
abbi2dv 2876 Deduction from a wff to a ...
abbi1dv 2877 Deduction from a wff to a ...
abbi2i 2878 Equality of a class variab...
abbiOLD 2879 Obsolete proof of ~ abbi a...
abid1 2880 Every class is equal to a ...
abid2 2881 A simplification of class ...
clelab 2882 Membership of a class vari...
clelabOLD 2883 Obsolete version of ~ clel...
clabel 2884 Membership of a class abst...
sbab 2885 The right-hand side of the...
nfcjust 2887 Justification theorem for ...
nfci 2889 Deduce that a class ` A ` ...
nfcii 2890 Deduce that a class ` A ` ...
nfcr 2891 Consequence of the not-fre...
nfcrALT 2892 Alternate version of ~ nfc...
nfcri 2893 Consequence of the not-fre...
nfcd 2894 Deduce that a class ` A ` ...
nfcrd 2895 Consequence of the not-fre...
nfcriOLD 2896 Obsolete version of ~ nfcr...
nfcriOLDOLD 2897 Obsolete version of ~ nfcr...
nfcrii 2898 Consequence of the not-fre...
nfcriiOLD 2899 Obsolete version of ~ nfcr...
nfcriOLDOLDOLD 2900 Obsolete version of ~ nfcr...
nfceqdf 2901 An equality theorem for ef...
nfceqdfOLD 2902 Obsolete version of ~ nfce...
nfceqi 2903 Equality theorem for class...
nfcxfr 2904 A utility lemma to transfe...
nfcxfrd 2905 A utility lemma to transfe...
nfcv 2906 If ` x ` is disjoint from ...
nfcvd 2907 If ` x ` is disjoint from ...
nfab1 2908 Bound-variable hypothesis ...
nfnfc1 2909 The setvar ` x ` is bound ...
clelsb1fw 2910 Substitution for the first...
clelsb1f 2911 Substitution for the first...
nfab 2912 Bound-variable hypothesis ...
nfabg 2913 Bound-variable hypothesis ...
nfaba1 2914 Bound-variable hypothesis ...
nfaba1g 2915 Bound-variable hypothesis ...
nfeqd 2916 Hypothesis builder for equ...
nfeld 2917 Hypothesis builder for ele...
nfnfc 2918 Hypothesis builder for ` F...
nfeq 2919 Hypothesis builder for equ...
nfel 2920 Hypothesis builder for ele...
nfeq1 2921 Hypothesis builder for equ...
nfel1 2922 Hypothesis builder for ele...
nfeq2 2923 Hypothesis builder for equ...
nfel2 2924 Hypothesis builder for ele...
drnfc1 2925 Formula-building lemma for...
drnfc1OLD 2926 Obsolete version of ~ drnf...
drnfc2 2927 Formula-building lemma for...
drnfc2OLD 2928 Obsolete version of ~ drnf...
nfabdw 2929 Bound-variable hypothesis ...
nfabdwOLD 2930 Obsolete version of ~ nfab...
nfabd 2931 Bound-variable hypothesis ...
nfabd2 2932 Bound-variable hypothesis ...
dvelimdc 2933 Deduction form of ~ dvelim...
dvelimc 2934 Version of ~ dvelim for cl...
nfcvf 2935 If ` x ` and ` y ` are dis...
nfcvf2 2936 If ` x ` and ` y ` are dis...
cleqf 2937 Establish equality between...
abid2f 2938 A simplification of class ...
abeq2f 2939 Equality of a class variab...
sbabel 2940 Theorem to move a substitu...
sbabelOLD 2941 Obsolete version of ~ sbab...
neii 2944 Inference associated with ...
neir 2945 Inference associated with ...
nne 2946 Negation of inequality. (...
neneqd 2947 Deduction eliminating ineq...
neneq 2948 From inequality to non-equ...
neqned 2949 If it is not the case that...
neqne 2950 From non-equality to inequ...
neirr 2951 No class is unequal to its...
exmidne 2952 Excluded middle with equal...
eqneqall 2953 A contradiction concerning...
nonconne 2954 Law of noncontradiction wi...
necon3ad 2955 Contrapositive law deducti...
necon3bd 2956 Contrapositive law deducti...
necon2ad 2957 Contrapositive inference f...
necon2bd 2958 Contrapositive inference f...
necon1ad 2959 Contrapositive deduction f...
necon1bd 2960 Contrapositive deduction f...
necon4ad 2961 Contrapositive inference f...
necon4bd 2962 Contrapositive inference f...
necon3d 2963 Contrapositive law deducti...
necon1d 2964 Contrapositive law deducti...
necon2d 2965 Contrapositive inference f...
necon4d 2966 Contrapositive inference f...
necon3ai 2967 Contrapositive inference f...
necon3aiOLD 2968 Obsolete version of ~ neco...
necon3bi 2969 Contrapositive inference f...
necon1ai 2970 Contrapositive inference f...
necon1bi 2971 Contrapositive inference f...
necon2ai 2972 Contrapositive inference f...
necon2bi 2973 Contrapositive inference f...
necon4ai 2974 Contrapositive inference f...
necon3i 2975 Contrapositive inference f...
necon1i 2976 Contrapositive inference f...
necon2i 2977 Contrapositive inference f...
necon4i 2978 Contrapositive inference f...
necon3abid 2979 Deduction from equality to...
necon3bbid 2980 Deduction from equality to...
necon1abid 2981 Contrapositive deduction f...
necon1bbid 2982 Contrapositive inference f...
necon4abid 2983 Contrapositive law deducti...
necon4bbid 2984 Contrapositive law deducti...
necon2abid 2985 Contrapositive deduction f...
necon2bbid 2986 Contrapositive deduction f...
necon3bid 2987 Deduction from equality to...
necon4bid 2988 Contrapositive law deducti...
necon3abii 2989 Deduction from equality to...
necon3bbii 2990 Deduction from equality to...
necon1abii 2991 Contrapositive inference f...
necon1bbii 2992 Contrapositive inference f...
necon2abii 2993 Contrapositive inference f...
necon2bbii 2994 Contrapositive inference f...
necon3bii 2995 Inference from equality to...
necom 2996 Commutation of inequality....
necomi 2997 Inference from commutative...
necomd 2998 Deduction from commutative...
nesym 2999 Characterization of inequa...
nesymi 3000 Inference associated with ...
nesymir 3001 Inference associated with ...
neeq1d 3002 Deduction for inequality. ...
neeq2d 3003 Deduction for inequality. ...
neeq12d 3004 Deduction for inequality. ...
neeq1 3005 Equality theorem for inequ...
neeq2 3006 Equality theorem for inequ...
neeq1i 3007 Inference for inequality. ...
neeq2i 3008 Inference for inequality. ...
neeq12i 3009 Inference for inequality. ...
eqnetrd 3010 Substitution of equal clas...
eqnetrrd 3011 Substitution of equal clas...
neeqtrd 3012 Substitution of equal clas...
eqnetri 3013 Substitution of equal clas...
eqnetrri 3014 Substitution of equal clas...
neeqtri 3015 Substitution of equal clas...
neeqtrri 3016 Substitution of equal clas...
neeqtrrd 3017 Substitution of equal clas...
eqnetrrid 3018 A chained equality inferen...
3netr3d 3019 Substitution of equality i...
3netr4d 3020 Substitution of equality i...
3netr3g 3021 Substitution of equality i...
3netr4g 3022 Substitution of equality i...
nebi 3023 Contraposition law for ine...
pm13.18 3024 Theorem *13.18 in [Whitehe...
pm13.181 3025 Theorem *13.181 in [Whiteh...
pm13.181OLD 3026 Obsolete version of ~ pm13...
pm2.61ine 3027 Inference eliminating an i...
pm2.21ddne 3028 A contradiction implies an...
pm2.61ne 3029 Deduction eliminating an i...
pm2.61dne 3030 Deduction eliminating an i...
pm2.61dane 3031 Deduction eliminating an i...
pm2.61da2ne 3032 Deduction eliminating two ...
pm2.61da3ne 3033 Deduction eliminating thre...
pm2.61iine 3034 Equality version of ~ pm2....
neor 3035 Logical OR with an equalit...
neanior 3036 A De Morgan's law for ineq...
ne3anior 3037 A De Morgan's law for ineq...
neorian 3038 A De Morgan's law for ineq...
nemtbir 3039 An inference from an inequ...
nelne1 3040 Two classes are different ...
nelne2 3041 Two classes are different ...
nelelne 3042 Two classes are different ...
neneor 3043 If two classes are differe...
nfne 3044 Bound-variable hypothesis ...
nfned 3045 Bound-variable hypothesis ...
nabbi 3046 Not equivalent wff's corre...
mteqand 3047 A modus tollens deduction ...
neli 3050 Inference associated with ...
nelir 3051 Inference associated with ...
neleq12d 3052 Equality theorem for negat...
neleq1 3053 Equality theorem for negat...
neleq2 3054 Equality theorem for negat...
nfnel 3055 Bound-variable hypothesis ...
nfneld 3056 Bound-variable hypothesis ...
nnel 3057 Negation of negated member...
elnelne1 3058 Two classes are different ...
elnelne2 3059 Two classes are different ...
nelcon3d 3060 Contrapositive law deducti...
elnelall 3061 A contradiction concerning...
pm2.61danel 3062 Deduction eliminating an e...
rgen 3073 Generalization rule for re...
ralel 3074 All elements of a class ar...
rgenw 3075 Generalization rule for re...
rgen2w 3076 Generalization rule for re...
mprg 3077 Modus ponens combined with...
mprgbir 3078 Modus ponens on biconditio...
alral 3079 Universal quantification i...
raln 3080 Restricted universally qua...
ral2imi 3081 Inference quantifying ante...
ralim 3082 Distribution of restricted...
ralimi2 3083 Inference quantifying both...
ralimia 3084 Inference quantifying both...
ralimiaa 3085 Inference quantifying both...
ralimi 3086 Inference quantifying both...
2ralimi 3087 Inference quantifying both...
ralbii2 3088 Inference adding different...
ralbiia 3089 Inference adding restricte...
ralbii 3090 Inference adding restricte...
2ralbii 3091 Inference adding two restr...
ralbi 3092 Distribute a restricted un...
ralanid 3093 Cancellation law for restr...
r19.26 3094 Restricted quantifier vers...
r19.26-2 3095 Restricted quantifier vers...
r19.26-3 3096 Version of ~ r19.26 with t...
r19.26m 3097 Version of ~ 19.26 and ~ r...
ralbiim 3098 Split a biconditional and ...
2ralbiim 3099 Split a biconditional and ...
r19.21v 3100 Restricted quantifier vers...
ralimdv2 3101 Inference quantifying both...
ralimdva 3102 Deduction quantifying both...
ralimdv 3103 Deduction quantifying both...
ralimdvva 3104 Deduction doubly quantifyi...
hbralrimi 3105 Inference from Theorem 19....
ralrimiv 3106 Inference from Theorem 19....
ralrimiva 3107 Inference from Theorem 19....
ralrimivw 3108 Inference from Theorem 19....
r19.27v 3109 Restricted quantitifer ver...
r19.28v 3110 Restricted quantifier vers...
ralrimdv 3111 Inference from Theorem 19....
ralrimdva 3112 Inference from Theorem 19....
ralrimivv 3113 Inference from Theorem 19....
ralrimivva 3114 Inference from Theorem 19....
ralrimivvva 3115 Inference from Theorem 19....
ralrimdvv 3116 Inference from Theorem 19....
ralrimdvva 3117 Inference from Theorem 19....
ralbidv2 3118 Formula-building rule for ...
ralbidva 3119 Formula-building rule for ...
ralbidv 3120 Formula-building rule for ...
2ralbidva 3121 Formula-building rule for ...
2ralbidv 3122 Formula-building rule for ...
r2allem 3123 Lemma factoring out common...
r2al 3124 Double restricted universa...
r3al 3125 Triple restricted universa...
rgen2 3126 Generalization rule for re...
rgen3 3127 Generalization rule for re...
rspw 3128 Restricted specialization....
rsp 3129 Restricted specialization....
rspa 3130 Restricted specialization....
rspec 3131 Specialization rule for re...
r19.21bi 3132 Inference from Theorem 19....
r19.21be 3133 Inference from Theorem 19....
rspec2 3134 Specialization rule for re...
rspec3 3135 Specialization rule for re...
rsp2 3136 Restricted specialization,...
r19.21t 3137 Restricted quantifier vers...
r19.21 3138 Restricted quantifier vers...
ralrimi 3139 Inference from Theorem 19....
ralimdaa 3140 Deduction quantifying both...
ralrimd 3141 Inference from Theorem 19....
nfra1 3142 The setvar ` x ` is not fr...
hbra1 3143 The setvar ` x ` is not fr...
hbral 3144 Bound-variable hypothesis ...
r2alf 3145 Double restricted universa...
nfraldw 3146 Deduction version of ~ nfr...
nfraldwOLD 3147 Obsolete version of ~ nfra...
nfrald 3148 Deduction version of ~ nfr...
nfralw 3149 Bound-variable hypothesis ...
nfral 3150 Bound-variable hypothesis ...
nfra2w 3151 Similar to Lemma 24 of [Mo...
nfra2wOLD 3152 Obsolete version of ~ nfra...
nfra2wOLDOLD 3153 Obsolete version of ~ nfra...
nfra2 3154 Similar to Lemma 24 of [Mo...
rgen2a 3155 Generalization rule for re...
ralbida 3156 Formula-building rule for ...
ralbidaOLD 3157 Obsolete version of ~ ralb...
ralbid 3158 Formula-building rule for ...
2ralbida 3159 Formula-building rule for ...
raleqbii 3160 Equality deduction for res...
ralcom4 3161 Commutation of restricted ...
ralcom4OLD 3162 Obsolete version of ~ ralc...
ralnex 3163 Relationship between restr...
dfral2 3164 Relationship between restr...
rexnal 3165 Relationship between restr...
dfrex2 3166 Relationship between restr...
rexex 3167 Restricted existence impli...
rexim 3168 Theorem 19.22 of [Margaris...
rexbi 3169 Distribute restricted quan...
rexbiOLD 3170 Obsolete version of ~ rexb...
reximi2 3171 Inference quantifying both...
reximia 3172 Inference quantifying both...
reximiaOLD 3173 Obsolete version of ~ rexi...
reximi 3174 Inference quantifying both...
rexbii2 3175 Inference adding different...
rexbiia 3176 Inference adding restricte...
rexbii 3177 Inference adding restricte...
2rexbii 3178 Inference adding two restr...
rexcom4 3179 Commutation of restricted ...
2ex2rexrot 3180 Rotate two existential qua...
rexcom4a 3181 Specialized existential co...
rexanid 3182 Cancellation law for restr...
r19.29 3183 Restricted quantifier vers...
r19.29r 3184 Restricted quantifier vers...
r19.29imd 3185 Theorem 19.29 of [Margaris...
rexnal2 3186 Relationship between two r...
rexnal3 3187 Relationship between three...
ralnex2 3188 Relationship between two r...
ralnex3 3189 Relationship between three...
ralinexa 3190 A transformation of restri...
rexanali 3191 A transformation of restri...
nrexralim 3192 Negation of a complex pred...
risset 3193 Two ways to say " ` A ` be...
nelb 3194 A definition of ` -. A e. ...
nelbOLD 3195 Obsolete version of ~ nelb...
nrex 3196 Inference adding restricte...
nrexdv 3197 Deduction adding restricte...
reximdv2 3198 Deduction quantifying both...
reximdvai 3199 Deduction quantifying both...
reximdvaiOLD 3200 Obsolete version of ~ rexi...
reximdv 3201 Deduction from Theorem 19....
reximdva 3202 Deduction quantifying both...
reximddv 3203 Deduction from Theorem 19....
reximssdv 3204 Derivation of a restricted...
reximdvva 3205 Deduction doubly quantifyi...
reximddv2 3206 Double deduction from Theo...
r19.23v 3207 Restricted quantifier vers...
rexlimiv 3208 Inference from Theorem 19....
rexlimiva 3209 Inference from Theorem 19....
rexlimivw 3210 Weaker version of ~ rexlim...
rexlimdv 3211 Inference from Theorem 19....
rexlimdva 3212 Inference from Theorem 19....
rexlimdvaa 3213 Inference from Theorem 19....
rexlimdv3a 3214 Inference from Theorem 19....
rexlimdva2 3215 Inference from Theorem 19....
r19.29an 3216 A commonly used pattern in...
r19.29a 3217 A commonly used pattern in...
rexlimdvw 3218 Inference from Theorem 19....
rexlimddv 3219 Restricted existential eli...
rexlimivv 3220 Inference from Theorem 19....
rexlimdvv 3221 Inference from Theorem 19....
rexlimdvva 3222 Inference from Theorem 19....
rexbidv2 3223 Formula-building rule for ...
rexbidva 3224 Formula-building rule for ...
rexbidv 3225 Formula-building rule for ...
2rexbiia 3226 Inference adding two restr...
2rexbidva 3227 Formula-building rule for ...
2rexbidv 3228 Formula-building rule for ...
rexralbidv 3229 Formula-building rule for ...
r2exlem 3230 Lemma factoring out common...
r2ex 3231 Double restricted existent...
rspe 3232 Restricted specialization....
rsp2e 3233 Restricted specialization....
nfre1 3234 The setvar ` x ` is not fr...
nfrexd 3235 Deduction version of ~ nfr...
nfrexdg 3236 Deduction version of ~ nfr...
nfrex 3237 Bound-variable hypothesis ...
nfrexg 3238 Bound-variable hypothesis ...
reximdai 3239 Deduction from Theorem 19....
reximd2a 3240 Deduction quantifying both...
r19.23t 3241 Closed theorem form of ~ r...
r19.23 3242 Restricted quantifier vers...
rexlimi 3243 Restricted quantifier vers...
rexlimd2 3244 Version of ~ rexlimd with ...
rexlimd 3245 Deduction form of ~ rexlim...
rexbida 3246 Formula-building rule for ...
rexbidvaALT 3247 Alternate proof of ~ rexbi...
rexbid 3248 Formula-building rule for ...
rexbidvALT 3249 Alternate proof of ~ rexbi...
ralrexbid 3250 Formula-building rule for ...
ralrexbidOLD 3251 Obsolete version of ~ ralr...
r19.12 3252 Restricted quantifier vers...
r19.12OLD 3253 Obsolete version of ~ 19.1...
r2exf 3254 Double restricted existent...
rexeqbii 3255 Equality deduction for res...
reuanid 3256 Cancellation law for restr...
rmoanid 3257 Cancellation law for restr...
r19.29af2 3258 A commonly used pattern ba...
r19.29af 3259 A commonly used pattern ba...
2r19.29 3260 Theorem ~ r19.29 with two ...
r19.29d2r 3261 Theorem 19.29 of [Margaris...
r19.29d2rOLD 3262 Obsolete version of ~ r19....
r19.29vva 3263 A commonly used pattern ba...
r19.29vvaOLD 3264 Obsolete version of ~ r19....
r19.30 3265 Restricted quantifier vers...
r19.30OLD 3266 Obsolete version of ~ 19.3...
r19.32v 3267 Restricted quantifier vers...
r19.35 3268 Restricted quantifier vers...
r19.36v 3269 Restricted quantifier vers...
r19.37 3270 Restricted quantifier vers...
r19.37v 3271 Restricted quantifier vers...
r19.40 3272 Restricted quantifier vers...
r19.41v 3273 Restricted quantifier vers...
r19.41 3274 Restricted quantifier vers...
r19.41vv 3275 Version of ~ r19.41v with ...
r19.42v 3276 Restricted quantifier vers...
r19.43 3277 Restricted quantifier vers...
r19.44v 3278 One direction of a restric...
r19.45v 3279 Restricted quantifier vers...
ralcom 3280 Commutation of restricted ...
rexcom 3281 Commutation of restricted ...
ralcomf 3282 Commutation of restricted ...
rexcomf 3283 Commutation of restricted ...
ralcom13 3284 Swap first and third restr...
rexcom13 3285 Swap first and third restr...
ralrot3 3286 Rotate three restricted un...
rexrot4 3287 Rotate four restricted exi...
ralcom2 3288 Commutation of restricted ...
ralcom3 3289 A commutation law for rest...
reeanlem 3290 Lemma factoring out common...
reean 3291 Rearrange restricted exist...
reeanv 3292 Rearrange restricted exist...
3reeanv 3293 Rearrange three restricted...
2ralor 3294 Distribute restricted univ...
2ralorOLD 3295 Obsolete version of ~ 2ral...
nfreu1 3296 The setvar ` x ` is not fr...
nfrmo1 3297 The setvar ` x ` is not fr...
nfreud 3298 Deduction version of ~ nfr...
nfrmod 3299 Deduction version of ~ nfr...
nfreuw 3300 Bound-variable hypothesis ...
nfrmow 3301 Bound-variable hypothesis ...
nfreu 3302 Bound-variable hypothesis ...
nfrmo 3303 Bound-variable hypothesis ...
rabid 3304 An "identity" law of concr...
rabrab 3305 Abstract builder restricte...
rabidim1 3306 Membership in a restricted...
rabid2 3307 An "identity" law for rest...
rabid2f 3308 An "identity" law for rest...
rabbi 3309 Equivalent wff's correspon...
nfrab1 3310 The abstraction variable i...
nfrabw 3311 A variable not free in a w...
nfrab 3312 A variable not free in a w...
reubida 3313 Formula-building rule for ...
reubidva 3314 Formula-building rule for ...
reubidv 3315 Formula-building rule for ...
reubiia 3316 Formula-building rule for ...
reubii 3317 Formula-building rule for ...
rmobida 3318 Formula-building rule for ...
rmobidva 3319 Formula-building rule for ...
rmobidv 3320 Formula-building rule for ...
rmobiia 3321 Formula-building rule for ...
rmobii 3322 Formula-building rule for ...
raleqf 3323 Equality theorem for restr...
rexeqf 3324 Equality theorem for restr...
reueq1f 3325 Equality theorem for restr...
rmoeq1f 3326 Equality theorem for restr...
raleqbidv 3327 Equality deduction for res...
rexeqbidv 3328 Equality deduction for res...
raleqbidvv 3329 Version of ~ raleqbidv wit...
rexeqbidvv 3330 Version of ~ rexeqbidv wit...
raleqbi1dv 3331 Equality deduction for res...
rexeqbi1dv 3332 Equality deduction for res...
raleq 3333 Equality theorem for restr...
rexeq 3334 Equality theorem for restr...
reueq1 3335 Equality theorem for restr...
rmoeq1 3336 Equality theorem for restr...
raleqi 3337 Equality inference for res...
rexeqi 3338 Equality inference for res...
raleqdv 3339 Equality deduction for res...
rexeqdv 3340 Equality deduction for res...
reueqd 3341 Equality deduction for res...
rmoeqd 3342 Equality deduction for res...
raleqbid 3343 Equality deduction for res...
rexeqbid 3344 Equality deduction for res...
raleqbidva 3345 Equality deduction for res...
rexeqbidva 3346 Equality deduction for res...
raleleq 3347 All elements of a class ar...
raleleqALT 3348 Alternate proof of ~ ralel...
moel 3349 "At most one" element in a...
mormo 3350 Unrestricted "at most one"...
reu5 3351 Restricted uniqueness in t...
reurex 3352 Restricted unique existenc...
2reu2rex 3353 Double restricted existent...
reurmo 3354 Restricted existential uni...
rmo5 3355 Restricted "at most one" i...
nrexrmo 3356 Nonexistence implies restr...
reueubd 3357 Restricted existential uni...
cbvralfw 3358 Rule used to change bound ...
cbvralfwOLD 3359 Obsolete version of ~ cbvr...
cbvrexfw 3360 Rule used to change bound ...
cbvralf 3361 Rule used to change bound ...
cbvrexf 3362 Rule used to change bound ...
cbvralw 3363 Rule used to change bound ...
cbvrexw 3364 Rule used to change bound ...
cbvreuw 3365 Change the bound variable ...
cbvrmow 3366 Change the bound variable ...
cbvrmowOLD 3367 Obsolete version of ~ cbvr...
cbvral 3368 Rule used to change bound ...
cbvrex 3369 Rule used to change bound ...
cbvreu 3370 Change the bound variable ...
cbvrmo 3371 Change the bound variable ...
cbvralvw 3372 Change the bound variable ...
cbvrexvw 3373 Change the bound variable ...
cbvrmovw 3374 Change the bound variable ...
cbvreuvw 3375 Change the bound variable ...
cbvreuvwOLD 3376 Obsolete version of ~ cbvr...
cbvralv 3377 Change the bound variable ...
cbvrexv 3378 Change the bound variable ...
cbvreuv 3379 Change the bound variable ...
cbvrmov 3380 Change the bound variable ...
cbvraldva2 3381 Rule used to change the bo...
cbvrexdva2 3382 Rule used to change the bo...
cbvraldva 3383 Rule used to change the bo...
cbvrexdva 3384 Rule used to change the bo...
cbvral2vw 3385 Change bound variables of ...
cbvrex2vw 3386 Change bound variables of ...
cbvral3vw 3387 Change bound variables of ...
cbvral2v 3388 Change bound variables of ...
cbvrex2v 3389 Change bound variables of ...
cbvral3v 3390 Change bound variables of ...
cbvralsvw 3391 Change bound variable by u...
cbvrexsvw 3392 Change bound variable by u...
cbvralsv 3393 Change bound variable by u...
cbvrexsv 3394 Change bound variable by u...
sbralie 3395 Implicit to explicit subst...
rabbiia 3396 Equivalent formulas yield ...
rabbii 3397 Equivalent wff's correspon...
rabbida 3398 Equivalent wff's yield equ...
rabbid 3399 Version of ~ rabbidv with ...
rabbidva2 3400 Equivalent wff's yield equ...
rabbia2 3401 Equivalent wff's yield equ...
rabbidva 3402 Equivalent wff's yield equ...
rabbidvaOLD 3403 Obsolete proof of ~ rabbid...
rabbidv 3404 Equivalent wff's yield equ...
rabeqf 3405 Equality theorem for restr...
rabeqi 3406 Equality theorem for restr...
rabeqiOLD 3407 Obsolete version of ~ rabe...
rabeq 3408 Equality theorem for restr...
rabeqdv 3409 Equality of restricted cla...
rabeqbidv 3410 Equality of restricted cla...
rabeqbidva 3411 Equality of restricted cla...
rabeq2i 3412 Inference from equality of...
rabswap 3413 Swap with a membership rel...
cbvrabw 3414 Rule to change the bound v...
cbvrab 3415 Rule to change the bound v...
cbvrabv 3416 Rule to change the bound v...
rabrabi 3417 Abstract builder restricte...
rabrabiOLD 3418 Obsolete version of ~ rabr...
rabeqcda 3419 When ` ps ` is always true...
ralrimia 3420 Inference from Theorem 19....
ralimda 3421 Deduction quantifying both...
vjust 3423 Justification theorem for ...
dfv2 3425 Alternate definition of th...
vex 3426 All setvar variables are s...
vexOLD 3427 Obsolete version of ~ vex ...
elv 3428 If a proposition is implie...
elvd 3429 If a proposition is implie...
el2v 3430 If a proposition is implie...
eqv 3431 The universe contains ever...
eqvf 3432 The universe contains ever...
abv 3433 The class of sets verifyin...
abvALT 3434 Alternate proof of ~ abv ,...
isset 3435 Two ways to express that "...
issetf 3436 A version of ~ isset that ...
isseti 3437 A way to say " ` A ` is a ...
issetri 3438 A way to say " ` A ` is a ...
eqvisset 3439 A class equal to a variabl...
elex 3440 If a class is a member of ...
elexi 3441 If a class is a member of ...
elexd 3442 If a class is a member of ...
elex2 3443 If a class contains anothe...
elex22 3444 If two classes each contai...
prcnel 3445 A proper class doesn't bel...
ralv 3446 A universal quantifier res...
rexv 3447 An existential quantifier ...
reuv 3448 A unique existential quant...
rmov 3449 An at-most-one quantifier ...
rabab 3450 A class abstraction restri...
rexcom4b 3451 Specialized existential co...
ceqsalt 3452 Closed theorem version of ...
ceqsralt 3453 Restricted quantifier vers...
ceqsalg 3454 A representation of explic...
ceqsalgALT 3455 Alternate proof of ~ ceqsa...
ceqsal 3456 A representation of explic...
ceqsalv 3457 A representation of explic...
ceqsalvOLD 3458 Obsolete version of ~ ceqs...
ceqsralv 3459 Restricted quantifier vers...
ceqsralvOLD 3460 Obsolete version of ~ ceqs...
gencl 3461 Implicit substitution for ...
2gencl 3462 Implicit substitution for ...
3gencl 3463 Implicit substitution for ...
cgsexg 3464 Implicit substitution infe...
cgsex2g 3465 Implicit substitution infe...
cgsex4g 3466 An implicit substitution i...
cgsex4gOLD 3467 Obsolete version of ~ cgse...
ceqsex 3468 Elimination of an existent...
ceqsexv 3469 Elimination of an existent...
ceqsexvOLD 3470 Obsolete version of ~ ceqs...
ceqsexv2d 3471 Elimination of an existent...
ceqsex2 3472 Elimination of two existen...
ceqsex2v 3473 Elimination of two existen...
ceqsex3v 3474 Elimination of three exist...
ceqsex4v 3475 Elimination of four existe...
ceqsex6v 3476 Elimination of six existen...
ceqsex8v 3477 Elimination of eight exist...
gencbvex 3478 Change of bound variable u...
gencbvex2 3479 Restatement of ~ gencbvex ...
gencbval 3480 Change of bound variable u...
sbhypf 3481 Introduce an explicit subs...
vtoclgft 3482 Closed theorem form of ~ v...
vtocldf 3483 Implicit substitution of a...
vtocld 3484 Implicit substitution of a...
vtocldOLD 3485 Obsolete version of ~ vtoc...
vtocl2d 3486 Implicit substitution of t...
vtoclf 3487 Implicit substitution of a...
vtocl 3488 Implicit substitution of a...
vtoclALT 3489 Alternate proof of ~ vtocl...
vtocl2 3490 Implicit substitution of c...
vtocl3 3491 Implicit substitution of c...
vtoclb 3492 Implicit substitution of a...
vtoclgf 3493 Implicit substitution of a...
vtoclg1f 3494 Version of ~ vtoclgf with ...
vtoclg 3495 Implicit substitution of a...
vtoclgOLD 3496 Obsolete version of ~ vtoc...
vtoclbg 3497 Implicit substitution of a...
vtocl2gf 3498 Implicit substitution of a...
vtocl3gf 3499 Implicit substitution of a...
vtocl2g 3500 Implicit substitution of 2...
vtocl3g 3501 Implicit substitution of a...
vtoclgaf 3502 Implicit substitution of a...
vtoclga 3503 Implicit substitution of a...
vtocl2ga 3504 Implicit substitution of 2...
vtocl2gaf 3505 Implicit substitution of 2...
vtocl3gaf 3506 Implicit substitution of 3...
vtocl3ga 3507 Implicit substitution of 3...
vtocl3gaOLD 3508 Obsolete version of ~ vtoc...
vtocl4g 3509 Implicit substitution of 4...
vtocl4ga 3510 Implicit substitution of 4...
vtocleg 3511 Implicit substitution of a...
vtoclegft 3512 Implicit substitution of a...
vtoclef 3513 Implicit substitution of a...
vtocle 3514 Implicit substitution of a...
vtoclri 3515 Implicit substitution of a...
spcimgft 3516 A closed version of ~ spci...
spcgft 3517 A closed version of ~ spcg...
spcimgf 3518 Rule of specialization, us...
spcimegf 3519 Existential specialization...
spcgf 3520 Rule of specialization, us...
spcegf 3521 Existential specialization...
spcimdv 3522 Restricted specialization,...
spcdv 3523 Rule of specialization, us...
spcimedv 3524 Restricted existential spe...
spcgv 3525 Rule of specialization, us...
spcegv 3526 Existential specialization...
spcedv 3527 Existential specialization...
spc2egv 3528 Existential specialization...
spc2gv 3529 Specialization with two qu...
spc2ed 3530 Existential specialization...
spc2d 3531 Specialization with 2 quan...
spc3egv 3532 Existential specialization...
spc3gv 3533 Specialization with three ...
spcv 3534 Rule of specialization, us...
spcev 3535 Existential specialization...
spc2ev 3536 Existential specialization...
rspct 3537 A closed version of ~ rspc...
rspcdf 3538 Restricted specialization,...
rspc 3539 Restricted specialization,...
rspce 3540 Restricted existential spe...
rspcimdv 3541 Restricted specialization,...
rspcimedv 3542 Restricted existential spe...
rspcdv 3543 Restricted specialization,...
rspcedv 3544 Restricted existential spe...
rspcebdv 3545 Restricted existential spe...
rspcdv2 3546 Restricted specialization,...
rspcv 3547 Restricted specialization,...
rspcvOLD 3548 Obsolete version of ~ rspc...
rspccv 3549 Restricted specialization,...
rspcva 3550 Restricted specialization,...
rspccva 3551 Restricted specialization,...
rspcev 3552 Restricted existential spe...
rspcevOLD 3553 Obsolete version of ~ rspc...
rspcdva 3554 Restricted specialization,...
rspcedvd 3555 Restricted existential spe...
rspcime 3556 Prove a restricted existen...
rspceaimv 3557 Restricted existential spe...
rspcedeq1vd 3558 Restricted existential spe...
rspcedeq2vd 3559 Restricted existential spe...
rspc2 3560 Restricted specialization ...
rspc2gv 3561 Restricted specialization ...
rspc2v 3562 2-variable restricted spec...
rspc2va 3563 2-variable restricted spec...
rspc2ev 3564 2-variable restricted exis...
rspc3v 3565 3-variable restricted spec...
rspc3ev 3566 3-variable restricted exis...
rspceeqv 3567 Restricted existential spe...
ralxpxfr2d 3568 Transfer a universal quant...
rexraleqim 3569 Statement following from e...
eqvincg 3570 A variable introduction la...
eqvinc 3571 A variable introduction la...
eqvincf 3572 A variable introduction la...
alexeqg 3573 Two ways to express substi...
ceqex 3574 Equality implies equivalen...
ceqsexg 3575 A representation of explic...
ceqsexgv 3576 Elimination of an existent...
ceqsexgvOLD 3577 Obsolete version of ~ ceqs...
ceqsrexv 3578 Elimination of a restricte...
ceqsrexbv 3579 Elimination of a restricte...
ceqsrex2v 3580 Elimination of a restricte...
clel2g 3581 Alternate definition of me...
clel2gOLD 3582 Obsolete version of ~ clel...
clel2 3583 Alternate definition of me...
clel3g 3584 Alternate definition of me...
clel3 3585 Alternate definition of me...
clel4g 3586 Alternate definition of me...
clel4 3587 Alternate definition of me...
clel4OLD 3588 Obsolete version of ~ clel...
clel5 3589 Alternate definition of cl...
pm13.183 3590 Compare theorem *13.183 in...
rr19.3v 3591 Restricted quantifier vers...
rr19.28v 3592 Restricted quantifier vers...
elab6g 3593 Membership in a class abst...
elabd2 3594 Membership in a class abst...
elabd3 3595 Membership in a class abst...
elabgt 3596 Membership in a class abst...
elabgtOLD 3597 Obsolete version of ~ elab...
elabgf 3598 Membership in a class abst...
elabf 3599 Membership in a class abst...
elabg 3600 Membership in a class abst...
elabgOLD 3601 Obsolete version of ~ elab...
elab 3602 Membership in a class abst...
elabOLD 3603 Obsolete version of ~ elab...
elab2g 3604 Membership in a class abst...
elabd 3605 Explicit demonstration the...
elab2 3606 Membership in a class abst...
elab4g 3607 Membership in a class abst...
elab3gf 3608 Membership in a class abst...
elab3g 3609 Membership in a class abst...
elab3 3610 Membership in a class abst...
elrabi 3611 Implication for the member...
elrabiOLD 3612 Obsolete version of ~ elra...
elrabf 3613 Membership in a restricted...
rabtru 3614 Abstract builder using the...
rabeqc 3615 A restricted class abstrac...
elrab3t 3616 Membership in a restricted...
elrab 3617 Membership in a restricted...
elrab3 3618 Membership in a restricted...
elrabd 3619 Membership in a restricted...
elrab2 3620 Membership in a restricted...
ralab 3621 Universal quantification o...
ralabOLD 3622 Obsolete version of ~ rala...
ralrab 3623 Universal quantification o...
rexab 3624 Existential quantification...
rexabOLD 3625 Obsolete version of ~ rexa...
rexrab 3626 Existential quantification...
ralab2 3627 Universal quantification o...
ralab2OLD 3628 Obsolete version of ~ rala...
ralrab2 3629 Universal quantification o...
rexab2 3630 Existential quantification...
rexab2OLD 3631 Obsolete version of ~ rexa...
rexrab2 3632 Existential quantification...
abidnf 3633 Identity used to create cl...
dedhb 3634 A deduction theorem for co...
nelrdva 3635 Deduce negative membership...
eqeu 3636 A condition which implies ...
moeq 3637 There exists at most one s...
eueq 3638 A class is a set if and on...
eueqi 3639 There exists a unique set ...
eueq2 3640 Equality has existential u...
eueq3 3641 Equality has existential u...
moeq3 3642 "At most one" property of ...
mosub 3643 "At most one" remains true...
mo2icl 3644 Theorem for inferring "at ...
mob2 3645 Consequence of "at most on...
moi2 3646 Consequence of "at most on...
mob 3647 Equality implied by "at mo...
moi 3648 Equality implied by "at mo...
morex 3649 Derive membership from uni...
euxfr2w 3650 Transfer existential uniqu...
euxfrw 3651 Transfer existential uniqu...
euxfr2 3652 Transfer existential uniqu...
euxfr 3653 Transfer existential uniqu...
euind 3654 Existential uniqueness via...
reu2 3655 A way to express restricte...
reu6 3656 A way to express restricte...
reu3 3657 A way to express restricte...
reu6i 3658 A condition which implies ...
eqreu 3659 A condition which implies ...
rmo4 3660 Restricted "at most one" u...
reu4 3661 Restricted uniqueness usin...
reu7 3662 Restricted uniqueness usin...
reu8 3663 Restricted uniqueness usin...
rmo3f 3664 Restricted "at most one" u...
rmo4f 3665 Restricted "at most one" u...
reu2eqd 3666 Deduce equality from restr...
reueq 3667 Equality has existential u...
rmoeq 3668 Equality's restricted exis...
rmoan 3669 Restricted "at most one" s...
rmoim 3670 Restricted "at most one" i...
rmoimia 3671 Restricted "at most one" i...
rmoimi 3672 Restricted "at most one" i...
rmoimi2 3673 Restricted "at most one" i...
2reu5a 3674 Double restricted existent...
reuimrmo 3675 Restricted uniqueness impl...
2reuswap 3676 A condition allowing swap ...
2reuswap2 3677 A condition allowing swap ...
reuxfrd 3678 Transfer existential uniqu...
reuxfr 3679 Transfer existential uniqu...
reuxfr1d 3680 Transfer existential uniqu...
reuxfr1ds 3681 Transfer existential uniqu...
reuxfr1 3682 Transfer existential uniqu...
reuind 3683 Existential uniqueness via...
2rmorex 3684 Double restricted quantifi...
2reu5lem1 3685 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3686 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3687 Lemma for ~ 2reu5 . This ...
2reu5 3688 Double restricted existent...
2reurmo 3689 Double restricted quantifi...
2reurex 3690 Double restricted quantifi...
2rmoswap 3691 A condition allowing to sw...
2rexreu 3692 Double restricted existent...
cdeqi 3695 Deduce conditional equalit...
cdeqri 3696 Property of conditional eq...
cdeqth 3697 Deduce conditional equalit...
cdeqnot 3698 Distribute conditional equ...
cdeqal 3699 Distribute conditional equ...
cdeqab 3700 Distribute conditional equ...
cdeqal1 3701 Distribute conditional equ...
cdeqab1 3702 Distribute conditional equ...
cdeqim 3703 Distribute conditional equ...
cdeqcv 3704 Conditional equality for s...
cdeqeq 3705 Distribute conditional equ...
cdeqel 3706 Distribute conditional equ...
nfcdeq 3707 If we have a conditional e...
nfccdeq 3708 Variation of ~ nfcdeq for ...
rru 3709 Relative version of Russel...
ru 3710 Russell's Paradox. Propos...
dfsbcq 3713 Proper substitution of a c...
dfsbcq2 3714 This theorem, which is sim...
sbsbc 3715 Show that ~ df-sb and ~ df...
sbceq1d 3716 Equality theorem for class...
sbceq1dd 3717 Equality theorem for class...
sbceqbid 3718 Equality theorem for class...
sbc8g 3719 This is the closest we can...
sbc2or 3720 The disjunction of two equ...
sbcex 3721 By our definition of prope...
sbceq1a 3722 Equality theorem for class...
sbceq2a 3723 Equality theorem for class...
spsbc 3724 Specialization: if a formu...
spsbcd 3725 Specialization: if a formu...
sbcth 3726 A substitution into a theo...
sbcthdv 3727 Deduction version of ~ sbc...
sbcid 3728 An identity theorem for su...
nfsbc1d 3729 Deduction version of ~ nfs...
nfsbc1 3730 Bound-variable hypothesis ...
nfsbc1v 3731 Bound-variable hypothesis ...
nfsbcdw 3732 Deduction version of ~ nfs...
nfsbcw 3733 Bound-variable hypothesis ...
sbccow 3734 A composition law for clas...
nfsbcd 3735 Deduction version of ~ nfs...
nfsbc 3736 Bound-variable hypothesis ...
sbcco 3737 A composition law for clas...
sbcco2 3738 A composition law for clas...
sbc5 3739 An equivalence for class s...
sbc5ALT 3740 Alternate proof of ~ sbc5 ...
sbc6g 3741 An equivalence for class s...
sbc6gOLD 3742 Obsolete version of ~ sbc6...
sbc6 3743 An equivalence for class s...
sbc7 3744 An equivalence for class s...
cbvsbcw 3745 Change bound variables in ...
cbvsbcvw 3746 Change the bound variable ...
cbvsbc 3747 Change bound variables in ...
cbvsbcv 3748 Change the bound variable ...
sbciegft 3749 Conversion of implicit sub...
sbciegf 3750 Conversion of implicit sub...
sbcieg 3751 Conversion of implicit sub...
sbciegOLD 3752 Obsolete version of ~ sbci...
sbcie2g 3753 Conversion of implicit sub...
sbcie 3754 Conversion of implicit sub...
sbciedf 3755 Conversion of implicit sub...
sbcied 3756 Conversion of implicit sub...
sbciedOLD 3757 Obsolete version of ~ sbci...
sbcied2 3758 Conversion of implicit sub...
elrabsf 3759 Membership in a restricted...
eqsbc1 3760 Substitution for the left-...
sbcng 3761 Move negation in and out o...
sbcimg 3762 Distribution of class subs...
sbcan 3763 Distribution of class subs...
sbcor 3764 Distribution of class subs...
sbcbig 3765 Distribution of class subs...
sbcn1 3766 Move negation in and out o...
sbcim1 3767 Distribution of class subs...
sbcim1OLD 3768 Obsolete version of ~ sbci...
sbcbid 3769 Formula-building deduction...
sbcbidv 3770 Formula-building deduction...
sbcbidvOLD 3771 Obsolete version of ~ sbcb...
sbcbii 3772 Formula-building inference...
sbcbi1 3773 Distribution of class subs...
sbcbi2 3774 Substituting into equivale...
sbcbi2OLD 3775 Obsolete proof of ~ sbcbi2...
sbcal 3776 Move universal quantifier ...
sbcex2 3777 Move existential quantifie...
sbceqal 3778 Class version of one impli...
sbceqalOLD 3779 Obsolete version of ~ sbce...
sbeqalb 3780 Theorem *14.121 in [Whiteh...
eqsbc2 3781 Substitution for the right...
sbc3an 3782 Distribution of class subs...
sbcel1v 3783 Class substitution into a ...
sbcel2gv 3784 Class substitution into a ...
sbcel21v 3785 Class substitution into a ...
sbcimdv 3786 Substitution analogue of T...
sbcimdvOLD 3787 Obsolete version of ~ sbci...
sbctt 3788 Substitution for a variabl...
sbcgf 3789 Substitution for a variabl...
sbc19.21g 3790 Substitution for a variabl...
sbcg 3791 Substitution for a variabl...
sbcgOLD 3792 Obsolete version of ~ sbcg...
sbcgfi 3793 Substitution for a variabl...
sbc2iegf 3794 Conversion of implicit sub...
sbc2ie 3795 Conversion of implicit sub...
sbc2ieOLD 3796 Obsolete version of ~ sbc2...
sbc2iedv 3797 Conversion of implicit sub...
sbc3ie 3798 Conversion of implicit sub...
sbccomlem 3799 Lemma for ~ sbccom . (Con...
sbccom 3800 Commutative law for double...
sbcralt 3801 Interchange class substitu...
sbcrext 3802 Interchange class substitu...
sbcralg 3803 Interchange class substitu...
sbcrex 3804 Interchange class substitu...
sbcreu 3805 Interchange class substitu...
reu8nf 3806 Restricted uniqueness usin...
sbcabel 3807 Interchange class substitu...
rspsbc 3808 Restricted quantifier vers...
rspsbca 3809 Restricted quantifier vers...
rspesbca 3810 Existence form of ~ rspsbc...
spesbc 3811 Existence form of ~ spsbc ...
spesbcd 3812 form of ~ spsbc . (Contri...
sbcth2 3813 A substitution into a theo...
ra4v 3814 Version of ~ ra4 with a di...
ra4 3815 Restricted quantifier vers...
rmo2 3816 Alternate definition of re...
rmo2i 3817 Condition implying restric...
rmo3 3818 Restricted "at most one" u...
rmob 3819 Consequence of "at most on...
rmoi 3820 Consequence of "at most on...
rmob2 3821 Consequence of "restricted...
rmoi2 3822 Consequence of "restricted...
rmoanim 3823 Introduction of a conjunct...
rmoanimALT 3824 Alternate proof of ~ rmoan...
reuan 3825 Introduction of a conjunct...
2reu1 3826 Double restricted existent...
2reu2 3827 Double restricted existent...
csb2 3830 Alternate expression for t...
csbeq1 3831 Analogue of ~ dfsbcq for p...
csbeq1d 3832 Equality deduction for pro...
csbeq2 3833 Substituting into equivale...
csbeq2d 3834 Formula-building deduction...
csbeq2dv 3835 Formula-building deduction...
csbeq2i 3836 Formula-building inference...
csbeq12dv 3837 Formula-building inference...
cbvcsbw 3838 Change bound variables in ...
cbvcsb 3839 Change bound variables in ...
cbvcsbv 3840 Change the bound variable ...
csbid 3841 Analogue of ~ sbid for pro...
csbeq1a 3842 Equality theorem for prope...
csbcow 3843 Composition law for chaine...
csbco 3844 Composition law for chaine...
csbtt 3845 Substitution doesn't affec...
csbconstgf 3846 Substitution doesn't affec...
csbconstg 3847 Substitution doesn't affec...
csbconstgOLD 3848 Obsolete version of ~ csbc...
csbgfi 3849 Substitution for a variabl...
csbconstgi 3850 The proper substitution of...
nfcsb1d 3851 Bound-variable hypothesis ...
nfcsb1 3852 Bound-variable hypothesis ...
nfcsb1v 3853 Bound-variable hypothesis ...
nfcsbd 3854 Deduction version of ~ nfc...
nfcsbw 3855 Bound-variable hypothesis ...
nfcsb 3856 Bound-variable hypothesis ...
csbhypf 3857 Introduce an explicit subs...
csbiebt 3858 Conversion of implicit sub...
csbiedf 3859 Conversion of implicit sub...
csbieb 3860 Bidirectional conversion b...
csbiebg 3861 Bidirectional conversion b...
csbiegf 3862 Conversion of implicit sub...
csbief 3863 Conversion of implicit sub...
csbie 3864 Conversion of implicit sub...
csbieOLD 3865 Obsolete version of ~ csbi...
csbied 3866 Conversion of implicit sub...
csbiedOLD 3867 Obsolete version of ~ csbi...
csbied2 3868 Conversion of implicit sub...
csbie2t 3869 Conversion of implicit sub...
csbie2 3870 Conversion of implicit sub...
csbie2g 3871 Conversion of implicit sub...
cbvrabcsfw 3872 Version of ~ cbvrabcsf wit...
cbvralcsf 3873 A more general version of ...
cbvrexcsf 3874 A more general version of ...
cbvreucsf 3875 A more general version of ...
cbvrabcsf 3876 A more general version of ...
cbvralv2 3877 Rule used to change the bo...
cbvrexv2 3878 Rule used to change the bo...
rspc2vd 3879 Deduction version of 2-var...
difjust 3885 Soundness justification th...
unjust 3887 Soundness justification th...
injust 3889 Soundness justification th...
dfin5 3891 Alternate definition for t...
dfdif2 3892 Alternate definition of cl...
eldif 3893 Expansion of membership in...
eldifd 3894 If a class is in one class...
eldifad 3895 If a class is in the diffe...
eldifbd 3896 If a class is in the diffe...
elneeldif 3897 The elements of a set diff...
velcomp 3898 Characterization of setvar...
elin 3899 Expansion of membership in...
dfss 3901 Variant of subclass defini...
dfss2 3903 Alternate definition of th...
dfss2OLD 3904 Obsolete version of ~ dfss...
dfss3 3905 Alternate definition of su...
dfss6 3906 Alternate definition of su...
dfss2f 3907 Equivalence for subclass r...
dfss3f 3908 Equivalence for subclass r...
nfss 3909 If ` x ` is not free in ` ...
ssel 3910 Membership relationships f...
sselOLD 3911 Obsolete version of ~ ssel...
ssel2 3912 Membership relationships f...
sseli 3913 Membership implication fro...
sselii 3914 Membership inference from ...
sselid 3915 Membership inference from ...
sseld 3916 Membership deduction from ...
sselda 3917 Membership deduction from ...
sseldd 3918 Membership inference from ...
ssneld 3919 If a class is not in anoth...
ssneldd 3920 If an element is not in a ...
ssriv 3921 Inference based on subclas...
ssrd 3922 Deduction based on subclas...
ssrdv 3923 Deduction based on subclas...
sstr2 3924 Transitivity of subclass r...
sstr 3925 Transitivity of subclass r...
sstri 3926 Subclass transitivity infe...
sstrd 3927 Subclass transitivity dedu...
sstrid 3928 Subclass transitivity dedu...
sstrdi 3929 Subclass transitivity dedu...
sylan9ss 3930 A subclass transitivity de...
sylan9ssr 3931 A subclass transitivity de...
eqss 3932 The subclass relationship ...
eqssi 3933 Infer equality from two su...
eqssd 3934 Equality deduction from tw...
sssseq 3935 If a class is a subclass o...
eqrd 3936 Deduce equality of classes...
eqri 3937 Infer equality of classes ...
eqelssd 3938 Equality deduction from su...
ssid 3939 Any class is a subclass of...
ssidd 3940 Weakening of ~ ssid . (Co...
ssv 3941 Any class is a subclass of...
sseq1 3942 Equality theorem for subcl...
sseq2 3943 Equality theorem for the s...
sseq12 3944 Equality theorem for the s...
sseq1i 3945 An equality inference for ...
sseq2i 3946 An equality inference for ...
sseq12i 3947 An equality inference for ...
sseq1d 3948 An equality deduction for ...
sseq2d 3949 An equality deduction for ...
sseq12d 3950 An equality deduction for ...
eqsstri 3951 Substitution of equality i...
eqsstrri 3952 Substitution of equality i...
sseqtri 3953 Substitution of equality i...
sseqtrri 3954 Substitution of equality i...
eqsstrd 3955 Substitution of equality i...
eqsstrrd 3956 Substitution of equality i...
sseqtrd 3957 Substitution of equality i...
sseqtrrd 3958 Substitution of equality i...
3sstr3i 3959 Substitution of equality i...
3sstr4i 3960 Substitution of equality i...
3sstr3g 3961 Substitution of equality i...
3sstr4g 3962 Substitution of equality i...
3sstr3d 3963 Substitution of equality i...
3sstr4d 3964 Substitution of equality i...
eqsstrid 3965 A chained subclass and equ...
eqsstrrid 3966 A chained subclass and equ...
sseqtrdi 3967 A chained subclass and equ...
sseqtrrdi 3968 A chained subclass and equ...
sseqtrid 3969 Subclass transitivity dedu...
sseqtrrid 3970 Subclass transitivity dedu...
eqsstrdi 3971 A chained subclass and equ...
eqsstrrdi 3972 A chained subclass and equ...
eqimss 3973 Equality implies inclusion...
eqimss2 3974 Equality implies inclusion...
eqimssi 3975 Infer subclass relationshi...
eqimss2i 3976 Infer subclass relationshi...
nssne1 3977 Two classes are different ...
nssne2 3978 Two classes are different ...
nss 3979 Negation of subclass relat...
nelss 3980 Demonstrate by witnesses t...
ssrexf 3981 Restricted existential qua...
ssrmof 3982 "At most one" existential ...
ssralv 3983 Quantification restricted ...
ssrexv 3984 Existential quantification...
ss2ralv 3985 Two quantifications restri...
ss2rexv 3986 Two existential quantifica...
ralss 3987 Restricted universal quant...
rexss 3988 Restricted existential qua...
ss2ab 3989 Class abstractions in a su...
abss 3990 Class abstraction in a sub...
ssab 3991 Subclass of a class abstra...
ssabral 3992 The relation for a subclas...
ss2abdv 3993 Deduction of abstraction s...
ss2abdvALT 3994 Alternate proof of ~ ss2ab...
ss2abdvOLD 3995 Obsolete version of ~ ss2a...
ss2abi 3996 Inference of abstraction s...
ss2abiOLD 3997 Obsolete version of ~ ss2a...
abssdv 3998 Deduction of abstraction s...
abssi 3999 Inference of abstraction s...
ss2rab 4000 Restricted abstraction cla...
rabss 4001 Restricted class abstracti...
ssrab 4002 Subclass of a restricted c...
ssrabdv 4003 Subclass of a restricted c...
rabssdv 4004 Subclass of a restricted c...
ss2rabdv 4005 Deduction of restricted ab...
ss2rabi 4006 Inference of restricted ab...
rabss2 4007 Subclass law for restricte...
ssab2 4008 Subclass relation for the ...
ssrab2 4009 Subclass relation for a re...
ssrab2OLD 4010 Obsolete version of ~ ssra...
ssrab3 4011 Subclass relation for a re...
rabssrabd 4012 Subclass of a restricted c...
ssrabeq 4013 If the restricting class o...
rabssab 4014 A restricted class is a su...
uniiunlem 4015 A subset relationship usef...
dfpss2 4016 Alternate definition of pr...
dfpss3 4017 Alternate definition of pr...
psseq1 4018 Equality theorem for prope...
psseq2 4019 Equality theorem for prope...
psseq1i 4020 An equality inference for ...
psseq2i 4021 An equality inference for ...
psseq12i 4022 An equality inference for ...
psseq1d 4023 An equality deduction for ...
psseq2d 4024 An equality deduction for ...
psseq12d 4025 An equality deduction for ...
pssss 4026 A proper subclass is a sub...
pssne 4027 Two classes in a proper su...
pssssd 4028 Deduce subclass from prope...
pssned 4029 Proper subclasses are uneq...
sspss 4030 Subclass in terms of prope...
pssirr 4031 Proper subclass is irrefle...
pssn2lp 4032 Proper subclass has no 2-c...
sspsstri 4033 Two ways of stating tricho...
ssnpss 4034 Partial trichotomy law for...
psstr 4035 Transitive law for proper ...
sspsstr 4036 Transitive law for subclas...
psssstr 4037 Transitive law for subclas...
psstrd 4038 Proper subclass inclusion ...
sspsstrd 4039 Transitivity involving sub...
psssstrd 4040 Transitivity involving sub...
npss 4041 A class is not a proper su...
ssnelpss 4042 A subclass missing a membe...
ssnelpssd 4043 Subclass inclusion with on...
ssexnelpss 4044 If there is an element of ...
dfdif3 4045 Alternate definition of cl...
difeq1 4046 Equality theorem for class...
difeq2 4047 Equality theorem for class...
difeq12 4048 Equality theorem for class...
difeq1i 4049 Inference adding differenc...
difeq2i 4050 Inference adding differenc...
difeq12i 4051 Equality inference for cla...
difeq1d 4052 Deduction adding differenc...
difeq2d 4053 Deduction adding differenc...
difeq12d 4054 Equality deduction for cla...
difeqri 4055 Inference from membership ...
nfdif 4056 Bound-variable hypothesis ...
eldifi 4057 Implication of membership ...
eldifn 4058 Implication of membership ...
elndif 4059 A set does not belong to a...
neldif 4060 Implication of membership ...
difdif 4061 Double class difference. ...
difss 4062 Subclass relationship for ...
difssd 4063 A difference of two classe...
difss2 4064 If a class is contained in...
difss2d 4065 If a class is contained in...
ssdifss 4066 Preservation of a subclass...
ddif 4067 Double complement under un...
ssconb 4068 Contraposition law for sub...
sscon 4069 Contraposition law for sub...
ssdif 4070 Difference law for subsets...
ssdifd 4071 If ` A ` is contained in `...
sscond 4072 If ` A ` is contained in `...
ssdifssd 4073 If ` A ` is contained in `...
ssdif2d 4074 If ` A ` is contained in `...
raldifb 4075 Restricted universal quant...
rexdifi 4076 Restricted existential qua...
complss 4077 Complementation reverses i...
compleq 4078 Two classes are equal if a...
elun 4079 Expansion of membership in...
elunnel1 4080 A member of a union that i...
uneqri 4081 Inference from membership ...
unidm 4082 Idempotent law for union o...
uncom 4083 Commutative law for union ...
equncom 4084 If a class equals the unio...
equncomi 4085 Inference form of ~ equnco...
uneq1 4086 Equality theorem for the u...
uneq2 4087 Equality theorem for the u...
uneq12 4088 Equality theorem for the u...
uneq1i 4089 Inference adding union to ...
uneq2i 4090 Inference adding union to ...
uneq12i 4091 Equality inference for the...
uneq1d 4092 Deduction adding union to ...
uneq2d 4093 Deduction adding union to ...
uneq12d 4094 Equality deduction for the...
nfun 4095 Bound-variable hypothesis ...
unass 4096 Associative law for union ...
un12 4097 A rearrangement of union. ...
un23 4098 A rearrangement of union. ...
un4 4099 A rearrangement of the uni...
unundi 4100 Union distributes over its...
unundir 4101 Union distributes over its...
ssun1 4102 Subclass relationship for ...
ssun2 4103 Subclass relationship for ...
ssun3 4104 Subclass law for union of ...
ssun4 4105 Subclass law for union of ...
elun1 4106 Membership law for union o...
elun2 4107 Membership law for union o...
elunant 4108 A statement is true for ev...
unss1 4109 Subclass law for union of ...
ssequn1 4110 A relationship between sub...
unss2 4111 Subclass law for union of ...
unss12 4112 Subclass law for union of ...
ssequn2 4113 A relationship between sub...
unss 4114 The union of two subclasse...
unssi 4115 An inference showing the u...
unssd 4116 A deduction showing the un...
unssad 4117 If ` ( A u. B ) ` is conta...
unssbd 4118 If ` ( A u. B ) ` is conta...
ssun 4119 A condition that implies i...
rexun 4120 Restricted existential qua...
ralunb 4121 Restricted quantification ...
ralun 4122 Restricted quantification ...
elini 4123 Membership in an intersect...
elind 4124 Deduce membership in an in...
elinel1 4125 Membership in an intersect...
elinel2 4126 Membership in an intersect...
elin2 4127 Membership in a class defi...
elin1d 4128 Elementhood in the first s...
elin2d 4129 Elementhood in the first s...
elin3 4130 Membership in a class defi...
incom 4131 Commutative law for inters...
incomOLD 4132 Obsolete version of ~ inco...
ineqcom 4133 Two ways of expressing tha...
ineqcomi 4134 Two ways of expressing tha...
ineqri 4135 Inference from membership ...
ineq1 4136 Equality theorem for inter...
ineq2 4137 Equality theorem for inter...
ineq12 4138 Equality theorem for inter...
ineq1i 4139 Equality inference for int...
ineq2i 4140 Equality inference for int...
ineq12i 4141 Equality inference for int...
ineq1d 4142 Equality deduction for int...
ineq2d 4143 Equality deduction for int...
ineq12d 4144 Equality deduction for int...
ineqan12d 4145 Equality deduction for int...
sseqin2 4146 A relationship between sub...
nfin 4147 Bound-variable hypothesis ...
rabbi2dva 4148 Deduction from a wff to a ...
inidm 4149 Idempotent law for interse...
inass 4150 Associative law for inters...
in12 4151 A rearrangement of interse...
in32 4152 A rearrangement of interse...
in13 4153 A rearrangement of interse...
in31 4154 A rearrangement of interse...
inrot 4155 Rotate the intersection of...
in4 4156 Rearrangement of intersect...
inindi 4157 Intersection distributes o...
inindir 4158 Intersection distributes o...
inss1 4159 The intersection of two cl...
inss2 4160 The intersection of two cl...
ssin 4161 Subclass of intersection. ...
ssini 4162 An inference showing that ...
ssind 4163 A deduction showing that a...
ssrin 4164 Add right intersection to ...
sslin 4165 Add left intersection to s...
ssrind 4166 Add right intersection to ...
ss2in 4167 Intersection of subclasses...
ssinss1 4168 Intersection preserves sub...
inss 4169 Inclusion of an intersecti...
rexin 4170 Restricted existential qua...
dfss7 4171 Alternate definition of su...
symdifcom 4174 Symmetric difference commu...
symdifeq1 4175 Equality theorem for symme...
symdifeq2 4176 Equality theorem for symme...
nfsymdif 4177 Hypothesis builder for sym...
elsymdif 4178 Membership in a symmetric ...
dfsymdif4 4179 Alternate definition of th...
elsymdifxor 4180 Membership in a symmetric ...
dfsymdif2 4181 Alternate definition of th...
symdifass 4182 Symmetric difference is as...
difsssymdif 4183 The symmetric difference c...
difsymssdifssd 4184 If the symmetric differenc...
unabs 4185 Absorption law for union. ...
inabs 4186 Absorption law for interse...
nssinpss 4187 Negation of subclass expre...
nsspssun 4188 Negation of subclass expre...
dfss4 4189 Subclass defined in terms ...
dfun2 4190 An alternate definition of...
dfin2 4191 An alternate definition of...
difin 4192 Difference with intersecti...
ssdifim 4193 Implication of a class dif...
ssdifsym 4194 Symmetric class difference...
dfss5 4195 Alternate definition of su...
dfun3 4196 Union defined in terms of ...
dfin3 4197 Intersection defined in te...
dfin4 4198 Alternate definition of th...
invdif 4199 Intersection with universa...
indif 4200 Intersection with class di...
indif2 4201 Bring an intersection in a...
indif1 4202 Bring an intersection in a...
indifcom 4203 Commutation law for inters...
indi 4204 Distributive law for inter...
undi 4205 Distributive law for union...
indir 4206 Distributive law for inter...
undir 4207 Distributive law for union...
unineq 4208 Infer equality from equali...
uneqin 4209 Equality of union and inte...
difundi 4210 Distributive law for class...
difundir 4211 Distributive law for class...
difindi 4212 Distributive law for class...
difindir 4213 Distributive law for class...
indifdi 4214 Distribute intersection ov...
indifdir 4215 Distribute intersection ov...
indifdirOLD 4216 Obsolete version of ~ indi...
difdif2 4217 Class difference by a clas...
undm 4218 De Morgan's law for union....
indm 4219 De Morgan's law for inters...
difun1 4220 A relationship involving d...
undif3 4221 An equality involving clas...
difin2 4222 Represent a class differen...
dif32 4223 Swap second and third argu...
difabs 4224 Absorption-like law for cl...
sscon34b 4225 Relative complementation r...
rcompleq 4226 Two subclasses are equal i...
dfsymdif3 4227 Alternate definition of th...
unabw 4228 Union of two class abstrac...
unab 4229 Union of two class abstrac...
inab 4230 Intersection of two class ...
difab 4231 Difference of two class ab...
abanssl 4232 A class abstraction with a...
abanssr 4233 A class abstraction with a...
notabw 4234 A class abstraction define...
notab 4235 A class abstraction define...
unrab 4236 Union of two restricted cl...
inrab 4237 Intersection of two restri...
inrab2 4238 Intersection with a restri...
difrab 4239 Difference of two restrict...
dfrab3 4240 Alternate definition of re...
dfrab2 4241 Alternate definition of re...
notrab 4242 Complementation of restric...
dfrab3ss 4243 Restricted class abstracti...
rabun2 4244 Abstraction restricted to ...
reuun2 4245 Transfer uniqueness to a s...
reuss2 4246 Transfer uniqueness to a s...
reuss 4247 Transfer uniqueness to a s...
reuun1 4248 Transfer uniqueness to a s...
reupick 4249 Restricted uniqueness "pic...
reupick3 4250 Restricted uniqueness "pic...
reupick2 4251 Restricted uniqueness "pic...
euelss 4252 Transfer uniqueness of an ...
dfnul4 4255 Alternate definition of th...
dfnul2 4256 Alternate definition of th...
dfnul3 4257 Alternate definition of th...
dfnul2OLD 4258 Obsolete version of ~ dfnu...
dfnul3OLD 4259 Obsolete version of ~ dfnu...
dfnul4OLD 4260 Obsolete version of ~ dfnu...
noel 4261 The empty set has no eleme...
noelOLD 4262 Obsolete version of ~ noel...
nel02 4263 The empty set has no eleme...
n0i 4264 If a class has elements, t...
ne0i 4265 If a class has elements, t...
ne0d 4266 Deduction form of ~ ne0i ....
n0ii 4267 If a class has elements, t...
ne0ii 4268 If a class has elements, t...
vn0 4269 The universal class is not...
vn0ALT 4270 Alternate proof of ~ vn0 ....
eq0f 4271 A class is equal to the em...
neq0f 4272 A class is not empty if an...
n0f 4273 A class is nonempty if and...
eq0 4274 A class is equal to the em...
eq0ALT 4275 Alternate proof of ~ eq0 ....
neq0 4276 A class is not empty if an...
n0 4277 A class is nonempty if and...
eq0OLDOLD 4278 Obsolete version of ~ eq0 ...
neq0OLD 4279 Obsolete version of ~ neq0...
n0OLD 4280 Obsolete version of ~ n0 a...
nel0 4281 From the general negation ...
reximdva0 4282 Restricted existence deduc...
rspn0 4283 Specialization for restric...
rspn0OLD 4284 Obsolete version of ~ rspn...
n0rex 4285 There is an element in a n...
ssn0rex 4286 There is an element in a c...
n0moeu 4287 A case of equivalence of "...
rex0 4288 Vacuous restricted existen...
reu0 4289 Vacuous restricted uniquen...
rmo0 4290 Vacuous restricted at-most...
0el 4291 Membership of the empty se...
n0el 4292 Negated membership of the ...
eqeuel 4293 A condition which implies ...
ssdif0 4294 Subclass expressed in term...
difn0 4295 If the difference of two s...
pssdifn0 4296 A proper subclass has a no...
pssdif 4297 A proper subclass has a no...
ndisj 4298 Express that an intersecti...
difin0ss 4299 Difference, intersection, ...
inssdif0 4300 Intersection, subclass, an...
difid 4301 The difference between a c...
difidALT 4302 Alternate proof of ~ difid...
dif0 4303 The difference between a c...
ab0w 4304 The class of sets verifyin...
ab0 4305 The class of sets verifyin...
ab0OLD 4306 Obsolete version of ~ ab0 ...
ab0ALT 4307 Alternate proof of ~ ab0 ,...
dfnf5 4308 Characterization of nonfre...
ab0orv 4309 The class abstraction defi...
ab0orvALT 4310 Alternate proof of ~ ab0or...
abn0 4311 Nonempty class abstraction...
abn0OLD 4312 Obsolete version of ~ abn0...
rab0 4313 Any restricted class abstr...
rabeq0w 4314 Condition for a restricted...
rabeq0 4315 Condition for a restricted...
rabn0 4316 Nonempty restricted class ...
rabxm 4317 Law of excluded middle, in...
rabnc 4318 Law of noncontradiction, i...
elneldisj 4319 The set of elements ` s ` ...
elnelun 4320 The union of the set of el...
un0 4321 The union of a class with ...
in0 4322 The intersection of a clas...
0un 4323 The union of the empty set...
0in 4324 The intersection of the em...
inv1 4325 The intersection of a clas...
unv 4326 The union of a class with ...
0ss 4327 The null set is a subset o...
ss0b 4328 Any subset of the empty se...
ss0 4329 Any subset of the empty se...
sseq0 4330 A subclass of an empty cla...
ssn0 4331 A class with a nonempty su...
0dif 4332 The difference between the...
abf 4333 A class abstraction determ...
abfOLD 4334 Obsolete version of ~ abf ...
eq0rdv 4335 Deduction for equality to ...
eq0rdvALT 4336 Alternate proof of ~ eq0rd...
csbprc 4337 The proper substitution of...
csb0 4338 The proper substitution of...
sbcel12 4339 Distribute proper substitu...
sbceqg 4340 Distribute proper substitu...
sbceqi 4341 Distribution of class subs...
sbcnel12g 4342 Distribute proper substitu...
sbcne12 4343 Distribute proper substitu...
sbcel1g 4344 Move proper substitution i...
sbceq1g 4345 Move proper substitution t...
sbcel2 4346 Move proper substitution i...
sbceq2g 4347 Move proper substitution t...
csbcom 4348 Commutative law for double...
sbcnestgfw 4349 Nest the composition of tw...
csbnestgfw 4350 Nest the composition of tw...
sbcnestgw 4351 Nest the composition of tw...
csbnestgw 4352 Nest the composition of tw...
sbcco3gw 4353 Composition of two substit...
sbcnestgf 4354 Nest the composition of tw...
csbnestgf 4355 Nest the composition of tw...
sbcnestg 4356 Nest the composition of tw...
csbnestg 4357 Nest the composition of tw...
sbcco3g 4358 Composition of two substit...
csbco3g 4359 Composition of two class s...
csbnest1g 4360 Nest the composition of tw...
csbidm 4361 Idempotent law for class s...
csbvarg 4362 The proper substitution of...
csbvargi 4363 The proper substitution of...
sbccsb 4364 Substitution into a wff ex...
sbccsb2 4365 Substitution into a wff ex...
rspcsbela 4366 Special case related to ~ ...
sbnfc2 4367 Two ways of expressing " `...
csbab 4368 Move substitution into a c...
csbun 4369 Distribution of class subs...
csbin 4370 Distribute proper substitu...
csbie2df 4371 Conversion of implicit sub...
2nreu 4372 If there are two different...
un00 4373 Two classes are empty iff ...
vss 4374 Only the universal class h...
0pss 4375 The null set is a proper s...
npss0 4376 No set is a proper subset ...
pssv 4377 Any non-universal class is...
disj 4378 Two ways of saying that tw...
disjOLD 4379 Obsolete version of ~ disj...
disjr 4380 Two ways of saying that tw...
disj1 4381 Two ways of saying that tw...
reldisj 4382 Two ways of saying that tw...
reldisjOLD 4383 Obsolete version of ~ reld...
disj3 4384 Two ways of saying that tw...
disjne 4385 Members of disjoint sets a...
disjeq0 4386 Two disjoint sets are equa...
disjel 4387 A set can't belong to both...
disj2 4388 Two ways of saying that tw...
disj4 4389 Two ways of saying that tw...
ssdisj 4390 Intersection with a subcla...
disjpss 4391 A class is a proper subset...
undisj1 4392 The union of disjoint clas...
undisj2 4393 The union of disjoint clas...
ssindif0 4394 Subclass expressed in term...
inelcm 4395 The intersection of classe...
minel 4396 A minimum element of a cla...
undif4 4397 Distribute union over diff...
disjssun 4398 Subset relation for disjoi...
vdif0 4399 Universal class equality i...
difrab0eq 4400 If the difference between ...
pssnel 4401 A proper subclass has a me...
disjdif 4402 A class and its relative c...
disjdifr 4403 A class and its relative c...
difin0 4404 The difference of a class ...
unvdif 4405 The union of a class and i...
undif1 4406 Absorption of difference b...
undif2 4407 Absorption of difference b...
undifabs 4408 Absorption of difference b...
inundif 4409 The intersection and class...
disjdif2 4410 The difference of a class ...
difun2 4411 Absorption of union by dif...
undif 4412 Union of complementary par...
ssdifin0 4413 A subset of a difference d...
ssdifeq0 4414 A class is a subclass of i...
ssundif 4415 A condition equivalent to ...
difcom 4416 Swap the arguments of a cl...
pssdifcom1 4417 Two ways to express overla...
pssdifcom2 4418 Two ways to express non-co...
difdifdir 4419 Distributive law for class...
uneqdifeq 4420 Two ways to say that ` A `...
raldifeq 4421 Equality theorem for restr...
r19.2z 4422 Theorem 19.2 of [Margaris]...
r19.2zb 4423 A response to the notion t...
r19.3rz 4424 Restricted quantification ...
r19.28z 4425 Restricted quantifier vers...
r19.3rzv 4426 Restricted quantification ...
r19.9rzv 4427 Restricted quantification ...
r19.28zv 4428 Restricted quantifier vers...
r19.37zv 4429 Restricted quantifier vers...
r19.45zv 4430 Restricted version of Theo...
r19.44zv 4431 Restricted version of Theo...
r19.27z 4432 Restricted quantifier vers...
r19.27zv 4433 Restricted quantifier vers...
r19.36zv 4434 Restricted quantifier vers...
ralidmw 4435 Idempotent law for restric...
rzal 4436 Vacuous quantification is ...
rzalALT 4437 Alternate proof of ~ rzal ...
rexn0 4438 Restricted existential qua...
ralidm 4439 Idempotent law for restric...
ral0 4440 Vacuous universal quantifi...
ralf0 4441 The quantification of a fa...
rexn0OLD 4442 Obsolete version of ~ rexn...
ralidmOLD 4443 Obsolete version of ~ rali...
ral0OLD 4444 Obsolete version of ~ ral0...
ralf0OLD 4445 Obsolete version of ~ ralf...
ralnralall 4446 A contradiction concerning...
falseral0 4447 A false statement can only...
raaan 4448 Rearrange restricted quant...
raaanv 4449 Rearrange restricted quant...
sbss 4450 Set substitution into the ...
sbcssg 4451 Distribute proper substitu...
raaan2 4452 Rearrange restricted quant...
2reu4lem 4453 Lemma for ~ 2reu4 . (Cont...
2reu4 4454 Definition of double restr...
csbdif 4455 Distribution of class subs...
dfif2 4458 An alternate definition of...
dfif6 4459 An alternate definition of...
ifeq1 4460 Equality theorem for condi...
ifeq2 4461 Equality theorem for condi...
iftrue 4462 Value of the conditional o...
iftruei 4463 Inference associated with ...
iftrued 4464 Value of the conditional o...
iffalse 4465 Value of the conditional o...
iffalsei 4466 Inference associated with ...
iffalsed 4467 Value of the conditional o...
ifnefalse 4468 When values are unequal, b...
ifsb 4469 Distribute a function over...
dfif3 4470 Alternate definition of th...
dfif4 4471 Alternate definition of th...
dfif5 4472 Alternate definition of th...
ifssun 4473 A conditional class is inc...
ifeq12 4474 Equality theorem for condi...
ifeq1d 4475 Equality deduction for con...
ifeq2d 4476 Equality deduction for con...
ifeq12d 4477 Equality deduction for con...
ifbi 4478 Equivalence theorem for co...
ifbid 4479 Equivalence deduction for ...
ifbieq1d 4480 Equivalence/equality deduc...
ifbieq2i 4481 Equivalence/equality infer...
ifbieq2d 4482 Equivalence/equality deduc...
ifbieq12i 4483 Equivalence deduction for ...
ifbieq12d 4484 Equivalence deduction for ...
nfifd 4485 Deduction form of ~ nfif ....
nfif 4486 Bound-variable hypothesis ...
ifeq1da 4487 Conditional equality. (Co...
ifeq2da 4488 Conditional equality. (Co...
ifeq12da 4489 Equivalence deduction for ...
ifbieq12d2 4490 Equivalence deduction for ...
ifclda 4491 Conditional closure. (Con...
ifeqda 4492 Separation of the values o...
elimif 4493 Elimination of a condition...
ifbothda 4494 A wff ` th ` containing a ...
ifboth 4495 A wff ` th ` containing a ...
ifid 4496 Identical true and false a...
eqif 4497 Expansion of an equality w...
ifval 4498 Another expression of the ...
elif 4499 Membership in a conditiona...
ifel 4500 Membership of a conditiona...
ifcl 4501 Membership (closure) of a ...
ifcld 4502 Membership (closure) of a ...
ifcli 4503 Inference associated with ...
ifexd 4504 Existence of the condition...
ifexg 4505 Existence of the condition...
ifex 4506 Existence of the condition...
ifeqor 4507 The possible values of a c...
ifnot 4508 Negating the first argumen...
ifan 4509 Rewrite a conjunction in a...
ifor 4510 Rewrite a disjunction in a...
2if2 4511 Resolve two nested conditi...
ifcomnan 4512 Commute the conditions in ...
csbif 4513 Distribute proper substitu...
dedth 4514 Weak deduction theorem tha...
dedth2h 4515 Weak deduction theorem eli...
dedth3h 4516 Weak deduction theorem eli...
dedth4h 4517 Weak deduction theorem eli...
dedth2v 4518 Weak deduction theorem for...
dedth3v 4519 Weak deduction theorem for...
dedth4v 4520 Weak deduction theorem for...
elimhyp 4521 Eliminate a hypothesis con...
elimhyp2v 4522 Eliminate a hypothesis con...
elimhyp3v 4523 Eliminate a hypothesis con...
elimhyp4v 4524 Eliminate a hypothesis con...
elimel 4525 Eliminate a membership hyp...
elimdhyp 4526 Version of ~ elimhyp where...
keephyp 4527 Transform a hypothesis ` p...
keephyp2v 4528 Keep a hypothesis containi...
keephyp3v 4529 Keep a hypothesis containi...
pwjust 4531 Soundness justification th...
elpwg 4533 Membership in a power clas...
elpw 4534 Membership in a power clas...
velpw 4535 Setvar variable membership...
elpwOLD 4536 Obsolete proof of ~ elpw a...
elpwgOLD 4537 Obsolete proof of ~ elpwg ...
elpwd 4538 Membership in a power clas...
elpwi 4539 Subset relation implied by...
elpwb 4540 Characterization of the el...
elpwid 4541 An element of a power clas...
elelpwi 4542 If ` A ` belongs to a part...
sspw 4543 The powerclass preserves i...
sspwi 4544 The powerclass preserves i...
sspwd 4545 The powerclass preserves i...
pweq 4546 Equality theorem for power...
pweqALT 4547 Alternate proof of ~ pweq ...
pweqi 4548 Equality inference for pow...
pweqd 4549 Equality deduction for pow...
pwunss 4550 The power class of the uni...
nfpw 4551 Bound-variable hypothesis ...
pwidg 4552 A set is an element of its...
pwidb 4553 A class is an element of i...
pwid 4554 A set is a member of its p...
pwss 4555 Subclass relationship for ...
pwundif 4556 Break up the power class o...
snjust 4557 Soundness justification th...
sneq 4568 Equality theorem for singl...
sneqi 4569 Equality inference for sin...
sneqd 4570 Equality deduction for sin...
dfsn2 4571 Alternate definition of si...
elsng 4572 There is exactly one eleme...
elsn 4573 There is exactly one eleme...
velsn 4574 There is only one element ...
elsni 4575 There is at most one eleme...
absn 4576 Condition for a class abst...
dfpr2 4577 Alternate definition of a ...
dfsn2ALT 4578 Alternate definition of si...
elprg 4579 A member of a pair of clas...
elpri 4580 If a class is an element o...
elpr 4581 A member of a pair of clas...
elpr2g 4582 A member of a pair of sets...
elpr2 4583 A member of a pair of sets...
elpr2OLD 4584 Obsolete version of ~ elpr...
nelpr2 4585 If a class is not an eleme...
nelpr1 4586 If a class is not an eleme...
nelpri 4587 If an element doesn't matc...
prneli 4588 If an element doesn't matc...
nelprd 4589 If an element doesn't matc...
eldifpr 4590 Membership in a set with t...
rexdifpr 4591 Restricted existential qua...
snidg 4592 A set is a member of its s...
snidb 4593 A class is a set iff it is...
snid 4594 A set is a member of its s...
vsnid 4595 A setvar variable is a mem...
elsn2g 4596 There is exactly one eleme...
elsn2 4597 There is exactly one eleme...
nelsn 4598 If a class is not equal to...
rabeqsn 4599 Conditions for a restricte...
rabsssn 4600 Conditions for a restricte...
ralsnsg 4601 Substitution expressed in ...
rexsns 4602 Restricted existential qua...
rexsngf 4603 Restricted existential qua...
ralsngf 4604 Restricted universal quant...
reusngf 4605 Restricted existential uni...
ralsng 4606 Substitution expressed in ...
rexsng 4607 Restricted existential qua...
reusng 4608 Restricted existential uni...
2ralsng 4609 Substitution expressed in ...
ralsngOLD 4610 Obsolete version of ~ rals...
rexsngOLD 4611 Obsolete version of ~ rexs...
rexreusng 4612 Restricted existential uni...
exsnrex 4613 There is a set being the e...
ralsn 4614 Convert a universal quanti...
rexsn 4615 Convert an existential qua...
elpwunsn 4616 Membership in an extension...
eqoreldif 4617 An element of a set is eit...
eltpg 4618 Members of an unordered tr...
eldiftp 4619 Membership in a set with t...
eltpi 4620 A member of an unordered t...
eltp 4621 A member of an unordered t...
dftp2 4622 Alternate definition of un...
nfpr 4623 Bound-variable hypothesis ...
ifpr 4624 Membership of a conditiona...
ralprgf 4625 Convert a restricted unive...
rexprgf 4626 Convert a restricted exist...
ralprg 4627 Convert a restricted unive...
ralprgOLD 4628 Obsolete version of ~ ralp...
rexprg 4629 Convert a restricted exist...
rexprgOLD 4630 Obsolete version of ~ rexp...
raltpg 4631 Convert a restricted unive...
rextpg 4632 Convert a restricted exist...
ralpr 4633 Convert a restricted unive...
rexpr 4634 Convert a restricted exist...
reuprg0 4635 Convert a restricted exist...
reuprg 4636 Convert a restricted exist...
reurexprg 4637 Convert a restricted exist...
raltp 4638 Convert a universal quanti...
rextp 4639 Convert an existential qua...
nfsn 4640 Bound-variable hypothesis ...
csbsng 4641 Distribute proper substitu...
csbprg 4642 Distribute proper substitu...
elinsn 4643 If the intersection of two...
disjsn 4644 Intersection with the sing...
disjsn2 4645 Two distinct singletons ar...
disjpr2 4646 Two completely distinct un...
disjprsn 4647 The disjoint intersection ...
disjtpsn 4648 The disjoint intersection ...
disjtp2 4649 Two completely distinct un...
snprc 4650 The singleton of a proper ...
snnzb 4651 A singleton is nonempty if...
rmosn 4652 A restricted at-most-one q...
r19.12sn 4653 Special case of ~ r19.12 w...
rabsn 4654 Condition where a restrict...
rabsnifsb 4655 A restricted class abstrac...
rabsnif 4656 A restricted class abstrac...
rabrsn 4657 A restricted class abstrac...
euabsn2 4658 Another way to express exi...
euabsn 4659 Another way to express exi...
reusn 4660 A way to express restricte...
absneu 4661 Restricted existential uni...
rabsneu 4662 Restricted existential uni...
eusn 4663 Two ways to express " ` A ...
rabsnt 4664 Truth implied by equality ...
prcom 4665 Commutative law for unorde...
preq1 4666 Equality theorem for unord...
preq2 4667 Equality theorem for unord...
preq12 4668 Equality theorem for unord...
preq1i 4669 Equality inference for uno...
preq2i 4670 Equality inference for uno...
preq12i 4671 Equality inference for uno...
preq1d 4672 Equality deduction for uno...
preq2d 4673 Equality deduction for uno...
preq12d 4674 Equality deduction for uno...
tpeq1 4675 Equality theorem for unord...
tpeq2 4676 Equality theorem for unord...
tpeq3 4677 Equality theorem for unord...
tpeq1d 4678 Equality theorem for unord...
tpeq2d 4679 Equality theorem for unord...
tpeq3d 4680 Equality theorem for unord...
tpeq123d 4681 Equality theorem for unord...
tprot 4682 Rotation of the elements o...
tpcoma 4683 Swap 1st and 2nd members o...
tpcomb 4684 Swap 2nd and 3rd members o...
tpass 4685 Split off the first elemen...
qdass 4686 Two ways to write an unord...
qdassr 4687 Two ways to write an unord...
tpidm12 4688 Unordered triple ` { A , A...
tpidm13 4689 Unordered triple ` { A , B...
tpidm23 4690 Unordered triple ` { A , B...
tpidm 4691 Unordered triple ` { A , A...
tppreq3 4692 An unordered triple is an ...
prid1g 4693 An unordered pair contains...
prid2g 4694 An unordered pair contains...
prid1 4695 An unordered pair contains...
prid2 4696 An unordered pair contains...
ifpprsnss 4697 An unordered pair is a sin...
prprc1 4698 A proper class vanishes in...
prprc2 4699 A proper class vanishes in...
prprc 4700 An unordered pair containi...
tpid1 4701 One of the three elements ...
tpid1g 4702 Closed theorem form of ~ t...
tpid2 4703 One of the three elements ...
tpid2g 4704 Closed theorem form of ~ t...
tpid3g 4705 Closed theorem form of ~ t...
tpid3 4706 One of the three elements ...
snnzg 4707 The singleton of a set is ...
snn0d 4708 The singleton of a set is ...
snnz 4709 The singleton of a set is ...
prnz 4710 A pair containing a set is...
prnzg 4711 A pair containing a set is...
tpnz 4712 An unordered triple contai...
tpnzd 4713 An unordered triple contai...
raltpd 4714 Convert a universal quanti...
snssg 4715 The singleton of an elemen...
snss 4716 The singleton of an elemen...
eldifsn 4717 Membership in a set with a...
ssdifsn 4718 Subset of a set with an el...
elpwdifsn 4719 A subset of a set is an el...
eldifsni 4720 Membership in a set with a...
eldifsnneq 4721 An element of a difference...
neldifsn 4722 The class ` A ` is not in ...
neldifsnd 4723 The class ` A ` is not in ...
rexdifsn 4724 Restricted existential qua...
raldifsni 4725 Rearrangement of a propert...
raldifsnb 4726 Restricted universal quant...
eldifvsn 4727 A set is an element of the...
difsn 4728 An element not in a set ca...
difprsnss 4729 Removal of a singleton fro...
difprsn1 4730 Removal of a singleton fro...
difprsn2 4731 Removal of a singleton fro...
diftpsn3 4732 Removal of a singleton fro...
difpr 4733 Removing two elements as p...
tpprceq3 4734 An unordered triple is an ...
tppreqb 4735 An unordered triple is an ...
difsnb 4736 ` ( B \ { A } ) ` equals `...
difsnpss 4737 ` ( B \ { A } ) ` is a pro...
snssi 4738 The singleton of an elemen...
snssd 4739 The singleton of an elemen...
difsnid 4740 If we remove a single elem...
eldifeldifsn 4741 An element of a difference...
pw0 4742 Compute the power set of t...
pwpw0 4743 Compute the power set of t...
snsspr1 4744 A singleton is a subset of...
snsspr2 4745 A singleton is a subset of...
snsstp1 4746 A singleton is a subset of...
snsstp2 4747 A singleton is a subset of...
snsstp3 4748 A singleton is a subset of...
prssg 4749 A pair of elements of a cl...
prss 4750 A pair of elements of a cl...
prssi 4751 A pair of elements of a cl...
prssd 4752 Deduction version of ~ prs...
prsspwg 4753 An unordered pair belongs ...
ssprss 4754 A pair as subset of a pair...
ssprsseq 4755 A proper pair is a subset ...
sssn 4756 The subsets of a singleton...
ssunsn2 4757 The property of being sand...
ssunsn 4758 Possible values for a set ...
eqsn 4759 Two ways to express that a...
issn 4760 A sufficient condition for...
n0snor2el 4761 A nonempty set is either a...
ssunpr 4762 Possible values for a set ...
sspr 4763 The subsets of a pair. (C...
sstp 4764 The subsets of an unordere...
tpss 4765 An unordered triple of ele...
tpssi 4766 An unordered triple of ele...
sneqrg 4767 Closed form of ~ sneqr . ...
sneqr 4768 If the singletons of two s...
snsssn 4769 If a singleton is a subset...
mosneq 4770 There exists at most one s...
sneqbg 4771 Two singletons of sets are...
snsspw 4772 The singleton of a class i...
prsspw 4773 An unordered pair belongs ...
preq1b 4774 Biconditional equality lem...
preq2b 4775 Biconditional equality lem...
preqr1 4776 Reverse equality lemma for...
preqr2 4777 Reverse equality lemma for...
preq12b 4778 Equality relationship for ...
opthpr 4779 An unordered pair has the ...
preqr1g 4780 Reverse equality lemma for...
preq12bg 4781 Closed form of ~ preq12b ....
prneimg 4782 Two pairs are not equal if...
prnebg 4783 A (proper) pair is not equ...
pr1eqbg 4784 A (proper) pair is equal t...
pr1nebg 4785 A (proper) pair is not equ...
preqsnd 4786 Equivalence for a pair equ...
prnesn 4787 A proper unordered pair is...
prneprprc 4788 A proper unordered pair is...
preqsn 4789 Equivalence for a pair equ...
preq12nebg 4790 Equality relationship for ...
prel12g 4791 Equality of two unordered ...
opthprneg 4792 An unordered pair has the ...
elpreqprlem 4793 Lemma for ~ elpreqpr . (C...
elpreqpr 4794 Equality and membership ru...
elpreqprb 4795 A set is an element of an ...
elpr2elpr 4796 For an element ` A ` of an...
dfopif 4797 Rewrite ~ df-op using ` if...
dfopifOLD 4798 Obsolete version of ~ dfop...
dfopg 4799 Value of the ordered pair ...
dfop 4800 Value of an ordered pair w...
opeq1 4801 Equality theorem for order...
opeq2 4802 Equality theorem for order...
opeq12 4803 Equality theorem for order...
opeq1i 4804 Equality inference for ord...
opeq2i 4805 Equality inference for ord...
opeq12i 4806 Equality inference for ord...
opeq1d 4807 Equality deduction for ord...
opeq2d 4808 Equality deduction for ord...
opeq12d 4809 Equality deduction for ord...
oteq1 4810 Equality theorem for order...
oteq2 4811 Equality theorem for order...
oteq3 4812 Equality theorem for order...
oteq1d 4813 Equality deduction for ord...
oteq2d 4814 Equality deduction for ord...
oteq3d 4815 Equality deduction for ord...
oteq123d 4816 Equality deduction for ord...
nfop 4817 Bound-variable hypothesis ...
nfopd 4818 Deduction version of bound...
csbopg 4819 Distribution of class subs...
opidg 4820 The ordered pair ` <. A , ...
opid 4821 The ordered pair ` <. A , ...
ralunsn 4822 Restricted quantification ...
2ralunsn 4823 Double restricted quantifi...
opprc 4824 Expansion of an ordered pa...
opprc1 4825 Expansion of an ordered pa...
opprc2 4826 Expansion of an ordered pa...
oprcl 4827 If an ordered pair has an ...
pwsn 4828 The power set of a singlet...
pwsnOLD 4829 Obsolete version of ~ pwsn...
pwpr 4830 The power set of an unorde...
pwtp 4831 The power set of an unorde...
pwpwpw0 4832 Compute the power set of t...
pwv 4833 The power class of the uni...
prproe 4834 For an element of a proper...
3elpr2eq 4835 If there are three element...
dfuni2 4838 Alternate definition of cl...
eluni 4839 Membership in class union....
eluni2 4840 Membership in class union....
elunii 4841 Membership in class union....
nfunid 4842 Deduction version of ~ nfu...
nfuni 4843 Bound-variable hypothesis ...
uniss 4844 Subclass relationship for ...
unissi 4845 Subclass relationship for ...
unissd 4846 Subclass relationship for ...
unieq 4847 Equality theorem for class...
unieqOLD 4848 Obsolete version of ~ unie...
unieqi 4849 Inference of equality of t...
unieqd 4850 Deduction of equality of t...
eluniab 4851 Membership in union of a c...
elunirab 4852 Membership in union of a c...
uniprg 4853 The union of a pair is the...
unipr 4854 The union of a pair is the...
uniprOLD 4855 Obsolete version of ~ unip...
uniprgOLD 4856 Obsolete version of ~ unip...
unisng 4857 A set equals the union of ...
unisn 4858 A set equals the union of ...
unisn3 4859 Union of a singleton in th...
dfnfc2 4860 An alternative statement o...
uniun 4861 The class union of the uni...
uniin 4862 The class union of the int...
ssuni 4863 Subclass relationship for ...
uni0b 4864 The union of a set is empt...
uni0c 4865 The union of a set is empt...
uni0 4866 The union of the empty set...
csbuni 4867 Distribute proper substitu...
elssuni 4868 An element of a class is a...
unissel 4869 Condition turning a subcla...
unissb 4870 Relationship involving mem...
uniss2 4871 A subclass condition on th...
unidif 4872 If the difference ` A \ B ...
ssunieq 4873 Relationship implying unio...
unimax 4874 Any member of a class is t...
pwuni 4875 A class is a subclass of t...
dfint2 4878 Alternate definition of cl...
inteq 4879 Equality law for intersect...
inteqi 4880 Equality inference for cla...
inteqd 4881 Equality deduction for cla...
elint 4882 Membership in class inters...
elint2 4883 Membership in class inters...
elintg 4884 Membership in class inters...
elinti 4885 Membership in class inters...
nfint 4886 Bound-variable hypothesis ...
elintab 4887 Membership in the intersec...
elintrab 4888 Membership in the intersec...
elintrabg 4889 Membership in the intersec...
int0 4890 The intersection of the em...
intss1 4891 An element of a class incl...
ssint 4892 Subclass of a class inters...
ssintab 4893 Subclass of the intersecti...
ssintub 4894 Subclass of the least uppe...
ssmin 4895 Subclass of the minimum va...
intmin 4896 Any member of a class is t...
intss 4897 Intersection of subclasses...
intssuni 4898 The intersection of a none...
ssintrab 4899 Subclass of the intersecti...
unissint 4900 If the union of a class is...
intssuni2 4901 Subclass relationship for ...
intminss 4902 Under subset ordering, the...
intmin2 4903 Any set is the smallest of...
intmin3 4904 Under subset ordering, the...
intmin4 4905 Elimination of a conjunct ...
intab 4906 The intersection of a spec...
int0el 4907 The intersection of a clas...
intun 4908 The class intersection of ...
intprg 4909 The intersection of a pair...
intpr 4910 The intersection of a pair...
intprOLD 4911 Obsolete version of ~ intp...
intprgOLD 4912 Obsolete version of ~ intp...
intsng 4913 Intersection of a singleto...
intsn 4914 The intersection of a sing...
uniintsn 4915 Two ways to express " ` A ...
uniintab 4916 The union and the intersec...
intunsn 4917 Theorem joining a singleto...
rint0 4918 Relative intersection of a...
elrint 4919 Membership in a restricted...
elrint2 4920 Membership in a restricted...
eliun 4925 Membership in indexed unio...
eliin 4926 Membership in indexed inte...
eliuni 4927 Membership in an indexed u...
iuncom 4928 Commutation of indexed uni...
iuncom4 4929 Commutation of union with ...
iunconst 4930 Indexed union of a constan...
iinconst 4931 Indexed intersection of a ...
iuneqconst 4932 Indexed union of identical...
iuniin 4933 Law combining indexed unio...
iinssiun 4934 An indexed intersection is...
iunss1 4935 Subclass theorem for index...
iinss1 4936 Subclass theorem for index...
iuneq1 4937 Equality theorem for index...
iineq1 4938 Equality theorem for index...
ss2iun 4939 Subclass theorem for index...
iuneq2 4940 Equality theorem for index...
iineq2 4941 Equality theorem for index...
iuneq2i 4942 Equality inference for ind...
iineq2i 4943 Equality inference for ind...
iineq2d 4944 Equality deduction for ind...
iuneq2dv 4945 Equality deduction for ind...
iineq2dv 4946 Equality deduction for ind...
iuneq12df 4947 Equality deduction for ind...
iuneq1d 4948 Equality theorem for index...
iuneq12d 4949 Equality deduction for ind...
iuneq2d 4950 Equality deduction for ind...
nfiun 4951 Bound-variable hypothesis ...
nfiin 4952 Bound-variable hypothesis ...
nfiung 4953 Bound-variable hypothesis ...
nfiing 4954 Bound-variable hypothesis ...
nfiu1 4955 Bound-variable hypothesis ...
nfii1 4956 Bound-variable hypothesis ...
dfiun2g 4957 Alternate definition of in...
dfiin2g 4958 Alternate definition of in...
dfiun2 4959 Alternate definition of in...
dfiin2 4960 Alternate definition of in...
dfiunv2 4961 Define double indexed unio...
cbviun 4962 Rule used to change the bo...
cbviin 4963 Change bound variables in ...
cbviung 4964 Rule used to change the bo...
cbviing 4965 Change bound variables in ...
cbviunv 4966 Rule used to change the bo...
cbviinv 4967 Change bound variables in ...
cbviunvg 4968 Rule used to change the bo...
cbviinvg 4969 Change bound variables in ...
iunssf 4970 Subset theorem for an inde...
iunss 4971 Subset theorem for an inde...
ssiun 4972 Subset implication for an ...
ssiun2 4973 Identity law for subset of...
ssiun2s 4974 Subset relationship for an...
iunss2 4975 A subclass condition on th...
iunssd 4976 Subset theorem for an inde...
iunab 4977 The indexed union of a cla...
iunrab 4978 The indexed union of a res...
iunxdif2 4979 Indexed union with a class...
ssiinf 4980 Subset theorem for an inde...
ssiin 4981 Subset theorem for an inde...
iinss 4982 Subset implication for an ...
iinss2 4983 An indexed intersection is...
uniiun 4984 Class union in terms of in...
intiin 4985 Class intersection in term...
iunid 4986 An indexed union of single...
iun0 4987 An indexed union of the em...
0iun 4988 An empty indexed union is ...
0iin 4989 An empty indexed intersect...
viin 4990 Indexed intersection with ...
iunsn 4991 Indexed union of a singlet...
iunn0 4992 There is a nonempty class ...
iinab 4993 Indexed intersection of a ...
iinrab 4994 Indexed intersection of a ...
iinrab2 4995 Indexed intersection of a ...
iunin2 4996 Indexed union of intersect...
iunin1 4997 Indexed union of intersect...
iinun2 4998 Indexed intersection of un...
iundif2 4999 Indexed union of class dif...
iindif1 5000 Indexed intersection of cl...
2iunin 5001 Rearrange indexed unions o...
iindif2 5002 Indexed intersection of cl...
iinin2 5003 Indexed intersection of in...
iinin1 5004 Indexed intersection of in...
iinvdif 5005 The indexed intersection o...
elriin 5006 Elementhood in a relative ...
riin0 5007 Relative intersection of a...
riinn0 5008 Relative intersection of a...
riinrab 5009 Relative intersection of a...
symdif0 5010 Symmetric difference with ...
symdifv 5011 The symmetric difference w...
symdifid 5012 The symmetric difference o...
iinxsng 5013 A singleton index picks ou...
iinxprg 5014 Indexed intersection with ...
iunxsng 5015 A singleton index picks ou...
iunxsn 5016 A singleton index picks ou...
iunxsngf 5017 A singleton index picks ou...
iunun 5018 Separate a union in an ind...
iunxun 5019 Separate a union in the in...
iunxdif3 5020 An indexed union where som...
iunxprg 5021 A pair index picks out two...
iunxiun 5022 Separate an indexed union ...
iinuni 5023 A relationship involving u...
iununi 5024 A relationship involving u...
sspwuni 5025 Subclass relationship for ...
pwssb 5026 Two ways to express a coll...
elpwpw 5027 Characterization of the el...
pwpwab 5028 The double power class wri...
pwpwssunieq 5029 The class of sets whose un...
elpwuni 5030 Relationship for power cla...
iinpw 5031 The power class of an inte...
iunpwss 5032 Inclusion of an indexed un...
intss2 5033 A nonempty intersection of...
rintn0 5034 Relative intersection of a...
dfdisj2 5037 Alternate definition for d...
disjss2 5038 If each element of a colle...
disjeq2 5039 Equality theorem for disjo...
disjeq2dv 5040 Equality deduction for dis...
disjss1 5041 A subset of a disjoint col...
disjeq1 5042 Equality theorem for disjo...
disjeq1d 5043 Equality theorem for disjo...
disjeq12d 5044 Equality theorem for disjo...
cbvdisj 5045 Change bound variables in ...
cbvdisjv 5046 Change bound variables in ...
nfdisjw 5047 Bound-variable hypothesis ...
nfdisj 5048 Bound-variable hypothesis ...
nfdisj1 5049 Bound-variable hypothesis ...
disjor 5050 Two ways to say that a col...
disjors 5051 Two ways to say that a col...
disji2 5052 Property of a disjoint col...
disji 5053 Property of a disjoint col...
invdisj 5054 If there is a function ` C...
invdisjrabw 5055 Version of ~ invdisjrab wi...
invdisjrab 5056 The restricted class abstr...
disjiun 5057 A disjoint collection yiel...
disjord 5058 Conditions for a collectio...
disjiunb 5059 Two ways to say that a col...
disjiund 5060 Conditions for a collectio...
sndisj 5061 Any collection of singleto...
0disj 5062 Any collection of empty se...
disjxsn 5063 A singleton collection is ...
disjx0 5064 An empty collection is dis...
disjprgw 5065 Version of ~ disjprg with ...
disjprg 5066 A pair collection is disjo...
disjxiun 5067 An indexed union of a disj...
disjxun 5068 The union of two disjoint ...
disjss3 5069 Expand a disjoint collecti...
breq 5072 Equality theorem for binar...
breq1 5073 Equality theorem for a bin...
breq2 5074 Equality theorem for a bin...
breq12 5075 Equality theorem for a bin...
breqi 5076 Equality inference for bin...
breq1i 5077 Equality inference for a b...
breq2i 5078 Equality inference for a b...
breq12i 5079 Equality inference for a b...
breq1d 5080 Equality deduction for a b...
breqd 5081 Equality deduction for a b...
breq2d 5082 Equality deduction for a b...
breq12d 5083 Equality deduction for a b...
breq123d 5084 Equality deduction for a b...
breqdi 5085 Equality deduction for a b...
breqan12d 5086 Equality deduction for a b...
breqan12rd 5087 Equality deduction for a b...
eqnbrtrd 5088 Substitution of equal clas...
nbrne1 5089 Two classes are different ...
nbrne2 5090 Two classes are different ...
eqbrtri 5091 Substitution of equal clas...
eqbrtrd 5092 Substitution of equal clas...
eqbrtrri 5093 Substitution of equal clas...
eqbrtrrd 5094 Substitution of equal clas...
breqtri 5095 Substitution of equal clas...
breqtrd 5096 Substitution of equal clas...
breqtrri 5097 Substitution of equal clas...
breqtrrd 5098 Substitution of equal clas...
3brtr3i 5099 Substitution of equality i...
3brtr4i 5100 Substitution of equality i...
3brtr3d 5101 Substitution of equality i...
3brtr4d 5102 Substitution of equality i...
3brtr3g 5103 Substitution of equality i...
3brtr4g 5104 Substitution of equality i...
eqbrtrid 5105 A chained equality inferen...
eqbrtrrid 5106 A chained equality inferen...
breqtrid 5107 A chained equality inferen...
breqtrrid 5108 A chained equality inferen...
eqbrtrdi 5109 A chained equality inferen...
eqbrtrrdi 5110 A chained equality inferen...
breqtrdi 5111 A chained equality inferen...
breqtrrdi 5112 A chained equality inferen...
ssbrd 5113 Deduction from a subclass ...
ssbr 5114 Implication from a subclas...
ssbri 5115 Inference from a subclass ...
nfbrd 5116 Deduction version of bound...
nfbr 5117 Bound-variable hypothesis ...
brab1 5118 Relationship between a bin...
br0 5119 The empty binary relation ...
brne0 5120 If two sets are in a binar...
brun 5121 The union of two binary re...
brin 5122 The intersection of two re...
brdif 5123 The difference of two bina...
sbcbr123 5124 Move substitution in and o...
sbcbr 5125 Move substitution in and o...
sbcbr12g 5126 Move substitution in and o...
sbcbr1g 5127 Move substitution in and o...
sbcbr2g 5128 Move substitution in and o...
brsymdif 5129 Characterization of the sy...
brralrspcev 5130 Restricted existential spe...
brimralrspcev 5131 Restricted existential spe...
opabss 5134 The collection of ordered ...
opabbid 5135 Equivalent wff's yield equ...
opabbidv 5136 Equivalent wff's yield equ...
opabbii 5137 Equivalent wff's yield equ...
nfopabd 5138 Bound-variable hypothesis ...
nfopab 5139 Bound-variable hypothesis ...
nfopab1 5140 The first abstraction vari...
nfopab2 5141 The second abstraction var...
cbvopab 5142 Rule used to change bound ...
cbvopabv 5143 Rule used to change bound ...
cbvopabvOLD 5144 Obsolete version of ~ cbvo...
cbvopab1 5145 Change first bound variabl...
cbvopab1g 5146 Change first bound variabl...
cbvopab2 5147 Change second bound variab...
cbvopab1s 5148 Change first bound variabl...
cbvopab1v 5149 Rule used to change the fi...
cbvopab1vOLD 5150 Obsolete version of ~ cbvo...
cbvopab2v 5151 Rule used to change the se...
unopab 5152 Union of two ordered pair ...
mpteq12da 5155 An equality inference for ...
mpteq12df 5156 An equality inference for ...
mpteq12dfOLD 5157 Obsolete version of ~ mpte...
mpteq12f 5158 An equality theorem for th...
mpteq12dva 5159 An equality inference for ...
mpteq12dvaOLD 5160 Obsolete version of ~ mpte...
mpteq12dv 5161 An equality inference for ...
mpteq12 5162 An equality theorem for th...
mpteq1 5163 An equality theorem for th...
mpteq1OLD 5164 Obsolete version of ~ mpte...
mpteq1d 5165 An equality theorem for th...
mpteq1i 5166 An equality theorem for th...
mpteq1iOLD 5167 An equality theorem for th...
mpteq2da 5168 Slightly more general equa...
mpteq2daOLD 5169 Obsolete version of ~ mpte...
mpteq2dva 5170 Slightly more general equa...
mpteq2dvaOLD 5171 Obsolete version of ~ mpte...
mpteq2dv 5172 An equality inference for ...
mpteq2ia 5173 An equality inference for ...
mpteq2iaOLD 5174 Obsolete version of ~ mpte...
mpteq2i 5175 An equality inference for ...
mpteq12i 5176 An equality inference for ...
nfmpt 5177 Bound-variable hypothesis ...
nfmpt1 5178 Bound-variable hypothesis ...
cbvmptf 5179 Rule to change the bound v...
cbvmptfg 5180 Rule to change the bound v...
cbvmpt 5181 Rule to change the bound v...
cbvmptg 5182 Rule to change the bound v...
cbvmptv 5183 Rule to change the bound v...
cbvmptvOLD 5184 Obsolete version of ~ cbvm...
cbvmptvg 5185 Rule to change the bound v...
mptv 5186 Function with universal do...
dftr2 5189 An alternate way of defini...
dftr5 5190 An alternate way of defini...
dftr3 5191 An alternate way of defini...
dftr4 5192 An alternate way of defini...
treq 5193 Equality theorem for the t...
trel 5194 In a transitive class, the...
trel3 5195 In a transitive class, the...
trss 5196 An element of a transitive...
trin 5197 The intersection of transi...
tr0 5198 The empty set is transitiv...
trv 5199 The universe is transitive...
triun 5200 An indexed union of a clas...
truni 5201 The union of a class of tr...
triin 5202 An indexed intersection of...
trint 5203 The intersection of a clas...
trintss 5204 Any nonempty transitive cl...
axrep1 5206 The version of the Axiom o...
axreplem 5207 Lemma for ~ axrep2 and ~ a...
axrep2 5208 Axiom of Replacement expre...
axrep3 5209 Axiom of Replacement sligh...
axrep4 5210 A more traditional version...
axrep5 5211 Axiom of Replacement (simi...
axrep6 5212 A condensed form of ~ ax-r...
zfrepclf 5213 An inference based on the ...
zfrep3cl 5214 An inference based on the ...
zfrep4 5215 A version of Replacement u...
axsepgfromrep 5216 A more general version ~ a...
axsep 5217 Axiom scheme of separation...
axsepg 5219 A more general version of ...
zfauscl 5220 Separation Scheme (Aussond...
bm1.3ii 5221 Convert implication to equ...
ax6vsep 5222 Derive ~ ax6v (a weakened ...
axnulALT 5223 Alternate proof of ~ axnul...
axnul 5224 The Null Set Axiom of ZF s...
0ex 5226 The Null Set Axiom of ZF s...
al0ssb 5227 The empty set is the uniqu...
sseliALT 5228 Alternate proof of ~ sseli...
csbexg 5229 The existence of proper su...
csbex 5230 The existence of proper su...
unisn2 5231 A version of ~ unisn witho...
nalset 5232 No set contains all sets. ...
vnex 5233 The universal class does n...
vprc 5234 The universal class is not...
nvel 5235 The universal class does n...
inex1 5236 Separation Scheme (Aussond...
inex2 5237 Separation Scheme (Aussond...
inex1g 5238 Closed-form, generalized S...
inex2g 5239 Sufficient condition for a...
ssex 5240 The subset of a set is als...
ssexi 5241 The subset of a set is als...
ssexg 5242 The subset of a set is als...
ssexd 5243 A subclass of a set is a s...
prcssprc 5244 The superclass of a proper...
sselpwd 5245 Elementhood to a power set...
difexg 5246 Existence of a difference....
difexi 5247 Existence of a difference,...
difexd 5248 Existence of a difference....
zfausab 5249 Separation Scheme (Aussond...
rabexg 5250 Separation Scheme in terms...
rabex 5251 Separation Scheme in terms...
rabexd 5252 Separation Scheme in terms...
rabex2 5253 Separation Scheme in terms...
rab2ex 5254 A class abstraction based ...
elssabg 5255 Membership in a class abst...
intex 5256 The intersection of a none...
intnex 5257 If a class intersection is...
intexab 5258 The intersection of a none...
intexrab 5259 The intersection of a none...
iinexg 5260 The existence of a class i...
intabs 5261 Absorption of a redundant ...
inuni 5262 The intersection of a unio...
elpw2g 5263 Membership in a power clas...
elpw2 5264 Membership in a power clas...
elpwi2 5265 Membership in a power clas...
elpwi2OLD 5266 Obsolete version of ~ elpw...
pwnss 5267 The power set of a set is ...
pwne 5268 No set equals its power se...
difelpw 5269 A difference is an element...
rabelpw 5270 A restricted class abstrac...
class2set 5271 Construct, from any class ...
class2seteq 5272 Equality theorem based on ...
0elpw 5273 Every power class contains...
pwne0 5274 A power class is never emp...
0nep0 5275 The empty set and its powe...
0inp0 5276 Something cannot be equal ...
unidif0 5277 The removal of the empty s...
eqsnuniex 5278 If a class is equal to the...
iin0 5279 An indexed intersection of...
notzfaus 5280 In the Separation Scheme ~...
intv 5281 The intersection of the un...
axpweq 5282 Two equivalent ways to exp...
zfpow 5284 Axiom of Power Sets expres...
axpow2 5285 A variant of the Axiom of ...
axpow3 5286 A variant of the Axiom of ...
el 5287 Every set is an element of...
dtru 5288 At least two sets exist (o...
dtrucor 5289 Corollary of ~ dtru . Thi...
dtrucor2 5290 The theorem form of the de...
dvdemo1 5291 Demonstration of a theorem...
dvdemo2 5292 Demonstration of a theorem...
nfnid 5293 A setvar variable is not f...
nfcvb 5294 The "distinctor" expressio...
vpwex 5295 Power set axiom: the power...
pwexg 5296 Power set axiom expressed ...
pwexd 5297 Deduction version of the p...
pwex 5298 Power set axiom expressed ...
pwel 5299 Quantitative version of ~ ...
abssexg 5300 Existence of a class of su...
snexALT 5301 Alternate proof of ~ snex ...
p0ex 5302 The power set of the empty...
p0exALT 5303 Alternate proof of ~ p0ex ...
pp0ex 5304 The power set of the power...
ord3ex 5305 The ordinal number 3 is a ...
dtruALT 5306 Alternate proof of ~ dtru ...
axc16b 5307 This theorem shows that Ax...
eunex 5308 Existential uniqueness imp...
eusv1 5309 Two ways to express single...
eusvnf 5310 Even if ` x ` is free in `...
eusvnfb 5311 Two ways to say that ` A (...
eusv2i 5312 Two ways to express single...
eusv2nf 5313 Two ways to express single...
eusv2 5314 Two ways to express single...
reusv1 5315 Two ways to express single...
reusv2lem1 5316 Lemma for ~ reusv2 . (Con...
reusv2lem2 5317 Lemma for ~ reusv2 . (Con...
reusv2lem3 5318 Lemma for ~ reusv2 . (Con...
reusv2lem4 5319 Lemma for ~ reusv2 . (Con...
reusv2lem5 5320 Lemma for ~ reusv2 . (Con...
reusv2 5321 Two ways to express single...
reusv3i 5322 Two ways of expressing exi...
reusv3 5323 Two ways to express single...
eusv4 5324 Two ways to express single...
alxfr 5325 Transfer universal quantif...
ralxfrd 5326 Transfer universal quantif...
rexxfrd 5327 Transfer universal quantif...
ralxfr2d 5328 Transfer universal quantif...
rexxfr2d 5329 Transfer universal quantif...
ralxfrd2 5330 Transfer universal quantif...
rexxfrd2 5331 Transfer existence from a ...
ralxfr 5332 Transfer universal quantif...
ralxfrALT 5333 Alternate proof of ~ ralxf...
rexxfr 5334 Transfer existence from a ...
rabxfrd 5335 Membership in a restricted...
rabxfr 5336 Membership in a restricted...
reuhypd 5337 A theorem useful for elimi...
reuhyp 5338 A theorem useful for elimi...
zfpair 5339 The Axiom of Pairing of Ze...
axprALT 5340 Alternate proof of ~ axpr ...
axprlem1 5341 Lemma for ~ axpr . There ...
axprlem2 5342 Lemma for ~ axpr . There ...
axprlem3 5343 Lemma for ~ axpr . Elimin...
axprlem4 5344 Lemma for ~ axpr . The fi...
axprlem5 5345 Lemma for ~ axpr . The se...
axpr 5346 Unabbreviated version of t...
zfpair2 5348 Derive the abbreviated ver...
snex 5349 A singleton is a set. The...
prex 5350 The Axiom of Pairing using...
sels 5351 If a class is a set, then ...
elALT 5352 Alternate proof of ~ el , ...
dtruALT2 5353 Alternate proof of ~ dtru ...
snelpwi 5354 A singleton of a set belon...
snelpw 5355 A singleton of a set belon...
prelpw 5356 A pair of two sets belongs...
prelpwi 5357 A pair of two sets belongs...
rext 5358 A theorem similar to exten...
sspwb 5359 The powerclass constructio...
unipw 5360 A class equals the union o...
univ 5361 The union of the universe ...
pwtr 5362 A class is transitive iff ...
ssextss 5363 An extensionality-like pri...
ssext 5364 An extensionality-like pri...
nssss 5365 Negation of subclass relat...
pweqb 5366 Classes are equal if and o...
intid 5367 The intersection of all se...
moabex 5368 "At most one" existence im...
rmorabex 5369 Restricted "at most one" e...
euabex 5370 The abstraction of a wff w...
nnullss 5371 A nonempty class (even if ...
exss 5372 Restricted existence in a ...
opex 5373 An ordered pair of classes...
otex 5374 An ordered triple of class...
elopg 5375 Characterization of the el...
elop 5376 Characterization of the el...
opi1 5377 One of the two elements in...
opi2 5378 One of the two elements of...
opeluu 5379 Each member of an ordered ...
op1stb 5380 Extract the first member o...
brv 5381 Two classes are always in ...
opnz 5382 An ordered pair is nonempt...
opnzi 5383 An ordered pair is nonempt...
opth1 5384 Equality of the first memb...
opth 5385 The ordered pair theorem. ...
opthg 5386 Ordered pair theorem. ` C ...
opth1g 5387 Equality of the first memb...
opthg2 5388 Ordered pair theorem. (Co...
opth2 5389 Ordered pair theorem. (Co...
opthneg 5390 Two ordered pairs are not ...
opthne 5391 Two ordered pairs are not ...
otth2 5392 Ordered triple theorem, wi...
otth 5393 Ordered triple theorem. (...
otthg 5394 Ordered triple theorem, cl...
eqvinop 5395 A variable introduction la...
sbcop1 5396 The proper substitution of...
sbcop 5397 The proper substitution of...
copsexgw 5398 Version of ~ copsexg with ...
copsexg 5399 Substitution of class ` A ...
copsex2t 5400 Closed theorem form of ~ c...
copsex2g 5401 Implicit substitution infe...
copsex2gOLD 5402 Obsolete version of ~ cops...
copsex4g 5403 An implicit substitution i...
0nelop 5404 A property of ordered pair...
opwo0id 5405 An ordered pair is equal t...
opeqex 5406 Equivalence of existence i...
oteqex2 5407 Equivalence of existence i...
oteqex 5408 Equivalence of existence i...
opcom 5409 An ordered pair commutes i...
moop2 5410 "At most one" property of ...
opeqsng 5411 Equivalence for an ordered...
opeqsn 5412 Equivalence for an ordered...
opeqpr 5413 Equivalence for an ordered...
snopeqop 5414 Equivalence for an ordered...
propeqop 5415 Equivalence for an ordered...
propssopi 5416 If a pair of ordered pairs...
snopeqopsnid 5417 Equivalence for an ordered...
mosubopt 5418 "At most one" remains true...
mosubop 5419 "At most one" remains true...
euop2 5420 Transfer existential uniqu...
euotd 5421 Prove existential uniquene...
opthwiener 5422 Justification theorem for ...
uniop 5423 The union of an ordered pa...
uniopel 5424 Ordered pair membership is...
opthhausdorff 5425 Justification theorem for ...
opthhausdorff0 5426 Justification theorem for ...
otsndisj 5427 The singletons consisting ...
otiunsndisj 5428 The union of singletons co...
iunopeqop 5429 Implication of an ordered ...
brsnop 5430 Binary relation for an ord...
opabidw 5431 The law of concretion. Sp...
opabid 5432 The law of concretion. Sp...
elopab 5433 Membership in a class abst...
rexopabb 5434 Restricted existential qua...
vopelopabsb 5435 The law of concretion in t...
opelopabsb 5436 The law of concretion in t...
brabsb 5437 The law of concretion in t...
opelopabt 5438 Closed theorem form of ~ o...
opelopabga 5439 The law of concretion. Th...
brabga 5440 The law of concretion for ...
opelopab2a 5441 Ordered pair membership in...
opelopaba 5442 The law of concretion. Th...
braba 5443 The law of concretion for ...
opelopabg 5444 The law of concretion. Th...
brabg 5445 The law of concretion for ...
opelopabgf 5446 The law of concretion. Th...
opelopab2 5447 Ordered pair membership in...
opelopab 5448 The law of concretion. Th...
brab 5449 The law of concretion for ...
opelopabaf 5450 The law of concretion. Th...
opelopabf 5451 The law of concretion. Th...
ssopab2 5452 Equivalence of ordered pai...
ssopab2bw 5453 Equivalence of ordered pai...
eqopab2bw 5454 Equivalence of ordered pai...
ssopab2b 5455 Equivalence of ordered pai...
ssopab2i 5456 Inference of ordered pair ...
ssopab2dv 5457 Inference of ordered pair ...
eqopab2b 5458 Equivalence of ordered pai...
opabn0 5459 Nonempty ordered pair clas...
opab0 5460 Empty ordered pair class a...
csbopab 5461 Move substitution into a c...
csbopabgALT 5462 Move substitution into a c...
csbmpt12 5463 Move substitution into a m...
csbmpt2 5464 Move substitution into the...
iunopab 5465 Move indexed union inside ...
elopabr 5466 Membership in an ordered-p...
elopabran 5467 Membership in an ordered-p...
rbropapd 5468 Properties of a pair in an...
rbropap 5469 Properties of a pair in a ...
2rbropap 5470 Properties of a pair in a ...
0nelopab 5471 The empty set is never an ...
0nelopabOLD 5472 Obsolete version of ~ 0nel...
brabv 5473 If two classes are in a re...
pwin 5474 The power class of the int...
pwunssOLD 5475 Obsolete version of ~ pwun...
pwssun 5476 The power class of the uni...
pwundifOLD 5477 Obsolete proof of ~ pwundi...
pwun 5478 The power class of the uni...
dfid4 5481 The identity function expr...
dfid2 5482 Alternate definition of th...
dfid3 5483 A stronger version of ~ df...
dfid2OLD 5484 Obsolete version of ~ dfid...
epelg 5487 The membership relation an...
epeli 5488 The membership relation an...
epel 5489 The membership relation an...
0sn0ep 5490 An example for the members...
epn0 5491 The membership relation is...
poss 5496 Subset theorem for the par...
poeq1 5497 Equality theorem for parti...
poeq2 5498 Equality theorem for parti...
nfpo 5499 Bound-variable hypothesis ...
nfso 5500 Bound-variable hypothesis ...
pocl 5501 Characteristic properties ...
poclOLD 5502 Obsolete version of ~ pocl...
ispod 5503 Sufficient conditions for ...
swopolem 5504 Perform the substitutions ...
swopo 5505 A strict weak order is a p...
poirr 5506 A partial order is irrefle...
potr 5507 A partial order is a trans...
po2nr 5508 A partial order has no 2-c...
po3nr 5509 A partial order has no 3-c...
po2ne 5510 Two sets related by a part...
po0 5511 Any relation is a partial ...
pofun 5512 The inverse image of a par...
sopo 5513 A strict linear order is a...
soss 5514 Subset theorem for the str...
soeq1 5515 Equality theorem for the s...
soeq2 5516 Equality theorem for the s...
sonr 5517 A strict order relation is...
sotr 5518 A strict order relation is...
solin 5519 A strict order relation is...
so2nr 5520 A strict order relation ha...
so3nr 5521 A strict order relation ha...
sotric 5522 A strict order relation sa...
sotrieq 5523 Trichotomy law for strict ...
sotrieq2 5524 Trichotomy law for strict ...
soasym 5525 Asymmetry law for strict o...
sotr2 5526 A transitivity relation. ...
issod 5527 An irreflexive, transitive...
issoi 5528 An irreflexive, transitive...
isso2i 5529 Deduce strict ordering fro...
so0 5530 Any relation is a strict o...
somo 5531 A totally ordered set has ...
dffr6 5538 Alternate definition of ~ ...
frd 5539 A nonempty subset of an ` ...
fri 5540 A nonempty subset of an ` ...
friOLD 5541 Obsolete version of ~ fri ...
seex 5542 The ` R ` -preimage of an ...
exse 5543 Any relation on a set is s...
dffr2 5544 Alternate definition of we...
dffr2ALT 5545 Alternate proof of ~ dffr2...
frc 5546 Property of well-founded r...
frss 5547 Subset theorem for the wel...
sess1 5548 Subset theorem for the set...
sess2 5549 Subset theorem for the set...
freq1 5550 Equality theorem for the w...
freq2 5551 Equality theorem for the w...
seeq1 5552 Equality theorem for the s...
seeq2 5553 Equality theorem for the s...
nffr 5554 Bound-variable hypothesis ...
nfse 5555 Bound-variable hypothesis ...
nfwe 5556 Bound-variable hypothesis ...
frirr 5557 A well-founded relation is...
fr2nr 5558 A well-founded relation ha...
fr0 5559 Any relation is well-found...
frminex 5560 If an element of a well-fo...
efrirr 5561 A well-founded class does ...
efrn2lp 5562 A well-founded class conta...
epse 5563 The membership relation is...
tz7.2 5564 Similar to Theorem 7.2 of ...
dfepfr 5565 An alternate way of saying...
epfrc 5566 A subset of a well-founded...
wess 5567 Subset theorem for the wel...
weeq1 5568 Equality theorem for the w...
weeq2 5569 Equality theorem for the w...
wefr 5570 A well-ordering is well-fo...
weso 5571 A well-ordering is a stric...
wecmpep 5572 The elements of a class we...
wetrep 5573 On a class well-ordered by...
wefrc 5574 A nonempty subclass of a c...
we0 5575 Any relation is a well-ord...
wereu 5576 A nonempty subset of an ` ...
wereu2 5577 A nonempty subclass of an ...
xpeq1 5594 Equality theorem for Carte...
xpss12 5595 Subset theorem for Cartesi...
xpss 5596 A Cartesian product is inc...
inxpssres 5597 Intersection with a Cartes...
relxp 5598 A Cartesian product is a r...
xpss1 5599 Subset relation for Cartes...
xpss2 5600 Subset relation for Cartes...
xpeq2 5601 Equality theorem for Carte...
elxpi 5602 Membership in a Cartesian ...
elxp 5603 Membership in a Cartesian ...
elxp2 5604 Membership in a Cartesian ...
xpeq12 5605 Equality theorem for Carte...
xpeq1i 5606 Equality inference for Car...
xpeq2i 5607 Equality inference for Car...
xpeq12i 5608 Equality inference for Car...
xpeq1d 5609 Equality deduction for Car...
xpeq2d 5610 Equality deduction for Car...
xpeq12d 5611 Equality deduction for Car...
sqxpeqd 5612 Equality deduction for a C...
nfxp 5613 Bound-variable hypothesis ...
0nelxp 5614 The empty set is not a mem...
0nelelxp 5615 A member of a Cartesian pr...
opelxp 5616 Ordered pair membership in...
opelxpi 5617 Ordered pair membership in...
opelxpd 5618 Ordered pair membership in...
opelvv 5619 Ordered pair membership in...
opelvvg 5620 Ordered pair membership in...
opelxp1 5621 The first member of an ord...
opelxp2 5622 The second member of an or...
otelxp1 5623 The first member of an ord...
otel3xp 5624 An ordered triple is an el...
opabssxpd 5625 An ordered-pair class abst...
rabxp 5626 Class abstraction restrict...
brxp 5627 Binary relation on a Carte...
pwvrel 5628 A set is a binary relation...
pwvabrel 5629 The powerclass of the cart...
brrelex12 5630 Two classes related by a b...
brrelex1 5631 If two classes are related...
brrelex2 5632 If two classes are related...
brrelex12i 5633 Two classes that are relat...
brrelex1i 5634 The first argument of a bi...
brrelex2i 5635 The second argument of a b...
nprrel12 5636 Proper classes are not rel...
nprrel 5637 No proper class is related...
0nelrel0 5638 A binary relation does not...
0nelrel 5639 A binary relation does not...
fconstmpt 5640 Representation of a consta...
vtoclr 5641 Variable to class conversi...
opthprc 5642 Justification theorem for ...
brel 5643 Two things in a binary rel...
elxp3 5644 Membership in a Cartesian ...
opeliunxp 5645 Membership in a union of C...
xpundi 5646 Distributive law for Carte...
xpundir 5647 Distributive law for Carte...
xpiundi 5648 Distributive law for Carte...
xpiundir 5649 Distributive law for Carte...
iunxpconst 5650 Membership in a union of C...
xpun 5651 The Cartesian product of t...
elvv 5652 Membership in universal cl...
elvvv 5653 Membership in universal cl...
elvvuni 5654 An ordered pair contains i...
brinxp2 5655 Intersection of binary rel...
brinxp 5656 Intersection of binary rel...
opelinxp 5657 Ordered pair element in an...
poinxp 5658 Intersection of partial or...
soinxp 5659 Intersection of total orde...
frinxp 5660 Intersection of well-found...
seinxp 5661 Intersection of set-like r...
weinxp 5662 Intersection of well-order...
posn 5663 Partial ordering of a sing...
sosn 5664 Strict ordering on a singl...
frsn 5665 Founded relation on a sing...
wesn 5666 Well-ordering of a singlet...
elopaelxp 5667 Membership in an ordered-p...
bropaex12 5668 Two classes related by an ...
opabssxp 5669 An abstraction relation is...
brab2a 5670 The law of concretion for ...
optocl 5671 Implicit substitution of c...
2optocl 5672 Implicit substitution of c...
3optocl 5673 Implicit substitution of c...
opbrop 5674 Ordered pair membership in...
0xp 5675 The Cartesian product with...
csbxp 5676 Distribute proper substitu...
releq 5677 Equality theorem for the r...
releqi 5678 Equality inference for the...
releqd 5679 Equality deduction for the...
nfrel 5680 Bound-variable hypothesis ...
sbcrel 5681 Distribute proper substitu...
relss 5682 Subclass theorem for relat...
ssrel 5683 A subclass relationship de...
eqrel 5684 Extensionality principle f...
ssrel2 5685 A subclass relationship de...
relssi 5686 Inference from subclass pr...
relssdv 5687 Deduction from subclass pr...
eqrelriv 5688 Inference from extensional...
eqrelriiv 5689 Inference from extensional...
eqbrriv 5690 Inference from extensional...
eqrelrdv 5691 Deduce equality of relatio...
eqbrrdv 5692 Deduction from extensional...
eqbrrdiv 5693 Deduction from extensional...
eqrelrdv2 5694 A version of ~ eqrelrdv . ...
ssrelrel 5695 A subclass relationship de...
eqrelrel 5696 Extensionality principle f...
elrel 5697 A member of a relation is ...
rel0 5698 The empty set is a relatio...
nrelv 5699 The universal class is not...
relsng 5700 A singleton is a relation ...
relsnb 5701 An at-most-singleton is a ...
relsnopg 5702 A singleton of an ordered ...
relsn 5703 A singleton is a relation ...
relsnop 5704 A singleton of an ordered ...
copsex2gb 5705 Implicit substitution infe...
copsex2ga 5706 Implicit substitution infe...
elopaba 5707 Membership in an ordered-p...
xpsspw 5708 A Cartesian product is inc...
unixpss 5709 The double class union of ...
relun 5710 The union of two relations...
relin1 5711 The intersection with a re...
relin2 5712 The intersection with a re...
relinxp 5713 Intersection with a Cartes...
reldif 5714 A difference cutting down ...
reliun 5715 An indexed union is a rela...
reliin 5716 An indexed intersection is...
reluni 5717 The union of a class is a ...
relint 5718 The intersection of a clas...
relopabiv 5719 A class of ordered pairs i...
relopabv 5720 A class of ordered pairs i...
relopabi 5721 A class of ordered pairs i...
relopabiALT 5722 Alternate proof of ~ relop...
relopab 5723 A class of ordered pairs i...
mptrel 5724 The maps-to notation alway...
reli 5725 The identity relation is a...
rele 5726 The membership relation is...
opabid2 5727 A relation expressed as an...
inopab 5728 Intersection of two ordere...
difopab 5729 Difference of two ordered-...
inxp 5730 Intersection of two Cartes...
xpindi 5731 Distributive law for Carte...
xpindir 5732 Distributive law for Carte...
xpiindi 5733 Distributive law for Carte...
xpriindi 5734 Distributive law for Carte...
eliunxp 5735 Membership in a union of C...
opeliunxp2 5736 Membership in a union of C...
raliunxp 5737 Write a double restricted ...
rexiunxp 5738 Write a double restricted ...
ralxp 5739 Universal quantification r...
rexxp 5740 Existential quantification...
exopxfr 5741 Transfer ordered-pair exis...
exopxfr2 5742 Transfer ordered-pair exis...
djussxp 5743 Disjoint union is a subset...
ralxpf 5744 Version of ~ ralxp with bo...
rexxpf 5745 Version of ~ rexxp with bo...
iunxpf 5746 Indexed union on a Cartesi...
opabbi2dv 5747 Deduce equality of a relat...
relop 5748 A necessary and sufficient...
ideqg 5749 For sets, the identity rel...
ideq 5750 For sets, the identity rel...
ididg 5751 A set is identical to itse...
issetid 5752 Two ways of expressing set...
coss1 5753 Subclass theorem for compo...
coss2 5754 Subclass theorem for compo...
coeq1 5755 Equality theorem for compo...
coeq2 5756 Equality theorem for compo...
coeq1i 5757 Equality inference for com...
coeq2i 5758 Equality inference for com...
coeq1d 5759 Equality deduction for com...
coeq2d 5760 Equality deduction for com...
coeq12i 5761 Equality inference for com...
coeq12d 5762 Equality deduction for com...
nfco 5763 Bound-variable hypothesis ...
brcog 5764 Ordered pair membership in...
opelco2g 5765 Ordered pair membership in...
brcogw 5766 Ordered pair membership in...
eqbrrdva 5767 Deduction from extensional...
brco 5768 Binary relation on a compo...
opelco 5769 Ordered pair membership in...
cnvss 5770 Subset theorem for convers...
cnveq 5771 Equality theorem for conve...
cnveqi 5772 Equality inference for con...
cnveqd 5773 Equality deduction for con...
elcnv 5774 Membership in a converse r...
elcnv2 5775 Membership in a converse r...
nfcnv 5776 Bound-variable hypothesis ...
brcnvg 5777 The converse of a binary r...
opelcnvg 5778 Ordered-pair membership in...
opelcnv 5779 Ordered-pair membership in...
brcnv 5780 The converse of a binary r...
csbcnv 5781 Move class substitution in...
csbcnvgALT 5782 Move class substitution in...
cnvco 5783 Distributive law of conver...
cnvuni 5784 The converse of a class un...
dfdm3 5785 Alternate definition of do...
dfrn2 5786 Alternate definition of ra...
dfrn3 5787 Alternate definition of ra...
elrn2g 5788 Membership in a range. (C...
elrng 5789 Membership in a range. (C...
elrn2 5790 Membership in a range. (C...
elrn 5791 Membership in a range. (C...
ssrelrn 5792 If a relation is a subset ...
dfdm4 5793 Alternate definition of do...
dfdmf 5794 Definition of domain, usin...
csbdm 5795 Distribute proper substitu...
eldmg 5796 Domain membership. Theore...
eldm2g 5797 Domain membership. Theore...
eldm 5798 Membership in a domain. T...
eldm2 5799 Membership in a domain. T...
dmss 5800 Subset theorem for domain....
dmeq 5801 Equality theorem for domai...
dmeqi 5802 Equality inference for dom...
dmeqd 5803 Equality deduction for dom...
opeldmd 5804 Membership of first of an ...
opeldm 5805 Membership of first of an ...
breldm 5806 Membership of first of a b...
breldmg 5807 Membership of first of a b...
dmun 5808 The domain of a union is t...
dmin 5809 The domain of an intersect...
breldmd 5810 Membership of first of a b...
dmiun 5811 The domain of an indexed u...
dmuni 5812 The domain of a union. Pa...
dmopab 5813 The domain of a class of o...
dmopabelb 5814 A set is an element of the...
dmopab2rex 5815 The domain of an ordered p...
dmopabss 5816 Upper bound for the domain...
dmopab3 5817 The domain of a restricted...
dm0 5818 The domain of the empty se...
dmi 5819 The domain of the identity...
dmv 5820 The domain of the universe...
dmep 5821 The domain of the membersh...
domepOLD 5822 Obsolete proof of ~ dmep a...
dm0rn0 5823 An empty domain is equival...
rn0 5824 The range of the empty set...
rnep 5825 The range of the membershi...
reldm0 5826 A relation is empty iff it...
dmxp 5827 The domain of a Cartesian ...
dmxpid 5828 The domain of a Cartesian ...
dmxpin 5829 The domain of the intersec...
xpid11 5830 The Cartesian square is a ...
dmcnvcnv 5831 The domain of the double c...
rncnvcnv 5832 The range of the double co...
elreldm 5833 The first member of an ord...
rneq 5834 Equality theorem for range...
rneqi 5835 Equality inference for ran...
rneqd 5836 Equality deduction for ran...
rnss 5837 Subset theorem for range. ...
rnssi 5838 Subclass inference for ran...
brelrng 5839 The second argument of a b...
brelrn 5840 The second argument of a b...
opelrn 5841 Membership of second membe...
releldm 5842 The first argument of a bi...
relelrn 5843 The second argument of a b...
releldmb 5844 Membership in a domain. (...
relelrnb 5845 Membership in a range. (C...
releldmi 5846 The first argument of a bi...
relelrni 5847 The second argument of a b...
dfrnf 5848 Definition of range, using...
nfdm 5849 Bound-variable hypothesis ...
nfrn 5850 Bound-variable hypothesis ...
dmiin 5851 Domain of an intersection....
rnopab 5852 The range of a class of or...
rnmpt 5853 The range of a function in...
elrnmpt 5854 The range of a function in...
elrnmpt1s 5855 Elementhood in an image se...
elrnmpt1 5856 Elementhood in an image se...
elrnmptg 5857 Membership in the range of...
elrnmpti 5858 Membership in the range of...
elrnmptd 5859 The range of a function in...
elrnmptdv 5860 Elementhood in the range o...
elrnmpt2d 5861 Elementhood in the range o...
dfiun3g 5862 Alternate definition of in...
dfiin3g 5863 Alternate definition of in...
dfiun3 5864 Alternate definition of in...
dfiin3 5865 Alternate definition of in...
riinint 5866 Express a relative indexed...
relrn0 5867 A relation is empty iff it...
dmrnssfld 5868 The domain and range of a ...
dmcoss 5869 Domain of a composition. ...
rncoss 5870 Range of a composition. (...
dmcosseq 5871 Domain of a composition. ...
dmcoeq 5872 Domain of a composition. ...
rncoeq 5873 Range of a composition. (...
reseq1 5874 Equality theorem for restr...
reseq2 5875 Equality theorem for restr...
reseq1i 5876 Equality inference for res...
reseq2i 5877 Equality inference for res...
reseq12i 5878 Equality inference for res...
reseq1d 5879 Equality deduction for res...
reseq2d 5880 Equality deduction for res...
reseq12d 5881 Equality deduction for res...
nfres 5882 Bound-variable hypothesis ...
csbres 5883 Distribute proper substitu...
res0 5884 A restriction to the empty...
dfres3 5885 Alternate definition of re...
opelres 5886 Ordered pair elementhood i...
brres 5887 Binary relation on a restr...
opelresi 5888 Ordered pair membership in...
brresi 5889 Binary relation on a restr...
opres 5890 Ordered pair membership in...
resieq 5891 A restricted identity rela...
opelidres 5892 ` <. A , A >. ` belongs to...
resres 5893 The restriction of a restr...
resundi 5894 Distributive law for restr...
resundir 5895 Distributive law for restr...
resindi 5896 Class restriction distribu...
resindir 5897 Class restriction distribu...
inres 5898 Move intersection into cla...
resdifcom 5899 Commutative law for restri...
resiun1 5900 Distribution of restrictio...
resiun2 5901 Distribution of restrictio...
dmres 5902 The domain of a restrictio...
ssdmres 5903 A domain restricted to a s...
dmresexg 5904 The domain of a restrictio...
resss 5905 A class includes its restr...
rescom 5906 Commutative law for restri...
ssres 5907 Subclass theorem for restr...
ssres2 5908 Subclass theorem for restr...
relres 5909 A restriction is a relatio...
resabs1 5910 Absorption law for restric...
resabs1d 5911 Absorption law for restric...
resabs2 5912 Absorption law for restric...
residm 5913 Idempotent law for restric...
resima 5914 A restriction to an image....
resima2 5915 Image under a restricted c...
rnresss 5916 The range of a restriction...
xpssres 5917 Restriction of a constant ...
elinxp 5918 Membership in an intersect...
elres 5919 Membership in a restrictio...
elsnres 5920 Membership in restriction ...
relssres 5921 Simplification law for res...
dmressnsn 5922 The domain of a restrictio...
eldmressnsn 5923 The element of the domain ...
eldmeldmressn 5924 An element of the domain (...
resdm 5925 A relation restricted to i...
resexg 5926 The restriction of a set i...
resexd 5927 The restriction of a set i...
resex 5928 The restriction of a set i...
resindm 5929 When restricting a relatio...
resdmdfsn 5930 Restricting a relation to ...
resopab 5931 Restriction of a class abs...
iss 5932 A subclass of the identity...
resopab2 5933 Restriction of a class abs...
resmpt 5934 Restriction of the mapping...
resmpt3 5935 Unconditional restriction ...
resmptf 5936 Restriction of the mapping...
resmptd 5937 Restriction of the mapping...
dfres2 5938 Alternate definition of th...
mptss 5939 Sufficient condition for i...
elidinxp 5940 Characterization of the el...
elidinxpid 5941 Characterization of the el...
elrid 5942 Characterization of the el...
idinxpres 5943 The intersection of the id...
idinxpresid 5944 The intersection of the id...
idssxp 5945 A diagonal set as a subset...
opabresid 5946 The restricted identity re...
mptresid 5947 The restricted identity re...
opabresidOLD 5948 Obsolete version of ~ opab...
mptresidOLD 5949 Obsolete version of ~ mptr...
dmresi 5950 The domain of a restricted...
restidsing 5951 Restriction of the identit...
iresn0n0 5952 The identity function rest...
imaeq1 5953 Equality theorem for image...
imaeq2 5954 Equality theorem for image...
imaeq1i 5955 Equality theorem for image...
imaeq2i 5956 Equality theorem for image...
imaeq1d 5957 Equality theorem for image...
imaeq2d 5958 Equality theorem for image...
imaeq12d 5959 Equality theorem for image...
dfima2 5960 Alternate definition of im...
dfima3 5961 Alternate definition of im...
elimag 5962 Membership in an image. T...
elima 5963 Membership in an image. T...
elima2 5964 Membership in an image. T...
elima3 5965 Membership in an image. T...
nfima 5966 Bound-variable hypothesis ...
nfimad 5967 Deduction version of bound...
imadmrn 5968 The image of the domain of...
imassrn 5969 The image of a class is a ...
mptima 5970 Image of a function in map...
imai 5971 Image under the identity r...
rnresi 5972 The range of the restricte...
resiima 5973 The image of a restriction...
ima0 5974 Image of the empty set. T...
0ima 5975 Image under the empty rela...
csbima12 5976 Move class substitution in...
imadisj 5977 A class whose image under ...
cnvimass 5978 A preimage under any class...
cnvimarndm 5979 The preimage of the range ...
imasng 5980 The image of a singleton. ...
relimasn 5981 The image of a singleton. ...
elrelimasn 5982 Elementhood in the image o...
elimasng1 5983 Membership in an image of ...
elimasn1 5984 Membership in an image of ...
elimasng 5985 Membership in an image of ...
elimasn 5986 Membership in an image of ...
elimasngOLD 5987 Obsolete version of ~ elim...
elimasni 5988 Membership in an image of ...
args 5989 Two ways to express the cl...
elinisegg 5990 Membership in the inverse ...
eliniseg 5991 Membership in the inverse ...
epin 5992 Any set is equal to its pr...
epini 5993 Any set is equal to its pr...
iniseg 5994 An idiom that signifies an...
inisegn0 5995 Nonemptiness of an initial...
dffr3 5996 Alternate definition of we...
dfse2 5997 Alternate definition of se...
imass1 5998 Subset theorem for image. ...
imass2 5999 Subset theorem for image. ...
ndmima 6000 The image of a singleton o...
relcnv 6001 A converse is a relation. ...
relbrcnvg 6002 When ` R ` is a relation, ...
eliniseg2 6003 Eliminate the class existe...
relbrcnv 6004 When ` R ` is a relation, ...
cotrg 6005 Two ways of saying that th...
cotr 6006 Two ways of saying a relat...
idrefALT 6007 Alternate proof of ~ idref...
cnvsym 6008 Two ways of saying a relat...
intasym 6009 Two ways of saying a relat...
asymref 6010 Two ways of saying a relat...
asymref2 6011 Two ways of saying a relat...
intirr 6012 Two ways of saying a relat...
brcodir 6013 Two ways of saying that tw...
codir 6014 Two ways of saying a relat...
qfto 6015 A quantifier-free way of e...
xpidtr 6016 A Cartesian square is a tr...
trin2 6017 The intersection of two tr...
poirr2 6018 A partial order is irrefle...
trinxp 6019 The relation induced by a ...
soirri 6020 A strict order relation is...
sotri 6021 A strict order relation is...
son2lpi 6022 A strict order relation ha...
sotri2 6023 A transitivity relation. ...
sotri3 6024 A transitivity relation. ...
poleloe 6025 Express "less than or equa...
poltletr 6026 Transitive law for general...
somin1 6027 Property of a minimum in a...
somincom 6028 Commutativity of minimum i...
somin2 6029 Property of a minimum in a...
soltmin 6030 Being less than a minimum,...
cnvopab 6031 The converse of a class ab...
mptcnv 6032 The converse of a mapping ...
cnv0 6033 The converse of the empty ...
cnvi 6034 The converse of the identi...
cnvun 6035 The converse of a union is...
cnvdif 6036 Distributive law for conve...
cnvin 6037 Distributive law for conve...
rnun 6038 Distributive law for range...
rnin 6039 The range of an intersecti...
rniun 6040 The range of an indexed un...
rnuni 6041 The range of a union. Par...
imaundi 6042 Distributive law for image...
imaundir 6043 The image of a union. (Co...
cnvimassrndm 6044 The preimage of a superset...
dminss 6045 An upper bound for interse...
imainss 6046 An upper bound for interse...
inimass 6047 The image of an intersecti...
inimasn 6048 The intersection of the im...
cnvxp 6049 The converse of a Cartesia...
xp0 6050 The Cartesian product with...
xpnz 6051 The Cartesian product of n...
xpeq0 6052 At least one member of an ...
xpdisj1 6053 Cartesian products with di...
xpdisj2 6054 Cartesian products with di...
xpsndisj 6055 Cartesian products with tw...
difxp 6056 Difference of Cartesian pr...
difxp1 6057 Difference law for Cartesi...
difxp2 6058 Difference law for Cartesi...
djudisj 6059 Disjoint unions with disjo...
xpdifid 6060 The set of distinct couple...
resdisj 6061 A double restriction to di...
rnxp 6062 The range of a Cartesian p...
dmxpss 6063 The domain of a Cartesian ...
rnxpss 6064 The range of a Cartesian p...
rnxpid 6065 The range of a Cartesian s...
ssxpb 6066 A Cartesian product subcla...
xp11 6067 The Cartesian product of n...
xpcan 6068 Cancellation law for Carte...
xpcan2 6069 Cancellation law for Carte...
ssrnres 6070 Two ways to express surjec...
rninxp 6071 Two ways to express surjec...
dminxp 6072 Two ways to express totali...
imainrect 6073 Image by a restricted and ...
xpima 6074 Direct image by a Cartesia...
xpima1 6075 Direct image by a Cartesia...
xpima2 6076 Direct image by a Cartesia...
xpimasn 6077 Direct image of a singleto...
sossfld 6078 The base set of a strict o...
sofld 6079 The base set of a nonempty...
cnvcnv3 6080 The set of all ordered pai...
dfrel2 6081 Alternate definition of re...
dfrel4v 6082 A relation can be expresse...
dfrel4 6083 A relation can be expresse...
cnvcnv 6084 The double converse of a c...
cnvcnv2 6085 The double converse of a c...
cnvcnvss 6086 The double converse of a c...
cnvrescnv 6087 Two ways to express the co...
cnveqb 6088 Equality theorem for conve...
cnveq0 6089 A relation empty iff its c...
dfrel3 6090 Alternate definition of re...
elid 6091 Characterization of the el...
dmresv 6092 The domain of a universal ...
rnresv 6093 The range of a universal r...
dfrn4 6094 Range defined in terms of ...
csbrn 6095 Distribute proper substitu...
rescnvcnv 6096 The restriction of the dou...
cnvcnvres 6097 The double converse of the...
imacnvcnv 6098 The image of the double co...
dmsnn0 6099 The domain of a singleton ...
rnsnn0 6100 The range of a singleton i...
dmsn0 6101 The domain of the singleto...
cnvsn0 6102 The converse of the single...
dmsn0el 6103 The domain of a singleton ...
relsn2 6104 A singleton is a relation ...
dmsnopg 6105 The domain of a singleton ...
dmsnopss 6106 The domain of a singleton ...
dmpropg 6107 The domain of an unordered...
dmsnop 6108 The domain of a singleton ...
dmprop 6109 The domain of an unordered...
dmtpop 6110 The domain of an unordered...
cnvcnvsn 6111 Double converse of a singl...
dmsnsnsn 6112 The domain of the singleto...
rnsnopg 6113 The range of a singleton o...
rnpropg 6114 The range of a pair of ord...
cnvsng 6115 Converse of a singleton of...
rnsnop 6116 The range of a singleton o...
op1sta 6117 Extract the first member o...
cnvsn 6118 Converse of a singleton of...
op2ndb 6119 Extract the second member ...
op2nda 6120 Extract the second member ...
opswap 6121 Swap the members of an ord...
cnvresima 6122 An image under the convers...
resdm2 6123 A class restricted to its ...
resdmres 6124 Restriction to the domain ...
resresdm 6125 A restriction by an arbitr...
imadmres 6126 The image of the domain of...
resdmss 6127 Subset relationship for th...
resdifdi 6128 Distributive law for restr...
resdifdir 6129 Distributive law for restr...
mptpreima 6130 The preimage of a function...
mptiniseg 6131 Converse singleton image o...
dmmpt 6132 The domain of the mapping ...
dmmptss 6133 The domain of a mapping is...
dmmptg 6134 The domain of the mapping ...
rnmpt0f 6135 The range of a function in...
rnmptn0 6136 The range of a function in...
relco 6137 A composition is a relatio...
dfco2 6138 Alternate definition of a ...
dfco2a 6139 Generalization of ~ dfco2 ...
coundi 6140 Class composition distribu...
coundir 6141 Class composition distribu...
cores 6142 Restricted first member of...
resco 6143 Associative law for the re...
imaco 6144 Image of the composition o...
rnco 6145 The range of the compositi...
rnco2 6146 The range of the compositi...
dmco 6147 The domain of a compositio...
coeq0 6148 A composition of two relat...
coiun 6149 Composition with an indexe...
cocnvcnv1 6150 A composition is not affec...
cocnvcnv2 6151 A composition is not affec...
cores2 6152 Absorption of a reverse (p...
co02 6153 Composition with the empty...
co01 6154 Composition with the empty...
coi1 6155 Composition with the ident...
coi2 6156 Composition with the ident...
coires1 6157 Composition with a restric...
coass 6158 Associative law for class ...
relcnvtrg 6159 General form of ~ relcnvtr...
relcnvtr 6160 A relation is transitive i...
relssdmrn 6161 A relation is included in ...
resssxp 6162 If the ` R ` -image of a c...
cnvssrndm 6163 The converse is a subset o...
cossxp 6164 Composition as a subset of...
relrelss 6165 Two ways to describe the s...
unielrel 6166 The membership relation fo...
relfld 6167 The double union of a rela...
relresfld 6168 Restriction of a relation ...
relcoi2 6169 Composition with the ident...
relcoi1 6170 Composition with the ident...
unidmrn 6171 The double union of the co...
relcnvfld 6172 if ` R ` is a relation, it...
dfdm2 6173 Alternate definition of do...
unixp 6174 The double class union of ...
unixp0 6175 A Cartesian product is emp...
unixpid 6176 Field of a Cartesian squar...
ressn 6177 Restriction of a class to ...
cnviin 6178 The converse of an interse...
cnvpo 6179 The converse of a partial ...
cnvso 6180 The converse of a strict o...
xpco 6181 Composition of two Cartesi...
xpcoid 6182 Composition of two Cartesi...
elsnxp 6183 Membership in a Cartesian ...
reu3op 6184 There is a unique ordered ...
reuop 6185 There is a unique ordered ...
opreu2reurex 6186 There is a unique ordered ...
opreu2reu 6187 If there is a unique order...
dfpo2 6188 Quantifier-free definition...
csbcog 6189 Distribute proper substitu...
predeq123 6192 Equality theorem for the p...
predeq1 6193 Equality theorem for the p...
predeq2 6194 Equality theorem for the p...
predeq3 6195 Equality theorem for the p...
nfpred 6196 Bound-variable hypothesis ...
csbpredg 6197 Move class substitution in...
predpredss 6198 If ` A ` is a subset of ` ...
predss 6199 The predecessor class of `...
sspred 6200 Another subset/predecessor...
dfpred2 6201 An alternate definition of...
dfpred3 6202 An alternate definition of...
dfpred3g 6203 An alternate definition of...
elpredgg 6204 Membership in a predecesso...
elpredg 6205 Membership in a predecesso...
elpredimg 6206 Membership in a predecesso...
elpredim 6207 Membership in a predecesso...
elpred 6208 Membership in a predecesso...
predexg 6209 The predecessor class exis...
predasetexOLD 6210 Obsolete form of ~ predexg...
dffr4 6211 Alternate definition of we...
predel 6212 Membership in the predeces...
predbrg 6213 Closed form of ~ elpredim ...
predtrss 6214 If ` R ` is transitive ove...
predpo 6215 Property of the predecesso...
predso 6216 Property of the predecesso...
setlikespec 6217 If ` R ` is set-like in ` ...
predidm 6218 Idempotent law for the pre...
predin 6219 Intersection law for prede...
predun 6220 Union law for predecessor ...
preddif 6221 Difference law for predece...
predep 6222 The predecessor under the ...
trpred 6223 The class of predecessors ...
preddowncl 6224 A property of classes that...
predpoirr 6225 Given a partial ordering, ...
predfrirr 6226 Given a well-founded relat...
pred0 6227 The predecessor class over...
frpomin 6228 Every nonempty (possibly p...
frpomin2 6229 Every nonempty (possibly p...
frpoind 6230 The principle of well-foun...
frpoinsg 6231 Well-Founded Induction Sch...
frpoins2fg 6232 Well-Founded Induction sch...
frpoins2g 6233 Well-Founded Induction sch...
frpoins3g 6234 Well-Founded Induction sch...
tz6.26 6235 All nonempty subclasses of...
tz6.26OLD 6236 Obsolete proof of ~ tz6.26...
tz6.26i 6237 All nonempty subclasses of...
wfi 6238 The Principle of Well-Orde...
wfiOLD 6239 Obsolete proof of ~ wfi as...
wfii 6240 The Principle of Well-Orde...
wfisg 6241 Well-Ordered Induction Sch...
wfisgOLD 6242 Obsolete proof of ~ wfisg ...
wfis 6243 Well-Ordered Induction Sch...
wfis2fg 6244 Well-Ordered Induction Sch...
wfis2fgOLD 6245 Obsolete proof of ~ wfis2f...
wfis2f 6246 Well-Ordered Induction sch...
wfis2g 6247 Well-Ordered Induction Sch...
wfis2 6248 Well-Ordered Induction sch...
wfis3 6249 Well-Ordered Induction sch...
ordeq 6258 Equality theorem for the o...
elong 6259 An ordinal number is an or...
elon 6260 An ordinal number is an or...
eloni 6261 An ordinal number has the ...
elon2 6262 An ordinal number is an or...
limeq 6263 Equality theorem for the l...
ordwe 6264 Membership well-orders eve...
ordtr 6265 An ordinal class is transi...
ordfr 6266 Membership is well-founded...
ordelss 6267 An element of an ordinal c...
trssord 6268 A transitive subclass of a...
ordirr 6269 No ordinal class is a memb...
nordeq 6270 A member of an ordinal cla...
ordn2lp 6271 An ordinal class cannot be...
tz7.5 6272 A nonempty subclass of an ...
ordelord 6273 An element of an ordinal c...
tron 6274 The class of all ordinal n...
ordelon 6275 An element of an ordinal c...
onelon 6276 An element of an ordinal n...
tz7.7 6277 A transitive class belongs...
ordelssne 6278 For ordinal classes, membe...
ordelpss 6279 For ordinal classes, membe...
ordsseleq 6280 For ordinal classes, inclu...
ordin 6281 The intersection of two or...
onin 6282 The intersection of two or...
ordtri3or 6283 A trichotomy law for ordin...
ordtri1 6284 A trichotomy law for ordin...
ontri1 6285 A trichotomy law for ordin...
ordtri2 6286 A trichotomy law for ordin...
ordtri3 6287 A trichotomy law for ordin...
ordtri4 6288 A trichotomy law for ordin...
orddisj 6289 An ordinal class and its s...
onfr 6290 The ordinal class is well-...
onelpss 6291 Relationship between membe...
onsseleq 6292 Relationship between subse...
onelss 6293 An element of an ordinal n...
ordtr1 6294 Transitive law for ordinal...
ordtr2 6295 Transitive law for ordinal...
ordtr3 6296 Transitive law for ordinal...
ontr1 6297 Transitive law for ordinal...
ontr2 6298 Transitive law for ordinal...
ordunidif 6299 The union of an ordinal st...
ordintdif 6300 If ` B ` is smaller than `...
onintss 6301 If a property is true for ...
oneqmini 6302 A way to show that an ordi...
ord0 6303 The empty set is an ordina...
0elon 6304 The empty set is an ordina...
ord0eln0 6305 A nonempty ordinal contain...
on0eln0 6306 An ordinal number contains...
dflim2 6307 An alternate definition of...
inton 6308 The intersection of the cl...
nlim0 6309 The empty set is not a lim...
limord 6310 A limit ordinal is ordinal...
limuni 6311 A limit ordinal is its own...
limuni2 6312 The union of a limit ordin...
0ellim 6313 A limit ordinal contains t...
limelon 6314 A limit ordinal class that...
onn0 6315 The class of all ordinal n...
suceq 6316 Equality of successors. (...
elsuci 6317 Membership in a successor....
elsucg 6318 Membership in a successor....
elsuc2g 6319 Variant of membership in a...
elsuc 6320 Membership in a successor....
elsuc2 6321 Membership in a successor....
nfsuc 6322 Bound-variable hypothesis ...
elelsuc 6323 Membership in a successor....
sucel 6324 Membership of a successor ...
suc0 6325 The successor of the empty...
sucprc 6326 A proper class is its own ...
unisuc 6327 A transitive class is equa...
sssucid 6328 A class is included in its...
sucidg 6329 Part of Proposition 7.23 o...
sucid 6330 A set belongs to its succe...
nsuceq0 6331 No successor is empty. (C...
eqelsuc 6332 A set belongs to the succe...
iunsuc 6333 Inductive definition for t...
suctr 6334 The successor of a transit...
trsuc 6335 A set whose successor belo...
trsucss 6336 A member of the successor ...
ordsssuc 6337 An ordinal is a subset of ...
onsssuc 6338 A subset of an ordinal num...
ordsssuc2 6339 An ordinal subset of an or...
onmindif 6340 When its successor is subt...
ordnbtwn 6341 There is no set between an...
onnbtwn 6342 There is no set between an...
sucssel 6343 A set whose successor is a...
orddif 6344 Ordinal derived from its s...
orduniss 6345 An ordinal class includes ...
ordtri2or 6346 A trichotomy law for ordin...
ordtri2or2 6347 A trichotomy law for ordin...
ordtri2or3 6348 A consequence of total ord...
ordelinel 6349 The intersection of two or...
ordssun 6350 Property of a subclass of ...
ordequn 6351 The maximum (i.e. union) o...
ordun 6352 The maximum (i.e. union) o...
ordunisssuc 6353 A subclass relationship fo...
suc11 6354 The successor operation be...
onun2 6355 The union of two ordinals ...
onordi 6356 An ordinal number is an or...
ontrci 6357 An ordinal number is a tra...
onirri 6358 An ordinal number is not a...
oneli 6359 A member of an ordinal num...
onelssi 6360 A member of an ordinal num...
onssneli 6361 An ordering law for ordina...
onssnel2i 6362 An ordering law for ordina...
onelini 6363 An element of an ordinal n...
oneluni 6364 An ordinal number equals i...
onunisuci 6365 An ordinal number is equal...
onsseli 6366 Subset is equivalent to me...
onun2i 6367 The union of two ordinal n...
unizlim 6368 An ordinal equal to its ow...
on0eqel 6369 An ordinal number either e...
snsn0non 6370 The singleton of the singl...
onxpdisj 6371 Ordinal numbers and ordere...
onnev 6372 The class of ordinal numbe...
onnevOLD 6373 Obsolete version of ~ onne...
iotajust 6375 Soundness justification th...
dfiota2 6377 Alternate definition for d...
nfiota1 6378 Bound-variable hypothesis ...
nfiotadw 6379 Deduction version of ~ nfi...
nfiotaw 6380 Bound-variable hypothesis ...
nfiotad 6381 Deduction version of ~ nfi...
nfiota 6382 Bound-variable hypothesis ...
cbviotaw 6383 Change bound variables in ...
cbviotavw 6384 Change bound variables in ...
cbviotavwOLD 6385 Obsolete version of ~ cbvi...
cbviota 6386 Change bound variables in ...
cbviotav 6387 Change bound variables in ...
sb8iota 6388 Variable substitution in d...
iotaeq 6389 Equality theorem for descr...
iotabi 6390 Equivalence theorem for de...
uniabio 6391 Part of Theorem 8.17 in [Q...
iotaval 6392 Theorem 8.19 in [Quine] p....
iotauni 6393 Equivalence between two di...
iotaint 6394 Equivalence between two di...
iota1 6395 Property of iota. (Contri...
iotanul 6396 Theorem 8.22 in [Quine] p....
iotassuni 6397 The ` iota ` class is a su...
iotaex 6398 Theorem 8.23 in [Quine] p....
iota4 6399 Theorem *14.22 in [Whitehe...
iota4an 6400 Theorem *14.23 in [Whitehe...
iota5 6401 A method for computing iot...
iotabidv 6402 Formula-building deduction...
iotabii 6403 Formula-building deduction...
iotacl 6404 Membership law for descrip...
iota2df 6405 A condition that allows us...
iota2d 6406 A condition that allows us...
iota2 6407 The unique element such th...
iotan0 6408 Representation of "the uni...
sniota 6409 A class abstraction with a...
dfiota4 6410 The ` iota ` operation usi...
csbiota 6411 Class substitution within ...
dffun2 6428 Alternate definition of a ...
dffun3 6429 Alternate definition of fu...
dffun4 6430 Alternate definition of a ...
dffun5 6431 Alternate definition of fu...
dffun6f 6432 Definition of function, us...
dffun6 6433 Alternate definition of a ...
funmo 6434 A function has at most one...
funrel 6435 A function is a relation. ...
0nelfun 6436 A function does not contai...
funss 6437 Subclass theorem for funct...
funeq 6438 Equality theorem for funct...
funeqi 6439 Equality inference for the...
funeqd 6440 Equality deduction for the...
nffun 6441 Bound-variable hypothesis ...
sbcfung 6442 Distribute proper substitu...
funeu 6443 There is exactly one value...
funeu2 6444 There is exactly one value...
dffun7 6445 Alternate definition of a ...
dffun8 6446 Alternate definition of a ...
dffun9 6447 Alternate definition of a ...
funfn 6448 A class is a function if a...
funfnd 6449 A function is a function o...
funi 6450 The identity relation is a...
nfunv 6451 The universal class is not...
funopg 6452 A Kuratowski ordered pair ...
funopab 6453 A class of ordered pairs i...
funopabeq 6454 A class of ordered pairs o...
funopab4 6455 A class of ordered pairs o...
funmpt 6456 A function in maps-to nota...
funmpt2 6457 Functionality of a class g...
funco 6458 The composition of two fun...
funresfunco 6459 Composition of two functio...
funres 6460 A restriction of a functio...
funresd 6461 A restriction of a functio...
funssres 6462 The restriction of a funct...
fun2ssres 6463 Equality of restrictions o...
funun 6464 The union of functions wit...
fununmo 6465 If the union of classes is...
fununfun 6466 If the union of classes is...
fundif 6467 A function with removed el...
funcnvsn 6468 The converse singleton of ...
funsng 6469 A singleton of an ordered ...
fnsng 6470 Functionality and domain o...
funsn 6471 A singleton of an ordered ...
funprg 6472 A set of two pairs is a fu...
funtpg 6473 A set of three pairs is a ...
funpr 6474 A function with a domain o...
funtp 6475 A function with a domain o...
fnsn 6476 Functionality and domain o...
fnprg 6477 Function with a domain of ...
fntpg 6478 Function with a domain of ...
fntp 6479 A function with a domain o...
funcnvpr 6480 The converse pair of order...
funcnvtp 6481 The converse triple of ord...
funcnvqp 6482 The converse quadruple of ...
fun0 6483 The empty set is a functio...
funcnv0 6484 The converse of the empty ...
funcnvcnv 6485 The double converse of a f...
funcnv2 6486 A simpler equivalence for ...
funcnv 6487 The converse of a class is...
funcnv3 6488 A condition showing a clas...
fun2cnv 6489 The double converse of a c...
svrelfun 6490 A single-valued relation i...
fncnv 6491 Single-rootedness (see ~ f...
fun11 6492 Two ways of stating that `...
fununi 6493 The union of a chain (with...
funin 6494 The intersection with a fu...
funres11 6495 The restriction of a one-t...
funcnvres 6496 The converse of a restrict...
cnvresid 6497 Converse of a restricted i...
funcnvres2 6498 The converse of a restrict...
funimacnv 6499 The image of the preimage ...
funimass1 6500 A kind of contraposition l...
funimass2 6501 A kind of contraposition l...
imadif 6502 The image of a difference ...
imain 6503 The image of an intersecti...
funimaexg 6504 Axiom of Replacement using...
funimaex 6505 The image of a set under a...
isarep1 6506 Part of a study of the Axi...
isarep2 6507 Part of a study of the Axi...
fneq1 6508 Equality theorem for funct...
fneq2 6509 Equality theorem for funct...
fneq1d 6510 Equality deduction for fun...
fneq2d 6511 Equality deduction for fun...
fneq12d 6512 Equality deduction for fun...
fneq12 6513 Equality theorem for funct...
fneq1i 6514 Equality inference for fun...
fneq2i 6515 Equality inference for fun...
nffn 6516 Bound-variable hypothesis ...
fnfun 6517 A function with domain is ...
fnfund 6518 A function with domain is ...
fnrel 6519 A function with domain is ...
fndm 6520 The domain of a function. ...
fndmi 6521 The domain of a function. ...
fndmd 6522 The domain of a function. ...
funfni 6523 Inference to convert a fun...
fndmu 6524 A function has a unique do...
fnbr 6525 The first argument of bina...
fnop 6526 The first argument of an o...
fneu 6527 There is exactly one value...
fneu2 6528 There is exactly one value...
fnun 6529 The union of two functions...
fnund 6530 The union of two functions...
fnunop 6531 Extension of a function wi...
fncofn 6532 Composition of a function ...
fnco 6533 Composition of two functio...
fncoOLD 6534 Obsolete version of ~ fnco...
fnresdm 6535 A function does not change...
fnresdisj 6536 A function restricted to a...
2elresin 6537 Membership in two function...
fnssresb 6538 Restriction of a function ...
fnssres 6539 Restriction of a function ...
fnssresd 6540 Restriction of a function ...
fnresin1 6541 Restriction of a function'...
fnresin2 6542 Restriction of a function'...
fnres 6543 An equivalence for functio...
idfn 6544 The identity relation is a...
fnresi 6545 The restricted identity re...
fnresiOLD 6546 Obsolete proof of ~ fnresi...
fnima 6547 The image of a function's ...
fn0 6548 A function with empty doma...
fnimadisj 6549 A class that is disjoint w...
fnimaeq0 6550 Images under a function ne...
dfmpt3 6551 Alternate definition for t...
mptfnf 6552 The maps-to notation defin...
fnmptf 6553 The maps-to notation defin...
fnopabg 6554 Functionality and domain o...
fnopab 6555 Functionality and domain o...
mptfng 6556 The maps-to notation defin...
fnmpt 6557 The maps-to notation defin...
fnmptd 6558 The maps-to notation defin...
mpt0 6559 A mapping operation with e...
fnmpti 6560 Functionality and domain o...
dmmpti 6561 Domain of the mapping oper...
dmmptd 6562 The domain of the mapping ...
mptun 6563 Union of mappings which ar...
partfun 6564 Rewrite a function defined...
feq1 6565 Equality theorem for funct...
feq2 6566 Equality theorem for funct...
feq3 6567 Equality theorem for funct...
feq23 6568 Equality theorem for funct...
feq1d 6569 Equality deduction for fun...
feq2d 6570 Equality deduction for fun...
feq3d 6571 Equality deduction for fun...
feq12d 6572 Equality deduction for fun...
feq123d 6573 Equality deduction for fun...
feq123 6574 Equality theorem for funct...
feq1i 6575 Equality inference for fun...
feq2i 6576 Equality inference for fun...
feq12i 6577 Equality inference for fun...
feq23i 6578 Equality inference for fun...
feq23d 6579 Equality deduction for fun...
nff 6580 Bound-variable hypothesis ...
sbcfng 6581 Distribute proper substitu...
sbcfg 6582 Distribute proper substitu...
elimf 6583 Eliminate a mapping hypoth...
ffn 6584 A mapping is a function wi...
ffnd 6585 A mapping is a function wi...
dffn2 6586 Any function is a mapping ...
ffun 6587 A mapping is a function. ...
ffund 6588 A mapping is a function, d...
frel 6589 A mapping is a relation. ...
freld 6590 A mapping is a relation. ...
frn 6591 The range of a mapping. (...
frnd 6592 Deduction form of ~ frn . ...
fdm 6593 The domain of a mapping. ...
fdmOLD 6594 Obsolete version of ~ fdm ...
fdmd 6595 Deduction form of ~ fdm . ...
fdmi 6596 Inference associated with ...
dffn3 6597 A function maps to its ran...
ffrn 6598 A function maps to its ran...
ffrnb 6599 Characterization of a func...
ffrnbd 6600 A function maps to its ran...
fss 6601 Expanding the codomain of ...
fssd 6602 Expanding the codomain of ...
fssdmd 6603 Expressing that a class is...
fssdm 6604 Expressing that a class is...
fimass 6605 The image of a class under...
fimacnv 6606 The preimage of the codoma...
fcof 6607 Composition of a function ...
fco 6608 Composition of two functio...
fcoOLD 6609 Obsolete version of ~ fco ...
fcod 6610 Composition of two mapping...
fco2 6611 Functionality of a composi...
fssxp 6612 A mapping is a class of or...
funssxp 6613 Two ways of specifying a p...
ffdm 6614 A mapping is a partial fun...
ffdmd 6615 The domain of a function. ...
fdmrn 6616 A different way to write `...
funcofd 6617 Composition of two functio...
fco3OLD 6618 Obsolete version of ~ func...
opelf 6619 The members of an ordered ...
fun 6620 The union of two functions...
fun2 6621 The union of two functions...
fun2d 6622 The union of functions wit...
fnfco 6623 Composition of two functio...
fssres 6624 Restriction of a function ...
fssresd 6625 Restriction of a function ...
fssres2 6626 Restriction of a restricte...
fresin 6627 An identity for the mappin...
resasplit 6628 If two functions agree on ...
fresaun 6629 The union of two functions...
fresaunres2 6630 From the union of two func...
fresaunres1 6631 From the union of two func...
fcoi1 6632 Composition of a mapping a...
fcoi2 6633 Composition of restricted ...
feu 6634 There is exactly one value...
fcnvres 6635 The converse of a restrict...
fimacnvdisj 6636 The preimage of a class di...
fint 6637 Function into an intersect...
fin 6638 Mapping into an intersecti...
f0 6639 The empty function. (Cont...
f00 6640 A class is a function with...
f0bi 6641 A function with empty doma...
f0dom0 6642 A function is empty iff it...
f0rn0 6643 If there is no element in ...
fconst 6644 A Cartesian product with a...
fconstg 6645 A Cartesian product with a...
fnconstg 6646 A Cartesian product with a...
fconst6g 6647 Constant function with loo...
fconst6 6648 A constant function as a m...
f1eq1 6649 Equality theorem for one-t...
f1eq2 6650 Equality theorem for one-t...
f1eq3 6651 Equality theorem for one-t...
nff1 6652 Bound-variable hypothesis ...
dff12 6653 Alternate definition of a ...
f1f 6654 A one-to-one mapping is a ...
f1fn 6655 A one-to-one mapping is a ...
f1fun 6656 A one-to-one mapping is a ...
f1rel 6657 A one-to-one onto mapping ...
f1dm 6658 The domain of a one-to-one...
f1dmOLD 6659 Obsolete version of ~ f1dm...
f1ss 6660 A function that is one-to-...
f1ssr 6661 A function that is one-to-...
f1ssres 6662 A function that is one-to-...
f1resf1 6663 The restriction of an inje...
f1cnvcnv 6664 Two ways to express that a...
f1cof1 6665 Composition of two one-to-...
f1co 6666 Composition of one-to-one ...
f1coOLD 6667 Obsolete version of ~ f1co...
foeq1 6668 Equality theorem for onto ...
foeq2 6669 Equality theorem for onto ...
foeq3 6670 Equality theorem for onto ...
nffo 6671 Bound-variable hypothesis ...
fof 6672 An onto mapping is a mappi...
fofun 6673 An onto mapping is a funct...
fofn 6674 An onto mapping is a funct...
forn 6675 The codomain of an onto fu...
dffo2 6676 Alternate definition of an...
foima 6677 The image of the domain of...
dffn4 6678 A function maps onto its r...
funforn 6679 A function maps its domain...
fodmrnu 6680 An onto function has uniqu...
fimadmfo 6681 A function is a function o...
fores 6682 Restriction of an onto fun...
fimadmfoALT 6683 Alternate proof of ~ fimad...
focnvimacdmdm 6684 The preimage of the codoma...
focofo 6685 Composition of onto functi...
foco 6686 Composition of onto functi...
foconst 6687 A nonzero constant functio...
f1oeq1 6688 Equality theorem for one-t...
f1oeq2 6689 Equality theorem for one-t...
f1oeq3 6690 Equality theorem for one-t...
f1oeq23 6691 Equality theorem for one-t...
f1eq123d 6692 Equality deduction for one...
foeq123d 6693 Equality deduction for ont...
f1oeq123d 6694 Equality deduction for one...
f1oeq1d 6695 Equality deduction for one...
f1oeq2d 6696 Equality deduction for one...
f1oeq3d 6697 Equality deduction for one...
nff1o 6698 Bound-variable hypothesis ...
f1of1 6699 A one-to-one onto mapping ...
f1of 6700 A one-to-one onto mapping ...
f1ofn 6701 A one-to-one onto mapping ...
f1ofun 6702 A one-to-one onto mapping ...
f1orel 6703 A one-to-one onto mapping ...
f1odm 6704 The domain of a one-to-one...
dff1o2 6705 Alternate definition of on...
dff1o3 6706 Alternate definition of on...
f1ofo 6707 A one-to-one onto function...
dff1o4 6708 Alternate definition of on...
dff1o5 6709 Alternate definition of on...
f1orn 6710 A one-to-one function maps...
f1f1orn 6711 A one-to-one function maps...
f1ocnv 6712 The converse of a one-to-o...
f1ocnvb 6713 A relation is a one-to-one...
f1ores 6714 The restriction of a one-t...
f1orescnv 6715 The converse of a one-to-o...
f1imacnv 6716 Preimage of an image. (Co...
foimacnv 6717 A reverse version of ~ f1i...
foun 6718 The union of two onto func...
f1oun 6719 The union of two one-to-on...
resdif 6720 The restriction of a one-t...
resin 6721 The restriction of a one-t...
f1oco 6722 Composition of one-to-one ...
f1cnv 6723 The converse of an injecti...
funcocnv2 6724 Composition with the conve...
fococnv2 6725 The composition of an onto...
f1ococnv2 6726 The composition of a one-t...
f1cocnv2 6727 Composition of an injectiv...
f1ococnv1 6728 The composition of a one-t...
f1cocnv1 6729 Composition of an injectiv...
funcoeqres 6730 Express a constraint on a ...
f1ssf1 6731 A subset of an injective f...
f10 6732 The empty set maps one-to-...
f10d 6733 The empty set maps one-to-...
f1o00 6734 One-to-one onto mapping of...
fo00 6735 Onto mapping of the empty ...
f1o0 6736 One-to-one onto mapping of...
f1oi 6737 A restriction of the ident...
f1ovi 6738 The identity relation is a...
f1osn 6739 A singleton of an ordered ...
f1osng 6740 A singleton of an ordered ...
f1sng 6741 A singleton of an ordered ...
fsnd 6742 A singleton of an ordered ...
f1oprswap 6743 A two-element swap is a bi...
f1oprg 6744 An unordered pair of order...
tz6.12-2 6745 Function value when ` F ` ...
fveu 6746 The value of a function at...
brprcneu 6747 If ` A ` is a proper class...
fvprc 6748 A function's value at a pr...
fvprcALT 6749 Alternate proof of ~ fvprc...
rnfvprc 6750 The range of a function va...
fv2 6751 Alternate definition of fu...
dffv3 6752 A definition of function v...
dffv4 6753 The previous definition of...
elfv 6754 Membership in a function v...
fveq1 6755 Equality theorem for funct...
fveq2 6756 Equality theorem for funct...
fveq1i 6757 Equality inference for fun...
fveq1d 6758 Equality deduction for fun...
fveq2i 6759 Equality inference for fun...
fveq2d 6760 Equality deduction for fun...
2fveq3 6761 Equality theorem for neste...
fveq12i 6762 Equality deduction for fun...
fveq12d 6763 Equality deduction for fun...
fveqeq2d 6764 Equality deduction for fun...
fveqeq2 6765 Equality deduction for fun...
nffv 6766 Bound-variable hypothesis ...
nffvmpt1 6767 Bound-variable hypothesis ...
nffvd 6768 Deduction version of bound...
fvex 6769 The value of a class exist...
fvexi 6770 The value of a class exist...
fvexd 6771 The value of a class exist...
fvif 6772 Move a conditional outside...
iffv 6773 Move a conditional outside...
fv3 6774 Alternate definition of th...
fvres 6775 The value of a restricted ...
fvresd 6776 The value of a restricted ...
funssfv 6777 The value of a member of t...
tz6.12-1 6778 Function value. Theorem 6...
tz6.12 6779 Function value. Theorem 6...
tz6.12f 6780 Function value, using boun...
tz6.12c 6781 Corollary of Theorem 6.12(...
tz6.12i 6782 Corollary of Theorem 6.12(...
fvbr0 6783 Two possibilities for the ...
fvrn0 6784 A function value is a memb...
fvssunirn 6785 The result of a function v...
ndmfv 6786 The value of a class outsi...
ndmfvrcl 6787 Reverse closure law for fu...
elfvdm 6788 If a function value has a ...
elfvex 6789 If a function value has a ...
elfvexd 6790 If a function value has a ...
eliman0 6791 A nonempty function value ...
nfvres 6792 The value of a non-member ...
nfunsn 6793 If the restriction of a cl...
fvfundmfvn0 6794 If the "value of a class" ...
0fv 6795 Function value of the empt...
fv2prc 6796 A function value of a func...
elfv2ex 6797 If a function value of a f...
fveqres 6798 Equal values imply equal v...
csbfv12 6799 Move class substitution in...
csbfv2g 6800 Move class substitution in...
csbfv 6801 Substitution for a functio...
funbrfv 6802 The second argument of a b...
funopfv 6803 The second element in an o...
fnbrfvb 6804 Equivalence of function va...
fnopfvb 6805 Equivalence of function va...
funbrfvb 6806 Equivalence of function va...
funopfvb 6807 Equivalence of function va...
fnbrfvb2 6808 Version of ~ fnbrfvb for f...
funbrfv2b 6809 Function value in terms of...
dffn5 6810 Representation of a functi...
fnrnfv 6811 The range of a function ex...
fvelrnb 6812 A member of a function's r...
foelrni 6813 A member of a surjective f...
dfimafn 6814 Alternate definition of th...
dfimafn2 6815 Alternate definition of th...
funimass4 6816 Membership relation for th...
fvelima 6817 Function value in an image...
fvelimad 6818 Function value in an image...
feqmptd 6819 Deduction form of ~ dffn5 ...
feqresmpt 6820 Express a restricted funct...
feqmptdf 6821 Deduction form of ~ dffn5f...
dffn5f 6822 Representation of a functi...
fvelimab 6823 Function value in an image...
fvelimabd 6824 Deduction form of ~ fvelim...
unima 6825 Image of a union. (Contri...
fvi 6826 The value of the identity ...
fviss 6827 The value of the identity ...
fniinfv 6828 The indexed intersection o...
fnsnfv 6829 Singleton of function valu...
fnsnfvOLD 6830 Obsolete version of ~ fnsn...
opabiotafun 6831 Define a function whose va...
opabiotadm 6832 Define a function whose va...
opabiota 6833 Define a function whose va...
fnimapr 6834 The image of a pair under ...
ssimaex 6835 The existence of a subimag...
ssimaexg 6836 The existence of a subimag...
funfv 6837 A simplified expression fo...
funfv2 6838 The value of a function. ...
funfv2f 6839 The value of a function. ...
fvun 6840 Value of the union of two ...
fvun1 6841 The value of a union when ...
fvun2 6842 The value of a union when ...
fvun1d 6843 The value of a union when ...
fvun2d 6844 The value of a union when ...
dffv2 6845 Alternate definition of fu...
dmfco 6846 Domains of a function comp...
fvco2 6847 Value of a function compos...
fvco 6848 Value of a function compos...
fvco3 6849 Value of a function compos...
fvco3d 6850 Value of a function compos...
fvco4i 6851 Conditions for a compositi...
fvopab3g 6852 Value of a function given ...
fvopab3ig 6853 Value of a function given ...
brfvopabrbr 6854 The binary relation of a f...
fvmptg 6855 Value of a function given ...
fvmpti 6856 Value of a function given ...
fvmpt 6857 Value of a function given ...
fvmpt2f 6858 Value of a function given ...
fvtresfn 6859 Functionality of a tuple-r...
fvmpts 6860 Value of a function given ...
fvmpt3 6861 Value of a function given ...
fvmpt3i 6862 Value of a function given ...
fvmptdf 6863 Deduction version of ~ fvm...
fvmptd 6864 Deduction version of ~ fvm...
fvmptd2 6865 Deduction version of ~ fvm...
mptrcl 6866 Reverse closure for a mapp...
fvmpt2i 6867 Value of a function given ...
fvmpt2 6868 Value of a function given ...
fvmptss 6869 If all the values of the m...
fvmpt2d 6870 Deduction version of ~ fvm...
fvmptex 6871 Express a function ` F ` w...
fvmptd3f 6872 Alternate deduction versio...
fvmptd2f 6873 Alternate deduction versio...
fvmptdv 6874 Alternate deduction versio...
fvmptdv2 6875 Alternate deduction versio...
mpteqb 6876 Bidirectional equality the...
fvmptt 6877 Closed theorem form of ~ f...
fvmptf 6878 Value of a function given ...
fvmptnf 6879 The value of a function gi...
fvmptd3 6880 Deduction version of ~ fvm...
fvmptn 6881 This somewhat non-intuitiv...
fvmptss2 6882 A mapping always evaluates...
elfvmptrab1w 6883 Implications for the value...
elfvmptrab1 6884 Implications for the value...
elfvmptrab 6885 Implications for the value...
fvopab4ndm 6886 Value of a function given ...
fvmptndm 6887 Value of a function given ...
fvmptrabfv 6888 Value of a function mappin...
fvopab5 6889 The value of a function th...
fvopab6 6890 Value of a function given ...
eqfnfv 6891 Equality of functions is d...
eqfnfv2 6892 Equality of functions is d...
eqfnfv3 6893 Derive equality of functio...
eqfnfvd 6894 Deduction for equality of ...
eqfnfv2f 6895 Equality of functions is d...
eqfunfv 6896 Equality of functions is d...
fvreseq0 6897 Equality of restricted fun...
fvreseq1 6898 Equality of a function res...
fvreseq 6899 Equality of restricted fun...
fnmptfvd 6900 A function with a given do...
fndmdif 6901 Two ways to express the lo...
fndmdifcom 6902 The difference set between...
fndmdifeq0 6903 The difference set of two ...
fndmin 6904 Two ways to express the lo...
fneqeql 6905 Two functions are equal if...
fneqeql2 6906 Two functions are equal if...
fnreseql 6907 Two functions are equal on...
chfnrn 6908 The range of a choice func...
funfvop 6909 Ordered pair with function...
funfvbrb 6910 Two ways to say that ` A `...
fvimacnvi 6911 A member of a preimage is ...
fvimacnv 6912 The argument of a function...
funimass3 6913 A kind of contraposition l...
funimass5 6914 A subclass of a preimage i...
funconstss 6915 Two ways of specifying tha...
fvimacnvALT 6916 Alternate proof of ~ fvima...
elpreima 6917 Membership in the preimage...
elpreimad 6918 Membership in the preimage...
fniniseg 6919 Membership in the preimage...
fncnvima2 6920 Inverse images under funct...
fniniseg2 6921 Inverse point images under...
unpreima 6922 Preimage of a union. (Con...
inpreima 6923 Preimage of an intersectio...
difpreima 6924 Preimage of a difference. ...
respreima 6925 The preimage of a restrict...
cnvimainrn 6926 The preimage of the inters...
sspreima 6927 The preimage of a subset i...
iinpreima 6928 Preimage of an intersectio...
intpreima 6929 Preimage of an intersectio...
fimacnvOLD 6930 Obsolete version of ~ fima...
fimacnvinrn 6931 Taking the converse image ...
fimacnvinrn2 6932 Taking the converse image ...
rescnvimafod 6933 The restriction of a funct...
fvn0ssdmfun 6934 If a class' function value...
fnopfv 6935 Ordered pair with function...
fvelrn 6936 A function's value belongs...
nelrnfvne 6937 A function value cannot be...
fveqdmss 6938 If the empty set is not co...
fveqressseq 6939 If the empty set is not co...
fnfvelrn 6940 A function's value belongs...
ffvelrn 6941 A function's value belongs...
ffvelrni 6942 A function's value belongs...
ffvelrnda 6943 A function's value belongs...
ffvelrnd 6944 A function's value belongs...
rexrn 6945 Restricted existential qua...
ralrn 6946 Restricted universal quant...
elrnrexdm 6947 For any element in the ran...
elrnrexdmb 6948 For any element in the ran...
eldmrexrn 6949 For any element in the dom...
eldmrexrnb 6950 For any element in the dom...
fvcofneq 6951 The values of two function...
ralrnmptw 6952 A restricted quantifier ov...
rexrnmptw 6953 A restricted quantifier ov...
ralrnmpt 6954 A restricted quantifier ov...
rexrnmpt 6955 A restricted quantifier ov...
f0cli 6956 Unconditional closure of a...
dff2 6957 Alternate definition of a ...
dff3 6958 Alternate definition of a ...
dff4 6959 Alternate definition of a ...
dffo3 6960 An onto mapping expressed ...
dffo4 6961 Alternate definition of an...
dffo5 6962 Alternate definition of an...
exfo 6963 A relation equivalent to t...
foelrn 6964 Property of a surjective f...
foco2 6965 If a composition of two fu...
fmpt 6966 Functionality of the mappi...
f1ompt 6967 Express bijection for a ma...
fmpti 6968 Functionality of the mappi...
fvmptelrn 6969 The value of a function at...
fmptd 6970 Domain and codomain of the...
fmpttd 6971 Version of ~ fmptd with in...
fmpt3d 6972 Domain and codomain of the...
fmptdf 6973 A version of ~ fmptd using...
ffnfv 6974 A function maps to a class...
ffnfvf 6975 A function maps to a class...
fnfvrnss 6976 An upper bound for range d...
frnssb 6977 A function is a function i...
rnmptss 6978 The range of an operation ...
fmpt2d 6979 Domain and codomain of the...
ffvresb 6980 A necessary and sufficient...
f1oresrab 6981 Build a bijection between ...
f1ossf1o 6982 Restricting a bijection, w...
fmptco 6983 Composition of two functio...
fmptcof 6984 Version of ~ fmptco where ...
fmptcos 6985 Composition of two functio...
cofmpt 6986 Express composition of a m...
fcompt 6987 Express composition of two...
fcoconst 6988 Composition with a constan...
fsn 6989 A function maps a singleto...
fsn2 6990 A function that maps a sin...
fsng 6991 A function maps a singleto...
fsn2g 6992 A function that maps a sin...
xpsng 6993 The Cartesian product of t...
xpprsng 6994 The Cartesian product of a...
xpsn 6995 The Cartesian product of t...
f1o2sn 6996 A singleton consisting in ...
residpr 6997 Restriction of the identit...
dfmpt 6998 Alternate definition for t...
fnasrn 6999 A function expressed as th...
idref 7000 Two ways to state that a r...
funiun 7001 A function is a union of s...
funopsn 7002 If a function is an ordere...
funop 7003 An ordered pair is a funct...
funopdmsn 7004 The domain of a function w...
funsndifnop 7005 A singleton of an ordered ...
funsneqopb 7006 A singleton of an ordered ...
ressnop0 7007 If ` A ` is not in ` C ` ,...
fpr 7008 A function with a domain o...
fprg 7009 A function with a domain o...
ftpg 7010 A function with a domain o...
ftp 7011 A function with a domain o...
fnressn 7012 A function restricted to a...
funressn 7013 A function restricted to a...
fressnfv 7014 The value of a function re...
fvrnressn 7015 If the value of a function...
fvressn 7016 The value of a function re...
fvn0fvelrn 7017 If the value of a function...
fvconst 7018 The value of a constant fu...
fnsnr 7019 If a class belongs to a fu...
fnsnb 7020 A function whose domain is...
fmptsn 7021 Express a singleton functi...
fmptsng 7022 Express a singleton functi...
fmptsnd 7023 Express a singleton functi...
fmptap 7024 Append an additional value...
fmptapd 7025 Append an additional value...
fmptpr 7026 Express a pair function in...
fvresi 7027 The value of a restricted ...
fninfp 7028 Express the class of fixed...
fnelfp 7029 Property of a fixed point ...
fndifnfp 7030 Express the class of non-f...
fnelnfp 7031 Property of a non-fixed po...
fnnfpeq0 7032 A function is the identity...
fvunsn 7033 Remove an ordered pair not...
fvsng 7034 The value of a singleton o...
fvsn 7035 The value of a singleton o...
fvsnun1 7036 The value of a function wi...
fvsnun2 7037 The value of a function wi...
fnsnsplit 7038 Split a function into a si...
fsnunf 7039 Adjoining a point to a fun...
fsnunf2 7040 Adjoining a point to a pun...
fsnunfv 7041 Recover the added point fr...
fsnunres 7042 Recover the original funct...
funresdfunsn 7043 Restricting a function to ...
fvpr1g 7044 The value of a function wi...
fvpr2g 7045 The value of a function wi...
fvpr2gOLD 7046 Obsolete version of ~ fvpr...
fvpr1 7047 The value of a function wi...
fvpr1OLD 7048 Obsolete version of ~ fvpr...
fvpr2 7049 The value of a function wi...
fvpr2OLD 7050 Obsolete version of ~ fvpr...
fprb 7051 A condition for functionho...
fvtp1 7052 The first value of a funct...
fvtp2 7053 The second value of a func...
fvtp3 7054 The third value of a funct...
fvtp1g 7055 The value of a function wi...
fvtp2g 7056 The value of a function wi...
fvtp3g 7057 The value of a function wi...
tpres 7058 An unordered triple of ord...
fvconst2g 7059 The value of a constant fu...
fconst2g 7060 A constant function expres...
fvconst2 7061 The value of a constant fu...
fconst2 7062 A constant function expres...
fconst5 7063 Two ways to express that a...
rnmptc 7064 Range of a constant functi...
rnmptcOLD 7065 Obsolete version of ~ rnmp...
fnprb 7066 A function whose domain ha...
fntpb 7067 A function whose domain ha...
fnpr2g 7068 A function whose domain ha...
fpr2g 7069 A function that maps a pai...
fconstfv 7070 A constant function expres...
fconst3 7071 Two ways to express a cons...
fconst4 7072 Two ways to express a cons...
resfunexg 7073 The restriction of a funct...
resiexd 7074 The restriction of the ide...
fnex 7075 If the domain of a functio...
fnexd 7076 If the domain of a functio...
funex 7077 If the domain of a functio...
opabex 7078 Existence of a function ex...
mptexg 7079 If the domain of a functio...
mptexgf 7080 If the domain of a functio...
mptex 7081 If the domain of a functio...
mptexd 7082 If the domain of a functio...
mptrabex 7083 If the domain of a functio...
fex 7084 If the domain of a mapping...
fexd 7085 If the domain of a mapping...
mptfvmpt 7086 A function in maps-to nota...
eufnfv 7087 A function is uniquely det...
funfvima 7088 A function's value in a pr...
funfvima2 7089 A function's value in an i...
funfvima2d 7090 A function's value in a pr...
fnfvima 7091 The function value of an o...
fnfvimad 7092 A function's value belongs...
resfvresima 7093 The value of the function ...
funfvima3 7094 A class including a functi...
rexima 7095 Existential quantification...
ralima 7096 Universal quantification u...
fvclss 7097 Upper bound for the class ...
elabrex 7098 Elementhood in an image se...
abrexco 7099 Composition of two image m...
imaiun 7100 The image of an indexed un...
imauni 7101 The image of a union is th...
fniunfv 7102 The indexed union of a fun...
funiunfv 7103 The indexed union of a fun...
funiunfvf 7104 The indexed union of a fun...
eluniima 7105 Membership in the union of...
elunirn 7106 Membership in the union of...
elunirnALT 7107 Alternate proof of ~ eluni...
fnunirn 7108 Membership in a union of s...
dff13 7109 A one-to-one function in t...
dff13f 7110 A one-to-one function in t...
f1veqaeq 7111 If the values of a one-to-...
f1cofveqaeq 7112 If the values of a composi...
f1cofveqaeqALT 7113 Alternate proof of ~ f1cof...
2f1fvneq 7114 If two one-to-one function...
f1mpt 7115 Express injection for a ma...
f1fveq 7116 Equality of function value...
f1elima 7117 Membership in the image of...
f1imass 7118 Taking images under a one-...
f1imaeq 7119 Taking images under a one-...
f1imapss 7120 Taking images under a one-...
fpropnf1 7121 A function, given by an un...
f1dom3fv3dif 7122 The function values for a ...
f1dom3el3dif 7123 The range of a 1-1 functio...
dff14a 7124 A one-to-one function in t...
dff14b 7125 A one-to-one function in t...
f12dfv 7126 A one-to-one function with...
f13dfv 7127 A one-to-one function with...
dff1o6 7128 A one-to-one onto function...
f1ocnvfv1 7129 The converse value of the ...
f1ocnvfv2 7130 The value of the converse ...
f1ocnvfv 7131 Relationship between the v...
f1ocnvfvb 7132 Relationship between the v...
nvof1o 7133 An involution is a bijecti...
nvocnv 7134 The converse of an involut...
fsnex 7135 Relate a function with a s...
f1prex 7136 Relate a one-to-one functi...
f1ocnvdm 7137 The value of the converse ...
f1ocnvfvrneq 7138 If the values of a one-to-...
fcof1 7139 An application is injectiv...
fcofo 7140 An application is surjecti...
cbvfo 7141 Change bound variable betw...
cbvexfo 7142 Change bound variable betw...
cocan1 7143 An injection is left-cance...
cocan2 7144 A surjection is right-canc...
fcof1oinvd 7145 Show that a function is th...
fcof1od 7146 A function is bijective if...
2fcoidinvd 7147 Show that a function is th...
fcof1o 7148 Show that two functions ar...
2fvcoidd 7149 Show that the composition ...
2fvidf1od 7150 A function is bijective if...
2fvidinvd 7151 Show that two functions ar...
foeqcnvco 7152 Condition for function equ...
f1eqcocnv 7153 Condition for function equ...
f1eqcocnvOLD 7154 Obsolete version of ~ f1eq...
fveqf1o 7155 Given a bijection ` F ` , ...
nf1const 7156 A constant function from a...
nf1oconst 7157 A constant function from a...
f1ofvswap 7158 Swapping two values in a b...
fliftrel 7159 ` F ` , a function lift, i...
fliftel 7160 Elementhood in the relatio...
fliftel1 7161 Elementhood in the relatio...
fliftcnv 7162 Converse of the relation `...
fliftfun 7163 The function ` F ` is the ...
fliftfund 7164 The function ` F ` is the ...
fliftfuns 7165 The function ` F ` is the ...
fliftf 7166 The domain and range of th...
fliftval 7167 The value of the function ...
isoeq1 7168 Equality theorem for isomo...
isoeq2 7169 Equality theorem for isomo...
isoeq3 7170 Equality theorem for isomo...
isoeq4 7171 Equality theorem for isomo...
isoeq5 7172 Equality theorem for isomo...
nfiso 7173 Bound-variable hypothesis ...
isof1o 7174 An isomorphism is a one-to...
isof1oidb 7175 A function is a bijection ...
isof1oopb 7176 A function is a bijection ...
isorel 7177 An isomorphism connects bi...
soisores 7178 Express the condition of i...
soisoi 7179 Infer isomorphism from one...
isoid 7180 Identity law for isomorphi...
isocnv 7181 Converse law for isomorphi...
isocnv2 7182 Converse law for isomorphi...
isocnv3 7183 Complementation law for is...
isores2 7184 An isomorphism from one we...
isores1 7185 An isomorphism from one we...
isores3 7186 Induced isomorphism on a s...
isotr 7187 Composition (transitive) l...
isomin 7188 Isomorphisms preserve mini...
isoini 7189 Isomorphisms preserve init...
isoini2 7190 Isomorphisms are isomorphi...
isofrlem 7191 Lemma for ~ isofr . (Cont...
isoselem 7192 Lemma for ~ isose . (Cont...
isofr 7193 An isomorphism preserves w...
isose 7194 An isomorphism preserves s...
isofr2 7195 A weak form of ~ isofr tha...
isopolem 7196 Lemma for ~ isopo . (Cont...
isopo 7197 An isomorphism preserves t...
isosolem 7198 Lemma for ~ isoso . (Cont...
isoso 7199 An isomorphism preserves t...
isowe 7200 An isomorphism preserves t...
isowe2 7201 A weak form of ~ isowe tha...
f1oiso 7202 Any one-to-one onto functi...
f1oiso2 7203 Any one-to-one onto functi...
f1owe 7204 Well-ordering of isomorphi...
weniso 7205 A set-like well-ordering h...
weisoeq 7206 Thus, there is at most one...
weisoeq2 7207 Thus, there is at most one...
knatar 7208 The Knaster-Tarski theorem...
canth 7209 No set ` A ` is equinumero...
ncanth 7210 Cantor's theorem fails for...
riotaeqdv 7213 Formula-building deduction...
riotabidv 7214 Formula-building deduction...
riotaeqbidv 7215 Equality deduction for res...
riotaex 7216 Restricted iota is a set. ...
riotav 7217 An iota restricted to the ...
riotauni 7218 Restricted iota in terms o...
nfriota1 7219 The abstraction variable i...
nfriotadw 7220 Deduction version of ~ nfr...
cbvriotaw 7221 Change bound variable in a...
cbvriotavw 7222 Change bound variable in a...
cbvriotavwOLD 7223 Obsolete version of ~ cbvr...
nfriotad 7224 Deduction version of ~ nfr...
nfriota 7225 A variable not free in a w...
cbvriota 7226 Change bound variable in a...
cbvriotav 7227 Change bound variable in a...
csbriota 7228 Interchange class substitu...
riotacl2 7229 Membership law for "the un...
riotacl 7230 Closure of restricted iota...
riotasbc 7231 Substitution law for descr...
riotabidva 7232 Equivalent wff's yield equ...
riotabiia 7233 Equivalent wff's yield equ...
riota1 7234 Property of restricted iot...
riota1a 7235 Property of iota. (Contri...
riota2df 7236 A deduction version of ~ r...
riota2f 7237 This theorem shows a condi...
riota2 7238 This theorem shows a condi...
riotaeqimp 7239 If two restricted iota des...
riotaprop 7240 Properties of a restricted...
riota5f 7241 A method for computing res...
riota5 7242 A method for computing res...
riotass2 7243 Restriction of a unique el...
riotass 7244 Restriction of a unique el...
moriotass 7245 Restriction of a unique el...
snriota 7246 A restricted class abstrac...
riotaxfrd 7247 Change the variable ` x ` ...
eusvobj2 7248 Specify the same property ...
eusvobj1 7249 Specify the same object in...
f1ofveu 7250 There is one domain elemen...
f1ocnvfv3 7251 Value of the converse of a...
riotaund 7252 Restricted iota equals the...
riotassuni 7253 The restricted iota class ...
riotaclb 7254 Bidirectional closure of r...
oveq 7261 Equality theorem for opera...
oveq1 7262 Equality theorem for opera...
oveq2 7263 Equality theorem for opera...
oveq12 7264 Equality theorem for opera...
oveq1i 7265 Equality inference for ope...
oveq2i 7266 Equality inference for ope...
oveq12i 7267 Equality inference for ope...
oveqi 7268 Equality inference for ope...
oveq123i 7269 Equality inference for ope...
oveq1d 7270 Equality deduction for ope...
oveq2d 7271 Equality deduction for ope...
oveqd 7272 Equality deduction for ope...
oveq12d 7273 Equality deduction for ope...
oveqan12d 7274 Equality deduction for ope...
oveqan12rd 7275 Equality deduction for ope...
oveq123d 7276 Equality deduction for ope...
fvoveq1d 7277 Equality deduction for nes...
fvoveq1 7278 Equality theorem for neste...
ovanraleqv 7279 Equality theorem for a con...
imbrov2fvoveq 7280 Equality theorem for neste...
ovrspc2v 7281 If an operation value is e...
oveqrspc2v 7282 Restricted specialization ...
oveqdr 7283 Equality of two operations...
nfovd 7284 Deduction version of bound...
nfov 7285 Bound-variable hypothesis ...
oprabidw 7286 The law of concretion. Sp...
oprabid 7287 The law of concretion. Sp...
ovex 7288 The result of an operation...
ovexi 7289 The result of an operation...
ovexd 7290 The result of an operation...
ovssunirn 7291 The result of an operation...
0ov 7292 Operation value of the emp...
ovprc 7293 The value of an operation ...
ovprc1 7294 The value of an operation ...
ovprc2 7295 The value of an operation ...
ovrcl 7296 Reverse closure for an ope...
csbov123 7297 Move class substitution in...
csbov 7298 Move class substitution in...
csbov12g 7299 Move class substitution in...
csbov1g 7300 Move class substitution in...
csbov2g 7301 Move class substitution in...
rspceov 7302 A frequently used special ...
elovimad 7303 Elementhood of the image s...
fnbrovb 7304 Value of a binary operatio...
fnotovb 7305 Equivalence of operation v...
opabbrex 7306 A collection of ordered pa...
opabresex2d 7307 Restrictions of a collecti...
fvmptopab 7308 The function value of a ma...
f1opr 7309 Condition for an operation...
brfvopab 7310 The classes involved in a ...
dfoprab2 7311 Class abstraction for oper...
reloprab 7312 An operation class abstrac...
oprabv 7313 If a pair and a class are ...
nfoprab1 7314 The abstraction variables ...
nfoprab2 7315 The abstraction variables ...
nfoprab3 7316 The abstraction variables ...
nfoprab 7317 Bound-variable hypothesis ...
oprabbid 7318 Equivalent wff's yield equ...
oprabbidv 7319 Equivalent wff's yield equ...
oprabbii 7320 Equivalent wff's yield equ...
ssoprab2 7321 Equivalence of ordered pai...
ssoprab2b 7322 Equivalence of ordered pai...
eqoprab2bw 7323 Equivalence of ordered pai...
eqoprab2b 7324 Equivalence of ordered pai...
mpoeq123 7325 An equality theorem for th...
mpoeq12 7326 An equality theorem for th...
mpoeq123dva 7327 An equality deduction for ...
mpoeq123dv 7328 An equality deduction for ...
mpoeq123i 7329 An equality inference for ...
mpoeq3dva 7330 Slightly more general equa...
mpoeq3ia 7331 An equality inference for ...
mpoeq3dv 7332 An equality deduction for ...
nfmpo1 7333 Bound-variable hypothesis ...
nfmpo2 7334 Bound-variable hypothesis ...
nfmpo 7335 Bound-variable hypothesis ...
0mpo0 7336 A mapping operation with e...
mpo0v 7337 A mapping operation with e...
mpo0 7338 A mapping operation with e...
oprab4 7339 Two ways to state the doma...
cbvoprab1 7340 Rule used to change first ...
cbvoprab2 7341 Change the second bound va...
cbvoprab12 7342 Rule used to change first ...
cbvoprab12v 7343 Rule used to change first ...
cbvoprab3 7344 Rule used to change the th...
cbvoprab3v 7345 Rule used to change the th...
cbvmpox 7346 Rule to change the bound v...
cbvmpo 7347 Rule to change the bound v...
cbvmpov 7348 Rule to change the bound v...
elimdelov 7349 Eliminate a hypothesis whi...
ovif 7350 Move a conditional outside...
ovif2 7351 Move a conditional outside...
ovif12 7352 Move a conditional outside...
ifov 7353 Move a conditional outside...
dmoprab 7354 The domain of an operation...
dmoprabss 7355 The domain of an operation...
rnoprab 7356 The range of an operation ...
rnoprab2 7357 The range of a restricted ...
reldmoprab 7358 The domain of an operation...
oprabss 7359 Structure of an operation ...
eloprabga 7360 The law of concretion for ...
eloprabgaOLD 7361 Obsolete version of ~ elop...
eloprabg 7362 The law of concretion for ...
ssoprab2i 7363 Inference of operation cla...
mpov 7364 Operation with universal d...
mpomptx 7365 Express a two-argument fun...
mpompt 7366 Express a two-argument fun...
mpodifsnif 7367 A mapping with two argumen...
mposnif 7368 A mapping with two argumen...
fconstmpo 7369 Representation of a consta...
resoprab 7370 Restriction of an operatio...
resoprab2 7371 Restriction of an operator...
resmpo 7372 Restriction of the mapping...
funoprabg 7373 "At most one" is a suffici...
funoprab 7374 "At most one" is a suffici...
fnoprabg 7375 Functionality and domain o...
mpofun 7376 The maps-to notation for a...
mpofunOLD 7377 Obsolete version of ~ mpof...
fnoprab 7378 Functionality and domain o...
ffnov 7379 An operation maps to a cla...
fovcl 7380 Closure law for an operati...
eqfnov 7381 Equality of two operations...
eqfnov2 7382 Two operators with the sam...
fnov 7383 Representation of a functi...
mpo2eqb 7384 Bidirectional equality the...
rnmpo 7385 The range of an operation ...
reldmmpo 7386 The domain of an operation...
elrnmpog 7387 Membership in the range of...
elrnmpo 7388 Membership in the range of...
elrnmpores 7389 Membership in the range of...
ralrnmpo 7390 A restricted quantifier ov...
rexrnmpo 7391 A restricted quantifier ov...
ovid 7392 The value of an operation ...
ovidig 7393 The value of an operation ...
ovidi 7394 The value of an operation ...
ov 7395 The value of an operation ...
ovigg 7396 The value of an operation ...
ovig 7397 The value of an operation ...
ovmpt4g 7398 Value of a function given ...
ovmpos 7399 Value of a function given ...
ov2gf 7400 The value of an operation ...
ovmpodxf 7401 Value of an operation give...
ovmpodx 7402 Value of an operation give...
ovmpod 7403 Value of an operation give...
ovmpox 7404 The value of an operation ...
ovmpoga 7405 Value of an operation give...
ovmpoa 7406 Value of an operation give...
ovmpodf 7407 Alternate deduction versio...
ovmpodv 7408 Alternate deduction versio...
ovmpodv2 7409 Alternate deduction versio...
ovmpog 7410 Value of an operation give...
ovmpo 7411 Value of an operation give...
fvmpopr2d 7412 Value of an operation give...
ov3 7413 The value of an operation ...
ov6g 7414 The value of an operation ...
ovg 7415 The value of an operation ...
ovres 7416 The value of a restricted ...
ovresd 7417 Lemma for converting metri...
oprres 7418 The restriction of an oper...
oprssov 7419 The value of a member of t...
fovrn 7420 An operation's value belon...
fovrnda 7421 An operation's value belon...
fovrnd 7422 An operation's value belon...
fnrnov 7423 The range of an operation ...
foov 7424 An onto mapping of an oper...
fnovrn 7425 An operation's value belon...
ovelrn 7426 A member of an operation's...
funimassov 7427 Membership relation for th...
ovelimab 7428 Operation value in an imag...
ovima0 7429 An operation value is a me...
ovconst2 7430 The value of a constant op...
oprssdm 7431 Domain of closure of an op...
nssdmovg 7432 The value of an operation ...
ndmovg 7433 The value of an operation ...
ndmov 7434 The value of an operation ...
ndmovcl 7435 The closure of an operatio...
ndmovrcl 7436 Reverse closure law, when ...
ndmovcom 7437 Any operation is commutati...
ndmovass 7438 Any operation is associati...
ndmovdistr 7439 Any operation is distribut...
ndmovord 7440 Elimination of redundant a...
ndmovordi 7441 Elimination of redundant a...
caovclg 7442 Convert an operation closu...
caovcld 7443 Convert an operation closu...
caovcl 7444 Convert an operation closu...
caovcomg 7445 Convert an operation commu...
caovcomd 7446 Convert an operation commu...
caovcom 7447 Convert an operation commu...
caovassg 7448 Convert an operation assoc...
caovassd 7449 Convert an operation assoc...
caovass 7450 Convert an operation assoc...
caovcang 7451 Convert an operation cance...
caovcand 7452 Convert an operation cance...
caovcanrd 7453 Commute the arguments of a...
caovcan 7454 Convert an operation cance...
caovordig 7455 Convert an operation order...
caovordid 7456 Convert an operation order...
caovordg 7457 Convert an operation order...
caovordd 7458 Convert an operation order...
caovord2d 7459 Operation ordering law wit...
caovord3d 7460 Ordering law. (Contribute...
caovord 7461 Convert an operation order...
caovord2 7462 Operation ordering law wit...
caovord3 7463 Ordering law. (Contribute...
caovdig 7464 Convert an operation distr...
caovdid 7465 Convert an operation distr...
caovdir2d 7466 Convert an operation distr...
caovdirg 7467 Convert an operation rever...
caovdird 7468 Convert an operation distr...
caovdi 7469 Convert an operation distr...
caov32d 7470 Rearrange arguments in a c...
caov12d 7471 Rearrange arguments in a c...
caov31d 7472 Rearrange arguments in a c...
caov13d 7473 Rearrange arguments in a c...
caov4d 7474 Rearrange arguments in a c...
caov411d 7475 Rearrange arguments in a c...
caov42d 7476 Rearrange arguments in a c...
caov32 7477 Rearrange arguments in a c...
caov12 7478 Rearrange arguments in a c...
caov31 7479 Rearrange arguments in a c...
caov13 7480 Rearrange arguments in a c...
caov4 7481 Rearrange arguments in a c...
caov411 7482 Rearrange arguments in a c...
caov42 7483 Rearrange arguments in a c...
caovdir 7484 Reverse distributive law. ...
caovdilem 7485 Lemma used by real number ...
caovlem2 7486 Lemma used in real number ...
caovmo 7487 Uniqueness of inverse elem...
mpondm0 7488 The value of an operation ...
elmpocl 7489 If a two-parameter class i...
elmpocl1 7490 If a two-parameter class i...
elmpocl2 7491 If a two-parameter class i...
elovmpo 7492 Utility lemma for two-para...
elovmporab 7493 Implications for the value...
elovmporab1w 7494 Implications for the value...
elovmporab1 7495 Implications for the value...
2mpo0 7496 If the operation value of ...
relmptopab 7497 Any function to sets of or...
f1ocnvd 7498 Describe an implicit one-t...
f1od 7499 Describe an implicit one-t...
f1ocnv2d 7500 Describe an implicit one-t...
f1o2d 7501 Describe an implicit one-t...
f1opw2 7502 A one-to-one mapping induc...
f1opw 7503 A one-to-one mapping induc...
elovmpt3imp 7504 If the value of a function...
ovmpt3rab1 7505 The value of an operation ...
ovmpt3rabdm 7506 If the value of a function...
elovmpt3rab1 7507 Implications for the value...
elovmpt3rab 7508 Implications for the value...
ofeqd 7513 Equality theorem for funct...
ofeq 7514 Equality theorem for funct...
ofreq 7515 Equality theorem for funct...
ofexg 7516 A function operation restr...
nfof 7517 Hypothesis builder for fun...
nfofr 7518 Hypothesis builder for fun...
ofrfvalg 7519 Value of a relation applie...
offval 7520 Value of an operation appl...
ofrfval 7521 Value of a relation applie...
ofval 7522 Evaluate a function operat...
ofrval 7523 Exhibit a function relatio...
offn 7524 The function operation pro...
offun 7525 The function operation pro...
offval2f 7526 The function operation exp...
ofmresval 7527 Value of a restriction of ...
fnfvof 7528 Function value of a pointw...
off 7529 The function operation pro...
ofres 7530 Restrict the operands of a...
offval2 7531 The function operation exp...
ofrfval2 7532 The function relation acti...
ofmpteq 7533 Value of a pointwise opera...
ofco 7534 The composition of a funct...
offveq 7535 Convert an identity of the...
offveqb 7536 Equivalent expressions for...
ofc1 7537 Left operation by a consta...
ofc2 7538 Right operation by a const...
ofc12 7539 Function operation on two ...
caofref 7540 Transfer a reflexive law t...
caofinvl 7541 Transfer a left inverse la...
caofid0l 7542 Transfer a left identity l...
caofid0r 7543 Transfer a right identity ...
caofid1 7544 Transfer a right absorptio...
caofid2 7545 Transfer a right absorptio...
caofcom 7546 Transfer a commutative law...
caofrss 7547 Transfer a relation subset...
caofass 7548 Transfer an associative la...
caoftrn 7549 Transfer a transitivity la...
caofdi 7550 Transfer a distributive la...
caofdir 7551 Transfer a reverse distrib...
caonncan 7552 Transfer ~ nncan -shaped l...
relrpss 7555 The proper subset relation...
brrpssg 7556 The proper subset relation...
brrpss 7557 The proper subset relation...
porpss 7558 Every class is partially o...
sorpss 7559 Express strict ordering un...
sorpssi 7560 Property of a chain of set...
sorpssun 7561 A chain of sets is closed ...
sorpssin 7562 A chain of sets is closed ...
sorpssuni 7563 In a chain of sets, a maxi...
sorpssint 7564 In a chain of sets, a mini...
sorpsscmpl 7565 The componentwise compleme...
zfun 7567 Axiom of Union expressed w...
axun2 7568 A variant of the Axiom of ...
uniex2 7569 The Axiom of Union using t...
vuniex 7570 The union of a setvar is a...
uniexg 7571 The ZF Axiom of Union in c...
uniex 7572 The Axiom of Union in clas...
uniexd 7573 Deduction version of the Z...
unex 7574 The union of two sets is a...
tpex 7575 An unordered triple of cla...
unexb 7576 Existence of union is equi...
unexg 7577 A union of two sets is a s...
xpexg 7578 The Cartesian product of t...
xpexd 7579 The Cartesian product of t...
3xpexg 7580 The Cartesian product of t...
xpex 7581 The Cartesian product of t...
unexd 7582 The union of two sets is a...
sqxpexg 7583 The Cartesian square of a ...
abnexg 7584 Sufficient condition for a...
abnex 7585 Sufficient condition for a...
snnex 7586 The class of all singleton...
pwnex 7587 The class of all power set...
difex2 7588 If the subtrahend of a cla...
difsnexi 7589 If the difference of a cla...
uniuni 7590 Expression for double unio...
uniexr 7591 Converse of the Axiom of U...
uniexb 7592 The Axiom of Union and its...
pwexr 7593 Converse of the Axiom of P...
pwexb 7594 The Axiom of Power Sets an...
elpwpwel 7595 A class belongs to a doubl...
eldifpw 7596 Membership in a power clas...
elpwun 7597 Membership in the power cl...
pwuncl 7598 Power classes are closed u...
iunpw 7599 An indexed union of a powe...
fr3nr 7600 A well-founded relation ha...
epne3 7601 A well-founded class conta...
dfwe2 7602 Alternate definition of we...
epweon 7603 The membership relation we...
ordon 7604 The class of all ordinal n...
onprc 7605 No set contains all ordina...
ssorduni 7606 The union of a class of or...
ssonuni 7607 The union of a set of ordi...
ssonunii 7608 The union of a set of ordi...
ordeleqon 7609 A way to express the ordin...
ordsson 7610 Any ordinal class is a sub...
onss 7611 An ordinal number is a sub...
predon 7612 The predecessor of an ordi...
predonOLD 7613 Obsolete version of ~ pred...
ssonprc 7614 Two ways of saying a class...
onuni 7615 The union of an ordinal nu...
orduni 7616 The union of an ordinal cl...
onint 7617 The intersection (infimum)...
onint0 7618 The intersection of a clas...
onssmin 7619 A nonempty class of ordina...
onminesb 7620 If a property is true for ...
onminsb 7621 If a property is true for ...
oninton 7622 The intersection of a none...
onintrab 7623 The intersection of a clas...
onintrab2 7624 An existence condition equ...
onnmin 7625 No member of a set of ordi...
onnminsb 7626 An ordinal number smaller ...
oneqmin 7627 A way to show that an ordi...
uniordint 7628 The union of a set of ordi...
onminex 7629 If a wff is true for an or...
sucon 7630 The class of all ordinal n...
sucexb 7631 A successor exists iff its...
sucexg 7632 The successor of a set is ...
sucex 7633 The successor of a set is ...
onmindif2 7634 The minimum of a class of ...
suceloni 7635 The successor of an ordina...
ordsuc 7636 The successor of an ordina...
ordpwsuc 7637 The collection of ordinals...
onpwsuc 7638 The collection of ordinal ...
sucelon 7639 The successor of an ordina...
ordsucss 7640 The successor of an elemen...
onpsssuc 7641 An ordinal number is a pro...
ordelsuc 7642 A set belongs to an ordina...
onsucmin 7643 The successor of an ordina...
ordsucelsuc 7644 Membership is inherited by...
ordsucsssuc 7645 The subclass relationship ...
ordsucuniel 7646 Given an element ` A ` of ...
ordsucun 7647 The successor of the maxim...
ordunpr 7648 The maximum of two ordinal...
ordunel 7649 The maximum of two ordinal...
onsucuni 7650 A class of ordinal numbers...
ordsucuni 7651 An ordinal class is a subc...
orduniorsuc 7652 An ordinal class is either...
unon 7653 The class of all ordinal n...
ordunisuc 7654 An ordinal class is equal ...
orduniss2 7655 The union of the ordinal s...
onsucuni2 7656 A successor ordinal is the...
0elsuc 7657 The successor of an ordina...
limon 7658 The class of ordinal numbe...
onssi 7659 An ordinal number is a sub...
onsuci 7660 The successor of an ordina...
onuniorsuci 7661 An ordinal number is eithe...
onuninsuci 7662 A limit ordinal is not a s...
onsucssi 7663 A set belongs to an ordina...
nlimsucg 7664 A successor is not a limit...
orduninsuc 7665 An ordinal equal to its un...
ordunisuc2 7666 An ordinal equal to its un...
ordzsl 7667 An ordinal is zero, a succ...
onzsl 7668 An ordinal number is zero,...
dflim3 7669 An alternate definition of...
dflim4 7670 An alternate definition of...
limsuc 7671 The successor of a member ...
limsssuc 7672 A class includes a limit o...
nlimon 7673 Two ways to express the cl...
limuni3 7674 The union of a nonempty cl...
tfi 7675 The Principle of Transfini...
tfis 7676 Transfinite Induction Sche...
tfis2f 7677 Transfinite Induction Sche...
tfis2 7678 Transfinite Induction Sche...
tfis3 7679 Transfinite Induction Sche...
tfisi 7680 A transfinite induction sc...
tfinds 7681 Principle of Transfinite I...
tfindsg 7682 Transfinite Induction (inf...
tfindsg2 7683 Transfinite Induction (inf...
tfindes 7684 Transfinite Induction with...
tfinds2 7685 Transfinite Induction (inf...
tfinds3 7686 Principle of Transfinite I...
dfom2 7689 An alternate definition of...
elom 7690 Membership in omega. The ...
omsson 7691 Omega is a subset of ` On ...
limomss 7692 The class of natural numbe...
nnon 7693 A natural number is an ord...
nnoni 7694 A natural number is an ord...
nnord 7695 A natural number is ordina...
trom 7696 The class of finite ordina...
ordom 7697 The class of finite ordina...
elnn 7698 A member of a natural numb...
omon 7699 The class of natural numbe...
omelon2 7700 Omega is an ordinal number...
nnlim 7701 A natural number is not a ...
omssnlim 7702 The class of natural numbe...
limom 7703 Omega is a limit ordinal. ...
peano2b 7704 A class belongs to omega i...
nnsuc 7705 A nonzero natural number i...
omsucne 7706 A natural number is not th...
ssnlim 7707 An ordinal subclass of non...
omsinds 7708 Strong (or "total") induct...
omsindsOLD 7709 Obsolete version of ~ omsi...
peano1 7710 Zero is a natural number. ...
peano2 7711 The successor of any natur...
peano3 7712 The successor of any natur...
peano4 7713 Two natural numbers are eq...
peano5 7714 The induction postulate: a...
peano5OLD 7715 Obsolete version of ~ pean...
nn0suc 7716 A natural number is either...
find 7717 The Principle of Finite In...
findOLD 7718 Obsolete version of ~ find...
finds 7719 Principle of Finite Induct...
findsg 7720 Principle of Finite Induct...
finds2 7721 Principle of Finite Induct...
finds1 7722 Principle of Finite Induct...
findes 7723 Finite induction with expl...
dmexg 7724 The domain of a set is a s...
rnexg 7725 The range of a set is a se...
dmexd 7726 The domain of a set is a s...
fndmexd 7727 If a function is a set, it...
dmfex 7728 If a mapping is a set, its...
fndmexb 7729 The domain of a function i...
fdmexb 7730 The domain of a function i...
dmfexALT 7731 Alternate proof of ~ dmfex...
dmex 7732 The domain of a set is a s...
rnex 7733 The range of a set is a se...
iprc 7734 The identity function is a...
resiexg 7735 The existence of a restric...
imaexg 7736 The image of a set is a se...
imaex 7737 The image of a set is a se...
exse2 7738 Any set relation is set-li...
xpexr 7739 If a Cartesian product is ...
xpexr2 7740 If a nonempty Cartesian pr...
xpexcnv 7741 A condition where the conv...
soex 7742 If the relation in a stric...
elxp4 7743 Membership in a Cartesian ...
elxp5 7744 Membership in a Cartesian ...
cnvexg 7745 The converse of a set is a...
cnvex 7746 The converse of a set is a...
relcnvexb 7747 A relation is a set iff it...
f1oexrnex 7748 If the range of a 1-1 onto...
f1oexbi 7749 There is a one-to-one onto...
coexg 7750 The composition of two set...
coex 7751 The composition of two set...
funcnvuni 7752 The union of a chain (with...
fun11uni 7753 The union of a chain (with...
fex2 7754 A function with bounded do...
fabexg 7755 Existence of a set of func...
fabex 7756 Existence of a set of func...
f1oabexg 7757 The class of all 1-1-onto ...
fiunlem 7758 Lemma for ~ fiun and ~ f1i...
fiun 7759 The union of a chain (with...
f1iun 7760 The union of a chain (with...
fviunfun 7761 The function value of an i...
ffoss 7762 Relationship between a map...
f11o 7763 Relationship between one-t...
resfunexgALT 7764 Alternate proof of ~ resfu...
cofunexg 7765 Existence of a composition...
cofunex2g 7766 Existence of a composition...
fnexALT 7767 Alternate proof of ~ fnex ...
funexw 7768 Weak version of ~ funex th...
mptexw 7769 Weak version of ~ mptex th...
funrnex 7770 If the domain of a functio...
zfrep6 7771 A version of the Axiom of ...
fornex 7772 If the domain of an onto f...
f1dmex 7773 If the codomain of a one-t...
f1ovv 7774 The range of a 1-1 onto fu...
fvclex 7775 Existence of the class of ...
fvresex 7776 Existence of the class of ...
abrexexg 7777 Existence of a class abstr...
abrexex 7778 Existence of a class abstr...
iunexg 7779 The existence of an indexe...
abrexex2g 7780 Existence of an existentia...
opabex3d 7781 Existence of an ordered pa...
opabex3rd 7782 Existence of an ordered pa...
opabex3 7783 Existence of an ordered pa...
iunex 7784 The existence of an indexe...
abrexex2 7785 Existence of an existentia...
abexssex 7786 Existence of a class abstr...
abexex 7787 A condition where a class ...
f1oweALT 7788 Alternate proof of ~ f1owe...
wemoiso 7789 Thus, there is at most one...
wemoiso2 7790 Thus, there is at most one...
oprabexd 7791 Existence of an operator a...
oprabex 7792 Existence of an operation ...
oprabex3 7793 Existence of an operation ...
oprabrexex2 7794 Existence of an existentia...
ab2rexex 7795 Existence of a class abstr...
ab2rexex2 7796 Existence of an existentia...
xpexgALT 7797 Alternate proof of ~ xpexg...
offval3 7798 General value of ` ( F oF ...
offres 7799 Pointwise combination comm...
ofmres 7800 Equivalent expressions for...
ofmresex 7801 Existence of a restriction...
1stval 7806 The value of the function ...
2ndval 7807 The value of the function ...
1stnpr 7808 Value of the first-member ...
2ndnpr 7809 Value of the second-member...
1st0 7810 The value of the first-mem...
2nd0 7811 The value of the second-me...
op1st 7812 Extract the first member o...
op2nd 7813 Extract the second member ...
op1std 7814 Extract the first member o...
op2ndd 7815 Extract the second member ...
op1stg 7816 Extract the first member o...
op2ndg 7817 Extract the second member ...
ot1stg 7818 Extract the first member o...
ot2ndg 7819 Extract the second member ...
ot3rdg 7820 Extract the third member o...
1stval2 7821 Alternate value of the fun...
2ndval2 7822 Alternate value of the fun...
oteqimp 7823 The components of an order...
fo1st 7824 The ` 1st ` function maps ...
fo2nd 7825 The ` 2nd ` function maps ...
br1steqg 7826 Uniqueness condition for t...
br2ndeqg 7827 Uniqueness condition for t...
f1stres 7828 Mapping of a restriction o...
f2ndres 7829 Mapping of a restriction o...
fo1stres 7830 Onto mapping of a restrict...
fo2ndres 7831 Onto mapping of a restrict...
1st2val 7832 Value of an alternate defi...
2nd2val 7833 Value of an alternate defi...
1stcof 7834 Composition of the first m...
2ndcof 7835 Composition of the second ...
xp1st 7836 Location of the first elem...
xp2nd 7837 Location of the second ele...
elxp6 7838 Membership in a Cartesian ...
elxp7 7839 Membership in a Cartesian ...
eqopi 7840 Equality with an ordered p...
xp2 7841 Representation of Cartesia...
unielxp 7842 The membership relation fo...
1st2nd2 7843 Reconstruction of a member...
1st2ndb 7844 Reconstruction of an order...
xpopth 7845 An ordered pair theorem fo...
eqop 7846 Two ways to express equali...
eqop2 7847 Two ways to express equali...
op1steq 7848 Two ways of expressing tha...
opreuopreu 7849 There is a unique ordered ...
el2xptp 7850 A member of a nested Carte...
el2xptp0 7851 A member of a nested Carte...
2nd1st 7852 Swap the members of an ord...
1st2nd 7853 Reconstruction of a member...
1stdm 7854 The first ordered pair com...
2ndrn 7855 The second ordered pair co...
1st2ndbr 7856 Express an element of a re...
releldm2 7857 Two ways of expressing mem...
reldm 7858 An expression for the doma...
releldmdifi 7859 One way of expressing memb...
funfv1st2nd 7860 The function value for the...
funelss 7861 If the first component of ...
funeldmdif 7862 Two ways of expressing mem...
sbcopeq1a 7863 Equality theorem for subst...
csbopeq1a 7864 Equality theorem for subst...
dfopab2 7865 A way to define an ordered...
dfoprab3s 7866 A way to define an operati...
dfoprab3 7867 Operation class abstractio...
dfoprab4 7868 Operation class abstractio...
dfoprab4f 7869 Operation class abstractio...
opabex2 7870 Condition for an operation...
opabn1stprc 7871 An ordered-pair class abst...
opiota 7872 The property of a uniquely...
cnvoprab 7873 The converse of a class ab...
dfxp3 7874 Define the Cartesian produ...
elopabi 7875 A consequence of membershi...
eloprabi 7876 A consequence of membershi...
mpomptsx 7877 Express a two-argument fun...
mpompts 7878 Express a two-argument fun...
dmmpossx 7879 The domain of a mapping is...
fmpox 7880 Functionality, domain and ...
fmpo 7881 Functionality, domain and ...
fnmpo 7882 Functionality and domain o...
fnmpoi 7883 Functionality and domain o...
dmmpo 7884 Domain of a class given by...
ovmpoelrn 7885 An operation's value belon...
dmmpoga 7886 Domain of an operation giv...
dmmpogaOLD 7887 Obsolete version of ~ dmmp...
dmmpog 7888 Domain of an operation giv...
mpoexxg 7889 Existence of an operation ...
mpoexg 7890 Existence of an operation ...
mpoexga 7891 If the domain of an operat...
mpoexw 7892 Weak version of ~ mpoex th...
mpoex 7893 If the domain of an operat...
mptmpoopabbrd 7894 The operation value of a f...
mptmpoopabovd 7895 The operation value of a f...
el2mpocsbcl 7896 If the operation value of ...
el2mpocl 7897 If the operation value of ...
fnmpoovd 7898 A function with a Cartesia...
offval22 7899 The function operation exp...
brovpreldm 7900 If a binary relation holds...
bropopvvv 7901 If a binary relation holds...
bropfvvvvlem 7902 Lemma for ~ bropfvvvv . (...
bropfvvvv 7903 If a binary relation holds...
ovmptss 7904 If all the values of the m...
relmpoopab 7905 Any function to sets of or...
fmpoco 7906 Composition of two functio...
oprabco 7907 Composition of a function ...
oprab2co 7908 Composition of operator ab...
df1st2 7909 An alternate possible defi...
df2nd2 7910 An alternate possible defi...
1stconst 7911 The mapping of a restricti...
2ndconst 7912 The mapping of a restricti...
dfmpo 7913 Alternate definition for t...
mposn 7914 An operation (in maps-to n...
curry1 7915 Composition with ` ``' ( 2...
curry1val 7916 The value of a curried fun...
curry1f 7917 Functionality of a curried...
curry2 7918 Composition with ` ``' ( 1...
curry2f 7919 Functionality of a curried...
curry2val 7920 The value of a curried fun...
cnvf1olem 7921 Lemma for ~ cnvf1o . (Con...
cnvf1o 7922 Describe a function that m...
fparlem1 7923 Lemma for ~ fpar . (Contr...
fparlem2 7924 Lemma for ~ fpar . (Contr...
fparlem3 7925 Lemma for ~ fpar . (Contr...
fparlem4 7926 Lemma for ~ fpar . (Contr...
fpar 7927 Merge two functions in par...
fsplit 7928 A function that can be use...
fsplitOLD 7929 Obsolete proof of ~ fsplit...
fsplitfpar 7930 Merge two functions with a...
offsplitfpar 7931 Express the function opera...
f2ndf 7932 The ` 2nd ` (second compon...
fo2ndf 7933 The ` 2nd ` (second compon...
f1o2ndf1 7934 The ` 2nd ` (second compon...
opco1 7935 Value of an operation prec...
opco2 7936 Value of an operation prec...
opco1i 7937 Inference form of ~ opco1 ...
frxp 7938 A lexicographical ordering...
xporderlem 7939 Lemma for lexicographical ...
poxp 7940 A lexicographical ordering...
soxp 7941 A lexicographical ordering...
wexp 7942 A lexicographical ordering...
fnwelem 7943 Lemma for ~ fnwe . (Contr...
fnwe 7944 A variant on lexicographic...
fnse 7945 Condition for the well-ord...
fvproj 7946 Value of a function on ord...
fimaproj 7947 Image of a cartesian produ...
suppval 7950 The value of the operation...
supp0prc 7951 The support of a class is ...
suppvalbr 7952 The value of the operation...
supp0 7953 The support of the empty s...
suppval1 7954 The value of the operation...
suppvalfng 7955 The value of the operation...
suppvalfn 7956 The value of the operation...
elsuppfng 7957 An element of the support ...
elsuppfn 7958 An element of the support ...
cnvimadfsn 7959 The support of functions "...
suppimacnvss 7960 The support of functions "...
suppimacnv 7961 Support sets of functions ...
frnsuppeq 7962 Two ways of writing the su...
frnsuppeqg 7963 Version of ~ frnsuppeq avo...
suppssdm 7964 The support of a function ...
suppsnop 7965 The support of a singleton...
snopsuppss 7966 The support of a singleton...
fvn0elsupp 7967 If the function value for ...
fvn0elsuppb 7968 The function value for a g...
rexsupp 7969 Existential quantification...
ressuppss 7970 The support of the restric...
suppun 7971 The support of a class/fun...
ressuppssdif 7972 The support of the restric...
mptsuppdifd 7973 The support of a function ...
mptsuppd 7974 The support of a function ...
extmptsuppeq 7975 The support of an extended...
suppfnss 7976 The support of a function ...
funsssuppss 7977 The support of a function ...
fnsuppres 7978 Two ways to express restri...
fnsuppeq0 7979 The support of a function ...
fczsupp0 7980 The support of a constant ...
suppss 7981 Show that the support of a...
suppssOLD 7982 Obsolete version of ~ supp...
suppssr 7983 A function is zero outside...
suppssrg 7984 A function is zero outside...
suppssov1 7985 Formula building theorem f...
suppssof1 7986 Formula building theorem f...
suppss2 7987 Show that the support of a...
suppsssn 7988 Show that the support of a...
suppssfv 7989 Formula building theorem f...
suppofssd 7990 Condition for the support ...
suppofss1d 7991 Condition for the support ...
suppofss2d 7992 Condition for the support ...
suppco 7993 The support of the composi...
suppcoss 7994 The support of the composi...
supp0cosupp0 7995 The support of the composi...
imacosupp 7996 The image of the support o...
opeliunxp2f 7997 Membership in a union of C...
mpoxeldm 7998 If there is an element of ...
mpoxneldm 7999 If the first argument of a...
mpoxopn0yelv 8000 If there is an element of ...
mpoxopynvov0g 8001 If the second argument of ...
mpoxopxnop0 8002 If the first argument of a...
mpoxopx0ov0 8003 If the first argument of a...
mpoxopxprcov0 8004 If the components of the f...
mpoxopynvov0 8005 If the second argument of ...
mpoxopoveq 8006 Value of an operation give...
mpoxopovel 8007 Element of the value of an...
mpoxopoveqd 8008 Value of an operation give...
brovex 8009 A binary relation of the v...
brovmpoex 8010 A binary relation of the v...
sprmpod 8011 The extension of a binary ...
tposss 8014 Subset theorem for transpo...
tposeq 8015 Equality theorem for trans...
tposeqd 8016 Equality theorem for trans...
tposssxp 8017 The transposition is a sub...
reltpos 8018 The transposition is a rel...
brtpos2 8019 Value of the transposition...
brtpos0 8020 The behavior of ` tpos ` w...
reldmtpos 8021 Necessary and sufficient c...
brtpos 8022 The transposition swaps ar...
ottpos 8023 The transposition swaps th...
relbrtpos 8024 The transposition swaps ar...
dmtpos 8025 The domain of ` tpos F ` w...
rntpos 8026 The range of ` tpos F ` wh...
tposexg 8027 The transposition of a set...
ovtpos 8028 The transposition swaps th...
tposfun 8029 The transposition of a fun...
dftpos2 8030 Alternate definition of ` ...
dftpos3 8031 Alternate definition of ` ...
dftpos4 8032 Alternate definition of ` ...
tpostpos 8033 Value of the double transp...
tpostpos2 8034 Value of the double transp...
tposfn2 8035 The domain of a transposit...
tposfo2 8036 Condition for a surjective...
tposf2 8037 The domain and range of a ...
tposf12 8038 Condition for an injective...
tposf1o2 8039 Condition of a bijective t...
tposfo 8040 The domain and range of a ...
tposf 8041 The domain and range of a ...
tposfn 8042 Functionality of a transpo...
tpos0 8043 Transposition of the empty...
tposco 8044 Transposition of a composi...
tpossym 8045 Two ways to say a function...
tposeqi 8046 Equality theorem for trans...
tposex 8047 A transposition is a set. ...
nftpos 8048 Hypothesis builder for tra...
tposoprab 8049 Transposition of a class o...
tposmpo 8050 Transposition of a two-arg...
tposconst 8051 The transposition of a con...
mpocurryd 8056 The currying of an operati...
mpocurryvald 8057 The value of a curried ope...
fvmpocurryd 8058 The value of the value of ...
pwuninel2 8061 Direct proof of ~ pwuninel...
pwuninel 8062 The power set of the union...
undefval 8063 Value of the undefined val...
undefnel2 8064 The undefined value genera...
undefnel 8065 The undefined value genera...
undefne0 8066 The undefined value genera...
frecseq123 8069 Equality theorem for the w...
nffrecs 8070 Bound-variable hypothesis ...
csbfrecsg 8071 Move class substitution in...
fpr3g 8072 Functions defined by well-...
frrlem1 8073 Lemma for well-founded rec...
frrlem2 8074 Lemma for well-founded rec...
frrlem3 8075 Lemma for well-founded rec...
frrlem4 8076 Lemma for well-founded rec...
frrlem5 8077 Lemma for well-founded rec...
frrlem6 8078 Lemma for well-founded rec...
frrlem7 8079 Lemma for well-founded rec...
frrlem8 8080 Lemma for well-founded rec...
frrlem9 8081 Lemma for well-founded rec...
frrlem10 8082 Lemma for well-founded rec...
frrlem11 8083 Lemma for well-founded rec...
frrlem12 8084 Lemma for well-founded rec...
frrlem13 8085 Lemma for well-founded rec...
frrlem14 8086 Lemma for well-founded rec...
fprlem1 8087 Lemma for well-founded rec...
fprlem2 8088 Lemma for well-founded rec...
fpr2a 8089 Weak version of ~ fpr2 whi...
fpr1 8090 Law of well-founded recurs...
fpr2 8091 Law of well-founded recurs...
fpr3 8092 Law of well-founded recurs...
frrrel 8093 Show without using the axi...
frrdmss 8094 Show without using the axi...
frrdmcl 8095 Show without using the axi...
fprfung 8096 A "function" defined by we...
fprresex 8097 The restriction of a funct...
dfwrecsOLD 8100 Obsolete definition of the...
wrecseq123 8101 General equality theorem f...
wrecseq123OLD 8102 Obsolete proof of ~ wrecse...
nfwrecs 8103 Bound-variable hypothesis ...
nfwrecsOLD 8104 Obsolete proof of ~ nfwrec...
wrecseq1 8105 Equality theorem for the w...
wrecseq2 8106 Equality theorem for the w...
wrecseq3 8107 Equality theorem for the w...
csbwrecsg 8108 Move class substitution in...
wfr3g 8109 Functions defined by well-...
wfrlem1OLD 8110 Lemma for well-ordered rec...
wfrlem2OLD 8111 Lemma for well-ordered rec...
wfrlem3OLD 8112 Lemma for well-ordered rec...
wfrlem3OLDa 8113 Lemma for well-ordered rec...
wfrlem4OLD 8114 Lemma for well-ordered rec...
wfrlem5OLD 8115 Lemma for well-ordered rec...
wfrrelOLD 8116 Obsolete proof of ~ wfrrel...
wfrdmssOLD 8117 Obsolete proof of ~ wfrdms...
wfrlem8OLD 8118 Lemma for well-ordered rec...
wfrdmclOLD 8119 Obsolete proof of ~ wfrdmc...
wfrlem10OLD 8120 Lemma for well-ordered rec...
wfrfunOLD 8121 Obsolete proof of ~ wfrfun...
wfrlem12OLD 8122 Lemma for well-ordered rec...
wfrlem13OLD 8123 Lemma for well-ordered rec...
wfrlem14OLD 8124 Lemma for well-ordered rec...
wfrlem15OLD 8125 Lemma for well-ordered rec...
wfrlem16OLD 8126 Lemma for well-ordered rec...
wfrlem17OLD 8127 Without using ~ ax-rep , s...
wfr2aOLD 8128 Obsolete proof of ~ wfr2a ...
wfr1OLD 8129 Obsolete proof of ~ wfr1 a...
wfr2OLD 8130 Obsolete proof of ~ wfr2 a...
wfrrel 8131 The well-ordered recursion...
wfrdmss 8132 The domain of the well-ord...
wfrdmcl 8133 The predecessor class of a...
wfrfun 8134 The "function" generated b...
wfrresex 8135 Show without using the axi...
wfr2a 8136 A weak version of ~ wfr2 w...
wfr1 8137 The Principle of Well-Orde...
wfr2 8138 The Principle of Well-Orde...
wfr3 8139 The principle of Well-Orde...
wfr3OLD 8140 Obsolete form of ~ wfr3 as...
iunon 8141 The indexed union of a set...
iinon 8142 The nonempty indexed inter...
onfununi 8143 A property of functions on...
onovuni 8144 A variant of ~ onfununi fo...
onoviun 8145 A variant of ~ onovuni wit...
onnseq 8146 There are no length ` _om ...
dfsmo2 8149 Alternate definition of a ...
issmo 8150 Conditions for which ` A `...
issmo2 8151 Alternate definition of a ...
smoeq 8152 Equality theorem for stric...
smodm 8153 The domain of a strictly m...
smores 8154 A strictly monotone functi...
smores3 8155 A strictly monotone functi...
smores2 8156 A strictly monotone ordina...
smodm2 8157 The domain of a strictly m...
smofvon2 8158 The function values of a s...
iordsmo 8159 The identity relation rest...
smo0 8160 The null set is a strictly...
smofvon 8161 If ` B ` is a strictly mon...
smoel 8162 If ` x ` is less than ` y ...
smoiun 8163 The value of a strictly mo...
smoiso 8164 If ` F ` is an isomorphism...
smoel2 8165 A strictly monotone ordina...
smo11 8166 A strictly monotone ordina...
smoord 8167 A strictly monotone ordina...
smoword 8168 A strictly monotone ordina...
smogt 8169 A strictly monotone ordina...
smorndom 8170 The range of a strictly mo...
smoiso2 8171 The strictly monotone ordi...
dfrecs3 8174 The old definition of tran...
dfrecs3OLD 8175 Obsolete proof of ~ dfrecs...
recseq 8176 Equality theorem for ` rec...
nfrecs 8177 Bound-variable hypothesis ...
tfrlem1 8178 A technical lemma for tran...
tfrlem3a 8179 Lemma for transfinite recu...
tfrlem3 8180 Lemma for transfinite recu...
tfrlem4 8181 Lemma for transfinite recu...
tfrlem5 8182 Lemma for transfinite recu...
recsfval 8183 Lemma for transfinite recu...
tfrlem6 8184 Lemma for transfinite recu...
tfrlem7 8185 Lemma for transfinite recu...
tfrlem8 8186 Lemma for transfinite recu...
tfrlem9 8187 Lemma for transfinite recu...
tfrlem9a 8188 Lemma for transfinite recu...
tfrlem10 8189 Lemma for transfinite recu...
tfrlem11 8190 Lemma for transfinite recu...
tfrlem12 8191 Lemma for transfinite recu...
tfrlem13 8192 Lemma for transfinite recu...
tfrlem14 8193 Lemma for transfinite recu...
tfrlem15 8194 Lemma for transfinite recu...
tfrlem16 8195 Lemma for finite recursion...
tfr1a 8196 A weak version of ~ tfr1 w...
tfr2a 8197 A weak version of ~ tfr2 w...
tfr2b 8198 Without assuming ~ ax-rep ...
tfr1 8199 Principle of Transfinite R...
tfr2 8200 Principle of Transfinite R...
tfr3 8201 Principle of Transfinite R...
tfr1ALT 8202 Alternate proof of ~ tfr1 ...
tfr2ALT 8203 Alternate proof of ~ tfr2 ...
tfr3ALT 8204 Alternate proof of ~ tfr3 ...
recsfnon 8205 Strong transfinite recursi...
recsval 8206 Strong transfinite recursi...
tz7.44lem1 8207 The ordered pair abstracti...
tz7.44-1 8208 The value of ` F ` at ` (/...
tz7.44-2 8209 The value of ` F ` at a su...
tz7.44-3 8210 The value of ` F ` at a li...
rdgeq1 8213 Equality theorem for the r...
rdgeq2 8214 Equality theorem for the r...
rdgeq12 8215 Equality theorem for the r...
nfrdg 8216 Bound-variable hypothesis ...
rdglem1 8217 Lemma used with the recurs...
rdgfun 8218 The recursive definition g...
rdgdmlim 8219 The domain of the recursiv...
rdgfnon 8220 The recursive definition g...
rdgvalg 8221 Value of the recursive def...
rdgval 8222 Value of the recursive def...
rdg0 8223 The initial value of the r...
rdgseg 8224 The initial segments of th...
rdgsucg 8225 The value of the recursive...
rdgsuc 8226 The value of the recursive...
rdglimg 8227 The value of the recursive...
rdglim 8228 The value of the recursive...
rdg0g 8229 The initial value of the r...
rdgsucmptf 8230 The value of the recursive...
rdgsucmptnf 8231 The value of the recursive...
rdgsucmpt2 8232 This version of ~ rdgsucmp...
rdgsucmpt 8233 The value of the recursive...
rdglim2 8234 The value of the recursive...
rdglim2a 8235 The value of the recursive...
frfnom 8236 The function generated by ...
fr0g 8237 The initial value resultin...
frsuc 8238 The successor value result...
frsucmpt 8239 The successor value result...
frsucmptn 8240 The value of the finite re...
frsucmpt2 8241 The successor value result...
tz7.48lem 8242 A way of showing an ordina...
tz7.48-2 8243 Proposition 7.48(2) of [Ta...
tz7.48-1 8244 Proposition 7.48(1) of [Ta...
tz7.48-3 8245 Proposition 7.48(3) of [Ta...
tz7.49 8246 Proposition 7.49 of [Takeu...
tz7.49c 8247 Corollary of Proposition 7...
seqomlem0 8250 Lemma for ` seqom ` . Cha...
seqomlem1 8251 Lemma for ` seqom ` . The...
seqomlem2 8252 Lemma for ` seqom ` . (Co...
seqomlem3 8253 Lemma for ` seqom ` . (Co...
seqomlem4 8254 Lemma for ` seqom ` . (Co...
seqomeq12 8255 Equality theorem for ` seq...
fnseqom 8256 An index-aware recursive d...
seqom0g 8257 Value of an index-aware re...
seqomsuc 8258 Value of an index-aware re...
omsucelsucb 8259 Membership is inherited by...
1on 8274 Ordinal 1 is an ordinal nu...
2on 8275 Ordinal 2 is an ordinal nu...
2on0 8276 Ordinal two is not zero. ...
3on 8277 Ordinal 3 is an ordinal nu...
4on 8278 Ordinal 3 is an ordinal nu...
df1o2 8279 Expanded value of the ordi...
1oex 8280 Ordinal 1 is a set. (Cont...
1oexOLD 8281 Obsolete version of ~ 1oex...
df2o3 8282 Expanded value of the ordi...
df2o2 8283 Expanded value of the ordi...
2oex 8284 ` 2o ` is a set. (Contrib...
2oexOLD 8285 Obsolete version of ~ 2oex...
1n0 8286 Ordinal one is not equal t...
xp01disj 8287 Cartesian products with th...
xp01disjl 8288 Cartesian products with th...
ordgt0ge1 8289 Two ways to express that a...
ordge1n0 8290 An ordinal greater than or...
el1o 8291 Membership in ordinal one....
dif1o 8292 Two ways to say that ` A `...
ondif1 8293 Two ways to say that ` A `...
ondif2 8294 Two ways to say that ` A `...
2oconcl 8295 Closure of the pair swappi...
0lt1o 8296 Ordinal zero is less than ...
dif20el 8297 An ordinal greater than on...
0we1 8298 The empty set is a well-or...
brwitnlem 8299 Lemma for relations which ...
fnoa 8300 Functionality and domain o...
fnom 8301 Functionality and domain o...
fnoe 8302 Functionality and domain o...
oav 8303 Value of ordinal addition....
omv 8304 Value of ordinal multiplic...
oe0lem 8305 A helper lemma for ~ oe0 a...
oev 8306 Value of ordinal exponenti...
oevn0 8307 Value of ordinal exponenti...
oa0 8308 Addition with zero. Propo...
om0 8309 Ordinal multiplication wit...
oe0m 8310 Value of zero raised to an...
om0x 8311 Ordinal multiplication wit...
oe0m0 8312 Ordinal exponentiation wit...
oe0m1 8313 Ordinal exponentiation wit...
oe0 8314 Ordinal exponentiation wit...
oev2 8315 Alternate value of ordinal...
oasuc 8316 Addition with successor. ...
oesuclem 8317 Lemma for ~ oesuc . (Cont...
omsuc 8318 Multiplication with succes...
oesuc 8319 Ordinal exponentiation wit...
onasuc 8320 Addition with successor. ...
onmsuc 8321 Multiplication with succes...
onesuc 8322 Exponentiation with a succ...
oa1suc 8323 Addition with 1 is same as...
oalim 8324 Ordinal addition with a li...
omlim 8325 Ordinal multiplication wit...
oelim 8326 Ordinal exponentiation wit...
oacl 8327 Closure law for ordinal ad...
omcl 8328 Closure law for ordinal mu...
oecl 8329 Closure law for ordinal ex...
oa0r 8330 Ordinal addition with zero...
om0r 8331 Ordinal multiplication wit...
o1p1e2 8332 1 + 1 = 2 for ordinal numb...
o2p2e4 8333 2 + 2 = 4 for ordinal numb...
o2p2e4OLD 8334 Obsolete version of ~ o2p2...
om1 8335 Ordinal multiplication wit...
om1r 8336 Ordinal multiplication wit...
oe1 8337 Ordinal exponentiation wit...
oe1m 8338 Ordinal exponentiation wit...
oaordi 8339 Ordering property of ordin...
oaord 8340 Ordering property of ordin...
oacan 8341 Left cancellation law for ...
oaword 8342 Weak ordering property of ...
oawordri 8343 Weak ordering property of ...
oaord1 8344 An ordinal is less than it...
oaword1 8345 An ordinal is less than or...
oaword2 8346 An ordinal is less than or...
oawordeulem 8347 Lemma for ~ oawordex . (C...
oawordeu 8348 Existence theorem for weak...
oawordexr 8349 Existence theorem for weak...
oawordex 8350 Existence theorem for weak...
oaordex 8351 Existence theorem for orde...
oa00 8352 An ordinal sum is zero iff...
oalimcl 8353 The ordinal sum with a lim...
oaass 8354 Ordinal addition is associ...
oarec 8355 Recursive definition of or...
oaf1o 8356 Left addition by a constan...
oacomf1olem 8357 Lemma for ~ oacomf1o . (C...
oacomf1o 8358 Define a bijection from ` ...
omordi 8359 Ordering property of ordin...
omord2 8360 Ordering property of ordin...
omord 8361 Ordering property of ordin...
omcan 8362 Left cancellation law for ...
omword 8363 Weak ordering property of ...
omwordi 8364 Weak ordering property of ...
omwordri 8365 Weak ordering property of ...
omword1 8366 An ordinal is less than or...
omword2 8367 An ordinal is less than or...
om00 8368 The product of two ordinal...
om00el 8369 The product of two nonzero...
omordlim 8370 Ordering involving the pro...
omlimcl 8371 The product of any nonzero...
odi 8372 Distributive law for ordin...
omass 8373 Multiplication of ordinal ...
oneo 8374 If an ordinal number is ev...
omeulem1 8375 Lemma for ~ omeu : existen...
omeulem2 8376 Lemma for ~ omeu : uniquen...
omopth2 8377 An ordered pair-like theor...
omeu 8378 The division algorithm for...
oen0 8379 Ordinal exponentiation wit...
oeordi 8380 Ordering law for ordinal e...
oeord 8381 Ordering property of ordin...
oecan 8382 Left cancellation law for ...
oeword 8383 Weak ordering property of ...
oewordi 8384 Weak ordering property of ...
oewordri 8385 Weak ordering property of ...
oeworde 8386 Ordinal exponentiation com...
oeordsuc 8387 Ordering property of ordin...
oelim2 8388 Ordinal exponentiation wit...
oeoalem 8389 Lemma for ~ oeoa . (Contr...
oeoa 8390 Sum of exponents law for o...
oeoelem 8391 Lemma for ~ oeoe . (Contr...
oeoe 8392 Product of exponents law f...
oelimcl 8393 The ordinal exponential wi...
oeeulem 8394 Lemma for ~ oeeu . (Contr...
oeeui 8395 The division algorithm for...
oeeu 8396 The division algorithm for...
nna0 8397 Addition with zero. Theor...
nnm0 8398 Multiplication with zero. ...
nnasuc 8399 Addition with successor. ...
nnmsuc 8400 Multiplication with succes...
nnesuc 8401 Exponentiation with a succ...
nna0r 8402 Addition to zero. Remark ...
nnm0r 8403 Multiplication with zero. ...
nnacl 8404 Closure of addition of nat...
nnmcl 8405 Closure of multiplication ...
nnecl 8406 Closure of exponentiation ...
nnacli 8407 ` _om ` is closed under ad...
nnmcli 8408 ` _om ` is closed under mu...
nnarcl 8409 Reverse closure law for ad...
nnacom 8410 Addition of natural number...
nnaordi 8411 Ordering property of addit...
nnaord 8412 Ordering property of addit...
nnaordr 8413 Ordering property of addit...
nnawordi 8414 Adding to both sides of an...
nnaass 8415 Addition of natural number...
nndi 8416 Distributive law for natur...
nnmass 8417 Multiplication of natural ...
nnmsucr 8418 Multiplication with succes...
nnmcom 8419 Multiplication of natural ...
nnaword 8420 Weak ordering property of ...
nnacan 8421 Cancellation law for addit...
nnaword1 8422 Weak ordering property of ...
nnaword2 8423 Weak ordering property of ...
nnmordi 8424 Ordering property of multi...
nnmord 8425 Ordering property of multi...
nnmword 8426 Weak ordering property of ...
nnmcan 8427 Cancellation law for multi...
nnmwordi 8428 Weak ordering property of ...
nnmwordri 8429 Weak ordering property of ...
nnawordex 8430 Equivalence for weak order...
nnaordex 8431 Equivalence for ordering. ...
