MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01i 189 Inference associated with ...
pm2.01d 190 Deduction based on reducti...
pm2.6 191 Theorem *2.6 of [Whitehead...
pm2.61 192 Theorem *2.61 of [Whitehea...
pm2.65 193 Theorem *2.65 of [Whitehea...
pm2.65i 194 Inference for proof by con...
pm2.21dd 195 A contradiction implies an...
pm2.65d 196 Deduction for proof by con...
mto 197 The rule of modus tollens....
mtod 198 Modus tollens deduction. ...
mtoi 199 Modus tollens inference. ...
mt2 200 A rule similar to modus to...
mt3 201 A rule similar to modus to...
peirce 202 Peirce's axiom. A non-int...
looinv 203 The Inversion Axiom of the...
bijust0 204 A self-implication (see ~ ...
bijust 205 Theorem used to justify th...
impbi 208 Property of the biconditio...
impbii 209 Infer an equivalence from ...
impbidd 210 Deduce an equivalence from...
impbid21d 211 Deduce an equivalence from...
impbid 212 Deduce an equivalence from...
dfbi1 213 Relate the biconditional c...
dfbi1ALT 214 Alternate proof of ~ dfbi1...
biimp 215 Property of the biconditio...
biimpi 216 Infer an implication from ...
sylbi 217 A mixed syllogism inferenc...
sylib 218 A mixed syllogism inferenc...
sylbb 219 A mixed syllogism inferenc...
biimpr 220 Property of the biconditio...
bicom1 221 Commutative law for the bi...
bicom 222 Commutative law for the bi...
bicomd 223 Commute two sides of a bic...
bicomi 224 Inference from commutative...
impbid1 225 Infer an equivalence from ...
impbid2 226 Infer an equivalence from ...
impcon4bid 227 A variation on ~ impbid wi...
biimpri 228 Infer a converse implicati...
biimpd 229 Deduce an implication from...
mpbi 230 An inference from a bicond...
mpbir 231 An inference from a bicond...
mpbid 232 A deduction from a bicondi...
mpbii 233 An inference from a nested...
sylibr 234 A mixed syllogism inferenc...
sylbir 235 A mixed syllogism inferenc...
sylbbr 236 A mixed syllogism inferenc...
sylbb1 237 A mixed syllogism inferenc...
sylbb2 238 A mixed syllogism inferenc...
sylibd 239 A syllogism deduction. (C...
sylbid 240 A syllogism deduction. (C...
mpbidi 241 A deduction from a bicondi...
biimtrid 242 A mixed syllogism inferenc...
biimtrrid 243 A mixed syllogism inferenc...
imbitrid 244 A mixed syllogism inferenc...
syl5ibcom 245 A mixed syllogism inferenc...
imbitrrid 246 A mixed syllogism inferenc...
syl5ibrcom 247 A mixed syllogism inferenc...
biimprd 248 Deduce a converse implicat...
biimpcd 249 Deduce a commuted implicat...
biimprcd 250 Deduce a converse commuted...
imbitrdi 251 A mixed syllogism inferenc...
imbitrrdi 252 A mixed syllogism inferenc...
biimtrdi 253 A mixed syllogism inferenc...
biimtrrdi 254 A mixed syllogism inferenc...
syl7bi 255 A mixed syllogism inferenc...
syl8ib 256 A syllogism rule of infere...
mpbird 257 A deduction from a bicondi...
mpbiri 258 An inference from a nested...
sylibrd 259 A syllogism deduction. (C...
sylbird 260 A syllogism deduction. (C...
biid 261 Principle of identity for ...
biidd 262 Principle of identity with...
pm5.1im 263 Two propositions are equiv...
2th 264 Two truths are equivalent....
2thd 265 Two truths are equivalent....
monothetic 266 Two self-implications (see...
ibi 267 Inference that converts a ...
ibir 268 Inference that converts a ...
ibd 269 Deduction that converts a ...
pm5.74 270 Distribution of implicatio...
pm5.74i 271 Distribution of implicatio...
pm5.74ri 272 Distribution of implicatio...
pm5.74d 273 Distribution of implicatio...
pm5.74rd 274 Distribution of implicatio...
bitri 275 An inference from transiti...
bitr2i 276 An inference from transiti...
bitr3i 277 An inference from transiti...
bitr4i 278 An inference from transiti...
bitrd 279 Deduction form of ~ bitri ...
bitr2d 280 Deduction form of ~ bitr2i...
bitr3d 281 Deduction form of ~ bitr3i...
bitr4d 282 Deduction form of ~ bitr4i...
bitrid 283 A syllogism inference from...
bitr2id 284 A syllogism inference from...
bitr3id 285 A syllogism inference from...
bitr3di 286 A syllogism inference from...
bitrdi 287 A syllogism inference from...
bitr2di 288 A syllogism inference from...
bitr4di 289 A syllogism inference from...
bitr4id 290 A syllogism inference from...
3imtr3i 291 A mixed syllogism inferenc...
3imtr4i 292 A mixed syllogism inferenc...
3imtr3d 293 More general version of ~ ...
3imtr4d 294 More general version of ~ ...
3imtr3g 295 More general version of ~ ...
3imtr4g 296 More general version of ~ ...
3bitri 297 A chained inference from t...
3bitrri 298 A chained inference from t...
3bitr2i 299 A chained inference from t...
3bitr2ri 300 A chained inference from t...
3bitr3i 301 A chained inference from t...
3bitr3ri 302 A chained inference from t...
3bitr4i 303 A chained inference from t...
3bitr4ri 304 A chained inference from t...
3bitrd 305 Deduction from transitivit...
3bitrrd 306 Deduction from transitivit...
3bitr2d 307 Deduction from transitivit...
3bitr2rd 308 Deduction from transitivit...
3bitr3d 309 Deduction from transitivit...
3bitr3rd 310 Deduction from transitivit...
3bitr4d 311 Deduction from transitivit...
3bitr4rd 312 Deduction from transitivit...
3bitr3g 313 More general version of ~ ...
3bitr4g 314 More general version of ~ ...
notnotb 315 Double negation. Theorem ...
con34b 316 A biconditional form of co...
con4bid 317 A contraposition deduction...
notbid 318 Deduction negating both si...
notbi 319 Contraposition. Theorem *...
notbii 320 Negate both sides of a log...
con4bii 321 A contraposition inference...
mtbi 322 An inference from a bicond...
mtbir 323 An inference from a bicond...
mtbid 324 A deduction from a bicondi...
mtbird 325 A deduction from a bicondi...
mtbii 326 An inference from a bicond...
mtbiri 327 An inference from a bicond...
sylnib 328 A mixed syllogism inferenc...
sylnibr 329 A mixed syllogism inferenc...
sylnbi 330 A mixed syllogism inferenc...
sylnbir 331 A mixed syllogism inferenc...
xchnxbi 332 Replacement of a subexpres...
xchnxbir 333 Replacement of a subexpres...
xchbinx 334 Replacement of a subexpres...
xchbinxr 335 Replacement of a subexpres...
imbi2i 336 Introduce an antecedent to...
bibi2i 337 Inference adding a bicondi...
bibi1i 338 Inference adding a bicondi...
bibi12i 339 The equivalence of two equ...
imbi2d 340 Deduction adding an antece...
imbi1d 341 Deduction adding a consequ...
bibi2d 342 Deduction adding a bicondi...
bibi1d 343 Deduction adding a bicondi...
imbi12d 344 Deduction joining two equi...
bibi12d 345 Deduction joining two equi...
imbi12 346 Closed form of ~ imbi12i ....
imbi1 347 Theorem *4.84 of [Whitehea...
imbi2 348 Theorem *4.85 of [Whitehea...
imbi1i 349 Introduce a consequent to ...
imbi12i 350 Join two logical equivalen...
bibi1 351 Theorem *4.86 of [Whitehea...
bitr3 352 Closed nested implication ...
con2bi 353 Contraposition. Theorem *...
con2bid 354 A contraposition deduction...
con1bid 355 A contraposition deduction...
con1bii 356 A contraposition inference...
con2bii 357 A contraposition inference...
con1b 358 Contraposition. Bidirecti...
con2b 359 Contraposition. Bidirecti...
biimt 360 A wff is equivalent to its...
pm5.5 361 Theorem *5.5 of [Whitehead...
a1bi 362 Inference introducing a th...
mt2bi 363 A false consequent falsifi...
mtt 364 Modus-tollens-like theorem...
imnot 365 If a proposition is false,...
pm5.501 366 Theorem *5.501 of [Whitehe...
ibib 367 Implication in terms of im...
ibibr 368 Implication in terms of im...
tbt 369 A wff is equivalent to its...
nbn2 370 The negation of a wff is e...
bibif 371 Transfer negation via an e...
nbn 372 The negation of a wff is e...
nbn3 373 Transfer falsehood via equ...
pm5.21im 374 Two propositions are equiv...
2false 375 Two falsehoods are equival...
2falsed 376 Two falsehoods are equival...
pm5.21ni 377 Two propositions implying ...
pm5.21nii 378 Eliminate an antecedent im...
pm5.21ndd 379 Eliminate an antecedent im...
bija 380 Combine antecedents into a...
pm5.18 381 Theorem *5.18 of [Whitehea...
xor3 382 Two ways to express "exclu...
nbbn 383 Move negation outside of b...
biass 384 Associative law for the bi...
biluk 385 Lukasiewicz's shortest axi...
pm5.19 386 Theorem *5.19 of [Whitehea...
bi2.04 387 Logical equivalence of com...
pm5.4 388 Antecedent absorption impl...
imdi 389 Distributive law for impli...
pm5.41 390 Theorem *5.41 of [Whitehea...
imbibi 391 The antecedent of one side...
pm4.8 392 Theorem *4.8 of [Whitehead...
pm4.81 393 A formula is equivalent to...
imim21b 394 Simplify an implication be...
pm4.63 397 Theorem *4.63 of [Whitehea...
pm4.67 398 Theorem *4.67 of [Whitehea...
imnan 399 Express an implication in ...
imnani 400 Infer an implication from ...
iman 401 Implication in terms of co...
pm3.24 402 Law of noncontradiction. ...
annim 403 Express a conjunction in t...
pm4.61 404 Theorem *4.61 of [Whitehea...
pm4.65 405 Theorem *4.65 of [Whitehea...
imp 406 Importation inference. (C...
impcom 407 Importation inference with...
con3dimp 408 Variant of ~ con3d with im...
mpnanrd 409 Eliminate the right side o...
impd 410 Importation deduction. (C...
impcomd 411 Importation deduction with...
ex 412 Exportation inference. (T...
expcom 413 Exportation inference with...
expdcom 414 Commuted form of ~ expd . ...
expd 415 Exportation deduction. (C...
expcomd 416 Deduction form of ~ expcom...
imp31 417 An importation inference. ...
imp32 418 An importation inference. ...
exp31 419 An exportation inference. ...
exp32 420 An exportation inference. ...
imp4b 421 An importation inference. ...
imp4a 422 An importation inference. ...
imp4c 423 An importation inference. ...
imp4d 424 An importation inference. ...
imp41 425 An importation inference. ...
imp42 426 An importation inference. ...
imp43 427 An importation inference. ...
imp44 428 An importation inference. ...
imp45 429 An importation inference. ...
exp4b 430 An exportation inference. ...
exp4a 431 An exportation inference. ...
exp4c 432 An exportation inference. ...
exp4d 433 An exportation inference. ...
exp41 434 An exportation inference. ...
exp42 435 An exportation inference. ...
exp43 436 An exportation inference. ...
exp44 437 An exportation inference. ...
exp45 438 An exportation inference. ...
imp5d 439 An importation inference. ...
imp5a 440 An importation inference. ...
imp5g 441 An importation inference. ...
imp55 442 An importation inference. ...
imp511 443 An importation inference. ...
exp5c 444 An exportation inference. ...
exp5j 445 An exportation inference. ...
exp5l 446 An exportation inference. ...
exp53 447 An exportation inference. ...
pm3.3 448 Theorem *3.3 (Exp) of [Whi...
pm3.31 449 Theorem *3.31 (Imp) of [Wh...
impexp 450 Import-export theorem. Pa...
impancom 451 Mixed importation/commutat...
expdimp 452 A deduction version of exp...
expimpd 453 Exportation followed by a ...
impr 454 Import a wff into a right ...
impl 455 Export a wff from a left c...
expr 456 Export a wff from a right ...
expl 457 Export a wff from a left c...
ancoms 458 Inference commuting conjun...
pm3.22 459 Theorem *3.22 of [Whitehea...
ancom 460 Commutative law for conjun...
ancomd 461 Commutation of conjuncts i...
biancomi 462 Commuting conjunction in a...
biancomd 463 Commuting conjunction in a...
ancomst 464 Closed form of ~ ancoms . ...
ancomsd 465 Deduction commuting conjun...
anasss 466 Associative law for conjun...
anassrs 467 Associative law for conjun...
anass 468 Associative law for conjun...
pm3.2 469 Join antecedents with conj...
pm3.2i 470 Infer conjunction of premi...
pm3.21 471 Join antecedents with conj...
pm3.43i 472 Nested conjunction of ante...
pm3.43 473 Theorem *3.43 (Comp) of [W...
dfbi2 474 A theorem similar to the s...
dfbi 475 Definition ~ df-bi rewritt...
biimpa 476 Importation inference from...
biimpar 477 Importation inference from...
biimpac 478 Importation inference from...
biimparc 479 Importation inference from...
adantr 480 Inference adding a conjunc...
adantl 481 Inference adding a conjunc...
simpl 482 Elimination of a conjunct....
simpli 483 Inference eliminating a co...
simpr 484 Elimination of a conjunct....
simpri 485 Inference eliminating a co...
intnan 486 Introduction of conjunct i...
intnanr 487 Introduction of conjunct i...
intnand 488 Introduction of conjunct i...
intnanrd 489 Introduction of conjunct i...
adantld 490 Deduction adding a conjunc...
adantrd 491 Deduction adding a conjunc...
pm3.41 492 Theorem *3.41 of [Whitehea...
pm3.42 493 Theorem *3.42 of [Whitehea...
simpld 494 Deduction eliminating a co...
simprd 495 Deduction eliminating a co...
simprbi 496 Deduction eliminating a co...
simplbi 497 Deduction eliminating a co...
simprbda 498 Deduction eliminating a co...
simplbda 499 Deduction eliminating a co...
simplbi2 500 Deduction eliminating a co...
simplbi2comt 501 Closed form of ~ simplbi2c...
simplbi2com 502 A deduction eliminating a ...
simpl2im 503 Implication from an elimin...
simplbiim 504 Implication from an elimin...
impel 505 An inference for implicati...
mpan9 506 Modus ponens conjoining di...
sylan9 507 Nested syllogism inference...
sylan9r 508 Nested syllogism inference...
sylan9bb 509 Nested syllogism inference...
sylan9bbr 510 Nested syllogism inference...
jca 511 Deduce conjunction of the ...
jcad 512 Deduction conjoining the c...
jca2 513 Inference conjoining the c...
jca31 514 Join three consequents. (...
jca32 515 Join three consequents. (...
jcai 516 Deduction replacing implic...
jcab 517 Distributive law for impli...
pm4.76 518 Theorem *4.76 of [Whitehea...
jctil 519 Inference conjoining a the...
jctir 520 Inference conjoining a the...
jccir 521 Inference conjoining a con...
jccil 522 Inference conjoining a con...
jctl 523 Inference conjoining a the...
jctr 524 Inference conjoining a the...
jctild 525 Deduction conjoining a the...
jctird 526 Deduction conjoining a the...
iba 527 Introduction of antecedent...
ibar 528 Introduction of antecedent...
biantru 529 A wff is equivalent to its...
biantrur 530 A wff is equivalent to its...
biantrud 531 A wff is equivalent to its...
biantrurd 532 A wff is equivalent to its...
bianfi 533 A wff conjoined with false...
bianfd 534 A wff conjoined with false...
baib 535 Move conjunction outside o...
baibr 536 Move conjunction outside o...
rbaibr 537 Move conjunction outside o...
rbaib 538 Move conjunction outside o...
baibd 539 Move conjunction outside o...
rbaibd 540 Move conjunction outside o...
bianabs 541 Absorb a hypothesis into t...
pm5.44 542 Theorem *5.44 of [Whitehea...
pm5.42 543 Theorem *5.42 of [Whitehea...
ancl 544 Conjoin antecedent to left...
anclb 545 Conjoin antecedent to left...
ancr 546 Conjoin antecedent to righ...
ancrb 547 Conjoin antecedent to righ...
ancli 548 Deduction conjoining antec...
ancri 549 Deduction conjoining antec...
ancld 550 Deduction conjoining antec...
ancrd 551 Deduction conjoining antec...
impac 552 Importation with conjuncti...
anc2l 553 Conjoin antecedent to left...
anc2r 554 Conjoin antecedent to righ...
anc2li 555 Deduction conjoining antec...
anc2ri 556 Deduction conjoining antec...
pm4.71 557 Implication in terms of bi...
pm4.71r 558 Implication in terms of bi...
pm4.71i 559 Inference converting an im...
pm4.71ri 560 Inference converting an im...
pm4.71d 561 Deduction converting an im...
pm4.71rd 562 Deduction converting an im...
pm4.24 563 Theorem *4.24 of [Whitehea...
anidm 564 Idempotent law for conjunc...
anidmdbi 565 Conjunction idempotence wi...
anidms 566 Inference from idempotent ...
imdistan 567 Distribution of implicatio...
imdistani 568 Distribution of implicatio...
imdistanri 569 Distribution of implicatio...
imdistand 570 Distribution of implicatio...
imdistanda 571 Distribution of implicatio...
pm5.3 572 Theorem *5.3 of [Whitehead...
pm5.32 573 Distribution of implicatio...
pm5.32i 574 Distribution of implicatio...
pm5.32ri 575 Distribution of implicatio...
bianim 576 Exchanging conjunction in ...
pm5.32d 577 Distribution of implicatio...
pm5.32rd 578 Distribution of implicatio...
pm5.32da 579 Distribution of implicatio...
sylan 580 A syllogism inference. (C...
sylanb 581 A syllogism inference. (C...
sylanbr 582 A syllogism inference. (C...
sylanbrc 583 Syllogism inference. (Con...
syl2anc 584 Syllogism inference combin...
syl2anc2 585 Double syllogism inference...
sylancl 586 Syllogism inference combin...
sylancr 587 Syllogism inference combin...
sylancom 588 Syllogism inference with c...
sylanblc 589 Syllogism inference combin...
sylanblrc 590 Syllogism inference combin...
syldan 591 A syllogism deduction with...
sylbida 592 A syllogism deduction. (C...
sylan2 593 A syllogism inference. (C...
sylan2b 594 A syllogism inference. (C...
sylan2br 595 A syllogism inference. (C...
syl2an 596 A double syllogism inferen...
syl2anr 597 A double syllogism inferen...
syl2anb 598 A double syllogism inferen...
syl2anbr 599 A double syllogism inferen...
sylancb 600 A syllogism inference comb...
sylancbr 601 A syllogism inference comb...
syldanl 602 A syllogism deduction with...
syland 603 A syllogism deduction. (C...
sylani 604 A syllogism inference. (C...
sylan2d 605 A syllogism deduction. (C...
sylan2i 606 A syllogism inference. (C...
syl2ani 607 A syllogism inference. (C...
syl2and 608 A syllogism deduction. (C...
anim12d 609 Conjoin antecedents and co...
anim12d1 610 Variant of ~ anim12d where...
anim1d 611 Add a conjunct to right of...
anim2d 612 Add a conjunct to left of ...
anim12i 613 Conjoin antecedents and co...
anim12ci 614 Variant of ~ anim12i with ...
anim1i 615 Introduce conjunct to both...
anim1ci 616 Introduce conjunct to both...
anim2i 617 Introduce conjunct to both...
anim12ii 618 Conjoin antecedents and co...
anim12dan 619 Conjoin antecedents and co...
im2anan9 620 Deduction joining nested i...
im2anan9r 621 Deduction joining nested i...
pm3.45 622 Theorem *3.45 (Fact) of [W...
anbi2i 623 Introduce a left conjunct ...
anbi1i 624 Introduce a right conjunct...
anbi2ci 625 Variant of ~ anbi2i with c...
anbi1ci 626 Variant of ~ anbi1i with c...
bianbi 627 Exchanging conjunction in ...
anbi12i 628 Conjoin both sides of two ...
anbi12ci 629 Variant of ~ anbi12i with ...
anbi2d 630 Deduction adding a left co...
anbi1d 631 Deduction adding a right c...
anbi12d 632 Deduction joining two equi...
anbi1 633 Introduce a right conjunct...
anbi2 634 Introduce a left conjunct ...
anbi1cd 635 Introduce a proposition as...
an2anr 636 Double commutation in conj...
pm4.38 637 Theorem *4.38 of [Whitehea...
bi2anan9 638 Deduction joining two equi...
bi2anan9r 639 Deduction joining two equi...
bi2bian9 640 Deduction joining two bico...
anbiim 641 Adding biconditional when ...
bianass 642 An inference to merge two ...
bianassc 643 An inference to merge two ...
an21 644 Swap two conjuncts. (Cont...
an12 645 Swap two conjuncts. Note ...
an32 646 A rearrangement of conjunc...
an13 647 A rearrangement of conjunc...
an31 648 A rearrangement of conjunc...
an12s 649 Swap two conjuncts in ante...
ancom2s 650 Inference commuting a nest...
an13s 651 Swap two conjuncts in ante...
an32s 652 Swap two conjuncts in ante...
ancom1s 653 Inference commuting a nest...
an31s 654 Swap two conjuncts in ante...
anass1rs 655 Commutative-associative la...
an4 656 Rearrangement of 4 conjunc...
an42 657 Rearrangement of 4 conjunc...
an43 658 Rearrangement of 4 conjunc...
an3 659 A rearrangement of conjunc...
an4s 660 Inference rearranging 4 co...
an42s 661 Inference rearranging 4 co...
anabs1 662 Absorption into embedded c...
anabs5 663 Absorption into embedded c...
anabs7 664 Absorption into embedded c...
anabsan 665 Absorption of antecedent w...
anabss1 666 Absorption of antecedent i...
anabss4 667 Absorption of antecedent i...
anabss5 668 Absorption of antecedent i...
anabsi5 669 Absorption of antecedent i...
anabsi6 670 Absorption of antecedent i...
anabsi7 671 Absorption of antecedent i...
anabsi8 672 Absorption of antecedent i...
anabss7 673 Absorption of antecedent i...
anabsan2 674 Absorption of antecedent w...
anabss3 675 Absorption of antecedent i...
anandi 676 Distribution of conjunctio...
anandir 677 Distribution of conjunctio...
anandis 678 Inference that undistribut...
anandirs 679 Inference that undistribut...
sylanl1 680 A syllogism inference. (C...
sylanl2 681 A syllogism inference. (C...
sylanr1 682 A syllogism inference. (C...
sylanr2 683 A syllogism inference. (C...
syl6an 684 A syllogism deduction comb...
syl2an2r 685 ~ syl2anr with antecedents...
syl2an2 686 ~ syl2an with antecedents ...
mpdan 687 An inference based on modu...
mpancom 688 An inference based on modu...
mpidan 689 A deduction which "stacks"...
mpan 690 An inference based on modu...
mpan2 691 An inference based on modu...
mp2an 692 An inference based on modu...
mp4an 693 An inference based on modu...
mpan2d 694 A deduction based on modus...
mpand 695 A deduction based on modus...
mpani 696 An inference based on modu...
mpan2i 697 An inference based on modu...
mp2ani 698 An inference based on modu...
mp2and 699 A deduction based on modus...
mpanl1 700 An inference based on modu...
mpanl2 701 An inference based on modu...
mpanl12 702 An inference based on modu...
mpanr1 703 An inference based on modu...
mpanr2 704 An inference based on modu...
mpanr12 705 An inference based on modu...
mpanlr1 706 An inference based on modu...
mpbirand 707 Detach truth from conjunct...
mpbiran2d 708 Detach truth from conjunct...
mpbiran 709 Detach truth from conjunct...
mpbiran2 710 Detach truth from conjunct...
mpbir2an 711 Detach a conjunction of tr...
mpbi2and 712 Detach a conjunction of tr...
mpbir2and 713 Detach a conjunction of tr...
adantll 714 Deduction adding a conjunc...
adantlr 715 Deduction adding a conjunc...
adantrl 716 Deduction adding a conjunc...
adantrr 717 Deduction adding a conjunc...
adantlll 718 Deduction adding a conjunc...
adantllr 719 Deduction adding a conjunc...
adantlrl 720 Deduction adding a conjunc...
adantlrr 721 Deduction adding a conjunc...
adantrll 722 Deduction adding a conjunc...
adantrlr 723 Deduction adding a conjunc...
adantrrl 724 Deduction adding a conjunc...
adantrrr 725 Deduction adding a conjunc...
ad2antrr 726 Deduction adding two conju...
ad2antlr 727 Deduction adding two conju...
ad2antrl 728 Deduction adding two conju...
ad2antll 729 Deduction adding conjuncts...
ad3antrrr 730 Deduction adding three con...
ad3antlr 731 Deduction adding three con...
ad4antr 732 Deduction adding 4 conjunc...
ad4antlr 733 Deduction adding 4 conjunc...
ad5antr 734 Deduction adding 5 conjunc...
ad5antlr 735 Deduction adding 5 conjunc...
ad6antr 736 Deduction adding 6 conjunc...
ad6antlr 737 Deduction adding 6 conjunc...
ad7antr 738 Deduction adding 7 conjunc...
ad7antlr 739 Deduction adding 7 conjunc...
ad8antr 740 Deduction adding 8 conjunc...
ad8antlr 741 Deduction adding 8 conjunc...
ad9antr 742 Deduction adding 9 conjunc...
ad9antlr 743 Deduction adding 9 conjunc...
ad10antr 744 Deduction adding 10 conjun...
ad10antlr 745 Deduction adding 10 conjun...
ad2ant2l 746 Deduction adding two conju...
ad2ant2r 747 Deduction adding two conju...
ad2ant2lr 748 Deduction adding two conju...
ad2ant2rl 749 Deduction adding two conju...
adantl3r 750 Deduction adding 1 conjunc...
ad4ant13 751 Deduction adding conjuncts...
ad4ant14 752 Deduction adding conjuncts...
ad4ant23 753 Deduction adding conjuncts...
ad4ant24 754 Deduction adding conjuncts...
adantl4r 755 Deduction adding 1 conjunc...
ad5ant13 756 Deduction adding conjuncts...
ad5ant14 757 Deduction adding conjuncts...
ad5ant15 758 Deduction adding conjuncts...
ad5ant23 759 Deduction adding conjuncts...
ad5ant24 760 Deduction adding conjuncts...
ad5ant25 761 Deduction adding conjuncts...
adantl5r 762 Deduction adding 1 conjunc...
adantl6r 763 Deduction adding 1 conjunc...
pm3.33 764 Theorem *3.33 (Syll) of [W...
pm3.34 765 Theorem *3.34 (Syll) of [W...
simpll 766 Simplification of a conjun...
simplld 767 Deduction form of ~ simpll...
simplr 768 Simplification of a conjun...
simplrd 769 Deduction eliminating a do...
simprl 770 Simplification of a conjun...
simprld 771 Deduction eliminating a do...
simprr 772 Simplification of a conjun...
simprrd 773 Deduction form of ~ simprr...
simplll 774 Simplification of a conjun...
simpllr 775 Simplification of a conjun...
simplrl 776 Simplification of a conjun...
simplrr 777 Simplification of a conjun...
simprll 778 Simplification of a conjun...
simprlr 779 Simplification of a conjun...
simprrl 780 Simplification of a conjun...
simprrr 781 Simplification of a conjun...
simp-4l 782 Simplification of a conjun...
simp-4r 783 Simplification of a conjun...
simp-5l 784 Simplification of a conjun...
simp-5r 785 Simplification of a conjun...
simp-6l 786 Simplification of a conjun...
simp-6r 787 Simplification of a conjun...
simp-7l 788 Simplification of a conjun...
simp-7r 789 Simplification of a conjun...
simp-8l 790 Simplification of a conjun...
simp-8r 791 Simplification of a conjun...
simp-9l 792 Simplification of a conjun...
simp-9r 793 Simplification of a conjun...
simp-10l 794 Simplification of a conjun...
simp-10r 795 Simplification of a conjun...
simp-11l 796 Simplification of a conjun...
simp-11r 797 Simplification of a conjun...
pm2.01da 798 Deduction based on reducti...
pm2.18da 799 Deduction based on reducti...
impbida 800 Deduce an equivalence from...
pm5.21nd 801 Eliminate an antecedent im...
pm3.35 802 Conjunctive detachment. T...
pm5.74da 803 Distribution of implicatio...
bitr 804 Theorem *4.22 of [Whitehea...
biantr 805 A transitive law of equiva...
pm4.14 806 Theorem *4.14 of [Whitehea...
pm3.37 807 Theorem *3.37 (Transp) of ...
anim12 808 Conjoin antecedents and co...
pm3.4 809 Conjunction implies implic...
exbiri 810 Inference form of ~ exbir ...
pm2.61ian 811 Elimination of an antecede...
pm2.61dan 812 Elimination of an antecede...
pm2.61ddan 813 Elimination of two anteced...
pm2.61dda 814 Elimination of two anteced...
mtand 815 A modus tollens deduction....
pm2.65da 816 Deduction for proof by con...
condan 817 Proof by contradiction. (...
biadan 818 An implication is equivale...
biadani 819 Inference associated with ...
biadaniALT 820 Alternate proof of ~ biada...
biadanii 821 Inference associated with ...
biadanid 822 Deduction associated with ...
pm5.1 823 Two propositions are equiv...
pm5.21 824 Two propositions are equiv...
pm5.35 825 Theorem *5.35 of [Whitehea...
abai 826 Introduce one conjunct as ...
pm4.45im 827 Conjunction with implicati...
impimprbi 828 An implication and its rev...
nan 829 Theorem to move a conjunct...
pm5.31 830 Theorem *5.31 of [Whitehea...
pm5.31r 831 Variant of ~ pm5.31 . (Co...
pm4.15 832 Theorem *4.15 of [Whitehea...
pm5.36 833 Theorem *5.36 of [Whitehea...
annotanannot 834 A conjunction with a negat...
pm5.33 835 Theorem *5.33 of [Whitehea...
syl12anc 836 Syllogism combined with co...
syl21anc 837 Syllogism combined with co...
syl22anc 838 Syllogism combined with co...
bibiad 839 Eliminate an hypothesis ` ...
syl1111anc 840 Four-hypothesis eliminatio...
syldbl2 841 Stacked hypotheseis implie...
mpsyl4anc 842 An elimination deduction. ...
pm4.87 843 Theorem *4.87 of [Whitehea...
bimsc1 844 Removal of conjunct from o...
a2and 845 Deduction distributing a c...
animpimp2impd 846 Deduction deriving nested ...
pm4.64 849 Theorem *4.64 of [Whitehea...
pm4.66 850 Theorem *4.66 of [Whitehea...
pm2.53 851 Theorem *2.53 of [Whitehea...
pm2.54 852 Theorem *2.54 of [Whitehea...
imor 853 Implication in terms of di...
imori 854 Infer disjunction from imp...
imorri 855 Infer implication from dis...
pm4.62 856 Theorem *4.62 of [Whitehea...
jaoi 857 Inference disjoining the a...
jao1i 858 Add a disjunct in the ante...
jaod 859 Deduction disjoining the a...
mpjaod 860 Eliminate a disjunction in...
ori 861 Infer implication from dis...
orri 862 Infer disjunction from imp...
orrd 863 Deduce disjunction from im...
ord 864 Deduce implication from di...
orci 865 Deduction introducing a di...
olci 866 Deduction introducing a di...
orc 867 Introduction of a disjunct...
olc 868 Introduction of a disjunct...
pm1.4 869 Axiom *1.4 of [WhiteheadRu...
orcom 870 Commutative law for disjun...
orcomd 871 Commutation of disjuncts i...
orcoms 872 Commutation of disjuncts i...
orcd 873 Deduction introducing a di...
olcd 874 Deduction introducing a di...
orcs 875 Deduction eliminating disj...
olcs 876 Deduction eliminating disj...
olcnd 877 A lemma for Conjunctive No...
orcnd 878 A lemma for Conjunctive No...
mtord 879 A modus tollens deduction ...
pm3.2ni 880 Infer negated disjunction ...
pm2.45 881 Theorem *2.45 of [Whitehea...
pm2.46 882 Theorem *2.46 of [Whitehea...
pm2.47 883 Theorem *2.47 of [Whitehea...
pm2.48 884 Theorem *2.48 of [Whitehea...
pm2.49 885 Theorem *2.49 of [Whitehea...
norbi 886 If neither of two proposit...
nbior 887 If two propositions are no...
orel1 888 Elimination of disjunction...
pm2.25 889 Theorem *2.25 of [Whitehea...
orel2 890 Elimination of disjunction...
pm2.67-2 891 Slight generalization of T...
pm2.67 892 Theorem *2.67 of [Whitehea...
curryax 893 A non-intuitionistic posit...
exmid 894 Law of excluded middle, al...
exmidd 895 Law of excluded middle in ...
pm2.1 896 Theorem *2.1 of [Whitehead...
pm2.13 897 Theorem *2.13 of [Whitehea...
pm2.621 898 Theorem *2.621 of [Whitehe...
pm2.62 899 Theorem *2.62 of [Whitehea...
pm2.68 900 Theorem *2.68 of [Whitehea...
dfor2 901 Logical 'or' expressed in ...
pm2.07 902 Theorem *2.07 of [Whitehea...
pm1.2 903 Axiom *1.2 of [WhiteheadRu...
oridm 904 Idempotent law for disjunc...
pm4.25 905 Theorem *4.25 of [Whitehea...
pm2.4 906 Theorem *2.4 of [Whitehead...
pm2.41 907 Theorem *2.41 of [Whitehea...
orim12i 908 Disjoin antecedents and co...
orim1i 909 Introduce disjunct to both...
orim2i 910 Introduce disjunct to both...
orim12dALT 911 Alternate proof of ~ orim1...
orbi2i 912 Inference adding a left di...
orbi1i 913 Inference adding a right d...
orbi12i 914 Infer the disjunction of t...
orbi2d 915 Deduction adding a left di...
orbi1d 916 Deduction adding a right d...
orbi1 917 Theorem *4.37 of [Whitehea...
orbi12d 918 Deduction joining two equi...
pm1.5 919 Axiom *1.5 (Assoc) of [Whi...
or12 920 Swap two disjuncts. (Cont...
orass 921 Associative law for disjun...
pm2.31 922 Theorem *2.31 of [Whitehea...
pm2.32 923 Theorem *2.32 of [Whitehea...
pm2.3 924 Theorem *2.3 of [Whitehead...
or32 925 A rearrangement of disjunc...
or4 926 Rearrangement of 4 disjunc...
or42 927 Rearrangement of 4 disjunc...
orordi 928 Distribution of disjunctio...
orordir 929 Distribution of disjunctio...
orimdi 930 Disjunction distributes ov...
pm2.76 931 Theorem *2.76 of [Whitehea...
pm2.85 932 Theorem *2.85 of [Whitehea...
pm2.75 933 Theorem *2.75 of [Whitehea...
pm4.78 934 Implication distributes ov...
biort 935 A disjunction with a true ...
biorf 936 A wff is equivalent to its...
biortn 937 A wff is equivalent to its...
biorfi 938 The dual of ~ biorf is not...
biorfri 939 A wff is equivalent to its...
biorfriOLD 940 Obsolete version of ~ bior...
pm2.26 941 Theorem *2.26 of [Whitehea...
pm2.63 942 Theorem *2.63 of [Whitehea...
pm2.64 943 Theorem *2.64 of [Whitehea...
pm2.42 944 Theorem *2.42 of [Whitehea...
pm5.11g 945 A general instance of Theo...
pm5.11 946 Theorem *5.11 of [Whitehea...
pm5.12 947 Theorem *5.12 of [Whitehea...
pm5.14 948 Theorem *5.14 of [Whitehea...
pm5.13 949 Theorem *5.13 of [Whitehea...
pm5.55 950 Theorem *5.55 of [Whitehea...
pm4.72 951 Implication in terms of bi...
imimorb 952 Simplify an implication be...
oibabs 953 Absorption of disjunction ...
orbidi 954 Disjunction distributes ov...
pm5.7 955 Disjunction distributes ov...
jaao 956 Inference conjoining and d...
jaoa 957 Inference disjoining and c...
jaoian 958 Inference disjoining the a...
jaodan 959 Deduction disjoining the a...
mpjaodan 960 Eliminate a disjunction in...
pm3.44 961 Theorem *3.44 of [Whitehea...
jao 962 Disjunction of antecedents...
jaob 963 Disjunction of antecedents...
pm4.77 964 Theorem *4.77 of [Whitehea...
pm3.48 965 Theorem *3.48 of [Whitehea...
orim12d 966 Disjoin antecedents and co...
orim1d 967 Disjoin antecedents and co...
orim2d 968 Disjoin antecedents and co...
orim2 969 Axiom *1.6 (Sum) of [White...
pm2.38 970 Theorem *2.38 of [Whitehea...
pm2.36 971 Theorem *2.36 of [Whitehea...
pm2.37 972 Theorem *2.37 of [Whitehea...
pm2.81 973 Theorem *2.81 of [Whitehea...
pm2.8 974 Theorem *2.8 of [Whitehead...
pm2.73 975 Theorem *2.73 of [Whitehea...
pm2.74 976 Theorem *2.74 of [Whitehea...
pm2.82 977 Theorem *2.82 of [Whitehea...
pm4.39 978 Theorem *4.39 of [Whitehea...
animorl 979 Conjunction implies disjun...
animorr 980 Conjunction implies disjun...
animorlr 981 Conjunction implies disjun...
animorrl 982 Conjunction implies disjun...
ianor 983 Negated conjunction in ter...
anor 984 Conjunction in terms of di...
ioran 985 Negated disjunction in ter...
pm4.52 986 Theorem *4.52 of [Whitehea...
pm4.53 987 Theorem *4.53 of [Whitehea...
pm4.54 988 Theorem *4.54 of [Whitehea...
pm4.55 989 Theorem *4.55 of [Whitehea...
pm4.56 990 Theorem *4.56 of [Whitehea...
oran 991 Disjunction in terms of co...
pm4.57 992 Theorem *4.57 of [Whitehea...
pm3.1 993 Theorem *3.1 of [Whitehead...
pm3.11 994 Theorem *3.11 of [Whitehea...
pm3.12 995 Theorem *3.12 of [Whitehea...
pm3.13 996 Theorem *3.13 of [Whitehea...
pm3.14 997 Theorem *3.14 of [Whitehea...
pm4.44 998 Theorem *4.44 of [Whitehea...
pm4.45 999 Theorem *4.45 of [Whitehea...
orabs 1000 Absorption of redundant in...
oranabs 1001 Absorb a disjunct into a c...
pm5.61 1002 Theorem *5.61 of [Whitehea...
pm5.6 1003 Conjunction in antecedent ...
orcanai 1004 Change disjunction in cons...
pm4.79 1005 Theorem *4.79 of [Whitehea...
pm5.53 1006 Theorem *5.53 of [Whitehea...
ordi 1007 Distributive law for disju...
ordir 1008 Distributive law for disju...
andi 1009 Distributive law for conju...
andir 1010 Distributive law for conju...
orddi 1011 Double distributive law fo...
anddi 1012 Double distributive law fo...
pm5.17 1013 Theorem *5.17 of [Whitehea...
pm5.15 1014 Theorem *5.15 of [Whitehea...
pm5.16 1015 Theorem *5.16 of [Whitehea...
xor 1016 Two ways to express exclus...
nbi2 1017 Two ways to express "exclu...
xordi 1018 Conjunction distributes ov...
pm5.54 1019 Theorem *5.54 of [Whitehea...
pm5.62 1020 Theorem *5.62 of [Whitehea...
pm5.63 1021 Theorem *5.63 of [Whitehea...
niabn 1022 Miscellaneous inference re...
ninba 1023 Miscellaneous inference re...
pm4.43 1024 Theorem *4.43 of [Whitehea...
pm4.82 1025 Theorem *4.82 of [Whitehea...
pm4.83 1026 Theorem *4.83 of [Whitehea...
pclem6 1027 Negation inferred from emb...
bigolden 1028 Dijkstra-Scholten's Golden...
pm5.71 1029 Theorem *5.71 of [Whitehea...
pm5.75 1030 Theorem *5.75 of [Whitehea...
ecase2d 1031 Deduction for elimination ...
ecase3 1032 Inference for elimination ...
ecase 1033 Inference for elimination ...
ecase3d 1034 Deduction for elimination ...
ecased 1035 Deduction for elimination ...
ecase3ad 1036 Deduction for elimination ...
ccase 1037 Inference for combining ca...
ccased 1038 Deduction for combining ca...
ccase2 1039 Inference for combining ca...
4cases 1040 Inference eliminating two ...
4casesdan 1041 Deduction eliminating two ...
cases 1042 Case disjunction according...
dedlem0a 1043 Lemma for an alternate ver...
dedlem0b 1044 Lemma for an alternate ver...
dedlema 1045 Lemma for weak deduction t...
dedlemb 1046 Lemma for weak deduction t...
cases2 1047 Case disjunction according...
cases2ALT 1048 Alternate proof of ~ cases...
dfbi3 1049 An alternate definition of...
pm5.24 1050 Theorem *5.24 of [Whitehea...
4exmid 1051 The disjunction of the fou...
consensus 1052 The consensus theorem. Th...
pm4.42 1053 Theorem *4.42 of [Whitehea...
prlem1 1054 A specialized lemma for se...
prlem2 1055 A specialized lemma for se...
oplem1 1056 A specialized lemma for se...
dn1 1057 A single axiom for Boolean...
bianir 1058 A closed form of ~ mpbir ,...
jaoi2 1059 Inference removing a negat...
jaoi3 1060 Inference separating a dis...
ornld 1061 Selecting one statement fr...
dfifp2 1064 Alternate definition of th...
dfifp3 1065 Alternate definition of th...
dfifp4 1066 Alternate definition of th...
dfifp5 1067 Alternate definition of th...
dfifp6 1068 Alternate definition of th...
dfifp7 1069 Alternate definition of th...
ifpdfbi 1070 Define the biconditional a...
anifp 1071 The conditional operator i...
ifpor 1072 The conditional operator i...
ifpn 1073 Conditional operator for t...
ifptru 1074 Value of the conditional o...
ifpfal 1075 Value of the conditional o...
ifpid 1076 Value of the conditional o...
casesifp 1077 Version of ~ cases express...
ifpbi123d 1078 Equivalence deduction for ...
ifpbi23d 1079 Equivalence deduction for ...
ifpimpda 1080 Separation of the values o...
1fpid3 1081 The value of the condition...
elimh 1082 Hypothesis builder for the...
dedt 1083 The weak deduction theorem...
con3ALT 1084 Proof of ~ con3 from its a...
3orass 1089 Associative law for triple...
3orel1 1090 Partial elimination of a t...
3orrot 1091 Rotation law for triple di...
3orcoma 1092 Commutation law for triple...
3orcomb 1093 Commutation law for triple...
3anass 1094 Associative law for triple...
3anan12 1095 Convert triple conjunction...
3anan32 1096 Convert triple conjunction...
3ancoma 1097 Commutation law for triple...
3ancomb 1098 Commutation law for triple...
3anrot 1099 Rotation law for triple co...
3anrev 1100 Reversal law for triple co...
anandi3 1101 Distribution of triple con...
anandi3r 1102 Distribution of triple con...
3anidm 1103 Idempotent law for conjunc...
3an4anass 1104 Associative law for four c...
3ioran 1105 Negated triple disjunction...
3ianor 1106 Negated triple conjunction...
3anor 1107 Triple conjunction express...
3oran 1108 Triple disjunction in term...
3impa 1109 Importation from double to...
3imp 1110 Importation inference. (C...
3imp31 1111 The importation inference ...
3imp231 1112 Importation inference. (C...
3imp21 1113 The importation inference ...
3impb 1114 Importation from double to...
bi23imp13 1115 ~ 3imp with middle implica...
3impib 1116 Importation to triple conj...
3impia 1117 Importation to triple conj...
3expa 1118 Exportation from triple to...
3exp 1119 Exportation inference. (C...
3expb 1120 Exportation from triple to...
3expia 1121 Exportation from triple co...
3expib 1122 Exportation from triple co...
3com12 1123 Commutation in antecedent....
3com13 1124 Commutation in antecedent....
3comr 1125 Commutation in antecedent....
3com23 1126 Commutation in antecedent....
3coml 1127 Commutation in antecedent....
3jca 1128 Join consequents with conj...
3jcad 1129 Deduction conjoining the c...
3adant1 1130 Deduction adding a conjunc...
3adant2 1131 Deduction adding a conjunc...
3adant3 1132 Deduction adding a conjunc...
3ad2ant1 1133 Deduction adding conjuncts...
3ad2ant2 1134 Deduction adding conjuncts...
3ad2ant3 1135 Deduction adding conjuncts...
simp1 1136 Simplification of triple c...
simp2 1137 Simplification of triple c...
simp3 1138 Simplification of triple c...
simp1i 1139 Infer a conjunct from a tr...
simp2i 1140 Infer a conjunct from a tr...
simp3i 1141 Infer a conjunct from a tr...
simp1d 1142 Deduce a conjunct from a t...
simp2d 1143 Deduce a conjunct from a t...
simp3d 1144 Deduce a conjunct from a t...
simp1bi 1145 Deduce a conjunct from a t...
simp2bi 1146 Deduce a conjunct from a t...
simp3bi 1147 Deduce a conjunct from a t...
3simpa 1148 Simplification of triple c...
3simpb 1149 Simplification of triple c...
3simpc 1150 Simplification of triple c...
3anim123i 1151 Join antecedents and conse...
3anim1i 1152 Add two conjuncts to antec...
3anim2i 1153 Add two conjuncts to antec...
3anim3i 1154 Add two conjuncts to antec...
3anbi123i 1155 Join 3 biconditionals with...
3orbi123i 1156 Join 3 biconditionals with...
3anbi1i 1157 Inference adding two conju...
3anbi2i 1158 Inference adding two conju...
3anbi3i 1159 Inference adding two conju...
syl3an 1160 A triple syllogism inferen...
syl3anb 1161 A triple syllogism inferen...
syl3anbr 1162 A triple syllogism inferen...
syl3an1 1163 A syllogism inference. (C...
syl3an2 1164 A syllogism inference. (C...
syl3an3 1165 A syllogism inference. (C...
syl3an132 1166 ~ syl2an with antecedents ...
3adantl1 1167 Deduction adding a conjunc...
3adantl2 1168 Deduction adding a conjunc...
3adantl3 1169 Deduction adding a conjunc...
3adantr1 1170 Deduction adding a conjunc...
3adantr2 1171 Deduction adding a conjunc...
3adantr3 1172 Deduction adding a conjunc...
ad4ant123 1173 Deduction adding conjuncts...
ad4ant124 1174 Deduction adding conjuncts...
ad4ant134 1175 Deduction adding conjuncts...
ad4ant234 1176 Deduction adding conjuncts...
3adant1l 1177 Deduction adding a conjunc...
3adant1r 1178 Deduction adding a conjunc...
3adant2l 1179 Deduction adding a conjunc...
3adant2r 1180 Deduction adding a conjunc...
3adant3l 1181 Deduction adding a conjunc...
3adant3r 1182 Deduction adding a conjunc...
3adant3r1 1183 Deduction adding a conjunc...
3adant3r2 1184 Deduction adding a conjunc...
3adant3r3 1185 Deduction adding a conjunc...
3ad2antl1 1186 Deduction adding conjuncts...
3ad2antl2 1187 Deduction adding conjuncts...
3ad2antl3 1188 Deduction adding conjuncts...
3ad2antr1 1189 Deduction adding conjuncts...
3ad2antr2 1190 Deduction adding conjuncts...
3ad2antr3 1191 Deduction adding conjuncts...
simpl1 1192 Simplification of conjunct...
simpl2 1193 Simplification of conjunct...
simpl3 1194 Simplification of conjunct...
simpr1 1195 Simplification of conjunct...
simpr2 1196 Simplification of conjunct...
simpr3 1197 Simplification of conjunct...
simp1l 1198 Simplification of triple c...
simp1r 1199 Simplification of triple c...
simp2l 1200 Simplification of triple c...
simp2r 1201 Simplification of triple c...
simp3l 1202 Simplification of triple c...
simp3r 1203 Simplification of triple c...
simp11 1204 Simplification of doubly t...
simp12 1205 Simplification of doubly t...
simp13 1206 Simplification of doubly t...
simp21 1207 Simplification of doubly t...
simp22 1208 Simplification of doubly t...
simp23 1209 Simplification of doubly t...
simp31 1210 Simplification of doubly t...
simp32 1211 Simplification of doubly t...
simp33 1212 Simplification of doubly t...
simpll1 1213 Simplification of conjunct...
simpll2 1214 Simplification of conjunct...
simpll3 1215 Simplification of conjunct...
simplr1 1216 Simplification of conjunct...
simplr2 1217 Simplification of conjunct...
simplr3 1218 Simplification of conjunct...
simprl1 1219 Simplification of conjunct...
simprl2 1220 Simplification of conjunct...
simprl3 1221 Simplification of conjunct...
simprr1 1222 Simplification of conjunct...
simprr2 1223 Simplification of conjunct...
simprr3 1224 Simplification of conjunct...
simpl1l 1225 Simplification of conjunct...
simpl1r 1226 Simplification of conjunct...
simpl2l 1227 Simplification of conjunct...
simpl2r 1228 Simplification of conjunct...
simpl3l 1229 Simplification of conjunct...
simpl3r 1230 Simplification of conjunct...
simpr1l 1231 Simplification of conjunct...
simpr1r 1232 Simplification of conjunct...
simpr2l 1233 Simplification of conjunct...
simpr2r 1234 Simplification of conjunct...
simpr3l 1235 Simplification of conjunct...
simpr3r 1236 Simplification of conjunct...
simp1ll 1237 Simplification of conjunct...
simp1lr 1238 Simplification of conjunct...
simp1rl 1239 Simplification of conjunct...
simp1rr 1240 Simplification of conjunct...
simp2ll 1241 Simplification of conjunct...
simp2lr 1242 Simplification of conjunct...
simp2rl 1243 Simplification of conjunct...
simp2rr 1244 Simplification of conjunct...
simp3ll 1245 Simplification of conjunct...
simp3lr 1246 Simplification of conjunct...
simp3rl 1247 Simplification of conjunct...
simp3rr 1248 Simplification of conjunct...
simpl11 1249 Simplification of conjunct...
simpl12 1250 Simplification of conjunct...
simpl13 1251 Simplification of conjunct...
simpl21 1252 Simplification of conjunct...
simpl22 1253 Simplification of conjunct...
simpl23 1254 Simplification of conjunct...
simpl31 1255 Simplification of conjunct...
simpl32 1256 Simplification of conjunct...
simpl33 1257 Simplification of conjunct...
simpr11 1258 Simplification of conjunct...
simpr12 1259 Simplification of conjunct...
simpr13 1260 Simplification of conjunct...
simpr21 1261 Simplification of conjunct...
simpr22 1262 Simplification of conjunct...
simpr23 1263 Simplification of conjunct...
simpr31 1264 Simplification of conjunct...
simpr32 1265 Simplification of conjunct...
simpr33 1266 Simplification of conjunct...
simp1l1 1267 Simplification of conjunct...
simp1l2 1268 Simplification of conjunct...
simp1l3 1269 Simplification of conjunct...
simp1r1 1270 Simplification of conjunct...
simp1r2 1271 Simplification of conjunct...
simp1r3 1272 Simplification of conjunct...
simp2l1 1273 Simplification of conjunct...
simp2l2 1274 Simplification of conjunct...
simp2l3 1275 Simplification of conjunct...
simp2r1 1276 Simplification of conjunct...
simp2r2 1277 Simplification of conjunct...
simp2r3 1278 Simplification of conjunct...
simp3l1 1279 Simplification of conjunct...
simp3l2 1280 Simplification of conjunct...
simp3l3 1281 Simplification of conjunct...
simp3r1 1282 Simplification of conjunct...
simp3r2 1283 Simplification of conjunct...
simp3r3 1284 Simplification of conjunct...
simp11l 1285 Simplification of conjunct...
simp11r 1286 Simplification of conjunct...
simp12l 1287 Simplification of conjunct...
simp12r 1288 Simplification of conjunct...
simp13l 1289 Simplification of conjunct...
simp13r 1290 Simplification of conjunct...
simp21l 1291 Simplification of conjunct...
simp21r 1292 Simplification of conjunct...
simp22l 1293 Simplification of conjunct...
simp22r 1294 Simplification of conjunct...
simp23l 1295 Simplification of conjunct...
simp23r 1296 Simplification of conjunct...
simp31l 1297 Simplification of conjunct...
simp31r 1298 Simplification of conjunct...
simp32l 1299 Simplification of conjunct...
simp32r 1300 Simplification of conjunct...
simp33l 1301 Simplification of conjunct...
simp33r 1302 Simplification of conjunct...
simp111 1303 Simplification of conjunct...
simp112 1304 Simplification of conjunct...
simp113 1305 Simplification of conjunct...
simp121 1306 Simplification of conjunct...
simp122 1307 Simplification of conjunct...
simp123 1308 Simplification of conjunct...
simp131 1309 Simplification of conjunct...
simp132 1310 Simplification of conjunct...
simp133 1311 Simplification of conjunct...
simp211 1312 Simplification of conjunct...
simp212 1313 Simplification of conjunct...
simp213 1314 Simplification of conjunct...
simp221 1315 Simplification of conjunct...
simp222 1316 Simplification of conjunct...
simp223 1317 Simplification of conjunct...
simp231 1318 Simplification of conjunct...
simp232 1319 Simplification of conjunct...
simp233 1320 Simplification of conjunct...
simp311 1321 Simplification of conjunct...
simp312 1322 Simplification of conjunct...
simp313 1323 Simplification of conjunct...
simp321 1324 Simplification of conjunct...
simp322 1325 Simplification of conjunct...
simp323 1326 Simplification of conjunct...
simp331 1327 Simplification of conjunct...
simp332 1328 Simplification of conjunct...
simp333 1329 Simplification of conjunct...
3anibar 1330 Remove a hypothesis from t...
3mix1 1331 Introduction in triple dis...
3mix2 1332 Introduction in triple dis...
3mix3 1333 Introduction in triple dis...
3mix1i 1334 Introduction in triple dis...
3mix2i 1335 Introduction in triple dis...
3mix3i 1336 Introduction in triple dis...
3mix1d 1337 Deduction introducing trip...
3mix2d 1338 Deduction introducing trip...
3mix3d 1339 Deduction introducing trip...
3pm3.2i 1340 Infer conjunction of premi...
pm3.2an3 1341 Version of ~ pm3.2 for a t...
mpbir3an 1342 Detach a conjunction of tr...
mpbir3and 1343 Detach a conjunction of tr...
syl3anbrc 1344 Syllogism inference. (Con...
syl21anbrc 1345 Syllogism inference. (Con...
3imp3i2an 1346 An elimination deduction. ...
ex3 1347 Apply ~ ex to a hypothesis...
3imp1 1348 Importation to left triple...
3impd 1349 Importation deduction for ...
3imp2 1350 Importation to right tripl...
3impdi 1351 Importation inference (und...
3impdir 1352 Importation inference (und...
3exp1 1353 Exportation from left trip...
3expd 1354 Exportation deduction for ...
3exp2 1355 Exportation from right tri...
exp5o 1356 A triple exportation infer...
exp516 1357 A triple exportation infer...
exp520 1358 A triple exportation infer...
3impexp 1359 Version of ~ impexp for a ...
3an1rs 1360 Swap conjuncts. (Contribu...
3anassrs 1361 Associative law for conjun...
4anpull2 1362 An equivalence of two four...
ad5ant245 1363 Deduction adding conjuncts...
ad5ant234 1364 Deduction adding conjuncts...
ad5ant235 1365 Deduction adding conjuncts...
ad5ant123 1366 Deduction adding conjuncts...
ad5ant124 1367 Deduction adding conjuncts...
ad5ant125 1368 Deduction adding conjuncts...
ad5ant134 1369 Deduction adding conjuncts...
ad5ant135 1370 Deduction adding conjuncts...
ad5ant145 1371 Deduction adding conjuncts...
ad5ant2345 1372 Deduction adding conjuncts...
syl3anc 1373 Syllogism combined with co...
syl13anc 1374 Syllogism combined with co...
syl31anc 1375 Syllogism combined with co...
syl112anc 1376 Syllogism combined with co...
syl121anc 1377 Syllogism combined with co...
syl211anc 1378 Syllogism combined with co...
syl23anc 1379 Syllogism combined with co...
syl32anc 1380 Syllogism combined with co...
syl122anc 1381 Syllogism combined with co...
syl212anc 1382 Syllogism combined with co...
syl221anc 1383 Syllogism combined with co...
syl113anc 1384 Syllogism combined with co...
syl131anc 1385 Syllogism combined with co...
syl311anc 1386 Syllogism combined with co...
syl33anc 1387 Syllogism combined with co...
syl222anc 1388 Syllogism combined with co...
syl123anc 1389 Syllogism combined with co...
syl132anc 1390 Syllogism combined with co...
syl213anc 1391 Syllogism combined with co...
syl231anc 1392 Syllogism combined with co...
syl312anc 1393 Syllogism combined with co...
syl321anc 1394 Syllogism combined with co...
syl133anc 1395 Syllogism combined with co...
syl313anc 1396 Syllogism combined with co...
syl331anc 1397 Syllogism combined with co...
syl223anc 1398 Syllogism combined with co...
syl232anc 1399 Syllogism combined with co...
syl322anc 1400 Syllogism combined with co...
syl233anc 1401 Syllogism combined with co...
syl323anc 1402 Syllogism combined with co...
syl332anc 1403 Syllogism combined with co...
syl333anc 1404 A syllogism inference comb...
syl3an1b 1405 A syllogism inference. (C...
syl3an2b 1406 A syllogism inference. (C...
syl3an3b 1407 A syllogism inference. (C...
syl3an1br 1408 A syllogism inference. (C...
syl3an2br 1409 A syllogism inference. (C...
syl3an3br 1410 A syllogism inference. (C...
syld3an3 1411 A syllogism inference. (C...
syld3an1 1412 A syllogism inference. (C...
syld3an2 1413 A syllogism inference. (C...
syl3anl1 1414 A syllogism inference. (C...
syl3anl2 1415 A syllogism inference. (C...
syl3anl3 1416 A syllogism inference. (C...
syl3anl 1417 A triple syllogism inferen...
syl3anr1 1418 A syllogism inference. (C...
syl3anr2 1419 A syllogism inference. (C...
syl3anr3 1420 A syllogism inference. (C...
3anidm12 1421 Inference from idempotent ...
3anidm13 1422 Inference from idempotent ...
3anidm23 1423 Inference from idempotent ...
syl2an3an 1424 ~ syl3an with antecedents ...
syl2an23an 1425 Deduction related to ~ syl...
3ori 1426 Infer implication from tri...
3jao 1427 Disjunction of three antec...
3jaob 1428 Disjunction of three antec...
3jaobOLD 1429 Obsolete version of ~ 3jao...
3jaoi 1430 Disjunction of three antec...
3jaod 1431 Disjunction of three antec...
3jaoian 1432 Disjunction of three antec...
3jaodan 1433 Disjunction of three antec...
mpjao3dan 1434 Eliminate a three-way disj...
3jaao 1435 Inference conjoining and d...
syl3an9b 1436 Nested syllogism inference...
3orbi123d 1437 Deduction joining 3 equiva...
3anbi123d 1438 Deduction joining 3 equiva...
3anbi12d 1439 Deduction conjoining and a...
3anbi13d 1440 Deduction conjoining and a...
3anbi23d 1441 Deduction conjoining and a...
3anbi1d 1442 Deduction adding conjuncts...
3anbi2d 1443 Deduction adding conjuncts...
3anbi3d 1444 Deduction adding conjuncts...
3anim123d 1445 Deduction joining 3 implic...
3orim123d 1446 Deduction joining 3 implic...
an6 1447 Rearrangement of 6 conjunc...
3an6 1448 Analogue of ~ an4 for trip...
3or6 1449 Analogue of ~ or4 for trip...
mp3an1 1450 An inference based on modu...
mp3an2 1451 An inference based on modu...
mp3an3 1452 An inference based on modu...
mp3an12 1453 An inference based on modu...
mp3an13 1454 An inference based on modu...
mp3an23 1455 An inference based on modu...
mp3an1i 1456 An inference based on modu...
mp3anl1 1457 An inference based on modu...
mp3anl2 1458 An inference based on modu...
mp3anl3 1459 An inference based on modu...
mp3anr1 1460 An inference based on modu...
mp3anr2 1461 An inference based on modu...
mp3anr3 1462 An inference based on modu...
mp3an 1463 An inference based on modu...
mpd3an3 1464 An inference based on modu...
mpd3an23 1465 An inference based on modu...
mp3and 1466 A deduction based on modus...
mp3an12i 1467 ~ mp3an with antecedents i...
mp3an2i 1468 ~ mp3an with antecedents i...
mp3an3an 1469 ~ mp3an with antecedents i...
mp3an2ani 1470 An elimination deduction. ...
biimp3a 1471 Infer implication from a l...
biimp3ar 1472 Infer implication from a l...
3anandis 1473 Inference that undistribut...
3anandirs 1474 Inference that undistribut...
ecase23d 1475 Deduction for elimination ...
3ecase 1476 Inference for elimination ...
3bior1fd 1477 A disjunction is equivalen...
3bior1fand 1478 A disjunction is equivalen...
3bior2fd 1479 A wff is equivalent to its...
3biant1d 1480 A conjunction is equivalen...
intn3an1d 1481 Introduction of a triple c...
intn3an2d 1482 Introduction of a triple c...
intn3an3d 1483 Introduction of a triple c...
an3andi 1484 Distribution of conjunctio...
an33rean 1485 Rearrange a 9-fold conjunc...
3orel2 1486 Partial elimination of a t...
3orel2OLD 1487 Obsolete version of ~ 3ore...
3orel3 1488 Partial elimination of a t...
3orel13 1489 Elimination of two disjunc...
3pm3.2ni 1490 Triple negated disjunction...
nanan 1493 Conjunction in terms of al...
dfnan2 1494 Alternative denial in term...
nanor 1495 Alternative denial in term...
nancom 1496 Alternative denial is comm...
nannan 1497 Nested alternative denials...
nanim 1498 Implication in terms of al...
nannot 1499 Negation in terms of alter...
nanbi 1500 Biconditional in terms of ...
nanbi1 1501 Introduce a right anti-con...
nanbi2 1502 Introduce a left anti-conj...
nanbi12 1503 Join two logical equivalen...
nanbi1i 1504 Introduce a right anti-con...
nanbi2i 1505 Introduce a left anti-conj...
nanbi12i 1506 Join two logical equivalen...
nanbi1d 1507 Introduce a right anti-con...
nanbi2d 1508 Introduce a left anti-conj...
nanbi12d 1509 Join two logical equivalen...
nanass 1510 A characterization of when...
xnor 1513 Two ways to write XNOR (ex...
xorcom 1514 The connector ` \/_ ` is c...
xorass 1515 The connector ` \/_ ` is a...
excxor 1516 This tautology shows that ...
xor2 1517 Two ways to express "exclu...
xoror 1518 Exclusive disjunction impl...
xornan 1519 Exclusive disjunction impl...
xornan2 1520 XOR implies NAND (written ...
xorneg2 1521 The connector ` \/_ ` is n...
xorneg1 1522 The connector ` \/_ ` is n...
xorneg 1523 The connector ` \/_ ` is u...
xorbi12i 1524 Equality property for excl...
xorbi12d 1525 Equality property for excl...
anxordi 1526 Conjunction distributes ov...
xorexmid 1527 Exclusive-or variant of th...
norcom 1530 The connector ` -\/ ` is c...
nornot 1531 ` -. ` is expressible via ...
noran 1532 ` /\ ` is expressible via ...
noror 1533 ` \/ ` is expressible via ...
norasslem1 1534 This lemma shows the equiv...
norasslem2 1535 This lemma specializes ~ b...
norasslem3 1536 This lemma specializes ~ b...
norass 1537 A characterization of when...
trujust 1542 Soundness justification th...
tru 1544 The truth value ` T. ` is ...
dftru2 1545 An alternate definition of...
trut 1546 A proposition is equivalen...
mptru 1547 Eliminate ` T. ` as an ant...
tbtru 1548 A proposition is equivalen...
bitru 1549 A theorem is equivalent to...
trud 1550 Anything implies ` T. ` . ...
truan 1551 True can be removed from a...
fal 1554 The truth value ` F. ` is ...
nbfal 1555 The negation of a proposit...
bifal 1556 A contradiction is equival...
falim 1557 The truth value ` F. ` imp...
falimd 1558 The truth value ` F. ` imp...
dfnot 1559 Given falsum ` F. ` , we c...
inegd 1560 Negation introduction rule...
efald 1561 Deduction based on reducti...
pm2.21fal 1562 If a wff and its negation ...
truimtru 1563 A ` -> ` identity. (Contr...
truimfal 1564 A ` -> ` identity. (Contr...
falimtru 1565 A ` -> ` identity. (Contr...
falimfal 1566 A ` -> ` identity. (Contr...
nottru 1567 A ` -. ` identity. (Contr...
notfal 1568 A ` -. ` identity. (Contr...
trubitru 1569 A ` <-> ` identity. (Cont...
falbitru 1570 A ` <-> ` identity. (Cont...
trubifal 1571 A ` <-> ` identity. (Cont...
falbifal 1572 A ` <-> ` identity. (Cont...
truantru 1573 A ` /\ ` identity. (Contr...
truanfal 1574 A ` /\ ` identity. (Contr...
falantru 1575 A ` /\ ` identity. (Contr...
falanfal 1576 A ` /\ ` identity. (Contr...
truortru 1577 A ` \/ ` identity. (Contr...
truorfal 1578 A ` \/ ` identity. (Contr...
falortru 1579 A ` \/ ` identity. (Contr...
falorfal 1580 A ` \/ ` identity. (Contr...
trunantru 1581 A ` -/\ ` identity. (Cont...
trunanfal 1582 A ` -/\ ` identity. (Cont...
falnantru 1583 A ` -/\ ` identity. (Cont...
falnanfal 1584 A ` -/\ ` identity. (Cont...
truxortru 1585 A ` \/_ ` identity. (Cont...
truxorfal 1586 A ` \/_ ` identity. (Cont...
falxortru 1587 A ` \/_ ` identity. (Cont...
falxorfal 1588 A ` \/_ ` identity. (Cont...
trunortru 1589 A ` -\/ ` identity. (Cont...
trunorfal 1590 A ` -\/ ` identity. (Cont...
falnortru 1591 A ` -\/ ` identity. (Cont...
falnorfal 1592 A ` -\/ ` identity. (Cont...
hadbi123d 1595 Equality theorem for the a...
hadbi123i 1596 Equality theorem for the a...
hadass 1597 Associative law for the ad...
hadbi 1598 The adder sum is the same ...
hadcoma 1599 Commutative law for the ad...
hadcomb 1600 Commutative law for the ad...
hadrot 1601 Rotation law for the adder...
hadnot 1602 The adder sum distributes ...
had1 1603 If the first input is true...
had0 1604 If the first input is fals...
hadifp 1605 The value of the adder sum...
cador 1608 The adder carry in disjunc...
cadan 1609 The adder carry in conjunc...
cadbi123d 1610 Equality theorem for the a...
cadbi123i 1611 Equality theorem for the a...
cadcoma 1612 Commutative law for the ad...
cadcomb 1613 Commutative law for the ad...
cadrot 1614 Rotation law for the adder...
cadnot 1615 The adder carry distribute...
cad11 1616 If (at least) two inputs a...
cad1 1617 If one input is true, then...
cad0 1618 If one input is false, the...
cadifp 1619 The value of the carry is,...
cadtru 1620 The adder carry is true as...
minimp 1621 A single axiom for minimal...
minimp-syllsimp 1622 Derivation of Syll-Simp ( ...
minimp-ax1 1623 Derivation of ~ ax-1 from ...
minimp-ax2c 1624 Derivation of a commuted f...
minimp-ax2 1625 Derivation of ~ ax-2 from ...
minimp-pm2.43 1626 Derivation of ~ pm2.43 (al...
impsingle 1627 The shortest single axiom ...
impsingle-step4 1628 Derivation of impsingle-st...
impsingle-step8 1629 Derivation of impsingle-st...
impsingle-ax1 1630 Derivation of impsingle-ax...
impsingle-step15 1631 Derivation of impsingle-st...
impsingle-step18 1632 Derivation of impsingle-st...
impsingle-step19 1633 Derivation of impsingle-st...
impsingle-step20 1634 Derivation of impsingle-st...
impsingle-step21 1635 Derivation of impsingle-st...
impsingle-step22 1636 Derivation of impsingle-st...
impsingle-step25 1637 Derivation of impsingle-st...
impsingle-imim1 1638 Derivation of impsingle-im...
impsingle-peirce 1639 Derivation of impsingle-pe...
tarski-bernays-ax2 1640 Derivation of ~ ax-2 from ...
meredith 1641 Carew Meredith's sole axio...
merlem1 1642 Step 3 of Meredith's proof...
merlem2 1643 Step 4 of Meredith's proof...
merlem3 1644 Step 7 of Meredith's proof...
merlem4 1645 Step 8 of Meredith's proof...
merlem5 1646 Step 11 of Meredith's proo...
merlem6 1647 Step 12 of Meredith's proo...
merlem7 1648 Between steps 14 and 15 of...
merlem8 1649 Step 15 of Meredith's proo...
merlem9 1650 Step 18 of Meredith's proo...
merlem10 1651 Step 19 of Meredith's proo...
merlem11 1652 Step 20 of Meredith's proo...
merlem12 1653 Step 28 of Meredith's proo...
merlem13 1654 Step 35 of Meredith's proo...
luk-1 1655 1 of 3 axioms for proposit...
luk-2 1656 2 of 3 axioms for proposit...
luk-3 1657 3 of 3 axioms for proposit...
luklem1 1658 Used to rederive standard ...
luklem2 1659 Used to rederive standard ...
luklem3 1660 Used to rederive standard ...
luklem4 1661 Used to rederive standard ...
luklem5 1662 Used to rederive standard ...
luklem6 1663 Used to rederive standard ...
luklem7 1664 Used to rederive standard ...
luklem8 1665 Used to rederive standard ...
ax1 1666 Standard propositional axi...
ax2 1667 Standard propositional axi...
ax3 1668 Standard propositional axi...
nic-dfim 1669 This theorem "defines" imp...
nic-dfneg 1670 This theorem "defines" neg...
nic-mp 1671 Derive Nicod's rule of mod...
nic-mpALT 1672 A direct proof of ~ nic-mp...
nic-ax 1673 Nicod's axiom derived from...
nic-axALT 1674 A direct proof of ~ nic-ax...
nic-imp 1675 Inference for ~ nic-mp usi...
nic-idlem1 1676 Lemma for ~ nic-id . (Con...
nic-idlem2 1677 Lemma for ~ nic-id . Infe...
nic-id 1678 Theorem ~ id expressed wit...
nic-swap 1679 The connector ` -/\ ` is s...
nic-isw1 1680 Inference version of ~ nic...
nic-isw2 1681 Inference for swapping nes...
nic-iimp1 1682 Inference version of ~ nic...
nic-iimp2 1683 Inference version of ~ nic...
nic-idel 1684 Inference to remove the tr...
nic-ich 1685 Chained inference. (Contr...
nic-idbl 1686 Double the terms. Since d...
nic-bijust 1687 Biconditional justificatio...
nic-bi1 1688 Inference to extract one s...
nic-bi2 1689 Inference to extract the o...
nic-stdmp 1690 Derive the standard modus ...
nic-luk1 1691 Proof of ~ luk-1 from ~ ni...
nic-luk2 1692 Proof of ~ luk-2 from ~ ni...
nic-luk3 1693 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1694 This alternative axiom for...
lukshefth1 1695 Lemma for ~ renicax . (Co...
lukshefth2 1696 Lemma for ~ renicax . (Co...
renicax 1697 A rederivation of ~ nic-ax...
tbw-bijust 1698 Justification for ~ tbw-ne...
tbw-negdf 1699 The definition of negation...
tbw-ax1 1700 The first of four axioms i...
tbw-ax2 1701 The second of four axioms ...
tbw-ax3 1702 The third of four axioms i...
tbw-ax4 1703 The fourth of four axioms ...
tbwsyl 1704 Used to rederive the Lukas...
tbwlem1 1705 Used to rederive the Lukas...
tbwlem2 1706 Used to rederive the Lukas...
tbwlem3 1707 Used to rederive the Lukas...
tbwlem4 1708 Used to rederive the Lukas...
tbwlem5 1709 Used to rederive the Lukas...
re1luk1 1710 ~ luk-1 derived from the T...
re1luk2 1711 ~ luk-2 derived from the T...
re1luk3 1712 ~ luk-3 derived from the T...
merco1 1713 A single axiom for proposi...
merco1lem1 1714 Used to rederive the Tarsk...
retbwax4 1715 ~ tbw-ax4 rederived from ~...
retbwax2 1716 ~ tbw-ax2 rederived from ~...
merco1lem2 1717 Used to rederive the Tarsk...
merco1lem3 1718 Used to rederive the Tarsk...
merco1lem4 1719 Used to rederive the Tarsk...
merco1lem5 1720 Used to rederive the Tarsk...
merco1lem6 1721 Used to rederive the Tarsk...
merco1lem7 1722 Used to rederive the Tarsk...
retbwax3 1723 ~ tbw-ax3 rederived from ~...
merco1lem8 1724 Used to rederive the Tarsk...
merco1lem9 1725 Used to rederive the Tarsk...
merco1lem10 1726 Used to rederive the Tarsk...
merco1lem11 1727 Used to rederive the Tarsk...
merco1lem12 1728 Used to rederive the Tarsk...
merco1lem13 1729 Used to rederive the Tarsk...
merco1lem14 1730 Used to rederive the Tarsk...
merco1lem15 1731 Used to rederive the Tarsk...
merco1lem16 1732 Used to rederive the Tarsk...
merco1lem17 1733 Used to rederive the Tarsk...
merco1lem18 1734 Used to rederive the Tarsk...
retbwax1 1735 ~ tbw-ax1 rederived from ~...
merco2 1736 A single axiom for proposi...
mercolem1 1737 Used to rederive the Tarsk...
mercolem2 1738 Used to rederive the Tarsk...
mercolem3 1739 Used to rederive the Tarsk...
mercolem4 1740 Used to rederive the Tarsk...
mercolem5 1741 Used to rederive the Tarsk...
mercolem6 1742 Used to rederive the Tarsk...
mercolem7 1743 Used to rederive the Tarsk...
mercolem8 1744 Used to rederive the Tarsk...
re1tbw1 1745 ~ tbw-ax1 rederived from ~...
re1tbw2 1746 ~ tbw-ax2 rederived from ~...
re1tbw3 1747 ~ tbw-ax3 rederived from ~...
re1tbw4 1748 ~ tbw-ax4 rederived from ~...
rb-bijust 1749 Justification for ~ rb-imd...
rb-imdf 1750 The definition of implicat...
anmp 1751 Modus ponens for ` { \/ , ...
rb-ax1 1752 The first of four axioms i...
rb-ax2 1753 The second of four axioms ...
rb-ax3 1754 The third of four axioms i...
rb-ax4 1755 The fourth of four axioms ...
rbsyl 1756 Used to rederive the Lukas...
rblem1 1757 Used to rederive the Lukas...
rblem2 1758 Used to rederive the Lukas...
rblem3 1759 Used to rederive the Lukas...
rblem4 1760 Used to rederive the Lukas...
rblem5 1761 Used to rederive the Lukas...
rblem6 1762 Used to rederive the Lukas...
rblem7 1763 Used to rederive the Lukas...
re1axmp 1764 ~ ax-mp derived from Russe...
re2luk1 1765 ~ luk-1 derived from Russe...
re2luk2 1766 ~ luk-2 derived from Russe...
re2luk3 1767 ~ luk-3 derived from Russe...
mptnan 1768 Modus ponendo tollens 1, o...
mptxor 1769 Modus ponendo tollens 2, o...
mtpor 1770 Modus tollendo ponens (inc...
mtpxor 1771 Modus tollendo ponens (ori...
stoic1a 1772 Stoic logic Thema 1 (part ...
stoic1b 1773 Stoic logic Thema 1 (part ...
stoic2a 1774 Stoic logic Thema 2 versio...
stoic2b 1775 Stoic logic Thema 2 versio...
stoic3 1776 Stoic logic Thema 3. Stat...
stoic4a 1777 Stoic logic Thema 4 versio...
stoic4b 1778 Stoic logic Thema 4 versio...
alnex 1781 Universal quantification o...
eximal 1782 An equivalence between an ...
nf2 1785 Alternate definition of no...
nf3 1786 Alternate definition of no...
nf4 1787 Alternate definition of no...
nfi 1788 Deduce that ` x ` is not f...
nfri 1789 Consequence of the definit...
nfd 1790 Deduce that ` x ` is not f...
nfrd 1791 Consequence of the definit...
nftht 1792 Closed form of ~ nfth . (...
nfntht 1793 Closed form of ~ nfnth . ...
nfntht2 1794 Closed form of ~ nfnth . ...
gen2 1796 Generalization applied twi...
mpg 1797 Modus ponens combined with...
mpgbi 1798 Modus ponens on biconditio...
mpgbir 1799 Modus ponens on biconditio...
nex 1800 Generalization rule for ne...
nfth 1801 No variable is (effectivel...
nfnth 1802 No variable is (effectivel...
hbth 1803 No variable is (effectivel...
nftru 1804 The true constant has no f...
nffal 1805 The false constant has no ...
sptruw 1806 Version of ~ sp when ` ph ...
altru 1807 For all sets, ` T. ` is tr...
alfal 1808 For all sets, ` -. F. ` is...
alim 1810 Restatement of Axiom ~ ax-...
alimi 1811 Inference quantifying both...
2alimi 1812 Inference doubly quantifyi...
ala1 1813 Add an antecedent in a uni...
al2im 1814 Closed form of ~ al2imi . ...
al2imi 1815 Inference quantifying ante...
alanimi 1816 Variant of ~ al2imi with c...
alimdh 1817 Deduction form of Theorem ...
albi 1818 Theorem 19.15 of [Margaris...
albii 1819 Inference adding universal...
2albii 1820 Inference adding two unive...
3albii 1821 Inference adding three uni...
sylgt 1822 Closed form of ~ sylg . (...
sylg 1823 A syllogism combined with ...
alrimih 1824 Inference form of Theorem ...
hbxfrbi 1825 A utility lemma to transfe...
alex 1826 Universal quantifier in te...
exnal 1827 Existential quantification...
2nalexn 1828 Part of theorem *11.5 in [...
2exnaln 1829 Theorem *11.22 in [Whitehe...
2nexaln 1830 Theorem *11.25 in [Whitehe...
alimex 1831 An equivalence between an ...
aleximi 1832 A variant of ~ al2imi : in...
alexbii 1833 Biconditional form of ~ al...
exim 1834 Theorem 19.22 of [Margaris...
eximi 1835 Inference adding existenti...
2eximi 1836 Inference adding two exist...
eximii 1837 Inference associated with ...
exa1 1838 Add an antecedent in an ex...
19.38 1839 Theorem 19.38 of [Margaris...
19.38a 1840 Under a nonfreeness hypoth...
19.38b 1841 Under a nonfreeness hypoth...
imnang 1842 Quantified implication in ...
alinexa 1843 A transformation of quanti...
exnalimn 1844 Existential quantification...
alexn 1845 A relationship between two...
2exnexn 1846 Theorem *11.51 in [Whitehe...
exbi 1847 Theorem 19.18 of [Margaris...
exbii 1848 Inference adding existenti...
2exbii 1849 Inference adding two exist...
3exbii 1850 Inference adding three exi...
nfbiit 1851 Equivalence theorem for th...
nfbii 1852 Equality theorem for the n...
nfxfr 1853 A utility lemma to transfe...
nfxfrd 1854 A utility lemma to transfe...
nfnbi 1855 A variable is nonfree in a...
nfnt 1856 If a variable is nonfree i...
nfn 1857 Inference associated with ...
nfnd 1858 Deduction associated with ...
exanali 1859 A transformation of quanti...
2exanali 1860 Theorem *11.521 in [Whiteh...
exancom 1861 Commutation of conjunction...
exan 1862 Place a conjunct in the sc...
alrimdh 1863 Deduction form of Theorem ...
eximdh 1864 Deduction from Theorem 19....
nexdh 1865 Deduction for generalizati...
albidh 1866 Formula-building rule for ...
exbidh 1867 Formula-building rule for ...
exsimpl 1868 Simplification of an exist...
exsimpr 1869 Simplification of an exist...
19.26 1870 Theorem 19.26 of [Margaris...
19.26-2 1871 Theorem ~ 19.26 with two q...
19.26-3an 1872 Theorem ~ 19.26 with tripl...
19.29 1873 Theorem 19.29 of [Margaris...
19.29r 1874 Variation of ~ 19.29 . (C...
19.29r2 1875 Variation of ~ 19.29r with...
19.29x 1876 Variation of ~ 19.29 with ...
19.35 1877 Theorem 19.35 of [Margaris...
19.35i 1878 Inference associated with ...
19.35ri 1879 Inference associated with ...
19.25 1880 Theorem 19.25 of [Margaris...
19.30 1881 Theorem 19.30 of [Margaris...
19.43 1882 Theorem 19.43 of [Margaris...
19.43OLD 1883 Obsolete proof of ~ 19.43 ...
19.33 1884 Theorem 19.33 of [Margaris...
19.33b 1885 The antecedent provides a ...
19.40 1886 Theorem 19.40 of [Margaris...
19.40-2 1887 Theorem *11.42 in [Whitehe...
19.40b 1888 The antecedent provides a ...
albiim 1889 Split a biconditional and ...
2albiim 1890 Split a biconditional and ...
exintrbi 1891 Add/remove a conjunct in t...
exintr 1892 Introduce a conjunct in th...
alsyl 1893 Universally quantified and...
nfimd 1894 If in a context ` x ` is n...
nfimt 1895 Closed form of ~ nfim and ...
nfim 1896 If ` x ` is not free in ` ...
nfand 1897 If in a context ` x ` is n...
nf3and 1898 Deduction form of bound-va...
nfan 1899 If ` x ` is not free in ` ...
nfnan 1900 If ` x ` is not free in ` ...
nf3an 1901 If ` x ` is not free in ` ...
nfbid 1902 If in a context ` x ` is n...
nfbi 1903 If ` x ` is not free in ` ...
nfor 1904 If ` x ` is not free in ` ...
nf3or 1905 If ` x ` is not free in ` ...
empty 1906 Two characterizations of t...
emptyex 1907 On the empty domain, any e...
emptyal 1908 On the empty domain, any u...
emptynf 1909 On the empty domain, any v...
ax5d 1911 Version of ~ ax-5 with ant...
ax5e 1912 A rephrasing of ~ ax-5 usi...
ax5ea 1913 If a formula holds for som...
nfv 1914 If ` x ` is not present in...
nfvd 1915 ~ nfv with antecedent. Us...
alimdv 1916 Deduction form of Theorem ...
eximdv 1917 Deduction form of Theorem ...
2alimdv 1918 Deduction form of Theorem ...
2eximdv 1919 Deduction form of Theorem ...
albidv 1920 Formula-building rule for ...
exbidv 1921 Formula-building rule for ...
nfbidv 1922 An equality theorem for no...
2albidv 1923 Formula-building rule for ...
2exbidv 1924 Formula-building rule for ...
3exbidv 1925 Formula-building rule for ...
4exbidv 1926 Formula-building rule for ...
alrimiv 1927 Inference form of Theorem ...
alrimivv 1928 Inference form of Theorem ...
alrimdv 1929 Deduction form of Theorem ...
exlimiv 1930 Inference form of Theorem ...
exlimiiv 1931 Inference (Rule C) associa...
exlimivv 1932 Inference form of Theorem ...
exlimdv 1933 Deduction form of Theorem ...
exlimdvv 1934 Deduction form of Theorem ...
exlimddv 1935 Existential elimination ru...
nexdv 1936 Deduction for generalizati...
2ax5 1937 Quantification of two vari...
stdpc5v 1938 Version of ~ stdpc5 with a...
19.21v 1939 Version of ~ 19.21 with a ...
19.32v 1940 Version of ~ 19.32 with a ...
19.31v 1941 Version of ~ 19.31 with a ...
19.23v 1942 Version of ~ 19.23 with a ...
19.23vv 1943 Theorem ~ 19.23v extended ...
pm11.53v 1944 Version of ~ pm11.53 with ...
19.36imv 1945 One direction of ~ 19.36v ...
19.36iv 1946 Inference associated with ...
19.37imv 1947 One direction of ~ 19.37v ...
19.37iv 1948 Inference associated with ...
19.41v 1949 Version of ~ 19.41 with a ...
19.41vv 1950 Version of ~ 19.41 with tw...
19.41vvv 1951 Version of ~ 19.41 with th...
19.41vvvv 1952 Version of ~ 19.41 with fo...
19.42v 1953 Version of ~ 19.42 with a ...
exdistr 1954 Distribution of existentia...
exdistrv 1955 Distribute a pair of exist...
4exdistrv 1956 Distribute two pairs of ex...
19.42vv 1957 Version of ~ 19.42 with tw...
exdistr2 1958 Distribution of existentia...
19.42vvv 1959 Version of ~ 19.42 with th...
3exdistr 1960 Distribution of existentia...
4exdistr 1961 Distribution of existentia...
weq 1962 Extend wff definition to i...
speimfw 1963 Specialization, with addit...
speimfwALT 1964 Alternate proof of ~ speim...
spimfw 1965 Specialization, with addit...
ax12i 1966 Inference that has ~ ax-12...
ax6v 1968 Axiom B7 of [Tarski] p. 75...
ax6ev 1969 At least one individual ex...
spimw 1970 Specialization. Lemma 8 o...
spimew 1971 Existential introduction, ...
speiv 1972 Inference from existential...
speivw 1973 Version of ~ spei with a d...
exgen 1974 Rule of existential genera...
extru 1975 There exists a variable su...
19.2 1976 Theorem 19.2 of [Margaris]...
19.2d 1977 Deduction associated with ...
19.8w 1978 Weak version of ~ 19.8a an...
spnfw 1979 Weak version of ~ sp . Us...
spfalw 1980 Version of ~ sp when ` ph ...
spvw 1981 Version of ~ sp when ` x `...
19.3v 1982 Version of ~ 19.3 with a d...
19.8v 1983 Version of ~ 19.8a with a ...
19.9v 1984 Version of ~ 19.9 with a d...
spimevw 1985 Existential introduction, ...
spimvw 1986 A weak form of specializat...
spsv 1987 Generalization of antecede...
spvv 1988 Specialization, using impl...
chvarvv 1989 Implicit substitution of `...
19.39 1990 Theorem 19.39 of [Margaris...
19.24 1991 Theorem 19.24 of [Margaris...
19.34 1992 Theorem 19.34 of [Margaris...
19.36v 1993 Version of ~ 19.36 with a ...
19.12vvv 1994 Version of ~ 19.12vv with ...
19.27v 1995 Version of ~ 19.27 with a ...
19.28v 1996 Version of ~ 19.28 with a ...
19.37v 1997 Version of ~ 19.37 with a ...
19.44v 1998 Version of ~ 19.44 with a ...
19.45v 1999 Version of ~ 19.45 with a ...
equs4v 2000 Version of ~ equs4 with a ...
alequexv 2001 Version of ~ equs4v with i...
exsbim 2002 One direction of the equiv...
equsv 2003 If a formula does not cont...
equsalvw 2004 Version of ~ equsalv with ...
equsexvw 2005 Version of ~ equsexv with ...
cbvaliw 2006 Change bound variable. Us...
cbvalivw 2007 Change bound variable. Us...
ax7v 2009 Weakened version of ~ ax-7...
ax7v1 2010 First of two weakened vers...
ax7v2 2011 Second of two weakened ver...
equid 2012 Identity law for equality....
nfequid 2013 Bound-variable hypothesis ...
equcomiv 2014 Weaker form of ~ equcomi w...
ax6evr 2015 A commuted form of ~ ax6ev...
ax7 2016 Proof of ~ ax-7 from ~ ax7...
equcomi 2017 Commutative law for equali...
equcom 2018 Commutative law for equali...
equcomd 2019 Deduction form of ~ equcom...
equcoms 2020 An inference commuting equ...
equtr 2021 A transitive law for equal...
equtrr 2022 A transitive law for equal...
equeuclr 2023 Commuted version of ~ eque...
equeucl 2024 Equality is a left-Euclide...
equequ1 2025 An equivalence law for equ...
equequ2 2026 An equivalence law for equ...
equtr2 2027 Equality is a left-Euclide...
stdpc6 2028 One of the two equality ax...
equvinv 2029 A variable introduction la...
equvinva 2030 A modified version of the ...
equvelv 2031 A biconditional form of ~ ...
ax13b 2032 An equivalence between two...
spfw 2033 Weak version of ~ sp . Us...
spw 2034 Weak version of the specia...
cbvalw 2035 Change bound variable. Us...
cbvalvw 2036 Change bound variable. Us...
cbvexvw 2037 Change bound variable. Us...
cbvaldvaw 2038 Rule used to change the bo...
cbvexdvaw 2039 Rule used to change the bo...
cbval2vw 2040 Rule used to change bound ...
cbvex2vw 2041 Rule used to change bound ...
cbvex4vw 2042 Rule used to change bound ...
alcomimw 2043 Weak version of ~ ax-11 . ...
excomimw 2044 Weak version of ~ excomim ...
alcomw 2045 Weak version of ~ alcom an...
hbn1fw 2046 Weak version of ~ ax-10 fr...
hbn1w 2047 Weak version of ~ hbn1 . ...
hba1w 2048 Weak version of ~ hba1 . ...
hbe1w 2049 Weak version of ~ hbe1 . ...
hbalw 2050 Weak version of ~ hbal . ...
19.8aw 2051 If a formula is true, then...
exexw 2052 Existential quantification...
spaev 2053 A special instance of ~ sp...
cbvaev 2054 Change bound variable in a...
aevlem0 2055 Lemma for ~ aevlem . Inst...
aevlem 2056 Lemma for ~ aev and ~ axc1...
aeveq 2057 The antecedent ` A. x x = ...
aev 2058 A "distinctor elimination"...
aev2 2059 A version of ~ aev with tw...
hbaev 2060 All variables are effectiv...
naev 2061 If some set variables can ...
naev2 2062 Generalization of ~ hbnaev...
hbnaev 2063 Any variable is free in ` ...
sbjust 2064 Justification theorem for ...
sbt 2067 A substitution into a theo...
sbtru 2068 The result of substituting...
stdpc4 2069 The specialization axiom o...
sbtALT 2070 Alternate proof of ~ sbt ,...
2stdpc4 2071 A double specialization us...
sbi1 2072 Distribute substitution ov...
spsbim 2073 Distribute substitution ov...
spsbbi 2074 Biconditional property for...
sbimi 2075 Distribute substitution ov...
sb2imi 2076 Distribute substitution ov...
sbbii 2077 Infer substitution into bo...
2sbbii 2078 Infer double substitution ...
sbimdv 2079 Deduction substituting bot...
sbbidv 2080 Deduction substituting bot...
sban 2081 Conjunction inside and out...
sb3an 2082 Threefold conjunction insi...
spsbe 2083 Existential generalization...
sbequ 2084 Equality property for subs...
sbequi 2085 An equality theorem for su...
sb6 2086 Alternate definition of su...
2sb6 2087 Equivalence for double sub...
sb1v 2088 One direction of ~ sb5 , p...
sbv 2089 Substitution for a variabl...
sbcom4 2090 Commutativity law for subs...
pm11.07 2091 Axiom *11.07 in [Whitehead...
sbrimvw 2092 Substitution in an implica...
sbbiiev 2093 An equivalence of substitu...
sbievw 2094 Conversion of implicit sub...
sbievwOLD 2095 Obsolete version of ~ sbie...
sbiedvw 2096 Conversion of implicit sub...
2sbievw 2097 Conversion of double impli...
sbcom3vv 2098 Substituting ` y ` for ` x...
sbievw2 2099 ~ sbievw applied twice, av...
sbco2vv 2100 A composition law for subs...
cbvsbv 2101 Change the bound variable ...
sbco4lem 2102 Lemma for ~ sbco4 . It re...
sbco4 2103 Two ways of exchanging two...
equsb3 2104 Substitution in an equalit...
equsb3r 2105 Substitution applied to th...
equsb1v 2106 Substitution applied to an...
nsb 2107 Any substitution in an alw...
sbn1 2108 One direction of ~ sbn , u...
wel 2110 Extend wff definition to i...
ax8v 2112 Weakened version of ~ ax-8...
ax8v1 2113 First of two weakened vers...
ax8v2 2114 Second of two weakened ver...
ax8 2115 Proof of ~ ax-8 from ~ ax8...
elequ1 2116 An identity law for the no...
elsb1 2117 Substitution for the first...
cleljust 2118 When the class variables i...
ax9v 2120 Weakened version of ~ ax-9...
ax9v1 2121 First of two weakened vers...
ax9v2 2122 Second of two weakened ver...
ax9 2123 Proof of ~ ax-9 from ~ ax9...
elequ2 2124 An identity law for the no...
elequ2g 2125 A form of ~ elequ2 with a ...
elsb2 2126 Substitution for the secon...
elequ12 2127 An identity law for the no...
ru0 2128 The FOL statement used in ...
ax6dgen 2129 Tarski's system uses the w...
ax10w 2130 Weak version of ~ ax-10 fr...
ax11w 2131 Weak version of ~ ax-11 fr...
ax11dgen 2132 Degenerate instance of ~ a...
ax12wlem 2133 Lemma for weak version of ...
ax12w 2134 Weak version of ~ ax-12 fr...
ax12dgen 2135 Degenerate instance of ~ a...
ax12wdemo 2136 Example of an application ...
ax13w 2137 Weak version (principal in...
ax13dgen1 2138 Degenerate instance of ~ a...
ax13dgen2 2139 Degenerate instance of ~ a...
ax13dgen3 2140 Degenerate instance of ~ a...
ax13dgen4 2141 Degenerate instance of ~ a...
hbn1 2143 Alias for ~ ax-10 to be us...
hbe1 2144 The setvar ` x ` is not fr...
hbe1a 2145 Dual statement of ~ hbe1 ....
nf5-1 2146 One direction of ~ nf5 can...
nf5i 2147 Deduce that ` x ` is not f...
nf5dh 2148 Deduce that ` x ` is not f...
nf5dv 2149 Apply the definition of no...
nfnaew 2150 All variables are effectiv...
nfe1 2151 The setvar ` x ` is not fr...
nfa1 2152 The setvar ` x ` is not fr...
nfna1 2153 A convenience theorem part...
nfia1 2154 Lemma 23 of [Monk2] p. 114...
nfnf1 2155 The setvar ` x ` is not fr...
modal5 2156 The analogue in our predic...
nfs1v 2157 The setvar ` x ` is not fr...
alcoms 2159 Swap quantifiers in an ant...
alcom 2160 Theorem 19.5 of [Margaris]...
alrot3 2161 Theorem *11.21 in [Whitehe...
alrot4 2162 Rotate four universal quan...
excom 2163 Theorem 19.11 of [Margaris...
excomim 2164 One direction of Theorem 1...
excom13 2165 Swap 1st and 3rd existenti...
exrot3 2166 Rotate existential quantif...
exrot4 2167 Rotate existential quantif...
hbal 2168 If ` x ` is not free in ` ...
hbald 2169 Deduction form of bound-va...
sbal 2170 Move universal quantifier ...
sbalv 2171 Quantify with new variable...
hbsbw 2172 If ` z ` is not free in ` ...
hbsbwOLD 2173 Obsolete version of ~ hbsb...
sbcom2 2174 Commutativity law for subs...
sbco4lemOLD 2175 Obsolete version of ~ sbco...
sbco4OLD 2176 Obsolete version of ~ sbco...
nfa2 2177 Lemma 24 of [Monk2] p. 114...
ax12v 2179 This is essentially Axiom ...
ax12v2 2180 It is possible to remove a...
ax12ev2 2181 Version of ~ ax12v2 rewrit...
19.8a 2182 If a wff is true, it is tr...
19.8ad 2183 If a wff is true, it is tr...
sp 2184 Specialization. A univers...
spi 2185 Inference rule of universa...
sps 2186 Generalization of antecede...
2sp 2187 A double specialization (s...
spsd 2188 Deduction generalizing ant...
19.2g 2189 Theorem 19.2 of [Margaris]...
19.21bi 2190 Inference form of ~ 19.21 ...
19.21bbi 2191 Inference removing two uni...
19.23bi 2192 Inference form of Theorem ...
nexr 2193 Inference associated with ...
qexmid 2194 Quantified excluded middle...
nf5r 2195 Consequence of the definit...
nf5ri 2196 Consequence of the definit...
nf5rd 2197 Consequence of the definit...
spimedv 2198 Deduction version of ~ spi...
spimefv 2199 Version of ~ spime with a ...
nfim1 2200 A closed form of ~ nfim . ...
nfan1 2201 A closed form of ~ nfan . ...
19.3t 2202 Closed form of ~ 19.3 and ...
19.3 2203 A wff may be quantified wi...
19.9d 2204 A deduction version of one...
19.9t 2205 Closed form of ~ 19.9 and ...
19.9 2206 A wff may be existentially...
19.21t 2207 Closed form of Theorem 19....
19.21 2208 Theorem 19.21 of [Margaris...
stdpc5 2209 An axiom scheme of standar...
19.21-2 2210 Version of ~ 19.21 with tw...
19.23t 2211 Closed form of Theorem 19....
19.23 2212 Theorem 19.23 of [Margaris...
alimd 2213 Deduction form of Theorem ...
alrimi 2214 Inference form of Theorem ...
alrimdd 2215 Deduction form of Theorem ...
alrimd 2216 Deduction form of Theorem ...
eximd 2217 Deduction form of Theorem ...
exlimi 2218 Inference associated with ...
exlimd 2219 Deduction form of Theorem ...
exlimimdd 2220 Existential elimination ru...
exlimdd 2221 Existential elimination ru...
nexd 2222 Deduction for generalizati...
albid 2223 Formula-building rule for ...
exbid 2224 Formula-building rule for ...
nfbidf 2225 An equality theorem for ef...
19.16 2226 Theorem 19.16 of [Margaris...
19.17 2227 Theorem 19.17 of [Margaris...
19.27 2228 Theorem 19.27 of [Margaris...
19.28 2229 Theorem 19.28 of [Margaris...
19.19 2230 Theorem 19.19 of [Margaris...
19.36 2231 Theorem 19.36 of [Margaris...
19.36i 2232 Inference associated with ...
19.37 2233 Theorem 19.37 of [Margaris...
19.32 2234 Theorem 19.32 of [Margaris...
19.31 2235 Theorem 19.31 of [Margaris...
19.41 2236 Theorem 19.41 of [Margaris...
19.42 2237 Theorem 19.42 of [Margaris...
19.44 2238 Theorem 19.44 of [Margaris...
19.45 2239 Theorem 19.45 of [Margaris...
spimfv 2240 Specialization, using impl...
chvarfv 2241 Implicit substitution of `...
cbv3v2 2242 Version of ~ cbv3 with two...
sbalex 2243 Equivalence of two ways to...
sbalexOLD 2244 Obsolete version of ~ sbal...
sb4av 2245 Version of ~ sb4a with a d...
sbimd 2246 Deduction substituting bot...
sbbid 2247 Deduction substituting bot...
2sbbid 2248 Deduction doubly substitut...
sbequ1 2249 An equality theorem for su...
sbequ2 2250 An equality theorem for su...
stdpc7 2251 One of the two equality ax...
sbequ12 2252 An equality theorem for su...
sbequ12r 2253 An equality theorem for su...
sbelx 2254 Elimination of substitutio...
sbequ12a 2255 An equality theorem for su...
sbid 2256 An identity theorem for su...
sbcov 2257 A composition law for subs...
sbcovOLD 2258 Obsolete version of ~ sbco...
sb6a 2259 Equivalence for substituti...
sbid2vw 2260 Reverting substitution yie...
axc16g 2261 Generalization of ~ axc16 ...
axc16 2262 Proof of older axiom ~ ax-...
axc16gb 2263 Biconditional strengthenin...
axc16nf 2264 If ~ dtru is false, then t...
axc11v 2265 Version of ~ axc11 with a ...
axc11rv 2266 Version of ~ axc11r with a...
drsb2 2267 Formula-building lemma for...
equsalv 2268 An equivalence related to ...
equsexv 2269 An equivalence related to ...
sbft 2270 Substitution has no effect...
sbf 2271 Substitution for a variabl...
sbf2 2272 Substitution has no effect...
sbh 2273 Substitution for a variabl...
hbs1 2274 The setvar ` x ` is not fr...
nfs1f 2275 If ` x ` is not free in ` ...
sb5 2276 Alternate definition of su...
equs5av 2277 A property related to subs...
2sb5 2278 Equivalence for double sub...
dfsb7 2279 An alternate definition of...
sbn 2280 Negation inside and outsid...
sbex 2281 Move existential quantifie...
nf5 2282 Alternate definition of ~ ...
nf6 2283 An alternate definition of...
nf5d 2284 Deduce that ` x ` is not f...
nf5di 2285 Since the converse holds b...
19.9h 2286 A wff may be existentially...
19.21h 2287 Theorem 19.21 of [Margaris...
19.23h 2288 Theorem 19.23 of [Margaris...
exlimih 2289 Inference associated with ...
exlimdh 2290 Deduction form of Theorem ...
equsalhw 2291 Version of ~ equsalh with ...
equsexhv 2292 An equivalence related to ...
hba1 2293 The setvar ` x ` is not fr...
hbnt 2294 Closed theorem version of ...
hbn 2295 If ` x ` is not free in ` ...
hbnd 2296 Deduction form of bound-va...
hbim1 2297 A closed form of ~ hbim . ...
hbimd 2298 Deduction form of bound-va...
hbim 2299 If ` x ` is not free in ` ...
hban 2300 If ` x ` is not free in ` ...
hb3an 2301 If ` x ` is not free in ` ...
sbi2 2302 Introduction of implicatio...
sbim 2303 Implication inside and out...
sbrim 2304 Substitution in an implica...
sblim 2305 Substitution in an implica...
sbor 2306 Disjunction inside and out...
sbbi 2307 Equivalence inside and out...
sblbis 2308 Introduce left bicondition...
sbrbis 2309 Introduce right biconditio...
sbrbif 2310 Introduce right biconditio...
sbnf 2311 Move nonfree predicate in ...
sbnfOLD 2312 Obsolete version of ~ sbnf...
sbiev 2313 Conversion of implicit sub...
sbievOLD 2314 Obsolete version of ~ sbie...
sbiedw 2315 Conversion of implicit sub...
axc7 2316 Show that the original axi...
axc7e 2317 Abbreviated version of ~ a...
modal-b 2318 The analogue in our predic...
19.9ht 2319 A closed version of ~ 19.9...
axc4 2320 Show that the original axi...
axc4i 2321 Inference version of ~ axc...
nfal 2322 If ` x ` is not free in ` ...
nfex 2323 If ` x ` is not free in ` ...
hbex 2324 If ` x ` is not free in ` ...
nfnf 2325 If ` x ` is not free in ` ...
19.12 2326 Theorem 19.12 of [Margaris...
nfald 2327 Deduction form of ~ nfal ....
nfexd 2328 If ` x ` is not free in ` ...
nfsbv 2329 If ` z ` is not free in ` ...
sbco2v 2330 A composition law for subs...
aaan 2331 Distribute universal quant...
eeor 2332 Distribute existential qua...
cbv3v 2333 Rule used to change bound ...
cbv1v 2334 Rule used to change bound ...
cbv2w 2335 Rule used to change bound ...
cbvaldw 2336 Deduction used to change b...
cbvexdw 2337 Deduction used to change b...
cbv3hv 2338 Rule used to change bound ...
cbvalv1 2339 Rule used to change bound ...
cbvexv1 2340 Rule used to change bound ...
cbval2v 2341 Rule used to change bound ...
cbvex2v 2342 Rule used to change bound ...
dvelimhw 2343 Proof of ~ dvelimh without...
pm11.53 2344 Theorem *11.53 in [Whitehe...
19.12vv 2345 Special case of ~ 19.12 wh...
eean 2346 Distribute existential qua...
eeanv 2347 Distribute a pair of exist...
eeeanv 2348 Distribute three existenti...
ee4anv 2349 Distribute two pairs of ex...
ee4anvOLD 2350 Obsolete version of ~ ee4a...
sb8v 2351 Substitution of variable i...
sb8f 2352 Substitution of variable i...
sb8ef 2353 Substitution of variable i...
2sb8ef 2354 An equivalent expression f...
sb6rfv 2355 Reversed substitution. Ve...
sbnf2 2356 Two ways of expressing " `...
exsb 2357 An equivalent expression f...