1onn 8432 One is a natural number. ...
2onn 8433 The ordinal 2 is a natural...
3onn 8434 The ordinal 3 is a natural...
4onn 8435 The ordinal 4 is a natural...
1one2o 8436 Ordinal one is not ordinal...
oaabslem 8437 Lemma for ~ oaabs . (Cont...
oaabs 8438 Ordinal addition absorbs a...
oaabs2 8439 The absorption law ~ oaabs...
omabslem 8440 Lemma for ~ omabs . (Cont...
omabs 8441 Ordinal multiplication is ...
nnm1 8442 Multiply an element of ` _...
nnm2 8443 Multiply an element of ` _...
nn2m 8444 Multiply an element of ` _...
nnneo 8445 If a natural number is eve...
nneob 8446 A natural number is even i...
omsmolem 8447 Lemma for ~ omsmo . (Cont...
omsmo 8448 A strictly monotonic ordin...
omopthlem1 8449 Lemma for ~ omopthi . (Co...
omopthlem2 8450 Lemma for ~ omopthi . (Co...
omopthi 8451 An ordered pair theorem fo...
omopth 8452 An ordered pair theorem fo...
dfer2 8457 Alternate definition of eq...
dfec2 8459 Alternate definition of ` ...
ecexg 8460 An equivalence class modul...
ecexr 8461 A nonempty equivalence cla...
ereq1 8463 Equality theorem for equiv...
ereq2 8464 Equality theorem for equiv...
errel 8465 An equivalence relation is...
erdm 8466 The domain of an equivalen...
ercl 8467 Elementhood in the field o...
ersym 8468 An equivalence relation is...
ercl2 8469 Elementhood in the field o...
ersymb 8470 An equivalence relation is...
ertr 8471 An equivalence relation is...
ertrd 8472 A transitivity relation fo...
ertr2d 8473 A transitivity relation fo...
ertr3d 8474 A transitivity relation fo...
ertr4d 8475 A transitivity relation fo...
erref 8476 An equivalence relation is...
ercnv 8477 The converse of an equival...
errn 8478 The range and domain of an...
erssxp 8479 An equivalence relation is...
erex 8480 An equivalence relation is...
erexb 8481 An equivalence relation is...
iserd 8482 A reflexive, symmetric, tr...
iseri 8483 A reflexive, symmetric, tr...
iseriALT 8484 Alternate proof of ~ iseri...
brdifun 8485 Evaluate the incomparabili...
swoer 8486 Incomparability under a st...
swoord1 8487 The incomparability equiva...
swoord2 8488 The incomparability equiva...
swoso 8489 If the incomparability rel...
eqerlem 8490 Lemma for ~ eqer . (Contr...
eqer 8491 Equivalence relation invol...
ider 8492 The identity relation is a...
0er 8493 The empty set is an equiva...
eceq1 8494 Equality theorem for equiv...
eceq1d 8495 Equality theorem for equiv...
eceq2 8496 Equality theorem for equiv...
eceq2i 8497 Equality theorem for the `...
eceq2d 8498 Equality theorem for the `...
elecg 8499 Membership in an equivalen...
elec 8500 Membership in an equivalen...
relelec 8501 Membership in an equivalen...
ecss 8502 An equivalence class is a ...
ecdmn0 8503 A representative of a none...
ereldm 8504 Equality of equivalence cl...
erth 8505 Basic property of equivale...
erth2 8506 Basic property of equivale...
erthi 8507 Basic property of equivale...
erdisj 8508 Equivalence classes do not...
ecidsn 8509 An equivalence class modul...
qseq1 8510 Equality theorem for quoti...
qseq2 8511 Equality theorem for quoti...
qseq2i 8512 Equality theorem for quoti...
qseq2d 8513 Equality theorem for quoti...
qseq12 8514 Equality theorem for quoti...
elqsg 8515 Closed form of ~ elqs . (...
elqs 8516 Membership in a quotient s...
elqsi 8517 Membership in a quotient s...
elqsecl 8518 Membership in a quotient s...
ecelqsg 8519 Membership of an equivalen...
ecelqsi 8520 Membership of an equivalen...
ecopqsi 8521 "Closure" law for equivale...
qsexg 8522 A quotient set exists. (C...
qsex 8523 A quotient set exists. (C...
uniqs 8524 The union of a quotient se...
qsss 8525 A quotient set is a set of...
uniqs2 8526 The union of a quotient se...
snec 8527 The singleton of an equiva...
ecqs 8528 Equivalence class in terms...
ecid 8529 A set is equal to its cose...
qsid 8530 A set is equal to its quot...
ectocld 8531 Implicit substitution of c...
ectocl 8532 Implicit substitution of c...
elqsn0 8533 A quotient set does not co...
ecelqsdm 8534 Membership of an equivalen...
xpider 8535 A Cartesian square is an e...
iiner 8536 The intersection of a none...
riiner 8537 The relative intersection ...
erinxp 8538 A restricted equivalence r...
ecinxp 8539 Restrict the relation in a...
qsinxp 8540 Restrict the equivalence r...
qsdisj 8541 Members of a quotient set ...
qsdisj2 8542 A quotient set is a disjoi...
qsel 8543 If an element of a quotien...
uniinqs 8544 Class union distributes ov...
qliftlem 8545 Lemma for theorems about a...
qliftrel 8546 ` F ` , a function lift, i...
qliftel 8547 Elementhood in the relatio...
qliftel1 8548 Elementhood in the relatio...
qliftfun 8549 The function ` F ` is the ...
qliftfund 8550 The function ` F ` is the ...
qliftfuns 8551 The function ` F ` is the ...
qliftf 8552 The domain and range of th...
qliftval 8553 The value of the function ...
ecoptocl 8554 Implicit substitution of c...
2ecoptocl 8555 Implicit substitution of c...
3ecoptocl 8556 Implicit substitution of c...
brecop 8557 Binary relation on a quoti...
brecop2 8558 Binary relation on a quoti...
eroveu 8559 Lemma for ~ erov and ~ ero...
erovlem 8560 Lemma for ~ erov and ~ ero...
erov 8561 The value of an operation ...
eroprf 8562 Functionality of an operat...
erov2 8563 The value of an operation ...
eroprf2 8564 Functionality of an operat...
ecopoveq 8565 This is the first of sever...
ecopovsym 8566 Assuming the operation ` F...
ecopovtrn 8567 Assuming that operation ` ...
ecopover 8568 Assuming that operation ` ...
eceqoveq 8569 Equality of equivalence re...
ecovcom 8570 Lemma used to transfer a c...
ecovass 8571 Lemma used to transfer an ...
ecovdi 8572 Lemma used to transfer a d...
mapprc 8577 When ` A ` is a proper cla...
pmex 8578 The class of all partial f...
mapex 8579 The class of all functions...
fnmap 8580 Set exponentiation has a u...
fnpm 8581 Partial function exponenti...
reldmmap 8582 Set exponentiation is a we...
mapvalg 8583 The value of set exponenti...
pmvalg 8584 The value of the partial m...
mapval 8585 The value of set exponenti...
elmapg 8586 Membership relation for se...
elmapd 8587 Deduction form of ~ elmapg...
mapdm0 8588 The empty set is the only ...
elpmg 8589 The predicate "is a partia...
elpm2g 8590 The predicate "is a partia...
elpm2r 8591 Sufficient condition for b...
elpmi 8592 A partial function is a fu...
pmfun 8593 A partial function is a fu...
elmapex 8594 Eliminate antecedent for m...
elmapi 8595 A mapping is a function, f...
mapfset 8596 If ` B ` is a set, the val...
mapssfset 8597 The value of the set expon...
mapfoss 8598 The value of the set expon...
fsetsspwxp 8599 The class of all functions...
fset0 8600 The set of functions from ...
fsetdmprc0 8601 The set of functions with ...
fsetex 8602 The set of functions betwe...
f1setex 8603 The set of injections betw...
fosetex 8604 The set of surjections bet...
f1osetex 8605 The set of bijections betw...
fsetfcdm 8606 The class of functions wit...
fsetfocdm 8607 The class of functions wit...
fsetprcnex 8608 The class of all functions...
fsetcdmex 8609 The class of all functions...
fsetexb 8610 The class of all functions...
elmapfn 8611 A mapping is a function wi...
elmapfun 8612 A mapping is always a func...
elmapssres 8613 A restricted mapping is a ...
fpmg 8614 A total function is a part...
pmss12g 8615 Subset relation for the se...
pmresg 8616 Elementhood of a restricte...
elmap 8617 Membership relation for se...
mapval2 8618 Alternate expression for t...
elpm 8619 The predicate "is a partia...
elpm2 8620 The predicate "is a partia...
fpm 8621 A total function is a part...
mapsspm 8622 Set exponentiation is a su...
pmsspw 8623 Partial maps are a subset ...
mapsspw 8624 Set exponentiation is a su...
mapfvd 8625 The value of a function th...
elmapresaun 8626 ~ fresaun transposed to ma...
fvmptmap 8627 Special case of ~ fvmpt fo...
map0e 8628 Set exponentiation with an...
map0b 8629 Set exponentiation with an...
map0g 8630 Set exponentiation is empt...
0map0sn0 8631 The set of mappings of the...
mapsnd 8632 The value of set exponenti...
map0 8633 Set exponentiation is empt...
mapsn 8634 The value of set exponenti...
mapss 8635 Subset inheritance for set...
fdiagfn 8636 Functionality of the diago...
fvdiagfn 8637 Functionality of the diago...
mapsnconst 8638 Every singleton map is a c...
mapsncnv 8639 Expression for the inverse...
mapsnf1o2 8640 Explicit bijection between...
mapsnf1o3 8641 Explicit bijection in the ...
ralxpmap 8642 Quantification over functi...
dfixp 8645 Eliminate the expression `...
ixpsnval 8646 The value of an infinite C...
elixp2 8647 Membership in an infinite ...
fvixp 8648 Projection of a factor of ...
ixpfn 8649 A nuple is a function. (C...
elixp 8650 Membership in an infinite ...
elixpconst 8651 Membership in an infinite ...
ixpconstg 8652 Infinite Cartesian product...
ixpconst 8653 Infinite Cartesian product...
ixpeq1 8654 Equality theorem for infin...
ixpeq1d 8655 Equality theorem for infin...
ss2ixp 8656 Subclass theorem for infin...
ixpeq2 8657 Equality theorem for infin...
ixpeq2dva 8658 Equality theorem for infin...
ixpeq2dv 8659 Equality theorem for infin...
cbvixp 8660 Change bound variable in a...
cbvixpv 8661 Change bound variable in a...
nfixpw 8662 Bound-variable hypothesis ...
nfixp 8663 Bound-variable hypothesis ...
nfixp1 8664 The index variable in an i...
ixpprc 8665 A cartesian product of pro...
ixpf 8666 A member of an infinite Ca...
uniixp 8667 The union of an infinite C...
ixpexg 8668 The existence of an infini...
ixpin 8669 The intersection of two in...
ixpiin 8670 The indexed intersection o...
ixpint 8671 The intersection of a coll...
ixp0x 8672 An infinite Cartesian prod...
ixpssmap2g 8673 An infinite Cartesian prod...
ixpssmapg 8674 An infinite Cartesian prod...
0elixp 8675 Membership of the empty se...
ixpn0 8676 The infinite Cartesian pro...
ixp0 8677 The infinite Cartesian pro...
ixpssmap 8678 An infinite Cartesian prod...
resixp 8679 Restriction of an element ...
undifixp 8680 Union of two projections o...
mptelixpg 8681 Condition for an explicit ...
resixpfo 8682 Restriction of elements of...
elixpsn 8683 Membership in a class of s...
ixpsnf1o 8684 A bijection between a clas...
mapsnf1o 8685 A bijection between a set ...
boxriin 8686 A rectangular subset of a ...
boxcutc 8687 The relative complement of...
relen 8696 Equinumerosity is a relati...
reldom 8697 Dominance is a relation. ...
relsdom 8698 Strict dominance is a rela...
encv 8699 If two classes are equinum...
breng 8700 Equinumerosity relation. ...
bren 8701 Equinumerosity relation. ...
brenOLD 8702 Obsolete version of ~ bren...
brdomg 8703 Dominance relation. (Cont...
brdomi 8704 Dominance relation. (Cont...
brdom 8705 Dominance relation. (Cont...
domen 8706 Dominance in terms of equi...
domeng 8707 Dominance in terms of equi...
ctex 8708 A countable set is a set. ...
f1oen3g 8709 The domain and range of a ...
f1dom3g 8710 The domain of a one-to-one...
f1oen2g 8711 The domain and range of a ...
f1dom2g 8712 The domain of a one-to-one...
f1dom2gOLD 8713 Obsolete version of ~ f1do...
f1oeng 8714 The domain and range of a ...
f1domg 8715 The domain of a one-to-one...
f1oen 8716 The domain and range of a ...
f1dom 8717 The domain of a one-to-one...
brsdom 8718 Strict dominance relation,...
isfi 8719 Express " ` A ` is finite"...
enssdom 8720 Equinumerosity implies dom...
dfdom2 8721 Alternate definition of do...
endom 8722 Equinumerosity implies dom...
sdomdom 8723 Strict dominance implies d...
sdomnen 8724 Strict dominance implies n...
brdom2 8725 Dominance in terms of stri...
bren2 8726 Equinumerosity expressed i...
enrefg 8727 Equinumerosity is reflexiv...
enref 8728 Equinumerosity is reflexiv...
eqeng 8729 Equality implies equinumer...
domrefg 8730 Dominance is reflexive. (...
en2d 8731 Equinumerosity inference f...
en3d 8732 Equinumerosity inference f...
en2i 8733 Equinumerosity inference f...
en3i 8734 Equinumerosity inference f...
dom2lem 8735 A mapping (first hypothesi...
dom2d 8736 A mapping (first hypothesi...
dom3d 8737 A mapping (first hypothesi...
dom2 8738 A mapping (first hypothesi...
dom3 8739 A mapping (first hypothesi...
idssen 8740 Equality implies equinumer...
ssdomg 8741 A set dominates its subset...
ener 8742 Equinumerosity is an equiv...
ensymb 8743 Symmetry of equinumerosity...
ensym 8744 Symmetry of equinumerosity...
ensymi 8745 Symmetry of equinumerosity...
ensymd 8746 Symmetry of equinumerosity...
entr 8747 Transitivity of equinumero...
domtr 8748 Transitivity of dominance ...
entri 8749 A chained equinumerosity i...
entr2i 8750 A chained equinumerosity i...
entr3i 8751 A chained equinumerosity i...
entr4i 8752 A chained equinumerosity i...
endomtr 8753 Transitivity of equinumero...
domentr 8754 Transitivity of dominance ...
f1imaeng 8755 If a function is one-to-on...
f1imaen2g 8756 If a function is one-to-on...
f1imaen 8757 If a function is one-to-on...
en0 8758 The empty set is equinumer...
en0OLD 8759 Obsolete version of ~ en0 ...
en0ALT 8760 Shorter proof of ~ en0 , d...
ensn1 8761 A singleton is equinumerou...
ensn1OLD 8762 Obsolete version of ~ ensn...
ensn1g 8763 A singleton is equinumerou...
enpr1g 8764 ` { A , A } ` has only one...
en1 8765 A set is equinumerous to o...
en1OLD 8766 Obsolete version of ~ en1 ...
en1b 8767 A set is equinumerous to o...
en1bOLD 8768 Obsolete version of ~ en1b...
reuen1 8769 Two ways to express "exact...
euen1 8770 Two ways to express "exact...
euen1b 8771 Two ways to express " ` A ...
en1uniel 8772 A singleton contains its s...
en1unielOLD 8773 Obsolete version of ~ en1u...
2dom 8774 A set that dominates ordin...
fundmen 8775 A function is equinumerous...
fundmeng 8776 A function is equinumerous...
cnven 8777 A relational set is equinu...
cnvct 8778 If a set is countable, so ...
fndmeng 8779 A function is equinumerate...
mapsnend 8780 Set exponentiation to a si...
mapsnen 8781 Set exponentiation to a si...
snmapen 8782 Set exponentiation: a sing...
snmapen1 8783 Set exponentiation: a sing...
map1 8784 Set exponentiation: ordina...
en2sn 8785 Two singletons are equinum...
en2snOLD 8786 Obsolete version of ~ en2s...
en2snOLDOLD 8787 Obsolete version of ~ en2s...
snfi 8788 A singleton is finite. (C...
fiprc 8789 The class of finite sets i...
unen 8790 Equinumerosity of union of...
enrefnn 8791 Equinumerosity is reflexiv...
enpr2d 8792 A pair with distinct eleme...
ssct 8793 Any subset of a countable ...
difsnen 8794 All decrements of a set ar...
domdifsn 8795 Dominance over a set with ...
xpsnen 8796 A set is equinumerous to i...
xpsneng 8797 A set is equinumerous to i...
xp1en 8798 One times a cardinal numbe...
endisj 8799 Any two sets are equinumer...
undom 8800 Dominance law for union. ...
xpcomf1o 8801 The canonical bijection fr...
xpcomco 8802 Composition with the bijec...
xpcomen 8803 Commutative law for equinu...
xpcomeng 8804 Commutative law for equinu...
xpsnen2g 8805 A set is equinumerous to i...
xpassen 8806 Associative law for equinu...
xpdom2 8807 Dominance law for Cartesia...
xpdom2g 8808 Dominance law for Cartesia...
xpdom1g 8809 Dominance law for Cartesia...
xpdom3 8810 A set is dominated by its ...
xpdom1 8811 Dominance law for Cartesia...
domunsncan 8812 A singleton cancellation l...
omxpenlem 8813 Lemma for ~ omxpen . (Con...
omxpen 8814 The cardinal and ordinal p...
omf1o 8815 Construct an explicit bije...
pw2f1olem 8816 Lemma for ~ pw2f1o . (Con...
pw2f1o 8817 The power set of a set is ...
pw2eng 8818 The power set of a set is ...
pw2en 8819 The power set of a set is ...
fopwdom 8820 Covering implies injection...
enfixsn 8821 Given two equipollent sets...
sucdom2 8822 Strict dominance of a set ...
sbthlem1 8823 Lemma for ~ sbth . (Contr...
sbthlem2 8824 Lemma for ~ sbth . (Contr...
sbthlem3 8825 Lemma for ~ sbth . (Contr...
sbthlem4 8826 Lemma for ~ sbth . (Contr...
sbthlem5 8827 Lemma for ~ sbth . (Contr...
sbthlem6 8828 Lemma for ~ sbth . (Contr...
sbthlem7 8829 Lemma for ~ sbth . (Contr...
sbthlem8 8830 Lemma for ~ sbth . (Contr...
sbthlem9 8831 Lemma for ~ sbth . (Contr...
sbthlem10 8832 Lemma for ~ sbth . (Contr...
sbth 8833 Schroeder-Bernstein Theore...
sbthb 8834 Schroeder-Bernstein Theore...
sbthcl 8835 Schroeder-Bernstein Theore...
dfsdom2 8836 Alternate definition of st...
brsdom2 8837 Alternate definition of st...
sdomnsym 8838 Strict dominance is asymme...
domnsym 8839 Theorem 22(i) of [Suppes] ...
0domg 8840 Any set dominates the empt...
dom0 8841 A set dominated by the emp...
0sdomg 8842 A set strictly dominates t...
0dom 8843 Any set dominates the empt...
0sdom 8844 A set strictly dominates t...
sdom0 8845 The empty set does not str...
sdomdomtr 8846 Transitivity of strict dom...
sdomentr 8847 Transitivity of strict dom...
domsdomtr 8848 Transitivity of dominance ...
ensdomtr 8849 Transitivity of equinumero...
sdomirr 8850 Strict dominance is irrefl...
sdomtr 8851 Strict dominance is transi...
sdomn2lp 8852 Strict dominance has no 2-...
enen1 8853 Equality-like theorem for ...
enen2 8854 Equality-like theorem for ...
domen1 8855 Equality-like theorem for ...
domen2 8856 Equality-like theorem for ...
sdomen1 8857 Equality-like theorem for ...
sdomen2 8858 Equality-like theorem for ...
domtriord 8859 Dominance is trichotomous ...
sdomel 8860 For ordinals, strict domin...
sdomdif 8861 The difference of a set fr...
onsdominel 8862 An ordinal with more eleme...
domunsn 8863 Dominance over a set with ...
fodomr 8864 There exists a mapping fro...
pwdom 8865 Injection of sets implies ...
canth2 8866 Cantor's Theorem. No set ...
canth2g 8867 Cantor's theorem with the ...
2pwuninel 8868 The power set of the power...
2pwne 8869 No set equals the power se...
disjen 8870 A stronger form of ~ pwuni...
disjenex 8871 Existence version of ~ dis...
domss2 8872 A corollary of ~ disjenex ...
domssex2 8873 A corollary of ~ disjenex ...
domssex 8874 Weakening of ~ domssex2 to...
xpf1o 8875 Construct a bijection on a...
xpen 8876 Equinumerosity law for Car...
mapen 8877 Two set exponentiations ar...
mapdom1 8878 Order-preserving property ...
mapxpen 8879 Equinumerosity law for dou...
xpmapenlem 8880 Lemma for ~ xpmapen . (Co...
xpmapen 8881 Equinumerosity law for set...
mapunen 8882 Equinumerosity law for set...
map2xp 8883 A cardinal power with expo...
mapdom2 8884 Order-preserving property ...
mapdom3 8885 Set exponentiation dominat...
pwen 8886 If two sets are equinumero...
ssenen 8887 Equinumerosity of equinume...
limenpsi 8888 A limit ordinal is equinum...
limensuci 8889 A limit ordinal is equinum...
limensuc 8890 A limit ordinal is equinum...
infensuc 8891 Any infinite ordinal is eq...
phplem1 8892 Lemma for Pigeonhole Princ...
phplem2 8893 Lemma for Pigeonhole Princ...
phplem3 8894 Lemma for Pigeonhole Princ...
phplem4 8895 Lemma for Pigeonhole Princ...
nneneq 8896 Two equinumerous natural n...
php 8897 Pigeonhole Principle. A n...
php2 8898 Corollary of Pigeonhole Pr...
php3 8899 Corollary of Pigeonhole Pr...
php4 8900 Corollary of the Pigeonhol...
php5 8901 Corollary of the Pigeonhol...
phpeqd 8902 Corollary of the Pigeonhol...
snnen2o 8903 A singleton ` { A } ` is n...
nndomog 8904 Cardinal ordering agrees w...
dif1enlem 8905 Lemma for ~ rexdif1en and ...
rexdif1en 8906 If a set is equinumerous t...
dif1en 8907 If a set ` A ` is equinume...
findcard 8908 Schema for induction on th...
findcard2 8909 Schema for induction on th...
findcard2s 8910 Variation of ~ findcard2 r...
findcard2d 8911 Deduction version of ~ fin...
nnfi 8912 Natural numbers are finite...
pssnn 8913 A proper subset of a natur...
ssnnfi 8914 A subset of a natural numb...
ssnnfiOLD 8915 Obsolete version of ~ ssnn...
0fin 8916 The empty set is finite. ...
unfi 8917 The union of two finite se...
ssfi 8918 A subset of a finite set i...
ssfiALT 8919 Shorter proof of ~ ssfi us...
imafi 8920 Images of finite sets are ...
pwfir 8921 If the power set of a set ...
pwfilem 8922 Lemma for ~ pwfi . (Contr...
pwfi 8923 The power set of a finite ...
cnvfi 8924 If a set is finite, its co...
fnfi 8925 A version of ~ fnex for fi...
f1oenfi 8926 If the domain of a one-to-...
f1oenfirn 8927 If the range of a one-to-o...
f1domfi 8928 If the codomain of a one-t...
enreffi 8929 Equinumerosity is reflexiv...
ensymfib 8930 Symmetry of equinumerosity...
entrfil 8931 Transitivity of equinumero...
enfii 8932 A set equinumerous to a fi...
enfi 8933 Equinumerous sets have the...
enfiALT 8934 Shorter proof of ~ enfi us...
domfi 8935 A set dominated by a finit...
entrfi 8936 Transitivity of equinumero...
entrfir 8937 Transitivity of equinumero...
domtrfi 8938 Transitivity of dominance ...
f1imaenfi 8939 If a function is one-to-on...
ssdomfi 8940 A finite set dominates its...
sbthfilem 8941 Lemma for ~ sbthfi . (Con...
sbthfi 8942 Schroeder-Bernstein Theore...
onomeneq 8943 An ordinal number equinume...
onfin 8944 An ordinal number is finit...
onfin2 8945 A set is a natural number ...
nnfiOLD 8946 Obsolete version of ~ nnfi...
nndomo 8947 Cardinal ordering agrees w...
nnsdomo 8948 Cardinal ordering agrees w...
sucdom 8949 Strict dominance of a set ...
0sdom1dom 8950 Strict dominance over zero...
1sdom2 8951 Ordinal 1 is strictly domi...
sdom1 8952 A set has less than one me...
modom 8953 Two ways to express "at mo...
modom2 8954 Two ways to express "at mo...
1sdom 8955 A set that strictly domina...
unxpdomlem1 8956 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 8957 Lemma for ~ unxpdom . (Co...
unxpdomlem3 8958 Lemma for ~ unxpdom . (Co...
unxpdom 8959 Cartesian product dominate...
unxpdom2 8960 Corollary of ~ unxpdom . ...
sucxpdom 8961 Cartesian product dominate...
pssinf 8962 A set equinumerous to a pr...
fisseneq 8963 A finite set is equal to i...
ominf 8964 The set of natural numbers...
isinf 8965 Any set that is not finite...
fineqvlem 8966 Lemma for ~ fineqv . (Con...
fineqv 8967 If the Axiom of Infinity i...
enfiiOLD 8968 Obsolete version of ~ enfi...
pssnnOLD 8969 Obsolete version of ~ pssn...
xpfir 8970 The components of a nonemp...
ssfid 8971 A subset of a finite set i...
infi 8972 The intersection of two se...
rabfi 8973 A restricted class built f...
finresfin 8974 The restriction of a finit...
f1finf1o 8975 Any injection from one fin...
nfielex 8976 If a class is not finite, ...
en1eqsn 8977 A set with one element is ...
en1eqsnbi 8978 A set containing an elemen...
diffi 8979 If ` A ` is finite, ` ( A ...
dif1enALT 8980 Alternate proof of ~ dif1e...
enp1ilem 8981 Lemma for uses of ~ enp1i ...
enp1i 8982 Proof induction for ~ en2i...
en2 8983 A set equinumerous to ordi...
en3 8984 A set equinumerous to ordi...
en4 8985 A set equinumerous to ordi...
findcard2OLD 8986 Obsolete version of ~ find...
findcard3 8987 Schema for strong inductio...
ac6sfi 8988 A version of ~ ac6s for fi...
frfi 8989 A partial order is well-fo...
fimax2g 8990 A finite set has a maximum...
fimaxg 8991 A finite set has a maximum...
fisupg 8992 Lemma showing existence an...
wofi 8993 A total order on a finite ...
ordunifi 8994 The maximum of a finite co...
nnunifi 8995 The union (supremum) of a ...
unblem1 8996 Lemma for ~ unbnn . After...
unblem2 8997 Lemma for ~ unbnn . The v...
unblem3 8998 Lemma for ~ unbnn . The v...
unblem4 8999 Lemma for ~ unbnn . The f...
unbnn 9000 Any unbounded subset of na...
unbnn2 9001 Version of ~ unbnn that do...
isfinite2 9002 Any set strictly dominated...
nnsdomg 9003 Omega strictly dominates a...
isfiniteg 9004 A set is finite iff it is ...
infsdomnn 9005 An infinite set strictly d...
infn0 9006 An infinite set is not emp...
fin2inf 9007 This (useless) theorem, wh...
unfilem1 9008 Lemma for proving that the...
unfilem2 9009 Lemma for proving that the...
unfilem3 9010 Lemma for proving that the...
unfiOLD 9011 Obsolete version of ~ unfi...
unfir 9012 If a union is finite, the ...
unfi2 9013 The union of two finite se...
difinf 9014 An infinite set ` A ` minu...
xpfi 9015 The Cartesian product of t...
3xpfi 9016 The Cartesian product of t...
domunfican 9017 A finite set union cancell...
infcntss 9018 Every infinite set has a d...
prfi 9019 An unordered pair is finit...
tpfi 9020 An unordered triple is fin...
fiint 9021 Equivalent ways of stating...
fodomfi 9022 An onto function implies d...
fodomfib 9023 Equivalence of an onto map...
fofinf1o 9024 Any surjection from one fi...
rneqdmfinf1o 9025 Any function from a finite...
fidomdm 9026 Any finite set dominates i...
dmfi 9027 The domain of a finite set...
fundmfibi 9028 A function is finite if an...
resfnfinfin 9029 The restriction of a funct...
residfi 9030 A restricted identity func...
cnvfiALT 9031 Shorter proof of ~ cnvfi u...
rnfi 9032 The range of a finite set ...
f1dmvrnfibi 9033 A one-to-one function whos...
f1vrnfibi 9034 A one-to-one function whic...
fofi 9035 If a function has a finite...
f1fi 9036 If a 1-to-1 function has a...
iunfi 9037 The finite union of finite...
unifi 9038 The finite union of finite...
unifi2 9039 The finite union of finite...
infssuni 9040 If an infinite set ` A ` i...
unirnffid 9041 The union of the range of ...
imafiALT 9042 Shorter proof of ~ imafi u...
pwfilemOLD 9043 Obsolete version of ~ pwfi...
pwfiOLD 9044 Obsolete version of ~ pwfi...
mapfi 9045 Set exponentiation of fini...
ixpfi 9046 A Cartesian product of fin...
ixpfi2 9047 A Cartesian product of fin...
mptfi 9048 A finite mapping set is fi...
abrexfi 9049 An image set from a finite...
cnvimamptfin 9050 A preimage of a mapping wi...
elfpw 9051 Membership in a class of f...
unifpw 9052 A set is the union of its ...
f1opwfi 9053 A one-to-one mapping induc...
fissuni 9054 A finite subset of a union...
fipreima 9055 Given a finite subset ` A ...
finsschain 9056 A finite subset of the uni...
indexfi 9057 If for every element of a ...
relfsupp 9060 The property of a function...
relprcnfsupp 9061 A proper class is never fi...
isfsupp 9062 The property of a class to...
funisfsupp 9063 The property of a function...
fsuppimp 9064 Implications of a class be...
fsuppimpd 9065 A finitely supported funct...
fisuppfi 9066 A function on a finite set...
fdmfisuppfi 9067 The support of a function ...
fdmfifsupp 9068 A function with a finite d...
fsuppmptdm 9069 A mapping with a finite do...
fndmfisuppfi 9070 The support of a function ...
fndmfifsupp 9071 A function with a finite d...
suppeqfsuppbi 9072 If two functions have the ...
suppssfifsupp 9073 If the support of a functi...
fsuppsssupp 9074 If the support of a functi...
fsuppxpfi 9075 The cartesian product of t...
fczfsuppd 9076 A constant function with v...
fsuppun 9077 The union of two finitely ...
fsuppunfi 9078 The union of the support o...
fsuppunbi 9079 If the union of two classe...
0fsupp 9080 The empty set is a finitel...
snopfsupp 9081 A singleton containing an ...
funsnfsupp 9082 Finite support for a funct...
fsuppres 9083 The restriction of a finit...
ressuppfi 9084 If the support of the rest...
resfsupp 9085 If the restriction of a fu...
resfifsupp 9086 The restriction of a funct...
frnfsuppbi 9087 Two ways of saying that a ...
fsuppmptif 9088 A function mapping an argu...
sniffsupp 9089 A function mapping all but...
fsuppcolem 9090 Lemma for ~ fsuppco . For...
fsuppco 9091 The composition of a 1-1 f...
fsuppco2 9092 The composition of a funct...
fsuppcor 9093 The composition of a funct...
mapfienlem1 9094 Lemma 1 for ~ mapfien . (...
mapfienlem2 9095 Lemma 2 for ~ mapfien . (...
mapfienlem3 9096 Lemma 3 for ~ mapfien . (...
mapfien 9097 A bijection of the base se...
mapfien2 9098 Equinumerousity relation f...
fival 9101 The set of all the finite ...
elfi 9102 Specific properties of an ...
elfi2 9103 The empty intersection nee...
elfir 9104 Sufficient condition for a...
intrnfi 9105 Sufficient condition for t...
iinfi 9106 An indexed intersection of...
inelfi 9107 The intersection of two se...
ssfii 9108 Any element of a set ` A `...
fi0 9109 The set of finite intersec...
fieq0 9110 A set is empty iff the cla...
fiin 9111 The elements of ` ( fi `` ...
dffi2 9112 The set of finite intersec...
fiss 9113 Subset relationship for fu...
inficl 9114 A set which is closed unde...
fipwuni 9115 The set of finite intersec...
fisn 9116 A singleton is closed unde...
fiuni 9117 The union of the finite in...
fipwss 9118 If a set is a family of su...
elfiun 9119 A finite intersection of e...
dffi3 9120 The set of finite intersec...
fifo 9121 Describe a surjection from...
marypha1lem 9122 Core induction for Philip ...
marypha1 9123 (Philip) Hall's marriage t...
marypha2lem1 9124 Lemma for ~ marypha2 . Pr...
marypha2lem2 9125 Lemma for ~ marypha2 . Pr...
marypha2lem3 9126 Lemma for ~ marypha2 . Pr...
marypha2lem4 9127 Lemma for ~ marypha2 . Pr...
marypha2 9128 Version of ~ marypha1 usin...
dfsup2 9133 Quantifier-free definition...
supeq1 9134 Equality theorem for supre...
supeq1d 9135 Equality deduction for sup...
supeq1i 9136 Equality inference for sup...
supeq2 9137 Equality theorem for supre...
supeq3 9138 Equality theorem for supre...
supeq123d 9139 Equality deduction for sup...
nfsup 9140 Hypothesis builder for sup...
supmo 9141 Any class ` B ` has at mos...
supexd 9142 A supremum is a set. (Con...
supeu 9143 A supremum is unique. Sim...
supval2 9144 Alternate expression for t...
eqsup 9145 Sufficient condition for a...
eqsupd 9146 Sufficient condition for a...
supcl 9147 A supremum belongs to its ...
supub 9148 A supremum is an upper bou...
suplub 9149 A supremum is the least up...
suplub2 9150 Bidirectional form of ~ su...
supnub 9151 An upper bound is not less...
supex 9152 A supremum is a set. (Con...
sup00 9153 The supremum under an empt...
sup0riota 9154 The supremum of an empty s...
sup0 9155 The supremum of an empty s...
supmax 9156 The greatest element of a ...
fisup2g 9157 A finite set satisfies the...
fisupcl 9158 A nonempty finite set cont...
supgtoreq 9159 The supremum of a finite s...
suppr 9160 The supremum of a pair. (...
supsn 9161 The supremum of a singleto...
supisolem 9162 Lemma for ~ supiso . (Con...
supisoex 9163 Lemma for ~ supiso . (Con...
supiso 9164 Image of a supremum under ...
infeq1 9165 Equality theorem for infim...
infeq1d 9166 Equality deduction for inf...
infeq1i 9167 Equality inference for inf...
infeq2 9168 Equality theorem for infim...
infeq3 9169 Equality theorem for infim...
infeq123d 9170 Equality deduction for inf...
nfinf 9171 Hypothesis builder for inf...
infexd 9172 An infimum is a set. (Con...
eqinf 9173 Sufficient condition for a...
eqinfd 9174 Sufficient condition for a...
infval 9175 Alternate expression for t...
infcllem 9176 Lemma for ~ infcl , ~ infl...
infcl 9177 An infimum belongs to its ...
inflb 9178 An infimum is a lower boun...
infglb 9179 An infimum is the greatest...
infglbb 9180 Bidirectional form of ~ in...
infnlb 9181 A lower bound is not great...
infex 9182 An infimum is a set. (Con...
infmin 9183 The smallest element of a ...
infmo 9184 Any class ` B ` has at mos...
infeu 9185 An infimum is unique. (Co...
fimin2g 9186 A finite set has a minimum...
fiming 9187 A finite set has a minimum...
fiinfg 9188 Lemma showing existence an...
fiinf2g 9189 A finite set satisfies the...
fiinfcl 9190 A nonempty finite set cont...
infltoreq 9191 The infimum of a finite se...
infpr 9192 The infimum of a pair. (C...
infsupprpr 9193 The infimum of a proper pa...
infsn 9194 The infimum of a singleton...
inf00 9195 The infimum regarding an e...
infempty 9196 The infimum of an empty se...
infiso 9197 Image of an infimum under ...
dfoi 9200 Rewrite ~ df-oi with abbre...
oieq1 9201 Equality theorem for ordin...
oieq2 9202 Equality theorem for ordin...
nfoi 9203 Hypothesis builder for ord...
ordiso2 9204 Generalize ~ ordiso to pro...
ordiso 9205 Order-isomorphic ordinal n...
ordtypecbv 9206 Lemma for ~ ordtype . (Co...
ordtypelem1 9207 Lemma for ~ ordtype . (Co...
ordtypelem2 9208 Lemma for ~ ordtype . (Co...
ordtypelem3 9209 Lemma for ~ ordtype . (Co...
ordtypelem4 9210 Lemma for ~ ordtype . (Co...
ordtypelem5 9211 Lemma for ~ ordtype . (Co...
ordtypelem6 9212 Lemma for ~ ordtype . (Co...
ordtypelem7 9213 Lemma for ~ ordtype . ` ra...
ordtypelem8 9214 Lemma for ~ ordtype . (Co...
ordtypelem9 9215 Lemma for ~ ordtype . Eit...
ordtypelem10 9216 Lemma for ~ ordtype . Usi...
oi0 9217 Definition of the ordinal ...
oicl 9218 The order type of the well...
oif 9219 The order isomorphism of t...
oiiso2 9220 The order isomorphism of t...
ordtype 9221 For any set-like well-orde...
oiiniseg 9222 ` ran F ` is an initial se...
ordtype2 9223 For any set-like well-orde...
oiexg 9224 The order isomorphism on a...
oion 9225 The order type of the well...
oiiso 9226 The order isomorphism of t...
oien 9227 The order type of a well-o...
oieu 9228 Uniqueness of the unique o...
oismo 9229 When ` A ` is a subclass o...
oiid 9230 The order type of an ordin...
hartogslem1 9231 Lemma for ~ hartogs . (Co...
hartogslem2 9232 Lemma for ~ hartogs . (Co...
hartogs 9233 The class of ordinals domi...
wofib 9234 The only sets which are we...
wemaplem1 9235 Value of the lexicographic...
wemaplem2 9236 Lemma for ~ wemapso . Tra...
wemaplem3 9237 Lemma for ~ wemapso . Tra...
wemappo 9238 Construct lexicographic or...
wemapsolem 9239 Lemma for ~ wemapso . (Co...
wemapso 9240 Construct lexicographic or...
wemapso2lem 9241 Lemma for ~ wemapso2 . (C...
wemapso2 9242 An alternative to having a...
card2on 9243 The alternate definition o...
card2inf 9244 The alternate definition o...
harf 9247 Functionality of the Harto...
harcl 9248 Values of the Hartogs func...
harval 9249 Function value of the Hart...
elharval 9250 The Hartogs number of a se...
harndom 9251 The Hartogs number of a se...
harword 9252 Weak ordering property of ...
relwdom 9255 Weak dominance is a relati...
brwdom 9256 Property of weak dominance...
brwdomi 9257 Property of weak dominance...
brwdomn0 9258 Weak dominance over nonemp...
0wdom 9259 Any set weakly dominates t...
fowdom 9260 An onto function implies w...
wdomref 9261 Reflexivity of weak domina...
brwdom2 9262 Alternate characterization...
domwdom 9263 Weak dominance is implied ...
wdomtr 9264 Transitivity of weak domin...
wdomen1 9265 Equality-like theorem for ...
wdomen2 9266 Equality-like theorem for ...
wdompwdom 9267 Weak dominance strengthens...
canthwdom 9268 Cantor's Theorem, stated u...
wdom2d 9269 Deduce weak dominance from...
wdomd 9270 Deduce weak dominance from...
brwdom3 9271 Condition for weak dominan...
brwdom3i 9272 Weak dominance implies exi...
unwdomg 9273 Weak dominance of a (disjo...
xpwdomg 9274 Weak dominance of a Cartes...
wdomima2g 9275 A set is weakly dominant o...
wdomimag 9276 A set is weakly dominant o...
unxpwdom2 9277 Lemma for ~ unxpwdom . (C...
unxpwdom 9278 If a Cartesian product is ...
ixpiunwdom 9279 Describe an onto function ...
harwdom 9280 The value of the Hartogs f...
axreg2 9282 Axiom of Regularity expres...
zfregcl 9283 The Axiom of Regularity wi...
zfreg 9284 The Axiom of Regularity us...
elirrv 9285 The membership relation is...
elirr 9286 No class is a member of it...
elneq 9287 A class is not equal to an...
nelaneq 9288 A class is not an element ...
epinid0 9289 The membership relation an...
sucprcreg 9290 A class is equal to its su...
ruv 9291 The Russell class is equal...
ruALT 9292 Alternate proof of ~ ru , ...
zfregfr 9293 The membership relation is...
en2lp 9294 No class has 2-cycle membe...
elnanel 9295 Two classes are not elemen...
cnvepnep 9296 The membership (epsilon) r...
epnsym 9297 The membership (epsilon) r...
elnotel 9298 A class cannot be an eleme...
elnel 9299 A class cannot be an eleme...
en3lplem1 9300 Lemma for ~ en3lp . (Cont...
en3lplem2 9301 Lemma for ~ en3lp . (Cont...
en3lp 9302 No class has 3-cycle membe...
preleqg 9303 Equality of two unordered ...
preleq 9304 Equality of two unordered ...
preleqALT 9305 Alternate proof of ~ prele...
opthreg 9306 Theorem for alternate repr...
suc11reg 9307 The successor operation be...
dford2 9308 Assuming ~ ax-reg , an ord...
inf0 9309 Existence of ` _om ` impli...
inf1 9310 Variation of Axiom of Infi...
inf2 9311 Variation of Axiom of Infi...
inf3lema 9312 Lemma for our Axiom of Inf...
inf3lemb 9313 Lemma for our Axiom of Inf...
inf3lemc 9314 Lemma for our Axiom of Inf...
inf3lemd 9315 Lemma for our Axiom of Inf...
inf3lem1 9316 Lemma for our Axiom of Inf...
inf3lem2 9317 Lemma for our Axiom of Inf...
inf3lem3 9318 Lemma for our Axiom of Inf...
inf3lem4 9319 Lemma for our Axiom of Inf...
inf3lem5 9320 Lemma for our Axiom of Inf...
inf3lem6 9321 Lemma for our Axiom of Inf...
inf3lem7 9322 Lemma for our Axiom of Inf...
inf3 9323 Our Axiom of Infinity ~ ax...
infeq5i 9324 Half of ~ infeq5 . (Contr...
infeq5 9325 The statement "there exist...
zfinf 9327 Axiom of Infinity expresse...
axinf2 9328 A standard version of Axio...
zfinf2 9330 A standard version of the ...
omex 9331 The existence of omega (th...
axinf 9332 The first version of the A...
inf5 9333 The statement "there exist...
omelon 9334 Omega is an ordinal number...
dfom3 9335 The class of natural numbe...
elom3 9336 A simplification of ~ elom...
dfom4 9337 A simplification of ~ df-o...
dfom5 9338 ` _om ` is the smallest li...
oancom 9339 Ordinal addition is not co...
isfinite 9340 A set is finite iff it is ...
fict 9341 A finite set is countable ...
nnsdom 9342 A natural number is strict...
omenps 9343 Omega is equinumerous to a...
omensuc 9344 The set of natural numbers...
infdifsn 9345 Removing a singleton from ...
infdiffi 9346 Removing a finite set from...
unbnn3 9347 Any unbounded subset of na...
noinfep 9348 Using the Axiom of Regular...
cantnffval 9351 The value of the Cantor no...
cantnfdm 9352 The domain of the Cantor n...
cantnfvalf 9353 Lemma for ~ cantnf . The ...
cantnfs 9354 Elementhood in the set of ...
cantnfcl 9355 Basic properties of the or...
cantnfval 9356 The value of the Cantor no...
cantnfval2 9357 Alternate expression for t...
cantnfsuc 9358 The value of the recursive...
cantnfle 9359 A lower bound on the ` CNF...
cantnflt 9360 An upper bound on the part...
cantnflt2 9361 An upper bound on the ` CN...
cantnff 9362 The ` CNF ` function is a ...
cantnf0 9363 The value of the zero func...
cantnfrescl 9364 A function is finitely sup...
cantnfres 9365 The ` CNF ` function respe...
cantnfp1lem1 9366 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9367 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9368 Lemma for ~ cantnfp1 . (C...
cantnfp1 9369 If ` F ` is created by add...
oemapso 9370 The relation ` T ` is a st...
oemapval 9371 Value of the relation ` T ...
oemapvali 9372 If ` F < G ` , then there ...
cantnflem1a 9373 Lemma for ~ cantnf . (Con...
cantnflem1b 9374 Lemma for ~ cantnf . (Con...
cantnflem1c 9375 Lemma for ~ cantnf . (Con...
cantnflem1d 9376 Lemma for ~ cantnf . (Con...
cantnflem1 9377 Lemma for ~ cantnf . This...
cantnflem2 9378 Lemma for ~ cantnf . (Con...
cantnflem3 9379 Lemma for ~ cantnf . Here...
cantnflem4 9380 Lemma for ~ cantnf . Comp...
cantnf 9381 The Cantor Normal Form the...
oemapwe 9382 The lexicographic order on...
cantnffval2 9383 An alternate definition of...
cantnff1o 9384 Simplify the isomorphism o...
wemapwe 9385 Construct lexicographic or...
oef1o 9386 A bijection of the base se...
cnfcomlem 9387 Lemma for ~ cnfcom . (Con...
cnfcom 9388 Any ordinal ` B ` is equin...
cnfcom2lem 9389 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9390 Any nonzero ordinal ` B ` ...
cnfcom3lem 9391 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9392 Any infinite ordinal ` B `...
cnfcom3clem 9393 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9394 Wrap the construction of ~...
dftrpred2 9397 A definition of the transi...
trpredeq1 9398 Equality theorem for trans...
trpredeq2 9399 Equality theorem for trans...
trpredeq3 9400 Equality theorem for trans...
trpredeq1d 9401 Equality deduction for tra...
trpredeq2d 9402 Equality deduction for tra...
trpredeq3d 9403 Equality deduction for tra...
eltrpred 9404 A class is a transitive pr...
trpredlem1 9405 Technical lemma for transi...
trpredpred 9406 Assuming it is a set, the ...
trpredss 9407 The transitive predecessor...
trpredtr 9408 Predecessors of a transiti...
trpredmintr 9409 The transitive predecessor...
trpred0 9410 The class of transitive pr...
trpredelss 9411 Given a transitive predece...
dftrpred3g 9412 The transitive predecessor...
dftrpred4g 9413 Another recursive expressi...
trpredpo 9414 If ` R ` partially orders ...
trpredrec 9415 A transitive predecessor o...
trpredex 9416 The transitive predecessor...
trcl 9417 For any set ` A ` , show t...
tz9.1 9418 Every set has a transitive...
tz9.1c 9419 Alternate expression for t...
epfrs 9420 The strong form of the Axi...
zfregs 9421 The strong form of the Axi...
zfregs2 9422 Alternate strong form of t...
setind 9423 Set (epsilon) induction. ...
setind2 9424 Set (epsilon) induction, s...
tcvalg 9427 Value of the transitive cl...
tcid 9428 Defining property of the t...
tctr 9429 Defining property of the t...
tcmin 9430 Defining property of the t...
tc2 9431 A variant of the definitio...
tcsni 9432 The transitive closure of ...
tcss 9433 The transitive closure fun...
tcel 9434 The transitive closure fun...
tcidm 9435 The transitive closure fun...
tc0 9436 The transitive closure of ...
tc00 9437 The transitive closure is ...
frmin 9438 Every (possibly proper) su...
frind 9439 A subclass of a well-found...
frinsg 9440 Well-Founded Induction Sch...
frins 9441 Well-Founded Induction Sch...
frins2f 9442 Well-Founded Induction sch...
frins2 9443 Well-Founded Induction sch...
frins3 9444 Well-Founded Induction sch...
frr3g 9445 Functions defined by well-...
frrlem15 9446 Lemma for general well-fou...
frrlem16 9447 Lemma for general well-fou...
frr1 9448 Law of general well-founde...
frr2 9449 Law of general well-founde...
frr3 9450 Law of general well-founde...
r1funlim 9455 The cumulative hierarchy o...
r1fnon 9456 The cumulative hierarchy o...
r10 9457 Value of the cumulative hi...
r1sucg 9458 Value of the cumulative hi...
r1suc 9459 Value of the cumulative hi...
r1limg 9460 Value of the cumulative hi...
r1lim 9461 Value of the cumulative hi...
r1fin 9462 The first ` _om ` levels o...
r1sdom 9463 Each stage in the cumulati...
r111 9464 The cumulative hierarchy i...
r1tr 9465 The cumulative hierarchy o...
r1tr2 9466 The union of a cumulative ...
r1ordg 9467 Ordering relation for the ...
r1ord3g 9468 Ordering relation for the ...
r1ord 9469 Ordering relation for the ...
r1ord2 9470 Ordering relation for the ...
r1ord3 9471 Ordering relation for the ...
r1sssuc 9472 The value of the cumulativ...
r1pwss 9473 Each set of the cumulative...
r1sscl 9474 Each set of the cumulative...
r1val1 9475 The value of the cumulativ...
tz9.12lem1 9476 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9477 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9478 Lemma for ~ tz9.12 . (Con...
tz9.12 9479 A set is well-founded if a...
tz9.13 9480 Every set is well-founded,...
tz9.13g 9481 Every set is well-founded,...
rankwflemb 9482 Two ways of saying a set i...
rankf 9483 The domain and range of th...
rankon 9484 The rank of a set is an or...
r1elwf 9485 Any member of the cumulati...
rankvalb 9486 Value of the rank function...
rankr1ai 9487 One direction of ~ rankr1a...
rankvaln 9488 Value of the rank function...
rankidb 9489 Identity law for the rank ...
rankdmr1 9490 A rank is a member of the ...
rankr1ag 9491 A version of ~ rankr1a tha...
rankr1bg 9492 A relationship between ran...
r1rankidb 9493 Any set is a subset of the...
r1elssi 9494 The range of the ` R1 ` fu...
r1elss 9495 The range of the ` R1 ` fu...
pwwf 9496 A power set is well-founde...
sswf 9497 A subset of a well-founded...
snwf 9498 A singleton is well-founde...
unwf 9499 A binary union is well-fou...
prwf 9500 An unordered pair is well-...
opwf 9501 An ordered pair is well-fo...
unir1 9502 The cumulative hierarchy o...
jech9.3 9503 Every set belongs to some ...
rankwflem 9504 Every set is well-founded,...
rankval 9505 Value of the rank function...
rankvalg 9506 Value of the rank function...
rankval2 9507 Value of an alternate defi...
uniwf 9508 A union is well-founded if...
rankr1clem 9509 Lemma for ~ rankr1c . (Co...
rankr1c 9510 A relationship between the...
rankidn 9511 A relationship between the...
rankpwi 9512 The rank of a power set. ...
rankelb 9513 The membership relation is...
wfelirr 9514 A well-founded set is not ...
rankval3b 9515 The value of the rank func...
ranksnb 9516 The rank of a singleton. ...
rankonidlem 9517 Lemma for ~ rankonid . (C...
rankonid 9518 The rank of an ordinal num...
onwf 9519 The ordinals are all well-...
onssr1 9520 Initial segments of the or...
rankr1g 9521 A relationship between the...
rankid 9522 Identity law for the rank ...
rankr1 9523 A relationship between the...
ssrankr1 9524 A relationship between an ...
rankr1a 9525 A relationship between ran...
r1val2 9526 The value of the cumulativ...
r1val3 9527 The value of the cumulativ...
rankel 9528 The membership relation is...
rankval3 9529 The value of the rank func...
bndrank 9530 Any class whose elements h...
unbndrank 9531 The elements of a proper c...
rankpw 9532 The rank of a power set. ...
ranklim 9533 The rank of a set belongs ...
r1pw 9534 A stronger property of ` R...
r1pwALT 9535 Alternate shorter proof of...
r1pwcl 9536 The cumulative hierarchy o...
rankssb 9537 The subset relation is inh...
rankss 9538 The subset relation is inh...
rankunb 9539 The rank of the union of t...
rankprb 9540 The rank of an unordered p...
rankopb 9541 The rank of an ordered pai...
rankuni2b 9542 The value of the rank func...
ranksn 9543 The rank of a singleton. ...
rankuni2 9544 The rank of a union. Part...
rankun 9545 The rank of the union of t...
rankpr 9546 The rank of an unordered p...
rankop 9547 The rank of an ordered pai...
r1rankid 9548 Any set is a subset of the...
rankeq0b 9549 A set is empty iff its ran...
rankeq0 9550 A set is empty iff its ran...
rankr1id 9551 The rank of the hierarchy ...
rankuni 9552 The rank of a union. Part...
rankr1b 9553 A relationship between ran...
ranksuc 9554 The rank of a successor. ...
rankuniss 9555 Upper bound of the rank of...
rankval4 9556 The rank of a set is the s...
rankbnd 9557 The rank of a set is bound...
rankbnd2 9558 The rank of a set is bound...
rankc1 9559 A relationship that can be...
rankc2 9560 A relationship that can be...
rankelun 9561 Rank membership is inherit...
rankelpr 9562 Rank membership is inherit...
rankelop 9563 Rank membership is inherit...
rankxpl 9564 A lower bound on the rank ...
rankxpu 9565 An upper bound on the rank...
rankfu 9566 An upper bound on the rank...
rankmapu 9567 An upper bound on the rank...
rankxplim 9568 The rank of a Cartesian pr...
rankxplim2 9569 If the rank of a Cartesian...
rankxplim3 9570 The rank of a Cartesian pr...
rankxpsuc 9571 The rank of a Cartesian pr...
tcwf 9572 The transitive closure fun...
tcrank 9573 This theorem expresses two...
scottex 9574 Scott's trick collects all...
scott0 9575 Scott's trick collects all...
scottexs 9576 Theorem scheme version of ...
scott0s 9577 Theorem scheme version of ...
cplem1 9578 Lemma for the Collection P...
cplem2 9579 Lemma for the Collection P...
cp 9580 Collection Principle. Thi...
bnd 9581 A very strong generalizati...
bnd2 9582 A variant of the Boundedne...
kardex 9583 The collection of all sets...
karden 9584 If we allow the Axiom of R...
htalem 9585 Lemma for defining an emul...
hta 9586 A ZFC emulation of Hilbert...
djueq12 9593 Equality theorem for disjo...
djueq1 9594 Equality theorem for disjo...
djueq2 9595 Equality theorem for disjo...
nfdju 9596 Bound-variable hypothesis ...
djuex 9597 The disjoint union of sets...
djuexb 9598 The disjoint union of two ...
djulcl 9599 Left closure of disjoint u...
djurcl 9600 Right closure of disjoint ...
djulf1o 9601 The left injection functio...
djurf1o 9602 The right injection functi...
inlresf 9603 The left injection restric...
inlresf1 9604 The left injection restric...
inrresf 9605 The right injection restri...
inrresf1 9606 The right injection restri...
djuin 9607 The images of any classes ...
djur 9608 A member of a disjoint uni...
djuss 9609 A disjoint union is a subc...
djuunxp 9610 The union of a disjoint un...
djuexALT 9611 Alternate proof of ~ djuex...
eldju1st 9612 The first component of an ...
eldju2ndl 9613 The second component of an...
eldju2ndr 9614 The second component of an...
djuun 9615 The disjoint union of two ...
1stinl 9616 The first component of the...
2ndinl 9617 The second component of th...
1stinr 9618 The first component of the...
2ndinr 9619 The second component of th...
updjudhf 9620 The mapping of an element ...
updjudhcoinlf 9621 The composition of the map...
updjudhcoinrg 9622 The composition of the map...
updjud 9623 Universal property of the ...
cardf2 9632 The cardinality function i...
cardon 9633 The cardinal number of a s...
isnum2 9634 A way to express well-orde...
isnumi 9635 A set equinumerous to an o...
ennum 9636 Equinumerous sets are equi...
finnum 9637 Every finite set is numera...
onenon 9638 Every ordinal number is nu...
tskwe 9639 A Tarski set is well-order...
xpnum 9640 The cartesian product of n...
cardval3 9641 An alternate definition of...
cardid2 9642 Any numerable set is equin...
isnum3 9643 A set is numerable iff it ...
oncardval 9644 The value of the cardinal ...
oncardid 9645 Any ordinal number is equi...
cardonle 9646 The cardinal of an ordinal...
card0 9647 The cardinality of the emp...
cardidm 9648 The cardinality function i...
oncard 9649 A set is a cardinal number...
ficardom 9650 The cardinal number of a f...
ficardid 9651 A finite set is equinumero...
cardnn 9652 The cardinality of a natur...
cardnueq0 9653 The empty set is the only ...
cardne 9654 No member of a cardinal nu...
carden2a 9655 If two sets have equal non...
carden2b 9656 If two sets are equinumero...
card1 9657 A set has cardinality one ...
cardsn 9658 A singleton has cardinalit...
carddomi2 9659 Two sets have the dominanc...
sdomsdomcardi 9660 A set strictly dominates i...
cardlim 9661 An infinite cardinal is a ...
cardsdomelir 9662 A cardinal strictly domina...
cardsdomel 9663 A cardinal strictly domina...
iscard 9664 Two ways to express the pr...
iscard2 9665 Two ways to express the pr...
carddom2 9666 Two numerable sets have th...
harcard 9667 The class of ordinal numbe...
cardprclem 9668 Lemma for ~ cardprc . (Co...
cardprc 9669 The class of all cardinal ...
carduni 9670 The union of a set of card...
cardiun 9671 The indexed union of a set...
cardennn 9672 If ` A ` is equinumerous t...
cardsucinf 9673 The cardinality of the suc...
cardsucnn 9674 The cardinality of the suc...
cardom 9675 The set of natural numbers...
carden2 9676 Two numerable sets are equ...
cardsdom2 9677 A numerable set is strictl...
domtri2 9678 Trichotomy of dominance fo...
nnsdomel 9679 Strict dominance and eleme...
cardval2 9680 An alternate version of th...
isinffi 9681 An infinite set contains s...
fidomtri 9682 Trichotomy of dominance wi...
fidomtri2 9683 Trichotomy of dominance wi...
harsdom 9684 The Hartogs number of a we...
onsdom 9685 Any well-orderable set is ...
harval2 9686 An alternate expression fo...
harsucnn 9687 The next cardinal after a ...
cardmin2 9688 The smallest ordinal that ...
pm54.43lem 9689 In Theorem *54.43 of [Whit...
pm54.43 9690 Theorem *54.43 of [Whitehe...
pr2nelem 9691 Lemma for ~ pr2ne . (Cont...
pr2ne 9692 If an unordered pair has t...
prdom2 9693 An unordered pair has at m...
en2eqpr 9694 Building a set with two el...
en2eleq 9695 Express a set of pair card...
en2other2 9696 Taking the other element t...
dif1card 9697 The cardinality of a nonem...
leweon 9698 Lexicographical order is a...
r0weon 9699 A set-like well-ordering o...
infxpenlem 9700 Lemma for ~ infxpen . (Co...
infxpen 9701 Every infinite ordinal is ...
xpomen 9702 The Cartesian product of o...
xpct 9703 The cartesian product of t...
infxpidm2 9704 Every infinite well-ordera...
infxpenc 9705 A canonical version of ~ i...
infxpenc2lem1 9706 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 9707 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 9708 Lemma for ~ infxpenc2 . (...
infxpenc2 9709 Existence form of ~ infxpe...
iunmapdisj 9710 The union ` U_ n e. C ( A ...
fseqenlem1 9711 Lemma for ~ fseqen . (Con...
fseqenlem2 9712 Lemma for ~ fseqen . (Con...
fseqdom 9713 One half of ~ fseqen . (C...
fseqen 9714 A set that is equinumerous...
infpwfidom 9715 The collection of finite s...
dfac8alem 9716 Lemma for ~ dfac8a . If t...
dfac8a 9717 Numeration theorem: every ...
dfac8b 9718 The well-ordering theorem:...
dfac8clem 9719 Lemma for ~ dfac8c . (Con...
dfac8c 9720 If the union of a set is w...
ac10ct 9721 A proof of the well-orderi...
ween 9722 A set is numerable iff it ...
ac5num 9723 A version of ~ ac5b with t...
ondomen 9724 If a set is dominated by a...
numdom 9725 A set dominated by a numer...
ssnum 9726 A subset of a numerable se...
onssnum 9727 All subsets of the ordinal...
indcardi 9728 Indirect strong induction ...
acnrcl 9729 Reverse closure for the ch...
acneq 9730 Equality theorem for the c...
isacn 9731 The property of being a ch...
acni 9732 The property of being a ch...
acni2 9733 The property of being a ch...
acni3 9734 The property of being a ch...
acnlem 9735 Construct a mapping satisf...
numacn 9736 A well-orderable set has c...
finacn 9737 Every set has finite choic...
acndom 9738 A set with long choice seq...
acnnum 9739 A set ` X ` which has choi...
acnen 9740 The class of choice sets o...
acndom2 9741 A set smaller than one wit...
acnen2 9742 The class of sets with cho...
fodomacn 9743 A version of ~ fodom that ...
fodomnum 9744 A version of ~ fodom that ...
fonum 9745 A surjection maps numerabl...
numwdom 9746 A surjection maps numerabl...
fodomfi2 9747 Onto functions define domi...
wdomfil 9748 Weak dominance agrees with...
infpwfien 9749 Any infinite well-orderabl...
inffien 9750 The set of finite intersec...
wdomnumr 9751 Weak dominance agrees with...
alephfnon 9752 The aleph function is a fu...
aleph0 9753 The first infinite cardina...
alephlim 9754 Value of the aleph functio...
alephsuc 9755 Value of the aleph functio...
alephon 9756 An aleph is an ordinal num...
alephcard 9757 Every aleph is a cardinal ...
alephnbtwn 9758 No cardinal can be sandwic...
alephnbtwn2 9759 No set has equinumerosity ...
alephordilem1 9760 Lemma for ~ alephordi . (...
alephordi 9761 Strict ordering property o...
alephord 9762 Ordering property of the a...
alephord2 9763 Ordering property of the a...
alephord2i 9764 Ordering property of the a...
alephord3 9765 Ordering property of the a...
alephsucdom 9766 A set dominated by an alep...
alephsuc2 9767 An alternate representatio...
alephdom 9768 Relationship between inclu...
alephgeom 9769 Every aleph is greater tha...
alephislim 9770 Every aleph is a limit ord...
aleph11 9771 The aleph function is one-...
alephf1 9772 The aleph function is a on...
alephsdom 9773 If an ordinal is smaller t...
alephdom2 9774 A dominated initial ordina...
alephle 9775 The argument of the aleph ...
cardaleph 9776 Given any transfinite card...
cardalephex 9777 Every transfinite cardinal...
infenaleph 9778 An infinite numerable set ...
isinfcard 9779 Two ways to express the pr...
iscard3 9780 Two ways to express the pr...
cardnum 9781 Two ways to express the cl...
alephinit 9782 An infinite initial ordina...
carduniima 9783 The union of the image of ...
cardinfima 9784 If a mapping to cardinals ...
alephiso 9785 Aleph is an order isomorph...
alephprc 9786 The class of all transfini...
alephsson 9787 The class of transfinite c...
unialeph 9788 The union of the class of ...
alephsmo 9789 The aleph function is stri...
alephf1ALT 9790 Alternate proof of ~ aleph...
alephfplem1 9791 Lemma for ~ alephfp . (Co...
alephfplem2 9792 Lemma for ~ alephfp . (Co...
alephfplem3 9793 Lemma for ~ alephfp . (Co...
alephfplem4 9794 Lemma for ~ alephfp . (Co...
alephfp 9795 The aleph function has a f...
alephfp2 9796 The aleph function has at ...
alephval3 9797 An alternate way to expres...
alephsucpw2 9798 The power set of an aleph ...
mappwen 9799 Power rule for cardinal ar...
finnisoeu 9800 A finite totally ordered s...
iunfictbso 9801 Countability of a countabl...
aceq1 9804 Equivalence of two version...
aceq0 9805 Equivalence of two version...
aceq2 9806 Equivalence of two version...
aceq3lem 9807 Lemma for ~ dfac3 . (Cont...
dfac3 9808 Equivalence of two version...
dfac4 9809 Equivalence of two version...
dfac5lem1 9810 Lemma for ~ dfac5 . (Cont...
dfac5lem2 9811 Lemma for ~ dfac5 . (Cont...
dfac5lem3 9812 Lemma for ~ dfac5 . (Cont...
dfac5lem4 9813 Lemma for ~ dfac5 . (Cont...
dfac5lem5 9814 Lemma for ~ dfac5 . (Cont...
dfac5 9815 Equivalence of two version...
dfac2a 9816 Our Axiom of Choice (in th...
dfac2b 9817 Axiom of Choice (first for...
dfac2 9818 Axiom of Choice (first for...
dfac7 9819 Equivalence of the Axiom o...
dfac0 9820 Equivalence of two version...
dfac1 9821 Equivalence of two version...
dfac8 9822 A proof of the equivalency...
dfac9 9823 Equivalence of the axiom o...
dfac10 9824 Axiom of Choice equivalent...
dfac10c 9825 Axiom of Choice equivalent...
dfac10b 9826 Axiom of Choice equivalent...
acacni 9827 A choice equivalent: every...
dfacacn 9828 A choice equivalent: every...
dfac13 9829 The axiom of choice holds ...
dfac12lem1 9830 Lemma for ~ dfac12 . (Con...
dfac12lem2 9831 Lemma for ~ dfac12 . (Con...
dfac12lem3 9832 Lemma for ~ dfac12 . (Con...
dfac12r 9833 The axiom of choice holds ...
dfac12k 9834 Equivalence of ~ dfac12 an...
dfac12a 9835 The axiom of choice holds ...
dfac12 9836 The axiom of choice holds ...
kmlem1 9837 Lemma for 5-quantifier AC ...
kmlem2 9838 Lemma for 5-quantifier AC ...
kmlem3 9839 Lemma for 5-quantifier AC ...
kmlem4 9840 Lemma for 5-quantifier AC ...
kmlem5 9841 Lemma for 5-quantifier AC ...
kmlem6 9842 Lemma for 5-quantifier AC ...
kmlem7 9843 Lemma for 5-quantifier AC ...
kmlem8 9844 Lemma for 5-quantifier AC ...
kmlem9 9845 Lemma for 5-quantifier AC ...
kmlem10 9846 Lemma for 5-quantifier AC ...
kmlem11 9847 Lemma for 5-quantifier AC ...
kmlem12 9848 Lemma for 5-quantifier AC ...
kmlem13 9849 Lemma for 5-quantifier AC ...
kmlem14 9850 Lemma for 5-quantifier AC ...
kmlem15 9851 Lemma for 5-quantifier AC ...
kmlem16 9852 Lemma for 5-quantifier AC ...
dfackm 9853 Equivalence of the Axiom o...
undjudom 9854 Cardinal addition dominate...
endjudisj 9855 Equinumerosity of a disjoi...
djuen 9856 Disjoint unions of equinum...
djuenun 9857 Disjoint union is equinume...
dju1en 9858 Cardinal addition with car...
dju1dif 9859 Adding and subtracting one...
dju1p1e2 9860 1+1=2 for cardinal number ...
dju1p1e2ALT 9861 Alternate proof of ~ dju1p...
dju0en 9862 Cardinal addition with car...
xp2dju 9863 Two times a cardinal numbe...
djucomen 9864 Commutative law for cardin...
djuassen 9865 Associative law for cardin...
xpdjuen 9866 Cardinal multiplication di...
mapdjuen 9867 Sum of exponents law for c...
pwdjuen 9868 Sum of exponents law for c...
djudom1 9869 Ordering law for cardinal ...
djudom2 9870 Ordering law for cardinal ...
djudoml 9871 A set is dominated by its ...
djuxpdom 9872 Cartesian product dominate...
djufi 9873 The disjoint union of two ...
cdainflem 9874 Any partition of omega int...
djuinf 9875 A set is infinite iff the ...
infdju1 9876 An infinite set is equinum...
pwdju1 9877 The sum of a powerset with...
pwdjuidm 9878 If the natural numbers inj...
djulepw 9879 If ` A ` is idempotent und...
onadju 9880 The cardinal and ordinal s...
cardadju 9881 The cardinal sum is equinu...
djunum 9882 The disjoint union of two ...
unnum 9883 The union of two numerable...
nnadju 9884 The cardinal and ordinal s...
nnadjuALT 9885 Shorter proof of ~ nnadju ...
ficardadju 9886 The disjoint union of fini...
ficardun 9887 The cardinality of the uni...
ficardunOLD 9888 Obsolete version of ~ fica...
ficardun2 9889 The cardinality of the uni...
ficardun2OLD 9890 Obsolete version of ~ fica...
pwsdompw 9891 Lemma for ~ domtriom . Th...
unctb 9892 The union of two countable...
infdjuabs 9893 Absorption law for additio...
infunabs 9894 An infinite set is equinum...
infdju 9895 The sum of two cardinal nu...
infdif 9896 The cardinality of an infi...
infdif2 9897 Cardinality ordering for a...
infxpdom 9898 Dominance law for multipli...
infxpabs 9899 Absorption law for multipl...
infunsdom1 9900 The union of two sets that...
infunsdom 9901 The union of two sets that...
infxp 9902 Absorption law for multipl...
pwdjudom 9903 A property of dominance ov...
infpss 9904 Every infinite set has an ...
infmap2 9905 An exponentiation law for ...
ackbij2lem1 9906 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 9907 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 9908 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 9909 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 9910 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 9911 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 9912 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 9913 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 9914 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 9915 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 9916 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 9917 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 9918 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 9919 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 9920 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 9921 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 9922 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 9923 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 9924 Lemma for ~ ackbij1 . (Co...
ackbij1 9925 The Ackermann bijection, p...
ackbij1b 9926 The Ackermann bijection, p...
ackbij2lem2 9927 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 9928 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 9929 Lemma for ~ ackbij2 . (Co...
ackbij2 9930 The Ackermann bijection, p...
r1om 9931 The set of hereditarily fi...
fictb 9932 A set is countable iff its...
cflem 9933 A lemma used to simplify c...
cfval 9934 Value of the cofinality fu...
cff 9935 Cofinality is a function o...
cfub 9936 An upper bound on cofinali...
cflm 9937 Value of the cofinality fu...
cf0 9938 Value of the cofinality fu...
cardcf 9939 Cofinality is a cardinal n...
cflecard 9940 Cofinality is bounded by t...
cfle 9941 Cofinality is bounded by i...
cfon 9942 The cofinality of any set ...
cfeq0 9943 Only the ordinal zero has ...
cfsuc 9944 Value of the cofinality fu...
cff1 9945 There is always a map from...
cfflb 9946 If there is a cofinal map ...
cfval2 9947 Another expression for the...
coflim 9948 A simpler expression for t...
cflim3 9949 Another expression for the...
cflim2 9950 The cofinality function is...
cfom 9951 Value of the cofinality fu...
cfss 9952 There is a cofinal subset ...
cfslb 9953 Any cofinal subset of ` A ...
cfslbn 9954 Any subset of ` A ` smalle...
cfslb2n 9955 Any small collection of sm...
cofsmo 9956 Any cofinal map implies th...
cfsmolem 9957 Lemma for ~ cfsmo . (Cont...
cfsmo 9958 The map in ~ cff1 can be a...
cfcoflem 9959 Lemma for ~ cfcof , showin...
coftr 9960 If there is a cofinal map ...
cfcof 9961 If there is a cofinal map ...
cfidm 9962 The cofinality function is...
alephsing 9963 The cofinality of a limit ...
sornom 9964 The range of a single-step...
isfin1a 9979 Definition of a Ia-finite ...
fin1ai 9980 Property of a Ia-finite se...
isfin2 9981 Definition of a II-finite ...
fin2i 9982 Property of a II-finite se...
isfin3 9983 Definition of a III-finite...
isfin4 9984 Definition of a IV-finite ...
fin4i 9985 Infer that a set is IV-inf...
isfin5 9986 Definition of a V-finite s...
isfin6 9987 Definition of a VI-finite ...
isfin7 9988 Definition of a VII-finite...
sdom2en01 9989 A set with less than two e...
infpssrlem1 9990 Lemma for ~ infpssr . (Co...
infpssrlem2 9991 Lemma for ~ infpssr . (Co...
infpssrlem3 9992 Lemma for ~ infpssr . (Co...
infpssrlem4 9993 Lemma for ~ infpssr . (Co...
infpssrlem5 9994 Lemma for ~ infpssr . (Co...
infpssr 9995 Dedekind infinity implies ...
fin4en1 9996 Dedekind finite is a cardi...
ssfin4 9997 Dedekind finite sets have ...
domfin4 9998 A set dominated by a Dedek...
ominf4 9999 ` _om ` is Dedekind infini...
infpssALT 10000 Alternate proof of ~ infps...
isfin4-2 10001 Alternate definition of IV...
isfin4p1 10002 Alternate definition of IV...
fin23lem7 10003 Lemma for ~ isfin2-2 . Th...
fin23lem11 10004 Lemma for ~ isfin2-2 . (C...
fin2i2 10005 A II-finite set contains m...
isfin2-2 10006 ` Fin2 ` expressed in term...
ssfin2 10007 A subset of a II-finite se...
enfin2i 10008 II-finiteness is a cardina...
fin23lem24 10009 Lemma for ~ fin23 . In a ...
fincssdom 10010 In a chain of finite sets,...
fin23lem25 10011 Lemma for ~ fin23 . In a ...
fin23lem26 10012 Lemma for ~ fin23lem22 . ...
fin23lem23 10013 Lemma for ~ fin23lem22 . ...
fin23lem22 10014 Lemma for ~ fin23 but coul...
fin23lem27 10015 The mapping constructed in...
isfin3ds 10016 Property of a III-finite s...
ssfin3ds 10017 A subset of a III-finite s...
fin23lem12 10018 The beginning of the proof...
fin23lem13 10019 Lemma for ~ fin23 . Each ...
fin23lem14 10020 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10021 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10022 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10023 Lemma for ~ fin23 . The f...
fin23lem20 10024 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10025 Lemma for ~ fin23 . By ? ...
fin23lem21 10026 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10027 Lemma for ~ fin23 . The r...
fin23lem29 10028 Lemma for ~ fin23 . The r...
fin23lem30 10029 Lemma for ~ fin23 . The r...
fin23lem31 10030 Lemma for ~ fin23 . The r...
fin23lem32 10031 Lemma for ~ fin23 . Wrap ...
fin23lem33 10032 Lemma for ~ fin23 . Disch...
fin23lem34 10033 Lemma for ~ fin23 . Estab...
fin23lem35 10034 Lemma for ~ fin23 . Stric...
fin23lem36 10035 Lemma for ~ fin23 . Weak ...
fin23lem38 10036 Lemma for ~ fin23 . The c...
fin23lem39 10037 Lemma for ~ fin23 . Thus,...
fin23lem40 10038 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10039 Lemma for ~ fin23 . A set...
isf32lem1 10040 Lemma for ~ isfin3-2 . De...
isf32lem2 10041 Lemma for ~ isfin3-2 . No...
isf32lem3 10042 Lemma for ~ isfin3-2 . Be...
isf32lem4 10043 Lemma for ~ isfin3-2 . Be...
isf32lem5 10044 Lemma for ~ isfin3-2 . Th...
isf32lem6 10045 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10046 Lemma for ~ isfin3-2 . Di...
isf32lem8 10047 Lemma for ~ isfin3-2 . K ...
isf32lem9 10048 Lemma for ~ isfin3-2 . Co...
isf32lem10 10049 Lemma for isfin3-2 . Writ...
isf32lem11 10050 Lemma for ~ isfin3-2 . Re...
isf32lem12 10051 Lemma for ~ isfin3-2 . (C...
isfin32i 10052 One half of ~ isfin3-2 . ...
isf33lem 10053 Lemma for ~ isfin3-3 . (C...
isfin3-2 10054 Weakly Dedekind-infinite s...
isfin3-3 10055 Weakly Dedekind-infinite s...
fin33i 10056 Inference from ~ isfin3-3 ...
compsscnvlem 10057 Lemma for ~ compsscnv . (...
compsscnv 10058 Complementation on a power...
isf34lem1 10059 Lemma for ~ isfin3-4 . (C...
isf34lem2 10060 Lemma for ~ isfin3-4 . (C...
compssiso 10061 Complementation is an anti...
isf34lem3 10062 Lemma for ~ isfin3-4 . (C...
compss 10063 Express image under of the...
isf34lem4 10064 Lemma for ~ isfin3-4 . (C...
isf34lem5 10065 Lemma for ~ isfin3-4 . (C...
isf34lem7 10066 Lemma for ~ isfin3-4 . (C...
isf34lem6 10067 Lemma for ~ isfin3-4 . (C...
fin34i 10068 Inference from ~ isfin3-4 ...
isfin3-4 10069 Weakly Dedekind-infinite s...
fin11a 10070 Every I-finite set is Ia-f...
enfin1ai 10071 Ia-finiteness is a cardina...
isfin1-2 10072 A set is finite in the usu...
isfin1-3 10073 A set is I-finite iff ever...
isfin1-4 10074 A set is I-finite iff ever...
dffin1-5 10075 Compact quantifier-free ve...
fin23 10076 Every II-finite set (every...
fin34 10077 Every III-finite set is IV...
isfin5-2 10078 Alternate definition of V-...
fin45 10079 Every IV-finite set is V-f...
fin56 10080 Every V-finite set is VI-f...
fin17 10081 Every I-finite set is VII-...
fin67 10082 Every VI-finite set is VII...
isfin7-2 10083 A set is VII-finite iff it...
fin71num 10084 A well-orderable set is VI...
dffin7-2 10085 Class form of ~ isfin7-2 ....
dfacfin7 10086 Axiom of Choice equivalent...
fin1a2lem1 10087 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10088 Lemma for ~ fin1a2 . (Con...
fin1a2lem3 10089 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10090 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10091 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10092 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10093 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10094 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10095 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10096 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10097 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10098 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10099 Lemma for ~ fin1a2 . (Con...
fin12 10100 Weak theorem which skips I...
fin1a2s 10101 An II-infinite set can hav...
fin1a2 10102 Every Ia-finite set is II-...
itunifval 10103 Function value of iterated...
itunifn 10104 Functionality of the itera...
ituni0 10105 A zero-fold iterated union...
itunisuc 10106 Successor iterated union. ...
itunitc1 10107 Each union iterate is a me...
itunitc 10108 The union of all union ite...
ituniiun 10109 Unwrap an iterated union f...
hsmexlem7 10110 Lemma for ~ hsmex . Prope...
hsmexlem8 10111 Lemma for ~ hsmex . Prope...
hsmexlem9 10112 Lemma for ~ hsmex . Prope...
hsmexlem1 10113 Lemma for ~ hsmex . Bound...
hsmexlem2 10114 Lemma for ~ hsmex . Bound...
hsmexlem3 10115 Lemma for ~ hsmex . Clear...
hsmexlem4 10116 Lemma for ~ hsmex . The c...
hsmexlem5 10117 Lemma for ~ hsmex . Combi...
hsmexlem6 10118 Lemma for ~ hsmex . (Cont...
hsmex 10119 The collection of heredita...
hsmex2 10120 The set of hereditary size...
hsmex3 10121 The set of hereditary size...
axcc2lem 10123 Lemma for ~ axcc2 . (Cont...
axcc2 10124 A possibly more useful ver...
axcc3 10125 A possibly more useful ver...
axcc4 10126 A version of ~ axcc3 that ...
acncc 10127 An ~ ax-cc equivalent: eve...
axcc4dom 10128 Relax the constraint on ~ ...
domtriomlem 10129 Lemma for ~ domtriom . (C...
domtriom 10130 Trichotomy of equinumerosi...
fin41 10131 Under countable choice, th...
dominf 10132 A nonempty set that is a s...
dcomex 10134 The Axiom of Dependent Cho...
axdc2lem 10135 Lemma for ~ axdc2 . We co...
axdc2 10136 An apparent strengthening ...
axdc3lem 10137 The class ` S ` of finite ...
axdc3lem2 10138 Lemma for ~ axdc3 . We ha...
axdc3lem3 10139 Simple substitution lemma ...
axdc3lem4 10140 Lemma for ~ axdc3 . We ha...
axdc3 10141 Dependent Choice. Axiom D...
axdc4lem 10142 Lemma for ~ axdc4 . (Cont...
axdc4 10143 A more general version of ...
axcclem 10144 Lemma for ~ axcc . (Contr...
axcc 10145 Although CC can be proven ...
zfac 10147 Axiom of Choice expressed ...
ac2 10148 Axiom of Choice equivalent...
ac3 10149 Axiom of Choice using abbr...
axac3 10151 This theorem asserts that ...
ackm 10152 A remarkable equivalent to...
axac2 10153 Derive ~ ax-ac2 from ~ ax-...
axac 10154 Derive ~ ax-ac from ~ ax-a...
axaci 10155 Apply a choice equivalent....
cardeqv 10156 All sets are well-orderabl...
numth3 10157 All sets are well-orderabl...
numth2 10158 Numeration theorem: any se...
numth 10159 Numeration theorem: every ...
ac7 10160 An Axiom of Choice equival...
ac7g 10161 An Axiom of Choice equival...
ac4 10162 Equivalent of Axiom of Cho...
ac4c 10163 Equivalent of Axiom of Cho...
ac5 10164 An Axiom of Choice equival...
ac5b 10165 Equivalent of Axiom of Cho...
ac6num 10166 A version of ~ ac6 which t...
ac6 10167 Equivalent of Axiom of Cho...
ac6c4 10168 Equivalent of Axiom of Cho...
ac6c5 10169 Equivalent of Axiom of Cho...
ac9 10170 An Axiom of Choice equival...
ac6s 10171 Equivalent of Axiom of Cho...
ac6n 10172 Equivalent of Axiom of Cho...
ac6s2 10173 Generalization of the Axio...
ac6s3 10174 Generalization of the Axio...
ac6sg 10175 ~ ac6s with sethood as ant...
ac6sf 10176 Version of ~ ac6 with boun...
ac6s4 10177 Generalization of the Axio...
ac6s5 10178 Generalization of the Axio...
ac8 10179 An Axiom of Choice equival...
ac9s 10180 An Axiom of Choice equival...
numthcor 10181 Any set is strictly domina...
weth 10182 Well-ordering theorem: any...
zorn2lem1 10183 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10184 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10185 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10186 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10187 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10188 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10189 Lemma for ~ zorn2 . (Cont...
zorn2g 10190 Zorn's Lemma of [Monk1] p....
zorng 10191 Zorn's Lemma. If the unio...
zornn0g 10192 Variant of Zorn's lemma ~ ...
zorn2 10193 Zorn's Lemma of [Monk1] p....
zorn 10194 Zorn's Lemma. If the unio...
zornn0 10195 Variant of Zorn's lemma ~ ...
ttukeylem1 10196 Lemma for ~ ttukey . Expa...
ttukeylem2 10197 Lemma for ~ ttukey . A pr...
ttukeylem3 10198 Lemma for ~ ttukey . (Con...
ttukeylem4 10199 Lemma for ~ ttukey . (Con...
ttukeylem5 10200 Lemma for ~ ttukey . The ...
ttukeylem6 10201 Lemma for ~ ttukey . (Con...
ttukeylem7 10202 Lemma for ~ ttukey . (Con...
ttukey2g 10203 The Teichmüller-Tukey...
ttukeyg 10204 The Teichmüller-Tukey...
ttukey 10205 The Teichmüller-Tukey...
axdclem 10206 Lemma for ~ axdc . (Contr...
axdclem2 10207 Lemma for ~ axdc . Using ...
axdc 10208 This theorem derives ~ ax-...
fodomg 10209 An onto function implies d...
fodom 10210 An onto function implies d...
dmct 10211 The domain of a countable ...
rnct 10212 The range of a countable s...
fodomb 10213 Equivalence of an onto map...
wdomac 10214 When assuming AC, weak and...
brdom3 10215 Equivalence to a dominance...
brdom5 10216 An equivalence to a domina...
brdom4 10217 An equivalence to a domina...
brdom7disj 10218 An equivalence to a domina...
brdom6disj 10219 An equivalence to a domina...
fin71ac 10220 Once we allow AC, the "str...
imadomg 10221 An image of a function und...
fimact 10222 The image by a function of...
fnrndomg 10223 The range of a function is...
fnct 10224 If the domain of a functio...
mptct 10225 A countable mapping set is...
iunfo 10226 Existence of an onto funct...
iundom2g 10227 An upper bound for the car...
iundomg 10228 An upper bound for the car...
iundom 10229 An upper bound for the car...
unidom 10230 An upper bound for the car...
uniimadom 10231 An upper bound for the car...
uniimadomf 10232 An upper bound for the car...
cardval 10233 The value of the cardinal ...
cardid 10234 Any set is equinumerous to...
cardidg 10235 Any set is equinumerous to...
cardidd 10236 Any set is equinumerous to...
cardf 10237 The cardinality function i...
carden 10238 Two sets are equinumerous ...
cardeq0 10239 Only the empty set has car...
unsnen 10240 Equinumerosity of a set wi...
carddom 10241 Two sets have the dominanc...
cardsdom 10242 Two sets have the strict d...
domtri 10243 Trichotomy law for dominan...
entric 10244 Trichotomy of equinumerosi...
entri2 10245 Trichotomy of dominance an...
entri3 10246 Trichotomy of dominance. ...
sdomsdomcard 10247 A set strictly dominates i...
canth3 10248 Cantor's theorem in terms ...
infxpidm 10249 Every infinite class is eq...
ondomon 10250 The class of ordinals domi...
cardmin 10251 The smallest ordinal that ...
ficard 10252 A set is finite iff its ca...
infinf 10253 Equivalence between two in...
unirnfdomd 10254 The union of the range of ...
konigthlem 10255 Lemma for ~ konigth . (Co...
konigth 10256 Konig's Theorem. If ` m (...
alephsucpw 10257 The power set of an aleph ...
aleph1 10258 The set exponentiation of ...
alephval2 10259 An alternate way to expres...
dominfac 10260 A nonempty set that is a s...
iunctb 10261 The countable union of cou...
unictb 10262 The countable union of cou...
infmap 10263 An exponentiation law for ...
alephadd 10264 The sum of two alephs is t...
alephmul 10265 The product of two alephs ...
alephexp1 10266 An exponentiation law for ...
alephsuc3 10267 An alternate representatio...
alephexp2 10268 An expression equinumerous...
alephreg 10269 A successor aleph is regul...
pwcfsdom 10270 A corollary of Konig's The...
cfpwsdom 10271 A corollary of Konig's The...
alephom 10272 From ~ canth2 , we know th...
smobeth 10273 The beth function is stric...
nd1 10274 A lemma for proving condit...
nd2 10275 A lemma for proving condit...
nd3 10276 A lemma for proving condit...
nd4 10277 A lemma for proving condit...
axextnd 10278 A version of the Axiom of ...
axrepndlem1 10279 Lemma for the Axiom of Rep...
axrepndlem2 10280 Lemma for the Axiom of Rep...
axrepnd 10281 A version of the Axiom of ...
axunndlem1 10282 Lemma for the Axiom of Uni...
axunnd 10283 A version of the Axiom of ...
axpowndlem1 10284 Lemma for the Axiom of Pow...
axpowndlem2 10285 Lemma for the Axiom of Pow...
axpowndlem3 10286 Lemma for the Axiom of Pow...
axpowndlem4 10287 Lemma for the Axiom of Pow...
axpownd 10288 A version of the Axiom of ...
axregndlem1 10289 Lemma for the Axiom of Reg...
axregndlem2 10290 Lemma for the Axiom of Reg...
axregnd 10291 A version of the Axiom of ...
axinfndlem1 10292 Lemma for the Axiom of Inf...
axinfnd 10293 A version of the Axiom of ...
axacndlem1 10294 Lemma for the Axiom of Cho...
axacndlem2 10295 Lemma for the Axiom of Cho...
axacndlem3 10296 Lemma for the Axiom of Cho...
axacndlem4 10297 Lemma for the Axiom of Cho...
axacndlem5 10298 Lemma for the Axiom of Cho...
axacnd 10299 A version of the Axiom of ...
zfcndext 10300 Axiom of Extensionality ~ ...
zfcndrep 10301 Axiom of Replacement ~ ax-...
zfcndun 10302 Axiom of Union ~ ax-un , r...
zfcndpow 10303 Axiom of Power Sets ~ ax-p...
zfcndreg 10304 Axiom of Regularity ~ ax-r...
zfcndinf 10305 Axiom of Infinity ~ ax-inf...
zfcndac 10306 Axiom of Choice ~ ax-ac , ...
elgch 10309 Elementhood in the collect...
fingch 10310 A finite set is a GCH-set....
gchi 10311 The only GCH-sets which ha...
gchen1 10312 If ` A <_ B < ~P A ` , and...
gchen2 10313 If ` A < B <_ ~P A ` , and...
gchor 10314 If ` A <_ B <_ ~P A ` , an...
engch 10315 The property of being a GC...
gchdomtri 10316 Under certain conditions, ...
fpwwe2cbv 10317 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10318 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10319 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10320 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10321 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10322 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10323 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10324 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10325 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10326 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10327 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10328 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10329 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10330 Given any function ` F ` f...
fpwwecbv 10331 Lemma for ~ fpwwe . (Cont...
fpwwelem 10332 Lemma for ~ fpwwe . (Cont...
fpwwe 10333 Given any function ` F ` f...
canth4 10334 An "effective" form of Can...
canthnumlem 10335 Lemma for ~ canthnum . (C...
canthnum 10336 The set of well-orderable ...
canthwelem 10337 Lemma for ~ canthwe . (Co...
canthwe 10338 The set of well-orders of ...
canthp1lem1 10339 Lemma for ~ canthp1 . (Co...
canthp1lem2 10340 Lemma for ~ canthp1 . (Co...
canthp1 10341 A slightly stronger form o...
finngch 10342 The exclusion of finite se...
gchdju1 10343 An infinite GCH-set is ide...
gchinf 10344 An infinite GCH-set is Ded...
pwfseqlem1 10345 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10346 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10347 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10348 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10349 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10350 Lemma for ~ pwfseq . Alth...
pwfseq 10351 The powerset of a Dedekind...
pwxpndom2 10352 The powerset of a Dedekind...
pwxpndom 10353 The powerset of a Dedekind...
pwdjundom 10354 The powerset of a Dedekind...
gchdjuidm 10355 An infinite GCH-set is ide...
gchxpidm 10356 An infinite GCH-set is ide...
gchpwdom 10357 A relationship between dom...
gchaleph 10358 If ` ( aleph `` A ) ` is a...
gchaleph2 10359 If ` ( aleph `` A ) ` and ...
hargch 10360 If ` A + ~~ ~P A ` , then ...
alephgch 10361 If ` ( aleph `` suc A ) ` ...
gch2 10362 It is sufficient to requir...
gch3 10363 An equivalent formulation ...
gch-kn 10364 The equivalence of two ver...
gchaclem 10365 Lemma for ~ gchac (obsolet...
gchhar 10366 A "local" form of ~ gchac ...
gchacg 10367 A "local" form of ~ gchac ...
gchac 10368 The Generalized Continuum ...
elwina 10373 Conditions of weak inacces...
elina 10374 Conditions of strong inacc...
winaon 10375 A weakly inaccessible card...
inawinalem 10376 Lemma for ~ inawina . (Co...
inawina 10377 Every strongly inaccessibl...
omina 10378 ` _om ` is a strongly inac...
winacard 10379 A weakly inaccessible card...
winainflem 10380 A weakly inaccessible card...
winainf 10381 A weakly inaccessible card...
winalim 10382 A weakly inaccessible card...
winalim2 10383 A nontrivial weakly inacce...
winafp 10384 A nontrivial weakly inacce...
winafpi 10385 This theorem, which states...
gchina 10386 Assuming the GCH, weakly a...
iswun 10391 Properties of a weak unive...
wuntr 10392 A weak universe is transit...
wununi 10393 A weak universe is closed ...
wunpw 10394 A weak universe is closed ...
wunelss 10395 The elements of a weak uni...
wunpr 10396 A weak universe is closed ...
wunun 10397 A weak universe is closed ...
wuntp 10398 A weak universe is closed ...
wunss 10399 A weak universe is closed ...
wunin 10400 A weak universe is closed ...
wundif 10401 A weak universe is closed ...
wunint 10402 A weak universe is closed ...
wunsn 10403 A weak universe is closed ...
wunsuc 10404 A weak universe is closed ...
wun0 10405 A weak universe contains t...
wunr1om 10406 A weak universe is infinit...
wunom 10407 A weak universe contains a...
wunfi 10408 A weak universe contains a...
wunop 10409 A weak universe is closed ...
wunot 10410 A weak universe is closed ...
wunxp 10411 A weak universe is closed ...
wunpm 10412 A weak universe is closed ...
wunmap 10413 A weak universe is closed ...
wunf 10414 A weak universe is closed ...
wundm 10415 A weak universe is closed ...
wunrn 10416 A weak universe is closed ...
wuncnv 10417 A weak universe is closed ...
wunres 10418 A weak universe is closed ...
wunfv 10419 A weak universe is closed ...
wunco 10420 A weak universe is closed ...
wuntpos 10421 A weak universe is closed ...
intwun 10422 The intersection of a coll...
r1limwun 10423 Each limit stage in the cu...
r1wunlim 10424 The weak universes in the ...
wunex2 10425 Construct a weak universe ...
wunex 10426 Construct a weak universe ...
uniwun 10427 Every set is contained in ...
wunex3 10428 Construct a weak universe ...
wuncval 10429 Value of the weak universe...
wuncid 10430 The weak universe closure ...
wunccl 10431 The weak universe closure ...
wuncss 10432 The weak universe closure ...
wuncidm 10433 The weak universe closure ...
wuncval2 10434 Our earlier expression for...
eltskg 10437 Properties of a Tarski cla...
eltsk2g 10438 Properties of a Tarski cla...
tskpwss 10439 First axiom of a Tarski cl...
tskpw 10440 Second axiom of a Tarski c...
tsken 10441 Third axiom of a Tarski cl...
0tsk 10442 The empty set is a (transi...
tsksdom 10443 An element of a Tarski cla...
tskssel 10444 A part of a Tarski class s...
tskss 10445 The subsets of an element ...
tskin 10446 The intersection of two el...
tsksn 10447 A singleton of an element ...
tsktrss 10448 A transitive element of a ...
tsksuc 10449 If an element of a Tarski ...
tsk0 10450 A nonempty Tarski class co...
tsk1 10451 One is an element of a non...
tsk2 10452 Two is an element of a non...
2domtsk 10453 If a Tarski class is not e...
tskr1om 10454 A nonempty Tarski class is...
tskr1om2 10455 A nonempty Tarski class co...
tskinf 10456 A nonempty Tarski class is...
tskpr 10457 If ` A ` and ` B ` are mem...
tskop 10458 If ` A ` and ` B ` are mem...
tskxpss 10459 A Cartesian product of two...
tskwe2 10460 A Tarski class is well-ord...
inttsk 10461 The intersection of a coll...
inar1 10462 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10463 Alternate proof of ~ r1om ...
rankcf 10464 Any set must be at least a...
inatsk 10465 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10466 The set of hereditarily fi...
tskord 10467 A Tarski class contains al...
tskcard 10468 An even more direct relati...
r1tskina 10469 There is a direct relation...
tskuni 10470 The union of an element of...
tskwun 10471 A nonempty transitive Tars...
tskint 10472 The intersection of an ele...
tskun 10473 The union of two elements ...
tskxp 10474 The Cartesian product of t...
tskmap 10475 Set exponentiation is an e...
tskurn 10476 A transitive Tarski class ...
elgrug 10479 Properties of a Grothendie...
grutr 10480 A Grothendieck universe is...
gruelss 10481 A Grothendieck universe is...
grupw 10482 A Grothendieck universe co...
gruss 10483 Any subset of an element o...
grupr 10484 A Grothendieck universe co...
gruurn 10485 A Grothendieck universe co...
gruiun 10486 If ` B ( x ) ` is a family...
gruuni 10487 A Grothendieck universe co...
grurn 10488 A Grothendieck universe co...
gruima 10489 A Grothendieck universe co...
gruel 10490 Any element of an element ...
grusn 10491 A Grothendieck universe co...
gruop 10492 A Grothendieck universe co...
gruun 10493 A Grothendieck universe co...
gruxp 10494 A Grothendieck universe co...
grumap 10495 A Grothendieck universe co...
gruixp 10496 A Grothendieck universe co...
gruiin 10497 A Grothendieck universe co...
gruf 10498 A Grothendieck universe co...
gruen 10499 A Grothendieck universe co...
gruwun 10500 A nonempty Grothendieck un...
intgru 10501 The intersection of a fami...
ingru 10502 The intersection of a univ...
wfgru 10503 The wellfounded part of a ...
grudomon 10504 Each ordinal that is compa...
gruina 10505 If a Grothendieck universe...
grur1a 10506 A characterization of Grot...
grur1 10507 A characterization of Grot...
grutsk1 10508 Grothendieck universes are...
grutsk 10509 Grothendieck universes are...
axgroth5 10511 The Tarski-Grothendieck ax...
axgroth2 10512 Alternate version of the T...
grothpw 10513 Derive the Axiom of Power ...
grothpwex 10514 Derive the Axiom of Power ...
axgroth6 10515 The Tarski-Grothendieck ax...
grothomex 10516 The Tarski-Grothendieck Ax...
grothac 10517 The Tarski-Grothendieck Ax...
axgroth3 10518 Alternate version of the T...
axgroth4 10519 Alternate version of the T...
grothprimlem 10520 Lemma for ~ grothprim . E...
grothprim 10521 The Tarski-Grothendieck Ax...
grothtsk 10522 The Tarski-Grothendieck Ax...
inaprc 10523 An equivalent to the Tarsk...
tskmval 10526 Value of our tarski map. ...
tskmid 10527 The set ` A ` is an elemen...
tskmcl 10528 A Tarski class that contai...
sstskm 10529 Being a part of ` ( tarski...
eltskm 10530 Belonging to ` ( tarskiMap...
elni 10563 Membership in the class of...
elni2 10564 Membership in the class of...
pinn 10565 A positive integer is a na...
pion 10566 A positive integer is an o...
piord 10567 A positive integer is ordi...
niex 10568 The class of positive inte...
0npi 10569 The empty set is not a pos...
1pi 10570 Ordinal 'one' is a positiv...
addpiord 10571 Positive integer addition ...
mulpiord 10572 Positive integer multiplic...
mulidpi 10573 1 is an identity element f...
ltpiord 10574 Positive integer 'less tha...
ltsopi 10575 Positive integer 'less tha...
ltrelpi 10576 Positive integer 'less tha...
dmaddpi 10577 Domain of addition on posi...
dmmulpi 10578 Domain of multiplication o...
addclpi 10579 Closure of addition of pos...
mulclpi 10580 Closure of multiplication ...
addcompi 10581 Addition of positive integ...
addasspi 10582 Addition of positive integ...
mulcompi 10583 Multiplication of positive...
mulasspi 10584 Multiplication of positive...
distrpi 10585 Multiplication of positive...
addcanpi 10586 Addition cancellation law ...
mulcanpi 10587 Multiplication cancellatio...
addnidpi 10588 There is no identity eleme...
ltexpi 10589 Ordering on positive integ...
ltapi 10590 Ordering property of addit...
ltmpi 10591 Ordering property of multi...
1lt2pi 10592 One is less than two (one ...
nlt1pi 10593 No positive integer is les...
indpi 10594 Principle of Finite Induct...
enqbreq 10606 Equivalence relation for p...
enqbreq2 10607 Equivalence relation for p...
enqer 10608 The equivalence relation f...
enqex 10609 The equivalence relation f...
nqex 10610 The class of positive frac...
0nnq 10611 The empty set is not a pos...
elpqn 10612 Each positive fraction is ...
ltrelnq 10613 Positive fraction 'less th...
pinq 10614 The representatives of pos...
1nq 10615 The positive fraction 'one...
nqereu 10616 There is a unique element ...
nqerf 10617 Corollary of ~ nqereu : th...
nqercl 10618 Corollary of ~ nqereu : cl...
nqerrel 10619 Any member of ` ( N. X. N....
nqerid 10620 Corollary of ~ nqereu : th...
enqeq 10621 Corollary of ~ nqereu : if...
nqereq 10622 The function ` /Q ` acts a...
addpipq2 10623 Addition of positive fract...
addpipq 10624 Addition of positive fract...
addpqnq 10625 Addition of positive fract...
mulpipq2 10626 Multiplication of positive...
mulpipq 10627 Multiplication of positive...
mulpqnq 10628 Multiplication of positive...
ordpipq 10629 Ordering of positive fract...
ordpinq 10630 Ordering of positive fract...
addpqf 10631 Closure of addition on pos...
addclnq 10632 Closure of addition on pos...
mulpqf 10633 Closure of multiplication ...
mulclnq 10634 Closure of multiplication ...
addnqf 10635 Domain of addition on posi...
mulnqf 10636 Domain of multiplication o...
addcompq 10637 Addition of positive fract...
addcomnq 10638 Addition of positive fract...
mulcompq 10639 Multiplication of positive...
mulcomnq 10640 Multiplication of positive...
adderpqlem 10641 Lemma for ~ adderpq . (Co...
mulerpqlem 10642 Lemma for ~ mulerpq . (Co...
adderpq 10643 Addition is compatible wit...
mulerpq 10644 Multiplication is compatib...
addassnq 10645 Addition of positive fract...
mulassnq 10646 Multiplication of positive...
mulcanenq 10647 Lemma for distributive law...
distrnq 10648 Multiplication of positive...
1nqenq 10649 The equivalence class of r...
mulidnq 10650 Multiplication identity el...
recmulnq 10651 Relationship between recip...
recidnq 10652 A positive fraction times ...
recclnq 10653 Closure law for positive f...
recrecnq 10654 Reciprocal of reciprocal o...
dmrecnq 10655 Domain of reciprocal on po...
ltsonq 10656 'Less than' is a strict or...
lterpq 10657 Compatibility of ordering ...
ltanq 10658 Ordering property of addit...
ltmnq 10659 Ordering property of multi...
1lt2nq 10660 One is less than two (one ...
ltaddnq 10661 The sum of two fractions i...
ltexnq 10662 Ordering on positive fract...
halfnq 10663 One-half of any positive f...
nsmallnq 10664 The is no smallest positiv...
ltbtwnnq 10665 There exists a number betw...
ltrnq 10666 Ordering property of recip...
archnq 10667 For any fraction, there is...
npex 10673 The class of positive real...
elnp 10674 Membership in positive rea...
elnpi 10675 Membership in positive rea...
prn0 10676 A positive real is not emp...
prpssnq 10677 A positive real is a subse...
elprnq 10678 A positive real is a set o...
0npr 10679 The empty set is not a pos...
prcdnq 10680 A positive real is closed ...
prub 10681 A positive fraction not in...
prnmax 10682 A positive real has no lar...
npomex 10683 A simplifying observation,...
prnmadd 10684 A positive real has no lar...
ltrelpr 10685 Positive real 'less than' ...
genpv 10686 Value of general operation...
genpelv 10687 Membership in value of gen...
genpprecl 10688 Pre-closure law for genera...
genpdm 10689 Domain of general operatio...
genpn0 10690 The result of an operation...
genpss 10691 The result of an operation...
genpnnp 10692 The result of an operation...
genpcd 10693 Downward closure of an ope...
genpnmax 10694 An operation on positive r...
genpcl 10695 Closure of an operation on...
genpass 10696 Associativity of an operat...
plpv 10697 Value of addition on posit...
mpv 10698 Value of multiplication on...
dmplp 10699 Domain of addition on posi...
dmmp 10700 Domain of multiplication o...
nqpr 10701 The canonical embedding of...
1pr 10702 The positive real number '...
addclprlem1 10703 Lemma to prove downward cl...
addclprlem2 10704 Lemma to prove downward cl...
addclpr 10705 Closure of addition on pos...
mulclprlem 10706 Lemma to prove downward cl...
mulclpr 10707 Closure of multiplication ...
addcompr 10708 Addition of positive reals...
addasspr 10709 Addition of positive reals...
mulcompr 10710 Multiplication of positive...
mulasspr 10711 Multiplication of positive...
distrlem1pr 10712 Lemma for distributive law...
distrlem4pr 10713 Lemma for distributive law...
distrlem5pr 10714 Lemma for distributive law...
distrpr 10715 Multiplication of positive...
1idpr 10716 1 is an identity element f...
ltprord 10717 Positive real 'less than' ...
psslinpr 10718 Proper subset is a linear ...
ltsopr 10719 Positive real 'less than' ...
prlem934 10720 Lemma 9-3.4 of [Gleason] p...
ltaddpr 10721 The sum of two positive re...
ltaddpr2 10722 The sum of two positive re...
ltexprlem1 10723 Lemma for Proposition 9-3....
ltexprlem2 10724 Lemma for Proposition 9-3....
ltexprlem3 10725 Lemma for Proposition 9-3....
ltexprlem4 10726 Lemma for Proposition 9-3....
ltexprlem5 10727 Lemma for Proposition 9-3....
ltexprlem6 10728 Lemma for Proposition 9-3....
ltexprlem7 10729 Lemma for Proposition 9-3....
ltexpri 10730 Proposition 9-3.5(iv) of [...
ltaprlem 10731 Lemma for Proposition 9-3....
ltapr 10732 Ordering property of addit...
addcanpr 10733 Addition cancellation law ...
prlem936 10734 Lemma 9-3.6 of [Gleason] p...
reclem2pr 10735 Lemma for Proposition 9-3....
reclem3pr 10736 Lemma for Proposition 9-3....
reclem4pr 10737 Lemma for Proposition 9-3....
recexpr 10738 The reciprocal of a positi...
suplem1pr 10739 The union of a nonempty, b...
suplem2pr 10740 The union of a set of posi...
supexpr 10741 The union of a nonempty, b...
enrer 10750 The equivalence relation f...
nrex1 10751 The class of signed reals ...
enrbreq 10752 Equivalence relation for s...
enreceq 10753 Equivalence class equality...
enrex 10754 The equivalence relation f...
ltrelsr 10755 Signed real 'less than' is...
addcmpblnr 10756 Lemma showing compatibilit...
mulcmpblnrlem 10757 Lemma used in lemma showin...
mulcmpblnr 10758 Lemma showing compatibilit...
prsrlem1 10759 Decomposing signed reals i...
addsrmo 10760 There is at most one resul...
mulsrmo 10761 There is at most one resul...
addsrpr 10762 Addition of signed reals i...
mulsrpr 10763 Multiplication of signed r...
ltsrpr 10764 Ordering of signed reals i...
gt0srpr 10765 Greater than zero in terms...
0nsr 10766 The empty set is not a sig...
0r 10767 The constant ` 0R ` is a s...
1sr 10768 The constant ` 1R ` is a s...
m1r 10769 The constant ` -1R ` is a ...
addclsr 10770 Closure of addition on sig...
mulclsr 10771 Closure of multiplication ...
dmaddsr 10772 Domain of addition on sign...
dmmulsr 10773 Domain of multiplication o...
addcomsr 10774 Addition of signed reals i...
addasssr 10775 Addition of signed reals i...
mulcomsr 10776 Multiplication of signed r...
mulasssr 10777 Multiplication of signed r...
distrsr 10778 Multiplication of signed r...
m1p1sr 10779 Minus one plus one is zero...
m1m1sr 10780 Minus one times minus one ...
ltsosr 10781 Signed real 'less than' is...
0lt1sr 10782 0 is less than 1 for signe...
1ne0sr 10783 1 and 0 are distinct for s...
0idsr 10784 The signed real number 0 i...
1idsr 10785 1 is an identity element f...
00sr 10786 A signed real times 0 is 0...
ltasr 10787 Ordering property of addit...
pn0sr 10788 A signed real plus its neg...
negexsr 10789 Existence of negative sign...
recexsrlem 10790 The reciprocal of a positi...
addgt0sr 10791 The sum of two positive si...
mulgt0sr 10792 The product of two positiv...
sqgt0sr 10793 The square of a nonzero si...
recexsr 10794 The reciprocal of a nonzer...
mappsrpr 10795 Mapping from positive sign...
ltpsrpr 10796 Mapping of order from posi...
map2psrpr 10797 Equivalence for positive s...
supsrlem 10798 Lemma for supremum theorem...
supsr 10799 A nonempty, bounded set of...
opelcn 10816 Ordered pair membership in...
opelreal 10817 Ordered pair membership in...
elreal 10818 Membership in class of rea...
elreal2 10819 Ordered pair membership in...
0ncn 10820 The empty set is not a com...
ltrelre 10821 'Less than' is a relation ...
addcnsr 10822 Addition of complex number...
mulcnsr 10823 Multiplication of complex ...
eqresr 10824 Equality of real numbers i...
addresr 10825 Addition of real numbers i...
mulresr 10826 Multiplication of real num...
ltresr 10827 Ordering of real subset of...
ltresr2 10828 Ordering of real subset of...
dfcnqs 10829 Technical trick to permit ...
addcnsrec 10830 Technical trick to permit ...
mulcnsrec 10831 Technical trick to permit ...
axaddf 10832 Addition is an operation o...
axmulf 10833 Multiplication is an opera...
axcnex 10834 The complex numbers form a...
axresscn 10835 The real numbers are a sub...
ax1cn 10836 1 is a complex number. Ax...
axicn 10837 ` _i ` is a complex number...
axaddcl 10838 Closure law for addition o...
axaddrcl 10839 Closure law for addition i...
axmulcl 10840 Closure law for multiplica...
axmulrcl 10841 Closure law for multiplica...
axmulcom 10842 Multiplication of complex ...
axaddass 10843 Addition of complex number...
axmulass 10844 Multiplication of complex ...
axdistr 10845 Distributive law for compl...
axi2m1 10846 i-squared equals -1 (expre...
ax1ne0 10847 1 and 0 are distinct. Axi...
ax1rid 10848 ` 1 ` is an identity eleme...
axrnegex 10849 Existence of negative of r...
axrrecex 10850 Existence of reciprocal of...
axcnre 10851 A complex number can be ex...
axpre-lttri 10852 Ordering on reals satisfie...
axpre-lttrn 10853 Ordering on reals is trans...
axpre-ltadd 10854 Ordering property of addit...
axpre-mulgt0 10855 The product of two positiv...
axpre-sup 10856 A nonempty, bounded-above ...
wuncn 10857 A weak universe containing...
cnex 10883 Alias for ~ ax-cnex . See...
addcl 10884 Alias for ~ ax-addcl , for...
readdcl 10885 Alias for ~ ax-addrcl , fo...
mulcl 10886 Alias for ~ ax-mulcl , for...
remulcl 10887 Alias for ~ ax-mulrcl , fo...
mulcom 10888 Alias for ~ ax-mulcom , fo...
addass 10889 Alias for ~ ax-addass , fo...
mulass 10890 Alias for ~ ax-mulass , fo...
adddi 10891 Alias for ~ ax-distr , for...
recn 10892 A real number is a complex...
reex 10893 The real numbers form a se...
reelprrecn 10894 Reals are a subset of the ...
cnelprrecn 10895 Complex numbers are a subs...
elimne0 10896 Hypothesis for weak deduct...
adddir 10897 Distributive law for compl...
0cn 10898 Zero is a complex number. ...
0cnd 10899 Zero is a complex number, ...
c0ex 10900 Zero is a set. (Contribut...
1cnd 10901 One is a complex number, d...
1ex 10902 One is a set. (Contribute...
cnre 10903 Alias for ~ ax-cnre , for ...
mulid1 10904 The number 1 is an identit...
mulid2 10905 Identity law for multiplic...
1re 10906 The number 1 is real. Thi...
1red 10907 The number 1 is real, dedu...
0re 10908 The number 0 is real. Rem...
0red 10909 The number 0 is real, dedu...
mulid1i 10910 Identity law for multiplic...
mulid2i 10911 Identity law for multiplic...
addcli 10912 Closure law for addition. ...
mulcli 10913 Closure law for multiplica...
mulcomi 10914 Commutative law for multip...
mulcomli 10915 Commutative law for multip...
addassi 10916 Associative law for additi...
mulassi 10917 Associative law for multip...
adddii 10918 Distributive law (left-dis...
adddiri 10919 Distributive law (right-di...
recni 10920 A real number is a complex...
readdcli 10921 Closure law for addition o...
remulcli 10922 Closure law for multiplica...
mulid1d 10923 Identity law for multiplic...
mulid2d 10924 Identity law for multiplic...
addcld 10925 Closure law for addition. ...
mulcld 10926 Closure law for multiplica...
mulcomd 10927 Commutative law for multip...
addassd 10928 Associative law for additi...
mulassd 10929 Associative law for multip...
adddid 10930 Distributive law (left-dis...
adddird 10931 Distributive law (right-di...
adddirp1d 10932 Distributive law, plus 1 v...
joinlmuladdmuld 10933 Join AB+CB into (A+C) on L...
recnd 10934 Deduction from real number...
readdcld 10935 Closure law for addition o...
remulcld 10936 Closure law for multiplica...
pnfnre 10947 Plus infinity is not a rea...
pnfnre2 10948 Plus infinity is not a rea...
mnfnre 10949 Minus infinity is not a re...
ressxr 10950 The standard reals are a s...
rexpssxrxp 10951 The Cartesian product of s...
rexr 10952 A standard real is an exte...
0xr 10953 Zero is an extended real. ...
renepnf 10954 No (finite) real equals pl...
renemnf 10955 No real equals minus infin...
rexrd 10956 A standard real is an exte...
renepnfd 10957 No (finite) real equals pl...
renemnfd 10958 No real equals minus infin...
pnfex 10959 Plus infinity exists. (Co...
pnfxr 10960 Plus infinity belongs to t...
pnfnemnf 10961 Plus and minus infinity ar...
mnfnepnf 10962 Minus and plus infinity ar...
mnfxr 10963 Minus infinity belongs to ...
rexri 10964 A standard real is an exte...
1xr 10965 ` 1 ` is an extended real ...
renfdisj 10966 The reals and the infiniti...
ltrelxr 10967 "Less than" is a relation ...
ltrel 10968 "Less than" is a relation....
lerelxr 10969 "Less than or equal to" is...
lerel 10970 "Less than or equal to" is...
xrlenlt 10971 "Less than or equal to" ex...
xrlenltd 10972 "Less than or equal to" ex...
xrltnle 10973 "Less than" expressed in t...
xrnltled 10974 "Not less than" implies "l...
ssxr 10975 The three (non-exclusive) ...
ltxrlt 10976 The standard less-than ` <...
axlttri 10977 Ordering on reals satisfie...
axlttrn 10978 Ordering on reals is trans...
axltadd 10979 Ordering property of addit...
axmulgt0 10980 The product of two positiv...
axsup 10981 A nonempty, bounded-above ...
lttr 10982 Alias for ~ axlttrn , for ...
mulgt0 10983 The product of two positiv...
lenlt 10984 'Less than or equal to' ex...
ltnle 10985 'Less than' expressed in t...
ltso 10986 'Less than' is a strict or...
gtso 10987 'Greater than' is a strict...
lttri2 10988 Consequence of trichotomy....
lttri3 10989 Trichotomy law for 'less t...
lttri4 10990 Trichotomy law for 'less t...
letri3 10991 Trichotomy law. (Contribu...
leloe 10992 'Less than or equal to' ex...
eqlelt 10993 Equality in terms of 'less...
ltle 10994 'Less than' implies 'less ...
leltne 10995 'Less than or equal to' im...
lelttr 10996 Transitive law. (Contribu...
ltletr 10997 Transitive law. (Contribu...
ltleletr 10998 Transitive law, weaker for...
letr 10999 Transitive law. (Contribu...
ltnr 11000 'Less than' is irreflexive...
leid 11001 'Less than or equal to' is...
ltne 11002 'Less than' implies not eq...
ltnsym 11003 'Less than' is not symmetr...
ltnsym2 11004 'Less than' is antisymmetr...
letric 11005 Trichotomy law. (Contribu...
ltlen 11006 'Less than' expressed in t...
eqle 11007 Equality implies 'less tha...
eqled 11008 Equality implies 'less tha...
ltadd2 11009 Addition to both sides of ...
ne0gt0 11010 A nonzero nonnegative numb...
lecasei 11011 Ordering elimination by ca...
lelttric 11012 Trichotomy law. (Contribu...
ltlecasei 11013 Ordering elimination by ca...
ltnri 11014 'Less than' is irreflexive...
eqlei 11015 Equality implies 'less tha...
eqlei2 11016 Equality implies 'less tha...
gtneii 11017 'Less than' implies not eq...
ltneii 11018 'Greater than' implies not...
lttri2i 11019 Consequence of trichotomy....
lttri3i 11020 Consequence of trichotomy....
letri3i 11021 Consequence of trichotomy....
leloei 11022 'Less than or equal to' in...
ltleni 11023 'Less than' expressed in t...
ltnsymi 11024 'Less than' is not symmetr...
lenlti 11025 'Less than or equal to' in...
ltnlei 11026 'Less than' in terms of 'l...
ltlei 11027 'Less than' implies 'less ...
ltleii 11028 'Less than' implies 'less ...
ltnei 11029 'Less than' implies not eq...
letrii 11030 Trichotomy law for 'less t...
lttri 11031 'Less than' is transitive....
lelttri 11032 'Less than or equal to', '...
ltletri 11033 'Less than', 'less than or...
letri 11034 'Less than or equal to' is...
le2tri3i 11035 Extended trichotomy law fo...
ltadd2i 11036 Addition to both sides of ...
mulgt0i 11037 The product of two positiv...
mulgt0ii 11038 The product of two positiv...
ltnrd 11039 'Less than' is irreflexive...
gtned 11040 'Less than' implies not eq...
ltned 11041 'Greater than' implies not...
ne0gt0d 11042 A nonzero nonnegative numb...
lttrid 11043 Ordering on reals satisfie...
lttri2d 11044 Consequence of trichotomy....
lttri3d 11045 Consequence of trichotomy....
lttri4d 11046 Trichotomy law for 'less t...
letri3d 11047 Consequence of trichotomy....
leloed 11048 'Less than or equal to' in...
eqleltd 11049 Equality in terms of 'less...
ltlend 11050 'Less than' expressed in t...
lenltd 11051 'Less than or equal to' in...
ltnled 11052 'Less than' in terms of 'l...
ltled 11053 'Less than' implies 'less ...
ltnsymd 11054 'Less than' implies 'less ...
nltled 11055 'Not less than ' implies '...
lensymd 11056 'Less than or equal to' im...
letrid 11057 Trichotomy law for 'less t...
leltned 11058 'Less than or equal to' im...
leneltd 11059 'Less than or equal to' an...
mulgt0d 11060 The product of two positiv...
ltadd2d 11061 Addition to both sides of ...
letrd 11062 Transitive law deduction f...
lelttrd 11063 Transitive law deduction f...
ltadd2dd 11064 Addition to both sides of ...
ltletrd 11065 Transitive law deduction f...
lttrd 11066 Transitive law deduction f...
lelttrdi 11067 If a number is less than a...
dedekind 11068 The Dedekind cut theorem. ...
dedekindle 11069 The Dedekind cut theorem, ...
mul12 11070 Commutative/associative la...
mul32 11071 Commutative/associative la...
mul31 11072 Commutative/associative la...
mul4 11073 Rearrangement of 4 factors...
mul4r 11074 Rearrangement of 4 factors...
muladd11 11075 A simple product of sums e...
1p1times 11076 Two times a number. (Cont...
peano2cn 11077 A theorem for complex numb...
peano2re 11078 A theorem for reals analog...
readdcan 11079 Cancellation law for addit...
00id 11080 ` 0 ` is its own additive ...
mul02lem1 11081 Lemma for ~ mul02 . If an...
mul02lem2 11082 Lemma for ~ mul02 . Zero ...
mul02 11083 Multiplication by ` 0 ` . ...
mul01 11084 Multiplication by ` 0 ` . ...
addid1 11085 ` 0 ` is an additive ident...
cnegex 11086 Existence of the negative ...
cnegex2 11087 Existence of a left invers...
addid2 11088 ` 0 ` is a left identity f...
addcan 11089 Cancellation law for addit...
addcan2 11090 Cancellation law for addit...
addcom 11091 Addition commutes. This u...
addid1i 11092 ` 0 ` is an additive ident...
addid2i 11093 ` 0 ` is a left identity f...
mul02i 11094 Multiplication by 0. Theo...
mul01i 11095 Multiplication by ` 0 ` . ...
addcomi 11096 Addition commutes. Based ...
addcomli 11097 Addition commutes. (Contr...
addcani 11098 Cancellation law for addit...
addcan2i 11099 Cancellation law for addit...
mul12i 11100 Commutative/associative la...
mul32i 11101 Commutative/associative la...
mul4i 11102 Rearrangement of 4 factors...
mul02d 11103 Multiplication by 0. Theo...
mul01d 11104 Multiplication by ` 0 ` . ...
addid1d 11105 ` 0 ` is an additive ident...
addid2d 11106 ` 0 ` is a left identity f...
addcomd 11107 Addition commutes. Based ...
addcand 11108 Cancellation law for addit...
addcan2d 11109 Cancellation law for addit...
addcanad 11110 Cancelling a term on the l...
addcan2ad 11111 Cancelling a term on the r...
addneintrd 11112 Introducing a term on the ...
addneintr2d 11113 Introducing a term on the ...
mul12d 11114 Commutative/associative la...
mul32d 11115 Commutative/associative la...
mul31d 11116 Commutative/associative la...
mul4d 11117 Rearrangement of 4 factors...
muladd11r 11118 A simple product of sums e...
comraddd 11119 Commute RHS addition, in d...
ltaddneg 11120 Adding a negative number t...
ltaddnegr 11121 Adding a negative number t...
add12 11122 Commutative/associative la...
add32 11123 Commutative/associative la...
add32r 11124 Commutative/associative la...
add4 11125 Rearrangement of 4 terms i...
add42 11126 Rearrangement of 4 terms i...
add12i 11127 Commutative/associative la...
add32i 11128 Commutative/associative la...
add4i 11129 Rearrangement of 4 terms i...
add42i 11130 Rearrangement of 4 terms i...
add12d 11131 Commutative/associative la...
add32d 11132 Commutative/associative la...
add4d 11133 Rearrangement of 4 terms i...
add42d 11134 Rearrangement of 4 terms i...
0cnALT 11139 Alternate proof of ~ 0cn w...
0cnALT2 11140 Alternate proof of ~ 0cnAL...
negeu 11141 Existential uniqueness of ...
subval 11142 Value of subtraction, whic...
negeq 11143 Equality theorem for negat...
negeqi 11144 Equality inference for neg...
negeqd 11145 Equality deduction for neg...
nfnegd 11146 Deduction version of ~ nfn...
nfneg 11147 Bound-variable hypothesis ...
csbnegg 11148 Move class substitution in...
negex 11149 A negative is a set. (Con...
subcl 11150 Closure law for subtractio...
negcl 11151 Closure law for negative. ...
negicn 11152 ` -u _i ` is a complex num...
subf 11153 Subtraction is an operatio...
subadd 11154 Relationship between subtr...
subadd2 11155 Relationship between subtr...
subsub23 11156 Swap subtrahend and result...
pncan 11157 Cancellation law for subtr...
pncan2 11158 Cancellation law for subtr...
pncan3 11159 Subtraction and addition o...
npcan 11160 Cancellation law for subtr...
addsubass 11161 Associative-type law for a...
addsub 11162 Law for addition and subtr...
subadd23 11163 Commutative/associative la...
addsub12 11164 Commutative/associative la...
2addsub 11165 Law for subtraction and ad...
addsubeq4 11166 Relation between sums and ...
pncan3oi 11167 Subtraction and addition o...
mvrraddi 11168 Move the right term in a s...
mvlladdi 11169 Move the left term in a su...
subid 11170 Subtraction of a number fr...
subid1 11171 Identity law for subtracti...
npncan 11172 Cancellation law for subtr...
nppcan 11173 Cancellation law for subtr...
nnpcan 11174 Cancellation law for subtr...
nppcan3 11175 Cancellation law for subtr...
subcan2 11176 Cancellation law for subtr...
subeq0 11177 If the difference between ...
npncan2 11178 Cancellation law for subtr...
subsub2 11179 Law for double subtraction...
nncan 11180 Cancellation law for subtr...
subsub 11181 Law for double subtraction...
nppcan2 11182 Cancellation law for subtr...
subsub3 11183 Law for double subtraction...
subsub4 11184 Law for double subtraction...
sub32 11185 Swap the second and third ...
nnncan 11186 Cancellation law for subtr...
nnncan1 11187 Cancellation law for subtr...
nnncan2 11188 Cancellation law for subtr...
npncan3 11189 Cancellation law for subtr...
pnpcan 11190 Cancellation law for mixed...
pnpcan2 11191 Cancellation law for mixed...
pnncan 11192 Cancellation law for mixed...
ppncan 11193 Cancellation law for mixed...
addsub4 11194 Rearrangement of 4 terms i...
subadd4 11195 Rearrangement of 4 terms i...
sub4 11196 Rearrangement of 4 terms i...
neg0 11197 Minus 0 equals 0. (Contri...
negid 11198 Addition of a number and i...
negsub 11199 Relationship between subtr...
subneg 11200 Relationship between subtr...
negneg 11201 A number is equal to the n...
neg11 11202 Negative is one-to-one. (...
negcon1 11203 Negative contraposition la...
negcon2 11204 Negative contraposition la...
negeq0 11205 A number is zero iff its n...
subcan 11206 Cancellation law for subtr...
negsubdi 11207 Distribution of negative o...
negdi 11208 Distribution of negative o...
negdi2 11209 Distribution of negative o...
negsubdi2 11210 Distribution of negative o...
neg2sub 11211 Relationship between subtr...
renegcli 11212 Closure law for negative o...
resubcli 11213 Closure law for subtractio...
renegcl 11214 Closure law for negative o...
resubcl 11215 Closure law for subtractio...
negreb 11216 The negative of a real is ...
peano2cnm 11217 "Reverse" second Peano pos...
peano2rem 11218 "Reverse" second Peano pos...
negcli 11219 Closure law for negative. ...
negidi 11220 Addition of a number and i...
negnegi 11221 A number is equal to the n...
subidi 11222 Subtraction of a number fr...
subid1i 11223 Identity law for subtracti...
negne0bi 11224 A number is nonzero iff it...
negrebi 11225 The negative of a real is ...
negne0i 11226 The negative of a nonzero ...
subcli 11227 Closure law for subtractio...
pncan3i 11228 Subtraction and addition o...
negsubi 11229 Relationship between subtr...
subnegi 11230 Relationship between subtr...
subeq0i 11231 If the difference between ...
neg11i 11232 Negative is one-to-one. (...
negcon1i 11233 Negative contraposition la...
negcon2i 11234 Negative contraposition la...
negdii 11235 Distribution of negative o...
negsubdii 11236 Distribution of negative o...
negsubdi2i 11237 Distribution of negative o...
subaddi 11238 Relationship between subtr...
subadd2i 11239 Relationship between subtr...
subaddrii 11240 Relationship between subtr...
subsub23i 11241 Swap subtrahend and result...
addsubassi 11242 Associative-type law for s...
addsubi 11243 Law for subtraction and ad...
subcani 11244 Cancellation law for subtr...
subcan2i 11245 Cancellation law for subtr...
pnncani 11246 Cancellation law for mixed...
addsub4i 11247 Rearrangement of 4 terms i...
0reALT 11248 Alternate proof of ~ 0re ....
negcld 11249 Closure law for negative. ...
subidd 11250 Subtraction of a number fr...
subid1d 11251 Identity law for subtracti...
negidd 11252 Addition of a number and i...
negnegd 11253 A number is equal to the n...
negeq0d 11254 A number is zero iff its n...
negne0bd 11255 A number is nonzero iff it...
negcon1d 11256 Contraposition law for una...
negcon1ad 11257 Contraposition law for una...
neg11ad 11258 The negatives of two compl...
negned 11259 If two complex numbers are...
negne0d 11260 The negative of a nonzero ...
negrebd 11261 The negative of a real is ...
subcld 11262 Closure law for subtractio...
pncand 11263 Cancellation law for subtr...
pncan2d 11264 Cancellation law for subtr...
pncan3d 11265 Subtraction and addition o...
npcand 11266 Cancellation law for subtr...
nncand 11267 Cancellation law for subtr...
negsubd 11268 Relationship between subtr...
subnegd 11269 Relationship between subtr...
subeq0d 11270 If the difference between ...
subne0d 11271 Two unequal numbers have n...
subeq0ad 11272 The difference of two comp...
subne0ad 11273 If the difference of two c...
neg11d 11274 If the difference between ...
negdid 11275 Distribution of negative o...
negdi2d 11276 Distribution of negative o...
negsubdid 11277 Distribution of negative o...
negsubdi2d 11278 Distribution of negative o...
neg2subd 11279 Relationship between subtr...
subaddd 11280 Relationship between subtr...
subadd2d 11281 Relationship between subtr...
addsubassd 11282 Associative-type law for s...
addsubd 11283 Law for subtraction and ad...
subadd23d 11284 Commutative/associative la...
addsub12d 11285 Commutative/associative la...
npncand 11286 Cancellation law for subtr...
nppcand 11287 Cancellation law for subtr...
nppcan2d 11288 Cancellation law for subtr...
nppcan3d 11289 Cancellation law for subtr...
subsubd 11290 Law for double subtraction...
subsub2d 11291 Law for double subtraction...
subsub3d 11292 Law for double subtraction...
subsub4d 11293 Law for double subtraction...
sub32d 11294 Swap the second and third ...
nnncand 11295 Cancellation law for subtr...
nnncan1d 11296 Cancellation law for subtr...
nnncan2d 11297 Cancellation law for subtr...
npncan3d 11298 Cancellation law for subtr...
pnpcand 11299 Cancellation law for mixed...
pnpcan2d 11300 Cancellation law for mixed...
pnncand 11301 Cancellation law for mixed...
ppncand 11302 Cancellation law for mixed...
subcand 11303 Cancellation law for subtr...
subcan2d 11304 Cancellation law for subtr...
subcanad 11305 Cancellation law for subtr...
subneintrd 11306 Introducing subtraction on...
subcan2ad 11307 Cancellation law for subtr...
subneintr2d 11308 Introducing subtraction on...
addsub4d 11309 Rearrangement of 4 terms i...
subadd4d 11310 Rearrangement of 4 terms i...
sub4d 11311 Rearrangement of 4 terms i...
2addsubd 11312 Law for subtraction and ad...
addsubeq4d 11313 Relation between sums and ...
subeqxfrd 11314 Transfer two terms of a su...
mvlraddd 11315 Move the right term in a s...
mvlladdd 11316 Move the left term in a su...
mvrraddd 11317 Move the right term in a s...
mvrladdd 11318 Move the left term in a su...
assraddsubd 11319 Associate RHS addition-sub...
subaddeqd 11320 Transfer two terms of a su...
addlsub 11321 Left-subtraction: Subtrac...
addrsub 11322 Right-subtraction: Subtra...
subexsub 11323 A subtraction law: Exchan...
addid0 11324 If adding a number to a an...
addn0nid 11325 Adding a nonzero number to...
pnpncand 11326 Addition/subtraction cance...
subeqrev 11327 Reverse the order of subtr...
addeq0 11328 Two complex numbers add up...
pncan1 11329 Cancellation law for addit...
npcan1 11330 Cancellation law for subtr...
subeq0bd 11331 If two complex numbers are...
renegcld 11332 Closure law for negative o...
resubcld 11333 Closure law for subtractio...
negn0 11334 The image under negation o...
negf1o 11335 Negation is an isomorphism...
kcnktkm1cn 11336 k times k minus 1 is a com...
muladd 11337 Product of two sums. (Con...
subdi 11338 Distribution of multiplica...
subdir 11339 Distribution of multiplica...
ine0 11340 The imaginary unit ` _i ` ...
mulneg1 11341 Product with negative is n...
mulneg2 11342 The product with a negativ...
mulneg12 11343 Swap the negative sign in ...
mul2neg 11344 Product of two negatives. ...
submul2 11345 Convert a subtraction to a...
mulm1 11346 Product with minus one is ...
addneg1mul 11347 Addition with product with...
mulsub 11348 Product of two differences...
mulsub2 11349 Swap the order of subtract...
mulm1i 11350 Product with minus one is ...
mulneg1i 11351 Product with negative is n...
mulneg2i 11352 Product with negative is n...
mul2negi 11353 Product of two negatives. ...
subdii 11354 Distribution of multiplica...
subdiri 11355 Distribution of multiplica...
muladdi 11356 Product of two sums. (Con...
mulm1d 11357 Product with minus one is ...
mulneg1d 11358 Product with negative is n...
mulneg2d 11359 Product with negative is n...
mul2negd 11360 Product of two negatives. ...
subdid 11361 Distribution of multiplica...
subdird 11362 Distribution of multiplica...
muladdd 11363 Product of two sums. (Con...
mulsubd 11364 Product of two differences...
muls1d 11365 Multiplication by one minu...
mulsubfacd 11366 Multiplication followed by...
addmulsub 11367 The product of a sum and a...
subaddmulsub 11368 The difference with a prod...
mulsubaddmulsub 11369 A special difference of a ...
gt0ne0 11370 Positive implies nonzero. ...
lt0ne0 11371 A number which is less tha...
ltadd1 11372 Addition to both sides of ...
leadd1 11373 Addition to both sides of ...
leadd2 11374 Addition to both sides of ...
ltsubadd 11375 'Less than' relationship b...
ltsubadd2 11376 'Less than' relationship b...
lesubadd 11377 'Less than or equal to' re...
lesubadd2 11378 'Less than or equal to' re...
ltaddsub 11379 'Less than' relationship b...
ltaddsub2 11380 'Less than' relationship b...
leaddsub 11381 'Less than or equal to' re...
leaddsub2 11382 'Less than or equal to' re...
suble 11383 Swap subtrahends in an ine...
lesub 11384 Swap subtrahends in an ine...
ltsub23 11385 'Less than' relationship b...
ltsub13 11386 'Less than' relationship b...
le2add 11387 Adding both sides of two '...
ltleadd 11388 Adding both sides of two o...
leltadd 11389 Adding both sides of two o...
lt2add 11390 Adding both sides of two '...
addgt0 11391 The sum of 2 positive numb...
addgegt0 11392 The sum of nonnegative and...
addgtge0 11393 The sum of nonnegative and...
addge0 11394 The sum of 2 nonnegative n...
ltaddpos 11395 Adding a positive number t...
ltaddpos2 11396 Adding a positive number t...
ltsubpos 11397 Subtracting a positive num...
posdif 11398 Comparison of two numbers ...
lesub1 11399 Subtraction from both side...
lesub2 11400 Subtraction of both sides ...
ltsub1 11401 Subtraction from both side...
ltsub2 11402 Subtraction of both sides ...
lt2sub 11403 Subtracting both sides of ...
le2sub 11404 Subtracting both sides of ...
ltneg 11405 Negative of both sides of ...
ltnegcon1 11406 Contraposition of negative...
ltnegcon2 11407 Contraposition of negative...
leneg 11408 Negative of both sides of ...
lenegcon1 11409 Contraposition of negative...
lenegcon2 11410 Contraposition of negative...
lt0neg1 11411 Comparison of a number and...
lt0neg2 11412 Comparison of a number and...
le0neg1 11413 Comparison of a number and...
le0neg2 11414 Comparison of a number and...
addge01 11415 A number is less than or e...
addge02 11416 A number is less than or e...
add20 11417 Two nonnegative numbers ar...
subge0 11418 Nonnegative subtraction. ...
suble0 11419 Nonpositive subtraction. ...
leaddle0 11420 The sum of a real number a...
subge02 11421 Nonnegative subtraction. ...
lesub0 11422 Lemma to show a nonnegativ...
mulge0 11423 The product of two nonnega...
mullt0 11424 The product of two negativ...
msqgt0 11425 A nonzero square is positi...
msqge0 11426 A square is nonnegative. ...
0lt1 11427 0 is less than 1. Theorem...
0le1 11428 0 is less than or equal to...
relin01 11429 An interval law for less t...
ltordlem 11430 Lemma for ~ ltord1 . (Con...
ltord1 11431 Infer an ordering relation...
leord1 11432 Infer an ordering relation...
eqord1 11433 A strictly increasing real...
ltord2 11434 Infer an ordering relation...
leord2 11435 Infer an ordering relation...
eqord2 11436 A strictly decreasing real...
wloglei 11437 Form of ~ wlogle where bot...
wlogle 11438 If the predicate ` ch ( x ...
leidi 11439 'Less than or equal to' is...
gt0ne0i 11440 Positive means nonzero (us...
gt0ne0ii 11441 Positive implies nonzero. ...
msqgt0i 11442 A nonzero square is positi...
msqge0i 11443 A square is nonnegative. ...
addgt0i 11444 Addition of 2 positive num...
addge0i 11445 Addition of 2 nonnegative ...
addgegt0i 11446 Addition of nonnegative an...
addgt0ii 11447 Addition of 2 positive num...
add20i 11448 Two nonnegative numbers ar...
ltnegi 11449 Negative of both sides of ...
lenegi 11450 Negative of both sides of ...
ltnegcon2i 11451 Contraposition of negative...
mulge0i 11452 The product of two nonnega...
lesub0i 11453 Lemma to show a nonnegativ...
ltaddposi 11454 Adding a positive number t...
posdifi 11455 Comparison of two numbers ...
ltnegcon1i 11456 Contraposition of negative...
lenegcon1i 11457 Contraposition of negative...
subge0i 11458 Nonnegative subtraction. ...
ltadd1i 11459 Addition to both sides of ...
leadd1i 11460 Addition to both sides of ...
leadd2i 11461 Addition to both sides of ...
ltsubaddi 11462 'Less than' relationship b...
lesubaddi 11463 'Less than or equal to' re...
ltsubadd2i 11464 'Less than' relationship b...
lesubadd2i 11465 'Less than or equal to' re...
ltaddsubi 11466 'Less than' relationship b...
lt2addi 11467 Adding both side of two in...
le2addi 11468 Adding both side of two in...
gt0ne0d 11469 Positive implies nonzero. ...
lt0ne0d 11470 Something less than zero i...
leidd 11471 'Less than or equal to' is...
msqgt0d 11472 A nonzero square is positi...
msqge0d 11473 A square is nonnegative. ...
lt0neg1d 11474 Comparison of a number and...
lt0neg2d 11475 Comparison of a number and...
le0neg1d 11476 Comparison of a number and...
le0neg2d 11477 Comparison of a number and...
addgegt0d 11478 Addition of nonnegative an...
addgtge0d 11479 Addition of positive and n...
addgt0d 11480 Addition of 2 positive num...
addge0d 11481 Addition of 2 nonnegative ...
mulge0d 11482 The product of two nonnega...
ltnegd 11483 Negative of both sides of ...
lenegd 11484 Negative of both sides of ...
ltnegcon1d 11485 Contraposition of negative...
ltnegcon2d 11486 Contraposition of negative...
lenegcon1d 11487 Contraposition of negative...
lenegcon2d 11488 Contraposition of negative...
ltaddposd 11489 Adding a positive number t...
ltaddpos2d 11490 Adding a positive number t...
ltsubposd 11491 Subtracting a positive num...
posdifd 11492 Comparison of two numbers ...
addge01d 11493 A number is less than or e...
addge02d 11494 A number is less than or e...
subge0d 11495 Nonnegative subtraction. ...
suble0d 11496 Nonpositive subtraction. ...
subge02d 11497 Nonnegative subtraction. ...
ltadd1d 11498 Addition to both sides of ...
leadd1d 11499 Addition to both sides of ...
leadd2d 11500 Addition to both sides of ...
ltsubaddd 11501 'Less than' relationship b...
lesubaddd 11502 'Less than or equal to' re...
ltsubadd2d 11503 'Less than' relationship b...
lesubadd2d 11504 'Less than or equal to' re...
ltaddsubd 11505 'Less than' relationship b...
ltaddsub2d 11506 'Less than' relationship b...
leaddsub2d 11507 'Less than or equal to' re...
subled 11508 Swap subtrahends in an ine...
lesubd 11509 Swap subtrahends in an ine...
ltsub23d 11510 'Less than' relationship b...
ltsub13d 11511 'Less than' relationship b...
lesub1d 11512 Subtraction from both side...
lesub2d 11513 Subtraction of both sides ...
ltsub1d 11514 Subtraction from both side...
ltsub2d 11515 Subtraction of both sides ...
ltadd1dd 11516 Addition to both sides of ...
ltsub1dd 11517 Subtraction from both side...
ltsub2dd 11518 Subtraction of both sides ...
leadd1dd 11519 Addition to both sides of ...
leadd2dd 11520 Addition to both sides of ...
lesub1dd 11521 Subtraction from both side...
lesub2dd 11522 Subtraction of both sides ...
lesub3d 11523 The result of subtracting ...
le2addd 11524 Adding both side of two in...
le2subd 11525 Subtracting both sides of ...
ltleaddd 11526 Adding both sides of two o...
leltaddd 11527 Adding both sides of two o...
lt2addd 11528 Adding both side of two in...
lt2subd 11529 Subtracting both sides of ...
possumd 11530 Condition for a positive s...
sublt0d 11531 When a subtraction gives a...
ltaddsublt 11532 Addition and subtraction o...
1le1 11533 One is less than or equal ...
ixi 11534 ` _i ` times itself is min...
recextlem1 11535 Lemma for ~ recex . (Cont...
recextlem2 11536 Lemma for ~ recex . (Cont...
recex 11537 Existence of reciprocal of...
mulcand 11538 Cancellation law for multi...
mulcan2d 11539 Cancellation law for multi...
mulcanad 11540 Cancellation of a nonzero ...
mulcan2ad 11541 Cancellation of a nonzero ...
mulcan 11542 Cancellation law for multi...
mulcan2 11543 Cancellation law for multi...
mulcani 11544 Cancellation law for multi...
mul0or 11545 If a product is zero, one ...
mulne0b 11546 The product of two nonzero...
mulne0 11547 The product of two nonzero...
mulne0i 11548 The product of two nonzero...
muleqadd 11549 Property of numbers whose ...
receu 11550 Existential uniqueness of ...
mulnzcnopr 11551 Multiplication maps nonzer...
msq0i 11552 A number is zero iff its s...
mul0ori 11553 If a product is zero, one ...
msq0d 11554 A number is zero iff its s...
mul0ord 11555 If a product is zero, one ...
mulne0bd 11556 The product of two nonzero...
mulne0d 11557 The product of two nonzero...
mulcan1g 11558 A generalized form of the ...
mulcan2g 11559 A generalized form of the ...
mulne0bad 11560 A factor of a nonzero comp...
mulne0bbd 11561 A factor of a nonzero comp...
1div0 11564 You can't divide by zero, ...
divval 11565 Value of division: if ` A ...
divmul 11566 Relationship between divis...
divmul2 11567 Relationship between divis...
divmul3 11568 Relationship between divis...
divcl 11569 Closure law for division. ...
reccl 11570 Closure law for reciprocal...
divcan2 11571 A cancellation law for div...
divcan1 11572 A cancellation law for div...
diveq0 11573 A ratio is zero iff the nu...
divne0b 11574 The ratio of nonzero numbe...
divne0 11575 The ratio of nonzero numbe...
recne0 11576 The reciprocal of a nonzer...
recid 11577 Multiplication of a number...
recid2 11578 Multiplication of a number...
divrec 11579 Relationship between divis...
divrec2 11580 Relationship between divis...
divass 11581 An associative law for div...
div23 11582 A commutative/associative ...
div32 11583 A commutative/associative ...
div13 11584 A commutative/associative ...
div12 11585 A commutative/associative ...
divmulass 11586 An associative law for div...
divmulasscom 11587 An associative/commutative...
divdir 11588 Distribution of division o...
divcan3 11589 A cancellation law for div...
divcan4 11590 A cancellation law for div...
div11 11591 One-to-one relationship fo...
divid 11592 A number divided by itself...
div0 11593 Division into zero is zero...
div1 11594 A number divided by 1 is i...
1div1e1 11595 1 divided by 1 is 1. (Con...
diveq1 11596 Equality in terms of unit ...
divneg 11597 Move negative sign inside ...
muldivdir 11598 Distribution of division o...
divsubdir 11599 Distribution of division o...
subdivcomb1 11600 Bring a term in a subtract...
subdivcomb2 11601 Bring a term in a subtract...
recrec 11602 A number is equal to the r...
rec11 11603 Reciprocal is one-to-one. ...
rec11r 11604 Mutual reciprocals. (Cont...
divmuldiv 11605 Multiplication of two rati...
divdivdiv 11606 Division of two ratios. T...
divcan5 11607 Cancellation of common fac...
divmul13 11608 Swap the denominators in t...
divmul24 11609 Swap the numerators in the...
divmuleq 11610 Cross-multiply in an equal...
recdiv 11611 The reciprocal of a ratio....
divcan6 11612 Cancellation of inverted f...
divdiv32 11613 Swap denominators in a div...
divcan7 11614 Cancel equal divisors in a...
dmdcan 11615 Cancellation law for divis...
divdiv1 11616 Division into a fraction. ...
divdiv2 11617 Division by a fraction. (...
recdiv2 11618 Division into a reciprocal...
ddcan 11619 Cancellation in a double d...
divadddiv 11620 Addition of two ratios. T...
divsubdiv 11621 Subtraction of two ratios....
conjmul 11622 Two numbers whose reciproc...
rereccl 11623 Closure law for reciprocal...
redivcl 11624 Closure law for division o...
eqneg 11625 A number equal to its nega...
eqnegd 11626 A complex number equals it...
eqnegad 11627 If a complex number equals...
div2neg 11628 Quotient of two negatives....
divneg2 11629 Move negative sign inside ...
recclzi 11630 Closure law for reciprocal...
recne0zi 11631 The reciprocal of a nonzer...
recidzi 11632 Multiplication of a number...
div1i 11633 A number divided by 1 is i...
eqnegi 11634 A number equal to its nega...
reccli 11635 Closure law for reciprocal...
recidi 11636 Multiplication of a number...
recreci 11637 A number is equal to the r...
dividi 11638 A number divided by itself...
div0i 11639 Division into zero is zero...
divclzi 11640 Closure law for division. ...
divcan1zi 11641 A cancellation law for div...
divcan2zi 11642 A cancellation law for div...
divreczi 11643 Relationship between divis...
divcan3zi 11644 A cancellation law for div...
divcan4zi 11645 A cancellation law for div...
rec11i 11646 Reciprocal is one-to-one. ...
divcli 11647 Closure law for division. ...
divcan2i 11648 A cancellation law for div...
divcan1i 11649 A cancellation law for div...
divreci 11650 Relationship between divis...
divcan3i 11651 A cancellation law for div...
divcan4i 11652 A cancellation law for div...
divne0i 11653 The ratio of nonzero numbe...
rec11ii 11654 Reciprocal is one-to-one. ...
divasszi 11655 An associative law for div...
divmulzi 11656 Relationship between divis...
divdirzi 11657 Distribution of division o...
divdiv23zi 11658 Swap denominators in a div...
divmuli 11659 Relationship between divis...
divdiv32i 11660 Swap denominators in a div...
divassi 11661 An associative law for div...
divdiri 11662 Distribution of division o...
div23i 11663 A commutative/associative ...
div11i 11664 One-to-one relationship fo...
divmuldivi 11665 Multiplication of two rati...
divmul13i 11666 Swap denominators of two r...
divadddivi 11667 Addition of two ratios. T...
divdivdivi 11668 Division of two ratios. T...
rerecclzi 11669 Closure law for reciprocal...
rereccli 11670 Closure law for reciprocal...
redivclzi 11671 Closure law for division o...
redivcli 11672 Closure law for division o...
div1d 11673 A number divided by 1 is i...
reccld 11674 Closure law for reciprocal...
recne0d 11675 The reciprocal of a nonzer...
recidd 11676 Multiplication of a number...
recid2d 11677 Multiplication of a number...
recrecd 11678 A number is equal to the r...
dividd 11679 A number divided by itself...
div0d 11680 Division into zero is zero...
divcld 11681 Closure law for division. ...
divcan1d 11682 A cancellation law for div...
divcan2d 11683 A cancellation law for div...
divrecd 11684 Relationship between divis...
divrec2d 11685 Relationship between divis...
divcan3d 11686 A cancellation law for div...
divcan4d 11687 A cancellation law for div...
diveq0d 11688 A ratio is zero iff the nu...
diveq1d 11689 Equality in terms of unit ...
diveq1ad 11690 The quotient of two comple...
diveq0ad 11691 A fraction of complex numb...
divne1d 11692 If two complex numbers are...
divne0bd 11693 A ratio is zero iff the nu...
divnegd 11694 Move negative sign inside ...
divneg2d 11695 Move negative sign inside ...
div2negd 11696 Quotient of two negatives....
divne0d 11697 The ratio of nonzero numbe...
recdivd 11698 The reciprocal of a ratio....
recdiv2d 11699 Division into a reciprocal...
divcan6d 11700 Cancellation of inverted f...
ddcand 11701 Cancellation in a double d...
rec11d 11702 Reciprocal is one-to-one. ...
divmuld 11703 Relationship between divis...
div32d 11704 A commutative/associative ...
div13d 11705 A commutative/associative ...
divdiv32d 11706 Swap denominators in a div...
divcan5d 11707 Cancellation of common fac...
divcan5rd 11708 Cancellation of common fac...
divcan7d 11709 Cancel equal divisors in a...
dmdcand 11710 Cancellation law for divis...
dmdcan2d 11711 Cancellation law for divis...
divdiv1d 11712 Division into a fraction. ...
divdiv2d 11713 Division by a fraction. (...
divmul2d 11714 Relationship between divis...
divmul3d 11715 Relationship between divis...
divassd 11716 An associative law for div...
div12d 11717 A commutative/associative ...
div23d 11718 A commutative/associative ...
divdird 11719 Distribution of division o...
divsubdird 11720 Distribution of division o...
div11d 11721 One-to-one relationship fo...
divmuldivd 11722 Multiplication of two rati...
divmul13d 11723 Swap denominators of two r...
divmul24d 11724 Swap the numerators in the...
divadddivd 11725 Addition of two ratios. T...
divsubdivd 11726 Subtraction of two ratios....
divmuleqd 11727 Cross-multiply in an equal...
divdivdivd 11728 Division of two ratios. T...
diveq1bd 11729 If two complex numbers are...
div2sub 11730 Swap the order of subtract...
div2subd 11731 Swap subtrahend and minuen...
rereccld 11732 Closure law for reciprocal...
redivcld 11733 Closure law for division o...
subrec 11734 Subtraction of reciprocals...
subreci 11735 Subtraction of reciprocals...
subrecd 11736 Subtraction of reciprocals...
mvllmuld 11737 Move the left term in a pr...
mvllmuli 11738 Move the left term in a pr...
ldiv 11739 Left-division. (Contribut...
rdiv 11740 Right-division. (Contribu...
mdiv 11741 A division law. (Contribu...
lineq 11742 Solution of a (scalar) lin...
elimgt0 11743 Hypothesis for weak deduct...
elimge0 11744 Hypothesis for weak deduct...
ltp1 11745 A number is less than itse...
lep1 11746 A number is less than or e...
ltm1 11747 A number minus 1 is less t...
lem1 11748 A number minus 1 is less t...
letrp1 11749 A transitive property of '...
p1le 11750 A transitive property of p...
recgt0 11751 The reciprocal of a positi...
prodgt0 11752 Infer that a multiplicand ...
prodgt02 11753 Infer that a multiplier is...
ltmul1a 11754 Lemma for ~ ltmul1 . Mult...
ltmul1 11755 Multiplication of both sid...
ltmul2 11756 Multiplication of both sid...
lemul1 11757 Multiplication of both sid...
lemul2 11758 Multiplication of both sid...
lemul1a 11759 Multiplication of both sid...
lemul2a 11760 Multiplication of both sid...
ltmul12a 11761 Comparison of product of t...
lemul12b 11762 Comparison of product of t...
lemul12a 11763 Comparison of product of t...
mulgt1 11764 The product of two numbers...
ltmulgt11 11765 Multiplication by a number...
ltmulgt12 11766 Multiplication by a number...
lemulge11 11767 Multiplication by a number...
lemulge12 11768 Multiplication by a number...
ltdiv1 11769 Division of both sides of ...
lediv1 11770 Division of both sides of ...
gt0div 11771 Division of a positive num...
ge0div 11772 Division of a nonnegative ...
divgt0 11773 The ratio of two positive ...
divge0 11774 The ratio of nonnegative a...
mulge0b 11775 A condition for multiplica...
mulle0b 11776 A condition for multiplica...
mulsuble0b 11777 A condition for multiplica...
ltmuldiv 11778 'Less than' relationship b...
ltmuldiv2 11779 'Less than' relationship b...
ltdivmul 11780 'Less than' relationship b...
ledivmul 11781 'Less than or equal to' re...
ltdivmul2 11782 'Less than' relationship b...
lt2mul2div 11783 'Less than' relationship b...
ledivmul2 11784 'Less than or equal to' re...
lemuldiv 11785 'Less than or equal' relat...
lemuldiv2 11786 'Less than or equal' relat...
ltrec 11787 The reciprocal of both sid...
lerec 11788 The reciprocal of both sid...
lt2msq1 11789 Lemma for ~ lt2msq . (Con...
lt2msq 11790 Two nonnegative numbers co...
ltdiv2 11791 Division of a positive num...
ltrec1 11792 Reciprocal swap in a 'less...
lerec2 11793 Reciprocal swap in a 'less...
ledivdiv 11794 Invert ratios of positive ...
lediv2 11795 Division of a positive num...
ltdiv23 11796 Swap denominator with othe...
lediv23 11797 Swap denominator with othe...
lediv12a 11798 Comparison of ratio of two...
lediv2a 11799 Division of both sides of ...
reclt1 11800 The reciprocal of a positi...
recgt1 11801 The reciprocal of a positi...
recgt1i 11802 The reciprocal of a number...
recp1lt1 11803 Construct a number less th...
recreclt 11804 Given a positive number ` ...
le2msq 11805 The square function on non...
msq11 11806 The square of a nonnegativ...
ledivp1 11807 "Less than or equal to" an...
squeeze0 11808 If a nonnegative number is...
ltp1i 11809 A number is less than itse...
recgt0i 11810 The reciprocal of a positi...
recgt0ii 11811 The reciprocal of a positi...
prodgt0i 11812 Infer that a multiplicand ...
divgt0i 11813 The ratio of two positive ...
divge0i 11814 The ratio of nonnegative a...
ltreci 11815 The reciprocal of both sid...
lereci 11816 The reciprocal of both sid...
lt2msqi 11817 The square function on non...
le2msqi 11818 The square function on non...
msq11i 11819 The square of a nonnegativ...
divgt0i2i 11820 The ratio of two positive ...
ltrecii 11821 The reciprocal of both sid...
divgt0ii 11822 The ratio of two positive ...
ltmul1i 11823 Multiplication of both sid...
ltdiv1i 11824 Division of both sides of ...
ltmuldivi 11825 'Less than' relationship b...
ltmul2i 11826 Multiplication of both sid...
lemul1i 11827 Multiplication of both sid...
lemul2i 11828 Multiplication of both sid...
ltdiv23i 11829 Swap denominator with othe...
ledivp1i 11830 "Less than or equal to" an...
ltdivp1i 11831 Less-than and division rel...
ltdiv23ii 11832 Swap denominator with othe...
ltmul1ii 11833 Multiplication of both sid...
ltdiv1ii 11834 Division of both sides of ...
ltp1d 11835 A number is less than itse...
lep1d 11836 A number is less than or e...
ltm1d 11837 A number minus 1 is less t...
lem1d 11838 A number minus 1 is less t...
recgt0d 11839 The reciprocal of a positi...
divgt0d 11840 The ratio of two positive ...
mulgt1d 11841 The product of two numbers...
lemulge11d 11842 Multiplication by a number...
lemulge12d 11843 Multiplication by a number...
lemul1ad 11844 Multiplication of both sid...
lemul2ad 11845 Multiplication of both sid...
ltmul12ad 11846 Comparison of product of t...
lemul12ad 11847 Comparison of product of t...
lemul12bd 11848 Comparison of product of t...
fimaxre 11849 A finite set of real numbe...
fimaxre2 11850 A nonempty finite set of r...
fimaxre3 11851 A nonempty finite set of r...
fiminre 11852 A nonempty finite set of r...
fiminre2 11853 A nonempty finite set of r...
negfi 11854 The negation of a finite s...
lbreu 11855 If a set of reals contains...
lbcl 11856 If a set of reals contains...
lble 11857 If a set of reals contains...
lbinf 11858 If a set of reals contains...
lbinfcl 11859 If a set of reals contains...
lbinfle 11860 If a set of reals contains...
sup2 11861 A nonempty, bounded-above ...
sup3 11862 A version of the completen...
infm3lem 11863 Lemma for ~ infm3 . (Cont...
infm3 11864 The completeness axiom for...
suprcl 11865 Closure of supremum of a n...
suprub 11866 A member of a nonempty bou...
suprubd 11867 Natural deduction form of ...
suprcld 11868 Natural deduction form of ...
suprlub 11869 The supremum of a nonempty...
suprnub 11870 An upper bound is not less...
suprleub 11871 The supremum of a nonempty...
supaddc 11872 The supremum function dist...
supadd 11873 The supremum function dist...
supmul1 11874 The supremum function dist...
supmullem1 11875 Lemma for ~ supmul . (Con...
supmullem2 11876 Lemma for ~ supmul . (Con...
supmul 11877 The supremum function dist...
sup3ii 11878 A version of the completen...
suprclii 11879 Closure of supremum of a n...
suprubii 11880 A member of a nonempty bou...
suprlubii 11881 The supremum of a nonempty...
suprnubii 11882 An upper bound is not less...
suprleubii 11883 The supremum of a nonempty...
riotaneg 11884 The negative of the unique...
negiso 11885 Negation is an order anti-...
dfinfre 11886 The infimum of a set of re...
infrecl 11887 Closure of infimum of a no...
infrenegsup 11888 The infimum of a set of re...
infregelb 11889 Any lower bound of a nonem...
infrelb 11890 If a nonempty set of real ...
infrefilb 11891 The infimum of a finite se...
supfirege 11892 The supremum of a finite s...
inelr 11893 The imaginary unit ` _i ` ...
rimul 11894 A real number times the im...
cru 11895 The representation of comp...
crne0 11896 The real representation of...
creur 11897 The real part of a complex...
creui 11898 The imaginary part of a co...
cju 11899 The complex conjugate of a...
ofsubeq0 11900 Function analogue of ~ sub...
ofnegsub 11901 Function analogue of ~ neg...
ofsubge0 11902 Function analogue of ~ sub...
nnexALT 11905 Alternate proof of ~ nnex ...
peano5nni 11906 Peano's inductive postulat...
nnssre 11907 The positive integers are ...
nnsscn 11908 The positive integers are ...
nnex 11909 The set of positive intege...
nnre 11910 A positive integer is a re...
nncn 11911 A positive integer is a co...
nnrei 11912 A positive integer is a re...
nncni 11913 A positive integer is a co...
1nn 11914 Peano postulate: 1 is a po...
peano2nn 11915 Peano postulate: a success...
dfnn2 11916 Alternate definition of th...
dfnn3 11917 Alternate definition of th...
nnred 11918 A positive integer is a re...
nncnd 11919 A positive integer is a co...
peano2nnd 11920 Peano postulate: a success...
nnind 11921 Principle of Mathematical ...
nnindALT 11922 Principle of Mathematical ...
nnindd 11923 Principle of Mathematical ...
nn1m1nn 11924 Every positive integer is ...
nn1suc 11925 If a statement holds for 1...
nnaddcl 11926 Closure of addition of pos...
nnmulcl 11927 Closure of multiplication ...
nnmulcli 11928 Closure of multiplication ...
nnmtmip 11929 "Minus times minus is plus...
nn2ge 11930 There exists a positive in...
nnge1 11931 A positive integer is one ...
nngt1ne1 11932 A positive integer is grea...
nnle1eq1 11933 A positive integer is less...
nngt0 11934 A positive integer is posi...
nnnlt1 11935 A positive integer is not ...
nnnle0 11936 A positive integer is not ...
nnne0 11937 A positive integer is nonz...
nnneneg 11938 No positive integer is equ...
0nnn 11939 Zero is not a positive int...
0nnnALT 11940 Alternate proof of ~ 0nnn ...
nnne0ALT 11941 Alternate version of ~ nnn...
nngt0i 11942 A positive integer is posi...
nnne0i 11943 A positive integer is nonz...
nndivre 11944 The quotient of a real and...
nnrecre 11945 The reciprocal of a positi...
nnrecgt0 11946 The reciprocal of a positi...
nnsub 11947 Subtraction of positive in...
nnsubi 11948 Subtraction of positive in...
nndiv 11949 Two ways to express " ` A ...
nndivtr 11950 Transitive property of div...
nnge1d 11951 A positive integer is one ...
nngt0d 11952 A positive integer is posi...
nnne0d 11953 A positive integer is nonz...
nnrecred 11954 The reciprocal of a positi...
nnaddcld 11955 Closure of addition of pos...
nnmulcld 11956 Closure of multiplication ...
nndivred 11957 A positive integer is one ...
0ne1 11974 Zero is different from one...
1m1e0 11975 One minus one equals zero....
2nn 11976 2 is a positive integer. ...
2re 11977 The number 2 is real. (Co...
2cn 11978 The number 2 is a complex ...
2cnALT 11979 Alternate proof of ~ 2cn ....
2ex 11980 The number 2 is a set. (C...
2cnd 11981 The number 2 is a complex ...
3nn 11982 3 is a positive integer. ...
3re 11983 The number 3 is real. (Co...
3cn 11984 The number 3 is a complex ...
3ex 11985 The number 3 is a set. (C...
4nn 11986 4 is a positive integer. ...
4re 11987 The number 4 is real. (Co...
4cn 11988 The number 4 is a complex ...
5nn 11989 5 is a positive integer. ...
5re 11990 The number 5 is real. (Co...
5cn 11991 The number 5 is a complex ...
6nn 11992 6 is a positive integer. ...
6re 11993 The number 6 is real. (Co...
6cn 11994 The number 6 is a complex ...
7nn 11995 7 is a positive integer. ...
7re 11996 The number 7 is real. (Co...
7cn 11997 The number 7 is a complex ...
8nn 11998 8 is a positive integer. ...
8re 11999 The number 8 is real. (Co...
8cn 12000 The number 8 is a complex ...
9nn 12001 9 is a positive integer. ...
9re 12002 The number 9 is real. (Co...
9cn 12003 The number 9 is a complex ...
0le0 12004 Zero is nonnegative. (Con...
0le2 12005 The number 0 is less than ...
2pos 12006 The number 2 is positive. ...
2ne0 12007 The number 2 is nonzero. ...
3pos 12008 The number 3 is positive. ...
3ne0 12009 The number 3 is nonzero. ...
4pos 12010 The number 4 is positive. ...
4ne0 12011 The number 4 is nonzero. ...
5pos 12012 The number 5 is positive. ...
6pos 12013 The number 6 is positive. ...
7pos 12014 The number 7 is positive. ...
8pos 12015 The number 8 is positive. ...
9pos 12016 The number 9 is positive. ...
neg1cn 12017 -1 is a complex number. (...
neg1rr 12018 -1 is a real number. (Con...
neg1ne0 12019 -1 is nonzero. (Contribut...
neg1lt0 12020 -1 is less than 0. (Contr...
negneg1e1 12021 ` -u -u 1 ` is 1. (Contri...
1pneg1e0 12022 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12023 0 minus 0 equals 0. (Cont...
1m0e1 12024 1 - 0 = 1. (Contributed b...
0p1e1 12025 0 + 1 = 1. (Contributed b...
fv0p1e1 12026 Function value at ` N + 1 ...
1p0e1 12027 1 + 0 = 1. (Contributed b...
1p1e2 12028 1 + 1 = 2. (Contributed b...
2m1e1 12029 2 - 1 = 1. The result is ...
1e2m1 12030 1 = 2 - 1. (Contributed b...
3m1e2 12031 3 - 1 = 2. (Contributed b...
4m1e3 12032 4 - 1 = 3. (Contributed b...
5m1e4 12033 5 - 1 = 4. (Contributed b...
6m1e5 12034 6 - 1 = 5. (Contributed b...
7m1e6 12035 7 - 1 = 6. (Contributed b...
8m1e7 12036 8 - 1 = 7. (Contributed b...
9m1e8 12037 9 - 1 = 8. (Contributed b...
2p2e4 12038 Two plus two equals four. ...
2times 12039 Two times a number. (Cont...
times2 12040 A number times 2. (Contri...
2timesi 12041 Two times a number. (Cont...
times2i 12042 A number times 2. (Contri...
2txmxeqx 12043 Two times a complex number...
2div2e1 12044 2 divided by 2 is 1. (Con...
2p1e3 12045 2 + 1 = 3. (Contributed b...
1p2e3 12046 1 + 2 = 3. For a shorter ...
1p2e3ALT 12047 Alternate proof of ~ 1p2e3...
3p1e4 12048 3 + 1 = 4. (Contributed b...
4p1e5 12049 4 + 1 = 5. (Contributed b...
5p1e6 12050 5 + 1 = 6. (Contributed b...
6p1e7 12051 6 + 1 = 7. (Contributed b...
7p1e8 12052 7 + 1 = 8. (Contributed b...
8p1e9 12053 8 + 1 = 9. (Contributed b...
3p2e5 12054 3 + 2 = 5. (Contributed b...
3p3e6 12055 3 + 3 = 6. (Contributed b...
4p2e6 12056 4 + 2 = 6. (Contributed b...
4p3e7 12057 4 + 3 = 7. (Contributed b...
4p4e8 12058 4 + 4 = 8. (Contributed b...
5p2e7 12059 5 + 2 = 7. (Contributed b...
5p3e8 12060 5 + 3 = 8. (Contributed b...
5p4e9 12061 5 + 4 = 9. (Contributed b...
6p2e8 12062 6 + 2 = 8. (Contributed b...
6p3e9 12063 6 + 3 = 9. (Contributed b...
7p2e9 12064 7 + 2 = 9. (Contributed b...
1t1e1 12065 1 times 1 equals 1. (Cont...
2t1e2 12066 2 times 1 equals 2. (Cont...
2t2e4 12067 2 times 2 equals 4. (Cont...
3t1e3 12068 3 times 1 equals 3. (Cont...
3t2e6 12069 3 times 2 equals 6. (Cont...
3t3e9 12070 3 times 3 equals 9. (Cont...
4t2e8 12071 4 times 2 equals 8. (Cont...
2t0e0 12072 2 times 0 equals 0. (Cont...
4d2e2 12073 One half of four is two. ...
1lt2 12074 1 is less than 2. (Contri...
2lt3 12075 2 is less than 3. (Contri...
1lt3 12076 1 is less than 3. (Contri...
3lt4 12077 3 is less than 4. (Contri...
2lt4 12078 2 is less than 4. (Contri...
1lt4 12079 1 is less than 4. (Contri...
4lt5 12080 4 is less than 5. (Contri...
3lt5 12081 3 is less than 5. (Contri...
2lt5 12082 2 is less than 5. (Contri...
1lt5 12083 1 is less than 5. (Contri...
5lt6 12084 5 is less than 6. (Contri...
4lt6 12085 4 is less than 6. (Contri...
3lt6 12086 3 is less than 6. (Contri...
2lt6 12087 2 is less than 6. (Contri...
1lt6 12088 1 is less than 6. (Contri...
6lt7 12089 6 is less than 7. (Contri...
5lt7 12090 5 is less than 7. (Contri...
4lt7 12091 4 is less than 7. (Contri...
3lt7 12092 3 is less than 7. (Contri...
2lt7 12093 2 is less than 7. (Contri...
1lt7 12094 1 is less than 7. (Contri...
7lt8 12095 7 is less than 8. (Contri...
6lt8 12096 6 is less than 8. (Contri...
5lt8 12097 5 is less than 8. (Contri...
4lt8 12098 4 is less than 8. (Contri...
3lt8 12099 3 is less than 8. (Contri...
2lt8 12100 2 is less than 8. (Contri...
1lt8 12101 1 is less than 8. (Contri...
8lt9 12102 8 is less than 9. (Contri...
7lt9 12103 7 is less than 9. (Contri...
6lt9 12104 6 is less than 9. (Contri...
5lt9 12105 5 is less than 9. (Contri...
4lt9 12106 4 is less than 9. (Contri...
3lt9 12107 3 is less than 9. (Contri...
2lt9 12108 2 is less than 9. (Contri...
1lt9 12109 1 is less than 9. (Contri...
0ne2 12110 0 is not equal to 2. (Con...
1ne2 12111 1 is not equal to 2. (Con...
1le2 12112 1 is less than or equal to...
2cnne0 12113 2 is a nonzero complex num...
2rene0 12114 2 is a nonzero real number...
1le3 12115 1 is less than or equal to...
neg1mulneg1e1 12116 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12117 One-half is real. (Contri...
halfcn 12118 One-half is a complex numb...
halfgt0 12119 One-half is greater than z...
halfge0 12120 One-half is not negative. ...
halflt1 12121 One-half is less than one....
1mhlfehlf 12122 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12123 An eighth of four thirds i...
halfpm6th 12124 One half plus or minus one...
it0e0 12125 i times 0 equals 0. (Cont...
2mulicn 12126 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12127 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12128 Closure of half of a numbe...
rehalfcl 12129 Real closure of half. (Co...
half0 12130 Half of a number is zero i...
2halves 12131 Two halves make a whole. ...
halfpos2 12132 A number is positive iff i...
halfpos 12133 A positive number is great...
halfnneg2 12134 A number is nonnegative if...
halfaddsubcl 12135 Closure of half-sum and ha...
halfaddsub 12136 Sum and difference of half...
subhalfhalf 12137 Subtracting the half of a ...
lt2halves 12138 A sum is less than the who...
addltmul 12139 Sum is less than product f...
nominpos 12140 There is no smallest posit...
avglt1 12141 Ordering property for aver...
avglt2 12142 Ordering property for aver...
avgle1 12143 Ordering property for aver...
avgle2 12144 Ordering property for aver...
avgle 12145 The average of two numbers...
2timesd 12146 Two times a number. (Cont...
times2d 12147 A number times 2. (Contri...
halfcld 12148 Closure of half of a numbe...
2halvesd 12149 Two halves make a whole. ...
rehalfcld 12150 Real closure of half. (Co...
lt2halvesd 12151 A sum is less than the who...
rehalfcli 12152 Half a real number is real...
lt2addmuld 12153 If two real numbers are le...
add1p1 12154 Adding two times 1 to a nu...
sub1m1 12155 Subtracting two times 1 fr...
cnm2m1cnm3 12156 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12157 A complex number increased...
div4p1lem1div2 12158 An integer greater than 5,...
nnunb 12159 The set of positive intege...
arch 12160 Archimedean property of re...
nnrecl 12161 There exists a positive in...
bndndx 12162 A bounded real sequence ` ...
elnn0 12165 Nonnegative integers expre...
nnssnn0 12166 Positive naturals are a su...
nn0ssre 12167 Nonnegative integers are a...
nn0sscn 12168 Nonnegative integers are a...
nn0ex 12169 The set of nonnegative int...
nnnn0 12170 A positive integer is a no...
nnnn0i 12171 A positive integer is a no...
nn0re 12172 A nonnegative integer is a...
nn0cn 12173 A nonnegative integer is a...
nn0rei 12174 A nonnegative integer is a...
nn0cni 12175 A nonnegative integer is a...
dfn2 12176 The set of positive intege...
elnnne0 12177 The positive integer prope...
0nn0 12178 0 is a nonnegative integer...
1nn0 12179 1 is a nonnegative integer...
2nn0 12180 2 is a nonnegative integer...
3nn0 12181 3 is a nonnegative integer...
4nn0 12182 4 is a nonnegative integer...
5nn0 12183 5 is a nonnegative integer...
6nn0 12184 6 is a nonnegative integer...
7nn0 12185 7 is a nonnegative integer...
8nn0 12186 8 is a nonnegative integer...
9nn0 12187 9 is a nonnegative integer...
nn0ge0 12188 A nonnegative integer is g...
nn0nlt0 12189 A nonnegative integer is n...
nn0ge0i 12190 Nonnegative integers are n...
nn0le0eq0 12191 A nonnegative integer is l...
nn0p1gt0 12192 A nonnegative integer incr...
nnnn0addcl 12193 A positive integer plus a ...
nn0nnaddcl 12194 A nonnegative integer plus...
0mnnnnn0 12195 The result of subtracting ...
un0addcl 12196 If ` S ` is closed under a...
un0mulcl 12197 If ` S ` is closed under m...
nn0addcl 12198 Closure of addition of non...
nn0mulcl 12199 Closure of multiplication ...
nn0addcli 12200 Closure of addition of non...
nn0mulcli 12201 Closure of multiplication ...
nn0p1nn 12202 A nonnegative integer plus...
peano2nn0 12203 Second Peano postulate for...
nnm1nn0 12204 A positive integer minus 1...
elnn0nn 12205 The nonnegative integer pr...
elnnnn0 12206 The positive integer prope...
elnnnn0b 12207 The positive integer prope...
elnnnn0c 12208 The positive integer prope...
nn0addge1 12209 A number is less than or e...
nn0addge2 12210 A number is less than or e...
nn0addge1i 12211 A number is less than or e...
nn0addge2i 12212 A number is less than or e...
nn0sub 12213 Subtraction of nonnegative...
ltsubnn0 12214 Subtracting a nonnegative ...
nn0negleid 12215 A nonnegative integer is g...
difgtsumgt 12216 If the difference of a rea...
nn0le2xi 12217 A nonnegative integer is l...
nn0lele2xi 12218 'Less than or equal to' im...
frnnn0supp 12219 Two ways to write the supp...
frnnn0fsupp 12220 A function on ` NN0 ` is f...
frnnn0suppg 12221 Version of ~ frnnn0supp av...
frnnn0fsuppg 12222 Version of ~ frnnn0fsupp a...
nnnn0d 12223 A positive integer is a no...
nn0red 12224 A nonnegative integer is a...
nn0cnd 12225 A nonnegative integer is a...
nn0ge0d 12226 A nonnegative integer is g...
nn0addcld 12227 Closure of addition of non...
nn0mulcld 12228 Closure of multiplication ...
nn0readdcl 12229 Closure law for addition o...
nn0n0n1ge2 12230 A nonnegative integer whic...
nn0n0n1ge2b 12231 A nonnegative integer is n...
nn0ge2m1nn 12232 If a nonnegative integer i...
nn0ge2m1nn0 12233 If a nonnegative integer i...
nn0nndivcl 12234 Closure law for dividing o...
elxnn0 12237 An extended nonnegative in...
nn0ssxnn0 12238 The standard nonnegative i...
nn0xnn0 12239 A standard nonnegative int...
xnn0xr 12240 An extended nonnegative in...
0xnn0 12241 Zero is an extended nonneg...
pnf0xnn0 12242 Positive infinity is an ex...
nn0nepnf 12243 No standard nonnegative in...
nn0xnn0d 12244 A standard nonnegative int...
nn0nepnfd 12245 No standard nonnegative in...
xnn0nemnf 12246 No extended nonnegative in...
xnn0xrnemnf 12247 The extended nonnegative i...
xnn0nnn0pnf 12248 An extended nonnegative in...
elz 12251 Membership in the set of i...
nnnegz 12252 The negative of a positive...
zre 12253 An integer is a real. (Co...
zcn 12254 An integer is a complex nu...
zrei 12255 An integer is a real numbe...
zssre 12256 The integers are a subset ...
zsscn 12257 The integers are a subset ...
zex 12258 The set of integers exists...
elnnz 12259 Positive integer property ...
0z 12260 Zero is an integer. (Cont...
0zd 12261 Zero is an integer, deduct...
elnn0z 12262 Nonnegative integer proper...
elznn0nn 12263 Integer property expressed...
elznn0 12264 Integer property expressed...
elznn 12265 Integer property expressed...
zle0orge1 12266 There is no integer in the...
elz2 12267 Membership in the set of i...
dfz2 12268 Alternative definition of ...
zexALT 12269 Alternate proof of ~ zex ....
nnssz 12270 Positive integers are a su...
nn0ssz 12271 Nonnegative integers are a...
nnz 12272 A positive integer is an i...
nn0z 12273 A nonnegative integer is a...
nnzi 12274 A positive integer is an i...
nn0zi 12275 A nonnegative integer is a...
elnnz1 12276 Positive integer property ...
znnnlt1 12277 An integer is not a positi...
nnzrab 12278 Positive integers expresse...
nn0zrab 12279 Nonnegative integers expre...
1z 12280 One is an integer. (Contr...
1zzd 12281 One is an integer, deducti...
2z 12282 2 is an integer. (Contrib...
3z 12283 3 is an integer. (Contrib...
4z 12284 4 is an integer. (Contrib...
znegcl 12285 Closure law for negative i...
neg1z 12286 -1 is an integer. (Contri...
znegclb 12287 A complex number is an int...
nn0negz 12288 The negative of a nonnegat...
nn0negzi 12289 The negative of a nonnegat...
zaddcl 12290 Closure of addition of int...
peano2z 12291 Second Peano postulate gen...
zsubcl 12292 Closure of subtraction of ...
peano2zm 12293 "Reverse" second Peano pos...
zletr 12294 Transitive law of ordering...
zrevaddcl 12295 Reverse closure law for ad...
znnsub 12296 The positive difference of...
znn0sub 12297 The nonnegative difference...
nzadd 12298 The sum of a real number n...
zmulcl 12299 Closure of multiplication ...
zltp1le 12300 Integer ordering relation....
zleltp1 12301 Integer ordering relation....
zlem1lt 12302 Integer ordering relation....
zltlem1 12303 Integer ordering relation....
zgt0ge1 12304 An integer greater than ` ...
nnleltp1 12305 Positive integer ordering ...
nnltp1le 12306 Positive integer ordering ...
nnaddm1cl 12307 Closure of addition of pos...
nn0ltp1le 12308 Nonnegative integer orderi...
nn0leltp1 12309 Nonnegative integer orderi...
nn0ltlem1 12310 Nonnegative integer orderi...
nn0sub2 12311 Subtraction of nonnegative...
nn0lt10b 12312 A nonnegative integer less...
nn0lt2 12313 A nonnegative integer less...
nn0le2is012 12314 A nonnegative integer whic...
nn0lem1lt 12315 Nonnegative integer orderi...
nnlem1lt 12316 Positive integer ordering ...
nnltlem1 12317 Positive integer ordering ...
nnm1ge0 12318 A positive integer decreas...
nn0ge0div 12319 Division of a nonnegative ...
zdiv 12320 Two ways to express " ` M ...
zdivadd 12321 Property of divisibility: ...
zdivmul 12322 Property of divisibility: ...
zextle 12323 An extensionality-like pro...
zextlt 12324 An extensionality-like pro...
recnz 12325 The reciprocal of a number...
btwnnz 12326 A number between an intege...
gtndiv 12327 A larger number does not d...
halfnz 12328 One-half is not an integer...
3halfnz 12329 Three halves is not an int...
suprzcl 12330 The supremum of a bounded-...
prime 12331 Two ways to express " ` A ...
msqznn 12332 The square of a nonzero in...
zneo 12333 No even integer equals an ...
nneo 12334 A positive integer is even...
nneoi 12335 A positive integer is even...
zeo 12336 An integer is even or odd....
zeo2 12337 An integer is even or odd ...
peano2uz2 12338 Second Peano postulate for...
peano5uzi 12339 Peano's inductive postulat...
peano5uzti 12340 Peano's inductive postulat...
dfuzi 12341 An expression for the uppe...
uzind 12342 Induction on the upper int...
uzind2 12343 Induction on the upper int...
uzind3 12344 Induction on the upper int...
nn0ind 12345 Principle of Mathematical ...
nn0indALT 12346 Principle of Mathematical ...
nn0indd 12347 Principle of Mathematical ...
fzind 12348 Induction on the integers ...
fnn0ind 12349 Induction on the integers ...
nn0ind-raph 12350 Principle of Mathematical ...
zindd 12351 Principle of Mathematical ...
btwnz 12352 Any real number can be san...
nn0zd 12353 A positive integer is an i...
nnzd 12354 A nonnegative integer is a...
zred 12355 An integer is a real numbe...
zcnd 12356 An integer is a complex nu...
znegcld 12357 Closure law for negative i...
peano2zd 12358 Deduction from second Pean...
zaddcld 12359 Closure of addition of int...
zsubcld 12360 Closure of subtraction of ...
zmulcld 12361 Closure of multiplication ...
znnn0nn 12362 The negative of a negative...
zadd2cl 12363 Increasing an integer by 2...
zriotaneg 12364 The negative of the unique...
suprfinzcl 12365 The supremum of a nonempty...
9p1e10 12368 9 + 1 = 10. (Contributed ...
dfdec10 12369 Version of the definition ...
decex 12370 A decimal number is a set....
deceq1 12371 Equality theorem for the d...
deceq2 12372 Equality theorem for the d...
deceq1i 12373 Equality theorem for the d...
deceq2i 12374 Equality theorem for the d...
deceq12i 12375 Equality theorem for the d...
numnncl 12376 Closure for a numeral (wit...
num0u 12377 Add a zero in the units pl...
num0h 12378 Add a zero in the higher p...
numcl 12379 Closure for a decimal inte...
numsuc 12380 The successor of a decimal...
deccl 12381 Closure for a numeral. (C...
10nn 12382 10 is a positive integer. ...
10pos 12383 The number 10 is positive....
10nn0 12384 10 is a nonnegative intege...
10re 12385 The number 10 is real. (C...
decnncl 12386 Closure for a numeral. (C...
dec0u 12387 Add a zero in the units pl...
dec0h 12388 Add a zero in the higher p...
numnncl2 12389 Closure for a decimal inte...
decnncl2 12390 Closure for a decimal inte...
numlt 12391 Comparing two decimal inte...
numltc 12392 Comparing two decimal inte...
le9lt10 12393 A "decimal digit" (i.e. a ...
declt 12394 Comparing two decimal inte...
decltc 12395 Comparing two decimal inte...
declth 12396 Comparing two decimal inte...
decsuc 12397 The successor of a decimal...
3declth 12398 Comparing two decimal inte...
3decltc 12399 Comparing two decimal inte...
decle 12400 Comparing two decimal inte...
decleh 12401 Comparing two decimal inte...
declei 12402 Comparing a digit to a dec...
numlti 12403 Comparing a digit to a dec...
declti 12404 Comparing a digit to a dec...
decltdi 12405 Comparing a digit to a dec...
numsucc 12406 The successor of a decimal...
decsucc 12407 The successor of a decimal...
1e0p1 12408 The successor of zero. (C...
dec10p 12409 Ten plus an integer. (Con...
numma 12410 Perform a multiply-add of ...
nummac 12411 Perform a multiply-add of ...
numma2c 12412 Perform a multiply-add of ...
numadd 12413 Add two decimal integers `...
numaddc 12414 Add two decimal integers `...
nummul1c 12415 The product of a decimal i...
nummul2c 12416 The product of a decimal i...
decma 12417 Perform a multiply-add of ...
decmac 12418 Perform a multiply-add of ...
decma2c 12419 Perform a multiply-add of ...
decadd 12420 Add two numerals ` M ` and...
decaddc 12421 Add two numerals ` M ` and...
decaddc2 12422 Add two numerals ` M ` and...
decrmanc 12423 Perform a multiply-add of ...
decrmac 12424 Perform a multiply-add of ...
decaddm10 12425 The sum of two multiples o...
decaddi 12426 Add two numerals ` M ` and...
decaddci 12427 Add two numerals ` M ` and...
decaddci2 12428 Add two numerals ` M ` and...
decsubi 12429 Difference between a numer...
decmul1 12430 The product of a numeral w...
decmul1c 12431 The product of a numeral w...
decmul2c 12432 The product of a numeral w...
decmulnc 12433 The product of a numeral w...
11multnc 12434 The product of 11 (as nume...
decmul10add 12435 A multiplication of a numb...
6p5lem 12436 Lemma for ~ 6p5e11 and rel...
5p5e10 12437 5 + 5 = 10. (Contributed ...
6p4e10 12438 6 + 4 = 10. (Contributed ...
6p5e11 12439 6 + 5 = 11. (Contributed ...
6p6e12 12440 6 + 6 = 12. (Contributed ...
7p3e10 12441 7 + 3 = 10. (Contributed ...
7p4e11 12442 7 + 4 = 11. (Contributed ...
7p5e12 12443 7 + 5 = 12. (Contributed ...
7p6e13 12444 7 + 6 = 13. (Contributed ...
7p7e14 12445 7 + 7 = 14. (Contributed ...
8p2e10 12446 8 + 2 = 10. (Contributed ...
8p3e11 12447 8 + 3 = 11. (Contributed ...
8p4e12 12448 8 + 4 = 12. (Contributed ...
8p5e13 12449 8 + 5 = 13. (Contributed ...
8p6e14 12450 8 + 6 = 14. (Contributed ...
8p7e15 12451 8 + 7 = 15. (Contributed ...
8p8e16 12452 8 + 8 = 16. (Contributed ...
9p2e11 12453 9 + 2 = 11. (Contributed ...
9p3e12 12454 9 + 3 = 12. (Contributed ...
9p4e13 12455 9 + 4 = 13. (Contributed ...
9p5e14 12456 9 + 5 = 14. (Contributed ...
9p6e15 12457 9 + 6 = 15. (Contributed ...
9p7e16 12458 9 + 7 = 16. (Contributed ...
9p8e17 12459 9 + 8 = 17. (Contributed ...
9p9e18 12460 9 + 9 = 18. (Contributed ...
10p10e20 12461 10 + 10 = 20. (Contribute...
10m1e9 12462 10 - 1 = 9. (Contributed ...
4t3lem 12463 Lemma for ~ 4t3e12 and rel...
4t3e12 12464 4 times 3 equals 12. (Con...
4t4e16 12465 4 times 4 equals 16. (Con...
5t2e10 12466 5 times 2 equals 10. (Con...
5t3e15 12467 5 times 3 equals 15. (Con...
5t4e20 12468 5 times 4 equals 20. (Con...
5t5e25 12469 5 times 5 equals 25. (Con...
6t2e12 12470 6 times 2 equals 12. (Con...
6t3e18 12471 6 times 3 equals 18. (Con...
6t4e24 12472 6 times 4 equals 24. (Con...
6t5e30 12473 6 times 5 equals 30. (Con...
6t6e36 12474 6 times 6 equals 36. (Con...
7t2e14 12475 7 times 2 equals 14. (Con...
7t3e21 12476 7 times 3 equals 21. (Con...
7t4e28 12477 7 times 4 equals 28. (Con...
7t5e35 12478 7 times 5 equals 35. (Con...
7t6e42 12479 7 times 6 equals 42. (Con...
7t7e49 12480 7 times 7 equals 49. (Con...
8t2e16 12481 8 times 2 equals 16. (Con...
8t3e24 12482 8 times 3 equals 24. (Con...
8t4e32 12483 8 times 4 equals 32. (Con...
8t5e40 12484 8 times 5 equals 40. (Con...
8t6e48 12485 8 times 6 equals 48. (Con...
8t7e56 12486 8 times 7 equals 56. (Con...
8t8e64 12487 8 times 8 equals 64. (Con...
9t2e18 12488 9 times 2 equals 18. (Con...
9t3e27 12489 9 times 3 equals 27. (Con...
9t4e36 12490 9 times 4 equals 36. (Con...
9t5e45 12491 9 times 5 equals 45. (Con...
9t6e54 12492 9 times 6 equals 54. (Con...
9t7e63 12493 9 times 7 equals 63. (Con...
9t8e72 12494 9 times 8 equals 72. (Con...
9t9e81 12495 9 times 9 equals 81. (Con...
9t11e99 12496 9 times 11 equals 99. (Co...
9lt10 12497 9 is less than 10. (Contr...
8lt10 12498 8 is less than 10. (Contr...
7lt10 12499 7 is less than 10. (Contr...
6lt10 12500 6 is less than 10. (Contr...
5lt10 12501 5 is less than 10. (Contr...
4lt10 12502 4 is less than 10. (Contr...
3lt10 12503 3 is less than 10. (Contr...
2lt10 12504 2 is less than 10. (Contr...
1lt10 12505 1 is less than 10. (Contr...
decbin0 12506 Decompose base 4 into base...
decbin2 12507 Decompose base 4 into base...
decbin3 12508 Decompose base 4 into base...
halfthird 12509 Half minus a third. (Cont...
5recm6rec 12510 One fifth minus one sixth....
uzval 12513 The value of the upper int...
uzf 12514 The domain and range of th...
eluz1 12515 Membership in the upper se...
eluzel2 12516 Implication of membership ...
eluz2 12517 Membership in an upper set...
eluzmn 12518 Membership in an earlier u...
eluz1i 12519 Membership in an upper set...
eluzuzle 12520 An integer in an upper set...
eluzelz 12521 A member of an upper set o...
eluzelre 12522 A member of an upper set o...
eluzelcn 12523 A member of an upper set o...
eluzle 12524 Implication of membership ...
eluz 12525 Membership in an upper set...
uzid 12526 Membership of the least me...
uzidd 12527 Membership of the least me...
uzn0 12528 The upper integers are all...
uztrn 12529 Transitive law for sets of...
uztrn2 12530 Transitive law for sets of...
uzneg 12531 Contraposition law for upp...
uzssz 12532 An upper set of integers i...
uzssre 12533 An upper set of integers i...
uzss 12534 Subset relationship for tw...
uztric 12535 Totality of the ordering r...
uz11 12536 The upper integers functio...
eluzp1m1 12537 Membership in the next upp...
eluzp1l 12538 Strict ordering implied by...
eluzp1p1 12539 Membership in the next upp...
eluzaddi 12540 Membership in a later uppe...
eluzsubi 12541 Membership in an earlier u...
eluzadd 12542 Membership in a later uppe...
eluzsub 12543 Membership in an earlier u...
subeluzsub 12544 Membership of a difference...
uzm1 12545 Choices for an element of ...
uznn0sub 12546 The nonnegative difference...
uzin 12547 Intersection of two upper ...
uzp1 12548 Choices for an element of ...
nn0uz 12549 Nonnegative integers expre...
nnuz 12550 Positive integers expresse...
elnnuz 12551 A positive integer express...
elnn0uz 12552 A nonnegative integer expr...
eluz2nn 12553 An integer greater than or...
eluz4eluz2 12554 An integer greater than or...
eluz4nn 12555 An integer greater than or...
eluzge2nn0 12556 If an integer is greater t...
eluz2n0 12557 An integer greater than or...
uzuzle23 12558 An integer in the upper se...
eluzge3nn 12559 If an integer is greater t...
uz3m2nn 12560 An integer greater than or...
1eluzge0 12561 1 is an integer greater th...
2eluzge0 12562 2 is an integer greater th...
2eluzge1 12563 2 is an integer greater th...
uznnssnn 12564 The upper integers startin...
raluz 12565 Restricted universal quant...
raluz2 12566 Restricted universal quant...
rexuz 12567 Restricted existential qua...
rexuz2 12568 Restricted existential qua...
2rexuz 12569 Double existential quantif...
peano2uz 12570 Second Peano postulate for...
peano2uzs 12571 Second Peano postulate for...
peano2uzr 12572 Reversed second Peano axio...
uzaddcl 12573 Addition closure law for a...
nn0pzuz 12574 The sum of a nonnegative i...
uzind4 12575 Induction on the upper set...
uzind4ALT 12576 Induction on the upper set...
uzind4s 12577 Induction on the upper set...
uzind4s2 12578 Induction on the upper set...
uzind4i 12579 Induction on the upper int...
uzwo 12580 Well-ordering principle: a...
uzwo2 12581 Well-ordering principle: a...
nnwo 12582 Well-ordering principle: a...
nnwof 12583 Well-ordering principle: a...
nnwos 12584 Well-ordering principle: a...
indstr 12585 Strong Mathematical Induct...
eluznn0 12586 Membership in a nonnegativ...
eluznn 12587 Membership in a positive u...
eluz2b1 12588 Two ways to say "an intege...
eluz2gt1 12589 An integer greater than or...
eluz2b2 12590 Two ways to say "an intege...
eluz2b3 12591 Two ways to say "an intege...
uz2m1nn 12592 One less than an integer g...
1nuz2 12593 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12594 A positive integer is eith...
uz2mulcl 12595 Closure of multiplication ...
indstr2 12596 Strong Mathematical Induct...
uzinfi 12597 Extract the lower bound of...
nninf 12598 The infimum of the set of ...
nn0inf 12599 The infimum of the set of ...
infssuzle 12600 The infimum of a subset of...
infssuzcl 12601 The infimum of a subset of...
ublbneg 12602 The image under negation o...
eqreznegel 12603 Two ways to express the im...
supminf 12604 The supremum of a bounded-...
lbzbi 12605 If a set of reals is bound...
zsupss 12606 Any nonempty bounded subse...
suprzcl2 12607 The supremum of a bounded-...
suprzub 12608 The supremum of a bounded-...
uzsupss 12609 Any bounded subset of an u...
nn01to3 12610 A (nonnegative) integer be...
nn0ge2m1nnALT 12611 Alternate proof of ~ nn0ge...
uzwo3 12612 Well-ordering principle: a...
zmin 12613 There is a unique smallest...
zmax 12614 There is a unique largest ...
zbtwnre 12615 There is a unique integer ...
rebtwnz 12616 There is a unique greatest...
elq 12619 Membership in the set of r...
qmulz 12620 If ` A ` is rational, then...
znq 12621 The ratio of an integer an...
qre 12622 A rational number is a rea...
zq 12623 An integer is a rational n...
qred 12624 A rational number is a rea...
zssq 12625 The integers are a subset ...
nn0ssq 12626 The nonnegative integers a...
nnssq 12627 The positive integers are ...
qssre 12628 The rationals are a subset...
qsscn 12629 The rationals are a subset...
qex 12630 The set of rational number...
nnq 12631 A positive integer is rati...
qcn 12632 A rational number is a com...
qexALT 12633 Alternate proof of ~ qex ....
qaddcl 12634 Closure of addition of rat...
qnegcl 12635 Closure law for the negati...
qmulcl 12636 Closure of multiplication ...
qsubcl 12637 Closure of subtraction of ...
qreccl 12638 Closure of reciprocal of r...
qdivcl 12639 Closure of division of rat...
qrevaddcl 12640 Reverse closure law for ad...
nnrecq 12641 The reciprocal of a positi...
irradd 12642 The sum of an irrational n...
irrmul 12643 The product of an irration...
elpq 12644 A positive rational is the...
elpqb 12645 A class is a positive rati...
rpnnen1lem2 12646 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12647 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12648 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12649 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12650 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12651 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12652 One half of ~ rpnnen , whe...
reexALT 12653 Alternate proof of ~ reex ...
cnref1o 12654 There is a natural one-to-...
cnexALT 12655 The set of complex numbers...
xrex 12656 The set of extended reals ...
addex 12657 The addition operation is ...
mulex 12658 The multiplication operati...
elrp 12661 Membership in the set of p...
elrpii 12662 Membership in the set of p...
1rp 12663 1 is a positive real. (Co...
2rp 12664 2 is a positive real. (Co...
3rp 12665 3 is a positive real. (Co...
rpssre 12666 The positive reals are a s...
rpre 12667 A positive real is a real....
rpxr 12668 A positive real is an exte...
rpcn 12669 A positive real is a compl...
nnrp 12670 A positive integer is a po...
rpgt0 12671 A positive real is greater...
rpge0 12672 A positive real is greater...
rpregt0 12673 A positive real is a posit...
rprege0 12674 A positive real is a nonne...
rpne0 12675 A positive real is nonzero...
rprene0 12676 A positive real is a nonze...
rpcnne0 12677 A positive real is a nonze...
rpcndif0 12678 A positive real number is ...
ralrp 12679 Quantification over positi...
rexrp 12680 Quantification over positi...
rpaddcl 12681 Closure law for addition o...
rpmulcl 12682 Closure law for multiplica...
rpmtmip 12683 "Minus times minus is plus...
rpdivcl 12684 Closure law for division o...
rpreccl 12685 Closure law for reciprocat...
rphalfcl 12686 Closure law for half of a ...
rpgecl 12687 A number greater than or e...
rphalflt 12688 Half of a positive real is...
rerpdivcl 12689 Closure law for division o...
ge0p1rp 12690 A nonnegative number plus ...
rpneg 12691 Either a nonzero real or i...
negelrp 12692 Elementhood of a negation ...
negelrpd 12693 The negation of a negative...
0nrp 12694 Zero is not a positive rea...
ltsubrp 12695 Subtracting a positive rea...
ltaddrp 12696 Adding a positive number t...
difrp 12697 Two ways to say one number...
elrpd 12698 Membership in the set of p...
nnrpd 12699 A positive integer is a po...
zgt1rpn0n1 12700 An integer greater than 1 ...
rpred 12701 A positive real is a real....
rpxrd 12702 A positive real is an exte...
rpcnd 12703 A positive real is a compl...
rpgt0d 12704 A positive real is greater...
rpge0d 12705 A positive real is greater...
rpne0d 12706 A positive real is nonzero...
rpregt0d 12707 A positive real is real an...
rprege0d 12708 A positive real is real an...
rprene0d 12709 A positive real is a nonze...
rpcnne0d 12710 A positive real is a nonze...
rpreccld 12711 Closure law for reciprocat...
rprecred 12712 Closure law for reciprocat...
rphalfcld 12713 Closure law for half of a ...
reclt1d 12714 The reciprocal of a positi...
recgt1d 12715 The reciprocal of a positi...
rpaddcld 12716 Closure law for addition o...
rpmulcld 12717 Closure law for multiplica...
rpdivcld 12718 Closure law for division o...
ltrecd 12719 The reciprocal of both sid...
lerecd 12720 The reciprocal of both sid...
ltrec1d 12721 Reciprocal swap in a 'less...
lerec2d 12722 Reciprocal swap in a 'less...
lediv2ad 12723 Division of both sides of ...
ltdiv2d 12724 Division of a positive num...
lediv2d 12725 Division of a positive num...
ledivdivd 12726 Invert ratios of positive ...
divge1 12727 The ratio of a number over...
divlt1lt 12728 A real number divided by a...
divle1le 12729 A real number divided by a...
ledivge1le 12730 If a number is less than o...
ge0p1rpd 12731 A nonnegative number plus ...
rerpdivcld 12732 Closure law for division o...
ltsubrpd 12733 Subtracting a positive rea...
ltaddrpd 12734 Adding a positive number t...
ltaddrp2d 12735 Adding a positive number t...
ltmulgt11d 12736 Multiplication by a number...
ltmulgt12d 12737 Multiplication by a number...
gt0divd 12738 Division of a positive num...
ge0divd 12739 Division of a nonnegative ...
rpgecld 12740 A number greater than or e...
divge0d 12741 The ratio of nonnegative a...
ltmul1d 12742 The ratio of nonnegative a...
ltmul2d 12743 Multiplication of both sid...
lemul1d 12744 Multiplication of both sid...
lemul2d 12745 Multiplication of both sid...
ltdiv1d 12746 Division of both sides of ...
lediv1d 12747 Division of both sides of ...
ltmuldivd 12748 'Less than' relationship b...
ltmuldiv2d 12749 'Less than' relationship b...
lemuldivd 12750 'Less than or equal to' re...
lemuldiv2d 12751 'Less than or equal to' re...
ltdivmuld 12752 'Less than' relationship b...
ltdivmul2d 12753 'Less than' relationship b...
ledivmuld 12754 'Less than or equal to' re...
ledivmul2d 12755 'Less than or equal to' re...
ltmul1dd 12756 The ratio of nonnegative a...
ltmul2dd 12757 Multiplication of both sid...
ltdiv1dd 12758 Division of both sides of ...
lediv1dd 12759 Division of both sides of ...
lediv12ad 12760 Comparison of ratio of two...
mul2lt0rlt0 12761 If the result of a multipl...
mul2lt0rgt0 12762 If the result of a multipl...
mul2lt0llt0 12763 If the result of a multipl...
mul2lt0lgt0 12764 If the result of a multipl...
mul2lt0bi 12765 If the result of a multipl...
prodge0rd 12766 Infer that a multiplicand ...
prodge0ld 12767 Infer that a multiplier is...
ltdiv23d 12768 Swap denominator with othe...
lediv23d 12769 Swap denominator with othe...
lt2mul2divd 12770 The ratio of nonnegative a...
nnledivrp 12771 Division of a positive int...
nn0ledivnn 12772 Division of a nonnegative ...
addlelt 12773 If the sum of a real numbe...
ltxr 12780 The 'less than' binary rel...
elxr 12781 Membership in the set of e...
xrnemnf 12782 An extended real other tha...
xrnepnf 12783 An extended real other tha...
xrltnr 12784 The extended real 'less th...
ltpnf 12785 Any (finite) real is less ...
ltpnfd 12786 Any (finite) real is less ...
0ltpnf 12787 Zero is less than plus inf...
mnflt 12788 Minus infinity is less tha...
mnfltd 12789 Minus infinity is less tha...
mnflt0 12790 Minus infinity is less tha...
mnfltpnf 12791 Minus infinity is less tha...
mnfltxr 12792 Minus infinity is less tha...
pnfnlt 12793 No extended real is greate...
nltmnf 12794 No extended real is less t...
pnfge 12795 Plus infinity is an upper ...
xnn0n0n1ge2b 12796 An extended nonnegative in...
0lepnf 12797 0 less than or equal to po...
xnn0ge0 12798 An extended nonnegative in...
mnfle 12799 Minus infinity is less tha...
xrltnsym 12800 Ordering on the extended r...
xrltnsym2 12801 'Less than' is antisymmetr...
xrlttri 12802 Ordering on the extended r...
xrlttr 12803 Ordering on the extended r...
xrltso 12804 'Less than' is a strict or...
xrlttri2 12805 Trichotomy law for 'less t...
xrlttri3 12806 Trichotomy law for 'less t...
xrleloe 12807 'Less than or equal' expre...
xrleltne 12808 'Less than or equal to' im...
xrltlen 12809 'Less than' expressed in t...
dfle2 12810 Alternative definition of ...
dflt2 12811 Alternative definition of ...
xrltle 12812 'Less than' implies 'less ...
xrltled 12813 'Less than' implies 'less ...
xrleid 12814 'Less than or equal to' is...
xrleidd 12815 'Less than or equal to' is...
xrletri 12816 Trichotomy law for extende...
xrletri3 12817 Trichotomy law for extende...
xrletrid 12818 Trichotomy law for extende...
xrlelttr 12819 Transitive law for orderin...
xrltletr 12820 Transitive law for orderin...
xrletr 12821 Transitive law for orderin...
xrlttrd 12822 Transitive law for orderin...
xrlelttrd 12823 Transitive law for orderin...
xrltletrd 12824 Transitive law for orderin...
xrletrd 12825 Transitive law for orderin...
xrltne 12826 'Less than' implies not eq...
nltpnft 12827 An extended real is not le...
xgepnf 12828 An extended real which is ...
ngtmnft 12829 An extended real is not gr...
xlemnf 12830 An extended real which is ...
xrrebnd 12831 An extended real is real i...
xrre 12832 A way of proving that an e...
xrre2 12833 An extended real between t...
xrre3 12834 A way of proving that an e...
ge0gtmnf 12835 A nonnegative extended rea...
ge0nemnf 12836 A nonnegative extended rea...
xrrege0 12837 A nonnegative extended rea...
xrmax1 12838 An extended real is less t...
xrmax2 12839 An extended real is less t...
xrmin1 12840 The minimum of two extende...
xrmin2 12841 The minimum of two extende...
xrmaxeq 12842 The maximum of two extende...
xrmineq 12843 The minimum of two extende...
xrmaxlt 12844 Two ways of saying the max...
xrltmin 12845 Two ways of saying an exte...
xrmaxle 12846 Two ways of saying the max...
xrlemin 12847 Two ways of saying a numbe...
max1 12848 A number is less than or e...
max1ALT 12849 A number is less than or e...
max2 12850 A number is less than or e...
2resupmax 12851 The supremum of two real n...
min1 12852 The minimum of two numbers...
min2 12853 The minimum of two numbers...
maxle 12854 Two ways of saying the max...
lemin 12855 Two ways of saying a numbe...
maxlt 12856 Two ways of saying the max...
ltmin 12857 Two ways of saying a numbe...
lemaxle 12858 A real number which is les...
max0sub 12859 Decompose a real number in...
ifle 12860 An if statement transforms...
z2ge 12861 There exists an integer gr...
qbtwnre 12862 The rational numbers are d...
qbtwnxr 12863 The rational numbers are d...
qsqueeze 12864 If a nonnegative real is l...
qextltlem 12865 Lemma for ~ qextlt and qex...
qextlt 12866 An extensionality-like pro...
qextle 12867 An extensionality-like pro...
xralrple 12868 Show that ` A ` is less th...
alrple 12869 Show that ` A ` is less th...
xnegeq 12870 Equality of two extended n...
xnegex 12871 A negative extended real e...
xnegpnf 12872 Minus ` +oo ` . Remark of...
xnegmnf 12873 Minus ` -oo ` . Remark of...
rexneg 12874 Minus a real number. Rema...
xneg0 12875 The negative of zero. (Co...
xnegcl 12876 Closure of extended real n...
xnegneg 12877 Extended real version of ~...
xneg11 12878 Extended real version of ~...
xltnegi 12879 Forward direction of ~ xlt...
xltneg 12880 Extended real version of ~...
xleneg 12881 Extended real version of ~...
xlt0neg1 12882 Extended real version of ~...
xlt0neg2 12883 Extended real version of ~...
xle0neg1 12884 Extended real version of ~...
xle0neg2 12885 Extended real version of ~...
xaddval 12886 Value of the extended real...
xaddf 12887 The extended real addition...
xmulval 12888 Value of the extended real...
xaddpnf1 12889 Addition of positive infin...
xaddpnf2 12890 Addition of positive infin...
xaddmnf1 12891 Addition of negative infin...
xaddmnf2 12892 Addition of negative infin...
pnfaddmnf 12893 Addition of positive and n...
mnfaddpnf 12894 Addition of negative and p...
rexadd 12895 The extended real addition...
rexsub 12896 Extended real subtraction ...
rexaddd 12897 The extended real addition...
xnn0xaddcl 12898 The extended nonnegative i...
xaddnemnf 12899 Closure of extended real a...
xaddnepnf 12900 Closure of extended real a...
xnegid 12901 Extended real version of ~...
xaddcl 12902 The extended real addition...
xaddcom 12903 The extended real addition...
xaddid1 12904 Extended real version of ~...
xaddid2 12905 Extended real version of ~...
xaddid1d 12906 ` 0 ` is a right identity ...
xnn0lem1lt 12907 Extended nonnegative integ...
xnn0lenn0nn0 12908 An extended nonnegative in...
xnn0le2is012 12909 An extended nonnegative in...
xnn0xadd0 12910 The sum of two extended no...
xnegdi 12911 Extended real version of ~...
xaddass 12912 Associativity of extended ...
xaddass2 12913 Associativity of extended ...
xpncan 12914 Extended real version of ~...
xnpcan 12915 Extended real version of ~...
xleadd1a 12916 Extended real version of ~...
xleadd2a 12917 Commuted form of ~ xleadd1...
xleadd1 12918 Weakened version of ~ xlea...
xltadd1 12919 Extended real version of ~...
xltadd2 12920 Extended real version of ~...
xaddge0 12921 The sum of nonnegative ext...
xle2add 12922 Extended real version of ~...
xlt2add 12923 Extended real version of ~...
xsubge0 12924 Extended real version of ~...
xposdif 12925 Extended real version of ~...
xlesubadd 12926 Under certain conditions, ...
xmullem 12927 Lemma for ~ rexmul . (Con...
xmullem2 12928 Lemma for ~ xmulneg1 . (C...
xmulcom 12929 Extended real multiplicati...
xmul01 12930 Extended real version of ~...
xmul02 12931 Extended real version of ~...
xmulneg1 12932 Extended real version of ~...
xmulneg2 12933 Extended real version of ~...
rexmul 12934 The extended real multipli...
xmulf 12935 The extended real multipli...
xmulcl 12936 Closure of extended real m...
xmulpnf1 12937 Multiplication by plus inf...
xmulpnf2 12938 Multiplication by plus inf...
xmulmnf1 12939 Multiplication by minus in...
xmulmnf2 12940 Multiplication by minus in...
xmulpnf1n 12941 Multiplication by plus inf...
xmulid1 12942 Extended real version of ~...
xmulid2 12943 Extended real version of ~...
xmulm1 12944 Extended real version of ~...
xmulasslem2 12945 Lemma for ~ xmulass . (Co...
xmulgt0 12946 Extended real version of ~...
xmulge0 12947 Extended real version of ~...
xmulasslem 12948 Lemma for ~ xmulass . (Co...
xmulasslem3 12949 Lemma for ~ xmulass . (Co...
xmulass 12950 Associativity of the exten...
xlemul1a 12951 Extended real version of ~...
xlemul2a 12952 Extended real version of ~...
xlemul1 12953 Extended real version of ~...
xlemul2 12954 Extended real version of ~...
xltmul1 12955 Extended real version of ~...
xltmul2 12956 Extended real version of ~...
xadddilem 12957 Lemma for ~ xadddi . (Con...
xadddi 12958 Distributive property for ...
xadddir 12959 Commuted version of ~ xadd...
xadddi2 12960 The assumption that the mu...
xadddi2r 12961 Commuted version of ~ xadd...
x2times 12962 Extended real version of ~...
xnegcld 12963 Closure of extended real n...
xaddcld 12964 The extended real addition...
xmulcld 12965 Closure of extended real m...
xadd4d 12966 Rearrangement of 4 terms i...
xnn0add4d 12967 Rearrangement of 4 terms i...
xrsupexmnf 12968 Adding minus infinity to a...
xrinfmexpnf 12969 Adding plus infinity to a ...
xrsupsslem 12970 Lemma for ~ xrsupss . (Co...
xrinfmsslem 12971 Lemma for ~ xrinfmss . (C...
xrsupss 12972 Any subset of extended rea...
xrinfmss 12973 Any subset of extended rea...
xrinfmss2 12974 Any subset of extended rea...
xrub 12975 By quantifying only over r...
supxr 12976 The supremum of a set of e...
supxr2 12977 The supremum of a set of e...
supxrcl 12978 The supremum of an arbitra...
supxrun 12979 The supremum of the union ...
supxrmnf 12980 Adding minus infinity to a...
supxrpnf 12981 The supremum of a set of e...
supxrunb1 12982 The supremum of an unbound...
supxrunb2 12983 The supremum of an unbound...
supxrbnd1 12984 The supremum of a bounded-...
supxrbnd2 12985 The supremum of a bounded-...
xrsup0 12986 The supremum of an empty s...
supxrub 12987 A member of a set of exten...
supxrlub 12988 The supremum of a set of e...
supxrleub 12989 The supremum of a set of e...
supxrre 12990 The real and extended real...
supxrbnd 12991 The supremum of a bounded-...
supxrgtmnf 12992 The supremum of a nonempty...
supxrre1 12993 The supremum of a nonempty...
supxrre2 12994 The supremum of a nonempty...
supxrss 12995 Smaller sets of extended r...
infxrcl 12996 The infimum of an arbitrar...
infxrlb 12997 A member of a set of exten...
infxrgelb 12998 The infimum of a set of ex...
infxrre 12999 The real and extended real...
infxrmnf 13000 The infinimum of a set of ...
xrinf0 13001 The infimum of the empty s...
infxrss 13002 Larger sets of extended re...
reltre 13003 For all real numbers there...
rpltrp 13004 For all positive real numb...
reltxrnmnf 13005 For all extended real numb...
infmremnf 13006 The infimum of the reals i...
infmrp1 13007 The infimum of the positiv...
ixxval 13016 Value of the interval func...
elixx1 13017 Membership in an interval ...
ixxf 13018 The set of intervals of ex...
ixxex 13019 The set of intervals of ex...
ixxssxr 13020 The set of intervals of ex...
elixx3g 13021 Membership in a set of ope...
ixxssixx 13022 An interval is a subset of...
ixxdisj 13023 Split an interval into dis...
ixxun 13024 Split an interval into two...
ixxin 13025 Intersection of two interv...
ixxss1 13026 Subset relationship for in...
ixxss2 13027 Subset relationship for in...
ixxss12 13028 Subset relationship for in...
ixxub 13029 Extract the upper bound of...
ixxlb 13030 Extract the lower bound of...
iooex 13031 The set of open intervals ...
iooval 13032 Value of the open interval...
ioo0 13033 An empty open interval of ...
ioon0 13034 An open interval of extend...
ndmioo 13035 The open interval function...
iooid 13036 An open interval with iden...
elioo3g 13037 Membership in a set of ope...
elioore 13038 A member of an open interv...
lbioo 13039 An open interval does not ...
ubioo 13040 An open interval does not ...
iooval2 13041 Value of the open interval...
iooin 13042 Intersection of two open i...
iooss1 13043 Subset relationship for op...
iooss2 13044 Subset relationship for op...
iocval 13045 Value of the open-below, c...
icoval 13046 Value of the closed-below,...
iccval 13047 Value of the closed interv...
elioo1 13048 Membership in an open inte...
elioo2 13049 Membership in an open inte...
elioc1 13050 Membership in an open-belo...
elico1 13051 Membership in a closed-bel...
elicc1 13052 Membership in a closed int...
iccid 13053 A closed interval with ide...
ico0 13054 An empty open interval of ...
ioc0 13055 An empty open interval of ...
icc0 13056 An empty closed interval o...
dfrp2 13057 Alternate definition of th...
elicod 13058 Membership in a left-close...
icogelb 13059 An element of a left-close...
elicore 13060 A member of a left-closed ...
ubioc1 13061 The upper bound belongs to...
lbico1 13062 The lower bound belongs to...
iccleub 13063 An element of a closed int...
iccgelb 13064 An element of a closed int...
elioo5 13065 Membership in an open inte...
eliooxr 13066 A nonempty open interval s...
eliooord 13067 Ordering implied by a memb...
elioo4g 13068 Membership in an open inte...
ioossre 13069 An open interval is a set ...
ioosscn 13070 An open interval is a set ...
elioc2 13071 Membership in an open-belo...
elico2 13072 Membership in a closed-bel...
elicc2 13073 Membership in a closed rea...
elicc2i 13074 Inference for membership i...
elicc4 13075 Membership in a closed rea...
iccss 13076 Condition for a closed int...
iccssioo 13077 Condition for a closed int...
icossico 13078 Condition for a closed-bel...
iccss2 13079 Condition for a closed int...
iccssico 13080 Condition for a closed int...
iccssioo2 13081 Condition for a closed int...
iccssico2 13082 Condition for a closed int...
ioomax 13083 The open interval from min...
iccmax 13084 The closed interval from m...
ioopos 13085 The set of positive reals ...
ioorp 13086 The set of positive reals ...
iooshf 13087 Shift the arguments of the...
iocssre 13088 A closed-above interval wi...
icossre 13089 A closed-below interval wi...
iccssre 13090 A closed real interval is ...
iccssxr 13091 A closed interval is a set...
iocssxr 13092 An open-below, closed-abov...
icossxr 13093 A closed-below, open-above...
ioossicc 13094 An open interval is a subs...
iccssred 13095 A closed real interval is ...
eliccxr 13096 A member of a closed inter...
icossicc 13097 A closed-below, open-above...
iocssicc 13098 A closed-above, open-below...
ioossico 13099 An open interval is a subs...
iocssioo 13100 Condition for a closed int...
icossioo 13101 Condition for a closed int...
ioossioo 13102 Condition for an open inte...
iccsupr 13103 A nonempty subset of a clo...
elioopnf 13104 Membership in an unbounded...
elioomnf 13105 Membership in an unbounded...
elicopnf 13106 Membership in a closed unb...
repos 13107 Two ways of saying that a ...
ioof 13108 The set of open intervals ...
iccf 13109 The set of closed interval...
unirnioo 13110 The union of the range of ...
dfioo2 13111 Alternate definition of th...
ioorebas 13112 Open intervals are element...
xrge0neqmnf 13113 A nonnegative extended rea...
xrge0nre 13114 An extended real which is ...
elrege0 13115 The predicate "is a nonneg...
nn0rp0 13116 A nonnegative integer is a...
rge0ssre 13117 Nonnegative real numbers a...
elxrge0 13118 Elementhood in the set of ...
0e0icopnf 13119 0 is a member of ` ( 0 [,)...
0e0iccpnf 13120 0 is a member of ` ( 0 [,]...
ge0addcl 13121 The nonnegative reals are ...
ge0mulcl 13122 The nonnegative reals are ...
ge0xaddcl 13123 The nonnegative reals are ...
ge0xmulcl 13124 The nonnegative extended r...
lbicc2 13125 The lower bound of a close...
ubicc2 13126 The upper bound of a close...
elicc01 13127 Membership in the closed r...
elunitrn 13128 The closed unit interval i...
elunitcn 13129 The closed unit interval i...
0elunit 13130 Zero is an element of the ...
1elunit 13131 One is an element of the c...
iooneg 13132 Membership in a negated op...
iccneg 13133 Membership in a negated cl...
icoshft 13134 A shifted real is a member...
icoshftf1o 13135 Shifting a closed-below, o...
icoun 13136 The union of two adjacent ...
icodisj 13137 Adjacent left-closed right...
ioounsn 13138 The union of an open inter...
snunioo 13139 The closure of one end of ...
snunico 13140 The closure of the open en...
snunioc 13141 The closure of the open en...
prunioo 13142 The closure of an open rea...
ioodisj 13143 If the upper bound of one ...
ioojoin 13144 Join two open intervals to...
difreicc 13145 The class difference of ` ...
iccsplit 13146 Split a closed interval in...
iccshftr 13147 Membership in a shifted in...
iccshftri 13148 Membership in a shifted in...
iccshftl 13149 Membership in a shifted in...
iccshftli 13150 Membership in a shifted in...
iccdil 13151 Membership in a dilated in...
iccdili 13152 Membership in a dilated in...
icccntr 13153 Membership in a contracted...
icccntri 13154 Membership in a contracted...
divelunit 13155 A condition for a ratio to...
lincmb01cmp 13156 A linear combination of tw...
iccf1o 13157 Describe a bijection from ...
iccen 13158 Any nontrivial closed inte...
xov1plusxeqvd 13159 A complex number ` X ` is ...
unitssre 13160 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13161 The closed unit interval i...
supicc 13162 Supremum of a bounded set ...
supiccub 13163 The supremum of a bounded ...
supicclub 13164 The supremum of a bounded ...
supicclub2 13165 The supremum of a bounded ...
zltaddlt1le 13166 The sum of an integer and ...
xnn0xrge0 13167 An extended nonnegative in...
fzval 13170 The value of a finite set ...
fzval2 13171 An alternative way of expr...
fzf 13172 Establish the domain and c...
elfz1 13173 Membership in a finite set...
elfz 13174 Membership in a finite set...
elfz2 13175 Membership in a finite set...
elfzd 13176 Membership in a finite set...
elfz5 13177 Membership in a finite set...
elfz4 13178 Membership in a finite set...
elfzuzb 13179 Membership in a finite set...
eluzfz 13180 Membership in a finite set...
elfzuz 13181 A member of a finite set o...
elfzuz3 13182 Membership in a finite set...
elfzel2 13183 Membership in a finite set...
elfzel1 13184 Membership in a finite set...
elfzelz 13185 A member of a finite set o...
elfzelzd 13186 A member of a finite set o...
fzssz 13187 A finite sequence of integ...
elfzle1 13188 A member of a finite set o...
elfzle2 13189 A member of a finite set o...
elfzuz2 13190 Implication of membership ...
elfzle3 13191 Membership in a finite set...
eluzfz1 13192 Membership in a finite set...
eluzfz2 13193 Membership in a finite set...
eluzfz2b 13194 Membership in a finite set...
elfz3 13195 Membership in a finite set...
elfz1eq 13196 Membership in a finite set...
elfzubelfz 13197 If there is a member in a ...
peano2fzr 13198 A Peano-postulate-like the...
fzn0 13199 Properties of a finite int...
fz0 13200 A finite set of sequential...
fzn 13201 A finite set of sequential...
fzen 13202 A shifted finite set of se...
fz1n 13203 A 1-based finite set of se...
0nelfz1 13204 0 is not an element of a f...
0fz1 13205 Two ways to say a finite 1...
fz10 13206 There are no integers betw...
uzsubsubfz 13207 Membership of an integer g...
uzsubsubfz1 13208 Membership of an integer g...
ige3m2fz 13209 Membership of an integer g...
fzsplit2 13210 Split a finite interval of...
fzsplit 13211 Split a finite interval of...
fzdisj 13212 Condition for two finite i...
fz01en 13213 0-based and 1-based finite...
elfznn 13214 A member of a finite set o...
elfz1end 13215 A nonempty finite range of...
fz1ssnn 13216 A finite set of positive i...
fznn0sub 13217 Subtraction closure for a ...
fzmmmeqm 13218 Subtracting the difference...
fzaddel 13219 Membership of a sum in a f...
fzadd2 13220 Membership of a sum in a f...
fzsubel 13221 Membership of a difference...
fzopth 13222 A finite set of sequential...
fzass4 13223 Two ways to express a nond...
fzss1 13224 Subset relationship for fi...
fzss2 13225 Subset relationship for fi...
fzssuz 13226 A finite set of sequential...
fzsn 13227 A finite interval of integ...
fzssp1 13228 Subset relationship for fi...
fzssnn 13229 Finite sets of sequential ...
ssfzunsnext 13230 A subset of a finite seque...
ssfzunsn 13231 A subset of a finite seque...
fzsuc 13232 Join a successor to the en...
fzpred 13233 Join a predecessor to the ...
fzpreddisj 13234 A finite set of sequential...
elfzp1 13235 Append an element to a fin...
fzp1ss 13236 Subset relationship for fi...
fzelp1 13237 Membership in a set of seq...
fzp1elp1 13238 Add one to an element of a...
fznatpl1 13239 Shift membership in a fini...
fzpr 13240 A finite interval of integ...
fztp 13241 A finite interval of integ...
fz12pr 13242 An integer range between 1...
fzsuc2 13243 Join a successor to the en...
fzp1disj 13244 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13245 Remove a successor from th...
fzprval 13246 Two ways of defining the f...
fztpval 13247 Two ways of defining the f...
fzrev 13248 Reversal of start and end ...
fzrev2 13249 Reversal of start and end ...
fzrev2i 13250 Reversal of start and end ...
fzrev3 13251 The "complement" of a memb...
fzrev3i 13252 The "complement" of a memb...
fznn 13253 Finite set of sequential i...
elfz1b 13254 Membership in a 1-based fi...
elfz1uz 13255 Membership in a 1-based fi...
elfzm11 13256 Membership in a finite set...
uzsplit 13257 Express an upper integer s...
uzdisj 13258 The first ` N ` elements o...
fseq1p1m1 13259 Add/remove an item to/from...
fseq1m1p1 13260 Add/remove an item to/from...
fz1sbc 13261 Quantification over a one-...
elfzp1b 13262 An integer is a member of ...
elfzm1b 13263 An integer is a member of ...
elfzp12 13264 Options for membership in ...
fzm1 13265 Choices for an element of ...
fzneuz 13266 No finite set of sequentia...
fznuz 13267 Disjointness of the upper ...
uznfz 13268 Disjointness of the upper ...
fzp1nel 13269 One plus the upper bound o...
fzrevral 13270 Reversal of scanning order...
fzrevral2 13271 Reversal of scanning order...
fzrevral3 13272 Reversal of scanning order...
fzshftral 13273 Shift the scanning order i...
ige2m1fz1 13274 Membership of an integer g...
ige2m1fz 13275 Membership in a 0-based fi...
elfz2nn0 13276 Membership in a finite set...
fznn0 13277 Characterization of a fini...
elfznn0 13278 A member of a finite set o...
elfz3nn0 13279 The upper bound of a nonem...
fz0ssnn0 13280 Finite sets of sequential ...
fz1ssfz0 13281 Subset relationship for fi...
0elfz 13282 0 is an element of a finit...
nn0fz0 13283 A nonnegative integer is a...
elfz0add 13284 An element of a finite set...
fz0sn 13285 An integer range from 0 to...
fz0tp 13286 An integer range from 0 to...
fz0to3un2pr 13287 An integer range from 0 to...
fz0to4untppr 13288 An integer range from 0 to...
elfz0ubfz0 13289 An element of a finite set...
elfz0fzfz0 13290 A member of a finite set o...
fz0fzelfz0 13291 If a member of a finite se...
fznn0sub2 13292 Subtraction closure for a ...
uzsubfz0 13293 Membership of an integer g...
fz0fzdiffz0 13294 The difference of an integ...
elfzmlbm 13295 Subtracting the lower boun...
elfzmlbp 13296 Subtracting the lower boun...
fzctr 13297 Lemma for theorems about t...
difelfzle 13298 The difference of two inte...
difelfznle 13299 The difference of two inte...
nn0split 13300 Express the set of nonnega...
nn0disj 13301 The first ` N + 1 ` elemen...
fz0sn0fz1 13302 A finite set of sequential...
fvffz0 13303 The function value of a fu...
1fv 13304 A function on a singleton....
4fvwrd4 13305 The first four function va...
2ffzeq 13306 Two functions over 0-based...
preduz 13307 The value of the predecess...
prednn 13308 The value of the predecess...
prednn0 13309 The value of the predecess...
predfz 13310 Calculate the predecessor ...
fzof 13313 Functionality of the half-...
elfzoel1 13314 Reverse closure for half-o...
elfzoel2 13315 Reverse closure for half-o...
elfzoelz 13316 Reverse closure for half-o...
fzoval 13317 Value of the half-open int...
elfzo 13318 Membership in a half-open ...
elfzo2 13319 Membership in a half-open ...
elfzouz 13320 Membership in a half-open ...
nelfzo 13321 An integer not being a mem...
fzolb 13322 The left endpoint of a hal...
fzolb2 13323 The left endpoint of a hal...
elfzole1 13324 A member in a half-open in...
elfzolt2 13325 A member in a half-open in...
elfzolt3 13326 Membership in a half-open ...
elfzolt2b 13327 A member in a half-open in...
elfzolt3b 13328 Membership in a half-open ...
fzonel 13329 A half-open range does not...
elfzouz2 13330 The upper bound of a half-...
elfzofz 13331 A half-open range is conta...
elfzo3 13332 Express membership in a ha...
fzon0 13333 A half-open integer interv...
fzossfz 13334 A half-open range is conta...
fzossz 13335 A half-open integer interv...
fzon 13336 A half-open set of sequent...
fzo0n 13337 A half-open range of nonne...
fzonlt0 13338 A half-open integer range ...
fzo0 13339 Half-open sets with equal ...
fzonnsub 13340 If ` K < N ` then ` N - K ...
fzonnsub2 13341 If ` M < N ` then ` N - M ...
fzoss1 13342 Subset relationship for ha...
fzoss2 13343 Subset relationship for ha...
fzossrbm1 13344 Subset of a half-open rang...
fzo0ss1 13345 Subset relationship for ha...
fzossnn0 13346 A half-open integer range ...
fzospliti 13347 One direction of splitting...
fzosplit 13348 Split a half-open integer ...
fzodisj 13349 Abutting half-open integer...
fzouzsplit 13350 Split an upper integer set...
fzouzdisj 13351 A half-open integer range ...
fzoun 13352 A half-open integer range ...
fzodisjsn 13353 A half-open integer range ...
prinfzo0 13354 The intersection of a half...
lbfzo0 13355 An integer is strictly gre...
elfzo0 13356 Membership in a half-open ...
elfzo0z 13357 Membership in a half-open ...
nn0p1elfzo 13358 A nonnegative integer incr...
elfzo0le 13359 A member in a half-open ra...
elfzonn0 13360 A member of a half-open ra...
fzonmapblen 13361 The result of subtracting ...
fzofzim 13362 If a nonnegative integer i...
fz1fzo0m1 13363 Translation of one between...
fzossnn 13364 Half-open integer ranges s...
elfzo1 13365 Membership in a half-open ...
fzo1fzo0n0 13366 An integer between 1 and a...
fzo0n0 13367 A half-open integer range ...
fzoaddel 13368 Translate membership in a ...
fzo0addel 13369 Translate membership in a ...
fzo0addelr 13370 Translate membership in a ...
fzoaddel2 13371 Translate membership in a ...
elfzoext 13372 Membership of an integer i...
elincfzoext 13373 Membership of an increased...
fzosubel 13374 Translate membership in a ...
fzosubel2 13375 Membership in a translated...
fzosubel3 13376 Membership in a translated...
eluzgtdifelfzo 13377 Membership of the differen...
ige2m2fzo 13378 Membership of an integer g...
fzocatel 13379 Translate membership in a ...
ubmelfzo 13380 If an integer in a 1-based...
elfzodifsumelfzo 13381 If an integer is in a half...
elfzom1elp1fzo 13382 Membership of an integer i...
elfzom1elfzo 13383 Membership in a half-open ...
fzval3 13384 Expressing a closed intege...
fz0add1fz1 13385 Translate membership in a ...
fzosn 13386 Expressing a singleton as ...
elfzomin 13387 Membership of an integer i...
zpnn0elfzo 13388 Membership of an integer i...
zpnn0elfzo1 13389 Membership of an integer i...
fzosplitsnm1 13390 Removing a singleton from ...
elfzonlteqm1 13391 If an element of a half-op...
fzonn0p1 13392 A nonnegative integer is e...
fzossfzop1 13393 A half-open range of nonne...
fzonn0p1p1 13394 If a nonnegative integer i...
elfzom1p1elfzo 13395 Increasing an element of a...
fzo0ssnn0 13396 Half-open integer ranges s...
fzo01 13397 Expressing the singleton o...
fzo12sn 13398 A 1-based half-open intege...
fzo13pr 13399 A 1-based half-open intege...
fzo0to2pr 13400 A half-open integer range ...
fzo0to3tp 13401 A half-open integer range ...
fzo0to42pr 13402 A half-open integer range ...
fzo1to4tp 13403 A half-open integer range ...
fzo0sn0fzo1 13404 A half-open range of nonne...
elfzo0l 13405 A member of a half-open ra...
fzoend 13406 The endpoint of a half-ope...
fzo0end 13407 The endpoint of a zero-bas...
ssfzo12 13408 Subset relationship for ha...
ssfzoulel 13409 If a half-open integer ran...
ssfzo12bi 13410 Subset relationship for ha...
ubmelm1fzo 13411 The result of subtracting ...
fzofzp1 13412 If a point is in a half-op...
fzofzp1b 13413 If a point is in a half-op...
elfzom1b 13414 An integer is a member of ...
elfzom1elp1fzo1 13415 Membership of a nonnegativ...
elfzo1elm1fzo0 13416 Membership of a positive i...
elfzonelfzo 13417 If an element of a half-op...
fzonfzoufzol 13418 If an element of a half-op...
elfzomelpfzo 13419 An integer increased by an...
elfznelfzo 13420 A value in a finite set of...
elfznelfzob 13421 A value in a finite set of...
peano2fzor 13422 A Peano-postulate-like the...
fzosplitsn 13423 Extending a half-open rang...
fzosplitpr 13424 Extending a half-open inte...
fzosplitprm1 13425 Extending a half-open inte...
fzosplitsni 13426 Membership in a half-open ...
fzisfzounsn 13427 A finite interval of integ...
elfzr 13428 A member of a finite inter...
elfzlmr 13429 A member of a finite inter...
elfz0lmr 13430 A member of a finite inter...
fzostep1 13431 Two possibilities for a nu...
fzoshftral 13432 Shift the scanning order i...
fzind2 13433 Induction on the integers ...
fvinim0ffz 13434 The function values for th...
injresinjlem 13435 Lemma for ~ injresinj . (...
injresinj 13436 A function whose restricti...
subfzo0 13437 The difference between two...
flval 13442 Value of the floor (greate...
flcl 13443 The floor (greatest intege...
reflcl 13444 The floor (greatest intege...
fllelt 13445 A basic property of the fl...
flcld 13446 The floor (greatest intege...
flle 13447 A basic property of the fl...
flltp1 13448 A basic property of the fl...
fllep1 13449 A basic property of the fl...
fraclt1 13450 The fractional part of a r...
fracle1 13451 The fractional part of a r...
fracge0 13452 The fractional part of a r...
flge 13453 The floor function value i...
fllt 13454 The floor function value i...
flflp1 13455 Move floor function betwee...
flid 13456 An integer is its own floo...
flidm 13457 The floor function is idem...
flidz 13458 A real number equals its f...
flltnz 13459 The floor of a non-integer...
flwordi 13460 Ordering relation for the ...
flword2 13461 Ordering relation for the ...
flval2 13462 An alternate way to define...
flval3 13463 An alternate way to define...
flbi 13464 A condition equivalent to ...
flbi2 13465 A condition equivalent to ...
adddivflid 13466 The floor of a sum of an i...
ico01fl0 13467 The floor of a real number...
flge0nn0 13468 The floor of a number grea...
flge1nn 13469 The floor of a number grea...
fldivnn0 13470 The floor function of a di...
refldivcl 13471 The floor function of a di...
divfl0 13472 The floor of a fraction is...
fladdz 13473 An integer can be moved in...
flzadd 13474 An integer can be moved in...
flmulnn0 13475 Move a nonnegative integer...
btwnzge0 13476 A real bounded between an ...
2tnp1ge0ge0 13477 Two times an integer plus ...
flhalf 13478 Ordering relation for the ...
fldivle 13479 The floor function of a di...
fldivnn0le 13480 The floor function of a di...
flltdivnn0lt 13481 The floor function of a di...
ltdifltdiv 13482 If the dividend of a divis...
fldiv4p1lem1div2 13483 The floor of an integer eq...
fldiv4lem1div2uz2 13484 The floor of an integer gr...
fldiv4lem1div2 13485 The floor of a positive in...
ceilval 13486 The value of the ceiling f...
dfceil2 13487 Alternative definition of ...
ceilval2 13488 The value of the ceiling f...
ceicl 13489 The ceiling function retur...
ceilcl 13490 Closure of the ceiling fun...
ceilcld 13491 Closure of the ceiling fun...
ceige 13492 The ceiling of a real numb...
ceilge 13493 The ceiling of a real numb...
ceilged 13494 The ceiling of a real numb...
ceim1l 13495 One less than the ceiling ...
ceilm1lt 13496 One less than the ceiling ...
ceile 13497 The ceiling of a real numb...
ceille 13498 The ceiling of a real numb...
ceilid 13499 An integer is its own ceil...
ceilidz 13500 A real number equals its c...
flleceil 13501 The floor of a real number...
fleqceilz 13502 A real number is an intege...
quoremz 13503 Quotient and remainder of ...
quoremnn0 13504 Quotient and remainder of ...
quoremnn0ALT 13505 Alternate proof of ~ quore...
intfrac2 13506 Decompose a real into inte...
intfracq 13507 Decompose a rational numbe...
fldiv 13508 Cancellation of the embedd...
fldiv2 13509 Cancellation of an embedde...
fznnfl 13510 Finite set of sequential i...
uzsup 13511 An upper set of integers i...
ioopnfsup 13512 An upper set of reals is u...
icopnfsup 13513 An upper set of reals is u...
rpsup 13514 The positive reals are unb...
resup 13515 The real numbers are unbou...
xrsup 13516 The extended real numbers ...
modval 13519 The value of the modulo op...
modvalr 13520 The value of the modulo op...
modcl 13521 Closure law for the modulo...
flpmodeq 13522 Partition of a division in...
modcld 13523 Closure law for the modulo...
mod0 13524 ` A mod B ` is zero iff ` ...
mulmod0 13525 The product of an integer ...
negmod0 13526 ` A ` is divisible by ` B ...
modge0 13527 The modulo operation is no...
modlt 13528 The modulo operation is le...
modelico 13529 Modular reduction produces...
moddiffl 13530 Value of the modulo operat...
moddifz 13531 The modulo operation diffe...
modfrac 13532 The fractional part of a n...
flmod 13533 The floor function express...
intfrac 13534 Break a number into its in...
zmod10 13535 An integer modulo 1 is 0. ...
zmod1congr 13536 Two arbitrary integers are...
modmulnn 13537 Move a positive integer in...
modvalp1 13538 The value of the modulo op...
zmodcl 13539 Closure law for the modulo...
zmodcld 13540 Closure law for the modulo...
zmodfz 13541 An integer mod ` B ` lies ...
zmodfzo 13542 An integer mod ` B ` lies ...
zmodfzp1 13543 An integer mod ` B ` lies ...
modid 13544 Identity law for modulo. ...
modid0 13545 A positive real number mod...
modid2 13546 Identity law for modulo. ...
zmodid2 13547 Identity law for modulo re...
zmodidfzo 13548 Identity law for modulo re...
zmodidfzoimp 13549 Identity law for modulo re...
0mod 13550 Special case: 0 modulo a p...
1mod 13551 Special case: 1 modulo a r...
modabs 13552 Absorption law for modulo....
modabs2 13553 Absorption law for modulo....
modcyc 13554 The modulo operation is pe...
modcyc2 13555 The modulo operation is pe...
modadd1 13556 Addition property of the m...
modaddabs 13557 Absorption law for modulo....
modaddmod 13558 The sum of a real number m...
muladdmodid 13559 The sum of a positive real...
mulp1mod1 13560 The product of an integer ...
modmuladd 13561 Decomposition of an intege...
modmuladdim 13562 Implication of a decomposi...
modmuladdnn0 13563 Implication of a decomposi...
negmod 13564 The negation of a number m...
m1modnnsub1 13565 Minus one modulo a positiv...
m1modge3gt1 13566 Minus one modulo an intege...
addmodid 13567 The sum of a positive inte...
addmodidr 13568 The sum of a positive inte...
modadd2mod 13569 The sum of a real number m...
modm1p1mod0 13570 If a real number modulo a ...
modltm1p1mod 13571 If a real number modulo a ...
modmul1 13572 Multiplication property of...
modmul12d 13573 Multiplication property of...
modnegd 13574 Negation property of the m...
modadd12d 13575 Additive property of the m...
modsub12d 13576 Subtraction property of th...
modsubmod 13577 The difference of a real n...
modsubmodmod 13578 The difference of a real n...
2txmodxeq0 13579 Two times a positive real ...
2submod 13580 If a real number is betwee...
modifeq2int 13581 If a nonnegative integer i...
modaddmodup 13582 The sum of an integer modu...
modaddmodlo 13583 The sum of an integer modu...
modmulmod 13584 The product of a real numb...
modmulmodr 13585 The product of an integer ...
modaddmulmod 13586 The sum of a real number a...
moddi 13587 Distribute multiplication ...
modsubdir 13588 Distribute the modulo oper...
modeqmodmin 13589 A real number equals the d...
modirr 13590 A number modulo an irratio...
modfzo0difsn 13591 For a number within a half...
modsumfzodifsn 13592 The sum of a number within...
modlteq 13593 Two nonnegative integers l...
addmodlteq 13594 Two nonnegative integers l...
om2uz0i 13595 The mapping ` G ` is a one...
om2uzsuci 13596 The value of ` G ` (see ~ ...
om2uzuzi 13597 The value ` G ` (see ~ om2...
om2uzlti 13598 Less-than relation for ` G...
om2uzlt2i 13599 The mapping ` G ` (see ~ o...
om2uzrani 13600 Range of ` G ` (see ~ om2u...
om2uzf1oi 13601 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13602 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13603 An alternative definition ...
om2uzrdg 13604 A helper lemma for the val...
uzrdglem 13605 A helper lemma for the val...
uzrdgfni 13606 The recursive definition g...
uzrdg0i 13607 Initial value of a recursi...
uzrdgsuci 13608 Successor value of a recur...
ltweuz 13609 ` < ` is a well-founded re...
ltwenn 13610 Less than well-orders the ...
ltwefz 13611 Less than well-orders a se...
uzenom 13612 An upper integer set is de...
uzinf 13613 An upper integer set is in...
nnnfi 13614 The set of positive intege...
uzrdgxfr 13615 Transfer the value of the ...
fzennn 13616 The cardinality of a finit...
fzen2 13617 The cardinality of a finit...
cardfz 13618 The cardinality of a finit...
hashgf1o 13619 ` G ` maps ` _om ` one-to-...
fzfi 13620 A finite interval of integ...
fzfid 13621 Commonly used special case...
fzofi 13622 Half-open integer sets are...
fsequb 13623 The values of a finite rea...
fsequb2 13624 The values of a finite rea...
fseqsupcl 13625 The values of a finite rea...
fseqsupubi 13626 The values of a finite rea...
nn0ennn 13627 The nonnegative integers a...
nnenom 13628 The set of positive intege...
nnct 13629 ` NN ` is countable. (Con...
uzindi 13630 Indirect strong induction ...
axdc4uzlem 13631 Lemma for ~ axdc4uz . (Co...
axdc4uz 13632 A version of ~ axdc4 that ...
ssnn0fi 13633 A subset of the nonnegativ...
rabssnn0fi 13634 A subset of the nonnegativ...
uzsinds 13635 Strong (or "total") induct...
nnsinds 13636 Strong (or "total") induct...
nn0sinds 13637 Strong (or "total") induct...
fsuppmapnn0fiublem 13638 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13639 If all functions of a fini...
fsuppmapnn0fiubex 13640 If all functions of a fini...
fsuppmapnn0fiub0 13641 If all functions of a fini...
suppssfz 13642 Condition for a function o...
fsuppmapnn0ub 13643 If a function over the non...
fsuppmapnn0fz 13644 If a function over the non...
mptnn0fsupp 13645 A mapping from the nonnega...
mptnn0fsuppd 13646 A mapping from the nonnega...
mptnn0fsuppr 13647 A finitely supported mappi...
f13idfv 13648 A one-to-one function with...
seqex 13651 Existence of the sequence ...
seqeq1 13652 Equality theorem for the s...
seqeq2 13653 Equality theorem for the s...
seqeq3 13654 Equality theorem for the s...
seqeq1d 13655 Equality deduction for the...
seqeq2d 13656 Equality deduction for the...
seqeq3d 13657 Equality deduction for the...
seqeq123d 13658 Equality deduction for the...
nfseq 13659 Hypothesis builder for the...
seqval 13660 Value of the sequence buil...
seqfn 13661 The sequence builder funct...
seq1 13662 Value of the sequence buil...
seq1i 13663 Value of the sequence buil...
seqp1 13664 Value of the sequence buil...
seqexw 13665 Weak version of ~ seqex th...
seqp1d 13666 Value of the sequence buil...
seqp1iOLD 13667 Obsolete version of ~ seqp...
seqm1 13668 Value of the sequence buil...
seqcl2 13669 Closure properties of the ...
seqf2 13670 Range of the recursive seq...
seqcl 13671 Closure properties of the ...
seqf 13672 Range of the recursive seq...
seqfveq2 13673 Equality of sequences. (C...
seqfeq2 13674 Equality of sequences. (C...
seqfveq 13675 Equality of sequences. (C...
seqfeq 13676 Equality of sequences. (C...
seqshft2 13677 Shifting the index set of ...
seqres 13678 Restricting its characteri...
serf 13679 An infinite series of comp...
serfre 13680 An infinite series of real...
monoord 13681 Ordering relation for a mo...
monoord2 13682 Ordering relation for a mo...
sermono 13683 The partial sums in an inf...
seqsplit 13684 Split a sequence into two ...
seq1p 13685 Removing the first term fr...
seqcaopr3 13686 Lemma for ~ seqcaopr2 . (...
seqcaopr2 13687 The sum of two infinite se...
seqcaopr 13688 The sum of two infinite se...
seqf1olem2a 13689 Lemma for ~ seqf1o . (Con...
seqf1olem1 13690 Lemma for ~ seqf1o . (Con...
seqf1olem2 13691 Lemma for ~ seqf1o . (Con...
seqf1o 13692 Rearrange a sum via an arb...
seradd 13693 The sum of two infinite se...
sersub 13694 The difference of two infi...
seqid3 13695 A sequence that consists e...
seqid 13696 Discarding the first few t...
seqid2 13697 The last few partial sums ...
seqhomo 13698 Apply a homomorphism to a ...
seqz 13699 If the operation ` .+ ` ha...
seqfeq4 13700 Equality of series under d...
seqfeq3 13701 Equality of series under d...
seqdistr 13702 The distributive property ...
ser0 13703 The value of the partial s...
ser0f 13704 A zero-valued infinite ser...
serge0 13705 A finite sum of nonnegativ...
serle 13706 Comparison of partial sums...
ser1const 13707 Value of the partial serie...
seqof 13708 Distribute function operat...
seqof2 13709 Distribute function operat...
expval 13712 Value of exponentiation to...
expnnval 13713 Value of exponentiation to...
exp0 13714 Value of a complex number ...
0exp0e1 13715 The zeroth power of zero e...
exp1 13716 Value of a complex number ...
expp1 13717 Value of a complex number ...
expneg 13718 Value of a complex number ...
expneg2 13719 Value of a complex number ...
expn1 13720 A number to the negative o...
expcllem 13721 Lemma for proving nonnegat...
expcl2lem 13722 Lemma for proving integer ...
nnexpcl 13723 Closure of exponentiation ...
nn0expcl 13724 Closure of exponentiation ...
zexpcl 13725 Closure of exponentiation ...
qexpcl 13726 Closure of exponentiation ...
reexpcl 13727 Closure of exponentiation ...
expcl 13728 Closure law for nonnegativ...
rpexpcl 13729 Closure law for exponentia...
reexpclz 13730 Closure of exponentiation ...
qexpclz 13731 Closure of exponentiation ...
m1expcl2 13732 Closure of exponentiation ...
m1expcl 13733 Closure of exponentiation ...
expclzlem 13734 Closure law for integer ex...
expclz 13735 Closure law for integer ex...
zexpcld 13736 Closure of exponentiation ...
nn0expcli 13737 Closure of exponentiation ...
nn0sqcl 13738 The square of a nonnegativ...
expm1t 13739 Exponentiation in terms of...
1exp 13740 Value of one raised to a n...
expeq0 13741 Positive integer exponenti...
expne0 13742 Positive integer exponenti...
expne0i 13743 Nonnegative integer expone...
expgt0 13744 A positive real raised to ...
expnegz 13745 Value of a complex number ...
0exp 13746 Value of zero raised to a ...
expge0 13747 A nonnegative real raised ...
expge1 13748 A real greater than or equ...
expgt1 13749 A real greater than 1 rais...
mulexp 13750 Nonnegative integer expone...
mulexpz 13751 Integer exponentiation of ...
exprec 13752 Integer exponentiation of ...
expadd 13753 Sum of exponents law for n...
expaddzlem 13754 Lemma for ~ expaddz . (Co...
expaddz 13755 Sum of exponents law for i...
expmul 13756 Product of exponents law f...
expmulz 13757 Product of exponents law f...
m1expeven 13758 Exponentiation of negative...
expsub 13759 Exponent subtraction law f...
expp1z 13760 Value of a nonzero complex...
expm1 13761 Value of a complex number ...
expdiv 13762 Nonnegative integer expone...
sqval 13763 Value of the square of a c...
sqneg 13764 The square of the negative...
sqsubswap 13765 Swap the order of subtract...
sqcl 13766 Closure of square. (Contr...
sqmul 13767 Distribution of square ove...
sqeq0 13768 A number is zero iff its s...
sqdiv 13769 Distribution of square ove...
sqdivid 13770 The square of a nonzero nu...
sqne0 13771 A number is nonzero iff it...
resqcl 13772 Closure of the square of a...
sqgt0 13773 The square of a nonzero re...
sqn0rp 13774 The square of a nonzero re...
nnsqcl 13775 The naturals are closed un...
zsqcl 13776 Integers are closed under ...
qsqcl 13777 The square of a rational i...
sq11 13778 The square function is one...
nn0sq11 13779 The square function is one...
lt2sq 13780 The square function on non...
le2sq 13781 The square function on non...
le2sq2 13782 The square of a 'less than...
sqge0 13783 A square of a real is nonn...
zsqcl2 13784 The square of an integer i...
0expd 13785 Value of zero raised to a ...
exp0d 13786 Value of a complex number ...
exp1d 13787 Value of a complex number ...
expeq0d 13788 Positive integer exponenti...
sqvald 13789 Value of square. Inferenc...
sqcld 13790 Closure of square. (Contr...
sqeq0d 13791 A number is zero iff its s...
expcld 13792 Closure law for nonnegativ...
expp1d 13793 Value of a complex number ...
expaddd 13794 Sum of exponents law for n...
expmuld 13795 Product of exponents law f...
sqrecd 13796 Square of reciprocal. (Co...
expclzd 13797 Closure law for integer ex...
expne0d 13798 Nonnegative integer expone...
expnegd 13799 Value of a complex number ...
exprecd 13800 Nonnegative integer expone...
expp1zd 13801 Value of a nonzero complex...
expm1d 13802 Value of a complex number ...
expsubd 13803 Exponent subtraction law f...
sqmuld 13804 Distribution of square ove...
sqdivd 13805 Distribution of square ove...
expdivd 13806 Nonnegative integer expone...
mulexpd 13807 Positive integer exponenti...
znsqcld 13808 The square of a nonzero in...
reexpcld 13809 Closure of exponentiation ...
expge0d 13810 A nonnegative real raised ...
expge1d 13811 A real greater than or equ...
ltexp2a 13812 Ordering relationship for ...
expmordi 13813 Base ordering relationship...
rpexpmord 13814 Base ordering relationship...
expcan 13815 Cancellation law for expon...
ltexp2 13816 Ordering law for exponenti...
leexp2 13817 Ordering law for exponenti...
leexp2a 13818 Weak ordering relationship...
ltexp2r 13819 The power of a positive nu...
leexp2r 13820 Weak ordering relationship...
leexp1a 13821 Weak base ordering relatio...
exple1 13822 A real between 0 and 1 inc...
expubnd 13823 An upper bound on ` A ^ N ...
sumsqeq0 13824 Two real numbers are equal...
sqvali 13825 Value of square. Inferenc...
sqcli 13826 Closure of square. (Contr...
sqeq0i 13827 A number is zero iff its s...
sqrecii 13828 Square of reciprocal. (Co...
sqmuli 13829 Distribution of square ove...
sqdivi 13830 Distribution of square ove...
resqcli 13831 Closure of square in reals...
sqgt0i 13832 The square of a nonzero re...
sqge0i 13833 A square of a real is nonn...
lt2sqi 13834 The square function on non...
le2sqi 13835 The square function on non...
sq11i 13836 The square function is one...
sq0 13837 The square of 0 is 0. (Co...
sq0i 13838 If a number is zero, its s...
sq0id 13839 If a number is zero, its s...
sq1 13840 The square of 1 is 1. (Co...
neg1sqe1 13841 ` -u 1 ` squared is 1. (C...
sq2 13842 The square of 2 is 4. (Co...
sq3 13843 The square of 3 is 9. (Co...
sq4e2t8 13844 The square of 4 is 2 times...
cu2 13845 The cube of 2 is 8. (Cont...
irec 13846 The reciprocal of ` _i ` ....
i2 13847 ` _i ` squared. (Contribu...
i3 13848 ` _i ` cubed. (Contribute...
i4 13849 ` _i ` to the fourth power...
nnlesq 13850 A positive integer is less...
iexpcyc 13851 Taking ` _i ` to the ` K `...
expnass 13852 A counterexample showing t...
sqlecan 13853 Cancel one factor of a squ...
subsq 13854 Factor the difference of t...
subsq2 13855 Express the difference of ...
binom2i 13856 The square of a binomial. ...
subsqi 13857 Factor the difference of t...
sqeqori 13858 The squares of two complex...
subsq0i 13859 The two solutions to the d...
sqeqor 13860 The squares of two complex...
binom2 13861 The square of a binomial. ...
binom21 13862 Special case of ~ binom2 w...
binom2sub 13863 Expand the square of a sub...
binom2sub1 13864 Special case of ~ binom2su...
binom2subi 13865 Expand the square of a sub...
mulbinom2 13866 The square of a binomial w...
binom3 13867 The cube of a binomial. (...
sq01 13868 If a complex number equals...
zesq 13869 An integer is even iff its...
nnesq 13870 A positive integer is even...
crreczi 13871 Reciprocal of a complex nu...
bernneq 13872 Bernoulli's inequality, du...
bernneq2 13873 Variation of Bernoulli's i...
bernneq3 13874 A corollary of ~ bernneq ....
expnbnd 13875 Exponentiation with a base...
expnlbnd 13876 The reciprocal of exponent...
expnlbnd2 13877 The reciprocal of exponent...
expmulnbnd 13878 Exponentiation with a base...
digit2 13879 Two ways to express the ` ...
digit1 13880 Two ways to express the ` ...
modexp 13881 Exponentiation property of...
discr1 13882 A nonnegative quadratic fo...
discr 13883 If a quadratic polynomial ...
expnngt1 13884 If an integer power with a...
expnngt1b 13885 An integer power with an i...
sqoddm1div8 13886 A squared odd number minus...
nnsqcld 13887 The naturals are closed un...
nnexpcld 13888 Closure of exponentiation ...
nn0expcld 13889 Closure of exponentiation ...
rpexpcld 13890 Closure law for exponentia...
ltexp2rd 13891 The power of a positive nu...
reexpclzd 13892 Closure of exponentiation ...
resqcld 13893 Closure of square in reals...
sqge0d 13894 A square of a real is nonn...
sqgt0d 13895 The square of a nonzero re...
ltexp2d 13896 Ordering relationship for ...
leexp2d 13897 Ordering law for exponenti...
expcand 13898 Ordering relationship for ...
leexp2ad 13899 Ordering relationship for ...
leexp2rd 13900 Ordering relationship for ...
lt2sqd 13901 The square function on non...
le2sqd 13902 The square function on non...
sq11d 13903 The square function is one...
mulsubdivbinom2 13904 The square of a binomial w...
muldivbinom2 13905 The square of a binomial w...
sq10 13906 The square of 10 is 100. ...
sq10e99m1 13907 The square of 10 is 99 plu...
3dec 13908 A "decimal constructor" wh...
nn0le2msqi 13909 The square function on non...
nn0opthlem1 13910 A rather pretty lemma for ...
nn0opthlem2 13911 Lemma for ~ nn0opthi . (C...
nn0opthi 13912 An ordered pair theorem fo...
nn0opth2i 13913 An ordered pair theorem fo...
nn0opth2 13914 An ordered pair theorem fo...
facnn 13917 Value of the factorial fun...
fac0 13918 The factorial of 0. (Cont...
fac1 13919 The factorial of 1. (Cont...
facp1 13920 The factorial of a success...
fac2 13921 The factorial of 2. (Cont...
fac3 13922 The factorial of 3. (Cont...
fac4 13923 The factorial of 4. (Cont...
facnn2 13924 Value of the factorial fun...
faccl 13925 Closure of the factorial f...
faccld 13926 Closure of the factorial f...
facmapnn 13927 The factorial function res...
facne0 13928 The factorial function is ...
facdiv 13929 A positive integer divides...
facndiv 13930 No positive integer (great...
facwordi 13931 Ordering property of facto...
faclbnd 13932 A lower bound for the fact...
faclbnd2 13933 A lower bound for the fact...
faclbnd3 13934 A lower bound for the fact...
faclbnd4lem1 13935 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 13936 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 13937 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 13938 Lemma for ~ faclbnd4 . Pr...
faclbnd4 13939 Variant of ~ faclbnd5 prov...
faclbnd5 13940 The factorial function gro...
faclbnd6 13941 Geometric lower bound for ...
facubnd 13942 An upper bound for the fac...
facavg 13943 The product of two factori...
bcval 13946 Value of the binomial coef...
bcval2 13947 Value of the binomial coef...
bcval3 13948 Value of the binomial coef...
bcval4 13949 Value of the binomial coef...
bcrpcl 13950 Closure of the binomial co...
bccmpl 13951 "Complementing" its second...
bcn0 13952 ` N ` choose 0 is 1. Rema...
bc0k 13953 The binomial coefficient "...
bcnn 13954 ` N ` choose ` N ` is 1. ...
bcn1 13955 Binomial coefficient: ` N ...
bcnp1n 13956 Binomial coefficient: ` N ...
bcm1k 13957 The proportion of one bino...
bcp1n 13958 The proportion of one bino...
bcp1nk 13959 The proportion of one bino...
bcval5 13960 Write out the top and bott...
bcn2 13961 Binomial coefficient: ` N ...
bcp1m1 13962 Compute the binomial coeff...
bcpasc 13963 Pascal's rule for the bino...
bccl 13964 A binomial coefficient, in...
bccl2 13965 A binomial coefficient, in...
bcn2m1 13966 Compute the binomial coeff...
bcn2p1 13967 Compute the binomial coeff...
permnn 13968 The number of permutations...
bcnm1 13969 The binomial coefficent of...
4bc3eq4 13970 The value of four choose t...
4bc2eq6 13971 The value of four choose t...
hashkf 13974 The finite part of the siz...
hashgval 13975 The value of the ` # ` fun...
hashginv 13976 The converse of ` G ` maps...
hashinf 13977 The value of the ` # ` fun...
hashbnd 13978 If ` A ` has size bounded ...
hashfxnn0 13979 The size function is a fun...
hashf 13980 The size function maps all...
hashxnn0 13981 The value of the hash func...
hashresfn 13982 Restriction of the domain ...
dmhashres 13983 Restriction of the domain ...
hashnn0pnf 13984 The value of the hash func...
hashnnn0genn0 13985 If the size of a set is no...
hashnemnf 13986 The size of a set is never...
hashv01gt1 13987 The size of a set is eithe...
hashfz1 13988 The set ` ( 1 ... N ) ` ha...
hashen 13989 Two finite sets have the s...
hasheni 13990 Equinumerous sets have the...
hasheqf1o 13991 The size of two finite set...
fiinfnf1o 13992 There is no bijection betw...
focdmex 13993 The codomain of an onto fu...
hasheqf1oi 13994 The size of two sets is eq...
hashf1rn 13995 The size of a finite set w...
hasheqf1od 13996 The size of two sets is eq...
fz1eqb 13997 Two possibly-empty 1-based...
hashcard 13998 The size function of the c...
hashcl 13999 Closure of the ` # ` funct...
hashxrcl 14000 Extended real closure of t...
hashclb 14001 Reverse closure of the ` #...
nfile 14002 The size of any infinite s...
hashvnfin 14003 A set of finite size is a ...
hashnfinnn0 14004 The size of an infinite se...
isfinite4 14005 A finite set is equinumero...
hasheq0 14006 Two ways of saying a finit...
hashneq0 14007 Two ways of saying a set i...
hashgt0n0 14008 If the size of a set is gr...
hashnncl 14009 Positive natural closure o...
hash0 14010 The empty set has size zer...
hashelne0d 14011 A set with an element has ...
hashsng 14012 The size of a singleton. ...
hashen1 14013 A set has size 1 if and on...
hash1elsn 14014 A set of size 1 with a kno...
hashrabrsn 14015 The size of a restricted c...
hashrabsn01 14016 The size of a restricted c...
hashrabsn1 14017 If the size of a restricte...
hashfn 14018 A function is equinumerous...
fseq1hash 14019 The value of the size func...
hashgadd 14020 ` G ` maps ordinal additio...
hashgval2 14021 A short expression for the...
hashdom 14022 Dominance relation for the...
hashdomi 14023 Non-strict order relation ...
hashsdom 14024 Strict dominance relation ...
hashun 14025 The size of the union of d...
hashun2 14026 The size of the union of f...
hashun3 14027 The size of the union of f...
hashinfxadd 14028 The extended real addition...
hashunx 14029 The size of the union of d...
hashge0 14030 The cardinality of a set i...
hashgt0 14031 The cardinality of a nonem...
hashge1 14032 The cardinality of a nonem...
1elfz0hash 14033 1 is an element of the fin...
hashnn0n0nn 14034 If a nonnegative integer i...
hashunsng 14035 The size of the union of a...
hashunsngx 14036 The size of the union of a...
hashunsnggt 14037 The size of a set is great...
hashprg 14038 The size of an unordered p...
elprchashprn2 14039 If one element of an unord...
hashprb 14040 The size of an unordered p...
hashprdifel 14041 The elements of an unorder...
prhash2ex 14042 There is (at least) one se...
hashle00 14043 If the size of a set is le...
hashgt0elex 14044 If the size of a set is gr...
hashgt0elexb 14045 The size of a set is great...
hashp1i 14046 Size of a finite ordinal. ...
hash1 14047 Size of a finite ordinal. ...
hash2 14048 Size of a finite ordinal. ...
hash3 14049 Size of a finite ordinal. ...
hash4 14050 Size of a finite ordinal. ...
pr0hash2ex 14051 There is (at least) one se...
hashss 14052 The size of a subset is le...
prsshashgt1 14053 The size of a superset of ...
hashin 14054 The size of the intersecti...
hashssdif 14055 The size of the difference...
hashdif 14056 The size of the difference...
hashdifsn 14057 The size of the difference...
hashdifpr 14058 The size of the difference...
hashsn01 14059 The size of a singleton is...
hashsnle1 14060 The size of a singleton is...
hashsnlei 14061 Get an upper bound on a co...
hash1snb 14062 The size of a set is 1 if ...
euhash1 14063 The size of a set is 1 in ...
hash1n0 14064 If the size of a set is 1 ...
hashgt12el 14065 In a set with more than on...
hashgt12el2 14066 In a set with more than on...
hashgt23el 14067 A set with more than two e...
hashunlei 14068 Get an upper bound on a co...
hashsslei 14069 Get an upper bound on a co...
hashfz 14070 Value of the numeric cardi...
fzsdom2 14071 Condition for finite range...
hashfzo 14072 Cardinality of a half-open...
hashfzo0 14073 Cardinality of a half-open...
hashfzp1 14074 Value of the numeric cardi...
hashfz0 14075 Value of the numeric cardi...
hashxplem 14076 Lemma for ~ hashxp . (Con...
hashxp 14077 The size of the Cartesian ...
hashmap 14078 The size of the set expone...
hashpw 14079 The size of the power set ...
hashfun 14080 A finite set is a function...
hashres 14081 The number of elements of ...
hashreshashfun 14082 The number of elements of ...
hashimarn 14083 The size of the image of a...
hashimarni 14084 If the size of the image o...
resunimafz0 14085 TODO-AV: Revise using ` F...
fnfz0hash 14086 The size of a function on ...
ffz0hash 14087 The size of a function on ...
fnfz0hashnn0 14088 The size of a function on ...
ffzo0hash 14089 The size of a function on ...
fnfzo0hash 14090 The size of a function on ...
fnfzo0hashnn0 14091 The value of the size func...
hashbclem 14092 Lemma for ~ hashbc : induc...
hashbc 14093 The binomial coefficient c...
hashfacen 14094 The number of bijections b...
hashfacenOLD 14095 Obsolete version of ~ hash...
hashf1lem1 14096 Lemma for ~ hashf1 . (Con...
hashf1lem1OLD 14097 Obsolete version of ~ hash...
hashf1lem2 14098 Lemma for ~ hashf1 . (Con...
hashf1 14099 The permutation number ` |...
hashfac 14100 A factorial counts the num...
leiso 14101 Two ways to write a strict...
leisorel 14102 Version of ~ isorel for st...
fz1isolem 14103 Lemma for ~ fz1iso . (Con...
fz1iso 14104 Any finite ordered set has...
ishashinf 14105 Any set that is not finite...
seqcoll 14106 The function ` F ` contain...
seqcoll2 14107 The function ` F ` contain...
phphashd 14108 Corollary of the Pigeonhol...
phphashrd 14109 Corollary of the Pigeonhol...
hashprlei 14110 An unordered pair has at m...
hash2pr 14111 A set of size two is an un...
hash2prde 14112 A set of size two is an un...
hash2exprb 14113 A set of size two is an un...
hash2prb 14114 A set of size two is a pro...
prprrab 14115 The set of proper pairs of...
nehash2 14116 The cardinality of a set w...
hash2prd 14117 A set of size two is an un...
hash2pwpr 14118 If the size of a subset of...
hashle2pr 14119 A nonempty set of size les...
hashle2prv 14120 A nonempty subset of a pow...
pr2pwpr 14121 The set of subsets of a pa...
hashge2el2dif 14122 A set with size at least 2...
hashge2el2difr 14123 A set with at least 2 diff...
hashge2el2difb 14124 A set has size at least 2 ...
hashdmpropge2 14125 The size of the domain of ...
hashtplei 14126 An unordered triple has at...
hashtpg 14127 The size of an unordered t...
hashge3el3dif 14128 A set with size at least 3...
elss2prb 14129 An element of the set of s...
hash2sspr 14130 A subset of size two is an...
exprelprel 14131 If there is an element of ...
hash3tr 14132 A set of size three is an ...
hash1to3 14133 If the size of a set is be...
fundmge2nop0 14134 A function with a domain c...
fundmge2nop 14135 A function with a domain c...
fun2dmnop0 14136 A function with a domain c...
fun2dmnop 14137 A function with a domain c...
hashdifsnp1 14138 If the size of a set is a ...
fi1uzind 14139 Properties of an ordered p...
brfi1uzind 14140 Properties of a binary rel...
brfi1ind 14141 Properties of a binary rel...
brfi1indALT 14142 Alternate proof of ~ brfi1...
opfi1uzind 14143 Properties of an ordered p...
opfi1ind 14144 Properties of an ordered p...
iswrd 14147 Property of being a word o...
wrdval 14148 Value of the set of words ...
iswrdi 14149 A zero-based sequence is a...
wrdf 14150 A word is a zero-based seq...
iswrdb 14151 A word over an alphabet is...
wrddm 14152 The indices of a word (i.e...
sswrd 14153 The set of words respects ...
snopiswrd 14154 A singleton of an ordered ...
wrdexg 14155 The set of words over a se...
wrdexb 14156 The set of words over a se...
wrdexi 14157 The set of words over a se...
wrdsymbcl 14158 A symbol within a word ove...
wrdfn 14159 A word is a function with ...
wrdv 14160 A word over an alphabet is...
wrdlndm 14161 The length of a word is no...
iswrdsymb 14162 An arbitrary word is a wor...
wrdfin 14163 A word is a finite set. (...
lencl 14164 The length of a word is a ...
lennncl 14165 The length of a nonempty w...
wrdffz 14166 A word is a function from ...
wrdeq 14167 Equality theorem for the s...
wrdeqi 14168 Equality theorem for the s...
iswrddm0 14169 A function with empty doma...
wrd0 14170 The empty set is a word (t...
0wrd0 14171 The empty word is the only...
ffz0iswrd 14172 A sequence with zero-based...
wrdsymb 14173 A word is a word over the ...
nfwrd 14174 Hypothesis builder for ` W...
csbwrdg 14175 Class substitution for the...
wrdnval 14176 Words of a fixed length ar...
wrdmap 14177 Words as a mapping. (Cont...
hashwrdn 14178 If there is only a finite ...
wrdnfi 14179 If there is only a finite ...
wrdsymb0 14180 A symbol at a position "ou...
wrdlenge1n0 14181 A word with length at leas...
len0nnbi 14182 The length of a word is a ...
wrdlenge2n0 14183 A word with length at leas...
wrdsymb1 14184 The first symbol of a none...
wrdlen1 14185 A word of length 1 starts ...
fstwrdne 14186 The first symbol of a none...
fstwrdne0 14187 The first symbol of a none...
eqwrd 14188 Two words are equal iff th...
elovmpowrd 14189 Implications for the value...
elovmptnn0wrd 14190 Implications for the value...
wrdred1 14191 A word truncated by a symb...
wrdred1hash 14192 The length of a word trunc...
lsw 14195 Extract the last symbol of...
lsw0 14196 The last symbol of an empt...
lsw0g 14197 The last symbol of an empt...
lsw1 14198 The last symbol of a word ...
lswcl 14199 Closure of the last symbol...
lswlgt0cl 14200 The last symbol of a nonem...
ccatfn 14203 The concatenation operator...
ccatfval 14204 Value of the concatenation...
ccatcl 14205 The concatenation of two w...
ccatlen 14206 The length of a concatenat...
ccatlenOLD 14207 Obsolete version of ~ ccat...
ccat0 14208 The concatenation of two w...
ccatval1 14209 Value of a symbol in the l...
ccatval1OLD 14210 Obsolete version of ~ ccat...
ccatval2 14211 Value of a symbol in the r...
ccatval3 14212 Value of a symbol in the r...
elfzelfzccat 14213 An element of a finite set...
ccatvalfn 14214 The concatenation of two w...
ccatsymb 14215 The symbol at a given posi...
ccatfv0 14216 The first symbol of a conc...
ccatval1lsw 14217 The last symbol of the lef...
ccatval21sw 14218 The first symbol of the ri...
ccatlid 14219 Concatenation of a word by...
ccatrid 14220 Concatenation of a word by...
ccatass 14221 Associative law for concat...
ccatrn 14222 The range of a concatenate...
ccatidid 14223 Concatenation of the empty...
lswccatn0lsw 14224 The last symbol of a word ...
lswccat0lsw 14225 The last symbol of a word ...
ccatalpha 14226 A concatenation of two arb...
ccatrcl1 14227 Reverse closure of a conca...
ids1 14230 Identity function protecti...
s1val 14231 Value of a singleton word....
s1rn 14232 The range of a singleton w...
s1eq 14233 Equality theorem for a sin...
s1eqd 14234 Equality theorem for a sin...
s1cl 14235 A singleton word is a word...
s1cld 14236 A singleton word is a word...
s1prc 14237 Value of a singleton word ...
s1cli 14238 A singleton word is a word...
s1len 14239 Length of a singleton word...
s1nz 14240 A singleton word is not th...
s1dm 14241 The domain of a singleton ...
s1dmALT 14242 Alternate version of ~ s1d...
s1fv 14243 Sole symbol of a singleton...
lsws1 14244 The last symbol of a singl...
eqs1 14245 A word of length 1 is a si...
wrdl1exs1 14246 A word of length 1 is a si...
wrdl1s1 14247 A word of length 1 is a si...
s111 14248 The singleton word functio...
ccatws1cl 14249 The concatenation of a wor...
ccatws1clv 14250 The concatenation of a wor...
ccat2s1cl 14251 The concatenation of two s...
ccats1alpha 14252 A concatenation of a word ...
ccatws1len 14253 The length of the concaten...
ccatws1lenp1b 14254 The length of a word is ` ...
wrdlenccats1lenm1 14255 The length of a word is th...
ccat2s1len 14256 The length of the concaten...
ccat2s1lenOLD 14257 Obsolete version of ~ ccat...
ccatw2s1cl 14258 The concatenation of a wor...
ccatw2s1len 14259 The length of the concaten...
ccats1val1 14260 Value of a symbol in the l...
ccats1val1OLD 14261 Obsolete version of ~ ccat...
ccats1val2 14262 Value of the symbol concat...
ccat1st1st 14263 The first symbol of a word...
ccat2s1p1 14264 Extract the first of two c...
ccat2s1p2 14265 Extract the second of two ...
ccat2s1p1OLD 14266 Obsolete version of ~ ccat...
ccat2s1p2OLD 14267 Obsolete version of ~ ccat...
ccatw2s1ass 14268 Associative law for a conc...
ccatw2s1assOLD 14269 Obsolete version of ~ ccat...
ccatws1n0 14270 The concatenation of a wor...
ccatws1ls 14271 The last symbol of the con...
lswccats1 14272 The last symbol of a word ...
lswccats1fst 14273 The last symbol of a nonem...
ccatw2s1p1 14274 Extract the symbol of the ...
ccatw2s1p1OLD 14275 Obsolete version of ~ ccat...
ccatw2s1p2 14276 Extract the second of two ...
ccat2s1fvw 14277 Extract a symbol of a word...
ccat2s1fvwOLD 14278 Obsolete version of ~ ccat...
ccat2s1fst 14279 The first symbol of the co...
ccat2s1fstOLD 14280 Obsolete version of ~ ccat...
swrdnznd 14283 The value of a subword ope...
swrdval 14284 Value of a subword. (Cont...
swrd00 14285 A zero length substring. ...
swrdcl 14286 Closure of the subword ext...
swrdval2 14287 Value of the subword extra...
swrdlen 14288 Length of an extracted sub...
swrdfv 14289 A symbol in an extracted s...
swrdfv0 14290 The first symbol in an ext...
swrdf 14291 A subword of a word is a f...
swrdvalfn 14292 Value of the subword extra...
swrdrn 14293 The range of a subword of ...
swrdlend 14294 The value of the subword e...
swrdnd 14295 The value of the subword e...
swrdnd2 14296 Value of the subword extra...
swrdnnn0nd 14297 The value of a subword ope...
swrdnd0 14298 The value of a subword ope...
swrd0 14299 A subword of an empty set ...
swrdrlen 14300 Length of a right-anchored...
swrdlen2 14301 Length of an extracted sub...
swrdfv2 14302 A symbol in an extracted s...
swrdwrdsymb 14303 A subword is a word over t...
swrdsb0eq 14304 Two subwords with the same...
swrdsbslen 14305 Two subwords with the same...
swrdspsleq 14306 Two words have a common su...
swrds1 14307 Extract a single symbol fr...
swrdlsw 14308 Extract the last single sy...
ccatswrd 14309 Joining two adjacent subwo...
swrdccat2 14310 Recover the right half of ...
pfxnndmnd 14313 The value of a prefix oper...
pfxval 14314 Value of a prefix operatio...
pfx00 14315 The zero length prefix is ...
pfx0 14316 A prefix of an empty set i...
pfxval0 14317 Value of a prefix operatio...
pfxcl 14318 Closure of the prefix extr...
pfxmpt 14319 Value of the prefix extrac...
pfxres 14320 Value of the subword extra...
pfxf 14321 A prefix of a word is a fu...
pfxfn 14322 Value of the prefix extrac...
pfxfv 14323 A symbol in a prefix of a ...
pfxlen 14324 Length of a prefix. (Cont...
pfxid 14325 A word is a prefix of itse...
pfxrn 14326 The range of a prefix of a...
pfxn0 14327 A prefix consisting of at ...
pfxnd 14328 The value of a prefix oper...
pfxnd0 14329 The value of a prefix oper...
pfxwrdsymb 14330 A prefix of a word is a wo...
addlenrevpfx 14331 The sum of the lengths of ...
addlenpfx 14332 The sum of the lengths of ...
pfxfv0 14333 The first symbol of a pref...
pfxtrcfv 14334 A symbol in a word truncat...
pfxtrcfv0 14335 The first symbol in a word...
pfxfvlsw 14336 The last symbol in a nonem...
pfxeq 14337 The prefixes of two words ...
pfxtrcfvl 14338 The last symbol in a word ...
pfxsuffeqwrdeq 14339 Two words are equal if and...
pfxsuff1eqwrdeq 14340 Two (nonempty) words are e...
disjwrdpfx 14341 Sets of words are disjoint...
ccatpfx 14342 Concatenating a prefix wit...
pfxccat1 14343 Recover the left half of a...
pfx1 14344 The prefix of length one o...
swrdswrdlem 14345 Lemma for ~ swrdswrd . (C...
swrdswrd 14346 A subword of a subword is ...
pfxswrd 14347 A prefix of a subword is a...
swrdpfx 14348 A subword of a prefix is a...
pfxpfx 14349 A prefix of a prefix is a ...
pfxpfxid 14350 A prefix of a prefix with ...
pfxcctswrd 14351 The concatenation of the p...
lenpfxcctswrd 14352 The length of the concaten...
lenrevpfxcctswrd 14353 The length of the concaten...
pfxlswccat 14354 Reconstruct a nonempty wor...
ccats1pfxeq 14355 The last symbol of a word ...
ccats1pfxeqrex 14356 There exists a symbol such...
ccatopth 14357 An ~ opth -like theorem fo...
ccatopth2 14358 An ~ opth -like theorem fo...
ccatlcan 14359 Concatenation of words is ...
ccatrcan 14360 Concatenation of words is ...
wrdeqs1cat 14361 Decompose a nonempty word ...
cats1un 14362 Express a word with an ext...
wrdind 14363 Perform induction over the...
wrd2ind 14364 Perform induction over the...
swrdccatfn 14365 The subword of a concatena...
swrdccatin1 14366 The subword of a concatena...
pfxccatin12lem4 14367 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14368 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14369 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14370 The subword of a concatena...
pfxccatin12lem2c 14371 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14372 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14373 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14374 The subword of a concatena...
pfxccat3 14375 The subword of a concatena...
swrdccat 14376 The subword of a concatena...
pfxccatpfx1 14377 A prefix of a concatenatio...
pfxccatpfx2 14378 A prefix of a concatenatio...
pfxccat3a 14379 A prefix of a concatenatio...
swrdccat3blem 14380 Lemma for ~ swrdccat3b . ...
swrdccat3b 14381 A suffix of a concatenatio...
pfxccatid 14382 A prefix of a concatenatio...
ccats1pfxeqbi 14383 A word is a prefix of a wo...
swrdccatin1d 14384 The subword of a concatena...
swrdccatin2d 14385 The subword of a concatena...
pfxccatin12d 14386 The subword of a concatena...
reuccatpfxs1lem 14387 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14388 There is a unique word hav...
reuccatpfxs1v 14389 There is a unique word hav...
splval 14392 Value of the substring rep...
splcl 14393 Closure of the substring r...
splid 14394 Splicing a subword for the...
spllen 14395 The length of a splice. (...
splfv1 14396 Symbols to the left of a s...
splfv2a 14397 Symbols within the replace...
splval2 14398 Value of a splice, assumin...
revval 14401 Value of the word reversin...
revcl 14402 The reverse of a word is a...
revlen 14403 The reverse of a word has ...
revfv 14404 Reverse of a word at a poi...
rev0 14405 The empty word is its own ...
revs1 14406 Singleton words are their ...
revccat 14407 Antiautomorphic property o...
revrev 14408 Reversal is an involution ...
reps 14411 Construct a function mappi...
repsundef 14412 A function mapping a half-...
repsconst 14413 Construct a function mappi...
repsf 14414 The constructed function m...
repswsymb 14415 The symbols of a "repeated...
repsw 14416 A function mapping a half-...
repswlen 14417 The length of a "repeated ...
repsw0 14418 The "repeated symbol word"...
repsdf2 14419 Alternative definition of ...
repswsymball 14420 All the symbols of a "repe...
repswsymballbi 14421 A word is a "repeated symb...
repswfsts 14422 The first symbol of a none...
repswlsw 14423 The last symbol of a nonem...
repsw1 14424 The "repeated symbol word"...
repswswrd 14425 A subword of a "repeated s...
repswpfx 14426 A prefix of a repeated sym...
repswccat 14427 The concatenation of two "...
repswrevw 14428 The reverse of a "repeated...
cshfn 14431 Perform a cyclical shift f...
cshword 14432 Perform a cyclical shift f...
cshnz 14433 A cyclical shift is the em...
0csh0 14434 Cyclically shifting an emp...
cshw0 14435 A word cyclically shifted ...
cshwmodn 14436 Cyclically shifting a word...
cshwsublen 14437 Cyclically shifting a word...
cshwn 14438 A word cyclically shifted ...
cshwcl 14439 A cyclically shifted word ...
cshwlen 14440 The length of a cyclically...
cshwf 14441 A cyclically shifted word ...
cshwfn 14442 A cyclically shifted word ...
cshwrn 14443 The range of a cyclically ...
cshwidxmod 14444 The symbol at a given inde...
cshwidxmodr 14445 The symbol at a given inde...
cshwidx0mod 14446 The symbol at index 0 of a...
cshwidx0 14447 The symbol at index 0 of a...
cshwidxm1 14448 The symbol at index ((n-N)...
cshwidxm 14449 The symbol at index (n-N) ...
cshwidxn 14450 The symbol at index (n-1) ...
cshf1 14451 Cyclically shifting a word...
cshinj 14452 If a word is injectiv (reg...
repswcshw 14453 A cyclically shifted "repe...
2cshw 14454 Cyclically shifting a word...
2cshwid 14455 Cyclically shifting a word...
lswcshw 14456 The last symbol of a word ...
2cshwcom 14457 Cyclically shifting a word...
cshwleneq 14458 If the results of cyclical...
3cshw 14459 Cyclically shifting a word...
cshweqdif2 14460 If cyclically shifting two...
cshweqdifid 14461 If cyclically shifting a w...
cshweqrep 14462 If cyclically shifting a w...
cshw1 14463 If cyclically shifting a w...
cshw1repsw 14464 If cyclically shifting a w...
cshwsexa 14465 The class of (different!) ...
2cshwcshw 14466 If a word is a cyclically ...
scshwfzeqfzo 14467 For a nonempty word the se...
cshwcshid 14468 A cyclically shifted word ...
cshwcsh2id 14469 A cyclically shifted word ...
cshimadifsn 14470 The image of a cyclically ...
cshimadifsn0 14471 The image of a cyclically ...
wrdco 14472 Mapping a word by a functi...
lenco 14473 Length of a mapped word is...
s1co 14474 Mapping of a singleton wor...
revco 14475 Mapping of words (i.e., a ...
ccatco 14476 Mapping of words commutes ...
cshco 14477 Mapping of words commutes ...
swrdco 14478 Mapping of words commutes ...
pfxco 14479 Mapping of words commutes ...
lswco 14480 Mapping of (nonempty) word...
repsco 14481 Mapping of words commutes ...
cats1cld 14496 Closure of concatenation w...
cats1co 14497 Closure of concatenation w...
cats1cli 14498 Closure of concatenation w...
cats1fvn 14499 The last symbol of a conca...
cats1fv 14500 A symbol other than the la...
cats1len 14501 The length of concatenatio...
cats1cat 14502 Closure of concatenation w...
cats2cat 14503 Closure of concatenation o...
s2eqd 14504 Equality theorem for a dou...
s3eqd 14505 Equality theorem for a len...
s4eqd 14506 Equality theorem for a len...
s5eqd 14507 Equality theorem for a len...
s6eqd 14508 Equality theorem for a len...
s7eqd 14509 Equality theorem for a len...
s8eqd 14510 Equality theorem for a len...
s3eq2 14511 Equality theorem for a len...
s2cld 14512 A doubleton word is a word...
s3cld 14513 A length 3 string is a wor...
s4cld 14514 A length 4 string is a wor...
s5cld 14515 A length 5 string is a wor...
s6cld 14516 A length 6 string is a wor...
s7cld 14517 A length 7 string is a wor...
s8cld 14518 A length 7 string is a wor...
s2cl 14519 A doubleton word is a word...
s3cl 14520 A length 3 string is a wor...
s2cli 14521 A doubleton word is a word...
s3cli 14522 A length 3 string is a wor...
s4cli 14523 A length 4 string is a wor...
s5cli 14524 A length 5 string is a wor...
s6cli 14525 A length 6 string is a wor...
s7cli 14526 A length 7 string is a wor...
s8cli 14527 A length 8 string is a wor...
s2fv0 14528 Extract the first symbol f...
s2fv1 14529 Extract the second symbol ...
s2len 14530 The length of a doubleton ...
s2dm 14531 The domain of a doubleton ...
s3fv0 14532 Extract the first symbol f...
s3fv1 14533 Extract the second symbol ...
s3fv2 14534 Extract the third symbol f...
s3len 14535 The length of a length 3 s...
s4fv0 14536 Extract the first symbol f...
s4fv1 14537 Extract the second symbol ...
s4fv2 14538 Extract the third symbol f...
s4fv3 14539 Extract the fourth symbol ...
s4len 14540 The length of a length 4 s...
s5len 14541 The length of a length 5 s...
s6len 14542 The length of a length 6 s...
s7len 14543 The length of a length 7 s...
s8len 14544 The length of a length 8 s...
lsws2 14545 The last symbol of a doubl...
lsws3 14546 The last symbol of a 3 let...
lsws4 14547 The last symbol of a 4 let...
s2prop 14548 A length 2 word is an unor...
s2dmALT 14549 Alternate version of ~ s2d...
s3tpop 14550 A length 3 word is an unor...
s4prop 14551 A length 4 word is a union...
s3fn 14552 A length 3 word is a funct...
funcnvs1 14553 The converse of a singleto...
funcnvs2 14554 The converse of a length 2...
funcnvs3 14555 The converse of a length 3...
funcnvs4 14556 The converse of a length 4...
s2f1o 14557 A length 2 word with mutua...
f1oun2prg 14558 A union of unordered pairs...
s4f1o 14559 A length 4 word with mutua...
s4dom 14560 The domain of a length 4 w...
s2co 14561 Mapping a doubleton word b...
s3co 14562 Mapping a length 3 string ...
s0s1 14563 Concatenation of fixed len...
s1s2 14564 Concatenation of fixed len...
s1s3 14565 Concatenation of fixed len...
s1s4 14566 Concatenation of fixed len...
s1s5 14567 Concatenation of fixed len...
s1s6 14568 Concatenation of fixed len...
s1s7 14569 Concatenation of fixed len...
s2s2 14570 Concatenation of fixed len...
s4s2 14571 Concatenation of fixed len...
s4s3 14572 Concatenation of fixed len...
s4s4 14573 Concatenation of fixed len...
s3s4 14574 Concatenation of fixed len...
s2s5 14575 Concatenation of fixed len...
s5s2 14576 Concatenation of fixed len...
s2eq2s1eq 14577 Two length 2 words are equ...
s2eq2seq 14578 Two length 2 words are equ...
s3eqs2s1eq 14579 Two length 3 words are equ...
s3eq3seq 14580 Two length 3 words are equ...
swrds2 14581 Extract two adjacent symbo...
swrds2m 14582 Extract two adjacent symbo...
wrdlen2i 14583 Implications of a word of ...
wrd2pr2op 14584 A word of length two repre...
wrdlen2 14585 A word of length two. (Co...
wrdlen2s2 14586 A word of length two as do...
wrdl2exs2 14587 A word of length two is a ...
pfx2 14588 A prefix of length two. (...
wrd3tpop 14589 A word of length three rep...
wrdlen3s3 14590 A word of length three as ...
repsw2 14591 The "repeated symbol word"...
repsw3 14592 The "repeated symbol word"...
swrd2lsw 14593 Extract the last two symbo...
2swrd2eqwrdeq 14594 Two words of length at lea...
ccatw2s1ccatws2 14595 The concatenation of a wor...
ccatw2s1ccatws2OLD 14596 Obsolete version of ~ ccat...
ccat2s1fvwALT 14597 Alternate proof of ~ ccat2...
ccat2s1fvwALTOLD 14598 Obsolete version of ~ ccat...
wwlktovf 14599 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14600 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14601 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14602 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14603 There is a bijection betwe...
eqwrds3 14604 A word is equal with a len...
wrdl3s3 14605 A word of length 3 is a le...
s3sndisj 14606 The singletons consisting ...
s3iunsndisj 14607 The union of singletons co...
ofccat 14608 Letterwise operations on w...
ofs1 14609 Letterwise operations on a...
ofs2 14610 Letterwise operations on a...
coss12d 14611 Subset deduction for compo...
trrelssd 14612 The composition of subclas...
xpcogend 14613 The most interesting case ...
xpcoidgend 14614 If two classes are not dis...
cotr2g 14615 Two ways of saying that th...
cotr2 14616 Two ways of saying a relat...
cotr3 14617 Two ways of saying a relat...
coemptyd 14618 Deduction about compositio...
xptrrel 14619 The cross product is alway...
0trrel 14620 The empty class is a trans...
cleq1lem 14621 Equality implies bijection...
cleq1 14622 Equality of relations impl...
clsslem 14623 The closure of a subclass ...
trcleq1 14628 Equality of relations impl...
trclsslem 14629 The transitive closure (as...
trcleq2lem 14630 Equality implies bijection...
cvbtrcl 14631 Change of bound variable i...
trcleq12lem 14632 Equality implies bijection...
trclexlem 14633 Existence of relation impl...
trclublem 14634 If a relation exists then ...
trclubi 14635 The Cartesian product of t...
trclubgi 14636 The union with the Cartesi...
trclub 14637 The Cartesian product of t...
trclubg 14638 The union with the Cartesi...
trclfv 14639 The transitive closure of ...
brintclab 14640 Two ways to express a bina...
brtrclfv 14641 Two ways of expressing the...
brcnvtrclfv 14642 Two ways of expressing the...
brtrclfvcnv 14643 Two ways of expressing the...
brcnvtrclfvcnv 14644 Two ways of expressing the...
trclfvss 14645 The transitive closure (as...
trclfvub 14646 The transitive closure of ...
trclfvlb 14647 The transitive closure of ...
trclfvcotr 14648 The transitive closure of ...
trclfvlb2 14649 The transitive closure of ...
trclfvlb3 14650 The transitive closure of ...
cotrtrclfv 14651 The transitive closure of ...
trclidm 14652 The transitive closure of ...
trclun 14653 Transitive closure of a un...
trclfvg 14654 The value of the transitiv...
trclfvcotrg 14655 The value of the transitiv...
reltrclfv 14656 The transitive closure of ...
dmtrclfv 14657 The domain of the transiti...
reldmrelexp 14660 The domain of the repeated...
relexp0g 14661 A relation composed zero t...
relexp0 14662 A relation composed zero t...
relexp0d 14663 A relation composed zero t...
relexpsucnnr 14664 A reduction for relation e...
relexp1g 14665 A relation composed once i...
dfid5 14666 Identity relation is equal...
dfid6 14667 Identity relation expresse...
relexp1d 14668 A relation composed once i...
relexpsucnnl 14669 A reduction for relation e...
relexpsucl 14670 A reduction for relation e...
relexpsucr 14671 A reduction for relation e...
relexpsucrd 14672 A reduction for relation e...
relexpsucld 14673 A reduction for relation e...
relexpcnv 14674 Commutation of converse an...
relexpcnvd 14675 Commutation of converse an...
relexp0rel 14676 The exponentiation of a cl...
relexprelg 14677 The exponentiation of a cl...
relexprel 14678 The exponentiation of a re...
relexpreld 14679 The exponentiation of a re...
relexpnndm 14680 The domain of an exponenti...
relexpdmg 14681 The domain of an exponenti...
relexpdm 14682 The domain of an exponenti...
relexpdmd 14683 The domain of an exponenti...
relexpnnrn 14684 The range of an exponentia...
relexprng 14685 The range of an exponentia...
relexprn 14686 The range of an exponentia...
relexprnd 14687 The range of an exponentia...
relexpfld 14688 The field of an exponentia...
relexpfldd 14689 The field of an exponentia...
relexpaddnn 14690 Relation composition becom...
relexpuzrel 14691 The exponentiation of a cl...
relexpaddg 14692 Relation composition becom...
relexpaddd 14693 Relation composition becom...
rtrclreclem1 14696 The reflexive, transitive ...
dfrtrclrec2 14697 If two elements are connec...
rtrclreclem2 14698 The reflexive, transitive ...
rtrclreclem3 14699 The reflexive, transitive ...
rtrclreclem4 14700 The reflexive, transitive ...
dfrtrcl2 14701 The two definitions ` t* `...
relexpindlem 14702 Principle of transitive in...
relexpind 14703 Principle of transitive in...
rtrclind 14704 Principle of transitive in...
shftlem 14707 Two ways to write a shifte...
shftuz 14708 A shift of the upper integ...
shftfval 14709 The value of the sequence ...
shftdm 14710 Domain of a relation shift...
shftfib 14711 Value of a fiber of the re...
shftfn 14712 Functionality and domain o...
shftval 14713 Value of a sequence shifte...
shftval2 14714 Value of a sequence shifte...
shftval3 14715 Value of a sequence shifte...
shftval4 14716 Value of a sequence shifte...
shftval5 14717 Value of a shifted sequenc...
shftf 14718 Functionality of a shifted...
2shfti 14719 Composite shift operations...
shftidt2 14720 Identity law for the shift...
shftidt 14721 Identity law for the shift...
shftcan1 14722 Cancellation law for the s...
shftcan2 14723 Cancellation law for the s...
seqshft 14724 Shifting the index set of ...
sgnval 14727 Value of the signum functi...
sgn0 14728 The signum of 0 is 0. (Co...
sgnp 14729 The signum of a positive e...
sgnrrp 14730 The signum of a positive r...
sgn1 14731 The signum of 1 is 1. (Co...
sgnpnf 14732 The signum of ` +oo ` is 1...
sgnn 14733 The signum of a negative e...
sgnmnf 14734 The signum of ` -oo ` is -...
cjval 14741 The value of the conjugate...
cjth 14742 The defining property of t...
cjf 14743 Domain and codomain of the...
cjcl 14744 The conjugate of a complex...
reval 14745 The value of the real part...
imval 14746 The value of the imaginary...
imre 14747 The imaginary part of a co...
reim 14748 The real part of a complex...
recl 14749 The real part of a complex...
imcl 14750 The imaginary part of a co...
ref 14751 Domain and codomain of the...
imf 14752 Domain and codomain of the...
crre 14753 The real part of a complex...
crim 14754 The real part of a complex...
replim 14755 Reconstruct a complex numb...
remim 14756 Value of the conjugate of ...
reim0 14757 The imaginary part of a re...
reim0b 14758 A number is real iff its i...
rereb 14759 A number is real iff it eq...
mulre 14760 A product with a nonzero r...
rere 14761 A real number equals its r...
cjreb 14762 A number is real iff it eq...
recj 14763 Real part of a complex con...
reneg 14764 Real part of negative. (C...
readd 14765 Real part distributes over...
resub 14766 Real part distributes over...
remullem 14767 Lemma for ~ remul , ~ immu...
remul 14768 Real part of a product. (...
remul2 14769 Real part of a product. (...
rediv 14770 Real part of a division. ...
imcj 14771 Imaginary part of a comple...
imneg 14772 The imaginary part of a ne...
imadd 14773 Imaginary part distributes...
imsub 14774 Imaginary part distributes...
immul 14775 Imaginary part of a produc...
immul2 14776 Imaginary part of a produc...
imdiv 14777 Imaginary part of a divisi...
cjre 14778 A real number equals its c...
cjcj 14779 The conjugate of the conju...
cjadd 14780 Complex conjugate distribu...
cjmul 14781 Complex conjugate distribu...
ipcnval 14782 Standard inner product on ...
cjmulrcl 14783 A complex number times its...
cjmulval 14784 A complex number times its...
cjmulge0 14785 A complex number times its...
cjneg 14786 Complex conjugate of negat...
addcj 14787 A number plus its conjugat...
cjsub 14788 Complex conjugate distribu...
cjexp 14789 Complex conjugate of posit...
imval2 14790 The imaginary part of a nu...
re0 14791 The real part of zero. (C...
im0 14792 The imaginary part of zero...
re1 14793 The real part of one. (Co...
im1 14794 The imaginary part of one....
rei 14795 The real part of ` _i ` . ...
imi 14796 The imaginary part of ` _i...
cj0 14797 The conjugate of zero. (C...
cji 14798 The complex conjugate of t...
cjreim 14799 The conjugate of a represe...
cjreim2 14800 The conjugate of the repre...
cj11 14801 Complex conjugate is a one...
cjne0 14802 A number is nonzero iff it...
cjdiv 14803 Complex conjugate distribu...
cnrecnv 14804 The inverse to the canonic...
sqeqd 14805 A deduction for showing tw...
recli 14806 The real part of a complex...
imcli 14807 The imaginary part of a co...
cjcli 14808 Closure law for complex co...
replimi 14809 Construct a complex number...
cjcji 14810 The conjugate of the conju...
reim0bi 14811 A number is real iff its i...
rerebi 14812 A real number equals its r...
cjrebi 14813 A number is real iff it eq...
recji 14814 Real part of a complex con...
imcji 14815 Imaginary part of a comple...
cjmulrcli 14816 A complex number times its...
cjmulvali 14817 A complex number times its...
cjmulge0i 14818 A complex number times its...
renegi 14819 Real part of negative. (C...
imnegi 14820 Imaginary part of negative...
cjnegi 14821 Complex conjugate of negat...
addcji 14822 A number plus its conjugat...
readdi 14823 Real part distributes over...
imaddi 14824 Imaginary part distributes...
remuli 14825 Real part of a product. (...
immuli 14826 Imaginary part of a produc...
cjaddi 14827 Complex conjugate distribu...
cjmuli 14828 Complex conjugate distribu...
ipcni 14829 Standard inner product on ...
cjdivi 14830 Complex conjugate distribu...
crrei 14831 The real part of a complex...
crimi 14832 The imaginary part of a co...
recld 14833 The real part of a complex...
imcld 14834 The imaginary part of a co...
cjcld 14835 Closure law for complex co...
replimd 14836 Construct a complex number...
remimd 14837 Value of the conjugate of ...
cjcjd 14838 The conjugate of the conju...
reim0bd 14839 A number is real iff its i...
rerebd 14840 A real number equals its r...
cjrebd 14841 A number is real iff it eq...
cjne0d 14842 A number is nonzero iff it...
recjd 14843 Real part of a complex con...
imcjd 14844 Imaginary part of a comple...
cjmulrcld 14845 A complex number times its...
cjmulvald 14846 A complex number times its...
cjmulge0d 14847 A complex number times its...
renegd 14848 Real part of negative. (C...
imnegd 14849 Imaginary part of negative...
cjnegd 14850 Complex conjugate of negat...
addcjd 14851 A number plus its conjugat...
cjexpd 14852 Complex conjugate of posit...
readdd 14853 Real part distributes over...
imaddd 14854 Imaginary part distributes...
resubd 14855 Real part distributes over...
imsubd 14856 Imaginary part distributes...
remuld 14857 Real part of a product. (...
immuld 14858 Imaginary part of a produc...
cjaddd 14859 Complex conjugate distribu...
cjmuld 14860 Complex conjugate distribu...
ipcnd 14861 Standard inner product on ...
cjdivd 14862 Complex conjugate distribu...
rered 14863 A real number equals its r...
reim0d 14864 The imaginary part of a re...
cjred 14865 A real number equals its c...
remul2d 14866 Real part of a product. (...
immul2d 14867 Imaginary part of a produc...
redivd 14868 Real part of a division. ...
imdivd 14869 Imaginary part of a divisi...
crred 14870 The real part of a complex...
crimd 14871 The imaginary part of a co...
sqrtval 14876 Value of square root funct...
absval 14877 The absolute value (modulu...
rennim 14878 A real number does not lie...
cnpart 14879 The specification of restr...
sqr0lem 14880 Square root of zero. (Con...
sqrt0 14881 Square root of zero. (Con...
sqrlem1 14882 Lemma for ~ 01sqrex . (Co...
sqrlem2 14883 Lemma for ~ 01sqrex . (Co...
sqrlem3 14884 Lemma for ~ 01sqrex . (Co...
sqrlem4 14885 Lemma for ~ 01sqrex . (Co...
sqrlem5 14886 Lemma for ~ 01sqrex . (Co...
sqrlem6 14887 Lemma for ~ 01sqrex . (Co...
sqrlem7 14888 Lemma for ~ 01sqrex . (Co...
01sqrex 14889 Existence of a square root...
resqrex 14890 Existence of a square root...
sqrmo 14891 Uniqueness for the square ...
resqreu 14892 Existence and uniqueness f...
resqrtcl 14893 Closure of the square root...
resqrtthlem 14894 Lemma for ~ resqrtth . (C...
resqrtth 14895 Square root theorem over t...
remsqsqrt 14896 Square of square root. (C...
sqrtge0 14897 The square root function i...
sqrtgt0 14898 The square root function i...
sqrtmul 14899 Square root distributes ov...
sqrtle 14900 Square root is monotonic. ...
sqrtlt 14901 Square root is strictly mo...
sqrt11 14902 The square root function i...
sqrt00 14903 A square root is zero iff ...
rpsqrtcl 14904 The square root of a posit...
sqrtdiv 14905 Square root distributes ov...
sqrtneglem 14906 The square root of a negat...
sqrtneg 14907 The square root of a negat...
sqrtsq2 14908 Relationship between squar...
sqrtsq 14909 Square root of square. (C...
sqrtmsq 14910 Square root of square. (C...
sqrt1 14911 The square root of 1 is 1....
sqrt4 14912 The square root of 4 is 2....
sqrt9 14913 The square root of 9 is 3....
sqrt2gt1lt2 14914 The square root of 2 is bo...
sqrtm1 14915 The imaginary unit is the ...
nn0sqeq1 14916 A natural number with squa...
absneg 14917 Absolute value of the oppo...
abscl 14918 Real closure of absolute v...
abscj 14919 The absolute value of a nu...
absvalsq 14920 Square of value of absolut...
absvalsq2 14921 Square of value of absolut...
sqabsadd 14922 Square of absolute value o...
sqabssub 14923 Square of absolute value o...
absval2 14924 Value of absolute value fu...
abs0 14925 The absolute value of 0. ...
absi 14926 The absolute value of the ...
absge0 14927 Absolute value is nonnegat...
absrpcl 14928 The absolute value of a no...
abs00 14929 The absolute value of a nu...
abs00ad 14930 A complex number is zero i...
abs00bd 14931 If a complex number is zer...
absreimsq 14932 Square of the absolute val...
absreim 14933 Absolute value of a number...
absmul 14934 Absolute value distributes...
absdiv 14935 Absolute value distributes...
absid 14936 A nonnegative number is it...
abs1 14937 The absolute value of one ...
absnid 14938 A negative number is the n...
leabs 14939 A real number is less than...
absor 14940 The absolute value of a re...
absre 14941 Absolute value of a real n...
absresq 14942 Square of the absolute val...
absmod0 14943 ` A ` is divisible by ` B ...
absexp 14944 Absolute value of positive...
absexpz 14945 Absolute value of integer ...
abssq 14946 Square can be moved in and...
sqabs 14947 The squares of two reals a...
absrele 14948 The absolute value of a co...
absimle 14949 The absolute value of a co...
max0add 14950 The sum of the positive an...
absz 14951 A real number is an intege...
nn0abscl 14952 The absolute value of an i...
zabscl 14953 The absolute value of an i...
abslt 14954 Absolute value and 'less t...
absle 14955 Absolute value and 'less t...
abssubne0 14956 If the absolute value of a...
absdiflt 14957 The absolute value of a di...
absdifle 14958 The absolute value of a di...
elicc4abs 14959 Membership in a symmetric ...
lenegsq 14960 Comparison to a nonnegativ...
releabs 14961 The real part of a number ...
recval 14962 Reciprocal expressed with ...
absidm 14963 The absolute value functio...
absgt0 14964 The absolute value of a no...
nnabscl 14965 The absolute value of a no...
abssub 14966 Swapping order of subtract...
abssubge0 14967 Absolute value of a nonneg...
abssuble0 14968 Absolute value of a nonpos...
absmax 14969 The maximum of two numbers...
abstri 14970 Triangle inequality for ab...
abs3dif 14971 Absolute value of differen...
abs2dif 14972 Difference of absolute val...
abs2dif2 14973 Difference of absolute val...
abs2difabs 14974 Absolute value of differen...
abs1m 14975 For any complex number, th...
recan 14976 Cancellation law involving...
absf 14977 Mapping domain and codomai...
abs3lem 14978 Lemma involving absolute v...
abslem2 14979 Lemma involving absolute v...
rddif 14980 The difference between a r...
absrdbnd 14981 Bound on the absolute valu...
fzomaxdiflem 14982 Lemma for ~ fzomaxdif . (...
fzomaxdif 14983 A bound on the separation ...
uzin2 14984 The upper integers are clo...
rexanuz 14985 Combine two different uppe...
rexanre 14986 Combine two different uppe...
rexfiuz 14987 Combine finitely many diff...
rexuz3 14988 Restrict the base of the u...
rexanuz2 14989 Combine two different uppe...
r19.29uz 14990 A version of ~ 19.29 for u...
r19.2uz 14991 A version of ~ r19.2z for ...
rexuzre 14992 Convert an upper real quan...
rexico 14993 Restrict the base of an up...
cau3lem 14994 Lemma for ~ cau3 . (Contr...
cau3 14995 Convert between three-quan...
cau4 14996 Change the base of a Cauch...
caubnd2 14997 A Cauchy sequence of compl...
caubnd 14998 A Cauchy sequence of compl...
sqreulem 14999 Lemma for ~ sqreu : write ...
sqreu 15000 Existence and uniqueness f...
sqrtcl 15001 Closure of the square root...
sqrtthlem 15002 Lemma for ~ sqrtth . (Con...
sqrtf 15003 Mapping domain and codomai...
sqrtth 15004 Square root theorem over t...
sqrtrege0 15005 The square root function m...
eqsqrtor 15006 Solve an equation containi...
eqsqrtd 15007 A deduction for showing th...
eqsqrt2d 15008 A deduction for showing th...
amgm2 15009 Arithmetic-geometric mean ...
sqrtthi 15010 Square root theorem. Theo...
sqrtcli 15011 The square root of a nonne...
sqrtgt0i 15012 The square root of a posit...
sqrtmsqi 15013 Square root of square. (C...
sqrtsqi 15014 Square root of square. (C...
sqsqrti 15015 Square of square root. (C...
sqrtge0i 15016 The square root of a nonne...
absidi 15017 A nonnegative number is it...
absnidi 15018 A negative number is the n...
leabsi 15019 A real number is less than...
absori 15020 The absolute value of a re...
absrei 15021 Absolute value of a real n...
sqrtpclii 15022 The square root of a posit...
sqrtgt0ii 15023 The square root of a posit...
sqrt11i 15024 The square root function i...
sqrtmuli 15025 Square root distributes ov...
sqrtmulii 15026 Square root distributes ov...
sqrtmsq2i 15027 Relationship between squar...
sqrtlei 15028 Square root is monotonic. ...
sqrtlti 15029 Square root is strictly mo...
abslti 15030 Absolute value and 'less t...
abslei 15031 Absolute value and 'less t...
cnsqrt00 15032 A square root of a complex...
absvalsqi 15033 Square of value of absolut...
absvalsq2i 15034 Square of value of absolut...
abscli 15035 Real closure of absolute v...
absge0i 15036 Absolute value is nonnegat...
absval2i 15037 Value of absolute value fu...
abs00i 15038 The absolute value of a nu...
absgt0i 15039 The absolute value of a no...
absnegi 15040 Absolute value of negative...
abscji 15041 The absolute value of a nu...
releabsi 15042 The real part of a number ...
abssubi 15043 Swapping order of subtract...
absmuli 15044 Absolute value distributes...
sqabsaddi 15045 Square of absolute value o...
sqabssubi 15046 Square of absolute value o...
absdivzi 15047 Absolute value distributes...
abstrii 15048 Triangle inequality for ab...
abs3difi 15049 Absolute value of differen...
abs3lemi 15050 Lemma involving absolute v...
rpsqrtcld 15051 The square root of a posit...
sqrtgt0d 15052 The square root of a posit...
absnidd 15053 A negative number is the n...
leabsd 15054 A real number is less than...
absord 15055 The absolute value of a re...
absred 15056 Absolute value of a real n...
resqrtcld 15057 The square root of a nonne...
sqrtmsqd 15058 Square root of square. (C...
sqrtsqd 15059 Square root of square. (C...
sqrtge0d 15060 The square root of a nonne...
sqrtnegd 15061 The square root of a negat...
absidd 15062 A nonnegative number is it...
sqrtdivd 15063 Square root distributes ov...
sqrtmuld 15064 Square root distributes ov...
sqrtsq2d 15065 Relationship between squar...
sqrtled 15066 Square root is monotonic. ...
sqrtltd 15067 Square root is strictly mo...
sqr11d 15068 The square root function i...
absltd 15069 Absolute value and 'less t...
absled 15070 Absolute value and 'less t...
abssubge0d 15071 Absolute value of a nonneg...
abssuble0d 15072 Absolute value of a nonpos...
absdifltd 15073 The absolute value of a di...
absdifled 15074 The absolute value of a di...
icodiamlt 15075 Two elements in a half-ope...
abscld 15076 Real closure of absolute v...
sqrtcld 15077 Closure of the square root...
sqrtrege0d 15078 The real part of the squar...
sqsqrtd 15079 Square root theorem. Theo...
msqsqrtd 15080 Square root theorem. Theo...
sqr00d 15081 A square root is zero iff ...
absvalsqd 15082 Square of value of absolut...
absvalsq2d 15083 Square of value of absolut...
absge0d 15084 Absolute value is nonnegat...
absval2d 15085 Value of absolute value fu...
abs00d 15086 The absolute value of a nu...
absne0d 15087 The absolute value of a nu...
absrpcld 15088 The absolute value of a no...
absnegd 15089 Absolute value of negative...
abscjd 15090 The absolute value of a nu...
releabsd 15091 The real part of a number ...
absexpd 15092 Absolute value of positive...
abssubd 15093 Swapping order of subtract...
absmuld 15094 Absolute value distributes...
absdivd 15095 Absolute value distributes...
abstrid 15096 Triangle inequality for ab...
abs2difd 15097 Difference of absolute val...
abs2dif2d 15098 Difference of absolute val...
abs2difabsd 15099 Absolute value of differen...
abs3difd 15100 Absolute value of differen...
abs3lemd 15101 Lemma involving absolute v...
reusq0 15102 A complex number is the sq...
bhmafibid1cn 15103 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15104 The Brahmagupta-Fibonacci ...
bhmafibid1 15105 The Brahmagupta-Fibonacci ...
bhmafibid2 15106 The Brahmagupta-Fibonacci ...
limsupgord 15109 Ordering property of the s...
limsupcl 15110 Closure of the superior li...
limsupval 15111 The superior limit of an i...
limsupgf 15112 Closure of the superior li...
limsupgval 15113 Value of the superior limi...
limsupgle 15114 The defining property of t...
limsuple 15115 The defining property of t...
limsuplt 15116 The defining property of t...
limsupval2 15117 The superior limit, relati...
limsupgre 15118 If a sequence of real numb...
limsupbnd1 15119 If a sequence is eventuall...
limsupbnd2 15120 If a sequence is eventuall...
climrel 15129 The limit relation is a re...
rlimrel 15130 The limit relation is a re...
clim 15131 Express the predicate: Th...
rlim 15132 Express the predicate: Th...
rlim2 15133 Rewrite ~ rlim for a mappi...
rlim2lt 15134 Use strictly less-than in ...
rlim3 15135 Restrict the range of the ...
climcl 15136 Closure of the limit of a ...
rlimpm 15137 Closure of a function with...
rlimf 15138 Closure of a function with...
rlimss 15139 Domain closure of a functi...
rlimcl 15140 Closure of the limit of a ...
clim2 15141 Express the predicate: Th...
clim2c 15142 Express the predicate ` F ...
clim0 15143 Express the predicate ` F ...
clim0c 15144 Express the predicate ` F ...
rlim0 15145 Express the predicate ` B ...
rlim0lt 15146 Use strictly less-than in ...
climi 15147 Convergence of a sequence ...
climi2 15148 Convergence of a sequence ...
climi0 15149 Convergence of a sequence ...
rlimi 15150 Convergence at infinity of...
rlimi2 15151 Convergence at infinity of...
ello1 15152 Elementhood in the set of ...
ello12 15153 Elementhood in the set of ...
ello12r 15154 Sufficient condition for e...
lo1f 15155 An eventually upper bounde...
lo1dm 15156 An eventually upper bounde...
lo1bdd 15157 The defining property of a...
ello1mpt 15158 Elementhood in the set of ...
ello1mpt2 15159 Elementhood in the set of ...
ello1d 15160 Sufficient condition for e...
lo1bdd2 15161 If an eventually bounded f...
lo1bddrp 15162 Refine ~ o1bdd2 to give a ...
elo1 15163 Elementhood in the set of ...
elo12 15164 Elementhood in the set of ...
elo12r 15165 Sufficient condition for e...
o1f 15166 An eventually bounded func...
o1dm 15167 An eventually bounded func...
o1bdd 15168 The defining property of a...
lo1o1 15169 A function is eventually b...
lo1o12 15170 A function is eventually b...
elo1mpt 15171 Elementhood in the set of ...
elo1mpt2 15172 Elementhood in the set of ...
elo1d 15173 Sufficient condition for e...
o1lo1 15174 A real function is eventua...
o1lo12 15175 A lower bounded real funct...
o1lo1d 15176 A real eventually bounded ...
icco1 15177 Derive eventual boundednes...
o1bdd2 15178 If an eventually bounded f...
o1bddrp 15179 Refine ~ o1bdd2 to give a ...
climconst 15180 An (eventually) constant s...
rlimconst 15181 A constant sequence conver...
rlimclim1 15182 Forward direction of ~ rli...
rlimclim 15183 A sequence on an upper int...
climrlim2 15184 Produce a real limit from ...
climconst2 15185 A constant sequence conver...
climz 15186 The zero sequence converge...
rlimuni 15187 A real function whose doma...
rlimdm 15188 Two ways to express that a...
climuni 15189 An infinite sequence of co...
fclim 15190 The limit relation is func...
climdm 15191 Two ways to express that a...
climeu 15192 An infinite sequence of co...
climreu 15193 An infinite sequence of co...
climmo 15194 An infinite sequence of co...
rlimres 15195 The restriction of a funct...
lo1res 15196 The restriction of an even...
o1res 15197 The restriction of an even...
rlimres2 15198 The restriction of a funct...
lo1res2 15199 The restriction of a funct...
o1res2 15200 The restriction of a funct...
lo1resb 15201 The restriction of a funct...
rlimresb 15202 The restriction of a funct...
o1resb 15203 The restriction of a funct...
climeq 15204 Two functions that are eve...
lo1eq 15205 Two functions that are eve...
rlimeq 15206 Two functions that are eve...
o1eq 15207 Two functions that are eve...
climmpt 15208 Exhibit a function ` G ` w...
2clim 15209 If two sequences converge ...
climmpt2 15210 Relate an integer limit on...
climshftlem 15211 A shifted function converg...
climres 15212 A function restricted to u...
climshft 15213 A shifted function converg...
serclim0 15214 The zero series converges ...
rlimcld2 15215 If ` D ` is a closed set i...
rlimrege0 15216 The limit of a sequence of...
rlimrecl 15217 The limit of a real sequen...
rlimge0 15218 The limit of a sequence of...
climshft2 15219 A shifted function converg...
climrecl 15220 The limit of a convergent ...
climge0 15221 A nonnegative sequence con...
climabs0 15222 Convergence to zero of the...
o1co 15223 Sufficient condition for t...
o1compt 15224 Sufficient condition for t...
rlimcn1 15225 Image of a limit under a c...
rlimcn1b 15226 Image of a limit under a c...
rlimcn3 15227 Image of a limit under a c...
rlimcn2 15228 Image of a limit under a c...
climcn1 15229 Image of a limit under a c...
climcn2 15230 Image of a limit under a c...
addcn2 15231 Complex number addition is...
subcn2 15232 Complex number subtraction...
mulcn2 15233 Complex number multiplicat...
reccn2 15234 The reciprocal function is...
cn1lem 15235 A sufficient condition for...
abscn2 15236 The absolute value functio...
cjcn2 15237 The complex conjugate func...
recn2 15238 The real part function is ...
imcn2 15239 The imaginary part functio...
climcn1lem 15240 The limit of a continuous ...
climabs 15241 Limit of the absolute valu...
climcj 15242 Limit of the complex conju...
climre 15243 Limit of the real part of ...
climim 15244 Limit of the imaginary par...
rlimmptrcl 15245 Reverse closure for a real...
rlimabs 15246 Limit of the absolute valu...
rlimcj 15247 Limit of the complex conju...
rlimre 15248 Limit of the real part of ...
rlimim 15249 Limit of the imaginary par...
o1of2 15250 Show that a binary operati...
o1add 15251 The sum of two eventually ...
o1mul 15252 The product of two eventua...
o1sub 15253 The difference of two even...
rlimo1 15254 Any function with a finite...
rlimdmo1 15255 A convergent function is e...
o1rlimmul 15256 The product of an eventual...
o1const 15257 A constant function is eve...
lo1const 15258 A constant function is eve...
lo1mptrcl 15259 Reverse closure for an eve...
o1mptrcl 15260 Reverse closure for an eve...
o1add2 15261 The sum of two eventually ...
o1mul2 15262 The product of two eventua...
o1sub2 15263 The product of two eventua...
lo1add 15264 The sum of two eventually ...
lo1mul 15265 The product of an eventual...
lo1mul2 15266 The product of an eventual...
o1dif 15267 If the difference of two f...
lo1sub 15268 The difference of an event...
climadd 15269 Limit of the sum of two co...
climmul 15270 Limit of the product of tw...
climsub 15271 Limit of the difference of...
climaddc1 15272 Limit of a constant ` C ` ...
climaddc2 15273 Limit of a constant ` C ` ...
climmulc2 15274 Limit of a sequence multip...
climsubc1 15275 Limit of a constant ` C ` ...
climsubc2 15276 Limit of a constant ` C ` ...
climle 15277 Comparison of the limits o...
climsqz 15278 Convergence of a sequence ...
climsqz2 15279 Convergence of a sequence ...
rlimadd 15280 Limit of the sum of two co...
rlimaddOLD 15281 Obsolete version of ~ rlim...
rlimsub 15282 Limit of the difference of...
rlimmul 15283 Limit of the product of tw...
rlimmulOLD 15284 Obsolete version of ~ rlim...
rlimdiv 15285 Limit of the quotient of t...
rlimneg 15286 Limit of the negative of a...
rlimle 15287 Comparison of the limits o...
rlimsqzlem 15288 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15289 Convergence of a sequence ...
rlimsqz2 15290 Convergence of a sequence ...
lo1le 15291 Transfer eventual upper bo...
o1le 15292 Transfer eventual boundedn...
rlimno1 15293 A function whose inverse c...
clim2ser 15294 The limit of an infinite s...
clim2ser2 15295 The limit of an infinite s...
iserex 15296 An infinite series converg...
isermulc2 15297 Multiplication of an infin...
climlec2 15298 Comparison of a constant t...
iserle 15299 Comparison of the limits o...
iserge0 15300 The limit of an infinite s...
climub 15301 The limit of a monotonic s...
climserle 15302 The partial sums of a conv...
isershft 15303 Index shift of the limit o...
isercolllem1 15304 Lemma for ~ isercoll . (C...
isercolllem2 15305 Lemma for ~ isercoll . (C...
isercolllem3 15306 Lemma for ~ isercoll . (C...
isercoll 15307 Rearrange an infinite seri...
isercoll2 15308 Generalize ~ isercoll so t...
climsup 15309 A bounded monotonic sequen...
climcau 15310 A converging sequence of c...
climbdd 15311 A converging sequence of c...
caucvgrlem 15312 Lemma for ~ caurcvgr . (C...
caurcvgr 15313 A Cauchy sequence of real ...
caucvgrlem2 15314 Lemma for ~ caucvgr . (Co...
caucvgr 15315 A Cauchy sequence of compl...
caurcvg 15316 A Cauchy sequence of real ...
caurcvg2 15317 A Cauchy sequence of real ...
caucvg 15318 A Cauchy sequence of compl...
caucvgb 15319 A function is convergent i...
serf0 15320 If an infinite series conv...
iseraltlem1 15321 Lemma for ~ iseralt . A d...
iseraltlem2 15322 Lemma for ~ iseralt . The...
iseraltlem3 15323 Lemma for ~ iseralt . Fro...
iseralt 15324 The alternating series tes...
sumex 15327 A sum is a set. (Contribu...
sumeq1 15328 Equality theorem for a sum...
nfsum1 15329 Bound-variable hypothesis ...
nfsum 15330 Bound-variable hypothesis ...
nfsumOLD 15331 Obsolete version of ~ nfsu...
sumeq2w 15332 Equality theorem for sum, ...
sumeq2ii 15333 Equality theorem for sum, ...
sumeq2 15334 Equality theorem for sum. ...
cbvsum 15335 Change bound variable in a...
cbvsumv 15336 Change bound variable in a...
cbvsumi 15337 Change bound variable in a...
sumeq1i 15338 Equality inference for sum...
sumeq2i 15339 Equality inference for sum...
sumeq12i 15340 Equality inference for sum...
sumeq1d 15341 Equality deduction for sum...
sumeq2d 15342 Equality deduction for sum...
sumeq2dv 15343 Equality deduction for sum...
sumeq2sdv 15344 Equality deduction for sum...
2sumeq2dv 15345 Equality deduction for dou...
sumeq12dv 15346 Equality deduction for sum...
sumeq12rdv 15347 Equality deduction for sum...
sum2id 15348 The second class argument ...
sumfc 15349 A lemma to facilitate conv...
fz1f1o 15350 A lemma for working with f...
sumrblem 15351 Lemma for ~ sumrb . (Cont...
fsumcvg 15352 The sequence of partial su...
sumrb 15353 Rebase the starting point ...
summolem3 15354 Lemma for ~ summo . (Cont...
summolem2a 15355 Lemma for ~ summo . (Cont...
summolem2 15356 Lemma for ~ summo . (Cont...
summo 15357 A sum has at most one limi...
zsum 15358 Series sum with index set ...
isum 15359 Series sum with an upper i...
fsum 15360 The value of a sum over a ...
sum0 15361 Any sum over the empty set...
sumz 15362 Any sum of zero over a sum...
fsumf1o 15363 Re-index a finite sum usin...
sumss 15364 Change the index set to a ...
fsumss 15365 Change the index set to a ...
sumss2 15366 Change the index set of a ...
fsumcvg2 15367 The sequence of partial su...
fsumsers 15368 Special case of series sum...
fsumcvg3 15369 A finite sum is convergent...
fsumser 15370 A finite sum expressed in ...
fsumcl2lem 15371 - Lemma for finite sum clo...
fsumcllem 15372 - Lemma for finite sum clo...
fsumcl 15373 Closure of a finite sum of...
fsumrecl 15374 Closure of a finite sum of...
fsumzcl 15375 Closure of a finite sum of...
fsumnn0cl 15376 Closure of a finite sum of...
fsumrpcl 15377 Closure of a finite sum of...
fsumclf 15378 Closure of a finite sum of...
fsumzcl2 15379 A finite sum with integer ...
fsumadd 15380 The sum of two finite sums...
fsumsplit 15381 Split a sum into two parts...
fsumsplitf 15382 Split a sum into two parts...
sumsnf 15383 A sum of a singleton is th...
fsumsplitsn 15384 Separate out a term in a f...
fsumsplit1 15385 Separate out a term in a f...
sumsn 15386 A sum of a singleton is th...
fsum1 15387 The finite sum of ` A ( k ...
sumpr 15388 A sum over a pair is the s...
sumtp 15389 A sum over a triple is the...
sumsns 15390 A sum of a singleton is th...
fsumm1 15391 Separate out the last term...
fzosump1 15392 Separate out the last term...
fsum1p 15393 Separate out the first ter...
fsummsnunz 15394 A finite sum all of whose ...
fsumsplitsnun 15395 Separate out a term in a f...
fsump1 15396 The addition of the next t...
isumclim 15397 An infinite sum equals the...
isumclim2 15398 A converging series conver...
isumclim3 15399 The sequence of partial fi...
sumnul 15400 The sum of a non-convergen...
isumcl 15401 The sum of a converging in...
isummulc2 15402 An infinite sum multiplied...
isummulc1 15403 An infinite sum multiplied...
isumdivc 15404 An infinite sum divided by...
isumrecl 15405 The sum of a converging in...
isumge0 15406 An infinite sum of nonnega...
isumadd 15407 Addition of infinite sums....
sumsplit 15408 Split a sum into two parts...
fsump1i 15409 Optimized version of ~ fsu...
fsum2dlem 15410 Lemma for ~ fsum2d - induc...
fsum2d 15411 Write a double sum as a su...
fsumxp 15412 Combine two sums into a si...
fsumcnv 15413 Transform a region of summ...
fsumcom2 15414 Interchange order of summa...
fsumcom 15415 Interchange order of summa...
fsum0diaglem 15416 Lemma for ~ fsum0diag . (...
fsum0diag 15417 Two ways to express "the s...
mptfzshft 15418 1-1 onto function in maps-...
fsumrev 15419 Reversal of a finite sum. ...
fsumshft 15420 Index shift of a finite su...
fsumshftm 15421 Negative index shift of a ...
fsumrev2 15422 Reversal of a finite sum. ...
fsum0diag2 15423 Two ways to express "the s...
fsummulc2 15424 A finite sum multiplied by...
fsummulc1 15425 A finite sum multiplied by...
fsumdivc 15426 A finite sum divided by a ...
fsumneg 15427 Negation of a finite sum. ...
fsumsub 15428 Split a finite sum over a ...
fsum2mul 15429 Separate the nested sum of...
fsumconst 15430 The sum of constant terms ...
fsumdifsnconst 15431 The sum of constant terms ...
modfsummodslem1 15432 Lemma 1 for ~ modfsummods ...
modfsummods 15433 Induction step for ~ modfs...
modfsummod 15434 A finite sum modulo a posi...
fsumge0 15435 If all of the terms of a f...
fsumless 15436 A shorter sum of nonnegati...
fsumge1 15437 A sum of nonnegative numbe...
fsum00 15438 A sum of nonnegative numbe...
fsumle 15439 If all of the terms of fin...
fsumlt 15440 If every term in one finit...
fsumabs 15441 Generalized triangle inequ...
telfsumo 15442 Sum of a telescoping serie...
telfsumo2 15443 Sum of a telescoping serie...
telfsum 15444 Sum of a telescoping serie...
telfsum2 15445 Sum of a telescoping serie...
fsumparts 15446 Summation by parts. (Cont...
fsumrelem 15447 Lemma for ~ fsumre , ~ fsu...
fsumre 15448 The real part of a sum. (...
fsumim 15449 The imaginary part of a su...
fsumcj 15450 The complex conjugate of a...
fsumrlim 15451 Limit of a finite sum of c...
fsumo1 15452 The finite sum of eventual...
o1fsum 15453 If ` A ( k ) ` is O(1), th...
seqabs 15454 Generalized triangle inequ...
iserabs 15455 Generalized triangle inequ...
cvgcmp 15456 A comparison test for conv...
cvgcmpub 15457 An upper bound for the lim...
cvgcmpce 15458 A comparison test for conv...
abscvgcvg 15459 An absolutely convergent s...
climfsum 15460 Limit of a finite sum of c...
fsumiun 15461 Sum over a disjoint indexe...
hashiun 15462 The cardinality of a disjo...
hash2iun 15463 The cardinality of a neste...
hash2iun1dif1 15464 The cardinality of a neste...
hashrabrex 15465 The number of elements in ...
hashuni 15466 The cardinality of a disjo...
qshash 15467 The cardinality of a set w...
ackbijnn 15468 Translate the Ackermann bi...
binomlem 15469 Lemma for ~ binom (binomia...
binom 15470 The binomial theorem: ` ( ...
binom1p 15471 Special case of the binomi...
binom11 15472 Special case of the binomi...
binom1dif 15473 A summation for the differ...
bcxmaslem1 15474 Lemma for ~ bcxmas . (Con...
bcxmas 15475 Parallel summation (Christ...
incexclem 15476 Lemma for ~ incexc . (Con...
incexc 15477 The inclusion/exclusion pr...
incexc2 15478 The inclusion/exclusion pr...
isumshft 15479 Index shift of an infinite...
isumsplit 15480 Split off the first ` N ` ...
isum1p 15481 The infinite sum of a conv...
isumnn0nn 15482 Sum from 0 to infinity in ...
isumrpcl 15483 The infinite sum of positi...
isumle 15484 Comparison of two infinite...
isumless 15485 A finite sum of nonnegativ...
isumsup2 15486 An infinite sum of nonnega...
isumsup 15487 An infinite sum of nonnega...
isumltss 15488 A partial sum of a series ...
climcndslem1 15489 Lemma for ~ climcnds : bou...
climcndslem2 15490 Lemma for ~ climcnds : bou...
climcnds 15491 The Cauchy condensation te...
divrcnv 15492 The sequence of reciprocal...
divcnv 15493 The sequence of reciprocal...
flo1 15494 The floor function satisfi...
divcnvshft 15495 Limit of a ratio function....
supcvg 15496 Extract a sequence ` f ` i...
infcvgaux1i 15497 Auxiliary theorem for appl...
infcvgaux2i 15498 Auxiliary theorem for appl...
harmonic 15499 The harmonic series ` H ` ...
arisum 15500 Arithmetic series sum of t...
arisum2 15501 Arithmetic series sum of t...
trireciplem 15502 Lemma for ~ trirecip . Sh...
trirecip 15503 The sum of the reciprocals...
expcnv 15504 A sequence of powers of a ...
explecnv 15505 A sequence of terms conver...
geoserg 15506 The value of the finite ge...
geoser 15507 The value of the finite ge...
pwdif 15508 The difference of two numb...
pwm1geoser 15509 The n-th power of a number...
geolim 15510 The partial sums in the in...
geolim2 15511 The partial sums in the ge...
georeclim 15512 The limit of a geometric s...
geo2sum 15513 The value of the finite ge...
geo2sum2 15514 The value of the finite ge...
geo2lim 15515 The value of the infinite ...
geomulcvg 15516 The geometric series conve...
geoisum 15517 The infinite sum of ` 1 + ...
geoisumr 15518 The infinite sum of recipr...
geoisum1 15519 The infinite sum of ` A ^ ...
geoisum1c 15520 The infinite sum of ` A x....
0.999... 15521 The recurring decimal 0.99...
geoihalfsum 15522 Prove that the infinite ge...
cvgrat 15523 Ratio test for convergence...
mertenslem1 15524 Lemma for ~ mertens . (Co...
mertenslem2 15525 Lemma for ~ mertens . (Co...
mertens 15526 Mertens' theorem. If ` A ...
prodf 15527 An infinite product of com...
clim2prod 15528 The limit of an infinite p...
clim2div 15529 The limit of an infinite p...
prodfmul 15530 The product of two infinit...
prodf1 15531 The value of the partial p...
prodf1f 15532 A one-valued infinite prod...
prodfclim1 15533 The constant one product c...
prodfn0 15534 No term of a nonzero infin...
prodfrec 15535 The reciprocal of an infin...
prodfdiv 15536 The quotient of two infini...
ntrivcvg 15537 A non-trivially converging...
ntrivcvgn0 15538 A product that converges t...
ntrivcvgfvn0 15539 Any value of a product seq...
ntrivcvgtail 15540 A tail of a non-trivially ...
ntrivcvgmullem 15541 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15542 The product of two non-tri...
prodex 15545 A product is a set. (Cont...
prodeq1f 15546 Equality theorem for a pro...
prodeq1 15547 Equality theorem for a pro...
nfcprod1 15548 Bound-variable hypothesis ...
nfcprod 15549 Bound-variable hypothesis ...
prodeq2w 15550 Equality theorem for produ...
prodeq2ii 15551 Equality theorem for produ...
prodeq2 15552 Equality theorem for produ...
cbvprod 15553 Change bound variable in a...
cbvprodv 15554 Change bound variable in a...
cbvprodi 15555 Change bound variable in a...
prodeq1i 15556 Equality inference for pro...
prodeq2i 15557 Equality inference for pro...
prodeq12i 15558 Equality inference for pro...
prodeq1d 15559 Equality deduction for pro...
prodeq2d 15560 Equality deduction for pro...
prodeq2dv 15561 Equality deduction for pro...
prodeq2sdv 15562 Equality deduction for pro...
2cprodeq2dv 15563 Equality deduction for dou...
prodeq12dv 15564 Equality deduction for pro...
prodeq12rdv 15565 Equality deduction for pro...
prod2id 15566 The second class argument ...
prodrblem 15567 Lemma for ~ prodrb . (Con...
fprodcvg 15568 The sequence of partial pr...
prodrblem2 15569 Lemma for ~ prodrb . (Con...
prodrb 15570 Rebase the starting point ...
prodmolem3 15571 Lemma for ~ prodmo . (Con...
prodmolem2a 15572 Lemma for ~ prodmo . (Con...
prodmolem2 15573 Lemma for ~ prodmo . (Con...
prodmo 15574 A product has at most one ...
zprod 15575 Series product with index ...
iprod 15576 Series product with an upp...
zprodn0 15577 Nonzero series product wit...
iprodn0 15578 Nonzero series product wit...
fprod 15579 The value of a product ove...
fprodntriv 15580 A non-triviality lemma for...
prod0 15581 A product over the empty s...
prod1 15582 Any product of one over a ...
prodfc 15583 A lemma to facilitate conv...
fprodf1o 15584 Re-index a finite product ...
prodss 15585 Change the index set to a ...
fprodss 15586 Change the index set to a ...
fprodser 15587 A finite product expressed...
fprodcl2lem 15588 Finite product closure lem...
fprodcllem 15589 Finite product closure lem...
fprodcl 15590 Closure of a finite produc...
fprodrecl 15591 Closure of a finite produc...
fprodzcl 15592 Closure of a finite produc...
fprodnncl 15593 Closure of a finite produc...
fprodrpcl 15594 Closure of a finite produc...
fprodnn0cl 15595 Closure of a finite produc...
fprodcllemf 15596 Finite product closure lem...
fprodreclf 15597 Closure of a finite produc...
fprodmul 15598 The product of two finite ...
fproddiv 15599 The quotient of two finite...
prodsn 15600 A product of a singleton i...
fprod1 15601 A finite product of only o...
prodsnf 15602 A product of a singleton i...
climprod1 15603 The limit of a product ove...
fprodsplit 15604 Split a finite product int...
fprodm1 15605 Separate out the last term...
fprod1p 15606 Separate out the first ter...
fprodp1 15607 Multiply in the last term ...
fprodm1s 15608 Separate out the last term...
fprodp1s 15609 Multiply in the last term ...
prodsns 15610 A product of the singleton...
fprodfac 15611 Factorial using product no...
fprodabs 15612 The absolute value of a fi...
fprodeq0 15613 Any finite product contain...
fprodshft 15614 Shift the index of a finit...
fprodrev 15615 Reversal of a finite produ...
fprodconst 15616 The product of constant te...
fprodn0 15617 A finite product of nonzer...
fprod2dlem 15618 Lemma for ~ fprod2d - indu...
fprod2d 15619 Write a double product as ...
fprodxp 15620 Combine two products into ...
fprodcnv 15621 Transform a product region...
fprodcom2 15622 Interchange order of multi...
fprodcom 15623 Interchange product order....
fprod0diag 15624 Two ways to express "the p...
fproddivf 15625 The quotient of two finite...
fprodsplitf 15626 Split a finite product int...
fprodsplitsn 15627 Separate out a term in a f...
fprodsplit1f 15628 Separate out a term in a f...
fprodn0f 15629 A finite product of nonzer...
fprodclf 15630 Closure of a finite produc...
fprodge0 15631 If all the terms of a fini...
fprodeq0g 15632 Any finite product contain...
fprodge1 15633 If all of the terms of a f...
fprodle 15634 If all the terms of two fi...
fprodmodd 15635 If all factors of two fini...
iprodclim 15636 An infinite product equals...
iprodclim2 15637 A converging product conve...
iprodclim3 15638 The sequence of partial fi...
iprodcl 15639 The product of a non-trivi...
iprodrecl 15640 The product of a non-trivi...
iprodmul 15641 Multiplication of infinite...
risefacval 15646 The value of the rising fa...
fallfacval 15647 The value of the falling f...
risefacval2 15648 One-based value of rising ...
fallfacval2 15649 One-based value of falling...
fallfacval3 15650 A product representation o...
risefaccllem 15651 Lemma for rising factorial...
fallfaccllem 15652 Lemma for falling factoria...
risefaccl 15653 Closure law for rising fac...
fallfaccl 15654 Closure law for falling fa...
rerisefaccl 15655 Closure law for rising fac...
refallfaccl 15656 Closure law for falling fa...
nnrisefaccl 15657 Closure law for rising fac...
zrisefaccl 15658 Closure law for rising fac...
zfallfaccl 15659 Closure law for falling fa...
nn0risefaccl 15660 Closure law for rising fac...
rprisefaccl 15661 Closure law for rising fac...
risefallfac 15662 A relationship between ris...
fallrisefac 15663 A relationship between fal...
risefall0lem 15664 Lemma for ~ risefac0 and ~...
risefac0 15665 The value of the rising fa...
fallfac0 15666 The value of the falling f...
risefacp1 15667 The value of the rising fa...
fallfacp1 15668 The value of the falling f...
risefacp1d 15669 The value of the rising fa...
fallfacp1d 15670 The value of the falling f...
risefac1 15671 The value of rising factor...
fallfac1 15672 The value of falling facto...
risefacfac 15673 Relate rising factorial to...
fallfacfwd 15674 The forward difference of ...
0fallfac 15675 The value of the zero fall...
0risefac 15676 The value of the zero risi...
binomfallfaclem1 15677 Lemma for ~ binomfallfac ....
binomfallfaclem2 15678 Lemma for ~ binomfallfac ....
binomfallfac 15679 A version of the binomial ...
binomrisefac 15680 A version of the binomial ...
fallfacval4 15681 Represent the falling fact...
bcfallfac 15682 Binomial coefficient in te...
fallfacfac 15683 Relate falling factorial t...
bpolylem 15686 Lemma for ~ bpolyval . (C...
bpolyval 15687 The value of the Bernoulli...
bpoly0 15688 The value of the Bernoulli...
bpoly1 15689 The value of the Bernoulli...
bpolycl 15690 Closure law for Bernoulli ...
bpolysum 15691 A sum for Bernoulli polyno...
bpolydiflem 15692 Lemma for ~ bpolydif . (C...
bpolydif 15693 Calculate the difference b...
fsumkthpow 15694 A closed-form expression f...
bpoly2 15695 The Bernoulli polynomials ...
bpoly3 15696 The Bernoulli polynomials ...
bpoly4 15697 The Bernoulli polynomials ...
fsumcube 15698 Express the sum of cubes i...
eftcl 15711 Closure of a term in the s...
reeftcl 15712 The terms of the series ex...
eftabs 15713 The absolute value of a te...
eftval 15714 The value of a term in the...
efcllem 15715 Lemma for ~ efcl . The se...
ef0lem 15716 The series defining the ex...
efval 15717 Value of the exponential f...
esum 15718 Value of Euler's constant ...
eff 15719 Domain and codomain of the...
efcl 15720 Closure law for the expone...
efval2 15721 Value of the exponential f...
efcvg 15722 The series that defines th...
efcvgfsum 15723 Exponential function conve...
reefcl 15724 The exponential function i...
reefcld 15725 The exponential function i...
ere 15726 Euler's constant ` _e ` = ...
ege2le3 15727 Lemma for ~ egt2lt3 . (Co...
ef0 15728 Value of the exponential f...
efcj 15729 The exponential of a compl...
efaddlem 15730 Lemma for ~ efadd (exponen...
efadd 15731 Sum of exponents law for e...
fprodefsum 15732 Move the exponential funct...
efcan 15733 Cancellation law for expon...
efne0 15734 The exponential of a compl...
efneg 15735 The exponential of the opp...
eff2 15736 The exponential function m...
efsub 15737 Difference of exponents la...
efexp 15738 The exponential of an inte...
efzval 15739 Value of the exponential f...
efgt0 15740 The exponential of a real ...
rpefcl 15741 The exponential of a real ...
rpefcld 15742 The exponential of a real ...
eftlcvg 15743 The tail series of the exp...
eftlcl 15744 Closure of the sum of an i...
reeftlcl 15745 Closure of the sum of an i...
eftlub 15746 An upper bound on the abso...
efsep 15747 Separate out the next term...
effsumlt 15748 The partial sums of the se...
eft0val 15749 The value of the first ter...
ef4p 15750 Separate out the first fou...
efgt1p2 15751 The exponential of a posit...
efgt1p 15752 The exponential of a posit...
efgt1 15753 The exponential of a posit...
eflt 15754 The exponential function o...
efle 15755 The exponential function o...
reef11 15756 The exponential function o...
reeff1 15757 The exponential function m...
eflegeo 15758 The exponential function o...
sinval 15759 Value of the sine function...
cosval 15760 Value of the cosine functi...
sinf 15761 Domain and codomain of the...
cosf 15762 Domain and codomain of the...
sincl 15763 Closure of the sine functi...
coscl 15764 Closure of the cosine func...
tanval 15765 Value of the tangent funct...
tancl 15766 The closure of the tangent...
sincld 15767 Closure of the sine functi...
coscld 15768 Closure of the cosine func...
tancld 15769 Closure of the tangent fun...
tanval2 15770 Express the tangent functi...
tanval3 15771 Express the tangent functi...
resinval 15772 The sine of a real number ...
recosval 15773 The cosine of a real numbe...
efi4p 15774 Separate out the first fou...
resin4p 15775 Separate out the first fou...
recos4p 15776 Separate out the first fou...
resincl 15777 The sine of a real number ...
recoscl 15778 The cosine of a real numbe...
retancl 15779 The closure of the tangent...
resincld 15780 Closure of the sine functi...
recoscld 15781 Closure of the cosine func...
retancld 15782 Closure of the tangent fun...
sinneg 15783 The sine of a negative is ...
cosneg 15784 The cosines of a number an...
tanneg 15785 The tangent of a negative ...
sin0 15786 Value of the sine function...
cos0 15787 Value of the cosine functi...
tan0 15788 The value of the tangent f...
efival 15789 The exponential function i...
efmival 15790 The exponential function i...
sinhval 15791 Value of the hyperbolic si...
coshval 15792 Value of the hyperbolic co...
resinhcl 15793 The hyperbolic sine of a r...
rpcoshcl 15794 The hyperbolic cosine of a...
recoshcl 15795 The hyperbolic cosine of a...
retanhcl 15796 The hyperbolic tangent of ...
tanhlt1 15797 The hyperbolic tangent of ...
tanhbnd 15798 The hyperbolic tangent of ...
efeul 15799 Eulerian representation of...
efieq 15800 The exponentials of two im...
sinadd 15801 Addition formula for sine....
cosadd 15802 Addition formula for cosin...
tanaddlem 15803 A useful intermediate step...
tanadd 15804 Addition formula for tange...
sinsub 15805 Sine of difference. (Cont...
cossub 15806 Cosine of difference. (Co...
addsin 15807 Sum of sines. (Contribute...
subsin 15808 Difference of sines. (Con...
sinmul 15809 Product of sines can be re...
cosmul 15810 Product of cosines can be ...
addcos 15811 Sum of cosines. (Contribu...
subcos 15812 Difference of cosines. (C...
sincossq 15813 Sine squared plus cosine s...
sin2t 15814 Double-angle formula for s...
cos2t 15815 Double-angle formula for c...
cos2tsin 15816 Double-angle formula for c...
sinbnd 15817 The sine of a real number ...
cosbnd 15818 The cosine of a real numbe...
sinbnd2 15819 The sine of a real number ...
cosbnd2 15820 The cosine of a real numbe...
ef01bndlem 15821 Lemma for ~ sin01bnd and ~...
sin01bnd 15822 Bounds on the sine of a po...
cos01bnd 15823 Bounds on the cosine of a ...
cos1bnd 15824 Bounds on the cosine of 1....
cos2bnd 15825 Bounds on the cosine of 2....
sinltx 15826 The sine of a positive rea...
sin01gt0 15827 The sine of a positive rea...
cos01gt0 15828 The cosine of a positive r...
sin02gt0 15829 The sine of a positive rea...
sincos1sgn 15830 The signs of the sine and ...
sincos2sgn 15831 The signs of the sine and ...
sin4lt0 15832 The sine of 4 is negative....
absefi 15833 The absolute value of the ...
absef 15834 The absolute value of the ...
absefib 15835 A complex number is real i...
efieq1re 15836 A number whose imaginary e...
demoivre 15837 De Moivre's Formula. Proo...
demoivreALT 15838 Alternate proof of ~ demoi...
eirrlem 15841 Lemma for ~ eirr . (Contr...
eirr 15842 ` _e ` is irrational. (Co...
egt2lt3 15843 Euler's constant ` _e ` = ...
epos 15844 Euler's constant ` _e ` is...
epr 15845 Euler's constant ` _e ` is...
ene0 15846 ` _e ` is not 0. (Contrib...
ene1 15847 ` _e ` is not 1. (Contrib...
xpnnen 15848 The Cartesian product of t...
znnen 15849 The set of integers and th...
qnnen 15850 The rational numbers are c...
rpnnen2lem1 15851 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 15852 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 15853 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 15854 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 15855 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 15856 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 15857 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 15858 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 15859 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 15860 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 15861 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 15862 Lemma for ~ rpnnen2 . (Co...
rpnnen2 15863 The other half of ~ rpnnen...
rpnnen 15864 The cardinality of the con...
rexpen 15865 The real numbers are equin...
cpnnen 15866 The complex numbers are eq...
rucALT 15867 Alternate proof of ~ ruc ....
ruclem1 15868 Lemma for ~ ruc (the reals...
ruclem2 15869 Lemma for ~ ruc . Orderin...
ruclem3 15870 Lemma for ~ ruc . The con...
ruclem4 15871 Lemma for ~ ruc . Initial...
ruclem6 15872 Lemma for ~ ruc . Domain ...
ruclem7 15873 Lemma for ~ ruc . Success...
ruclem8 15874 Lemma for ~ ruc . The int...
ruclem9 15875 Lemma for ~ ruc . The fir...
ruclem10 15876 Lemma for ~ ruc . Every f...
ruclem11 15877 Lemma for ~ ruc . Closure...
ruclem12 15878 Lemma for ~ ruc . The sup...
ruclem13 15879 Lemma for ~ ruc . There i...
ruc 15880 The set of positive intege...
resdomq 15881 The set of rationals is st...
aleph1re 15882 There are at least aleph-o...
aleph1irr 15883 There are at least aleph-o...
cnso 15884 The complex numbers can be...
sqrt2irrlem 15885 Lemma for ~ sqrt2irr . Th...
sqrt2irr 15886 The square root of 2 is ir...
sqrt2re 15887 The square root of 2 exist...
sqrt2irr0 15888 The square root of 2 is an...
nthruc 15889 The sequence ` NN ` , ` ZZ...
nthruz 15890 The sequence ` NN ` , ` NN...
divides 15893 Define the divides relatio...
dvdsval2 15894 One nonzero integer divide...
dvdsval3 15895 One nonzero integer divide...
dvdszrcl 15896 Reverse closure for the di...
dvdsmod0 15897 If a positive integer divi...
p1modz1 15898 If a number greater than 1...
dvdsmodexp 15899 If a positive integer divi...
nndivdvds 15900 Strong form of ~ dvdsval2 ...
nndivides 15901 Definition of the divides ...
moddvds 15902 Two ways to say ` A == B `...
modm1div 15903 An integer greater than on...
dvds0lem 15904 A lemma to assist theorems...
dvds1lem 15905 A lemma to assist theorems...
dvds2lem 15906 A lemma to assist theorems...
iddvds 15907 An integer divides itself....
1dvds 15908 1 divides any integer. Th...
dvds0 15909 Any integer divides 0. Th...
negdvdsb 15910 An integer divides another...
dvdsnegb 15911 An integer divides another...
absdvdsb 15912 An integer divides another...
dvdsabsb 15913 An integer divides another...
0dvds 15914 Only 0 is divisible by 0. ...
dvdsmul1 15915 An integer divides a multi...
dvdsmul2 15916 An integer divides a multi...
iddvdsexp 15917 An integer divides a posit...
muldvds1 15918 If a product divides an in...
muldvds2 15919 If a product divides an in...
dvdscmul 15920 Multiplication by a consta...
dvdsmulc 15921 Multiplication by a consta...
dvdscmulr 15922 Cancellation law for the d...
dvdsmulcr 15923 Cancellation law for the d...
summodnegmod 15924 The sum of two integers mo...
modmulconst 15925 Constant multiplication in...
dvds2ln 15926 If an integer divides each...
dvds2add 15927 If an integer divides each...
dvds2sub 15928 If an integer divides each...
dvds2addd 15929 Deduction form of ~ dvds2a...
dvds2subd 15930 Deduction form of ~ dvds2s...
dvdstr 15931 The divides relation is tr...
dvdstrd 15932 The divides relation is tr...
dvdsmultr1 15933 If an integer divides anot...
dvdsmultr1d 15934 Deduction form of ~ dvdsmu...
dvdsmultr2 15935 If an integer divides anot...
dvdsmultr2d 15936 Deduction form of ~ dvdsmu...
ordvdsmul 15937 If an integer divides eith...
dvdssub2 15938 If an integer divides a di...
dvdsadd 15939 An integer divides another...
dvdsaddr 15940 An integer divides another...
dvdssub 15941 An integer divides another...
dvdssubr 15942 An integer divides another...
dvdsadd2b 15943 Adding a multiple of the b...
dvdsaddre2b 15944 Adding a multiple of the b...
fsumdvds 15945 If every term in a sum is ...
dvdslelem 15946 Lemma for ~ dvdsle . (Con...
dvdsle 15947 The divisors of a positive...
dvdsleabs 15948 The divisors of a nonzero ...
dvdsleabs2 15949 Transfer divisibility to a...
dvdsabseq 15950 If two integers divide eac...
dvdseq 15951 If two nonnegative integer...
divconjdvds 15952 If a nonzero integer ` M `...
dvdsdivcl 15953 The complement of a diviso...
dvdsflip 15954 An involution of the divis...
dvdsssfz1 15955 The set of divisors of a n...
dvds1 15956 The only nonnegative integ...
alzdvds 15957 Only 0 is divisible by all...
dvdsext 15958 Poset extensionality for d...
fzm1ndvds 15959 No number between ` 1 ` an...
fzo0dvdseq 15960 Zero is the only one of th...
fzocongeq 15961 Two different elements of ...
addmodlteqALT 15962 Two nonnegative integers l...
dvdsfac 15963 A positive integer divides...
dvdsexp2im 15964 If an integer divides anot...
dvdsexp 15965 A power divides a power wi...
dvdsmod 15966 Any number ` K ` whose mod...
mulmoddvds 15967 If an integer is divisible...
3dvds 15968 A rule for divisibility by...
3dvdsdec 15969 A decimal number is divisi...
3dvds2dec 15970 A decimal number is divisi...
fprodfvdvdsd 15971 A finite product of intege...
fproddvdsd 15972 A finite product of intege...
evenelz 15973 An even number is an integ...
zeo3 15974 An integer is even or odd....
zeo4 15975 An integer is even or odd ...
zeneo 15976 No even integer equals an ...
odd2np1lem 15977 Lemma for ~ odd2np1 . (Co...
odd2np1 15978 An integer is odd iff it i...
even2n 15979 An integer is even iff it ...
oddm1even 15980 An integer is odd iff its ...
oddp1even 15981 An integer is odd iff its ...
oexpneg 15982 The exponential of the neg...
mod2eq0even 15983 An integer is 0 modulo 2 i...
mod2eq1n2dvds 15984 An integer is 1 modulo 2 i...
oddnn02np1 15985 A nonnegative integer is o...
oddge22np1 15986 An integer greater than on...
evennn02n 15987 A nonnegative integer is e...
evennn2n 15988 A positive integer is even...
2tp1odd 15989 A number which is twice an...
mulsucdiv2z 15990 An integer multiplied with...
sqoddm1div8z 15991 A squared odd number minus...
2teven 15992 A number which is twice an...
zeo5 15993 An integer is either even ...
evend2 15994 An integer is even iff its...
oddp1d2 15995 An integer is odd iff its ...
zob 15996 Alternate characterization...
oddm1d2 15997 An integer is odd iff its ...
ltoddhalfle 15998 An integer is less than ha...
halfleoddlt 15999 An integer is greater than...
opoe 16000 The sum of two odds is eve...
omoe 16001 The difference of two odds...
opeo 16002 The sum of an odd and an e...
omeo 16003 The difference of an odd a...
z0even 16004 2 divides 0. That means 0...
n2dvds1 16005 2 does not divide 1. That...
n2dvdsm1 16006 2 does not divide -1. Tha...
z2even 16007 2 divides 2. That means 2...
n2dvds3 16008 2 does not divide 3. That...
z4even 16009 2 divides 4. That means 4...
4dvdseven 16010 An integer which is divisi...
m1expe 16011 Exponentiation of -1 by an...
m1expo 16012 Exponentiation of -1 by an...
m1exp1 16013 Exponentiation of negative...
nn0enne 16014 A positive integer is an e...
nn0ehalf 16015 The half of an even nonneg...
nnehalf 16016 The half of an even positi...
nn0onn 16017 An odd nonnegative integer...
nn0o1gt2 16018 An odd nonnegative integer...
nno 16019 An alternate characterizat...
nn0o 16020 An alternate characterizat...
nn0ob 16021 Alternate characterization...
nn0oddm1d2 16022 A positive integer is odd ...
nnoddm1d2 16023 A positive integer is odd ...
sumeven 16024 If every term in a sum is ...
sumodd 16025 If every term in a sum is ...
evensumodd 16026 If every term in a sum wit...
oddsumodd 16027 If every term in a sum wit...
pwp1fsum 16028 The n-th power of a number...
oddpwp1fsum 16029 An odd power of a number i...
divalglem0 16030 Lemma for ~ divalg . (Con...
divalglem1 16031 Lemma for ~ divalg . (Con...
divalglem2 16032 Lemma for ~ divalg . (Con...
divalglem4 16033 Lemma for ~ divalg . (Con...
divalglem5 16034 Lemma for ~ divalg . (Con...
divalglem6 16035 Lemma for ~ divalg . (Con...
divalglem7 16036 Lemma for ~ divalg . (Con...
divalglem8 16037 Lemma for ~ divalg . (Con...
divalglem9 16038 Lemma for ~ divalg . (Con...
divalglem10 16039 Lemma for ~ divalg . (Con...
divalg 16040 The division algorithm (th...
divalgb 16041 Express the division algor...
divalg2 16042 The division algorithm (th...
divalgmod 16043 The result of the ` mod ` ...
divalgmodcl 16044 The result of the ` mod ` ...
modremain 16045 The result of the modulo o...
ndvdssub 16046 Corollary of the division ...
ndvdsadd 16047 Corollary of the division ...
ndvdsp1 16048 Special case of ~ ndvdsadd...
ndvdsi 16049 A quick test for non-divis...
flodddiv4 16050 The floor of an odd intege...
fldivndvdslt 16051 The floor of an integer di...
flodddiv4lt 16052 The floor of an odd number...
flodddiv4t2lthalf 16053 The floor of an odd number...
bitsfval 16058 Expand the definition of t...
bitsval 16059 Expand the definition of t...
bitsval2 16060 Expand the definition of t...
bitsss 16061 The set of bits of an inte...
bitsf 16062 The ` bits ` function is a...
bits0 16063 Value of the zeroth bit. ...
bits0e 16064 The zeroth bit of an even ...
bits0o 16065 The zeroth bit of an odd n...
bitsp1 16066 The ` M + 1 ` -th bit of `...
bitsp1e 16067 The ` M + 1 ` -th bit of `...
bitsp1o 16068 The ` M + 1 ` -th bit of `...
bitsfzolem 16069 Lemma for ~ bitsfzo . (Co...
bitsfzo 16070 The bits of a number are a...
bitsmod 16071 Truncating the bit sequenc...
bitsfi 16072 Every number is associated...
bitscmp 16073 The bit complement of ` N ...
0bits 16074 The bits of zero. (Contri...
m1bits 16075 The bits of negative one. ...
bitsinv1lem 16076 Lemma for ~ bitsinv1 . (C...
bitsinv1 16077 There is an explicit inver...
bitsinv2 16078 There is an explicit inver...
bitsf1ocnv 16079 The ` bits ` function rest...
bitsf1o 16080 The ` bits ` function rest...
bitsf1 16081 The ` bits ` function is a...
2ebits 16082 The bits of a power of two...
bitsinv 16083 The inverse of the ` bits ...
bitsinvp1 16084 Recursive definition of th...
sadadd2lem2 16085 The core of the proof of ~...
sadfval 16087 Define the addition of two...
sadcf 16088 The carry sequence is a se...
sadc0 16089 The initial element of the...
sadcp1 16090 The carry sequence (which ...
sadval 16091 The full adder sequence is...
sadcaddlem 16092 Lemma for ~ sadcadd . (Co...
sadcadd 16093 Non-recursive definition o...
sadadd2lem 16094 Lemma for ~ sadadd2 . (Co...
sadadd2 16095 Sum of initial segments of...
sadadd3 16096 Sum of initial segments of...
sadcl 16097 The sum of two sequences i...
sadcom 16098 The adder sequence functio...
saddisjlem 16099 Lemma for ~ sadadd . (Con...
saddisj 16100 The sum of disjoint sequen...
sadaddlem 16101 Lemma for ~ sadadd . (Con...
sadadd 16102 For sequences that corresp...
sadid1 16103 The adder sequence functio...
sadid2 16104 The adder sequence functio...
sadasslem 16105 Lemma for ~ sadass . (Con...
sadass 16106 Sequence addition is assoc...
sadeq 16107 Any element of a sequence ...
bitsres 16108 Restrict the bits of a num...
bitsuz 16109 The bits of a number are a...
bitsshft 16110 Shifting a bit sequence to...
smufval 16112 The multiplication of two ...
smupf 16113 The sequence of partial su...
smup0 16114 The initial element of the...
smupp1 16115 The initial element of the...
smuval 16116 Define the addition of two...
smuval2 16117 The partial sum sequence s...
smupvallem 16118 If ` A ` only has elements...
smucl 16119 The product of two sequenc...
smu01lem 16120 Lemma for ~ smu01 and ~ sm...
smu01 16121 Multiplication of a sequen...
smu02 16122 Multiplication of a sequen...
smupval 16123 Rewrite the elements of th...
smup1 16124 Rewrite ~ smupp1 using onl...
smueqlem 16125 Any element of a sequence ...
smueq 16126 Any element of a sequence ...
smumullem 16127 Lemma for ~ smumul . (Con...
smumul 16128 For sequences that corresp...
gcdval 16131 The value of the ` gcd ` o...
gcd0val 16132 The value, by convention, ...
gcdn0val 16133 The value of the ` gcd ` o...
gcdcllem1 16134 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16135 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16136 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16137 Closure of the ` gcd ` ope...
gcddvds 16138 The gcd of two integers di...
dvdslegcd 16139 An integer which divides b...
nndvdslegcd 16140 A positive integer which d...
gcdcl 16141 Closure of the ` gcd ` ope...
gcdnncl 16142 Closure of the ` gcd ` ope...
gcdcld 16143 Closure of the ` gcd ` ope...
gcd2n0cl 16144 Closure of the ` gcd ` ope...
zeqzmulgcd 16145 An integer is the product ...
divgcdz 16146 An integer divided by the ...
gcdf 16147 Domain and codomain of the...
gcdcom 16148 The ` gcd ` operator is co...
gcdcomd 16149 The ` gcd ` operator is co...
divgcdnn 16150 A positive integer divided...
divgcdnnr 16151 A positive integer divided...
gcdeq0 16152 The gcd of two integers is...
gcdn0gt0 16153 The gcd of two integers is...
gcd0id 16154 The gcd of 0 and an intege...
gcdid0 16155 The gcd of an integer and ...
nn0gcdid0 16156 The gcd of a nonnegative i...
gcdneg 16157 Negating one operand of th...
neggcd 16158 Negating one operand of th...
gcdaddmlem 16159 Lemma for ~ gcdaddm . (Co...
gcdaddm 16160 Adding a multiple of one o...
gcdadd 16161 The GCD of two numbers is ...
gcdid 16162 The gcd of a number and it...
gcd1 16163 The gcd of a number with 1...
gcdabs1 16164 ` gcd ` of the absolute va...
gcdabs2 16165 ` gcd ` of the absolute va...
gcdabs 16166 The gcd of two integers is...
gcdabsOLD 16167 Obsolete version of ~ gcda...
modgcd 16168 The gcd remains unchanged ...
1gcd 16169 The GCD of one and an inte...
gcdmultipled 16170 The greatest common diviso...
gcdmultiplez 16171 The GCD of a multiple of a...
gcdmultiple 16172 The GCD of a multiple of a...
dvdsgcdidd 16173 The greatest common diviso...
6gcd4e2 16174 The greatest common diviso...
bezoutlem1 16175 Lemma for ~ bezout . (Con...
bezoutlem2 16176 Lemma for ~ bezout . (Con...
bezoutlem3 16177 Lemma for ~ bezout . (Con...
bezoutlem4 16178 Lemma for ~ bezout . (Con...
bezout 16179 Bézout's identity: ...
dvdsgcd 16180 An integer which divides e...
dvdsgcdb 16181 Biconditional form of ~ dv...
dfgcd2 16182 Alternate definition of th...
gcdass 16183 Associative law for ` gcd ...
mulgcd 16184 Distribute multiplication ...
absmulgcd 16185 Distribute absolute value ...
mulgcdr 16186 Reverse distribution law f...
gcddiv 16187 Division law for GCD. (Con...
gcdmultipleOLD 16188 Obsolete proof of ~ gcdmul...
gcdmultiplezOLD 16189 Obsolete proof of ~ gcdmul...
gcdzeq 16190 A positive integer ` A ` i...
gcdeq 16191 ` A ` is equal to its gcd ...
dvdssqim 16192 Unidirectional form of ~ d...
dvdsmulgcd 16193 A divisibility equivalent ...
rpmulgcd 16194 If ` K ` and ` M ` are rel...
rplpwr 16195 If ` A ` and ` B ` are rel...
rprpwr 16196 If ` A ` and ` B ` are rel...
rppwr 16197 If ` A ` and ` B ` are rel...
sqgcd 16198 Square distributes over gc...
dvdssqlem 16199 Lemma for ~ dvdssq . (Con...
dvdssq 16200 Two numbers are divisible ...
bezoutr 16201 Partial converse to ~ bezo...
bezoutr1 16202 Converse of ~ bezout for w...
nn0seqcvgd 16203 A strictly-decreasing nonn...
seq1st 16204 A sequence whose iteration...
algr0 16205 The value of the algorithm...
algrf 16206 An algorithm is a step fun...
algrp1 16207 The value of the algorithm...
alginv 16208 If ` I ` is an invariant o...
algcvg 16209 One way to prove that an a...
algcvgblem 16210 Lemma for ~ algcvgb . (Co...
algcvgb 16211 Two ways of expressing tha...
algcvga 16212 The countdown function ` C...
algfx 16213 If ` F ` reaches a fixed p...
eucalgval2 16214 The value of the step func...
eucalgval 16215 Euclid's Algorithm ~ eucal...
eucalgf 16216 Domain and codomain of the...
eucalginv 16217 The invariant of the step ...
eucalglt 16218 The second member of the s...
eucalgcvga 16219 Once Euclid's Algorithm ha...
eucalg 16220 Euclid's Algorithm compute...
lcmval 16225 Value of the ` lcm ` opera...
lcmcom 16226 The ` lcm ` operator is co...
lcm0val 16227 The value, by convention, ...
lcmn0val 16228 The value of the ` lcm ` o...
lcmcllem 16229 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16230 Closure of the ` lcm ` ope...
dvdslcm 16231 The lcm of two integers is...
lcmledvds 16232 A positive integer which b...
lcmeq0 16233 The lcm of two integers is...
lcmcl 16234 Closure of the ` lcm ` ope...
gcddvdslcm 16235 The greatest common diviso...
lcmneg 16236 Negating one operand of th...
neglcm 16237 Negating one operand of th...
lcmabs 16238 The lcm of two integers is...
lcmgcdlem 16239 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16240 The product of two numbers...
lcmdvds 16241 The lcm of two integers di...
lcmid 16242 The lcm of an integer and ...
lcm1 16243 The lcm of an integer and ...
lcmgcdnn 16244 The product of two positiv...
lcmgcdeq 16245 Two integers' absolute val...
lcmdvdsb 16246 Biconditional form of ~ lc...
lcmass 16247 Associative law for ` lcm ...
3lcm2e6woprm 16248 The least common multiple ...
6lcm4e12 16249 The least common multiple ...
absproddvds 16250 The absolute value of the ...
absprodnn 16251 The absolute value of the ...
fissn0dvds 16252 For each finite subset of ...
fissn0dvdsn0 16253 For each finite subset of ...
lcmfval 16254 Value of the ` _lcm ` func...
lcmf0val 16255 The value, by convention, ...
lcmfn0val 16256 The value of the ` _lcm ` ...
lcmfnnval 16257 The value of the ` _lcm ` ...
lcmfcllem 16258 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16259 Closure of the ` _lcm ` fu...
lcmfpr 16260 The value of the ` _lcm ` ...
lcmfcl 16261 Closure of the ` _lcm ` fu...
lcmfnncl 16262 Closure of the ` _lcm ` fu...
lcmfeq0b 16263 The least common multiple ...
dvdslcmf 16264 The least common multiple ...
lcmfledvds 16265 A positive integer which i...
lcmf 16266 Characterization of the le...
lcmf0 16267 The least common multiple ...
lcmfsn 16268 The least common multiple ...
lcmftp 16269 The least common multiple ...
lcmfunsnlem1 16270 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16271 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16272 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16273 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16274 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16275 The least common multiple ...
lcmfdvdsb 16276 Biconditional form of ~ lc...
lcmfunsn 16277 The ` _lcm ` function for ...
lcmfun 16278 The ` _lcm ` function for ...
lcmfass 16279 Associative law for the ` ...
lcmf2a3a4e12 16280 The least common multiple ...
lcmflefac 16281 The least common multiple ...
coprmgcdb 16282 Two positive integers are ...
ncoprmgcdne1b 16283 Two positive integers are ...
ncoprmgcdgt1b 16284 Two positive integers are ...
coprmdvds1 16285 If two positive integers a...
coprmdvds 16286 Euclid's Lemma (see ProofW...
coprmdvds2 16287 If an integer is divisible...
mulgcddvds 16288 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16289 If ` M ` is relatively pri...
qredeq 16290 Two equal reduced fraction...
qredeu 16291 Every rational number has ...
rpmul 16292 If ` K ` is relatively pri...
rpdvds 16293 If ` K ` is relatively pri...
coprmprod 16294 The product of the element...
coprmproddvdslem 16295 Lemma for ~ coprmproddvds ...
coprmproddvds 16296 If a positive integer is d...
congr 16297 Definition of congruence b...
divgcdcoprm0 16298 Integers divided by gcd ar...
divgcdcoprmex 16299 Integers divided by gcd ar...
cncongr1 16300 One direction of the bicon...
cncongr2 16301 The other direction of the...
cncongr 16302 Cancellability of Congruen...
cncongrcoprm 16303 Corollary 1 of Cancellabil...
isprm 16306 The predicate "is a prime ...
prmnn 16307 A prime number is a positi...
prmz 16308 A prime number is an integ...
prmssnn 16309 The prime numbers are a su...
prmex 16310 The set of prime numbers e...
0nprm 16311 0 is not a prime number. ...
1nprm 16312 1 is not a prime number. ...
1idssfct 16313 The positive divisors of a...
isprm2lem 16314 Lemma for ~ isprm2 . (Con...
isprm2 16315 The predicate "is a prime ...
isprm3 16316 The predicate "is a prime ...
isprm4 16317 The predicate "is a prime ...
prmind2 16318 A variation on ~ prmind as...
prmind 16319 Perform induction over the...
dvdsprime 16320 If ` M ` divides a prime, ...
nprm 16321 A product of two integers ...
nprmi 16322 An inference for composite...
dvdsnprmd 16323 If a number is divisible b...
prm2orodd 16324 A prime number is either 2...
2prm 16325 2 is a prime number. (Con...
2mulprm 16326 A multiple of two is prime...
3prm 16327 3 is a prime number. (Con...
4nprm 16328 4 is not a prime number. ...
prmuz2 16329 A prime number is an integ...
prmgt1 16330 A prime number is an integ...
prmm2nn0 16331 Subtracting 2 from a prime...
oddprmgt2 16332 An odd prime is greater th...
oddprmge3 16333 An odd prime is greater th...
ge2nprmge4 16334 A composite integer greate...
sqnprm 16335 A square is never prime. ...
dvdsprm 16336 An integer greater than or...
exprmfct 16337 Every integer greater than...
prmdvdsfz 16338 Each integer greater than ...
nprmdvds1 16339 No prime number divides 1....
isprm5 16340 One need only check prime ...
isprm7 16341 One need only check prime ...
maxprmfct 16342 The set of prime factors o...
divgcdodd 16343 Either ` A / ( A gcd B ) `...
coprm 16344 A prime number either divi...
prmrp 16345 Unequal prime numbers are ...
euclemma 16346 Euclid's lemma. A prime n...
isprm6 16347 A number is prime iff it s...
prmdvdsexp 16348 A prime divides a positive...
prmdvdsexpb 16349 A prime divides a positive...
prmdvdsexpr 16350 If a prime divides a nonne...
prmdvdssq 16351 Condition for a prime divi...
prmdvdssqOLD 16352 Obsolete version of ~ prmd...
prmexpb 16353 Two positive prime powers ...
prmfac1 16354 The factorial of a number ...
rpexp 16355 If two numbers ` A ` and `...
rpexp1i 16356 Relative primality passes ...
rpexp12i 16357 Relative primality passes ...
prmndvdsfaclt 16358 A prime number does not di...
prmdvdsncoprmbd 16359 Two positive integers are ...
ncoprmlnprm 16360 If two positive integers a...
cncongrprm 16361 Corollary 2 of Cancellabil...
isevengcd2 16362 The predicate "is an even ...
isoddgcd1 16363 The predicate "is an odd n...
3lcm2e6 16364 The least common multiple ...
qnumval 16369 Value of the canonical num...
qdenval 16370 Value of the canonical den...
qnumdencl 16371 Lemma for ~ qnumcl and ~ q...
qnumcl 16372 The canonical numerator of...
qdencl 16373 The canonical denominator ...
fnum 16374 Canonical numerator define...
fden 16375 Canonical denominator defi...
qnumdenbi 16376 Two numbers are the canoni...
qnumdencoprm 16377 The canonical representati...
qeqnumdivden 16378 Recover a rational number ...
qmuldeneqnum 16379 Multiplying a rational by ...
divnumden 16380 Calculate the reduced form...
divdenle 16381 Reducing a quotient never ...
qnumgt0 16382 A rational is positive iff...
qgt0numnn 16383 A rational is positive iff...
nn0gcdsq 16384 Squaring commutes with GCD...
zgcdsq 16385 ~ nn0gcdsq extended to int...
numdensq 16386 Squaring a rational square...
numsq 16387 Square commutes with canon...
densq 16388 Square commutes with canon...
qden1elz 16389 A rational is an integer i...
zsqrtelqelz 16390 If an integer has a ration...
nonsq 16391 Any integer strictly betwe...
phival 16396 Value of the Euler ` phi `...
phicl2 16397 Bounds and closure for the...
phicl 16398 Closure for the value of t...
phibndlem 16399 Lemma for ~ phibnd . (Con...
phibnd 16400 A slightly tighter bound o...
phicld 16401 Closure for the value of t...
phi1 16402 Value of the Euler ` phi `...
dfphi2 16403 Alternate definition of th...
hashdvds 16404 The number of numbers in a...
phiprmpw 16405 Value of the Euler ` phi `...
phiprm 16406 Value of the Euler ` phi `...
crth 16407 The Chinese Remainder Theo...
phimullem 16408 Lemma for ~ phimul . (Con...
phimul 16409 The Euler ` phi ` function...
eulerthlem1 16410 Lemma for ~ eulerth . (Co...
eulerthlem2 16411 Lemma for ~ eulerth . (Co...
eulerth 16412 Euler's theorem, a general...
fermltl 16413 Fermat's little theorem. ...
prmdiv 16414 Show an explicit expressio...
prmdiveq 16415 The modular inverse of ` A...
prmdivdiv 16416 The (modular) inverse of t...
hashgcdlem 16417 A correspondence between e...
hashgcdeq 16418 Number of initial positive...
phisum 16419 The divisor sum identity o...
odzval 16420 Value of the order functio...
odzcllem 16421 - Lemma for ~ odzcl , show...
odzcl 16422 The order of a group eleme...
odzid 16423 Any element raised to the ...
odzdvds 16424 The only powers of ` A ` t...
odzphi 16425 The order of any group ele...
modprm1div 16426 A prime number divides an ...
m1dvdsndvds 16427 If an integer minus 1 is d...
modprminv 16428 Show an explicit expressio...
modprminveq 16429 The modular inverse of ` A...
vfermltl 16430 Variant of Fermat's little...
vfermltlALT 16431 Alternate proof of ~ vferm...
powm2modprm 16432 If an integer minus 1 is d...
reumodprminv 16433 For any prime number and f...
modprm0 16434 For two positive integers ...
nnnn0modprm0 16435 For a positive integer and...
modprmn0modprm0 16436 For an integer not being 0...
coprimeprodsq 16437 If three numbers are copri...
coprimeprodsq2 16438 If three numbers are copri...
oddprm 16439 A prime not equal to ` 2 `...
nnoddn2prm 16440 A prime not equal to ` 2 `...
oddn2prm 16441 A prime not equal to ` 2 `...
nnoddn2prmb 16442 A number is a prime number...
prm23lt5 16443 A prime less than 5 is eit...
prm23ge5 16444 A prime is either 2 or 3 o...
pythagtriplem1 16445 Lemma for ~ pythagtrip . ...
pythagtriplem2 16446 Lemma for ~ pythagtrip . ...
pythagtriplem3 16447 Lemma for ~ pythagtrip . ...
pythagtriplem4 16448 Lemma for ~ pythagtrip . ...
pythagtriplem10 16449 Lemma for ~ pythagtrip . ...
pythagtriplem6 16450 Lemma for ~ pythagtrip . ...
pythagtriplem7 16451 Lemma for ~ pythagtrip . ...
pythagtriplem8 16452 Lemma for ~ pythagtrip . ...
pythagtriplem9 16453 Lemma for ~ pythagtrip . ...
pythagtriplem11 16454 Lemma for ~ pythagtrip . ...
pythagtriplem12 16455 Lemma for ~ pythagtrip . ...
pythagtriplem13 16456 Lemma for ~ pythagtrip . ...
pythagtriplem14 16457 Lemma for ~ pythagtrip . ...
pythagtriplem15 16458 Lemma for ~ pythagtrip . ...
pythagtriplem16 16459 Lemma for ~ pythagtrip . ...
pythagtriplem17 16460 Lemma for ~ pythagtrip . ...
pythagtriplem18 16461 Lemma for ~ pythagtrip . ...
pythagtriplem19 16462 Lemma for ~ pythagtrip . ...
pythagtrip 16463 Parameterize the Pythagore...
iserodd 16464 Collect the odd terms in a...
pclem 16467 - Lemma for the prime powe...
pcprecl 16468 Closure of the prime power...
pcprendvds 16469 Non-divisibility property ...
pcprendvds2 16470 Non-divisibility property ...
pcpre1 16471 Value of the prime power p...
pcpremul 16472 Multiplicative property of...
pcval 16473 The value of the prime pow...
pceulem 16474 Lemma for ~ pceu . (Contr...
pceu 16475 Uniqueness for the prime p...
pczpre 16476 Connect the prime count pr...
pczcl 16477 Closure of the prime power...
pccl 16478 Closure of the prime power...
pccld 16479 Closure of the prime power...
pcmul 16480 Multiplication property of...
pcdiv 16481 Division property of the p...
pcqmul 16482 Multiplication property of...
pc0 16483 The value of the prime pow...
pc1 16484 Value of the prime count f...
pcqcl 16485 Closure of the general pri...
pcqdiv 16486 Division property of the p...
pcrec 16487 Prime power of a reciproca...
pcexp 16488 Prime power of an exponent...
pcxnn0cl 16489 Extended nonnegative integ...
pcxcl 16490 Extended real closure of t...
pcge0 16491 The prime count of an inte...
pczdvds 16492 Defining property of the p...
pcdvds 16493 Defining property of the p...
pczndvds 16494 Defining property of the p...
pcndvds 16495 Defining property of the p...
pczndvds2 16496 The remainder after dividi...
pcndvds2 16497 The remainder after dividi...
pcdvdsb 16498 ` P ^ A ` divides ` N ` if...
pcelnn 16499 There are a positive numbe...
pceq0 16500 There are zero powers of a...
pcidlem 16501 The prime count of a prime...
pcid 16502 The prime count of a prime...
pcneg 16503 The prime count of a negat...
pcabs 16504 The prime count of an abso...
pcdvdstr 16505 The prime count increases ...
pcgcd1 16506 The prime count of a GCD i...
pcgcd 16507 The prime count of a GCD i...
pc2dvds 16508 A characterization of divi...
pc11 16509 The prime count function, ...
pcz 16510 The prime count function c...
pcprmpw2 16511 Self-referential expressio...
pcprmpw 16512 Self-referential expressio...
dvdsprmpweq 16513 If a positive integer divi...
dvdsprmpweqnn 16514 If an integer greater than...
dvdsprmpweqle 16515 If a positive integer divi...
difsqpwdvds 16516 If the difference of two s...
pcaddlem 16517 Lemma for ~ pcadd . The o...
pcadd 16518 An inequality for the prim...
pcadd2 16519 The inequality of ~ pcadd ...
pcmptcl 16520 Closure for the prime powe...
pcmpt 16521 Construct a function with ...
pcmpt2 16522 Dividing two prime count m...
pcmptdvds 16523 The partial products of th...
pcprod 16524 The product of the primes ...
sumhash 16525 The sum of 1 over a set is...
fldivp1 16526 The difference between the...
pcfaclem 16527 Lemma for ~ pcfac . (Cont...
pcfac 16528 Calculate the prime count ...
pcbc 16529 Calculate the prime count ...
qexpz 16530 If a power of a rational n...
expnprm 16531 A second or higher power o...
oddprmdvds 16532 Every positive integer whi...
prmpwdvds 16533 A relation involving divis...
pockthlem 16534 Lemma for ~ pockthg . (Co...
pockthg 16535 The generalized Pocklingto...
pockthi 16536 Pocklington's theorem, whi...
unbenlem 16537 Lemma for ~ unben . (Cont...
unben 16538 An unbounded set of positi...
infpnlem1 16539 Lemma for ~ infpn . The s...
infpnlem2 16540 Lemma for ~ infpn . For a...
infpn 16541 There exist infinitely man...
infpn2 16542 There exist infinitely man...
prmunb 16543 The primes are unbounded. ...
prminf 16544 There are an infinite numb...
prmreclem1 16545 Lemma for ~ prmrec . Prop...
prmreclem2 16546 Lemma for ~ prmrec . Ther...
prmreclem3 16547 Lemma for ~ prmrec . The ...
prmreclem4 16548 Lemma for ~ prmrec . Show...
prmreclem5 16549 Lemma for ~ prmrec . Here...
prmreclem6 16550 Lemma for ~ prmrec . If t...
prmrec 16551 The sum of the reciprocals...
1arithlem1 16552 Lemma for ~ 1arith . (Con...
1arithlem2 16553 Lemma for ~ 1arith . (Con...
1arithlem3 16554 Lemma for ~ 1arith . (Con...
1arithlem4 16555 Lemma for ~ 1arith . (Con...
1arith 16556 Fundamental theorem of ari...
1arith2 16557 Fundamental theorem of ari...
elgz 16560 Elementhood in the gaussia...
gzcn 16561 A gaussian integer is a co...
zgz 16562 An integer is a gaussian i...
igz 16563 ` _i ` is a gaussian integ...
gznegcl 16564 The gaussian integers are ...
gzcjcl 16565 The gaussian integers are ...
gzaddcl 16566 The gaussian integers are ...
gzmulcl 16567 The gaussian integers are ...
gzreim 16568 Construct a gaussian integ...
gzsubcl 16569 The gaussian integers are ...
gzabssqcl 16570 The squared norm of a gaus...
4sqlem5 16571 Lemma for ~ 4sq . (Contri...
4sqlem6 16572 Lemma for ~ 4sq . (Contri...
4sqlem7 16573 Lemma for ~ 4sq . (Contri...
4sqlem8 16574 Lemma for ~ 4sq . (Contri...
4sqlem9 16575 Lemma for ~ 4sq . (Contri...
4sqlem10 16576 Lemma for ~ 4sq . (Contri...
4sqlem1 16577 Lemma for ~ 4sq . The set...
4sqlem2 16578 Lemma for ~ 4sq . Change ...
4sqlem3 16579 Lemma for ~ 4sq . Suffici...
4sqlem4a 16580 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16581 Lemma for ~ 4sq . We can ...
mul4sqlem 16582 Lemma for ~ mul4sq : algeb...
mul4sq 16583 Euler's four-square identi...
4sqlem11 16584 Lemma for ~ 4sq . Use the...
4sqlem12 16585 Lemma for ~ 4sq . For any...
4sqlem13 16586 Lemma for ~ 4sq . (Contri...
4sqlem14 16587 Lemma for ~ 4sq . (Contri...
4sqlem15 16588 Lemma for ~ 4sq . (Contri...
4sqlem16 16589 Lemma for ~ 4sq . (Contri...
4sqlem17 16590 Lemma for ~ 4sq . (Contri...
4sqlem18 16591 Lemma for ~ 4sq . Inducti...
4sqlem19 16592 Lemma for ~ 4sq . The pro...
4sq 16593 Lagrange's four-square the...
vdwapfval 16600 Define the arithmetic prog...
vdwapf 16601 The arithmetic progression...
vdwapval 16602 Value of the arithmetic pr...
vdwapun 16603 Remove the first element o...
vdwapid1 16604 The first element of an ar...
vdwap0 16605 Value of a length-1 arithm...
vdwap1 16606 Value of a length-1 arithm...
vdwmc 16607 The predicate " The ` <. R...
vdwmc2 16608 Expand out the definition ...
vdwpc 16609 The predicate " The colori...
vdwlem1 16610 Lemma for ~ vdw . (Contri...
vdwlem2 16611 Lemma for ~ vdw . (Contri...
vdwlem3 16612 Lemma for ~ vdw . (Contri...
vdwlem4 16613 Lemma for ~ vdw . (Contri...
vdwlem5 16614 Lemma for ~ vdw . (Contri...
vdwlem6 16615 Lemma for ~ vdw . (Contri...
vdwlem7 16616 Lemma for ~ vdw . (Contri...
vdwlem8 16617 Lemma for ~ vdw . (Contri...
vdwlem9 16618 Lemma for ~ vdw . (Contri...
vdwlem10 16619 Lemma for ~ vdw . Set up ...
vdwlem11 16620 Lemma for ~ vdw . (Contri...
vdwlem12 16621 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16622 Lemma for ~ vdw . Main in...
vdw 16623 Van der Waerden's theorem....
vdwnnlem1 16624 Corollary of ~ vdw , and l...
vdwnnlem2 16625 Lemma for ~ vdwnn . The s...
vdwnnlem3 16626 Lemma for ~ vdwnn . (Cont...
vdwnn 16627 Van der Waerden's theorem,...
ramtlecl 16629 The set ` T ` of numbers w...
hashbcval 16631 Value of the "binomial set...
hashbccl 16632 The binomial set is a fini...
hashbcss 16633 Subset relation for the bi...
hashbc0 16634 The set of subsets of size...
hashbc2 16635 The size of the binomial s...
0hashbc 16636 There are no subsets of th...
ramval 16637 The value of the Ramsey nu...
ramcl2lem 16638 Lemma for extended real cl...
ramtcl 16639 The Ramsey number has the ...
ramtcl2 16640 The Ramsey number is an in...
ramtub 16641 The Ramsey number is a low...
ramub 16642 The Ramsey number is a low...
ramub2 16643 It is sufficient to check ...
rami 16644 The defining property of a...
ramcl2 16645 The Ramsey number is eithe...
ramxrcl 16646 The Ramsey number is an ex...
ramubcl 16647 If the Ramsey number is up...
ramlb 16648 Establish a lower bound on...
0ram 16649 The Ramsey number when ` M...
0ram2 16650 The Ramsey number when ` M...
ram0 16651 The Ramsey number when ` R...
0ramcl 16652 Lemma for ~ ramcl : Exist...
ramz2 16653 The Ramsey number when ` F...
ramz 16654 The Ramsey number when ` F...
ramub1lem1 16655 Lemma for ~ ramub1 . (Con...
ramub1lem2 16656 Lemma for ~ ramub1 . (Con...
ramub1 16657 Inductive step for Ramsey'...
ramcl 16658 Ramsey's theorem: the Rams...
ramsey 16659 Ramsey's theorem with the ...
prmoval 16662 Value of the primorial fun...
prmocl 16663 Closure of the primorial f...
prmone0 16664 The primorial function is ...
prmo0 16665 The primorial of 0. (Cont...
prmo1 16666 The primorial of 1. (Cont...
prmop1 16667 The primorial of a success...
prmonn2 16668 Value of the primorial fun...
prmo2 16669 The primorial of 2. (Cont...
prmo3 16670 The primorial of 3. (Cont...
prmdvdsprmo 16671 The primorial of a number ...
prmdvdsprmop 16672 The primorial of a number ...
fvprmselelfz 16673 The value of the prime sel...
fvprmselgcd1 16674 The greatest common diviso...
prmolefac 16675 The primorial of a positiv...
prmodvdslcmf 16676 The primorial of a nonnega...
prmolelcmf 16677 The primorial of a positiv...
prmgaplem1 16678 Lemma for ~ prmgap : The ...
prmgaplem2 16679 Lemma for ~ prmgap : The ...
prmgaplcmlem1 16680 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 16681 Lemma for ~ prmgaplcm : T...
prmgaplem3 16682 Lemma for ~ prmgap . (Con...
prmgaplem4 16683 Lemma for ~ prmgap . (Con...
prmgaplem5 16684 Lemma for ~ prmgap : for e...
prmgaplem6 16685 Lemma for ~ prmgap : for e...
prmgaplem7 16686 Lemma for ~ prmgap . (Con...
prmgaplem8 16687 Lemma for ~ prmgap . (Con...
prmgap 16688 The prime gap theorem: for...
prmgaplcm 16689 Alternate proof of ~ prmga...
prmgapprmolem 16690 Lemma for ~ prmgapprmo : ...
prmgapprmo 16691 Alternate proof of ~ prmga...
dec2dvds 16692 Divisibility by two is obv...
dec5dvds 16693 Divisibility by five is ob...
dec5dvds2 16694 Divisibility by five is ob...
dec5nprm 16695 Divisibility by five is ob...
dec2nprm 16696 Divisibility by two is obv...
modxai 16697 Add exponents in a power m...
mod2xi 16698 Double exponents in a powe...
modxp1i 16699 Add one to an exponent in ...
mod2xnegi 16700 Version of ~ mod2xi with a...
modsubi 16701 Subtract from within a mod...
gcdi 16702 Calculate a GCD via Euclid...
gcdmodi 16703 Calculate a GCD via Euclid...
decexp2 16704 Calculate a power of two. ...
numexp0 16705 Calculate an integer power...
numexp1 16706 Calculate an integer power...
numexpp1 16707 Calculate an integer power...
numexp2x 16708 Double an integer power. ...
decsplit0b 16709 Split a decimal number int...
decsplit0 16710 Split a decimal number int...
decsplit1 16711 Split a decimal number int...
decsplit 16712 Split a decimal number int...
karatsuba 16713 The Karatsuba multiplicati...
2exp4 16714 Two to the fourth power is...
2exp5 16715 Two to the fifth power is ...
2exp6 16716 Two to the sixth power is ...
2exp7 16717 Two to the seventh power i...
2exp8 16718 Two to the eighth power is...
2exp11 16719 Two to the eleventh power ...
2exp16 16720 Two to the sixteenth power...
3exp3 16721 Three to the third power i...
2expltfac 16722 The factorial grows faster...
cshwsidrepsw 16723 If cyclically shifting a w...
cshwsidrepswmod0 16724 If cyclically shifting a w...
cshwshashlem1 16725 If cyclically shifting a w...
cshwshashlem2 16726 If cyclically shifting a w...
cshwshashlem3 16727 If cyclically shifting a w...
cshwsdisj 16728 The singletons resulting b...
cshwsiun 16729 The set of (different!) wo...
cshwsex 16730 The class of (different!) ...
cshws0 16731 The size of the set of (di...
cshwrepswhash1 16732 The size of the set of (di...
cshwshashnsame 16733 If a word (not consisting ...
cshwshash 16734 If a word has a length bei...
prmlem0 16735 Lemma for ~ prmlem1 and ~ ...
prmlem1a 16736 A quick proof skeleton to ...
prmlem1 16737 A quick proof skeleton to ...
5prm 16738 5 is a prime number. (Con...
6nprm 16739 6 is not a prime number. ...
7prm 16740 7 is a prime number. (Con...
8nprm 16741 8 is not a prime number. ...
9nprm 16742 9 is not a prime number. ...
10nprm 16743 10 is not a prime number. ...
11prm 16744 11 is a prime number. (Co...
13prm 16745 13 is a prime number. (Co...
17prm 16746 17 is a prime number. (Co...
19prm 16747 19 is a prime number. (Co...
23prm 16748 23 is a prime number. (Co...
prmlem2 16749 Our last proving session g...
37prm 16750 37 is a prime number. (Co...
43prm 16751 43 is a prime number. (Co...
83prm 16752 83 is a prime number. (Co...
139prm 16753 139 is a prime number. (C...
163prm 16754 163 is a prime number. (C...
317prm 16755 317 is a prime number. (C...
631prm 16756 631 is a prime number. (C...
prmo4 16757 The primorial of 4. (Cont...
prmo5 16758 The primorial of 5. (Cont...
prmo6 16759 The primorial of 6. (Cont...
1259lem1 16760 Lemma for ~ 1259prm . Cal...
1259lem2 16761 Lemma for ~ 1259prm . Cal...
1259lem3 16762 Lemma for ~ 1259prm . Cal...
1259lem4 16763 Lemma for ~ 1259prm . Cal...
1259lem5 16764 Lemma for ~ 1259prm . Cal...
1259prm 16765 1259 is a prime number. (...
2503lem1 16766 Lemma for ~ 2503prm . Cal...
2503lem2 16767 Lemma for ~ 2503prm . Cal...
2503lem3 16768 Lemma for ~ 2503prm . Cal...
2503prm 16769 2503 is a prime number. (...
4001lem1 16770 Lemma for ~ 4001prm . Cal...
4001lem2 16771 Lemma for ~ 4001prm . Cal...
4001lem3 16772 Lemma for ~ 4001prm . Cal...
4001lem4 16773 Lemma for ~ 4001prm . Cal...
4001prm 16774 4001 is a prime number. (...
brstruct 16777 The structure relation is ...
isstruct2 16778 The property of being a st...
structex 16779 A structure is a set. (Co...
structn0fun 16780 A structure without the em...
isstruct 16781 The property of being a st...
structcnvcnv 16782 Two ways to express the re...
structfung 16783 The converse of the conver...
structfun 16784 Convert between two kinds ...
structfn 16785 Convert between two kinds ...
strleun 16786 Combine two structures int...
strle1 16787 Make a structure from a si...
strle2 16788 Make a structure from a pa...
strle3 16789 Make a structure from a tr...
sbcie2s 16790 A special version of class...
sbcie3s 16791 A special version of class...
reldmsets 16794 The structure override ope...
setsvalg 16795 Value of the structure rep...
setsval 16796 Value of the structure rep...
fvsetsid 16797 The value of the structure...
fsets 16798 The structure replacement ...
setsdm 16799 The domain of a structure ...
setsfun 16800 A structure with replaceme...
setsfun0 16801 A structure with replaceme...
setsn0fun 16802 The value of the structure...
setsstruct2 16803 An extensible structure wi...
setsexstruct2 16804 An extensible structure wi...
setsstruct 16805 An extensible structure wi...
wunsets 16806 Closure of structure repla...
setsres 16807 The structure replacement ...
setsabs 16808 Replacing the same compone...
setscom 16809 Component-setting is commu...
sloteq 16812 Equality theorem for the `...
slotfn 16813 A slot is a function on se...
strfvnd 16814 Deduction version of ~ str...
strfvn 16815 Value of a structure compo...
strfvss 16816 A structure component extr...
wunstr 16817 Closure of a structure ind...
str0 16818 All components of the empt...
strfvi 16819 Structure slot extractors ...
fveqprc 16820 Lemma for showing the equa...
oveqprc 16821 Lemma for showing the equa...
wunndx 16824 Closure of the index extra...
ndxarg 16825 Get the numeric argument f...
ndxid 16826 A structure component extr...
strndxid 16827 The value of a structure c...
setsidvald 16828 Value of the structure rep...
setsidvaldOLD 16829 Obsolete version of ~ sets...
strfvd 16830 Deduction version of ~ str...
strfv2d 16831 Deduction version of ~ str...
strfv2 16832 A variation on ~ strfv to ...
strfv 16833 Extract a structure compon...
strfv3 16834 Variant on ~ strfv for lar...
strssd 16835 Deduction version of ~ str...
strss 16836 Propagate component extrac...
setsid 16837 Value of the structure rep...
setsnid 16838 Value of the structure rep...
setsnidOLD 16839 Obsolete proof of ~ setsni...
baseval 16842 Value of the base set extr...
baseid 16843 Utility theorem: index-ind...
basfn 16844 The base set extractor is ...
base0 16845 The base set of the empty ...
elbasfv 16846 Utility theorem: reverse c...
elbasov 16847 Utility theorem: reverse c...
strov2rcl 16848 Partial reverse closure fo...
basendx 16849 Index value of the base se...
basendxnn 16850 The index value of the bas...
basendxnnOLD 16851 Obsolete proof of ~ basend...
basndxelwund 16852 The index of the base set ...
basprssdmsets 16853 The pair of the base index...
opelstrbas 16854 The base set of a structur...
1strstr 16855 A constructed one-slot str...
1strbas 16856 The base set of a construc...
1strwunbndx 16857 A constructed one-slot str...
1strwun 16858 A constructed one-slot str...
1strwunOLD 16859 Obsolete version of ~ 1str...
2strstr 16860 A constructed two-slot str...
2strbas 16861 The base set of a construc...
2strop 16862 The other slot of a constr...
2strstr1 16863 A constructed two-slot str...
2strstr1OLD 16864 Obsolete version of ~ 2str...
2strbas1 16865 The base set of a construc...
2strop1 16866 The other slot of a constr...
reldmress 16869 The structure restriction ...
ressval 16870 Value of structure restric...
ressid2 16871 General behavior of trivia...
ressval2 16872 Value of nontrivial struct...
ressbas 16873 Base set of a structure re...
ressbasOLD 16874 Obsolete proof of ~ ressba...
ressbas2 16875 Base set of a structure re...
ressbasss 16876 The base set of a restrict...
resseqnbas 16877 The components of an exten...
resslemOLD 16878 Obsolete version of ~ ress...
ress0 16879 All restrictions of the nu...
ressid 16880 Behavior of trivial restri...
ressinbas 16881 Restriction only cares abo...
ressval3d 16882 Value of structure restric...
ressval3dOLD 16883 Obsolete version of ~ ress...
ressress 16884 Restriction composition la...
ressabs 16885 Restriction absorption law...
wunress 16886 Closure of structure restr...
wunressOLD 16887 Obsolete proof of ~ wunres...
plusgndx 16914 Index value of the ~ df-pl...
plusgid 16915 Utility theorem: index-ind...
plusgndxnn 16916 The index of the slot for ...
basendxltplusgndx 16917 The index of the slot for ...
basendxnplusgndx 16918 The slot for the base set ...
basendxnplusgndxOLD 16919 Obsolete version of ~ base...
grpstr 16920 A constructed group is a s...
grpstrndx 16921 A constructed group is a s...
grpbase 16922 The base set of a construc...
grpbaseOLD 16923 Obsolete version of ~ grpb...
grpplusg 16924 The operation of a constru...
grpplusgOLD 16925 Obsolete version of ~ grpp...
ressplusg 16926 ` +g ` is unaffected by re...
grpbasex 16927 The base of an explicitly ...
grpplusgx 16928 The operation of an explic...
mulrndx 16929 Index value of the ~ df-mu...
mulrid 16930 Utility theorem: index-ind...
basendxnmulrndx 16931 The slot for the base set ...
basendxnmulrndxOLD 16932 Obsolete proof of ~ basend...
plusgndxnmulrndx 16933 The slot for the group (ad...
rngstr 16934 A constructed ring is a st...
rngbase 16935 The base set of a construc...
rngplusg 16936 The additive operation of ...
rngmulr 16937 The multiplicative operati...
starvndx 16938 Index value of the ~ df-st...
starvid 16939 Utility theorem: index-ind...
starvndxnbasendx 16940 The slot for the involutio...
starvndxnplusgndx 16941 The slot for the involutio...
starvndxnmulrndx 16942 The slot for the involutio...
ressmulr 16943 ` .r ` is unaffected by re...
ressstarv 16944 ` *r ` is unaffected by re...
srngstr 16945 A constructed star ring is...
srngbase 16946 The base set of a construc...
srngplusg 16947 The addition operation of ...
srngmulr 16948 The multiplication operati...
srnginvl 16949 The involution function of...
scandx 16950 Index value of the ~ df-sc...
scaid 16951 Utility theorem: index-ind...
scandxnbasendx 16952 The slot for the scalar is...
scandxnplusgndx 16953 The slot for the scalar fi...
scandxnmulrndx 16954 The slot for the scalar fi...
vscandx 16955 Index value of the ~ df-vs...
vscaid 16956 Utility theorem: index-ind...
vscandxnbasendx 16957 The slot for the scalar pr...
vscandxnplusgndx 16958 The slot for the scalar pr...
vscandxnmulrndx 16959 The slot for the scalar pr...
vscandxnscandx 16960 The slot for the scalar pr...
lmodstr 16961 A constructed left module ...
lmodbase 16962 The base set of a construc...
lmodplusg 16963 The additive operation of ...
lmodsca 16964 The set of scalars of a co...
lmodvsca 16965 The scalar product operati...
ipndx 16966 Index value of the ~ df-ip...
ipid 16967 Utility theorem: index-ind...
ipndxnbasendx 16968 The slot for the inner pro...
ipndxnplusgndx 16969 The slot for the inner pro...
ipndxnmulrndx 16970 The slot for the inner pro...
ipsstr 16971 Lemma to shorten proofs of...
ipsbase 16972 The base set of a construc...
ipsaddg 16973 The additive operation of ...
ipsmulr 16974 The multiplicative operati...
ipssca 16975 The set of scalars of a co...
ipsvsca 16976 The scalar product operati...
ipsip 16977 The multiplicative operati...
resssca 16978 ` Scalar ` is unaffected b...
ressvsca 16979 ` .s ` is unaffected by re...
ressip 16980 The inner product is unaff...
phlstr 16981 A constructed pre-Hilbert ...
phlbase 16982 The base set of a construc...
phlplusg 16983 The additive operation of ...
phlsca 16984 The ring of scalars of a c...
phlvsca 16985 The scalar product operati...
phlip 16986 The inner product (Hermiti...
tsetndx 16987 Index value of the ~ df-ts...
tsetid 16988 Utility theorem: index-ind...
tsetndxnn 16989 The index of the slot for ...
basendxlttsetndx 16990 The index of the slot for ...
tsetndxnbasendx 16991 The slot for the topology ...
tsetndxnplusgndx 16992 The slot for the topology ...
tsetndxnmulrndx 16993 The slot for the topology ...
slotstnscsi 16994 The slots ` Scalar ` , ` ....
topgrpstr 16995 A constructed topological ...
topgrpbas 16996 The base set of a construc...
topgrpplusg 16997 The additive operation of ...
topgrptset 16998 The topology of a construc...
resstset 16999 ` TopSet ` is unaffected b...
plendx 17000 Index value of the ~ df-pl...
pleid 17001 Utility theorem: self-refe...
plendxnn 17002 The index value of the ord...
basendxltplendx 17003 The index value of the ` B...
plendxnbasendx 17004 The slot for the order is ...
plendxnplusgndx 17005 The slot for the "less tha...
plendxnmulrndx 17006 The slot for the "less tha...
plendxnscandx 17007 The slot for the "less tha...
plendxnvscandx 17008 The slot for the "less tha...
otpsstr 17009 Functionality of a topolog...
otpsbas 17010 The base set of a topologi...
otpstset 17011 The open sets of a topolog...
otpsle 17012 The order of a topological...
ressle 17013 ` le ` is unaffected by re...
ocndx 17014 Index value of the ~ df-oc...
ocid 17015 Utility theorem: index-ind...
dsndx 17016 Index value of the ~ df-ds...
dsid 17017 Utility theorem: index-ind...
dsndxnn 17018 The index of the slot for ...
basendxltdsndx 17019 The index of the slot for ...
dsndxnbasendx 17020 The slot for the distance ...
dsndxnplusgndx 17021 The slot for the distance ...
dsndxnmulrndx 17022 The slot for the distance ...
slotsdnscsi 17023 The slots ` Scalar ` , ` ....
dsndxntsetndx 17024 The slot for the distance ...
unifndx 17025 Index value of the ~ df-un...
unifid 17026 Utility theorem: index-ind...
unifndxnn 17027 The index of the slot for ...
basendxltunifndx 17028 The index of the slot for ...
unifndxnbasendx 17029 The slot for the uniform s...
unifndxntsetndx 17030 The slot for the uniform s...
ressunif 17031 ` UnifSet ` is unaffected ...
odrngstr 17032 Functionality of an ordere...
odrngbas 17033 The base set of an ordered...
odrngplusg 17034 The addition operation of ...
odrngmulr 17035 The multiplication operati...
odrngtset 17036 The open sets of an ordere...
odrngle 17037 The order of an ordered me...
odrngds 17038 The metric of an ordered m...
ressds 17039 ` dist ` is unaffected by ...
homndx 17040 Index value of the ~ df-ho...
homid 17041 Utility theorem: index-ind...
ccondx 17042 Index value of the ~ df-cc...
ccoid 17043 Utility theorem: index-ind...
slotsbhcdif 17044 The slots ` Base ` , ` Hom...
slotsbhcdifOLD 17045 Obsolete proof of ~ slotsb...
resshom 17046 ` Hom ` is unaffected by r...
ressco 17047 ` comp ` is unaffected by ...
restfn 17052 The subspace topology oper...
topnfn 17053 The topology extractor fun...
restval 17054 The subspace topology indu...
elrest 17055 The predicate "is an open ...
elrestr 17056 Sufficient condition for b...
0rest 17057 Value of the structure res...
restid2 17058 The subspace topology over...
restsspw 17059 The subspace topology is a...
firest 17060 The finite intersections o...
restid 17061 The subspace topology of t...
topnval 17062 Value of the topology extr...
topnid 17063 Value of the topology extr...
topnpropd 17064 The topology extractor fun...
reldmprds 17076 The structure product is a...
prdsbasex 17078 Lemma for structure produc...
imasvalstr 17079 An image structure value i...
prdsvalstr 17080 Structure product value is...
prdsbaslem 17081 Lemma for ~ prdsbas and si...
prdsvallem 17082 Lemma for ~ prdsval . (Co...
prdsval 17083 Value of the structure pro...
prdssca 17084 Scalar ring of a structure...
prdsbas 17085 Base set of a structure pr...
prdsplusg 17086 Addition in a structure pr...
prdsmulr 17087 Multiplication in a struct...
prdsvsca 17088 Scalar multiplication in a...
prdsip 17089 Inner product in a structu...
prdsle 17090 Structure product weak ord...
prdsless 17091 Closure of the order relat...
prdsds 17092 Structure product distance...
prdsdsfn 17093 Structure product distance...
prdstset 17094 Structure product topology...
prdshom 17095 Structure product hom-sets...
prdsco 17096 Structure product composit...
prdsbas2 17097 The base set of a structur...
prdsbasmpt 17098 A constructed tuple is a p...
prdsbasfn 17099 Points in the structure pr...
prdsbasprj 17100 Each point in a structure ...
prdsplusgval 17101 Value of a componentwise s...
prdsplusgfval 17102 Value of a structure produ...
prdsmulrval 17103 Value of a componentwise r...
prdsmulrfval 17104 Value of a structure produ...
prdsleval 17105 Value of the product order...
prdsdsval 17106 Value of the metric in a s...
prdsvscaval 17107 Scalar multiplication in a...
prdsvscafval 17108 Scalar multiplication of a...
prdsbas3 17109 The base set of an indexed...
prdsbasmpt2 17110 A constructed tuple is a p...
prdsbascl 17111 An element of the base has...
prdsdsval2 17112 Value of the metric in a s...
prdsdsval3 17113 Value of the metric in a s...
pwsval 17114 Value of a structure power...
pwsbas 17115 Base set of a structure po...
pwselbasb 17116 Membership in the base set...
pwselbas 17117 An element of a structure ...
pwsplusgval 17118 Value of addition in a str...
pwsmulrval 17119 Value of multiplication in...
pwsle 17120 Ordering in a structure po...
pwsleval 17121 Ordering in a structure po...
pwsvscafval 17122 Scalar multiplication in a...
pwsvscaval 17123 Scalar multiplication of a...
pwssca 17124 The ring of scalars of a s...
pwsdiagel 17125 Membership of diagonal ele...
pwssnf1o 17126 Triviality of singleton po...
imasval 17139 Value of an image structur...
imasbas 17140 The base set of an image s...
imasds 17141 The distance function of a...
imasdsfn 17142 The distance function is a...
imasdsval 17143 The distance function of a...
imasdsval2 17144 The distance function of a...
imasplusg 17145 The group operation in an ...
imasmulr 17146 The ring multiplication in...
imassca 17147 The scalar field of an ima...
imasvsca 17148 The scalar multiplication ...
imasip 17149 The inner product of an im...
imastset 17150 The topology of an image s...
imasle 17151 The ordering of an image s...
f1ocpbllem 17152 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17153 An injection is compatible...
f1ovscpbl 17154 An injection is compatible...
f1olecpbl 17155 An injection is compatible...
imasaddfnlem 17156 The image structure operat...
imasaddvallem 17157 The operation of an image ...
imasaddflem 17158 The image set operations a...
imasaddfn 17159 The image structure's grou...
imasaddval 17160 The value of an image stru...
imasaddf 17161 The image structure's grou...
imasmulfn 17162 The image structure's ring...
imasmulval 17163 The value of an image stru...
imasmulf 17164 The image structure's ring...
imasvscafn 17165 The image structure's scal...
imasvscaval 17166 The value of an image stru...
imasvscaf 17167 The image structure's scal...
imasless 17168 The order relation defined...
imasleval 17169 The value of the image str...
qusval 17170 Value of a quotient struct...
quslem 17171 The function in ~ qusval i...
qusin 17172 Restrict the equivalence r...
qusbas 17173 Base set of a quotient str...
quss 17174 The scalar field of a quot...
divsfval 17175 Value of the function in ~...
ercpbllem 17176 Lemma for ~ ercpbl . (Con...
ercpbl 17177 Translate the function com...
erlecpbl 17178 Translate the relation com...
qusaddvallem 17179 Value of an operation defi...
qusaddflem 17180 The operation of a quotien...
qusaddval 17181 The base set of an image s...
qusaddf 17182 The base set of an image s...
qusmulval 17183 The base set of an image s...
qusmulf 17184 The base set of an image s...
fnpr2o 17185 Function with a domain of ...
fnpr2ob 17186 Biconditional version of ~...
fvpr0o 17187 The value of a function wi...
fvpr1o 17188 The value of a function wi...
fvprif 17189 The value of the pair func...
xpsfrnel 17190 Elementhood in the target ...
xpsfeq 17191 A function on ` 2o ` is de...
xpsfrnel2 17192 Elementhood in the target ...
xpscf 17193 Equivalent condition for t...
xpsfval 17194 The value of the function ...
xpsff1o 17195 The function appearing in ...
xpsfrn 17196 A short expression for the...
xpsff1o2 17197 The function appearing in ...
xpsval 17198 Value of the binary struct...
xpsrnbas 17199 The indexed structure prod...
xpsbas 17200 The base set of the binary...
xpsaddlem 17201 Lemma for ~ xpsadd and ~ x...
xpsadd 17202 Value of the addition oper...
xpsmul 17203 Value of the multiplicatio...
xpssca 17204 Value of the scalar field ...
xpsvsca 17205 Value of the scalar multip...
xpsless 17206 Closure of the ordering in...
xpsle 17207 Value of the ordering in a...
ismre 17216 Property of being a Moore ...
fnmre 17217 The Moore collection gener...
mresspw 17218 A Moore collection is a su...
mress 17219 A Moore-closed subset is a...
mre1cl 17220 In any Moore collection th...
mreintcl 17221 A nonempty collection of c...
mreiincl 17222 A nonempty indexed interse...
mrerintcl 17223 The relative intersection ...
mreriincl 17224 The relative intersection ...
mreincl 17225 Two closed sets have a clo...
mreuni 17226 Since the entire base set ...
mreunirn 17227 Two ways to express the no...
ismred 17228 Properties that determine ...
ismred2 17229 Properties that determine ...
mremre 17230 The Moore collections of s...
submre 17231 The subcollection of a clo...
mrcflem 17232 The domain and range of th...
fnmrc 17233 Moore-closure is a well-be...
mrcfval 17234 Value of the function expr...
mrcf 17235 The Moore closure is a fun...
mrcval 17236 Evaluation of the Moore cl...
mrccl 17237 The Moore closure of a set...
mrcsncl 17238 The Moore closure of a sin...
mrcid 17239 The closure of a closed se...
mrcssv 17240 The closure of a set is a ...
mrcidb 17241 A set is closed iff it is ...
mrcss 17242 Closure preserves subset o...
mrcssid 17243 The closure of a set is a ...
mrcidb2 17244 A set is closed iff it con...
mrcidm 17245 The closure operation is i...
mrcsscl 17246 The closure is the minimal...
mrcuni 17247 Idempotence of closure und...
mrcun 17248 Idempotence of closure und...
mrcssvd 17249 The Moore closure of a set...
mrcssd 17250 Moore closure preserves su...
mrcssidd 17251 A set is contained in its ...
mrcidmd 17252 Moore closure is idempoten...
mressmrcd 17253 In a Moore system, if a se...
submrc 17254 In a closure system which ...
mrieqvlemd 17255 In a Moore system, if ` Y ...
mrisval 17256 Value of the set of indepe...
ismri 17257 Criterion for a set to be ...
ismri2 17258 Criterion for a subset of ...
ismri2d 17259 Criterion for a subset of ...
ismri2dd 17260 Definition of independence...
mriss 17261 An independent set of a Mo...
mrissd 17262 An independent set of a Mo...
ismri2dad 17263 Consequence of a set in a ...
mrieqvd 17264 In a Moore system, a set i...
mrieqv2d 17265 In a Moore system, a set i...
mrissmrcd 17266 In a Moore system, if an i...
mrissmrid 17267 In a Moore system, subsets...
mreexd 17268 In a Moore system, the clo...
mreexmrid 17269 In a Moore system whose cl...
mreexexlemd 17270 This lemma is used to gene...
mreexexlem2d 17271 Used in ~ mreexexlem4d to ...
mreexexlem3d 17272 Base case of the induction...
mreexexlem4d 17273 Induction step of the indu...
mreexexd 17274 Exchange-type theorem. In...
mreexdomd 17275 In a Moore system whose cl...
mreexfidimd 17276 In a Moore system whose cl...
isacs 17277 A set is an algebraic clos...
acsmre 17278 Algebraic closure systems ...
isacs2 17279 In the definition of an al...
acsfiel 17280 A set is closed in an alge...
acsfiel2 17281 A set is closed in an alge...
acsmred 17282 An algebraic closure syste...
isacs1i 17283 A closure system determine...
mreacs 17284 Algebraicity is a composab...
acsfn 17285 Algebraicity of a conditio...
acsfn0 17286 Algebraicity of a point cl...
acsfn1 17287 Algebraicity of a one-argu...
acsfn1c 17288 Algebraicity of a one-argu...
acsfn2 17289 Algebraicity of a two-argu...
iscat 17298 The predicate "is a catego...
iscatd 17299 Properties that determine ...
catidex 17300 Each object in a category ...
catideu 17301 Each object in a category ...
cidfval 17302 Each object in a category ...
cidval 17303 Each object in a category ...
cidffn 17304 The identity arrow constru...
cidfn 17305 The identity arrow operato...
catidd 17306 Deduce the identity arrow ...
iscatd2 17307 Version of ~ iscatd with a...
catidcl 17308 Each object in a category ...
catlid 17309 Left identity property of ...
catrid 17310 Right identity property of...
catcocl 17311 Closure of a composition a...
catass 17312 Associativity of compositi...
catcone0 17313 Composition of non-empty h...
0catg 17314 Any structure with an empt...
0cat 17315 The empty set is a categor...
homffval 17316 Value of the functionalize...
fnhomeqhomf 17317 If the Hom-set operation i...
homfval 17318 Value of the functionalize...
homffn 17319 The functionalized Hom-set...
homfeq 17320 Condition for two categori...
homfeqd 17321 If two structures have the...
homfeqbas 17322 Deduce equality of base se...
homfeqval 17323 Value of the functionalize...
comfffval 17324 Value of the functionalize...
comffval 17325 Value of the functionalize...
comfval 17326 Value of the functionalize...
comfffval2 17327 Value of the functionalize...
comffval2 17328 Value of the functionalize...
comfval2 17329 Value of the functionalize...
comfffn 17330 The functionalized composi...
comffn 17331 The functionalized composi...
comfeq 17332 Condition for two categori...
comfeqd 17333 Condition for two categori...
comfeqval 17334 Equality of two compositio...
catpropd 17335 Two structures with the sa...
cidpropd 17336 Two structures with the sa...
oppcval 17339 Value of the opposite cate...
oppchomfval 17340 Hom-sets of the opposite c...
oppchomfvalOLD 17341 Obsolete proof of ~ oppcho...
oppchom 17342 Hom-sets of the opposite c...
oppccofval 17343 Composition in the opposit...
oppcco 17344 Composition in the opposit...
oppcbas 17345 Base set of an opposite ca...
oppcbasOLD 17346 Obsolete version of ~ oppc...
oppccatid 17347 Lemma for ~ oppccat . (Co...
oppchomf 17348 Hom-sets of the opposite c...
oppcid 17349 Identity function of an op...
oppccat 17350 An opposite category is a ...
2oppcbas 17351 The double opposite catego...
2oppchomf 17352 The double opposite catego...
2oppccomf 17353 The double opposite catego...
oppchomfpropd 17354 If two categories have the...
oppccomfpropd 17355 If two categories have the...
oppccatf 17356 ` oppCat ` restricted to `...
monfval 17361 Definition of a monomorphi...
ismon 17362 Definition of a monomorphi...
ismon2 17363 Write out the monomorphism...
monhom 17364 A monomorphism is a morphi...
moni 17365 Property of a monomorphism...
monpropd 17366 If two categories have the...
oppcmon 17367 A monomorphism in the oppo...
oppcepi 17368 An epimorphism in the oppo...
isepi 17369 Definition of an epimorphi...
isepi2 17370 Write out the epimorphism ...
epihom 17371 An epimorphism is a morphi...
epii 17372 Property of an epimorphism...
sectffval 17379 Value of the section opera...
sectfval 17380 Value of the section relat...
sectss 17381 The section relation is a ...
issect 17382 The property " ` F ` is a ...
issect2 17383 Property of being a sectio...
sectcan 17384 If ` G ` is a section of `...
sectco 17385 Composition of two section...
isofval 17386 Function value of the func...
invffval 17387 Value of the inverse relat...
invfval 17388 Value of the inverse relat...
isinv 17389 Value of the inverse relat...
invss 17390 The inverse relation is a ...
invsym 17391 The inverse relation is sy...
invsym2 17392 The inverse relation is sy...
invfun 17393 The inverse relation is a ...
isoval 17394 The isomorphisms are the d...
inviso1 17395 If ` G ` is an inverse to ...
inviso2 17396 If ` G ` is an inverse to ...
invf 17397 The inverse relation is a ...
invf1o 17398 The inverse relation is a ...
invinv 17399 The inverse of the inverse...
invco 17400 The composition of two iso...
dfiso2 17401 Alternate definition of an...
dfiso3 17402 Alternate definition of an...
inveq 17403 If there are two inverses ...
isofn 17404 The function value of the ...
isohom 17405 An isomorphism is a homomo...
isoco 17406 The composition of two iso...
oppcsect 17407 A section in the opposite ...
oppcsect2 17408 A section in the opposite ...
oppcinv 17409 An inverse in the opposite...
oppciso 17410 An isomorphism in the oppo...
sectmon 17411 If ` F ` is a section of `...
monsect 17412 If ` F ` is a monomorphism...
sectepi 17413 If ` F ` is a section of `...
episect 17414 If ` F ` is an epimorphism...
sectid 17415 The identity is a section ...
invid 17416 The inverse of the identit...
idiso 17417 The identity is an isomorp...
idinv 17418 The inverse of the identit...
invisoinvl 17419 The inverse of an isomorph...
invisoinvr 17420 The inverse of an isomorph...
invcoisoid 17421 The inverse of an isomorph...
isocoinvid 17422 The inverse of an isomorph...
rcaninv 17423 Right cancellation of an i...
cicfval 17426 The set of isomorphic obje...
brcic 17427 The relation "is isomorphi...
cic 17428 Objects ` X ` and ` Y ` in...
brcici 17429 Prove that two objects are...
cicref 17430 Isomorphism is reflexive. ...
ciclcl 17431 Isomorphism implies the le...
cicrcl 17432 Isomorphism implies the ri...
cicsym 17433 Isomorphism is symmetric. ...
cictr 17434 Isomorphism is transitive....
cicer 17435 Isomorphism is an equivale...
sscrel 17442 The subcategory subset rel...
brssc 17443 The subcategory subset rel...
sscpwex 17444 An analogue of ~ pwex for ...
subcrcl 17445 Reverse closure for the su...
sscfn1 17446 The subcategory subset rel...
sscfn2 17447 The subcategory subset rel...
ssclem 17448 Lemma for ~ ssc1 and simil...
isssc 17449 Value of the subcategory s...
ssc1 17450 Infer subset relation on o...
ssc2 17451 Infer subset relation on m...
sscres 17452 Any function restricted to...
sscid 17453 The subcategory subset rel...
ssctr 17454 The subcategory subset rel...
ssceq 17455 The subcategory subset rel...
rescval 17456 Value of the category rest...
rescval2 17457 Value of the category rest...
rescbas 17458 Base set of the category r...
rescbasOLD 17459 Obsolete version of ~ resc...
reschom 17460 Hom-sets of the category r...
reschomf 17461 Hom-sets of the category r...
rescco 17462 Composition in the categor...
resccoOLD 17463 Obsolete proof of ~ rescco...
rescabs 17464 Restriction absorption law...
rescabs2 17465 Restriction absorption law...
issubc 17466 Elementhood in the set of ...
issubc2 17467 Elementhood in the set of ...
0ssc 17468 For any category ` C ` , t...
0subcat 17469 For any category ` C ` , t...
catsubcat 17470 For any category ` C ` , `...
subcssc 17471 An element in the set of s...
subcfn 17472 An element in the set of s...
subcss1 17473 The objects of a subcatego...
subcss2 17474 The morphisms of a subcate...
subcidcl 17475 The identity of the origin...
subccocl 17476 A subcategory is closed un...
subccatid 17477 A subcategory is a categor...
subcid 17478 The identity in a subcateg...
subccat 17479 A subcategory is a categor...
issubc3 17480 Alternate definition of a ...
fullsubc 17481 The full subcategory gener...
fullresc 17482 The category formed by str...
resscat 17483 A category restricted to a...
subsubc 17484 A subcategory of a subcate...
relfunc 17493 The set of functors is a r...
funcrcl 17494 Reverse closure for a func...
isfunc 17495 Value of the set of functo...
isfuncd 17496 Deduce that an operation i...
funcf1 17497 The object part of a funct...
funcixp 17498 The morphism part of a fun...
funcf2 17499 The morphism part of a fun...
funcfn2 17500 The morphism part of a fun...
funcid 17501 A functor maps each identi...
funcco 17502 A functor maps composition...
funcsect 17503 The image of a section und...
funcinv 17504 The image of an inverse un...
funciso 17505 The image of an isomorphis...
funcoppc 17506 A functor on categories yi...
idfuval 17507 Value of the identity func...
idfu2nd 17508 Value of the morphism part...
idfu2 17509 Value of the morphism part...
idfu1st 17510 Value of the object part o...
idfu1 17511 Value of the object part o...
idfucl 17512 The identity functor is a ...
cofuval 17513 Value of the composition o...
cofu1st 17514 Value of the object part o...
cofu1 17515 Value of the object part o...
cofu2nd 17516 Value of the morphism part...
cofu2 17517 Value of the morphism part...
cofuval2 17518 Value of the composition o...
cofucl 17519 The composition of two fun...
cofuass 17520 Functor composition is ass...
cofulid 17521 The identity functor is a ...
cofurid 17522 The identity functor is a ...
resfval 17523 Value of the functor restr...
resfval2 17524 Value of the functor restr...
resf1st 17525 Value of the functor restr...
resf2nd 17526 Value of the functor restr...
funcres 17527 A functor restricted to a ...
funcres2b 17528 Condition for a functor to...
funcres2 17529 A functor into a restricte...
wunfunc 17530 A weak universe is closed ...
wunfuncOLD 17531 Obsolete proof of ~ wunfun...
funcpropd 17532 If two categories have the...
funcres2c 17533 Condition for a functor to...
fullfunc 17538 A full functor is a functo...
fthfunc 17539 A faithful functor is a fu...
relfull 17540 The set of full functors i...
relfth 17541 The set of faithful functo...
isfull 17542 Value of the set of full f...
isfull2 17543 Equivalent condition for a...
fullfo 17544 The morphism map of a full...
fulli 17545 The morphism map of a full...
isfth 17546 Value of the set of faithf...
isfth2 17547 Equivalent condition for a...
isffth2 17548 A fully faithful functor i...
fthf1 17549 The morphism map of a fait...
fthi 17550 The morphism map of a fait...
ffthf1o 17551 The morphism map of a full...
fullpropd 17552 If two categories have the...
fthpropd 17553 If two categories have the...
fulloppc 17554 The opposite functor of a ...
fthoppc 17555 The opposite functor of a ...
ffthoppc 17556 The opposite functor of a ...
fthsect 17557 A faithful functor reflect...
fthinv 17558 A faithful functor reflect...
fthmon 17559 A faithful functor reflect...
fthepi 17560 A faithful functor reflect...
ffthiso 17561 A fully faithful functor r...
fthres2b 17562 Condition for a faithful f...
fthres2c 17563 Condition for a faithful f...
fthres2 17564 A faithful functor into a ...
idffth 17565 The identity functor is a ...
cofull 17566 The composition of two ful...
cofth 17567 The composition of two fai...
coffth 17568 The composition of two ful...
rescfth 17569 The inclusion functor from...
ressffth 17570 The inclusion functor from...
fullres2c 17571 Condition for a full funct...
ffthres2c 17572 Condition for a fully fait...
fnfuc 17577 The ` FuncCat ` operation ...
natfval 17578 Value of the function givi...
isnat 17579 Property of being a natura...
isnat2 17580 Property of being a natura...
natffn 17581 The natural transformation...
natrcl 17582 Reverse closure for a natu...
nat1st2nd 17583 Rewrite the natural transf...
natixp 17584 A natural transformation i...
natcl 17585 A component of a natural t...
natfn 17586 A natural transformation i...
nati 17587 Naturality property of a n...
wunnat 17588 A weak universe is closed ...
wunnatOLD 17589 Obsolete proof of ~ wunnat...
catstr 17590 A category structure is a ...
fucval 17591 Value of the functor categ...
fuccofval 17592 Value of the functor categ...
fucbas 17593 The objects of the functor...
fuchom 17594 The morphisms in the funct...
fuchomOLD 17595 Obsolete proof of ~ fuchom...
fucco 17596 Value of the composition o...
fuccoval 17597 Value of the functor categ...
fuccocl 17598 The composition of two nat...
fucidcl 17599 The identity natural trans...
fuclid 17600 Left identity of natural t...
fucrid 17601 Right identity of natural ...
fucass 17602 Associativity of natural t...
fuccatid 17603 The functor category is a ...
fuccat 17604 The functor category is a ...
fucid 17605 The identity morphism in t...
fucsect 17606 Two natural transformation...
fucinv 17607 Two natural transformation...
invfuc 17608 If ` V ( x ) ` is an inver...
fuciso 17609 A natural transformation i...
natpropd 17610 If two categories have the...
fucpropd 17611 If two categories have the...
initofn 17618 ` InitO ` is a function on...
termofn 17619 ` TermO ` is a function on...
zeroofn 17620 ` ZeroO ` is a function on...
initorcl 17621 Reverse closure for an ini...
termorcl 17622 Reverse closure for a term...
zeroorcl 17623 Reverse closure for a zero...
initoval 17624 The value of the initial o...
termoval 17625 The value of the terminal ...
zerooval 17626 The value of the zero obje...
isinito 17627 The predicate "is an initi...
istermo 17628 The predicate "is a termin...
iszeroo 17629 The predicate "is a zero o...
isinitoi 17630 Implication of a class bei...
istermoi 17631 Implication of a class bei...
initoid 17632 For an initial object, the...
termoid 17633 For a terminal object, the...
dfinito2 17634 An initial object is a ter...
dftermo2 17635 A terminal object is an in...
dfinito3 17636 An alternate definition of...
dftermo3 17637 An alternate definition of...
initoo 17638 An initial object is an ob...
termoo 17639 A terminal object is an ob...
iszeroi 17640 Implication of a class bei...
2initoinv 17641 Morphisms between two init...
initoeu1 17642 Initial objects are essent...
initoeu1w 17643 Initial objects are essent...
initoeu2lem0 17644 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 17645 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 17646 Lemma 2 for ~ initoeu2 . ...
initoeu2 17647 Initial objects are essent...
2termoinv 17648 Morphisms between two term...
termoeu1 17649 Terminal objects are essen...
termoeu1w 17650 Terminal objects are essen...
homarcl 17659 Reverse closure for an arr...
homafval 17660 Value of the disjointified...
homaf 17661 Functionality of the disjo...
homaval 17662 Value of the disjointified...
elhoma 17663 Value of the disjointified...
elhomai 17664 Produce an arrow from a mo...
elhomai2 17665 Produce an arrow from a mo...
homarcl2 17666 Reverse closure for the do...
homarel 17667 An arrow is an ordered pai...
homa1 17668 The first component of an ...
homahom2 17669 The second component of an...
homahom 17670 The second component of an...
homadm 17671 The domain of an arrow wit...
homacd 17672 The codomain of an arrow w...
homadmcd 17673 Decompose an arrow into do...
arwval 17674 The set of arrows is the u...
arwrcl 17675 The first component of an ...
arwhoma 17676 An arrow is contained in t...
homarw 17677 A hom-set is a subset of t...
arwdm 17678 The domain of an arrow is ...
arwcd 17679 The codomain of an arrow i...
dmaf 17680 The domain function is a f...
cdaf 17681 The codomain function is a...
arwhom 17682 The second component of an...
arwdmcd 17683 Decompose an arrow into do...
idafval 17688 Value of the identity arro...
idaval 17689 Value of the identity arro...
ida2 17690 Morphism part of the ident...
idahom 17691 Domain and codomain of the...
idadm 17692 Domain of the identity arr...
idacd 17693 Codomain of the identity a...
idaf 17694 The identity arrow functio...
coafval 17695 The value of the compositi...
eldmcoa 17696 A pair ` <. G , F >. ` is ...
dmcoass 17697 The domain of composition ...
homdmcoa 17698 If ` F : X --> Y ` and ` G...
coaval 17699 Value of composition for c...
coa2 17700 The morphism part of arrow...
coahom 17701 The composition of two com...
coapm 17702 Composition of arrows is a...
arwlid 17703 Left identity of a categor...
arwrid 17704 Right identity of a catego...
arwass 17705 Associativity of compositi...
setcval 17708 Value of the category of s...
setcbas 17709 Set of objects of the cate...
setchomfval 17710 Set of arrows of the categ...
setchom 17711 Set of arrows of the categ...
elsetchom 17712 A morphism of sets is a fu...
setccofval 17713 Composition in the categor...
setcco 17714 Composition in the categor...
setccatid 17715 Lemma for ~ setccat . (Co...
setccat 17716 The category of sets is a ...
setcid 17717 The identity arrow in the ...
setcmon 17718 A monomorphism of sets is ...
setcepi 17719 An epimorphism of sets is ...
setcsect 17720 A section in the category ...
setcinv 17721 An inverse in the category...
setciso 17722 An isomorphism in the cate...
resssetc 17723 The restriction of the cat...
funcsetcres2 17724 A functor into a smaller c...
setc2obas 17725 ` (/) ` and ` 1o ` are dis...
setc2ohom 17726 ` ( SetCat `` 2o ) ` is a ...
cat1lem 17727 The category of sets in a ...
cat1 17728 The definition of category...
catcval 17731 Value of the category of c...
catcbas 17732 Set of objects of the cate...
catchomfval 17733 Set of arrows of the categ...
catchom 17734 Set of arrows of the categ...
catccofval 17735 Composition in the categor...
catcco 17736 Composition in the categor...
catccatid 17737 Lemma for ~ catccat . (Co...
catcid 17738 The identity arrow in the ...
catccat 17739 The category of categories...
resscatc 17740 The restriction of the cat...
catcisolem 17741 Lemma for ~ catciso . (Co...
catciso 17742 A functor is an isomorphis...
catcbascl 17743 An element of the base set...
catcslotelcl 17744 A slot entry of an element...
catcbaselcl 17745 The base set of an element...
catchomcl 17746 The Hom-set of an element ...
catcccocl 17747 The composition operation ...
catcoppccl 17748 The category of categories...
catcoppcclOLD 17749 Obsolete proof of ~ catcop...
catcfuccl 17750 The category of categories...
catcfucclOLD 17751 Obsolete proof of ~ catcfu...
fncnvimaeqv 17752 The inverse images of the ...
bascnvimaeqv 17753 The inverse image of the u...
estrcval 17756 Value of the category of e...
estrcbas 17757 Set of objects of the cate...
estrchomfval 17758 Set of morphisms ("arrows"...
estrchom 17759 The morphisms between exte...
elestrchom 17760 A morphism between extensi...
estrccofval 17761 Composition in the categor...
estrcco 17762 Composition in the categor...
estrcbasbas 17763 An element of the base set...
estrccatid 17764 Lemma for ~ estrccat . (C...
estrccat 17765 The category of extensible...
estrcid 17766 The identity arrow in the ...
estrchomfn 17767 The Hom-set operation in t...
estrchomfeqhom 17768 The functionalized Hom-set...
estrreslem1 17769 Lemma 1 for ~ estrres . (...
estrreslem1OLD 17770 Obsolete version of ~ estr...
estrreslem2 17771 Lemma 2 for ~ estrres . (...
estrres 17772 Any restriction of a categ...
funcestrcsetclem1 17773 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 17774 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 17775 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 17776 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 17777 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 17778 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 17779 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 17780 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 17781 Lemma 9 for ~ funcestrcset...
funcestrcsetc 17782 The "natural forgetful fun...
fthestrcsetc 17783 The "natural forgetful fun...
fullestrcsetc 17784 The "natural forgetful fun...
equivestrcsetc 17785 The "natural forgetful fun...
setc1strwun 17786 A constructed one-slot str...
funcsetcestrclem1 17787 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 17788 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 17789 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 17790 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 17791 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 17792 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 17793 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 17794 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 17795 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 17796 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 17797 The "embedding functor" fr...
fthsetcestrc 17798 The "embedding functor" fr...
fullsetcestrc 17799 The "embedding functor" fr...
embedsetcestrc 17800 The "embedding functor" fr...
fnxpc 17809 The binary product of cate...
xpcval 17810 Value of the binary produc...
xpcbas 17811 Set of objects of the bina...
xpchomfval 17812 Set of morphisms of the bi...
xpchom 17813 Set of morphisms of the bi...
relxpchom 17814 A hom-set in the binary pr...
xpccofval 17815 Value of composition in th...
xpcco 17816 Value of composition in th...
xpcco1st 17817 Value of composition in th...
xpcco2nd 17818 Value of composition in th...
xpchom2 17819 Value of the set of morphi...
xpcco2 17820 Value of composition in th...
xpccatid 17821 The product of two categor...
xpcid 17822 The identity morphism in t...
xpccat 17823 The product of two categor...
1stfval 17824 Value of the first project...
1stf1 17825 Value of the first project...
1stf2 17826 Value of the first project...
2ndfval 17827 Value of the first project...
2ndf1 17828 Value of the first project...
2ndf2 17829 Value of the first project...
1stfcl 17830 The first projection funct...
2ndfcl 17831 The second projection func...
prfval 17832 Value of the pairing funct...
prf1 17833 Value of the pairing funct...
prf2fval 17834 Value of the pairing funct...
prf2 17835 Value of the pairing funct...
prfcl 17836 The pairing of functors ` ...
prf1st 17837 Cancellation of pairing wi...
prf2nd 17838 Cancellation of pairing wi...
1st2ndprf 17839 Break a functor into a pro...
catcxpccl 17840 The category of categories...
catcxpcclOLD 17841 Obsolete proof of ~ catcxp...
xpcpropd 17842 If two categories have the...
evlfval 17851 Value of the evaluation fu...
evlf2 17852 Value of the evaluation fu...
evlf2val 17853 Value of the evaluation na...
evlf1 17854 Value of the evaluation fu...
evlfcllem 17855 Lemma for ~ evlfcl . (Con...
evlfcl 17856 The evaluation functor is ...
curfval 17857 Value of the curry functor...
curf1fval 17858 Value of the object part o...
curf1 17859 Value of the object part o...
curf11 17860 Value of the double evalua...
curf12 17861 The partially evaluated cu...
curf1cl 17862 The partially evaluated cu...
curf2 17863 Value of the curry functor...
curf2val 17864 Value of a component of th...
curf2cl 17865 The curry functor at a mor...
curfcl 17866 The curry functor of a fun...
curfpropd 17867 If two categories have the...
uncfval 17868 Value of the uncurry funct...
uncfcl 17869 The uncurry operation take...
uncf1 17870 Value of the uncurry funct...
uncf2 17871 Value of the uncurry funct...
curfuncf 17872 Cancellation of curry with...
uncfcurf 17873 Cancellation of uncurry wi...
diagval 17874 Define the diagonal functo...
diagcl 17875 The diagonal functor is a ...
diag1cl 17876 The constant functor of ` ...
diag11 17877 Value of the constant func...
diag12 17878 Value of the constant func...
diag2 17879 Value of the diagonal func...
diag2cl 17880 The diagonal functor at a ...
curf2ndf 17881 As shown in ~ diagval , th...
hofval 17886 Value of the Hom functor, ...
hof1fval 17887 The object part of the Hom...
hof1 17888 The object part of the Hom...
hof2fval 17889 The morphism part of the H...
hof2val 17890 The morphism part of the H...
hof2 17891 The morphism part of the H...
hofcllem 17892 Lemma for ~ hofcl . (Cont...
hofcl 17893 Closure of the Hom functor...
oppchofcl 17894 Closure of the opposite Ho...
yonval 17895 Value of the Yoneda embedd...
yoncl 17896 The Yoneda embedding is a ...
yon1cl 17897 The Yoneda embedding at an...
yon11 17898 Value of the Yoneda embedd...
yon12 17899 Value of the Yoneda embedd...
yon2 17900 Value of the Yoneda embedd...
hofpropd 17901 If two categories have the...
yonpropd 17902 If two categories have the...
oppcyon 17903 Value of the opposite Yone...
oyoncl 17904 The opposite Yoneda embedd...
oyon1cl 17905 The opposite Yoneda embedd...
yonedalem1 17906 Lemma for ~ yoneda . (Con...
yonedalem21 17907 Lemma for ~ yoneda . (Con...
yonedalem3a 17908 Lemma for ~ yoneda . (Con...
yonedalem4a 17909 Lemma for ~ yoneda . (Con...
yonedalem4b 17910 Lemma for ~ yoneda . (Con...
yonedalem4c 17911 Lemma for ~ yoneda . (Con...
yonedalem22 17912 Lemma for ~ yoneda . (Con...
yonedalem3b 17913 Lemma for ~ yoneda . (Con...
yonedalem3 17914 Lemma for ~ yoneda . (Con...
yonedainv 17915 The Yoneda Lemma with expl...
yonffthlem 17916 Lemma for ~ yonffth . (Co...
yoneda 17917 The Yoneda Lemma. There i...
yonffth 17918 The Yoneda Lemma. The Yon...
yoniso 17919 If the codomain is recover...
oduval 17922 Value of an order dual str...
oduleval 17923 Value of the less-equal re...
oduleg 17924 Truth of the less-equal re...
odubas 17925 Base set of an order dual ...
isprs 17930 Property of being a preord...
prslem 17931 Lemma for ~ prsref and ~ p...
prsref 17932 "Less than or equal to" is...
prstr 17933 "Less than or equal to" is...
isdrs 17934 Property of being a direct...
drsdir 17935 Direction of a directed se...
drsprs 17936 A directed set is a proset...
drsbn0 17937 The base of a directed set...
drsdirfi 17938 Any _finite_ number of ele...
isdrs2 17939 Directed sets may be defin...
ispos 17947 The predicate "is a poset"...
ispos2 17948 A poset is an antisymmetri...
posprs 17949 A poset is a proset. (Con...
posi 17950 Lemma for poset properties...
posref 17951 A poset ordering is reflex...
posasymb 17952 A poset ordering is asymme...
postr 17953 A poset ordering is transi...
0pos 17954 Technical lemma to simplif...
0posOLD 17955 Obsolete proof of ~ 0pos a...
isposd 17956 Properties that determine ...
isposi 17957 Properties that determine ...
isposix 17958 Properties that determine ...
isposixOLD 17959 Obsolete proof of ~ isposi...
pospropd 17960 Posethood is determined on...
odupos 17961 Being a poset is a self-du...
oduposb 17962 Being a poset is a self-du...
pltfval 17964 Value of the less-than rel...
pltval 17965 Less-than relation. ( ~ d...
pltle 17966 "Less than" implies "less ...
pltne 17967 The "less than" relation i...
pltirr 17968 The "less than" relation i...
pleval2i 17969 One direction of ~ pleval2...
pleval2 17970 "Less than or equal to" in...
pltnle 17971 "Less than" implies not co...
pltval3 17972 Alternate expression for t...
pltnlt 17973 The less-than relation imp...
pltn2lp 17974 The less-than relation has...
plttr 17975 The less-than relation is ...
pltletr 17976 Transitive law for chained...
plelttr 17977 Transitive law for chained...
pospo 17978 Write a poset structure in...
lubfval 17983 Value of the least upper b...
lubdm 17984 Domain of the least upper ...
lubfun 17985 The LUB is a function. (C...
lubeldm 17986 Member of the domain of th...
lubelss 17987 A member of the domain of ...
lubeu 17988 Unique existence proper of...
lubval 17989 Value of the least upper b...
lubcl 17990 The least upper bound func...
lubprop 17991 Properties of greatest low...
luble 17992 The greatest lower bound i...
lublecllem 17993 Lemma for ~ lublecl and ~ ...
lublecl 17994 The set of all elements le...
lubid 17995 The LUB of elements less t...
glbfval 17996 Value of the greatest lowe...
glbdm 17997 Domain of the greatest low...
glbfun 17998 The GLB is a function. (C...
glbeldm 17999 Member of the domain of th...
glbelss 18000 A member of the domain of ...
glbeu 18001 Unique existence proper of...
glbval 18002 Value of the greatest lowe...
glbcl 18003 The least upper bound func...
glbprop 18004 Properties of greatest low...
glble 18005 The greatest lower bound i...
joinfval 18006 Value of join function for...
joinfval2 18007 Value of join function for...
joindm 18008 Domain of join function fo...
joindef 18009 Two ways to say that a joi...
joinval 18010 Join value. Since both si...
joincl 18011 Closure of join of element...
joindmss 18012 Subset property of domain ...
joinval2lem 18013 Lemma for ~ joinval2 and ~...
joinval2 18014 Value of join for a poset ...
joineu 18015 Uniqueness of join of elem...
joinlem 18016 Lemma for join properties....
lejoin1 18017 A join's first argument is...
lejoin2 18018 A join's second argument i...
joinle 18019 A join is less than or equ...
meetfval 18020 Value of meet function for...
meetfval2 18021 Value of meet function for...
meetdm 18022 Domain of meet function fo...
meetdef 18023 Two ways to say that a mee...
meetval 18024 Meet value. Since both si...
meetcl 18025 Closure of meet of element...
meetdmss 18026 Subset property of domain ...
meetval2lem 18027 Lemma for ~ meetval2 and ~...
meetval2 18028 Value of meet for a poset ...
meeteu 18029 Uniqueness of meet of elem...
meetlem 18030 Lemma for meet properties....
lemeet1 18031 A meet's first argument is...
lemeet2 18032 A meet's second argument i...
meetle 18033 A meet is less than or equ...
joincomALT 18034 The join of a poset is com...
joincom 18035 The join of a poset is com...
meetcomALT 18036 The meet of a poset is com...
meetcom 18037 The meet of a poset is com...
join0 18038 Lemma for ~ odumeet . (Co...
meet0 18039 Lemma for ~ odujoin . (Co...
odulub 18040 Least upper bounds in a du...
odujoin 18041 Joins in a dual order are ...
oduglb 18042 Greatest lower bounds in a...
odumeet 18043 Meets in a dual order are ...
poslubmo 18044 Least upper bounds in a po...
posglbmo 18045 Greatest lower bounds in a...
poslubd 18046 Properties which determine...
poslubdg 18047 Properties which determine...
posglbdg 18048 Properties which determine...
istos 18051 The predicate "is a toset"...
tosso 18052 Write the totally ordered ...
tospos 18053 A Toset is a Poset. (Cont...
tleile 18054 In a Toset, any two elemen...
tltnle 18055 In a Toset, "less than" is...
p0val 18060 Value of poset zero. (Con...
p1val 18061 Value of poset zero. (Con...
p0le 18062 Any element is less than o...
ple1 18063 Any element is less than o...
islat 18066 The predicate "is a lattic...
odulatb 18067 Being a lattice is self-du...
odulat 18068 Being a lattice is self-du...
latcl2 18069 The join and meet of any t...
latlem 18070 Lemma for lattice properti...
latpos 18071 A lattice is a poset. (Co...
latjcl 18072 Closure of join operation ...
latmcl 18073 Closure of meet operation ...
latref 18074 A lattice ordering is refl...
latasymb 18075 A lattice ordering is asym...
latasym 18076 A lattice ordering is asym...
lattr 18077 A lattice ordering is tran...
latasymd 18078 Deduce equality from latti...
lattrd 18079 A lattice ordering is tran...
latjcom 18080 The join of a lattice comm...
latlej1 18081 A join's first argument is...
latlej2 18082 A join's second argument i...
latjle12 18083 A join is less than or equ...
latleeqj1 18084 "Less than or equal to" in...
latleeqj2 18085 "Less than or equal to" in...
latjlej1 18086 Add join to both sides of ...
latjlej2 18087 Add join to both sides of ...
latjlej12 18088 Add join to both sides of ...
latnlej 18089 An idiom to express that a...
latnlej1l 18090 An idiom to express that a...
latnlej1r 18091 An idiom to express that a...
latnlej2 18092 An idiom to express that a...
latnlej2l 18093 An idiom to express that a...
latnlej2r 18094 An idiom to express that a...
latjidm 18095 Lattice join is idempotent...
latmcom 18096 The join of a lattice comm...
latmle1 18097 A meet is less than or equ...
latmle2 18098 A meet is less than or equ...
latlem12 18099 An element is less than or...
latleeqm1 18100 "Less than or equal to" in...
latleeqm2 18101 "Less than or equal to" in...
latmlem1 18102 Add meet to both sides of ...
latmlem2 18103 Add meet to both sides of ...
latmlem12 18104 Add join to both sides of ...
latnlemlt 18105 Negation of "less than or ...
latnle 18106 Equivalent expressions for...
latmidm 18107 Lattice meet is idempotent...
latabs1 18108 Lattice absorption law. F...
latabs2 18109 Lattice absorption law. F...
latledi 18110 An ortholattice is distrib...
latmlej11 18111 Ordering of a meet and joi...
latmlej12 18112 Ordering of a meet and joi...
latmlej21 18113 Ordering of a meet and joi...
latmlej22 18114 Ordering of a meet and joi...
lubsn 18115 The least upper bound of a...
latjass 18116 Lattice join is associativ...
latj12 18117 Swap 1st and 2nd members o...
latj32 18118 Swap 2nd and 3rd members o...
latj13 18119 Swap 1st and 3rd members o...
latj31 18120 Swap 2nd and 3rd members o...
latjrot 18121 Rotate lattice join of 3 c...
latj4 18122 Rearrangement of lattice j...
latj4rot 18123 Rotate lattice join of 4 c...
latjjdi 18124 Lattice join distributes o...
latjjdir 18125 Lattice join distributes o...
mod1ile 18126 The weak direction of the ...
mod2ile 18127 The weak direction of the ...
latmass 18128 Lattice meet is associativ...
latdisdlem 18129 Lemma for ~ latdisd . (Co...
latdisd 18130 In a lattice, joins distri...
isclat 18133 The predicate "is a comple...
clatpos 18134 A complete lattice is a po...
clatlem 18135 Lemma for properties of a ...
clatlubcl 18136 Any subset of the base set...
clatlubcl2 18137 Any subset of the base set...
clatglbcl 18138 Any subset of the base set...
clatglbcl2 18139 Any subset of the base set...
oduclatb 18140 Being a complete lattice i...
clatl 18141 A complete lattice is a la...
isglbd 18142 Properties that determine ...
lublem 18143 Lemma for the least upper ...
lubub 18144 The LUB of a complete latt...
lubl 18145 The LUB of a complete latt...
lubss 18146 Subset law for least upper...
lubel 18147 An element of a set is les...
lubun 18148 The LUB of a union. (Cont...
clatglb 18149 Properties of greatest low...
clatglble 18150 The greatest lower bound i...
clatleglb 18151 Two ways of expressing "le...
clatglbss 18152 Subset law for greatest lo...
isdlat 18155 Property of being a distri...
dlatmjdi 18156 In a distributive lattice,...
dlatl 18157 A distributive lattice is ...
odudlatb 18158 The dual of a distributive...
dlatjmdi 18159 In a distributive lattice,...
ipostr 18162 The structure of ~ df-ipo ...
ipoval 18163 Value of the inclusion pos...
ipobas 18164 Base set of the inclusion ...
ipolerval 18165 Relation of the inclusion ...
ipotset 18166 Topology of the inclusion ...
ipole 18167 Weak order condition of th...
ipolt 18168 Strict order condition of ...
ipopos 18169 The inclusion poset on a f...
isipodrs 18170 Condition for a family of ...
ipodrscl 18171 Direction by inclusion as ...
ipodrsfi 18172 Finite upper bound propert...
fpwipodrs 18173 The finite subsets of any ...
ipodrsima 18174 The monotone image of a di...
isacs3lem 18175 An algebraic closure syste...
acsdrsel 18176 An algebraic closure syste...
isacs4lem 18177 In a closure system in whi...
isacs5lem 18178 If closure commutes with d...
acsdrscl 18179 In an algebraic closure sy...
acsficl 18180 A closure in an algebraic ...
isacs5 18181 A closure system is algebr...
isacs4 18182 A closure system is algebr...
isacs3 18183 A closure system is algebr...
acsficld 18184 In an algebraic closure sy...
acsficl2d 18185 In an algebraic closure sy...
acsfiindd 18186 In an algebraic closure sy...
acsmapd 18187 In an algebraic closure sy...
acsmap2d 18188 In an algebraic closure sy...
acsinfd 18189 In an algebraic closure sy...
acsdomd 18190 In an algebraic closure sy...
acsinfdimd 18191 In an algebraic closure sy...
acsexdimd 18192 In an algebraic closure sy...
mrelatglb 18193 Greatest lower bounds in a...
mrelatglb0 18194 The empty intersection in ...
mrelatlub 18195 Least upper bounds in a Mo...
mreclatBAD 18196 A Moore space is a complet...
isps 18201 The predicate "is a poset"...
psrel 18202 A poset is a relation. (C...
psref2 18203 A poset is antisymmetric a...
pstr2 18204 A poset is transitive. (C...
pslem 18205 Lemma for ~ psref and othe...
psdmrn 18206 The domain and range of a ...
psref 18207 A poset is reflexive. (Co...
psrn 18208 The range of a poset equal...
psasym 18209 A poset is antisymmetric. ...
pstr 18210 A poset is transitive. (C...
cnvps 18211 The converse of a poset is...
cnvpsb 18212 The converse of a poset is...
psss 18213 Any subset of a partially ...
psssdm2 18214 Field of a subposet. (Con...
psssdm 18215 Field of a subposet. (Con...
istsr 18216 The predicate is a toset. ...
istsr2 18217 The predicate is a toset. ...
tsrlin 18218 A toset is a linear order....
tsrlemax 18219 Two ways of saying a numbe...
tsrps 18220 A toset is a poset. (Cont...
cnvtsr 18221 The converse of a toset is...
tsrss 18222 Any subset of a totally or...
ledm 18223 The domain of ` <_ ` is ` ...
lern 18224 The range of ` <_ ` is ` R...
lefld 18225 The field of the 'less or ...
letsr 18226 The "less than or equal to...
isdir 18231 A condition for a relation...
reldir 18232 A direction is a relation....
dirdm 18233 A direction's domain is eq...
dirref 18234 A direction is reflexive. ...
dirtr 18235 A direction is transitive....
dirge 18236 For any two elements of a ...
tsrdir 18237 A totally ordered set is a...
ismgm 18242 The predicate "is a magma"...
ismgmn0 18243 The predicate "is a magma"...
mgmcl 18244 Closure of the operation o...
isnmgm 18245 A condition for a structur...
mgmsscl 18246 If the base set of a magma...
plusffval 18247 The group addition operati...
plusfval 18248 The group addition operati...
plusfeq 18249 If the addition operation ...
plusffn 18250 The group addition operati...
mgmplusf 18251 The group addition functio...
issstrmgm 18252 Characterize a substructur...
intopsn 18253 The internal operation for...
mgmb1mgm1 18254 The only magma with a base...
mgm0 18255 Any set with an empty base...
mgm0b 18256 The structure with an empt...
mgm1 18257 The structure with one ele...
opifismgm 18258 A structure with a group a...
mgmidmo 18259 A two-sided identity eleme...
grpidval 18260 The value of the identity ...
grpidpropd 18261 If two structures have the...
fn0g 18262 The group zero extractor i...
0g0 18263 The identity element funct...
ismgmid 18264 The identity element of a ...
mgmidcl 18265 The identity element of a ...
mgmlrid 18266 The identity element of a ...
ismgmid2 18267 Show that a given element ...
lidrideqd 18268 If there is a left and rig...
lidrididd 18269 If there is a left and rig...
grpidd 18270 Deduce the identity elemen...
mgmidsssn0 18271 Property of the set of ide...
grprinvlem 18272 Lemma for ~ grprinvd . (C...
grprinvd 18273 Deduce right inverse from ...
grpridd 18274 Deduce right identity from...
gsumvalx 18275 Expand out the substitutio...
gsumval 18276 Expand out the substitutio...
gsumpropd 18277 The group sum depends only...
gsumpropd2lem 18278 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18279 A stronger version of ~ gs...
gsummgmpropd 18280 A stronger version of ~ gs...
gsumress 18281 The group sum in a substru...
gsumval1 18282 Value of the group sum ope...
gsum0 18283 Value of the empty group s...
gsumval2a 18284 Value of the group sum ope...
gsumval2 18285 Value of the group sum ope...
gsumsplit1r 18286 Splitting off the rightmos...
gsumprval 18287 Value of the group sum ope...
gsumpr12val 18288 Value of the group sum ope...
issgrp 18291 The predicate "is a semigr...
issgrpv 18292 The predicate "is a semigr...
issgrpn0 18293 The predicate "is a semigr...
isnsgrp 18294 A condition for a structur...
sgrpmgm 18295 A semigroup is a magma. (...
sgrpass 18296 A semigroup operation is a...
sgrp0 18297 Any set with an empty base...
sgrp0b 18298 The structure with an empt...
sgrp1 18299 The structure with one ele...
ismnddef 18302 The predicate "is a monoid...
ismnd 18303 The predicate "is a monoid...
isnmnd 18304 A condition for a structur...
sgrpidmnd 18305 A semigroup with an identi...
mndsgrp 18306 A monoid is a semigroup. ...
mndmgm 18307 A monoid is a magma. (Con...
mndcl 18308 Closure of the operation o...
mndass 18309 A monoid operation is asso...
mndid 18310 A monoid has a two-sided i...
mndideu 18311 The two-sided identity ele...
mnd32g 18312 Commutative/associative la...
mnd12g 18313 Commutative/associative la...
mnd4g 18314 Commutative/associative la...
mndidcl 18315 The identity element of a ...
mndbn0 18316 The base set of a monoid i...
hashfinmndnn 18317 A finite monoid has positi...
mndplusf 18318 The group addition operati...
mndlrid 18319 A monoid's identity elemen...
mndlid 18320 The identity element of a ...
mndrid 18321 The identity element of a ...
ismndd 18322 Deduce a monoid from its p...
mndpfo 18323 The addition operation of ...
mndfo 18324 The addition operation of ...
mndpropd 18325 If two structures have the...
mndprop 18326 If two structures have the...
issubmnd 18327 Characterize a submonoid b...
ress0g 18328 ` 0g ` is unaffected by re...
submnd0 18329 The zero of a submonoid is...
mndinvmod 18330 Uniqueness of an inverse e...
prdsplusgcl 18331 Structure product pointwis...
prdsidlem 18332 Characterization of identi...
prdsmndd 18333 The product of a family of...
prds0g 18334 Zero in a product of monoi...
pwsmnd 18335 The structure power of a m...
pws0g 18336 Zero in a structure power ...
imasmnd2 18337 The image structure of a m...
imasmnd 18338 The image structure of a m...
imasmndf1 18339 The image of a monoid unde...
xpsmnd 18340 The binary product of mono...
mnd1 18341 The (smallest) structure r...
mnd1id 18342 The singleton element of a...
ismhm 18347 Property of a monoid homom...
mhmrcl1 18348 Reverse closure of a monoi...
mhmrcl2 18349 Reverse closure of a monoi...
mhmf 18350 A monoid homomorphism is a...
mhmpropd 18351 Monoid homomorphism depend...
mhmlin 18352 A monoid homomorphism comm...
mhm0 18353 A monoid homomorphism pres...
idmhm 18354 The identity homomorphism ...
mhmf1o 18355 A monoid homomorphism is b...
submrcl 18356 Reverse closure for submon...
issubm 18357 Expand definition of a sub...
issubm2 18358 Submonoids are subsets tha...
issubmndb 18359 The submonoid predicate. ...
issubmd 18360 Deduction for proving a su...
mndissubm 18361 If the base set of a monoi...
resmndismnd 18362 If the base set of a monoi...
submss 18363 Submonoids are subsets of ...
submid 18364 Every monoid is trivially ...
subm0cl 18365 Submonoids contain zero. ...
submcl 18366 Submonoids are closed unde...
submmnd 18367 Submonoids are themselves ...
submbas 18368 The base set of a submonoi...
subm0 18369 Submonoids have the same i...
subsubm 18370 A submonoid of a submonoid...
0subm 18371 The zero submonoid of an a...
insubm 18372 The intersection of two su...
0mhm 18373 The constant zero linear f...
resmhm 18374 Restriction of a monoid ho...
resmhm2 18375 One direction of ~ resmhm2...
resmhm2b 18376 Restriction of the codomai...
mhmco 18377 The composition of monoid ...
mhmima 18378 The homomorphic image of a...
mhmeql 18379 The equalizer of two monoi...
submacs 18380 Submonoids are an algebrai...
mndind 18381 Induction in a monoid. In...
prdspjmhm 18382 A projection from a produc...
pwspjmhm 18383 A projection from a struct...
pwsdiagmhm 18384 Diagonal monoid homomorphi...
pwsco1mhm 18385 Right composition with a f...
pwsco2mhm 18386 Left composition with a mo...
gsumvallem2 18387 Lemma for properties of th...
gsumsubm 18388 Evaluate a group sum in a ...
gsumz 18389 Value of a group sum over ...
gsumwsubmcl 18390 Closure of the composite i...
gsumws1 18391 A singleton composite reco...
gsumwcl 18392 Closure of the composite o...
gsumsgrpccat 18393 Homomorphic property of no...
gsumccatOLD 18394 Obsolete version of ~ gsum...
gsumccat 18395 Homomorphic property of co...
gsumws2 18396 Valuation of a pair in a m...
gsumccatsn 18397 Homomorphic property of co...
gsumspl 18398 The primary purpose of the...
gsumwmhm 18399 Behavior of homomorphisms ...
gsumwspan 18400 The submonoid generated by...
frmdval 18405 Value of the free monoid c...
frmdbas 18406 The base set of a free mon...
frmdelbas 18407 An element of the base set...
frmdplusg 18408 The monoid operation of a ...
frmdadd 18409 Value of the monoid operat...
vrmdfval 18410 The canonical injection fr...
vrmdval 18411 The value of the generatin...
vrmdf 18412 The mapping from the index...
frmdmnd 18413 A free monoid is a monoid....
frmd0 18414 The identity of the free m...
frmdsssubm 18415 The set of words taking va...
frmdgsum 18416 Any word in a free monoid ...
frmdss2 18417 A subset of generators is ...
frmdup1 18418 Any assignment of the gene...
frmdup2 18419 The evaluation map has the...
frmdup3lem 18420 Lemma for ~ frmdup3 . (Co...
frmdup3 18421 Universal property of the ...
efmnd 18424 The monoid of endofunction...
efmndbas 18425 The base set of the monoid...
efmndbasabf 18426 The base set of the monoid...
elefmndbas 18427 Two ways of saying a funct...
elefmndbas2 18428 Two ways of saying a funct...
efmndbasf 18429 Elements in the monoid of ...
efmndhash 18430 The monoid of endofunction...
efmndbasfi 18431 The monoid of endofunction...
efmndfv 18432 The function value of an e...
efmndtset 18433 The topology of the monoid...
efmndplusg 18434 The group operation of a m...
efmndov 18435 The value of the group ope...
efmndcl 18436 The group operation of the...
efmndtopn 18437 The topology of the monoid...
symggrplem 18438 Lemma for ~ symggrp and ~ ...
efmndmgm 18439 The monoid of endofunction...
efmndsgrp 18440 The monoid of endofunction...
ielefmnd 18441 The identity function rest...
efmndid 18442 The identity function rest...
efmndmnd 18443 The monoid of endofunction...
efmnd0nmnd 18444 Even the monoid of endofun...
efmndbas0 18445 The base set of the monoid...
efmnd1hash 18446 The monoid of endofunction...
efmnd1bas 18447 The monoid of endofunction...
efmnd2hash 18448 The monoid of endofunction...
submefmnd 18449 If the base set of a monoi...
sursubmefmnd 18450 The set of surjective endo...
injsubmefmnd 18451 The set of injective endof...
idressubmefmnd 18452 The singleton containing o...
idresefmnd 18453 The structure with the sin...
smndex1ibas 18454 The modulo function ` I ` ...
smndex1iidm 18455 The modulo function ` I ` ...
smndex1gbas 18456 The constant functions ` (...
smndex1gid 18457 The composition of a const...
smndex1igid 18458 The composition of the mod...
smndex1basss 18459 The modulo function ` I ` ...
smndex1bas 18460 The base set of the monoid...
smndex1mgm 18461 The monoid of endofunction...
smndex1sgrp 18462 The monoid of endofunction...
smndex1mndlem 18463 Lemma for ~ smndex1mnd and...
smndex1mnd 18464 The monoid of endofunction...
smndex1id 18465 The modulo function ` I ` ...
smndex1n0mnd 18466 The identity of the monoid...
nsmndex1 18467 The base set ` B ` of the ...
smndex2dbas 18468 The doubling function ` D ...
smndex2dnrinv 18469 The doubling function ` D ...
smndex2hbas 18470 The halving functions ` H ...
smndex2dlinvh 18471 The halving functions ` H ...
mgm2nsgrplem1 18472 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18473 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18474 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18475 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18476 A small magma (with two el...
sgrp2nmndlem1 18477 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18478 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18479 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18480 A small semigroup (with tw...
sgrp2rid2ex 18481 A small semigroup (with tw...
sgrp2nmndlem4 18482 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18483 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18484 A small semigroup (with tw...
mgmnsgrpex 18485 There is a magma which is ...
sgrpnmndex 18486 There is a semigroup which...
sgrpssmgm 18487 The class of all semigroup...
mndsssgrp 18488 The class of all monoids i...
pwmndgplus 18489 The operation of the monoi...
pwmndid 18490 The identity of the monoid...
pwmnd 18491 The power set of a class `...
isgrp 18498 The predicate "is a group"...
grpmnd 18499 A group is a monoid. (Con...
grpcl 18500 Closure of the operation o...
grpass 18501 A group operation is assoc...
grpinvex 18502 Every member of a group ha...
grpideu 18503 The two-sided identity ele...
grpmndd 18504 A group is a monoid. (Con...
grpcld 18505 Closure of the operation o...
grpplusf 18506 The group addition operati...
grpplusfo 18507 The group addition operati...
resgrpplusfrn 18508 The underlying set of a gr...
grppropd 18509 If two structures have the...
grpprop 18510 If two structures have the...
grppropstr 18511 Generalize a specific 2-el...
grpss 18512 Show that a structure exte...
isgrpd2e 18513 Deduce a group from its pr...
isgrpd2 18514 Deduce a group from its pr...
isgrpde 18515 Deduce a group from its pr...
isgrpd 18516 Deduce a group from its pr...
isgrpi 18517 Properties that determine ...
grpsgrp 18518 A group is a semigroup. (...
dfgrp2 18519 Alternate definition of a ...
dfgrp2e 18520 Alternate definition of a ...
isgrpix 18521 Properties that determine ...
grpidcl 18522 The identity element of a ...
grpbn0 18523 The base set of a group is...
grplid 18524 The identity element of a ...
grprid 18525 The identity element of a ...
grpn0 18526 A group is not empty. (Co...
hashfingrpnn 18527 A finite group has positiv...
grprcan 18528 Right cancellation law for...
grpinveu 18529 The left inverse element o...
grpid 18530 Two ways of saying that an...
isgrpid2 18531 Properties showing that an...
grpidd2 18532 Deduce the identity elemen...
grpinvfval 18533 The inverse function of a ...
grpinvfvalALT 18534 Shorter proof of ~ grpinvf...
grpinvval 18535 The inverse of a group ele...
grpinvfn 18536 Functionality of the group...
grpinvfvi 18537 The group inverse function...
grpsubfval 18538 Group subtraction (divisio...
grpsubfvalALT 18539 Shorter proof of ~ grpsubf...
grpsubval 18540 Group subtraction (divisio...
grpinvf 18541 The group inversion operat...
grpinvcl 18542 A group element's inverse ...
grplinv 18543 The left inverse of a grou...
grprinv 18544 The right inverse of a gro...
grpinvid1 18545 The inverse of a group ele...
grpinvid2 18546 The inverse of a group ele...
isgrpinv 18547 Properties showing that a ...
grplrinv 18548 In a group, every member h...
grpidinv2 18549 A group's properties using...
grpidinv 18550 A group has a left and rig...
grpinvid 18551 The inverse of the identit...
grplcan 18552 Left cancellation law for ...
grpasscan1 18553 An associative cancellatio...
grpasscan2 18554 An associative cancellatio...
grpidrcan 18555 If right adding an element...
grpidlcan 18556 If left adding an element ...
grpinvinv 18557 Double inverse law for gro...
grpinvcnv 18558 The group inverse is its o...
grpinv11 18559 The group inverse is one-t...
grpinvf1o 18560 The group inverse is a one...
grpinvnz 18561 The inverse of a nonzero g...
grpinvnzcl 18562 The inverse of a nonzero g...
grpsubinv 18563 Subtraction of an inverse....
grplmulf1o 18564 Left multiplication by a g...
grpinvpropd 18565 If two structures have the...
grpidssd 18566 If the base set of a group...
grpinvssd 18567 If the base set of a group...
grpinvadd 18568 The inverse of the group o...
grpsubf 18569 Functionality of group sub...
grpsubcl 18570 Closure of group subtracti...
grpsubrcan 18571 Right cancellation law for...
grpinvsub 18572 Inverse of a group subtrac...
grpinvval2 18573 A ~ df-neg -like equation ...
grpsubid 18574 Subtraction of a group ele...
grpsubid1 18575 Subtraction of the identit...
grpsubeq0 18576 If the difference between ...
grpsubadd0sub 18577 Subtraction expressed as a...
grpsubadd 18578 Relationship between group...
grpsubsub 18579 Double group subtraction. ...
grpaddsubass 18580 Associative-type law for g...
grppncan 18581 Cancellation law for subtr...
grpnpcan 18582 Cancellation law for subtr...
grpsubsub4 18583 Double group subtraction (...
grppnpcan2 18584 Cancellation law for mixed...
grpnpncan 18585 Cancellation law for group...
grpnpncan0 18586 Cancellation law for group...
grpnnncan2 18587 Cancellation law for group...
dfgrp3lem 18588 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18589 Alternate definition of a ...
dfgrp3e 18590 Alternate definition of a ...
grplactfval 18591 The left group action of e...
grplactval 18592 The value of the left grou...
grplactcnv 18593 The left group action of e...
grplactf1o 18594 The left group action of e...
grpsubpropd 18595 Weak property deduction fo...
grpsubpropd2 18596 Strong property deduction ...
grp1 18597 The (smallest) structure r...
grp1inv 18598 The inverse function of th...
prdsinvlem 18599 Characterization of invers...
prdsgrpd 18600 The product of a family of...
prdsinvgd 18601 Negation in a product of g...
pwsgrp 18602 A structure power of a gro...
pwsinvg 18603 Negation in a group power....
pwssub 18604 Subtraction in a group pow...
imasgrp2 18605 The image structure of a g...
imasgrp 18606 The image structure of a g...
imasgrpf1 18607 The image of a group under...
qusgrp2 18608 Prove that a quotient stru...
xpsgrp 18609 The binary product of grou...
mhmlem 18610 Lemma for ~ mhmmnd and ~ g...
mhmid 18611 A surjective monoid morphi...
mhmmnd 18612 The image of a monoid ` G ...
mhmfmhm 18613 The function fulfilling th...
ghmgrp 18614 The image of a group ` G `...
mulgfval 18617 Group multiple (exponentia...
mulgfvalALT 18618 Shorter proof of ~ mulgfva...
mulgval 18619 Value of the group multipl...
mulgfn 18620 Functionality of the group...
mulgfvi 18621 The group multiple operati...
mulg0 18622 Group multiple (exponentia...
mulgnn 18623 Group multiple (exponentia...
mulgnngsum 18624 Group multiple (exponentia...
mulgnn0gsum 18625 Group multiple (exponentia...
mulg1 18626 Group multiple (exponentia...
mulgnnp1 18627 Group multiple (exponentia...
mulg2 18628 Group multiple (exponentia...
mulgnegnn 18629 Group multiple (exponentia...
mulgnn0p1 18630 Group multiple (exponentia...
mulgnnsubcl 18631 Closure of the group multi...
mulgnn0subcl 18632 Closure of the group multi...
mulgsubcl 18633 Closure of the group multi...
mulgnncl 18634 Closure of the group multi...
mulgnn0cl 18635 Closure of the group multi...
mulgcl 18636 Closure of the group multi...
mulgneg 18637 Group multiple (exponentia...
mulgnegneg 18638 The inverse of a negative ...
mulgm1 18639 Group multiple (exponentia...
mulgcld 18640 Deduction associated with ...
mulgaddcomlem 18641 Lemma for ~ mulgaddcom . ...
mulgaddcom 18642 The group multiple operato...
mulginvcom 18643 The group multiple operato...
mulginvinv 18644 The group multiple operato...
mulgnn0z 18645 A group multiple of the id...
mulgz 18646 A group multiple of the id...
mulgnndir 18647 Sum of group multiples, fo...
mulgnn0dir 18648 Sum of group multiples, ge...
mulgdirlem 18649 Lemma for ~ mulgdir . (Co...
mulgdir 18650 Sum of group multiples, ge...
mulgp1 18651 Group multiple (exponentia...
mulgneg2 18652 Group multiple (exponentia...
mulgnnass 18653 Product of group multiples...
mulgnn0ass 18654 Product of group multiples...
mulgass 18655 Product of group multiples...
mulgassr 18656 Reversed product of group ...
mulgmodid 18657 Casting out multiples of t...
mulgsubdir 18658 Subtraction of a group ele...
mhmmulg 18659 A homomorphism of monoids ...
mulgpropd 18660 Two structures with the sa...
submmulgcl 18661 Closure of the group multi...
submmulg 18662 A group multiple is the sa...
pwsmulg 18663 Value of a group multiple ...
issubg 18670 The subgroup predicate. (...
subgss 18671 A subgroup is a subset. (...
subgid 18672 A group is a subgroup of i...
subggrp 18673 A subgroup is a group. (C...
subgbas 18674 The base of the restricted...
subgrcl 18675 Reverse closure for the su...
subg0 18676 A subgroup of a group must...
subginv 18677 The inverse of an element ...
subg0cl 18678 The group identity is an e...
subginvcl 18679 The inverse of an element ...
subgcl 18680 A subgroup is closed under...
subgsubcl 18681 A subgroup is closed under...
subgsub 18682 The subtraction of element...
subgmulgcl 18683 Closure of the group multi...
subgmulg 18684 A group multiple is the sa...
issubg2 18685 Characterize the subgroups...
issubgrpd2 18686 Prove a subgroup by closur...
issubgrpd 18687 Prove a subgroup by closur...
issubg3 18688 A subgroup is a symmetric ...
issubg4 18689 A subgroup is a nonempty s...
grpissubg 18690 If the base set of a group...
resgrpisgrp 18691 If the base set of a group...
subgsubm 18692 A subgroup is a submonoid....
subsubg 18693 A subgroup of a subgroup i...
subgint 18694 The intersection of a none...
0subg 18695 The zero subgroup of an ar...
trivsubgd 18696 The only subgroup of a tri...
trivsubgsnd 18697 The only subgroup of a tri...
isnsg 18698 Property of being a normal...
isnsg2 18699 Weaken the condition of ~ ...
nsgbi 18700 Defining property of a nor...
nsgsubg 18701 A normal subgroup is a sub...
nsgconj 18702 The conjugation of an elem...
isnsg3 18703 A subgroup is normal iff t...
subgacs 18704 Subgroups are an algebraic...
nsgacs 18705 Normal subgroups form an a...
elnmz 18706 Elementhood in the normali...
nmzbi 18707 Defining property of the n...
nmzsubg 18708 The normalizer N_G(S) of a...
ssnmz 18709 A subgroup is a subset of ...
isnsg4 18710 A subgroup is normal iff i...
nmznsg 18711 Any subgroup is a normal s...
0nsg 18712 The zero subgroup is norma...
nsgid 18713 The whole group is a norma...
0idnsgd 18714 The whole group and the ze...
trivnsgd 18715 The only normal subgroup o...
triv1nsgd 18716 A trivial group has exactl...
1nsgtrivd 18717 A group with exactly one n...
releqg 18718 The left coset equivalence...
eqgfval 18719 Value of the subgroup left...
eqgval 18720 Value of the subgroup left...
eqger 18721 The subgroup coset equival...
eqglact 18722 A left coset can be expres...
eqgid 18723 The left coset containing ...
eqgen 18724 Each coset is equipotent t...
eqgcpbl 18725 The subgroup coset equival...
qusgrp 18726 If ` Y ` is a normal subgr...
quseccl 18727 Closure of the quotient ma...
qusadd 18728 Value of the group operati...
qus0 18729 Value of the group identit...
qusinv 18730 Value of the group inverse...
qussub 18731 Value of the group subtrac...
lagsubg2 18732 Lagrange's theorem for fin...
lagsubg 18733 Lagrange's theorem for Gro...
cycsubmel 18734 Characterization of an ele...
cycsubmcl 18735 The set of nonnegative int...
cycsubm 18736 The set of nonnegative int...
cyccom 18737 Condition for an operation...
cycsubmcom 18738 The operation of a monoid ...
cycsubggend 18739 The cyclic subgroup genera...
cycsubgcl 18740 The set of integer powers ...
cycsubgss 18741 The cyclic subgroup genera...
cycsubg 18742 The cyclic group generated...
cycsubgcld 18743 The cyclic subgroup genera...
cycsubg2 18744 The subgroup generated by ...
cycsubg2cl 18745 Any multiple of an element...
reldmghm 18748 Lemma for group homomorphi...
isghm 18749 Property of being a homomo...
isghm3 18750 Property of a group homomo...
ghmgrp1 18751 A group homomorphism is on...
ghmgrp2 18752 A group homomorphism is on...
ghmf 18753 A group homomorphism is a ...
ghmlin 18754 A homomorphism of groups i...
ghmid 18755 A homomorphism of groups p...
ghminv 18756 A homomorphism of groups p...
ghmsub 18757 Linearity of subtraction t...
isghmd 18758 Deduction for a group homo...
ghmmhm 18759 A group homomorphism is a ...
ghmmhmb 18760 Group homomorphisms and mo...
ghmmulg 18761 A homomorphism of monoids ...
ghmrn 18762 The range of a homomorphis...
0ghm 18763 The constant zero linear f...
idghm 18764 The identity homomorphism ...
resghm 18765 Restriction of a homomorph...
resghm2 18766 One direction of ~ resghm2...
resghm2b 18767 Restriction of the codomai...
ghmghmrn 18768 A group homomorphism from ...
ghmco 18769 The composition of group h...
ghmima 18770 The image of a subgroup un...
ghmpreima 18771 The inverse image of a sub...
ghmeql 18772 The equalizer of two group...
ghmnsgima 18773 The image of a normal subg...
ghmnsgpreima 18774 The inverse image of a nor...
ghmker 18775 The kernel of a homomorphi...
ghmeqker 18776 Two source points map to t...
pwsdiagghm 18777 Diagonal homomorphism into...
ghmf1 18778 Two ways of saying a group...
ghmf1o 18779 A bijective group homomorp...
conjghm 18780 Conjugation is an automorp...
conjsubg 18781 A conjugated subgroup is a...
conjsubgen 18782 A conjugated subgroup is e...
conjnmz 18783 A subgroup is unchanged un...
conjnmzb 18784 Alternative condition for ...
conjnsg 18785 A normal subgroup is uncha...
qusghm 18786 If ` Y ` is a normal subgr...
ghmpropd 18787 Group homomorphism depends...
gimfn 18792 The group isomorphism func...
isgim 18793 An isomorphism of groups i...
gimf1o 18794 An isomorphism of groups i...
gimghm 18795 An isomorphism of groups i...
isgim2 18796 A group isomorphism is a h...
subggim 18797 Behavior of subgroups unde...
gimcnv 18798 The converse of a bijectiv...
gimco 18799 The composition of group i...
brgic 18800 The relation "is isomorphi...
brgici 18801 Prove isomorphic by an exp...
gicref 18802 Isomorphism is reflexive. ...
giclcl 18803 Isomorphism implies the le...
gicrcl 18804 Isomorphism implies the ri...
gicsym 18805 Isomorphism is symmetric. ...
gictr 18806 Isomorphism is transitive....
gicer 18807 Isomorphism is an equivale...
gicen 18808 Isomorphic groups have equ...
gicsubgen 18809 A less trivial example of ...
isga 18812 The predicate "is a (left)...
gagrp 18813 The left argument of a gro...
gaset 18814 The right argument of a gr...
gagrpid 18815 The identity of the group ...
gaf 18816 The mapping of the group a...
gafo 18817 A group action is onto its...
gaass 18818 An "associative" property ...
ga0 18819 The action of a group on t...
gaid 18820 The trivial action of a gr...
subgga 18821 A subgroup acts on its par...
gass 18822 A subset of a group action...
gasubg 18823 The restriction of a group...
gaid2 18824 A group operation is a lef...
galcan 18825 The action of a particular...
gacan 18826 Group inverses cancel in a...
gapm 18827 The action of a particular...
gaorb 18828 The orbit equivalence rela...
gaorber 18829 The orbit equivalence rela...
gastacl 18830 The stabilizer subgroup in...
gastacos 18831 Write the coset relation f...
orbstafun 18832 Existence and uniqueness f...
orbstaval 18833 Value of the function at a...
orbsta 18834 The Orbit-Stabilizer theor...
orbsta2 18835 Relation between the size ...
cntrval 18840 Substitute definition of t...
cntzfval 18841 First level substitution f...
cntzval 18842 Definition substitution fo...
elcntz 18843 Elementhood in the central...
cntzel 18844 Membership in a centralize...
cntzsnval 18845 Special substitution for t...
elcntzsn 18846 Value of the centralizer o...
sscntz 18847 A centralizer expression f...
cntzrcl 18848 Reverse closure for elemen...
cntzssv 18849 The centralizer is uncondi...
cntzi 18850 Membership in a centralize...
cntrss 18851 The center is a subset of ...
cntri 18852 Defining property of the c...
resscntz 18853 Centralizer in a substruct...
cntz2ss 18854 Centralizers reverse the s...
cntzrec 18855 Reciprocity relationship f...
cntziinsn 18856 Express any centralizer as...
cntzsubm 18857 Centralizers in a monoid a...
cntzsubg 18858 Centralizers in a group ar...
cntzidss 18859 If the elements of ` S ` c...
cntzmhm 18860 Centralizers in a monoid a...
cntzmhm2 18861 Centralizers in a monoid a...
cntrsubgnsg 18862 A central subgroup is norm...
cntrnsg 18863 The center of a group is a...
oppgval 18866 Value of the opposite grou...
oppgplusfval 18867 Value of the addition oper...
oppgplus 18868 Value of the addition oper...
setsplusg 18869 The other components of an...
oppglemOLD 18870 Obsolete version of ~ sets...
oppgbas 18871 Base set of an opposite gr...
oppgbasOLD 18872 Obsolete version of ~ oppg...
oppgtset 18873 Topology of an opposite gr...
oppgtsetOLD 18874 Obsolete version of ~ oppg...
oppgtopn 18875 Topology of an opposite gr...
oppgmnd 18876 The opposite of a monoid i...
oppgmndb 18877 Bidirectional form of ~ op...
oppgid 18878 Zero in a monoid is a symm...
oppggrp 18879 The opposite of a group is...
oppggrpb 18880 Bidirectional form of ~ op...
oppginv 18881 Inverses in a group are a ...
invoppggim 18882 The inverse is an antiauto...
oppggic 18883 Every group is (naturally)...
oppgsubm 18884 Being a submonoid is a sym...
oppgsubg 18885 Being a subgroup is a symm...
oppgcntz 18886 A centralizer in a group i...
oppgcntr 18887 The center of a group is t...
gsumwrev 18888 A sum in an opposite monoi...
symgval 18891 The value of the symmetric...
permsetexOLD 18892 Obsolete version of ~ f1os...
symgbas 18893 The base set of the symmet...
symgbasexOLD 18894 Obsolete as of 8-Aug-2024....
elsymgbas2 18895 Two ways of saying a funct...
elsymgbas 18896 Two ways of saying a funct...
symgbasf1o 18897 Elements in the symmetric ...
symgbasf 18898 A permutation (element of ...
symgbasmap 18899 A permutation (element of ...
symghash 18900 The symmetric group on ` n...
symgbasfi 18901 The symmetric group on a f...
symgfv 18902 The function value of a pe...
symgfvne 18903 The function values of a p...
symgressbas 18904 The symmetric group on ` A...
symgplusg 18905 The group operation of a s...
symgov 18906 The value of the group ope...
symgcl 18907 The group operation of the...
idresperm 18908 The identity function rest...
symgmov1 18909 For a permutation of a set...
symgmov2 18910 For a permutation of a set...
symgbas0 18911 The base set of the symmet...
symg1hash 18912 The symmetric group on a s...
symg1bas 18913 The symmetric group on a s...
symg2hash 18914 The symmetric group on a (...
symg2bas 18915 The symmetric group on a p...
0symgefmndeq 18916 The symmetric group on the...
snsymgefmndeq 18917 The symmetric group on a s...
symgpssefmnd 18918 For a set ` A ` with more ...
symgvalstruct 18919 The value of the symmetric...
symgvalstructOLD 18920 Obsolete proof of ~ symgva...
symgsubmefmnd 18921 The symmetric group on a s...
symgtset 18922 The topology of the symmet...
symggrp 18923 The symmetric group on a s...
symgid 18924 The group identity element...
symginv 18925 The group inverse in the s...
symgsubmefmndALT 18926 The symmetric group on a s...
galactghm 18927 The currying of a group ac...
lactghmga 18928 The converse of ~ galactgh...
symgtopn 18929 The topology of the symmet...
symgga 18930 The symmetric group induce...
pgrpsubgsymgbi 18931 Every permutation group is...
pgrpsubgsymg 18932 Every permutation group is...
idressubgsymg 18933 The singleton containing o...
idrespermg 18934 The structure with the sin...
cayleylem1 18935 Lemma for ~ cayley . (Con...
cayleylem2 18936 Lemma for ~ cayley . (Con...
cayley 18937 Cayley's Theorem (construc...
cayleyth 18938 Cayley's Theorem (existenc...
symgfix2 18939 If a permutation does not ...
symgextf 18940 The extension of a permuta...
symgextfv 18941 The function value of the ...
symgextfve 18942 The function value of the ...
symgextf1lem 18943 Lemma for ~ symgextf1 . (...
symgextf1 18944 The extension of a permuta...
symgextfo 18945 The extension of a permuta...
symgextf1o 18946 The extension of a permuta...
symgextsymg 18947 The extension of a permuta...
symgextres 18948 The restriction of the ext...
gsumccatsymgsn 18949 Homomorphic property of co...
gsmsymgrfixlem1 18950 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 18951 The composition of permuta...
fvcosymgeq 18952 The values of two composit...
gsmsymgreqlem1 18953 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 18954 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 18955 Two combination of permuta...
symgfixelq 18956 A permutation of a set fix...
symgfixels 18957 The restriction of a permu...
symgfixelsi 18958 The restriction of a permu...
symgfixf 18959 The mapping of a permutati...
symgfixf1 18960 The mapping of a permutati...
symgfixfolem1 18961 Lemma 1 for ~ symgfixfo . ...
symgfixfo 18962 The mapping of a permutati...
symgfixf1o 18963 The mapping of a permutati...
f1omvdmvd 18966 A permutation of any class...
f1omvdcnv 18967 A permutation and its inve...
mvdco 18968 Composing two permutations...
f1omvdconj 18969 Conjugation of a permutati...
f1otrspeq 18970 A transposition is charact...
f1omvdco2 18971 If exactly one of two perm...
f1omvdco3 18972 If a point is moved by exa...
pmtrfval 18973 The function generating tr...
pmtrval 18974 A generated transposition,...
pmtrfv 18975 General value of mapping a...
pmtrprfv 18976 In a transposition of two ...
pmtrprfv3 18977 In a transposition of two ...
pmtrf 18978 Functionality of a transpo...
pmtrmvd 18979 A transposition moves prec...
pmtrrn 18980 Transposing two points giv...
pmtrfrn 18981 A transposition (as a kind...
pmtrffv 18982 Mapping of a point under a...
pmtrrn2 18983 For any transposition ther...
pmtrfinv 18984 A transposition function i...
pmtrfmvdn0 18985 A transposition moves at l...
pmtrff1o 18986 A transposition function i...
pmtrfcnv 18987 A transposition function i...
pmtrfb 18988 An intrinsic characterizat...
pmtrfconj 18989 Any conjugate of a transpo...
symgsssg 18990 The symmetric group has su...
symgfisg 18991 The symmetric group has a ...
symgtrf 18992 Transpositions are element...
symggen 18993 The span of the transposit...
symggen2 18994 A finite permutation group...
symgtrinv 18995 To invert a permutation re...
pmtr3ncomlem1 18996 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 18997 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 18998 Transpositions over sets w...
pmtrdifellem1 18999 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19000 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19001 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19002 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19003 A transposition of element...
pmtrdifwrdellem1 19004 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19005 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19006 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19007 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19008 A sequence of transpositio...
pmtrdifwrdel2 19009 A sequence of transpositio...
pmtrprfval 19010 The transpositions on a pa...
pmtrprfvalrn 19011 The range of the transposi...
psgnunilem1 19016 Lemma for ~ psgnuni . Giv...
psgnunilem5 19017 Lemma for ~ psgnuni . It ...
psgnunilem2 19018 Lemma for ~ psgnuni . Ind...
psgnunilem3 19019 Lemma for ~ psgnuni . Any...
psgnunilem4 19020 Lemma for ~ psgnuni . An ...
m1expaddsub 19021 Addition and subtraction o...
psgnuni 19022 If the same permutation ca...
psgnfval 19023 Function definition of the...
psgnfn 19024 Functionality and domain o...
psgndmsubg 19025 The finitary permutations ...
psgneldm 19026 Property of being a finita...
psgneldm2 19027 The finitary permutations ...
psgneldm2i 19028 A sequence of transpositio...
psgneu 19029 A finitary permutation has...
psgnval 19030 Value of the permutation s...
psgnvali 19031 A finitary permutation has...
psgnvalii 19032 Any representation of a pe...
psgnpmtr 19033 All transpositions are odd...
psgn0fv0 19034 The permutation sign funct...
sygbasnfpfi 19035 The class of non-fixed poi...
psgnfvalfi 19036 Function definition of the...
psgnvalfi 19037 Value of the permutation s...
psgnran 19038 The range of the permutati...
gsmtrcl 19039 The group sum of transposi...
psgnfitr 19040 A permutation of a finite ...
psgnfieu 19041 A permutation of a finite ...
pmtrsn 19042 The value of the transposi...
psgnsn 19043 The permutation sign funct...
psgnprfval 19044 The permutation sign funct...
psgnprfval1 19045 The permutation sign of th...
psgnprfval2 19046 The permutation sign of th...
odfval 19055 Value of the order functio...
odfvalALT 19056 Shorter proof of ~ odfval ...
odval 19057 Second substitution for th...
odlem1 19058 The group element order is...
odcl 19059 The order of a group eleme...
odf 19060 Functionality of the group...
odid 19061 Any element to the power o...
odlem2 19062 Any positive annihilator o...
odmodnn0 19063 Reduce the argument of a g...
mndodconglem 19064 Lemma for ~ mndodcong . (...
mndodcong 19065 If two multipliers are con...
mndodcongi 19066 If two multipliers are con...
oddvdsnn0 19067 The only multiples of ` A ...
odnncl 19068 If a nonzero multiple of a...
odmod 19069 Reduce the argument of a g...
oddvds 19070 The only multiples of ` A ...
oddvdsi 19071 Any group element is annih...
odcong 19072 If two multipliers are con...
odeq 19073 The ~ oddvds property uniq...
odval2 19074 A non-conditional definiti...
odcld 19075 The order of a group eleme...
odmulgid 19076 A relationship between the...
odmulg2 19077 The order of a multiple di...
odmulg 19078 Relationship between the o...
odmulgeq 19079 A multiple of a point of f...
odbezout 19080 If ` N ` is coprime to the...
od1 19081 The order of the group ide...
odeq1 19082 The group identity is the ...
odinv 19083 The order of the inverse o...
odf1 19084 The multiples of an elemen...
odinf 19085 The multiples of an elemen...
dfod2 19086 An alternative definition ...
odcl2 19087 The order of an element of...
oddvds2 19088 The order of an element of...
submod 19089 The order of an element is...
subgod 19090 The order of an element is...
odsubdvds 19091 The order of an element of...
odf1o1 19092 An element with zero order...
odf1o2 19093 An element with nonzero or...
odhash 19094 An element of zero order g...
odhash2 19095 If an element has nonzero ...
odhash3 19096 An element which generates...
odngen 19097 A cyclic subgroup of size ...
gexval 19098 Value of the exponent of a...
gexlem1 19099 The group element order is...
gexcl 19100 The exponent of a group is...
gexid 19101 Any element to the power o...
gexlem2 19102 Any positive annihilator o...
gexdvdsi 19103 Any group element is annih...
gexdvds 19104 The only ` N ` that annihi...
gexdvds2 19105 An integer divides the gro...
gexod 19106 Any group element is annih...
gexcl3 19107 If the order of every grou...
gexnnod 19108 Every group element has fi...
gexcl2 19109 The exponent of a finite g...
gexdvds3 19110 The exponent of a finite g...
gex1 19111 A group or monoid has expo...
ispgp 19112 A group is a ` P ` -group ...
pgpprm 19113 Reverse closure for the fi...
pgpgrp 19114 Reverse closure for the se...
pgpfi1 19115 A finite group with order ...
pgp0 19116 The identity subgroup is a...
subgpgp 19117 A subgroup of a p-group is...
sylow1lem1 19118 Lemma for ~ sylow1 . The ...
sylow1lem2 19119 Lemma for ~ sylow1 . The ...
sylow1lem3 19120 Lemma for ~ sylow1 . One ...
sylow1lem4 19121 Lemma for ~ sylow1 . The ...
sylow1lem5 19122 Lemma for ~ sylow1 . Usin...
sylow1 19123 Sylow's first theorem. If...
odcau 19124 Cauchy's theorem for the o...
pgpfi 19125 The converse to ~ pgpfi1 ....
pgpfi2 19126 Alternate version of ~ pgp...
pgphash 19127 The order of a p-group. (...
isslw 19128 The property of being a Sy...
slwprm 19129 Reverse closure for the fi...
slwsubg 19130 A Sylow ` P ` -subgroup is...
slwispgp 19131 Defining property of a Syl...
slwpss 19132 A proper superset of a Syl...
slwpgp 19133 A Sylow ` P ` -subgroup is...
pgpssslw 19134 Every ` P ` -subgroup is c...
slwn0 19135 Every finite group contain...
subgslw 19136 A Sylow subgroup that is c...
sylow2alem1 19137 Lemma for ~ sylow2a . An ...
sylow2alem2 19138 Lemma for ~ sylow2a . All...
sylow2a 19139 A named lemma of Sylow's s...
sylow2blem1 19140 Lemma for ~ sylow2b . Eva...
sylow2blem2 19141 Lemma for ~ sylow2b . Lef...
sylow2blem3 19142 Sylow's second theorem. P...
sylow2b 19143 Sylow's second theorem. A...
slwhash 19144 A sylow subgroup has cardi...
fislw 19145 The sylow subgroups of a f...
sylow2 19146 Sylow's second theorem. S...
sylow3lem1 19147 Lemma for ~ sylow3 , first...
sylow3lem2 19148 Lemma for ~ sylow3 , first...
sylow3lem3 19149 Lemma for ~ sylow3 , first...
sylow3lem4 19150 Lemma for ~ sylow3 , first...
sylow3lem5 19151 Lemma for ~ sylow3 , secon...
sylow3lem6 19152 Lemma for ~ sylow3 , secon...
sylow3 19153 Sylow's third theorem. Th...
lsmfval 19158 The subgroup sum function ...
lsmvalx 19159 Subspace sum value (for a ...
lsmelvalx 19160 Subspace sum membership (f...
lsmelvalix 19161 Subspace sum membership (f...
oppglsm 19162 The subspace sum operation...
lsmssv 19163 Subgroup sum is a subset o...
lsmless1x 19164 Subset implies subgroup su...
lsmless2x 19165 Subset implies subgroup su...
lsmub1x 19166 Subgroup sum is an upper b...
lsmub2x 19167 Subgroup sum is an upper b...
lsmval 19168 Subgroup sum value (for a ...
lsmelval 19169 Subgroup sum membership (f...
lsmelvali 19170 Subgroup sum membership (f...
lsmelvalm 19171 Subgroup sum membership an...
lsmelvalmi 19172 Membership of vector subtr...
lsmsubm 19173 The sum of two commuting s...
lsmsubg 19174 The sum of two commuting s...
lsmcom2 19175 Subgroup sum commutes. (C...
smndlsmidm 19176 The direct product is idem...
lsmub1 19177 Subgroup sum is an upper b...
lsmub2 19178 Subgroup sum is an upper b...
lsmunss 19179 Union of subgroups is a su...
lsmless1 19180 Subset implies subgroup su...
lsmless2 19181 Subset implies subgroup su...
lsmless12 19182 Subset implies subgroup su...
lsmidm 19183 Subgroup sum is idempotent...
lsmidmOLD 19184 Obsolete proof of ~ lsmidm...
lsmlub 19185 The least upper bound prop...
lsmss1 19186 Subgroup sum with a subset...
lsmss1b 19187 Subgroup sum with a subset...
lsmss2 19188 Subgroup sum with a subset...
lsmss2b 19189 Subgroup sum with a subset...
lsmass 19190 Subgroup sum is associativ...
mndlsmidm 19191 Subgroup sum is idempotent...
lsm01 19192 Subgroup sum with the zero...
lsm02 19193 Subgroup sum with the zero...
subglsm 19194 The subgroup sum evaluated...
lssnle 19195 Equivalent expressions for...
lsmmod 19196 The modular law holds for ...
lsmmod2 19197 Modular law dual for subgr...
lsmpropd 19198 If two structures have the...
cntzrecd 19199 Commute the "subgroups com...
lsmcntz 19200 The "subgroups commute" pr...
lsmcntzr 19201 The "subgroups commute" pr...
lsmdisj 19202 Disjointness from a subgro...
lsmdisj2 19203 Association of the disjoin...
lsmdisj3 19204 Association of the disjoin...
lsmdisjr 19205 Disjointness from a subgro...
lsmdisj2r 19206 Association of the disjoin...
lsmdisj3r 19207 Association of the disjoin...
lsmdisj2a 19208 Association of the disjoin...
lsmdisj2b 19209 Association of the disjoin...
lsmdisj3a 19210 Association of the disjoin...
lsmdisj3b 19211 Association of the disjoin...
subgdisj1 19212 Vectors belonging to disjo...
subgdisj2 19213 Vectors belonging to disjo...
subgdisjb 19214 Vectors belonging to disjo...
pj1fval 19215 The left projection functi...
pj1val 19216 The left projection functi...
pj1eu 19217 Uniqueness of a left proje...
pj1f 19218 The left projection functi...
pj2f 19219 The right projection funct...
pj1id 19220 Any element of a direct su...
pj1eq 19221 Any element of a direct su...
pj1lid 19222 The left projection functi...
pj1rid 19223 The left projection functi...
pj1ghm 19224 The left projection functi...
pj1ghm2 19225 The left projection functi...
lsmhash 19226 The order of the direct pr...
efgmval 19233 Value of the formal invers...
efgmf 19234 The formal inverse operati...
efgmnvl 19235 The inversion function on ...
efgrcl 19236 Lemma for ~ efgval . (Con...
efglem 19237 Lemma for ~ efgval . (Con...
efgval 19238 Value of the free group co...
efger 19239 Value of the free group co...
efgi 19240 Value of the free group co...
efgi0 19241 Value of the free group co...
efgi1 19242 Value of the free group co...
efgtf 19243 Value of the free group co...
efgtval 19244 Value of the extension fun...
efgval2 19245 Value of the free group co...
efgi2 19246 Value of the free group co...
efgtlen 19247 Value of the free group co...
efginvrel2 19248 The inverse of the reverse...
efginvrel1 19249 The inverse of the reverse...
efgsf 19250 Value of the auxiliary fun...
efgsdm 19251 Elementhood in the domain ...
efgsval 19252 Value of the auxiliary fun...
efgsdmi 19253 Property of the last link ...
efgsval2 19254 Value of the auxiliary fun...
efgsrel 19255 The start and end of any e...
efgs1 19256 A singleton of an irreduci...
efgs1b 19257 Every extension sequence e...
efgsp1 19258 If ` F ` is an extension s...
efgsres 19259 An initial segment of an e...
efgsfo 19260 For any word, there is a s...
efgredlema 19261 The reduced word that form...
efgredlemf 19262 Lemma for ~ efgredleme . ...
efgredlemg 19263 Lemma for ~ efgred . (Con...
efgredleme 19264 Lemma for ~ efgred . (Con...
efgredlemd 19265 The reduced word that form...
efgredlemc 19266 The reduced word that form...
efgredlemb 19267 The reduced word that form...
efgredlem 19268 The reduced word that form...
efgred 19269 The reduced word that form...
efgrelexlema 19270 If two words ` A , B ` are...
efgrelexlemb 19271 If two words ` A , B ` are...
efgrelex 19272 If two words ` A , B ` are...
efgredeu 19273 There is a unique reduced ...
efgred2 19274 Two extension sequences ha...
efgcpbllema 19275 Lemma for ~ efgrelex . De...
efgcpbllemb 19276 Lemma for ~ efgrelex . Sh...
efgcpbl 19277 Two extension sequences ha...
efgcpbl2 19278 Two extension sequences ha...
frgpval 19279 Value of the free group co...
frgpcpbl 19280 Compatibility of the group...
frgp0 19281 The free group is a group....
frgpeccl 19282 Closure of the quotient ma...
frgpgrp 19283 The free group is a group....
frgpadd 19284 Addition in the free group...
frgpinv 19285 The inverse of an element ...
frgpmhm 19286 The "natural map" from wor...
vrgpfval 19287 The canonical injection fr...
vrgpval 19288 The value of the generatin...
vrgpf 19289 The mapping from the index...
vrgpinv 19290 The inverse of a generatin...
frgpuptf 19291 Any assignment of the gene...
frgpuptinv 19292 Any assignment of the gene...
frgpuplem 19293 Any assignment of the gene...
frgpupf 19294 Any assignment of the gene...
frgpupval 19295 Any assignment of the gene...
frgpup1 19296 Any assignment of the gene...
frgpup2 19297 The evaluation map has the...
frgpup3lem 19298 The evaluation map has the...
frgpup3 19299 Universal property of the ...
0frgp 19300 The free group on zero gen...
isabl 19305 The predicate "is an Abeli...
ablgrp 19306 An Abelian group is a grou...
ablgrpd 19307 An Abelian group is a grou...
ablcmn 19308 An Abelian group is a comm...
iscmn 19309 The predicate "is a commut...
isabl2 19310 The predicate "is an Abeli...
cmnpropd 19311 If two structures have the...
ablpropd 19312 If two structures have the...
ablprop 19313 If two structures have the...
iscmnd 19314 Properties that determine ...
isabld 19315 Properties that determine ...
isabli 19316 Properties that determine ...
cmnmnd 19317 A commutative monoid is a ...
cmncom 19318 A commutative monoid is co...
ablcom 19319 An Abelian group operation...
cmn32 19320 Commutative/associative la...
cmn4 19321 Commutative/associative la...
cmn12 19322 Commutative/associative la...
abl32 19323 Commutative/associative la...
cmnmndd 19324 A commutative monoid is a ...
rinvmod 19325 Uniqueness of a right inve...
ablinvadd 19326 The inverse of an Abelian ...
ablsub2inv 19327 Abelian group subtraction ...
ablsubadd 19328 Relationship between Abeli...
ablsub4 19329 Commutative/associative su...
abladdsub4 19330 Abelian group addition/sub...
abladdsub 19331 Associative-type law for g...
ablpncan2 19332 Cancellation law for subtr...
ablpncan3 19333 A cancellation law for com...
ablsubsub 19334 Law for double subtraction...
ablsubsub4 19335 Law for double subtraction...
ablpnpcan 19336 Cancellation law for mixed...
ablnncan 19337 Cancellation law for group...
ablsub32 19338 Swap the second and third ...
ablnnncan 19339 Cancellation law for group...
ablnnncan1 19340 Cancellation law for group...
ablsubsub23 19341 Swap subtrahend and result...
mulgnn0di 19342 Group multiple of a sum, f...
mulgdi 19343 Group multiple of a sum. ...
mulgmhm 19344 The map from ` x ` to ` n ...
mulgghm 19345 The map from ` x ` to ` n ...
mulgsubdi 19346 Group multiple of a differ...
ghmfghm 19347 The function fulfilling th...
ghmcmn 19348 The image of a commutative...
ghmabl 19349 The image of an abelian gr...
invghm 19350 The inversion map is a gro...
eqgabl 19351 Value of the subgroup cose...
subgabl 19352 A subgroup of an abelian g...
subcmn 19353 A submonoid of a commutati...
submcmn 19354 A submonoid of a commutati...
submcmn2 19355 A submonoid is commutative...
cntzcmn 19356 The centralizer of any sub...
cntzcmnss 19357 Any subset in a commutativ...
cntrcmnd 19358 The center of a monoid is ...
cntrabl 19359 The center of a group is a...
cntzspan 19360 If the generators commute,...
cntzcmnf 19361 Discharge the centralizer ...
ghmplusg 19362 The pointwise sum of two l...
ablnsg 19363 Every subgroup of an abeli...
odadd1 19364 The order of a product in ...
odadd2 19365 The order of a product in ...
odadd 19366 The order of a product is ...
gex2abl 19367 A group with exponent 2 (o...
gexexlem 19368 Lemma for ~ gexex . (Cont...
gexex 19369 In an abelian group with f...
torsubg 19370 The set of all elements of...
oddvdssubg 19371 The set of all elements wh...
lsmcomx 19372 Subgroup sum commutes (ext...
ablcntzd 19373 All subgroups in an abelia...
lsmcom 19374 Subgroup sum commutes. (C...
lsmsubg2 19375 The sum of two subgroups i...
lsm4 19376 Commutative/associative la...
prdscmnd 19377 The product of a family of...
prdsabld 19378 The product of a family of...
pwscmn 19379 The structure power on a c...
pwsabl 19380 The structure power on an ...
qusabl 19381 If ` Y ` is a subgroup of ...
abl1 19382 The (smallest) structure r...
abln0 19383 Abelian groups (and theref...
cnaddablx 19384 The complex numbers are an...
cnaddabl 19385 The complex numbers are an...
cnaddid 19386 The group identity element...
cnaddinv 19387 Value of the group inverse...
zaddablx 19388 The integers are an Abelia...
frgpnabllem1 19389 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19390 Lemma for ~ frgpnabl . (C...
frgpnabl 19391 The free group on two or m...
iscyg 19394 Definition of a cyclic gro...
iscyggen 19395 The property of being a cy...
iscyggen2 19396 The property of being a cy...
iscyg2 19397 A cyclic group is a group ...
cyggeninv 19398 The inverse of a cyclic ge...
cyggenod 19399 An element is the generato...
cyggenod2 19400 In an infinite cyclic grou...
iscyg3 19401 Definition of a cyclic gro...
iscygd 19402 Definition of a cyclic gro...
iscygodd 19403 Show that a group with an ...
cycsubmcmn 19404 The set of nonnegative int...
cyggrp 19405 A cyclic group is a group....
cygabl 19406 A cyclic group is abelian....
cygablOLD 19407 Obsolete proof of ~ cygabl...
cygctb 19408 A cyclic group is countabl...
0cyg 19409 The trivial group is cycli...
prmcyg 19410 A group with prime order i...
lt6abl 19411 A group with fewer than ` ...
ghmcyg 19412 The image of a cyclic grou...
cyggex2 19413 The exponent of a cyclic g...
cyggex 19414 The exponent of a finite c...
cyggexb 19415 A finite abelian group is ...
giccyg 19416 Cyclicity is a group prope...
cycsubgcyg 19417 The cyclic subgroup genera...
cycsubgcyg2 19418 The cyclic subgroup genera...
gsumval3a 19419 Value of the group sum ope...
gsumval3eu 19420 The group sum as defined i...
gsumval3lem1 19421 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19422 Lemma 2 for ~ gsumval3 . ...
gsumval3 19423 Value of the group sum ope...
gsumcllem 19424 Lemma for ~ gsumcl and rel...
gsumzres 19425 Extend a finite group sum ...
gsumzcl2 19426 Closure of a finite group ...
gsumzcl 19427 Closure of a finite group ...
gsumzf1o 19428 Re-index a finite group su...
gsumres 19429 Extend a finite group sum ...
gsumcl2 19430 Closure of a finite group ...
gsumcl 19431 Closure of a finite group ...
gsumf1o 19432 Re-index a finite group su...
gsumreidx 19433 Re-index a finite group su...
gsumzsubmcl 19434 Closure of a group sum in ...
gsumsubmcl 19435 Closure of a group sum in ...
gsumsubgcl 19436 Closure of a group sum in ...
gsumzaddlem 19437 The sum of two group sums....
gsumzadd 19438 The sum of two group sums....
gsumadd 19439 The sum of two group sums....
gsummptfsadd 19440 The sum of two group sums ...
gsummptfidmadd 19441 The sum of two group sums ...
gsummptfidmadd2 19442 The sum of two group sums ...
gsumzsplit 19443 Split a group sum into two...
gsumsplit 19444 Split a group sum into two...
gsumsplit2 19445 Split a group sum into two...
gsummptfidmsplit 19446 Split a group sum expresse...
gsummptfidmsplitres 19447 Split a group sum expresse...
gsummptfzsplit 19448 Split a group sum expresse...
gsummptfzsplitl 19449 Split a group sum expresse...
gsumconst 19450 Sum of a constant series. ...
gsumconstf 19451 Sum of a constant series. ...
gsummptshft 19452 Index shift of a finite gr...
gsumzmhm 19453 Apply a group homomorphism...
gsummhm 19454 Apply a group homomorphism...
gsummhm2 19455 Apply a group homomorphism...
gsummptmhm 19456 Apply a group homomorphism...
gsummulglem 19457 Lemma for ~ gsummulg and ~...
gsummulg 19458 Nonnegative multiple of a ...
gsummulgz 19459 Integer multiple of a grou...
gsumzoppg 19460 The opposite of a group su...
gsumzinv 19461 Inverse of a group sum. (...
gsuminv 19462 Inverse of a group sum. (...
gsummptfidminv 19463 Inverse of a group sum exp...
gsumsub 19464 The difference of two grou...
gsummptfssub 19465 The difference of two grou...
gsummptfidmsub 19466 The difference of two grou...
gsumsnfd 19467 Group sum of a singleton, ...
gsumsnd 19468 Group sum of a singleton, ...
gsumsnf 19469 Group sum of a singleton, ...
gsumsn 19470 Group sum of a singleton. ...
gsumpr 19471 Group sum of a pair. (Con...
gsumzunsnd 19472 Append an element to a fin...
gsumunsnfd 19473 Append an element to a fin...
gsumunsnd 19474 Append an element to a fin...
gsumunsnf 19475 Append an element to a fin...
gsumunsn 19476 Append an element to a fin...
gsumdifsnd 19477 Extract a summand from a f...
gsumpt 19478 Sum of a family that is no...
gsummptf1o 19479 Re-index a finite group su...
gsummptun 19480 Group sum of a disjoint un...
gsummpt1n0 19481 If only one summand in a f...
gsummptif1n0 19482 If only one summand in a f...
gsummptcl 19483 Closure of a finite group ...
gsummptfif1o 19484 Re-index a finite group su...
gsummptfzcl 19485 Closure of a finite group ...
gsum2dlem1 19486 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19487 Lemma for ~ gsum2d . (Con...
gsum2d 19488 Write a sum over a two-dim...
gsum2d2lem 19489 Lemma for ~ gsum2d2 : show...
gsum2d2 19490 Write a group sum over a t...
gsumcom2 19491 Two-dimensional commutatio...
gsumxp 19492 Write a group sum over a c...
gsumcom 19493 Commute the arguments of a...
gsumcom3 19494 A commutative law for fini...
gsumcom3fi 19495 A commutative law for fini...
gsumxp2 19496 Write a group sum over a c...
prdsgsum 19497 Finite commutative sums in...
pwsgsum 19498 Finite commutative sums in...
fsfnn0gsumfsffz 19499 Replacing a finitely suppo...
nn0gsumfz 19500 Replacing a finitely suppo...
nn0gsumfz0 19501 Replacing a finitely suppo...
gsummptnn0fz 19502 A final group sum over a f...
gsummptnn0fzfv 19503 A final group sum over a f...
telgsumfzslem 19504 Lemma for ~ telgsumfzs (in...
telgsumfzs 19505 Telescoping group sum rang...
telgsumfz 19506 Telescoping group sum rang...
telgsumfz0s 19507 Telescoping finite group s...
telgsumfz0 19508 Telescoping finite group s...
telgsums 19509 Telescoping finitely suppo...
telgsum 19510 Telescoping finitely suppo...
reldmdprd 19515 The domain of the internal...
dmdprd 19516 The domain of definition o...
dmdprdd 19517 Show that a given family i...
dprddomprc 19518 A family of subgroups inde...
dprddomcld 19519 If a family of subgroups i...
dprdval0prc 19520 The internal direct produc...
dprdval 19521 The value of the internal ...
eldprd 19522 A class ` A ` is an intern...
dprdgrp 19523 Reverse closure for the in...
dprdf 19524 The function ` S ` is a fa...
dprdf2 19525 The function ` S ` is a fa...
dprdcntz 19526 The function ` S ` is a fa...
dprddisj 19527 The function ` S ` is a fa...
dprdw 19528 The property of being a fi...
dprdwd 19529 A mapping being a finitely...
dprdff 19530 A finitely supported funct...
dprdfcl 19531 A finitely supported funct...
dprdffsupp 19532 A finitely supported funct...
dprdfcntz 19533 A function on the elements...
dprdssv 19534 The internal direct produc...
dprdfid 19535 A function mapping all but...
eldprdi 19536 The domain of definition o...
dprdfinv 19537 Take the inverse of a grou...
dprdfadd 19538 Take the sum of group sums...
dprdfsub 19539 Take the difference of gro...
dprdfeq0 19540 The zero function is the o...
dprdf11 19541 Two group sums over a dire...
dprdsubg 19542 The internal direct produc...
dprdub 19543 Each factor is a subset of...
dprdlub 19544 The direct product is smal...
dprdspan 19545 The direct product is the ...
dprdres 19546 Restriction of a direct pr...
dprdss 19547 Create a direct product by...
dprdz 19548 A family consisting entire...
dprd0 19549 The empty family is an int...
dprdf1o 19550 Rearrange the index set of...
dprdf1 19551 Rearrange the index set of...
subgdmdprd 19552 A direct product in a subg...
subgdprd 19553 A direct product in a subg...
dprdsn 19554 A singleton family is an i...
dmdprdsplitlem 19555 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19556 The function ` S ` is a fa...
dprddisj2 19557 The function ` S ` is a fa...
dprd2dlem2 19558 The direct product of a co...
dprd2dlem1 19559 The direct product of a co...
dprd2da 19560 The direct product of a co...
dprd2db 19561 The direct product of a co...
dprd2d2 19562 The direct product of a co...
dmdprdsplit2lem 19563 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 19564 The direct product splits ...
dmdprdsplit 19565 The direct product splits ...
dprdsplit 19566 The direct product is the ...
dmdprdpr 19567 A singleton family is an i...
dprdpr 19568 A singleton family is an i...
dpjlem 19569 Lemma for theorems about d...
dpjcntz 19570 The two subgroups that app...
dpjdisj 19571 The two subgroups that app...
dpjlsm 19572 The two subgroups that app...
dpjfval 19573 Value of the direct produc...
dpjval 19574 Value of the direct produc...
dpjf 19575 The ` X ` -th index projec...
dpjidcl 19576 The key property of projec...
dpjeq 19577 Decompose a group sum into...
dpjid 19578 The key property of projec...
dpjlid 19579 The ` X ` -th index projec...
dpjrid 19580 The ` Y ` -th index projec...
dpjghm 19581 The direct product is the ...
dpjghm2 19582 The direct product is the ...
ablfacrplem 19583 Lemma for ~ ablfacrp2 . (...
ablfacrp 19584 A finite abelian group who...
ablfacrp2 19585 The factors ` K , L ` of ~...
ablfac1lem 19586 Lemma for ~ ablfac1b . Sa...
ablfac1a 19587 The factors of ~ ablfac1b ...
ablfac1b 19588 Any abelian group is the d...
ablfac1c 19589 The factors of ~ ablfac1b ...
ablfac1eulem 19590 Lemma for ~ ablfac1eu . (...
ablfac1eu 19591 The factorization of ~ abl...
pgpfac1lem1 19592 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 19593 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 19594 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 19595 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 19596 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 19597 Lemma for ~ pgpfac1 . (Co...
pgpfac1 19598 Factorization of a finite ...
pgpfaclem1 19599 Lemma for ~ pgpfac . (Con...
pgpfaclem2 19600 Lemma for ~ pgpfac . (Con...
pgpfaclem3 19601 Lemma for ~ pgpfac . (Con...
pgpfac 19602 Full factorization of a fi...
ablfaclem1 19603 Lemma for ~ ablfac . (Con...
ablfaclem2 19604 Lemma for ~ ablfac . (Con...
ablfaclem3 19605 Lemma for ~ ablfac . (Con...
ablfac 19606 The Fundamental Theorem of...
ablfac2 19607 Choose generators for each...
issimpg 19610 The predicate "is a simple...
issimpgd 19611 Deduce a simple group from...
simpggrp 19612 A simple group is a group....
simpggrpd 19613 A simple group is a group....
simpg2nsg 19614 A simple group has two nor...
trivnsimpgd 19615 Trivial groups are not sim...
simpgntrivd 19616 Simple groups are nontrivi...
simpgnideld 19617 A simple group contains a ...
simpgnsgd 19618 The only normal subgroups ...
simpgnsgeqd 19619 A normal subgroup of a sim...