2exsb 2358 An equivalent expression f...
sbbib 2359 Reversal of substitution. ...
sbbibvv 2360 Reversal of substitution. ...
cbvsbvf 2361 Change the bound variable ...
cleljustALT 2362 Alternate proof of ~ clelj...
cleljustALT2 2363 Alternate proof of ~ clelj...
equs5aALT 2364 Alternate proof of ~ equs5...
equs5eALT 2365 Alternate proof of ~ equs5...
axc11r 2366 Same as ~ axc11 but with r...
dral1v 2367 Formula-building lemma for...
drex1v 2368 Formula-building lemma for...
drnf1v 2369 Formula-building lemma for...
ax13v 2371 A weaker version of ~ ax-1...
ax13lem1 2372 A version of ~ ax13v with ...
ax13 2373 Derive ~ ax-13 from ~ ax13...
ax13lem2 2374 Lemma for ~ nfeqf2 . This...
nfeqf2 2375 An equation between setvar...
dveeq2 2376 Quantifier introduction wh...
nfeqf1 2377 An equation between setvar...
dveeq1 2378 Quantifier introduction wh...
nfeqf 2379 A variable is effectively ...
axc9 2380 Derive set.mm's original ~...
ax6e 2381 At least one individual ex...
ax6 2382 Theorem showing that ~ ax-...
axc10 2383 Show that the original axi...
spimt 2384 Closed theorem form of ~ s...
spim 2385 Specialization, using impl...
spimed 2386 Deduction version of ~ spi...
spime 2387 Existential introduction, ...
spimv 2388 A version of ~ spim with a...
spimvALT 2389 Alternate proof of ~ spimv...
spimev 2390 Distinct-variable version ...
spv 2391 Specialization, using impl...
spei 2392 Inference from existential...
chvar 2393 Implicit substitution of `...
chvarv 2394 Implicit substitution of `...
cbv3 2395 Rule used to change bound ...
cbval 2396 Rule used to change bound ...
cbvex 2397 Rule used to change bound ...
cbvalv 2398 Rule used to change bound ...
cbvexv 2399 Rule used to change bound ...
cbv1 2400 Rule used to change bound ...
cbv2 2401 Rule used to change bound ...
cbv3h 2402 Rule used to change bound ...
cbv1h 2403 Rule used to change bound ...
cbv2h 2404 Rule used to change bound ...
cbvald 2405 Deduction used to change b...
cbvexd 2406 Deduction used to change b...
cbvaldva 2407 Rule used to change the bo...
cbvexdva 2408 Rule used to change the bo...
cbval2 2409 Rule used to change bound ...
cbvex2 2410 Rule used to change bound ...
cbval2vv 2411 Rule used to change bound ...
cbvex2vv 2412 Rule used to change bound ...
cbvex4v 2413 Rule used to change bound ...
equs4 2414 Lemma used in proofs of im...
equsal 2415 An equivalence related to ...
equsex 2416 An equivalence related to ...
equsexALT 2417 Alternate proof of ~ equse...
equsalh 2418 An equivalence related to ...
equsexh 2419 An equivalence related to ...
axc15 2420 Derivation of set.mm's ori...
ax12 2421 Rederivation of Axiom ~ ax...
ax12b 2422 A bidirectional version of...
ax13ALT 2423 Alternate proof of ~ ax13 ...
axc11n 2424 Derive set.mm's original ~...
aecom 2425 Commutation law for identi...
aecoms 2426 A commutation rule for ide...
naecoms 2427 A commutation rule for dis...
axc11 2428 Show that ~ ax-c11 can be ...
hbae 2429 All variables are effectiv...
hbnae 2430 All variables are effectiv...
nfae 2431 All variables are effectiv...
nfnae 2432 All variables are effectiv...
hbnaes 2433 Rule that applies ~ hbnae ...
axc16i 2434 Inference with ~ axc16 as ...
axc16nfALT 2435 Alternate proof of ~ axc16...
dral2 2436 Formula-building lemma for...
dral1 2437 Formula-building lemma for...
dral1ALT 2438 Alternate proof of ~ dral1...
drex1 2439 Formula-building lemma for...
drex2 2440 Formula-building lemma for...
drnf1 2441 Formula-building lemma for...
drnf2 2442 Formula-building lemma for...
nfald2 2443 Variation on ~ nfald which...
nfexd2 2444 Variation on ~ nfexd which...
exdistrf 2445 Distribution of existentia...
dvelimf 2446 Version of ~ dvelimv witho...
dvelimdf 2447 Deduction form of ~ dvelim...
dvelimh 2448 Version of ~ dvelim withou...
dvelim 2449 This theorem can be used t...
dvelimv 2450 Similar to ~ dvelim with f...
dvelimnf 2451 Version of ~ dvelim using ...
dveeq2ALT 2452 Alternate proof of ~ dveeq...
equvini 2453 A variable introduction la...
equvel 2454 A variable elimination law...
equs5a 2455 A property related to subs...
equs5e 2456 A property related to subs...
equs45f 2457 Two ways of expressing sub...
equs5 2458 Lemma used in proofs of su...
dveel1 2459 Quantifier introduction wh...
dveel2 2460 Quantifier introduction wh...
axc14 2461 Axiom ~ ax-c14 is redundan...
sb6x 2462 Equivalence involving subs...
sbequ5 2463 Substitution does not chan...
sbequ6 2464 Substitution does not chan...
sb5rf 2465 Reversed substitution. Us...
sb6rf 2466 Reversed substitution. Fo...
ax12vALT 2467 Alternate proof of ~ ax12v...
2ax6elem 2468 We can always find values ...
2ax6e 2469 We can always find values ...
2sb5rf 2470 Reversed double substituti...
2sb6rf 2471 Reversed double substituti...
sbel2x 2472 Elimination of double subs...
sb4b 2473 Simplified definition of s...
sb3b 2474 Simplified definition of s...
sb3 2475 One direction of a simplif...
sb1 2476 One direction of a simplif...
sb2 2477 One direction of a simplif...
sb4a 2478 A version of one implicati...
dfsb1 2479 Alternate definition of su...
hbsb2 2480 Bound-variable hypothesis ...
nfsb2 2481 Bound-variable hypothesis ...
hbsb2a 2482 Special case of a bound-va...
sb4e 2483 One direction of a simplif...
hbsb2e 2484 Special case of a bound-va...
hbsb3 2485 If ` y ` is not free in ` ...
nfs1 2486 If ` y ` is not free in ` ...
axc16ALT 2487 Alternate proof of ~ axc16...
axc16gALT 2488 Alternate proof of ~ axc16...
equsb1 2489 Substitution applied to an...
equsb2 2490 Substitution applied to an...
dfsb2 2491 An alternate definition of...
dfsb3 2492 An alternate definition of...
drsb1 2493 Formula-building lemma for...
sb2ae 2494 In the case of two success...
sb6f 2495 Equivalence for substituti...
sb5f 2496 Equivalence for substituti...
nfsb4t 2497 A variable not free in a p...
nfsb4 2498 A variable not free in a p...
sbequ8 2499 Elimination of equality fr...
sbie 2500 Conversion of implicit sub...
sbied 2501 Conversion of implicit sub...
sbiedv 2502 Conversion of implicit sub...
2sbiev 2503 Conversion of double impli...
sbcom3 2504 Substituting ` y ` for ` x...
sbco 2505 A composition law for subs...
sbid2 2506 An identity law for substi...
sbid2v 2507 An identity law for substi...
sbidm 2508 An idempotent law for subs...
sbco2 2509 A composition law for subs...
sbco2d 2510 A composition law for subs...
sbco3 2511 A composition law for subs...
sbcom 2512 A commutativity law for su...
sbtrt 2513 Partially closed form of ~...
sbtr 2514 A partial converse to ~ sb...
sb8 2515 Substitution of variable i...
sb8e 2516 Substitution of variable i...
sb9 2517 Commutation of quantificat...
sb9i 2518 Commutation of quantificat...
sbhb 2519 Two ways of expressing " `...
nfsbd 2520 Deduction version of ~ nfs...
nfsb 2521 If ` z ` is not free in ` ...
hbsb 2522 If ` z ` is not free in ` ...
sb7f 2523 This version of ~ dfsb7 do...
sb7h 2524 This version of ~ dfsb7 do...
sb10f 2525 Hao Wang's identity axiom ...
sbal1 2526 Check out ~ sbal for a ver...
sbal2 2527 Move quantifier in and out...
2sb8e 2528 An equivalent expression f...
dfmoeu 2529 An elementary proof of ~ m...
dfeumo 2530 An elementary proof showin...
mojust 2532 Soundness justification th...
nexmo 2534 Nonexistence implies uniqu...
exmo 2535 Any proposition holds for ...
moabs 2536 Absorption of existence co...
moim 2537 The at-most-one quantifier...
moimi 2538 The at-most-one quantifier...
moimdv 2539 The at-most-one quantifier...
mobi 2540 Equivalence theorem for th...
mobii 2541 Formula-building rule for ...
mobidv 2542 Formula-building rule for ...
mobid 2543 Formula-building rule for ...
moa1 2544 If an implication holds fo...
moan 2545 "At most one" is still the...
moani 2546 "At most one" is still tru...
moor 2547 "At most one" is still the...
mooran1 2548 "At most one" imports disj...
mooran2 2549 "At most one" exports disj...
nfmo1 2550 Bound-variable hypothesis ...
nfmod2 2551 Bound-variable hypothesis ...
nfmodv 2552 Bound-variable hypothesis ...
nfmov 2553 Bound-variable hypothesis ...
nfmod 2554 Bound-variable hypothesis ...
nfmo 2555 Bound-variable hypothesis ...
mof 2556 Version of ~ df-mo with di...
mo3 2557 Alternate definition of th...
mo 2558 Equivalent definitions of ...
mo4 2559 At-most-one quantifier exp...
mo4f 2560 At-most-one quantifier exp...
eu3v 2563 An alternate way to expres...
eujust 2564 Soundness justification th...
eujustALT 2565 Alternate proof of ~ eujus...
eu6lem 2566 Lemma of ~ eu6im . A diss...
eu6 2567 Alternate definition of th...
eu6im 2568 One direction of ~ eu6 nee...
euf 2569 Version of ~ eu6 with disj...
euex 2570 Existential uniqueness imp...
eumo 2571 Existential uniqueness imp...
eumoi 2572 Uniqueness inferred from e...
exmoeub 2573 Existence implies that uni...
exmoeu 2574 Existence is equivalent to...
moeuex 2575 Uniqueness implies that ex...
moeu 2576 Uniqueness is equivalent t...
eubi 2577 Equivalence theorem for th...
eubii 2578 Introduce unique existenti...
eubidv 2579 Formula-building rule for ...
eubid 2580 Formula-building rule for ...
nfeu1 2581 Bound-variable hypothesis ...
nfeu1ALT 2582 Alternate proof of ~ nfeu1...
nfeud2 2583 Bound-variable hypothesis ...
nfeudw 2584 Bound-variable hypothesis ...
nfeud 2585 Bound-variable hypothesis ...
nfeuw 2586 Bound-variable hypothesis ...
nfeu 2587 Bound-variable hypothesis ...
dfeu 2588 Rederive ~ df-eu from the ...
dfmo 2589 Rederive ~ df-mo from the ...
euequ 2590 There exists a unique set ...
sb8eulem 2591 Lemma. Factor out the com...
sb8euv 2592 Variable substitution in u...
sb8eu 2593 Variable substitution in u...
sb8mo 2594 Variable substitution for ...
cbvmovw 2595 Change bound variable. Us...
cbvmow 2596 Rule used to change bound ...
cbvmo 2597 Rule used to change bound ...
cbveuvw 2598 Change bound variable. Us...
cbveuw 2599 Version of ~ cbveu with a ...
cbveu 2600 Rule used to change bound ...
cbveuALT 2601 Alternative proof of ~ cbv...
eu2 2602 An alternate way of defini...
eu1 2603 An alternate way to expres...
euor 2604 Introduce a disjunct into ...
euorv 2605 Introduce a disjunct into ...
euor2 2606 Introduce or eliminate a d...
sbmo 2607 Substitution into an at-mo...
eu4 2608 Uniqueness using implicit ...
euimmo 2609 Existential uniqueness imp...
euim 2610 Add unique existential qua...
moanimlem 2611 Factor out the common proo...
moanimv 2612 Introduction of a conjunct...
moanim 2613 Introduction of a conjunct...
euan 2614 Introduction of a conjunct...
moanmo 2615 Nested at-most-one quantif...
moaneu 2616 Nested at-most-one and uni...
euanv 2617 Introduction of a conjunct...
mopick 2618 "At most one" picks a vari...
moexexlem 2619 Factor out the proof skele...
2moexv 2620 Double quantification with...
moexexvw 2621 "At most one" double quant...
2moswapv 2622 A condition allowing to sw...
2euswapv 2623 A condition allowing to sw...
2euexv 2624 Double quantification with...
2exeuv 2625 Double existential uniquen...
eupick 2626 Existential uniqueness "pi...
eupicka 2627 Version of ~ eupick with c...
eupickb 2628 Existential uniqueness "pi...
eupickbi 2629 Theorem *14.26 in [Whitehe...
mopick2 2630 "At most one" can show the...
moexex 2631 "At most one" double quant...
moexexv 2632 "At most one" double quant...
2moex 2633 Double quantification with...
2euex 2634 Double quantification with...
2eumo 2635 Nested unique existential ...
2eu2ex 2636 Double existential uniquen...
2moswap 2637 A condition allowing to sw...
2euswap 2638 A condition allowing to sw...
2exeu 2639 Double existential uniquen...
2mo2 2640 Two ways of expressing "th...
2mo 2641 Two ways of expressing "th...
2mos 2642 Double "there exists at mo...
2mosOLD 2643 Obsolete version of ~ 2mos...
2eu1 2644 Double existential uniquen...
2eu1v 2645 Double existential uniquen...
2eu2 2646 Double existential uniquen...
2eu3 2647 Double existential uniquen...
2eu4 2648 This theorem provides us w...
2eu5 2649 An alternate definition of...
2eu6 2650 Two equivalent expressions...
2eu7 2651 Two equivalent expressions...
2eu8 2652 Two equivalent expressions...
euae 2653 Two ways to express "exact...
exists1 2654 Two ways to express "exact...
exists2 2655 A condition implying that ...
barbara 2656 "Barbara", one of the fund...
celarent 2657 "Celarent", one of the syl...
darii 2658 "Darii", one of the syllog...
dariiALT 2659 Alternate proof of ~ darii...
ferio 2660 "Ferio" ("Ferioque"), one ...
barbarilem 2661 Lemma for ~ barbari and th...
barbari 2662 "Barbari", one of the syll...
barbariALT 2663 Alternate proof of ~ barba...
celaront 2664 "Celaront", one of the syl...
cesare 2665 "Cesare", one of the syllo...
camestres 2666 "Camestres", one of the sy...
festino 2667 "Festino", one of the syll...
festinoALT 2668 Alternate proof of ~ festi...
baroco 2669 "Baroco", one of the syllo...
barocoALT 2670 Alternate proof of ~ festi...
cesaro 2671 "Cesaro", one of the syllo...
camestros 2672 "Camestros", one of the sy...
datisi 2673 "Datisi", one of the syllo...
disamis 2674 "Disamis", one of the syll...
ferison 2675 "Ferison", one of the syll...
bocardo 2676 "Bocardo", one of the syll...
darapti 2677 "Darapti", one of the syll...
daraptiALT 2678 Alternate proof of ~ darap...
felapton 2679 "Felapton", one of the syl...
calemes 2680 "Calemes", one of the syll...
dimatis 2681 "Dimatis", one of the syll...
fresison 2682 "Fresison", one of the syl...
calemos 2683 "Calemos", one of the syll...
fesapo 2684 "Fesapo", one of the syllo...
bamalip 2685 "Bamalip", one of the syll...
axia1 2686 Left 'and' elimination (in...
axia2 2687 Right 'and' elimination (i...
axia3 2688 'And' introduction (intuit...
axin1 2689 'Not' introduction (intuit...
axin2 2690 'Not' elimination (intuiti...
axio 2691 Definition of 'or' (intuit...
axi4 2692 Specialization (intuitioni...
axi5r 2693 Converse of ~ axc4 (intuit...
axial 2694 The setvar ` x ` is not fr...
axie1 2695 The setvar ` x ` is not fr...
axie2 2696 A key property of existent...
axi9 2697 Axiom of existence (intuit...
axi10 2698 Axiom of Quantifier Substi...
axi12 2699 Axiom of Quantifier Introd...
axbnd 2700 Axiom of Bundling (intuiti...
axexte 2702 The axiom of extensionalit...
axextg 2703 A generalization of the ax...
axextb 2704 A bidirectional version of...
axextmo 2705 There exists at most one s...
nulmo 2706 There exists at most one e...
eleq1ab 2709 Extension (in the sense of...
cleljustab 2710 Extension of ~ cleljust fr...
abid 2711 Simplification of class ab...
vexwt 2712 A standard theorem of pred...
vexw 2713 If ` ph ` is a theorem, th...
vextru 2714 Every setvar is a member o...
nfsab1 2715 Bound-variable hypothesis ...
hbab1 2716 Bound-variable hypothesis ...
hbab 2717 Bound-variable hypothesis ...
hbabg 2718 Bound-variable hypothesis ...
nfsab 2719 Bound-variable hypothesis ...
nfsabg 2720 Bound-variable hypothesis ...
dfcleq 2722 The defining characterizat...
cvjust 2723 Every set is a class. Pro...
ax9ALT 2724 Proof of ~ ax-9 from Tarsk...
eleq2w2 2725 A weaker version of ~ eleq...
eqriv 2726 Infer equality of classes ...
eqrdv 2727 Deduce equality of classes...
eqrdav 2728 Deduce equality of classes...
eqid 2729 Law of identity (reflexivi...
eqidd 2730 Class identity law with an...
eqeq1d 2731 Deduction from equality to...
eqeq1dALT 2732 Alternate proof of ~ eqeq1...
eqeq1 2733 Equality implies equivalen...
eqeq1i 2734 Inference from equality to...
eqcomd 2735 Deduction from commutative...
eqcom 2736 Commutative law for class ...
eqcoms 2737 Inference applying commuta...
eqcomi 2738 Inference from commutative...
neqcomd 2739 Commute an inequality. (C...
eqeq2d 2740 Deduction from equality to...
eqeq2 2741 Equality implies equivalen...
eqeq2i 2742 Inference from equality to...
eqeqan12d 2743 A useful inference for sub...
eqeqan12rd 2744 A useful inference for sub...
eqeq12d 2745 A useful inference for sub...
eqeq12 2746 Equality relationship amon...
eqeq12i 2747 A useful inference for sub...
eqeqan12dALT 2748 Alternate proof of ~ eqeqa...
eqtr 2749 Transitive law for class e...
eqtr2 2750 A transitive law for class...
eqtr3 2751 A transitive law for class...
eqtri 2752 An equality transitivity i...
eqtr2i 2753 An equality transitivity i...
eqtr3i 2754 An equality transitivity i...
eqtr4i 2755 An equality transitivity i...
3eqtri 2756 An inference from three ch...
3eqtrri 2757 An inference from three ch...
3eqtr2i 2758 An inference from three ch...
3eqtr2ri 2759 An inference from three ch...
3eqtr3i 2760 An inference from three ch...
3eqtr3ri 2761 An inference from three ch...
3eqtr4i 2762 An inference from three ch...
3eqtr4ri 2763 An inference from three ch...
eqtrd 2764 An equality transitivity d...
eqtr2d 2765 An equality transitivity d...
eqtr3d 2766 An equality transitivity e...
eqtr4d 2767 An equality transitivity e...
3eqtrd 2768 A deduction from three cha...
3eqtrrd 2769 A deduction from three cha...
3eqtr2d 2770 A deduction from three cha...
3eqtr2rd 2771 A deduction from three cha...
3eqtr3d 2772 A deduction from three cha...
3eqtr3rd 2773 A deduction from three cha...
3eqtr4d 2774 A deduction from three cha...
3eqtr4rd 2775 A deduction from three cha...
eqtrid 2776 An equality transitivity d...
eqtr2id 2777 An equality transitivity d...
eqtr3id 2778 An equality transitivity d...
eqtr3di 2779 An equality transitivity d...
eqtrdi 2780 An equality transitivity d...
eqtr2di 2781 An equality transitivity d...
eqtr4di 2782 An equality transitivity d...
eqtr4id 2783 An equality transitivity d...
sylan9eq 2784 An equality transitivity d...
sylan9req 2785 An equality transitivity d...
sylan9eqr 2786 An equality transitivity d...
3eqtr3g 2787 A chained equality inferen...
3eqtr3a 2788 A chained equality inferen...
3eqtr4g 2789 A chained equality inferen...
3eqtr4a 2790 A chained equality inferen...
eq2tri 2791 A compound transitive infe...
iseqsetvlem 2792 Lemma for ~ iseqsetv-cleq ...
iseqsetv-cleq 2793 Alternate proof of ~ iseqs...
abbi 2794 Equivalent formulas yield ...
abbidv 2795 Equivalent wff's yield equ...
abbii 2796 Equivalent wff's yield equ...
abbid 2797 Equivalent wff's yield equ...
abbib 2798 Equal class abstractions r...
cbvabv 2799 Rule used to change bound ...
cbvabw 2800 Rule used to change bound ...
cbvab 2801 Rule used to change bound ...
eqabbw 2802 Version of ~ eqabb using i...
dfclel 2804 Characterization of the el...
elex2 2805 If a class contains anothe...
issettru 2806 Weak version of ~ isset . ...
iseqsetv-clel 2807 Alternate proof of ~ iseqs...
issetlem 2808 Lemma for ~ elisset and ~ ...
elissetv 2809 An element of a class exis...
elisset 2810 An element of a class exis...
eleq1w 2811 Weaker version of ~ eleq1 ...
eleq2w 2812 Weaker version of ~ eleq2 ...
eleq1d 2813 Deduction from equality to...
eleq2d 2814 Deduction from equality to...
eleq2dALT 2815 Alternate proof of ~ eleq2...
eleq1 2816 Equality implies equivalen...
eleq2 2817 Equality implies equivalen...
eleq12 2818 Equality implies equivalen...
eleq1i 2819 Inference from equality to...
eleq2i 2820 Inference from equality to...
eleq12i 2821 Inference from equality to...
eleq12d 2822 Deduction from equality to...
eleq1a 2823 A transitive-type law rela...
eqeltri 2824 Substitution of equal clas...
eqeltrri 2825 Substitution of equal clas...
eleqtri 2826 Substitution of equal clas...
eleqtrri 2827 Substitution of equal clas...
eqeltrd 2828 Substitution of equal clas...
eqeltrrd 2829 Deduction that substitutes...
eleqtrd 2830 Deduction that substitutes...
eleqtrrd 2831 Deduction that substitutes...
eqeltrid 2832 A membership and equality ...
eqeltrrid 2833 A membership and equality ...
eleqtrid 2834 A membership and equality ...
eleqtrrid 2835 A membership and equality ...
eqeltrdi 2836 A membership and equality ...
eqeltrrdi 2837 A membership and equality ...
eleqtrdi 2838 A membership and equality ...
eleqtrrdi 2839 A membership and equality ...
3eltr3i 2840 Substitution of equal clas...
3eltr4i 2841 Substitution of equal clas...
3eltr3d 2842 Substitution of equal clas...
3eltr4d 2843 Substitution of equal clas...
3eltr3g 2844 Substitution of equal clas...
3eltr4g 2845 Substitution of equal clas...
eleq2s 2846 Substitution of equal clas...
eqneltri 2847 If a class is not an eleme...
eqneltrd 2848 If a class is not an eleme...
eqneltrrd 2849 If a class is not an eleme...
neleqtrd 2850 If a class is not an eleme...
neleqtrrd 2851 If a class is not an eleme...
nelneq 2852 A way of showing two class...
nelneq2 2853 A way of showing two class...
eqsb1 2854 Substitution for the left-...
clelsb1 2855 Substitution for the first...
clelsb2 2856 Substitution for the secon...
cleqh 2857 Establish equality between...
hbxfreq 2858 A utility lemma to transfe...
hblem 2859 Change the free variable o...
hblemg 2860 Change the free variable o...
eqabdv 2861 Deduction from a wff to a ...
eqabcdv 2862 Deduction from a wff to a ...
eqabi 2863 Equality of a class variab...
abid1 2864 Every class is equal to a ...
abid2 2865 A simplification of class ...
eqab 2866 One direction of ~ eqabb i...
eqabb 2867 Equality of a class variab...
eqabbOLD 2868 Obsolete version of ~ eqab...
eqabcb 2869 Equality of a class variab...
eqabrd 2870 Equality of a class variab...
eqabri 2871 Equality of a class variab...
eqabcri 2872 Equality of a class variab...
clelab 2873 Membership of a class vari...
clabel 2874 Membership of a class abst...
sbab 2875 The right-hand side of the...
nfcjust 2877 Justification theorem for ...
nfci 2879 Deduce that a class ` A ` ...
nfcii 2880 Deduce that a class ` A ` ...
nfcr 2881 Consequence of the not-fre...
nfcrALT 2882 Alternate version of ~ nfc...
nfcri 2883 Consequence of the not-fre...
nfcd 2884 Deduce that a class ` A ` ...
nfcrd 2885 Consequence of the not-fre...
nfcrii 2886 Consequence of the not-fre...
nfceqdf 2887 An equality theorem for ef...
nfceqi 2888 Equality theorem for class...
nfcxfr 2889 A utility lemma to transfe...
nfcxfrd 2890 A utility lemma to transfe...
nfcv 2891 If ` x ` is disjoint from ...
nfcvd 2892 If ` x ` is disjoint from ...
nfab1 2893 Bound-variable hypothesis ...
nfnfc1 2894 The setvar ` x ` is bound ...
clelsb1fw 2895 Substitution for the first...
clelsb1f 2896 Substitution for the first...
nfab 2897 Bound-variable hypothesis ...
nfabg 2898 Bound-variable hypothesis ...
nfaba1 2899 Bound-variable hypothesis ...
nfaba1OLD 2900 Obsolete version of ~ nfab...
nfaba1g 2901 Bound-variable hypothesis ...
nfeqd 2902 Hypothesis builder for equ...
nfeld 2903 Hypothesis builder for ele...
nfnfc 2904 Hypothesis builder for ` F...
nfeq 2905 Hypothesis builder for equ...
nfel 2906 Hypothesis builder for ele...
nfeq1 2907 Hypothesis builder for equ...
nfel1 2908 Hypothesis builder for ele...
nfeq2 2909 Hypothesis builder for equ...
nfel2 2910 Hypothesis builder for ele...
drnfc1 2911 Formula-building lemma for...
drnfc2 2912 Formula-building lemma for...
nfabdw 2913 Bound-variable hypothesis ...
nfabd 2914 Bound-variable hypothesis ...
nfabd2 2915 Bound-variable hypothesis ...
dvelimdc 2916 Deduction form of ~ dvelim...
dvelimc 2917 Version of ~ dvelim for cl...
nfcvf 2918 If ` x ` and ` y ` are dis...
nfcvf2 2919 If ` x ` and ` y ` are dis...
cleqf 2920 Establish equality between...
eqabf 2921 Equality of a class variab...
abid2f 2922 A simplification of class ...
abid2fOLD 2923 Obsolete version of ~ abid...
sbabel 2924 Theorem to move a substitu...
neii 2927 Inference associated with ...
neir 2928 Inference associated with ...
nne 2929 Negation of inequality. (...
neneqd 2930 Deduction eliminating ineq...
neneq 2931 From inequality to non-equ...
neqned 2932 If it is not the case that...
neqne 2933 From non-equality to inequ...
neirr 2934 No class is unequal to its...
exmidne 2935 Excluded middle with equal...
eqneqall 2936 A contradiction concerning...
nonconne 2937 Law of noncontradiction wi...
necon3ad 2938 Contrapositive law deducti...
necon3bd 2939 Contrapositive law deducti...
necon2ad 2940 Contrapositive inference f...
necon2bd 2941 Contrapositive inference f...
necon1ad 2942 Contrapositive deduction f...
necon1bd 2943 Contrapositive deduction f...
necon4ad 2944 Contrapositive inference f...
necon4bd 2945 Contrapositive inference f...
necon3d 2946 Contrapositive law deducti...
necon1d 2947 Contrapositive law deducti...
necon2d 2948 Contrapositive inference f...
necon4d 2949 Contrapositive inference f...
necon3ai 2950 Contrapositive inference f...
necon3bi 2951 Contrapositive inference f...
necon1ai 2952 Contrapositive inference f...
necon1bi 2953 Contrapositive inference f...
necon2ai 2954 Contrapositive inference f...
necon2bi 2955 Contrapositive inference f...
necon4ai 2956 Contrapositive inference f...
necon3i 2957 Contrapositive inference f...
necon1i 2958 Contrapositive inference f...
necon2i 2959 Contrapositive inference f...
necon4i 2960 Contrapositive inference f...
necon3abid 2961 Deduction from equality to...
necon3bbid 2962 Deduction from equality to...
necon1abid 2963 Contrapositive deduction f...
necon1bbid 2964 Contrapositive inference f...
necon4abid 2965 Contrapositive law deducti...
necon4bbid 2966 Contrapositive law deducti...
necon2abid 2967 Contrapositive deduction f...
necon2bbid 2968 Contrapositive deduction f...
necon3bid 2969 Deduction from equality to...
necon4bid 2970 Contrapositive law deducti...
necon3abii 2971 Deduction from equality to...
necon3bbii 2972 Deduction from equality to...
necon1abii 2973 Contrapositive inference f...
necon1bbii 2974 Contrapositive inference f...
necon2abii 2975 Contrapositive inference f...
necon2bbii 2976 Contrapositive inference f...
necon3bii 2977 Inference from equality to...
necom 2978 Commutation of inequality....
necomi 2979 Inference from commutative...
necomd 2980 Deduction from commutative...
nesym 2981 Characterization of inequa...
nesymi 2982 Inference associated with ...
nesymir 2983 Inference associated with ...
neeq1d 2984 Deduction for inequality. ...
neeq2d 2985 Deduction for inequality. ...
neeq12d 2986 Deduction for inequality. ...
neeq1 2987 Equality theorem for inequ...
neeq2 2988 Equality theorem for inequ...
neeq1i 2989 Inference for inequality. ...
neeq2i 2990 Inference for inequality. ...
neeq12i 2991 Inference for inequality. ...
eqnetrd 2992 Substitution of equal clas...
eqnetrrd 2993 Substitution of equal clas...
neeqtrd 2994 Substitution of equal clas...
eqnetri 2995 Substitution of equal clas...
eqnetrri 2996 Substitution of equal clas...
neeqtri 2997 Substitution of equal clas...
neeqtrri 2998 Substitution of equal clas...
neeqtrrd 2999 Substitution of equal clas...
eqnetrrid 3000 A chained equality inferen...
3netr3d 3001 Substitution of equality i...
3netr4d 3002 Substitution of equality i...
3netr3g 3003 Substitution of equality i...
3netr4g 3004 Substitution of equality i...
nebi 3005 Contraposition law for ine...
pm13.18 3006 Theorem *13.18 in [Whitehe...
pm13.181 3007 Theorem *13.181 in [Whiteh...
pm2.61ine 3008 Inference eliminating an i...
pm2.21ddne 3009 A contradiction implies an...
pm2.61ne 3010 Deduction eliminating an i...
pm2.61dne 3011 Deduction eliminating an i...
pm2.61dane 3012 Deduction eliminating an i...
pm2.61da2ne 3013 Deduction eliminating two ...
pm2.61da3ne 3014 Deduction eliminating thre...
pm2.61iine 3015 Equality version of ~ pm2....
mteqand 3016 A modus tollens deduction ...
neor 3017 Logical OR with an equalit...
neanior 3018 A De Morgan's law for ineq...
ne3anior 3019 A De Morgan's law for ineq...
neorian 3020 A De Morgan's law for ineq...
nemtbir 3021 An inference from an inequ...
nelne1 3022 Two classes are different ...
nelne2 3023 Two classes are different ...
nelelne 3024 Two classes are different ...
neneor 3025 If two classes are differe...
nfne 3026 Bound-variable hypothesis ...
nfned 3027 Bound-variable hypothesis ...
nabbib 3028 Not equivalent wff's corre...
neli 3031 Inference associated with ...
nelir 3032 Inference associated with ...
nelcon3d 3033 Contrapositive law deducti...
neleq12d 3034 Equality theorem for negat...
neleq1 3035 Equality theorem for negat...
neleq2 3036 Equality theorem for negat...
nfnel 3037 Bound-variable hypothesis ...
nfneld 3038 Bound-variable hypothesis ...
nnel 3039 Negation of negated member...
elnelne1 3040 Two classes are different ...
elnelne2 3041 Two classes are different ...
pm2.24nel 3042 A contradiction concerning...
pm2.61danel 3043 Deduction eliminating an e...
rgen 3046 Generalization rule for re...
ralel 3047 All elements of a class ar...
rgenw 3048 Generalization rule for re...
rgen2w 3049 Generalization rule for re...
mprg 3050 Modus ponens combined with...
mprgbir 3051 Modus ponens on biconditio...
raln 3052 Restricted universally qua...
ralnex 3055 Relationship between restr...
dfrex2 3056 Relationship between restr...
nrex 3057 Inference adding restricte...
alral 3058 Universal quantification i...
rexex 3059 Restricted existence impli...
rextru 3060 Two ways of expressing tha...
ralimi2 3061 Inference quantifying both...
reximi2 3062 Inference quantifying both...
ralimia 3063 Inference quantifying both...
reximia 3064 Inference quantifying both...
ralimiaa 3065 Inference quantifying both...
ralimi 3066 Inference quantifying both...
reximi 3067 Inference quantifying both...
ral2imi 3068 Inference quantifying ante...
ralim 3069 Distribution of restricted...
rexim 3070 Theorem 19.22 of [Margaris...
ralbii2 3071 Inference adding different...
rexbii2 3072 Inference adding different...
ralbiia 3073 Inference adding restricte...
rexbiia 3074 Inference adding restricte...
ralbii 3075 Inference adding restricte...
rexbii 3076 Inference adding restricte...
ralanid 3077 Cancellation law for restr...
rexanid 3078 Cancellation law for restr...
ralcom3 3079 A commutation law for rest...
ralcom3OLD 3080 Obsolete version of ~ ralc...
dfral2 3081 Relationship between restr...
rexnal 3082 Relationship between restr...
ralinexa 3083 A transformation of restri...
rexanali 3084 A transformation of restri...
ralbi 3085 Distribute a restricted un...
rexbi 3086 Distribute restricted quan...
ralrexbid 3087 Formula-building rule for ...
r19.35 3088 Restricted quantifier vers...
r19.35OLD 3089 Obsolete version of ~ 19.3...
r19.26m 3090 Version of ~ 19.26 and ~ r...
r19.26 3091 Restricted quantifier vers...
r19.26-3 3092 Version of ~ r19.26 with t...
ralbiim 3093 Split a biconditional and ...
r19.29 3094 Restricted quantifier vers...
r19.29OLD 3095 Obsolete version of ~ r19....
r19.29r 3096 Restricted quantifier vers...
r19.29rOLD 3097 Obsolete version of ~ r19....
r19.29imd 3098 Theorem 19.29 of [Margaris...
r19.40 3099 Restricted quantifier vers...
r19.30 3100 Restricted quantifier vers...
r19.43 3101 Restricted quantifier vers...
3r19.43 3102 Restricted quantifier vers...
2ralimi 3103 Inference quantifying both...
3ralimi 3104 Inference quantifying both...
4ralimi 3105 Inference quantifying both...
5ralimi 3106 Inference quantifying both...
6ralimi 3107 Inference quantifying both...
2ralbii 3108 Inference adding two restr...
2rexbii 3109 Inference adding two restr...
3ralbii 3110 Inference adding three res...
4ralbii 3111 Inference adding four rest...
2ralbiim 3112 Split a biconditional and ...
ralnex2 3113 Relationship between two r...
ralnex3 3114 Relationship between three...
rexnal2 3115 Relationship between two r...
rexnal3 3116 Relationship between three...
nrexralim 3117 Negation of a complex pred...
r19.26-2 3118 Restricted quantifier vers...
2r19.29 3119 Theorem ~ r19.29 with two ...
r19.29d2r 3120 Theorem 19.29 of [Margaris...
r2allem 3121 Lemma factoring out common...
r2exlem 3122 Lemma factoring out common...
hbralrimi 3123 Inference from Theorem 19....
ralrimiv 3124 Inference from Theorem 19....
ralrimiva 3125 Inference from Theorem 19....
rexlimiva 3126 Inference from Theorem 19....
rexlimiv 3127 Inference from Theorem 19....
nrexdv 3128 Deduction adding restricte...
ralrimivw 3129 Inference from Theorem 19....
rexlimivw 3130 Weaker version of ~ rexlim...
ralrimdv 3131 Inference from Theorem 19....
rexlimdv 3132 Inference from Theorem 19....
ralrimdva 3133 Inference from Theorem 19....
rexlimdva 3134 Inference from Theorem 19....
rexlimdvaa 3135 Inference from Theorem 19....
rexlimdva2 3136 Inference from Theorem 19....
r19.29an 3137 A commonly used pattern in...
rexlimdv3a 3138 Inference from Theorem 19....
rexlimdvw 3139 Inference from Theorem 19....
rexlimddv 3140 Restricted existential eli...
r19.29a 3141 A commonly used pattern in...
ralimdv2 3142 Inference quantifying both...
reximdv2 3143 Deduction quantifying both...
reximdvai 3144 Deduction quantifying both...
ralimdva 3145 Deduction quantifying both...
reximdva 3146 Deduction quantifying both...
ralimdv 3147 Deduction quantifying both...
reximdv 3148 Deduction from Theorem 19....
reximddv 3149 Deduction from Theorem 19....
reximddv3 3150 Deduction from Theorem 19....
reximssdv 3151 Derivation of a restricted...
ralbidv2 3152 Formula-building rule for ...
rexbidv2 3153 Formula-building rule for ...
ralbidva 3154 Formula-building rule for ...
rexbidva 3155 Formula-building rule for ...
ralbidv 3156 Formula-building rule for ...
rexbidv 3157 Formula-building rule for ...
r19.21v 3158 Restricted quantifier vers...
r19.21vOLD 3159 Obsolete version of ~ r19....
r19.37v 3160 Restricted quantifier vers...
r19.23v 3161 Restricted quantifier vers...
r19.36v 3162 Restricted quantifier vers...
rexlimivOLD 3163 Obsolete version of ~ rexl...
rexlimivaOLD 3164 Obsolete version of ~ rexl...
rexlimivwOLD 3165 Obsolete version of ~ rexl...
r19.27v 3166 Restricted quantitifer ver...
r19.41v 3167 Restricted quantifier vers...
r19.28v 3168 Restricted quantifier vers...
r19.42v 3169 Restricted quantifier vers...
r19.32v 3170 Restricted quantifier vers...
r19.45v 3171 Restricted quantifier vers...
r19.44v 3172 One direction of a restric...
r2al 3173 Double restricted universa...
r2ex 3174 Double restricted existent...
r3al 3175 Triple restricted universa...
r3ex 3176 Triple existential quantif...
rgen2 3177 Generalization rule for re...
ralrimivv 3178 Inference from Theorem 19....
rexlimivv 3179 Inference from Theorem 19....
ralrimivva 3180 Inference from Theorem 19....
ralrimdvv 3181 Inference from Theorem 19....
rgen3 3182 Generalization rule for re...
ralrimivvva 3183 Inference from Theorem 19....
ralimdvva 3184 Deduction doubly quantifyi...
reximdvva 3185 Deduction doubly quantifyi...
ralimdvv 3186 Deduction doubly quantifyi...
ralimdvvOLD 3187 Obsolete version of ~ rali...
ralimd4v 3188 Deduction quadrupally quan...
ralimd4vOLD 3189 Obsolete version of ~ rali...
ralimd6v 3190 Deduction sextupally quant...
ralimd6vOLD 3191 Obsolete version of ~ rali...
ralrimdvva 3192 Inference from Theorem 19....
rexlimdvv 3193 Inference from Theorem 19....
rexlimdvva 3194 Inference from Theorem 19....
rexlimdvvva 3195 Inference from Theorem 19....
reximddv2 3196 Double deduction from Theo...
r19.29vva 3197 A commonly used pattern ba...
2rexbiia 3198 Inference adding two restr...
2ralbidva 3199 Formula-building rule for ...
2rexbidva 3200 Formula-building rule for ...
2ralbidv 3201 Formula-building rule for ...
2rexbidv 3202 Formula-building rule for ...
rexralbidv 3203 Formula-building rule for ...
3ralbidv 3204 Formula-building rule for ...
4ralbidv 3205 Formula-building rule for ...
6ralbidv 3206 Formula-building rule for ...
r19.41vv 3207 Version of ~ r19.41v with ...
reeanlem 3208 Lemma factoring out common...
reeanv 3209 Rearrange restricted exist...
3reeanv 3210 Rearrange three restricted...
2ralor 3211 Distribute restricted univ...
risset 3212 Two ways to say " ` A ` be...
nelb 3213 A definition of ` -. A e. ...
rspw 3214 Restricted specialization....
cbvralvw 3215 Change the bound variable ...
cbvrexvw 3216 Change the bound variable ...
cbvraldva 3217 Rule used to change the bo...
cbvrexdva 3218 Rule used to change the bo...
cbvral2vw 3219 Change bound variables of ...
cbvrex2vw 3220 Change bound variables of ...
cbvral3vw 3221 Change bound variables of ...
cbvral4vw 3222 Change bound variables of ...
cbvral6vw 3223 Change bound variables of ...
cbvral8vw 3224 Change bound variables of ...
rsp 3225 Restricted specialization....
rspa 3226 Restricted specialization....
rspe 3227 Restricted specialization....
rspec 3228 Specialization rule for re...
r19.21bi 3229 Inference from Theorem 19....
r19.21be 3230 Inference from Theorem 19....
r19.21t 3231 Restricted quantifier vers...
r19.21 3232 Restricted quantifier vers...
r19.23t 3233 Closed theorem form of ~ r...
r19.23 3234 Restricted quantifier vers...
ralrimi 3235 Inference from Theorem 19....
ralrimia 3236 Inference from Theorem 19....
rexlimi 3237 Restricted quantifier vers...
ralimdaa 3238 Deduction quantifying both...
reximdai 3239 Deduction from Theorem 19....
r19.37 3240 Restricted quantifier vers...
r19.41 3241 Restricted quantifier vers...
ralrimd 3242 Inference from Theorem 19....
rexlimd2 3243 Version of ~ rexlimd with ...
rexlimd 3244 Deduction form of ~ rexlim...
r19.29af2 3245 A commonly used pattern ba...
r19.29af 3246 A commonly used pattern ba...
reximd2a 3247 Deduction quantifying both...
ralbida 3248 Formula-building rule for ...
rexbida 3249 Formula-building rule for ...
ralbid 3250 Formula-building rule for ...
rexbid 3251 Formula-building rule for ...
rexbidvALT 3252 Alternate proof of ~ rexbi...
rexbidvaALT 3253 Alternate proof of ~ rexbi...
rsp2 3254 Restricted specialization,...
rsp2e 3255 Restricted specialization....
rspec2 3256 Specialization rule for re...
rspec3 3257 Specialization rule for re...
r2alf 3258 Double restricted universa...
r2exf 3259 Double restricted existent...
2ralbida 3260 Formula-building rule for ...
nfra1 3261 The setvar ` x ` is not fr...
nfre1 3262 The setvar ` x ` is not fr...
ralcom4 3263 Commutation of restricted ...
rexcom4 3264 Commutation of restricted ...
ralcom 3265 Commutation of restricted ...
rexcom 3266 Commutation of restricted ...
rexcom4a 3267 Specialized existential co...
ralrot3 3268 Rotate three restricted un...
ralcom13 3269 Swap first and third restr...
ralcom13OLD 3270 Obsolete version of ~ ralc...
rexcom13 3271 Swap first and third restr...
rexrot4 3272 Rotate four restricted exi...
2ex2rexrot 3273 Rotate two existential qua...
nfra2w 3274 Similar to Lemma 24 of [Mo...
hbra1 3275 The setvar ` x ` is not fr...
ralcomf 3276 Commutation of restricted ...
rexcomf 3277 Commutation of restricted ...
cbvralfw 3278 Rule used to change bound ...
cbvrexfw 3279 Rule used to change bound ...
cbvralw 3280 Rule used to change bound ...
cbvrexw 3281 Rule used to change bound ...
hbral 3282 Bound-variable hypothesis ...
nfraldw 3283 Deduction version of ~ nfr...
nfrexdw 3284 Deduction version of ~ nfr...
nfralw 3285 Bound-variable hypothesis ...
nfralwOLD 3286 Obsolete version of ~ nfra...
nfrexw 3287 Bound-variable hypothesis ...
r19.12 3288 Restricted quantifier vers...
reean 3289 Rearrange restricted exist...
cbvralsvw 3290 Change bound variable by u...
cbvrexsvw 3291 Change bound variable by u...
cbvralsvwOLD 3292 Obsolete version of ~ cbvr...
cbvralsvwOLDOLD 3293 Obsolete version of ~ cbvr...
cbvrexsvwOLD 3294 Obsolete version of ~ cbvr...
rexeq 3295 Equality theorem for restr...
raleq 3296 Equality theorem for restr...
raleqi 3297 Equality inference for res...
rexeqi 3298 Equality inference for res...
raleqdv 3299 Equality deduction for res...
rexeqdv 3300 Equality deduction for res...
raleqtrdv 3301 Substitution of equal clas...
rexeqtrdv 3302 Substitution of equal clas...
raleqtrrdv 3303 Substitution of equal clas...
rexeqtrrdv 3304 Substitution of equal clas...
raleqbidva 3305 Equality deduction for res...
rexeqbidva 3306 Equality deduction for res...
raleqbidvv 3307 Version of ~ raleqbidv wit...
raleqbidvvOLD 3308 Obsolete version of ~ rale...
rexeqbidvv 3309 Version of ~ rexeqbidv wit...
rexeqbidvvOLD 3310 Obsolete version of ~ rexe...
raleqbi1dv 3311 Equality deduction for res...
rexeqbi1dv 3312 Equality deduction for res...
raleqOLD 3313 Obsolete version of ~ rale...
rexeqOLD 3314 Obsolete version of ~ rale...
raleleq 3315 All elements of a class ar...
raleleqOLD 3316 Obsolete version of ~ rale...
raleqbii 3317 Equality deduction for res...
rexeqbii 3318 Equality deduction for res...
raleqbidv 3319 Equality deduction for res...
rexeqbidv 3320 Equality deduction for res...
cbvraldva2 3321 Rule used to change the bo...
cbvrexdva2 3322 Rule used to change the bo...
cbvrexdva2OLD 3323 Obsolete version of ~ cbvr...
cbvraldvaOLD 3324 Obsolete version of ~ cbvr...
cbvrexdvaOLD 3325 Obsolete version of ~ cbvr...
sbralie 3326 Implicit to explicit subst...
sbralieALT 3327 Alternative shorter proof ...
sbralieOLD 3328 Obsolete version of ~ sbra...
raleqf 3329 Equality theorem for restr...
rexeqf 3330 Equality theorem for restr...
rexeqfOLD 3331 Obsolete version of ~ rexe...
raleqbid 3332 Equality deduction for res...
rexeqbid 3333 Equality deduction for res...
cbvralf 3334 Rule used to change bound ...
cbvrexf 3335 Rule used to change bound ...
cbvral 3336 Rule used to change bound ...
cbvrex 3337 Rule used to change bound ...
cbvralv 3338 Change the bound variable ...
cbvrexv 3339 Change the bound variable ...
cbvralsv 3340 Change bound variable by u...
cbvrexsv 3341 Change bound variable by u...
cbvral2v 3342 Change bound variables of ...
cbvrex2v 3343 Change bound variables of ...
cbvral3v 3344 Change bound variables of ...
rgen2a 3345 Generalization rule for re...
nfrald 3346 Deduction version of ~ nfr...
nfrexd 3347 Deduction version of ~ nfr...
nfral 3348 Bound-variable hypothesis ...
nfrex 3349 Bound-variable hypothesis ...
nfra2 3350 Similar to Lemma 24 of [Mo...
ralcom2 3351 Commutation of restricted ...
reu5 3356 Restricted uniqueness in t...
reurmo 3357 Restricted existential uni...
reurex 3358 Restricted unique existenc...
mormo 3359 Unrestricted "at most one"...
rmobiia 3360 Formula-building rule for ...
reubiia 3361 Formula-building rule for ...
rmobii 3362 Formula-building rule for ...
reubii 3363 Formula-building rule for ...
rmoanid 3364 Cancellation law for restr...
reuanid 3365 Cancellation law for restr...
rmoanidOLD 3366 Obsolete version of ~ rmoa...
reuanidOLD 3367 Obsolete version of ~ reua...
2reu2rex 3368 Double restricted existent...
rmobidva 3369 Formula-building rule for ...
reubidva 3370 Formula-building rule for ...
rmobidv 3371 Formula-building rule for ...
reubidv 3372 Formula-building rule for ...
reueubd 3373 Restricted existential uni...
rmo5 3374 Restricted "at most one" i...
nrexrmo 3375 Nonexistence implies restr...
moel 3376 "At most one" element in a...
cbvrmovw 3377 Change the bound variable ...
cbvreuvw 3378 Change the bound variable ...
rmobida 3379 Formula-building rule for ...
reubida 3380 Formula-building rule for ...
cbvrmow 3381 Change the bound variable ...
cbvreuw 3382 Change the bound variable ...
nfrmo1 3383 The setvar ` x ` is not fr...
nfreu1 3384 The setvar ` x ` is not fr...
nfrmow 3385 Bound-variable hypothesis ...
nfreuw 3386 Bound-variable hypothesis ...
rmoeq1 3387 Equality theorem for restr...
reueq1 3388 Equality theorem for restr...
rmoeq1OLD 3389 Obsolete version of ~ rmoe...
reueq1OLD 3390 Obsolete version of ~ reue...
rmoeqd 3391 Equality deduction for res...
reueqd 3392 Equality deduction for res...
reueqdv 3393 Formula-building rule for ...
reueqbidv 3394 Formula-building rule for ...
rmoeq1f 3395 Equality theorem for restr...
reueq1f 3396 Equality theorem for restr...
cbvreu 3397 Change the bound variable ...
cbvrmo 3398 Change the bound variable ...
cbvrmov 3399 Change the bound variable ...
cbvreuv 3400 Change the bound variable ...
nfrmod 3401 Deduction version of ~ nfr...
nfreud 3402 Deduction version of ~ nfr...
nfrmo 3403 Bound-variable hypothesis ...
nfreu 3404 Bound-variable hypothesis ...
rabbidva2 3407 Equivalent wff's yield equ...
rabbia2 3408 Equivalent wff's yield equ...
rabbiia 3409 Equivalent formulas yield ...
rabbiiaOLD 3410 Obsolete version of ~ rabb...
rabbii 3411 Equivalent wff's correspon...
rabbidva 3412 Equivalent wff's yield equ...
rabbidv 3413 Equivalent wff's yield equ...
rabbieq 3414 Equivalent wff's correspon...
rabswap 3415 Swap with a membership rel...
cbvrabv 3416 Rule to change the bound v...
rabeqcda 3417 When ` ps ` is always true...
rabeqc 3418 A restricted class abstrac...
rabeqi 3419 Equality theorem for restr...
rabeq 3420 Equality theorem for restr...
rabeqdv 3421 Equality of restricted cla...
rabeqbidva 3422 Equality of restricted cla...
rabeqbidvaOLD 3423 Obsolete version of ~ rabe...
rabeqbidv 3424 Equality of restricted cla...
rabrabi 3425 Abstract builder restricte...
nfrab1 3426 The abstraction variable i...
rabid 3427 An "identity" law of concr...
rabidim1 3428 Membership in a restricted...
reqabi 3429 Inference from equality of...
rabrab 3430 Abstract builder restricte...
rabbida4 3431 Version of ~ rabbidva2 wit...
rabbida 3432 Equivalent wff's yield equ...
rabbid 3433 Version of ~ rabbidv with ...
rabeqd 3434 Deduction form of ~ rabeq ...
rabeqbida 3435 Version of ~ rabeqbidva wi...
rabbi 3436 Equivalent wff's correspon...
rabid2f 3437 An "identity" law for rest...
rabid2im 3438 One direction of ~ rabid2 ...
rabid2 3439 An "identity" law for rest...
rabeqf 3440 Equality theorem for restr...
cbvrabw 3441 Rule to change the bound v...
cbvrabwOLD 3442 Obsolete version of ~ cbvr...
nfrabw 3443 A variable not free in a w...
rabbidaOLD 3444 Obsolete version of ~ rabb...
nfrab 3445 A variable not free in a w...
cbvrab 3446 Rule to change the bound v...
vjust 3448 Justification theorem for ...
dfv2 3450 Alternate definition of th...
vex 3451 All setvar variables are s...
elv 3452 If a proposition is implie...
elvd 3453 If a proposition is implie...
el2v 3454 If a proposition is implie...
el3v 3455 If a proposition is implie...
el3v3 3456 If a proposition is implie...
eqv 3457 The universe contains ever...
eqvf 3458 The universe contains ever...
abv 3459 The class of sets verifyin...
abvALT 3460 Alternate proof of ~ abv ,...
isset 3461 Two ways to express that "...
cbvexeqsetf 3462 The expression ` E. x x = ...
issetft 3463 Closed theorem form of ~ i...
issetf 3464 A version of ~ isset that ...
isseti 3465 A way to say " ` A ` is a ...
issetri 3466 A way to say " ` A ` is a ...
eqvisset 3467 A class equal to a variabl...
elex 3468 If a class is a member of ...
elexOLD 3469 Obsolete version of ~ elex...
elexi 3470 If a class is a member of ...
elexd 3471 If a class is a member of ...
elex22 3472 If two classes each contai...
prcnel 3473 A proper class doesn't bel...
ralv 3474 A universal quantifier res...
rexv 3475 An existential quantifier ...
reuv 3476 A unique existential quant...
rmov 3477 An at-most-one quantifier ...
rabab 3478 A class abstraction restri...
rexcom4b 3479 Specialized existential co...
ceqsal1t 3480 One direction of ~ ceqsalt...
ceqsalt 3481 Closed theorem version of ...
ceqsralt 3482 Restricted quantifier vers...
ceqsalg 3483 A representation of explic...
ceqsalgALT 3484 Alternate proof of ~ ceqsa...
ceqsal 3485 A representation of explic...
ceqsalALT 3486 A representation of explic...
ceqsalv 3487 A representation of explic...
ceqsralv 3488 Restricted quantifier vers...
gencl 3489 Implicit substitution for ...
2gencl 3490 Implicit substitution for ...
3gencl 3491 Implicit substitution for ...
cgsexg 3492 Implicit substitution infe...
cgsex2g 3493 Implicit substitution infe...
cgsex4g 3494 An implicit substitution i...
cgsex4gOLD 3495 Obsolete version of ~ cgse...
ceqsex 3496 Elimination of an existent...
ceqsexOLD 3497 Obsolete version of ~ ceqs...
ceqsexv 3498 Elimination of an existent...
ceqsexv2d 3499 Elimination of an existent...
ceqsexv2dOLD 3500 Obsolete version of ~ ceqs...
ceqsex2 3501 Elimination of two existen...
ceqsex2v 3502 Elimination of two existen...
ceqsex3v 3503 Elimination of three exist...
ceqsex4v 3504 Elimination of four existe...
ceqsex6v 3505 Elimination of six existen...
ceqsex8v 3506 Elimination of eight exist...
gencbvex 3507 Change of bound variable u...
gencbvex2 3508 Restatement of ~ gencbvex ...
gencbval 3509 Change of bound variable u...
sbhypf 3510 Introduce an explicit subs...
sbhypfOLD 3511 Obsolete version of ~ sbhy...
spcimgft 3512 Closed theorem form of ~ s...
spcimgfi1 3513 A closed version of ~ spci...
spcimgfi1OLD 3514 Obsolete version of ~ spci...
spcgft 3515 A closed version of ~ spcg...
spcimgf 3516 Rule of specialization, us...
spcimegf 3517 Existential specialization...
vtoclgft 3518 Closed theorem form of ~ v...
vtocleg 3519 Implicit substitution of a...
vtoclg 3520 Implicit substitution of a...
vtocle 3521 Implicit substitution of a...
vtocleOLD 3522 Obsolete version of ~ vtoc...
vtoclbg 3523 Implicit substitution of a...
vtocl 3524 Implicit substitution of a...
vtoclOLD 3525 Obsolete version of ~ vtoc...
vtocldf 3526 Implicit substitution of a...
vtocld 3527 Implicit substitution of a...
vtocl2d 3528 Implicit substitution of t...
vtoclef 3529 Implicit substitution of a...
vtoclf 3530 Implicit substitution of a...
vtoclfOLD 3531 Obsolete version of ~ vtoc...
vtocl2 3532 Implicit substitution of c...
vtocl3 3533 Implicit substitution of c...
vtoclb 3534 Implicit substitution of a...
vtoclgf 3535 Implicit substitution of a...
vtoclg1f 3536 Version of ~ vtoclgf with ...
vtoclgOLD 3537 Obsolete version of ~ vtoc...
vtocl2gf 3538 Implicit substitution of a...
vtocl3gf 3539 Implicit substitution of a...
vtocl2g 3540 Implicit substitution of 2...
vtocl3g 3541 Implicit substitution of a...
vtoclgaf 3542 Implicit substitution of a...
vtoclga 3543 Implicit substitution of a...
vtocl2ga 3544 Implicit substitution of 2...
vtocl2gaf 3545 Implicit substitution of 2...
vtocl2gafOLD 3546 Obsolete version of ~ vtoc...
vtocl3gaf 3547 Implicit substitution of 3...
vtocl3gafOLD 3548 Obsolete version of ~ vtoc...
vtocl3ga 3549 Implicit substitution of 3...
vtocl3gaOLD 3550 Obsolete version of ~ vtoc...
vtocl4g 3551 Implicit substitution of 4...
vtocl4ga 3552 Implicit substitution of 4...
vtocl4gaOLD 3553 Obsolete version of ~ vtoc...
vtoclegft 3554 Implicit substitution of a...
vtoclegftOLD 3555 Obsolete version of ~ vtoc...
vtoclri 3556 Implicit substitution of a...
spcgf 3557 Rule of specialization, us...
spcegf 3558 Existential specialization...
spcimdv 3559 Restricted specialization,...
spcdv 3560 Rule of specialization, us...
spcimedv 3561 Restricted existential spe...
spcgv 3562 Rule of specialization, us...
spcegv 3563 Existential specialization...
spcedv 3564 Existential specialization...
spc2egv 3565 Existential specialization...
spc2gv 3566 Specialization with two qu...
spc2ed 3567 Existential specialization...
spc2d 3568 Specialization with 2 quan...
spc3egv 3569 Existential specialization...
spc3gv 3570 Specialization with three ...
spcv 3571 Rule of specialization, us...
spcev 3572 Existential specialization...
spc2ev 3573 Existential specialization...
rspct 3574 A closed version of ~ rspc...
rspcdf 3575 Restricted specialization,...
rspc 3576 Restricted specialization,...
rspce 3577 Restricted existential spe...
rspcimdv 3578 Restricted specialization,...
rspcimedv 3579 Restricted existential spe...
rspcdv 3580 Restricted specialization,...
rspcedv 3581 Restricted existential spe...
rspcebdv 3582 Restricted existential spe...
rspcdv2 3583 Restricted specialization,...
rspcv 3584 Restricted specialization,...
rspccv 3585 Restricted specialization,...
rspcva 3586 Restricted specialization,...
rspccva 3587 Restricted specialization,...
rspcev 3588 Restricted existential spe...
rspcdva 3589 Restricted specialization,...
rspcedvd 3590 Restricted existential spe...
rspcedvdw 3591 Version of ~ rspcedvd wher...
rspceb2dv 3592 Restricted existential spe...
rspcime 3593 Prove a restricted existen...
rspceaimv 3594 Restricted existential spe...
rspcedeq1vd 3595 Restricted existential spe...
rspcedeq2vd 3596 Restricted existential spe...
rspc2 3597 Restricted specialization ...
rspc2gv 3598 Restricted specialization ...
rspc2v 3599 2-variable restricted spec...
rspc2va 3600 2-variable restricted spec...
rspc2ev 3601 2-variable restricted exis...
2rspcedvdw 3602 Double application of ~ rs...
rspc2dv 3603 2-variable restricted spec...
rspc3v 3604 3-variable restricted spec...
rspc3ev 3605 3-variable restricted exis...
3rspcedvdw 3606 Triple application of ~ rs...
rspc3dv 3607 3-variable restricted spec...
rspc4v 3608 4-variable restricted spec...
rspc6v 3609 6-variable restricted spec...
rspc8v 3610 8-variable restricted spec...
rspceeqv 3611 Restricted existential spe...
ralxpxfr2d 3612 Transfer a universal quant...
rexraleqim 3613 Statement following from e...
eqvincg 3614 A variable introduction la...
eqvinc 3615 A variable introduction la...
eqvincf 3616 A variable introduction la...
alexeqg 3617 Two ways to express substi...
ceqex 3618 Equality implies equivalen...
ceqsexg 3619 A representation of explic...
ceqsexgv 3620 Elimination of an existent...
ceqsrexv 3621 Elimination of a restricte...
ceqsrexbv 3622 Elimination of a restricte...
ceqsralbv 3623 Elimination of a restricte...
ceqsrex2v 3624 Elimination of a restricte...
clel2g 3625 Alternate definition of me...
clel2 3626 Alternate definition of me...
clel3g 3627 Alternate definition of me...
clel3 3628 Alternate definition of me...
clel4g 3629 Alternate definition of me...
clel4 3630 Alternate definition of me...
clel5 3631 Alternate definition of cl...
pm13.183 3632 Compare theorem *13.183 in...
rr19.3v 3633 Restricted quantifier vers...
rr19.28v 3634 Restricted quantifier vers...
elab6g 3635 Membership in a class abst...
elabd2 3636 Membership in a class abst...
elabd3 3637 Membership in a class abst...
elabgt 3638 Membership in a class abst...
elabgtOLD 3639 Obsolete version of ~ elab...
elabgtOLDOLD 3640 Obsolete version of ~ elab...
elabgf 3641 Membership in a class abst...
elabf 3642 Membership in a class abst...
elabg 3643 Membership in a class abst...
elabgw 3644 Membership in a class abst...
elab2gw 3645 Membership in a class abst...
elab 3646 Membership in a class abst...
elab2g 3647 Membership in a class abst...
elabd 3648 Explicit demonstration the...
elab2 3649 Membership in a class abst...
elab4g 3650 Membership in a class abst...
elab3gf 3651 Membership in a class abst...
elab3g 3652 Membership in a class abst...
elab3 3653 Membership in a class abst...
elrabi 3654 Implication for the member...
elrabf 3655 Membership in a restricted...
rabtru 3656 Abstract builder using the...
rabeqcOLD 3657 Obsolete version of ~ rabe...
elrab3t 3658 Membership in a restricted...
elrab 3659 Membership in a restricted...
elrab3 3660 Membership in a restricted...
elrabd 3661 Membership in a restricted...
elrab2 3662 Membership in a restricted...
elrab2w 3663 Membership in a restricted...
ralab 3664 Universal quantification o...
ralrab 3665 Universal quantification o...
rexab 3666 Existential quantification...
rexrab 3667 Existential quantification...
ralab2 3668 Universal quantification o...
ralrab2 3669 Universal quantification o...
rexab2 3670 Existential quantification...
rexrab2 3671 Existential quantification...
reurab 3672 Restricted existential uni...
abidnf 3673 Identity used to create cl...
dedhb 3674 A deduction theorem for co...
class2seteq 3675 Writing a set as a class a...
nelrdva 3676 Deduce negative membership...
eqeu 3677 A condition which implies ...
moeq 3678 There exists at most one s...
eueq 3679 A class is a set if and on...
eueqi 3680 There exists a unique set ...
eueq2 3681 Equality has existential u...
eueq3 3682 Equality has existential u...
moeq3 3683 "At most one" property of ...
mosub 3684 "At most one" remains true...
mo2icl 3685 Theorem for inferring "at ...
mob2 3686 Consequence of "at most on...
moi2 3687 Consequence of "at most on...
mob 3688 Equality implied by "at mo...
moi 3689 Equality implied by "at mo...
morex 3690 Derive membership from uni...
euxfr2w 3691 Transfer existential uniqu...
euxfrw 3692 Transfer existential uniqu...
euxfr2 3693 Transfer existential uniqu...
euxfr 3694 Transfer existential uniqu...
euind 3695 Existential uniqueness via...
reu2 3696 A way to express restricte...
reu6 3697 A way to express restricte...
reu3 3698 A way to express restricte...
reu6i 3699 A condition which implies ...
eqreu 3700 A condition which implies ...
rmo4 3701 Restricted "at most one" u...
reu4 3702 Restricted uniqueness usin...
reu7 3703 Restricted uniqueness usin...
reu8 3704 Restricted uniqueness usin...
rmo3f 3705 Restricted "at most one" u...
rmo4f 3706 Restricted "at most one" u...
reu2eqd 3707 Deduce equality from restr...
reueq 3708 Equality has existential u...
rmoeq 3709 Equality's restricted exis...
rmoan 3710 Restricted "at most one" s...
rmoim 3711 Restricted "at most one" i...
rmoimia 3712 Restricted "at most one" i...
rmoimi 3713 Restricted "at most one" i...
rmoimi2 3714 Restricted "at most one" i...
2reu5a 3715 Double restricted existent...
reuimrmo 3716 Restricted uniqueness impl...
2reuswap 3717 A condition allowing swap ...
2reuswap2 3718 A condition allowing swap ...
reuxfrd 3719 Transfer existential uniqu...
reuxfr 3720 Transfer existential uniqu...
reuxfr1d 3721 Transfer existential uniqu...
reuxfr1ds 3722 Transfer existential uniqu...
reuxfr1 3723 Transfer existential uniqu...
reuind 3724 Existential uniqueness via...
2rmorex 3725 Double restricted quantifi...
2reu5lem1 3726 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3727 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3728 Lemma for ~ 2reu5 . This ...
2reu5 3729 Double restricted existent...
2reurmo 3730 Double restricted quantifi...
2reurex 3731 Double restricted quantifi...
2rmoswap 3732 A condition allowing to sw...
2rexreu 3733 Double restricted existent...
cdeqi 3736 Deduce conditional equalit...
cdeqri 3737 Property of conditional eq...
cdeqth 3738 Deduce conditional equalit...
cdeqnot 3739 Distribute conditional equ...
cdeqal 3740 Distribute conditional equ...
cdeqab 3741 Distribute conditional equ...
cdeqal1 3742 Distribute conditional equ...
cdeqab1 3743 Distribute conditional equ...
cdeqim 3744 Distribute conditional equ...
cdeqcv 3745 Conditional equality for s...
cdeqeq 3746 Distribute conditional equ...
cdeqel 3747 Distribute conditional equ...
nfcdeq 3748 If we have a conditional e...
nfccdeq 3749 Variation of ~ nfcdeq for ...
rru 3750 Relative version of Russel...
ru 3751 Russell's Paradox. Propos...
ruOLD 3752 Obsolete version of ~ ru a...
dfsbcq 3755 Proper substitution of a c...
dfsbcq2 3756 This theorem, which is sim...
sbsbc 3757 Show that ~ df-sb and ~ df...
sbceq1d 3758 Equality theorem for class...
sbceq1dd 3759 Equality theorem for class...
sbceqbid 3760 Equality theorem for class...
sbc8g 3761 This is the closest we can...
sbc2or 3762 The disjunction of two equ...
sbcex 3763 By our definition of prope...
sbceq1a 3764 Equality theorem for class...
sbceq2a 3765 Equality theorem for class...
spsbc 3766 Specialization: if a formu...
spsbcd 3767 Specialization: if a formu...
sbcth 3768 A substitution into a theo...
sbcthdv 3769 Deduction version of ~ sbc...
sbcid 3770 An identity theorem for su...
nfsbc1d 3771 Deduction version of ~ nfs...
nfsbc1 3772 Bound-variable hypothesis ...
nfsbc1v 3773 Bound-variable hypothesis ...
nfsbcdw 3774 Deduction version of ~ nfs...
nfsbcw 3775 Bound-variable hypothesis ...
sbccow 3776 A composition law for clas...
nfsbcd 3777 Deduction version of ~ nfs...
nfsbc 3778 Bound-variable hypothesis ...
sbcco 3779 A composition law for clas...
sbcco2 3780 A composition law for clas...
sbc5 3781 An equivalence for class s...
sbc5ALT 3782 Alternate proof of ~ sbc5 ...
sbc6g 3783 An equivalence for class s...
sbc6 3784 An equivalence for class s...
sbc7 3785 An equivalence for class s...
cbvsbcw 3786 Change bound variables in ...
cbvsbcvw 3787 Change the bound variable ...
cbvsbc 3788 Change bound variables in ...
cbvsbcv 3789 Change the bound variable ...
sbciegft 3790 Conversion of implicit sub...
sbciegftOLD 3791 Obsolete version of ~ sbci...
sbciegf 3792 Conversion of implicit sub...
sbcieg 3793 Conversion of implicit sub...
sbcie2g 3794 Conversion of implicit sub...
sbcie 3795 Conversion of implicit sub...
sbciedf 3796 Conversion of implicit sub...
sbcied 3797 Conversion of implicit sub...
sbcied2 3798 Conversion of implicit sub...
elrabsf 3799 Membership in a restricted...
eqsbc1 3800 Substitution for the left-...
sbcng 3801 Move negation in and out o...
sbcimg 3802 Distribution of class subs...
sbcan 3803 Distribution of class subs...
sbcor 3804 Distribution of class subs...
sbcbig 3805 Distribution of class subs...
sbcn1 3806 Move negation in and out o...
sbcim1 3807 Distribution of class subs...
sbcbid 3808 Formula-building deduction...
sbcbidv 3809 Formula-building deduction...
sbcbii 3810 Formula-building inference...
sbcbi1 3811 Distribution of class subs...
sbcbi2 3812 Substituting into equivale...
sbcal 3813 Move universal quantifier ...
sbcex2 3814 Move existential quantifie...
sbceqal 3815 Class version of one impli...
sbeqalb 3816 Theorem *14.121 in [Whiteh...
eqsbc2 3817 Substitution for the right...
sbc3an 3818 Distribution of class subs...
sbcel1v 3819 Class substitution into a ...
sbcel2gv 3820 Class substitution into a ...
sbcel21v 3821 Class substitution into a ...
sbcimdv 3822 Substitution analogue of T...
sbctt 3823 Substitution for a variabl...
sbcgf 3824 Substitution for a variabl...
sbc19.21g 3825 Substitution for a variabl...
sbcg 3826 Substitution for a variabl...
sbcgfi 3827 Substitution for a variabl...
sbc2iegf 3828 Conversion of implicit sub...
sbc2ie 3829 Conversion of implicit sub...
sbc2iedv 3830 Conversion of implicit sub...
sbc3ie 3831 Conversion of implicit sub...
sbccomlem 3832 Lemma for ~ sbccom . (Con...
sbccomlemOLD 3833 Obsolete version of ~ sbcc...
sbccom 3834 Commutative law for double...
sbcralt 3835 Interchange class substitu...
sbcrext 3836 Interchange class substitu...
sbcralg 3837 Interchange class substitu...
sbcrex 3838 Interchange class substitu...
sbcreu 3839 Interchange class substitu...
reu8nf 3840 Restricted uniqueness usin...
sbcabel 3841 Interchange class substitu...
rspsbc 3842 Restricted quantifier vers...
rspsbca 3843 Restricted quantifier vers...
rspesbca 3844 Existence form of ~ rspsbc...
spesbc 3845 Existence form of ~ spsbc ...
spesbcd 3846 form of ~ spsbc . (Contri...
sbcth2 3847 A substitution into a theo...
ra4v 3848 Version of ~ ra4 with a di...
ra4 3849 Restricted quantifier vers...
rmo2 3850 Alternate definition of re...
rmo2i 3851 Condition implying restric...
rmo3 3852 Restricted "at most one" u...
rmob 3853 Consequence of "at most on...
rmoi 3854 Consequence of "at most on...
rmob2 3855 Consequence of "restricted...
rmoi2 3856 Consequence of "restricted...
rmoanim 3857 Introduction of a conjunct...
rmoanimALT 3858 Alternate proof of ~ rmoan...
reuan 3859 Introduction of a conjunct...
2reu1 3860 Double restricted existent...
2reu2 3861 Double restricted existent...
csb2 3864 Alternate expression for t...
csbeq1 3865 Analogue of ~ dfsbcq for p...
csbeq1d 3866 Equality deduction for pro...
csbeq2 3867 Substituting into equivale...
csbeq2d 3868 Formula-building deduction...
csbeq2dv 3869 Formula-building deduction...
csbeq2i 3870 Formula-building inference...
csbeq12dv 3871 Formula-building inference...
cbvcsbw 3872 Change bound variables in ...
cbvcsb 3873 Change bound variables in ...
cbvcsbv 3874 Change the bound variable ...
csbid 3875 Analogue of ~ sbid for pro...
csbeq1a 3876 Equality theorem for prope...
csbcow 3877 Composition law for chaine...
csbco 3878 Composition law for chaine...
csbtt 3879 Substitution doesn't affec...
csbconstgf 3880 Substitution doesn't affec...
csbconstg 3881 Substitution doesn't affec...
csbgfi 3882 Substitution for a variabl...
csbconstgi 3883 The proper substitution of...
nfcsb1d 3884 Bound-variable hypothesis ...
nfcsb1 3885 Bound-variable hypothesis ...
nfcsb1v 3886 Bound-variable hypothesis ...
nfcsbd 3887 Deduction version of ~ nfc...
nfcsbw 3888 Bound-variable hypothesis ...
nfcsb 3889 Bound-variable hypothesis ...
csbhypf 3890 Introduce an explicit subs...
csbiebt 3891 Conversion of implicit sub...
csbiedf 3892 Conversion of implicit sub...
csbieb 3893 Bidirectional conversion b...
csbiebg 3894 Bidirectional conversion b...
csbiegf 3895 Conversion of implicit sub...
csbief 3896 Conversion of implicit sub...
csbie 3897 Conversion of implicit sub...
csbied 3898 Conversion of implicit sub...
csbied2 3899 Conversion of implicit sub...
csbie2t 3900 Conversion of implicit sub...
csbie2 3901 Conversion of implicit sub...
csbie2g 3902 Conversion of implicit sub...
cbvrabcsfw 3903 Version of ~ cbvrabcsf wit...
cbvralcsf 3904 A more general version of ...
cbvrexcsf 3905 A more general version of ...
cbvreucsf 3906 A more general version of ...
cbvrabcsf 3907 A more general version of ...
cbvralv2 3908 Rule used to change the bo...
cbvrexv2 3909 Rule used to change the bo...
rspc2vd 3910 Deduction version of 2-var...
difjust 3916 Soundness justification th...
unjust 3918 Soundness justification th...
injust 3920 Soundness justification th...
dfin5 3922 Alternate definition for t...
dfdif2 3923 Alternate definition of cl...
eldif 3924 Expansion of membership in...
eldifd 3925 If a class is in one class...
eldifad 3926 If a class is in the diffe...
eldifbd 3927 If a class is in the diffe...
elneeldif 3928 The elements of a set diff...
velcomp 3929 Characterization of setvar...
elin 3930 Expansion of membership in...
dfss2 3932 Alternate definition of th...
dfss 3933 Variant of subclass defini...
dfss3 3935 Alternate definition of su...
dfss6 3936 Alternate definition of su...
dfssf 3937 Equivalence for subclass r...
dfss3f 3938 Equivalence for subclass r...
nfss 3939 If ` x ` is not free in ` ...
ssel 3940 Membership relationships f...
ssel2 3941 Membership relationships f...
sseli 3942 Membership implication fro...
sselii 3943 Membership inference from ...
sselid 3944 Membership inference from ...
sseld 3945 Membership deduction from ...
sselda 3946 Membership deduction from ...
sseldd 3947 Membership inference from ...
ssneld 3948 If a class is not in anoth...
ssneldd 3949 If an element is not in a ...
ssriv 3950 Inference based on subclas...
ssrd 3951 Deduction based on subclas...
ssrdv 3952 Deduction based on subclas...
sstr2 3953 Transitivity of subclass r...
sstr2OLD 3954 Obsolete version of ~ sstr...
sstr 3955 Transitivity of subclass r...
sstri 3956 Subclass transitivity infe...
sstrd 3957 Subclass transitivity dedu...
sstrid 3958 Subclass transitivity dedu...
sstrdi 3959 Subclass transitivity dedu...
sylan9ss 3960 A subclass transitivity de...
sylan9ssr 3961 A subclass transitivity de...
eqss 3962 The subclass relationship ...
eqssi 3963 Infer equality from two su...
eqssd 3964 Equality deduction from tw...
sssseq 3965 If a class is a subclass o...
eqrd 3966 Deduce equality of classes...
eqri 3967 Infer equality of classes ...
eqelssd 3968 Equality deduction from su...
ssid 3969 Any class is a subclass of...
ssidd 3970 Weakening of ~ ssid . (Co...
ssv 3971 Any class is a subclass of...
sseq1 3972 Equality theorem for subcl...
sseq2 3973 Equality theorem for the s...
sseq12 3974 Equality theorem for the s...
sseq1i 3975 An equality inference for ...
sseq2i 3976 An equality inference for ...
sseq12i 3977 An equality inference for ...
sseq1d 3978 An equality deduction for ...
sseq2d 3979 An equality deduction for ...
sseq12d 3980 An equality deduction for ...
eqsstrd 3981 Substitution of equality i...
eqsstrrd 3982 Substitution of equality i...
sseqtrd 3983 Substitution of equality i...
sseqtrrd 3984 Substitution of equality i...
eqsstrid 3985 A chained subclass and equ...
eqsstrrid 3986 A chained subclass and equ...
sseqtrdi 3987 A chained subclass and equ...
sseqtrrdi 3988 A chained subclass and equ...
sseqtrid 3989 Subclass transitivity dedu...
sseqtrrid 3990 Subclass transitivity dedu...
eqsstrdi 3991 A chained subclass and equ...
eqsstrrdi 3992 A chained subclass and equ...
eqsstri 3993 Substitution of equality i...
eqsstrri 3994 Substitution of equality i...
sseqtri 3995 Substitution of equality i...
sseqtrri 3996 Substitution of equality i...
3sstr3i 3997 Substitution of equality i...
3sstr4i 3998 Substitution of equality i...
3sstr3g 3999 Substitution of equality i...
3sstr4g 4000 Substitution of equality i...
3sstr3d 4001 Substitution of equality i...
3sstr4d 4002 Substitution of equality i...
eqimssd 4003 Equality implies inclusion...
eqimsscd 4004 Equality implies inclusion...
eqimss 4005 Equality implies inclusion...
eqimss2 4006 Equality implies inclusion...
eqimssi 4007 Infer subclass relationshi...
eqimss2i 4008 Infer subclass relationshi...
nssne1 4009 Two classes are different ...
nssne2 4010 Two classes are different ...
nss 4011 Negation of subclass relat...
nelss 4012 Demonstrate by witnesses t...
ssrexf 4013 Restricted existential qua...
ssrmof 4014 "At most one" existential ...
ssralv 4015 Quantification restricted ...
ssrexv 4016 Existential quantification...
ss2ralv 4017 Two quantifications restri...
ss2rexv 4018 Two existential quantifica...
ssralvOLD 4019 Obsolete version of ~ ssra...
ssrexvOLD 4020 Obsolete version of ~ ssre...
ralss 4021 Restricted universal quant...
rexss 4022 Restricted existential qua...
ralssOLD 4023 Obsolete version of ~ rals...
rexssOLD 4024 Obsolete version of ~ rexs...
ss2ab 4025 Class abstractions in a su...
abss 4026 Class abstraction in a sub...
ssab 4027 Subclass of a class abstra...
ssabral 4028 The relation for a subclas...
ss2abdv 4029 Deduction of abstraction s...
ss2abi 4030 Inference of abstraction s...
abssdv 4031 Deduction of abstraction s...
abssdvOLD 4032 Obsolete version of ~ abss...
abssi 4033 Inference of abstraction s...
ss2rab 4034 Restricted abstraction cla...
rabss 4035 Restricted class abstracti...
ssrab 4036 Subclass of a restricted c...
ssrabdv 4037 Subclass of a restricted c...
rabssdv 4038 Subclass of a restricted c...
ss2rabdv 4039 Deduction of restricted ab...
ss2rabi 4040 Inference of restricted ab...
rabss2 4041 Subclass law for restricte...
ssab2 4042 Subclass relation for the ...
ssrab2 4043 Subclass relation for a re...
rabss3d 4044 Subclass law for restricte...
ssrab3 4045 Subclass relation for a re...
rabssrabd 4046 Subclass of a restricted c...
ssrabeq 4047 If the restricting class o...
rabssab 4048 A restricted class is a su...
eqrrabd 4049 Deduce equality with a res...
uniiunlem 4050 A subset relationship usef...
dfpss2 4051 Alternate definition of pr...
dfpss3 4052 Alternate definition of pr...
psseq1 4053 Equality theorem for prope...
psseq2 4054 Equality theorem for prope...
psseq1i 4055 An equality inference for ...
psseq2i 4056 An equality inference for ...
psseq12i 4057 An equality inference for ...
psseq1d 4058 An equality deduction for ...
psseq2d 4059 An equality deduction for ...
psseq12d 4060 An equality deduction for ...
pssss 4061 A proper subclass is a sub...
pssne 4062 Two classes in a proper su...
pssssd 4063 Deduce subclass from prope...
pssned 4064 Proper subclasses are uneq...
sspss 4065 Subclass in terms of prope...
pssirr 4066 Proper subclass is irrefle...
pssn2lp 4067 Proper subclass has no 2-c...
sspsstri 4068 Two ways of stating tricho...
ssnpss 4069 Partial trichotomy law for...
psstr 4070 Transitive law for proper ...
sspsstr 4071 Transitive law for subclas...
psssstr 4072 Transitive law for subclas...
psstrd 4073 Proper subclass inclusion ...
sspsstrd 4074 Transitivity involving sub...
psssstrd 4075 Transitivity involving sub...
npss 4076 A class is not a proper su...
ssnelpss 4077 A subclass missing a membe...
ssnelpssd 4078 Subclass inclusion with on...
ssexnelpss 4079 If there is an element of ...
dfdif3 4080 Alternate definition of cl...
dfdif3OLD 4081 Obsolete version of ~ dfdi...
difeq1 4082 Equality theorem for class...
difeq2 4083 Equality theorem for class...
difeq12 4084 Equality theorem for class...
difeq1i 4085 Inference adding differenc...
difeq2i 4086 Inference adding differenc...
difeq12i 4087 Equality inference for cla...
difeq1d 4088 Deduction adding differenc...
difeq2d 4089 Deduction adding differenc...
difeq12d 4090 Equality deduction for cla...
difeqri 4091 Inference from membership ...
nfdif 4092 Bound-variable hypothesis ...
nfdifOLD 4093 Obsolete version of ~ nfdi...
eldifi 4094 Implication of membership ...
eldifn 4095 Implication of membership ...
elndif 4096 A set does not belong to a...
neldif 4097 Implication of membership ...
difdif 4098 Double class difference. ...
difss 4099 Subclass relationship for ...
difssd 4100 A difference of two classe...
difss2 4101 If a class is contained in...
difss2d 4102 If a class is contained in...
ssdifss 4103 Preservation of a subclass...
ddif 4104 Double complement under un...
ssconb 4105 Contraposition law for sub...
sscon 4106 Contraposition law for sub...
ssdif 4107 Difference law for subsets...
ssdifd 4108 If ` A ` is contained in `...
sscond 4109 If ` A ` is contained in `...
ssdifssd 4110 If ` A ` is contained in `...
ssdif2d 4111 If ` A ` is contained in `...
raldifb 4112 Restricted universal quant...
rexdifi 4113 Restricted existential qua...
complss 4114 Complementation reverses i...
compleq 4115 Two classes are equal if a...
elun 4116 Expansion of membership in...
elunnel1 4117 A member of a union that i...
elunnel2 4118 A member of a union that i...
uneqri 4119 Inference from membership ...
unidm 4120 Idempotent law for union o...
uncom 4121 Commutative law for union ...
equncom 4122 If a class equals the unio...
equncomi 4123 Inference form of ~ equnco...
uneq1 4124 Equality theorem for the u...
uneq2 4125 Equality theorem for the u...
uneq12 4126 Equality theorem for the u...
uneq1i 4127 Inference adding union to ...
uneq2i 4128 Inference adding union to ...
uneq12i 4129 Equality inference for the...
uneq1d 4130 Deduction adding union to ...
uneq2d 4131 Deduction adding union to ...
uneq12d 4132 Equality deduction for the...
nfun 4133 Bound-variable hypothesis ...
nfunOLD 4134 Obsolete version of ~ nfun...
unass 4135 Associative law for union ...
un12 4136 A rearrangement of union. ...
un23 4137 A rearrangement of union. ...
un4 4138 A rearrangement of the uni...
unundi 4139 Union distributes over its...
unundir 4140 Union distributes over its...
ssun1 4141 Subclass relationship for ...
ssun2 4142 Subclass relationship for ...
ssun3 4143 Subclass law for union of ...
ssun4 4144 Subclass law for union of ...
elun1 4145 Membership law for union o...
elun2 4146 Membership law for union o...
elunant 4147 A statement is true for ev...
unss1 4148 Subclass law for union of ...
ssequn1 4149 A relationship between sub...
unss2 4150 Subclass law for union of ...
unss12 4151 Subclass law for union of ...
ssequn2 4152 A relationship between sub...
unss 4153 The union of two subclasse...
unssi 4154 An inference showing the u...
unssd 4155 A deduction showing the un...
unssad 4156 If ` ( A u. B ) ` is conta...
unssbd 4157 If ` ( A u. B ) ` is conta...
ssun 4158 A condition that implies i...
rexun 4159 Restricted existential qua...
ralunb 4160 Restricted quantification ...
ralun 4161 Restricted quantification ...
elini 4162 Membership in an intersect...
elind 4163 Deduce membership in an in...
elinel1 4164 Membership in an intersect...
elinel2 4165 Membership in an intersect...
elin2 4166 Membership in a class defi...
elin1d 4167 Elementhood in the first s...
elin2d 4168 Elementhood in the first s...
elin3 4169 Membership in a class defi...
nel1nelin 4170 Membership in an intersect...
nel2nelin 4171 Membership in an intersect...
incom 4172 Commutative law for inters...
ineqcom 4173 Two ways of expressing tha...
ineqcomi 4174 Two ways of expressing tha...
ineqri 4175 Inference from membership ...
ineq1 4176 Equality theorem for inter...
ineq2 4177 Equality theorem for inter...
ineq12 4178 Equality theorem for inter...
ineq1i 4179 Equality inference for int...
ineq2i 4180 Equality inference for int...
ineq12i 4181 Equality inference for int...
ineq1d 4182 Equality deduction for int...
ineq2d 4183 Equality deduction for int...
ineq12d 4184 Equality deduction for int...
ineqan12d 4185 Equality deduction for int...
sseqin2 4186 A relationship between sub...
nfin 4187 Bound-variable hypothesis ...
nfinOLD 4188 Obsolete version of ~ nfin...
rabbi2dva 4189 Deduction from a wff to a ...
inidm 4190 Idempotent law for interse...
inass 4191 Associative law for inters...
in12 4192 A rearrangement of interse...
in32 4193 A rearrangement of interse...
in13 4194 A rearrangement of interse...
in31 4195 A rearrangement of interse...
inrot 4196 Rotate the intersection of...
in4 4197 Rearrangement of intersect...
inindi 4198 Intersection distributes o...
inindir 4199 Intersection distributes o...
inss1 4200 The intersection of two cl...
inss2 4201 The intersection of two cl...
ssin 4202 Subclass of intersection. ...
ssini 4203 An inference showing that ...
ssind 4204 A deduction showing that a...
ssrin 4205 Add right intersection to ...
sslin 4206 Add left intersection to s...
ssrind 4207 Add right intersection to ...
ss2in 4208 Intersection of subclasses...
ssinss1 4209 Intersection preserves sub...
ssinss1d 4210 Intersection preserves sub...
inss 4211 Inclusion of an intersecti...
ralin 4212 Restricted universal quant...
rexin 4213 Restricted existential qua...
dfss7 4214 Alternate definition of su...
symdifcom 4217 Symmetric difference commu...
symdifeq1 4218 Equality theorem for symme...
symdifeq2 4219 Equality theorem for symme...
nfsymdif 4220 Hypothesis builder for sym...
elsymdif 4221 Membership in a symmetric ...
dfsymdif4 4222 Alternate definition of th...
elsymdifxor 4223 Membership in a symmetric ...
dfsymdif2 4224 Alternate definition of th...
symdifass 4225 Symmetric difference is as...
difsssymdif 4226 The symmetric difference c...
difsymssdifssd 4227 If the symmetric differenc...
unabs 4228 Absorption law for union. ...
inabs 4229 Absorption law for interse...
nssinpss 4230 Negation of subclass expre...
nsspssun 4231 Negation of subclass expre...
dfss4 4232 Subclass defined in terms ...
dfun2 4233 An alternate definition of...
dfin2 4234 An alternate definition of...
difin 4235 Difference with intersecti...
ssdifim 4236 Implication of a class dif...
ssdifsym 4237 Symmetric class difference...
dfss5 4238 Alternate definition of su...
dfun3 4239 Union defined in terms of ...
dfin3 4240 Intersection defined in te...
dfin4 4241 Alternate definition of th...
invdif 4242 Intersection with universa...
indif 4243 Intersection with class di...
indif2 4244 Bring an intersection in a...
indif1 4245 Bring an intersection in a...
indifcom 4246 Commutation law for inters...
indi 4247 Distributive law for inter...
undi 4248 Distributive law for union...
indir 4249 Distributive law for inter...
undir 4250 Distributive law for union...
unineq 4251 Infer equality from equali...
uneqin 4252 Equality of union and inte...
difundi 4253 Distributive law for class...
difundir 4254 Distributive law for class...
difindi 4255 Distributive law for class...
difindir 4256 Distributive law for class...
indifdi 4257 Distribute intersection ov...
indifdir 4258 Distribute intersection ov...
difdif2 4259 Class difference by a clas...
undm 4260 De Morgan's law for union....
indm 4261 De Morgan's law for inters...
difun1 4262 A relationship involving d...
undif3 4263 An equality involving clas...
difin2 4264 Represent a class differen...
dif32 4265 Swap second and third argu...
difabs 4266 Absorption-like law for cl...
sscon34b 4267 Relative complementation r...
rcompleq 4268 Two subclasses are equal i...
dfsymdif3 4269 Alternate definition of th...
unabw 4270 Union of two class abstrac...
unab 4271 Union of two class abstrac...
inab 4272 Intersection of two class ...
difab 4273 Difference of two class ab...
abanssl 4274 A class abstraction with a...
abanssr 4275 A class abstraction with a...
notabw 4276 A class abstraction define...
notab 4277 A class abstraction define...
unrab 4278 Union of two restricted cl...
inrab 4279 Intersection of two restri...
inrab2 4280 Intersection with a restri...
difrab 4281 Difference of two restrict...
dfrab3 4282 Alternate definition of re...
dfrab2 4283 Alternate definition of re...
rabdif 4284 Move difference in and out...
notrab 4285 Complementation of restric...
dfrab3ss 4286 Restricted class abstracti...
rabun2 4287 Abstraction restricted to ...
reuun2 4288 Transfer uniqueness to a s...
reuss2 4289 Transfer uniqueness to a s...
reuss 4290 Transfer uniqueness to a s...
reuun1 4291 Transfer uniqueness to a s...
reupick 4292 Restricted uniqueness "pic...
reupick3 4293 Restricted uniqueness "pic...
reupick2 4294 Restricted uniqueness "pic...
euelss 4295 Transfer uniqueness of an ...
dfnul4 4298 Alternate definition of th...
dfnul2 4299 Alternate definition of th...
dfnul3 4300 Alternate definition of th...
noel 4301 The empty set has no eleme...
nel02 4302 The empty set has no eleme...
n0i 4303 If a class has elements, t...
ne0i 4304 If a class has elements, t...
ne0d 4305 Deduction form of ~ ne0i ....
n0ii 4306 If a class has elements, t...
ne0ii 4307 If a class has elements, t...
vn0 4308 The universal class is not...
vn0ALT 4309 Alternate proof of ~ vn0 ....
eq0f 4310 A class is equal to the em...
neq0f 4311 A class is not empty if an...
n0f 4312 A class is nonempty if and...
eq0 4313 A class is equal to the em...
eq0ALT 4314 Alternate proof of ~ eq0 ....
neq0 4315 A class is not empty if an...
n0 4316 A class is nonempty if and...
nel0 4317 From the general negation ...
reximdva0 4318 Restricted existence deduc...
rspn0 4319 Specialization for restric...
n0rex 4320 There is an element in a n...
ssn0rex 4321 There is an element in a c...
n0moeu 4322 A case of equivalence of "...
rex0 4323 Vacuous restricted existen...
reu0 4324 Vacuous restricted uniquen...
rmo0 4325 Vacuous restricted at-most...
0el 4326 Membership of the empty se...
n0el 4327 Negated membership of the ...
eqeuel 4328 A condition which implies ...
ssdif0 4329 Subclass expressed in term...
difn0 4330 If the difference of two s...
pssdifn0 4331 A proper subclass has a no...
pssdif 4332 A proper subclass has a no...
ndisj 4333 Express that an intersecti...
inn0f 4334 A nonempty intersection. ...
inn0 4335 A nonempty intersection. ...
difin0ss 4336 Difference, intersection, ...
inssdif0 4337 Intersection, subclass, an...
inindif 4338 The intersection and class...
difid 4339 The difference between a c...
difidALT 4340 Alternate proof of ~ difid...
dif0 4341 The difference between a c...
ab0w 4342 The class of sets verifyin...
ab0 4343 The class of sets verifyin...
ab0ALT 4344 Alternate proof of ~ ab0 ,...
dfnf5 4345 Characterization of nonfre...
ab0orv 4346 The class abstraction defi...
ab0orvALT 4347 Alternate proof of ~ ab0or...
abn0 4348 Nonempty class abstraction...
rab0 4349 Any restricted class abstr...
rabeq0w 4350 Condition for a restricted...
rabeq0 4351 Condition for a restricted...
rabn0 4352 Nonempty restricted class ...
rabxm 4353 Law of excluded middle, in...
rabnc 4354 Law of noncontradiction, i...
elneldisj 4355 The set of elements ` s ` ...
elnelun 4356 The union of the set of el...
un0 4357 The union of a class with ...
in0 4358 The intersection of a clas...
0un 4359 The union of the empty set...
0in 4360 The intersection of the em...
inv1 4361 The intersection of a clas...
unv 4362 The union of a class with ...
0ss 4363 The null set is a subset o...
ss0b 4364 Any subset of the empty se...
ss0 4365 Any subset of the empty se...
sseq0 4366 A subclass of an empty cla...
ssn0 4367 A class with a nonempty su...
0dif 4368 The difference between the...
abf 4369 A class abstraction determ...
eq0rdv 4370 Deduction for equality to ...
eq0rdvALT 4371 Alternate proof of ~ eq0rd...
csbprc 4372 The proper substitution of...
csb0 4373 The proper substitution of...
sbcel12 4374 Distribute proper substitu...
sbceqg 4375 Distribute proper substitu...
sbceqi 4376 Distribution of class subs...
sbcnel12g 4377 Distribute proper substitu...
sbcne12 4378 Distribute proper substitu...
sbcel1g 4379 Move proper substitution i...
sbceq1g 4380 Move proper substitution t...
sbcel2 4381 Move proper substitution i...
sbceq2g 4382 Move proper substitution t...
csbcom 4383 Commutative law for double...
sbcnestgfw 4384 Nest the composition of tw...
csbnestgfw 4385 Nest the composition of tw...
sbcnestgw 4386 Nest the composition of tw...
csbnestgw 4387 Nest the composition of tw...
sbcco3gw 4388 Composition of two substit...
sbcnestgf 4389 Nest the composition of tw...
csbnestgf 4390 Nest the composition of tw...
sbcnestg 4391 Nest the composition of tw...
csbnestg 4392 Nest the composition of tw...
sbcco3g 4393 Composition of two substit...
csbco3g 4394 Composition of two class s...
csbnest1g 4395 Nest the composition of tw...
csbidm 4396 Idempotent law for class s...
csbvarg 4397 The proper substitution of...
csbvargi 4398 The proper substitution of...
sbccsb 4399 Substitution into a wff ex...
sbccsb2 4400 Substitution into a wff ex...
rspcsbela 4401 Special case related to ~ ...
sbnfc2 4402 Two ways of expressing " `...
csbab 4403 Move substitution into a c...
csbun 4404 Distribution of class subs...
csbin 4405 Distribute proper substitu...
csbie2df 4406 Conversion of implicit sub...
2nreu 4407 If there are two different...
un00 4408 Two classes are empty iff ...
vss 4409 Only the universal class h...
0pss 4410 The null set is a proper s...
npss0 4411 No set is a proper subset ...
pssv 4412 Any non-universal class is...
disj 4413 Two ways of saying that tw...
disjr 4414 Two ways of saying that tw...
disj1 4415 Two ways of saying that tw...
reldisj 4416 Two ways of saying that tw...
disj3 4417 Two ways of saying that tw...
disjne 4418 Members of disjoint sets a...
disjeq0 4419 Two disjoint sets are equa...
disjel 4420 A set can't belong to both...
disj2 4421 Two ways of saying that tw...
disj4 4422 Two ways of saying that tw...
ssdisj 4423 Intersection with a subcla...
disjpss 4424 A class is a proper subset...
undisj1 4425 The union of disjoint clas...
undisj2 4426 The union of disjoint clas...
ssindif0 4427 Subclass expressed in term...
inelcm 4428 The intersection of classe...
minel 4429 A minimum element of a cla...
undif4 4430 Distribute union over diff...
disjssun 4431 Subset relation for disjoi...
vdif0 4432 Universal class equality i...
difrab0eq 4433 If the difference between ...
pssnel 4434 A proper subclass has a me...
disjdif 4435 A class and its relative c...
disjdifr 4436 A class and its relative c...
difin0 4437 The difference of a class ...
unvdif 4438 The union of a class and i...
undif1 4439 Absorption of difference b...
undif2 4440 Absorption of difference b...
undifabs 4441 Absorption of difference b...
inundif 4442 The intersection and class...
disjdif2 4443 The difference of a class ...
difun2 4444 Absorption of union by dif...
undif 4445 Union of complementary par...
undifr 4446 Union of complementary par...
undifrOLD 4447 Obsolete version of ~ undi...
undif5 4448 An equality involving clas...
ssdifin0 4449 A subset of a difference d...
ssdifeq0 4450 A class is a subclass of i...
ssundif 4451 A condition equivalent to ...
difcom 4452 Swap the arguments of a cl...
pssdifcom1 4453 Two ways to express overla...
pssdifcom2 4454 Two ways to express non-co...
difdifdir 4455 Distributive law for class...
uneqdifeq 4456 Two ways to say that ` A `...
raldifeq 4457 Equality theorem for restr...
r19.2z 4458 Theorem 19.2 of [Margaris]...
r19.2zb 4459 A response to the notion t...
r19.3rz 4460 Restricted quantification ...
r19.28z 4461 Restricted quantifier vers...
r19.3rzv 4462 Restricted quantification ...
r19.9rzv 4463 Restricted quantification ...
r19.28zv 4464 Restricted quantifier vers...
r19.37zv 4465 Restricted quantifier vers...
r19.45zv 4466 Restricted version of Theo...
r19.44zv 4467 Restricted version of Theo...
r19.27z 4468 Restricted quantifier vers...
r19.27zv 4469 Restricted quantifier vers...
r19.36zv 4470 Restricted quantifier vers...
ralidmw 4471 Idempotent law for restric...
rzal 4472 Vacuous quantification is ...
rzalALT 4473 Alternate proof of ~ rzal ...
rexn0 4474 Restricted existential qua...
ralidm 4475 Idempotent law for restric...
ral0 4476 Vacuous universal quantifi...
ralf0 4477 The quantification of a fa...
ralnralall 4478 A contradiction concerning...
falseral0 4479 A false statement can only...
raaan 4480 Rearrange restricted quant...
raaanv 4481 Rearrange restricted quant...
sbss 4482 Set substitution into the ...
sbcssg 4483 Distribute proper substitu...
raaan2 4484 Rearrange restricted quant...
2reu4lem 4485 Lemma for ~ 2reu4 . (Cont...
2reu4 4486 Definition of double restr...
csbdif 4487 Distribution of class subs...
dfif2 4490 An alternate definition of...
dfif6 4491 An alternate definition of...
ifeq1 4492 Equality theorem for condi...
ifeq2 4493 Equality theorem for condi...
iftrue 4494 Value of the conditional o...
iftruei 4495 Inference associated with ...
iftrued 4496 Value of the conditional o...
iffalse 4497 Value of the conditional o...
iffalsei 4498 Inference associated with ...
iffalsed 4499 Value of the conditional o...
ifnefalse 4500 When values are unequal, b...
iftrueb 4501 When the branches are not ...
ifsb 4502 Distribute a function over...
dfif3 4503 Alternate definition of th...
dfif4 4504 Alternate definition of th...
dfif5 4505 Alternate definition of th...
ifssun 4506 A conditional class is inc...
ifeq12 4507 Equality theorem for condi...
ifeq1d 4508 Equality deduction for con...
ifeq2d 4509 Equality deduction for con...
ifeq12d 4510 Equality deduction for con...
ifbi 4511 Equivalence theorem for co...
ifbid 4512 Equivalence deduction for ...
ifbieq1d 4513 Equivalence/equality deduc...
ifbieq2i 4514 Equivalence/equality infer...
ifbieq2d 4515 Equivalence/equality deduc...
ifbieq12i 4516 Equivalence deduction for ...
ifbieq12d 4517 Equivalence deduction for ...
nfifd 4518 Deduction form of ~ nfif ....
nfif 4519 Bound-variable hypothesis ...
ifeq1da 4520 Conditional equality. (Co...
ifeq2da 4521 Conditional equality. (Co...
ifeq12da 4522 Equivalence deduction for ...
ifbieq12d2 4523 Equivalence deduction for ...
ifclda 4524 Conditional closure. (Con...
ifeqda 4525 Separation of the values o...
elimif 4526 Elimination of a condition...
ifbothda 4527 A wff ` th ` containing a ...
ifboth 4528 A wff ` th ` containing a ...
ifid 4529 Identical true and false a...
eqif 4530 Expansion of an equality w...
ifval 4531 Another expression of the ...
elif 4532 Membership in a conditiona...
ifel 4533 Membership of a conditiona...
ifcl 4534 Membership (closure) of a ...
ifcld 4535 Membership (closure) of a ...
ifcli 4536 Inference associated with ...
ifexd 4537 Existence of the condition...
ifexg 4538 Existence of the condition...
ifex 4539 Existence of the condition...
ifeqor 4540 The possible values of a c...
ifnot 4541 Negating the first argumen...
ifan 4542 Rewrite a conjunction in a...
ifor 4543 Rewrite a disjunction in a...
2if2 4544 Resolve two nested conditi...
ifcomnan 4545 Commute the conditions in ...
csbif 4546 Distribute proper substitu...
dedth 4547 Weak deduction theorem tha...
dedth2h 4548 Weak deduction theorem eli...
dedth3h 4549 Weak deduction theorem eli...
dedth4h 4550 Weak deduction theorem eli...
dedth2v 4551 Weak deduction theorem for...
dedth3v 4552 Weak deduction theorem for...
dedth4v 4553 Weak deduction theorem for...
elimhyp 4554 Eliminate a hypothesis con...
elimhyp2v 4555 Eliminate a hypothesis con...
elimhyp3v 4556 Eliminate a hypothesis con...
elimhyp4v 4557 Eliminate a hypothesis con...
elimel 4558 Eliminate a membership hyp...
elimdhyp 4559 Version of ~ elimhyp where...
keephyp 4560 Transform a hypothesis ` p...
keephyp2v 4561 Keep a hypothesis containi...
keephyp3v 4562 Keep a hypothesis containi...
pwjust 4564 Soundness justification th...
elpwg 4566 Membership in a power clas...
elpw 4567 Membership in a power clas...
velpw 4568 Setvar variable membership...
elpwd 4569 Membership in a power clas...
elpwi 4570 Subset relation implied by...
elpwb 4571 Characterization of the el...
elpwid 4572 An element of a power clas...
elelpwi 4573 If ` A ` belongs to a part...
sspw 4574 The powerclass preserves i...
sspwi 4575 The powerclass preserves i...
sspwd 4576 The powerclass preserves i...
pweq 4577 Equality theorem for power...
pweqALT 4578 Alternate proof of ~ pweq ...
pweqi 4579 Equality inference for pow...
pweqd 4580 Equality deduction for pow...
pwunss 4581 The power class of the uni...
nfpw 4582 Bound-variable hypothesis ...
pwidg 4583 A set is an element of its...
pwidb 4584 A class is an element of i...
pwid 4585 A set is a member of its p...
pwss 4586 Subclass relationship for ...
pwundif 4587 Break up the power class o...
snjust 4588 Soundness justification th...
sneq 4599 Equality theorem for singl...
sneqi 4600 Equality inference for sin...
sneqd 4601 Equality deduction for sin...
dfsn2 4602 Alternate definition of si...
elsng 4603 There is exactly one eleme...
elsn 4604 There is exactly one eleme...
velsn 4605 There is only one element ...
elsni 4606 There is at most one eleme...
elsnd 4607 There is at most one eleme...
rabsneq 4608 Equality of class abstract...
absn 4609 Condition for a class abst...
dfpr2 4610 Alternate definition of a ...
dfsn2ALT 4611 Alternate definition of si...
elprg 4612 A member of a pair of clas...
elpri 4613 If a class is an element o...
elpr 4614 A member of a pair of clas...
elpr2g 4615 A member of a pair of sets...
elpr2 4616 A member of a pair of sets...
nelpr2 4617 If a class is not an eleme...
nelpr1 4618 If a class is not an eleme...
nelpri 4619 If an element doesn't matc...
prneli 4620 If an element doesn't matc...
nelprd 4621 If an element doesn't matc...
eldifpr 4622 Membership in a set with t...
rexdifpr 4623 Restricted existential qua...
snidg 4624 A set is a member of its s...
snidb 4625 A class is a set iff it is...
snid 4626 A set is a member of its s...
vsnid 4627 A setvar variable is a mem...
elsn2g 4628 There is exactly one eleme...
elsn2 4629 There is exactly one eleme...
nelsn 4630 If a class is not equal to...
rabeqsn 4631 Conditions for a restricte...
rabsssn 4632 Conditions for a restricte...
rabeqsnd 4633 Conditions for a restricte...
ralsnsg 4634 Substitution expressed in ...
rexsns 4635 Restricted existential qua...
rexsngf 4636 Restricted existential qua...
ralsngf 4637 Restricted universal quant...
reusngf 4638 Restricted existential uni...
ralsng 4639 Substitution expressed in ...
rexsng 4640 Restricted existential qua...
reusng 4641 Restricted existential uni...