2nsgsimpgd 19620 If any normal subgroup of ...
simpgnsgbid 19621 A nontrivial group is simp...
ablsimpnosubgd 19622 A subgroup of an abelian s...
ablsimpg1gend 19623 An abelian simple group is...
ablsimpgcygd 19624 An abelian simple group is...
ablsimpgfindlem1 19625 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 19626 Lemma for ~ ablsimpgfind ....
cycsubggenodd 19627 Relationship between the o...
ablsimpgfind 19628 An abelian simple group is...
fincygsubgd 19629 The subgroup referenced in...
fincygsubgodd 19630 Calculate the order of a s...
fincygsubgodexd 19631 A finite cyclic group has ...
prmgrpsimpgd 19632 A group of prime order is ...
ablsimpgprmd 19633 An abelian simple group ha...
ablsimpgd 19634 An abelian group is simple...
fnmgp 19637 The multiplicative group o...
mgpval 19638 Value of the multiplicatio...
mgpplusg 19639 Value of the group operati...
mgplemOLD 19640 Obsolete version of ~ sets...
mgpbas 19641 Base set of the multiplica...
mgpbasOLD 19642 Obsolete version of ~ mgpb...
mgpsca 19643 The multiplication monoid ...
mgpscaOLD 19644 Obsolete version of ~ mgps...
mgptset 19645 Topology component of the ...
mgptsetOLD 19646 Obsolete version of ~ mgpt...
mgptopn 19647 Topology of the multiplica...
mgpds 19648 Distance function of the m...
mgpdsOLD 19649 Obsolete version of ~ mgpd...
mgpress 19650 Subgroup commutes with the...
mgpressOLD 19651 Obsolete version of ~ mgpr...
ringidval 19654 The value of the unity ele...
dfur2 19655 The multiplicative identit...
issrg 19658 The predicate "is a semiri...
srgcmn 19659 A semiring is a commutativ...
srgmnd 19660 A semiring is a monoid. (...
srgmgp 19661 A semiring is a monoid und...
srgi 19662 Properties of a semiring. ...
srgcl 19663 Closure of the multiplicat...
srgass 19664 Associative law for the mu...
srgideu 19665 The unit element of a semi...
srgfcl 19666 Functionality of the multi...
srgdi 19667 Distributive law for the m...
srgdir 19668 Distributive law for the m...
srgidcl 19669 The unit element of a semi...
srg0cl 19670 The zero element of a semi...
srgidmlem 19671 Lemma for ~ srglidm and ~ ...
srglidm 19672 The unit element of a semi...
srgridm 19673 The unit element of a semi...
issrgid 19674 Properties showing that an...
srgacl 19675 Closure of the addition op...
srgcom 19676 Commutativity of the addit...
srgrz 19677 The zero of a semiring is ...
srglz 19678 The zero of a semiring is ...
srgisid 19679 In a semiring, the only le...
srg1zr 19680 The only semiring with a b...
srgen1zr 19681 The only semiring with one...
srgmulgass 19682 An associative property be...
srgpcomp 19683 If two elements of a semir...
srgpcompp 19684 If two elements of a semir...
srgpcomppsc 19685 If two elements of a semir...
srglmhm 19686 Left-multiplication in a s...
srgrmhm 19687 Right-multiplication in a ...
srgsummulcr 19688 A finite semiring sum mult...
sgsummulcl 19689 A finite semiring sum mult...
srg1expzeq1 19690 The exponentiation (by a n...
srgbinomlem1 19691 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 19692 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 19693 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 19694 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 19695 Lemma for ~ srgbinom . In...
srgbinom 19696 The binomial theorem for c...
csrgbinom 19697 The binomial theorem for c...
isring 19702 The predicate "is a (unita...
ringgrp 19703 A ring is a group. (Contr...
ringmgp 19704 A ring is a monoid under m...
iscrng 19705 A commutative ring is a ri...
crngmgp 19706 A commutative ring's multi...
ringgrpd 19707 A ring is a group. (Contr...
ringmnd 19708 A ring is a monoid under a...
ringmgm 19709 A ring is a magma. (Contr...
crngring 19710 A commutative ring is a ri...
crngringd 19711 A commutative ring is a ri...
crnggrpd 19712 A commutative ring is a gr...
mgpf 19713 Restricted functionality o...
ringi 19714 Properties of a unital rin...
ringcl 19715 Closure of the multiplicat...
crngcom 19716 A commutative ring's multi...
iscrng2 19717 A commutative ring is a ri...
ringass 19718 Associative law for multip...
ringideu 19719 The unit element of a ring...
ringdi 19720 Distributive law for the m...
ringdir 19721 Distributive law for the m...
ringidcl 19722 The unit element of a ring...
ring0cl 19723 The zero element of a ring...
ringidmlem 19724 Lemma for ~ ringlidm and ~...
ringlidm 19725 The unit element of a ring...
ringridm 19726 The unit element of a ring...
isringid 19727 Properties showing that an...
ringid 19728 The multiplication operati...
ringadd2 19729 A ring element plus itself...
rngo2times 19730 A ring element plus itself...
ringidss 19731 A subset of the multiplica...
ringacl 19732 Closure of the addition op...
ringcom 19733 Commutativity of the addit...
ringabl 19734 A ring is an Abelian group...
ringcmn 19735 A ring is a commutative mo...
ringpropd 19736 If two structures have the...
crngpropd 19737 If two structures have the...
ringprop 19738 If two structures have the...
isringd 19739 Properties that determine ...
iscrngd 19740 Properties that determine ...
ringlz 19741 The zero of a unital ring ...
ringrz 19742 The zero of a unital ring ...
ringsrg 19743 Any ring is also a semirin...
ring1eq0 19744 If one and zero are equal,...
ring1ne0 19745 If a ring has at least two...
ringinvnz1ne0 19746 In a unitary ring, a left ...
ringinvnzdiv 19747 In a unitary ring, a left ...
ringnegl 19748 Negation in a ring is the ...
rngnegr 19749 Negation in a ring is the ...
ringmneg1 19750 Negation of a product in a...
ringmneg2 19751 Negation of a product in a...
ringm2neg 19752 Double negation of a produ...
ringsubdi 19753 Ring multiplication distri...
rngsubdir 19754 Ring multiplication distri...
mulgass2 19755 An associative property be...
ring1 19756 The (smallest) structure r...
ringn0 19757 Rings exist. (Contributed...
ringlghm 19758 Left-multiplication in a r...
ringrghm 19759 Right-multiplication in a ...
gsummulc1 19760 A finite ring sum multipli...
gsummulc2 19761 A finite ring sum multipli...
gsummgp0 19762 If one factor in a finite ...
gsumdixp 19763 Distribute a binary produc...
prdsmgp 19764 The multiplicative monoid ...
prdsmulrcl 19765 A structure product of rin...
prdsringd 19766 A product of rings is a ri...
prdscrngd 19767 A product of commutative r...
prds1 19768 Value of the ring unit in ...
pwsring 19769 A structure power of a rin...
pws1 19770 Value of the ring unit in ...
pwscrng 19771 A structure power of a com...
pwsmgp 19772 The multiplicative group o...
imasring 19773 The image structure of a r...
qusring2 19774 The quotient structure of ...
crngbinom 19775 The binomial theorem for c...
opprval 19778 Value of the opposite ring...
opprmulfval 19779 Value of the multiplicatio...
opprmul 19780 Value of the multiplicatio...
crngoppr 19781 In a commutative ring, the...
opprlem 19782 Lemma for ~ opprbas and ~ ...
opprlemOLD 19783 Obsolete version of ~ oppr...
opprbas 19784 Base set of an opposite ri...
opprbasOLD 19785 Obsolete proof of ~ opprba...
oppradd 19786 Addition operation of an o...
oppraddOLD 19787 Obsolete proof of ~ opprba...
opprring 19788 An opposite ring is a ring...
opprringb 19789 Bidirectional form of ~ op...
oppr0 19790 Additive identity of an op...
oppr1 19791 Multiplicative identity of...
opprneg 19792 The negative function in a...
opprsubg 19793 Being a subgroup is a symm...
mulgass3 19794 An associative property be...
reldvdsr 19801 The divides relation is a ...
dvdsrval 19802 Value of the divides relat...
dvdsr 19803 Value of the divides relat...
dvdsr2 19804 Value of the divides relat...
dvdsrmul 19805 A left-multiple of ` X ` i...
dvdsrcl 19806 Closure of a dividing elem...
dvdsrcl2 19807 Closure of a dividing elem...
dvdsrid 19808 An element in a (unital) r...
dvdsrtr 19809 Divisibility is transitive...
dvdsrmul1 19810 The divisibility relation ...
dvdsrneg 19811 An element divides its neg...
dvdsr01 19812 In a ring, zero is divisib...
dvdsr02 19813 Only zero is divisible by ...
isunit 19814 Property of being a unit o...
1unit 19815 The multiplicative identit...
unitcl 19816 A unit is an element of th...
unitss 19817 The set of units is contai...
opprunit 19818 Being a unit is a symmetri...
crngunit 19819 Property of being a unit i...
dvdsunit 19820 A divisor of a unit is a u...
unitmulcl 19821 The product of units is a ...
unitmulclb 19822 Reversal of ~ unitmulcl in...
unitgrpbas 19823 The base set of the group ...
unitgrp 19824 The group of units is a gr...
unitabl 19825 The group of units of a co...
unitgrpid 19826 The identity of the multip...
unitsubm 19827 The group of units is a su...
invrfval 19830 Multiplicative inverse fun...
unitinvcl 19831 The inverse of a unit exis...
unitinvinv 19832 The inverse of the inverse...
ringinvcl 19833 The inverse of a unit is a...
unitlinv 19834 A unit times its inverse i...
unitrinv 19835 A unit times its inverse i...
1rinv 19836 The inverse of the identit...
0unit 19837 The additive identity is a...
unitnegcl 19838 The negative of a unit is ...
dvrfval 19841 Division operation in a ri...
dvrval 19842 Division operation in a ri...
dvrcl 19843 Closure of division operat...
unitdvcl 19844 The units are closed under...
dvrid 19845 A cancellation law for div...
dvr1 19846 A cancellation law for div...
dvrass 19847 An associative law for div...
dvrcan1 19848 A cancellation law for div...
dvrcan3 19849 A cancellation law for div...
dvreq1 19850 A cancellation law for div...
ringinvdv 19851 Write the inverse function...
rngidpropd 19852 The ring identity depends ...
dvdsrpropd 19853 The divisibility relation ...
unitpropd 19854 The set of units depends o...
invrpropd 19855 The ring inverse function ...
isirred 19856 An irreducible element of ...
isnirred 19857 The property of being a no...
isirred2 19858 Expand out the class diffe...
opprirred 19859 Irreducibility is symmetri...
irredn0 19860 The additive identity is n...
irredcl 19861 An irreducible element is ...
irrednu 19862 An irreducible element is ...
irredn1 19863 The multiplicative identit...
irredrmul 19864 The product of an irreduci...
irredlmul 19865 The product of a unit and ...
irredmul 19866 If product of two elements...
irredneg 19867 The negative of an irreduc...
irrednegb 19868 An element is irreducible ...
dfrhm2 19876 The property of a ring hom...
rhmrcl1 19878 Reverse closure of a ring ...
rhmrcl2 19879 Reverse closure of a ring ...
isrhm 19880 A function is a ring homom...
rhmmhm 19881 A ring homomorphism is a h...
isrim0 19882 An isomorphism of rings is...
rimrcl 19883 Reverse closure for an iso...
rhmghm 19884 A ring homomorphism is an ...
rhmf 19885 A ring homomorphism is a f...
rhmmul 19886 A homomorphism of rings pr...
isrhm2d 19887 Demonstration of ring homo...
isrhmd 19888 Demonstration of ring homo...
rhm1 19889 Ring homomorphisms are req...
idrhm 19890 The identity homomorphism ...
rhmf1o 19891 A ring homomorphism is bij...
isrim 19892 An isomorphism of rings is...
rimf1o 19893 An isomorphism of rings is...
rimrhm 19894 An isomorphism of rings is...
rimgim 19895 An isomorphism of rings is...
rhmco 19896 The composition of ring ho...
pwsco1rhm 19897 Right composition with a f...
pwsco2rhm 19898 Left composition with a ri...
f1ghm0to0 19899 If a group homomorphism ` ...
f1rhm0to0ALT 19900 Alternate proof for ~ f1gh...
gim0to0 19901 A group isomorphism maps t...
kerf1ghm 19902 A group homomorphism ` F `...
brric 19903 The relation "is isomorphi...
brric2 19904 The relation "is isomorphi...
ricgic 19905 If two rings are (ring) is...
isdrng 19910 The predicate "is a divisi...
drngunit 19911 Elementhood in the set of ...
drngui 19912 The set of units of a divi...
drngring 19913 A division ring is a ring....
drnggrp 19914 A division ring is a group...
isfld 19915 A field is a commutative d...
isdrng2 19916 A division ring can equiva...
drngprop 19917 If two structures have the...
drngmgp 19918 A division ring contains a...
drngmcl 19919 The product of two nonzero...
drngid 19920 A division ring's unit is ...
drngunz 19921 A division ring's unit is ...
drngid2 19922 Properties showing that an...
drnginvrcl 19923 Closure of the multiplicat...
drnginvrn0 19924 The multiplicative inverse...
drnginvrl 19925 Property of the multiplica...
drnginvrr 19926 Property of the multiplica...
drngmul0or 19927 A product is zero iff one ...
drngmulne0 19928 A product is nonzero iff b...
drngmuleq0 19929 An element is zero iff its...
opprdrng 19930 The opposite of a division...
isdrngd 19931 Properties that characteri...
isdrngrd 19932 Properties that characteri...
drngpropd 19933 If two structures have the...
fldpropd 19934 If two structures have the...
issubrg 19939 The subring predicate. (C...
subrgss 19940 A subring is a subset. (C...
subrgid 19941 Every ring is a subring of...
subrgring 19942 A subring is a ring. (Con...
subrgcrng 19943 A subring of a commutative...
subrgrcl 19944 Reverse closure for a subr...
subrgsubg 19945 A subring is a subgroup. ...
subrg0 19946 A subring always has the s...
subrg1cl 19947 A subring contains the mul...
subrgbas 19948 Base set of a subring stru...
subrg1 19949 A subring always has the s...
subrgacl 19950 A subring is closed under ...
subrgmcl 19951 A subgroup is closed under...
subrgsubm 19952 A subring is a submonoid o...
subrgdvds 19953 If an element divides anot...
subrguss 19954 A unit of a subring is a u...
subrginv 19955 A subring always has the s...
subrgdv 19956 A subring always has the s...
subrgunit 19957 An element of a ring is a ...
subrgugrp 19958 The units of a subring for...
issubrg2 19959 Characterize the subrings ...
opprsubrg 19960 Being a subring is a symme...
subrgint 19961 The intersection of a none...
subrgin 19962 The intersection of two su...
subrgmre 19963 The subrings of a ring are...
issubdrg 19964 Characterize the subfields...
subsubrg 19965 A subring of a subring is ...
subsubrg2 19966 The set of subrings of a s...
issubrg3 19967 A subring is an additive s...
resrhm 19968 Restriction of a ring homo...
rhmeql 19969 The equalizer of two ring ...
rhmima 19970 The homomorphic image of a...
rnrhmsubrg 19971 The range of a ring homomo...
cntzsubr 19972 Centralizers in a ring are...
pwsdiagrhm 19973 Diagonal homomorphism into...
subrgpropd 19974 If two structures have the...
rhmpropd 19975 Ring homomorphism depends ...
issdrg 19978 Property of a division sub...
sdrgid 19979 Every division ring is a d...
sdrgss 19980 A division subring is a su...
issdrg2 19981 Property of a division sub...
acsfn1p 19982 Construction of a closure ...
subrgacs 19983 Closure property of subrin...
sdrgacs 19984 Closure property of divisi...
cntzsdrg 19985 Centralizers in division r...
subdrgint 19986 The intersection of a none...
sdrgint 19987 The intersection of a none...
primefld 19988 The smallest sub division ...
primefld0cl 19989 The prime field contains t...
primefld1cl 19990 The prime field contains t...
abvfval 19993 Value of the set of absolu...
isabv 19994 Elementhood in the set of ...
isabvd 19995 Properties that determine ...
abvrcl 19996 Reverse closure for the ab...
abvfge0 19997 An absolute value is a fun...
abvf 19998 An absolute value is a fun...
abvcl 19999 An absolute value is a fun...
abvge0 20000 The absolute value of a nu...
abveq0 20001 The value of an absolute v...
abvne0 20002 The absolute value of a no...
abvgt0 20003 The absolute value of a no...
abvmul 20004 An absolute value distribu...
abvtri 20005 An absolute value satisfie...
abv0 20006 The absolute value of zero...
abv1z 20007 The absolute value of one ...
abv1 20008 The absolute value of one ...
abvneg 20009 The absolute value of a ne...
abvsubtri 20010 An absolute value satisfie...
abvrec 20011 The absolute value distrib...
abvdiv 20012 The absolute value distrib...
abvdom 20013 Any ring with an absolute ...
abvres 20014 The restriction of an abso...
abvtrivd 20015 The trivial absolute value...
abvtriv 20016 The trivial absolute value...
abvpropd 20017 If two structures have the...
staffval 20022 The functionalization of t...
stafval 20023 The functionalization of t...
staffn 20024 The functionalization is e...
issrng 20025 The predicate "is a star r...
srngrhm 20026 The involution function in...
srngring 20027 A star ring is a ring. (C...
srngcnv 20028 The involution function in...
srngf1o 20029 The involution function in...
srngcl 20030 The involution function in...
srngnvl 20031 The involution function in...
srngadd 20032 The involution function in...
srngmul 20033 The involution function in...
srng1 20034 The conjugate of the ring ...
srng0 20035 The conjugate of the ring ...
issrngd 20036 Properties that determine ...
idsrngd 20037 A commutative ring is a st...
islmod 20042 The predicate "is a left m...
lmodlema 20043 Lemma for properties of a ...
islmodd 20044 Properties that determine ...
lmodgrp 20045 A left module is a group. ...
lmodring 20046 The scalar component of a ...
lmodfgrp 20047 The scalar component of a ...
lmodbn0 20048 The base set of a left mod...
lmodacl 20049 Closure of ring addition f...
lmodmcl 20050 Closure of ring multiplica...
lmodsn0 20051 The set of scalars in a le...
lmodvacl 20052 Closure of vector addition...
lmodass 20053 Left module vector sum is ...
lmodlcan 20054 Left cancellation law for ...
lmodvscl 20055 Closure of scalar product ...
scaffval 20056 The scalar multiplication ...
scafval 20057 The scalar multiplication ...
scafeq 20058 If the scalar multiplicati...
scaffn 20059 The scalar multiplication ...
lmodscaf 20060 The scalar multiplication ...
lmodvsdi 20061 Distributive law for scala...
lmodvsdir 20062 Distributive law for scala...
lmodvsass 20063 Associative law for scalar...
lmod0cl 20064 The ring zero in a left mo...
lmod1cl 20065 The ring unit in a left mo...
lmodvs1 20066 Scalar product with ring u...
lmod0vcl 20067 The zero vector is a vecto...
lmod0vlid 20068 Left identity law for the ...
lmod0vrid 20069 Right identity law for the...
lmod0vid 20070 Identity equivalent to the...
lmod0vs 20071 Zero times a vector is the...
lmodvs0 20072 Anything times the zero ve...
lmodvsmmulgdi 20073 Distributive law for a gro...
lmodfopnelem1 20074 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20075 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20076 The (functionalized) opera...
lcomf 20077 A linear-combination sum i...
lcomfsupp 20078 A linear-combination sum i...
lmodvnegcl 20079 Closure of vector negative...
lmodvnegid 20080 Addition of a vector with ...
lmodvneg1 20081 Minus 1 times a vector is ...
lmodvsneg 20082 Multiplication of a vector...
lmodvsubcl 20083 Closure of vector subtract...
lmodcom 20084 Left module vector sum is ...
lmodabl 20085 A left module is an abelia...
lmodcmn 20086 A left module is a commuta...
lmodnegadd 20087 Distribute negation throug...
lmod4 20088 Commutative/associative la...
lmodvsubadd 20089 Relationship between vecto...
lmodvaddsub4 20090 Vector addition/subtractio...
lmodvpncan 20091 Addition/subtraction cance...
lmodvnpcan 20092 Cancellation law for vecto...
lmodvsubval2 20093 Value of vector subtractio...
lmodsubvs 20094 Subtraction of a scalar pr...
lmodsubdi 20095 Scalar multiplication dist...
lmodsubdir 20096 Scalar multiplication dist...
lmodsubeq0 20097 If the difference between ...
lmodsubid 20098 Subtraction of a vector fr...
lmodvsghm 20099 Scalar multiplication of t...
lmodprop2d 20100 If two structures have the...
lmodpropd 20101 If two structures have the...
gsumvsmul 20102 Pull a scalar multiplicati...
mptscmfsupp0 20103 A mapping to a scalar prod...
mptscmfsuppd 20104 A function mapping to a sc...
rmodislmodlem 20105 Lemma for ~ rmodislmod . ...
rmodislmod 20106 The right module ` R ` ind...
rmodislmodOLD 20107 Obsolete version of ~ rmod...
lssset 20110 The set of all (not necess...
islss 20111 The predicate "is a subspa...
islssd 20112 Properties that determine ...
lssss 20113 A subspace is a set of vec...
lssel 20114 A subspace member is a vec...
lss1 20115 The set of vectors in a le...
lssuni 20116 The union of all subspaces...
lssn0 20117 A subspace is not empty. ...
00lss 20118 The empty structure has no...
lsscl 20119 Closure property of a subs...
lssvsubcl 20120 Closure of vector subtract...
lssvancl1 20121 Non-closure: if one vector...
lssvancl2 20122 Non-closure: if one vector...
lss0cl 20123 The zero vector belongs to...
lsssn0 20124 The singleton of the zero ...
lss0ss 20125 The zero subspace is inclu...
lssle0 20126 No subspace is smaller tha...
lssne0 20127 A nonzero subspace has a n...
lssvneln0 20128 A vector ` X ` which doesn...
lssneln0 20129 A vector ` X ` which doesn...
lssssr 20130 Conclude subspace ordering...
lssvacl 20131 Closure of vector addition...
lssvscl 20132 Closure of scalar product ...
lssvnegcl 20133 Closure of negative vector...
lsssubg 20134 All subspaces are subgroup...
lsssssubg 20135 All subspaces are subgroup...
islss3 20136 A linear subspace of a mod...
lsslmod 20137 A submodule is a module. ...
lsslss 20138 The subspaces of a subspac...
islss4 20139 A linear subspace is a sub...
lss1d 20140 One-dimensional subspace (...
lssintcl 20141 The intersection of a none...
lssincl 20142 The intersection of two su...
lssmre 20143 The subspaces of a module ...
lssacs 20144 Submodules are an algebrai...
prdsvscacl 20145 Pointwise scalar multiplic...
prdslmodd 20146 The product of a family of...
pwslmod 20147 A structure power of a lef...
lspfval 20150 The span function for a le...
lspf 20151 The span operator on a lef...
lspval 20152 The span of a set of vecto...
lspcl 20153 The span of a set of vecto...
lspsncl 20154 The span of a singleton is...
lspprcl 20155 The span of a pair is a su...
lsptpcl 20156 The span of an unordered t...
lspsnsubg 20157 The span of a singleton is...
00lsp 20158 ~ fvco4i lemma for linear ...
lspid 20159 The span of a subspace is ...
lspssv 20160 A span is a set of vectors...
lspss 20161 Span preserves subset orde...
lspssid 20162 A set of vectors is a subs...
lspidm 20163 The span of a set of vecto...
lspun 20164 The span of union is the s...
lspssp 20165 If a set of vectors is a s...
mrclsp 20166 Moore closure generalizes ...
lspsnss 20167 The span of the singleton ...
lspsnel3 20168 A member of the span of th...
lspprss 20169 The span of a pair of vect...
lspsnid 20170 A vector belongs to the sp...
lspsnel6 20171 Relationship between a vec...
lspsnel5 20172 Relationship between a vec...
lspsnel5a 20173 Relationship between a vec...
lspprid1 20174 A member of a pair of vect...
lspprid2 20175 A member of a pair of vect...
lspprvacl 20176 The sum of two vectors bel...
lssats2 20177 A way to express atomistic...
lspsneli 20178 A scalar product with a ve...
lspsn 20179 Span of the singleton of a...
lspsnel 20180 Member of span of the sing...
lspsnvsi 20181 Span of a scalar product o...
lspsnss2 20182 Comparable spans of single...
lspsnneg 20183 Negation does not change t...
lspsnsub 20184 Swapping subtraction order...
lspsn0 20185 Span of the singleton of t...
lsp0 20186 Span of the empty set. (C...
lspuni0 20187 Union of the span of the e...
lspun0 20188 The span of a union with t...
lspsneq0 20189 Span of the singleton is t...
lspsneq0b 20190 Equal singleton spans impl...
lmodindp1 20191 Two independent (non-colin...
lsslsp 20192 Spans in submodules corres...
lss0v 20193 The zero vector in a submo...
lsspropd 20194 If two structures have the...
lsppropd 20195 If two structures have the...
reldmlmhm 20202 Lemma for module homomorph...
lmimfn 20203 Lemma for module isomorphi...
islmhm 20204 Property of being a homomo...
islmhm3 20205 Property of a module homom...
lmhmlem 20206 Non-quantified consequence...
lmhmsca 20207 A homomorphism of left mod...
lmghm 20208 A homomorphism of left mod...
lmhmlmod2 20209 A homomorphism of left mod...
lmhmlmod1 20210 A homomorphism of left mod...
lmhmf 20211 A homomorphism of left mod...
lmhmlin 20212 A homomorphism of left mod...
lmodvsinv 20213 Multiplication of a vector...
lmodvsinv2 20214 Multiplying a negated vect...
islmhm2 20215 A one-equation proof of li...
islmhmd 20216 Deduction for a module hom...
0lmhm 20217 The constant zero linear f...
idlmhm 20218 The identity function on a...
invlmhm 20219 The negative function on a...
lmhmco 20220 The composition of two mod...
lmhmplusg 20221 The pointwise sum of two l...
lmhmvsca 20222 The pointwise scalar produ...
lmhmf1o 20223 A bijective module homomor...
lmhmima 20224 The image of a subspace un...
lmhmpreima 20225 The inverse image of a sub...
lmhmlsp 20226 Homomorphisms preserve spa...
lmhmrnlss 20227 The range of a homomorphis...
lmhmkerlss 20228 The kernel of a homomorphi...
reslmhm 20229 Restriction of a homomorph...
reslmhm2 20230 Expansion of the codomain ...
reslmhm2b 20231 Expansion of the codomain ...
lmhmeql 20232 The equalizer of two modul...
lspextmo 20233 A linear function is compl...
pwsdiaglmhm 20234 Diagonal homomorphism into...
pwssplit0 20235 Splitting for structure po...
pwssplit1 20236 Splitting for structure po...
pwssplit2 20237 Splitting for structure po...
pwssplit3 20238 Splitting for structure po...
islmim 20239 An isomorphism of left mod...
lmimf1o 20240 An isomorphism of left mod...
lmimlmhm 20241 An isomorphism of modules ...
lmimgim 20242 An isomorphism of modules ...
islmim2 20243 An isomorphism of left mod...
lmimcnv 20244 The converse of a bijectiv...
brlmic 20245 The relation "is isomorphi...
brlmici 20246 Prove isomorphic by an exp...
lmiclcl 20247 Isomorphism implies the le...
lmicrcl 20248 Isomorphism implies the ri...
lmicsym 20249 Module isomorphism is symm...
lmhmpropd 20250 Module homomorphism depend...
islbs 20253 The predicate " ` B ` is a...
lbsss 20254 A basis is a set of vector...
lbsel 20255 An element of a basis is a...
lbssp 20256 The span of a basis is the...
lbsind 20257 A basis is linearly indepe...
lbsind2 20258 A basis is linearly indepe...
lbspss 20259 No proper subset of a basi...
lsmcl 20260 The sum of two subspaces i...
lsmspsn 20261 Member of subspace sum of ...
lsmelval2 20262 Subspace sum membership in...
lsmsp 20263 Subspace sum in terms of s...
lsmsp2 20264 Subspace sum of spans of s...
lsmssspx 20265 Subspace sum (in its exten...
lsmpr 20266 The span of a pair of vect...
lsppreli 20267 A vector expressed as a su...
lsmelpr 20268 Two ways to say that a vec...
lsppr0 20269 The span of a vector paire...
lsppr 20270 Span of a pair of vectors....
lspprel 20271 Member of the span of a pa...
lspprabs 20272 Absorption of vector sum i...
lspvadd 20273 The span of a vector sum i...
lspsntri 20274 Triangle-type inequality f...
lspsntrim 20275 Triangle-type inequality f...
lbspropd 20276 If two structures have the...
pj1lmhm 20277 The left projection functi...
pj1lmhm2 20278 The left projection functi...
islvec 20281 The predicate "is a left v...
lvecdrng 20282 The set of scalars of a le...
lveclmod 20283 A left vector space is a l...
lsslvec 20284 A vector subspace is a vec...
lvecvs0or 20285 If a scalar product is zer...
lvecvsn0 20286 A scalar product is nonzer...
lssvs0or 20287 If a scalar product belong...
lvecvscan 20288 Cancellation law for scala...
lvecvscan2 20289 Cancellation law for scala...
lvecinv 20290 Invert coefficient of scal...
lspsnvs 20291 A nonzero scalar product d...
lspsneleq 20292 Membership relation that i...
lspsncmp 20293 Comparable spans of nonzer...
lspsnne1 20294 Two ways to express that v...
lspsnne2 20295 Two ways to express that v...
lspsnnecom 20296 Swap two vectors with diff...
lspabs2 20297 Absorption law for span of...
lspabs3 20298 Absorption law for span of...
lspsneq 20299 Equal spans of singletons ...
lspsneu 20300 Nonzero vectors with equal...
lspsnel4 20301 A member of the span of th...
lspdisj 20302 The span of a vector not i...
lspdisjb 20303 A nonzero vector is not in...
lspdisj2 20304 Unequal spans are disjoint...
lspfixed 20305 Show membership in the spa...
lspexch 20306 Exchange property for span...
lspexchn1 20307 Exchange property for span...
lspexchn2 20308 Exchange property for span...
lspindpi 20309 Partial independence prope...
lspindp1 20310 Alternate way to say 3 vec...
lspindp2l 20311 Alternate way to say 3 vec...
lspindp2 20312 Alternate way to say 3 vec...
lspindp3 20313 Independence of 2 vectors ...
lspindp4 20314 (Partial) independence of ...
lvecindp 20315 Compute the ` X ` coeffici...
lvecindp2 20316 Sums of independent vector...
lspsnsubn0 20317 Unequal singleton spans im...
lsmcv 20318 Subspace sum has the cover...
lspsolvlem 20319 Lemma for ~ lspsolv . (Co...
lspsolv 20320 If ` X ` is in the span of...
lssacsex 20321 In a vector space, subspac...
lspsnat 20322 There is no subspace stric...
lspsncv0 20323 The span of a singleton co...
lsppratlem1 20324 Lemma for ~ lspprat . Let...
lsppratlem2 20325 Lemma for ~ lspprat . Sho...
lsppratlem3 20326 Lemma for ~ lspprat . In ...
lsppratlem4 20327 Lemma for ~ lspprat . In ...
lsppratlem5 20328 Lemma for ~ lspprat . Com...
lsppratlem6 20329 Lemma for ~ lspprat . Neg...
lspprat 20330 A proper subspace of the s...
islbs2 20331 An equivalent formulation ...
islbs3 20332 An equivalent formulation ...
lbsacsbs 20333 Being a basis in a vector ...
lvecdim 20334 The dimension theorem for ...
lbsextlem1 20335 Lemma for ~ lbsext . The ...
lbsextlem2 20336 Lemma for ~ lbsext . Sinc...
lbsextlem3 20337 Lemma for ~ lbsext . A ch...
lbsextlem4 20338 Lemma for ~ lbsext . ~ lbs...
lbsextg 20339 For any linearly independe...
lbsext 20340 For any linearly independe...
lbsexg 20341 Every vector space has a b...
lbsex 20342 Every vector space has a b...
lvecprop2d 20343 If two structures have the...
lvecpropd 20344 If two structures have the...
sraval 20353 Lemma for ~ srabase throug...
sralem 20354 Lemma for ~ srabase and si...
sralemOLD 20355 Obsolete version of ~ sral...
srabase 20356 Base set of a subring alge...
srabaseOLD 20357 Obsolete proof of ~ srabas...
sraaddg 20358 Additive operation of a su...
sraaddgOLD 20359 Obsolete proof of ~ sraadd...
sramulr 20360 Multiplicative operation o...
sramulrOLD 20361 Obsolete proof of ~ sramul...
srasca 20362 The set of scalars of a su...
sravsca 20363 The scalar product operati...
sraip 20364 The inner product operatio...
sratset 20365 Topology component of a su...
sratsetOLD 20366 Obsolete proof of ~ sratse...
sratopn 20367 Topology component of a su...
srads 20368 Distance function of a sub...
sradsOLD 20369 Obsolete proof of ~ srads ...
sralmod 20370 The subring algebra is a l...
sralmod0 20371 The subring module inherit...
issubrngd2 20372 Prove a subring by closure...
rlmfn 20373 ` ringLMod ` is a function...
rlmval 20374 Value of the ring module. ...
lidlval 20375 Value of the set of ring i...
rspval 20376 Value of the ring span fun...
rlmval2 20377 Value of the ring module e...
rlmbas 20378 Base set of the ring modul...
rlmplusg 20379 Vector addition in the rin...
rlm0 20380 Zero vector in the ring mo...
rlmsub 20381 Subtraction in the ring mo...
rlmmulr 20382 Ring multiplication in the...
rlmsca 20383 Scalars in the ring module...
rlmsca2 20384 Scalars in the ring module...
rlmvsca 20385 Scalar multiplication in t...
rlmtopn 20386 Topology component of the ...
rlmds 20387 Metric component of the ri...
rlmlmod 20388 The ring module is a modul...
rlmlvec 20389 The ring module over a div...
rlmlsm 20390 Subgroup sum of the ring m...
rlmvneg 20391 Vector negation in the rin...
rlmscaf 20392 Functionalized scalar mult...
ixpsnbasval 20393 The value of an infinite C...
lidlss 20394 An ideal is a subset of th...
islidl 20395 Predicate of being a (left...
lidl0cl 20396 An ideal contains 0. (Con...
lidlacl 20397 An ideal is closed under a...
lidlnegcl 20398 An ideal contains negative...
lidlsubg 20399 An ideal is a subgroup of ...
lidlsubcl 20400 An ideal is closed under s...
lidlmcl 20401 An ideal is closed under l...
lidl1el 20402 An ideal contains 1 iff it...
lidl0 20403 Every ring contains a zero...
lidl1 20404 Every ring contains a unit...
lidlacs 20405 The ideal system is an alg...
rspcl 20406 The span of a set of ring ...
rspssid 20407 The span of a set of ring ...
rsp1 20408 The span of the identity e...
rsp0 20409 The span of the zero eleme...
rspssp 20410 The ideal span of a set of...
mrcrsp 20411 Moore closure generalizes ...
lidlnz 20412 A nonzero ideal contains a...
drngnidl 20413 A division ring has only t...
lidlrsppropd 20414 The left ideals and ring s...
2idlval 20417 Definition of a two-sided ...
2idlcpbl 20418 The coset equivalence rela...
qus1 20419 The multiplicative identit...
qusring 20420 If ` S ` is a two-sided id...
qusrhm 20421 If ` S ` is a two-sided id...
crngridl 20422 In a commutative ring, the...
crng2idl 20423 In a commutative ring, a t...
quscrng 20424 The quotient of a commutat...
lpival 20429 Value of the set of princi...
islpidl 20430 Property of being a princi...
lpi0 20431 The zero ideal is always p...
lpi1 20432 The unit ideal is always p...
islpir 20433 Principal ideal rings are ...
lpiss 20434 Principal ideals are a sub...
islpir2 20435 Principal ideal rings are ...
lpirring 20436 Principal ideal rings are ...
drnglpir 20437 Division rings are princip...
rspsn 20438 Membership in principal id...
lidldvgen 20439 An element generates an id...
lpigen 20440 An ideal is principal iff ...
isnzr 20443 Property of a nonzero ring...
nzrnz 20444 One and zero are different...
nzrring 20445 A nonzero ring is a ring. ...
drngnzr 20446 All division rings are non...
isnzr2 20447 Equivalent characterizatio...
isnzr2hash 20448 Equivalent characterizatio...
opprnzr 20449 The opposite of a nonzero ...
ringelnzr 20450 A ring is nonzero if it ha...
nzrunit 20451 A unit is nonzero in any n...
subrgnzr 20452 A subring of a nonzero rin...
0ringnnzr 20453 A ring is a zero ring iff ...
0ring 20454 If a ring has only one ele...
0ring01eq 20455 In a ring with only one el...
01eq0ring 20456 If the zero and the identi...
0ring01eqbi 20457 In a unital ring the zero ...
rng1nnzr 20458 The (smallest) structure r...
ring1zr 20459 The only (unital) ring wit...
rngen1zr 20460 The only (unital) ring wit...
ringen1zr 20461 The only unital ring with ...
rng1nfld 20462 The zero ring is not a fie...
rrgval 20471 Value of the set or left-r...
isrrg 20472 Membership in the set of l...
rrgeq0i 20473 Property of a left-regular...
rrgeq0 20474 Left-multiplication by a l...
rrgsupp 20475 Left multiplication by a l...
rrgss 20476 Left-regular elements are ...
unitrrg 20477 Units are regular elements...
isdomn 20478 Expand definition of a dom...
domnnzr 20479 A domain is a nonzero ring...
domnring 20480 A domain is a ring. (Cont...
domneq0 20481 In a domain, a product is ...
domnmuln0 20482 In a domain, a product of ...
isdomn2 20483 A ring is a domain iff all...
domnrrg 20484 In a domain, any nonzero e...
opprdomn 20485 The opposite of a domain i...
abvn0b 20486 Another characterization o...
drngdomn 20487 A division ring is a domai...
isidom 20488 An integral domain is a co...
fldidom 20489 A field is an integral dom...
fldidomOLD 20490 Obsolete version of ~ fldi...
fidomndrnglem 20491 Lemma for ~ fidomndrng . ...
fidomndrng 20492 A finite domain is a divis...
fiidomfld 20493 A finite integral domain i...
cnfldstr 20512 The field of complex numbe...
cnfldex 20513 The field of complex numbe...
cnfldbas 20514 The base set of the field ...
cnfldadd 20515 The addition operation of ...
cnfldmul 20516 The multiplication operati...
cnfldcj 20517 The conjugation operation ...
cnfldtset 20518 The topology component of ...
cnfldle 20519 The ordering of the field ...
cnfldds 20520 The metric of the field of...
cnfldunif 20521 The uniform structure comp...
cnfldfun 20522 The field of complex numbe...
cnfldfunALT 20523 Alternate proof of ~ cnfld...
xrsstr 20524 The extended real structur...
xrsex 20525 The extended real structur...
xrsbas 20526 The base set of the extend...
xrsadd 20527 The addition operation of ...
xrsmul 20528 The multiplication operati...
xrstset 20529 The topology component of ...
xrsle 20530 The ordering of the extend...
cncrng 20531 The complex numbers form a...
cnring 20532 The complex numbers form a...
xrsmcmn 20533 The "multiplicative group"...
cnfld0 20534 Zero is the zero element o...
cnfld1 20535 One is the unit element of...
cnfldneg 20536 The additive inverse in th...
cnfldplusf 20537 The functionalized additio...
cnfldsub 20538 The subtraction operator i...
cndrng 20539 The complex numbers form a...
cnflddiv 20540 The division operation in ...
cnfldinv 20541 The multiplicative inverse...
cnfldmulg 20542 The group multiple functio...
cnfldexp 20543 The exponentiation operato...
cnsrng 20544 The complex numbers form a...
xrsmgm 20545 The "additive group" of th...
xrsnsgrp 20546 The "additive group" of th...
xrsmgmdifsgrp 20547 The "additive group" of th...
xrs1mnd 20548 The extended real numbers,...
xrs10 20549 The zero of the extended r...
xrs1cmn 20550 The extended real numbers ...
xrge0subm 20551 The nonnegative extended r...
xrge0cmn 20552 The nonnegative extended r...
xrsds 20553 The metric of the extended...
xrsdsval 20554 The metric of the extended...
xrsdsreval 20555 The metric of the extended...
xrsdsreclblem 20556 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 20557 The metric of the extended...
cnsubmlem 20558 Lemma for ~ nn0subm and fr...
cnsubglem 20559 Lemma for ~ resubdrg and f...
cnsubrglem 20560 Lemma for ~ resubdrg and f...
cnsubdrglem 20561 Lemma for ~ resubdrg and f...
qsubdrg 20562 The rational numbers form ...
zsubrg 20563 The integers form a subrin...
gzsubrg 20564 The gaussian integers form...
nn0subm 20565 The nonnegative integers f...
rege0subm 20566 The nonnegative reals form...
absabv 20567 The regular absolute value...
zsssubrg 20568 The integers are a subset ...
qsssubdrg 20569 The rational numbers are a...
cnsubrg 20570 There are no subrings of t...
cnmgpabl 20571 The unit group of the comp...
cnmgpid 20572 The group identity element...
cnmsubglem 20573 Lemma for ~ rpmsubg and fr...
rpmsubg 20574 The positive reals form a ...
gzrngunitlem 20575 Lemma for ~ gzrngunit . (...
gzrngunit 20576 The units on ` ZZ [ _i ] `...
gsumfsum 20577 Relate a group sum on ` CC...
regsumfsum 20578 Relate a group sum on ` ( ...
expmhm 20579 Exponentiation is a monoid...
nn0srg 20580 The nonnegative integers f...
rge0srg 20581 The nonnegative real numbe...
zringcrng 20584 The ring of integers is a ...
zringring 20585 The ring of integers is a ...
zringabl 20586 The ring of integers is an...
zringgrp 20587 The ring of integers is an...
zringbas 20588 The integers are the base ...
zringplusg 20589 The addition operation of ...
zringmulg 20590 The multiplication (group ...
zringmulr 20591 The multiplication operati...
zring0 20592 The neutral element of the...
zring1 20593 The multiplicative neutral...
zringnzr 20594 The ring of integers is a ...
dvdsrzring 20595 Ring divisibility in the r...
zringlpirlem1 20596 Lemma for ~ zringlpir . A...
zringlpirlem2 20597 Lemma for ~ zringlpir . A...
zringlpirlem3 20598 Lemma for ~ zringlpir . A...
zringinvg 20599 The additive inverse of an...
zringunit 20600 The units of ` ZZ ` are th...
zringlpir 20601 The integers are a princip...
zringndrg 20602 The integers are not a div...
zringcyg 20603 The integers are a cyclic ...
zringsubgval 20604 Subtraction in the ring of...
zringmpg 20605 The multiplication group o...
prmirredlem 20606 A positive integer is irre...
dfprm2 20607 The positive irreducible e...
prmirred 20608 The irreducible elements o...
expghm 20609 Exponentiation is a group ...
mulgghm2 20610 The powers of a group elem...
mulgrhm 20611 The powers of the element ...
mulgrhm2 20612 The powers of the element ...
zrhval 20621 Define the unique homomorp...
zrhval2 20622 Alternate value of the ` Z...
zrhmulg 20623 Value of the ` ZRHom ` hom...
zrhrhmb 20624 The ` ZRHom ` homomorphism...
zrhrhm 20625 The ` ZRHom ` homomorphism...
zrh1 20626 Interpretation of 1 in a r...
zrh0 20627 Interpretation of 0 in a r...
zrhpropd 20628 The ` ZZ ` ring homomorphi...
zlmval 20629 Augment an abelian group w...
zlmlem 20630 Lemma for ~ zlmbas and ~ z...
zlmlemOLD 20631 Obsolete version of ~ zlml...
zlmbas 20632 Base set of a ` ZZ ` -modu...
zlmbasOLD 20633 Obsolete version of ~ zlmb...
zlmplusg 20634 Group operation of a ` ZZ ...
zlmplusgOLD 20635 Obsolete version of ~ zlmb...
zlmmulr 20636 Ring operation of a ` ZZ `...
zlmmulrOLD 20637 Obsolete version of ~ zlmb...
zlmsca 20638 Scalar ring of a ` ZZ ` -m...
zlmvsca 20639 Scalar multiplication oper...
zlmlmod 20640 The ` ZZ ` -module operati...
chrval 20641 Definition substitution of...
chrcl 20642 Closure of the characteris...
chrid 20643 The canonical ` ZZ ` ring ...
chrdvds 20644 The ` ZZ ` ring homomorphi...
chrcong 20645 If two integers are congru...
chrnzr 20646 Nonzero rings are precisel...
chrrhm 20647 The characteristic restric...
domnchr 20648 The characteristic of a do...
znlidl 20649 The set ` n ZZ ` is an ide...
zncrng2 20650 The value of the ` Z/nZ ` ...
znval 20651 The value of the ` Z/nZ ` ...
znle 20652 The value of the ` Z/nZ ` ...
znval2 20653 Self-referential expressio...
znbaslem 20654 Lemma for ~ znbas . (Cont...
znbaslemOLD 20655 Obsolete version of ~ znba...
znbas2 20656 The base set of ` Z/nZ ` i...
znbas2OLD 20657 Obsolete version of ~ znba...
znadd 20658 The additive structure of ...
znaddOLD 20659 Obsolete version of ~ znad...
znmul 20660 The multiplicative structu...
znmulOLD 20661 Obsolete version of ~ znad...
znzrh 20662 The ` ZZ ` ring homomorphi...
znbas 20663 The base set of ` Z/nZ ` s...
zncrng 20664 ` Z/nZ ` is a commutative ...
znzrh2 20665 The ` ZZ ` ring homomorphi...
znzrhval 20666 The ` ZZ ` ring homomorphi...
znzrhfo 20667 The ` ZZ ` ring homomorphi...
zncyg 20668 The group ` ZZ / n ZZ ` is...
zndvds 20669 Express equality of equiva...
zndvds0 20670 Special case of ~ zndvds w...
znf1o 20671 The function ` F ` enumera...
zzngim 20672 The ` ZZ ` ring homomorphi...
znle2 20673 The ordering of the ` Z/nZ...
znleval 20674 The ordering of the ` Z/nZ...
znleval2 20675 The ordering of the ` Z/nZ...
zntoslem 20676 Lemma for ~ zntos . (Cont...
zntos 20677 The ` Z/nZ ` structure is ...
znhash 20678 The ` Z/nZ ` structure has...
znfi 20679 The ` Z/nZ ` structure is ...
znfld 20680 The ` Z/nZ ` structure is ...
znidomb 20681 The ` Z/nZ ` structure is ...
znchr 20682 Cyclic rings are defined b...
znunit 20683 The units of ` Z/nZ ` are ...
znunithash 20684 The size of the unit group...
znrrg 20685 The regular elements of ` ...
cygznlem1 20686 Lemma for ~ cygzn . (Cont...
cygznlem2a 20687 Lemma for ~ cygzn . (Cont...
cygznlem2 20688 Lemma for ~ cygzn . (Cont...
cygznlem3 20689 A cyclic group with ` n ` ...
cygzn 20690 A cyclic group with ` n ` ...
cygth 20691 The "fundamental theorem o...
cyggic 20692 Cyclic groups are isomorph...
frgpcyg 20693 A free group is cyclic iff...
cnmsgnsubg 20694 The signs form a multiplic...
cnmsgnbas 20695 The base set of the sign s...
cnmsgngrp 20696 The group of signs under m...
psgnghm 20697 The sign is a homomorphism...
psgnghm2 20698 The sign is a homomorphism...
psgninv 20699 The sign of a permutation ...
psgnco 20700 Multiplicativity of the pe...
zrhpsgnmhm 20701 Embedding of permutation s...
zrhpsgninv 20702 The embedded sign of a per...
evpmss 20703 Even permutations are perm...
psgnevpmb 20704 A class is an even permuta...
psgnodpm 20705 A permutation which is odd...
psgnevpm 20706 A permutation which is eve...
psgnodpmr 20707 If a permutation has sign ...
zrhpsgnevpm 20708 The sign of an even permut...
zrhpsgnodpm 20709 The sign of an odd permuta...
cofipsgn 20710 Composition of any class `...
zrhpsgnelbas 20711 Embedding of permutation s...
zrhcopsgnelbas 20712 Embedding of permutation s...
evpmodpmf1o 20713 The function for performin...
pmtrodpm 20714 A transposition is an odd ...
psgnfix1 20715 A permutation of a finite ...
psgnfix2 20716 A permutation of a finite ...
psgndiflemB 20717 Lemma 1 for ~ psgndif . (...
psgndiflemA 20718 Lemma 2 for ~ psgndif . (...
psgndif 20719 Embedding of permutation s...
copsgndif 20720 Embedding of permutation s...
rebase 20723 The base of the field of r...
remulg 20724 The multiplication (group ...
resubdrg 20725 The real numbers form a di...
resubgval 20726 Subtraction in the field o...
replusg 20727 The addition operation of ...
remulr 20728 The multiplication operati...
re0g 20729 The neutral element of the...
re1r 20730 The multiplicative neutral...
rele2 20731 The ordering relation of t...
relt 20732 The ordering relation of t...
reds 20733 The distance of the field ...
redvr 20734 The division operation of ...
retos 20735 The real numbers are a tot...
refld 20736 The real numbers form a fi...
refldcj 20737 The conjugation operation ...
recrng 20738 The real numbers form a st...
regsumsupp 20739 The group sum over the rea...
rzgrp 20740 The quotient group ` RR / ...
isphl 20745 The predicate "is a genera...
phllvec 20746 A pre-Hilbert space is a l...
phllmod 20747 A pre-Hilbert space is a l...
phlsrng 20748 The scalar ring of a pre-H...
phllmhm 20749 The inner product of a pre...
ipcl 20750 Closure of the inner produ...
ipcj 20751 Conjugate of an inner prod...
iporthcom 20752 Orthogonality (meaning inn...
ip0l 20753 Inner product with a zero ...
ip0r 20754 Inner product with a zero ...
ipeq0 20755 The inner product of a vec...
ipdir 20756 Distributive law for inner...
ipdi 20757 Distributive law for inner...
ip2di 20758 Distributive law for inner...
ipsubdir 20759 Distributive law for inner...
ipsubdi 20760 Distributive law for inner...
ip2subdi 20761 Distributive law for inner...
ipass 20762 Associative law for inner ...
ipassr 20763 "Associative" law for seco...
ipassr2 20764 "Associative" law for inne...
ipffval 20765 The inner product operatio...
ipfval 20766 The inner product operatio...
ipfeq 20767 If the inner product opera...
ipffn 20768 The inner product operatio...
phlipf 20769 The inner product operatio...
ip2eq 20770 Two vectors are equal iff ...
isphld 20771 Properties that determine ...
phlpropd 20772 If two structures have the...
ssipeq 20773 The inner product on a sub...
phssipval 20774 The inner product on a sub...
phssip 20775 The inner product (as a fu...
phlssphl 20776 A subspace of an inner pro...
ocvfval 20783 The orthocomplement operat...
ocvval 20784 Value of the orthocompleme...
elocv 20785 Elementhood in the orthoco...
ocvi 20786 Property of a member of th...
ocvss 20787 The orthocomplement of a s...
ocvocv 20788 A set is contained in its ...
ocvlss 20789 The orthocomplement of a s...
ocv2ss 20790 Orthocomplements reverse s...
ocvin 20791 An orthocomplement has tri...
ocvsscon 20792 Two ways to say that ` S `...
ocvlsp 20793 The orthocomplement of a l...
ocv0 20794 The orthocomplement of the...
ocvz 20795 The orthocomplement of the...
ocv1 20796 The orthocomplement of the...
unocv 20797 The orthocomplement of a u...
iunocv 20798 The orthocomplement of an ...
cssval 20799 The set of closed subspace...
iscss 20800 The predicate "is a closed...
cssi 20801 Property of a closed subsp...
cssss 20802 A closed subspace is a sub...
iscss2 20803 It is sufficient to prove ...
ocvcss 20804 The orthocomplement of any...
cssincl 20805 The zero subspace is a clo...
css0 20806 The zero subspace is a clo...
css1 20807 The whole space is a close...
csslss 20808 A closed subspace of a pre...
lsmcss 20809 A subset of a pre-Hilbert ...
cssmre 20810 The closed subspaces of a ...
mrccss 20811 The Moore closure correspo...
thlval 20812 Value of the Hilbert latti...
thlbas 20813 Base set of the Hilbert la...
thlle 20814 Ordering on the Hilbert la...
thlleval 20815 Ordering on the Hilbert la...
thloc 20816 Orthocomplement on the Hil...
pjfval 20823 The value of the projectio...
pjdm 20824 A subspace is in the domai...
pjpm 20825 The projection map is a pa...
pjfval2 20826 Value of the projection ma...
pjval 20827 Value of the projection ma...
pjdm2 20828 A subspace is in the domai...
pjff 20829 A projection is a linear o...
pjf 20830 A projection is a function...
pjf2 20831 A projection is a function...
pjfo 20832 A projection is a surjecti...
pjcss 20833 A projection subspace is a...
ocvpj 20834 The orthocomplement of a p...
ishil 20835 The predicate "is a Hilber...
ishil2 20836 The predicate "is a Hilber...
isobs 20837 The predicate "is an ortho...
obsip 20838 The inner product of two e...
obsipid 20839 A basis element has unit l...
obsrcl 20840 Reverse closure for an ort...
obsss 20841 An orthonormal basis is a ...
obsne0 20842 A basis element is nonzero...
obsocv 20843 An orthonormal basis has t...
obs2ocv 20844 The double orthocomplement...
obselocv 20845 A basis element is in the ...
obs2ss 20846 A basis has no proper subs...
obslbs 20847 An orthogonal basis is a l...
reldmdsmm 20850 The direct sum is a well-b...
dsmmval 20851 Value of the module direct...
dsmmbase 20852 Base set of the module dir...
dsmmval2 20853 Self-referential definitio...
dsmmbas2 20854 Base set of the direct sum...
dsmmfi 20855 For finite products, the d...
dsmmelbas 20856 Membership in the finitely...
dsmm0cl 20857 The all-zero vector is con...
dsmmacl 20858 The finite hull is closed ...
prdsinvgd2 20859 Negation of a single coord...
dsmmsubg 20860 The finite hull of a produ...
dsmmlss 20861 The finite hull of a produ...
dsmmlmod 20862 The direct sum of a family...
frlmval 20865 Value of the "free module"...
frlmlmod 20866 The free module is a modul...
frlmpws 20867 The free module as a restr...
frlmlss 20868 The base set of the free m...
frlmpwsfi 20869 The finite free module is ...
frlmsca 20870 The ring of scalars of a f...
frlm0 20871 Zero in a free module (rin...
frlmbas 20872 Base set of the free modul...
frlmelbas 20873 Membership in the base set...
frlmrcl 20874 If a free module is inhabi...
frlmbasfsupp 20875 Elements of the free modul...
frlmbasmap 20876 Elements of the free modul...
frlmbasf 20877 Elements of the free modul...
frlmlvec 20878 The free module over a div...
frlmfibas 20879 The base set of the finite...
elfrlmbasn0 20880 If the dimension of a free...
frlmplusgval 20881 Addition in a free module....
frlmsubgval 20882 Subtraction in a free modu...
frlmvscafval 20883 Scalar multiplication in a...
frlmvplusgvalc 20884 Coordinates of a sum with ...
frlmvscaval 20885 Coordinates of a scalar mu...
frlmplusgvalb 20886 Addition in a free module ...
frlmvscavalb 20887 Scalar multiplication in a...
frlmvplusgscavalb 20888 Addition combined with sca...
frlmgsum 20889 Finite commutative sums in...
frlmsplit2 20890 Restriction is homomorphic...
frlmsslss 20891 A subset of a free module ...
frlmsslss2 20892 A subset of a free module ...
frlmbas3 20893 An element of the base set...
mpofrlmd 20894 Elements of the free modul...
frlmip 20895 The inner product of a fre...
frlmipval 20896 The inner product of a fre...
frlmphllem 20897 Lemma for ~ frlmphl . (Co...
frlmphl 20898 Conditions for a free modu...
uvcfval 20901 Value of the unit-vector g...
uvcval 20902 Value of a single unit vec...
uvcvval 20903 Value of a unit vector coo...
uvcvvcl 20904 A coordinate of a unit vec...
uvcvvcl2 20905 A unit vector coordinate i...
uvcvv1 20906 The unit vector is one at ...
uvcvv0 20907 The unit vector is zero at...
uvcff 20908 Domain and range of the un...
uvcf1 20909 In a nonzero ring, each un...
uvcresum 20910 Any element of a free modu...
frlmssuvc1 20911 A scalar multiple of a uni...
frlmssuvc2 20912 A nonzero scalar multiple ...
frlmsslsp 20913 A subset of a free module ...
frlmlbs 20914 The unit vectors comprise ...
frlmup1 20915 Any assignment of unit vec...
frlmup2 20916 The evaluation map has the...
frlmup3 20917 The range of such an evalu...
frlmup4 20918 Universal property of the ...
ellspd 20919 The elements of the span o...
elfilspd 20920 Simplified version of ~ el...
rellindf 20925 The independent-family pre...
islinds 20926 Property of an independent...
linds1 20927 An independent set of vect...
linds2 20928 An independent set of vect...
islindf 20929 Property of an independent...
islinds2 20930 Expanded property of an in...
islindf2 20931 Property of an independent...
lindff 20932 Functional property of a l...
lindfind 20933 A linearly independent fam...
lindsind 20934 A linearly independent set...
lindfind2 20935 In a linearly independent ...
lindsind2 20936 In a linearly independent ...
lindff1 20937 A linearly independent fam...
lindfrn 20938 The range of an independen...
f1lindf 20939 Rearranging and deleting e...
lindfres 20940 Any restriction of an inde...
lindsss 20941 Any subset of an independe...
f1linds 20942 A family constructed from ...
islindf3 20943 In a nonzero ring, indepen...
lindfmm 20944 Linear independence of a f...
lindsmm 20945 Linear independence of a s...
lindsmm2 20946 The monomorphic image of a...
lsslindf 20947 Linear independence is unc...
lsslinds 20948 Linear independence is unc...
islbs4 20949 A basis is an independent ...
lbslinds 20950 A basis is independent. (...
islinds3 20951 A subset is linearly indep...
islinds4 20952 A set is independent in a ...
lmimlbs 20953 The isomorphic image of a ...
lmiclbs 20954 Having a basis is an isomo...
islindf4 20955 A family is independent if...
islindf5 20956 A family is independent if...
indlcim 20957 An independent, spanning f...
lbslcic 20958 A module with a basis is i...
lmisfree 20959 A module has a basis iff i...
lvecisfrlm 20960 Every vector space is isom...
lmimco 20961 The composition of two iso...
lmictra 20962 Module isomorphism is tran...
uvcf1o 20963 In a nonzero ring, the map...
uvcendim 20964 In a nonzero ring, the num...
frlmisfrlm 20965 A free module is isomorphi...
frlmiscvec 20966 Every free module is isomo...
isassa 20973 The properties of an assoc...
assalem 20974 The properties of an assoc...
assaass 20975 Left-associative property ...
assaassr 20976 Right-associative property...
assalmod 20977 An associative algebra is ...
assaring 20978 An associative algebra is ...
assasca 20979 An associative algebra's s...
assa2ass 20980 Left- and right-associativ...
isassad 20981 Sufficient condition for b...
issubassa3 20982 A subring that is also a s...
issubassa 20983 The subalgebras of an asso...
sraassa 20984 The subring algebra over a...
rlmassa 20985 The ring module over a com...
assapropd 20986 If two structures have the...
aspval 20987 Value of the algebraic clo...
asplss 20988 The algebraic span of a se...
aspid 20989 The algebraic span of a su...
aspsubrg 20990 The algebraic span of a se...
aspss 20991 Span preserves subset orde...
aspssid 20992 A set of vectors is a subs...
asclfval 20993 Function value of the alge...
asclval 20994 Value of a mapped algebra ...
asclfn 20995 Unconditional functionalit...
asclf 20996 The algebra scalars functi...
asclghm 20997 The algebra scalars functi...
ascl0 20998 The scalar 0 embedded into...
ascl1 20999 The scalar 1 embedded into...
asclmul1 21000 Left multiplication by a l...
asclmul2 21001 Right multiplication by a ...
ascldimul 21002 The algebra scalars functi...
asclinvg 21003 The group inverse (negatio...
asclrhm 21004 The scalar injection is a ...
rnascl 21005 The set of injected scalar...
issubassa2 21006 A subring of a unital alge...
rnasclsubrg 21007 The scalar multiples of th...
rnasclmulcl 21008 (Vector) multiplication is...
rnasclassa 21009 The scalar multiples of th...
ressascl 21010 The injection of scalars i...
asclpropd 21011 If two structures have the...
aspval2 21012 The algebraic closure is t...
assamulgscmlem1 21013 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21014 Lemma for ~ assamulgscm (i...
assamulgscm 21015 Exponentiation of a scalar...
zlmassa 21016 The ` ZZ ` -module operati...
reldmpsr 21027 The multivariate power ser...
psrval 21028 Value of the multivariate ...
psrvalstr 21029 The multivariate power ser...
psrbag 21030 Elementhood in the set of ...
psrbagf 21031 A finite bag is a function...
psrbagfOLD 21032 Obsolete version of ~ psrb...
psrbagfsupp 21033 Finite bags have finite su...
psrbagfsuppOLD 21034 Obsolete version of ~ psrb...
snifpsrbag 21035 A bag containing one eleme...
fczpsrbag 21036 The constant function equa...
psrbaglesupp 21037 The support of a dominated...
psrbaglesuppOLD 21038 Obsolete version of ~ psrb...
psrbaglecl 21039 The set of finite bags is ...
psrbagleclOLD 21040 Obsolete version of ~ psrb...
psrbagaddcl 21041 The sum of two finite bags...
psrbagaddclOLD 21042 Obsolete version of ~ psrb...
psrbagcon 21043 The analogue of the statem...
psrbagconOLD 21044 Obsolete version of ~ psrb...
psrbaglefi 21045 There are finitely many ba...
psrbaglefiOLD 21046 Obsolete version of ~ psrb...
psrbagconcl 21047 The complement of a bag is...
psrbagconclOLD 21048 Obsolete version of ~ psrb...
psrbagconf1o 21049 Bag complementation is a b...
psrbagconf1oOLD 21050 Obsolete version of ~ psrb...
gsumbagdiaglemOLD 21051 Obsolete version of ~ gsum...
gsumbagdiagOLD 21052 Obsolete version of ~ gsum...
psrass1lemOLD 21053 Obsolete version of ~ psra...
gsumbagdiaglem 21054 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21055 Two-dimensional commutatio...
psrass1lem 21056 A group sum commutation us...
psrbas 21057 The base set of the multiv...
psrelbas 21058 An element of the set of p...
psrelbasfun 21059 An element of the set of p...
psrplusg 21060 The addition operation of ...
psradd 21061 The addition operation of ...
psraddcl 21062 Closure of the power serie...
psrmulr 21063 The multiplication operati...
psrmulfval 21064 The multiplication operati...
psrmulval 21065 The multiplication operati...
psrmulcllem 21066 Closure of the power serie...
psrmulcl 21067 Closure of the power serie...
psrsca 21068 The scalar field of the mu...
psrvscafval 21069 The scalar multiplication ...
psrvsca 21070 The scalar multiplication ...
psrvscaval 21071 The scalar multiplication ...
psrvscacl 21072 Closure of the power serie...
psr0cl 21073 The zero element of the ri...
psr0lid 21074 The zero element of the ri...
psrnegcl 21075 The negative function in t...
psrlinv 21076 The negative function in t...
psrgrp 21077 The ring of power series i...
psr0 21078 The zero element of the ri...
psrneg 21079 The negative function of t...
psrlmod 21080 The ring of power series i...
psr1cl 21081 The identity element of th...
psrlidm 21082 The identity element of th...
psrridm 21083 The identity element of th...
psrass1 21084 Associative identity for t...
psrdi 21085 Distributive law for the r...
psrdir 21086 Distributive law for the r...
psrass23l 21087 Associative identity for t...
psrcom 21088 Commutative law for the ri...
psrass23 21089 Associative identities for...
psrring 21090 The ring of power series i...
psr1 21091 The identity element of th...
psrcrng 21092 The ring of power series i...
psrassa 21093 The ring of power series i...
resspsrbas 21094 A restricted power series ...
resspsradd 21095 A restricted power series ...
resspsrmul 21096 A restricted power series ...
resspsrvsca 21097 A restricted power series ...
subrgpsr 21098 A subring of the base ring...
mvrfval 21099 Value of the generating el...
mvrval 21100 Value of the generating el...
mvrval2 21101 Value of the generating el...
mvrid 21102 The ` X i ` -th coefficien...
mvrf 21103 The power series variable ...
mvrf1 21104 The power series variable ...
mvrcl2 21105 A power series variable is...
reldmmpl 21106 The multivariate polynomia...
mplval 21107 Value of the set of multiv...
mplbas 21108 Base set of the set of mul...
mplelbas 21109 Property of being a polyno...
mplrcl 21110 Reverse closure for the po...
mplelsfi 21111 A polynomial treated as a ...
mplval2 21112 Self-referential expressio...
mplbasss 21113 The set of polynomials is ...
mplelf 21114 A polynomial is defined as...
mplsubglem 21115 If ` A ` is an ideal of se...
mpllsslem 21116 If ` A ` is an ideal of su...
mplsubglem2 21117 Lemma for ~ mplsubg and ~ ...
mplsubg 21118 The set of polynomials is ...
mpllss 21119 The set of polynomials is ...
mplsubrglem 21120 Lemma for ~ mplsubrg . (C...
mplsubrg 21121 The set of polynomials is ...
mpl0 21122 The zero polynomial. (Con...
mpladd 21123 The addition operation on ...
mplneg 21124 The negative function on m...
mplmul 21125 The multiplication operati...
mpl1 21126 The identity element of th...
mplsca 21127 The scalar field of a mult...
mplvsca2 21128 The scalar multiplication ...
mplvsca 21129 The scalar multiplication ...
mplvscaval 21130 The scalar multiplication ...
mvrcl 21131 A power series variable is...
mplgrp 21132 The polynomial ring is a g...
mpllmod 21133 The polynomial ring is a l...
mplring 21134 The polynomial ring is a r...
mpllvec 21135 The polynomial ring is a v...
mplcrng 21136 The polynomial ring is a c...
mplassa 21137 The polynomial ring is an ...
ressmplbas2 21138 The base set of a restrict...
ressmplbas 21139 A restricted polynomial al...
ressmpladd 21140 A restricted polynomial al...
ressmplmul 21141 A restricted polynomial al...
ressmplvsca 21142 A restricted power series ...
subrgmpl 21143 A subring of the base ring...
subrgmvr 21144 The variables in a subring...
subrgmvrf 21145 The variables in a polynom...
mplmon 21146 A monomial is a polynomial...
mplmonmul 21147 The product of two monomia...
mplcoe1 21148 Decompose a polynomial int...
mplcoe3 21149 Decompose a monomial in on...
mplcoe5lem 21150 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21151 Decompose a monomial into ...
mplcoe2 21152 Decompose a monomial into ...
mplbas2 21153 An alternative expression ...
ltbval 21154 Value of the well-order on...
ltbwe 21155 The finite bag order is a ...
reldmopsr 21156 Lemma for ordered power se...
opsrval 21157 The value of the "ordered ...
opsrle 21158 An alternative expression ...
opsrval2 21159 Self-referential expressio...
opsrbaslem 21160 Get a component of the ord...
opsrbaslemOLD 21161 Obsolete version of ~ opsr...
opsrbas 21162 The base set of the ordere...
opsrbasOLD 21163 Obsolete version of ~ opsr...
opsrplusg 21164 The addition operation of ...
opsrplusgOLD 21165 Obsolete version of ~ opsr...
opsrmulr 21166 The multiplication operati...
opsrmulrOLD 21167 Obsolete version of ~ opsr...
opsrvsca 21168 The scalar product operati...
opsrvscaOLD 21169 Obsolete version of ~ opsr...
opsrsca 21170 The scalar ring of the ord...
opsrscaOLD 21171 Obsolete version of ~ opsr...
opsrtoslem1 21172 Lemma for ~ opsrtos . (Co...
opsrtoslem2 21173 Lemma for ~ opsrtos . (Co...
opsrtos 21174 The ordered power series s...
opsrso 21175 The ordered power series s...
opsrcrng 21176 The ring of ordered power ...
opsrassa 21177 The ring of ordered power ...
mvrf2 21178 The power series/polynomia...
mplmon2 21179 Express a scaled monomial....
psrbag0 21180 The empty bag is a bag. (...
psrbagsn 21181 A singleton bag is a bag. ...
mplascl 21182 Value of the scalar inject...
mplasclf 21183 The scalar injection is a ...
subrgascl 21184 The scalar injection funct...
subrgasclcl 21185 The scalars in a polynomia...
mplmon2cl 21186 A scaled monomial is a pol...
mplmon2mul 21187 Product of scaled monomial...
mplind 21188 Prove a property of polyno...
mplcoe4 21189 Decompose a polynomial int...
evlslem4 21194 The support of a tensor pr...
psrbagev1 21195 A bag of multipliers provi...
psrbagev1OLD 21196 Obsolete version of ~ psrb...
psrbagev2 21197 Closure of a sum using a b...
psrbagev2OLD 21198 Obsolete version of ~ psrb...
evlslem2 21199 A linear function on the p...
evlslem3 21200 Lemma for ~ evlseu . Poly...
evlslem6 21201 Lemma for ~ evlseu . Fini...
evlslem1 21202 Lemma for ~ evlseu , give ...
evlseu 21203 For a given interpretation...
reldmevls 21204 Well-behaved binary operat...
mpfrcl 21205 Reverse closure for the se...
evlsval 21206 Value of the polynomial ev...
evlsval2 21207 Characterizing properties ...
evlsrhm 21208 Polynomial evaluation is a...
evlssca 21209 Polynomial evaluation maps...
evlsvar 21210 Polynomial evaluation maps...
evlsgsumadd 21211 Polynomial evaluation maps...
evlsgsummul 21212 Polynomial evaluation maps...
evlspw 21213 Polynomial evaluation for ...
evlsvarpw 21214 Polynomial evaluation for ...
evlval 21215 Value of the simple/same r...
evlrhm 21216 The simple evaluation map ...
evlsscasrng 21217 The evaluation of a scalar...
evlsca 21218 Simple polynomial evaluati...
evlsvarsrng 21219 The evaluation of the vari...
evlvar 21220 Simple polynomial evaluati...
mpfconst 21221 Constants are multivariate...
mpfproj 21222 Projections are multivaria...
mpfsubrg 21223 Polynomial functions are a...
mpff 21224 Polynomial functions are f...
mpfaddcl 21225 The sum of multivariate po...
mpfmulcl 21226 The product of multivariat...
mpfind 21227 Prove a property of polyno...
selvffval 21236 Value of the "variable sel...
selvfval 21237 Value of the "variable sel...
selvval 21238 Value of the "variable sel...
mhpfval 21239 Value of the "homogeneous ...
mhpval 21240 Value of the "homogeneous ...
ismhp 21241 Property of being a homoge...
ismhp2 21242 Deduce a homogeneous polyn...
ismhp3 21243 A polynomial is homogeneou...
mhpmpl 21244 A homogeneous polynomial i...
mhpdeg 21245 All nonzero terms of a hom...
mhp0cl 21246 The zero polynomial is hom...
mhpsclcl 21247 A scalar (or constant) pol...
mhpvarcl 21248 A power series variable is...
mhpmulcl 21249 A product of homogeneous p...
mhppwdeg 21250 Degree of a homogeneous po...
mhpaddcl 21251 Homogeneous polynomials ar...
mhpinvcl 21252 Homogeneous polynomials ar...
mhpsubg 21253 Homogeneous polynomials fo...
mhpvscacl 21254 Homogeneous polynomials ar...
mhplss 21255 Homogeneous polynomials fo...
psr1baslem 21266 The set of finite bags on ...
psr1val 21267 Value of the ring of univa...
psr1crng 21268 The ring of univariate pow...
psr1assa 21269 The ring of univariate pow...
psr1tos 21270 The ordered power series s...
psr1bas2 21271 The base set of the ring o...
psr1bas 21272 The base set of the ring o...
vr1val 21273 The value of the generator...
vr1cl2 21274 The variable ` X ` is a me...
ply1val 21275 The value of the set of un...
ply1bas 21276 The value of the base set ...
ply1lss 21277 Univariate polynomials for...
ply1subrg 21278 Univariate polynomials for...
ply1crng 21279 The ring of univariate pol...
ply1assa 21280 The ring of univariate pol...
psr1bascl 21281 A univariate power series ...
psr1basf 21282 Univariate power series ba...
ply1basf 21283 Univariate polynomial base...
ply1bascl 21284 A univariate polynomial is...
ply1bascl2 21285 A univariate polynomial is...
coe1fval 21286 Value of the univariate po...
coe1fv 21287 Value of an evaluated coef...
fvcoe1 21288 Value of a multivariate co...
coe1fval3 21289 Univariate power series co...
coe1f2 21290 Functionality of univariat...
coe1fval2 21291 Univariate polynomial coef...
coe1f 21292 Functionality of univariat...
coe1fvalcl 21293 A coefficient of a univari...
coe1sfi 21294 Finite support of univaria...
coe1fsupp 21295 The coefficient vector of ...
mptcoe1fsupp 21296 A mapping involving coeffi...
coe1ae0 21297 The coefficient vector of ...
vr1cl 21298 The generator of a univari...
opsr0 21299 Zero in the ordered power ...
opsr1 21300 One in the ordered power s...
mplplusg 21301 Value of addition in a pol...
mplmulr 21302 Value of multiplication in...
psr1plusg 21303 Value of addition in a uni...
psr1vsca 21304 Value of scalar multiplica...
psr1mulr 21305 Value of multiplication in...
ply1plusg 21306 Value of addition in a uni...
ply1vsca 21307 Value of scalar multiplica...
ply1mulr 21308 Value of multiplication in...
ressply1bas2 21309 The base set of a restrict...
ressply1bas 21310 A restricted polynomial al...
ressply1add 21311 A restricted polynomial al...
ressply1mul 21312 A restricted polynomial al...
ressply1vsca 21313 A restricted power series ...
subrgply1 21314 A subring of the base ring...
gsumply1subr 21315 Evaluate a group sum in a ...
psrbaspropd 21316 Property deduction for pow...
psrplusgpropd 21317 Property deduction for pow...
mplbaspropd 21318 Property deduction for pol...
psropprmul 21319 Reversing multiplication i...
ply1opprmul 21320 Reversing multiplication i...
00ply1bas 21321 Lemma for ~ ply1basfvi and...
ply1basfvi 21322 Protection compatibility o...
ply1plusgfvi 21323 Protection compatibility o...
ply1baspropd 21324 Property deduction for uni...
ply1plusgpropd 21325 Property deduction for uni...
opsrring 21326 Ordered power series form ...
opsrlmod 21327 Ordered power series form ...
psr1ring 21328 Univariate power series fo...
ply1ring 21329 Univariate polynomials for...
psr1lmod 21330 Univariate power series fo...
psr1sca 21331 Scalars of a univariate po...
psr1sca2 21332 Scalars of a univariate po...
ply1lmod 21333 Univariate polynomials for...
ply1sca 21334 Scalars of a univariate po...
ply1sca2 21335 Scalars of a univariate po...
ply1mpl0 21336 The univariate polynomial ...
ply10s0 21337 Zero times a univariate po...
ply1mpl1 21338 The univariate polynomial ...
ply1ascl 21339 The univariate polynomial ...
subrg1ascl 21340 The scalar injection funct...
subrg1asclcl 21341 The scalars in a polynomia...
subrgvr1 21342 The variables in a subring...
subrgvr1cl 21343 The variables in a polynom...
coe1z 21344 The coefficient vector of ...
coe1add 21345 The coefficient vector of ...
coe1addfv 21346 A particular coefficient o...
coe1subfv 21347 A particular coefficient o...
coe1mul2lem1 21348 An equivalence for ~ coe1m...
coe1mul2lem2 21349 An equivalence for ~ coe1m...
coe1mul2 21350 The coefficient vector of ...
coe1mul 21351 The coefficient vector of ...
ply1moncl 21352 Closure of the expression ...
ply1tmcl 21353 Closure of the expression ...
coe1tm 21354 Coefficient vector of a po...
coe1tmfv1 21355 Nonzero coefficient of a p...
coe1tmfv2 21356 Zero coefficient of a poly...
coe1tmmul2 21357 Coefficient vector of a po...
coe1tmmul 21358 Coefficient vector of a po...
coe1tmmul2fv 21359 Function value of a right-...
coe1pwmul 21360 Coefficient vector of a po...
coe1pwmulfv 21361 Function value of a right-...
ply1scltm 21362 A scalar is a term with ze...
coe1sclmul 21363 Coefficient vector of a po...
coe1sclmulfv 21364 A single coefficient of a ...
coe1sclmul2 21365 Coefficient vector of a po...
ply1sclf 21366 A scalar polynomial is a p...
ply1sclcl 21367 The value of the algebra s...
coe1scl 21368 Coefficient vector of a sc...
ply1sclid 21369 Recover the base scalar fr...
ply1sclf1 21370 The polynomial scalar func...
ply1scl0 21371 The zero scalar is zero. ...
ply1scln0 21372 Nonzero scalars create non...
ply1scl1 21373 The one scalar is the unit...
ply1idvr1 21374 The identity of a polynomi...
cply1mul 21375 The product of two constan...
ply1coefsupp 21376 The decomposition of a uni...
ply1coe 21377 Decompose a univariate pol...
eqcoe1ply1eq 21378 Two polynomials over the s...
ply1coe1eq 21379 Two polynomials over the s...
cply1coe0 21380 All but the first coeffici...
cply1coe0bi 21381 A polynomial is constant (...
coe1fzgsumdlem 21382 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 21383 Value of an evaluated coef...
gsumsmonply1 21384 A finite group sum of scal...
gsummoncoe1 21385 A coefficient of the polyn...
gsumply1eq 21386 Two univariate polynomials...
lply1binom 21387 The binomial theorem for l...
lply1binomsc 21388 The binomial theorem for l...
reldmevls1 21393 Well-behaved binary operat...
ply1frcl 21394 Reverse closure for the se...
evls1fval 21395 Value of the univariate po...
evls1val 21396 Value of the univariate po...
evls1rhmlem 21397 Lemma for ~ evl1rhm and ~ ...
evls1rhm 21398 Polynomial evaluation is a...
evls1sca 21399 Univariate polynomial eval...
evls1gsumadd 21400 Univariate polynomial eval...
evls1gsummul 21401 Univariate polynomial eval...
evls1pw 21402 Univariate polynomial eval...
evls1varpw 21403 Univariate polynomial eval...
evl1fval 21404 Value of the simple/same r...
evl1val 21405 Value of the simple/same r...
evl1fval1lem 21406 Lemma for ~ evl1fval1 . (...
evl1fval1 21407 Value of the simple/same r...
evl1rhm 21408 Polynomial evaluation is a...
fveval1fvcl 21409 The function value of the ...
evl1sca 21410 Polynomial evaluation maps...
evl1scad 21411 Polynomial evaluation buil...
evl1var 21412 Polynomial evaluation maps...
evl1vard 21413 Polynomial evaluation buil...
evls1var 21414 Univariate polynomial eval...
evls1scasrng 21415 The evaluation of a scalar...
evls1varsrng 21416 The evaluation of the vari...
evl1addd 21417 Polynomial evaluation buil...
evl1subd 21418 Polynomial evaluation buil...
evl1muld 21419 Polynomial evaluation buil...
evl1vsd 21420 Polynomial evaluation buil...
evl1expd 21421 Polynomial evaluation buil...
pf1const 21422 Constants are polynomial f...
pf1id 21423 The identity is a polynomi...
pf1subrg 21424 Polynomial functions are a...
pf1rcl 21425 Reverse closure for the se...
pf1f 21426 Polynomial functions are f...
mpfpf1 21427 Convert a multivariate pol...
pf1mpf 21428 Convert a univariate polyn...
pf1addcl 21429 The sum of multivariate po...
pf1mulcl 21430 The product of multivariat...
pf1ind 21431 Prove a property of polyno...
evl1gsumdlem 21432 Lemma for ~ evl1gsumd (ind...
evl1gsumd 21433 Polynomial evaluation buil...
evl1gsumadd 21434 Univariate polynomial eval...
evl1gsumaddval 21435 Value of a univariate poly...
evl1gsummul 21436 Univariate polynomial eval...
evl1varpw 21437 Univariate polynomial eval...
evl1varpwval 21438 Value of a univariate poly...
evl1scvarpw 21439 Univariate polynomial eval...
evl1scvarpwval 21440 Value of a univariate poly...
evl1gsummon 21441 Value of a univariate poly...
mamufval 21444 Functional value of the ma...
mamuval 21445 Multiplication of two matr...
mamufv 21446 A cell in the multiplicati...
mamudm 21447 The domain of the matrix m...
mamufacex 21448 Every solution of the equa...
mamures 21449 Rows in a matrix product a...
mndvcl 21450 Tuple-wise additive closur...
mndvass 21451 Tuple-wise associativity i...
mndvlid 21452 Tuple-wise left identity i...
mndvrid 21453 Tuple-wise right identity ...
grpvlinv 21454 Tuple-wise left inverse in...
grpvrinv 21455 Tuple-wise right inverse i...
mhmvlin 21456 Tuple extension of monoid ...
ringvcl 21457 Tuple-wise multiplication ...
mamucl 21458 Operation closure of matri...
mamuass 21459 Matrix multiplication is a...
mamudi 21460 Matrix multiplication dist...
mamudir 21461 Matrix multiplication dist...
mamuvs1 21462 Matrix multiplication dist...
mamuvs2 21463 Matrix multiplication dist...
matbas0pc 21466 There is no matrix with a ...
matbas0 21467 There is no matrix for a n...
matval 21468 Value of the matrix algebr...
matrcl 21469 Reverse closure for the ma...
matbas 21470 The matrix ring has the sa...
matplusg 21471 The matrix ring has the sa...
matsca 21472 The matrix ring has the sa...
matvsca 21473 The matrix ring has the sa...
mat0 21474 The matrix ring has the sa...
matinvg 21475 The matrix ring has the sa...
mat0op 21476 Value of a zero matrix as ...
matsca2 21477 The scalars of the matrix ...
matbas2 21478 The base set of the matrix...
matbas2i 21479 A matrix is a function. (...
matbas2d 21480 The base set of the matrix...
eqmat 21481 Two square matrices of the...
matecl 21482 Each entry (according to W...
matecld 21483 Each entry (according to W...
matplusg2 21484 Addition in the matrix rin...
matvsca2 21485 Scalar multiplication in t...
matlmod 21486 The matrix ring is a linea...
matgrp 21487 The matrix ring is a group...
matvscl 21488 Closure of the scalar mult...
matsubg 21489 The matrix ring has the sa...
matplusgcell 21490 Addition in the matrix rin...
matsubgcell 21491 Subtraction in the matrix ...
matinvgcell 21492 Additive inversion in the ...
matvscacell 21493 Scalar multiplication in t...
matgsum 21494 Finite commutative sums in...
matmulr 21495 Multiplication in the matr...
mamumat1cl 21496 The identity matrix (as op...
mat1comp 21497 The components of the iden...
mamulid 21498 The identity matrix (as op...
mamurid 21499 The identity matrix (as op...
matring 21500 Existence of the matrix ri...
matassa 21501 Existence of the matrix al...
matmulcell 21502 Multiplication in the matr...
mpomatmul 21503 Multiplication of two N x ...
mat1 21504 Value of an identity matri...
mat1ov 21505 Entries of an identity mat...
mat1bas 21506 The identity matrix is a m...
matsc 21507 The identity matrix multip...
ofco2 21508 Distribution law for the f...
oftpos 21509 The transposition of the v...
mattposcl 21510 The transpose of a square ...
mattpostpos 21511 The transpose of the trans...
mattposvs 21512 The transposition of a mat...
mattpos1 21513 The transposition of the i...
tposmap 21514 The transposition of an I ...
mamutpos 21515 Behavior of transposes in ...
mattposm 21516 Multiplying two transposed...
matgsumcl 21517 Closure of a group sum ove...
madetsumid 21518 The identity summand in th...
matepmcl 21519 Each entry of a matrix wit...
matepm2cl 21520 Each entry of a matrix wit...
madetsmelbas 21521 A summand of the determina...
madetsmelbas2 21522 A summand of the determina...
mat0dimbas0 21523 The empty set is the one a...
mat0dim0 21524 The zero of the algebra of...
mat0dimid 21525 The identity of the algebr...
mat0dimscm 21526 The scalar multiplication ...
mat0dimcrng 21527 The algebra of matrices wi...
mat1dimelbas 21528 A matrix with dimension 1 ...
mat1dimbas 21529 A matrix with dimension 1 ...
mat1dim0 21530 The zero of the algebra of...
mat1dimid 21531 The identity of the algebr...
mat1dimscm 21532 The scalar multiplication ...
mat1dimmul 21533 The ring multiplication in...
mat1dimcrng 21534 The algebra of matrices wi...
mat1f1o 21535 There is a 1-1 function fr...
mat1rhmval 21536 The value of the ring homo...
mat1rhmelval 21537 The value of the ring homo...
mat1rhmcl 21538 The value of the ring homo...
mat1f 21539 There is a function from a...
mat1ghm 21540 There is a group homomorph...
mat1mhm 21541 There is a monoid homomorp...
mat1rhm 21542 There is a ring homomorphi...
mat1rngiso 21543 There is a ring isomorphis...
mat1ric 21544 A ring is isomorphic to th...
dmatval 21549 The set of ` N ` x ` N ` d...
dmatel 21550 A ` N ` x ` N ` diagonal m...
dmatmat 21551 An ` N ` x ` N ` diagonal ...
dmatid 21552 The identity matrix is a d...
dmatelnd 21553 An extradiagonal entry of ...
dmatmul 21554 The product of two diagona...
dmatsubcl 21555 The difference of two diag...
dmatsgrp 21556 The set of diagonal matric...
dmatmulcl 21557 The product of two diagona...
dmatsrng 21558 The set of diagonal matric...
dmatcrng 21559 The subring of diagonal ma...
dmatscmcl 21560 The multiplication of a di...
scmatval 21561 The set of ` N ` x ` N ` s...
scmatel 21562 An ` N ` x ` N ` scalar ma...
scmatscmid 21563 A scalar matrix can be exp...
scmatscmide 21564 An entry of a scalar matri...
scmatscmiddistr 21565 Distributive law for scala...
scmatmat 21566 An ` N ` x ` N ` scalar ma...
scmate 21567 An entry of an ` N ` x ` N...
scmatmats 21568 The set of an ` N ` x ` N ...
scmateALT 21569 Alternate proof of ~ scmat...
scmatscm 21570 The multiplication of a ma...
scmatid 21571 The identity matrix is a s...
scmatdmat 21572 A scalar matrix is a diago...
scmataddcl 21573 The sum of two scalar matr...
scmatsubcl 21574 The difference of two scal...
scmatmulcl 21575 The product of two scalar ...
scmatsgrp 21576 The set of scalar matrices...
scmatsrng 21577 The set of scalar matrices...
scmatcrng 21578 The subring of scalar matr...
scmatsgrp1 21579 The set of scalar matrices...
scmatsrng1 21580 The set of scalar matrices...
smatvscl 21581 Closure of the scalar mult...
scmatlss 21582 The set of scalar matrices...
scmatstrbas 21583 The set of scalar matrices...
scmatrhmval 21584 The value of the ring homo...
scmatrhmcl 21585 The value of the ring homo...
scmatf 21586 There is a function from a...
scmatfo 21587 There is a function from a...
scmatf1 21588 There is a 1-1 function fr...
scmatf1o 21589 There is a bijection betwe...
scmatghm 21590 There is a group homomorph...
scmatmhm 21591 There is a monoid homomorp...
scmatrhm 21592 There is a ring homomorphi...
scmatrngiso 21593 There is a ring isomorphis...
scmatric 21594 A ring is isomorphic to ev...
mat0scmat 21595 The empty matrix over a ri...
mat1scmat 21596 A 1-dimensional matrix ove...
mvmulfval 21599 Functional value of the ma...
mvmulval 21600 Multiplication of a vector...
mvmulfv 21601 A cell/element in the vect...
mavmulval 21602 Multiplication of a vector...
mavmulfv 21603 A cell/element in the vect...
mavmulcl 21604 Multiplication of an NxN m...
1mavmul 21605 Multiplication of the iden...
mavmulass 21606 Associativity of the multi...
mavmuldm 21607 The domain of the matrix v...
mavmulsolcl 21608 Every solution of the equa...
mavmul0 21609 Multiplication of a 0-dime...
mavmul0g 21610 The result of the 0-dimens...
mvmumamul1 21611 The multiplication of an M...
mavmumamul1 21612 The multiplication of an N...
marrepfval 21617 First substitution for the...
marrepval0 21618 Second substitution for th...
marrepval 21619 Third substitution for the...
marrepeval 21620 An entry of a matrix with ...
marrepcl 21621 Closure of the row replace...
marepvfval 21622 First substitution for the...
marepvval0 21623 Second substitution for th...
marepvval 21624 Third substitution for the...
marepveval 21625 An entry of a matrix with ...
marepvcl 21626 Closure of the column repl...
ma1repvcl 21627 Closure of the column repl...
ma1repveval 21628 An entry of an identity ma...
mulmarep1el 21629 Element by element multipl...
mulmarep1gsum1 21630 The sum of element by elem...
mulmarep1gsum2 21631 The sum of element by elem...
1marepvmarrepid 21632 Replacing the ith row by 0...
submabas 21635 Any subset of the index se...
submafval 21636 First substitution for a s...
submaval0 21637 Second substitution for a ...
submaval 21638 Third substitution for a s...
submaeval 21639 An entry of a submatrix of...
1marepvsma1 21640 The submatrix of the ident...
mdetfval 21643 First substitution for the...
mdetleib 21644 Full substitution of our d...
mdetleib2 21645 Leibniz' formula can also ...
nfimdetndef 21646 The determinant is not def...
mdetfval1 21647 First substitution of an a...
mdetleib1 21648 Full substitution of an al...
mdet0pr 21649 The determinant function f...
mdet0f1o 21650 The determinant function f...
mdet0fv0 21651 The determinant of the emp...
mdetf 21652 Functionality of the deter...
mdetcl 21653 The determinant evaluates ...
m1detdiag 21654 The determinant of a 1-dim...
mdetdiaglem 21655 Lemma for ~ mdetdiag . Pr...
mdetdiag 21656 The determinant of a diago...
mdetdiagid 21657 The determinant of a diago...
mdet1 21658 The determinant of the ide...
mdetrlin 21659 The determinant function i...
mdetrsca 21660 The determinant function i...
mdetrsca2 21661 The determinant function i...
mdetr0 21662 The determinant of a matri...
mdet0 21663 The determinant of the zer...
mdetrlin2 21664 The determinant function i...
mdetralt 21665 The determinant function i...
mdetralt2 21666 The determinant function i...
mdetero 21667 The determinant function i...
mdettpos 21668 Determinant is invariant u...
mdetunilem1 21669 Lemma for ~ mdetuni . (Co...
mdetunilem2 21670 Lemma for ~ mdetuni . (Co...
mdetunilem3 21671 Lemma for ~ mdetuni . (Co...
mdetunilem4 21672 Lemma for ~ mdetuni . (Co...
mdetunilem5 21673 Lemma for ~ mdetuni . (Co...
mdetunilem6 21674 Lemma for ~ mdetuni . (Co...
mdetunilem7 21675 Lemma for ~ mdetuni . (Co...
mdetunilem8 21676 Lemma for ~ mdetuni . (Co...
mdetunilem9 21677 Lemma for ~ mdetuni . (Co...
mdetuni0 21678 Lemma for ~ mdetuni . (Co...
mdetuni 21679 According to the definitio...
mdetmul 21680 Multiplicativity of the de...
m2detleiblem1 21681 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 21682 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 21683 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 21684 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 21685 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 21686 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 21687 Lemma 4 for ~ m2detleib . ...
m2detleib 21688 Leibniz' Formula for 2x2-m...
mndifsplit 21693 Lemma for ~ maducoeval2 . ...
madufval 21694 First substitution for the...
maduval 21695 Second substitution for th...
maducoeval 21696 An entry of the adjunct (c...
maducoeval2 21697 An entry of the adjunct (c...
maduf 21698 Creating the adjunct of ma...
madutpos 21699 The adjuct of a transposed...
madugsum 21700 The determinant of a matri...
madurid 21701 Multiplying a matrix with ...
madulid 21702 Multiplying the adjunct of...
minmar1fval 21703 First substitution for the...
minmar1val0 21704 Second substitution for th...
minmar1val 21705 Third substitution for the...
minmar1eval 21706 An entry of a matrix for a...
minmar1marrep 21707 The minor matrix is a spec...
minmar1cl 21708 Closure of the row replace...
maducoevalmin1 21709 The coefficients of an adj...
symgmatr01lem 21710 Lemma for ~ symgmatr01 . ...
symgmatr01 21711 Applying a permutation tha...
gsummatr01lem1 21712 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 21713 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 21714 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 21715 Lemma 2 for ~ gsummatr01 ....
gsummatr01 21716 Lemma 1 for ~ smadiadetlem...
marep01ma 21717 Replacing a row of a squar...
smadiadetlem0 21718 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 21719 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 21720 Lemma 1a for ~ smadiadet :...
smadiadetlem2 21721 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 21722 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 21723 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 21724 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 21725 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 21726 Lemma 4 for ~ smadiadet . ...
smadiadet 21727 The determinant of a subma...
smadiadetglem1 21728 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 21729 Lemma 2 for ~ smadiadetg ....
smadiadetg 21730 The determinant of a squar...
smadiadetg0 21731 Lemma for ~ smadiadetr : v...
smadiadetr 21732 The determinant of a squar...
invrvald 21733 If a matrix multiplied wit...
matinv 21734 The inverse of a matrix is...
matunit 21735 A matrix is a unit in the ...
slesolvec 21736 Every solution of a system...
slesolinv 21737 The solution of a system o...
slesolinvbi 21738 The solution of a system o...
slesolex 21739 Every system of linear equ...
cramerimplem1 21740 Lemma 1 for ~ cramerimp : ...
cramerimplem2 21741 Lemma 2 for ~ cramerimp : ...
cramerimplem3 21742 Lemma 3 for ~ cramerimp : ...
cramerimp 21743 One direction of Cramer's ...
cramerlem1 21744 Lemma 1 for ~ cramer . (C...
cramerlem2 21745 Lemma 2 for ~ cramer . (C...
cramerlem3 21746 Lemma 3 for ~ cramer . (C...
cramer0 21747 Special case of Cramer's r...
cramer 21748 Cramer's rule. According ...
pmatring 21749 The set of polynomial matr...
pmatlmod 21750 The set of polynomial matr...
pmatassa 21751 The set of polynomial matr...
pmat0op 21752 The zero polynomial matrix...
pmat1op 21753 The identity polynomial ma...
pmat1ovd 21754 Entries of the identity po...
pmat0opsc 21755 The zero polynomial matrix...
pmat1opsc 21756 The identity polynomial ma...
pmat1ovscd 21757 Entries of the identity po...
pmatcoe1fsupp 21758 For a polynomial matrix th...
1pmatscmul 21759 The scalar product of the ...
cpmat 21766 Value of the constructor o...
cpmatpmat 21767 A constant polynomial matr...
cpmatel 21768 Property of a constant pol...
cpmatelimp 21769 Implication of a set being...
cpmatel2 21770 Another property of a cons...
cpmatelimp2 21771 Another implication of a s...
1elcpmat 21772 The identity of the ring o...
cpmatacl 21773 The set of all constant po...
cpmatinvcl 21774 The set of all constant po...
cpmatmcllem 21775 Lemma for ~ cpmatmcl . (C...
cpmatmcl 21776 The set of all constant po...
cpmatsubgpmat 21777 The set of all constant po...
cpmatsrgpmat 21778 The set of all constant po...
0elcpmat 21779 The zero of the ring of al...
mat2pmatfval 21780 Value of the matrix transf...
mat2pmatval 21781 The result of a matrix tra...
mat2pmatvalel 21782 A (matrix) element of the ...
mat2pmatbas 21783 The result of a matrix tra...
mat2pmatbas0 21784 The result of a matrix tra...
mat2pmatf 21785 The matrix transformation ...
mat2pmatf1 21786 The matrix transformation ...
mat2pmatghm 21787 The transformation of matr...
mat2pmatmul 21788 The transformation of matr...
mat2pmat1 21789 The transformation of the ...
mat2pmatmhm 21790 The transformation of matr...
mat2pmatrhm 21791 The transformation of matr...
mat2pmatlin 21792 The transformation of matr...
0mat2pmat 21793 The transformed zero matri...
idmatidpmat 21794 The transformed identity m...
d0mat2pmat 21795 The transformed empty set ...
d1mat2pmat 21796 The transformation of a ma...
mat2pmatscmxcl 21797 A transformed matrix multi...
m2cpm 21798 The result of a matrix tra...
m2cpmf 21799 The matrix transformation ...
m2cpmf1 21800 The matrix transformation ...
m2cpmghm 21801 The transformation of matr...
m2cpmmhm 21802 The transformation of matr...
m2cpmrhm 21803 The transformation of matr...
m2pmfzmap 21804 The transformed values of ...
m2pmfzgsumcl 21805 Closure of the sum of scal...
cpm2mfval 21806 Value of the inverse matri...
cpm2mval 21807 The result of an inverse m...
cpm2mvalel 21808 A (matrix) element of the ...
cpm2mf 21809 The inverse matrix transfo...
m2cpminvid 21810 The inverse transformation...
m2cpminvid2lem 21811 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 21812 The transformation applied...
m2cpmfo 21813 The matrix transformation ...
m2cpmf1o 21814 The matrix transformation ...
m2cpmrngiso 21815 The transformation of matr...
matcpmric 21816 The ring of matrices over ...
m2cpminv 21817 The inverse matrix transfo...
m2cpminv0 21818 The inverse matrix transfo...
decpmatval0 21821 The matrix consisting of t...
decpmatval 21822 The matrix consisting of t...
decpmate 21823 An entry of the matrix con...
decpmatcl 21824 Closure of the decompositi...
decpmataa0 21825 The matrix consisting of t...
decpmatfsupp 21826 The mapping to the matrice...
decpmatid 21827 The matrix consisting of t...
decpmatmullem 21828 Lemma for ~ decpmatmul . ...
decpmatmul 21829 The matrix consisting of t...
decpmatmulsumfsupp 21830 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 21831 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 21832 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 21833 Write a polynomial matrix ...
pmatcollpw2lem 21834 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 21835 Write a polynomial matrix ...
monmatcollpw 21836 The matrix consisting of t...
pmatcollpwlem 21837 Lemma for ~ pmatcollpw . ...
pmatcollpw 21838 Write a polynomial matrix ...
pmatcollpwfi 21839 Write a polynomial matrix ...
pmatcollpw3lem 21840 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 21841 Write a polynomial matrix ...
pmatcollpw3fi 21842 Write a polynomial matrix ...
pmatcollpw3fi1lem1 21843 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 21844 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 21845 Write a polynomial matrix ...
pmatcollpwscmatlem1 21846 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 21847 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 21848 Write a scalar matrix over...
pm2mpf1lem 21851 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 21852 Value of the transformatio...
pm2mpfval 21853 A polynomial matrix transf...
pm2mpcl 21854 The transformation of poly...
pm2mpf 21855 The transformation of poly...
pm2mpf1 21856 The transformation of poly...
pm2mpcoe1 21857 A coefficient of the polyn...
idpm2idmp 21858 The transformation of the ...
mptcoe1matfsupp 21859 The mapping extracting the...
mply1topmatcllem 21860 Lemma for ~ mply1topmatcl ...
mply1topmatval 21861 A polynomial over matrices...
mply1topmatcl 21862 A polynomial over matrices...
mp2pm2mplem1 21863 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 21864 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 21865 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 21866 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 21867 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 21868 A polynomial over matrices...
pm2mpghmlem2 21869 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 21870 Lemma 1 for pm2mpghm . (C...
pm2mpfo 21871 The transformation of poly...
pm2mpf1o 21872 The transformation of poly...
pm2mpghm 21873 The transformation of poly...
pm2mpgrpiso 21874 The transformation of poly...
pm2mpmhmlem1 21875 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 21876 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 21877 The transformation of poly...
pm2mprhm 21878 The transformation of poly...
pm2mprngiso 21879 The transformation of poly...
pmmpric 21880 The ring of polynomial mat...
monmat2matmon 21881 The transformation of a po...
pm2mp 21882 The transformation of a su...
chmatcl 21885 Closure of the characteris...
chmatval 21886 The entries of the charact...
chpmatfval 21887 Value of the characteristi...
chpmatval 21888 The characteristic polynom...
chpmatply1 21889 The characteristic polynom...
chpmatval2 21890 The characteristic polynom...
chpmat0d 21891 The characteristic polynom...
chpmat1dlem 21892 Lemma for ~ chpmat1d . (C...
chpmat1d 21893 The characteristic polynom...
chpdmatlem0 21894 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 21895 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 21896 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 21897 Lemma 3 for ~ chpdmat . (...
chpdmat 21898 The characteristic polynom...
chpscmat 21899 The characteristic polynom...
chpscmat0 21900 The characteristic polynom...
chpscmatgsumbin 21901 The characteristic polynom...
chpscmatgsummon 21902 The characteristic polynom...
chp0mat 21903 The characteristic polynom...
chpidmat 21904 The characteristic polynom...
chmaidscmat 21905 The characteristic polynom...
fvmptnn04if 21906 The function values of a m...
fvmptnn04ifa 21907 The function value of a ma...
fvmptnn04ifb 21908 The function value of a ma...
fvmptnn04ifc 21909 The function value of a ma...
fvmptnn04ifd 21910 The function value of a ma...
chfacfisf 21911 The "characteristic factor...
chfacfisfcpmat 21912 The "characteristic factor...
chfacffsupp 21913 The "characteristic factor...
chfacfscmulcl 21914 Closure of a scaled value ...
chfacfscmul0 21915 A scaled value of the "cha...
chfacfscmulfsupp 21916 A mapping of scaled values...
chfacfscmulgsum 21917 Breaking up a sum of value...
chfacfpmmulcl 21918 Closure of the value of th...
chfacfpmmul0 21919 The value of the "characte...
chfacfpmmulfsupp 21920 A mapping of values of the...
chfacfpmmulgsum 21921 Breaking up a sum of value...
chfacfpmmulgsum2 21922 Breaking up a sum of value...
cayhamlem1 21923 Lemma 1 for ~ cayleyhamilt...
cpmadurid 21924 The right-hand fundamental...
cpmidgsum 21925 Representation of the iden...
cpmidgsumm2pm 21926 Representation of the iden...
cpmidpmatlem1 21927 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 21928 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 21929 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 21930 Representation of the iden...
cpmadugsumlemB 21931 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 21932 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 21933 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 21934 The product of the charact...
cpmadugsum 21935 The product of the charact...
cpmidgsum2 21936 Representation of the iden...
cpmidg2sum 21937 Equality of two sums repre...
cpmadumatpolylem1 21938 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 21939 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 21940 The product of the charact...
cayhamlem2 21941 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 21942 Lemma for ~ chcoeffeq . (...
chcoeffeq 21943 The coefficients of the ch...
cayhamlem3 21944 Lemma for ~ cayhamlem4 . ...
cayhamlem4 21945 Lemma for ~ cayleyhamilton...
cayleyhamilton0 21946 The Cayley-Hamilton theore...
cayleyhamilton 21947 The Cayley-Hamilton theore...
cayleyhamiltonALT 21948 Alternate proof of ~ cayle...
cayleyhamilton1 21949 The Cayley-Hamilton theore...
istopg 21952 Express the predicate " ` ...
istop2g 21953 Express the predicate " ` ...
uniopn 21954 The union of a subset of a...
iunopn 21955 The indexed union of a sub...
inopn 21956 The intersection of two op...
fitop 21957 A topology is closed under...
fiinopn 21958 The intersection of a none...
iinopn 21959 The intersection of a none...
unopn 21960 The union of two open sets...
0opn 21961 The empty set is an open s...
0ntop 21962 The empty set is not a top...
topopn 21963 The underlying set of a to...
eltopss 21964 A member of a topology is ...
riinopn 21965 A finite indexed relative ...
rintopn 21966 A finite relative intersec...
istopon 21969 Property of being a topolo...
topontop 21970 A topology on a given base...
toponuni 21971 The base set of a topology...
topontopi 21972 A topology on a given base...
toponunii 21973 The base set of a topology...
toptopon 21974 Alternative definition of ...
toptopon2 21975 A topology is the same thi...
topontopon 21976 A topology on a set is a t...
funtopon 21977 The class ` TopOn ` is a f...
toponrestid 21978 Given a topology on a set,...
toponsspwpw 21979 The set of topologies on a...
dmtopon 21980 The domain of ` TopOn ` is...
fntopon 21981 The class ` TopOn ` is a f...
toprntopon 21982 A topology is the same thi...
toponmax 21983 The base set of a topology...
toponss 21984 A member of a topology is ...
toponcom 21985 If ` K ` is a topology on ...
toponcomb 21986 Biconditional form of ~ to...
topgele 21987 The topologies over the sa...
topsn 21988 The only topology on a sin...
istps 21991 Express the predicate "is ...
istps2 21992 Express the predicate "is ...
tpsuni 21993 The base set of a topologi...
tpstop 21994 The topology extractor on ...
tpspropd 21995 A topological space depend...
tpsprop2d 21996 A topological space depend...
topontopn 21997 Express the predicate "is ...
tsettps 21998 If the topology component ...
istpsi 21999 Properties that determine ...
eltpsg 22000 Properties that determine ...
eltpsgOLD 22001 Obsolete version of ~ eltp...
eltpsi 22002 Properties that determine ...
isbasisg 22005 Express the predicate "the...
isbasis2g 22006 Express the predicate "the...
isbasis3g 22007 Express the predicate "the...
basis1 22008 Property of a basis. (Con...
basis2 22009 Property of a basis. (Con...
fiinbas 22010 If a set is closed under f...
basdif0 22011 A basis is not affected by...
baspartn 22012 A disjoint system of sets ...
tgval 22013 The topology generated by ...
tgval2 22014 Definition of a topology g...
eltg 22015 Membership in a topology g...
eltg2 22016 Membership in a topology g...
eltg2b 22017 Membership in a topology g...
eltg4i 22018 An open set in a topology ...
eltg3i 22019 The union of a set of basi...
eltg3 22020 Membership in a topology g...
tgval3 22021 Alternate expression for t...
tg1 22022 Property of a member of a ...
tg2 22023 Property of a member of a ...
bastg 22024 A member of a basis is a s...
unitg 22025 The topology generated by ...
tgss 22026 Subset relation for genera...
tgcl 22027 Show that a basis generate...
tgclb 22028 The property ~ tgcl can be...
tgtopon 22029 A basis generates a topolo...
topbas 22030 A topology is its own basi...
tgtop 22031 A topology is its own basi...
eltop 22032 Membership in a topology, ...
eltop2 22033 Membership in a topology. ...
eltop3 22034 Membership in a topology. ...
fibas 22035 A collection of finite int...
tgdom 22036 A space has no more open s...
tgiun 22037 The indexed union of a set...
tgidm 22038 The topology generator fun...
bastop 22039 Two ways to express that a...
tgtop11 22040 The topology generation fu...
0top 22041 The singleton of the empty...
en1top 22042 ` { (/) } ` is the only to...
en2top 22043 If a topology has two elem...
tgss3 22044 A criterion for determinin...
tgss2 22045 A criterion for determinin...
basgen 22046 Given a topology ` J ` , s...
basgen2 22047 Given a topology ` J ` , s...
2basgen 22048 Conditions that determine ...
tgfiss 22049 If a subbase is included i...
tgdif0 22050 A generated topology is no...
bastop1 22051 A subset of a topology is ...
bastop2 22052 A version of ~ bastop1 tha...
distop 22053 The discrete topology on a...
topnex 22054 The class of all topologie...
distopon 22055 The discrete topology on a...
sn0topon 22056 The singleton of the empty...
sn0top 22057 The singleton of the empty...
indislem 22058 A lemma to eliminate some ...
indistopon 22059 The indiscrete topology on...
indistop 22060 The indiscrete topology on...
indisuni 22061 The base set of the indisc...
fctop 22062 The finite complement topo...
fctop2 22063 The finite complement topo...
cctop 22064 The countable complement t...
ppttop 22065 The particular point topol...
pptbas 22066 The particular point topol...
epttop 22067 The excluded point topolog...
indistpsx 22068 The indiscrete topology on...
indistps 22069 The indiscrete topology on...
indistps2 22070 The indiscrete topology on...
indistpsALT 22071 The indiscrete topology on...
indistpsALTOLD 22072 Obsolete proof of ~ indist...
indistps2ALT 22073 The indiscrete topology on...
distps 22074 The discrete topology on a...
fncld 22081 The closed-set generator i...
cldval 22082 The set of closed sets of ...
ntrfval 22083 The interior function on t...
clsfval 22084 The closure function on th...
cldrcl 22085 Reverse closure of the clo...
iscld 22086 The predicate "the class `...
iscld2 22087 A subset of the underlying...
cldss 22088 A closed set is a subset o...
cldss2 22089 The set of closed sets is ...
cldopn 22090 The complement of a closed...
isopn2 22091 A subset of the underlying...
opncld 22092 The complement of an open ...
difopn 22093 The difference of a closed...
topcld 22094 The underlying set of a to...
ntrval 22095 The interior of a subset o...
clsval 22096 The closure of a subset of...
0cld 22097 The empty set is closed. ...
iincld 22098 The indexed intersection o...
intcld 22099 The intersection of a set ...
uncld 22100 The union of two closed se...
cldcls 22101 A closed subset equals its...
incld 22102 The intersection of two cl...
riincld 22103 An indexed relative inters...
iuncld 22104 A finite indexed union of ...
unicld 22105 A finite union of closed s...
clscld 22106 The closure of a subset of...
clsf 22107 The closure function is a ...
ntropn 22108 The interior of a subset o...
clsval2 22109 Express closure in terms o...
ntrval2 22110 Interior expressed in term...
ntrdif 22111 An interior of a complemen...
clsdif 22112 A closure of a complement ...
clsss 22113 Subset relationship for cl...
ntrss 22114 Subset relationship for in...
sscls 22115 A subset of a topology's u...
ntrss2 22116 A subset includes its inte...
ssntr 22117 An open subset of a set is...
clsss3 22118 The closure of a subset of...
ntrss3 22119 The interior of a subset o...
ntrin 22120 A pairwise intersection of...
cmclsopn 22121 The complement of a closur...
cmntrcld 22122 The complement of an inter...
iscld3 22123 A subset is closed iff it ...
iscld4 22124 A subset is closed iff it ...
isopn3 22125 A subset is open iff it eq...
clsidm 22126 The closure operation is i...
ntridm 22127 The interior operation is ...
clstop 22128 The closure of a topology'...
ntrtop 22129 The interior of a topology...
0ntr 22130 A subset with an empty int...
clsss2 22131 If a subset is included in...
elcls 22132 Membership in a closure. ...
elcls2 22133 Membership in a closure. ...
clsndisj 22134 Any open set containing a ...
ntrcls0 22135 A subset whose closure has...
ntreq0 22136 Two ways to say that a sub...
cldmre 22137 The closed sets of a topol...
mrccls 22138 Moore closure generalizes ...
cls0 22139 The closure of the empty s...
ntr0 22140 The interior of the empty ...
isopn3i 22141 An open subset equals its ...
elcls3 22142 Membership in a closure in...
opncldf1 22143 A bijection useful for con...
opncldf2 22144 The values of the open-clo...
opncldf3 22145 The values of the converse...
isclo 22146 A set ` A ` is clopen iff ...
isclo2 22147 A set ` A ` is clopen iff ...
discld 22148 The open sets of a discret...
sn0cld 22149 The closed sets of the top...
indiscld 22150 The closed sets of an indi...
mretopd 22151 A Moore collection which i...
toponmre 22152 The topologies over a give...
cldmreon 22153 The closed sets of a topol...
iscldtop 22154 A family is the closed set...
mreclatdemoBAD 22155 The closed subspaces of a ...
neifval 22158 Value of the neighborhood ...
neif 22159 The neighborhood function ...
neiss2 22160 A set with a neighborhood ...
neival 22161 Value of the set of neighb...
isnei 22162 The predicate "the class `...
neiint 22163 An intuitive definition of...
isneip 22164 The predicate "the class `...
neii1 22165 A neighborhood is included...
neisspw 22166 The neighborhoods of any s...
neii2 22167 Property of a neighborhood...
neiss 22168 Any neighborhood of a set ...
ssnei 22169 A set is included in any o...
elnei 22170 A point belongs to any of ...
0nnei 22171 The empty set is not a nei...
neips 22172 A neighborhood of a set is...
opnneissb 22173 An open set is a neighborh...
opnssneib 22174 Any superset of an open se...
ssnei2 22175 Any subset ` M ` of ` X ` ...
neindisj 22176 Any neighborhood of an ele...
opnneiss 22177 An open set is a neighborh...
opnneip 22178 An open set is a neighborh...
opnnei 22179 A set is open iff it is a ...
tpnei 22180 The underlying set of a to...
neiuni 22181 The union of the neighborh...
neindisj2 22182 A point ` P ` belongs to t...
topssnei 22183 A finer topology has more ...
innei 22184 The intersection of two ne...
opnneiid 22185 Only an open set is a neig...
neissex 22186 For any neighborhood ` N `...
0nei 22187 The empty set is a neighbo...
neipeltop 22188 Lemma for ~ neiptopreu . ...
neiptopuni 22189 Lemma for ~ neiptopreu . ...
neiptoptop 22190 Lemma for ~ neiptopreu . ...
neiptopnei 22191 Lemma for ~ neiptopreu . ...
neiptopreu 22192 If, to each element ` P ` ...
lpfval 22197 The limit point function o...
lpval 22198 The set of limit points of...
islp 22199 The predicate "the class `...
lpsscls 22200 The limit points of a subs...
lpss 22201 The limit points of a subs...
lpdifsn 22202 ` P ` is a limit point of ...
lpss3 22203 Subset relationship for li...
islp2 22204 The predicate " ` P ` is a...
islp3 22205 The predicate " ` P ` is a...
maxlp 22206 A point is a limit point o...
clslp 22207 The closure of a subset of...
islpi 22208 A point belonging to a set...
cldlp 22209 A subset of a topological ...
isperf 22210 Definition of a perfect sp...
isperf2 22211 Definition of a perfect sp...
isperf3 22212 A perfect space is a topol...
perflp 22213 The limit points of a perf...
perfi 22214 Property of a perfect spac...
perftop 22215 A perfect space is a topol...
restrcl 22216 Reverse closure for the su...
restbas 22217 A subspace topology basis ...
tgrest 22218 A subspace can be generate...
resttop 22219 A subspace topology is a t...
resttopon 22220 A subspace topology is a t...
restuni 22221 The underlying set of a su...
stoig 22222 The topological space buil...
restco 22223 Composition of subspaces. ...
restabs 22224 Equivalence of being a sub...
restin 22225 When the subspace region i...
restuni2 22226 The underlying set of a su...
resttopon2 22227 The underlying set of a su...
rest0 22228 The subspace topology indu...
restsn 22229 The only subspace topology...
restsn2 22230 The subspace topology indu...
restcld 22231 A closed set of a subspace...
restcldi 22232 A closed set is closed in ...
restcldr 22233 A set which is closed in t...
restopnb 22234 If ` B ` is an open subset...
ssrest 22235 If ` K ` is a finer topolo...
restopn2 22236 If ` A ` is open, then ` B...
restdis 22237 A subspace of a discrete t...
restfpw 22238 The restriction of the set...
neitr 22239 The neighborhood of a trac...
restcls 22240 A closure in a subspace to...
restntr 22241 An interior in a subspace ...
restlp 22242 The limit points of a subs...
restperf 22243 Perfection of a subspace. ...
perfopn 22244 An open subset of a perfec...
resstopn 22245 The topology of a restrict...
resstps 22246 A restricted topological s...
ordtbaslem 22247 Lemma for ~ ordtbas . In ...
ordtval 22248 Value of the order topolog...
ordtuni 22249 Value of the order topolog...
ordtbas2 22250 Lemma for ~ ordtbas . (Co...
ordtbas 22251 In a total order, the fini...
ordttopon 22252 Value of the order topolog...
ordtopn1 22253 An upward ray ` ( P , +oo ...
ordtopn2 22254 A downward ray ` ( -oo , P...
ordtopn3 22255 An open interval ` ( A , B...
ordtcld1 22256 A downward ray ` ( -oo , P...
ordtcld2 22257 An upward ray ` [ P , +oo ...
ordtcld3 22258 A closed interval ` [ A , ...
ordttop 22259 The order topology is a to...
ordtcnv 22260 The order dual generates t...
ordtrest 22261 The subspace topology of a...
ordtrest2lem 22262 Lemma for ~ ordtrest2 . (...
ordtrest2 22263 An interval-closed set ` A...
letopon 22264 The topology of the extend...
letop 22265 The topology of the extend...
letopuni 22266 The topology of the extend...
xrstopn 22267 The topology component of ...
xrstps 22268 The extended real number s...
leordtvallem1 22269 Lemma for ~ leordtval . (...
leordtvallem2 22270 Lemma for ~ leordtval . (...
leordtval2 22271 The topology of the extend...
leordtval 22272 The topology of the extend...
iccordt 22273 A closed interval is close...
iocpnfordt 22274 An unbounded above open in...
icomnfordt 22275 An unbounded above open in...
iooordt 22276 An open interval is open i...
reordt 22277 The real numbers are an op...
lecldbas 22278 The set of closed interval...
pnfnei 22279 A neighborhood of ` +oo ` ...
mnfnei 22280 A neighborhood of ` -oo ` ...
ordtrestixx 22281 The restriction of the les...
ordtresticc 22282 The restriction of the les...
lmrel 22289 The topological space conv...
lmrcl 22290 Reverse closure for the co...
lmfval 22291 The relation "sequence ` f...
cnfval 22292 The set of all continuous ...
cnpfval 22293 The function mapping the p...
iscn 22294 The predicate "the class `...
cnpval 22295 The set of all functions f...
iscnp 22296 The predicate "the class `...
iscn2 22297 The predicate "the class `...
iscnp2 22298 The predicate "the class `...
cntop1 22299 Reverse closure for a cont...
cntop2 22300 Reverse closure for a cont...
cnptop1 22301 Reverse closure for a func...
cnptop2 22302 Reverse closure for a func...
iscnp3 22303 The predicate "the class `...
cnprcl 22304 Reverse closure for a func...
cnf 22305 A continuous function is a...
cnpf 22306 A continuous function at p...
cnpcl 22307 The value of a continuous ...
cnf2 22308 A continuous function is a...
cnpf2 22309 A continuous function at p...
cnprcl2 22310 Reverse closure for a func...
tgcn 22311 The continuity predicate w...
tgcnp 22312 The "continuous at a point...
subbascn 22313 The continuity predicate w...
ssidcn 22314 The identity function is a...
cnpimaex 22315 Property of a function con...
idcn 22316 A restricted identity func...
lmbr 22317 Express the binary relatio...
lmbr2 22318 Express the binary relatio...
lmbrf 22319 Express the binary relatio...
lmconst 22320 A constant sequence conver...
lmcvg 22321 Convergence property of a ...
iscnp4 22322 The predicate "the class `...
cnpnei 22323 A condition for continuity...
cnima 22324 An open subset of the codo...
cnco 22325 The composition of two con...
cnpco 22326 The composition of a funct...
cnclima 22327 A closed subset of the cod...
iscncl 22328 A characterization of a co...
cncls2i 22329 Property of the preimage o...
cnntri 22330 Property of the preimage o...
cnclsi 22331 Property of the image of a...
cncls2 22332 Continuity in terms of clo...
cncls 22333 Continuity in terms of clo...
cnntr 22334 Continuity in terms of int...
cnss1 22335 If the topology ` K ` is f...
cnss2 22336 If the topology ` K ` is f...
cncnpi 22337 A continuous function is c...
cnsscnp 22338 The set of continuous func...
cncnp 22339 A continuous function is c...
cncnp2 22340 A continuous function is c...
cnnei 22341 Continuity in terms of nei...
cnconst2 22342 A constant function is con...
cnconst 22343 A constant function is con...
cnrest 22344 Continuity of a restrictio...
cnrest2 22345 Equivalence of continuity ...
cnrest2r 22346 Equivalence of continuity ...
cnpresti 22347 One direction of ~ cnprest...
cnprest 22348 Equivalence of continuity ...
cnprest2 22349 Equivalence of point-conti...
cndis 22350 Every function is continuo...
cnindis 22351 Every function is continuo...
cnpdis 22352 If ` A ` is an isolated po...
paste 22353 Pasting lemma. If ` A ` a...
lmfpm 22354 If ` F ` converges, then `...
lmfss 22355 Inclusion of a function ha...
lmcl 22356 Closure of a limit. (Cont...
lmss 22357 Limit on a subspace. (Con...
sslm 22358 A finer topology has fewer...
lmres 22359 A function converges iff i...
lmff 22360 If ` F ` converges, there ...
lmcls 22361 Any convergent sequence of...
lmcld 22362 Any convergent sequence of...
lmcnp 22363 The image of a convergent ...
lmcn 22364 The image of a convergent ...
ist0 22379 The predicate "is a T_0 sp...
ist1 22380 The predicate "is a T_1 sp...
ishaus 22381 The predicate "is a Hausdo...
iscnrm 22382 The property of being comp...
t0sep 22383 Any two topologically indi...
t0dist 22384 Any two distinct points in...
t1sncld 22385 In a T_1 space, singletons...
t1ficld 22386 In a T_1 space, finite set...
hausnei 22387 Neighborhood property of a...
t0top 22388 A T_0 space is a topologic...
t1top 22389 A T_1 space is a topologic...
haustop 22390 A Hausdorff space is a top...
isreg 22391 The predicate "is a regula...
regtop 22392 A regular space is a topol...
regsep 22393 In a regular space, every ...
isnrm 22394 The predicate "is a normal...
nrmtop 22395 A normal space is a topolo...
cnrmtop 22396 A completely normal space ...
iscnrm2 22397 The property of being comp...
ispnrm 22398 The property of being perf...
pnrmnrm 22399 A perfectly normal space i...
pnrmtop 22400 A perfectly normal space i...
pnrmcld 22401 A closed set in a perfectl...
pnrmopn 22402 An open set in a perfectly...
ist0-2 22403 The predicate "is a T_0 sp...
ist0-3 22404 The predicate "is a T_0 sp...
cnt0 22405 The preimage of a T_0 topo...
ist1-2 22406 An alternate characterizat...
t1t0 22407 A T_1 space is a T_0 space...
ist1-3 22408 A space is T_1 iff every p...
cnt1 22409 The preimage of a T_1 topo...
ishaus2 22410 Express the predicate " ` ...
haust1 22411 A Hausdorff space is a T_1...
hausnei2 22412 The Hausdorff condition st...
cnhaus 22413 The preimage of a Hausdorf...
nrmsep3 22414 In a normal space, given a...
nrmsep2 22415 In a normal space, any two...
nrmsep 22416 In a normal space, disjoin...
isnrm2 22417 An alternate characterizat...
isnrm3 22418 A topological space is nor...
cnrmi 22419 A subspace of a completely...
cnrmnrm 22420 A completely normal space ...
restcnrm 22421 A subspace of a completely...
resthauslem 22422 Lemma for ~ resthaus and s...
lpcls 22423 The limit points of the cl...
perfcls 22424 A subset of a perfect spac...
restt0 22425 A subspace of a T_0 topolo...
restt1 22426 A subspace of a T_1 topolo...
resthaus 22427 A subspace of a Hausdorff ...
t1sep2 22428 Any two points in a T_1 sp...
t1sep 22429 Any two distinct points in...
sncld 22430 A singleton is closed in a...
sshauslem 22431 Lemma for ~ sshaus and sim...
sst0 22432 A topology finer than a T_...
sst1 22433 A topology finer than a T_...
sshaus 22434 A topology finer than a Ha...
regsep2 22435 In a regular space, a clos...
isreg2 22436 A topological space is reg...
dnsconst 22437 If a continuous mapping to...
ordtt1 22438 The order topology is T_1 ...
lmmo 22439 A sequence in a Hausdorff ...
lmfun 22440 The convergence relation i...
dishaus 22441 A discrete topology is Hau...
ordthauslem 22442 Lemma for ~ ordthaus . (C...
ordthaus 22443 The order topology of a to...
xrhaus 22444 The topology of the extend...
iscmp 22447 The predicate "is a compac...
cmpcov 22448 An open cover of a compact...
cmpcov2 22449 Rewrite ~ cmpcov for the c...
cmpcovf 22450 Combine ~ cmpcov with ~ ac...
cncmp 22451 Compactness is respected b...
fincmp 22452 A finite topology is compa...
0cmp 22453 The singleton of the empty...
cmptop 22454 A compact topology is a to...
rncmp 22455 The image of a compact set...
imacmp 22456 The image of a compact set...
discmp 22457 A discrete topology is com...
cmpsublem 22458 Lemma for ~ cmpsub . (Con...
cmpsub 22459 Two equivalent ways of des...
tgcmp 22460 A topology generated by a ...
cmpcld 22461 A closed subset of a compa...
uncmp 22462 The union of two compact s...
fiuncmp 22463 A finite union of compact ...
sscmp 22464 A subset of a compact topo...
hauscmplem 22465 Lemma for ~ hauscmp . (Co...
hauscmp 22466 A compact subspace of a T2...
cmpfi 22467 If a topology is compact a...
cmpfii 22468 In a compact topology, a s...
bwth 22469 The glorious Bolzano-Weier...
isconn 22472 The predicate ` J ` is a c...
isconn2 22473 The predicate ` J ` is a c...
connclo 22474 The only nonempty clopen s...
conndisj 22475 If a topology is connected...
conntop 22476 A connected topology is a ...
indisconn 22477 The indiscrete topology (o...
dfconn2 22478 An alternate definition of...
connsuba 22479 Connectedness for a subspa...
connsub 22480 Two equivalent ways of say...
cnconn 22481 Connectedness is respected...
nconnsubb 22482 Disconnectedness for a sub...
connsubclo 22483 If a clopen set meets a co...
connima 22484 The image of a connected s...
conncn 22485 A continuous function from...
iunconnlem 22486 Lemma for ~ iunconn . (Co...
iunconn 22487 The indexed union of conne...
unconn 22488 The union of two connected...
clsconn 22489 The closure of a connected...
conncompid 22490 The connected component co...
conncompconn 22491 The connected component co...
conncompss 22492 The connected component co...
conncompcld 22493 The connected component co...
conncompclo 22494 The connected component co...
t1connperf 22495 A connected T_1 space is p...
is1stc 22500 The predicate "is a first-...
is1stc2 22501 An equivalent way of sayin...
1stctop 22502 A first-countable topology...
1stcclb 22503 A property of points in a ...
1stcfb 22504 For any point ` A ` in a f...
is2ndc 22505 The property of being seco...
2ndctop 22506 A second-countable topolog...
2ndci 22507 A countable basis generate...
2ndcsb 22508 Having a countable subbase...
2ndcredom 22509 A second-countable space h...
2ndc1stc 22510 A second-countable space i...
1stcrestlem 22511 Lemma for ~ 1stcrest . (C...
1stcrest 22512 A subspace of a first-coun...
2ndcrest 22513 A subspace of a second-cou...
2ndcctbss 22514 If a topology is second-co...
2ndcdisj 22515 Any disjoint family of ope...
2ndcdisj2 22516 Any disjoint collection of...
2ndcomap 22517 A surjective continuous op...
2ndcsep 22518 A second-countable topolog...
dis2ndc 22519 A discrete space is second...
1stcelcls 22520 A point belongs to the clo...
1stccnp 22521 A mapping is continuous at...
1stccn 22522 A mapping ` X --> Y ` , wh...
islly 22527 The property of being a lo...
isnlly 22528 The property of being an n...
llyeq 22529 Equality theorem for the `...
nllyeq 22530 Equality theorem for the `...
llytop 22531 A locally ` A ` space is a...
nllytop 22532 A locally ` A ` space is a...
llyi 22533 The property of a locally ...
nllyi 22534 The property of an n-local...
nlly2i 22535 Eliminate the neighborhood...
llynlly 22536 A locally ` A ` space is n...
llyssnlly 22537 A locally ` A ` space is n...
llyss 22538 The "locally" predicate re...
nllyss 22539 The "n-locally" predicate ...
subislly 22540 The property of a subspace...
restnlly 22541 If the property ` A ` pass...
restlly 22542 If the property ` A ` pass...
islly2 22543 An alternative expression ...
llyrest 22544 An open subspace of a loca...
nllyrest 22545 An open subspace of an n-l...
loclly 22546 If ` A ` is a local proper...
llyidm 22547 Idempotence of the "locall...
nllyidm 22548 Idempotence of the "n-loca...
toplly 22549 A topology is locally a to...
topnlly 22550 A topology is n-locally a ...
hauslly 22551 A Hausdorff space is local...
hausnlly 22552 A Hausdorff space is n-loc...
hausllycmp 22553 A compact Hausdorff space ...
cldllycmp 22554 A closed subspace of a loc...
lly1stc 22555 First-countability is a lo...
dislly 22556 The discrete space ` ~P X ...
disllycmp 22557 A discrete space is locall...
dis1stc 22558 A discrete space is first-...
hausmapdom 22559 If ` X ` is a first-counta...
hauspwdom 22560 Simplify the cardinal ` A ...
refrel 22567 Refinement is a relation. ...
isref 22568 The property of being a re...
refbas 22569 A refinement covers the sa...
refssex 22570 Every set in a refinement ...
ssref 22571 A subcover is a refinement...
refref 22572 Reflexivity of refinement....
reftr 22573 Refinement is transitive. ...
refun0 22574 Adding the empty set prese...
isptfin 22575 The statement "is a point-...
islocfin 22576 The statement "is a locall...
finptfin 22577 A finite cover is a point-...
ptfinfin 22578 A point covered by a point...
finlocfin 22579 A finite cover of a topolo...
locfintop 22580 A locally finite cover cov...
locfinbas 22581 A locally finite cover mus...
locfinnei 22582 A point covered by a local...
lfinpfin 22583 A locally finite cover is ...
lfinun 22584 Adding a finite set preser...
locfincmp 22585 For a compact space, the l...
unisngl 22586 Taking the union of the se...
dissnref 22587 The set of singletons is a...
dissnlocfin 22588 The set of singletons is l...
locfindis 22589 The locally finite covers ...
locfincf 22590 A locally finite cover in ...
comppfsc 22591 A space where every open c...
kgenval 22594 Value of the compact gener...
elkgen 22595 Value of the compact gener...
kgeni 22596 Property of the open sets ...
kgentopon 22597 The compact generator gene...
kgenuni 22598 The base set of the compac...
kgenftop 22599 The compact generator gene...
kgenf 22600 The compact generator is a...
kgentop 22601 A compactly generated spac...
kgenss 22602 The compact generator gene...
kgenhaus 22603 The compact generator gene...
kgencmp 22604 The compact generator topo...
kgencmp2 22605 The compact generator topo...
kgenidm 22606 The compact generator is i...
iskgen2 22607 A space is compactly gener...
iskgen3 22608 Derive the usual definitio...
llycmpkgen2 22609 A locally compact space is...
cmpkgen 22610 A compact space is compact...
llycmpkgen 22611 A locally compact space is...
1stckgenlem 22612 The one-point compactifica...
1stckgen 22613 A first-countable space is...
kgen2ss 22614 The compact generator pres...
kgencn 22615 A function from a compactl...
kgencn2 22616 A function ` F : J --> K `...
kgencn3 22617 The set of continuous func...
kgen2cn 22618 A continuous function is a...
txval 22623 Value of the binary topolo...
txuni2 22624 The underlying set of the ...
txbasex 22625 The basis for the product ...
txbas 22626 The set of Cartesian produ...
eltx 22627 A set in a product is open...
txtop 22628 The product of two topolog...
ptval 22629 The value of the product t...
ptpjpre1 22630 The preimage of a projecti...
elpt 22631 Elementhood in the bases o...
elptr 22632 A basic open set in the pr...
elptr2 22633 A basic open set in the pr...
ptbasid 22634 The base set of the produc...
ptuni2 22635 The base set for the produ...
ptbasin 22636 The basis for a product to...
ptbasin2 22637 The basis for a product to...
ptbas 22638 The basis for a product to...
ptpjpre2 22639 The basis for a product to...
ptbasfi 22640 The basis for the product ...
pttop 22641 The product topology is a ...
ptopn 22642 A basic open set in the pr...
ptopn2 22643 A sub-basic open set in th...
xkotf 22644 Functionality of function ...
xkobval 22645 Alternative expression for...
xkoval 22646 Value of the compact-open ...
xkotop 22647 The compact-open topology ...
xkoopn 22648 A basic open set of the co...
txtopi 22649 The product of two topolog...
txtopon 22650 The underlying set of the ...
txuni 22651 The underlying set of the ...
txunii 22652 The underlying set of the ...
ptuni 22653 The base set for the produ...
ptunimpt 22654 Base set of a product topo...
pttopon 22655 The base set for the produ...
pttoponconst 22656 The base set for a product...
ptuniconst 22657 The base set for a product...
xkouni 22658 The base set of the compac...
xkotopon 22659 The base set of the compac...
ptval2 22660 The value of the product t...
txopn 22661 The product of two open se...
txcld 22662 The product of two closed ...
txcls 22663 Closure of a rectangle in ...
txss12 22664 Subset property of the top...
txbasval 22665 It is sufficient to consid...
neitx 22666 The Cartesian product of t...
txcnpi 22667 Continuity of a two-argume...
tx1cn 22668 Continuity of the first pr...
tx2cn 22669 Continuity of the second p...
ptpjcn 22670 Continuity of a projection...
ptpjopn 22671 The projection map is an o...
ptcld 22672 A closed box in the produc...
ptcldmpt 22673 A closed box in the produc...
ptclsg 22674 The closure of a box in th...
ptcls 22675 The closure of a box in th...
dfac14lem 22676 Lemma for ~ dfac14 . By e...
dfac14 22677 Theorem ~ ptcls is an equi...
xkoccn 22678 The "constant function" fu...
txcnp 22679 If two functions are conti...
ptcnplem 22680 Lemma for ~ ptcnp . (Cont...
ptcnp 22681 If every projection of a f...
upxp 22682 Universal property of the ...
txcnmpt 22683 A map into the product of ...
uptx 22684 Universal property of the ...
txcn 22685 A map into the product of ...
ptcn 22686 If every projection of a f...
prdstopn 22687 Topology of a structure pr...
prdstps 22688 A structure product of top...
pwstps 22689 A structure power of a top...
txrest 22690 The subspace of a topologi...
txdis 22691 The topological product of...
txindislem 22692 Lemma for ~ txindis . (Co...
txindis 22693 The topological product of...
txdis1cn 22694 A function is jointly cont...
txlly 22695 If the property ` A ` is p...
txnlly 22696 If the property ` A ` is p...
pthaus 22697 The product of a collectio...
ptrescn 22698 Restriction is a continuou...
txtube 22699 The "tube lemma". If ` X ...
txcmplem1 22700 Lemma for ~ txcmp . (Cont...
txcmplem2 22701 Lemma for ~ txcmp . (Cont...
txcmp 22702 The topological product of...
txcmpb 22703 The topological product of...
hausdiag 22704 A topology is Hausdorff if...
hauseqlcld 22705 In a Hausdorff topology, t...
txhaus 22706 The topological product of...
txlm 22707 Two sequences converge iff...
lmcn2 22708 The image of a convergent ...
tx1stc 22709 The topological product of...
tx2ndc 22710 The topological product of...
txkgen 22711 The topological product of...
xkohaus 22712 If the codomain space is H...
xkoptsub 22713 The compact-open topology ...
xkopt 22714 The compact-open topology ...
xkopjcn 22715 Continuity of a projection...
xkoco1cn 22716 If ` F ` is a continuous f...
xkoco2cn 22717 If ` F ` is a continuous f...
xkococnlem 22718 Continuity of the composit...
xkococn 22719 Continuity of the composit...
cnmptid 22720 The identity function is c...
cnmptc 22721 A constant function is con...
cnmpt11 22722 The composition of continu...
cnmpt11f 22723 The composition of continu...
cnmpt1t 22724 The composition of continu...
cnmpt12f 22725 The composition of continu...
cnmpt12 22726 The composition of continu...
cnmpt1st 22727 The projection onto the fi...
cnmpt2nd 22728 The projection onto the se...
cnmpt2c 22729 A constant function is con...
cnmpt21 22730 The composition of continu...
cnmpt21f 22731 The composition of continu...
cnmpt2t 22732 The composition of continu...
cnmpt22 22733 The composition of continu...
cnmpt22f 22734 The composition of continu...
cnmpt1res 22735 The restriction of a conti...
cnmpt2res 22736 The restriction of a conti...
cnmptcom 22737 The argument converse of a...
cnmptkc 22738 The curried first projecti...
cnmptkp 22739 The evaluation of the inne...
cnmptk1 22740 The composition of a curri...
cnmpt1k 22741 The composition of a one-a...
cnmptkk 22742 The composition of two cur...
xkofvcn 22743 Joint continuity of the fu...
cnmptk1p 22744 The evaluation of a currie...
cnmptk2 22745 The uncurrying of a currie...
xkoinjcn 22746 Continuity of "injection",...
cnmpt2k 22747 The currying of a two-argu...
txconn 22748 The topological product of...
imasnopn 22749 If a relation graph is ope...
imasncld 22750 If a relation graph is clo...
imasncls 22751 If a relation graph is clo...
qtopval 22754 Value of the quotient topo...
qtopval2 22755 Value of the quotient topo...
elqtop 22756 Value of the quotient topo...
qtopres 22757 The quotient topology is u...
qtoptop2 22758 The quotient topology is a...
qtoptop 22759 The quotient topology is a...
elqtop2 22760 Value of the quotient topo...
qtopuni 22761 The base set of the quotie...
elqtop3 22762 Value of the quotient topo...
qtoptopon 22763 The base set of the quotie...
qtopid 22764 A quotient map is a contin...
idqtop 22765 The quotient topology indu...
qtopcmplem 22766 Lemma for ~ qtopcmp and ~ ...
qtopcmp 22767 A quotient of a compact sp...
qtopconn 22768 A quotient of a connected ...
qtopkgen 22769 A quotient of a compactly ...
basqtop 22770 An injection maps bases to...
tgqtop 22771 An injection maps generate...
qtopcld 22772 The property of being a cl...
qtopcn 22773 Universal property of a qu...
qtopss 22774 A surjective continuous fu...
qtopeu 22775 Universal property of the ...
qtoprest 22776 If ` A ` is a saturated op...
qtopomap 22777 If ` F ` is a surjective c...
qtopcmap 22778 If ` F ` is a surjective c...
imastopn 22779 The topology of an image s...
imastps 22780 The image of a topological...
qustps 22781 A quotient structure is a ...
kqfval 22782 Value of the function appe...
kqfeq 22783 Two points in the Kolmogor...
kqffn 22784 The topological indistingu...
kqval 22785 Value of the quotient topo...
kqtopon 22786 The Kolmogorov quotient is...
kqid 22787 The topological indistingu...
ist0-4 22788 The topological indistingu...
kqfvima 22789 When the image set is open...
kqsat 22790 Any open set is saturated ...
kqdisj 22791 A version of ~ imain for t...
kqcldsat 22792 Any closed set is saturate...
kqopn 22793 The topological indistingu...
kqcld 22794 The topological indistingu...
kqt0lem 22795 Lemma for ~ kqt0 . (Contr...
isr0 22796 The property " ` J ` is an...
r0cld 22797 The analogue of the T_1 ax...
regr1lem 22798 Lemma for ~ regr1 . (Cont...
regr1lem2 22799 A Kolmogorov quotient of a...
kqreglem1 22800 A Kolmogorov quotient of a...
kqreglem2 22801 If the Kolmogorov quotient...
kqnrmlem1 22802 A Kolmogorov quotient of a...
kqnrmlem2 22803 If the Kolmogorov quotient...
kqtop 22804 The Kolmogorov quotient is...
kqt0 22805 The Kolmogorov quotient is...
kqf 22806 The Kolmogorov quotient is...
r0sep 22807 The separation property of...
nrmr0reg 22808 A normal R_0 space is also...
regr1 22809 A regular space is R_1, wh...
kqreg 22810 The Kolmogorov quotient of...
kqnrm 22811 The Kolmogorov quotient of...
hmeofn 22816 The set of homeomorphisms ...
hmeofval 22817 The set of all the homeomo...
ishmeo 22818 The predicate F is a homeo...
hmeocn 22819 A homeomorphism is continu...
hmeocnvcn 22820 The converse of a homeomor...
hmeocnv 22821 The converse of a homeomor...
hmeof1o2 22822 A homeomorphism is a 1-1-o...
hmeof1o 22823 A homeomorphism is a 1-1-o...
hmeoima 22824 The image of an open set b...
hmeoopn 22825 Homeomorphisms preserve op...
hmeocld 22826 Homeomorphisms preserve cl...
hmeocls 22827 Homeomorphisms preserve cl...
hmeontr 22828 Homeomorphisms preserve in...
hmeoimaf1o 22829 The function mapping open ...
hmeores 22830 The restriction of a homeo...
hmeoco 22831 The composite of two homeo...
idhmeo 22832 The identity function is a...
hmeocnvb 22833 The converse of a homeomor...
hmeoqtop 22834 A homeomorphism is a quoti...
hmph 22835 Express the predicate ` J ...
hmphi 22836 If there is a homeomorphis...
hmphtop 22837 Reverse closure for the ho...
hmphtop1 22838 The relation "being homeom...
hmphtop2 22839 The relation "being homeom...
hmphref 22840 "Is homeomorphic to" is re...
hmphsym 22841 "Is homeomorphic to" is sy...
hmphtr 22842 "Is homeomorphic to" is tr...
hmpher 22843 "Is homeomorphic to" is an...
hmphen 22844 Homeomorphisms preserve th...
hmphsymb 22845 "Is homeomorphic to" is sy...
haushmphlem 22846 Lemma for ~ haushmph and s...
cmphmph 22847 Compactness is a topologic...
connhmph 22848 Connectedness is a topolog...
t0hmph 22849 T_0 is a topological prope...
t1hmph 22850 T_1 is a topological prope...
haushmph 22851 Hausdorff-ness is a topolo...
reghmph 22852 Regularity is a topologica...
nrmhmph 22853 Normality is a topological...
hmph0 22854 A topology homeomorphic to...
hmphdis 22855 Homeomorphisms preserve to...
hmphindis 22856 Homeomorphisms preserve to...
indishmph 22857 Equinumerous sets equipped...
hmphen2 22858 Homeomorphisms preserve th...
cmphaushmeo 22859 A continuous bijection fro...
ordthmeolem 22860 Lemma for ~ ordthmeo . (C...
ordthmeo 22861 An order isomorphism is a ...
txhmeo 22862 Lift a pair of homeomorphi...
txswaphmeolem 22863 Show inverse for the "swap...
txswaphmeo 22864 There is a homeomorphism f...
pt1hmeo 22865 The canonical homeomorphis...
ptuncnv 22866 Exhibit the converse funct...
ptunhmeo 22867 Define a homeomorphism fro...
xpstopnlem1 22868 The function ` F ` used in...
xpstps 22869 A binary product of topolo...
xpstopnlem2 22870 Lemma for ~ xpstopn . (Co...
xpstopn 22871 The topology on a binary p...
ptcmpfi 22872 A topological product of f...
xkocnv 22873 The inverse of the "curryi...
xkohmeo 22874 The Exponential Law for to...
qtopf1 22875 If a quotient map is injec...
qtophmeo 22876 If two functions on a base...
t0kq 22877 A topological space is T_0...
kqhmph 22878 A topological space is T_0...
ist1-5lem 22879 Lemma for ~ ist1-5 and sim...
t1r0 22880 A T_1 space is R_0. That ...
ist1-5 22881 A topological space is T_1...
ishaus3 22882 A topological space is Hau...
nrmreg 22883 A normal T_1 space is regu...
reghaus 22884 A regular T_0 space is Hau...
nrmhaus 22885 A T_1 normal space is Haus...
elmptrab 22886 Membership in a one-parame...
elmptrab2 22887 Membership in a one-parame...
isfbas 22888 The predicate " ` F ` is a...
fbasne0 22889 There are no empty filter ...
0nelfb 22890 No filter base contains th...
fbsspw 22891 A filter base on a set is ...
fbelss 22892 An element of the filter b...
fbdmn0 22893 The domain of a filter bas...
isfbas2 22894 The predicate " ` F ` is a...
fbasssin 22895 A filter base contains sub...
fbssfi 22896 A filter base contains sub...
fbssint 22897 A filter base contains sub...
fbncp 22898 A filter base does not con...
fbun 22899 A necessary and sufficient...
fbfinnfr 22900 No filter base containing ...
opnfbas 22901 The collection of open sup...
trfbas2 22902 Conditions for the trace o...
trfbas 22903 Conditions for the trace o...
isfil 22906 The predicate "is a filter...
filfbas 22907 A filter is a filter base....
0nelfil 22908 The empty set doesn't belo...
fileln0 22909 An element of a filter is ...
filsspw 22910 A filter is a subset of th...
filelss 22911 An element of a filter is ...
filss 22912 A filter is closed under t...
filin 22913 A filter is closed under t...
filtop 22914 The underlying set belongs...
isfil2 22915 Derive the standard axioms...
isfildlem 22916 Lemma for ~ isfild . (Con...
isfild 22917 Sufficient condition for a...
filfi 22918 A filter is closed under t...
filinn0 22919 The intersection of two el...
filintn0 22920 A filter has the finite in...
filn0 22921 The empty set is not a fil...
infil 22922 The intersection of two fi...
snfil 22923 A singleton is a filter. ...
fbasweak 22924 A filter base on any set i...
snfbas 22925 Condition for a singleton ...
fsubbas 22926 A condition for a set to g...
fbasfip 22927 A filter base has the fini...
fbunfip 22928 A helpful lemma for showin...
fgval 22929 The filter generating clas...
elfg 22930 A condition for elements o...
ssfg 22931 A filter base is a subset ...
fgss 22932 A bigger base generates a ...
fgss2 22933 A condition for a filter t...
fgfil 22934 A filter generates itself....
elfilss 22935 An element belongs to a fi...
filfinnfr 22936 No filter containing a fin...
fgcl 22937 A generated filter is a fi...
fgabs 22938 Absorption law for filter ...
neifil 22939 The neighborhoods of a non...
filunibas 22940 Recover the base set from ...
filunirn 22941 Two ways to express a filt...
filconn 22942 A filter gives rise to a c...
fbasrn 22943 Given a filter on a domain...
filuni 22944 The union of a nonempty se...
trfil1 22945 Conditions for the trace o...
trfil2 22946 Conditions for the trace o...
trfil3 22947 Conditions for the trace o...
trfilss 22948 If ` A ` is a member of th...
fgtr 22949 If ` A ` is a member of th...
trfg 22950 The trace operation and th...
trnei 22951 The trace, over a set ` A ...
cfinfil 22952 Relative complements of th...
csdfil 22953 The set of all elements wh...
supfil 22954 The supersets of a nonempt...
zfbas 22955 The set of upper sets of i...
uzrest 22956 The restriction of the set...
uzfbas 22957 The set of upper sets of i...
isufil 22962 The property of being an u...
ufilfil 22963 An ultrafilter is a filter...
ufilss 22964 For any subset of the base...
ufilb 22965 The complement is in an ul...
ufilmax 22966 Any filter finer than an u...
isufil2 22967 The maximal property of an...
ufprim 22968 An ultrafilter is a prime ...
trufil 22969 Conditions for the trace o...
filssufilg 22970 A filter is contained in s...
filssufil 22971 A filter is contained in s...
isufl 22972 Define the (strong) ultraf...
ufli 22973 Property of a set that sat...
numufl 22974 Consequence of ~ filssufil...
fiufl 22975 A finite set satisfies the...
acufl 22976 The axiom of choice implie...
ssufl 22977 If ` Y ` is a subset of ` ...
ufileu 22978 If the ultrafilter contain...
filufint 22979 A filter is equal to the i...
uffix 22980 Lemma for ~ fixufil and ~ ...
fixufil 22981 The condition describing a...
uffixfr 22982 An ultrafilter is either f...
uffix2 22983 A classification of fixed ...
uffixsn 22984 The singleton of the gener...
ufildom1 22985 An ultrafilter is generate...
uffinfix 22986 An ultrafilter containing ...
cfinufil 22987 An ultrafilter is free iff...
ufinffr 22988 An infinite subset is cont...
ufilen 22989 Any infinite set has an ul...
ufildr 22990 An ultrafilter gives rise ...
fin1aufil 22991 There are no definable fre...
fmval 23002 Introduce a function that ...
fmfil 23003 A mapping filter is a filt...
fmf 23004 Pushing-forward via a func...
fmss 23005 A finer filter produces a ...
elfm 23006 An element of a mapping fi...
elfm2 23007 An element of a mapping fi...
fmfg 23008 The image filter of a filt...
elfm3 23009 An alternate formulation o...
imaelfm 23010 An image of a filter eleme...
rnelfmlem 23011 Lemma for ~ rnelfm . (Con...
rnelfm 23012 A condition for a filter t...
fmfnfmlem1 23013 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23014 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23015 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23016 Lemma for ~ fmfnfm . (Con...
fmfnfm 23017 A filter finer than an ima...
fmufil 23018 An image filter of an ultr...
fmid 23019 The filter map applied to ...
fmco 23020 Composition of image filte...
ufldom 23021 The ultrafilter lemma prop...
flimval 23022 The set of limit points of...
elflim2 23023 The predicate "is a limit ...
flimtop 23024 Reverse closure for the li...
flimneiss 23025 A filter contains the neig...
flimnei 23026 A filter contains all of t...
flimelbas 23027 A limit point of a filter ...
flimfil 23028 Reverse closure for the li...
flimtopon 23029 Reverse closure for the li...
elflim 23030 The predicate "is a limit ...
flimss2 23031 A limit point of a filter ...
flimss1 23032 A limit point of a filter ...
neiflim 23033 A point is a limit point o...
flimopn 23034 The condition for being a ...
fbflim 23035 A condition for a filter t...
fbflim2 23036 A condition for a filter b...
flimclsi 23037 The convergent points of a...
hausflimlem 23038 If ` A ` and ` B ` are bot...
hausflimi 23039 One direction of ~ hausfli...
hausflim 23040 A condition for a topology...
flimcf 23041 Fineness is properly chara...
flimrest 23042 The set of limit points in...
flimclslem 23043 Lemma for ~ flimcls . (Co...
flimcls 23044 Closure in terms of filter...
flimsncls 23045 If ` A ` is a limit point ...
hauspwpwf1 23046 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23047 If ` X ` is a Hausdorff sp...
flffval 23048 Given a topology and a fil...
flfval 23049 Given a function from a fi...
flfnei 23050 The property of being a li...
flfneii 23051 A neighborhood of a limit ...
isflf 23052 The property of being a li...
flfelbas 23053 A limit point of a functio...
flffbas 23054 Limit points of a function...
flftg 23055 Limit points of a function...
hausflf 23056 If a function has its valu...
hausflf2 23057 If a convergent function h...
cnpflfi 23058 Forward direction of ~ cnp...
cnpflf2 23059 ` F ` is continuous at poi...
cnpflf 23060 Continuity of a function a...
cnflf 23061 A function is continuous i...
cnflf2 23062 A function is continuous i...
flfcnp 23063 A continuous function pres...
lmflf 23064 The topological limit rela...
txflf 23065 Two sequences converge in ...
flfcnp2 23066 The image of a convergent ...
fclsval 23067 The set of all cluster poi...
isfcls 23068 A cluster point of a filte...
fclsfil 23069 Reverse closure for the cl...
fclstop 23070 Reverse closure for the cl...
fclstopon 23071 Reverse closure for the cl...
isfcls2 23072 A cluster point of a filte...
fclsopn 23073 Write the cluster point co...
fclsopni 23074 An open neighborhood of a ...
fclselbas 23075 A cluster point is in the ...
fclsneii 23076 A neighborhood of a cluste...
fclssscls 23077 The set of cluster points ...
fclsnei 23078 Cluster points in terms of...
supnfcls 23079 The filter of supersets of...
fclsbas 23080 Cluster points in terms of...
fclsss1 23081 A finer topology has fewer...
fclsss2 23082 A finer filter has fewer c...
fclsrest 23083 The set of cluster points ...
fclscf 23084 Characterization of finene...
flimfcls 23085 A limit point is a cluster...
fclsfnflim 23086 A filter clusters at a poi...
flimfnfcls 23087 A filter converges to a po...
fclscmpi 23088 Forward direction of ~ fcl...
fclscmp 23089 A space is compact iff eve...
uffclsflim 23090 The cluster points of an u...
ufilcmp 23091 A space is compact iff eve...
fcfval 23092 The set of cluster points ...
isfcf 23093 The property of being a cl...
fcfnei 23094 The property of being a cl...
fcfelbas 23095 A cluster point of a funct...
fcfneii 23096 A neighborhood of a cluste...
flfssfcf 23097 A limit point of a functio...
uffcfflf 23098 If the domain filter is an...
cnpfcfi 23099 Lemma for ~ cnpfcf . If a...
cnpfcf 23100 A function ` F ` is contin...
cnfcf 23101 Continuity of a function i...
flfcntr 23102 A continuous function's va...
alexsublem 23103 Lemma for ~ alexsub . (Co...
alexsub 23104 The Alexander Subbase Theo...
alexsubb 23105 Biconditional form of the ...
alexsubALTlem1 23106 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23107 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23108 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23109 Lemma for ~ alexsubALT . ...
alexsubALT 23110 The Alexander Subbase Theo...
ptcmplem1 23111 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23112 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23113 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23114 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23115 Lemma for ~ ptcmp . (Cont...
ptcmpg 23116 Tychonoff's theorem: The ...
ptcmp 23117 Tychonoff's theorem: The ...
cnextval 23120 The function applying cont...
cnextfval 23121 The continuous extension o...
cnextrel 23122 In the general case, a con...
cnextfun 23123 If the target space is Hau...
cnextfvval 23124 The value of the continuou...
cnextf 23125 Extension by continuity. ...
cnextcn 23126 Extension by continuity. ...
cnextfres1 23127 ` F ` and its extension by...
cnextfres 23128 ` F ` and its extension by...
istmd 23133 The predicate "is a topolo...
tmdmnd 23134 A topological monoid is a ...
tmdtps 23135 A topological monoid is a ...
istgp 23136 The predicate "is a topolo...
tgpgrp 23137 A topological group is a g...
tgptmd 23138 A topological group is a t...
tgptps 23139 A topological group is a t...
tmdtopon 23140 The topology of a topologi...
tgptopon 23141 The topology of a topologi...
tmdcn 23142 In a topological monoid, t...
tgpcn 23143 In a topological group, th...
tgpinv 23144 In a topological group, th...
grpinvhmeo 23145 The inverse function in a ...
cnmpt1plusg 23146 Continuity of the group su...
cnmpt2plusg 23147 Continuity of the group su...
tmdcn2 23148 Write out the definition o...
tgpsubcn 23149 In a topological group, th...
istgp2 23150 A group with a topology is...
tmdmulg 23151 In a topological monoid, t...
tgpmulg 23152 In a topological group, th...
tgpmulg2 23153 In a topological monoid, t...
tmdgsum 23154 In a topological monoid, t...
tmdgsum2 23155 For any neighborhood ` U `...
oppgtmd 23156 The opposite of a topologi...
oppgtgp 23157 The opposite of a topologi...
distgp 23158 Any group equipped with th...
indistgp 23159 Any group equipped with th...
efmndtmd 23160 The monoid of endofunction...
tmdlactcn 23161 The left group action of e...
tgplacthmeo 23162 The left group action of e...
submtmd 23163 A submonoid of a topologic...
subgtgp 23164 A subgroup of a topologica...
symgtgp 23165 The symmetric group is a t...
subgntr 23166 A subgroup of a topologica...
opnsubg 23167 An open subgroup of a topo...
clssubg 23168 The closure of a subgroup ...
clsnsg 23169 The closure of a normal su...
cldsubg 23170 A subgroup of finite index...
tgpconncompeqg 23171 The connected component co...
tgpconncomp 23172 The identity component, th...
tgpconncompss 23173 The identity component is ...
ghmcnp 23174 A group homomorphism on to...
snclseqg 23175 The coset of the closure o...
tgphaus 23176 A topological group is Hau...
tgpt1 23177 Hausdorff and T1 are equiv...
tgpt0 23178 Hausdorff and T0 are equiv...
qustgpopn 23179 A quotient map in a topolo...
qustgplem 23180 Lemma for ~ qustgp . (Con...
qustgp 23181 The quotient of a topologi...
qustgphaus 23182 The quotient of a topologi...
prdstmdd 23183 The product of a family of...
prdstgpd 23184 The product of a family of...
tsmsfbas 23187 The collection of all sets...
tsmslem1 23188 The finite partial sums of...
tsmsval2 23189 Definition of the topologi...
tsmsval 23190 Definition of the topologi...
tsmspropd 23191 The group sum depends only...
eltsms 23192 The property of being a su...
tsmsi 23193 The property of being a su...
tsmscl 23194 A sum in a topological gro...
haustsms 23195 In a Hausdorff topological...
haustsms2 23196 In a Hausdorff topological...
tsmscls 23197 One half of ~ tgptsmscls ,...
tsmsgsum 23198 The convergent points of a...
tsmsid 23199 If a sum is finite, the us...
haustsmsid 23200 In a Hausdorff topological...
tsms0 23201 The sum of zero is zero. ...
tsmssubm 23202 Evaluate an infinite group...
tsmsres 23203 Extend an infinite group s...
tsmsf1o 23204 Re-index an infinite group...
tsmsmhm 23205 Apply a continuous group h...
tsmsadd 23206 The sum of two infinite gr...
tsmsinv 23207 Inverse of an infinite gro...
tsmssub 23208 The difference of two infi...
tgptsmscls 23209 A sum in a topological gro...
tgptsmscld 23210 The set of limit points to...
tsmssplit 23211 Split a topological group ...
tsmsxplem1 23212 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 23213 Lemma for ~ tsmsxp . (Con...
tsmsxp 23214 Write a sum over a two-dim...
istrg 23223 Express the predicate " ` ...
trgtmd 23224 The multiplicative monoid ...
istdrg 23225 Express the predicate " ` ...
tdrgunit 23226 The unit group of a topolo...
trgtgp 23227 A topological ring is a to...
trgtmd2 23228 A topological ring is a to...
trgtps 23229 A topological ring is a to...
trgring 23230 A topological ring is a ri...
trggrp 23231 A topological ring is a gr...
tdrgtrg 23232 A topological division rin...
tdrgdrng 23233 A topological division rin...
tdrgring 23234 A topological division rin...
tdrgtmd 23235 A topological division rin...
tdrgtps 23236 A topological division rin...
istdrg2 23237 A topological-ring divisio...
mulrcn 23238 The functionalization of t...
invrcn2 23239 The multiplicative inverse...
invrcn 23240 The multiplicative inverse...
cnmpt1mulr 23241 Continuity of ring multipl...
cnmpt2mulr 23242 Continuity of ring multipl...
dvrcn 23243 The division function is c...
istlm 23244 The predicate " ` W ` is a...
vscacn 23245 The scalar multiplication ...
tlmtmd 23246 A topological module is a ...
tlmtps 23247 A topological module is a ...
tlmlmod 23248 A topological module is a ...
tlmtrg 23249 The scalar ring of a topol...
tlmscatps 23250 The scalar ring of a topol...
istvc 23251 A topological vector space...
tvctdrg 23252 The scalar field of a topo...
cnmpt1vsca 23253 Continuity of scalar multi...
cnmpt2vsca 23254 Continuity of scalar multi...
tlmtgp 23255 A topological vector space...
tvctlm 23256 A topological vector space...
tvclmod 23257 A topological vector space...
tvclvec 23258 A topological vector space...
ustfn 23261 The defined uniform struct...
ustval 23262 The class of all uniform s...
isust 23263 The predicate " ` U ` is a...
ustssxp 23264 Entourages are subsets of ...
ustssel 23265 A uniform structure is upw...
ustbasel 23266 The full set is always an ...
ustincl 23267 A uniform structure is clo...
ustdiag 23268 The diagonal set is includ...
ustinvel 23269 If ` V ` is an entourage, ...
ustexhalf 23270 For each entourage ` V ` t...
ustrel 23271 The elements of uniform st...
ustfilxp 23272 A uniform structure on a n...
ustne0 23273 A uniform structure cannot...
ustssco 23274 In an uniform structure, a...
ustexsym 23275 In an uniform structure, f...
ustex2sym 23276 In an uniform structure, f...
ustex3sym 23277 In an uniform structure, f...
ustref 23278 Any element of the base se...
ust0 23279 The unique uniform structu...
ustn0 23280 The empty set is not an un...
ustund 23281 If two intersecting sets `...
ustelimasn 23282 Any point ` A ` is near en...
ustneism 23283 For a point ` A ` in ` X `...
elrnust 23284 First direction for ~ ustb...
ustbas2 23285 Second direction for ~ ust...
ustuni 23286 The set union of a uniform...
ustbas 23287 Recover the base of an uni...
ustimasn 23288 Lemma for ~ ustuqtop . (C...
trust 23289 The trace of a uniform str...
utopval 23292 The topology induced by a ...
elutop 23293 Open sets in the topology ...
utoptop 23294 The topology induced by a ...
utopbas 23295 The base of the topology i...
utoptopon 23296 Topology induced by a unif...
restutop 23297 Restriction of a topology ...
restutopopn 23298 The restriction of the top...
ustuqtoplem 23299 Lemma for ~ ustuqtop . (C...
ustuqtop0 23300 Lemma for ~ ustuqtop . (C...
ustuqtop1 23301 Lemma for ~ ustuqtop , sim...
ustuqtop2 23302 Lemma for ~ ustuqtop . (C...
ustuqtop3 23303 Lemma for ~ ustuqtop , sim...
ustuqtop4 23304 Lemma for ~ ustuqtop . (C...
ustuqtop5 23305 Lemma for ~ ustuqtop . (C...
ustuqtop 23306 For a given uniform struct...
utopsnneiplem 23307 The neighborhoods of a poi...
utopsnneip 23308 The neighborhoods of a poi...
utopsnnei 23309 Images of singletons by en...
utop2nei 23310 For any symmetrical entour...
utop3cls 23311 Relation between a topolog...
utopreg 23312 All Hausdorff uniform spac...
ussval 23319 The uniform structure on u...
ussid 23320 In case the base of the ` ...
isusp 23321 The predicate ` W ` is a u...
ressuss 23322 Value of the uniform struc...
ressust 23323 The uniform structure of a...
ressusp 23324 The restriction of a unifo...
tusval 23325 The value of the uniform s...
tuslem 23326 Lemma for ~ tusbas , ~ tus...
tuslemOLD 23327 Obsolete proof of ~ tuslem...
tusbas 23328 The base set of a construc...
tusunif 23329 The uniform structure of a...
tususs 23330 The uniform structure of a...
tustopn 23331 The topology induced by a ...
tususp 23332 A constructed uniform spac...
tustps 23333 A constructed uniform spac...
uspreg 23334 If a uniform space is Haus...
ucnval 23337 The set of all uniformly c...
isucn 23338 The predicate " ` F ` is a...
isucn2 23339 The predicate " ` F ` is a...
ucnimalem 23340 Reformulate the ` G ` func...
ucnima 23341 An equivalent statement of...
ucnprima 23342 The preimage by a uniforml...
iducn 23343 The identity is uniformly ...
cstucnd 23344 A constant function is uni...
ucncn 23345 Uniform continuity implies...
iscfilu 23348 The predicate " ` F ` is a...
cfilufbas 23349 A Cauchy filter base is a ...
cfiluexsm 23350 For a Cauchy filter base a...
fmucndlem 23351 Lemma for ~ fmucnd . (Con...
fmucnd 23352 The image of a Cauchy filt...
cfilufg 23353 The filter generated by a ...
trcfilu 23354 Condition for the trace of...
cfiluweak 23355 A Cauchy filter base is al...
neipcfilu 23356 In an uniform space, a nei...
iscusp 23359 The predicate " ` W ` is a...
cuspusp 23360 A complete uniform space i...
cuspcvg 23361 In a complete uniform spac...
iscusp2 23362 The predicate " ` W ` is a...
cnextucn 23363 Extension by continuity. ...
ucnextcn 23364 Extension by continuity. ...
ispsmet 23365 Express the predicate " ` ...
psmetdmdm 23366 Recover the base set from ...
psmetf 23367 The distance function of a...
psmetcl 23368 Closure of the distance fu...
psmet0 23369 The distance function of a...
psmettri2 23370 Triangle inequality for th...
psmetsym 23371 The distance function of a...
psmettri 23372 Triangle inequality for th...
psmetge0 23373 The distance function of a...
psmetxrge0 23374 The distance function of a...
psmetres2 23375 Restriction of a pseudomet...
psmetlecl 23376 Real closure of an extende...
distspace 23377 A set ` X ` together with ...
ismet 23384 Express the predicate " ` ...
isxmet 23385 Express the predicate " ` ...
ismeti 23386 Properties that determine ...
isxmetd 23387 Properties that determine ...
isxmet2d 23388 It is safe to only require...
metflem 23389 Lemma for ~ metf and other...
xmetf 23390 Mapping of the distance fu...
metf 23391 Mapping of the distance fu...
xmetcl 23392 Closure of the distance fu...
metcl 23393 Closure of the distance fu...
ismet2 23394 An extended metric is a me...
metxmet 23395 A metric is an extended me...
xmetdmdm 23396 Recover the base set from ...
metdmdm 23397 Recover the base set from ...
xmetunirn 23398 Two ways to express an ext...
xmeteq0 23399 The value of an extended m...
meteq0 23400 The value of a metric is z...
xmettri2 23401 Triangle inequality for th...
mettri2 23402 Triangle inequality for th...
xmet0 23403 The distance function of a...
met0 23404 The distance function of a...
xmetge0 23405 The distance function of a...
metge0 23406 The distance function of a...
xmetlecl 23407 Real closure of an extende...
xmetsym 23408 The distance function of a...
xmetpsmet 23409 An extended metric is a ps...
xmettpos 23410 The distance function of a...
metsym 23411 The distance function of a...
xmettri 23412 Triangle inequality for th...
mettri 23413 Triangle inequality for th...
xmettri3 23414 Triangle inequality for th...
mettri3 23415 Triangle inequality for th...
xmetrtri 23416 One half of the reverse tr...
xmetrtri2 23417 The reverse triangle inequ...
metrtri 23418 Reverse triangle inequalit...
xmetgt0 23419 The distance function of a...
metgt0 23420 The distance function of a...
metn0 23421 A metric space is nonempty...
xmetres2 23422 Restriction of an extended...
metreslem 23423 Lemma for ~ metres . (Con...
metres2 23424 Lemma for ~ metres . (Con...
xmetres 23425 A restriction of an extend...
metres 23426 A restriction of a metric ...
0met 23427 The empty metric. (Contri...
prdsdsf 23428 The product metric is a fu...
prdsxmetlem 23429 The product metric is an e...
prdsxmet 23430 The product metric is an e...
prdsmet 23431 The product metric is a me...
ressprdsds 23432 Restriction of a product m...
resspwsds 23433 Restriction of a power met...
imasdsf1olem 23434 Lemma for ~ imasdsf1o . (...
imasdsf1o 23435 The distance function is t...
imasf1oxmet 23436 The image of an extended m...
imasf1omet 23437 The image of a metric is a...
xpsdsfn 23438 Closure of the metric in a...
xpsdsfn2 23439 Closure of the metric in a...
xpsxmetlem 23440 Lemma for ~ xpsxmet . (Co...
xpsxmet 23441 A product metric of extend...
xpsdsval 23442 Value of the metric in a b...
xpsmet 23443 The direct product of two ...
blfvalps 23444 The value of the ball func...
blfval 23445 The value of the ball func...
blvalps 23446 The ball around a point ` ...
blval 23447 The ball around a point ` ...
elblps 23448 Membership in a ball. (Co...
elbl 23449 Membership in a ball. (Co...
elbl2ps 23450 Membership in a ball. (Co...
elbl2 23451 Membership in a ball. (Co...
elbl3ps 23452 Membership in a ball, with...
elbl3 23453 Membership in a ball, with...
blcomps 23454 Commute the arguments to t...
blcom 23455 Commute the arguments to t...
xblpnfps 23456 The infinity ball in an ex...
xblpnf 23457 The infinity ball in an ex...
blpnf 23458 The infinity ball in a sta...
bldisj 23459 Two balls are disjoint if ...
blgt0 23460 A nonempty ball implies th...
bl2in 23461 Two balls are disjoint if ...
xblss2ps 23462 One ball is contained in a...
xblss2 23463 One ball is contained in a...
blss2ps 23464 One ball is contained in a...
blss2 23465 One ball is contained in a...
blhalf 23466 A ball of radius ` R / 2 `...
blfps 23467 Mapping of a ball. (Contr...
blf 23468 Mapping of a ball. (Contr...
blrnps 23469 Membership in the range of...
blrn 23470 Membership in the range of...
xblcntrps 23471 A ball contains its center...
xblcntr 23472 A ball contains its center...
blcntrps 23473 A ball contains its center...
blcntr 23474 A ball contains its center...
xbln0 23475 A ball is nonempty iff the...
bln0 23476 A ball is not empty. (Con...
blelrnps 23477 A ball belongs to the set ...
blelrn 23478 A ball belongs to the set ...
blssm 23479 A ball is a subset of the ...
unirnblps 23480 The union of the set of ba...
unirnbl 23481 The union of the set of ba...
blin 23482 The intersection of two ba...
ssblps 23483 The size of a ball increas...
ssbl 23484 The size of a ball increas...
blssps 23485 Any point ` P ` in a ball ...
blss 23486 Any point ` P ` in a ball ...
blssexps 23487 Two ways to express the ex...
blssex 23488 Two ways to express the ex...
ssblex 23489 A nested ball exists whose...
blin2 23490 Given any two balls and a ...
blbas 23491 The balls of a metric spac...
blres 23492 A ball in a restricted met...
xmeterval 23493 Value of the "finitely sep...
xmeter 23494 The "finitely separated" r...
xmetec 23495 The equivalence classes un...
blssec 23496 A ball centered at ` P ` i...
blpnfctr 23497 The infinity ball in an ex...
xmetresbl 23498 An extended metric restric...
mopnval 23499 An open set is a subset of...
mopntopon 23500 The set of open sets of a ...
mopntop 23501 The set of open sets of a ...
mopnuni 23502 The union of all open sets...
elmopn 23503 The defining property of a...
mopnfss 23504 The family of open sets of...
mopnm 23505 The base set of a metric s...
elmopn2 23506 A defining property of an ...
mopnss 23507 An open set of a metric sp...
isxms 23508 Express the predicate " ` ...
isxms2 23509 Express the predicate " ` ...
isms 23510 Express the predicate " ` ...
isms2 23511 Express the predicate " ` ...
xmstopn 23512 The topology component of ...
mstopn 23513 The topology component of ...
xmstps 23514 An extended metric space i...
msxms 23515 A metric space is an exten...
mstps 23516 A metric space is a topolo...
xmsxmet 23517 The distance function, sui...
msmet 23518 The distance function, sui...
msf 23519 The distance function of a...
xmsxmet2 23520 The distance function, sui...
msmet2 23521 The distance function, sui...
mscl 23522 Closure of the distance fu...
xmscl 23523 Closure of the distance fu...
xmsge0 23524 The distance function in a...
xmseq0 23525 The distance between two p...
xmssym 23526 The distance function in a...
xmstri2 23527 Triangle inequality for th...
mstri2 23528 Triangle inequality for th...
xmstri 23529 Triangle inequality for th...
mstri 23530 Triangle inequality for th...
xmstri3 23531 Triangle inequality for th...
mstri3 23532 Triangle inequality for th...
msrtri 23533 Reverse triangle inequalit...
xmspropd 23534 Property deduction for an ...
mspropd 23535 Property deduction for a m...
setsmsbas 23536 The base set of a construc...
setsmsds 23537 The distance function of a...
setsmstset 23538 The topology of a construc...
setsmstopn 23539 The topology of a construc...
setsxms 23540 The constructed metric spa...
setsms 23541 The constructed metric spa...
tmsval 23542 For any metric there is an...
tmslem 23543 Lemma for ~ tmsbas , ~ tms...
tmslemOLD 23544 Obsolete version of ~ tmsl...
tmsbas 23545 The base set of a construc...
tmsds 23546 The metric of a constructe...
tmstopn 23547 The topology of a construc...
tmsxms 23548 The constructed metric spa...
tmsms 23549 The constructed metric spa...
imasf1obl 23550 The image of a metric spac...
imasf1oxms 23551 The image of a metric spac...
imasf1oms 23552 The image of a metric spac...
prdsbl 23553 A ball in the product metr...
mopni 23554 An open set of a metric sp...
mopni2 23555 An open set of a metric sp...
mopni3 23556 An open set of a metric sp...
blssopn 23557 The balls of a metric spac...
unimopn 23558 The union of a collection ...
mopnin 23559 The intersection of two op...
mopn0 23560 The empty set is an open s...
rnblopn 23561 A ball of a metric space i...
blopn 23562 A ball of a metric space i...
neibl 23563 The neighborhoods around a...
blnei 23564 A ball around a point is a...
lpbl 23565 Every ball around a limit ...
blsscls2 23566 A smaller closed ball is c...
blcld 23567 A "closed ball" in a metri...
blcls 23568 The closure of an open bal...
blsscls 23569 If two concentric balls ha...
metss 23570 Two ways of saying that me...
metequiv 23571 Two ways of saying that tw...
metequiv2 23572 If there is a sequence of ...
metss2lem 23573 Lemma for ~ metss2 . (Con...
metss2 23574 If the metric ` D ` is "st...
comet 23575 The composition of an exte...
stdbdmetval 23576 Value of the standard boun...
stdbdxmet 23577 The standard bounded metri...
stdbdmet 23578 The standard bounded metri...
stdbdbl 23579 The standard bounded metri...
stdbdmopn 23580 The standard bounded metri...
mopnex 23581 The topology generated by ...
methaus 23582 The topology generated by ...
met1stc 23583 The topology generated by ...
met2ndci 23584 A separable metric space (...
met2ndc 23585 A metric space is second-c...
metrest 23586 Two alternate formulations...
ressxms 23587 The restriction of a metri...
ressms 23588 The restriction of a metri...
prdsmslem1 23589 Lemma for ~ prdsms . The ...
prdsxmslem1 23590 Lemma for ~ prdsms . The ...
prdsxmslem2 23591 Lemma for ~ prdsxms . The...
prdsxms 23592 The indexed product struct...
prdsms 23593 The indexed product struct...
pwsxms 23594 A power of an extended met...
pwsms 23595 A power of a metric space ...
xpsxms 23596 A binary product of metric...
xpsms 23597 A binary product of metric...
tmsxps 23598 Express the product of two...
tmsxpsmopn 23599 Express the product of two...
tmsxpsval 23600 Value of the product of tw...
tmsxpsval2 23601 Value of the product of tw...
metcnp3 23602 Two ways to express that `...
metcnp 23603 Two ways to say a mapping ...
metcnp2 23604 Two ways to say a mapping ...
metcn 23605 Two ways to say a mapping ...
metcnpi 23606 Epsilon-delta property of ...
metcnpi2 23607 Epsilon-delta property of ...
metcnpi3 23608 Epsilon-delta property of ...
txmetcnp 23609 Continuity of a binary ope...
txmetcn 23610 Continuity of a binary ope...
metuval 23611 Value of the uniform struc...
metustel 23612 Define a filter base ` F `...
metustss 23613 Range of the elements of t...
metustrel 23614 Elements of the filter bas...
metustto 23615 Any two elements of the fi...
metustid 23616 The identity diagonal is i...
metustsym 23617 Elements of the filter bas...
metustexhalf 23618 For any element ` A ` of t...
metustfbas 23619 The filter base generated ...
metust 23620 The uniform structure gene...
cfilucfil 23621 Given a metric ` D ` and a...
metuust 23622 The uniform structure gene...
cfilucfil2 23623 Given a metric ` D ` and a...
blval2 23624 The ball around a point ` ...
elbl4 23625 Membership in a ball, alte...
metuel 23626 Elementhood in the uniform...
metuel2 23627 Elementhood in the uniform...
metustbl 23628 The "section" image of an ...
psmetutop 23629 The topology induced by a ...
xmetutop 23630 The topology induced by a ...
xmsusp 23631 If the uniform set of a me...
restmetu 23632 The uniform structure gene...
metucn 23633 Uniform continuity in metr...
dscmet 23634 The discrete metric on any...
dscopn 23635 The discrete metric genera...
nrmmetd 23636 Show that a group norm gen...
abvmet 23637 An absolute value ` F ` ge...
nmfval 23650 The value of the norm func...
nmval 23651 The value of the norm as t...
nmfval0 23652 The value of the norm func...
nmfval2 23653 The value of the norm func...
nmval2 23654 The value of the norm on a...
nmf2 23655 The norm on a metric group...
nmpropd 23656 Weak property deduction fo...
nmpropd2 23657 Strong property deduction ...
isngp 23658 The property of being a no...
isngp2 23659 The property of being a no...
isngp3 23660 The property of being a no...
ngpgrp 23661 A normed group is a group....
ngpms 23662 A normed group is a metric...
ngpxms 23663 A normed group is an exten...
ngptps 23664 A normed group is a topolo...
ngpmet 23665 The (induced) metric of a ...
ngpds 23666 Value of the distance func...
ngpdsr 23667 Value of the distance func...
ngpds2 23668 Write the distance between...
ngpds2r 23669 Write the distance between...
ngpds3 23670 Write the distance between...
ngpds3r 23671 Write the distance between...
ngprcan 23672 Cancel right addition insi...
ngplcan 23673 Cancel left addition insid...
isngp4 23674 Express the property of be...
ngpinvds 23675 Two elements are the same ...
ngpsubcan 23676 Cancel right subtraction i...
nmf 23677 The norm on a normed group...
nmcl 23678 The norm of a normed group...
nmge0 23679 The norm of a normed group...
nmeq0 23680 The identity is the only e...
nmne0 23681 The norm of a nonzero elem...
nmrpcl 23682 The norm of a nonzero elem...
nminv 23683 The norm of a negated elem...
nmmtri 23684 The triangle inequality fo...
nmsub 23685 The norm of the difference...
nmrtri 23686 Reverse triangle inequalit...
nm2dif 23687 Inequality for the differe...
nmtri 23688 The triangle inequality fo...
nmtri2 23689 Triangle inequality for th...
ngpi 23690 The properties of a normed...
nm0 23691 Norm of the identity eleme...
nmgt0 23692 The norm of a nonzero elem...
sgrim 23693 The induced metric on a su...
sgrimval 23694 The induced metric on a su...
subgnm 23695 The norm in a subgroup. (...
subgnm2 23696 A substructure assigns the...
subgngp 23697 A normed group restricted ...
ngptgp 23698 A normed abelian group is ...
ngppropd 23699 Property deduction for a n...
reldmtng 23700 The function ` toNrmGrp ` ...
tngval 23701 Value of the function whic...
tnglem 23702 Lemma for ~ tngbas and sim...
tnglemOLD 23703 Obsolete version of ~ tngl...
tngbas 23704 The base set of a structur...
tngbasOLD 23705 Obsolete proof of ~ tngbas...
tngplusg 23706 The group addition of a st...
tngplusgOLD 23707 Obsolete proof of ~ tngplu...
tng0 23708 The group identity of a st...
tngmulr 23709 The ring multiplication of...
tngmulrOLD 23710 Obsolete proof of ~ tngmul...
tngsca 23711 The scalar ring of a struc...
tngscaOLD 23712 Obsolete proof of ~ tngsca...
tngvsca 23713 The scalar multiplication ...
tngvscaOLD 23714 Obsolete proof of ~ tngvsc...
tngip 23715 The inner product operatio...
tngipOLD 23716 Obsolete proof of ~ tngip ...
tngds 23717 The metric function of a s...
tngdsOLD 23718 Obsolete proof of ~ tngds ...
tngtset 23719 The topology generated by ...
tngtopn 23720 The topology generated by ...
tngnm 23721 The topology generated by ...
tngngp2 23722 A norm turns a group into ...
tngngpd 23723 Derive the axioms for a no...
tngngp 23724 Derive the axioms for a no...
tnggrpr 23725 If a structure equipped wi...
tngngp3 23726 Alternate definition of a ...
nrmtngdist 23727 The augmentation of a norm...
nrmtngnrm 23728 The augmentation of a norm...
tngngpim 23729 The induced metric of a no...
isnrg 23730 A normed ring is a ring wi...
nrgabv 23731 The norm of a normed ring ...
nrgngp 23732 A normed ring is a normed ...
nrgring 23733 A normed ring is a ring. ...
nmmul 23734 The norm of a product in a...
nrgdsdi 23735 Distribute a distance calc...
nrgdsdir 23736 Distribute a distance calc...
nm1 23737 The norm of one in a nonze...
unitnmn0 23738 The norm of a unit is nonz...
nminvr 23739 The norm of an inverse in ...
nmdvr 23740 The norm of a division in ...
nrgdomn 23741 A nonzero normed ring is a...
nrgtgp 23742 A normed ring is a topolog...
subrgnrg 23743 A normed ring restricted t...
tngnrg 23744 Given any absolute value o...
isnlm 23745 A normed (left) module is ...
nmvs 23746 Defining property of a nor...
nlmngp 23747 A normed module is a norme...
nlmlmod 23748 A normed module is a left ...
nlmnrg 23749 The scalar component of a ...
nlmngp2 23750 The scalar component of a ...
nlmdsdi 23751 Distribute a distance calc...
nlmdsdir 23752 Distribute a distance calc...
nlmmul0or 23753 If a scalar product is zer...
sranlm 23754 The subring algebra over a...
nlmvscnlem2 23755 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 23756 Lemma for ~ nlmvscn . (Co...
nlmvscn 23757 The scalar multiplication ...
rlmnlm 23758 The ring module over a nor...
rlmnm 23759 The norm function in the r...
nrgtrg 23760 A normed ring is a topolog...
nrginvrcnlem 23761 Lemma for ~ nrginvrcn . C...
nrginvrcn 23762 The ring inverse function ...
nrgtdrg 23763 A normed division ring is ...
nlmtlm 23764 A normed module is a topol...
isnvc 23765 A normed vector space is j...
nvcnlm 23766 A normed vector space is a...
nvclvec 23767 A normed vector space is a...
nvclmod 23768 A normed vector space is a...
isnvc2 23769 A normed vector space is j...
nvctvc 23770 A normed vector space is a...
lssnlm 23771 A subspace of a normed mod...
lssnvc 23772 A subspace of a normed vec...
rlmnvc 23773 The ring module over a nor...
ngpocelbl 23774 Membership of an off-cente...
nmoffn 23781 The function producing ope...
reldmnghm 23782 Lemma for normed group hom...
reldmnmhm 23783 Lemma for module homomorph...
nmofval 23784 Value of the operator norm...
nmoval 23785 Value of the operator norm...
nmogelb 23786 Property of the operator n...
nmolb 23787 Any upper bound on the val...
nmolb2d 23788 Any upper bound on the val...
nmof 23789 The operator norm is a fun...
nmocl 23790 The operator norm of an op...
nmoge0 23791 The operator norm of an op...
nghmfval 23792 A normed group homomorphis...
isnghm 23793 A normed group homomorphis...
isnghm2 23794 A normed group homomorphis...
isnghm3 23795 A normed group homomorphis...
bddnghm 23796 A bounded group homomorphi...
nghmcl 23797 A normed group homomorphis...
nmoi 23798 The operator norm achieves...
nmoix 23799 The operator norm is a bou...
nmoi2 23800 The operator norm is a bou...
nmoleub 23801 The operator norm, defined...
nghmrcl1 23802 Reverse closure for a norm...
nghmrcl2 23803 Reverse closure for a norm...
nghmghm 23804 A normed group homomorphis...
nmo0 23805 The operator norm of the z...
nmoeq0 23806 The operator norm is zero ...
nmoco 23807 An upper bound on the oper...
nghmco 23808 The composition of normed ...
nmotri 23809 Triangle inequality for th...
nghmplusg 23810 The sum of two bounded lin...
0nghm 23811 The zero operator is a nor...
nmoid 23812 The operator norm of the i...
idnghm 23813 The identity operator is a...
nmods 23814 Upper bound for the distan...
nghmcn 23815 A normed group homomorphis...
isnmhm 23816 A normed module homomorphi...
nmhmrcl1 23817 Reverse closure for a norm...
nmhmrcl2 23818 Reverse closure for a norm...
nmhmlmhm 23819 A normed module homomorphi...
nmhmnghm 23820 A normed module homomorphi...
nmhmghm 23821 A normed module homomorphi...
isnmhm2 23822 A normed module homomorphi...
nmhmcl 23823 A normed module homomorphi...
idnmhm 23824 The identity operator is a...
0nmhm 23825 The zero operator is a bou...
nmhmco 23826 The composition of bounded...
nmhmplusg 23827 The sum of two bounded lin...
qtopbaslem 23828 The set of open intervals ...
qtopbas 23829 The set of open intervals ...
retopbas 23830 A basis for the standard t...
retop 23831 The standard topology on t...
uniretop 23832 The underlying set of the ...
retopon 23833 The standard topology on t...
retps 23834 The standard topological s...
iooretop 23835 Open intervals are open se...
icccld 23836 Closed intervals are close...
icopnfcld 23837 Right-unbounded closed int...
iocmnfcld 23838 Left-unbounded closed inte...
qdensere 23839 ` QQ ` is dense in the sta...
cnmetdval 23840 Value of the distance func...
cnmet 23841 The absolute value metric ...
cnxmet 23842 The absolute value metric ...
cnbl0 23843 Two ways to write the open...
cnblcld 23844 Two ways to write the clos...
cnfldms 23845 The complex number field i...
cnfldxms 23846 The complex number field i...
cnfldtps 23847 The complex number field i...
cnfldnm 23848 The norm of the field of c...
cnngp 23849 The complex numbers form a...
cnnrg 23850 The complex numbers form a...
cnfldtopn 23851 The topology of the comple...
cnfldtopon 23852 The topology of the comple...
cnfldtop 23853 The topology of the comple...
cnfldhaus 23854 The topology of the comple...
unicntop 23855 The underlying set of the ...
cnopn 23856 The set of complex numbers...
zringnrg 23857 The ring of integers is a ...
remetdval 23858 Value of the distance func...
remet 23859 The absolute value metric ...
rexmet 23860 The absolute value metric ...
bl2ioo 23861 A ball in terms of an open...
ioo2bl 23862 An open interval of reals ...
ioo2blex 23863 An open interval of reals ...
blssioo 23864 The balls of the standard ...
tgioo 23865 The topology generated by ...
qdensere2 23866 ` QQ ` is dense in ` RR ` ...
blcvx 23867 An open ball in the comple...
rehaus 23868 The standard topology on t...
tgqioo 23869 The topology generated by ...
re2ndc 23870 The standard topology on t...
resubmet 23871 The subspace topology indu...
tgioo2 23872 The standard topology on t...
rerest 23873 The subspace topology indu...
tgioo3 23874 The standard topology on t...
xrtgioo 23875 The topology on the extend...
xrrest 23876 The subspace topology indu...
xrrest2 23877 The subspace topology indu...
xrsxmet 23878 The metric on the extended...
xrsdsre 23879 The metric on the extended...
xrsblre 23880 Any ball of the metric of ...
xrsmopn 23881 The metric on the extended...
zcld 23882 The integers are a closed ...
recld2 23883 The real numbers are a clo...
zcld2 23884 The integers are a closed ...
zdis 23885 The integers are a discret...
sszcld 23886 Every subset of the intege...
reperflem 23887 A subset of the real numbe...
reperf 23888 The real numbers are a per...
cnperf 23889 The complex numbers are a ...
iccntr 23890 The interior of a closed i...
icccmplem1 23891 Lemma for ~ icccmp . (Con...
icccmplem2 23892 Lemma for ~ icccmp . (Con...
icccmplem3 23893 Lemma for ~ icccmp . (Con...
icccmp 23894 A closed interval in ` RR ...
reconnlem1 23895 Lemma for ~ reconn . Conn...
reconnlem2 23896 Lemma for ~ reconn . (Con...
reconn 23897 A subset of the reals is c...
retopconn 23898 Corollary of ~ reconn . T...
iccconn 23899 A closed interval is conne...
opnreen 23900 Every nonempty open set is...
rectbntr0 23901 A countable subset of the ...
xrge0gsumle 23902 A finite sum in the nonneg...
xrge0tsms 23903 Any finite or infinite sum...
xrge0tsms2 23904 Any finite or infinite sum...
metdcnlem 23905 The metric function of a m...
xmetdcn2 23906 The metric function of an ...
xmetdcn 23907 The metric function of an ...
metdcn2 23908 The metric function of a m...
metdcn 23909 The metric function of a m...
msdcn 23910 The metric function of a m...
cnmpt1ds 23911 Continuity of the metric f...
cnmpt2ds 23912 Continuity of the metric f...
nmcn 23913 The norm of a normed group...
ngnmcncn 23914 The norm of a normed group...
abscn 23915 The absolute value functio...
metdsval 23916 Value of the "distance to ...
metdsf 23917 The distance from a point ...
metdsge 23918 The distance from the poin...
metds0 23919 If a point is in a set, it...
metdstri 23920 A generalization of the tr...
metdsle 23921 The distance from a point ...
metdsre 23922 The distance from a point ...
metdseq0 23923 The distance from a point ...
metdscnlem 23924 Lemma for ~ metdscn . (Co...
metdscn 23925 The function ` F ` which g...
metdscn2 23926 The function ` F ` which g...
metnrmlem1a 23927 Lemma for ~ metnrm . (Con...
metnrmlem1 23928 Lemma for ~ metnrm . (Con...
metnrmlem2 23929 Lemma for ~ metnrm . (Con...
metnrmlem3 23930 Lemma for ~ metnrm . (Con...
metnrm 23931 A metric space is normal. ...
metreg 23932 A metric space is regular....
addcnlem 23933 Lemma for ~ addcn , ~ subc...
addcn 23934 Complex number addition is...
subcn 23935 Complex number subtraction...
mulcn 23936 Complex number multiplicat...
divcn 23937 Complex number division is...
cnfldtgp 23938 The complex numbers form a...
fsumcn 23939 A finite sum of functions ...
fsum2cn 23940 Version of ~ fsumcn for tw...
expcn 23941 The power function on comp...
divccn 23942 Division by a nonzero cons...
sqcn 23943 The square function on com...
iitopon 23948 The unit interval is a top...
iitop 23949 The unit interval is a top...
iiuni 23950 The base set of the unit i...
dfii2 23951 Alternate definition of th...
dfii3 23952 Alternate definition of th...
dfii4 23953 Alternate definition of th...
dfii5 23954 The unit interval expresse...
iicmp 23955 The unit interval is compa...
iiconn 23956 The unit interval is conne...
cncfval 23957 The value of the continuou...
elcncf 23958 Membership in the set of c...
elcncf2 23959 Version of ~ elcncf with a...
cncfrss 23960 Reverse closure of the con...
cncfrss2 23961 Reverse closure of the con...
cncff 23962 A continuous complex funct...
cncfi 23963 Defining property of a con...
elcncf1di 23964 Membership in the set of c...
elcncf1ii 23965 Membership in the set of c...
rescncf 23966 A continuous complex funct...
cncffvrn 23967 Change the codomain of a c...
cncfss 23968 The set of continuous func...
climcncf 23969 Image of a limit under a c...
abscncf 23970 Absolute value is continuo...
recncf 23971 Real part is continuous. ...
imcncf 23972 Imaginary part is continuo...
cjcncf 23973 Complex conjugate is conti...
mulc1cncf 23974 Multiplication by a consta...
divccncf 23975 Division by a constant is ...
cncfco 23976 The composition of two con...
cncfcompt2 23977 Composition of continuous ...
cncfmet 23978 Relate complex function co...
cncfcn 23979 Relate complex function co...
cncfcn1 23980 Relate complex function co...
cncfmptc 23981 A constant function is a c...
cncfmptid 23982 The identity function is a...
cncfmpt1f 23983 Composition of continuous ...
cncfmpt2f 23984 Composition of continuous ...
cncfmpt2ss 23985 Composition of continuous ...
addccncf 23986 Adding a constant is a con...
idcncf 23987 The identity function is a...
sub1cncf 23988 Subtracting a constant is ...
sub2cncf 23989 Subtraction from a constan...
cdivcncf 23990 Division with a constant n...
negcncf 23991 The negative function is c...
negfcncf 23992 The negative of a continuo...
abscncfALT 23993 Absolute value is continuo...
cncfcnvcn 23994 Rewrite ~ cmphaushmeo for ...
expcncf 23995 The power function on comp...
cnmptre 23996 Lemma for ~ iirevcn and re...
cnmpopc 23997 Piecewise definition of a ...
iirev 23998 Reverse the unit interval....
iirevcn 23999 The reversion function is ...
iihalf1 24000 Map the first half of ` II...
iihalf1cn 24001 The first half function is...
iihalf2 24002 Map the second half of ` I...
iihalf2cn 24003 The second half function i...
elii1 24004 Divide the unit interval i...
elii2 24005 Divide the unit interval i...
iimulcl 24006 The unit interval is close...
iimulcn 24007 Multiplication is a contin...
icoopnst 24008 A half-open interval start...
iocopnst 24009 A half-open interval endin...
icchmeo 24010 The natural bijection from...
icopnfcnv 24011 Define a bijection from ` ...
icopnfhmeo 24012 The defined bijection from...
iccpnfcnv 24013 Define a bijection from ` ...
iccpnfhmeo 24014 The defined bijection from...
xrhmeo 24015 The bijection from ` [ -u ...
xrhmph 24016 The extended reals are hom...
xrcmp 24017 The topology of the extend...
xrconn 24018 The topology of the extend...
icccvx 24019 A linear combination of tw...
oprpiece1res1 24020 Restriction to the first p...
oprpiece1res2 24021 Restriction to the second ...
cnrehmeo 24022 The canonical bijection fr...
cnheiborlem 24023 Lemma for ~ cnheibor . (C...
cnheibor 24024 Heine-Borel theorem for co...
cnllycmp 24025 The topology on the comple...
rellycmp 24026 The topology on the reals ...
bndth 24027 The Boundedness Theorem. ...
evth 24028 The Extreme Value Theorem....
evth2 24029 The Extreme Value Theorem,...
lebnumlem1 24030 Lemma for ~ lebnum . The ...
lebnumlem2 24031 Lemma for ~ lebnum . As a...
lebnumlem3 24032 Lemma for ~ lebnum . By t...
lebnum 24033 The Lebesgue number lemma,...
xlebnum 24034 Generalize ~ lebnum to ext...
lebnumii 24035 Specialize the Lebesgue nu...
ishtpy 24041 Membership in the class of...
htpycn 24042 A homotopy is a continuous...
htpyi 24043 A homotopy evaluated at it...
ishtpyd 24044 Deduction for membership i...
htpycom 24045 Given a homotopy from ` F ...
htpyid 24046 A homotopy from a function...
htpyco1 24047 Compose a homotopy with a ...
htpyco2 24048 Compose a homotopy with a ...
htpycc 24049 Concatenate two homotopies...
isphtpy 24050 Membership in the class of...
phtpyhtpy 24051 A path homotopy is a homot...
phtpycn 24052 A path homotopy is a conti...
phtpyi 24053 Membership in the class of...
phtpy01 24054 Two path-homotopic paths h...
isphtpyd 24055 Deduction for membership i...
isphtpy2d 24056 Deduction for membership i...
phtpycom 24057 Given a homotopy from ` F ...
phtpyid 24058 A homotopy from a path to ...
phtpyco2 24059 Compose a path homotopy wi...
phtpycc 24060 Concatenate two path homot...
phtpcrel 24062 The path homotopy relation...
isphtpc 24063 The relation "is path homo...
phtpcer 24064 Path homotopy is an equiva...
phtpc01 24065 Path homotopic paths have ...
reparphti 24066 Lemma for ~ reparpht . (C...
reparpht 24067 Reparametrization lemma. ...
phtpcco2 24068 Compose a path homotopy wi...
pcofval 24079 The value of the path conc...
pcoval 24080 The concatenation of two p...
pcovalg 24081 Evaluate the concatenation...
pcoval1 24082 Evaluate the concatenation...
pco0 24083 The starting point of a pa...
pco1 24084 The ending point of a path...
pcoval2 24085 Evaluate the concatenation...
pcocn 24086 The concatenation of two p...
copco 24087 The composition of a conca...
pcohtpylem 24088 Lemma for ~ pcohtpy . (Co...
pcohtpy 24089 Homotopy invariance of pat...
pcoptcl 24090 A constant function is a p...
pcopt 24091 Concatenation with a point...
pcopt2 24092 Concatenation with a point...
pcoass 24093 Order of concatenation doe...
pcorevcl 24094 Closure for a reversed pat...
pcorevlem 24095 Lemma for ~ pcorev . Prov...
pcorev 24096 Concatenation with the rev...
pcorev2 24097 Concatenation with the rev...
pcophtb 24098 The path homotopy equivale...
om1val 24099 The definition of the loop...
om1bas 24100 The base set of the loop s...
om1elbas 24101 Elementhood in the base se...
om1addcl 24102 Closure of the group opera...
om1plusg 24103 The group operation (which...
om1tset 24104 The topology of the loop s...
om1opn 24105 The topology of the loop s...
pi1val 24106 The definition of the fund...
pi1bas 24107 The base set of the fundam...
pi1blem 24108 Lemma for ~ pi1buni . (Co...
pi1buni 24109 Another way to write the l...
pi1bas2 24110 The base set of the fundam...
pi1eluni 24111 Elementhood in the base se...
pi1bas3 24112 The base set of the fundam...
pi1cpbl 24113 The group operation, loop ...
elpi1 24114 The elements of the fundam...
elpi1i 24115 The elements of the fundam...
pi1addf 24116 The group operation of ` p...
pi1addval 24117 The concatenation of two p...
pi1grplem 24118 Lemma for ~ pi1grp . (Con...
pi1grp 24119 The fundamental group is a...
pi1id 24120 The identity element of th...
pi1inv 24121 An inverse in the fundamen...
pi1xfrf 24122 Functionality of the loop ...
pi1xfrval 24123 The value of the loop tran...
pi1xfr 24124 Given a path ` F ` and its...
pi1xfrcnvlem 24125 Given a path ` F ` between...
pi1xfrcnv 24126 Given a path ` F ` between...
pi1xfrgim 24127 The mapping ` G ` between ...
pi1cof 24128 Functionality of the loop ...
pi1coval 24129 The value of the loop tran...
pi1coghm 24130 The mapping ` G ` between ...
isclm 24133 A subcomplex module is a l...
clmsca 24134 The ring of scalars ` F ` ...
clmsubrg 24135 The base set of the ring o...
clmlmod 24136 A subcomplex module is a l...
clmgrp 24137 A subcomplex module is an ...
clmabl 24138 A subcomplex module is an ...
clmring 24139 The scalar ring of a subco...
clmfgrp 24140 The scalar ring of a subco...
clm0 24141 The zero of the scalar rin...
clm1 24142 The identity of the scalar...
clmadd 24143 The addition of the scalar...
clmmul 24144 The multiplication of the ...
clmcj 24145 The conjugation of the sca...
isclmi 24146 Reverse direction of ~ isc...
clmzss 24147 The scalar ring of a subco...
clmsscn 24148 The scalar ring of a subco...
clmsub 24149 Subtraction in the scalar ...
clmneg 24150 Negation in the scalar rin...
clmneg1 24151 Minus one is in the scalar...
clmabs 24152 Norm in the scalar ring of...
clmacl 24153 Closure of ring addition f...
clmmcl 24154 Closure of ring multiplica...
clmsubcl 24155 Closure of ring subtractio...
lmhmclm 24156 The domain of a linear ope...
clmvscl 24157 Closure of scalar product ...
clmvsass 24158 Associative law for scalar...
clmvscom 24159 Commutative law for the sc...
clmvsdir 24160 Distributive law for scala...
clmvsdi 24161 Distributive law for scala...
clmvs1 24162 Scalar product with ring u...
clmvs2 24163 A vector plus itself is tw...
clm0vs 24164 Zero times a vector is the...
clmopfne 24165 The (functionalized) opera...
isclmp 24166 The predicate "is a subcom...
isclmi0 24167 Properties that determine ...
clmvneg1 24168 Minus 1 times a vector is ...
clmvsneg 24169 Multiplication of a vector...
clmmulg 24170 The group multiple functio...
clmsubdir 24171 Scalar multiplication dist...
clmpm1dir 24172 Subtractive distributive l...
clmnegneg 24173 Double negative of a vecto...
clmnegsubdi2 24174 Distribution of negative o...
clmsub4 24175 Rearrangement of 4 terms i...
clmvsrinv 24176 A vector minus itself. (C...
clmvslinv 24177 Minus a vector plus itself...
clmvsubval 24178 Value of vector subtractio...
clmvsubval2 24179 Value of vector subtractio...
clmvz 24180 Two ways to express the ne...
zlmclm 24181 The ` ZZ ` -module operati...
clmzlmvsca 24182 The scalar product of a su...
nmoleub2lem 24183 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 24184 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 24185 Lemma for ~ nmoleub2a and ...
nmoleub2a 24186 The operator norm is the s...
nmoleub2b 24187 The operator norm is the s...
nmoleub3 24188 The operator norm is the s...
nmhmcn 24189 A linear operator over a n...
cmodscexp 24190 The powers of ` _i ` belon...
cmodscmulexp 24191 The scalar product of a ve...
cvslvec 24194 A subcomplex vector space ...
cvsclm 24195 A subcomplex vector space ...
iscvs 24196 A subcomplex vector space ...
iscvsp 24197 The predicate "is a subcom...
iscvsi 24198 Properties that determine ...
cvsi 24199 The properties of a subcom...
cvsunit 24200 Unit group of the scalar r...
cvsdiv 24201 Division of the scalar rin...
cvsdivcl 24202 The scalar field of a subc...
cvsmuleqdivd 24203 An equality involving rati...
cvsdiveqd 24204 An equality involving rati...
cnlmodlem1 24205 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 24206 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 24207 Lemma 3 for ~ cnlmod . (C...
cnlmod4 24208 Lemma 4 for ~ cnlmod . (C...
cnlmod 24209 The set of complex numbers...
cnstrcvs 24210 The set of complex numbers...
cnrbas 24211 The set of complex numbers...
cnrlmod 24212 The complex left module of...
cnrlvec 24213 The complex left module of...
cncvs 24214 The complex left module of...
recvs 24215 The field of the real numb...
qcvs 24216 The field of rational numb...
zclmncvs 24217 The ring of integers as le...
isncvsngp 24218 A normed subcomplex vector...
isncvsngpd 24219 Properties that determine ...
ncvsi 24220 The properties of a normed...
ncvsprp 24221 Proportionality property o...
ncvsge0 24222 The norm of a scalar produ...
ncvsm1 24223 The norm of the opposite o...
ncvsdif 24224 The norm of the difference...
ncvspi 24225 The norm of a vector plus ...
ncvs1 24226 From any nonzero vector of...
cnrnvc 24227 The module of complex numb...
cnncvs 24228 The module of complex numb...
cnnm 24229 The norm of the normed sub...
ncvspds 24230 Value of the distance func...
cnindmet 24231 The metric induced on the ...
cnncvsaddassdemo 24232 Derive the associative law...
cnncvsmulassdemo 24233 Derive the associative law...
cnncvsabsnegdemo 24234 Derive the absolute value ...
iscph 24239 A subcomplex pre-Hilbert s...
cphphl 24240 A subcomplex pre-Hilbert s...
cphnlm 24241 A subcomplex pre-Hilbert s...
cphngp 24242 A subcomplex pre-Hilbert s...
cphlmod 24243 A subcomplex pre-Hilbert s...
cphlvec 24244 A subcomplex pre-Hilbert s...
cphnvc 24245 A subcomplex pre-Hilbert s...
cphsubrglem 24246 Lemma for ~ cphsubrg . (C...
cphreccllem 24247 Lemma for ~ cphreccl . (C...
cphsca 24248 A subcomplex pre-Hilbert s...
cphsubrg 24249 The scalar field of a subc...
cphreccl 24250 The scalar field of a subc...
cphdivcl 24251 The scalar field of a subc...
cphcjcl 24252 The scalar field of a subc...
cphsqrtcl 24253 The scalar field of a subc...
cphabscl 24254 The scalar field of a subc...
cphsqrtcl2 24255 The scalar field of a subc...
cphsqrtcl3 24256 If the scalar field of a s...
cphqss 24257 The scalar field of a subc...
cphclm 24258 A subcomplex pre-Hilbert s...
cphnmvs 24259 Norm of a scalar product. ...
cphipcl 24260 An inner product is a memb...
cphnmfval 24261 The value of the norm in a...
cphnm 24262 The square of the norm is ...
nmsq 24263 The square of the norm is ...
cphnmf 24264 The norm of a vector is a ...
cphnmcl 24265 The norm of a vector is a ...
reipcl 24266 An inner product of an ele...
ipge0 24267 The inner product in a sub...
cphipcj 24268 Conjugate of an inner prod...
cphipipcj 24269 An inner product times its...
cphorthcom 24270 Orthogonality (meaning inn...
cphip0l 24271 Inner product with a zero ...
cphip0r 24272 Inner product with a zero ...
cphipeq0 24273 The inner product of a vec...
cphdir 24274 Distributive law for inner...
cphdi 24275 Distributive law for inner...
cph2di 24276 Distributive law for inner...
cphsubdir 24277 Distributive law for inner...
cphsubdi 24278 Distributive law for inner...
cph2subdi 24279 Distributive law for inner...
cphass 24280 Associative law for inner ...
cphassr 24281 "Associative" law for seco...
cph2ass 24282 Move scalar multiplication...
cphassi 24283 Associative law for the fi...
cphassir 24284 "Associative" law for the ...
cphpyth 24285 The pythagorean theorem fo...
tcphex 24286 Lemma for ~ tcphbas and si...
tcphval 24287 Define a function to augme...
tcphbas 24288 The base set of a subcompl...
tchplusg 24289 The addition operation of ...
tcphsub 24290 The subtraction operation ...
tcphmulr 24291 The ring operation of a su...
tcphsca 24292 The scalar field of a subc...
tcphvsca 24293 The scalar multiplication ...
tcphip 24294 The inner product of a sub...
tcphtopn 24295 The topology of a subcompl...
tcphphl 24296 Augmentation of a subcompl...
tchnmfval 24297 The norm of a subcomplex p...
tcphnmval 24298 The norm of a subcomplex p...
cphtcphnm 24299 The norm of a norm-augment...
tcphds 24300 The distance of a pre-Hilb...
phclm 24301 A pre-Hilbert space whose ...
tcphcphlem3 24302 Lemma for ~ tcphcph : real...
ipcau2 24303 The Cauchy-Schwarz inequal...
tcphcphlem1 24304 Lemma for ~ tcphcph : the ...
tcphcphlem2 24305 Lemma for ~ tcphcph : homo...
tcphcph 24306 The standard definition of...
ipcau 24307 The Cauchy-Schwarz inequal...
nmparlem 24308 Lemma for ~ nmpar . (Cont...
nmpar 24309 A subcomplex pre-Hilbert s...
cphipval2 24310 Value of the inner product...
4cphipval2 24311 Four times the inner produ...
cphipval 24312 Value of the inner product...
ipcnlem2 24313 The inner product operatio...
ipcnlem1 24314 The inner product operatio...
ipcn 24315 The inner product operatio...
cnmpt1ip 24316 Continuity of inner produc...
cnmpt2ip 24317 Continuity of inner produc...
csscld 24318 A "closed subspace" in a s...
clsocv 24319 The orthogonal complement ...
cphsscph 24320 A subspace of a subcomplex...
lmmbr 24327 Express the binary relatio...
lmmbr2 24328 Express the binary relatio...
lmmbr3 24329 Express the binary relatio...
lmmcvg 24330 Convergence property of a ...
lmmbrf 24331 Express the binary relatio...
lmnn 24332 A condition that implies c...
cfilfval 24333 The set of Cauchy filters ...
iscfil 24334 The property of being a Ca...
iscfil2 24335 The property of being a Ca...
cfilfil 24336 A Cauchy filter is a filte...
cfili 24337 Property of a Cauchy filte...
cfil3i 24338 A Cauchy filter contains b...
cfilss 24339 A filter finer than a Cauc...
fgcfil 24340 The Cauchy filter conditio...
fmcfil 24341 The Cauchy filter conditio...
iscfil3 24342 A filter is Cauchy iff it ...
cfilfcls 24343 Similar to ultrafilters ( ...
caufval 24344 The set of Cauchy sequence...
iscau 24345 Express the property " ` F...
iscau2 24346 Express the property " ` F...
iscau3 24347 Express the Cauchy sequenc...
iscau4 24348 Express the property " ` F...
iscauf 24349 Express the property " ` F...
caun0 24350 A metric with a Cauchy seq...
caufpm 24351 Inclusion of a Cauchy sequ...
caucfil 24352 A Cauchy sequence predicat...
iscmet 24353 The property " ` D ` is a ...
cmetcvg 24354 The convergence of a Cauch...
cmetmet 24355 A complete metric space is...
cmetmeti 24356 A complete metric space is...
cmetcaulem 24357 Lemma for ~ cmetcau . (Co...
cmetcau 24358 The convergence of a Cauch...
iscmet3lem3 24359 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 24360 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 24361 Lemma for ~ iscmet3 . (Co...
iscmet3 24362 The property " ` D ` is a ...
iscmet2 24363 A metric ` D ` is complete...
cfilresi 24364 A Cauchy filter on a metri...
cfilres 24365 Cauchy filter on a metric ...
caussi 24366 Cauchy sequence on a metri...
causs 24367 Cauchy sequence on a metri...
equivcfil 24368 If the metric ` D ` is "st...
equivcau 24369 If the metric ` D ` is "st...
lmle 24370 If the distance from each ...
nglmle 24371 If the norm of each member...
lmclim 24372 Relate a limit on the metr...
lmclimf 24373 Relate a limit on the metr...
metelcls 24374 A point belongs to the clo...
metcld 24375 A subset of a metric space...
metcld2 24376 A subset of a metric space...
caubl 24377 Sufficient condition to en...
caublcls 24378 The convergent point of a ...
metcnp4 24379 Two ways to say a mapping ...
metcn4 24380 Two ways to say a mapping ...
iscmet3i 24381 Properties that determine ...
lmcau 24382 Every convergent sequence ...
flimcfil 24383 Every convergent filter in...
metsscmetcld 24384 A complete subspace of a m...
cmetss 24385 A subspace of a complete m...
equivcmet 24386 If two metrics are strongl...
relcmpcmet 24387 If ` D ` is a metric space...
cmpcmet 24388 A compact metric space is ...
cfilucfil3 24389 Given a metric ` D ` and a...
cfilucfil4 24390 Given a metric ` D ` and a...
cncmet 24391 The set of complex numbers...
recmet 24392 The real numbers are a com...
bcthlem1 24393 Lemma for ~ bcth . Substi...
bcthlem2 24394 Lemma for ~ bcth . The ba...
bcthlem3 24395 Lemma for ~ bcth . The li...
bcthlem4 24396 Lemma for ~ bcth . Given ...
bcthlem5 24397 Lemma for ~ bcth . The pr...
bcth 24398 Baire's Category Theorem. ...
bcth2 24399 Baire's Category Theorem, ...
bcth3 24400 Baire's Category Theorem, ...
isbn 24407 A Banach space is a normed...
bnsca 24408 The scalar field of a Bana...
bnnvc 24409 A Banach space is a normed...
bnnlm 24410 A Banach space is a normed...
bnngp 24411 A Banach space is a normed...
bnlmod 24412 A Banach space is a left m...
bncms 24413 A Banach space is a comple...
iscms 24414 A complete metric space is...
cmscmet 24415 The induced metric on a co...
bncmet 24416 The induced metric on Bana...
cmsms 24417 A complete metric space is...
cmspropd 24418 Property deduction for a c...
cmssmscld 24419 The restriction of a metri...
cmsss 24420 The restriction of a compl...
lssbn 24421 A subspace of a Banach spa...
cmetcusp1 24422 If the uniform set of a co...
cmetcusp 24423 The uniform space generate...
cncms 24424 The field of complex numbe...
cnflduss 24425 The uniform structure of t...
cnfldcusp 24426 The field of complex numbe...
resscdrg 24427 The real numbers are a sub...
cncdrg 24428 The only complete subfield...
srabn 24429 The subring algebra over a...
rlmbn 24430 The ring module over a com...
ishl 24431 The predicate "is a subcom...
hlbn 24432 Every subcomplex Hilbert s...
hlcph 24433 Every subcomplex Hilbert s...
hlphl 24434 Every subcomplex Hilbert s...
hlcms 24435 Every subcomplex Hilbert s...
hlprlem 24436 Lemma for ~ hlpr . (Contr...
hlress 24437 The scalar field of a subc...
hlpr 24438 The scalar field of a subc...
ishl2 24439 A Hilbert space is a compl...
cphssphl 24440 A Banach subspace of a sub...
cmslssbn 24441 A complete linear subspace...
cmscsscms 24442 A closed subspace of a com...
bncssbn 24443 A closed subspace of a Ban...
cssbn 24444 A complete subspace of a n...
csschl 24445 A complete subspace of a c...
cmslsschl 24446 A complete linear subspace...
chlcsschl 24447 A closed subspace of a sub...
retopn 24448 The topology of the real n...
recms 24449 The real numbers form a co...
reust 24450 The Uniform structure of t...
recusp 24451 The real numbers form a co...
rrxval 24456 Value of the generalized E...
rrxbase 24457 The base of the generalize...
rrxprds 24458 Expand the definition of t...
rrxip 24459 The inner product of the g...
rrxnm 24460 The norm of the generalize...
rrxcph 24461 Generalized Euclidean real...
rrxds 24462 The distance over generali...
rrxvsca 24463 The scalar product over ge...
rrxplusgvscavalb 24464 The result of the addition...
rrxsca 24465 The field of real numbers ...
rrx0 24466 The zero ("origin") in a g...
rrx0el 24467 The zero ("origin") in a g...
csbren 24468 Cauchy-Schwarz-Bunjakovsky...
trirn 24469 Triangle inequality in R^n...
rrxf 24470 Euclidean vectors as funct...
rrxfsupp 24471 Euclidean vectors are of f...
rrxsuppss 24472 Support of Euclidean vecto...
rrxmvallem 24473 Support of the function us...
rrxmval 24474 The value of the Euclidean...
rrxmfval 24475 The value of the Euclidean...
rrxmetlem 24476 Lemma for ~ rrxmet . (Con...
rrxmet 24477 Euclidean space is a metri...
rrxdstprj1 24478 The distance between two p...
rrxbasefi 24479 The base of the generalize...
rrxdsfi 24480 The distance over generali...
rrxmetfi 24481 Euclidean space is a metri...
rrxdsfival 24482 The value of the Euclidean...
ehlval 24483 Value of the Euclidean spa...
ehlbase 24484 The base of the Euclidean ...
ehl0base 24485 The base of the Euclidean ...
ehl0 24486 The Euclidean space of dim...
ehleudis 24487 The Euclidean distance fun...
ehleudisval 24488 The value of the Euclidean...
ehl1eudis 24489 The Euclidean distance fun...
ehl1eudisval 24490 The value of the Euclidean...
ehl2eudis 24491 The Euclidean distance fun...
ehl2eudisval 24492 The value of the Euclidean...
minveclem1 24493 Lemma for ~ minvec . The ...
minveclem4c 24494 Lemma for ~ minvec . The ...
minveclem2 24495 Lemma for ~ minvec . Any ...
minveclem3a 24496 Lemma for ~ minvec . ` D `...
minveclem3b 24497 Lemma for ~ minvec . The ...
minveclem3 24498 Lemma for ~ minvec . The ...
minveclem4a 24499 Lemma for ~ minvec . ` F `...
minveclem4b 24500 Lemma for ~ minvec . The ...
minveclem4 24501 Lemma for ~ minvec . The ...
minveclem5 24502 Lemma for ~ minvec . Disc...
minveclem6 24503 Lemma for ~ minvec . Any ...
minveclem7 24504 Lemma for ~ minvec . Sinc...
minvec 24505 Minimizing vector theorem,...
pjthlem1 24506 Lemma for ~ pjth . (Contr...
pjthlem2 24507 Lemma for ~ pjth . (Contr...
pjth 24508 Projection Theorem: Any H...
pjth2 24509 Projection Theorem with ab...
cldcss 24510 Corollary of the Projectio...
cldcss2 24511 Corollary of the Projectio...
hlhil 24512 Corollary of the Projectio...
addcncf 24513 The addition of two contin...
subcncf 24514 The addition of two contin...
mulcncf 24515 The multiplication of two ...
divcncf 24516 The quotient of two contin...
pmltpclem1 24517 Lemma for ~ pmltpc . (Con...
pmltpclem2 24518 Lemma for ~ pmltpc . (Con...
pmltpc 24519 Any function on the reals ...
ivthlem1 24520 Lemma for ~ ivth . The se...
ivthlem2 24521 Lemma for ~ ivth . Show t...
ivthlem3 24522 Lemma for ~ ivth , the int...
ivth 24523 The intermediate value the...
ivth2 24524 The intermediate value the...
ivthle 24525 The intermediate value the...
ivthle2 24526 The intermediate value the...
ivthicc 24527 The interval between any t...
evthicc 24528 Specialization of the Extr...
evthicc2 24529 Combine ~ ivthicc with ~ e...
cniccbdd 24530 A continuous function on a...
ovolfcl 24535 Closure for the interval e...
ovolfioo 24536 Unpack the interval coveri...
ovolficc 24537 Unpack the interval coveri...
ovolficcss 24538 Any (closed) interval cove...
ovolfsval 24539 The value of the interval ...
ovolfsf 24540 Closure for the interval l...
ovolsf 24541 Closure for the partial su...
ovolval 24542 The value of the outer mea...
elovolmlem 24543 Lemma for ~ elovolm and re...
elovolm 24544 Elementhood in the set ` M...
elovolmr 24545 Sufficient condition for e...
ovolmge0 24546 The set ` M ` is composed ...
ovolcl 24547 The volume of a set is an ...
ovollb 24548 The outer volume is a lowe...
ovolgelb 24549 The outer volume is the gr...
ovolge0 24550 The volume of a set is alw...
ovolf 24551 The domain and range of th...
ovollecl 24552 If an outer volume is boun...
ovolsslem 24553 Lemma for ~ ovolss . (Con...
ovolss 24554 The volume of a set is mon...
ovolsscl 24555 If a set is contained in a...
ovolssnul 24556 A subset of a nullset is n...
ovollb2lem 24557 Lemma for ~ ovollb2 . (Co...
ovollb2 24558 It is often more convenien...
ovolctb 24559 The volume of a denumerabl...
ovolq 24560 The rational numbers have ...
ovolctb2 24561 The volume of a countable ...
ovol0 24562 The empty set has 0 outer ...
ovolfi 24563 A finite set has 0 outer L...
ovolsn 24564 A singleton has 0 outer Le...
ovolunlem1a 24565 Lemma for ~ ovolun . (Con...
ovolunlem1 24566 Lemma for ~ ovolun . (Con...
ovolunlem2 24567 Lemma for ~ ovolun . (Con...
ovolun 24568 The Lebesgue outer measure...
ovolunnul 24569 Adding a nullset does not ...
ovolfiniun 24570 The Lebesgue outer measure...
ovoliunlem1 24571 Lemma for ~ ovoliun . (Co...
ovoliunlem2 24572 Lemma for ~ ovoliun . (Co...
ovoliunlem3 24573 Lemma for ~ ovoliun . (Co...
ovoliun 24574 The Lebesgue outer measure...
ovoliun2 24575 The Lebesgue outer measure...
ovoliunnul 24576 A countable union of nulls...
shft2rab 24577 If ` B ` is a shift of ` A...
ovolshftlem1 24578 Lemma for ~ ovolshft . (C...
ovolshftlem2 24579 Lemma for ~ ovolshft . (C...
ovolshft 24580 The Lebesgue outer measure...
sca2rab 24581 If ` B ` is a scale of ` A...
ovolscalem1 24582 Lemma for ~ ovolsca . (Co...
ovolscalem2 24583 Lemma for ~ ovolshft . (C...
ovolsca 24584 The Lebesgue outer measure...
ovolicc1 24585 The measure of a closed in...
ovolicc2lem1 24586 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 24587 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 24588 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 24589 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 24590 Lemma for ~ ovolicc2 . (C...
ovolicc2 24591 The measure of a closed in...
ovolicc 24592 The measure of a closed in...
ovolicopnf 24593 The measure of a right-unb...
ovolre 24594 The measure of the real nu...
ismbl 24595 The predicate " ` A ` is L...
ismbl2 24596 From ~ ovolun , it suffice...
volres 24597 A self-referencing abbrevi...
volf 24598 The domain and range of th...
mblvol 24599 The volume of a measurable...
mblss 24600 A measurable set is a subs...
mblsplit 24601 The defining property of m...
volss 24602 The Lebesgue measure is mo...
cmmbl 24603 The complement of a measur...
nulmbl 24604 A nullset is measurable. ...
nulmbl2 24605 A set of outer measure zer...
unmbl 24606 A union of measurable sets...
shftmbl 24607 A shift of a measurable se...
0mbl 24608 The empty set is measurabl...
rembl 24609 The set of all real number...
unidmvol 24610 The union of the Lebesgue ...
inmbl 24611 An intersection of measura...
difmbl 24612 A difference of measurable...
finiunmbl 24613 A finite union of measurab...
volun 24614 The Lebesgue measure funct...
volinun 24615 Addition of non-disjoint s...
volfiniun 24616 The volume of a disjoint f...
iundisj 24617 Rewrite a countable union ...
iundisj2 24618 A disjoint union is disjoi...
voliunlem1 24619 Lemma for ~ voliun . (Con...
voliunlem2 24620 Lemma for ~ voliun . (Con...
voliunlem3 24621 Lemma for ~ voliun . (Con...
iunmbl 24622 The measurable sets are cl...
voliun 24623 The Lebesgue measure funct...
volsuplem 24624 Lemma for ~ volsup . (Con...
volsup 24625 The volume of the limit of...
iunmbl2 24626 The measurable sets are cl...
ioombl1lem1 24627 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 24628 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 24629 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 24630 Lemma for ~ ioombl1 . (Co...
ioombl1 24631 An open right-unbounded in...
icombl1 24632 A closed unbounded-above i...
icombl 24633 A closed-below, open-above...
ioombl 24634 An open real interval is m...
iccmbl 24635 A closed real interval is ...
iccvolcl 24636 A closed real interval has...
ovolioo 24637 The measure of an open int...
volioo 24638 The measure of an open int...
ioovolcl 24639 An open real interval has ...
ovolfs2 24640 Alternative expression for...
ioorcl2 24641 An open interval with fini...
ioorf 24642 Define a function from ope...
ioorval 24643 Define a function from ope...
ioorinv2 24644 The function ` F ` is an "...
ioorinv 24645 The function ` F ` is an "...
ioorcl 24646 The function ` F ` does no...
uniiccdif 24647 A union of closed interval...
uniioovol 24648 A disjoint union of open i...
uniiccvol 24649 An almost-disjoint union o...
uniioombllem1 24650 Lemma for ~ uniioombl . (...
uniioombllem2a 24651 Lemma for ~ uniioombl . (...
uniioombllem2 24652 Lemma for ~ uniioombl . (...
uniioombllem3a 24653 Lemma for ~ uniioombl . (...
uniioombllem3 24654 Lemma for ~ uniioombl . (...
uniioombllem4 24655 Lemma for ~ uniioombl . (...
uniioombllem5 24656 Lemma for ~ uniioombl . (...
uniioombllem6 24657 Lemma for ~ uniioombl . (...
uniioombl 24658 A disjoint union of open i...
uniiccmbl 24659 An almost-disjoint union o...
dyadf 24660 The function ` F ` returns...
dyadval 24661 Value of the dyadic ration...
dyadovol 24662 Volume of a dyadic rationa...
dyadss 24663 Two closed dyadic rational...
dyaddisjlem 24664 Lemma for ~ dyaddisj . (C...
dyaddisj 24665 Two closed dyadic rational...
dyadmaxlem 24666 Lemma for ~ dyadmax . (Co...
dyadmax 24667 Any nonempty set of dyadic...
dyadmbllem 24668 Lemma for ~ dyadmbl . (Co...
dyadmbl 24669 Any union of dyadic ration...
opnmbllem 24670 Lemma for ~ opnmbl . (Con...
opnmbl 24671 All open sets are measurab...
opnmblALT 24672 All open sets are measurab...
subopnmbl 24673 Sets which are open in a m...
volsup2 24674 The volume of ` A ` is the...
volcn 24675 The function formed by res...
volivth 24676 The Intermediate Value The...
vitalilem1 24677 Lemma for ~ vitali . (Con...
vitalilem2 24678 Lemma for ~ vitali . (Con...
vitalilem3 24679 Lemma for ~ vitali . (Con...
vitalilem4 24680 Lemma for ~ vitali . (Con...
vitalilem5 24681 Lemma for ~ vitali . (Con...
vitali 24682 If the reals can be well-o...
ismbf1 24693 The predicate " ` F ` is a...
mbff 24694 A measurable function is a...
mbfdm 24695 The domain of a measurable...
mbfconstlem 24696 Lemma for ~ mbfconst and r...
ismbf 24697 The predicate " ` F ` is a...
ismbfcn 24698 A complex function is meas...
mbfima 24699 Definitional property of a...
mbfimaicc 24700 The preimage of any closed...
mbfimasn 24701 The preimage of a point un...
mbfconst 24702 A constant function is mea...
mbf0 24703 The empty function is meas...
mbfid 24704 The identity function is m...
mbfmptcl 24705 Lemma for the ` MblFn ` pr...
mbfdm2 24706 The domain of a measurable...
ismbfcn2 24707 A complex function is meas...
ismbfd 24708 Deduction to prove measura...
ismbf2d 24709 Deduction to prove measura...
mbfeqalem1 24710 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 24711 Lemma for ~ mbfeqa . (Con...
mbfeqa 24712 If two functions are equal...
mbfres 24713 The restriction of a measu...
mbfres2 24714 Measurability of a piecewi...
mbfss 24715 Change the domain of a mea...
mbfmulc2lem 24716 Multiplication by a consta...
mbfmulc2re 24717 Multiplication by a consta...
mbfmax 24718 The maximum of two functio...
mbfneg 24719 The negative of a measurab...
mbfpos 24720 The positive part of a mea...
mbfposr 24721 Converse to ~ mbfpos . (C...
mbfposb 24722 A function is measurable i...
ismbf3d 24723 Simplified form of ~ ismbf...
mbfimaopnlem 24724 Lemma for ~ mbfimaopn . (...
mbfimaopn 24725 The preimage of any open s...
mbfimaopn2 24726 The preimage of any set op...
cncombf 24727 The composition of a conti...
cnmbf 24728 A continuous function is m...
mbfaddlem 24729 The sum of two measurable ...
mbfadd 24730 The sum of two measurable ...
mbfsub 24731 The difference of two meas...
mbfmulc2 24732 A complex constant times a...
mbfsup 24733 The supremum of a sequence...
mbfinf 24734 The infimum of a sequence ...
mbflimsup 24735 The limit supremum of a se...
mbflimlem 24736 The pointwise limit of a s...
mbflim 24737 The pointwise limit of a s...
0pval 24740 The zero function evaluate...
0plef 24741 Two ways to say that the f...
0pledm 24742 Adjust the domain of the l...
isi1f 24743 The predicate " ` F ` is a...
i1fmbf 24744 Simple functions are measu...
i1ff 24745 A simple function is a fun...
i1frn 24746 A simple function has fini...
i1fima 24747 Any preimage of a simple f...
i1fima2 24748 Any preimage of a simple f...
i1fima2sn 24749 Preimage of a singleton. ...
i1fd 24750 A simplified set of assump...
i1f0rn 24751 Any simple function takes ...
itg1val 24752 The value of the integral ...
itg1val2 24753 The value of the integral ...
itg1cl 24754 Closure of the integral on...
itg1ge0 24755 Closure of the integral on...
i1f0 24756 The zero function is simpl...
itg10 24757 The zero function has zero...
i1f1lem 24758 Lemma for ~ i1f1 and ~ itg...
i1f1 24759 Base case simple functions...
itg11 24760 The integral of an indicat...
itg1addlem1 24761 Decompose a preimage, whic...
i1faddlem 24762 Decompose the preimage of ...
i1fmullem 24763 Decompose the preimage of ...
i1fadd 24764 The sum of two simple func...
i1fmul 24765 The pointwise product of t...
itg1addlem2 24766 Lemma for ~ itg1add . The...
itg1addlem3 24767 Lemma for ~ itg1add . (Co...
itg1addlem4 24768 Lemma for ~ itg1add . (Co...
itg1addlem4OLD 24769 Obsolete version of ~ itg1...
itg1addlem5 24770 Lemma for ~ itg1add . (Co...
itg1add 24771 The integral of a sum of s...
i1fmulclem 24772 Decompose the preimage of ...
i1fmulc 24773 A nonnegative constant tim...
itg1mulc 24774 The integral of a constant...
i1fres 24775 The "restriction" of a sim...
i1fpos 24776 The positive part of a sim...
i1fposd 24777 Deduction form of ~ i1fpos...
i1fsub 24778 The difference of two simp...
itg1sub 24779 The integral of a differen...
itg10a 24780 The integral of a simple f...
itg1ge0a 24781 The integral of an almost ...
itg1lea 24782 Approximate version of ~ i...
itg1le 24783 If one simple function dom...
itg1climres 24784 Restricting the simple fun...
mbfi1fseqlem1 24785 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 24786 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 24787 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 24788 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 24789 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 24790 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 24791 A characterization of meas...
mbfi1flimlem 24792 Lemma for ~ mbfi1flim . (...
mbfi1flim 24793 Any real measurable functi...
mbfmullem2 24794 Lemma for ~ mbfmul . (Con...
mbfmullem 24795 Lemma for ~ mbfmul . (Con...
mbfmul 24796 The product of two measura...
itg2lcl 24797 The set of lower sums is a...
itg2val 24798 Value of the integral on n...
itg2l 24799 Elementhood in the set ` L...
itg2lr 24800 Sufficient condition for e...
xrge0f 24801 A real function is a nonne...
itg2cl 24802 The integral of a nonnegat...
itg2ub 24803 The integral of a nonnegat...
itg2leub 24804 Any upper bound on the int...
itg2ge0 24805 The integral of a nonnegat...
itg2itg1 24806 The integral of a nonnegat...
itg20 24807 The integral of the zero f...
itg2lecl 24808 If an ` S.2 ` integral is ...
itg2le 24809 If one function dominates ...
itg2const 24810 Integral of a constant fun...
itg2const2 24811 When the base set of a con...
itg2seq 24812 Definitional property of t...
itg2uba 24813 Approximate version of ~ i...
itg2lea 24814 Approximate version of ~ i...
itg2eqa 24815 Approximate equality of in...
itg2mulclem 24816 Lemma for ~ itg2mulc . (C...
itg2mulc 24817 The integral of a nonnegat...
itg2splitlem 24818 Lemma for ~ itg2split . (...
itg2split 24819 The ` S.2 ` integral split...
itg2monolem1 24820 Lemma for ~ itg2mono . We...
itg2monolem2 24821 Lemma for ~ itg2mono . (C...
itg2monolem3 24822 Lemma for ~ itg2mono . (C...
itg2mono 24823 The Monotone Convergence T...
itg2i1fseqle 24824 Subject to the conditions ...
itg2i1fseq 24825 Subject to the conditions ...
itg2i1fseq2 24826 In an extension to the res...
itg2i1fseq3 24827 Special case of ~ itg2i1fs...
itg2addlem 24828 Lemma for ~ itg2add . (Co...
itg2add 24829 The ` S.2 ` integral is li...
itg2gt0 24830 If the function ` F ` is s...
itg2cnlem1 24831 Lemma for ~ itgcn . (Cont...
itg2cnlem2 24832 Lemma for ~ itgcn . (Cont...
itg2cn 24833 A sort of absolute continu...
ibllem 24834 Conditioned equality theor...
isibl 24835 The predicate " ` F ` is i...
isibl2 24836 The predicate " ` F ` is i...
iblmbf 24837 An integrable function is ...
iblitg 24838 If a function is integrabl...
dfitg 24839 Evaluate the class substit...
itgex 24840 An integral is a set. (Co...
itgeq1f 24841 Equality theorem for an in...
itgeq1 24842 Equality theorem for an in...
nfitg1 24843 Bound-variable hypothesis ...
nfitg 24844 Bound-variable hypothesis ...
cbvitg 24845 Change bound variable in a...
cbvitgv 24846 Change bound variable in a...
itgeq2 24847 Equality theorem for an in...
itgresr 24848 The domain of an integral ...
itg0 24849 The integral of anything o...
itgz 24850 The integral of zero on an...
itgeq2dv 24851 Equality theorem for an in...
itgmpt 24852 Change bound variable in a...
itgcl 24853 The integral of an integra...
itgvallem 24854 Substitution lemma. (Cont...
itgvallem3 24855 Lemma for ~ itgposval and ...
ibl0 24856 The zero function is integ...
iblcnlem1 24857 Lemma for ~ iblcnlem . (C...
iblcnlem 24858 Expand out the universal q...
itgcnlem 24859 Expand out the sum in ~ df...
iblrelem 24860 Integrability of a real fu...
iblposlem 24861 Lemma for ~ iblpos . (Con...
iblpos 24862 Integrability of a nonnega...
iblre 24863 Integrability of a real fu...
itgrevallem1 24864 Lemma for ~ itgposval and ...
itgposval 24865 The integral of a nonnegat...
itgreval 24866 Decompose the integral of ...
itgrecl 24867 Real closure of an integra...
iblcn 24868 Integrability of a complex...
itgcnval 24869 Decompose the integral of ...
itgre 24870 Real part of an integral. ...
itgim 24871 Imaginary part of an integ...
iblneg 24872 The negative of an integra...
itgneg 24873 Negation of an integral. ...
iblss 24874 A subset of an integrable ...
iblss2 24875 Change the domain of an in...
itgitg2 24876 Transfer an integral using...
i1fibl 24877 A simple function is integ...
itgitg1 24878 Transfer an integral using...
itgle 24879 Monotonicity of an integra...
itgge0 24880 The integral of a positive...
itgss 24881 Expand the set of an integ...
itgss2 24882 Expand the set of an integ...
itgeqa 24883 Approximate equality of in...
itgss3 24884 Expand the set of an integ...
itgioo 24885 Equality of integrals on o...
itgless 24886 Expand the integral of a n...
iblconst 24887 A constant function is int...
itgconst 24888 Integral of a constant fun...
ibladdlem 24889 Lemma for ~ ibladd . (Con...
ibladd 24890 Add two integrals over the...
iblsub 24891 Subtract two integrals ove...
itgaddlem1 24892 Lemma for ~ itgadd . (Con...
itgaddlem2 24893 Lemma for ~ itgadd . (Con...
itgadd 24894 Add two integrals over the...
itgsub 24895 Subtract two integrals ove...
itgfsum 24896 Take a finite sum of integ...
iblabslem 24897 Lemma for ~ iblabs . (Con...
iblabs 24898 The absolute value of an i...
iblabsr 24899 A measurable function is i...
iblmulc2 24900 Multiply an integral by a ...
itgmulc2lem1 24901 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 24902 Lemma for ~ itgmulc2 : rea...
itgmulc2 24903 Multiply an integral by a ...
itgabs 24904 The triangle inequality fo...
itgsplit 24905 The ` S. ` integral splits...
itgspliticc 24906 The ` S. ` integral splits...
itgsplitioo 24907 The ` S. ` integral splits...
bddmulibl 24908 A bounded function times a...
bddibl 24909 A bounded function is inte...
cniccibl 24910 A continuous function on a...
bddiblnc 24911 Choice-free proof of ~ bdd...
cnicciblnc 24912 Choice-free proof of ~ cni...
itggt0 24913 The integral of a strictly...
itgcn 24914 Transfer ~ itg2cn to the f...
ditgeq1 24917 Equality theorem for the d...
ditgeq2 24918 Equality theorem for the d...
ditgeq3 24919 Equality theorem for the d...
ditgeq3dv 24920 Equality theorem for the d...
ditgex 24921 A directed integral is a s...
ditg0 24922 Value of the directed inte...
cbvditg 24923 Change bound variable in a...
cbvditgv 24924 Change bound variable in a...
ditgpos 24925 Value of the directed inte...
ditgneg 24926 Value of the directed inte...
ditgcl 24927 Closure of a directed inte...
ditgswap 24928 Reverse a directed integra...
ditgsplitlem 24929 Lemma for ~ ditgsplit . (...
ditgsplit 24930 This theorem is the raison...
reldv 24939 The derivative function is...
limcvallem 24940 Lemma for ~ ellimc . (Con...
limcfval 24941 Value and set bounds on th...
ellimc 24942 Value of the limit predica...
limcrcl 24943 Reverse closure for the li...
limccl 24944 Closure of the limit opera...
limcdif 24945 It suffices to consider fu...
ellimc2 24946 Write the definition of a ...
limcnlp 24947 If ` B ` is not a limit po...
ellimc3 24948 Write the epsilon-delta de...
limcflflem 24949 Lemma for ~ limcflf . (Co...
limcflf 24950 The limit operator can be ...
limcmo 24951 If ` B ` is a limit point ...
limcmpt 24952 Express the limit operator...
limcmpt2 24953 Express the limit operator...
limcresi 24954 Any limit of ` F ` is also...
limcres 24955 If ` B ` is an interior po...
cnplimc 24956 A function is continuous a...
cnlimc 24957 ` F ` is a continuous func...
cnlimci 24958 If ` F ` is a continuous f...
cnmptlimc 24959 If ` F ` is a continuous f...
limccnp 24960 If the limit of ` F ` at `...
limccnp2 24961 The image of a convergent ...
limcco 24962 Composition of two limits....
limciun 24963 A point is a limit of ` F ...
limcun 24964 A point is a limit of ` F ...
dvlem 24965 Closure for a difference q...
dvfval 24966 Value and set bounds on th...
eldv 24967 The differentiable predica...
dvcl 24968 The derivative function ta...
dvbssntr 24969 The set of differentiable ...
dvbss 24970 The set of differentiable ...
dvbsss 24971 The set of differentiable ...
perfdvf 24972 The derivative is a functi...
recnprss 24973 Both ` RR ` and ` CC ` are...
recnperf 24974 Both ` RR ` and ` CC ` are...
dvfg 24975 Explicitly write out the f...
dvf 24976 The derivative is a functi...
dvfcn 24977 The derivative is a functi...
dvreslem 24978 Lemma for ~ dvres . (Cont...
dvres2lem 24979 Lemma for ~ dvres2 . (Con...
dvres 24980 Restriction of a derivativ...
dvres2 24981 Restriction of the base se...
dvres3 24982 Restriction of a complex d...
dvres3a 24983 Restriction of a complex d...
dvidlem 24984 Lemma for ~ dvid and ~ dvc...
dvmptresicc 24985 Derivative of a function r...
dvconst 24986 Derivative of a constant f...
dvid 24987 Derivative of the identity...
dvcnp 24988 The difference quotient is...
dvcnp2 24989 A function is continuous a...
dvcn 24990 A differentiable function ...
dvnfval 24991 Value of the iterated deri...
dvnff 24992 The iterated derivative is...
dvn0 24993 Zero times iterated deriva...
dvnp1 24994 Successor iterated derivat...
dvn1 24995 One times iterated derivat...
dvnf 24996 The N-times derivative is ...
dvnbss 24997 The set of N-times differe...
dvnadd 24998 The ` N ` -th derivative o...
dvn2bss 24999 An N-times differentiable ...
dvnres 25000 Multiple derivative versio...
cpnfval 25001 Condition for n-times cont...
fncpn 25002 The ` C^n ` object is a fu...
elcpn 25003 Condition for n-times cont...
cpnord 25004 ` C^n ` conditions are ord...
cpncn 25005 A ` C^n ` function is cont...
cpnres 25006 The restriction of a ` C^n...
dvaddbr 25007 The sum rule for derivativ...
dvmulbr 25008 The product rule for deriv...
dvadd 25009 The sum rule for derivativ...
dvmul 25010 The product rule for deriv...
dvaddf 25011 The sum rule for everywher...
dvmulf 25012 The product rule for every...
dvcmul 25013 The product rule when one ...
dvcmulf 25014 The product rule when one ...
dvcobr 25015 The chain rule for derivat...
dvco 25016 The chain rule for derivat...
dvcof 25017 The chain rule for everywh...
dvcjbr 25018 The derivative of the conj...
dvcj 25019 The derivative of the conj...
dvfre 25020 The derivative of a real f...
dvnfre 25021 The ` N ` -th derivative o...
dvexp 25022 Derivative of a power func...
dvexp2 25023 Derivative of an exponenti...
dvrec 25024 Derivative of the reciproc...
dvmptres3 25025 Function-builder for deriv...
dvmptid 25026 Function-builder for deriv...
dvmptc 25027 Function-builder for deriv...
dvmptcl 25028 Closure lemma for ~ dvmptc...
dvmptadd 25029 Function-builder for deriv...
dvmptmul 25030 Function-builder for deriv...
dvmptres2 25031 Function-builder for deriv...
dvmptres 25032 Function-builder for deriv...
dvmptcmul 25033 Function-builder for deriv...
dvmptdivc 25034 Function-builder for deriv...
dvmptneg 25035 Function-builder for deriv...
dvmptsub 25036 Function-builder for deriv...
dvmptcj 25037 Function-builder for deriv...
dvmptre 25038 Function-builder for deriv...
dvmptim 25039 Function-builder for deriv...
dvmptntr 25040 Function-builder for deriv...
dvmptco 25041 Function-builder for deriv...
dvrecg 25042 Derivative of the reciproc...
dvmptdiv 25043 Function-builder for deriv...
dvmptfsum 25044 Function-builder for deriv...
dvcnvlem 25045 Lemma for ~ dvcnvre . (Co...
dvcnv 25046 A weak version of ~ dvcnvr...
dvexp3 25047 Derivative of an exponenti...
dveflem 25048 Derivative of the exponent...
dvef 25049 Derivative of the exponent...
dvsincos 25050 Derivative of the sine and...
dvsin 25051 Derivative of the sine fun...
dvcos 25052 Derivative of the cosine f...
dvferm1lem 25053 Lemma for ~ dvferm . (Con...
dvferm1 25054 One-sided version of ~ dvf...
dvferm2lem 25055 Lemma for ~ dvferm . (Con...
dvferm2 25056 One-sided version of ~ dvf...
dvferm 25057 Fermat's theorem on statio...
rollelem 25058 Lemma for ~ rolle . (Cont...
rolle 25059 Rolle's theorem. If ` F `...
cmvth 25060 Cauchy's Mean Value Theore...
mvth 25061 The Mean Value Theorem. I...
dvlip 25062 A function with derivative...
dvlipcn 25063 A complex function with de...
dvlip2 25064 Combine the results of ~ d...
c1liplem1 25065 Lemma for ~ c1lip1 . (Con...
c1lip1 25066 C^1 functions are Lipschit...
c1lip2 25067 C^1 functions are Lipschit...
c1lip3 25068 C^1 functions are Lipschit...
dveq0 25069 If a continuous function h...
dv11cn 25070 Two functions defined on a...
dvgt0lem1 25071 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25072 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25073 A function on a closed int...
dvlt0 25074 A function on a closed int...
dvge0 25075 A function on a closed int...
dvle 25076 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25077 Lemma for ~ dvivth . (Con...
dvivthlem2 25078 Lemma for ~ dvivth . (Con...
dvivth 25079 Darboux' theorem, or the i...
dvne0 25080 A function on a closed int...
dvne0f1 25081 A function on a closed int...
lhop1lem 25082 Lemma for ~ lhop1 . (Cont...
lhop1 25083 L'Hôpital's Rule for...
lhop2 25084 L'Hôpital's Rule for...
lhop 25085 L'Hôpital's Rule. I...
dvcnvrelem1 25086 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25087 Lemma for ~ dvcnvre . (Co...
dvcnvre 25088 The derivative rule for in...
dvcvx 25089 A real function with stric...
dvfsumle 25090 Compare a finite sum to an...
dvfsumge 25091 Compare a finite sum to an...
dvfsumabs 25092 Compare a finite sum to an...
dvmptrecl 25093 Real closure of a derivati...
dvfsumrlimf 25094 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25095 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25096 Lemma for ~ dvfsumrlim . ...
dvfsumlem3 25097 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25098 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25099 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25100 Compare a finite sum to an...
dvfsumrlim2 25101 Compare a finite sum to an...
dvfsumrlim3 25102 Conjoin the statements of ...
dvfsum2 25103 The reverse of ~ dvfsumrli...
ftc1lem1 25104 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 25105 Lemma for ~ ftc1 . (Contr...
ftc1a 25106 The Fundamental Theorem of...
ftc1lem3 25107 Lemma for ~ ftc1 . (Contr...
ftc1lem4 25108 Lemma for ~ ftc1 . (Contr...
ftc1lem5 25109 Lemma for ~ ftc1 . (Contr...
ftc1lem6 25110 Lemma for ~ ftc1 . (Contr...
ftc1 25111 The Fundamental Theorem of...
ftc1cn 25112 Strengthen the assumptions...
ftc2 25113 The Fundamental Theorem of...
ftc2ditglem 25114 Lemma for ~ ftc2ditg . (C...
ftc2ditg 25115 Directed integral analogue...
itgparts 25116 Integration by parts. If ...
itgsubstlem 25117 Lemma for ~ itgsubst . (C...
itgsubst 25118 Integration by ` u ` -subs...
itgpowd 25119 The integral of a monomial...
reldmmdeg 25124 Multivariate degree is a b...
tdeglem1 25125 Functionality of the total...
tdeglem1OLD 25126 Obsolete version of ~ tdeg...
tdeglem3 25127 Additivity of the total de...
tdeglem3OLD 25128 Obsolete version of ~ tdeg...
tdeglem4 25129 There is only one multi-in...
tdeglem4OLD 25130 Obsolete version of ~ tdeg...
tdeglem2 25131 Simplification of total de...
mdegfval 25132 Value of the multivariate ...
mdegval 25133 Value of the multivariate ...
mdegleb 25134 Property of being of limit...
mdeglt 25135 If there is an upper limit...
mdegldg 25136 A nonzero polynomial has s...
mdegxrcl 25137 Closure of polynomial degr...
mdegxrf 25138 Functionality of polynomia...
mdegcl 25139 Sharp closure for multivar...
mdeg0 25140 Degree of the zero polynom...
mdegnn0cl 25141 Degree of a nonzero polyno...
degltlem1 25142 Theorem on arithmetic of e...
degltp1le 25143 Theorem on arithmetic of e...
mdegaddle 25144 The degree of a sum is at ...
mdegvscale 25145 The degree of a scalar mul...
mdegvsca 25146 The degree of a scalar mul...
mdegle0 25147 A polynomial has nonpositi...
mdegmullem 25148 Lemma for ~ mdegmulle2 . ...
mdegmulle2 25149 The multivariate degree of...
deg1fval 25150 Relate univariate polynomi...
deg1xrf 25151 Functionality of univariat...
deg1xrcl 25152 Closure of univariate poly...
deg1cl 25153 Sharp closure of univariat...
mdegpropd 25154 Property deduction for pol...
deg1fvi 25155 Univariate polynomial degr...
deg1propd 25156 Property deduction for pol...
deg1z 25157 Degree of the zero univari...
deg1nn0cl 25158 Degree of a nonzero univar...
deg1n0ima 25159 Degree image of a set of p...
deg1nn0clb 25160 A polynomial is nonzero if...
deg1lt0 25161 A polynomial is zero iff i...
deg1ldg 25162 A nonzero univariate polyn...
deg1ldgn 25163 An index at which a polyno...
deg1ldgdomn 25164 A nonzero univariate polyn...
deg1leb 25165 Property of being of limit...
deg1val 25166 Value of the univariate de...
deg1lt 25167 If the degree of a univari...
deg1ge 25168 Conversely, a nonzero coef...
coe1mul3 25169 The coefficient vector of ...
coe1mul4 25170 Value of the "leading" coe...
deg1addle 25171 The degree of a sum is at ...
deg1addle2 25172 If both factors have degre...
deg1add 25173 Exact degree of a sum of t...
deg1vscale 25174 The degree of a scalar tim...
deg1vsca 25175 The degree of a scalar tim...
deg1invg 25176 The degree of the negated ...
deg1suble 25177 The degree of a difference...
deg1sub 25178 Exact degree of a differen...
deg1mulle2 25179 Produce a bound on the pro...
deg1sublt 25180 Subtraction of two polynom...
deg1le0 25181 A polynomial has nonpositi...
deg1sclle 25182 A scalar polynomial has no...
deg1scl 25183 A nonzero scalar polynomia...
deg1mul2 25184 Degree of multiplication o...
deg1mul3 25185 Degree of multiplication o...
deg1mul3le 25186 Degree of multiplication o...
deg1tmle 25187 Limiting degree of a polyn...
deg1tm 25188 Exact degree of a polynomi...
deg1pwle 25189 Limiting degree of a varia...
deg1pw 25190 Exact degree of a variable...
ply1nz 25191 Univariate polynomials ove...
ply1nzb 25192 Univariate polynomials are...
ply1domn 25193 Corollary of ~ deg1mul2 : ...
ply1idom 25194 The ring of univariate pol...
ply1divmo 25205 Uniqueness of a quotient i...
ply1divex 25206 Lemma for ~ ply1divalg : e...
ply1divalg 25207 The division algorithm for...
ply1divalg2 25208 Reverse the order of multi...
uc1pval 25209 Value of the set of unitic...
isuc1p 25210 Being a unitic polynomial....
mon1pval 25211 Value of the set of monic ...
ismon1p 25212 Being a monic polynomial. ...
uc1pcl 25213 Unitic polynomials are pol...
mon1pcl 25214 Monic polynomials are poly...
uc1pn0 25215 Unitic polynomials are not...
mon1pn0 25216 Monic polynomials are not ...
uc1pdeg 25217 Unitic polynomials have no...
uc1pldg 25218 Unitic polynomials have un...
mon1pldg 25219 Unitic polynomials have on...
mon1puc1p 25220 Monic polynomials are unit...
uc1pmon1p 25221 Make a unitic polynomial m...
deg1submon1p 25222 The difference of two moni...
q1pval 25223 Value of the univariate po...
q1peqb 25224 Characterizing property of...
q1pcl 25225 Closure of the quotient by...
r1pval 25226 Value of the polynomial re...
r1pcl 25227 Closure of remainder follo...
r1pdeglt 25228 The remainder has a degree...
r1pid 25229 Express the original polyn...
dvdsq1p 25230 Divisibility in a polynomi...
dvdsr1p 25231 Divisibility in a polynomi...
ply1remlem 25232 A term of the form ` x - N...
ply1rem 25233 The polynomial remainder t...
facth1 25234 The factor theorem and its...
fta1glem1 25235 Lemma for ~ fta1g . (Cont...
fta1glem2 25236 Lemma for ~ fta1g . (Cont...
fta1g 25237 The one-sided fundamental ...
fta1blem 25238 Lemma for ~ fta1b . (Cont...
fta1b 25239 The assumption that ` R ` ...
drnguc1p 25240 Over a division ring, all ...
ig1peu 25241 There is a unique monic po...
ig1pval 25242 Substitutions for the poly...
ig1pval2 25243 Generator of the zero idea...
ig1pval3 25244 Characterizing properties ...
ig1pcl 25245 The monic generator of an ...
ig1pdvds 25246 The monic generator of an ...
ig1prsp 25247 Any ideal of polynomials o...
ply1lpir 25248 The ring of polynomials ov...
ply1pid 25249 The polynomials over a fie...
plyco0 25258 Two ways to say that a fun...
plyval 25259 Value of the polynomial se...
plybss 25260 Reverse closure of the par...
elply 25261 Definition of a polynomial...
elply2 25262 The coefficient function c...
plyun0 25263 The set of polynomials is ...
plyf 25264 The polynomial is a functi...
plyss 25265 The polynomial set functio...
plyssc 25266 Every polynomial ring is c...
elplyr 25267 Sufficient condition for e...
elplyd 25268 Sufficient condition for e...
ply1termlem 25269 Lemma for ~ ply1term . (C...
ply1term 25270 A one-term polynomial. (C...
plypow 25271 A power is a polynomial. ...
plyconst 25272 A constant function is a p...
ne0p 25273 A test to show that a poly...
ply0 25274 The zero function is a pol...
plyid 25275 The identity function is a...
plyeq0lem 25276 Lemma for ~ plyeq0 . If `...
plyeq0 25277 If a polynomial is zero at...
plypf1 25278 Write the set of complex p...
plyaddlem1 25279 Derive the coefficient fun...
plymullem1 25280 Derive the coefficient fun...
plyaddlem 25281 Lemma for ~ plyadd . (Con...
plymullem 25282 Lemma for ~ plymul . (Con...
plyadd 25283 The sum of two polynomials...
plymul 25284 The product of two polynom...
plysub 25285 The difference of two poly...
plyaddcl 25286 The sum of two polynomials...
plymulcl 25287 The product of two polynom...
plysubcl 25288 The difference of two poly...
coeval 25289 Value of the coefficient f...
coeeulem 25290 Lemma for ~ coeeu . (Cont...
coeeu 25291 Uniqueness of the coeffici...
coelem 25292 Lemma for properties of th...
coeeq 25293 If ` A ` satisfies the pro...
dgrval 25294 Value of the degree functi...
dgrlem 25295 Lemma for ~ dgrcl and simi...
coef 25296 The domain and range of th...
coef2 25297 The domain and range of th...
coef3 25298 The domain and range of th...
dgrcl 25299 The degree of any polynomi...
dgrub 25300 If the ` M ` -th coefficie...
dgrub2 25301 All the coefficients above...
dgrlb 25302 If all the coefficients ab...
coeidlem 25303 Lemma for ~ coeid . (Cont...
coeid 25304 Reconstruct a polynomial a...
coeid2 25305 Reconstruct a polynomial a...
coeid3 25306 Reconstruct a polynomial a...
plyco 25307 The composition of two pol...
coeeq2 25308 Compute the coefficient fu...
dgrle 25309 Given an explicit expressi...
dgreq 25310 If the highest term in a p...
0dgr 25311 A constant function has de...
0dgrb 25312 A function has degree zero...
dgrnznn 25313 A nonzero polynomial with ...
coefv0 25314 The result of evaluating a...
coeaddlem 25315 Lemma for ~ coeadd and ~ d...
coemullem 25316 Lemma for ~ coemul and ~ d...
coeadd 25317 The coefficient function o...
coemul 25318 A coefficient of a product...
coe11 25319 The coefficient function i...
coemulhi 25320 The leading coefficient of...
coemulc 25321 The coefficient function i...
coe0 25322 The coefficients of the ze...
coesub 25323 The coefficient function o...
coe1termlem 25324 The coefficient function o...
coe1term 25325 The coefficient function o...
dgr1term 25326 The degree of a monomial. ...
plycn 25327 A polynomial is a continuo...
dgr0 25328 The degree of the zero pol...
coeidp 25329 The coefficients of the id...
dgrid 25330 The degree of the identity...
dgreq0 25331 The leading coefficient of...
dgrlt 25332 Two ways to say that the d...
dgradd 25333 The degree of a sum of pol...
dgradd2 25334 The degree of a sum of pol...
dgrmul2 25335 The degree of a product of...
dgrmul 25336 The degree of a product of...
dgrmulc 25337 Scalar multiplication by a...
dgrsub 25338 The degree of a difference...
dgrcolem1 25339 The degree of a compositio...
dgrcolem2 25340 Lemma for ~ dgrco . (Cont...
dgrco 25341 The degree of a compositio...
plycjlem 25342 Lemma for ~ plycj and ~ co...
plycj 25343 The double conjugation of ...
coecj 25344 Double conjugation of a po...
plyrecj 25345 A polynomial with real coe...
plymul0or 25346 Polynomial multiplication ...
ofmulrt 25347 The set of roots of a prod...
plyreres 25348 Real-coefficient polynomia...
dvply1 25349 Derivative of a polynomial...
dvply2g 25350 The derivative of a polyno...
dvply2 25351 The derivative of a polyno...
dvnply2 25352 Polynomials have polynomia...
dvnply 25353 Polynomials have polynomia...
plycpn 25354 Polynomials are smooth. (...
quotval 25357 Value of the quotient func...
plydivlem1 25358 Lemma for ~ plydivalg . (...
plydivlem2 25359 Lemma for ~ plydivalg . (...
plydivlem3 25360 Lemma for ~ plydivex . Ba...
plydivlem4 25361 Lemma for ~ plydivex . In...
plydivex 25362 Lemma for ~ plydivalg . (...
plydiveu 25363 Lemma for ~ plydivalg . (...
plydivalg 25364 The division algorithm on ...
quotlem 25365 Lemma for properties of th...
quotcl 25366 The quotient of two polyno...
quotcl2 25367 Closure of the quotient fu...
quotdgr 25368 Remainder property of the ...
plyremlem 25369 Closure of a linear factor...
plyrem 25370 The polynomial remainder t...
facth 25371 The factor theorem. If a ...
fta1lem 25372 Lemma for ~ fta1 . (Contr...
fta1 25373 The easy direction of the ...
quotcan 25374 Exact division with a mult...
vieta1lem1 25375 Lemma for ~ vieta1 . (Con...
vieta1lem2 25376 Lemma for ~ vieta1 : induc...
vieta1 25377 The first-order Vieta's fo...
plyexmo 25378 An infinite set of values ...
elaa 25381 Elementhood in the set of ...
aacn 25382 An algebraic number is a c...
aasscn 25383 The algebraic numbers are ...
elqaalem1 25384 Lemma for ~ elqaa . The f...
elqaalem2 25385 Lemma for ~ elqaa . (Cont...
elqaalem3 25386 Lemma for ~ elqaa . (Cont...
elqaa 25387 The set of numbers generat...
qaa 25388 Every rational number is a...
qssaa 25389 The rational numbers are c...
iaa 25390 The imaginary unit is alge...
aareccl 25391 The reciprocal of an algeb...
aacjcl 25392 The conjugate of an algebr...
aannenlem1 25393 Lemma for ~ aannen . (Con...
aannenlem2 25394 Lemma for ~ aannen . (Con...
aannenlem3 25395 The algebraic numbers are ...
aannen 25396 The algebraic numbers are ...
aalioulem1 25397 Lemma for ~ aaliou . An i...
aalioulem2 25398 Lemma for ~ aaliou . (Con...
aalioulem3 25399 Lemma for ~ aaliou . (Con...
aalioulem4 25400 Lemma for ~ aaliou . (Con...
aalioulem5 25401 Lemma for ~ aaliou . (Con...
aalioulem6 25402 Lemma for ~ aaliou . (Con...
aaliou 25403 Liouville's theorem on dio...
geolim3 25404 Geometric series convergen...
aaliou2 25405 Liouville's approximation ...
aaliou2b 25406 Liouville's approximation ...
aaliou3lem1 25407 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 25408 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 25409 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 25410 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 25411 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 25412 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 25413 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 25414 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 25415 Example of a "Liouville nu...
aaliou3 25416 Example of a "Liouville nu...
taylfvallem1 25421 Lemma for ~ taylfval . (C...
taylfvallem 25422 Lemma for ~ taylfval . (C...
taylfval 25423 Define the Taylor polynomi...
eltayl 25424 Value of the Taylor series...
taylf 25425 The Taylor series defines ...
tayl0 25426 The Taylor series is alway...
taylplem1 25427 Lemma for ~ taylpfval and ...
taylplem2 25428 Lemma for ~ taylpfval and ...
taylpfval 25429 Define the Taylor polynomi...
taylpf 25430 The Taylor polynomial is a...
taylpval 25431 Value of the Taylor polyno...
taylply2 25432 The Taylor polynomial is a...
taylply 25433 The Taylor polynomial is a...
dvtaylp 25434 The derivative of the Tayl...
dvntaylp 25435 The ` M ` -th derivative o...
dvntaylp0 25436 The first ` N ` derivative...
taylthlem1 25437 Lemma for ~ taylth . This...
taylthlem2 25438 Lemma for ~ taylth . (Con...
taylth 25439 Taylor's theorem. The Tay...
ulmrel 25442 The uniform limit relation...
ulmscl 25443 Closure of the base set in...
ulmval 25444 Express the predicate: Th...
ulmcl 25445 Closure of a uniform limit...
ulmf 25446 Closure of a uniform limit...
ulmpm 25447 Closure of a uniform limit...
ulmf2 25448 Closure of a uniform limit...
ulm2 25449 Simplify ~ ulmval when ` F...
ulmi 25450 The uniform limit property...
ulmclm 25451 A uniform limit of functio...
ulmres 25452 A sequence of functions co...
ulmshftlem 25453 Lemma for ~ ulmshft . (Co...
ulmshft 25454 A sequence of functions co...
ulm0 25455 Every function converges u...
ulmuni 25456 A sequence of functions un...
ulmdm 25457 Two ways to express that a...
ulmcaulem 25458 Lemma for ~ ulmcau and ~ u...
ulmcau 25459 A sequence of functions co...
ulmcau2 25460 A sequence of functions co...
ulmss 25461 A uniform limit of functio...
ulmbdd 25462 A uniform limit of bounded...
ulmcn 25463 A uniform limit of continu...
ulmdvlem1 25464 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 25465 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 25466 Lemma for ~ ulmdv . (Cont...
ulmdv 25467 If ` F ` is a sequence of ...
mtest 25468 The Weierstrass M-test. I...
mtestbdd 25469 Given the hypotheses of th...
mbfulm 25470 A uniform limit of measura...
iblulm 25471 A uniform limit of integra...
itgulm 25472 A uniform limit of integra...
itgulm2 25473 A uniform limit of integra...
pserval 25474 Value of the function ` G ...
pserval2 25475 Value of the function ` G ...
psergf 25476 The sequence of terms in t...
radcnvlem1 25477 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 25478 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 25479 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 25480 Zero is always a convergen...
radcnvcl 25481 The radius of convergence ...
radcnvlt1 25482 If ` X ` is within the ope...
radcnvlt2 25483 If ` X ` is within the ope...
radcnvle 25484 If ` X ` is a convergent p...
dvradcnv 25485 The radius of convergence ...
pserulm 25486 If ` S ` is a region conta...
psercn2 25487 Since by ~ pserulm the ser...
psercnlem2 25488 Lemma for ~ psercn . (Con...
psercnlem1 25489 Lemma for ~ psercn . (Con...
psercn 25490 An infinite series converg...
pserdvlem1 25491 Lemma for ~ pserdv . (Con...
pserdvlem2 25492 Lemma for ~ pserdv . (Con...
pserdv 25493 The derivative of a power ...
pserdv2 25494 The derivative of a power ...
abelthlem1 25495 Lemma for ~ abelth . (Con...
abelthlem2 25496 Lemma for ~ abelth . The ...
abelthlem3 25497 Lemma for ~ abelth . (Con...
abelthlem4 25498 Lemma for ~ abelth . (Con...
abelthlem5 25499 Lemma for ~ abelth . (Con...
abelthlem6 25500 Lemma for ~ abelth . (Con...
abelthlem7a 25501 Lemma for ~ abelth . (Con...
abelthlem7 25502 Lemma for ~ abelth . (Con...
abelthlem8 25503 Lemma for ~ abelth . (Con...
abelthlem9 25504 Lemma for ~ abelth . By a...
abelth 25505 Abel's theorem. If the po...
abelth2 25506 Abel's theorem, restricted...
efcn 25507 The exponential function i...
sincn 25508 Sine is continuous. (Cont...
coscn 25509 Cosine is continuous. (Co...
reeff1olem 25510 Lemma for ~ reeff1o . (Co...
reeff1o 25511 The real exponential funct...
reefiso 25512 The exponential function o...
efcvx 25513 The exponential function o...
reefgim 25514 The exponential function i...
pilem1 25515 Lemma for ~ pire , ~ pigt2...
pilem2 25516 Lemma for ~ pire , ~ pigt2...
pilem3 25517 Lemma for ~ pire , ~ pigt2...
pigt2lt4 25518 ` _pi ` is between 2 and 4...
sinpi 25519 The sine of ` _pi ` is 0. ...
pire 25520 ` _pi ` is a real number. ...
picn 25521 ` _pi ` is a complex numbe...
pipos 25522 ` _pi ` is positive. (Con...
pirp 25523 ` _pi ` is a positive real...
negpicn 25524 ` -u _pi ` is a real numbe...
sinhalfpilem 25525 Lemma for ~ sinhalfpi and ...
halfpire 25526 ` _pi / 2 ` is real. (Con...
neghalfpire 25527 ` -u _pi / 2 ` is real. (...
neghalfpirx 25528 ` -u _pi / 2 ` is an exten...
pidiv2halves 25529 Adding ` _pi / 2 ` to itse...
sinhalfpi 25530 The sine of ` _pi / 2 ` is...
coshalfpi 25531 The cosine of ` _pi / 2 ` ...
cosneghalfpi 25532 The cosine of ` -u _pi / 2...
efhalfpi 25533 The exponential of ` _i _p...
cospi 25534 The cosine of ` _pi ` is `...
efipi 25535 The exponential of ` _i x....
eulerid 25536 Euler's identity. (Contri...
sin2pi 25537 The sine of ` 2 _pi ` is 0...
cos2pi 25538 The cosine of ` 2 _pi ` is...
ef2pi 25539 The exponential of ` 2 _pi...
ef2kpi 25540 If ` K ` is an integer, th...
efper 25541 The exponential function i...
sinperlem 25542 Lemma for ~ sinper and ~ c...
sinper 25543 The sine function is perio...
cosper 25544 The cosine function is per...
sin2kpi 25545 If ` K ` is an integer, th...
cos2kpi 25546 If ` K ` is an integer, th...
sin2pim 25547 Sine of a number subtracte...
cos2pim 25548 Cosine of a number subtrac...
sinmpi 25549 Sine of a number less ` _p...
cosmpi 25550 Cosine of a number less ` ...
sinppi 25551 Sine of a number plus ` _p...
cosppi 25552 Cosine of a number plus ` ...
efimpi 25553 The exponential function a...
sinhalfpip 25554 The sine of ` _pi / 2 ` pl...
sinhalfpim 25555 The sine of ` _pi / 2 ` mi...
coshalfpip 25556 The cosine of ` _pi / 2 ` ...
coshalfpim 25557 The cosine of ` _pi / 2 ` ...
ptolemy 25558 Ptolemy's Theorem. This t...
sincosq1lem 25559 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 25560 The signs of the sine and ...
sincosq2sgn 25561 The signs of the sine and ...
sincosq3sgn 25562 The signs of the sine and ...
sincosq4sgn 25563 The signs of the sine and ...
coseq00topi 25564 Location of the zeroes of ...
coseq0negpitopi 25565 Location of the zeroes of ...
tanrpcl 25566 Positive real closure of t...
tangtx 25567 The tangent function is gr...
tanabsge 25568 The tangent function is gr...
sinq12gt0 25569 The sine of a number stric...
sinq12ge0 25570 The sine of a number betwe...
sinq34lt0t 25571 The sine of a number stric...
cosq14gt0 25572 The cosine of a number str...
cosq14ge0 25573 The cosine of a number bet...
sincosq1eq 25574 Complementarity of the sin...
sincos4thpi 25575 The sine and cosine of ` _...
tan4thpi 25576 The tangent of ` _pi / 4 `...
sincos6thpi 25577 The sine and cosine of ` _...
sincos3rdpi 25578 The sine and cosine of ` _...
pigt3 25579 ` _pi ` is greater than 3....
pige3 25580 ` _pi ` is greater than or...
pige3ALT 25581 Alternate proof of ~ pige3...
abssinper 25582 The absolute value of sine...
sinkpi 25583 The sine of an integer mul...
coskpi 25584 The absolute value of the ...
sineq0 25585 A complex number whose sin...
coseq1 25586 A complex number whose cos...
cos02pilt1 25587 Cosine is less than one be...
cosq34lt1 25588 Cosine is less than one in...
efeq1 25589 A complex number whose exp...
cosne0 25590 The cosine function has no...
cosordlem 25591 Lemma for ~ cosord . (Con...
cosord 25592 Cosine is decreasing over ...
cos0pilt1 25593 Cosine is between minus on...
cos11 25594 Cosine is one-to-one over ...
sinord 25595 Sine is increasing over th...
recosf1o 25596 The cosine function is a b...
resinf1o 25597 The sine function is a bij...
tanord1 25598 The tangent function is st...
tanord 25599 The tangent function is st...
tanregt0 25600 The real part of the tange...
negpitopissre 25601 The interval ` ( -u _pi (,...
efgh 25602 The exponential function o...
efif1olem1 25603 Lemma for ~ efif1o . (Con...
efif1olem2 25604 Lemma for ~ efif1o . (Con...
efif1olem3 25605 Lemma for ~ efif1o . (Con...
efif1olem4 25606 The exponential function o...
efif1o 25607 The exponential function o...
efifo 25608 The exponential function o...
eff1olem 25609 The exponential function m...
eff1o 25610 The exponential function m...
efabl 25611 The image of a subgroup of...
efsubm 25612 The image of a subgroup of...
circgrp 25613 The circle group ` T ` is ...
circsubm 25614 The circle group ` T ` is ...
logrn 25619 The range of the natural l...
ellogrn 25620 Write out the property ` A...
dflog2 25621 The natural logarithm func...
relogrn 25622 The range of the natural l...
logrncn 25623 The range of the natural l...
eff1o2 25624 The exponential function r...
logf1o 25625 The natural logarithm func...
dfrelog 25626 The natural logarithm func...
relogf1o 25627 The natural logarithm func...
logrncl 25628 Closure of the natural log...
logcl 25629 Closure of the natural log...
logimcl 25630 Closure of the imaginary p...
logcld 25631 The logarithm of a nonzero...
logimcld 25632 The imaginary part of the ...
logimclad 25633 The imaginary part of the ...
abslogimle 25634 The imaginary part of the ...
logrnaddcl 25635 The range of the natural l...
relogcl 25636 Closure of the natural log...
eflog 25637 Relationship between the n...
logeq0im1 25638 If the logarithm of a numb...
logccne0 25639 The logarithm isn't 0 if i...
logne0 25640 Logarithm of a non-1 posit...
reeflog 25641 Relationship between the n...
logef 25642 Relationship between the n...
relogef 25643 Relationship between the n...
logeftb 25644 Relationship between the n...
relogeftb 25645 Relationship between the n...
log1 25646 The natural logarithm of `...
loge 25647 The natural logarithm of `...
logneg 25648 The natural logarithm of a...
logm1 25649 The natural logarithm of n...
lognegb 25650 If a number has imaginary ...
relogoprlem 25651 Lemma for ~ relogmul and ~...
relogmul 25652 The natural logarithm of t...
relogdiv 25653 The natural logarithm of t...
explog 25654 Exponentiation of a nonzer...
reexplog 25655 Exponentiation of a positi...
relogexp 25656 The natural logarithm of p...
relog 25657 Real part of a logarithm. ...
relogiso 25658 The natural logarithm func...
reloggim 25659 The natural logarithm is a...
logltb 25660 The natural logarithm func...
logfac 25661 The logarithm of a factori...
eflogeq 25662 Solve an equation involvin...
logleb 25663 Natural logarithm preserve...
rplogcl 25664 Closure of the logarithm f...
logge0 25665 The logarithm of a number ...
logcj 25666 The natural logarithm dist...
efiarg 25667 The exponential of the "ar...
cosargd 25668 The cosine of the argument...
cosarg0d 25669 The cosine of the argument...
argregt0 25670 Closure of the argument of...
argrege0 25671 Closure of the argument of...
argimgt0 25672 Closure of the argument of...
argimlt0 25673 Closure of the argument of...
logimul 25674 Multiplying a number by ` ...
logneg2 25675 The logarithm of the negat...
logmul2 25676 Generalization of ~ relogm...
logdiv2 25677 Generalization of ~ relogd...
abslogle 25678 Bound on the magnitude of ...
tanarg 25679 The basic relation between...
logdivlti 25680 The ` log x / x ` function...
logdivlt 25681 The ` log x / x ` function...
logdivle 25682 The ` log x / x ` function...
relogcld 25683 Closure of the natural log...
reeflogd 25684 Relationship between the n...
relogmuld 25685 The natural logarithm of t...
relogdivd 25686 The natural logarithm of t...
logled 25687 Natural logarithm preserve...
relogefd 25688 Relationship between the n...
rplogcld 25689 Closure of the logarithm f...
logge0d 25690 The logarithm of a number ...
logge0b 25691 The logarithm of a number ...
loggt0b 25692 The logarithm of a number ...
logle1b 25693 The logarithm of a number ...
loglt1b 25694 The logarithm of a number ...
divlogrlim 25695 The inverse logarithm func...
logno1 25696 The logarithm function is ...
dvrelog 25697 The derivative of the real...
relogcn 25698 The real logarithm functio...
ellogdm 25699 Elementhood in the "contin...
logdmn0 25700 A number in the continuous...
logdmnrp 25701 A number in the continuous...
logdmss 25702 The continuity domain of `...
logcnlem2 25703 Lemma for ~ logcn . (Cont...
logcnlem3 25704 Lemma for ~ logcn . (Cont...
logcnlem4 25705 Lemma for ~ logcn . (Cont...
logcnlem5 25706 Lemma for ~ logcn . (Cont...
logcn 25707 The logarithm function is ...
dvloglem 25708 Lemma for ~ dvlog . (Cont...
logdmopn 25709 The "continuous domain" of...
logf1o2 25710 The logarithm maps its con...
dvlog 25711 The derivative of the comp...
dvlog2lem 25712 Lemma for ~ dvlog2 . (Con...
dvlog2 25713 The derivative of the comp...
advlog 25714 The antiderivative of the ...
advlogexp 25715 The antiderivative of a po...
efopnlem1 25716 Lemma for ~ efopn . (Cont...
efopnlem2 25717 Lemma for ~ efopn . (Cont...
efopn 25718 The exponential map is an ...
logtayllem 25719 Lemma for ~ logtayl . (Co...
logtayl 25720 The Taylor series for ` -u...
logtaylsum 25721 The Taylor series for ` -u...
logtayl2 25722 Power series expression fo...
logccv 25723 The natural logarithm func...
cxpval 25724 Value of the complex power...
cxpef 25725 Value of the complex power...
0cxp 25726 Value of the complex power...
cxpexpz 25727 Relate the complex power f...
cxpexp 25728 Relate the complex power f...
logcxp 25729 Logarithm of a complex pow...
cxp0 25730 Value of the complex power...
cxp1 25731 Value of the complex power...
1cxp 25732 Value of the complex power...
ecxp 25733 Write the exponential func...
cxpcl 25734 Closure of the complex pow...
recxpcl 25735 Real closure of the comple...
rpcxpcl 25736 Positive real closure of t...
cxpne0 25737 Complex exponentiation is ...
cxpeq0 25738 Complex exponentiation is ...
cxpadd 25739 Sum of exponents law for c...
cxpp1 25740 Value of a nonzero complex...
cxpneg 25741 Value of a complex number ...
cxpsub 25742 Exponent subtraction law f...
cxpge0 25743 Nonnegative exponentiation...
mulcxplem 25744 Lemma for ~ mulcxp . (Con...
mulcxp 25745 Complex exponentiation of ...
cxprec 25746 Complex exponentiation of ...
divcxp 25747 Complex exponentiation of ...
cxpmul 25748 Product of exponents law f...
cxpmul2 25749 Product of exponents law f...
cxproot 25750 The complex power function...
cxpmul2z 25751 Generalize ~ cxpmul2 to ne...
abscxp 25752 Absolute value of a power,...
abscxp2 25753 Absolute value of a power,...
cxplt 25754 Ordering property for comp...
cxple 25755 Ordering property for comp...
cxplea 25756 Ordering property for comp...
cxple2 25757 Ordering property for comp...
cxplt2 25758 Ordering property for comp...
cxple2a 25759 Ordering property for comp...
cxplt3 25760 Ordering property for comp...
cxple3 25761 Ordering property for comp...
cxpsqrtlem 25762 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 25763 The complex exponential fu...
logsqrt 25764 Logarithm of a square root...
cxp0d 25765 Value of the complex power...
cxp1d 25766 Value of the complex power...
1cxpd 25767 Value of the complex power...
cxpcld 25768 Closure of the complex pow...
cxpmul2d 25769 Product of exponents law f...
0cxpd 25770 Value of the complex power...
cxpexpzd 25771 Relate the complex power f...
cxpefd 25772 Value of the complex power...
cxpne0d 25773 Complex exponentiation is ...
cxpp1d 25774 Value of a nonzero complex...
cxpnegd 25775 Value of a complex number ...
cxpmul2zd 25776 Generalize ~ cxpmul2 to ne...
cxpaddd 25777 Sum of exponents law for c...
cxpsubd 25778 Exponent subtraction law f...
cxpltd 25779 Ordering property for comp...
cxpled 25780 Ordering property for comp...
cxplead 25781 Ordering property for comp...
divcxpd 25782 Complex exponentiation of ...
recxpcld 25783 Positive real closure of t...
cxpge0d 25784 Nonnegative exponentiation...
cxple2ad 25785 Ordering property for comp...
cxplt2d 25786 Ordering property for comp...
cxple2d 25787 Ordering property for comp...
mulcxpd 25788 Complex exponentiation of ...
cxpsqrtth 25789 Square root theorem over t...
2irrexpq 25790 There exist irrational num...
cxprecd 25791 Complex exponentiation of ...
rpcxpcld 25792 Positive real closure of t...
logcxpd 25793 Logarithm of a complex pow...
cxplt3d 25794 Ordering property for comp...
cxple3d 25795 Ordering property for comp...
cxpmuld 25796 Product of exponents law f...
cxpcom 25797 Commutative law for real e...
dvcxp1 25798 The derivative of a comple...
dvcxp2 25799 The derivative of a comple...
dvsqrt 25800 The derivative of the real...
dvcncxp1 25801 Derivative of complex powe...
dvcnsqrt 25802 Derivative of square root ...
cxpcn 25803 Domain of continuity of th...
cxpcn2 25804 Continuity of the complex ...
cxpcn3lem 25805 Lemma for ~ cxpcn3 . (Con...
cxpcn3 25806 Extend continuity of the c...
resqrtcn 25807 Continuity of the real squ...
sqrtcn 25808 Continuity of the square r...
cxpaddlelem 25809 Lemma for ~ cxpaddle . (C...
cxpaddle 25810 Ordering property for comp...
abscxpbnd 25811 Bound on the absolute valu...
root1id 25812 Property of an ` N ` -th r...
root1eq1 25813 The only powers of an ` N ...
root1cj 25814 Within the ` N ` -th roots...
cxpeq 25815 Solve an equation involvin...
loglesqrt 25816 An upper bound on the loga...
logreclem 25817 Symmetry of the natural lo...
logrec 25818 Logarithm of a reciprocal ...
logbval 25821 Define the value of the ` ...
logbcl 25822 General logarithm closure....
logbid1 25823 General logarithm is 1 whe...
logb1 25824 The logarithm of ` 1 ` to ...
elogb 25825 The general logarithm of a...
logbchbase 25826 Change of base for logarit...
relogbval 25827 Value of the general logar...
relogbcl 25828 Closure of the general log...
relogbzcl 25829 Closure of the general log...
relogbreexp 25830 Power law for the general ...
relogbzexp 25831 Power law for the general ...
relogbmul 25832 The logarithm of the produ...
relogbmulexp 25833 The logarithm of the produ...
relogbdiv 25834 The logarithm of the quoti...
relogbexp 25835 Identity law for general l...
nnlogbexp 25836 Identity law for general l...
logbrec 25837 Logarithm of a reciprocal ...
logbleb 25838 The general logarithm func...
logblt 25839 The general logarithm func...
relogbcxp 25840 Identity law for the gener...
cxplogb 25841 Identity law for the gener...
relogbcxpb 25842 The logarithm is the inver...
logbmpt 25843 The general logarithm to a...
logbf 25844 The general logarithm to a...
logbfval 25845 The general logarithm of a...
relogbf 25846 The general logarithm to a...
logblog 25847 The general logarithm to t...
logbgt0b 25848 The logarithm of a positiv...
logbgcd1irr 25849 The logarithm of an intege...
2logb9irr 25850 Example for ~ logbgcd1irr ...
logbprmirr 25851 The logarithm of a prime t...
2logb3irr 25852 Example for ~ logbprmirr ....
2logb9irrALT 25853 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 25854 The square root of two to ...
2irrexpqALT 25855 Alternate proof of ~ 2irre...
angval 25856 Define the angle function,...
angcan 25857 Cancel a constant multipli...
angneg 25858 Cancel a negative sign in ...
angvald 25859 The (signed) angle between...
angcld 25860 The (signed) angle between...
angrteqvd 25861 Two vectors are at a right...
cosangneg2d 25862 The cosine of the angle be...
angrtmuld 25863 Perpendicularity of two ve...
ang180lem1 25864 Lemma for ~ ang180 . Show...
ang180lem2 25865 Lemma for ~ ang180 . Show...
ang180lem3 25866 Lemma for ~ ang180 . Sinc...
ang180lem4 25867 Lemma for ~ ang180 . Redu...
ang180lem5 25868 Lemma for ~ ang180 : Redu...
ang180 25869 The sum of angles ` m A B ...
lawcoslem1 25870 Lemma for ~ lawcos . Here...
lawcos 25871 Law of cosines (also known...
pythag 25872 Pythagorean theorem. Give...
isosctrlem1 25873 Lemma for ~ isosctr . (Co...
isosctrlem2 25874 Lemma for ~ isosctr . Cor...
isosctrlem3 25875 Lemma for ~ isosctr . Cor...
isosctr 25876 Isosceles triangle theorem...
ssscongptld 25877 If two triangles have equa...
affineequiv 25878 Equivalence between two wa...
affineequiv2 25879 Equivalence between two wa...
affineequiv3 25880 Equivalence between two wa...
affineequiv4 25881 Equivalence between two wa...
affineequivne 25882 Equivalence between two wa...
angpieqvdlem 25883 Equivalence used in the pr...
angpieqvdlem2 25884 Equivalence used in ~ angp...
angpined 25885 If the angle at ABC is ` _...
angpieqvd 25886 The angle ABC is ` _pi ` i...
chordthmlem 25887 If ` M ` is the midpoint o...
chordthmlem2 25888 If M is the midpoint of AB...
chordthmlem3 25889 If M is the midpoint of AB...
chordthmlem4 25890 If P is on the segment AB ...
chordthmlem5 25891 If P is on the segment AB ...
chordthm 25892 The intersecting chords th...
heron 25893 Heron's formula gives the ...
quad2 25894 The quadratic equation, wi...
quad 25895 The quadratic equation. (...
1cubrlem 25896 The cube roots of unity. ...
1cubr 25897 The cube roots of unity. ...
dcubic1lem 25898 Lemma for ~ dcubic1 and ~ ...
dcubic2 25899 Reverse direction of ~ dcu...
dcubic1 25900 Forward direction of ~ dcu...
dcubic 25901 Solutions to the depressed...
mcubic 25902 Solutions to a monic cubic...
cubic2 25903 The solution to the genera...
cubic 25904 The cubic equation, which ...
binom4 25905 Work out a quartic binomia...
dquartlem1 25906 Lemma for ~ dquart . (Con...
dquartlem2 25907 Lemma for ~ dquart . (Con...
dquart 25908 Solve a depressed quartic ...
quart1cl 25909 Closure lemmas for ~ quart...
quart1lem 25910 Lemma for ~ quart1 . (Con...
quart1 25911 Depress a quartic equation...
quartlem1 25912 Lemma for ~ quart . (Cont...
quartlem2 25913 Closure lemmas for ~ quart...
quartlem3 25914 Closure lemmas for ~ quart...
quartlem4 25915 Closure lemmas for ~ quart...
quart 25916 The quartic equation, writ...
asinlem 25923 The argument to the logari...
asinlem2 25924 The argument to the logari...
asinlem3a 25925 Lemma for ~ asinlem3 . (C...
asinlem3 25926 The argument to the logari...
asinf 25927 Domain and range of the ar...
asincl 25928 Closure for the arcsin fun...
acosf 25929 Domain and range of the ar...
acoscl 25930 Closure for the arccos fun...
atandm 25931 Since the property is a li...
atandm2 25932 This form of ~ atandm is a...
atandm3 25933 A compact form of ~ atandm...
atandm4 25934 A compact form of ~ atandm...
atanf 25935 Domain and range of the ar...
atancl 25936 Closure for the arctan fun...
asinval 25937 Value of the arcsin functi...
acosval 25938 Value of the arccos functi...
atanval 25939 Value of the arctan functi...
atanre 25940 A real number is in the do...
asinneg 25941 The arcsine function is od...
acosneg 25942 The negative symmetry rela...
efiasin 25943 The exponential of the arc...
sinasin 25944 The arcsine function is an...
cosacos 25945 The arccosine function is ...
asinsinlem 25946 Lemma for ~ asinsin . (Co...
asinsin 25947 The arcsine function compo...
acoscos 25948 The arccosine function is ...
asin1 25949 The arcsine of ` 1 ` is ` ...
acos1 25950 The arccosine of ` 1 ` is ...
reasinsin 25951 The arcsine function compo...
asinsinb 25952 Relationship between sine ...
acoscosb 25953 Relationship between cosin...
asinbnd 25954 The arcsine function has r...
acosbnd 25955 The arccosine function has...
asinrebnd 25956 Bounds on the arcsine func...
asinrecl 25957 The arcsine function is re...
acosrecl 25958 The arccosine function is ...
cosasin 25959 The cosine of the arcsine ...
sinacos 25960 The sine of the arccosine ...
atandmneg 25961 The domain of the arctange...
atanneg 25962 The arctangent function is...
atan0 25963 The arctangent of zero is ...
atandmcj 25964 The arctangent function di...
atancj 25965 The arctangent function di...
atanrecl 25966 The arctangent function is...
efiatan 25967 Value of the exponential o...
atanlogaddlem 25968 Lemma for ~ atanlogadd . ...
atanlogadd 25969 The rule ` sqrt ( z w ) = ...
atanlogsublem 25970 Lemma for ~ atanlogsub . ...
atanlogsub 25971 A variation on ~ atanlogad...
efiatan2 25972 Value of the exponential o...
2efiatan 25973 Value of the exponential o...
tanatan 25974 The arctangent function is...
atandmtan 25975 The tangent function has r...
cosatan 25976 The cosine of an arctangen...
cosatanne0 25977 The arctangent function ha...
atantan 25978 The arctangent function is...
atantanb 25979 Relationship between tange...
atanbndlem 25980 Lemma for ~ atanbnd . (Co...
atanbnd 25981 The arctangent function is...
atanord 25982 The arctangent function is...
atan1 25983 The arctangent of ` 1 ` is...
bndatandm 25984 A point in the open unit d...
atans 25985 The "domain of continuity"...
atans2 25986 It suffices to show that `...
atansopn 25987 The domain of continuity o...
atansssdm 25988 The domain of continuity o...
ressatans 25989 The real number line is a ...
dvatan 25990 The derivative of the arct...
atancn 25991 The arctangent is a contin...
atantayl 25992 The Taylor series for ` ar...
atantayl2 25993 The Taylor series for ` ar...
atantayl3 25994 The Taylor series for ` ar...
leibpilem1 25995 Lemma for ~ leibpi . (Con...
leibpilem2 25996 The Leibniz formula for ` ...
leibpi 25997 The Leibniz formula for ` ...
leibpisum 25998 The Leibniz formula for ` ...
log2cnv 25999 Using the Taylor series fo...
log2tlbnd 26000 Bound the error term in th...
log2ublem1 26001 Lemma for ~ log2ub . The ...
log2ublem2 26002 Lemma for ~ log2ub . (Con...
log2ublem3 26003 Lemma for ~ log2ub . In d...
log2ub 26004 ` log 2 ` is less than ` 2...
log2le1 26005 ` log 2 ` is less than ` 1...
birthdaylem1 26006 Lemma for ~ birthday . (C...
birthdaylem2 26007 For general ` N ` and ` K ...
birthdaylem3 26008 For general ` N ` and ` K ...
birthday 26009 The Birthday Problem. The...
dmarea 26012 The domain of the area fun...
areambl 26013 The fibers of a measurable...
areass 26014 A measurable region is a s...
dfarea 26015 Rewrite ~ df-area self-ref...
areaf 26016 Area measurement is a func...
areacl 26017 The area of a measurable r...
areage0 26018 The area of a measurable r...
areaval 26019 The area of a measurable r...
rlimcnp 26020 Relate a limit of a real-v...
rlimcnp2 26021 Relate a limit of a real-v...
rlimcnp3 26022 Relate a limit of a real-v...
xrlimcnp 26023 Relate a limit of a real-v...
efrlim 26024 The limit of the sequence ...
dfef2 26025 The limit of the sequence ...
cxplim 26026 A power to a negative expo...
sqrtlim 26027 The inverse square root fu...
rlimcxp 26028 Any power to a positive ex...
o1cxp 26029 An eventually bounded func...
cxp2limlem 26030 A linear factor grows slow...
cxp2lim 26031 Any power grows slower tha...
cxploglim 26032 The logarithm grows slower...
cxploglim2 26033 Every power of the logarit...
divsqrtsumlem 26034 Lemma for ~ divsqrsum and ...
divsqrsumf 26035 The function ` F ` used in...
divsqrsum 26036 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26037 A bound on the distance of...
divsqrtsumo1 26038 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26039 Closure of a 0-1 linear co...
scvxcvx 26040 A strictly convex function...
jensenlem1 26041 Lemma for ~ jensen . (Con...
jensenlem2 26042 Lemma for ~ jensen . (Con...
jensen 26043 Jensen's inequality, a fin...
amgmlem 26044 Lemma for ~ amgm . (Contr...
amgm 26045 Inequality of arithmetic a...
logdifbnd 26048 Bound on the difference of...
logdiflbnd 26049 Lower bound on the differe...
emcllem1 26050 Lemma for ~ emcl . The se...
emcllem2 26051 Lemma for ~ emcl . ` F ` i...
emcllem3 26052 Lemma for ~ emcl . The fu...
emcllem4 26053 Lemma for ~ emcl . The di...
emcllem5 26054 Lemma for ~ emcl . The pa...
emcllem6 26055 Lemma for ~ emcl . By the...
emcllem7 26056 Lemma for ~ emcl and ~ har...
emcl 26057 Closure and bounds for the...
harmonicbnd 26058 A bound on the harmonic se...
harmonicbnd2 26059 A bound on the harmonic se...
emre 26060 The Euler-Mascheroni const...
emgt0 26061 The Euler-Mascheroni const...
harmonicbnd3 26062 A bound on the harmonic se...
harmoniclbnd 26063 A bound on the harmonic se...
harmonicubnd 26064 A bound on the harmonic se...
harmonicbnd4 26065 The asymptotic behavior of...
fsumharmonic 26066 Bound a finite sum based o...
zetacvg 26069 The zeta series is converg...
eldmgm 26076 Elementhood in the set of ...
dmgmaddn0 26077 If ` A ` is not a nonposit...
dmlogdmgm 26078 If ` A ` is in the continu...
rpdmgm 26079 A positive real number is ...
dmgmn0 26080 If ` A ` is not a nonposit...
dmgmaddnn0 26081 If ` A ` is not a nonposit...
dmgmdivn0 26082 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26083 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26084 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26085 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26086 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26087 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26088 The series ` G ` is unifor...
lgamgulm 26089 The series ` G ` is unifor...
lgamgulm2 26090 Rewrite the limit of the s...
lgambdd 26091 The log-Gamma function is ...
lgamucov 26092 The ` U ` regions used in ...
lgamucov2 26093 The ` U ` regions used in ...
lgamcvglem 26094 Lemma for ~ lgamf and ~ lg...
lgamcl 26095 The log-Gamma function is ...
lgamf 26096 The log-Gamma function is ...
gamf 26097 The Gamma function is a co...
gamcl 26098 The exponential of the log...
eflgam 26099 The exponential of the log...
gamne0 26100 The Gamma function is neve...
igamval 26101 Value of the inverse Gamma...
igamz 26102 Value of the inverse Gamma...
igamgam 26103 Value of the inverse Gamma...
igamlgam 26104 Value of the inverse Gamma...
igamf 26105 Closure of the inverse Gam...
igamcl 26106 Closure of the inverse Gam...
gamigam 26107 The Gamma function is the ...
lgamcvg 26108 The series ` G ` converges...
lgamcvg2 26109 The series ` G ` converges...
gamcvg 26110 The pointwise exponential ...
lgamp1 26111 The functional equation of...
gamp1 26112 The functional equation of...
gamcvg2lem 26113 Lemma for ~ gamcvg2 . (Co...
gamcvg2 26114 An infinite product expres...
regamcl 26115 The Gamma function is real...
relgamcl 26116 The log-Gamma function is ...
rpgamcl 26117 The log-Gamma function is ...
lgam1 26118 The log-Gamma function at ...
gam1 26119 The log-Gamma function at ...
facgam 26120 The Gamma function general...
gamfac 26121 The Gamma function general...
wilthlem1 26122 The only elements that are...
wilthlem2 26123 Lemma for ~ wilth : induct...
wilthlem3 26124 Lemma for ~ wilth . Here ...
wilth 26125 Wilson's theorem. A numbe...
wilthimp 26126 The forward implication of...
ftalem1 26127 Lemma for ~ fta : "growth...
ftalem2 26128 Lemma for ~ fta . There e...
ftalem3 26129 Lemma for ~ fta . There e...
ftalem4 26130 Lemma for ~ fta : Closure...
ftalem5 26131 Lemma for ~ fta : Main pr...
ftalem6 26132 Lemma for ~ fta : Dischar...
ftalem7 26133 Lemma for ~ fta . Shift t...
fta 26134 The Fundamental Theorem of...
basellem1 26135 Lemma for ~ basel . Closu...
basellem2 26136 Lemma for ~ basel . Show ...
basellem3 26137 Lemma for ~ basel . Using...
basellem4 26138 Lemma for ~ basel . By ~ ...
basellem5 26139 Lemma for ~ basel . Using...
basellem6 26140 Lemma for ~ basel . The f...
basellem7 26141 Lemma for ~ basel . The f...
basellem8 26142 Lemma for ~ basel . The f...
basellem9 26143 Lemma for ~ basel . Since...
basel 26144 The sum of the inverse squ...
efnnfsumcl 26157 Finite sum closure in the ...
ppisval 26158 The set of primes less tha...
ppisval2 26159 The set of primes less tha...
ppifi 26160 The set of primes less tha...
prmdvdsfi 26161 The set of prime divisors ...
chtf 26162 Domain and range of the Ch...
chtcl 26163 Real closure of the Chebys...
chtval 26164 Value of the Chebyshev fun...
efchtcl 26165 The Chebyshev function is ...
chtge0 26166 The Chebyshev function is ...
vmaval 26167 Value of the von Mangoldt ...
isppw 26168 Two ways to say that ` A `...
isppw2 26169 Two ways to say that ` A `...
vmappw 26170 Value of the von Mangoldt ...
vmaprm 26171 Value of the von Mangoldt ...
vmacl 26172 Closure for the von Mangol...
vmaf 26173 Functionality of the von M...
efvmacl 26174 The von Mangoldt is closed...
vmage0 26175 The von Mangoldt function ...
chpval 26176 Value of the second Chebys...
chpf 26177 Functionality of the secon...
chpcl 26178 Closure for the second Che...
efchpcl 26179 The second Chebyshev funct...
chpge0 26180 The second Chebyshev funct...
ppival 26181 Value of the prime-countin...
ppival2 26182 Value of the prime-countin...
ppival2g 26183 Value of the prime-countin...
ppif 26184 Domain and range of the pr...
ppicl 26185 Real closure of the prime-...
muval 26186 The value of the Möbi...
muval1 26187 The value of the Möbi...
muval2 26188 The value of the Möbi...
isnsqf 26189 Two ways to say that a num...
issqf 26190 Two ways to say that a num...
sqfpc 26191 The prime count of a squar...
dvdssqf 26192 A divisor of a squarefree ...
sqf11 26193 A squarefree number is com...
muf 26194 The Möbius function i...
mucl 26195 Closure of the Möbius...
sgmval 26196 The value of the divisor f...
sgmval2 26197 The value of the divisor f...
0sgm 26198 The value of the sum-of-di...
sgmf 26199 The divisor function is a ...
sgmcl 26200 Closure of the divisor fun...
sgmnncl 26201 Closure of the divisor fun...
mule1 26202 The Möbius function t...
chtfl 26203 The Chebyshev function doe...
chpfl 26204 The second Chebyshev funct...
ppiprm 26205 The prime-counting functio...
ppinprm 26206 The prime-counting functio...
chtprm 26207 The Chebyshev function at ...
chtnprm 26208 The Chebyshev function at ...
chpp1 26209 The second Chebyshev funct...
chtwordi 26210 The Chebyshev function is ...
chpwordi 26211 The second Chebyshev funct...
chtdif 26212 The difference of the Cheb...
efchtdvds 26213 The exponentiated Chebyshe...
ppifl 26214 The prime-counting functio...
ppip1le 26215 The prime-counting functio...
ppiwordi 26216 The prime-counting functio...
ppidif 26217 The difference of the prim...
ppi1 26218 The prime-counting functio...
cht1 26219 The Chebyshev function at ...
vma1 26220 The von Mangoldt function ...
chp1 26221 The second Chebyshev funct...
ppi1i 26222 Inference form of ~ ppiprm...
ppi2i 26223 Inference form of ~ ppinpr...
ppi2 26224 The prime-counting functio...
ppi3 26225 The prime-counting functio...
cht2 26226 The Chebyshev function at ...
cht3 26227 The Chebyshev function at ...
ppinncl 26228 Closure of the prime-count...
chtrpcl 26229 Closure of the Chebyshev f...
ppieq0 26230 The prime-counting functio...
ppiltx 26231 The prime-counting functio...
prmorcht 26232 Relate the primorial (prod...
mumullem1 26233 Lemma for ~ mumul . A mul...
mumullem2 26234 Lemma for ~ mumul . The p...
mumul 26235 The Möbius function i...
sqff1o 26236 There is a bijection from ...
fsumdvdsdiaglem 26237 A "diagonal commutation" o...
fsumdvdsdiag 26238 A "diagonal commutation" o...
fsumdvdscom 26239 A double commutation of di...
dvdsppwf1o 26240 A bijection from the divis...
dvdsflf1o 26241 A bijection from the numbe...
dvdsflsumcom 26242 A sum commutation from ` s...
fsumfldivdiaglem 26243 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 26244 The right-hand side of ~ d...
musum 26245 The sum of the Möbius...
musumsum 26246 Evaluate a collapsing sum ...
muinv 26247 The Möbius inversion ...
dvdsmulf1o 26248 If ` M ` and ` N ` are two...
fsumdvdsmul 26249 Product of two divisor sum...
sgmppw 26250 The value of the divisor f...
0sgmppw 26251 A prime power ` P ^ K ` ha...
1sgmprm 26252 The sum of divisors for a ...
1sgm2ppw 26253 The sum of the divisors of...
sgmmul 26254 The divisor function for f...
ppiublem1 26255 Lemma for ~ ppiub . (Cont...
ppiublem2 26256 A prime greater than ` 3 `...
ppiub 26257 An upper bound on the prim...
vmalelog 26258 The von Mangoldt function ...
chtlepsi 26259 The first Chebyshev functi...
chprpcl 26260 Closure of the second Cheb...
chpeq0 26261 The second Chebyshev funct...
chteq0 26262 The first Chebyshev functi...
chtleppi 26263 Upper bound on the ` theta...
chtublem 26264 Lemma for ~ chtub . (Cont...
chtub 26265 An upper bound on the Cheb...
fsumvma 26266 Rewrite a sum over the von...
fsumvma2 26267 Apply ~ fsumvma for the co...
pclogsum 26268 The logarithmic analogue o...
vmasum 26269 The sum of the von Mangold...
logfac2 26270 Another expression for the...
chpval2 26271 Express the second Chebysh...
chpchtsum 26272 The second Chebyshev funct...
chpub 26273 An upper bound on the seco...
logfacubnd 26274 A simple upper bound on th...
logfaclbnd 26275 A lower bound on the logar...
logfacbnd3 26276 Show the stronger statemen...
logfacrlim 26277 Combine the estimates ~ lo...
logexprlim 26278 The sum ` sum_ n <_ x , lo...
logfacrlim2 26279 Write out ~ logfacrlim as ...
mersenne 26280 A Mersenne prime is a prim...
perfect1 26281 Euclid's contribution to t...
perfectlem1 26282 Lemma for ~ perfect . (Co...
perfectlem2 26283 Lemma for ~ perfect . (Co...
perfect 26284 The Euclid-Euler theorem, ...
dchrval 26287 Value of the group of Diri...
dchrbas 26288 Base set of the group of D...
dchrelbas 26289 A Dirichlet character is a...
dchrelbas2 26290 A Dirichlet character is a...
dchrelbas3 26291 A Dirichlet character is a...
dchrelbasd 26292 A Dirichlet character is a...
dchrrcl 26293 Reverse closure for a Diri...
dchrmhm 26294 A Dirichlet character is a...
dchrf 26295 A Dirichlet character is a...
dchrelbas4 26296 A Dirichlet character is a...
dchrzrh1 26297 Value of a Dirichlet chara...
dchrzrhcl 26298 A Dirichlet character take...
dchrzrhmul 26299 A Dirichlet character is c...
dchrplusg 26300 Group operation on the gro...
dchrmul 26301 Group operation on the gro...
dchrmulcl 26302 Closure of the group opera...
dchrn0 26303 A Dirichlet character is n...
dchr1cl 26304 Closure of the principal D...
dchrmulid2 26305 Left identity for the prin...
dchrinvcl 26306 Closure of the group inver...
dchrabl 26307 The set of Dirichlet chara...
dchrfi 26308 The group of Dirichlet cha...
dchrghm 26309 A Dirichlet character rest...
dchr1 26310 Value of the principal Dir...
dchreq 26311 A Dirichlet character is d...
dchrresb 26312 A Dirichlet character is d...
dchrabs 26313 A Dirichlet character take...
dchrinv 26314 The inverse of a Dirichlet...
dchrabs2 26315 A Dirichlet character take...
dchr1re 26316 The principal Dirichlet ch...
dchrptlem1 26317 Lemma for ~ dchrpt . (Con...
dchrptlem2 26318 Lemma for ~ dchrpt . (Con...
dchrptlem3 26319 Lemma for ~ dchrpt . (Con...
dchrpt 26320 For any element other than...
dchrsum2 26321 An orthogonality relation ...
dchrsum 26322 An orthogonality relation ...
sumdchr2 26323 Lemma for ~ sumdchr . (Co...
dchrhash 26324 There are exactly ` phi ( ...
sumdchr 26325 An orthogonality relation ...
dchr2sum 26326 An orthogonality relation ...
sum2dchr 26327 An orthogonality relation ...
bcctr 26328 Value of the central binom...
pcbcctr 26329 Prime count of a central b...
bcmono 26330 The binomial coefficient i...
bcmax 26331 The binomial coefficient t...
bcp1ctr 26332 Ratio of two central binom...
bclbnd 26333 A bound on the binomial co...
efexple 26334 Convert a bound on a power...
bpos1lem 26335 Lemma for ~ bpos1 . (Cont...
bpos1 26336 Bertrand's postulate, chec...
bposlem1 26337 An upper bound on the prim...
bposlem2 26338 There are no odd primes in...
bposlem3 26339 Lemma for ~ bpos . Since ...
bposlem4 26340 Lemma for ~ bpos . (Contr...
bposlem5 26341 Lemma for ~ bpos . Bound ...
bposlem6 26342 Lemma for ~ bpos . By usi...
bposlem7 26343 Lemma for ~ bpos . The fu...
bposlem8 26344 Lemma for ~ bpos . Evalua...
bposlem9 26345 Lemma for ~ bpos . Derive...
bpos 26346 Bertrand's postulate: ther...
zabsle1 26349 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 26350 When ` a ` is coprime to t...
lgslem2 26351 The set ` Z ` of all integ...
lgslem3 26352 The set ` Z ` of all integ...
lgslem4 26353 Lemma for ~ lgsfcl2 . (Co...
lgsval 26354 Value of the Legendre symb...
lgsfval 26355 Value of the function ` F ...
lgsfcl2 26356 The function ` F ` is clos...
lgscllem 26357 The Legendre symbol is an ...
lgsfcl 26358 Closure of the function ` ...
lgsfle1 26359 The function ` F ` has mag...
lgsval2lem 26360 Lemma for ~ lgsval2 . (Co...
lgsval4lem 26361 Lemma for ~ lgsval4 . (Co...
lgscl2 26362 The Legendre symbol is an ...
lgs0 26363 The Legendre symbol when t...
lgscl 26364 The Legendre symbol is an ...
lgsle1 26365 The Legendre symbol has ab...
lgsval2 26366 The Legendre symbol at a p...
lgs2 26367 The Legendre symbol at ` 2...
lgsval3 26368 The Legendre symbol at an ...
lgsvalmod 26369 The Legendre symbol is equ...
lgsval4 26370 Restate ~ lgsval for nonze...
lgsfcl3 26371 Closure of the function ` ...
lgsval4a 26372 Same as ~ lgsval4 for posi...
lgscl1 26373 The value of the Legendre ...
lgsneg 26374 The Legendre symbol is eit...
lgsneg1 26375 The Legendre symbol for no...
lgsmod 26376 The Legendre (Jacobi) symb...
lgsdilem 26377 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 26378 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 26379 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 26380 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 26381 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 26382 Lemma for ~ lgsdir2 . (Co...
lgsdir2 26383 The Legendre symbol is com...
lgsdirprm 26384 The Legendre symbol is com...
lgsdir 26385 The Legendre symbol is com...
lgsdilem2 26386 Lemma for ~ lgsdi . (Cont...
lgsdi 26387 The Legendre symbol is com...
lgsne0 26388 The Legendre symbol is non...
lgsabs1 26389 The Legendre symbol is non...
lgssq 26390 The Legendre symbol at a s...
lgssq2 26391 The Legendre symbol at a s...
lgsprme0 26392 The Legendre symbol at any...
1lgs 26393 The Legendre symbol at ` 1...
lgs1 26394 The Legendre symbol at ` 1...
lgsmodeq 26395 The Legendre (Jacobi) symb...
lgsmulsqcoprm 26396 The Legendre (Jacobi) symb...
lgsdirnn0 26397 Variation on ~ lgsdir vali...
lgsdinn0 26398 Variation on ~ lgsdi valid...
lgsqrlem1 26399 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 26400 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 26401 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 26402 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 26403 Lemma for ~ lgsqr . (Cont...
lgsqr 26404 The Legendre symbol for od...
lgsqrmod 26405 If the Legendre symbol of ...
lgsqrmodndvds 26406 If the Legendre symbol of ...
lgsdchrval 26407 The Legendre symbol functi...
lgsdchr 26408 The Legendre symbol functi...
gausslemma2dlem0a 26409 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 26410 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 26411 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 26412 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 26413 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 26414 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 26415 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 26416 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 26417 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 26418 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 26419 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 26420 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 26421 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 26422 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 26423 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 26424 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 26425 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 26426 Lemma 7 for ~ gausslemma2d...
gausslemma2d 26427 Gauss' Lemma (see also the...
lgseisenlem1 26428 Lemma for ~ lgseisen . If...
lgseisenlem2 26429 Lemma for ~ lgseisen . Th...
lgseisenlem3 26430 Lemma for ~ lgseisen . (C...
lgseisenlem4 26431 Lemma for ~ lgseisen . Th...
lgseisen 26432 Eisenstein's lemma, an exp...
lgsquadlem1 26433 Lemma for ~ lgsquad . Cou...
lgsquadlem2 26434 Lemma for ~ lgsquad . Cou...
lgsquadlem3 26435 Lemma for ~ lgsquad . (Co...
lgsquad 26436 The Law of Quadratic Recip...
lgsquad2lem1 26437 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 26438 Lemma for ~ lgsquad2 . (C...
lgsquad2 26439 Extend ~ lgsquad to coprim...
lgsquad3 26440 Extend ~ lgsquad2 to integ...
m1lgs 26441 The first supplement to th...
2lgslem1a1 26442 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 26443 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 26444 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 26445 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 26446 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 26447 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 26448 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 26449 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 26450 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 26451 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 26452 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 26453 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 26454 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 26455 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 26456 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 26457 Lemma 3 for ~ 2lgs . (Con...
2lgs2 26458 The Legendre symbol for ` ...
2lgslem4 26459 Lemma 4 for ~ 2lgs : speci...
2lgs 26460 The second supplement to t...
2lgsoddprmlem1 26461 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 26462 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 26463 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 26464 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 26465 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 26466 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 26467 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 26468 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 26469 The second supplement to t...
2sqlem1 26470 Lemma for ~ 2sq . (Contri...
2sqlem2 26471 Lemma for ~ 2sq . (Contri...
mul2sq 26472 Fibonacci's identity (actu...
2sqlem3 26473 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 26474 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 26475 Lemma for ~ 2sq . If a nu...
2sqlem6 26476 Lemma for ~ 2sq . If a nu...
2sqlem7 26477 Lemma for ~ 2sq . (Contri...
2sqlem8a 26478 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 26479 Lemma for ~ 2sq . (Contri...
2sqlem9 26480 Lemma for ~ 2sq . (Contri...
2sqlem10 26481 Lemma for ~ 2sq . Every f...
2sqlem11 26482 Lemma for ~ 2sq . (Contri...
2sq 26483 All primes of the form ` 4...
2sqblem 26484 Lemma for ~ 2sqb . (Contr...
2sqb 26485 The converse to ~ 2sq . (...
2sq2 26486 ` 2 ` is the sum of square...
2sqn0 26487 If the sum of two squares ...
2sqcoprm 26488 If the sum of two squares ...
2sqmod 26489 Given two decompositions o...
2sqmo 26490 There exists at most one d...
2sqnn0 26491 All primes of the form ` 4...
2sqnn 26492 All primes of the form ` 4...
addsq2reu 26493 For each complex number ` ...
addsqn2reu 26494 For each complex number ` ...
addsqrexnreu 26495 For each complex number, t...
addsqnreup 26496 There is no unique decompo...
addsq2nreurex 26497 For each complex number ` ...
addsqn2reurex2 26498 For each complex number ` ...
2sqreulem1 26499 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 26500 Lemma for ~ 2sqreult . (C...
2sqreultblem 26501 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 26502 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 26503 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 26504 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 26505 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 26506 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 26507 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 26508 Lemma 2 for ~ 2sqreunn . ...
2sqreu 26509 There exists a unique deco...
2sqreunn 26510 There exists a unique deco...
2sqreult 26511 There exists a unique deco...
2sqreultb 26512 There exists a unique deco...
2sqreunnlt 26513 There exists a unique deco...
2sqreunnltb 26514 There exists a unique deco...
2sqreuop 26515 There exists a unique deco...
2sqreuopnn 26516 There exists a unique deco...
2sqreuoplt 26517 There exists a unique deco...
2sqreuopltb 26518 There exists a unique deco...
2sqreuopnnlt 26519 There exists a unique deco...
2sqreuopnnltb 26520 There exists a unique deco...
2sqreuopb 26521 There exists a unique deco...
chebbnd1lem1 26522 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 26523 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 26524 Lemma for ~ chebbnd1 : get...
chebbnd1 26525 The Chebyshev bound: The ...
chtppilimlem1 26526 Lemma for ~ chtppilim . (...
chtppilimlem2 26527 Lemma for ~ chtppilim . (...
chtppilim 26528 The ` theta ` function is ...
chto1ub 26529 The ` theta ` function is ...
chebbnd2 26530 The Chebyshev bound, part ...
chto1lb 26531 The ` theta ` function is ...
chpchtlim 26532 The ` psi ` and ` theta ` ...
chpo1ub 26533 The ` psi ` function is up...
chpo1ubb 26534 The ` psi ` function is up...
vmadivsum 26535 The sum of the von Mangold...
vmadivsumb 26536 Give a total bound on the ...
rplogsumlem1 26537 Lemma for ~ rplogsum . (C...
rplogsumlem2 26538 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 26539 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 26540 Lemma for ~ rpvmasum . Ca...
dchrisumlema 26541 Lemma for ~ dchrisum . Le...
dchrisumlem1 26542 Lemma for ~ dchrisum . Le...
dchrisumlem2 26543 Lemma for ~ dchrisum . Le...
dchrisumlem3 26544 Lemma for ~ dchrisum . Le...
dchrisum 26545 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 26546 Lemma for ~ dchrmusum and ...
dchrmusum2 26547 The sum of the Möbius...
dchrvmasumlem1 26548 An alternative expression ...
dchrvmasum2lem 26549 Give an expression for ` l...
dchrvmasum2if 26550 Combine the results of ~ d...
dchrvmasumlem2 26551 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 26552 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 26553 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 26554 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 26555 Lemma for ~ dchrvmasum . ...
dchrvmasumif 26556 An asymptotic approximatio...
dchrvmaeq0 26557 The set ` W ` is the colle...
dchrisum0fval 26558 Value of the function ` F ...
dchrisum0fmul 26559 The function ` F ` , the d...
dchrisum0ff 26560 The function ` F ` is a re...
dchrisum0flblem1 26561 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 26562 Lemma for ~ dchrisum0flb ....
dchrisum0flb 26563 The divisor sum of a real ...
dchrisum0fno1 26564 The sum ` sum_ k <_ x , F ...
rpvmasum2 26565 A partial result along the...
dchrisum0re 26566 Suppose ` X ` is a non-pri...
dchrisum0lema 26567 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 26568 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 26569 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 26570 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 26571 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 26572 Lemma for ~ dchrisum0 . (...
dchrisum0 26573 The sum ` sum_ n e. NN , X...
dchrisumn0 26574 The sum ` sum_ n e. NN , X...
dchrmusumlem 26575 The sum of the Möbius...
dchrvmasumlem 26576 The sum of the Möbius...
dchrmusum 26577 The sum of the Möbius...
dchrvmasum 26578 The sum of the von Mangold...
rpvmasum 26579 The sum of the von Mangold...
rplogsum 26580 The sum of ` log p / p ` o...
dirith2 26581 Dirichlet's theorem: there...
dirith 26582 Dirichlet's theorem: there...
mudivsum 26583 Asymptotic formula for ` s...
mulogsumlem 26584 Lemma for ~ mulogsum . (C...
mulogsum 26585 Asymptotic formula for ...
logdivsum 26586 Asymptotic analysis of ...
mulog2sumlem1 26587 Asymptotic formula for ...
mulog2sumlem2 26588 Lemma for ~ mulog2sum . (...
mulog2sumlem3 26589 Lemma for ~ mulog2sum . (...
mulog2sum 26590 Asymptotic formula for ...
vmalogdivsum2 26591 The sum ` sum_ n <_ x , La...
vmalogdivsum 26592 The sum ` sum_ n <_ x , La...
2vmadivsumlem 26593 Lemma for ~ 2vmadivsum . ...
2vmadivsum 26594 The sum ` sum_ m n <_ x , ...
logsqvma 26595 A formula for ` log ^ 2 ( ...
logsqvma2 26596 The Möbius inverse of...
log2sumbnd 26597 Bound on the difference be...
selberglem1 26598 Lemma for ~ selberg . Est...
selberglem2 26599 Lemma for ~ selberg . (Co...
selberglem3 26600 Lemma for ~ selberg . Est...
selberg 26601 Selberg's symmetry formula...
selbergb 26602 Convert eventual boundedne...
selberg2lem 26603 Lemma for ~ selberg2 . Eq...
selberg2 26604 Selberg's symmetry formula...
selberg2b 26605 Convert eventual boundedne...
chpdifbndlem1 26606 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 26607 Lemma for ~ chpdifbnd . (...
chpdifbnd 26608 A bound on the difference ...
logdivbnd 26609 A bound on a sum of logs, ...
selberg3lem1 26610 Introduce a log weighting ...
selberg3lem2 26611 Lemma for ~ selberg3 . Eq...
selberg3 26612 Introduce a log weighting ...
selberg4lem1 26613 Lemma for ~ selberg4 . Eq...
selberg4 26614 The Selberg symmetry formu...
pntrval 26615 Define the residual of the...
pntrf 26616 Functionality of the resid...
pntrmax 26617 There is a bound on the re...
pntrsumo1 26618 A bound on a sum over ` R ...
pntrsumbnd 26619 A bound on a sum over ` R ...
pntrsumbnd2 26620 A bound on a sum over ` R ...
selbergr 26621 Selberg's symmetry formula...
selberg3r 26622 Selberg's symmetry formula...
selberg4r 26623 Selberg's symmetry formula...
selberg34r 26624 The sum of ~ selberg3r and...
pntsval 26625 Define the "Selberg functi...
pntsf 26626 Functionality of the Selbe...
selbergs 26627 Selberg's symmetry formula...
selbergsb 26628 Selberg's symmetry formula...
pntsval2 26629 The Selberg function can b...
pntrlog2bndlem1 26630 The sum of ~ selberg3r and...
pntrlog2bndlem2 26631 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 26632 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 26633 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 26634 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 26635 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 26636 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 26637 A bound on ` R ( x ) log ^...
pntpbnd1a 26638 Lemma for ~ pntpbnd . (Co...
pntpbnd1 26639 Lemma for ~ pntpbnd . (Co...
pntpbnd2 26640 Lemma for ~ pntpbnd . (Co...
pntpbnd 26641 Lemma for ~ pnt . Establi...
pntibndlem1 26642 Lemma for ~ pntibnd . (Co...
pntibndlem2a 26643 Lemma for ~ pntibndlem2 . ...
pntibndlem2 26644 Lemma for ~ pntibnd . The...
pntibndlem3 26645 Lemma for ~ pntibnd . Pac...
pntibnd 26646 Lemma for ~ pnt . Establi...
pntlemd 26647 Lemma for ~ pnt . Closure...
pntlemc 26648 Lemma for ~ pnt . Closure...
pntlema 26649 Lemma for ~ pnt . Closure...
pntlemb 26650 Lemma for ~ pnt . Unpack ...
pntlemg 26651 Lemma for ~ pnt . Closure...
pntlemh 26652 Lemma for ~ pnt . Bounds ...
pntlemn 26653 Lemma for ~ pnt . The "na...
pntlemq 26654 Lemma for ~ pntlemj . (Co...
pntlemr 26655 Lemma for ~ pntlemj . (Co...
pntlemj 26656 Lemma for ~ pnt . The ind...
pntlemi 26657 Lemma for ~ pnt . Elimina...
pntlemf 26658 Lemma for ~ pnt . Add up ...
pntlemk 26659 Lemma for ~ pnt . Evaluat...
pntlemo 26660 Lemma for ~ pnt . Combine...
pntleme 26661 Lemma for ~ pnt . Package...
pntlem3 26662 Lemma for ~ pnt . Equatio...
pntlemp 26663 Lemma for ~ pnt . Wrappin...
pntleml 26664 Lemma for ~ pnt . Equatio...
pnt3 26665 The Prime Number Theorem, ...
pnt2 26666 The Prime Number Theorem, ...
pnt 26667 The Prime Number Theorem: ...
abvcxp 26668 Raising an absolute value ...
padicfval 26669 Value of the p-adic absolu...
padicval 26670 Value of the p-adic absolu...
ostth2lem1 26671 Lemma for ~ ostth2 , altho...
qrngbas 26672 The base set of the field ...
qdrng 26673 The rationals form a divis...
qrng0 26674 The zero element of the fi...
qrng1 26675 The unit element of the fi...
qrngneg 26676 The additive inverse in th...
qrngdiv 26677 The division operation in ...
qabvle 26678 By using induction on ` N ...
qabvexp 26679 Induct the product rule ~ ...
ostthlem1 26680 Lemma for ~ ostth . If tw...
ostthlem2 26681 Lemma for ~ ostth . Refin...
qabsabv 26682 The regular absolute value...
padicabv 26683 The p-adic absolute value ...
padicabvf 26684 The p-adic absolute value ...
padicabvcxp 26685 All positive powers of the...
ostth1 26686 - Lemma for ~ ostth : triv...
ostth2lem2 26687 Lemma for ~ ostth2 . (Con...
ostth2lem3 26688 Lemma for ~ ostth2 . (Con...
ostth2lem4 26689 Lemma for ~ ostth2 . (Con...
ostth2 26690 - Lemma for ~ ostth : regu...
ostth3 26691 - Lemma for ~ ostth : p-ad...
ostth 26692 Ostrowski's theorem, which...
itvndx 26703 Index value of the Interva...
lngndx 26704 Index value of the "line" ...
itvid 26705 Utility theorem: index-ind...
lngid 26706 Utility theorem: index-ind...
slotsinbpsd 26707 The slots ` Base ` , ` +g ...
slotslnbpsd 26708 The slots ` Base ` , ` +g ...
trkgstr 26709 Functionality of a Tarski ...
trkgbas 26710 The base set of a Tarski g...
trkgdist 26711 The measure of a distance ...
trkgitv 26712 The congruence relation in...
istrkgc 26719 Property of being a Tarski...
istrkgb 26720 Property of being a Tarski...
istrkgcb 26721 Property of being a Tarski...
istrkge 26722 Property of fulfilling Euc...
istrkgl 26723 Building lines from the se...
istrkgld 26724 Property of fulfilling the...
istrkg2ld 26725 Property of fulfilling the...
istrkg3ld 26726 Property of fulfilling the...
axtgcgrrflx 26727 Axiom of reflexivity of co...
axtgcgrid 26728 Axiom of identity of congr...
axtgsegcon 26729 Axiom of segment construct...
axtg5seg 26730 Five segments axiom, Axiom...
axtgbtwnid 26731 Identity of Betweenness. ...
axtgpasch 26732 Axiom of (Inner) Pasch, Ax...
axtgcont1 26733 Axiom of Continuity. Axio...
axtgcont 26734 Axiom of Continuity. Axio...
axtglowdim2 26735 Lower dimension axiom for ...
axtgupdim2 26736 Upper dimension axiom for ...
axtgeucl 26737 Euclid's Axiom. Axiom A10...
tgjustf 26738 Given any function ` F ` ,...
tgjustr 26739 Given any equivalence rela...
tgjustc1 26740 A justification for using ...
tgjustc2 26741 A justification for using ...
tgcgrcomimp 26742 Congruence commutes on the...
tgcgrcomr 26743 Congruence commutes on the...
tgcgrcoml 26744 Congruence commutes on the...
tgcgrcomlr 26745 Congruence commutes on bot...
tgcgreqb 26746 Congruence and equality. ...
tgcgreq 26747 Congruence and equality. ...
tgcgrneq 26748 Congruence and equality. ...
tgcgrtriv 26749 Degenerate segments are co...
tgcgrextend 26750 Link congruence over a pai...
tgsegconeq 26751 Two points that satisfy th...
tgbtwntriv2 26752 Betweenness always holds f...
tgbtwncom 26753 Betweenness commutes. The...
tgbtwncomb 26754 Betweenness commutes, bico...
tgbtwnne 26755 Betweenness and inequality...
tgbtwntriv1 26756 Betweenness always holds f...
tgbtwnswapid 26757 If you can swap the first ...
tgbtwnintr 26758 Inner transitivity law for...
tgbtwnexch3 26759 Exchange the first endpoin...
tgbtwnouttr2 26760 Outer transitivity law for...
tgbtwnexch2 26761 Exchange the outer point o...
tgbtwnouttr 26762 Outer transitivity law for...
tgbtwnexch 26763 Outer transitivity law for...
tgtrisegint 26764 A line segment between two...
tglowdim1 26765 Lower dimension axiom for ...
tglowdim1i 26766 Lower dimension axiom for ...
tgldimor 26767 Excluded-middle like state...
tgldim0eq 26768 In dimension zero, any two...
tgldim0itv 26769 In dimension zero, any two...
tgldim0cgr 26770 In dimension zero, any two...
tgbtwndiff 26771 There is always a ` c ` di...
tgdim01 26772 In geometries of dimension...
tgifscgr 26773 Inner five segment congrue...
tgcgrsub 26774 Removing identical parts f...
iscgrg 26777 The congruence property fo...
iscgrgd 26778 The property for two seque...
iscgrglt 26779 The property for two seque...
trgcgrg 26780 The property for two trian...
trgcgr 26781 Triangle congruence. (Con...
ercgrg 26782 The shape congruence relat...
tgcgrxfr 26783 A line segment can be divi...
cgr3id 26784 Reflexivity law for three-...
cgr3simp1 26785 Deduce segment congruence ...
cgr3simp2 26786 Deduce segment congruence ...
cgr3simp3 26787 Deduce segment congruence ...
cgr3swap12 26788 Permutation law for three-...
cgr3swap23 26789 Permutation law for three-...
cgr3swap13 26790 Permutation law for three-...
cgr3rotr 26791 Permutation law for three-...
cgr3rotl 26792 Permutation law for three-...
trgcgrcom 26793 Commutative law for three-...
cgr3tr 26794 Transitivity law for three...
tgbtwnxfr 26795 A condition for extending ...
tgcgr4 26796 Two quadrilaterals to be c...
isismt 26799 Property of being an isome...
ismot 26800 Property of being an isome...
motcgr 26801 Property of a motion: dist...
idmot 26802 The identity is a motion. ...
motf1o 26803 Motions are bijections. (...
motcl 26804 Closure of motions. (Cont...
motco 26805 The composition of two mot...
cnvmot 26806 The converse of a motion i...
motplusg 26807 The operation for motions ...
motgrp 26808 The motions of a geometry ...
motcgrg 26809 Property of a motion: dist...
motcgr3 26810 Property of a motion: dist...
tglng 26811 Lines of a Tarski Geometry...
tglnfn 26812 Lines as functions. (Cont...
tglnunirn 26813 Lines are sets of points. ...
tglnpt 26814 Lines are sets of points. ...
tglngne 26815 It takes two different poi...
tglngval 26816 The line going through poi...
tglnssp 26817 Lines are subset of the ge...
tgellng 26818 Property of lying on the l...
tgcolg 26819 We choose the notation ` (...
btwncolg1 26820 Betweenness implies coline...
btwncolg2 26821 Betweenness implies coline...
btwncolg3 26822 Betweenness implies coline...
colcom 26823 Swapping the points defini...
colrot1 26824 Rotating the points defini...
colrot2 26825 Rotating the points defini...
ncolcom 26826 Swapping non-colinear poin...
ncolrot1 26827 Rotating non-colinear poin...
ncolrot2 26828 Rotating non-colinear poin...
tgdim01ln 26829 In geometries of dimension...
ncoltgdim2 26830 If there are three non-col...
lnxfr 26831 Transfer law for colineari...
lnext 26832 Extend a line with a missi...
tgfscgr 26833 Congruence law for the gen...
lncgr 26834 Congruence rule for lines....
lnid 26835 Identity law for points on...
tgidinside 26836 Law for finding a point in...
tgbtwnconn1lem1 26837 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 26838 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 26839 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 26840 Connectivity law for betwe...
tgbtwnconn2 26841 Another connectivity law f...
tgbtwnconn3 26842 Inner connectivity law for...
tgbtwnconnln3 26843 Derive colinearity from be...
tgbtwnconn22 26844 Double connectivity law fo...
tgbtwnconnln1 26845 Derive colinearity from be...
tgbtwnconnln2 26846 Derive colinearity from be...
legval 26849 Value of the less-than rel...
legov 26850 Value of the less-than rel...
legov2 26851 An equivalent definition o...
legid 26852 Reflexivity of the less-th...
btwnleg 26853 Betweenness implies less-t...
legtrd 26854 Transitivity of the less-t...
legtri3 26855 Equality from the less-tha...
legtrid 26856 Trichotomy law for the les...
leg0 26857 Degenerated (zero-length) ...
legeq 26858 Deduce equality from "less...
legbtwn 26859 Deduce betweenness from "l...
tgcgrsub2 26860 Removing identical parts f...
ltgseg 26861 The set ` E ` denotes the ...
ltgov 26862 Strict "shorter than" geom...
legov3 26863 An equivalent definition o...
legso 26864 The "shorter than" relatio...
ishlg 26867 Rays : Definition 6.1 of ...
hlcomb 26868 The half-line relation com...
hlcomd 26869 The half-line relation com...
hlne1 26870 The half-line relation imp...
hlne2 26871 The half-line relation imp...
hlln 26872 The half-line relation imp...
hleqnid 26873 The endpoint does not belo...
hlid 26874 The half-line relation is ...
hltr 26875 The half-line relation is ...
hlbtwn 26876 Betweenness is a sufficien...
btwnhl1 26877 Deduce half-line from betw...
btwnhl2 26878 Deduce half-line from betw...
btwnhl 26879 Swap betweenness for a hal...
lnhl 26880 Either a point ` C ` on th...
hlcgrex 26881 Construct a point on a hal...
hlcgreulem 26882 Lemma for ~ hlcgreu . (Co...
hlcgreu 26883 The point constructed in ~...
btwnlng1 26884 Betweenness implies coline...
btwnlng2 26885 Betweenness implies coline...
btwnlng3 26886 Betweenness implies coline...
lncom 26887 Swapping the points defini...
lnrot1 26888 Rotating the points defini...
lnrot2 26889 Rotating the points defini...
ncolne1 26890 Non-colinear points are di...
ncolne2 26891 Non-colinear points are di...
tgisline 26892 The property of being a pr...
tglnne 26893 It takes two different poi...
tglndim0 26894 There are no lines in dime...
tgelrnln 26895 The property of being a pr...
tglineeltr 26896 Transitivity law for lines...
tglineelsb2 26897 If ` S ` lies on PQ , then...
tglinerflx1 26898 Reflexivity law for line m...
tglinerflx2 26899 Reflexivity law for line m...
tglinecom 26900 Commutativity law for line...
tglinethru 26901 If ` A ` is a line contain...
tghilberti1 26902 There is a line through an...
tghilberti2 26903 There is at most one line ...
tglinethrueu 26904 There is a unique line goi...
tglnne0 26905 A line ` A ` has at least ...
tglnpt2 26906 Find a second point on a l...
tglineintmo 26907 Two distinct lines interse...
tglineineq 26908 Two distinct lines interse...
tglineneq 26909 Given three non-colinear p...
tglineinteq 26910 Two distinct lines interse...
ncolncol 26911 Deduce non-colinearity fro...
coltr 26912 A transitivity law for col...
coltr3 26913 A transitivity law for col...
colline 26914 Three points are colinear ...
tglowdim2l 26915 Reformulation of the lower...
tglowdim2ln 26916 There is always one point ...
mirreu3 26919 Existential uniqueness of ...
mirval 26920 Value of the point inversi...
mirfv 26921 Value of the point inversi...
mircgr 26922 Property of the image by t...
mirbtwn 26923 Property of the image by t...
ismir 26924 Property of the image by t...
mirf 26925 Point inversion as functio...
mircl 26926 Closure of the point inver...
mirmir 26927 The point inversion functi...
mircom 26928 Variation on ~ mirmir . (...
mirreu 26929 Any point has a unique ant...
mireq 26930 Equality deduction for poi...
mirinv 26931 The only invariant point o...
mirne 26932 Mirror of non-center point...
mircinv 26933 The center point is invari...
mirf1o 26934 The point inversion functi...
miriso 26935 The point inversion functi...
mirbtwni 26936 Point inversion preserves ...
mirbtwnb 26937 Point inversion preserves ...
mircgrs 26938 Point inversion preserves ...
mirmir2 26939 Point inversion of a point...
mirmot 26940 Point investion is a motio...
mirln 26941 If two points are on the s...
mirln2 26942 If a point and its mirror ...
mirconn 26943 Point inversion of connect...
mirhl 26944 If two points ` X ` and ` ...
mirbtwnhl 26945 If the center of the point...
mirhl2 26946 Deduce half-line relation ...
mircgrextend 26947 Link congruence over a pai...
mirtrcgr 26948 Point inversion of one poi...
mirauto 26949 Point inversion preserves ...
miduniq 26950 Uniqueness of the middle p...
miduniq1 26951 Uniqueness of the middle p...
miduniq2 26952 If two point inversions co...
colmid 26953 Colinearity and equidistan...
symquadlem 26954 Lemma of the symetrial qua...
krippenlem 26955 Lemma for ~ krippen . We ...
krippen 26956 Krippenlemma (German for c...
midexlem 26957 Lemma for the existence of...
israg 26962 Property for 3 points A, B...
ragcom 26963 Commutative rule for right...
ragcol 26964 The right angle property i...
ragmir 26965 Right angle property is pr...
mirrag 26966 Right angle is conserved b...
ragtrivb 26967 Trivial right angle. Theo...
ragflat2 26968 Deduce equality from two r...
ragflat 26969 Deduce equality from two r...
ragtriva 26970 Trivial right angle. Theo...
ragflat3 26971 Right angle and colinearit...
ragcgr 26972 Right angle and colinearit...
motrag 26973 Right angles are preserved...
ragncol 26974 Right angle implies non-co...
perpln1 26975 Derive a line from perpend...
perpln2 26976 Derive a line from perpend...
isperp 26977 Property for 2 lines A, B ...
perpcom 26978 The "perpendicular" relati...
perpneq 26979 Two perpendicular lines ar...
isperp2 26980 Property for 2 lines A, B,...
isperp2d 26981 One direction of ~ isperp2...
ragperp 26982 Deduce that two lines are ...
footexALT 26983 Alternative version of ~ f...
footexlem1 26984 Lemma for ~ footex . (Con...
footexlem2 26985 Lemma for ~ footex . (Con...
footex 26986 From a point ` C ` outside...
foot 26987 From a point ` C ` outside...
footne 26988 Uniqueness of the foot poi...
footeq 26989 Uniqueness of the foot poi...
hlperpnel 26990 A point on a half-line whi...
perprag 26991 Deduce a right angle from ...
perpdragALT 26992 Deduce a right angle from ...
perpdrag 26993 Deduce a right angle from ...
colperp 26994 Deduce a perpendicularity ...
colperpexlem1 26995 Lemma for ~ colperp . Fir...
colperpexlem2 26996 Lemma for ~ colperpex . S...
colperpexlem3 26997 Lemma for ~ colperpex . C...
colperpex 26998 In dimension 2 and above, ...
mideulem2 26999 Lemma for ~ opphllem , whi...
opphllem 27000 Lemma 8.24 of [Schwabhause...
mideulem 27001 Lemma for ~ mideu . We ca...
midex 27002 Existence of the midpoint,...
mideu 27003 Existence and uniqueness o...
islnopp 27004 The property for two point...
islnoppd 27005 Deduce that ` A ` and ` B ...
oppne1 27006 Points lying on opposite s...
oppne2 27007 Points lying on opposite s...
oppne3 27008 Points lying on opposite s...
oppcom 27009 Commutativity rule for "op...
opptgdim2 27010 If two points opposite to ...
oppnid 27011 The "opposite to a line" r...
opphllem1 27012 Lemma for ~ opphl . (Cont...
opphllem2 27013 Lemma for ~ opphl . Lemma...
opphllem3 27014 Lemma for ~ opphl : We as...
opphllem4 27015 Lemma for ~ opphl . (Cont...
opphllem5 27016 Second part of Lemma 9.4 o...
opphllem6 27017 First part of Lemma 9.4 of...
oppperpex 27018 Restating ~ colperpex usin...
opphl 27019 If two points ` A ` and ` ...
outpasch 27020 Axiom of Pasch, outer form...
hlpasch 27021 An application of the axio...
ishpg 27024 Value of the half-plane re...
hpgbr 27025 Half-planes : property for...
hpgne1 27026 Points on the open half pl...
hpgne2 27027 Points on the open half pl...
lnopp2hpgb 27028 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 27029 If two points lie on the o...
hpgerlem 27030 Lemma for the proof that t...
hpgid 27031 The half-plane relation is...
hpgcom 27032 The half-plane relation co...
hpgtr 27033 The half-plane relation is...
colopp 27034 Opposite sides of a line f...
colhp 27035 Half-plane relation for co...
hphl 27036 If two points are on the s...
midf 27041 Midpoint as a function. (...
midcl 27042 Closure of the midpoint. ...
ismidb 27043 Property of the midpoint. ...
midbtwn 27044 Betweenness of midpoint. ...
midcgr 27045 Congruence of midpoint. (...
midid 27046 Midpoint of a null segment...
midcom 27047 Commutativity rule for the...
mirmid 27048 Point inversion preserves ...
lmieu 27049 Uniqueness of the line mir...
lmif 27050 Line mirror as a function....
lmicl 27051 Closure of the line mirror...
islmib 27052 Property of the line mirro...
lmicom 27053 The line mirroring functio...
lmilmi 27054 Line mirroring is an invol...
lmireu 27055 Any point has a unique ant...
lmieq 27056 Equality deduction for lin...
lmiinv 27057 The invariants of the line...
lmicinv 27058 The mirroring line is an i...
lmimid 27059 If we have a right angle, ...
lmif1o 27060 The line mirroring functio...
lmiisolem 27061 Lemma for ~ lmiiso . (Con...
lmiiso 27062 The line mirroring functio...
lmimot 27063 Line mirroring is a motion...
hypcgrlem1 27064 Lemma for ~ hypcgr , case ...
hypcgrlem2 27065 Lemma for ~ hypcgr , case ...
hypcgr 27066 If the catheti of two righ...
lmiopp 27067 Line mirroring produces po...
lnperpex 27068 Existence of a perpendicul...
trgcopy 27069 Triangle construction: a c...
trgcopyeulem 27070 Lemma for ~ trgcopyeu . (...
trgcopyeu 27071 Triangle construction: a c...
iscgra 27074 Property for two angles AB...
iscgra1 27075 A special version of ~ isc...
iscgrad 27076 Sufficient conditions for ...
cgrane1 27077 Angles imply inequality. ...
cgrane2 27078 Angles imply inequality. ...
cgrane3 27079 Angles imply inequality. ...
cgrane4 27080 Angles imply inequality. ...
cgrahl1 27081 Angle congruence is indepe...
cgrahl2 27082 Angle congruence is indepe...
cgracgr 27083 First direction of proposi...
cgraid 27084 Angle congruence is reflex...
cgraswap 27085 Swap rays in a congruence ...
cgrcgra 27086 Triangle congruence implie...
cgracom 27087 Angle congruence commutes....
cgratr 27088 Angle congruence is transi...
flatcgra 27089 Flat angles are congruent....
cgraswaplr 27090 Swap both side of angle co...
cgrabtwn 27091 Angle congruence preserves...
cgrahl 27092 Angle congruence preserves...
cgracol 27093 Angle congruence preserves...
cgrancol 27094 Angle congruence preserves...
dfcgra2 27095 This is the full statement...
sacgr 27096 Supplementary angles of co...
oacgr 27097 Vertical angle theorem. V...
acopy 27098 Angle construction. Theor...
acopyeu 27099 Angle construction. Theor...
isinag 27103 Property for point ` X ` t...
isinagd 27104 Sufficient conditions for ...
inagflat 27105 Any point lies in a flat a...
inagswap 27106 Swap the order of the half...
inagne1 27107 Deduce inequality from the...
inagne2 27108 Deduce inequality from the...
inagne3 27109 Deduce inequality from the...
inaghl 27110 The "point lie in angle" r...
isleag 27112 Geometrical "less than" pr...
isleagd 27113 Sufficient condition for "...
leagne1 27114 Deduce inequality from the...
leagne2 27115 Deduce inequality from the...
leagne3 27116 Deduce inequality from the...
leagne4 27117 Deduce inequality from the...
cgrg3col4 27118 Lemma 11.28 of [Schwabhaus...
tgsas1 27119 First congruence theorem: ...
tgsas 27120 First congruence theorem: ...
tgsas2 27121 First congruence theorem: ...
tgsas3 27122 First congruence theorem: ...
tgasa1 27123 Second congruence theorem:...
tgasa 27124 Second congruence theorem:...
tgsss1 27125 Third congruence theorem: ...
tgsss2 27126 Third congruence theorem: ...
tgsss3 27127 Third congruence theorem: ...
dfcgrg2 27128 Congruence for two triangl...
isoas 27129 Congruence theorem for iso...
iseqlg 27132 Property of a triangle bei...
iseqlgd 27133 Condition for a triangle t...
f1otrgds 27134 Convenient lemma for ~ f1o...
f1otrgitv 27135 Convenient lemma for ~ f1o...
f1otrg 27136 A bijection between bases ...
f1otrge 27137 A bijection between bases ...
ttgval 27140 Define a function to augme...
ttglem 27141 Lemma for ~ ttgbas , ~ ttg...
ttglemOLD 27142 Obsolete version of ~ ttgl...
ttgbas 27143 The base set of a subcompl...
ttgbasOLD 27144 Obsolete proof of ~ ttgbas...
ttgplusg 27145 The addition operation of ...
ttgplusgOLD 27146 Obsolete proof of ~ ttgplu...
ttgsub 27147 The subtraction operation ...
ttgvsca 27148 The scalar product of a su...
ttgvscaOLD 27149 Obsolete proof of ~ ttgvsc...
ttgds 27150 The metric of a subcomplex...
ttgdsOLD 27151 Obsolete proof of ~ ttgds ...
ttgitvval 27152 Betweenness for a subcompl...
ttgelitv 27153 Betweenness for a subcompl...
ttgbtwnid 27154 Any subcomplex module equi...
ttgcontlem1 27155 Lemma for % ttgcont . (Co...
xmstrkgc 27156 Any metric space fulfills ...
cchhllem 27157 Lemma for chlbas and chlvs...
cchhllemOLD 27158 Obsolete version of ~ cchh...
elee 27165 Membership in a Euclidean ...
mptelee 27166 A condition for a mapping ...
eleenn 27167 If ` A ` is in ` ( EE `` N...
eleei 27168 The forward direction of ~...
eedimeq 27169 A point belongs to at most...
brbtwn 27170 The binary relation form o...
brcgr 27171 The binary relation form o...
fveere 27172 The function value of a po...
fveecn 27173 The function value of a po...
eqeefv 27174 Two points are equal iff t...
eqeelen 27175 Two points are equal iff t...
brbtwn2 27176 Alternate characterization...
colinearalglem1 27177 Lemma for ~ colinearalg . ...
colinearalglem2 27178 Lemma for ~ colinearalg . ...
colinearalglem3 27179 Lemma for ~ colinearalg . ...
colinearalglem4 27180 Lemma for ~ colinearalg . ...
colinearalg 27181 An algebraic characterizat...
eleesub 27182 Membership of a subtractio...
eleesubd 27183 Membership of a subtractio...
axdimuniq 27184 The unique dimension axiom...
axcgrrflx 27185 ` A ` is as far from ` B `...
axcgrtr 27186 Congruence is transitive. ...
axcgrid 27187 If there is no distance be...
axsegconlem1 27188 Lemma for ~ axsegcon . Ha...
axsegconlem2 27189 Lemma for ~ axsegcon . Sh...
axsegconlem3 27190 Lemma for ~ axsegcon . Sh...
axsegconlem4 27191 Lemma for ~ axsegcon . Sh...
axsegconlem5 27192 Lemma for ~ axsegcon . Sh...
axsegconlem6 27193 Lemma for ~ axsegcon . Sh...
axsegconlem7 27194 Lemma for ~ axsegcon . Sh...
axsegconlem8 27195 Lemma for ~ axsegcon . Sh...
axsegconlem9 27196 Lemma for ~ axsegcon . Sh...
axsegconlem10 27197 Lemma for ~ axsegcon . Sh...
axsegcon 27198 Any segment ` A B ` can be...
ax5seglem1 27199 Lemma for ~ ax5seg . Rexp...
ax5seglem2 27200 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 27201 Lemma for ~ ax5seg . (Con...
ax5seglem3 27202 Lemma for ~ ax5seg . Comb...
ax5seglem4 27203 Lemma for ~ ax5seg . Give...
ax5seglem5 27204 Lemma for ~ ax5seg . If `...
ax5seglem6 27205 Lemma for ~ ax5seg . Give...
ax5seglem7 27206 Lemma for ~ ax5seg . An a...
ax5seglem8 27207 Lemma for ~ ax5seg . Use ...
ax5seglem9 27208 Lemma for ~ ax5seg . Take...
ax5seg 27209 The five segment axiom. T...
axbtwnid 27210 Points are indivisible. T...
axpaschlem 27211 Lemma for ~ axpasch . Set...
axpasch 27212 The inner Pasch axiom. Ta...
axlowdimlem1 27213 Lemma for ~ axlowdim . Es...
axlowdimlem2 27214 Lemma for ~ axlowdim . Sh...
axlowdimlem3 27215 Lemma for ~ axlowdim . Se...
axlowdimlem4 27216 Lemma for ~ axlowdim . Se...
axlowdimlem5 27217 Lemma for ~ axlowdim . Sh...
axlowdimlem6 27218 Lemma for ~ axlowdim . Sh...
axlowdimlem7 27219 Lemma for ~ axlowdim . Se...
axlowdimlem8 27220 Lemma for ~ axlowdim . Ca...
axlowdimlem9 27221 Lemma for ~ axlowdim . Ca...
axlowdimlem10 27222 Lemma for ~ axlowdim . Se...
axlowdimlem11 27223 Lemma for ~ axlowdim . Ca...
axlowdimlem12 27224 Lemma for ~ axlowdim . Ca...
axlowdimlem13 27225 Lemma for ~ axlowdim . Es...
axlowdimlem14 27226 Lemma for ~ axlowdim . Ta...
axlowdimlem15 27227 Lemma for ~ axlowdim . Se...
axlowdimlem16 27228 Lemma for ~ axlowdim . Se...
axlowdimlem17 27229 Lemma for ~ axlowdim . Es...
axlowdim1 27230 The lower dimension axiom ...
axlowdim2 27231 The lower two-dimensional ...
axlowdim 27232 The general lower dimensio...
axeuclidlem 27233 Lemma for ~ axeuclid . Ha...
axeuclid 27234 Euclid's axiom. Take an a...
axcontlem1 27235 Lemma for ~ axcont . Chan...
axcontlem2 27236 Lemma for ~ axcont . The ...
axcontlem3 27237 Lemma for ~ axcont . Give...
axcontlem4 27238 Lemma for ~ axcont . Give...
axcontlem5 27239 Lemma for ~ axcont . Comp...
axcontlem6 27240 Lemma for ~ axcont . Stat...
axcontlem7 27241 Lemma for ~ axcont . Give...
axcontlem8 27242 Lemma for ~ axcont . A po...
axcontlem9 27243 Lemma for ~ axcont . Give...
axcontlem10 27244 Lemma for ~ axcont . Give...
axcontlem11 27245 Lemma for ~ axcont . Elim...
axcontlem12 27246 Lemma for ~ axcont . Elim...
axcont 27247 The axiom of continuity. ...
eengv 27250 The value of the Euclidean...
eengstr 27251 The Euclidean geometry as ...
eengbas 27252 The Base of the Euclidean ...
ebtwntg 27253 The betweenness relation u...
ecgrtg 27254 The congruence relation us...
elntg 27255 The line definition in the...
elntg2 27256 The line definition in the...
eengtrkg 27257 The geometry structure for...
eengtrkge 27258 The geometry structure for...
edgfid 27261 Utility theorem: index-ind...
edgfndx 27262 Index value of the ~ df-ed...
edgfndxnn 27263 The index value of the edg...
edgfndxid 27264 The value of the edge func...
edgfndxidOLD 27265 Obsolete version of ~ edgf...
baseltedgf 27266 The index value of the ` B...
baseltedgfOLD 27267 Obsolete proof of ~ baselt...
basendxnedgfndx 27268 The slots ` Base ` and ` ....
vtxval 27273 The set of vertices of a g...
iedgval 27274 The set of indexed edges o...
1vgrex 27275 A graph with at least one ...
opvtxval 27276 The set of vertices of a g...
opvtxfv 27277 The set of vertices of a g...
opvtxov 27278 The set of vertices of a g...
opiedgval 27279 The set of indexed edges o...
opiedgfv 27280 The set of indexed edges o...
opiedgov 27281 The set of indexed edges o...
opvtxfvi 27282 The set of vertices of a g...
opiedgfvi 27283 The set of indexed edges o...
funvtxdmge2val 27284 The set of vertices of an ...
funiedgdmge2val 27285 The set of indexed edges o...
funvtxdm2val 27286 The set of vertices of an ...
funiedgdm2val 27287 The set of indexed edges o...
funvtxval0 27288 The set of vertices of an ...
basvtxval 27289 The set of vertices of a g...
edgfiedgval 27290 The set of indexed edges o...
funvtxval 27291 The set of vertices of a g...
funiedgval 27292 The set of indexed edges o...
structvtxvallem 27293 Lemma for ~ structvtxval a...
structvtxval 27294 The set of vertices of an ...
structiedg0val 27295 The set of indexed edges o...
structgrssvtxlem 27296 Lemma for ~ structgrssvtx ...
structgrssvtx 27297 The set of vertices of a g...
structgrssiedg 27298 The set of indexed edges o...
struct2grstr 27299 A graph represented as an ...
struct2grvtx 27300 The set of vertices of a g...
struct2griedg 27301 The set of indexed edges o...
graop 27302 Any representation of a gr...
grastruct 27303 Any representation of a gr...
gropd 27304 If any representation of a...
grstructd 27305 If any representation of a...
gropeld 27306 If any representation of a...
grstructeld 27307 If any representation of a...
setsvtx 27308 The vertices of a structur...
setsiedg 27309 The (indexed) edges of a s...
snstrvtxval 27310 The set of vertices of a g...
snstriedgval 27311 The set of indexed edges o...
vtxval0 27312 Degenerated case 1 for ver...
iedgval0 27313 Degenerated case 1 for edg...
vtxvalsnop 27314 Degenerated case 2 for ver...
iedgvalsnop 27315 Degenerated case 2 for edg...
vtxval3sn 27316 Degenerated case 3 for ver...
iedgval3sn 27317 Degenerated case 3 for edg...
vtxvalprc 27318 Degenerated case 4 for ver...
iedgvalprc 27319 Degenerated case 4 for edg...
edgval 27322 The edges of a graph. (Co...
iedgedg 27323 An indexed edge is an edge...
edgopval 27324 The edges of a graph repre...
edgov 27325 The edges of a graph repre...
edgstruct 27326 The edges of a graph repre...
edgiedgb 27327 A set is an edge iff it is...
edg0iedg0 27328 There is no edge in a grap...
isuhgr 27333 The predicate "is an undir...
isushgr 27334 The predicate "is an undir...
uhgrf 27335 The edge function of an un...
ushgrf 27336 The edge function of an un...
uhgrss 27337 An edge is a subset of ver...
uhgreq12g 27338 If two sets have the same ...
uhgrfun 27339 The edge function of an un...
uhgrn0 27340 An edge is a nonempty subs...
lpvtx 27341 The endpoints of a loop (w...
ushgruhgr 27342 An undirected simple hyper...
isuhgrop 27343 The property of being an u...
uhgr0e 27344 The empty graph, with vert...
uhgr0vb 27345 The null graph, with no ve...
uhgr0 27346 The null graph represented...
uhgrun 27347 The union ` U ` of two (un...
uhgrunop 27348 The union of two (undirect...
ushgrun 27349 The union ` U ` of two (un...
ushgrunop 27350 The union of two (undirect...
uhgrstrrepe 27351 Replacing (or adding) the ...
incistruhgr 27352 An _incidence structure_ `...
isupgr 27357 The property of being an u...
wrdupgr 27358 The property of being an u...
upgrf 27359 The edge function of an un...
upgrfn 27360 The edge function of an un...
upgrss 27361 An edge is a subset of ver...
upgrn0 27362 An edge is a nonempty subs...
upgrle 27363 An edge of an undirected p...
upgrfi 27364 An edge is a finite subset...
upgrex 27365 An edge is an unordered pa...
upgrbi 27366 Show that an unordered pai...
upgrop 27367 A pseudograph represented ...
isumgr 27368 The property of being an u...
isumgrs 27369 The simplified property of...
wrdumgr 27370 The property of being an u...
umgrf 27371 The edge function of an un...
umgrfn 27372 The edge function of an un...
umgredg2 27373 An edge of a multigraph ha...
umgrbi 27374 Show that an unordered pai...
upgruhgr 27375 An undirected pseudograph ...
umgrupgr 27376 An undirected multigraph i...
umgruhgr 27377 An undirected multigraph i...
upgrle2 27378 An edge of an undirected p...
umgrnloopv 27379 In a multigraph, there is ...
umgredgprv 27380 In a multigraph, an edge i...
umgrnloop 27381 In a multigraph, there is ...
umgrnloop0 27382 A multigraph has no loops....
umgr0e 27383 The empty graph, with vert...
upgr0e 27384 The empty graph, with vert...
upgr1elem 27385 Lemma for ~ upgr1e and ~ u...
upgr1e 27386 A pseudograph with one edg...
upgr0eop 27387 The empty graph, with vert...
upgr1eop 27388 A pseudograph with one edg...
upgr0eopALT 27389 Alternate proof of ~ upgr0...
upgr1eopALT 27390 Alternate proof of ~ upgr1...
upgrun 27391 The union ` U ` of two pse...
upgrunop 27392 The union of two pseudogra...
umgrun 27393 The union ` U ` of two mul...
umgrunop 27394 The union of two multigrap...
umgrislfupgrlem 27395 Lemma for ~ umgrislfupgr a...
umgrislfupgr 27396 A multigraph is a loop-fre...
lfgredgge2 27397 An edge of a loop-free gra...
lfgrnloop 27398 A loop-free graph has no l...
uhgredgiedgb 27399 In a hypergraph, a set is ...
uhgriedg0edg0 27400 A hypergraph has no edges ...
uhgredgn0 27401 An edge of a hypergraph is...
edguhgr 27402 An edge of a hypergraph is...
uhgredgrnv 27403 An edge of a hypergraph co...
uhgredgss 27404 The set of edges of a hype...
upgredgss 27405 The set of edges of a pseu...
umgredgss 27406 The set of edges of a mult...
edgupgr 27407 Properties of an edge of a...
edgumgr 27408 Properties of an edge of a...
uhgrvtxedgiedgb 27409 In a hypergraph, a vertex ...
upgredg 27410 For each edge in a pseudog...
umgredg 27411 For each edge in a multigr...
upgrpredgv 27412 An edge of a pseudograph a...
umgrpredgv 27413 An edge of a multigraph al...
upgredg2vtx 27414 For a vertex incident to a...
upgredgpr 27415 If a proper pair (of verti...
edglnl 27416 The edges incident with a ...
numedglnl 27417 The number of edges incide...
umgredgne 27418 An edge of a multigraph al...
umgrnloop2 27419 A multigraph has no loops....
umgredgnlp 27420 An edge of a multigraph is...
isuspgr 27425 The property of being a si...
isusgr 27426 The property of being a si...
uspgrf 27427 The edge function of a sim...
usgrf 27428 The edge function of a sim...
isusgrs 27429 The property of being a si...
usgrfs 27430 The edge function of a sim...
usgrfun 27431 The edge function of a sim...
usgredgss 27432 The set of edges of a simp...
edgusgr 27433 An edge of a simple graph ...
isuspgrop 27434 The property of being an u...
isusgrop 27435 The property of being an u...
usgrop 27436 A simple graph represented...
isausgr 27437 The property of an unorder...
ausgrusgrb 27438 The equivalence of the def...
usgrausgri 27439 A simple graph represented...
ausgrumgri 27440 If an alternatively define...
ausgrusgri 27441 The equivalence of the def...
usgrausgrb 27442 The equivalence of the def...
usgredgop 27443 An edge of a simple graph ...
usgrf1o 27444 The edge function of a sim...
usgrf1 27445 The edge function of a sim...
uspgrf1oedg 27446 The edge function of a sim...
usgrss 27447 An edge is a subset of ver...
uspgrushgr 27448 A simple pseudograph is an...
uspgrupgr 27449 A simple pseudograph is an...
uspgrupgrushgr 27450 A graph is a simple pseudo...
usgruspgr 27451 A simple graph is a simple...
usgrumgr 27452 A simple graph is an undir...
usgrumgruspgr 27453 A graph is a simple graph ...
usgruspgrb 27454 A class is a simple graph ...
usgrupgr 27455 A simple graph is an undir...
usgruhgr 27456 A simple graph is an undir...
usgrislfuspgr 27457 A simple graph is a loop-f...
uspgrun 27458 The union ` U ` of two sim...
uspgrunop 27459 The union of two simple ps...
usgrun 27460 The union ` U ` of two sim...
usgrunop 27461 The union of two simple gr...
usgredg2 27462 The value of the "edge fun...
usgredg2ALT 27463 Alternate proof of ~ usgre...
usgredgprv 27464 In a simple graph, an edge...
usgredgprvALT 27465 Alternate proof of ~ usgre...
usgredgppr 27466 An edge of a simple graph ...
usgrpredgv 27467 An edge of a simple graph ...
edgssv2 27468 An edge of a simple graph ...
usgredg 27469 For each edge in a simple ...
usgrnloopv 27470 In a simple graph, there i...
usgrnloopvALT 27471 Alternate proof of ~ usgrn...
usgrnloop 27472 In a simple graph, there i...
usgrnloopALT 27473 Alternate proof of ~ usgrn...
usgrnloop0 27474 A simple graph has no loop...
usgrnloop0ALT 27475 Alternate proof of ~ usgrn...
usgredgne 27476 An edge of a simple graph ...
usgrf1oedg 27477 The edge function of a sim...
uhgr2edg 27478 If a vertex is adjacent to...
umgr2edg 27479 If a vertex is adjacent to...
usgr2edg 27480 If a vertex is adjacent to...
umgr2edg1 27481 If a vertex is adjacent to...
usgr2edg1 27482 If a vertex is adjacent to...
umgrvad2edg 27483 If a vertex is adjacent to...
umgr2edgneu 27484 If a vertex is adjacent to...
usgrsizedg 27485 In a simple graph, the siz...
usgredg3 27486 The value of the "edge fun...
usgredg4 27487 For a vertex incident to a...
usgredgreu 27488 For a vertex incident to a...
usgredg2vtx 27489 For a vertex incident to a...
uspgredg2vtxeu 27490 For a vertex incident to a...
usgredg2vtxeu 27491 For a vertex incident to a...
usgredg2vtxeuALT 27492 Alternate proof of ~ usgre...
uspgredg2vlem 27493 Lemma for ~ uspgredg2v . ...
uspgredg2v 27494 In a simple pseudograph, t...
usgredg2vlem1 27495 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 27496 Lemma 2 for ~ usgredg2v . ...
usgredg2v 27497 In a simple graph, the map...
usgriedgleord 27498 Alternate version of ~ usg...
ushgredgedg 27499 In a simple hypergraph the...
usgredgedg 27500 In a simple graph there is...
ushgredgedgloop 27501 In a simple hypergraph the...
uspgredgleord 27502 In a simple pseudograph th...
usgredgleord 27503 In a simple graph the numb...
usgredgleordALT 27504 Alternate proof for ~ usgr...
usgrstrrepe 27505 Replacing (or adding) the ...
usgr0e 27506 The empty graph, with vert...
usgr0vb 27507 The null graph, with no ve...
uhgr0v0e 27508 The null graph, with no ve...
uhgr0vsize0 27509 The size of a hypergraph w...
uhgr0edgfi 27510 A graph of order 0 (i.e. w...
usgr0v 27511 The null graph, with no ve...
uhgr0vusgr 27512 The null graph, with no ve...
usgr0 27513 The null graph represented...
uspgr1e 27514 A simple pseudograph with ...
usgr1e 27515 A simple graph with one ed...
usgr0eop 27516 The empty graph, with vert...
uspgr1eop 27517 A simple pseudograph with ...
uspgr1ewop 27518 A simple pseudograph with ...
uspgr1v1eop 27519 A simple pseudograph with ...
usgr1eop 27520 A simple graph with (at le...
uspgr2v1e2w 27521 A simple pseudograph with ...
usgr2v1e2w 27522 A simple graph with two ve...
edg0usgr 27523 A class without edges is a...
lfuhgr1v0e 27524 A loop-free hypergraph wit...
usgr1vr 27525 A simple graph with one ve...
usgr1v 27526 A class with one (or no) v...
usgr1v0edg 27527 A class with one (or no) v...
usgrexmpldifpr 27528 Lemma for ~ usgrexmpledg :...
usgrexmplef 27529 Lemma for ~ usgrexmpl . (...
usgrexmpllem 27530 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 27531 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 27532 The edges ` { 0 , 1 } , { ...
usgrexmpl 27533 ` G ` is a simple graph of...
griedg0prc 27534 The class of empty graphs ...
griedg0ssusgr 27535 The class of all simple gr...
usgrprc 27536 The class of simple graphs...
relsubgr 27539 The class of the subgraph ...
subgrv 27540 If a class is a subgraph o...
issubgr 27541 The property of a set to b...
issubgr2 27542 The property of a set to b...
subgrprop 27543 The properties of a subgra...
subgrprop2 27544 The properties of a subgra...
uhgrissubgr 27545 The property of a hypergra...
subgrprop3 27546 The properties of a subgra...
egrsubgr 27547 An empty graph consisting ...
0grsubgr 27548 The null graph (represente...
0uhgrsubgr 27549 The null graph (as hypergr...
uhgrsubgrself 27550 A hypergraph is a subgraph...
subgrfun 27551 The edge function of a sub...
subgruhgrfun 27552 The edge function of a sub...
subgreldmiedg 27553 An element of the domain o...
subgruhgredgd 27554 An edge of a subgraph of a...
subumgredg2 27555 An edge of a subgraph of a...
subuhgr 27556 A subgraph of a hypergraph...
subupgr 27557 A subgraph of a pseudograp...
subumgr 27558 A subgraph of a multigraph...
subusgr 27559 A subgraph of a simple gra...
uhgrspansubgrlem 27560 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 27561 A spanning subgraph ` S ` ...
uhgrspan 27562 A spanning subgraph ` S ` ...
upgrspan 27563 A spanning subgraph ` S ` ...
umgrspan 27564 A spanning subgraph ` S ` ...
usgrspan 27565 A spanning subgraph ` S ` ...
uhgrspanop 27566 A spanning subgraph of a h...
upgrspanop 27567 A spanning subgraph of a p...
umgrspanop 27568 A spanning subgraph of a m...
usgrspanop 27569 A spanning subgraph of a s...
uhgrspan1lem1 27570 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 27571 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 27572 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 27573 The induced subgraph ` S `...
upgrreslem 27574 Lemma for ~ upgrres . (Co...
umgrreslem 27575 Lemma for ~ umgrres and ~ ...
upgrres 27576 A subgraph obtained by rem...
umgrres 27577 A subgraph obtained by rem...
usgrres 27578 A subgraph obtained by rem...
upgrres1lem1 27579 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 27580 Lemma for ~ umgrres1 . (C...
upgrres1lem2 27581 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 27582 Lemma 3 for ~ upgrres1 . ...
upgrres1 27583 A pseudograph obtained by ...
umgrres1 27584 A multigraph obtained by r...
usgrres1 27585 Restricting a simple graph...
isfusgr 27588 The property of being a fi...
fusgrvtxfi 27589 A finite simple graph has ...
isfusgrf1 27590 The property of being a fi...
isfusgrcl 27591 The property of being a fi...
fusgrusgr 27592 A finite simple graph is a...
opfusgr 27593 A finite simple graph repr...
usgredgffibi 27594 The number of edges in a s...
fusgredgfi 27595 In a finite simple graph t...
usgr1v0e 27596 The size of a (finite) sim...
usgrfilem 27597 In a finite simple graph, ...
fusgrfisbase 27598 Induction base for ~ fusgr...
fusgrfisstep 27599 Induction step in ~ fusgrf...
fusgrfis 27600 A finite simple graph is o...
fusgrfupgrfs 27601 A finite simple graph is a...
nbgrprc0 27604 The set of neighbors is em...
nbgrcl 27605 If a class ` X ` has at le...
nbgrval 27606 The set of neighbors of a ...
dfnbgr2 27607 Alternate definition of th...
dfnbgr3 27608 Alternate definition of th...
nbgrnvtx0 27609 If a class ` X ` is not a ...
nbgrel 27610 Characterization of a neig...
nbgrisvtx 27611 Every neighbor ` N ` of a ...
nbgrssvtx 27612 The neighbors of a vertex ...
nbuhgr 27613 The set of neighbors of a ...
nbupgr 27614 The set of neighbors of a ...
nbupgrel 27615 A neighbor of a vertex in ...
nbumgrvtx 27616 The set of neighbors of a ...
nbumgr 27617 The set of neighbors of an...
nbusgrvtx 27618 The set of neighbors of a ...
nbusgr 27619 The set of neighbors of an...
nbgr2vtx1edg 27620 If a graph has two vertice...
nbuhgr2vtx1edgblem 27621 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 27622 If a hypergraph has two ve...
nbusgreledg 27623 A class/vertex is a neighb...
uhgrnbgr0nb 27624 A vertex which is not endp...
nbgr0vtxlem 27625 Lemma for ~ nbgr0vtx and ~...
nbgr0vtx 27626 In a null graph (with no v...
nbgr0edg 27627 In an empty graph (with no...
nbgr1vtx 27628 In a graph with one vertex...
nbgrnself 27629 A vertex in a graph is not...
nbgrnself2 27630 A class ` X ` is not a nei...
nbgrssovtx 27631 The neighbors of a vertex ...
nbgrssvwo2 27632 The neighbors of a vertex ...
nbgrsym 27633 In a graph, the neighborho...
nbupgrres 27634 The neighborhood of a vert...
usgrnbcnvfv 27635 Applying the edge function...
nbusgredgeu 27636 For each neighbor of a ver...
edgnbusgreu 27637 For each edge incident to ...
nbusgredgeu0 27638 For each neighbor of a ver...
nbusgrf1o0 27639 The mapping of neighbors o...
nbusgrf1o1 27640 The set of neighbors of a ...
nbusgrf1o 27641 The set of neighbors of a ...
nbedgusgr 27642 The number of neighbors of...
edgusgrnbfin 27643 The number of neighbors of...
nbusgrfi 27644 The class of neighbors of ...
nbfiusgrfi 27645 The class of neighbors of ...
hashnbusgrnn0 27646 The number of neighbors of...
nbfusgrlevtxm1 27647 The number of neighbors of...
nbfusgrlevtxm2 27648 If there is a vertex which...
nbusgrvtxm1 27649 If the number of neighbors...
nb3grprlem1 27650 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 27651 Lemma 2 for ~ nb3grpr . (...
nb3grpr 27652 The neighbors of a vertex ...
nb3grpr2 27653 The neighbors of a vertex ...
nb3gr2nb 27654 If the neighbors of two ve...
uvtxval 27657 The set of all universal v...
uvtxel 27658 A universal vertex, i.e. a...
uvtxisvtx 27659 A universal vertex is a ve...
uvtxssvtx 27660 The set of the universal v...
vtxnbuvtx 27661 A universal vertex has all...
uvtxnbgrss 27662 A universal vertex has all...
uvtxnbgrvtx 27663 A universal vertex is neig...
uvtx0 27664 There is no universal vert...
isuvtx 27665 The set of all universal v...
uvtxel1 27666 Characterization of a univ...
uvtx01vtx 27667 If a graph/class has no ed...
uvtx2vtx1edg 27668 If a graph has two vertice...
uvtx2vtx1edgb 27669 If a hypergraph has two ve...
uvtxnbgr 27670 A universal vertex has all...
uvtxnbgrb 27671 A vertex is universal iff ...
uvtxusgr 27672 The set of all universal v...
uvtxusgrel 27673 A universal vertex, i.e. a...
uvtxnm1nbgr 27674 A universal vertex has ` n...
nbusgrvtxm1uvtx 27675 If the number of neighbors...
uvtxnbvtxm1 27676 A universal vertex has ` n...
nbupgruvtxres 27677 The neighborhood of a univ...
uvtxupgrres 27678 A universal vertex is univ...
cplgruvtxb 27683 A graph ` G ` is complete ...
prcliscplgr 27684 A proper class (representi...
iscplgr 27685 The property of being a co...
iscplgrnb 27686 A graph is complete iff al...
iscplgredg 27687 A graph ` G ` is complete ...
iscusgr 27688 The property of being a co...
cusgrusgr 27689 A complete simple graph is...
cusgrcplgr 27690 A complete simple graph is...
iscusgrvtx 27691 A simple graph is complete...
cusgruvtxb 27692 A simple graph is complete...
iscusgredg 27693 A simple graph is complete...
cusgredg 27694 In a complete simple graph...
cplgr0 27695 The null graph (with no ve...
cusgr0 27696 The null graph (with no ve...
cplgr0v 27697 A null graph (with no vert...
cusgr0v 27698 A graph with no vertices a...
cplgr1vlem 27699 Lemma for ~ cplgr1v and ~ ...
cplgr1v 27700 A graph with one vertex is...
cusgr1v 27701 A graph with one vertex an...
cplgr2v 27702 An undirected hypergraph w...
cplgr2vpr 27703 An undirected hypergraph w...
nbcplgr 27704 In a complete graph, each ...
cplgr3v 27705 A pseudograph with three (...
cusgr3vnbpr 27706 The neighbors of a vertex ...
cplgrop 27707 A complete graph represent...
cusgrop 27708 A complete simple graph re...
cusgrexilem1 27709 Lemma 1 for ~ cusgrexi . ...
usgrexilem 27710 Lemma for ~ usgrexi . (Co...
usgrexi 27711 An arbitrary set regarded ...
cusgrexilem2 27712 Lemma 2 for ~ cusgrexi . ...
cusgrexi 27713 An arbitrary set ` V ` reg...
cusgrexg 27714 For each set there is a se...
structtousgr 27715 Any (extensible) structure...
structtocusgr 27716 Any (extensible) structure...
cffldtocusgr 27717 The field of complex numbe...
cusgrres 27718 Restricting a complete sim...
cusgrsizeindb0 27719 Base case of the induction...
cusgrsizeindb1 27720 Base case of the induction...
cusgrsizeindslem 27721 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 27722 Part 1 of induction step i...
cusgrsize2inds 27723 Induction step in ~ cusgrs...
cusgrsize 27724 The size of a finite compl...
cusgrfilem1 27725 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 27726 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 27727 Lemma 3 for ~ cusgrfi . (...
cusgrfi 27728 If the size of a complete ...
usgredgsscusgredg 27729 A simple graph is a subgra...
usgrsscusgr 27730 A simple graph is a subgra...
sizusglecusglem1 27731 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 27732 Lemma 2 for ~ sizusglecusg...
sizusglecusg 27733 The size of a simple graph...
fusgrmaxsize 27734 The maximum size of a fini...
vtxdgfval 27737 The value of the vertex de...
vtxdgval 27738 The degree of a vertex. (...
vtxdgfival 27739 The degree of a vertex for...
vtxdgop 27740 The vertex degree expresse...
vtxdgf 27741 The vertex degree function...
vtxdgelxnn0 27742 The degree of a vertex is ...
vtxdg0v 27743 The degree of a vertex in ...
vtxdg0e 27744 The degree of a vertex in ...
vtxdgfisnn0 27745 The degree of a vertex in ...
vtxdgfisf 27746 The vertex degree function...
vtxdeqd 27747 Equality theorem for the v...
vtxduhgr0e 27748 The degree of a vertex in ...
vtxdlfuhgr1v 27749 The degree of the vertex i...
vdumgr0 27750 A vertex in a multigraph h...
vtxdun 27751 The degree of a vertex in ...
vtxdfiun 27752 The degree of a vertex in ...
vtxduhgrun 27753 The degree of a vertex in ...
vtxduhgrfiun 27754 The degree of a vertex in ...
vtxdlfgrval 27755 The value of the vertex de...
vtxdumgrval 27756 The value of the vertex de...
vtxdusgrval 27757 The value of the vertex de...
vtxd0nedgb 27758 A vertex has degree 0 iff ...
vtxdushgrfvedglem 27759 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 27760 The value of the vertex de...
vtxdusgrfvedg 27761 The value of the vertex de...
vtxduhgr0nedg 27762 If a vertex in a hypergrap...
vtxdumgr0nedg 27763 If a vertex in a multigrap...
vtxduhgr0edgnel 27764 A vertex in a hypergraph h...
vtxdusgr0edgnel 27765 A vertex in a simple graph...
vtxdusgr0edgnelALT 27766 Alternate proof of ~ vtxdu...
vtxdgfusgrf 27767 The vertex degree function...
vtxdgfusgr 27768 In a finite simple graph, ...
fusgrn0degnn0 27769 In a nonempty, finite grap...
1loopgruspgr 27770 A graph with one edge whic...
1loopgredg 27771 The set of edges in a grap...
1loopgrnb0 27772 In a graph (simple pseudog...
1loopgrvd2 27773 The vertex degree of a one...
1loopgrvd0 27774 The vertex degree of a one...
1hevtxdg0 27775 The vertex degree of verte...
1hevtxdg1 27776 The vertex degree of verte...
1hegrvtxdg1 27777 The vertex degree of a gra...
1hegrvtxdg1r 27778 The vertex degree of a gra...
1egrvtxdg1 27779 The vertex degree of a one...
1egrvtxdg1r 27780 The vertex degree of a one...
1egrvtxdg0 27781 The vertex degree of a one...
p1evtxdeqlem 27782 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 27783 If an edge ` E ` which doe...
p1evtxdp1 27784 If an edge ` E ` (not bein...
uspgrloopvtx 27785 The set of vertices in a g...
uspgrloopvtxel 27786 A vertex in a graph (simpl...
uspgrloopiedg 27787 The set of edges in a grap...
uspgrloopedg 27788 The set of edges in a grap...
uspgrloopnb0 27789 In a graph (simple pseudog...
uspgrloopvd2 27790 The vertex degree of a one...
umgr2v2evtx 27791 The set of vertices in a m...
umgr2v2evtxel 27792 A vertex in a multigraph w...
umgr2v2eiedg 27793 The edge function in a mul...
umgr2v2eedg 27794 The set of edges in a mult...
umgr2v2e 27795 A multigraph with two edge...
umgr2v2enb1 27796 In a multigraph with two e...
umgr2v2evd2 27797 In a multigraph with two e...
hashnbusgrvd 27798 In a simple graph, the num...
usgruvtxvdb 27799 In a finite simple graph w...
vdiscusgrb 27800 A finite simple graph with...
vdiscusgr 27801 In a finite complete simpl...
vtxdusgradjvtx 27802 The degree of a vertex in ...
usgrvd0nedg 27803 If a vertex in a simple gr...
uhgrvd00 27804 If every vertex in a hyper...
usgrvd00 27805 If every vertex in a simpl...
vdegp1ai 27806 The induction step for a v...
vdegp1bi 27807 The induction step for a v...
vdegp1ci 27808 The induction step for a v...
vtxdginducedm1lem1 27809 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 27810 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 27811 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 27812 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 27813 The degree of a vertex ` v...
vtxdginducedm1fi 27814 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 27815 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 27816 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 27817 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 27818 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 27819 Induction step of ~ finsum...
finsumvtxdg2size 27820 The sum of the degrees of ...
fusgr1th 27821 The sum of the degrees of ...
finsumvtxdgeven 27822 The sum of the degrees of ...
vtxdgoddnumeven 27823 The number of vertices of ...
fusgrvtxdgonume 27824 The number of vertices of ...
isrgr 27829 The property of a class be...
rgrprop 27830 The properties of a k-regu...
isrusgr 27831 The property of being a k-...
rusgrprop 27832 The properties of a k-regu...
rusgrrgr 27833 A k-regular simple graph i...
rusgrusgr 27834 A k-regular simple graph i...
finrusgrfusgr 27835 A finite regular simple gr...
isrusgr0 27836 The property of being a k-...
rusgrprop0 27837 The properties of a k-regu...
usgreqdrusgr 27838 If all vertices in a simpl...
fusgrregdegfi 27839 In a nonempty finite simpl...
fusgrn0eqdrusgr 27840 If all vertices in a nonem...
frusgrnn0 27841 In a nonempty finite k-reg...
0edg0rgr 27842 A graph is 0-regular if it...
uhgr0edg0rgr 27843 A hypergraph is 0-regular ...
uhgr0edg0rgrb 27844 A hypergraph is 0-regular ...
usgr0edg0rusgr 27845 A simple graph is 0-regula...
0vtxrgr 27846 A null graph (with no vert...
0vtxrusgr 27847 A graph with no vertices a...
0uhgrrusgr 27848 The null graph as hypergra...
0grrusgr 27849 The null graph represented...
0grrgr 27850 The null graph represented...
cusgrrusgr 27851 A complete simple graph wi...
cusgrm1rusgr 27852 A finite simple graph with...
rusgrpropnb 27853 The properties of a k-regu...
rusgrpropedg 27854 The properties of a k-regu...
rusgrpropadjvtx 27855 The properties of a k-regu...
rusgrnumwrdl2 27856 In a k-regular simple grap...
rusgr1vtxlem 27857 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 27858 If a k-regular simple grap...
rgrusgrprc 27859 The class of 0-regular sim...
rusgrprc 27860 The class of 0-regular sim...
rgrprc 27861 The class of 0-regular gra...
rgrprcx 27862 The class of 0-regular gra...
rgrx0ndm 27863 0 is not in the domain of ...
rgrx0nd 27864 The potentially alternativ...
ewlksfval 27871 The set of s-walks of edge...
isewlk 27872 Conditions for a function ...
ewlkprop 27873 Properties of an s-walk of...
ewlkinedg 27874 The intersection (common v...
ewlkle 27875 An s-walk of edges is also...
upgrewlkle2 27876 In a pseudograph, there is...
wkslem1 27877 Lemma 1 for walks to subst...
wkslem2 27878 Lemma 2 for walks to subst...
wksfval 27879 The set of walks (in an un...
iswlk 27880 Properties of a pair of fu...
wlkprop 27881 Properties of a walk. (Co...
wlkv 27882 The classes involved in a ...
iswlkg 27883 Generalization of ~ iswlk ...
wlkf 27884 The mapping enumerating th...
wlkcl 27885 A walk has length ` # ( F ...
wlkp 27886 The mapping enumerating th...
wlkpwrd 27887 The sequence of vertices o...
wlklenvp1 27888 The number of vertices of ...
wksv 27889 The class of walks is a se...
wlkn0 27890 The sequence of vertices o...
wlklenvm1 27891 The number of edges of a w...
ifpsnprss 27892 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 27893 Each pair of adjacent vert...
wlkvtxiedg 27894 The vertices of a walk are...
relwlk 27895 The set ` ( Walks `` G ) `...
wlkvv 27896 If there is at least one w...
wlkop 27897 A walk is an ordered pair....
wlkcpr 27898 A walk as class with two c...
wlk2f 27899 If there is a walk ` W ` t...
wlkcomp 27900 A walk expressed by proper...
wlkcompim 27901 Implications for the prope...
wlkelwrd 27902 The components of a walk a...
wlkeq 27903 Conditions for two walks (...
edginwlk 27904 The value of the edge func...
upgredginwlk 27905 The value of the edge func...
iedginwlk 27906 The value of the edge func...
wlkl1loop 27907 A walk of length 1 from a ...
wlk1walk 27908 A walk is a 1-walk "on the...
wlk1ewlk 27909 A walk is an s-walk "on th...
upgriswlk 27910 Properties of a pair of fu...
upgrwlkedg 27911 The edges of a walk in a p...
upgrwlkcompim 27912 Implications for the prope...
wlkvtxedg 27913 The vertices of a walk are...
upgrwlkvtxedg 27914 The pairs of connected ver...
uspgr2wlkeq 27915 Conditions for two walks w...
uspgr2wlkeq2 27916 Conditions for two walks w...
uspgr2wlkeqi 27917 Conditions for two walks w...
umgrwlknloop 27918 In a multigraph, each walk...
wlkRes 27919 Restrictions of walks (i.e...
wlkv0 27920 If there is a walk in the ...
g0wlk0 27921 There is no walk in a null...
0wlk0 27922 There is no walk for the e...
wlk0prc 27923 There is no walk in a null...
wlklenvclwlk 27924 The number of vertices in ...
wlklenvclwlkOLD 27925 Obsolete version of ~ wlkl...
wlkson 27926 The set of walks between t...
iswlkon 27927 Properties of a pair of fu...
wlkonprop 27928 Properties of a walk betwe...
wlkpvtx 27929 A walk connects vertices. ...
wlkepvtx 27930 The endpoints of a walk ar...
wlkoniswlk 27931 A walk between two vertice...
wlkonwlk 27932 A walk is a walk between i...
wlkonwlk1l 27933 A walk is a walk from its ...
wlksoneq1eq2 27934 Two walks with identical s...
wlkonl1iedg 27935 If there is a walk between...
wlkon2n0 27936 The length of a walk betwe...
2wlklem 27937 Lemma for theorems for wal...
upgr2wlk 27938 Properties of a pair of fu...
wlkreslem 27939 Lemma for ~ wlkres . (Con...
wlkres 27940 The restriction ` <. H , Q...
redwlklem 27941 Lemma for ~ redwlk . (Con...
redwlk 27942 A walk ending at the last ...
wlkp1lem1 27943 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 27944 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 27945 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 27946 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 27947 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 27948 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 27949 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 27950 Lemma for ~ wlkp1 . (Cont...
wlkp1 27951 Append one path segment (e...
wlkdlem1 27952 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 27953 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 27954 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 27955 Lemma 4 for ~ wlkd . (Con...
wlkd 27956 Two words representing a w...
lfgrwlkprop 27957 Two adjacent vertices in a...
lfgriswlk 27958 Conditions for a pair of f...
lfgrwlknloop 27959 In a loop-free graph, each...
reltrls 27964 The set ` ( Trails `` G ) ...
trlsfval 27965 The set of trails (in an u...
istrl 27966 Conditions for a pair of c...
trliswlk 27967 A trail is a walk. (Contr...
trlf1 27968 The enumeration ` F ` of a...
trlreslem 27969 Lemma for ~ trlres . Form...
trlres 27970 The restriction ` <. H , Q...
upgrtrls 27971 The set of trails in a pse...
upgristrl 27972 Properties of a pair of fu...
upgrf1istrl 27973 Properties of a pair of a ...
wksonproplem 27974 Lemma for theorems for pro...
trlsonfval 27975 The set of trails between ...
istrlson 27976 Properties of a pair of fu...
trlsonprop 27977 Properties of a trail betw...
trlsonistrl 27978 A trail between two vertic...
trlsonwlkon 27979 A trail between two vertic...
trlontrl 27980 A trail is a trail between...
relpths 27989 The set ` ( Paths `` G ) `...
pthsfval 27990 The set of paths (in an un...
spthsfval 27991 The set of simple paths (i...
ispth 27992 Conditions for a pair of c...
isspth 27993 Conditions for a pair of c...
pthistrl 27994 A path is a trail (in an u...
spthispth 27995 A simple path is a path (i...
pthiswlk 27996 A path is a walk (in an un...
spthiswlk 27997 A simple path is a walk (i...
pthdivtx 27998 The inner vertices of a pa...
pthdadjvtx 27999 The adjacent vertices of a...
2pthnloop 28000 A path of length at least ...
upgr2pthnlp 28001 A path of length at least ...
spthdifv 28002 The vertices of a simple p...
spthdep 28003 A simple path (at least of...
pthdepisspth 28004 A path with different star...
upgrwlkdvdelem 28005 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 28006 In a pseudograph, all edge...
upgrspthswlk 28007 The set of simple paths in...
upgrwlkdvspth 28008 A walk consisting of diffe...
pthsonfval 28009 The set of paths between t...
spthson 28010 The set of simple paths be...
ispthson 28011 Properties of a pair of fu...
isspthson 28012 Properties of a pair of fu...
pthsonprop 28013 Properties of a path betwe...
spthonprop 28014 Properties of a simple pat...
pthonispth 28015 A path between two vertice...
pthontrlon 28016 A path between two vertice...
pthonpth 28017 A path is a path between i...
isspthonpth 28018 A pair of functions is a s...
spthonisspth 28019 A simple path between to v...
spthonpthon 28020 A simple path between two ...
spthonepeq 28021 The endpoints of a simple ...
uhgrwkspthlem1 28022 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 28023 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 28024 Any walk of length 1 betwe...
usgr2wlkneq 28025 The vertices and edges are...
usgr2wlkspthlem1 28026 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 28027 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 28028 In a simple graph, any wal...
usgr2trlncl 28029 In a simple graph, any tra...
usgr2trlspth 28030 In a simple graph, any tra...
usgr2pthspth 28031 In a simple graph, any pat...
usgr2pthlem 28032 Lemma for ~ usgr2pth . (C...
usgr2pth 28033 In a simple graph, there i...
usgr2pth0 28034 In a simply graph, there i...
pthdlem1 28035 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 28036 Lemma for ~ pthdlem2 . (C...
pthdlem2 28037 Lemma 2 for ~ pthd . (Con...
pthd 28038 Two words representing a t...
clwlks 28041 The set of closed walks (i...
isclwlk 28042 A pair of functions repres...
clwlkiswlk 28043 A closed walk is a walk (i...
clwlkwlk 28044 Closed walks are walks (in...
clwlkswks 28045 Closed walks are walks (in...
isclwlke 28046 Properties of a pair of fu...
isclwlkupgr 28047 Properties of a pair of fu...
clwlkcomp 28048 A closed walk expressed by...
clwlkcompim 28049 Implications for the prope...
upgrclwlkcompim 28050 Implications for the prope...
clwlkcompbp 28051 Basic properties of the co...
clwlkl1loop 28052 A closed walk of length 1 ...
crcts 28057 The set of circuits (in an...
cycls 28058 The set of cycles (in an u...
iscrct 28059 Sufficient and necessary c...
iscycl 28060 Sufficient and necessary c...
crctprop 28061 The properties of a circui...
cyclprop 28062 The properties of a cycle:...
crctisclwlk 28063 A circuit is a closed walk...
crctistrl 28064 A circuit is a trail. (Co...
crctiswlk 28065 A circuit is a walk. (Con...
cyclispth 28066 A cycle is a path. (Contr...
cycliswlk 28067 A cycle is a walk. (Contr...
cycliscrct 28068 A cycle is a circuit. (Co...
cyclnspth 28069 A (non-trivial) cycle is n...
cyclispthon 28070 A cycle is a path starting...
lfgrn1cycl 28071 In a loop-free graph there...
usgr2trlncrct 28072 In a simple graph, any tra...
umgrn1cycl 28073 In a multigraph graph (wit...
uspgrn2crct 28074 In a simple pseudograph th...
usgrn2cycl 28075 In a simple graph there ar...
crctcshwlkn0lem1 28076 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 28077 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 28078 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 28079 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 28080 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 28081 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 28082 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 28083 Lemma for ~ crctcsh . (Co...
crctcshlem2 28084 Lemma for ~ crctcsh . (Co...
crctcshlem3 28085 Lemma for ~ crctcsh . (Co...
crctcshlem4 28086 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 28087 Cyclically shifting the in...
crctcshwlk 28088 Cyclically shifting the in...
crctcshtrl 28089 Cyclically shifting the in...
crctcsh 28090 Cyclically shifting the in...
wwlks 28101 The set of walks (in an un...
iswwlks 28102 A word over the set of ver...
wwlksn 28103 The set of walks (in an un...
iswwlksn 28104 A word over the set of ver...
wwlksnprcl 28105 Derivation of the length o...
iswwlksnx 28106 Properties of a word to re...
wwlkbp 28107 Basic properties of a walk...
wwlknbp 28108 Basic properties of a walk...
wwlknp 28109 Properties of a set being ...
wwlknbp1 28110 Other basic properties of ...
wwlknvtx 28111 The symbols of a word ` W ...
wwlknllvtx 28112 If a word ` W ` represents...
wwlknlsw 28113 If a word represents a wal...
wspthsn 28114 The set of simple paths of...
iswspthn 28115 An element of the set of s...
wspthnp 28116 Properties of a set being ...
wwlksnon 28117 The set of walks of a fixe...
wspthsnon 28118 The set of simple paths of...
iswwlksnon 28119 The set of walks of a fixe...
wwlksnon0 28120 Sufficient conditions for ...
wwlksonvtx 28121 If a word ` W ` represents...
iswspthsnon 28122 The set of simple paths of...
wwlknon 28123 An element of the set of w...
wspthnon 28124 An element of the set of s...
wspthnonp 28125 Properties of a set being ...
wspthneq1eq2 28126 Two simple paths with iden...
wwlksn0s 28127 The set of all walks as wo...
wwlkssswrd 28128 Walks (represented by word...
wwlksn0 28129 A walk of length 0 is repr...
0enwwlksnge1 28130 In graphs without edges, t...
wwlkswwlksn 28131 A walk of a fixed length a...
wwlkssswwlksn 28132 The walks of a fixed lengt...
wlkiswwlks1 28133 The sequence of vertices i...
wlklnwwlkln1 28134 The sequence of vertices i...
wlkiswwlks2lem1 28135 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 28136 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 28137 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 28138 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 28139 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 28140 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 28141 A walk as word corresponds...
wlkiswwlks 28142 A walk as word corresponds...
wlkiswwlksupgr2 28143 A walk as word corresponds...
wlkiswwlkupgr 28144 A walk as word corresponds...
wlkswwlksf1o 28145 The mapping of (ordinary) ...
wlkswwlksen 28146 The set of walks as words ...
wwlksm1edg 28147 Removing the trailing edge...
wlklnwwlkln2lem 28148 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 28149 A walk of length ` N ` as ...
wlklnwwlkn 28150 A walk of length ` N ` as ...
wlklnwwlklnupgr2 28151 A walk of length ` N ` as ...
wlklnwwlknupgr 28152 A walk of length ` N ` as ...
wlknewwlksn 28153 If a walk in a pseudograph...
wlknwwlksnbij 28154 The mapping ` ( t e. T |->...
wlknwwlksnen 28155 In a simple pseudograph, t...
wlknwwlksneqs 28156 The set of walks of a fixe...
wwlkseq 28157 Equality of two walks (as ...
wwlksnred 28158 Reduction of a walk (as wo...
wwlksnext 28159 Extension of a walk (as wo...
wwlksnextbi 28160 Extension of a walk (as wo...
wwlksnredwwlkn 28161 For each walk (as word) of...
wwlksnredwwlkn0 28162 For each walk (as word) of...
wwlksnextwrd 28163 Lemma for ~ wwlksnextbij ....
wwlksnextfun 28164 Lemma for ~ wwlksnextbij ....
wwlksnextinj 28165 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 28166 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 28167 Lemma for ~ wwlksnextbij ....
wwlksnextbij 28168 There is a bijection betwe...
wwlksnexthasheq 28169 The number of the extensio...
disjxwwlksn 28170 Sets of walks (as words) e...
wwlksnndef 28171 Conditions for ` WWalksN `...
wwlksnfi 28172 The number of walks repres...
wlksnfi 28173 The number of walks of fix...
wlksnwwlknvbij 28174 There is a bijection betwe...
wwlksnextproplem1 28175 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 28176 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 28177 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 28178 Adding additional properti...
disjxwwlkn 28179 Sets of walks (as words) e...
hashwwlksnext 28180 Number of walks (as words)...
wwlksnwwlksnon 28181 A walk of fixed length is ...
wspthsnwspthsnon 28182 A simple path of fixed len...
wspthsnonn0vne 28183 If the set of simple paths...
wspthsswwlkn 28184 The set of simple paths of...
wspthnfi 28185 In a finite graph, the set...
wwlksnonfi 28186 In a finite graph, the set...
wspthsswwlknon 28187 The set of simple paths of...
wspthnonfi 28188 In a finite graph, the set...
wspniunwspnon 28189 The set of nonempty simple...
wspn0 28190 If there are no vertices, ...
2wlkdlem1 28191 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 28192 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 28193 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 28194 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 28195 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 28196 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 28197 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 28198 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 28199 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 28200 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 28201 Lemma 10 for ~ 3wlkd . (C...
2wlkd 28202 Construction of a walk fro...
2wlkond 28203 A walk of length 2 from on...
2trld 28204 Construction of a trail fr...
2trlond 28205 A trail of length 2 from o...
2pthd 28206 A path of length 2 from on...
2spthd 28207 A simple path of length 2 ...
2pthond 28208 A simple path of length 2 ...
2pthon3v 28209 For a vertex adjacent to t...
umgr2adedgwlklem 28210 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 28211 In a multigraph, two adjac...
umgr2adedgwlkon 28212 In a multigraph, two adjac...
umgr2adedgwlkonALT 28213 Alternate proof for ~ umgr...
umgr2adedgspth 28214 In a multigraph, two adjac...
umgr2wlk 28215 In a multigraph, there is ...
umgr2wlkon 28216 For each pair of adjacent ...
elwwlks2s3 28217 A walk of length 2 as word...
midwwlks2s3 28218 There is a vertex between ...
wwlks2onv 28219 If a length 3 string repre...
elwwlks2ons3im 28220 A walk as word of length 2...
elwwlks2ons3 28221 For each walk of length 2 ...
s3wwlks2on 28222 A length 3 string which re...
umgrwwlks2on 28223 A walk of length 2 between...
wwlks2onsym 28224 There is a walk of length ...
elwwlks2on 28225 A walk of length 2 between...
elwspths2on 28226 A simple path of length 2 ...
wpthswwlks2on 28227 For two different vertices...
2wspdisj 28228 All simple paths of length...
2wspiundisj 28229 All simple paths of length...
usgr2wspthons3 28230 A simple path of length 2 ...
usgr2wspthon 28231 A simple path of length 2 ...
elwwlks2 28232 A walk of length 2 between...
elwspths2spth 28233 A simple path of length 2 ...
rusgrnumwwlkl1 28234 In a k-regular graph, ther...
rusgrnumwwlkslem 28235 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 28236 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 28237 Induction base 0 for ~ rus...
rusgrnumwwlkb1 28238 Induction base 1 for ~ rus...
rusgr0edg 28239 Special case for graphs wi...
rusgrnumwwlks 28240 Induction step for ~ rusgr...
rusgrnumwwlk 28241 In a ` K `-regular graph, ...
rusgrnumwwlkg 28242 In a ` K `-regular graph, ...
rusgrnumwlkg 28243 In a k-regular graph, the ...
clwwlknclwwlkdif 28244 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 28245 In a ` K `-regular graph, ...
clwwlk 28248 The set of closed walks (i...
isclwwlk 28249 Properties of a word to re...
clwwlkbp 28250 Basic properties of a clos...
clwwlkgt0 28251 There is no empty closed w...
clwwlksswrd 28252 Closed walks (represented ...
clwwlk1loop 28253 A closed walk of length 1 ...
clwwlkccatlem 28254 Lemma for ~ clwwlkccat : i...
clwwlkccat 28255 The concatenation of two w...
umgrclwwlkge2 28256 A closed walk in a multigr...
clwlkclwwlklem2a1 28257 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 28258 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 28259 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 28260 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 28261 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 28262 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 28263 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 28264 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 28265 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 28266 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 28267 A closed walk as word of l...
clwlkclwwlk2 28268 A closed walk corresponds ...
clwlkclwwlkflem 28269 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 28270 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 28271 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 28272 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 28273 ` F ` is a function from t...
clwlkclwwlkfo 28274 ` F ` is a function from t...
clwlkclwwlkf1 28275 ` F ` is a one-to-one func...
clwlkclwwlkf1o 28276 ` F ` is a bijection betwe...
clwlkclwwlken 28277 The set of the nonempty cl...
clwwisshclwwslemlem 28278 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 28279 Lemma for ~ clwwisshclwws ...
clwwisshclwws 28280 Cyclically shifting a clos...
clwwisshclwwsn 28281 Cyclically shifting a clos...
erclwwlkrel 28282 ` .~ ` is a relation. (Co...
erclwwlkeq 28283 Two classes are equivalent...
erclwwlkeqlen 28284 If two classes are equival...
erclwwlkref 28285 ` .~ ` is a reflexive rela...
erclwwlksym 28286 ` .~ ` is a symmetric rela...
erclwwlktr 28287 ` .~ ` is a transitive rel...
erclwwlk 28288 ` .~ ` is an equivalence r...
clwwlkn 28291 The set of closed walks of...
isclwwlkn 28292 A word over the set of ver...
clwwlkn0 28293 There is no closed walk of...
clwwlkneq0 28294 Sufficient conditions for ...
clwwlkclwwlkn 28295 A closed walk of a fixed l...
clwwlksclwwlkn 28296 The closed walks of a fixe...
clwwlknlen 28297 The length of a word repre...
clwwlknnn 28298 The length of a closed wal...
clwwlknwrd 28299 A closed walk of a fixed l...
clwwlknbp 28300 Basic properties of a clos...
isclwwlknx 28301 Characterization of a word...
clwwlknp 28302 Properties of a set being ...
clwwlknwwlksn 28303 A word representing a clos...
clwwlknlbonbgr1 28304 The last but one vertex in...
clwwlkinwwlk 28305 If the initial vertex of a...
clwwlkn1 28306 A closed walk of length 1 ...
loopclwwlkn1b 28307 The singleton word consist...
clwwlkn1loopb 28308 A word represents a closed...
clwwlkn2 28309 A closed walk of length 2 ...
clwwlknfi 28310 If there is only a finite ...
clwwlkel 28311 Obtaining a closed walk (a...
clwwlkf 28312 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 28313 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 28314 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 28315 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 28316 F is a 1-1 onto function, ...
clwwlken 28317 The set of closed walks of...
clwwlknwwlkncl 28318 Obtaining a closed walk (a...
clwwlkwwlksb 28319 A nonempty word over verti...
clwwlknwwlksnb 28320 A word over vertices repre...
clwwlkext2edg 28321 If a word concatenated wit...
wwlksext2clwwlk 28322 If a word represents a wal...
wwlksubclwwlk 28323 Any prefix of a word repre...
clwwnisshclwwsn 28324 Cyclically shifting a clos...
eleclclwwlknlem1 28325 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 28326 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 28327 The set of cyclical shifts...
clwwlknccat 28328 The concatenation of two w...
umgr2cwwk2dif 28329 If a word represents a clo...
umgr2cwwkdifex 28330 If a word represents a clo...
erclwwlknrel 28331 ` .~ ` is a relation. (Co...
erclwwlkneq 28332 Two classes are equivalent...
erclwwlkneqlen 28333 If two classes are equival...
erclwwlknref 28334 ` .~ ` is a reflexive rela...
erclwwlknsym 28335 ` .~ ` is a symmetric rela...
erclwwlkntr 28336 ` .~ ` is a transitive rel...
erclwwlkn 28337 ` .~ ` is an equivalence r...
qerclwwlknfi 28338 The quotient set of the se...
hashclwwlkn0 28339 The number of closed walks...
eclclwwlkn1 28340 An equivalence class accor...
eleclclwwlkn 28341 A member of an equivalence...
hashecclwwlkn1 28342 The size of every equivale...
umgrhashecclwwlk 28343 The size of every equivale...
fusgrhashclwwlkn 28344 The size of the set of clo...
clwwlkndivn 28345 The size of the set of clo...
clwlknf1oclwwlknlem1 28346 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 28347 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 28348 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 28349 There is a one-to-one onto...
clwlkssizeeq 28350 The size of the set of clo...
clwlksndivn 28351 The size of the set of clo...
clwwlknonmpo 28354 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 28355 The set of closed walks on...
isclwwlknon 28356 A word over the set of ver...
clwwlk0on0 28357 There is no word over the ...
clwwlknon0 28358 Sufficient conditions for ...
clwwlknonfin 28359 In a finite graph ` G ` , ...
clwwlknonel 28360 Characterization of a word...
clwwlknonccat 28361 The concatenation of two w...
clwwlknon1 28362 The set of closed walks on...
clwwlknon1loop 28363 If there is a loop at vert...
clwwlknon1nloop 28364 If there is no loop at ver...
clwwlknon1sn 28365 The set of (closed) walks ...
clwwlknon1le1 28366 There is at most one (clos...
clwwlknon2 28367 The set of closed walks on...
clwwlknon2x 28368 The set of closed walks on...
s2elclwwlknon2 28369 Sufficient conditions of a...
clwwlknon2num 28370 In a ` K `-regular graph `...
clwwlknonwwlknonb 28371 A word over vertices repre...
clwwlknonex2lem1 28372 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 28373 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 28374 Extending a closed walk ` ...
clwwlknonex2e 28375 Extending a closed walk ` ...
clwwlknondisj 28376 The sets of closed walks o...
clwwlknun 28377 The set of closed walks of...
clwwlkvbij 28378 There is a bijection betwe...
0ewlk 28379 The empty set (empty seque...
1ewlk 28380 A sequence of 1 edge is an...
0wlk 28381 A pair of an empty set (of...
is0wlk 28382 A pair of an empty set (of...
0wlkonlem1 28383 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 28384 Lemma 2 for ~ 0wlkon and ~...
0wlkon 28385 A walk of length 0 from a ...
0wlkons1 28386 A walk of length 0 from a ...
0trl 28387 A pair of an empty set (of...
is0trl 28388 A pair of an empty set (of...
0trlon 28389 A trail of length 0 from a...
0pth 28390 A pair of an empty set (of...
0spth 28391 A pair of an empty set (of...
0pthon 28392 A path of length 0 from a ...
0pthon1 28393 A path of length 0 from a ...
0pthonv 28394 For each vertex there is a...
0clwlk 28395 A pair of an empty set (of...
0clwlkv 28396 Any vertex (more precisely...
0clwlk0 28397 There is no closed walk in...
0crct 28398 A pair of an empty set (of...
0cycl 28399 A pair of an empty set (of...
1pthdlem1 28400 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 28401 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 28402 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 28403 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 28404 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 28405 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 28406 In a graph with two vertic...
1trld 28407 In a graph with two vertic...
1pthd 28408 In a graph with two vertic...
1pthond 28409 In a graph with two vertic...
upgr1wlkdlem1 28410 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 28411 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 28412 In a pseudograph with two ...
upgr1trld 28413 In a pseudograph with two ...
upgr1pthd 28414 In a pseudograph with two ...
upgr1pthond 28415 In a pseudograph with two ...
lppthon 28416 A loop (which is an edge a...
lp1cycl 28417 A loop (which is an edge a...
1pthon2v 28418 For each pair of adjacent ...
1pthon2ve 28419 For each pair of adjacent ...
wlk2v2elem1 28420 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 28421 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 28422 In a graph with two vertic...
ntrl2v2e 28423 A walk which is not a trai...
3wlkdlem1 28424 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 28425 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 28426 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 28427 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 28428 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 28429 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 28430 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 28431 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 28432 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 28433 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 28434 Lemma 10 for ~ 3wlkd . (C...
3wlkd 28435 Construction of a walk fro...
3wlkond 28436 A walk of length 3 from on...
3trld 28437 Construction of a trail fr...
3trlond 28438 A trail of length 3 from o...
3pthd 28439 A path of length 3 from on...
3pthond 28440 A path of length 3 from on...
3spthd 28441 A simple path of length 3 ...
3spthond 28442 A simple path of length 3 ...
3cycld 28443 Construction of a 3-cycle ...
3cyclpd 28444 Construction of a 3-cycle ...
upgr3v3e3cycl 28445 If there is a cycle of len...
uhgr3cyclexlem 28446 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 28447 If there are three differe...
umgr3cyclex 28448 If there are three (differ...
umgr3v3e3cycl 28449 If and only if there is a ...
upgr4cycl4dv4e 28450 If there is a cycle of len...
dfconngr1 28453 Alternative definition of ...
isconngr 28454 The property of being a co...
isconngr1 28455 The property of being a co...
cusconngr 28456 A complete hypergraph is c...
0conngr 28457 A graph without vertices i...
0vconngr 28458 A graph without vertices i...
1conngr 28459 A graph with (at most) one...
conngrv2edg 28460 A vertex in a connected gr...
vdn0conngrumgrv2 28461 A vertex in a connected mu...
releupth 28464 The set ` ( EulerPaths `` ...
eupths 28465 The Eulerian paths on the ...
iseupth 28466 The property " ` <. F , P ...
iseupthf1o 28467 The property " ` <. F , P ...
eupthi 28468 Properties of an Eulerian ...
eupthf1o 28469 The ` F ` function in an E...
eupthfi 28470 Any graph with an Eulerian...
eupthseg 28471 The ` N ` -th edge in an e...
upgriseupth 28472 The property " ` <. F , P ...
upgreupthi 28473 Properties of an Eulerian ...
upgreupthseg 28474 The ` N ` -th edge in an e...
eupthcl 28475 An Eulerian path has lengt...
eupthistrl 28476 An Eulerian path is a trai...
eupthiswlk 28477 An Eulerian path is a walk...
eupthpf 28478 The ` P ` function in an E...
eupth0 28479 There is an Eulerian path ...
eupthres 28480 The restriction ` <. H , Q...
eupthp1 28481 Append one path segment to...
eupth2eucrct 28482 Append one path segment to...
eupth2lem1 28483 Lemma for ~ eupth2 . (Con...
eupth2lem2 28484 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 28485 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 28486 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 28487 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 28488 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 28489 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 28490 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 28491 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 28492 Formerly part of proof of ...
eupth2lem3lem1 28493 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 28494 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 28495 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 28496 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 28497 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 28498 Formerly part of proof of ...
eupth2lem3lem7 28499 Lemma for ~ eupth2lem3 : ...
eupthvdres 28500 Formerly part of proof of ...
eupth2lem3 28501 Lemma for ~ eupth2 . (Con...
eupth2lemb 28502 Lemma for ~ eupth2 (induct...
eupth2lems 28503 Lemma for ~ eupth2 (induct...
eupth2 28504 The only vertices of odd d...
eulerpathpr 28505 A graph with an Eulerian p...
eulerpath 28506 A pseudograph with an Eule...
eulercrct 28507 A pseudograph with an Eule...
eucrctshift 28508 Cyclically shifting the in...
eucrct2eupth1 28509 Removing one edge ` ( I ``...
eucrct2eupth 28510 Removing one edge ` ( I ``...
konigsbergvtx 28511 The set of vertices of the...
konigsbergiedg 28512 The indexed edges of the K...
konigsbergiedgw 28513 The indexed edges of the K...
konigsbergssiedgwpr 28514 Each subset of the indexed...
konigsbergssiedgw 28515 Each subset of the indexed...
konigsbergumgr 28516 The Königsberg graph ...
konigsberglem1 28517 Lemma 1 for ~ konigsberg :...
konigsberglem2 28518 Lemma 2 for ~ konigsberg :...
konigsberglem3 28519 Lemma 3 for ~ konigsberg :...
konigsberglem4 28520 Lemma 4 for ~ konigsberg :...
konigsberglem5 28521 Lemma 5 for ~ konigsberg :...
konigsberg 28522 The Königsberg Bridge...
isfrgr 28525 The property of being a fr...
frgrusgr 28526 A friendship graph is a si...
frgr0v 28527 Any null graph (set with n...
frgr0vb 28528 Any null graph (without ve...
frgruhgr0v 28529 Any null graph (without ve...
frgr0 28530 The null graph (graph with...
frcond1 28531 The friendship condition: ...
frcond2 28532 The friendship condition: ...
frgreu 28533 Variant of ~ frcond2 : An...
frcond3 28534 The friendship condition, ...
frcond4 28535 The friendship condition, ...
frgr1v 28536 Any graph with (at most) o...
nfrgr2v 28537 Any graph with two (differ...
frgr3vlem1 28538 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 28539 Lemma 2 for ~ frgr3v . (C...
frgr3v 28540 Any graph with three verti...
1vwmgr 28541 Every graph with one verte...
3vfriswmgrlem 28542 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 28543 Every friendship graph wit...
1to2vfriswmgr 28544 Every friendship graph wit...
1to3vfriswmgr 28545 Every friendship graph wit...
1to3vfriendship 28546 The friendship theorem for...
2pthfrgrrn 28547 Between any two (different...
2pthfrgrrn2 28548 Between any two (different...
2pthfrgr 28549 Between any two (different...
3cyclfrgrrn1 28550 Every vertex in a friendsh...
3cyclfrgrrn 28551 Every vertex in a friendsh...
3cyclfrgrrn2 28552 Every vertex in a friendsh...
3cyclfrgr 28553 Every vertex in a friendsh...
4cycl2v2nb 28554 In a (maybe degenerate) 4-...
4cycl2vnunb 28555 In a 4-cycle, two distinct...
n4cyclfrgr 28556 There is no 4-cycle in a f...
4cyclusnfrgr 28557 A graph with a 4-cycle is ...
frgrnbnb 28558 If two neighbors ` U ` and...
frgrconngr 28559 A friendship graph is conn...
vdgn0frgrv2 28560 A vertex in a friendship g...
vdgn1frgrv2 28561 Any vertex in a friendship...
vdgn1frgrv3 28562 Any vertex in a friendship...
vdgfrgrgt2 28563 Any vertex in a friendship...
frgrncvvdeqlem1 28564 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 28565 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 28566 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 28567 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 28568 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 28569 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 28570 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 28571 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 28572 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 28573 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 28574 In a friendship graph, two...
frgrwopreglem4a 28575 In a friendship graph any ...
frgrwopreglem5a 28576 If a friendship graph has ...
frgrwopreglem1 28577 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 28578 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 28579 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 28580 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 28581 According to statement 5 i...
frgrwopregbsn 28582 According to statement 5 i...
frgrwopreg1 28583 According to statement 5 i...
frgrwopreg2 28584 According to statement 5 i...
frgrwopreglem5lem 28585 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 28586 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 28587 Alternate direct proof of ...
frgrwopreg 28588 In a friendship graph ther...
frgrregorufr0 28589 In a friendship graph ther...
frgrregorufr 28590 If there is a vertex havin...
frgrregorufrg 28591 If there is a vertex havin...
frgr2wwlkeu 28592 For two different vertices...
frgr2wwlkn0 28593 In a friendship graph, the...
frgr2wwlk1 28594 In a friendship graph, the...
frgr2wsp1 28595 In a friendship graph, the...
frgr2wwlkeqm 28596 If there is a (simple) pat...
frgrhash2wsp 28597 The number of simple paths...
fusgreg2wsplem 28598 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 28599 The set of paths of length...
fusgreghash2wspv 28600 According to statement 7 i...
fusgreg2wsp 28601 In a finite simple graph, ...
2wspmdisj 28602 The sets of paths of lengt...
fusgreghash2wsp 28603 In a finite k-regular grap...
frrusgrord0lem 28604 Lemma for ~ frrusgrord0 . ...
frrusgrord0 28605 If a nonempty finite frien...
frrusgrord 28606 If a nonempty finite frien...
numclwwlk2lem1lem 28607 Lemma for ~ numclwwlk2lem1...
2clwwlklem 28608 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 28609 If the initial vertex of a...
clwwnonrepclwwnon 28610 If the initial vertex of a...
2clwwlk2clwwlklem 28611 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 28612 Value of operation ` C ` ,...
2clwwlk2 28613 The set ` ( X C 2 ) ` of d...
2clwwlkel 28614 Characterization of an ele...
2clwwlk2clwwlk 28615 An element of the value of...
numclwwlk1lem2foalem 28616 Lemma for ~ numclwwlk1lem2...
extwwlkfab 28617 The set ` ( X C N ) ` of d...
extwwlkfabel 28618 Characterization of an ele...
numclwwlk1lem2foa 28619 Going forth and back from ...
numclwwlk1lem2f 28620 ` T ` is a function, mappi...
numclwwlk1lem2fv 28621 Value of the function ` T ...
numclwwlk1lem2f1 28622 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 28623 ` T ` is an onto function....
numclwwlk1lem2f1o 28624 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 28625 The set of double loops of...
numclwwlk1 28626 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 28627 ` F ` is a bijection betwe...
clwwlknonclwlknonen 28628 The sets of the two repres...
dlwwlknondlwlknonf1olem1 28629 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 28630 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 28631 The sets of the two repres...
wlkl0 28632 There is exactly one walk ...
clwlknon2num 28633 There are k walks of lengt...
numclwlk1lem1 28634 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 28635 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 28636 Statement 9 in [Huneke] p....
numclwwlkovh0 28637 Value of operation ` H ` ,...
numclwwlkovh 28638 Value of operation ` H ` ,...
numclwwlkovq 28639 Value of operation ` Q ` ,...
numclwwlkqhash 28640 In a ` K `-regular graph, ...
numclwwlk2lem1 28641 In a friendship graph, for...
numclwlk2lem2f 28642 ` R ` is a function mappin...
numclwlk2lem2fv 28643 Value of the function ` R ...
numclwlk2lem2f1o 28644 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 28645 In a friendship graph, the...
numclwwlk2 28646 Statement 10 in [Huneke] p...
numclwwlk3lem1 28647 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 28648 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 28649 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 28650 Statement 12 in [Huneke] p...
numclwwlk4 28651 The total number of closed...
numclwwlk5lem 28652 Lemma for ~ numclwwlk5 . ...
numclwwlk5 28653 Statement 13 in [Huneke] p...
numclwwlk7lem 28654 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 28655 For a prime divisor ` P ` ...
numclwwlk7 28656 Statement 14 in [Huneke] p...
numclwwlk8 28657 The size of the set of clo...
frgrreggt1 28658 If a finite nonempty frien...
frgrreg 28659 If a finite nonempty frien...
frgrregord013 28660 If a finite friendship gra...
frgrregord13 28661 If a nonempty finite frien...
frgrogt3nreg 28662 If a finite friendship gra...
friendshipgt3 28663 The friendship theorem for...
friendship 28664 The friendship theorem: I...
conventions 28665

H...

conventions-labels 28666

...

conventions-comments 28667

...

natded 28668 Here are typical n...
ex-natded5.2 28669 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 28670 A more efficient proof of ...
ex-natded5.2i 28671 The same as ~ ex-natded5.2...
ex-natded5.3 28672 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 28673 A more efficient proof of ...
ex-natded5.3i 28674 The same as ~ ex-natded5.3...
ex-natded5.5 28675 Theorem 5.5 of [Clemente] ...
ex-natded5.7 28676 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 28677 A more efficient proof of ...
ex-natded5.8 28678 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 28679 A more efficient proof of ...
ex-natded5.13 28680 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 28681 A more efficient proof of ...
ex-natded9.20 28682 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 28683 A more efficient proof of ...
ex-natded9.26 28684 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 28685 A more efficient proof of ...
ex-or 28686 Example for ~ df-or . Exa...
ex-an 28687 Example for ~ df-an . Exa...
ex-dif 28688 Example for ~ df-dif . Ex...
ex-un 28689 Example for ~ df-un . Exa...
ex-in 28690 Example for ~ df-in . Exa...
ex-uni 28691 Example for ~ df-uni . Ex...
ex-ss 28692 Example for ~ df-ss . Exa...
ex-pss 28693 Example for ~ df-pss . Ex...
ex-pw 28694 Example for ~ df-pw . Exa...
ex-pr 28695 Example for ~ df-pr . (Co...
ex-br 28696 Example for ~ df-br . Exa...
ex-opab 28697 Example for ~ df-opab . E...
ex-eprel 28698 Example for ~ df-eprel . ...
ex-id 28699 Example for ~ df-id . Exa...
ex-po 28700 Example for ~ df-po . Exa...
ex-xp 28701 Example for ~ df-xp . Exa...
ex-cnv 28702 Example for ~ df-cnv . Ex...
ex-co 28703 Example for ~ df-co . Exa...
ex-dm 28704 Example for ~ df-dm . Exa...
ex-rn 28705 Example for ~ df-rn . Exa...
ex-res 28706 Example for ~ df-res . Ex...
ex-ima 28707 Example for ~ df-ima . Ex...
ex-fv 28708 Example for ~ df-fv . Exa...
ex-1st 28709 Example for ~ df-1st . Ex...
ex-2nd 28710 Example for ~ df-2nd . Ex...
1kp2ke3k 28711 Example for ~ df-dec , 100...
ex-fl 28712 Example for ~ df-fl . Exa...
ex-ceil 28713 Example for ~ df-ceil . (...
ex-mod 28714 Example for ~ df-mod . (C...
ex-exp 28715 Example for ~ df-exp . (C...
ex-fac 28716 Example for ~ df-fac . (C...
ex-bc 28717 Example for ~ df-bc . (Co...
ex-hash 28718 Example for ~ df-hash . (...
ex-sqrt 28719 Example for ~ df-sqrt . (...
ex-abs 28720 Example for ~ df-abs . (C...
ex-dvds 28721 Example for ~ df-dvds : 3 ...
ex-gcd 28722 Example for ~ df-gcd . (C...
ex-lcm 28723 Example for ~ df-lcm . (C...
ex-prmo 28724 Example for ~ df-prmo : ` ...
aevdemo 28725 Proof illustrating the com...
ex-ind-dvds 28726 Example of a proof by indu...
ex-fpar 28727 Formalized example provide...
avril1 28728 Poisson d'Avril's Theorem....
2bornot2b 28729 The law of excluded middle...
helloworld 28730 The classic "Hello world" ...
1p1e2apr1 28731 One plus one equals two. ...
eqid1 28732 Law of identity (reflexivi...
1div0apr 28733 Division by zero is forbid...
topnfbey 28734 Nothing seems to be imposs...
9p10ne21 28735 9 + 10 is not equal to 21....
9p10ne21fool 28736 9 + 10 equals 21. This as...
isplig 28739 The predicate "is a planar...
ispligb 28740 The predicate "is a planar...
tncp 28741 In any planar incidence ge...
l2p 28742 For any line in a planar i...
lpni 28743 For any line in a planar i...
nsnlplig 28744 There is no "one-point lin...
nsnlpligALT 28745 Alternate version of ~ nsn...
n0lplig 28746 There is no "empty line" i...
n0lpligALT 28747 Alternate version of ~ n0l...
eulplig 28748 Through two distinct point...
pliguhgr 28749 Any planar incidence geome...
dummylink 28750 Alias for ~ a1ii that may ...
id1 28751 Alias for ~ idALT that may...
isgrpo 28760 The predicate "is a group ...
isgrpoi 28761 Properties that determine ...
grpofo 28762 A group operation maps ont...
grpocl 28763 Closure law for a group op...
grpolidinv 28764 A group has a left identit...
grpon0 28765 The base set of a group is...
grpoass 28766 A group operation is assoc...
grpoidinvlem1 28767 Lemma for ~ grpoidinv . (...
grpoidinvlem2 28768 Lemma for ~ grpoidinv . (...
grpoidinvlem3 28769 Lemma for ~ grpoidinv . (...
grpoidinvlem4 28770 Lemma for ~ grpoidinv . (...
grpoidinv 28771 A group has a left and rig...
grpoideu 28772 The left identity element ...
grporndm 28773 A group's range in terms o...
0ngrp 28774 The empty set is not a gro...
gidval 28775 The value of the identity ...
grpoidval 28776 Lemma for ~ grpoidcl and o...
grpoidcl 28777 The identity element of a ...
grpoidinv2 28778 A group's properties using...
grpolid 28779 The identity element of a ...
grporid 28780 The identity element of a ...
grporcan 28781 Right cancellation law for...
grpoinveu 28782 The left inverse element o...
grpoid 28783 Two ways of saying that an...
grporn 28784 The range of a group opera...
grpoinvfval 28785 The inverse function of a ...
grpoinvval 28786 The inverse of a group ele...
grpoinvcl 28787 A group element's inverse ...
grpoinv 28788 The properties of a group ...
grpolinv 28789 The left inverse of a grou...
grporinv 28790 The right inverse of a gro...
grpoinvid1 28791 The inverse of a group ele...
grpoinvid2 28792 The inverse of a group ele...
grpolcan 28793 Left cancellation law for ...
grpo2inv 28794 Double inverse law for gro...
grpoinvf 28795 Mapping of the inverse fun...
grpoinvop 28796 The inverse of the group o...
grpodivfval 28797 Group division (or subtrac...
grpodivval 28798 Group division (or subtrac...
grpodivinv 28799 Group division by an inver...
grpoinvdiv 28800 Inverse of a group divisio...
grpodivf 28801 Mapping for group division...
grpodivcl 28802 Closure of group division ...
grpodivdiv 28803 Double group division. (C...
grpomuldivass 28804 Associative-type law for m...
grpodivid 28805 Division of a group member...
grponpcan 28806 Cancellation law for group...
isablo 28809 The predicate "is an Abeli...
ablogrpo 28810 An Abelian group operation...
ablocom 28811 An Abelian group operation...
ablo32 28812 Commutative/associative la...
ablo4 28813 Commutative/associative la...
isabloi 28814 Properties that determine ...
ablomuldiv 28815 Law for group multiplicati...
ablodivdiv 28816 Law for double group divis...
ablodivdiv4 28817 Law for double group divis...
ablodiv32 28818 Swap the second and third ...
ablonncan 28819 Cancellation law for group...
ablonnncan1 28820 Cancellation law for group...
vcrel 28823 The class of all complex v...
vciOLD 28824 Obsolete version of ~ cvsi...
vcsm 28825 Functionality of th scalar...
vccl 28826 Closure of the scalar prod...
vcidOLD 28827 Identity element for the s...
vcdi 28828 Distributive law for the s...
vcdir 28829 Distributive law for the s...
vcass 28830 Associative law for the sc...
vc2OLD 28831 A vector plus itself is tw...
vcablo 28832 Vector addition is an Abel...
vcgrp 28833 Vector addition is a group...
vclcan 28834 Left cancellation law for ...
vczcl 28835 The zero vector is a vecto...
vc0rid 28836 The zero vector is a right...
vc0 28837 Zero times a vector is the...
vcz 28838 Anything times the zero ve...
vcm 28839 Minus 1 times a vector is ...
isvclem 28840 Lemma for ~ isvcOLD . (Co...
vcex 28841 The components of a comple...
isvcOLD 28842 The predicate "is a comple...
isvciOLD 28843 Properties that determine ...
cnaddabloOLD 28844 Obsolete version of ~ cnad...
cnidOLD 28845 Obsolete version of ~ cnad...
cncvcOLD 28846 Obsolete version of ~ cncv...
nvss 28856 Structure of the class of ...
nvvcop 28857 A normed complex vector sp...
nvrel 28865 The class of all normed co...
vafval 28866 Value of the function for ...
bafval 28867 Value of the function for ...
smfval 28868 Value of the function for ...
0vfval 28869 Value of the function for ...
nmcvfval 28870 Value of the norm function...
nvop2 28871 A normed complex vector sp...
nvvop 28872 The vector space component...
isnvlem 28873 Lemma for ~ isnv . (Contr...
nvex 28874 The components of a normed...
isnv 28875 The predicate "is a normed...
isnvi 28876 Properties that determine ...
nvi 28877 The properties of a normed...
nvvc 28878 The vector space component...
nvablo 28879 The vector addition operat...
nvgrp 28880 The vector addition operat...
nvgf 28881 Mapping for the vector add...
nvsf 28882 Mapping for the scalar mul...
nvgcl 28883 Closure law for the vector...
nvcom 28884 The vector addition (group...
nvass 28885 The vector addition (group...
nvadd32 28886 Commutative/associative la...
nvrcan 28887 Right cancellation law for...
nvadd4 28888 Rearrangement of 4 terms i...
nvscl 28889 Closure law for the scalar...
nvsid 28890 Identity element for the s...
nvsass 28891 Associative law for the sc...
nvscom 28892 Commutative law for the sc...
nvdi 28893 Distributive law for the s...
nvdir 28894 Distributive law for the s...
nv2 28895 A vector plus itself is tw...
vsfval 28896 Value of the function for ...
nvzcl 28897 Closure law for the zero v...
nv0rid 28898 The zero vector is a right...
nv0lid 28899 The zero vector is a left ...
nv0 28900 Zero times a vector is the...
nvsz 28901 Anything times the zero ve...
nvinv 28902 Minus 1 times a vector is ...
nvinvfval 28903 Function for the negative ...
nvm 28904 Vector subtraction in term...
nvmval 28905 Value of vector subtractio...
nvmval2 28906 Value of vector subtractio...
nvmfval 28907 Value of the function for ...
nvmf 28908 Mapping for the vector sub...
nvmcl 28909 Closure law for the vector...
nvnnncan1 28910 Cancellation law for vecto...
nvmdi 28911 Distributive law for scala...
nvnegneg 28912 Double negative of a vecto...
nvmul0or 28913 If a scalar product is zer...
nvrinv 28914 A vector minus itself. (C...
nvlinv 28915 Minus a vector plus itself...
nvpncan2 28916 Cancellation law for vecto...
nvpncan 28917 Cancellation law for vecto...
nvaddsub 28918 Commutative/associative la...
nvnpcan 28919 Cancellation law for a nor...
nvaddsub4 28920 Rearrangement of 4 terms i...
nvmeq0 28921 The difference between two...
nvmid 28922 A vector minus itself is t...
nvf 28923 Mapping for the norm funct...
nvcl 28924 The norm of a normed compl...
nvcli 28925 The norm of a normed compl...
nvs 28926 Proportionality property o...
nvsge0 28927 The norm of a scalar produ...
nvm1 28928 The norm of the negative o...
nvdif 28929 The norm of the difference...
nvpi 28930 The norm of a vector plus ...
nvz0 28931 The norm of a zero vector ...
nvz 28932 The norm of a vector is ze...
nvtri 28933 Triangle inequality for th...
nvmtri 28934 Triangle inequality for th...
nvabs 28935 Norm difference property o...
nvge0 28936 The norm of a normed compl...
nvgt0 28937 A nonzero norm is positive...
nv1 28938 From any nonzero vector, c...
nvop 28939 A complex inner product sp...
cnnv 28940 The set of complex numbers...
cnnvg 28941 The vector addition (group...
cnnvba 28942 The base set of the normed...
cnnvs 28943 The scalar product operati...
cnnvnm 28944 The norm operation of the ...
cnnvm 28945 The vector subtraction ope...
elimnv 28946 Hypothesis elimination lem...
elimnvu 28947 Hypothesis elimination lem...
imsval 28948 Value of the induced metri...
imsdval 28949 Value of the induced metri...
imsdval2 28950 Value of the distance func...
nvnd 28951 The norm of a normed compl...
imsdf 28952 Mapping for the induced me...
imsmetlem 28953 Lemma for ~ imsmet . (Con...
imsmet 28954 The induced metric of a no...
imsxmet 28955 The induced metric of a no...
cnims 28956 The metric induced on the ...
vacn 28957 Vector addition is jointly...
nmcvcn 28958 The norm of a normed compl...
nmcnc 28959 The norm of a normed compl...
smcnlem 28960 Lemma for ~ smcn . (Contr...
smcn 28961 Scalar multiplication is j...
vmcn 28962 Vector subtraction is join...
dipfval 28965 The inner product function...
ipval 28966 Value of the inner product...
ipval2lem2 28967 Lemma for ~ ipval3 . (Con...
ipval2lem3 28968 Lemma for ~ ipval3 . (Con...
ipval2lem4 28969 Lemma for ~ ipval3 . (Con...
ipval2 28970 Expansion of the inner pro...
4ipval2 28971 Four times the inner produ...
ipval3 28972 Expansion of the inner pro...
ipidsq 28973 The inner product of a vec...
ipnm 28974 Norm expressed in terms of...
dipcl 28975 An inner product is a comp...
ipf 28976 Mapping for the inner prod...
dipcj 28977 The complex conjugate of a...
ipipcj 28978 An inner product times its...
diporthcom 28979 Orthogonality (meaning inn...
dip0r 28980 Inner product with a zero ...
dip0l 28981 Inner product with a zero ...
ipz 28982 The inner product of a vec...
dipcn 28983 Inner product is jointly c...
sspval 28986 The set of all subspaces o...
isssp 28987 The predicate "is a subspa...
sspid 28988 A normed complex vector sp...
sspnv 28989 A subspace is a normed com...
sspba 28990 The base set of a subspace...
sspg 28991 Vector addition on a subsp...
sspgval 28992 Vector addition on a subsp...
ssps 28993 Scalar multiplication on a...
sspsval 28994 Scalar multiplication on a...
sspmlem 28995 Lemma for ~ sspm and other...
sspmval 28996 Vector addition on a subsp...
sspm 28997 Vector subtraction on a su...
sspz 28998 The zero vector of a subsp...
sspn 28999 The norm on a subspace is ...
sspnval 29000 The norm on a subspace in ...
sspimsval 29001 The induced metric on a su...
sspims 29002 The induced metric on a su...
lnoval 29015 The set of linear operator...
islno 29016 The predicate "is a linear...
lnolin 29017 Basic linearity property o...
lnof 29018 A linear operator is a map...
lno0 29019 The value of a linear oper...
lnocoi 29020 The composition of two lin...
lnoadd 29021 Addition property of a lin...
lnosub 29022 Subtraction property of a ...
lnomul 29023 Scalar multiplication prop...
nvo00 29024 Two ways to express a zero...
nmoofval 29025 The operator norm function...
nmooval 29026 The operator norm function...
nmosetre 29027 The set in the supremum of...
nmosetn0 29028 The set in the supremum of...
nmoxr 29029 The norm of an operator is...
nmooge0 29030 The norm of an operator is...
nmorepnf 29031 The norm of an operator is...
nmoreltpnf 29032 The norm of any operator i...
nmogtmnf 29033 The norm of an operator is...
nmoolb 29034 A lower bound for an opera...
nmoubi 29035 An upper bound for an oper...
nmoub3i 29036 An upper bound for an oper...
nmoub2i 29037 An upper bound for an oper...
nmobndi 29038 Two ways to express that a...
nmounbi 29039 Two ways two express that ...
nmounbseqi 29040 An unbounded operator dete...
nmounbseqiALT 29041 Alternate shorter proof of...
nmobndseqi 29042 A bounded sequence determi...
nmobndseqiALT 29043 Alternate shorter proof of...
bloval 29044 The class of bounded linea...
isblo 29045 The predicate "is a bounde...
isblo2 29046 The predicate "is a bounde...
bloln 29047 A bounded operator is a li...
blof 29048 A bounded operator is an o...
nmblore 29049 The norm of a bounded oper...
0ofval 29050 The zero operator between ...
0oval 29051 Value of the zero operator...
0oo 29052 The zero operator is an op...
0lno 29053 The zero operator is linea...
nmoo0 29054 The operator norm of the z...
0blo 29055 The zero operator is a bou...
nmlno0lem 29056 Lemma for ~ nmlno0i . (Co...
nmlno0i 29057 The norm of a linear opera...
nmlno0 29058 The norm of a linear opera...
nmlnoubi 29059 An upper bound for the ope...
nmlnogt0 29060 The norm of a nonzero line...
lnon0 29061 The domain of a nonzero li...
nmblolbii 29062 A lower bound for the norm...
nmblolbi 29063 A lower bound for the norm...
isblo3i 29064 The predicate "is a bounde...
blo3i 29065 Properties that determine ...
blometi 29066 Upper bound for the distan...
blocnilem 29067 Lemma for ~ blocni and ~ l...
blocni 29068 A linear operator is conti...
lnocni 29069 If a linear operator is co...
blocn 29070 A linear operator is conti...
blocn2 29071 A bounded linear operator ...
ajfval 29072 The adjoint function. (Co...
hmoval 29073 The set of Hermitian (self...
ishmo 29074 The predicate "is a hermit...
phnv 29077 Every complex inner produc...
phrel 29078 The class of all complex i...
phnvi 29079 Every complex inner produc...
isphg 29080 The predicate "is a comple...
phop 29081 A complex inner product sp...
cncph 29082 The set of complex numbers...
elimph 29083 Hypothesis elimination lem...
elimphu 29084 Hypothesis elimination lem...
isph 29085 The predicate "is an inner...
phpar2 29086 The parallelogram law for ...
phpar 29087 The parallelogram law for ...
ip0i 29088 A slight variant of Equati...
ip1ilem 29089 Lemma for ~ ip1i . (Contr...
ip1i 29090 Equation 6.47 of [Ponnusam...
ip2i 29091 Equation 6.48 of [Ponnusam...
ipdirilem 29092 Lemma for ~ ipdiri . (Con...
ipdiri 29093 Distributive law for inner...
ipasslem1 29094 Lemma for ~ ipassi . Show...
ipasslem2 29095 Lemma for ~ ipassi . Show...
ipasslem3 29096 Lemma for ~ ipassi . Show...
ipasslem4 29097 Lemma for ~ ipassi . Show...
ipasslem5 29098 Lemma for ~ ipassi . Show...
ipasslem7 29099 Lemma for ~ ipassi . Show...
ipasslem8 29100 Lemma for ~ ipassi . By ~...
ipasslem9 29101 Lemma for ~ ipassi . Conc...
ipasslem10 29102 Lemma for ~ ipassi . Show...
ipasslem11 29103 Lemma for ~ ipassi . Show...
ipassi 29104 Associative law for inner ...
dipdir 29105 Distributive law for inner...
dipdi 29106 Distributive law for inner...
ip2dii 29107 Inner product of two sums....
dipass 29108 Associative law for inner ...
dipassr 29109 "Associative" law for seco...
dipassr2 29110 "Associative" law for inne...
dipsubdir 29111 Distributive law for inner...
dipsubdi 29112 Distributive law for inner...
pythi 29113 The Pythagorean theorem fo...
siilem1 29114 Lemma for ~ sii . (Contri...
siilem2 29115 Lemma for ~ sii . (Contri...
siii 29116 Inference from ~ sii . (C...
sii 29117 Obsolete version of ~ ipca...
ipblnfi 29118 A function ` F ` generated...
ip2eqi 29119 Two vectors are equal iff ...
phoeqi 29120 A condition implying that ...
ajmoi 29121 Every operator has at most...
ajfuni 29122 The adjoint function is a ...
ajfun 29123 The adjoint function is a ...
ajval 29124 Value of the adjoint funct...
iscbn 29127 A complex Banach space is ...
cbncms 29128 The induced metric on comp...
bnnv 29129 Every complex Banach space...
bnrel 29130 The class of all complex B...
bnsscmcl 29131 A subspace of a Banach spa...
cnbn 29132 The set of complex numbers...
ubthlem1 29133 Lemma for ~ ubth . The fu...
ubthlem2 29134 Lemma for ~ ubth . Given ...
ubthlem3 29135 Lemma for ~ ubth . Prove ...
ubth 29136 Uniform Boundedness Theore...
minvecolem1 29137 Lemma for ~ minveco . The...
minvecolem2 29138 Lemma for ~ minveco . Any...
minvecolem3 29139 Lemma for ~ minveco . The...
minvecolem4a 29140 Lemma for ~ minveco . ` F ...
minvecolem4b 29141 Lemma for ~ minveco . The...
minvecolem4c 29142 Lemma for ~ minveco . The...
minvecolem4 29143 Lemma for ~ minveco . The...
minvecolem5 29144 Lemma for ~ minveco . Dis...
minvecolem6 29145 Lemma for ~ minveco . Any...
minvecolem7 29146 Lemma for ~ minveco . Sin...
minveco 29147 Minimizing vector theorem,...
ishlo 29150 The predicate "is a comple...
hlobn 29151 Every complex Hilbert spac...
hlph 29152 Every complex Hilbert spac...
hlrel 29153 The class of all complex H...
hlnv 29154 Every complex Hilbert spac...
hlnvi 29155 Every complex Hilbert spac...
hlvc 29156 Every complex Hilbert spac...
hlcmet 29157 The induced metric on a co...
hlmet 29158 The induced metric on a co...
hlpar2 29159 The parallelogram law sati...
hlpar 29160 The parallelogram law sati...
hlex 29161 The base set of a Hilbert ...
hladdf 29162 Mapping for Hilbert space ...
hlcom 29163 Hilbert space vector addit...
hlass 29164 Hilbert space vector addit...
hl0cl 29165 The Hilbert space zero vec...
hladdid 29166 Hilbert space addition wit...
hlmulf 29167 Mapping for Hilbert space ...
hlmulid 29168 Hilbert space scalar multi...
hlmulass 29169 Hilbert space scalar multi...
hldi 29170 Hilbert space scalar multi...
hldir 29171 Hilbert space scalar multi...
hlmul0 29172 Hilbert space scalar multi...
hlipf 29173 Mapping for Hilbert space ...
hlipcj 29174 Conjugate law for Hilbert ...
hlipdir 29175 Distributive law for Hilbe...
hlipass 29176 Associative law for Hilber...
hlipgt0 29177 The inner product of a Hil...
hlcompl 29178 Completeness of a Hilbert ...
cnchl 29179 The set of complex numbers...
htthlem 29180 Lemma for ~ htth . The co...
htth 29181 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 29237 The group (addition) opera...
h2hsm 29238 The scalar product operati...
h2hnm 29239 The norm function of Hilbe...
h2hvs 29240 The vector subtraction ope...
h2hmetdval 29241 Value of the distance func...
h2hcau 29242 The Cauchy sequences of Hi...
h2hlm 29243 The limit sequences of Hil...
axhilex-zf 29244 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 29245 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 29246 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 29247 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 29248 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 29249 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 29250 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 29251 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 29252 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 29253 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 29254 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 29255 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 29256 Derive Axiom ~ ax-hfi from...
axhis1-zf 29257 Derive Axiom ~ ax-his1 fro...
axhis2-zf 29258 Derive Axiom ~ ax-his2 fro...
axhis3-zf 29259 Derive Axiom ~ ax-his3 fro...
axhis4-zf 29260 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 29261 Derive Axiom ~ ax-hcompl f...
hvmulex 29274 The Hilbert space scalar p...
hvaddcl 29275 Closure of vector addition...
hvmulcl 29276 Closure of scalar multipli...
hvmulcli 29277 Closure inference for scal...
hvsubf 29278 Mapping domain and codomai...
hvsubval 29279 Value of vector subtractio...
hvsubcl 29280 Closure of vector subtract...
hvaddcli 29281 Closure of vector addition...
hvcomi 29282 Commutation of vector addi...
hvsubvali 29283 Value of vector subtractio...
hvsubcli 29284 Closure of vector subtract...
ifhvhv0 29285 Prove ` if ( A e. ~H , A ,...
hvaddid2 29286 Addition with the zero vec...
hvmul0 29287 Scalar multiplication with...
hvmul0or 29288 If a scalar product is zer...
hvsubid 29289 Subtraction of a vector fr...
hvnegid 29290 Addition of negative of a ...
hv2neg 29291 Two ways to express the ne...
hvaddid2i 29292 Addition with the zero vec...
hvnegidi 29293 Addition of negative of a ...
hv2negi 29294 Two ways to express the ne...
hvm1neg 29295 Convert minus one times a ...
hvaddsubval 29296 Value of vector addition i...
hvadd32 29297 Commutative/associative la...
hvadd12 29298 Commutative/associative la...
hvadd4 29299 Hilbert vector space addit...
hvsub4 29300 Hilbert vector space addit...
hvaddsub12 29301 Commutative/associative la...
hvpncan 29302 Addition/subtraction cance...
hvpncan2 29303 Addition/subtraction cance...
hvaddsubass 29304 Associativity of sum and d...
hvpncan3 29305 Subtraction and addition o...
hvmulcom 29306 Scalar multiplication comm...
hvsubass 29307 Hilbert vector space assoc...
hvsub32 29308 Hilbert vector space commu...
hvmulassi 29309 Scalar multiplication asso...
hvmulcomi 29310 Scalar multiplication comm...
hvmul2negi 29311 Double negative in scalar ...
hvsubdistr1 29312 Scalar multiplication dist...
hvsubdistr2 29313 Scalar multiplication dist...
hvdistr1i 29314 Scalar multiplication dist...
hvsubdistr1i 29315 Scalar multiplication dist...
hvassi 29316 Hilbert vector space assoc...
hvadd32i 29317 Hilbert vector space commu...
hvsubassi 29318 Hilbert vector space assoc...
hvsub32i 29319 Hilbert vector space commu...
hvadd12i 29320 Hilbert vector space commu...
hvadd4i 29321 Hilbert vector space addit...
hvsubsub4i 29322 Hilbert vector space addit...
hvsubsub4 29323 Hilbert vector space addit...
hv2times 29324 Two times a vector. (Cont...
hvnegdii 29325 Distribution of negative o...
hvsubeq0i 29326 If the difference between ...
hvsubcan2i 29327 Vector cancellation law. ...
hvaddcani 29328 Cancellation law for vecto...
hvsubaddi 29329 Relationship between vecto...
hvnegdi 29330 Distribution of negative o...
hvsubeq0 29331 If the difference between ...
hvaddeq0 29332 If the sum of two vectors ...
hvaddcan 29333 Cancellation law for vecto...
hvaddcan2 29334 Cancellation law for vecto...
hvmulcan 29335 Cancellation law for scala...
hvmulcan2 29336 Cancellation law for scala...
hvsubcan 29337 Cancellation law for vecto...
hvsubcan2 29338 Cancellation law for vecto...
hvsub0 29339 Subtraction of a zero vect...
hvsubadd 29340 Relationship between vecto...
hvaddsub4 29341 Hilbert vector space addit...
hicl 29343 Closure of inner product. ...
hicli 29344 Closure inference for inne...
his5 29349 Associative law for inner ...
his52 29350 Associative law for inner ...
his35 29351 Move scalar multiplication...
his35i 29352 Move scalar multiplication...
his7 29353 Distributive law for inner...
hiassdi 29354 Distributive/associative l...
his2sub 29355 Distributive law for inner...
his2sub2 29356 Distributive law for inner...
hire 29357 A necessary and sufficient...
hiidrcl 29358 Real closure of inner prod...
hi01 29359 Inner product with the 0 v...
hi02 29360 Inner product with the 0 v...
hiidge0 29361 Inner product with self is...
his6 29362 Zero inner product with se...
his1i 29363 Conjugate law for inner pr...
abshicom 29364 Commuted inner products ha...
hial0 29365 A vector whose inner produ...
hial02 29366 A vector whose inner produ...
hisubcomi 29367 Two vector subtractions si...
hi2eq 29368 Lemma used to prove equali...
hial2eq 29369 Two vectors whose inner pr...
hial2eq2 29370 Two vectors whose inner pr...
orthcom 29371 Orthogonality commutes. (...
normlem0 29372 Lemma used to derive prope...
normlem1 29373 Lemma used to derive prope...
normlem2 29374 Lemma used to derive prope...
normlem3 29375 Lemma used to derive prope...
normlem4 29376 Lemma used to derive prope...
normlem5 29377 Lemma used to derive prope...
normlem6 29378 Lemma used to derive prope...
normlem7 29379 Lemma used to derive prope...
normlem8 29380 Lemma used to derive prope...
normlem9 29381 Lemma used to derive prope...
normlem7tALT 29382 Lemma used to derive prope...
bcseqi 29383 Equality case of Bunjakova...
normlem9at 29384 Lemma used to derive prope...
dfhnorm2 29385 Alternate definition of th...
normf 29386 The norm function maps fro...
normval 29387 The value of the norm of a...
normcl 29388 Real closure of the norm o...
normge0 29389 The norm of a vector is no...
normgt0 29390 The norm of nonzero vector...
norm0 29391 The norm of a zero vector....
norm-i 29392 Theorem 3.3(i) of [Beran] ...
normne0 29393 A norm is nonzero iff its ...
normcli 29394 Real closure of the norm o...
normsqi 29395 The square of a norm. (Co...
norm-i-i 29396 Theorem 3.3(i) of [Beran] ...
normsq 29397 The square of a norm. (Co...
normsub0i 29398 Two vectors are equal iff ...
normsub0 29399 Two vectors are equal iff ...
norm-ii-i 29400 Triangle inequality for no...
norm-ii 29401 Triangle inequality for no...
norm-iii-i 29402 Theorem 3.3(iii) of [Beran...
norm-iii 29403 Theorem 3.3(iii) of [Beran...
normsubi 29404 Negative doesn't change th...
normpythi 29405 Analogy to Pythagorean the...
normsub 29406 Swapping order of subtract...
normneg 29407 The norm of a vector equal...
normpyth 29408 Analogy to Pythagorean the...
normpyc 29409 Corollary to Pythagorean t...
norm3difi 29410 Norm of differences around...
norm3adifii 29411 Norm of differences around...
norm3lem 29412 Lemma involving norm of di...
norm3dif 29413 Norm of differences around...
norm3dif2 29414 Norm of differences around...
norm3lemt 29415 Lemma involving norm of di...
norm3adifi 29416 Norm of differences around...
normpari 29417 Parallelogram law for norm...
normpar 29418 Parallelogram law for norm...
normpar2i 29419 Corollary of parallelogram...
polid2i 29420 Generalized polarization i...
polidi 29421 Polarization identity. Re...
polid 29422 Polarization identity. Re...
hilablo 29423 Hilbert space vector addit...
hilid 29424 The group identity element...
hilvc 29425 Hilbert space is a complex...
hilnormi 29426 Hilbert space norm in term...
hilhhi 29427 Deduce the structure of Hi...
hhnv 29428 Hilbert space is a normed ...
hhva 29429 The group (addition) opera...
hhba 29430 The base set of Hilbert sp...
hh0v 29431 The zero vector of Hilbert...
hhsm 29432 The scalar product operati...
hhvs 29433 The vector subtraction ope...
hhnm 29434 The norm function of Hilbe...
hhims 29435 The induced metric of Hilb...
hhims2 29436 Hilbert space distance met...
hhmet 29437 The induced metric of Hilb...
hhxmet 29438 The induced metric of Hilb...
hhmetdval 29439 Value of the distance func...
hhip 29440 The inner product operatio...
hhph 29441 The Hilbert space of the H...
bcsiALT 29442 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 29443 Bunjakovaskij-Cauchy-Schwa...
bcs 29444 Bunjakovaskij-Cauchy-Schwa...
bcs2 29445 Corollary of the Bunjakova...
bcs3 29446 Corollary of the Bunjakova...
hcau 29447 Member of the set of Cauch...
hcauseq 29448 A Cauchy sequences on a Hi...
hcaucvg 29449 A Cauchy sequence on a Hil...
seq1hcau 29450 A sequence on a Hilbert sp...
hlimi 29451 Express the predicate: Th...
hlimseqi 29452 A sequence with a limit on...
hlimveci 29453 Closure of the limit of a ...
hlimconvi 29454 Convergence of a sequence ...
hlim2 29455 The limit of a sequence on...
hlimadd 29456 Limit of the sum of two se...
hilmet 29457 The Hilbert space norm det...
hilxmet 29458 The Hilbert space norm det...
hilmetdval 29459 Value of the distance func...
hilims 29460 Hilbert space distance met...
hhcau 29461 The Cauchy sequences of Hi...
hhlm 29462 The limit sequences of Hil...
hhcmpl 29463 Lemma used for derivation ...
hilcompl 29464 Lemma used for derivation ...
hhcms 29466 The Hilbert space induced ...
hhhl 29467 The Hilbert space structur...
hilcms 29468 The Hilbert space norm det...
hilhl 29469 The Hilbert space of the H...
issh 29471 Subspace ` H ` of a Hilber...
issh2 29472 Subspace ` H ` of a Hilber...
shss 29473 A subspace is a subset of ...
shel 29474 A member of a subspace of ...
shex 29475 The set of subspaces of a ...
shssii 29476 A closed subspace of a Hil...
sheli 29477 A member of a subspace of ...
shelii 29478 A member of a subspace of ...
sh0 29479 The zero vector belongs to...
shaddcl 29480 Closure of vector addition...
shmulcl 29481 Closure of vector scalar m...
issh3 29482 Subspace ` H ` of a Hilber...
shsubcl 29483 Closure of vector subtract...
isch 29485 Closed subspace ` H ` of a...
isch2 29486 Closed subspace ` H ` of a...
chsh 29487 A closed subspace is a sub...
chsssh 29488 Closed subspaces are subsp...
chex 29489 The set of closed subspace...
chshii 29490 A closed subspace is a sub...
ch0 29491 The zero vector belongs to...
chss 29492 A closed subspace of a Hil...
chel 29493 A member of a closed subsp...
chssii 29494 A closed subspace of a Hil...
cheli 29495 A member of a closed subsp...
chelii 29496 A member of a closed subsp...
chlimi 29497 The limit property of a cl...
hlim0 29498 The zero sequence in Hilbe...
hlimcaui 29499 If a sequence in Hilbert s...
hlimf 29500 Function-like behavior of ...
hlimuni 29501 A Hilbert space sequence c...
hlimreui 29502 The limit of a Hilbert spa...
hlimeui 29503 The limit of a Hilbert spa...
isch3 29504 A Hilbert subspace is clos...
chcompl 29505 Completeness of a closed s...
helch 29506 The unit Hilbert lattice e...
ifchhv 29507 Prove ` if ( A e. CH , A ,...
helsh 29508 Hilbert space is a subspac...
shsspwh 29509 Subspaces are subsets of H...
chsspwh 29510 Closed subspaces are subse...
hsn0elch 29511 The zero subspace belongs ...
norm1 29512 From any nonzero Hilbert s...
norm1exi 29513 A normalized vector exists...
norm1hex 29514 A normalized vector can ex...
elch0 29517 Membership in zero for clo...
h0elch 29518 The zero subspace is a clo...
h0elsh 29519 The zero subspace is a sub...
hhssva 29520 The vector addition operat...
hhsssm 29521 The scalar multiplication ...
hhssnm 29522 The norm operation on a su...
issubgoilem 29523 Lemma for ~ hhssabloilem ....
hhssabloilem 29524 Lemma for ~ hhssabloi . F...
hhssabloi 29525 Abelian group property of ...
hhssablo 29526 Abelian group property of ...
hhssnv 29527 Normed complex vector spac...
hhssnvt 29528 Normed complex vector spac...
hhsst 29529 A member of ` SH ` is a su...
hhshsslem1 29530 Lemma for ~ hhsssh . (Con...
hhshsslem2 29531 Lemma for ~ hhsssh . (Con...
hhsssh 29532 The predicate " ` H ` is a...
hhsssh2 29533 The predicate " ` H ` is a...
hhssba 29534 The base set of a subspace...
hhssvs 29535 The vector subtraction ope...
hhssvsf 29536 Mapping of the vector subt...
hhssims 29537 Induced metric of a subspa...
hhssims2 29538 Induced metric of a subspa...
hhssmet 29539 Induced metric of a subspa...
hhssmetdval 29540 Value of the distance func...
hhsscms 29541 The induced metric of a cl...
hhssbnOLD 29542 Obsolete version of ~ cssb...
ocval 29543 Value of orthogonal comple...
ocel 29544 Membership in orthogonal c...
shocel 29545 Membership in orthogonal c...
ocsh 29546 The orthogonal complement ...
shocsh 29547 The orthogonal complement ...
ocss 29548 An orthogonal complement i...
shocss 29549 An orthogonal complement i...
occon 29550 Contraposition law for ort...
occon2 29551 Double contraposition for ...
occon2i 29552 Double contraposition for ...
oc0 29553 The zero vector belongs to...
ocorth 29554 Members of a subset and it...
shocorth 29555 Members of a subspace and ...
ococss 29556 Inclusion in complement of...
shococss 29557 Inclusion in complement of...
shorth 29558 Members of orthogonal subs...
ocin 29559 Intersection of a Hilbert ...
occon3 29560 Hilbert lattice contraposi...
ocnel 29561 A nonzero vector in the co...
chocvali 29562 Value of the orthogonal co...
shuni 29563 Two subspaces with trivial...
chocunii 29564 Lemma for uniqueness part ...
pjhthmo 29565 Projection Theorem, unique...
occllem 29566 Lemma for ~ occl . (Contr...
occl 29567 Closure of complement of H...
shoccl 29568 Closure of complement of H...
choccl 29569 Closure of complement of H...
choccli 29570 Closure of ` CH ` orthocom...
shsval 29575 Value of subspace sum of t...
shsss 29576 The subspace sum is a subs...
shsel 29577 Membership in the subspace...
shsel3 29578 Membership in the subspace...
shseli 29579 Membership in subspace sum...
shscli 29580 Closure of subspace sum. ...
shscl 29581 Closure of subspace sum. ...
shscom 29582 Commutative law for subspa...
shsva 29583 Vector sum belongs to subs...
shsel1 29584 A subspace sum contains a ...
shsel2 29585 A subspace sum contains a ...
shsvs 29586 Vector subtraction belongs...
shsub1 29587 Subspace sum is an upper b...
shsub2 29588 Subspace sum is an upper b...
choc0 29589 The orthocomplement of the...
choc1 29590 The orthocomplement of the...
chocnul 29591 Orthogonal complement of t...
shintcli 29592 Closure of intersection of...
shintcl 29593 The intersection of a none...
chintcli 29594 The intersection of a none...
chintcl 29595 The intersection (infimum)...
spanval 29596 Value of the linear span o...
hsupval 29597 Value of supremum of set o...
chsupval 29598 The value of the supremum ...
spancl 29599 The span of a subset of Hi...
elspancl 29600 A member of a span is a ve...
shsupcl 29601 Closure of the subspace su...
hsupcl 29602 Closure of supremum of set...
chsupcl 29603 Closure of supremum of sub...
hsupss 29604 Subset relation for suprem...
chsupss 29605 Subset relation for suprem...
hsupunss 29606 The union of a set of Hilb...
chsupunss 29607 The union of a set of clos...
spanss2 29608 A subset of Hilbert space ...
shsupunss 29609 The union of a set of subs...
spanid 29610 A subspace of Hilbert spac...
spanss 29611 Ordering relationship for ...
spanssoc 29612 The span of a subset of Hi...
sshjval 29613 Value of join for subsets ...
shjval 29614 Value of join in ` SH ` . ...
chjval 29615 Value of join in ` CH ` . ...
chjvali 29616 Value of join in ` CH ` . ...
sshjval3 29617 Value of join for subsets ...
sshjcl 29618 Closure of join for subset...
shjcl 29619 Closure of join in ` SH ` ...
chjcl 29620 Closure of join in ` CH ` ...
shjcom 29621 Commutative law for Hilber...
shless 29622 Subset implies subset of s...
shlej1 29623 Add disjunct to both sides...
shlej2 29624 Add disjunct to both sides...
shincli 29625 Closure of intersection of...
shscomi 29626 Commutative law for subspa...
shsvai 29627 Vector sum belongs to subs...
shsel1i 29628 A subspace sum contains a ...
shsel2i 29629 A subspace sum contains a ...
shsvsi 29630 Vector subtraction belongs...
shunssi 29631 Union is smaller than subs...
shunssji 29632 Union is smaller than Hilb...
shsleji 29633 Subspace sum is smaller th...
shjcomi 29634 Commutative law for join i...
shsub1i 29635 Subspace sum is an upper b...
shsub2i 29636 Subspace sum is an upper b...
shub1i 29637 Hilbert lattice join is an...
shjcli 29638 Closure of ` CH ` join. (...
shjshcli 29639 ` SH ` closure of join. (...
shlessi 29640 Subset implies subset of s...
shlej1i 29641 Add disjunct to both sides...
shlej2i 29642 Add disjunct to both sides...
shslej 29643 Subspace sum is smaller th...
shincl 29644 Closure of intersection of...
shub1 29645 Hilbert lattice join is an...
shub2 29646 A subspace is a subset of ...
shsidmi 29647 Idempotent law for Hilbert...
shslubi 29648 The least upper bound law ...
shlesb1i 29649 Hilbert lattice ordering i...
shsval2i 29650 An alternate way to expres...
shsval3i 29651 An alternate way to expres...
shmodsi 29652 The modular law holds for ...
shmodi 29653 The modular law is implied...
pjhthlem1 29654 Lemma for ~ pjhth . (Cont...
pjhthlem2 29655 Lemma for ~ pjhth . (Cont...
pjhth 29656 Projection Theorem: Any H...
pjhtheu 29657 Projection Theorem: Any H...
pjhfval 29659 The value of the projectio...
pjhval 29660 Value of a projection. (C...
pjpreeq 29661 Equality with a projection...
pjeq 29662 Equality with a projection...
axpjcl 29663 Closure of a projection in...
pjhcl 29664 Closure of a projection in...
omlsilem 29665 Lemma for orthomodular law...
omlsii 29666 Subspace inference form of...
omlsi 29667 Subspace form of orthomodu...
ococi 29668 Complement of complement o...
ococ 29669 Complement of complement o...
dfch2 29670 Alternate definition of th...
ococin 29671 The double complement is t...
hsupval2 29672 Alternate definition of su...
chsupval2 29673 The value of the supremum ...
sshjval2 29674 Value of join in the set o...
chsupid 29675 A subspace is the supremum...
chsupsn 29676 Value of supremum of subse...
shlub 29677 Hilbert lattice join is th...
shlubi 29678 Hilbert lattice join is th...
pjhtheu2 29679 Uniqueness of ` y ` for th...
pjcli 29680 Closure of a projection in...
pjhcli 29681 Closure of a projection in...
pjpjpre 29682 Decomposition of a vector ...
axpjpj 29683 Decomposition of a vector ...
pjclii 29684 Closure of a projection in...
pjhclii 29685 Closure of a projection in...
pjpj0i 29686 Decomposition of a vector ...
pjpji 29687 Decomposition of a vector ...
pjpjhth 29688 Projection Theorem: Any H...
pjpjhthi 29689 Projection Theorem: Any H...
pjop 29690 Orthocomplement projection...
pjpo 29691 Projection in terms of ort...
pjopi 29692 Orthocomplement projection...
pjpoi 29693 Projection in terms of ort...
pjoc1i 29694 Projection of a vector in ...
pjchi 29695 Projection of a vector in ...
pjoccl 29696 The part of a vector that ...
pjoc1 29697 Projection of a vector in ...
pjomli 29698 Subspace form of orthomodu...
pjoml 29699 Subspace form of orthomodu...
pjococi 29700 Proof of orthocomplement t...
pjoc2i 29701 Projection of a vector in ...
pjoc2 29702 Projection of a vector in ...
sh0le 29703 The zero subspace is the s...
ch0le 29704 The zero subspace is the s...
shle0 29705 No subspace is smaller tha...
chle0 29706 No Hilbert lattice element...
chnlen0 29707 A Hilbert lattice element ...
ch0pss 29708 The zero subspace is a pro...
orthin 29709 The intersection of orthog...
ssjo 29710 The lattice join of a subs...
shne0i 29711 A nonzero subspace has a n...
shs0i 29712 Hilbert subspace sum with ...
shs00i 29713 Two subspaces are zero iff...
ch0lei 29714 The closed subspace zero i...
chle0i 29715 No Hilbert closed subspace...
chne0i 29716 A nonzero closed subspace ...
chocini 29717 Intersection of a closed s...
chj0i 29718 Join with lattice zero in ...
chm1i 29719 Meet with lattice one in `...
chjcli 29720 Closure of ` CH ` join. (...
chsleji 29721 Subspace sum is smaller th...
chseli 29722 Membership in subspace sum...
chincli 29723 Closure of Hilbert lattice...
chsscon3i 29724 Hilbert lattice contraposi...
chsscon1i 29725 Hilbert lattice contraposi...
chsscon2i 29726 Hilbert lattice contraposi...
chcon2i 29727 Hilbert lattice contraposi...
chcon1i 29728 Hilbert lattice contraposi...
chcon3i 29729 Hilbert lattice contraposi...
chunssji 29730 Union is smaller than ` CH...
chjcomi 29731 Commutative law for join i...
chub1i 29732 ` CH ` join is an upper bo...
chub2i 29733 ` CH ` join is an upper bo...
chlubi 29734 Hilbert lattice join is th...
chlubii 29735 Hilbert lattice join is th...
chlej1i 29736 Add join to both sides of ...
chlej2i 29737 Add join to both sides of ...
chlej12i 29738 Add join to both sides of ...
chlejb1i 29739 Hilbert lattice ordering i...
chdmm1i 29740 De Morgan's law for meet i...
chdmm2i 29741 De Morgan's law for meet i...
chdmm3i 29742 De Morgan's law for meet i...
chdmm4i 29743 De Morgan's law for meet i...
chdmj1i 29744 De Morgan's law for join i...
chdmj2i 29745 De Morgan's law for join i...
chdmj3i 29746 De Morgan's law for join i...
chdmj4i 29747 De Morgan's law for join i...
chnlei 29748 Equivalent expressions for...
chjassi 29749 Associative law for Hilber...
chj00i 29750 Two Hilbert lattice elemen...
chjoi 29751 The join of a closed subsp...
chj1i 29752 Join with Hilbert lattice ...
chm0i 29753 Meet with Hilbert lattice ...
chm0 29754 Meet with Hilbert lattice ...
shjshsi 29755 Hilbert lattice join equal...
shjshseli 29756 A closed subspace sum equa...
chne0 29757 A nonzero closed subspace ...
chocin 29758 Intersection of a closed s...
chssoc 29759 A closed subspace less tha...
chj0 29760 Join with Hilbert lattice ...
chslej 29761 Subspace sum is smaller th...
chincl 29762 Closure of Hilbert lattice...
chsscon3 29763 Hilbert lattice contraposi...
chsscon1 29764 Hilbert lattice contraposi...
chsscon2 29765 Hilbert lattice contraposi...
chpsscon3 29766 Hilbert lattice contraposi...
chpsscon1 29767 Hilbert lattice contraposi...
chpsscon2 29768 Hilbert lattice contraposi...
chjcom 29769 Commutative law for Hilber...
chub1 29770 Hilbert lattice join is gr...
chub2 29771 Hilbert lattice join is gr...
chlub 29772 Hilbert lattice join is th...
chlej1 29773 Add join to both sides of ...
chlej2 29774 Add join to both sides of ...
chlejb1 29775 Hilbert lattice ordering i...
chlejb2 29776 Hilbert lattice ordering i...
chnle 29777 Equivalent expressions for...
chjo 29778 The join of a closed subsp...
chabs1 29779 Hilbert lattice absorption...
chabs2 29780 Hilbert lattice absorption...
chabs1i 29781 Hilbert lattice absorption...
chabs2i 29782 Hilbert lattice absorption...
chjidm 29783 Idempotent law for Hilbert...
chjidmi 29784 Idempotent law for Hilbert...
chj12i 29785 A rearrangement of Hilbert...
chj4i 29786 Rearrangement of the join ...
chjjdiri 29787 Hilbert lattice join distr...
chdmm1 29788 De Morgan's law for meet i...
chdmm2 29789 De Morgan's law for meet i...
chdmm3 29790 De Morgan's law for meet i...
chdmm4 29791 De Morgan's law for meet i...
chdmj1 29792 De Morgan's law for join i...
chdmj2 29793 De Morgan's law for join i...
chdmj3 29794 De Morgan's law for join i...
chdmj4 29795 De Morgan's law for join i...
chjass 29796 Associative law for Hilber...
chj12 29797 A rearrangement of Hilbert...
chj4 29798 Rearrangement of the join ...
ledii 29799 An ortholattice is distrib...
lediri 29800 An ortholattice is distrib...
lejdii 29801 An ortholattice is distrib...
lejdiri 29802 An ortholattice is distrib...
ledi 29803 An ortholattice is distrib...
spansn0 29804 The span of the singleton ...
span0 29805 The span of the empty set ...
elspani 29806 Membership in the span of ...
spanuni 29807 The span of a union is the...
spanun 29808 The span of a union is the...
sshhococi 29809 The join of two Hilbert sp...
hne0 29810 Hilbert space has a nonzer...
chsup0 29811 The supremum of the empty ...
h1deoi 29812 Membership in orthocomplem...
h1dei 29813 Membership in 1-dimensiona...
h1did 29814 A generating vector belong...
h1dn0 29815 A nonzero vector generates...
h1de2i 29816 Membership in 1-dimensiona...
h1de2bi 29817 Membership in 1-dimensiona...
h1de2ctlem 29818 Lemma for ~ h1de2ci . (Co...
h1de2ci 29819 Membership in 1-dimensiona...
spansni 29820 The span of a singleton in...
elspansni 29821 Membership in the span of ...
spansn 29822 The span of a singleton in...
spansnch 29823 The span of a Hilbert spac...
spansnsh 29824 The span of a Hilbert spac...
spansnchi 29825 The span of a singleton in...
spansnid 29826 A vector belongs to the sp...
spansnmul 29827 A scalar product with a ve...
elspansncl 29828 A member of a span of a si...
elspansn 29829 Membership in the span of ...
elspansn2 29830 Membership in the span of ...
spansncol 29831 The singletons of collinea...
spansneleqi 29832 Membership relation implie...
spansneleq 29833 Membership relation that i...
spansnss 29834 The span of the singleton ...
elspansn3 29835 A member of the span of th...
elspansn4 29836 A span membership conditio...
elspansn5 29837 A vector belonging to both...
spansnss2 29838 The span of the singleton ...
normcan 29839 Cancellation-type law that...
pjspansn 29840 A projection on the span o...
spansnpji 29841 A subset of Hilbert space ...
spanunsni 29842 The span of the union of a...
spanpr 29843 The span of a pair of vect...
h1datomi 29844 A 1-dimensional subspace i...
h1datom 29845 A 1-dimensional subspace i...
cmbr 29847 Binary relation expressing...
pjoml2i 29848 Variation of orthomodular ...
pjoml3i 29849 Variation of orthomodular ...
pjoml4i 29850 Variation of orthomodular ...
pjoml5i 29851 The orthomodular law. Rem...
pjoml6i 29852 An equivalent of the ortho...
cmbri 29853 Binary relation expressing...
cmcmlem 29854 Commutation is symmetric. ...
cmcmi 29855 Commutation is symmetric. ...
cmcm2i 29856 Commutation with orthocomp...
cmcm3i 29857 Commutation with orthocomp...
cmcm4i 29858 Commutation with orthocomp...
cmbr2i 29859 Alternate definition of th...
cmcmii 29860 Commutation is symmetric. ...
cmcm2ii 29861 Commutation with orthocomp...
cmcm3ii 29862 Commutation with orthocomp...
cmbr3i 29863 Alternate definition for t...
cmbr4i 29864 Alternate definition for t...
lecmi 29865 Comparable Hilbert lattice...
lecmii 29866 Comparable Hilbert lattice...
cmj1i 29867 A Hilbert lattice element ...
cmj2i 29868 A Hilbert lattice element ...
cmm1i 29869 A Hilbert lattice element ...
cmm2i 29870 A Hilbert lattice element ...
cmbr3 29871 Alternate definition for t...
cm0 29872 The zero Hilbert lattice e...
cmidi 29873 The commutes relation is r...
pjoml2 29874 Variation of orthomodular ...
pjoml3 29875 Variation of orthomodular ...
pjoml5 29876 The orthomodular law. Rem...
cmcm 29877 Commutation is symmetric. ...
cmcm3 29878 Commutation with orthocomp...
cmcm2 29879 Commutation with orthocomp...
lecm 29880 Comparable Hilbert lattice...
fh1 29881 Foulis-Holland Theorem. I...
fh2 29882 Foulis-Holland Theorem. I...
cm2j 29883 A lattice element that com...
fh1i 29884 Foulis-Holland Theorem. I...
fh2i 29885 Foulis-Holland Theorem. I...
fh3i 29886 Variation of the Foulis-Ho...
fh4i 29887 Variation of the Foulis-Ho...
cm2ji 29888 A lattice element that com...
cm2mi 29889 A lattice element that com...
qlax1i 29890 One of the equations showi...
qlax2i 29891 One of the equations showi...
qlax3i 29892 One of the equations showi...
qlax4i 29893 One of the equations showi...
qlax5i 29894 One of the equations showi...
qlaxr1i 29895 One of the conditions show...
qlaxr2i 29896 One of the conditions show...
qlaxr4i 29897 One of the conditions show...
qlaxr5i 29898 One of the conditions show...
qlaxr3i 29899 A variation of the orthomo...
chscllem1 29900 Lemma for ~ chscl . (Cont...
chscllem2 29901 Lemma for ~ chscl . (Cont...
chscllem3 29902 Lemma for ~ chscl . (Cont...
chscllem4 29903 Lemma for ~ chscl . (Cont...
chscl 29904 The subspace sum of two cl...
osumi 29905 If two closed subspaces of...
osumcori 29906 Corollary of ~ osumi . (C...
osumcor2i 29907 Corollary of ~ osumi , sho...
osum 29908 If two closed subspaces of...
spansnji 29909 The subspace sum of a clos...
spansnj 29910 The subspace sum of a clos...
spansnscl 29911 The subspace sum of a clos...
sumspansn 29912 The sum of two vectors bel...
spansnm0i 29913 The meet of different one-...
nonbooli 29914 A Hilbert lattice with two...
spansncvi 29915 Hilbert space has the cove...
spansncv 29916 Hilbert space has the cove...
5oalem1 29917 Lemma for orthoarguesian l...
5oalem2 29918 Lemma for orthoarguesian l...
5oalem3 29919 Lemma for orthoarguesian l...
5oalem4 29920 Lemma for orthoarguesian l...
5oalem5 29921 Lemma for orthoarguesian l...
5oalem6 29922 Lemma for orthoarguesian l...
5oalem7 29923 Lemma for orthoarguesian l...
5oai 29924 Orthoarguesian law 5OA. Th...
3oalem1 29925 Lemma for 3OA (weak) ortho...
3oalem2 29926 Lemma for 3OA (weak) ortho...
3oalem3 29927 Lemma for 3OA (weak) ortho...
3oalem4 29928 Lemma for 3OA (weak) ortho...
3oalem5 29929 Lemma for 3OA (weak) ortho...
3oalem6 29930 Lemma for 3OA (weak) ortho...
3oai 29931 3OA (weak) orthoarguesian ...
pjorthi 29932 Projection components on o...
pjch1 29933 Property of identity proje...
pjo 29934 The orthogonal projection....
pjcompi 29935 Component of a projection....
pjidmi 29936 A projection is idempotent...
pjadjii 29937 A projection is self-adjoi...
pjaddii 29938 Projection of vector sum i...
pjinormii 29939 The inner product of a pro...
pjmulii 29940 Projection of (scalar) pro...
pjsubii 29941 Projection of vector diffe...
pjsslem 29942 Lemma for subset relations...
pjss2i 29943 Subset relationship for pr...
pjssmii 29944 Projection meet property. ...
pjssge0ii 29945 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 29946 Theorem 4.5(v)<->(vi) of [...
pjcji 29947 The projection on a subspa...
pjadji 29948 A projection is self-adjoi...
pjaddi 29949 Projection of vector sum i...
pjinormi 29950 The inner product of a pro...
pjsubi 29951 Projection of vector diffe...
pjmuli 29952 Projection of scalar produ...
pjige0i 29953 The inner product of a pro...
pjige0 29954 The inner product of a pro...
pjcjt2 29955 The projection on a subspa...
pj0i 29956 The projection of the zero...
pjch 29957 Projection of a vector in ...
pjid 29958 The projection of a vector...
pjvec 29959 The set of vectors belongi...
pjocvec 29960 The set of vectors belongi...
pjocini 29961 Membership of projection i...
pjini 29962 Membership of projection i...
pjjsi 29963 A sufficient condition for...
pjfni 29964 Functionality of a project...
pjrni 29965 The range of a projection....
pjfoi 29966 A projection maps onto its...
pjfi 29967 The mapping of a projectio...
pjvi 29968 The value of a projection ...
pjhfo 29969 A projection maps onto its...
pjrn 29970 The range of a projection....
pjhf 29971 The mapping of a projectio...
pjfn 29972 Functionality of a project...
pjsumi 29973 The projection on a subspa...
pj11i 29974 One-to-one correspondence ...
pjdsi 29975 Vector decomposition into ...
pjds3i 29976 Vector decomposition into ...
pj11 29977 One-to-one correspondence ...
pjmfn 29978 Functionality of the proje...
pjmf1 29979 The projector function map...
pjoi0 29980 The inner product of proje...
pjoi0i 29981 The inner product of proje...
pjopythi 29982 Pythagorean theorem for pr...
pjopyth 29983 Pythagorean theorem for pr...
pjnormi 29984 The norm of the projection...
pjpythi 29985 Pythagorean theorem for pr...
pjneli 29986 If a vector does not belon...
pjnorm 29987 The norm of the projection...
pjpyth 29988 Pythagorean theorem for pr...
pjnel 29989 If a vector does not belon...
pjnorm2 29990 A vector belongs to the su...
mayete3i 29991 Mayet's equation E_3. Par...
mayetes3i 29992 Mayet's equation E^*_3, de...
hosmval 29998 Value of the sum of two Hi...
hommval 29999 Value of the scalar produc...
hodmval 30000 Value of the difference of...
hfsmval 30001 Value of the sum of two Hi...
hfmmval 30002 Value of the scalar produc...
hosval 30003 Value of the sum of two Hi...
homval 30004 Value of the scalar produc...
hodval 30005 Value of the difference of...
hfsval 30006 Value of the sum of two Hi...
hfmval 30007 Value of the scalar produc...
hoscl 30008 Closure of the sum of two ...
homcl 30009 Closure of the scalar prod...
hodcl 30010 Closure of the difference ...
ho0val 30013 Value of the zero Hilbert ...
ho0f 30014 Functionality of the zero ...
df0op2 30015 Alternate definition of Hi...
dfiop2 30016 Alternate definition of Hi...
hoif 30017 Functionality of the Hilbe...
hoival 30018 The value of the Hilbert s...
hoico1 30019 Composition with the Hilbe...
hoico2 30020 Composition with the Hilbe...
hoaddcl 30021 The sum of Hilbert space o...
homulcl 30022 The scalar product of a Hi...
hoeq 30023 Equality of Hilbert space ...
hoeqi 30024 Equality of Hilbert space ...
hoscli 30025 Closure of Hilbert space o...
hodcli 30026 Closure of Hilbert space o...
hocoi 30027 Composition of Hilbert spa...
hococli 30028 Closure of composition of ...
hocofi 30029 Mapping of composition of ...
hocofni 30030 Functionality of compositi...
hoaddcli 30031 Mapping of sum of Hilbert ...
hosubcli 30032 Mapping of difference of H...
hoaddfni 30033 Functionality of sum of Hi...
hosubfni 30034 Functionality of differenc...
hoaddcomi 30035 Commutativity of sum of Hi...
hosubcl 30036 Mapping of difference of H...
hoaddcom 30037 Commutativity of sum of Hi...
hodsi 30038 Relationship between Hilbe...
hoaddassi 30039 Associativity of sum of Hi...
hoadd12i 30040 Commutative/associative la...
hoadd32i 30041 Commutative/associative la...
hocadddiri 30042 Distributive law for Hilbe...
hocsubdiri 30043 Distributive law for Hilbe...
ho2coi 30044 Double composition of Hilb...
hoaddass 30045 Associativity of sum of Hi...
hoadd32 30046 Commutative/associative la...
hoadd4 30047 Rearrangement of 4 terms i...
hocsubdir 30048 Distributive law for Hilbe...
hoaddid1i 30049 Sum of a Hilbert space ope...
hodidi 30050 Difference of a Hilbert sp...
ho0coi 30051 Composition of the zero op...
hoid1i 30052 Composition of Hilbert spa...
hoid1ri 30053 Composition of Hilbert spa...
hoaddid1 30054 Sum of a Hilbert space ope...
hodid 30055 Difference of a Hilbert sp...
hon0 30056 A Hilbert space operator i...
hodseqi 30057 Subtraction and addition o...
ho0subi 30058 Subtraction of Hilbert spa...
honegsubi 30059 Relationship between Hilbe...
ho0sub 30060 Subtraction of Hilbert spa...
hosubid1 30061 The zero operator subtract...
honegsub 30062 Relationship between Hilbe...
homulid2 30063 An operator equals its sca...
homco1 30064 Associative law for scalar...
homulass 30065 Scalar product associative...
hoadddi 30066 Scalar product distributiv...
hoadddir 30067 Scalar product reverse dis...
homul12 30068 Swap first and second fact...
honegneg 30069 Double negative of a Hilbe...
hosubneg 30070 Relationship between opera...
hosubdi 30071 Scalar product distributiv...
honegdi 30072 Distribution of negative o...
honegsubdi 30073 Distribution of negative o...
honegsubdi2 30074 Distribution of negative o...
hosubsub2 30075 Law for double subtraction...
hosub4 30076 Rearrangement of 4 terms i...
hosubadd4 30077 Rearrangement of 4 terms i...
hoaddsubass 30078 Associative-type law for a...
hoaddsub 30079 Law for operator addition ...
hosubsub 30080 Law for double subtraction...
hosubsub4 30081 Law for double subtraction...
ho2times 30082 Two times a Hilbert space ...
hoaddsubassi 30083 Associativity of sum and d...
hoaddsubi 30084 Law for sum and difference...
hosd1i 30085 Hilbert space operator sum...
hosd2i 30086 Hilbert space operator sum...
hopncani 30087 Hilbert space operator can...
honpcani 30088 Hilbert space operator can...
hosubeq0i 30089 If the difference between ...
honpncani 30090 Hilbert space operator can...
ho01i 30091 A condition implying that ...
ho02i 30092 A condition implying that ...
hoeq1 30093 A condition implying that ...
hoeq2 30094 A condition implying that ...
adjmo 30095 Every Hilbert space operat...
adjsym 30096 Symmetry property of an ad...
eigrei 30097 A necessary and sufficient...
eigre 30098 A necessary and sufficient...
eigposi 30099 A sufficient condition (fi...
eigorthi 30100 A necessary and sufficient...
eigorth 30101 A necessary and sufficient...
nmopval 30119 Value of the norm of a Hil...
elcnop 30120 Property defining a contin...
ellnop 30121 Property defining a linear...
lnopf 30122 A linear Hilbert space ope...
elbdop 30123 Property defining a bounde...
bdopln 30124 A bounded linear Hilbert s...
bdopf 30125 A bounded linear Hilbert s...
nmopsetretALT 30126 The set in the supremum of...
nmopsetretHIL 30127 The set in the supremum of...
nmopsetn0 30128 The set in the supremum of...
nmopxr 30129 The norm of a Hilbert spac...
nmoprepnf 30130 The norm of a Hilbert spac...
nmopgtmnf 30131 The norm of a Hilbert spac...
nmopreltpnf 30132 The norm of a Hilbert spac...
nmopre 30133 The norm of a bounded oper...
elbdop2 30134 Property defining a bounde...
elunop 30135 Property defining a unitar...
elhmop 30136 Property defining a Hermit...
hmopf 30137 A Hermitian operator is a ...
hmopex 30138 The class of Hermitian ope...
nmfnval 30139 Value of the norm of a Hil...
nmfnsetre 30140 The set in the supremum of...
nmfnsetn0 30141 The set in the supremum of...
nmfnxr 30142 The norm of any Hilbert sp...
nmfnrepnf 30143 The norm of a Hilbert spac...
nlfnval 30144 Value of the null space of...
elcnfn 30145 Property defining a contin...
ellnfn 30146 Property defining a linear...
lnfnf 30147 A linear Hilbert space fun...
dfadj2 30148 Alternate definition of th...
funadj 30149 Functionality of the adjoi...
dmadjss 30150 The domain of the adjoint ...
dmadjop 30151 A member of the domain of ...
adjeu 30152 Elementhood in the domain ...
adjval 30153 Value of the adjoint funct...
adjval2 30154 Value of the adjoint funct...
cnvadj 30155 The adjoint function equal...
funcnvadj 30156 The converse of the adjoin...
adj1o 30157 The adjoint function maps ...
dmadjrn 30158 The adjoint of an operator...
eigvecval 30159 The set of eigenvectors of...
eigvalfval 30160 The eigenvalues of eigenve...
specval 30161 The value of the spectrum ...
speccl 30162 The spectrum of an operato...
hhlnoi 30163 The linear operators of Hi...
hhnmoi 30164 The norm of an operator in...
hhbloi 30165 A bounded linear operator ...
hh0oi 30166 The zero operator in Hilbe...
hhcno 30167 The continuous operators o...
hhcnf 30168 The continuous functionals...
dmadjrnb 30169 The adjoint of an operator...
nmoplb 30170 A lower bound for an opera...
nmopub 30171 An upper bound for an oper...
nmopub2tALT 30172 An upper bound for an oper...
nmopub2tHIL 30173 An upper bound for an oper...
nmopge0 30174 The norm of any Hilbert sp...
nmopgt0 30175 A linear Hilbert space ope...
cnopc 30176 Basic continuity property ...
lnopl 30177 Basic linearity property o...
unop 30178 Basic inner product proper...
unopf1o 30179 A unitary operator in Hilb...
unopnorm 30180 A unitary operator is idem...
cnvunop 30181 The inverse (converse) of ...
unopadj 30182 The inverse (converse) of ...
unoplin 30183 A unitary operator is line...
counop 30184 The composition of two uni...
hmop 30185 Basic inner product proper...
hmopre 30186 The inner product of the v...
nmfnlb 30187 A lower bound for a functi...
nmfnleub 30188 An upper bound for the nor...
nmfnleub2 30189 An upper bound for the nor...
nmfnge0 30190 The norm of any Hilbert sp...
elnlfn 30191 Membership in the null spa...
elnlfn2 30192 Membership in the null spa...
cnfnc 30193 Basic continuity property ...
lnfnl 30194 Basic linearity property o...
adjcl 30195 Closure of the adjoint of ...
adj1 30196 Property of an adjoint Hil...
adj2 30197 Property of an adjoint Hil...
adjeq 30198 A property that determines...
adjadj 30199 Double adjoint. Theorem 3...
adjvalval 30200 Value of the value of the ...
unopadj2 30201 The adjoint of a unitary o...
hmopadj 30202 A Hermitian operator is se...
hmdmadj 30203 Every Hermitian operator h...
hmopadj2 30204 An operator is Hermitian i...
hmoplin 30205 A Hermitian operator is li...
brafval 30206 The bra of a vector, expre...
braval 30207 A bra-ket juxtaposition, e...
braadd 30208 Linearity property of bra ...
bramul 30209 Linearity property of bra ...
brafn 30210 The bra function is a func...
bralnfn 30211 The Dirac bra function is ...
bracl 30212 Closure of the bra functio...
bra0 30213 The Dirac bra of the zero ...
brafnmul 30214 Anti-linearity property of...
kbfval 30215 The outer product of two v...
kbop 30216 The outer product of two v...
kbval 30217 The value of the operator ...
kbmul 30218 Multiplication property of...
kbpj 30219 If a vector ` A ` has norm...
eleigvec 30220 Membership in the set of e...
eleigvec2 30221 Membership in the set of e...
eleigveccl 30222 Closure of an eigenvector ...
eigvalval 30223 The eigenvalue of an eigen...
eigvalcl 30224 An eigenvalue is a complex...
eigvec1 30225 Property of an eigenvector...
eighmre 30226 The eigenvalues of a Hermi...
eighmorth 30227 Eigenvectors of a Hermitia...
nmopnegi 30228 Value of the norm of the n...
lnop0 30229 The value of a linear Hilb...
lnopmul 30230 Multiplicative property of...
lnopli 30231 Basic scalar product prope...
lnopfi 30232 A linear Hilbert space ope...
lnop0i 30233 The value of a linear Hilb...
lnopaddi 30234 Additive property of a lin...
lnopmuli 30235 Multiplicative property of...
lnopaddmuli 30236 Sum/product property of a ...
lnopsubi 30237 Subtraction property for a...
lnopsubmuli 30238 Subtraction/product proper...
lnopmulsubi 30239 Product/subtraction proper...
homco2 30240 Move a scalar product out ...
idunop 30241 The identity function (res...
0cnop 30242 The identically zero funct...
0cnfn 30243 The identically zero funct...
idcnop 30244 The identity function (res...
idhmop 30245 The Hilbert space identity...
0hmop 30246 The identically zero funct...
0lnop 30247 The identically zero funct...
0lnfn 30248 The identically zero funct...
nmop0 30249 The norm of the zero opera...
nmfn0 30250 The norm of the identicall...
hmopbdoptHIL 30251 A Hermitian operator is a ...
hoddii 30252 Distributive law for Hilbe...
hoddi 30253 Distributive law for Hilbe...
nmop0h 30254 The norm of any operator o...
idlnop 30255 The identity function (res...
0bdop 30256 The identically zero opera...
adj0 30257 Adjoint of the zero operat...
nmlnop0iALT 30258 A linear operator with a z...
nmlnop0iHIL 30259 A linear operator with a z...
nmlnopgt0i 30260 A linear Hilbert space ope...
nmlnop0 30261 A linear operator with a z...
nmlnopne0 30262 A linear operator with a n...
lnopmi 30263 The scalar product of a li...
lnophsi 30264 The sum of two linear oper...
lnophdi 30265 The difference of two line...
lnopcoi 30266 The composition of two lin...
lnopco0i 30267 The composition of a linea...
lnopeq0lem1 30268 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 30269 Lemma for ~ lnopeq0i . (C...
lnopeq0i 30270 A condition implying that ...
lnopeqi 30271 Two linear Hilbert space o...
lnopeq 30272 Two linear Hilbert space o...
lnopunilem1 30273 Lemma for ~ lnopunii . (C...
lnopunilem2 30274 Lemma for ~ lnopunii . (C...
lnopunii 30275 If a linear operator (whos...
elunop2 30276 An operator is unitary iff...
nmopun 30277 Norm of a unitary Hilbert ...
unopbd 30278 A unitary operator is a bo...
lnophmlem1 30279 Lemma for ~ lnophmi . (Co...
lnophmlem2 30280 Lemma for ~ lnophmi . (Co...
lnophmi 30281 A linear operator is Hermi...
lnophm 30282 A linear operator is Hermi...
hmops 30283 The sum of two Hermitian o...
hmopm 30284 The scalar product of a He...
hmopd 30285 The difference of two Herm...
hmopco 30286 The composition of two com...
nmbdoplbi 30287 A lower bound for the norm...
nmbdoplb 30288 A lower bound for the norm...
nmcexi 30289 Lemma for ~ nmcopexi and ~...
nmcopexi 30290 The norm of a continuous l...
nmcoplbi 30291 A lower bound for the norm...
nmcopex 30292 The norm of a continuous l...
nmcoplb 30293 A lower bound for the norm...
nmophmi 30294 The norm of the scalar pro...
bdophmi 30295 The scalar product of a bo...
lnconi 30296 Lemma for ~ lnopconi and ~...
lnopconi 30297 A condition equivalent to ...
lnopcon 30298 A condition equivalent to ...
lnopcnbd 30299 A linear operator is conti...
lncnopbd 30300 A continuous linear operat...
lncnbd 30301 A continuous linear operat...
lnopcnre 30302 A linear operator is conti...
lnfnli 30303 Basic property of a linear...
lnfnfi 30304 A linear Hilbert space fun...
lnfn0i 30305 The value of a linear Hilb...
lnfnaddi 30306 Additive property of a lin...
lnfnmuli 30307 Multiplicative property of...
lnfnaddmuli 30308 Sum/product property of a ...
lnfnsubi 30309 Subtraction property for a...
lnfn0 30310 The value of a linear Hilb...
lnfnmul 30311 Multiplicative property of...
nmbdfnlbi 30312 A lower bound for the norm...
nmbdfnlb 30313 A lower bound for the norm...
nmcfnexi 30314 The norm of a continuous l...
nmcfnlbi 30315 A lower bound for the norm...
nmcfnex 30316 The norm of a continuous l...
nmcfnlb 30317 A lower bound of the norm ...
lnfnconi 30318 A condition equivalent to ...
lnfncon 30319 A condition equivalent to ...
lnfncnbd 30320 A linear functional is con...
imaelshi 30321 The image of a subspace un...
rnelshi 30322 The range of a linear oper...
nlelshi 30323 The null space of a linear...
nlelchi 30324 The null space of a contin...
riesz3i 30325 A continuous linear functi...
riesz4i 30326 A continuous linear functi...
riesz4 30327 A continuous linear functi...
riesz1 30328 Part 1 of the Riesz repres...
riesz2 30329 Part 2 of the Riesz repres...
cnlnadjlem1 30330 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 30331 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 30332 Lemma for ~ cnlnadji . By...
cnlnadjlem4 30333 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 30334 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 30335 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 30336 Lemma for ~ cnlnadji . He...
cnlnadjlem8 30337 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 30338 Lemma for ~ cnlnadji . ` F...
cnlnadji 30339 Every continuous linear op...
cnlnadjeui 30340 Every continuous linear op...
cnlnadjeu 30341 Every continuous linear op...
cnlnadj 30342 Every continuous linear op...
cnlnssadj 30343 Every continuous linear Hi...
bdopssadj 30344 Every bounded linear Hilbe...
bdopadj 30345 Every bounded linear Hilbe...
adjbdln 30346 The adjoint of a bounded l...
adjbdlnb 30347 An operator is bounded and...
adjbd1o 30348 The mapping of adjoints of...
adjlnop 30349 The adjoint of an operator...
adjsslnop 30350 Every operator with an adj...
nmopadjlei 30351 Property of the norm of an...
nmopadjlem 30352 Lemma for ~ nmopadji . (C...
nmopadji 30353 Property of the norm of an...
adjeq0 30354 An operator is zero iff it...
adjmul 30355 The adjoint of the scalar ...
adjadd 30356 The adjoint of the sum of ...
nmoptrii 30357 Triangle inequality for th...
nmopcoi 30358 Upper bound for the norm o...
bdophsi 30359 The sum of two bounded lin...
bdophdi 30360 The difference between two...
bdopcoi 30361 The composition of two bou...
nmoptri2i 30362 Triangle-type inequality f...
adjcoi 30363 The adjoint of a compositi...
nmopcoadji 30364 The norm of an operator co...
nmopcoadj2i 30365 The norm of an operator co...
nmopcoadj0i 30366 An operator composed with ...
unierri 30367 If we approximate a chain ...
branmfn 30368 The norm of the bra functi...
brabn 30369 The bra of a vector is a b...
rnbra 30370 The set of bras equals the...
bra11 30371 The bra function maps vect...
bracnln 30372 A bra is a continuous line...
cnvbraval 30373 Value of the converse of t...
cnvbracl 30374 Closure of the converse of...
cnvbrabra 30375 The converse bra of the br...
bracnvbra 30376 The bra of the converse br...
bracnlnval 30377 The vector that a continuo...
cnvbramul 30378 Multiplication property of...
kbass1 30379 Dirac bra-ket associative ...
kbass2 30380 Dirac bra-ket associative ...
kbass3 30381 Dirac bra-ket associative ...
kbass4 30382 Dirac bra-ket associative ...
kbass5 30383 Dirac bra-ket associative ...
kbass6 30384 Dirac bra-ket associative ...
leopg 30385 Ordering relation for posi...
leop 30386 Ordering relation for oper...
leop2 30387 Ordering relation for oper...
leop3 30388 Operator ordering in terms...
leoppos 30389 Binary relation defining a...
leoprf2 30390 The ordering relation for ...
leoprf 30391 The ordering relation for ...
leopsq 30392 The square of a Hermitian ...
0leop 30393 The zero operator is a pos...
idleop 30394 The identity operator is a...
leopadd 30395 The sum of two positive op...
leopmuli 30396 The scalar product of a no...
leopmul 30397 The scalar product of a po...
leopmul2i 30398 Scalar product applied to ...
leoptri 30399 The positive operator orde...
leoptr 30400 The positive operator orde...
leopnmid 30401 A bounded Hermitian operat...
nmopleid 30402 A nonzero, bounded Hermiti...
opsqrlem1 30403 Lemma for opsqri . (Contr...
opsqrlem2 30404 Lemma for opsqri . ` F `` ...
opsqrlem3 30405 Lemma for opsqri . (Contr...
opsqrlem4 30406 Lemma for opsqri . (Contr...
opsqrlem5 30407 Lemma for opsqri . (Contr...
opsqrlem6 30408 Lemma for opsqri . (Contr...
pjhmopi 30409 A projector is a Hermitian...
pjlnopi 30410 A projector is a linear op...
pjnmopi 30411 The operator norm of a pro...
pjbdlni 30412 A projector is a bounded l...
pjhmop 30413 A projection is a Hermitia...
hmopidmchi 30414 An idempotent Hermitian op...
hmopidmpji 30415 An idempotent Hermitian op...
hmopidmch 30416 An idempotent Hermitian op...
hmopidmpj 30417 An idempotent Hermitian op...
pjsdii 30418 Distributive law for Hilbe...
pjddii 30419 Distributive law for Hilbe...
pjsdi2i 30420 Chained distributive law f...
pjcoi 30421 Composition of projections...
pjcocli 30422 Closure of composition of ...
pjcohcli 30423 Closure of composition of ...
pjadjcoi 30424 Adjoint of composition of ...
pjcofni 30425 Functionality of compositi...
pjss1coi 30426 Subset relationship for pr...
pjss2coi 30427 Subset relationship for pr...
pjssmi 30428 Projection meet property. ...
pjssge0i 30429 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 30430 Theorem 4.5(v)<->(vi) of [...
pjnormssi 30431 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 30432 Composition of projections...
pjscji 30433 The projection of orthogon...
pjssumi 30434 The projection on a subspa...
pjssposi 30435 Projector ordering can be ...
pjordi 30436 The definition of projecto...
pjssdif2i 30437 The projection subspace of...
pjssdif1i 30438 A necessary and sufficient...
pjimai 30439 The image of a projection....
pjidmcoi 30440 A projection is idempotent...
pjoccoi 30441 Composition of projections...
pjtoi 30442 Subspace sum of projection...
pjoci 30443 Projection of orthocomplem...
pjidmco 30444 A projection operator is i...
dfpjop 30445 Definition of projection o...
pjhmopidm 30446 Two ways to express the se...
elpjidm 30447 A projection operator is i...
elpjhmop 30448 A projection operator is H...
0leopj 30449 A projector is a positive ...
pjadj2 30450 A projector is self-adjoin...
pjadj3 30451 A projector is self-adjoin...
elpjch 30452 Reconstruction of the subs...
elpjrn 30453 Reconstruction of the subs...
pjinvari 30454 A closed subspace ` H ` wi...
pjin1i 30455 Lemma for Theorem 1.22 of ...
pjin2i 30456 Lemma for Theorem 1.22 of ...
pjin3i 30457 Lemma for Theorem 1.22 of ...
pjclem1 30458 Lemma for projection commu...
pjclem2 30459 Lemma for projection commu...
pjclem3 30460 Lemma for projection commu...
pjclem4a 30461 Lemma for projection commu...
pjclem4 30462 Lemma for projection commu...
pjci 30463 Two subspaces commute iff ...
pjcmul1i 30464 A necessary and sufficient...
pjcmul2i 30465 The projection subspace of...
pjcohocli 30466 Closure of composition of ...
pjadj2coi 30467 Adjoint of double composit...
pj2cocli 30468 Closure of double composit...
pj3lem1 30469 Lemma for projection tripl...
pj3si 30470 Stronger projection triple...
pj3i 30471 Projection triplet theorem...
pj3cor1i 30472 Projection triplet corolla...
pjs14i 30473 Theorem S-14 of Watanabe, ...
isst 30476 Property of a state. (Con...
ishst 30477 Property of a complex Hilb...
sticl 30478 ` [ 0 , 1 ] ` closure of t...
stcl 30479 Real closure of the value ...
hstcl 30480 Closure of the value of a ...
hst1a 30481 Unit value of a Hilbert-sp...
hstel2 30482 Properties of a Hilbert-sp...
hstorth 30483 Orthogonality property of ...
hstosum 30484 Orthogonal sum property of...
hstoc 30485 Sum of a Hilbert-space-val...
hstnmoc 30486 Sum of norms of a Hilbert-...
stge0 30487 The value of a state is no...
stle1 30488 The value of a state is le...
hstle1 30489 The norm of the value of a...
hst1h 30490 The norm of a Hilbert-spac...
hst0h 30491 The norm of a Hilbert-spac...
hstpyth 30492 Pythagorean property of a ...
hstle 30493 Ordering property of a Hil...
hstles 30494 Ordering property of a Hil...
hstoh 30495 A Hilbert-space-valued sta...
hst0 30496 A Hilbert-space-valued sta...
sthil 30497 The value of a state at th...
stj 30498 The value of a state on a ...
sto1i 30499 The state of a subspace pl...
sto2i 30500 The state of the orthocomp...
stge1i 30501 If a state is greater than...
stle0i 30502 If a state is less than or...
stlei 30503 Ordering law for states. ...
stlesi 30504 Ordering law for states. ...
stji1i 30505 Join of components of Sasa...
stm1i 30506 State of component of unit...
stm1ri 30507 State of component of unit...
stm1addi 30508 Sum of states whose meet i...
staddi 30509 If the sum of 2 states is ...
stm1add3i 30510 Sum of states whose meet i...
stadd3i 30511 If the sum of 3 states is ...
st0 30512 The state of the zero subs...
strlem1 30513 Lemma for strong state the...
strlem2 30514 Lemma for strong state the...
strlem3a 30515 Lemma for strong state the...
strlem3 30516 Lemma for strong state the...
strlem4 30517 Lemma for strong state the...
strlem5 30518 Lemma for strong state the...
strlem6 30519 Lemma for strong state the...
stri 30520 Strong state theorem. The...
strb 30521 Strong state theorem (bidi...
hstrlem2 30522 Lemma for strong set of CH...
hstrlem3a 30523 Lemma for strong set of CH...
hstrlem3 30524 Lemma for strong set of CH...
hstrlem4 30525 Lemma for strong set of CH...
hstrlem5 30526 Lemma for strong set of CH...
hstrlem6 30527 Lemma for strong set of CH...
hstri 30528 Hilbert space admits a str...
hstrbi 30529 Strong CH-state theorem (b...
largei 30530 A Hilbert lattice admits a...
jplem1 30531 Lemma for Jauch-Piron theo...
jplem2 30532 Lemma for Jauch-Piron theo...
jpi 30533 The function ` S ` , that ...
golem1 30534 Lemma for Godowski's equat...
golem2 30535 Lemma for Godowski's equat...
goeqi 30536 Godowski's equation, shown...
stcltr1i 30537 Property of a strong class...
stcltr2i 30538 Property of a strong class...
stcltrlem1 30539 Lemma for strong classical...
stcltrlem2 30540 Lemma for strong classical...
stcltrthi 30541 Theorem for classically st...
cvbr 30545 Binary relation expressing...
cvbr2 30546 Binary relation expressing...
cvcon3 30547 Contraposition law for the...
cvpss 30548 The covers relation implie...
cvnbtwn 30549 The covers relation implie...
cvnbtwn2 30550 The covers relation implie...
cvnbtwn3 30551 The covers relation implie...
cvnbtwn4 30552 The covers relation implie...
cvnsym 30553 The covers relation is not...
cvnref 30554 The covers relation is not...
cvntr 30555 The covers relation is not...
spansncv2 30556 Hilbert space has the cove...
mdbr 30557 Binary relation expressing...
mdi 30558 Consequence of the modular...
mdbr2 30559 Binary relation expressing...
mdbr3 30560 Binary relation expressing...
mdbr4 30561 Binary relation expressing...
dmdbr 30562 Binary relation expressing...
dmdmd 30563 The dual modular pair prop...
mddmd 30564 The modular pair property ...
dmdi 30565 Consequence of the dual mo...
dmdbr2 30566 Binary relation expressing...
dmdi2 30567 Consequence of the dual mo...
dmdbr3 30568 Binary relation expressing...
dmdbr4 30569 Binary relation expressing...
dmdi4 30570 Consequence of the dual mo...
dmdbr5 30571 Binary relation expressing...
mddmd2 30572 Relationship between modul...
mdsl0 30573 A sublattice condition tha...
ssmd1 30574 Ordering implies the modul...
ssmd2 30575 Ordering implies the modul...
ssdmd1 30576 Ordering implies the dual ...
ssdmd2 30577 Ordering implies the dual ...
dmdsl3 30578 Sublattice mapping for a d...
mdsl3 30579 Sublattice mapping for a m...
mdslle1i 30580 Order preservation of the ...
mdslle2i 30581 Order preservation of the ...
mdslj1i 30582 Join preservation of the o...
mdslj2i 30583 Meet preservation of the r...
mdsl1i 30584 If the modular pair proper...
mdsl2i 30585 If the modular pair proper...
mdsl2bi 30586 If the modular pair proper...
cvmdi 30587 The covering property impl...
mdslmd1lem1 30588 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 30589 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 30590 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 30591 Lemma for ~ mdslmd1i . (C...
mdslmd1i 30592 Preservation of the modula...
mdslmd2i 30593 Preservation of the modula...
mdsldmd1i 30594 Preservation of the dual m...
mdslmd3i 30595 Modular pair conditions th...
mdslmd4i 30596 Modular pair condition tha...
csmdsymi 30597 Cross-symmetry implies M-s...
mdexchi 30598 An exchange lemma for modu...
cvmd 30599 The covering property impl...
cvdmd 30600 The covering property impl...
ela 30602 Atoms in a Hilbert lattice...
elat2 30603 Expanded membership relati...
elatcv0 30604 A Hilbert lattice element ...
atcv0 30605 An atom covers the zero su...
atssch 30606 Atoms are a subset of the ...
atelch 30607 An atom is a Hilbert latti...
atne0 30608 An atom is not the Hilbert...
atss 30609 A lattice element smaller ...
atsseq 30610 Two atoms in a subset rela...
atcveq0 30611 A Hilbert lattice element ...
h1da 30612 A 1-dimensional subspace i...
spansna 30613 The span of the singleton ...
sh1dle 30614 A 1-dimensional subspace i...
ch1dle 30615 A 1-dimensional subspace i...
atom1d 30616 The 1-dimensional subspace...
superpos 30617 Superposition Principle. ...
chcv1 30618 The Hilbert lattice has th...
chcv2 30619 The Hilbert lattice has th...
chjatom 30620 The join of a closed subsp...
shatomici 30621 The lattice of Hilbert sub...
hatomici 30622 The Hilbert lattice is ato...
hatomic 30623 A Hilbert lattice is atomi...
shatomistici 30624 The lattice of Hilbert sub...
hatomistici 30625 ` CH ` is atomistic, i.e. ...
chpssati 30626 Two Hilbert lattice elemen...
chrelati 30627 The Hilbert lattice is rel...
chrelat2i 30628 A consequence of relative ...
cvati 30629 If a Hilbert lattice eleme...
cvbr4i 30630 An alternate way to expres...
cvexchlem 30631 Lemma for ~ cvexchi . (Co...
cvexchi 30632 The Hilbert lattice satisf...
chrelat2 30633 A consequence of relative ...
chrelat3 30634 A consequence of relative ...
chrelat3i 30635 A consequence of the relat...
chrelat4i 30636 A consequence of relative ...
cvexch 30637 The Hilbert lattice satisf...
cvp 30638 The Hilbert lattice satisf...
atnssm0 30639 The meet of a Hilbert latt...
atnemeq0 30640 The meet of distinct atoms...
atssma 30641 The meet with an atom's su...
atcv0eq 30642 Two atoms covering the zer...
atcv1 30643 Two atoms covering the zer...
atexch 30644 The Hilbert lattice satisf...
atomli 30645 An assertion holding in at...
atoml2i 30646 An assertion holding in at...
atordi 30647 An ordering law for a Hilb...
atcvatlem 30648 Lemma for ~ atcvati . (Co...
atcvati 30649 A nonzero Hilbert lattice ...
atcvat2i 30650 A Hilbert lattice element ...
atord 30651 An ordering law for a Hilb...
atcvat2 30652 A Hilbert lattice element ...
chirredlem1 30653 Lemma for ~ chirredi . (C...
chirredlem2 30654 Lemma for ~ chirredi . (C...
chirredlem3 30655 Lemma for ~ chirredi . (C...
chirredlem4 30656 Lemma for ~ chirredi . (C...
chirredi 30657 The Hilbert lattice is irr...
chirred 30658 The Hilbert lattice is irr...
atcvat3i 30659 A condition implying that ...
atcvat4i 30660 A condition implying exist...
atdmd 30661 Two Hilbert lattice elemen...
atmd 30662 Two Hilbert lattice elemen...
atmd2 30663 Two Hilbert lattice elemen...
atabsi 30664 Absorption of an incompara...
atabs2i 30665 Absorption of an incompara...
mdsymlem1 30666 Lemma for ~ mdsymi . (Con...
mdsymlem2 30667 Lemma for ~ mdsymi . (Con...
mdsymlem3 30668 Lemma for ~ mdsymi . (Con...
mdsymlem4 30669 Lemma for ~ mdsymi . This...
mdsymlem5 30670 Lemma for ~ mdsymi . (Con...
mdsymlem6 30671 Lemma for ~ mdsymi . This...
mdsymlem7 30672 Lemma for ~ mdsymi . Lemm...
mdsymlem8 30673 Lemma for ~ mdsymi . Lemm...
mdsymi 30674 M-symmetry of the Hilbert ...
mdsym 30675 M-symmetry of the Hilbert ...
dmdsym 30676 Dual M-symmetry of the Hil...
atdmd2 30677 Two Hilbert lattice elemen...
sumdmdii 30678 If the subspace sum of two...
cmmdi 30679 Commuting subspaces form a...
cmdmdi 30680 Commuting subspaces form a...
sumdmdlem 30681 Lemma for ~ sumdmdi . The...
sumdmdlem2 30682 Lemma for ~ sumdmdi . (Co...
sumdmdi 30683 The subspace sum of two Hi...
dmdbr4ati 30684 Dual modular pair property...
dmdbr5ati 30685 Dual modular pair property...
dmdbr6ati 30686 Dual modular pair property...
dmdbr7ati 30687 Dual modular pair property...
mdoc1i 30688 Orthocomplements form a mo...
mdoc2i 30689 Orthocomplements form a mo...
dmdoc1i 30690 Orthocomplements form a du...
dmdoc2i 30691 Orthocomplements form a du...
mdcompli 30692 A condition equivalent to ...
dmdcompli 30693 A condition equivalent to ...
mddmdin0i 30694 If dual modular implies mo...
cdjreui 30695 A member of the sum of dis...
cdj1i 30696 Two ways to express " ` A ...
cdj3lem1 30697 A property of " ` A ` and ...
cdj3lem2 30698 Lemma for ~ cdj3i . Value...
cdj3lem2a 30699 Lemma for ~ cdj3i . Closu...
cdj3lem2b 30700 Lemma for ~ cdj3i . The f...
cdj3lem3 30701 Lemma for ~ cdj3i . Value...
cdj3lem3a 30702 Lemma for ~ cdj3i . Closu...
cdj3lem3b 30703 Lemma for ~ cdj3i . The s...
cdj3i 30704 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 30705 (_This theorem is a dummy ...
sa-abvi 30706 A theorem about the univer...
xfree 30707 A partial converse to ~ 19...
xfree2 30708 A partial converse to ~ 19...
addltmulALT 30709 A proof readability experi...
bian1d 30710 Adding a superfluous conju...
or3di 30711 Distributive law for disju...
or3dir 30712 Distributive law for disju...