2ralsng 4642 Substitution expressed in ...
rexreusng 4643 Restricted existential uni...
exsnrex 4644 There is a set being the e...
ralsn 4645 Convert a universal quanti...
rexsn 4646 Convert an existential qua...
elunsn 4647 Elementhood in a union wit...
elpwunsn 4648 Membership in an extension...
eqoreldif 4649 An element of a set is eit...
eltpg 4650 Members of an unordered tr...
eldiftp 4651 Membership in a set with t...
eltpi 4652 A member of an unordered t...
eltp 4653 A member of an unordered t...
el7g 4654 Members of a set with seve...
dftp2 4655 Alternate definition of un...
nfpr 4656 Bound-variable hypothesis ...
ifpr 4657 Membership of a conditiona...
ralprgf 4658 Convert a restricted unive...
rexprgf 4659 Convert a restricted exist...
ralprg 4660 Convert a restricted unive...
rexprg 4661 Convert a restricted exist...
raltpg 4662 Convert a restricted unive...
rextpg 4663 Convert a restricted exist...
ralpr 4664 Convert a restricted unive...
rexpr 4665 Convert a restricted exist...
reuprg0 4666 Convert a restricted exist...
reuprg 4667 Convert a restricted exist...
reurexprg 4668 Convert a restricted exist...
raltp 4669 Convert a universal quanti...
rextp 4670 Convert an existential qua...
nfsn 4671 Bound-variable hypothesis ...
csbsng 4672 Distribute proper substitu...
csbprg 4673 Distribute proper substitu...
elinsn 4674 If the intersection of two...
disjsn 4675 Intersection with the sing...
disjsn2 4676 Two distinct singletons ar...
disjpr2 4677 Two completely distinct un...
disjprsn 4678 The disjoint intersection ...
disjtpsn 4679 The disjoint intersection ...
disjtp2 4680 Two completely distinct un...
snprc 4681 The singleton of a proper ...
snnzb 4682 A singleton is nonempty if...
rmosn 4683 A restricted at-most-one q...
r19.12sn 4684 Special case of ~ r19.12 w...
rabsn 4685 Condition where a restrict...
rabsnifsb 4686 A restricted class abstrac...
rabsnif 4687 A restricted class abstrac...
rabrsn 4688 A restricted class abstrac...
euabsn2 4689 Another way to express exi...
euabsn 4690 Another way to express exi...
reusn 4691 A way to express restricte...
absneu 4692 Restricted existential uni...
rabsneu 4693 Restricted existential uni...
eusn 4694 Two ways to express " ` A ...
rabsnt 4695 Truth implied by equality ...
prcom 4696 Commutative law for unorde...
preq1 4697 Equality theorem for unord...
preq2 4698 Equality theorem for unord...
preq12 4699 Equality theorem for unord...
preq1i 4700 Equality inference for uno...
preq2i 4701 Equality inference for uno...
preq12i 4702 Equality inference for uno...
preq1d 4703 Equality deduction for uno...
preq2d 4704 Equality deduction for uno...
preq12d 4705 Equality deduction for uno...
tpeq1 4706 Equality theorem for unord...
tpeq2 4707 Equality theorem for unord...
tpeq3 4708 Equality theorem for unord...
tpeq1d 4709 Equality theorem for unord...
tpeq2d 4710 Equality theorem for unord...
tpeq3d 4711 Equality theorem for unord...
tpeq123d 4712 Equality theorem for unord...
tprot 4713 Rotation of the elements o...
tpcoma 4714 Swap 1st and 2nd members o...
tpcomb 4715 Swap 2nd and 3rd members o...
tpass 4716 Split off the first elemen...
qdass 4717 Two ways to write an unord...
qdassr 4718 Two ways to write an unord...
tpidm12 4719 Unordered triple ` { A , A...
tpidm13 4720 Unordered triple ` { A , B...
tpidm23 4721 Unordered triple ` { A , B...
tpidm 4722 Unordered triple ` { A , A...
tppreq3 4723 An unordered triple is an ...
prid1g 4724 An unordered pair contains...
prid2g 4725 An unordered pair contains...
prid1 4726 An unordered pair contains...
prid2 4727 An unordered pair contains...
ifpprsnss 4728 An unordered pair is a sin...
prprc1 4729 A proper class vanishes in...
prprc2 4730 A proper class vanishes in...
prprc 4731 An unordered pair containi...
tpid1 4732 One of the three elements ...
tpid1g 4733 Closed theorem form of ~ t...
tpid2 4734 One of the three elements ...
tpid2g 4735 Closed theorem form of ~ t...
tpid3g 4736 Closed theorem form of ~ t...
tpid3 4737 One of the three elements ...
snnzg 4738 The singleton of a set is ...
snn0d 4739 The singleton of a set is ...
snnz 4740 The singleton of a set is ...
prnz 4741 A pair containing a set is...
prnzg 4742 A pair containing a set is...
tpnz 4743 An unordered triple contai...
tpnzd 4744 An unordered triple contai...
raltpd 4745 Convert a universal quanti...
snssb 4746 Characterization of the in...
snssg 4747 The singleton formed on a ...
snssgOLD 4748 Obsolete version of ~ snss...
snss 4749 The singleton of an elemen...
eldifsn 4750 Membership in a set with a...
eldifsnd 4751 Membership in a set with a...
ssdifsn 4752 Subset of a set with an el...
elpwdifsn 4753 A subset of a set is an el...
eldifsni 4754 Membership in a set with a...
eldifsnneq 4755 An element of a difference...
neldifsn 4756 The class ` A ` is not in ...
neldifsnd 4757 The class ` A ` is not in ...
rexdifsn 4758 Restricted existential qua...
raldifsni 4759 Rearrangement of a propert...
raldifsnb 4760 Restricted universal quant...
eldifvsn 4761 A set is an element of the...
difsn 4762 An element not in a set ca...
difprsnss 4763 Removal of a singleton fro...
difprsn1 4764 Removal of a singleton fro...
difprsn2 4765 Removal of a singleton fro...
diftpsn3 4766 Removal of a singleton fro...
difpr 4767 Removing two elements as p...
tpprceq3 4768 An unordered triple is an ...
tppreqb 4769 An unordered triple is an ...
difsnb 4770 ` ( B \ { A } ) ` equals `...
difsnpss 4771 ` ( B \ { A } ) ` is a pro...
snssi 4772 The singleton of an elemen...
snssd 4773 The singleton of an elemen...
difsnid 4774 If we remove a single elem...
eldifeldifsn 4775 An element of a difference...
pw0 4776 Compute the power set of t...
pwpw0 4777 Compute the power set of t...
snsspr1 4778 A singleton is a subset of...
snsspr2 4779 A singleton is a subset of...
snsstp1 4780 A singleton is a subset of...
snsstp2 4781 A singleton is a subset of...
snsstp3 4782 A singleton is a subset of...
prssg 4783 A pair of elements of a cl...
prss 4784 A pair of elements of a cl...
prssi 4785 A pair of elements of a cl...
prssd 4786 Deduction version of ~ prs...
prsspwg 4787 An unordered pair belongs ...
ssprss 4788 A pair as subset of a pair...
ssprsseq 4789 A proper pair is a subset ...
sssn 4790 The subsets of a singleton...
ssunsn2 4791 The property of being sand...
ssunsn 4792 Possible values for a set ...
eqsn 4793 Two ways to express that a...
eqsnd 4794 Deduce that a set is a sin...
eqsndOLD 4795 Obsolete version of ~ eqsn...
issn 4796 A sufficient condition for...
n0snor2el 4797 A nonempty set is either a...
ssunpr 4798 Possible values for a set ...
sspr 4799 The subsets of a pair. (C...
sstp 4800 The subsets of an unordere...
tpss 4801 An unordered triple of ele...
tpssi 4802 An unordered triple of ele...
sneqrg 4803 Closed form of ~ sneqr . ...
sneqr 4804 If the singletons of two s...
snsssn 4805 If a singleton is a subset...
mosneq 4806 There exists at most one s...
sneqbg 4807 Two singletons of sets are...
snsspw 4808 The singleton of a class i...
prsspw 4809 An unordered pair belongs ...
preq1b 4810 Biconditional equality lem...
preq2b 4811 Biconditional equality lem...
preqr1 4812 Reverse equality lemma for...
preqr2 4813 Reverse equality lemma for...
preq12b 4814 Equality relationship for ...
opthpr 4815 An unordered pair has the ...
preqr1g 4816 Reverse equality lemma for...
preq12bg 4817 Closed form of ~ preq12b ....
prneimg 4818 Two pairs are not equal if...
prneimg2 4819 Two pairs are not equal if...
prnebg 4820 A (proper) pair is not equ...
pr1eqbg 4821 A (proper) pair is equal t...
pr1nebg 4822 A (proper) pair is not equ...
preqsnd 4823 Equivalence for a pair equ...
prnesn 4824 A proper unordered pair is...
prneprprc 4825 A proper unordered pair is...
preqsn 4826 Equivalence for a pair equ...
preq12nebg 4827 Equality relationship for ...
prel12g 4828 Equality of two unordered ...
opthprneg 4829 An unordered pair has the ...
elpreqprlem 4830 Lemma for ~ elpreqpr . (C...
elpreqpr 4831 Equality and membership ru...
elpreqprb 4832 A set is an element of an ...
elpr2elpr 4833 For an element ` A ` of an...
dfopif 4834 Rewrite ~ df-op using ` if...
dfopg 4835 Value of the ordered pair ...
dfop 4836 Value of an ordered pair w...
opeq1 4837 Equality theorem for order...
opeq2 4838 Equality theorem for order...
opeq12 4839 Equality theorem for order...
opeq1i 4840 Equality inference for ord...
opeq2i 4841 Equality inference for ord...
opeq12i 4842 Equality inference for ord...
opeq1d 4843 Equality deduction for ord...
opeq2d 4844 Equality deduction for ord...
opeq12d 4845 Equality deduction for ord...
oteq1 4846 Equality theorem for order...
oteq2 4847 Equality theorem for order...
oteq3 4848 Equality theorem for order...
oteq1d 4849 Equality deduction for ord...
oteq2d 4850 Equality deduction for ord...
oteq3d 4851 Equality deduction for ord...
oteq123d 4852 Equality deduction for ord...
nfop 4853 Bound-variable hypothesis ...
nfopd 4854 Deduction version of bound...
csbopg 4855 Distribution of class subs...
opidg 4856 The ordered pair ` <. A , ...
opid 4857 The ordered pair ` <. A , ...
ralunsn 4858 Restricted quantification ...
2ralunsn 4859 Double restricted quantifi...
opprc 4860 Expansion of an ordered pa...
opprc1 4861 Expansion of an ordered pa...
opprc2 4862 Expansion of an ordered pa...
oprcl 4863 If an ordered pair has an ...
pwsn 4864 The power set of a singlet...
pwpr 4865 The power set of an unorde...
pwtp 4866 The power set of an unorde...
pwpwpw0 4867 Compute the power set of t...
pwv 4868 The power class of the uni...
prproe 4869 For an element of a proper...
3elpr2eq 4870 If there are three element...
dfuni2 4873 Alternate definition of cl...
eluni 4874 Membership in class union....
eluni2 4875 Membership in class union....
elunii 4876 Membership in class union....
nfunid 4877 Deduction version of ~ nfu...
nfuni 4878 Bound-variable hypothesis ...
uniss 4879 Subclass relationship for ...
unissi 4880 Subclass relationship for ...
unissd 4881 Subclass relationship for ...
unieq 4882 Equality theorem for class...
unieqi 4883 Inference of equality of t...
unieqd 4884 Deduction of equality of t...
eluniab 4885 Membership in union of a c...
elunirab 4886 Membership in union of a c...
uniprg 4887 The union of a pair is the...
unipr 4888 The union of a pair is the...
unisng 4889 A set equals the union of ...
unisn 4890 A set equals the union of ...
unisnv 4891 A set equals the union of ...
unisn3 4892 Union of a singleton in th...
dfnfc2 4893 An alternative statement o...
uniun 4894 The class union of the uni...
uniin 4895 The class union of the int...
ssuni 4896 Subclass relationship for ...
uni0b 4897 The union of a set is empt...
uni0c 4898 The union of a set is empt...
uni0 4899 The union of the empty set...
csbuni 4900 Distribute proper substitu...
elssuni 4901 An element of a class is a...
unissel 4902 Condition turning a subcla...
unissb 4903 Relationship involving mem...
unissbOLD 4904 Obsolete version of ~ unis...
uniss2 4905 A subclass condition on th...
unidif 4906 If the difference ` A \ B ...
ssunieq 4907 Relationship implying unio...
unimax 4908 Any member of a class is t...
pwuni 4909 A class is a subclass of t...
dfint2 4912 Alternate definition of cl...
inteq 4913 Equality law for intersect...
inteqi 4914 Equality inference for cla...
inteqd 4915 Equality deduction for cla...
elint 4916 Membership in class inters...
elint2 4917 Membership in class inters...
elintg 4918 Membership in class inters...
elinti 4919 Membership in class inters...
nfint 4920 Bound-variable hypothesis ...
elintabg 4921 Two ways of saying a set i...
elintab 4922 Membership in the intersec...
elintabOLD 4923 Obsolete version of ~ elin...
elintrab 4924 Membership in the intersec...
elintrabg 4925 Membership in the intersec...
int0 4926 The intersection of the em...
intss1 4927 An element of a class incl...
ssint 4928 Subclass of a class inters...
ssintab 4929 Subclass of the intersecti...
ssintub 4930 Subclass of the least uppe...
ssmin 4931 Subclass of the minimum va...
intmin 4932 Any member of a class is t...
intss 4933 Intersection of subclasses...
intssuni 4934 The intersection of a none...
ssintrab 4935 Subclass of the intersecti...
unissint 4936 If the union of a class is...
intssuni2 4937 Subclass relationship for ...
intminss 4938 Under subset ordering, the...
intmin2 4939 Any set is the smallest of...
intmin3 4940 Under subset ordering, the...
intmin4 4941 Elimination of a conjunct ...
intab 4942 The intersection of a spec...
int0el 4943 The intersection of a clas...
intun 4944 The class intersection of ...
intprg 4945 The intersection of a pair...
intpr 4946 The intersection of a pair...
intsng 4947 Intersection of a singleto...
intsn 4948 The intersection of a sing...
uniintsn 4949 Two ways to express " ` A ...
uniintab 4950 The union and the intersec...
intunsn 4951 Theorem joining a singleto...
rint0 4952 Relative intersection of a...
elrint 4953 Membership in a restricted...
elrint2 4954 Membership in a restricted...
eliun 4959 Membership in indexed unio...
eliin 4960 Membership in indexed inte...
eliuni 4961 Membership in an indexed u...
eliund 4962 Membership in indexed unio...
iuncom 4963 Commutation of indexed uni...
iuncom4 4964 Commutation of union with ...
iunconst 4965 Indexed union of a constan...
iinconst 4966 Indexed intersection of a ...
iuneqconst 4967 Indexed union of identical...
iuniin 4968 Law combining indexed unio...
iinssiun 4969 An indexed intersection is...
iunss1 4970 Subclass theorem for index...
iinss1 4971 Subclass theorem for index...
iuneq1 4972 Equality theorem for index...
iineq1 4973 Equality theorem for index...
ss2iun 4974 Subclass theorem for index...
iuneq2 4975 Equality theorem for index...
iineq2 4976 Equality theorem for index...
iuneq2i 4977 Equality inference for ind...
iineq2i 4978 Equality inference for ind...
iineq2d 4979 Equality deduction for ind...
iuneq2dv 4980 Equality deduction for ind...
iineq2dv 4981 Equality deduction for ind...
iuneq12df 4982 Equality deduction for ind...
iuneq1d 4983 Equality theorem for index...
iuneq12dOLD 4984 Obsolete version of ~ iune...
iuneq12d 4985 Equality deduction for ind...
iuneq2d 4986 Equality deduction for ind...
nfiun 4987 Bound-variable hypothesis ...
nfiin 4988 Bound-variable hypothesis ...
nfiung 4989 Bound-variable hypothesis ...
nfiing 4990 Bound-variable hypothesis ...
nfiu1 4991 Bound-variable hypothesis ...
nfiu1OLD 4992 Obsolete version of ~ nfiu...
nfii1 4993 Bound-variable hypothesis ...
dfiun2g 4994 Alternate definition of in...
dfiun2gOLD 4995 Obsolete version of ~ dfiu...
dfiin2g 4996 Alternate definition of in...
dfiun2 4997 Alternate definition of in...
dfiin2 4998 Alternate definition of in...
dfiunv2 4999 Define double indexed unio...
cbviun 5000 Rule used to change the bo...
cbviin 5001 Change bound variables in ...
cbviung 5002 Rule used to change the bo...
cbviing 5003 Change bound variables in ...
cbviunv 5004 Rule used to change the bo...
cbviinv 5005 Change bound variables in ...
cbviunvg 5006 Rule used to change the bo...
cbviinvg 5007 Change bound variables in ...
iunssf 5008 Subset theorem for an inde...
iunss 5009 Subset theorem for an inde...
ssiun 5010 Subset implication for an ...
ssiun2 5011 Identity law for subset of...
ssiun2s 5012 Subset relationship for an...
iunss2 5013 A subclass condition on th...
iunssd 5014 Subset theorem for an inde...
iunab 5015 The indexed union of a cla...
iunrab 5016 The indexed union of a res...
iunxdif2 5017 Indexed union with a class...
ssiinf 5018 Subset theorem for an inde...
ssiin 5019 Subset theorem for an inde...
iinss 5020 Subset implication for an ...
iinss2 5021 An indexed intersection is...
uniiun 5022 Class union in terms of in...
intiin 5023 Class intersection in term...
iunid 5024 An indexed union of single...
iunidOLD 5025 Obsolete version of ~ iuni...
iun0 5026 An indexed union of the em...
0iun 5027 An empty indexed union is ...
0iin 5028 An empty indexed intersect...
viin 5029 Indexed intersection with ...
iunsn 5030 Indexed union of a singlet...
iunn0 5031 There is a nonempty class ...
iinab 5032 Indexed intersection of a ...
iinrab 5033 Indexed intersection of a ...
iinrab2 5034 Indexed intersection of a ...
iunin2 5035 Indexed union of intersect...
iunin1 5036 Indexed union of intersect...
iinun2 5037 Indexed intersection of un...
iundif2 5038 Indexed union of class dif...
iindif1 5039 Indexed intersection of cl...
2iunin 5040 Rearrange indexed unions o...
iindif2 5041 Indexed intersection of cl...
iinin2 5042 Indexed intersection of in...
iinin1 5043 Indexed intersection of in...
iinvdif 5044 The indexed intersection o...
elriin 5045 Elementhood in a relative ...
riin0 5046 Relative intersection of a...
riinn0 5047 Relative intersection of a...
riinrab 5048 Relative intersection of a...
symdif0 5049 Symmetric difference with ...
symdifv 5050 The symmetric difference w...
symdifid 5051 The symmetric difference o...
iinxsng 5052 A singleton index picks ou...
iinxprg 5053 Indexed intersection with ...
iunxsng 5054 A singleton index picks ou...
iunxsn 5055 A singleton index picks ou...
iunxsngf 5056 A singleton index picks ou...
iunun 5057 Separate a union in an ind...
iunxun 5058 Separate a union in the in...
iunxdif3 5059 An indexed union where som...
iunxprg 5060 A pair index picks out two...
iunxiun 5061 Separate an indexed union ...
iinuni 5062 A relationship involving u...
iununi 5063 A relationship involving u...
sspwuni 5064 Subclass relationship for ...
pwssb 5065 Two ways to express a coll...
elpwpw 5066 Characterization of the el...
pwpwab 5067 The double power class wri...
pwpwssunieq 5068 The class of sets whose un...
elpwuni 5069 Relationship for power cla...
iinpw 5070 The power class of an inte...
iunpwss 5071 Inclusion of an indexed un...
intss2 5072 A nonempty intersection of...
rintn0 5073 Relative intersection of a...
dfdisj2 5076 Alternate definition for d...
disjss2 5077 If each element of a colle...
disjeq2 5078 Equality theorem for disjo...
disjeq2dv 5079 Equality deduction for dis...
disjss1 5080 A subset of a disjoint col...
disjeq1 5081 Equality theorem for disjo...
disjeq1d 5082 Equality theorem for disjo...
disjeq12d 5083 Equality theorem for disjo...
cbvdisj 5084 Change bound variables in ...
cbvdisjv 5085 Change bound variables in ...
nfdisjw 5086 Bound-variable hypothesis ...
nfdisj 5087 Bound-variable hypothesis ...
nfdisj1 5088 Bound-variable hypothesis ...
disjor 5089 Two ways to say that a col...
disjors 5090 Two ways to say that a col...
disji2 5091 Property of a disjoint col...
disji 5092 Property of a disjoint col...
invdisj 5093 If there is a function ` C...
invdisjrab 5094 The restricted class abstr...
disjiun 5095 A disjoint collection yiel...
disjord 5096 Conditions for a collectio...
disjiunb 5097 Two ways to say that a col...
disjiund 5098 Conditions for a collectio...
sndisj 5099 Any collection of singleto...
0disj 5100 Any collection of empty se...
disjxsn 5101 A singleton collection is ...
disjx0 5102 An empty collection is dis...
disjprg 5103 A pair collection is disjo...
disjxiun 5104 An indexed union of a disj...
disjxun 5105 The union of two disjoint ...
disjss3 5106 Expand a disjoint collecti...
breq 5109 Equality theorem for binar...
breq1 5110 Equality theorem for a bin...
breq2 5111 Equality theorem for a bin...
breq12 5112 Equality theorem for a bin...
breqi 5113 Equality inference for bin...
breq1i 5114 Equality inference for a b...
breq2i 5115 Equality inference for a b...
breq12i 5116 Equality inference for a b...
breq1d 5117 Equality deduction for a b...
breqd 5118 Equality deduction for a b...
breq2d 5119 Equality deduction for a b...
breq12d 5120 Equality deduction for a b...
breq123d 5121 Equality deduction for a b...
breqdi 5122 Equality deduction for a b...
breqan12d 5123 Equality deduction for a b...
breqan12rd 5124 Equality deduction for a b...
eqnbrtrd 5125 Substitution of equal clas...
nbrne1 5126 Two classes are different ...
nbrne2 5127 Two classes are different ...
eqbrtri 5128 Substitution of equal clas...
eqbrtrd 5129 Substitution of equal clas...
eqbrtrri 5130 Substitution of equal clas...
eqbrtrrd 5131 Substitution of equal clas...
breqtri 5132 Substitution of equal clas...
breqtrd 5133 Substitution of equal clas...
breqtrri 5134 Substitution of equal clas...
breqtrrd 5135 Substitution of equal clas...
3brtr3i 5136 Substitution of equality i...
3brtr4i 5137 Substitution of equality i...
3brtr3d 5138 Substitution of equality i...
3brtr4d 5139 Substitution of equality i...
3brtr3g 5140 Substitution of equality i...
3brtr4g 5141 Substitution of equality i...
eqbrtrid 5142 A chained equality inferen...
eqbrtrrid 5143 A chained equality inferen...
breqtrid 5144 A chained equality inferen...
breqtrrid 5145 A chained equality inferen...
eqbrtrdi 5146 A chained equality inferen...
eqbrtrrdi 5147 A chained equality inferen...
breqtrdi 5148 A chained equality inferen...
breqtrrdi 5149 A chained equality inferen...
ssbrd 5150 Deduction from a subclass ...
ssbr 5151 Implication from a subclas...
ssbri 5152 Inference from a subclass ...
nfbrd 5153 Deduction version of bound...
nfbr 5154 Bound-variable hypothesis ...
brab1 5155 Relationship between a bin...
br0 5156 The empty binary relation ...
brne0 5157 If two sets are in a binar...
brun 5158 The union of two binary re...
brin 5159 The intersection of two re...
brdif 5160 The difference of two bina...
sbcbr123 5161 Move substitution in and o...
sbcbr 5162 Move substitution in and o...
sbcbr12g 5163 Move substitution in and o...
sbcbr1g 5164 Move substitution in and o...
sbcbr2g 5165 Move substitution in and o...
brsymdif 5166 Characterization of the sy...
brralrspcev 5167 Restricted existential spe...
brimralrspcev 5168 Restricted existential spe...
opabss 5171 The collection of ordered ...
opabbid 5172 Equivalent wff's yield equ...
opabbidv 5173 Equivalent wff's yield equ...
opabbii 5174 Equivalent wff's yield equ...
nfopabd 5175 Bound-variable hypothesis ...
nfopab 5176 Bound-variable hypothesis ...
nfopab1 5177 The first abstraction vari...
nfopab2 5178 The second abstraction var...
cbvopab 5179 Rule used to change bound ...
cbvopabv 5180 Rule used to change bound ...
cbvopab1 5181 Change first bound variabl...
cbvopab1g 5182 Change first bound variabl...
cbvopab2 5183 Change second bound variab...
cbvopab1s 5184 Change first bound variabl...
cbvopab1v 5185 Rule used to change the fi...
cbvopab2v 5186 Rule used to change the se...
unopab 5187 Union of two ordered pair ...
mpteq12da 5190 An equality inference for ...
mpteq12df 5191 An equality inference for ...
mpteq12f 5192 An equality theorem for th...
mpteq12dva 5193 An equality inference for ...
mpteq12dv 5194 An equality inference for ...
mpteq12 5195 An equality theorem for th...
mpteq1 5196 An equality theorem for th...
mpteq1d 5197 An equality theorem for th...
mpteq1i 5198 An equality theorem for th...
mpteq2da 5199 Slightly more general equa...
mpteq2dva 5200 Slightly more general equa...
mpteq2dv 5201 An equality inference for ...
mpteq2ia 5202 An equality inference for ...
mpteq2i 5203 An equality inference for ...
mpteq12i 5204 An equality inference for ...
nfmpt 5205 Bound-variable hypothesis ...
nfmpt1 5206 Bound-variable hypothesis ...
cbvmptf 5207 Rule to change the bound v...
cbvmptfg 5208 Rule to change the bound v...
cbvmpt 5209 Rule to change the bound v...
cbvmptg 5210 Rule to change the bound v...
cbvmptv 5211 Rule to change the bound v...
cbvmptvg 5212 Rule to change the bound v...
mptv 5213 Function with universal do...
dftr2 5216 An alternate way of defini...
dftr2c 5217 Variant of ~ dftr2 with co...
dftr5 5218 An alternate way of defini...
dftr5OLD 5219 Obsolete version of ~ dftr...
dftr3 5220 An alternate way of defini...
dftr4 5221 An alternate way of defini...
treq 5222 Equality theorem for the t...
trel 5223 In a transitive class, the...
trel3 5224 In a transitive class, the...
trss 5225 An element of a transitive...
trin 5226 The intersection of transi...
tr0 5227 The empty set is transitiv...
trv 5228 The universe is transitive...
triun 5229 An indexed union of a clas...
truni 5230 The union of a class of tr...
triin 5231 An indexed intersection of...
trint 5232 The intersection of a clas...
trintss 5233 Any nonempty transitive cl...
axrep1 5235 The version of the Axiom o...
axreplem 5236 Lemma for ~ axrep2 and ~ a...
axrep2 5237 Axiom of Replacement expre...
axrep3 5238 Axiom of Replacement sligh...
axrep4v 5239 Version of ~ axrep4 with a...
axrep4 5240 A more traditional version...
axrep4OLD 5241 Obsolete version of ~ axre...
axrep5 5242 Axiom of Replacement (simi...
axrep6 5243 A condensed form of ~ ax-r...
axrep6OLD 5244 Obsolete version of ~ axre...
axrep6g 5245 ~ axrep6 in class notation...
zfrepclf 5246 An inference based on the ...
zfrep3cl 5247 An inference based on the ...
zfrep4 5248 A version of Replacement u...
axsepgfromrep 5249 A more general version ~ a...
axsep 5250 Axiom scheme of separation...
axsepg 5252 A more general version of ...
zfauscl 5253 Separation Scheme (Aussond...
sepexlem 5254 Lemma for ~ sepex . Use ~...
sepex 5255 Convert implication to equ...
sepexi 5256 Convert implication to equ...
bm1.3iiOLD 5257 Obsolete version of ~ sepe...
ax6vsep 5258 Derive ~ ax6v (a weakened ...
axnulALT 5259 Alternate proof of ~ axnul...
axnul 5260 The Null Set Axiom of ZF s...
0ex 5262 The Null Set Axiom of ZF s...
al0ssb 5263 The empty set is the uniqu...
sseliALT 5264 Alternate proof of ~ sseli...
csbexg 5265 The existence of proper su...
csbex 5266 The existence of proper su...
unisn2 5267 A version of ~ unisn witho...
nalset 5268 No set contains all sets. ...
vnex 5269 The universal class does n...
vprc 5270 The universal class is not...
nvel 5271 The universal class does n...
inex1 5272 Separation Scheme (Aussond...
inex2 5273 Separation Scheme (Aussond...
inex1g 5274 Closed-form, generalized S...
inex2g 5275 Sufficient condition for a...
ssex 5276 The subset of a set is als...
ssexi 5277 The subset of a set is als...
ssexg 5278 The subset of a set is als...
ssexd 5279 A subclass of a set is a s...
abexd 5280 Conditions for a class abs...
abex 5281 Conditions for a class abs...
prcssprc 5282 The superclass of a proper...
sselpwd 5283 Elementhood to a power set...
difexg 5284 Existence of a difference....
difexi 5285 Existence of a difference,...
difexd 5286 Existence of a difference....
zfausab 5287 Separation Scheme (Aussond...
elpw2g 5288 Membership in a power clas...
elpw2 5289 Membership in a power clas...
elpwi2 5290 Membership in a power clas...
rabelpw 5291 A restricted class abstrac...
rabexg 5292 Separation Scheme in terms...
rabexgOLD 5293 Obsolete version of ~ rabe...
rabex 5294 Separation Scheme in terms...
rabexd 5295 Separation Scheme in terms...
rabex2 5296 Separation Scheme in terms...
rab2ex 5297 A class abstraction based ...
elssabg 5298 Membership in a class abst...
intex 5299 The intersection of a none...
intnex 5300 If a class intersection is...
intexab 5301 The intersection of a none...
intexrab 5302 The intersection of a none...
iinexg 5303 The existence of a class i...
intabs 5304 Absorption of a redundant ...
inuni 5305 The intersection of a unio...
axpweq 5306 Two equivalent ways to exp...
pwnss 5307 The power set of a set is ...
pwne 5308 No set equals its power se...
difelpw 5309 A difference is an element...
class2set 5310 The class of elements of `...
0elpw 5311 Every power class contains...
pwne0 5312 A power class is never emp...
0nep0 5313 The empty set and its powe...
0inp0 5314 Something cannot be equal ...
unidif0 5315 The removal of the empty s...
eqsnuniex 5316 If a class is equal to the...
iin0 5317 An indexed intersection of...
notzfaus 5318 In the Separation Scheme ~...
intv 5319 The intersection of the un...
zfpow 5321 Axiom of Power Sets expres...
axpow2 5322 A variant of the Axiom of ...
axpow3 5323 A variant of the Axiom of ...
elALT2 5324 Alternate proof of ~ el us...
dtruALT2 5325 Alternate proof of ~ dtru ...
dtrucor 5326 Corollary of ~ dtru . Thi...
dtrucor2 5327 The theorem form of the de...
dvdemo1 5328 Demonstration of a theorem...
dvdemo2 5329 Demonstration of a theorem...
nfnid 5330 A setvar variable is not f...
nfcvb 5331 The "distinctor" expressio...
vpwex 5332 Power set axiom: the power...
pwexg 5333 Power set axiom expressed ...
pwexd 5334 Deduction version of the p...
pwex 5335 Power set axiom expressed ...
pwel 5336 Quantitative version of ~ ...
abssexg 5337 Existence of a class of su...
snexALT 5338 Alternate proof of ~ snex ...
p0ex 5339 The power set of the empty...
p0exALT 5340 Alternate proof of ~ p0ex ...
pp0ex 5341 The power set of the power...
ord3ex 5342 The ordinal number 3 is a ...
dtruALT 5343 Alternate proof of ~ dtru ...
axc16b 5344 This theorem shows that Ax...
eunex 5345 Existential uniqueness imp...
eusv1 5346 Two ways to express single...
eusvnf 5347 Even if ` x ` is free in `...
eusvnfb 5348 Two ways to say that ` A (...
eusv2i 5349 Two ways to express single...
eusv2nf 5350 Two ways to express single...
eusv2 5351 Two ways to express single...
reusv1 5352 Two ways to express single...
reusv2lem1 5353 Lemma for ~ reusv2 . (Con...
reusv2lem2 5354 Lemma for ~ reusv2 . (Con...
reusv2lem3 5355 Lemma for ~ reusv2 . (Con...
reusv2lem4 5356 Lemma for ~ reusv2 . (Con...
reusv2lem5 5357 Lemma for ~ reusv2 . (Con...
reusv2 5358 Two ways to express single...
reusv3i 5359 Two ways of expressing exi...
reusv3 5360 Two ways to express single...
eusv4 5361 Two ways to express single...
alxfr 5362 Transfer universal quantif...
ralxfrd 5363 Transfer universal quantif...
rexxfrd 5364 Transfer existential quant...
ralxfr2d 5365 Transfer universal quantif...
rexxfr2d 5366 Transfer existential quant...
ralxfrd2 5367 Transfer universal quantif...
rexxfrd2 5368 Transfer existence from a ...
ralxfr 5369 Transfer universal quantif...
ralxfrALT 5370 Alternate proof of ~ ralxf...
rexxfr 5371 Transfer existence from a ...
rabxfrd 5372 Membership in a restricted...
rabxfr 5373 Membership in a restricted...
reuhypd 5374 A theorem useful for elimi...
reuhyp 5375 A theorem useful for elimi...
zfpair 5376 The Axiom of Pairing of Ze...
axprALT 5377 Alternate proof of ~ axpr ...
axprlem1 5378 Lemma for ~ axpr . There ...
axprlem2 5379 Lemma for ~ axpr . There ...
axprlem3 5380 Lemma for ~ axpr . Elimin...
axprlem4 5381 Lemma for ~ axpr . If an ...
axpr 5382 Unabbreviated version of t...
axprlem3OLD 5383 Obsolete version of ~ axpr...
axprlem4OLD 5384 Obsolete version of ~ axpr...
axprlem5OLD 5385 Obsolete version of ~ axpr...
axprOLD 5386 Obsolete version of ~ axpr...
zfpair2 5388 Derive the abbreviated ver...
vsnex 5389 A singleton built on a set...
snexg 5390 A singleton built on a set...
snex 5391 A singleton is a set. The...
prex 5392 The Axiom of Pairing using...
exel 5393 There exist two sets, one ...
exexneq 5394 There exist two different ...
exneq 5395 Given any set (the " ` y `...
dtru 5396 Given any set (the " ` y `...
el 5397 Any set is an element of s...
sels 5398 If a class is a set, then ...
selsALT 5399 Alternate proof of ~ sels ...
elALT 5400 Alternate proof of ~ el , ...
dtruOLD 5401 Obsolete version of ~ dtru...
snelpwg 5402 A singleton of a set is a ...
snelpwi 5403 If a set is a member of a ...
snelpwiOLD 5404 Obsolete version of ~ snel...
snelpw 5405 A singleton of a set is a ...
prelpw 5406 An unordered pair of two s...
prelpwi 5407 If two sets are members of...
rext 5408 A theorem similar to exten...
sspwb 5409 The powerclass constructio...
unipw 5410 A class equals the union o...
univ 5411 The union of the universe ...
pwtr 5412 A class is transitive iff ...
ssextss 5413 An extensionality-like pri...
ssext 5414 An extensionality-like pri...
nssss 5415 Negation of subclass relat...
pweqb 5416 Classes are equal if and o...
intidg 5417 The intersection of all se...
intidOLD 5418 Obsolete version of ~ inti...
moabex 5419 "At most one" existence im...
rmorabex 5420 Restricted "at most one" e...
euabex 5421 The abstraction of a wff w...
nnullss 5422 A nonempty class (even if ...
exss 5423 Restricted existence in a ...
opex 5424 An ordered pair of classes...
otex 5425 An ordered triple of class...
elopg 5426 Characterization of the el...
elop 5427 Characterization of the el...
opi1 5428 One of the two elements in...
opi2 5429 One of the two elements of...
opeluu 5430 Each member of an ordered ...
op1stb 5431 Extract the first member o...
brv 5432 Two classes are always in ...
opnz 5433 An ordered pair is nonempt...
opnzi 5434 An ordered pair is nonempt...
opth1 5435 Equality of the first memb...
opth 5436 The ordered pair theorem. ...
opthg 5437 Ordered pair theorem. ` C ...
opth1g 5438 Equality of the first memb...
opthg2 5439 Ordered pair theorem. (Co...
opth2 5440 Ordered pair theorem. (Co...
opthneg 5441 Two ordered pairs are not ...
opthne 5442 Two ordered pairs are not ...
otth2 5443 Ordered triple theorem, wi...
otth 5444 Ordered triple theorem. (...
otthg 5445 Ordered triple theorem, cl...
otthne 5446 Contrapositive of the orde...
eqvinop 5447 A variable introduction la...
sbcop1 5448 The proper substitution of...
sbcop 5449 The proper substitution of...
copsexgw 5450 Version of ~ copsexg with ...
copsexg 5451 Substitution of class ` A ...
copsex2t 5452 Closed theorem form of ~ c...
copsex2g 5453 Implicit substitution infe...
copsex2dv 5454 Implicit substitution dedu...
copsex4g 5455 An implicit substitution i...
0nelop 5456 A property of ordered pair...
opwo0id 5457 An ordered pair is equal t...
opeqex 5458 Equivalence of existence i...
oteqex2 5459 Equivalence of existence i...
oteqex 5460 Equivalence of existence i...
opcom 5461 An ordered pair commutes i...
moop2 5462 "At most one" property of ...
opeqsng 5463 Equivalence for an ordered...
opeqsn 5464 Equivalence for an ordered...
opeqpr 5465 Equivalence for an ordered...
snopeqop 5466 Equivalence for an ordered...
propeqop 5467 Equivalence for an ordered...
propssopi 5468 If a pair of ordered pairs...
snopeqopsnid 5469 Equivalence for an ordered...
mosubopt 5470 "At most one" remains true...
mosubop 5471 "At most one" remains true...
euop2 5472 Transfer existential uniqu...
euotd 5473 Prove existential uniquene...
opthwiener 5474 Justification theorem for ...
uniop 5475 The union of an ordered pa...
uniopel 5476 Ordered pair membership is...
opthhausdorff 5477 Justification theorem for ...
opthhausdorff0 5478 Justification theorem for ...
otsndisj 5479 The singletons consisting ...
otiunsndisj 5480 The union of singletons co...
iunopeqop 5481 Implication of an ordered ...
brsnop 5482 Binary relation for an ord...
brtp 5483 A necessary and sufficient...
opabidw 5484 The law of concretion. Sp...
opabid 5485 The law of concretion. Sp...
elopabw 5486 Membership in a class abst...
elopab 5487 Membership in a class abst...
rexopabb 5488 Restricted existential qua...
vopelopabsb 5489 The law of concretion in t...
opelopabsb 5490 The law of concretion in t...
brabsb 5491 The law of concretion in t...
opelopabt 5492 Closed theorem form of ~ o...
opelopabga 5493 The law of concretion. Th...
brabga 5494 The law of concretion for ...
opelopab2a 5495 Ordered pair membership in...
opelopaba 5496 The law of concretion. Th...
braba 5497 The law of concretion for ...
opelopabg 5498 The law of concretion. Th...
brabg 5499 The law of concretion for ...
opelopabgf 5500 The law of concretion. Th...
opelopab2 5501 Ordered pair membership in...
opelopab 5502 The law of concretion. Th...
brab 5503 The law of concretion for ...
opelopabaf 5504 The law of concretion. Th...
opelopabf 5505 The law of concretion. Th...
ssopab2 5506 Equivalence of ordered pai...
ssopab2bw 5507 Equivalence of ordered pai...
eqopab2bw 5508 Equivalence of ordered pai...
ssopab2b 5509 Equivalence of ordered pai...
ssopab2i 5510 Inference of ordered pair ...
ssopab2dv 5511 Inference of ordered pair ...
eqopab2b 5512 Equivalence of ordered pai...
opabn0 5513 Nonempty ordered pair clas...
opab0 5514 Empty ordered pair class a...
csbopab 5515 Move substitution into a c...
csbopabgALT 5516 Move substitution into a c...
csbmpt12 5517 Move substitution into a m...
csbmpt2 5518 Move substitution into the...
iunopab 5519 Move indexed union inside ...
iunopabOLD 5520 Obsolete version of ~ iuno...
elopabr 5521 Membership in an ordered-p...
elopabran 5522 Membership in an ordered-p...
elopabrOLD 5523 Obsolete version of ~ elop...
rbropapd 5524 Properties of a pair in an...
rbropap 5525 Properties of a pair in a ...
2rbropap 5526 Properties of a pair in a ...
0nelopab 5527 The empty set is never an ...
brabv 5528 If two classes are in a re...
pwin 5529 The power class of the int...
pwssun 5530 The power class of the uni...
pwun 5531 The power class of the uni...
dfid4 5534 The identity function expr...
dfid2 5535 Alternate definition of th...
dfid3 5536 A stronger version of ~ df...
epelg 5539 The membership relation an...
epeli 5540 The membership relation an...
epel 5541 The membership relation an...
0sn0ep 5542 An example for the members...
epn0 5543 The membership relation is...
poss 5548 Subset theorem for the par...
poeq1 5549 Equality theorem for parti...
poeq2 5550 Equality theorem for parti...
poeq12d 5551 Equality deduction for par...
nfpo 5552 Bound-variable hypothesis ...
nfso 5553 Bound-variable hypothesis ...
pocl 5554 Characteristic properties ...
ispod 5555 Sufficient conditions for ...
swopolem 5556 Perform the substitutions ...
swopo 5557 A strict weak order is a p...
poirr 5558 A partial order is irrefle...
potr 5559 A partial order is a trans...
po2nr 5560 A partial order has no 2-c...
po3nr 5561 A partial order has no 3-c...
po2ne 5562 Two sets related by a part...
po0 5563 Any relation is a partial ...
pofun 5564 The inverse image of a par...
sopo 5565 A strict linear order is a...
soss 5566 Subset theorem for the str...
soeq1 5567 Equality theorem for the s...
soeq2 5568 Equality theorem for the s...
soeq12d 5569 Equality deduction for tot...
sonr 5570 A strict order relation is...
sotr 5571 A strict order relation is...
sotrd 5572 Transitivity law for stric...
solin 5573 A strict order relation is...
so2nr 5574 A strict order relation ha...
so3nr 5575 A strict order relation ha...
sotric 5576 A strict order relation sa...
sotrieq 5577 Trichotomy law for strict ...
sotrieq2 5578 Trichotomy law for strict ...
soasym 5579 Asymmetry law for strict o...
sotr2 5580 A transitivity relation. ...
issod 5581 An irreflexive, transitive...
issoi 5582 An irreflexive, transitive...
isso2i 5583 Deduce strict ordering fro...
so0 5584 Any relation is a strict o...
somo 5585 A totally ordered set has ...
sotrine 5586 Trichotomy law for strict ...
sotr3 5587 Transitivity law for stric...
dffr6 5594 Alternate definition of ~ ...
frd 5595 A nonempty subset of an ` ...
fri 5596 A nonempty subset of an ` ...
seex 5597 The ` R ` -preimage of an ...
exse 5598 Any relation on a set is s...
dffr2 5599 Alternate definition of we...
dffr2ALT 5600 Alternate proof of ~ dffr2...
frc 5601 Property of well-founded r...
frss 5602 Subset theorem for the wel...
sess1 5603 Subset theorem for the set...
sess2 5604 Subset theorem for the set...
freq1 5605 Equality theorem for the w...
freq2 5606 Equality theorem for the w...
freq12d 5607 Equality deduction for wel...
seeq1 5608 Equality theorem for the s...
seeq2 5609 Equality theorem for the s...
seeq12d 5610 Equality deduction for the...
nffr 5611 Bound-variable hypothesis ...
nfse 5612 Bound-variable hypothesis ...
nfwe 5613 Bound-variable hypothesis ...
frirr 5614 A well-founded relation is...
fr2nr 5615 A well-founded relation ha...
fr0 5616 Any relation is well-found...
frminex 5617 If an element of a well-fo...
efrirr 5618 A well-founded class does ...
efrn2lp 5619 A well-founded class conta...
epse 5620 The membership relation is...
tz7.2 5621 Similar to Theorem 7.2 of ...
dfepfr 5622 An alternate way of saying...
epfrc 5623 A subset of a well-founded...
wess 5624 Subset theorem for the wel...
weeq1 5625 Equality theorem for the w...
weeq2 5626 Equality theorem for the w...
weeq12d 5627 Equality deduction for wel...
wefr 5628 A well-ordering is well-fo...
weso 5629 A well-ordering is a stric...
wecmpep 5630 The elements of a class we...
wetrep 5631 On a class well-ordered by...
wefrc 5632 A nonempty subclass of a c...
we0 5633 Any relation is a well-ord...
wereu 5634 A nonempty subset of an ` ...
wereu2 5635 A nonempty subclass of an ...
xpeq1 5652 Equality theorem for Carte...
xpss12 5653 Subset theorem for Cartesi...
xpss 5654 A Cartesian product is inc...
inxpssres 5655 Intersection with a Cartes...
relxp 5656 A Cartesian product is a r...
xpss1 5657 Subset relation for Cartes...
xpss2 5658 Subset relation for Cartes...
xpeq2 5659 Equality theorem for Carte...
elxpi 5660 Membership in a Cartesian ...
elxp 5661 Membership in a Cartesian ...
elxp2 5662 Membership in a Cartesian ...
xpeq12 5663 Equality theorem for Carte...
xpeq1i 5664 Equality inference for Car...
xpeq2i 5665 Equality inference for Car...
xpeq12i 5666 Equality inference for Car...
xpeq1d 5667 Equality deduction for Car...
xpeq2d 5668 Equality deduction for Car...
xpeq12d 5669 Equality deduction for Car...
sqxpeqd 5670 Equality deduction for a C...
nfxp 5671 Bound-variable hypothesis ...
0nelxp 5672 The empty set is not a mem...
0nelelxp 5673 A member of a Cartesian pr...
opelxp 5674 Ordered pair membership in...
opelxpi 5675 Ordered pair membership in...
opelxpii 5676 Ordered pair membership in...
opelxpd 5677 Ordered pair membership in...
opelvv 5678 Ordered pair membership in...
opelvvg 5679 Ordered pair membership in...
opelxp1 5680 The first member of an ord...
opelxp2 5681 The second member of an or...
otelxp 5682 Ordered triple membership ...
otelxp1 5683 The first member of an ord...
otel3xp 5684 An ordered triple is an el...
opabssxpd 5685 An ordered-pair class abst...
rabxp 5686 Class abstraction restrict...
brxp 5687 Binary relation on a Carte...
pwvrel 5688 A set is a binary relation...
pwvabrel 5689 The powerclass of the cart...
brrelex12 5690 Two classes related by a b...
brrelex1 5691 If two classes are related...
brrelex2 5692 If two classes are related...
brrelex12i 5693 Two classes that are relat...
brrelex1i 5694 The first argument of a bi...
brrelex2i 5695 The second argument of a b...
nprrel12 5696 Proper classes are not rel...
nprrel 5697 No proper class is related...
0nelrel0 5698 A binary relation does not...
0nelrel 5699 A binary relation does not...
fconstmpt 5700 Representation of a consta...
vtoclr 5701 Variable to class conversi...
opthprc 5702 Justification theorem for ...
brel 5703 Two things in a binary rel...
elxp3 5704 Membership in a Cartesian ...
opeliunxp 5705 Membership in a union of C...
opeliun2xp 5706 Membership of an ordered p...
xpundi 5707 Distributive law for Carte...
xpundir 5708 Distributive law for Carte...
xpiundi 5709 Distributive law for Carte...
xpiundir 5710 Distributive law for Carte...
iunxpconst 5711 Membership in a union of C...
xpun 5712 The Cartesian product of t...
elvv 5713 Membership in universal cl...
elvvv 5714 Membership in universal cl...
elvvuni 5715 An ordered pair contains i...
brinxp2 5716 Intersection of binary rel...
brinxp 5717 Intersection of binary rel...
opelinxp 5718 Ordered pair element in an...
poinxp 5719 Intersection of partial or...
soinxp 5720 Intersection of total orde...
frinxp 5721 Intersection of well-found...
seinxp 5722 Intersection of set-like r...
weinxp 5723 Intersection of well-order...
posn 5724 Partial ordering of a sing...
sosn 5725 Strict ordering on a singl...
frsn 5726 Founded relation on a sing...
wesn 5727 Well-ordering of a singlet...
elopaelxp 5728 Membership in an ordered-p...
elopaelxpOLD 5729 Obsolete version of ~ elop...
bropaex12 5730 Two classes related by an ...
opabssxp 5731 An abstraction relation is...
brab2a 5732 The law of concretion for ...
optocl 5733 Implicit substitution of c...
2optocl 5734 Implicit substitution of c...
3optocl 5735 Implicit substitution of c...
opbrop 5736 Ordered pair membership in...
0xp 5737 The Cartesian product with...
csbxp 5738 Distribute proper substitu...
releq 5739 Equality theorem for the r...
releqi 5740 Equality inference for the...
releqd 5741 Equality deduction for the...
nfrel 5742 Bound-variable hypothesis ...
sbcrel 5743 Distribute proper substitu...
relss 5744 Subclass theorem for relat...
ssrel 5745 A subclass relationship de...
ssrelOLD 5746 Obsolete version of ~ ssre...
eqrel 5747 Extensionality principle f...
ssrel2 5748 A subclass relationship de...
ssrel3 5749 Subclass relation in anoth...
relssi 5750 Inference from subclass pr...
relssdv 5751 Deduction from subclass pr...
eqrelriv 5752 Inference from extensional...
eqrelriiv 5753 Inference from extensional...
eqbrriv 5754 Inference from extensional...
eqrelrdv 5755 Deduce equality of relatio...
eqbrrdv 5756 Deduction from extensional...
eqbrrdiv 5757 Deduction from extensional...
eqrelrdv2 5758 A version of ~ eqrelrdv . ...
ssrelrel 5759 A subclass relationship de...
eqrelrel 5760 Extensionality principle f...
elrel 5761 A member of a relation is ...
rel0 5762 The empty set is a relatio...
nrelv 5763 The universal class is not...
relsng 5764 A singleton is a relation ...
relsnb 5765 An at-most-singleton is a ...
relsnopg 5766 A singleton of an ordered ...
relsn 5767 A singleton is a relation ...
relsnop 5768 A singleton of an ordered ...
copsex2gb 5769 Implicit substitution infe...
copsex2ga 5770 Implicit substitution infe...
elopaba 5771 Membership in an ordered-p...
xpsspw 5772 A Cartesian product is inc...
unixpss 5773 The double class union of ...
relun 5774 The union of two relations...
relin1 5775 The intersection with a re...
relin2 5776 The intersection with a re...
relinxp 5777 Intersection with a Cartes...
reldif 5778 A difference cutting down ...
reliun 5779 An indexed union is a rela...
reliin 5780 An indexed intersection is...
reluni 5781 The union of a class is a ...
relint 5782 The intersection of a clas...
relopabiv 5783 A class of ordered pairs i...
relopabv 5784 A class of ordered pairs i...
relopabi 5785 A class of ordered pairs i...
relopabiALT 5786 Alternate proof of ~ relop...
relopab 5787 A class of ordered pairs i...
mptrel 5788 The maps-to notation alway...
reli 5789 The identity relation is a...
rele 5790 The membership relation is...
opabid2 5791 A relation expressed as an...
inopab 5792 Intersection of two ordere...
difopab 5793 Difference of two ordered-...
difopabOLD 5794 Obsolete version of ~ difo...
inxp 5795 Intersection of two Cartes...
inxpOLD 5796 Obsolete version of ~ inxp...
xpindi 5797 Distributive law for Carte...
xpindir 5798 Distributive law for Carte...
xpiindi 5799 Distributive law for Carte...
xpriindi 5800 Distributive law for Carte...
eliunxp 5801 Membership in a union of C...
opeliunxp2 5802 Membership in a union of C...
raliunxp 5803 Write a double restricted ...
rexiunxp 5804 Write a double restricted ...
ralxp 5805 Universal quantification r...
rexxp 5806 Existential quantification...
exopxfr 5807 Transfer ordered-pair exis...
exopxfr2 5808 Transfer ordered-pair exis...
djussxp 5809 Disjoint union is a subset...
ralxpf 5810 Version of ~ ralxp with bo...
rexxpf 5811 Version of ~ rexxp with bo...
iunxpf 5812 Indexed union on a Cartesi...
opabbi2dv 5813 Deduce equality of a relat...
relop 5814 A necessary and sufficient...
ideqg 5815 For sets, the identity rel...
ideq 5816 For sets, the identity rel...
ididg 5817 A set is identical to itse...
issetid 5818 Two ways of expressing set...
coss1 5819 Subclass theorem for compo...
coss2 5820 Subclass theorem for compo...
coeq1 5821 Equality theorem for compo...
coeq2 5822 Equality theorem for compo...
coeq1i 5823 Equality inference for com...
coeq2i 5824 Equality inference for com...
coeq1d 5825 Equality deduction for com...
coeq2d 5826 Equality deduction for com...
coeq12i 5827 Equality inference for com...
coeq12d 5828 Equality deduction for com...
nfco 5829 Bound-variable hypothesis ...
brcog 5830 Ordered pair membership in...
opelco2g 5831 Ordered pair membership in...
brcogw 5832 Ordered pair membership in...
eqbrrdva 5833 Deduction from extensional...
brco 5834 Binary relation on a compo...
opelco 5835 Ordered pair membership in...
cnvss 5836 Subset theorem for convers...
cnveq 5837 Equality theorem for conve...
cnveqi 5838 Equality inference for con...
cnveqd 5839 Equality deduction for con...
elcnv 5840 Membership in a converse r...
elcnv2 5841 Membership in a converse r...
nfcnv 5842 Bound-variable hypothesis ...
brcnvg 5843 The converse of a binary r...
opelcnvg 5844 Ordered-pair membership in...
opelcnv 5845 Ordered-pair membership in...
brcnv 5846 The converse of a binary r...
csbcnv 5847 Move class substitution in...
csbcnvgALT 5848 Move class substitution in...
cnvco 5849 Distributive law of conver...
cnvuni 5850 The converse of a class un...
dfdm3 5851 Alternate definition of do...
dfrn2 5852 Alternate definition of ra...
dfrn3 5853 Alternate definition of ra...
elrn2g 5854 Membership in a range. (C...
elrng 5855 Membership in a range. (C...
elrn2 5856 Membership in a range. (C...
elrn 5857 Membership in a range. (C...
ssrelrn 5858 If a relation is a subset ...
dfdm4 5859 Alternate definition of do...
dfdmf 5860 Definition of domain, usin...
csbdm 5861 Distribute proper substitu...
eldmg 5862 Domain membership. Theore...
eldm2g 5863 Domain membership. Theore...
eldm 5864 Membership in a domain. T...
eldm2 5865 Membership in a domain. T...
dmss 5866 Subset theorem for domain....
dmeq 5867 Equality theorem for domai...
dmeqi 5868 Equality inference for dom...
dmeqd 5869 Equality deduction for dom...
opeldmd 5870 Membership of first of an ...
opeldm 5871 Membership of first of an ...
breldm 5872 Membership of first of a b...
breldmg 5873 Membership of first of a b...
dmun 5874 The domain of a union is t...
dmin 5875 The domain of an intersect...
breldmd 5876 Membership of first of a b...
dmiun 5877 The domain of an indexed u...
dmuni 5878 The domain of a union. Pa...
dmopab 5879 The domain of a class of o...
dmopabelb 5880 A set is an element of the...
dmopab2rex 5881 The domain of an ordered p...
dmopabss 5882 Upper bound for the domain...
dmopab3 5883 The domain of a restricted...
dm0 5884 The domain of the empty se...
dmi 5885 The domain of the identity...
dmv 5886 The domain of the universe...
dmep 5887 The domain of the membersh...
dm0rn0 5888 An empty domain is equival...
rn0 5889 The range of the empty set...
rnep 5890 The range of the membershi...
reldm0 5891 A relation is empty iff it...
dmxp 5892 The domain of a Cartesian ...
dmxpOLD 5893 Obsolete version of ~ dmxp...
dmxpid 5894 The domain of a Cartesian ...
dmxpin 5895 The domain of the intersec...
xpid11 5896 The Cartesian square is a ...
dmcnvcnv 5897 The domain of the double c...
rncnvcnv 5898 The range of the double co...
elreldm 5899 The first member of an ord...
rneq 5900 Equality theorem for range...
rneqi 5901 Equality inference for ran...
rneqd 5902 Equality deduction for ran...
rnss 5903 Subset theorem for range. ...
rnssi 5904 Subclass inference for ran...
brelrng 5905 The second argument of a b...
brelrn 5906 The second argument of a b...
opelrn 5907 Membership of second membe...
releldm 5908 The first argument of a bi...
relelrn 5909 The second argument of a b...
releldmb 5910 Membership in a domain. (...
relelrnb 5911 Membership in a range. (C...
releldmi 5912 The first argument of a bi...
relelrni 5913 The second argument of a b...
dfrnf 5914 Definition of range, using...
nfdm 5915 Bound-variable hypothesis ...
nfrn 5916 Bound-variable hypothesis ...
dmiin 5917 Domain of an intersection....
rnopab 5918 The range of a class of or...
rnopabss 5919 Upper bound for the range ...
rnopab3 5920 The range of a restricted ...
rnmpt 5921 The range of a function in...
elrnmpt 5922 The range of a function in...
elrnmpt1s 5923 Elementhood in an image se...
elrnmpt1 5924 Elementhood in an image se...
elrnmptg 5925 Membership in the range of...
elrnmpti 5926 Membership in the range of...
elrnmptd 5927 The range of a function in...
elrnmpt1d 5928 Elementhood in an image se...
elrnmptdv 5929 Elementhood in the range o...
elrnmpt2d 5930 Elementhood in the range o...
dfiun3g 5931 Alternate definition of in...
dfiin3g 5932 Alternate definition of in...
dfiun3 5933 Alternate definition of in...
dfiin3 5934 Alternate definition of in...
riinint 5935 Express a relative indexed...
relrn0 5936 A relation is empty iff it...
dmrnssfld 5937 The domain and range of a ...
dmcoss 5938 Domain of a composition. ...
rncoss 5939 Range of a composition. (...
dmcosseq 5940 Domain of a composition. ...
dmcosseqOLD 5941 Obsolete version of ~ dmco...
dmcoeq 5942 Domain of a composition. ...
rncoeq 5943 Range of a composition. (...
reseq1 5944 Equality theorem for restr...
reseq2 5945 Equality theorem for restr...
reseq1i 5946 Equality inference for res...
reseq2i 5947 Equality inference for res...
reseq12i 5948 Equality inference for res...
reseq1d 5949 Equality deduction for res...
reseq2d 5950 Equality deduction for res...
reseq12d 5951 Equality deduction for res...
nfres 5952 Bound-variable hypothesis ...
csbres 5953 Distribute proper substitu...
res0 5954 A restriction to the empty...
dfres3 5955 Alternate definition of re...
opelres 5956 Ordered pair elementhood i...
brres 5957 Binary relation on a restr...
opelresi 5958 Ordered pair membership in...
brresi 5959 Binary relation on a restr...
opres 5960 Ordered pair membership in...
resieq 5961 A restricted identity rela...
opelidres 5962 ` <. A , A >. ` belongs to...
resres 5963 The restriction of a restr...
resundi 5964 Distributive law for restr...
resundir 5965 Distributive law for restr...
resindi 5966 Class restriction distribu...
resindir 5967 Class restriction distribu...
inres 5968 Move intersection into cla...
resdifcom 5969 Commutative law for restri...
resiun1 5970 Distribution of restrictio...
resiun2 5971 Distribution of restrictio...
resss 5972 A class includes its restr...
rescom 5973 Commutative law for restri...
ssres 5974 Subclass theorem for restr...
ssres2 5975 Subclass theorem for restr...
relres 5976 A restriction is a relatio...
resabs1 5977 Absorption law for restric...
resabs1i 5978 Absorption law for restric...
resabs1d 5979 Absorption law for restric...
resabs2 5980 Absorption law for restric...
residm 5981 Idempotent law for restric...
dmresss 5982 The domain of a restrictio...
dmres 5983 The domain of a restrictio...
ssdmres 5984 A domain restricted to a s...
dmresexg 5985 The domain of a restrictio...
resima 5986 A restriction to an image....
resima2 5987 Image under a restricted c...
rnresss 5988 The range of a restriction...
xpssres 5989 Restriction of a constant ...
elinxp 5990 Membership in an intersect...
elres 5991 Membership in a restrictio...
elsnres 5992 Membership in restriction ...
relssres 5993 Simplification law for res...
dmressnsn 5994 The domain of a restrictio...
eldmressnsn 5995 The element of the domain ...
eldmeldmressn 5996 An element of the domain (...
resdm 5997 A relation restricted to i...
resexg 5998 The restriction of a set i...
resexd 5999 The restriction of a set i...
resex 6000 The restriction of a set i...
resindm 6001 When restricting a relatio...
resdmdfsn 6002 Restricting a relation to ...
reldisjun 6003 Split a relation into two ...
relresdm1 6004 Restriction of a disjoint ...
resopab 6005 Restriction of a class abs...
iss 6006 A subclass of the identity...
resopab2 6007 Restriction of a class abs...
resmpt 6008 Restriction of the mapping...
resmpt3 6009 Unconditional restriction ...
resmptf 6010 Restriction of the mapping...
resmptd 6011 Restriction of the mapping...
dfres2 6012 Alternate definition of th...
mptss 6013 Sufficient condition for i...
elimampt 6014 Membership in the image of...
elidinxp 6015 Characterization of the el...
elidinxpid 6016 Characterization of the el...
elrid 6017 Characterization of the el...
idinxpres 6018 The intersection of the id...
idinxpresid 6019 The intersection of the id...
idssxp 6020 A diagonal set as a subset...
opabresid 6021 The restricted identity re...
mptresid 6022 The restricted identity re...
dmresi 6023 The domain of a restricted...
restidsing 6024 Restriction of the identit...
iresn0n0 6025 The identity function rest...
imaeq1 6026 Equality theorem for image...
imaeq2 6027 Equality theorem for image...
imaeq1i 6028 Equality theorem for image...
imaeq2i 6029 Equality theorem for image...
imaeq1d 6030 Equality theorem for image...
imaeq2d 6031 Equality theorem for image...
imaeq12d 6032 Equality theorem for image...
dfima2 6033 Alternate definition of im...
dfima3 6034 Alternate definition of im...
elimag 6035 Membership in an image. T...
elima 6036 Membership in an image. T...
elima2 6037 Membership in an image. T...
elima3 6038 Membership in an image. T...
nfima 6039 Bound-variable hypothesis ...
nfimad 6040 Deduction version of bound...
imadmrn 6041 The image of the domain of...
imassrn 6042 The image of a class is a ...
mptima 6043 Image of a function in map...
mptimass 6044 Image of a function in map...
imai 6045 Image under the identity r...
rnresi 6046 The range of the restricte...
resiima 6047 The image of a restriction...
ima0 6048 Image of the empty set. T...
0ima 6049 Image under the empty rela...
csbima12 6050 Move class substitution in...
imadisj 6051 A class whose image under ...
imadisjlnd 6052 Deduction form of one nega...
cnvimass 6053 A preimage under any class...
cnvimarndm 6054 The preimage of the range ...
imasng 6055 The image of a singleton. ...
relimasn 6056 The image of a singleton. ...
elrelimasn 6057 Elementhood in the image o...
elimasng1 6058 Membership in an image of ...
elimasn1 6059 Membership in an image of ...
elimasng 6060 Membership in an image of ...
elimasn 6061 Membership in an image of ...
elimasni 6062 Membership in an image of ...
args 6063 Two ways to express the cl...
elinisegg 6064 Membership in the inverse ...
eliniseg 6065 Membership in the inverse ...
epin 6066 Any set is equal to its pr...
epini 6067 Any set is equal to its pr...
iniseg 6068 An idiom that signifies an...
inisegn0 6069 Nonemptiness of an initial...
dffr3 6070 Alternate definition of we...
dfse2 6071 Alternate definition of se...
imass1 6072 Subset theorem for image. ...
imass2 6073 Subset theorem for image. ...
ndmima 6074 The image of a singleton o...
relcnv 6075 A converse is a relation. ...
relbrcnvg 6076 When ` R ` is a relation, ...
eliniseg2 6077 Eliminate the class existe...
relbrcnv 6078 When ` R ` is a relation, ...
relco 6079 A composition is a relatio...
cotrg 6080 Two ways of saying that th...
cotrgOLD 6081 Obsolete version of ~ cotr...
cotrgOLDOLD 6082 Obsolete version of ~ cotr...
cotr 6083 Two ways of saying a relat...
idrefALT 6084 Alternate proof of ~ idref...
cnvsym 6085 Two ways of saying a relat...
cnvsymOLD 6086 Obsolete version of ~ cnvs...
cnvsymOLDOLD 6087 Obsolete version of ~ cnvs...
intasym 6088 Two ways of saying a relat...
asymref 6089 Two ways of saying a relat...
asymref2 6090 Two ways of saying a relat...
intirr 6091 Two ways of saying a relat...
brcodir 6092 Two ways of saying that tw...
codir 6093 Two ways of saying a relat...
qfto 6094 A quantifier-free way of e...
xpidtr 6095 A Cartesian square is a tr...
trin2 6096 The intersection of two tr...
poirr2 6097 A partial order is irrefle...
trinxp 6098 The relation induced by a ...
soirri 6099 A strict order relation is...
sotri 6100 A strict order relation is...
son2lpi 6101 A strict order relation ha...
sotri2 6102 A transitivity relation. ...
sotri3 6103 A transitivity relation. ...
poleloe 6104 Express "less than or equa...
poltletr 6105 Transitive law for general...
somin1 6106 Property of a minimum in a...
somincom 6107 Commutativity of minimum i...
somin2 6108 Property of a minimum in a...
soltmin 6109 Being less than a minimum,...
cnvopab 6110 The converse of a class ab...
cnvopabOLD 6111 Obsolete version of ~ cnvo...
mptcnv 6112 The converse of a mapping ...
cnv0 6113 The converse of the empty ...
cnvi 6114 The converse of the identi...
cnvun 6115 The converse of a union is...
cnvdif 6116 Distributive law for conve...
cnvin 6117 Distributive law for conve...
rnun 6118 Distributive law for range...
rnin 6119 The range of an intersecti...
rniun 6120 The range of an indexed un...
rnuni 6121 The range of a union. Par...
imaundi 6122 Distributive law for image...
imaundir 6123 The image of a union. (Co...
imadifssran 6124 Condition for the range of...
cnvimassrndm 6125 The preimage of a superset...
dminss 6126 An upper bound for interse...
imainss 6127 An upper bound for interse...
inimass 6128 The image of an intersecti...
inimasn 6129 The intersection of the im...
cnvxp 6130 The converse of a Cartesia...
xp0 6131 The Cartesian product with...
xpnz 6132 The Cartesian product of n...
xpeq0 6133 At least one member of an ...
xpdisj1 6134 Cartesian products with di...
xpdisj2 6135 Cartesian products with di...
xpsndisj 6136 Cartesian products with tw...
difxp 6137 Difference of Cartesian pr...
difxp1 6138 Difference law for Cartesi...
difxp2 6139 Difference law for Cartesi...
djudisj 6140 Disjoint unions with disjo...
xpdifid 6141 The set of distinct couple...
resdisj 6142 A double restriction to di...
rnxp 6143 The range of a Cartesian p...
dmxpss 6144 The domain of a Cartesian ...
rnxpss 6145 The range of a Cartesian p...
rnxpid 6146 The range of a Cartesian s...
ssxpb 6147 A Cartesian product subcla...
xp11 6148 The Cartesian product of n...
xpcan 6149 Cancellation law for Carte...
xpcan2 6150 Cancellation law for Carte...
ssrnres 6151 Two ways to express surjec...
rninxp 6152 Two ways to express surjec...
dminxp 6153 Two ways to express totali...
imainrect 6154 Image by a restricted and ...
xpima 6155 Direct image by a Cartesia...
xpima1 6156 Direct image by a Cartesia...
xpima2 6157 Direct image by a Cartesia...
xpimasn 6158 Direct image of a singleto...
sossfld 6159 The base set of a strict o...
sofld 6160 The base set of a nonempty...
cnvcnv3 6161 The set of all ordered pai...
dfrel2 6162 Alternate definition of re...
dfrel4v 6163 A relation can be expresse...
dfrel4 6164 A relation can be expresse...
cnvcnv 6165 The double converse of a c...
cnvcnv2 6166 The double converse of a c...
cnvcnvss 6167 The double converse of a c...
cnvrescnv 6168 Two ways to express the co...
cnveqb 6169 Equality theorem for conve...
cnveq0 6170 A relation empty iff its c...
dfrel3 6171 Alternate definition of re...
elid 6172 Characterization of the el...
dmresv 6173 The domain of a universal ...
rnresv 6174 The range of a universal r...
dfrn4 6175 Range defined in terms of ...
csbrn 6176 Distribute proper substitu...
rescnvcnv 6177 The restriction of the dou...
cnvcnvres 6178 The double converse of the...
imacnvcnv 6179 The image of the double co...
dmsnn0 6180 The domain of a singleton ...
rnsnn0 6181 The range of a singleton i...
dmsn0 6182 The domain of the singleto...
cnvsn0 6183 The converse of the single...
dmsn0el 6184 The domain of a singleton ...
relsn2 6185 A singleton is a relation ...
dmsnopg 6186 The domain of a singleton ...
dmsnopss 6187 The domain of a singleton ...
dmpropg 6188 The domain of an unordered...
dmsnop 6189 The domain of a singleton ...
dmprop 6190 The domain of an unordered...
dmtpop 6191 The domain of an unordered...
cnvcnvsn 6192 Double converse of a singl...
dmsnsnsn 6193 The domain of the singleto...
rnsnopg 6194 The range of a singleton o...
rnpropg 6195 The range of a pair of ord...
cnvsng 6196 Converse of a singleton of...
rnsnop 6197 The range of a singleton o...
op1sta 6198 Extract the first member o...
cnvsn 6199 Converse of a singleton of...
op2ndb 6200 Extract the second member ...
op2nda 6201 Extract the second member ...
opswap 6202 Swap the members of an ord...
cnvresima 6203 An image under the convers...
resdm2 6204 A class restricted to its ...
resdmres 6205 Restriction to the domain ...
resresdm 6206 A restriction by an arbitr...
imadmres 6207 The image of the domain of...
resdmss 6208 Subset relationship for th...
resdifdi 6209 Distributive law for restr...
resdifdir 6210 Distributive law for restr...
mptpreima 6211 The preimage of a function...
mptiniseg 6212 Converse singleton image o...
dmmpt 6213 The domain of the mapping ...
dmmptss 6214 The domain of a mapping is...
dmmptg 6215 The domain of the mapping ...
rnmpt0f 6216 The range of a function in...
rnmptn0 6217 The range of a function in...
dfco2 6218 Alternate definition of a ...
dfco2a 6219 Generalization of ~ dfco2 ...
coundi 6220 Class composition distribu...
coundir 6221 Class composition distribu...
cores 6222 Restricted first member of...
resco 6223 Associative law for the re...
imaco 6224 Image of the composition o...
rnco 6225 The range of the compositi...
rnco2 6226 The range of the compositi...
dmco 6227 The domain of a compositio...
coeq0 6228 A composition of two relat...
coiun 6229 Composition with an indexe...
cocnvcnv1 6230 A composition is not affec...
cocnvcnv2 6231 A composition is not affec...
cores2 6232 Absorption of a reverse (p...
co02 6233 Composition with the empty...
co01 6234 Composition with the empty...
coi1 6235 Composition with the ident...
coi2 6236 Composition with the ident...
coires1 6237 Composition with a restric...
coass 6238 Associative law for class ...
relcnvtrg 6239 General form of ~ relcnvtr...
relcnvtr 6240 A relation is transitive i...
relssdmrn 6241 A relation is included in ...
relssdmrnOLD 6242 Obsolete version of ~ rels...
resssxp 6243 If the ` R ` -image of a c...
cnvssrndm 6244 The converse is a subset o...
cossxp 6245 Composition as a subset of...
relrelss 6246 Two ways to describe the s...
unielrel 6247 The membership relation fo...
relfld 6248 The double union of a rela...
relresfld 6249 Restriction of a relation ...
relcoi2 6250 Composition with the ident...
relcoi1 6251 Composition with the ident...
unidmrn 6252 The double union of the co...
relcnvfld 6253 if ` R ` is a relation, it...
dfdm2 6254 Alternate definition of do...
unixp 6255 The double class union of ...
unixp0 6256 A Cartesian product is emp...
unixpid 6257 Field of a Cartesian squar...
ressn 6258 Restriction of a class to ...
cnviin 6259 The converse of an interse...
cnvpo 6260 The converse of a partial ...
cnvso 6261 The converse of a strict o...
xpco 6262 Composition of two Cartesi...
xpcoid 6263 Composition of two Cartesi...
elsnxp 6264 Membership in a Cartesian ...
reu3op 6265 There is a unique ordered ...
reuop 6266 There is a unique ordered ...
opreu2reurex 6267 There is a unique ordered ...
opreu2reu 6268 If there is a unique order...
dfpo2 6269 Quantifier-free definition...
csbcog 6270 Distribute proper substitu...
snres0 6271 Condition for restriction ...
imaindm 6272 The image is unaffected by...
predeq123 6275 Equality theorem for the p...
predeq1 6276 Equality theorem for the p...
predeq2 6277 Equality theorem for the p...
predeq3 6278 Equality theorem for the p...
nfpred 6279 Bound-variable hypothesis ...
csbpredg 6280 Move class substitution in...
predpredss 6281 If ` A ` is a subset of ` ...
predss 6282 The predecessor class of `...
sspred 6283 Another subset/predecessor...
dfpred2 6284 An alternate definition of...
dfpred3 6285 An alternate definition of...
dfpred3g 6286 An alternate definition of...
elpredgg 6287 Membership in a predecesso...
elpredg 6288 Membership in a predecesso...
elpredimg 6289 Membership in a predecesso...
elpredim 6290 Membership in a predecesso...
elpred 6291 Membership in a predecesso...
predexg 6292 The predecessor class exis...
dffr4 6293 Alternate definition of we...
predel 6294 Membership in the predeces...
predtrss 6295 If ` R ` is transitive ove...
predpo 6296 Property of the predecesso...
predso 6297 Property of the predecesso...
setlikespec 6298 If ` R ` is set-like in ` ...
predidm 6299 Idempotent law for the pre...
predin 6300 Intersection law for prede...
predun 6301 Union law for predecessor ...
preddif 6302 Difference law for predece...
predep 6303 The predecessor under the ...
trpred 6304 The class of predecessors ...
preddowncl 6305 A property of classes that...
predpoirr 6306 Given a partial ordering, ...
predfrirr 6307 Given a well-founded relat...
pred0 6308 The predecessor class over...
dfse3 6309 Alternate definition of se...
predrelss 6310 Subset carries from relati...
predprc 6311 The predecessor of a prope...
predres 6312 Predecessor class is unaff...
frpomin 6313 Every nonempty (possibly p...
frpomin2 6314 Every nonempty (possibly p...
frpoind 6315 The principle of well-foun...
frpoinsg 6316 Well-Founded Induction Sch...
frpoins2fg 6317 Well-Founded Induction sch...
frpoins2g 6318 Well-Founded Induction sch...
frpoins3g 6319 Well-Founded Induction sch...
tz6.26 6320 All nonempty subclasses of...
tz6.26i 6321 All nonempty subclasses of...
wfi 6322 The Principle of Well-Orde...
wfii 6323 The Principle of Well-Orde...
wfisg 6324 Well-Ordered Induction Sch...
wfis 6325 Well-Ordered Induction Sch...
wfis2fg 6326 Well-Ordered Induction Sch...
wfis2f 6327 Well-Ordered Induction sch...
wfis2g 6328 Well-Ordered Induction Sch...
wfis2 6329 Well-Ordered Induction sch...
wfis3 6330 Well-Ordered Induction sch...
ordeq 6339 Equality theorem for the o...
elong 6340 An ordinal number is an or...
elon 6341 An ordinal number is an or...
eloni 6342 An ordinal number has the ...
elon2 6343 An ordinal number is an or...
limeq 6344 Equality theorem for the l...
ordwe 6345 Membership well-orders eve...
ordtr 6346 An ordinal class is transi...
ordfr 6347 Membership is well-founded...
ordelss 6348 An element of an ordinal c...
trssord 6349 A transitive subclass of a...
ordirr 6350 No ordinal class is a memb...
nordeq 6351 A member of an ordinal cla...
ordn2lp 6352 An ordinal class cannot be...
tz7.5 6353 A nonempty subclass of an ...
ordelord 6354 An element of an ordinal c...
tron 6355 The class of all ordinal n...
ordelon 6356 An element of an ordinal c...
onelon 6357 An element of an ordinal n...
tz7.7 6358 A transitive class belongs...
ordelssne 6359 For ordinal classes, membe...
ordelpss 6360 For ordinal classes, membe...
ordsseleq 6361 For ordinal classes, inclu...
ordin 6362 The intersection of two or...
onin 6363 The intersection of two or...
ordtri3or 6364 A trichotomy law for ordin...
ordtri1 6365 A trichotomy law for ordin...
ontri1 6366 A trichotomy law for ordin...
ordtri2 6367 A trichotomy law for ordin...
ordtri3 6368 A trichotomy law for ordin...
ordtri4 6369 A trichotomy law for ordin...
orddisj 6370 An ordinal class and its s...
onfr 6371 The ordinal class is well-...
onelpss 6372 Relationship between membe...
onsseleq 6373 Relationship between subse...
onelss 6374 An element of an ordinal n...
oneltri 6375 The elementhood relation o...
ordtr1 6376 Transitive law for ordinal...
ordtr2 6377 Transitive law for ordinal...
ordtr3 6378 Transitive law for ordinal...
ontr1 6379 Transitive law for ordinal...
ontr2 6380 Transitive law for ordinal...
onelssex 6381 Ordinal less than is equiv...
ordunidif 6382 The union of an ordinal st...
ordintdif 6383 If ` B ` is smaller than `...
onintss 6384 If a property is true for ...
oneqmini 6385 A way to show that an ordi...
ord0 6386 The empty set is an ordina...
0elon 6387 The empty set is an ordina...
ord0eln0 6388 A nonempty ordinal contain...
on0eln0 6389 An ordinal number contains...
dflim2 6390 An alternate definition of...
inton 6391 The intersection of the cl...
nlim0 6392 The empty set is not a lim...
limord 6393 A limit ordinal is ordinal...
limuni 6394 A limit ordinal is its own...
limuni2 6395 The union of a limit ordin...
0ellim 6396 A limit ordinal contains t...
limelon 6397 A limit ordinal class that...
onn0 6398 The class of all ordinal n...
suceqd 6399 Deduction associated with ...
suceq 6400 Equality of successors. (...
elsuci 6401 Membership in a successor....
elsucg 6402 Membership in a successor....
elsuc2g 6403 Variant of membership in a...
elsuc 6404 Membership in a successor....
elsuc2 6405 Membership in a successor....
nfsuc 6406 Bound-variable hypothesis ...
elelsuc 6407 Membership in a successor....
sucel 6408 Membership of a successor ...
suc0 6409 The successor of the empty...
sucprc 6410 A proper class is its own ...
unisucs 6411 The union of the successor...
unisucg 6412 A transitive class is equa...
unisuc 6413 A transitive class is equa...
sssucid 6414 A class is included in its...
sucidg 6415 Part of Proposition 7.23 o...
sucid 6416 A set belongs to its succe...
nsuceq0 6417 No successor is empty. (C...
eqelsuc 6418 A set belongs to the succe...
iunsuc 6419 Inductive definition for t...
suctr 6420 The successor of a transit...
trsuc 6421 A set whose successor belo...
trsucss 6422 A member of the successor ...
ordsssuc 6423 An ordinal is a subset of ...
onsssuc 6424 A subset of an ordinal num...
ordsssuc2 6425 An ordinal subset of an or...
onmindif 6426 When its successor is subt...
ordnbtwn 6427 There is no set between an...
onnbtwn 6428 There is no set between an...
sucssel 6429 A set whose successor is a...
orddif 6430 Ordinal derived from its s...
orduniss 6431 An ordinal class includes ...
ordtri2or 6432 A trichotomy law for ordin...
ordtri2or2 6433 A trichotomy law for ordin...
ordtri2or3 6434 A consequence of total ord...
ordelinel 6435 The intersection of two or...
ordssun 6436 Property of a subclass of ...
ordequn 6437 The maximum (i.e. union) o...
ordun 6438 The maximum (i.e., union) ...
onunel 6439 The union of two ordinals ...
ordunisssuc 6440 A subclass relationship fo...
suc11 6441 The successor operation be...
onun2 6442 The union of two ordinals ...
ontr 6443 An ordinal number is a tra...
onunisuc 6444 An ordinal number is equal...
onordi 6445 An ordinal number is an or...
ontrciOLD 6446 Obsolete version of ~ ontr...
onirri 6447 An ordinal number is not a...
oneli 6448 A member of an ordinal num...
onelssi 6449 A member of an ordinal num...
onssneli 6450 An ordering law for ordina...
onssnel2i 6451 An ordering law for ordina...
onelini 6452 An element of an ordinal n...
oneluni 6453 An ordinal number equals i...
onunisuci 6454 An ordinal number is equal...
onsseli 6455 Subset is equivalent to me...
onun2i 6456 The union of two ordinal n...
unizlim 6457 An ordinal equal to its ow...
on0eqel 6458 An ordinal number either e...
snsn0non 6459 The singleton of the singl...
onxpdisj 6460 Ordinal numbers and ordere...
onnev 6461 The class of ordinal numbe...
iotajust 6463 Soundness justification th...
dfiota2 6465 Alternate definition for d...
nfiota1 6466 Bound-variable hypothesis ...
nfiotadw 6467 Deduction version of ~ nfi...
nfiotaw 6468 Bound-variable hypothesis ...
nfiotad 6469 Deduction version of ~ nfi...
nfiota 6470 Bound-variable hypothesis ...
cbviotaw 6471 Change bound variables in ...
cbviotavw 6472 Change bound variables in ...
cbviota 6473 Change bound variables in ...
cbviotav 6474 Change bound variables in ...
sb8iota 6475 Variable substitution in d...
iotaeq 6476 Equality theorem for descr...
iotabi 6477 Equivalence theorem for de...
uniabio 6478 Part of Theorem 8.17 in [Q...
iotaval2 6479 Version of ~ iotaval using...
iotauni2 6480 Version of ~ iotauni using...
iotanul2 6481 Version of ~ iotanul using...
iotaval 6482 Theorem 8.19 in [Quine] p....
iotassuni 6483 The ` iota ` class is a su...
iotaex 6484 Theorem 8.23 in [Quine] p....
iotavalOLD 6485 Obsolete version of ~ iota...
iotauni 6486 Equivalence between two di...
iotaint 6487 Equivalence between two di...
iota1 6488 Property of iota. (Contri...
iotanul 6489 Theorem 8.22 in [Quine] p....
iotassuniOLD 6490 Obsolete version of ~ iota...
iotaexOLD 6491 Obsolete version of ~ iota...
iota4 6492 Theorem *14.22 in [Whitehe...
iota4an 6493 Theorem *14.23 in [Whitehe...
iota5 6494 A method for computing iot...
iotabidv 6495 Formula-building deduction...
iotabii 6496 Formula-building deduction...
iotacl 6497 Membership law for descrip...
iota2df 6498 A condition that allows to...
iota2d 6499 A condition that allows to...
iota2 6500 The unique element such th...
iotan0 6501 Representation of "the uni...
sniota 6502 A class abstraction with a...
dfiota4 6503 The ` iota ` operation usi...
csbiota 6504 Class substitution within ...
dffun2 6521 Alternate definition of a ...
dffun2OLD 6522 Obsolete version of ~ dffu...
dffun2OLDOLD 6523 Obsolete version of ~ dffu...
dffun6 6524 Alternate definition of a ...
dffun3 6525 Alternate definition of fu...
dffun3OLD 6526 Obsolete version of ~ dffu...
dffun4 6527 Alternate definition of a ...
dffun5 6528 Alternate definition of fu...
dffun6f 6529 Definition of function, us...
dffun6OLD 6530 Obsolete version of ~ dffu...
funmo 6531 A function has at most one...
funmoOLD 6532 Obsolete version of ~ funm...
funrel 6533 A function is a relation. ...
0nelfun 6534 A function does not contai...
funss 6535 Subclass theorem for funct...
funeq 6536 Equality theorem for funct...
funeqi 6537 Equality inference for the...
funeqd 6538 Equality deduction for the...
nffun 6539 Bound-variable hypothesis ...
sbcfung 6540 Distribute proper substitu...
funeu 6541 There is exactly one value...
funeu2 6542 There is exactly one value...
dffun7 6543 Alternate definition of a ...
dffun8 6544 Alternate definition of a ...
dffun9 6545 Alternate definition of a ...
funfn 6546 A class is a function if a...
funfnd 6547 A function is a function o...
funi 6548 The identity relation is a...
nfunv 6549 The universal class is not...
funopg 6550 A Kuratowski ordered pair ...
funopab 6551 A class of ordered pairs i...
funopabeq 6552 A class of ordered pairs o...
funopab4 6553 A class of ordered pairs o...
funmpt 6554 A function in maps-to nota...
funmpt2 6555 Functionality of a class g...
funco 6556 The composition of two fun...
funresfunco 6557 Composition of two functio...
funres 6558 A restriction of a functio...
funresd 6559 A restriction of a functio...
funssres 6560 The restriction of a funct...
fun2ssres 6561 Equality of restrictions o...
funun 6562 The union of functions wit...
fununmo 6563 If the union of classes is...
fununfun 6564 If the union of classes is...
fundif 6565 A function with removed el...
funcnvsn 6566 The converse singleton of ...
funsng 6567 A singleton of an ordered ...
fnsng 6568 Functionality and domain o...
funsn 6569 A singleton of an ordered ...
funprg 6570 A set of two pairs is a fu...
funtpg 6571 A set of three pairs is a ...
funpr 6572 A function with a domain o...
funtp 6573 A function with a domain o...
fnsn 6574 Functionality and domain o...
fnprg 6575 Function with a domain of ...
fntpg 6576 Function with a domain of ...
fntp 6577 A function with a domain o...
funcnvpr 6578 The converse pair of order...
funcnvtp 6579 The converse triple of ord...
funcnvqp 6580 The converse quadruple of ...
fun0 6581 The empty set is a functio...
funcnv0 6582 The converse of the empty ...
funcnvcnv 6583 The double converse of a f...
funcnv2 6584 A simpler equivalence for ...
funcnv 6585 The converse of a class is...
funcnv3 6586 A condition showing a clas...
fun2cnv 6587 The double converse of a c...
svrelfun 6588 A single-valued relation i...
fncnv 6589 Single-rootedness (see ~ f...
fun11 6590 Two ways of stating that `...
fununi 6591 The union of a chain (with...
funin 6592 The intersection with a fu...
funres11 6593 The restriction of a one-t...
funcnvres 6594 The converse of a restrict...
cnvresid 6595 Converse of a restricted i...
funcnvres2 6596 The converse of a restrict...
funimacnv 6597 The image of the preimage ...
funimass1 6598 A kind of contraposition l...
funimass2 6599 A kind of contraposition l...
imadif 6600 The image of a difference ...
imain 6601 The image of an intersecti...
f1imadifssran 6602 Condition for the range of...
funimaexg 6603 Axiom of Replacement using...
funimaexgOLD 6604 Obsolete version of ~ funi...
funimaex 6605 The image of a set under a...
isarep1 6606 Part of a study of the Axi...
isarep1OLD 6607 Obsolete version of ~ isar...
isarep2 6608 Part of a study of the Axi...
fneq1 6609 Equality theorem for funct...
fneq2 6610 Equality theorem for funct...
fneq1d 6611 Equality deduction for fun...
fneq2d 6612 Equality deduction for fun...
fneq12d 6613 Equality deduction for fun...
fneq12 6614 Equality theorem for funct...
fneq1i 6615 Equality inference for fun...
fneq2i 6616 Equality inference for fun...
nffn 6617 Bound-variable hypothesis ...
fnfun 6618 A function with domain is ...
fnfund 6619 A function with domain is ...
fnrel 6620 A function with domain is ...
fndm 6621 The domain of a function. ...
fndmi 6622 The domain of a function. ...
fndmd 6623 The domain of a function. ...
funfni 6624 Inference to convert a fun...
fndmu 6625 A function has a unique do...
fnbr 6626 The first argument of bina...
fnop 6627 The first argument of an o...
fneu 6628 There is exactly one value...
fneu2 6629 There is exactly one value...
fnunres1 6630 Restriction of a disjoint ...
fnunres2 6631 Restriction of a disjoint ...
fnun 6632 The union of two functions...
fnund 6633 The union of two functions...
fnunop 6634 Extension of a function wi...
fncofn 6635 Composition of a function ...
fnco 6636 Composition of two functio...
fnresdm 6637 A function does not change...
fnresdisj 6638 A function restricted to a...
2elresin 6639 Membership in two function...
fnssresb 6640 Restriction of a function ...
fnssres 6641 Restriction of a function ...
fnssresd 6642 Restriction of a function ...
fnresin1 6643 Restriction of a function'...
fnresin2 6644 Restriction of a function'...
fnres 6645 An equivalence for functio...
idfn 6646 The identity relation is a...
fnresi 6647 The restricted identity re...
fnima 6648 The image of a function's ...
fn0 6649 A function with empty doma...
fnimadisj 6650 A class that is disjoint w...
fnimaeq0 6651 Images under a function ne...
dfmpt3 6652 Alternate definition for t...
mptfnf 6653 The maps-to notation defin...
fnmptf 6654 The maps-to notation defin...
fnopabg 6655 Functionality and domain o...
fnopab 6656 Functionality and domain o...
mptfng 6657 The maps-to notation defin...
fnmpt 6658 The maps-to notation defin...
fnmptd 6659 The maps-to notation defin...
mpt0 6660 A mapping operation with e...
fnmpti 6661 Functionality and domain o...
dmmpti 6662 Domain of the mapping oper...
dmmptd 6663 The domain of the mapping ...
mptun 6664 Union of mappings which ar...
partfun 6665 Rewrite a function defined...
feq1 6666 Equality theorem for funct...
feq2 6667 Equality theorem for funct...
feq3 6668 Equality theorem for funct...
feq23 6669 Equality theorem for funct...
feq1d 6670 Equality deduction for fun...
feq1dd 6671 Equality deduction for fun...
feq2d 6672 Equality deduction for fun...
feq3d 6673 Equality deduction for fun...
feq2dd 6674 Equality deduction for fun...
feq3dd 6675 Equality deduction for fun...
feq12d 6676 Equality deduction for fun...
feq123d 6677 Equality deduction for fun...
feq123 6678 Equality theorem for funct...
feq1i 6679 Equality inference for fun...
feq2i 6680 Equality inference for fun...
feq12i 6681 Equality inference for fun...
feq23i 6682 Equality inference for fun...
feq23d 6683 Equality deduction for fun...
nff 6684 Bound-variable hypothesis ...
sbcfng 6685 Distribute proper substitu...
sbcfg 6686 Distribute proper substitu...
elimf 6687 Eliminate a mapping hypoth...
ffn 6688 A mapping is a function wi...
ffnd 6689 A mapping is a function wi...
dffn2 6690 Any function is a mapping ...
ffun 6691 A mapping is a function. ...
ffund 6692 A mapping is a function, d...
frel 6693 A mapping is a relation. ...
freld 6694 A mapping is a relation. ...
frn 6695 The range of a mapping. (...
frnd 6696 Deduction form of ~ frn . ...
fdm 6697 The domain of a mapping. ...
fdmd 6698 Deduction form of ~ fdm . ...
fdmi 6699 Inference associated with ...
dffn3 6700 A function maps to its ran...
ffrn 6701 A function maps to its ran...
ffrnb 6702 Characterization of a func...
ffrnbd 6703 A function maps to its ran...
fss 6704 Expanding the codomain of ...
fssd 6705 Expanding the codomain of ...
fssdmd 6706 Expressing that a class is...
fssdm 6707 Expressing that a class is...
fimass 6708 The image of a class under...
fimassd 6709 The image of a class is a ...
fimacnv 6710 The preimage of the codoma...
fcof 6711 Composition of a function ...
fco 6712 Composition of two functio...
fcod 6713 Composition of two mapping...
fco2 6714 Functionality of a composi...
fssxp 6715 A mapping is a class of or...
funssxp 6716 Two ways of specifying a p...
ffdm 6717 A mapping is a partial fun...
ffdmd 6718 The domain of a function. ...
fdmrn 6719 A different way to write `...
funcofd 6720 Composition of two functio...
opelf 6721 The members of an ordered ...
fun 6722 The union of two functions...
fun2 6723 The union of two functions...
fun2d 6724 The union of functions wit...
fnfco 6725 Composition of two functio...
fssres 6726 Restriction of a function ...
fssresd 6727 Restriction of a function ...
fssres2 6728 Restriction of a restricte...
fresin 6729 An identity for the mappin...
resasplit 6730 If two functions agree on ...
fresaun 6731 The union of two functions...
fresaunres2 6732 From the union of two func...
fresaunres1 6733 From the union of two func...
fcoi1 6734 Composition of a mapping a...
fcoi2 6735 Composition of restricted ...
feu 6736 There is exactly one value...
fcnvres 6737 The converse of a restrict...
fimacnvdisj 6738 The preimage of a class di...
fint 6739 Function into an intersect...
fin 6740 Mapping into an intersecti...
f0 6741 The empty function. (Cont...
f00 6742 A class is a function with...
f0bi 6743 A function with empty doma...
f0dom0 6744 A function is empty iff it...
f0rn0 6745 If there is no element in ...
fconst 6746 A Cartesian product with a...
fconstg 6747 A Cartesian product with a...
fnconstg 6748 A Cartesian product with a...
fconst6g 6749 Constant function with loo...
fconst6 6750 A constant function as a m...
f1eq1 6751 Equality theorem for one-t...
f1eq2 6752 Equality theorem for one-t...
f1eq3 6753 Equality theorem for one-t...
nff1 6754 Bound-variable hypothesis ...
dff12 6755 Alternate definition of a ...
f1f 6756 A one-to-one mapping is a ...
f1fn 6757 A one-to-one mapping is a ...
f1fun 6758 A one-to-one mapping is a ...
f1rel 6759 A one-to-one onto mapping ...
f1dm 6760 The domain of a one-to-one...
f1ss 6761 A function that is one-to-...
f1ssr 6762 A function that is one-to-...
f1ssres 6763 A function that is one-to-...
f1resf1 6764 The restriction of an inje...
f1cnvcnv 6765 Two ways to express that a...
f1cof1 6766 Composition of two one-to-...
f1co 6767 Composition of one-to-one ...
foeq1 6768 Equality theorem for onto ...
foeq2 6769 Equality theorem for onto ...
foeq3 6770 Equality theorem for onto ...
nffo 6771 Bound-variable hypothesis ...
fof 6772 An onto mapping is a mappi...
fofun 6773 An onto mapping is a funct...
fofn 6774 An onto mapping is a funct...
forn 6775 The codomain of an onto fu...
dffo2 6776 Alternate definition of an...
foima 6777 The image of the domain of...
dffn4 6778 A function maps onto its r...
funforn 6779 A function maps its domain...
fodmrnu 6780 An onto function has uniqu...
fimadmfo 6781 A function is a function o...
fores 6782 Restriction of an onto fun...
fimadmfoALT 6783 Alternate proof of ~ fimad...
focnvimacdmdm 6784 The preimage of the codoma...
focofo 6785 Composition of onto functi...
foco 6786 Composition of onto functi...
foconst 6787 A nonzero constant functio...
f1oeq1 6788 Equality theorem for one-t...
f1oeq2 6789 Equality theorem for one-t...
f1oeq3 6790 Equality theorem for one-t...
f1oeq23 6791 Equality theorem for one-t...
f1eq123d 6792 Equality deduction for one...
foeq123d 6793 Equality deduction for ont...
f1oeq123d 6794 Equality deduction for one...
f1oeq1d 6795 Equality deduction for one...
f1oeq2d 6796 Equality deduction for one...
f1oeq3d 6797 Equality deduction for one...
nff1o 6798 Bound-variable hypothesis ...
f1of1 6799 A one-to-one onto mapping ...
f1of 6800 A one-to-one onto mapping ...
f1ofn 6801 A one-to-one onto mapping ...
f1ofun 6802 A one-to-one onto mapping ...
f1orel 6803 A one-to-one onto mapping ...
f1odm 6804 The domain of a one-to-one...
dff1o2 6805 Alternate definition of on...
dff1o3 6806 Alternate definition of on...
f1ofo 6807 A one-to-one onto function...
dff1o4 6808 Alternate definition of on...
dff1o5 6809 Alternate definition of on...
f1orn 6810 A one-to-one function maps...
f1f1orn 6811 A one-to-one function maps...
f1ocnv 6812 The converse of a one-to-o...
f1ocnvb 6813 A relation is a one-to-one...
f1ores 6814 The restriction of a one-t...
f1orescnv 6815 The converse of a one-to-o...
f1imacnv 6816 Preimage of an image. (Co...
foimacnv 6817 A reverse version of ~ f1i...
foun 6818 The union of two onto func...
f1oun 6819 The union of two one-to-on...
f1un 6820 The union of two one-to-on...
resdif 6821 The restriction of a one-t...
resin 6822 The restriction of a one-t...
f1oco 6823 Composition of one-to-one ...
f1cnv 6824 The converse of an injecti...
funcocnv2 6825 Composition with the conve...
fococnv2 6826 The composition of an onto...
f1ococnv2 6827 The composition of a one-t...
f1cocnv2 6828 Composition of an injectiv...
f1ococnv1 6829 The composition of a one-t...
f1cocnv1 6830 Composition of an injectiv...
funcoeqres 6831 Express a constraint on a ...
f1ssf1 6832 A subset of an injective f...
f10 6833 The empty set maps one-to-...
f10d 6834 The empty set maps one-to-...
f1o00 6835 One-to-one onto mapping of...
fo00 6836 Onto mapping of the empty ...
f1o0 6837 One-to-one onto mapping of...
f1oi 6838 A restriction of the ident...
f1ovi 6839 The identity relation is a...
f1osn 6840 A singleton of an ordered ...
f1osng 6841 A singleton of an ordered ...
f1sng 6842 A singleton of an ordered ...
fsnd 6843 A singleton of an ordered ...
f1oprswap 6844 A two-element swap is a bi...
f1oprg 6845 An unordered pair of order...
tz6.12-2 6846 Function value when ` F ` ...
fveu 6847 The value of a function at...
brprcneu 6848 If ` A ` is a proper class...
brprcneuALT 6849 Alternate proof of ~ brprc...
fvprc 6850 A function's value at a pr...
fvprcALT 6851 Alternate proof of ~ fvprc...
rnfvprc 6852 The range of a function va...
fv2 6853 Alternate definition of fu...
dffv3 6854 A definition of function v...
dffv4 6855 The previous definition of...
elfv 6856 Membership in a function v...
fveq1 6857 Equality theorem for funct...
fveq2 6858 Equality theorem for funct...
fveq1i 6859 Equality inference for fun...
fveq1d 6860 Equality deduction for fun...
fveq2i 6861 Equality inference for fun...
fveq2d 6862 Equality deduction for fun...
2fveq3 6863 Equality theorem for neste...
fveq12i 6864 Equality deduction for fun...
fveq12d 6865 Equality deduction for fun...
fveqeq2d 6866 Equality deduction for fun...
fveqeq2 6867 Equality deduction for fun...
nffv 6868 Bound-variable hypothesis ...
nffvmpt1 6869 Bound-variable hypothesis ...
nffvd 6870 Deduction version of bound...
fvex 6871 The value of a class exist...
fvexi 6872 The value of a class exist...
fvexd 6873 The value of a class exist...
fvif 6874 Move a conditional outside...
iffv 6875 Move a conditional outside...
fv3 6876 Alternate definition of th...
fvres 6877 The value of a restricted ...
fvresd 6878 The value of a restricted ...
funssfv 6879 The value of a member of t...
tz6.12c 6880 Corollary of Theorem 6.12(...
tz6.12-1 6881 Function value. Theorem 6...
tz6.12-1OLD 6882 Obsolete version of ~ tz6....
tz6.12 6883 Function value. Theorem 6...
tz6.12f 6884 Function value, using boun...
tz6.12cOLD 6885 Obsolete version of ~ tz6....
tz6.12i 6886 Corollary of Theorem 6.12(...
fvbr0 6887 Two possibilities for the ...
fvrn0 6888 A function value is a memb...
fvn0fvelrn 6889 If the value of a function...
elfvunirn 6890 A function value is a subs...
fvssunirn 6891 The result of a function v...
fvssunirnOLD 6892 Obsolete version of ~ fvss...
ndmfv 6893 The value of a class outsi...
ndmfvrcl 6894 Reverse closure law for fu...
elfvdm 6895 If a function value has a ...
elfvex 6896 If a function value has a ...
elfvexd 6897 If a function value has a ...
eliman0 6898 A nonempty function value ...
nfvres 6899 The value of a non-member ...
nfunsn 6900 If the restriction of a cl...
fvfundmfvn0 6901 If the "value of a class" ...