3o1cs 30713 Deduction eliminating disj...
3o2cs 30714 Deduction eliminating disj...
3o3cs 30715 Deduction eliminating disj...
sbc2iedf 30716 Conversion of implicit sub...
rspc2daf 30717 Double restricted speciali...
nelbOLDOLD 30718 Obsolete version of ~ nelb...
ralcom4f 30719 Commutation of restricted ...
rexcom4f 30720 Commutation of restricted ...
19.9d2rf 30721 A deduction version of one...
19.9d2r 30722 A deduction version of one...
r19.29ffa 30723 A commonly used pattern ba...
eqtrb 30724 A transposition of equalit...
opsbc2ie 30725 Conversion of implicit sub...
opreu2reuALT 30726 Correspondence between uni...
2reucom 30729 Double restricted existent...
2reu2rex1 30730 Double restricted existent...
2reureurex 30731 Double restricted existent...
2reu2reu2 30732 Double restricted existent...
opreu2reu1 30733 Equivalent definition of t...
sq2reunnltb 30734 There exists a unique deco...
addsqnot2reu 30735 For each complex number ` ...
sbceqbidf 30736 Equality theorem for class...
sbcies 30737 A special version of class...
mo5f 30738 Alternate definition of "a...
nmo 30739 Negation of "at most one"....
reuxfrdf 30740 Transfer existential uniqu...
rexunirn 30741 Restricted existential qua...
rmoxfrd 30742 Transfer "at most one" res...
rmoun 30743 "At most one" restricted e...
rmounid 30744 A case where an "at most o...
dmrab 30745 Domain of a restricted cla...
difrab2 30746 Difference of two restrict...
rabexgfGS 30747 Separation Scheme in terms...
rabsnel 30748 Truth implied by equality ...
rabeqsnd 30749 Conditions for a restricte...
eqrrabd 30750 Deduce equality with a res...
foresf1o 30751 From a surjective function...
rabfodom 30752 Domination relation for re...
abrexdomjm 30753 An indexed set is dominate...
abrexdom2jm 30754 An indexed set is dominate...
abrexexd 30755 Existence of a class abstr...
elabreximd 30756 Class substitution in an i...
elabreximdv 30757 Class substitution in an i...
abrexss 30758 A necessary condition for ...
elunsn 30759 Elementhood to a union wit...
nelun 30760 Negated membership for a u...
snsssng 30761 If a singleton is a subset...
rabss3d 30762 Subclass law for restricte...
inin 30763 Intersection with an inter...
inindif 30764 See ~ inundif . (Contribu...
difininv 30765 Condition for the intersec...
difeq 30766 Rewriting an equation with...
eqdif 30767 If both set differences of...
undif5 30768 An equality involving clas...
indifbi 30769 Two ways to express equali...
diffib 30770 Case where ~ diffi is a bi...
difxp1ss 30771 Difference law for Cartesi...
difxp2ss 30772 Difference law for Cartesi...
undifr 30773 Union of complementary par...
indifundif 30774 A remarkable equation with...
elpwincl1 30775 Closure of intersection wi...
elpwdifcl 30776 Closure of class differenc...
elpwiuncl 30777 Closure of indexed union w...
eqsnd 30778 Deduce that a set is a sin...
elpreq 30779 Equality wihin a pair. (C...
nelpr 30780 A set ` A ` not in a pair ...
inpr0 30781 Rewrite an empty intersect...
neldifpr1 30782 The first element of a pai...
neldifpr2 30783 The second element of a pa...
unidifsnel 30784 The other element of a pai...
unidifsnne 30785 The other element of a pai...
ifeqeqx 30786 An equality theorem tailor...
elimifd 30787 Elimination of a condition...
elim2if 30788 Elimination of two conditi...
elim2ifim 30789 Elimination of two conditi...
ifeq3da 30790 Given an expression ` C ` ...
uniinn0 30791 Sufficient and necessary c...
uniin1 30792 Union of intersection. Ge...
uniin2 30793 Union of intersection. Ge...
difuncomp 30794 Express a class difference...
elpwunicl 30795 Closure of a set union wit...
cbviunf 30796 Rule used to change the bo...
iuneq12daf 30797 Equality deduction for ind...
iunin1f 30798 Indexed union of intersect...
ssiun3 30799 Subset equivalence for an ...
ssiun2sf 30800 Subset relationship for an...
iuninc 30801 The union of an increasing...
iundifdifd 30802 The intersection of a set ...
iundifdif 30803 The intersection of a set ...
iunrdx 30804 Re-index an indexed union....
iunpreima 30805 Preimage of an indexed uni...
iunrnmptss 30806 A subset relation for an i...
iunxunsn 30807 Appending a set to an inde...
iunxunpr 30808 Appending two sets to an i...
iinabrex 30809 Rewriting an indexed inter...
disjnf 30810 In case ` x ` is not free ...
cbvdisjf 30811 Change bound variables in ...
disjss1f 30812 A subset of a disjoint col...
disjeq1f 30813 Equality theorem for disjo...
disjxun0 30814 Simplify a disjoint union....
disjdifprg 30815 A trivial partition into a...
disjdifprg2 30816 A trivial partition of a s...
disji2f 30817 Property of a disjoint col...
disjif 30818 Property of a disjoint col...
disjorf 30819 Two ways to say that a col...
disjorsf 30820 Two ways to say that a col...
disjif2 30821 Property of a disjoint col...
disjabrex 30822 Rewriting a disjoint colle...
disjabrexf 30823 Rewriting a disjoint colle...
disjpreima 30824 A preimage of a disjoint s...
disjrnmpt 30825 Rewriting a disjoint colle...
disjin 30826 If a collection is disjoin...
disjin2 30827 If a collection is disjoin...
disjxpin 30828 Derive a disjunction over ...
iundisjf 30829 Rewrite a countable union ...
iundisj2f 30830 A disjoint union is disjoi...
disjrdx 30831 Re-index a disjunct collec...
disjex 30832 Two ways to say that two c...
disjexc 30833 A variant of ~ disjex , ap...
disjunsn 30834 Append an element to a dis...
disjun0 30835 Adding the empty element p...
disjiunel 30836 A set of elements B of a d...
disjuniel 30837 A set of elements B of a d...
xpdisjres 30838 Restriction of a constant ...
opeldifid 30839 Ordered pair elementhood o...
difres 30840 Case when class difference...
imadifxp 30841 Image of the difference wi...
relfi 30842 A relation (set) is finite...
reldisjun 30843 Split a relation into two ...
0res 30844 Restriction of the empty f...
funresdm1 30845 Restriction of a disjoint ...
fnunres1 30846 Restriction of a disjoint ...
fcoinver 30847 Build an equivalence relat...
fcoinvbr 30848 Binary relation for the eq...
brabgaf 30849 The law of concretion for ...
brelg 30850 Two things in a binary rel...
br8d 30851 Substitution for an eight-...
opabdm 30852 Domain of an ordered-pair ...
opabrn 30853 Range of an ordered-pair c...
opabssi 30854 Sufficient condition for a...
opabid2ss 30855 One direction of ~ opabid2...
ssrelf 30856 A subclass relationship de...
eqrelrd2 30857 A version of ~ eqrelrdv2 w...
erbr3b 30858 Biconditional for equivale...
iunsnima 30859 Image of a singleton by an...
iunsnima2 30860 Version of ~ iunsnima with...
ac6sf2 30861 Alternate version of ~ ac6...
fnresin 30862 Restriction of a function ...
f1o3d 30863 Describe an implicit one-t...
eldmne0 30864 A function of nonempty dom...
f1rnen 30865 Equinumerosity of the rang...
rinvf1o 30866 Sufficient conditions for ...
fresf1o 30867 Conditions for a restricti...
nfpconfp 30868 The set of fixed points of...
fmptco1f1o 30869 The action of composing (t...
cofmpt2 30870 Express composition of a m...
f1mptrn 30871 Express injection for a ma...
dfimafnf 30872 Alternate definition of th...
funimass4f 30873 Membership relation for th...
elimampt 30874 Membership in the image of...
suppss2f 30875 Show that the support of a...
fovcld 30876 Closure law for an operati...
ofrn 30877 The range of the function ...
ofrn2 30878 The range of the function ...
off2 30879 The function operation pro...
ofresid 30880 Applying an operation rest...
fimarab 30881 Expressing the image of a ...
unipreima 30882 Preimage of a class union....
opfv 30883 Value of a function produc...
xppreima 30884 The preimage of a Cartesia...
2ndimaxp 30885 Image of a cartesian produ...
djussxp2 30886 Stronger version of ~ djus...
2ndresdju 30887 The ` 2nd ` function restr...
2ndresdjuf1o 30888 The ` 2nd ` function restr...
xppreima2 30889 The preimage of a Cartesia...
elunirn2 30890 Condition for the membersh...
abfmpunirn 30891 Membership in a union of a...
rabfmpunirn 30892 Membership in a union of a...
abfmpeld 30893 Membership in an element o...
abfmpel 30894 Membership in an element o...
fmptdF 30895 Domain and codomain of the...
fmptcof2 30896 Composition of two functio...
fcomptf 30897 Express composition of two...
acunirnmpt 30898 Axiom of choice for the un...
acunirnmpt2 30899 Axiom of choice for the un...
acunirnmpt2f 30900 Axiom of choice for the un...
aciunf1lem 30901 Choice in an index union. ...
aciunf1 30902 Choice in an index union. ...
ofoprabco 30903 Function operation as a co...
ofpreima 30904 Express the preimage of a ...
ofpreima2 30905 Express the preimage of a ...
funcnvmpt 30906 Condition for a function i...
funcnv5mpt 30907 Two ways to say that a fun...
funcnv4mpt 30908 Two ways to say that a fun...
preimane 30909 Different elements have di...
fnpreimac 30910 Choose a set ` x ` contain...
fgreu 30911 Exactly one point of a fun...
fcnvgreu 30912 If the converse of a relat...
rnmposs 30913 The range of an operation ...
mptssALT 30914 Deduce subset relation of ...
dfcnv2 30915 Alternative definition of ...
fnimatp 30916 The image of an unordered ...
fnunres2 30917 Restriction of a disjoint ...
mpomptxf 30918 Express a two-argument fun...
suppovss 30919 A bound for the support of...
fvdifsupp 30920 Function value is zero out...
fmptssfisupp 30921 The restriction of a mappi...
suppiniseg 30922 Relation between the suppo...
fsuppinisegfi 30923 The initial segment ` ( ``...
fressupp 30924 The restriction of a funct...
fdifsuppconst 30925 A function is a zero const...
ressupprn 30926 The range of a function re...
supppreima 30927 Express the support of a f...
fsupprnfi 30928 Finite support implies fin...
cosnopne 30929 Composition of two ordered...
cosnop 30930 Composition of two ordered...
cnvprop 30931 Converse of a pair of orde...
brprop 30932 Binary relation for a pair...
mptprop 30933 Rewrite pairs of ordered p...
coprprop 30934 Composition of two pairs o...
gtiso 30935 Two ways to write a strict...
isoun 30936 Infer an isomorphism from ...
disjdsct 30937 A disjoint collection is d...
df1stres 30938 Definition for a restricti...
df2ndres 30939 Definition for a restricti...
1stpreimas 30940 The preimage of a singleto...
1stpreima 30941 The preimage by ` 1st ` is...
2ndpreima 30942 The preimage by ` 2nd ` is...
curry2ima 30943 The image of a curried fun...
preiman0 30944 The preimage of a nonempty...
intimafv 30945 The intersection of an ima...
supssd 30946 Inequality deduction for s...
infssd 30947 Inequality deduction for i...
imafi2 30948 The image by a finite set ...
unifi3 30949 If a union is finite, then...
snct 30950 A singleton is countable. ...
prct 30951 An unordered pair is count...
mpocti 30952 An operation is countable ...
abrexct 30953 An image set of a countabl...
mptctf 30954 A countable mapping set is...
abrexctf 30955 An image set of a countabl...
padct 30956 Index a countable set with...
cnvoprabOLD 30957 The converse of a class ab...
f1od2 30958 Sufficient condition for a...
fcobij 30959 Composing functions with a...
fcobijfs 30960 Composing finitely support...
suppss3 30961 Deduce a function's suppor...
fsuppcurry1 30962 Finite support of a currie...
fsuppcurry2 30963 Finite support of a currie...
offinsupp1 30964 Finite support for a funct...
ffs2 30965 Rewrite a function's suppo...
ffsrn 30966 The range of a finitely su...
resf1o 30967 Restriction of functions t...
maprnin 30968 Restricting the range of t...
fpwrelmapffslem 30969 Lemma for ~ fpwrelmapffs ....
fpwrelmap 30970 Define a canonical mapping...
fpwrelmapffs 30971 Define a canonical mapping...
creq0 30972 The real representation of...
1nei 30973 The imaginary unit ` _i ` ...
1neg1t1neg1 30974 An integer unit times itse...
nnmulge 30975 Multiplying by a positive ...
lt2addrd 30976 If the right-hand side of ...
xrlelttric 30977 Trichotomy law for extende...
xaddeq0 30978 Two extended reals which a...
xrinfm 30979 The extended real numbers ...
le2halvesd 30980 A sum is less than the who...
xraddge02 30981 A number is less than or e...
xrge0addge 30982 A number is less than or e...
xlt2addrd 30983 If the right-hand side of ...
xrsupssd 30984 Inequality deduction for s...
xrge0infss 30985 Any subset of nonnegative ...
xrge0infssd 30986 Inequality deduction for i...
xrge0addcld 30987 Nonnegative extended reals...
xrge0subcld 30988 Condition for closure of n...
infxrge0lb 30989 A member of a set of nonne...
infxrge0glb 30990 The infimum of a set of no...
infxrge0gelb 30991 The infimum of a set of no...
xrofsup 30992 The supremum is preserved ...
supxrnemnf 30993 The supremum of a nonempty...
xnn0gt0 30994 Nonzero extended nonnegati...
xnn01gt 30995 An extended nonnegative in...
nn0xmulclb 30996 Finite multiplication in t...
joiniooico 30997 Disjoint joining an open i...
ubico 30998 A right-open interval does...
xeqlelt 30999 Equality in terms of 'less...
eliccelico 31000 Relate elementhood to a cl...
elicoelioo 31001 Relate elementhood to a cl...
iocinioc2 31002 Intersection between two o...
xrdifh 31003 Class difference of a half...
iocinif 31004 Relate intersection of two...
difioo 31005 The difference between two...
difico 31006 The difference between two...
uzssico 31007 Upper integer sets are a s...
fz2ssnn0 31008 A finite set of sequential...
nndiffz1 31009 Upper set of the positive ...
ssnnssfz 31010 For any finite subset of `...
fzne1 31011 Elementhood in a finite se...
fzm1ne1 31012 Elementhood of an integer ...
fzspl 31013 Split the last element of ...
fzdif2 31014 Split the last element of ...
fzodif2 31015 Split the last element of ...
fzodif1 31016 Set difference of two half...
fzsplit3 31017 Split a finite interval of...
bcm1n 31018 The proportion of one bino...
iundisjfi 31019 Rewrite a countable union ...
iundisj2fi 31020 A disjoint union is disjoi...
iundisjcnt 31021 Rewrite a countable union ...
iundisj2cnt 31022 A countable disjoint union...
fzone1 31023 Elementhood in a half-open...
fzom1ne1 31024 Elementhood in a half-open...
f1ocnt 31025 Given a countable set ` A ...
fz1nnct 31026 NN and integer ranges star...
fz1nntr 31027 NN and integer ranges star...
hashunif 31028 The cardinality of a disjo...
hashxpe 31029 The size of the Cartesian ...
hashgt1 31030 Restate "set contains at l...
dvdszzq 31031 Divisibility for an intege...
prmdvdsbc 31032 Condition for a prime numb...
numdenneg 31033 Numerator and denominator ...
divnumden2 31034 Calculate the reduced form...
nnindf 31035 Principle of Mathematical ...
nn0min 31036 Extracting the minimum pos...
subne0nn 31037 A nonnegative difference i...
ltesubnnd 31038 Subtracting an integer num...
fprodeq02 31039 If one of the factors is z...
pr01ssre 31040 The range of the indicator...
fprodex01 31041 A product of factors equal...
prodpr 31042 A product over a pair is t...
prodtp 31043 A product over a triple is...
fsumub 31044 An upper bound for a term ...
fsumiunle 31045 Upper bound for a sum of n...
dfdec100 31046 Split the hundreds from a ...
dp2eq1 31049 Equality theorem for the d...
dp2eq2 31050 Equality theorem for the d...
dp2eq1i 31051 Equality theorem for the d...
dp2eq2i 31052 Equality theorem for the d...
dp2eq12i 31053 Equality theorem for the d...
dp20u 31054 Add a zero in the tenths (...
dp20h 31055 Add a zero in the unit pla...
dp2cl 31056 Closure for the decimal fr...
dp2clq 31057 Closure for a decimal frac...
rpdp2cl 31058 Closure for a decimal frac...
rpdp2cl2 31059 Closure for a decimal frac...
dp2lt10 31060 Decimal fraction builds re...
dp2lt 31061 Comparing two decimal frac...
dp2ltsuc 31062 Comparing a decimal fracti...
dp2ltc 31063 Comparing two decimal expa...
dpval 31066 Define the value of the de...
dpcl 31067 Prove that the closure of ...
dpfrac1 31068 Prove a simple equivalence...
dpval2 31069 Value of the decimal point...
dpval3 31070 Value of the decimal point...
dpmul10 31071 Multiply by 10 a decimal e...
decdiv10 31072 Divide a decimal number by...
dpmul100 31073 Multiply by 100 a decimal ...
dp3mul10 31074 Multiply by 10 a decimal e...
dpmul1000 31075 Multiply by 1000 a decimal...
dpval3rp 31076 Value of the decimal point...
dp0u 31077 Add a zero in the tenths p...
dp0h 31078 Remove a zero in the units...
rpdpcl 31079 Closure of the decimal poi...
dplt 31080 Comparing two decimal expa...
dplti 31081 Comparing a decimal expans...
dpgti 31082 Comparing a decimal expans...
dpltc 31083 Comparing two decimal inte...
dpexpp1 31084 Add one zero to the mantis...
0dp2dp 31085 Multiply by 10 a decimal e...
dpadd2 31086 Addition with one decimal,...
dpadd 31087 Addition with one decimal....
dpadd3 31088 Addition with two decimals...
dpmul 31089 Multiplication with one de...
dpmul4 31090 An upper bound to multipli...
threehalves 31091 Example theorem demonstrat...
1mhdrd 31092 Example theorem demonstrat...
xdivval 31095 Value of division: the (un...
xrecex 31096 Existence of reciprocal of...
xmulcand 31097 Cancellation law for exten...
xreceu 31098 Existential uniqueness of ...
xdivcld 31099 Closure law for the extend...
xdivcl 31100 Closure law for the extend...
xdivmul 31101 Relationship between divis...
rexdiv 31102 The extended real division...
xdivrec 31103 Relationship between divis...
xdivid 31104 A number divided by itself...
xdiv0 31105 Division into zero is zero...
xdiv0rp 31106 Division into zero is zero...
eliccioo 31107 Membership in a closed int...
elxrge02 31108 Elementhood in the set of ...
xdivpnfrp 31109 Plus infinity divided by a...
rpxdivcld 31110 Closure law for extended d...
xrpxdivcld 31111 Closure law for extended d...
wrdfd 31112 A word is a zero-based seq...
wrdres 31113 Condition for the restrict...
wrdsplex 31114 Existence of a split of a ...
pfx1s2 31115 The prefix of length 1 of ...
pfxrn2 31116 The range of a prefix of a...
pfxrn3 31117 Express the range of a pre...
pfxf1 31118 Condition for a prefix to ...
s1f1 31119 Conditions for a length 1 ...
s2rn 31120 Range of a length 2 string...
s2f1 31121 Conditions for a length 2 ...
s3rn 31122 Range of a length 3 string...
s3f1 31123 Conditions for a length 3 ...
s3clhash 31124 Closure of the words of le...
ccatf1 31125 Conditions for a concatena...
pfxlsw2ccat 31126 Reconstruct a word from it...
wrdt2ind 31127 Perform an induction over ...
swrdrn2 31128 The range of a subword is ...
swrdrn3 31129 Express the range of a sub...
swrdf1 31130 Condition for a subword to...
swrdrndisj 31131 Condition for the range of...
splfv3 31132 Symbols to the right of a ...
1cshid 31133 Cyclically shifting a sing...
cshw1s2 31134 Cyclically shifting a leng...
cshwrnid 31135 Cyclically shifting a word...
cshf1o 31136 Condition for the cyclic s...
ressplusf 31137 The group operation functi...
ressnm 31138 The norm in a restricted s...
abvpropd2 31139 Weaker version of ~ abvpro...
oppgle 31140 less-than relation of an o...
oppgleOLD 31141 Obsolete version of ~ oppg...
oppglt 31142 less-than relation of an o...
ressprs 31143 The restriction of a prose...
oduprs 31144 Being a proset is a self-d...
posrasymb 31145 A poset ordering is asymet...
resspos 31146 The restriction of a Poset...
resstos 31147 The restriction of a Toset...
odutos 31148 Being a toset is a self-du...
tlt2 31149 In a Toset, two elements m...
tlt3 31150 In a Toset, two elements m...
trleile 31151 In a Toset, two elements m...
toslublem 31152 Lemma for ~ toslub and ~ x...
toslub 31153 In a toset, the lowest upp...
tosglblem 31154 Lemma for ~ tosglb and ~ x...
tosglb 31155 Same theorem as ~ toslub ,...
clatp0cl 31156 The poset zero of a comple...
clatp1cl 31157 The poset one of a complet...
mntoval 31162 Operation value of the mon...
ismnt 31163 Express the statement " ` ...
ismntd 31164 Property of being a monoto...
mntf 31165 A monotone function is a f...
mgcoval 31166 Operation value of the mon...
mgcval 31167 Monotone Galois connection...
mgcf1 31168 The lower adjoint ` F ` of...
mgcf2 31169 The upper adjoint ` G ` of...
mgccole1 31170 An inequality for the kern...
mgccole2 31171 Inequality for the closure...
mgcmnt1 31172 The lower adjoint ` F ` of...
mgcmnt2 31173 The upper adjoint ` G ` of...
mgcmntco 31174 A Galois connection like s...
dfmgc2lem 31175 Lemma for dfmgc2, backward...
dfmgc2 31176 Alternate definition of th...
mgcmnt1d 31177 Galois connection implies ...
mgcmnt2d 31178 Galois connection implies ...
mgccnv 31179 The inverse Galois connect...
pwrssmgc 31180 Given a function ` F ` , e...
mgcf1olem1 31181 Property of a Galois conne...
mgcf1olem2 31182 Property of a Galois conne...
mgcf1o 31183 Given a Galois connection,...
xrs0 31186 The zero of the extended r...
xrslt 31187 The "strictly less than" r...
xrsinvgval 31188 The inversion operation in...
xrsmulgzz 31189 The "multiple" function in...
xrstos 31190 The extended real numbers ...
xrsclat 31191 The extended real numbers ...
xrsp0 31192 The poset 0 of the extende...
xrsp1 31193 The poset 1 of the extende...
ressmulgnn 31194 Values for the group multi...
ressmulgnn0 31195 Values for the group multi...
xrge0base 31196 The base of the extended n...
xrge00 31197 The zero of the extended n...
xrge0plusg 31198 The additive law of the ex...
xrge0le 31199 The "less than or equal to...
xrge0mulgnn0 31200 The group multiple functio...
xrge0addass 31201 Associativity of extended ...
xrge0addgt0 31202 The sum of nonnegative and...
xrge0adddir 31203 Right-distributivity of ex...
xrge0adddi 31204 Left-distributivity of ext...
xrge0npcan 31205 Extended nonnegative real ...
fsumrp0cl 31206 Closure of a finite sum of...
abliso 31207 The image of an Abelian gr...
gsumsubg 31208 The group sum in a subgrou...
gsumsra 31209 The group sum in a subring...
gsummpt2co 31210 Split a finite sum into a ...
gsummpt2d 31211 Express a finite sum over ...
lmodvslmhm 31212 Scalar multiplication in a...
gsumvsmul1 31213 Pull a scalar multiplicati...
gsummptres 31214 Extend a finite group sum ...
gsummptres2 31215 Extend a finite group sum ...
gsumzresunsn 31216 Append an element to a fin...
gsumpart 31217 Express a group sum as a d...
gsumhashmul 31218 Express a group sum by gro...
xrge0tsmsd 31219 Any finite or infinite sum...
xrge0tsmsbi 31220 Any limit of a finite or i...
xrge0tsmseq 31221 Any limit of a finite or i...
cntzun 31222 The centralizer of a union...
cntzsnid 31223 The centralizer of the ide...
cntrcrng 31224 The center of a ring is a ...
isomnd 31229 A (left) ordered monoid is...
isogrp 31230 A (left-)ordered group is ...
ogrpgrp 31231 A left-ordered group is a ...
omndmnd 31232 A left-ordered monoid is a...
omndtos 31233 A left-ordered monoid is a...
omndadd 31234 In an ordered monoid, the ...
omndaddr 31235 In a right ordered monoid,...
omndadd2d 31236 In a commutative left orde...
omndadd2rd 31237 In a left- and right- orde...
submomnd 31238 A submonoid of an ordered ...
xrge0omnd 31239 The nonnegative extended r...
omndmul2 31240 In an ordered monoid, the ...
omndmul3 31241 In an ordered monoid, the ...
omndmul 31242 In a commutative ordered m...
ogrpinv0le 31243 In an ordered group, the o...
ogrpsub 31244 In an ordered group, the o...
ogrpaddlt 31245 In an ordered group, stric...
ogrpaddltbi 31246 In a right ordered group, ...
ogrpaddltrd 31247 In a right ordered group, ...
ogrpaddltrbid 31248 In a right ordered group, ...
ogrpsublt 31249 In an ordered group, stric...
ogrpinv0lt 31250 In an ordered group, the o...
ogrpinvlt 31251 In an ordered group, the o...
gsumle 31252 A finite sum in an ordered...
symgfcoeu 31253 Uniqueness property of per...
symgcom 31254 Two permutations ` X ` and...
symgcom2 31255 Two permutations ` X ` and...
symgcntz 31256 All elements of a (finite)...
odpmco 31257 The composition of two odd...
symgsubg 31258 The value of the group sub...
pmtrprfv2 31259 In a transposition of two ...
pmtrcnel 31260 Composing a permutation ` ...
pmtrcnel2 31261 Variation on ~ pmtrcnel . ...
pmtrcnelor 31262 Composing a permutation ` ...
pmtridf1o 31263 Transpositions of ` X ` an...
pmtridfv1 31264 Value at X of the transpos...
pmtridfv2 31265 Value at Y of the transpos...
psgnid 31266 Permutation sign of the id...
psgndmfi 31267 For a finite base set, the...
pmtrto1cl 31268 Useful lemma for the follo...
psgnfzto1stlem 31269 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 31270 Value of our permutation `...
fzto1st1 31271 Special case where the per...
fzto1st 31272 The function moving one el...
fzto1stinvn 31273 Value of the inverse of ou...
psgnfzto1st 31274 The permutation sign for m...
tocycval 31277 Value of the cycle builder...
tocycfv 31278 Function value of a permut...
tocycfvres1 31279 A cyclic permutation is a ...
tocycfvres2 31280 A cyclic permutation is th...
cycpmfvlem 31281 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 31282 Value of a cycle function ...
cycpmfv2 31283 Value of a cycle function ...
cycpmfv3 31284 Values outside of the orbi...
cycpmcl 31285 Cyclic permutations are pe...
tocycf 31286 The permutation cycle buil...
tocyc01 31287 Permutation cycles built f...
cycpm2tr 31288 A cyclic permutation of 2 ...
cycpm2cl 31289 Closure for the 2-cycles. ...
cyc2fv1 31290 Function value of a 2-cycl...
cyc2fv2 31291 Function value of a 2-cycl...
trsp2cyc 31292 Exhibit the word a transpo...
cycpmco2f1 31293 The word U used in ~ cycpm...
cycpmco2rn 31294 The orbit of the compositi...
cycpmco2lem1 31295 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 31296 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 31297 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 31298 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 31299 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 31300 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 31301 Lemma for ~ cycpmco2 . (C...
cycpmco2 31302 The composition of a cycli...
cyc2fvx 31303 Function value of a 2-cycl...
cycpm3cl 31304 Closure of the 3-cycles in...
cycpm3cl2 31305 Closure of the 3-cycles in...
cyc3fv1 31306 Function value of a 3-cycl...
cyc3fv2 31307 Function value of a 3-cycl...
cyc3fv3 31308 Function value of a 3-cycl...
cyc3co2 31309 Represent a 3-cycle as a c...
cycpmconjvlem 31310 Lemma for ~ cycpmconjv . ...
cycpmconjv 31311 A formula for computing co...
cycpmrn 31312 The range of the word used...
tocyccntz 31313 All elements of a (finite)...
evpmval 31314 Value of the set of even p...
cnmsgn0g 31315 The neutral element of the...
evpmsubg 31316 The alternating group is a...
evpmid 31317 The identity is an even pe...
altgnsg 31318 The alternating group ` ( ...
cyc3evpm 31319 3-Cycles are even permutat...
cyc3genpmlem 31320 Lemma for ~ cyc3genpm . (...
cyc3genpm 31321 The alternating group ` A ...
cycpmgcl 31322 Cyclic permutations are pe...
cycpmconjslem1 31323 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 31324 Lemma for ~ cycpmconjs . ...
cycpmconjs 31325 All cycles of the same len...
cyc3conja 31326 All 3-cycles are conjugate...
sgnsv 31329 The sign mapping. (Contri...
sgnsval 31330 The sign value. (Contribu...
sgnsf 31331 The sign function. (Contr...
inftmrel 31336 The infinitesimal relation...
isinftm 31337 Express ` x ` is infinites...
isarchi 31338 Express the predicate " ` ...
pnfinf 31339 Plus infinity is an infini...
xrnarchi 31340 The completed real line is...
isarchi2 31341 Alternative way to express...
submarchi 31342 A submonoid is archimedean...
isarchi3 31343 This is the usual definiti...
archirng 31344 Property of Archimedean or...
archirngz 31345 Property of Archimedean le...
archiexdiv 31346 In an Archimedean group, g...
archiabllem1a 31347 Lemma for ~ archiabl : In...
archiabllem1b 31348 Lemma for ~ archiabl . (C...
archiabllem1 31349 Archimedean ordered groups...
archiabllem2a 31350 Lemma for ~ archiabl , whi...
archiabllem2c 31351 Lemma for ~ archiabl . (C...
archiabllem2b 31352 Lemma for ~ archiabl . (C...
archiabllem2 31353 Archimedean ordered groups...
archiabl 31354 Archimedean left- and righ...
isslmd 31357 The predicate "is a semimo...
slmdlema 31358 Lemma for properties of a ...
lmodslmd 31359 Left semimodules generaliz...
slmdcmn 31360 A semimodule is a commutat...
slmdmnd 31361 A semimodule is a monoid. ...
slmdsrg 31362 The scalar component of a ...
slmdbn0 31363 The base set of a semimodu...
slmdacl 31364 Closure of ring addition f...
slmdmcl 31365 Closure of ring multiplica...
slmdsn0 31366 The set of scalars in a se...
slmdvacl 31367 Closure of vector addition...
slmdass 31368 Semiring left module vecto...
slmdvscl 31369 Closure of scalar product ...
slmdvsdi 31370 Distributive law for scala...
slmdvsdir 31371 Distributive law for scala...
slmdvsass 31372 Associative law for scalar...
slmd0cl 31373 The ring zero in a semimod...
slmd1cl 31374 The ring unit in a semirin...
slmdvs1 31375 Scalar product with ring u...
slmd0vcl 31376 The zero vector is a vecto...
slmd0vlid 31377 Left identity law for the ...
slmd0vrid 31378 Right identity law for the...
slmd0vs 31379 Zero times a vector is the...
slmdvs0 31380 Anything times the zero ve...
gsumvsca1 31381 Scalar product of a finite...
gsumvsca2 31382 Scalar product of a finite...
prmsimpcyc 31383 A group of prime order is ...
rngurd 31384 Deduce the unit of a ring ...
dvdschrmulg 31385 In a ring, any multiple of...
freshmansdream 31386 For a prime number ` P ` ,...
frobrhm 31387 In a commutative ring with...
ress1r 31388 ` 1r ` is unaffected by re...
dvrdir 31389 Distributive law for the d...
rdivmuldivd 31390 Multiplication of two rati...
ringinvval 31391 The ring inverse expressed...
dvrcan5 31392 Cancellation law for commo...
subrgchr 31393 If ` A ` is a subring of `...
rmfsupp2 31394 A mapping of a multiplicat...
primefldchr 31395 The characteristic of a pr...
isorng 31400 An ordered ring is a ring ...
orngring 31401 An ordered ring is a ring....
orngogrp 31402 An ordered ring is an orde...
isofld 31403 An ordered field is a fiel...
orngmul 31404 In an ordered ring, the or...
orngsqr 31405 In an ordered ring, all sq...
ornglmulle 31406 In an ordered ring, multip...
orngrmulle 31407 In an ordered ring, multip...
ornglmullt 31408 In an ordered ring, multip...
orngrmullt 31409 In an ordered ring, multip...
orngmullt 31410 In an ordered ring, the st...
ofldfld 31411 An ordered field is a fiel...
ofldtos 31412 An ordered field is a tota...
orng0le1 31413 In an ordered ring, the ri...
ofldlt1 31414 In an ordered field, the r...
ofldchr 31415 The characteristic of an o...
suborng 31416 Every subring of an ordere...
subofld 31417 Every subfield of an order...
isarchiofld 31418 Axiom of Archimedes : a ch...
rhmdvdsr 31419 A ring homomorphism preser...
rhmopp 31420 A ring homomorphism is als...
elrhmunit 31421 Ring homomorphisms preserv...
rhmdvd 31422 A ring homomorphism preser...
rhmunitinv 31423 Ring homomorphisms preserv...
kerunit 31424 If a unit element lies in ...
reldmresv 31427 The scalar restriction is ...
resvval 31428 Value of structure restric...
resvid2 31429 General behavior of trivia...
resvval2 31430 Value of nontrivial struct...
resvsca 31431 Base set of a structure re...
resvlem 31432 Other elements of a scalar...
resvlemOLD 31433 Obsolete version of ~ resv...
resvbas 31434 ` Base ` is unaffected by ...
resvbasOLD 31435 Obsolete proof of ~ resvba...
resvplusg 31436 ` +g ` is unaffected by sc...
resvplusgOLD 31437 Obsolete proof of ~ resvpl...
resvvsca 31438 ` .s ` is unaffected by sc...
resvvscaOLD 31439 Obsolete proof of ~ resvvs...
resvmulr 31440 ` .r ` is unaffected by sc...
resvmulrOLD 31441 Obsolete proof of ~ resvmu...
resv0g 31442 ` 0g ` is unaffected by sc...
resv1r 31443 ` 1r ` is unaffected by sc...
resvcmn 31444 Scalar restriction preserv...
gzcrng 31445 The gaussian integers form...
reofld 31446 The real numbers form an o...
nn0omnd 31447 The nonnegative integers f...
rearchi 31448 The field of the real numb...
nn0archi 31449 The monoid of the nonnegat...
xrge0slmod 31450 The extended nonnegative r...
qusker 31451 The kernel of a quotient m...
eqgvscpbl 31452 The left coset equivalence...
qusvscpbl 31453 The quotient map distribut...
qusscaval 31454 Value of the scalar multip...
imaslmod 31455 The image structure of a l...
quslmod 31456 If ` G ` is a submodule in...
quslmhm 31457 If ` G ` is a submodule of...
ecxpid 31458 The equivalence class of a...
eqg0el 31459 Equivalence class of a quo...
qsxpid 31460 The quotient set of a cart...
qusxpid 31461 The Group quotient equival...
qustriv 31462 The quotient of a group ` ...
qustrivr 31463 Converse of ~ qustriv . (...
znfermltl 31464 Fermat's little theorem in...
islinds5 31465 A set is linearly independ...
ellspds 31466 Variation on ~ ellspd . (...
0ellsp 31467 Zero is in all spans. (Co...
0nellinds 31468 The group identity cannot ...
rspsnel 31469 Membership in a principal ...
rspsnid 31470 A principal ideal contains...
elrsp 31471 Write the elements of a ri...
rspidlid 31472 The ideal span of an ideal...
pidlnz 31473 A principal ideal generate...
lbslsp 31474 Any element of a left modu...
lindssn 31475 Any singleton of a nonzero...
lindflbs 31476 Conditions for an independ...
linds2eq 31477 Deduce equality of element...
lindfpropd 31478 Property deduction for lin...
lindspropd 31479 Property deduction for lin...
elgrplsmsn 31480 Membership in a sumset wit...
lsmsnorb 31481 The sumset of a group with...
lsmsnorb2 31482 The sumset of a single ele...
elringlsm 31483 Membership in a product of...
elringlsmd 31484 Membership in a product of...
ringlsmss 31485 Closure of the product of ...
ringlsmss1 31486 The product of an ideal ` ...
ringlsmss2 31487 The product with an ideal ...
lsmsnpridl 31488 The product of the ring wi...
lsmsnidl 31489 The product of the ring wi...
lsmidllsp 31490 The sum of two ideals is t...
lsmidl 31491 The sum of two ideals is a...
lsmssass 31492 Group sum is associative, ...
grplsm0l 31493 Sumset with the identity s...
grplsmid 31494 The direct sum of an eleme...
quslsm 31495 Express the image by the q...
qusima 31496 The image of a subgroup by...
nsgqus0 31497 A normal subgroup ` N ` is...
nsgmgclem 31498 Lemma for ~ nsgmgc . (Con...
nsgmgc 31499 There is a monotone Galois...
nsgqusf1olem1 31500 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 31501 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 31502 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 31503 The canonical projection h...
intlidl 31504 The intersection of a none...
rhmpreimaidl 31505 The preimage of an ideal b...
kerlidl 31506 The kernel of a ring homom...
0ringidl 31507 The zero ideal is the only...
elrspunidl 31508 Elementhood to the span of...
lidlincl 31509 Ideals are closed under in...
idlinsubrg 31510 The intersection between a...
rhmimaidl 31511 The image of an ideal ` I ...
prmidlval 31514 The class of prime ideals ...
isprmidl 31515 The predicate "is a prime ...
prmidlnr 31516 A prime ideal is a proper ...
prmidl 31517 The main property of a pri...
prmidl2 31518 A condition that shows an ...
idlmulssprm 31519 Let ` P ` be a prime ideal...
pridln1 31520 A proper ideal cannot cont...
prmidlidl 31521 A prime ideal is an ideal....
prmidlssidl 31522 Prime ideals as a subset o...
lidlnsg 31523 An ideal is a normal subgr...
cringm4 31524 Commutative/associative la...
isprmidlc 31525 The predicate "is prime id...
prmidlc 31526 Property of a prime ideal ...
0ringprmidl 31527 The trivial ring does not ...
prmidl0 31528 The zero ideal of a commut...
rhmpreimaprmidl 31529 The preimage of a prime id...
qsidomlem1 31530 If the quotient ring of a ...
qsidomlem2 31531 A quotient by a prime idea...
qsidom 31532 An ideal ` I ` in the comm...
mxidlval 31535 The set of maximal ideals ...
ismxidl 31536 The predicate "is a maxima...
mxidlidl 31537 A maximal ideal is an idea...
mxidlnr 31538 A maximal ideal is proper....
mxidlmax 31539 A maximal ideal is a maxim...
mxidln1 31540 One is not contained in an...
mxidlnzr 31541 A ring with a maximal idea...
mxidlprm 31542 Every maximal ideal is pri...
ssmxidllem 31543 The set ` P ` used in the ...
ssmxidl 31544 Let ` R ` be a ring, and l...
krull 31545 Krull's theorem: Any nonz...
mxidlnzrb 31546 A ring is nonzero if and o...
idlsrgstr 31549 A constructed semiring of ...
idlsrgval 31550 Lemma for ~ idlsrgbas thro...
idlsrgbas 31551 Baae of the ideals of a ri...
idlsrgplusg 31552 Additive operation of the ...
idlsrg0g 31553 The zero ideal is the addi...
idlsrgmulr 31554 Multiplicative operation o...
idlsrgtset 31555 Topology component of the ...
idlsrgmulrval 31556 Value of the ring multipli...
idlsrgmulrcl 31557 Ideals of a ring ` R ` are...
idlsrgmulrss1 31558 In a commutative ring, the...
idlsrgmulrss2 31559 The product of two ideals ...
idlsrgmulrssin 31560 In a commutative ring, the...
idlsrgmnd 31561 The ideals of a ring form ...
idlsrgcmnd 31562 The ideals of a ring form ...
isufd 31565 The property of being a Un...
rprmval 31566 The prime elements of a ri...
isrprm 31567 Property for ` P ` to be a...
asclmulg 31568 Apply group multiplication...
fply1 31569 Conditions for a function ...
ply1scleq 31570 Equality of a constant pol...
ply1chr 31571 The characteristic of a po...
ply1fermltl 31572 Fermat's little theorem fo...
sra1r 31573 The multiplicative neutral...
sraring 31574 Condition for a subring al...
sradrng 31575 Condition for a subring al...
srasubrg 31576 A subring of the original ...
sralvec 31577 Given a sub division ring ...
srafldlvec 31578 Given a subfield ` F ` of ...
drgext0g 31579 The additive neutral eleme...
drgextvsca 31580 The scalar multiplication ...
drgext0gsca 31581 The additive neutral eleme...
drgextsubrg 31582 The scalar field is a subr...
drgextlsp 31583 The scalar field is a subs...
drgextgsum 31584 Group sum in a division ri...
lvecdimfi 31585 Finite version of ~ lvecdi...
dimval 31588 The dimension of a vector ...
dimvalfi 31589 The dimension of a vector ...
dimcl 31590 Closure of the vector spac...
lvecdim0i 31591 A vector space of dimensio...
lvecdim0 31592 A vector space of dimensio...
lssdimle 31593 The dimension of a linear ...
dimpropd 31594 If two structures have the...
rgmoddim 31595 The left vector space indu...
frlmdim 31596 Dimension of a free left m...
tnglvec 31597 Augmenting a structure wit...
tngdim 31598 Dimension of a left vector...
rrxdim 31599 Dimension of the generaliz...
matdim 31600 Dimension of the space of ...
lbslsat 31601 A nonzero vector ` X ` is ...
lsatdim 31602 A line, spanned by a nonze...
drngdimgt0 31603 The dimension of a vector ...
lmhmlvec2 31604 A homomorphism of left vec...
kerlmhm 31605 The kernel of a vector spa...
imlmhm 31606 The image of a vector spac...
lindsunlem 31607 Lemma for ~ lindsun . (Co...
lindsun 31608 Condition for the union of...
lbsdiflsp0 31609 The linear spans of two di...
dimkerim 31610 Given a linear map ` F ` b...
qusdimsum 31611 Let ` W ` be a vector spac...
fedgmullem1 31612 Lemma for ~ fedgmul . (Co...
fedgmullem2 31613 Lemma for ~ fedgmul . (Co...
fedgmul 31614 The multiplicativity formu...
relfldext 31623 The field extension is a r...
brfldext 31624 The field extension relati...
ccfldextrr 31625 The field of the complex n...
fldextfld1 31626 A field extension is only ...
fldextfld2 31627 A field extension is only ...
fldextsubrg 31628 Field extension implies a ...
fldextress 31629 Field extension implies a ...
brfinext 31630 The finite field extension...
extdgval 31631 Value of the field extensi...
fldextsralvec 31632 The subring algebra associ...
extdgcl 31633 Closure of the field exten...
extdggt0 31634 Degrees of field extension...
fldexttr 31635 Field extension is a trans...
fldextid 31636 The field extension relati...
extdgid 31637 A trivial field extension ...
extdgmul 31638 The multiplicativity formu...
finexttrb 31639 The extension ` E ` of ` K...
extdg1id 31640 If the degree of the exten...
extdg1b 31641 The degree of the extensio...
fldextchr 31642 The characteristic of a su...
ccfldsrarelvec 31643 The subring algebra of the...
ccfldextdgrr 31644 The degree of the field ex...
smatfval 31647 Value of the submatrix. (...
smatrcl 31648 Closure of the rectangular...
smatlem 31649 Lemma for the next theorem...
smattl 31650 Entries of a submatrix, to...
smattr 31651 Entries of a submatrix, to...
smatbl 31652 Entries of a submatrix, bo...
smatbr 31653 Entries of a submatrix, bo...
smatcl 31654 Closure of the square subm...
matmpo 31655 Write a square matrix as a...
1smat1 31656 The submatrix of the ident...
submat1n 31657 One case where the submatr...
submatres 31658 Special case where the sub...
submateqlem1 31659 Lemma for ~ submateq . (C...
submateqlem2 31660 Lemma for ~ submateq . (C...
submateq 31661 Sufficient condition for t...
submatminr1 31662 If we take a submatrix by ...
lmatval 31665 Value of the literal matri...
lmatfval 31666 Entries of a literal matri...
lmatfvlem 31667 Useful lemma to extract li...
lmatcl 31668 Closure of the literal mat...
lmat22lem 31669 Lemma for ~ lmat22e11 and ...
lmat22e11 31670 Entry of a 2x2 literal mat...
lmat22e12 31671 Entry of a 2x2 literal mat...
lmat22e21 31672 Entry of a 2x2 literal mat...
lmat22e22 31673 Entry of a 2x2 literal mat...
lmat22det 31674 The determinant of a liter...
mdetpmtr1 31675 The determinant of a matri...
mdetpmtr2 31676 The determinant of a matri...
mdetpmtr12 31677 The determinant of a matri...
mdetlap1 31678 A Laplace expansion of the...
madjusmdetlem1 31679 Lemma for ~ madjusmdet . ...
madjusmdetlem2 31680 Lemma for ~ madjusmdet . ...
madjusmdetlem3 31681 Lemma for ~ madjusmdet . ...
madjusmdetlem4 31682 Lemma for ~ madjusmdet . ...
madjusmdet 31683 Express the cofactor of th...
mdetlap 31684 Laplace expansion of the d...
ist0cld 31685 The predicate "is a T_0 sp...
txomap 31686 Given two open maps ` F ` ...
qtopt1 31687 If every equivalence class...
qtophaus 31688 If an open map's graph in ...
circtopn 31689 The topology of the unit c...
circcn 31690 The function gluing the re...
reff 31691 For any cover refinement, ...
locfinreflem 31692 A locally finite refinemen...
locfinref 31693 A locally finite refinemen...
iscref 31696 The property that every op...
crefeq 31697 Equality theorem for the "...
creftop 31698 A space where every open c...
crefi 31699 The property that every op...
crefdf 31700 A formulation of ~ crefi e...
crefss 31701 The "every open cover has ...
cmpcref 31702 Equivalent definition of c...
cmpfiref 31703 Every open cover of a Comp...
ldlfcntref 31706 Every open cover of a Lind...
ispcmp 31709 The predicate "is a paraco...
cmppcmp 31710 Every compact space is par...
dispcmp 31711 Every discrete space is pa...
pcmplfin 31712 Given a paracompact topolo...
pcmplfinf 31713 Given a paracompact topolo...
rspecval 31716 Value of the spectrum of t...
rspecbas 31717 The prime ideals form the ...
rspectset 31718 Topology component of the ...
rspectopn 31719 The topology component of ...
zarcls0 31720 The closure of the identit...
zarcls1 31721 The unit ideal ` B ` is th...
zarclsun 31722 The union of two closed se...
zarclsiin 31723 In a Zariski topology, the...
zarclsint 31724 The intersection of a fami...
zarclssn 31725 The closed points of Zaris...
zarcls 31726 The open sets of the Zaris...
zartopn 31727 The Zariski topology is a ...
zartop 31728 The Zariski topology is a ...
zartopon 31729 The points of the Zariski ...
zar0ring 31730 The Zariski Topology of th...
zart0 31731 The Zariski topology is T_...
zarmxt1 31732 The Zariski topology restr...
zarcmplem 31733 Lemma for ~ zarcmp . (Con...
zarcmp 31734 The Zariski topology is co...
rspectps 31735 The spectrum of a ring ` R...
rhmpreimacnlem 31736 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 31737 The function mapping a pri...
metidval 31742 Value of the metric identi...
metidss 31743 As a relation, the metric ...
metidv 31744 ` A ` and ` B ` identify b...
metideq 31745 Basic property of the metr...
metider 31746 The metric identification ...
pstmval 31747 Value of the metric induce...
pstmfval 31748 Function value of the metr...
pstmxmet 31749 The metric induced by a ps...
hauseqcn 31750 In a Hausdorff topology, t...
elunitge0 31751 An element of the closed u...
unitssxrge0 31752 The closed unit interval i...
unitdivcld 31753 Necessary conditions for a...
iistmd 31754 The closed unit interval f...
unicls 31755 The union of the closed se...
tpr2tp 31756 The usual topology on ` ( ...
tpr2uni 31757 The usual topology on ` ( ...
xpinpreima 31758 Rewrite the cartesian prod...
xpinpreima2 31759 Rewrite the cartesian prod...
sqsscirc1 31760 The complex square of side...
sqsscirc2 31761 The complex square of side...
cnre2csqlem 31762 Lemma for ~ cnre2csqima . ...
cnre2csqima 31763 Image of a centered square...
tpr2rico 31764 For any point of an open s...
cnvordtrestixx 31765 The restriction of the 'gr...
prsdm 31766 Domain of the relation of ...
prsrn 31767 Range of the relation of a...
prsss 31768 Relation of a subproset. ...
prsssdm 31769 Domain of a subproset rela...
ordtprsval 31770 Value of the order topolog...
ordtprsuni 31771 Value of the order topolog...
ordtcnvNEW 31772 The order dual generates t...
ordtrestNEW 31773 The subspace topology of a...
ordtrest2NEWlem 31774 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 31775 An interval-closed set ` A...
ordtconnlem1 31776 Connectedness in the order...
ordtconn 31777 Connectedness in the order...
mndpluscn 31778 A mapping that is both a h...
mhmhmeotmd 31779 Deduce a Topological Monoi...
rmulccn 31780 Multiplication by a real c...
raddcn 31781 Addition in the real numbe...
xrmulc1cn 31782 The operation multiplying ...
fmcncfil 31783 The image of a Cauchy filt...
xrge0hmph 31784 The extended nonnegative r...
xrge0iifcnv 31785 Define a bijection from ` ...
xrge0iifcv 31786 The defined function's val...
xrge0iifiso 31787 The defined bijection from...
xrge0iifhmeo 31788 Expose a homeomorphism fro...
xrge0iifhom 31789 The defined function from ...
xrge0iif1 31790 Condition for the defined ...
xrge0iifmhm 31791 The defined function from ...
xrge0pluscn 31792 The addition operation of ...
xrge0mulc1cn 31793 The operation multiplying ...
xrge0tps 31794 The extended nonnegative r...
xrge0topn 31795 The topology of the extend...
xrge0haus 31796 The topology of the extend...
xrge0tmd 31797 The extended nonnegative r...
xrge0tmdALT 31798 Alternate proof of ~ xrge0...
lmlim 31799 Relate a limit in a given ...
lmlimxrge0 31800 Relate a limit in the nonn...
rge0scvg 31801 Implication of convergence...
fsumcvg4 31802 A serie with finite suppor...
pnfneige0 31803 A neighborhood of ` +oo ` ...
lmxrge0 31804 Express "sequence ` F ` co...
lmdvg 31805 If a monotonic sequence of...
lmdvglim 31806 If a monotonic real number...
pl1cn 31807 A univariate polynomial is...
zringnm 31810 The norm (function) for a ...
zzsnm 31811 The norm of the ring of th...
zlm0 31812 Zero of a ` ZZ ` -module. ...
zlm1 31813 Unit of a ` ZZ ` -module (...
zlmds 31814 Distance in a ` ZZ ` -modu...
zlmtset 31815 Topology in a ` ZZ ` -modu...
zlmnm 31816 Norm of a ` ZZ ` -module (...
zhmnrg 31817 The ` ZZ ` -module built f...
nmmulg 31818 The norm of a group produc...
zrhnm 31819 The norm of the image by `...
cnzh 31820 The ` ZZ ` -module of ` CC...
rezh 31821 The ` ZZ ` -module of ` RR...
qqhval 31824 Value of the canonical hom...
zrhf1ker 31825 The kernel of the homomorp...
zrhchr 31826 The kernel of the homomorp...
zrhker 31827 The kernel of the homomorp...
zrhunitpreima 31828 The preimage by ` ZRHom ` ...
elzrhunit 31829 Condition for the image by...
elzdif0 31830 Lemma for ~ qqhval2 . (Co...
qqhval2lem 31831 Lemma for ~ qqhval2 . (Co...
qqhval2 31832 Value of the canonical hom...
qqhvval 31833 Value of the canonical hom...
qqh0 31834 The image of ` 0 ` by the ...
qqh1 31835 The image of ` 1 ` by the ...
qqhf 31836 ` QQHom ` as a function. ...
qqhvq 31837 The image of a quotient by...
qqhghm 31838 The ` QQHom ` homomorphism...
qqhrhm 31839 The ` QQHom ` homomorphism...
qqhnm 31840 The norm of the image by `...
qqhcn 31841 The ` QQHom ` homomorphism...
qqhucn 31842 The ` QQHom ` homomorphism...
rrhval 31846 Value of the canonical hom...
rrhcn 31847 If the topology of ` R ` i...
rrhf 31848 If the topology of ` R ` i...
isrrext 31850 Express the property " ` R...
rrextnrg 31851 An extension of ` RR ` is ...
rrextdrg 31852 An extension of ` RR ` is ...
rrextnlm 31853 The norm of an extension o...
rrextchr 31854 The ring characteristic of...
rrextcusp 31855 An extension of ` RR ` is ...
rrexttps 31856 An extension of ` RR ` is ...
rrexthaus 31857 The topology of an extensi...
rrextust 31858 The uniformity of an exten...
rerrext 31859 The field of the real numb...
cnrrext 31860 The field of the complex n...
qqtopn 31861 The topology of the field ...
rrhfe 31862 If ` R ` is an extension o...
rrhcne 31863 If ` R ` is an extension o...
rrhqima 31864 The ` RRHom ` homomorphism...
rrh0 31865 The image of ` 0 ` by the ...
xrhval 31868 The value of the embedding...
zrhre 31869 The ` ZRHom ` homomorphism...
qqhre 31870 The ` QQHom ` homomorphism...
rrhre 31871 The ` RRHom ` homomorphism...
relmntop 31874 Manifold is a relation. (...
ismntoplly 31875 Property of being a manifo...
ismntop 31876 Property of being a manifo...
nexple 31877 A lower bound for an expon...
indv 31880 Value of the indicator fun...
indval 31881 Value of the indicator fun...
indval2 31882 Alternate value of the ind...
indf 31883 An indicator function as a...
indfval 31884 Value of the indicator fun...
ind1 31885 Value of the indicator fun...
ind0 31886 Value of the indicator fun...
ind1a 31887 Value of the indicator fun...
indpi1 31888 Preimage of the singleton ...
indsum 31889 Finite sum of a product wi...
indsumin 31890 Finite sum of a product wi...
prodindf 31891 The product of indicators ...
indf1o 31892 The bijection between a po...
indpreima 31893 A function with range ` { ...
indf1ofs 31894 The bijection between fini...
esumex 31897 An extended sum is a set b...
esumcl 31898 Closure for extended sum i...
esumeq12dvaf 31899 Equality deduction for ext...
esumeq12dva 31900 Equality deduction for ext...
esumeq12d 31901 Equality deduction for ext...
esumeq1 31902 Equality theorem for an ex...
esumeq1d 31903 Equality theorem for an ex...
esumeq2 31904 Equality theorem for exten...
esumeq2d 31905 Equality deduction for ext...
esumeq2dv 31906 Equality deduction for ext...
esumeq2sdv 31907 Equality deduction for ext...
nfesum1 31908 Bound-variable hypothesis ...
nfesum2 31909 Bound-variable hypothesis ...
cbvesum 31910 Change bound variable in a...
cbvesumv 31911 Change bound variable in a...
esumid 31912 Identify the extended sum ...
esumgsum 31913 A finite extended sum is t...
esumval 31914 Develop the value of the e...
esumel 31915 The extended sum is a limi...
esumnul 31916 Extended sum over the empt...
esum0 31917 Extended sum of zero. (Co...
esumf1o 31918 Re-index an extended sum u...
esumc 31919 Convert from the collectio...
esumrnmpt 31920 Rewrite an extended sum in...
esumsplit 31921 Split an extended sum into...
esummono 31922 Extended sum is monotonic....
esumpad 31923 Extend an extended sum by ...
esumpad2 31924 Remove zeroes from an exte...
esumadd 31925 Addition of infinite sums....
esumle 31926 If all of the terms of an ...
gsumesum 31927 Relate a group sum on ` ( ...
esumlub 31928 The extended sum is the lo...
esumaddf 31929 Addition of infinite sums....
esumlef 31930 If all of the terms of an ...
esumcst 31931 The extended sum of a cons...
esumsnf 31932 The extended sum of a sing...
esumsn 31933 The extended sum of a sing...
esumpr 31934 Extended sum over a pair. ...
esumpr2 31935 Extended sum over a pair, ...
esumrnmpt2 31936 Rewrite an extended sum in...
esumfzf 31937 Formulating a partial exte...
esumfsup 31938 Formulating an extended su...
esumfsupre 31939 Formulating an extended su...
esumss 31940 Change the index set to a ...
esumpinfval 31941 The value of the extended ...
esumpfinvallem 31942 Lemma for ~ esumpfinval . ...
esumpfinval 31943 The value of the extended ...
esumpfinvalf 31944 Same as ~ esumpfinval , mi...
esumpinfsum 31945 The value of the extended ...
esumpcvgval 31946 The value of the extended ...
esumpmono 31947 The partial sums in an ext...
esumcocn 31948 Lemma for ~ esummulc2 and ...
esummulc1 31949 An extended sum multiplied...
esummulc2 31950 An extended sum multiplied...
esumdivc 31951 An extended sum divided by...
hashf2 31952 Lemma for ~ hasheuni . (C...
hasheuni 31953 The cardinality of a disjo...
esumcvg 31954 The sequence of partial su...
esumcvg2 31955 Simpler version of ~ esumc...
esumcvgsum 31956 The value of the extended ...
esumsup 31957 Express an extended sum as...
esumgect 31958 "Send ` n ` to ` +oo ` " i...
esumcvgre 31959 All terms of a converging ...
esum2dlem 31960 Lemma for ~ esum2d (finite...
esum2d 31961 Write a double extended su...
esumiun 31962 Sum over a nonnecessarily ...
ofceq 31965 Equality theorem for funct...
ofcfval 31966 Value of an operation appl...
ofcval 31967 Evaluate a function/consta...
ofcfn 31968 The function operation pro...
ofcfeqd2 31969 Equality theorem for funct...
ofcfval3 31970 General value of ` ( F oFC...
ofcf 31971 The function/constant oper...
ofcfval2 31972 The function operation exp...
ofcfval4 31973 The function/constant oper...
ofcc 31974 Left operation by a consta...
ofcof 31975 Relate function operation ...
sigaex 31978 Lemma for ~ issiga and ~ i...
sigaval 31979 The set of sigma-algebra w...
issiga 31980 An alternative definition ...
isrnsiga 31981 The property of being a si...
0elsiga 31982 A sigma-algebra contains t...
baselsiga 31983 A sigma-algebra contains i...
sigasspw 31984 A sigma-algebra is a set o...
sigaclcu 31985 A sigma-algebra is closed ...
sigaclcuni 31986 A sigma-algebra is closed ...
sigaclfu 31987 A sigma-algebra is closed ...
sigaclcu2 31988 A sigma-algebra is closed ...
sigaclfu2 31989 A sigma-algebra is closed ...
sigaclcu3 31990 A sigma-algebra is closed ...
issgon 31991 Property of being a sigma-...
sgon 31992 A sigma-algebra is a sigma...
elsigass 31993 An element of a sigma-alge...
elrnsiga 31994 Dropping the base informat...
isrnsigau 31995 The property of being a si...
unielsiga 31996 A sigma-algebra contains i...
dmvlsiga 31997 Lebesgue-measurable subset...
pwsiga 31998 Any power set forms a sigm...
prsiga 31999 The smallest possible sigm...
sigaclci 32000 A sigma-algebra is closed ...
difelsiga 32001 A sigma-algebra is closed ...
unelsiga 32002 A sigma-algebra is closed ...
inelsiga 32003 A sigma-algebra is closed ...
sigainb 32004 Building a sigma-algebra f...
insiga 32005 The intersection of a coll...
sigagenval 32008 Value of the generated sig...
sigagensiga 32009 A generated sigma-algebra ...
sgsiga 32010 A generated sigma-algebra ...
unisg 32011 The sigma-algebra generate...
dmsigagen 32012 A sigma-algebra can be gen...
sssigagen 32013 A set is a subset of the s...
sssigagen2 32014 A subset of the generating...
elsigagen 32015 Any element of a set is al...
elsigagen2 32016 Any countable union of ele...
sigagenss 32017 The generated sigma-algebr...
sigagenss2 32018 Sufficient condition for i...
sigagenid 32019 The sigma-algebra generate...
ispisys 32020 The property of being a pi...
ispisys2 32021 The property of being a pi...
inelpisys 32022 Pi-systems are closed unde...
sigapisys 32023 All sigma-algebras are pi-...
isldsys 32024 The property of being a la...
pwldsys 32025 The power set of the unive...
unelldsys 32026 Lambda-systems are closed ...
sigaldsys 32027 All sigma-algebras are lam...
ldsysgenld 32028 The intersection of all la...
sigapildsyslem 32029 Lemma for ~ sigapildsys . ...
sigapildsys 32030 Sigma-algebra are exactly ...
ldgenpisyslem1 32031 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 32032 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 32033 Lemma for ~ ldgenpisys . ...
ldgenpisys 32034 The lambda system ` E ` ge...
dynkin 32035 Dynkin's lambda-pi theorem...
isros 32036 The property of being a ri...
rossspw 32037 A ring of sets is a collec...
0elros 32038 A ring of sets contains th...
unelros 32039 A ring of sets is closed u...
difelros 32040 A ring of sets is closed u...
inelros 32041 A ring of sets is closed u...
fiunelros 32042 A ring of sets is closed u...
issros 32043 The property of being a se...
srossspw 32044 A semiring of sets is a co...
0elsros 32045 A semiring of sets contain...
inelsros 32046 A semiring of sets is clos...
diffiunisros 32047 In semiring of sets, compl...
rossros 32048 Rings of sets are semiring...
brsiga 32051 The Borel Algebra on real ...
brsigarn 32052 The Borel Algebra is a sig...
brsigasspwrn 32053 The Borel Algebra is a set...
unibrsiga 32054 The union of the Borel Alg...
cldssbrsiga 32055 A Borel Algebra contains a...
sxval 32058 Value of the product sigma...
sxsiga 32059 A product sigma-algebra is...
sxsigon 32060 A product sigma-algebra is...
sxuni 32061 The base set of a product ...
elsx 32062 The cartesian product of t...
measbase 32065 The base set of a measure ...
measval 32066 The value of the ` measure...
ismeas 32067 The property of being a me...
isrnmeas 32068 The property of being a me...
dmmeas 32069 The domain of a measure is...
measbasedom 32070 The base set of a measure ...
measfrge0 32071 A measure is a function ov...
measfn 32072 A measure is a function on...
measvxrge0 32073 The values of a measure ar...
measvnul 32074 The measure of the empty s...
measge0 32075 A measure is nonnegative. ...
measle0 32076 If the measure of a given ...
measvun 32077 The measure of a countable...
measxun2 32078 The measure the union of t...
measun 32079 The measure the union of t...
measvunilem 32080 Lemma for ~ measvuni . (C...
measvunilem0 32081 Lemma for ~ measvuni . (C...
measvuni 32082 The measure of a countable...
measssd 32083 A measure is monotone with...
measunl 32084 A measure is sub-additive ...
measiuns 32085 The measure of the union o...
measiun 32086 A measure is sub-additive....
meascnbl 32087 A measure is continuous fr...
measinblem 32088 Lemma for ~ measinb . (Co...
measinb 32089 Building a measure restric...
measres 32090 Building a measure restric...
measinb2 32091 Building a measure restric...
measdivcst 32092 Division of a measure by a...
measdivcstALTV 32093 Alternate version of ~ mea...
cntmeas 32094 The Counting measure is a ...
pwcntmeas 32095 The counting measure is a ...
cntnevol 32096 Counting and Lebesgue meas...
voliune 32097 The Lebesgue measure funct...
volfiniune 32098 The Lebesgue measure funct...
volmeas 32099 The Lebesgue measure is a ...
ddeval1 32102 Value of the delta measure...
ddeval0 32103 Value of the delta measure...
ddemeas 32104 The Dirac delta measure is...
relae 32108 'almost everywhere' is a r...
brae 32109 'almost everywhere' relati...
braew 32110 'almost everywhere' relati...
truae 32111 A truth holds almost every...
aean 32112 A conjunction holds almost...
faeval 32114 Value of the 'almost every...
relfae 32115 The 'almost everywhere' bu...
brfae 32116 'almost everywhere' relati...
ismbfm 32119 The predicate " ` F ` is a...
elunirnmbfm 32120 The property of being a me...
mbfmfun 32121 A measurable function is a...
mbfmf 32122 A measurable function as a...
isanmbfm 32123 The predicate to be a meas...
mbfmcnvima 32124 The preimage by a measurab...
mbfmbfm 32125 A measurable function to a...
mbfmcst 32126 A constant function is mea...
1stmbfm 32127 The first projection map i...
2ndmbfm 32128 The second projection map ...
imambfm 32129 If the sigma-algebra in th...
cnmbfm 32130 A continuous function is m...
mbfmco 32131 The composition of two mea...
mbfmco2 32132 The pair building of two m...
mbfmvolf 32133 Measurable functions with ...
elmbfmvol2 32134 Measurable functions with ...
mbfmcnt 32135 All functions are measurab...
br2base 32136 The base set for the gener...
dya2ub 32137 An upper bound for a dyadi...
sxbrsigalem0 32138 The closed half-spaces of ...
sxbrsigalem3 32139 The sigma-algebra generate...
dya2iocival 32140 The function ` I ` returns...
dya2iocress 32141 Dyadic intervals are subse...
dya2iocbrsiga 32142 Dyadic intervals are Borel...
dya2icobrsiga 32143 Dyadic intervals are Borel...
dya2icoseg 32144 For any point and any clos...
dya2icoseg2 32145 For any point and any open...
dya2iocrfn 32146 The function returning dya...
dya2iocct 32147 The dyadic rectangle set i...
dya2iocnrect 32148 For any point of an open r...
dya2iocnei 32149 For any point of an open s...
dya2iocuni 32150 Every open set of ` ( RR X...
dya2iocucvr 32151 The dyadic rectangular set...
sxbrsigalem1 32152 The Borel algebra on ` ( R...
sxbrsigalem2 32153 The sigma-algebra generate...
sxbrsigalem4 32154 The Borel algebra on ` ( R...
sxbrsigalem5 32155 First direction for ~ sxbr...
sxbrsigalem6 32156 First direction for ~ sxbr...
sxbrsiga 32157 The product sigma-algebra ...
omsval 32160 Value of the function mapp...
omsfval 32161 Value of the outer measure...
omscl 32162 A closure lemma for the co...
omsf 32163 A constructed outer measur...
oms0 32164 A constructed outer measur...
omsmon 32165 A constructed outer measur...
omssubaddlem 32166 For any small margin ` E `...
omssubadd 32167 A constructed outer measur...
carsgval 32170 Value of the Caratheodory ...
carsgcl 32171 Closure of the Caratheodor...
elcarsg 32172 Property of being a Carath...
baselcarsg 32173 The universe set, ` O ` , ...
0elcarsg 32174 The empty set is Caratheod...
carsguni 32175 The union of all Caratheod...
elcarsgss 32176 Caratheodory measurable se...
difelcarsg 32177 The Caratheodory measurabl...
inelcarsg 32178 The Caratheodory measurabl...
unelcarsg 32179 The Caratheodory-measurabl...
difelcarsg2 32180 The Caratheodory-measurabl...
carsgmon 32181 Utility lemma: Apply mono...
carsgsigalem 32182 Lemma for the following th...
fiunelcarsg 32183 The Caratheodory measurabl...
carsgclctunlem1 32184 Lemma for ~ carsgclctun . ...
carsggect 32185 The outer measure is count...
carsgclctunlem2 32186 Lemma for ~ carsgclctun . ...
carsgclctunlem3 32187 Lemma for ~ carsgclctun . ...
carsgclctun 32188 The Caratheodory measurabl...
carsgsiga 32189 The Caratheodory measurabl...
omsmeas 32190 The restriction of a const...
pmeasmono 32191 This theorem's hypotheses ...
pmeasadd 32192 A premeasure on a ring of ...
itgeq12dv 32193 Equality theorem for an in...
sitgval 32199 Value of the simple functi...
issibf 32200 The predicate " ` F ` is a...
sibf0 32201 The constant zero function...
sibfmbl 32202 A simple function is measu...
sibff 32203 A simple function is a fun...
sibfrn 32204 A simple function has fini...
sibfima 32205 Any preimage of a singleto...
sibfinima 32206 The measure of the interse...
sibfof 32207 Applying function operatio...
sitgfval 32208 Value of the Bochner integ...
sitgclg 32209 Closure of the Bochner int...
sitgclbn 32210 Closure of the Bochner int...
sitgclcn 32211 Closure of the Bochner int...
sitgclre 32212 Closure of the Bochner int...
sitg0 32213 The integral of the consta...
sitgf 32214 The integral for simple fu...
sitgaddlemb 32215 Lemma for * sitgadd . (Co...
sitmval 32216 Value of the simple functi...
sitmfval 32217 Value of the integral dist...
sitmcl 32218 Closure of the integral di...
sitmf 32219 The integral metric as a f...
oddpwdc 32221 Lemma for ~ eulerpart . T...
oddpwdcv 32222 Lemma for ~ eulerpart : va...
eulerpartlemsv1 32223 Lemma for ~ eulerpart . V...
eulerpartlemelr 32224 Lemma for ~ eulerpart . (...
eulerpartlemsv2 32225 Lemma for ~ eulerpart . V...
eulerpartlemsf 32226 Lemma for ~ eulerpart . (...
eulerpartlems 32227 Lemma for ~ eulerpart . (...
eulerpartlemsv3 32228 Lemma for ~ eulerpart . V...
eulerpartlemgc 32229 Lemma for ~ eulerpart . (...
eulerpartleme 32230 Lemma for ~ eulerpart . (...
eulerpartlemv 32231 Lemma for ~ eulerpart . (...
eulerpartlemo 32232 Lemma for ~ eulerpart : ` ...
eulerpartlemd 32233 Lemma for ~ eulerpart : ` ...
eulerpartlem1 32234 Lemma for ~ eulerpart . (...
eulerpartlemb 32235 Lemma for ~ eulerpart . T...
eulerpartlemt0 32236 Lemma for ~ eulerpart . (...
eulerpartlemf 32237 Lemma for ~ eulerpart : O...
eulerpartlemt 32238 Lemma for ~ eulerpart . (...
eulerpartgbij 32239 Lemma for ~ eulerpart : T...
eulerpartlemgv 32240 Lemma for ~ eulerpart : va...
eulerpartlemr 32241 Lemma for ~ eulerpart . (...
eulerpartlemmf 32242 Lemma for ~ eulerpart . (...
eulerpartlemgvv 32243 Lemma for ~ eulerpart : va...
eulerpartlemgu 32244 Lemma for ~ eulerpart : R...
eulerpartlemgh 32245 Lemma for ~ eulerpart : T...
eulerpartlemgf 32246 Lemma for ~ eulerpart : I...
eulerpartlemgs2 32247 Lemma for ~ eulerpart : T...
eulerpartlemn 32248 Lemma for ~ eulerpart . (...
eulerpart 32249 Euler's theorem on partiti...
subiwrd 32252 Lemma for ~ sseqp1 . (Con...
subiwrdlen 32253 Length of a subword of an ...
iwrdsplit 32254 Lemma for ~ sseqp1 . (Con...
sseqval 32255 Value of the strong sequen...
sseqfv1 32256 Value of the strong sequen...
sseqfn 32257 A strong recursive sequenc...
sseqmw 32258 Lemma for ~ sseqf amd ~ ss...
sseqf 32259 A strong recursive sequenc...
sseqfres 32260 The first elements in the ...
sseqfv2 32261 Value of the strong sequen...
sseqp1 32262 Value of the strong sequen...
fiblem 32265 Lemma for ~ fib0 , ~ fib1 ...
fib0 32266 Value of the Fibonacci seq...
fib1 32267 Value of the Fibonacci seq...
fibp1 32268 Value of the Fibonacci seq...
fib2 32269 Value of the Fibonacci seq...
fib3 32270 Value of the Fibonacci seq...
fib4 32271 Value of the Fibonacci seq...
fib5 32272 Value of the Fibonacci seq...
fib6 32273 Value of the Fibonacci seq...
elprob 32276 The property of being a pr...
domprobmeas 32277 A probability measure is a...
domprobsiga 32278 The domain of a probabilit...
probtot 32279 The probability of the uni...
prob01 32280 A probability is an elemen...
probnul 32281 The probability of the emp...
unveldomd 32282 The universe is an element...
unveldom 32283 The universe is an element...
nuleldmp 32284 The empty set is an elemen...
probcun 32285 The probability of the uni...
probun 32286 The probability of the uni...
probdif 32287 The probability of the dif...
probinc 32288 A probability law is incre...
probdsb 32289 The probability of the com...
probmeasd 32290 A probability measure is a...
probvalrnd 32291 The value of a probability...
probtotrnd 32292 The probability of the uni...
totprobd 32293 Law of total probability, ...
totprob 32294 Law of total probability. ...
probfinmeasb 32295 Build a probability measur...
probfinmeasbALTV 32296 Alternate version of ~ pro...
probmeasb 32297 Build a probability from a...
cndprobval 32300 The value of the condition...
cndprobin 32301 An identity linking condit...
cndprob01 32302 The conditional probabilit...
cndprobtot 32303 The conditional probabilit...
cndprobnul 32304 The conditional probabilit...
cndprobprob 32305 The conditional probabilit...
bayesth 32306 Bayes Theorem. (Contribut...
rrvmbfm 32309 A real-valued random varia...
isrrvv 32310 Elementhood to the set of ...
rrvvf 32311 A real-valued random varia...
rrvfn 32312 A real-valued random varia...
rrvdm 32313 The domain of a random var...
rrvrnss 32314 The range of a random vari...
rrvf2 32315 A real-valued random varia...
rrvdmss 32316 The domain of a random var...
rrvfinvima 32317 For a real-value random va...
0rrv 32318 The constant function equa...
rrvadd 32319 The sum of two random vari...
rrvmulc 32320 A random variable multipli...
rrvsum 32321 An indexed sum of random v...
orvcval 32324 Value of the preimage mapp...
orvcval2 32325 Another way to express the...
elorvc 32326 Elementhood of a preimage....
orvcval4 32327 The value of the preimage ...
orvcoel 32328 If the relation produces o...
orvccel 32329 If the relation produces c...
elorrvc 32330 Elementhood of a preimage ...
orrvcval4 32331 The value of the preimage ...
orrvcoel 32332 If the relation produces o...
orrvccel 32333 If the relation produces c...
orvcgteel 32334 Preimage maps produced by ...
orvcelval 32335 Preimage maps produced by ...
orvcelel 32336 Preimage maps produced by ...
dstrvval 32337 The value of the distribut...
dstrvprob 32338 The distribution of a rand...
orvclteel 32339 Preimage maps produced by ...
dstfrvel 32340 Elementhood of preimage ma...
dstfrvunirn 32341 The limit of all preimage ...
orvclteinc 32342 Preimage maps produced by ...
dstfrvinc 32343 A cumulative distribution ...
dstfrvclim1 32344 The limit of the cumulativ...
coinfliplem 32345 Division in the extended r...
coinflipprob 32346 The ` P ` we defined for c...
coinflipspace 32347 The space of our coin-flip...
coinflipuniv 32348 The universe of our coin-f...
coinfliprv 32349 The ` X ` we defined for c...
coinflippv 32350 The probability of heads i...
coinflippvt 32351 The probability of tails i...
ballotlemoex 32352 ` O ` is a set. (Contribu...
ballotlem1 32353 The size of the universe i...
ballotlemelo 32354 Elementhood in ` O ` . (C...
ballotlem2 32355 The probability that the f...
ballotlemfval 32356 The value of ` F ` . (Con...
ballotlemfelz 32357 ` ( F `` C ) ` has values ...
ballotlemfp1 32358 If the ` J ` th ballot is ...
ballotlemfc0 32359 ` F ` takes value 0 betwee...
ballotlemfcc 32360 ` F ` takes value 0 betwee...
ballotlemfmpn 32361 ` ( F `` C ) ` finishes co...
ballotlemfval0 32362 ` ( F `` C ) ` always star...
ballotleme 32363 Elements of ` E ` . (Cont...
ballotlemodife 32364 Elements of ` ( O \ E ) ` ...
ballotlem4 32365 If the first pick is a vot...
ballotlem5 32366 If A is not ahead througho...
ballotlemi 32367 Value of ` I ` for a given...
ballotlemiex 32368 Properties of ` ( I `` C )...
ballotlemi1 32369 The first tie cannot be re...
ballotlemii 32370 The first tie cannot be re...
ballotlemsup 32371 The set of zeroes of ` F `...
ballotlemimin 32372 ` ( I `` C ) ` is the firs...
ballotlemic 32373 If the first vote is for B...
ballotlem1c 32374 If the first vote is for A...
ballotlemsval 32375 Value of ` S ` . (Contrib...
ballotlemsv 32376 Value of ` S ` evaluated a...
ballotlemsgt1 32377 ` S ` maps values less tha...
ballotlemsdom 32378 Domain of ` S ` for a give...
ballotlemsel1i 32379 The range ` ( 1 ... ( I ``...
ballotlemsf1o 32380 The defined ` S ` is a bij...
ballotlemsi 32381 The image by ` S ` of the ...
ballotlemsima 32382 The image by ` S ` of an i...
ballotlemieq 32383 If two countings share the...
ballotlemrval 32384 Value of ` R ` . (Contrib...
ballotlemscr 32385 The image of ` ( R `` C ) ...
ballotlemrv 32386 Value of ` R ` evaluated a...
ballotlemrv1 32387 Value of ` R ` before the ...
ballotlemrv2 32388 Value of ` R ` after the t...
ballotlemro 32389 Range of ` R ` is included...
ballotlemgval 32390 Expand the value of ` .^ `...
ballotlemgun 32391 A property of the defined ...
ballotlemfg 32392 Express the value of ` ( F...
ballotlemfrc 32393 Express the value of ` ( F...
ballotlemfrci 32394 Reverse counting preserves...
ballotlemfrceq 32395 Value of ` F ` for a rever...
ballotlemfrcn0 32396 Value of ` F ` for a rever...
ballotlemrc 32397 Range of ` R ` . (Contrib...
ballotlemirc 32398 Applying ` R ` does not ch...
ballotlemrinv0 32399 Lemma for ~ ballotlemrinv ...
ballotlemrinv 32400 ` R ` is its own inverse :...
ballotlem1ri 32401 When the vote on the first...
ballotlem7 32402 ` R ` is a bijection betwe...
ballotlem8 32403 There are as many counting...
ballotth 32404 Bertrand's ballot problem ...
sgncl 32405 Closure of the signum. (C...
sgnclre 32406 Closure of the signum. (C...
sgnneg 32407 Negation of the signum. (...
sgn3da 32408 A conditional containing a...
sgnmul 32409 Signum of a product. (Con...
sgnmulrp2 32410 Multiplication by a positi...
sgnsub 32411 Subtraction of a number of...
sgnnbi 32412 Negative signum. (Contrib...
sgnpbi 32413 Positive signum. (Contrib...
sgn0bi 32414 Zero signum. (Contributed...
sgnsgn 32415 Signum is idempotent. (Co...
sgnmulsgn 32416 If two real numbers are of...
sgnmulsgp 32417 If two real numbers are of...
fzssfzo 32418 Condition for an integer i...
gsumncl 32419 Closure of a group sum in ...
gsumnunsn 32420 Closure of a group sum in ...
ccatmulgnn0dir 32421 Concatenation of words fol...
ofcccat 32422 Letterwise operations on w...
ofcs1 32423 Letterwise operations on a...
ofcs2 32424 Letterwise operations on a...
plymul02 32425 Product of a polynomial wi...
plymulx0 32426 Coefficients of a polynomi...
plymulx 32427 Coefficients of a polynomi...
plyrecld 32428 Closure of a polynomial wi...
signsplypnf 32429 The quotient of a polynomi...
signsply0 32430 Lemma for the rule of sign...
signspval 32431 The value of the skipping ...
signsw0glem 32432 Neutral element property o...
signswbase 32433 The base of ` W ` is the u...
signswplusg 32434 The operation of ` W ` . ...
signsw0g 32435 The neutral element of ` W...
signswmnd 32436 ` W ` is a monoid structur...
signswrid 32437 The zero-skipping operatio...
signswlid 32438 The zero-skipping operatio...
signswn0 32439 The zero-skipping operatio...
signswch 32440 The zero-skipping operatio...
signslema 32441 Computational part of ~~? ...
signstfv 32442 Value of the zero-skipping...
signstfval 32443 Value of the zero-skipping...
signstcl 32444 Closure of the zero skippi...
signstf 32445 The zero skipping sign wor...
signstlen 32446 Length of the zero skippin...
signstf0 32447 Sign of a single letter wo...
signstfvn 32448 Zero-skipping sign in a wo...
signsvtn0 32449 If the last letter is nonz...
signstfvp 32450 Zero-skipping sign in a wo...
signstfvneq0 32451 In case the first letter i...
signstfvcl 32452 Closure of the zero skippi...
signstfvc 32453 Zero-skipping sign in a wo...
signstres 32454 Restriction of a zero skip...
signstfveq0a 32455 Lemma for ~ signstfveq0 . ...
signstfveq0 32456 In case the last letter is...
signsvvfval 32457 The value of ` V ` , which...
signsvvf 32458 ` V ` is a function. (Con...
signsvf0 32459 There is no change of sign...
signsvf1 32460 In a single-letter word, w...
signsvfn 32461 Number of changes in a wor...
signsvtp 32462 Adding a letter of the sam...
signsvtn 32463 Adding a letter of a diffe...
signsvfpn 32464 Adding a letter of the sam...
signsvfnn 32465 Adding a letter of a diffe...
signlem0 32466 Adding a zero as the highe...
signshf 32467 ` H ` , corresponding to t...
signshwrd 32468 ` H ` , corresponding to t...
signshlen 32469 Length of ` H ` , correspo...
signshnz 32470 ` H ` is not the empty wor...
efcld 32471 Closure law for the expone...
iblidicc 32472 The identity function is i...
rpsqrtcn 32473 Continuity of the real pos...
divsqrtid 32474 A real number divided by i...
cxpcncf1 32475 The power function on comp...
efmul2picn 32476 Multiplying by ` ( _i x. (...
fct2relem 32477 Lemma for ~ ftc2re . (Con...
ftc2re 32478 The Fundamental Theorem of...
fdvposlt 32479 Functions with a positive ...
fdvneggt 32480 Functions with a negative ...
fdvposle 32481 Functions with a nonnegati...
fdvnegge 32482 Functions with a nonpositi...
prodfzo03 32483 A product of three factors...
actfunsnf1o 32484 The action ` F ` of extend...
actfunsnrndisj 32485 The action ` F ` of extend...
itgexpif 32486 The basis for the circle m...
fsum2dsub 32487 Lemma for ~ breprexp - Re-...
reprval 32490 Value of the representatio...
repr0 32491 There is exactly one repre...
reprf 32492 Members of the representat...
reprsum 32493 Sums of values of the memb...
reprle 32494 Upper bound to the terms i...
reprsuc 32495 Express the representation...
reprfi 32496 Bounded representations ar...
reprss 32497 Representations with terms...
reprinrn 32498 Representations with term ...
reprlt 32499 There are no representatio...
hashreprin 32500 Express a sum of represent...
reprgt 32501 There are no representatio...
reprinfz1 32502 For the representation of ...
reprfi2 32503 Corollary of ~ reprinfz1 ....
reprfz1 32504 Corollary of ~ reprinfz1 ....
hashrepr 32505 Develop the number of repr...
reprpmtf1o 32506 Transposing ` 0 ` and ` X ...
reprdifc 32507 Express the representation...
chpvalz 32508 Value of the second Chebys...
chtvalz 32509 Value of the Chebyshev fun...
breprexplema 32510 Lemma for ~ breprexp (indu...
breprexplemb 32511 Lemma for ~ breprexp (clos...
breprexplemc 32512 Lemma for ~ breprexp (indu...
breprexp 32513 Express the ` S ` th power...
breprexpnat 32514 Express the ` S ` th power...
vtsval 32517 Value of the Vinogradov tr...
vtscl 32518 Closure of the Vinogradov ...
vtsprod 32519 Express the Vinogradov tri...
circlemeth 32520 The Hardy, Littlewood and ...
circlemethnat 32521 The Hardy, Littlewood and ...
circlevma 32522 The Circle Method, where t...
circlemethhgt 32523 The circle method, where t...
hgt750lemc 32527 An upper bound to the summ...
hgt750lemd 32528 An upper bound to the summ...
hgt749d 32529 A deduction version of ~ a...
logdivsqrle 32530 Conditions for ` ( ( log `...
hgt750lem 32531 Lemma for ~ tgoldbachgtd ....
hgt750lem2 32532 Decimal multiplication gal...
hgt750lemf 32533 Lemma for the statement 7....
hgt750lemg 32534 Lemma for the statement 7....
oddprm2 32535 Two ways to write the set ...
hgt750lemb 32536 An upper bound on the cont...
hgt750lema 32537 An upper bound on the cont...
hgt750leme 32538 An upper bound on the cont...
tgoldbachgnn 32539 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 32540 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 32541 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 32542 Odd integers greater than ...
tgoldbachgt 32543 Odd integers greater than ...
istrkg2d 32546 Property of fulfilling dim...
axtglowdim2ALTV 32547 Alternate version of ~ axt...
axtgupdim2ALTV 32548 Alternate version of ~ axt...
afsval 32551 Value of the AFS relation ...
brafs 32552 Binary relation form of th...
tg5segofs 32553 Rephrase ~ axtg5seg using ...
lpadval 32556 Value of the ` leftpad ` f...
lpadlem1 32557 Lemma for the ` leftpad ` ...
lpadlem3 32558 Lemma for ~ lpadlen1 . (C...
lpadlen1 32559 Length of a left-padded wo...
lpadlem2 32560 Lemma for the ` leftpad ` ...
lpadlen2 32561 Length of a left-padded wo...
lpadmax 32562 Length of a left-padded wo...
lpadleft 32563 The contents of prefix of ...
lpadright 32564 The suffix of a left-padde...
bnj170 32577 ` /\ ` -manipulation. (Co...
bnj240 32578 ` /\ ` -manipulation. (Co...
bnj248 32579 ` /\ ` -manipulation. (Co...
bnj250 32580 ` /\ ` -manipulation. (Co...
bnj251 32581 ` /\ ` -manipulation. (Co...
bnj252 32582 ` /\ ` -manipulation. (Co...
bnj253 32583 ` /\ ` -manipulation. (Co...
bnj255 32584 ` /\ ` -manipulation. (Co...
bnj256 32585 ` /\ ` -manipulation. (Co...
bnj257 32586 ` /\ ` -manipulation. (Co...
bnj258 32587 ` /\ ` -manipulation. (Co...
bnj268 32588 ` /\ ` -manipulation. (Co...
bnj290 32589 ` /\ ` -manipulation. (Co...
bnj291 32590 ` /\ ` -manipulation. (Co...
bnj312 32591 ` /\ ` -manipulation. (Co...
bnj334 32592 ` /\ ` -manipulation. (Co...
bnj345 32593 ` /\ ` -manipulation. (Co...
bnj422 32594 ` /\ ` -manipulation. (Co...
bnj432 32595 ` /\ ` -manipulation. (Co...
bnj446 32596 ` /\ ` -manipulation. (Co...
bnj23 32597 First-order logic and set ...
bnj31 32598 First-order logic and set ...
bnj62 32599 First-order logic and set ...
bnj89 32600 First-order logic and set ...
bnj90 32601 First-order logic and set ...
bnj101 32602 First-order logic and set ...
bnj105 32603 First-order logic and set ...
bnj115 32604 First-order logic and set ...
bnj132 32605 First-order logic and set ...
bnj133 32606 First-order logic and set ...
bnj156 32607 First-order logic and set ...
bnj158 32608 First-order logic and set ...
bnj168 32609 First-order logic and set ...
bnj206 32610 First-order logic and set ...
bnj216 32611 First-order logic and set ...
bnj219 32612 First-order logic and set ...
bnj226 32613 First-order logic and set ...
bnj228 32614 First-order logic and set ...
bnj519 32615 First-order logic and set ...
bnj521 32616 First-order logic and set ...
bnj524 32617 First-order logic and set ...
bnj525 32618 First-order logic and set ...
bnj534 32619 First-order logic and set ...
bnj538 32620 First-order logic and set ...
bnj529 32621 First-order logic and set ...
bnj551 32622 First-order logic and set ...
bnj563 32623 First-order logic and set ...
bnj564 32624 First-order logic and set ...
bnj593 32625 First-order logic and set ...
bnj596 32626 First-order logic and set ...
bnj610 32627 Pass from equality ( ` x =...
bnj642 32628 ` /\ ` -manipulation. (Co...
bnj643 32629 ` /\ ` -manipulation. (Co...
bnj645 32630 ` /\ ` -manipulation. (Co...
bnj658 32631 ` /\ ` -manipulation. (Co...
bnj667 32632 ` /\ ` -manipulation. (Co...
bnj705 32633 ` /\ ` -manipulation. (Co...
bnj706 32634 ` /\ ` -manipulation. (Co...
bnj707 32635 ` /\ ` -manipulation. (Co...
bnj708 32636 ` /\ ` -manipulation. (Co...
bnj721 32637 ` /\ ` -manipulation. (Co...
bnj832 32638 ` /\ ` -manipulation. (Co...
bnj835 32639 ` /\ ` -manipulation. (Co...
bnj836 32640 ` /\ ` -manipulation. (Co...
bnj837 32641 ` /\ ` -manipulation. (Co...
bnj769 32642 ` /\ ` -manipulation. (Co...
bnj770 32643 ` /\ ` -manipulation. (Co...
bnj771 32644 ` /\ ` -manipulation. (Co...
bnj887 32645 ` /\ ` -manipulation. (Co...
bnj918 32646 First-order logic and set ...
bnj919 32647 First-order logic and set ...
bnj923 32648 First-order logic and set ...
bnj927 32649 First-order logic and set ...
bnj931 32650 First-order logic and set ...
bnj937 32651 First-order logic and set ...
bnj941 32652 First-order logic and set ...
bnj945 32653 Technical lemma for ~ bnj6...
bnj946 32654 First-order logic and set ...
bnj951 32655 ` /\ ` -manipulation. (Co...
bnj956 32656 First-order logic and set ...
bnj976 32657 First-order logic and set ...
bnj982 32658 First-order logic and set ...
bnj1019 32659 First-order logic and set ...
bnj1023 32660 First-order logic and set ...
bnj1095 32661 First-order logic and set ...
bnj1096 32662 First-order logic and set ...
bnj1098 32663 First-order logic and set ...
bnj1101 32664 First-order logic and set ...
bnj1113 32665 First-order logic and set ...
bnj1109 32666 First-order logic and set ...
bnj1131 32667 First-order logic and set ...
bnj1138 32668 First-order logic and set ...
bnj1142 32669 First-order logic and set ...
bnj1143 32670 First-order logic and set ...
bnj1146 32671 First-order logic and set ...
bnj1149 32672 First-order logic and set ...
bnj1185 32673 First-order logic and set ...
bnj1196 32674 First-order logic and set ...
bnj1198 32675 First-order logic and set ...
bnj1209 32676 First-order logic and set ...
bnj1211 32677 First-order logic and set ...
bnj1213 32678 First-order logic and set ...
bnj1212 32679 First-order logic and set ...
bnj1219 32680 First-order logic and set ...
bnj1224 32681 First-order logic and set ...
bnj1230 32682 First-order logic and set ...
bnj1232 32683 First-order logic and set ...
bnj1235 32684 First-order logic and set ...
bnj1239 32685 First-order logic and set ...
bnj1238 32686 First-order logic and set ...
bnj1241 32687 First-order logic and set ...
bnj1247 32688 First-order logic and set ...
bnj1254 32689 First-order logic and set ...
bnj1262 32690 First-order logic and set ...
bnj1266 32691 First-order logic and set ...
bnj1265 32692 First-order logic and set ...
bnj1275 32693 First-order logic and set ...
bnj1276 32694 First-order logic and set ...
bnj1292 32695 First-order logic and set ...
bnj1293 32696 First-order logic and set ...
bnj1294 32697 First-order logic and set ...
bnj1299 32698 First-order logic and set ...
bnj1304 32699 First-order logic and set ...
bnj1316 32700 First-order logic and set ...
bnj1317 32701 First-order logic and set ...
bnj1322 32702 First-order logic and set ...
bnj1340 32703 First-order logic and set ...
bnj1345 32704 First-order logic and set ...
bnj1350 32705 First-order logic and set ...
bnj1351 32706 First-order logic and set ...
bnj1352 32707 First-order logic and set ...
bnj1361 32708 First-order logic and set ...
bnj1366 32709 First-order logic and set ...
bnj1379 32710 First-order logic and set ...
bnj1383 32711 First-order logic and set ...
bnj1385 32712 First-order logic and set ...
bnj1386 32713 First-order logic and set ...
bnj1397 32714 First-order logic and set ...
bnj1400 32715 First-order logic and set ...
bnj1405 32716 First-order logic and set ...
bnj1422 32717 First-order logic and set ...
bnj1424 32718 First-order logic and set ...
bnj1436 32719 First-order logic and set ...
bnj1441 32720 First-order logic and set ...
bnj1441g 32721 First-order logic and set ...
bnj1454 32722 First-order logic and set ...
bnj1459 32723 First-order logic and set ...
bnj1464 32724 Conversion of implicit sub...
bnj1465 32725 First-order logic and set ...
bnj1468 32726 Conversion of implicit sub...
bnj1476 32727 First-order logic and set ...
bnj1502 32728 First-order logic and set ...
bnj1503 32729 First-order logic and set ...
bnj1517 32730 First-order logic and set ...
bnj1521 32731 First-order logic and set ...
bnj1533 32732 First-order logic and set ...
bnj1534 32733 First-order logic and set ...
bnj1536 32734 First-order logic and set ...
bnj1538 32735 First-order logic and set ...
bnj1541 32736 First-order logic and set ...
bnj1542 32737 First-order logic and set ...
bnj110 32738 Well-founded induction res...
bnj157 32739 Well-founded induction res...
bnj66 32740 Technical lemma for ~ bnj6...
bnj91 32741 First-order logic and set ...
bnj92 32742 First-order logic and set ...
bnj93 32743 Technical lemma for ~ bnj9...
bnj95 32744 Technical lemma for ~ bnj1...
bnj96 32745 Technical lemma for ~ bnj1...
bnj97 32746 Technical lemma for ~ bnj1...
bnj98 32747 Technical lemma for ~ bnj1...
bnj106 32748 First-order logic and set ...
bnj118 32749 First-order logic and set ...
bnj121 32750 First-order logic and set ...
bnj124 32751 Technical lemma for ~ bnj1...
bnj125 32752 Technical lemma for ~ bnj1...
bnj126 32753 Technical lemma for ~ bnj1...
bnj130 32754 Technical lemma for ~ bnj1...
bnj149 32755 Technical lemma for ~ bnj1...
bnj150 32756 Technical lemma for ~ bnj1...
bnj151 32757 Technical lemma for ~ bnj1...
bnj154 32758 Technical lemma for ~ bnj1...
bnj155 32759 Technical lemma for ~ bnj1...
bnj153 32760 Technical lemma for ~ bnj8...
bnj207 32761 Technical lemma for ~ bnj8...
bnj213 32762 First-order logic and set ...
bnj222 32763 Technical lemma for ~ bnj2...
bnj229 32764 Technical lemma for ~ bnj5...
bnj517 32765 Technical lemma for ~ bnj5...
bnj518 32766 Technical lemma for ~ bnj8...
bnj523 32767 Technical lemma for ~ bnj8...
bnj526 32768 Technical lemma for ~ bnj8...
bnj528 32769 Technical lemma for ~ bnj8...
bnj535 32770 Technical lemma for ~ bnj8...
bnj539 32771 Technical lemma for ~ bnj8...
bnj540 32772 Technical lemma for ~ bnj8...
bnj543 32773 Technical lemma for ~ bnj8...
bnj544 32774 Technical lemma for ~ bnj8...
bnj545 32775 Technical lemma for ~ bnj8...
bnj546 32776 Technical lemma for ~ bnj8...
bnj548 32777 Technical lemma for ~ bnj8...
bnj553 32778 Technical lemma for ~ bnj8...
bnj554 32779 Technical lemma for ~ bnj8...
bnj556 32780 Technical lemma for ~ bnj8...
bnj557 32781 Technical lemma for ~ bnj8...
bnj558 32782 Technical lemma for ~ bnj8...
bnj561 32783 Technical lemma for ~ bnj8...
bnj562 32784 Technical lemma for ~ bnj8...
bnj570 32785 Technical lemma for ~ bnj8...
bnj571 32786 Technical lemma for ~ bnj8...
bnj605 32787 Technical lemma. This lem...
bnj581 32788 Technical lemma for ~ bnj5...
bnj589 32789 Technical lemma for ~ bnj8...
bnj590 32790 Technical lemma for ~ bnj8...
bnj591 32791 Technical lemma for ~ bnj8...
bnj594 32792 Technical lemma for ~ bnj8...
bnj580 32793 Technical lemma for ~ bnj5...
bnj579 32794 Technical lemma for ~ bnj8...
bnj602 32795 Equality theorem for the `...
bnj607 32796 Technical lemma for ~ bnj8...
bnj609 32797 Technical lemma for ~ bnj8...
bnj611 32798 Technical lemma for ~ bnj8...
bnj600 32799 Technical lemma for ~ bnj8...
bnj601 32800 Technical lemma for ~ bnj8...
bnj852 32801 Technical lemma for ~ bnj6...
bnj864 32802 Technical lemma for ~ bnj6...
bnj865 32803 Technical lemma for ~ bnj6...
bnj873 32804 Technical lemma for ~ bnj6...
bnj849 32805 Technical lemma for ~ bnj6...
bnj882 32806 Definition (using hypothes...
bnj18eq1 32807 Equality theorem for trans...
bnj893 32808 Property of ` _trCl ` . U...
bnj900 32809 Technical lemma for ~ bnj6...
bnj906 32810 Property of ` _trCl ` . (...
bnj908 32811 Technical lemma for ~ bnj6...
bnj911 32812 Technical lemma for ~ bnj6...
bnj916 32813 Technical lemma for ~ bnj6...
bnj917 32814 Technical lemma for ~ bnj6...
bnj934 32815 Technical lemma for ~ bnj6...
bnj929 32816 Technical lemma for ~ bnj6...
bnj938 32817 Technical lemma for ~ bnj6...
bnj944 32818 Technical lemma for ~ bnj6...
bnj953 32819 Technical lemma for ~ bnj6...
bnj958 32820 Technical lemma for ~ bnj6...
bnj1000 32821 Technical lemma for ~ bnj8...
bnj965 32822 Technical lemma for ~ bnj8...
bnj964 32823 Technical lemma for ~ bnj6...
bnj966 32824 Technical lemma for ~ bnj6...
bnj967 32825 Technical lemma for ~ bnj6...
bnj969 32826 Technical lemma for ~ bnj6...
bnj970 32827 Technical lemma for ~ bnj6...
bnj910 32828 Technical lemma for ~ bnj6...
bnj978 32829 Technical lemma for ~ bnj6...
bnj981 32830 Technical lemma for ~ bnj6...
bnj983 32831 Technical lemma for ~ bnj6...
bnj984 32832 Technical lemma for ~ bnj6...
bnj985v 32833 Version of ~ bnj985 with a...
bnj985 32834 Technical lemma for ~ bnj6...
bnj986 32835 Technical lemma for ~ bnj6...
bnj996 32836 Technical lemma for ~ bnj6...
bnj998 32837 Technical lemma for ~ bnj6...
bnj999 32838 Technical lemma for ~ bnj6...
bnj1001 32839 Technical lemma for ~ bnj6...
bnj1006 32840 Technical lemma for ~ bnj6...
bnj1014 32841 Technical lemma for ~ bnj6...
bnj1015 32842 Technical lemma for ~ bnj6...
bnj1018g 32843 Version of ~ bnj1018 with ...
bnj1018 32844 Technical lemma for ~ bnj6...
bnj1020 32845 Technical lemma for ~ bnj6...
bnj1021 32846 Technical lemma for ~ bnj6...
bnj907 32847 Technical lemma for ~ bnj6...
bnj1029 32848 Property of ` _trCl ` . (...
bnj1033 32849 Technical lemma for ~ bnj6...
bnj1034 32850 Technical lemma for ~ bnj6...
bnj1039 32851 Technical lemma for ~ bnj6...
bnj1040 32852 Technical lemma for ~ bnj6...
bnj1047 32853 Technical lemma for ~ bnj6...
bnj1049 32854 Technical lemma for ~ bnj6...
bnj1052 32855 Technical lemma for ~ bnj6...
bnj1053 32856 Technical lemma for ~ bnj6...
bnj1071 32857 Technical lemma for ~ bnj6...
bnj1083 32858 Technical lemma for ~ bnj6...
bnj1090 32859 Technical lemma for ~ bnj6...
bnj1093 32860 Technical lemma for ~ bnj6...
bnj1097 32861 Technical lemma for ~ bnj6...
bnj1110 32862 Technical lemma for ~ bnj6...
bnj1112 32863 Technical lemma for ~ bnj6...
bnj1118 32864 Technical lemma for ~ bnj6...
bnj1121 32865 Technical lemma for ~ bnj6...
bnj1123 32866 Technical lemma for ~ bnj6...
bnj1030 32867 Technical lemma for ~ bnj6...
bnj1124 32868 Property of ` _trCl ` . (...
bnj1133 32869 Technical lemma for ~ bnj6...
bnj1128 32870 Technical lemma for ~ bnj6...
bnj1127 32871 Property of ` _trCl ` . (...
bnj1125 32872 Property of ` _trCl ` . (...
bnj1145 32873 Technical lemma for ~ bnj6...
bnj1147 32874 Property of ` _trCl ` . (...
bnj1137 32875 Property of ` _trCl ` . (...
bnj1148 32876 Property of ` _pred ` . (...
bnj1136 32877 Technical lemma for ~ bnj6...
bnj1152 32878 Technical lemma for ~ bnj6...
bnj1154 32879 Property of ` Fr ` . (Con...
bnj1171 32880 Technical lemma for ~ bnj6...
bnj1172 32881 Technical lemma for ~ bnj6...
bnj1173 32882 Technical lemma for ~ bnj6...
bnj1174 32883 Technical lemma for ~ bnj6...
bnj1175 32884 Technical lemma for ~ bnj6...
bnj1176 32885 Technical lemma for ~ bnj6...
bnj1177 32886 Technical lemma for ~ bnj6...
bnj1186 32887 Technical lemma for ~ bnj6...
bnj1190 32888 Technical lemma for ~ bnj6...
bnj1189 32889 Technical lemma for ~ bnj6...
bnj69 32890 Existence of a minimal ele...
bnj1228 32891 Existence of a minimal ele...
bnj1204 32892 Well-founded induction. T...
bnj1234 32893 Technical lemma for ~ bnj6...
bnj1245 32894 Technical lemma for ~ bnj6...
bnj1256 32895 Technical lemma for ~ bnj6...
bnj1259 32896 Technical lemma for ~ bnj6...
bnj1253 32897 Technical lemma for ~ bnj6...
bnj1279 32898 Technical lemma for ~ bnj6...
bnj1286 32899 Technical lemma for ~ bnj6...
bnj1280 32900 Technical lemma for ~ bnj6...
bnj1296 32901 Technical lemma for ~ bnj6...
bnj1309 32902 Technical lemma for ~ bnj6...
bnj1307 32903 Technical lemma for ~ bnj6...
bnj1311 32904 Technical lemma for ~ bnj6...
bnj1318 32905 Technical lemma for ~ bnj6...
bnj1326 32906 Technical lemma for ~ bnj6...
bnj1321 32907 Technical lemma for ~ bnj6...
bnj1364 32908 Property of ` _FrSe ` . (...
bnj1371 32909 Technical lemma for ~ bnj6...
bnj1373 32910 Technical lemma for ~ bnj6...
bnj1374 32911 Technical lemma for ~ bnj6...
bnj1384 32912 Technical lemma for ~ bnj6...
bnj1388 32913 Technical lemma for ~ bnj6...
bnj1398 32914 Technical lemma for ~ bnj6...
bnj1413 32915 Property of ` _trCl ` . (...
bnj1408 32916 Technical lemma for ~ bnj1...
bnj1414 32917 Property of ` _trCl ` . (...
bnj1415 32918 Technical lemma for ~ bnj6...
bnj1416 32919 Technical lemma for ~ bnj6...
bnj1418 32920 Property of ` _pred ` . (...
bnj1417 32921 Technical lemma for ~ bnj6...
bnj1421 32922 Technical lemma for ~ bnj6...
bnj1444 32923 Technical lemma for ~ bnj6...
bnj1445 32924 Technical lemma for ~ bnj6...
bnj1446 32925 Technical lemma for ~ bnj6...
bnj1447 32926 Technical lemma for ~ bnj6...
bnj1448 32927 Technical lemma for ~ bnj6...
bnj1449 32928 Technical lemma for ~ bnj6...
bnj1442 32929 Technical lemma for ~ bnj6...
bnj1450 32930 Technical lemma for ~ bnj6...
bnj1423 32931 Technical lemma for ~ bnj6...
bnj1452 32932 Technical lemma for ~ bnj6...
bnj1466 32933 Technical lemma for ~ bnj6...
bnj1467 32934 Technical lemma for ~ bnj6...
bnj1463 32935 Technical lemma for ~ bnj6...
bnj1489 32936 Technical lemma for ~ bnj6...
bnj1491 32937 Technical lemma for ~ bnj6...
bnj1312 32938 Technical lemma for ~ bnj6...
bnj1493 32939 Technical lemma for ~ bnj6...
bnj1497 32940 Technical lemma for ~ bnj6...
bnj1498 32941 Technical lemma for ~ bnj6...
bnj60 32942 Well-founded recursion, pa...
bnj1514 32943 Technical lemma for ~ bnj1...
bnj1518 32944 Technical lemma for ~ bnj1...
bnj1519 32945 Technical lemma for ~ bnj1...
bnj1520 32946 Technical lemma for ~ bnj1...
bnj1501 32947 Technical lemma for ~ bnj1...
bnj1500 32948 Well-founded recursion, pa...
bnj1525 32949 Technical lemma for ~ bnj1...
bnj1529 32950 Technical lemma for ~ bnj1...
bnj1523 32951 Technical lemma for ~ bnj1...
bnj1522 32952 Well-founded recursion, pa...
exdifsn 32953 There exists an element in...
srcmpltd 32954 If a statement is true for...
prsrcmpltd 32955 If a statement is true for...
dff15 32956 A one-to-one function in t...
f1resveqaeq 32957 If a function restricted t...
f1resrcmplf1dlem 32958 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 32959 If a function's restrictio...
funen1cnv 32960 If a function is equinumer...
fnrelpredd 32961 A function that preserves ...
cardpred 32962 The cardinality function p...
nummin 32963 Every nonempty class of nu...
fineqvrep 32964 If the Axiom of Infinity i...
fineqvpow 32965 If the Axiom of Infinity i...
fineqvac 32966 If the Axiom of Infinity i...
fineqvacALT 32967 Shorter proof of ~ fineqva...
zltp1ne 32968 Integer ordering relation....
nnltp1ne 32969 Positive integer ordering ...
nn0ltp1ne 32970 Nonnegative integer orderi...
0nn0m1nnn0 32971 A number is zero if and on...
f1resfz0f1d 32972 If a function with a seque...
fisshasheq 32973 A finite set is equal to i...
hashfundm 32974 The size of a set function...
hashf1dmrn 32975 The size of the domain of ...
hashf1dmcdm 32976 The size of the domain of ...
revpfxsfxrev 32977 The reverse of a prefix of...
swrdrevpfx 32978 A subword expressed in ter...
lfuhgr 32979 A hypergraph is loop-free ...
lfuhgr2 32980 A hypergraph is loop-free ...
lfuhgr3 32981 A hypergraph is loop-free ...
cplgredgex 32982 Any two (distinct) vertice...
cusgredgex 32983 Any two (distinct) vertice...
cusgredgex2 32984 Any two distinct vertices ...
pfxwlk 32985 A prefix of a walk is a wa...
revwlk 32986 The reverse of a walk is a...
revwlkb 32987 Two words represent a walk...
swrdwlk 32988 Two matching subwords of a...
pthhashvtx 32989 A graph containing a path ...
pthisspthorcycl 32990 A path is either a simple ...
spthcycl 32991 A walk is a trivial path i...
usgrgt2cycl 32992 A non-trivial cycle in a s...
usgrcyclgt2v 32993 A simple graph with a non-...
subgrwlk 32994 If a walk exists in a subg...
subgrtrl 32995 If a trail exists in a sub...
subgrpth 32996 If a path exists in a subg...
subgrcycl 32997 If a cycle exists in a sub...
cusgr3cyclex 32998 Every complete simple grap...
loop1cycl 32999 A hypergraph has a cycle o...
2cycld 33000 Construction of a 2-cycle ...
2cycl2d 33001 Construction of a 2-cycle ...
umgr2cycllem 33002 Lemma for ~ umgr2cycl . (...
umgr2cycl 33003 A multigraph with two dist...
dfacycgr1 33006 An alternate definition of...
isacycgr 33007 The property of being an a...
isacycgr1 33008 The property of being an a...
acycgrcycl 33009 Any cycle in an acyclic gr...
acycgr0v 33010 A null graph (with no vert...
acycgr1v 33011 A multigraph with one vert...
acycgr2v 33012 A simple graph with two ve...
prclisacycgr 33013 A proper class (representi...
acycgrislfgr 33014 An acyclic hypergraph is a...
upgracycumgr 33015 An acyclic pseudograph is ...
umgracycusgr 33016 An acyclic multigraph is a...
upgracycusgr 33017 An acyclic pseudograph is ...
cusgracyclt3v 33018 A complete simple graph is...
pthacycspth 33019 A path in an acyclic graph...
acycgrsubgr 33020 The subgraph of an acyclic...
quartfull 33027 The quartic equation, writ...
deranglem 33028 Lemma for derangements. (...
derangval 33029 Define the derangement fun...
derangf 33030 The derangement number is ...
derang0 33031 The derangement number of ...
derangsn 33032 The derangement number of ...
derangenlem 33033 One half of ~ derangen . ...
derangen 33034 The derangement number is ...
subfacval 33035 The subfactorial is define...
derangen2 33036 Write the derangement numb...
subfacf 33037 The subfactorial is a func...
subfaclefac 33038 The subfactorial is less t...
subfac0 33039 The subfactorial at zero. ...
subfac1 33040 The subfactorial at one. ...
subfacp1lem1 33041 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 33042 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 33043 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 33044 Lemma for ~ subfacp1 . In...
subfacp1lem4 33045 Lemma for ~ subfacp1 . Th...
subfacp1lem5 33046 Lemma for ~ subfacp1 . In...
subfacp1lem6 33047 Lemma for ~ subfacp1 . By...
subfacp1 33048 A two-term recurrence for ...
subfacval2 33049 A closed-form expression f...
subfaclim 33050 The subfactorial converges...
subfacval3 33051 Another closed form expres...
derangfmla 33052 The derangements formula, ...
erdszelem1 33053 Lemma for ~ erdsze . (Con...
erdszelem2 33054 Lemma for ~ erdsze . (Con...
erdszelem3 33055 Lemma for ~ erdsze . (Con...
erdszelem4 33056 Lemma for ~ erdsze . (Con...
erdszelem5 33057 Lemma for ~ erdsze . (Con...
erdszelem6 33058 Lemma for ~ erdsze . (Con...
erdszelem7 33059 Lemma for ~ erdsze . (Con...
erdszelem8 33060 Lemma for ~ erdsze . (Con...
erdszelem9 33061 Lemma for ~ erdsze . (Con...
erdszelem10 33062 Lemma for ~ erdsze . (Con...
erdszelem11 33063 Lemma for ~ erdsze . (Con...
erdsze 33064 The Erdős-Szekeres th...
erdsze2lem1 33065 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 33066 Lemma for ~ erdsze2 . (Co...
erdsze2 33067 Generalize the statement o...
kur14lem1 33068 Lemma for ~ kur14 . (Cont...
kur14lem2 33069 Lemma for ~ kur14 . Write...
kur14lem3 33070 Lemma for ~ kur14 . A clo...
kur14lem4 33071 Lemma for ~ kur14 . Compl...
kur14lem5 33072 Lemma for ~ kur14 . Closu...
kur14lem6 33073 Lemma for ~ kur14 . If ` ...
kur14lem7 33074 Lemma for ~ kur14 : main p...
kur14lem8 33075 Lemma for ~ kur14 . Show ...
kur14lem9 33076 Lemma for ~ kur14 . Since...
kur14lem10 33077 Lemma for ~ kur14 . Disch...
kur14 33078 Kuratowski's closure-compl...
ispconn 33085 The property of being a pa...
pconncn 33086 The property of being a pa...
pconntop 33087 A simply connected space i...
issconn 33088 The property of being a si...
sconnpconn 33089 A simply connected space i...
sconntop 33090 A simply connected space i...
sconnpht 33091 A closed path in a simply ...
cnpconn 33092 An image of a path-connect...
pconnconn 33093 A path-connected space is ...
txpconn 33094 The topological product of...
ptpconn 33095 The topological product of...
indispconn 33096 The indiscrete topology (o...
connpconn 33097 A connected and locally pa...
qtoppconn 33098 A quotient of a path-conne...
pconnpi1 33099 All fundamental groups in ...
sconnpht2 33100 Any two paths in a simply ...
sconnpi1 33101 A path-connected topologic...
txsconnlem 33102 Lemma for ~ txsconn . (Co...
txsconn 33103 The topological product of...
cvxpconn 33104 A convex subset of the com...
cvxsconn 33105 A convex subset of the com...
blsconn 33106 An open ball in the comple...
cnllysconn 33107 The topology of the comple...
resconn 33108 A subset of ` RR ` is simp...
ioosconn 33109 An open interval is simply...
iccsconn 33110 A closed interval is simpl...
retopsconn 33111 The real numbers are simpl...
iccllysconn 33112 A closed interval is local...
rellysconn 33113 The real numbers are local...
iisconn 33114 The unit interval is simpl...
iillysconn 33115 The unit interval is local...
iinllyconn 33116 The unit interval is local...
fncvm 33119 Lemma for covering maps. ...
cvmscbv 33120 Change bound variables in ...
iscvm 33121 The property of being a co...
cvmtop1 33122 Reverse closure for a cove...
cvmtop2 33123 Reverse closure for a cove...
cvmcn 33124 A covering map is a contin...
cvmcov 33125 Property of a covering map...
cvmsrcl 33126 Reverse closure for an eve...
cvmsi 33127 One direction of ~ cvmsval...
cvmsval 33128 Elementhood in the set ` S...
cvmsss 33129 An even covering is a subs...
cvmsn0 33130 An even covering is nonemp...
cvmsuni 33131 An even covering of ` U ` ...
cvmsdisj 33132 An even covering of ` U ` ...
cvmshmeo 33133 Every element of an even c...
cvmsf1o 33134 ` F ` , localized to an el...
cvmscld 33135 The sets of an even coveri...
cvmsss2 33136 An open subset of an evenl...
cvmcov2 33137 The covering map property ...
cvmseu 33138 Every element in ` U. T ` ...
cvmsiota 33139 Identify the unique elemen...
cvmopnlem 33140 Lemma for ~ cvmopn . (Con...
cvmfolem 33141 Lemma for ~ cvmfo . (Cont...
cvmopn 33142 A covering map is an open ...
cvmliftmolem1 33143 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 33144 Lemma for ~ cvmliftmo . (...
cvmliftmoi 33145 A lift of a continuous fun...
cvmliftmo 33146 A lift of a continuous fun...
cvmliftlem1 33147 Lemma for ~ cvmlift . In ...
cvmliftlem2 33148 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 33149 Lemma for ~ cvmlift . Sin...
cvmliftlem4 33150 Lemma for ~ cvmlift . The...
cvmliftlem5 33151 Lemma for ~ cvmlift . Def...
cvmliftlem6 33152 Lemma for ~ cvmlift . Ind...
cvmliftlem7 33153 Lemma for ~ cvmlift . Pro...
cvmliftlem8 33154 Lemma for ~ cvmlift . The...
cvmliftlem9 33155 Lemma for ~ cvmlift . The...
cvmliftlem10 33156 Lemma for ~ cvmlift . The...
cvmliftlem11 33157 Lemma for ~ cvmlift . (Co...
cvmliftlem13 33158 Lemma for ~ cvmlift . The...
cvmliftlem14 33159 Lemma for ~ cvmlift . Put...
cvmliftlem15 33160 Lemma for ~ cvmlift . Dis...
cvmlift 33161 One of the important prope...
cvmfo 33162 A covering map is an onto ...
cvmliftiota 33163 Write out a function ` H `...
cvmlift2lem1 33164 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 33165 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 33166 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 33167 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 33168 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 33169 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 33170 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 33171 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 33172 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 33173 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 33174 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 33175 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 33176 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 33177 Lemma for ~ cvmlift2 . (C...
cvmlift2 33178 A two-dimensional version ...
cvmliftphtlem 33179 Lemma for ~ cvmliftpht . ...
cvmliftpht 33180 If ` G ` and ` H ` are pat...
cvmlift3lem1 33181 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 33182 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 33183 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 33184 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 33185 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 33186 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 33187 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 33188 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 33189 Lemma for ~ cvmlift2 . (C...
cvmlift3 33190 A general version of ~ cvm...
snmlff 33191 The function ` F ` from ~ ...
snmlfval 33192 The function ` F ` from ~ ...
snmlval 33193 The property " ` A ` is si...
snmlflim 33194 If ` A ` is simply normal,...
goel 33209 A "Godel-set of membership...
goelel3xp 33210 A "Godel-set of membership...
goeleq12bg 33211 Two "Godel-set of membersh...
gonafv 33212 The "Godel-set for the She...
goaleq12d 33213 Equality of the "Godel-set...
gonanegoal 33214 The Godel-set for the Shef...
satf 33215 The satisfaction predicate...
satfsucom 33216 The satisfaction predicate...
satfn 33217 The satisfaction predicate...
satom 33218 The satisfaction predicate...
satfvsucom 33219 The satisfaction predicate...
satfv0 33220 The value of the satisfact...
satfvsuclem1 33221 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 33222 Lemma 2 for ~ satfvsuc . ...
satfvsuc 33223 The value of the satisfact...
satfv1lem 33224 Lemma for ~ satfv1 . (Con...
satfv1 33225 The value of the satisfact...
satfsschain 33226 The binary relation of a s...
satfvsucsuc 33227 The satisfaction predicate...
satfbrsuc 33228 The binary relation of a s...
satfrel 33229 The value of the satisfact...
satfdmlem 33230 Lemma for ~ satfdm . (Con...
satfdm 33231 The domain of the satisfac...
satfrnmapom 33232 The range of the satisfact...
satfv0fun 33233 The value of the satisfact...
satf0 33234 The satisfaction predicate...
satf0sucom 33235 The satisfaction predicate...
satf00 33236 The value of the satisfact...
satf0suclem 33237 Lemma for ~ satf0suc , ~ s...
satf0suc 33238 The value of the satisfact...
satf0op 33239 An element of a value of t...
satf0n0 33240 The value of the satisfact...
sat1el2xp 33241 The first component of an ...
fmlafv 33242 The valid Godel formulas o...
fmla 33243 The set of all valid Godel...
fmla0 33244 The valid Godel formulas o...
fmla0xp 33245 The valid Godel formulas o...
fmlasuc0 33246 The valid Godel formulas o...
fmlafvel 33247 A class is a valid Godel f...
fmlasuc 33248 The valid Godel formulas o...
fmla1 33249 The valid Godel formulas o...
isfmlasuc 33250 The characterization of a ...
fmlasssuc 33251 The Godel formulas of heig...
fmlaomn0 33252 The empty set is not a God...
fmlan0 33253 The empty set is not a God...
gonan0 33254 The "Godel-set of NAND" is...
goaln0 33255 The "Godel-set of universa...
gonarlem 33256 Lemma for ~ gonar (inducti...
gonar 33257 If the "Godel-set of NAND"...
goalrlem 33258 Lemma for ~ goalr (inducti...
goalr 33259 If the "Godel-set of unive...
fmla0disjsuc 33260 The set of valid Godel for...
fmlasucdisj 33261 The valid Godel formulas o...
satfdmfmla 33262 The domain of the satisfac...
satffunlem 33263 Lemma for ~ satffunlem1lem...
satffunlem1lem1 33264 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 33265 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 33266 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 33267 The domain of an ordered p...
satffunlem2lem2 33268 Lemma 2 for ~ satffunlem2 ...
satffunlem1 33269 Lemma 1 for ~ satffun : in...
satffunlem2 33270 Lemma 2 for ~ satffun : in...
satffun 33271 The value of the satisfact...
satff 33272 The satisfaction predicate...
satfun 33273 The satisfaction predicate...
satfvel 33274 An element of the value of...
satfv0fvfmla0 33275 The value of the satisfact...
satefv 33276 The simplified satisfactio...
sate0 33277 The simplified satisfactio...
satef 33278 The simplified satisfactio...
sate0fv0 33279 A simplified satisfaction ...
satefvfmla0 33280 The simplified satisfactio...
sategoelfvb 33281 Characterization of a valu...
sategoelfv 33282 Condition of a valuation `...
ex-sategoelel 33283 Example of a valuation of ...
ex-sategoel 33284 Instance of ~ sategoelfv f...
satfv1fvfmla1 33285 The value of the satisfact...
2goelgoanfmla1 33286 Two Godel-sets of membersh...
satefvfmla1 33287 The simplified satisfactio...
ex-sategoelelomsuc 33288 Example of a valuation of ...
ex-sategoelel12 33289 Example of a valuation of ...
prv 33290 The "proves" relation on a...
elnanelprv 33291 The wff ` ( A e. B -/\ B e...
prv0 33292 Every wff encoded as ` U `...
prv1n 33293 No wff encoded as a Godel-...
mvtval 33362 The set of variable typeco...
mrexval 33363 The set of "raw expression...
mexval 33364 The set of expressions, wh...
mexval2 33365 The set of expressions, wh...
mdvval 33366 The set of disjoint variab...
mvrsval 33367 The set of variables in an...
mvrsfpw 33368 The set of variables in an...
mrsubffval 33369 The substitution of some v...
mrsubfval 33370 The substitution of some v...
mrsubval 33371 The substitution of some v...
mrsubcv 33372 The value of a substituted...
mrsubvr 33373 The value of a substituted...
mrsubff 33374 A substitution is a functi...
mrsubrn 33375 Although it is defined for...
mrsubff1 33376 When restricted to complet...
mrsubff1o 33377 When restricted to complet...
mrsub0 33378 The value of the substitut...
mrsubf 33379 A substitution is a functi...
mrsubccat 33380 Substitution distributes o...
mrsubcn 33381 A substitution does not ch...
elmrsubrn 33382 Characterization of the su...
mrsubco 33383 The composition of two sub...
mrsubvrs 33384 The set of variables in a ...
msubffval 33385 A substitution applied to ...
msubfval 33386 A substitution applied to ...
msubval 33387 A substitution applied to ...
msubrsub 33388 A substitution applied to ...
msubty 33389 The type of a substituted ...
elmsubrn 33390 Characterization of substi...
msubrn 33391 Although it is defined for...
msubff 33392 A substitution is a functi...
msubco 33393 The composition of two sub...
msubf 33394 A substitution is a functi...
mvhfval 33395 Value of the function mapp...
mvhval 33396 Value of the function mapp...
mpstval 33397 A pre-statement is an orde...
elmpst 33398 Property of being a pre-st...
msrfval 33399 Value of the reduct of a p...
msrval 33400 Value of the reduct of a p...
mpstssv 33401 A pre-statement is an orde...
mpst123 33402 Decompose a pre-statement ...
mpstrcl 33403 The elements of a pre-stat...
msrf 33404 The reduct of a pre-statem...
msrrcl 33405 If ` X ` and ` Y ` have th...
mstaval 33406 Value of the set of statem...
msrid 33407 The reduct of a statement ...
msrfo 33408 The reduct of a pre-statem...
mstapst 33409 A statement is a pre-state...
elmsta 33410 Property of being a statem...
ismfs 33411 A formal system is a tuple...
mfsdisj 33412 The constants and variable...
mtyf2 33413 The type function maps var...
mtyf 33414 The type function maps var...
mvtss 33415 The set of variable typeco...
maxsta 33416 An axiom is a statement. ...
mvtinf 33417 Each variable typecode has...
msubff1 33418 When restricted to complet...
msubff1o 33419 When restricted to complet...
mvhf 33420 The function mapping varia...
mvhf1 33421 The function mapping varia...
msubvrs 33422 The set of variables in a ...
mclsrcl 33423 Reverse closure for the cl...
mclsssvlem 33424 Lemma for ~ mclsssv . (Co...
mclsval 33425 The function mapping varia...
mclsssv 33426 The closure of a set of ex...
ssmclslem 33427 Lemma for ~ ssmcls . (Con...
vhmcls 33428 All variable hypotheses ar...
ssmcls 33429 The original expressions a...
ss2mcls 33430 The closure is monotonic u...
mclsax 33431 The closure is closed unde...
mclsind 33432 Induction theorem for clos...
mppspstlem 33433 Lemma for ~ mppspst . (Co...
mppsval 33434 Definition of a provable p...
elmpps 33435 Definition of a provable p...
mppspst 33436 A provable pre-statement i...
mthmval 33437 A theorem is a pre-stateme...
elmthm 33438 A theorem is a pre-stateme...
mthmi 33439 A statement whose reduct i...
mthmsta 33440 A theorem is a pre-stateme...
mppsthm 33441 A provable pre-statement i...
mthmblem 33442 Lemma for ~ mthmb . (Cont...
mthmb 33443 If two statements have the...
mthmpps 33444 Given a theorem, there is ...
mclsppslem 33445 The closure is closed unde...
mclspps 33446 The closure is closed unde...
problem1 33523 Practice problem 1. Clues...
problem2 33524 Practice problem 2. Clues...
problem3 33525 Practice problem 3. Clues...
problem4 33526 Practice problem 4. Clues...
problem5 33527 Practice problem 5. Clues...
quad3 33528 Variant of quadratic equat...
climuzcnv 33529 Utility lemma to convert b...
sinccvglem 33530 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 33531 ` ( ( sin `` x ) / x ) ~~>...
circum 33532 The circumference of a cir...
elfzm12 33533 Membership in a curtailed ...
nn0seqcvg 33534 A strictly-decreasing nonn...
lediv2aALT 33535 Division of both sides of ...
abs2sqlei 33536 The absolute values of two...
abs2sqlti 33537 The absolute values of two...
abs2sqle 33538 The absolute values of two...
abs2sqlt 33539 The absolute values of two...
abs2difi 33540 Difference of absolute val...
abs2difabsi 33541 Absolute value of differen...
axextprim 33542 ~ ax-ext without distinct ...
axrepprim 33543 ~ ax-rep without distinct ...
axunprim 33544 ~ ax-un without distinct v...
axpowprim 33545 ~ ax-pow without distinct ...
axregprim 33546 ~ ax-reg without distinct ...
axinfprim 33547 ~ ax-inf without distinct ...
axacprim 33548 ~ ax-ac without distinct v...
untelirr 33549 We call a class "untanged"...
untuni 33550 The union of a class is un...
untsucf 33551 If a class is untangled, t...
unt0 33552 The null set is untangled....
untint 33553 If there is an untangled e...
efrunt 33554 If ` A ` is well-founded b...
untangtr 33555 A transitive class is unta...
3orel2 33556 Partial elimination of a t...
3orel3 33557 Partial elimination of a t...
3pm3.2ni 33558 Triple negated disjunction...
3jaodd 33559 Double deduction form of ~...
3orit 33560 Closed form of ~ 3ori . (...
biimpexp 33561 A biconditional in the ant...
3orel13 33562 Elimination of two disjunc...
onelssex 33563 Ordinal less than is equiv...
nepss 33564 Two classes are unequal if...
3ccased 33565 Triple disjunction form of...
dfso3 33566 Expansion of the definitio...
brtpid1 33567 A binary relation involvin...
brtpid2 33568 A binary relation involvin...
brtpid3 33569 A binary relation involvin...
ceqsrexv2 33570 Alternate elimitation of a...
iota5f 33571 A method for computing iot...
ceqsralv2 33572 Alternate elimination of a...
dford5 33573 A class is ordinal iff it ...
jath 33574 Closed form of ~ ja . Pro...
riotarab 33575 Restricted iota of a restr...
reurab 33576 Restricted existential uni...
snres0 33577 Condition for restriction ...
fnssintima 33578 Condition for subset of an...
xpab 33579 Cross product of two class...
dfse3 33580 Alternate definition of se...
ralxpes 33581 A version of ~ ralxp with ...
ot2elxp 33582 Ordered triple membership ...
ot21std 33583 Extract the first member o...
ot22ndd 33584 Extract the second member ...
otthne 33585 Contrapositive of the orde...
elxpxp 33586 Membership in a triple cro...
elxpxpss 33587 Version of ~ elrel for tri...
ralxp3f 33588 Restricted for all over a ...
ralxp3 33589 Restricted for-all over a ...
sbcoteq1a 33590 Equality theorem for subst...
ralxp3es 33591 Restricted for-all over a ...
onunel 33592 The union of two ordinals ...
imaeqsexv 33593 Substitute a function valu...
imaeqsalv 33594 Substitute a function valu...
nnuni 33595 The union of a finite ordi...
nnasmo 33596 Finite ordinal subtraction...
eldifsucnn 33597 Condition for membership i...
rdg0n 33598 If ` A ` is a proper class...
sqdivzi 33599 Distribution of square ove...
supfz 33600 The supremum of a finite s...
inffz 33601 The infimum of a finite se...
fz0n 33602 The sequence ` ( 0 ... ( N...
shftvalg 33603 Value of a sequence shifte...
divcnvlin 33604 Limit of the ratio of two ...
climlec3 33605 Comparison of a constant t...
logi 33606 Calculate the logarithm of...
iexpire 33607 ` _i ` raised to itself is...
bcneg1 33608 The binomial coefficent ov...
bcm1nt 33609 The proportion of one bion...
bcprod 33610 A product identity for bin...
bccolsum 33611 A column-sum rule for bino...
iprodefisumlem 33612 Lemma for ~ iprodefisum . ...
iprodefisum 33613 Applying the exponential f...
iprodgam 33614 An infinite product versio...
faclimlem1 33615 Lemma for ~ faclim . Clos...
faclimlem2 33616 Lemma for ~ faclim . Show...
faclimlem3 33617 Lemma for ~ faclim . Alge...
faclim 33618 An infinite product expres...
iprodfac 33619 An infinite product expres...
faclim2 33620 Another factorial limit du...
gcd32 33621 Swap the second and third ...
gcdabsorb 33622 Absorption law for gcd. (...
brtp 33623 A condition for a binary r...
dftr6 33624 A potential definition of ...
coep 33625 Composition with the membe...
coepr 33626 Composition with the conve...
dffr5 33627 A quantifier-free definiti...
dfso2 33628 Quantifier-free definition...
br8 33629 Substitution for an eight-...
br6 33630 Substitution for a six-pla...
br4 33631 Substitution for a four-pl...
cnvco1 33632 Another distributive law o...
cnvco2 33633 Another distributive law o...
eldm3 33634 Quantifier-free definition...
elrn3 33635 Quantifier-free definition...
pocnv 33636 The converse of a partial ...
socnv 33637 The converse of a strict o...
sotrd 33638 Transitivity law for stric...
sotr3 33639 Transitivity law for stric...
sotrine 33640 Trichotomy law for strict ...
eqfunresadj 33641 Law for adjoining an eleme...
eqfunressuc 33642 Law for equality of restri...
funeldmb 33643 If ` (/) ` is not part of ...
elintfv 33644 Membership in an intersect...
funpsstri 33645 A condition for subset tri...
fundmpss 33646 If a class ` F ` is a prop...
fvresval 33647 The value of a function at...
funsseq 33648 Given two functions with e...
fununiq 33649 The uniqueness condition o...
funbreq 33650 An equality condition for ...
br1steq 33651 Uniqueness condition for t...
br2ndeq 33652 Uniqueness condition for t...
dfdm5 33653 Definition of domain in te...
dfrn5 33654 Definition of range in ter...
opelco3 33655 Alternate way of saying th...
elima4 33656 Quantifier-free expression...
fv1stcnv 33657 The value of the converse ...
fv2ndcnv 33658 The value of the converse ...
imaindm 33659 The image is unaffected by...
setinds 33660 Principle of set induction...
setinds2f 33661 ` _E ` induction schema, u...
setinds2 33662 ` _E ` induction schema, u...
elpotr 33663 A class of transitive sets...
dford5reg 33664 Given ~ ax-reg , an ordina...
dfon2lem1 33665 Lemma for ~ dfon2 . (Cont...
dfon2lem2 33666 Lemma for ~ dfon2 . (Cont...
dfon2lem3 33667 Lemma for ~ dfon2 . All s...
dfon2lem4 33668 Lemma for ~ dfon2 . If tw...
dfon2lem5 33669 Lemma for ~ dfon2 . Two s...
dfon2lem6 33670 Lemma for ~ dfon2 . A tra...
dfon2lem7 33671 Lemma for ~ dfon2 . All e...
dfon2lem8 33672 Lemma for ~ dfon2 . The i...
dfon2lem9 33673 Lemma for ~ dfon2 . A cla...
dfon2 33674 ` On ` consists of all set...
rdgprc0 33675 The value of the recursive...
rdgprc 33676 The value of the recursive...
dfrdg2 33677 Alternate definition of th...
dfrdg3 33678 Generalization of ~ dfrdg2...
axextdfeq 33679 A version of ~ ax-ext for ...
ax8dfeq 33680 A version of ~ ax-8 for us...
axextdist 33681 ~ ax-ext with distinctors ...
axextbdist 33682 ~ axextb with distinctors ...
19.12b 33683 Version of ~ 19.12vv with ...
exnel 33684 There is always a set not ...
distel 33685 Distinctors in terms of me...
axextndbi 33686 ~ axextnd as a bicondition...
hbntg 33687 A more general form of ~ h...
hbimtg 33688 A more general and closed ...
hbaltg 33689 A more general and closed ...
hbng 33690 A more general form of ~ h...
hbimg 33691 A more general form of ~ h...
tfisg 33692 A closed form of ~ tfis . ...
ttrcleq 33695 Equality theorem for trans...
nfttrcld 33696 Bound variable hypothesis ...
nfttrcl 33697 Bound variable hypothesis ...
relttrcl 33698 The transitive closure of ...
brttrcl 33699 Characterization of elemen...
brttrcl2 33700 Characterization of elemen...
ssttrcl 33701 If ` R ` is a relation, th...
ttrcltr 33702 The transitive closure of ...
ttrclresv 33703 The transitive closure of ...
ttrclco 33704 Composition law for the tr...
cottrcl 33705 Composition law for the tr...
ttrclss 33706 If ` R ` is a subclass of ...
dmttrcl 33707 The domain of a transitive...
rnttrcl 33708 The range of a transitive ...
ttrclexg 33709 If ` R ` is a set, then so...
dfttrcl2 33710 When ` R ` is a set and a ...
ttrclselem1 33711 Lemma for ~ ttrclse . Sho...
ttrclselem2 33712 Lemma for ~ ttrclse . Sho...
ttrclse 33713 If ` R ` is set-like over ...
frpoins3xpg 33714 Special case of founded pa...
frpoins3xp3g 33715 Special case of founded pa...
xpord2lem 33716 Lemma for cross product or...
poxp2 33717 Another way of partially o...
frxp2 33718 Another way of giving a fo...
xpord2pred 33719 Calculate the predecessor ...
sexp2 33720 Condition for the relation...
xpord2ind 33721 Induction over the cross p...
xpord3lem 33722 Lemma for triple ordering....
poxp3 33723 Triple cross product parti...
frxp3 33724 Give foundedness over a tr...
xpord3pred 33725 Calculate the predecsessor...
sexp3 33726 Show that the triple order...
xpord3ind 33727 Induction over the triple ...
orderseqlem 33728 Lemma for ~ poseq and ~ so...
poseq 33729 A partial ordering of sequ...
soseq 33730 A linear ordering of seque...
wsuceq123 33735 Equality theorem for well-...
wsuceq1 33736 Equality theorem for well-...
wsuceq2 33737 Equality theorem for well-...
wsuceq3 33738 Equality theorem for well-...
nfwsuc 33739 Bound-variable hypothesis ...
wlimeq12 33740 Equality theorem for the l...
wlimeq1 33741 Equality theorem for the l...
wlimeq2 33742 Equality theorem for the l...
nfwlim 33743 Bound-variable hypothesis ...
elwlim 33744 Membership in the limit cl...
wzel 33745 The zero of a well-founded...
wsuclem 33746 Lemma for the supremum pro...
wsucex 33747 Existence theorem for well...
wsuccl 33748 If ` X ` is a set with an ...
wsuclb 33749 A well-founded successor i...
wlimss 33750 The class of limit points ...
on2recsfn 33753 Show that double recursion...
on2recsov 33754 Calculate the value of the...
on2ind 33755 Double induction over ordi...
on3ind 33756 Triple induction over ordi...
naddfn 33757 Natural addition is a func...
naddcllem 33758 Lemma for ordinal addition...
naddcl 33759 Closure law for natural ad...
naddov 33760 The value of natural addit...
naddov2 33761 Alternate expression for n...
naddcom 33762 Natural addition commutes....
naddid1 33763 Ordinal zero is the additi...
naddssim 33764 Ordinal less-than-or-equal...
naddelim 33765 Ordinal less-than is prese...
naddel1 33766 Ordinal less-than is not a...
naddel2 33767 Ordinal less-than is not a...
naddss1 33768 Ordinal less-than-or-equal...
naddss2 33769 Ordinal less-than-or-equal...
elno 33776 Membership in the surreals...
sltval 33777 The value of the surreal l...
bdayval 33778 The value of the birthday ...
nofun 33779 A surreal is a function. ...
nodmon 33780 The domain of a surreal is...
norn 33781 The range of a surreal is ...
nofnbday 33782 A surreal is a function ov...
nodmord 33783 The domain of a surreal ha...
elno2 33784 An alternative condition f...
elno3 33785 Another condition for memb...
sltval2 33786 Alternate expression for s...
nofv 33787 The function value of a su...
nosgnn0 33788 ` (/) ` is not a surreal s...
nosgnn0i 33789 If ` X ` is a surreal sign...
noreson 33790 The restriction of a surre...
sltintdifex 33791 If ` A
sltres 33792 If the restrictions of two...
noxp1o 33793 The Cartesian product of a...
noseponlem 33794 Lemma for ~ nosepon . Con...
nosepon 33795 Given two unequal surreals...
noextend 33796 Extending a surreal by one...
noextendseq 33797 Extend a surreal by a sequ...
noextenddif 33798 Calculate the place where ...
noextendlt 33799 Extending a surreal with a...
noextendgt 33800 Extending a surreal with a...
nolesgn2o 33801 Given ` A ` less than or e...
nolesgn2ores 33802 Given ` A ` less than or e...
nogesgn1o 33803 Given ` A ` greater than o...
nogesgn1ores 33804 Given ` A ` greater than o...
sltsolem1 33805 Lemma for ~ sltso . The s...
sltso 33806 Surreal less than totally ...
bdayfo 33807 The birthday function maps...
fvnobday 33808 The value of a surreal at ...
nosepnelem 33809 Lemma for ~ nosepne . (Co...
nosepne 33810 The value of two non-equal...
nosep1o 33811 If the value of a surreal ...
nosep2o 33812 If the value of a surreal ...
nosepdmlem 33813 Lemma for ~ nosepdm . (Co...
nosepdm 33814 The first place two surrea...
nosepeq 33815 The values of two surreals...
nosepssdm 33816 Given two non-equal surrea...
nodenselem4 33817 Lemma for ~ nodense . Sho...
nodenselem5 33818 Lemma for ~ nodense . If ...
nodenselem6 33819 The restriction of a surre...
nodenselem7 33820 Lemma for ~ nodense . ` A ...
nodenselem8 33821 Lemma for ~ nodense . Giv...
nodense 33822 Given two distinct surreal...
bdayimaon 33823 Lemma for full-eta propert...
nolt02olem 33824 Lemma for ~ nolt02o . If ...
nolt02o 33825 Given ` A ` less than ` B ...
nogt01o 33826 Given ` A ` greater than `...
noresle 33827 Restriction law for surrea...
nomaxmo 33828 A class of surreals has at...
nominmo 33829 A class of surreals has at...
nosupprefixmo 33830 In any class of surreals, ...
noinfprefixmo 33831 In any class of surreals, ...
nosupcbv 33832 Lemma to change bound vari...
nosupno 33833 The next several theorems ...
nosupdm 33834 The domain of the surreal ...
nosupbday 33835 Birthday bounding law for ...
nosupfv 33836 The value of surreal supre...
nosupres 33837 A restriction law for surr...
nosupbnd1lem1 33838 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 33839 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 33840 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 33841 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 33842 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 33843 Lemma for ~ nosupbnd1 . E...
nosupbnd1 33844 Bounding law from below fo...
nosupbnd2lem1 33845 Bounding law from above wh...
nosupbnd2 33846 Bounding law from above fo...
noinfcbv 33847 Change bound variables for...
noinfno 33848 The next several theorems ...
noinfdm 33849 Next, we calculate the dom...
noinfbday 33850 Birthday bounding law for ...
noinffv 33851 The value of surreal infim...
noinfres 33852 The restriction of surreal...
noinfbnd1lem1 33853 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 33854 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 33855 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 33856 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 33857 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 33858 Lemma for ~ noinfbnd1 . E...
noinfbnd1 33859 Bounding law from above fo...
noinfbnd2lem1 33860 Bounding law from below wh...
noinfbnd2 33861 Bounding law from below fo...
nosupinfsep 33862 Given two sets of surreals...
noetasuplem1 33863 Lemma for ~ noeta . Estab...
noetasuplem2 33864 Lemma for ~ noeta . The r...
noetasuplem3 33865 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 33866 Lemma for ~ noeta . When ...
noetainflem1 33867 Lemma for ~ noeta . Estab...
noetainflem2 33868 Lemma for ~ noeta . The r...
noetainflem3 33869 Lemma for ~ noeta . ` W ` ...
noetainflem4 33870 Lemma for ~ noeta . If ` ...
noetalem1 33871 Lemma for ~ noeta . Eithe...
noetalem2 33872 Lemma for ~ noeta . The f...
noeta 33873 The full-eta axiom for the...
sltirr 33876 Surreal less than is irref...
slttr 33877 Surreal less than is trans...
sltasym 33878 Surreal less than is asymm...
sltlin 33879 Surreal less than obeys tr...
slttrieq2 33880 Trichotomy law for surreal...
slttrine 33881 Trichotomy law for surreal...
slenlt 33882 Surreal less than or equal...
sltnle 33883 Surreal less than in terms...
sleloe 33884 Surreal less than or equal...
sletri3 33885 Trichotomy law for surreal...
sltletr 33886 Surreal transitive law. (...
slelttr 33887 Surreal transitive law. (...
sletr 33888 Surreal transitive law. (...
slttrd 33889 Surreal less than is trans...
sltletrd 33890 Surreal less than is trans...
slelttrd 33891 Surreal less than is trans...
sletrd 33892 Surreal less than or equal...
slerflex 33893 Surreal less than or equal...
bdayfun 33894 The birthday function is a...
bdayfn 33895 The birthday function is a...
bdaydm 33896 The birthday function's do...
bdayrn 33897 The birthday function's ra...
bdayelon 33898 The value of the birthday ...
nocvxminlem 33899 Lemma for ~ nocvxmin . Gi...
nocvxmin 33900 Given a nonempty convex cl...
noprc 33901 The surreal numbers are a ...
noeta2 33906 A version of ~ noeta with ...
brsslt 33907 Binary relation form of th...
ssltex1 33908 The first argument of surr...
ssltex2 33909 The second argument of sur...
ssltss1 33910 The first argument of surr...
ssltss2 33911 The second argument of sur...
ssltsep 33912 The separation property of...
ssltd 33913 Deduce surreal set less th...
ssltsepc 33914 Two elements of separated ...
ssltsepcd 33915 Two elements of separated ...
sssslt1 33916 Relationship between surre...
sssslt2 33917 Relationship between surre...
nulsslt 33918 The empty set is less than...
nulssgt 33919 The empty set is greater t...
conway 33920 Conway's Simplicity Theore...
scutval 33921 The value of the surreal c...
scutcut 33922 Cut properties of the surr...
scutcl 33923 Closure law for surreal cu...
scutcld 33924 Closure law for surreal cu...
scutbday 33925 The birthday of the surrea...
eqscut 33926 Condition for equality to ...
eqscut2 33927 Condition for equality to ...
sslttr 33928 Transitive law for surreal...
ssltun1 33929 Union law for surreal set ...
ssltun2 33930 Union law for surreal set ...
scutun12 33931 Union law for surreal cuts...
dmscut 33932 The domain of the surreal ...
scutf 33933 Functionality statement fo...
etasslt 33934 A restatement of ~ noeta u...
etasslt2 33935 A version of ~ etasslt wit...
scutbdaybnd 33936 An upper bound on the birt...
scutbdaybnd2 33937 An upper bound on the birt...
scutbdaybnd2lim 33938 An upper bound on the birt...
scutbdaylt 33939 If a surreal lies in a gap...
slerec 33940 A comparison law for surre...
sltrec 33941 A comparison law for surre...
ssltdisj 33942 If ` A ` preceeds ` B ` , ...
0sno 33947 Surreal zero is a surreal....
1sno 33948 Surreal one is a surreal. ...
bday0s 33949 Calculate the birthday of ...
0slt1s 33950 Surreal zero is less than ...
bday0b 33951 The only surreal with birt...
bday1s 33952 The birthday of surreal on...
madeval 33963 The value of the made by f...
madeval2 33964 Alternative characterizati...
oldval 33965 The value of the old optio...
newval 33966 The value of the new optio...
madef 33967 The made function is a fun...
oldf 33968 The older function is a fu...
newf 33969 The new function is a func...
old0 33970 No surreal is older than `...
madessno 33971 Made sets are surreals. (...
oldssno 33972 Old sets are surreals. (C...
newssno 33973 New sets are surreals. (C...
leftval 33974 The value of the left opti...
rightval 33975 The value of the right opt...
leftf 33976 The functionality of the l...
rightf 33977 The functionality of the r...
elmade 33978 Membership in the made fun...
elmade2 33979 Membership in the made fun...
elold 33980 Membership in an old set. ...
ssltleft 33981 A surreal is greater than ...
ssltright 33982 A surreal is less than its...
lltropt 33983 The left options of a surr...
made0 33984 The only surreal made on d...
new0 33985 The only surreal new on da...
madess 33986 If ` A ` is less than or e...
oldssmade 33987 The older-than set is a su...
leftssold 33988 The left options are a sub...
rightssold 33989 The right options are a su...
leftssno 33990 The left set of a surreal ...
rightssno 33991 The right set of a surreal...
madecut 33992 Given a section that is a ...
madeun 33993 The made set is the union ...
madeoldsuc 33994 The made set is the old se...
oldsuc 33995 The value of the old set a...
oldlim 33996 The value of the old set a...
madebdayim 33997 If a surreal is a member o...
oldbdayim 33998 If ` X ` is in the old set...
oldirr 33999 No surreal is a member of ...
leftirr 34000 No surreal is a member of ...
rightirr 34001 No surreal is a member of ...
left0s 34002 The left set of ` 0s ` is ...
right0s 34003 The right set of ` 0s ` is...
lrold 34004 The union of the left and ...
madebdaylemold 34005 Lemma for ~ madebday . If...
madebdaylemlrcut 34006 Lemma for ~ madebday . If...
madebday 34007 A surreal is part of the s...
oldbday 34008 A surreal is part of the s...
newbday 34009 A surreal is an element of...
lrcut 34010 A surreal is equal to the ...
scutfo 34011 The surreal cut function i...
sltn0 34012 If ` X ` is less than ` Y ...
lruneq 34013 If two surreals share a bi...
sltlpss 34014 If two surreals share a bi...
cofsslt 34015 If every element of ` A ` ...
coinitsslt 34016 If ` B ` is coinitial with...
cofcut1 34017 If ` C ` is cofinal with `...
cofcut2 34018 If ` A ` and ` C ` are mut...
cofcutr 34019 If ` X ` is the cut of ` A...
cofcutrtime 34020 If ` X ` is the cut of ` A...
lrrecval 34023 The next step in the devel...
lrrecval2 34024 Next, we establish an alte...
lrrecpo 34025 Now, we establish that ` R...
lrrecse 34026 Next, we show that ` R ` i...
lrrecfr 34027 Now we show that ` R ` is ...
lrrecpred 34028 Finally, we calculate the ...
noinds 34029 Induction principle for a ...
norecfn 34030 Surreal recursion over one...
norecov 34031 Calculate the value of the...
noxpordpo 34034 To get through most of the...
noxpordfr 34035 Next we establish the foun...
noxpordse 34036 Next we establish the set-...
noxpordpred 34037 Next we calculate the pred...
no2indslem 34038 Double induction on surrea...
no2inds 34039 Double induction on surrea...
norec2fn 34040 The double-recursion opera...
norec2ov 34041 The value of the double-re...
no3inds 34042 Triple induction over surr...
negsfn 34049 Surreal negation is a func...
negsval 34050 The value of the surreal n...
negs0s 34051 Negative surreal zero is s...
addsfn 34052 Surreal addition is a func...
addsval 34053 The value of surreal addit...
addsid1 34054 Surreal addition to zero i...
addsid1d 34055 Surreal addition to zero i...
addscom 34056 Surreal addition commutes....
addscomd 34057 Surreal addition commutes....
addscllem1 34058 Lemma for addscl (future) ...
txpss3v 34107 A tail Cartesian product i...
txprel 34108 A tail Cartesian product i...
brtxp 34109 Characterize a ternary rel...
brtxp2 34110 The binary relation over a...
dfpprod2 34111 Expanded definition of par...
pprodcnveq 34112 A converse law for paralle...
pprodss4v 34113 The parallel product is a ...
brpprod 34114 Characterize a quaternary ...
brpprod3a 34115 Condition for parallel pro...
brpprod3b 34116 Condition for parallel pro...
relsset 34117 The subset class is a bina...
brsset 34118 For sets, the ` SSet ` bin...
idsset 34119 ` _I ` is equal to the int...
eltrans 34120 Membership in the class of...
dfon3 34121 A quantifier-free definiti...
dfon4 34122 Another quantifier-free de...
brtxpsd 34123 Expansion of a common form...
brtxpsd2 34124 Another common abbreviatio...
brtxpsd3 34125 A third common abbreviatio...
relbigcup 34126 The ` Bigcup ` relationshi...
brbigcup 34127 Binary relation over ` Big...
dfbigcup2 34128 ` Bigcup ` using maps-to n...
fobigcup 34129 ` Bigcup ` maps the univer...
fnbigcup 34130 ` Bigcup ` is a function o...
fvbigcup 34131 For sets, ` Bigcup ` yield...
elfix 34132 Membership in the fixpoint...
elfix2 34133 Alternative membership in ...
dffix2 34134 The fixpoints of a class i...
fixssdm 34135 The fixpoints of a class a...
fixssrn 34136 The fixpoints of a class a...
fixcnv 34137 The fixpoints of a class a...
fixun 34138 The fixpoint operator dist...
ellimits 34139 Membership in the class of...
limitssson 34140 The class of all limit ord...
dfom5b 34141 A quantifier-free definiti...
sscoid 34142 A condition for subset and...
dffun10 34143 Another potential definiti...
elfuns 34144 Membership in the class of...
elfunsg 34145 Closed form of ~ elfuns . ...
brsingle 34146 The binary relation form o...
elsingles 34147 Membership in the class of...
fnsingle 34148 The singleton relationship...
fvsingle 34149 The value of the singleton...
dfsingles2 34150 Alternate definition of th...
snelsingles 34151 A singleton is a member of...
dfiota3 34152 A definition of iota using...
dffv5 34153 Another quantifier-free de...
unisnif 34154 Express union of singleton...
brimage 34155 Binary relation form of th...
brimageg 34156 Closed form of ~ brimage ....
funimage 34157 ` Image A ` is a function....
fnimage 34158 ` Image R ` is a function ...
imageval 34159 The image functor in maps-...
fvimage 34160 Value of the image functor...
brcart 34161 Binary relation form of th...
brdomain 34162 Binary relation form of th...
brrange 34163 Binary relation form of th...
brdomaing 34164 Closed form of ~ brdomain ...
brrangeg 34165 Closed form of ~ brrange ....
brimg 34166 Binary relation form of th...
brapply 34167 Binary relation form of th...
brcup 34168 Binary relation form of th...
brcap 34169 Binary relation form of th...
brsuccf 34170 Binary relation form of th...
funpartlem 34171 Lemma for ~ funpartfun . ...
funpartfun 34172 The functional part of ` F...
funpartss 34173 The functional part of ` F...
funpartfv 34174 The function value of the ...
fullfunfnv 34175 The full functional part o...
fullfunfv 34176 The function value of the ...
brfullfun 34177 A binary relation form con...
brrestrict 34178 Binary relation form of th...
dfrecs2 34179 A quantifier-free definiti...
dfrdg4 34180 A quantifier-free definiti...
dfint3 34181 Quantifier-free definition...
imagesset 34182 The Image functor applied ...
brub 34183 Binary relation form of th...
brlb 34184 Binary relation form of th...
altopex 34189 Alternative ordered pairs ...
altopthsn 34190 Two alternate ordered pair...
altopeq12 34191 Equality for alternate ord...
altopeq1 34192 Equality for alternate ord...
altopeq2 34193 Equality for alternate ord...
altopth1 34194 Equality of the first memb...
altopth2 34195 Equality of the second mem...
altopthg 34196 Alternate ordered pair the...
altopthbg 34197 Alternate ordered pair the...
altopth 34198 The alternate ordered pair...
altopthb 34199 Alternate ordered pair the...
altopthc 34200 Alternate ordered pair the...
altopthd 34201 Alternate ordered pair the...
altxpeq1 34202 Equality for alternate Car...
altxpeq2 34203 Equality for alternate Car...
elaltxp 34204 Membership in alternate Ca...
altopelaltxp 34205 Alternate ordered pair mem...
altxpsspw 34206 An inclusion rule for alte...
altxpexg 34207 The alternate Cartesian pr...
rankaltopb 34208 Compute the rank of an alt...
nfaltop 34209 Bound-variable hypothesis ...
sbcaltop 34210 Distribution of class subs...
cgrrflx2d 34213 Deduction form of ~ axcgrr...
cgrtr4d 34214 Deduction form of ~ axcgrt...
cgrtr4and 34215 Deduction form of ~ axcgrt...
cgrrflx 34216 Reflexivity law for congru...
cgrrflxd 34217 Deduction form of ~ cgrrfl...
cgrcomim 34218 Congruence commutes on the...
cgrcom 34219 Congruence commutes betwee...
cgrcomand 34220 Deduction form of ~ cgrcom...
cgrtr 34221 Transitivity law for congr...
cgrtrand 34222 Deduction form of ~ cgrtr ...
cgrtr3 34223 Transitivity law for congr...
cgrtr3and 34224 Deduction form of ~ cgrtr3...
cgrcoml 34225 Congruence commutes on the...
cgrcomr 34226 Congruence commutes on the...
cgrcomlr 34227 Congruence commutes on bot...
cgrcomland 34228 Deduction form of ~ cgrcom...
cgrcomrand 34229 Deduction form of ~ cgrcom...
cgrcomlrand 34230 Deduction form of ~ cgrcom...
cgrtriv 34231 Degenerate segments are co...
cgrid2 34232 Identity law for congruenc...
cgrdegen 34233 Two congruent segments are...
brofs 34234 Binary relation form of th...
5segofs 34235 Rephrase ~ ax5seg using th...
ofscom 34236 The outer five segment pre...
cgrextend 34237 Link congruence over a pai...
cgrextendand 34238 Deduction form of ~ cgrext...
segconeq 34239 Two points that satisfy th...
segconeu 34240 Existential uniqueness ver...
btwntriv2 34241 Betweenness always holds f...
btwncomim 34242 Betweenness commutes. Imp...
btwncom 34243 Betweenness commutes. (Co...
btwncomand 34244 Deduction form of ~ btwnco...
btwntriv1 34245 Betweenness always holds f...
btwnswapid 34246 If you can swap the first ...
btwnswapid2 34247 If you can swap arguments ...
btwnintr 34248 Inner transitivity law for...
btwnexch3 34249 Exchange the first endpoin...
btwnexch3and 34250 Deduction form of ~ btwnex...
btwnouttr2 34251 Outer transitivity law for...
btwnexch2 34252 Exchange the outer point o...
btwnouttr 34253 Outer transitivity law for...
btwnexch 34254 Outer transitivity law for...
btwnexchand 34255 Deduction form of ~ btwnex...
btwndiff 34256 There is always a ` c ` di...
trisegint 34257 A line segment between two...
funtransport 34260 The ` TransportTo ` relati...
fvtransport 34261 Calculate the value of the...
transportcl 34262 Closure law for segment tr...
transportprops 34263 Calculate the defining pro...
brifs 34272 Binary relation form of th...
ifscgr 34273 Inner five segment congrue...
cgrsub 34274 Removing identical parts f...
brcgr3 34275 Binary relation form of th...
cgr3permute3 34276 Permutation law for three-...
cgr3permute1 34277 Permutation law for three-...
cgr3permute2 34278 Permutation law for three-...
cgr3permute4 34279 Permutation law for three-...
cgr3permute5 34280 Permutation law for three-...
cgr3tr4 34281 Transitivity law for three...
cgr3com 34282 Commutativity law for thre...
cgr3rflx 34283 Identity law for three-pla...
cgrxfr 34284 A line segment can be divi...
btwnxfr 34285 A condition for extending ...
colinrel 34286 Colinearity is a relations...
brcolinear2 34287 Alternate colinearity bina...
brcolinear 34288 The binary relation form o...
colinearex 34289 The colinear predicate exi...
colineardim1 34290 If ` A ` is colinear with ...
colinearperm1 34291 Permutation law for coline...
colinearperm3 34292 Permutation law for coline...
colinearperm2 34293 Permutation law for coline...
colinearperm4 34294 Permutation law for coline...
colinearperm5 34295 Permutation law for coline...
colineartriv1 34296 Trivial case of colinearit...
colineartriv2 34297 Trivial case of colinearit...
btwncolinear1 34298 Betweenness implies coline...
btwncolinear2 34299 Betweenness implies coline...
btwncolinear3 34300 Betweenness implies coline...
btwncolinear4 34301 Betweenness implies coline...
btwncolinear5 34302 Betweenness implies coline...
btwncolinear6 34303 Betweenness implies coline...
colinearxfr 34304 Transfer law for colineari...
lineext 34305 Extend a line with a missi...
brofs2 34306 Change some conditions for...
brifs2 34307 Change some conditions for...
brfs 34308 Binary relation form of th...
fscgr 34309 Congruence law for the gen...
linecgr 34310 Congruence rule for lines....
linecgrand 34311 Deduction form of ~ linecg...
lineid 34312 Identity law for points on...
idinside 34313 Law for finding a point in...
endofsegid 34314 If ` A ` , ` B ` , and ` C...
endofsegidand 34315 Deduction form of ~ endofs...
btwnconn1lem1 34316 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 34317 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 34318 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 34319 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 34320 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 34321 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 34322 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 34323 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 34324 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 34325 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 34326 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 34327 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 34328 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 34329 Lemma for ~ btwnconn1 . F...
btwnconn1 34330 Connectitivy law for betwe...
btwnconn2 34331 Another connectivity law f...
btwnconn3 34332 Inner connectivity law for...
midofsegid 34333 If two points fall in the ...
segcon2 34334 Generalization of ~ axsegc...
brsegle 34337 Binary relation form of th...
brsegle2 34338 Alternate characterization...
seglecgr12im 34339 Substitution law for segme...
seglecgr12 34340 Substitution law for segme...
seglerflx 34341 Segment comparison is refl...
seglemin 34342 Any segment is at least as...
segletr 34343 Segment less than is trans...
segleantisym 34344 Antisymmetry law for segme...
seglelin 34345 Linearity law for segment ...
btwnsegle 34346 If ` B ` falls between ` A...
colinbtwnle 34347 Given three colinear point...
broutsideof 34350 Binary relation form of ` ...
broutsideof2 34351 Alternate form of ` Outsid...
outsidene1 34352 Outsideness implies inequa...
outsidene2 34353 Outsideness implies inequa...
btwnoutside 34354 A principle linking outsid...
broutsideof3 34355 Characterization of outsid...
outsideofrflx 34356 Reflexivity of outsideness...
outsideofcom 34357 Commutativity law for outs...
outsideoftr 34358 Transitivity law for outsi...
outsideofeq 34359 Uniqueness law for ` Outsi...
outsideofeu 34360 Given a nondegenerate ray,...
outsidele 34361 Relate ` OutsideOf ` to ` ...
outsideofcol 34362 Outside of implies colinea...
funray 34369 Show that the ` Ray ` rela...
fvray 34370 Calculate the value of the...
funline 34371 Show that the ` Line ` rel...
linedegen 34372 When ` Line ` is applied w...
fvline 34373 Calculate the value of the...
liness 34374 A line is a subset of the ...
fvline2 34375 Alternate definition of a ...
lineunray 34376 A line is composed of a po...
lineelsb2 34377 If ` S ` lies on ` P Q ` ,...
linerflx1 34378 Reflexivity law for line m...
linecom 34379 Commutativity law for line...
linerflx2 34380 Reflexivity law for line m...
ellines 34381 Membership in the set of a...
linethru 34382 If ` A ` is a line contain...
hilbert1.1 34383 There is a line through an...
hilbert1.2 34384 There is at most one line ...
linethrueu 34385 There is a unique line goi...
lineintmo 34386 Two distinct lines interse...
fwddifval 34391 Calculate the value of the...
fwddifnval 34392 The value of the forward d...
fwddifn0 34393 The value of the n-iterate...
fwddifnp1 34394 The value of the n-iterate...
rankung 34395 The rank of the union of t...
ranksng 34396 The rank of a singleton. ...
rankelg 34397 The membership relation is...
rankpwg 34398 The rank of a power set. ...
rank0 34399 The rank of the empty set ...
rankeq1o 34400 The only set with rank ` 1...
elhf 34403 Membership in the heredita...
elhf2 34404 Alternate form of membersh...
elhf2g 34405 Hereditarily finiteness vi...
0hf 34406 The empty set is a heredit...
hfun 34407 The union of two HF sets i...
hfsn 34408 The singleton of an HF set...
hfadj 34409 Adjoining one HF element t...
hfelhf 34410 Any member of an HF set is...
hftr 34411 The class of all hereditar...
hfext 34412 Extensionality for HF sets...
hfuni 34413 The union of an HF set is ...
hfpw 34414 The power class of an HF s...
hfninf 34415 ` _om ` is not hereditaril...
a1i14 34416 Add two antecedents to a w...
a1i24 34417 Add two antecedents to a w...
exp5d 34418 An exportation inference. ...
exp5g 34419 An exportation inference. ...
exp5k 34420 An exportation inference. ...
exp56 34421 An exportation inference. ...
exp58 34422 An exportation inference. ...
exp510 34423 An exportation inference. ...
exp511 34424 An exportation inference. ...
exp512 34425 An exportation inference. ...
3com12d 34426 Commutation in consequent....
imp5p 34427 A triple importation infer...
imp5q 34428 A triple importation infer...
ecase13d 34429 Deduction for elimination ...
subtr 34430 Transitivity of implicit s...
subtr2 34431 Transitivity of implicit s...
trer 34432 A relation intersected wit...
elicc3 34433 An equivalent membership c...
finminlem 34434 A useful lemma about finit...
gtinf 34435 Any number greater than an...
opnrebl 34436 A set is open in the stand...
opnrebl2 34437 A set is open in the stand...
nn0prpwlem 34438 Lemma for ~ nn0prpw . Use...
nn0prpw 34439 Two nonnegative integers a...
topbnd 34440 Two equivalent expressions...
opnbnd 34441 A set is open iff it is di...
cldbnd 34442 A set is closed iff it con...
ntruni 34443 A union of interiors is a ...
clsun 34444 A pairwise union of closur...
clsint2 34445 The closure of an intersec...
opnregcld 34446 A set is regularly closed ...
cldregopn 34447 A set if regularly open if...
neiin 34448 Two neighborhoods intersec...
hmeoclda 34449 Homeomorphisms preserve cl...
hmeocldb 34450 Homeomorphisms preserve cl...
ivthALT 34451 An alternate proof of the ...
fnerel 34454 Fineness is a relation. (...
isfne 34455 The predicate " ` B ` is f...
isfne4 34456 The predicate " ` B ` is f...
isfne4b 34457 A condition for a topology...
isfne2 34458 The predicate " ` B ` is f...
isfne3 34459 The predicate " ` B ` is f...
fnebas 34460 A finer cover covers the s...
fnetg 34461 A finer cover generates a ...
fnessex 34462 If ` B ` is finer than ` A...
fneuni 34463 If ` B ` is finer than ` A...
fneint 34464 If a cover is finer than a...
fness 34465 A cover is finer than its ...
fneref 34466 Reflexivity of the finenes...
fnetr 34467 Transitivity of the finene...
fneval 34468 Two covers are finer than ...
fneer 34469 Fineness intersected with ...
topfne 34470 Fineness for covers corres...
topfneec 34471 A cover is equivalent to a...
topfneec2 34472 A topology is precisely id...
fnessref 34473 A cover is finer iff it ha...
refssfne 34474 A cover is a refinement if...
neibastop1 34475 A collection of neighborho...
neibastop2lem 34476 Lemma for ~ neibastop2 . ...
neibastop2 34477 In the topology generated ...
neibastop3 34478 The topology generated by ...
topmtcl 34479 The meet of a collection o...
topmeet 34480 Two equivalent formulation...
topjoin 34481 Two equivalent formulation...
fnemeet1 34482 The meet of a collection o...
fnemeet2 34483 The meet of equivalence cl...
fnejoin1 34484 Join of equivalence classe...
fnejoin2 34485 Join of equivalence classe...
fgmin 34486 Minimality property of a g...
neifg 34487 The neighborhood filter of...
tailfval 34488 The tail function for a di...
tailval 34489 The tail of an element in ...
eltail 34490 An element of a tail. (Co...
tailf 34491 The tail function of a dir...
tailini 34492 A tail contains its initia...
tailfb 34493 The collection of tails of...
filnetlem1 34494 Lemma for ~ filnet . Chan...
filnetlem2 34495 Lemma for ~ filnet . The ...
filnetlem3 34496 Lemma for ~ filnet . (Con...
filnetlem4 34497 Lemma for ~ filnet . (Con...
filnet 34498 A filter has the same conv...
tb-ax1 34499 The first of three axioms ...
tb-ax2 34500 The second of three axioms...
tb-ax3 34501 The third of three axioms ...
tbsyl 34502 The weak syllogism from Ta...
re1ax2lem 34503 Lemma for ~ re1ax2 . (Con...
re1ax2 34504 ~ ax-2 rederived from the ...
naim1 34505 Constructor theorem for ` ...
naim2 34506 Constructor theorem for ` ...
naim1i 34507 Constructor rule for ` -/\...
naim2i 34508 Constructor rule for ` -/\...
naim12i 34509 Constructor rule for ` -/\...
nabi1i 34510 Constructor rule for ` -/\...
nabi2i 34511 Constructor rule for ` -/\...
nabi12i 34512 Constructor rule for ` -/\...
df3nandALT1 34515 The double nand expressed ...
df3nandALT2 34516 The double nand expressed ...
andnand1 34517 Double and in terms of dou...
imnand2 34518 An ` -> ` nand relation. ...
nalfal 34519 Not all sets hold ` F. ` a...
nexntru 34520 There does not exist a set...
nexfal 34521 There does not exist a set...
neufal 34522 There does not exist exact...
neutru 34523 There does not exist exact...
nmotru 34524 There does not exist at mo...
mofal 34525 There exist at most one se...
nrmo 34526 "At most one" restricted e...
meran1 34527 A single axiom for proposi...
meran2 34528 A single axiom for proposi...
meran3 34529 A single axiom for proposi...
waj-ax 34530 A single axiom for proposi...
lukshef-ax2 34531 A single axiom for proposi...
arg-ax 34532 A single axiom for proposi...
negsym1 34533 In the paper "On Variable ...
imsym1 34534 A symmetry with ` -> ` . ...
bisym1 34535 A symmetry with ` <-> ` . ...
consym1 34536 A symmetry with ` /\ ` . ...
dissym1 34537 A symmetry with ` \/ ` . ...
nandsym1 34538 A symmetry with ` -/\ ` . ...
unisym1 34539 A symmetry with ` A. ` . ...
exisym1 34540 A symmetry with ` E. ` . ...
unqsym1 34541 A symmetry with ` E! ` . ...
amosym1 34542 A symmetry with ` E* ` . ...
subsym1 34543 A symmetry with ` [ x / y ...
ontopbas 34544 An ordinal number is a top...
onsstopbas 34545 The class of ordinal numbe...
onpsstopbas 34546 The class of ordinal numbe...
ontgval 34547 The topology generated fro...
ontgsucval 34548 The topology generated fro...
onsuctop 34549 A successor ordinal number...
onsuctopon 34550 One of the topologies on a...
ordtoplem 34551 Membership of the class of...
ordtop 34552 An ordinal is a topology i...
onsucconni 34553 A successor ordinal number...
onsucconn 34554 A successor ordinal number...
ordtopconn 34555 An ordinal topology is con...
onintopssconn 34556 An ordinal topology is con...
onsuct0 34557 A successor ordinal number...
ordtopt0 34558 An ordinal topology is T_0...
onsucsuccmpi 34559 The successor of a success...
onsucsuccmp 34560 The successor of a success...
limsucncmpi 34561 The successor of a limit o...
limsucncmp 34562 The successor of a limit o...
ordcmp 34563 An ordinal topology is com...
ssoninhaus 34564 The ordinal topologies ` 1...
onint1 34565 The ordinal T_1 spaces are...
oninhaus 34566 The ordinal Hausdorff spac...
fveleq 34567 Please add description her...
findfvcl 34568 Please add description her...
findreccl 34569 Please add description her...
findabrcl 34570 Please add description her...
nnssi2 34571 Convert a theorem for real...
nnssi3 34572 Convert a theorem for real...
nndivsub 34573 Please add description her...
nndivlub 34574 A factor of a positive int...
ee7.2aOLD 34577 Lemma for Euclid's Element...
dnival 34578 Value of the "distance to ...
dnicld1 34579 Closure theorem for the "d...
dnicld2 34580 Closure theorem for the "d...
dnif 34581 The "distance to nearest i...
dnizeq0 34582 The distance to nearest in...
dnizphlfeqhlf 34583 The distance to nearest in...
rddif2 34584 Variant of ~ rddif . (Con...
dnibndlem1 34585 Lemma for ~ dnibnd . (Con...
dnibndlem2 34586 Lemma for ~ dnibnd . (Con...
dnibndlem3 34587 Lemma for ~ dnibnd . (Con...
dnibndlem4 34588 Lemma for ~ dnibnd . (Con...
dnibndlem5 34589 Lemma for ~ dnibnd . (Con...
dnibndlem6 34590 Lemma for ~ dnibnd . (Con...
dnibndlem7 34591 Lemma for ~ dnibnd . (Con...
dnibndlem8 34592 Lemma for ~ dnibnd . (Con...
dnibndlem9 34593 Lemma for ~ dnibnd . (Con...
dnibndlem10 34594 Lemma for ~ dnibnd . (Con...
dnibndlem11 34595 Lemma for ~ dnibnd . (Con...
dnibndlem12 34596 Lemma for ~ dnibnd . (Con...
dnibndlem13 34597 Lemma for ~ dnibnd . (Con...
dnibnd 34598 The "distance to nearest i...
dnicn 34599 The "distance to nearest i...
knoppcnlem1 34600 Lemma for ~ knoppcn . (Co...
knoppcnlem2 34601 Lemma for ~ knoppcn . (Co...
knoppcnlem3 34602 Lemma for ~ knoppcn . (Co...
knoppcnlem4 34603 Lemma for ~ knoppcn . (Co...
knoppcnlem5 34604 Lemma for ~ knoppcn . (Co...
knoppcnlem6 34605 Lemma for ~ knoppcn . (Co...
knoppcnlem7 34606 Lemma for ~ knoppcn . (Co...
knoppcnlem8 34607 Lemma for ~ knoppcn . (Co...
knoppcnlem9 34608 Lemma for ~ knoppcn . (Co...
knoppcnlem10 34609 Lemma for ~ knoppcn . (Co...
knoppcnlem11 34610 Lemma for ~ knoppcn . (Co...
knoppcn 34611 The continuous nowhere dif...
knoppcld 34612 Closure theorem for Knopp'...
unblimceq0lem 34613 Lemma for ~ unblimceq0 . ...
unblimceq0 34614 If ` F ` is unbounded near...
unbdqndv1 34615 If the difference quotient...
unbdqndv2lem1 34616 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 34617 Lemma for ~ unbdqndv2 . (...
unbdqndv2 34618 Variant of ~ unbdqndv1 wit...
knoppndvlem1 34619 Lemma for ~ knoppndv . (C...
knoppndvlem2 34620 Lemma for ~ knoppndv . (C...
knoppndvlem3 34621 Lemma for ~ knoppndv . (C...
knoppndvlem4 34622 Lemma for ~ knoppndv . (C...
knoppndvlem5 34623 Lemma for ~ knoppndv . (C...
knoppndvlem6 34624 Lemma for ~ knoppndv . (C...
knoppndvlem7 34625 Lemma for ~ knoppndv . (C...
knoppndvlem8 34626 Lemma for ~ knoppndv . (C...
knoppndvlem9 34627 Lemma for ~ knoppndv . (C...
knoppndvlem10 34628 Lemma for ~ knoppndv . (C...
knoppndvlem11 34629 Lemma for ~ knoppndv . (C...
knoppndvlem12 34630 Lemma for ~ knoppndv . (C...
knoppndvlem13 34631 Lemma for ~ knoppndv . (C...
knoppndvlem14 34632 Lemma for ~ knoppndv . (C...
knoppndvlem15 34633 Lemma for ~ knoppndv . (C...
knoppndvlem16 34634 Lemma for ~ knoppndv . (C...
knoppndvlem17 34635 Lemma for ~ knoppndv . (C...
knoppndvlem18 34636 Lemma for ~ knoppndv . (C...
knoppndvlem19 34637 Lemma for ~ knoppndv . (C...
knoppndvlem20 34638 Lemma for ~ knoppndv . (C...
knoppndvlem21 34639 Lemma for ~ knoppndv . (C...
knoppndvlem22 34640 Lemma for ~ knoppndv . (C...
knoppndv 34641 The continuous nowhere dif...
knoppf 34642 Knopp's function is a func...
knoppcn2 34643 Variant of ~ knoppcn with ...
cnndvlem1 34644 Lemma for ~ cnndv . (Cont...
cnndvlem2 34645 Lemma for ~ cnndv . (Cont...
cnndv 34646 There exists a continuous ...
bj-mp2c 34647 A double modus ponens infe...
bj-mp2d 34648 A double modus ponens infe...
bj-0 34649 A syntactic theorem. See ...
bj-1 34650 In this proof, the use of ...
bj-a1k 34651 Weakening of ~ ax-1 . As ...
bj-poni 34652 Inference associated with ...
bj-nnclav 34653 When ` F. ` is substituted...
bj-nnclavi 34654 Inference associated with ...
bj-nnclavc 34655 Commuted form of ~ bj-nncl...
bj-nnclavci 34656 Inference associated with ...
bj-jarrii 34657 Inference associated with ...
bj-imim21 34658 The propositional function...
bj-imim21i 34659 Inference associated with ...
bj-peircestab 34660 Over minimal implicational...
bj-stabpeirce 34661 This minimal implicational...
bj-syl66ib 34662 A mixed syllogism inferenc...
bj-orim2 34663 Proof of ~ orim2 from the ...
bj-currypeirce 34664 Curry's axiom ~ curryax (a...
bj-peircecurry 34665 Peirce's axiom ~ peirce im...
bj-animbi 34666 Conjunction in terms of im...
bj-currypara 34667 Curry's paradox. Note tha...
bj-con2com 34668 A commuted form of the con...
bj-con2comi 34669 Inference associated with ...
bj-pm2.01i 34670 Inference associated with ...
bj-nimn 34671 If a formula is true, then...
bj-nimni 34672 Inference associated with ...
bj-peircei 34673 Inference associated with ...
bj-looinvi 34674 Inference associated with ...
bj-looinvii 34675 Inference associated with ...
bj-mt2bi 34676 Version of ~ mt2 where the...
bj-ntrufal 34677 The negation of a theorem ...
bj-fal 34678 Shortening of ~ fal using ...
bj-jaoi1 34679 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 34680 Shortens ~ consensus (110>...
bj-dfbi4 34681 Alternate definition of th...
bj-dfbi5 34682 Alternate definition of th...
bj-dfbi6 34683 Alternate definition of th...
bj-bijust0ALT 34684 Alternate proof of ~ bijus...
bj-bijust00 34685 A self-implication does no...
bj-consensus 34686 Version of ~ consensus exp...
bj-consensusALT 34687 Alternate proof of ~ bj-co...
bj-df-ifc 34688 Candidate definition for t...
bj-dfif 34689 Alternate definition of th...
bj-ififc 34690 A biconditional connecting...
bj-imbi12 34691 Uncurried (imported) form ...
bj-biorfi 34692 This should be labeled "bi...
bj-falor 34693 Dual of ~ truan (which has...
bj-falor2 34694 Dual of ~ truan . (Contri...
bj-bibibi 34695 A property of the bicondit...
bj-imn3ani 34696 Duplication of ~ bnj1224 ....
bj-andnotim 34697 Two ways of expressing a c...
bj-bi3ant 34698 This used to be in the mai...
bj-bisym 34699 This used to be in the mai...
bj-bixor 34700 Equivalence of two ternary...
bj-axdd2 34701 This implication, proved u...
bj-axd2d 34702 This implication, proved u...
bj-axtd 34703 This implication, proved f...
bj-gl4 34704 In a normal modal logic, t...
bj-axc4 34705 Over minimal calculus, the...
prvlem1 34710 An elementary property of ...
prvlem2 34711 An elementary property of ...
bj-babygodel 34712 See the section header com...
bj-babylob 34713 See the section header com...
bj-godellob 34714 Proof of Gödel's theo...
bj-genr 34715 Generalization rule on the...
bj-genl 34716 Generalization rule on the...
bj-genan 34717 Generalization rule on a c...
bj-mpgs 34718 From a closed form theorem...
bj-2alim 34719 Closed form of ~ 2alimi . ...
bj-2exim 34720 Closed form of ~ 2eximi . ...
bj-alanim 34721 Closed form of ~ alanimi ....
bj-2albi 34722 Closed form of ~ 2albii . ...
bj-notalbii 34723 Equivalence of universal q...
bj-2exbi 34724 Closed form of ~ 2exbii . ...
bj-3exbi 34725 Closed form of ~ 3exbii . ...
bj-sylgt2 34726 Uncurried (imported) form ...
bj-alrimg 34727 The general form of the *a...
bj-alrimd 34728 A slightly more general ~ ...
bj-sylget 34729 Dual statement of ~ sylgt ...
bj-sylget2 34730 Uncurried (imported) form ...
bj-exlimg 34731 The general form of the *e...
bj-sylge 34732 Dual statement of ~ sylg (...
bj-exlimd 34733 A slightly more general ~ ...
bj-nfimexal 34734 A weak from of nonfreeness...
bj-alexim 34735 Closed form of ~ aleximi ....
bj-nexdh 34736 Closed form of ~ nexdh (ac...
bj-nexdh2 34737 Uncurried (imported) form ...
bj-hbxfrbi 34738 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 34739 Version of ~ bj-hbxfrbi wi...
bj-exalim 34740 Distribute quantifiers ove...
bj-exalimi 34741 An inference for distribut...
bj-exalims 34742 Distributing quantifiers o...
bj-exalimsi 34743 An inference for distribut...
bj-ax12ig 34744 A lemma used to prove a we...
bj-ax12i 34745 A weakening of ~ bj-ax12ig...
bj-nfimt 34746 Closed form of ~ nfim and ...
bj-cbvalimt 34747 A lemma in closed form use...
bj-cbveximt 34748 A lemma in closed form use...
bj-eximALT 34749 Alternate proof of ~ exim ...
bj-aleximiALT 34750 Alternate proof of ~ alexi...
bj-eximcom 34751 A commuted form of ~ exim ...
bj-ax12wlem 34752 A lemma used to prove a we...
bj-cbvalim 34753 A lemma used to prove ~ bj...
bj-cbvexim 34754 A lemma used to prove ~ bj...
bj-cbvalimi 34755 An equality-free general i...
bj-cbveximi 34756 An equality-free general i...
bj-cbval 34757 Changing a bound variable ...
bj-cbvex 34758 Changing a bound variable ...
bj-ssbeq 34761 Substitution in an equalit...
bj-ssblem1 34762 A lemma for the definiens ...
bj-ssblem2 34763 An instance of ~ ax-11 pro...
bj-ax12v 34764 A weaker form of ~ ax-12 a...
bj-ax12 34765 Remove a DV condition from...
bj-ax12ssb 34766 Axiom ~ bj-ax12 expressed ...
bj-19.41al 34767 Special case of ~ 19.41 pr...
bj-equsexval 34768 Special case of ~ equsexv ...
bj-subst 34769 Proof of ~ sbalex from cor...
bj-ssbid2 34770 A special case of ~ sbequ2...
bj-ssbid2ALT 34771 Alternate proof of ~ bj-ss...
bj-ssbid1 34772 A special case of ~ sbequ1...
bj-ssbid1ALT 34773 Alternate proof of ~ bj-ss...
bj-ax6elem1 34774 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 34775 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 34776 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 34777 Closed form of ~ spimvw . ...
bj-spnfw 34778 Theorem close to a closed ...
bj-cbvexiw 34779 Change bound variable. Th...
bj-cbvexivw 34780 Change bound variable. Th...
bj-modald 34781 A short form of the axiom ...
bj-denot 34782 A weakening of ~ ax-6 and ...
bj-eqs 34783 A lemma for substitutions,...
bj-cbvexw 34784 Change bound variable. Th...
bj-ax12w 34785 The general statement that...
bj-ax89 34786 A theorem which could be u...
bj-elequ12 34787 An identity law for the no...
bj-cleljusti 34788 One direction of ~ cleljus...
bj-alcomexcom 34789 Commutation of universal q...
bj-hbalt 34790 Closed form of ~ hbal . W...
axc11n11 34791 Proof of ~ axc11n from { ~...
axc11n11r 34792 Proof of ~ axc11n from { ~...
bj-axc16g16 34793 Proof of ~ axc16g from { ~...
bj-ax12v3 34794 A weak version of ~ ax-12 ...
bj-ax12v3ALT 34795 Alternate proof of ~ bj-ax...
bj-sb 34796 A weak variant of ~ sbid2 ...
bj-modalbe 34797 The predicate-calculus ver...
bj-spst 34798 Closed form of ~ sps . On...
bj-19.21bit 34799 Closed form of ~ 19.21bi ....
bj-19.23bit 34800 Closed form of ~ 19.23bi ....
bj-nexrt 34801 Closed form of ~ nexr . C...
bj-alrim 34802 Closed form of ~ alrimi . ...
bj-alrim2 34803 Uncurried (imported) form ...
bj-nfdt0 34804 A theorem close to a close...
bj-nfdt 34805 Closed form of ~ nf5d and ...
bj-nexdt 34806 Closed form of ~ nexd . (...
bj-nexdvt 34807 Closed form of ~ nexdv . ...
bj-alexbiex 34808 Adding a second quantifier...
bj-exexbiex 34809 Adding a second quantifier...
bj-alalbial 34810 Adding a second quantifier...
bj-exalbial 34811 Adding a second quantifier...
bj-19.9htbi 34812 Strengthening ~ 19.9ht by ...
bj-hbntbi 34813 Strengthening ~ hbnt by re...
bj-biexal1 34814 A general FOL biconditiona...
bj-biexal2 34815 When ` ph ` is substituted...
bj-biexal3 34816 When ` ph ` is substituted...
bj-bialal 34817 When ` ph ` is substituted...
bj-biexex 34818 When ` ph ` is substituted...
bj-hbext 34819 Closed form of ~ hbex . (...
bj-nfalt 34820 Closed form of ~ nfal . (...
bj-nfext 34821 Closed form of ~ nfex . (...
bj-eeanvw 34822 Version of ~ exdistrv with...
bj-modal4 34823 First-order logic form of ...
bj-modal4e 34824 First-order logic form of ...
bj-modalb 34825 A short form of the axiom ...
bj-wnf1 34826 When ` ph ` is substituted...
bj-wnf2 34827 When ` ph ` is substituted...
bj-wnfanf 34828 When ` ph ` is substituted...
bj-wnfenf 34829 When ` ph ` is substituted...
bj-substax12 34830 Equivalent form of the axi...
bj-substw 34831 Weak form of the LHS of ~ ...
bj-nnfbi 34834 If two formulas are equiva...
bj-nnfbd 34835 If two formulas are equiva...
bj-nnfbii 34836 If two formulas are equiva...
bj-nnfa 34837 Nonfreeness implies the eq...
bj-nnfad 34838 Nonfreeness implies the eq...
bj-nnfai 34839 Nonfreeness implies the eq...
bj-nnfe 34840 Nonfreeness implies the eq...
bj-nnfed 34841 Nonfreeness implies the eq...
bj-nnfei 34842 Nonfreeness implies the eq...
bj-nnfea 34843 Nonfreeness implies the eq...
bj-nnfead 34844 Nonfreeness implies the eq...
bj-nnfeai 34845 Nonfreeness implies the eq...
bj-dfnnf2 34846 Alternate definition of ~ ...
bj-nnfnfTEMP 34847 New nonfreeness implies ol...
bj-wnfnf 34848 When ` ph ` is substituted...
bj-nnfnt 34849 A variable is nonfree in a...
bj-nnftht 34850 A variable is nonfree in a...
bj-nnfth 34851 A variable is nonfree in a...
bj-nnfnth 34852 A variable is nonfree in t...
bj-nnfim1 34853 A consequence of nonfreene...
bj-nnfim2 34854 A consequence of nonfreene...
bj-nnfim 34855 Nonfreeness in the anteced...
bj-nnfimd 34856 Nonfreeness in the anteced...
bj-nnfan 34857 Nonfreeness in both conjun...
bj-nnfand 34858 Nonfreeness in both conjun...
bj-nnfor 34859 Nonfreeness in both disjun...
bj-nnford 34860 Nonfreeness in both disjun...
bj-nnfbit 34861 Nonfreeness in both sides ...
bj-nnfbid 34862 Nonfreeness in both sides ...
bj-nnfv 34863 A non-occurring variable i...
bj-nnf-alrim 34864 Proof of the closed form o...
bj-nnf-exlim 34865 Proof of the closed form o...
bj-dfnnf3 34866 Alternate definition of no...
bj-nfnnfTEMP 34867 New nonfreeness is equival...
bj-nnfa1 34868 See ~ nfa1 . (Contributed...
bj-nnfe1 34869 See ~ nfe1 . (Contributed...
bj-19.12 34870 See ~ 19.12 . Could be la...
bj-nnflemaa 34871 One of four lemmas for non...
bj-nnflemee 34872 One of four lemmas for non...
bj-nnflemae 34873 One of four lemmas for non...
bj-nnflemea 34874 One of four lemmas for non...
bj-nnfalt 34875 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 34876 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 34877 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 34878 Statement ~ 19.21t proved ...
bj-19.23t 34879 Statement ~ 19.23t proved ...
bj-19.36im 34880 One direction of ~ 19.36 f...
bj-19.37im 34881 One direction of ~ 19.37 f...
bj-19.42t 34882 Closed form of ~ 19.42 fro...
bj-19.41t 34883 Closed form of ~ 19.41 fro...
bj-sbft 34884 Version of ~ sbft using ` ...
bj-pm11.53vw 34885 Version of ~ pm11.53v with...
bj-pm11.53v 34886 Version of ~ pm11.53v with...
bj-pm11.53a 34887 A variant of ~ pm11.53v . ...
bj-equsvt 34888 A variant of ~ equsv . (C...
bj-equsalvwd 34889 Variant of ~ equsalvw . (...
bj-equsexvwd 34890 Variant of ~ equsexvw . (...
bj-sbievwd 34891 Variant of ~ sbievw . (Co...
bj-axc10 34892 Alternate proof of ~ axc10...
bj-alequex 34893 A fol lemma. See ~ aleque...
bj-spimt2 34894 A step in the proof of ~ s...
bj-cbv3ta 34895 Closed form of ~ cbv3 . (...
bj-cbv3tb 34896 Closed form of ~ cbv3 . (...
bj-hbsb3t 34897 A theorem close to a close...
bj-hbsb3 34898 Shorter proof of ~ hbsb3 ....
bj-nfs1t 34899 A theorem close to a close...
bj-nfs1t2 34900 A theorem close to a close...
bj-nfs1 34901 Shorter proof of ~ nfs1 (t...
bj-axc10v 34902 Version of ~ axc10 with a ...
bj-spimtv 34903 Version of ~ spimt with a ...
bj-cbv3hv2 34904 Version of ~ cbv3h with tw...
bj-cbv1hv 34905 Version of ~ cbv1h with a ...
bj-cbv2hv 34906 Version of ~ cbv2h with a ...
bj-cbv2v 34907 Version of ~ cbv2 with a d...
bj-cbvaldv 34908 Version of ~ cbvald with a...
bj-cbvexdv 34909 Version of ~ cbvexd with a...
bj-cbval2vv 34910 Version of ~ cbval2vv with...
bj-cbvex2vv 34911 Version of ~ cbvex2vv with...
bj-cbvaldvav 34912 Version of ~ cbvaldva with...
bj-cbvexdvav 34913 Version of ~ cbvexdva with...
bj-cbvex4vv 34914 Version of ~ cbvex4v with ...
bj-equsalhv 34915 Version of ~ equsalh with ...
bj-axc11nv 34916 Version of ~ axc11n with a...
bj-aecomsv 34917 Version of ~ aecoms with a...
bj-axc11v 34918 Version of ~ axc11 with a ...
bj-drnf2v 34919 Version of ~ drnf2 with a ...
bj-equs45fv 34920 Version of ~ equs45f with ...
bj-hbs1 34921 Version of ~ hbsb2 with a ...
bj-nfs1v 34922 Version of ~ nfsb2 with a ...
bj-hbsb2av 34923 Version of ~ hbsb2a with a...
bj-hbsb3v 34924 Version of ~ hbsb3 with a ...
bj-nfsab1 34925 Remove dependency on ~ ax-...
bj-dtru 34926 Remove dependency on ~ ax-...
bj-dtrucor2v 34927 Version of ~ dtrucor2 with...
bj-hbaeb2 34928 Biconditional version of a...
bj-hbaeb 34929 Biconditional version of ~...
bj-hbnaeb 34930 Biconditional version of ~...
bj-dvv 34931 A special instance of ~ bj...
bj-equsal1t 34932 Duplication of ~ wl-equsal...
bj-equsal1ti 34933 Inference associated with ...
bj-equsal1 34934 One direction of ~ equsal ...
bj-equsal2 34935 One direction of ~ equsal ...
bj-equsal 34936 Shorter proof of ~ equsal ...
stdpc5t 34937 Closed form of ~ stdpc5 . ...
bj-stdpc5 34938 More direct proof of ~ std...
2stdpc5 34939 A double ~ stdpc5 (one dir...
bj-19.21t0 34940 Proof of ~ 19.21t from ~ s...
exlimii 34941 Inference associated with ...
ax11-pm 34942 Proof of ~ ax-11 similar t...
ax6er 34943 Commuted form of ~ ax6e . ...
exlimiieq1 34944 Inferring a theorem when i...
exlimiieq2 34945 Inferring a theorem when i...
ax11-pm2 34946 Proof of ~ ax-11 from the ...
bj-sbsb 34947 Biconditional showing two ...
bj-dfsb2 34948 Alternate (dual) definitio...
bj-sbf3 34949 Substitution has no effect...
bj-sbf4 34950 Substitution has no effect...
bj-sbnf 34951 Move nonfree predicate in ...
bj-eu3f 34952 Version of ~ eu3v where th...
bj-sblem1 34953 Lemma for substitution. (...
bj-sblem2 34954 Lemma for substitution. (...
bj-sblem 34955 Lemma for substitution. (...
bj-sbievw1 34956 Lemma for substitution. (...
bj-sbievw2 34957 Lemma for substitution. (...
bj-sbievw 34958 Lemma for substitution. C...
bj-sbievv 34959 Version of ~ sbie with a s...
bj-moeub 34960 Uniqueness is equivalent t...
bj-sbidmOLD 34961 Obsolete proof of ~ sbidm ...
bj-dvelimdv 34962 Deduction form of ~ dvelim...
bj-dvelimdv1 34963 Curried (exported) form of...
bj-dvelimv 34964 A version of ~ dvelim usin...
bj-nfeel2 34965 Nonfreeness in a membershi...
bj-axc14nf 34966 Proof of a version of ~ ax...
bj-axc14 34967 Alternate proof of ~ axc14...
mobidvALT 34968 Alternate proof of ~ mobid...
sbn1ALT 34969 Alternate proof of ~ sbn1 ...
eliminable1 34970 A theorem used to prove th...
eliminable2a 34971 A theorem used to prove th...
eliminable2b 34972 A theorem used to prove th...
eliminable2c 34973 A theorem used to prove th...
eliminable3a 34974 A theorem used to prove th...
eliminable3b 34975 A theorem used to prove th...
eliminable-velab 34976 A theorem used to prove th...
eliminable-veqab 34977 A theorem used to prove th...
eliminable-abeqv 34978 A theorem used to prove th...
eliminable-abeqab 34979 A theorem used to prove th...
eliminable-abelv 34980 A theorem used to prove th...
eliminable-abelab 34981 A theorem used to prove th...
bj-denoteslem 34982 Lemma for ~ bj-denotes . ...
bj-denotes 34983 This would be the justific...
bj-issettru 34984 Weak version of ~ isset wi...
bj-elabtru 34985 This is as close as we can...
bj-issetwt 34986 Closed form of ~ bj-issetw...
bj-issetw 34987 The closest one can get to...
bj-elissetALT 34988 Alternate proof of ~ eliss...
bj-issetiv 34989 Version of ~ bj-isseti wit...
bj-isseti 34990 Version of ~ isseti with a...
bj-ralvw 34991 A weak version of ~ ralv n...
bj-rexvw 34992 A weak version of ~ rexv n...
bj-rababw 34993 A weak version of ~ rabab ...
bj-rexcom4bv 34994 Version of ~ rexcom4b and ...
bj-rexcom4b 34995 Remove from ~ rexcom4b dep...
bj-ceqsalt0 34996 The FOL content of ~ ceqsa...
bj-ceqsalt1 34997 The FOL content of ~ ceqsa...
bj-ceqsalt 34998 Remove from ~ ceqsalt depe...
bj-ceqsaltv 34999 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 35000 The FOL content of ~ ceqsa...
bj-ceqsalg 35001 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 35002 Alternate proof of ~ bj-ce...
bj-ceqsalgv 35003 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 35004 Alternate proof of ~ bj-ce...
bj-ceqsal 35005 Remove from ~ ceqsal depen...
bj-ceqsalv 35006 Remove from ~ ceqsalv depe...
bj-spcimdv 35007 Remove from ~ spcimdv depe...
bj-spcimdvv 35008 Remove from ~ spcimdv depe...
elelb 35009 Equivalence between two co...
bj-pwvrelb 35010 Characterization of the el...
bj-nfcsym 35011 The nonfreeness quantifier...
bj-sbeqALT 35012 Substitution in an equalit...
bj-sbeq 35013 Distribute proper substitu...
bj-sbceqgALT 35014 Distribute proper substitu...
bj-csbsnlem 35015 Lemma for ~ bj-csbsn (in t...
bj-csbsn 35016 Substitution in a singleto...
bj-sbel1 35017 Version of ~ sbcel1g when ...
bj-abv 35018 The class of sets verifyin...
bj-abvALT 35019 Alternate version of ~ bj-...
bj-ab0 35020 The class of sets verifyin...
bj-abf 35021 Shorter proof of ~ abf (wh...
bj-csbprc 35022 More direct proof of ~ csb...
bj-exlimvmpi 35023 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 35024 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 35025 Lemma for theorems of the ...
bj-exlimmpbir 35026 Lemma for theorems of the ...
bj-vtoclf 35027 Remove dependency on ~ ax-...
bj-vtocl 35028 Remove dependency on ~ ax-...
bj-vtoclg1f1 35029 The FOL content of ~ vtocl...
bj-vtoclg1f 35030 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 35031 Version of ~ bj-vtoclg1f w...
bj-vtoclg 35032 A version of ~ vtoclg with...
bj-rabbida2 35033 Version of ~ rabbidva2 wit...
bj-rabeqd 35034 Deduction form of ~ rabeq ...
bj-rabeqbid 35035 Version of ~ rabeqbidv wit...
bj-rabeqbida 35036 Version of ~ rabeqbidva wi...
bj-seex 35037 Version of ~ seex with a d...
bj-nfcf 35038 Version of ~ df-nfc with a...
bj-zfauscl 35039 General version of ~ zfaus...
bj-elabd2ALT 35040 Alternate proof of ~ elabd...
bj-unrab 35041 Generalization of ~ unrab ...
bj-inrab 35042 Generalization of ~ inrab ...
bj-inrab2 35043 Shorter proof of ~ inrab ....
bj-inrab3 35044 Generalization of ~ dfrab3...
bj-rabtr 35045 Restricted class abstracti...
bj-rabtrALT 35046 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 35047 Proof of ~ bj-rabtr found ...
bj-gabss 35050 Inclusion of generalized c...
bj-gabssd 35051 Inclusion of generalized c...
bj-gabeqd 35052 Equality of generalized cl...
bj-gabeqis 35053 Equality of generalized cl...
bj-elgab 35054 Elements of a generalized ...
bj-gabima 35055 Generalized class abstract...
bj-ru0 35058 The FOL part of Russell's ...
bj-ru1 35059 A version of Russell's par...
bj-ru 35060 Remove dependency on ~ ax-...
currysetlem 35061 Lemma for ~ currysetlem , ...
curryset 35062 Curry's paradox in set the...
currysetlem1 35063 Lemma for ~ currysetALT . ...
currysetlem2 35064 Lemma for ~ currysetALT . ...
currysetlem3 35065 Lemma for ~ currysetALT . ...
currysetALT 35066 Alternate proof of ~ curry...
bj-n0i 35067 Inference associated with ...
bj-disjcsn 35068 A class is disjoint from i...
bj-disjsn01 35069 Disjointness of the single...
bj-0nel1 35070 The empty set does not bel...
bj-1nel0 35071 ` 1o ` does not belong to ...
bj-xpimasn 35072 The image of a singleton, ...
bj-xpima1sn 35073 The image of a singleton b...
bj-xpima1snALT 35074 Alternate proof of ~ bj-xp...
bj-xpima2sn 35075 The image of a singleton b...
bj-xpnzex 35076 If the first factor of a p...
bj-xpexg2 35077 Curried (exported) form of...
bj-xpnzexb 35078 If the first factor of a p...
bj-cleq 35079 Substitution property for ...
bj-snsetex 35080 The class of sets "whose s...
bj-clex 35081 Sethood of certain classes...
bj-sngleq 35084 Substitution property for ...
bj-elsngl 35085 Characterization of the el...
bj-snglc 35086 Characterization of the el...
bj-snglss 35087 The singletonization of a ...
bj-0nelsngl 35088 The empty set is not a mem...
bj-snglinv 35089 Inverse of singletonizatio...
bj-snglex 35090 A class is a set if and on...
bj-tageq 35093 Substitution property for ...
bj-eltag 35094 Characterization of the el...
bj-0eltag 35095 The empty set belongs to t...
bj-tagn0 35096 The tagging of a class is ...
bj-tagss 35097 The tagging of a class is ...
bj-snglsstag 35098 The singletonization is in...
bj-sngltagi 35099 The singletonization is in...
bj-sngltag 35100 The singletonization and t...
bj-tagci 35101 Characterization of the el...
bj-tagcg 35102 Characterization of the el...
bj-taginv 35103 Inverse of tagging. (Cont...
bj-tagex 35104 A class is a set if and on...
bj-xtageq 35105 The products of a given cl...
bj-xtagex 35106 The product of a set and t...
bj-projeq 35109 Substitution property for ...
bj-projeq2 35110 Substitution property for ...
bj-projun 35111 The class projection on a ...
bj-projex 35112 Sethood of the class proje...
bj-projval 35113 Value of the class project...
bj-1upleq 35116 Substitution property for ...
bj-pr1eq 35119 Substitution property for ...
bj-pr1un 35120 The first projection prese...
bj-pr1val 35121 Value of the first project...
bj-pr11val 35122 Value of the first project...
bj-pr1ex 35123 Sethood of the first proje...
bj-1uplth 35124 The characteristic propert...
bj-1uplex 35125 A monuple is a set if and ...
bj-1upln0 35126 A monuple is nonempty. (C...
bj-2upleq 35129 Substitution property for ...
bj-pr21val 35130 Value of the first project...
bj-pr2eq 35133 Substitution property for ...
bj-pr2un 35134 The second projection pres...
bj-pr2val 35135 Value of the second projec...
bj-pr22val 35136 Value of the second projec...
bj-pr2ex 35137 Sethood of the second proj...
bj-2uplth 35138 The characteristic propert...
bj-2uplex 35139 A couple is a set if and o...
bj-2upln0 35140 A couple is nonempty. (Co...
bj-2upln1upl 35141 A couple is never equal to...
bj-rcleqf 35142 Relative version of ~ cleq...
bj-rcleq 35143 Relative version of ~ dfcl...
bj-reabeq 35144 Relative form of ~ abeq2 ....
bj-disj2r 35145 Relative version of ~ ssdi...
bj-sscon 35146 Contraposition law for rel...
eleq2w2ALT 35147 Alternate proof of ~ eleq2...
bj-clel3gALT 35148 Alternate proof of ~ clel3...
bj-pw0ALT 35149 Alternate proof of ~ pw0 ....
bj-sselpwuni 35150 Quantitative version of ~ ...
bj-unirel 35151 Quantitative version of ~ ...
bj-elpwg 35152 If the intersection of two...
bj-vjust 35153 Justification theorem for ...
bj-nul 35154 Two formulations of the ax...
bj-nuliota 35155 Definition of the empty se...
bj-nuliotaALT 35156 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 35157 Alternate proof of ~ vtocl...
bj-elsn12g 35158 Join of ~ elsng and ~ elsn...
bj-elsnb 35159 Biconditional version of ~...
bj-pwcfsdom 35160 Remove hypothesis from ~ p...
bj-grur1 35161 Remove hypothesis from ~ g...
bj-bm1.3ii 35162 The extension of a predica...
bj-dfid2ALT 35163 Alternate version of ~ dfi...
bj-0nelopab 35164 The empty set is never an ...
bj-brrelex12ALT 35165 Two classes related by a b...
bj-epelg 35166 The membership relation an...
bj-epelb 35167 Two classes are related by...
bj-nsnid 35168 A set does not contain the...
bj-rdg0gALT 35169 Alternate proof of ~ rdg0g...
bj-evaleq 35170 Equality theorem for the `...
bj-evalfun 35171 The evaluation at a class ...
bj-evalfn 35172 The evaluation at a class ...
bj-evalval 35173 Value of the evaluation at...
bj-evalid 35174 The evaluation at a set of...
bj-ndxarg 35175 Proof of ~ ndxarg from ~ b...
bj-evalidval 35176 Closed general form of ~ s...
bj-rest00 35179 An elementwise intersectio...
bj-restsn 35180 An elementwise intersectio...
bj-restsnss 35181 Special case of ~ bj-rests...
bj-restsnss2 35182 Special case of ~ bj-rests...
bj-restsn0 35183 An elementwise intersectio...
bj-restsn10 35184 Special case of ~ bj-rests...
bj-restsnid 35185 The elementwise intersecti...
bj-rest10 35186 An elementwise intersectio...
bj-rest10b 35187 Alternate version of ~ bj-...
bj-restn0 35188 An elementwise intersectio...
bj-restn0b 35189 Alternate version of ~ bj-...
bj-restpw 35190 The elementwise intersecti...
bj-rest0 35191 An elementwise intersectio...
bj-restb 35192 An elementwise intersectio...
bj-restv 35193 An elementwise intersectio...
bj-resta 35194 An elementwise intersectio...
bj-restuni 35195 The union of an elementwis...
bj-restuni2 35196 The union of an elementwis...
bj-restreg 35197 A reformulation of the axi...
bj-raldifsn 35198 All elements in a set sati...
bj-0int 35199 If ` A ` is a collection o...
bj-mooreset 35200 A Moore collection is a se...
bj-ismoore 35203 Characterization of Moore ...
bj-ismoored0 35204 Necessary condition to be ...
bj-ismoored 35205 Necessary condition to be ...
bj-ismoored2 35206 Necessary condition to be ...
bj-ismooredr 35207 Sufficient condition to be...
bj-ismooredr2 35208 Sufficient condition to be...
bj-discrmoore 35209 The powerclass ` ~P A ` is...
bj-0nmoore 35210 The empty set is not a Moo...
bj-snmoore 35211 A singleton is a Moore col...
bj-snmooreb 35212 A singleton is a Moore col...
bj-prmoore 35213 A pair formed of two neste...
bj-0nelmpt 35214 The empty set is not an el...
bj-mptval 35215 Value of a function given ...
bj-dfmpoa 35216 An equivalent definition o...
bj-mpomptALT 35217 Alternate proof of ~ mpomp...
setsstrset 35234 Relation between ~ df-sets...
bj-nfald 35235 Variant of ~ nfald . (Con...
bj-nfexd 35236 Variant of ~ nfexd . (Con...
copsex2d 35237 Implicit substitution dedu...
copsex2b 35238 Biconditional form of ~ co...
opelopabd 35239 Membership of an ordere pa...
opelopabb 35240 Membership of an ordered p...
opelopabbv 35241 Membership of an ordered p...
bj-opelrelex 35242 The coordinates of an orde...
bj-opelresdm 35243 If an ordered pair is in a...
bj-brresdm 35244 If two classes are related...
brabd0 35245 Expressing that two sets a...
brabd 35246 Expressing that two sets a...
bj-brab2a1 35247 "Unbounded" version of ~ b...
bj-opabssvv 35248 A variant of ~ relopabiv (...
bj-funidres 35249 The restricted identity re...
bj-opelidb 35250 Characterization of the or...
bj-opelidb1 35251 Characterization of the or...
bj-inexeqex 35252 Lemma for ~ bj-opelid (but...
bj-elsn0 35253 If the intersection of two...
bj-opelid 35254 Characterization of the or...
bj-ideqg 35255 Characterization of the cl...
bj-ideqgALT 35256 Alternate proof of ~ bj-id...
bj-ideqb 35257 Characterization of classe...
bj-idres 35258 Alternate expression for t...
bj-opelidres 35259 Characterization of the or...
bj-idreseq 35260 Sufficient condition for t...
bj-idreseqb 35261 Characterization for two c...
bj-ideqg1 35262 For sets, the identity rel...
bj-ideqg1ALT 35263 Alternate proof of bj-ideq...
bj-opelidb1ALT 35264 Characterization of the co...
bj-elid3 35265 Characterization of the co...
bj-elid4 35266 Characterization of the el...
bj-elid5 35267 Characterization of the el...
bj-elid6 35268 Characterization of the el...
bj-elid7 35269 Characterization of the el...
bj-diagval 35272 Value of the functionalize...
bj-diagval2 35273 Value of the functionalize...
bj-eldiag 35274 Characterization of the el...
bj-eldiag2 35275 Characterization of the el...
bj-imdirvallem 35278 Lemma for ~ bj-imdirval an...
bj-imdirval 35279 Value of the functionalize...
bj-imdirval2lem 35280 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 35281 Value of the functionalize...
bj-imdirval3 35282 Value of the functionalize...
bj-imdiridlem 35283 Lemma for ~ bj-imdirid and...
bj-imdirid 35284 Functorial property of the...
bj-opelopabid 35285 Membership in an ordered-p...
bj-opabco 35286 Composition of ordered-pai...
bj-xpcossxp 35287 The composition of two Car...
bj-imdirco 35288 Functorial property of the...
bj-iminvval 35291 Value of the functionalize...
bj-iminvval2 35292 Value of the functionalize...
bj-iminvid 35293 Functorial property of the...
bj-inftyexpitaufo 35300 The function ` inftyexpita...
bj-inftyexpitaudisj 35303 An element of the circle a...
bj-inftyexpiinv 35306 Utility theorem for the in...
bj-inftyexpiinj 35307 Injectivity of the paramet...
bj-inftyexpidisj 35308 An element of the circle a...
bj-ccinftydisj 35311 The circle at infinity is ...
bj-elccinfty 35312 A lemma for infinite exten...
bj-ccssccbar 35315 Complex numbers are extend...
bj-ccinftyssccbar 35316 Infinite extended complex ...
bj-pinftyccb 35319 The class ` pinfty ` is an...
bj-pinftynrr 35320 The extended complex numbe...
bj-minftyccb 35323 The class ` minfty ` is an...
bj-minftynrr 35324 The extended complex numbe...
bj-pinftynminfty 35325 The extended complex numbe...
bj-rrhatsscchat 35334 The real projective line i...
bj-imafv 35349 If the direct image of a s...
bj-funun 35350 Value of a function expres...
bj-fununsn1 35351 Value of a function expres...
bj-fununsn2 35352 Value of a function expres...
bj-fvsnun1 35353 The value of a function wi...
bj-fvsnun2 35354 The value of a function wi...
bj-fvmptunsn1 35355 Value of a function expres...
bj-fvmptunsn2 35356 Value of a function expres...
bj-iomnnom 35357 The canonical bijection fr...
bj-smgrpssmgm 35366 Semigroups are magmas. (C...
bj-smgrpssmgmel 35367 Semigroups are magmas (ele...
bj-mndsssmgrp 35368 Monoids are semigroups. (...
bj-mndsssmgrpel 35369 Monoids are semigroups (el...
bj-cmnssmnd 35370 Commutative monoids are mo...
bj-cmnssmndel 35371 Commutative monoids are mo...
bj-grpssmnd 35372 Groups are monoids. (Cont...
bj-grpssmndel 35373 Groups are monoids (elemen...
bj-ablssgrp 35374 Abelian groups are groups....
bj-ablssgrpel 35375 Abelian groups are groups ...
bj-ablsscmn 35376 Abelian groups are commuta...
bj-ablsscmnel 35377 Abelian groups are commuta...
bj-modssabl 35378 (The additive groups of) m...
bj-vecssmod 35379 Vector spaces are modules....
bj-vecssmodel 35380 Vector spaces are modules ...
bj-finsumval0 35383 Value of a finite sum. (C...
bj-fvimacnv0 35384 Variant of ~ fvimacnv wher...
bj-isvec 35385 The predicate "is a vector...
bj-fldssdrng 35386 Fields are division rings....
bj-flddrng 35387 Fields are division rings ...
bj-rrdrg 35388 The field of real numbers ...
bj-isclm 35389 The predicate "is a subcom...
bj-isrvec 35392 The predicate "is a real v...
bj-rvecmod 35393 Real vector spaces are mod...
bj-rvecssmod 35394 Real vector spaces are mod...
bj-rvecrr 35395 The field of scalars of a ...
bj-isrvecd 35396 The predicate "is a real v...
bj-rvecvec 35397 Real vector spaces are vec...
bj-isrvec2 35398 The predicate "is a real v...
bj-rvecssvec 35399 Real vector spaces are vec...
bj-rveccmod 35400 Real vector spaces are sub...
bj-rvecsscmod 35401 Real vector spaces are sub...
bj-rvecsscvec 35402 Real vector spaces are sub...
bj-rveccvec 35403 Real vector spaces are sub...
bj-rvecssabl 35404 (The additive groups of) r...
bj-rvecabl 35405 (The additive groups of) r...
bj-subcom 35406 A consequence of commutati...
bj-lineqi 35407 Solution of a (scalar) lin...
bj-bary1lem 35408 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 35409 Lemma for bj-bary1: comput...
bj-bary1 35410 Barycentric coordinates in...
bj-endval 35413 Value of the monoid of end...
bj-endbase 35414 Base set of the monoid of ...
bj-endcomp 35415 Composition law of the mon...
bj-endmnd 35416 The monoid of endomorphism...
taupilem3 35417 Lemma for tau-related theo...
taupilemrplb 35418 A set of positive reals ha...
taupilem1 35419 Lemma for ~ taupi . A pos...
taupilem2 35420 Lemma for ~ taupi . The s...
taupi 35421 Relationship between ` _ta...
dfgcd3 35422 Alternate definition of th...
irrdifflemf 35423 Lemma for ~ irrdiff . The...
irrdiff 35424 The irrationals are exactl...
iccioo01 35425 The closed unit interval i...
csbrecsg 35426 Move class substitution in...
csbrdgg 35427 Move class substitution in...
csboprabg 35428 Move class substitution in...
csbmpo123 35429 Move class substitution in...
con1bii2 35430 A contraposition inference...
con2bii2 35431 A contraposition inference...
vtoclefex 35432 Implicit substitution of a...
rnmptsn 35433 The range of a function ma...
f1omptsnlem 35434 This is the core of the pr...
f1omptsn 35435 A function mapping to sing...
mptsnunlem 35436 This is the core of the pr...
mptsnun 35437 A class ` B ` is equal to ...
dissneqlem 35438 This is the core of the pr...
dissneq 35439 Any topology that contains...
exlimim 35440 Closed form of ~ exlimimd ...
exlimimd 35441 Existential elimination ru...
exellim 35442 Closed form of ~ exellimdd...
exellimddv 35443 Eliminate an antecedent wh...
topdifinfindis 35444 Part of Exercise 3 of [Mun...
topdifinffinlem 35445 This is the core of the pr...
topdifinffin 35446 Part of Exercise 3 of [Mun...
topdifinf 35447 Part of Exercise 3 of [Mun...
topdifinfeq 35448 Two different ways of defi...
icorempo 35449 Closed-below, open-above i...
icoreresf 35450 Closed-below, open-above i...
icoreval 35451 Value of the closed-below,...
icoreelrnab 35452 Elementhood in the set of ...
isbasisrelowllem1 35453 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 35454 Lemma for ~ isbasisrelowl ...
icoreclin 35455 The set of closed-below, o...
isbasisrelowl 35456 The set of all closed-belo...
icoreunrn 35457 The union of all closed-be...
istoprelowl 35458 The set of all closed-belo...
icoreelrn 35459 A class abstraction which ...
iooelexlt 35460 An element of an open inte...
relowlssretop 35461 The lower limit topology o...
relowlpssretop 35462 The lower limit topology o...
sucneqond 35463 Inequality of an ordinal s...
sucneqoni 35464 Inequality of an ordinal s...
onsucuni3 35465 If an ordinal number has a...
1oequni2o 35466 The ordinal number ` 1o ` ...
rdgsucuni 35467 If an ordinal number has a...
rdgeqoa 35468 If a recursive function wi...
elxp8 35469 Membership in a Cartesian ...
cbveud 35470 Deduction used to change b...
cbvreud 35471 Deduction used to change b...
difunieq 35472 The difference of unions i...
inunissunidif 35473 Theorem about subsets of t...
rdgellim 35474 Elementhood in a recursive...
rdglimss 35475 A recursive definition at ...
rdgssun 35476 In a recursive definition ...
exrecfnlem 35477 Lemma for ~ exrecfn . (Co...
exrecfn 35478 Theorem about the existenc...
exrecfnpw 35479 For any base set, a set wh...
finorwe 35480 If the Axiom of Infinity i...
dffinxpf 35483 This theorem is the same a...
finxpeq1 35484 Equality theorem for Carte...
finxpeq2 35485 Equality theorem for Carte...
csbfinxpg 35486 Distribute proper substitu...
finxpreclem1 35487 Lemma for ` ^^ ` recursion...
finxpreclem2 35488 Lemma for ` ^^ ` recursion...
finxp0 35489 The value of Cartesian exp...
finxp1o 35490 The value of Cartesian exp...
finxpreclem3 35491 Lemma for ` ^^ ` recursion...
finxpreclem4 35492 Lemma for ` ^^ ` recursion...
finxpreclem5 35493 Lemma for ` ^^ ` recursion...
finxpreclem6 35494 Lemma for ` ^^ ` recursion...
finxpsuclem 35495 Lemma for ~ finxpsuc . (C...
finxpsuc 35496 The value of Cartesian exp...
finxp2o 35497 The value of Cartesian exp...
finxp3o 35498 The value of Cartesian exp...
finxpnom 35499 Cartesian exponentiation w...
finxp00 35500 Cartesian exponentiation o...
iunctb2 35501 Using the axiom of countab...
domalom 35502 A class which dominates ev...
isinf2 35503 The converse of ~ isinf . ...
ctbssinf 35504 Using the axiom of choice,...
ralssiun 35505 The index set of an indexe...
nlpineqsn 35506 For every point ` p ` of a...
nlpfvineqsn 35507 Given a subset ` A ` of ` ...
fvineqsnf1 35508 A theorem about functions ...
fvineqsneu 35509 A theorem about functions ...
fvineqsneq 35510 A theorem about functions ...
pibp16 35511 Property P000016 of pi-bas...
pibp19 35512 Property P000019 of pi-bas...
pibp21 35513 Property P000021 of pi-bas...
pibt1 35514 Theorem T000001 of pi-base...
pibt2 35515 Theorem T000002 of pi-base...
wl-section-prop 35516 Intuitionistic logic is no...
wl-section-boot 35520 In this section, I provide...
wl-luk-imim1i 35521 Inference adding common co...
wl-luk-syl 35522 An inference version of th...
wl-luk-imtrid 35523 A syllogism rule of infere...
wl-luk-pm2.18d 35524 Deduction based on reducti...
wl-luk-con4i 35525 Inference rule. Copy of ~...
wl-luk-pm2.24i 35526 Inference rule. Copy of ~...
wl-luk-a1i 35527 Inference rule. Copy of ~...
wl-luk-mpi 35528 A nested modus ponens infe...
wl-luk-imim2i 35529 Inference adding common an...
wl-luk-imtrdi 35530 A syllogism rule of infere...
wl-luk-ax3 35531 ~ ax-3 proved from Lukasie...
wl-luk-ax1 35532 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 35533 This theorem, called "Asse...
wl-luk-com12 35534 Inference that swaps (comm...
wl-luk-pm2.21 35535 From a wff and its negatio...
wl-luk-con1i 35536 A contraposition inference...
wl-luk-ja 35537 Inference joining the ante...
wl-luk-imim2 35538 A closed form of syllogism...
wl-luk-a1d 35539 Deduction introducing an e...
wl-luk-ax2 35540 ~ ax-2 proved from Lukasie...
wl-luk-id 35541 Principle of identity. Th...
wl-luk-notnotr 35542 Converse of double negatio...
wl-luk-pm2.04 35543 Swap antecedents. Theorem...
wl-section-impchain 35544 An implication like ` ( ps...
wl-impchain-mp-x 35545 This series of theorems pr...
wl-impchain-mp-0 35546 This theorem is the start ...
wl-impchain-mp-1 35547 This theorem is in fact a ...
wl-impchain-mp-2 35548 This theorem is in fact a ...
wl-impchain-com-1.x 35549 It is often convenient to ...
wl-impchain-com-1.1 35550 A degenerate form of antec...
wl-impchain-com-1.2 35551 This theorem is in fact a ...
wl-impchain-com-1.3 35552 This theorem is in fact a ...
wl-impchain-com-1.4 35553 This theorem is in fact a ...
wl-impchain-com-n.m 35554 This series of theorems al...
wl-impchain-com-2.3 35555 This theorem is in fact a ...
wl-impchain-com-2.4 35556 This theorem is in fact a ...
wl-impchain-com-3.2.1 35557 This theorem is in fact a ...
wl-impchain-a1-x 35558 If an implication chain is...
wl-impchain-a1-1 35559 Inference rule, a copy of ...
wl-impchain-a1-2 35560 Inference rule, a copy of ...
wl-impchain-a1-3 35561 Inference rule, a copy of ...
wl-ifp-ncond1 35562 If one case of an ` if- ` ...
wl-ifp-ncond2 35563 If one case of an ` if- ` ...
wl-ifpimpr 35564 If one case of an ` if- ` ...
wl-ifp4impr 35565 If one case of an ` if- ` ...
wl-df-3xor 35566 Alternative definition of ...
wl-df3xor2 35567 Alternative definition of ...
wl-df3xor3 35568 Alternative form of ~ wl-d...
wl-3xortru 35569 If the first input is true...
wl-3xorfal 35570 If the first input is fals...
wl-3xorbi 35571 Triple xor can be replaced...
wl-3xorbi2 35572 Alternative form of ~ wl-3...
wl-3xorbi123d 35573 Equivalence theorem for tr...
wl-3xorbi123i 35574 Equivalence theorem for tr...
wl-3xorrot 35575 Rotation law for triple xo...
wl-3xorcoma 35576 Commutative law for triple...
wl-3xorcomb 35577 Commutative law for triple...
wl-3xornot1 35578 Flipping the first input f...
wl-3xornot 35579 Triple xor distributes ove...
wl-1xor 35580 In the recursive scheme ...
wl-2xor 35581 In the recursive scheme ...
wl-df-3mintru2 35582 Alternative definition of ...
wl-df2-3mintru2 35583 The adder carry in disjunc...
wl-df3-3mintru2 35584 The adder carry in conjunc...
wl-df4-3mintru2 35585 An alternative definition ...
wl-1mintru1 35586 Using the recursion formul...
wl-1mintru2 35587 Using the recursion formul...
wl-2mintru1 35588 Using the recursion formul...
wl-2mintru2 35589 Using the recursion formul...
wl-df3maxtru1 35590 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 35592 A version of ~ ax-wl-13v w...
wl-mps 35593 Replacing a nested consequ...
wl-syls1 35594 Replacing a nested consequ...
wl-syls2 35595 Replacing a nested anteced...
wl-embant 35596 A true wff can always be a...
wl-orel12 35597 In a conjunctive normal fo...
wl-cases2-dnf 35598 A particular instance of ~...
wl-cbvmotv 35599 Change bound variable. Us...
wl-moteq 35600 Change bound variable. Us...
wl-motae 35601 Change bound variable. Us...
wl-moae 35602 Two ways to express "at mo...
wl-euae 35603 Two ways to express "exact...
wl-nax6im 35604 The following series of th...
wl-hbae1 35605 This specialization of ~ h...
wl-naevhba1v 35606 An instance of ~ hbn1w app...
wl-spae 35607 Prove an instance of ~ sp ...
wl-speqv 35608 Under the assumption ` -. ...
wl-19.8eqv 35609 Under the assumption ` -. ...
wl-19.2reqv 35610 Under the assumption ` -. ...
wl-nfalv 35611 If ` x ` is not present in...
wl-nfimf1 35612 An antecedent is irrelevan...
wl-nfae1 35613 Unlike ~ nfae , this speci...
wl-nfnae1 35614 Unlike ~ nfnae , this spec...
wl-aetr 35615 A transitive law for varia...
wl-axc11r 35616 Same as ~ axc11r , but usi...
wl-dral1d 35617 A version of ~ dral1 with ...
wl-cbvalnaed 35618 ~ wl-cbvalnae with a conte...
wl-cbvalnae 35619 A more general version of ...
wl-exeq 35620 The semantics of ` E. x y ...
wl-aleq 35621 The semantics of ` A. x y ...
wl-nfeqfb 35622 Extend ~ nfeqf to an equiv...
wl-nfs1t 35623 If ` y ` is not free in ` ...
wl-equsalvw 35624 Version of ~ equsalv with ...
wl-equsald 35625 Deduction version of ~ equ...
wl-equsal 35626 A useful equivalence relat...
wl-equsal1t 35627 The expression ` x = y ` i...
wl-equsalcom 35628 This simple equivalence ea...
wl-equsal1i 35629 The antecedent ` x = y ` i...
wl-sb6rft 35630 A specialization of ~ wl-e...
wl-cbvalsbi 35631 Change bounded variables i...
wl-sbrimt 35632 Substitution with a variab...
wl-sblimt 35633 Substitution with a variab...
wl-sb8t 35634 Substitution of variable i...
wl-sb8et 35635 Substitution of variable i...
wl-sbhbt 35636 Closed form of ~ sbhb . C...
wl-sbnf1 35637 Two ways expressing that `...
wl-equsb3 35638 ~ equsb3 with a distinctor...
wl-equsb4 35639 Substitution applied to an...
wl-2sb6d 35640 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 35641 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 35642 Lemma used to prove ~ wl-s...
wl-sbcom2d 35643 Version of ~ sbcom2 with a...
wl-sbalnae 35644 A theorem used in eliminat...
wl-sbal1 35645 A theorem used in eliminat...
wl-sbal2 35646 Move quantifier in and out...
wl-2spsbbi 35647 ~ spsbbi applied twice. (...
wl-lem-exsb 35648 This theorem provides a ba...
wl-lem-nexmo 35649 This theorem provides a ba...
wl-lem-moexsb 35650 The antecedent ` A. x ( ph...
wl-alanbii 35651 This theorem extends ~ ala...
wl-mo2df 35652 Version of ~ mof with a co...
wl-mo2tf 35653 Closed form of ~ mof with ...
wl-eudf 35654 Version of ~ eu6 with a co...
wl-eutf 35655 Closed form of ~ eu6 with ...
wl-euequf 35656 ~ euequ proved with a dist...
wl-mo2t 35657 Closed form of ~ mof . (C...
wl-mo3t 35658 Closed form of ~ mo3 . (C...
wl-sb8eut 35659 Substitution of variable i...
wl-sb8mot 35660 Substitution of variable i...
wl-axc11rc11 35661 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 35663 A transitive law for varia...
wl-ax11-lem2 35664 Lemma. (Contributed by Wo...
wl-ax11-lem3 35665 Lemma. (Contributed by Wo...
wl-ax11-lem4 35666 Lemma. (Contributed by Wo...
wl-ax11-lem5 35667 Lemma. (Contributed by Wo...
wl-ax11-lem6 35668 Lemma. (Contributed by Wo...
wl-ax11-lem7 35669 Lemma. (Contributed by Wo...
wl-ax11-lem8 35670 Lemma. (Contributed by Wo...
wl-ax11-lem9 35671 The easy part when ` x ` c...
wl-ax11-lem10 35672 We now have prepared every...
wl-clabv 35673 Variant of ~ df-clab , whe...
wl-dfclab 35674 Rederive ~ df-clab from ~ ...
wl-clabtv 35675 Using class abstraction in...
wl-clabt 35676 Using class abstraction in...
rabiun 35677 Abstraction restricted to ...
iundif1 35678 Indexed union of class dif...
imadifss 35679 The difference of images i...
cureq 35680 Equality theorem for curry...
unceq 35681 Equality theorem for uncur...
curf 35682 Functional property of cur...
uncf 35683 Functional property of unc...
curfv 35684 Value of currying. (Contr...
uncov 35685 Value of uncurrying. (Con...
curunc 35686 Currying of uncurrying. (...
unccur 35687 Uncurrying of currying. (...
phpreu 35688 Theorem related to pigeonh...
finixpnum 35689 A finite Cartesian product...
fin2solem 35690 Lemma for ~ fin2so . (Con...
fin2so 35691 Any totally ordered Tarski...
ltflcei 35692 Theorem to move the floor ...
leceifl 35693 Theorem to move the floor ...
sin2h 35694 Half-angle rule for sine. ...
cos2h 35695 Half-angle rule for cosine...
tan2h 35696 Half-angle rule for tangen...
lindsadd 35697 In a vector space, the uni...
lindsdom 35698 A linearly independent set...
lindsenlbs 35699 A maximal linearly indepen...
matunitlindflem1 35700 One direction of ~ matunit...
matunitlindflem2 35701 One direction of ~ matunit...
matunitlindf 35702 A matrix over a field is i...
ptrest 35703 Expressing a restriction o...
ptrecube 35704 Any point in an open set o...
poimirlem1 35705 Lemma for ~ poimir - the v...
poimirlem2 35706 Lemma for ~ poimir - conse...
poimirlem3 35707 Lemma for ~ poimir to add ...
poimirlem4 35708 Lemma for ~ poimir connect...
poimirlem5 35709 Lemma for ~ poimir to esta...
poimirlem6 35710 Lemma for ~ poimir establi...
poimirlem7 35711 Lemma for ~ poimir , simil...
poimirlem8 35712 Lemma for ~ poimir , estab...
poimirlem9 35713 Lemma for ~ poimir , estab...
poimirlem10 35714 Lemma for ~ poimir establi...
poimirlem11 35715 Lemma for ~ poimir connect...
poimirlem12 35716 Lemma for ~ poimir connect...
poimirlem13 35717 Lemma for ~ poimir - for a...
poimirlem14 35718 Lemma for ~ poimir - for a...
poimirlem15 35719 Lemma for ~ poimir , that ...
poimirlem16 35720 Lemma for ~ poimir establi...
poimirlem17 35721 Lemma for ~ poimir establi...
poimirlem18 35722 Lemma for ~ poimir stating...
poimirlem19 35723 Lemma for ~ poimir establi...
poimirlem20 35724 Lemma for ~ poimir establi...
poimirlem21 35725 Lemma for ~ poimir stating...
poimirlem22 35726 Lemma for ~ poimir , that ...
poimirlem23 35727 Lemma for ~ poimir , two w...
poimirlem24 35728 Lemma for ~ poimir , two w...
poimirlem25 35729 Lemma for ~ poimir stating...
poimirlem26 35730 Lemma for ~ poimir showing...
poimirlem27 35731 Lemma for ~ poimir showing...
poimirlem28 35732 Lemma for ~ poimir , a var...
poimirlem29 35733 Lemma for ~ poimir connect...
poimirlem30 35734 Lemma for ~ poimir combini...
poimirlem31 35735 Lemma for ~ poimir , assig...
poimirlem32 35736 Lemma for ~ poimir , combi...
poimir 35737 Poincare-Miranda theorem. ...
broucube 35738 Brouwer - or as Kulpa call...
heicant 35739 Heine-Cantor theorem: a co...
opnmbllem0 35740 Lemma for ~ ismblfin ; cou...
mblfinlem1 35741 Lemma for ~ ismblfin , ord...
mblfinlem2 35742 Lemma for ~ ismblfin , eff...
mblfinlem3 35743 The difference between two...
mblfinlem4 35744 Backward direction of ~ is...
ismblfin 35745 Measurability in terms of ...
ovoliunnfl 35746 ~ ovoliun is incompatible ...
ex-ovoliunnfl 35747 Demonstration of ~ ovoliun...
voliunnfl 35748 ~ voliun is incompatible w...
volsupnfl 35749 ~ volsup is incompatible w...
mbfresfi 35750 Measurability of a piecewi...
mbfposadd 35751 If the sum of two measurab...
cnambfre 35752 A real-valued, a.e. contin...
dvtanlem 35753 Lemma for ~ dvtan - the do...
dvtan 35754 Derivative of tangent. (C...
itg2addnclem 35755 An alternate expression fo...
itg2addnclem2 35756 Lemma for ~ itg2addnc . T...
itg2addnclem3 35757 Lemma incomprehensible in ...
itg2addnc 35758 Alternate proof of ~ itg2a...
itg2gt0cn 35759 ~ itg2gt0 holds on functio...
ibladdnclem 35760 Lemma for ~ ibladdnc ; cf ...
ibladdnc 35761 Choice-free analogue of ~ ...
itgaddnclem1 35762 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 35763 Lemma for ~ itgaddnc ; cf....
itgaddnc 35764 Choice-free analogue of ~ ...
iblsubnc 35765 Choice-free analogue of ~ ...
itgsubnc 35766 Choice-free analogue of ~ ...
iblabsnclem 35767 Lemma for ~ iblabsnc ; cf....
iblabsnc 35768 Choice-free analogue of ~ ...
iblmulc2nc 35769 Choice-free analogue of ~ ...
itgmulc2nclem1 35770 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 35771 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 35772 Choice-free analogue of ~ ...
itgabsnc 35773 Choice-free analogue of ~ ...
itggt0cn 35774 ~ itggt0 holds for continu...
ftc1cnnclem 35775 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 35776 Choice-free proof of ~ ftc...
ftc1anclem1 35777 Lemma for ~ ftc1anc - the ...
ftc1anclem2 35778 Lemma for ~ ftc1anc - rest...
ftc1anclem3 35779 Lemma for ~ ftc1anc - the ...
ftc1anclem4 35780 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 35781 Lemma for ~ ftc1anc , the ...
ftc1anclem6 35782 Lemma for ~ ftc1anc - cons...
ftc1anclem7 35783 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 35784 Lemma for ~ ftc1anc . (Co...
ftc1anc 35785 ~ ftc1a holds for function...
ftc2nc 35786 Choice-free proof of ~ ftc...
asindmre 35787 Real part of domain of dif...
dvasin 35788 Derivative of arcsine. (C...
dvacos 35789 Derivative of arccosine. ...
dvreasin 35790 Real derivative of arcsine...
dvreacos 35791 Real derivative of arccosi...
areacirclem1 35792 Antiderivative of cross-se...
areacirclem2 35793 Endpoint-inclusive continu...
areacirclem3 35794 Integrability of cross-sec...
areacirclem4 35795 Endpoint-inclusive continu...
areacirclem5 35796 Finding the cross-section ...
areacirc 35797 The area of a circle of ra...
unirep 35798 Define a quantity whose de...
cover2 35799 Two ways of expressing the...
cover2g 35800 Two ways of expressing the...
brabg2 35801 Relation by a binary relat...
opelopab3 35802 Ordered pair membership in...
cocanfo 35803 Cancellation of a surjecti...
brresi2 35804 Restriction of a binary re...
fnopabeqd 35805 Equality deduction for fun...
fvopabf4g 35806 Function value of an opera...
eqfnun 35807 Two functions on ` A u. B ...
fnopabco 35808 Composition of a function ...
opropabco 35809 Composition of an operator...
cocnv 35810 Composition with a functio...
f1ocan1fv 35811 Cancel a composition by a ...
f1ocan2fv 35812 Cancel a composition by th...
inixp 35813 Intersection of Cartesian ...
upixp 35814 Universal property of the ...
abrexdom 35815 An indexed set is dominate...
abrexdom2 35816 An indexed set is dominate...
ac6gf 35817 Axiom of Choice. (Contrib...
indexa 35818 If for every element of an...
indexdom 35819 If for every element of an...
frinfm 35820 A subset of a well-founded...
welb 35821 A nonempty subset of a wel...
supex2g 35822 Existence of supremum. (C...
supclt 35823 Closure of supremum. (Con...
supubt 35824 Upper bound property of su...
filbcmb 35825 Combine a finite set of lo...
fzmul 35826 Membership of a product in...
sdclem2 35827 Lemma for ~ sdc . (Contri...
sdclem1 35828 Lemma for ~ sdc . (Contri...
sdc 35829 Strong dependent choice. ...
fdc 35830 Finite version of dependen...
fdc1 35831 Variant of ~ fdc with no s...
seqpo 35832 Two ways to say that a seq...
incsequz 35833 An increasing sequence of ...
incsequz2 35834 An increasing sequence of ...
nnubfi 35835 A bounded above set of pos...
nninfnub 35836 An infinite set of positiv...
subspopn 35837 An open set is open in the...
neificl 35838 Neighborhoods are closed u...
lpss2 35839 Limit points of a subset a...
metf1o 35840 Use a bijection with a met...
blssp 35841 A ball in the subspace met...
mettrifi 35842 Generalized triangle inequ...
lmclim2 35843 A sequence in a metric spa...
geomcau 35844 If the distance between co...
caures 35845 The restriction of a Cauch...
caushft 35846 A shifted Cauchy sequence ...
constcncf 35847 A constant function is a c...
cnres2 35848 The restriction of a conti...
cnresima 35849 A continuous function is c...
cncfres 35850 A continuous function on c...
istotbnd 35854 The predicate "is a totall...
istotbnd2 35855 The predicate "is a totall...
istotbnd3 35856 A metric space is totally ...
totbndmet 35857 The predicate "totally bou...
0totbnd 35858 The metric (there is only ...
sstotbnd2 35859 Condition for a subset of ...
sstotbnd 35860 Condition for a subset of ...
sstotbnd3 35861 Use a net that is not nece...
totbndss 35862 A subset of a totally boun...
equivtotbnd 35863 If the metric ` M ` is "st...
isbnd 35865 The predicate "is a bounde...
bndmet 35866 A bounded metric space is ...
isbndx 35867 A "bounded extended metric...
isbnd2 35868 The predicate "is a bounde...
isbnd3 35869 A metric space is bounded ...
isbnd3b 35870 A metric space is bounded ...
bndss 35871 A subset of a bounded metr...
blbnd 35872 A ball is bounded. (Contr...
ssbnd 35873 A subset of a metric space...
totbndbnd 35874 A totally bounded metric s...
equivbnd 35875 If the metric ` M ` is "st...
bnd2lem 35876 Lemma for ~ equivbnd2 and ...
equivbnd2 35877 If balls are totally bound...
prdsbnd 35878 The product metric over fi...
prdstotbnd 35879 The product metric over fi...
prdsbnd2 35880 If balls are totally bound...
cntotbnd 35881 A subset of the complex nu...
cnpwstotbnd 35882 A subset of ` A ^ I ` , wh...
ismtyval 35885 The set of isometries betw...
isismty 35886 The condition "is an isome...
ismtycnv 35887 The inverse of an isometry...
ismtyima 35888 The image of a ball under ...
ismtyhmeolem 35889 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 35890 An isometry is a homeomorp...
ismtybndlem 35891 Lemma for ~ ismtybnd . (C...
ismtybnd 35892 Isometries preserve bounde...
ismtyres 35893 A restriction of an isomet...
heibor1lem 35894 Lemma for ~ heibor1 . A c...
heibor1 35895 One half of ~ heibor , tha...
heiborlem1 35896 Lemma for ~ heibor . We w...
heiborlem2 35897 Lemma for ~ heibor . Subs...
heiborlem3 35898 Lemma for ~ heibor . Usin...
heiborlem4 35899 Lemma for ~ heibor . Usin...
heiborlem5 35900 Lemma for ~ heibor . The ...
heiborlem6 35901 Lemma for ~ heibor . Sinc...
heiborlem7 35902 Lemma for ~ heibor . Sinc...
heiborlem8 35903 Lemma for ~ heibor . The ...
heiborlem9 35904 Lemma for ~ heibor . Disc...
heiborlem10 35905 Lemma for ~ heibor . The ...
heibor 35906 Generalized Heine-Borel Th...
bfplem1 35907 Lemma for ~ bfp . The seq...
bfplem2 35908 Lemma for ~ bfp . Using t...
bfp 35909 Banach fixed point theorem...
rrnval 35912 The n-dimensional Euclidea...
rrnmval 35913 The value of the Euclidean...
rrnmet 35914 Euclidean space is a metri...
rrndstprj1 35915 The distance between two p...
rrndstprj2 35916 Bound on the distance betw...
rrncmslem 35917 Lemma for ~ rrncms . (Con...
rrncms 35918 Euclidean space is complet...
repwsmet 35919 The supremum metric on ` R...
rrnequiv 35920 The supremum metric on ` R...
rrntotbnd 35921 A set in Euclidean space i...
rrnheibor 35922 Heine-Borel theorem for Eu...
ismrer1 35923 An isometry between ` RR `...
reheibor 35924 Heine-Borel theorem for re...
iccbnd 35925 A closed interval in ` RR ...
icccmpALT 35926 A closed interval in ` RR ...
isass 35931 The predicate "is an assoc...
isexid 35932 The predicate ` G ` has a ...
ismgmOLD 35935 Obsolete version of ~ ismg...
clmgmOLD 35936 Obsolete version of ~ mgmc...
opidonOLD 35937 Obsolete version of ~ mndp...
rngopidOLD 35938 Obsolete version of ~ mndp...
opidon2OLD 35939 Obsolete version of ~ mndp...
isexid2 35940 If ` G e. ( Magma i^i ExId...
exidu1 35941 Uniqueness of the left and...
idrval 35942 The value of the identity ...
iorlid 35943 A magma right and left ide...
cmpidelt 35944 A magma right and left ide...
smgrpismgmOLD 35947 Obsolete version of ~ sgrp...
issmgrpOLD 35948 Obsolete version of ~ issg...
smgrpmgm 35949 A semigroup is a magma. (...
smgrpassOLD 35950 Obsolete version of ~ sgrp...
mndoissmgrpOLD 35953 Obsolete version of ~ mnds...
mndoisexid 35954 A monoid has an identity e...
mndoismgmOLD 35955 Obsolete version of ~ mndm...
mndomgmid 35956 A monoid is a magma with a...
ismndo 35957 The predicate "is a monoid...
ismndo1 35958 The predicate "is a monoid...
ismndo2 35959 The predicate "is a monoid...
grpomndo 35960 A group is a monoid. (Con...
exidcl 35961 Closure of the binary oper...
exidreslem 35962 Lemma for ~ exidres and ~ ...
exidres 35963 The restriction of a binar...
exidresid 35964 The restriction of a binar...
ablo4pnp 35965 A commutative/associative ...
grpoeqdivid 35966 Two group elements are equ...
grposnOLD 35967 The group operation for th...
elghomlem1OLD 35970 Obsolete as of 15-Mar-2020...
elghomlem2OLD 35971 Obsolete as of 15-Mar-2020...
elghomOLD 35972 Obsolete version of ~ isgh...
ghomlinOLD 35973 Obsolete version of ~ ghml...
ghomidOLD 35974 Obsolete version of ~ ghmi...
ghomf 35975 Mapping property of a grou...
ghomco 35976 The composition of two gro...
ghomdiv 35977 Group homomorphisms preser...
grpokerinj 35978 A group homomorphism is in...
relrngo 35981 The class of all unital ri...
isrngo 35982 The predicate "is a (unita...
isrngod 35983 Conditions that determine ...
rngoi 35984 The properties of a unital...
rngosm 35985 Functionality of the multi...
rngocl 35986 Closure of the multiplicat...
rngoid 35987 The multiplication operati...
rngoideu 35988 The unit element of a ring...
rngodi 35989 Distributive law for the m...
rngodir 35990 Distributive law for the m...
rngoass 35991 Associative law for the mu...
rngo2 35992 A ring element plus itself...
rngoablo 35993 A ring's addition operatio...
rngoablo2 35994 In a unital ring the addit...
rngogrpo 35995 A ring's addition operatio...
rngone0 35996 The base set of a ring is ...
rngogcl 35997 Closure law for the additi...
rngocom 35998 The addition operation of ...
rngoaass 35999 The addition operation of ...
rngoa32 36000 The addition operation of ...
rngoa4 36001 Rearrangement of 4 terms i...
rngorcan 36002 Right cancellation law for...
rngolcan 36003 Left cancellation law for ...
rngo0cl 36004 A ring has an additive ide...
rngo0rid 36005 The additive identity of a...
rngo0lid 36006 The additive identity of a...
rngolz 36007 The zero of a unital ring ...
rngorz 36008 The zero of a unital ring ...
rngosn3 36009 Obsolete as of 25-Jan-2020...
rngosn4 36010 Obsolete as of 25-Jan-2020...
rngosn6 36011 Obsolete as of 25-Jan-2020...
rngonegcl 36012 A ring is closed under neg...
rngoaddneg1 36013 Adding the negative in a r...
rngoaddneg2 36014 Adding the negative in a r...
rngosub 36015 Subtraction in a ring, in ...
rngmgmbs4 36016 The range of an internal o...
rngodm1dm2 36017 In a unital ring the domai...
rngorn1 36018 In a unital ring the range...
rngorn1eq 36019 In a unital ring the range...
rngomndo 36020 In a unital ring the multi...
rngoidmlem 36021 The unit of a ring is an i...
rngolidm 36022 The unit of a ring is an i...
rngoridm 36023 The unit of a ring is an i...
rngo1cl 36024 The unit of a ring belongs...
rngoueqz 36025 Obsolete as of 23-Jan-2020...
rngonegmn1l 36026 Negation in a ring is the ...
rngonegmn1r 36027 Negation in a ring is the ...
rngoneglmul 36028 Negation of a product in a...
rngonegrmul 36029 Negation of a product in a...
rngosubdi 36030 Ring multiplication distri...
rngosubdir 36031 Ring multiplication distri...
zerdivemp1x 36032 In a unitary ring a left i...
isdivrngo 36035 The predicate "is a divisi...
drngoi 36036 The properties of a divisi...
gidsn 36037 Obsolete as of 23-Jan-2020...
zrdivrng 36038 The zero ring is not a div...
dvrunz 36039 In a division ring the uni...
isgrpda 36040 Properties that determine ...
isdrngo1 36041 The predicate "is a divisi...
divrngcl 36042 The product of two nonzero...
isdrngo2 36043 A division ring is a ring ...
isdrngo3 36044 A division ring is a ring ...
rngohomval 36049 The set of ring homomorphi...
isrngohom 36050 The predicate "is a ring h...
rngohomf 36051 A ring homomorphism is a f...
rngohomcl 36052 Closure law for a ring hom...
rngohom1 36053 A ring homomorphism preser...
rngohomadd 36054 Ring homomorphisms preserv...
rngohommul 36055 Ring homomorphisms preserv...
rngogrphom 36056 A ring homomorphism is a g...
rngohom0 36057 A ring homomorphism preser...
rngohomsub 36058 Ring homomorphisms preserv...
rngohomco 36059 The composition of two rin...
rngokerinj 36060 A ring homomorphism is inj...
rngoisoval 36062 The set of ring isomorphis...
isrngoiso 36063 The predicate "is a ring i...
rngoiso1o 36064 A ring isomorphism is a bi...
rngoisohom 36065 A ring isomorphism is a ri...
rngoisocnv 36066 The inverse of a ring isom...
rngoisoco 36067 The composition of two rin...
isriscg 36069 The ring isomorphism relat...
isrisc 36070 The ring isomorphism relat...
risc 36071 The ring isomorphism relat...
risci 36072 Determine that two rings a...
riscer 36073 Ring isomorphism is an equ...
iscom2 36080 A device to add commutativ...
iscrngo 36081 The predicate "is a commut...
iscrngo2 36082 The predicate "is a commut...
iscringd 36083 Conditions that determine ...
flddivrng 36084 A field is a division ring...
crngorngo 36085 A commutative ring is a ri...
crngocom 36086 The multiplication operati...
crngm23 36087 Commutative/associative la...
crngm4 36088 Commutative/associative la...
fldcrng 36089 A field is a commutative r...
isfld2 36090 The predicate "is a field"...
crngohomfo 36091 The image of a homomorphis...
idlval 36098 The class of ideals of a r...
isidl 36099 The predicate "is an ideal...
isidlc 36100 The predicate "is an ideal...
idlss 36101 An ideal of ` R ` is a sub...
idlcl 36102 An element of an ideal is ...
idl0cl 36103 An ideal contains ` 0 ` . ...
idladdcl 36104 An ideal is closed under a...
idllmulcl 36105 An ideal is closed under m...
idlrmulcl 36106 An ideal is closed under m...
idlnegcl 36107 An ideal is closed under n...
idlsubcl 36108 An ideal is closed under s...
rngoidl 36109 A ring ` R ` is an ` R ` i...
0idl 36110 The set containing only ` ...
1idl 36111 Two ways of expressing the...