0fv 6902 Function value of the empt...
fv2prc 6903 A function value of a func...
elfv2ex 6904 If a function value of a f...
fveqres 6905 Equal values imply equal v...
csbfv12 6906 Move class substitution in...
csbfv2g 6907 Move class substitution in...
csbfv 6908 Substitution for a functio...
funbrfv 6909 The second argument of a b...
funopfv 6910 The second element in an o...
fnbrfvb 6911 Equivalence of function va...
fnopfvb 6912 Equivalence of function va...
fvelima2 6913 Function value in an image...
funbrfvb 6914 Equivalence of function va...
funopfvb 6915 Equivalence of function va...
fnbrfvb2 6916 Version of ~ fnbrfvb for f...
fdmeu 6917 There is exactly one codom...
funbrfv2b 6918 Function value in terms of...
dffn5 6919 Representation of a functi...
fnrnfv 6920 The range of a function ex...
fvelrnb 6921 A member of a function's r...
foelcdmi 6922 A member of a surjective f...
dfimafn 6923 Alternate definition of th...
dfimafn2 6924 Alternate definition of th...
funimass4 6925 Membership relation for th...
fvelima 6926 Function value in an image...
funimassd 6927 Sufficient condition for t...
fvelimad 6928 Function value in an image...
feqmptd 6929 Deduction form of ~ dffn5 ...
feqresmpt 6930 Express a restricted funct...
feqmptdf 6931 Deduction form of ~ dffn5f...
dffn5f 6932 Representation of a functi...
fvelimab 6933 Function value in an image...
fvelimabd 6934 Deduction form of ~ fvelim...
fimarab 6935 Expressing the image of a ...
unima 6936 Image of a union. (Contri...
fvi 6937 The value of the identity ...
fviss 6938 The value of the identity ...
fniinfv 6939 The indexed intersection o...
fnsnfv 6940 Singleton of function valu...
opabiotafun 6941 Define a function whose va...
opabiotadm 6942 Define a function whose va...
opabiota 6943 Define a function whose va...
fnimapr 6944 The image of a pair under ...
fnimatpd 6945 The image of an unordered ...
ssimaex 6946 The existence of a subimag...
ssimaexg 6947 The existence of a subimag...
funfv 6948 A simplified expression fo...
funfv2 6949 The value of a function. ...
funfv2f 6950 The value of a function. ...
fvun 6951 Value of the union of two ...
fvun1 6952 The value of a union when ...
fvun2 6953 The value of a union when ...
fvun1d 6954 The value of a union when ...
fvun2d 6955 The value of a union when ...
dffv2 6956 Alternate definition of fu...
dmfco 6957 Domains of a function comp...
fvco2 6958 Value of a function compos...
fvco 6959 Value of a function compos...
fvco3 6960 Value of a function compos...
fvco3d 6961 Value of a function compos...
fvco4i 6962 Conditions for a compositi...
fvopab3g 6963 Value of a function given ...
fvopab3ig 6964 Value of a function given ...
brfvopabrbr 6965 The binary relation of a f...
fvmptg 6966 Value of a function given ...
fvmpti 6967 Value of a function given ...
fvmpt 6968 Value of a function given ...
fvmpt2f 6969 Value of a function given ...
fvtresfn 6970 Functionality of a tuple-r...
fvmpts 6971 Value of a function given ...
fvmpt3 6972 Value of a function given ...
fvmpt3i 6973 Value of a function given ...
fvmptdf 6974 Deduction version of ~ fvm...
fvmptd 6975 Deduction version of ~ fvm...
fvmptd2 6976 Deduction version of ~ fvm...
mptrcl 6977 Reverse closure for a mapp...
fvmpt2i 6978 Value of a function given ...
fvmpt2 6979 Value of a function given ...
fvmptss 6980 If all the values of the m...
fvmpt2d 6981 Deduction version of ~ fvm...
fvmptex 6982 Express a function ` F ` w...
fvmptd3f 6983 Alternate deduction versio...
fvmptd2f 6984 Alternate deduction versio...
fvmptdv 6985 Alternate deduction versio...
fvmptdv2 6986 Alternate deduction versio...
mpteqb 6987 Bidirectional equality the...
fvmptt 6988 Closed theorem form of ~ f...
fvmptf 6989 Value of a function given ...
fvmptnf 6990 The value of a function gi...
fvmptd3 6991 Deduction version of ~ fvm...
fvmptd4 6992 Deduction version of ~ fvm...
fvmptn 6993 This somewhat non-intuitiv...
fvmptss2 6994 A mapping always evaluates...
elfvmptrab1w 6995 Implications for the value...
elfvmptrab1 6996 Implications for the value...
elfvmptrab 6997 Implications for the value...
fvopab4ndm 6998 Value of a function given ...
fvmptndm 6999 Value of a function given ...
fvmptrabfv 7000 Value of a function mappin...
fvopab5 7001 The value of a function th...
fvopab6 7002 Value of a function given ...
eqfnfv 7003 Equality of functions is d...
eqfnfv2 7004 Equality of functions is d...
eqfnfv3 7005 Derive equality of functio...
eqfnfvd 7006 Deduction for equality of ...
eqfnfv2f 7007 Equality of functions is d...
eqfunfv 7008 Equality of functions is d...
eqfnun 7009 Two functions on ` A u. B ...
fvreseq0 7010 Equality of restricted fun...
fvreseq1 7011 Equality of a function res...
fvreseq 7012 Equality of restricted fun...
fnmptfvd 7013 A function with a given do...
fndmdif 7014 Two ways to express the lo...
fndmdifcom 7015 The difference set between...
fndmdifeq0 7016 The difference set of two ...
fndmin 7017 Two ways to express the lo...
fneqeql 7018 Two functions are equal if...
fneqeql2 7019 Two functions are equal if...
fnreseql 7020 Two functions are equal on...
chfnrn 7021 The range of a choice func...
funfvop 7022 Ordered pair with function...
funfvbrb 7023 Two ways to say that ` A `...
fvimacnvi 7024 A member of a preimage is ...
fvimacnv 7025 The argument of a function...
funimass3 7026 A kind of contraposition l...
funimass5 7027 A subclass of a preimage i...
funconstss 7028 Two ways of specifying tha...
fvimacnvALT 7029 Alternate proof of ~ fvima...
elpreima 7030 Membership in the preimage...
elpreimad 7031 Membership in the preimage...
fniniseg 7032 Membership in the preimage...
fncnvima2 7033 Inverse images under funct...
fniniseg2 7034 Inverse point images under...
unpreima 7035 Preimage of a union. (Con...
inpreima 7036 Preimage of an intersectio...
difpreima 7037 Preimage of a difference. ...
respreima 7038 The preimage of a restrict...
cnvimainrn 7039 The preimage of the inters...
sspreima 7040 The preimage of a subset i...
iinpreima 7041 Preimage of an intersectio...
intpreima 7042 Preimage of an intersectio...
fimacnvinrn 7043 Taking the converse image ...
fimacnvinrn2 7044 Taking the converse image ...
rescnvimafod 7045 The restriction of a funct...
fvn0ssdmfun 7046 If a class' function value...
fnopfv 7047 Ordered pair with function...
fvelrn 7048 A function's value belongs...
nelrnfvne 7049 A function value cannot be...
fveqdmss 7050 If the empty set is not co...
fveqressseq 7051 If the empty set is not co...
fnfvelrn 7052 A function's value belongs...
ffvelcdm 7053 A function's value belongs...
fnfvelrnd 7054 A function's value belongs...
ffvelcdmi 7055 A function's value belongs...
ffvelcdmda 7056 A function's value belongs...
ffvelcdmd 7057 A function's value belongs...
feldmfvelcdm 7058 A class is an element of t...
rexrn 7059 Restricted existential qua...
ralrn 7060 Restricted universal quant...
elrnrexdm 7061 For any element in the ran...
elrnrexdmb 7062 For any element in the ran...
eldmrexrn 7063 For any element in the dom...
eldmrexrnb 7064 For any element in the dom...
fvcofneq 7065 The values of two function...
ralrnmptw 7066 A restricted quantifier ov...
rexrnmptw 7067 A restricted quantifier ov...
ralrnmpt 7068 A restricted quantifier ov...
rexrnmpt 7069 A restricted quantifier ov...
f0cli 7070 Unconditional closure of a...
dff2 7071 Alternate definition of a ...
dff3 7072 Alternate definition of a ...
dff4 7073 Alternate definition of a ...
dffo3 7074 An onto mapping expressed ...
dffo4 7075 Alternate definition of an...
dffo5 7076 Alternate definition of an...
exfo 7077 A relation equivalent to t...
dffo3f 7078 An onto mapping expressed ...
foelrn 7079 Property of a surjective f...
foelrnf 7080 Property of a surjective f...
foco2 7081 If a composition of two fu...
fmpt 7082 Functionality of the mappi...
f1ompt 7083 Express bijection for a ma...
fmpti 7084 Functionality of the mappi...
fvmptelcdm 7085 The value of a function at...
fmptd 7086 Domain and codomain of the...
fmpttd 7087 Version of ~ fmptd with in...
fmpt3d 7088 Domain and codomain of the...
fmptdf 7089 A version of ~ fmptd using...
fompt 7090 Express being onto for a m...
ffnfv 7091 A function maps to a class...
ffnfvf 7092 A function maps to a class...
fnfvrnss 7093 An upper bound for range d...
fcdmssb 7094 A function is a function i...
rnmptss 7095 The range of an operation ...
fmpt2d 7096 Domain and codomain of the...
ffvresb 7097 A necessary and sufficient...
fssrescdmd 7098 Restriction of a function ...
f1oresrab 7099 Build a bijection between ...
f1ossf1o 7100 Restricting a bijection, w...
fmptco 7101 Composition of two functio...
fmptcof 7102 Version of ~ fmptco where ...
fmptcos 7103 Composition of two functio...
cofmpt 7104 Express composition of a m...
fcompt 7105 Express composition of two...
fcoconst 7106 Composition with a constan...
fsn 7107 A function maps a singleto...
fsn2 7108 A function that maps a sin...
fsng 7109 A function maps a singleto...
fsn2g 7110 A function that maps a sin...
xpsng 7111 The Cartesian product of t...
xpprsng 7112 The Cartesian product of a...
xpsn 7113 The Cartesian product of t...
f1o2sn 7114 A singleton consisting in ...
residpr 7115 Restriction of the identit...
dfmpt 7116 Alternate definition for t...
fnasrn 7117 A function expressed as th...
idref 7118 Two ways to state that a r...
funiun 7119 A function is a union of s...
funopsn 7120 If a function is an ordere...
funop 7121 An ordered pair is a funct...
funopdmsn 7122 The domain of a function w...
funsndifnop 7123 A singleton of an ordered ...
funsneqopb 7124 A singleton of an ordered ...
ressnop0 7125 If ` A ` is not in ` C ` ,...
fpr 7126 A function with a domain o...
fprg 7127 A function with a domain o...
ftpg 7128 A function with a domain o...
ftp 7129 A function with a domain o...
fnressn 7130 A function restricted to a...
funressn 7131 A function restricted to a...
fressnfv 7132 The value of a function re...
fvrnressn 7133 If the value of a function...
fvressn 7134 The value of a function re...
fvn0fvelrnOLD 7135 Obsolete version of ~ fvn0...
fvconst 7136 The value of a constant fu...
fnsnr 7137 If a class belongs to a fu...
fnsnbg 7138 A function's domain is a s...
fnsnb 7139 A function whose domain is...
fnsnbOLD 7140 Obsolete version of ~ fnsn...
fmptsn 7141 Express a singleton functi...
fmptsng 7142 Express a singleton functi...
fmptsnd 7143 Express a singleton functi...
fmptap 7144 Append an additional value...
fmptapd 7145 Append an additional value...
fmptpr 7146 Express a pair function in...
fvresi 7147 The value of a restricted ...
fninfp 7148 Express the class of fixed...
fnelfp 7149 Property of a fixed point ...
fndifnfp 7150 Express the class of non-f...
fnelnfp 7151 Property of a non-fixed po...
fnnfpeq0 7152 A function is the identity...
fvunsn 7153 Remove an ordered pair not...
fvsng 7154 The value of a singleton o...
fvsn 7155 The value of a singleton o...
fvsnun1 7156 The value of a function wi...
fvsnun2 7157 The value of a function wi...
fnsnsplit 7158 Split a function into a si...
fsnunf 7159 Adjoining a point to a fun...
fsnunf2 7160 Adjoining a point to a pun...
fsnunfv 7161 Recover the added point fr...
fsnunres 7162 Recover the original funct...
funresdfunsn 7163 Restricting a function to ...
fvpr1g 7164 The value of a function wi...
fvpr2g 7165 The value of a function wi...
fvpr1 7166 The value of a function wi...
fvpr2 7167 The value of a function wi...
fprb 7168 A condition for functionho...
fvtp1 7169 The first value of a funct...
fvtp2 7170 The second value of a func...
fvtp3 7171 The third value of a funct...
fvtp1g 7172 The value of a function wi...
fvtp2g 7173 The value of a function wi...
fvtp3g 7174 The value of a function wi...
tpres 7175 An unordered triple of ord...
fvconst2g 7176 The value of a constant fu...
fconst2g 7177 A constant function expres...
fvconst2 7178 The value of a constant fu...
fconst2 7179 A constant function expres...
fconst5 7180 Two ways to express that a...
rnmptc 7181 Range of a constant functi...
fnprb 7182 A function whose domain ha...
fntpb 7183 A function whose domain ha...
fnpr2g 7184 A function whose domain ha...
fpr2g 7185 A function that maps a pai...
fconstfv 7186 A constant function expres...
fconst3 7187 Two ways to express a cons...
fconst4 7188 Two ways to express a cons...
resfunexg 7189 The restriction of a funct...
resiexd 7190 The restriction of the ide...
fnex 7191 If the domain of a functio...
fnexd 7192 If the domain of a functio...
funex 7193 If the domain of a functio...
opabex 7194 Existence of a function ex...
mptexg 7195 If the domain of a functio...
mptexgf 7196 If the domain of a functio...
mptex 7197 If the domain of a functio...
mptexd 7198 If the domain of a functio...
mptrabex 7199 If the domain of a functio...
fex 7200 If the domain of a mapping...
fexd 7201 If the domain of a mapping...
mptfvmpt 7202 A function in maps-to nota...
eufnfv 7203 A function is uniquely det...
funfvima 7204 A function's value in a pr...
funfvima2 7205 A function's value in an i...
funfvima2d 7206 A function's value in a pr...
fnfvima 7207 The function value of an o...
fnfvimad 7208 A function's value belongs...
resfvresima 7209 The value of the function ...
funfvima3 7210 A class including a functi...
ralima 7211 Universal quantification u...
rexima 7212 Existential quantification...
reximaOLD 7213 Obsolete version of ~ rexi...
ralimaOLD 7214 Obsolete version of ~ rali...
fvclss 7215 Upper bound for the class ...
elabrex 7216 Elementhood in an image se...
elabrexg 7217 Elementhood in an image se...
abrexco 7218 Composition of two image m...
imaiun 7219 The image of an indexed un...
imauni 7220 The image of a union is th...
fniunfv 7221 The indexed union of a fun...
funiunfv 7222 The indexed union of a fun...
funiunfvf 7223 The indexed union of a fun...
eluniima 7224 Membership in the union of...
elunirn 7225 Membership in the union of...
elunirnALT 7226 Alternate proof of ~ eluni...
elunirn2OLD 7227 Obsolete version of ~ elfv...
fnunirn 7228 Membership in a union of s...
dff13 7229 A one-to-one function in t...
dff13f 7230 A one-to-one function in t...
f1veqaeq 7231 If the values of a one-to-...
f1cofveqaeq 7232 If the values of a composi...
f1cofveqaeqALT 7233 Alternate proof of ~ f1cof...
dff14i 7234 A one-to-one function maps...
2f1fvneq 7235 If two one-to-one function...
f1mpt 7236 Express injection for a ma...
f1fveq 7237 Equality of function value...
f1elima 7238 Membership in the image of...
f1imass 7239 Taking images under a one-...
f1imaeq 7240 Taking images under a one-...
f1imapss 7241 Taking images under a one-...
fpropnf1 7242 A function, given by an un...
f1dom3fv3dif 7243 The function values for a ...
f1dom3el3dif 7244 The codomain of a 1-1 func...
dff14a 7245 A one-to-one function in t...
dff14b 7246 A one-to-one function in t...
f1ounsn 7247 Extension of a bijection b...
f12dfv 7248 A one-to-one function with...
f13dfv 7249 A one-to-one function with...
dff1o6 7250 A one-to-one onto function...
f1ocnvfv1 7251 The converse value of the ...
f1ocnvfv2 7252 The value of the converse ...
f1ocnvfv 7253 Relationship between the v...
f1ocnvfvb 7254 Relationship between the v...
nvof1o 7255 An involution is a bijecti...
nvocnv 7256 The converse of an involut...
f1cdmsn 7257 If a one-to-one function w...
fsnex 7258 Relate a function with a s...
f1prex 7259 Relate a one-to-one functi...
f1ocnvdm 7260 The value of the converse ...
f1ocnvfvrneq 7261 If the values of a one-to-...
fcof1 7262 An application is injectiv...
fcofo 7263 An application is surjecti...
cbvfo 7264 Change bound variable betw...
cbvexfo 7265 Change bound variable betw...
cocan1 7266 An injection is left-cance...
cocan2 7267 A surjection is right-canc...
fcof1oinvd 7268 Show that a function is th...
fcof1od 7269 A function is bijective if...
2fcoidinvd 7270 Show that a function is th...
fcof1o 7271 Show that two functions ar...
2fvcoidd 7272 Show that the composition ...
2fvidf1od 7273 A function is bijective if...
2fvidinvd 7274 Show that two functions ar...
foeqcnvco 7275 Condition for function equ...
f1eqcocnv 7276 Condition for function equ...
fveqf1o 7277 Given a bijection ` F ` , ...
f1ocoima 7278 The composition of two bij...
nf1const 7279 A constant function from a...
nf1oconst 7280 A constant function from a...
f1ofvswap 7281 Swapping two values in a b...
fvf1pr 7282 Values of a one-to-one fun...
fliftrel 7283 ` F ` , a function lift, i...
fliftel 7284 Elementhood in the relatio...
fliftel1 7285 Elementhood in the relatio...
fliftcnv 7286 Converse of the relation `...
fliftfun 7287 The function ` F ` is the ...
fliftfund 7288 The function ` F ` is the ...
fliftfuns 7289 The function ` F ` is the ...
fliftf 7290 The domain and range of th...
fliftval 7291 The value of the function ...
isoeq1 7292 Equality theorem for isomo...
isoeq2 7293 Equality theorem for isomo...
isoeq3 7294 Equality theorem for isomo...
isoeq4 7295 Equality theorem for isomo...
isoeq5 7296 Equality theorem for isomo...
nfiso 7297 Bound-variable hypothesis ...
isof1o 7298 An isomorphism is a one-to...
isof1oidb 7299 A function is a bijection ...
isof1oopb 7300 A function is a bijection ...
isorel 7301 An isomorphism connects bi...
soisores 7302 Express the condition of i...
soisoi 7303 Infer isomorphism from one...
isoid 7304 Identity law for isomorphi...
isocnv 7305 Converse law for isomorphi...
isocnv2 7306 Converse law for isomorphi...
isocnv3 7307 Complementation law for is...
isores2 7308 An isomorphism from one we...
isores1 7309 An isomorphism from one we...
isores3 7310 Induced isomorphism on a s...
isotr 7311 Composition (transitive) l...
isomin 7312 Isomorphisms preserve mini...
isoini 7313 Isomorphisms preserve init...
isoini2 7314 Isomorphisms are isomorphi...
isofrlem 7315 Lemma for ~ isofr . (Cont...
isoselem 7316 Lemma for ~ isose . (Cont...
isofr 7317 An isomorphism preserves w...
isose 7318 An isomorphism preserves s...
isofr2 7319 A weak form of ~ isofr tha...
isopolem 7320 Lemma for ~ isopo . (Cont...
isopo 7321 An isomorphism preserves t...
isosolem 7322 Lemma for ~ isoso . (Cont...
isoso 7323 An isomorphism preserves t...
isowe 7324 An isomorphism preserves t...
isowe2 7325 A weak form of ~ isowe tha...
f1oiso 7326 Any one-to-one onto functi...
f1oiso2 7327 Any one-to-one onto functi...
f1owe 7328 Well-ordering of isomorphi...
weniso 7329 A set-like well-ordering h...
weisoeq 7330 Thus, there is at most one...
weisoeq2 7331 Thus, there is at most one...
knatar 7332 The Knaster-Tarski theorem...
fvresval 7333 The value of a restricted ...
funeldmb 7334 If ` (/) ` is not part of ...
eqfunresadj 7335 Law for adjoining an eleme...
eqfunressuc 7336 Law for equality of restri...
fnssintima 7337 Condition for subset of an...
imaeqsexvOLD 7338 Obsolete version of ~ rexi...
imaeqsalvOLD 7339 Obsolete version of ~ rali...
fnimasnd 7340 The image of a function by...
canth 7341 No set ` A ` is equinumero...
ncanth 7342 Cantor's theorem fails for...
riotaeqdv 7345 Formula-building deduction...
riotabidv 7346 Formula-building deduction...
riotaeqbidv 7347 Equality deduction for res...
riotaex 7348 Restricted iota is a set. ...
riotav 7349 An iota restricted to the ...
riotauni 7350 Restricted iota in terms o...
nfriota1 7351 The abstraction variable i...
nfriotadw 7352 Deduction version of ~ nfr...
cbvriotaw 7353 Change bound variable in a...
cbvriotavw 7354 Change bound variable in a...
nfriotad 7355 Deduction version of ~ nfr...
nfriota 7356 A variable not free in a w...
cbvriota 7357 Change bound variable in a...
cbvriotav 7358 Change bound variable in a...
csbriota 7359 Interchange class substitu...
riotacl2 7360 Membership law for "the un...
riotacl 7361 Closure of restricted iota...
riotasbc 7362 Substitution law for descr...
riotabidva 7363 Equivalent wff's yield equ...
riotabiia 7364 Equivalent wff's yield equ...
riota1 7365 Property of restricted iot...
riota1a 7366 Property of iota. (Contri...
riota2df 7367 A deduction version of ~ r...
riota2f 7368 This theorem shows a condi...
riota2 7369 This theorem shows a condi...
riotaeqimp 7370 If two restricted iota des...
riotaprop 7371 Properties of a restricted...
riota5f 7372 A method for computing res...
riota5 7373 A method for computing res...
riotass2 7374 Restriction of a unique el...
riotass 7375 Restriction of a unique el...
moriotass 7376 Restriction of a unique el...
snriota 7377 A restricted class abstrac...
riotaxfrd 7378 Change the variable ` x ` ...
eusvobj2 7379 Specify the same property ...
eusvobj1 7380 Specify the same object in...
f1ofveu 7381 There is one domain elemen...
f1ocnvfv3 7382 Value of the converse of a...
riotaund 7383 Restricted iota equals the...
riotassuni 7384 The restricted iota class ...
riotaclb 7385 Bidirectional closure of r...
riotarab 7386 Restricted iota of a restr...
oveq 7393 Equality theorem for opera...
oveq1 7394 Equality theorem for opera...
oveq2 7395 Equality theorem for opera...
oveq12 7396 Equality theorem for opera...
oveq1i 7397 Equality inference for ope...
oveq2i 7398 Equality inference for ope...
oveq12i 7399 Equality inference for ope...
oveqi 7400 Equality inference for ope...
oveq123i 7401 Equality inference for ope...
oveq1d 7402 Equality deduction for ope...
oveq2d 7403 Equality deduction for ope...
oveqd 7404 Equality deduction for ope...
oveq12d 7405 Equality deduction for ope...
oveqan12d 7406 Equality deduction for ope...
oveqan12rd 7407 Equality deduction for ope...
oveq123d 7408 Equality deduction for ope...
fvoveq1d 7409 Equality deduction for nes...
fvoveq1 7410 Equality theorem for neste...
ovanraleqv 7411 Equality theorem for a con...
imbrov2fvoveq 7412 Equality theorem for neste...
ovrspc2v 7413 If an operation value is a...
oveqrspc2v 7414 Restricted specialization ...
oveqdr 7415 Equality of two operations...
nfovd 7416 Deduction version of bound...
nfov 7417 Bound-variable hypothesis ...
oprabidw 7418 The law of concretion. Sp...
oprabid 7419 The law of concretion. Sp...
ovex 7420 The result of an operation...
ovexi 7421 The result of an operation...
ovexd 7422 The result of an operation...
ovssunirn 7423 The result of an operation...
0ov 7424 Operation value of the emp...
ovprc 7425 The value of an operation ...
ovprc1 7426 The value of an operation ...
ovprc2 7427 The value of an operation ...
ovrcl 7428 Reverse closure for an ope...
elfvov1 7429 Utility theorem: reverse c...
elfvov2 7430 Utility theorem: reverse c...
csbov123 7431 Move class substitution in...
csbov 7432 Move class substitution in...
csbov12g 7433 Move class substitution in...
csbov1g 7434 Move class substitution in...
csbov2g 7435 Move class substitution in...
rspceov 7436 A frequently used special ...
elovimad 7437 Elementhood of the image s...
fnbrovb 7438 Value of a binary operatio...
fnotovb 7439 Equivalence of operation v...
opabbrex 7440 A collection of ordered pa...
opabresex2 7441 Restrictions of a collecti...
opabresex2d 7442 Obsolete version of ~ opab...
fvmptopab 7443 The function value of a ma...
fvmptopabOLD 7444 Obsolete version of ~ fvmp...
f1opr 7445 Condition for an operation...
brfvopab 7446 The classes involved in a ...
dfoprab2 7447 Class abstraction for oper...
reloprab 7448 An operation class abstrac...
oprabv 7449 If a pair and a class are ...
nfoprab1 7450 The abstraction variables ...
nfoprab2 7451 The abstraction variables ...
nfoprab3 7452 The abstraction variables ...
nfoprab 7453 Bound-variable hypothesis ...
oprabbid 7454 Equivalent wff's yield equ...
oprabbidv 7455 Equivalent wff's yield equ...
oprabbii 7456 Equivalent wff's yield equ...
ssoprab2 7457 Equivalence of ordered pai...
ssoprab2b 7458 Equivalence of ordered pai...
eqoprab2bw 7459 Equivalence of ordered pai...
eqoprab2b 7460 Equivalence of ordered pai...
mpoeq123 7461 An equality theorem for th...
mpoeq12 7462 An equality theorem for th...
mpoeq123dva 7463 An equality deduction for ...
mpoeq123dv 7464 An equality deduction for ...
mpoeq123i 7465 An equality inference for ...
mpoeq3dva 7466 Slightly more general equa...
mpoeq3ia 7467 An equality inference for ...
mpoeq3dv 7468 An equality deduction for ...
nfmpo1 7469 Bound-variable hypothesis ...
nfmpo2 7470 Bound-variable hypothesis ...
nfmpo 7471 Bound-variable hypothesis ...
0mpo0 7472 A mapping operation with e...
mpo0v 7473 A mapping operation with e...
mpo0 7474 A mapping operation with e...
oprab4 7475 Two ways to state the doma...
cbvoprab1 7476 Rule used to change first ...
cbvoprab2 7477 Change the second bound va...
cbvoprab12 7478 Rule used to change first ...
cbvoprab12v 7479 Rule used to change first ...
cbvoprab3 7480 Rule used to change the th...
cbvoprab3v 7481 Rule used to change the th...
cbvmpox 7482 Rule to change the bound v...
cbvmpo 7483 Rule to change the bound v...
cbvmpov 7484 Rule to change the bound v...
elimdelov 7485 Eliminate a hypothesis whi...
brif1 7486 Move a relation inside and...
ovif 7487 Move a conditional outside...
ovif2 7488 Move a conditional outside...
ovif12 7489 Move a conditional outside...
ifov 7490 Move a conditional outside...
ifmpt2v 7491 Move a conditional inside ...
dmoprab 7492 The domain of an operation...
dmoprabss 7493 The domain of an operation...
rnoprab 7494 The range of an operation ...
rnoprab2 7495 The range of a restricted ...
reldmoprab 7496 The domain of an operation...
oprabss 7497 Structure of an operation ...
eloprabga 7498 The law of concretion for ...
eloprabg 7499 The law of concretion for ...
ssoprab2i 7500 Inference of operation cla...
mpov 7501 Operation with universal d...
mpomptx 7502 Express a two-argument fun...
mpompt 7503 Express a two-argument fun...
mpodifsnif 7504 A mapping with two argumen...
mposnif 7505 A mapping with two argumen...
fconstmpo 7506 Representation of a consta...
resoprab 7507 Restriction of an operatio...
resoprab2 7508 Restriction of an operator...
resmpo 7509 Restriction of the mapping...
funoprabg 7510 "At most one" is a suffici...
funoprab 7511 "At most one" is a suffici...
fnoprabg 7512 Functionality and domain o...
mpofun 7513 The maps-to notation for a...
fnoprab 7514 Functionality and domain o...
ffnov 7515 An operation maps to a cla...
fovcld 7516 Closure law for an operati...
fovcl 7517 Closure law for an operati...
eqfnov 7518 Equality of two operations...
eqfnov2 7519 Two operators with the sam...
fnov 7520 Representation of a functi...
mpo2eqb 7521 Bidirectional equality the...
rnmpo 7522 The range of an operation ...
reldmmpo 7523 The domain of an operation...
elrnmpog 7524 Membership in the range of...
elrnmpo 7525 Membership in the range of...
elimampo 7526 Membership in the image of...
elrnmpores 7527 Membership in the range of...
ralrnmpo 7528 A restricted quantifier ov...
rexrnmpo 7529 A restricted quantifier ov...
ovid 7530 The value of an operation ...
ovidig 7531 The value of an operation ...
ovidi 7532 The value of an operation ...
ov 7533 The value of an operation ...
ovigg 7534 The value of an operation ...
ovig 7535 The value of an operation ...
ovmpt4g 7536 Value of a function given ...
ovmpos 7537 Value of a function given ...
ov2gf 7538 The value of an operation ...
ovmpodxf 7539 Value of an operation give...
ovmpodx 7540 Value of an operation give...
ovmpod 7541 Value of an operation give...
ovmpox 7542 The value of an operation ...
ovmpoga 7543 Value of an operation give...
ovmpoa 7544 Value of an operation give...
ovmpodf 7545 Alternate deduction versio...
ovmpodv 7546 Alternate deduction versio...
ovmpodv2 7547 Alternate deduction versio...
ovmpog 7548 Value of an operation give...
ovmpo 7549 Value of an operation give...
ovmpot 7550 The value of an operation ...
fvmpopr2d 7551 Value of an operation give...
ov3 7552 The value of an operation ...
ov6g 7553 The value of an operation ...
ovg 7554 The value of an operation ...
ovres 7555 The value of a restricted ...
ovresd 7556 Lemma for converting metri...
oprres 7557 The restriction of an oper...
oprssov 7558 The value of a member of t...
fovcdm 7559 An operation's value belon...
fovcdmda 7560 An operation's value belon...
fovcdmd 7561 An operation's value belon...
fnrnov 7562 The range of an operation ...
foov 7563 An onto mapping of an oper...
fnovrn 7564 An operation's value belon...
ovelrn 7565 A member of an operation's...
funimassov 7566 Membership relation for th...
ovelimab 7567 Operation value in an imag...
ovima0 7568 An operation value is a me...
ovconst2 7569 The value of a constant op...
oprssdm 7570 Domain of closure of an op...
nssdmovg 7571 The value of an operation ...
ndmovg 7572 The value of an operation ...
ndmov 7573 The value of an operation ...
ndmovcl 7574 The closure of an operatio...
ndmovrcl 7575 Reverse closure law, when ...
ndmovcom 7576 Any operation is commutati...
ndmovass 7577 Any operation is associati...
ndmovdistr 7578 Any operation is distribut...
ndmovord 7579 Elimination of redundant a...
ndmovordi 7580 Elimination of redundant a...
caovclg 7581 Convert an operation closu...
caovcld 7582 Convert an operation closu...
caovcl 7583 Convert an operation closu...
caovcomg 7584 Convert an operation commu...
caovcomd 7585 Convert an operation commu...
caovcom 7586 Convert an operation commu...
caovassg 7587 Convert an operation assoc...
caovassd 7588 Convert an operation assoc...
caovass 7589 Convert an operation assoc...
caovcang 7590 Convert an operation cance...
caovcand 7591 Convert an operation cance...
caovcanrd 7592 Commute the arguments of a...
caovcan 7593 Convert an operation cance...
caovordig 7594 Convert an operation order...
caovordid 7595 Convert an operation order...
caovordg 7596 Convert an operation order...
caovordd 7597 Convert an operation order...
caovord2d 7598 Operation ordering law wit...
caovord3d 7599 Ordering law. (Contribute...
caovord 7600 Convert an operation order...
caovord2 7601 Operation ordering law wit...
caovord3 7602 Ordering law. (Contribute...
caovdig 7603 Convert an operation distr...
caovdid 7604 Convert an operation distr...
caovdir2d 7605 Convert an operation distr...
caovdirg 7606 Convert an operation rever...
caovdird 7607 Convert an operation distr...
caovdi 7608 Convert an operation distr...
caov32d 7609 Rearrange arguments in a c...
caov12d 7610 Rearrange arguments in a c...
caov31d 7611 Rearrange arguments in a c...
caov13d 7612 Rearrange arguments in a c...
caov4d 7613 Rearrange arguments in a c...
caov411d 7614 Rearrange arguments in a c...
caov42d 7615 Rearrange arguments in a c...
caov32 7616 Rearrange arguments in a c...
caov12 7617 Rearrange arguments in a c...
caov31 7618 Rearrange arguments in a c...
caov13 7619 Rearrange arguments in a c...
caov4 7620 Rearrange arguments in a c...
caov411 7621 Rearrange arguments in a c...
caov42 7622 Rearrange arguments in a c...
caovdir 7623 Reverse distributive law. ...
caovdilem 7624 Lemma used by real number ...
caovlem2 7625 Lemma used in real number ...
caovmo 7626 Uniqueness of inverse elem...
imaeqexov 7627 Substitute an operation va...
imaeqalov 7628 Substitute an operation va...
mpondm0 7629 The value of an operation ...
elmpocl 7630 If a two-parameter class i...
elmpocl1 7631 If a two-parameter class i...
elmpocl2 7632 If a two-parameter class i...
elovmpod 7633 Utility lemma for two-para...
elovmpo 7634 Utility lemma for two-para...
elovmporab 7635 Implications for the value...
elovmporab1w 7636 Implications for the value...
elovmporab1 7637 Implications for the value...
2mpo0 7638 If the operation value of ...
relmptopab 7639 Any function to sets of or...
f1ocnvd 7640 Describe an implicit one-t...
f1od 7641 Describe an implicit one-t...
f1ocnv2d 7642 Describe an implicit one-t...
f1o2d 7643 Describe an implicit one-t...
f1opw2 7644 A one-to-one mapping induc...
f1opw 7645 A one-to-one mapping induc...
elovmpt3imp 7646 If the value of a function...
ovmpt3rab1 7647 The value of an operation ...
ovmpt3rabdm 7648 If the value of a function...
elovmpt3rab1 7649 Implications for the value...
elovmpt3rab 7650 Implications for the value...
ofeqd 7655 Equality theorem for funct...
ofeq 7656 Equality theorem for funct...
ofreq 7657 Equality theorem for funct...
ofexg 7658 A function operation restr...
nfof 7659 Hypothesis builder for fun...
nfofr 7660 Hypothesis builder for fun...
ofrfvalg 7661 Value of a relation applie...
offval 7662 Value of an operation appl...
ofrfval 7663 Value of a relation applie...
ofval 7664 Evaluate a function operat...
ofrval 7665 Exhibit a function relatio...
offn 7666 The function operation pro...
offun 7667 The function operation pro...
offval2f 7668 The function operation exp...
ofmresval 7669 Value of a restriction of ...
fnfvof 7670 Function value of a pointw...
off 7671 The function operation pro...
ofres 7672 Restrict the operands of a...
offval2 7673 The function operation exp...
ofrfval2 7674 The function relation acti...
offvalfv 7675 The function operation exp...
ofmpteq 7676 Value of a pointwise opera...
coof 7677 The composition of a _homo...
ofco 7678 The composition of a funct...
offveq 7679 Convert an identity of the...
offveqb 7680 Equivalent expressions for...
ofc1 7681 Left operation by a consta...
ofc2 7682 Right operation by a const...
ofc12 7683 Function operation on two ...
caofref 7684 Transfer a reflexive law t...
caofinvl 7685 Transfer a left inverse la...
caofid0l 7686 Transfer a left identity l...
caofid0r 7687 Transfer a right identity ...
caofid1 7688 Transfer a right absorptio...
caofid2 7689 Transfer a right absorptio...
caofcom 7690 Transfer a commutative law...
caofidlcan 7691 Transfer a cancellation/id...
caofrss 7692 Transfer a relation subset...
caofass 7693 Transfer an associative la...
caoftrn 7694 Transfer a transitivity la...
caofdi 7695 Transfer a distributive la...
caofdir 7696 Transfer a reverse distrib...
caonncan 7697 Transfer ~ nncan -shaped l...
relrpss 7700 The proper subset relation...
brrpssg 7701 The proper subset relation...
brrpss 7702 The proper subset relation...
porpss 7703 Every class is partially o...
sorpss 7704 Express strict ordering un...
sorpssi 7705 Property of a chain of set...
sorpssun 7706 A chain of sets is closed ...
sorpssin 7707 A chain of sets is closed ...
sorpssuni 7708 In a chain of sets, a maxi...
sorpssint 7709 In a chain of sets, a mini...
sorpsscmpl 7710 The componentwise compleme...
zfun 7712 Axiom of Union expressed w...
axun2 7713 A variant of the Axiom of ...
uniex2 7714 The Axiom of Union using t...
vuniex 7715 The union of a setvar is a...
uniexg 7716 The ZF Axiom of Union in c...
uniex 7717 The Axiom of Union in clas...
uniexd 7718 Deduction version of the Z...
unexg 7719 The union of two sets is a...
unex 7720 The union of two sets is a...
unexOLD 7721 Obsolete version of ~ unex...
tpex 7722 An unordered triple of cla...
unexb 7723 Existence of union is equi...
unexbOLD 7724 Obsolete version of ~ unex...
unexgOLD 7725 Obsolete version of ~ unex...
xpexg 7726 The Cartesian product of t...
xpexd 7727 The Cartesian product of t...
3xpexg 7728 The Cartesian product of t...
xpex 7729 The Cartesian product of t...
unexd 7730 The union of two sets is a...
sqxpexg 7731 The Cartesian square of a ...
abnexg 7732 Sufficient condition for a...
abnex 7733 Sufficient condition for a...
snnex 7734 The class of all singleton...
pwnex 7735 The class of all power set...
difex2 7736 If the subtrahend of a cla...
difsnexi 7737 If the difference of a cla...
uniuni 7738 Expression for double unio...
uniexr 7739 Converse of the Axiom of U...
uniexb 7740 The Axiom of Union and its...
pwexr 7741 Converse of the Axiom of P...
pwexb 7742 The Axiom of Power Sets an...
elpwpwel 7743 A class belongs to a doubl...
eldifpw 7744 Membership in a power clas...
elpwun 7745 Membership in the power cl...
pwuncl 7746 Power classes are closed u...
iunpw 7747 An indexed union of a powe...
fr3nr 7748 A well-founded relation ha...
epne3 7749 A well-founded class conta...
dfwe2 7750 Alternate definition of we...
epweon 7751 The membership relation we...
epweonALT 7752 Alternate proof of ~ epweo...
ordon 7753 The class of all ordinal n...
onprc 7754 No set contains all ordina...
ssorduni 7755 The union of a class of or...
ssonuni 7756 The union of a set of ordi...
ssonunii 7757 The union of a set of ordi...
ordeleqon 7758 A way to express the ordin...
ordsson 7759 Any ordinal class is a sub...
dford5 7760 A class is ordinal iff it ...
onss 7761 An ordinal number is a sub...
predon 7762 The predecessor of an ordi...
ssonprc 7763 Two ways of saying a class...
onuni 7764 The union of an ordinal nu...
orduni 7765 The union of an ordinal cl...
onint 7766 The intersection (infimum)...
onint0 7767 The intersection of a clas...
onssmin 7768 A nonempty class of ordina...
onminesb 7769 If a property is true for ...
onminsb 7770 If a property is true for ...
oninton 7771 The intersection of a none...
onintrab 7772 The intersection of a clas...
onintrab2 7773 An existence condition equ...
onnmin 7774 No member of a set of ordi...
onnminsb 7775 An ordinal number smaller ...
oneqmin 7776 A way to show that an ordi...
uniordint 7777 The union of a set of ordi...
onminex 7778 If a wff is true for an or...
sucon 7779 The class of all ordinal n...
sucexb 7780 A successor exists iff its...
sucexg 7781 The successor of a set is ...
sucex 7782 The successor of a set is ...
onmindif2 7783 The minimum of a class of ...
ordsuci 7784 The successor of an ordina...
sucexeloni 7785 If the successor of an ord...
sucexeloniOLD 7786 Obsolete version of ~ suce...
onsuc 7787 The successor of an ordina...
ordsuc 7788 A class is ordinal if and ...
ordsucOLD 7789 Obsolete version of ~ ords...
ordpwsuc 7790 The collection of ordinals...
onpwsuc 7791 The collection of ordinal ...
onsucb 7792 A class is an ordinal numb...
ordsucss 7793 The successor of an elemen...
onpsssuc 7794 An ordinal number is a pro...
ordelsuc 7795 A set belongs to an ordina...
onsucmin 7796 The successor of an ordina...
ordsucelsuc 7797 Membership is inherited by...
ordsucsssuc 7798 The subclass relationship ...
ordsucuniel 7799 Given an element ` A ` of ...
ordsucun 7800 The successor of the maxim...
ordunpr 7801 The maximum of two ordinal...
ordunel 7802 The maximum of two ordinal...
onsucuni 7803 A class of ordinal numbers...
ordsucuni 7804 An ordinal class is a subc...
orduniorsuc 7805 An ordinal class is either...
unon 7806 The class of all ordinal n...
ordunisuc 7807 An ordinal class is equal ...
orduniss2 7808 The union of the ordinal s...
onsucuni2 7809 A successor ordinal is the...
0elsuc 7810 The successor of an ordina...
limon 7811 The class of ordinal numbe...
onuniorsuc 7812 An ordinal number is eithe...
onssi 7813 An ordinal number is a sub...
onsuci 7814 The successor of an ordina...
onuniorsuciOLD 7815 Obsolete version of ~ onun...
onuninsuci 7816 An ordinal is equal to its...
onsucssi 7817 A set belongs to an ordina...
nlimsucg 7818 A successor is not a limit...
orduninsuc 7819 An ordinal class is equal ...
ordunisuc2 7820 An ordinal equal to its un...
ordzsl 7821 An ordinal is zero, a succ...
onzsl 7822 An ordinal number is zero,...
dflim3 7823 An alternate definition of...
dflim4 7824 An alternate definition of...
limsuc 7825 The successor of a member ...
limsssuc 7826 A class includes a limit o...
nlimon 7827 Two ways to express the cl...
limuni3 7828 The union of a nonempty cl...
tfi 7829 The Principle of Transfini...
tfisg 7830 A closed form of ~ tfis . ...
tfis 7831 Transfinite Induction Sche...
tfis2f 7832 Transfinite Induction Sche...
tfis2 7833 Transfinite Induction Sche...
tfis3 7834 Transfinite Induction Sche...
tfisi 7835 A transfinite induction sc...
tfinds 7836 Principle of Transfinite I...
tfindsg 7837 Transfinite Induction (inf...
tfindsg2 7838 Transfinite Induction (inf...
tfindes 7839 Transfinite Induction with...
tfinds2 7840 Transfinite Induction (inf...
tfinds3 7841 Principle of Transfinite I...
dfom2 7844 An alternate definition of...
elom 7845 Membership in omega. The ...
omsson 7846 Omega is a subset of ` On ...
limomss 7847 The class of natural numbe...
nnon 7848 A natural number is an ord...
nnoni 7849 A natural number is an ord...
nnord 7850 A natural number is ordina...
trom 7851 The class of finite ordina...
ordom 7852 The class of finite ordina...
elnn 7853 A member of a natural numb...
omon 7854 The class of natural numbe...
omelon2 7855 Omega is an ordinal number...
nnlim 7856 A natural number is not a ...
omssnlim 7857 The class of natural numbe...
limom 7858 Omega is a limit ordinal. ...
peano2b 7859 A class belongs to omega i...
nnsuc 7860 A nonzero natural number i...
omsucne 7861 A natural number is not th...
ssnlim 7862 An ordinal subclass of non...
omsinds 7863 Strong (or "total") induct...
omun 7864 The union of two finite or...
peano1 7865 Zero is a natural number. ...
peano2 7866 The successor of any natur...
peano3 7867 The successor of any natur...
peano4 7868 Two natural numbers are eq...
peano5 7869 The induction postulate: a...
nn0suc 7870 A natural number is either...
find 7871 The Principle of Finite In...
finds 7872 Principle of Finite Induct...
findsg 7873 Principle of Finite Induct...
finds2 7874 Principle of Finite Induct...
finds1 7875 Principle of Finite Induct...
findes 7876 Finite induction with expl...
dmexg 7877 The domain of a set is a s...
rnexg 7878 The range of a set is a se...
dmexd 7879 The domain of a set is a s...
fndmexd 7880 If a function is a set, it...
dmfex 7881 If a mapping is a set, its...
fndmexb 7882 The domain of a function i...
fdmexb 7883 The domain of a function i...
dmfexALT 7884 Alternate proof of ~ dmfex...
dmex 7885 The domain of a set is a s...
rnex 7886 The range of a set is a se...
iprc 7887 The identity function is a...
resiexg 7888 The existence of a restric...
imaexg 7889 The image of a set is a se...
imaex 7890 The image of a set is a se...
rnexd 7891 The range of a set is a se...
imaexd 7892 The image of a set is a se...
exse2 7893 Any set relation is set-li...
xpexr 7894 If a Cartesian product is ...
xpexr2 7895 If a nonempty Cartesian pr...
xpexcnv 7896 A condition where the conv...
soex 7897 If the relation in a stric...
elxp4 7898 Membership in a Cartesian ...
elxp5 7899 Membership in a Cartesian ...
cnvexg 7900 The converse of a set is a...
cnvex 7901 The converse of a set is a...
relcnvexb 7902 A relation is a set iff it...
f1oexrnex 7903 If the range of a 1-1 onto...
f1oexbi 7904 There is a one-to-one onto...
coexg 7905 The composition of two set...
coex 7906 The composition of two set...
coexd 7907 The composition of two set...
funcnvuni 7908 The union of a chain (with...
fun11uni 7909 The union of a chain (with...
resf1extb 7910 Extension of an injection ...
resf1ext2b 7911 Extension of an injection ...
fex2 7912 A function with bounded do...
fabexd 7913 Existence of a set of func...
fabexg 7914 Existence of a set of func...
fabexgOLD 7915 Obsolete version of ~ fabe...
fabex 7916 Existence of a set of func...
mapex 7917 The class of all functions...
f1oabexg 7918 The class of all 1-1-onto ...
f1oabexgOLD 7919 Obsolete version of ~ f1oa...
fiunlem 7920 Lemma for ~ fiun and ~ f1i...
fiun 7921 The union of a chain (with...
f1iun 7922 The union of a chain (with...
fviunfun 7923 The function value of an i...
ffoss 7924 Relationship between a map...
f11o 7925 Relationship between one-t...
resfunexgALT 7926 Alternate proof of ~ resfu...
cofunexg 7927 Existence of a composition...
cofunex2g 7928 Existence of a composition...
fnexALT 7929 Alternate proof of ~ fnex ...
funexw 7930 Weak version of ~ funex th...
mptexw 7931 Weak version of ~ mptex th...
funrnex 7932 If the domain of a functio...
zfrep6 7933 A version of the Axiom of ...
focdmex 7934 If the domain of an onto f...
f1dmex 7935 If the codomain of a one-t...
f1ovv 7936 The codomain/range of a 1-...
fvclex 7937 Existence of the class of ...
fvresex 7938 Existence of the class of ...
abrexexg 7939 Existence of a class abstr...
abrexexgOLD 7940 Obsolete version of ~ abre...
abrexex 7941 Existence of a class abstr...
iunexg 7942 The existence of an indexe...
abrexex2g 7943 Existence of an existentia...
opabex3d 7944 Existence of an ordered pa...
opabex3rd 7945 Existence of an ordered pa...
opabex3 7946 Existence of an ordered pa...
iunex 7947 The existence of an indexe...
abrexex2 7948 Existence of an existentia...
abexssex 7949 Existence of a class abstr...
abexex 7950 A condition where a class ...
f1oweALT 7951 Alternate proof of ~ f1owe...
wemoiso 7952 Thus, there is at most one...
wemoiso2 7953 Thus, there is at most one...
oprabexd 7954 Existence of an operator a...
oprabex 7955 Existence of an operation ...
oprabex3 7956 Existence of an operation ...
oprabrexex2 7957 Existence of an existentia...
ab2rexex 7958 Existence of a class abstr...
ab2rexex2 7959 Existence of an existentia...
xpexgALT 7960 Alternate proof of ~ xpexg...
offval3 7961 General value of ` ( F oF ...
offres 7962 Pointwise combination comm...
ofmres 7963 Equivalent expressions for...
ofmresex 7964 Existence of a restriction...
mptcnfimad 7965 The converse of a mapping ...
1stval 7970 The value of the function ...
2ndval 7971 The value of the function ...
1stnpr 7972 Value of the first-member ...
2ndnpr 7973 Value of the second-member...
1st0 7974 The value of the first-mem...
2nd0 7975 The value of the second-me...
op1st 7976 Extract the first member o...
op2nd 7977 Extract the second member ...
op1std 7978 Extract the first member o...
op2ndd 7979 Extract the second member ...
op1stg 7980 Extract the first member o...
op2ndg 7981 Extract the second member ...
ot1stg 7982 Extract the first member o...
ot2ndg 7983 Extract the second member ...
ot3rdg 7984 Extract the third member o...
1stval2 7985 Alternate value of the fun...
2ndval2 7986 Alternate value of the fun...
oteqimp 7987 The components of an order...
fo1st 7988 The ` 1st ` function maps ...
fo2nd 7989 The ` 2nd ` function maps ...
br1steqg 7990 Uniqueness condition for t...
br2ndeqg 7991 Uniqueness condition for t...
f1stres 7992 Mapping of a restriction o...
f2ndres 7993 Mapping of a restriction o...
fo1stres 7994 Onto mapping of a restrict...
fo2ndres 7995 Onto mapping of a restrict...
1st2val 7996 Value of an alternate defi...
2nd2val 7997 Value of an alternate defi...
1stcof 7998 Composition of the first m...
2ndcof 7999 Composition of the second ...
xp1st 8000 Location of the first elem...
xp2nd 8001 Location of the second ele...
elxp6 8002 Membership in a Cartesian ...
elxp7 8003 Membership in a Cartesian ...
eqopi 8004 Equality with an ordered p...
xp2 8005 Representation of Cartesia...
unielxp 8006 The membership relation fo...
1st2nd2 8007 Reconstruction of a member...
1st2ndb 8008 Reconstruction of an order...
xpopth 8009 An ordered pair theorem fo...
eqop 8010 Two ways to express equali...
eqop2 8011 Two ways to express equali...
op1steq 8012 Two ways of expressing tha...
opreuopreu 8013 There is a unique ordered ...
el2xptp 8014 A member of a nested Carte...
el2xptp0 8015 A member of a nested Carte...
el2xpss 8016 Version of ~ elrel for tri...
2nd1st 8017 Swap the members of an ord...
1st2nd 8018 Reconstruction of a member...
1stdm 8019 The first ordered pair com...
2ndrn 8020 The second ordered pair co...
1st2ndbr 8021 Express an element of a re...
releldm2 8022 Two ways of expressing mem...
reldm 8023 An expression for the doma...
releldmdifi 8024 One way of expressing memb...
funfv1st2nd 8025 The function value for the...
funelss 8026 If the first component of ...
funeldmdif 8027 Two ways of expressing mem...
sbcopeq1a 8028 Equality theorem for subst...
csbopeq1a 8029 Equality theorem for subst...
sbcoteq1a 8030 Equality theorem for subst...
dfopab2 8031 A way to define an ordered...
dfoprab3s 8032 A way to define an operati...
dfoprab3 8033 Operation class abstractio...
dfoprab4 8034 Operation class abstractio...
dfoprab4f 8035 Operation class abstractio...
opabex2 8036 Condition for an operation...
opabn1stprc 8037 An ordered-pair class abst...
opiota 8038 The property of a uniquely...
cnvoprab 8039 The converse of a class ab...
dfxp3 8040 Define the Cartesian produ...
elopabi 8041 A consequence of membershi...
eloprabi 8042 A consequence of membershi...
mpomptsx 8043 Express a two-argument fun...
mpompts 8044 Express a two-argument fun...
dmmpossx 8045 The domain of a mapping is...
fmpox 8046 Functionality, domain and ...
fmpo 8047 Functionality, domain and ...
fnmpo 8048 Functionality and domain o...
fnmpoi 8049 Functionality and domain o...
dmmpo 8050 Domain of a class given by...
ovmpoelrn 8051 An operation's value belon...
dmmpoga 8052 Domain of an operation giv...
dmmpog 8053 Domain of an operation giv...
mpoexxg 8054 Existence of an operation ...
mpoexg 8055 Existence of an operation ...
mpoexga 8056 If the domain of an operat...
mpoexw 8057 Weak version of ~ mpoex th...
mpoex 8058 If the domain of an operat...
mptmpoopabbrd 8059 The operation value of a f...
mptmpoopabbrdOLD 8060 Obsolete version of ~ mptm...
mptmpoopabovd 8061 The operation value of a f...
mptmpoopabbrdOLDOLD 8062 Obsolete version of ~ mptm...
mptmpoopabovdOLD 8063 Obsolete version of ~ mptm...
el2mpocsbcl 8064 If the operation value of ...
el2mpocl 8065 If the operation value of ...
fnmpoovd 8066 A function with a Cartesia...
offval22 8067 The function operation exp...
brovpreldm 8068 If a binary relation holds...
bropopvvv 8069 If a binary relation holds...
bropfvvvvlem 8070 Lemma for ~ bropfvvvv . (...
bropfvvvv 8071 If a binary relation holds...
ovmptss 8072 If all the values of the m...
relmpoopab 8073 Any function to sets of or...
fmpoco 8074 Composition of two functio...
oprabco 8075 Composition of a function ...
oprab2co 8076 Composition of operator ab...
df1st2 8077 An alternate possible defi...
df2nd2 8078 An alternate possible defi...
1stconst 8079 The mapping of a restricti...
2ndconst 8080 The mapping of a restricti...
dfmpo 8081 Alternate definition for t...
mposn 8082 An operation (in maps-to n...
curry1 8083 Composition with ` ``' ( 2...
curry1val 8084 The value of a curried fun...
curry1f 8085 Functionality of a curried...
curry2 8086 Composition with ` ``' ( 1...
curry2f 8087 Functionality of a curried...
curry2val 8088 The value of a curried fun...
cnvf1olem 8089 Lemma for ~ cnvf1o . (Con...
cnvf1o 8090 Describe a function that m...
fparlem1 8091 Lemma for ~ fpar . (Contr...
fparlem2 8092 Lemma for ~ fpar . (Contr...
fparlem3 8093 Lemma for ~ fpar . (Contr...
fparlem4 8094 Lemma for ~ fpar . (Contr...
fpar 8095 Merge two functions in par...
fsplit 8096 A function that can be use...
fsplitfpar 8097 Merge two functions with a...
offsplitfpar 8098 Express the function opera...
f2ndf 8099 The ` 2nd ` (second compon...
fo2ndf 8100 The ` 2nd ` (second compon...
f1o2ndf1 8101 The ` 2nd ` (second compon...
opco1 8102 Value of an operation prec...
opco2 8103 Value of an operation prec...
opco1i 8104 Inference form of ~ opco1 ...
frxp 8105 A lexicographical ordering...
xporderlem 8106 Lemma for lexicographical ...
poxp 8107 A lexicographical ordering...
soxp 8108 A lexicographical ordering...
wexp 8109 A lexicographical ordering...
fnwelem 8110 Lemma for ~ fnwe . (Contr...
fnwe 8111 A variant on lexicographic...
fnse 8112 Condition for the well-ord...
fvproj 8113 Value of a function on ord...
fimaproj 8114 Image of a cartesian produ...
ralxpes 8115 A version of ~ ralxp with ...
ralxp3f 8116 Restricted for all over a ...
ralxp3 8117 Restricted for all over a ...
ralxp3es 8118 Restricted for-all over a ...
frpoins3xpg 8119 Special case of founded pa...
frpoins3xp3g 8120 Special case of founded pa...
xpord2lem 8121 Lemma for Cartesian produc...
poxp2 8122 Another way of partially o...
frxp2 8123 Another way of giving a we...
xpord2pred 8124 Calculate the predecessor ...
sexp2 8125 Condition for the relation...
xpord2indlem 8126 Induction over the Cartesi...
xpord2ind 8127 Induction over the Cartesi...
xpord3lem 8128 Lemma for triple ordering....
poxp3 8129 Triple Cartesian product p...
frxp3 8130 Give well-foundedness over...
xpord3pred 8131 Calculate the predecsessor...
sexp3 8132 Show that the triple order...
xpord3inddlem 8133 Induction over the triple ...
xpord3indd 8134 Induction over the triple ...
xpord3ind 8135 Induction over the triple ...
orderseqlem 8136 Lemma for ~ poseq and ~ so...
poseq 8137 A partial ordering of ordi...
soseq 8138 A linear ordering of ordin...
suppval 8141 The value of the operation...
supp0prc 8142 The support of a class is ...
suppvalbr 8143 The value of the operation...
supp0 8144 The support of the empty s...
suppval1 8145 The value of the operation...
suppvalfng 8146 The value of the operation...
suppvalfn 8147 The value of the operation...
elsuppfng 8148 An element of the support ...
elsuppfn 8149 An element of the support ...
fvdifsupp 8150 Function value is zero out...
cnvimadfsn 8151 The support of functions "...
suppimacnvss 8152 The support of functions "...
suppimacnv 8153 Support sets of functions ...
fsuppeq 8154 Two ways of writing the su...
fsuppeqg 8155 Version of ~ fsuppeq avoid...
suppssdm 8156 The support of a function ...
suppsnop 8157 The support of a singleton...
snopsuppss 8158 The support of a singleton...
fvn0elsupp 8159 If the function value for ...
fvn0elsuppb 8160 The function value for a g...
rexsupp 8161 Existential quantification...
ressuppss 8162 The support of the restric...
suppun 8163 The support of a class/fun...
ressuppssdif 8164 The support of the restric...
mptsuppdifd 8165 The support of a function ...
mptsuppd 8166 The support of a function ...
extmptsuppeq 8167 The support of an extended...
suppfnss 8168 The support of a function ...
funsssuppss 8169 The support of a function ...
fnsuppres 8170 Two ways to express restri...
fnsuppeq0 8171 The support of a function ...
fczsupp0 8172 The support of a constant ...
suppss 8173 Show that the support of a...
suppssr 8174 A function is zero outside...
suppssrg 8175 A function is zero outside...
suppssov1 8176 Formula building theorem f...
suppssov2 8177 Formula building theorem f...
suppssof1 8178 Formula building theorem f...
suppss2 8179 Show that the support of a...
suppsssn 8180 Show that the support of a...
suppssfv 8181 Formula building theorem f...
suppofssd 8182 Condition for the support ...
suppofss1d 8183 Condition for the support ...
suppofss2d 8184 Condition for the support ...
suppco 8185 The support of the composi...
suppcoss 8186 The support of the composi...
supp0cosupp0 8187 The support of the composi...
imacosupp 8188 The image of the support o...
opeliunxp2f 8189 Membership in a union of C...
mpoxeldm 8190 If there is an element of ...
mpoxneldm 8191 If the first argument of a...
mpoxopn0yelv 8192 If there is an element of ...
mpoxopynvov0g 8193 If the second argument of ...
mpoxopxnop0 8194 If the first argument of a...
mpoxopx0ov0 8195 If the first argument of a...
mpoxopxprcov0 8196 If the components of the f...
mpoxopynvov0 8197 If the second argument of ...
mpoxopoveq 8198 Value of an operation give...
mpoxopovel 8199 Element of the value of an...
mpoxopoveqd 8200 Value of an operation give...
brovex 8201 A binary relation of the v...
brovmpoex 8202 A binary relation of the v...
sprmpod 8203 The extension of a binary ...
tposss 8206 Subset theorem for transpo...
tposeq 8207 Equality theorem for trans...
tposeqd 8208 Equality theorem for trans...
tposssxp 8209 The transposition is a sub...
reltpos 8210 The transposition is a rel...
brtpos2 8211 Value of the transposition...
brtpos0 8212 The behavior of ` tpos ` w...
reldmtpos 8213 Necessary and sufficient c...
brtpos 8214 The transposition swaps ar...
ottpos 8215 The transposition swaps th...
relbrtpos 8216 The transposition swaps ar...
dmtpos 8217 The domain of ` tpos F ` w...
rntpos 8218 The range of ` tpos F ` wh...
tposexg 8219 The transposition of a set...
ovtpos 8220 The transposition swaps th...
tposfun 8221 The transposition of a fun...
dftpos2 8222 Alternate definition of ` ...
dftpos3 8223 Alternate definition of ` ...
dftpos4 8224 Alternate definition of ` ...
tpostpos 8225 Value of the double transp...
tpostpos2 8226 Value of the double transp...
tposfn2 8227 The domain of a transposit...
tposfo2 8228 Condition for a surjective...
tposf2 8229 The domain and codomain of...
tposf12 8230 Condition for an injective...
tposf1o2 8231 Condition of a bijective t...
tposfo 8232 The domain and codomain/ra...
tposf 8233 The domain and codomain of...
tposfn 8234 Functionality of a transpo...
tpos0 8235 Transposition of the empty...
tposco 8236 Transposition of a composi...
tpossym 8237 Two ways to say a function...
tposeqi 8238 Equality theorem for trans...
tposex 8239 A transposition is a set. ...
nftpos 8240 Hypothesis builder for tra...
tposoprab 8241 Transposition of a class o...
tposmpo 8242 Transposition of a two-arg...
tposconst 8243 The transposition of a con...
mpocurryd 8248 The currying of an operati...
mpocurryvald 8249 The value of a curried ope...
fvmpocurryd 8250 The value of the value of ...
pwuninel2 8253 Proof of ~ pwuninel under ...
pwuninel 8254 The powerclass of the unio...
undefval 8255 Value of the undefined val...
undefnel2 8256 The undefined value genera...
undefnel 8257 The undefined value genera...
undefne0 8258 The undefined value genera...
frecseq123 8261 Equality theorem for the w...
nffrecs 8262 Bound-variable hypothesis ...
csbfrecsg 8263 Move class substitution in...
fpr3g 8264 Functions defined by well-...
frrlem1 8265 Lemma for well-founded rec...
frrlem2 8266 Lemma for well-founded rec...
frrlem3 8267 Lemma for well-founded rec...
frrlem4 8268 Lemma for well-founded rec...
frrlem5 8269 Lemma for well-founded rec...
frrlem6 8270 Lemma for well-founded rec...
frrlem7 8271 Lemma for well-founded rec...
frrlem8 8272 Lemma for well-founded rec...
frrlem9 8273 Lemma for well-founded rec...
frrlem10 8274 Lemma for well-founded rec...
frrlem11 8275 Lemma for well-founded rec...
frrlem12 8276 Lemma for well-founded rec...
frrlem13 8277 Lemma for well-founded rec...
frrlem14 8278 Lemma for well-founded rec...
fprlem1 8279 Lemma for well-founded rec...
fprlem2 8280 Lemma for well-founded rec...
fpr2a 8281 Weak version of ~ fpr2 whi...
fpr1 8282 Law of well-founded recurs...
fpr2 8283 Law of well-founded recurs...
fpr3 8284 Law of well-founded recurs...
frrrel 8285 Show without using the axi...
frrdmss 8286 Show without using the axi...
frrdmcl 8287 Show without using the axi...
fprfung 8288 A "function" defined by we...
fprresex 8289 The restriction of a funct...
wrecseq123 8292 General equality theorem f...
nfwrecs 8293 Bound-variable hypothesis ...
wrecseq1 8294 Equality theorem for the w...
wrecseq2 8295 Equality theorem for the w...
wrecseq3 8296 Equality theorem for the w...
csbwrecsg 8297 Move class substitution in...
wfr3g 8298 Functions defined by well-...
wfrrel 8299 The well-ordered recursion...
wfrdmss 8300 The domain of the well-ord...
wfrdmcl 8301 The predecessor class of a...
wfrfun 8302 The "function" generated b...
wfrresex 8303 Show without using the axi...
wfr2a 8304 A weak version of ~ wfr2 w...
wfr1 8305 The Principle of Well-Orde...
wfr2 8306 The Principle of Well-Orde...
wfr3 8307 The principle of Well-Orde...
iunon 8308 The indexed union of a set...
iinon 8309 The nonempty indexed inter...
onfununi 8310 A property of functions on...
onovuni 8311 A variant of ~ onfununi fo...
onoviun 8312 A variant of ~ onovuni wit...
onnseq 8313 There are no length ` _om ...
dfsmo2 8316 Alternate definition of a ...
issmo 8317 Conditions for which ` A `...
issmo2 8318 Alternate definition of a ...
smoeq 8319 Equality theorem for stric...
smodm 8320 The domain of a strictly m...
smores 8321 A strictly monotone functi...
smores3 8322 A strictly monotone functi...
smores2 8323 A strictly monotone ordina...
smodm2 8324 The domain of a strictly m...
smofvon2 8325 The function values of a s...
iordsmo 8326 The identity relation rest...
smo0 8327 The null set is a strictly...
smofvon 8328 If ` B ` is a strictly mon...
smoel 8329 If ` x ` is less than ` y ...
smoiun 8330 The value of a strictly mo...
smoiso 8331 If ` F ` is an isomorphism...
smoel2 8332 A strictly monotone ordina...
smo11 8333 A strictly monotone ordina...
smoord 8334 A strictly monotone ordina...
smoword 8335 A strictly monotone ordina...
smogt 8336 A strictly monotone ordina...
smocdmdom 8337 The codomain of a strictly...
smoiso2 8338 The strictly monotone ordi...
dfrecs3 8341 The old definition of tran...
recseq 8342 Equality theorem for ` rec...
nfrecs 8343 Bound-variable hypothesis ...
tfrlem1 8344 A technical lemma for tran...
tfrlem3a 8345 Lemma for transfinite recu...
tfrlem3 8346 Lemma for transfinite recu...
tfrlem4 8347 Lemma for transfinite recu...
tfrlem5 8348 Lemma for transfinite recu...
recsfval 8349 Lemma for transfinite recu...
tfrlem6 8350 Lemma for transfinite recu...
tfrlem7 8351 Lemma for transfinite recu...
tfrlem8 8352 Lemma for transfinite recu...
tfrlem9 8353 Lemma for transfinite recu...
tfrlem9a 8354 Lemma for transfinite recu...
tfrlem10 8355 Lemma for transfinite recu...
tfrlem11 8356 Lemma for transfinite recu...
tfrlem12 8357 Lemma for transfinite recu...
tfrlem13 8358 Lemma for transfinite recu...
tfrlem14 8359 Lemma for transfinite recu...
tfrlem15 8360 Lemma for transfinite recu...
tfrlem16 8361 Lemma for finite recursion...
tfr1a 8362 A weak version of ~ tfr1 w...
tfr2a 8363 A weak version of ~ tfr2 w...
tfr2b 8364 Without assuming ~ ax-rep ...
tfr1 8365 Principle of Transfinite R...
tfr2 8366 Principle of Transfinite R...
tfr3 8367 Principle of Transfinite R...
tfr1ALT 8368 Alternate proof of ~ tfr1 ...
tfr2ALT 8369 Alternate proof of ~ tfr2 ...
tfr3ALT 8370 Alternate proof of ~ tfr3 ...
recsfnon 8371 Strong transfinite recursi...
recsval 8372 Strong transfinite recursi...
tz7.44lem1 8373 The ordered pair abstracti...
tz7.44-1 8374 The value of ` F ` at ` (/...
tz7.44-2 8375 The value of ` F ` at a su...
tz7.44-3 8376 The value of ` F ` at a li...
rdgeq1 8379 Equality theorem for the r...
rdgeq2 8380 Equality theorem for the r...
rdgeq12 8381 Equality theorem for the r...
nfrdg 8382 Bound-variable hypothesis ...
rdglem1 8383 Lemma used with the recurs...
rdgfun 8384 The recursive definition g...
rdgdmlim 8385 The domain of the recursiv...
rdgfnon 8386 The recursive definition g...
rdgvalg 8387 Value of the recursive def...
rdgval 8388 Value of the recursive def...
rdg0 8389 The initial value of the r...
rdgseg 8390 The initial segments of th...
rdgsucg 8391 The value of the recursive...
rdgsuc 8392 The value of the recursive...
rdglimg 8393 The value of the recursive...
rdglim 8394 The value of the recursive...
rdg0g 8395 The initial value of the r...
rdgsucmptf 8396 The value of the recursive...
rdgsucmptnf 8397 The value of the recursive...
rdgsucmpt2 8398 This version of ~ rdgsucmp...
rdgsucmpt 8399 The value of the recursive...
rdglim2 8400 The value of the recursive...
rdglim2a 8401 The value of the recursive...
rdg0n 8402 If ` A ` is a proper class...
frfnom 8403 The function generated by ...
fr0g 8404 The initial value resultin...
frsuc 8405 The successor value result...
frsucmpt 8406 The successor value result...
frsucmptn 8407 The value of the finite re...
frsucmpt2 8408 The successor value result...
tz7.48lem 8409 A way of showing an ordina...
tz7.48-2 8410 Proposition 7.48(2) of [Ta...
tz7.48-1 8411 Proposition 7.48(1) of [Ta...
tz7.48-3 8412 Proposition 7.48(3) of [Ta...
tz7.49 8413 Proposition 7.49 of [Takeu...
tz7.49c 8414 Corollary of Proposition 7...
seqomlem0 8417 Lemma for ` seqom ` . Cha...
seqomlem1 8418 Lemma for ` seqom ` . The...
seqomlem2 8419 Lemma for ` seqom ` . (Co...
seqomlem3 8420 Lemma for ` seqom ` . (Co...
seqomlem4 8421 Lemma for ` seqom ` . (Co...
seqomeq12 8422 Equality theorem for ` seq...
fnseqom 8423 An index-aware recursive d...
seqom0g 8424 Value of an index-aware re...
seqomsuc 8425 Value of an index-aware re...
omsucelsucb 8426 Membership is inherited by...
df1o2 8441 Expanded value of the ordi...
df2o3 8442 Expanded value of the ordi...
df2o2 8443 Expanded value of the ordi...
1oex 8444 Ordinal 1 is a set. (Cont...
2oex 8445 ` 2o ` is a set. (Contrib...
1on 8446 Ordinal 1 is an ordinal nu...
2on 8447 Ordinal 2 is an ordinal nu...
2on0 8448 Ordinal two is not zero. ...
ord3 8449 Ordinal 3 is an ordinal cl...
3on 8450 Ordinal 3 is an ordinal nu...
4on 8451 Ordinal 4 is an ordinal nu...
1n0 8452 Ordinal one is not equal t...
nlim1 8453 1 is not a limit ordinal. ...
nlim2 8454 2 is not a limit ordinal. ...
xp01disj 8455 Cartesian products with th...
xp01disjl 8456 Cartesian products with th...
ordgt0ge1 8457 Two ways to express that a...
ordge1n0 8458 An ordinal greater than or...
el1o 8459 Membership in ordinal one....
ord1eln01 8460 An ordinal that is not 0 o...
ord2eln012 8461 An ordinal that is not 0, ...
1ellim 8462 A limit ordinal contains 1...
2ellim 8463 A limit ordinal contains 2...
dif1o 8464 Two ways to say that ` A `...
ondif1 8465 Two ways to say that ` A `...
ondif2 8466 Two ways to say that ` A `...
2oconcl 8467 Closure of the pair swappi...
0lt1o 8468 Ordinal zero is less than ...
dif20el 8469 An ordinal greater than on...
0we1 8470 The empty set is a well-or...
brwitnlem 8471 Lemma for relations which ...
fnoa 8472 Functionality and domain o...
fnom 8473 Functionality and domain o...
fnoe 8474 Functionality and domain o...
oav 8475 Value of ordinal addition....
omv 8476 Value of ordinal multiplic...
oe0lem 8477 A helper lemma for ~ oe0 a...
oev 8478 Value of ordinal exponenti...
oevn0 8479 Value of ordinal exponenti...
oa0 8480 Addition with zero. Propo...
om0 8481 Ordinal multiplication wit...
oe0m 8482 Value of zero raised to an...
om0x 8483 Ordinal multiplication wit...
oe0m0 8484 Ordinal exponentiation wit...
oe0m1 8485 Ordinal exponentiation wit...
oe0 8486 Ordinal exponentiation wit...
oev2 8487 Alternate value of ordinal...
oasuc 8488 Addition with successor. ...
oesuclem 8489 Lemma for ~ oesuc . (Cont...
omsuc 8490 Multiplication with succes...
oesuc 8491 Ordinal exponentiation wit...
onasuc 8492 Addition with successor. ...
onmsuc 8493 Multiplication with succes...
onesuc 8494 Exponentiation with a succ...
oa1suc 8495 Addition with 1 is same as...
oalim 8496 Ordinal addition with a li...
omlim 8497 Ordinal multiplication wit...
oelim 8498 Ordinal exponentiation wit...
oacl 8499 Closure law for ordinal ad...
omcl 8500 Closure law for ordinal mu...
oecl 8501 Closure law for ordinal ex...
oa0r 8502 Ordinal addition with zero...
om0r 8503 Ordinal multiplication wit...
o1p1e2 8504 1 + 1 = 2 for ordinal numb...
o2p2e4 8505 2 + 2 = 4 for ordinal numb...
om1 8506 Ordinal multiplication wit...
om1r 8507 Ordinal multiplication wit...
oe1 8508 Ordinal exponentiation wit...
oe1m 8509 Ordinal exponentiation wit...
oaordi 8510 Ordering property of ordin...
oaord 8511 Ordering property of ordin...
oacan 8512 Left cancellation law for ...
oaword 8513 Weak ordering property of ...
oawordri 8514 Weak ordering property of ...
oaord1 8515 An ordinal is less than it...
oaword1 8516 An ordinal is less than or...
oaword2 8517 An ordinal is less than or...
oawordeulem 8518 Lemma for ~ oawordex . (C...
oawordeu 8519 Existence theorem for weak...
oawordexr 8520 Existence theorem for weak...
oawordex 8521 Existence theorem for weak...
oaordex 8522 Existence theorem for orde...
oa00 8523 An ordinal sum is zero iff...
oalimcl 8524 The ordinal sum with a lim...
oaass 8525 Ordinal addition is associ...
oarec 8526 Recursive definition of or...
oaf1o 8527 Left addition by a constan...
oacomf1olem 8528 Lemma for ~ oacomf1o . (C...
oacomf1o 8529 Define a bijection from ` ...
omordi 8530 Ordering property of ordin...
omord2 8531 Ordering property of ordin...
omord 8532 Ordering property of ordin...
omcan 8533 Left cancellation law for ...
omword 8534 Weak ordering property of ...
omwordi 8535 Weak ordering property of ...
omwordri 8536 Weak ordering property of ...
omword1 8537 An ordinal is less than or...
omword2 8538 An ordinal is less than or...
om00 8539 The product of two ordinal...
om00el 8540 The product of two nonzero...
omordlim 8541 Ordering involving the pro...
omlimcl 8542 The product of any nonzero...
odi 8543 Distributive law for ordin...
omass 8544 Multiplication of ordinal ...
oneo 8545 If an ordinal number is ev...
omeulem1 8546 Lemma for ~ omeu : existen...
omeulem2 8547 Lemma for ~ omeu : uniquen...
omopth2 8548 An ordered pair-like theor...
omeu 8549 The division algorithm for...
oen0 8550 Ordinal exponentiation wit...
oeordi 8551 Ordering law for ordinal e...
oeord 8552 Ordering property of ordin...
oecan 8553 Left cancellation law for ...
oeword 8554 Weak ordering property of ...
oewordi 8555 Weak ordering property of ...
oewordri 8556 Weak ordering property of ...
oeworde 8557 Ordinal exponentiation com...
oeordsuc 8558 Ordering property of ordin...
oelim2 8559 Ordinal exponentiation wit...
oeoalem 8560 Lemma for ~ oeoa . (Contr...
oeoa 8561 Sum of exponents law for o...
oeoelem 8562 Lemma for ~ oeoe . (Contr...
oeoe 8563 Product of exponents law f...
oelimcl 8564 The ordinal exponential wi...
oeeulem 8565 Lemma for ~ oeeu . (Contr...
oeeui 8566 The division algorithm for...
oeeu 8567 The division algorithm for...
nna0 8568 Addition with zero. Theor...
nnm0 8569 Multiplication with zero. ...
nnasuc 8570 Addition with successor. ...
nnmsuc 8571 Multiplication with succes...
nnesuc 8572 Exponentiation with a succ...
nna0r 8573 Addition to zero. Remark ...
nnm0r 8574 Multiplication with zero. ...
nnacl 8575 Closure of addition of nat...
nnmcl 8576 Closure of multiplication ...
nnecl 8577 Closure of exponentiation ...
nnacli 8578 ` _om ` is closed under ad...
nnmcli 8579 ` _om ` is closed under mu...
nnarcl 8580 Reverse closure law for ad...
nnacom 8581 Addition of natural number...
nnaordi 8582 Ordering property of addit...
nnaord 8583 Ordering property of addit...
nnaordr 8584 Ordering property of addit...
nnawordi 8585 Adding to both sides of an...
nnaass 8586 Addition of natural number...
nndi 8587 Distributive law for natur...
nnmass 8588 Multiplication of natural ...
nnmsucr 8589 Multiplication with succes...
nnmcom 8590 Multiplication of natural ...
nnaword 8591 Weak ordering property of ...
nnacan 8592 Cancellation law for addit...
nnaword1 8593 Weak ordering property of ...
nnaword2 8594 Weak ordering property of ...
nnmordi 8595 Ordering property of multi...
nnmord 8596 Ordering property of multi...
nnmword 8597 Weak ordering property of ...
nnmcan 8598 Cancellation law for multi...
nnmwordi 8599 Weak ordering property of ...
nnmwordri 8600 Weak ordering property of ...
nnawordex 8601 Equivalence for weak order...
nnaordex 8602 Equivalence for ordering. ...
nnaordex2 8603 Equivalence for ordering. ...
1onn 8604 The ordinal 1 is a natural...
1onnALT 8605 Shorter proof of ~ 1onn us...
2onn 8606 The ordinal 2 is a natural...
2onnALT 8607 Shorter proof of ~ 2onn us...
3onn 8608 The ordinal 3 is a natural...
4onn 8609 The ordinal 4 is a natural...
1one2o 8610 Ordinal one is not ordinal...
oaabslem 8611 Lemma for ~ oaabs . (Cont...
oaabs 8612 Ordinal addition absorbs a...
oaabs2 8613 The absorption law ~ oaabs...
omabslem 8614 Lemma for ~ omabs . (Cont...
omabs 8615 Ordinal multiplication is ...
nnm1 8616 Multiply an element of ` _...
nnm2 8617 Multiply an element of ` _...
nn2m 8618 Multiply an element of ` _...
nnneo 8619 If a natural number is eve...
nneob 8620 A natural number is even i...
omsmolem 8621 Lemma for ~ omsmo . (Cont...
omsmo 8622 A strictly monotonic ordin...
omopthlem1 8623 Lemma for ~ omopthi . (Co...
omopthlem2 8624 Lemma for ~ omopthi . (Co...
omopthi 8625 An ordered pair theorem fo...
omopth 8626 An ordered pair theorem fo...
nnasmo 8627 There is at most one left ...
eldifsucnn 8628 Condition for membership i...
on2recsfn 8631 Show that double recursion...
on2recsov 8632 Calculate the value of the...
on2ind 8633 Double induction over ordi...
on3ind 8634 Triple induction over ordi...
coflton 8635 Cofinality theorem for ord...
cofon1 8636 Cofinality theorem for ord...
cofon2 8637 Cofinality theorem for ord...
cofonr 8638 Inverse cofinality law for...
naddfn 8639 Natural addition is a func...
naddcllem 8640 Lemma for ordinal addition...
naddcl 8641 Closure law for natural ad...
naddov 8642 The value of natural addit...
naddov2 8643 Alternate expression for n...
naddov3 8644 Alternate expression for n...
naddf 8645 Function statement for nat...
naddcom 8646 Natural addition commutes....
naddrid 8647 Ordinal zero is the additi...
naddlid 8648 Ordinal zero is the additi...
naddssim 8649 Ordinal less-than-or-equal...
naddelim 8650 Ordinal less-than is prese...
naddel1 8651 Ordinal less-than is not a...
naddel2 8652 Ordinal less-than is not a...
naddss1 8653 Ordinal less-than-or-equal...
naddss2 8654 Ordinal less-than-or-equal...
naddword1 8655 Weak-ordering principle fo...
naddword2 8656 Weak-ordering principle fo...
naddunif 8657 Uniformity theorem for nat...
naddasslem1 8658 Lemma for ~ naddass . Exp...
naddasslem2 8659 Lemma for ~ naddass . Exp...
naddass 8660 Natural ordinal addition i...
nadd32 8661 Commutative/associative la...
nadd4 8662 Rearragement of terms in a...
nadd42 8663 Rearragement of terms in a...
naddel12 8664 Natural addition to both s...
naddsuc2 8665 Natural addition with succ...
naddoa 8666 Natural addition of a natu...
omnaddcl 8667 The naturals are closed un...
dfer2 8672 Alternate definition of eq...
dfec2 8674 Alternate definition of ` ...
ecexg 8675 An equivalence class modul...
ecexr 8676 A nonempty equivalence cla...
ereq1 8678 Equality theorem for equiv...
ereq2 8679 Equality theorem for equiv...
errel 8680 An equivalence relation is...
erdm 8681 The domain of an equivalen...
ercl 8682 Elementhood in the field o...
ersym 8683 An equivalence relation is...
ercl2 8684 Elementhood in the field o...
ersymb 8685 An equivalence relation is...
ertr 8686 An equivalence relation is...
ertrd 8687 A transitivity relation fo...
ertr2d 8688 A transitivity relation fo...
ertr3d 8689 A transitivity relation fo...
ertr4d 8690 A transitivity relation fo...
erref 8691 An equivalence relation is...
ercnv 8692 The converse of an equival...
errn 8693 The range and domain of an...
erssxp 8694 An equivalence relation is...
erex 8695 An equivalence relation is...
erexb 8696 An equivalence relation is...
iserd 8697 A reflexive, symmetric, tr...
iseri 8698 A reflexive, symmetric, tr...
iseriALT 8699 Alternate proof of ~ iseri...
brinxper 8700 Conditions for a reflexive...
brdifun 8701 Evaluate the incomparabili...
swoer 8702 Incomparability under a st...
swoord1 8703 The incomparability equiva...
swoord2 8704 The incomparability equiva...
swoso 8705 If the incomparability rel...
eqerlem 8706 Lemma for ~ eqer . (Contr...
eqer 8707 Equivalence relation invol...
ider 8708 The identity relation is a...
0er 8709 The empty set is an equiva...
eceq1 8710 Equality theorem for equiv...
eceq1d 8711 Equality theorem for equiv...
eceq2 8712 Equality theorem for equiv...
eceq2i 8713 Equality theorem for the `...
eceq2d 8714 Equality theorem for the `...
elecg 8715 Membership in an equivalen...
ecref 8716 All elements are in their ...
elec 8717 Membership in an equivalen...
relelec 8718 Membership in an equivalen...
elecres 8719 Elementhood in the restric...
elecreseq 8720 The restricted coset of ` ...
elecex 8721 Condition for a coset to b...
ecss 8722 An equivalence class is a ...
ecdmn0 8723 A representative of a none...
ereldm 8724 Equality of equivalence cl...
erth 8725 Basic property of equivale...
erth2 8726 Basic property of equivale...
erthi 8727 Basic property of equivale...
erdisj 8728 Equivalence classes do not...
ecidsn 8729 An equivalence class modul...
qseq1 8730 Equality theorem for quoti...
qseq2 8731 Equality theorem for quoti...
qseq2i 8732 Equality theorem for quoti...
qseq1d 8733 Equality theorem for quoti...
qseq2d 8734 Equality theorem for quoti...
qseq12 8735 Equality theorem for quoti...
0qs 8736 Quotient set with the empt...
elqsg 8737 Closed form of ~ elqs . (...
elqs 8738 Membership in a quotient s...
elqsi 8739 Membership in a quotient s...
elqsecl 8740 Membership in a quotient s...
ecelqs 8741 Membership of an equivalen...
ecelqsw 8742 Membership of an equivalen...
ecelqsi 8743 Membership of an equivalen...
ecopqsi 8744 "Closure" law for equivale...
qsexg 8745 A quotient set exists. (C...
qsex 8746 A quotient set exists. (C...
uniqs 8747 The union of a quotient se...
uniqsw 8748 The union of a quotient se...
qsss 8749 A quotient set is a set of...
uniqs2 8750 The union of a quotient se...
snec 8751 The singleton of an equiva...
ecqs 8752 Equivalence class in terms...
ecid 8753 A set is equal to its cose...
qsid 8754 A set is equal to its quot...
ectocld 8755 Implicit substitution of c...
ectocl 8756 Implicit substitution of c...
elqsn0 8757 A quotient set does not co...
ecelqsdm 8758 Membership of an equivalen...
ecelqsdmb 8759 ` R ` -coset of ` B ` in a...
eceldmqs 8760 ` R ` -coset in its domain...
xpider 8761 A Cartesian square is an e...
iiner 8762 The intersection of a none...
riiner 8763 The relative intersection ...
erinxp 8764 A restricted equivalence r...
ecinxp 8765 Restrict the relation in a...
qsinxp 8766 Restrict the equivalence r...
qsdisj 8767 Members of a quotient set ...
qsdisj2 8768 A quotient set is a disjoi...
qsel 8769 If an element of a quotien...
uniinqs 8770 Class union distributes ov...
qliftlem 8771 Lemma for theorems about a...
qliftrel 8772 ` F ` , a function lift, i...
qliftel 8773 Elementhood in the relatio...
qliftel1 8774 Elementhood in the relatio...
qliftfun 8775 The function ` F ` is the ...
qliftfund 8776 The function ` F ` is the ...
qliftfuns 8777 The function ` F ` is the ...
qliftf 8778 The domain and codomain of...
qliftval 8779 The value of the function ...
ecoptocl 8780 Implicit substitution of c...
2ecoptocl 8781 Implicit substitution of c...
3ecoptocl 8782 Implicit substitution of c...
brecop 8783 Binary relation on a quoti...
brecop2 8784 Binary relation on a quoti...
eroveu 8785 Lemma for ~ erov and ~ ero...
erovlem 8786 Lemma for ~ erov and ~ ero...
erov 8787 The value of an operation ...
eroprf 8788 Functionality of an operat...
erov2 8789 The value of an operation ...
eroprf2 8790 Functionality of an operat...
ecopoveq 8791 This is the first of sever...
ecopovsym 8792 Assuming the operation ` F...
ecopovtrn 8793 Assuming that operation ` ...
ecopover 8794 Assuming that operation ` ...
eceqoveq 8795 Equality of equivalence re...
ecovcom 8796 Lemma used to transfer a c...
ecovass 8797 Lemma used to transfer an ...
ecovdi 8798 Lemma used to transfer a d...
mapprc 8803 When ` A ` is a proper cla...
pmex 8804 The class of all partial f...
mapexOLD 8805 Obsolete version of ~ mape...
fnmap 8806 Set exponentiation has a u...
fnpm 8807 Partial function exponenti...
reldmmap 8808 Set exponentiation is a we...
mapvalg 8809 The value of set exponenti...
pmvalg 8810 The value of the partial m...
mapval 8811 The value of set exponenti...
elmapg 8812 Membership relation for se...
elmapd 8813 Deduction form of ~ elmapg...
elmapdd 8814 Deduction associated with ...
mapdm0 8815 The empty set is the only ...
elpmg 8816 The predicate "is a partia...
elpm2g 8817 The predicate "is a partia...
elpm2r 8818 Sufficient condition for b...
elpmi 8819 A partial function is a fu...
pmfun 8820 A partial function is a fu...
elmapex 8821 Eliminate antecedent for m...
elmapi 8822 A mapping is a function, f...
mapfset 8823 If ` B ` is a set, the val...
mapssfset 8824 The value of the set expon...
mapfoss 8825 The value of the set expon...
fsetsspwxp 8826 The class of all functions...
fset0 8827 The set of functions from ...
fsetdmprc0 8828 The set of functions with ...
fsetex 8829 The set of functions betwe...
f1setex 8830 The set of injections betw...
fosetex 8831 The set of surjections bet...
f1osetex 8832 The set of bijections betw...
fsetfcdm 8833 The class of functions wit...
fsetfocdm 8834 The class of functions wit...
fsetprcnex 8835 The class of all functions...
fsetcdmex 8836 The class of all functions...
fsetexb 8837 The class of all functions...
elmapfn 8838 A mapping is a function wi...
elmapfun 8839 A mapping is always a func...
elmapssres 8840 A restricted mapping is a ...
fpmg 8841 A total function is a part...
pmss12g 8842 Subset relation for the se...
pmresg 8843 Elementhood of a restricte...
elmap 8844 Membership relation for se...
mapval2 8845 Alternate expression for t...
elpm 8846 The predicate "is a partia...
elpm2 8847 The predicate "is a partia...
fpm 8848 A total function is a part...
mapsspm 8849 Set exponentiation is a su...
pmsspw 8850 Partial maps are a subset ...
mapsspw 8851 Set exponentiation is a su...
mapfvd 8852 The value of a function th...
elmapresaun 8853 ~ fresaun transposed to ma...
fvmptmap 8854 Special case of ~ fvmpt fo...
map0e 8855 Set exponentiation with an...
map0b 8856 Set exponentiation with an...
map0g 8857 Set exponentiation is empt...
0map0sn0 8858 The set of mappings of the...
mapsnd 8859 The value of set exponenti...
map0 8860 Set exponentiation is empt...
mapsn 8861 The value of set exponenti...
mapss 8862 Subset inheritance for set...
fdiagfn 8863 Functionality of the diago...
fvdiagfn 8864 Functionality of the diago...
mapsnconst 8865 Every singleton map is a c...
mapsncnv 8866 Expression for the inverse...
mapsnf1o2 8867 Explicit bijection between...
mapsnf1o3 8868 Explicit bijection in the ...
ralxpmap 8869 Quantification over functi...
dfixp 8872 Eliminate the expression `...
ixpsnval 8873 The value of an infinite C...
elixp2 8874 Membership in an infinite ...
fvixp 8875 Projection of a factor of ...
ixpfn 8876 A nuple is a function. (C...
elixp 8877 Membership in an infinite ...
elixpconst 8878 Membership in an infinite ...
ixpconstg 8879 Infinite Cartesian product...
ixpconst 8880 Infinite Cartesian product...
ixpeq1 8881 Equality theorem for infin...
ixpeq1d 8882 Equality theorem for infin...
ss2ixp 8883 Subclass theorem for infin...
ixpeq2 8884 Equality theorem for infin...
ixpeq2dva 8885 Equality theorem for infin...
ixpeq2dv 8886 Equality theorem for infin...
cbvixp 8887 Change bound variable in a...
cbvixpv 8888 Change bound variable in a...
nfixpw 8889 Bound-variable hypothesis ...
nfixp 8890 Bound-variable hypothesis ...
nfixp1 8891 The index variable in an i...
ixpprc 8892 A cartesian product of pro...
ixpf 8893 A member of an infinite Ca...
uniixp 8894 The union of an infinite C...
ixpexg 8895 The existence of an infini...
ixpin 8896 The intersection of two in...
ixpiin 8897 The indexed intersection o...
ixpint 8898 The intersection of a coll...
ixp0x 8899 An infinite Cartesian prod...
ixpssmap2g 8900 An infinite Cartesian prod...
ixpssmapg 8901 An infinite Cartesian prod...
0elixp 8902 Membership of the empty se...
ixpn0 8903 The infinite Cartesian pro...
ixp0 8904 The infinite Cartesian pro...
ixpssmap 8905 An infinite Cartesian prod...
resixp 8906 Restriction of an element ...
undifixp 8907 Union of two projections o...
mptelixpg 8908 Condition for an explicit ...
resixpfo 8909 Restriction of elements of...
elixpsn 8910 Membership in a class of s...
ixpsnf1o 8911 A bijection between a clas...
mapsnf1o 8912 A bijection between a set ...
boxriin 8913 A rectangular subset of a ...
boxcutc 8914 The relative complement of...
relen 8923 Equinumerosity is a relati...
reldom 8924 Dominance is a relation. ...
relsdom 8925 Strict dominance is a rela...
encv 8926 If two classes are equinum...
breng 8927 Equinumerosity relation. ...
bren 8928 Equinumerosity relation. ...
brdom2g 8929 Dominance relation. This ...
brdomg 8930 Dominance relation. (Cont...
brdomi 8931 Dominance relation. (Cont...
brdom 8932 Dominance relation. (Cont...
domen 8933 Dominance in terms of equi...
domeng 8934 Dominance in terms of equi...
ctex 8935 A countable set is a set. ...
f1oen4g 8936 The domain and range of a ...
f1dom4g 8937 The domain of a one-to-one...
f1oen3g 8938 The domain and range of a ...
f1dom3g 8939 The domain of a one-to-one...
f1oen2g 8940 The domain and range of a ...
f1dom2g 8941 The domain of a one-to-one...
f1oeng 8942 The domain and range of a ...
f1domg 8943 The domain of a one-to-one...
f1oen 8944 The domain and range of a ...
f1dom 8945 The domain of a one-to-one...
brsdom 8946 Strict dominance relation,...
isfi 8947 Express " ` A ` is finite"...
enssdom 8948 Equinumerosity implies dom...
dfdom2 8949 Alternate definition of do...
endom 8950 Equinumerosity implies dom...
sdomdom 8951 Strict dominance implies d...
sdomnen 8952 Strict dominance implies n...
brdom2 8953 Dominance in terms of stri...
bren2 8954 Equinumerosity expressed i...
enrefg 8955 Equinumerosity is reflexiv...
enref 8956 Equinumerosity is reflexiv...
eqeng 8957 Equality implies equinumer...
domrefg 8958 Dominance is reflexive. (...
en2d 8959 Equinumerosity inference f...
en3d 8960 Equinumerosity inference f...
en2i 8961 Equinumerosity inference f...
en3i 8962 Equinumerosity inference f...
dom2lem 8963 A mapping (first hypothesi...
dom2d 8964 A mapping (first hypothesi...
dom3d 8965 A mapping (first hypothesi...
dom2 8966 A mapping (first hypothesi...
dom3 8967 A mapping (first hypothesi...
idssen 8968 Equality implies equinumer...
domssl 8969 If ` A ` is a subset of ` ...
domssr 8970 If ` C ` is a superset of ...
ssdomg 8971 A set dominates its subset...
ener 8972 Equinumerosity is an equiv...
ensymb 8973 Symmetry of equinumerosity...
ensym 8974 Symmetry of equinumerosity...
ensymi 8975 Symmetry of equinumerosity...
ensymd 8976 Symmetry of equinumerosity...
entr 8977 Transitivity of equinumero...
domtr 8978 Transitivity of dominance ...
entri 8979 A chained equinumerosity i...
entr2i 8980 A chained equinumerosity i...
entr3i 8981 A chained equinumerosity i...
entr4i 8982 A chained equinumerosity i...
endomtr 8983 Transitivity of equinumero...
domentr 8984 Transitivity of dominance ...
f1imaeng 8985 If a function is one-to-on...
f1imaen2g 8986 If a function is one-to-on...
f1imaen3g 8987 If a set function is one-t...
f1imaen 8988 If a function is one-to-on...
en0 8989 The empty set is equinumer...
en0ALT 8990 Shorter proof of ~ en0 , d...
en0r 8991 The empty set is equinumer...
ensn1 8992 A singleton is equinumerou...
ensn1g 8993 A singleton is equinumerou...
enpr1g 8994 ` { A , A } ` has only one...
en1 8995 A set is equinumerous to o...
en1b 8996 A set is equinumerous to o...
reuen1 8997 Two ways to express "exact...
euen1 8998 Two ways to express "exact...
euen1b 8999 Two ways to express " ` A ...
en1uniel 9000 A singleton contains its s...
2dom 9001 A set that dominates ordin...
fundmen 9002 A function is equinumerous...
fundmeng 9003 A function is equinumerous...
cnven 9004 A relational set is equinu...
cnvct 9005 If a set is countable, so ...
fndmeng 9006 A function is equinumerate...
mapsnend 9007 Set exponentiation to a si...
mapsnen 9008 Set exponentiation to a si...
snmapen 9009 Set exponentiation: a sing...
snmapen1 9010 Set exponentiation: a sing...
map1 9011 Set exponentiation: ordina...
en2sn 9012 Two singletons are equinum...
0fi 9013 The empty set is finite. ...
snfi 9014 A singleton is finite. (C...
snfiOLD 9015 Obsolete version of ~ snfi...
fiprc 9016 The class of finite sets i...
unen 9017 Equinumerosity of union of...
enrefnn 9018 Equinumerosity is reflexiv...
en2prd 9019 Two unordered pairs are eq...
enpr2d 9020 A pair with distinct eleme...
enpr2dOLD 9021 Obsolete version of ~ enpr...
ssct 9022 Any subset of a countable ...
difsnen 9023 All decrements of a set ar...
domdifsn 9024 Dominance over a set with ...
xpsnen 9025 A set is equinumerous to i...
xpsneng 9026 A set is equinumerous to i...
xp1en 9027 One times a cardinal numbe...
endisj 9028 Any two sets are equinumer...
undom 9029 Dominance law for union. ...
xpcomf1o 9030 The canonical bijection fr...
xpcomco 9031 Composition with the bijec...
xpcomen 9032 Commutative law for equinu...
xpcomeng 9033 Commutative law for equinu...
xpsnen2g 9034 A set is equinumerous to i...
xpassen 9035 Associative law for equinu...
xpdom2 9036 Dominance law for Cartesia...
xpdom2g 9037 Dominance law for Cartesia...
xpdom1g 9038 Dominance law for Cartesia...
xpdom3 9039 A set is dominated by its ...
xpdom1 9040 Dominance law for Cartesia...
domunsncan 9041 A singleton cancellation l...
omxpenlem 9042 Lemma for ~ omxpen . (Con...
omxpen 9043 The cardinal and ordinal p...
omf1o 9044 Construct an explicit bije...
pw2f1olem 9045 Lemma for ~ pw2f1o . (Con...
pw2f1o 9046 The power set of a set is ...
pw2eng 9047 The power set of a set is ...
pw2en 9048 The power set of a set is ...
fopwdom 9049 Covering implies injection...
enfixsn 9050 Given two equipollent sets...
sbthlem1 9051 Lemma for ~ sbth . (Contr...
sbthlem2 9052 Lemma for ~ sbth . (Contr...
sbthlem3 9053 Lemma for ~ sbth . (Contr...
sbthlem4 9054 Lemma for ~ sbth . (Contr...
sbthlem5 9055 Lemma for ~ sbth . (Contr...
sbthlem6 9056 Lemma for ~ sbth . (Contr...
sbthlem7 9057 Lemma for ~ sbth . (Contr...
sbthlem8 9058 Lemma for ~ sbth . (Contr...
sbthlem9 9059 Lemma for ~ sbth . (Contr...
sbthlem10 9060 Lemma for ~ sbth . (Contr...
sbth 9061 Schroeder-Bernstein Theore...
sbthb 9062 Schroeder-Bernstein Theore...
sbthcl 9063 Schroeder-Bernstein Theore...
dfsdom2 9064 Alternate definition of st...
brsdom2 9065 Alternate definition of st...
sdomnsym 9066 Strict dominance is asymme...
domnsym 9067 Theorem 22(i) of [Suppes] ...
0domg 9068 Any set dominates the empt...
dom0 9069 A set dominated by the emp...
0sdomg 9070 A set strictly dominates t...
0dom 9071 Any set dominates the empt...
0sdom 9072 A set strictly dominates t...
sdom0 9073 The empty set does not str...
sdomdomtr 9074 Transitivity of strict dom...
sdomentr 9075 Transitivity of strict dom...
domsdomtr 9076 Transitivity of dominance ...
ensdomtr 9077 Transitivity of equinumero...
sdomirr 9078 Strict dominance is irrefl...
sdomtr 9079 Strict dominance is transi...
sdomn2lp 9080 Strict dominance has no 2-...
enen1 9081 Equality-like theorem for ...
enen2 9082 Equality-like theorem for ...
domen1 9083 Equality-like theorem for ...
domen2 9084 Equality-like theorem for ...
sdomen1 9085 Equality-like theorem for ...
sdomen2 9086 Equality-like theorem for ...
domtriord 9087 Dominance is trichotomous ...
sdomel 9088 For ordinals, strict domin...
sdomdif 9089 The difference of a set fr...
onsdominel 9090 An ordinal with more eleme...
domunsn 9091 Dominance over a set with ...
fodomr 9092 There exists a mapping fro...
pwdom 9093 Injection of sets implies ...
canth2 9094 Cantor's Theorem. No set ...
canth2g 9095 Cantor's theorem with the ...
2pwuninel 9096 The power set of the power...
2pwne 9097 No set equals the power se...
disjen 9098 A stronger form of ~ pwuni...
disjenex 9099 Existence version of ~ dis...
domss2 9100 A corollary of ~ disjenex ...
domssex2 9101 A corollary of ~ disjenex ...
domssex 9102 Weakening of ~ domssex2 to...
xpf1o 9103 Construct a bijection on a...
xpen 9104 Equinumerosity law for Car...
mapen 9105 Two set exponentiations ar...
mapdom1 9106 Order-preserving property ...
mapxpen 9107 Equinumerosity law for dou...
xpmapenlem 9108 Lemma for ~ xpmapen . (Co...
xpmapen 9109 Equinumerosity law for set...
mapunen 9110 Equinumerosity law for set...
map2xp 9111 A cardinal power with expo...
mapdom2 9112 Order-preserving property ...
mapdom3 9113 Set exponentiation dominat...
pwen 9114 If two sets are equinumero...
ssenen 9115 Equinumerosity of equinume...
limenpsi 9116 A limit ordinal is equinum...
limensuci 9117 A limit ordinal is equinum...
limensuc 9118 A limit ordinal is equinum...
infensuc 9119 Any infinite ordinal is eq...
dif1enlem 9120 Lemma for ~ rexdif1en and ...
dif1enlemOLD 9121 Obsolete version of ~ dif1...
rexdif1en 9122 If a set is equinumerous t...
rexdif1enOLD 9123 Obsolete version of ~ rexd...
dif1en 9124 If a set ` A ` is equinume...
dif1ennn 9125 If a set ` A ` is equinume...
dif1enOLD 9126 Obsolete version of ~ dif1...
findcard 9127 Schema for induction on th...
findcard2 9128 Schema for induction on th...
findcard2s 9129 Variation of ~ findcard2 r...
findcard2d 9130 Deduction version of ~ fin...
nnfi 9131 Natural numbers are finite...
pssnn 9132 A proper subset of a natur...
ssnnfi 9133 A subset of a natural numb...
0finOLD 9134 Obsolete version of ~ 0fi ...
unfi 9135 The union of two finite se...
unfid 9136 The union of two finite se...
ssfi 9137 A subset of a finite set i...
ssfiALT 9138 Shorter proof of ~ ssfi us...
diffi 9139 If ` A ` is finite, ` ( A ...
cnvfi 9140 If a set is finite, its co...
pwssfi 9141 Every element of the power...
fnfi 9142 A version of ~ fnex for fi...
f1oenfi 9143 If the domain of a one-to-...
f1oenfirn 9144 If the range of a one-to-o...
f1domfi 9145 If the codomain of a one-t...
f1domfi2 9146 If the domain of a one-to-...
enreffi 9147 Equinumerosity is reflexiv...
ensymfib 9148 Symmetry of equinumerosity...
entrfil 9149 Transitivity of equinumero...
enfii 9150 A set equinumerous to a fi...
enfi 9151 Equinumerous sets have the...
enfiALT 9152 Shorter proof of ~ enfi us...
domfi 9153 A set dominated by a finit...
entrfi 9154 Transitivity of equinumero...
entrfir 9155 Transitivity of equinumero...
domtrfil 9156 Transitivity of dominance ...
domtrfi 9157 Transitivity of dominance ...
domtrfir 9158 Transitivity of dominance ...
f1imaenfi 9159 If a function is one-to-on...
ssdomfi 9160 A finite set dominates its...
ssdomfi2 9161 A set dominates its finite...
sbthfilem 9162 Lemma for ~ sbthfi . (Con...
sbthfi 9163 Schroeder-Bernstein Theore...
domnsymfi 9164 If a set dominates a finit...
sdomdomtrfi 9165 Transitivity of strict dom...
domsdomtrfi 9166 Transitivity of dominance ...
sucdom2 9167 Strict dominance of a set ...
phplem1 9168 Lemma for Pigeonhole Princ...
phplem2 9169 Lemma for Pigeonhole Princ...
nneneq 9170 Two equinumerous natural n...
php 9171 Pigeonhole Principle. A n...
php2 9172 Corollary of Pigeonhole Pr...
php3 9173 Corollary of Pigeonhole Pr...
php4 9174 Corollary of the Pigeonhol...
php5 9175 Corollary of the Pigeonhol...
phpeqd 9176 Corollary of the Pigeonhol...
nndomog 9177 Cardinal ordering agrees w...
onomeneq 9178 An ordinal number equinume...
onfin 9179 An ordinal number is finit...
onfin2 9180 A set is a natural number ...
nndomo 9181 Cardinal ordering agrees w...
nnsdomo 9182 Cardinal ordering agrees w...
sucdom 9183 Strict dominance of a set ...
snnen2o 9184 A singleton ` { A } ` is n...
0sdom1dom 9185 Strict dominance over 0 is...
0sdom1domALT 9186 Alternate proof of ~ 0sdom...
1sdom2 9187 Ordinal 1 is strictly domi...
1sdom2ALT 9188 Alternate proof of ~ 1sdom...
sdom1 9189 A set has less than one me...
sdom1OLD 9190 Obsolete version of ~ sdom...
modom 9191 Two ways to express "at mo...
modom2 9192 Two ways to express "at mo...
rex2dom 9193 A set that has at least 2 ...
1sdom2dom 9194 Strict dominance over 1 is...
1sdom 9195 A set that strictly domina...
1sdomOLD 9196 Obsolete version of ~ 1sdo...
unxpdomlem1 9197 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 9198 Lemma for ~ unxpdom . (Co...
unxpdomlem3 9199 Lemma for ~ unxpdom . (Co...
unxpdom 9200 Cartesian product dominate...
unxpdom2 9201 Corollary of ~ unxpdom . ...
sucxpdom 9202 Cartesian product dominate...
pssinf 9203 A set equinumerous to a pr...
fisseneq 9204 A finite set is equal to i...
ominf 9205 The set of natural numbers...
ominfOLD 9206 Obsolete version of ~ omin...
isinf 9207 Any set that is not finite...
isinfOLD 9208 Obsolete version of ~ isin...
fineqvlem 9209 Lemma for ~ fineqv . (Con...
fineqv 9210 If the Axiom of Infinity i...
xpfir 9211 The components of a nonemp...
ssfid 9212 A subset of a finite set i...
infi 9213 The intersection of two se...
rabfi 9214 A restricted class built f...
finresfin 9215 The restriction of a finit...
f1finf1o 9216 Any injection from one fin...
f1finf1oOLD 9217 Obsolete version of ~ f1fi...
nfielex 9218 If a class is not finite, ...
en1eqsn 9219 A set with one element is ...
en1eqsnOLD 9220 Obsolete version of ~ en1e...
en1eqsnbi 9221 A set containing an elemen...
dif1ennnALT 9222 Alternate proof of ~ dif1e...
enp1ilem 9223 Lemma for uses of ~ enp1i ...
enp1i 9224 Proof induction for ~ en2 ...
enp1iOLD 9225 Obsolete version of ~ enp1...
en2 9226 A set equinumerous to ordi...
en3 9227 A set equinumerous to ordi...
en4 9228 A set equinumerous to ordi...
findcard3 9229 Schema for strong inductio...
findcard3OLD 9230 Obsolete version of ~ find...
ac6sfi 9231 A version of ~ ac6s for fi...
frfi 9232 A partial order is well-fo...
fimax2g 9233 A finite set has a maximum...
fimaxg 9234 A finite set has a maximum...
fisupg 9235 Lemma showing existence an...
wofi 9236 A total order on a finite ...
ordunifi 9237 The maximum of a finite co...
nnunifi 9238 The union (supremum) of a ...
unblem1 9239 Lemma for ~ unbnn . After...
unblem2 9240 Lemma for ~ unbnn . The v...
unblem3 9241 Lemma for ~ unbnn . The v...
unblem4 9242 Lemma for ~ unbnn . The f...
unbnn 9243 Any unbounded subset of na...
unbnn2 9244 Version of ~ unbnn that do...
isfinite2 9245 Any set strictly dominated...
nnsdomg 9246 Omega strictly dominates a...
nnsdomgOLD 9247 Obsolete version of ~ nnsd...
isfiniteg 9248 A set is finite iff it is ...
infsdomnn 9249 An infinite set strictly d...
infsdomnnOLD 9250 Obsolete version of ~ infs...
infn0 9251 An infinite set is not emp...
infn0ALT 9252 Shorter proof of ~ infn0 u...
fin2inf 9253 This (useless) theorem, wh...
unfilem1 9254 Lemma for proving that the...
unfilem2 9255 Lemma for proving that the...
unfilem3 9256 Lemma for proving that the...
unfir 9257 If a union is finite, the ...
unfib 9258 A union is finite if and o...
unfi2 9259 The union of two finite se...
difinf 9260 An infinite set ` A ` minu...
fodomfi 9261 An onto function implies d...
fofi 9262 If an onto function has a ...
f1fi 9263 If a 1-to-1 function has a...
imafi 9264 Images of finite sets are ...
imafiOLD 9265 Obsolete version of ~ imaf...
pwfir 9266 If the power set of a set ...
pwfilem 9267 Lemma for ~ pwfi . (Contr...
pwfi 9268 The power set of a finite ...
xpfi 9269 The Cartesian product of t...
xpfiOLD 9270 Obsolete version of ~ xpfi...
3xpfi 9271 The Cartesian product of t...
domunfican 9272 A finite set union cancell...
infcntss 9273 Every infinite set has a d...
prfi 9274 An unordered pair is finit...
prfiALT 9275 Shorter proof of ~ prfi us...
tpfi 9276 An unordered triple is fin...
fiint 9277 Equivalent ways of stating...
fiintOLD 9278 Obsolete version of ~ fiin...
fodomfir 9279 There exists a mapping fro...
fodomfib 9280 Equivalence of an onto map...
fodomfiOLD 9281 Obsolete version of ~ fodo...
fodomfibOLD 9282 Obsolete version of ~ fodo...
fofinf1o 9283 Any surjection from one fi...
rneqdmfinf1o 9284 Any function from a finite...
fidomdm 9285 Any finite set dominates i...
dmfi 9286 The domain of a finite set...
fundmfibi 9287 A function is finite if an...
resfnfinfin 9288 The restriction of a funct...
residfi 9289 A restricted identity func...
cnvfiALT 9290 Shorter proof of ~ cnvfi u...
rnfi 9291 The range of a finite set ...
f1dmvrnfibi 9292 A one-to-one function whos...
f1vrnfibi 9293 A one-to-one function whic...
iunfi 9294 The finite union of finite...
unifi 9295 The finite union of finite...
unifi2 9296 The finite union of finite...
infssuni 9297 If an infinite set ` A ` i...
unirnffid 9298 The union of the range of ...
mapfi 9299 Set exponentiation of fini...
ixpfi 9300 A Cartesian product of fin...
ixpfi2 9301 A Cartesian product of fin...
mptfi 9302 A finite mapping set is fi...
abrexfi 9303 An image set from a finite...
cnvimamptfin 9304 A preimage of a mapping wi...
elfpw 9305 Membership in a class of f...
unifpw 9306 A set is the union of its ...
f1opwfi 9307 A one-to-one mapping induc...
fissuni 9308 A finite subset of a union...
fipreima 9309 Given a finite subset ` A ...
finsschain 9310 A finite subset of the uni...
indexfi 9311 If for every element of a ...
relfsupp 9314 The property of a function...
relprcnfsupp 9315 A proper class is never fi...
isfsupp 9316 The property of a class to...
isfsuppd 9317 Deduction form of ~ isfsup...
funisfsupp 9318 The property of a function...
fsuppimp 9319 Implications of a class be...
fsuppimpd 9320 A finitely supported funct...
fsuppfund 9321 A finitely supported funct...
fisuppfi 9322 A function on a finite set...
fidmfisupp 9323 A function with a finite d...
finnzfsuppd 9324 If a function is zero outs...
fdmfisuppfi 9325 The support of a function ...
fdmfifsupp 9326 A function with a finite d...
fsuppmptdm 9327 A mapping with a finite do...
fndmfisuppfi 9328 The support of a function ...
fndmfifsupp 9329 A function with a finite d...
suppeqfsuppbi 9330 If two functions have the ...
suppssfifsupp 9331 If the support of a functi...
fsuppsssupp 9332 If the support of a functi...
fsuppsssuppgd 9333 If the support of a functi...
fsuppss 9334 A subset of a finitely sup...
fsuppssov1 9335 Formula building theorem f...
fsuppxpfi 9336 The cartesian product of t...
fczfsuppd 9337 A constant function with v...
fsuppun 9338 The union of two finitely ...
fsuppunfi 9339 The union of the support o...
fsuppunbi 9340 If the union of two classe...
0fsupp 9341 The empty set is a finitel...
snopfsupp 9342 A singleton containing an ...
funsnfsupp 9343 Finite support for a funct...
fsuppres 9344 The restriction of a finit...
fmptssfisupp 9345 The restriction of a mappi...
ressuppfi 9346 If the support of the rest...
resfsupp 9347 If the restriction of a fu...
resfifsupp 9348 The restriction of a funct...
ffsuppbi 9349 Two ways of saying that a ...
fsuppmptif 9350 A function mapping an argu...
sniffsupp 9351 A function mapping all but...
fsuppcolem 9352 Lemma for ~ fsuppco . For...
fsuppco 9353 The composition of a 1-1 f...
fsuppco2 9354 The composition of a funct...
fsuppcor 9355 The composition of a funct...
mapfienlem1 9356 Lemma 1 for ~ mapfien . (...
mapfienlem2 9357 Lemma 2 for ~ mapfien . (...
mapfienlem3 9358 Lemma 3 for ~ mapfien . (...
mapfien 9359 A bijection of the base se...
mapfien2 9360 Equinumerousity relation f...
fival 9363 The set of all the finite ...
elfi 9364 Specific properties of an ...
elfi2 9365 The empty intersection nee...
elfir 9366 Sufficient condition for a...
intrnfi 9367 Sufficient condition for t...
iinfi 9368 An indexed intersection of...
inelfi 9369 The intersection of two se...
ssfii 9370 Any element of a set ` A `...
fi0 9371 The set of finite intersec...
fieq0 9372 A set is empty iff the cla...
fiin 9373 The elements of ` ( fi `` ...
dffi2 9374 The set of finite intersec...
fiss 9375 Subset relationship for fu...
inficl 9376 A set which is closed unde...
fipwuni 9377 The set of finite intersec...
fisn 9378 A singleton is closed unde...
fiuni 9379 The union of the finite in...
fipwss 9380 If a set is a family of su...
elfiun 9381 A finite intersection of e...
dffi3 9382 The set of finite intersec...
fifo 9383 Describe a surjection from...
marypha1lem 9384 Core induction for Philip ...
marypha1 9385 (Philip) Hall's marriage t...
marypha2lem1 9386 Lemma for ~ marypha2 . Pr...
marypha2lem2 9387 Lemma for ~ marypha2 . Pr...
marypha2lem3 9388 Lemma for ~ marypha2 . Pr...
marypha2lem4 9389 Lemma for ~ marypha2 . Pr...
marypha2 9390 Version of ~ marypha1 usin...
dfsup2 9395 Quantifier-free definition...
supeq1 9396 Equality theorem for supre...
supeq1d 9397 Equality deduction for sup...
supeq1i 9398 Equality inference for sup...
supeq2 9399 Equality theorem for supre...
supeq3 9400 Equality theorem for supre...
supeq123d 9401 Equality deduction for sup...
nfsup 9402 Hypothesis builder for sup...
supmo 9403 Any class ` B ` has at mos...
supexd 9404 A supremum is a set. (Con...
supeu 9405 A supremum is unique. Sim...
supval2 9406 Alternate expression for t...
eqsup 9407 Sufficient condition for a...
eqsupd 9408 Sufficient condition for a...
supcl 9409 A supremum belongs to its ...
supub 9410 A supremum is an upper bou...
suplub 9411 A supremum is the least up...
suplub2 9412 Bidirectional form of ~ su...
supnub 9413 An upper bound is not less...
supssd 9414 Inequality deduction for s...
supex 9415 A supremum is a set. (Con...
sup00 9416 The supremum under an empt...
sup0riota 9417 The supremum of an empty s...
sup0 9418 The supremum of an empty s...
supmax 9419 The greatest element of a ...
fisup2g 9420 A finite set satisfies the...
fisupcl 9421 A nonempty finite set cont...
supgtoreq 9422 The supremum of a finite s...
suppr 9423 The supremum of a pair. (...
supsn 9424 The supremum of a singleto...
supisolem 9425 Lemma for ~ supiso . (Con...
supisoex 9426 Lemma for ~ supiso . (Con...
supiso 9427 Image of a supremum under ...
infeq1 9428 Equality theorem for infim...
infeq1d 9429 Equality deduction for inf...
infeq1i 9430 Equality inference for inf...
infeq2 9431 Equality theorem for infim...
infeq3 9432 Equality theorem for infim...
infeq123d 9433 Equality deduction for inf...
nfinf 9434 Hypothesis builder for inf...
infexd 9435 An infimum is a set. (Con...
eqinf 9436 Sufficient condition for a...
eqinfd 9437 Sufficient condition for a...
infval 9438 Alternate expression for t...
infcllem 9439 Lemma for ~ infcl , ~ infl...
infcl 9440 An infimum belongs to its ...
inflb 9441 An infimum is a lower boun...
infglb 9442 An infimum is the greatest...
infglbb 9443 Bidirectional form of ~ in...
infnlb 9444 A lower bound is not great...
infssd 9445 Inequality deduction for i...
infex 9446 An infimum is a set. (Con...
infmin 9447 The smallest element of a ...
infmo 9448 Any class ` B ` has at mos...
infeu 9449 An infimum is unique. (Co...
fimin2g 9450 A finite set has a minimum...
fiming 9451 A finite set has a minimum...
fiinfg 9452 Lemma showing existence an...
fiinf2g 9453 A finite set satisfies the...
fiinfcl 9454 A nonempty finite set cont...
infltoreq 9455 The infimum of a finite se...
infpr 9456 The infimum of a pair. (C...
infsupprpr 9457 The infimum of a proper pa...
infsn 9458 The infimum of a singleton...
inf00 9459 The infimum regarding an e...
infempty 9460 The infimum of an empty se...
infiso 9461 Image of an infimum under ...
dfoi 9464 Rewrite ~ df-oi with abbre...
oieq1 9465 Equality theorem for ordin...
oieq2 9466 Equality theorem for ordin...
nfoi 9467 Hypothesis builder for ord...
ordiso2 9468 Generalize ~ ordiso to pro...
ordiso 9469 Order-isomorphic ordinal n...
ordtypecbv 9470 Lemma for ~ ordtype . (Co...
ordtypelem1 9471 Lemma for ~ ordtype . (Co...
ordtypelem2 9472 Lemma for ~ ordtype . (Co...
ordtypelem3 9473 Lemma for ~ ordtype . (Co...
ordtypelem4 9474 Lemma for ~ ordtype . (Co...
ordtypelem5 9475 Lemma for ~ ordtype . (Co...
ordtypelem6 9476 Lemma for ~ ordtype . (Co...
ordtypelem7 9477 Lemma for ~ ordtype . ` ra...
ordtypelem8 9478 Lemma for ~ ordtype . (Co...
ordtypelem9 9479 Lemma for ~ ordtype . Eit...
ordtypelem10 9480 Lemma for ~ ordtype . Usi...
oi0 9481 Definition of the ordinal ...
oicl 9482 The order type of the well...
oif 9483 The order isomorphism of t...
oiiso2 9484 The order isomorphism of t...
ordtype 9485 For any set-like well-orde...
oiiniseg 9486 ` ran F ` is an initial se...
ordtype2 9487 For any set-like well-orde...
oiexg 9488 The order isomorphism on a...
oion 9489 The order type of the well...
oiiso 9490 The order isomorphism of t...
oien 9491 The order type of a well-o...
oieu 9492 Uniqueness of the unique o...
oismo 9493 When ` A ` is a subclass o...
oiid 9494 The order type of an ordin...
hartogslem1 9495 Lemma for ~ hartogs . (Co...
hartogslem2 9496 Lemma for ~ hartogs . (Co...
hartogs 9497 The class of ordinals domi...
wofib 9498 The only sets which are we...
wemaplem1 9499 Value of the lexicographic...
wemaplem2 9500 Lemma for ~ wemapso . Tra...
wemaplem3 9501 Lemma for ~ wemapso . Tra...
wemappo 9502 Construct lexicographic or...
wemapsolem 9503 Lemma for ~ wemapso . (Co...
wemapso 9504 Construct lexicographic or...
wemapso2lem 9505 Lemma for ~ wemapso2 . (C...
wemapso2 9506 An alternative to having a...
card2on 9507 The alternate definition o...
card2inf 9508 The alternate definition o...
harf 9511 Functionality of the Harto...
harcl 9512 Values of the Hartogs func...
harval 9513 Function value of the Hart...
elharval 9514 The Hartogs number of a se...
harndom 9515 The Hartogs number of a se...
harword 9516 Weak ordering property of ...
relwdom 9519 Weak dominance is a relati...
brwdom 9520 Property of weak dominance...
brwdomi 9521 Property of weak dominance...
brwdomn0 9522 Weak dominance over nonemp...
0wdom 9523 Any set weakly dominates t...
fowdom 9524 An onto function implies w...
wdomref 9525 Reflexivity of weak domina...
brwdom2 9526 Alternate characterization...
domwdom 9527 Weak dominance is implied ...
wdomtr 9528 Transitivity of weak domin...
wdomen1 9529 Equality-like theorem for ...
wdomen2 9530 Equality-like theorem for ...
wdompwdom 9531 Weak dominance strengthens...
canthwdom 9532 Cantor's Theorem, stated u...
wdom2d 9533 Deduce weak dominance from...
wdomd 9534 Deduce weak dominance from...
brwdom3 9535 Condition for weak dominan...
brwdom3i 9536 Weak dominance implies exi...
unwdomg 9537 Weak dominance of a (disjo...
xpwdomg 9538 Weak dominance of a Cartes...
wdomima2g 9539 A set is weakly dominant o...
wdomimag 9540 A set is weakly dominant o...
unxpwdom2 9541 Lemma for ~ unxpwdom . (C...
unxpwdom 9542 If a Cartesian product is ...
ixpiunwdom 9543 Describe an onto function ...
harwdom 9544 The value of the Hartogs f...
axreg2 9546 Axiom of Regularity expres...
zfregcl 9547 The Axiom of Regularity wi...
zfreg 9548 The Axiom of Regularity us...
elirrv 9549 The membership relation is...
elirr 9550 No class is a member of it...
elneq 9551 A class is not equal to an...
nelaneq 9552 A class is not an element ...
epinid0 9553 The membership relation an...
sucprcreg 9554 A class is equal to its su...
ruv 9555 The Russell class is equal...
ruALT 9556 Alternate proof of ~ ru , ...
disjcsn 9557 A class is disjoint from i...
zfregfr 9558 The membership relation is...
en2lp 9559 No class has 2-cycle membe...
elnanel 9560 Two classes are not elemen...
cnvepnep 9561 The membership (epsilon) r...
epnsym 9562 The membership (epsilon) r...
elnotel 9563 A class cannot be an eleme...
elnel 9564 A class cannot be an eleme...
en3lplem1 9565 Lemma for ~ en3lp . (Cont...
en3lplem2 9566 Lemma for ~ en3lp . (Cont...
en3lp 9567 No class has 3-cycle membe...
preleqg 9568 Equality of two unordered ...
preleq 9569 Equality of two unordered ...
preleqALT 9570 Alternate proof of ~ prele...
opthreg 9571 Theorem for alternate repr...
suc11reg 9572 The successor operation be...
dford2 9573 Assuming ~ ax-reg , an ord...
inf0 9574 Existence of ` _om ` impli...
inf1 9575 Variation of Axiom of Infi...
inf2 9576 Variation of Axiom of Infi...
inf3lema 9577 Lemma for our Axiom of Inf...
inf3lemb 9578 Lemma for our Axiom of Inf...
inf3lemc 9579 Lemma for our Axiom of Inf...
inf3lemd 9580 Lemma for our Axiom of Inf...
inf3lem1 9581 Lemma for our Axiom of Inf...
inf3lem2 9582 Lemma for our Axiom of Inf...
inf3lem3 9583 Lemma for our Axiom of Inf...
inf3lem4 9584 Lemma for our Axiom of Inf...
inf3lem5 9585 Lemma for our Axiom of Inf...
inf3lem6 9586 Lemma for our Axiom of Inf...
inf3lem7 9587 Lemma for our Axiom of Inf...
inf3 9588 Our Axiom of Infinity ~ ax...
infeq5i 9589 Half of ~ infeq5 . (Contr...
infeq5 9590 The statement "there exist...
zfinf 9592 Axiom of Infinity expresse...
axinf2 9593 A standard version of Axio...
zfinf2 9595 A standard version of the ...
omex 9596 The existence of omega (th...
axinf 9597 The first version of the A...
inf5 9598 The statement "there exist...
omelon 9599 Omega is an ordinal number...
dfom3 9600 The class of natural numbe...
elom3 9601 A simplification of ~ elom...
dfom4 9602 A simplification of ~ df-o...
dfom5 9603 ` _om ` is the smallest li...
oancom 9604 Ordinal addition is not co...
isfinite 9605 A set is finite iff it is ...
fict 9606 A finite set is countable ...
nnsdom 9607 A natural number is strict...
omenps 9608 Omega is equinumerous to a...
omensuc 9609 The set of natural numbers...
infdifsn 9610 Removing a singleton from ...
infdiffi 9611 Removing a finite set from...
unbnn3 9612 Any unbounded subset of na...
noinfep 9613 Using the Axiom of Regular...
cantnffval 9616 The value of the Cantor no...
cantnfdm 9617 The domain of the Cantor n...
cantnfvalf 9618 Lemma for ~ cantnf . The ...
cantnfs 9619 Elementhood in the set of ...
cantnfcl 9620 Basic properties of the or...
cantnfval 9621 The value of the Cantor no...
cantnfval2 9622 Alternate expression for t...
cantnfsuc 9623 The value of the recursive...
cantnfle 9624 A lower bound on the ` CNF...
cantnflt 9625 An upper bound on the part...
cantnflt2 9626 An upper bound on the ` CN...
cantnff 9627 The ` CNF ` function is a ...
cantnf0 9628 The value of the zero func...
cantnfrescl 9629 A function is finitely sup...
cantnfres 9630 The ` CNF ` function respe...
cantnfp1lem1 9631 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9632 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9633 Lemma for ~ cantnfp1 . (C...
cantnfp1 9634 If ` F ` is created by add...
oemapso 9635 The relation ` T ` is a st...
oemapval 9636 Value of the relation ` T ...
oemapvali 9637 If ` F < G ` , then there ...
cantnflem1a 9638 Lemma for ~ cantnf . (Con...
cantnflem1b 9639 Lemma for ~ cantnf . (Con...
cantnflem1c 9640 Lemma for ~ cantnf . (Con...
cantnflem1d 9641 Lemma for ~ cantnf . (Con...
cantnflem1 9642 Lemma for ~ cantnf . This...
cantnflem2 9643 Lemma for ~ cantnf . (Con...
cantnflem3 9644 Lemma for ~ cantnf . Here...
cantnflem4 9645 Lemma for ~ cantnf . Comp...
cantnf 9646 The Cantor Normal Form the...
oemapwe 9647 The lexicographic order on...
cantnffval2 9648 An alternate definition of...
cantnff1o 9649 Simplify the isomorphism o...
wemapwe 9650 Construct lexicographic or...
oef1o 9651 A bijection of the base se...
cnfcomlem 9652 Lemma for ~ cnfcom . (Con...
cnfcom 9653 Any ordinal ` B ` is equin...
cnfcom2lem 9654 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9655 Any nonzero ordinal ` B ` ...
cnfcom3lem 9656 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9657 Any infinite ordinal ` B `...
cnfcom3clem 9658 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9659 Wrap the construction of ~...
ttrcleq 9662 Equality theorem for trans...
nfttrcld 9663 Bound variable hypothesis ...
nfttrcl 9664 Bound variable hypothesis ...
relttrcl 9665 The transitive closure of ...
brttrcl 9666 Characterization of elemen...
brttrcl2 9667 Characterization of elemen...
ssttrcl 9668 If ` R ` is a relation, th...
ttrcltr 9669 The transitive closure of ...
ttrclresv 9670 The transitive closure of ...
ttrclco 9671 Composition law for the tr...
cottrcl 9672 Composition law for the tr...
ttrclss 9673 If ` R ` is a subclass of ...
dmttrcl 9674 The domain of a transitive...
rnttrcl 9675 The range of a transitive ...
ttrclexg 9676 If ` R ` is a set, then so...
dfttrcl2 9677 When ` R ` is a set and a ...
ttrclselem1 9678 Lemma for ~ ttrclse . Sho...
ttrclselem2 9679 Lemma for ~ ttrclse . Sho...
ttrclse 9680 If ` R ` is set-like over ...
trcl 9681 For any set ` A ` , show t...
tz9.1 9682 Every set has a transitive...
tz9.1c 9683 Alternate expression for t...
epfrs 9684 The strong form of the Axi...
zfregs 9685 The strong form of the Axi...
zfregs2 9686 Alternate strong form of t...
setind 9687 Set (epsilon) induction. ...
setind2 9688 Set (epsilon) induction, s...
tcvalg 9691 Value of the transitive cl...
tcid 9692 Defining property of the t...
tctr 9693 Defining property of the t...
tcmin 9694 Defining property of the t...
tc2 9695 A variant of the definitio...
tcsni 9696 The transitive closure of ...
tcss 9697 The transitive closure fun...
tcel 9698 The transitive closure fun...
tcidm 9699 The transitive closure fun...
tc0 9700 The transitive closure of ...
tc00 9701 The transitive closure is ...
frmin 9702 Every (possibly proper) su...
frind 9703 A subclass of a well-found...
frinsg 9704 Well-Founded Induction Sch...
frins 9705 Well-Founded Induction Sch...
frins2f 9706 Well-Founded Induction sch...
frins2 9707 Well-Founded Induction sch...
frins3 9708 Well-Founded Induction sch...
frr3g 9709 Functions defined by well-...
frrlem15 9710 Lemma for general well-fou...
frrlem16 9711 Lemma for general well-fou...
frr1 9712 Law of general well-founde...
frr2 9713 Law of general well-founde...
frr3 9714 Law of general well-founde...
r1funlim 9719 The cumulative hierarchy o...
r1fnon 9720 The cumulative hierarchy o...
r10 9721 Value of the cumulative hi...
r1sucg 9722 Value of the cumulative hi...
r1suc 9723 Value of the cumulative hi...
r1limg 9724 Value of the cumulative hi...
r1lim 9725 Value of the cumulative hi...
r1fin 9726 The first ` _om ` levels o...
r1sdom 9727 Each stage in the cumulati...
r111 9728 The cumulative hierarchy i...
r1tr 9729 The cumulative hierarchy o...
r1tr2 9730 The union of a cumulative ...
r1ordg 9731 Ordering relation for the ...
r1ord3g 9732 Ordering relation for the ...
r1ord 9733 Ordering relation for the ...
r1ord2 9734 Ordering relation for the ...
r1ord3 9735 Ordering relation for the ...
r1sssuc 9736 The value of the cumulativ...
r1pwss 9737 Each set of the cumulative...
r1sscl 9738 Each set of the cumulative...
r1val1 9739 The value of the cumulativ...
tz9.12lem1 9740 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9741 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9742 Lemma for ~ tz9.12 . (Con...
tz9.12 9743 A set is well-founded if a...
tz9.13 9744 Every set is well-founded,...
tz9.13g 9745 Every set is well-founded,...
rankwflemb 9746 Two ways of saying a set i...
rankf 9747 The domain and codomain of...
rankon 9748 The rank of a set is an or...
r1elwf 9749 Any member of the cumulati...
rankvalb 9750 Value of the rank function...
rankr1ai 9751 One direction of ~ rankr1a...
rankvaln 9752 Value of the rank function...
rankidb 9753 Identity law for the rank ...
rankdmr1 9754 A rank is a member of the ...
rankr1ag 9755 A version of ~ rankr1a tha...
rankr1bg 9756 A relationship between ran...
r1rankidb 9757 Any set is a subset of the...
r1elssi 9758 The range of the ` R1 ` fu...
r1elss 9759 The range of the ` R1 ` fu...
pwwf 9760 A power set is well-founde...
sswf 9761 A subset of a well-founded...
snwf 9762 A singleton is well-founde...
unwf 9763 A binary union is well-fou...
prwf 9764 An unordered pair is well-...
opwf 9765 An ordered pair is well-fo...
unir1 9766 The cumulative hierarchy o...
jech9.3 9767 Every set belongs to some ...
rankwflem 9768 Every set is well-founded,...
rankval 9769 Value of the rank function...
rankvalg 9770 Value of the rank function...
rankval2 9771 Value of an alternate defi...
uniwf 9772 A union is well-founded if...
rankr1clem 9773 Lemma for ~ rankr1c . (Co...
rankr1c 9774 A relationship between the...
rankidn 9775 A relationship between the...
rankpwi 9776 The rank of a power set. ...
rankelb 9777 The membership relation is...
wfelirr 9778 A well-founded set is not ...
rankval3b 9779 The value of the rank func...
ranksnb 9780 The rank of a singleton. ...
rankonidlem 9781 Lemma for ~ rankonid . (C...
rankonid 9782 The rank of an ordinal num...
onwf 9783 The ordinals are all well-...
onssr1 9784 Initial segments of the or...
rankr1g 9785 A relationship between the...
rankid 9786 Identity law for the rank ...
rankr1 9787 A relationship between the...
ssrankr1 9788 A relationship between an ...
rankr1a 9789 A relationship between ran...
r1val2 9790 The value of the cumulativ...
r1val3 9791 The value of the cumulativ...
rankel 9792 The membership relation is...
rankval3 9793 The value of the rank func...
bndrank 9794 Any class whose elements h...
unbndrank 9795 The elements of a proper c...
rankpw 9796 The rank of a power set. ...
ranklim 9797 The rank of a set belongs ...
r1pw 9798 A stronger property of ` R...
r1pwALT 9799 Alternate shorter proof of...
r1pwcl 9800 The cumulative hierarchy o...
rankssb 9801 The subset relation is inh...
rankss 9802 The subset relation is inh...
rankunb 9803 The rank of the union of t...
rankprb 9804 The rank of an unordered p...
rankopb 9805 The rank of an ordered pai...
rankuni2b 9806 The value of the rank func...
ranksn 9807 The rank of a singleton. ...
rankuni2 9808 The rank of a union. Part...
rankun 9809 The rank of the union of t...
rankpr 9810 The rank of an unordered p...
rankop 9811 The rank of an ordered pai...
r1rankid 9812 Any set is a subset of the...
rankeq0b 9813 A set is empty iff its ran...
rankeq0 9814 A set is empty iff its ran...
rankr1id 9815 The rank of the hierarchy ...
rankuni 9816 The rank of a union. Part...
rankr1b 9817 A relationship between ran...
ranksuc 9818 The rank of a successor. ...
rankuniss 9819 Upper bound of the rank of...
rankval4 9820 The rank of a set is the s...
rankbnd 9821 The rank of a set is bound...
rankbnd2 9822 The rank of a set is bound...
rankc1 9823 A relationship that can be...
rankc2 9824 A relationship that can be...
rankelun 9825 Rank membership is inherit...
rankelpr 9826 Rank membership is inherit...
rankelop 9827 Rank membership is inherit...
rankxpl 9828 A lower bound on the rank ...
rankxpu 9829 An upper bound on the rank...
rankfu 9830 An upper bound on the rank...
rankmapu 9831 An upper bound on the rank...
rankxplim 9832 The rank of a Cartesian pr...
rankxplim2 9833 If the rank of a Cartesian...
rankxplim3 9834 The rank of a Cartesian pr...
rankxpsuc 9835 The rank of a Cartesian pr...
tcwf 9836 The transitive closure fun...
tcrank 9837 This theorem expresses two...
scottex 9838 Scott's trick collects all...
scott0 9839 Scott's trick collects all...
scottexs 9840 Theorem scheme version of ...
scott0s 9841 Theorem scheme version of ...
cplem1 9842 Lemma for the Collection P...
cplem2 9843 Lemma for the Collection P...
cp 9844 Collection Principle. Thi...
bnd 9845 A very strong generalizati...
bnd2 9846 A variant of the Boundedne...
kardex 9847 The collection of all sets...
karden 9848 If we allow the Axiom of R...
htalem 9849 Lemma for defining an emul...
hta 9850 A ZFC emulation of Hilbert...
djueq12 9857 Equality theorem for disjo...
djueq1 9858 Equality theorem for disjo...
djueq2 9859 Equality theorem for disjo...
nfdju 9860 Bound-variable hypothesis ...
djuex 9861 The disjoint union of sets...
djuexb 9862 The disjoint union of two ...
djulcl 9863 Left closure of disjoint u...
djurcl 9864 Right closure of disjoint ...
djulf1o 9865 The left injection functio...
djurf1o 9866 The right injection functi...
inlresf 9867 The left injection restric...
inlresf1 9868 The left injection restric...
inrresf 9869 The right injection restri...
inrresf1 9870 The right injection restri...
djuin 9871 The images of any classes ...
djur 9872 A member of a disjoint uni...
djuss 9873 A disjoint union is a subc...
djuunxp 9874 The union of a disjoint un...
djuexALT 9875 Alternate proof of ~ djuex...
eldju1st 9876 The first component of an ...
eldju2ndl 9877 The second component of an...
eldju2ndr 9878 The second component of an...
djuun 9879 The disjoint union of two ...
1stinl 9880 The first component of the...
2ndinl 9881 The second component of th...
1stinr 9882 The first component of the...
2ndinr 9883 The second component of th...
updjudhf 9884 The mapping of an element ...
updjudhcoinlf 9885 The composition of the map...
updjudhcoinrg 9886 The composition of the map...
updjud 9887 Universal property of the ...
cardf2 9896 The cardinality function i...
cardon 9897 The cardinal number of a s...
isnum2 9898 A way to express well-orde...
isnumi 9899 A set equinumerous to an o...
ennum 9900 Equinumerous sets are equi...
finnum 9901 Every finite set is numera...
onenon 9902 Every ordinal number is nu...
tskwe 9903 A Tarski set is well-order...
xpnum 9904 The cartesian product of n...
cardval3 9905 An alternate definition of...
cardid2 9906 Any numerable set is equin...
isnum3 9907 A set is numerable iff it ...
oncardval 9908 The value of the cardinal ...
oncardid 9909 Any ordinal number is equi...
cardonle 9910 The cardinal of an ordinal...
card0 9911 The cardinality of the emp...
cardidm 9912 The cardinality function i...
oncard 9913 A set is a cardinal number...
ficardom 9914 The cardinal number of a f...
ficardid 9915 A finite set is equinumero...
cardnn 9916 The cardinality of a natur...
cardnueq0 9917 The empty set is the only ...
cardne 9918 No member of a cardinal nu...
carden2a 9919 If two sets have equal non...
carden2b 9920 If two sets are equinumero...
card1 9921 A set has cardinality one ...
cardsn 9922 A singleton has cardinalit...
carddomi2 9923 Two sets have the dominanc...
sdomsdomcardi 9924 A set strictly dominates i...
cardlim 9925 An infinite cardinal is a ...
cardsdomelir 9926 A cardinal strictly domina...
cardsdomel 9927 A cardinal strictly domina...
iscard 9928 Two ways to express the pr...
iscard2 9929 Two ways to express the pr...
carddom2 9930 Two numerable sets have th...
harcard 9931 The class of ordinal numbe...
cardprclem 9932 Lemma for ~ cardprc . (Co...
cardprc 9933 The class of all cardinal ...
carduni 9934 The union of a set of card...
cardiun 9935 The indexed union of a set...
cardennn 9936 If ` A ` is equinumerous t...
cardsucinf 9937 The cardinality of the suc...
cardsucnn 9938 The cardinality of the suc...
cardom 9939 The set of natural numbers...
carden2 9940 Two numerable sets are equ...
cardsdom2 9941 A numerable set is strictl...
domtri2 9942 Trichotomy of dominance fo...
nnsdomel 9943 Strict dominance and eleme...
cardval2 9944 An alternate version of th...
isinffi 9945 An infinite set contains s...
fidomtri 9946 Trichotomy of dominance wi...
fidomtri2 9947 Trichotomy of dominance wi...
harsdom 9948 The Hartogs number of a we...
onsdom 9949 Any well-orderable set is ...
harval2 9950 An alternate expression fo...
harsucnn 9951 The next cardinal after a ...
cardmin2 9952 The smallest ordinal that ...
pm54.43lem 9953 In Theorem *54.43 of [Whit...
pm54.43 9954 Theorem *54.43 of [Whitehe...
enpr2 9955 An unordered pair with dis...
pr2nelemOLD 9956 Obsolete version of ~ enpr...
pr2ne 9957 If an unordered pair has t...
pr2neOLD 9958 Obsolete version of ~ pr2n...
prdom2 9959 An unordered pair has at m...
en2eqpr 9960 Building a set with two el...
en2eleq 9961 Express a set of pair card...
en2other2 9962 Taking the other element t...
dif1card 9963 The cardinality of a nonem...
leweon 9964 Lexicographical order is a...
r0weon 9965 A set-like well-ordering o...
infxpenlem 9966 Lemma for ~ infxpen . (Co...
infxpen 9967 Every infinite ordinal is ...
xpomen 9968 The Cartesian product of o...
xpct 9969 The cartesian product of t...
infxpidm2 9970 Every infinite well-ordera...
infxpenc 9971 A canonical version of ~ i...
infxpenc2lem1 9972 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 9973 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 9974 Lemma for ~ infxpenc2 . (...
infxpenc2 9975 Existence form of ~ infxpe...
iunmapdisj 9976 The union ` U_ n e. C ( A ...
fseqenlem1 9977 Lemma for ~ fseqen . (Con...
fseqenlem2 9978 Lemma for ~ fseqen . (Con...
fseqdom 9979 One half of ~ fseqen . (C...
fseqen 9980 A set that is equinumerous...
infpwfidom 9981 The collection of finite s...
dfac8alem 9982 Lemma for ~ dfac8a . If t...
dfac8a 9983 Numeration theorem: every ...
dfac8b 9984 The well-ordering theorem:...
dfac8clem 9985 Lemma for ~ dfac8c . (Con...
dfac8c 9986 If the union of a set is w...
ac10ct 9987 A proof of the well-orderi...
ween 9988 A set is numerable iff it ...
ac5num 9989 A version of ~ ac5b with t...
ondomen 9990 If a set is dominated by a...
numdom 9991 A set dominated by a numer...
ssnum 9992 A subset of a numerable se...
onssnum 9993 All subsets of the ordinal...
indcardi 9994 Indirect strong induction ...
acnrcl 9995 Reverse closure for the ch...
acneq 9996 Equality theorem for the c...
isacn 9997 The property of being a ch...
acni 9998 The property of being a ch...
acni2 9999 The property of being a ch...
acni3 10000 The property of being a ch...
acnlem 10001 Construct a mapping satisf...
numacn 10002 A well-orderable set has c...
finacn 10003 Every set has finite choic...
acndom 10004 A set with long choice seq...
acnnum 10005 A set ` X ` which has choi...
acnen 10006 The class of choice sets o...
acndom2 10007 A set smaller than one wit...
acnen2 10008 The class of sets with cho...
fodomacn 10009 A version of ~ fodom that ...
fodomnum 10010 A version of ~ fodom that ...
fonum 10011 A surjection maps numerabl...
numwdom 10012 A surjection maps numerabl...
fodomfi2 10013 Onto functions define domi...
wdomfil 10014 Weak dominance agrees with...
infpwfien 10015 Any infinite well-orderabl...
inffien 10016 The set of finite intersec...
wdomnumr 10017 Weak dominance agrees with...
alephfnon 10018 The aleph function is a fu...
aleph0 10019 The first infinite cardina...
alephlim 10020 Value of the aleph functio...
alephsuc 10021 Value of the aleph functio...
alephon 10022 An aleph is an ordinal num...
alephcard 10023 Every aleph is a cardinal ...
alephnbtwn 10024 No cardinal can be sandwic...
alephnbtwn2 10025 No set has equinumerosity ...
alephordilem1 10026 Lemma for ~ alephordi . (...
alephordi 10027 Strict ordering property o...
alephord 10028 Ordering property of the a...
alephord2 10029 Ordering property of the a...
alephord2i 10030 Ordering property of the a...
alephord3 10031 Ordering property of the a...
alephsucdom 10032 A set dominated by an alep...
alephsuc2 10033 An alternate representatio...
alephdom 10034 Relationship between inclu...
alephgeom 10035 Every aleph is greater tha...
alephislim 10036 Every aleph is a limit ord...
aleph11 10037 The aleph function is one-...
alephf1 10038 The aleph function is a on...
alephsdom 10039 If an ordinal is smaller t...
alephdom2 10040 A dominated initial ordina...
alephle 10041 The argument of the aleph ...
cardaleph 10042 Given any transfinite card...
cardalephex 10043 Every transfinite cardinal...
infenaleph 10044 An infinite numerable set ...
isinfcard 10045 Two ways to express the pr...
iscard3 10046 Two ways to express the pr...
cardnum 10047 Two ways to express the cl...
alephinit 10048 An infinite initial ordina...
carduniima 10049 The union of the image of ...
cardinfima 10050 If a mapping to cardinals ...
alephiso 10051 Aleph is an order isomorph...
alephprc 10052 The class of all transfini...
alephsson 10053 The class of transfinite c...
unialeph 10054 The union of the class of ...
alephsmo 10055 The aleph function is stri...
alephf1ALT 10056 Alternate proof of ~ aleph...
alephfplem1 10057 Lemma for ~ alephfp . (Co...
alephfplem2 10058 Lemma for ~ alephfp . (Co...
alephfplem3 10059 Lemma for ~ alephfp . (Co...
alephfplem4 10060 Lemma for ~ alephfp . (Co...
alephfp 10061 The aleph function has a f...
alephfp2 10062 The aleph function has at ...
alephval3 10063 An alternate way to expres...
alephsucpw2 10064 The power set of an aleph ...
mappwen 10065 Power rule for cardinal ar...
finnisoeu 10066 A finite totally ordered s...
iunfictbso 10067 Countability of a countabl...
aceq1 10070 Equivalence of two version...
aceq0 10071 Equivalence of two version...
aceq2 10072 Equivalence of two version...
aceq3lem 10073 Lemma for ~ dfac3 . (Cont...
dfac3 10074 Equivalence of two version...
dfac4 10075 Equivalence of two version...
dfac5lem1 10076 Lemma for ~ dfac5 . (Cont...
dfac5lem2 10077 Lemma for ~ dfac5 . (Cont...
dfac5lem3 10078 Lemma for ~ dfac5 . (Cont...
dfac5lem4 10079 Lemma for ~ dfac5 . (Cont...
dfac5lem5 10080 Lemma for ~ dfac5 . (Cont...
dfac5lem4OLD 10081 Obsolete version of ~ dfac...
dfac5 10082 Equivalence of two version...
dfac2a 10083 Our Axiom of Choice (in th...
dfac2b 10084 Axiom of Choice (first for...
dfac2 10085 Axiom of Choice (first for...
dfac7 10086 Equivalence of the Axiom o...
dfac0 10087 Equivalence of two version...
dfac1 10088 Equivalence of two version...
dfac8 10089 A proof of the equivalency...
dfac9 10090 Equivalence of the axiom o...
dfac10 10091 Axiom of Choice equivalent...
dfac10c 10092 Axiom of Choice equivalent...
dfac10b 10093 Axiom of Choice equivalent...
acacni 10094 A choice equivalent: every...
dfacacn 10095 A choice equivalent: every...
dfac13 10096 The axiom of choice holds ...
dfac12lem1 10097 Lemma for ~ dfac12 . (Con...
dfac12lem2 10098 Lemma for ~ dfac12 . (Con...
dfac12lem3 10099 Lemma for ~ dfac12 . (Con...
dfac12r 10100 The axiom of choice holds ...
dfac12k 10101 Equivalence of ~ dfac12 an...
dfac12a 10102 The axiom of choice holds ...
dfac12 10103 The axiom of choice holds ...
kmlem1 10104 Lemma for 5-quantifier AC ...
kmlem2 10105 Lemma for 5-quantifier AC ...
kmlem3 10106 Lemma for 5-quantifier AC ...
kmlem4 10107 Lemma for 5-quantifier AC ...
kmlem5 10108 Lemma for 5-quantifier AC ...
kmlem6 10109 Lemma for 5-quantifier AC ...
kmlem7 10110 Lemma for 5-quantifier AC ...
kmlem8 10111 Lemma for 5-quantifier AC ...
kmlem9 10112 Lemma for 5-quantifier AC ...
kmlem10 10113 Lemma for 5-quantifier AC ...
kmlem11 10114 Lemma for 5-quantifier AC ...
kmlem12 10115 Lemma for 5-quantifier AC ...
kmlem13 10116 Lemma for 5-quantifier AC ...
kmlem14 10117 Lemma for 5-quantifier AC ...
kmlem15 10118 Lemma for 5-quantifier AC ...
kmlem16 10119 Lemma for 5-quantifier AC ...
dfackm 10120 Equivalence of the Axiom o...
undjudom 10121 Cardinal addition dominate...
endjudisj 10122 Equinumerosity of a disjoi...
djuen 10123 Disjoint unions of equinum...
djuenun 10124 Disjoint union is equinume...
dju1en 10125 Cardinal addition with car...
dju1dif 10126 Adding and subtracting one...
dju1p1e2 10127 1+1=2 for cardinal number ...
dju1p1e2ALT 10128 Alternate proof of ~ dju1p...
dju0en 10129 Cardinal addition with car...
xp2dju 10130 Two times a cardinal numbe...
djucomen 10131 Commutative law for cardin...
djuassen 10132 Associative law for cardin...
xpdjuen 10133 Cardinal multiplication di...
mapdjuen 10134 Sum of exponents law for c...
pwdjuen 10135 Sum of exponents law for c...
djudom1 10136 Ordering law for cardinal ...
djudom2 10137 Ordering law for cardinal ...
djudoml 10138 A set is dominated by its ...
djuxpdom 10139 Cartesian product dominate...
djufi 10140 The disjoint union of two ...
cdainflem 10141 Any partition of omega int...
djuinf 10142 A set is infinite iff the ...
infdju1 10143 An infinite set is equinum...
pwdju1 10144 The sum of a powerset with...
pwdjuidm 10145 If the natural numbers inj...
djulepw 10146 If ` A ` is idempotent und...
onadju 10147 The cardinal and ordinal s...
cardadju 10148 The cardinal sum is equinu...
djunum 10149 The disjoint union of two ...
unnum 10150 The union of two numerable...
nnadju 10151 The cardinal and ordinal s...
nnadjuALT 10152 Shorter proof of ~ nnadju ...
ficardadju 10153 The disjoint union of fini...
ficardun 10154 The cardinality of the uni...
ficardun2 10155 The cardinality of the uni...
pwsdompw 10156 Lemma for ~ domtriom . Th...
unctb 10157 The union of two countable...
infdjuabs 10158 Absorption law for additio...
infunabs 10159 An infinite set is equinum...
infdju 10160 The sum of two cardinal nu...
infdif 10161 The cardinality of an infi...
infdif2 10162 Cardinality ordering for a...
infxpdom 10163 Dominance law for multipli...
infxpabs 10164 Absorption law for multipl...
infunsdom1 10165 The union of two sets that...
infunsdom 10166 The union of two sets that...
infxp 10167 Absorption law for multipl...
pwdjudom 10168 A property of dominance ov...
infpss 10169 Every infinite set has an ...
infmap2 10170 An exponentiation law for ...
ackbij2lem1 10171 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 10172 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 10173 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 10174 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 10175 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 10176 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 10177 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 10178 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 10179 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 10180 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 10181 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 10182 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 10183 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 10184 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 10185 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 10186 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 10187 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 10188 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 10189 Lemma for ~ ackbij1 . (Co...
ackbij1 10190 The Ackermann bijection, p...
ackbij1b 10191 The Ackermann bijection, p...
ackbij2lem2 10192 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 10193 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 10194 Lemma for ~ ackbij2 . (Co...
ackbij2 10195 The Ackermann bijection, p...
r1om 10196 The set of hereditarily fi...
fictb 10197 A set is countable iff its...
cflem 10198 A lemma used to simplify c...
cflemOLD 10199 Obsolete version of ~ cfle...
cfval 10200 Value of the cofinality fu...
cff 10201 Cofinality is a function o...
cfub 10202 An upper bound on cofinali...
cflm 10203 Value of the cofinality fu...
cf0 10204 Value of the cofinality fu...
cardcf 10205 Cofinality is a cardinal n...
cflecard 10206 Cofinality is bounded by t...
cfle 10207 Cofinality is bounded by i...
cfon 10208 The cofinality of any set ...
cfeq0 10209 Only the ordinal zero has ...
cfsuc 10210 Value of the cofinality fu...
cff1 10211 There is always a map from...
cfflb 10212 If there is a cofinal map ...
cfval2 10213 Another expression for the...
coflim 10214 A simpler expression for t...
cflim3 10215 Another expression for the...
cflim2 10216 The cofinality function is...
cfom 10217 Value of the cofinality fu...
cfss 10218 There is a cofinal subset ...
cfslb 10219 Any cofinal subset of ` A ...
cfslbn 10220 Any subset of ` A ` smalle...
cfslb2n 10221 Any small collection of sm...
cofsmo 10222 Any cofinal map implies th...
cfsmolem 10223 Lemma for ~ cfsmo . (Cont...
cfsmo 10224 The map in ~ cff1 can be a...
cfcoflem 10225 Lemma for ~ cfcof , showin...
coftr 10226 If there is a cofinal map ...
cfcof 10227 If there is a cofinal map ...
cfidm 10228 The cofinality function is...
alephsing 10229 The cofinality of a limit ...
sornom 10230 The range of a single-step...
isfin1a 10245 Definition of a Ia-finite ...
fin1ai 10246 Property of a Ia-finite se...
isfin2 10247 Definition of a II-finite ...
fin2i 10248 Property of a II-finite se...
isfin3 10249 Definition of a III-finite...
isfin4 10250 Definition of a IV-finite ...
fin4i 10251 Infer that a set is IV-inf...
isfin5 10252 Definition of a V-finite s...
isfin6 10253 Definition of a VI-finite ...
isfin7 10254 Definition of a VII-finite...
sdom2en01 10255 A set with less than two e...
infpssrlem1 10256 Lemma for ~ infpssr . (Co...
infpssrlem2 10257 Lemma for ~ infpssr . (Co...
infpssrlem3 10258 Lemma for ~ infpssr . (Co...
infpssrlem4 10259 Lemma for ~ infpssr . (Co...
infpssrlem5 10260 Lemma for ~ infpssr . (Co...
infpssr 10261 Dedekind infinity implies ...
fin4en1 10262 Dedekind finite is a cardi...
ssfin4 10263 Dedekind finite sets have ...
domfin4 10264 A set dominated by a Dedek...
ominf4 10265 ` _om ` is Dedekind infini...
infpssALT 10266 Alternate proof of ~ infps...
isfin4-2 10267 Alternate definition of IV...
isfin4p1 10268 Alternate definition of IV...
fin23lem7 10269 Lemma for ~ isfin2-2 . Th...
fin23lem11 10270 Lemma for ~ isfin2-2 . (C...
fin2i2 10271 A II-finite set contains m...
isfin2-2 10272 ` Fin2 ` expressed in term...
ssfin2 10273 A subset of a II-finite se...
enfin2i 10274 II-finiteness is a cardina...
fin23lem24 10275 Lemma for ~ fin23 . In a ...
fincssdom 10276 In a chain of finite sets,...
fin23lem25 10277 Lemma for ~ fin23 . In a ...
fin23lem26 10278 Lemma for ~ fin23lem22 . ...
fin23lem23 10279 Lemma for ~ fin23lem22 . ...
fin23lem22 10280 Lemma for ~ fin23 but coul...
fin23lem27 10281 The mapping constructed in...
isfin3ds 10282 Property of a III-finite s...
ssfin3ds 10283 A subset of a III-finite s...
fin23lem12 10284 The beginning of the proof...
fin23lem13 10285 Lemma for ~ fin23 . Each ...
fin23lem14 10286 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10287 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10288 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10289 Lemma for ~ fin23 . The f...
fin23lem20 10290 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10291 Lemma for ~ fin23 . By ? ...
fin23lem21 10292 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10293 Lemma for ~ fin23 . The r...
fin23lem29 10294 Lemma for ~ fin23 . The r...
fin23lem30 10295 Lemma for ~ fin23 . The r...
fin23lem31 10296 Lemma for ~ fin23 . The r...
fin23lem32 10297 Lemma for ~ fin23 . Wrap ...
fin23lem33 10298 Lemma for ~ fin23 . Disch...
fin23lem34 10299 Lemma for ~ fin23 . Estab...
fin23lem35 10300 Lemma for ~ fin23 . Stric...
fin23lem36 10301 Lemma for ~ fin23 . Weak ...
fin23lem38 10302 Lemma for ~ fin23 . The c...
fin23lem39 10303 Lemma for ~ fin23 . Thus,...
fin23lem40 10304 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10305 Lemma for ~ fin23 . A set...
isf32lem1 10306 Lemma for ~ isfin3-2 . De...
isf32lem2 10307 Lemma for ~ isfin3-2 . No...
isf32lem3 10308 Lemma for ~ isfin3-2 . Be...
isf32lem4 10309 Lemma for ~ isfin3-2 . Be...
isf32lem5 10310 Lemma for ~ isfin3-2 . Th...
isf32lem6 10311 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10312 Lemma for ~ isfin3-2 . Di...
isf32lem8 10313 Lemma for ~ isfin3-2 . K ...
isf32lem9 10314 Lemma for ~ isfin3-2 . Co...
isf32lem10 10315 Lemma for isfin3-2 . Writ...
isf32lem11 10316 Lemma for ~ isfin3-2 . Re...
isf32lem12 10317 Lemma for ~ isfin3-2 . (C...
isfin32i 10318 One half of ~ isfin3-2 . ...
isf33lem 10319 Lemma for ~ isfin3-3 . (C...
isfin3-2 10320 Weakly Dedekind-infinite s...
isfin3-3 10321 Weakly Dedekind-infinite s...
fin33i 10322 Inference from ~ isfin3-3 ...
compsscnvlem 10323 Lemma for ~ compsscnv . (...
compsscnv 10324 Complementation on a power...
isf34lem1 10325 Lemma for ~ isfin3-4 . (C...
isf34lem2 10326 Lemma for ~ isfin3-4 . (C...
compssiso 10327 Complementation is an anti...
isf34lem3 10328 Lemma for ~ isfin3-4 . (C...
compss 10329 Express image under of the...
isf34lem4 10330 Lemma for ~ isfin3-4 . (C...
isf34lem5 10331 Lemma for ~ isfin3-4 . (C...
isf34lem7 10332 Lemma for ~ isfin3-4 . (C...
isf34lem6 10333 Lemma for ~ isfin3-4 . (C...
fin34i 10334 Inference from ~ isfin3-4 ...
isfin3-4 10335 Weakly Dedekind-infinite s...
fin11a 10336 Every I-finite set is Ia-f...
enfin1ai 10337 Ia-finiteness is a cardina...
isfin1-2 10338 A set is finite in the usu...
isfin1-3 10339 A set is I-finite iff ever...
isfin1-4 10340 A set is I-finite iff ever...
dffin1-5 10341 Compact quantifier-free ve...
fin23 10342 Every II-finite set (every...
fin34 10343 Every III-finite set is IV...
isfin5-2 10344 Alternate definition of V-...
fin45 10345 Every IV-finite set is V-f...
fin56 10346 Every V-finite set is VI-f...
fin17 10347 Every I-finite set is VII-...
fin67 10348 Every VI-finite set is VII...
isfin7-2 10349 A set is VII-finite iff it...
fin71num 10350 A well-orderable set is VI...
dffin7-2 10351 Class form of ~ isfin7-2 ....
dfacfin7 10352 Axiom of Choice equivalent...
fin1a2lem1 10353 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10354 Lemma for ~ fin1a2 . The ...
fin1a2lem3 10355 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10356 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10357 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10358 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10359 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10360 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10361 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10362 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10363 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10364 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10365 Lemma for ~ fin1a2 . (Con...
fin12 10366 Weak theorem which skips I...
fin1a2s 10367 An II-infinite set can hav...
fin1a2 10368 Every Ia-finite set is II-...
itunifval 10369 Function value of iterated...
itunifn 10370 Functionality of the itera...
ituni0 10371 A zero-fold iterated union...
itunisuc 10372 Successor iterated union. ...
itunitc1 10373 Each union iterate is a me...
itunitc 10374 The union of all union ite...
ituniiun 10375 Unwrap an iterated union f...
hsmexlem7 10376 Lemma for ~ hsmex . Prope...
hsmexlem8 10377 Lemma for ~ hsmex . Prope...
hsmexlem9 10378 Lemma for ~ hsmex . Prope...
hsmexlem1 10379 Lemma for ~ hsmex . Bound...
hsmexlem2 10380 Lemma for ~ hsmex . Bound...
hsmexlem3 10381 Lemma for ~ hsmex . Clear...
hsmexlem4 10382 Lemma for ~ hsmex . The c...
hsmexlem5 10383 Lemma for ~ hsmex . Combi...
hsmexlem6 10384 Lemma for ~ hsmex . (Cont...
hsmex 10385 The collection of heredita...
hsmex2 10386 The set of hereditary size...
hsmex3 10387 The set of hereditary size...
axcc2lem 10389 Lemma for ~ axcc2 . (Cont...
axcc2 10390 A possibly more useful ver...
axcc3 10391 A possibly more useful ver...
axcc4 10392 A version of ~ axcc3 that ...
acncc 10393 An ~ ax-cc equivalent: eve...
axcc4dom 10394 Relax the constraint on ~ ...
domtriomlem 10395 Lemma for ~ domtriom . (C...
domtriom 10396 Trichotomy of equinumerosi...
fin41 10397 Under countable choice, th...
dominf 10398 A nonempty set that is a s...
dcomex 10400 The Axiom of Dependent Cho...
axdc2lem 10401 Lemma for ~ axdc2 . We co...
axdc2 10402 An apparent strengthening ...
axdc3lem 10403 The class ` S ` of finite ...
axdc3lem2 10404 Lemma for ~ axdc3 . We ha...
axdc3lem3 10405 Simple substitution lemma ...
axdc3lem4 10406 Lemma for ~ axdc3 . We ha...
axdc3 10407 Dependent Choice. Axiom D...
axdc4lem 10408 Lemma for ~ axdc4 . (Cont...
axdc4 10409 A more general version of ...
axcclem 10410 Lemma for ~ axcc . (Contr...
axcc 10411 Although CC can be proven ...
zfac 10413 Axiom of Choice expressed ...
ac2 10414 Axiom of Choice equivalent...
ac3 10415 Axiom of Choice using abbr...
axac3 10417 This theorem asserts that ...
ackm 10418 A remarkable equivalent to...
axac2 10419 Derive ~ ax-ac2 from ~ ax-...
axac 10420 Derive ~ ax-ac from ~ ax-a...
axaci 10421 Apply a choice equivalent....
cardeqv 10422 All sets are well-orderabl...
numth3 10423 All sets are well-orderabl...
numth2 10424 Numeration theorem: any se...
numth 10425 Numeration theorem: every ...
ac7 10426 An Axiom of Choice equival...
ac7g 10427 An Axiom of Choice equival...
ac4 10428 Equivalent of Axiom of Cho...
ac4c 10429 Equivalent of Axiom of Cho...
ac5 10430 An Axiom of Choice equival...
ac5b 10431 Equivalent of Axiom of Cho...
ac6num 10432 A version of ~ ac6 which t...
ac6 10433 Equivalent of Axiom of Cho...
ac6c4 10434 Equivalent of Axiom of Cho...
ac6c5 10435 Equivalent of Axiom of Cho...
ac9 10436 An Axiom of Choice equival...
ac6s 10437 Equivalent of Axiom of Cho...
ac6n 10438 Equivalent of Axiom of Cho...
ac6s2 10439 Generalization of the Axio...
ac6s3 10440 Generalization of the Axio...
ac6sg 10441 ~ ac6s with sethood as ant...
ac6sf 10442 Version of ~ ac6 with boun...
ac6s4 10443 Generalization of the Axio...
ac6s5 10444 Generalization of the Axio...
ac8 10445 An Axiom of Choice equival...
ac9s 10446 An Axiom of Choice equival...
numthcor 10447 Any set is strictly domina...
weth 10448 Well-ordering theorem: any...
zorn2lem1 10449 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10450 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10451 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10452 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10453 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10454 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10455 Lemma for ~ zorn2 . (Cont...
zorn2g 10456 Zorn's Lemma of [Monk1] p....
zorng 10457 Zorn's Lemma. If the unio...
zornn0g 10458 Variant of Zorn's lemma ~ ...
zorn2 10459 Zorn's Lemma of [Monk1] p....
zorn 10460 Zorn's Lemma. If the unio...
zornn0 10461 Variant of Zorn's lemma ~ ...
ttukeylem1 10462 Lemma for ~ ttukey . Expa...
ttukeylem2 10463 Lemma for ~ ttukey . A pr...
ttukeylem3 10464 Lemma for ~ ttukey . (Con...
ttukeylem4 10465 Lemma for ~ ttukey . (Con...
ttukeylem5 10466 Lemma for ~ ttukey . The ...
ttukeylem6 10467 Lemma for ~ ttukey . (Con...
ttukeylem7 10468 Lemma for ~ ttukey . (Con...
ttukey2g 10469 The Teichmüller-Tukey...
ttukeyg 10470 The Teichmüller-Tukey...
ttukey 10471 The Teichmüller-Tukey...
axdclem 10472 Lemma for ~ axdc . (Contr...
axdclem2 10473 Lemma for ~ axdc . Using ...
axdc 10474 This theorem derives ~ ax-...
fodomg 10475 An onto function implies d...
fodom 10476 An onto function implies d...
dmct 10477 The domain of a countable ...
rnct 10478 The range of a countable s...
fodomb 10479 Equivalence of an onto map...
wdomac 10480 When assuming AC, weak and...
brdom3 10481 Equivalence to a dominance...
brdom5 10482 An equivalence to a domina...
brdom4 10483 An equivalence to a domina...
brdom7disj 10484 An equivalence to a domina...
brdom6disj 10485 An equivalence to a domina...
fin71ac 10486 Once we allow AC, the "str...
imadomg 10487 An image of a function und...
fimact 10488 The image by a function of...
fnrndomg 10489 The range of a function is...
fnct 10490 If the domain of a functio...
mptct 10491 A countable mapping set is...
iunfo 10492 Existence of an onto funct...
iundom2g 10493 An upper bound for the car...
iundomg 10494 An upper bound for the car...
iundom 10495 An upper bound for the car...
unidom 10496 An upper bound for the car...
uniimadom 10497 An upper bound for the car...
uniimadomf 10498 An upper bound for the car...
cardval 10499 The value of the cardinal ...
cardid 10500 Any set is equinumerous to...
cardidg 10501 Any set is equinumerous to...
cardidd 10502 Any set is equinumerous to...
cardf 10503 The cardinality function i...
carden 10504 Two sets are equinumerous ...
cardeq0 10505 Only the empty set has car...
unsnen 10506 Equinumerosity of a set wi...
carddom 10507 Two sets have the dominanc...
cardsdom 10508 Two sets have the strict d...
domtri 10509 Trichotomy law for dominan...
entric 10510 Trichotomy of equinumerosi...
entri2 10511 Trichotomy of dominance an...
entri3 10512 Trichotomy of dominance. ...
sdomsdomcard 10513 A set strictly dominates i...
canth3 10514 Cantor's theorem in terms ...
infxpidm 10515 Every infinite class is eq...
ondomon 10516 The class of ordinals domi...
cardmin 10517 The smallest ordinal that ...
ficard 10518 A set is finite iff its ca...
infinf 10519 Equivalence between two in...
unirnfdomd 10520 The union of the range of ...
konigthlem 10521 Lemma for ~ konigth . (Co...
konigth 10522 Konig's Theorem. If ` m (...
alephsucpw 10523 The power set of an aleph ...
aleph1 10524 The set exponentiation of ...
alephval2 10525 An alternate way to expres...
dominfac 10526 A nonempty set that is a s...
iunctb 10527 The countable union of cou...
unictb 10528 The countable union of cou...
infmap 10529 An exponentiation law for ...
alephadd 10530 The sum of two alephs is t...
alephmul 10531 The product of two alephs ...
alephexp1 10532 An exponentiation law for ...
alephsuc3 10533 An alternate representatio...
alephexp2 10534 An expression equinumerous...
alephreg 10535 A successor aleph is regul...
pwcfsdom 10536 A corollary of Konig's The...
cfpwsdom 10537 A corollary of Konig's The...
alephom 10538 From ~ canth2 , we know th...
smobeth 10539 The beth function is stric...
nd1 10540 A lemma for proving condit...
nd2 10541 A lemma for proving condit...
nd3 10542 A lemma for proving condit...
nd4 10543 A lemma for proving condit...
axextnd 10544 A version of the Axiom of ...
axrepndlem1 10545 Lemma for the Axiom of Rep...
axrepndlem2 10546 Lemma for the Axiom of Rep...
axrepnd 10547 A version of the Axiom of ...
axunndlem1 10548 Lemma for the Axiom of Uni...
axunnd 10549 A version of the Axiom of ...
axpowndlem1 10550 Lemma for the Axiom of Pow...
axpowndlem2 10551 Lemma for the Axiom of Pow...
axpowndlem3 10552 Lemma for the Axiom of Pow...
axpowndlem4 10553 Lemma for the Axiom of Pow...
axpownd 10554 A version of the Axiom of ...
axregndlem1 10555 Lemma for the Axiom of Reg...
axregndlem2 10556 Lemma for the Axiom of Reg...
axregnd 10557 A version of the Axiom of ...
axinfndlem1 10558 Lemma for the Axiom of Inf...
axinfnd 10559 A version of the Axiom of ...
axacndlem1 10560 Lemma for the Axiom of Cho...
axacndlem2 10561 Lemma for the Axiom of Cho...
axacndlem3 10562 Lemma for the Axiom of Cho...
axacndlem4 10563 Lemma for the Axiom of Cho...
axacndlem5 10564 Lemma for the Axiom of Cho...
axacnd 10565 A version of the Axiom of ...
zfcndext 10566 Axiom of Extensionality ~ ...
zfcndrep 10567 Axiom of Replacement ~ ax-...
zfcndun 10568 Axiom of Union ~ ax-un , r...
zfcndpow 10569 Axiom of Power Sets ~ ax-p...
zfcndreg 10570 Axiom of Regularity ~ ax-r...
zfcndinf 10571 Axiom of Infinity ~ ax-inf...
zfcndac 10572 Axiom of Choice ~ ax-ac , ...
elgch 10575 Elementhood in the collect...
fingch 10576 A finite set is a GCH-set....
gchi 10577 The only GCH-sets which ha...
gchen1 10578 If ` A <_ B < ~P A ` , and...
gchen2 10579 If ` A < B <_ ~P A ` , and...
gchor 10580 If ` A <_ B <_ ~P A ` , an...
engch 10581 The property of being a GC...
gchdomtri 10582 Under certain conditions, ...
fpwwe2cbv 10583 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10584 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10585 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10586 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10587 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10588 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10589 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10590 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10591 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10592 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10593 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10594 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10595 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10596 Given any function ` F ` f...
fpwwecbv 10597 Lemma for ~ fpwwe . (Cont...
fpwwelem 10598 Lemma for ~ fpwwe . (Cont...
fpwwe 10599 Given any function ` F ` f...
canth4 10600 An "effective" form of Can...
canthnumlem 10601 Lemma for ~ canthnum . (C...
canthnum 10602 The set of well-orderable ...
canthwelem 10603 Lemma for ~ canthwe . (Co...
canthwe 10604 The set of well-orders of ...
canthp1lem1 10605 Lemma for ~ canthp1 . (Co...
canthp1lem2 10606 Lemma for ~ canthp1 . (Co...
canthp1 10607 A slightly stronger form o...
finngch 10608 The exclusion of finite se...
gchdju1 10609 An infinite GCH-set is ide...
gchinf 10610 An infinite GCH-set is Ded...
pwfseqlem1 10611 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10612 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10613 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10614 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10615 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10616 Lemma for ~ pwfseq . Alth...
pwfseq 10617 The powerset of a Dedekind...
pwxpndom2 10618 The powerset of a Dedekind...
pwxpndom 10619 The powerset of a Dedekind...
pwdjundom 10620 The powerset of a Dedekind...
gchdjuidm 10621 An infinite GCH-set is ide...
gchxpidm 10622 An infinite GCH-set is ide...
gchpwdom 10623 A relationship between dom...
gchaleph 10624 If ` ( aleph `` A ) ` is a...
gchaleph2 10625 If ` ( aleph `` A ) ` and ...
hargch 10626 If ` A + ~~ ~P A ` , then ...
alephgch 10627 If ` ( aleph `` suc A ) ` ...
gch2 10628 It is sufficient to requir...
gch3 10629 An equivalent formulation ...
gch-kn 10630 The equivalence of two ver...
gchaclem 10631 Lemma for ~ gchac (obsolet...
gchhar 10632 A "local" form of ~ gchac ...
gchacg 10633 A "local" form of ~ gchac ...
gchac 10634 The Generalized Continuum ...
elwina 10639 Conditions of weak inacces...
elina 10640 Conditions of strong inacc...
winaon 10641 A weakly inaccessible card...
inawinalem 10642 Lemma for ~ inawina . (Co...
inawina 10643 Every strongly inaccessibl...
omina 10644 ` _om ` is a strongly inac...
winacard 10645 A weakly inaccessible card...
winainflem 10646 A weakly inaccessible card...
winainf 10647 A weakly inaccessible card...
winalim 10648 A weakly inaccessible card...
winalim2 10649 A nontrivial weakly inacce...
winafp 10650 A nontrivial weakly inacce...
winafpi 10651 This theorem, which states...
gchina 10652 Assuming the GCH, weakly a...
iswun 10657 Properties of a weak unive...
wuntr 10658 A weak universe is transit...
wununi 10659 A weak universe is closed ...
wunpw 10660 A weak universe is closed ...
wunelss 10661 The elements of a weak uni...
wunpr 10662 A weak universe is closed ...
wunun 10663 A weak universe is closed ...
wuntp 10664 A weak universe is closed ...
wunss 10665 A weak universe is closed ...
wunin 10666 A weak universe is closed ...
wundif 10667 A weak universe is closed ...
wunint 10668 A weak universe is closed ...
wunsn 10669 A weak universe is closed ...
wunsuc 10670 A weak universe is closed ...
wun0 10671 A weak universe contains t...
wunr1om 10672 A weak universe is infinit...
wunom 10673 A weak universe contains a...
wunfi 10674 A weak universe contains a...
wunop 10675 A weak universe is closed ...
wunot 10676 A weak universe is closed ...
wunxp 10677 A weak universe is closed ...
wunpm 10678 A weak universe is closed ...
wunmap 10679 A weak universe is closed ...
wunf 10680 A weak universe is closed ...
wundm 10681 A weak universe is closed ...
wunrn 10682 A weak universe is closed ...
wuncnv 10683 A weak universe is closed ...
wunres 10684 A weak universe is closed ...
wunfv 10685 A weak universe is closed ...
wunco 10686 A weak universe is closed ...
wuntpos 10687 A weak universe is closed ...
intwun 10688 The intersection of a coll...
r1limwun 10689 Each limit stage in the cu...
r1wunlim 10690 The weak universes in the ...
wunex2 10691 Construct a weak universe ...
wunex 10692 Construct a weak universe ...
uniwun 10693 Every set is contained in ...
wunex3 10694 Construct a weak universe ...
wuncval 10695 Value of the weak universe...
wuncid 10696 The weak universe closure ...
wunccl 10697 The weak universe closure ...
wuncss 10698 The weak universe closure ...
wuncidm 10699 The weak universe closure ...
wuncval2 10700 Our earlier expression for...
eltskg 10703 Properties of a Tarski cla...
eltsk2g 10704 Properties of a Tarski cla...
tskpwss 10705 First axiom of a Tarski cl...
tskpw 10706 Second axiom of a Tarski c...
tsken 10707 Third axiom of a Tarski cl...
0tsk 10708 The empty set is a (transi...
tsksdom 10709 An element of a Tarski cla...
tskssel 10710 A part of a Tarski class s...
tskss 10711 The subsets of an element ...
tskin 10712 The intersection of two el...
tsksn 10713 A singleton of an element ...
tsktrss 10714 A transitive element of a ...
tsksuc 10715 If an element of a Tarski ...
tsk0 10716 A nonempty Tarski class co...
tsk1 10717 One is an element of a non...
tsk2 10718 Two is an element of a non...
2domtsk 10719 If a Tarski class is not e...
tskr1om 10720 A nonempty Tarski class is...
tskr1om2 10721 A nonempty Tarski class co...
tskinf 10722 A nonempty Tarski class is...
tskpr 10723 If ` A ` and ` B ` are mem...
tskop 10724 If ` A ` and ` B ` are mem...
tskxpss 10725 A Cartesian product of two...
tskwe2 10726 A Tarski class is well-ord...
inttsk 10727 The intersection of a coll...
inar1 10728 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10729 Alternate proof of ~ r1om ...
rankcf 10730 Any set must be at least a...
inatsk 10731 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10732 The set of hereditarily fi...
tskord 10733 A Tarski class contains al...
tskcard 10734 An even more direct relati...
r1tskina 10735 There is a direct relation...
tskuni 10736 The union of an element of...
tskwun 10737 A nonempty transitive Tars...
tskint 10738 The intersection of an ele...
tskun 10739 The union of two elements ...
tskxp 10740 The Cartesian product of t...
tskmap 10741 Set exponentiation is an e...
tskurn 10742 A transitive Tarski class ...
elgrug 10745 Properties of a Grothendie...
grutr 10746 A Grothendieck universe is...
gruelss 10747 A Grothendieck universe is...
grupw 10748 A Grothendieck universe co...
gruss 10749 Any subset of an element o...
grupr 10750 A Grothendieck universe co...
gruurn 10751 A Grothendieck universe co...
gruiun 10752 If ` B ( x ) ` is a family...
gruuni 10753 A Grothendieck universe co...
grurn 10754 A Grothendieck universe co...
gruima 10755 A Grothendieck universe co...
gruel 10756 Any element of an element ...
grusn 10757 A Grothendieck universe co...
gruop 10758 A Grothendieck universe co...
gruun 10759 A Grothendieck universe co...
gruxp 10760 A Grothendieck universe co...
grumap 10761 A Grothendieck universe co...
gruixp 10762 A Grothendieck universe co...
gruiin 10763 A Grothendieck universe co...
gruf 10764 A Grothendieck universe co...
gruen 10765 A Grothendieck universe co...
gruwun 10766 A nonempty Grothendieck un...
intgru 10767 The intersection of a fami...
ingru 10768 The intersection of a univ...
wfgru 10769 The wellfounded part of a ...
grudomon 10770 Each ordinal that is compa...
gruina 10771 If a Grothendieck universe...
grur1a 10772 A characterization of Grot...
grur1 10773 A characterization of Grot...
grutsk1 10774 Grothendieck universes are...
grutsk 10775 Grothendieck universes are...
axgroth5 10777 The Tarski-Grothendieck ax...
axgroth2 10778 Alternate version of the T...
grothpw 10779 Derive the Axiom of Power ...
grothpwex 10780 Derive the Axiom of Power ...
axgroth6 10781 The Tarski-Grothendieck ax...
grothomex 10782 The Tarski-Grothendieck Ax...
grothac 10783 The Tarski-Grothendieck Ax...
axgroth3 10784 Alternate version of the T...
axgroth4 10785 Alternate version of the T...
grothprimlem 10786 Lemma for ~ grothprim . E...
grothprim 10787 The Tarski-Grothendieck Ax...
grothtsk 10788 The Tarski-Grothendieck Ax...
inaprc 10789 An equivalent to the Tarsk...
tskmval 10792 Value of our tarski map. ...
tskmid 10793 The set ` A ` is an elemen...
tskmcl 10794 A Tarski class that contai...
sstskm 10795 Being a part of ` ( tarski...
eltskm 10796 Belonging to ` ( tarskiMap...
elni 10829 Membership in the class of...
elni2 10830 Membership in the class of...
pinn 10831 A positive integer is a na...
pion 10832 A positive integer is an o...
piord 10833 A positive integer is ordi...
niex 10834 The class of positive inte...
0npi 10835 The empty set is not a pos...
1pi 10836 Ordinal 'one' is a positiv...
addpiord 10837 Positive integer addition ...
mulpiord 10838 Positive integer multiplic...
mulidpi 10839 1 is an identity element f...
ltpiord 10840 Positive integer 'less tha...
ltsopi 10841 Positive integer 'less tha...
ltrelpi 10842 Positive integer 'less tha...
dmaddpi 10843 Domain of addition on posi...
dmmulpi 10844 Domain of multiplication o...
addclpi 10845 Closure of addition of pos...
mulclpi 10846 Closure of multiplication ...
addcompi 10847 Addition of positive integ...
addasspi 10848 Addition of positive integ...
mulcompi 10849 Multiplication of positive...
mulasspi 10850 Multiplication of positive...
distrpi 10851 Multiplication of positive...
addcanpi 10852 Addition cancellation law ...
mulcanpi 10853 Multiplication cancellatio...
addnidpi 10854 There is no identity eleme...
ltexpi 10855 Ordering on positive integ...
ltapi 10856 Ordering property of addit...
ltmpi 10857 Ordering property of multi...
1lt2pi 10858 One is less than two (one ...
nlt1pi 10859 No positive integer is les...
indpi 10860 Principle of Finite Induct...
enqbreq 10872 Equivalence relation for p...
enqbreq2 10873 Equivalence relation for p...
enqer 10874 The equivalence relation f...
enqex 10875 The equivalence relation f...
nqex 10876 The class of positive frac...
0nnq 10877 The empty set is not a pos...
elpqn 10878 Each positive fraction is ...
ltrelnq 10879 Positive fraction 'less th...
pinq 10880 The representatives of pos...
1nq 10881 The positive fraction 'one...
nqereu 10882 There is a unique element ...
nqerf 10883 Corollary of ~ nqereu : th...
nqercl 10884 Corollary of ~ nqereu : cl...
nqerrel 10885 Any member of ` ( N. X. N....
nqerid 10886 Corollary of ~ nqereu : th...
enqeq 10887 Corollary of ~ nqereu : if...
nqereq 10888 The function ` /Q ` acts a...
addpipq2 10889 Addition of positive fract...
addpipq 10890 Addition of positive fract...
addpqnq 10891 Addition of positive fract...
mulpipq2 10892 Multiplication of positive...
mulpipq 10893 Multiplication of positive...
mulpqnq 10894 Multiplication of positive...
ordpipq 10895 Ordering of positive fract...
ordpinq 10896 Ordering of positive fract...
addpqf 10897 Closure of addition on pos...
addclnq 10898 Closure of addition on pos...
mulpqf 10899 Closure of multiplication ...
mulclnq 10900 Closure of multiplication ...
addnqf 10901 Domain of addition on posi...
mulnqf 10902 Domain of multiplication o...
addcompq 10903 Addition of positive fract...
addcomnq 10904 Addition of positive fract...
mulcompq 10905 Multiplication of positive...
mulcomnq 10906 Multiplication of positive...
adderpqlem 10907 Lemma for ~ adderpq . (Co...
mulerpqlem 10908 Lemma for ~ mulerpq . (Co...
adderpq 10909 Addition is compatible wit...
mulerpq 10910 Multiplication is compatib...
addassnq 10911 Addition of positive fract...
mulassnq 10912 Multiplication of positive...
mulcanenq 10913 Lemma for distributive law...
distrnq 10914 Multiplication of positive...
1nqenq 10915 The equivalence class of r...
mulidnq 10916 Multiplication identity el...
recmulnq 10917 Relationship between recip...
recidnq 10918 A positive fraction times ...
recclnq 10919 Closure law for positive f...
recrecnq 10920 Reciprocal of reciprocal o...
dmrecnq 10921 Domain of reciprocal on po...
ltsonq 10922 'Less than' is a strict or...
lterpq 10923 Compatibility of ordering ...
ltanq 10924 Ordering property of addit...
ltmnq 10925 Ordering property of multi...
1lt2nq 10926 One is less than two (one ...
ltaddnq 10927 The sum of two fractions i...
ltexnq 10928 Ordering on positive fract...
halfnq 10929 One-half of any positive f...
nsmallnq 10930 The is no smallest positiv...
ltbtwnnq 10931 There exists a number betw...
ltrnq 10932 Ordering property of recip...
archnq 10933 For any fraction, there is...
npex 10939 The class of positive real...
elnp 10940 Membership in positive rea...
elnpi 10941 Membership in positive rea...
prn0 10942 A positive real is not emp...
prpssnq 10943 A positive real is a subse...
elprnq 10944 A positive real is a set o...
0npr 10945 The empty set is not a pos...
prcdnq 10946 A positive real is closed ...
prub 10947 A positive fraction not in...
prnmax 10948 A positive real has no lar...
npomex 10949 A simplifying observation,...
prnmadd 10950 A positive real has no lar...
ltrelpr 10951 Positive real 'less than' ...
genpv 10952 Value of general operation...
genpelv 10953 Membership in value of gen...
genpprecl 10954 Pre-closure law for genera...
genpdm 10955 Domain of general operatio...
genpn0 10956 The result of an operation...
genpss 10957 The result of an operation...
genpnnp 10958 The result of an operation...
genpcd 10959 Downward closure of an ope...
genpnmax 10960 An operation on positive r...
genpcl 10961 Closure of an operation on...
genpass 10962 Associativity of an operat...
plpv 10963 Value of addition on posit...
mpv 10964 Value of multiplication on...
dmplp 10965 Domain of addition on posi...
dmmp 10966 Domain of multiplication o...
nqpr 10967 The canonical embedding of...
1pr 10968 The positive real number '...
addclprlem1 10969 Lemma to prove downward cl...
addclprlem2 10970 Lemma to prove downward cl...
addclpr 10971 Closure of addition on pos...
mulclprlem 10972 Lemma to prove downward cl...
mulclpr 10973 Closure of multiplication ...
addcompr 10974 Addition of positive reals...
addasspr 10975 Addition of positive reals...
mulcompr 10976 Multiplication of positive...
mulasspr 10977 Multiplication of positive...
distrlem1pr 10978 Lemma for distributive law...
distrlem4pr 10979 Lemma for distributive law...
distrlem5pr 10980 Lemma for distributive law...
distrpr 10981 Multiplication of positive...
1idpr 10982 1 is an identity element f...
ltprord 10983 Positive real 'less than' ...
psslinpr 10984 Proper subset is a linear ...
ltsopr 10985 Positive real 'less than' ...
prlem934 10986 Lemma 9-3.4 of [Gleason] p...
ltaddpr 10987 The sum of two positive re...
ltaddpr2 10988 The sum of two positive re...
ltexprlem1 10989 Lemma for Proposition 9-3....
ltexprlem2 10990 Lemma for Proposition 9-3....
ltexprlem3 10991 Lemma for Proposition 9-3....
ltexprlem4 10992 Lemma for Proposition 9-3....
ltexprlem5 10993 Lemma for Proposition 9-3....
ltexprlem6 10994 Lemma for Proposition 9-3....
ltexprlem7 10995 Lemma for Proposition 9-3....
ltexpri 10996 Proposition 9-3.5(iv) of [...
ltaprlem 10997 Lemma for Proposition 9-3....
ltapr 10998 Ordering property of addit...
addcanpr 10999 Addition cancellation law ...
prlem936 11000 Lemma 9-3.6 of [Gleason] p...
reclem2pr 11001 Lemma for Proposition 9-3....
reclem3pr 11002 Lemma for Proposition 9-3....
reclem4pr 11003 Lemma for Proposition 9-3....
recexpr 11004 The reciprocal of a positi...
suplem1pr 11005 The union of a nonempty, b...
suplem2pr 11006 The union of a set of posi...
supexpr 11007 The union of a nonempty, b...
enrer 11016 The equivalence relation f...
nrex1 11017 The class of signed reals ...
enrbreq 11018 Equivalence relation for s...
enreceq 11019 Equivalence class equality...
enrex 11020 The equivalence relation f...
ltrelsr 11021 Signed real 'less than' is...
addcmpblnr 11022 Lemma showing compatibilit...
mulcmpblnrlem 11023 Lemma used in lemma showin...
mulcmpblnr 11024 Lemma showing compatibilit...
prsrlem1 11025 Decomposing signed reals i...
addsrmo 11026 There is at most one resul...
mulsrmo 11027 There is at most one resul...
addsrpr 11028 Addition of signed reals i...
mulsrpr 11029 Multiplication of signed r...
ltsrpr 11030 Ordering of signed reals i...
gt0srpr 11031 Greater than zero in terms...
0nsr 11032 The empty set is not a sig...
0r 11033 The constant ` 0R ` is a s...
1sr 11034 The constant ` 1R ` is a s...
m1r 11035 The constant ` -1R ` is a ...
addclsr 11036 Closure of addition on sig...
mulclsr 11037 Closure of multiplication ...
dmaddsr 11038 Domain of addition on sign...
dmmulsr 11039 Domain of multiplication o...
addcomsr 11040 Addition of signed reals i...
addasssr 11041 Addition of signed reals i...
mulcomsr 11042 Multiplication of signed r...
mulasssr 11043 Multiplication of signed r...
distrsr 11044 Multiplication of signed r...
m1p1sr 11045 Minus one plus one is zero...
m1m1sr 11046 Minus one times minus one ...
ltsosr 11047 Signed real 'less than' is...
0lt1sr 11048 0 is less than 1 for signe...
1ne0sr 11049 1 and 0 are distinct for s...
0idsr 11050 The signed real number 0 i...
1idsr 11051 1 is an identity element f...
00sr 11052 A signed real times 0 is 0...
ltasr 11053 Ordering property of addit...
pn0sr 11054 A signed real plus its neg...
negexsr 11055 Existence of negative sign...
recexsrlem 11056 The reciprocal of a positi...
addgt0sr 11057 The sum of two positive si...
mulgt0sr 11058 The product of two positiv...
sqgt0sr 11059 The square of a nonzero si...
recexsr 11060 The reciprocal of a nonzer...
mappsrpr 11061 Mapping from positive sign...
ltpsrpr 11062 Mapping of order from posi...
map2psrpr 11063 Equivalence for positive s...
supsrlem 11064 Lemma for supremum theorem...
supsr 11065 A nonempty, bounded set of...
opelcn 11082 Ordered pair membership in...
opelreal 11083 Ordered pair membership in...
elreal 11084 Membership in class of rea...
elreal2 11085 Ordered pair membership in...
0ncn 11086 The empty set is not a com...
ltrelre 11087 'Less than' is a relation ...
addcnsr 11088 Addition of complex number...
mulcnsr 11089 Multiplication of complex ...
eqresr 11090 Equality of real numbers i...
addresr 11091 Addition of real numbers i...
mulresr 11092 Multiplication of real num...
ltresr 11093 Ordering of real subset of...
ltresr2 11094 Ordering of real subset of...
dfcnqs 11095 Technical trick to permit ...
addcnsrec 11096 Technical trick to permit ...
mulcnsrec 11097 Technical trick to permit ...
axaddf 11098 Addition is an operation o...
axmulf 11099 Multiplication is an opera...
axcnex 11100 The complex numbers form a...
axresscn 11101 The real numbers are a sub...
ax1cn 11102 1 is a complex number. Ax...
axicn 11103 ` _i ` is a complex number...
axaddcl 11104 Closure law for addition o...
axaddrcl 11105 Closure law for addition i...
axmulcl 11106 Closure law for multiplica...
axmulrcl 11107 Closure law for multiplica...
axmulcom 11108 Multiplication of complex ...
axaddass 11109 Addition of complex number...
axmulass 11110 Multiplication of complex ...
axdistr 11111 Distributive law for compl...
axi2m1 11112 i-squared equals -1 (expre...
ax1ne0 11113 1 and 0 are distinct. Axi...
ax1rid 11114 ` 1 ` is an identity eleme...
axrnegex 11115 Existence of negative of r...
axrrecex 11116 Existence of reciprocal of...
axcnre 11117 A complex number can be ex...
axpre-lttri 11118 Ordering on reals satisfie...
axpre-lttrn 11119 Ordering on reals is trans...
axpre-ltadd 11120 Ordering property of addit...
axpre-mulgt0 11121 The product of two positiv...
axpre-sup 11122 A nonempty, bounded-above ...
wuncn 11123 A weak universe containing...
cnex 11149 Alias for ~ ax-cnex . See...
addcl 11150 Alias for ~ ax-addcl , for...
readdcl 11151 Alias for ~ ax-addrcl , fo...
mulcl 11152 Alias for ~ ax-mulcl , for...
remulcl 11153 Alias for ~ ax-mulrcl , fo...
mulcom 11154 Alias for ~ ax-mulcom , fo...
addass 11155 Alias for ~ ax-addass , fo...
mulass 11156 Alias for ~ ax-mulass , fo...
adddi 11157 Alias for ~ ax-distr , for...
recn 11158 A real number is a complex...
reex 11159 The real numbers form a se...
reelprrecn 11160 Reals are a subset of the ...
cnelprrecn 11161 Complex numbers are a subs...
mpoaddf 11162 Addition is an operation o...
mpomulf 11163 Multiplication is an opera...
elimne0 11164 Hypothesis for weak deduct...
adddir 11165 Distributive law for compl...
0cn 11166 Zero is a complex number. ...
0cnd 11167 Zero is a complex number, ...
c0ex 11168 Zero is a set. (Contribut...
1cnd 11169 One is a complex number, d...
1ex 11170 One is a set. (Contribute...
cnre 11171 Alias for ~ ax-cnre , for ...
mulrid 11172 The number 1 is an identit...
mullid 11173 Identity law for multiplic...
1re 11174 The number 1 is real. Thi...
1red 11175 The number 1 is real, dedu...
0re 11176 The number 0 is real. Rem...
0red 11177 The number 0 is real, dedu...
mulridi 11178 Identity law for multiplic...
mullidi 11179 Identity law for multiplic...
addcli 11180 Closure law for addition. ...
mulcli 11181 Closure law for multiplica...
mulcomi 11182 Commutative law for multip...
mulcomli 11183 Commutative law for multip...
addassi 11184 Associative law for additi...
mulassi 11185 Associative law for multip...
adddii 11186 Distributive law (left-dis...
adddiri 11187 Distributive law (right-di...
recni 11188 A real number is a complex...
readdcli 11189 Closure law for addition o...
remulcli 11190 Closure law for multiplica...
mulridd 11191 Identity law for multiplic...
mullidd 11192 Identity law for multiplic...
addcld 11193 Closure law for addition. ...
mulcld 11194 Closure law for multiplica...
mulcomd 11195 Commutative law for multip...
addassd 11196 Associative law for additi...
mulassd 11197 Associative law for multip...
adddid 11198 Distributive law (left-dis...
adddird 11199 Distributive law (right-di...
adddirp1d 11200 Distributive law, plus 1 v...
joinlmuladdmuld 11201 Join AB+CB into (A+C) on L...
recnd 11202 Deduction from real number...
readdcld 11203 Closure law for addition o...
remulcld 11204 Closure law for multiplica...
pnfnre 11215 Plus infinity is not a rea...
pnfnre2 11216 Plus infinity is not a rea...
mnfnre 11217 Minus infinity is not a re...
ressxr 11218 The standard reals are a s...
rexpssxrxp 11219 The Cartesian product of s...
rexr 11220 A standard real is an exte...
0xr 11221 Zero is an extended real. ...
renepnf 11222 No (finite) real equals pl...
renemnf 11223 No real equals minus infin...
rexrd 11224 A standard real is an exte...
renepnfd 11225 No (finite) real equals pl...
renemnfd 11226 No real equals minus infin...
pnfex 11227 Plus infinity exists. (Co...
pnfxr 11228 Plus infinity belongs to t...
pnfnemnf 11229 Plus and minus infinity ar...
mnfnepnf 11230 Minus and plus infinity ar...
mnfxr 11231 Minus infinity belongs to ...
rexri 11232 A standard real is an exte...
1xr 11233 ` 1 ` is an extended real ...
renfdisj 11234 The reals and the infiniti...
ltrelxr 11235 "Less than" is a relation ...
ltrel 11236 "Less than" is a relation....
lerelxr 11237 "Less than or equal to" is...
lerel 11238 "Less than or equal to" is...
xrlenlt 11239 "Less than or equal to" ex...
xrlenltd 11240 "Less than or equal to" ex...
xrltnle 11241 "Less than" expressed in t...
xrnltled 11242 "Not less than" implies "l...
ssxr 11243 The three (non-exclusive) ...
ltxrlt 11244 The standard less-than ` <...
axlttri 11245 Ordering on reals satisfie...
axlttrn 11246 Ordering on reals is trans...
axltadd 11247 Ordering property of addit...
axmulgt0 11248 The product of two positiv...
axsup 11249 A nonempty, bounded-above ...
lttr 11250 Alias for ~ axlttrn , for ...
mulgt0 11251 The product of two positiv...
lenlt 11252 'Less than or equal to' ex...
ltnle 11253 'Less than' expressed in t...
ltso 11254 'Less than' is a strict or...
gtso 11255 'Greater than' is a strict...
lttri2 11256 Consequence of trichotomy....
lttri3 11257 Trichotomy law for 'less t...
lttri4 11258 Trichotomy law for 'less t...
letri3 11259 Trichotomy law. (Contribu...
leloe 11260 'Less than or equal to' ex...
eqlelt 11261 Equality in terms of 'less...
ltle 11262 'Less than' implies 'less ...
leltne 11263 'Less than or equal to' im...
lelttr 11264 Transitive law. (Contribu...
leltletr 11265 Transitive law, weaker for...
ltletr 11266 Transitive law. (Contribu...
ltleletr 11267 Transitive law, weaker for...
letr 11268 Transitive law. (Contribu...
ltnr 11269 'Less than' is irreflexive...
leid 11270 'Less than or equal to' is...
ltne 11271 'Less than' implies not eq...
ltnsym 11272 'Less than' is not symmetr...
ltnsym2 11273 'Less than' is antisymmetr...
letric 11274 Trichotomy law. (Contribu...
ltlen 11275 'Less than' expressed in t...
eqle 11276 Equality implies 'less tha...
eqled 11277 Equality implies 'less tha...
ltadd2 11278 Addition to both sides of ...
ne0gt0 11279 A nonzero nonnegative numb...
lecasei 11280 Ordering elimination by ca...
lelttric 11281 Trichotomy law. (Contribu...
ltlecasei 11282 Ordering elimination by ca...
ltnri 11283 'Less than' is irreflexive...
eqlei 11284 Equality implies 'less tha...
eqlei2 11285 Equality implies 'less tha...
gtneii 11286 'Less than' implies not eq...
ltneii 11287 'Greater than' implies not...
lttri2i 11288 Consequence of trichotomy....
lttri3i 11289 Consequence of trichotomy....
letri3i 11290 Consequence of trichotomy....
leloei 11291 'Less than or equal to' in...
ltleni 11292 'Less than' expressed in t...
ltnsymi 11293 'Less than' is not symmetr...
lenlti 11294 'Less than or equal to' in...
ltnlei 11295 'Less than' in terms of 'l...
ltlei 11296 'Less than' implies 'less ...
ltleii 11297 'Less than' implies 'less ...
ltnei 11298 'Less than' implies not eq...
letrii 11299 Trichotomy law for 'less t...
lttri 11300 'Less than' is transitive....
lelttri 11301 'Less than or equal to', '...
ltletri 11302 'Less than', 'less than or...
letri 11303 'Less than or equal to' is...
le2tri3i 11304 Extended trichotomy law fo...
ltadd2i 11305 Addition to both sides of ...
mulgt0i 11306 The product of two positiv...
mulgt0ii 11307 The product of two positiv...
ltnrd 11308 'Less than' is irreflexive...
gtned 11309 'Less than' implies not eq...
ltned 11310 'Greater than' implies not...
ne0gt0d 11311 A nonzero nonnegative numb...
lttrid 11312 Ordering on reals satisfie...
lttri2d 11313 Consequence of trichotomy....
lttri3d 11314 Consequence of trichotomy....
lttri4d 11315 Trichotomy law for 'less t...
letri3d 11316 Consequence of trichotomy....
leloed 11317 'Less than or equal to' in...
eqleltd 11318 Equality in terms of 'less...
ltlend 11319 'Less than' expressed in t...
lenltd 11320 'Less than or equal to' in...
ltnled 11321 'Less than' in terms of 'l...
ltled 11322 'Less than' implies 'less ...
ltnsymd 11323 'Less than' implies 'less ...
nltled 11324 'Not less than ' implies '...
lensymd 11325 'Less than or equal to' im...
letrid 11326 Trichotomy law for 'less t...
leltned 11327 'Less than or equal to' im...
leneltd 11328 'Less than or equal to' an...
mulgt0d 11329 The product of two positiv...
ltadd2d 11330 Addition to both sides of ...
letrd 11331 Transitive law deduction f...
lelttrd 11332 Transitive law deduction f...
ltadd2dd 11333 Addition to both sides of ...
ltletrd 11334 Transitive law deduction f...
lttrd 11335 Transitive law deduction f...
lelttrdi 11336 If a number is less than a...
dedekind 11337 The Dedekind cut theorem. ...
dedekindle 11338 The Dedekind cut theorem, ...
mul12 11339 Commutative/associative la...
mul32 11340 Commutative/associative la...
mul31 11341 Commutative/associative la...
mul4 11342 Rearrangement of 4 factors...
mul4r 11343 Rearrangement of 4 factors...
muladd11 11344 A simple product of sums e...
1p1times 11345 Two times a number. (Cont...
peano2cn 11346 A theorem for complex numb...
peano2re 11347 A theorem for reals analog...
readdcan 11348 Cancellation law for addit...
00id 11349 ` 0 ` is its own additive ...
mul02lem1 11350 Lemma for ~ mul02 . If an...
mul02lem2 11351 Lemma for ~ mul02 . Zero ...
mul02 11352 Multiplication by ` 0 ` . ...
mul01 11353 Multiplication by ` 0 ` . ...
addrid 11354 ` 0 ` is an additive ident...
cnegex 11355 Existence of the negative ...
cnegex2 11356 Existence of a left invers...
addlid 11357 ` 0 ` is a left identity f...
addcan 11358 Cancellation law for addit...
addcan2 11359 Cancellation law for addit...
addcom 11360 Addition commutes. This u...
addridi 11361 ` 0 ` is an additive ident...
addlidi 11362 ` 0 ` is a left identity f...
mul02i 11363 Multiplication by 0. Theo...
mul01i 11364 Multiplication by ` 0 ` . ...
addcomi 11365 Addition commutes. Based ...
addcomli 11366 Addition commutes. (Contr...
addcani 11367 Cancellation law for addit...
addcan2i 11368 Cancellation law for addit...
mul12i 11369 Commutative/associative la...
mul32i 11370 Commutative/associative la...
mul4i 11371 Rearrangement of 4 factors...
mul02d 11372 Multiplication by 0. Theo...
mul01d 11373 Multiplication by ` 0 ` . ...
addridd 11374 ` 0 ` is an additive ident...
addlidd 11375 ` 0 ` is a left identity f...
addcomd 11376 Addition commutes. Based ...
addcand 11377 Cancellation law for addit...
addcan2d 11378 Cancellation law for addit...
addcanad 11379 Cancelling a term on the l...
addcan2ad 11380 Cancelling a term on the r...
addneintrd 11381 Introducing a term on the ...
addneintr2d 11382 Introducing a term on the ...
mul12d 11383 Commutative/associative la...
mul32d 11384 Commutative/associative la...
mul31d 11385 Commutative/associative la...
mul4d 11386 Rearrangement of 4 factors...
muladd11r 11387 A simple product of sums e...
comraddd 11388 Commute RHS addition, in d...
comraddi 11389 Commute RHS addition. See...
ltaddneg 11390 Adding a negative number t...
ltaddnegr 11391 Adding a negative number t...
add12 11392 Commutative/associative la...
add32 11393 Commutative/associative la...
add32r 11394 Commutative/associative la...
add4 11395 Rearrangement of 4 terms i...
add42 11396 Rearrangement of 4 terms i...
add12i 11397 Commutative/associative la...
add32i 11398 Commutative/associative la...
add4i 11399 Rearrangement of 4 terms i...
add42i 11400 Rearrangement of 4 terms i...
add12d 11401 Commutative/associative la...
add32d 11402 Commutative/associative la...
add4d 11403 Rearrangement of 4 terms i...
add42d 11404 Rearrangement of 4 terms i...
0cnALT 11409 Alternate proof of ~ 0cn w...
0cnALT2 11410 Alternate proof of ~ 0cnAL...
negeu 11411 Existential uniqueness of ...
subval 11412 Value of subtraction, whic...
negeq 11413 Equality theorem for negat...
negeqi 11414 Equality inference for neg...
negeqd 11415 Equality deduction for neg...
nfnegd 11416 Deduction version of ~ nfn...
nfneg 11417 Bound-variable hypothesis ...
csbnegg 11418 Move class substitution in...
negex 11419 A negative is a set. (Con...
subcl 11420 Closure law for subtractio...
negcl 11421 Closure law for negative. ...
negicn 11422 ` -u _i ` is a complex num...
subf 11423 Subtraction is an operatio...
subadd 11424 Relationship between subtr...
subadd2 11425 Relationship between subtr...
subsub23 11426 Swap subtrahend and result...
pncan 11427 Cancellation law for subtr...
pncan2 11428 Cancellation law for subtr...
pncan3 11429 Subtraction and addition o...
npcan 11430 Cancellation law for subtr...
addsubass 11431 Associative-type law for a...
addsub 11432 Law for addition and subtr...
subadd23 11433 Commutative/associative la...
addsub12 11434 Commutative/associative la...
2addsub 11435 Law for subtraction and ad...
addsubeq4 11436 Relation between sums and ...
pncan3oi 11437 Subtraction and addition o...
mvrraddi 11438 Move the right term in a s...
mvrladdi 11439 Move the left term in a su...
mvlladdi 11440 Move the left term in a su...
subid 11441 Subtraction of a number fr...
subid1 11442 Identity law for subtracti...
npncan 11443 Cancellation law for subtr...
nppcan 11444 Cancellation law for subtr...
nnpcan 11445 Cancellation law for subtr...
nppcan3 11446 Cancellation law for subtr...
subcan2 11447 Cancellation law for subtr...
subeq0 11448 If the difference between ...
npncan2 11449 Cancellation law for subtr...
subsub2 11450 Law for double subtraction...
nncan 11451 Cancellation law for subtr...
subsub 11452 Law for double subtraction...
nppcan2 11453 Cancellation law for subtr...
subsub3 11454 Law for double subtraction...
subsub4 11455 Law for double subtraction...
sub32 11456 Swap the second and third ...
nnncan 11457 Cancellation law for subtr...
nnncan1 11458 Cancellation law for subtr...
nnncan2 11459 Cancellation law for subtr...
npncan3 11460 Cancellation law for subtr...
pnpcan 11461 Cancellation law for mixed...
pnpcan2 11462 Cancellation law for mixed...
pnncan 11463 Cancellation law for mixed...
ppncan 11464 Cancellation law for mixed...
addsub4 11465 Rearrangement of 4 terms i...
subadd4 11466 Rearrangement of 4 terms i...
sub4 11467 Rearrangement of 4 terms i...
neg0 11468 Minus 0 equals 0. (Contri...
negid 11469 Addition of a number and i...
negsub 11470 Relationship between subtr...
subneg 11471 Relationship between subtr...
negneg 11472 A number is equal to the n...
neg11 11473 Negative is one-to-one. (...
negcon1 11474 Negative contraposition la...
negcon2 11475 Negative contraposition la...
negeq0 11476 A number is zero iff its n...
subcan 11477 Cancellation law for subtr...
negsubdi 11478 Distribution of negative o...
negdi 11479 Distribution of negative o...
negdi2 11480 Distribution of negative o...
negsubdi2 11481 Distribution of negative o...
neg2sub 11482 Relationship between subtr...
renegcli 11483 Closure law for negative o...
resubcli 11484 Closure law for subtractio...
renegcl 11485 Closure law for negative o...
resubcl 11486 Closure law for subtractio...
negreb 11487 The negative of a real is ...
peano2cnm 11488 "Reverse" second Peano pos...
peano2rem 11489 "Reverse" second Peano pos...
negcli 11490 Closure law for negative. ...
negidi 11491 Addition of a number and i...
negnegi 11492 A number is equal to the n...
subidi 11493 Subtraction of a number fr...
subid1i 11494 Identity law for subtracti...
negne0bi 11495 A number is nonzero iff it...
negrebi 11496 The negative of a real is ...
negne0i 11497 The negative of a nonzero ...
subcli 11498 Closure law for subtractio...
pncan3i 11499 Subtraction and addition o...
negsubi 11500 Relationship between subtr...
subnegi 11501 Relationship between subtr...
subeq0i 11502 If the difference between ...
neg11i 11503 Negative is one-to-one. (...
negcon1i 11504 Negative contraposition la...
negcon2i 11505 Negative contraposition la...
negdii 11506 Distribution of negative o...
negsubdii 11507 Distribution of negative o...
negsubdi2i 11508 Distribution of negative o...
subaddi 11509 Relationship between subtr...
subadd2i 11510 Relationship between subtr...
subaddrii 11511 Relationship between subtr...
subsub23i 11512 Swap subtrahend and result...
addsubassi 11513 Associative-type law for s...
addsubi 11514 Law for subtraction and ad...
subcani 11515 Cancellation law for subtr...
subcan2i 11516 Cancellation law for subtr...
pnncani 11517 Cancellation law for mixed...
addsub4i 11518 Rearrangement of 4 terms i...
0reALT 11519 Alternate proof of ~ 0re ....
negcld 11520 Closure law for negative. ...
subidd 11521 Subtraction of a number fr...
subid1d 11522 Identity law for subtracti...
negidd 11523 Addition of a number and i...
negnegd 11524 A number is equal to the n...
negeq0d 11525 A number is zero iff its n...
negne0bd 11526 A number is nonzero iff it...
negcon1d 11527 Contraposition law for una...
negcon1ad 11528 Contraposition law for una...
neg11ad 11529 The negatives of two compl...
negned 11530 If two complex numbers are...
negne0d 11531 The negative of a nonzero ...
negrebd 11532 The negative of a real is ...
subcld 11533 Closure law for subtractio...
pncand 11534 Cancellation law for subtr...
pncan2d 11535 Cancellation law for subtr...
pncan3d 11536 Subtraction and addition o...
npcand 11537 Cancellation law for subtr...
nncand 11538 Cancellation law for subtr...
negsubd 11539 Relationship between subtr...
subnegd 11540 Relationship between subtr...
subeq0d 11541 If the difference between ...
subne0d 11542 Two unequal numbers have n...
subeq0ad 11543 The difference of two comp...
subne0ad 11544 If the difference of two c...
neg11d 11545 If the difference between ...
negdid 11546 Distribution of negative o...
negdi2d 11547 Distribution of negative o...
negsubdid 11548 Distribution of negative o...
negsubdi2d 11549 Distribution of negative o...
neg2subd 11550 Relationship between subtr...
subaddd 11551 Relationship between subtr...
subadd2d 11552 Relationship between subtr...
addsubassd 11553 Associative-type law for s...
addsubd 11554 Law for subtraction and ad...
subadd23d 11555 Commutative/associative la...
addsub12d 11556 Commutative/associative la...
npncand 11557 Cancellation law for subtr...
nppcand 11558 Cancellation law for subtr...
nppcan2d 11559 Cancellation law for subtr...
nppcan3d 11560 Cancellation law for subtr...
subsubd 11561 Law for double subtraction...
subsub2d 11562 Law for double subtraction...
subsub3d 11563 Law for double subtraction...
subsub4d 11564 Law for double subtraction...
sub32d 11565 Swap the second and third ...
nnncand 11566 Cancellation law for subtr...
nnncan1d 11567 Cancellation law for subtr...
nnncan2d 11568 Cancellation law for subtr...
npncan3d 11569 Cancellation law for subtr...
pnpcand 11570 Cancellation law for mixed...
pnpcan2d 11571 Cancellation law for mixed...
pnncand 11572 Cancellation law for mixed...
ppncand 11573 Cancellation law for mixed...
subcand 11574 Cancellation law for subtr...
subcan2d 11575 Cancellation law for subtr...
subcanad 11576 Cancellation law for subtr...
subneintrd 11577 Introducing subtraction on...
subcan2ad 11578 Cancellation law for subtr...
subneintr2d 11579 Introducing subtraction on...
addsub4d 11580 Rearrangement of 4 terms i...
subadd4d 11581 Rearrangement of 4 terms i...
sub4d 11582 Rearrangement of 4 terms i...
2addsubd 11583 Law for subtraction and ad...
addsubeq4d 11584 Relation between sums and ...
subsubadd23 11585 Swap the second and the th...
addsubsub23 11586 Swap the second and the th...
subeqxfrd 11587 Transfer two terms of a su...
mvlraddd 11588 Move the right term in a s...
mvlladdd 11589 Move the left term in a su...
mvrraddd 11590 Move the right term in a s...
mvrladdd 11591 Move the left term in a su...
assraddsubd 11592 Associate RHS addition-sub...
subaddeqd 11593 Transfer two terms of a su...
addlsub 11594 Left-subtraction: Subtrac...
addrsub 11595 Right-subtraction: Subtra...
subexsub 11596 A subtraction law: Exchan...
addid0 11597 If adding a number to a an...
addn0nid 11598 Adding a nonzero number to...
pnpncand 11599 Addition/subtraction cance...
subeqrev 11600 Reverse the order of subtr...
addeq0 11601 Two complex numbers add up...
pncan1 11602 Cancellation law for addit...
npcan1 11603 Cancellation law for subtr...
subeq0bd 11604 If two complex numbers are...
renegcld 11605 Closure law for negative o...
resubcld 11606 Closure law for subtractio...
negn0 11607 The image under negation o...
negf1o 11608 Negation is an isomorphism...
kcnktkm1cn 11609 k times k minus 1 is a com...
muladd 11610 Product of two sums. (Con...
subdi 11611 Distribution of multiplica...
subdir 11612 Distribution of multiplica...
ine0 11613 The imaginary unit ` _i ` ...
mulneg1 11614 Product with negative is n...
mulneg2 11615 The product with a negativ...
mulneg12 11616 Swap the negative sign in ...
mul2neg 11617 Product of two negatives. ...
submul2 11618 Convert a subtraction to a...
mulm1 11619 Product with minus one is ...
addneg1mul 11620 Addition with product with...
mulsub 11621 Product of two differences...
mulsub2 11622 Swap the order of subtract...
mulm1i 11623 Product with minus one is ...
mulneg1i 11624 Product with negative is n...
mulneg2i 11625 Product with negative is n...
mul2negi 11626 Product of two negatives. ...
subdii 11627 Distribution of multiplica...
subdiri 11628 Distribution of multiplica...
muladdi 11629 Product of two sums. (Con...
mulm1d 11630 Product with minus one is ...
mulneg1d 11631 Product with negative is n...
mulneg2d 11632 Product with negative is n...
mul2negd 11633 Product of two negatives. ...
subdid 11634 Distribution of multiplica...
subdird 11635 Distribution of multiplica...
muladdd 11636 Product of two sums. (Con...
mulsubd 11637 Product of two differences...
muls1d 11638 Multiplication by one minu...
mulsubfacd 11639 Multiplication followed by...
addmulsub 11640 The product of a sum and a...
subaddmulsub 11641 The difference with a prod...
mulsubaddmulsub 11642 A special difference of a ...
gt0ne0 11643 Positive implies nonzero. ...
lt0ne0 11644 A number which is less tha...
ltadd1 11645 Addition to both sides of ...
leadd1 11646 Addition to both sides of ...
leadd2 11647 Addition to both sides of ...
ltsubadd 11648 'Less than' relationship b...
ltsubadd2 11649 'Less than' relationship b...
lesubadd 11650 'Less than or equal to' re...
lesubadd2 11651 'Less than or equal to' re...
ltaddsub 11652 'Less than' relationship b...
ltaddsub2 11653 'Less than' relationship b...
leaddsub 11654 'Less than or equal to' re...
leaddsub2 11655 'Less than or equal to' re...
suble 11656 Swap subtrahends in an ine...
lesub 11657 Swap subtrahends in an ine...
ltsub23 11658 'Less than' relationship b...
ltsub13 11659 'Less than' relationship b...
le2add 11660 Adding both sides of two '...
ltleadd 11661 Adding both sides of two o...
leltadd 11662 Adding both sides of two o...
lt2add 11663 Adding both sides of two '...
addgt0 11664 The sum of 2 positive numb...
addgegt0 11665 The sum of nonnegative and...
addgtge0 11666 The sum of nonnegative and...
addge0 11667 The sum of 2 nonnegative n...
ltaddpos 11668 Adding a positive number t...
ltaddpos2 11669 Adding a positive number t...
ltsubpos 11670 Subtracting a positive num...
posdif 11671 Comparison of two numbers ...
lesub1 11672 Subtraction from both side...
lesub2 11673 Subtraction of both sides ...
ltsub1 11674 Subtraction from both side...
ltsub2 11675 Subtraction of both sides ...
lt2sub 11676 Subtracting both sides of ...
le2sub 11677 Subtracting both sides of ...
ltneg 11678 Negative of both sides of ...
ltnegcon1 11679 Contraposition of negative...
ltnegcon2 11680 Contraposition of negative...
leneg 11681 Negative of both sides of ...
lenegcon1 11682 Contraposition of negative...
lenegcon2 11683 Contraposition of negative...
lt0neg1 11684 Comparison of a number and...
lt0neg2 11685 Comparison of a number and...
le0neg1 11686 Comparison of a number and...
le0neg2 11687 Comparison of a number and...
addge01 11688 A number is less than or e...
addge02 11689 A number is less than or e...
add20 11690 Two nonnegative numbers ar...
subge0 11691 Nonnegative subtraction. ...
suble0 11692 Nonpositive subtraction. ...
leaddle0 11693 The sum of a real number a...
subge02 11694 Nonnegative subtraction. ...
lesub0 11695 Lemma to show a nonnegativ...
mulge0 11696 The product of two nonnega...
mullt0 11697 The product of two negativ...
msqgt0 11698 A nonzero square is positi...
msqge0 11699 A square is nonnegative. ...
0lt1 11700 0 is less than 1. Theorem...
0le1 11701 0 is less than or equal to...
relin01 11702 An interval law for less t...
ltordlem 11703 Lemma for ~ ltord1 . (Con...
ltord1 11704 Infer an ordering relation...
leord1 11705 Infer an ordering relation...
eqord1 11706 A strictly increasing real...
ltord2 11707 Infer an ordering relation...
leord2 11708 Infer an ordering relation...
eqord2 11709 A strictly decreasing real...
wloglei 11710 Form of ~ wlogle where bot...
wlogle 11711 If the predicate ` ch ( x ...
leidi 11712 'Less than or equal to' is...
gt0ne0i 11713 Positive means nonzero (us...
gt0ne0ii 11714 Positive implies nonzero. ...
msqgt0i 11715 A nonzero square is positi...
msqge0i 11716 A square is nonnegative. ...
addgt0i 11717 Addition of 2 positive num...
addge0i 11718 Addition of 2 nonnegative ...
addgegt0i 11719 Addition of nonnegative an...
addgt0ii 11720 Addition of 2 positive num...
add20i 11721 Two nonnegative numbers ar...
ltnegi 11722 Negative of both sides of ...
lenegi 11723 Negative of both sides of ...
ltnegcon2i 11724 Contraposition of negative...
mulge0i 11725 The product of two nonnega...
lesub0i 11726 Lemma to show a nonnegativ...
ltaddposi 11727 Adding a positive number t...
posdifi 11728 Comparison of two numbers ...
ltnegcon1i 11729 Contraposition of negative...
lenegcon1i 11730 Contraposition of negative...
subge0i 11731 Nonnegative subtraction. ...
ltadd1i 11732 Addition to both sides of ...
leadd1i 11733 Addition to both sides of ...
leadd2i 11734 Addition to both sides of ...
ltsubaddi 11735 'Less than' relationship b...
lesubaddi 11736 'Less than or equal to' re...
ltsubadd2i 11737 'Less than' relationship b...
lesubadd2i 11738 'Less than or equal to' re...
ltaddsubi 11739 'Less than' relationship b...
lt2addi 11740 Adding both side of two in...
le2addi 11741 Adding both side of two in...
gt0ne0d 11742 Positive implies nonzero. ...
lt0ne0d 11743 Something less than zero i...
leidd 11744 'Less than or equal to' is...
msqgt0d 11745 A nonzero square is positi...
msqge0d 11746 A square is nonnegative. ...
lt0neg1d 11747 Comparison of a number and...
lt0neg2d 11748 Comparison of a number and...
le0neg1d 11749 Comparison of a number and...
le0neg2d 11750 Comparison of a number and...
addgegt0d 11751 Addition of nonnegative an...
addgtge0d 11752 Addition of positive and n...
addgt0d 11753 Addition of 2 positive num...
addge0d 11754 Addition of 2 nonnegative ...
mulge0d 11755 The product of two nonnega...
ltnegd 11756 Negative of both sides of ...
lenegd 11757 Negative of both sides of ...
ltnegcon1d 11758 Contraposition of negative...
ltnegcon2d 11759 Contraposition of negative...
lenegcon1d 11760 Contraposition of negative...
lenegcon2d 11761 Contraposition of negative...
ltaddposd 11762 Adding a positive number t...
ltaddpos2d 11763 Adding a positive number t...
ltsubposd 11764 Subtracting a positive num...
posdifd 11765 Comparison of two numbers ...
addge01d 11766 A number is less than or e...
addge02d 11767 A number is less than or e...
subge0d 11768 Nonnegative subtraction. ...
suble0d 11769 Nonpositive subtraction. ...
subge02d 11770 Nonnegative subtraction. ...
ltadd1d 11771 Addition to both sides of ...
leadd1d 11772 Addition to both sides of ...
leadd2d 11773 Addition to both sides of ...
ltsubaddd 11774 'Less than' relationship b...
lesubaddd 11775 'Less than or equal to' re...
ltsubadd2d 11776 'Less than' relationship b...
lesubadd2d 11777 'Less than or equal to' re...
ltaddsubd 11778 'Less than' relationship b...
ltaddsub2d 11779 'Less than' relationship b...
leaddsub2d 11780 'Less than or equal to' re...
subled 11781 Swap subtrahends in an ine...
lesubd 11782 Swap subtrahends in an ine...
ltsub23d 11783 'Less than' relationship b...
ltsub13d 11784 'Less than' relationship b...
lesub1d 11785 Subtraction from both side...
lesub2d 11786 Subtraction of both sides ...
ltsub1d 11787 Subtraction from both side...
ltsub2d 11788 Subtraction of both sides ...
ltadd1dd 11789 Addition to both sides of ...
ltsub1dd 11790 Subtraction from both side...
ltsub2dd 11791 Subtraction of both sides ...
leadd1dd 11792 Addition to both sides of ...
leadd2dd 11793 Addition to both sides of ...
lesub1dd 11794 Subtraction from both side...
lesub2dd 11795 Subtraction of both sides ...
lesub3d 11796 The result of subtracting ...
le2addd 11797 Adding both side of two in...
le2subd 11798 Subtracting both sides of ...
ltleaddd 11799 Adding both sides of two o...
leltaddd 11800 Adding both sides of two o...
lt2addd 11801 Adding both side of two in...
lt2subd 11802 Subtracting both sides of ...
possumd 11803 Condition for a positive s...
sublt0d 11804 When a subtraction gives a...
ltaddsublt 11805 Addition and subtraction o...
1le1 11806 One is less than or equal ...
ixi 11807 ` _i ` times itself is min...
recextlem1 11808 Lemma for ~ recex . (Cont...
recextlem2 11809 Lemma for ~ recex . (Cont...
recex 11810 Existence of reciprocal of...
mulcand 11811 Cancellation law for multi...
mulcan2d 11812 Cancellation law for multi...
mulcanad 11813 Cancellation of a nonzero ...
mulcan2ad 11814 Cancellation of a nonzero ...
mulcan 11815 Cancellation law for multi...
mulcan2 11816 Cancellation law for multi...
mulcani 11817 Cancellation law for multi...
mul0or 11818 If a product is zero, one ...
mulne0b 11819 The product of two nonzero...
mulne0 11820 The product of two nonzero...
mulne0i 11821 The product of two nonzero...
muleqadd 11822 Property of numbers whose ...
receu 11823 Existential uniqueness of ...
mulnzcnf 11824 Multiplication maps nonzer...
mul0ori 11825 If a product is zero, one ...
mul0ord 11826 If a product is zero, one ...
msq0i 11827 A number is zero iff its s...
msq0d 11828 A number is zero iff its s...
mulne0bd 11829 The product of two nonzero...
mulne0d 11830 The product of two nonzero...
mulcan1g 11831 A generalized form of the ...
mulcan2g 11832 A generalized form of the ...
mulne0bad 11833 A factor of a nonzero comp...
mulne0bbd 11834 A factor of a nonzero comp...
1div0 11837 You can't divide by zero, ...
1div0OLD 11838 Obsolete version of ~ 1div...
divval 11839 Value of division: if ` A ...
divmul 11840 Relationship between divis...
divmul2 11841 Relationship between divis...
divmul3 11842 Relationship between divis...
divcl 11843 Closure law for division. ...
reccl 11844 Closure law for reciprocal...
divcan2 11845 A cancellation law for div...
divcan1 11846 A cancellation law for div...
diveq0 11847 A ratio is zero iff the nu...
divne0b 11848 The ratio of nonzero numbe...
divne0 11849 The ratio of nonzero numbe...
recne0 11850 The reciprocal of a nonzer...
recid 11851 Multiplication of a number...
recid2 11852 Multiplication of a number...
divrec 11853 Relationship between divis...
divrec2 11854 Relationship between divis...
divass 11855 An associative law for div...
div23 11856 A commutative/associative ...
div32 11857 A commutative/associative ...
div13 11858 A commutative/associative ...
div12 11859 A commutative/associative ...
divmulass 11860 An associative law for div...
divmulasscom 11861 An associative/commutative...
divdir 11862 Distribution of division o...
divcan3 11863 A cancellation law for div...
divcan4 11864 A cancellation law for div...
div11 11865 One-to-one relationship fo...
div11OLD 11866 Obsolete version of ~ div1...
diveq1 11867 Equality in terms of unit ...
divid 11868 A number divided by itself...
dividOLD 11869 Obsolete version of ~ divi...
div0 11870 Division into zero is zero...
div0OLD 11871 Obsolete version of ~ div0...
div1 11872 A number divided by 1 is i...
1div1e1 11873 1 divided by 1 is 1. (Con...
divneg 11874 Move negative sign inside ...
muldivdir 11875 Distribution of division o...
divsubdir 11876 Distribution of division o...
subdivcomb1 11877 Bring a term in a subtract...
subdivcomb2 11878 Bring a term in a subtract...
recrec 11879 A number is equal to the r...
rec11 11880 Reciprocal is one-to-one. ...
rec11r 11881 Mutual reciprocals. (Cont...
divmuldiv 11882 Multiplication of two rati...
divdivdiv 11883 Division of two ratios. T...
divcan5 11884 Cancellation of common fac...
divmul13 11885 Swap the denominators in t...
divmul24 11886 Swap the numerators in the...
divmuleq 11887 Cross-multiply in an equal...
recdiv 11888 The reciprocal of a ratio....
divcan6 11889 Cancellation of inverted f...
divdiv32 11890 Swap denominators in a div...
divcan7 11891 Cancel equal divisors in a...
dmdcan 11892 Cancellation law for divis...
divdiv1 11893 Division into a fraction. ...
divdiv2 11894 Division by a fraction. (...
recdiv2 11895 Division into a reciprocal...
ddcan 11896 Cancellation in a double d...
divadddiv 11897 Addition of two ratios. T...
divsubdiv 11898 Subtraction of two ratios....
conjmul 11899 Two numbers whose reciproc...
rereccl 11900 Closure law for reciprocal...
redivcl 11901 Closure law for division o...
eqneg 11902 A number equal to its nega...
eqnegd 11903 A complex number equals it...
eqnegad 11904 If a complex number equals...
div2neg 11905 Quotient of two negatives....
divneg2 11906 Move negative sign inside ...
recclzi 11907 Closure law for reciprocal...
recne0zi 11908 The reciprocal of a nonzer...
recidzi 11909 Multiplication of a number...
div1i 11910 A number divided by 1 is i...
eqnegi 11911 A number equal to its nega...
reccli 11912 Closure law for reciprocal...
recidi 11913 Multiplication of a number...
recreci 11914 A number is equal to the r...
dividi 11915 A number divided by itself...
div0i 11916 Division into zero is zero...
divclzi 11917 Closure law for division. ...
divcan1zi 11918 A cancellation law for div...
divcan2zi 11919 A cancellation law for div...
divreczi 11920 Relationship between divis...
divcan3zi 11921 A cancellation law for div...
divcan4zi 11922 A cancellation law for div...
rec11i 11923 Reciprocal is one-to-one. ...
divcli 11924 Closure law for division. ...
divcan2i 11925 A cancellation law for div...
divcan1i 11926 A cancellation law for div...
divreci 11927 Relationship between divis...
divcan3i 11928 A cancellation law for div...
divcan4i 11929 A cancellation law for div...
divne0i 11930 The ratio of nonzero numbe...
rec11ii 11931 Reciprocal is one-to-one. ...
divasszi 11932 An associative law for div...
divmulzi 11933 Relationship between divis...
divdirzi 11934 Distribution of division o...
divdiv23zi 11935 Swap denominators in a div...
divmuli 11936 Relationship between divis...
divdiv32i 11937 Swap denominators in a div...
divassi 11938 An associative law for div...
divdiri 11939 Distribution of division o...
div23i 11940 A commutative/associative ...
div11i 11941 One-to-one relationship fo...
divmuldivi 11942 Multiplication of two rati...
divmul13i 11943 Swap denominators of two r...
divadddivi 11944 Addition of two ratios. T...
divdivdivi 11945 Division of two ratios. T...
rerecclzi 11946 Closure law for reciprocal...
rereccli 11947 Closure law for reciprocal...
redivclzi 11948 Closure law for division o...
redivcli 11949 Closure law for division o...
div1d 11950 A number divided by 1 is i...
reccld 11951 Closure law for reciprocal...
recne0d 11952 The reciprocal of a nonzer...
recidd 11953 Multiplication of a number...
recid2d 11954 Multiplication of a number...
recrecd 11955 A number is equal to the r...
dividd 11956 A number divided by itself...
div0d 11957 Division into zero is zero...
divcld 11958 Closure law for division. ...
divcan1d 11959 A cancellation law for div...
divcan2d 11960 A cancellation law for div...
divrecd 11961 Relationship between divis...
divrec2d 11962 Relationship between divis...
divcan3d 11963 A cancellation law for div...
divcan4d 11964 A cancellation law for div...
diveq0d 11965 A ratio is zero iff the nu...
diveq1d 11966 Equality in terms of unit ...
diveq1ad 11967 The quotient of two comple...
diveq0ad 11968 A fraction of complex numb...
divne1d 11969 If two complex numbers are...
divne0bd 11970 A ratio is zero iff the nu...
divnegd 11971 Move negative sign inside ...
divneg2d 11972 Move negative sign inside ...
div2negd 11973 Quotient of two negatives....
divne0d 11974 The ratio of nonzero numbe...
recdivd 11975 The reciprocal of a ratio....
recdiv2d 11976 Division into a reciprocal...
divcan6d 11977 Cancellation of inverted f...
ddcand 11978 Cancellation in a double d...
rec11d 11979 Reciprocal is one-to-one. ...
divmuld 11980 Relationship between divis...
div32d 11981 A commutative/associative ...
div13d 11982 A commutative/associative ...
divdiv32d 11983 Swap denominators in a div...
divcan5d 11984 Cancellation of common fac...
divcan5rd 11985 Cancellation of common fac...
divcan7d 11986 Cancel equal divisors in a...
dmdcand 11987 Cancellation law for divis...
dmdcan2d 11988 Cancellation law for divis...
divdiv1d 11989 Division into a fraction. ...
divdiv2d 11990 Division by a fraction. (...
divmul2d 11991 Relationship between divis...
divmul3d 11992 Relationship between divis...
divassd 11993 An associative law for div...
div12d 11994 A commutative/associative ...
div23d 11995 A commutative/associative ...
divdird 11996 Distribution of division o...
divsubdird 11997 Distribution of division o...
div11d 11998 One-to-one relationship fo...
divmuldivd 11999 Multiplication of two rati...
divmul13d 12000 Swap denominators of two r...
divmul24d 12001 Swap the numerators in the...
divadddivd 12002 Addition of two ratios. T...
divsubdivd 12003 Subtraction of two ratios....
divmuleqd 12004 Cross-multiply in an equal...
divdivdivd 12005 Division of two ratios. T...
diveq1bd 12006 If two complex numbers are...
div2sub 12007 Swap the order of subtract...
div2subd 12008 Swap subtrahend and minuen...
rereccld 12009 Closure law for reciprocal...
redivcld 12010 Closure law for division o...
subrecd 12011 Subtraction of reciprocals...
subrec 12012 Subtraction of reciprocals...
subreci 12013 Subtraction of reciprocals...
mvllmuld 12014 Move the left term in a pr...
mvllmuli 12015 Move the left term in a pr...
ldiv 12016 Left-division. (Contribut...
rdiv 12017 Right-division. (Contribu...
mdiv 12018 A division law. (Contribu...
lineq 12019 Solution of a (scalar) lin...
elimgt0 12020 Hypothesis for weak deduct...
elimge0 12021 Hypothesis for weak deduct...
ltp1 12022 A number is less than itse...
lep1 12023 A number is less than or e...
ltm1 12024 A number minus 1 is less t...
lem1 12025 A number minus 1 is less t...
letrp1 12026 A transitive property of '...
p1le 12027 A transitive property of p...
recgt0 12028 The reciprocal of a positi...
prodgt0 12029 Infer that a multiplicand ...
prodgt02 12030 Infer that a multiplier is...
ltmul1a 12031 Lemma for ~ ltmul1 . Mult...
ltmul1 12032 Multiplication of both sid...
ltmul2 12033 Multiplication of both sid...
lemul1 12034 Multiplication of both sid...
lemul2 12035 Multiplication of both sid...
lemul1a 12036 Multiplication of both sid...
lemul2a 12037 Multiplication of both sid...
ltmul12a 12038 Comparison of product of t...
lemul12b 12039 Comparison of product of t...
lemul12a 12040 Comparison of product of t...
mulgt1OLD 12041 Obsolete version of ~ mulg...
ltmulgt11 12042 Multiplication by a number...
ltmulgt12 12043 Multiplication by a number...
mulgt1 12044 The product of two numbers...
lemulge11 12045 Multiplication by a number...
lemulge12 12046 Multiplication by a number...
ltdiv1 12047 Division of both sides of ...
lediv1 12048 Division of both sides of ...
gt0div 12049 Division of a positive num...
ge0div 12050 Division of a nonnegative ...
divgt0 12051 The ratio of two positive ...
divge0 12052 The ratio of nonnegative a...
mulge0b 12053 A condition for multiplica...
mulle0b 12054 A condition for multiplica...
mulsuble0b 12055 A condition for multiplica...
ltmuldiv 12056 'Less than' relationship b...
ltmuldiv2 12057 'Less than' relationship b...
ltdivmul 12058 'Less than' relationship b...
ledivmul 12059 'Less than or equal to' re...
ltdivmul2 12060 'Less than' relationship b...
lt2mul2div 12061 'Less than' relationship b...
ledivmul2 12062 'Less than or equal to' re...
lemuldiv 12063 'Less than or equal' relat...
lemuldiv2 12064 'Less than or equal' relat...
ltrec 12065 The reciprocal of both sid...
lerec 12066 The reciprocal of both sid...
lt2msq1 12067 Lemma for ~ lt2msq . (Con...
lt2msq 12068 Two nonnegative numbers co...
ltdiv2 12069 Division of a positive num...
ltrec1 12070 Reciprocal swap in a 'less...
lerec2 12071 Reciprocal swap in a 'less...
ledivdiv 12072 Invert ratios of positive ...
lediv2 12073 Division of a positive num...
ltdiv23 12074 Swap denominator with othe...
lediv23 12075 Swap denominator with othe...
lediv12a 12076 Comparison of ratio of two...
lediv2a 12077 Division of both sides of ...
reclt1 12078 The reciprocal of a positi...
recgt1 12079 The reciprocal of a positi...
recgt1i 12080 The reciprocal of a number...
recp1lt1 12081 Construct a number less th...
recreclt 12082 Given a positive number ` ...
le2msq 12083 The square function on non...
msq11 12084 The square of a nonnegativ...
ledivp1 12085 "Less than or equal to" an...
squeeze0 12086 If a nonnegative number is...
ltp1i 12087 A number is less than itse...
recgt0i 12088 The reciprocal of a positi...
recgt0ii 12089 The reciprocal of a positi...
prodgt0i 12090 Infer that a multiplicand ...
divgt0i 12091 The ratio of two positive ...
divge0i 12092 The ratio of nonnegative a...
ltreci 12093 The reciprocal of both sid...
lereci 12094 The reciprocal of both sid...
lt2msqi 12095 The square function on non...
le2msqi 12096 The square function on non...
msq11i 12097 The square of a nonnegativ...
divgt0i2i 12098 The ratio of two positive ...
ltrecii 12099 The reciprocal of both sid...
divgt0ii 12100 The ratio of two positive ...
ltmul1i 12101 Multiplication of both sid...
ltdiv1i 12102 Division of both sides of ...
ltmuldivi 12103 'Less than' relationship b...
ltmul2i 12104 Multiplication of both sid...
lemul1i 12105 Multiplication of both sid...
lemul2i 12106 Multiplication of both sid...
ltdiv23i 12107 Swap denominator with othe...
ledivp1i 12108 "Less than or equal to" an...
ltdivp1i 12109 Less-than and division rel...
ltdiv23ii 12110 Swap denominator with othe...
ltmul1ii 12111 Multiplication of both sid...
ltdiv1ii 12112 Division of both sides of ...
ltp1d 12113 A number is less than itse...
lep1d 12114 A number is less than or e...
ltm1d 12115 A number minus 1 is less t...
lem1d 12116 A number minus 1 is less t...
recgt0d 12117 The reciprocal of a positi...
divgt0d 12118 The ratio of two positive ...
mulgt1d 12119 The product of two numbers...
lemulge11d 12120 Multiplication by a number...
lemulge12d 12121 Multiplication by a number...
lemul1ad 12122 Multiplication of both sid...
lemul2ad 12123 Multiplication of both sid...
ltmul12ad 12124 Comparison of product of t...
lemul12ad 12125 Comparison of product of t...
lemul12bd 12126 Comparison of product of t...
fimaxre 12127 A finite set of real numbe...
fimaxre2 12128 A nonempty finite set of r...
fimaxre3 12129 A nonempty finite set of r...
fiminre 12130 A nonempty finite set of r...
fiminre2 12131 A nonempty finite set of r...
negfi 12132 The negation of a finite s...
lbreu 12133 If a set of reals contains...
lbcl 12134 If a set of reals contains...
lble 12135 If a set of reals contains...
lbinf 12136 If a set of reals contains...
lbinfcl 12137 If a set of reals contains...
lbinfle 12138 If a set of reals contains...
sup2 12139 A nonempty, bounded-above ...
sup3 12140 A version of the completen...
infm3lem 12141 Lemma for ~ infm3 . (Cont...
infm3 12142 The completeness axiom for...
suprcl 12143 Closure of supremum of a n...
suprub 12144 A member of a nonempty bou...
suprubd 12145 Natural deduction form of ...
suprcld 12146 Natural deduction form of ...
suprlub 12147 The supremum of a nonempty...
suprnub 12148 An upper bound is not less...
suprleub 12149 The supremum of a nonempty...
supaddc 12150 The supremum function dist...
supadd 12151 The supremum function dist...
supmul1 12152 The supremum function dist...
supmullem1 12153 Lemma for ~ supmul . (Con...
supmullem2 12154 Lemma for ~ supmul . (Con...
supmul 12155 The supremum function dist...
sup3ii 12156 A version of the completen...
suprclii 12157 Closure of supremum of a n...
suprubii 12158 A member of a nonempty bou...
suprlubii 12159 The supremum of a nonempty...
suprnubii 12160 An upper bound is not less...
suprleubii 12161 The supremum of a nonempty...
riotaneg 12162 The negative of the unique...
negiso 12163 Negation is an order anti-...
dfinfre 12164 The infimum of a set of re...
infrecl 12165 Closure of infimum of a no...
infrenegsup 12166 The infimum of a set of re...
infregelb 12167 Any lower bound of a nonem...
infrelb 12168 If a nonempty set of real ...
infrefilb 12169 The infimum of a finite se...
supfirege 12170 The supremum of a finite s...
neg1cn 12171 -1 is a complex number. (...
neg1rr 12172 -1 is a real number. (Con...
neg1ne0 12173 -1 is nonzero. (Contribut...
neg1lt0 12174 -1 is less than 0. (Contr...
negneg1e1 12175 ` -u -u 1 ` is 1. (Contri...
inelr 12176 The imaginary unit ` _i ` ...
rimul 12177 A real number times the im...
cru 12178 The representation of comp...
crne0 12179 The real representation of...
creur 12180 The real part of a complex...
creui 12181 The imaginary part of a co...
cju 12182 The complex conjugate of a...
ofsubeq0 12183 Function analogue of ~ sub...
ofnegsub 12184 Function analogue of ~ neg...
ofsubge0 12185 Function analogue of ~ sub...
nnexALT 12188 Alternate proof of ~ nnex ...
peano5nni 12189 Peano's inductive postulat...
nnssre 12190 The positive integers are ...
nnsscn 12191 The positive integers are ...
nnex 12192 The set of positive intege...
nnre 12193 A positive integer is a re...
nncn 12194 A positive integer is a co...
nnrei 12195 A positive integer is a re...
nncni 12196 A positive integer is a co...
1nn 12197 Peano postulate: 1 is a po...
peano2nn 12198 Peano postulate: a success...
dfnn2 12199 Alternate definition of th...
dfnn3 12200 Alternate definition of th...
nnred 12201 A positive integer is a re...
nncnd 12202 A positive integer is a co...
peano2nnd 12203 Peano postulate: a success...
nnind 12204 Principle of Mathematical ...
nnindALT 12205 Principle of Mathematical ...
nnindd 12206 Principle of Mathematical ...
nn1m1nn 12207 Every positive integer is ...
nn1suc 12208 If a statement holds for 1...
nnaddcl 12209 Closure of addition of pos...
nnmulcl 12210 Closure of multiplication ...
nnmulcli 12211 Closure of multiplication ...
nnmtmip 12212 "Minus times minus is plus...
nn2ge 12213 There exists a positive in...
nnge1 12214 A positive integer is one ...
nngt1ne1 12215 A positive integer is grea...
nnle1eq1 12216 A positive integer is less...
nngt0 12217 A positive integer is posi...
nnnlt1 12218 A positive integer is not ...
nnnle0 12219 A positive integer is not ...
nnne0 12220 A positive integer is nonz...
nnneneg 12221 No positive integer is equ...
0nnn 12222 Zero is not a positive int...
0nnnALT 12223 Alternate proof of ~ 0nnn ...
nnne0ALT 12224 Alternate version of ~ nnn...
nngt0i 12225 A positive integer is posi...
nnne0i 12226 A positive integer is nonz...
nndivre 12227 The quotient of a real and...
nnrecre 12228 The reciprocal of a positi...
nnrecgt0 12229 The reciprocal of a positi...
nnsub 12230 Subtraction of positive in...
nnsubi 12231 Subtraction of positive in...
nndiv 12232 Two ways to express " ` A ...
nndivtr 12233 Transitive property of div...
nnge1d 12234 A positive integer is one ...
nngt0d 12235 A positive integer is posi...
nnne0d 12236 A positive integer is nonz...
nnrecred 12237 The reciprocal of a positi...
nnaddcld 12238 Closure of addition of pos...
nnmulcld 12239 Closure of multiplication ...
nndivred 12240 A positive integer is one ...
0ne1 12257 Zero is different from one...
1m1e0 12258 One minus one equals zero....
2nn 12259 2 is a positive integer. ...
2re 12260 The number 2 is real. (Co...
2cn 12261 The number 2 is a complex ...
2cnALT 12262 Alternate proof of ~ 2cn ....
2ex 12263 The number 2 is a set. (C...
2cnd 12264 The number 2 is a complex ...
3nn 12265 3 is a positive integer. ...
3re 12266 The number 3 is real. (Co...
3cn 12267 The number 3 is a complex ...
3ex 12268 The number 3 is a set. (C...
4nn 12269 4 is a positive integer. ...
4re 12270 The number 4 is real. (Co...
4cn 12271 The number 4 is a complex ...
5nn 12272 5 is a positive integer. ...
5re 12273 The number 5 is real. (Co...
5cn 12274 The number 5 is a complex ...
6nn 12275 6 is a positive integer. ...
6re 12276 The number 6 is real. (Co...
6cn 12277 The number 6 is a complex ...
7nn 12278 7 is a positive integer. ...
7re 12279 The number 7 is real. (Co...
7cn 12280 The number 7 is a complex ...
8nn 12281 8 is a positive integer. ...
8re 12282 The number 8 is real. (Co...
8cn 12283 The number 8 is a complex ...
9nn 12284 9 is a positive integer. ...
9re 12285 The number 9 is real. (Co...
9cn 12286 The number 9 is a complex ...
0le0 12287 Zero is nonnegative. (Con...
0le2 12288 The number 0 is less than ...
2pos 12289 The number 2 is positive. ...
2ne0 12290 The number 2 is nonzero. ...
3pos 12291 The number 3 is positive. ...
3ne0 12292 The number 3 is nonzero. ...
4pos 12293 The number 4 is positive. ...
4ne0 12294 The number 4 is nonzero. ...
5pos 12295 The number 5 is positive. ...
6pos 12296 The number 6 is positive. ...
7pos 12297 The number 7 is positive. ...
8pos 12298 The number 8 is positive. ...
9pos 12299 The number 9 is positive. ...
1pneg1e0 12300 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12301 0 minus 0 equals 0. (Cont...
1m0e1 12302 1 - 0 = 1. (Contributed b...
0p1e1 12303 0 + 1 = 1. (Contributed b...
fv0p1e1 12304 Function value at ` N + 1 ...
1p0e1 12305 1 + 0 = 1. (Contributed b...
1p1e2 12306 1 + 1 = 2. (Contributed b...
2m1e1 12307 2 - 1 = 1. The result is ...
1e2m1 12308 1 = 2 - 1. (Contributed b...
3m1e2 12309 3 - 1 = 2. (Contributed b...
4m1e3 12310 4 - 1 = 3. (Contributed b...
5m1e4 12311 5 - 1 = 4. (Contributed b...
6m1e5 12312 6 - 1 = 5. (Contributed b...
7m1e6 12313 7 - 1 = 6. (Contributed b...
8m1e7 12314 8 - 1 = 7. (Contributed b...
9m1e8 12315 9 - 1 = 8. (Contributed b...
2p2e4 12316 Two plus two equals four. ...
2times 12317 Two times a number. (Cont...
times2 12318 A number times 2. (Contri...
2timesi 12319 Two times a number. (Cont...
times2i 12320 A number times 2. (Contri...
2txmxeqx 12321 Two times a complex number...
2div2e1 12322 2 divided by 2 is 1. (Con...
2p1e3 12323 2 + 1 = 3. (Contributed b...
1p2e3 12324 1 + 2 = 3. For a shorter ...
1p2e3ALT 12325 Alternate proof of ~ 1p2e3...
3p1e4 12326 3 + 1 = 4. (Contributed b...
4p1e5 12327 4 + 1 = 5. (Contributed b...
5p1e6 12328 5 + 1 = 6. (Contributed b...
6p1e7 12329 6 + 1 = 7. (Contributed b...
7p1e8 12330 7 + 1 = 8. (Contributed b...
8p1e9 12331 8 + 1 = 9. (Contributed b...
3p2e5 12332 3 + 2 = 5. (Contributed b...
3p3e6 12333 3 + 3 = 6. (Contributed b...
4p2e6 12334 4 + 2 = 6. (Contributed b...
4p3e7 12335 4 + 3 = 7. (Contributed b...
4p4e8 12336 4 + 4 = 8. (Contributed b...
5p2e7 12337 5 + 2 = 7. (Contributed b...
5p3e8 12338 5 + 3 = 8. (Contributed b...
5p4e9 12339 5 + 4 = 9. (Contributed b...
6p2e8 12340 6 + 2 = 8. (Contributed b...
6p3e9 12341 6 + 3 = 9. (Contributed b...
7p2e9 12342 7 + 2 = 9. (Contributed b...
1t1e1 12343 1 times 1 equals 1. (Cont...
2t1e2 12344 2 times 1 equals 2. (Cont...
2t2e4 12345 2 times 2 equals 4. (Cont...
3t1e3 12346 3 times 1 equals 3. (Cont...
3t2e6 12347 3 times 2 equals 6. (Cont...
3t3e9 12348 3 times 3 equals 9. (Cont...
4t2e8 12349 4 times 2 equals 8. (Cont...
2t0e0 12350 2 times 0 equals 0. (Cont...
4d2e2 12351 One half of four is two. ...
1lt2 12352 1 is less than 2. (Contri...
2lt3 12353 2 is less than 3. (Contri...
1lt3 12354 1 is less than 3. (Contri...
3lt4 12355 3 is less than 4. (Contri...
2lt4 12356 2 is less than 4. (Contri...
1lt4 12357 1 is less than 4. (Contri...
4lt5 12358 4 is less than 5. (Contri...
3lt5 12359 3 is less than 5. (Contri...
2lt5 12360 2 is less than 5. (Contri...
1lt5 12361 1 is less than 5. (Contri...
5lt6 12362 5 is less than 6. (Contri...
4lt6 12363 4 is less than 6. (Contri...
3lt6 12364 3 is less than 6. (Contri...
2lt6 12365 2 is less than 6. (Contri...
1lt6 12366 1 is less than 6. (Contri...
6lt7 12367 6 is less than 7. (Contri...
5lt7 12368 5 is less than 7. (Contri...
4lt7 12369 4 is less than 7. (Contri...
3lt7 12370 3 is less than 7. (Contri...
2lt7 12371 2 is less than 7. (Contri...
1lt7 12372 1 is less than 7. (Contri...
7lt8 12373 7 is less than 8. (Contri...
6lt8 12374 6 is less than 8. (Contri...
5lt8 12375 5 is less than 8. (Contri...
4lt8 12376 4 is less than 8. (Contri...
3lt8 12377 3 is less than 8. (Contri...
2lt8 12378 2 is less than 8. (Contri...
1lt8 12379 1 is less than 8. (Contri...
8lt9 12380 8 is less than 9. (Contri...
7lt9 12381 7 is less than 9. (Contri...
6lt9 12382 6 is less than 9. (Contri...
5lt9 12383 5 is less than 9. (Contri...
4lt9 12384 4 is less than 9. (Contri...
3lt9 12385 3 is less than 9. (Contri...
2lt9 12386 2 is less than 9. (Contri...
1lt9 12387 1 is less than 9. (Contri...
0ne2 12388 0 is not equal to 2. (Con...
1ne2 12389 1 is not equal to 2. (Con...
1le2 12390 1 is less than or equal to...
2cnne0 12391 2 is a nonzero complex num...
2rene0 12392 2 is a nonzero real number...
1le3 12393 1 is less than or equal to...
neg1mulneg1e1 12394 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12395 One-half is real. (Contri...
halfcn 12396 One-half is a complex numb...
halfgt0 12397 One-half is greater than z...
halfge0 12398 One-half is not negative. ...
halflt1 12399 One-half is less than one....
2halves 12400 Two halves make a whole. ...
1mhlfehlf 12401 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12402 An eighth of four thirds i...
halfthird 12403 Half minus a third. (Cont...
halfpm6th 12404 One half plus or minus one...
it0e0 12405 i times 0 equals 0. (Cont...
2mulicn 12406 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12407 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12408 Closure of half of a numbe...
rehalfcl 12409 Real closure of half. (Co...
half0 12410 Half of a number is zero i...
halfpos2 12411 A number is positive iff i...
halfpos 12412 A positive number is great...
halfnneg2 12413 A number is nonnegative if...
halfaddsubcl 12414 Closure of half-sum and ha...
halfaddsub 12415 Sum and difference of half...
subhalfhalf 12416 Subtracting the half of a ...
lt2halves 12417 A sum is less than the who...
addltmul 12418 Sum is less than product f...
nominpos 12419 There is no smallest posit...
avglt1 12420 Ordering property for aver...
avglt2 12421 Ordering property for aver...
avgle1 12422 Ordering property for aver...
avgle2 12423 Ordering property for aver...
avgle 12424 The average of two numbers...
2timesd 12425 Two times a number. (Cont...
times2d 12426 A number times 2. (Contri...
halfcld 12427 Closure of half of a numbe...
2halvesd 12428 Two halves make a whole. ...
rehalfcld 12429 Real closure of half. (Co...
lt2halvesd 12430 A sum is less than the who...
rehalfcli 12431 Half a real number is real...
lt2addmuld 12432 If two real numbers are le...
add1p1 12433 Adding two times 1 to a nu...
sub1m1 12434 Subtracting two times 1 fr...
cnm2m1cnm3 12435 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12436 A complex number increased...
div4p1lem1div2 12437 An integer greater than 5,...
nnunb 12438 The set of positive intege...
arch 12439 Archimedean property of re...
nnrecl 12440 There exists a positive in...
bndndx 12441 A bounded real sequence ` ...
elnn0 12444 Nonnegative integers expre...
nnssnn0 12445 Positive naturals are a su...
nn0ssre 12446 Nonnegative integers are a...
nn0sscn 12447 Nonnegative integers are a...
nn0ex 12448 The set of nonnegative int...
nnnn0 12449 A positive integer is a no...
nnnn0i 12450 A positive integer is a no...
nn0re 12451 A nonnegative integer is a...
nn0cn 12452 A nonnegative integer is a...
nn0rei 12453 A nonnegative integer is a...
nn0cni 12454 A nonnegative integer is a...
dfn2 12455 The set of positive intege...
elnnne0 12456 The positive integer prope...
0nn0 12457 0 is a nonnegative integer...
1nn0 12458 1 is a nonnegative integer...
2nn0 12459 2 is a nonnegative integer...
3nn0 12460 3 is a nonnegative integer...
4nn0 12461 4 is a nonnegative integer...
5nn0 12462 5 is a nonnegative integer...
6nn0 12463 6 is a nonnegative integer...
7nn0 12464 7 is a nonnegative integer...
8nn0 12465 8 is a nonnegative integer...
9nn0 12466 9 is a nonnegative integer...
nn0ge0 12467 A nonnegative integer is g...
nn0nlt0 12468 A nonnegative integer is n...
nn0ge0i 12469 Nonnegative integers are n...
nn0le0eq0 12470 A nonnegative integer is l...
nn0p1gt0 12471 A nonnegative integer incr...
nnnn0addcl 12472 A positive integer plus a ...
nn0nnaddcl 12473 A nonnegative integer plus...
0mnnnnn0 12474 The result of subtracting ...
un0addcl 12475 If ` S ` is closed under a...
un0mulcl 12476 If ` S ` is closed under m...
nn0addcl 12477 Closure of addition of non...
nn0mulcl 12478 Closure of multiplication ...
nn0addcli 12479 Closure of addition of non...
nn0mulcli 12480 Closure of multiplication ...
nn0p1nn 12481 A nonnegative integer plus...
peano2nn0 12482 Second Peano postulate for...
nnm1nn0 12483 A positive integer minus 1...
elnn0nn 12484 The nonnegative integer pr...
elnnnn0 12485 The positive integer prope...
elnnnn0b 12486 The positive integer prope...
elnnnn0c 12487 The positive integer prope...
nn0addge1 12488 A number is less than or e...
nn0addge2 12489 A number is less than or e...
nn0addge1i 12490 A number is less than or e...
nn0addge2i 12491 A number is less than or e...
nn0sub 12492 Subtraction of nonnegative...
ltsubnn0 12493 Subtracting a nonnegative ...
nn0negleid 12494 A nonnegative integer is g...
difgtsumgt 12495 If the difference of a rea...
nn0le2x 12496 A nonnegative integer is l...
nn0le2xi 12497 A nonnegative integer is l...
nn0lele2xi 12498 'Less than or equal to' im...
fcdmnn0supp 12499 Two ways to write the supp...
fcdmnn0fsupp 12500 A function into ` NN0 ` is...
fcdmnn0suppg 12501 Version of ~ fcdmnn0supp a...
fcdmnn0fsuppg 12502 Version of ~ fcdmnn0fsupp ...
nnnn0d 12503 A positive integer is a no...
nn0red 12504 A nonnegative integer is a...
nn0cnd 12505 A nonnegative integer is a...
nn0ge0d 12506 A nonnegative integer is g...
nn0addcld 12507 Closure of addition of non...
nn0mulcld 12508 Closure of multiplication ...
nn0readdcl 12509 Closure law for addition o...
nn0n0n1ge2 12510 A nonnegative integer whic...
nn0n0n1ge2b 12511 A nonnegative integer is n...
nn0ge2m1nn 12512 If a nonnegative integer i...
nn0ge2m1nn0 12513 If a nonnegative integer i...
nn0nndivcl 12514 Closure law for dividing o...
elxnn0 12517 An extended nonnegative in...
nn0ssxnn0 12518 The standard nonnegative i...
nn0xnn0 12519 A standard nonnegative int...
xnn0xr 12520 An extended nonnegative in...
0xnn0 12521 Zero is an extended nonneg...
pnf0xnn0 12522 Positive infinity is an ex...
nn0nepnf 12523 No standard nonnegative in...
nn0xnn0d 12524 A standard nonnegative int...
nn0nepnfd 12525 No standard nonnegative in...
xnn0nemnf 12526 No extended nonnegative in...
xnn0xrnemnf 12527 The extended nonnegative i...
xnn0nnn0pnf 12528 An extended nonnegative in...
elz 12531 Membership in the set of i...
nnnegz 12532 The negative of a positive...
zre 12533 An integer is a real. (Co...
zcn 12534 An integer is a complex nu...
zrei 12535 An integer is a real numbe...
zssre 12536 The integers are a subset ...
zsscn 12537 The integers are a subset ...
zex 12538 The set of integers exists...
elnnz 12539 Positive integer property ...
0z 12540 Zero is an integer. (Cont...
0zd 12541 Zero is an integer, deduct...
elnn0z 12542 Nonnegative integer proper...
elznn0nn 12543 Integer property expressed...
elznn0 12544 Integer property expressed...
elznn 12545 Integer property expressed...
zle0orge1 12546 There is no integer in the...
elz2 12547 Membership in the set of i...
dfz2 12548 Alternative definition of ...
zexALT 12549 Alternate proof of ~ zex ....
nnz 12550 A positive integer is an i...
nnssz 12551 Positive integers are a su...
nn0ssz 12552 Nonnegative integers are a...
nnzOLD 12553 Obsolete version of ~ nnz ...
nn0z 12554 A nonnegative integer is a...
nn0zd 12555 A nonnegative integer is a...
nnzd 12556 A positive integer is an i...
nnzi 12557 A positive integer is an i...
nn0zi 12558 A nonnegative integer is a...
elnnz1 12559 Positive integer property ...
znnnlt1 12560 An integer is not a positi...
nnzrab 12561 Positive integers expresse...
nn0zrab 12562 Nonnegative integers expre...
1z 12563 One is an integer. (Contr...
1zzd 12564 One is an integer, deducti...
2z 12565 2 is an integer. (Contrib...
3z 12566 3 is an integer. (Contrib...
4z 12567 4 is an integer. (Contrib...
znegcl 12568 Closure law for negative i...
neg1z 12569 -1 is an integer. (Contri...
znegclb 12570 A complex number is an int...
nn0negz 12571 The negative of a nonnegat...
nn0negzi 12572 The negative of a nonnegat...
zaddcl 12573 Closure of addition of int...
peano2z 12574 Second Peano postulate gen...
zsubcl 12575 Closure of subtraction of ...
peano2zm 12576 "Reverse" second Peano pos...
zletr 12577 Transitive law of ordering...
zrevaddcl 12578 Reverse closure law for ad...
znnsub 12579 The positive difference of...
znn0sub 12580 The nonnegative difference...
nzadd 12581 The sum of a real number n...
zmulcl 12582 Closure of multiplication ...
zltp1le 12583 Integer ordering relation....
zleltp1 12584 Integer ordering relation....
zlem1lt 12585 Integer ordering relation....
zltlem1 12586 Integer ordering relation....
zltlem1d 12587 Integer ordering relation,...
zgt0ge1 12588 An integer greater than ` ...
nnleltp1 12589 Positive integer ordering ...
nnltp1le 12590 Positive integer ordering ...
nnaddm1cl 12591 Closure of addition of pos...
nn0ltp1le 12592 Nonnegative integer orderi...
nn0leltp1 12593 Nonnegative integer orderi...
nn0ltlem1 12594 Nonnegative integer orderi...
nn0sub2 12595 Subtraction of nonnegative...
nn0lt10b 12596 A nonnegative integer less...
nn0lt2 12597 A nonnegative integer less...
nn0le2is012 12598 A nonnegative integer whic...
nn0lem1lt 12599 Nonnegative integer orderi...
nnlem1lt 12600 Positive integer ordering ...
nnltlem1 12601 Positive integer ordering ...
nnm1ge0 12602 A positive integer decreas...
nn0ge0div 12603 Division of a nonnegative ...
zdiv 12604 Two ways to express " ` M ...
zdivadd 12605 Property of divisibility: ...
zdivmul 12606 Property of divisibility: ...
zextle 12607 An extensionality-like pro...
zextlt 12608 An extensionality-like pro...
recnz 12609 The reciprocal of a number...
btwnnz 12610 A number between an intege...
gtndiv 12611 A larger number does not d...
halfnz 12612 One-half is not an integer...
3halfnz 12613 Three halves is not an int...
suprzcl 12614 The supremum of a bounded-...
prime 12615 Two ways to express " ` A ...
msqznn 12616 The square of a nonzero in...
zneo 12617 No even integer equals an ...
nneo 12618 A positive integer is even...
nneoi 12619 A positive integer is even...
zeo 12620 An integer is even or odd....
zeo2 12621 An integer is even or odd ...
peano2uz2 12622 Second Peano postulate for...
peano5uzi 12623 Peano's inductive postulat...
peano5uzti 12624 Peano's inductive postulat...
dfuzi 12625 An expression for the uppe...
uzind 12626 Induction on the upper int...
uzind2 12627 Induction on the upper int...
uzind3 12628 Induction on the upper int...
nn0ind 12629 Principle of Mathematical ...
nn0indALT 12630 Principle of Mathematical ...
nn0indd 12631 Principle of Mathematical ...
fzind 12632 Induction on the integers ...
fnn0ind 12633 Induction on the integers ...
nn0ind-raph 12634 Principle of Mathematical ...
zindd 12635 Principle of Mathematical ...
fzindd 12636 Induction on the integers ...
btwnz 12637 Any real number can be san...
zred 12638 An integer is a real numbe...
zcnd 12639 An integer is a complex nu...
znegcld 12640 Closure law for negative i...
peano2zd 12641 Deduction from second Pean...
zaddcld 12642 Closure of addition of int...
zsubcld 12643 Closure of subtraction of ...
zmulcld 12644 Closure of multiplication ...
znnn0nn 12645 The negative of a negative...
zadd2cl 12646 Increasing an integer by 2...
zriotaneg 12647 The negative of the unique...
suprfinzcl 12648 The supremum of a nonempty...
9p1e10 12651 9 + 1 = 10. (Contributed ...
dfdec10 12652 Version of the definition ...
decex 12653 A decimal number is a set....
deceq1 12654 Equality theorem for the d...
deceq2 12655 Equality theorem for the d...
deceq1i 12656 Equality theorem for the d...
deceq2i 12657 Equality theorem for the d...
deceq12i 12658 Equality theorem for the d...
numnncl 12659 Closure for a numeral (wit...
num0u 12660 Add a zero in the units pl...
num0h 12661 Add a zero in the higher p...
numcl 12662 Closure for a decimal inte...
numsuc 12663 The successor of a decimal...
deccl 12664 Closure for a numeral. (C...
10nn 12665 10 is a positive integer. ...
10pos 12666 The number 10 is positive....
10nn0 12667 10 is a nonnegative intege...
10re 12668 The number 10 is real. (C...
decnncl 12669 Closure for a numeral. (C...
dec0u 12670 Add a zero in the units pl...
dec0h 12671 Add a zero in the higher p...
numnncl2 12672 Closure for a decimal inte...
decnncl2 12673 Closure for a decimal inte...
numlt 12674 Comparing two decimal inte...
numltc 12675 Comparing two decimal inte...
le9lt10 12676 A "decimal digit" (i.e. a ...
declt 12677 Comparing two decimal inte...
decltc 12678 Comparing two decimal inte...
declth 12679 Comparing two decimal inte...
decsuc 12680 The successor of a decimal...
3declth 12681 Comparing two decimal inte...
3decltc 12682 Comparing two decimal inte...
decle 12683 Comparing two decimal inte...
decleh 12684 Comparing two decimal inte...
declei 12685 Comparing a digit to a dec...
numlti 12686 Comparing a digit to a dec...
declti 12687 Comparing a digit to a dec...
decltdi 12688 Comparing a digit to a dec...
numsucc 12689 The successor of a decimal...
decsucc 12690 The successor of a decimal...
1e0p1 12691 The successor of zero. (C...
dec10p 12692 Ten plus an integer. (Con...
numma 12693 Perform a multiply-add of ...
nummac 12694 Perform a multiply-add of ...
numma2c 12695 Perform a multiply-add of ...
numadd 12696 Add two decimal integers `...
numaddc 12697 Add two decimal integers `...
nummul1c 12698 The product of a decimal i...
nummul2c 12699 The product of a decimal i...
decma 12700 Perform a multiply-add of ...
decmac 12701 Perform a multiply-add of ...
decma2c 12702 Perform a multiply-add of ...
decadd 12703 Add two numerals ` M ` and...
decaddc 12704 Add two numerals ` M ` and...
decaddc2 12705 Add two numerals ` M ` and...
decrmanc 12706 Perform a multiply-add of ...
decrmac 12707 Perform a multiply-add of ...
decaddm10 12708 The sum of two multiples o...
decaddi 12709 Add two numerals ` M ` and...
decaddci 12710 Add two numerals ` M ` and...
decaddci2 12711 Add two numerals ` M ` and...
decsubi 12712 Difference between a numer...
decmul1 12713 The product of a numeral w...
decmul1c 12714 The product of a numeral w...
decmul2c 12715 The product of a numeral w...
decmulnc 12716 The product of a numeral w...
11multnc 12717 The product of 11 (as nume...
decmul10add 12718 A multiplication of a numb...
6p5lem 12719 Lemma for ~ 6p5e11 and rel...
5p5e10 12720 5 + 5 = 10. (Contributed ...
6p4e10 12721 6 + 4 = 10. (Contributed ...
6p5e11 12722 6 + 5 = 11. (Contributed ...
6p6e12 12723 6 + 6 = 12. (Contributed ...
7p3e10 12724 7 + 3 = 10. (Contributed ...
7p4e11 12725 7 + 4 = 11. (Contributed ...
7p5e12 12726 7 + 5 = 12. (Contributed ...
7p6e13 12727 7 + 6 = 13. (Contributed ...
7p7e14 12728 7 + 7 = 14. (Contributed ...
8p2e10 12729 8 + 2 = 10. (Contributed ...
8p3e11 12730 8 + 3 = 11. (Contributed ...
8p4e12 12731 8 + 4 = 12. (Contributed ...
8p5e13 12732 8 + 5 = 13. (Contributed ...
8p6e14 12733 8 + 6 = 14. (Contributed ...
8p7e15 12734 8 + 7 = 15. (Contributed ...
8p8e16 12735 8 + 8 = 16. (Contributed ...
9p2e11 12736 9 + 2 = 11. (Contributed ...
9p3e12 12737 9 + 3 = 12. (Contributed ...
9p4e13 12738 9 + 4 = 13. (Contributed ...
9p5e14 12739 9 + 5 = 14. (Contributed ...
9p6e15 12740 9 + 6 = 15. (Contributed ...
9p7e16 12741 9 + 7 = 16. (Contributed ...
9p8e17 12742 9 + 8 = 17. (Contributed ...
9p9e18 12743 9 + 9 = 18. (Contributed ...
10p10e20 12744 10 + 10 = 20. (Contribute...
10m1e9 12745 10 - 1 = 9. (Contributed ...
4t3lem 12746 Lemma for ~ 4t3e12 and rel...
4t3e12 12747 4 times 3 equals 12. (Con...
4t4e16 12748 4 times 4 equals 16. (Con...
5t2e10 12749 5 times 2 equals 10. (Con...
5t3e15 12750 5 times 3 equals 15. (Con...
5t4e20 12751 5 times 4 equals 20. (Con...
5t5e25 12752 5 times 5 equals 25. (Con...
6t2e12 12753 6 times 2 equals 12. (Con...
6t3e18 12754 6 times 3 equals 18. (Con...
6t4e24 12755 6 times 4 equals 24. (Con...
6t5e30 12756 6 times 5 equals 30. (Con...
6t6e36 12757 6 times 6 equals 36. (Con...
7t2e14 12758 7 times 2 equals 14. (Con...
7t3e21 12759 7 times 3 equals 21. (Con...
7t4e28 12760 7 times 4 equals 28. (Con...
7t5e35 12761 7 times 5 equals 35. (Con...
7t6e42 12762 7 times 6 equals 42. (Con...
7t7e49 12763 7 times 7 equals 49. (Con...
8t2e16 12764 8 times 2 equals 16. (Con...
8t3e24 12765 8 times 3 equals 24. (Con...
8t4e32 12766 8 times 4 equals 32. (Con...
8t5e40 12767 8 times 5 equals 40. (Con...
8t6e48 12768 8 times 6 equals 48. (Con...
8t7e56 12769 8 times 7 equals 56. (Con...
8t8e64 12770 8 times 8 equals 64. (Con...
9t2e18 12771 9 times 2 equals 18. (Con...
9t3e27 12772 9 times 3 equals 27. (Con...
9t4e36 12773 9 times 4 equals 36. (Con...
9t5e45 12774 9 times 5 equals 45. (Con...
9t6e54 12775 9 times 6 equals 54. (Con...
9t7e63 12776 9 times 7 equals 63. (Con...
9t8e72 12777 9 times 8 equals 72. (Con...
9t9e81 12778 9 times 9 equals 81. (Con...
9t11e99 12779 9 times 11 equals 99. (Co...
9lt10 12780 9 is less than 10. (Contr...
8lt10 12781 8 is less than 10. (Contr...
7lt10 12782 7 is less than 10. (Contr...
6lt10 12783 6 is less than 10. (Contr...
5lt10 12784 5 is less than 10. (Contr...
4lt10 12785 4 is less than 10. (Contr...
3lt10 12786 3 is less than 10. (Contr...
2lt10 12787 2 is less than 10. (Contr...
1lt10 12788 1 is less than 10. (Contr...
decbin0 12789 Decompose base 4 into base...
decbin2 12790 Decompose base 4 into base...
decbin3 12791 Decompose base 4 into base...
5recm6rec 12792 One fifth minus one sixth....
uzval 12795 The value of the upper int...
uzf 12796 The domain and codomain of...
eluz1 12797 Membership in the upper se...
eluzel2 12798 Implication of membership ...
eluz2 12799 Membership in an upper set...
eluzmn 12800 Membership in an earlier u...
eluz1i 12801 Membership in an upper set...
eluzuzle 12802 An integer in an upper set...
eluzelz 12803 A member of an upper set o...
eluzelre 12804 A member of an upper set o...
eluzelcn 12805 A member of an upper set o...
eluzle 12806 Implication of membership ...
eluz 12807 Membership in an upper set...
uzid 12808 Membership of the least me...
uzidd 12809 Membership of the least me...
uzn0 12810 The upper integers are all...
uztrn 12811 Transitive law for sets of...
uztrn2 12812 Transitive law for sets of...
uzneg 12813 Contraposition law for upp...
uzssz 12814 An upper set of integers i...
uzssre 12815 An upper set of integers i...
uzss 12816 Subset relationship for tw...
uztric 12817 Totality of the ordering r...
uz11 12818 The upper integers functio...
eluzp1m1 12819 Membership in the next upp...
eluzp1l 12820 Strict ordering implied by...
eluzp1p1 12821 Membership in the next upp...
eluzadd 12822 Membership in a later uppe...
eluzsub 12823 Membership in an earlier u...
eluzaddi 12824 Membership in a later uppe...
eluzaddiOLD 12825 Obsolete version of ~ eluz...
eluzsubi 12826 Membership in an earlier u...
eluzsubiOLD 12827 Obsolete version of ~ eluz...
eluzaddOLD 12828 Obsolete version of ~ eluz...
eluzsubOLD 12829 Obsolete version of ~ eluz...
subeluzsub 12830 Membership of a difference...
uzm1 12831 Choices for an element of ...
uznn0sub 12832 The nonnegative difference...
uzin 12833 Intersection of two upper ...
uzp1 12834 Choices for an element of ...
nn0uz 12835 Nonnegative integers expre...
nnuz 12836 Positive integers expresse...
elnnuz 12837 A positive integer express...
elnn0uz 12838 A nonnegative integer expr...
1eluzge0 12839 1 is an integer greater th...
2eluzge0 12840 2 is an integer greater th...
2eluzge1 12841 2 is an integer greater th...
5eluz3 12842 5 is an integer greater th...
uzuzle23 12843 An integer greater than or...
uzuzle24 12844 An integer greater than or...
uzuzle34 12845 An integer greater than or...
uzuzle35 12846 An integer greater than or...
eluz2nn 12847 An integer greater than or...
eluz3nn 12848 An integer greater than or...
eluz4nn 12849 An integer greater than or...
eluz5nn 12850 An integer greater than or...
eluzge2nn0 12851 If an integer is greater t...
eluz2n0 12852 An integer greater than or...
uz3m2nn 12853 An integer greater than or...
uznnssnn 12854 The upper integers startin...
raluz 12855 Restricted universal quant...
raluz2 12856 Restricted universal quant...
rexuz 12857 Restricted existential qua...
rexuz2 12858 Restricted existential qua...
2rexuz 12859 Double existential quantif...
peano2uz 12860 Second Peano postulate for...
peano2uzs 12861 Second Peano postulate for...
peano2uzr 12862 Reversed second Peano axio...
uzaddcl 12863 Addition closure law for a...
nn0pzuz 12864 The sum of a nonnegative i...
uzind4 12865 Induction on the upper set...
uzind4ALT 12866 Induction on the upper set...
uzind4s 12867 Induction on the upper set...
uzind4s2 12868 Induction on the upper set...
uzind4i 12869 Induction on the upper int...
uzwo 12870 Well-ordering principle: a...
uzwo2 12871 Well-ordering principle: a...
nnwo 12872 Well-ordering principle: a...
nnwof 12873 Well-ordering principle: a...
nnwos 12874 Well-ordering principle: a...
indstr 12875 Strong Mathematical Induct...
eluznn0 12876 Membership in a nonnegativ...
eluznn 12877 Membership in a positive u...
eluz2b1 12878 Two ways to say "an intege...
eluz2gt1 12879 An integer greater than or...
eluz2b2 12880 Two ways to say "an intege...
eluz2b3 12881 Two ways to say "an intege...
uz2m1nn 12882 One less than an integer g...
1nuz2 12883 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12884 A positive integer is eith...
uz2mulcl 12885 Closure of multiplication ...
indstr2 12886 Strong Mathematical Induct...
uzinfi 12887 Extract the lower bound of...
nninf 12888 The infimum of the set of ...
nn0inf 12889 The infimum of the set of ...
infssuzle 12890 The infimum of a subset of...
infssuzcl 12891 The infimum of a subset of...
ublbneg 12892 The image under negation o...
eqreznegel 12893 Two ways to express the im...
supminf 12894 The supremum of a bounded-...
lbzbi 12895 If a set of reals is bound...
zsupss 12896 Any nonempty bounded subse...
suprzcl2 12897 The supremum of a bounded-...
suprzub 12898 The supremum of a bounded-...
uzsupss 12899 Any bounded subset of an u...
nn01to3 12900 A (nonnegative) integer be...
nn0ge2m1nnALT 12901 Alternate proof of ~ nn0ge...
uzwo3 12902 Well-ordering principle: a...
zmin 12903 There is a unique smallest...
zmax 12904 There is a unique largest ...
zbtwnre 12905 There is a unique integer ...
rebtwnz 12906 There is a unique greatest...
elq 12909 Membership in the set of r...
qmulz 12910 If ` A ` is rational, then...
znq 12911 The ratio of an integer an...
qre 12912 A rational number is a rea...
zq 12913 An integer is a rational n...
qred 12914 A rational number is a rea...
zssq 12915 The integers are a subset ...
nn0ssq 12916 The nonnegative integers a...
nnssq 12917 The positive integers are ...
qssre 12918 The rationals are a subset...
qsscn 12919 The rationals are a subset...
qex 12920 The set of rational number...
nnq 12921 A positive integer is rati...
qcn 12922 A rational number is a com...
qexALT 12923 Alternate proof of ~ qex ....
qaddcl 12924 Closure of addition of rat...
qnegcl 12925 Closure law for the negati...
qmulcl 12926 Closure of multiplication ...
qsubcl 12927 Closure of subtraction of ...
qreccl 12928 Closure of reciprocal of r...
qdivcl 12929 Closure of division of rat...
qrevaddcl 12930 Reverse closure law for ad...
nnrecq 12931 The reciprocal of a positi...
irradd 12932 The sum of an irrational n...
irrmul 12933 The product of an irration...
elpq 12934 A positive rational is the...
elpqb 12935 A class is a positive rati...
rpnnen1lem2 12936 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12937 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12938 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12939 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12940 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12941 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12942 One half of ~ rpnnen , whe...
reexALT 12943 Alternate proof of ~ reex ...
cnref1o 12944 There is a natural one-to-...
cnexALT 12945 The set of complex numbers...
xrex 12946 The set of extended reals ...
mpoaddex 12947 The addition operation is ...
addex 12948 The addition operation is ...
mpomulex 12949 The multiplication operati...
mulex 12950 The multiplication operati...
elrp 12953 Membership in the set of p...
elrpii 12954 Membership in the set of p...
1rp 12955 1 is a positive real. (Co...
2rp 12956 2 is a positive real. (Co...
3rp 12957 3 is a positive real. (Co...
5rp 12958 5 is a positive real. (Co...
rpssre 12959 The positive reals are a s...
rpre 12960 A positive real is a real....
rpxr 12961 A positive real is an exte...
rpcn 12962 A positive real is a compl...
nnrp 12963 A positive integer is a po...
rpgt0 12964 A positive real is greater...
rpge0 12965 A positive real is greater...
rpregt0 12966 A positive real is a posit...
rprege0 12967 A positive real is a nonne...
rpne0 12968 A positive real is nonzero...
rprene0 12969 A positive real is a nonze...
rpcnne0 12970 A positive real is a nonze...
neglt 12971 The negative of a positive...
rpcndif0 12972 A positive real number is ...
ralrp 12973 Quantification over positi...
rexrp 12974 Quantification over positi...
rpaddcl 12975 Closure law for addition o...
rpmulcl 12976 Closure law for multiplica...
rpmtmip 12977 "Minus times minus is plus...
rpdivcl 12978 Closure law for division o...
rpreccl 12979 Closure law for reciprocat...
rphalfcl 12980 Closure law for half of a ...
rpgecl 12981 A number greater than or e...
rphalflt 12982 Half of a positive real is...
rerpdivcl 12983 Closure law for division o...
ge0p1rp 12984 A nonnegative number plus ...
rpneg 12985 Either a nonzero real or i...
negelrp 12986 Elementhood of a negation ...
negelrpd 12987 The negation of a negative...
0nrp 12988 Zero is not a positive rea...
ltsubrp 12989 Subtracting a positive rea...
ltaddrp 12990 Adding a positive number t...
difrp 12991 Two ways to say one number...
elrpd 12992 Membership in the set of p...
nnrpd 12993 A positive integer is a po...
zgt1rpn0n1 12994 An integer greater than 1 ...
rpred 12995 A positive real is a real....
rpxrd 12996 A positive real is an exte...
rpcnd 12997 A positive real is a compl...
rpgt0d 12998 A positive real is greater...
rpge0d 12999 A positive real is greater...
rpne0d 13000 A positive real is nonzero...
rpregt0d 13001 A positive real is real an...
rprege0d 13002 A positive real is real an...
rprene0d 13003 A positive real is a nonze...
rpcnne0d 13004 A positive real is a nonze...
rpreccld 13005 Closure law for reciprocat...
rprecred 13006 Closure law for reciprocat...
rphalfcld 13007 Closure law for half of a ...
reclt1d 13008 The reciprocal of a positi...
recgt1d 13009 The reciprocal of a positi...
rpaddcld 13010 Closure law for addition o...
rpmulcld 13011 Closure law for multiplica...
rpdivcld 13012 Closure law for division o...
ltrecd 13013 The reciprocal of both sid...
lerecd 13014 The reciprocal of both sid...
ltrec1d 13015 Reciprocal swap in a 'less...
lerec2d 13016 Reciprocal swap in a 'less...
lediv2ad 13017 Division of both sides of ...
ltdiv2d 13018 Division of a positive num...
lediv2d 13019 Division of a positive num...
ledivdivd 13020 Invert ratios of positive ...
divge1 13021 The ratio of a number over...
divlt1lt 13022 A real number divided by a...
divle1le 13023 A real number divided by a...
ledivge1le 13024 If a number is less than o...
ge0p1rpd 13025 A nonnegative number plus ...
rerpdivcld 13026 Closure law for division o...
ltsubrpd 13027 Subtracting a positive rea...
ltaddrpd 13028 Adding a positive number t...
ltaddrp2d 13029 Adding a positive number t...
ltmulgt11d 13030 Multiplication by a number...
ltmulgt12d 13031 Multiplication by a number...
gt0divd 13032 Division of a positive num...
ge0divd 13033 Division of a nonnegative ...
rpgecld 13034 A number greater than or e...
divge0d 13035 The ratio of nonnegative a...
ltmul1d 13036 The ratio of nonnegative a...
ltmul2d 13037 Multiplication of both sid...
lemul1d 13038 Multiplication of both sid...
lemul2d 13039 Multiplication of both sid...
ltdiv1d 13040 Division of both sides of ...
lediv1d 13041 Division of both sides of ...
ltmuldivd 13042 'Less than' relationship b...
ltmuldiv2d 13043 'Less than' relationship b...
lemuldivd 13044 'Less than or equal to' re...
lemuldiv2d 13045 'Less than or equal to' re...
ltdivmuld 13046 'Less than' relationship b...
ltdivmul2d 13047 'Less than' relationship b...
ledivmuld 13048 'Less than or equal to' re...
ledivmul2d 13049 'Less than or equal to' re...
ltmul1dd 13050 The ratio of nonnegative a...
ltmul2dd 13051 Multiplication of both sid...
ltdiv1dd 13052 Division of both sides of ...
lediv1dd 13053 Division of both sides of ...
lediv12ad 13054 Comparison of ratio of two...
mul2lt0rlt0 13055 If the result of a multipl...
mul2lt0rgt0 13056 If the result of a multipl...
mul2lt0llt0 13057 If the result of a multipl...
mul2lt0lgt0 13058 If the result of a multipl...
mul2lt0bi 13059 If the result of a multipl...
prodge0rd 13060 Infer that a multiplicand ...
prodge0ld 13061 Infer that a multiplier is...
ltdiv23d 13062 Swap denominator with othe...
lediv23d 13063 Swap denominator with othe...
lt2mul2divd 13064 The ratio of nonnegative a...
nnledivrp 13065 Division of a positive int...
nn0ledivnn 13066 Division of a nonnegative ...
addlelt 13067 If the sum of a real numbe...
ge2halflem1 13068 Half of an integer greater...
ltxr 13075 The 'less than' binary rel...
elxr 13076 Membership in the set of e...
xrnemnf 13077 An extended real other tha...
xrnepnf 13078 An extended real other tha...
xrltnr 13079 The extended real 'less th...
ltpnf 13080 Any (finite) real is less ...
ltpnfd 13081 Any (finite) real is less ...
0ltpnf 13082 Zero is less than plus inf...
mnflt 13083 Minus infinity is less tha...
mnfltd 13084 Minus infinity is less tha...
mnflt0 13085 Minus infinity is less tha...
mnfltpnf 13086 Minus infinity is less tha...
mnfltxr 13087 Minus infinity is less tha...
pnfnlt 13088 No extended real is greate...
nltmnf 13089 No extended real is less t...
pnfge 13090 Plus infinity is an upper ...
pnfged 13091 Plus infinity is an upper ...
xnn0n0n1ge2b 13092 An extended nonnegative in...
0lepnf 13093 0 less than or equal to po...
xnn0ge0 13094 An extended nonnegative in...
mnfle 13095 Minus infinity is less tha...
mnfled 13096 Minus infinity is less tha...
xrltnsym 13097 Ordering on the extended r...
xrltnsym2 13098 'Less than' is antisymmetr...
xrlttri 13099 Ordering on the extended r...
xrlttr 13100 Ordering on the extended r...
xrltso 13101 'Less than' is a strict or...
xrlttri2 13102 Trichotomy law for 'less t...
xrlttri3 13103 Trichotomy law for 'less t...
xrleloe 13104 'Less than or equal' expre...
xrleltne 13105 'Less than or equal to' im...
xrltlen 13106 'Less than' expressed in t...
dfle2 13107 Alternative definition of ...
dflt2 13108 Alternative definition of ...
xrltle 13109 'Less than' implies 'less ...
xrltled 13110 'Less than' implies 'less ...
xrleid 13111 'Less than or equal to' is...
xrleidd 13112 'Less than or equal to' is...
xrletri 13113 Trichotomy law for extende...
xrletri3 13114 Trichotomy law for extende...
xrletrid 13115 Trichotomy law for extende...
xrlelttr 13116 Transitive law for orderin...
xrltletr 13117 Transitive law for orderin...
xrletr 13118 Transitive law for orderin...
xrlttrd 13119 Transitive law for orderin...
xrlelttrd 13120 Transitive law for orderin...
xrltletrd 13121 Transitive law for orderin...
xrletrd 13122 Transitive law for orderin...
xrltne 13123 'Less than' implies not eq...
nltpnft 13124 An extended real is not le...
xgepnf 13125 An extended real which is ...
ngtmnft 13126 An extended real is not gr...
xlemnf 13127 An extended real which is ...
xrrebnd 13128 An extended real is real i...
xrre 13129 A way of proving that an e...
xrre2 13130 An extended real between t...
xrre3 13131 A way of proving that an e...
ge0gtmnf 13132 A nonnegative extended rea...
ge0nemnf 13133 A nonnegative extended rea...
xrrege0 13134 A nonnegative extended rea...
xrmax1 13135 An extended real is less t...
xrmax2 13136 An extended real is less t...
xrmin1 13137 The minimum of two extende...
xrmin2 13138 The minimum of two extende...
xrmaxeq 13139 The maximum of two extende...
xrmineq 13140 The minimum of two extende...
xrmaxlt 13141 Two ways of saying the max...
xrltmin 13142 Two ways of saying an exte...
xrmaxle 13143 Two ways of saying the max...
xrlemin 13144 Two ways of saying a numbe...
max1 13145 A number is less than or e...
max1ALT 13146 A number is less than or e...
max2 13147 A number is less than or e...
2resupmax 13148 The supremum of two real n...
min1 13149 The minimum of two numbers...
min2 13150 The minimum of two numbers...
maxle 13151 Two ways of saying the max...
lemin 13152 Two ways of saying a numbe...
maxlt 13153 Two ways of saying the max...
ltmin 13154 Two ways of saying a numbe...
lemaxle 13155 A real number which is les...
max0sub 13156 Decompose a real number in...
ifle 13157 An if statement transforms...
z2ge 13158 There exists an integer gr...
qbtwnre 13159 The rational numbers are d...
qbtwnxr 13160 The rational numbers are d...
qsqueeze 13161 If a nonnegative real is l...
qextltlem 13162 Lemma for ~ qextlt and qex...
qextlt 13163 An extensionality-like pro...
qextle 13164 An extensionality-like pro...
xralrple 13165 Show that ` A ` is less th...
alrple 13166 Show that ` A ` is less th...
xnegeq 13167 Equality of two extended n...
xnegex 13168 A negative extended real e...
xnegpnf 13169 Minus ` +oo ` . Remark of...
xnegmnf 13170 Minus ` -oo ` . Remark of...
rexneg 13171 Minus a real number. Rema...
xneg0 13172 The negative of zero. (Co...
xnegcl 13173 Closure of extended real n...
xnegneg 13174 Extended real version of ~...
xneg11 13175 Extended real version of ~...
xltnegi 13176 Forward direction of ~ xlt...
xltneg 13177 Extended real version of ~...
xleneg 13178 Extended real version of ~...
xlt0neg1 13179 Extended real version of ~...
xlt0neg2 13180 Extended real version of ~...
xle0neg1 13181 Extended real version of ~...
xle0neg2 13182 Extended real version of ~...
xaddval 13183 Value of the extended real...
xaddf 13184 The extended real addition...
xmulval 13185 Value of the extended real...
xaddpnf1 13186 Addition of positive infin...
xaddpnf2 13187 Addition of positive infin...
xaddmnf1 13188 Addition of negative infin...
xaddmnf2 13189 Addition of negative infin...
pnfaddmnf 13190 Addition of positive and n...
mnfaddpnf 13191 Addition of negative and p...
rexadd 13192 The extended real addition...
rexsub 13193 Extended real subtraction ...
rexaddd 13194 The extended real addition...
xnn0xaddcl 13195 The extended nonnegative i...
xaddnemnf 13196 Closure of extended real a...
xaddnepnf 13197 Closure of extended real a...
xnegid 13198 Extended real version of ~...
xaddcl 13199 The extended real addition...
xaddcom 13200 The extended real addition...
xaddrid 13201 Extended real version of ~...
xaddlid 13202 Extended real version of ~...
xaddridd 13203 ` 0 ` is a right identity ...
xnn0lem1lt 13204 Extended nonnegative integ...
xnn0lenn0nn0 13205 An extended nonnegative in...
xnn0le2is012 13206 An extended nonnegative in...
xnn0xadd0 13207 The sum of two extended no...
xnegdi 13208 Extended real version of ~...
xaddass 13209 Associativity of extended ...
xaddass2 13210 Associativity of extended ...
xpncan 13211 Extended real version of ~...
xnpcan 13212 Extended real version of ~...
xleadd1a 13213 Extended real version of ~...
xleadd2a 13214 Commuted form of ~ xleadd1...
xleadd1 13215 Weakened version of ~ xlea...
xltadd1 13216 Extended real version of ~...
xltadd2 13217 Extended real version of ~...
xaddge0 13218 The sum of nonnegative ext...
xle2add 13219 Extended real version of ~...
xlt2add 13220 Extended real version of ~...
xsubge0 13221 Extended real version of ~...
xposdif 13222 Extended real version of ~...
xlesubadd 13223 Under certain conditions, ...
xmullem 13224 Lemma for ~ rexmul . (Con...
xmullem2 13225 Lemma for ~ xmulneg1 . (C...
xmulcom 13226 Extended real multiplicati...
xmul01 13227 Extended real version of ~...
xmul02 13228 Extended real version of ~...
xmulneg1 13229 Extended real version of ~...
xmulneg2 13230 Extended real version of ~...
rexmul 13231 The extended real multipli...
xmulf 13232 The extended real multipli...
xmulcl 13233 Closure of extended real m...
xmulpnf1 13234 Multiplication by plus inf...
xmulpnf2 13235 Multiplication by plus inf...
xmulmnf1 13236 Multiplication by minus in...
xmulmnf2 13237 Multiplication by minus in...
xmulpnf1n 13238 Multiplication by plus inf...
xmulrid 13239 Extended real version of ~...
xmullid 13240 Extended real version of ~...
xmulm1 13241 Extended real version of ~...
xmulasslem2 13242 Lemma for ~ xmulass . (Co...
xmulgt0 13243 Extended real version of ~...
xmulge0 13244 Extended real version of ~...
xmulasslem 13245 Lemma for ~ xmulass . (Co...
xmulasslem3 13246 Lemma for ~ xmulass . (Co...
xmulass 13247 Associativity of the exten...
xlemul1a 13248 Extended real version of ~...
xlemul2a 13249 Extended real version of ~...
xlemul1 13250 Extended real version of ~...
xlemul2 13251 Extended real version of ~...
xltmul1 13252 Extended real version of ~...
xltmul2 13253 Extended real version of ~...
xadddilem 13254 Lemma for ~ xadddi . (Con...
xadddi 13255 Distributive property for ...
xadddir 13256 Commuted version of ~ xadd...
xadddi2 13257 The assumption that the mu...
xadddi2r 13258 Commuted version of ~ xadd...
x2times 13259 Extended real version of ~...
xnegcld 13260 Closure of extended real n...
xaddcld 13261 The extended real addition...
xmulcld 13262 Closure of extended real m...
xadd4d 13263 Rearrangement of 4 terms i...
xnn0add4d 13264 Rearrangement of 4 terms i...
xrsupexmnf 13265 Adding minus infinity to a...
xrinfmexpnf 13266 Adding plus infinity to a ...
xrsupsslem 13267 Lemma for ~ xrsupss . (Co...
xrinfmsslem 13268 Lemma for ~ xrinfmss . (C...
xrsupss 13269 Any subset of extended rea...
xrinfmss 13270 Any subset of extended rea...
xrinfmss2 13271 Any subset of extended rea...
xrub 13272 By quantifying only over r...
supxr 13273 The supremum of a set of e...
supxr2 13274 The supremum of a set of e...
supxrcl 13275 The supremum of an arbitra...
supxrun 13276 The supremum of the union ...
supxrmnf 13277 Adding minus infinity to a...
supxrpnf 13278 The supremum of a set of e...
supxrunb1 13279 The supremum of an unbound...
supxrunb2 13280 The supremum of an unbound...
supxrbnd1 13281 The supremum of a bounded-...
supxrbnd2 13282 The supremum of a bounded-...
xrsup0 13283 The supremum of an empty s...
supxrub 13284 A member of a set of exten...
supxrlub 13285 The supremum of a set of e...
supxrleub 13286 The supremum of a set of e...
supxrre 13287 The real and extended real...
supxrbnd 13288 The supremum of a bounded-...
supxrgtmnf 13289 The supremum of a nonempty...
supxrre1 13290 The supremum of a nonempty...
supxrre2 13291 The supremum of a nonempty...
supxrss 13292 Smaller sets of extended r...
xrsupssd 13293 Inequality deduction for s...
infxrcl 13294 The infimum of an arbitrar...
infxrlb 13295 A member of a set of exten...
infxrgelb 13296 The infimum of a set of ex...
infxrre 13297 The real and extended real...
infxrmnf 13298 The infinimum of a set of ...
xrinf0 13299 The infimum of the empty s...
infxrss 13300 Larger sets of extended re...
reltre 13301 For all real numbers there...
rpltrp 13302 For all positive real numb...
reltxrnmnf 13303 For all extended real numb...
infmremnf 13304 The infimum of the reals i...
infmrp1 13305 The infimum of the positiv...
ixxval 13314 Value of the interval func...
elixx1 13315 Membership in an interval ...
ixxf 13316 The set of intervals of ex...
ixxex 13317 The set of intervals of ex...
ixxssxr 13318 The set of intervals of ex...
elixx3g 13319 Membership in a set of ope...
ixxssixx 13320 An interval is a subset of...
ixxdisj 13321 Split an interval into dis...
ixxun 13322 Split an interval into two...
ixxin 13323 Intersection of two interv...
ixxss1 13324 Subset relationship for in...
ixxss2 13325 Subset relationship for in...
ixxss12 13326 Subset relationship for in...
ixxub 13327 Extract the upper bound of...
ixxlb 13328 Extract the lower bound of...
iooex 13329 The set of open intervals ...
iooval 13330 Value of the open interval...
ioo0 13331 An empty open interval of ...
ioon0 13332 An open interval of extend...
ndmioo 13333 The open interval function...
iooid 13334 An open interval with iden...
elioo3g 13335 Membership in a set of ope...
elioore 13336 A member of an open interv...
lbioo 13337 An open interval does not ...
ubioo 13338 An open interval does not ...
iooval2 13339 Value of the open interval...
iooin 13340 Intersection of two open i...
iooss1 13341 Subset relationship for op...
iooss2 13342 Subset relationship for op...
iocval 13343 Value of the open-below, c...
icoval 13344 Value of the closed-below,...
iccval 13345 Value of the closed interv...
elioo1 13346 Membership in an open inte...
elioo2 13347 Membership in an open inte...
elioc1 13348 Membership in an open-belo...
elico1 13349 Membership in a closed-bel...
elicc1 13350 Membership in a closed int...
iccid 13351 A closed interval with ide...
ico0 13352 An empty open interval of ...
ioc0 13353 An empty open interval of ...
icc0 13354 An empty closed interval o...
dfrp2 13355 Alternate definition of th...
elicod 13356 Membership in a left-close...
icogelb 13357 An element of a left-close...
icogelbd 13358 An element of a left-close...
elicore 13359 A member of a left-closed ...
ubioc1 13360 The upper bound belongs to...
lbico1 13361 The lower bound belongs to...
iccleub 13362 An element of a closed int...
iccgelb 13363 An element of a closed int...
elioo5 13364 Membership in an open inte...
eliooxr 13365 A nonempty open interval s...
eliooord 13366 Ordering implied by a memb...
elioo4g 13367 Membership in an open inte...
ioossre 13368 An open interval is a set ...
ioosscn 13369 An open interval is a set ...
elioc2 13370 Membership in an open-belo...
elico2 13371 Membership in a closed-bel...
elicc2 13372 Membership in a closed rea...
elicc2i 13373 Inference for membership i...
elicc4 13374 Membership in a closed rea...
iccss 13375 Condition for a closed int...
iccssioo 13376 Condition for a closed int...
icossico 13377 Condition for a closed-bel...
iccss2 13378 Condition for a closed int...
iccssico 13379 Condition for a closed int...
iccssioo2 13380 Condition for a closed int...
iccssico2 13381 Condition for a closed int...
icossico2d 13382 Condition for a closed-bel...
ioomax 13383 The open interval from min...
iccmax 13384 The closed interval from m...
ioopos 13385 The set of positive reals ...
ioorp 13386 The set of positive reals ...
iooshf 13387 Shift the arguments of the...
iocssre 13388 A closed-above interval wi...
icossre 13389 A closed-below interval wi...
iccssre 13390 A closed real interval is ...
iccssxr 13391 A closed interval is a set...
iocssxr 13392 An open-below, closed-abov...
icossxr 13393 A closed-below, open-above...
ioossicc 13394 An open interval is a subs...
iccssred 13395 A closed real interval is ...
eliccxr 13396 A member of a closed inter...
icossicc 13397 A closed-below, open-above...
iocssicc 13398 A closed-above, open-below...
ioossico 13399 An open interval is a subs...
iocssioo 13400 Condition for a closed int...
icossioo 13401 Condition for a closed int...
ioossioo 13402 Condition for an open inte...
iccsupr 13403 A nonempty subset of a clo...
elioopnf 13404 Membership in an unbounded...
elioomnf 13405 Membership in an unbounded...
elicopnf 13406 Membership in a closed unb...
repos 13407 Two ways of saying that a ...
ioof 13408 The set of open intervals ...
iccf 13409 The set of closed interval...
unirnioo 13410 The union of the range of ...
dfioo2 13411 Alternate definition of th...
ioorebas 13412 Open intervals are element...
xrge0neqmnf 13413 A nonnegative extended rea...
xrge0nre 13414 An extended real which is ...
elrege0 13415 The predicate "is a nonneg...
nn0rp0 13416 A nonnegative integer is a...
rge0ssre 13417 Nonnegative real numbers a...
elxrge0 13418 Elementhood in the set of ...
0e0icopnf 13419 0 is a member of ` ( 0 [,)...
0e0iccpnf 13420 0 is a member of ` ( 0 [,]...
ge0addcl 13421 The nonnegative reals are ...
ge0mulcl 13422 The nonnegative reals are ...
ge0xaddcl 13423 The nonnegative reals are ...
ge0xmulcl 13424 The nonnegative extended r...
lbicc2 13425 The lower bound of a close...
ubicc2 13426 The upper bound of a close...
elicc01 13427 Membership in the closed r...
elunitrn 13428 The closed unit interval i...
elunitcn 13429 The closed unit interval i...
0elunit 13430 Zero is an element of the ...
1elunit 13431 One is an element of the c...
iooneg 13432 Membership in a negated op...
iccneg 13433 Membership in a negated cl...
icoshft 13434 A shifted real is a member...
icoshftf1o 13435 Shifting a closed-below, o...
icoun 13436 The union of two adjacent ...
icodisj 13437 Adjacent left-closed right...
ioounsn 13438 The union of an open inter...
snunioo 13439 The closure of one end of ...
snunico 13440 The closure of the open en...
snunioc 13441 The closure of the open en...
prunioo 13442 The closure of an open rea...
ioodisj 13443 If the upper bound of one ...
ioojoin 13444 Join two open intervals to...
difreicc 13445 The class difference of ` ...
iccsplit 13446 Split a closed interval in...
iccshftr 13447 Membership in a shifted in...
iccshftri 13448 Membership in a shifted in...
iccshftl 13449 Membership in a shifted in...
iccshftli 13450 Membership in a shifted in...
iccdil 13451 Membership in a dilated in...
iccdili 13452 Membership in a dilated in...
icccntr 13453 Membership in a contracted...
icccntri 13454 Membership in a contracted...
divelunit 13455 A condition for a ratio to...
lincmb01cmp 13456 A linear combination of tw...
iccf1o 13457 Describe a bijection from ...
iccen 13458 Any nontrivial closed inte...
xov1plusxeqvd 13459 A complex number ` X ` is ...
unitssre 13460 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13461 The closed unit interval i...
supicc 13462 Supremum of a bounded set ...
supiccub 13463 The supremum of a bounded ...
supicclub 13464 The supremum of a bounded ...
supicclub2 13465 The supremum of a bounded ...
zltaddlt1le 13466 The sum of an integer and ...
xnn0xrge0 13467 An extended nonnegative in...
fzval 13470 The value of a finite set ...
fzval2 13471 An alternative way of expr...
fzf 13472 Establish the domain and c...
elfz1 13473 Membership in a finite set...
elfz 13474 Membership in a finite set...
elfz2 13475 Membership in a finite set...
elfzd 13476 Membership in a finite set...
elfz5 13477 Membership in a finite set...
elfz4 13478 Membership in a finite set...
elfzuzb 13479 Membership in a finite set...
eluzfz 13480 Membership in a finite set...
elfzuz 13481 A member of a finite set o...
elfzuz3 13482 Membership in a finite set...
elfzel2 13483 Membership in a finite set...
elfzel1 13484 Membership in a finite set...
elfzelz 13485 A member of a finite set o...
elfzelzd 13486 A member of a finite set o...
fzssz 13487 A finite sequence of integ...
elfzle1 13488 A member of a finite set o...
elfzle2 13489 A member of a finite set o...
elfzuz2 13490 Implication of membership ...
elfzle3 13491 Membership in a finite set...
eluzfz1 13492 Membership in a finite set...
eluzfz2 13493 Membership in a finite set...
eluzfz2b 13494 Membership in a finite set...
elfz3 13495 Membership in a finite set...
elfz1eq 13496 Membership in a finite set...
elfzubelfz 13497 If there is a member in a ...
peano2fzr 13498 A Peano-postulate-like the...
fzn0 13499 Properties of a finite int...
fz0 13500 A finite set of sequential...
fzn 13501 A finite set of sequential...
fzen 13502 A shifted finite set of se...
fz1n 13503 A 1-based finite set of se...
0nelfz1 13504 0 is not an element of a f...
0fz1 13505 Two ways to say a finite 1...
fz10 13506 There are no integers betw...
uzsubsubfz 13507 Membership of an integer g...
uzsubsubfz1 13508 Membership of an integer g...
ige3m2fz 13509 Membership of an integer g...
fzsplit2 13510 Split a finite interval of...
fzsplit 13511 Split a finite interval of...
fzdisj 13512 Condition for two finite i...
fz01en 13513 0-based and 1-based finite...
elfznn 13514 A member of a finite set o...
elfz1end 13515 A nonempty finite range of...
fz1ssnn 13516 A finite set of positive i...
fznn0sub 13517 Subtraction closure for a ...
fzmmmeqm 13518 Subtracting the difference...
fzaddel 13519 Membership of a sum in a f...
fzadd2 13520 Membership of a sum in a f...
fzsubel 13521 Membership of a difference...
fzopth 13522 A finite set of sequential...
fzass4 13523 Two ways to express a nond...
fzss1 13524 Subset relationship for fi...
fzss2 13525 Subset relationship for fi...
fzssuz 13526 A finite set of sequential...
fzsn 13527 A finite interval of integ...
fzssp1 13528 Subset relationship for fi...
fzssnn 13529 Finite sets of sequential ...
ssfzunsnext 13530 A subset of a finite seque...
ssfzunsn 13531 A subset of a finite seque...
fzsuc 13532 Join a successor to the en...
fzpred 13533 Join a predecessor to the ...
fzpreddisj 13534 A finite set of sequential...
elfzp1 13535 Append an element to a fin...
fzp1ss 13536 Subset relationship for fi...
fzelp1 13537 Membership in a set of seq...
fzp1elp1 13538 Add one to an element of a...
fznatpl1 13539 Shift membership in a fini...
fzpr 13540 A finite interval of integ...
fztp 13541 A finite interval of integ...
fz12pr 13542 An integer range between 1...
fzsuc2 13543 Join a successor to the en...
fzp1disj 13544 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13545 Remove a successor from th...
fzprval 13546 Two ways of defining the f...
fztpval 13547 Two ways of defining the f...
fzrev 13548 Reversal of start and end ...
fzrev2 13549 Reversal of start and end ...
fzrev2i 13550 Reversal of start and end ...
fzrev3 13551 The "complement" of a memb...
fzrev3i 13552 The "complement" of a memb...
fznn 13553 Finite set of sequential i...
elfz1b 13554 Membership in a 1-based fi...
elfz1uz 13555 Membership in a 1-based fi...
elfzm11 13556 Membership in a finite set...
uzsplit 13557 Express an upper integer s...
uzdisj 13558 The first ` N ` elements o...
fseq1p1m1 13559 Add/remove an item to/from...
fseq1m1p1 13560 Add/remove an item to/from...
fz1sbc 13561 Quantification over a one-...
elfzp1b 13562 An integer is a member of ...
elfzm1b 13563 An integer is a member of ...
elfzp12 13564 Options for membership in ...
fzne1 13565 Elementhood in a finite se...
fzdif1 13566 Split the first element of...
fz0dif1 13567 Split the first element of...
fzm1 13568 Choices for an element of ...
fzneuz 13569 No finite set of sequentia...
fznuz 13570 Disjointness of the upper ...
uznfz 13571 Disjointness of the upper ...
fzp1nel 13572 One plus the upper bound o...
fzrevral 13573 Reversal of scanning order...
fzrevral2 13574 Reversal of scanning order...
fzrevral3 13575 Reversal of scanning order...
fzshftral 13576 Shift the scanning order i...
ige2m1fz1 13577 Membership of an integer g...
ige2m1fz 13578 Membership in a 0-based fi...
elfz2nn0 13579 Membership in a finite set...
fznn0 13580 Characterization of a fini...
elfznn0 13581 A member of a finite set o...
elfz3nn0 13582 The upper bound of a nonem...
fz0ssnn0 13583 Finite sets of sequential ...
fz1ssfz0 13584 Subset relationship for fi...
0elfz 13585 0 is an element of a finit...
nn0fz0 13586 A nonnegative integer is a...
elfz0add 13587 An element of a finite set...
fz0sn 13588 An integer range from 0 to...
fz0tp 13589 An integer range from 0 to...
fz0to3un2pr 13590 An integer range from 0 to...
fz0to4untppr 13591 An integer range from 0 to...
fz0to5un2tp 13592 An integer range from 0 to...
elfz0ubfz0 13593 An element of a finite set...
elfz0fzfz0 13594 A member of a finite set o...
fz0fzelfz0 13595 If a member of a finite se...
fznn0sub2 13596 Subtraction closure for a ...
uzsubfz0 13597 Membership of an integer g...
fz0fzdiffz0 13598 The difference of an integ...
elfzmlbm 13599 Subtracting the lower boun...
elfzmlbp 13600 Subtracting the lower boun...
fzctr 13601 Lemma for theorems about t...
difelfzle 13602 The difference of two inte...
difelfznle 13603 The difference of two inte...
nn0split 13604 Express the set of nonnega...
nn0disj 13605 The first ` N + 1 ` elemen...
fz0sn0fz1 13606 A finite set of sequential...
fvffz0 13607 The function value of a fu...
1fv 13608 A function on a singleton....
4fvwrd4 13609 The first four function va...
2ffzeq 13610 Two functions over 0-based...
preduz 13611 The value of the predecess...
prednn 13612 The value of the predecess...
prednn0 13613 The value of the predecess...
predfz 13614 Calculate the predecessor ...
fzof 13617 Functionality of the half-...
elfzoel1 13618 Reverse closure for half-o...
elfzoel2 13619 Reverse closure for half-o...
elfzoelz 13620 Reverse closure for half-o...
fzoval 13621 Value of the half-open int...
elfzo 13622 Membership in a half-open ...
elfzo2 13623 Membership in a half-open ...
elfzouz 13624 Membership in a half-open ...
nelfzo 13625 An integer not being a mem...
fzolb 13626 The left endpoint of a hal...
fzolb2 13627 The left endpoint of a hal...
elfzole1 13628 A member in a half-open in...
elfzolt2 13629 A member in a half-open in...
elfzolt3 13630 Membership in a half-open ...
elfzolt2b 13631 A member in a half-open in...
elfzolt3b 13632 Membership in a half-open ...
elfzop1le2 13633 A member in a half-open in...
fzonel 13634 A half-open range does not...
elfzouz2 13635 The upper bound of a half-...
elfzofz 13636 A half-open range is conta...
elfzo3 13637 Express membership in a ha...
fzon0 13638 A half-open integer interv...
fzossfz 13639 A half-open range is conta...
fzossz 13640 A half-open integer interv...
fzon 13641 A half-open set of sequent...
fzo0n 13642 A half-open range of nonne...
fzonlt0 13643 A half-open integer range ...
fzo0 13644 Half-open sets with equal ...
fzonnsub 13645 If ` K < N ` then ` N - K ...
fzonnsub2 13646 If ` M < N ` then ` N - M ...
fzoss1 13647 Subset relationship for ha...
fzoss2 13648 Subset relationship for ha...
fzossrbm1 13649 Subset of a half-open rang...
fzo0ss1 13650 Subset relationship for ha...
fzossnn0 13651 A half-open integer range ...
fzospliti 13652 One direction of splitting...
fzosplit 13653 Split a half-open integer ...
fzodisj 13654 Abutting half-open integer...
fzouzsplit 13655 Split an upper integer set...
fzouzdisj 13656 A half-open integer range ...
fzoun 13657 A half-open integer range ...
fzodisjsn 13658 A half-open integer range ...
prinfzo0 13659 The intersection of a half...
lbfzo0 13660 An integer is strictly gre...
elfzo0 13661 Membership in a half-open ...
elfzo0z 13662 Membership in a half-open ...
nn0p1elfzo 13663 A nonnegative integer incr...
elfzo0le 13664 A member in a half-open ra...
elfzolem1 13665 A member in a half-open in...
elfzo0subge1 13666 The difference of the uppe...
elfzo0suble 13667 The difference of the uppe...
elfzonn0 13668 A member of a half-open ra...
fzonmapblen 13669 The result of subtracting ...
fzofzim 13670 If a nonnegative integer i...
fz1fzo0m1 13671 Translation of one between...
fzossnn 13672 Half-open integer ranges s...
elfzo1 13673 Membership in a half-open ...
fzo1lb 13674 1 is the left endpoint of ...
1elfzo1 13675 1 is in a half-open range ...
fzo1fzo0n0 13676 An integer between 1 and a...
fzo0n0 13677 A half-open integer range ...
fzoaddel 13678 Translate membership in a ...
fzo0addel 13679 Translate membership in a ...
fzo0addelr 13680 Translate membership in a ...
fzoaddel2 13681 Translate membership in a ...
elfzoextl 13682 Membership of an integer i...
elfzoext 13683 Membership of an integer i...
elincfzoext 13684 Membership of an increased...
fzosubel 13685 Translate membership in a ...
fzosubel2 13686 Membership in a translated...
fzosubel3 13687 Membership in a translated...
eluzgtdifelfzo 13688 Membership of the differen...
ige2m2fzo 13689 Membership of an integer g...
fzocatel 13690 Translate membership in a ...
ubmelfzo 13691 If an integer in a 1-based...
elfzodifsumelfzo 13692 If an integer is in a half...
elfzom1elp1fzo 13693 Membership of an integer i...
elfzom1elfzo 13694 Membership in a half-open ...
fzval3 13695 Expressing a closed intege...
fz0add1fz1 13696 Translate membership in a ...
fzosn 13697 Expressing a singleton as ...
elfzomin 13698 Membership of an integer i...
zpnn0elfzo 13699 Membership of an integer i...
zpnn0elfzo1 13700 Membership of an integer i...
fzosplitsnm1 13701 Removing a singleton from ...
elfzonlteqm1 13702 If an element of a half-op...
fzonn0p1 13703 A nonnegative integer is a...
fzossfzop1 13704 A half-open range of nonne...
fzonn0p1p1 13705 If a nonnegative integer i...
elfzom1p1elfzo 13706 Increasing an element of a...
fzo0ssnn0 13707 Half-open integer ranges s...
fzo01 13708 Expressing the singleton o...
fzo12sn 13709 A 1-based half-open intege...
fzo13pr 13710 A 1-based half-open intege...
fzo0to2pr 13711 A half-open integer range ...
fz01pr 13712 An integer range between 0...
fzo0to3tp 13713 A half-open integer range ...
fzo0to42pr 13714 A half-open integer range ...
fzo1to4tp 13715 A half-open integer range ...
fzo0sn0fzo1 13716 A half-open range of nonne...
elfzo0l 13717 A member of a half-open ra...
fzoend 13718 The endpoint of a half-ope...
fzo0end 13719 The endpoint of a zero-bas...
ssfzo12 13720 Subset relationship for ha...
ssfzoulel 13721 If a half-open integer ran...
ssfzo12bi 13722 Subset relationship for ha...
fzoopth 13723 A half-open integer range ...
ubmelm1fzo 13724 The result of subtracting ...
fzofzp1 13725 If a point is in a half-op...
fzofzp1b 13726 If a point is in a half-op...
elfzom1b 13727 An integer is a member of ...
elfzom1elp1fzo1 13728 Membership of a nonnegativ...
elfzo1elm1fzo0 13729 Membership of a positive i...
elfzonelfzo 13730 If an element of a half-op...
fzonfzoufzol 13731 If an element of a half-op...
elfzomelpfzo 13732 An integer increased by an...
elfznelfzo 13733 A value in a finite set of...
elfznelfzob 13734 A value in a finite set of...
peano2fzor 13735 A Peano-postulate-like the...
fzosplitsn 13736 Extending a half-open rang...
fzosplitpr 13737 Extending a half-open inte...
fzosplitprm1 13738 Extending a half-open inte...
fzosplitsni 13739 Membership in a half-open ...
fzisfzounsn 13740 A finite interval of integ...
elfzr 13741 A member of a finite inter...
elfzlmr 13742 A member of a finite inter...
elfz0lmr 13743 A member of a finite inter...
fzostep1 13744 Two possibilities for a nu...
fzoshftral 13745 Shift the scanning order i...
fzind2 13746 Induction on the integers ...
fvinim0ffz 13747 The function values for th...
injresinjlem 13748 Lemma for ~ injresinj . (...
injresinj 13749 A function whose restricti...
subfzo0 13750 The difference between two...
fvf1tp 13751 Values of a one-to-one fun...
flval 13756 Value of the floor (greate...
flcl 13757 The floor (greatest intege...
reflcl 13758 The floor (greatest intege...
fllelt 13759 A basic property of the fl...
flcld 13760 The floor (greatest intege...
flle 13761 A basic property of the fl...
flltp1 13762 A basic property of the fl...
fllep1 13763 A basic property of the fl...
fraclt1 13764 The fractional part of a r...
fracle1 13765 The fractional part of a r...
fracge0 13766 The fractional part of a r...
flge 13767 The floor function value i...
fllt 13768 The floor function value i...
flflp1 13769 Move floor function betwee...
flid 13770 An integer is its own floo...
flidm 13771 The floor function is idem...
flidz 13772 A real number equals its f...
flltnz 13773 The floor of a non-integer...
flwordi 13774 Ordering relation for the ...
flword2 13775 Ordering relation for the ...
flval2 13776 An alternate way to define...
flval3 13777 An alternate way to define...
flbi 13778 A condition equivalent to ...
flbi2 13779 A condition equivalent to ...
adddivflid 13780 The floor of a sum of an i...
ico01fl0 13781 The floor of a real number...
flge0nn0 13782 The floor of a number grea...
flge1nn 13783 The floor of a number grea...
fldivnn0 13784 The floor function of a di...
refldivcl 13785 The floor function of a di...
divfl0 13786 The floor of a fraction is...
fladdz 13787 An integer can be moved in...
flzadd 13788 An integer can be moved in...
flmulnn0 13789 Move a nonnegative integer...
btwnzge0 13790 A real bounded between an ...