0rngo 36112 In a ring, ` 0 = 1 ` iff t...
divrngidl 36113 The only ideals in a divis...
intidl 36114 The intersection of a none...
inidl 36115 The intersection of two id...
unichnidl 36116 The union of a nonempty ch...
keridl 36117 The kernel of a ring homom...
pridlval 36118 The class of prime ideals ...
ispridl 36119 The predicate "is a prime ...
pridlidl 36120 A prime ideal is an ideal....
pridlnr 36121 A prime ideal is a proper ...
pridl 36122 The main property of a pri...
ispridl2 36123 A condition that shows an ...
maxidlval 36124 The set of maximal ideals ...
ismaxidl 36125 The predicate "is a maxima...
maxidlidl 36126 A maximal ideal is an idea...
maxidlnr 36127 A maximal ideal is proper....
maxidlmax 36128 A maximal ideal is a maxim...
maxidln1 36129 One is not contained in an...
maxidln0 36130 A ring with a maximal idea...
isprrngo 36135 The predicate "is a prime ...
prrngorngo 36136 A prime ring is a ring. (...
smprngopr 36137 A simple ring (one whose o...
divrngpr 36138 A division ring is a prime...
isdmn 36139 The predicate "is a domain...
isdmn2 36140 The predicate "is a domain...
dmncrng 36141 A domain is a commutative ...
dmnrngo 36142 A domain is a ring. (Cont...
flddmn 36143 A field is a domain. (Con...
igenval 36146 The ideal generated by a s...
igenss 36147 A set is a subset of the i...
igenidl 36148 The ideal generated by a s...
igenmin 36149 The ideal generated by a s...
igenidl2 36150 The ideal generated by an ...
igenval2 36151 The ideal generated by a s...
prnc 36152 A principal ideal (an idea...
isfldidl 36153 Determine if a ring is a f...
isfldidl2 36154 Determine if a ring is a f...
ispridlc 36155 The predicate "is a prime ...
pridlc 36156 Property of a prime ideal ...
pridlc2 36157 Property of a prime ideal ...
pridlc3 36158 Property of a prime ideal ...
isdmn3 36159 The predicate "is a domain...
dmnnzd 36160 A domain has no zero-divis...
dmncan1 36161 Cancellation law for domai...
dmncan2 36162 Cancellation law for domai...
efald2 36163 A proof by contradiction. ...
notbinot1 36164 Simplification rule of neg...
bicontr 36165 Biconditional of its own n...
impor 36166 An equivalent formula for ...
orfa 36167 The falsum ` F. ` can be r...
notbinot2 36168 Commutation rule between n...
biimpor 36169 A rewriting rule for bicon...
orfa1 36170 Add a contradicting disjun...
orfa2 36171 Remove a contradicting dis...
bifald 36172 Infer the equivalence to a...
orsild 36173 A lemma for not-or-not eli...
orsird 36174 A lemma for not-or-not eli...
cnf1dd 36175 A lemma for Conjunctive No...
cnf2dd 36176 A lemma for Conjunctive No...
cnfn1dd 36177 A lemma for Conjunctive No...
cnfn2dd 36178 A lemma for Conjunctive No...
or32dd 36179 A rearrangement of disjunc...
notornotel1 36180 A lemma for not-or-not eli...
notornotel2 36181 A lemma for not-or-not eli...
contrd 36182 A proof by contradiction, ...
an12i 36183 An inference from commutin...
exmid2 36184 An excluded middle law. (...
selconj 36185 An inference for selecting...
truconj 36186 Add true as a conjunct. (...
orel 36187 An inference for disjuncti...
negel 36188 An inference for negation ...
botel 36189 An inference for bottom el...
tradd 36190 Add top ad a conjunct. (C...
gm-sbtru 36191 Substitution does not chan...
sbfal 36192 Substitution does not chan...
sbcani 36193 Distribution of class subs...
sbcori 36194 Distribution of class subs...
sbcimi 36195 Distribution of class subs...
sbcni 36196 Move class substitution in...
sbali 36197 Discard class substitution...
sbexi 36198 Discard class substitution...
sbcalf 36199 Move universal quantifier ...
sbcexf 36200 Move existential quantifie...
sbcalfi 36201 Move universal quantifier ...
sbcexfi 36202 Move existential quantifie...
spsbcdi 36203 A lemma for eliminating a ...
alrimii 36204 A lemma for introducing a ...
spesbcdi 36205 A lemma for introducing an...
exlimddvf 36206 A lemma for eliminating an...
exlimddvfi 36207 A lemma for eliminating an...
sbceq1ddi 36208 A lemma for eliminating in...
sbccom2lem 36209 Lemma for ~ sbccom2 . (Co...
sbccom2 36210 Commutative law for double...
sbccom2f 36211 Commutative law for double...
sbccom2fi 36212 Commutative law for double...
csbcom2fi 36213 Commutative law for double...
fald 36214 Refutation of falsity, in ...
tsim1 36215 A Tseitin axiom for logica...
tsim2 36216 A Tseitin axiom for logica...
tsim3 36217 A Tseitin axiom for logica...
tsbi1 36218 A Tseitin axiom for logica...
tsbi2 36219 A Tseitin axiom for logica...
tsbi3 36220 A Tseitin axiom for logica...
tsbi4 36221 A Tseitin axiom for logica...
tsxo1 36222 A Tseitin axiom for logica...
tsxo2 36223 A Tseitin axiom for logica...
tsxo3 36224 A Tseitin axiom for logica...
tsxo4 36225 A Tseitin axiom for logica...
tsan1 36226 A Tseitin axiom for logica...
tsan2 36227 A Tseitin axiom for logica...
tsan3 36228 A Tseitin axiom for logica...
tsna1 36229 A Tseitin axiom for logica...
tsna2 36230 A Tseitin axiom for logica...
tsna3 36231 A Tseitin axiom for logica...
tsor1 36232 A Tseitin axiom for logica...
tsor2 36233 A Tseitin axiom for logica...
tsor3 36234 A Tseitin axiom for logica...
ts3an1 36235 A Tseitin axiom for triple...
ts3an2 36236 A Tseitin axiom for triple...
ts3an3 36237 A Tseitin axiom for triple...
ts3or1 36238 A Tseitin axiom for triple...
ts3or2 36239 A Tseitin axiom for triple...
ts3or3 36240 A Tseitin axiom for triple...
iuneq2f 36241 Equality deduction for ind...
rabeq12f 36242 Equality deduction for res...
csbeq12 36243 Equality deduction for sub...
sbeqi 36244 Equality deduction for sub...
ralbi12f 36245 Equality deduction for res...
oprabbi 36246 Equality deduction for cla...
mpobi123f 36247 Equality deduction for map...
iuneq12f 36248 Equality deduction for ind...
iineq12f 36249 Equality deduction for ind...
opabbi 36250 Equality deduction for cla...
mptbi12f 36251 Equality deduction for map...
orcomdd 36252 Commutativity of logic dis...
scottexf 36253 A version of ~ scottex wit...
scott0f 36254 A version of ~ scott0 with...
scottn0f 36255 A version of ~ scott0f wit...
ac6s3f 36256 Generalization of the Axio...
ac6s6 36257 Generalization of the Axio...
ac6s6f 36258 Generalization of the Axio...
el2v1 36297 New way ( ~ elv , and the ...
el3v 36298 New way ( ~ elv , and the ...
el3v1 36299 New way ( ~ elv , and the ...
el3v2 36300 New way ( ~ elv , and the ...
el3v3 36301 New way ( ~ elv , and the ...
el3v12 36302 New way ( ~ elv , and the ...
el3v13 36303 New way ( ~ elv , and the ...
el3v23 36304 New way ( ~ elv , and the ...
an2anr 36305 Double commutation in conj...
anan 36306 Multiple commutations in c...
triantru3 36307 A wff is equivalent to its...
eqeltr 36308 Substitution of equal clas...
eqelb 36309 Substitution of equal clas...
eqeqan2d 36310 Implication of introducing...
inres2 36311 Two ways of expressing the...
coideq 36312 Equality theorem for compo...
nexmo1 36313 If there is no case where ...
3albii 36314 Inference adding three uni...
3ralbii 36315 Inference adding three res...
ssrabi 36316 Inference of restricted ab...
rabbieq 36317 Equivalent wff's correspon...
rabimbieq 36318 Restricted equivalent wff'...
abeqin 36319 Intersection with class ab...
abeqinbi 36320 Intersection with class ab...
rabeqel 36321 Class element of a restric...
eqrelf 36322 The equality connective be...
releleccnv 36323 Elementhood in a converse ...
releccnveq 36324 Equality of converse ` R `...
opelvvdif 36325 Negated elementhood of ord...
vvdifopab 36326 Ordered-pair class abstrac...
brvdif 36327 Binary relation with unive...
brvdif2 36328 Binary relation with unive...
brvvdif 36329 Binary relation with the c...
brvbrvvdif 36330 Binary relation with the c...
brcnvep 36331 The converse of the binary...
elecALTV 36332 Elementhood in the ` R ` -...
brcnvepres 36333 Restricted converse epsilo...
brres2 36334 Binary relation on a restr...
eldmres 36335 Elementhood in the domain ...
eldm4 36336 Elementhood in a domain. ...
eldmres2 36337 Elementhood in the domain ...
eceq1i 36338 Equality theorem for ` C `...
elecres 36339 Elementhood in the restric...
ecres 36340 Restricted coset of ` B ` ...
ecres2 36341 The restricted coset of ` ...
eccnvepres 36342 Restricted converse epsilo...
eleccnvep 36343 Elementhood in the convers...
eccnvep 36344 The converse epsilon coset...
extep 36345 Property of epsilon relati...
eccnvepres2 36346 The restricted converse ep...
eccnvepres3 36347 Condition for a restricted...
eldmqsres 36348 Elementhood in a restricte...
eldmqsres2 36349 Elementhood in a restricte...
qsss1 36350 Subclass theorem for quoti...
qseq1i 36351 Equality theorem for quoti...
qseq1d 36352 Equality theorem for quoti...
brinxprnres 36353 Binary relation on a restr...
inxprnres 36354 Restriction of a class as ...
dfres4 36355 Alternate definition of th...
exan3 36356 Equivalent expressions wit...
exanres 36357 Equivalent expressions wit...
exanres3 36358 Equivalent expressions wit...
exanres2 36359 Equivalent expressions wit...
cnvepres 36360 Restricted converse epsilo...
ssrel3 36361 Subclass relation in anoth...
eqrel2 36362 Equality of relations. (C...
rncnv 36363 Range of converse is the d...
dfdm6 36364 Alternate definition of do...
dfrn6 36365 Alternate definition of ra...
rncnvepres 36366 The range of the restricte...
dmecd 36367 Equality of the coset of `...
dmec2d 36368 Equality of the coset of `...
brid 36369 Property of the identity b...
ideq2 36370 For sets, the identity bin...
idresssidinxp 36371 Condition for the identity...
idreseqidinxp 36372 Condition for the identity...
extid 36373 Property of identity relat...
inxpss 36374 Two ways to say that an in...
idinxpss 36375 Two ways to say that an in...
inxpss3 36376 Two ways to say that an in...
inxpss2 36377 Two ways to say that inter...
inxpssidinxp 36378 Two ways to say that inter...
idinxpssinxp 36379 Two ways to say that inter...
idinxpssinxp2 36380 Identity intersection with...
idinxpssinxp3 36381 Identity intersection with...
idinxpssinxp4 36382 Identity intersection with...
relcnveq3 36383 Two ways of saying a relat...
relcnveq 36384 Two ways of saying a relat...
relcnveq2 36385 Two ways of saying a relat...
relcnveq4 36386 Two ways of saying a relat...
qsresid 36387 Simplification of a specia...
n0elqs 36388 Two ways of expressing tha...
n0elqs2 36389 Two ways of expressing tha...
ecex2 36390 Condition for a coset to b...
uniqsALTV 36391 The union of a quotient se...
imaexALTV 36392 Existence of an image of a...
ecexALTV 36393 Existence of a coset, like...
rnresequniqs 36394 The range of a restriction...
n0el2 36395 Two ways of expressing tha...
cnvepresex 36396 Sethood condition for the ...
eccnvepex 36397 The converse epsilon coset...
cnvepimaex 36398 The image of converse epsi...
cnvepima 36399 The image of converse epsi...
inex3 36400 Sufficient condition for t...
inxpex 36401 Sufficient condition for a...
eqres 36402 Converting a class constan...
brrabga 36403 The law of concretion for ...
brcnvrabga 36404 The law of concretion for ...
opideq 36405 Equality conditions for or...
iss2 36406 A subclass of the identity...
eldmcnv 36407 Elementhood in a domain of...
dfrel5 36408 Alternate definition of th...
dfrel6 36409 Alternate definition of th...
cnvresrn 36410 Converse restricted to ran...
ecin0 36411 Two ways of saying that th...
ecinn0 36412 Two ways of saying that th...
ineleq 36413 Equivalence of restricted ...
inecmo 36414 Equivalence of a double re...
inecmo2 36415 Equivalence of a double re...
ineccnvmo 36416 Equivalence of a double re...
alrmomorn 36417 Equivalence of an "at most...
alrmomodm 36418 Equivalence of an "at most...
ineccnvmo2 36419 Equivalence of a double un...
inecmo3 36420 Equivalence of a double un...
moantr 36421 Sufficient condition for t...
brabidgaw 36422 The law of concretion for ...
brabidga 36423 The law of concretion for ...
inxp2 36424 Intersection with a Cartes...
opabf 36425 A class abstraction of a c...
ec0 36426 The empty-coset of a class...
0qs 36427 Quotient set with the empt...
xrnss3v 36429 A range Cartesian product ...
xrnrel 36430 A range Cartesian product ...
brxrn 36431 Characterize a ternary rel...
brxrn2 36432 A characterization of the ...
dfxrn2 36433 Alternate definition of th...
xrneq1 36434 Equality theorem for the r...
xrneq1i 36435 Equality theorem for the r...
xrneq1d 36436 Equality theorem for the r...
xrneq2 36437 Equality theorem for the r...
xrneq2i 36438 Equality theorem for the r...
xrneq2d 36439 Equality theorem for the r...
xrneq12 36440 Equality theorem for the r...
xrneq12i 36441 Equality theorem for the r...
xrneq12d 36442 Equality theorem for the r...
elecxrn 36443 Elementhood in the ` ( R |...
ecxrn 36444 The ` ( R |X. S ) ` -coset...
xrninxp 36445 Intersection of a range Ca...
xrninxp2 36446 Intersection of a range Ca...
xrninxpex 36447 Sufficient condition for t...
inxpxrn 36448 Two ways to express the in...
br1cnvxrn2 36449 The converse of a binary r...
elec1cnvxrn2 36450 Elementhood in the convers...
rnxrn 36451 Range of the range Cartesi...
rnxrnres 36452 Range of a range Cartesian...
rnxrncnvepres 36453 Range of a range Cartesian...
rnxrnidres 36454 Range of a range Cartesian...
xrnres 36455 Two ways to express restri...
xrnres2 36456 Two ways to express restri...
xrnres3 36457 Two ways to express restri...
xrnres4 36458 Two ways to express restri...
xrnresex 36459 Sufficient condition for a...
xrnidresex 36460 Sufficient condition for a...
xrncnvepresex 36461 Sufficient condition for a...
brin2 36462 Binary relation on an inte...
brin3 36463 Binary relation on an inte...
dfcoss2 36466 Alternate definition of th...
dfcoss3 36467 Alternate definition of th...
dfcoss4 36468 Alternate definition of th...
cossex 36469 If ` A ` is a set then the...
cosscnvex 36470 If ` A ` is a set then the...
1cosscnvepresex 36471 Sufficient condition for a...
1cossxrncnvepresex 36472 Sufficient condition for a...
relcoss 36473 Cosets by ` R ` is a relat...
relcoels 36474 Coelements on ` A ` is a r...
cossss 36475 Subclass theorem for the c...
cosseq 36476 Equality theorem for the c...
cosseqi 36477 Equality theorem for the c...
cosseqd 36478 Equality theorem for the c...
1cossres 36479 The class of cosets by a r...
dfcoels 36480 Alternate definition of th...
brcoss 36481 ` A ` and ` B ` are cosets...
brcoss2 36482 Alternate form of the ` A ...
brcoss3 36483 Alternate form of the ` A ...
brcosscnvcoss 36484 For sets, the ` A ` and ` ...
brcoels 36485 ` B ` and ` C ` are coelem...
cocossss 36486 Two ways of saying that co...
cnvcosseq 36487 The converse of cosets by ...
br2coss 36488 Cosets by ` ,~ R ` binary ...
br1cossres 36489 ` B ` and ` C ` are cosets...
br1cossres2 36490 ` B ` and ` C ` are cosets...
relbrcoss 36491 ` A ` and ` B ` are cosets...
br1cossinres 36492 ` B ` and ` C ` are cosets...
br1cossxrnres 36493 ` <. B , C >. ` and ` <. D...
br1cossinidres 36494 ` B ` and ` C ` are cosets...
br1cossincnvepres 36495 ` B ` and ` C ` are cosets...
br1cossxrnidres 36496 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 36497 ` <. B , C >. ` and ` <. D...
dmcoss3 36498 The domain of cosets is th...
dmcoss2 36499 The domain of cosets is th...
rncossdmcoss 36500 The range of cosets is the...
dm1cosscnvepres 36501 The domain of cosets of th...
dmcoels 36502 The domain of coelements i...
eldmcoss 36503 Elementhood in the domain ...
eldmcoss2 36504 Elementhood in the domain ...
eldm1cossres 36505 Elementhood in the domain ...
eldm1cossres2 36506 Elementhood in the domain ...
refrelcosslem 36507 Lemma for the left side of...
refrelcoss3 36508 The class of cosets by ` R...
refrelcoss2 36509 The class of cosets by ` R...
symrelcoss3 36510 The class of cosets by ` R...
symrelcoss2 36511 The class of cosets by ` R...
cossssid 36512 Equivalent expressions for...
cossssid2 36513 Equivalent expressions for...
cossssid3 36514 Equivalent expressions for...
cossssid4 36515 Equivalent expressions for...
cossssid5 36516 Equivalent expressions for...
brcosscnv 36517 ` A ` and ` B ` are cosets...
brcosscnv2 36518 ` A ` and ` B ` are cosets...
br1cosscnvxrn 36519 ` A ` and ` B ` are cosets...
1cosscnvxrn 36520 Cosets by the converse ran...
cosscnvssid3 36521 Equivalent expressions for...
cosscnvssid4 36522 Equivalent expressions for...
cosscnvssid5 36523 Equivalent expressions for...
coss0 36524 Cosets by the empty set ar...
cossid 36525 Cosets by the identity rel...
cosscnvid 36526 Cosets by the converse ide...
trcoss 36527 Sufficient condition for t...
eleccossin 36528 Two ways of saying that th...
trcoss2 36529 Equivalent expressions for...
elrels2 36531 The element of the relatio...
elrelsrel 36532 The element of the relatio...
elrelsrelim 36533 The element of the relatio...
elrels5 36534 Equivalent expressions for...
elrels6 36535 Equivalent expressions for...
elrelscnveq3 36536 Two ways of saying a relat...
elrelscnveq 36537 Two ways of saying a relat...
elrelscnveq2 36538 Two ways of saying a relat...
elrelscnveq4 36539 Two ways of saying a relat...
cnvelrels 36540 The converse of a set is a...
cosselrels 36541 Cosets of sets are element...
cosscnvelrels 36542 Cosets of converse sets ar...
dfssr2 36544 Alternate definition of th...
relssr 36545 The subset relation is a r...
brssr 36546 The subset relation and su...
brssrid 36547 Any set is a subset of its...
issetssr 36548 Two ways of expressing set...
brssrres 36549 Restricted subset binary r...
br1cnvssrres 36550 Restricted converse subset...
brcnvssr 36551 The converse of a subset r...
brcnvssrid 36552 Any set is a converse subs...
br1cossxrncnvssrres 36553 ` <. B , C >. ` and ` <. D...
extssr 36554 Property of subset relatio...
dfrefrels2 36558 Alternate definition of th...
dfrefrels3 36559 Alternate definition of th...
dfrefrel2 36560 Alternate definition of th...
dfrefrel3 36561 Alternate definition of th...
elrefrels2 36562 Element of the class of re...
elrefrels3 36563 Element of the class of re...
elrefrelsrel 36564 For sets, being an element...
refreleq 36565 Equality theorem for refle...
refrelid 36566 Identity relation is refle...
refrelcoss 36567 The class of cosets by ` R...
dfcnvrefrels2 36571 Alternate definition of th...
dfcnvrefrels3 36572 Alternate definition of th...
dfcnvrefrel2 36573 Alternate definition of th...
dfcnvrefrel3 36574 Alternate definition of th...
elcnvrefrels2 36575 Element of the class of co...
elcnvrefrels3 36576 Element of the class of co...
elcnvrefrelsrel 36577 For sets, being an element...
cnvrefrelcoss2 36578 Necessary and sufficient c...
cosselcnvrefrels2 36579 Necessary and sufficient c...
cosselcnvrefrels3 36580 Necessary and sufficient c...
cosselcnvrefrels4 36581 Necessary and sufficient c...
cosselcnvrefrels5 36582 Necessary and sufficient c...
dfsymrels2 36586 Alternate definition of th...
dfsymrels3 36587 Alternate definition of th...
dfsymrels4 36588 Alternate definition of th...
dfsymrels5 36589 Alternate definition of th...
dfsymrel2 36590 Alternate definition of th...
dfsymrel3 36591 Alternate definition of th...
dfsymrel4 36592 Alternate definition of th...
dfsymrel5 36593 Alternate definition of th...
elsymrels2 36594 Element of the class of sy...
elsymrels3 36595 Element of the class of sy...
elsymrels4 36596 Element of the class of sy...
elsymrels5 36597 Element of the class of sy...
elsymrelsrel 36598 For sets, being an element...
symreleq 36599 Equality theorem for symme...
symrelim 36600 Symmetric relation implies...
symrelcoss 36601 The class of cosets by ` R...
idsymrel 36602 The identity relation is s...
epnsymrel 36603 The membership (epsilon) r...
symrefref2 36604 Symmetry is a sufficient c...
symrefref3 36605 Symmetry is a sufficient c...
refsymrels2 36606 Elements of the class of r...
refsymrels3 36607 Elements of the class of r...
refsymrel2 36608 A relation which is reflex...
refsymrel3 36609 A relation which is reflex...
elrefsymrels2 36610 Elements of the class of r...
elrefsymrels3 36611 Elements of the class of r...
elrefsymrelsrel 36612 For sets, being an element...
dftrrels2 36616 Alternate definition of th...
dftrrels3 36617 Alternate definition of th...
dftrrel2 36618 Alternate definition of th...
dftrrel3 36619 Alternate definition of th...
eltrrels2 36620 Element of the class of tr...
eltrrels3 36621 Element of the class of tr...
eltrrelsrel 36622 For sets, being an element...
trreleq 36623 Equality theorem for the t...
dfeqvrels2 36628 Alternate definition of th...
dfeqvrels3 36629 Alternate definition of th...
dfeqvrel2 36630 Alternate definition of th...
dfeqvrel3 36631 Alternate definition of th...
eleqvrels2 36632 Element of the class of eq...
eleqvrels3 36633 Element of the class of eq...
eleqvrelsrel 36634 For sets, being an element...
elcoeleqvrels 36635 Elementhood in the coeleme...
elcoeleqvrelsrel 36636 For sets, being an element...
eqvrelrel 36637 An equivalence relation is...
eqvrelrefrel 36638 An equivalence relation is...
eqvrelsymrel 36639 An equivalence relation is...
eqvreltrrel 36640 An equivalence relation is...
eqvrelim 36641 Equivalence relation impli...
eqvreleq 36642 Equality theorem for equiv...
eqvreleqi 36643 Equality theorem for equiv...
eqvreleqd 36644 Equality theorem for equiv...
eqvrelsym 36645 An equivalence relation is...
eqvrelsymb 36646 An equivalence relation is...
eqvreltr 36647 An equivalence relation is...
eqvreltrd 36648 A transitivity relation fo...
eqvreltr4d 36649 A transitivity relation fo...
eqvrelref 36650 An equivalence relation is...
eqvrelth 36651 Basic property of equivale...
eqvrelcl 36652 Elementhood in the field o...
eqvrelthi 36653 Basic property of equivale...
eqvreldisj 36654 Equivalence classes do not...
qsdisjALTV 36655 Elements of a quotient set...
eqvrelqsel 36656 If an element of a quotien...
eqvrelcoss 36657 Two ways to express equiva...
eqvrelcoss3 36658 Two ways to express equiva...
eqvrelcoss2 36659 Two ways to express equiva...
eqvrelcoss4 36660 Two ways to express equiva...
dfcoeleqvrels 36661 Alternate definition of th...
dfcoeleqvrel 36662 Alternate definition of th...
brredunds 36666 Binary relation on the cla...
brredundsredund 36667 For sets, binary relation ...
redundss3 36668 Implication of redundancy ...
redundeq1 36669 Equivalence of redundancy ...
redundpim3 36670 Implication of redundancy ...
redundpbi1 36671 Equivalence of redundancy ...
refrelsredund4 36672 The naive version of the c...
refrelsredund2 36673 The naive version of the c...
refrelsredund3 36674 The naive version of the c...
refrelredund4 36675 The naive version of the d...
refrelredund2 36676 The naive version of the d...
refrelredund3 36677 The naive version of the d...
dmqseq 36680 Equality theorem for domai...
dmqseqi 36681 Equality theorem for domai...
dmqseqd 36682 Equality theorem for domai...
dmqseqeq1 36683 Equality theorem for domai...
dmqseqeq1i 36684 Equality theorem for domai...
dmqseqeq1d 36685 Equality theorem for domai...
brdmqss 36686 The domain quotient binary...
brdmqssqs 36687 If ` A ` and ` R ` are set...
n0eldmqs 36688 The empty set is not an el...
n0eldmqseq 36689 The empty set is not an el...
n0el3 36690 Two ways of expressing tha...
cnvepresdmqss 36691 The domain quotient binary...
cnvepresdmqs 36692 The domain quotient predic...
unidmqs 36693 The range of a relation is...
unidmqseq 36694 The union of the domain qu...
dmqseqim 36695 If the domain quotient of ...
dmqseqim2 36696 Lemma for ~ erim2 . (Cont...
releldmqs 36697 Elementhood in the domain ...
eldmqs1cossres 36698 Elementhood in the domain ...
releldmqscoss 36699 Elementhood in the domain ...
dmqscoelseq 36700 Two ways to express the eq...
dmqs1cosscnvepreseq 36701 Two ways to express the eq...
brers 36706 Binary equivalence relatio...
dferALTV2 36707 Equivalence relation with ...
erALTVeq1 36708 Equality theorem for equiv...
erALTVeq1i 36709 Equality theorem for equiv...
erALTVeq1d 36710 Equality theorem for equiv...
dfmember 36711 Alternate definition of th...
dfmember2 36712 Alternate definition of th...
dfmember3 36713 Alternate definition of th...
eqvreldmqs 36714 Two ways to express member...
brerser 36715 Binary equivalence relatio...
erim2 36716 Equivalence relation on it...
erim 36717 Equivalence relation on it...
dffunsALTV 36721 Alternate definition of th...
dffunsALTV2 36722 Alternate definition of th...
dffunsALTV3 36723 Alternate definition of th...
dffunsALTV4 36724 Alternate definition of th...
dffunsALTV5 36725 Alternate definition of th...
dffunALTV2 36726 Alternate definition of th...
dffunALTV3 36727 Alternate definition of th...
dffunALTV4 36728 Alternate definition of th...
dffunALTV5 36729 Alternate definition of th...
elfunsALTV 36730 Elementhood in the class o...
elfunsALTV2 36731 Elementhood in the class o...
elfunsALTV3 36732 Elementhood in the class o...
elfunsALTV4 36733 Elementhood in the class o...
elfunsALTV5 36734 Elementhood in the class o...
elfunsALTVfunALTV 36735 The element of the class o...
funALTVfun 36736 Our definition of the func...
funALTVss 36737 Subclass theorem for funct...
funALTVeq 36738 Equality theorem for funct...
funALTVeqi 36739 Equality inference for the...
funALTVeqd 36740 Equality deduction for the...
dfdisjs 36746 Alternate definition of th...
dfdisjs2 36747 Alternate definition of th...
dfdisjs3 36748 Alternate definition of th...
dfdisjs4 36749 Alternate definition of th...
dfdisjs5 36750 Alternate definition of th...
dfdisjALTV 36751 Alternate definition of th...
dfdisjALTV2 36752 Alternate definition of th...
dfdisjALTV3 36753 Alternate definition of th...
dfdisjALTV4 36754 Alternate definition of th...
dfdisjALTV5 36755 Alternate definition of th...
dfeldisj2 36756 Alternate definition of th...
dfeldisj3 36757 Alternate definition of th...
dfeldisj4 36758 Alternate definition of th...
dfeldisj5 36759 Alternate definition of th...
eldisjs 36760 Elementhood in the class o...
eldisjs2 36761 Elementhood in the class o...
eldisjs3 36762 Elementhood in the class o...
eldisjs4 36763 Elementhood in the class o...
eldisjs5 36764 Elementhood in the class o...
eldisjsdisj 36765 The element of the class o...
eleldisjs 36766 Elementhood in the disjoin...
eleldisjseldisj 36767 The element of the disjoin...
disjrel 36768 Disjoint relation is a rel...
disjss 36769 Subclass theorem for disjo...
disjssi 36770 Subclass theorem for disjo...
disjssd 36771 Subclass theorem for disjo...
disjeq 36772 Equality theorem for disjo...
disjeqi 36773 Equality theorem for disjo...
disjeqd 36774 Equality theorem for disjo...
disjdmqseqeq1 36775 Lemma for the equality the...
eldisjss 36776 Subclass theorem for disjo...
eldisjssi 36777 Subclass theorem for disjo...
eldisjssd 36778 Subclass theorem for disjo...
eldisjeq 36779 Equality theorem for disjo...
eldisjeqi 36780 Equality theorem for disjo...
eldisjeqd 36781 Equality theorem for disjo...
disjxrn 36782 Two ways of saying that a ...
disjorimxrn 36783 Disjointness condition for...
disjimxrn 36784 Disjointness condition for...
disjimres 36785 Disjointness condition for...
disjimin 36786 Disjointness condition for...
disjiminres 36787 Disjointness condition for...
disjimxrnres 36788 Disjointness condition for...
disjALTV0 36789 The null class is disjoint...
disjALTVid 36790 The class of identity rela...
disjALTVidres 36791 The class of identity rela...
disjALTVinidres 36792 The intersection with rest...
disjALTVxrnidres 36793 The class of range Cartesi...
prtlem60 36794 Lemma for ~ prter3 . (Con...
bicomdd 36795 Commute two sides of a bic...
jca2r 36796 Inference conjoining the c...
jca3 36797 Inference conjoining the c...
prtlem70 36798 Lemma for ~ prter3 : a rea...
ibdr 36799 Reverse of ~ ibd . (Contr...
prtlem100 36800 Lemma for ~ prter3 . (Con...
prtlem5 36801 Lemma for ~ prter1 , ~ prt...
prtlem80 36802 Lemma for ~ prter2 . (Con...
brabsb2 36803 A closed form of ~ brabsb ...
eqbrrdv2 36804 Other version of ~ eqbrrdi...
prtlem9 36805 Lemma for ~ prter3 . (Con...
prtlem10 36806 Lemma for ~ prter3 . (Con...
prtlem11 36807 Lemma for ~ prter2 . (Con...
prtlem12 36808 Lemma for ~ prtex and ~ pr...
prtlem13 36809 Lemma for ~ prter1 , ~ prt...
prtlem16 36810 Lemma for ~ prtex , ~ prte...
prtlem400 36811 Lemma for ~ prter2 and als...
erprt 36814 The quotient set of an equ...
prtlem14 36815 Lemma for ~ prter1 , ~ prt...
prtlem15 36816 Lemma for ~ prter1 and ~ p...
prtlem17 36817 Lemma for ~ prter2 . (Con...
prtlem18 36818 Lemma for ~ prter2 . (Con...
prtlem19 36819 Lemma for ~ prter2 . (Con...
prter1 36820 Every partition generates ...
prtex 36821 The equivalence relation g...
prter2 36822 The quotient set of the eq...
prter3 36823 For every partition there ...
axc5 36834 This theorem repeats ~ sp ...
ax4fromc4 36835 Rederivation of Axiom ~ ax...
ax10fromc7 36836 Rederivation of Axiom ~ ax...
ax6fromc10 36837 Rederivation of Axiom ~ ax...
hba1-o 36838 The setvar ` x ` is not fr...
axc4i-o 36839 Inference version of ~ ax-...
equid1 36840 Proof of ~ equid from our ...
equcomi1 36841 Proof of ~ equcomi from ~ ...
aecom-o 36842 Commutation law for identi...
aecoms-o 36843 A commutation rule for ide...
hbae-o 36844 All variables are effectiv...
dral1-o 36845 Formula-building lemma for...
ax12fromc15 36846 Rederivation of Axiom ~ ax...
ax13fromc9 36847 Derive ~ ax-13 from ~ ax-c...
ax5ALT 36848 Axiom to quantify a variab...
sps-o 36849 Generalization of antecede...
hbequid 36850 Bound-variable hypothesis ...
nfequid-o 36851 Bound-variable hypothesis ...
axc5c7 36852 Proof of a single axiom th...
axc5c7toc5 36853 Rederivation of ~ ax-c5 fr...
axc5c7toc7 36854 Rederivation of ~ ax-c7 fr...
axc711 36855 Proof of a single axiom th...
nfa1-o 36856 ` x ` is not free in ` A. ...
axc711toc7 36857 Rederivation of ~ ax-c7 fr...
axc711to11 36858 Rederivation of ~ ax-11 fr...
axc5c711 36859 Proof of a single axiom th...
axc5c711toc5 36860 Rederivation of ~ ax-c5 fr...
axc5c711toc7 36861 Rederivation of ~ ax-c7 fr...
axc5c711to11 36862 Rederivation of ~ ax-11 fr...
equidqe 36863 ~ equid with existential q...
axc5sp1 36864 A special case of ~ ax-c5 ...
equidq 36865 ~ equid with universal qua...
equid1ALT 36866 Alternate proof of ~ equid...
axc11nfromc11 36867 Rederivation of ~ ax-c11n ...
naecoms-o 36868 A commutation rule for dis...
hbnae-o 36869 All variables are effectiv...
dvelimf-o 36870 Proof of ~ dvelimh that us...
dral2-o 36871 Formula-building lemma for...
aev-o 36872 A "distinctor elimination"...
ax5eq 36873 Theorem to add distinct qu...
dveeq2-o 36874 Quantifier introduction wh...
axc16g-o 36875 A generalization of Axiom ...
dveeq1-o 36876 Quantifier introduction wh...
dveeq1-o16 36877 Version of ~ dveeq1 using ...
ax5el 36878 Theorem to add distinct qu...
axc11n-16 36879 This theorem shows that, g...
dveel2ALT 36880 Alternate proof of ~ dveel...
ax12f 36881 Basis step for constructin...
ax12eq 36882 Basis step for constructin...
ax12el 36883 Basis step for constructin...
ax12indn 36884 Induction step for constru...
ax12indi 36885 Induction step for constru...
ax12indalem 36886 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 36887 Alternate proof of ~ ax12i...
ax12inda2 36888 Induction step for constru...
ax12inda 36889 Induction step for constru...
ax12v2-o 36890 Rederivation of ~ ax-c15 f...
ax12a2-o 36891 Derive ~ ax-c15 from a hyp...
axc11-o 36892 Show that ~ ax-c11 can be ...
fsumshftd 36893 Index shift of a finite su...
riotaclbgBAD 36895 Closure of restricted iota...
riotaclbBAD 36896 Closure of restricted iota...
riotasvd 36897 Deduction version of ~ rio...
riotasv2d 36898 Value of description binde...
riotasv2s 36899 The value of description b...
riotasv 36900 Value of description binde...
riotasv3d 36901 A property ` ch ` holding ...
elimhyps 36902 A version of ~ elimhyp usi...
dedths 36903 A version of weak deductio...
renegclALT 36904 Closure law for negative o...
elimhyps2 36905 Generalization of ~ elimhy...
dedths2 36906 Generalization of ~ dedths...
nfcxfrdf 36907 A utility lemma to transfe...
nfded 36908 A deduction theorem that c...
nfded2 36909 A deduction theorem that c...
nfunidALT2 36910 Deduction version of ~ nfu...
nfunidALT 36911 Deduction version of ~ nfu...
nfopdALT 36912 Deduction version of bound...
cnaddcom 36913 Recover the commutative la...
toycom 36914 Show the commutative law f...
lshpset 36919 The set of all hyperplanes...
islshp 36920 The predicate "is a hyperp...
islshpsm 36921 Hyperplane properties expr...
lshplss 36922 A hyperplane is a subspace...
lshpne 36923 A hyperplane is not equal ...
lshpnel 36924 A hyperplane's generating ...
lshpnelb 36925 The subspace sum of a hype...
lshpnel2N 36926 Condition that determines ...
lshpne0 36927 The member of the span in ...
lshpdisj 36928 A hyperplane and the span ...
lshpcmp 36929 If two hyperplanes are com...
lshpinN 36930 The intersection of two di...
lsatset 36931 The set of all 1-dim subsp...
islsat 36932 The predicate "is a 1-dim ...
lsatlspsn2 36933 The span of a nonzero sing...
lsatlspsn 36934 The span of a nonzero sing...
islsati 36935 A 1-dim subspace (atom) (o...
lsateln0 36936 A 1-dim subspace (atom) (o...
lsatlss 36937 The set of 1-dim subspaces...
lsatlssel 36938 An atom is a subspace. (C...
lsatssv 36939 An atom is a set of vector...
lsatn0 36940 A 1-dim subspace (atom) of...
lsatspn0 36941 The span of a vector is an...
lsator0sp 36942 The span of a vector is ei...
lsatssn0 36943 A subspace (or any class) ...
lsatcmp 36944 If two atoms are comparabl...
lsatcmp2 36945 If an atom is included in ...
lsatel 36946 A nonzero vector in an ato...
lsatelbN 36947 A nonzero vector in an ato...
lsat2el 36948 Two atoms sharing a nonzer...
lsmsat 36949 Convert comparison of atom...
lsatfixedN 36950 Show equality with the spa...
lsmsatcv 36951 Subspace sum has the cover...
lssatomic 36952 The lattice of subspaces i...
lssats 36953 The lattice of subspaces i...
lpssat 36954 Two subspaces in a proper ...
lrelat 36955 Subspaces are relatively a...
lssatle 36956 The ordering of two subspa...
lssat 36957 Two subspaces in a proper ...
islshpat 36958 Hyperplane properties expr...
lcvfbr 36961 The covers relation for a ...
lcvbr 36962 The covers relation for a ...
lcvbr2 36963 The covers relation for a ...
lcvbr3 36964 The covers relation for a ...
lcvpss 36965 The covers relation implie...
lcvnbtwn 36966 The covers relation implie...
lcvntr 36967 The covers relation is not...
lcvnbtwn2 36968 The covers relation implie...
lcvnbtwn3 36969 The covers relation implie...
lsmcv2 36970 Subspace sum has the cover...
lcvat 36971 If a subspace covers anoth...
lsatcv0 36972 An atom covers the zero su...
lsatcveq0 36973 A subspace covered by an a...
lsat0cv 36974 A subspace is an atom iff ...
lcvexchlem1 36975 Lemma for ~ lcvexch . (Co...
lcvexchlem2 36976 Lemma for ~ lcvexch . (Co...
lcvexchlem3 36977 Lemma for ~ lcvexch . (Co...
lcvexchlem4 36978 Lemma for ~ lcvexch . (Co...
lcvexchlem5 36979 Lemma for ~ lcvexch . (Co...
lcvexch 36980 Subspaces satisfy the exch...
lcvp 36981 Covering property of Defin...
lcv1 36982 Covering property of a sub...
lcv2 36983 Covering property of a sub...
lsatexch 36984 The atom exchange property...
lsatnle 36985 The meet of a subspace and...
lsatnem0 36986 The meet of distinct atoms...
lsatexch1 36987 The atom exch1ange propert...
lsatcv0eq 36988 If the sum of two atoms co...
lsatcv1 36989 Two atoms covering the zer...
lsatcvatlem 36990 Lemma for ~ lsatcvat . (C...
lsatcvat 36991 A nonzero subspace less th...
lsatcvat2 36992 A subspace covered by the ...
lsatcvat3 36993 A condition implying that ...
islshpcv 36994 Hyperplane properties expr...
l1cvpat 36995 A subspace covered by the ...
l1cvat 36996 Create an atom under an el...
lshpat 36997 Create an atom under a hyp...
lflset 37000 The set of linear function...
islfl 37001 The predicate "is a linear...
lfli 37002 Property of a linear funct...
islfld 37003 Properties that determine ...
lflf 37004 A linear functional is a f...
lflcl 37005 A linear functional value ...
lfl0 37006 A linear functional is zer...
lfladd 37007 Property of a linear funct...
lflsub 37008 Property of a linear funct...
lflmul 37009 Property of a linear funct...
lfl0f 37010 The zero function is a fun...
lfl1 37011 A nonzero functional has a...
lfladdcl 37012 Closure of addition of two...
lfladdcom 37013 Commutativity of functiona...
lfladdass 37014 Associativity of functiona...
lfladd0l 37015 Functional addition with t...
lflnegcl 37016 Closure of the negative of...
lflnegl 37017 A functional plus its nega...
lflvscl 37018 Closure of a scalar produc...
lflvsdi1 37019 Distributive law for (righ...
lflvsdi2 37020 Reverse distributive law f...
lflvsdi2a 37021 Reverse distributive law f...
lflvsass 37022 Associative law for (right...
lfl0sc 37023 The (right vector space) s...
lflsc0N 37024 The scalar product with th...
lfl1sc 37025 The (right vector space) s...
lkrfval 37028 The kernel of a functional...
lkrval 37029 Value of the kernel of a f...
ellkr 37030 Membership in the kernel o...
lkrval2 37031 Value of the kernel of a f...
ellkr2 37032 Membership in the kernel o...
lkrcl 37033 A member of the kernel of ...
lkrf0 37034 The value of a functional ...
lkr0f 37035 The kernel of the zero fun...
lkrlss 37036 The kernel of a linear fun...
lkrssv 37037 The kernel of a linear fun...
lkrsc 37038 The kernel of a nonzero sc...
lkrscss 37039 The kernel of a scalar pro...
eqlkr 37040 Two functionals with the s...
eqlkr2 37041 Two functionals with the s...
eqlkr3 37042 Two functionals with the s...
lkrlsp 37043 The subspace sum of a kern...
lkrlsp2 37044 The subspace sum of a kern...
lkrlsp3 37045 The subspace sum of a kern...
lkrshp 37046 The kernel of a nonzero fu...
lkrshp3 37047 The kernels of nonzero fun...
lkrshpor 37048 The kernel of a functional...
lkrshp4 37049 A kernel is a hyperplane i...
lshpsmreu 37050 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 37051 Lemma for ~ lshpkrex . Th...
lshpkrlem2 37052 Lemma for ~ lshpkrex . Th...
lshpkrlem3 37053 Lemma for ~ lshpkrex . De...
lshpkrlem4 37054 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 37055 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 37056 Lemma for ~ lshpkrex . Sh...
lshpkrcl 37057 The set ` G ` defined by h...
lshpkr 37058 The kernel of functional `...
lshpkrex 37059 There exists a functional ...
lshpset2N 37060 The set of all hyperplanes...
islshpkrN 37061 The predicate "is a hyperp...
lfl1dim 37062 Equivalent expressions for...
lfl1dim2N 37063 Equivalent expressions for...
ldualset 37066 Define the (left) dual of ...
ldualvbase 37067 The vectors of a dual spac...
ldualelvbase 37068 Utility theorem for conver...
ldualfvadd 37069 Vector addition in the dua...
ldualvadd 37070 Vector addition in the dua...
ldualvaddcl 37071 The value of vector additi...
ldualvaddval 37072 The value of the value of ...
ldualsca 37073 The ring of scalars of the...
ldualsbase 37074 Base set of scalar ring fo...
ldualsaddN 37075 Scalar addition for the du...
ldualsmul 37076 Scalar multiplication for ...
ldualfvs 37077 Scalar product operation f...
ldualvs 37078 Scalar product operation v...
ldualvsval 37079 Value of scalar product op...
ldualvscl 37080 The scalar product operati...
ldualvaddcom 37081 Commutative law for vector...
ldualvsass 37082 Associative law for scalar...
ldualvsass2 37083 Associative law for scalar...
ldualvsdi1 37084 Distributive law for scala...
ldualvsdi2 37085 Reverse distributive law f...
ldualgrplem 37086 Lemma for ~ ldualgrp . (C...
ldualgrp 37087 The dual of a vector space...
ldual0 37088 The zero scalar of the dua...
ldual1 37089 The unit scalar of the dua...
ldualneg 37090 The negative of a scalar o...
ldual0v 37091 The zero vector of the dua...
ldual0vcl 37092 The dual zero vector is a ...
lduallmodlem 37093 Lemma for ~ lduallmod . (...
lduallmod 37094 The dual of a left module ...
lduallvec 37095 The dual of a left vector ...
ldualvsub 37096 The value of vector subtra...
ldualvsubcl 37097 Closure of vector subtract...
ldualvsubval 37098 The value of the value of ...
ldualssvscl 37099 Closure of scalar product ...
ldualssvsubcl 37100 Closure of vector subtract...
ldual0vs 37101 Scalar zero times a functi...
lkr0f2 37102 The kernel of the zero fun...
lduallkr3 37103 The kernels of nonzero fun...
lkrpssN 37104 Proper subset relation bet...
lkrin 37105 Intersection of the kernel...
eqlkr4 37106 Two functionals with the s...
ldual1dim 37107 Equivalent expressions for...
ldualkrsc 37108 The kernel of a nonzero sc...
lkrss 37109 The kernel of a scalar pro...
lkrss2N 37110 Two functionals with kerne...
lkreqN 37111 Proportional functionals h...
lkrlspeqN 37112 Condition for colinear fun...
isopos 37121 The predicate "is an ortho...
opposet 37122 Every orthoposet is a pose...
oposlem 37123 Lemma for orthoposet prope...
op01dm 37124 Conditions necessary for z...
op0cl 37125 An orthoposet has a zero e...
op1cl 37126 An orthoposet has a unit e...
op0le 37127 Orthoposet zero is less th...
ople0 37128 An element less than or eq...
opnlen0 37129 An element not less than a...
lub0N 37130 The least upper bound of t...
opltn0 37131 A lattice element greater ...
ople1 37132 Any element is less than t...
op1le 37133 If the orthoposet unit is ...
glb0N 37134 The greatest lower bound o...
opoccl 37135 Closure of orthocomplement...
opococ 37136 Double negative law for or...
opcon3b 37137 Contraposition law for ort...
opcon2b 37138 Orthocomplement contraposi...
opcon1b 37139 Orthocomplement contraposi...
oplecon3 37140 Contraposition law for ort...
oplecon3b 37141 Contraposition law for ort...
oplecon1b 37142 Contraposition law for str...
opoc1 37143 Orthocomplement of orthopo...
opoc0 37144 Orthocomplement of orthopo...
opltcon3b 37145 Contraposition law for str...
opltcon1b 37146 Contraposition law for str...
opltcon2b 37147 Contraposition law for str...
opexmid 37148 Law of excluded middle for...
opnoncon 37149 Law of contradiction for o...
riotaocN 37150 The orthocomplement of the...
cmtfvalN 37151 Value of commutes relation...
cmtvalN 37152 Equivalence for commutes r...
isolat 37153 The predicate "is an ortho...
ollat 37154 An ortholattice is a latti...
olop 37155 An ortholattice is an orth...
olposN 37156 An ortholattice is a poset...
isolatiN 37157 Properties that determine ...
oldmm1 37158 De Morgan's law for meet i...
oldmm2 37159 De Morgan's law for meet i...
oldmm3N 37160 De Morgan's law for meet i...
oldmm4 37161 De Morgan's law for meet i...
oldmj1 37162 De Morgan's law for join i...
oldmj2 37163 De Morgan's law for join i...
oldmj3 37164 De Morgan's law for join i...
oldmj4 37165 De Morgan's law for join i...
olj01 37166 An ortholattice element jo...
olj02 37167 An ortholattice element jo...
olm11 37168 The meet of an ortholattic...
olm12 37169 The meet of an ortholattic...
latmassOLD 37170 Ortholattice meet is assoc...
latm12 37171 A rearrangement of lattice...
latm32 37172 A rearrangement of lattice...
latmrot 37173 Rotate lattice meet of 3 c...
latm4 37174 Rearrangement of lattice m...
latmmdiN 37175 Lattice meet distributes o...
latmmdir 37176 Lattice meet distributes o...
olm01 37177 Meet with lattice zero is ...
olm02 37178 Meet with lattice zero is ...
isoml 37179 The predicate "is an ortho...
isomliN 37180 Properties that determine ...
omlol 37181 An orthomodular lattice is...
omlop 37182 An orthomodular lattice is...
omllat 37183 An orthomodular lattice is...
omllaw 37184 The orthomodular law. (Co...
omllaw2N 37185 Variation of orthomodular ...
omllaw3 37186 Orthomodular law equivalen...
omllaw4 37187 Orthomodular law equivalen...
omllaw5N 37188 The orthomodular law. Rem...
cmtcomlemN 37189 Lemma for ~ cmtcomN . ( ~...
cmtcomN 37190 Commutation is symmetric. ...
cmt2N 37191 Commutation with orthocomp...
cmt3N 37192 Commutation with orthocomp...
cmt4N 37193 Commutation with orthocomp...
cmtbr2N 37194 Alternate definition of th...
cmtbr3N 37195 Alternate definition for t...
cmtbr4N 37196 Alternate definition for t...
lecmtN 37197 Ordered elements commute. ...
cmtidN 37198 Any element commutes with ...
omlfh1N 37199 Foulis-Holland Theorem, pa...
omlfh3N 37200 Foulis-Holland Theorem, pa...
omlmod1i2N 37201 Analogue of modular law ~ ...
omlspjN 37202 Contraction of a Sasaki pr...
cvrfval 37209 Value of covers relation "...
cvrval 37210 Binary relation expressing...
cvrlt 37211 The covers relation implie...
cvrnbtwn 37212 There is no element betwee...
ncvr1 37213 No element covers the latt...
cvrletrN 37214 Property of an element abo...
cvrval2 37215 Binary relation expressing...
cvrnbtwn2 37216 The covers relation implie...
cvrnbtwn3 37217 The covers relation implie...
cvrcon3b 37218 Contraposition law for the...
cvrle 37219 The covers relation implie...
cvrnbtwn4 37220 The covers relation implie...
cvrnle 37221 The covers relation implie...
cvrne 37222 The covers relation implie...
cvrnrefN 37223 The covers relation is not...
cvrcmp 37224 If two lattice elements th...
cvrcmp2 37225 If two lattice elements co...
pats 37226 The set of atoms in a pose...
isat 37227 The predicate "is an atom"...
isat2 37228 The predicate "is an atom"...
atcvr0 37229 An atom covers zero. ( ~ ...
atbase 37230 An atom is a member of the...
atssbase 37231 The set of atoms is a subs...
0ltat 37232 An atom is greater than ze...
leatb 37233 A poset element less than ...
leat 37234 A poset element less than ...
leat2 37235 A nonzero poset element le...
leat3 37236 A poset element less than ...
meetat 37237 The meet of any element wi...
meetat2 37238 The meet of any element wi...
isatl 37240 The predicate "is an atomi...
atllat 37241 An atomic lattice is a lat...
atlpos 37242 An atomic lattice is a pos...
atl0dm 37243 Condition necessary for ze...
atl0cl 37244 An atomic lattice has a ze...
atl0le 37245 Orthoposet zero is less th...
atlle0 37246 An element less than or eq...
atlltn0 37247 A lattice element greater ...
isat3 37248 The predicate "is an atom"...
atn0 37249 An atom is not zero. ( ~ ...
atnle0 37250 An atom is not less than o...
atlen0 37251 A lattice element is nonze...
atcmp 37252 If two atoms are comparabl...
atncmp 37253 Frequently-used variation ...
atnlt 37254 Two atoms cannot satisfy t...
atcvreq0 37255 An element covered by an a...
atncvrN 37256 Two atoms cannot satisfy t...
atlex 37257 Every nonzero element of a...
atnle 37258 Two ways of expressing "an...
atnem0 37259 The meet of distinct atoms...
atlatmstc 37260 An atomic, complete, ortho...
atlatle 37261 The ordering of two Hilber...
atlrelat1 37262 An atomistic lattice with ...
iscvlat 37264 The predicate "is an atomi...
iscvlat2N 37265 The predicate "is an atomi...
cvlatl 37266 An atomic lattice with the...
cvllat 37267 An atomic lattice with the...
cvlposN 37268 An atomic lattice with the...
cvlexch1 37269 An atomic covering lattice...
cvlexch2 37270 An atomic covering lattice...
cvlexchb1 37271 An atomic covering lattice...
cvlexchb2 37272 An atomic covering lattice...
cvlexch3 37273 An atomic covering lattice...
cvlexch4N 37274 An atomic covering lattice...
cvlatexchb1 37275 A version of ~ cvlexchb1 f...
cvlatexchb2 37276 A version of ~ cvlexchb2 f...
cvlatexch1 37277 Atom exchange property. (...
cvlatexch2 37278 Atom exchange property. (...
cvlatexch3 37279 Atom exchange property. (...
cvlcvr1 37280 The covering property. Pr...
cvlcvrp 37281 A Hilbert lattice satisfie...
cvlatcvr1 37282 An atom is covered by its ...
cvlatcvr2 37283 An atom is covered by its ...
cvlsupr2 37284 Two equivalent ways of exp...
cvlsupr3 37285 Two equivalent ways of exp...
cvlsupr4 37286 Consequence of superpositi...
cvlsupr5 37287 Consequence of superpositi...
cvlsupr6 37288 Consequence of superpositi...
cvlsupr7 37289 Consequence of superpositi...
cvlsupr8 37290 Consequence of superpositi...
ishlat1 37293 The predicate "is a Hilber...
ishlat2 37294 The predicate "is a Hilber...
ishlat3N 37295 The predicate "is a Hilber...
ishlatiN 37296 Properties that determine ...
hlomcmcv 37297 A Hilbert lattice is ortho...
hloml 37298 A Hilbert lattice is ortho...
hlclat 37299 A Hilbert lattice is compl...
hlcvl 37300 A Hilbert lattice is an at...
hlatl 37301 A Hilbert lattice is atomi...
hlol 37302 A Hilbert lattice is an or...
hlop 37303 A Hilbert lattice is an or...
hllat 37304 A Hilbert lattice is a lat...
hllatd 37305 Deduction form of ~ hllat ...
hlomcmat 37306 A Hilbert lattice is ortho...
hlpos 37307 A Hilbert lattice is a pos...
hlatjcl 37308 Closure of join operation....
hlatjcom 37309 Commutatitivity of join op...
hlatjidm 37310 Idempotence of join operat...
hlatjass 37311 Lattice join is associativ...
hlatj12 37312 Swap 1st and 2nd members o...
hlatj32 37313 Swap 2nd and 3rd members o...
hlatjrot 37314 Rotate lattice join of 3 c...
hlatj4 37315 Rearrangement of lattice j...
hlatlej1 37316 A join's first argument is...
hlatlej2 37317 A join's second argument i...
glbconN 37318 De Morgan's law for GLB an...
glbconxN 37319 De Morgan's law for GLB an...
atnlej1 37320 If an atom is not less tha...
atnlej2 37321 If an atom is not less tha...
hlsuprexch 37322 A Hilbert lattice has the ...
hlexch1 37323 A Hilbert lattice has the ...
hlexch2 37324 A Hilbert lattice has the ...
hlexchb1 37325 A Hilbert lattice has the ...
hlexchb2 37326 A Hilbert lattice has the ...
hlsupr 37327 A Hilbert lattice has the ...
hlsupr2 37328 A Hilbert lattice has the ...
hlhgt4 37329 A Hilbert lattice has a he...
hlhgt2 37330 A Hilbert lattice has a he...
hl0lt1N 37331 Lattice 0 is less than lat...
hlexch3 37332 A Hilbert lattice has the ...
hlexch4N 37333 A Hilbert lattice has the ...
hlatexchb1 37334 A version of ~ hlexchb1 fo...
hlatexchb2 37335 A version of ~ hlexchb2 fo...
hlatexch1 37336 Atom exchange property. (...
hlatexch2 37337 Atom exchange property. (...
hlatmstcOLDN 37338 An atomic, complete, ortho...
hlatle 37339 The ordering of two Hilber...
hlateq 37340 The equality of two Hilber...
hlrelat1 37341 An atomistic lattice with ...
hlrelat5N 37342 An atomistic lattice with ...
hlrelat 37343 A Hilbert lattice is relat...
hlrelat2 37344 A consequence of relative ...
exatleN 37345 A condition for an atom to...
hl2at 37346 A Hilbert lattice has at l...
atex 37347 At least one atom exists. ...
intnatN 37348 If the intersection with a...
2llnne2N 37349 Condition implying that tw...
2llnneN 37350 Condition implying that tw...
cvr1 37351 A Hilbert lattice has the ...
cvr2N 37352 Less-than and covers equiv...
hlrelat3 37353 The Hilbert lattice is rel...
cvrval3 37354 Binary relation expressing...
cvrval4N 37355 Binary relation expressing...
cvrval5 37356 Binary relation expressing...
cvrp 37357 A Hilbert lattice satisfie...
atcvr1 37358 An atom is covered by its ...
atcvr2 37359 An atom is covered by its ...
cvrexchlem 37360 Lemma for ~ cvrexch . ( ~...
cvrexch 37361 A Hilbert lattice satisfie...
cvratlem 37362 Lemma for ~ cvrat . ( ~ a...
cvrat 37363 A nonzero Hilbert lattice ...
ltltncvr 37364 A chained strong ordering ...
ltcvrntr 37365 Non-transitive condition f...
cvrntr 37366 The covers relation is not...
atcvr0eq 37367 The covers relation is not...
lnnat 37368 A line (the join of two di...
atcvrj0 37369 Two atoms covering the zer...
cvrat2 37370 A Hilbert lattice element ...
atcvrneN 37371 Inequality derived from at...
atcvrj1 37372 Condition for an atom to b...
atcvrj2b 37373 Condition for an atom to b...
atcvrj2 37374 Condition for an atom to b...
atleneN 37375 Inequality derived from at...
atltcvr 37376 An equivalence of less-tha...
atle 37377 Any nonzero element has an...
atlt 37378 Two atoms are unequal iff ...
atlelt 37379 Transfer less-than relatio...
2atlt 37380 Given an atom less than an...
atexchcvrN 37381 Atom exchange property. V...
atexchltN 37382 Atom exchange property. V...
cvrat3 37383 A condition implying that ...
cvrat4 37384 A condition implying exist...
cvrat42 37385 Commuted version of ~ cvra...
2atjm 37386 The meet of a line (expres...
atbtwn 37387 Property of a 3rd atom ` R...
atbtwnexOLDN 37388 There exists a 3rd atom ` ...
atbtwnex 37389 Given atoms ` P ` in ` X `...
3noncolr2 37390 Two ways to express 3 non-...
3noncolr1N 37391 Two ways to express 3 non-...
hlatcon3 37392 Atom exchange combined wit...
hlatcon2 37393 Atom exchange combined wit...
4noncolr3 37394 A way to express 4 non-col...
4noncolr2 37395 A way to express 4 non-col...
4noncolr1 37396 A way to express 4 non-col...
athgt 37397 A Hilbert lattice, whose h...
3dim0 37398 There exists a 3-dimension...
3dimlem1 37399 Lemma for ~ 3dim1 . (Cont...
3dimlem2 37400 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 37401 Lemma for ~ 3dim3 . (Cont...
3dimlem3 37402 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 37403 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 37404 Lemma for ~ 3dim3 . (Cont...
3dimlem4 37405 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 37406 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 37407 Lemma for ~ 3dim1 . (Cont...
3dim1 37408 Construct a 3-dimensional ...
3dim2 37409 Construct 2 new layers on ...
3dim3 37410 Construct a new layer on t...
2dim 37411 Generate a height-3 elemen...
1dimN 37412 An atom is covered by a he...
1cvrco 37413 The orthocomplement of an ...
1cvratex 37414 There exists an atom less ...
1cvratlt 37415 An atom less than or equal...
1cvrjat 37416 An element covered by the ...
1cvrat 37417 Create an atom under an el...
ps-1 37418 The join of two atoms ` R ...
ps-2 37419 Lattice analogue for the p...
2atjlej 37420 Two atoms are different if...
hlatexch3N 37421 Rearrange join of atoms in...
hlatexch4 37422 Exchange 2 atoms. (Contri...
ps-2b 37423 Variation of projective ge...
3atlem1 37424 Lemma for ~ 3at . (Contri...
3atlem2 37425 Lemma for ~ 3at . (Contri...
3atlem3 37426 Lemma for ~ 3at . (Contri...
3atlem4 37427 Lemma for ~ 3at . (Contri...
3atlem5 37428 Lemma for ~ 3at . (Contri...
3atlem6 37429 Lemma for ~ 3at . (Contri...
3atlem7 37430 Lemma for ~ 3at . (Contri...
3at 37431 Any three non-colinear ato...
llnset 37446 The set of lattice lines i...
islln 37447 The predicate "is a lattic...
islln4 37448 The predicate "is a lattic...
llni 37449 Condition implying a latti...
llnbase 37450 A lattice line is a lattic...
islln3 37451 The predicate "is a lattic...
islln2 37452 The predicate "is a lattic...
llni2 37453 The join of two different ...
llnnleat 37454 An atom cannot majorize a ...
llnneat 37455 A lattice line is not an a...
2atneat 37456 The join of two distinct a...
llnn0 37457 A lattice line is nonzero....
islln2a 37458 The predicate "is a lattic...
llnle 37459 Any element greater than 0...
atcvrlln2 37460 An atom under a line is co...
atcvrlln 37461 An element covering an ato...
llnexatN 37462 Given an atom on a line, t...
llncmp 37463 If two lattice lines are c...
llnnlt 37464 Two lattice lines cannot s...
2llnmat 37465 Two intersecting lines int...
2at0mat0 37466 Special case of ~ 2atmat0 ...
2atmat0 37467 The meet of two unequal li...
2atm 37468 An atom majorized by two d...
ps-2c 37469 Variation of projective ge...
lplnset 37470 The set of lattice planes ...
islpln 37471 The predicate "is a lattic...
islpln4 37472 The predicate "is a lattic...
lplni 37473 Condition implying a latti...
islpln3 37474 The predicate "is a lattic...
lplnbase 37475 A lattice plane is a latti...
islpln5 37476 The predicate "is a lattic...
islpln2 37477 The predicate "is a lattic...
lplni2 37478 The join of 3 different at...
lvolex3N 37479 There is an atom outside o...
llnmlplnN 37480 The intersection of a line...
lplnle 37481 Any element greater than 0...
lplnnle2at 37482 A lattice line (or atom) c...
lplnnleat 37483 A lattice plane cannot maj...
lplnnlelln 37484 A lattice plane is not les...
2atnelpln 37485 The join of two atoms is n...
lplnneat 37486 No lattice plane is an ato...
lplnnelln 37487 No lattice plane is a latt...
lplnn0N 37488 A lattice plane is nonzero...
islpln2a 37489 The predicate "is a lattic...
islpln2ah 37490 The predicate "is a lattic...
lplnriaN 37491 Property of a lattice plan...
lplnribN 37492 Property of a lattice plan...
lplnric 37493 Property of a lattice plan...
lplnri1 37494 Property of a lattice plan...
lplnri2N 37495 Property of a lattice plan...
lplnri3N 37496 Property of a lattice plan...
lplnllnneN 37497 Two lattice lines defined ...
llncvrlpln2 37498 A lattice line under a lat...
llncvrlpln 37499 An element covering a latt...
2lplnmN 37500 If the join of two lattice...
2llnmj 37501 The meet of two lattice li...
2atmat 37502 The meet of two intersecti...
lplncmp 37503 If two lattice planes are ...
lplnexatN 37504 Given a lattice line on a ...
lplnexllnN 37505 Given an atom on a lattice...
lplnnlt 37506 Two lattice planes cannot ...
2llnjaN 37507 The join of two different ...
2llnjN 37508 The join of two different ...
2llnm2N 37509 The meet of two different ...
2llnm3N 37510 Two lattice lines in a lat...
2llnm4 37511 Two lattice lines that maj...
2llnmeqat 37512 An atom equals the interse...
lvolset 37513 The set of 3-dim lattice v...
islvol 37514 The predicate "is a 3-dim ...
islvol4 37515 The predicate "is a 3-dim ...
lvoli 37516 Condition implying a 3-dim...
islvol3 37517 The predicate "is a 3-dim ...
lvoli3 37518 Condition implying a 3-dim...
lvolbase 37519 A 3-dim lattice volume is ...
islvol5 37520 The predicate "is a 3-dim ...
islvol2 37521 The predicate "is a 3-dim ...
lvoli2 37522 The join of 4 different at...
lvolnle3at 37523 A lattice plane (or lattic...
lvolnleat 37524 An atom cannot majorize a ...
lvolnlelln 37525 A lattice line cannot majo...
lvolnlelpln 37526 A lattice plane cannot maj...
3atnelvolN 37527 The join of 3 atoms is not...
2atnelvolN 37528 The join of two atoms is n...
lvolneatN 37529 No lattice volume is an at...
lvolnelln 37530 No lattice volume is a lat...
lvolnelpln 37531 No lattice volume is a lat...
lvoln0N 37532 A lattice volume is nonzer...
islvol2aN 37533 The predicate "is a lattic...
4atlem0a 37534 Lemma for ~ 4at . (Contri...
4atlem0ae 37535 Lemma for ~ 4at . (Contri...
4atlem0be 37536 Lemma for ~ 4at . (Contri...
4atlem3 37537 Lemma for ~ 4at . Break i...
4atlem3a 37538 Lemma for ~ 4at . Break i...
4atlem3b 37539 Lemma for ~ 4at . Break i...
4atlem4a 37540 Lemma for ~ 4at . Frequen...
4atlem4b 37541 Lemma for ~ 4at . Frequen...
4atlem4c 37542 Lemma for ~ 4at . Frequen...
4atlem4d 37543 Lemma for ~ 4at . Frequen...
4atlem9 37544 Lemma for ~ 4at . Substit...
4atlem10a 37545 Lemma for ~ 4at . Substit...
4atlem10b 37546 Lemma for ~ 4at . Substit...
4atlem10 37547 Lemma for ~ 4at . Combine...
4atlem11a 37548 Lemma for ~ 4at . Substit...
4atlem11b 37549 Lemma for ~ 4at . Substit...
4atlem11 37550 Lemma for ~ 4at . Combine...
4atlem12a 37551 Lemma for ~ 4at . Substit...
4atlem12b 37552 Lemma for ~ 4at . Substit...
4atlem12 37553 Lemma for ~ 4at . Combine...
4at 37554 Four atoms determine a lat...
4at2 37555 Four atoms determine a lat...
lplncvrlvol2 37556 A lattice line under a lat...
lplncvrlvol 37557 An element covering a latt...
lvolcmp 37558 If two lattice planes are ...
lvolnltN 37559 Two lattice volumes cannot...
2lplnja 37560 The join of two different ...
2lplnj 37561 The join of two different ...
2lplnm2N 37562 The meet of two different ...
2lplnmj 37563 The meet of two lattice pl...
dalemkehl 37564 Lemma for ~ dath . Freque...
dalemkelat 37565 Lemma for ~ dath . Freque...
dalemkeop 37566 Lemma for ~ dath . Freque...
dalempea 37567 Lemma for ~ dath . Freque...
dalemqea 37568 Lemma for ~ dath . Freque...
dalemrea 37569 Lemma for ~ dath . Freque...
dalemsea 37570 Lemma for ~ dath . Freque...
dalemtea 37571 Lemma for ~ dath . Freque...
dalemuea 37572 Lemma for ~ dath . Freque...
dalemyeo 37573 Lemma for ~ dath . Freque...
dalemzeo 37574 Lemma for ~ dath . Freque...
dalemclpjs 37575 Lemma for ~ dath . Freque...
dalemclqjt 37576 Lemma for ~ dath . Freque...
dalemclrju 37577 Lemma for ~ dath . Freque...
dalem-clpjq 37578 Lemma for ~ dath . Freque...
dalemceb 37579 Lemma for ~ dath . Freque...
dalempeb 37580 Lemma for ~ dath . Freque...
dalemqeb 37581 Lemma for ~ dath . Freque...
dalemreb 37582 Lemma for ~ dath . Freque...
dalemseb 37583 Lemma for ~ dath . Freque...
dalemteb 37584 Lemma for ~ dath . Freque...
dalemueb 37585 Lemma for ~ dath . Freque...
dalempjqeb 37586 Lemma for ~ dath . Freque...
dalemsjteb 37587 Lemma for ~ dath . Freque...
dalemtjueb 37588 Lemma for ~ dath . Freque...
dalemqrprot 37589 Lemma for ~ dath . Freque...
dalemyeb 37590 Lemma for ~ dath . Freque...
dalemcnes 37591 Lemma for ~ dath . Freque...
dalempnes 37592 Lemma for ~ dath . Freque...
dalemqnet 37593 Lemma for ~ dath . Freque...
dalempjsen 37594 Lemma for ~ dath . Freque...
dalemply 37595 Lemma for ~ dath . Freque...
dalemsly 37596 Lemma for ~ dath . Freque...
dalemswapyz 37597 Lemma for ~ dath . Swap t...
dalemrot 37598 Lemma for ~ dath . Rotate...
dalemrotyz 37599 Lemma for ~ dath . Rotate...
dalem1 37600 Lemma for ~ dath . Show t...
dalemcea 37601 Lemma for ~ dath . Freque...
dalem2 37602 Lemma for ~ dath . Show t...
dalemdea 37603 Lemma for ~ dath . Freque...
dalemeea 37604 Lemma for ~ dath . Freque...
dalem3 37605 Lemma for ~ dalemdnee . (...
dalem4 37606 Lemma for ~ dalemdnee . (...
dalemdnee 37607 Lemma for ~ dath . Axis o...
dalem5 37608 Lemma for ~ dath . Atom `...
dalem6 37609 Lemma for ~ dath . Analog...
dalem7 37610 Lemma for ~ dath . Analog...
dalem8 37611 Lemma for ~ dath . Plane ...
dalem-cly 37612 Lemma for ~ dalem9 . Cent...
dalem9 37613 Lemma for ~ dath . Since ...
dalem10 37614 Lemma for ~ dath . Atom `...
dalem11 37615 Lemma for ~ dath . Analog...
dalem12 37616 Lemma for ~ dath . Analog...
dalem13 37617 Lemma for ~ dalem14 . (Co...
dalem14 37618 Lemma for ~ dath . Planes...
dalem15 37619 Lemma for ~ dath . The ax...
dalem16 37620 Lemma for ~ dath . The at...
dalem17 37621 Lemma for ~ dath . When p...
dalem18 37622 Lemma for ~ dath . Show t...
dalem19 37623 Lemma for ~ dath . Show t...
dalemccea 37624 Lemma for ~ dath . Freque...
dalemddea 37625 Lemma for ~ dath . Freque...
dalem-ccly 37626 Lemma for ~ dath . Freque...
dalem-ddly 37627 Lemma for ~ dath . Freque...
dalemccnedd 37628 Lemma for ~ dath . Freque...
dalemclccjdd 37629 Lemma for ~ dath . Freque...
dalemcceb 37630 Lemma for ~ dath . Freque...
dalemswapyzps 37631 Lemma for ~ dath . Swap t...
dalemrotps 37632 Lemma for ~ dath . Rotate...
dalemcjden 37633 Lemma for ~ dath . Show t...
dalem20 37634 Lemma for ~ dath . Show t...
dalem21 37635 Lemma for ~ dath . Show t...
dalem22 37636 Lemma for ~ dath . Show t...
dalem23 37637 Lemma for ~ dath . Show t...
dalem24 37638 Lemma for ~ dath . Show t...
dalem25 37639 Lemma for ~ dath . Show t...
dalem27 37640 Lemma for ~ dath . Show t...
dalem28 37641 Lemma for ~ dath . Lemma ...
dalem29 37642 Lemma for ~ dath . Analog...
dalem30 37643 Lemma for ~ dath . Analog...
dalem31N 37644 Lemma for ~ dath . Analog...
dalem32 37645 Lemma for ~ dath . Analog...
dalem33 37646 Lemma for ~ dath . Analog...
dalem34 37647 Lemma for ~ dath . Analog...
dalem35 37648 Lemma for ~ dath . Analog...
dalem36 37649 Lemma for ~ dath . Analog...
dalem37 37650 Lemma for ~ dath . Analog...
dalem38 37651 Lemma for ~ dath . Plane ...
dalem39 37652 Lemma for ~ dath . Auxili...
dalem40 37653 Lemma for ~ dath . Analog...
dalem41 37654 Lemma for ~ dath . (Contr...
dalem42 37655 Lemma for ~ dath . Auxili...
dalem43 37656 Lemma for ~ dath . Planes...
dalem44 37657 Lemma for ~ dath . Dummy ...
dalem45 37658 Lemma for ~ dath . Dummy ...
dalem46 37659 Lemma for ~ dath . Analog...
dalem47 37660 Lemma for ~ dath . Analog...
dalem48 37661 Lemma for ~ dath . Analog...
dalem49 37662 Lemma for ~ dath . Analog...
dalem50 37663 Lemma for ~ dath . Analog...
dalem51 37664 Lemma for ~ dath . Constr...
dalem52 37665 Lemma for ~ dath . Lines ...
dalem53 37666 Lemma for ~ dath . The au...
dalem54 37667 Lemma for ~ dath . Line `...
dalem55 37668 Lemma for ~ dath . Lines ...
dalem56 37669 Lemma for ~ dath . Analog...
dalem57 37670 Lemma for ~ dath . Axis o...
dalem58 37671 Lemma for ~ dath . Analog...
dalem59 37672 Lemma for ~ dath . Analog...
dalem60 37673 Lemma for ~ dath . ` B ` i...
dalem61 37674 Lemma for ~ dath . Show t...
dalem62 37675 Lemma for ~ dath . Elimin...
dalem63 37676 Lemma for ~ dath . Combin...
dath 37677 Desargues's theorem of pro...
dath2 37678 Version of Desargues's the...
lineset 37679 The set of lines in a Hilb...
isline 37680 The predicate "is a line"....
islinei 37681 Condition implying "is a l...
pointsetN 37682 The set of points in a Hil...
ispointN 37683 The predicate "is a point"...
atpointN 37684 The singleton of an atom i...
psubspset 37685 The set of projective subs...
ispsubsp 37686 The predicate "is a projec...
ispsubsp2 37687 The predicate "is a projec...
psubspi 37688 Property of a projective s...
psubspi2N 37689 Property of a projective s...
0psubN 37690 The empty set is a project...
snatpsubN 37691 The singleton of an atom i...
pointpsubN 37692 A point (singleton of an a...
linepsubN 37693 A line is a projective sub...
atpsubN 37694 The set of all atoms is a ...
psubssat 37695 A projective subspace cons...
psubatN 37696 A member of a projective s...
pmapfval 37697 The projective map of a Hi...
pmapval 37698 Value of the projective ma...
elpmap 37699 Member of a projective map...
pmapssat 37700 The projective map of a Hi...
pmapssbaN 37701 A weakening of ~ pmapssat ...
pmaple 37702 The projective map of a Hi...
pmap11 37703 The projective map of a Hi...
pmapat 37704 The projective map of an a...
elpmapat 37705 Member of the projective m...
pmap0 37706 Value of the projective ma...
pmapeq0 37707 A projective map value is ...
pmap1N 37708 Value of the projective ma...
pmapsub 37709 The projective map of a Hi...
pmapglbx 37710 The projective map of the ...
pmapglb 37711 The projective map of the ...
pmapglb2N 37712 The projective map of the ...
pmapglb2xN 37713 The projective map of the ...
pmapmeet 37714 The projective map of a me...
isline2 37715 Definition of line in term...
linepmap 37716 A line described with a pr...
isline3 37717 Definition of line in term...
isline4N 37718 Definition of line in term...
lneq2at 37719 A line equals the join of ...
lnatexN 37720 There is an atom in a line...
lnjatN 37721 Given an atom in a line, t...
lncvrelatN 37722 A lattice element covered ...
lncvrat 37723 A line covers the atoms it...
lncmp 37724 If two lines are comparabl...
2lnat 37725 Two intersecting lines int...
2atm2atN 37726 Two joins with a common at...
2llnma1b 37727 Generalization of ~ 2llnma...
2llnma1 37728 Two different intersecting...
2llnma3r 37729 Two different intersecting...
2llnma2 37730 Two different intersecting...
2llnma2rN 37731 Two different intersecting...
cdlema1N 37732 A condition for required f...
cdlema2N 37733 A condition for required f...
cdlemblem 37734 Lemma for ~ cdlemb . (Con...
cdlemb 37735 Given two atoms not less t...
paddfval 37738 Projective subspace sum op...
paddval 37739 Projective subspace sum op...
elpadd 37740 Member of a projective sub...
elpaddn0 37741 Member of projective subsp...
paddvaln0N 37742 Projective subspace sum op...
elpaddri 37743 Condition implying members...
elpaddatriN 37744 Condition implying members...
elpaddat 37745 Membership in a projective...
elpaddatiN 37746 Consequence of membership ...
elpadd2at 37747 Membership in a projective...
elpadd2at2 37748 Membership in a projective...
paddunssN 37749 Projective subspace sum in...
elpadd0 37750 Member of projective subsp...
paddval0 37751 Projective subspace sum wi...
padd01 37752 Projective subspace sum wi...
padd02 37753 Projective subspace sum wi...
paddcom 37754 Projective subspace sum co...
paddssat 37755 A projective subspace sum ...
sspadd1 37756 A projective subspace sum ...
sspadd2 37757 A projective subspace sum ...
paddss1 37758 Subset law for projective ...
paddss2 37759 Subset law for projective ...
paddss12 37760 Subset law for projective ...
paddasslem1 37761 Lemma for ~ paddass . (Co...
paddasslem2 37762 Lemma for ~ paddass . (Co...
paddasslem3 37763 Lemma for ~ paddass . Res...
paddasslem4 37764 Lemma for ~ paddass . Com...
paddasslem5 37765 Lemma for ~ paddass . Sho...
paddasslem6 37766 Lemma for ~ paddass . (Co...
paddasslem7 37767 Lemma for ~ paddass . Com...
paddasslem8 37768 Lemma for ~ paddass . (Co...
paddasslem9 37769 Lemma for ~ paddass . Com...
paddasslem10 37770 Lemma for ~ paddass . Use...
paddasslem11 37771 Lemma for ~ paddass . The...
paddasslem12 37772 Lemma for ~ paddass . The...
paddasslem13 37773 Lemma for ~ paddass . The...
paddasslem14 37774 Lemma for ~ paddass . Rem...
paddasslem15 37775 Lemma for ~ paddass . Use...
paddasslem16 37776 Lemma for ~ paddass . Use...
paddasslem17 37777 Lemma for ~ paddass . The...
paddasslem18 37778 Lemma for ~ paddass . Com...
paddass 37779 Projective subspace sum is...
padd12N 37780 Commutative/associative la...
padd4N 37781 Rearrangement of 4 terms i...
paddidm 37782 Projective subspace sum is...
paddclN 37783 The projective sum of two ...
paddssw1 37784 Subset law for projective ...
paddssw2 37785 Subset law for projective ...
paddss 37786 Subset law for projective ...
pmodlem1 37787 Lemma for ~ pmod1i . (Con...
pmodlem2 37788 Lemma for ~ pmod1i . (Con...
pmod1i 37789 The modular law holds in a...
pmod2iN 37790 Dual of the modular law. ...
pmodN 37791 The modular law for projec...
pmodl42N 37792 Lemma derived from modular...
pmapjoin 37793 The projective map of the ...
pmapjat1 37794 The projective map of the ...
pmapjat2 37795 The projective map of the ...
pmapjlln1 37796 The projective map of the ...
hlmod1i 37797 A version of the modular l...
atmod1i1 37798 Version of modular law ~ p...
atmod1i1m 37799 Version of modular law ~ p...
atmod1i2 37800 Version of modular law ~ p...
llnmod1i2 37801 Version of modular law ~ p...
atmod2i1 37802 Version of modular law ~ p...
atmod2i2 37803 Version of modular law ~ p...
llnmod2i2 37804 Version of modular law ~ p...
atmod3i1 37805 Version of modular law tha...
atmod3i2 37806 Version of modular law tha...
atmod4i1 37807 Version of modular law tha...
atmod4i2 37808 Version of modular law tha...
llnexchb2lem 37809 Lemma for ~ llnexchb2 . (...
llnexchb2 37810 Line exchange property (co...
llnexch2N 37811 Line exchange property (co...
dalawlem1 37812 Lemma for ~ dalaw . Speci...
dalawlem2 37813 Lemma for ~ dalaw . Utili...
dalawlem3 37814 Lemma for ~ dalaw . First...
dalawlem4 37815 Lemma for ~ dalaw . Secon...
dalawlem5 37816 Lemma for ~ dalaw . Speci...
dalawlem6 37817 Lemma for ~ dalaw . First...
dalawlem7 37818 Lemma for ~ dalaw . Secon...
dalawlem8 37819 Lemma for ~ dalaw . Speci...
dalawlem9 37820 Lemma for ~ dalaw . Speci...
dalawlem10 37821 Lemma for ~ dalaw . Combi...
dalawlem11 37822 Lemma for ~ dalaw . First...
dalawlem12 37823 Lemma for ~ dalaw . Secon...
dalawlem13 37824 Lemma for ~ dalaw . Speci...
dalawlem14 37825 Lemma for ~ dalaw . Combi...
dalawlem15 37826 Lemma for ~ dalaw . Swap ...
dalaw 37827 Desargues's law, derived f...
pclfvalN 37830 The projective subspace cl...
pclvalN 37831 Value of the projective su...
pclclN 37832 Closure of the projective ...
elpclN 37833 Membership in the projecti...
elpcliN 37834 Implication of membership ...
pclssN 37835 Ordering is preserved by s...
pclssidN 37836 A set of atoms is included...
pclidN 37837 The projective subspace cl...
pclbtwnN 37838 A projective subspace sand...
pclunN 37839 The projective subspace cl...
pclun2N 37840 The projective subspace cl...
pclfinN 37841 The projective subspace cl...
pclcmpatN 37842 The set of projective subs...
polfvalN 37845 The projective subspace po...
polvalN 37846 Value of the projective su...
polval2N 37847 Alternate expression for v...
polsubN 37848 The polarity of a set of a...
polssatN 37849 The polarity of a set of a...
pol0N 37850 The polarity of the empty ...
pol1N 37851 The polarity of the whole ...
2pol0N 37852 The closed subspace closur...
polpmapN 37853 The polarity of a projecti...
2polpmapN 37854 Double polarity of a proje...
2polvalN 37855 Value of double polarity. ...
2polssN 37856 A set of atoms is a subset...
3polN 37857 Triple polarity cancels to...
polcon3N 37858 Contraposition law for pol...
2polcon4bN 37859 Contraposition law for pol...
polcon2N 37860 Contraposition law for pol...
polcon2bN 37861 Contraposition law for pol...
pclss2polN 37862 The projective subspace cl...
pcl0N 37863 The projective subspace cl...
pcl0bN 37864 The projective subspace cl...
pmaplubN 37865 The LUB of a projective ma...
sspmaplubN 37866 A set of atoms is a subset...
2pmaplubN 37867 Double projective map of a...
paddunN 37868 The closure of the project...
poldmj1N 37869 De Morgan's law for polari...
pmapj2N 37870 The projective map of the ...
pmapocjN 37871 The projective map of the ...
polatN 37872 The polarity of the single...
2polatN 37873 Double polarity of the sin...
pnonsingN 37874 The intersection of a set ...
psubclsetN 37877 The set of closed projecti...
ispsubclN 37878 The predicate "is a closed...
psubcliN 37879 Property of a closed proje...
psubcli2N 37880 Property of a closed proje...
psubclsubN 37881 A closed projective subspa...
psubclssatN 37882 A closed projective subspa...
pmapidclN 37883 Projective map of the LUB ...
0psubclN 37884 The empty set is a closed ...
1psubclN 37885 The set of all atoms is a ...
atpsubclN 37886 A point (singleton of an a...
pmapsubclN 37887 A projective map value is ...
ispsubcl2N 37888 Alternate predicate for "i...
psubclinN 37889 The intersection of two cl...
paddatclN 37890 The projective sum of a cl...
pclfinclN 37891 The projective subspace cl...
linepsubclN 37892 A line is a closed project...
polsubclN 37893 A polarity is a closed pro...
poml4N 37894 Orthomodular law for proje...
poml5N 37895 Orthomodular law for proje...
poml6N 37896 Orthomodular law for proje...
osumcllem1N 37897 Lemma for ~ osumclN . (Co...
osumcllem2N 37898 Lemma for ~ osumclN . (Co...
osumcllem3N 37899 Lemma for ~ osumclN . (Co...
osumcllem4N 37900 Lemma for ~ osumclN . (Co...
osumcllem5N 37901 Lemma for ~ osumclN . (Co...
osumcllem6N 37902 Lemma for ~ osumclN . Use...
osumcllem7N 37903 Lemma for ~ osumclN . (Co...
osumcllem8N 37904 Lemma for ~ osumclN . (Co...
osumcllem9N 37905 Lemma for ~ osumclN . (Co...
osumcllem10N 37906 Lemma for ~ osumclN . Con...
osumcllem11N 37907 Lemma for ~ osumclN . (Co...
osumclN 37908 Closure of orthogonal sum....
pmapojoinN 37909 For orthogonal elements, p...
pexmidN 37910 Excluded middle law for cl...
pexmidlem1N 37911 Lemma for ~ pexmidN . Hol...
pexmidlem2N 37912 Lemma for ~ pexmidN . (Co...
pexmidlem3N 37913 Lemma for ~ pexmidN . Use...
pexmidlem4N 37914 Lemma for ~ pexmidN . (Co...
pexmidlem5N 37915 Lemma for ~ pexmidN . (Co...
pexmidlem6N 37916 Lemma for ~ pexmidN . (Co...
pexmidlem7N 37917 Lemma for ~ pexmidN . Con...
pexmidlem8N 37918 Lemma for ~ pexmidN . The...
pexmidALTN 37919 Excluded middle law for cl...
pl42lem1N 37920 Lemma for ~ pl42N . (Cont...
pl42lem2N 37921 Lemma for ~ pl42N . (Cont...
pl42lem3N 37922 Lemma for ~ pl42N . (Cont...
pl42lem4N 37923 Lemma for ~ pl42N . (Cont...
pl42N 37924 Law holding in a Hilbert l...
watfvalN 37933 The W atoms function. (Co...
watvalN 37934 Value of the W atoms funct...
iswatN 37935 The predicate "is a W atom...
lhpset 37936 The set of co-atoms (latti...
islhp 37937 The predicate "is a co-ato...
islhp2 37938 The predicate "is a co-ato...
lhpbase 37939 A co-atom is a member of t...
lhp1cvr 37940 The lattice unit covers a ...
lhplt 37941 An atom under a co-atom is...
lhp2lt 37942 The join of two atoms unde...
lhpexlt 37943 There exists an atom less ...
lhp0lt 37944 A co-atom is greater than ...
lhpn0 37945 A co-atom is nonzero. TOD...
lhpexle 37946 There exists an atom under...
lhpexnle 37947 There exists an atom not u...
lhpexle1lem 37948 Lemma for ~ lhpexle1 and o...
lhpexle1 37949 There exists an atom under...
lhpexle2lem 37950 Lemma for ~ lhpexle2 . (C...
lhpexle2 37951 There exists atom under a ...
lhpexle3lem 37952 There exists atom under a ...
lhpexle3 37953 There exists atom under a ...
lhpex2leN 37954 There exist at least two d...
lhpoc 37955 The orthocomplement of a c...
lhpoc2N 37956 The orthocomplement of an ...
lhpocnle 37957 The orthocomplement of a c...
lhpocat 37958 The orthocomplement of a c...
lhpocnel 37959 The orthocomplement of a c...
lhpocnel2 37960 The orthocomplement of a c...
lhpjat1 37961 The join of a co-atom (hyp...
lhpjat2 37962 The join of a co-atom (hyp...
lhpj1 37963 The join of a co-atom (hyp...
lhpmcvr 37964 The meet of a lattice hype...
lhpmcvr2 37965 Alternate way to express t...
lhpmcvr3 37966 Specialization of ~ lhpmcv...
lhpmcvr4N 37967 Specialization of ~ lhpmcv...
lhpmcvr5N 37968 Specialization of ~ lhpmcv...
lhpmcvr6N 37969 Specialization of ~ lhpmcv...
lhpm0atN 37970 If the meet of a lattice h...
lhpmat 37971 An element covered by the ...
lhpmatb 37972 An element covered by the ...
lhp2at0 37973 Join and meet with differe...
lhp2atnle 37974 Inequality for 2 different...
lhp2atne 37975 Inequality for joins with ...
lhp2at0nle 37976 Inequality for 2 different...
lhp2at0ne 37977 Inequality for joins with ...
lhpelim 37978 Eliminate an atom not unde...
lhpmod2i2 37979 Modular law for hyperplane...
lhpmod6i1 37980 Modular law for hyperplane...
lhprelat3N 37981 The Hilbert lattice is rel...
cdlemb2 37982 Given two atoms not under ...
lhple 37983 Property of a lattice elem...
lhpat 37984 Create an atom under a co-...
lhpat4N 37985 Property of an atom under ...
lhpat2 37986 Create an atom under a co-...
lhpat3 37987 There is only one atom und...
4atexlemk 37988 Lemma for ~ 4atexlem7 . (...
4atexlemw 37989 Lemma for ~ 4atexlem7 . (...
4atexlempw 37990 Lemma for ~ 4atexlem7 . (...
4atexlemp 37991 Lemma for ~ 4atexlem7 . (...
4atexlemq 37992 Lemma for ~ 4atexlem7 . (...
4atexlems 37993 Lemma for ~ 4atexlem7 . (...
4atexlemt 37994 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 37995 Lemma for ~ 4atexlem7 . (...
4atexlempnq 37996 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 37997 Lemma for ~ 4atexlem7 . (...
4atexlemkl 37998 Lemma for ~ 4atexlem7 . (...
4atexlemkc 37999 Lemma for ~ 4atexlem7 . (...
4atexlemwb 38000 Lemma for ~ 4atexlem7 . (...
4atexlempsb 38001 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 38002 Lemma for ~ 4atexlem7 . (...
4atexlempns 38003 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 38004 Lemma for ~ 4atexlem7 . S...
4atexlemu 38005 Lemma for ~ 4atexlem7 . (...
4atexlemv 38006 Lemma for ~ 4atexlem7 . (...
4atexlemunv 38007 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 38008 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 38009 Lemma for ~ 4atexlem7 . (...
4atexlemc 38010 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 38011 Lemma for ~ 4atexlem7 . (...
4atexlemex2 38012 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 38013 Lemma for ~ 4atexlem7 . (...
4atexlemex4 38014 Lemma for ~ 4atexlem7 . S...
4atexlemex6 38015 Lemma for ~ 4atexlem7 . (...
4atexlem7 38016 Whenever there are at leas...
4atex 38017 Whenever there are at leas...
4atex2 38018 More general version of ~ ...
4atex2-0aOLDN 38019 Same as ~ 4atex2 except th...
4atex2-0bOLDN 38020 Same as ~ 4atex2 except th...
4atex2-0cOLDN 38021 Same as ~ 4atex2 except th...
4atex3 38022 More general version of ~ ...
lautset 38023 The set of lattice automor...
islaut 38024 The predicate "is a lattic...
lautle 38025 Less-than or equal propert...
laut1o 38026 A lattice automorphism is ...
laut11 38027 One-to-one property of a l...
lautcl 38028 A lattice automorphism val...
lautcnvclN 38029 Reverse closure of a latti...
lautcnvle 38030 Less-than or equal propert...
lautcnv 38031 The converse of a lattice ...
lautlt 38032 Less-than property of a la...
lautcvr 38033 Covering property of a lat...
lautj 38034 Meet property of a lattice...
lautm 38035 Meet property of a lattice...
lauteq 38036 A lattice automorphism arg...
idlaut 38037 The identity function is a...
lautco 38038 The composition of two lat...
pautsetN 38039 The set of projective auto...
ispautN 38040 The predicate "is a projec...
ldilfset 38049 The mapping from fiducial ...
ldilset 38050 The set of lattice dilatio...
isldil 38051 The predicate "is a lattic...
ldillaut 38052 A lattice dilation is an a...
ldil1o 38053 A lattice dilation is a on...
ldilval 38054 Value of a lattice dilatio...
idldil 38055 The identity function is a...
ldilcnv 38056 The converse of a lattice ...
ldilco 38057 The composition of two lat...
ltrnfset 38058 The set of all lattice tra...
ltrnset 38059 The set of lattice transla...
isltrn 38060 The predicate "is a lattic...
isltrn2N 38061 The predicate "is a lattic...
ltrnu 38062 Uniqueness property of a l...
ltrnldil 38063 A lattice translation is a...
ltrnlaut 38064 A lattice translation is a...
ltrn1o 38065 A lattice translation is a...
ltrncl 38066 Closure of a lattice trans...
ltrn11 38067 One-to-one property of a l...
ltrncnvnid 38068 If a translation is differ...
ltrncoidN 38069 Two translations are equal...
ltrnle 38070 Less-than or equal propert...
ltrncnvleN 38071 Less-than or equal propert...
ltrnm 38072 Lattice translation of a m...
ltrnj 38073 Lattice translation of a m...
ltrncvr 38074 Covering property of a lat...
ltrnval1 38075 Value of a lattice transla...
ltrnid 38076 A lattice translation is t...
ltrnnid 38077 If a lattice translation i...
ltrnatb 38078 The lattice translation of...
ltrncnvatb 38079 The converse of the lattic...
ltrnel 38080 The lattice translation of...
ltrnat 38081 The lattice translation of...
ltrncnvat 38082 The converse of the lattic...
ltrncnvel 38083 The converse of the lattic...
ltrncoelN 38084 Composition of lattice tra...
ltrncoat 38085 Composition of lattice tra...
ltrncoval 38086 Two ways to express value ...
ltrncnv 38087 The converse of a lattice ...
ltrn11at 38088 Frequently used one-to-one...
ltrneq2 38089 The equality of two transl...
ltrneq 38090 The equality of two transl...
idltrn 38091 The identity function is a...
ltrnmw 38092 Property of lattice transl...
dilfsetN 38093 The mapping from fiducial ...
dilsetN 38094 The set of dilations for a...
isdilN 38095 The predicate "is a dilati...
trnfsetN 38096 The mapping from fiducial ...
trnsetN 38097 The set of translations fo...
istrnN 38098 The predicate "is a transl...
trlfset 38101 The set of all traces of l...
trlset 38102 The set of traces of latti...
trlval 38103 The value of the trace of ...
trlval2 38104 The value of the trace of ...
trlcl 38105 Closure of the trace of a ...
trlcnv 38106 The trace of the converse ...
trljat1 38107 The value of a translation...
trljat2 38108 The value of a translation...
trljat3 38109 The value of a translation...
trlat 38110 If an atom differs from it...
trl0 38111 If an atom not under the f...
trlator0 38112 The trace of a lattice tra...
trlatn0 38113 The trace of a lattice tra...
trlnidat 38114 The trace of a lattice tra...
ltrnnidn 38115 If a lattice translation i...
ltrnideq 38116 Property of the identity l...
trlid0 38117 The trace of the identity ...
trlnidatb 38118 A lattice translation is n...
trlid0b 38119 A lattice translation is t...
trlnid 38120 Different translations wit...
ltrn2ateq 38121 Property of the equality o...
ltrnateq 38122 If any atom (under ` W ` )...
ltrnatneq 38123 If any atom (under ` W ` )...
ltrnatlw 38124 If the value of an atom eq...
trlle 38125 The trace of a lattice tra...
trlne 38126 The trace of a lattice tra...
trlnle 38127 The atom not under the fid...
trlval3 38128 The value of the trace of ...
trlval4 38129 The value of the trace of ...
trlval5 38130 The value of the trace of ...
arglem1N 38131 Lemma for Desargues's law....
cdlemc1 38132 Part of proof of Lemma C i...
cdlemc2 38133 Part of proof of Lemma C i...
cdlemc3 38134 Part of proof of Lemma C i...
cdlemc4 38135 Part of proof of Lemma C i...
cdlemc5 38136 Lemma for ~ cdlemc . (Con...
cdlemc6 38137 Lemma for ~ cdlemc . (Con...
cdlemc 38138 Lemma C in [Crawley] p. 11...
cdlemd1 38139 Part of proof of Lemma D i...
cdlemd2 38140 Part of proof of Lemma D i...
cdlemd3 38141 Part of proof of Lemma D i...
cdlemd4 38142 Part of proof of Lemma D i...
cdlemd5 38143 Part of proof of Lemma D i...
cdlemd6 38144 Part of proof of Lemma D i...
cdlemd7 38145 Part of proof of Lemma D i...
cdlemd8 38146 Part of proof of Lemma D i...
cdlemd9 38147 Part of proof of Lemma D i...
cdlemd 38148 If two translations agree ...
ltrneq3 38149 Two translations agree at ...
cdleme00a 38150 Part of proof of Lemma E i...
cdleme0aa 38151 Part of proof of Lemma E i...
cdleme0a 38152 Part of proof of Lemma E i...
cdleme0b 38153 Part of proof of Lemma E i...
cdleme0c 38154 Part of proof of Lemma E i...
cdleme0cp 38155 Part of proof of Lemma E i...
cdleme0cq 38156 Part of proof of Lemma E i...
cdleme0dN 38157 Part of proof of Lemma E i...
cdleme0e 38158 Part of proof of Lemma E i...
cdleme0fN 38159 Part of proof of Lemma E i...
cdleme0gN 38160 Part of proof of Lemma E i...
cdlemeulpq 38161 Part of proof of Lemma E i...
cdleme01N 38162 Part of proof of Lemma E i...
cdleme02N 38163 Part of proof of Lemma E i...
cdleme0ex1N 38164 Part of proof of Lemma E i...
cdleme0ex2N 38165 Part of proof of Lemma E i...
cdleme0moN 38166 Part of proof of Lemma E i...
cdleme1b 38167 Part of proof of Lemma E i...
cdleme1 38168 Part of proof of Lemma E i...
cdleme2 38169 Part of proof of Lemma E i...
cdleme3b 38170 Part of proof of Lemma E i...
cdleme3c 38171 Part of proof of Lemma E i...
cdleme3d 38172 Part of proof of Lemma E i...
cdleme3e 38173 Part of proof of Lemma E i...
cdleme3fN 38174 Part of proof of Lemma E i...
cdleme3g 38175 Part of proof of Lemma E i...
cdleme3h 38176 Part of proof of Lemma E i...
cdleme3fa 38177 Part of proof of Lemma E i...
cdleme3 38178 Part of proof of Lemma E i...
cdleme4 38179 Part of proof of Lemma E i...
cdleme4a 38180 Part of proof of Lemma E i...
cdleme5 38181 Part of proof of Lemma E i...
cdleme6 38182 Part of proof of Lemma E i...
cdleme7aa 38183 Part of proof of Lemma E i...
cdleme7a 38184 Part of proof of Lemma E i...
cdleme7b 38185 Part of proof of Lemma E i...
cdleme7c 38186 Part of proof of Lemma E i...
cdleme7d 38187 Part of proof of Lemma E i...
cdleme7e 38188 Part of proof of Lemma E i...
cdleme7ga 38189 Part of proof of Lemma E i...
cdleme7 38190 Part of proof of Lemma E i...
cdleme8 38191 Part of proof of Lemma E i...
cdleme9a 38192 Part of proof of Lemma E i...
cdleme9b 38193 Utility lemma for Lemma E ...
cdleme9 38194 Part of proof of Lemma E i...
cdleme10 38195 Part of proof of Lemma E i...
cdleme8tN 38196 Part of proof of Lemma E i...
cdleme9taN 38197 Part of proof of Lemma E i...
cdleme9tN 38198 Part of proof of Lemma E i...
cdleme10tN 38199 Part of proof of Lemma E i...
cdleme16aN 38200 Part of proof of Lemma E i...
cdleme11a 38201 Part of proof of Lemma E i...
cdleme11c 38202 Part of proof of Lemma E i...
cdleme11dN 38203 Part of proof of Lemma E i...
cdleme11e 38204 Part of proof of Lemma E i...
cdleme11fN 38205 Part of proof of Lemma E i...
cdleme11g 38206 Part of proof of Lemma E i...
cdleme11h 38207 Part of proof of Lemma E i...
cdleme11j 38208 Part of proof of Lemma E i...
cdleme11k 38209 Part of proof of Lemma E i...
cdleme11l 38210 Part of proof of Lemma E i...
cdleme11 38211 Part of proof of Lemma E i...
cdleme12 38212 Part of proof of Lemma E i...
cdleme13 38213 Part of proof of Lemma E i...
cdleme14 38214 Part of proof of Lemma E i...
cdleme15a 38215 Part of proof of Lemma E i...
cdleme15b 38216 Part of proof of Lemma E i...
cdleme15c 38217 Part of proof of Lemma E i...
cdleme15d 38218 Part of proof of Lemma E i...
cdleme15 38219 Part of proof of Lemma E i...
cdleme16b 38220 Part of proof of Lemma E i...
cdleme16c 38221 Part of proof of Lemma E i...
cdleme16d 38222 Part of proof of Lemma E i...
cdleme16e 38223 Part of proof of Lemma E i...
cdleme16f 38224 Part of proof of Lemma E i...
cdleme16g 38225 Part of proof of Lemma E i...
cdleme16 38226 Part of proof of Lemma E i...
cdleme17a 38227 Part of proof of Lemma E i...
cdleme17b 38228 Lemma leading to ~ cdleme1...
cdleme17c 38229 Part of proof of Lemma E i...
cdleme17d1 38230 Part of proof of Lemma E i...
cdleme0nex 38231 Part of proof of Lemma E i...
cdleme18a 38232 Part of proof of Lemma E i...
cdleme18b 38233 Part of proof of Lemma E i...
cdleme18c 38234 Part of proof of Lemma E i...
cdleme22gb 38235 Utility lemma for Lemma E ...
cdleme18d 38236 Part of proof of Lemma E i...
cdlemesner 38237 Part of proof of Lemma E i...
cdlemedb 38238 Part of proof of Lemma E i...
cdlemeda 38239 Part of proof of Lemma E i...
cdlemednpq 38240 Part of proof of Lemma E i...
cdlemednuN 38241 Part of proof of Lemma E i...
cdleme20zN 38242 Part of proof of Lemma E i...
cdleme20y 38243 Part of proof of Lemma E i...
cdleme19a 38244 Part of proof of Lemma E i...
cdleme19b 38245 Part of proof of Lemma E i...
cdleme19c 38246 Part of proof of Lemma E i...
cdleme19d 38247 Part of proof of Lemma E i...
cdleme19e 38248 Part of proof of Lemma E i...
cdleme19f 38249 Part of proof of Lemma E i...
cdleme20aN 38250 Part of proof of Lemma E i...
cdleme20bN 38251 Part of proof of Lemma E i...
cdleme20c 38252 Part of proof of Lemma E i...
cdleme20d 38253 Part of proof of Lemma E i...
cdleme20e 38254 Part of proof of Lemma E i...
cdleme20f 38255 Part of proof of Lemma E i...
cdleme20g 38256 Part of proof of Lemma E i...
cdleme20h 38257 Part of proof of Lemma E i...
cdleme20i 38258 Part of proof of Lemma E i...
cdleme20j 38259 Part of proof of Lemma E i...
cdleme20k 38260 Part of proof of Lemma E i...
cdleme20l1 38261 Part of proof of Lemma E i...
cdleme20l2 38262 Part of proof of Lemma E i...
cdleme20l 38263 Part of proof of Lemma E i...
cdleme20m 38264 Part of proof of Lemma E i...
cdleme20 38265 Combine ~ cdleme19f and ~ ...
cdleme21a 38266 Part of proof of Lemma E i...
cdleme21b 38267 Part of proof of Lemma E i...
cdleme21c 38268 Part of proof of Lemma E i...
cdleme21at 38269 Part of proof of Lemma E i...
cdleme21ct 38270 Part of proof of Lemma E i...
cdleme21d 38271 Part of proof of Lemma E i...
cdleme21e 38272 Part of proof of Lemma E i...
cdleme21f 38273 Part of proof of Lemma E i...
cdleme21g 38274 Part of proof of Lemma E i...
cdleme21h 38275 Part of proof of Lemma E i...
cdleme21i 38276 Part of proof of Lemma E i...
cdleme21j 38277 Combine ~ cdleme20 and ~ c...
cdleme21 38278 Part of proof of Lemma E i...
cdleme21k 38279 Eliminate ` S =/= T ` cond...
cdleme22aa 38280 Part of proof of Lemma E i...
cdleme22a 38281 Part of proof of Lemma E i...
cdleme22b 38282 Part of proof of Lemma E i...
cdleme22cN 38283 Part of proof of Lemma E i...
cdleme22d 38284 Part of proof of Lemma E i...
cdleme22e 38285 Part of proof of Lemma E i...
cdleme22eALTN 38286 Part of proof of Lemma E i...
cdleme22f 38287 Part of proof of Lemma E i...
cdleme22f2 38288 Part of proof of Lemma E i...
cdleme22g 38289 Part of proof of Lemma E i...
cdleme23a 38290 Part of proof of Lemma E i...
cdleme23b 38291 Part of proof of Lemma E i...
cdleme23c 38292 Part of proof of Lemma E i...
cdleme24 38293 Quantified version of ~ cd...
cdleme25a 38294 Lemma for ~ cdleme25b . (...
cdleme25b 38295 Transform ~ cdleme24 . TO...
cdleme25c 38296 Transform ~ cdleme25b . (...
cdleme25dN 38297 Transform ~ cdleme25c . (...
cdleme25cl 38298 Show closure of the unique...
cdleme25cv 38299 Change bound variables in ...
cdleme26e 38300 Part of proof of Lemma E i...
cdleme26ee 38301 Part of proof of Lemma E i...
cdleme26eALTN 38302 Part of proof of Lemma E i...
cdleme26fALTN 38303 Part of proof of Lemma E i...
cdleme26f 38304 Part of proof of Lemma E i...
cdleme26f2ALTN 38305 Part of proof of Lemma E i...
cdleme26f2 38306 Part of proof of Lemma E i...
cdleme27cl 38307 Part of proof of Lemma E i...
cdleme27a 38308 Part of proof of Lemma E i...
cdleme27b 38309 Lemma for ~ cdleme27N . (...
cdleme27N 38310 Part of proof of Lemma E i...
cdleme28a 38311 Lemma for ~ cdleme25b . T...
cdleme28b 38312 Lemma for ~ cdleme25b . T...
cdleme28c 38313 Part of proof of Lemma E i...
cdleme28 38314 Quantified version of ~ cd...
cdleme29ex 38315 Lemma for ~ cdleme29b . (...
cdleme29b 38316 Transform ~ cdleme28 . (C...
cdleme29c 38317 Transform ~ cdleme28b . (...
cdleme29cl 38318 Show closure of the unique...
cdleme30a 38319 Part of proof of Lemma E i...
cdleme31so 38320 Part of proof of Lemma E i...
cdleme31sn 38321 Part of proof of Lemma E i...
cdleme31sn1 38322 Part of proof of Lemma E i...
cdleme31se 38323 Part of proof of Lemma D i...
cdleme31se2 38324 Part of proof of Lemma D i...
cdleme31sc 38325 Part of proof of Lemma E i...
cdleme31sde 38326 Part of proof of Lemma D i...
cdleme31snd 38327 Part of proof of Lemma D i...
cdleme31sdnN 38328 Part of proof of Lemma E i...
cdleme31sn1c 38329 Part of proof of Lemma E i...
cdleme31sn2 38330 Part of proof of Lemma E i...
cdleme31fv 38331 Part of proof of Lemma E i...
cdleme31fv1 38332 Part of proof of Lemma E i...
cdleme31fv1s 38333 Part of proof of Lemma E i...
cdleme31fv2 38334 Part of proof of Lemma E i...
cdleme31id 38335 Part of proof of Lemma E i...
cdlemefrs29pre00 38336 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 38337 TODO fix comment. (Contri...
cdlemefrs29bpre1 38338 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 38339 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 38340 TODO: NOT USED? Show clo...
cdlemefrs32fva 38341 Part of proof of Lemma E i...
cdlemefrs32fva1 38342 Part of proof of Lemma E i...
cdlemefr29exN 38343 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 38344 Part of proof of Lemma E i...
cdlemefr32sn2aw 38345 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 38346 Show closure of ` [_ R / s...
cdlemefr29bpre0N 38347 TODO fix comment. (Contri...
cdlemefr29clN 38348 Show closure of the unique...
cdleme43frv1snN 38349 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 38350 Part of proof of Lemma E i...
cdlemefr32fva1 38351 Part of proof of Lemma E i...
cdlemefr31fv1 38352 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 38353 FIX COMMENT. TODO: see if ...
cdlemefs27cl 38354 Part of proof of Lemma E i...
cdlemefs32sn1aw 38355 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 38356 Show closure of ` [_ R / s...
cdlemefs29bpre0N 38357 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 38358 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 38359 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 38360 Show closure of the unique...
cdleme43fsv1snlem 38361 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 38362 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 38363 Part of proof of Lemma E i...
cdlemefs32fva1 38364 Part of proof of Lemma E i...
cdlemefs31fv1 38365 Value of ` ( F `` R ) ` wh...
cdlemefr44 38366 Value of f(r) when r is an...
cdlemefs44 38367 Value of f_s(r) when r is ...
cdlemefr45 38368 Value of f(r) when r is an...
cdlemefr45e 38369 Explicit expansion of ~ cd...
cdlemefs45 38370 Value of f_s(r) when r is ...
cdlemefs45ee 38371 Explicit expansion of ~ cd...
cdlemefs45eN 38372 Explicit expansion of ~ cd...
cdleme32sn1awN 38373 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 38374 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 38375 Show that ` [_ R / s ]_ N ...
cdleme32snaw 38376 Show that ` [_ R / s ]_ N ...
cdleme32snb 38377 Show closure of ` [_ R / s...
cdleme32fva 38378 Part of proof of Lemma D i...
cdleme32fva1 38379 Part of proof of Lemma D i...
cdleme32fvaw 38380 Show that ` ( F `` R ) ` i...
cdleme32fvcl 38381 Part of proof of Lemma D i...
cdleme32a 38382 Part of proof of Lemma D i...
cdleme32b 38383 Part of proof of Lemma D i...
cdleme32c 38384 Part of proof of Lemma D i...
cdleme32d 38385 Part of proof of Lemma D i...
cdleme32e 38386 Part of proof of Lemma D i...
cdleme32f 38387 Part of proof of Lemma D i...
cdleme32le 38388 Part of proof of Lemma D i...
cdleme35a 38389 Part of proof of Lemma E i...
cdleme35fnpq 38390 Part of proof of Lemma E i...
cdleme35b 38391 Part of proof of Lemma E i...
cdleme35c 38392 Part of proof of Lemma E i...
cdleme35d 38393 Part of proof of Lemma E i...
cdleme35e 38394 Part of proof of Lemma E i...
cdleme35f 38395 Part of proof of Lemma E i...
cdleme35g 38396 Part of proof of Lemma E i...
cdleme35h 38397 Part of proof of Lemma E i...
cdleme35h2 38398 Part of proof of Lemma E i...
cdleme35sn2aw 38399 Part of proof of Lemma E i...
cdleme35sn3a 38400 Part of proof of Lemma E i...
cdleme36a 38401 Part of proof of Lemma E i...
cdleme36m 38402 Part of proof of Lemma E i...
cdleme37m 38403 Part of proof of Lemma E i...
cdleme38m 38404 Part of proof of Lemma E i...
cdleme38n 38405 Part of proof of Lemma E i...
cdleme39a 38406 Part of proof of Lemma E i...
cdleme39n 38407 Part of proof of Lemma E i...
cdleme40m 38408 Part of proof of Lemma E i...
cdleme40n 38409 Part of proof of Lemma E i...
cdleme40v 38410 Part of proof of Lemma E i...
cdleme40w 38411 Part of proof of Lemma E i...
cdleme42a 38412 Part of proof of Lemma E i...
cdleme42c 38413 Part of proof of Lemma E i...
cdleme42d 38414 Part of proof of Lemma E i...
cdleme41sn3aw 38415 Part of proof of Lemma E i...
cdleme41sn4aw 38416 Part of proof of Lemma E i...
cdleme41snaw 38417 Part of proof of Lemma E i...
cdleme41fva11 38418 Part of proof of Lemma E i...
cdleme42b 38419 Part of proof of Lemma E i...
cdleme42e 38420 Part of proof of Lemma E i...
cdleme42f 38421 Part of proof of Lemma E i...
cdleme42g 38422 Part of proof of Lemma E i...
cdleme42h 38423 Part of proof of Lemma E i...
cdleme42i 38424 Part of proof of Lemma E i...
cdleme42k 38425 Part of proof of Lemma E i...
cdleme42ke 38426 Part of proof of Lemma E i...
cdleme42keg 38427 Part of proof of Lemma E i...
cdleme42mN 38428 Part of proof of Lemma E i...
cdleme42mgN 38429 Part of proof of Lemma E i...
cdleme43aN 38430 Part of proof of Lemma E i...
cdleme43bN 38431 Lemma for Lemma E in [Craw...
cdleme43cN 38432 Part of proof of Lemma E i...
cdleme43dN 38433 Part of proof of Lemma E i...
cdleme46f2g2 38434 Conversion for ` G ` to re...
cdleme46f2g1 38435 Conversion for ` G ` to re...
cdleme17d2 38436 Part of proof of Lemma E i...
cdleme17d3 38437 TODO: FIX COMMENT. (Contr...
cdleme17d4 38438 TODO: FIX COMMENT. (Contr...
cdleme17d 38439 Part of proof of Lemma E i...
cdleme48fv 38440 Part of proof of Lemma D i...
cdleme48fvg 38441 Remove ` P =/= Q ` conditi...
cdleme46fvaw 38442 Show that ` ( F `` R ) ` i...
cdleme48bw 38443 TODO: fix comment. TODO: ...
cdleme48b 38444 TODO: fix comment. (Contr...
cdleme46frvlpq 38445 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 38446 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 38447 TODO: fix comment. (Contr...
cdleme4gfv 38448 Part of proof of Lemma D i...
cdlemeg47b 38449 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 38450 Value of g_s(r) when r is ...
cdlemeg47rv2 38451 Value of g_s(r) when r is ...
cdlemeg49le 38452 Part of proof of Lemma D i...
cdlemeg46bOLDN 38453 TODO FIX COMMENT. (Contrib...
cdlemeg46c 38454 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 38455 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 38456 Value of g_s(r) when r is ...
cdlemeg46fvaw 38457 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 38458 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 38459 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 38460 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 38461 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 38462 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 38463 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 38464 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 38465 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 38466 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 38467 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 38468 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 38469 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 38470 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 38471 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 38472 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 38473 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 38474 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 38475 TODO FIX COMMENT p. 116 pe...
cdleme48d 38476 TODO: fix comment. (Contr...
cdleme48gfv1 38477 TODO: fix comment. (Contr...
cdleme48gfv 38478 TODO: fix comment. (Contr...
cdleme48fgv 38479 TODO: fix comment. (Contr...
cdlemeg49lebilem 38480 Part of proof of Lemma D i...
cdleme50lebi 38481 Part of proof of Lemma D i...
cdleme50eq 38482 Part of proof of Lemma D i...
cdleme50f 38483 Part of proof of Lemma D i...
cdleme50f1 38484 Part of proof of Lemma D i...
cdleme50rnlem 38485 Part of proof of Lemma D i...
cdleme50rn 38486 Part of proof of Lemma D i...
cdleme50f1o 38487 Part of proof of Lemma D i...
cdleme50laut 38488 Part of proof of Lemma D i...
cdleme50ldil 38489 Part of proof of Lemma D i...
cdleme50trn1 38490 Part of proof that ` F ` i...
cdleme50trn2a 38491 Part of proof that ` F ` i...
cdleme50trn2 38492 Part of proof that ` F ` i...
cdleme50trn12 38493 Part of proof that ` F ` i...
cdleme50trn3 38494 Part of proof that ` F ` i...
cdleme50trn123 38495 Part of proof that ` F ` i...
cdleme51finvfvN 38496 Part of proof of Lemma E i...
cdleme51finvN 38497 Part of proof of Lemma E i...
cdleme50ltrn 38498 Part of proof of Lemma E i...
cdleme51finvtrN 38499 Part of proof of Lemma E i...
cdleme50ex 38500 Part of Lemma E in [Crawle...
cdleme 38501 Lemma E in [Crawley] p. 11...
cdlemf1 38502 Part of Lemma F in [Crawle...
cdlemf2 38503 Part of Lemma F in [Crawle...
cdlemf 38504 Lemma F in [Crawley] p. 11...
cdlemfnid 38505 ~ cdlemf with additional c...
cdlemftr3 38506 Special case of ~ cdlemf s...
cdlemftr2 38507 Special case of ~ cdlemf s...
cdlemftr1 38508 Part of proof of Lemma G o...
cdlemftr0 38509 Special case of ~ cdlemf s...
trlord 38510 The ordering of two Hilber...
cdlemg1a 38511 Shorter expression for ` G...
cdlemg1b2 38512 This theorem can be used t...
cdlemg1idlemN 38513 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 38514 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 38515 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 38516 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 38517 This theorem can be used t...
cdlemg1idN 38518 Version of ~ cdleme31id wi...
ltrniotafvawN 38519 Version of ~ cdleme46fvaw ...
ltrniotacl 38520 Version of ~ cdleme50ltrn ...
ltrniotacnvN 38521 Version of ~ cdleme51finvt...
ltrniotaval 38522 Value of the unique transl...
ltrniotacnvval 38523 Converse value of the uniq...
ltrniotaidvalN 38524 Value of the unique transl...
ltrniotavalbN 38525 Value of the unique transl...
cdlemeiota 38526 A translation is uniquely ...
cdlemg1ci2 38527 Any function of the form o...
cdlemg1cN 38528 Any translation belongs to...
cdlemg1cex 38529 Any translation is one of ...
cdlemg2cN 38530 Any translation belongs to...
cdlemg2dN 38531 This theorem can be used t...
cdlemg2cex 38532 Any translation is one of ...
cdlemg2ce 38533 Utility theorem to elimina...
cdlemg2jlemOLDN 38534 Part of proof of Lemma E i...
cdlemg2fvlem 38535 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 38536 ~ cdleme42keg with simpler...
cdlemg2idN 38537 Version of ~ cdleme31id wi...
cdlemg3a 38538 Part of proof of Lemma G i...
cdlemg2jOLDN 38539 TODO: Replace this with ~...
cdlemg2fv 38540 Value of a translation in ...
cdlemg2fv2 38541 Value of a translation in ...
cdlemg2k 38542 ~ cdleme42keg with simpler...
cdlemg2kq 38543 ~ cdlemg2k with ` P ` and ...
cdlemg2l 38544 TODO: FIX COMMENT. (Contr...
cdlemg2m 38545 TODO: FIX COMMENT. (Contr...
cdlemg5 38546 TODO: Is there a simpler ...
cdlemb3 38547 Given two atoms not under ...
cdlemg7fvbwN 38548 Properties of a translatio...
cdlemg4a 38549 TODO: FIX COMMENT If fg(p...
cdlemg4b1 38550 TODO: FIX COMMENT. (Contr...
cdlemg4b2 38551 TODO: FIX COMMENT. (Contr...
cdlemg4b12 38552 TODO: FIX COMMENT. (Contr...
cdlemg4c 38553 TODO: FIX COMMENT. (Contr...
cdlemg4d 38554 TODO: FIX COMMENT. (Contr...
cdlemg4e 38555 TODO: FIX COMMENT. (Contr...
cdlemg4f 38556 TODO: FIX COMMENT. (Contr...
cdlemg4g 38557 TODO: FIX COMMENT. (Contr...
cdlemg4 38558 TODO: FIX COMMENT. (Contr...
cdlemg6a 38559 TODO: FIX COMMENT. TODO: ...
cdlemg6b 38560 TODO: FIX COMMENT. TODO: ...
cdlemg6c 38561 TODO: FIX COMMENT. (Contr...
cdlemg6d 38562 TODO: FIX COMMENT. (Contr...
cdlemg6e 38563 TODO: FIX COMMENT. (Contr...
cdlemg6 38564 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 38565 Value of a translation com...
cdlemg7aN 38566 TODO: FIX COMMENT. (Contr...
cdlemg7N 38567 TODO: FIX COMMENT. (Contr...
cdlemg8a 38568 TODO: FIX COMMENT. (Contr...
cdlemg8b 38569 TODO: FIX COMMENT. (Contr...
cdlemg8c 38570 TODO: FIX COMMENT. (Contr...
cdlemg8d 38571 TODO: FIX COMMENT. (Contr...
cdlemg8 38572 TODO: FIX COMMENT. (Contr...
cdlemg9a 38573 TODO: FIX COMMENT. (Contr...
cdlemg9b 38574 The triples ` <. P , ( F `...
cdlemg9 38575 The triples ` <. P , ( F `...
cdlemg10b 38576 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 38577 TODO: FIX COMMENT. TODO: ...
cdlemg11a 38578 TODO: FIX COMMENT. (Contr...
cdlemg11aq 38579 TODO: FIX COMMENT. TODO: ...
cdlemg10c 38580 TODO: FIX COMMENT. TODO: ...
cdlemg10a 38581 TODO: FIX COMMENT. (Contr...
cdlemg10 38582 TODO: FIX COMMENT. (Contr...
cdlemg11b 38583 TODO: FIX COMMENT. (Contr...
cdlemg12a 38584 TODO: FIX COMMENT. (Contr...
cdlemg12b 38585 The triples ` <. P , ( F `...
cdlemg12c 38586 The triples ` <. P , ( F `...
cdlemg12d 38587 TODO: FIX COMMENT. (Contr...
cdlemg12e 38588 TODO: FIX COMMENT. (Contr...
cdlemg12f 38589 TODO: FIX COMMENT. (Contr...
cdlemg12g 38590 TODO: FIX COMMENT. TODO: ...
cdlemg12 38591 TODO: FIX COMMENT. (Contr...
cdlemg13a 38592 TODO: FIX COMMENT. (Contr...
cdlemg13 38593 TODO: FIX COMMENT. (Contr...
cdlemg14f 38594 TODO: FIX COMMENT. (Contr...
cdlemg14g 38595 TODO: FIX COMMENT. (Contr...
cdlemg15a 38596 Eliminate the ` ( F `` P )...
cdlemg15 38597 Eliminate the ` ( (...
cdlemg16 38598 Part of proof of Lemma G o...
cdlemg16ALTN 38599 This version of ~ cdlemg16...
cdlemg16z 38600 Eliminate ` ( ( F `...
cdlemg16zz 38601 Eliminate ` P =/= Q ` from...
cdlemg17a 38602 TODO: FIX COMMENT. (Contr...
cdlemg17b 38603 Part of proof of Lemma G i...
cdlemg17dN 38604 TODO: fix comment. (Contr...
cdlemg17dALTN 38605 Same as ~ cdlemg17dN with ...
cdlemg17e 38606 TODO: fix comment. (Contr...
cdlemg17f 38607 TODO: fix comment. (Contr...
cdlemg17g 38608 TODO: fix comment. (Contr...
cdlemg17h 38609 TODO: fix comment. (Contr...
cdlemg17i 38610 TODO: fix comment. (Contr...
cdlemg17ir 38611 TODO: fix comment. (Contr...
cdlemg17j 38612 TODO: fix comment. (Contr...
cdlemg17pq 38613 Utility theorem for swappi...
cdlemg17bq 38614 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 38615 ~ cdlemg17i with ` P ` and...
cdlemg17irq 38616 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 38617 ~ cdlemg17j with ` P ` and...
cdlemg17 38618 Part of Lemma G of [Crawle...
cdlemg18a 38619 Show two lines are differe...
cdlemg18b 38620 Lemma for ~ cdlemg18c . T...
cdlemg18c 38621 Show two lines intersect a...
cdlemg18d 38622 Show two lines intersect a...
cdlemg18 38623 Show two lines intersect a...
cdlemg19a 38624 Show two lines intersect a...
cdlemg19 38625 Show two lines intersect a...
cdlemg20 38626 Show two lines intersect a...
cdlemg21 38627 Version of cdlemg19 with `...
cdlemg22 38628 ~ cdlemg21 with ` ( F `` P...
cdlemg24 38629 Combine ~ cdlemg16z and ~ ...
cdlemg37 38630 Use ~ cdlemg8 to eliminate...
cdlemg25zz 38631 ~ cdlemg16zz restated for ...
cdlemg26zz 38632 ~ cdlemg16zz restated for ...
cdlemg27a 38633 For use with case when ` (...
cdlemg28a 38634 Part of proof of Lemma G o...
cdlemg31b0N 38635 TODO: Fix comment. (Cont...
cdlemg31b0a 38636 TODO: Fix comment. (Cont...
cdlemg27b 38637 TODO: Fix comment. (Cont...
cdlemg31a 38638 TODO: fix comment. (Contr...
cdlemg31b 38639 TODO: fix comment. (Contr...
cdlemg31c 38640 Show that when ` N ` is an...
cdlemg31d 38641 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 38642 TODO: Fix comment. (Cont...
cdlemg33c0 38643 TODO: Fix comment. (Cont...
cdlemg28b 38644 Part of proof of Lemma G o...
cdlemg28 38645 Part of proof of Lemma G o...
cdlemg29 38646 Eliminate ` ( F `` P ) =/=...
cdlemg33a 38647 TODO: Fix comment. (Cont...
cdlemg33b 38648 TODO: Fix comment. (Cont...
cdlemg33c 38649 TODO: Fix comment. (Cont...
cdlemg33d 38650 TODO: Fix comment. (Cont...
cdlemg33e 38651 TODO: Fix comment. (Cont...
cdlemg33 38652 Combine ~ cdlemg33b , ~ cd...
cdlemg34 38653 Use cdlemg33 to eliminate ...
cdlemg35 38654 TODO: Fix comment. TODO:...
cdlemg36 38655 Use cdlemg35 to eliminate ...
cdlemg38 38656 Use ~ cdlemg37 to eliminat...
cdlemg39 38657 Eliminate ` =/= ` conditio...
cdlemg40 38658 Eliminate ` P =/= Q ` cond...
cdlemg41 38659 Convert ~ cdlemg40 to func...
ltrnco 38660 The composition of two tra...
trlcocnv 38661 Swap the arguments of the ...
trlcoabs 38662 Absorption into a composit...
trlcoabs2N 38663 Absorption of the trace of...
trlcoat 38664 The trace of a composition...
trlcocnvat 38665 Commonly used special case...
trlconid 38666 The composition of two dif...
trlcolem 38667 Lemma for ~ trlco . (Cont...
trlco 38668 The trace of a composition...
trlcone 38669 If two translations have d...
cdlemg42 38670 Part of proof of Lemma G o...
cdlemg43 38671 Part of proof of Lemma G o...
cdlemg44a 38672 Part of proof of Lemma G o...
cdlemg44b 38673 Eliminate ` ( F `` P ) =/=...
cdlemg44 38674 Part of proof of Lemma G o...
cdlemg47a 38675 TODO: fix comment. TODO: ...
cdlemg46 38676 Part of proof of Lemma G o...
cdlemg47 38677 Part of proof of Lemma G o...
cdlemg48 38678 Eliminate ` h ` from ~ cdl...
ltrncom 38679 Composition is commutative...
ltrnco4 38680 Rearrange a composition of...
trljco 38681 Trace joined with trace of...
trljco2 38682 Trace joined with trace of...
tgrpfset 38685 The translation group maps...
tgrpset 38686 The translation group for ...
tgrpbase 38687 The base set of the transl...
tgrpopr 38688 The group operation of the...
tgrpov 38689 The group operation value ...
tgrpgrplem 38690 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 38691 The translation group is a...
tgrpabl 38692 The translation group is a...
tendofset 38699 The set of all trace-prese...
tendoset 38700 The set of trace-preservin...
istendo 38701 The predicate "is a trace-...
tendotp 38702 Trace-preserving property ...
istendod 38703 Deduce the predicate "is a...
tendof 38704 Functionality of a trace-p...
tendoeq1 38705 Condition determining equa...
tendovalco 38706 Value of composition of tr...
tendocoval 38707 Value of composition of en...
tendocl 38708 Closure of a trace-preserv...
tendoco2 38709 Distribution of compositio...
tendoidcl 38710 The identity is a trace-pr...
tendo1mul 38711 Multiplicative identity mu...
tendo1mulr 38712 Multiplicative identity mu...
tendococl 38713 The composition of two tra...
tendoid 38714 The identity value of a tr...
tendoeq2 38715 Condition determining equa...
tendoplcbv 38716 Define sum operation for t...
tendopl 38717 Value of endomorphism sum ...
tendopl2 38718 Value of result of endomor...
tendoplcl2 38719 Value of result of endomor...
tendoplco2 38720 Value of result of endomor...
tendopltp 38721 Trace-preserving property ...
tendoplcl 38722 Endomorphism sum is a trac...
tendoplcom 38723 The endomorphism sum opera...
tendoplass 38724 The endomorphism sum opera...
tendodi1 38725 Endomorphism composition d...
tendodi2 38726 Endomorphism composition d...
tendo0cbv 38727 Define additive identity f...
tendo02 38728 Value of additive identity...
tendo0co2 38729 The additive identity trac...
tendo0tp 38730 Trace-preserving property ...
tendo0cl 38731 The additive identity is a...
tendo0pl 38732 Property of the additive i...
tendo0plr 38733 Property of the additive i...
tendoicbv 38734 Define inverse function fo...
tendoi 38735 Value of inverse endomorph...
tendoi2 38736 Value of additive inverse ...
tendoicl 38737 Closure of the additive in...
tendoipl 38738 Property of the additive i...
tendoipl2 38739 Property of the additive i...
erngfset 38740 The division rings on trac...
erngset 38741 The division ring on trace...
erngbase 38742 The base set of the divisi...
erngfplus 38743 Ring addition operation. ...
erngplus 38744 Ring addition operation. ...
erngplus2 38745 Ring addition operation. ...
erngfmul 38746 Ring multiplication operat...
erngmul 38747 Ring addition operation. ...
erngfset-rN 38748 The division rings on trac...
erngset-rN 38749 The division ring on trace...
erngbase-rN 38750 The base set of the divisi...
erngfplus-rN 38751 Ring addition operation. ...
erngplus-rN 38752 Ring addition operation. ...
erngplus2-rN 38753 Ring addition operation. ...
erngfmul-rN 38754 Ring multiplication operat...
erngmul-rN 38755 Ring addition operation. ...
cdlemh1 38756 Part of proof of Lemma H o...
cdlemh2 38757 Part of proof of Lemma H o...
cdlemh 38758 Lemma H of [Crawley] p. 11...
cdlemi1 38759 Part of proof of Lemma I o...
cdlemi2 38760 Part of proof of Lemma I o...
cdlemi 38761 Lemma I of [Crawley] p. 11...
cdlemj1 38762 Part of proof of Lemma J o...
cdlemj2 38763 Part of proof of Lemma J o...
cdlemj3 38764 Part of proof of Lemma J o...
tendocan 38765 Cancellation law: if the v...
tendoid0 38766 A trace-preserving endomor...
tendo0mul 38767 Additive identity multipli...
tendo0mulr 38768 Additive identity multipli...
tendo1ne0 38769 The identity (unity) is no...
tendoconid 38770 The composition (product) ...
tendotr 38771 The trace of the value of ...
cdlemk1 38772 Part of proof of Lemma K o...
cdlemk2 38773 Part of proof of Lemma K o...
cdlemk3 38774 Part of proof of Lemma K o...
cdlemk4 38775 Part of proof of Lemma K o...
cdlemk5a 38776 Part of proof of Lemma K o...
cdlemk5 38777 Part of proof of Lemma K o...
cdlemk6 38778 Part of proof of Lemma K o...
cdlemk8 38779 Part of proof of Lemma K o...
cdlemk9 38780 Part of proof of Lemma K o...
cdlemk9bN 38781 Part of proof of Lemma K o...
cdlemki 38782 Part of proof of Lemma K o...
cdlemkvcl 38783 Part of proof of Lemma K o...
cdlemk10 38784 Part of proof of Lemma K o...
cdlemksv 38785 Part of proof of Lemma K o...
cdlemksel 38786 Part of proof of Lemma K o...
cdlemksat 38787 Part of proof of Lemma K o...
cdlemksv2 38788 Part of proof of Lemma K o...
cdlemk7 38789 Part of proof of Lemma K o...
cdlemk11 38790 Part of proof of Lemma K o...
cdlemk12 38791 Part of proof of Lemma K o...
cdlemkoatnle 38792 Utility lemma. (Contribut...
cdlemk13 38793 Part of proof of Lemma K o...
cdlemkole 38794 Utility lemma. (Contribut...
cdlemk14 38795 Part of proof of Lemma K o...
cdlemk15 38796 Part of proof of Lemma K o...
cdlemk16a 38797 Part of proof of Lemma K o...
cdlemk16 38798 Part of proof of Lemma K o...
cdlemk17 38799 Part of proof of Lemma K o...
cdlemk1u 38800 Part of proof of Lemma K o...
cdlemk5auN 38801 Part of proof of Lemma K o...
cdlemk5u 38802 Part of proof of Lemma K o...
cdlemk6u 38803 Part of proof of Lemma K o...
cdlemkj 38804 Part of proof of Lemma K o...
cdlemkuvN 38805 Part of proof of Lemma K o...
cdlemkuel 38806 Part of proof of Lemma K o...
cdlemkuat 38807 Part of proof of Lemma K o...
cdlemkuv2 38808 Part of proof of Lemma K o...
cdlemk18 38809 Part of proof of Lemma K o...
cdlemk19 38810 Part of proof of Lemma K o...
cdlemk7u 38811 Part of proof of Lemma K o...
cdlemk11u 38812 Part of proof of Lemma K o...
cdlemk12u 38813 Part of proof of Lemma K o...
cdlemk21N 38814 Part of proof of Lemma K o...
cdlemk20 38815 Part of proof of Lemma K o...
cdlemkoatnle-2N 38816 Utility lemma. (Contribut...
cdlemk13-2N 38817 Part of proof of Lemma K o...
cdlemkole-2N 38818 Utility lemma. (Contribut...
cdlemk14-2N 38819 Part of proof of Lemma K o...
cdlemk15-2N 38820 Part of proof of Lemma K o...
cdlemk16-2N 38821 Part of proof of Lemma K o...
cdlemk17-2N 38822 Part of proof of Lemma K o...
cdlemkj-2N 38823 Part of proof of Lemma K o...
cdlemkuv-2N 38824 Part of proof of Lemma K o...
cdlemkuel-2N 38825 Part of proof of Lemma K o...
cdlemkuv2-2 38826 Part of proof of Lemma K o...
cdlemk18-2N 38827 Part of proof of Lemma K o...
cdlemk19-2N 38828 Part of proof of Lemma K o...
cdlemk7u-2N 38829 Part of proof of Lemma K o...
cdlemk11u-2N 38830 Part of proof of Lemma K o...
cdlemk12u-2N 38831 Part of proof of Lemma K o...
cdlemk21-2N 38832 Part of proof of Lemma K o...
cdlemk20-2N 38833 Part of proof of Lemma K o...
cdlemk22 38834 Part of proof of Lemma K o...
cdlemk30 38835 Part of proof of Lemma K o...
cdlemkuu 38836 Convert between function a...
cdlemk31 38837 Part of proof of Lemma K o...
cdlemk32 38838 Part of proof of Lemma K o...
cdlemkuel-3 38839 Part of proof of Lemma K o...
cdlemkuv2-3N 38840 Part of proof of Lemma K o...
cdlemk18-3N 38841 Part of proof of Lemma K o...
cdlemk22-3 38842 Part of proof of Lemma K o...
cdlemk23-3 38843 Part of proof of Lemma K o...
cdlemk24-3 38844 Part of proof of Lemma K o...
cdlemk25-3 38845 Part of proof of Lemma K o...
cdlemk26b-3 38846 Part of proof of Lemma K o...
cdlemk26-3 38847 Part of proof of Lemma K o...
cdlemk27-3 38848 Part of proof of Lemma K o...
cdlemk28-3 38849 Part of proof of Lemma K o...
cdlemk33N 38850 Part of proof of Lemma K o...
cdlemk34 38851 Part of proof of Lemma K o...
cdlemk29-3 38852 Part of proof of Lemma K o...
cdlemk35 38853 Part of proof of Lemma K o...
cdlemk36 38854 Part of proof of Lemma K o...
cdlemk37 38855 Part of proof of Lemma K o...
cdlemk38 38856 Part of proof of Lemma K o...
cdlemk39 38857 Part of proof of Lemma K o...
cdlemk40 38858 TODO: fix comment. (Contr...
cdlemk40t 38859 TODO: fix comment. (Contr...
cdlemk40f 38860 TODO: fix comment. (Contr...
cdlemk41 38861 Part of proof of Lemma K o...
cdlemkfid1N 38862 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 38863 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 38864 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 38865 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 38866 TODO: is this useful or sh...
cdlemky 38867 Part of proof of Lemma K o...
cdlemkyu 38868 Convert between function a...
cdlemkyuu 38869 ~ cdlemkyu with some hypot...
cdlemk11ta 38870 Part of proof of Lemma K o...
cdlemk19ylem 38871 Lemma for ~ cdlemk19y . (...
cdlemk11tb 38872 Part of proof of Lemma K o...
cdlemk19y 38873 ~ cdlemk19 with simpler hy...
cdlemkid3N 38874 Lemma for ~ cdlemkid . (C...
cdlemkid4 38875 Lemma for ~ cdlemkid . (C...
cdlemkid5 38876 Lemma for ~ cdlemkid . (C...
cdlemkid 38877 The value of the tau funct...
cdlemk35s 38878 Substitution version of ~ ...
cdlemk35s-id 38879 Substitution version of ~ ...
cdlemk39s 38880 Substitution version of ~ ...
cdlemk39s-id 38881 Substitution version of ~ ...
cdlemk42 38882 Part of proof of Lemma K o...
cdlemk19xlem 38883 Lemma for ~ cdlemk19x . (...
cdlemk19x 38884 ~ cdlemk19 with simpler hy...
cdlemk42yN 38885 Part of proof of Lemma K o...
cdlemk11tc 38886 Part of proof of Lemma K o...
cdlemk11t 38887 Part of proof of Lemma K o...
cdlemk45 38888 Part of proof of Lemma K o...
cdlemk46 38889 Part of proof of Lemma K o...
cdlemk47 38890 Part of proof of Lemma K o...
cdlemk48 38891 Part of proof of Lemma K o...
cdlemk49 38892 Part of proof of Lemma K o...
cdlemk50 38893 Part of proof of Lemma K o...
cdlemk51 38894 Part of proof of Lemma K o...
cdlemk52 38895 Part of proof of Lemma K o...
cdlemk53a 38896 Lemma for ~ cdlemk53 . (C...
cdlemk53b 38897 Lemma for ~ cdlemk53 . (C...
cdlemk53 38898 Part of proof of Lemma K o...
cdlemk54 38899 Part of proof of Lemma K o...
cdlemk55a 38900 Lemma for ~ cdlemk55 . (C...
cdlemk55b 38901 Lemma for ~ cdlemk55 . (C...
cdlemk55 38902 Part of proof of Lemma K o...
cdlemkyyN 38903 Part of proof of Lemma K o...
cdlemk43N 38904 Part of proof of Lemma K o...
cdlemk35u 38905 Substitution version of ~ ...
cdlemk55u1 38906 Lemma for ~ cdlemk55u . (...
cdlemk55u 38907 Part of proof of Lemma K o...
cdlemk39u1 38908 Lemma for ~ cdlemk39u . (...
cdlemk39u 38909 Part of proof of Lemma K o...
cdlemk19u1 38910 ~ cdlemk19 with simpler hy...
cdlemk19u 38911 Part of Lemma K of [Crawle...
cdlemk56 38912 Part of Lemma K of [Crawle...
cdlemk19w 38913 Use a fixed element to eli...
cdlemk56w 38914 Use a fixed element to eli...
cdlemk 38915 Lemma K of [Crawley] p. 11...
tendoex 38916 Generalization of Lemma K ...
cdleml1N 38917 Part of proof of Lemma L o...
cdleml2N 38918 Part of proof of Lemma L o...
cdleml3N 38919 Part of proof of Lemma L o...
cdleml4N 38920 Part of proof of Lemma L o...
cdleml5N 38921 Part of proof of Lemma L o...
cdleml6 38922 Part of proof of Lemma L o...
cdleml7 38923 Part of proof of Lemma L o...
cdleml8 38924 Part of proof of Lemma L o...
cdleml9 38925 Part of proof of Lemma L o...
dva1dim 38926 Two expressions for the 1-...
dvhb1dimN 38927 Two expressions for the 1-...
erng1lem 38928 Value of the endomorphism ...
erngdvlem1 38929 Lemma for ~ eringring . (...
erngdvlem2N 38930 Lemma for ~ eringring . (...
erngdvlem3 38931 Lemma for ~ eringring . (...
erngdvlem4 38932 Lemma for ~ erngdv . (Con...
eringring 38933 An endomorphism ring is a ...
erngdv 38934 An endomorphism ring is a ...
erng0g 38935 The division ring zero of ...
erng1r 38936 The division ring unit of ...
erngdvlem1-rN 38937 Lemma for ~ eringring . (...
erngdvlem2-rN 38938 Lemma for ~ eringring . (...
erngdvlem3-rN 38939 Lemma for ~ eringring . (...
erngdvlem4-rN 38940 Lemma for ~ erngdv . (Con...
erngring-rN 38941 An endomorphism ring is a ...
erngdv-rN 38942 An endomorphism ring is a ...
dvafset 38945 The constructed partial ve...
dvaset 38946 The constructed partial ve...
dvasca 38947 The ring base set of the c...
dvabase 38948 The ring base set of the c...
dvafplusg 38949 Ring addition operation fo...
dvaplusg 38950 Ring addition operation fo...
dvaplusgv 38951 Ring addition operation fo...
dvafmulr 38952 Ring multiplication operat...
dvamulr 38953 Ring multiplication operat...
dvavbase 38954 The vectors (vector base s...
dvafvadd 38955 The vector sum operation f...
dvavadd 38956 Ring addition operation fo...
dvafvsca 38957 Ring addition operation fo...
dvavsca 38958 Ring addition operation fo...
tendospcl 38959 Closure of endomorphism sc...
tendospass 38960 Associative law for endomo...
tendospdi1 38961 Forward distributive law f...
tendocnv 38962 Converse of a trace-preser...
tendospdi2 38963 Reverse distributive law f...
tendospcanN 38964 Cancellation law for trace...
dvaabl 38965 The constructed partial ve...
dvalveclem 38966 Lemma for ~ dvalvec . (Co...
dvalvec 38967 The constructed partial ve...
dva0g 38968 The zero vector of partial...
diaffval 38971 The partial isomorphism A ...
diafval 38972 The partial isomorphism A ...
diaval 38973 The partial isomorphism A ...
diaelval 38974 Member of the partial isom...
diafn 38975 Functionality and domain o...
diadm 38976 Domain of the partial isom...
diaeldm 38977 Member of domain of the pa...
diadmclN 38978 A member of domain of the ...
diadmleN 38979 A member of domain of the ...
dian0 38980 The value of the partial i...
dia0eldmN 38981 The lattice zero belongs t...
dia1eldmN 38982 The fiducial hyperplane (t...
diass 38983 The value of the partial i...
diael 38984 A member of the value of t...
diatrl 38985 Trace of a member of the p...
diaelrnN 38986 Any value of the partial i...
dialss 38987 The value of partial isomo...
diaord 38988 The partial isomorphism A ...
dia11N 38989 The partial isomorphism A ...
diaf11N 38990 The partial isomorphism A ...
diaclN 38991 Closure of partial isomorp...
diacnvclN 38992 Closure of partial isomorp...
dia0 38993 The value of the partial i...
dia1N 38994 The value of the partial i...
dia1elN 38995 The largest subspace in th...
diaglbN 38996 Partial isomorphism A of a...
diameetN 38997 Partial isomorphism A of a...
diainN 38998 Inverse partial isomorphis...
diaintclN 38999 The intersection of partia...
diasslssN 39000 The partial isomorphism A ...
diassdvaN 39001 The partial isomorphism A ...
dia1dim 39002 Two expressions for the 1-...
dia1dim2 39003 Two expressions for a 1-di...
dia1dimid 39004 A vector (translation) bel...
dia2dimlem1 39005 Lemma for ~ dia2dim . Sho...
dia2dimlem2 39006 Lemma for ~ dia2dim . Def...
dia2dimlem3 39007 Lemma for ~ dia2dim . Def...
dia2dimlem4 39008 Lemma for ~ dia2dim . Sho...
dia2dimlem5 39009 Lemma for ~ dia2dim . The...
dia2dimlem6 39010 Lemma for ~ dia2dim . Eli...
dia2dimlem7 39011 Lemma for ~ dia2dim . Eli...
dia2dimlem8 39012 Lemma for ~ dia2dim . Eli...
dia2dimlem9 39013 Lemma for ~ dia2dim . Eli...
dia2dimlem10 39014 Lemma for ~ dia2dim . Con...
dia2dimlem11 39015 Lemma for ~ dia2dim . Con...
dia2dimlem12 39016 Lemma for ~ dia2dim . Obt...
dia2dimlem13 39017 Lemma for ~ dia2dim . Eli...
dia2dim 39018 A two-dimensional subspace...
dvhfset 39021 The constructed full vecto...
dvhset 39022 The constructed full vecto...
dvhsca 39023 The ring of scalars of the...
dvhbase 39024 The ring base set of the c...
dvhfplusr 39025 Ring addition operation fo...
dvhfmulr 39026 Ring multiplication operat...
dvhmulr 39027 Ring multiplication operat...
dvhvbase 39028 The vectors (vector base s...
dvhelvbasei 39029 Vector membership in the c...
dvhvaddcbv 39030 Change bound variables to ...
dvhvaddval 39031 The vector sum operation f...
dvhfvadd 39032 The vector sum operation f...
dvhvadd 39033 The vector sum operation f...
dvhopvadd 39034 The vector sum operation f...
dvhopvadd2 39035 The vector sum operation f...
dvhvaddcl 39036 Closure of the vector sum ...
dvhvaddcomN 39037 Commutativity of vector su...
dvhvaddass 39038 Associativity of vector su...
dvhvscacbv 39039 Change bound variables to ...
dvhvscaval 39040 The scalar product operati...
dvhfvsca 39041 Scalar product operation f...
dvhvsca 39042 Scalar product operation f...
dvhopvsca 39043 Scalar product operation f...
dvhvscacl 39044 Closure of the scalar prod...
tendoinvcl 39045 Closure of multiplicative ...
tendolinv 39046 Left multiplicative invers...
tendorinv 39047 Right multiplicative inver...
dvhgrp 39048 The full vector space ` U ...
dvhlveclem 39049 Lemma for ~ dvhlvec . TOD...
dvhlvec 39050 The full vector space ` U ...
dvhlmod 39051 The full vector space ` U ...
dvh0g 39052 The zero vector of vector ...
dvheveccl 39053 Properties of a unit vecto...
dvhopclN 39054 Closure of a ` DVecH ` vec...
dvhopaddN 39055 Sum of ` DVecH ` vectors e...
dvhopspN 39056 Scalar product of ` DVecH ...
dvhopN 39057 Decompose a ` DVecH ` vect...
dvhopellsm 39058 Ordered pair membership in...
cdlemm10N 39059 The image of the map ` G `...
docaffvalN 39062 Subspace orthocomplement f...
docafvalN 39063 Subspace orthocomplement f...
docavalN 39064 Subspace orthocomplement f...
docaclN 39065 Closure of subspace orthoc...
diaocN 39066 Value of partial isomorphi...
doca2N 39067 Double orthocomplement of ...
doca3N 39068 Double orthocomplement of ...
dvadiaN 39069 Any closed subspace is a m...
diarnN 39070 Partial isomorphism A maps...
diaf1oN 39071 The partial isomorphism A ...
djaffvalN 39074 Subspace join for ` DVecA ...
djafvalN 39075 Subspace join for ` DVecA ...
djavalN 39076 Subspace join for ` DVecA ...
djaclN 39077 Closure of subspace join f...
djajN 39078 Transfer lattice join to `...
dibffval 39081 The partial isomorphism B ...
dibfval 39082 The partial isomorphism B ...
dibval 39083 The partial isomorphism B ...
dibopelvalN 39084 Member of the partial isom...
dibval2 39085 Value of the partial isomo...
dibopelval2 39086 Member of the partial isom...
dibval3N 39087 Value of the partial isomo...
dibelval3 39088 Member of the partial isom...
dibopelval3 39089 Member of the partial isom...
dibelval1st 39090 Membership in value of the...
dibelval1st1 39091 Membership in value of the...
dibelval1st2N 39092 Membership in value of the...
dibelval2nd 39093 Membership in value of the...
dibn0 39094 The value of the partial i...
dibfna 39095 Functionality and domain o...
dibdiadm 39096 Domain of the partial isom...
dibfnN 39097 Functionality and domain o...
dibdmN 39098 Domain of the partial isom...
dibeldmN 39099 Member of domain of the pa...
dibord 39100 The isomorphism B for a la...
dib11N 39101 The isomorphism B for a la...
dibf11N 39102 The partial isomorphism A ...
dibclN 39103 Closure of partial isomorp...
dibvalrel 39104 The value of partial isomo...
dib0 39105 The value of partial isomo...
dib1dim 39106 Two expressions for the 1-...
dibglbN 39107 Partial isomorphism B of a...
dibintclN 39108 The intersection of partia...
dib1dim2 39109 Two expressions for a 1-di...
dibss 39110 The partial isomorphism B ...
diblss 39111 The value of partial isomo...
diblsmopel 39112 Membership in subspace sum...
dicffval 39115 The partial isomorphism C ...
dicfval 39116 The partial isomorphism C ...
dicval 39117 The partial isomorphism C ...
dicopelval 39118 Membership in value of the...
dicelvalN 39119 Membership in value of the...
dicval2 39120 The partial isomorphism C ...
dicelval3 39121 Member of the partial isom...
dicopelval2 39122 Membership in value of the...
dicelval2N 39123 Membership in value of the...
dicfnN 39124 Functionality and domain o...
dicdmN 39125 Domain of the partial isom...
dicvalrelN 39126 The value of partial isomo...
dicssdvh 39127 The partial isomorphism C ...
dicelval1sta 39128 Membership in value of the...
dicelval1stN 39129 Membership in value of the...
dicelval2nd 39130 Membership in value of the...
dicvaddcl 39131 Membership in value of the...
dicvscacl 39132 Membership in value of the...
dicn0 39133 The value of the partial i...
diclss 39134 The value of partial isomo...
diclspsn 39135 The value of isomorphism C...
cdlemn2 39136 Part of proof of Lemma N o...
cdlemn2a 39137 Part of proof of Lemma N o...
cdlemn3 39138 Part of proof of Lemma N o...
cdlemn4 39139 Part of proof of Lemma N o...
cdlemn4a 39140 Part of proof of Lemma N o...
cdlemn5pre 39141 Part of proof of Lemma N o...
cdlemn5 39142 Part of proof of Lemma N o...
cdlemn6 39143 Part of proof of Lemma N o...
cdlemn7 39144 Part of proof of Lemma N o...
cdlemn8 39145 Part of proof of Lemma N o...
cdlemn9 39146 Part of proof of Lemma N o...
cdlemn10 39147 Part of proof of Lemma N o...
cdlemn11a 39148 Part of proof of Lemma N o...
cdlemn11b 39149 Part of proof of Lemma N o...
cdlemn11c 39150 Part of proof of Lemma N o...
cdlemn11pre 39151 Part of proof of Lemma N o...
cdlemn11 39152 Part of proof of Lemma N o...
cdlemn 39153 Lemma N of [Crawley] p. 12...
dihordlem6 39154 Part of proof of Lemma N o...
dihordlem7 39155 Part of proof of Lemma N o...
dihordlem7b 39156 Part of proof of Lemma N o...
dihjustlem 39157 Part of proof after Lemma ...
dihjust 39158 Part of proof after Lemma ...
dihord1 39159 Part of proof after Lemma ...
dihord2a 39160 Part of proof after Lemma ...
dihord2b 39161 Part of proof after Lemma ...
dihord2cN 39162 Part of proof after Lemma ...
dihord11b 39163 Part of proof after Lemma ...
dihord10 39164 Part of proof after Lemma ...
dihord11c 39165 Part of proof after Lemma ...
dihord2pre 39166 Part of proof after Lemma ...
dihord2pre2 39167 Part of proof after Lemma ...
dihord2 39168 Part of proof after Lemma ...
dihffval 39171 The isomorphism H for a la...
dihfval 39172 Isomorphism H for a lattic...
dihval 39173 Value of isomorphism H for...
dihvalc 39174 Value of isomorphism H for...
dihlsscpre 39175 Closure of isomorphism H f...
dihvalcqpre 39176 Value of isomorphism H for...
dihvalcq 39177 Value of isomorphism H for...
dihvalb 39178 Value of isomorphism H for...
dihopelvalbN 39179 Ordered pair member of the...
dihvalcqat 39180 Value of isomorphism H for...
dih1dimb 39181 Two expressions for a 1-di...
dih1dimb2 39182 Isomorphism H at an atom u...
dih1dimc 39183 Isomorphism H at an atom n...
dib2dim 39184 Extend ~ dia2dim to partia...
dih2dimb 39185 Extend ~ dib2dim to isomor...
dih2dimbALTN 39186 Extend ~ dia2dim to isomor...
dihopelvalcqat 39187 Ordered pair member of the...
dihvalcq2 39188 Value of isomorphism H for...
dihopelvalcpre 39189 Member of value of isomorp...
dihopelvalc 39190 Member of value of isomorp...
dihlss 39191 The value of isomorphism H...
dihss 39192 The value of isomorphism H...
dihssxp 39193 An isomorphism H value is ...
dihopcl 39194 Closure of an ordered pair...
xihopellsmN 39195 Ordered pair membership in...
dihopellsm 39196 Ordered pair membership in...
dihord6apre 39197 Part of proof that isomorp...
dihord3 39198 The isomorphism H for a la...
dihord4 39199 The isomorphism H for a la...
dihord5b 39200 Part of proof that isomorp...
dihord6b 39201 Part of proof that isomorp...
dihord6a 39202 Part of proof that isomorp...
dihord5apre 39203 Part of proof that isomorp...
dihord5a 39204 Part of proof that isomorp...
dihord 39205 The isomorphism H is order...
dih11 39206 The isomorphism H is one-t...
dihf11lem 39207 Functionality of the isomo...
dihf11 39208 The isomorphism H for a la...
dihfn 39209 Functionality and domain o...
dihdm 39210 Domain of isomorphism H. (...
dihcl 39211 Closure of isomorphism H. ...
dihcnvcl 39212 Closure of isomorphism H c...
dihcnvid1 39213 The converse isomorphism o...
dihcnvid2 39214 The isomorphism of a conve...
dihcnvord 39215 Ordering property for conv...
dihcnv11 39216 The converse of isomorphis...
dihsslss 39217 The isomorphism H maps to ...
dihrnlss 39218 The isomorphism H maps to ...
dihrnss 39219 The isomorphism H maps to ...
dihvalrel 39220 The value of isomorphism H...
dih0 39221 The value of isomorphism H...
dih0bN 39222 A lattice element is zero ...
dih0vbN 39223 A vector is zero iff its s...
dih0cnv 39224 The isomorphism H converse...
dih0rn 39225 The zero subspace belongs ...
dih0sb 39226 A subspace is zero iff the...
dih1 39227 The value of isomorphism H...
dih1rn 39228 The full vector space belo...
dih1cnv 39229 The isomorphism H converse...
dihwN 39230 Value of isomorphism H at ...
dihmeetlem1N 39231 Isomorphism H of a conjunc...
dihglblem5apreN 39232 A conjunction property of ...
dihglblem5aN 39233 A conjunction property of ...
dihglblem2aN 39234 Lemma for isomorphism H of...
dihglblem2N 39235 The GLB of a set of lattic...
dihglblem3N 39236 Isomorphism H of a lattice...
dihglblem3aN 39237 Isomorphism H of a lattice...
dihglblem4 39238 Isomorphism H of a lattice...
dihglblem5 39239 Isomorphism H of a lattice...
dihmeetlem2N 39240 Isomorphism H of a conjunc...
dihglbcpreN 39241 Isomorphism H of a lattice...
dihglbcN 39242 Isomorphism H of a lattice...
dihmeetcN 39243 Isomorphism H of a lattice...
dihmeetbN 39244 Isomorphism H of a lattice...
dihmeetbclemN 39245 Lemma for isomorphism H of...
dihmeetlem3N 39246 Lemma for isomorphism H of...
dihmeetlem4preN 39247 Lemma for isomorphism H of...
dihmeetlem4N 39248 Lemma for isomorphism H of...
dihmeetlem5 39249 Part of proof that isomorp...
dihmeetlem6 39250 Lemma for isomorphism H of...
dihmeetlem7N 39251 Lemma for isomorphism H of...
dihjatc1 39252 Lemma for isomorphism H of...
dihjatc2N 39253 Isomorphism H of join with...
dihjatc3 39254 Isomorphism H of join with...
dihmeetlem8N 39255 Lemma for isomorphism H of...
dihmeetlem9N 39256 Lemma for isomorphism H of...
dihmeetlem10N 39257 Lemma for isomorphism H of...
dihmeetlem11N 39258 Lemma for isomorphism H of...
dihmeetlem12N 39259 Lemma for isomorphism H of...
dihmeetlem13N 39260 Lemma for isomorphism H of...
dihmeetlem14N 39261 Lemma for isomorphism H of...
dihmeetlem15N 39262 Lemma for isomorphism H of...
dihmeetlem16N 39263 Lemma for isomorphism H of...
dihmeetlem17N 39264 Lemma for isomorphism H of...
dihmeetlem18N 39265 Lemma for isomorphism H of...
dihmeetlem19N 39266 Lemma for isomorphism H of...
dihmeetlem20N 39267 Lemma for isomorphism H of...
dihmeetALTN 39268 Isomorphism H of a lattice...
dih1dimatlem0 39269 Lemma for ~ dih1dimat . (...
dih1dimatlem 39270 Lemma for ~ dih1dimat . (...
dih1dimat 39271 Any 1-dimensional subspace...
dihlsprn 39272 The span of a vector belon...
dihlspsnssN 39273 A subspace included in a 1...
dihlspsnat 39274 The inverse isomorphism H ...
dihatlat 39275 The isomorphism H of an at...
dihat 39276 There exists at least one ...
dihpN 39277 The value of isomorphism H...
dihlatat 39278 The reverse isomorphism H ...
dihatexv 39279 There is a nonzero vector ...
dihatexv2 39280 There is a nonzero vector ...
dihglblem6 39281 Isomorphism H of a lattice...
dihglb 39282 Isomorphism H of a lattice...
dihglb2 39283 Isomorphism H of a lattice...
dihmeet 39284 Isomorphism H of a lattice...
dihintcl 39285 The intersection of closed...
dihmeetcl 39286 Closure of closed subspace...
dihmeet2 39287 Reverse isomorphism H of a...
dochffval 39290 Subspace orthocomplement f...
dochfval 39291 Subspace orthocomplement f...
dochval 39292 Subspace orthocomplement f...
dochval2 39293 Subspace orthocomplement f...
dochcl 39294 Closure of subspace orthoc...
dochlss 39295 A subspace orthocomplement...
dochssv 39296 A subspace orthocomplement...
dochfN 39297 Domain and codomain of the...
dochvalr 39298 Orthocomplement of a close...
doch0 39299 Orthocomplement of the zer...
doch1 39300 Orthocomplement of the uni...
dochoc0 39301 The zero subspace is close...
dochoc1 39302 The unit subspace (all vec...
dochvalr2 39303 Orthocomplement of a close...
dochvalr3 39304 Orthocomplement of a close...
doch2val2 39305 Double orthocomplement for...
dochss 39306 Subset law for orthocomple...
dochocss 39307 Double negative law for or...
dochoc 39308 Double negative law for or...
dochsscl 39309 If a set of vectors is inc...
dochoccl 39310 A set of vectors is closed...
dochord 39311 Ordering law for orthocomp...
dochord2N 39312 Ordering law for orthocomp...
dochord3 39313 Ordering law for orthocomp...
doch11 39314 Orthocomplement is one-to-...
dochsordN 39315 Strict ordering law for or...
dochn0nv 39316 An orthocomplement is nonz...
dihoml4c 39317 Version of ~ dihoml4 with ...
dihoml4 39318 Orthomodular law for const...
dochspss 39319 The span of a set of vecto...
dochocsp 39320 The span of an orthocomple...
dochspocN 39321 The span of an orthocomple...
dochocsn 39322 The double orthocomplement...
dochsncom 39323 Swap vectors in an orthoco...
dochsat 39324 The double orthocomplement...
dochshpncl 39325 If a hyperplane is not clo...
dochlkr 39326 Equivalent conditions for ...
dochkrshp 39327 The closure of a kernel is...
dochkrshp2 39328 Properties of the closure ...
dochkrshp3 39329 Properties of the closure ...
dochkrshp4 39330 Properties of the closure ...
dochdmj1 39331 De Morgan-like law for sub...
dochnoncon 39332 Law of noncontradiction. ...
dochnel2 39333 A nonzero member of a subs...
dochnel 39334 A nonzero vector doesn't b...
djhffval 39337 Subspace join for ` DVecH ...
djhfval 39338 Subspace join for ` DVecH ...
djhval 39339 Subspace join for ` DVecH ...
djhval2 39340 Value of subspace join for...
djhcl 39341 Closure of subspace join f...
djhlj 39342 Transfer lattice join to `...
djhljjN 39343 Lattice join in terms of `...
djhjlj 39344 ` DVecH ` vector space clo...
djhj 39345 ` DVecH ` vector space clo...
djhcom 39346 Subspace join commutes. (...
djhspss 39347 Subspace span of union is ...
djhsumss 39348 Subspace sum is a subset o...
dihsumssj 39349 The subspace sum of two is...
djhunssN 39350 Subspace union is a subset...
dochdmm1 39351 De Morgan-like law for clo...
djhexmid 39352 Excluded middle property o...
djh01 39353 Closed subspace join with ...
djh02 39354 Closed subspace join with ...
djhlsmcl 39355 A closed subspace sum equa...
djhcvat42 39356 A covering property. ( ~ ...
dihjatb 39357 Isomorphism H of lattice j...
dihjatc 39358 Isomorphism H of lattice j...
dihjatcclem1 39359 Lemma for isomorphism H of...
dihjatcclem2 39360 Lemma for isomorphism H of...
dihjatcclem3 39361 Lemma for ~ dihjatcc . (C...
dihjatcclem4 39362 Lemma for isomorphism H of...
dihjatcc 39363 Isomorphism H of lattice j...
dihjat 39364 Isomorphism H of lattice j...
dihprrnlem1N 39365 Lemma for ~ dihprrn , show...
dihprrnlem2 39366 Lemma for ~ dihprrn . (Co...
dihprrn 39367 The span of a vector pair ...
djhlsmat 39368 The sum of two subspace at...
dihjat1lem 39369 Subspace sum of a closed s...
dihjat1 39370 Subspace sum of a closed s...
dihsmsprn 39371 Subspace sum of a closed s...
dihjat2 39372 The subspace sum of a clos...
dihjat3 39373 Isomorphism H of lattice j...
dihjat4 39374 Transfer the subspace sum ...
dihjat6 39375 Transfer the subspace sum ...
dihsmsnrn 39376 The subspace sum of two si...
dihsmatrn 39377 The subspace sum of a clos...
dihjat5N 39378 Transfer lattice join with...
dvh4dimat 39379 There is an atom that is o...
dvh3dimatN 39380 There is an atom that is o...
dvh2dimatN 39381 Given an atom, there exist...
dvh1dimat 39382 There exists an atom. (Co...
dvh1dim 39383 There exists a nonzero vec...
dvh4dimlem 39384 Lemma for ~ dvh4dimN . (C...
dvhdimlem 39385 Lemma for ~ dvh2dim and ~ ...
dvh2dim 39386 There is a vector that is ...
dvh3dim 39387 There is a vector that is ...
dvh4dimN 39388 There is a vector that is ...
dvh3dim2 39389 There is a vector that is ...
dvh3dim3N 39390 There is a vector that is ...
dochsnnz 39391 The orthocomplement of a s...
dochsatshp 39392 The orthocomplement of a s...
dochsatshpb 39393 The orthocomplement of a s...
dochsnshp 39394 The orthocomplement of a n...
dochshpsat 39395 A hyperplane is closed iff...
dochkrsat 39396 The orthocomplement of a k...
dochkrsat2 39397 The orthocomplement of a k...
dochsat0 39398 The orthocomplement of a k...
dochkrsm 39399 The subspace sum of a clos...
dochexmidat 39400 Special case of excluded m...
dochexmidlem1 39401 Lemma for ~ dochexmid . H...
dochexmidlem2 39402 Lemma for ~ dochexmid . (...
dochexmidlem3 39403 Lemma for ~ dochexmid . U...
dochexmidlem4 39404 Lemma for ~ dochexmid . (...
dochexmidlem5 39405 Lemma for ~ dochexmid . (...
dochexmidlem6 39406 Lemma for ~ dochexmid . (...
dochexmidlem7 39407 Lemma for ~ dochexmid . C...
dochexmidlem8 39408 Lemma for ~ dochexmid . T...
dochexmid 39409 Excluded middle law for cl...
dochsnkrlem1 39410 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 39411 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 39412 Lemma for ~ dochsnkr . (C...
dochsnkr 39413 A (closed) kernel expresse...
dochsnkr2 39414 Kernel of the explicit fun...
dochsnkr2cl 39415 The ` X ` determining func...
dochflcl 39416 Closure of the explicit fu...
dochfl1 39417 The value of the explicit ...
dochfln0 39418 The value of a functional ...
dochkr1 39419 A nonzero functional has a...
dochkr1OLDN 39420 A nonzero functional has a...
lpolsetN 39423 The set of polarities of a...
islpolN 39424 The predicate "is a polari...
islpoldN 39425 Properties that determine ...
lpolfN 39426 Functionality of a polarit...
lpolvN 39427 The polarity of the whole ...
lpolconN 39428 Contraposition property of...
lpolsatN 39429 The polarity of an atomic ...
lpolpolsatN 39430 Property of a polarity. (...
dochpolN 39431 The subspace orthocompleme...
lcfl1lem 39432 Property of a functional w...
lcfl1 39433 Property of a functional w...
lcfl2 39434 Property of a functional w...
lcfl3 39435 Property of a functional w...
lcfl4N 39436 Property of a functional w...
lcfl5 39437 Property of a functional w...
lcfl5a 39438 Property of a functional w...
lcfl6lem 39439 Lemma for ~ lcfl6 . A fun...
lcfl7lem 39440 Lemma for ~ lcfl7N . If t...
lcfl6 39441 Property of a functional w...
lcfl7N 39442 Property of a functional w...
lcfl8 39443 Property of a functional w...
lcfl8a 39444 Property of a functional w...
lcfl8b 39445 Property of a nonzero func...
lcfl9a 39446 Property implying that a f...
lclkrlem1 39447 The set of functionals hav...
lclkrlem2a 39448 Lemma for ~ lclkr . Use ~...
lclkrlem2b 39449 Lemma for ~ lclkr . (Cont...
lclkrlem2c 39450 Lemma for ~ lclkr . (Cont...
lclkrlem2d 39451 Lemma for ~ lclkr . (Cont...
lclkrlem2e 39452 Lemma for ~ lclkr . The k...
lclkrlem2f 39453 Lemma for ~ lclkr . Const...
lclkrlem2g 39454 Lemma for ~ lclkr . Compa...
lclkrlem2h 39455 Lemma for ~ lclkr . Elimi...
lclkrlem2i 39456 Lemma for ~ lclkr . Elimi...
lclkrlem2j 39457 Lemma for ~ lclkr . Kerne...
lclkrlem2k 39458 Lemma for ~ lclkr . Kerne...
lclkrlem2l 39459 Lemma for ~ lclkr . Elimi...
lclkrlem2m 39460 Lemma for ~ lclkr . Const...
lclkrlem2n 39461 Lemma for ~ lclkr . (Cont...
lclkrlem2o 39462 Lemma for ~ lclkr . When ...
lclkrlem2p 39463 Lemma for ~ lclkr . When ...
lclkrlem2q 39464 Lemma for ~ lclkr . The s...
lclkrlem2r 39465 Lemma for ~ lclkr . When ...
lclkrlem2s 39466 Lemma for ~ lclkr . Thus,...
lclkrlem2t 39467 Lemma for ~ lclkr . We el...
lclkrlem2u 39468 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 39469 Lemma for ~ lclkr . When ...
lclkrlem2w 39470 Lemma for ~ lclkr . This ...
lclkrlem2x 39471 Lemma for ~ lclkr . Elimi...
lclkrlem2y 39472 Lemma for ~ lclkr . Resta...
lclkrlem2 39473 The set of functionals hav...
lclkr 39474 The set of functionals wit...
lcfls1lem 39475 Property of a functional w...
lcfls1N 39476 Property of a functional w...
lcfls1c 39477 Property of a functional w...
lclkrslem1 39478 The set of functionals hav...
lclkrslem2 39479 The set of functionals hav...
lclkrs 39480 The set of functionals hav...
lclkrs2 39481 The set of functionals wit...
lcfrvalsnN 39482 Reconstruction from the du...
lcfrlem1 39483 Lemma for ~ lcfr . Note t...
lcfrlem2 39484 Lemma for ~ lcfr . (Contr...
lcfrlem3 39485 Lemma for ~ lcfr . (Contr...
lcfrlem4 39486 Lemma for ~ lcfr . (Contr...
lcfrlem5 39487 Lemma for ~ lcfr . The se...
lcfrlem6 39488 Lemma for ~ lcfr . Closur...
lcfrlem7 39489 Lemma for ~ lcfr . Closur...
lcfrlem8 39490 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 39491 Lemma for ~ lcf1o . (This...
lcf1o 39492 Define a function ` J ` th...
lcfrlem10 39493 Lemma for ~ lcfr . (Contr...
lcfrlem11 39494 Lemma for ~ lcfr . (Contr...
lcfrlem12N 39495 Lemma for ~ lcfr . (Contr...
lcfrlem13 39496 Lemma for ~ lcfr . (Contr...
lcfrlem14 39497 Lemma for ~ lcfr . (Contr...
lcfrlem15 39498 Lemma for ~ lcfr . (Contr...
lcfrlem16 39499 Lemma for ~ lcfr . (Contr...
lcfrlem17 39500 Lemma for ~ lcfr . Condit...
lcfrlem18 39501 Lemma for ~ lcfr . (Contr...
lcfrlem19 39502 Lemma for ~ lcfr . (Contr...
lcfrlem20 39503 Lemma for ~ lcfr . (Contr...
lcfrlem21 39504 Lemma for ~ lcfr . (Contr...
lcfrlem22 39505 Lemma for ~ lcfr . (Contr...
lcfrlem23 39506 Lemma for ~ lcfr . TODO: ...
lcfrlem24 39507 Lemma for ~ lcfr . (Contr...
lcfrlem25 39508 Lemma for ~ lcfr . Specia...
lcfrlem26 39509 Lemma for ~ lcfr . Specia...
lcfrlem27 39510 Lemma for ~ lcfr . Specia...
lcfrlem28 39511 Lemma for ~ lcfr . TODO: ...
lcfrlem29 39512 Lemma for ~ lcfr . (Contr...
lcfrlem30 39513 Lemma for ~ lcfr . (Contr...
lcfrlem31 39514 Lemma for ~ lcfr . (Contr...
lcfrlem32 39515 Lemma for ~ lcfr . (Contr...
lcfrlem33 39516 Lemma for ~ lcfr . (Contr...
lcfrlem34 39517 Lemma for ~ lcfr . (Contr...
lcfrlem35 39518 Lemma for ~ lcfr . (Contr...
lcfrlem36 39519 Lemma for ~ lcfr . (Contr...
lcfrlem37 39520 Lemma for ~ lcfr . (Contr...
lcfrlem38 39521 Lemma for ~ lcfr . Combin...
lcfrlem39 39522 Lemma for ~ lcfr . Elimin...
lcfrlem40 39523 Lemma for ~ lcfr . Elimin...
lcfrlem41 39524 Lemma for ~ lcfr . Elimin...
lcfrlem42 39525 Lemma for ~ lcfr . Elimin...
lcfr 39526 Reconstruction of a subspa...
lcdfval 39529 Dual vector space of funct...
lcdval 39530 Dual vector space of funct...
lcdval2 39531 Dual vector space of funct...
lcdlvec 39532 The dual vector space of f...
lcdlmod 39533 The dual vector space of f...
lcdvbase 39534 Vector base set of a dual ...
lcdvbasess 39535 The vector base set of the...
lcdvbaselfl 39536 A vector in the base set o...
lcdvbasecl 39537 Closure of the value of a ...
lcdvadd 39538 Vector addition for the cl...
lcdvaddval 39539 The value of the value of ...
lcdsca 39540 The ring of scalars of the...
lcdsbase 39541 Base set of scalar ring fo...
lcdsadd 39542 Scalar addition for the cl...
lcdsmul 39543 Scalar multiplication for ...
lcdvs 39544 Scalar product for the clo...
lcdvsval 39545 Value of scalar product op...
lcdvscl 39546 The scalar product operati...
lcdlssvscl 39547 Closure of scalar product ...
lcdvsass 39548 Associative law for scalar...
lcd0 39549 The zero scalar of the clo...
lcd1 39550 The unit scalar of the clo...
lcdneg 39551 The unit scalar of the clo...
lcd0v 39552 The zero functional in the...
lcd0v2 39553 The zero functional in the...
lcd0vvalN 39554 Value of the zero function...
lcd0vcl 39555 Closure of the zero functi...
lcd0vs 39556 A scalar zero times a func...
lcdvs0N 39557 A scalar times the zero fu...
lcdvsub 39558 The value of vector subtra...
lcdvsubval 39559 The value of the value of ...
lcdlss 39560 Subspaces of a dual vector...
lcdlss2N 39561 Subspaces of a dual vector...
lcdlsp 39562 Span in the set of functio...
lcdlkreqN 39563 Colinear functionals have ...
lcdlkreq2N 39564 Colinear functionals have ...
mapdffval 39567 Projectivity from vector s...
mapdfval 39568 Projectivity from vector s...
mapdval 39569 Value of projectivity from...
mapdvalc 39570 Value of projectivity from...
mapdval2N 39571 Value of projectivity from...
mapdval3N 39572 Value of projectivity from...
mapdval4N 39573 Value of projectivity from...
mapdval5N 39574 Value of projectivity from...
mapdordlem1a 39575 Lemma for ~ mapdord . (Co...
mapdordlem1bN 39576 Lemma for ~ mapdord . (Co...
mapdordlem1 39577 Lemma for ~ mapdord . (Co...
mapdordlem2 39578 Lemma for ~ mapdord . Ord...
mapdord 39579 Ordering property of the m...
mapd11 39580 The map defined by ~ df-ma...
mapddlssN 39581 The mapping of a subspace ...
mapdsn 39582 Value of the map defined b...
mapdsn2 39583 Value of the map defined b...
mapdsn3 39584 Value of the map defined b...
mapd1dim2lem1N 39585 Value of the map defined b...
mapdrvallem2 39586 Lemma for ~ mapdrval . TO...
mapdrvallem3 39587 Lemma for ~ mapdrval . (C...
mapdrval 39588 Given a dual subspace ` R ...
mapd1o 39589 The map defined by ~ df-ma...
mapdrn 39590 Range of the map defined b...
mapdunirnN 39591 Union of the range of the ...
mapdrn2 39592 Range of the map defined b...
mapdcnvcl 39593 Closure of the converse of...
mapdcl 39594 Closure the value of the m...
mapdcnvid1N 39595 Converse of the value of t...
mapdsord 39596 Strong ordering property o...
mapdcl2 39597 The mapping of a subspace ...
mapdcnvid2 39598 Value of the converse of t...
mapdcnvordN 39599 Ordering property of the c...
mapdcnv11N 39600 The converse of the map de...
mapdcv 39601 Covering property of the c...
mapdincl 39602 Closure of dual subspace i...
mapdin 39603 Subspace intersection is p...
mapdlsmcl 39604 Closure of dual subspace s...
mapdlsm 39605 Subspace sum is preserved ...
mapd0 39606 Projectivity map of the ze...
mapdcnvatN 39607 Atoms are preserved by the...
mapdat 39608 Atoms are preserved by the...
mapdspex 39609 The map of a span equals t...
mapdn0 39610 Transfer nonzero property ...
mapdncol 39611 Transfer non-colinearity f...
mapdindp 39612 Transfer (part of) vector ...
mapdpglem1 39613 Lemma for ~ mapdpg . Baer...
mapdpglem2 39614 Lemma for ~ mapdpg . Baer...
mapdpglem2a 39615 Lemma for ~ mapdpg . (Con...
mapdpglem3 39616 Lemma for ~ mapdpg . Baer...
mapdpglem4N 39617 Lemma for ~ mapdpg . (Con...
mapdpglem5N 39618 Lemma for ~ mapdpg . (Con...
mapdpglem6 39619 Lemma for ~ mapdpg . Baer...
mapdpglem8 39620 Lemma for ~ mapdpg . Baer...
mapdpglem9 39621 Lemma for ~ mapdpg . Baer...
mapdpglem10 39622 Lemma for ~ mapdpg . Baer...
mapdpglem11 39623 Lemma for ~ mapdpg . (Con...
mapdpglem12 39624 Lemma for ~ mapdpg . TODO...
mapdpglem13 39625 Lemma for ~ mapdpg . (Con...
mapdpglem14 39626 Lemma for ~ mapdpg . (Con...
mapdpglem15 39627 Lemma for ~ mapdpg . (Con...
mapdpglem16 39628 Lemma for ~ mapdpg . Baer...
mapdpglem17N 39629 Lemma for ~ mapdpg . Baer...
mapdpglem18 39630 Lemma for ~ mapdpg . Baer...
mapdpglem19 39631 Lemma for ~ mapdpg . Baer...
mapdpglem20 39632 Lemma for ~ mapdpg . Baer...
mapdpglem21 39633 Lemma for ~ mapdpg . (Con...
mapdpglem22 39634 Lemma for ~ mapdpg . Baer...
mapdpglem23 39635 Lemma for ~ mapdpg . Baer...
mapdpglem30a 39636 Lemma for ~ mapdpg . (Con...
mapdpglem30b 39637 Lemma for ~ mapdpg . (Con...
mapdpglem25 39638 Lemma for ~ mapdpg . Baer...
mapdpglem26 39639 Lemma for ~ mapdpg . Baer...
mapdpglem27 39640 Lemma for ~ mapdpg . Baer...
mapdpglem29 39641 Lemma for ~ mapdpg . Baer...
mapdpglem28 39642 Lemma for ~ mapdpg . Baer...
mapdpglem30 39643 Lemma for ~ mapdpg . Baer...
mapdpglem31 39644 Lemma for ~ mapdpg . Baer...
mapdpglem24 39645 Lemma for ~ mapdpg . Exis...
mapdpglem32 39646 Lemma for ~ mapdpg . Uniq...
mapdpg 39647 Part 1 of proof of the fir...
baerlem3lem1 39648 Lemma for ~ baerlem3 . (C...
baerlem5alem1 39649 Lemma for ~ baerlem5a . (...
baerlem5blem1 39650 Lemma for ~ baerlem5b . (...
baerlem3lem2 39651 Lemma for ~ baerlem3 . (C...
baerlem5alem2 39652 Lemma for ~ baerlem5a . (...
baerlem5blem2 39653 Lemma for ~ baerlem5b . (...
baerlem3 39654 An equality that holds whe...
baerlem5a 39655 An equality that holds whe...
baerlem5b 39656 An equality that holds whe...
baerlem5amN 39657 An equality that holds whe...
baerlem5bmN 39658 An equality that holds whe...
baerlem5abmN 39659 An equality that holds whe...
mapdindp0 39660 Vector independence lemma....
mapdindp1 39661 Vector independence lemma....
mapdindp2 39662 Vector independence lemma....
mapdindp3 39663 Vector independence lemma....
mapdindp4 39664 Vector independence lemma....
mapdhval 39665 Lemmma for ~~? mapdh . (C...
mapdhval0 39666 Lemmma for ~~? mapdh . (C...
mapdhval2 39667 Lemmma for ~~? mapdh . (C...
mapdhcl 39668 Lemmma for ~~? mapdh . (C...
mapdheq 39669 Lemmma for ~~? mapdh . Th...
mapdheq2 39670 Lemmma for ~~? mapdh . On...
mapdheq2biN 39671 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 39672 Lemma for ~ mapdheq4 . Pa...
mapdheq4 39673 Lemma for ~~? mapdh . Par...
mapdh6lem1N 39674 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 39675 Lemma for ~ mapdh6N . Par...
mapdh6aN 39676 Lemma for ~ mapdh6N . Par...
mapdh6b0N 39677 Lemmma for ~ mapdh6N . (C...
mapdh6bN 39678 Lemmma for ~ mapdh6N . (C...
mapdh6cN 39679 Lemmma for ~ mapdh6N . (C...
mapdh6dN 39680 Lemmma for ~ mapdh6N . (C...
mapdh6eN 39681 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 39682 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 39683 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 39684 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 39685 Lemmma for ~ mapdh6N . El...
mapdh6jN 39686 Lemmma for ~ mapdh6N . El...
mapdh6kN 39687 Lemmma for ~ mapdh6N . El...
mapdh6N 39688 Part (6) of [Baer] p. 47 l...
mapdh7eN 39689 Part (7) of [Baer] p. 48 l...
mapdh7cN 39690 Part (7) of [Baer] p. 48 l...
mapdh7dN 39691 Part (7) of [Baer] p. 48 l...
mapdh7fN 39692 Part (7) of [Baer] p. 48 l...
mapdh75e 39693 Part (7) of [Baer] p. 48 l...
mapdh75cN 39694 Part (7) of [Baer] p. 48 l...
mapdh75d 39695 Part (7) of [Baer] p. 48 l...
mapdh75fN 39696 Part (7) of [Baer] p. 48 l...
hvmapffval 39699 Map from nonzero vectors t...
hvmapfval 39700 Map from nonzero vectors t...
hvmapval 39701 Value of map from nonzero ...
hvmapvalvalN 39702 Value of value of map (i.e...
hvmapidN 39703 The value of the vector to...
hvmap1o 39704 The vector to functional m...
hvmapclN 39705 Closure of the vector to f...
hvmap1o2 39706 The vector to functional m...
hvmapcl2 39707 Closure of the vector to f...
hvmaplfl 39708 The vector to functional m...
hvmaplkr 39709 Kernel of the vector to fu...
mapdhvmap 39710 Relationship between ` map...
lspindp5 39711 Obtain an independent vect...
hdmaplem1 39712 Lemma to convert a frequen...
hdmaplem2N 39713 Lemma to convert a frequen...
hdmaplem3 39714 Lemma to convert a frequen...
hdmaplem4 39715 Lemma to convert a frequen...
mapdh8a 39716 Part of Part (8) in [Baer]...
mapdh8aa 39717 Part of Part (8) in [Baer]...
mapdh8ab 39718 Part of Part (8) in [Baer]...
mapdh8ac 39719 Part of Part (8) in [Baer]...
mapdh8ad 39720 Part of Part (8) in [Baer]...
mapdh8b 39721 Part of Part (8) in [Baer]...
mapdh8c 39722 Part of Part (8) in [Baer]...
mapdh8d0N 39723 Part of Part (8) in [Baer]...
mapdh8d 39724 Part of Part (8) in [Baer]...
mapdh8e 39725 Part of Part (8) in [Baer]...
mapdh8g 39726 Part of Part (8) in [Baer]...
mapdh8i 39727 Part of Part (8) in [Baer]...
mapdh8j 39728 Part of Part (8) in [Baer]...
mapdh8 39729 Part (8) in [Baer] p. 48. ...
mapdh9a 39730 Lemma for part (9) in [Bae...
mapdh9aOLDN 39731 Lemma for part (9) in [Bae...
hdmap1ffval 39736 Preliminary map from vecto...
hdmap1fval 39737 Preliminary map from vecto...
hdmap1vallem 39738 Value of preliminary map f...
hdmap1val 39739 Value of preliminary map f...
hdmap1val0 39740 Value of preliminary map f...
hdmap1val2 39741 Value of preliminary map f...
hdmap1eq 39742 The defining equation for ...
hdmap1cbv 39743 Frequently used lemma to c...
hdmap1valc 39744 Connect the value of the p...
hdmap1cl 39745 Convert closure theorem ~ ...
hdmap1eq2 39746 Convert ~ mapdheq2 to use ...
hdmap1eq4N 39747 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 39748 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 39749 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 39750 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 39751 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 39752 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 39753 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 39754 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 39755 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 39756 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 39757 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 39758 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 39759 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 39760 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 39761 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 39762 Part (6) of [Baer] p. 47 l...
hdmap1eulem 39763 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 39764 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 39765 Convert ~ mapdh9a to use t...
hdmap1euOLDN 39766 Convert ~ mapdh9aOLDN to u...
hdmapffval 39767 Map from vectors to functi...
hdmapfval 39768 Map from vectors to functi...
hdmapval 39769 Value of map from vectors ...
hdmapfnN 39770 Functionality of map from ...
hdmapcl 39771 Closure of map from vector...
hdmapval2lem 39772 Lemma for ~ hdmapval2 . (...
hdmapval2 39773 Value of map from vectors ...
hdmapval0 39774 Value of map from vectors ...
hdmapeveclem 39775 Lemma for ~ hdmapevec . T...
hdmapevec 39776 Value of map from vectors ...
hdmapevec2 39777 The inner product of the r...
hdmapval3lemN 39778 Value of map from vectors ...
hdmapval3N 39779 Value of map from vectors ...
hdmap10lem 39780 Lemma for ~ hdmap10 . (Co...
hdmap10 39781 Part 10 in [Baer] p. 48 li...
hdmap11lem1 39782 Lemma for ~ hdmapadd . (C...
hdmap11lem2 39783 Lemma for ~ hdmapadd . (C...
hdmapadd 39784 Part 11 in [Baer] p. 48 li...
hdmapeq0 39785 Part of proof of part 12 i...
hdmapnzcl 39786 Nonzero vector closure of ...
hdmapneg 39787 Part of proof of part 12 i...
hdmapsub 39788 Part of proof of part 12 i...
hdmap11 39789 Part of proof of part 12 i...
hdmaprnlem1N 39790 Part of proof of part 12 i...
hdmaprnlem3N 39791 Part of proof of part 12 i...
hdmaprnlem3uN 39792 Part of proof of part 12 i...
hdmaprnlem4tN 39793 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 39794 Part of proof of part 12 i...
hdmaprnlem6N 39795 Part of proof of part 12 i...
hdmaprnlem7N 39796 Part of proof of part 12 i...
hdmaprnlem8N 39797 Part of proof of part 12 i...
hdmaprnlem9N 39798 Part of proof of part 12 i...
hdmaprnlem3eN 39799 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 39800 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 39801 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 39802 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 39803 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 39804 Lemma for ~ hdmaprnN . In...
hdmaprnN 39805 Part of proof of part 12 i...
hdmapf1oN 39806 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 39807 Prior to part 14 in [Baer]...
hdmap14lem2a 39808 Prior to part 14 in [Baer]...
hdmap14lem1 39809 Prior to part 14 in [Baer]...
hdmap14lem2N 39810 Prior to part 14 in [Baer]...
hdmap14lem3 39811 Prior to part 14 in [Baer]...
hdmap14lem4a 39812 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 39813 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 39814 Case where ` F ` is zero. ...
hdmap14lem7 39815 Combine cases of ` F ` . ...
hdmap14lem8 39816 Part of proof of part 14 i...
hdmap14lem9 39817 Part of proof of part 14 i...
hdmap14lem10 39818 Part of proof of part 14 i...
hdmap14lem11 39819 Part of proof of part 14 i...
hdmap14lem12 39820 Lemma for proof of part 14...
hdmap14lem13 39821 Lemma for proof of part 14...
hdmap14lem14 39822 Part of proof of part 14 i...
hdmap14lem15 39823 Part of proof of part 14 i...
hgmapffval 39826 Map from the scalar divisi...
hgmapfval 39827 Map from the scalar divisi...
hgmapval 39828 Value of map from the scal...
hgmapfnN 39829 Functionality of scalar si...
hgmapcl 39830 Closure of scalar sigma ma...
hgmapdcl 39831 Closure of the vector spac...
hgmapvs 39832 Part 15 of [Baer] p. 50 li...
hgmapval0 39833 Value of the scalar sigma ...
hgmapval1 39834 Value of the scalar sigma ...
hgmapadd 39835 Part 15 of [Baer] p. 50 li...
hgmapmul 39836 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 39837 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 39838 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 39839 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 39840 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 39841 Lemma for ~ hgmaprnN . El...
hgmaprnN 39842 Part of proof of part 16 i...
hgmap11 39843 The scalar sigma map is on...
hgmapf1oN 39844 The scalar sigma map is a ...
hgmapeq0 39845 The scalar sigma map is ze...
hdmapipcl 39846 The inner product (Hermiti...
hdmapln1 39847 Linearity property that wi...
hdmaplna1 39848 Additive property of first...
hdmaplns1 39849 Subtraction property of fi...
hdmaplnm1 39850 Multiplicative property of...
hdmaplna2 39851 Additive property of secon...
hdmapglnm2 39852 g-linear property of secon...
hdmapgln2 39853 g-linear property that wil...
hdmaplkr 39854 Kernel of the vector to du...
hdmapellkr 39855 Membership in the kernel (...
hdmapip0 39856 Zero property that will be...
hdmapip1 39857 Construct a proportional v...
hdmapip0com 39858 Commutation property of Ba...
hdmapinvlem1 39859 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 39860 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 39861 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 39862 Part 1.1 of Proposition 1 ...
hdmapglem5 39863 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 39864 Involution property of sca...
hgmapvvlem2 39865 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 39866 Lemma for ~ hgmapvv . Eli...
hgmapvv 39867 Value of a double involuti...
hdmapglem7a 39868 Lemma for ~ hdmapg . (Con...
hdmapglem7b 39869 Lemma for ~ hdmapg . (Con...
hdmapglem7 39870 Lemma for ~ hdmapg . Line...
hdmapg 39871 Apply the scalar sigma fun...
hdmapoc 39872 Express our constructed or...
hlhilset 39875 The final Hilbert space co...
hlhilsca 39876 The scalar of the final co...
hlhilbase 39877 The base set of the final ...
hlhilplus 39878 The vector addition for th...
hlhilslem 39879 Lemma for ~ hlhilsbase etc...
hlhilslemOLD 39880 Obsolete version of ~ hlhi...
hlhilsbase 39881 The scalar base set of the...
hlhilsbaseOLD 39882 Obsolete version of ~ hlhi...
hlhilsplus 39883 Scalar addition for the fi...
hlhilsplusOLD 39884 Obsolete version of ~ hlhi...
hlhilsmul 39885 Scalar multiplication for ...
hlhilsmulOLD 39886 Obsolete version of ~ hlhi...
hlhilsbase2 39887 The scalar base set of the...
hlhilsplus2 39888 Scalar addition for the fi...
hlhilsmul2 39889 Scalar multiplication for ...
hlhils0 39890 The scalar ring zero for t...
hlhils1N 39891 The scalar ring unity for ...
hlhilvsca 39892 The scalar product for the...
hlhilip 39893 Inner product operation fo...
hlhilipval 39894 Value of inner product ope...
hlhilnvl 39895 The involution operation o...
hlhillvec 39896 The final constructed Hilb...
hlhildrng 39897 The star division ring for...
hlhilsrnglem 39898 Lemma for ~ hlhilsrng . (...
hlhilsrng 39899 The star division ring for...
hlhil0 39900 The zero vector for the fi...
hlhillsm 39901 The vector sum operation f...
hlhilocv 39902 The orthocomplement for th...
hlhillcs 39903 The closed subspaces of th...
hlhilphllem 39904 Lemma for ~ hlhil . (Cont...
hlhilhillem 39905 Lemma for ~ hlhil . (Cont...
hlathil 39906 Construction of a Hilbert ...
leexp1ad 39907 Weak base ordering relatio...
relogbcld 39908 Closure of the general log...
relogbexpd 39909 Identity law for general l...
relogbzexpd 39910 Power law for the general ...
logblebd 39911 The general logarithm is m...
fzindd 39912 Induction on the integers ...
uzindd 39913 Induction on the upper int...
fzadd2d 39914 Membership of a sum in a f...
zltlem1d 39915 Integer ordering relation,...
zltp1led 39916 Integer ordering relation,...
fzne2d 39917 Elementhood in a finite se...
eqfnfv2d2 39918 Equality of functions is d...
fzsplitnd 39919 Split a finite interval of...
fzsplitnr 39920 Split a finite interval of...
addassnni 39921 Associative law for additi...
addcomnni 39922 Commutative law for additi...
mulassnni 39923 Associative law for multip...
mulcomnni 39924 Commutative law for multip...
gcdcomnni 39925 Commutative law for gcd. ...
gcdnegnni 39926 Negation invariance for gc...
neggcdnni 39927 Negation invariance for gc...
bccl2d 39928 Closure of the binomial co...
recbothd 39929 Take reciprocal on both si...
gcdmultiplei 39930 The GCD of a multiple of a...
gcdaddmzz2nni 39931 Adding a multiple of one o...
gcdaddmzz2nncomi 39932 Adding a multiple of one o...
gcdnncli 39933 Closure of the gcd operato...
muldvds1d 39934 If a product divides an in...
muldvds2d 39935 If a product divides an in...
nndivdvdsd 39936 A positive integer divides...
nnproddivdvdsd 39937 A product of natural numbe...
coprmdvds2d 39938 If an integer is divisible...
12gcd5e1 39939 The gcd of 12 and 5 is 1. ...
60gcd6e6 39940 The gcd of 60 and 6 is 6. ...
60gcd7e1 39941 The gcd of 60 and 7 is 1. ...
420gcd8e4 39942 The gcd of 420 and 8 is 4....
lcmeprodgcdi 39943 Calculate the least common...
12lcm5e60 39944 The lcm of 12 and 5 is 60....
60lcm6e60 39945 The lcm of 60 and 6 is 60....
60lcm7e420 39946 The lcm of 60 and 7 is 420...
420lcm8e840 39947 The lcm of 420 and 8 is 84...
lcmfunnnd 39948 Useful equation to calcula...
lcm1un 39949 Least common multiple of n...
lcm2un 39950 Least common multiple of n...
lcm3un 39951 Least common multiple of n...
lcm4un 39952 Least common multiple of n...
lcm5un 39953 Least common multiple of n...
lcm6un 39954 Least common multiple of n...
lcm7un 39955 Least common multiple of n...
lcm8un 39956 Least common multiple of n...
3factsumint1 39957 Move constants out of inte...
3factsumint2 39958 Move constants out of inte...
3factsumint3 39959 Move constants out of inte...
3factsumint4 39960 Move constants out of inte...
3factsumint 39961 Helpful equation for lcm i...
resopunitintvd 39962 Restrict continuous functi...
resclunitintvd 39963 Restrict continuous functi...
resdvopclptsd 39964 Restrict derivative on uni...
lcmineqlem1 39965 Part of lcm inequality lem...
lcmineqlem2 39966 Part of lcm inequality lem...
lcmineqlem3 39967 Part of lcm inequality lem...
lcmineqlem4 39968 Part of lcm inequality lem...
lcmineqlem5 39969 Technical lemma for recipr...
lcmineqlem6 39970 Part of lcm inequality lem...
lcmineqlem7 39971 Derivative of 1-x for chai...
lcmineqlem8 39972 Derivative of (1-x)^(N-M)....
lcmineqlem9 39973 (1-x)^(N-M) is continuous....
lcmineqlem10 39974 Induction step of ~ lcmine...
lcmineqlem11 39975 Induction step, continuati...
lcmineqlem12 39976 Base case for induction. ...
lcmineqlem13 39977 Induction proof for lcm in...
lcmineqlem14 39978 Technical lemma for inequa...
lcmineqlem15 39979 F times the least common m...
lcmineqlem16 39980 Technical divisibility lem...
lcmineqlem17 39981 Inequality of 2^{2n}. (Co...
lcmineqlem18 39982 Technical lemma to shift f...
lcmineqlem19 39983 Dividing implies inequalit...
lcmineqlem20 39984 Inequality for lcm lemma. ...
lcmineqlem21 39985 The lcm inequality lemma w...
lcmineqlem22 39986 The lcm inequality lemma w...
lcmineqlem23 39987 Penultimate step to the lc...
lcmineqlem 39988 The least common multiple ...
3exp7 39989 3 to the power of 7 equals...
3lexlogpow5ineq1 39990 First inequality in inequa...
3lexlogpow5ineq2 39991 Second inequality in inequ...
3lexlogpow5ineq4 39992 Sharper logarithm inequali...
3lexlogpow5ineq3 39993 Combined inequality chain ...
3lexlogpow2ineq1 39994 Result for bound in AKS in...
3lexlogpow2ineq2 39995 Result for bound in AKS in...
3lexlogpow5ineq5 39996 Result for bound in AKS in...
intlewftc 39997 Inequality inference by in...
aks4d1lem1 39998 Technical lemma to reduce ...
aks4d1p1p1 39999 Exponential law for finite...
dvrelog2 40000 The derivative of the loga...
dvrelog3 40001 The derivative of the loga...
dvrelog2b 40002 Derivative of the binary l...
0nonelalab 40003 Technical lemma for open i...
dvrelogpow2b 40004 Derivative of the power of...
aks4d1p1p3 40005 Bound of a ceiling of the ...
aks4d1p1p2 40006 Rewrite ` A ` in more suit...
aks4d1p1p4 40007 Technical step for inequal...
dvle2 40008 Collapsed ~ dvle . (Contr...
aks4d1p1p6 40009 Inequality lift to differe...
aks4d1p1p7 40010 Bound of intermediary of i...
aks4d1p1p5 40011 Show inequality for existe...
aks4d1p1 40012 Show inequality for existe...
aks4d1p2 40013 Technical lemma for existe...
aks4d1p3 40014 There exists a small enoug...
aks4d1p4 40015 There exists a small enoug...
aks4d1p5 40016 Show that ` N ` and ` R ` ...
aks4d1p6 40017 The maximal prime power ex...
aks4d1p7d1 40018 Technical step in AKS lemm...
aks4d1p7 40019 Technical step in AKS lemm...
aks4d1p8d1 40020 If a prime divides one num...
aks4d1p8d2 40021 Any prime power dividing a...
aks4d1p8d3 40022 The remainder of a divisio...
aks4d1p8 40023 Show that ` N ` and ` R ` ...
aks4d1p9 40024 Show that the order is bou...
aks4d1 40025 Lemma 4.1 from ~ https://w...
5bc2eq10 40026 The value of 5 choose 2. ...
facp2 40027 The factorial of a success...
2np3bcnp1 40028 Part of induction step for...
2ap1caineq 40029 Inequality for Theorem 6.6...
sticksstones1 40030 Different strictly monoton...
sticksstones2 40031 The range function on stri...
sticksstones3 40032 The range function on stri...
sticksstones4 40033 Equinumerosity lemma for s...
sticksstones5 40034 Count the number of strict...
sticksstones6 40035 Function induces an order ...
sticksstones7 40036 Closure property of sticks...
sticksstones8 40037 Establish mapping between ...
sticksstones9 40038 Establish mapping between ...
sticksstones10 40039 Establish mapping between ...
sticksstones11 40040 Establish bijective mappin...
sticksstones12a 40041 Establish bijective mappin...
sticksstones12 40042 Establish bijective mappin...
sticksstones13 40043 Establish bijective mappin...
sticksstones14 40044 Sticks and stones with def...
sticksstones15 40045 Sticks and stones with alm...
sticksstones16 40046 Sticks and stones with col...
sticksstones17 40047 Extend sticks and stones t...
sticksstones18 40048 Extend sticks and stones t...
sticksstones19 40049 Extend sticks and stones t...
sticksstones20 40050 Lift sticks and stones to ...
sticksstones21 40051 Lift sticks and stones to ...
sticksstones22 40052 Non-exhaustive sticks and ...
metakunt1 40053 A is an endomapping. (Con...
metakunt2 40054 A is an endomapping. (Con...
metakunt3 40055 Value of A. (Contributed b...
metakunt4 40056 Value of A. (Contributed b...
metakunt5 40057 C is the left inverse for ...
metakunt6 40058 C is the left inverse for ...
metakunt7 40059 C is the left inverse for ...
metakunt8 40060 C is the left inverse for ...
metakunt9 40061 C is the left inverse for ...
metakunt10 40062 C is the right inverse for...
metakunt11 40063 C is the right inverse for...
metakunt12 40064 C is the right inverse for...
metakunt13 40065 C is the right inverse for...
metakunt14 40066 A is a primitive permutati...
metakunt15 40067 Construction of another pe...
metakunt16 40068 Construction of another pe...
metakunt17 40069 The union of three disjoin...
metakunt18 40070 Disjoint domains and codom...
metakunt19 40071 Domains on restrictions of...
metakunt20 40072 Show that B coincides on t...
metakunt21 40073 Show that B coincides on t...
metakunt22 40074 Show that B coincides on t...
metakunt23 40075 B coincides on the union o...
metakunt24 40076 Technical condition such t...
metakunt25 40077 B is a permutation. (Cont...
metakunt26 40078 Construction of one soluti...
metakunt27 40079 Construction of one soluti...
metakunt28 40080 Construction of one soluti...
metakunt29 40081 Construction of one soluti...
metakunt30 40082 Construction of one soluti...
metakunt31 40083 Construction of one soluti...
metakunt32 40084 Construction of one soluti...
metakunt33 40085 Construction of one soluti...
metakunt34 40086 ` D ` is a permutation. (...
andiff 40087 Adding biconditional when ...
fac2xp3 40088 Factorial of 2x+3, sublemm...
prodsplit 40089 Product split into two fac...
2xp3dxp2ge1d 40090 2x+3 is greater than or eq...
factwoffsmonot 40091 A factorial with offset is...
bicomdALT 40092 Alternate proof of ~ bicom...
elabgw 40093 Membership in a class abst...
elab2gw 40094 Membership in a class abst...
elrab2w 40095 Membership in a restricted...
ruvALT 40096 Alternate proof of ~ ruv w...
sn-wcdeq 40097 Alternative to ~ wcdeq and...
acos1half 40098 The arccosine of ` 1 / 2 `...
isdomn5 40099 The right conjunct in the ...
isdomn4 40100 A ring is a domain iff it ...
ioin9i8 40101 Miscellaneous inference cr...
jaodd 40102 Double deduction form of ~...
syl3an12 40103 A double syllogism inferen...
sbtd 40104 A true statement is true u...
sbor2 40105 One direction of ~ sbor , ...
19.9dev 40106 ~ 19.9d in the case of an ...
rspcedvdw 40107 Version of ~ rspcedvd wher...
2rspcedvdw 40108 Double application of ~ rs...
3rspcedvdw 40109 Triple application of ~ rs...
3rspcedvd 40110 Triple application of ~ rs...
eqimssd 40111 Equality implies inclusion...
rabdif 40112 Move difference in and out...
sn-axrep5v 40113 A condensed form of ~ axre...
sn-axprlem3 40114 ~ axprlem3 using only Tars...
sn-el 40115 A version of ~ el with an ...
sn-dtru 40116 ~ dtru without ~ ax-8 or ~...
sn-iotalem 40117 An unused lemma showing th...
sn-iotalemcor 40118 Corollary of ~ sn-iotalem ...
sn-iotaval 40119 Version of ~ iotaval using...
sn-iotauni 40120 Version of ~ iotauni using...
sn-iotanul 40121 Version of ~ iotanul using...
sn-iotassuni 40122 ~ iotassuni without ~ ax-1...
sn-iotaex 40123 ~ iotaex without ~ ax-10 ,...
brif1 40124 Move a relation inside and...
brif2 40125 Move a relation inside and...
brif12 40126 Move a relation inside and...
pssexg 40127 The proper subset of a set...
pssn0 40128 A proper superset is nonem...
psspwb 40129 Classes are proper subclas...
xppss12 40130 Proper subset theorem for ...
elpwbi 40131 Membership in a power set,...
opelxpii 40132 Ordered pair membership in...
imaopab 40133 The image of a class of or...
fnsnbt 40134 A function's domain is a s...
fnimasnd 40135 The image of a function by...
fvmptd4 40136 Deduction version of ~ fvm...
ofun 40137 A function operation of un...
dfqs2 40138 Alternate definition of qu...
dfqs3 40139 Alternate definition of qu...
qseq12d 40140 Equality theorem for quoti...
qsalrel 40141 The quotient set is equal ...
elmapdd 40142 Deduction associated with ...
isfsuppd 40143 Deduction form of ~ isfsup...
fzosumm1 40144 Separate out the last term...
ccatcan2d 40145 Cancellation law for conca...
nelsubginvcld 40146 The inverse of a non-subgr...
nelsubgcld 40147 A non-subgroup-member plus...
nelsubgsubcld 40148 A non-subgroup-member minu...
rnasclg 40149 The set of injected scalar...
selvval2lem1 40150 ` T ` is an associative al...
selvval2lem2 40151 ` D ` is a ring homomorphi...
selvval2lem3 40152 The third argument passed ...
selvval2lemn 40153 A lemma to illustrate the ...
selvval2lem4 40154 The fourth argument passed...
selvval2lem5 40155 The fifth argument passed ...
selvcl 40156 Closure of the "variable s...
frlmfielbas 40157 The vectors of a finite fr...
frlmfzwrd 40158 A vector of a module with ...
frlmfzowrd 40159 A vector of a module with ...
frlmfzolen 40160 The dimension of a vector ...
frlmfzowrdb 40161 The vectors of a module wi...
frlmfzoccat 40162 The concatenation of two v...
frlmvscadiccat 40163 Scalar multiplication dist...
ismhmd 40164 Deduction version of ~ ism...
ablcmnd 40165 An Abelian group is a comm...
ringcld 40166 Closure of the multiplicat...
ringassd 40167 Associative law for multip...
ringlidmd 40168 The unit element of a ring...
ringridmd 40169 The unit element of a ring...
ringabld 40170 A ring is an Abelian group...
ringcmnd 40171 A ring is a commutative mo...
drngringd 40172 A division ring is a ring....
drnggrpd 40173 A division ring is a group...
drnginvrcld 40174 Closure of the multiplicat...
drnginvrn0d 40175 A multiplicative inverse i...
drnginvrld 40176 Property of the multiplica...
drnginvrrd 40177 Property of the multiplica...
drngmulcanad 40178 Cancellation of a nonzero ...
drngmulcan2ad 40179 Cancellation of a nonzero ...
drnginvmuld 40180 Inverse of a nonzero produ...
lmodgrpd 40181 A left module is a group. ...
lvecgrp 40182 A vector space is a group....
lveclmodd 40183 A vector space is a left m...
lvecgrpd 40184 A vector space is a group....
lvecring 40185 The scalar component of a ...
lmhmlvec 40186 The property for modules t...
frlm0vald 40187 All coordinates of the zer...
frlmsnic 40188 Given a free module with a...
uvccl 40189 A unit vector is a vector....
uvcn0 40190 A unit vector is nonzero. ...
pwselbasr 40191 The reverse direction of ~...
pwspjmhmmgpd 40192 The projection given by ~ ...
pwsexpg 40193 Value of a group exponenti...
pwsgprod 40194 Finite products in a power...
evlsval3 40195 Give a formula for the pol...
evlsscaval 40196 Polynomial evaluation buil...
evlsvarval 40197 Polynomial evaluation buil...
evlsbagval 40198 Polynomial evaluation buil...
evlsexpval 40199 Polynomial evaluation buil...
evlsaddval 40200 Polynomial evaluation buil...
evlsmulval 40201 Polynomial evaluation buil...
fsuppind 40202 Induction on functions ` F...
fsuppssindlem1 40203 Lemma for ~ fsuppssind . ...
fsuppssindlem2 40204 Lemma for ~ fsuppssind . ...
fsuppssind 40205 Induction on functions ` F...
mhpind 40206 The homogeneous polynomial...
mhphflem 40207 Lemma for ~ mhphf . Add s...
mhphf 40208 A homogeneous polynomial d...
mhphf2 40209 A homogeneous polynomial d...
c0exALT 40210 Alternate proof of ~ c0ex ...
0cnALT3 40211 Alternate proof of ~ 0cn u...
elre0re 40212 Specialized version of ~ 0...
1t1e1ALT 40213 Alternate proof of ~ 1t1e1...
remulcan2d 40214 ~ mulcan2d for real number...
readdid1addid2d 40215 Given some real number ` B...
sn-1ne2 40216 A proof of ~ 1ne2 without ...
nnn1suc 40217 A positive integer that is...
nnadd1com 40218 Addition with 1 is commuta...
nnaddcom 40219 Addition is commutative fo...
nnaddcomli 40220 Version of ~ addcomli for ...
nnadddir 40221 Right-distributivity for n...
nnmul1com 40222 Multiplication with 1 is c...
nnmulcom 40223 Multiplication is commutat...
mvrrsubd 40224 Move a subtraction in the ...
laddrotrd 40225 Rotate the variables right...
raddcom12d 40226 Swap the first two variabl...
lsubrotld 40227 Rotate the variables left ...
lsubcom23d 40228 Swap the second and third ...
addsubeq4com 40229 Relation between sums and ...
sqsumi 40230 A sum squared. (Contribut...
negn0nposznnd 40231 Lemma for ~ dffltz . (Con...
sqmid3api 40232 Value of the square of the...
decaddcom 40233 Commute ones place in addi...
sqn5i 40234 The square of a number end...
sqn5ii 40235 The square of a number end...
decpmulnc 40236 Partial products algorithm...
decpmul 40237 Partial products algorithm...
sqdeccom12 40238 The square of a number in ...
sq3deccom12 40239 Variant of ~ sqdeccom12 wi...
235t711 40240 Calculate a product by lon...
ex-decpmul 40241 Example usage of ~ decpmul...
oexpreposd 40242 Lemma for ~ dffltz . TODO...
ltexp1d 40243 ~ ltmul1d for exponentiati...
ltexp1dd 40244 Raising both sides of 'les...
exp11nnd 40245 ~ sq11d for positive real ...
exp11d 40246 ~ exp11nnd for nonzero int...
0dvds0 40247 0 divides 0. (Contributed...
absdvdsabsb 40248 Divisibility is invariant ...
dvdsexpim 40249 ~ dvdssqim generalized to ...
gcdnn0id 40250 The ` gcd ` of a nonnegati...
gcdle1d 40251 The greatest common diviso...
gcdle2d 40252 The greatest common diviso...
dvdsexpad 40253 Deduction associated with ...
nn0rppwr 40254 If ` A ` and ` B ` are rel...
expgcd 40255 Exponentiation distributes...
nn0expgcd 40256 Exponentiation distributes...
zexpgcd 40257 Exponentiation distributes...
numdenexp 40258 ~ numdensq extended to non...
numexp 40259 ~ numsq extended to nonneg...
denexp 40260 ~ densq extended to nonneg...
dvdsexpnn 40261 ~ dvdssqlem generalized to...
dvdsexpnn0 40262 ~ dvdsexpnn generalized to...
dvdsexpb 40263 ~ dvdssq generalized to po...
posqsqznn 40264 When a positive rational s...
cxpgt0d 40265 A positive real raised to ...
zrtelqelz 40266 ~ zsqrtelqelz generalized ...
zrtdvds 40267 A positive integer root di...
rtprmirr 40268 The root of a prime number...
resubval 40271 Value of real subtraction,...
renegeulemv 40272 Lemma for ~ renegeu and si...
renegeulem 40273 Lemma for ~ renegeu and si...
renegeu 40274 Existential uniqueness of ...
rernegcl 40275 Closure law for negative r...
renegadd 40276 Relationship between real ...
renegid 40277 Addition of a real number ...
reneg0addid2 40278 Negative zero is a left ad...
resubeulem1 40279 Lemma for ~ resubeu . A v...
resubeulem2 40280 Lemma for ~ resubeu . A v...
resubeu 40281 Existential uniqueness of ...
rersubcl 40282 Closure for real subtracti...
resubadd 40283 Relation between real subt...
resubaddd 40284 Relationship between subtr...
resubf 40285 Real subtraction is an ope...
repncan2 40286 Addition and subtraction o...
repncan3 40287 Addition and subtraction o...
readdsub 40288 Law for addition and subtr...
reladdrsub 40289 Move LHS of a sum into RHS...
reltsub1 40290 Subtraction from both side...
reltsubadd2 40291 'Less than' relationship b...
resubcan2 40292 Cancellation law for real ...
resubsub4 40293 Law for double subtraction...
rennncan2 40294 Cancellation law for real ...
renpncan3 40295 Cancellation law for real ...
repnpcan 40296 Cancellation law for addit...
reppncan 40297 Cancellation law for mixed...
resubidaddid1lem 40298 Lemma for ~ resubidaddid1 ...
resubidaddid1 40299 Any real number subtracted...
resubdi 40300 Distribution of multiplica...
re1m1e0m0 40301 Equality of two left-addit...
sn-00idlem1 40302 Lemma for ~ sn-00id . (Co...
sn-00idlem2 40303 Lemma for ~ sn-00id . (Co...
sn-00idlem3 40304 Lemma for ~ sn-00id . (Co...
sn-00id 40305 ~ 00id proven without ~ ax...
re0m0e0 40306 Real number version of ~ 0...
readdid2 40307 Real number version of ~ a...
sn-addid2 40308 ~ addid2 without ~ ax-mulc...
remul02 40309 Real number version of ~ m...
sn-0ne2 40310 ~ 0ne2 without ~ ax-mulcom...
remul01 40311 Real number version of ~ m...
resubid 40312 Subtraction of a real numb...
readdid1 40313 Real number version of ~ a...
resubid1 40314 Real number version of ~ s...
renegneg 40315 A real number is equal to ...
readdcan2 40316 Commuted version of ~ read...
renegid2 40317 Commuted version of ~ rene...
sn-it0e0 40318 Proof of ~ it0e0 without ~...
sn-negex12 40319 A combination of ~ cnegex ...
sn-negex 40320 Proof of ~ cnegex without ...
sn-negex2 40321 Proof of ~ cnegex2 without...
sn-addcand 40322 ~ addcand without ~ ax-mul...
sn-addid1 40323 ~ addid1 without ~ ax-mulc...
sn-addcan2d 40324 ~ addcan2d without ~ ax-mu...
reixi 40325 ~ ixi without ~ ax-mulcom ...
rei4 40326 ~ i4 without ~ ax-mulcom ....
sn-addid0 40327 A number that sums to itse...
sn-mul01 40328 ~ mul01 without ~ ax-mulco...
sn-subeu 40329 ~ negeu without ~ ax-mulco...
sn-subcl 40330 ~ subcl without ~ ax-mulco...
sn-subf 40331 ~ subf without ~ ax-mulcom...
resubeqsub 40332 Equivalence between real s...
subresre 40333 Subtraction restricted to ...
addinvcom 40334 A number commutes with its...
remulinvcom 40335 A left multiplicative inve...
remulid2 40336 Commuted version of ~ ax-1...
sn-1ticom 40337 Lemma for ~ sn-mulid2 and ...
sn-mulid2 40338 ~ mulid2 without ~ ax-mulc...
it1ei 40339 ` 1 ` is a multiplicative ...
ipiiie0 40340 The multiplicative inverse...
remulcand 40341 Commuted version of ~ remu...
sn-0tie0 40342 Lemma for ~ sn-mul02 . Co...
sn-mul02 40343 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 40344 ~ ltaddpos without ~ ax-mu...
reposdif 40345 Comparison of two numbers ...
relt0neg1 40346 Comparison of a real and i...
relt0neg2 40347 Comparison of a real and i...
mulgt0con1dlem 40348 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 40349 Counterpart to ~ mulgt0con...
mulgt0con2d 40350 Lemma for ~ mulgt0b2d and ...
mulgt0b2d 40351 Biconditional, deductive f...
sn-ltmul2d 40352 ~ ltmul2d without ~ ax-mul...
sn-0lt1 40353 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 40354 ~ ltp1 without ~ ax-mulcom...
reneg1lt0 40355 Lemma for ~ sn-inelr . (C...
sn-inelr 40356 ~ inelr without ~ ax-mulco...
itrere 40357 ` _i ` times a real is rea...
retire 40358 Commuted version of ~ itre...
cnreeu 40359 The reals in the expressio...
sn-sup2 40360 ~ sup2 with exactly the sa...
prjspval 40363 Value of the projective sp...
prjsprel 40364 Utility theorem regarding ...
prjspertr 40365 The relation in ` PrjSp ` ...
prjsperref 40366 The relation in ` PrjSp ` ...
prjspersym 40367 The relation in ` PrjSp ` ...
prjsper 40368 The relation used to defin...
prjspreln0 40369 Two nonzero vectors are eq...
prjspvs 40370 A nonzero multiple of a ve...
prjsprellsp 40371 Two vectors are equivalent...
prjspeclsp 40372 The vectors equivalent to ...
prjspval2 40373 Alternate definition of pr...
prjspnval 40376 Value of the n-dimensional...
prjspnerlem 40377 A lemma showing that the e...
prjspnval2 40378 Value of the n-dimensional...
prjspner 40379 The relation used to defin...
prjspnvs 40380 A nonzero multiple of a ve...
0prjspnlem 40381 Lemma for ~ 0prjspn . The...
prjspnfv01 40382 Any vector is equivalent t...
prjspner01 40383 Any vector is equivalent t...
prjspner1 40384 Two vectors whose zeroth c...
0prjspnrel 40385 In the zero-dimensional pr...
0prjspn 40386 A zero-dimensional project...
dffltz 40387 Fermat's Last Theorem (FLT...
fltmul 40388 A counterexample to FLT st...
fltdiv 40389 A counterexample to FLT st...
flt0 40390 A counterexample for FLT d...
fltdvdsabdvdsc 40391 Any factor of both ` A ` a...
fltabcoprmex 40392 A counterexample to FLT im...
fltaccoprm 40393 A counterexample to FLT wi...
fltbccoprm 40394 A counterexample to FLT wi...
fltabcoprm 40395 A counterexample to FLT wi...
infdesc 40396 Infinite descent. The hyp...
fltne 40397 If a counterexample to FLT...
flt4lem 40398 Raising a number to the fo...
flt4lem1 40399 Satisfy the antecedent use...
flt4lem2 40400 If ` A ` is even, ` B ` is...
flt4lem3 40401 Equivalent to ~ pythagtrip...
flt4lem4 40402 If the product of two copr...
flt4lem5 40403 In the context of the lemm...
flt4lem5elem 40404 Version of ~ fltaccoprm an...
flt4lem5a 40405 Part 1 of Equation 1 of ...
flt4lem5b 40406 Part 2 of Equation 1 of ...
flt4lem5c 40407 Part 2 of Equation 2 of ...
flt4lem5d 40408 Part 3 of Equation 2 of ...
flt4lem5e 40409 Satisfy the hypotheses of ...
flt4lem5f 40410 Final equation of ~...
flt4lem6 40411 Remove shared factors in a...
flt4lem7 40412 Convert ~ flt4lem5f into a...
nna4b4nsq 40413 Strengthening of Fermat's ...
fltltc 40414 ` ( C ^ N ) ` is the large...
fltnltalem 40415 Lemma for ~ fltnlta . A l...
fltnlta 40416 In a Fermat counterexample...
binom2d 40417 Deduction form of binom2. ...
cu3addd 40418 Cube of sum of three numbe...
sqnegd 40419 The square of the negative...
negexpidd 40420 The sum of a real number t...
rexlimdv3d 40421 An extended version of ~ r...
3cubeslem1 40422 Lemma for ~ 3cubes . (Con...
3cubeslem2 40423 Lemma for ~ 3cubes . Used...
3cubeslem3l 40424 Lemma for ~ 3cubes . (Con...
3cubeslem3r 40425 Lemma for ~ 3cubes . (Con...
3cubeslem3 40426 Lemma for ~ 3cubes . (Con...
3cubeslem4 40427 Lemma for ~ 3cubes . This...
3cubes 40428 Every rational number is a...
rntrclfvOAI 40429 The range of the transitiv...
moxfr 40430 Transfer at-most-one betwe...
imaiinfv 40431 Indexed intersection of an...
elrfi 40432 Elementhood in a set of re...
elrfirn 40433 Elementhood in a set of re...
elrfirn2 40434 Elementhood in a set of re...
cmpfiiin 40435 In a compact topology, a s...
ismrcd1 40436 Any function from the subs...
ismrcd2 40437 Second half of ~ ismrcd1 ....
istopclsd 40438 A closure function which s...
ismrc 40439 A function is a Moore clos...
isnacs 40442 Expand definition of Noeth...
nacsfg 40443 In a Noetherian-type closu...
isnacs2 40444 Express Noetherian-type cl...
mrefg2 40445 Slight variation on finite...
mrefg3 40446 Slight variation on finite...
nacsacs 40447 A closure system of Noethe...
isnacs3 40448 A choice-free order equiva...
incssnn0 40449 Transitivity induction of ...
nacsfix 40450 An increasing sequence of ...
constmap 40451 A constant (represented wi...
mapco2g 40452 Renaming indices in a tupl...
mapco2 40453 Post-composition (renaming...
mapfzcons 40454 Extending a one-based mapp...
mapfzcons1 40455 Recover prefix mapping fro...
mapfzcons1cl 40456 A nonempty mapping has a p...
mapfzcons2 40457 Recover added element from...
mptfcl 40458 Interpret range of a maps-...
mzpclval 40463 Substitution lemma for ` m...
elmzpcl 40464 Double substitution lemma ...
mzpclall 40465 The set of all functions w...
mzpcln0 40466 Corollary of ~ mzpclall : ...
mzpcl1 40467 Defining property 1 of a p...
mzpcl2 40468 Defining property 2 of a p...
mzpcl34 40469 Defining properties 3 and ...
mzpval 40470 Value of the ` mzPoly ` fu...
dmmzp 40471 ` mzPoly ` is defined for ...
mzpincl 40472 Polynomial closedness is a...
mzpconst 40473 Constant functions are pol...
mzpf 40474 A polynomial function is a...
mzpproj 40475 A projection function is p...
mzpadd 40476 The pointwise sum of two p...
mzpmul 40477 The pointwise product of t...
mzpconstmpt 40478 A constant function expres...
mzpaddmpt 40479 Sum of polynomial function...
mzpmulmpt 40480 Product of polynomial func...
mzpsubmpt 40481 The difference of two poly...
mzpnegmpt 40482 Negation of a polynomial f...
mzpexpmpt 40483 Raise a polynomial functio...
mzpindd 40484 "Structural" induction to ...
mzpmfp 40485 Relationship between multi...
mzpsubst 40486 Substituting polynomials f...
mzprename 40487 Simplified version of ~ mz...
mzpresrename 40488 A polynomial is a polynomi...
mzpcompact2lem 40489 Lemma for ~ mzpcompact2 . ...
mzpcompact2 40490 Polynomials are finitary o...
coeq0i 40491 ~ coeq0 but without explic...
fzsplit1nn0 40492 Split a finite 1-based set...
eldiophb 40495 Initial expression of Diop...
eldioph 40496 Condition for a set to be ...
diophrw 40497 Renaming and adding unused...
eldioph2lem1 40498 Lemma for ~ eldioph2 . Co...
eldioph2lem2 40499 Lemma for ~ eldioph2 . Co...
eldioph2 40500 Construct a Diophantine se...
eldioph2b 40501 While Diophantine sets wer...
eldiophelnn0 40502 Remove antecedent on ` B `...
eldioph3b 40503 Define Diophantine sets in...
eldioph3 40504 Inference version of ~ eld...
ellz1 40505 Membership in a lower set ...
lzunuz 40506 The union of a lower set o...
fz1eqin 40507 Express a one-based finite...
lzenom 40508 Lower integers are countab...
elmapresaunres2 40509 ~ fresaunres2 transposed t...
diophin 40510 If two sets are Diophantin...
diophun 40511 If two sets are Diophantin...
eldiophss 40512 Diophantine sets are sets ...
diophrex 40513 Projecting a Diophantine s...
eq0rabdioph 40514 This is the first of a num...
eqrabdioph 40515 Diophantine set builder fo...
0dioph 40516 The null set is Diophantin...
vdioph 40517 The "universal" set (as la...
anrabdioph 40518 Diophantine set builder fo...
orrabdioph 40519 Diophantine set builder fo...
3anrabdioph 40520 Diophantine set builder fo...
3orrabdioph 40521 Diophantine set builder fo...
2sbcrex 40522 Exchange an existential qu...
sbcrexgOLD 40523 Interchange class substitu...
2sbcrexOLD 40524 Exchange an existential qu...
sbc2rex 40525 Exchange a substitution wi...
sbc2rexgOLD 40526 Exchange a substitution wi...
sbc4rex 40527 Exchange a substitution wi...
sbc4rexgOLD 40528 Exchange a substitution wi...
sbcrot3 40529 Rotate a sequence of three...
sbcrot5 40530 Rotate a sequence of five ...
sbccomieg 40531 Commute two explicit subst...
rexrabdioph 40532 Diophantine set builder fo...
rexfrabdioph 40533 Diophantine set builder fo...
2rexfrabdioph 40534 Diophantine set builder fo...
3rexfrabdioph 40535 Diophantine set builder fo...
4rexfrabdioph 40536 Diophantine set builder fo...
6rexfrabdioph 40537 Diophantine set builder fo...
7rexfrabdioph 40538 Diophantine set builder fo...
rabdiophlem1 40539 Lemma for arithmetic dioph...
rabdiophlem2 40540 Lemma for arithmetic dioph...
elnn0rabdioph 40541 Diophantine set builder fo...
rexzrexnn0 40542 Rewrite an existential qua...
lerabdioph 40543 Diophantine set builder fo...
eluzrabdioph 40544 Diophantine set builder fo...
elnnrabdioph 40545 Diophantine set builder fo...
ltrabdioph 40546 Diophantine set builder fo...
nerabdioph 40547 Diophantine set builder fo...
dvdsrabdioph 40548 Divisibility is a Diophant...
eldioph4b 40549 Membership in ` Dioph ` ex...
eldioph4i 40550 Forward-only version of ~ ...
diophren 40551 Change variables in a Diop...
rabrenfdioph 40552 Change variable numbers in...
rabren3dioph 40553 Change variable numbers in...
fphpd 40554 Pigeonhole principle expre...
fphpdo 40555 Pigeonhole principle for s...
ctbnfien 40556 An infinite subset of a co...
fiphp3d 40557 Infinite pigeonhole princi...
rencldnfilem 40558 Lemma for ~ rencldnfi . (...
rencldnfi 40559 A set of real numbers whic...
irrapxlem1 40560 Lemma for ~ irrapx1 . Div...
irrapxlem2 40561 Lemma for ~ irrapx1 . Two...
irrapxlem3 40562 Lemma for ~ irrapx1 . By ...
irrapxlem4 40563 Lemma for ~ irrapx1 . Eli...
irrapxlem5 40564 Lemma for ~ irrapx1 . Swi...
irrapxlem6 40565 Lemma for ~ irrapx1 . Exp...
irrapx1 40566 Dirichlet's approximation ...
pellexlem1 40567 Lemma for ~ pellex . Arit...
pellexlem2 40568 Lemma for ~ pellex . Arit...
pellexlem3 40569 Lemma for ~ pellex . To e...
pellexlem4 40570 Lemma for ~ pellex . Invo...
pellexlem5 40571 Lemma for ~ pellex . Invo...
pellexlem6 40572 Lemma for ~ pellex . Doin...
pellex 40573 Every Pell equation has a ...
pell1qrval 40584 Value of the set of first-...
elpell1qr 40585 Membership in a first-quad...
pell14qrval 40586 Value of the set of positi...
elpell14qr 40587 Membership in the set of p...
pell1234qrval 40588 Value of the set of genera...
elpell1234qr 40589 Membership in the set of g...
pell1234qrre 40590 General Pell solutions are...
pell1234qrne0 40591 No solution to a Pell equa...
pell1234qrreccl 40592 General solutions of the P...
pell1234qrmulcl 40593 General solutions of the P...
pell14qrss1234 40594 A positive Pell solution i...
pell14qrre 40595 A positive Pell solution i...
pell14qrne0 40596 A positive Pell solution i...
pell14qrgt0 40597 A positive Pell solution i...
pell14qrrp 40598 A positive Pell solution i...
pell1234qrdich 40599 A general Pell solution is...
elpell14qr2 40600 A number is a positive Pel...
pell14qrmulcl 40601 Positive Pell solutions ar...
pell14qrreccl 40602 Positive Pell solutions ar...
pell14qrdivcl 40603 Positive Pell solutions ar...
pell14qrexpclnn0 40604 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 40605 Positive Pell solutions ar...
pell1qrss14 40606 First-quadrant Pell soluti...
pell14qrdich 40607 A positive Pell solution i...
pell1qrge1 40608 A Pell solution in the fir...
pell1qr1 40609 1 is a Pell solution and i...
elpell1qr2 40610 The first quadrant solutio...
pell1qrgaplem 40611 Lemma for ~ pell1qrgap . ...
pell1qrgap 40612 First-quadrant Pell soluti...
pell14qrgap 40613 Positive Pell solutions ar...
pell14qrgapw 40614 Positive Pell solutions ar...
pellqrexplicit 40615 Condition for a calculated...
infmrgelbi 40616 Any lower bound of a nonem...
pellqrex 40617 There is a nontrivial solu...
pellfundval 40618 Value of the fundamental s...
pellfundre 40619 The fundamental solution o...
pellfundge 40620 Lower bound on the fundame...
pellfundgt1 40621 Weak lower bound on the Pe...
pellfundlb 40622 A nontrivial first quadran...
pellfundglb 40623 If a real is larger than t...
pellfundex 40624 The fundamental solution a...
pellfund14gap 40625 There are no solutions bet...
pellfundrp 40626 The fundamental Pell solut...
pellfundne1 40627 The fundamental Pell solut...
reglogcl 40628 General logarithm is a rea...
reglogltb 40629 General logarithm preserve...
reglogleb 40630 General logarithm preserve...
reglogmul 40631 Multiplication law for gen...
reglogexp 40632 Power law for general log....
reglogbas 40633 General log of the base is...
reglog1 40634 General log of 1 is 0. (C...
reglogexpbas 40635 General log of a power of ...
pellfund14 40636 Every positive Pell soluti...
pellfund14b 40637 The positive Pell solution...
rmxfval 40642 Value of the X sequence. ...
rmyfval 40643 Value of the Y sequence. ...
rmspecsqrtnq 40644 The discriminant used to d...
rmspecnonsq 40645 The discriminant used to d...
qirropth 40646 This lemma implements the ...
rmspecfund 40647 The base of exponent used ...
rmxyelqirr 40648 The solutions used to cons...
rmxypairf1o 40649 The function used to extra...
rmxyelxp 40650 Lemma for ~ frmx and ~ frm...
frmx 40651 The X sequence is a nonneg...
frmy 40652 The Y sequence is an integ...
rmxyval 40653 Main definition of the X a...
rmspecpos 40654 The discriminant used to d...
rmxycomplete 40655 The X and Y sequences take...
rmxynorm 40656 The X and Y sequences defi...
rmbaserp 40657 The base of exponentiation...
rmxyneg 40658 Negation law for X and Y s...
rmxyadd 40659 Addition formula for X and...
rmxy1 40660 Value of the X and Y seque...
rmxy0 40661 Value of the X and Y seque...
rmxneg 40662 Negation law (even functio...
rmx0 40663 Value of X sequence at 0. ...
rmx1 40664 Value of X sequence at 1. ...
rmxadd 40665 Addition formula for X seq...
rmyneg 40666 Negation formula for Y seq...
rmy0 40667 Value of Y sequence at 0. ...
rmy1 40668 Value of Y sequence at 1. ...
rmyadd 40669 Addition formula for Y seq...
rmxp1 40670 Special addition-of-1 form...
rmyp1 40671 Special addition of 1 form...
rmxm1 40672 Subtraction of 1 formula f...
rmym1 40673 Subtraction of 1 formula f...
rmxluc 40674 The X sequence is a Lucas ...
rmyluc 40675 The Y sequence is a Lucas ...
rmyluc2 40676 Lucas sequence property of...
rmxdbl 40677 "Double-angle formula" for...
rmydbl 40678 "Double-angle formula" for...
monotuz 40679 A function defined on an u...
monotoddzzfi 40680 A function which is odd an...
monotoddzz 40681 A function (given implicit...
oddcomabszz 40682 An odd function which take...
2nn0ind 40683 Induction on nonnegative i...
zindbi 40684 Inductively transfer a pro...
rmxypos 40685 For all nonnegative indice...
ltrmynn0 40686 The Y-sequence is strictly...
ltrmxnn0 40687 The X-sequence is strictly...
lermxnn0 40688 The X-sequence is monotoni...
rmxnn 40689 The X-sequence is defined ...
ltrmy 40690 The Y-sequence is strictly...
rmyeq0 40691 Y is zero only at zero. (...
rmyeq 40692 Y is one-to-one. (Contrib...
lermy 40693 Y is monotonic (non-strict...
rmynn 40694 ` rmY ` is positive for po...
rmynn0 40695 ` rmY ` is nonnegative for...
rmyabs 40696 ` rmY ` commutes with ` ab...
jm2.24nn 40697 X(n) is strictly greater t...
jm2.17a 40698 First half of lemma 2.17 o...
jm2.17b 40699 Weak form of the second ha...
jm2.17c 40700 Second half of lemma 2.17 ...
jm2.24 40701 Lemma 2.24 of [JonesMatija...
rmygeid 40702 Y(n) increases faster than...
congtr 40703 A wff of the form ` A || (...
congadd 40704 If two pairs of numbers ar...
congmul 40705 If two pairs of numbers ar...
congsym 40706 Congruence mod ` A ` is a ...
congneg 40707 If two integers are congru...
congsub 40708 If two pairs of numbers ar...
congid 40709 Every integer is congruent...
mzpcong 40710 Polynomials commute with c...
congrep 40711 Every integer is congruent...
congabseq 40712 If two integers are congru...
acongid 40713 A wff like that in this th...
acongsym 40714 Symmetry of alternating co...
acongneg2 40715 Negate right side of alter...
acongtr 40716 Transitivity of alternatin...
acongeq12d 40717 Substitution deduction for...
acongrep 40718 Every integer is alternati...
fzmaxdif 40719 Bound on the difference be...
fzneg 40720 Reflection of a finite ran...
acongeq 40721 Two numbers in the fundame...
dvdsacongtr 40722 Alternating congruence pas...
coprmdvdsb 40723 Multiplication by a coprim...
modabsdifz 40724 Divisibility in terms of m...
dvdsabsmod0 40725 Divisibility in terms of m...
jm2.18 40726 Theorem 2.18 of [JonesMati...
jm2.19lem1 40727 Lemma for ~ jm2.19 . X an...
jm2.19lem2 40728 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 40729 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 40730 Lemma for ~ jm2.19 . Exte...
jm2.19 40731 Lemma 2.19 of [JonesMatija...
jm2.21 40732 Lemma for ~ jm2.20nn . Ex...
jm2.22 40733 Lemma for ~ jm2.20nn . Ap...
jm2.23 40734 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 40735 Lemma 2.20 of [JonesMatija...
jm2.25lem1 40736 Lemma for ~ jm2.26 . (Con...
jm2.25 40737 Lemma for ~ jm2.26 . Rema...
jm2.26a 40738 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 40739 Lemma for ~ jm2.26 . Use ...
jm2.26 40740 Lemma 2.26 of [JonesMatija...
jm2.15nn0 40741 Lemma 2.15 of [JonesMatija...
jm2.16nn0 40742 Lemma 2.16 of [JonesMatija...
jm2.27a 40743 Lemma for ~ jm2.27 . Reve...
jm2.27b 40744 Lemma for ~ jm2.27 . Expa...
jm2.27c 40745 Lemma for ~ jm2.27 . Forw...
jm2.27 40746 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 40747 Lemma for ~ rmydioph . Su...
jm2.27dlem2 40748 Lemma for ~ rmydioph . Th...
jm2.27dlem3 40749 Lemma for ~ rmydioph . In...
jm2.27dlem4 40750 Lemma for ~ rmydioph . In...
jm2.27dlem5 40751 Lemma for ~ rmydioph . Us...
rmydioph 40752 ~ jm2.27 restated in terms...
rmxdiophlem 40753 X can be expressed in term...
rmxdioph 40754 X is a Diophantine functio...
jm3.1lem1 40755 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 40756 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 40757 Lemma for ~ jm3.1 . (Cont...
jm3.1 40758 Diophantine expression for...
expdiophlem1 40759 Lemma for ~ expdioph . Fu...
expdiophlem2 40760 Lemma for ~ expdioph . Ex...
expdioph 40761 The exponential function i...
setindtr 40762 Set induction for sets con...
setindtrs 40763 Set induction scheme witho...
dford3lem1 40764 Lemma for ~ dford3 . (Con...
dford3lem2 40765 Lemma for ~ dford3 . (Con...
dford3 40766 Ordinals are precisely the...
dford4 40767 ~ dford3 expressed in prim...
wopprc 40768 Unrelated: Wiener pairs t...
rpnnen3lem 40769 Lemma for ~ rpnnen3 . (Co...
rpnnen3 40770 Dedekind cut injection of ...
axac10 40771 Characterization of choice...
harinf 40772 The Hartogs number of an i...
wdom2d2 40773 Deduction for weak dominan...
ttac 40774 Tarski's theorem about cho...
pw2f1ocnv 40775 Define a bijection between...
pw2f1o2 40776 Define a bijection between...
pw2f1o2val 40777 Function value of the ~ pw...
pw2f1o2val2 40778 Membership in a mapped set...
soeq12d 40779 Equality deduction for tot...
freq12d 40780 Equality deduction for fou...
weeq12d 40781 Equality deduction for wel...
limsuc2 40782 Limit ordinals in the sens...
wepwsolem 40783 Transfer an ordering on ch...
wepwso 40784 A well-ordering induces a ...
dnnumch1 40785 Define an enumeration of a...
dnnumch2 40786 Define an enumeration (wea...
dnnumch3lem 40787 Value of the ordinal injec...
dnnumch3 40788 Define an injection from a...
dnwech 40789 Define a well-ordering fro...
fnwe2val 40790 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 40791 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 40792 Lemma for ~ fnwe2 . An el...
fnwe2lem3 40793 Lemma for ~ fnwe2 . Trich...
fnwe2 40794 A well-ordering can be con...
aomclem1 40795 Lemma for ~ dfac11 . This...
aomclem2 40796 Lemma for ~ dfac11 . Succ...
aomclem3 40797 Lemma for ~ dfac11 . Succ...
aomclem4 40798 Lemma for ~ dfac11 . Limi...
aomclem5 40799 Lemma for ~ dfac11 . Comb...
aomclem6 40800 Lemma for ~ dfac11 . Tran...
aomclem7 40801 Lemma for ~ dfac11 . ` ( R...
aomclem8 40802 Lemma for ~ dfac11 . Perf...
dfac11 40803 The right-hand side of thi...
kelac1 40804 Kelley's choice, basic for...
kelac2lem 40805 Lemma for ~ kelac2 and ~ d...
kelac2 40806 Kelley's choice, most comm...
dfac21 40807 Tychonoff's theorem is a c...
islmodfg 40810 Property of a finitely gen...
islssfg 40811 Property of a finitely gen...
islssfg2 40812 Property of a finitely gen...
islssfgi 40813 Finitely spanned subspaces...
fglmod 40814 Finitely generated left mo...
lsmfgcl 40815 The sum of two finitely ge...
islnm 40818 Property of being a Noethe...
islnm2 40819 Property of being a Noethe...
lnmlmod 40820 A Noetherian left module i...
lnmlssfg 40821 A submodule of Noetherian ...
lnmlsslnm 40822 All submodules of a Noethe...
lnmfg 40823 A Noetherian left module i...
kercvrlsm 40824 The domain of a linear fun...
lmhmfgima 40825 A homomorphism maps finite...
lnmepi 40826 Epimorphic images of Noeth...
lmhmfgsplit 40827 If the kernel and range of...
lmhmlnmsplit 40828 If the kernel and range of...
lnmlmic 40829 Noetherian is an invariant...
pwssplit4 40830 Splitting for structure po...
filnm 40831 Finite left modules are No...
pwslnmlem0 40832 Zeroeth powers are Noether...
pwslnmlem1 40833 First powers are Noetheria...
pwslnmlem2 40834 A sum of powers is Noether...
pwslnm 40835 Finite powers of Noetheria...
unxpwdom3 40836 Weaker version of ~ unxpwd...
pwfi2f1o 40837 The ~ pw2f1o bijection rel...
pwfi2en 40838 Finitely supported indicat...
frlmpwfi 40839 Formal linear combinations...
gicabl 40840 Being Abelian is a group i...
imasgim 40841 A relabeling of the elemen...
isnumbasgrplem1 40842 A set which is equipollent...
harn0 40843 The Hartogs number of a se...
numinfctb 40844 A numerable infinite set c...
isnumbasgrplem2 40845 If the (to be thought of a...
isnumbasgrplem3 40846 Every nonempty numerable s...
isnumbasabl 40847 A set is numerable iff it ...
isnumbasgrp 40848 A set is numerable iff it ...
dfacbasgrp 40849 A choice equivalent in abs...
islnr 40852 Property of a left-Noether...
lnrring 40853 Left-Noetherian rings are ...
lnrlnm 40854 Left-Noetherian rings have...
islnr2 40855 Property of being a left-N...
islnr3 40856 Relate left-Noetherian rin...
lnr2i 40857 Given an ideal in a left-N...
lpirlnr 40858 Left principal ideal rings...
lnrfrlm 40859 Finite-dimensional free mo...
lnrfg 40860 Finitely-generated modules...
lnrfgtr 40861 A submodule of a finitely ...
hbtlem1 40864 Value of the leading coeff...
hbtlem2 40865 Leading coefficient ideals...
hbtlem7 40866 Functionality of leading c...
hbtlem4 40867 The leading ideal function...
hbtlem3 40868 The leading ideal function...
hbtlem5 40869 The leading ideal function...
hbtlem6 40870 There is a finite set of p...
hbt 40871 The Hilbert Basis Theorem ...
dgrsub2 40876 Subtracting two polynomial...
elmnc 40877 Property of a monic polyno...
mncply 40878 A monic polynomial is a po...
mnccoe 40879 A monic polynomial has lea...
mncn0 40880 A monic polynomial is not ...
dgraaval 40885 Value of the degree functi...
dgraalem 40886 Properties of the degree o...
dgraacl 40887 Closure of the degree func...
dgraaf 40888 Degree function on algebra...
dgraaub 40889 Upper bound on degree of a...
dgraa0p 40890 A rational polynomial of d...
mpaaeu 40891 An algebraic number has ex...
mpaaval 40892 Value of the minimal polyn...
mpaalem 40893 Properties of the minimal ...
mpaacl 40894 Minimal polynomial is a po...
mpaadgr 40895 Minimal polynomial has deg...
mpaaroot 40896 The minimal polynomial of ...
mpaamn 40897 Minimal polynomial is moni...
itgoval 40902 Value of the integral-over...
aaitgo 40903 The standard algebraic num...
itgoss 40904 An integral element is int...
itgocn 40905 All integral elements are ...
cnsrexpcl 40906 Exponentiation is closed i...
fsumcnsrcl 40907 Finite sums are closed in ...
cnsrplycl 40908 Polynomials are closed in ...
rgspnval 40909 Value of the ring-span of ...
rgspncl 40910 The ring-span of a set is ...
rgspnssid 40911 The ring-span of a set con...
rgspnmin 40912 The ring-span is contained...
rgspnid 40913 The span of a subring is i...
rngunsnply 40914 Adjoining one element to a...
flcidc 40915 Finite linear combinations...
algstr 40918 Lemma to shorten proofs of...
algbase 40919 The base set of a construc...
algaddg 40920 The additive operation of ...
algmulr 40921 The multiplicative operati...
algsca 40922 The set of scalars of a co...
algvsca 40923 The scalar product operati...
mendval 40924 Value of the module endomo...
mendbas 40925 Base set of the module end...
mendplusgfval 40926 Addition in the module end...
mendplusg 40927 A specific addition in the...
mendmulrfval 40928 Multiplication in the modu...
mendmulr 40929 A specific multiplication ...
mendsca 40930 The module endomorphism al...
mendvscafval 40931 Scalar multiplication in t...
mendvsca 40932 A specific scalar multipli...
mendring 40933 The module endomorphism al...
mendlmod 40934 The module endomorphism al...
mendassa 40935 The module endomorphism al...
idomrootle 40936 No element of an integral ...
idomodle 40937 Limit on the number of ` N...
fiuneneq 40938 Two finite sets of equal s...
idomsubgmo 40939 The units of an integral d...
proot1mul 40940 Any primitive ` N ` -th ro...
proot1hash 40941 If an integral domain has ...
proot1ex 40942 The complex field has prim...
isdomn3 40945 Nonzero elements form a mu...
mon1pid 40946 Monicity and degree of the...
mon1psubm 40947 Monic polynomials are a mu...
deg1mhm 40948 Homomorphic property of th...
cytpfn 40949 Functionality of the cyclo...
cytpval 40950 Substitutions for the Nth ...
fgraphopab 40951 Express a function as a su...
fgraphxp 40952 Express a function as a su...
hausgraph 40953 The graph of a continuous ...
iocunico 40958 Split an open interval int...
iocinico 40959 The intersection of two se...
iocmbl 40960 An open-below, closed-abov...
cnioobibld 40961 A bounded, continuous func...
arearect 40962 The area of a rectangle wh...
areaquad 40963 The area of a quadrilatera...
ifpan123g 40964 Conjunction of conditional...
ifpan23 40965 Conjunction of conditional...
ifpdfor2 40966 Define or in terms of cond...
ifporcor 40967 Corollary of commutation o...
ifpdfan2 40968 Define and with conditiona...
ifpancor 40969 Corollary of commutation o...
ifpdfor 40970 Define or in terms of cond...
ifpdfan 40971 Define and with conditiona...
ifpbi2 40972 Equivalence theorem for co...
ifpbi3 40973 Equivalence theorem for co...
ifpim1 40974 Restate implication as con...
ifpnot 40975 Restate negated wff as con...
ifpid2 40976 Restate wff as conditional...
ifpim2 40977 Restate implication as con...
ifpbi23 40978 Equivalence theorem for co...
ifpbiidcor 40979 Restatement of ~ biid . (...
ifpbicor 40980 Corollary of commutation o...
ifpxorcor 40981 Corollary of commutation o...
ifpbi1 40982 Equivalence theorem for co...
ifpnot23 40983 Negation of conditional lo...
ifpnotnotb 40984 Factor conditional logic o...
ifpnorcor 40985 Corollary of commutation o...
ifpnancor 40986 Corollary of commutation o...
ifpnot23b 40987 Negation of conditional lo...
ifpbiidcor2 40988 Restatement of ~ biid . (...
ifpnot23c 40989 Negation of conditional lo...
ifpnot23d 40990 Negation of conditional lo...
ifpdfnan 40991 Define nand as conditional...
ifpdfxor 40992 Define xor as conditional ...
ifpbi12 40993 Equivalence theorem for co...
ifpbi13 40994 Equivalence theorem for co...
ifpbi123 40995 Equivalence theorem for co...
ifpidg 40996 Restate wff as conditional...
ifpid3g 40997 Restate wff as conditional...
ifpid2g 40998 Restate wff as conditional...
ifpid1g 40999 Restate wff as conditional...
ifpim23g 41000 Restate implication as con...
ifpim3 41001 Restate implication as con...
ifpnim1 41002 Restate negated implicatio...
ifpim4 41003 Restate implication as con...
ifpnim2 41004 Restate negated implicatio...
ifpim123g 41005 Implication of conditional...
ifpim1g 41006 Implication of conditional...
ifp1bi 41007 Substitute the first eleme...
ifpbi1b 41008 When the first variable is...
ifpimimb 41009 Factor conditional logic o...
ifpororb 41010 Factor conditional logic o...
ifpananb 41011 Factor conditional logic o...
ifpnannanb 41012 Factor conditional logic o...
ifpor123g 41013 Disjunction of conditional...
ifpimim 41014 Consequnce of implication....
ifpbibib 41015 Factor conditional logic o...
ifpxorxorb 41016 Factor conditional logic o...
rp-fakeimass 41017 A special case where impli...
rp-fakeanorass 41018 A special case where a mix...
rp-fakeoranass 41019 A special case where a mix...
rp-fakeinunass 41020 A special case where a mix...
rp-fakeuninass 41021 A special case where a mix...
rp-isfinite5 41022 A set is said to be finite...
rp-isfinite6 41023 A set is said to be finite...
intabssd 41024 When for each element ` y ...
eu0 41025 There is only one empty se...
epelon2 41026 Over the ordinal numbers, ...
ontric3g 41027 For all ` x , y e. On ` , ...
dfsucon 41028 ` A ` is called a successo...
snen1g 41029 A singleton is equinumerou...
snen1el 41030 A singleton is equinumerou...
sn1dom 41031 A singleton is dominated b...
pr2dom 41032 An unordered pair is domin...
tr3dom 41033 An unordered triple is dom...
ensucne0 41034 A class equinumerous to a ...
ensucne0OLD 41035 A class equinumerous to a ...
dfom6 41036 Let ` _om ` be defined to ...
infordmin 41037 ` _om ` is the smallest in...
iscard4 41038 Two ways to express the pr...
iscard5 41039 Two ways to express the pr...
elrncard 41040 Let us define a cardinal n...
harval3 41041 ` ( har `` A ) ` is the le...
harval3on 41042 For any ordinal number ` A...
en2pr 41043 A class is equinumerous to...
pr2cv 41044 If an unordered pair is eq...
pr2el1 41045 If an unordered pair is eq...
pr2cv1 41046 If an unordered pair is eq...
pr2el2 41047 If an unordered pair is eq...
pr2cv2 41048 If an unordered pair is eq...
pren2 41049 An unordered pair is equin...
pr2eldif1 41050 If an unordered pair is eq...
pr2eldif2 41051 If an unordered pair is eq...
pren2d 41052 A pair of two distinct set...
aleph1min 41053 ` ( aleph `` 1o ) ` is the...
alephiso2 41054 ` aleph ` is a strictly or...
alephiso3 41055 ` aleph ` is a strictly or...
pwelg 41056 The powerclass is an eleme...
pwinfig 41057 The powerclass of an infin...
pwinfi2 41058 The powerclass of an infin...
pwinfi3 41059 The powerclass of an infin...
pwinfi 41060 The powerclass of an infin...
fipjust 41061 A definition of the finite...
cllem0 41062 The class of all sets with...
superficl 41063 The class of all supersets...
superuncl 41064 The class of all supersets...
ssficl 41065 The class of all subsets o...
ssuncl 41066 The class of all subsets o...
ssdifcl 41067 The class of all subsets o...
sssymdifcl 41068 The class of all subsets o...
fiinfi 41069 If two classes have the fi...
rababg 41070 Condition when restricted ...
elintabg 41071 Two ways of saying a set i...
elinintab 41072 Two ways of saying a set i...
elmapintrab 41073 Two ways to say a set is a...
elinintrab 41074 Two ways of saying a set i...
inintabss 41075 Upper bound on intersectio...
inintabd 41076 Value of the intersection ...
xpinintabd 41077 Value of the intersection ...
relintabex 41078 If the intersection of a c...
elcnvcnvintab 41079 Two ways of saying a set i...
relintab 41080 Value of the intersection ...
nonrel 41081 A non-relation is equal to...
elnonrel 41082 Only an ordered pair where...
cnvssb 41083 Subclass theorem for conve...
relnonrel 41084 The non-relation part of a...
cnvnonrel 41085 The converse of the non-re...
brnonrel 41086 A non-relation cannot rela...
dmnonrel 41087 The domain of the non-rela...
rnnonrel 41088 The range of the non-relat...
resnonrel 41089 A restriction of the non-r...
imanonrel 41090 An image under the non-rel...
cononrel1 41091 Composition with the non-r...
cononrel2 41092 Composition with the non-r...
elmapintab 41093 Two ways to say a set is a...
fvnonrel 41094 The function value of any ...
elinlem 41095 Two ways to say a set is a...
elcnvcnvlem 41096 Two ways to say a set is a...
cnvcnvintabd 41097 Value of the relationship ...
elcnvlem 41098 Two ways to say a set is a...
elcnvintab 41099 Two ways of saying a set i...
cnvintabd 41100 Value of the converse of t...
undmrnresiss 41101 Two ways of saying the ide...
reflexg 41102 Two ways of saying a relat...
cnvssco 41103 A condition weaker than re...
refimssco 41104 Reflexive relations are su...
cleq2lem 41105 Equality implies bijection...
cbvcllem 41106 Change of bound variable i...
clublem 41107 If a superset ` Y ` of ` X...
clss2lem 41108 The closure of a property ...
dfid7 41109 Definition of identity rel...
mptrcllem 41110 Show two versions of a clo...
cotrintab 41111 The intersection of a clas...
rclexi 41112 The reflexive closure of a...
rtrclexlem 41113 Existence of relation impl...
rtrclex 41114 The reflexive-transitive c...
trclubgNEW 41115 If a relation exists then ...
trclubNEW 41116 If a relation exists then ...
trclexi 41117 The transitive closure of ...
rtrclexi 41118 The reflexive-transitive c...
clrellem 41119 When the property ` ps ` h...
clcnvlem 41120 When ` A ` , an upper boun...
cnvtrucl0 41121 The converse of the trivia...
cnvrcl0 41122 The converse of the reflex...
cnvtrcl0 41123 The converse of the transi...
dmtrcl 41124 The domain of the transiti...
rntrcl 41125 The range of the transitiv...
dfrtrcl5 41126 Definition of reflexive-tr...
trcleq2lemRP 41127 Equality implies bijection...
sqrtcvallem1 41128 Two ways of saying a compl...
reabsifneg 41129 Alternate expression for t...
reabsifnpos 41130 Alternate expression for t...
reabsifpos 41131 Alternate expression for t...
reabsifnneg 41132 Alternate expression for t...
reabssgn 41133 Alternate expression for t...
sqrtcvallem2 41134 Equivalent to saying that ...
sqrtcvallem3 41135 Equivalent to saying that ...
sqrtcvallem4 41136 Equivalent to saying that ...
sqrtcvallem5 41137 Equivalent to saying that ...
sqrtcval 41138 Explicit formula for the c...
sqrtcval2 41139 Explicit formula for the c...
resqrtval 41140 Real part of the complex s...
imsqrtval 41141 Imaginary part of the comp...
resqrtvalex 41142 Example for ~ resqrtval . ...
imsqrtvalex 41143 Example for ~ imsqrtval . ...
al3im 41144 Version of ~ ax-4 for a ne...
intima0 41145 Two ways of expressing the...
elimaint 41146 Element of image of inters...
cnviun 41147 Converse of indexed union....
imaiun1 41148 The image of an indexed un...
coiun1 41149 Composition with an indexe...
elintima 41150 Element of intersection of...
intimass 41151 The image under the inters...
intimass2 41152 The image under the inters...
intimag 41153 Requirement for the image ...
intimasn 41154 Two ways to express the im...
intimasn2 41155 Two ways to express the im...
ss2iundf 41156 Subclass theorem for index...
ss2iundv 41157 Subclass theorem for index...
cbviuneq12df 41158 Rule used to change the bo...
cbviuneq12dv 41159 Rule used to change the bo...
conrel1d 41160 Deduction about compositio...
conrel2d 41161 Deduction about compositio...
trrelind 41162 The intersection of transi...
xpintrreld 41163 The intersection of a tran...
restrreld 41164 The restriction of a trans...
trrelsuperreldg 41165 Concrete construction of a...
trficl 41166 The class of all transitiv...
cnvtrrel 41167 The converse of a transiti...
trrelsuperrel2dg 41168 Concrete construction of a...
dfrcl2 41171 Reflexive closure of a rel...
dfrcl3 41172 Reflexive closure of a rel...
dfrcl4 41173 Reflexive closure of a rel...
relexp2 41174 A set operated on by the r...
relexpnul 41175 If the domain and range of...
eliunov2 41176 Membership in the indexed ...
eltrclrec 41177 Membership in the indexed ...
elrtrclrec 41178 Membership in the indexed ...
briunov2 41179 Two classes related by the...
brmptiunrelexpd 41180 If two elements are connec...
fvmptiunrelexplb0d 41181 If the indexed union range...
fvmptiunrelexplb0da 41182 If the indexed union range...
fvmptiunrelexplb1d 41183 If the indexed union range...
brfvid 41184 If two elements are connec...
brfvidRP 41185 If two elements are connec...
fvilbd 41186 A set is a subset of its i...
fvilbdRP 41187 A set is a subset of its i...
brfvrcld 41188 If two elements are connec...
brfvrcld2 41189 If two elements are connec...
fvrcllb0d 41190 A restriction of the ident...
fvrcllb0da 41191 A restriction of the ident...
fvrcllb1d 41192 A set is a subset of its i...
brtrclrec 41193 Two classes related by the...
brrtrclrec 41194 Two classes related by the...
briunov2uz 41195 Two classes related by the...
eliunov2uz 41196 Membership in the indexed ...
ov2ssiunov2 41197 Any particular operator va...
relexp0eq 41198 The zeroth power of relati...
iunrelexp0 41199 Simplification of zeroth p...
relexpxpnnidm 41200 Any positive power of a Ca...
relexpiidm 41201 Any power of any restricti...
relexpss1d 41202 The relational power of a ...
comptiunov2i 41203 The composition two indexe...
corclrcl 41204 The reflexive closure is i...
iunrelexpmin1 41205 The indexed union of relat...
relexpmulnn 41206 With exponents limited to ...
relexpmulg 41207 With ordered exponents, th...
trclrelexplem 41208 The union of relational po...
iunrelexpmin2 41209 The indexed union of relat...
relexp01min 41210 With exponents limited to ...
relexp1idm 41211 Repeated raising a relatio...
relexp0idm 41212 Repeated raising a relatio...
relexp0a 41213 Absorbtion law for zeroth ...
relexpxpmin 41214 The composition of powers ...
relexpaddss 41215 The composition of two pow...
iunrelexpuztr 41216 The indexed union of relat...
dftrcl3 41217 Transitive closure of a re...
brfvtrcld 41218 If two elements are connec...
fvtrcllb1d 41219 A set is a subset of its i...
trclfvcom 41220 The transitive closure of ...
cnvtrclfv 41221 The converse of the transi...
cotrcltrcl 41222 The transitive closure is ...
trclimalb2 41223 Lower bound for image unde...
brtrclfv2 41224 Two ways to indicate two e...
trclfvdecomr 41225 The transitive closure of ...
trclfvdecoml 41226 The transitive closure of ...
dmtrclfvRP 41227 The domain of the transiti...
rntrclfvRP 41228 The range of the transitiv...
rntrclfv 41229 The range of the transitiv...
dfrtrcl3 41230 Reflexive-transitive closu...
brfvrtrcld 41231 If two elements are connec...
fvrtrcllb0d 41232 A restriction of the ident...
fvrtrcllb0da 41233 A restriction of the ident...
fvrtrcllb1d 41234 A set is a subset of its i...
dfrtrcl4 41235 Reflexive-transitive closu...
corcltrcl 41236 The composition of the ref...
cortrcltrcl 41237 Composition with the refle...
corclrtrcl 41238 Composition with the refle...
cotrclrcl 41239 The composition of the ref...
cortrclrcl 41240 Composition with the refle...
cotrclrtrcl 41241 Composition with the refle...
cortrclrtrcl 41242 The reflexive-transitive c...
frege77d 41243 If the images of both ` { ...
frege81d 41244 If the image of ` U ` is a...
frege83d 41245 If the image of the union ...
frege96d 41246 If ` C ` follows ` A ` in ...
frege87d 41247 If the images of both ` { ...
frege91d 41248 If ` B ` follows ` A ` in ...
frege97d 41249 If ` A ` contains all elem...
frege98d 41250 If ` C ` follows ` A ` and...
frege102d 41251 If either ` A ` and ` C ` ...
frege106d 41252 If ` B ` follows ` A ` in ...
frege108d 41253 If either ` A ` and ` C ` ...
frege109d 41254 If ` A ` contains all elem...
frege114d 41255 If either ` R ` relates ` ...
frege111d 41256 If either ` A ` and ` C ` ...
frege122d 41257 If ` F ` is a function, ` ...
frege124d 41258 If ` F ` is a function, ` ...
frege126d 41259 If ` F ` is a function, ` ...
frege129d 41260 If ` F ` is a function and...
frege131d 41261 If ` F ` is a function and...
frege133d 41262 If ` F ` is a function and...
dfxor4 41263 Express exclusive-or in te...
dfxor5 41264 Express exclusive-or in te...
df3or2 41265 Express triple-or in terms...
df3an2 41266 Express triple-and in term...
nev 41267 Express that not every set...