2tnp1ge0ge0 13791 Two times an integer plus ...
flhalf 13792 Ordering relation for the ...
fldivle 13793 The floor function of a di...
fldivnn0le 13794 The floor function of a di...
flltdivnn0lt 13795 The floor function of a di...
ltdifltdiv 13796 If the dividend of a divis...
fldiv4p1lem1div2 13797 The floor of an integer eq...
fldiv4lem1div2uz2 13798 The floor of an integer gr...
fldiv4lem1div2 13799 The floor of a positive in...
ceilval 13800 The value of the ceiling f...
dfceil2 13801 Alternative definition of ...
ceilval2 13802 The value of the ceiling f...
ceicl 13803 The ceiling function retur...
ceilcl 13804 Closure of the ceiling fun...
ceilcld 13805 Closure of the ceiling fun...
ceige 13806 The ceiling of a real numb...
ceilge 13807 The ceiling of a real numb...
ceilged 13808 The ceiling of a real numb...
ceim1l 13809 One less than the ceiling ...
ceilm1lt 13810 One less than the ceiling ...
ceile 13811 The ceiling of a real numb...
ceille 13812 The ceiling of a real numb...
ceilid 13813 An integer is its own ceil...
ceilidz 13814 A real number equals its c...
flleceil 13815 The floor of a real number...
fleqceilz 13816 A real number is an intege...
quoremz 13817 Quotient and remainder of ...
quoremnn0 13818 Quotient and remainder of ...
quoremnn0ALT 13819 Alternate proof of ~ quore...
intfrac2 13820 Decompose a real into inte...
intfracq 13821 Decompose a rational numbe...
fldiv 13822 Cancellation of the embedd...
fldiv2 13823 Cancellation of an embedde...
fznnfl 13824 Finite set of sequential i...
uzsup 13825 An upper set of integers i...
ioopnfsup 13826 An upper set of reals is u...
icopnfsup 13827 An upper set of reals is u...
rpsup 13828 The positive reals are unb...
resup 13829 The real numbers are unbou...
xrsup 13830 The extended real numbers ...
modval 13833 The value of the modulo op...
modvalr 13834 The value of the modulo op...
modcl 13835 Closure law for the modulo...
flpmodeq 13836 Partition of a division in...
modcld 13837 Closure law for the modulo...
mod0 13838 ` A mod B ` is zero iff ` ...
mulmod0 13839 The product of an integer ...
negmod0 13840 ` A ` is divisible by ` B ...
modge0 13841 The modulo operation is no...
modlt 13842 The modulo operation is le...
modelico 13843 Modular reduction produces...
moddiffl 13844 Value of the modulo operat...
moddifz 13845 The modulo operation diffe...
modfrac 13846 The fractional part of a n...
flmod 13847 The floor function express...
intfrac 13848 Break a number into its in...
zmod10 13849 An integer modulo 1 is 0. ...
zmod1congr 13850 Two arbitrary integers are...
modmulnn 13851 Move a positive integer in...
modvalp1 13852 The value of the modulo op...
zmodcl 13853 Closure law for the modulo...
zmodcld 13854 Closure law for the modulo...
zmodfz 13855 An integer mod ` B ` lies ...
zmodfzo 13856 An integer mod ` B ` lies ...
zmodfzp1 13857 An integer mod ` B ` lies ...
modid 13858 Identity law for modulo. ...
modid0 13859 A positive real number mod...
modid2 13860 Identity law for modulo. ...
zmodid2 13861 Identity law for modulo re...
zmodidfzo 13862 Identity law for modulo re...
zmodidfzoimp 13863 Identity law for modulo re...
0mod 13864 Special case: 0 modulo a p...
1mod 13865 Special case: 1 modulo a r...
modabs 13866 Absorption law for modulo....
modabs2 13867 Absorption law for modulo....
modcyc 13868 The modulo operation is pe...
modcyc2 13869 The modulo operation is pe...
modadd1 13870 Addition property of the m...
modaddb 13871 Addition property of the m...
modaddid 13872 The sums of two nonnegativ...
modaddabs 13873 Absorption law for modulo....
modaddmod 13874 The sum of a real number m...
muladdmodid 13875 The sum of a positive real...
mulp1mod1 13876 The product of an integer ...
muladdmod 13877 A real number is the sum o...
modmuladd 13878 Decomposition of an intege...
modmuladdim 13879 Implication of a decomposi...
modmuladdnn0 13880 Implication of a decomposi...
negmod 13881 The negation of a number m...
m1modnnsub1 13882 Minus one modulo a positiv...
m1modge3gt1 13883 Minus one modulo an intege...
addmodid 13884 The sum of a positive inte...
addmodidr 13885 The sum of a positive inte...
modadd2mod 13886 The sum of a real number m...
modm1p1mod0 13887 If a real number modulo a ...
modltm1p1mod 13888 If a real number modulo a ...
modmul1 13889 Multiplication property of...
modmul12d 13890 Multiplication property of...
modnegd 13891 Negation property of the m...
modadd12d 13892 Additive property of the m...
modsub12d 13893 Subtraction property of th...
modsubmod 13894 The difference of a real n...
modsubmodmod 13895 The difference of a real n...
2txmodxeq0 13896 Two times a positive real ...
2submod 13897 If a real number is betwee...
modifeq2int 13898 If a nonnegative integer i...
modaddmodup 13899 The sum of an integer modu...
modaddmodlo 13900 The sum of an integer modu...
modmulmod 13901 The product of a real numb...
modmulmodr 13902 The product of an integer ...
modaddmulmod 13903 The sum of a real number a...
moddi 13904 Distribute multiplication ...
modsubdir 13905 Distribute the modulo oper...
modeqmodmin 13906 A real number equals the d...
modirr 13907 A number modulo an irratio...
modfzo0difsn 13908 For a number within a half...
modsumfzodifsn 13909 The sum of a number within...
modlteq 13910 Two nonnegative integers l...
addmodlteq 13911 Two nonnegative integers l...
om2uz0i 13912 The mapping ` G ` is a one...
om2uzsuci 13913 The value of ` G ` (see ~ ...
om2uzuzi 13914 The value ` G ` (see ~ om2...
om2uzlti 13915 Less-than relation for ` G...
om2uzlt2i 13916 The mapping ` G ` (see ~ o...
om2uzrani 13917 Range of ` G ` (see ~ om2u...
om2uzf1oi 13918 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13919 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13920 An alternative definition ...
om2uzrdg 13921 A helper lemma for the val...
uzrdglem 13922 A helper lemma for the val...
uzrdgfni 13923 The recursive definition g...
uzrdg0i 13924 Initial value of a recursi...
uzrdgsuci 13925 Successor value of a recur...
ltweuz 13926 ` < ` is a well-founded re...
ltwenn 13927 Less than well-orders the ...
ltwefz 13928 Less than well-orders a se...
uzenom 13929 An upper integer set is de...
uzinf 13930 An upper integer set is in...
nnnfi 13931 The set of positive intege...
uzrdgxfr 13932 Transfer the value of the ...
fzennn 13933 The cardinality of a finit...
fzen2 13934 The cardinality of a finit...
cardfz 13935 The cardinality of a finit...
hashgf1o 13936 ` G ` maps ` _om ` one-to-...
fzfi 13937 A finite interval of integ...
fzfid 13938 Commonly used special case...
fzofi 13939 Half-open integer sets are...
fsequb 13940 The values of a finite rea...
fsequb2 13941 The values of a finite rea...
fseqsupcl 13942 The values of a finite rea...
fseqsupubi 13943 The values of a finite rea...
nn0ennn 13944 The nonnegative integers a...
nnenom 13945 The set of positive intege...
nnct 13946 ` NN ` is countable. (Con...
uzindi 13947 Indirect strong induction ...
axdc4uzlem 13948 Lemma for ~ axdc4uz . (Co...
axdc4uz 13949 A version of ~ axdc4 that ...
ssnn0fi 13950 A subset of the nonnegativ...
rabssnn0fi 13951 A subset of the nonnegativ...
uzsinds 13952 Strong (or "total") induct...
nnsinds 13953 Strong (or "total") induct...
nn0sinds 13954 Strong (or "total") induct...
fsuppmapnn0fiublem 13955 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13956 If all functions of a fini...
fsuppmapnn0fiubex 13957 If all functions of a fini...
fsuppmapnn0fiub0 13958 If all functions of a fini...
suppssfz 13959 Condition for a function o...
fsuppmapnn0ub 13960 If a function over the non...
fsuppmapnn0fz 13961 If a function over the non...
mptnn0fsupp 13962 A mapping from the nonnega...
mptnn0fsuppd 13963 A mapping from the nonnega...
mptnn0fsuppr 13964 A finitely supported mappi...
f13idfv 13965 A one-to-one function with...
seqex 13968 Existence of the sequence ...
seqeq1 13969 Equality theorem for the s...
seqeq2 13970 Equality theorem for the s...
seqeq3 13971 Equality theorem for the s...
seqeq1d 13972 Equality deduction for the...
seqeq2d 13973 Equality deduction for the...
seqeq3d 13974 Equality deduction for the...
seqeq123d 13975 Equality deduction for the...
nfseq 13976 Hypothesis builder for the...
seqval 13977 Value of the sequence buil...
seqfn 13978 The sequence builder funct...
seq1 13979 Value of the sequence buil...
seq1i 13980 Value of the sequence buil...
seqp1 13981 Value of the sequence buil...
seqexw 13982 Weak version of ~ seqex th...
seqp1d 13983 Value of the sequence buil...
seqm1 13984 Value of the sequence buil...
seqcl2 13985 Closure properties of the ...
seqf2 13986 Range of the recursive seq...
seqcl 13987 Closure properties of the ...
seqf 13988 Range of the recursive seq...
seqfveq2 13989 Equality of sequences. (C...
seqfeq2 13990 Equality of sequences. (C...
seqfveq 13991 Equality of sequences. (C...
seqfeq 13992 Equality of sequences. (C...
seqshft2 13993 Shifting the index set of ...
seqres 13994 Restricting its characteri...
serf 13995 An infinite series of comp...
serfre 13996 An infinite series of real...
monoord 13997 Ordering relation for a mo...
monoord2 13998 Ordering relation for a mo...
sermono 13999 The partial sums in an inf...
seqsplit 14000 Split a sequence into two ...
seq1p 14001 Removing the first term fr...
seqcaopr3 14002 Lemma for ~ seqcaopr2 . (...
seqcaopr2 14003 The sum of two infinite se...
seqcaopr 14004 The sum of two infinite se...
seqf1olem2a 14005 Lemma for ~ seqf1o . (Con...
seqf1olem1 14006 Lemma for ~ seqf1o . (Con...
seqf1olem2 14007 Lemma for ~ seqf1o . (Con...
seqf1o 14008 Rearrange a sum via an arb...
seradd 14009 The sum of two infinite se...
sersub 14010 The difference of two infi...
seqid3 14011 A sequence that consists e...
seqid 14012 Discarding the first few t...
seqid2 14013 The last few partial sums ...
seqhomo 14014 Apply a homomorphism to a ...
seqz 14015 If the operation ` .+ ` ha...
seqfeq4 14016 Equality of series under d...
seqfeq3 14017 Equality of series under d...
seqdistr 14018 The distributive property ...
ser0 14019 The value of the partial s...
ser0f 14020 A zero-valued infinite ser...
serge0 14021 A finite sum of nonnegativ...
serle 14022 Comparison of partial sums...
ser1const 14023 Value of the partial serie...
seqof 14024 Distribute function operat...
seqof2 14025 Distribute function operat...
expval 14028 Value of exponentiation to...
expnnval 14029 Value of exponentiation to...
exp0 14030 Value of a complex number ...
0exp0e1 14031 The zeroth power of zero e...
exp1 14032 Value of a complex number ...
expp1 14033 Value of a complex number ...
expneg 14034 Value of a complex number ...
expneg2 14035 Value of a complex number ...
expn1 14036 A complex number raised to...
expcllem 14037 Lemma for proving nonnegat...
expcl2lem 14038 Lemma for proving integer ...
nnexpcl 14039 Closure of exponentiation ...
nn0expcl 14040 Closure of exponentiation ...
zexpcl 14041 Closure of exponentiation ...
qexpcl 14042 Closure of exponentiation ...
reexpcl 14043 Closure of exponentiation ...
expcl 14044 Closure law for nonnegativ...
rpexpcl 14045 Closure law for integer ex...
qexpclz 14046 Closure of integer exponen...
reexpclz 14047 Closure of integer exponen...
expclzlem 14048 Lemma for ~ expclz . (Con...
expclz 14049 Closure law for integer ex...
m1expcl2 14050 Closure of integer exponen...
m1expcl 14051 Closure of exponentiation ...
zexpcld 14052 Closure of exponentiation ...
nn0expcli 14053 Closure of exponentiation ...
nn0sqcl 14054 The square of a nonnegativ...
expm1t 14055 Exponentiation in terms of...
1exp 14056 Value of 1 raised to an in...
expeq0 14057 A positive integer power i...
expne0 14058 A positive integer power i...
expne0i 14059 An integer power is nonzer...
expgt0 14060 A positive real raised to ...
expnegz 14061 Value of a nonzero complex...
0exp 14062 Value of zero raised to a ...
expge0 14063 A nonnegative real raised ...
expge1 14064 A real greater than or equ...
expgt1 14065 A real greater than 1 rais...
mulexp 14066 Nonnegative integer expone...
mulexpz 14067 Integer exponentiation of ...
exprec 14068 Integer exponentiation of ...
expadd 14069 Sum of exponents law for n...
expaddzlem 14070 Lemma for ~ expaddz . (Co...
expaddz 14071 Sum of exponents law for i...
expmul 14072 Product of exponents law f...
expmulz 14073 Product of exponents law f...
m1expeven 14074 Exponentiation of negative...
expsub 14075 Exponent subtraction law f...
expp1z 14076 Value of a nonzero complex...
expm1 14077 Value of a nonzero complex...
expdiv 14078 Nonnegative integer expone...
sqval 14079 Value of the square of a c...
sqneg 14080 The square of the negative...
sqnegd 14081 The square of the negative...
sqsubswap 14082 Swap the order of subtract...
sqcl 14083 Closure of square. (Contr...
sqmul 14084 Distribution of squaring o...
sqeq0 14085 A complex number is zero i...
sqdiv 14086 Distribution of squaring o...
sqdivid 14087 The square of a nonzero co...
sqne0 14088 A complex number is nonzer...
resqcl 14089 Closure of squaring in rea...
resqcld 14090 Closure of squaring in rea...
sqgt0 14091 The square of a nonzero re...
sqn0rp 14092 The square of a nonzero re...
nnsqcl 14093 The positive naturals are ...
zsqcl 14094 Integers are closed under ...
qsqcl 14095 The square of a rational i...
sq11 14096 The square function is one...
nn0sq11 14097 The square function is one...
lt2sq 14098 The square function is inc...
le2sq 14099 The square function is non...
le2sq2 14100 The square function is non...
sqge0 14101 The square of a real is no...
sqge0d 14102 The square of a real is no...
zsqcl2 14103 The square of an integer i...
0expd 14104 Value of zero raised to a ...
exp0d 14105 Value of a complex number ...
exp1d 14106 Value of a complex number ...
expeq0d 14107 If a positive integer powe...
sqvald 14108 Value of square. Inferenc...
sqcld 14109 Closure of square. (Contr...
sqeq0d 14110 A number is zero iff its s...
expcld 14111 Closure law for nonnegativ...
expp1d 14112 Value of a complex number ...
expaddd 14113 Sum of exponents law for n...
expmuld 14114 Product of exponents law f...
sqrecd 14115 Square of reciprocal is re...
expclzd 14116 Closure law for integer ex...
expne0d 14117 A nonnegative integer powe...
expnegd 14118 Value of a nonzero complex...
exprecd 14119 An integer power of a reci...
expp1zd 14120 Value of a nonzero complex...
expm1d 14121 Value of a nonzero complex...
expsubd 14122 Exponent subtraction law f...
sqmuld 14123 Distribution of squaring o...
sqdivd 14124 Distribution of squaring o...
expdivd 14125 Nonnegative integer expone...
mulexpd 14126 Nonnegative integer expone...
znsqcld 14127 The square of a nonzero in...
reexpcld 14128 Closure of exponentiation ...
expge0d 14129 A nonnegative real raised ...
expge1d 14130 A real greater than or equ...
ltexp2a 14131 Exponent ordering relation...
expmordi 14132 Base ordering relationship...
rpexpmord 14133 Base ordering relationship...
expcan 14134 Cancellation law for integ...
ltexp2 14135 Strict ordering law for ex...
leexp2 14136 Ordering law for exponenti...
leexp2a 14137 Weak ordering relationship...
ltexp2r 14138 The integer powers of a fi...
leexp2r 14139 Weak ordering relationship...
leexp1a 14140 Weak base ordering relatio...
leexp1ad 14141 Weak base ordering relatio...
exple1 14142 A real between 0 and 1 inc...
expubnd 14143 An upper bound on ` A ^ N ...
sumsqeq0 14144 The sum of two squres of r...
sqvali 14145 Value of square. Inferenc...
sqcli 14146 Closure of square. (Contr...
sqeq0i 14147 A complex number is zero i...
sqrecii 14148 The square of a reciprocal...
sqmuli 14149 Distribution of squaring o...
sqdivi 14150 Distribution of squaring o...
resqcli 14151 Closure of square in reals...
sqgt0i 14152 The square of a nonzero re...
sqge0i 14153 The square of a real is no...
lt2sqi 14154 The square function on non...
le2sqi 14155 The square function on non...
sq11i 14156 The square function is one...
sq0 14157 The square of 0 is 0. (Co...
sq0i 14158 If a number is zero, then ...
sq0id 14159 If a number is zero, then ...
sq1 14160 The square of 1 is 1. (Co...
neg1sqe1 14161 The square of ` -u 1 ` is ...
sq2 14162 The square of 2 is 4. (Co...
sq3 14163 The square of 3 is 9. (Co...
sq4e2t8 14164 The square of 4 is 2 times...
cu2 14165 The cube of 2 is 8. (Cont...
irec 14166 The reciprocal of ` _i ` ....
i2 14167 ` _i ` squared. (Contribu...
i3 14168 ` _i ` cubed. (Contribute...
i4 14169 ` _i ` to the fourth power...
nnlesq 14170 A positive integer is less...
zzlesq 14171 An integer is less than or...
iexpcyc 14172 Taking ` _i ` to the ` K `...
expnass 14173 A counterexample showing t...
sqlecan 14174 Cancel one factor of a squ...
subsq 14175 Factor the difference of t...
subsq2 14176 Express the difference of ...
binom2i 14177 The square of a binomial. ...
subsqi 14178 Factor the difference of t...
sqeqori 14179 The squares of two complex...
subsq0i 14180 The two solutions to the d...
sqeqor 14181 The squares of two complex...
binom2 14182 The square of a binomial. ...
binom2d 14183 Deduction form of ~ binom2...
binom21 14184 Special case of ~ binom2 w...
binom2sub 14185 Expand the square of a sub...
binom2sub1 14186 Special case of ~ binom2su...
binom2subi 14187 Expand the square of a sub...
mulbinom2 14188 The square of a binomial w...
binom3 14189 The cube of a binomial. (...
sq01 14190 If a complex number equals...
zesq 14191 An integer is even iff its...
nnesq 14192 A positive integer is even...
crreczi 14193 Reciprocal of a complex nu...
bernneq 14194 Bernoulli's inequality, du...
bernneq2 14195 Variation of Bernoulli's i...
bernneq3 14196 A corollary of ~ bernneq ....
expnbnd 14197 Exponentiation with a base...
expnlbnd 14198 The reciprocal of exponent...
expnlbnd2 14199 The reciprocal of exponent...
expmulnbnd 14200 Exponentiation with a base...
digit2 14201 Two ways to express the ` ...
digit1 14202 Two ways to express the ` ...
modexp 14203 Exponentiation property of...
discr1 14204 A nonnegative quadratic fo...
discr 14205 If a quadratic polynomial ...
expnngt1 14206 If an integer power with a...
expnngt1b 14207 An integer power with an i...
sqoddm1div8 14208 A squared odd number minus...
nnsqcld 14209 The naturals are closed un...
nnexpcld 14210 Closure of exponentiation ...
nn0expcld 14211 Closure of exponentiation ...
rpexpcld 14212 Closure law for exponentia...
ltexp2rd 14213 The power of a positive nu...
reexpclzd 14214 Closure of exponentiation ...
sqgt0d 14215 The square of a nonzero re...
ltexp2d 14216 Ordering relationship for ...
leexp2d 14217 Ordering law for exponenti...
expcand 14218 Ordering relationship for ...
leexp2ad 14219 Ordering relationship for ...
leexp2rd 14220 Ordering relationship for ...
lt2sqd 14221 The square function on non...
le2sqd 14222 The square function on non...
sq11d 14223 The square function is one...
ltexp1d 14224 Elevating to a positive po...
ltexp1dd 14225 Raising both sides of 'les...
exp11nnd 14226 The function elevating non...
mulsubdivbinom2 14227 The square of a binomial w...
muldivbinom2 14228 The square of a binomial w...
sq10 14229 The square of 10 is 100. ...
sq10e99m1 14230 The square of 10 is 99 plu...
3dec 14231 A "decimal constructor" wh...
nn0le2msqi 14232 The square function on non...
nn0opthlem1 14233 A rather pretty lemma for ...
nn0opthlem2 14234 Lemma for ~ nn0opthi . (C...
nn0opthi 14235 An ordered pair theorem fo...
nn0opth2i 14236 An ordered pair theorem fo...
nn0opth2 14237 An ordered pair theorem fo...
facnn 14240 Value of the factorial fun...
fac0 14241 The factorial of 0. (Cont...
fac1 14242 The factorial of 1. (Cont...
facp1 14243 The factorial of a success...
fac2 14244 The factorial of 2. (Cont...
fac3 14245 The factorial of 3. (Cont...
fac4 14246 The factorial of 4. (Cont...
facnn2 14247 Value of the factorial fun...
faccl 14248 Closure of the factorial f...
faccld 14249 Closure of the factorial f...
facmapnn 14250 The factorial function res...
facne0 14251 The factorial function is ...
facdiv 14252 A positive integer divides...
facndiv 14253 No positive integer (great...
facwordi 14254 Ordering property of facto...
faclbnd 14255 A lower bound for the fact...
faclbnd2 14256 A lower bound for the fact...
faclbnd3 14257 A lower bound for the fact...
faclbnd4lem1 14258 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 14259 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 14260 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 14261 Lemma for ~ faclbnd4 . Pr...
faclbnd4 14262 Variant of ~ faclbnd5 prov...
faclbnd5 14263 The factorial function gro...
faclbnd6 14264 Geometric lower bound for ...
facubnd 14265 An upper bound for the fac...
facavg 14266 The product of two factori...
bcval 14269 Value of the binomial coef...
bcval2 14270 Value of the binomial coef...
bcval3 14271 Value of the binomial coef...
bcval4 14272 Value of the binomial coef...
bcrpcl 14273 Closure of the binomial co...
bccmpl 14274 "Complementing" its second...
bcn0 14275 ` N ` choose 0 is 1. Rema...
bc0k 14276 The binomial coefficient "...
bcnn 14277 ` N ` choose ` N ` is 1. ...
bcn1 14278 Binomial coefficient: ` N ...
bcnp1n 14279 Binomial coefficient: ` N ...
bcm1k 14280 The proportion of one bino...
bcp1n 14281 The proportion of one bino...
bcp1nk 14282 The proportion of one bino...
bcval5 14283 Write out the top and bott...
bcn2 14284 Binomial coefficient: ` N ...
bcp1m1 14285 Compute the binomial coeff...
bcpasc 14286 Pascal's rule for the bino...
bccl 14287 A binomial coefficient, in...
bccl2 14288 A binomial coefficient, in...
bcn2m1 14289 Compute the binomial coeff...
bcn2p1 14290 Compute the binomial coeff...
permnn 14291 The number of permutations...
bcnm1 14292 The binomial coefficient o...
4bc3eq4 14293 The value of four choose t...
4bc2eq6 14294 The value of four choose t...
hashkf 14297 The finite part of the siz...
hashgval 14298 The value of the ` # ` fun...
hashginv 14299 The converse of ` G ` maps...
hashinf 14300 The value of the ` # ` fun...
hashbnd 14301 If ` A ` has size bounded ...
hashfxnn0 14302 The size function is a fun...
hashf 14303 The size function maps all...
hashxnn0 14304 The value of the hash func...
hashresfn 14305 Restriction of the domain ...
dmhashres 14306 Restriction of the domain ...
hashnn0pnf 14307 The value of the hash func...
hashnnn0genn0 14308 If the size of a set is no...
hashnemnf 14309 The size of a set is never...
hashv01gt1 14310 The size of a set is eithe...
hashfz1 14311 The set ` ( 1 ... N ) ` ha...
hashen 14312 Two finite sets have the s...
hasheni 14313 Equinumerous sets have the...
hasheqf1o 14314 The size of two finite set...
fiinfnf1o 14315 There is no bijection betw...
hasheqf1oi 14316 The size of two sets is eq...
hashf1rn 14317 The size of a finite set w...
hasheqf1od 14318 The size of two sets is eq...
fz1eqb 14319 Two possibly-empty 1-based...
hashcard 14320 The size function of the c...
hashcl 14321 Closure of the ` # ` funct...
hashxrcl 14322 Extended real closure of t...
hashclb 14323 Reverse closure of the ` #...
nfile 14324 The size of any infinite s...
hashvnfin 14325 A set of finite size is a ...
hashnfinnn0 14326 The size of an infinite se...
isfinite4 14327 A finite set is equinumero...
hasheq0 14328 Two ways of saying a set i...
hashneq0 14329 Two ways of saying a set i...
hashgt0n0 14330 If the size of a set is gr...
hashnncl 14331 Positive natural closure o...
hash0 14332 The empty set has size zer...
hashelne0d 14333 A set with an element has ...
hashsng 14334 The size of a singleton. ...
hashen1 14335 A set has size 1 if and on...
hash1elsn 14336 A set of size 1 with a kno...
hashrabrsn 14337 The size of a restricted c...
hashrabsn01 14338 The size of a restricted c...
hashrabsn1 14339 If the size of a restricte...
hashfn 14340 A function is equinumerous...
fseq1hash 14341 The value of the size func...
hashgadd 14342 ` G ` maps ordinal additio...
hashgval2 14343 A short expression for the...
hashdom 14344 Dominance relation for the...
hashdomi 14345 Non-strict order relation ...
hashsdom 14346 Strict dominance relation ...
hashun 14347 The size of the union of d...
hashun2 14348 The size of the union of f...
hashun3 14349 The size of the union of f...
hashinfxadd 14350 The extended real addition...
hashunx 14351 The size of the union of d...
hashge0 14352 The cardinality of a set i...
hashgt0 14353 The cardinality of a nonem...
hashge1 14354 The cardinality of a nonem...
1elfz0hash 14355 1 is an element of the fin...
hashnn0n0nn 14356 If a nonnegative integer i...
hashunsng 14357 The size of the union of a...
hashunsngx 14358 The size of the union of a...
hashunsnggt 14359 The size of a set is great...
hashprg 14360 The size of an unordered p...
elprchashprn2 14361 If one element of an unord...
hashprb 14362 The size of an unordered p...
hashprdifel 14363 The elements of an unorder...
prhash2ex 14364 There is (at least) one se...
hashle00 14365 If the size of a set is le...
hashgt0elex 14366 If the size of a set is gr...
hashgt0elexb 14367 The size of a set is great...
hashp1i 14368 Size of a finite ordinal. ...
hash1 14369 Size of a finite ordinal. ...
hash2 14370 Size of a finite ordinal. ...
hash3 14371 Size of a finite ordinal. ...
hash4 14372 Size of a finite ordinal. ...
pr0hash2ex 14373 There is (at least) one se...
hashss 14374 The size of a subset is le...
prsshashgt1 14375 The size of a superset of ...
hashin 14376 The size of the intersecti...
hashssdif 14377 The size of the difference...
hashdif 14378 The size of the difference...
hashdifsn 14379 The size of the difference...
hashdifpr 14380 The size of the difference...
hashsn01 14381 The size of a singleton is...
hashsnle1 14382 The size of a singleton is...
hashsnlei 14383 Get an upper bound on a co...
hash1snb 14384 The size of a set is 1 if ...
euhash1 14385 The size of a set is 1 in ...
hash1n0 14386 If the size of a set is 1 ...
hashgt12el 14387 In a set with more than on...
hashgt12el2 14388 In a set with more than on...
hashgt23el 14389 A set with more than two e...
hashunlei 14390 Get an upper bound on a co...
hashsslei 14391 Get an upper bound on a co...
hashfz 14392 Value of the numeric cardi...
fzsdom2 14393 Condition for finite range...
hashfzo 14394 Cardinality of a half-open...
hashfzo0 14395 Cardinality of a half-open...
hashfzp1 14396 Value of the numeric cardi...
hashfz0 14397 Value of the numeric cardi...
hashxplem 14398 Lemma for ~ hashxp . (Con...
hashxp 14399 The size of the Cartesian ...
hashmap 14400 The size of the set expone...
hashpw 14401 The size of the power set ...
hashfun 14402 A finite set is a function...
hashres 14403 The number of elements of ...
hashreshashfun 14404 The number of elements of ...
hashimarn 14405 The size of the image of a...
hashimarni 14406 If the size of the image o...
hashfundm 14407 The size of a set function...
hashf1dmrn 14408 The size of the domain of ...
hashf1dmcdm 14409 The size of the domain of ...
resunimafz0 14410 TODO-AV: Revise using ` F...
fnfz0hash 14411 The size of a function on ...
ffz0hash 14412 The size of a function on ...
fnfz0hashnn0 14413 The size of a function on ...
ffzo0hash 14414 The size of a function on ...
fnfzo0hash 14415 The size of a function on ...
fnfzo0hashnn0 14416 The value of the size func...
hashbclem 14417 Lemma for ~ hashbc : induc...
hashbc 14418 The binomial coefficient c...
hashfacen 14419 The number of bijections b...
hashf1lem1 14420 Lemma for ~ hashf1 . (Con...
hashf1lem2 14421 Lemma for ~ hashf1 . (Con...
hashf1 14422 The permutation number ` |...
hashfac 14423 A factorial counts the num...
leiso 14424 Two ways to write a strict...
leisorel 14425 Version of ~ isorel for st...
fz1isolem 14426 Lemma for ~ fz1iso . (Con...
fz1iso 14427 Any finite ordered set has...
ishashinf 14428 Any set that is not finite...
seqcoll 14429 The function ` F ` contain...
seqcoll2 14430 The function ` F ` contain...
phphashd 14431 Corollary of the Pigeonhol...
phphashrd 14432 Corollary of the Pigeonhol...
hashprlei 14433 An unordered pair has at m...
hash2pr 14434 A set of size two is an un...
hash2prde 14435 A set of size two is an un...
hash2exprb 14436 A set of size two is an un...
hash2prb 14437 A set of size two is a pro...
prprrab 14438 The set of proper pairs of...
nehash2 14439 The cardinality of a set w...
hash2prd 14440 A set of size two is an un...
hash2pwpr 14441 If the size of a subset of...
hashle2pr 14442 A nonempty set of size les...
hashle2prv 14443 A nonempty subset of a pow...
pr2pwpr 14444 The set of subsets of a pa...
hashge2el2dif 14445 A set with size at least 2...
hashge2el2difr 14446 A set with at least 2 diff...
hashge2el2difb 14447 A set has size at least 2 ...
hashdmpropge2 14448 The size of the domain of ...
hashtplei 14449 An unordered triple has at...
hashtpg 14450 The size of an unordered t...
hash7g 14451 The size of an unordered s...
hashge3el3dif 14452 A set with size at least 3...
elss2prb 14453 An element of the set of s...
hash2sspr 14454 A subset of size two is an...
exprelprel 14455 If there is an element of ...
hash3tr 14456 A set of size three is an ...
hash1to3 14457 If the size of a set is be...
hash3tpde 14458 A set of size three is an ...
hash3tpexb 14459 A set of size three is an ...
hash3tpb 14460 A set of size three is a p...
tpf1ofv0 14461 The value of a one-to-one ...
tpf1ofv1 14462 The value of a one-to-one ...
tpf1ofv2 14463 The value of a one-to-one ...
tpf 14464 A function into a (proper)...
tpfo 14465 A function onto a (proper)...
tpf1o 14466 A bijection onto a (proper...
fundmge2nop0 14467 A function with a domain c...
fundmge2nop 14468 A function with a domain c...
fun2dmnop0 14469 A function with a domain c...
fun2dmnop 14470 A function with a domain c...
hashdifsnp1 14471 If the size of a set is a ...
fi1uzind 14472 Properties of an ordered p...
brfi1uzind 14473 Properties of a binary rel...
brfi1ind 14474 Properties of a binary rel...
brfi1indALT 14475 Alternate proof of ~ brfi1...
opfi1uzind 14476 Properties of an ordered p...
opfi1ind 14477 Properties of an ordered p...
iswrd 14480 Property of being a word o...
wrdval 14481 Value of the set of words ...
iswrdi 14482 A zero-based sequence is a...
wrdf 14483 A word is a zero-based seq...
wrdfd 14484 A word is a zero-based seq...
iswrdb 14485 A word over an alphabet is...
wrddm 14486 The indices of a word (i.e...
sswrd 14487 The set of words respects ...
snopiswrd 14488 A singleton of an ordered ...
wrdexg 14489 The set of words over a se...
wrdexb 14490 The set of words over a se...
wrdexi 14491 The set of words over a se...
wrdsymbcl 14492 A symbol within a word ove...
wrdfn 14493 A word is a function with ...
wrdv 14494 A word over an alphabet is...
wrdlndm 14495 The length of a word is no...
iswrdsymb 14496 An arbitrary word is a wor...
wrdfin 14497 A word is a finite set. (...
lencl 14498 The length of a word is a ...
lennncl 14499 The length of a nonempty w...
wrdffz 14500 A word is a function from ...
wrdeq 14501 Equality theorem for the s...
wrdeqi 14502 Equality theorem for the s...
iswrddm0 14503 A function with empty doma...
wrd0 14504 The empty set is a word (t...
0wrd0 14505 The empty word is the only...
ffz0iswrd 14506 A sequence with zero-based...
wrdsymb 14507 A word is a word over the ...
nfwrd 14508 Hypothesis builder for ` W...
csbwrdg 14509 Class substitution for the...
wrdnval 14510 Words of a fixed length ar...
wrdmap 14511 Words as a mapping. (Cont...
hashwrdn 14512 If there is only a finite ...
wrdnfi 14513 If there is only a finite ...
wrdsymb0 14514 A symbol at a position "ou...
wrdlenge1n0 14515 A word with length at leas...
len0nnbi 14516 The length of a word is a ...
wrdlenge2n0 14517 A word with length at leas...
wrdsymb1 14518 The first symbol of a none...
wrdlen1 14519 A word of length 1 starts ...
fstwrdne 14520 The first symbol of a none...
fstwrdne0 14521 The first symbol of a none...
eqwrd 14522 Two words are equal iff th...
elovmpowrd 14523 Implications for the value...
elovmptnn0wrd 14524 Implications for the value...
wrdred1 14525 A word truncated by a symb...
wrdred1hash 14526 The length of a word trunc...
lsw 14529 Extract the last symbol of...
lsw0 14530 The last symbol of an empt...
lsw0g 14531 The last symbol of an empt...
lsw1 14532 The last symbol of a word ...
lswcl 14533 Closure of the last symbol...
lswlgt0cl 14534 The last symbol of a nonem...
ccatfn 14537 The concatenation operator...
ccatfval 14538 Value of the concatenation...
ccatcl 14539 The concatenation of two w...
ccatlen 14540 The length of a concatenat...
ccat0 14541 The concatenation of two w...
ccatval1 14542 Value of a symbol in the l...
ccatval2 14543 Value of a symbol in the r...
ccatval3 14544 Value of a symbol in the r...
elfzelfzccat 14545 An element of a finite set...
ccatvalfn 14546 The concatenation of two w...
ccatsymb 14547 The symbol at a given posi...
ccatfv0 14548 The first symbol of a conc...
ccatval1lsw 14549 The last symbol of the lef...
ccatval21sw 14550 The first symbol of the ri...
ccatlid 14551 Concatenation of a word by...
ccatrid 14552 Concatenation of a word by...
ccatass 14553 Associative law for concat...
ccatrn 14554 The range of a concatenate...
ccatidid 14555 Concatenation of the empty...
lswccatn0lsw 14556 The last symbol of a word ...
lswccat0lsw 14557 The last symbol of a word ...
ccatalpha 14558 A concatenation of two arb...
ccatrcl1 14559 Reverse closure of a conca...
ids1 14562 Identity function protecti...
s1val 14563 Value of a singleton word....
s1rn 14564 The range of a singleton w...
s1eq 14565 Equality theorem for a sin...
s1eqd 14566 Equality theorem for a sin...
s1cl 14567 A singleton word is a word...
s1cld 14568 A singleton word is a word...
s1prc 14569 Value of a singleton word ...
s1cli 14570 A singleton word is a word...
s1len 14571 Length of a singleton word...
s1nz 14572 A singleton word is not th...
s1dm 14573 The domain of a singleton ...
s1dmALT 14574 Alternate version of ~ s1d...
s1fv 14575 Sole symbol of a singleton...
lsws1 14576 The last symbol of a singl...
eqs1 14577 A word of length 1 is a si...
wrdl1exs1 14578 A word of length 1 is a si...
wrdl1s1 14579 A word of length 1 is a si...
s111 14580 The singleton word functio...
ccatws1cl 14581 The concatenation of a wor...
ccatws1clv 14582 The concatenation of a wor...
ccat2s1cl 14583 The concatenation of two s...
ccats1alpha 14584 A concatenation of a word ...
ccatws1len 14585 The length of the concaten...
ccatws1lenp1b 14586 The length of a word is ` ...
wrdlenccats1lenm1 14587 The length of a word is th...
ccat2s1len 14588 The length of the concaten...
ccatw2s1cl 14589 The concatenation of a wor...
ccatw2s1len 14590 The length of the concaten...
ccats1val1 14591 Value of a symbol in the l...
ccats1val2 14592 Value of the symbol concat...
ccat1st1st 14593 The first symbol of a word...
ccat2s1p1 14594 Extract the first of two c...
ccat2s1p2 14595 Extract the second of two ...
ccatw2s1ass 14596 Associative law for a conc...
ccatws1n0 14597 The concatenation of a wor...
ccatws1ls 14598 The last symbol of the con...
lswccats1 14599 The last symbol of a word ...
lswccats1fst 14600 The last symbol of a nonem...
ccatw2s1p1 14601 Extract the symbol of the ...
ccatw2s1p2 14602 Extract the second of two ...
ccat2s1fvw 14603 Extract a symbol of a word...
ccat2s1fst 14604 The first symbol of the co...
swrdnznd 14607 The value of a subword ope...
swrdval 14608 Value of a subword. (Cont...
swrd00 14609 A zero length substring. ...
swrdcl 14610 Closure of the subword ext...
swrdval2 14611 Value of the subword extra...
swrdlen 14612 Length of an extracted sub...
swrdfv 14613 A symbol in an extracted s...
swrdfv0 14614 The first symbol in an ext...
swrdf 14615 A subword of a word is a f...
swrdvalfn 14616 Value of the subword extra...
swrdrn 14617 The range of a subword of ...
swrdlend 14618 The value of the subword e...
swrdnd 14619 The value of the subword e...
swrdnd2 14620 Value of the subword extra...
swrdnnn0nd 14621 The value of a subword ope...
swrdnd0 14622 The value of a subword ope...
swrd0 14623 A subword of an empty set ...
swrdrlen 14624 Length of a right-anchored...
swrdlen2 14625 Length of an extracted sub...
swrdfv2 14626 A symbol in an extracted s...
swrdwrdsymb 14627 A subword is a word over t...
swrdsb0eq 14628 Two subwords with the same...
swrdsbslen 14629 Two subwords with the same...
swrdspsleq 14630 Two words have a common su...
swrds1 14631 Extract a single symbol fr...
swrdlsw 14632 Extract the last single sy...
ccatswrd 14633 Joining two adjacent subwo...
swrdccat2 14634 Recover the right half of ...
pfxnndmnd 14637 The value of a prefix oper...
pfxval 14638 Value of a prefix operatio...
pfx00 14639 The zero length prefix is ...
pfx0 14640 A prefix of an empty set i...
pfxval0 14641 Value of a prefix operatio...
pfxcl 14642 Closure of the prefix extr...
pfxmpt 14643 Value of the prefix extrac...
pfxres 14644 Value of the subword extra...
pfxf 14645 A prefix of a word is a fu...
pfxfn 14646 Value of the prefix extrac...
pfxfv 14647 A symbol in a prefix of a ...
pfxlen 14648 Length of a prefix. (Cont...
pfxid 14649 A word is a prefix of itse...
pfxrn 14650 The range of a prefix of a...
pfxn0 14651 A prefix consisting of at ...
pfxnd 14652 The value of a prefix oper...
pfxnd0 14653 The value of a prefix oper...
pfxwrdsymb 14654 A prefix of a word is a wo...
addlenrevpfx 14655 The sum of the lengths of ...
addlenpfx 14656 The sum of the lengths of ...
pfxfv0 14657 The first symbol of a pref...
pfxtrcfv 14658 A symbol in a word truncat...
pfxtrcfv0 14659 The first symbol in a word...
pfxfvlsw 14660 The last symbol in a nonem...
pfxeq 14661 The prefixes of two words ...
pfxtrcfvl 14662 The last symbol in a word ...
pfxsuffeqwrdeq 14663 Two words are equal if and...
pfxsuff1eqwrdeq 14664 Two (nonempty) words are e...
disjwrdpfx 14665 Sets of words are disjoint...
ccatpfx 14666 Concatenating a prefix wit...
pfxccat1 14667 Recover the left half of a...
pfx1 14668 The prefix of length one o...
swrdswrdlem 14669 Lemma for ~ swrdswrd . (C...
swrdswrd 14670 A subword of a subword is ...
pfxswrd 14671 A prefix of a subword is a...
swrdpfx 14672 A subword of a prefix is a...
pfxpfx 14673 A prefix of a prefix is a ...
pfxpfxid 14674 A prefix of a prefix with ...
pfxcctswrd 14675 The concatenation of the p...
lenpfxcctswrd 14676 The length of the concaten...
lenrevpfxcctswrd 14677 The length of the concaten...
pfxlswccat 14678 Reconstruct a nonempty wor...
ccats1pfxeq 14679 The last symbol of a word ...
ccats1pfxeqrex 14680 There exists a symbol such...
ccatopth 14681 An ~ opth -like theorem fo...
ccatopth2 14682 An ~ opth -like theorem fo...
ccatlcan 14683 Concatenation of words is ...
ccatrcan 14684 Concatenation of words is ...
wrdeqs1cat 14685 Decompose a nonempty word ...
cats1un 14686 Express a word with an ext...
wrdind 14687 Perform induction over the...
wrd2ind 14688 Perform induction over the...
swrdccatfn 14689 The subword of a concatena...
swrdccatin1 14690 The subword of a concatena...
pfxccatin12lem4 14691 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14692 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14693 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14694 The subword of a concatena...
pfxccatin12lem2c 14695 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14696 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14697 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14698 The subword of a concatena...
pfxccat3 14699 The subword of a concatena...
swrdccat 14700 The subword of a concatena...
pfxccatpfx1 14701 A prefix of a concatenatio...
pfxccatpfx2 14702 A prefix of a concatenatio...
pfxccat3a 14703 A prefix of a concatenatio...
swrdccat3blem 14704 Lemma for ~ swrdccat3b . ...
swrdccat3b 14705 A suffix of a concatenatio...
pfxccatid 14706 A prefix of a concatenatio...
ccats1pfxeqbi 14707 A word is a prefix of a wo...
swrdccatin1d 14708 The subword of a concatena...
swrdccatin2d 14709 The subword of a concatena...
pfxccatin12d 14710 The subword of a concatena...
reuccatpfxs1lem 14711 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14712 There is a unique word hav...
reuccatpfxs1v 14713 There is a unique word hav...
splval 14716 Value of the substring rep...
splcl 14717 Closure of the substring r...
splid 14718 Splicing a subword for the...
spllen 14719 The length of a splice. (...
splfv1 14720 Symbols to the left of a s...
splfv2a 14721 Symbols within the replace...
splval2 14722 Value of a splice, assumin...
revval 14725 Value of the word reversin...
revcl 14726 The reverse of a word is a...
revlen 14727 The reverse of a word has ...
revfv 14728 Reverse of a word at a poi...
rev0 14729 The empty word is its own ...
revs1 14730 Singleton words are their ...
revccat 14731 Antiautomorphic property o...
revrev 14732 Reversal is an involution ...
reps 14735 Construct a function mappi...
repsundef 14736 A function mapping a half-...
repsconst 14737 Construct a function mappi...
repsf 14738 The constructed function m...
repswsymb 14739 The symbols of a "repeated...
repsw 14740 A function mapping a half-...
repswlen 14741 The length of a "repeated ...
repsw0 14742 The "repeated symbol word"...
repsdf2 14743 Alternative definition of ...
repswsymball 14744 All the symbols of a "repe...
repswsymballbi 14745 A word is a "repeated symb...
repswfsts 14746 The first symbol of a none...
repswlsw 14747 The last symbol of a nonem...
repsw1 14748 The "repeated symbol word"...
repswswrd 14749 A subword of a "repeated s...
repswpfx 14750 A prefix of a repeated sym...
repswccat 14751 The concatenation of two "...
repswrevw 14752 The reverse of a "repeated...
cshfn 14755 Perform a cyclical shift f...
cshword 14756 Perform a cyclical shift f...
cshnz 14757 A cyclical shift is the em...
0csh0 14758 Cyclically shifting an emp...
cshw0 14759 A word cyclically shifted ...
cshwmodn 14760 Cyclically shifting a word...
cshwsublen 14761 Cyclically shifting a word...
cshwn 14762 A word cyclically shifted ...
cshwcl 14763 A cyclically shifted word ...
cshwlen 14764 The length of a cyclically...
cshwf 14765 A cyclically shifted word ...
cshwfn 14766 A cyclically shifted word ...
cshwrn 14767 The range of a cyclically ...
cshwidxmod 14768 The symbol at a given inde...
cshwidxmodr 14769 The symbol at a given inde...
cshwidx0mod 14770 The symbol at index 0 of a...
cshwidx0 14771 The symbol at index 0 of a...
cshwidxm1 14772 The symbol at index ((n-N)...
cshwidxm 14773 The symbol at index (n-N) ...
cshwidxn 14774 The symbol at index (n-1) ...
cshf1 14775 Cyclically shifting a word...
cshinj 14776 If a word is injectiv (reg...
repswcshw 14777 A cyclically shifted "repe...
2cshw 14778 Cyclically shifting a word...
2cshwid 14779 Cyclically shifting a word...
lswcshw 14780 The last symbol of a word ...
2cshwcom 14781 Cyclically shifting a word...
cshwleneq 14782 If the results of cyclical...
3cshw 14783 Cyclically shifting a word...
cshweqdif2 14784 If cyclically shifting two...
cshweqdifid 14785 If cyclically shifting a w...
cshweqrep 14786 If cyclically shifting a w...
cshw1 14787 If cyclically shifting a w...
cshw1repsw 14788 If cyclically shifting a w...
cshwsexa 14789 The class of (different!) ...
cshwsexaOLD 14790 Obsolete version of ~ cshw...
2cshwcshw 14791 If a word is a cyclically ...
scshwfzeqfzo 14792 For a nonempty word the se...
cshwcshid 14793 A cyclically shifted word ...
cshwcsh2id 14794 A cyclically shifted word ...
cshimadifsn 14795 The image of a cyclically ...
cshimadifsn0 14796 The image of a cyclically ...
wrdco 14797 Mapping a word by a functi...
lenco 14798 Length of a mapped word is...
s1co 14799 Mapping of a singleton wor...
revco 14800 Mapping of words (i.e., a ...
ccatco 14801 Mapping of words commutes ...
cshco 14802 Mapping of words commutes ...
swrdco 14803 Mapping of words commutes ...
pfxco 14804 Mapping of words commutes ...
lswco 14805 Mapping of (nonempty) word...
repsco 14806 Mapping of words commutes ...
cats1cld 14821 Closure of concatenation w...
cats1co 14822 Closure of concatenation w...
cats1cli 14823 Closure of concatenation w...
cats1fvn 14824 The last symbol of a conca...
cats1fv 14825 A symbol other than the la...
cats1len 14826 The length of concatenatio...
cats1cat 14827 Closure of concatenation w...
cats2cat 14828 Closure of concatenation o...
s2eqd 14829 Equality theorem for a dou...
s3eqd 14830 Equality theorem for a len...
s4eqd 14831 Equality theorem for a len...
s5eqd 14832 Equality theorem for a len...
s6eqd 14833 Equality theorem for a len...
s7eqd 14834 Equality theorem for a len...
s8eqd 14835 Equality theorem for a len...
s3eq2 14836 Equality theorem for a len...
s2cld 14837 A doubleton word is a word...
s3cld 14838 A length 3 string is a wor...
s4cld 14839 A length 4 string is a wor...
s5cld 14840 A length 5 string is a wor...
s6cld 14841 A length 6 string is a wor...
s7cld 14842 A length 7 string is a wor...
s8cld 14843 A length 7 string is a wor...
s2cl 14844 A doubleton word is a word...
s3cl 14845 A length 3 string is a wor...
s2cli 14846 A doubleton word is a word...
s3cli 14847 A length 3 string is a wor...
s4cli 14848 A length 4 string is a wor...
s5cli 14849 A length 5 string is a wor...
s6cli 14850 A length 6 string is a wor...
s7cli 14851 A length 7 string is a wor...
s8cli 14852 A length 8 string is a wor...
s2fv0 14853 Extract the first symbol f...
s2fv1 14854 Extract the second symbol ...
s2len 14855 The length of a doubleton ...
s2dm 14856 The domain of a doubleton ...
s3fv0 14857 Extract the first symbol f...
s3fv1 14858 Extract the second symbol ...
s3fv2 14859 Extract the third symbol f...
s3len 14860 The length of a length 3 s...
s4fv0 14861 Extract the first symbol f...
s4fv1 14862 Extract the second symbol ...
s4fv2 14863 Extract the third symbol f...
s4fv3 14864 Extract the fourth symbol ...
s4len 14865 The length of a length 4 s...
s5len 14866 The length of a length 5 s...
s6len 14867 The length of a length 6 s...
s7len 14868 The length of a length 7 s...
s8len 14869 The length of a length 8 s...
lsws2 14870 The last symbol of a doubl...
lsws3 14871 The last symbol of a 3 let...
lsws4 14872 The last symbol of a 4 let...
s2prop 14873 A length 2 word is an unor...
s2dmALT 14874 Alternate version of ~ s2d...
s3tpop 14875 A length 3 word is an unor...
s4prop 14876 A length 4 word is a union...
s3fn 14877 A length 3 word is a funct...
funcnvs1 14878 The converse of a singleto...
funcnvs2 14879 The converse of a length 2...
funcnvs3 14880 The converse of a length 3...
funcnvs4 14881 The converse of a length 4...
s2f1o 14882 A length 2 word with mutua...
f1oun2prg 14883 A union of unordered pairs...
s4f1o 14884 A length 4 word with mutua...
s4dom 14885 The domain of a length 4 w...
s2co 14886 Mapping a doubleton word b...
s3co 14887 Mapping a length 3 string ...
s0s1 14888 Concatenation of fixed len...
s1s2 14889 Concatenation of fixed len...
s1s3 14890 Concatenation of fixed len...
s1s4 14891 Concatenation of fixed len...
s1s5 14892 Concatenation of fixed len...
s1s6 14893 Concatenation of fixed len...
s1s7 14894 Concatenation of fixed len...
s2s2 14895 Concatenation of fixed len...
s4s2 14896 Concatenation of fixed len...
s4s3 14897 Concatenation of fixed len...
s4s4 14898 Concatenation of fixed len...
s3s4 14899 Concatenation of fixed len...
s2s5 14900 Concatenation of fixed len...
s5s2 14901 Concatenation of fixed len...
s2eq2s1eq 14902 Two length 2 words are equ...
s2eq2seq 14903 Two length 2 words are equ...
s3eqs2s1eq 14904 Two length 3 words are equ...
s3eq3seq 14905 Two length 3 words are equ...
swrds2 14906 Extract two adjacent symbo...
swrds2m 14907 Extract two adjacent symbo...
wrdlen2i 14908 Implications of a word of ...
wrd2pr2op 14909 A word of length two repre...
wrdlen2 14910 A word of length two. (Co...
wrdlen2s2 14911 A word of length two as do...
wrdl2exs2 14912 A word of length two is a ...
pfx2 14913 A prefix of length two. (...
wrd3tpop 14914 A word of length three rep...
wrdlen3s3 14915 A word of length three as ...
repsw2 14916 The "repeated symbol word"...
repsw3 14917 The "repeated symbol word"...
swrd2lsw 14918 Extract the last two symbo...
2swrd2eqwrdeq 14919 Two words of length at lea...
ccatw2s1ccatws2 14920 The concatenation of a wor...
ccat2s1fvwALT 14921 Alternate proof of ~ ccat2...
wwlktovf 14922 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14923 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14924 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14925 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14926 There is a bijection betwe...
eqwrds3 14927 A word is equal with a len...
wrdl3s3 14928 A word of length 3 is a le...
s2rn 14929 Range of a length 2 string...
s3rn 14930 Range of a length 3 string...
s7rn 14931 Range of a length 7 string...
s7f1o 14932 A length 7 word with mutua...
s3sndisj 14933 The singletons consisting ...
s3iunsndisj 14934 The union of singletons co...
ofccat 14935 Letterwise operations on w...
ofs1 14936 Letterwise operations on a...
ofs2 14937 Letterwise operations on a...
coss12d 14938 Subset deduction for compo...
trrelssd 14939 The composition of subclas...
xpcogend 14940 The most interesting case ...
xpcoidgend 14941 If two classes are not dis...
cotr2g 14942 Two ways of saying that th...
cotr2 14943 Two ways of saying a relat...
cotr3 14944 Two ways of saying a relat...
coemptyd 14945 Deduction about compositio...
xptrrel 14946 The cross product is alway...
0trrel 14947 The empty class is a trans...
cleq1lem 14948 Equality implies bijection...
cleq1 14949 Equality of relations impl...
clsslem 14950 The closure of a subclass ...
trcleq1 14955 Equality of relations impl...
trclsslem 14956 The transitive closure (as...
trcleq2lem 14957 Equality implies bijection...
cvbtrcl 14958 Change of bound variable i...
trcleq12lem 14959 Equality implies bijection...
trclexlem 14960 Existence of relation impl...
trclublem 14961 If a relation exists then ...
trclubi 14962 The Cartesian product of t...
trclubgi 14963 The union with the Cartesi...
trclub 14964 The Cartesian product of t...
trclubg 14965 The union with the Cartesi...
trclfv 14966 The transitive closure of ...
brintclab 14967 Two ways to express a bina...
brtrclfv 14968 Two ways of expressing the...
brcnvtrclfv 14969 Two ways of expressing the...
brtrclfvcnv 14970 Two ways of expressing the...
brcnvtrclfvcnv 14971 Two ways of expressing the...
trclfvss 14972 The transitive closure (as...
trclfvub 14973 The transitive closure of ...
trclfvlb 14974 The transitive closure of ...
trclfvcotr 14975 The transitive closure of ...
trclfvlb2 14976 The transitive closure of ...
trclfvlb3 14977 The transitive closure of ...
cotrtrclfv 14978 The transitive closure of ...
trclidm 14979 The transitive closure of ...
trclun 14980 Transitive closure of a un...
trclfvg 14981 The value of the transitiv...
trclfvcotrg 14982 The value of the transitiv...
reltrclfv 14983 The transitive closure of ...
dmtrclfv 14984 The domain of the transiti...
reldmrelexp 14987 The domain of the repeated...
relexp0g 14988 A relation composed zero t...
relexp0 14989 A relation composed zero t...
relexp0d 14990 A relation composed zero t...
relexpsucnnr 14991 A reduction for relation e...
relexp1g 14992 A relation composed once i...
dfid5 14993 Identity relation is equal...
dfid6 14994 Identity relation expresse...
relexp1d 14995 A relation composed once i...
relexpsucnnl 14996 A reduction for relation e...
relexpsucl 14997 A reduction for relation e...
relexpsucr 14998 A reduction for relation e...
relexpsucrd 14999 A reduction for relation e...
relexpsucld 15000 A reduction for relation e...
relexpcnv 15001 Commutation of converse an...
relexpcnvd 15002 Commutation of converse an...
relexp0rel 15003 The exponentiation of a cl...
relexprelg 15004 The exponentiation of a cl...
relexprel 15005 The exponentiation of a re...
relexpreld 15006 The exponentiation of a re...
relexpnndm 15007 The domain of an exponenti...
relexpdmg 15008 The domain of an exponenti...
relexpdm 15009 The domain of an exponenti...
relexpdmd 15010 The domain of an exponenti...
relexpnnrn 15011 The range of an exponentia...
relexprng 15012 The range of an exponentia...
relexprn 15013 The range of an exponentia...
relexprnd 15014 The range of an exponentia...
relexpfld 15015 The field of an exponentia...
relexpfldd 15016 The field of an exponentia...
relexpaddnn 15017 Relation composition becom...
relexpuzrel 15018 The exponentiation of a cl...
relexpaddg 15019 Relation composition becom...
relexpaddd 15020 Relation composition becom...
rtrclreclem1 15023 The reflexive, transitive ...
dfrtrclrec2 15024 If two elements are connec...
rtrclreclem2 15025 The reflexive, transitive ...
rtrclreclem3 15026 The reflexive, transitive ...
rtrclreclem4 15027 The reflexive, transitive ...
dfrtrcl2 15028 The two definitions ` t* `...
relexpindlem 15029 Principle of transitive in...
relexpind 15030 Principle of transitive in...
rtrclind 15031 Principle of transitive in...
shftlem 15034 Two ways to write a shifte...
shftuz 15035 A shift of the upper integ...
shftfval 15036 The value of the sequence ...
shftdm 15037 Domain of a relation shift...
shftfib 15038 Value of a fiber of the re...
shftfn 15039 Functionality and domain o...
shftval 15040 Value of a sequence shifte...
shftval2 15041 Value of a sequence shifte...
shftval3 15042 Value of a sequence shifte...
shftval4 15043 Value of a sequence shifte...
shftval5 15044 Value of a shifted sequenc...
shftf 15045 Functionality of a shifted...
2shfti 15046 Composite shift operations...
shftidt2 15047 Identity law for the shift...
shftidt 15048 Identity law for the shift...
shftcan1 15049 Cancellation law for the s...
shftcan2 15050 Cancellation law for the s...
seqshft 15051 Shifting the index set of ...
sgnval 15054 Value of the signum functi...
sgn0 15055 The signum of 0 is 0. (Co...
sgnp 15056 The signum of a positive e...
sgnrrp 15057 The signum of a positive r...
sgn1 15058 The signum of 1 is 1. (Co...
sgnpnf 15059 The signum of ` +oo ` is 1...
sgnn 15060 The signum of a negative e...
sgnmnf 15061 The signum of ` -oo ` is -...
cjval 15068 The value of the conjugate...
cjth 15069 The defining property of t...
cjf 15070 Domain and codomain of the...
cjcl 15071 The conjugate of a complex...
reval 15072 The value of the real part...
imval 15073 The value of the imaginary...
imre 15074 The imaginary part of a co...
reim 15075 The real part of a complex...
recl 15076 The real part of a complex...
imcl 15077 The imaginary part of a co...
ref 15078 Domain and codomain of the...
imf 15079 Domain and codomain of the...
crre 15080 The real part of a complex...
crim 15081 The real part of a complex...
replim 15082 Reconstruct a complex numb...
remim 15083 Value of the conjugate of ...
reim0 15084 The imaginary part of a re...
reim0b 15085 A number is real iff its i...
rereb 15086 A number is real iff it eq...
mulre 15087 A product with a nonzero r...
rere 15088 A real number equals its r...
cjreb 15089 A number is real iff it eq...
recj 15090 Real part of a complex con...
reneg 15091 Real part of negative. (C...
readd 15092 Real part distributes over...
resub 15093 Real part distributes over...
remullem 15094 Lemma for ~ remul , ~ immu...
remul 15095 Real part of a product. (...
remul2 15096 Real part of a product. (...
rediv 15097 Real part of a division. ...
imcj 15098 Imaginary part of a comple...
imneg 15099 The imaginary part of a ne...
imadd 15100 Imaginary part distributes...
imsub 15101 Imaginary part distributes...
immul 15102 Imaginary part of a produc...
immul2 15103 Imaginary part of a produc...
imdiv 15104 Imaginary part of a divisi...
cjre 15105 A real number equals its c...
cjcj 15106 The conjugate of the conju...
cjadd 15107 Complex conjugate distribu...
cjmul 15108 Complex conjugate distribu...
ipcnval 15109 Standard inner product on ...
cjmulrcl 15110 A complex number times its...
cjmulval 15111 A complex number times its...
cjmulge0 15112 A complex number times its...
cjneg 15113 Complex conjugate of negat...
addcj 15114 A number plus its conjugat...
cjsub 15115 Complex conjugate distribu...
cjexp 15116 Complex conjugate of posit...
imval2 15117 The imaginary part of a nu...
re0 15118 The real part of zero. (C...
im0 15119 The imaginary part of zero...
re1 15120 The real part of one. (Co...
im1 15121 The imaginary part of one....
rei 15122 The real part of ` _i ` . ...
imi 15123 The imaginary part of ` _i...
cj0 15124 The conjugate of zero. (C...
cji 15125 The complex conjugate of t...
cjreim 15126 The conjugate of a represe...
cjreim2 15127 The conjugate of the repre...
cj11 15128 Complex conjugate is a one...
cjne0 15129 A number is nonzero iff it...
cjdiv 15130 Complex conjugate distribu...
cnrecnv 15131 The inverse to the canonic...
sqeqd 15132 A deduction for showing tw...
recli 15133 The real part of a complex...
imcli 15134 The imaginary part of a co...
cjcli 15135 Closure law for complex co...
replimi 15136 Construct a complex number...
cjcji 15137 The conjugate of the conju...
reim0bi 15138 A number is real iff its i...
rerebi 15139 A real number equals its r...
cjrebi 15140 A number is real iff it eq...
recji 15141 Real part of a complex con...
imcji 15142 Imaginary part of a comple...
cjmulrcli 15143 A complex number times its...
cjmulvali 15144 A complex number times its...
cjmulge0i 15145 A complex number times its...
renegi 15146 Real part of negative. (C...
imnegi 15147 Imaginary part of negative...
cjnegi 15148 Complex conjugate of negat...
addcji 15149 A number plus its conjugat...
readdi 15150 Real part distributes over...
imaddi 15151 Imaginary part distributes...
remuli 15152 Real part of a product. (...
immuli 15153 Imaginary part of a produc...
cjaddi 15154 Complex conjugate distribu...
cjmuli 15155 Complex conjugate distribu...
ipcni 15156 Standard inner product on ...
cjdivi 15157 Complex conjugate distribu...
crrei 15158 The real part of a complex...
crimi 15159 The imaginary part of a co...
recld 15160 The real part of a complex...
imcld 15161 The imaginary part of a co...
cjcld 15162 Closure law for complex co...
replimd 15163 Construct a complex number...
remimd 15164 Value of the conjugate of ...
cjcjd 15165 The conjugate of the conju...
reim0bd 15166 A number is real iff its i...
rerebd 15167 A real number equals its r...
cjrebd 15168 A number is real iff it eq...
cjne0d 15169 A number is nonzero iff it...
recjd 15170 Real part of a complex con...
imcjd 15171 Imaginary part of a comple...
cjmulrcld 15172 A complex number times its...
cjmulvald 15173 A complex number times its...
cjmulge0d 15174 A complex number times its...
renegd 15175 Real part of negative. (C...
imnegd 15176 Imaginary part of negative...
cjnegd 15177 Complex conjugate of negat...
addcjd 15178 A number plus its conjugat...
cjexpd 15179 Complex conjugate of posit...
readdd 15180 Real part distributes over...
imaddd 15181 Imaginary part distributes...
resubd 15182 Real part distributes over...
imsubd 15183 Imaginary part distributes...
remuld 15184 Real part of a product. (...
immuld 15185 Imaginary part of a produc...
cjaddd 15186 Complex conjugate distribu...
cjmuld 15187 Complex conjugate distribu...
ipcnd 15188 Standard inner product on ...
cjdivd 15189 Complex conjugate distribu...
rered 15190 A real number equals its r...
reim0d 15191 The imaginary part of a re...
cjred 15192 A real number equals its c...
remul2d 15193 Real part of a product. (...
immul2d 15194 Imaginary part of a produc...
redivd 15195 Real part of a division. ...
imdivd 15196 Imaginary part of a divisi...
crred 15197 The real part of a complex...
crimd 15198 The imaginary part of a co...
sqrtval 15203 Value of square root funct...
absval 15204 The absolute value (modulu...
rennim 15205 A real number does not lie...
cnpart 15206 The specification of restr...
sqrt0 15207 The square root of zero is...
01sqrexlem1 15208 Lemma for ~ 01sqrex . (Co...
01sqrexlem2 15209 Lemma for ~ 01sqrex . (Co...
01sqrexlem3 15210 Lemma for ~ 01sqrex . (Co...
01sqrexlem4 15211 Lemma for ~ 01sqrex . (Co...
01sqrexlem5 15212 Lemma for ~ 01sqrex . (Co...
01sqrexlem6 15213 Lemma for ~ 01sqrex . (Co...
01sqrexlem7 15214 Lemma for ~ 01sqrex . (Co...
01sqrex 15215 Existence of a square root...
resqrex 15216 Existence of a square root...
sqrmo 15217 Uniqueness for the square ...
resqreu 15218 Existence and uniqueness f...
resqrtcl 15219 Closure of the square root...
resqrtthlem 15220 Lemma for ~ resqrtth . (C...
resqrtth 15221 Square root theorem over t...
remsqsqrt 15222 Square of square root. (C...
sqrtge0 15223 The square root function i...
sqrtgt0 15224 The square root function i...
sqrtmul 15225 Square root distributes ov...
sqrtle 15226 Square root is monotonic. ...
sqrtlt 15227 Square root is strictly mo...
sqrt11 15228 The square root function i...
sqrt00 15229 A square root is zero iff ...
rpsqrtcl 15230 The square root of a posit...
sqrtdiv 15231 Square root distributes ov...
sqrtneglem 15232 The square root of a negat...
sqrtneg 15233 The square root of a negat...
sqrtsq2 15234 Relationship between squar...
sqrtsq 15235 Square root of square. (C...
sqrtmsq 15236 Square root of square. (C...
sqrt1 15237 The square root of 1 is 1....
sqrt4 15238 The square root of 4 is 2....
sqrt9 15239 The square root of 9 is 3....
sqrt2gt1lt2 15240 The square root of 2 is bo...
sqrtm1 15241 The imaginary unit is the ...
nn0sqeq1 15242 A natural number with squa...
absneg 15243 Absolute value of the nega...
abscl 15244 Real closure of absolute v...
abscj 15245 The absolute value of a nu...
absvalsq 15246 Square of value of absolut...
absvalsq2 15247 Square of value of absolut...
sqabsadd 15248 Square of absolute value o...
sqabssub 15249 Square of absolute value o...
absval2 15250 Value of absolute value fu...
abs0 15251 The absolute value of 0. ...
absi 15252 The absolute value of the ...
absge0 15253 Absolute value is nonnegat...
absrpcl 15254 The absolute value of a no...
abs00 15255 The absolute value of a nu...
abs00ad 15256 A complex number is zero i...
abs00bd 15257 If a complex number is zer...
absreimsq 15258 Square of the absolute val...
absreim 15259 Absolute value of a number...
absmul 15260 Absolute value distributes...
absdiv 15261 Absolute value distributes...
absid 15262 A nonnegative number is it...
abs1 15263 The absolute value of one ...
absnid 15264 For a negative number, its...
leabs 15265 A real number is less than...
absor 15266 The absolute value of a re...
absre 15267 Absolute value of a real n...
absresq 15268 Square of the absolute val...
absmod0 15269 ` A ` is divisible by ` B ...
absexp 15270 Absolute value of positive...
absexpz 15271 Absolute value of integer ...
abssq 15272 Square can be moved in and...
sqabs 15273 The squares of two reals a...
absrele 15274 The absolute value of a co...
absimle 15275 The absolute value of a co...
max0add 15276 The sum of the positive an...
absz 15277 A real number is an intege...
nn0abscl 15278 The absolute value of an i...
zabscl 15279 The absolute value of an i...
zabs0b 15280 An integer has an absolute...
abslt 15281 Absolute value and 'less t...
absle 15282 Absolute value and 'less t...
abssubne0 15283 If the absolute value of a...
absdiflt 15284 The absolute value of a di...
absdifle 15285 The absolute value of a di...
elicc4abs 15286 Membership in a symmetric ...
lenegsq 15287 Comparison to a nonnegativ...
releabs 15288 The real part of a number ...
recval 15289 Reciprocal expressed with ...
absidm 15290 The absolute value functio...
absgt0 15291 The absolute value of a no...
nnabscl 15292 The absolute value of a no...
abssub 15293 Swapping order of subtract...
abssubge0 15294 Absolute value of a nonneg...
abssuble0 15295 Absolute value of a nonpos...
absmax 15296 The maximum of two numbers...
abstri 15297 Triangle inequality for ab...
abs3dif 15298 Absolute value of differen...
abs2dif 15299 Difference of absolute val...
abs2dif2 15300 Difference of absolute val...
abs2difabs 15301 Absolute value of differen...
abs1m 15302 For any complex number, th...
recan 15303 Cancellation law involving...
absf 15304 Mapping domain and codomai...
abs3lem 15305 Lemma involving absolute v...
abslem2 15306 Lemma involving absolute v...
rddif 15307 The difference between a r...
absrdbnd 15308 Bound on the absolute valu...
fzomaxdiflem 15309 Lemma for ~ fzomaxdif . (...
fzomaxdif 15310 A bound on the separation ...
uzin2 15311 The upper integers are clo...
rexanuz 15312 Combine two different uppe...
rexanre 15313 Combine two different uppe...
rexfiuz 15314 Combine finitely many diff...
rexuz3 15315 Restrict the base of the u...
rexanuz2 15316 Combine two different uppe...
r19.29uz 15317 A version of ~ 19.29 for u...
r19.2uz 15318 A version of ~ r19.2z for ...
rexuzre 15319 Convert an upper real quan...
rexico 15320 Restrict the base of an up...
cau3lem 15321 Lemma for ~ cau3 . (Contr...
cau3 15322 Convert between three-quan...
cau4 15323 Change the base of a Cauch...
caubnd2 15324 A Cauchy sequence of compl...
caubnd 15325 A Cauchy sequence of compl...
sqreulem 15326 Lemma for ~ sqreu : write ...
sqreu 15327 Existence and uniqueness f...
sqrtcl 15328 Closure of the square root...
sqrtthlem 15329 Lemma for ~ sqrtth . (Con...
sqrtf 15330 Mapping domain and codomai...
sqrtth 15331 Square root theorem over t...
sqrtrege0 15332 The square root function m...
eqsqrtor 15333 Solve an equation containi...
eqsqrtd 15334 A deduction for showing th...
eqsqrt2d 15335 A deduction for showing th...
amgm2 15336 Arithmetic-geometric mean ...
sqrtthi 15337 Square root theorem. Theo...
sqrtcli 15338 The square root of a nonne...
sqrtgt0i 15339 The square root of a posit...
sqrtmsqi 15340 Square root of square. (C...
sqrtsqi 15341 Square root of square. (C...
sqsqrti 15342 Square of square root. (C...
sqrtge0i 15343 The square root of a nonne...
absidi 15344 A nonnegative number is it...
absnidi 15345 A negative number is the n...
leabsi 15346 A real number is less than...
absori 15347 The absolute value of a re...
absrei 15348 Absolute value of a real n...
sqrtpclii 15349 The square root of a posit...
sqrtgt0ii 15350 The square root of a posit...
sqrt11i 15351 The square root function i...
sqrtmuli 15352 Square root distributes ov...
sqrtmulii 15353 Square root distributes ov...
sqrtmsq2i 15354 Relationship between squar...
sqrtlei 15355 Square root is monotonic. ...
sqrtlti 15356 Square root is strictly mo...
abslti 15357 Absolute value and 'less t...
abslei 15358 Absolute value and 'less t...
cnsqrt00 15359 A square root of a complex...
absvalsqi 15360 Square of value of absolut...
absvalsq2i 15361 Square of value of absolut...
abscli 15362 Real closure of absolute v...
absge0i 15363 Absolute value is nonnegat...
absval2i 15364 Value of absolute value fu...
abs00i 15365 The absolute value of a nu...
absgt0i 15366 The absolute value of a no...
absnegi 15367 Absolute value of negative...
abscji 15368 The absolute value of a nu...
releabsi 15369 The real part of a number ...
abssubi 15370 Swapping order of subtract...
absmuli 15371 Absolute value distributes...
sqabsaddi 15372 Square of absolute value o...
sqabssubi 15373 Square of absolute value o...
absdivzi 15374 Absolute value distributes...
abstrii 15375 Triangle inequality for ab...
abs3difi 15376 Absolute value of differen...
abs3lemi 15377 Lemma involving absolute v...
rpsqrtcld 15378 The square root of a posit...
sqrtgt0d 15379 The square root of a posit...
absnidd 15380 A negative number is the n...
leabsd 15381 A real number is less than...
absord 15382 The absolute value of a re...
absred 15383 Absolute value of a real n...
resqrtcld 15384 The square root of a nonne...
sqrtmsqd 15385 Square root of square. (C...
sqrtsqd 15386 Square root of square. (C...
sqrtge0d 15387 The square root of a nonne...
sqrtnegd 15388 The square root of a negat...
absidd 15389 A nonnegative number is it...
sqrtdivd 15390 Square root distributes ov...
sqrtmuld 15391 Square root distributes ov...
sqrtsq2d 15392 Relationship between squar...
sqrtled 15393 Square root is monotonic. ...
sqrtltd 15394 Square root is strictly mo...
sqr11d 15395 The square root function i...
nn0absid 15396 A nonnegative integer is i...
nn0absidi 15397 A nonnegative integer is i...
absltd 15398 Absolute value and 'less t...
absled 15399 Absolute value and 'less t...
abssubge0d 15400 Absolute value of a nonneg...
abssuble0d 15401 Absolute value of a nonpos...
absdifltd 15402 The absolute value of a di...
absdifled 15403 The absolute value of a di...
icodiamlt 15404 Two elements in a half-ope...
abscld 15405 Real closure of absolute v...
sqrtcld 15406 Closure of the square root...
sqrtrege0d 15407 The real part of the squar...
sqsqrtd 15408 Square root theorem. Theo...
msqsqrtd 15409 Square root theorem. Theo...
sqr00d 15410 A square root is zero iff ...
absvalsqd 15411 Square of value of absolut...
absvalsq2d 15412 Square of value of absolut...
absge0d 15413 Absolute value is nonnegat...
absval2d 15414 Value of absolute value fu...
abs00d 15415 The absolute value of a nu...
absne0d 15416 The absolute value of a nu...
absrpcld 15417 The absolute value of a no...
absnegd 15418 Absolute value of negative...
abscjd 15419 The absolute value of a nu...
releabsd 15420 The real part of a number ...
absexpd 15421 Absolute value of positive...
abssubd 15422 Swapping order of subtract...
absmuld 15423 Absolute value distributes...
absdivd 15424 Absolute value distributes...
abstrid 15425 Triangle inequality for ab...
abs2difd 15426 Difference of absolute val...
abs2dif2d 15427 Difference of absolute val...
abs2difabsd 15428 Absolute value of differen...
abs3difd 15429 Absolute value of differen...
abs3lemd 15430 Lemma involving absolute v...
reusq0 15431 A complex number is the sq...
bhmafibid1cn 15432 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15433 The Brahmagupta-Fibonacci ...
bhmafibid1 15434 The Brahmagupta-Fibonacci ...
bhmafibid2 15435 The Brahmagupta-Fibonacci ...
limsupgord 15438 Ordering property of the s...
limsupcl 15439 Closure of the superior li...
limsupval 15440 The superior limit of an i...
limsupgf 15441 Closure of the superior li...
limsupgval 15442 Value of the superior limi...
limsupgle 15443 The defining property of t...
limsuple 15444 The defining property of t...
limsuplt 15445 The defining property of t...
limsupval2 15446 The superior limit, relati...
limsupgre 15447 If a sequence of real numb...
limsupbnd1 15448 If a sequence is eventuall...
limsupbnd2 15449 If a sequence is eventuall...
climrel 15458 The limit relation is a re...
rlimrel 15459 The limit relation is a re...
clim 15460 Express the predicate: Th...
rlim 15461 Express the predicate: Th...
rlim2 15462 Rewrite ~ rlim for a mappi...
rlim2lt 15463 Use strictly less-than in ...
rlim3 15464 Restrict the range of the ...
climcl 15465 Closure of the limit of a ...
rlimpm 15466 Closure of a function with...
rlimf 15467 Closure of a function with...
rlimss 15468 Domain closure of a functi...
rlimcl 15469 Closure of the limit of a ...
clim2 15470 Express the predicate: Th...
clim2c 15471 Express the predicate ` F ...
clim0 15472 Express the predicate ` F ...
clim0c 15473 Express the predicate ` F ...
rlim0 15474 Express the predicate ` B ...
rlim0lt 15475 Use strictly less-than in ...
climi 15476 Convergence of a sequence ...
climi2 15477 Convergence of a sequence ...
climi0 15478 Convergence of a sequence ...
rlimi 15479 Convergence at infinity of...
rlimi2 15480 Convergence at infinity of...
ello1 15481 Elementhood in the set of ...
ello12 15482 Elementhood in the set of ...
ello12r 15483 Sufficient condition for e...
lo1f 15484 An eventually upper bounde...
lo1dm 15485 An eventually upper bounde...
lo1bdd 15486 The defining property of a...
ello1mpt 15487 Elementhood in the set of ...
ello1mpt2 15488 Elementhood in the set of ...
ello1d 15489 Sufficient condition for e...
lo1bdd2 15490 If an eventually bounded f...
lo1bddrp 15491 Refine ~ o1bdd2 to give a ...
elo1 15492 Elementhood in the set of ...
elo12 15493 Elementhood in the set of ...
elo12r 15494 Sufficient condition for e...
o1f 15495 An eventually bounded func...
o1dm 15496 An eventually bounded func...
o1bdd 15497 The defining property of a...
lo1o1 15498 A function is eventually b...
lo1o12 15499 A function is eventually b...
elo1mpt 15500 Elementhood in the set of ...
elo1mpt2 15501 Elementhood in the set of ...
elo1d 15502 Sufficient condition for e...
o1lo1 15503 A real function is eventua...
o1lo12 15504 A lower bounded real funct...
o1lo1d 15505 A real eventually bounded ...
icco1 15506 Derive eventual boundednes...
o1bdd2 15507 If an eventually bounded f...
o1bddrp 15508 Refine ~ o1bdd2 to give a ...
climconst 15509 An (eventually) constant s...
rlimconst 15510 A constant sequence conver...
rlimclim1 15511 Forward direction of ~ rli...
rlimclim 15512 A sequence on an upper int...
climrlim2 15513 Produce a real limit from ...
climconst2 15514 A constant sequence conver...
climz 15515 The zero sequence converge...
rlimuni 15516 A real function whose doma...
rlimdm 15517 Two ways to express that a...
climuni 15518 An infinite sequence of co...
fclim 15519 The limit relation is func...
climdm 15520 Two ways to express that a...
climeu 15521 An infinite sequence of co...
climreu 15522 An infinite sequence of co...
climmo 15523 An infinite sequence of co...
rlimres 15524 The restriction of a funct...
lo1res 15525 The restriction of an even...
o1res 15526 The restriction of an even...
rlimres2 15527 The restriction of a funct...
lo1res2 15528 The restriction of a funct...
o1res2 15529 The restriction of a funct...
lo1resb 15530 The restriction of a funct...
rlimresb 15531 The restriction of a funct...
o1resb 15532 The restriction of a funct...
climeq 15533 Two functions that are eve...
lo1eq 15534 Two functions that are eve...
rlimeq 15535 Two functions that are eve...
o1eq 15536 Two functions that are eve...
climmpt 15537 Exhibit a function ` G ` w...
2clim 15538 If two sequences converge ...
climmpt2 15539 Relate an integer limit on...
climshftlem 15540 A shifted function converg...
climres 15541 A function restricted to u...
climshft 15542 A shifted function converg...
serclim0 15543 The zero series converges ...
rlimcld2 15544 If ` D ` is a closed set i...
rlimrege0 15545 The limit of a sequence of...
rlimrecl 15546 The limit of a real sequen...
rlimge0 15547 The limit of a sequence of...
climshft2 15548 A shifted function converg...
climrecl 15549 The limit of a convergent ...
climge0 15550 A nonnegative sequence con...
climabs0 15551 Convergence to zero of the...
o1co 15552 Sufficient condition for t...
o1compt 15553 Sufficient condition for t...
rlimcn1 15554 Image of a limit under a c...
rlimcn1b 15555 Image of a limit under a c...
rlimcn3 15556 Image of a limit under a c...
rlimcn2 15557 Image of a limit under a c...
climcn1 15558 Image of a limit under a c...
climcn2 15559 Image of a limit under a c...
addcn2 15560 Complex number addition is...
subcn2 15561 Complex number subtraction...
mulcn2 15562 Complex number multiplicat...
reccn2 15563 The reciprocal function is...
cn1lem 15564 A sufficient condition for...
abscn2 15565 The absolute value functio...
cjcn2 15566 The complex conjugate func...
recn2 15567 The real part function is ...
imcn2 15568 The imaginary part functio...
climcn1lem 15569 The limit of a continuous ...
climabs 15570 Limit of the absolute valu...
climcj 15571 Limit of the complex conju...
climre 15572 Limit of the real part of ...
climim 15573 Limit of the imaginary par...
rlimmptrcl 15574 Reverse closure for a real...
rlimabs 15575 Limit of the absolute valu...
rlimcj 15576 Limit of the complex conju...
rlimre 15577 Limit of the real part of ...
rlimim 15578 Limit of the imaginary par...
o1of2 15579 Show that a binary operati...
o1add 15580 The sum of two eventually ...
o1mul 15581 The product of two eventua...
o1sub 15582 The difference of two even...
rlimo1 15583 Any function with a finite...
rlimdmo1 15584 A convergent function is e...
o1rlimmul 15585 The product of an eventual...
o1const 15586 A constant function is eve...
lo1const 15587 A constant function is eve...
lo1mptrcl 15588 Reverse closure for an eve...
o1mptrcl 15589 Reverse closure for an eve...
o1add2 15590 The sum of two eventually ...
o1mul2 15591 The product of two eventua...
o1sub2 15592 The product of two eventua...
lo1add 15593 The sum of two eventually ...
lo1mul 15594 The product of an eventual...
lo1mul2 15595 The product of an eventual...
o1dif 15596 If the difference of two f...
lo1sub 15597 The difference of an event...
climadd 15598 Limit of the sum of two co...
climmul 15599 Limit of the product of tw...
climsub 15600 Limit of the difference of...
climaddc1 15601 Limit of a constant ` C ` ...
climaddc2 15602 Limit of a constant ` C ` ...
climmulc2 15603 Limit of a sequence multip...
climsubc1 15604 Limit of a constant ` C ` ...
climsubc2 15605 Limit of a constant ` C ` ...
climle 15606 Comparison of the limits o...
climsqz 15607 Convergence of a sequence ...
climsqz2 15608 Convergence of a sequence ...
rlimadd 15609 Limit of the sum of two co...
rlimsub 15610 Limit of the difference of...
rlimmul 15611 Limit of the product of tw...
rlimdiv 15612 Limit of the quotient of t...
rlimneg 15613 Limit of the negative of a...
rlimle 15614 Comparison of the limits o...
rlimsqzlem 15615 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15616 Convergence of a sequence ...
rlimsqz2 15617 Convergence of a sequence ...
lo1le 15618 Transfer eventual upper bo...
o1le 15619 Transfer eventual boundedn...
rlimno1 15620 A function whose inverse c...
clim2ser 15621 The limit of an infinite s...
clim2ser2 15622 The limit of an infinite s...
iserex 15623 An infinite series converg...
isermulc2 15624 Multiplication of an infin...
climlec2 15625 Comparison of a constant t...
iserle 15626 Comparison of the limits o...
iserge0 15627 The limit of an infinite s...
climub 15628 The limit of a monotonic s...
climserle 15629 The partial sums of a conv...
isershft 15630 Index shift of the limit o...
isercolllem1 15631 Lemma for ~ isercoll . (C...
isercolllem2 15632 Lemma for ~ isercoll . (C...
isercolllem3 15633 Lemma for ~ isercoll . (C...
isercoll 15634 Rearrange an infinite seri...
isercoll2 15635 Generalize ~ isercoll so t...
climsup 15636 A bounded monotonic sequen...
climcau 15637 A converging sequence of c...
climbdd 15638 A converging sequence of c...
caucvgrlem 15639 Lemma for ~ caurcvgr . (C...
caurcvgr 15640 A Cauchy sequence of real ...
caucvgrlem2 15641 Lemma for ~ caucvgr . (Co...
caucvgr 15642 A Cauchy sequence of compl...
caurcvg 15643 A Cauchy sequence of real ...
caurcvg2 15644 A Cauchy sequence of real ...
caucvg 15645 A Cauchy sequence of compl...
caucvgb 15646 A function is convergent i...
serf0 15647 If an infinite series conv...
iseraltlem1 15648 Lemma for ~ iseralt . A d...
iseraltlem2 15649 Lemma for ~ iseralt . The...
iseraltlem3 15650 Lemma for ~ iseralt . Fro...
iseralt 15651 The alternating series tes...
sumex 15654 A sum is a set. (Contribu...
sumeq1 15655 Equality theorem for a sum...
nfsum1 15656 Bound-variable hypothesis ...
nfsum 15657 Bound-variable hypothesis ...
sumeq2w 15658 Equality theorem for sum, ...
sumeq2ii 15659 Equality theorem for sum, ...
sumeq2 15660 Equality theorem for sum. ...
cbvsum 15661 Change bound variable in a...
cbvsumv 15662 Change bound variable in a...
sumeq1i 15663 Equality inference for sum...
sumeq2i 15664 Equality inference for sum...
sumeq12i 15665 Equality inference for sum...
sumeq1d 15666 Equality deduction for sum...
sumeq2d 15667 Equality deduction for sum...
sumeq2dv 15668 Equality deduction for sum...
sumeq2sdv 15669 Equality deduction for sum...
sumeq2sdvOLD 15670 Obsolete version of ~ sume...
2sumeq2dv 15671 Equality deduction for dou...
sumeq12dv 15672 Equality deduction for sum...
sumeq12rdv 15673 Equality deduction for sum...
sum2id 15674 The second class argument ...
sumfc 15675 A lemma to facilitate conv...
fz1f1o 15676 A lemma for working with f...
sumrblem 15677 Lemma for ~ sumrb . (Cont...
fsumcvg 15678 The sequence of partial su...
sumrb 15679 Rebase the starting point ...
summolem3 15680 Lemma for ~ summo . (Cont...
summolem2a 15681 Lemma for ~ summo . (Cont...
summolem2 15682 Lemma for ~ summo . (Cont...
summo 15683 A sum has at most one limi...
zsum 15684 Series sum with index set ...
isum 15685 Series sum with an upper i...
fsum 15686 The value of a sum over a ...
sum0 15687 Any sum over the empty set...
sumz 15688 Any sum of zero over a sum...
fsumf1o 15689 Re-index a finite sum usin...
sumss 15690 Change the index set to a ...
fsumss 15691 Change the index set to a ...
sumss2 15692 Change the index set of a ...
fsumcvg2 15693 The sequence of partial su...
fsumsers 15694 Special case of series sum...
fsumcvg3 15695 A finite sum is convergent...
fsumser 15696 A finite sum expressed in ...
fsumcl2lem 15697 - Lemma for finite sum clo...
fsumcllem 15698 - Lemma for finite sum clo...
fsumcl 15699 Closure of a finite sum of...
fsumrecl 15700 Closure of a finite sum of...
fsumzcl 15701 Closure of a finite sum of...
fsumnn0cl 15702 Closure of a finite sum of...
fsumrpcl 15703 Closure of a finite sum of...
fsumclf 15704 Closure of a finite sum of...
fsumzcl2 15705 A finite sum with integer ...
fsumadd 15706 The sum of two finite sums...
fsumsplit 15707 Split a sum into two parts...
fsumsplitf 15708 Split a sum into two parts...
sumsnf 15709 A sum of a singleton is th...
fsumsplitsn 15710 Separate out a term in a f...
fsumsplit1 15711 Separate out a term in a f...
sumsn 15712 A sum of a singleton is th...
fsum1 15713 The finite sum of ` A ( k ...
sumpr 15714 A sum over a pair is the s...
sumtp 15715 A sum over a triple is the...
sumsns 15716 A sum of a singleton is th...
fsumm1 15717 Separate out the last term...
fzosump1 15718 Separate out the last term...
fsum1p 15719 Separate out the first ter...
fsummsnunz 15720 A finite sum all of whose ...
fsumsplitsnun 15721 Separate out a term in a f...
fsump1 15722 The addition of the next t...
isumclim 15723 An infinite sum equals the...
isumclim2 15724 A converging series conver...
isumclim3 15725 The sequence of partial fi...
sumnul 15726 The sum of a non-convergen...
isumcl 15727 The sum of a converging in...
isummulc2 15728 An infinite sum multiplied...
isummulc1 15729 An infinite sum multiplied...
isumdivc 15730 An infinite sum divided by...
isumrecl 15731 The sum of a converging in...
isumge0 15732 An infinite sum of nonnega...
isumadd 15733 Addition of infinite sums....
sumsplit 15734 Split a sum into two parts...
fsump1i 15735 Optimized version of ~ fsu...
fsum2dlem 15736 Lemma for ~ fsum2d - induc...
fsum2d 15737 Write a double sum as a su...
fsumxp 15738 Combine two sums into a si...
fsumcnv 15739 Transform a region of summ...
fsumcom2 15740 Interchange order of summa...
fsumcom 15741 Interchange order of summa...
fsum0diaglem 15742 Lemma for ~ fsum0diag . (...
fsum0diag 15743 Two ways to express "the s...
mptfzshft 15744 1-1 onto function in maps-...
fsumrev 15745 Reversal of a finite sum. ...
fsumshft 15746 Index shift of a finite su...
fsumshftm 15747 Negative index shift of a ...
fsumrev2 15748 Reversal of a finite sum. ...
fsum0diag2 15749 Two ways to express "the s...
fsummulc2 15750 A finite sum multiplied by...
fsummulc1 15751 A finite sum multiplied by...
fsumdivc 15752 A finite sum divided by a ...
fsumneg 15753 Negation of a finite sum. ...
fsumsub 15754 Split a finite sum over a ...
fsum2mul 15755 Separate the nested sum of...
fsumconst 15756 The sum of constant terms ...
fsumdifsnconst 15757 The sum of constant terms ...
modfsummodslem1 15758 Lemma 1 for ~ modfsummods ...
modfsummods 15759 Induction step for ~ modfs...
modfsummod 15760 A finite sum modulo a posi...
fsumge0 15761 If all of the terms of a f...
fsumless 15762 A shorter sum of nonnegati...
fsumge1 15763 A sum of nonnegative numbe...
fsum00 15764 A sum of nonnegative numbe...
fsumle 15765 If all of the terms of fin...
fsumlt 15766 If every term in one finit...
fsumabs 15767 Generalized triangle inequ...
telfsumo 15768 Sum of a telescoping serie...
telfsumo2 15769 Sum of a telescoping serie...
telfsum 15770 Sum of a telescoping serie...
telfsum2 15771 Sum of a telescoping serie...
fsumparts 15772 Summation by parts. (Cont...
fsumrelem 15773 Lemma for ~ fsumre , ~ fsu...
fsumre 15774 The real part of a sum. (...
fsumim 15775 The imaginary part of a su...
fsumcj 15776 The complex conjugate of a...
fsumrlim 15777 Limit of a finite sum of c...
fsumo1 15778 The finite sum of eventual...
o1fsum 15779 If ` A ( k ) ` is O(1), th...
seqabs 15780 Generalized triangle inequ...
iserabs 15781 Generalized triangle inequ...
cvgcmp 15782 A comparison test for conv...
cvgcmpub 15783 An upper bound for the lim...
cvgcmpce 15784 A comparison test for conv...
abscvgcvg 15785 An absolutely convergent s...
climfsum 15786 Limit of a finite sum of c...
fsumiun 15787 Sum over a disjoint indexe...
hashiun 15788 The cardinality of a disjo...
hash2iun 15789 The cardinality of a neste...
hash2iun1dif1 15790 The cardinality of a neste...
hashrabrex 15791 The number of elements in ...
hashuni 15792 The cardinality of a disjo...
qshash 15793 The cardinality of a set w...
ackbijnn 15794 Translate the Ackermann bi...
binomlem 15795 Lemma for ~ binom (binomia...
binom 15796 The binomial theorem: ` ( ...
binom1p 15797 Special case of the binomi...
binom11 15798 Special case of the binomi...
binom1dif 15799 A summation for the differ...
bcxmaslem1 15800 Lemma for ~ bcxmas . (Con...
bcxmas 15801 Parallel summation (Christ...
incexclem 15802 Lemma for ~ incexc . (Con...
incexc 15803 The inclusion/exclusion pr...
incexc2 15804 The inclusion/exclusion pr...
isumshft 15805 Index shift of an infinite...
isumsplit 15806 Split off the first ` N ` ...
isum1p 15807 The infinite sum of a conv...
isumnn0nn 15808 Sum from 0 to infinity in ...
isumrpcl 15809 The infinite sum of positi...
isumle 15810 Comparison of two infinite...
isumless 15811 A finite sum of nonnegativ...
isumsup2 15812 An infinite sum of nonnega...
isumsup 15813 An infinite sum of nonnega...
isumltss 15814 A partial sum of a series ...
climcndslem1 15815 Lemma for ~ climcnds : bou...
climcndslem2 15816 Lemma for ~ climcnds : bou...
climcnds 15817 The Cauchy condensation te...
divrcnv 15818 The sequence of reciprocal...
divcnv 15819 The sequence of reciprocal...
flo1 15820 The floor function satisfi...
divcnvshft 15821 Limit of a ratio function....
supcvg 15822 Extract a sequence ` f ` i...
infcvgaux1i 15823 Auxiliary theorem for appl...
infcvgaux2i 15824 Auxiliary theorem for appl...
harmonic 15825 The harmonic series ` H ` ...
arisum 15826 Arithmetic series sum of t...
arisum2 15827 Arithmetic series sum of t...
trireciplem 15828 Lemma for ~ trirecip . Sh...
trirecip 15829 The sum of the reciprocals...
expcnv 15830 A sequence of powers of a ...
explecnv 15831 A sequence of terms conver...
geoserg 15832 The value of the finite ge...
geoser 15833 The value of the finite ge...
pwdif 15834 The difference of two numb...
pwm1geoser 15835 The n-th power of a number...
geolim 15836 The partial sums in the in...
geolim2 15837 The partial sums in the ge...
georeclim 15838 The limit of a geometric s...
geo2sum 15839 The value of the finite ge...
geo2sum2 15840 The value of the finite ge...
geo2lim 15841 The value of the infinite ...
geomulcvg 15842 The geometric series conve...
geoisum 15843 The infinite sum of ` 1 + ...
geoisumr 15844 The infinite sum of recipr...
geoisum1 15845 The infinite sum of ` A ^ ...
geoisum1c 15846 The infinite sum of ` A x....
0.999... 15847 The recurring decimal 0.99...
geoihalfsum 15848 Prove that the infinite ge...
cvgrat 15849 Ratio test for convergence...
mertenslem1 15850 Lemma for ~ mertens . (Co...
mertenslem2 15851 Lemma for ~ mertens . (Co...
mertens 15852 Mertens' theorem. If ` A ...
prodf 15853 An infinite product of com...
clim2prod 15854 The limit of an infinite p...
clim2div 15855 The limit of an infinite p...
prodfmul 15856 The product of two infinit...
prodf1 15857 The value of the partial p...
prodf1f 15858 A one-valued infinite prod...
prodfclim1 15859 The constant one product c...
prodfn0 15860 No term of a nonzero infin...
prodfrec 15861 The reciprocal of an infin...
prodfdiv 15862 The quotient of two infini...
ntrivcvg 15863 A non-trivially converging...
ntrivcvgn0 15864 A product that converges t...
ntrivcvgfvn0 15865 Any value of a product seq...
ntrivcvgtail 15866 A tail of a non-trivially ...
ntrivcvgmullem 15867 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15868 The product of two non-tri...
prodex 15871 A product is a set. (Cont...
prodeq1f 15872 Equality theorem for a pro...
prodeq1 15873 Equality theorem for a pro...
nfcprod1 15874 Bound-variable hypothesis ...
nfcprod 15875 Bound-variable hypothesis ...
prodeq2w 15876 Equality theorem for produ...
prodeq2ii 15877 Equality theorem for produ...
prodeq2 15878 Equality theorem for produ...
cbvprod 15879 Change bound variable in a...
cbvprodv 15880 Change bound variable in a...
cbvprodi 15881 Change bound variable in a...
prodeq1i 15882 Equality inference for pro...
prodeq1iOLD 15883 Obsolete version of ~ prod...
prodeq2i 15884 Equality inference for pro...
prodeq12i 15885 Equality inference for pro...
prodeq1d 15886 Equality deduction for pro...
prodeq2d 15887 Equality deduction for pro...
prodeq2dv 15888 Equality deduction for pro...
prodeq2sdv 15889 Equality deduction for pro...
prodeq2sdvOLD 15890 Obsolete version of ~ prod...
2cprodeq2dv 15891 Equality deduction for dou...
prodeq12dv 15892 Equality deduction for pro...
prodeq12rdv 15893 Equality deduction for pro...
prod2id 15894 The second class argument ...
prodrblem 15895 Lemma for ~ prodrb . (Con...
fprodcvg 15896 The sequence of partial pr...
prodrblem2 15897 Lemma for ~ prodrb . (Con...
prodrb 15898 Rebase the starting point ...
prodmolem3 15899 Lemma for ~ prodmo . (Con...
prodmolem2a 15900 Lemma for ~ prodmo . (Con...
prodmolem2 15901 Lemma for ~ prodmo . (Con...
prodmo 15902 A product has at most one ...
zprod 15903 Series product with index ...
iprod 15904 Series product with an upp...
zprodn0 15905 Nonzero series product wit...
iprodn0 15906 Nonzero series product wit...
fprod 15907 The value of a product ove...
fprodntriv 15908 A non-triviality lemma for...
prod0 15909 A product over the empty s...
prod1 15910 Any product of one over a ...
prodfc 15911 A lemma to facilitate conv...
fprodf1o 15912 Re-index a finite product ...
prodss 15913 Change the index set to a ...
fprodss 15914 Change the index set to a ...
fprodser 15915 A finite product expressed...
fprodcl2lem 15916 Finite product closure lem...
fprodcllem 15917 Finite product closure lem...
fprodcl 15918 Closure of a finite produc...
fprodrecl 15919 Closure of a finite produc...
fprodzcl 15920 Closure of a finite produc...
fprodnncl 15921 Closure of a finite produc...
fprodrpcl 15922 Closure of a finite produc...
fprodnn0cl 15923 Closure of a finite produc...
fprodcllemf 15924 Finite product closure lem...
fprodreclf 15925 Closure of a finite produc...
fprodmul 15926 The product of two finite ...
fproddiv 15927 The quotient of two finite...
prodsn 15928 A product of a singleton i...
fprod1 15929 A finite product of only o...
prodsnf 15930 A product of a singleton i...
climprod1 15931 The limit of a product ove...
fprodsplit 15932 Split a finite product int...
fprodm1 15933 Separate out the last term...
fprod1p 15934 Separate out the first ter...
fprodp1 15935 Multiply in the last term ...
fprodm1s 15936 Separate out the last term...
fprodp1s 15937 Multiply in the last term ...
prodsns 15938 A product of the singleton...
fprodfac 15939 Factorial using product no...
fprodabs 15940 The absolute value of a fi...
fprodeq0 15941 Any finite product contain...
fprodshft 15942 Shift the index of a finit...
fprodrev 15943 Reversal of a finite produ...
fprodconst 15944 The product of constant te...
fprodn0 15945 A finite product of nonzer...
fprod2dlem 15946 Lemma for ~ fprod2d - indu...
fprod2d 15947 Write a double product as ...
fprodxp 15948 Combine two products into ...
fprodcnv 15949 Transform a product region...
fprodcom2 15950 Interchange order of multi...
fprodcom 15951 Interchange product order....
fprod0diag 15952 Two ways to express "the p...
fproddivf 15953 The quotient of two finite...
fprodsplitf 15954 Split a finite product int...
fprodsplitsn 15955 Separate out a term in a f...
fprodsplit1f 15956 Separate out a term in a f...
fprodn0f 15957 A finite product of nonzer...
fprodclf 15958 Closure of a finite produc...
fprodge0 15959 If all the terms of a fini...
fprodeq0g 15960 Any finite product contain...
fprodge1 15961 If all of the terms of a f...
fprodle 15962 If all the terms of two fi...
fprodmodd 15963 If all factors of two fini...
iprodclim 15964 An infinite product equals...
iprodclim2 15965 A converging product conve...
iprodclim3 15966 The sequence of partial fi...
iprodcl 15967 The product of a non-trivi...
iprodrecl 15968 The product of a non-trivi...
iprodmul 15969 Multiplication of infinite...
risefacval 15974 The value of the rising fa...
fallfacval 15975 The value of the falling f...
risefacval2 15976 One-based value of rising ...
fallfacval2 15977 One-based value of falling...
fallfacval3 15978 A product representation o...
risefaccllem 15979 Lemma for rising factorial...
fallfaccllem 15980 Lemma for falling factoria...
risefaccl 15981 Closure law for rising fac...
fallfaccl 15982 Closure law for falling fa...
rerisefaccl 15983 Closure law for rising fac...
refallfaccl 15984 Closure law for falling fa...
nnrisefaccl 15985 Closure law for rising fac...
zrisefaccl 15986 Closure law for rising fac...
zfallfaccl 15987 Closure law for falling fa...
nn0risefaccl 15988 Closure law for rising fac...
rprisefaccl 15989 Closure law for rising fac...
risefallfac 15990 A relationship between ris...
fallrisefac 15991 A relationship between fal...
risefall0lem 15992 Lemma for ~ risefac0 and ~...
risefac0 15993 The value of the rising fa...
fallfac0 15994 The value of the falling f...
risefacp1 15995 The value of the rising fa...
fallfacp1 15996 The value of the falling f...
risefacp1d 15997 The value of the rising fa...
fallfacp1d 15998 The value of the falling f...
risefac1 15999 The value of rising factor...
fallfac1 16000 The value of falling facto...
risefacfac 16001 Relate rising factorial to...
fallfacfwd 16002 The forward difference of ...
0fallfac 16003 The value of the zero fall...
0risefac 16004 The value of the zero risi...
binomfallfaclem1 16005 Lemma for ~ binomfallfac ....
binomfallfaclem2 16006 Lemma for ~ binomfallfac ....
binomfallfac 16007 A version of the binomial ...
binomrisefac 16008 A version of the binomial ...
fallfacval4 16009 Represent the falling fact...
bcfallfac 16010 Binomial coefficient in te...
fallfacfac 16011 Relate falling factorial t...
bpolylem 16014 Lemma for ~ bpolyval . (C...
bpolyval 16015 The value of the Bernoulli...
bpoly0 16016 The value of the Bernoulli...
bpoly1 16017 The value of the Bernoulli...
bpolycl 16018 Closure law for Bernoulli ...
bpolysum 16019 A sum for Bernoulli polyno...
bpolydiflem 16020 Lemma for ~ bpolydif . (C...
bpolydif 16021 Calculate the difference b...
fsumkthpow 16022 A closed-form expression f...
bpoly2 16023 The Bernoulli polynomials ...
bpoly3 16024 The Bernoulli polynomials ...
bpoly4 16025 The Bernoulli polynomials ...
fsumcube 16026 Express the sum of cubes i...
eftcl 16039 Closure of a term in the s...
reeftcl 16040 The terms of the series ex...
eftabs 16041 The absolute value of a te...
eftval 16042 The value of a term in the...
efcllem 16043 Lemma for ~ efcl . The se...
ef0lem 16044 The series defining the ex...
efval 16045 Value of the exponential f...
esum 16046 Value of Euler's constant ...
eff 16047 Domain and codomain of the...
efcl 16048 Closure law for the expone...
efcld 16049 Closure law for the expone...
efval2 16050 Value of the exponential f...
efcvg 16051 The series that defines th...
efcvgfsum 16052 Exponential function conve...
reefcl 16053 The exponential function i...
reefcld 16054 The exponential function i...
ere 16055 Euler's constant ` _e ` = ...
ege2le3 16056 Lemma for ~ egt2lt3 . (Co...
ef0 16057 Value of the exponential f...
efcj 16058 The exponential of a compl...
efaddlem 16059 Lemma for ~ efadd (exponen...
efadd 16060 Sum of exponents law for e...
fprodefsum 16061 Move the exponential funct...
efcan 16062 Cancellation law for expon...
efne0d 16063 The exponential of a compl...
efne0 16064 The exponential of a compl...
efne0OLD 16065 Obsolete version of ~ efne...
efneg 16066 The exponential of the opp...
eff2 16067 The exponential function m...
efsub 16068 Difference of exponents la...
efexp 16069 The exponential of an inte...
efzval 16070 Value of the exponential f...
efgt0 16071 The exponential of a real ...
rpefcl 16072 The exponential of a real ...
rpefcld 16073 The exponential of a real ...
eftlcvg 16074 The tail series of the exp...
eftlcl 16075 Closure of the sum of an i...
reeftlcl 16076 Closure of the sum of an i...
eftlub 16077 An upper bound on the abso...
efsep 16078 Separate out the next term...
effsumlt 16079 The partial sums of the se...
eft0val 16080 The value of the first ter...
ef4p 16081 Separate out the first fou...
efgt1p2 16082 The exponential of a posit...
efgt1p 16083 The exponential of a posit...
efgt1 16084 The exponential of a posit...
eflt 16085 The exponential function o...
efle 16086 The exponential function o...
reef11 16087 The exponential function o...
reeff1 16088 The exponential function m...
eflegeo 16089 The exponential function o...
sinval 16090 Value of the sine function...
cosval 16091 Value of the cosine functi...
sinf 16092 Domain and codomain of the...
cosf 16093 Domain and codomain of the...
sincl 16094 Closure of the sine functi...
coscl 16095 Closure of the cosine func...
tanval 16096 Value of the tangent funct...
tancl 16097 The closure of the tangent...
sincld 16098 Closure of the sine functi...
coscld 16099 Closure of the cosine func...
tancld 16100 Closure of the tangent fun...
tanval2 16101 Express the tangent functi...
tanval3 16102 Express the tangent functi...
resinval 16103 The sine of a real number ...
recosval 16104 The cosine of a real numbe...
efi4p 16105 Separate out the first fou...
resin4p 16106 Separate out the first fou...
recos4p 16107 Separate out the first fou...
resincl 16108 The sine of a real number ...
recoscl 16109 The cosine of a real numbe...
retancl 16110 The closure of the tangent...
resincld 16111 Closure of the sine functi...
recoscld 16112 Closure of the cosine func...
retancld 16113 Closure of the tangent fun...
sinneg 16114 The sine of a negative is ...
cosneg 16115 The cosines of a number an...
tanneg 16116 The tangent of a negative ...
sin0 16117 Value of the sine function...
cos0 16118 Value of the cosine functi...
tan0 16119 The value of the tangent f...
efival 16120 The exponential function i...
efmival 16121 The exponential function i...
sinhval 16122 Value of the hyperbolic si...
coshval 16123 Value of the hyperbolic co...
resinhcl 16124 The hyperbolic sine of a r...
rpcoshcl 16125 The hyperbolic cosine of a...
recoshcl 16126 The hyperbolic cosine of a...
retanhcl 16127 The hyperbolic tangent of ...
tanhlt1 16128 The hyperbolic tangent of ...
tanhbnd 16129 The hyperbolic tangent of ...
efeul 16130 Eulerian representation of...
efieq 16131 The exponentials of two im...
sinadd 16132 Addition formula for sine....
cosadd 16133 Addition formula for cosin...
tanaddlem 16134 A useful intermediate step...
tanadd 16135 Addition formula for tange...
sinsub 16136 Sine of difference. (Cont...
cossub 16137 Cosine of difference. (Co...
addsin 16138 Sum of sines. (Contribute...
subsin 16139 Difference of sines. (Con...
sinmul 16140 Product of sines can be re...
cosmul 16141 Product of cosines can be ...
addcos 16142 Sum of cosines. (Contribu...
subcos 16143 Difference of cosines. (C...
sincossq 16144 Sine squared plus cosine s...
sin2t 16145 Double-angle formula for s...
cos2t 16146 Double-angle formula for c...
cos2tsin 16147 Double-angle formula for c...
sinbnd 16148 The sine of a real number ...
cosbnd 16149 The cosine of a real numbe...
sinbnd2 16150 The sine of a real number ...
cosbnd2 16151 The cosine of a real numbe...
ef01bndlem 16152 Lemma for ~ sin01bnd and ~...
sin01bnd 16153 Bounds on the sine of a po...
cos01bnd 16154 Bounds on the cosine of a ...
cos1bnd 16155 Bounds on the cosine of 1....
cos2bnd 16156 Bounds on the cosine of 2....
sinltx 16157 The sine of a positive rea...
sin01gt0 16158 The sine of a positive rea...
cos01gt0 16159 The cosine of a positive r...
sin02gt0 16160 The sine of a positive rea...
sincos1sgn 16161 The signs of the sine and ...
sincos2sgn 16162 The signs of the sine and ...
sin4lt0 16163 The sine of 4 is negative....
absefi 16164 The absolute value of the ...
absef 16165 The absolute value of the ...
absefib 16166 A complex number is real i...
efieq1re 16167 A number whose imaginary e...
demoivre 16168 De Moivre's Formula. Proo...
demoivreALT 16169 Alternate proof of ~ demoi...
eirrlem 16172 Lemma for ~ eirr . (Contr...
eirr 16173 ` _e ` is irrational. (Co...
egt2lt3 16174 Euler's constant ` _e ` = ...
epos 16175 Euler's constant ` _e ` is...
epr 16176 Euler's constant ` _e ` is...
ene0 16177 ` _e ` is not 0. (Contrib...
ene1 16178 ` _e ` is not 1. (Contrib...
xpnnen 16179 The Cartesian product of t...
znnen 16180 The set of integers and th...
qnnen 16181 The rational numbers are c...
rpnnen2lem1 16182 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 16183 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 16184 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 16185 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 16186 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 16187 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 16188 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 16189 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 16190 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 16191 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 16192 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 16193 Lemma for ~ rpnnen2 . (Co...
rpnnen2 16194 The other half of ~ rpnnen...
rpnnen 16195 The cardinality of the con...
rexpen 16196 The real numbers are equin...
cpnnen 16197 The complex numbers are eq...
rucALT 16198 Alternate proof of ~ ruc ....
ruclem1 16199 Lemma for ~ ruc (the reals...
ruclem2 16200 Lemma for ~ ruc . Orderin...
ruclem3 16201 Lemma for ~ ruc . The con...
ruclem4 16202 Lemma for ~ ruc . Initial...
ruclem6 16203 Lemma for ~ ruc . Domain ...
ruclem7 16204 Lemma for ~ ruc . Success...
ruclem8 16205 Lemma for ~ ruc . The int...
ruclem9 16206 Lemma for ~ ruc . The fir...
ruclem10 16207 Lemma for ~ ruc . Every f...
ruclem11 16208 Lemma for ~ ruc . Closure...
ruclem12 16209 Lemma for ~ ruc . The sup...
ruclem13 16210 Lemma for ~ ruc . There i...
ruc 16211 The set of positive intege...
resdomq 16212 The set of rationals is st...
aleph1re 16213 There are at least aleph-o...
aleph1irr 16214 There are at least aleph-o...
cnso 16215 The complex numbers can be...
sqrt2irrlem 16216 Lemma for ~ sqrt2irr . Th...
sqrt2irr 16217 The square root of 2 is ir...
sqrt2re 16218 The square root of 2 exist...
sqrt2irr0 16219 The square root of 2 is an...
nthruc 16220 The sequence ` NN ` , ` ZZ...
nthruz 16221 The sequence ` NN ` , ` NN...
divides 16224 Define the divides relatio...
dvdsval2 16225 One nonzero integer divide...
dvdsval3 16226 One nonzero integer divide...
dvdszrcl 16227 Reverse closure for the di...
dvdsmod0 16228 If a positive integer divi...
p1modz1 16229 If a number greater than 1...
dvdsmodexp 16230 If a positive integer divi...
nndivdvds 16231 Strong form of ~ dvdsval2 ...
nndivides 16232 Definition of the divides ...
moddvds 16233 Two ways to say ` A == B `...
modm1div 16234 An integer greater than on...
addmulmodb 16235 An integer plus a product ...
dvds0lem 16236 A lemma to assist theorems...
dvds1lem 16237 A lemma to assist theorems...
dvds2lem 16238 A lemma to assist theorems...
iddvds 16239 An integer divides itself....
1dvds 16240 1 divides any integer. Th...
dvds0 16241 Any integer divides 0. Th...
negdvdsb 16242 An integer divides another...
dvdsnegb 16243 An integer divides another...
absdvdsb 16244 An integer divides another...
dvdsabsb 16245 An integer divides another...
0dvds 16246 Only 0 is divisible by 0. ...
dvdsmul1 16247 An integer divides a multi...
dvdsmul2 16248 An integer divides a multi...
iddvdsexp 16249 An integer divides a posit...
muldvds1 16250 If a product divides an in...
muldvds2 16251 If a product divides an in...
dvdscmul 16252 Multiplication by a consta...
dvdsmulc 16253 Multiplication by a consta...
dvdscmulr 16254 Cancellation law for the d...
dvdsmulcr 16255 Cancellation law for the d...
summodnegmod 16256 The sum of two integers mo...
difmod0 16257 The difference of two inte...
modmulconst 16258 Constant multiplication in...
dvds2ln 16259 If an integer divides each...
dvds2add 16260 If an integer divides each...
dvds2sub 16261 If an integer divides each...
dvds2addd 16262 Deduction form of ~ dvds2a...
dvds2subd 16263 Deduction form of ~ dvds2s...
dvdstr 16264 The divides relation is tr...
dvdstrd 16265 The divides relation is tr...
dvdsmultr1 16266 If an integer divides anot...
dvdsmultr1d 16267 Deduction form of ~ dvdsmu...
dvdsmultr2 16268 If an integer divides anot...
dvdsmultr2d 16269 Deduction form of ~ dvdsmu...
ordvdsmul 16270 If an integer divides eith...
dvdssub2 16271 If an integer divides a di...
dvdsadd 16272 An integer divides another...
dvdsaddr 16273 An integer divides another...
dvdssub 16274 An integer divides another...
dvdssubr 16275 An integer divides another...
dvdsadd2b 16276 Adding a multiple of the b...
dvdsaddre2b 16277 Adding a multiple of the b...
fsumdvds 16278 If every term in a sum is ...
dvdslelem 16279 Lemma for ~ dvdsle . (Con...
dvdsle 16280 The divisors of a positive...
dvdsleabs 16281 The divisors of a nonzero ...
dvdsleabs2 16282 Transfer divisibility to a...
dvdsabseq 16283 If two integers divide eac...
dvdseq 16284 If two nonnegative integer...
divconjdvds 16285 If a nonzero integer ` M `...
dvdsdivcl 16286 The complement of a diviso...
dvdsflip 16287 An involution of the divis...
dvdsssfz1 16288 The set of divisors of a n...
dvds1 16289 The only nonnegative integ...
alzdvds 16290 Only 0 is divisible by all...
dvdsext 16291 Poset extensionality for d...
fzm1ndvds 16292 No number between ` 1 ` an...
fzo0dvdseq 16293 Zero is the only one of th...
fzocongeq 16294 Two different elements of ...
addmodlteqALT 16295 Two nonnegative integers l...
dvdsfac 16296 A positive integer divides...
dvdsexp2im 16297 If an integer divides anot...
dvdsexp 16298 A power divides a power wi...
dvdsmod 16299 Any number ` K ` whose mod...
mulmoddvds 16300 If an integer is divisible...
3dvds 16301 A rule for divisibility by...
3dvdsdec 16302 A decimal number is divisi...
3dvds2dec 16303 A decimal number is divisi...
fprodfvdvdsd 16304 A finite product of intege...
fproddvdsd 16305 A finite product of intege...
evenelz 16306 An even number is an integ...
zeo3 16307 An integer is even or odd....
zeo4 16308 An integer is even or odd ...
zeneo 16309 No even integer equals an ...
odd2np1lem 16310 Lemma for ~ odd2np1 . (Co...
odd2np1 16311 An integer is odd iff it i...
even2n 16312 An integer is even iff it ...
oddm1even 16313 An integer is odd iff its ...
oddp1even 16314 An integer is odd iff its ...
oexpneg 16315 The exponential of the neg...
mod2eq0even 16316 An integer is 0 modulo 2 i...
mod2eq1n2dvds 16317 An integer is 1 modulo 2 i...
oddnn02np1 16318 A nonnegative integer is o...
oddge22np1 16319 An integer greater than on...
evennn02n 16320 A nonnegative integer is e...
evennn2n 16321 A positive integer is even...
2tp1odd 16322 A number which is twice an...
mulsucdiv2z 16323 An integer multiplied with...
sqoddm1div8z 16324 A squared odd number minus...
2teven 16325 A number which is twice an...
zeo5 16326 An integer is either even ...
evend2 16327 An integer is even iff its...
oddp1d2 16328 An integer is odd iff its ...
zob 16329 Alternate characterization...
oddm1d2 16330 An integer is odd iff its ...
ltoddhalfle 16331 An integer is less than ha...
halfleoddlt 16332 An integer is greater than...
opoe 16333 The sum of two odds is eve...
omoe 16334 The difference of two odds...
opeo 16335 The sum of an odd and an e...
omeo 16336 The difference of an odd a...
z0even 16337 2 divides 0. That means 0...
n2dvds1 16338 2 does not divide 1. That...
n2dvdsm1 16339 2 does not divide -1. Tha...
z2even 16340 2 divides 2. That means 2...
n2dvds3 16341 2 does not divide 3. That...
z4even 16342 2 divides 4. That means 4...
4dvdseven 16343 An integer which is divisi...
m1expe 16344 Exponentiation of -1 by an...
m1expo 16345 Exponentiation of -1 by an...
m1exp1 16346 Exponentiation of negative...
nn0enne 16347 A positive integer is an e...
nn0ehalf 16348 The half of an even nonneg...
nnehalf 16349 The half of an even positi...
nn0onn 16350 An odd nonnegative integer...
nn0o1gt2 16351 An odd nonnegative integer...
nno 16352 An alternate characterizat...
nn0o 16353 An alternate characterizat...
nn0ob 16354 Alternate characterization...
nn0oddm1d2 16355 A positive integer is odd ...
nnoddm1d2 16356 A positive integer is odd ...
sumeven 16357 If every term in a sum is ...
sumodd 16358 If every term in a sum is ...
evensumodd 16359 If every term in a sum wit...
oddsumodd 16360 If every term in a sum wit...
pwp1fsum 16361 The n-th power of a number...
oddpwp1fsum 16362 An odd power of a number i...
divalglem0 16363 Lemma for ~ divalg . (Con...
divalglem1 16364 Lemma for ~ divalg . (Con...
divalglem2 16365 Lemma for ~ divalg . (Con...
divalglem4 16366 Lemma for ~ divalg . (Con...
divalglem5 16367 Lemma for ~ divalg . (Con...
divalglem6 16368 Lemma for ~ divalg . (Con...
divalglem7 16369 Lemma for ~ divalg . (Con...
divalglem8 16370 Lemma for ~ divalg . (Con...
divalglem9 16371 Lemma for ~ divalg . (Con...
divalglem10 16372 Lemma for ~ divalg . (Con...
divalg 16373 The division algorithm (th...
divalgb 16374 Express the division algor...
divalg2 16375 The division algorithm (th...
divalgmod 16376 The result of the ` mod ` ...
divalgmodcl 16377 The result of the ` mod ` ...
modremain 16378 The result of the modulo o...
ndvdssub 16379 Corollary of the division ...
ndvdsadd 16380 Corollary of the division ...
ndvdsp1 16381 Special case of ~ ndvdsadd...
ndvdsi 16382 A quick test for non-divis...
5ndvds3 16383 5 does not divide 3. (Con...
5ndvds6 16384 5 does not divide 6. (Con...
flodddiv4 16385 The floor of an odd intege...
fldivndvdslt 16386 The floor of an integer di...
flodddiv4lt 16387 The floor of an odd number...
flodddiv4t2lthalf 16388 The floor of an odd number...
bitsfval 16393 Expand the definition of t...
bitsval 16394 Expand the definition of t...
bitsval2 16395 Expand the definition of t...
bitsss 16396 The set of bits of an inte...
bitsf 16397 The ` bits ` function is a...
bits0 16398 Value of the zeroth bit. ...
bits0e 16399 The zeroth bit of an even ...
bits0o 16400 The zeroth bit of an odd n...
bitsp1 16401 The ` M + 1 ` -th bit of `...
bitsp1e 16402 The ` M + 1 ` -th bit of `...
bitsp1o 16403 The ` M + 1 ` -th bit of `...
bitsfzolem 16404 Lemma for ~ bitsfzo . (Co...
bitsfzo 16405 The bits of a number are a...
bitsmod 16406 Truncating the bit sequenc...
bitsfi 16407 Every number is associated...
bitscmp 16408 The bit complement of ` N ...
0bits 16409 The bits of zero. (Contri...
m1bits 16410 The bits of negative one. ...
bitsinv1lem 16411 Lemma for ~ bitsinv1 . (C...
bitsinv1 16412 There is an explicit inver...
bitsinv2 16413 There is an explicit inver...
bitsf1ocnv 16414 The ` bits ` function rest...
bitsf1o 16415 The ` bits ` function rest...
bitsf1 16416 The ` bits ` function is a...
2ebits 16417 The bits of a power of two...
bitsinv 16418 The inverse of the ` bits ...
bitsinvp1 16419 Recursive definition of th...
sadadd2lem2 16420 The core of the proof of ~...
sadfval 16422 Define the addition of two...
sadcf 16423 The carry sequence is a se...
sadc0 16424 The initial element of the...
sadcp1 16425 The carry sequence (which ...
sadval 16426 The full adder sequence is...
sadcaddlem 16427 Lemma for ~ sadcadd . (Co...
sadcadd 16428 Non-recursive definition o...
sadadd2lem 16429 Lemma for ~ sadadd2 . (Co...
sadadd2 16430 Sum of initial segments of...
sadadd3 16431 Sum of initial segments of...
sadcl 16432 The sum of two sequences i...
sadcom 16433 The adder sequence functio...
saddisjlem 16434 Lemma for ~ sadadd . (Con...
saddisj 16435 The sum of disjoint sequen...
sadaddlem 16436 Lemma for ~ sadadd . (Con...
sadadd 16437 For sequences that corresp...
sadid1 16438 The adder sequence functio...
sadid2 16439 The adder sequence functio...
sadasslem 16440 Lemma for ~ sadass . (Con...
sadass 16441 Sequence addition is assoc...
sadeq 16442 Any element of a sequence ...
bitsres 16443 Restrict the bits of a num...
bitsuz 16444 The bits of a number are a...
bitsshft 16445 Shifting a bit sequence to...
smufval 16447 The multiplication of two ...
smupf 16448 The sequence of partial su...
smup0 16449 The initial element of the...
smupp1 16450 The initial element of the...
smuval 16451 Define the addition of two...
smuval2 16452 The partial sum sequence s...
smupvallem 16453 If ` A ` only has elements...
smucl 16454 The product of two sequenc...
smu01lem 16455 Lemma for ~ smu01 and ~ sm...
smu01 16456 Multiplication of a sequen...
smu02 16457 Multiplication of a sequen...
smupval 16458 Rewrite the elements of th...
smup1 16459 Rewrite ~ smupp1 using onl...
smueqlem 16460 Any element of a sequence ...
smueq 16461 Any element of a sequence ...
smumullem 16462 Lemma for ~ smumul . (Con...
smumul 16463 For sequences that corresp...
gcdval 16466 The value of the ` gcd ` o...
gcd0val 16467 The value, by convention, ...
gcdn0val 16468 The value of the ` gcd ` o...
gcdcllem1 16469 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16470 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16471 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16472 Closure of the ` gcd ` ope...
gcddvds 16473 The gcd of two integers di...
dvdslegcd 16474 An integer which divides b...
nndvdslegcd 16475 A positive integer which d...
gcdcl 16476 Closure of the ` gcd ` ope...
gcdnncl 16477 Closure of the ` gcd ` ope...
gcdcld 16478 Closure of the ` gcd ` ope...
gcd2n0cl 16479 Closure of the ` gcd ` ope...
zeqzmulgcd 16480 An integer is the product ...
divgcdz 16481 An integer divided by the ...
gcdf 16482 Domain and codomain of the...
gcdcom 16483 The ` gcd ` operator is co...
gcdcomd 16484 The ` gcd ` operator is co...
divgcdnn 16485 A positive integer divided...
divgcdnnr 16486 A positive integer divided...
gcdeq0 16487 The gcd of two integers is...
gcdn0gt0 16488 The gcd of two integers is...
gcd0id 16489 The gcd of 0 and an intege...
gcdid0 16490 The gcd of an integer and ...
nn0gcdid0 16491 The gcd of a nonnegative i...
gcdneg 16492 Negating one operand of th...
neggcd 16493 Negating one operand of th...
gcdaddmlem 16494 Lemma for ~ gcdaddm . (Co...
gcdaddm 16495 Adding a multiple of one o...
gcdadd 16496 The GCD of two numbers is ...
gcdid 16497 The gcd of a number and it...
gcd1 16498 The gcd of a number with 1...
gcdabs1 16499 ` gcd ` of the absolute va...
gcdabs2 16500 ` gcd ` of the absolute va...
gcdabs 16501 The gcd of two integers is...
modgcd 16502 The gcd remains unchanged ...
1gcd 16503 The GCD of one and an inte...
gcdmultipled 16504 The greatest common diviso...
gcdmultiplez 16505 The GCD of a multiple of a...
gcdmultiple 16506 The GCD of a multiple of a...
dvdsgcdidd 16507 The greatest common diviso...
6gcd4e2 16508 The greatest common diviso...
bezoutlem1 16509 Lemma for ~ bezout . (Con...
bezoutlem2 16510 Lemma for ~ bezout . (Con...
bezoutlem3 16511 Lemma for ~ bezout . (Con...
bezoutlem4 16512 Lemma for ~ bezout . (Con...
bezout 16513 Bézout's identity: ...
dvdsgcd 16514 An integer which divides e...
dvdsgcdb 16515 Biconditional form of ~ dv...
dfgcd2 16516 Alternate definition of th...
gcdass 16517 Associative law for ` gcd ...
mulgcd 16518 Distribute multiplication ...
absmulgcd 16519 Distribute absolute value ...
mulgcdr 16520 Reverse distribution law f...
gcddiv 16521 Division law for GCD. (Con...
gcdzeq 16522 A positive integer ` A ` i...
gcdeq 16523 ` A ` is equal to its gcd ...
dvdssqim 16524 Unidirectional form of ~ d...
dvdsexpim 16525 If two numbers are divisib...
dvdsmulgcd 16526 A divisibility equivalent ...
rpmulgcd 16527 If ` K ` and ` M ` are rel...
rplpwr 16528 If ` A ` and ` B ` are rel...
rprpwr 16529 If ` A ` and ` B ` are rel...
rppwr 16530 If ` A ` and ` B ` are rel...
nn0rppwr 16531 If ` A ` and ` B ` are rel...
sqgcd 16532 Square distributes over gc...
expgcd 16533 Exponentiation distributes...
nn0expgcd 16534 Exponentiation distributes...
zexpgcd 16535 Exponentiation distributes...
dvdssqlem 16536 Lemma for ~ dvdssq . (Con...
dvdssq 16537 Two numbers are divisible ...
bezoutr 16538 Partial converse to ~ bezo...
bezoutr1 16539 Converse of ~ bezout for w...
nn0seqcvgd 16540 A strictly-decreasing nonn...
seq1st 16541 A sequence whose iteration...
algr0 16542 The value of the algorithm...
algrf 16543 An algorithm is a step fun...
algrp1 16544 The value of the algorithm...
alginv 16545 If ` I ` is an invariant o...
algcvg 16546 One way to prove that an a...
algcvgblem 16547 Lemma for ~ algcvgb . (Co...
algcvgb 16548 Two ways of expressing tha...
algcvga 16549 The countdown function ` C...
algfx 16550 If ` F ` reaches a fixed p...
eucalgval2 16551 The value of the step func...
eucalgval 16552 Euclid's Algorithm ~ eucal...
eucalgf 16553 Domain and codomain of the...
eucalginv 16554 The invariant of the step ...
eucalglt 16555 The second member of the s...
eucalgcvga 16556 Once Euclid's Algorithm ha...
eucalg 16557 Euclid's Algorithm compute...
lcmval 16562 Value of the ` lcm ` opera...
lcmcom 16563 The ` lcm ` operator is co...
lcm0val 16564 The value, by convention, ...
lcmn0val 16565 The value of the ` lcm ` o...
lcmcllem 16566 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16567 Closure of the ` lcm ` ope...
dvdslcm 16568 The lcm of two integers is...
lcmledvds 16569 A positive integer which b...
lcmeq0 16570 The lcm of two integers is...
lcmcl 16571 Closure of the ` lcm ` ope...
gcddvdslcm 16572 The greatest common diviso...
lcmneg 16573 Negating one operand of th...
neglcm 16574 Negating one operand of th...
lcmabs 16575 The lcm of two integers is...
lcmgcdlem 16576 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16577 The product of two numbers...
lcmdvds 16578 The lcm of two integers di...
lcmid 16579 The lcm of an integer and ...
lcm1 16580 The lcm of an integer and ...
lcmgcdnn 16581 The product of two positiv...
lcmgcdeq 16582 Two integers' absolute val...
lcmdvdsb 16583 Biconditional form of ~ lc...
lcmass 16584 Associative law for ` lcm ...
3lcm2e6woprm 16585 The least common multiple ...
6lcm4e12 16586 The least common multiple ...
absproddvds 16587 The absolute value of the ...
absprodnn 16588 The absolute value of the ...
fissn0dvds 16589 For each finite subset of ...
fissn0dvdsn0 16590 For each finite subset of ...
lcmfval 16591 Value of the ` _lcm ` func...
lcmf0val 16592 The value, by convention, ...
lcmfn0val 16593 The value of the ` _lcm ` ...
lcmfnnval 16594 The value of the ` _lcm ` ...
lcmfcllem 16595 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16596 Closure of the ` _lcm ` fu...
lcmfpr 16597 The value of the ` _lcm ` ...
lcmfcl 16598 Closure of the ` _lcm ` fu...
lcmfnncl 16599 Closure of the ` _lcm ` fu...
lcmfeq0b 16600 The least common multiple ...
dvdslcmf 16601 The least common multiple ...
lcmfledvds 16602 A positive integer which i...
lcmf 16603 Characterization of the le...
lcmf0 16604 The least common multiple ...
lcmfsn 16605 The least common multiple ...
lcmftp 16606 The least common multiple ...
lcmfunsnlem1 16607 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16608 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16609 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16610 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16611 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16612 The least common multiple ...
lcmfdvdsb 16613 Biconditional form of ~ lc...
lcmfunsn 16614 The ` _lcm ` function for ...
lcmfun 16615 The ` _lcm ` function for ...
lcmfass 16616 Associative law for the ` ...
lcmf2a3a4e12 16617 The least common multiple ...
lcmflefac 16618 The least common multiple ...
coprmgcdb 16619 Two positive integers are ...
ncoprmgcdne1b 16620 Two positive integers are ...
ncoprmgcdgt1b 16621 Two positive integers are ...
coprmdvds1 16622 If two positive integers a...
coprmdvds 16623 Euclid's Lemma (see ProofW...
coprmdvds2 16624 If an integer is divisible...
mulgcddvds 16625 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16626 If ` M ` is relatively pri...
qredeq 16627 Two equal reduced fraction...
qredeu 16628 Every rational number has ...
rpmul 16629 If ` K ` is relatively pri...
rpdvds 16630 If ` K ` is relatively pri...
coprmprod 16631 The product of the element...
coprmproddvdslem 16632 Lemma for ~ coprmproddvds ...
coprmproddvds 16633 If a positive integer is d...
congr 16634 Definition of congruence b...
divgcdcoprm0 16635 Integers divided by gcd ar...
divgcdcoprmex 16636 Integers divided by gcd ar...
cncongr1 16637 One direction of the bicon...
cncongr2 16638 The other direction of the...
cncongr 16639 Cancellability of Congruen...
cncongrcoprm 16640 Corollary 1 of Cancellabil...
isprm 16643 The predicate "is a prime ...
prmnn 16644 A prime number is a positi...
prmz 16645 A prime number is an integ...
prmssnn 16646 The prime numbers are a su...
prmex 16647 The set of prime numbers e...
0nprm 16648 0 is not a prime number. ...
1nprm 16649 1 is not a prime number. ...
1idssfct 16650 The positive divisors of a...
isprm2lem 16651 Lemma for ~ isprm2 . (Con...
isprm2 16652 The predicate "is a prime ...
isprm3 16653 The predicate "is a prime ...
isprm4 16654 The predicate "is a prime ...
prmind2 16655 A variation on ~ prmind as...
prmind 16656 Perform induction over the...
dvdsprime 16657 If ` M ` divides a prime, ...
nprm 16658 A product of two integers ...
nprmi 16659 An inference for composite...
dvdsnprmd 16660 If a number is divisible b...
prm2orodd 16661 A prime number is either 2...
2prm 16662 2 is a prime number. (Con...
2mulprm 16663 A multiple of two is prime...
3prm 16664 3 is a prime number. (Con...
4nprm 16665 4 is not a prime number. ...
prmuz2 16666 A prime number is an integ...
prmgt1 16667 A prime number is an integ...
prmm2nn0 16668 Subtracting 2 from a prime...
oddprmgt2 16669 An odd prime is greater th...
oddprmge3 16670 An odd prime is greater th...
ge2nprmge4 16671 A composite integer greate...
sqnprm 16672 A square is never prime. ...
dvdsprm 16673 An integer greater than or...
exprmfct 16674 Every integer greater than...
prmdvdsfz 16675 Each integer greater than ...
nprmdvds1 16676 No prime number divides 1....
isprm5 16677 One need only check prime ...
isprm7 16678 One need only check prime ...
maxprmfct 16679 The set of prime factors o...
divgcdodd 16680 Either ` A / ( A gcd B ) `...
coprm 16681 A prime number either divi...
prmrp 16682 Unequal prime numbers are ...
euclemma 16683 Euclid's lemma. A prime n...
isprm6 16684 A number is prime iff it s...
prmdvdsexp 16685 A prime divides a positive...
prmdvdsexpb 16686 A prime divides a positive...
prmdvdsexpr 16687 If a prime divides a nonne...
prmdvdssq 16688 Condition for a prime divi...
prmexpb 16689 Two positive prime powers ...
prmfac1 16690 The factorial of a number ...
dvdszzq 16691 Divisibility for an intege...
rpexp 16692 If two numbers ` A ` and `...
rpexp1i 16693 Relative primality passes ...
rpexp12i 16694 Relative primality passes ...
prmndvdsfaclt 16695 A prime number does not di...
prmdvdsbc 16696 Condition for a prime numb...
prmdvdsncoprmbd 16697 Two positive integers are ...
ncoprmlnprm 16698 If two positive integers a...
cncongrprm 16699 Corollary 2 of Cancellabil...
isevengcd2 16700 The predicate "is an even ...
isoddgcd1 16701 The predicate "is an odd n...
3lcm2e6 16702 The least common multiple ...
qnumval 16707 Value of the canonical num...
qdenval 16708 Value of the canonical den...
qnumdencl 16709 Lemma for ~ qnumcl and ~ q...
qnumcl 16710 The canonical numerator of...
qdencl 16711 The canonical denominator ...
fnum 16712 Canonical numerator define...
fden 16713 Canonical denominator defi...
qnumdenbi 16714 Two numbers are the canoni...
qnumdencoprm 16715 The canonical representati...
qeqnumdivden 16716 Recover a rational number ...
qmuldeneqnum 16717 Multiplying a rational by ...
divnumden 16718 Calculate the reduced form...
divdenle 16719 Reducing a quotient never ...
qnumgt0 16720 A rational is positive iff...
qgt0numnn 16721 A rational is positive iff...
nn0gcdsq 16722 Squaring commutes with GCD...
zgcdsq 16723 ~ nn0gcdsq extended to int...
numdensq 16724 Squaring a rational square...
numsq 16725 Square commutes with canon...
densq 16726 Square commutes with canon...
qden1elz 16727 A rational is an integer i...
zsqrtelqelz 16728 If an integer has a ration...
nonsq 16729 Any integer strictly betwe...
numdenexp 16730 Elevating a rational numbe...
numexp 16731 Elevating to a nonnegative...
denexp 16732 Elevating to a nonnegative...
phival 16737 Value of the Euler ` phi `...
phicl2 16738 Bounds and closure for the...
phicl 16739 Closure for the value of t...
phibndlem 16740 Lemma for ~ phibnd . (Con...
phibnd 16741 A slightly tighter bound o...
phicld 16742 Closure for the value of t...
phi1 16743 Value of the Euler ` phi `...
dfphi2 16744 Alternate definition of th...
hashdvds 16745 The number of numbers in a...
phiprmpw 16746 Value of the Euler ` phi `...
phiprm 16747 Value of the Euler ` phi `...
crth 16748 The Chinese Remainder Theo...
phimullem 16749 Lemma for ~ phimul . (Con...
phimul 16750 The Euler ` phi ` function...
eulerthlem1 16751 Lemma for ~ eulerth . (Co...
eulerthlem2 16752 Lemma for ~ eulerth . (Co...
eulerth 16753 Euler's theorem, a general...
fermltl 16754 Fermat's little theorem. ...
prmdiv 16755 Show an explicit expressio...
prmdiveq 16756 The modular inverse of ` A...
prmdivdiv 16757 The (modular) inverse of t...
hashgcdlem 16758 A correspondence between e...
dvdsfi 16759 A natural number has finit...
hashgcdeq 16760 Number of initial positive...
phisum 16761 The divisor sum identity o...
odzval 16762 Value of the order functio...
odzcllem 16763 - Lemma for ~ odzcl , show...
odzcl 16764 The order of a group eleme...
odzid 16765 Any element raised to the ...
odzdvds 16766 The only powers of ` A ` t...
odzphi 16767 The order of any group ele...
modprm1div 16768 A prime number divides an ...
m1dvdsndvds 16769 If an integer minus 1 is d...
modprminv 16770 Show an explicit expressio...
modprminveq 16771 The modular inverse of ` A...
vfermltl 16772 Variant of Fermat's little...
vfermltlALT 16773 Alternate proof of ~ vferm...
powm2modprm 16774 If an integer minus 1 is d...
reumodprminv 16775 For any prime number and f...
modprm0 16776 For two positive integers ...
nnnn0modprm0 16777 For a positive integer and...
modprmn0modprm0 16778 For an integer not being 0...
coprimeprodsq 16779 If three numbers are copri...
coprimeprodsq2 16780 If three numbers are copri...
oddprm 16781 A prime not equal to ` 2 `...
nnoddn2prm 16782 A prime not equal to ` 2 `...
oddn2prm 16783 A prime not equal to ` 2 `...
nnoddn2prmb 16784 A number is a prime number...
prm23lt5 16785 A prime less than 5 is eit...
prm23ge5 16786 A prime is either 2 or 3 o...
pythagtriplem1 16787 Lemma for ~ pythagtrip . ...
pythagtriplem2 16788 Lemma for ~ pythagtrip . ...
pythagtriplem3 16789 Lemma for ~ pythagtrip . ...
pythagtriplem4 16790 Lemma for ~ pythagtrip . ...
pythagtriplem10 16791 Lemma for ~ pythagtrip . ...
pythagtriplem6 16792 Lemma for ~ pythagtrip . ...
pythagtriplem7 16793 Lemma for ~ pythagtrip . ...
pythagtriplem8 16794 Lemma for ~ pythagtrip . ...
pythagtriplem9 16795 Lemma for ~ pythagtrip . ...
pythagtriplem11 16796 Lemma for ~ pythagtrip . ...
pythagtriplem12 16797 Lemma for ~ pythagtrip . ...
pythagtriplem13 16798 Lemma for ~ pythagtrip . ...
pythagtriplem14 16799 Lemma for ~ pythagtrip . ...
pythagtriplem15 16800 Lemma for ~ pythagtrip . ...
pythagtriplem16 16801 Lemma for ~ pythagtrip . ...
pythagtriplem17 16802 Lemma for ~ pythagtrip . ...
pythagtriplem18 16803 Lemma for ~ pythagtrip . ...
pythagtriplem19 16804 Lemma for ~ pythagtrip . ...
pythagtrip 16805 Parameterize the Pythagore...
iserodd 16806 Collect the odd terms in a...
pclem 16809 - Lemma for the prime powe...
pcprecl 16810 Closure of the prime power...
pcprendvds 16811 Non-divisibility property ...
pcprendvds2 16812 Non-divisibility property ...
pcpre1 16813 Value of the prime power p...
pcpremul 16814 Multiplicative property of...
pcval 16815 The value of the prime pow...
pceulem 16816 Lemma for ~ pceu . (Contr...
pceu 16817 Uniqueness for the prime p...
pczpre 16818 Connect the prime count pr...
pczcl 16819 Closure of the prime power...
pccl 16820 Closure of the prime power...
pccld 16821 Closure of the prime power...
pcmul 16822 Multiplication property of...
pcdiv 16823 Division property of the p...
pcqmul 16824 Multiplication property of...
pc0 16825 The value of the prime pow...
pc1 16826 Value of the prime count f...
pcqcl 16827 Closure of the general pri...
pcqdiv 16828 Division property of the p...
pcrec 16829 Prime power of a reciproca...
pcexp 16830 Prime power of an exponent...
pcxnn0cl 16831 Extended nonnegative integ...
pcxcl 16832 Extended real closure of t...
pcge0 16833 The prime count of an inte...
pczdvds 16834 Defining property of the p...
pcdvds 16835 Defining property of the p...
pczndvds 16836 Defining property of the p...
pcndvds 16837 Defining property of the p...
pczndvds2 16838 The remainder after dividi...
pcndvds2 16839 The remainder after dividi...
pcdvdsb 16840 ` P ^ A ` divides ` N ` if...
pcelnn 16841 There are a positive numbe...
pceq0 16842 There are zero powers of a...
pcidlem 16843 The prime count of a prime...
pcid 16844 The prime count of a prime...
pcneg 16845 The prime count of a negat...
pcabs 16846 The prime count of an abso...
pcdvdstr 16847 The prime count increases ...
pcgcd1 16848 The prime count of a GCD i...
pcgcd 16849 The prime count of a GCD i...
pc2dvds 16850 A characterization of divi...
pc11 16851 The prime count function, ...
pcz 16852 The prime count function c...
pcprmpw2 16853 Self-referential expressio...
pcprmpw 16854 Self-referential expressio...
dvdsprmpweq 16855 If a positive integer divi...
dvdsprmpweqnn 16856 If an integer greater than...
dvdsprmpweqle 16857 If a positive integer divi...
difsqpwdvds 16858 If the difference of two s...
pcaddlem 16859 Lemma for ~ pcadd . The o...
pcadd 16860 An inequality for the prim...
pcadd2 16861 The inequality of ~ pcadd ...
pcmptcl 16862 Closure for the prime powe...
pcmpt 16863 Construct a function with ...
pcmpt2 16864 Dividing two prime count m...
pcmptdvds 16865 The partial products of th...
pcprod 16866 The product of the primes ...
sumhash 16867 The sum of 1 over a set is...
fldivp1 16868 The difference between the...
pcfaclem 16869 Lemma for ~ pcfac . (Cont...
pcfac 16870 Calculate the prime count ...
pcbc 16871 Calculate the prime count ...
qexpz 16872 If a power of a rational n...
expnprm 16873 A second or higher power o...
oddprmdvds 16874 Every positive integer whi...
prmpwdvds 16875 A relation involving divis...
pockthlem 16876 Lemma for ~ pockthg . (Co...
pockthg 16877 The generalized Pocklingto...
pockthi 16878 Pocklington's theorem, whi...
unbenlem 16879 Lemma for ~ unben . (Cont...
unben 16880 An unbounded set of positi...
infpnlem1 16881 Lemma for ~ infpn . The s...
infpnlem2 16882 Lemma for ~ infpn . For a...
infpn 16883 There exist infinitely man...
infpn2 16884 There exist infinitely man...
prmunb 16885 The primes are unbounded. ...
prminf 16886 There are an infinite numb...
prmreclem1 16887 Lemma for ~ prmrec . Prop...
prmreclem2 16888 Lemma for ~ prmrec . Ther...
prmreclem3 16889 Lemma for ~ prmrec . The ...
prmreclem4 16890 Lemma for ~ prmrec . Show...
prmreclem5 16891 Lemma for ~ prmrec . Here...
prmreclem6 16892 Lemma for ~ prmrec . If t...
prmrec 16893 The sum of the reciprocals...
1arithlem1 16894 Lemma for ~ 1arith . (Con...
1arithlem2 16895 Lemma for ~ 1arith . (Con...
1arithlem3 16896 Lemma for ~ 1arith . (Con...
1arithlem4 16897 Lemma for ~ 1arith . (Con...
1arith 16898 Fundamental theorem of ari...
1arith2 16899 Fundamental theorem of ari...
elgz 16902 Elementhood in the gaussia...
gzcn 16903 A gaussian integer is a co...
zgz 16904 An integer is a gaussian i...
igz 16905 ` _i ` is a gaussian integ...
gznegcl 16906 The gaussian integers are ...
gzcjcl 16907 The gaussian integers are ...
gzaddcl 16908 The gaussian integers are ...
gzmulcl 16909 The gaussian integers are ...
gzreim 16910 Construct a gaussian integ...
gzsubcl 16911 The gaussian integers are ...
gzabssqcl 16912 The squared norm of a gaus...
4sqlem5 16913 Lemma for ~ 4sq . (Contri...
4sqlem6 16914 Lemma for ~ 4sq . (Contri...
4sqlem7 16915 Lemma for ~ 4sq . (Contri...
4sqlem8 16916 Lemma for ~ 4sq . (Contri...
4sqlem9 16917 Lemma for ~ 4sq . (Contri...
4sqlem10 16918 Lemma for ~ 4sq . (Contri...
4sqlem1 16919 Lemma for ~ 4sq . The set...
4sqlem2 16920 Lemma for ~ 4sq . Change ...
4sqlem3 16921 Lemma for ~ 4sq . Suffici...
4sqlem4a 16922 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16923 Lemma for ~ 4sq . We can ...
mul4sqlem 16924 Lemma for ~ mul4sq : algeb...
mul4sq 16925 Euler's four-square identi...
4sqlem11 16926 Lemma for ~ 4sq . Use the...
4sqlem12 16927 Lemma for ~ 4sq . For any...
4sqlem13 16928 Lemma for ~ 4sq . (Contri...
4sqlem14 16929 Lemma for ~ 4sq . (Contri...
4sqlem15 16930 Lemma for ~ 4sq . (Contri...
4sqlem16 16931 Lemma for ~ 4sq . (Contri...
4sqlem17 16932 Lemma for ~ 4sq . (Contri...
4sqlem18 16933 Lemma for ~ 4sq . Inducti...
4sqlem19 16934 Lemma for ~ 4sq . The pro...
4sq 16935 Lagrange's four-square the...
vdwapfval 16942 Define the arithmetic prog...
vdwapf 16943 The arithmetic progression...
vdwapval 16944 Value of the arithmetic pr...
vdwapun 16945 Remove the first element o...
vdwapid1 16946 The first element of an ar...
vdwap0 16947 Value of a length-1 arithm...
vdwap1 16948 Value of a length-1 arithm...
vdwmc 16949 The predicate " The ` <. R...
vdwmc2 16950 Expand out the definition ...
vdwpc 16951 The predicate " The colori...
vdwlem1 16952 Lemma for ~ vdw . (Contri...
vdwlem2 16953 Lemma for ~ vdw . (Contri...
vdwlem3 16954 Lemma for ~ vdw . (Contri...
vdwlem4 16955 Lemma for ~ vdw . (Contri...
vdwlem5 16956 Lemma for ~ vdw . (Contri...
vdwlem6 16957 Lemma for ~ vdw . (Contri...
vdwlem7 16958 Lemma for ~ vdw . (Contri...
vdwlem8 16959 Lemma for ~ vdw . (Contri...
vdwlem9 16960 Lemma for ~ vdw . (Contri...
vdwlem10 16961 Lemma for ~ vdw . Set up ...
vdwlem11 16962 Lemma for ~ vdw . (Contri...
vdwlem12 16963 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16964 Lemma for ~ vdw . Main in...
vdw 16965 Van der Waerden's theorem....
vdwnnlem1 16966 Corollary of ~ vdw , and l...
vdwnnlem2 16967 Lemma for ~ vdwnn . The s...
vdwnnlem3 16968 Lemma for ~ vdwnn . (Cont...
vdwnn 16969 Van der Waerden's theorem,...
ramtlecl 16971 The set ` T ` of numbers w...
hashbcval 16973 Value of the "binomial set...
hashbccl 16974 The binomial set is a fini...
hashbcss 16975 Subset relation for the bi...
hashbc0 16976 The set of subsets of size...
hashbc2 16977 The size of the binomial s...
0hashbc 16978 There are no subsets of th...
ramval 16979 The value of the Ramsey nu...
ramcl2lem 16980 Lemma for extended real cl...
ramtcl 16981 The Ramsey number has the ...
ramtcl2 16982 The Ramsey number is an in...
ramtub 16983 The Ramsey number is a low...
ramub 16984 The Ramsey number is a low...
ramub2 16985 It is sufficient to check ...
rami 16986 The defining property of a...
ramcl2 16987 The Ramsey number is eithe...
ramxrcl 16988 The Ramsey number is an ex...
ramubcl 16989 If the Ramsey number is up...
ramlb 16990 Establish a lower bound on...
0ram 16991 The Ramsey number when ` M...
0ram2 16992 The Ramsey number when ` M...
ram0 16993 The Ramsey number when ` R...
0ramcl 16994 Lemma for ~ ramcl : Exist...
ramz2 16995 The Ramsey number when ` F...
ramz 16996 The Ramsey number when ` F...
ramub1lem1 16997 Lemma for ~ ramub1 . (Con...
ramub1lem2 16998 Lemma for ~ ramub1 . (Con...
ramub1 16999 Inductive step for Ramsey'...
ramcl 17000 Ramsey's theorem: the Rams...
ramsey 17001 Ramsey's theorem with the ...
prmoval 17004 Value of the primorial fun...
prmocl 17005 Closure of the primorial f...
prmone0 17006 The primorial function is ...
prmo0 17007 The primorial of 0. (Cont...
prmo1 17008 The primorial of 1. (Cont...
prmop1 17009 The primorial of a success...
prmonn2 17010 Value of the primorial fun...
prmo2 17011 The primorial of 2. (Cont...
prmo3 17012 The primorial of 3. (Cont...
prmdvdsprmo 17013 The primorial of a number ...
prmdvdsprmop 17014 The primorial of a number ...
fvprmselelfz 17015 The value of the prime sel...
fvprmselgcd1 17016 The greatest common diviso...
prmolefac 17017 The primorial of a positiv...
prmodvdslcmf 17018 The primorial of a nonnega...
prmolelcmf 17019 The primorial of a positiv...
prmgaplem1 17020 Lemma for ~ prmgap : The ...
prmgaplem2 17021 Lemma for ~ prmgap : The ...
prmgaplcmlem1 17022 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 17023 Lemma for ~ prmgaplcm : T...
prmgaplem3 17024 Lemma for ~ prmgap . (Con...
prmgaplem4 17025 Lemma for ~ prmgap . (Con...
prmgaplem5 17026 Lemma for ~ prmgap : for e...
prmgaplem6 17027 Lemma for ~ prmgap : for e...
prmgaplem7 17028 Lemma for ~ prmgap . (Con...
prmgaplem8 17029 Lemma for ~ prmgap . (Con...
prmgap 17030 The prime gap theorem: for...
prmgaplcm 17031 Alternate proof of ~ prmga...
prmgapprmolem 17032 Lemma for ~ prmgapprmo : ...
prmgapprmo 17033 Alternate proof of ~ prmga...
dec2dvds 17034 Divisibility by two is obv...
dec5dvds 17035 Divisibility by five is ob...
dec5dvds2 17036 Divisibility by five is ob...
dec5nprm 17037 A decimal number greater t...
dec2nprm 17038 A decimal number greater t...
modxai 17039 Add exponents in a power m...
mod2xi 17040 Double exponents in a powe...
modxp1i 17041 Add one to an exponent in ...
mod2xnegi 17042 Version of ~ mod2xi with a...
modsubi 17043 Subtract from within a mod...
gcdi 17044 Calculate a GCD via Euclid...
gcdmodi 17045 Calculate a GCD via Euclid...
numexp0 17046 Calculate an integer power...
numexp1 17047 Calculate an integer power...
numexpp1 17048 Calculate an integer power...
numexp2x 17049 Double an integer power. ...
decsplit0b 17050 Split a decimal number int...
decsplit0 17051 Split a decimal number int...
decsplit1 17052 Split a decimal number int...
decsplit 17053 Split a decimal number int...
karatsuba 17054 The Karatsuba multiplicati...
2exp4 17055 Two to the fourth power is...
2exp5 17056 Two to the fifth power is ...
2exp6 17057 Two to the sixth power is ...
2exp7 17058 Two to the seventh power i...
2exp8 17059 Two to the eighth power is...
2exp11 17060 Two to the eleventh power ...
2exp16 17061 Two to the sixteenth power...
3exp3 17062 Three to the third power i...
2expltfac 17063 The factorial grows faster...
cshwsidrepsw 17064 If cyclically shifting a w...
cshwsidrepswmod0 17065 If cyclically shifting a w...
cshwshashlem1 17066 If cyclically shifting a w...
cshwshashlem2 17067 If cyclically shifting a w...
cshwshashlem3 17068 If cyclically shifting a w...
cshwsdisj 17069 The singletons resulting b...
cshwsiun 17070 The set of (different!) wo...
cshwsex 17071 The class of (different!) ...
cshws0 17072 The size of the set of (di...
cshwrepswhash1 17073 The size of the set of (di...
cshwshashnsame 17074 If a word (not consisting ...
cshwshash 17075 If a word has a length bei...
prmlem0 17076 Lemma for ~ prmlem1 and ~ ...
prmlem1a 17077 A quick proof skeleton to ...
prmlem1 17078 A quick proof skeleton to ...
5prm 17079 5 is a prime number. (Con...
6nprm 17080 6 is not a prime number. ...
7prm 17081 7 is a prime number. (Con...
8nprm 17082 8 is not a prime number. ...
9nprm 17083 9 is not a prime number. ...
10nprm 17084 10 is not a prime number. ...
11prm 17085 11 is a prime number. (Co...
13prm 17086 13 is a prime number. (Co...
17prm 17087 17 is a prime number. (Co...
19prm 17088 19 is a prime number. (Co...
23prm 17089 23 is a prime number. (Co...
prmlem2 17090 Our last proving session g...
37prm 17091 37 is a prime number. (Co...
43prm 17092 43 is a prime number. (Co...
83prm 17093 83 is a prime number. (Co...
139prm 17094 139 is a prime number. (C...
163prm 17095 163 is a prime number. (C...
317prm 17096 317 is a prime number. (C...
631prm 17097 631 is a prime number. (C...
prmo4 17098 The primorial of 4. (Cont...
prmo5 17099 The primorial of 5. (Cont...
prmo6 17100 The primorial of 6. (Cont...
1259lem1 17101 Lemma for ~ 1259prm . Cal...
1259lem2 17102 Lemma for ~ 1259prm . Cal...
1259lem3 17103 Lemma for ~ 1259prm . Cal...
1259lem4 17104 Lemma for ~ 1259prm . Cal...
1259lem5 17105 Lemma for ~ 1259prm . Cal...
1259prm 17106 1259 is a prime number. (...
2503lem1 17107 Lemma for ~ 2503prm . Cal...
2503lem2 17108 Lemma for ~ 2503prm . Cal...
2503lem3 17109 Lemma for ~ 2503prm . Cal...
2503prm 17110 2503 is a prime number. (...
4001lem1 17111 Lemma for ~ 4001prm . Cal...
4001lem2 17112 Lemma for ~ 4001prm . Cal...
4001lem3 17113 Lemma for ~ 4001prm . Cal...
4001lem4 17114 Lemma for ~ 4001prm . Cal...
4001prm 17115 4001 is a prime number. (...
brstruct 17118 The structure relation is ...
isstruct2 17119 The property of being a st...
structex 17120 A structure is a set. (Co...
structn0fun 17121 A structure without the em...
isstruct 17122 The property of being a st...
structcnvcnv 17123 Two ways to express the re...
structfung 17124 The converse of the conver...
structfun 17125 Convert between two kinds ...
structfn 17126 Convert between two kinds ...
strleun 17127 Combine two structures int...
strle1 17128 Make a structure from a si...
strle2 17129 Make a structure from a pa...
strle3 17130 Make a structure from a tr...
sbcie2s 17131 A special version of class...
sbcie3s 17132 A special version of class...
reldmsets 17135 The structure override ope...
setsvalg 17136 Value of the structure rep...
setsval 17137 Value of the structure rep...
fvsetsid 17138 The value of the structure...
fsets 17139 The structure replacement ...
setsdm 17140 The domain of a structure ...
setsfun 17141 A structure with replaceme...
setsfun0 17142 A structure with replaceme...
setsn0fun 17143 The value of the structure...
setsstruct2 17144 An extensible structure wi...
setsexstruct2 17145 An extensible structure wi...
setsstruct 17146 An extensible structure wi...
wunsets 17147 Closure of structure repla...
setsres 17148 The structure replacement ...
setsabs 17149 Replacing the same compone...
setscom 17150 Different components can b...
sloteq 17153 Equality theorem for the `...
slotfn 17154 A slot is a function on se...
strfvnd 17155 Deduction version of ~ str...
strfvn 17156 Value of a structure compo...
strfvss 17157 A structure component extr...
wunstr 17158 Closure of a structure ind...
str0 17159 All components of the empt...
strfvi 17160 Structure slot extractors ...
fveqprc 17161 Lemma for showing the equa...
oveqprc 17162 Lemma for showing the equa...
wunndx 17165 Closure of the index extra...
ndxarg 17166 Get the numeric argument f...
ndxid 17167 A structure component extr...
strndxid 17168 The value of a structure c...
setsidvald 17169 Value of the structure rep...
strfvd 17170 Deduction version of ~ str...
strfv2d 17171 Deduction version of ~ str...
strfv2 17172 A variation on ~ strfv to ...
strfv 17173 Extract a structure compon...
strfv3 17174 Variant on ~ strfv for lar...
strssd 17175 Deduction version of ~ str...
strss 17176 Propagate component extrac...
setsid 17177 Value of the structure rep...
setsnid 17178 Value of the structure rep...
baseval 17181 Value of the base set extr...
baseid 17182 Utility theorem: index-ind...
basfn 17183 The base set extractor is ...
base0 17184 The base set of the empty ...
elbasfv 17185 Utility theorem: reverse c...
elbasov 17186 Utility theorem: reverse c...
strov2rcl 17187 Partial reverse closure fo...
basendx 17188 Index value of the base se...
basendxnn 17189 The index value of the bas...
basndxelwund 17190 The index of the base set ...
basprssdmsets 17191 The pair of the base index...
opelstrbas 17192 The base set of a structur...
1strstr 17193 A constructed one-slot str...
1strbas 17194 The base set of a construc...
1strwunbndx 17195 A constructed one-slot str...
1strwun 17196 A constructed one-slot str...
2strstr 17197 A constructed two-slot str...
2strbas 17198 The base set of a construc...
2strop 17199 The other slot of a constr...
reldmress 17202 The structure restriction ...
ressval 17203 Value of structure restric...
ressid2 17204 General behavior of trivia...
ressval2 17205 Value of nontrivial struct...
ressbas 17206 Base set of a structure re...
ressbasssg 17207 The base set of a restrict...
ressbas2 17208 Base set of a structure re...
ressbasss 17209 The base set of a restrict...
ressbasssOLD 17210 Obsolete version of ~ ress...
ressbasss2 17211 The base set of a restrict...
resseqnbas 17212 The components of an exten...
ress0 17213 All restrictions of the nu...
ressid 17214 Behavior of trivial restri...
ressinbas 17215 Restriction only cares abo...
ressval3d 17216 Value of structure restric...
ressress 17217 Restriction composition la...
ressabs 17218 Restriction absorption law...
wunress 17219 Closure of structure restr...
plusgndx 17246 Index value of the ~ df-pl...
plusgid 17247 Utility theorem: index-ind...
plusgndxnn 17248 The index of the slot for ...
basendxltplusgndx 17249 The index of the slot for ...
basendxnplusgndx 17250 The slot for the base set ...
grpstr 17251 A constructed group is a s...
grpbase 17252 The base set of a construc...
grpplusg 17253 The operation of a constru...
ressplusg 17254 ` +g ` is unaffected by re...
grpbasex 17255 The base of an explicitly ...
grpplusgx 17256 The operation of an explic...
mulrndx 17257 Index value of the ~ df-mu...
mulridx 17258 Utility theorem: index-ind...
basendxnmulrndx 17259 The slot for the base set ...
plusgndxnmulrndx 17260 The slot for the group (ad...
rngstr 17261 A constructed ring is a st...
rngbase 17262 The base set of a construc...
rngplusg 17263 The additive operation of ...
rngmulr 17264 The multiplicative operati...
starvndx 17265 Index value of the ~ df-st...
starvid 17266 Utility theorem: index-ind...
starvndxnbasendx 17267 The slot for the involutio...
starvndxnplusgndx 17268 The slot for the involutio...
starvndxnmulrndx 17269 The slot for the involutio...
ressmulr 17270 ` .r ` is unaffected by re...
ressstarv 17271 ` *r ` is unaffected by re...
srngstr 17272 A constructed star ring is...
srngbase 17273 The base set of a construc...
srngplusg 17274 The addition operation of ...
srngmulr 17275 The multiplication operati...
srnginvl 17276 The involution function of...
scandx 17277 Index value of the ~ df-sc...
scaid 17278 Utility theorem: index-ind...
scandxnbasendx 17279 The slot for the scalar is...
scandxnplusgndx 17280 The slot for the scalar fi...
scandxnmulrndx 17281 The slot for the scalar fi...
vscandx 17282 Index value of the ~ df-vs...
vscaid 17283 Utility theorem: index-ind...
vscandxnbasendx 17284 The slot for the scalar pr...
vscandxnplusgndx 17285 The slot for the scalar pr...
vscandxnmulrndx 17286 The slot for the scalar pr...
vscandxnscandx 17287 The slot for the scalar pr...
lmodstr 17288 A constructed left module ...
lmodbase 17289 The base set of a construc...
lmodplusg 17290 The additive operation of ...
lmodsca 17291 The set of scalars of a co...
lmodvsca 17292 The scalar product operati...
ipndx 17293 Index value of the ~ df-ip...
ipid 17294 Utility theorem: index-ind...
ipndxnbasendx 17295 The slot for the inner pro...
ipndxnplusgndx 17296 The slot for the inner pro...
ipndxnmulrndx 17297 The slot for the inner pro...
slotsdifipndx 17298 The slot for the scalar is...
ipsstr 17299 Lemma to shorten proofs of...
ipsbase 17300 The base set of a construc...
ipsaddg 17301 The additive operation of ...
ipsmulr 17302 The multiplicative operati...
ipssca 17303 The set of scalars of a co...
ipsvsca 17304 The scalar product operati...
ipsip 17305 The multiplicative operati...
resssca 17306 ` Scalar ` is unaffected b...
ressvsca 17307 ` .s ` is unaffected by re...
ressip 17308 The inner product is unaff...
phlstr 17309 A constructed pre-Hilbert ...
phlbase 17310 The base set of a construc...
phlplusg 17311 The additive operation of ...
phlsca 17312 The ring of scalars of a c...
phlvsca 17313 The scalar product operati...
phlip 17314 The inner product (Hermiti...
tsetndx 17315 Index value of the ~ df-ts...
tsetid 17316 Utility theorem: index-ind...
tsetndxnn 17317 The index of the slot for ...
basendxlttsetndx 17318 The index of the slot for ...
tsetndxnbasendx 17319 The slot for the topology ...
tsetndxnplusgndx 17320 The slot for the topology ...
tsetndxnmulrndx 17321 The slot for the topology ...
tsetndxnstarvndx 17322 The slot for the topology ...
slotstnscsi 17323 The slots ` Scalar ` , ` ....
topgrpstr 17324 A constructed topological ...
topgrpbas 17325 The base set of a construc...
topgrpplusg 17326 The additive operation of ...
topgrptset 17327 The topology of a construc...
resstset 17328 ` TopSet ` is unaffected b...
plendx 17329 Index value of the ~ df-pl...
pleid 17330 Utility theorem: self-refe...
plendxnn 17331 The index value of the ord...
basendxltplendx 17332 The index value of the ` B...
plendxnbasendx 17333 The slot for the order is ...
plendxnplusgndx 17334 The slot for the "less tha...
plendxnmulrndx 17335 The slot for the "less tha...
plendxnscandx 17336 The slot for the "less tha...
plendxnvscandx 17337 The slot for the "less tha...
slotsdifplendx 17338 The index of the slot for ...
otpsstr 17339 Functionality of a topolog...
otpsbas 17340 The base set of a topologi...
otpstset 17341 The open sets of a topolog...
otpsle 17342 The order of a topological...
ressle 17343 ` le ` is unaffected by re...
ocndx 17344 Index value of the ~ df-oc...
ocid 17345 Utility theorem: index-ind...
basendxnocndx 17346 The slot for the orthocomp...
plendxnocndx 17347 The slot for the orthocomp...
dsndx 17348 Index value of the ~ df-ds...
dsid 17349 Utility theorem: index-ind...
dsndxnn 17350 The index of the slot for ...
basendxltdsndx 17351 The index of the slot for ...
dsndxnbasendx 17352 The slot for the distance ...
dsndxnplusgndx 17353 The slot for the distance ...
dsndxnmulrndx 17354 The slot for the distance ...
slotsdnscsi 17355 The slots ` Scalar ` , ` ....
dsndxntsetndx 17356 The slot for the distance ...
slotsdifdsndx 17357 The index of the slot for ...
unifndx 17358 Index value of the ~ df-un...
unifid 17359 Utility theorem: index-ind...
unifndxnn 17360 The index of the slot for ...
basendxltunifndx 17361 The index of the slot for ...
unifndxnbasendx 17362 The slot for the uniform s...
unifndxntsetndx 17363 The slot for the uniform s...
slotsdifunifndx 17364 The index of the slot for ...
ressunif 17365 ` UnifSet ` is unaffected ...
odrngstr 17366 Functionality of an ordere...
odrngbas 17367 The base set of an ordered...
odrngplusg 17368 The addition operation of ...
odrngmulr 17369 The multiplication operati...
odrngtset 17370 The open sets of an ordere...
odrngle 17371 The order of an ordered me...
odrngds 17372 The metric of an ordered m...
ressds 17373 ` dist ` is unaffected by ...
homndx 17374 Index value of the ~ df-ho...
homid 17375 Utility theorem: index-ind...
ccondx 17376 Index value of the ~ df-cc...
ccoid 17377 Utility theorem: index-ind...
slotsbhcdif 17378 The slots ` Base ` , ` Hom...
slotsdifplendx2 17379 The index of the slot for ...
slotsdifocndx 17380 The index of the slot for ...
resshom 17381 ` Hom ` is unaffected by r...
ressco 17382 ` comp ` is unaffected by ...
restfn 17387 The subspace topology oper...
topnfn 17388 The topology extractor fun...
restval 17389 The subspace topology indu...
elrest 17390 The predicate "is an open ...
elrestr 17391 Sufficient condition for b...
0rest 17392 Value of the structure res...
restid2 17393 The subspace topology over...
restsspw 17394 The subspace topology is a...
firest 17395 The finite intersections o...
restid 17396 The subspace topology of t...
topnval 17397 Value of the topology extr...
topnid 17398 Value of the topology extr...
topnpropd 17399 The topology extractor fun...
reldmprds 17411 The structure product is a...
prdsbasex 17413 Lemma for structure produc...
imasvalstr 17414 An image structure value i...
prdsvalstr 17415 Structure product value is...
prdsbaslem 17416 Lemma for ~ prdsbas and si...
prdsvallem 17417 Lemma for ~ prdsval . (Co...
prdsval 17418 Value of the structure pro...
prdssca 17419 Scalar ring of a structure...
prdsbas 17420 Base set of a structure pr...
prdsplusg 17421 Addition in a structure pr...
prdsmulr 17422 Multiplication in a struct...
prdsvsca 17423 Scalar multiplication in a...
prdsip 17424 Inner product in a structu...
prdsle 17425 Structure product weak ord...
prdsless 17426 Closure of the order relat...
prdsds 17427 Structure product distance...
prdsdsfn 17428 Structure product distance...
prdstset 17429 Structure product topology...
prdshom 17430 Structure product hom-sets...
prdsco 17431 Structure product composit...
prdsbas2 17432 The base set of a structur...
prdsbasmpt 17433 A constructed tuple is a p...
prdsbasfn 17434 Points in the structure pr...
prdsbasprj 17435 Each point in a structure ...
prdsplusgval 17436 Value of a componentwise s...
prdsplusgfval 17437 Value of a structure produ...
prdsmulrval 17438 Value of a componentwise r...
prdsmulrfval 17439 Value of a structure produ...
prdsleval 17440 Value of the product order...
prdsdsval 17441 Value of the metric in a s...
prdsvscaval 17442 Scalar multiplication in a...
prdsvscafval 17443 Scalar multiplication of a...
prdsbas3 17444 The base set of an indexed...
prdsbasmpt2 17445 A constructed tuple is a p...
prdsbascl 17446 An element of the base has...
prdsdsval2 17447 Value of the metric in a s...
prdsdsval3 17448 Value of the metric in a s...
pwsval 17449 Value of a structure power...
pwsbas 17450 Base set of a structure po...
pwselbasb 17451 Membership in the base set...
pwselbas 17452 An element of a structure ...
pwsplusgval 17453 Value of addition in a str...
pwsmulrval 17454 Value of multiplication in...
pwsle 17455 Ordering in a structure po...
pwsleval 17456 Ordering in a structure po...
pwsvscafval 17457 Scalar multiplication in a...
pwsvscaval 17458 Scalar multiplication of a...
pwssca 17459 The ring of scalars of a s...
pwsdiagel 17460 Membership of diagonal ele...
pwssnf1o 17461 Triviality of singleton po...
imasval 17474 Value of an image structur...
imasbas 17475 The base set of an image s...
imasds 17476 The distance function of a...
imasdsfn 17477 The distance function is a...
imasdsval 17478 The distance function of a...
imasdsval2 17479 The distance function of a...
imasplusg 17480 The group operation in an ...
imasmulr 17481 The ring multiplication in...
imassca 17482 The scalar field of an ima...
imasvsca 17483 The scalar multiplication ...
imasip 17484 The inner product of an im...
imastset 17485 The topology of an image s...
imasle 17486 The ordering of an image s...
f1ocpbllem 17487 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17488 An injection is compatible...
f1ovscpbl 17489 An injection is compatible...
f1olecpbl 17490 An injection is compatible...
imasaddfnlem 17491 The image structure operat...
imasaddvallem 17492 The operation of an image ...
imasaddflem 17493 The image set operations a...
imasaddfn 17494 The image structure's grou...
imasaddval 17495 The value of an image stru...
imasaddf 17496 The image structure's grou...
imasmulfn 17497 The image structure's ring...
imasmulval 17498 The value of an image stru...
imasmulf 17499 The image structure's ring...
imasvscafn 17500 The image structure's scal...
imasvscaval 17501 The value of an image stru...
imasvscaf 17502 The image structure's scal...
imasless 17503 The order relation defined...
imasleval 17504 The value of the image str...
qusval 17505 Value of a quotient struct...
quslem 17506 The function in ~ qusval i...
qusin 17507 Restrict the equivalence r...
qusbas 17508 Base set of a quotient str...
quss 17509 The scalar field of a quot...
divsfval 17510 Value of the function in ~...
ercpbllem 17511 Lemma for ~ ercpbl . (Con...
ercpbl 17512 Translate the function com...
erlecpbl 17513 Translate the relation com...
qusaddvallem 17514 Value of an operation defi...
qusaddflem 17515 The operation of a quotien...
qusaddval 17516 The addition in a quotient...
qusaddf 17517 The addition in a quotient...
qusmulval 17518 The multiplication in a qu...
qusmulf 17519 The multiplication in a qu...
fnpr2o 17520 Function with a domain of ...
fnpr2ob 17521 Biconditional version of ~...
fvpr0o 17522 The value of a function wi...
fvpr1o 17523 The value of a function wi...
fvprif 17524 The value of the pair func...
xpsfrnel 17525 Elementhood in the target ...
xpsfeq 17526 A function on ` 2o ` is de...
xpsfrnel2 17527 Elementhood in the target ...
xpscf 17528 Equivalent condition for t...
xpsfval 17529 The value of the function ...
xpsff1o 17530 The function appearing in ...
xpsfrn 17531 A short expression for the...
xpsff1o2 17532 The function appearing in ...
xpsval 17533 Value of the binary struct...
xpsrnbas 17534 The indexed structure prod...
xpsbas 17535 The base set of the binary...
xpsaddlem 17536 Lemma for ~ xpsadd and ~ x...
xpsadd 17537 Value of the addition oper...
xpsmul 17538 Value of the multiplicatio...
xpssca 17539 Value of the scalar field ...
xpsvsca 17540 Value of the scalar multip...
xpsless 17541 Closure of the ordering in...
xpsle 17542 Value of the ordering in a...
ismre 17551 Property of being a Moore ...
fnmre 17552 The Moore collection gener...
mresspw 17553 A Moore collection is a su...
mress 17554 A Moore-closed subset is a...
mre1cl 17555 In any Moore collection th...
mreintcl 17556 A nonempty collection of c...
mreiincl 17557 A nonempty indexed interse...
mrerintcl 17558 The relative intersection ...
mreriincl 17559 The relative intersection ...
mreincl 17560 Two closed sets have a clo...
mreuni 17561 Since the entire base set ...
mreunirn 17562 Two ways to express the no...
ismred 17563 Properties that determine ...
ismred2 17564 Properties that determine ...
mremre 17565 The Moore collections of s...
submre 17566 The subcollection of a clo...
mrcflem 17567 The domain and codomain of...
fnmrc 17568 Moore-closure is a well-be...
mrcfval 17569 Value of the function expr...
mrcf 17570 The Moore closure is a fun...
mrcval 17571 Evaluation of the Moore cl...
mrccl 17572 The Moore closure of a set...
mrcsncl 17573 The Moore closure of a sin...
mrcid 17574 The closure of a closed se...
mrcssv 17575 The closure of a set is a ...
mrcidb 17576 A set is closed iff it is ...
mrcss 17577 Closure preserves subset o...
mrcssid 17578 The closure of a set is a ...
mrcidb2 17579 A set is closed iff it con...
mrcidm 17580 The closure operation is i...
mrcsscl 17581 The closure is the minimal...
mrcuni 17582 Idempotence of closure und...
mrcun 17583 Idempotence of closure und...
mrcssvd 17584 The Moore closure of a set...
mrcssd 17585 Moore closure preserves su...
mrcssidd 17586 A set is contained in its ...
mrcidmd 17587 Moore closure is idempoten...
mressmrcd 17588 In a Moore system, if a se...
submrc 17589 In a closure system which ...
mrieqvlemd 17590 In a Moore system, if ` Y ...
mrisval 17591 Value of the set of indepe...
ismri 17592 Criterion for a set to be ...
ismri2 17593 Criterion for a subset of ...
ismri2d 17594 Criterion for a subset of ...
ismri2dd 17595 Definition of independence...
mriss 17596 An independent set of a Mo...
mrissd 17597 An independent set of a Mo...
ismri2dad 17598 Consequence of a set in a ...
mrieqvd 17599 In a Moore system, a set i...
mrieqv2d 17600 In a Moore system, a set i...
mrissmrcd 17601 In a Moore system, if an i...
mrissmrid 17602 In a Moore system, subsets...
mreexd 17603 In a Moore system, the clo...
mreexmrid 17604 In a Moore system whose cl...
mreexexlemd 17605 This lemma is used to gene...
mreexexlem2d 17606 Used in ~ mreexexlem4d to ...
mreexexlem3d 17607 Base case of the induction...
mreexexlem4d 17608 Induction step of the indu...
mreexexd 17609 Exchange-type theorem. In...
mreexdomd 17610 In a Moore system whose cl...
mreexfidimd 17611 In a Moore system whose cl...
isacs 17612 A set is an algebraic clos...
acsmre 17613 Algebraic closure systems ...
isacs2 17614 In the definition of an al...
acsfiel 17615 A set is closed in an alge...
acsfiel2 17616 A set is closed in an alge...
acsmred 17617 An algebraic closure syste...
isacs1i 17618 A closure system determine...
mreacs 17619 Algebraicity is a composab...
acsfn 17620 Algebraicity of a conditio...
acsfn0 17621 Algebraicity of a point cl...
acsfn1 17622 Algebraicity of a one-argu...
acsfn1c 17623 Algebraicity of a one-argu...
acsfn2 17624 Algebraicity of a two-argu...
iscat 17633 The predicate "is a catego...
iscatd 17634 Properties that determine ...
catidex 17635 Each object in a category ...
catideu 17636 Each object in a category ...
cidfval 17637 Each object in a category ...
cidval 17638 Each object in a category ...
cidffn 17639 The identity arrow constru...
cidfn 17640 The identity arrow operato...
catidd 17641 Deduce the identity arrow ...
iscatd2 17642 Version of ~ iscatd with a...
catidcl 17643 Each object in a category ...
catlid 17644 Left identity property of ...
catrid 17645 Right identity property of...
catcocl 17646 Closure of a composition a...
catass 17647 Associativity of compositi...
catcone0 17648 Composition of non-empty h...
0catg 17649 Any structure with an empt...
0cat 17650 The empty set is a categor...
homffval 17651 Value of the functionalize...
fnhomeqhomf 17652 If the Hom-set operation i...
homfval 17653 Value of the functionalize...
homffn 17654 The functionalized Hom-set...
homfeq 17655 Condition for two categori...
homfeqd 17656 If two structures have the...
homfeqbas 17657 Deduce equality of base se...
homfeqval 17658 Value of the functionalize...
comfffval 17659 Value of the functionalize...
comffval 17660 Value of the functionalize...
comfval 17661 Value of the functionalize...
comfffval2 17662 Value of the functionalize...
comffval2 17663 Value of the functionalize...
comfval2 17664 Value of the functionalize...
comfffn 17665 The functionalized composi...
comffn 17666 The functionalized composi...
comfeq 17667 Condition for two categori...
comfeqd 17668 Condition for two categori...
comfeqval 17669 Equality of two compositio...
catpropd 17670 Two structures with the sa...
cidpropd 17671 Two structures with the sa...
oppcval 17674 Value of the opposite cate...
oppchomfval 17675 Hom-sets of the opposite c...
oppchom 17676 Hom-sets of the opposite c...
oppccofval 17677 Composition in the opposit...
oppcco 17678 Composition in the opposit...
oppcbas 17679 Base set of an opposite ca...
oppccatid 17680 Lemma for ~ oppccat . (Co...
oppchomf 17681 Hom-sets of the opposite c...
oppcid 17682 Identity function of an op...
oppccat 17683 An opposite category is a ...
2oppcbas 17684 The double opposite catego...
2oppchomf 17685 The double opposite catego...
2oppccomf 17686 The double opposite catego...
oppchomfpropd 17687 If two categories have the...
oppccomfpropd 17688 If two categories have the...
oppccatf 17689 ` oppCat ` restricted to `...
monfval 17694 Definition of a monomorphi...
ismon 17695 Definition of a monomorphi...
ismon2 17696 Write out the monomorphism...
monhom 17697 A monomorphism is a morphi...
moni 17698 Property of a monomorphism...
monpropd 17699 If two categories have the...
oppcmon 17700 A monomorphism in the oppo...
oppcepi 17701 An epimorphism in the oppo...
isepi 17702 Definition of an epimorphi...
isepi2 17703 Write out the epimorphism ...
epihom 17704 An epimorphism is a morphi...
epii 17705 Property of an epimorphism...
sectffval 17712 Value of the section opera...
sectfval 17713 Value of the section relat...
sectss 17714 The section relation is a ...
issect 17715 The property " ` F ` is a ...
issect2 17716 Property of being a sectio...
sectcan 17717 If ` G ` is a section of `...
sectco 17718 Composition of two section...
isofval 17719 Function value of the func...
invffval 17720 Value of the inverse relat...
invfval 17721 Value of the inverse relat...
isinv 17722 Value of the inverse relat...
invss 17723 The inverse relation is a ...
invsym 17724 The inverse relation is sy...
invsym2 17725 The inverse relation is sy...
invfun 17726 The inverse relation is a ...
isoval 17727 The isomorphisms are the d...
inviso1 17728 If ` G ` is an inverse to ...
inviso2 17729 If ` G ` is an inverse to ...
invf 17730 The inverse relation is a ...
invf1o 17731 The inverse relation is a ...
invinv 17732 The inverse of the inverse...
invco 17733 The composition of two iso...
dfiso2 17734 Alternate definition of an...
dfiso3 17735 Alternate definition of an...
inveq 17736 If there are two inverses ...
isofn 17737 The function value of the ...
isohom 17738 An isomorphism is a homomo...
isoco 17739 The composition of two iso...
oppcsect 17740 A section in the opposite ...
oppcsect2 17741 A section in the opposite ...
oppcinv 17742 An inverse in the opposite...
oppciso 17743 An isomorphism in the oppo...
sectmon 17744 If ` F ` is a section of `...
monsect 17745 If ` F ` is a monomorphism...
sectepi 17746 If ` F ` is a section of `...
episect 17747 If ` F ` is an epimorphism...
sectid 17748 The identity is a section ...
invid 17749 The inverse of the identit...
idiso 17750 The identity is an isomorp...
idinv 17751 The inverse of the identit...
invisoinvl 17752 The inverse of an isomorph...
invisoinvr 17753 The inverse of an isomorph...
invcoisoid 17754 The inverse of an isomorph...
isocoinvid 17755 The inverse of an isomorph...
rcaninv 17756 Right cancellation of an i...
cicfval 17759 The set of isomorphic obje...
brcic 17760 The relation "is isomorphi...
cic 17761 Objects ` X ` and ` Y ` in...
brcici 17762 Prove that two objects are...
cicref 17763 Isomorphism is reflexive. ...
ciclcl 17764 Isomorphism implies the le...
cicrcl 17765 Isomorphism implies the ri...
cicsym 17766 Isomorphism is symmetric. ...
cictr 17767 Isomorphism is transitive....
cicer 17768 Isomorphism is an equivale...
sscrel 17775 The subcategory subset rel...
brssc 17776 The subcategory subset rel...
sscpwex 17777 An analogue of ~ pwex for ...
subcrcl 17778 Reverse closure for the su...
sscfn1 17779 The subcategory subset rel...
sscfn2 17780 The subcategory subset rel...
ssclem 17781 Lemma for ~ ssc1 and simil...
isssc 17782 Value of the subcategory s...
ssc1 17783 Infer subset relation on o...
ssc2 17784 Infer subset relation on m...
sscres 17785 Any function restricted to...
sscid 17786 The subcategory subset rel...
ssctr 17787 The subcategory subset rel...
ssceq 17788 The subcategory subset rel...
rescval 17789 Value of the category rest...
rescval2 17790 Value of the category rest...
rescbas 17791 Base set of the category r...
reschom 17792 Hom-sets of the category r...
reschomf 17793 Hom-sets of the category r...
rescco 17794 Composition in the categor...
rescabs 17795 Restriction absorption law...
rescabs2 17796 Restriction absorption law...
issubc 17797 Elementhood in the set of ...
issubc2 17798 Elementhood in the set of ...
0ssc 17799 For any category ` C ` , t...
0subcat 17800 For any category ` C ` , t...
catsubcat 17801 For any category ` C ` , `...
subcssc 17802 An element in the set of s...
subcfn 17803 An element in the set of s...
subcss1 17804 The objects of a subcatego...
subcss2 17805 The morphisms of a subcate...
subcidcl 17806 The identity of the origin...
subccocl 17807 A subcategory is closed un...
subccatid 17808 A subcategory is a categor...
subcid 17809 The identity in a subcateg...
subccat 17810 A subcategory is a categor...
issubc3 17811 Alternate definition of a ...
fullsubc 17812 The full subcategory gener...
fullresc 17813 The category formed by str...
resscat 17814 A category restricted to a...
subsubc 17815 A subcategory of a subcate...
relfunc 17824 The set of functors is a r...
funcrcl 17825 Reverse closure for a func...
isfunc 17826 Value of the set of functo...
isfuncd 17827 Deduce that an operation i...
funcf1 17828 The object part of a funct...
funcixp 17829 The morphism part of a fun...
funcf2 17830 The morphism part of a fun...
funcfn2 17831 The morphism part of a fun...
funcid 17832 A functor maps each identi...
funcco 17833 A functor maps composition...
funcsect 17834 The image of a section und...
funcinv 17835 The image of an inverse un...
funciso 17836 The image of an isomorphis...
funcoppc 17837 A functor on categories yi...
idfuval 17838 Value of the identity func...
idfu2nd 17839 Value of the morphism part...
idfu2 17840 Value of the morphism part...
idfu1st 17841 Value of the object part o...
idfu1 17842 Value of the object part o...
idfucl 17843 The identity functor is a ...
cofuval 17844 Value of the composition o...
cofu1st 17845 Value of the object part o...
cofu1 17846 Value of the object part o...
cofu2nd 17847 Value of the morphism part...
cofu2 17848 Value of the morphism part...
cofuval2 17849 Value of the composition o...
cofucl 17850 The composition of two fun...
cofuass 17851 Functor composition is ass...
cofulid 17852 The identity functor is a ...
cofurid 17853 The identity functor is a ...
resfval 17854 Value of the functor restr...
resfval2 17855 Value of the functor restr...
resf1st 17856 Value of the functor restr...
resf2nd 17857 Value of the functor restr...
funcres 17858 A functor restricted to a ...
funcres2b 17859 Condition for a functor to...
funcres2 17860 A functor into a restricte...
idfusubc0 17861 The identity functor for a...
idfusubc 17862 The identity functor for a...
wunfunc 17863 A weak universe is closed ...
funcpropd 17864 If two categories have the...
funcres2c 17865 Condition for a functor to...
fullfunc 17870 A full functor is a functo...
fthfunc 17871 A faithful functor is a fu...
relfull 17872 The set of full functors i...
relfth 17873 The set of faithful functo...
isfull 17874 Value of the set of full f...
isfull2 17875 Equivalent condition for a...
fullfo 17876 The morphism map of a full...
fulli 17877 The morphism map of a full...
isfth 17878 Value of the set of faithf...
isfth2 17879 Equivalent condition for a...
isffth2 17880 A fully faithful functor i...
fthf1 17881 The morphism map of a fait...
fthi 17882 The morphism map of a fait...
ffthf1o 17883 The morphism map of a full...
fullpropd 17884 If two categories have the...
fthpropd 17885 If two categories have the...
fulloppc 17886 The opposite functor of a ...
fthoppc 17887 The opposite functor of a ...
ffthoppc 17888 The opposite functor of a ...
fthsect 17889 A faithful functor reflect...
fthinv 17890 A faithful functor reflect...
fthmon 17891 A faithful functor reflect...
fthepi 17892 A faithful functor reflect...
ffthiso 17893 A fully faithful functor r...
fthres2b 17894 Condition for a faithful f...
fthres2c 17895 Condition for a faithful f...
fthres2 17896 A faithful functor into a ...
idffth 17897 The identity functor is a ...
cofull 17898 The composition of two ful...
cofth 17899 The composition of two fai...
coffth 17900 The composition of two ful...
rescfth 17901 The inclusion functor from...
ressffth 17902 The inclusion functor from...
fullres2c 17903 Condition for a full funct...
ffthres2c 17904 Condition for a fully fait...
inclfusubc 17905 The "inclusion functor" fr...
fnfuc 17910 The ` FuncCat ` operation ...
natfval 17911 Value of the function givi...
isnat 17912 Property of being a natura...
isnat2 17913 Property of being a natura...
natffn 17914 The natural transformation...
natrcl 17915 Reverse closure for a natu...
nat1st2nd 17916 Rewrite the natural transf...
natixp 17917 A natural transformation i...
natcl 17918 A component of a natural t...
natfn 17919 A natural transformation i...
nati 17920 Naturality property of a n...
wunnat 17921 A weak universe is closed ...
catstr 17922 A category structure is a ...
fucval 17923 Value of the functor categ...
fuccofval 17924 Value of the functor categ...
fucbas 17925 The objects of the functor...
fuchom 17926 The morphisms in the funct...
fucco 17927 Value of the composition o...
fuccoval 17928 Value of the functor categ...
fuccocl 17929 The composition of two nat...
fucidcl 17930 The identity natural trans...
fuclid 17931 Left identity of natural t...
fucrid 17932 Right identity of natural ...
fucass 17933 Associativity of natural t...
fuccatid 17934 The functor category is a ...
fuccat 17935 The functor category is a ...
fucid 17936 The identity morphism in t...
fucsect 17937 Two natural transformation...
fucinv 17938 Two natural transformation...
invfuc 17939 If ` V ( x ) ` is an inver...
fuciso 17940 A natural transformation i...
natpropd 17941 If two categories have the...
fucpropd 17942 If two categories have the...
initofn 17949 ` InitO ` is a function on...
termofn 17950 ` TermO ` is a function on...
zeroofn 17951 ` ZeroO ` is a function on...
initorcl 17952 Reverse closure for an ini...
termorcl 17953 Reverse closure for a term...
zeroorcl 17954 Reverse closure for a zero...
initoval 17955 The value of the initial o...
termoval 17956 The value of the terminal ...
zerooval 17957 The value of the zero obje...
isinito 17958 The predicate "is an initi...
istermo 17959 The predicate "is a termin...
iszeroo 17960 The predicate "is a zero o...
isinitoi 17961 Implication of a class bei...
istermoi 17962 Implication of a class bei...
initoid 17963 For an initial object, the...
termoid 17964 For a terminal object, the...
dfinito2 17965 An initial object is a ter...
dftermo2 17966 A terminal object is an in...
dfinito3 17967 An alternate definition of...
dftermo3 17968 An alternate definition of...
initoo 17969 An initial object is an ob...
termoo 17970 A terminal object is an ob...
iszeroi 17971 Implication of a class bei...
2initoinv 17972 Morphisms between two init...
initoeu1 17973 Initial objects are essent...
initoeu1w 17974 Initial objects are essent...
initoeu2lem0 17975 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 17976 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 17977 Lemma 2 for ~ initoeu2 . ...
initoeu2 17978 Initial objects are essent...
2termoinv 17979 Morphisms between two term...
termoeu1 17980 Terminal objects are essen...
termoeu1w 17981 Terminal objects are essen...
homarcl 17990 Reverse closure for an arr...
homafval 17991 Value of the disjointified...
homaf 17992 Functionality of the disjo...
homaval 17993 Value of the disjointified...
elhoma 17994 Value of the disjointified...
elhomai 17995 Produce an arrow from a mo...
elhomai2 17996 Produce an arrow from a mo...
homarcl2 17997 Reverse closure for the do...
homarel 17998 An arrow is an ordered pai...
homa1 17999 The first component of an ...
homahom2 18000 The second component of an...
homahom 18001 The second component of an...
homadm 18002 The domain of an arrow wit...
homacd 18003 The codomain of an arrow w...
homadmcd 18004 Decompose an arrow into do...
arwval 18005 The set of arrows is the u...
arwrcl 18006 The first component of an ...
arwhoma 18007 An arrow is contained in t...
homarw 18008 A hom-set is a subset of t...
arwdm 18009 The domain of an arrow is ...
arwcd 18010 The codomain of an arrow i...
dmaf 18011 The domain function is a f...
cdaf 18012 The codomain function is a...
arwhom 18013 The second component of an...
arwdmcd 18014 Decompose an arrow into do...
idafval 18019 Value of the identity arro...
idaval 18020 Value of the identity arro...
ida2 18021 Morphism part of the ident...
idahom 18022 Domain and codomain of the...
idadm 18023 Domain of the identity arr...
idacd 18024 Codomain of the identity a...
idaf 18025 The identity arrow functio...
coafval 18026 The value of the compositi...
eldmcoa 18027 A pair ` <. G , F >. ` is ...
dmcoass 18028 The domain of composition ...
homdmcoa 18029 If ` F : X --> Y ` and ` G...
coaval 18030 Value of composition for c...
coa2 18031 The morphism part of arrow...
coahom 18032 The composition of two com...
coapm 18033 Composition of arrows is a...
arwlid 18034 Left identity of a categor...
arwrid 18035 Right identity of a catego...
arwass 18036 Associativity of compositi...
setcval 18039 Value of the category of s...
setcbas 18040 Set of objects of the cate...
setchomfval 18041 Set of arrows of the categ...
setchom 18042 Set of arrows of the categ...
elsetchom 18043 A morphism of sets is a fu...
setccofval 18044 Composition in the categor...
setcco 18045 Composition in the categor...
setccatid 18046 Lemma for ~ setccat . (Co...
setccat 18047 The category of sets is a ...
setcid 18048 The identity arrow in the ...
setcmon 18049 A monomorphism of sets is ...
setcepi 18050 An epimorphism of sets is ...
setcsect 18051 A section in the category ...
setcinv 18052 An inverse in the category...
setciso 18053 An isomorphism in the cate...
resssetc 18054 The restriction of the cat...
funcsetcres2 18055 A functor into a smaller c...
setc2obas 18056 ` (/) ` and ` 1o ` are dis...
setc2ohom 18057 ` ( SetCat `` 2o ) ` is a ...
cat1lem 18058 The category of sets in a ...
cat1 18059 The definition of category...
catcval 18062 Value of the category of c...
catcbas 18063 Set of objects of the cate...
catchomfval 18064 Set of arrows of the categ...
catchom 18065 Set of arrows of the categ...
catccofval 18066 Composition in the categor...
catcco 18067 Composition in the categor...
catccatid 18068 Lemma for ~ catccat . (Co...
catcid 18069 The identity arrow in the ...
catccat 18070 The category of categories...
resscatc 18071 The restriction of the cat...
catcisolem 18072 Lemma for ~ catciso . (Co...
catciso 18073 A functor is an isomorphis...
catcbascl 18074 An element of the base set...
catcslotelcl 18075 A slot entry of an element...
catcbaselcl 18076 The base set of an element...
catchomcl 18077 The Hom-set of an element ...
catcccocl 18078 The composition operation ...
catcoppccl 18079 The category of categories...
catcfuccl 18080 The category of categories...
fncnvimaeqv 18081 The inverse images of the ...
bascnvimaeqv 18082 The inverse image of the u...
estrcval 18085 Value of the category of e...
estrcbas 18086 Set of objects of the cate...
estrchomfval 18087 Set of morphisms ("arrows"...
estrchom 18088 The morphisms between exte...
elestrchom 18089 A morphism between extensi...
estrccofval 18090 Composition in the categor...
estrcco 18091 Composition in the categor...
estrcbasbas 18092 An element of the base set...
estrccatid 18093 Lemma for ~ estrccat . (C...
estrccat 18094 The category of extensible...
estrcid 18095 The identity arrow in the ...
estrchomfn 18096 The Hom-set operation in t...
estrchomfeqhom 18097 The functionalized Hom-set...
estrreslem1 18098 Lemma 1 for ~ estrres . (...
estrreslem2 18099 Lemma 2 for ~ estrres . (...
estrres 18100 Any restriction of a categ...
funcestrcsetclem1 18101 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 18102 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 18103 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 18104 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 18105 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 18106 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 18107 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 18108 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 18109 Lemma 9 for ~ funcestrcset...
funcestrcsetc 18110 The "natural forgetful fun...
fthestrcsetc 18111 The "natural forgetful fun...
fullestrcsetc 18112 The "natural forgetful fun...
equivestrcsetc 18113 The "natural forgetful fun...
setc1strwun 18114 A constructed one-slot str...
funcsetcestrclem1 18115 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 18116 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 18117 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 18118 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 18119 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 18120 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 18121 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 18122 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 18123 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 18124 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 18125 The "embedding functor" fr...
fthsetcestrc 18126 The "embedding functor" fr...
fullsetcestrc 18127 The "embedding functor" fr...
embedsetcestrc 18128 The "embedding functor" fr...
fnxpc 18137 The binary product of cate...
xpcval 18138 Value of the binary produc...
xpcbas 18139 Set of objects of the bina...
xpchomfval 18140 Set of morphisms of the bi...
xpchom 18141 Set of morphisms of the bi...
relxpchom 18142 A hom-set in the binary pr...
xpccofval 18143 Value of composition in th...
xpcco 18144 Value of composition in th...
xpcco1st 18145 Value of composition in th...
xpcco2nd 18146 Value of composition in th...
xpchom2 18147 Value of the set of morphi...
xpcco2 18148 Value of composition in th...
xpccatid 18149 The product of two categor...
xpcid 18150 The identity morphism in t...
xpccat 18151 The product of two categor...
1stfval 18152 Value of the first project...
1stf1 18153 Value of the first project...
1stf2 18154 Value of the first project...
2ndfval 18155 Value of the first project...
2ndf1 18156 Value of the first project...
2ndf2 18157 Value of the first project...
1stfcl 18158 The first projection funct...
2ndfcl 18159 The second projection func...
prfval 18160 Value of the pairing funct...
prf1 18161 Value of the pairing funct...
prf2fval 18162 Value of the pairing funct...
prf2 18163 Value of the pairing funct...
prfcl 18164 The pairing of functors ` ...
prf1st 18165 Cancellation of pairing wi...
prf2nd 18166 Cancellation of pairing wi...
1st2ndprf 18167 Break a functor into a pro...
catcxpccl 18168 The category of categories...
xpcpropd 18169 If two categories have the...
evlfval 18178 Value of the evaluation fu...
evlf2 18179 Value of the evaluation fu...
evlf2val 18180 Value of the evaluation na...
evlf1 18181 Value of the evaluation fu...
evlfcllem 18182 Lemma for ~ evlfcl . (Con...
evlfcl 18183 The evaluation functor is ...
curfval 18184 Value of the curry functor...
curf1fval 18185 Value of the object part o...
curf1 18186 Value of the object part o...
curf11 18187 Value of the double evalua...
curf12 18188 The partially evaluated cu...
curf1cl 18189 The partially evaluated cu...
curf2 18190 Value of the curry functor...
curf2val 18191 Value of a component of th...
curf2cl 18192 The curry functor at a mor...
curfcl 18193 The curry functor of a fun...
curfpropd 18194 If two categories have the...
uncfval 18195 Value of the uncurry funct...
uncfcl 18196 The uncurry operation take...
uncf1 18197 Value of the uncurry funct...
uncf2 18198 Value of the uncurry funct...
curfuncf 18199 Cancellation of curry with...
uncfcurf 18200 Cancellation of uncurry wi...
diagval 18201 Define the diagonal functo...
diagcl 18202 The diagonal functor is a ...
diag1cl 18203 The constant functor of ` ...
diag11 18204 Value of the constant func...
diag12 18205 Value of the constant func...
diag2 18206 Value of the diagonal func...
diag2cl 18207 The diagonal functor at a ...
curf2ndf 18208 As shown in ~ diagval , th...
hofval 18213 Value of the Hom functor, ...
hof1fval 18214 The object part of the Hom...
hof1 18215 The object part of the Hom...
hof2fval 18216 The morphism part of the H...
hof2val 18217 The morphism part of the H...
hof2 18218 The morphism part of the H...
hofcllem 18219 Lemma for ~ hofcl . (Cont...
hofcl 18220 Closure of the Hom functor...
oppchofcl 18221 Closure of the opposite Ho...
yonval 18222 Value of the Yoneda embedd...
yoncl 18223 The Yoneda embedding is a ...
yon1cl 18224 The Yoneda embedding at an...
yon11 18225 Value of the Yoneda embedd...
yon12 18226 Value of the Yoneda embedd...
yon2 18227 Value of the Yoneda embedd...
hofpropd 18228 If two categories have the...
yonpropd 18229 If two categories have the...
oppcyon 18230 Value of the opposite Yone...
oyoncl 18231 The opposite Yoneda embedd...
oyon1cl 18232 The opposite Yoneda embedd...
yonedalem1 18233 Lemma for ~ yoneda . (Con...
yonedalem21 18234 Lemma for ~ yoneda . (Con...
yonedalem3a 18235 Lemma for ~ yoneda . (Con...
yonedalem4a 18236 Lemma for ~ yoneda . (Con...
yonedalem4b 18237 Lemma for ~ yoneda . (Con...
yonedalem4c 18238 Lemma for ~ yoneda . (Con...
yonedalem22 18239 Lemma for ~ yoneda . (Con...
yonedalem3b 18240 Lemma for ~ yoneda . (Con...
yonedalem3 18241 Lemma for ~ yoneda . (Con...
yonedainv 18242 The Yoneda Lemma with expl...
yonffthlem 18243 Lemma for ~ yonffth . (Co...
yoneda 18244 The Yoneda Lemma. There i...
yonffth 18245 The Yoneda Lemma. The Yon...
yoniso 18246 If the codomain is recover...
oduval 18249 Value of an order dual str...
oduleval 18250 Value of the less-equal re...
oduleg 18251 Truth of the less-equal re...
odubas 18252 Base set of an order dual ...
isprs 18257 Property of being a preord...
prslem 18258 Lemma for ~ prsref and ~ p...
prsref 18259 "Less than or equal to" is...
prstr 18260 "Less than or equal to" is...
oduprs 18261 Being a proset is a self-d...
isdrs 18262 Property of being a direct...
drsdir 18263 Direction of a directed se...
drsprs 18264 A directed set is a proset...
drsbn0 18265 The base of a directed set...
drsdirfi 18266 Any _finite_ number of ele...
isdrs2 18267 Directed sets may be defin...
ispos 18275 The predicate "is a poset"...
ispos2 18276 A poset is an antisymmetri...
posprs 18277 A poset is a proset. (Con...
posi 18278 Lemma for poset properties...
posref 18279 A poset ordering is reflex...
posasymb 18280 A poset ordering is asymme...
postr 18281 A poset ordering is transi...
0pos 18282 Technical lemma to simplif...
isposd 18283 Properties that determine ...
isposi 18284 Properties that determine ...
isposix 18285 Properties that determine ...
pospropd 18286 Posethood is determined on...
odupos 18287 Being a poset is a self-du...
oduposb 18288 Being a poset is a self-du...
pltfval 18290 Value of the less-than rel...
pltval 18291 Less-than relation. ( ~ d...
pltle 18292 "Less than" implies "less ...
pltne 18293 The "less than" relation i...
pltirr 18294 The "less than" relation i...
pleval2i 18295 One direction of ~ pleval2...
pleval2 18296 "Less than or equal to" in...
pltnle 18297 "Less than" implies not co...
pltval3 18298 Alternate expression for t...
pltnlt 18299 The less-than relation imp...
pltn2lp 18300 The less-than relation has...
plttr 18301 The less-than relation is ...
pltletr 18302 Transitive law for chained...
plelttr 18303 Transitive law for chained...
pospo 18304 Write a poset structure in...
lubfval 18309 Value of the least upper b...
lubdm 18310 Domain of the least upper ...
lubfun 18311 The LUB is a function. (C...
lubeldm 18312 Member of the domain of th...
lubelss 18313 A member of the domain of ...
lubeu 18314 Unique existence proper of...
lubval 18315 Value of the least upper b...
lubcl 18316 The least upper bound func...
lubprop 18317 Properties of greatest low...
luble 18318 The greatest lower bound i...
lublecllem 18319 Lemma for ~ lublecl and ~ ...
lublecl 18320 The set of all elements le...
lubid 18321 The LUB of elements less t...
glbfval 18322 Value of the greatest lowe...
glbdm 18323 Domain of the greatest low...
glbfun 18324 The GLB is a function. (C...
glbeldm 18325 Member of the domain of th...
glbelss 18326 A member of the domain of ...
glbeu 18327 Unique existence proper of...
glbval 18328 Value of the greatest lowe...
glbcl 18329 The least upper bound func...
glbprop 18330 Properties of greatest low...
glble 18331 The greatest lower bound i...
joinfval 18332 Value of join function for...
joinfval2 18333 Value of join function for...
joindm 18334 Domain of join function fo...
joindef 18335 Two ways to say that a joi...
joinval 18336 Join value. Since both si...
joincl 18337 Closure of join of element...
joindmss 18338 Subset property of domain ...
joinval2lem 18339 Lemma for ~ joinval2 and ~...
joinval2 18340 Value of join for a poset ...
joineu 18341 Uniqueness of join of elem...
joinlem 18342 Lemma for join properties....
lejoin1 18343 A join's first argument is...
lejoin2 18344 A join's second argument i...
joinle 18345 A join is less than or equ...
meetfval 18346 Value of meet function for...
meetfval2 18347 Value of meet function for...
meetdm 18348 Domain of meet function fo...
meetdef 18349 Two ways to say that a mee...
meetval 18350 Meet value. Since both si...
meetcl 18351 Closure of meet of element...
meetdmss 18352 Subset property of domain ...
meetval2lem 18353 Lemma for ~ meetval2 and ~...
meetval2 18354 Value of meet for a poset ...
meeteu 18355 Uniqueness of meet of elem...
meetlem 18356 Lemma for meet properties....
lemeet1 18357 A meet's first argument is...
lemeet2 18358 A meet's second argument i...
meetle 18359 A meet is less than or equ...
joincomALT 18360 The join of a poset is com...
joincom 18361 The join of a poset is com...
meetcomALT 18362 The meet of a poset is com...
meetcom 18363 The meet of a poset is com...
join0 18364 Lemma for ~ odumeet . (Co...
meet0 18365 Lemma for ~ odujoin . (Co...
odulub 18366 Least upper bounds in a du...
odujoin 18367 Joins in a dual order are ...
oduglb 18368 Greatest lower bounds in a...
odumeet 18369 Meets in a dual order are ...
poslubmo 18370 Least upper bounds in a po...
posglbmo 18371 Greatest lower bounds in a...
poslubd 18372 Properties which determine...
poslubdg 18373 Properties which determine...
posglbdg 18374 Properties which determine...
istos 18377 The predicate "is a toset"...
tosso 18378 Write the totally ordered ...
tospos 18379 A Toset is a Poset. (Cont...
tleile 18380 In a Toset, any two elemen...
tltnle 18381 In a Toset, "less than" is...
p0val 18386 Value of poset zero. (Con...
p1val 18387 Value of poset zero. (Con...
p0le 18388 Any element is less than o...
ple1 18389 Any element is less than o...
islat 18392 The predicate "is a lattic...
odulatb 18393 Being a lattice is self-du...
odulat 18394 Being a lattice is self-du...
latcl2 18395 The join and meet of any t...
latlem 18396 Lemma for lattice properti...
latpos 18397 A lattice is a poset. (Co...
latjcl 18398 Closure of join operation ...
latmcl 18399 Closure of meet operation ...
latref 18400 A lattice ordering is refl...
latasymb 18401 A lattice ordering is asym...
latasym 18402 A lattice ordering is asym...
lattr 18403 A lattice ordering is tran...
latasymd 18404 Deduce equality from latti...
lattrd 18405 A lattice ordering is tran...
latjcom 18406 The join of a lattice comm...
latlej1 18407 A join's first argument is...
latlej2 18408 A join's second argument i...
latjle12 18409 A join is less than or equ...
latleeqj1 18410 "Less than or equal to" in...
latleeqj2 18411 "Less than or equal to" in...
latjlej1 18412 Add join to both sides of ...
latjlej2 18413 Add join to both sides of ...
latjlej12 18414 Add join to both sides of ...
latnlej 18415 An idiom to express that a...
latnlej1l 18416 An idiom to express that a...
latnlej1r 18417 An idiom to express that a...
latnlej2 18418 An idiom to express that a...
latnlej2l 18419 An idiom to express that a...
latnlej2r 18420 An idiom to express that a...
latjidm 18421 Lattice join is idempotent...
latmcom 18422 The join of a lattice comm...
latmle1 18423 A meet is less than or equ...
latmle2 18424 A meet is less than or equ...
latlem12 18425 An element is less than or...
latleeqm1 18426 "Less than or equal to" in...
latleeqm2 18427 "Less than or equal to" in...
latmlem1 18428 Add meet to both sides of ...
latmlem2 18429 Add meet to both sides of ...
latmlem12 18430 Add join to both sides of ...
latnlemlt 18431 Negation of "less than or ...
latnle 18432 Equivalent expressions for...
latmidm 18433 Lattice meet is idempotent...
latabs1 18434 Lattice absorption law. F...
latabs2 18435 Lattice absorption law. F...
latledi 18436 An ortholattice is distrib...
latmlej11 18437 Ordering of a meet and joi...
latmlej12 18438 Ordering of a meet and joi...
latmlej21 18439 Ordering of a meet and joi...
latmlej22 18440 Ordering of a meet and joi...
lubsn 18441 The least upper bound of a...
latjass 18442 Lattice join is associativ...
latj12 18443 Swap 1st and 2nd members o...
latj32 18444 Swap 2nd and 3rd members o...
latj13 18445 Swap 1st and 3rd members o...
latj31 18446 Swap 2nd and 3rd members o...
latjrot 18447 Rotate lattice join of 3 c...
latj4 18448 Rearrangement of lattice j...