0pssin 41268 Express that an intersecti...
dfhe2 41271 The property of relation `...
dfhe3 41272 The property of relation `...
heeq12 41273 Equality law for relations...
heeq1 41274 Equality law for relations...
heeq2 41275 Equality law for relations...
sbcheg 41276 Distribute proper substitu...
hess 41277 Subclass law for relations...
xphe 41278 Any Cartesian product is h...
0he 41279 The empty relation is here...
0heALT 41280 The empty relation is here...
he0 41281 Any relation is hereditary...
unhe1 41282 The union of two relations...
snhesn 41283 Any singleton is hereditar...
idhe 41284 The identity relation is h...
psshepw 41285 The relation between sets ...
sshepw 41286 The relation between sets ...
rp-simp2-frege 41289 Simplification of triple c...
rp-simp2 41290 Simplification of triple c...
rp-frege3g 41291 Add antecedent to ~ ax-fre...
frege3 41292 Add antecedent to ~ ax-fre...
rp-misc1-frege 41293 Double-use of ~ ax-frege2 ...
rp-frege24 41294 Introducing an embedded an...
rp-frege4g 41295 Deduction related to distr...
frege4 41296 Special case of closed for...
frege5 41297 A closed form of ~ syl . ...
rp-7frege 41298 Distribute antecedent and ...
rp-4frege 41299 Elimination of a nested an...
rp-6frege 41300 Elimination of a nested an...
rp-8frege 41301 Eliminate antecedent when ...
rp-frege25 41302 Closed form for ~ a1dd . ...
frege6 41303 A closed form of ~ imim2d ...
axfrege8 41304 Swap antecedents. Identic...
frege7 41305 A closed form of ~ syl6 . ...
frege26 41307 Identical to ~ idd . Prop...
frege27 41308 We cannot (at the same tim...
frege9 41309 Closed form of ~ syl with ...
frege12 41310 A closed form of ~ com23 ....
frege11 41311 Elimination of a nested an...
frege24 41312 Closed form for ~ a1d . D...
frege16 41313 A closed form of ~ com34 ....
frege25 41314 Closed form for ~ a1dd . ...
frege18 41315 Closed form of a syllogism...
frege22 41316 A closed form of ~ com45 ....
frege10 41317 Result commuting anteceden...
frege17 41318 A closed form of ~ com3l ....
frege13 41319 A closed form of ~ com3r ....
frege14 41320 Closed form of a deduction...
frege19 41321 A closed form of ~ syl6 . ...
frege23 41322 Syllogism followed by rota...
frege15 41323 A closed form of ~ com4r ....
frege21 41324 Replace antecedent in ante...
frege20 41325 A closed form of ~ syl8 . ...
axfrege28 41326 Contraposition. Identical...
frege29 41328 Closed form of ~ con3d . ...
frege30 41329 Commuted, closed form of ~...
axfrege31 41330 Identical to ~ notnotr . ...
frege32 41332 Deduce ~ con1 from ~ con3 ...
frege33 41333 If ` ph ` or ` ps ` takes ...
frege34 41334 If as a conseqence of the ...
frege35 41335 Commuted, closed form of ~...
frege36 41336 The case in which ` ps ` i...
frege37 41337 If ` ch ` is a necessary c...
frege38 41338 Identical to ~ pm2.21 . P...
frege39 41339 Syllogism between ~ pm2.18...
frege40 41340 Anything implies ~ pm2.18 ...
axfrege41 41341 Identical to ~ notnot . A...
frege42 41343 Not not ~ id . Propositio...
frege43 41344 If there is a choice only ...
frege44 41345 Similar to a commuted ~ pm...
frege45 41346 Deduce ~ pm2.6 from ~ con1...
frege46 41347 If ` ps ` holds when ` ph ...
frege47 41348 Deduce consequence follows...
frege48 41349 Closed form of syllogism w...
frege49 41350 Closed form of deduction w...
frege50 41351 Closed form of ~ jaoi . P...
frege51 41352 Compare with ~ jaod . Pro...
axfrege52a 41353 Justification for ~ ax-fre...
frege52aid 41355 The case when the content ...
frege53aid 41356 Specialization of ~ frege5...
frege53a 41357 Lemma for ~ frege55a . Pr...
axfrege54a 41358 Justification for ~ ax-fre...
frege54cor0a 41360 Synonym for logical equiva...
frege54cor1a 41361 Reflexive equality. (Cont...
frege55aid 41362 Lemma for ~ frege57aid . ...
frege55lem1a 41363 Necessary deduction regard...
frege55lem2a 41364 Core proof of Proposition ...
frege55a 41365 Proposition 55 of [Frege18...
frege55cor1a 41366 Proposition 55 of [Frege18...
frege56aid 41367 Lemma for ~ frege57aid . ...
frege56a 41368 Proposition 56 of [Frege18...
frege57aid 41369 This is the all imporant f...
frege57a 41370 Analogue of ~ frege57aid ....
axfrege58a 41371 Identical to ~ anifp . Ju...
frege58acor 41373 Lemma for ~ frege59a . (C...
frege59a 41374 A kind of Aristotelian inf...
frege60a 41375 Swap antecedents of ~ ax-f...
frege61a 41376 Lemma for ~ frege65a . Pr...
frege62a 41377 A kind of Aristotelian inf...
frege63a 41378 Proposition 63 of [Frege18...
frege64a 41379 Lemma for ~ frege65a . Pr...
frege65a 41380 A kind of Aristotelian inf...
frege66a 41381 Swap antecedents of ~ freg...
frege67a 41382 Lemma for ~ frege68a . Pr...
frege68a 41383 Combination of applying a ...
axfrege52c 41384 Justification for ~ ax-fre...
frege52b 41386 The case when the content ...
frege53b 41387 Lemma for frege102 (via ~ ...
axfrege54c 41388 Reflexive equality of clas...
frege54b 41390 Reflexive equality of sets...
frege54cor1b 41391 Reflexive equality. (Cont...
frege55lem1b 41392 Necessary deduction regard...
frege55lem2b 41393 Lemma for ~ frege55b . Co...
frege55b 41394 Lemma for ~ frege57b . Pr...
frege56b 41395 Lemma for ~ frege57b . Pr...
frege57b 41396 Analogue of ~ frege57aid ....
axfrege58b 41397 If ` A. x ph ` is affirmed...
frege58bid 41399 If ` A. x ph ` is affirmed...
frege58bcor 41400 Lemma for ~ frege59b . (C...
frege59b 41401 A kind of Aristotelian inf...
frege60b 41402 Swap antecedents of ~ ax-f...
frege61b 41403 Lemma for ~ frege65b . Pr...
frege62b 41404 A kind of Aristotelian inf...
frege63b 41405 Lemma for ~ frege91 . Pro...
frege64b 41406 Lemma for ~ frege65b . Pr...
frege65b 41407 A kind of Aristotelian inf...
frege66b 41408 Swap antecedents of ~ freg...
frege67b 41409 Lemma for ~ frege68b . Pr...
frege68b 41410 Combination of applying a ...
frege53c 41411 Proposition 53 of [Frege18...
frege54cor1c 41412 Reflexive equality. (Cont...
frege55lem1c 41413 Necessary deduction regard...
frege55lem2c 41414 Core proof of Proposition ...
frege55c 41415 Proposition 55 of [Frege18...
frege56c 41416 Lemma for ~ frege57c . Pr...
frege57c 41417 Swap order of implication ...
frege58c 41418 Principle related to ~ sp ...
frege59c 41419 A kind of Aristotelian inf...
frege60c 41420 Swap antecedents of ~ freg...
frege61c 41421 Lemma for ~ frege65c . Pr...
frege62c 41422 A kind of Aristotelian inf...
frege63c 41423 Analogue of ~ frege63b . ...
frege64c 41424 Lemma for ~ frege65c . Pr...
frege65c 41425 A kind of Aristotelian inf...
frege66c 41426 Swap antecedents of ~ freg...
frege67c 41427 Lemma for ~ frege68c . Pr...
frege68c 41428 Combination of applying a ...
dffrege69 41429 If from the proposition th...
frege70 41430 Lemma for ~ frege72 . Pro...
frege71 41431 Lemma for ~ frege72 . Pro...
frege72 41432 If property ` A ` is hered...
frege73 41433 Lemma for ~ frege87 . Pro...
frege74 41434 If ` X ` has a property ` ...
frege75 41435 If from the proposition th...
dffrege76 41436 If from the two propositio...
frege77 41437 If ` Y ` follows ` X ` in ...
frege78 41438 Commuted form of of ~ freg...
frege79 41439 Distributed form of ~ freg...
frege80 41440 Add additional condition t...
frege81 41441 If ` X ` has a property ` ...
frege82 41442 Closed-form deduction base...
frege83 41443 Apply commuted form of ~ f...
frege84 41444 Commuted form of ~ frege81...
frege85 41445 Commuted form of ~ frege77...
frege86 41446 Conclusion about element o...
frege87 41447 If ` Z ` is a result of an...
frege88 41448 Commuted form of ~ frege87...
frege89 41449 One direction of ~ dffrege...
frege90 41450 Add antecedent to ~ frege8...
frege91 41451 Every result of an applica...
frege92 41452 Inference from ~ frege91 ....
frege93 41453 Necessary condition for tw...
frege94 41454 Looking one past a pair re...
frege95 41455 Looking one past a pair re...
frege96 41456 Every result of an applica...
frege97 41457 The property of following ...
frege98 41458 If ` Y ` follows ` X ` and...
dffrege99 41459 If ` Z ` is identical with...
frege100 41460 One direction of ~ dffrege...
frege101 41461 Lemma for ~ frege102 . Pr...
frege102 41462 If ` Z ` belongs to the ` ...
frege103 41463 Proposition 103 of [Frege1...
frege104 41464 Proposition 104 of [Frege1...
frege105 41465 Proposition 105 of [Frege1...
frege106 41466 Whatever follows ` X ` in ...
frege107 41467 Proposition 107 of [Frege1...
frege108 41468 If ` Y ` belongs to the ` ...
frege109 41469 The property of belonging ...
frege110 41470 Proposition 110 of [Frege1...
frege111 41471 If ` Y ` belongs to the ` ...
frege112 41472 Identity implies belonging...
frege113 41473 Proposition 113 of [Frege1...
frege114 41474 If ` X ` belongs to the ` ...
dffrege115 41475 If from the circumstance t...
frege116 41476 One direction of ~ dffrege...
frege117 41477 Lemma for ~ frege118 . Pr...
frege118 41478 Simplified application of ...
frege119 41479 Lemma for ~ frege120 . Pr...
frege120 41480 Simplified application of ...
frege121 41481 Lemma for ~ frege122 . Pr...
frege122 41482 If ` X ` is a result of an...
frege123 41483 Lemma for ~ frege124 . Pr...
frege124 41484 If ` X ` is a result of an...
frege125 41485 Lemma for ~ frege126 . Pr...
frege126 41486 If ` M ` follows ` Y ` in ...
frege127 41487 Communte antecedents of ~ ...
frege128 41488 Lemma for ~ frege129 . Pr...
frege129 41489 If the procedure ` R ` is ...
frege130 41490 Lemma for ~ frege131 . Pr...
frege131 41491 If the procedure ` R ` is ...
frege132 41492 Lemma for ~ frege133 . Pr...
frege133 41493 If the procedure ` R ` is ...
enrelmap 41494 The set of all possible re...
enrelmapr 41495 The set of all possible re...
enmappw 41496 The set of all mappings fr...
enmappwid 41497 The set of all mappings fr...
rfovd 41498 Value of the operator, ` (...
rfovfvd 41499 Value of the operator, ` (...
rfovfvfvd 41500 Value of the operator, ` (...
rfovcnvf1od 41501 Properties of the operator...
rfovcnvd 41502 Value of the converse of t...
rfovf1od 41503 The value of the operator,...
rfovcnvfvd 41504 Value of the converse of t...
fsovd 41505 Value of the operator, ` (...
fsovrfovd 41506 The operator which gives a...
fsovfvd 41507 Value of the operator, ` (...
fsovfvfvd 41508 Value of the operator, ` (...
fsovfd 41509 The operator, ` ( A O B ) ...
fsovcnvlem 41510 The ` O ` operator, which ...
fsovcnvd 41511 The value of the converse ...
fsovcnvfvd 41512 The value of the converse ...
fsovf1od 41513 The value of ` ( A O B ) `...
dssmapfvd 41514 Value of the duality opera...
dssmapfv2d 41515 Value of the duality opera...
dssmapfv3d 41516 Value of the duality opera...
dssmapnvod 41517 For any base set ` B ` the...
dssmapf1od 41518 For any base set ` B ` the...
dssmap2d 41519 For any base set ` B ` the...
or3or 41520 Decompose disjunction into...
andi3or 41521 Distribute over triple dis...
uneqsn 41522 If a union of classes is e...
df3o2 41523 Ordinal 3 is the unordered...
df3o3 41524 Ordinal 3, fully expanded....
brfvimex 41525 If a binary relation holds...
brovmptimex 41526 If a binary relation holds...
brovmptimex1 41527 If a binary relation holds...
brovmptimex2 41528 If a binary relation holds...
brcoffn 41529 Conditions allowing the de...
brcofffn 41530 Conditions allowing the de...
brco2f1o 41531 Conditions allowing the de...
brco3f1o 41532 Conditions allowing the de...
ntrclsbex 41533 If (pseudo-)interior and (...
ntrclsrcomplex 41534 The relative complement of...
neik0imk0p 41535 Kuratowski's K0 axiom impl...
ntrk2imkb 41536 If an interior function is...
ntrkbimka 41537 If the interiors of disjoi...
ntrk0kbimka 41538 If the interiors of disjoi...
clsk3nimkb 41539 If the base set is not emp...
clsk1indlem0 41540 The ansatz closure functio...
clsk1indlem2 41541 The ansatz closure functio...
clsk1indlem3 41542 The ansatz closure functio...
clsk1indlem4 41543 The ansatz closure functio...
clsk1indlem1 41544 The ansatz closure functio...
clsk1independent 41545 For generalized closure fu...
neik0pk1imk0 41546 Kuratowski's K0' and K1 ax...
isotone1 41547 Two different ways to say ...
isotone2 41548 Two different ways to say ...
ntrk1k3eqk13 41549 An interior function is bo...
ntrclsf1o 41550 If (pseudo-)interior and (...
ntrclsnvobr 41551 If (pseudo-)interior and (...
ntrclsiex 41552 If (pseudo-)interior and (...
ntrclskex 41553 If (pseudo-)interior and (...
ntrclsfv1 41554 If (pseudo-)interior and (...
ntrclsfv2 41555 If (pseudo-)interior and (...
ntrclselnel1 41556 If (pseudo-)interior and (...
ntrclselnel2 41557 If (pseudo-)interior and (...
ntrclsfv 41558 The value of the interior ...
ntrclsfveq1 41559 If interior and closure fu...
ntrclsfveq2 41560 If interior and closure fu...
ntrclsfveq 41561 If interior and closure fu...
ntrclsss 41562 If interior and closure fu...
ntrclsneine0lem 41563 If (pseudo-)interior and (...
ntrclsneine0 41564 If (pseudo-)interior and (...
ntrclscls00 41565 If (pseudo-)interior and (...
ntrclsiso 41566 If (pseudo-)interior and (...
ntrclsk2 41567 An interior function is co...
ntrclskb 41568 The interiors of disjoint ...
ntrclsk3 41569 The intersection of interi...
ntrclsk13 41570 The interior of the inters...
ntrclsk4 41571 Idempotence of the interio...
ntrneibex 41572 If (pseudo-)interior and (...
ntrneircomplex 41573 The relative complement of...
ntrneif1o 41574 If (pseudo-)interior and (...
ntrneiiex 41575 If (pseudo-)interior and (...
ntrneinex 41576 If (pseudo-)interior and (...
ntrneicnv 41577 If (pseudo-)interior and (...
ntrneifv1 41578 If (pseudo-)interior and (...
ntrneifv2 41579 If (pseudo-)interior and (...
ntrneiel 41580 If (pseudo-)interior and (...
ntrneifv3 41581 The value of the neighbors...
ntrneineine0lem 41582 If (pseudo-)interior and (...
ntrneineine1lem 41583 If (pseudo-)interior and (...
ntrneifv4 41584 The value of the interior ...
ntrneiel2 41585 Membership in iterated int...
ntrneineine0 41586 If (pseudo-)interior and (...
ntrneineine1 41587 If (pseudo-)interior and (...
ntrneicls00 41588 If (pseudo-)interior and (...
ntrneicls11 41589 If (pseudo-)interior and (...
ntrneiiso 41590 If (pseudo-)interior and (...
ntrneik2 41591 An interior function is co...
ntrneix2 41592 An interior (closure) func...
ntrneikb 41593 The interiors of disjoint ...
ntrneixb 41594 The interiors (closures) o...
ntrneik3 41595 The intersection of interi...
ntrneix3 41596 The closure of the union o...
ntrneik13 41597 The interior of the inters...
ntrneix13 41598 The closure of the union o...
ntrneik4w 41599 Idempotence of the interio...
ntrneik4 41600 Idempotence of the interio...
clsneibex 41601 If (pseudo-)closure and (p...
clsneircomplex 41602 The relative complement of...
clsneif1o 41603 If a (pseudo-)closure func...
clsneicnv 41604 If a (pseudo-)closure func...
clsneikex 41605 If closure and neighborhoo...
clsneinex 41606 If closure and neighborhoo...
clsneiel1 41607 If a (pseudo-)closure func...
clsneiel2 41608 If a (pseudo-)closure func...
clsneifv3 41609 Value of the neighborhoods...
clsneifv4 41610 Value of the closure (inte...
neicvgbex 41611 If (pseudo-)neighborhood a...
neicvgrcomplex 41612 The relative complement of...
neicvgf1o 41613 If neighborhood and conver...
neicvgnvo 41614 If neighborhood and conver...
neicvgnvor 41615 If neighborhood and conver...
neicvgmex 41616 If the neighborhoods and c...
neicvgnex 41617 If the neighborhoods and c...
neicvgel1 41618 A subset being an element ...
neicvgel2 41619 The complement of a subset...
neicvgfv 41620 The value of the neighborh...
ntrrn 41621 The range of the interior ...
ntrf 41622 The interior function of a...
ntrf2 41623 The interior function is a...
ntrelmap 41624 The interior function is a...
clsf2 41625 The closure function is a ...
clselmap 41626 The closure function is a ...
dssmapntrcls 41627 The interior and closure o...
dssmapclsntr 41628 The closure and interior o...
gneispa 41629 Each point ` p ` of the ne...
gneispb 41630 Given a neighborhood ` N `...
gneispace2 41631 The predicate that ` F ` i...
gneispace3 41632 The predicate that ` F ` i...
gneispace 41633 The predicate that ` F ` i...
gneispacef 41634 A generic neighborhood spa...
gneispacef2 41635 A generic neighborhood spa...
gneispacefun 41636 A generic neighborhood spa...
gneispacern 41637 A generic neighborhood spa...
gneispacern2 41638 A generic neighborhood spa...
gneispace0nelrn 41639 A generic neighborhood spa...
gneispace0nelrn2 41640 A generic neighborhood spa...
gneispace0nelrn3 41641 A generic neighborhood spa...
gneispaceel 41642 Every neighborhood of a po...
gneispaceel2 41643 Every neighborhood of a po...
gneispacess 41644 All supersets of a neighbo...
gneispacess2 41645 All supersets of a neighbo...
k0004lem1 41646 Application of ~ ssin to r...
k0004lem2 41647 A mapping with a particula...
k0004lem3 41648 When the value of a mappin...
k0004val 41649 The topological simplex of...
k0004ss1 41650 The topological simplex of...
k0004ss2 41651 The topological simplex of...
k0004ss3 41652 The topological simplex of...
k0004val0 41653 The topological simplex of...
inductionexd 41654 Simple induction example. ...
wwlemuld 41655 Natural deduction form of ...
leeq1d 41656 Specialization of ~ breq1d...
leeq2d 41657 Specialization of ~ breq2d...
absmulrposd 41658 Specialization of absmuld ...
imadisjld 41659 Natural dduction form of o...
imadisjlnd 41660 Natural deduction form of ...
wnefimgd 41661 The image of a mapping fro...
fco2d 41662 Natural deduction form of ...
wfximgfd 41663 The value of a function on...
extoimad 41664 If |f(x)| <= C for all x t...
imo72b2lem0 41665 Lemma for ~ imo72b2 . (Co...
suprleubrd 41666 Natural deduction form of ...
imo72b2lem2 41667 Lemma for ~ imo72b2 . (Co...
suprlubrd 41668 Natural deduction form of ...
imo72b2lem1 41669 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 41670 'Less than or equal to' re...
lemuldiv4d 41671 'Less than or equal to' re...
imo72b2 41672 IMO 1972 B2. (14th Intern...
int-addcomd 41673 AdditionCommutativity gene...
int-addassocd 41674 AdditionAssociativity gene...
int-addsimpd 41675 AdditionSimplification gen...
int-mulcomd 41676 MultiplicationCommutativit...
int-mulassocd 41677 MultiplicationAssociativit...
int-mulsimpd 41678 MultiplicationSimplificati...
int-leftdistd 41679 AdditionMultiplicationLeft...
int-rightdistd 41680 AdditionMultiplicationRigh...
int-sqdefd 41681 SquareDefinition generator...
int-mul11d 41682 First MultiplicationOne ge...
int-mul12d 41683 Second MultiplicationOne g...
int-add01d 41684 First AdditionZero generat...
int-add02d 41685 Second AdditionZero genera...
int-sqgeq0d 41686 SquareGEQZero generator ru...
int-eqprincd 41687 PrincipleOfEquality genera...
int-eqtransd 41688 EqualityTransitivity gener...
int-eqmvtd 41689 EquMoveTerm generator rule...
int-eqineqd 41690 EquivalenceImpliesDoubleIn...
int-ineqmvtd 41691 IneqMoveTerm generator rul...
int-ineq1stprincd 41692 FirstPrincipleOfInequality...
int-ineq2ndprincd 41693 SecondPrincipleOfInequalit...
int-ineqtransd 41694 InequalityTransitivity gen...
unitadd 41695 Theorem used in conjunctio...
gsumws3 41696 Valuation of a length 3 wo...
gsumws4 41697 Valuation of a length 4 wo...
amgm2d 41698 Arithmetic-geometric mean ...
amgm3d 41699 Arithmetic-geometric mean ...
amgm4d 41700 Arithmetic-geometric mean ...
spALT 41701 ~ sp can be proven from th...
elnelneqd 41702 Two classes are not equal ...
elnelneq2d 41703 Two classes are not equal ...
rr-spce 41704 Prove an existential. (Co...
rexlimdvaacbv 41705 Unpack a restricted existe...
rexlimddvcbvw 41706 Unpack a restricted existe...
rexlimddvcbv 41707 Unpack a restricted existe...
rr-elrnmpt3d 41708 Elementhood in an image se...
finnzfsuppd 41709 If a function is zero outs...
rr-phpd 41710 Equivalent of ~ php withou...
suceqd 41711 Deduction associated with ...
tfindsd 41712 Deduction associated with ...
mnringvald 41715 Value of the monoid ring f...
mnringnmulrd 41716 Components of a monoid rin...
mnringnmulrdOLD 41717 Obsolete version of ~ mnri...
mnringbased 41718 The base set of a monoid r...
mnringbasedOLD 41719 Obsolete version of ~ mnri...
mnringbaserd 41720 The base set of a monoid r...
mnringelbased 41721 Membership in the base set...
mnringbasefd 41722 Elements of a monoid ring ...
mnringbasefsuppd 41723 Elements of a monoid ring ...
mnringaddgd 41724 The additive operation of ...
mnringaddgdOLD 41725 Obsolete version of ~ mnri...
mnring0gd 41726 The additive identity of a...
mnring0g2d 41727 The additive identity of a...
mnringmulrd 41728 The ring product of a mono...
mnringscad 41729 The scalar ring of a monoi...
mnringscadOLD 41730 Obsolete version of ~ mnri...
mnringvscad 41731 The scalar product of a mo...
mnringvscadOLD 41732 Obsolete version of ~ mnri...
mnringlmodd 41733 Monoid rings are left modu...
mnringmulrvald 41734 Value of multiplication in...
mnringmulrcld 41735 Monoid rings are closed un...
gru0eld 41736 A nonempty Grothendieck un...
grusucd 41737 Grothendieck universes are...
r1rankcld 41738 Any rank of the cumulative...
grur1cld 41739 Grothendieck universes are...
grurankcld 41740 Grothendieck universes are...
grurankrcld 41741 If a Grothendieck universe...
scotteqd 41744 Equality theorem for the S...
scotteq 41745 Closed form of ~ scotteqd ...
nfscott 41746 Bound-variable hypothesis ...
scottabf 41747 Value of the Scott operati...
scottab 41748 Value of the Scott operati...
scottabes 41749 Value of the Scott operati...
scottss 41750 Scott's trick produces a s...
elscottab 41751 An element of the output o...
scottex2 41752 ~ scottex expressed using ...
scotteld 41753 The Scott operation sends ...
scottelrankd 41754 Property of a Scott's tric...
scottrankd 41755 Rank of a nonempty Scott's...
gruscottcld 41756 If a Grothendieck universe...
dfcoll2 41759 Alternate definition of th...
colleq12d 41760 Equality theorem for the c...
colleq1 41761 Equality theorem for the c...
colleq2 41762 Equality theorem for the c...
nfcoll 41763 Bound-variable hypothesis ...
collexd 41764 The output of the collecti...
cpcolld 41765 Property of the collection...
cpcoll2d 41766 ~ cpcolld with an extra ex...
grucollcld 41767 A Grothendieck universe co...
ismnu 41768 The hypothesis of this the...
mnuop123d 41769 Operations of a minimal un...
mnussd 41770 Minimal universes are clos...
mnuss2d 41771 ~ mnussd with arguments pr...
mnu0eld 41772 A nonempty minimal univers...
mnuop23d 41773 Second and third operation...
mnupwd 41774 Minimal universes are clos...
mnusnd 41775 Minimal universes are clos...
mnuprssd 41776 A minimal universe contain...
mnuprss2d 41777 Special case of ~ mnuprssd...
mnuop3d 41778 Third operation of a minim...
mnuprdlem1 41779 Lemma for ~ mnuprd . (Con...
mnuprdlem2 41780 Lemma for ~ mnuprd . (Con...
mnuprdlem3 41781 Lemma for ~ mnuprd . (Con...
mnuprdlem4 41782 Lemma for ~ mnuprd . Gene...
mnuprd 41783 Minimal universes are clos...
mnuunid 41784 Minimal universes are clos...
mnuund 41785 Minimal universes are clos...
mnutrcld 41786 Minimal universes contain ...
mnutrd 41787 Minimal universes are tran...
mnurndlem1 41788 Lemma for ~ mnurnd . (Con...
mnurndlem2 41789 Lemma for ~ mnurnd . Dedu...
mnurnd 41790 Minimal universes contain ...
mnugrud 41791 Minimal universes are Grot...
grumnudlem 41792 Lemma for ~ grumnud . (Co...
grumnud 41793 Grothendieck universes are...
grumnueq 41794 The class of Grothendieck ...
expandan 41795 Expand conjunction to prim...
expandexn 41796 Expand an existential quan...
expandral 41797 Expand a restricted univer...
expandrexn 41798 Expand a restricted existe...
expandrex 41799 Expand a restricted existe...
expanduniss 41800 Expand ` U. A C_ B ` to pr...
ismnuprim 41801 Express the predicate on `...
rr-grothprimbi 41802 Express "every set is cont...
inagrud 41803 Inaccessible levels of the...
inaex 41804 Assuming the Tarski-Grothe...
gruex 41805 Assuming the Tarski-Grothe...
rr-groth 41806 An equivalent of ~ ax-grot...
rr-grothprim 41807 An equivalent of ~ ax-grot...
ismnushort 41808 Express the predicate on `...
dfuniv2 41809 Alternative definition of ...
rr-grothshortbi 41810 Express "every set is cont...
rr-grothshort 41811 A shorter equivalent of ~ ...
nanorxor 41812 'nand' is equivalent to th...
undisjrab 41813 Union of two disjoint rest...
iso0 41814 The empty set is an ` R , ...
ssrecnpr 41815 ` RR ` is a subset of both...
seff 41816 Let set ` S ` be the real ...
sblpnf 41817 The infinity ball in the a...
prmunb2 41818 The primes are unbounded. ...
dvgrat 41819 Ratio test for divergence ...
cvgdvgrat 41820 Ratio test for convergence...
radcnvrat 41821 Let ` L ` be the limit, if...
reldvds 41822 The divides relation is in...
nznngen 41823 All positive integers in t...
nzss 41824 The set of multiples of _m...
nzin 41825 The intersection of the se...
nzprmdif 41826 Subtract one prime's multi...
hashnzfz 41827 Special case of ~ hashdvds...
hashnzfz2 41828 Special case of ~ hashnzfz...
hashnzfzclim 41829 As the upper bound ` K ` o...
caofcan 41830 Transfer a cancellation la...
ofsubid 41831 Function analogue of ~ sub...
ofmul12 41832 Function analogue of ~ mul...
ofdivrec 41833 Function analogue of ~ div...
ofdivcan4 41834 Function analogue of ~ div...
ofdivdiv2 41835 Function analogue of ~ div...
lhe4.4ex1a 41836 Example of the Fundamental...
dvsconst 41837 Derivative of a constant f...
dvsid 41838 Derivative of the identity...
dvsef 41839 Derivative of the exponent...
expgrowthi 41840 Exponential growth and dec...
dvconstbi 41841 The derivative of a functi...
expgrowth 41842 Exponential growth and dec...
bccval 41845 Value of the generalized b...
bcccl 41846 Closure of the generalized...
bcc0 41847 The generalized binomial c...
bccp1k 41848 Generalized binomial coeff...
bccm1k 41849 Generalized binomial coeff...
bccn0 41850 Generalized binomial coeff...
bccn1 41851 Generalized binomial coeff...
bccbc 41852 The binomial coefficient a...
uzmptshftfval 41853 When ` F ` is a maps-to fu...
dvradcnv2 41854 The radius of convergence ...
binomcxplemwb 41855 Lemma for ~ binomcxp . Th...
binomcxplemnn0 41856 Lemma for ~ binomcxp . Wh...
binomcxplemrat 41857 Lemma for ~ binomcxp . As...
binomcxplemfrat 41858 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 41859 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 41860 Lemma for ~ binomcxp . By...
binomcxplemcvg 41861 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 41862 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 41863 Lemma for ~ binomcxp . Wh...
binomcxp 41864 Generalize the binomial th...
pm10.12 41865 Theorem *10.12 in [Whitehe...
pm10.14 41866 Theorem *10.14 in [Whitehe...
pm10.251 41867 Theorem *10.251 in [Whiteh...
pm10.252 41868 Theorem *10.252 in [Whiteh...
pm10.253 41869 Theorem *10.253 in [Whiteh...
albitr 41870 Theorem *10.301 in [Whiteh...
pm10.42 41871 Theorem *10.42 in [Whitehe...
pm10.52 41872 Theorem *10.52 in [Whitehe...
pm10.53 41873 Theorem *10.53 in [Whitehe...
pm10.541 41874 Theorem *10.541 in [Whiteh...
pm10.542 41875 Theorem *10.542 in [Whiteh...
pm10.55 41876 Theorem *10.55 in [Whitehe...
pm10.56 41877 Theorem *10.56 in [Whitehe...
pm10.57 41878 Theorem *10.57 in [Whitehe...
2alanimi 41879 Removes two universal quan...
2al2imi 41880 Removes two universal quan...
pm11.11 41881 Theorem *11.11 in [Whitehe...
pm11.12 41882 Theorem *11.12 in [Whitehe...
19.21vv 41883 Compare Theorem *11.3 in [...
2alim 41884 Theorem *11.32 in [Whitehe...
2albi 41885 Theorem *11.33 in [Whitehe...
2exim 41886 Theorem *11.34 in [Whitehe...
2exbi 41887 Theorem *11.341 in [Whiteh...
spsbce-2 41888 Theorem *11.36 in [Whitehe...
19.33-2 41889 Theorem *11.421 in [Whiteh...
19.36vv 41890 Theorem *11.43 in [Whitehe...
19.31vv 41891 Theorem *11.44 in [Whitehe...
19.37vv 41892 Theorem *11.46 in [Whitehe...
19.28vv 41893 Theorem *11.47 in [Whitehe...
pm11.52 41894 Theorem *11.52 in [Whitehe...
aaanv 41895 Theorem *11.56 in [Whitehe...
pm11.57 41896 Theorem *11.57 in [Whitehe...
pm11.58 41897 Theorem *11.58 in [Whitehe...
pm11.59 41898 Theorem *11.59 in [Whitehe...
pm11.6 41899 Theorem *11.6 in [Whitehea...
pm11.61 41900 Theorem *11.61 in [Whitehe...
pm11.62 41901 Theorem *11.62 in [Whitehe...
pm11.63 41902 Theorem *11.63 in [Whitehe...
pm11.7 41903 Theorem *11.7 in [Whitehea...
pm11.71 41904 Theorem *11.71 in [Whitehe...
sbeqal1 41905 If ` x = y ` always implie...
sbeqal1i 41906 Suppose you know ` x = y `...
sbeqal2i 41907 If ` x = y ` implies ` x =...
axc5c4c711 41908 Proof of a theorem that ca...
axc5c4c711toc5 41909 Rederivation of ~ sp from ...
axc5c4c711toc4 41910 Rederivation of ~ axc4 fro...
axc5c4c711toc7 41911 Rederivation of ~ axc7 fro...
axc5c4c711to11 41912 Rederivation of ~ ax-11 fr...
axc11next 41913 This theorem shows that, g...
pm13.13a 41914 One result of theorem *13....
pm13.13b 41915 Theorem *13.13 in [Whitehe...
pm13.14 41916 Theorem *13.14 in [Whitehe...
pm13.192 41917 Theorem *13.192 in [Whiteh...
pm13.193 41918 Theorem *13.193 in [Whiteh...
pm13.194 41919 Theorem *13.194 in [Whiteh...
pm13.195 41920 Theorem *13.195 in [Whiteh...
pm13.196a 41921 Theorem *13.196 in [Whiteh...
2sbc6g 41922 Theorem *13.21 in [Whitehe...
2sbc5g 41923 Theorem *13.22 in [Whitehe...
iotain 41924 Equivalence between two di...
iotaexeu 41925 The iota class exists. Th...
iotasbc 41926 Definition *14.01 in [Whit...
iotasbc2 41927 Theorem *14.111 in [Whiteh...
pm14.12 41928 Theorem *14.12 in [Whitehe...
pm14.122a 41929 Theorem *14.122 in [Whiteh...
pm14.122b 41930 Theorem *14.122 in [Whiteh...
pm14.122c 41931 Theorem *14.122 in [Whiteh...
pm14.123a 41932 Theorem *14.123 in [Whiteh...
pm14.123b 41933 Theorem *14.123 in [Whiteh...
pm14.123c 41934 Theorem *14.123 in [Whiteh...
pm14.18 41935 Theorem *14.18 in [Whitehe...
iotaequ 41936 Theorem *14.2 in [Whitehea...
iotavalb 41937 Theorem *14.202 in [Whiteh...
iotasbc5 41938 Theorem *14.205 in [Whiteh...
pm14.24 41939 Theorem *14.24 in [Whitehe...
iotavalsb 41940 Theorem *14.242 in [Whiteh...
sbiota1 41941 Theorem *14.25 in [Whitehe...
sbaniota 41942 Theorem *14.26 in [Whitehe...
eubiOLD 41943 Obsolete proof of ~ eubi a...
iotasbcq 41944 Theorem *14.272 in [Whiteh...
elnev 41945 Any set that contains one ...
rusbcALT 41946 A version of Russell's par...
compeq 41947 Equality between two ways ...
compne 41948 The complement of ` A ` is...
compab 41949 Two ways of saying "the co...
conss2 41950 Contrapositive law for sub...
conss1 41951 Contrapositive law for sub...
ralbidar 41952 More general form of ~ ral...
rexbidar 41953 More general form of ~ rex...
dropab1 41954 Theorem to aid use of the ...
dropab2 41955 Theorem to aid use of the ...
ipo0 41956 If the identity relation p...
ifr0 41957 A class that is founded by...
ordpss 41958 ~ ordelpss with an anteced...
fvsb 41959 Explicit substitution of a...
fveqsb 41960 Implicit substitution of a...
xpexb 41961 A Cartesian product exists...
trelpss 41962 An element of a transitive...
addcomgi 41963 Generalization of commutat...
addrval 41973 Value of the operation of ...
subrval 41974 Value of the operation of ...
mulvval 41975 Value of the operation of ...
addrfv 41976 Vector addition at a value...
subrfv 41977 Vector subtraction at a va...
mulvfv 41978 Scalar multiplication at a...
addrfn 41979 Vector addition produces a...
subrfn 41980 Vector subtraction produce...
mulvfn 41981 Scalar multiplication prod...
addrcom 41982 Vector addition is commuta...
idiALT 41986 Placeholder for ~ idi . T...
exbir 41987 Exportation implication al...
3impexpbicom 41988 Version of ~ 3impexp where...
3impexpbicomi 41989 Inference associated with ...
bi1imp 41990 Importation inference simi...
bi2imp 41991 Importation inference simi...
bi3impb 41992 Similar to ~ 3impb with im...
bi3impa 41993 Similar to ~ 3impa with im...
bi23impib 41994 ~ 3impib with the inner im...
bi13impib 41995 ~ 3impib with the outer im...
bi123impib 41996 ~ 3impib with the implicat...
bi13impia 41997 ~ 3impia with the outer im...
bi123impia 41998 ~ 3impia with the implicat...
bi33imp12 41999 ~ 3imp with innermost impl...
bi23imp13 42000 ~ 3imp with middle implica...
bi13imp23 42001 ~ 3imp with outermost impl...
bi13imp2 42002 Similar to ~ 3imp except t...
bi12imp3 42003 Similar to ~ 3imp except a...
bi23imp1 42004 Similar to ~ 3imp except a...
bi123imp0 42005 Similar to ~ 3imp except a...
4animp1 42006 A single hypothesis unific...
4an31 42007 A rearrangement of conjunc...
4an4132 42008 A rearrangement of conjunc...
expcomdg 42009 Biconditional form of ~ ex...
iidn3 42010 ~ idn3 without virtual ded...
ee222 42011 ~ e222 without virtual ded...
ee3bir 42012 Right-biconditional form o...
ee13 42013 ~ e13 without virtual dedu...
ee121 42014 ~ e121 without virtual ded...
ee122 42015 ~ e122 without virtual ded...
ee333 42016 ~ e333 without virtual ded...
ee323 42017 ~ e323 without virtual ded...
3ornot23 42018 If the second and third di...
orbi1r 42019 ~ orbi1 with order of disj...
3orbi123 42020 ~ pm4.39 with a 3-conjunct...
syl5imp 42021 Closed form of ~ syl5 . D...
impexpd 42022 The following User's Proof...
com3rgbi 42023 The following User's Proof...
impexpdcom 42024 The following User's Proof...
ee1111 42025 Non-virtual deduction form...
pm2.43bgbi 42026 Logical equivalence of a 2...
pm2.43cbi 42027 Logical equivalence of a 3...
ee233 42028 Non-virtual deduction form...
imbi13 42029 Join three logical equival...
ee33 42030 Non-virtual deduction form...
con5 42031 Biconditional contrapositi...
con5i 42032 Inference form of ~ con5 ....
exlimexi 42033 Inference similar to Theor...
sb5ALT 42034 Equivalence for substituti...
eexinst01 42035 ~ exinst01 without virtual...
eexinst11 42036 ~ exinst11 without virtual...
vk15.4j 42037 Excercise 4j of Unit 15 of...
notnotrALT 42038 Converse of double negatio...
con3ALT2 42039 Contraposition. Alternate...
ssralv2 42040 Quantification restricted ...
sbc3or 42041 ~ sbcor with a 3-disjuncts...
alrim3con13v 42042 Closed form of ~ alrimi wi...
rspsbc2 42043 ~ rspsbc with two quantify...
sbcoreleleq 42044 Substitution of a setvar v...
tratrb 42045 If a class is transitive a...
ordelordALT 42046 An element of an ordinal c...
sbcim2g 42047 Distribution of class subs...
sbcbi 42048 Implication form of ~ sbcb...
trsbc 42049 Formula-building inference...
truniALT 42050 The union of a class of tr...
onfrALTlem5 42051 Lemma for ~ onfrALT . (Co...
onfrALTlem4 42052 Lemma for ~ onfrALT . (Co...
onfrALTlem3 42053 Lemma for ~ onfrALT . (Co...
ggen31 42054 ~ gen31 without virtual de...
onfrALTlem2 42055 Lemma for ~ onfrALT . (Co...
cbvexsv 42056 A theorem pertaining to th...
onfrALTlem1 42057 Lemma for ~ onfrALT . (Co...
onfrALT 42058 The membership relation is...
19.41rg 42059 Closed form of right-to-le...
opelopab4 42060 Ordered pair membership in...
2pm13.193 42061 ~ pm13.193 for two variabl...
hbntal 42062 A closed form of ~ hbn . ~...
hbimpg 42063 A closed form of ~ hbim . ...
hbalg 42064 Closed form of ~ hbal . D...
hbexg 42065 Closed form of ~ nfex . D...
ax6e2eq 42066 Alternate form of ~ ax6e f...
ax6e2nd 42067 If at least two sets exist...
ax6e2ndeq 42068 "At least two sets exist" ...
2sb5nd 42069 Equivalence for double sub...
2uasbanh 42070 Distribute the unabbreviat...
2uasban 42071 Distribute the unabbreviat...
e2ebind 42072 Absorption of an existenti...
elpwgded 42073 ~ elpwgdedVD in convention...
trelded 42074 Deduction form of ~ trel ....
jaoded 42075 Deduction form of ~ jao . ...
sbtT 42076 A substitution into a theo...
not12an2impnot1 42077 If a double conjunction is...
in1 42080 Inference form of ~ df-vd1...
iin1 42081 ~ in1 without virtual dedu...
dfvd1ir 42082 Inference form of ~ df-vd1...
idn1 42083 Virtual deduction identity...
dfvd1imp 42084 Left-to-right part of defi...
dfvd1impr 42085 Right-to-left part of defi...
dfvd2 42088 Definition of a 2-hypothes...
dfvd2an 42091 Definition of a 2-hypothes...
dfvd2ani 42092 Inference form of ~ dfvd2a...
dfvd2anir 42093 Right-to-left inference fo...
dfvd2i 42094 Inference form of ~ dfvd2 ...
dfvd2ir 42095 Right-to-left inference fo...
dfvd3 42100 Definition of a 3-hypothes...
dfvd3i 42101 Inference form of ~ dfvd3 ...
dfvd3ir 42102 Right-to-left inference fo...
dfvd3an 42103 Definition of a 3-hypothes...
dfvd3ani 42104 Inference form of ~ dfvd3a...
dfvd3anir 42105 Right-to-left inference fo...
vd01 42106 A virtual hypothesis virtu...
vd02 42107 Two virtual hypotheses vir...
vd03 42108 A theorem is virtually inf...
vd12 42109 A virtual deduction with 1...
vd13 42110 A virtual deduction with 1...
vd23 42111 A virtual deduction with 2...
dfvd2imp 42112 The virtual deduction form...
dfvd2impr 42113 A 2-antecedent nested impl...
in2 42114 The virtual deduction intr...
int2 42115 The virtual deduction intr...
iin2 42116 ~ in2 without virtual dedu...
in2an 42117 The virtual deduction intr...
in3 42118 The virtual deduction intr...
iin3 42119 ~ in3 without virtual dedu...
in3an 42120 The virtual deduction intr...
int3 42121 The virtual deduction intr...
idn2 42122 Virtual deduction identity...
iden2 42123 Virtual deduction identity...
idn3 42124 Virtual deduction identity...
gen11 42125 Virtual deduction generali...
gen11nv 42126 Virtual deduction generali...
gen12 42127 Virtual deduction generali...
gen21 42128 Virtual deduction generali...
gen21nv 42129 Virtual deduction form of ...
gen31 42130 Virtual deduction generali...
gen22 42131 Virtual deduction generali...
ggen22 42132 ~ gen22 without virtual de...
exinst 42133 Existential Instantiation....
exinst01 42134 Existential Instantiation....
exinst11 42135 Existential Instantiation....
e1a 42136 A Virtual deduction elimin...
el1 42137 A Virtual deduction elimin...
e1bi 42138 Biconditional form of ~ e1...
e1bir 42139 Right biconditional form o...
e2 42140 A virtual deduction elimin...
e2bi 42141 Biconditional form of ~ e2...
e2bir 42142 Right biconditional form o...
ee223 42143 ~ e223 without virtual ded...
e223 42144 A virtual deduction elimin...
e222 42145 A virtual deduction elimin...
e220 42146 A virtual deduction elimin...
ee220 42147 ~ e220 without virtual ded...
e202 42148 A virtual deduction elimin...
ee202 42149 ~ e202 without virtual ded...
e022 42150 A virtual deduction elimin...
ee022 42151 ~ e022 without virtual ded...
e002 42152 A virtual deduction elimin...
ee002 42153 ~ e002 without virtual ded...
e020 42154 A virtual deduction elimin...
ee020 42155 ~ e020 without virtual ded...
e200 42156 A virtual deduction elimin...
ee200 42157 ~ e200 without virtual ded...
e221 42158 A virtual deduction elimin...
ee221 42159 ~ e221 without virtual ded...
e212 42160 A virtual deduction elimin...
ee212 42161 ~ e212 without virtual ded...
e122 42162 A virtual deduction elimin...
e112 42163 A virtual deduction elimin...
ee112 42164 ~ e112 without virtual ded...
e121 42165 A virtual deduction elimin...
e211 42166 A virtual deduction elimin...
ee211 42167 ~ e211 without virtual ded...
e210 42168 A virtual deduction elimin...
ee210 42169 ~ e210 without virtual ded...
e201 42170 A virtual deduction elimin...
ee201 42171 ~ e201 without virtual ded...
e120 42172 A virtual deduction elimin...
ee120 42173 Virtual deduction rule ~ e...
e021 42174 A virtual deduction elimin...
ee021 42175 ~ e021 without virtual ded...
e012 42176 A virtual deduction elimin...
ee012 42177 ~ e012 without virtual ded...
e102 42178 A virtual deduction elimin...
ee102 42179 ~ e102 without virtual ded...
e22 42180 A virtual deduction elimin...
e22an 42181 Conjunction form of ~ e22 ...
ee22an 42182 ~ e22an without virtual de...
e111 42183 A virtual deduction elimin...
e1111 42184 A virtual deduction elimin...
e110 42185 A virtual deduction elimin...
ee110 42186 ~ e110 without virtual ded...
e101 42187 A virtual deduction elimin...
ee101 42188 ~ e101 without virtual ded...
e011 42189 A virtual deduction elimin...
ee011 42190 ~ e011 without virtual ded...
e100 42191 A virtual deduction elimin...
ee100 42192 ~ e100 without virtual ded...
e010 42193 A virtual deduction elimin...
ee010 42194 ~ e010 without virtual ded...
e001 42195 A virtual deduction elimin...
ee001 42196 ~ e001 without virtual ded...
e11 42197 A virtual deduction elimin...
e11an 42198 Conjunction form of ~ e11 ...
ee11an 42199 ~ e11an without virtual de...
e01 42200 A virtual deduction elimin...
e01an 42201 Conjunction form of ~ e01 ...
ee01an 42202 ~ e01an without virtual de...
e10 42203 A virtual deduction elimin...
e10an 42204 Conjunction form of ~ e10 ...
ee10an 42205 ~ e10an without virtual de...
e02 42206 A virtual deduction elimin...
e02an 42207 Conjunction form of ~ e02 ...
ee02an 42208 ~ e02an without virtual de...
eel021old 42209 ~ el021old without virtual...
el021old 42210 A virtual deduction elimin...
eel132 42211 ~ syl2an with antecedents ...
eel000cT 42212 An elimination deduction. ...
eel0TT 42213 An elimination deduction. ...
eelT00 42214 An elimination deduction. ...
eelTTT 42215 An elimination deduction. ...
eelT11 42216 An elimination deduction. ...
eelT1 42217 Syllogism inference combin...
eelT12 42218 An elimination deduction. ...
eelTT1 42219 An elimination deduction. ...
eelT01 42220 An elimination deduction. ...
eel0T1 42221 An elimination deduction. ...
eel12131 42222 An elimination deduction. ...
eel2131 42223 ~ syl2an with antecedents ...
eel3132 42224 ~ syl2an with antecedents ...
eel0321old 42225 ~ el0321old without virtua...
el0321old 42226 A virtual deduction elimin...
eel2122old 42227 ~ el2122old without virtua...
el2122old 42228 A virtual deduction elimin...
eel0000 42229 Elimination rule similar t...
eel00001 42230 An elimination deduction. ...
eel00000 42231 Elimination rule similar ~...
eel11111 42232 Five-hypothesis eliminatio...
e12 42233 A virtual deduction elimin...
e12an 42234 Conjunction form of ~ e12 ...
el12 42235 Virtual deduction form of ...
e20 42236 A virtual deduction elimin...
e20an 42237 Conjunction form of ~ e20 ...
ee20an 42238 ~ e20an without virtual de...
e21 42239 A virtual deduction elimin...
e21an 42240 Conjunction form of ~ e21 ...
ee21an 42241 ~ e21an without virtual de...
e333 42242 A virtual deduction elimin...
e33 42243 A virtual deduction elimin...
e33an 42244 Conjunction form of ~ e33 ...
ee33an 42245 ~ e33an without virtual de...
e3 42246 Meta-connective form of ~ ...
e3bi 42247 Biconditional form of ~ e3...
e3bir 42248 Right biconditional form o...
e03 42249 A virtual deduction elimin...
ee03 42250 ~ e03 without virtual dedu...
e03an 42251 Conjunction form of ~ e03 ...
ee03an 42252 Conjunction form of ~ ee03...
e30 42253 A virtual deduction elimin...
ee30 42254 ~ e30 without virtual dedu...
e30an 42255 A virtual deduction elimin...
ee30an 42256 Conjunction form of ~ ee30...
e13 42257 A virtual deduction elimin...
e13an 42258 A virtual deduction elimin...
ee13an 42259 ~ e13an without virtual de...
e31 42260 A virtual deduction elimin...
ee31 42261 ~ e31 without virtual dedu...
e31an 42262 A virtual deduction elimin...
ee31an 42263 ~ e31an without virtual de...
e23 42264 A virtual deduction elimin...
e23an 42265 A virtual deduction elimin...
ee23an 42266 ~ e23an without virtual de...
e32 42267 A virtual deduction elimin...
ee32 42268 ~ e32 without virtual dedu...
e32an 42269 A virtual deduction elimin...
ee32an 42270 ~ e33an without virtual de...
e123 42271 A virtual deduction elimin...
ee123 42272 ~ e123 without virtual ded...
el123 42273 A virtual deduction elimin...
e233 42274 A virtual deduction elimin...
e323 42275 A virtual deduction elimin...
e000 42276 A virtual deduction elimin...
e00 42277 Elimination rule identical...
e00an 42278 Elimination rule identical...
eel00cT 42279 An elimination deduction. ...
eelTT 42280 An elimination deduction. ...
e0a 42281 Elimination rule identical...
eelT 42282 An elimination deduction. ...
eel0cT 42283 An elimination deduction. ...
eelT0 42284 An elimination deduction. ...
e0bi 42285 Elimination rule identical...
e0bir 42286 Elimination rule identical...
uun0.1 42287 Convention notation form o...
un0.1 42288 ` T. ` is the constant tru...
uunT1 42289 A deduction unionizing a n...
uunT1p1 42290 A deduction unionizing a n...
uunT21 42291 A deduction unionizing a n...
uun121 42292 A deduction unionizing a n...
uun121p1 42293 A deduction unionizing a n...
uun132 42294 A deduction unionizing a n...
uun132p1 42295 A deduction unionizing a n...
anabss7p1 42296 A deduction unionizing a n...
un10 42297 A unionizing deduction. (...
un01 42298 A unionizing deduction. (...
un2122 42299 A deduction unionizing a n...
uun2131 42300 A deduction unionizing a n...
uun2131p1 42301 A deduction unionizing a n...
uunTT1 42302 A deduction unionizing a n...
uunTT1p1 42303 A deduction unionizing a n...
uunTT1p2 42304 A deduction unionizing a n...
uunT11 42305 A deduction unionizing a n...
uunT11p1 42306 A deduction unionizing a n...
uunT11p2 42307 A deduction unionizing a n...
uunT12 42308 A deduction unionizing a n...
uunT12p1 42309 A deduction unionizing a n...
uunT12p2 42310 A deduction unionizing a n...
uunT12p3 42311 A deduction unionizing a n...
uunT12p4 42312 A deduction unionizing a n...
uunT12p5 42313 A deduction unionizing a n...
uun111 42314 A deduction unionizing a n...
3anidm12p1 42315 A deduction unionizing a n...
3anidm12p2 42316 A deduction unionizing a n...
uun123 42317 A deduction unionizing a n...
uun123p1 42318 A deduction unionizing a n...
uun123p2 42319 A deduction unionizing a n...
uun123p3 42320 A deduction unionizing a n...
uun123p4 42321 A deduction unionizing a n...
uun2221 42322 A deduction unionizing a n...
uun2221p1 42323 A deduction unionizing a n...
uun2221p2 42324 A deduction unionizing a n...
3impdirp1 42325 A deduction unionizing a n...
3impcombi 42326 A 1-hypothesis proposition...
trsspwALT 42327 Virtual deduction proof of...
trsspwALT2 42328 Virtual deduction proof of...
trsspwALT3 42329 Short predicate calculus p...
sspwtr 42330 Virtual deduction proof of...
sspwtrALT 42331 Virtual deduction proof of...
sspwtrALT2 42332 Short predicate calculus p...
pwtrVD 42333 Virtual deduction proof of...
pwtrrVD 42334 Virtual deduction proof of...
suctrALT 42335 The successor of a transit...
snssiALTVD 42336 Virtual deduction proof of...
snssiALT 42337 If a class is an element o...
snsslVD 42338 Virtual deduction proof of...
snssl 42339 If a singleton is a subcla...
snelpwrVD 42340 Virtual deduction proof of...
unipwrVD 42341 Virtual deduction proof of...
unipwr 42342 A class is a subclass of t...
sstrALT2VD 42343 Virtual deduction proof of...
sstrALT2 42344 Virtual deduction proof of...
suctrALT2VD 42345 Virtual deduction proof of...
suctrALT2 42346 Virtual deduction proof of...
elex2VD 42347 Virtual deduction proof of...
elex22VD 42348 Virtual deduction proof of...
eqsbc2VD 42349 Virtual deduction proof of...
zfregs2VD 42350 Virtual deduction proof of...
tpid3gVD 42351 Virtual deduction proof of...
en3lplem1VD 42352 Virtual deduction proof of...
en3lplem2VD 42353 Virtual deduction proof of...
en3lpVD 42354 Virtual deduction proof of...
simplbi2VD 42355 Virtual deduction proof of...
3ornot23VD 42356 Virtual deduction proof of...
orbi1rVD 42357 Virtual deduction proof of...
bitr3VD 42358 Virtual deduction proof of...
3orbi123VD 42359 Virtual deduction proof of...
sbc3orgVD 42360 Virtual deduction proof of...
19.21a3con13vVD 42361 Virtual deduction proof of...
exbirVD 42362 Virtual deduction proof of...
exbiriVD 42363 Virtual deduction proof of...
rspsbc2VD 42364 Virtual deduction proof of...
3impexpVD 42365 Virtual deduction proof of...
3impexpbicomVD 42366 Virtual deduction proof of...
3impexpbicomiVD 42367 Virtual deduction proof of...
sbcoreleleqVD 42368 Virtual deduction proof of...
hbra2VD 42369 Virtual deduction proof of...
tratrbVD 42370 Virtual deduction proof of...
al2imVD 42371 Virtual deduction proof of...
syl5impVD 42372 Virtual deduction proof of...
idiVD 42373 Virtual deduction proof of...
ancomstVD 42374 Closed form of ~ ancoms . ...
ssralv2VD 42375 Quantification restricted ...
ordelordALTVD 42376 An element of an ordinal c...
equncomVD 42377 If a class equals the unio...
equncomiVD 42378 Inference form of ~ equnco...
sucidALTVD 42379 A set belongs to its succe...
sucidALT 42380 A set belongs to its succe...
sucidVD 42381 A set belongs to its succe...
imbi12VD 42382 Implication form of ~ imbi...
imbi13VD 42383 Join three logical equival...
sbcim2gVD 42384 Distribution of class subs...
sbcbiVD 42385 Implication form of ~ sbcb...
trsbcVD 42386 Formula-building inference...
truniALTVD 42387 The union of a class of tr...
ee33VD 42388 Non-virtual deduction form...
trintALTVD 42389 The intersection of a clas...
trintALT 42390 The intersection of a clas...
undif3VD 42391 The first equality of Exer...
sbcssgVD 42392 Virtual deduction proof of...
csbingVD 42393 Virtual deduction proof of...
onfrALTlem5VD 42394 Virtual deduction proof of...
onfrALTlem4VD 42395 Virtual deduction proof of...
onfrALTlem3VD 42396 Virtual deduction proof of...
simplbi2comtVD 42397 Virtual deduction proof of...
onfrALTlem2VD 42398 Virtual deduction proof of...
onfrALTlem1VD 42399 Virtual deduction proof of...
onfrALTVD 42400 Virtual deduction proof of...
csbeq2gVD 42401 Virtual deduction proof of...
csbsngVD 42402 Virtual deduction proof of...
csbxpgVD 42403 Virtual deduction proof of...
csbresgVD 42404 Virtual deduction proof of...
csbrngVD 42405 Virtual deduction proof of...
csbima12gALTVD 42406 Virtual deduction proof of...
csbunigVD 42407 Virtual deduction proof of...
csbfv12gALTVD 42408 Virtual deduction proof of...
con5VD 42409 Virtual deduction proof of...
relopabVD 42410 Virtual deduction proof of...
19.41rgVD 42411 Virtual deduction proof of...
2pm13.193VD 42412 Virtual deduction proof of...
hbimpgVD 42413 Virtual deduction proof of...
hbalgVD 42414 Virtual deduction proof of...
hbexgVD 42415 Virtual deduction proof of...
ax6e2eqVD 42416 The following User's Proof...
ax6e2ndVD 42417 The following User's Proof...
ax6e2ndeqVD 42418 The following User's Proof...
2sb5ndVD 42419 The following User's Proof...
2uasbanhVD 42420 The following User's Proof...
e2ebindVD 42421 The following User's Proof...
sb5ALTVD 42422 The following User's Proof...
vk15.4jVD 42423 The following User's Proof...
notnotrALTVD 42424 The following User's Proof...
con3ALTVD 42425 The following User's Proof...
elpwgdedVD 42426 Membership in a power clas...
sspwimp 42427 If a class is a subclass o...
sspwimpVD 42428 The following User's Proof...
sspwimpcf 42429 If a class is a subclass o...
sspwimpcfVD 42430 The following User's Proof...
suctrALTcf 42431 The sucessor of a transiti...
suctrALTcfVD 42432 The following User's Proof...
suctrALT3 42433 The successor of a transit...
sspwimpALT 42434 If a class is a subclass o...
unisnALT 42435 A set equals the union of ...
notnotrALT2 42436 Converse of double negatio...
sspwimpALT2 42437 If a class is a subclass o...
e2ebindALT 42438 Absorption of an existenti...
ax6e2ndALT 42439 If at least two sets exist...
ax6e2ndeqALT 42440 "At least two sets exist" ...
2sb5ndALT 42441 Equivalence for double sub...
chordthmALT 42442 The intersecting chords th...
isosctrlem1ALT 42443 Lemma for ~ isosctr . Thi...
iunconnlem2 42444 The indexed union of conne...
iunconnALT 42445 The indexed union of conne...
sineq0ALT 42446 A complex number whose sin...
evth2f 42447 A version of ~ evth2 using...
elunif 42448 A version of ~ eluni using...
rzalf 42449 A version of ~ rzal using ...
fvelrnbf 42450 A version of ~ fvelrnb usi...
rfcnpre1 42451 If F is a continuous funct...
ubelsupr 42452 If U belongs to A and U is...
fsumcnf 42453 A finite sum of functions ...
mulltgt0 42454 The product of a negative ...
rspcegf 42455 A version of ~ rspcev usin...
rabexgf 42456 A version of ~ rabexg usin...
fcnre 42457 A function continuous with...
sumsnd 42458 A sum of a singleton is th...
evthf 42459 A version of ~ evth using ...
cnfex 42460 The class of continuous fu...
fnchoice 42461 For a finite set, a choice...
refsumcn 42462 A finite sum of continuous...
rfcnpre2 42463 If ` F ` is a continuous f...
cncmpmax 42464 When the hypothesis for th...
rfcnpre3 42465 If F is a continuous funct...
rfcnpre4 42466 If F is a continuous funct...
sumpair 42467 Sum of two distinct comple...
rfcnnnub 42468 Given a real continuous fu...
refsum2cnlem1 42469 This is the core Lemma for...
refsum2cn 42470 The sum of two continuus r...
elunnel2 42471 A member of a union that i...
adantlllr 42472 Deduction adding a conjunc...
3adantlr3 42473 Deduction adding a conjunc...
nnxrd 42474 A natural number is an ext...
3adantll2 42475 Deduction adding a conjunc...
3adantll3 42476 Deduction adding a conjunc...
ssnel 42477 If not element of a set, t...
elabrexg 42478 Elementhood in an image se...
sncldre 42479 A singleton is closed w.r....
n0p 42480 A polynomial with a nonzer...
pm2.65ni 42481 Inference rule for proof b...
pwssfi 42482 Every element of the power...
iuneq2df 42483 Equality deduction for ind...
nnfoctb 42484 There exists a mapping fro...
ssinss1d 42485 Intersection preserves sub...
elpwinss 42486 An element of the powerset...
unidmex 42487 If ` F ` is a set, then ` ...
ndisj2 42488 A non-disjointness conditi...
zenom 42489 The set of integer numbers...
uzwo4 42490 Well-ordering principle: a...
unisn0 42491 The union of the singleton...
ssin0 42492 If two classes are disjoin...
inabs3 42493 Absorption law for interse...
pwpwuni 42494 Relationship between power...
disjiun2 42495 In a disjoint collection, ...
0pwfi 42496 The empty set is in any po...
ssinss2d 42497 Intersection preserves sub...
zct 42498 The set of integer numbers...
pwfin0 42499 A finite set always belong...
uzct 42500 An upper integer set is co...
iunxsnf 42501 A singleton index picks ou...
fiiuncl 42502 If a set is closed under t...
iunp1 42503 The addition of the next s...
fiunicl 42504 If a set is closed under t...
ixpeq2d 42505 Equality theorem for infin...
disjxp1 42506 The sets of a cartesian pr...
disjsnxp 42507 The sets in the cartesian ...
eliind 42508 Membership in indexed inte...
rspcef 42509 Restricted existential spe...
inn0f 42510 A nonempty intersection. ...
ixpssmapc 42511 An infinite Cartesian prod...
inn0 42512 A nonempty intersection. ...
elintd 42513 Membership in class inters...
ssdf 42514 A sufficient condition for...
brneqtrd 42515 Substitution of equal clas...
ssnct 42516 A set containing an uncoun...
ssuniint 42517 Sufficient condition for b...
elintdv 42518 Membership in class inters...
ssd 42519 A sufficient condition for...
ralimralim 42520 Introducing any antecedent...
snelmap 42521 Membership of the element ...
xrnmnfpnf 42522 An extended real that is n...
nelrnmpt 42523 Non-membership in the rang...
iuneq1i 42524 Equality theorem for index...
nssrex 42525 Negation of subclass relat...
ssinc 42526 Inclusion relation for a m...
ssdec 42527 Inclusion relation for a m...
elixpconstg 42528 Membership in an infinite ...
iineq1d 42529 Equality theorem for index...
metpsmet 42530 A metric is a pseudometric...
ixpssixp 42531 Subclass theorem for infin...
ballss3 42532 A sufficient condition for...
iunincfi 42533 Given a sequence of increa...
nsstr 42534 If it's not a subclass, it...
rexanuz3 42535 Combine two different uppe...
cbvmpo2 42536 Rule to change the second ...
cbvmpo1 42537 Rule to change the first b...
eliuniin 42538 Indexed union of indexed i...
ssabf 42539 Subclass of a class abstra...
pssnssi 42540 A proper subclass does not...
rabidim2 42541 Membership in a restricted...
eluni2f 42542 Membership in class union....
eliin2f 42543 Membership in indexed inte...
nssd 42544 Negation of subclass relat...
iineq12dv 42545 Equality deduction for ind...
supxrcld 42546 The supremum of an arbitra...
elrestd 42547 A sufficient condition for...
eliuniincex 42548 Counterexample to show tha...
eliincex 42549 Counterexample to show tha...
eliinid 42550 Membership in an indexed i...
abssf 42551 Class abstraction in a sub...
supxrubd 42552 A member of a set of exten...
ssrabf 42553 Subclass of a restricted c...
eliin2 42554 Membership in indexed inte...
ssrab2f 42555 Subclass relation for a re...
restuni3 42556 The underlying set of a su...
rabssf 42557 Restricted class abstracti...
eliuniin2 42558 Indexed union of indexed i...
restuni4 42559 The underlying set of a su...
restuni6 42560 The underlying set of a su...
restuni5 42561 The underlying set of a su...
unirestss 42562 The union of an elementwis...
iniin1 42563 Indexed intersection of in...
iniin2 42564 Indexed intersection of in...
cbvrabv2 42565 A more general version of ...
cbvrabv2w 42566 A more general version of ...
iinssiin 42567 Subset implication for an ...
eliind2 42568 Membership in indexed inte...
iinssd 42569 Subset implication for an ...
rabbida2 42570 Equivalent wff's yield equ...
iinexd 42571 The existence of an indexe...
rabexf 42572 Separation Scheme in terms...
rabbida3 42573 Equivalent wff's yield equ...
r19.36vf 42574 Restricted quantifier vers...
raleqd 42575 Equality deduction for res...
iinssf 42576 Subset implication for an ...
iinssdf 42577 Subset implication for an ...
resabs2i 42578 Absorption law for restric...
ssdf2 42579 A sufficient condition for...
rabssd 42580 Restricted class abstracti...
rexnegd 42581 Minus a real number. (Con...
rexlimd3 42582 * Inference from Theorem 1...
resabs1i 42583 Absorption law for restric...
nel1nelin 42584 Membership in an intersect...
nel2nelin 42585 Membership in an intersect...
nel1nelini 42586 Membership in an intersect...
nel2nelini 42587 Membership in an intersect...
eliunid 42588 Membership in indexed unio...
reximddv3 42589 Deduction from Theorem 19....
reximdd 42590 Deduction from Theorem 19....
unfid 42591 The union of two finite se...
feq1dd 42592 Equality deduction for fun...
fnresdmss 42593 A function does not change...
fmptsnxp 42594 Maps-to notation and Carte...
fvmpt2bd 42595 Value of a function given ...
rnmptfi 42596 The range of a function wi...
fresin2 42597 Restriction of a function ...
ffi 42598 A function with finite dom...
suprnmpt 42599 An explicit bound for the ...
rnffi 42600 The range of a function wi...
mptelpm 42601 A function in maps-to nota...
rnmptpr 42602 Range of a function define...
resmpti 42603 Restriction of the mapping...
founiiun 42604 Union expressed as an inde...
rnresun 42605 Distribution law for range...
dffo3f 42606 An onto mapping expressed ...
elrnmptf 42607 The range of a function in...
rnmptssrn 42608 Inclusion relation for two...
disjf1 42609 A 1 to 1 mapping built fro...
rnsnf 42610 The range of a function wh...
wessf1ornlem 42611 Given a function ` F ` on ...
wessf1orn 42612 Given a function ` F ` on ...
foelrnf 42613 Property of a surjective f...
nelrnres 42614 If ` A ` is not in the ran...
disjrnmpt2 42615 Disjointness of the range ...
elrnmpt1sf 42616 Elementhood in an image se...
founiiun0 42617 Union expressed as an inde...
disjf1o 42618 A bijection built from dis...
fompt 42619 Express being onto for a m...
disjinfi 42620 Only a finite number of di...
fvovco 42621 Value of the composition o...
ssnnf1octb 42622 There exists a bijection b...
nnf1oxpnn 42623 There is a bijection betwe...
rnmptssd 42624 The range of an operation ...
projf1o 42625 A biijection from a set to...
fvmap 42626 Function value for a membe...
fvixp2 42627 Projection of a factor of ...
fidmfisupp 42628 A function with a finite d...
choicefi 42629 For a finite set, a choice...
mpct 42630 The exponentiation of a co...
cnmetcoval 42631 Value of the distance func...
fcomptss 42632 Express composition of two...
elmapsnd 42633 Membership in a set expone...
mapss2 42634 Subset inheritance for set...
fsneq 42635 Equality condition for two...
difmap 42636 Difference of two sets exp...
unirnmap 42637 Given a subset of a set ex...
inmap 42638 Intersection of two sets e...
fcoss 42639 Composition of two mapping...
fsneqrn 42640 Equality condition for two...
difmapsn 42641 Difference of two sets exp...
mapssbi 42642 Subset inheritance for set...
unirnmapsn 42643 Equality theorem for a sub...
iunmapss 42644 The indexed union of set e...
ssmapsn 42645 A subset ` C ` of a set ex...
iunmapsn 42646 The indexed union of set e...
absfico 42647 Mapping domain and codomai...
icof 42648 The set of left-closed rig...
elpmrn 42649 The range of a partial fun...
imaexi 42650 The image of a set is a se...
axccdom 42651 Relax the constraint on ax...
dmmptdf 42652 The domain of the mapping ...
elpmi2 42653 The domain of a partial fu...
dmrelrnrel 42654 A relation preserving func...
fvcod 42655 Value of a function compos...
elrnmpoid 42656 Membership in the range of...
axccd 42657 An alternative version of ...
axccd2 42658 An alternative version of ...
funimassd 42659 Sufficient condition for t...
fimassd 42660 The image of a class is a ...
feqresmptf 42661 Express a restricted funct...
elrnmpt1d 42662 Elementhood in an image se...
dmresss 42663 The domain of a restrictio...
dmmptssf 42664 The domain of a mapping is...
dmmptdf2 42665 The domain of the mapping ...
dmuz 42666 Domain of the upper intege...
fmptd2f 42667 Domain and codomain of the...
mpteq1df 42668 An equality theorem for th...
mpteq1dfOLD 42669 Obsolete version of ~ mpte...
mptexf 42670 If the domain of a functio...
fvmpt4 42671 Value of a function given ...
fmptf 42672 Functionality of the mappi...
resimass 42673 The image of a restriction...
mptssid 42674 The mapping operation expr...
mptfnd 42675 The maps-to notation defin...
mpteq12daOLD 42676 Obsolete version of ~ mpte...
rnmptlb 42677 Boundness below of the ran...
rnmptbddlem 42678 Boundness of the range of ...
rnmptbdd 42679 Boundness of the range of ...
mptima2 42680 Image of a function in map...
funimaeq 42681 Membership relation for th...
rnmptssf 42682 The range of an operation ...
rnmptbd2lem 42683 Boundness below of the ran...
rnmptbd2 42684 Boundness below of the ran...
infnsuprnmpt 42685 The indexed infimum of rea...
suprclrnmpt 42686 Closure of the indexed sup...
suprubrnmpt2 42687 A member of a nonempty ind...
suprubrnmpt 42688 A member of a nonempty ind...
rnmptssdf 42689 The range of an operation ...
rnmptbdlem 42690 Boundness above of the ran...
rnmptbd 42691 Boundness above of the ran...
rnmptss2 42692 The range of an operation ...
elmptima 42693 The image of a function in...
ralrnmpt3 42694 A restricted quantifier ov...
fvelima2 42695 Function value in an image...
rnmptssbi 42696 The range of an operation ...
fnfvelrnd 42697 A function's value belongs...
imass2d 42698 Subset theorem for image. ...
imassmpt 42699 Membership relation for th...
fpmd 42700 A total function is a part...
fconst7 42701 An alternative way to expr...
sub2times 42702 Subtracting from a number,...
abssubrp 42703 The distance of two distin...
elfzfzo 42704 Relationship between membe...
oddfl 42705 Odd number representation ...
abscosbd 42706 Bound for the absolute val...
mul13d 42707 Commutative/associative la...
negpilt0 42708 Negative ` _pi ` is negati...
dstregt0 42709 A complex number ` A ` tha...
subadd4b 42710 Rearrangement of 4 terms i...
xrlttri5d 42711 Not equal and not larger i...
neglt 42712 The negative of a positive...
zltlesub 42713 If an integer ` N ` is les...
divlt0gt0d 42714 The ratio of a negative nu...
subsub23d 42715 Swap subtrahend and result...
2timesgt 42716 Double of a positive real ...
reopn 42717 The reals are open with re...
elfzop1le2 42718 A member in a half-open in...
sub31 42719 Swap the first and third t...
nnne1ge2 42720 A positive integer which i...
lefldiveq 42721 A closed enough, smaller r...
negsubdi3d 42722 Distribution of negative o...
ltdiv2dd 42723 Division of a positive num...
abssinbd 42724 Bound for the absolute val...
halffl 42725 Floor of ` ( 1 / 2 ) ` . ...
monoords 42726 Ordering relation for a st...
hashssle 42727 The size of a subset of a ...
lttri5d 42728 Not equal and not larger i...
fzisoeu 42729 A finite ordered set has a...
lt3addmuld 42730 If three real numbers are ...
absnpncan2d 42731 Triangular inequality, com...
fperiodmullem 42732 A function with period ` T...
fperiodmul 42733 A function with period T i...
upbdrech 42734 Choice of an upper bound f...
lt4addmuld 42735 If four real numbers are l...
absnpncan3d 42736 Triangular inequality, com...
upbdrech2 42737 Choice of an upper bound f...
ssfiunibd 42738 A finite union of bounded ...
fzdifsuc2 42739 Remove a successor from th...
fzsscn 42740 A finite sequence of integ...
divcan8d 42741 A cancellation law for div...
dmmcand 42742 Cancellation law for divis...
fzssre 42743 A finite sequence of integ...
bccld 42744 A binomial coefficient, in...
leadd12dd 42745 Addition to both sides of ...
fzssnn0 42746 A finite set of sequential...
xreqle 42747 Equality implies 'less tha...
xaddid2d 42748 ` 0 ` is a left identity f...
xadd0ge 42749 A number is less than or e...
elfzolem1 42750 A member in a half-open in...
xrgtned 42751 'Greater than' implies not...
xrleneltd 42752 'Less than or equal to' an...
xaddcomd 42753 The extended real addition...
supxrre3 42754 The supremum of a nonempty...
uzfissfz 42755 For any finite subset of t...
xleadd2d 42756 Addition of extended reals...
suprltrp 42757 The supremum of a nonempty...
xleadd1d 42758 Addition of extended reals...
xreqled 42759 Equality implies 'less tha...
xrgepnfd 42760 An extended real greater t...
xrge0nemnfd 42761 A nonnegative extended rea...
supxrgere 42762 If a real number can be ap...
iuneqfzuzlem 42763 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 42764 If two unions indexed by u...
xle2addd 42765 Adding both side of two in...
supxrgelem 42766 If an extended real number...
supxrge 42767 If an extended real number...
suplesup 42768 If any element of ` A ` ca...
infxrglb 42769 The infimum of a set of ex...
xadd0ge2 42770 A number is less than or e...
nepnfltpnf 42771 An extended real that is n...
ltadd12dd 42772 Addition to both sides of ...
nemnftgtmnft 42773 An extended real that is n...
xrgtso 42774 'Greater than' is a strict...
rpex 42775 The positive reals form a ...
xrge0ge0 42776 A nonnegative extended rea...
xrssre 42777 A subset of extended reals...
ssuzfz 42778 A finite subset of the upp...
absfun 42779 The absolute value is a fu...
infrpge 42780 The infimum of a nonempty,...
xrlexaddrp 42781 If an extended real number...
supsubc 42782 The supremum function dist...
xralrple2 42783 Show that ` A ` is less th...
nnuzdisj 42784 The first ` N ` elements o...
ltdivgt1 42785 Divsion by a number greate...
xrltned 42786 'Less than' implies not eq...
nnsplit 42787 Express the set of positiv...
divdiv3d 42788 Division into a fraction. ...
abslt2sqd 42789 Comparison of the square o...
qenom 42790 The set of rational number...
qct 42791 The set of rational number...
xrltnled 42792 'Less than' in terms of 'l...
lenlteq 42793 'less than or equal to' bu...
xrred 42794 An extended real that is n...
rr2sscn2 42795 The cartesian square of ` ...
infxr 42796 The infimum of a set of ex...
infxrunb2 42797 The infimum of an unbounde...
infxrbnd2 42798 The infimum of a bounded-b...
infleinflem1 42799 Lemma for ~ infleinf , cas...
infleinflem2 42800 Lemma for ~ infleinf , whe...
infleinf 42801 If any element of ` B ` ca...
xralrple4 42802 Show that ` A ` is less th...
xralrple3 42803 Show that ` A ` is less th...
eluzelzd 42804 A member of an upper set o...
suplesup2 42805 If any element of ` A ` is...
recnnltrp 42806 ` N ` is a natural number ...
nnn0 42807 The set of positive intege...
fzct 42808 A finite set of sequential...
rpgtrecnn 42809 Any positive real number i...
fzossuz 42810 A half-open integer interv...
infxrrefi 42811 The real and extended real...
xrralrecnnle 42812 Show that ` A ` is less th...
fzoct 42813 A finite set of sequential...
frexr 42814 A function taking real val...
nnrecrp 42815 The reciprocal of a positi...
reclt0d 42816 The reciprocal of a negati...
lt0neg1dd 42817 If a number is negative, i...
mnfled 42818 Minus infinity is less tha...
infxrcld 42819 The infimum of an arbitrar...
xrralrecnnge 42820 Show that ` A ` is less th...
reclt0 42821 The reciprocal of a negati...
ltmulneg 42822 Multiplying by a negative ...
allbutfi 42823 For all but finitely many....
ltdiv23neg 42824 Swap denominator with othe...
xreqnltd 42825 A consequence of trichotom...
mnfnre2 42826 Minus infinity is not a re...
zssxr 42827 The integers are a subset ...
fisupclrnmpt 42828 A nonempty finite indexed ...
supxrunb3 42829 The supremum of an unbound...
elfzod 42830 Membership in a half-open ...
fimaxre4 42831 A nonempty finite set of r...
ren0 42832 The set of reals is nonemp...
eluzelz2 42833 A member of an upper set o...
resabs2d 42834 Absorption law for restric...
uzid2 42835 Membership of the least me...
supxrleubrnmpt 42836 The supremum of a nonempty...
uzssre2 42837 An upper set of integers i...
uzssd 42838 Subset relationship for tw...
eluzd 42839 Membership in an upper set...
infxrlbrnmpt2 42840 A member of a nonempty ind...
xrre4 42841 An extended real is real i...
uz0 42842 The upper integers functio...
eluzelz2d 42843 A member of an upper set o...
infleinf2 42844 If any element in ` B ` is...
unb2ltle 42845 "Unbounded below" expresse...
uzidd2 42846 Membership of the least me...
uzssd2 42847 Subset relationship for tw...
rexabslelem 42848 An indexed set of absolute...
rexabsle 42849 An indexed set of absolute...
allbutfiinf 42850 Given a "for all but finit...
supxrrernmpt 42851 The real and extended real...
suprleubrnmpt 42852 The supremum of a nonempty...
infrnmptle 42853 An indexed infimum of exte...
infxrunb3 42854 The infimum of an unbounde...
uzn0d 42855 The upper integers are all...
uzssd3 42856 Subset relationship for tw...
rexabsle2 42857 An indexed set of absolute...
infxrunb3rnmpt 42858 The infimum of an unbounde...
supxrre3rnmpt 42859 The indexed supremum of a ...
uzublem 42860 A set of reals, indexed by...
uzub 42861 A set of reals, indexed by...
ssrexr 42862 A subset of the reals is a...
supxrmnf2 42863 Removing minus infinity fr...
supxrcli 42864 The supremum of an arbitra...
uzid3 42865 Membership of the least me...
infxrlesupxr 42866 The supremum of a nonempty...
xnegeqd 42867 Equality of two extended n...
xnegrecl 42868 The extended real negative...
xnegnegi 42869 Extended real version of ~...
xnegeqi 42870 Equality of two extended n...
nfxnegd 42871 Deduction version of ~ nfx...
xnegnegd 42872 Extended real version of ~...
uzred 42873 An upper integer is a real...
xnegcli 42874 Closure of extended real n...
supminfrnmpt 42875 The indexed supremum of a ...
infxrpnf 42876 Adding plus infinity to a ...
infxrrnmptcl 42877 The infimum of an arbitrar...
leneg2d 42878 Negative of one side of 'l...
supxrltinfxr 42879 The supremum of the empty ...
max1d 42880 A number is less than or e...
supxrleubrnmptf 42881 The supremum of a nonempty...
nleltd 42882 'Not less than or equal to...
zxrd 42883 An integer is an extended ...
infxrgelbrnmpt 42884 The infimum of an indexed ...
rphalfltd 42885 Half of a positive real is...
uzssz2 42886 An upper set of integers i...
leneg3d 42887 Negative of one side of 'l...
max2d 42888 A number is less than or e...
uzn0bi 42889 The upper integers functio...
xnegrecl2 42890 If the extended real negat...
nfxneg 42891 Bound-variable hypothesis ...
uzxrd 42892 An upper integer is an ext...
infxrpnf2 42893 Removing plus infinity fro...
supminfxr 42894 The extended real suprema ...
infrpgernmpt 42895 The infimum of a nonempty,...
xnegre 42896 An extended real is real i...
xnegrecl2d 42897 If the extended real negat...
uzxr 42898 An upper integer is an ext...
supminfxr2 42899 The extended real suprema ...
xnegred 42900 An extended real is real i...
supminfxrrnmpt 42901 The indexed supremum of a ...
min1d 42902 The minimum of two numbers...
min2d 42903 The minimum of two numbers...
pnfged 42904 Plus infinity is an upper ...
xrnpnfmnf 42905 An extended real that is n...
uzsscn 42906 An upper set of integers i...
absimnre 42907 The absolute value of the ...
uzsscn2 42908 An upper set of integers i...
xrtgcntopre 42909 The standard topologies on...
absimlere 42910 The absolute value of the ...
rpssxr 42911 The positive reals are a s...
monoordxrv 42912 Ordering relation for a mo...
monoordxr 42913 Ordering relation for a mo...
monoord2xrv 42914 Ordering relation for a mo...
monoord2xr 42915 Ordering relation for a mo...
xrpnf 42916 An extended real is plus i...
xlenegcon1 42917 Extended real version of ~...
xlenegcon2 42918 Extended real version of ~...
gtnelioc 42919 A real number larger than ...
ioossioc 42920 An open interval is a subs...
ioondisj2 42921 A condition for two open i...
ioondisj1 42922 A condition for two open i...
ioogtlb 42923 An element of a closed int...
evthiccabs 42924 Extreme Value Theorem on y...
ltnelicc 42925 A real number smaller than...
eliood 42926 Membership in an open real...
iooabslt 42927 An upper bound for the dis...
gtnelicc 42928 A real number greater than...
iooinlbub 42929 An open interval has empty...
iocgtlb 42930 An element of a left-open ...
iocleub 42931 An element of a left-open ...
eliccd 42932 Membership in a closed rea...
eliccre 42933 A member of a closed inter...
eliooshift 42934 Element of an open interva...
eliocd 42935 Membership in a left-open ...
icoltub 42936 An element of a left-close...
eliocre 42937 A member of a left-open ri...
iooltub 42938 An element of an open inte...
ioontr 42939 The interior of an interva...
snunioo1 42940 The closure of one end of ...
lbioc 42941 A left-open right-closed i...
ioomidp 42942 The midpoint is an element...
iccdifioo 42943 If the open inverval is re...
iccdifprioo 42944 An open interval is the cl...
ioossioobi 42945 Biconditional form of ~ io...
iccshift 42946 A closed interval shifted ...
iccsuble 42947 An upper bound to the dist...
iocopn 42948 A left-open right-closed i...
eliccelioc 42949 Membership in a closed int...
iooshift 42950 An open interval shifted b...
iccintsng 42951 Intersection of two adiace...
icoiccdif 42952 Left-closed right-open int...
icoopn 42953 A left-closed right-open i...
icoub 42954 A left-closed, right-open ...
eliccxrd 42955 Membership in a closed rea...
pnfel0pnf 42956 ` +oo ` is a nonnegative e...
eliccnelico 42957 An element of a closed int...
eliccelicod 42958 A member of a closed inter...
ge0xrre 42959 A nonnegative extended rea...
ge0lere 42960 A nonnegative extended Rea...
elicores 42961 Membership in a left-close...
inficc 42962 The infimum of a nonempty ...
qinioo 42963 The rational numbers are d...
lenelioc 42964 A real number smaller than...
ioonct 42965 A nonempty open interval i...
xrgtnelicc 42966 A real number greater than...
iccdificc 42967 The difference of two clos...
iocnct 42968 A nonempty left-open, righ...
iccnct 42969 A closed interval, with mo...
iooiinicc 42970 A closed interval expresse...
iccgelbd 42971 An element of a closed int...
iooltubd 42972 An element of an open inte...
icoltubd 42973 An element of a left-close...
qelioo 42974 The rational numbers are d...
tgqioo2 42975 Every open set of reals is...
iccleubd 42976 An element of a closed int...
elioored 42977 A member of an open interv...
ioogtlbd 42978 An element of a closed int...
ioofun 42979 ` (,) ` is a function. (C...
icomnfinre 42980 A left-closed, right-open,...
sqrlearg 42981 The square compared with i...
ressiocsup 42982 If the supremum belongs to...
ressioosup 42983 If the supremum does not b...
iooiinioc 42984 A left-open, right-closed ...
ressiooinf 42985 If the infimum does not be...
icogelbd 42986 An element of a left-close...
iocleubd 42987 An element of a left-open ...
uzinico 42988 An upper interval of integ...
preimaiocmnf 42989 Preimage of a right-closed...
uzinico2 42990 An upper interval of integ...
uzinico3 42991 An upper interval of integ...
icossico2 42992 Condition for a closed-bel...
dmico 42993 The domain of the closed-b...
ndmico 42994 The closed-below, open-abo...
uzubioo 42995 The upper integers are unb...
uzubico 42996 The upper integers are unb...
uzubioo2 42997 The upper integers are unb...
uzubico2 42998 The upper integers are unb...
iocgtlbd 42999 An element of a left-open ...
xrtgioo2 43000 The topology on the extend...
tgioo4 43001 The standard topology on t...
fsummulc1f 43002 Closure of a finite sum of...
fsumnncl 43003 Closure of a nonempty, fin...
fsumge0cl 43004 The finite sum of nonnegat...
fsumf1of 43005 Re-index a finite sum usin...
fsumiunss 43006 Sum over a disjoint indexe...
fsumreclf 43007 Closure of a finite sum of...
fsumlessf 43008 A shorter sum of nonnegati...
fsumsupp0 43009 Finite sum of function val...
fsumsermpt 43010 A finite sum expressed in ...
fmul01 43011 Multiplying a finite numbe...
fmulcl 43012 If ' Y ' is closed under t...
fmuldfeqlem1 43013 induction step for the pro...
fmuldfeq 43014 X and Z are two equivalent...
fmul01lt1lem1 43015 Given a finite multiplicat...
fmul01lt1lem2 43016 Given a finite multiplicat...
fmul01lt1 43017 Given a finite multiplicat...
cncfmptss 43018 A continuous complex funct...
rrpsscn 43019 The positive reals are a s...
mulc1cncfg 43020 A version of ~ mulc1cncf u...
infrglb 43021 The infimum of a nonempty ...
expcnfg 43022 If ` F ` is a complex cont...
prodeq2ad 43023 Equality deduction for pro...
fprodsplit1 43024 Separate out a term in a f...
fprodexp 43025 Positive integer exponenti...
fprodabs2 43026 The absolute value of a fi...
fprod0 43027 A finite product with a ze...
mccllem 43028 * Induction step for ~ mcc...
mccl 43029 A multinomial coefficient,...
fprodcnlem 43030 A finite product of functi...
fprodcn 43031 A finite product of functi...
clim1fr1 43032 A class of sequences of fr...
isumneg 43033 Negation of a converging s...
climrec 43034 Limit of the reciprocal of...
climmulf 43035 A version of ~ climmul usi...
climexp 43036 The limit of natural power...
climinf 43037 A bounded monotonic noninc...
climsuselem1 43038 The subsequence index ` I ...
climsuse 43039 A subsequence ` G ` of a c...
climrecf 43040 A version of ~ climrec usi...
climneg 43041 Complex limit of the negat...
climinff 43042 A version of ~ climinf usi...
climdivf 43043 Limit of the ratio of two ...
climreeq 43044 If ` F ` is a real functio...
ellimciota 43045 An explicit value for the ...
climaddf 43046 A version of ~ climadd usi...
mullimc 43047 Limit of the product of tw...
ellimcabssub0 43048 An equivalent condition fo...
limcdm0 43049 If a function has empty do...
islptre 43050 An equivalence condition f...
limccog 43051 Limit of the composition o...
limciccioolb 43052 The limit of a function at...
climf 43053 Express the predicate: Th...
mullimcf 43054 Limit of the multiplicatio...
constlimc 43055 Limit of constant function...
rexlim2d 43056 Inference removing two res...
idlimc 43057 Limit of the identity func...
divcnvg 43058 The sequence of reciprocal...
limcperiod 43059 If ` F ` is a periodic fun...
limcrecl 43060 If ` F ` is a real-valued ...
sumnnodd 43061 A series indexed by ` NN `...
lptioo2 43062 The upper bound of an open...
lptioo1 43063 The lower bound of an open...
elprn1 43064 A member of an unordered p...
elprn2 43065 A member of an unordered p...
limcmptdm 43066 The domain of a maps-to fu...
clim2f 43067 Express the predicate: Th...
limcicciooub 43068 The limit of a function at...
ltmod 43069 A sufficient condition for...
islpcn 43070 A characterization for a l...
lptre2pt 43071 If a set in the real line ...
limsupre 43072 If a sequence is bounded, ...
limcresiooub 43073 The left limit doesn't cha...
limcresioolb 43074 The right limit doesn't ch...
limcleqr 43075 If the left and the right ...
lptioo2cn 43076 The upper bound of an open...
lptioo1cn 43077 The lower bound of an open...
neglimc 43078 Limit of the negative func...
addlimc 43079 Sum of two limits. (Contr...
0ellimcdiv 43080 If the numerator converges...
clim2cf 43081 Express the predicate ` F ...
limclner 43082 For a limit point, both fr...
sublimc 43083 Subtraction of two limits....
reclimc 43084 Limit of the reciprocal of...
clim0cf 43085 Express the predicate ` F ...
limclr 43086 For a limit point, both fr...
divlimc 43087 Limit of the quotient of t...
expfac 43088 Factorial grows faster tha...
climconstmpt 43089 A constant sequence conver...
climresmpt 43090 A function restricted to u...
climsubmpt 43091 Limit of the difference of...
climsubc2mpt 43092 Limit of the difference of...
climsubc1mpt 43093 Limit of the difference of...
fnlimfv 43094 The value of the limit fun...
climreclf 43095 The limit of a convergent ...
climeldmeq 43096 Two functions that are eve...
climf2 43097 Express the predicate: Th...
fnlimcnv 43098 The sequence of function v...
climeldmeqmpt 43099 Two functions that are eve...
climfveq 43100 Two functions that are eve...
clim2f2 43101 Express the predicate: Th...
climfveqmpt 43102 Two functions that are eve...
climd 43103 Express the predicate: Th...
clim2d 43104 The limit of complex numbe...
fnlimfvre 43105 The limit function of real...
allbutfifvre 43106 Given a sequence of real-v...
climleltrp 43107 The limit of complex numbe...
fnlimfvre2 43108 The limit function of real...
fnlimf 43109 The limit function of real...
fnlimabslt 43110 A sequence of function val...
climfveqf 43111 Two functions that are eve...
climmptf 43112 Exhibit a function ` G ` w...
climfveqmpt3 43113 Two functions that are eve...
climeldmeqf 43114 Two functions that are eve...
climreclmpt 43115 The limit of B convergent ...
limsupref 43116 If a sequence is bounded, ...
limsupbnd1f 43117 If a sequence is eventuall...
climbddf 43118 A converging sequence of c...
climeqf 43119 Two functions that are eve...
climeldmeqmpt3 43120 Two functions that are eve...
limsupcld 43121 Closure of the superior li...
climfv 43122 The limit of a convergent ...
limsupval3 43123 The superior limit of an i...
climfveqmpt2 43124 Two functions that are eve...
limsup0 43125 The superior limit of the ...
climeldmeqmpt2 43126 Two functions that are eve...
limsupresre 43127 The supremum limit of a fu...
climeqmpt 43128 Two functions that are eve...
climfvd 43129 The limit of a convergent ...
limsuplesup 43130 An upper bound for the sup...
limsupresico 43131 The superior limit doesn't...
limsuppnfdlem 43132 If the restriction of a fu...
limsuppnfd 43133 If the restriction of a fu...
limsupresuz 43134 If the real part of the do...
limsupub 43135 If the limsup is not ` +oo...
limsupres 43136 The superior limit of a re...
climinf2lem 43137 A convergent, nonincreasin...
climinf2 43138 A convergent, nonincreasin...
limsupvaluz 43139 The superior limit, when t...
limsupresuz2 43140 If the domain of a functio...
limsuppnflem 43141 If the restriction of a fu...
limsuppnf 43142 If the restriction of a fu...
limsupubuzlem 43143 If the limsup is not ` +oo...
limsupubuz 43144 For a real-valued function...
climinf2mpt 43145 A bounded below, monotonic...
climinfmpt 43146 A bounded below, monotonic...
climinf3 43147 A convergent, nonincreasin...
limsupvaluzmpt 43148 The superior limit, when t...
limsupequzmpt2 43149 Two functions that are eve...
limsupubuzmpt 43150 If the limsup is not ` +oo...
limsupmnflem 43151 The superior limit of a fu...
limsupmnf 43152 The superior limit of a fu...
limsupequzlem 43153 Two functions that are eve...
limsupequz 43154 Two functions that are eve...
limsupre2lem 43155 Given a function on the ex...
limsupre2 43156 Given a function on the ex...
limsupmnfuzlem 43157 The superior limit of a fu...
limsupmnfuz 43158 The superior limit of a fu...
limsupequzmptlem 43159 Two functions that are eve...
limsupequzmpt 43160 Two functions that are eve...
limsupre2mpt 43161 Given a function on the ex...
limsupequzmptf 43162 Two functions that are eve...
limsupre3lem 43163 Given a function on the ex...
limsupre3 43164 Given a function on the ex...
limsupre3mpt 43165 Given a function on the ex...
limsupre3uzlem 43166 Given a function on the ex...
limsupre3uz 43167 Given a function on the ex...
limsupreuz 43168 Given a function on the re...
limsupvaluz2 43169 The superior limit, when t...
limsupreuzmpt 43170 Given a function on the re...
supcnvlimsup 43171 If a function on a set of ...
supcnvlimsupmpt 43172 If a function on a set of ...
0cnv 43173 If ` (/) ` is a complex nu...
climuzlem 43174 Express the predicate: Th...
climuz 43175 Express the predicate: Th...
lmbr3v 43176 Express the binary relatio...
climisp 43177 If a sequence converges to...
lmbr3 43178 Express the binary relatio...
climrescn 43179 A sequence converging w.r....
climxrrelem 43180 If a seqence ranging over ...
climxrre 43181 If a sequence ranging over...
limsuplt2 43184 The defining property of t...
liminfgord 43185 Ordering property of the i...
limsupvald 43186 The superior limit of a se...
limsupresicompt 43187 The superior limit doesn't...
limsupcli 43188 Closure of the superior li...
liminfgf 43189 Closure of the inferior li...
liminfval 43190 The inferior limit of a se...
climlimsup 43191 A sequence of real numbers...
limsupge 43192 The defining property of t...
liminfgval 43193 Value of the inferior limi...
liminfcl 43194 Closure of the inferior li...
liminfvald 43195 The inferior limit of a se...
liminfval5 43196 The inferior limit of an i...
limsupresxr 43197 The superior limit of a fu...
liminfresxr 43198 The inferior limit of a fu...
liminfval2 43199 The superior limit, relati...
climlimsupcex 43200 Counterexample for ~ climl...
liminfcld 43201 Closure of the inferior li...
liminfresico 43202 The inferior limit doesn't...
limsup10exlem 43203 The range of the given fun...
limsup10ex 43204 The superior limit of a fu...
liminf10ex 43205 The inferior limit of a fu...
liminflelimsuplem 43206 The superior limit is grea...
liminflelimsup 43207 The superior limit is grea...
limsupgtlem 43208 For any positive real, the...
limsupgt 43209 Given a sequence of real n...
liminfresre 43210 The inferior limit of a fu...
liminfresicompt 43211 The inferior limit doesn't...
liminfltlimsupex 43212 An example where the ` lim...
liminfgelimsup 43213 The inferior limit is grea...
liminfvalxr 43214 Alternate definition of ` ...
liminfresuz 43215 If the real part of the do...
liminflelimsupuz 43216 The superior limit is grea...
liminfvalxrmpt 43217 Alternate definition of ` ...
liminfresuz2 43218 If the domain of a functio...
liminfgelimsupuz 43219 The inferior limit is grea...
liminfval4 43220 Alternate definition of ` ...
liminfval3 43221 Alternate definition of ` ...
liminfequzmpt2 43222 Two functions that are eve...
liminfvaluz 43223 Alternate definition of ` ...
liminf0 43224 The inferior limit of the ...
limsupval4 43225 Alternate definition of ` ...
liminfvaluz2 43226 Alternate definition of ` ...
liminfvaluz3 43227 Alternate definition of ` ...
liminflelimsupcex 43228 A counterexample for ~ lim...
limsupvaluz3 43229 Alternate definition of ` ...
liminfvaluz4 43230 Alternate definition of ` ...
limsupvaluz4 43231 Alternate definition of ` ...
climliminflimsupd 43232 If a sequence of real numb...
liminfreuzlem 43233 Given a function on the re...
liminfreuz 43234 Given a function on the re...
liminfltlem 43235 Given a sequence of real n...
liminflt 43236 Given a sequence of real n...
climliminf 43237 A sequence of real numbers...
liminflimsupclim 43238 A sequence of real numbers...
climliminflimsup 43239 A sequence of real numbers...
climliminflimsup2 43240 A sequence of real numbers...
climliminflimsup3 43241 A sequence of real numbers...
climliminflimsup4 43242 A sequence of real numbers...
limsupub2 43243 A extended real valued fun...
limsupubuz2 43244 A sequence with values in ...
xlimpnfxnegmnf 43245 A sequence converges to ` ...
liminflbuz2 43246 A sequence with values in ...
liminfpnfuz 43247 The inferior limit of a fu...
liminflimsupxrre 43248 A sequence with values in ...
xlimrel 43251 The limit on extended real...
xlimres 43252 A function converges iff i...
xlimcl 43253 The limit of a sequence of...
rexlimddv2 43254 Restricted existential eli...
xlimclim 43255 Given a sequence of reals,...
xlimconst 43256 A constant sequence conver...
climxlim 43257 A converging sequence in t...
xlimbr 43258 Express the binary relatio...
fuzxrpmcn 43259 A function mapping from an...
cnrefiisplem 43260 Lemma for ~ cnrefiisp (som...
cnrefiisp 43261 A non-real, complex number...
xlimxrre 43262 If a sequence ranging over...
xlimmnfvlem1 43263 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 43264 Lemma for ~ xlimmnf : the ...
xlimmnfv 43265 A function converges to mi...
xlimconst2 43266 A sequence that eventually...
xlimpnfvlem1 43267 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 43268 Lemma for ~ xlimpnfv : the...
xlimpnfv 43269 A function converges to pl...
xlimclim2lem 43270 Lemma for ~ xlimclim2 . H...
xlimclim2 43271 Given a sequence of extend...
xlimmnf 43272 A function converges to mi...
xlimpnf 43273 A function converges to pl...
xlimmnfmpt 43274 A function converges to pl...
xlimpnfmpt 43275 A function converges to pl...
climxlim2lem 43276 In this lemma for ~ climxl...
climxlim2 43277 A sequence of extended rea...
dfxlim2v 43278 An alternative definition ...
dfxlim2 43279 An alternative definition ...
climresd 43280 A function restricted to u...
climresdm 43281 A real function converges ...
dmclimxlim 43282 A real valued sequence tha...
xlimmnflimsup2 43283 A sequence of extended rea...
xlimuni 43284 An infinite sequence conve...
xlimclimdm 43285 A sequence of extended rea...
xlimfun 43286 The convergence relation o...
xlimmnflimsup 43287 If a sequence of extended ...
xlimdm 43288 Two ways to express that a...
xlimpnfxnegmnf2 43289 A sequence converges to ` ...
xlimresdm 43290 A function converges in th...
xlimpnfliminf 43291 If a sequence of extended ...
xlimpnfliminf2 43292 A sequence of extended rea...
xlimliminflimsup 43293 A sequence of extended rea...
xlimlimsupleliminf 43294 A sequence of extended rea...
coseq0 43295 A complex number whose cos...
sinmulcos 43296 Multiplication formula for...
coskpi2 43297 The cosine of an integer m...
cosnegpi 43298 The cosine of negative ` _...
sinaover2ne0 43299 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 43300 The cosine of an integer m...
mulcncff 43301 The multiplication of two ...
cncfmptssg 43302 A continuous complex funct...
constcncfg 43303 A constant function is a c...
idcncfg 43304 The identity function is a...
cncfshift 43305 A periodic continuous func...
resincncf 43306 ` sin ` restricted to real...
addccncf2 43307 Adding a constant is a con...
0cnf 43308 The empty set is a continu...
fsumcncf 43309 The finite sum of continuo...
cncfperiod 43310 A periodic continuous func...
subcncff 43311 The subtraction of two con...
negcncfg 43312 The opposite of a continuo...
cnfdmsn 43313 A function with a singleto...
cncfcompt 43314 Composition of continuous ...
addcncff 43315 The sum of two continuous ...
ioccncflimc 43316 Limit at the upper bound o...
cncfuni 43317 A complex function on a su...
icccncfext 43318 A continuous function on a...
cncficcgt0 43319 A the absolute value of a ...
icocncflimc 43320 Limit at the lower bound, ...
cncfdmsn 43321 A complex function with a ...
divcncff 43322 The quotient of two contin...
cncfshiftioo 43323 A periodic continuous func...
cncfiooicclem1 43324 A continuous function ` F ...
cncfiooicc 43325 A continuous function ` F ...
cncfiooiccre 43326 A continuous function ` F ...
cncfioobdlem 43327 ` G ` actually extends ` F...
cncfioobd 43328 A continuous function ` F ...
jumpncnp 43329 Jump discontinuity or disc...
cxpcncf2 43330 The complex power function...
fprodcncf 43331 The finite product of cont...
add1cncf 43332 Addition to a constant is ...
add2cncf 43333 Addition to a constant is ...
sub1cncfd 43334 Subtracting a constant is ...
sub2cncfd 43335 Subtraction from a constan...
fprodsub2cncf 43336 ` F ` is continuous. (Con...
fprodadd2cncf 43337 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 43338 The sequence ` S ` of fini...
fprodsubrecnncnv 43339 The sequence ` S ` of fini...
fprodaddrecnncnvlem 43340 The sequence ` S ` of fini...
fprodaddrecnncnv 43341 The sequence ` S ` of fini...
dvsinexp 43342 The derivative of sin^N . ...
dvcosre 43343 The real derivative of the...
dvsinax 43344 Derivative exercise: the d...
dvsubf 43345 The subtraction rule for e...
dvmptconst 43346 Function-builder for deriv...
dvcnre 43347 From compex differentiatio...
dvmptidg 43348 Function-builder for deriv...
dvresntr 43349 Function-builder for deriv...
fperdvper 43350 The derivative of a period...
dvasinbx 43351 Derivative exercise: the d...
dvresioo 43352 Restriction of a derivativ...
dvdivf 43353 The quotient rule for ever...
dvdivbd 43354 A sufficient condition for...
dvsubcncf 43355 A sufficient condition for...
dvmulcncf 43356 A sufficient condition for...
dvcosax 43357 Derivative exercise: the d...
dvdivcncf 43358 A sufficient condition for...
dvbdfbdioolem1 43359 Given a function with boun...
dvbdfbdioolem2 43360 A function on an open inte...
dvbdfbdioo 43361 A function on an open inte...
ioodvbdlimc1lem1 43362 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 43363 Limit at the lower bound o...
ioodvbdlimc1 43364 A real function with bound...
ioodvbdlimc2lem 43365 Limit at the upper bound o...
ioodvbdlimc2 43366 A real function with bound...
dvdmsscn 43367 ` X ` is a subset of ` CC ...
dvmptmulf 43368 Function-builder for deriv...
dvnmptdivc 43369 Function-builder for itera...
dvdsn1add 43370 If ` K ` divides ` N ` but...
dvxpaek 43371 Derivative of the polynomi...
dvnmptconst 43372 The ` N ` -th derivative o...
dvnxpaek 43373 The ` n ` -th derivative o...
dvnmul 43374 Function-builder for the `...
dvmptfprodlem 43375 Induction step for ~ dvmpt...
dvmptfprod 43376 Function-builder for deriv...
dvnprodlem1 43377 ` D ` is bijective. (Cont...
dvnprodlem2 43378 Induction step for ~ dvnpr...
dvnprodlem3 43379 The multinomial formula fo...
dvnprod 43380 The multinomial formula fo...
itgsin0pilem1 43381 Calculation of the integra...
ibliccsinexp 43382 sin^n on a closed interval...
itgsin0pi 43383 Calculation of the integra...
iblioosinexp 43384 sin^n on an open integral ...
itgsinexplem1 43385 Integration by parts is ap...
itgsinexp 43386 A recursive formula for th...
iblconstmpt 43387 A constant function is int...
itgeq1d 43388 Equality theorem for an in...
mbfres2cn 43389 Measurability of a piecewi...
vol0 43390 The measure of the empty s...
ditgeqiooicc 43391 A function ` F ` on an ope...
volge0 43392 The volume of a set is alw...
cnbdibl 43393 A continuous bounded funct...
snmbl 43394 A singleton is measurable....
ditgeq3d 43395 Equality theorem for the d...
iblempty 43396 The empty function is inte...
iblsplit 43397 The union of two integrabl...
volsn 43398 A singleton has 0 Lebesgue...
itgvol0 43399 If the domani is negligibl...
itgcoscmulx 43400 Exercise: the integral of ...
iblsplitf 43401 A version of ~ iblsplit us...
ibliooicc 43402 If a function is integrabl...
volioc 43403 The measure of a left-open...
iblspltprt 43404 If a function is integrabl...
itgsincmulx 43405 Exercise: the integral of ...
itgsubsticclem 43406 lemma for ~ itgsubsticc . ...
itgsubsticc 43407 Integration by u-substitut...
itgioocnicc 43408 The integral of a piecewis...
iblcncfioo 43409 A continuous function ` F ...
itgspltprt 43410 The ` S. ` integral splits...
itgiccshift 43411 The integral of a function...
itgperiod 43412 The integral of a periodic...
itgsbtaddcnst 43413 Integral substitution, add...
volico 43414 The measure of left-closed...
sublevolico 43415 The Lebesgue measure of a ...
dmvolss 43416 Lebesgue measurable sets a...
ismbl3 43417 The predicate " ` A ` is L...
volioof 43418 The function that assigns ...
ovolsplit 43419 The Lebesgue outer measure...
fvvolioof 43420 The function value of the ...
volioore 43421 The measure of an open int...
fvvolicof 43422 The function value of the ...
voliooico 43423 An open interval and a lef...
ismbl4 43424 The predicate " ` A ` is L...
volioofmpt 43425 ` ( ( vol o. (,) ) o. F ) ...
volicoff 43426 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 43427 The Lebesgue measure of op...
volicofmpt 43428 ` ( ( vol o. [,) ) o. F ) ...
volicc 43429 The Lebesgue measure of a ...
voliccico 43430 A closed interval and a le...
mbfdmssre 43431 The domain of a measurable...
stoweidlem1 43432 Lemma for ~ stoweid . Thi...
stoweidlem2 43433 lemma for ~ stoweid : here...
stoweidlem3 43434 Lemma for ~ stoweid : if `...
stoweidlem4 43435 Lemma for ~ stoweid : a cl...
stoweidlem5 43436 There exists a δ as ...
stoweidlem6 43437 Lemma for ~ stoweid : two ...
stoweidlem7 43438 This lemma is used to prov...
stoweidlem8 43439 Lemma for ~ stoweid : two ...
stoweidlem9 43440 Lemma for ~ stoweid : here...
stoweidlem10 43441 Lemma for ~ stoweid . Thi...
stoweidlem11 43442 This lemma is used to prov...
stoweidlem12 43443 Lemma for ~ stoweid . Thi...
stoweidlem13 43444 Lemma for ~ stoweid . Thi...
stoweidlem14 43445 There exists a ` k ` as in...
stoweidlem15 43446 This lemma is used to prov...
stoweidlem16 43447 Lemma for ~ stoweid . The...
stoweidlem17 43448 This lemma proves that the...
stoweidlem18 43449 This theorem proves Lemma ...
stoweidlem19 43450 If a set of real functions...
stoweidlem20 43451 If a set A of real functio...
stoweidlem21 43452 Once the Stone Weierstrass...
stoweidlem22 43453 If a set of real functions...
stoweidlem23 43454 This lemma is used to prov...
stoweidlem24 43455 This lemma proves that for...
stoweidlem25 43456 This lemma proves that for...
stoweidlem26 43457 This lemma is used to prov...
stoweidlem27 43458 This lemma is used to prov...
stoweidlem28 43459 There exists a δ as ...
stoweidlem29 43460 When the hypothesis for th...
stoweidlem30 43461 This lemma is used to prov...
stoweidlem31 43462 This lemma is used to prov...
stoweidlem32 43463 If a set A of real functio...
stoweidlem33 43464 If a set of real functions...
stoweidlem34 43465 This lemma proves that for...
stoweidlem35 43466 This lemma is used to prov...
stoweidlem36 43467 This lemma is used to prov...
stoweidlem37 43468 This lemma is used to prov...
stoweidlem38 43469 This lemma is used to prov...
stoweidlem39 43470 This lemma is used to prov...
stoweidlem40 43471 This lemma proves that q_n...
stoweidlem41 43472 This lemma is used to prov...
stoweidlem42 43473 This lemma is used to prov...
stoweidlem43 43474 This lemma is used to prov...
stoweidlem44 43475 This lemma is used to prov...
stoweidlem45 43476 This lemma proves that, gi...
stoweidlem46 43477 This lemma proves that set...
stoweidlem47 43478 Subtracting a constant fro...
stoweidlem48 43479 This lemma is used to prov...
stoweidlem49 43480 There exists a function q_...
stoweidlem50 43481 This lemma proves that set...
stoweidlem51 43482 There exists a function x ...
stoweidlem52 43483 There exists a neighborhoo...
stoweidlem53 43484 This lemma is used to prov...
stoweidlem54 43485 There exists a function ` ...
stoweidlem55 43486 This lemma proves the exis...
stoweidlem56 43487 This theorem proves Lemma ...
stoweidlem57 43488 There exists a function x ...
stoweidlem58 43489 This theorem proves Lemma ...
stoweidlem59 43490 This lemma proves that the...
stoweidlem60 43491 This lemma proves that the...
stoweidlem61 43492 This lemma proves that the...
stoweidlem62 43493 This theorem proves the St...
stoweid 43494 This theorem proves the St...
stowei 43495 This theorem proves the St...
wallispilem1 43496 ` I ` is monotone: increas...
wallispilem2 43497 A first set of properties ...
wallispilem3 43498 I maps to real values. (C...
wallispilem4 43499 ` F ` maps to explicit exp...
wallispilem5 43500 The sequence ` H ` converg...
wallispi 43501 Wallis' formula for π :...
wallispi2lem1 43502 An intermediate step betwe...
wallispi2lem2 43503 Two expressions are proven...
wallispi2 43504 An alternative version of ...
stirlinglem1 43505 A simple limit of fraction...
stirlinglem2 43506 ` A ` maps to positive rea...
stirlinglem3 43507 Long but simple algebraic ...
stirlinglem4 43508 Algebraic manipulation of ...
stirlinglem5 43509 If ` T ` is between ` 0 ` ...
stirlinglem6 43510 A series that converges to...
stirlinglem7 43511 Algebraic manipulation of ...
stirlinglem8 43512 If ` A ` converges to ` C ...
stirlinglem9 43513 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 43514 A bound for any B(N)-B(N +...
stirlinglem11 43515 ` B ` is decreasing. (Con...
stirlinglem12 43516 The sequence ` B ` is boun...
stirlinglem13 43517 ` B ` is decreasing and ha...
stirlinglem14 43518 The sequence ` A ` converg...
stirlinglem15 43519 The Stirling's formula is ...
stirling 43520 Stirling's approximation f...
stirlingr 43521 Stirling's approximation f...
dirkerval 43522 The N_th Dirichlet Kernel....
dirker2re 43523 The Dirichlet Kernel value...
dirkerdenne0 43524 The Dirichlet Kernel denom...
dirkerval2 43525 The N_th Dirichlet Kernel ...
dirkerre 43526 The Dirichlet Kernel at an...
dirkerper 43527 the Dirichlet Kernel has p...
dirkerf 43528 For any natural number ` N...
dirkertrigeqlem1 43529 Sum of an even number of a...
dirkertrigeqlem2 43530 Trigonomic equality lemma ...
dirkertrigeqlem3 43531 Trigonometric equality lem...
dirkertrigeq 43532 Trigonometric equality for...
dirkeritg 43533 The definite integral of t...
dirkercncflem1 43534 If ` Y ` is a multiple of ...
dirkercncflem2 43535 Lemma used to prove that t...
dirkercncflem3 43536 The Dirichlet Kernel is co...
dirkercncflem4 43537 The Dirichlet Kernel is co...
dirkercncf 43538 For any natural number ` N...
fourierdlem1 43539 A partition interval is a ...
fourierdlem2 43540 Membership in a partition....
fourierdlem3 43541 Membership in a partition....
fourierdlem4 43542 ` E ` is a function that m...
fourierdlem5 43543 ` S ` is a function. (Con...
fourierdlem6 43544 ` X ` is in the periodic p...
fourierdlem7 43545 The difference between the...
fourierdlem8 43546 A partition interval is a ...
fourierdlem9 43547 ` H ` is a complex functio...
fourierdlem10 43548 Condition on the bounds of...
fourierdlem11 43549 If there is a partition, t...
fourierdlem12 43550 A point of a partition is ...
fourierdlem13 43551 Value of ` V ` in terms of...
fourierdlem14 43552 Given the partition ` V ` ...
fourierdlem15 43553 The range of the partition...
fourierdlem16 43554 The coefficients of the fo...
fourierdlem17 43555 The defined ` L ` is actua...
fourierdlem18 43556 The function ` S ` is cont...
fourierdlem19 43557 If two elements of ` D ` h...
fourierdlem20 43558 Every interval in the part...
fourierdlem21 43559 The coefficients of the fo...
fourierdlem22 43560 The coefficients of the fo...
fourierdlem23 43561 If ` F ` is continuous and...
fourierdlem24 43562 A sufficient condition for...
fourierdlem25 43563 If ` C ` is not in the ran...
fourierdlem26 43564 Periodic image of a point ...
fourierdlem27 43565 A partition open interval ...
fourierdlem28 43566 Derivative of ` ( F `` ( X...
fourierdlem29 43567 Explicit function value fo...
fourierdlem30 43568 Sum of three small pieces ...
fourierdlem31 43569 If ` A ` is finite and for...
fourierdlem32 43570 Limit of a continuous func...
fourierdlem33 43571 Limit of a continuous func...
fourierdlem34 43572 A partition is one to one....
fourierdlem35 43573 There is a single point in...
fourierdlem36 43574 ` F ` is an isomorphism. ...
fourierdlem37 43575 ` I ` is a function that m...
fourierdlem38 43576 The function ` F ` is cont...
fourierdlem39 43577 Integration by parts of ...
fourierdlem40 43578 ` H ` is a continuous func...
fourierdlem41 43579 Lemma used to prove that e...
fourierdlem42 43580 The set of points in a mov...
fourierdlem43 43581 ` K ` is a real function. ...
fourierdlem44 43582 A condition for having ` (...
fourierdlem46 43583 The function ` F ` has a l...
fourierdlem47 43584 For ` r ` large enough, th...
fourierdlem48 43585 The given periodic functio...
fourierdlem49 43586 The given periodic functio...
fourierdlem50 43587 Continuity of ` O ` and it...
fourierdlem51 43588 ` X ` is in the periodic p...
fourierdlem52 43589 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 43590 The limit of ` F ( s ) ` a...
fourierdlem54 43591 Given a partition ` Q ` an...
fourierdlem55 43592 ` U ` is a real function. ...
fourierdlem56 43593 Derivative of the ` K ` fu...
fourierdlem57 43594 The derivative of ` O ` . ...
fourierdlem58 43595 The derivative of ` K ` is...
fourierdlem59 43596 The derivative of ` H ` is...
fourierdlem60 43597 Given a differentiable fun...
fourierdlem61 43598 Given a differentiable fun...
fourierdlem62 43599 The function ` K ` is cont...
fourierdlem63 43600 The upper bound of interva...
fourierdlem64 43601 The partition ` V ` is fin...
fourierdlem65 43602 The distance of two adjace...
fourierdlem66 43603 Value of the ` G ` functio...
fourierdlem67 43604 ` G ` is a function. (Con...
fourierdlem68 43605 The derivative of ` O ` is...
fourierdlem69 43606 A piecewise continuous fun...
fourierdlem70 43607 A piecewise continuous fun...
fourierdlem71 43608 A periodic piecewise conti...
fourierdlem72 43609 The derivative of ` O ` is...
fourierdlem73 43610 A version of the Riemann L...
fourierdlem74 43611 Given a piecewise smooth f...
fourierdlem75 43612 Given a piecewise smooth f...
fourierdlem76 43613 Continuity of ` O ` and it...
fourierdlem77 43614 If ` H ` is bounded, then ...
fourierdlem78 43615 ` G ` is continuous when r...
fourierdlem79 43616 ` E ` projects every inter...
fourierdlem80 43617 The derivative of ` O ` is...
fourierdlem81 43618 The integral of a piecewis...
fourierdlem82 43619 Integral by substitution, ...
fourierdlem83 43620 The fourier partial sum fo...
fourierdlem84 43621 If ` F ` is piecewise coni...
fourierdlem85 43622 Limit of the function ` G ...
fourierdlem86 43623 Continuity of ` O ` and it...
fourierdlem87 43624 The integral of ` G ` goes...
fourierdlem88 43625 Given a piecewise continuo...
fourierdlem89 43626 Given a piecewise continuo...
fourierdlem90 43627 Given a piecewise continuo...
fourierdlem91 43628 Given a piecewise continuo...
fourierdlem92 43629 The integral of a piecewis...
fourierdlem93 43630 Integral by substitution (...
fourierdlem94 43631 For a piecewise smooth fun...
fourierdlem95 43632 Algebraic manipulation of ...
fourierdlem96 43633 limit for ` F ` at the low...
fourierdlem97 43634 ` F ` is continuous on the...
fourierdlem98 43635 ` F ` is continuous on the...
fourierdlem99 43636 limit for ` F ` at the upp...
fourierdlem100 43637 A piecewise continuous fun...
fourierdlem101 43638 Integral by substitution f...
fourierdlem102 43639 For a piecewise smooth fun...
fourierdlem103 43640 The half lower part of the...
fourierdlem104 43641 The half upper part of the...
fourierdlem105 43642 A piecewise continuous fun...
fourierdlem106 43643 For a piecewise smooth fun...
fourierdlem107 43644 The integral of a piecewis...
fourierdlem108 43645 The integral of a piecewis...
fourierdlem109 43646 The integral of a piecewis...
fourierdlem110 43647 The integral of a piecewis...
fourierdlem111 43648 The fourier partial sum fo...
fourierdlem112 43649 Here abbreviations (local ...
fourierdlem113 43650 Fourier series convergence...
fourierdlem114 43651 Fourier series convergence...
fourierdlem115 43652 Fourier serier convergence...
fourierd 43653 Fourier series convergence...
fourierclimd 43654 Fourier series convergence...
fourierclim 43655 Fourier series convergence...
fourier 43656 Fourier series convergence...
fouriercnp 43657 If ` F ` is continuous at ...
fourier2 43658 Fourier series convergence...
sqwvfoura 43659 Fourier coefficients for t...
sqwvfourb 43660 Fourier series ` B ` coeff...
fourierswlem 43661 The Fourier series for the...
fouriersw 43662 Fourier series convergence...
fouriercn 43663 If the derivative of ` F `...
elaa2lem 43664 Elementhood in the set of ...
elaa2 43665 Elementhood in the set of ...
etransclem1 43666 ` H ` is a function. (Con...
etransclem2 43667 Derivative of ` G ` . (Co...
etransclem3 43668 The given ` if ` term is a...
etransclem4 43669 ` F ` expressed as a finit...
etransclem5 43670 A change of bound variable...
etransclem6 43671 A change of bound variable...
etransclem7 43672 The given product is an in...
etransclem8 43673 ` F ` is a function. (Con...
etransclem9 43674 If ` K ` divides ` N ` but...
etransclem10 43675 The given ` if ` term is a...
etransclem11 43676 A change of bound variable...
etransclem12 43677 ` C ` applied to ` N ` . ...
etransclem13 43678 ` F ` applied to ` Y ` . ...
etransclem14 43679 Value of the term ` T ` , ...
etransclem15 43680 Value of the term ` T ` , ...
etransclem16 43681 Every element in the range...
etransclem17 43682 The ` N ` -th derivative o...
etransclem18 43683 The given function is inte...
etransclem19 43684 The ` N ` -th derivative o...
etransclem20 43685 ` H ` is smooth. (Contrib...
etransclem21 43686 The ` N ` -th derivative o...
etransclem22 43687 The ` N ` -th derivative o...
etransclem23 43688 This is the claim proof in...
etransclem24 43689 ` P ` divides the I -th de...
etransclem25 43690 ` P ` factorial divides th...
etransclem26 43691 Every term in the sum of t...
etransclem27 43692 The ` N ` -th derivative o...
etransclem28 43693 ` ( P - 1 ) ` factorial di...
etransclem29 43694 The ` N ` -th derivative o...
etransclem30 43695 The ` N ` -th derivative o...
etransclem31 43696 The ` N ` -th derivative o...
etransclem32 43697 This is the proof for the ...
etransclem33 43698 ` F ` is smooth. (Contrib...
etransclem34 43699 The ` N ` -th derivative o...
etransclem35 43700 ` P ` does not divide the ...
etransclem36 43701 The ` N ` -th derivative o...
etransclem37 43702 ` ( P - 1 ) ` factorial di...
etransclem38 43703 ` P ` divides the I -th de...
etransclem39 43704 ` G ` is a function. (Con...
etransclem40 43705 The ` N ` -th derivative o...
etransclem41 43706 ` P ` does not divide the ...
etransclem42 43707 The ` N ` -th derivative o...
etransclem43 43708 ` G ` is a continuous func...
etransclem44 43709 The given finite sum is no...
etransclem45 43710 ` K ` is an integer. (Con...
etransclem46 43711 This is the proof for equa...
etransclem47 43712 ` _e ` is transcendental. ...
etransclem48 43713 ` _e ` is transcendental. ...
etransc 43714 ` _e ` is transcendental. ...
rrxtopn 43715 The topology of the genera...
rrxngp 43716 Generalized Euclidean real...
rrxtps 43717 Generalized Euclidean real...
rrxtopnfi 43718 The topology of the n-dime...
rrxtopon 43719 The topology on generalize...
rrxtop 43720 The topology on generalize...
rrndistlt 43721 Given two points in the sp...
rrxtoponfi 43722 The topology on n-dimensio...
rrxunitopnfi 43723 The base set of the standa...
rrxtopn0 43724 The topology of the zero-d...
qndenserrnbllem 43725 n-dimensional rational num...
qndenserrnbl 43726 n-dimensional rational num...
rrxtopn0b 43727 The topology of the zero-d...
qndenserrnopnlem 43728 n-dimensional rational num...
qndenserrnopn 43729 n-dimensional rational num...
qndenserrn 43730 n-dimensional rational num...
rrxsnicc 43731 A multidimensional singlet...
rrnprjdstle 43732 The distance between two p...
rrndsmet 43733 ` D ` is a metric for the ...
rrndsxmet 43734 ` D ` is an extended metri...
ioorrnopnlem 43735 The a point in an indexed ...
ioorrnopn 43736 The indexed product of ope...
ioorrnopnxrlem 43737 Given a point ` F ` that b...
ioorrnopnxr 43738 The indexed product of ope...
issal 43745 Express the predicate " ` ...
pwsal 43746 The power set of a given s...
salunicl 43747 SAlg sigma-algebra is clos...
saluncl 43748 The union of two sets in a...
prsal 43749 The pair of the empty set ...
saldifcl 43750 The complement of an eleme...
0sal 43751 The empty set belongs to e...
salgenval 43752 The sigma-algebra generate...
saliuncl 43753 SAlg sigma-algebra is clos...
salincl 43754 The intersection of two se...
saluni 43755 A set is an element of any...
saliincl 43756 SAlg sigma-algebra is clos...
saldifcl2 43757 The difference of two elem...
intsaluni 43758 The union of an arbitrary ...
intsal 43759 The arbitrary intersection...
salgenn0 43760 The set used in the defini...
salgencl 43761 ` SalGen ` actually genera...
issald 43762 Sufficient condition to pr...
salexct 43763 An example of nontrivial s...
sssalgen 43764 A set is a subset of the s...
salgenss 43765 The sigma-algebra generate...
salgenuni 43766 The base set of the sigma-...
issalgend 43767 One side of ~ dfsalgen2 . ...
salexct2 43768 An example of a subset tha...
unisalgen 43769 The union of a set belongs...
dfsalgen2 43770 Alternate characterization...
salexct3 43771 An example of a sigma-alge...
salgencntex 43772 This counterexample shows ...
salgensscntex 43773 This counterexample shows ...
issalnnd 43774 Sufficient condition to pr...
dmvolsal 43775 Lebesgue measurable sets f...
saldifcld 43776 The complement of an eleme...
saluncld 43777 The union of two sets in a...
salgencld 43778 ` SalGen ` actually genera...
0sald 43779 The empty set belongs to e...
iooborel 43780 An open interval is a Bore...
salincld 43781 The intersection of two se...
salunid 43782 A set is an element of any...
unisalgen2 43783 The union of a set belongs...
bor1sal 43784 The Borel sigma-algebra on...
iocborel 43785 A left-open, right-closed ...
subsaliuncllem 43786 A subspace sigma-algebra i...
subsaliuncl 43787 A subspace sigma-algebra i...
subsalsal 43788 A subspace sigma-algebra i...
subsaluni 43789 A set belongs to the subsp...
sge0rnre 43792 When ` sum^ ` is applied t...
fge0icoicc 43793 If ` F ` maps to nonnegati...
sge0val 43794 The value of the sum of no...
fge0npnf 43795 If ` F ` maps to nonnegati...
sge0rnn0 43796 The range used in the defi...
sge0vald 43797 The value of the sum of no...
fge0iccico 43798 A range of nonnegative ext...
gsumge0cl 43799 Closure of group sum, for ...
sge0reval 43800 Value of the sum of nonneg...
sge0pnfval 43801 If a term in the sum of no...
fge0iccre 43802 A range of nonnegative ext...
sge0z 43803 Any nonnegative extended s...
sge00 43804 The sum of nonnegative ext...
fsumlesge0 43805 Every finite subsum of non...
sge0revalmpt 43806 Value of the sum of nonneg...
sge0sn 43807 A sum of a nonnegative ext...
sge0tsms 43808 ` sum^ ` applied to a nonn...
sge0cl 43809 The arbitrary sum of nonne...
sge0f1o 43810 Re-index a nonnegative ext...
sge0snmpt 43811 A sum of a nonnegative ext...
sge0ge0 43812 The sum of nonnegative ext...
sge0xrcl 43813 The arbitrary sum of nonne...
sge0repnf 43814 The of nonnegative extende...
sge0fsum 43815 The arbitrary sum of a fin...
sge0rern 43816 If the sum of nonnegative ...
sge0supre 43817 If the arbitrary sum of no...
sge0fsummpt 43818 The arbitrary sum of a fin...
sge0sup 43819 The arbitrary sum of nonne...
sge0less 43820 A shorter sum of nonnegati...
sge0rnbnd 43821 The range used in the defi...
sge0pr 43822 Sum of a pair of nonnegati...
sge0gerp 43823 The arbitrary sum of nonne...
sge0pnffigt 43824 If the sum of nonnegative ...
sge0ssre 43825 If a sum of nonnegative ex...
sge0lefi 43826 A sum of nonnegative exten...
sge0lessmpt 43827 A shorter sum of nonnegati...
sge0ltfirp 43828 If the sum of nonnegative ...
sge0prle 43829 The sum of a pair of nonne...
sge0gerpmpt 43830 The arbitrary sum of nonne...
sge0resrnlem 43831 The sum of nonnegative ext...
sge0resrn 43832 The sum of nonnegative ext...
sge0ssrempt 43833 If a sum of nonnegative ex...
sge0resplit 43834 ` sum^ ` splits into two p...
sge0le 43835 If all of the terms of sum...
sge0ltfirpmpt 43836 If the extended sum of non...
sge0split 43837 Split a sum of nonnegative...
sge0lempt 43838 If all of the terms of sum...
sge0splitmpt 43839 Split a sum of nonnegative...
sge0ss 43840 Change the index set to a ...
sge0iunmptlemfi 43841 Sum of nonnegative extende...
sge0p1 43842 The addition of the next t...
sge0iunmptlemre 43843 Sum of nonnegative extende...
sge0fodjrnlem 43844 Re-index a nonnegative ext...
sge0fodjrn 43845 Re-index a nonnegative ext...
sge0iunmpt 43846 Sum of nonnegative extende...
sge0iun 43847 Sum of nonnegative extende...
sge0nemnf 43848 The generalized sum of non...
sge0rpcpnf 43849 The sum of an infinite num...
sge0rernmpt 43850 If the sum of nonnegative ...
sge0lefimpt 43851 A sum of nonnegative exten...
nn0ssge0 43852 Nonnegative integers are n...
sge0clmpt 43853 The generalized sum of non...
sge0ltfirpmpt2 43854 If the extended sum of non...
sge0isum 43855 If a series of nonnegative...
sge0xrclmpt 43856 The generalized sum of non...
sge0xp 43857 Combine two generalized su...
sge0isummpt 43858 If a series of nonnegative...
sge0ad2en 43859 The value of the infinite ...
sge0isummpt2 43860 If a series of nonnegative...
sge0xaddlem1 43861 The extended addition of t...
sge0xaddlem2 43862 The extended addition of t...
sge0xadd 43863 The extended addition of t...
sge0fsummptf 43864 The generalized sum of a f...
sge0snmptf 43865 A sum of a nonnegative ext...
sge0ge0mpt 43866 The sum of nonnegative ext...
sge0repnfmpt 43867 The of nonnegative extende...
sge0pnffigtmpt 43868 If the generalized sum of ...
sge0splitsn 43869 Separate out a term in a g...
sge0pnffsumgt 43870 If the sum of nonnegative ...
sge0gtfsumgt 43871 If the generalized sum of ...
sge0uzfsumgt 43872 If a real number is smalle...
sge0pnfmpt 43873 If a term in the sum of no...
sge0seq 43874 A series of nonnegative re...
sge0reuz 43875 Value of the generalized s...
sge0reuzb 43876 Value of the generalized s...
ismea 43879 Express the predicate " ` ...
dmmeasal 43880 The domain of a measure is...
meaf 43881 A measure is a function th...
mea0 43882 The measure of the empty s...
nnfoctbdjlem 43883 There exists a mapping fro...
nnfoctbdj 43884 There exists a mapping fro...
meadjuni 43885 The measure of the disjoin...
meacl 43886 The measure of a set is a ...
iundjiunlem 43887 The sets in the sequence `...
iundjiun 43888 Given a sequence ` E ` of ...
meaxrcl 43889 The measure of a set is an...
meadjun 43890 The measure of the union o...
meassle 43891 The measure of a set is gr...
meaunle 43892 The measure of the union o...
meadjiunlem 43893 The sum of nonnegative ext...
meadjiun 43894 The measure of the disjoin...
ismeannd 43895 Sufficient condition to pr...
meaiunlelem 43896 The measure of the union o...
meaiunle 43897 The measure of the union o...
psmeasurelem 43898 ` M ` applied to a disjoin...
psmeasure 43899 Point supported measure, R...
voliunsge0lem 43900 The Lebesgue measure funct...
voliunsge0 43901 The Lebesgue measure funct...
volmea 43902 The Lebeasgue measure on t...
meage0 43903 If the measure of a measur...
meadjunre 43904 The measure of the union o...
meassre 43905 If the measure of a measur...
meale0eq0 43906 A measure that is less tha...
meadif 43907 The measure of the differe...
meaiuninclem 43908 Measures are continuous fr...
meaiuninc 43909 Measures are continuous fr...
meaiuninc2 43910 Measures are continuous fr...
meaiunincf 43911 Measures are continuous fr...
meaiuninc3v 43912 Measures are continuous fr...
meaiuninc3 43913 Measures are continuous fr...
meaiininclem 43914 Measures are continuous fr...
meaiininc 43915 Measures are continuous fr...
meaiininc2 43916 Measures are continuous fr...
caragenval 43921 The sigma-algebra generate...
isome 43922 Express the predicate " ` ...
caragenel 43923 Membership in the Caratheo...
omef 43924 An outer measure is a func...
ome0 43925 The outer measure of the e...
omessle 43926 The outer measure of a set...
omedm 43927 The domain of an outer mea...
caragensplit 43928 If ` E ` is in the set gen...
caragenelss 43929 An element of the Caratheo...
carageneld 43930 Membership in the Caratheo...
omecl 43931 The outer measure of a set...
caragenss 43932 The sigma-algebra generate...
omeunile 43933 The outer measure of the u...
caragen0 43934 The empty set belongs to a...
omexrcl 43935 The outer measure of a set...
caragenunidm 43936 The base set of an outer m...
caragensspw 43937 The sigma-algebra generate...
omessre 43938 If the outer measure of a ...
caragenuni 43939 The base set of the sigma-...
caragenuncllem 43940 The Caratheodory's constru...
caragenuncl 43941 The Caratheodory's constru...
caragendifcl 43942 The Caratheodory's constru...
caragenfiiuncl 43943 The Caratheodory's constru...
omeunle 43944 The outer measure of the u...
omeiunle 43945 The outer measure of the i...
omelesplit 43946 The outer measure of a set...
omeiunltfirp 43947 If the outer measure of a ...
omeiunlempt 43948 The outer measure of the i...
carageniuncllem1 43949 The outer measure of ` A i...
carageniuncllem2 43950 The Caratheodory's constru...
carageniuncl 43951 The Caratheodory's constru...
caragenunicl 43952 The Caratheodory's constru...
caragensal 43953 Caratheodory's method gene...
caratheodorylem1 43954 Lemma used to prove that C...
caratheodorylem2 43955 Caratheodory's constructio...
caratheodory 43956 Caratheodory's constructio...
0ome 43957 The map that assigns 0 to ...
isomenndlem 43958 ` O ` is sub-additive w.r....
isomennd 43959 Sufficient condition to pr...
caragenel2d 43960 Membership in the Caratheo...
omege0 43961 If the outer measure of a ...
omess0 43962 If the outer measure of a ...
caragencmpl 43963 A measure built with the C...
vonval 43968 Value of the Lebesgue meas...
ovnval 43969 Value of the Lebesgue oute...
elhoi 43970 Membership in a multidimen...
icoresmbl 43971 A closed-below, open-above...
hoissre 43972 The projection of a half-o...
ovnval2 43973 Value of the Lebesgue oute...
volicorecl 43974 The Lebesgue measure of a ...
hoiprodcl 43975 The pre-measure of half-op...
hoicvr 43976 ` I ` is a countable set o...
hoissrrn 43977 A half-open interval is a ...
ovn0val 43978 The Lebesgue outer measure...
ovnn0val 43979 The value of a (multidimen...
ovnval2b 43980 Value of the Lebesgue oute...
volicorescl 43981 The Lebesgue measure of a ...
ovnprodcl 43982 The product used in the de...
hoiprodcl2 43983 The pre-measure of half-op...
hoicvrrex 43984 Any subset of the multidim...
ovnsupge0 43985 The set used in the defini...
ovnlecvr 43986 Given a subset of multidim...
ovnpnfelsup 43987 ` +oo ` is an element of t...
ovnsslelem 43988 The (multidimensional, non...
ovnssle 43989 The (multidimensional) Leb...
ovnlerp 43990 The Lebesgue outer measure...
ovnf 43991 The Lebesgue outer measure...
ovncvrrp 43992 The Lebesgue outer measure...
ovn0lem 43993 For any finite dimension, ...
ovn0 43994 For any finite dimension, ...
ovncl 43995 The Lebesgue outer measure...
ovn02 43996 For the zero-dimensional s...
ovnxrcl 43997 The Lebesgue outer measure...
ovnsubaddlem1 43998 The Lebesgue outer measure...
ovnsubaddlem2 43999 ` ( voln* `` X ) ` is suba...
ovnsubadd 44000 ` ( voln* `` X ) ` is suba...
ovnome 44001 ` ( voln* `` X ) ` is an o...
vonmea 44002 ` ( voln `` X ) ` is a mea...
volicon0 44003 The measure of a nonempty ...
hsphoif 44004 ` H ` is a function (that ...
hoidmvval 44005 The dimensional volume of ...
hoissrrn2 44006 A half-open interval is a ...
hsphoival 44007 ` H ` is a function (that ...
hoiprodcl3 44008 The pre-measure of half-op...
volicore 44009 The Lebesgue measure of a ...
hoidmvcl 44010 The dimensional volume of ...
hoidmv0val 44011 The dimensional volume of ...
hoidmvn0val 44012 The dimensional volume of ...
hsphoidmvle2 44013 The dimensional volume of ...
hsphoidmvle 44014 The dimensional volume of ...
hoidmvval0 44015 The dimensional volume of ...
hoiprodp1 44016 The dimensional volume of ...
sge0hsphoire 44017 If the generalized sum of ...
hoidmvval0b 44018 The dimensional volume of ...
hoidmv1lelem1 44019 The supremum of ` U ` belo...
hoidmv1lelem2 44020 This is the contradiction ...
hoidmv1lelem3 44021 The dimensional volume of ...
hoidmv1le 44022 The dimensional volume of ...
hoidmvlelem1 44023 The supremum of ` U ` belo...
hoidmvlelem2 44024 This is the contradiction ...
hoidmvlelem3 44025 This is the contradiction ...
hoidmvlelem4 44026 The dimensional volume of ...
hoidmvlelem5 44027 The dimensional volume of ...
hoidmvle 44028 The dimensional volume of ...
ovnhoilem1 44029 The Lebesgue outer measure...
ovnhoilem2 44030 The Lebesgue outer measure...
ovnhoi 44031 The Lebesgue outer measure...
dmovn 44032 The domain of the Lebesgue...
hoicoto2 44033 The half-open interval exp...
dmvon 44034 Lebesgue measurable n-dime...
hoi2toco 44035 The half-open interval exp...
hoidifhspval 44036 ` D ` is a function that r...
hspval 44037 The value of the half-spac...
ovnlecvr2 44038 Given a subset of multidim...
ovncvr2 44039 ` B ` and ` T ` are the le...
dmovnsal 44040 The domain of the Lebesgue...
unidmovn 44041 Base set of the n-dimensio...
rrnmbl 44042 The set of n-dimensional R...
hoidifhspval2 44043 ` D ` is a function that r...
hspdifhsp 44044 A n-dimensional half-open ...
unidmvon 44045 Base set of the n-dimensio...
hoidifhspf 44046 ` D ` is a function that r...
hoidifhspval3 44047 ` D ` is a function that r...
hoidifhspdmvle 44048 The dimensional volume of ...
voncmpl 44049 The Lebesgue measure is co...
hoiqssbllem1 44050 The center of the n-dimens...
hoiqssbllem2 44051 The center of the n-dimens...
hoiqssbllem3 44052 A n-dimensional ball conta...
hoiqssbl 44053 A n-dimensional ball conta...
hspmbllem1 44054 Any half-space of the n-di...
hspmbllem2 44055 Any half-space of the n-di...
hspmbllem3 44056 Any half-space of the n-di...
hspmbl 44057 Any half-space of the n-di...
hoimbllem 44058 Any n-dimensional half-ope...
hoimbl 44059 Any n-dimensional half-ope...
opnvonmbllem1 44060 The half-open interval exp...
opnvonmbllem2 44061 An open subset of the n-di...
opnvonmbl 44062 An open subset of the n-di...
opnssborel 44063 Open sets of a generalized...
borelmbl 44064 All Borel subsets of the n...
volicorege0 44065 The Lebesgue measure of a ...
isvonmbl 44066 The predicate " ` A ` is m...
mblvon 44067 The n-dimensional Lebesgue...
vonmblss 44068 n-dimensional Lebesgue mea...
volico2 44069 The measure of left-closed...
vonmblss2 44070 n-dimensional Lebesgue mea...
ovolval2lem 44071 The value of the Lebesgue ...
ovolval2 44072 The value of the Lebesgue ...
ovnsubadd2lem 44073 ` ( voln* `` X ) ` is suba...
ovnsubadd2 44074 ` ( voln* `` X ) ` is suba...
ovolval3 44075 The value of the Lebesgue ...
ovnsplit 44076 The n-dimensional Lebesgue...
ovolval4lem1 44077 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 44078 The value of the Lebesgue ...
ovolval4 44079 The value of the Lebesgue ...
ovolval5lem1 44080 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 44081 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 44082 The value of the Lebesgue ...
ovolval5 44083 The value of the Lebesgue ...
ovnovollem1 44084 if ` F ` is a cover of ` B...
ovnovollem2 44085 if ` I ` is a cover of ` (...
ovnovollem3 44086 The 1-dimensional Lebesgue...
ovnovol 44087 The 1-dimensional Lebesgue...
vonvolmbllem 44088 If a subset ` B ` of real ...
vonvolmbl 44089 A subset of Real numbers i...
vonvol 44090 The 1-dimensional Lebesgue...
vonvolmbl2 44091 A subset ` X ` of the spac...
vonvol2 44092 The 1-dimensional Lebesgue...
hoimbl2 44093 Any n-dimensional half-ope...
voncl 44094 The Lebesgue measure of a ...
vonhoi 44095 The Lebesgue outer measure...
vonxrcl 44096 The Lebesgue measure of a ...
ioosshoi 44097 A n-dimensional open inter...
vonn0hoi 44098 The Lebesgue outer measure...
von0val 44099 The Lebesgue measure (for ...
vonhoire 44100 The Lebesgue measure of a ...
iinhoiicclem 44101 A n-dimensional closed int...
iinhoiicc 44102 A n-dimensional closed int...
iunhoiioolem 44103 A n-dimensional open inter...
iunhoiioo 44104 A n-dimensional open inter...
ioovonmbl 44105 Any n-dimensional open int...
iccvonmbllem 44106 Any n-dimensional closed i...
iccvonmbl 44107 Any n-dimensional closed i...
vonioolem1 44108 The sequence of the measur...
vonioolem2 44109 The n-dimensional Lebesgue...
vonioo 44110 The n-dimensional Lebesgue...
vonicclem1 44111 The sequence of the measur...
vonicclem2 44112 The n-dimensional Lebesgue...
vonicc 44113 The n-dimensional Lebesgue...
snvonmbl 44114 A n-dimensional singleton ...
vonn0ioo 44115 The n-dimensional Lebesgue...
vonn0icc 44116 The n-dimensional Lebesgue...
ctvonmbl 44117 Any n-dimensional countabl...
vonn0ioo2 44118 The n-dimensional Lebesgue...
vonsn 44119 The n-dimensional Lebesgue...
vonn0icc2 44120 The n-dimensional Lebesgue...
vonct 44121 The n-dimensional Lebesgue...
vitali2 44122 There are non-measurable s...
pimltmnf2 44125 Given a real-valued functi...
preimagelt 44126 The preimage of a right-op...
preimalegt 44127 The preimage of a left-ope...
pimconstlt0 44128 Given a constant function,...
pimconstlt1 44129 Given a constant function,...
pimltpnf 44130 Given a real-valued functi...
pimgtpnf2 44131 Given a real-valued functi...
salpreimagelt 44132 If all the preimages of le...
pimrecltpos 44133 The preimage of an unbound...
salpreimalegt 44134 If all the preimages of ri...
pimiooltgt 44135 The preimage of an open in...
preimaicomnf 44136 Preimage of an open interv...
pimltpnf2 44137 Given a real-valued functi...
pimgtmnf2 44138 Given a real-valued functi...
pimdecfgtioc 44139 Given a nonincreasing func...
pimincfltioc 44140 Given a nondecreasing func...
pimdecfgtioo 44141 Given a nondecreasing func...
pimincfltioo 44142 Given a nondecreasing func...
preimaioomnf 44143 Preimage of an open interv...
preimageiingt 44144 A preimage of a left-close...
preimaleiinlt 44145 A preimage of a left-open,...
pimgtmnf 44146 Given a real-valued functi...
pimrecltneg 44147 The preimage of an unbound...
salpreimagtge 44148 If all the preimages of le...
salpreimaltle 44149 If all the preimages of ri...
issmflem 44150 The predicate " ` F ` is a...
issmf 44151 The predicate " ` F ` is a...
salpreimalelt 44152 If all the preimages of ri...
salpreimagtlt 44153 If all the preimages of le...
smfpreimalt 44154 Given a function measurabl...
smff 44155 A function measurable w.r....
smfdmss 44156 The domain of a function m...
issmff 44157 The predicate " ` F ` is a...
issmfd 44158 A sufficient condition for...
smfpreimaltf 44159 Given a function measurabl...
issmfdf 44160 A sufficient condition for...
sssmf 44161 The restriction of a sigma...
mbfresmf 44162 A real-valued measurable f...
cnfsmf 44163 A continuous function is m...
incsmflem 44164 A nondecreasing function i...
incsmf 44165 A real-valued, nondecreasi...
smfsssmf 44166 If a function is measurabl...
issmflelem 44167 The predicate " ` F ` is a...
issmfle 44168 The predicate " ` F ` is a...
smfpimltmpt 44169 Given a function measurabl...
smfpimltxr 44170 Given a function measurabl...
issmfdmpt 44171 A sufficient condition for...
smfconst 44172 Given a sigma-algebra over...
sssmfmpt 44173 The restriction of a sigma...
cnfrrnsmf 44174 A function, continuous fro...
smfid 44175 The identity function is B...
bormflebmf 44176 A Borel measurable functio...
smfpreimale 44177 Given a function measurabl...
issmfgtlem 44178 The predicate " ` F ` is a...
issmfgt 44179 The predicate " ` F ` is a...
issmfled 44180 A sufficient condition for...
smfpimltxrmpt 44181 Given a function measurabl...
smfmbfcex 44182 A constant function, with ...
issmfgtd 44183 A sufficient condition for...
smfpreimagt 44184 Given a function measurabl...
smfaddlem1 44185 Given the sum of two funct...
smfaddlem2 44186 The sum of two sigma-measu...
smfadd 44187 The sum of two sigma-measu...
decsmflem 44188 A nonincreasing function i...
decsmf 44189 A real-valued, nonincreasi...
smfpreimagtf 44190 Given a function measurabl...
issmfgelem 44191 The predicate " ` F ` is a...
issmfge 44192 The predicate " ` F ` is a...
smflimlem1 44193 Lemma for the proof that t...
smflimlem2 44194 Lemma for the proof that t...
smflimlem3 44195 The limit of sigma-measura...
smflimlem4 44196 Lemma for the proof that t...
smflimlem5 44197 Lemma for the proof that t...
smflimlem6 44198 Lemma for the proof that t...
smflim 44199 The limit of sigma-measura...
nsssmfmbflem 44200 The sigma-measurable funct...
nsssmfmbf 44201 The sigma-measurable funct...
smfpimgtxr 44202 Given a function measurabl...
smfpimgtmpt 44203 Given a function measurabl...
smfpreimage 44204 Given a function measurabl...
mbfpsssmf 44205 Real-valued measurable fun...
smfpimgtxrmpt 44206 Given a function measurabl...
smfpimioompt 44207 Given a function measurabl...
smfpimioo 44208 Given a function measurabl...
smfresal 44209 Given a sigma-measurable f...
smfrec 44210 The reciprocal of a sigma-...
smfres 44211 The restriction of sigma-m...
smfmullem1 44212 The multiplication of two ...
smfmullem2 44213 The multiplication of two ...
smfmullem3 44214 The multiplication of two ...
smfmullem4 44215 The multiplication of two ...
smfmul 44216 The multiplication of two ...
smfmulc1 44217 A sigma-measurable functio...
smfdiv 44218 The fraction of two sigma-...
smfpimbor1lem1 44219 Every open set belongs to ...
smfpimbor1lem2 44220 Given a sigma-measurable f...
smfpimbor1 44221 Given a sigma-measurable f...
smf2id 44222 Twice the identity functio...
smfco 44223 The composition of a Borel...
smfneg 44224 The negative of a sigma-me...
smffmpt 44225 A function measurable w.r....
smflim2 44226 The limit of a sequence of...
smfpimcclem 44227 Lemma for ~ smfpimcc given...
smfpimcc 44228 Given a countable set of s...
issmfle2d 44229 A sufficient condition for...
smflimmpt 44230 The limit of a sequence of...
smfsuplem1 44231 The supremum of a countabl...
smfsuplem2 44232 The supremum of a countabl...
smfsuplem3 44233 The supremum of a countabl...
smfsup 44234 The supremum of a countabl...
smfsupmpt 44235 The supremum of a countabl...
smfsupxr 44236 The supremum of a countabl...
smfinflem 44237 The infimum of a countable...
smfinf 44238 The infimum of a countable...
smfinfmpt 44239 The infimum of a countable...
smflimsuplem1 44240 If ` H ` converges, the ` ...
smflimsuplem2 44241 The superior limit of a se...
smflimsuplem3 44242 The limit of the ` ( H `` ...
smflimsuplem4 44243 If ` H ` converges, the ` ...
smflimsuplem5 44244 ` H ` converges to the sup...
smflimsuplem6 44245 The superior limit of a se...
smflimsuplem7 44246 The superior limit of a se...
smflimsuplem8 44247 The superior limit of a se...
smflimsup 44248 The superior limit of a se...
smflimsupmpt 44249 The superior limit of a se...
smfliminflem 44250 The inferior limit of a co...
smfliminf 44251 The inferior limit of a co...
smfliminfmpt 44252 The inferior limit of a co...
sigarval 44253 Define the signed area by ...
sigarim 44254 Signed area takes value in...
sigarac 44255 Signed area is anticommuta...
sigaraf 44256 Signed area is additive by...
sigarmf 44257 Signed area is additive (w...
sigaras 44258 Signed area is additive by...
sigarms 44259 Signed area is additive (w...
sigarls 44260 Signed area is linear by t...
sigarid 44261 Signed area of a flat para...
sigarexp 44262 Expand the signed area for...
sigarperm 44263 Signed area ` ( A - C ) G ...
sigardiv 44264 If signed area between vec...
sigarimcd 44265 Signed area takes value in...
sigariz 44266 If signed area is zero, th...
sigarcol 44267 Given three points ` A ` ,...
sharhght 44268 Let ` A B C ` be a triangl...
sigaradd 44269 Subtracting (double) area ...
cevathlem1 44270 Ceva's theorem first lemma...
cevathlem2 44271 Ceva's theorem second lemm...
cevath 44272 Ceva's theorem. Let ` A B...
simpcntrab 44273 The center of a simple gro...
hirstL-ax3 44274 The third axiom of a syste...
ax3h 44275 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 44276 A closed form showing (a i...
aibandbiaiaiffb 44277 A closed form showing (a i...
notatnand 44278 Do not use. Use intnanr i...
aistia 44279 Given a is equivalent to `...
aisfina 44280 Given a is equivalent to `...
bothtbothsame 44281 Given both a, b are equiva...
bothfbothsame 44282 Given both a, b are equiva...
aiffbbtat 44283 Given a is equivalent to b...
aisbbisfaisf 44284 Given a is equivalent to b...
axorbtnotaiffb 44285 Given a is exclusive to b,...
aiffnbandciffatnotciffb 44286 Given a is equivalent to (...
axorbciffatcxorb 44287 Given a is equivalent to (...
aibnbna 44288 Given a implies b, (not b)...
aibnbaif 44289 Given a implies b, not b, ...
aiffbtbat 44290 Given a is equivalent to b...
astbstanbst 44291 Given a is equivalent to T...
aistbistaandb 44292 Given a is equivalent to T...
aisbnaxb 44293 Given a is equivalent to b...
atbiffatnnb 44294 If a implies b, then a imp...
bisaiaisb 44295 Application of bicom1 with...
atbiffatnnbalt 44296 If a implies b, then a imp...
abnotbtaxb 44297 Assuming a, not b, there e...
abnotataxb 44298 Assuming not a, b, there e...
conimpf 44299 Assuming a, not b, and a i...
conimpfalt 44300 Assuming a, not b, and a i...
aistbisfiaxb 44301 Given a is equivalent to T...
aisfbistiaxb 44302 Given a is equivalent to F...
aifftbifffaibif 44303 Given a is equivalent to T...
aifftbifffaibifff 44304 Given a is equivalent to T...
atnaiana 44305 Given a, it is not the cas...
ainaiaandna 44306 Given a, a implies it is n...
abcdta 44307 Given (((a and b) and c) a...
abcdtb 44308 Given (((a and b) and c) a...
abcdtc 44309 Given (((a and b) and c) a...
abcdtd 44310 Given (((a and b) and c) a...
abciffcbatnabciffncba 44311 Operands in a biconditiona...
abciffcbatnabciffncbai 44312 Operands in a biconditiona...
nabctnabc 44313 not ( a -> ( b /\ c ) ) we...
jabtaib 44314 For when pm3.4 lacks a pm3...
onenotinotbothi 44315 From one negated implicati...
twonotinotbothi 44316 From these two negated imp...
clifte 44317 show d is the same as an i...
cliftet 44318 show d is the same as an i...
clifteta 44319 show d is the same as an i...
cliftetb 44320 show d is the same as an i...
confun 44321 Given the hypotheses there...
confun2 44322 Confun simplified to two p...
confun3 44323 Confun's more complex form...
confun4 44324 An attempt at derivative. ...
confun5 44325 An attempt at derivative. ...
plcofph 44326 Given, a,b and a "definiti...
pldofph 44327 Given, a,b c, d, "definiti...
plvcofph 44328 Given, a,b,d, and "definit...
plvcofphax 44329 Given, a,b,d, and "definit...
plvofpos 44330 rh is derivable because ON...
mdandyv0 44331 Given the equivalences set...
mdandyv1 44332 Given the equivalences set...
mdandyv2 44333 Given the equivalences set...
mdandyv3 44334 Given the equivalences set...
mdandyv4 44335 Given the equivalences set...
mdandyv5 44336 Given the equivalences set...
mdandyv6 44337 Given the equivalences set...
mdandyv7 44338 Given the equivalences set...
mdandyv8 44339 Given the equivalences set...
mdandyv9 44340 Given the equivalences set...
mdandyv10 44341 Given the equivalences set...
mdandyv11 44342 Given the equivalences set...
mdandyv12 44343 Given the equivalences set...
mdandyv13 44344 Given the equivalences set...
mdandyv14 44345 Given the equivalences set...
mdandyv15 44346 Given the equivalences set...
mdandyvr0 44347 Given the equivalences set...
mdandyvr1 44348 Given the equivalences set...
mdandyvr2 44349 Given the equivalences set...
mdandyvr3 44350 Given the equivalences set...
mdandyvr4 44351 Given the equivalences set...
mdandyvr5 44352 Given the equivalences set...
mdandyvr6 44353 Given the equivalences set...
mdandyvr7 44354 Given the equivalences set...
mdandyvr8 44355 Given the equivalences set...
mdandyvr9 44356 Given the equivalences set...
mdandyvr10 44357 Given the equivalences set...
mdandyvr11 44358 Given the equivalences set...
mdandyvr12 44359 Given the equivalences set...
mdandyvr13 44360 Given the equivalences set...
mdandyvr14 44361 Given the equivalences set...
mdandyvr15 44362 Given the equivalences set...
mdandyvrx0 44363 Given the exclusivities se...
mdandyvrx1 44364 Given the exclusivities se...
mdandyvrx2 44365 Given the exclusivities se...
mdandyvrx3 44366 Given the exclusivities se...
mdandyvrx4 44367 Given the exclusivities se...
mdandyvrx5 44368 Given the exclusivities se...
mdandyvrx6 44369 Given the exclusivities se...
mdandyvrx7 44370 Given the exclusivities se...
mdandyvrx8 44371 Given the exclusivities se...
mdandyvrx9 44372 Given the exclusivities se...
mdandyvrx10 44373 Given the exclusivities se...
mdandyvrx11 44374 Given the exclusivities se...
mdandyvrx12 44375 Given the exclusivities se...
mdandyvrx13 44376 Given the exclusivities se...
mdandyvrx14 44377 Given the exclusivities se...
mdandyvrx15 44378 Given the exclusivities se...
H15NH16TH15IH16 44379 Given 15 hypotheses and a ...
dandysum2p2e4 44380 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 44381 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 44382 Replacement of a nested an...
adh-minim 44383 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 44384 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 44385 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 44386 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 44387 Fourth lemma for the deriv...
adh-minim-ax1 44388 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 44389 Fifth lemma for the deriva...
adh-minim-ax2-lem6 44390 Sixth lemma for the deriva...
adh-minim-ax2c 44391 Derivation of a commuted f...
adh-minim-ax2 44392 Derivation of ~ ax-2 from ...
adh-minim-idALT 44393 Derivation of ~ id (reflex...
adh-minim-pm2.43 44394 Derivation of ~ pm2.43 Whi...
adh-minimp 44395 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 44396 First lemma for the deriva...
adh-minimp-jarr-lem2 44397 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 44398 Third lemma for the deriva...
adh-minimp-sylsimp 44399 Derivation of ~ jarr (also...
adh-minimp-ax1 44400 Derivation of ~ ax-1 from ...
adh-minimp-imim1 44401 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 44402 Derivation of a commuted f...
adh-minimp-ax2-lem4 44403 Fourth lemma for the deriv...
adh-minimp-ax2 44404 Derivation of ~ ax-2 from ...
adh-minimp-idALT 44405 Derivation of ~ id (reflex...
adh-minimp-pm2.43 44406 Derivation of ~ pm2.43 Whi...
eusnsn 44407 There is a unique element ...
absnsb 44408 If the class abstraction `...
euabsneu 44409 Another way to express exi...
elprneb 44410 An element of a proper uno...
oppr 44411 Equality for ordered pairs...
opprb 44412 Equality for unordered pai...
or2expropbilem1 44413 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 44414 Lemma 2 for ~ or2expropbi ...
or2expropbi 44415 If two classes are strictl...
eubrv 44416 If there is a unique set w...
eubrdm 44417 If there is a unique set w...
eldmressn 44418 Element of the domain of a...
iota0def 44419 Example for a defined iota...
iota0ndef 44420 Example for an undefined i...
fveqvfvv 44421 If a function's value at a...
fnresfnco 44422 Composition of two functio...
funcoressn 44423 A composition restricted t...
funressnfv 44424 A restriction to a singlet...
funressndmfvrn 44425 The value of a function ` ...
funressnvmo 44426 A function restricted to a...
funressnmo 44427 A function restricted to a...
funressneu 44428 There is exactly one value...
fresfo 44429 Conditions for a restricti...
fsetsniunop 44430 The class of all functions...
fsetabsnop 44431 The class of all functions...
fsetsnf 44432 The mapping of an element ...
fsetsnf1 44433 The mapping of an element ...
fsetsnfo 44434 The mapping of an element ...
fsetsnf1o 44435 The mapping of an element ...
fsetsnprcnex 44436 The class of all functions...
cfsetssfset 44437 The class of constant func...
cfsetsnfsetfv 44438 The function value of the ...
cfsetsnfsetf 44439 The mapping of the class o...
cfsetsnfsetf1 44440 The mapping of the class o...
cfsetsnfsetfo 44441 The mapping of the class o...
cfsetsnfsetf1o 44442 The mapping of the class o...
fsetprcnexALT 44443 First version of proof for...
fcoreslem1 44444 Lemma 1 for ~ fcores . (C...
fcoreslem2 44445 Lemma 2 for ~ fcores . (C...
fcoreslem3 44446 Lemma 3 for ~ fcores . (C...
fcoreslem4 44447 Lemma 4 for ~ fcores . (C...
fcores 44448 Every composite function `...
fcoresf1lem 44449 Lemma for ~ fcoresf1 . (C...
fcoresf1 44450 If a composition is inject...
fcoresf1b 44451 A composition is injective...
fcoresfo 44452 If a composition is surjec...
fcoresfob 44453 A composition is surjectiv...
fcoresf1ob 44454 A composition is bijective...
f1cof1blem 44455 Lemma for ~ f1cof1b and ~ ...
f1cof1b 44456 If the range of ` F ` equa...
funfocofob 44457 If the domain of a functio...
fnfocofob 44458 If the domain of a functio...
focofob 44459 If the domain of a functio...
f1ocof1ob 44460 If the range of ` F ` equa...
f1ocof1ob2 44461 If the range of ` F ` equa...
aiotajust 44463 Soundness justification th...
dfaiota2 44465 Alternate definition of th...
reuabaiotaiota 44466 The iota and the alternate...
reuaiotaiota 44467 The iota and the alternate...
aiotaexb 44468 The alternate iota over a ...
aiotavb 44469 The alternate iota over a ...
aiotaint 44470 This is to ~ df-aiota what...
dfaiota3 44471 Alternate definition of ` ...
iotan0aiotaex 44472 If the iota over a wff ` p...
aiotaexaiotaiota 44473 The alternate iota over a ...
aiotaval 44474 Theorem 8.19 in [Quine] p....
aiota0def 44475 Example for a defined alte...
aiota0ndef 44476 Example for an undefined a...
r19.32 44477 Theorem 19.32 of [Margaris...
rexsb 44478 An equivalent expression f...
rexrsb 44479 An equivalent expression f...
2rexsb 44480 An equivalent expression f...
2rexrsb 44481 An equivalent expression f...
cbvral2 44482 Change bound variables of ...
cbvrex2 44483 Change bound variables of ...
ralndv1 44484 Example for a theorem abou...
ralndv2 44485 Second example for a theor...
reuf1odnf 44486 There is exactly one eleme...
reuf1od 44487 There is exactly one eleme...
euoreqb 44488 There is a set which is eq...
2reu3 44489 Double restricted existent...
2reu7 44490 Two equivalent expressions...
2reu8 44491 Two equivalent expressions...
2reu8i 44492 Implication of a double re...
2reuimp0 44493 Implication of a double re...
2reuimp 44494 Implication of a double re...
ralbinrald 44501 Elemination of a restricte...
nvelim 44502 If a class is the universa...
alneu 44503 If a statement holds for a...
eu2ndop1stv 44504 If there is a unique secon...
dfateq12d 44505 Equality deduction for "de...
nfdfat 44506 Bound-variable hypothesis ...
dfdfat2 44507 Alternate definition of th...
fundmdfat 44508 A function is defined at a...
dfatprc 44509 A function is not defined ...
dfatelrn 44510 The value of a function ` ...
dfafv2 44511 Alternative definition of ...
afveq12d 44512 Equality deduction for fun...
afveq1 44513 Equality theorem for funct...
afveq2 44514 Equality theorem for funct...
nfafv 44515 Bound-variable hypothesis ...
csbafv12g 44516 Move class substitution in...
afvfundmfveq 44517 If a class is a function r...
afvnfundmuv 44518 If a set is not in the dom...
ndmafv 44519 The value of a class outsi...
afvvdm 44520 If the function value of a...
nfunsnafv 44521 If the restriction of a cl...
afvvfunressn 44522 If the function value of a...
afvprc 44523 A function's value at a pr...
afvvv 44524 If a function's value at a...
afvpcfv0 44525 If the value of the altern...
afvnufveq 44526 The value of the alternati...
afvvfveq 44527 The value of the alternati...
afv0fv0 44528 If the value of the altern...
afvfvn0fveq 44529 If the function's value at...
afv0nbfvbi 44530 The function's value at an...
afvfv0bi 44531 The function's value at an...
afveu 44532 The value of a function at...
fnbrafvb 44533 Equivalence of function va...
fnopafvb 44534 Equivalence of function va...
funbrafvb 44535 Equivalence of function va...
funopafvb 44536 Equivalence of function va...
funbrafv 44537 The second argument of a b...
funbrafv2b 44538 Function value in terms of...
dfafn5a 44539 Representation of a functi...
dfafn5b 44540 Representation of a functi...
fnrnafv 44541 The range of a function ex...
afvelrnb 44542 A member of a function's r...
afvelrnb0 44543 A member of a function's r...
dfaimafn 44544 Alternate definition of th...
dfaimafn2 44545 Alternate definition of th...
afvelima 44546 Function value in an image...
afvelrn 44547 A function's value belongs...
fnafvelrn 44548 A function's value belongs...
fafvelrn 44549 A function's value belongs...
ffnafv 44550 A function maps to a class...
afvres 44551 The value of a restricted ...
tz6.12-afv 44552 Function value. Theorem 6...
tz6.12-1-afv 44553 Function value (Theorem 6....
dmfcoafv 44554 Domains of a function comp...
afvco2 44555 Value of a function compos...
rlimdmafv 44556 Two ways to express that a...
aoveq123d 44557 Equality deduction for ope...
nfaov 44558 Bound-variable hypothesis ...
csbaovg 44559 Move class substitution in...
aovfundmoveq 44560 If a class is a function r...
aovnfundmuv 44561 If an ordered pair is not ...
ndmaov 44562 The value of an operation ...
ndmaovg 44563 The value of an operation ...
aovvdm 44564 If the operation value of ...
nfunsnaov 44565 If the restriction of a cl...
aovvfunressn 44566 If the operation value of ...
aovprc 44567 The value of an operation ...
aovrcl 44568 Reverse closure for an ope...
aovpcov0 44569 If the alternative value o...
aovnuoveq 44570 The alternative value of t...
aovvoveq 44571 The alternative value of t...
aov0ov0 44572 If the alternative value o...
aovovn0oveq 44573 If the operation's value a...
aov0nbovbi 44574 The operation's value on a...
aovov0bi 44575 The operation's value on a...
rspceaov 44576 A frequently used special ...
fnotaovb 44577 Equivalence of operation v...
ffnaov 44578 An operation maps to a cla...
faovcl 44579 Closure law for an operati...
aovmpt4g 44580 Value of a function given ...
aoprssdm 44581 Domain of closure of an op...
ndmaovcl 44582 The "closure" of an operat...
ndmaovrcl 44583 Reverse closure law, in co...
ndmaovcom 44584 Any operation is commutati...
ndmaovass 44585 Any operation is associati...
ndmaovdistr 44586 Any operation is distribut...
dfatafv2iota 44589 If a function is defined a...
ndfatafv2 44590 The alternate function val...
ndfatafv2undef 44591 The alternate function val...
dfatafv2ex 44592 The alternate function val...
afv2ex 44593 The alternate function val...
afv2eq12d 44594 Equality deduction for fun...
afv2eq1 44595 Equality theorem for funct...
afv2eq2 44596 Equality theorem for funct...
nfafv2 44597 Bound-variable hypothesis ...
csbafv212g 44598 Move class substitution in...
fexafv2ex 44599 The alternate function val...
ndfatafv2nrn 44600 The alternate function val...
ndmafv2nrn 44601 The value of a class outsi...
funressndmafv2rn 44602 The alternate function val...
afv2ndefb 44603 Two ways to say that an al...
nfunsnafv2 44604 If the restriction of a cl...
afv2prc 44605 A function's value at a pr...
dfatafv2rnb 44606 The alternate function val...
afv2orxorb 44607 If a set is in the range o...
dmafv2rnb 44608 The alternate function val...
fundmafv2rnb 44609 The alternate function val...
afv2elrn 44610 An alternate function valu...
afv20defat 44611 If the alternate function ...
fnafv2elrn 44612 An alternate function valu...
fafv2elrn 44613 An alternate function valu...
fafv2elrnb 44614 An alternate function valu...
frnvafv2v 44615 If the codomain of a funct...
tz6.12-2-afv2 44616 Function value when ` F ` ...
afv2eu 44617 The value of a function at...
afv2res 44618 The value of a restricted ...
tz6.12-afv2 44619 Function value (Theorem 6....
tz6.12-1-afv2 44620 Function value (Theorem 6....
tz6.12c-afv2 44621 Corollary of Theorem 6.12(...
tz6.12i-afv2 44622 Corollary of Theorem 6.12(...
funressnbrafv2 44623 The second argument of a b...
dfatbrafv2b 44624 Equivalence of function va...
dfatopafv2b 44625 Equivalence of function va...
funbrafv2 44626 The second argument of a b...
fnbrafv2b 44627 Equivalence of function va...
fnopafv2b 44628 Equivalence of function va...
funbrafv22b 44629 Equivalence of function va...
funopafv2b 44630 Equivalence of function va...
dfatsnafv2 44631 Singleton of function valu...
dfafv23 44632 A definition of function v...
dfatdmfcoafv2 44633 Domain of a function compo...
dfatcolem 44634 Lemma for ~ dfatco . (Con...
dfatco 44635 The predicate "defined at"...
afv2co2 44636 Value of a function compos...
rlimdmafv2 44637 Two ways to express that a...
dfafv22 44638 Alternate definition of ` ...
afv2ndeffv0 44639 If the alternate function ...
dfatafv2eqfv 44640 If a function is defined a...
afv2rnfveq 44641 If the alternate function ...
afv20fv0 44642 If the alternate function ...
afv2fvn0fveq 44643 If the function's value at...
afv2fv0 44644 If the function's value at...
afv2fv0b 44645 The function's value at an...
afv2fv0xorb 44646 If a set is in the range o...
an4com24 44647 Rearrangement of 4 conjunc...
3an4ancom24 44648 Commutative law for a conj...
4an21 44649 Rearrangement of 4 conjunc...
dfnelbr2 44652 Alternate definition of th...
nelbr 44653 The binary relation of a s...
nelbrim 44654 If a set is related to ano...
nelbrnel 44655 A set is related to anothe...
nelbrnelim 44656 If a set is related to ano...
ralralimp 44657 Selecting one of two alter...
otiunsndisjX 44658 The union of singletons co...
fvifeq 44659 Equality of function value...
rnfdmpr 44660 The range of a one-to-one ...
imarnf1pr 44661 The image of the range of ...
funop1 44662 A function is an ordered p...
fun2dmnopgexmpl 44663 A function with a domain c...
opabresex0d 44664 A collection of ordered pa...
opabbrfex0d 44665 A collection of ordered pa...
opabresexd 44666 A collection of ordered pa...
opabbrfexd 44667 A collection of ordered pa...
f1oresf1orab 44668 Build a bijection by restr...
f1oresf1o 44669 Build a bijection by restr...
f1oresf1o2 44670 Build a bijection by restr...
fvmptrab 44671 Value of a function mappin...
fvmptrabdm 44672 Value of a function mappin...
leltletr 44673 Transitive law, weaker for...
cnambpcma 44674 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 44675 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 44676 The sum of two complex num...
leaddsuble 44677 Addition and subtraction o...
2leaddle2 44678 If two real numbers are le...
ltnltne 44679 Variant of trichotomy law ...
p1lep2 44680 A real number increasd by ...
ltsubsubaddltsub 44681 If the result of subtracti...
zm1nn 44682 An integer minus 1 is posi...
readdcnnred 44683 The sum of a real number a...
resubcnnred 44684 The difference of a real n...
recnmulnred 44685 The product of a real numb...
cndivrenred 44686 The quotient of an imagina...
sqrtnegnre 44687 The square root of a negat...
nn0resubcl 44688 Closure law for subtractio...
zgeltp1eq 44689 If an integer is between a...
1t10e1p1e11 44690 11 is 1 times 10 to the po...
deccarry 44691 Add 1 to a 2 digit number ...
eluzge0nn0 44692 If an integer is greater t...
nltle2tri 44693 Negated extended trichotom...
ssfz12 44694 Subset relationship for fi...
elfz2z 44695 Membership of an integer i...
2elfz3nn0 44696 If there are two elements ...
fz0addcom 44697 The addition of two member...
2elfz2melfz 44698 If the sum of two integers...
fz0addge0 44699 The sum of two integers in...
elfzlble 44700 Membership of an integer i...
elfzelfzlble 44701 Membership of an element o...
fzopred 44702 Join a predecessor to the ...
fzopredsuc 44703 Join a predecessor and a s...
1fzopredsuc 44704 Join 0 and a successor to ...
el1fzopredsuc 44705 An element of an open inte...
subsubelfzo0 44706 Subtracting a difference f...
fzoopth 44707 A half-open integer range ...
2ffzoeq 44708 Two functions over a half-...
m1mod0mod1 44709 An integer decreased by 1 ...
elmod2 44710 An integer modulo 2 is eit...
smonoord 44711 Ordering relation for a st...
fsummsndifre 44712 A finite sum with one of i...
fsumsplitsndif 44713 Separate out a term in a f...
fsummmodsndifre 44714 A finite sum of summands m...
fsummmodsnunz 44715 A finite sum of summands m...
setsidel 44716 The injected slot is an el...
setsnidel 44717 The injected slot is an el...
setsv 44718 The value of the structure...
preimafvsnel 44719 The preimage of a function...
preimafvn0 44720 The preimage of a function...
uniimafveqt 44721 The union of the image of ...
uniimaprimaeqfv 44722 The union of the image of ...
setpreimafvex 44723 The class ` P ` of all pre...
elsetpreimafvb 44724 The characterization of an...
elsetpreimafv 44725 An element of the class ` ...
elsetpreimafvssdm 44726 An element of the class ` ...
fvelsetpreimafv 44727 There is an element in a p...
preimafvelsetpreimafv 44728 The preimage of a function...
preimafvsspwdm 44729 The class ` P ` of all pre...
0nelsetpreimafv 44730 The empty set is not an el...
elsetpreimafvbi 44731 An element of the preimage...
elsetpreimafveqfv 44732 The elements of the preima...
eqfvelsetpreimafv 44733 If an element of the domai...
elsetpreimafvrab 44734 An element of the preimage...
imaelsetpreimafv 44735 The image of an element of...
uniimaelsetpreimafv 44736 The union of the image of ...
elsetpreimafveq 44737 If two preimages of functi...
fundcmpsurinjlem1 44738 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 44739 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 44740 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 44741 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 44742 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 44743 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 44744 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 44745 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 44746 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 44747 Every function ` F : A -->...
fundcmpsurinjpreimafv 44748 Every function ` F : A -->...
fundcmpsurinj 44749 Every function ` F : A -->...
fundcmpsurbijinj 44750 Every function ` F : A -->...
fundcmpsurinjimaid 44751 Every function ` F : A -->...
fundcmpsurinjALT 44752 Alternate proof of ~ fundc...
iccpval 44755 Partition consisting of a ...
iccpart 44756 A special partition. Corr...
iccpartimp 44757 Implications for a class b...
iccpartres 44758 The restriction of a parti...
iccpartxr 44759 If there is a partition, t...
iccpartgtprec 44760 If there is a partition, t...
iccpartipre 44761 If there is a partition, t...
iccpartiltu 44762 If there is a partition, t...
iccpartigtl 44763 If there is a partition, t...
iccpartlt 44764 If there is a partition, t...
iccpartltu 44765 If there is a partition, t...
iccpartgtl 44766 If there is a partition, t...
iccpartgt 44767 If there is a partition, t...
iccpartleu 44768 If there is a partition, t...
iccpartgel 44769 If there is a partition, t...
iccpartrn 44770 If there is a partition, t...
iccpartf 44771 The range of the partition...
iccpartel 44772 If there is a partition, t...
iccelpart 44773 An element of any partitio...
iccpartiun 44774 A half-open interval of ex...
icceuelpartlem 44775 Lemma for ~ icceuelpart . ...
icceuelpart 44776 An element of a partitione...
iccpartdisj 44777 The segments of a partitio...
iccpartnel 44778 A point of a partition is ...
fargshiftfv 44779 If a class is a function, ...
fargshiftf 44780 If a class is a function, ...
fargshiftf1 44781 If a function is 1-1, then...
fargshiftfo 44782 If a function is onto, the...
fargshiftfva 44783 The values of a shifted fu...
lswn0 44784 The last symbol of a not e...
nfich1 44787 The first interchangeable ...
nfich2 44788 The second interchangeable...
ichv 44789 Setvar variables are inter...
ichf 44790 Setvar variables are inter...
ichid 44791 A setvar variable is alway...
icht 44792 A theorem is interchangeab...
ichbidv 44793 Formula building rule for ...
ichcircshi 44794 The setvar variables are i...
ichan 44795 If two setvar variables ar...
ichn 44796 Negation does not affect i...
ichim 44797 Formula building rule for ...
dfich2 44798 Alternate definition of th...
ichcom 44799 The interchangeability of ...
ichbi12i 44800 Equivalence for interchang...
icheqid 44801 In an equality for the sam...
icheq 44802 In an equality of setvar v...
ichnfimlem 44803 Lemma for ~ ichnfim : A s...
ichnfim 44804 If in an interchangeabilit...
ichnfb 44805 If ` x ` and ` y ` are int...
ichal 44806 Move a universal quantifie...
ich2al 44807 Two setvar variables are a...
ich2ex 44808 Two setvar variables are a...
ichexmpl1 44809 Example for interchangeabl...
ichexmpl2 44810 Example for interchangeabl...
ich2exprop 44811 If the setvar variables ar...
ichnreuop 44812 If the setvar variables ar...
ichreuopeq 44813 If the setvar variables ar...
sprid 44814 Two identical representati...
elsprel 44815 An unordered pair is an el...
spr0nelg 44816 The empty set is not an el...
sprval 44819 The set of all unordered p...
sprvalpw 44820 The set of all unordered p...
sprssspr 44821 The set of all unordered p...
spr0el 44822 The empty set is not an un...
sprvalpwn0 44823 The set of all unordered p...
sprel 44824 An element of the set of a...
prssspr 44825 An element of a subset of ...
prelspr 44826 An unordered pair of eleme...
prsprel 44827 The elements of a pair fro...
prsssprel 44828 The elements of a pair fro...
sprvalpwle2 44829 The set of all unordered p...
sprsymrelfvlem 44830 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 44831 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 44832 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 44833 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 44834 The value of the function ...
sprsymrelf 44835 The mapping ` F ` is a fun...
sprsymrelf1 44836 The mapping ` F ` is a one...
sprsymrelfo 44837 The mapping ` F ` is a fun...
sprsymrelf1o 44838 The mapping ` F ` is a bij...
sprbisymrel 44839 There is a bijection betwe...
sprsymrelen 44840 The class ` P ` of subsets...
prpair 44841 Characterization of a prop...
prproropf1olem0 44842 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 44843 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 44844 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 44845 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 44846 Lemma 4 for ~ prproropf1o ...
prproropf1o 44847 There is a bijection betwe...
prproropen 44848 The set of proper pairs an...
prproropreud 44849 There is exactly one order...
pairreueq 44850 Two equivalent representat...
paireqne 44851 Two sets are not equal iff...
prprval 44854 The set of all proper unor...
prprvalpw 44855 The set of all proper unor...
prprelb 44856 An element of the set of a...
prprelprb 44857 A set is an element of the...
prprspr2 44858 The set of all proper unor...
prprsprreu 44859 There is a unique proper u...
prprreueq 44860 There is a unique proper u...
sbcpr 44861 The proper substitution of...
reupr 44862 There is a unique unordere...
reuprpr 44863 There is a unique proper u...
poprelb 44864 Equality for unordered pai...
2exopprim 44865 The existence of an ordere...
reuopreuprim 44866 There is a unique unordere...
fmtno 44869 The ` N ` th Fermat number...
fmtnoge3 44870 Each Fermat number is grea...
fmtnonn 44871 Each Fermat number is a po...
fmtnom1nn 44872 A Fermat number minus one ...
fmtnoodd 44873 Each Fermat number is odd....
fmtnorn 44874 A Fermat number is a funct...
fmtnof1 44875 The enumeration of the Fer...
fmtnoinf 44876 The set of Fermat numbers ...
fmtnorec1 44877 The first recurrence relat...
sqrtpwpw2p 44878 The floor of the square ro...
fmtnosqrt 44879 The floor of the square ro...
fmtno0 44880 The ` 0 ` th Fermat number...
fmtno1 44881 The ` 1 ` st Fermat number...
fmtnorec2lem 44882 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 44883 The second recurrence rela...
fmtnodvds 44884 Any Fermat number divides ...
goldbachthlem1 44885 Lemma 1 for ~ goldbachth ....
goldbachthlem2 44886 Lemma 2 for ~ goldbachth ....
goldbachth 44887 Goldbach's theorem: Two d...
fmtnorec3 44888 The third recurrence relat...
fmtnorec4 44889 The fourth recurrence rela...
fmtno2 44890 The ` 2 ` nd Fermat number...
fmtno3 44891 The ` 3 ` rd Fermat number...
fmtno4 44892 The ` 4 ` th Fermat number...
fmtno5lem1 44893 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 44894 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 44895 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 44896 Lemma 4 for ~ fmtno5 . (C...
fmtno5 44897 The ` 5 ` th Fermat number...
fmtno0prm 44898 The ` 0 ` th Fermat number...
fmtno1prm 44899 The ` 1 ` st Fermat number...
fmtno2prm 44900 The ` 2 ` nd Fermat number...
257prm 44901 257 is a prime number (the...
fmtno3prm 44902 The ` 3 ` rd Fermat number...
odz2prm2pw 44903 Any power of two is coprim...
fmtnoprmfac1lem 44904 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 44905 Divisor of Fermat number (...
fmtnoprmfac2lem1 44906 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 44907 Divisor of Fermat number (...
fmtnofac2lem 44908 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 44909 Divisor of Fermat number (...
fmtnofac1 44910 Divisor of Fermat number (...
fmtno4sqrt 44911 The floor of the square ro...
fmtno4prmfac 44912 If P was a (prime) factor ...
fmtno4prmfac193 44913 If P was a (prime) factor ...
fmtno4nprmfac193 44914 193 is not a (prime) facto...
fmtno4prm 44915 The ` 4 `-th Fermat number...
65537prm 44916 65537 is a prime number (t...
fmtnofz04prm 44917 The first five Fermat numb...
fmtnole4prm 44918 The first five Fermat numb...
fmtno5faclem1 44919 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 44920 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 44921 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 44922 The factorisation of the `...
fmtno5nprm 44923 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 44924 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 44925 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 44926 The mapping of a Fermat nu...
prmdvdsfmtnof1 44927 The mapping of a Fermat nu...
prminf2 44928 The set of prime numbers i...
2pwp1prm 44929 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 44930 Every prime number of the ...
m2prm 44931 The second Mersenne number...
m3prm 44932 The third Mersenne number ...
flsqrt 44933 A condition equivalent to ...
flsqrt5 44934 The floor of the square ro...
3ndvds4 44935 3 does not divide 4. (Con...
139prmALT 44936 139 is a prime number. In...
31prm 44937 31 is a prime number. In ...
m5prm 44938 The fifth Mersenne number ...
127prm 44939 127 is a prime number. (C...
m7prm 44940 The seventh Mersenne numbe...
m11nprm 44941 The eleventh Mersenne numb...
mod42tp1mod8 44942 If a number is ` 3 ` modul...
sfprmdvdsmersenne 44943 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 44944 If ` P ` is a Sophie Germa...
lighneallem1 44945 Lemma 1 for ~ lighneal . ...
lighneallem2 44946 Lemma 2 for ~ lighneal . ...
lighneallem3 44947 Lemma 3 for ~ lighneal . ...
lighneallem4a 44948 Lemma 1 for ~ lighneallem4...
lighneallem4b 44949 Lemma 2 for ~ lighneallem4...
lighneallem4 44950 Lemma 3 for ~ lighneal . ...
lighneal 44951 If a power of a prime ` P ...
modexp2m1d 44952 The square of an integer w...
proththdlem 44953 Lemma for ~ proththd . (C...
proththd 44954 Proth's theorem (1878). I...
5tcu2e40 44955 5 times the cube of 2 is 4...
3exp4mod41 44956 3 to the fourth power is -...
41prothprmlem1 44957 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 44958 Lemma 2 for ~ 41prothprm ....
41prothprm 44959 41 is a _Proth prime_. (C...
quad1 44960 A condition for a quadrati...
requad01 44961 A condition for a quadrati...
requad1 44962 A condition for a quadrati...
requad2 44963 A condition for a quadrati...
iseven 44968 The predicate "is an even ...
isodd 44969 The predicate "is an odd n...
evenz 44970 An even number is an integ...
oddz 44971 An odd number is an intege...
evendiv2z 44972 The result of dividing an ...
oddp1div2z 44973 The result of dividing an ...
oddm1div2z 44974 The result of dividing an ...
isodd2 44975 The predicate "is an odd n...
dfodd2 44976 Alternate definition for o...
dfodd6 44977 Alternate definition for o...
dfeven4 44978 Alternate definition for e...
evenm1odd 44979 The predecessor of an even...
evenp1odd 44980 The successor of an even n...
oddp1eveni 44981 The successor of an odd nu...
oddm1eveni 44982 The predecessor of an odd ...
evennodd 44983 An even number is not an o...
oddneven 44984 An odd number is not an ev...
enege 44985 The negative of an even nu...
onego 44986 The negative of an odd num...
m1expevenALTV 44987 Exponentiation of -1 by an...
m1expoddALTV 44988 Exponentiation of -1 by an...
dfeven2 44989 Alternate definition for e...
dfodd3 44990 Alternate definition for o...
iseven2 44991 The predicate "is an even ...
isodd3 44992 The predicate "is an odd n...
2dvdseven 44993 2 divides an even number. ...
m2even 44994 A multiple of 2 is an even...
2ndvdsodd 44995 2 does not divide an odd n...
2dvdsoddp1 44996 2 divides an odd number in...
2dvdsoddm1 44997 2 divides an odd number de...
dfeven3 44998 Alternate definition for e...
dfodd4 44999 Alternate definition for o...
dfodd5 45000 Alternate definition for o...
zefldiv2ALTV 45001 The floor of an even numbe...
zofldiv2ALTV 45002 The floor of an odd numer ...
oddflALTV 45003 Odd number representation ...
iseven5 45004 The predicate "is an even ...
isodd7 45005 The predicate "is an odd n...
dfeven5 45006 Alternate definition for e...
dfodd7 45007 Alternate definition for o...
gcd2odd1 45008 The greatest common diviso...
zneoALTV 45009 No even integer equals an ...
zeoALTV 45010 An integer is even or odd....
zeo2ALTV 45011 An integer is even or odd ...
nneoALTV 45012 A positive integer is even...
nneoiALTV 45013 A positive integer is even...
odd2np1ALTV 45014 An integer is odd iff it i...
oddm1evenALTV 45015 An integer is odd iff its ...
oddp1evenALTV 45016 An integer is odd iff its ...
oexpnegALTV 45017 The exponential of the neg...
oexpnegnz 45018 The exponential of the neg...
bits0ALTV 45019 Value of the zeroth bit. ...
bits0eALTV 45020 The zeroth bit of an even ...
bits0oALTV 45021 The zeroth bit of an odd n...
divgcdoddALTV 45022 Either ` A / ( A gcd B ) `...
opoeALTV 45023 The sum of two odds is eve...
opeoALTV 45024 The sum of an odd and an e...
omoeALTV 45025 The difference of two odds...
omeoALTV 45026 The difference of an odd a...
oddprmALTV 45027 A prime not equal to ` 2 `...
0evenALTV 45028 0 is an even number. (Con...
0noddALTV 45029 0 is not an odd number. (...
1oddALTV 45030 1 is an odd number. (Cont...
1nevenALTV 45031 1 is not an even number. ...
2evenALTV 45032 2 is an even number. (Con...
2noddALTV 45033 2 is not an odd number. (...
nn0o1gt2ALTV 45034 An odd nonnegative integer...
nnoALTV 45035 An alternate characterizat...
nn0oALTV 45036 An alternate characterizat...
nn0e 45037 An alternate characterizat...
nneven 45038 An alternate characterizat...
nn0onn0exALTV 45039 For each odd nonnegative i...
nn0enn0exALTV 45040 For each even nonnegative ...
nnennexALTV 45041 For each even positive int...
nnpw2evenALTV 45042 2 to the power of a positi...
epoo 45043 The sum of an even and an ...
emoo 45044 The difference of an even ...
epee 45045 The sum of two even number...
emee 45046 The difference of two even...
evensumeven 45047 If a summand is even, the ...
3odd 45048 3 is an odd number. (Cont...
4even 45049 4 is an even number. (Con...
5odd 45050 5 is an odd number. (Cont...
6even 45051 6 is an even number. (Con...
7odd 45052 7 is an odd number. (Cont...
8even 45053 8 is an even number. (Con...
evenprm2 45054 A prime number is even iff...
oddprmne2 45055 Every prime number not bei...
oddprmuzge3 45056 A prime number which is od...
evenltle 45057 If an even number is great...
odd2prm2 45058 If an odd number is the su...
even3prm2 45059 If an even number is the s...
mogoldbblem 45060 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 45061 Lemma for ~ perfectALTV . ...
perfectALTVlem2 45062 Lemma for ~ perfectALTV . ...
perfectALTV 45063 The Euclid-Euler theorem, ...
fppr 45066 The set of Fermat pseudopr...
fpprmod 45067 The set of Fermat pseudopr...
fpprel 45068 A Fermat pseudoprime to th...
fpprbasnn 45069 The base of a Fermat pseud...
fpprnn 45070 A Fermat pseudoprime to th...
fppr2odd 45071 A Fermat pseudoprime to th...
11t31e341 45072 341 is the product of 11 a...
2exp340mod341 45073 Eight to the eighth power ...
341fppr2 45074 341 is the (smallest) _Pou...
4fppr1 45075 4 is the (smallest) Fermat...
8exp8mod9 45076 Eight to the eighth power ...
9fppr8 45077 9 is the (smallest) Fermat...
dfwppr 45078 Alternate definition of a ...
fpprwppr 45079 A Fermat pseudoprime to th...
fpprwpprb 45080 An integer ` X ` which is ...
fpprel2 45081 An alternate definition fo...
nfermltl8rev 45082 Fermat's little theorem wi...
nfermltl2rev 45083 Fermat's little theorem wi...
nfermltlrev 45084 Fermat's little theorem re...
isgbe 45091 The predicate "is an even ...
isgbow 45092 The predicate "is a weak o...
isgbo 45093 The predicate "is an odd G...
gbeeven 45094 An even Goldbach number is...
gbowodd 45095 A weak odd Goldbach number...
gbogbow 45096 A (strong) odd Goldbach nu...
gboodd 45097 An odd Goldbach number is ...
gbepos 45098 Any even Goldbach number i...
gbowpos 45099 Any weak odd Goldbach numb...
gbopos 45100 Any odd Goldbach number is...
gbegt5 45101 Any even Goldbach number i...
gbowgt5 45102 Any weak odd Goldbach numb...
gbowge7 45103 Any weak odd Goldbach numb...
gboge9 45104 Any odd Goldbach number is...
gbege6 45105 Any even Goldbach number i...
gbpart6 45106 The Goldbach partition of ...
gbpart7 45107 The (weak) Goldbach partit...
gbpart8 45108 The Goldbach partition of ...
gbpart9 45109 The (strong) Goldbach part...
gbpart11 45110 The (strong) Goldbach part...
6gbe 45111 6 is an even Goldbach numb...
7gbow 45112 7 is a weak odd Goldbach n...
8gbe 45113 8 is an even Goldbach numb...
9gbo 45114 9 is an odd Goldbach numbe...
11gbo 45115 11 is an odd Goldbach numb...
stgoldbwt 45116 If the strong ternary Gold...
sbgoldbwt 45117 If the strong binary Goldb...
sbgoldbst 45118 If the strong binary Goldb...
sbgoldbaltlem1 45119 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 45120 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 45121 An alternate (related to t...
sbgoldbb 45122 If the strong binary Goldb...
sgoldbeven3prm 45123 If the binary Goldbach con...
sbgoldbm 45124 If the strong binary Goldb...
mogoldbb 45125 If the modern version of t...
sbgoldbmb 45126 The strong binary Goldbach...
sbgoldbo 45127 If the strong binary Goldb...
nnsum3primes4 45128 4 is the sum of at most 3 ...
nnsum4primes4 45129 4 is the sum of at most 4 ...
nnsum3primesprm 45130 Every prime is "the sum of...
nnsum4primesprm 45131 Every prime is "the sum of...
nnsum3primesgbe 45132 Any even Goldbach number i...
nnsum4primesgbe 45133 Any even Goldbach number i...
nnsum3primesle9 45134 Every integer greater than...
nnsum4primesle9 45135 Every integer greater than...
nnsum4primesodd 45136 If the (weak) ternary Gold...
nnsum4primesoddALTV 45137 If the (strong) ternary Go...
evengpop3 45138 If the (weak) ternary Gold...
evengpoap3 45139 If the (strong) ternary Go...
nnsum4primeseven 45140 If the (weak) ternary Gold...
nnsum4primesevenALTV 45141 If the (strong) ternary Go...
wtgoldbnnsum4prm 45142 If the (weak) ternary Gold...
stgoldbnnsum4prm 45143 If the (strong) ternary Go...
bgoldbnnsum3prm 45144 If the binary Goldbach con...
bgoldbtbndlem1 45145 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 45146 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 45147 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 45148 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 45149 If the binary Goldbach con...
tgoldbachgtALTV 45152 Variant of Thierry Arnoux'...
bgoldbachlt 45153 The binary Goldbach conjec...
tgblthelfgott 45155 The ternary Goldbach conje...
tgoldbachlt 45156 The ternary Goldbach conje...
tgoldbach 45157 The ternary Goldbach conje...
isomgrrel 45162 The isomorphy relation for...
isomgr 45163 The isomorphy relation for...
isisomgr 45164 Implications of two graphs...
isomgreqve 45165 A set is isomorphic to a h...
isomushgr 45166 The isomorphy relation for...
isomuspgrlem1 45167 Lemma 1 for ~ isomuspgr . ...
isomuspgrlem2a 45168 Lemma 1 for ~ isomuspgrlem...
isomuspgrlem2b 45169 Lemma 2 for ~ isomuspgrlem...
isomuspgrlem2c 45170 Lemma 3 for ~ isomuspgrlem...
isomuspgrlem2d 45171 Lemma 4 for ~ isomuspgrlem...
isomuspgrlem2e 45172 Lemma 5 for ~ isomuspgrlem...
isomuspgrlem2 45173 Lemma 2 for ~ isomuspgr . ...
isomuspgr 45174 The isomorphy relation for...
isomgrref 45175 The isomorphy relation is ...
isomgrsym 45176 The isomorphy relation is ...
isomgrsymb 45177 The isomorphy relation is ...
isomgrtrlem 45178 Lemma for ~ isomgrtr . (C...
isomgrtr 45179 The isomorphy relation is ...
strisomgrop 45180 A graph represented as an ...
ushrisomgr 45181 A simple hypergraph (with ...
1hegrlfgr 45182 A graph ` G ` with one hyp...
upwlksfval 45185 The set of simple walks (i...
isupwlk 45186 Properties of a pair of fu...
isupwlkg 45187 Generalization of ~ isupwl...
upwlkbprop 45188 Basic properties of a simp...
upwlkwlk 45189 A simple walk is a walk. ...
upgrwlkupwlk 45190 In a pseudograph, a walk i...
upgrwlkupwlkb 45191 In a pseudograph, the defi...
upgrisupwlkALT 45192 Alternate proof of ~ upgri...
upgredgssspr 45193 The set of edges of a pseu...
uspgropssxp 45194 The set ` G ` of "simple p...
uspgrsprfv 45195 The value of the function ...
uspgrsprf 45196 The mapping ` F ` is a fun...
uspgrsprf1 45197 The mapping ` F ` is a one...
uspgrsprfo 45198 The mapping ` F ` is a fun...
uspgrsprf1o 45199 The mapping ` F ` is a bij...
uspgrex 45200 The class ` G ` of all "si...
uspgrbispr 45201 There is a bijection betwe...
uspgrspren 45202 The set ` G ` of the "simp...
uspgrymrelen 45203 The set ` G ` of the "simp...
uspgrbisymrel 45204 There is a bijection betwe...
uspgrbisymrelALT 45205 Alternate proof of ~ uspgr...
ovn0dmfun 45206 If a class operation value...
xpsnopab 45207 A Cartesian product with a...
xpiun 45208 A Cartesian product expres...
ovn0ssdmfun 45209 If a class' operation valu...
fnxpdmdm 45210 The domain of the domain o...
cnfldsrngbas 45211 The base set of a subring ...
cnfldsrngadd 45212 The group addition operati...
cnfldsrngmul 45213 The ring multiplication op...
plusfreseq 45214 If the empty set is not co...
mgmplusfreseq 45215 If the empty set is not co...
0mgm 45216 A set with an empty base s...
mgmpropd 45217 If two structures have the...
ismgmd 45218 Deduce a magma from its pr...
mgmhmrcl 45223 Reverse closure of a magma...
submgmrcl 45224 Reverse closure for submag...
ismgmhm 45225 Property of a magma homomo...
mgmhmf 45226 A magma homomorphism is a ...
mgmhmpropd 45227 Magma homomorphism depends...
mgmhmlin 45228 A magma homomorphism prese...
mgmhmf1o 45229 A magma homomorphism is bi...
idmgmhm 45230 The identity homomorphism ...
issubmgm 45231 Expand definition of a sub...
issubmgm2 45232 Submagmas are subsets that...
rabsubmgmd 45233 Deduction for proving that...
submgmss 45234 Submagmas are subsets of t...
submgmid 45235 Every magma is trivially a...
submgmcl 45236 Submagmas are closed under...
submgmmgm 45237 Submagmas are themselves m...
submgmbas 45238 The base set of a submagma...
subsubmgm 45239 A submagma of a submagma i...
resmgmhm 45240 Restriction of a magma hom...
resmgmhm2 45241 One direction of ~ resmgmh...
resmgmhm2b 45242 Restriction of the codomai...
mgmhmco 45243 The composition of magma h...
mgmhmima 45244 The homomorphic image of a...
mgmhmeql 45245 The equalizer of two magma...
submgmacs 45246 Submagmas are an algebraic...
ismhm0 45247 Property of a monoid homom...
mhmismgmhm 45248 Each monoid homomorphism i...
opmpoismgm 45249 A structure with a group a...
copissgrp 45250 A structure with a constan...
copisnmnd 45251 A structure with a constan...
0nodd 45252 0 is not an odd integer. ...
1odd 45253 1 is an odd integer. (Con...
2nodd 45254 2 is not an odd integer. ...
oddibas 45255 Lemma 1 for ~ oddinmgm : ...
oddiadd 45256 Lemma 2 for ~ oddinmgm : ...
oddinmgm 45257 The structure of all odd i...
nnsgrpmgm 45258 The structure of positive ...
nnsgrp 45259 The structure of positive ...
nnsgrpnmnd 45260 The structure of positive ...
nn0mnd 45261 The set of nonnegative int...
gsumsplit2f 45262 Split a group sum into two...
gsumdifsndf 45263 Extract a summand from a f...
gsumfsupp 45264 A group sum of a family ca...
iscllaw 45271 The predicate "is a closed...
iscomlaw 45272 The predicate "is a commut...
clcllaw 45273 Closure of a closed operat...
isasslaw 45274 The predicate "is an assoc...
asslawass 45275 Associativity of an associ...
mgmplusgiopALT 45276 Slot 2 (group operation) o...
sgrpplusgaopALT 45277 Slot 2 (group operation) o...
intopval 45284 The internal (binary) oper...
intop 45285 An internal (binary) opera...
clintopval 45286 The closed (internal binar...
assintopval 45287 The associative (closed in...
assintopmap 45288 The associative (closed in...
isclintop 45289 The predicate "is a closed...
clintop 45290 A closed (internal binary)...
assintop 45291 An associative (closed int...
isassintop 45292 The predicate "is an assoc...
clintopcllaw 45293 The closure law holds for ...
assintopcllaw 45294 The closure low holds for ...
assintopasslaw 45295 The associative low holds ...
assintopass 45296 An associative (closed int...
ismgmALT 45305 The predicate "is a magma"...
iscmgmALT 45306 The predicate "is a commut...
issgrpALT 45307 The predicate "is a semigr...
iscsgrpALT 45308 The predicate "is a commut...
mgm2mgm 45309 Equivalence of the two def...
sgrp2sgrp 45310 Equivalence of the two def...
idfusubc0 45311 The identity functor for a...
idfusubc 45312 The identity functor for a...
inclfusubc 45313 The "inclusion functor" fr...
lmod0rng 45314 If the scalar ring of a mo...
nzrneg1ne0 45315 The additive inverse of th...
0ringdif 45316 A zero ring is a ring whic...
0ringbas 45317 The base set of a zero rin...
0ring1eq0 45318 In a zero ring, a ring whi...
nrhmzr 45319 There is no ring homomorph...
isrng 45322 The predicate "is a non-un...
rngabl 45323 A non-unital ring is an (a...
rngmgp 45324 A non-unital ring is a sem...
ringrng 45325 A unital ring is a (non-un...
ringssrng 45326 The unital rings are (non-...
isringrng 45327 The predicate "is a unital...
rngdir 45328 Distributive law for the m...
rngcl 45329 Closure of the multiplicat...
rnglz 45330 The zero of a nonunital ri...
rnghmrcl 45335 Reverse closure of a non-u...
rnghmfn 45336 The mapping of two non-uni...
rnghmval 45337 The set of the non-unital ...
isrnghm 45338 A function is a non-unital...
isrnghmmul 45339 A function is a non-unital...
rnghmmgmhm 45340 A non-unital ring homomorp...
rnghmval2 45341 The non-unital ring homomo...
isrngisom 45342 An isomorphism of non-unit...
rngimrcl 45343 Reverse closure for an iso...
rnghmghm 45344 A non-unital ring homomorp...
rnghmf 45345 A ring homomorphism is a f...
rnghmmul 45346 A homomorphism of non-unit...
isrnghm2d 45347 Demonstration of non-unita...
isrnghmd 45348 Demonstration of non-unita...
rnghmf1o 45349 A non-unital ring homomorp...
isrngim 45350 An isomorphism of non-unit...
rngimf1o 45351 An isomorphism of non-unit...
rngimrnghm 45352 An isomorphism of non-unit...
rnghmco 45353 The composition of non-uni...
idrnghm 45354 The identity homomorphism ...
c0mgm 45355 The constant mapping to ze...
c0mhm 45356 The constant mapping to ze...
c0ghm 45357 The constant mapping to ze...
c0rhm 45358 The constant mapping to ze...
c0rnghm 45359 The constant mapping to ze...
c0snmgmhm 45360 The constant mapping to ze...
c0snmhm 45361 The constant mapping to ze...
c0snghm 45362 The constant mapping to ze...
zrrnghm 45363 The constant mapping to ze...
rhmfn 45364 The mapping of two rings t...
rhmval 45365 The ring homomorphisms bet...
rhmisrnghm 45366 Each unital ring homomorph...
lidldomn1 45367 If a (left) ideal (which i...
lidlssbas 45368 The base set of the restri...
lidlbas 45369 A (left) ideal of a ring i...
lidlabl 45370 A (left) ideal of a ring i...
lidlmmgm 45371 The multiplicative group o...
lidlmsgrp 45372 The multiplicative group o...
lidlrng 45373 A (left) ideal of a ring i...
zlidlring 45374 The zero (left) ideal of a...
uzlidlring 45375 Only the zero (left) ideal...
lidldomnnring 45376 A (left) ideal of a domain...
0even 45377 0 is an even integer. (Co...
1neven 45378 1 is not an even integer. ...
2even 45379 2 is an even integer. (Co...
2zlidl 45380 The even integers are a (l...
2zrng 45381 The ring of integers restr...
2zrngbas 45382 The base set of R is the s...
2zrngadd 45383 The group addition operati...
2zrng0 45384 The additive identity of R...
2zrngamgm 45385 R is an (additive) magma. ...
2zrngasgrp 45386 R is an (additive) semigro...
2zrngamnd 45387 R is an (additive) monoid....
2zrngacmnd 45388 R is a commutative (additi...
2zrngagrp 45389 R is an (additive) group. ...
2zrngaabl 45390 R is an (additive) abelian...
2zrngmul 45391 The ring multiplication op...
2zrngmmgm 45392 R is a (multiplicative) ma...
2zrngmsgrp 45393 R is a (multiplicative) se...
2zrngALT 45394 The ring of integers restr...
2zrngnmlid 45395 R has no multiplicative (l...
2zrngnmrid 45396 R has no multiplicative (r...
2zrngnmlid2 45397 R has no multiplicative (l...
2zrngnring 45398 R is not a unital ring. (...
cznrnglem 45399 Lemma for ~ cznrng : The ...
cznabel 45400 The ring constructed from ...
cznrng 45401 The ring constructed from ...
cznnring 45402 The ring constructed from ...
rngcvalALTV 45407 Value of the category of n...
rngcval 45408 Value of the category of n...
rnghmresfn 45409 The class of non-unital ri...
rnghmresel 45410 An element of the non-unit...
rngcbas 45411 Set of objects of the cate...
rngchomfval 45412 Set of arrows of the categ...
rngchom 45413 Set of arrows of the categ...
elrngchom 45414 A morphism of non-unital r...
rngchomfeqhom 45415 The functionalized Hom-set...
rngccofval 45416 Composition in the categor...
rngcco 45417 Composition in the categor...
dfrngc2 45418 Alternate definition of th...
rnghmsscmap2 45419 The non-unital ring homomo...
rnghmsscmap 45420 The non-unital ring homomo...
rnghmsubcsetclem1 45421 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 45422 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 45423 The non-unital ring homomo...
rngccat 45424 The category of non-unital...
rngcid 45425 The identity arrow in the ...
rngcsect 45426 A section in the category ...
rngcinv 45427 An inverse in the category...
rngciso 45428 An isomorphism in the cate...
rngcbasALTV 45429 Set of objects of the cate...
rngchomfvalALTV 45430 Set of arrows of the categ...
rngchomALTV 45431 Set of arrows of the categ...
elrngchomALTV 45432 A morphism of non-unital r...
rngccofvalALTV 45433 Composition in the categor...
rngccoALTV 45434 Composition in the categor...
rngccatidALTV 45435 Lemma for ~ rngccatALTV . ...
rngccatALTV 45436 The category of non-unital...
rngcidALTV 45437 The identity arrow in the ...
rngcsectALTV 45438 A section in the category ...
rngcinvALTV 45439 An inverse in the category...
rngcisoALTV 45440 An isomorphism in the cate...
rngchomffvalALTV 45441 The value of the functiona...
rngchomrnghmresALTV 45442 The value of the functiona...
rngcifuestrc 45443 The "inclusion functor" fr...
funcrngcsetc 45444 The "natural forgetful fun...
funcrngcsetcALT 45445 Alternate proof of ~ funcr...
zrinitorngc 45446 The zero ring is an initia...
zrtermorngc 45447 The zero ring is a termina...
zrzeroorngc 45448 The zero ring is a zero ob...
ringcvalALTV 45453 Value of the category of r...
ringcval 45454 Value of the category of u...
rhmresfn 45455 The class of unital ring h...
rhmresel 45456 An element of the unital r...
ringcbas 45457 Set of objects of the cate...
ringchomfval 45458 Set of arrows of the categ...
ringchom 45459 Set of arrows of the categ...
elringchom 45460 A morphism of unital rings...
ringchomfeqhom 45461 The functionalized Hom-set...
ringccofval 45462 Composition in the categor...
ringcco 45463 Composition in the categor...
dfringc2 45464 Alternate definition of th...
rhmsscmap2 45465 The unital ring homomorphi...
rhmsscmap 45466 The unital ring homomorphi...
rhmsubcsetclem1 45467 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 45468 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 45469 The unital ring homomorphi...
ringccat 45470 The category of unital rin...
ringcid 45471 The identity arrow in the ...
rhmsscrnghm 45472 The unital ring homomorphi...
rhmsubcrngclem1 45473 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 45474 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 45475 The unital ring homomorphi...
rngcresringcat 45476 The restriction of the cat...
ringcsect 45477 A section in the category ...
ringcinv 45478 An inverse in the category...
ringciso 45479 An isomorphism in the cate...
ringcbasbas 45480 An element of the base set...
funcringcsetc 45481 The "natural forgetful fun...
funcringcsetcALTV2lem1 45482 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 45483 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 45484 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 45485 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 45486 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 45487 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 45488 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 45489 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 45490 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 45491 The "natural forgetful fun...
ringcbasALTV 45492 Set of objects of the cate...
ringchomfvalALTV 45493 Set of arrows of the categ...
ringchomALTV 45494 Set of arrows of the categ...
elringchomALTV 45495 A morphism of rings is a f...
ringccofvalALTV 45496 Composition in the categor...
ringccoALTV 45497 Composition in the categor...
ringccatidALTV 45498 Lemma for ~ ringccatALTV ....
ringccatALTV 45499 The category of rings is a...
ringcidALTV 45500 The identity arrow in the ...
ringcsectALTV 45501 A section in the category ...
ringcinvALTV 45502 An inverse in the category...
ringcisoALTV 45503 An isomorphism in the cate...
ringcbasbasALTV 45504 An element of the base set...
funcringcsetclem1ALTV 45505 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 45506 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 45507 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 45508 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 45509 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 45510 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 45511 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 45512 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 45513 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 45514 The "natural forgetful fun...
irinitoringc 45515 The ring of integers is an...
zrtermoringc 45516 The zero ring is a termina...
zrninitoringc 45517 The zero ring is not an in...
nzerooringczr 45518 There is no zero object in...
srhmsubclem1 45519 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 45520 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 45521 Lemma 3 for ~ srhmsubc . ...
srhmsubc 45522 According to ~ df-subc , t...
sringcat 45523 The restriction of the cat...
crhmsubc 45524 According to ~ df-subc , t...
cringcat 45525 The restriction of the cat...
drhmsubc 45526 According to ~ df-subc , t...
drngcat 45527 The restriction of the cat...
fldcat 45528 The restriction of the cat...
fldc 45529 The restriction of the cat...
fldhmsubc 45530 According to ~ df-subc , t...
rngcrescrhm 45531 The category of non-unital...
rhmsubclem1 45532 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 45533 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 45534 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 45535 Lemma 4 for ~ rhmsubc . (...
rhmsubc 45536 According to ~ df-subc , t...
rhmsubccat 45537 The restriction of the cat...
srhmsubcALTVlem1 45538 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 45539 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 45540 According to ~ df-subc , t...
sringcatALTV 45541 The restriction of the cat...
crhmsubcALTV 45542 According to ~ df-subc , t...
cringcatALTV 45543 The restriction of the cat...
drhmsubcALTV 45544 According to ~ df-subc , t...
drngcatALTV 45545 The restriction of the cat...
fldcatALTV 45546 The restriction of the cat...
fldcALTV 45547 The restriction of the cat...
fldhmsubcALTV 45548 According to ~ df-subc , t...
rngcrescrhmALTV 45549 The category of non-unital...
rhmsubcALTVlem1 45550 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 45551 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 45552 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 45553 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 45554 According to ~ df-subc , t...
rhmsubcALTVcat 45555 The restriction of the cat...
opeliun2xp 45556 Membership of an ordered p...
eliunxp2 45557 Membership in a union of C...
mpomptx2 45558 Express a two-argument fun...
cbvmpox2 45559 Rule to change the bound v...
dmmpossx2 45560 The domain of a mapping is...
mpoexxg2 45561 Existence of an operation ...
ovmpordxf 45562 Value of an operation give...
ovmpordx 45563 Value of an operation give...
ovmpox2 45564 The value of an operation ...
fdmdifeqresdif 45565 The restriction of a condi...
offvalfv 45566 The function operation exp...
ofaddmndmap 45567 The function operation app...
mapsnop 45568 A singleton of an ordered ...
fprmappr 45569 A function with a domain o...
mapprop 45570 An unordered pair containi...
ztprmneprm 45571 A prime is not an integer ...
2t6m3t4e0 45572 2 times 6 minus 3 times 4 ...
ssnn0ssfz 45573 For any finite subset of `...
nn0sumltlt 45574 If the sum of two nonnegat...
bcpascm1 45575 Pascal's rule for the bino...
altgsumbc 45576 The sum of binomial coeffi...
altgsumbcALT 45577 Alternate proof of ~ altgs...
zlmodzxzlmod 45578 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 45579 An element of the (base se...
zlmodzxz0 45580 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 45581 The scalar multiplication ...
zlmodzxzadd 45582 The addition of the ` ZZ `...
zlmodzxzsubm 45583 The subtraction of the ` Z...
zlmodzxzsub 45584 The subtraction of the ` Z...
mgpsumunsn 45585 Extract a summand/factor f...
mgpsumz 45586 If the group sum for the m...
mgpsumn 45587 If the group sum for the m...
exple2lt6 45588 A nonnegative integer to t...
pgrple2abl 45589 Every symmetric group on a...
pgrpgt2nabl 45590 Every symmetric group on a...
invginvrid 45591 Identity for a multiplicat...
rmsupp0 45592 The support of a mapping o...
domnmsuppn0 45593 The support of a mapping o...
rmsuppss 45594 The support of a mapping o...
mndpsuppss 45595 The support of a mapping o...
scmsuppss 45596 The support of a mapping o...
rmsuppfi 45597 The support of a mapping o...
rmfsupp 45598 A mapping of a multiplicat...
mndpsuppfi 45599 The support of a mapping o...
mndpfsupp 45600 A mapping of a scalar mult...
scmsuppfi 45601 The support of a mapping o...
scmfsupp 45602 A mapping of a scalar mult...
suppmptcfin 45603 The support of a mapping w...
mptcfsupp 45604 A mapping with value 0 exc...
fsuppmptdmf 45605 A mapping with a finite do...
lmodvsmdi 45606 Multiple distributive law ...
gsumlsscl 45607 Closure of a group sum in ...
assaascl0 45608 The scalar 0 embedded into...
assaascl1 45609 The scalar 1 embedded into...
ply1vr1smo 45610 The variable in a polynomi...
ply1ass23l 45611 Associative identity with ...
ply1sclrmsm 45612 The ring multiplication of...
coe1id 45613 Coefficient vector of the ...
coe1sclmulval 45614 The value of the coefficie...
ply1mulgsumlem1 45615 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 45616 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 45617 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 45618 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 45619 The product of two polynom...
evl1at0 45620 Polynomial evaluation for ...
evl1at1 45621 Polynomial evaluation for ...
linply1 45622 A term of the form ` x - C...
lineval 45623 A term of the form ` x - C...
linevalexample 45624 The polynomial ` x - 3 ` o...
dmatALTval 45629 The algebra of ` N ` x ` N...
dmatALTbas 45630 The base set of the algebr...
dmatALTbasel 45631 An element of the base set...
dmatbas 45632 The set of all ` N ` x ` N...
lincop 45637 A linear combination as op...
lincval 45638 The value of a linear comb...
dflinc2 45639 Alternative definition of ...
lcoop 45640 A linear combination as op...
lcoval 45641 The value of a linear comb...
lincfsuppcl 45642 A linear combination of ve...
linccl 45643 A linear combination of ve...
lincval0 45644 The value of an empty line...
lincvalsng 45645 The linear combination ove...
lincvalsn 45646 The linear combination ove...
lincvalpr 45647 The linear combination ove...
lincval1 45648 The linear combination ove...
lcosn0 45649 Properties of a linear com...
lincvalsc0 45650 The linear combination whe...
lcoc0 45651 Properties of a linear com...
linc0scn0 45652 If a set contains the zero...
lincdifsn 45653 A vector is a linear combi...
linc1 45654 A vector is a linear combi...
lincellss 45655 A linear combination of a ...
lco0 45656 The set of empty linear co...
lcoel0 45657 The zero vector is always ...
lincsum 45658 The sum of two linear comb...
lincscm 45659 A linear combinations mult...
lincsumcl 45660 The sum of two linear comb...
lincscmcl 45661 The multiplication of a li...
lincsumscmcl 45662 The sum of a linear combin...
lincolss 45663 According to the statement...
ellcoellss 45664 Every linear combination o...
lcoss 45665 A set of vectors of a modu...
lspsslco 45666 Lemma for ~ lspeqlco . (C...
lcosslsp 45667 Lemma for ~ lspeqlco . (C...
lspeqlco 45668 Equivalence of a _span_ of...
rellininds 45672 The class defining the rel...
linindsv 45674 The classes of the module ...
islininds 45675 The property of being a li...
linindsi 45676 The implications of being ...
linindslinci 45677 The implications of being ...
islinindfis 45678 The property of being a li...
islinindfiss 45679 The property of being a li...
linindscl 45680 A linearly independent set...
lindepsnlininds 45681 A linearly dependent subse...
islindeps 45682 The property of being a li...
lincext1 45683 Property 1 of an extension...
lincext2 45684 Property 2 of an extension...
lincext3 45685 Property 3 of an extension...
lindslinindsimp1 45686 Implication 1 for ~ lindsl...
lindslinindimp2lem1 45687 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 45688 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 45689 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 45690 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 45691 Lemma 5 for ~ lindslininds...
lindslinindsimp2 45692 Implication 2 for ~ lindsl...
lindslininds 45693 Equivalence of definitions...
linds0 45694 The empty set is always a ...
el0ldep 45695 A set containing the zero ...
el0ldepsnzr 45696 A set containing the zero ...
lindsrng01 45697 Any subset of a module is ...
lindszr 45698 Any subset of a module ove...
snlindsntorlem 45699 Lemma for ~ snlindsntor . ...
snlindsntor 45700 A singleton is linearly in...
ldepsprlem 45701 Lemma for ~ ldepspr . (Co...
ldepspr 45702 If a vector is a scalar mu...
lincresunit3lem3 45703 Lemma 3 for ~ lincresunit3...
lincresunitlem1 45704 Lemma 1 for properties of ...
lincresunitlem2 45705 Lemma for properties of a ...
lincresunit1 45706 Property 1 of a specially ...
lincresunit2 45707 Property 2 of a specially ...
lincresunit3lem1 45708 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 45709 Lemma 2 for ~ lincresunit3...
lincresunit3 45710 Property 3 of a specially ...
lincreslvec3 45711 Property 3 of a specially ...
islindeps2 45712 Conditions for being a lin...
islininds2 45713 Implication of being a lin...
isldepslvec2 45714 Alternative definition of ...
lindssnlvec 45715 A singleton not containing...
lmod1lem1 45716 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 45717 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 45718 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 45719 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 45720 Lemma 5 for ~ lmod1 . (Co...
lmod1 45721 The (smallest) structure r...
lmod1zr 45722 The (smallest) structure r...
lmod1zrnlvec 45723 There is a (left) module (...
lmodn0 45724 Left modules exist. (Cont...
zlmodzxzequa 45725 Example of an equation wit...
zlmodzxznm 45726 Example of a linearly depe...
zlmodzxzldeplem 45727 A and B are not equal. (C...
zlmodzxzequap 45728 Example of an equation wit...
zlmodzxzldeplem1 45729 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 45730 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 45731 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 45732 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 45733 { A , B } is a linearly de...
ldepsnlinclem1 45734 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 45735 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 45736 The class of all (left) ve...
ldepsnlinc 45737 The reverse implication of...
ldepslinc 45738 For (left) vector spaces, ...
suppdm 45739 If the range of a function...
eluz2cnn0n1 45740 An integer greater than 1 ...
divge1b 45741 The ratio of a real number...
divgt1b 45742 The ratio of a real number...
ltsubaddb 45743 Equivalence for the "less ...
ltsubsubb 45744 Equivalence for the "less ...
ltsubadd2b 45745 Equivalence for the "less ...
divsub1dir 45746 Distribution of division o...
expnegico01 45747 An integer greater than 1 ...
elfzolborelfzop1 45748 An element of a half-open ...
pw2m1lepw2m1 45749 2 to the power of a positi...
zgtp1leeq 45750 If an integer is between a...
flsubz 45751 An integer can be moved in...
fldivmod 45752 Expressing the floor of a ...
mod0mul 45753 If an integer is 0 modulo ...
modn0mul 45754 If an integer is not 0 mod...
m1modmmod 45755 An integer decreased by 1 ...
difmodm1lt 45756 The difference between an ...
nn0onn0ex 45757 For each odd nonnegative i...
nn0enn0ex 45758 For each even nonnegative ...
nnennex 45759 For each even positive int...
nneop 45760 A positive integer is even...
nneom 45761 A positive integer is even...
nn0eo 45762 A nonnegative integer is e...
nnpw2even 45763 2 to the power of a positi...
zefldiv2 45764 The floor of an even integ...
zofldiv2 45765 The floor of an odd intege...
nn0ofldiv2 45766 The floor of an odd nonneg...
flnn0div2ge 45767 The floor of a positive in...
flnn0ohalf 45768 The floor of the half of a...
logcxp0 45769 Logarithm of a complex pow...
regt1loggt0 45770 The natural logarithm for ...
fdivval 45773 The quotient of two functi...
fdivmpt 45774 The quotient of two functi...
fdivmptf 45775 The quotient of two functi...
refdivmptf 45776 The quotient of two functi...
fdivpm 45777 The quotient of two functi...
refdivpm 45778 The quotient of two functi...
fdivmptfv 45779 The function value of a qu...
refdivmptfv 45780 The function value of a qu...
bigoval 45783 Set of functions of order ...
elbigofrcl 45784 Reverse closure of the "bi...
elbigo 45785 Properties of a function o...
elbigo2 45786 Properties of a function o...
elbigo2r 45787 Sufficient condition for a...
elbigof 45788 A function of order G(x) i...
elbigodm 45789 The domain of a function o...
elbigoimp 45790 The defining property of a...
elbigolo1 45791 A function (into the posit...
rege1logbrege0 45792 The general logarithm, wit...
rege1logbzge0 45793 The general logarithm, wit...
fllogbd 45794 A real number is between t...
relogbmulbexp 45795 The logarithm of the produ...
relogbdivb 45796 The logarithm of the quoti...
logbge0b 45797 The logarithm of a number ...
logblt1b 45798 The logarithm of a number ...
fldivexpfllog2 45799 The floor of a positive re...
nnlog2ge0lt1 45800 A positive integer is 1 if...
logbpw2m1 45801 The floor of the binary lo...
fllog2 45802 The floor of the binary lo...
blenval 45805 The binary length of an in...
blen0 45806 The binary length of 0. (...
blenn0 45807 The binary length of a "nu...
blenre 45808 The binary length of a pos...
blennn 45809 The binary length of a pos...
blennnelnn 45810 The binary length of a pos...
blennn0elnn 45811 The binary length of a non...
blenpw2 45812 The binary length of a pow...
blenpw2m1 45813 The binary length of a pow...
nnpw2blen 45814 A positive integer is betw...
nnpw2blenfzo 45815 A positive integer is betw...
nnpw2blenfzo2 45816 A positive integer is eith...
nnpw2pmod 45817 Every positive integer can...
blen1 45818 The binary length of 1. (...
blen2 45819 The binary length of 2. (...
nnpw2p 45820 Every positive integer can...
nnpw2pb 45821 A number is a positive int...
blen1b 45822 The binary length of a non...
blennnt2 45823 The binary length of a pos...
nnolog2flm1 45824 The floor of the binary lo...
blennn0em1 45825 The binary length of the h...
blennngt2o2 45826 The binary length of an od...
blengt1fldiv2p1 45827 The binary length of an in...
blennn0e2 45828 The binary length of an ev...
digfval 45831 Operation to obtain the ` ...
digval 45832 The ` K ` th digit of a no...
digvalnn0 45833 The ` K ` th digit of a no...
nn0digval 45834 The ` K ` th digit of a no...
dignn0fr 45835 The digits of the fraction...
dignn0ldlem 45836 Lemma for ~ dignnld . (Co...
dignnld 45837 The leading digits of a po...
dig2nn0ld 45838 The leading digits of a po...
dig2nn1st 45839 The first (relevant) digit...
dig0 45840 All digits of 0 are 0. (C...
digexp 45841 The ` K ` th digit of a po...
dig1 45842 All but one digits of 1 ar...
0dig1 45843 The ` 0 ` th digit of 1 is...
0dig2pr01 45844 The integers 0 and 1 corre...
dig2nn0 45845 A digit of a nonnegative i...
0dig2nn0e 45846 The last bit of an even in...
0dig2nn0o 45847 The last bit of an odd int...
dig2bits 45848 The ` K ` th digit of a no...
dignn0flhalflem1 45849 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 45850 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 45851 The digits of the half of ...
dignn0flhalf 45852 The digits of the rounded ...
nn0sumshdiglemA 45853 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 45854 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 45855 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 45856 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 45857 A nonnegative integer can ...
nn0mulfsum 45858 Trivial algorithm to calcu...
nn0mullong 45859 Standard algorithm (also k...
naryfval 45862 The set of the n-ary (endo...
naryfvalixp 45863 The set of the n-ary (endo...
naryfvalel 45864 An n-ary (endo)function on...
naryrcl 45865 Reverse closure for n-ary ...
naryfvalelfv 45866 The value of an n-ary (end...
naryfvalelwrdf 45867 An n-ary (endo)function on...
0aryfvalel 45868 A nullary (endo)function o...
0aryfvalelfv 45869 The value of a nullary (en...
1aryfvalel 45870 A unary (endo)function on ...
fv1arycl 45871 Closure of a unary (endo)f...
1arympt1 45872 A unary (endo)function in ...
1arympt1fv 45873 The value of a unary (endo...
1arymaptfv 45874 The value of the mapping o...
1arymaptf 45875 The mapping of unary (endo...
1arymaptf1 45876 The mapping of unary (endo...
1arymaptfo 45877 The mapping of unary (endo...
1arymaptf1o 45878 The mapping of unary (endo...
1aryenef 45879 The set of unary (endo)fun...
1aryenefmnd 45880 The set of unary (endo)fun...
2aryfvalel 45881 A binary (endo)function on...
fv2arycl 45882 Closure of a binary (endo)...
2arympt 45883 A binary (endo)function in...
2arymptfv 45884 The value of a binary (end...
2arymaptfv 45885 The value of the mapping o...
2arymaptf 45886 The mapping of binary (end...
2arymaptf1 45887 The mapping of binary (end...
2arymaptfo 45888 The mapping of binary (end...
2arymaptf1o 45889 The mapping of binary (end...
2aryenef 45890 The set of binary (endo)fu...
itcoval 45895 The value of the function ...
itcoval0 45896 A function iterated zero t...
itcoval1 45897 A function iterated once. ...
itcoval2 45898 A function iterated twice....
itcoval3 45899 A function iterated three ...
itcoval0mpt 45900 A mapping iterated zero ti...
itcovalsuc 45901 The value of the function ...
itcovalsucov 45902 The value of the function ...
itcovalendof 45903 The n-th iterate of an end...
itcovalpclem1 45904 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 45905 Lemma 2 for ~ itcovalpc : ...
itcovalpc 45906 The value of the function ...
itcovalt2lem2lem1 45907 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 45908 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 45909 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 45910 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 45911 The value of the function ...
ackvalsuc1mpt 45912 The Ackermann function at ...
ackvalsuc1 45913 The Ackermann function at ...
ackval0 45914 The Ackermann function at ...
ackval1 45915 The Ackermann function at ...
ackval2 45916 The Ackermann function at ...
ackval3 45917 The Ackermann function at ...
ackendofnn0 45918 The Ackermann function at ...
ackfnnn0 45919 The Ackermann function at ...
ackval0val 45920 The Ackermann function at ...
ackvalsuc0val 45921 The Ackermann function at ...
ackvalsucsucval 45922 The Ackermann function at ...
ackval0012 45923 The Ackermann function at ...
ackval1012 45924 The Ackermann function at ...
ackval2012 45925 The Ackermann function at ...
ackval3012 45926 The Ackermann function at ...
ackval40 45927 The Ackermann function at ...
ackval41a 45928 The Ackermann function at ...
ackval41 45929 The Ackermann function at ...
ackval42 45930 The Ackermann function at ...
ackval42a 45931 The Ackermann function at ...
ackval50 45932 The Ackermann function at ...
fv1prop 45933 The function value of unor...
fv2prop 45934 The function value of unor...
submuladdmuld 45935 Transformation of a sum of...
affinecomb1 45936 Combination of two real af...
affinecomb2 45937 Combination of two real af...
affineid 45938 Identity of an affine comb...
1subrec1sub 45939 Subtract the reciprocal of...
resum2sqcl 45940 The sum of two squares of ...
resum2sqgt0 45941 The sum of the square of a...
resum2sqrp 45942 The sum of the square of a...
resum2sqorgt0 45943 The sum of the square of t...
reorelicc 45944 Membership in and outside ...
rrx2pxel 45945 The x-coordinate of a poin...
rrx2pyel 45946 The y-coordinate of a poin...
prelrrx2 45947 An unordered pair of order...
prelrrx2b 45948 An unordered pair of order...
rrx2pnecoorneor 45949 If two different points ` ...
rrx2pnedifcoorneor 45950 If two different points ` ...
rrx2pnedifcoorneorr 45951 If two different points ` ...
rrx2xpref1o 45952 There is a bijection betwe...
rrx2xpreen 45953 The set of points in the t...
rrx2plord 45954 The lexicographical orderi...
rrx2plord1 45955 The lexicographical orderi...
rrx2plord2 45956 The lexicographical orderi...
rrx2plordisom 45957 The set of points in the t...
rrx2plordso 45958 The lexicographical orderi...
ehl2eudisval0 45959 The Euclidean distance of ...
ehl2eudis0lt 45960 An upper bound of the Eucl...
lines 45965 The lines passing through ...
line 45966 The line passing through t...
rrxlines 45967 Definition of lines passin...
rrxline 45968 The line passing through t...
rrxlinesc 45969 Definition of lines passin...
rrxlinec 45970 The line passing through t...
eenglngeehlnmlem1 45971 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 45972 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 45973 The line definition in the...
rrx2line 45974 The line passing through t...
rrx2vlinest 45975 The vertical line passing ...
rrx2linest 45976 The line passing through t...
rrx2linesl 45977 The line passing through t...
rrx2linest2 45978 The line passing through t...
elrrx2linest2 45979 The line passing through t...
spheres 45980 The spheres for given cent...
sphere 45981 A sphere with center ` X `...
rrxsphere 45982 The sphere with center ` M...
2sphere 45983 The sphere with center ` M...
2sphere0 45984 The sphere around the orig...
line2ylem 45985 Lemma for ~ line2y . This...
line2 45986 Example for a line ` G ` p...
line2xlem 45987 Lemma for ~ line2x . This...
line2x 45988 Example for a horizontal l...
line2y 45989 Example for a vertical lin...
itsclc0lem1 45990 Lemma for theorems about i...
itsclc0lem2 45991 Lemma for theorems about i...
itsclc0lem3 45992 Lemma for theorems about i...
itscnhlc0yqe 45993 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 45994 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 45995 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 45996 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 45997 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 45998 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 45999 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 46000 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 46001 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 46002 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 46003 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 46004 Lemma for ~ itsclc0 . Sol...
itsclc0 46005 The intersection points of...
itsclc0b 46006 The intersection points of...
itsclinecirc0 46007 The intersection points of...
itsclinecirc0b 46008 The intersection points of...
itsclinecirc0in 46009 The intersection points of...
itsclquadb 46010 Quadratic equation for the...
itsclquadeu 46011 Quadratic equation for the...
2itscplem1 46012 Lemma 1 for ~ 2itscp . (C...
2itscplem2 46013 Lemma 2 for ~ 2itscp . (C...
2itscplem3 46014 Lemma D for ~ 2itscp . (C...
2itscp 46015 A condition for a quadrati...
itscnhlinecirc02plem1 46016 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 46017 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 46018 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 46019 Intersection of a nonhoriz...
inlinecirc02plem 46020 Lemma for ~ inlinecirc02p ...
inlinecirc02p 46021 Intersection of a line wit...
inlinecirc02preu 46022 Intersection of a line wit...
pm4.71da 46023 Deduction converting a bic...
logic1 46024 Distribution of implicatio...
logic1a 46025 Variant of ~ logic1 . (Co...
logic2 46026 Variant of ~ logic1 . (Co...
pm5.32dav 46027 Distribution of implicatio...
pm5.32dra 46028 Reverse distribution of im...
exp12bd 46029 The import-export theorem ...
mpbiran3d 46030 Equivalence with a conjunc...
mpbiran4d 46031 Equivalence with a conjunc...
dtrucor3 46032 An example of how ~ ax-5 w...
ralbidb 46033 Formula-building rule for ...
ralbidc 46034 Formula-building rule for ...
r19.41dv 46035 A complex deduction form o...
rspceb2dv 46036 Restricted existential spe...
rextru 46037 Two ways of expressing "at...
rmotru 46038 Two ways of expressing "at...
reutru 46039 Two ways of expressing "ex...
reutruALT 46040 Alternate proof for ~ reut...
ssdisjd 46041 Subset preserves disjointn...
ssdisjdr 46042 Subset preserves disjointn...
disjdifb 46043 Relative complement is ant...
predisj 46044 Preimages of disjoint sets...
vsn 46045 The singleton of the unive...
mosn 46046 "At most one" element in a...
mo0 46047 "At most one" element in a...
mosssn 46048 "At most one" element in a...
mo0sn 46049 Two ways of expressing "at...
mosssn2 46050 Two ways of expressing "at...
unilbss 46051 Superclass of the greatest...
inpw 46052 Two ways of expressing a c...
mof0 46053 There is at most one funct...
mof02 46054 A variant of ~ mof0 . (Co...
mof0ALT 46055 Alternate proof for ~ mof0...
eufsnlem 46056 There is exactly one funct...
eufsn 46057 There is exactly one funct...
eufsn2 46058 There is exactly one funct...
mofsn 46059 There is at most one funct...
mofsn2 46060 There is at most one funct...
mofsssn 46061 There is at most one funct...
mofmo 46062 There is at most one funct...
mofeu 46063 The uniqueness of a functi...
elfvne0 46064 If a function value has a ...
fdomne0 46065 A function with non-empty ...
f1sn2g 46066 A function that maps a sin...
f102g 46067 A function that maps the e...
f1mo 46068 A function that maps a set...
f002 46069 A function with an empty c...
map0cor 46070 A function exists iff an e...
fvconstr 46071 Two ways of expressing ` A...
fvconstrn0 46072 Two ways of expressing ` A...
fvconstr2 46073 Two ways of expressing ` A...
fvconst0ci 46074 A constant function's valu...
fvconstdomi 46075 A constant function's valu...
f1omo 46076 There is at most one eleme...
f1omoALT 46077 There is at most one eleme...
iccin 46078 Intersection of two closed...
iccdisj2 46079 If the upper bound of one ...
iccdisj 46080 If the upper bound of one ...
mreuniss 46081 The union of a collection ...
clduni 46082 The union of closed sets i...
opncldeqv 46083 Conditions on open sets ar...
opndisj 46084 Two ways of saying that tw...
clddisj 46085 Two ways of saying that tw...
neircl 46086 Reverse closure of the nei...
opnneilem 46087 Lemma factoring out common...
opnneir 46088 If something is true for a...
opnneirv 46089 A variant of ~ opnneir wit...
opnneilv 46090 The converse of ~ opnneir ...
opnneil 46091 A variant of ~ opnneilv . ...
opnneieqv 46092 The equivalence between ne...
opnneieqvv 46093 The equivalence between ne...
restcls2lem 46094 A closed set in a subspace...
restcls2 46095 A closed set in a subspace...
restclsseplem 46096 Lemma for ~ restclssep . ...
restclssep 46097 Two disjoint closed sets i...
cnneiima 46098 Given a continuous functio...
iooii 46099 Open intervals are open se...
icccldii 46100 Closed intervals are close...
i0oii 46101 ` ( 0 [,) A ) ` is open in...
io1ii 46102 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 46103 Lemma for ~ sepnsepo . (C...
sepnsepolem2 46104 Open neighborhood and neig...
sepnsepo 46105 Open neighborhood and neig...
sepdisj 46106 Separated sets are disjoin...
seposep 46107 If two sets are separated ...
sepcsepo 46108 If two sets are separated ...
sepfsepc 46109 If two sets are separated ...
seppsepf 46110 If two sets are precisely ...
seppcld 46111 If two sets are precisely ...
isnrm4 46112 A topological space is nor...
dfnrm2 46113 A topological space is nor...
dfnrm3 46114 A topological space is nor...
iscnrm3lem1 46115 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 46116 Lemma for ~ iscnrm3 provin...
iscnrm3lem3 46117 Lemma for ~ iscnrm3lem4 . ...
iscnrm3lem4 46118 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 46119 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 46120 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 46121 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 46122 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 46123 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 46124 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 46125 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 46126 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 46127 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 46128 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 46129 Lemma for ~ iscnrm3r . Di...
iscnrm3r 46130 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 46131 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 46132 Lemma for ~ iscnrm3l . If...
iscnrm3l 46133 Lemma for ~ iscnrm3 . Giv...
iscnrm3 46134 A completely normal topolo...
iscnrm3v 46135 A topology is completely n...
iscnrm4 46136 A completely normal topolo...
isprsd 46137 Property of being a preord...
lubeldm2 46138 Member of the domain of th...
glbeldm2 46139 Member of the domain of th...
lubeldm2d 46140 Member of the domain of th...
glbeldm2d 46141 Member of the domain of th...
lubsscl 46142 If a subset of ` S ` conta...
glbsscl 46143 If a subset of ` S ` conta...
lubprlem 46144 Lemma for ~ lubprdm and ~ ...
lubprdm 46145 The set of two comparable ...
lubpr 46146 The LUB of the set of two ...
glbprlem 46147 Lemma for ~ glbprdm and ~ ...
glbprdm 46148 The set of two comparable ...
glbpr 46149 The GLB of the set of two ...
joindm2 46150 The join of any two elemen...
joindm3 46151 The join of any two elemen...
meetdm2 46152 The meet of any two elemen...
meetdm3 46153 The meet of any two elemen...
posjidm 46154 Poset join is idempotent. ...
posmidm 46155 Poset meet is idempotent. ...
toslat 46156 A toset is a lattice. (Co...
isclatd 46157 The predicate "is a comple...
intubeu 46158 Existential uniqueness of ...
unilbeu 46159 Existential uniqueness of ...
ipolublem 46160 Lemma for ~ ipolubdm and ~...
ipolubdm 46161 The domain of the LUB of t...
ipolub 46162 The LUB of the inclusion p...
ipoglblem 46163 Lemma for ~ ipoglbdm and ~...
ipoglbdm 46164 The domain of the GLB of t...
ipoglb 46165 The GLB of the inclusion p...
ipolub0 46166 The LUB of the empty set i...
ipolub00 46167 The LUB of the empty set i...
ipoglb0 46168 The GLB of the empty set i...
mrelatlubALT 46169 Least upper bounds in a Mo...
mrelatglbALT 46170 Greatest lower bounds in a...
mreclat 46171 A Moore space is a complet...
topclat 46172 A topology is a complete l...
toplatglb0 46173 The empty intersection in ...
toplatlub 46174 Least upper bounds in a to...
toplatglb 46175 Greatest lower bounds in a...
toplatjoin 46176 Joins in a topology are re...
toplatmeet 46177 Meets in a topology are re...
topdlat 46178 A topology is a distributi...
catprslem 46179 Lemma for ~ catprs . (Con...
catprs 46180 A preorder can be extracte...
catprs2 46181 A category equipped with t...
catprsc 46182 A construction of the preo...
catprsc2 46183 An alternate construction ...
endmndlem 46184 A diagonal hom-set in a ca...
idmon 46185 An identity arrow, or an i...
idepi 46186 An identity arrow, or an i...
funcf2lem 46187 A utility theorem for prov...
isthinc 46190 The predicate "is a thin c...
isthinc2 46191 A thin category is a categ...
isthinc3 46192 A thin category is a categ...
thincc 46193 A thin category is a categ...
thinccd 46194 A thin category is a categ...
thincssc 46195 A thin category is a categ...
isthincd2lem1 46196 Lemma for ~ isthincd2 and ...
thincmo2 46197 Morphisms in the same hom-...
thincmo 46198 There is at most one morph...
thincmoALT 46199 Alternate proof for ~ thin...
thincmod 46200 At most one morphism in ea...
thincn0eu 46201 In a thin category, a hom-...
thincid 46202 In a thin category, a morp...
thincmon 46203 In a thin category, all mo...
thincepi 46204 In a thin category, all mo...
isthincd2lem2 46205 Lemma for ~ isthincd2 . (...
isthincd 46206 The predicate "is a thin c...
isthincd2 46207 The predicate " ` C ` is a...
oppcthin 46208 The opposite category of a...
subthinc 46209 A subcategory of a thin ca...
functhinclem1 46210 Lemma for ~ functhinc . G...
functhinclem2 46211 Lemma for ~ functhinc . (...
functhinclem3 46212 Lemma for ~ functhinc . T...
functhinclem4 46213 Lemma for ~ functhinc . O...
functhinc 46214 A functor to a thin catego...
fullthinc 46215 A functor to a thin catego...
fullthinc2 46216 A full functor to a thin c...
thincfth 46217 A functor from a thin cate...
thincciso 46218 Two thin categories are is...
0thincg 46219 Any structure with an empt...
0thinc 46220 The empty category (see ~ ...
indthinc 46221 An indiscrete category in ...
indthincALT 46222 An alternate proof for ~ i...
prsthinc 46223 Preordered sets as categor...
setcthin 46224 A category of sets all of ...
setc2othin 46225 The category ` ( SetCat ``...
thincsect 46226 In a thin category, one mo...
thincsect2 46227 In a thin category, ` F ` ...
thincinv 46228 In a thin category, ` F ` ...
thinciso 46229 In a thin category, ` F : ...
thinccic 46230 In a thin category, two ob...
prstcval 46233 Lemma for ~ prstcnidlem an...
prstcnidlem 46234 Lemma for ~ prstcnid and ~...
prstcnid 46235 Components other than ` Ho...
prstcbas 46236 The base set is unchanged....
prstcleval 46237 Value of the less-than-or-...
prstcle 46238 Value of the less-than-or-...
prstcocval 46239 Orthocomplementation is un...
prstcoc 46240 Orthocomplementation is un...
prstchomval 46241 Hom-sets of the constructe...
prstcprs 46242 The category is a preorder...
prstcthin 46243 The preordered set is equi...
prstchom 46244 Hom-sets of the constructe...
prstchom2 46245 Hom-sets of the constructe...
prstchom2ALT 46246 Hom-sets of the constructe...
postcpos 46247 The converted category is ...
postcposALT 46248 Alternate proof for ~ post...
postc 46249 The converted category is ...
mndtcval 46252 Value of the category buil...
mndtcbasval 46253 The base set of the catego...
mndtcbas 46254 The category built from a ...
mndtcob 46255 Lemma for ~ mndtchom and ~...
mndtcbas2 46256 Two objects in a category ...
mndtchom 46257 The only hom-set of the ca...
mndtcco 46258 The composition of the cat...
mndtcco2 46259 The composition of the cat...
mndtccatid 46260 Lemma for ~ mndtccat and ~...
mndtccat 46261 The function value is a ca...
mndtcid 46262 The identity morphism, or ...
grptcmon 46263 All morphisms in a categor...
grptcepi 46264 All morphisms in a categor...
nfintd 46265 Bound-variable hypothesis ...
nfiund 46266 Bound-variable hypothesis ...
nfiundg 46267 Bound-variable hypothesis ...
iunord 46268 The indexed union of a col...
iunordi 46269 The indexed union of a col...
spd 46270 Specialization deduction, ...
spcdvw 46271 A version of ~ spcdv where...
tfis2d 46272 Transfinite Induction Sche...
bnd2d 46273 Deduction form of ~ bnd2 ....
dffun3f 46274 Alternate definition of fu...
setrecseq 46277 Equality theorem for set r...
nfsetrecs 46278 Bound-variable hypothesis ...
setrec1lem1 46279 Lemma for ~ setrec1 . Thi...
setrec1lem2 46280 Lemma for ~ setrec1 . If ...
setrec1lem3 46281 Lemma for ~ setrec1 . If ...
setrec1lem4 46282 Lemma for ~ setrec1 . If ...
setrec1 46283 This is the first of two f...
setrec2fun 46284 This is the second of two ...
setrec2lem1 46285 Lemma for ~ setrec2 . The...
setrec2lem2 46286 Lemma for ~ setrec2 . The...
setrec2 46287 This is the second of two ...
setrec2v 46288 Version of ~ setrec2 with ...
setis 46289 Version of ~ setrec2 expre...
elsetrecslem 46290 Lemma for ~ elsetrecs . A...
elsetrecs 46291 A set ` A ` is an element ...
setrecsss 46292 The ` setrecs ` operator r...
setrecsres 46293 A recursively generated cl...
vsetrec 46294 Construct ` _V ` using set...
0setrec 46295 If a function sends the em...
onsetreclem1 46296 Lemma for ~ onsetrec . (C...
onsetreclem2 46297 Lemma for ~ onsetrec . (C...
onsetreclem3 46298 Lemma for ~ onsetrec . (C...
onsetrec 46299 Construct ` On ` using set...
elpglem1 46302 Lemma for ~ elpg . (Contr...
elpglem2 46303 Lemma for ~ elpg . (Contr...
elpglem3 46304 Lemma for ~ elpg . (Contr...
elpg 46305 Membership in the class of...
sbidd 46306 An identity theorem for su...
sbidd-misc 46307 An identity theorem for su...
gte-lte 46312 Simple relationship betwee...
gt-lt 46313 Simple relationship betwee...
gte-lteh 46314 Relationship between ` <_ ...
gt-lth 46315 Relationship between ` < `...
ex-gt 46316 Simple example of ` > ` , ...
ex-gte 46317 Simple example of ` >_ ` ,...
sinhval-named 46324 Value of the named sinh fu...
coshval-named 46325 Value of the named cosh fu...
tanhval-named 46326 Value of the named tanh fu...
sinh-conventional 46327 Conventional definition of...
sinhpcosh 46328 Prove that ` ( sinh `` A )...
secval 46335 Value of the secant functi...
cscval 46336 Value of the cosecant func...
cotval 46337 Value of the cotangent fun...
seccl 46338 The closure of the secant ...
csccl 46339 The closure of the cosecan...
cotcl 46340 The closure of the cotange...
reseccl 46341 The closure of the secant ...
recsccl 46342 The closure of the cosecan...
recotcl 46343 The closure of the cotange...
recsec 46344 The reciprocal of secant i...
reccsc 46345 The reciprocal of cosecant...
reccot 46346 The reciprocal of cotangen...
rectan 46347 The reciprocal of tangent ...
sec0 46348 The value of the secant fu...
onetansqsecsq 46349 Prove the tangent squared ...
cotsqcscsq 46350 Prove the tangent squared ...
ifnmfalse 46351 If A is not a member of B,...
logb2aval 46352 Define the value of the ` ...
comraddi 46359 Commute RHS addition. See...
mvlraddi 46360 Move the right term in a s...
mvrladdi 46361 Move the left term in a su...
assraddsubi 46362 Associate RHS addition-sub...
joinlmuladdmuli 46363 Join AB+CB into (A+C) on L...
joinlmulsubmuld 46364 Join AB-CB into (A-C) on L...
joinlmulsubmuli 46365 Join AB-CB into (A-C) on L...
mvlrmuld 46366 Move the right term in a p...
mvlrmuli 46367 Move the right term in a p...
i2linesi 46368 Solve for the intersection...
i2linesd 46369 Solve for the intersection...
alimp-surprise 46370 Demonstrate that when usin...
alimp-no-surprise 46371 There is no "surprise" in ...
empty-surprise 46372 Demonstrate that when usin...
empty-surprise2 46373 "Prove" that false is true...
eximp-surprise 46374 Show what implication insi...
eximp-surprise2 46375 Show that "there exists" w...
alsconv 46380 There is an equivalence be...
alsi1d 46381 Deduction rule: Given "al...
alsi2d 46382 Deduction rule: Given "al...
alsc1d 46383 Deduction rule: Given "al...
alsc2d 46384 Deduction rule: Given "al...
alscn0d 46385 Deduction rule: Given "al...
alsi-no-surprise 46386 Demonstrate that there is ...
5m4e1 46387 Prove that 5 - 4 = 1. (Co...
2p2ne5 46388 Prove that ` 2 + 2 =/= 5 `...
resolution 46389 Resolution rule. This is ...
testable 46390 In classical logic all wff...
aacllem 46391 Lemma for other theorems a...
amgmwlem 46392 Weighted version of ~ amgm...
amgmlemALT 46393 Alternate proof of ~ amgml...
amgmw2d 46394 Weighted arithmetic-geomet...
young2d 46395 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator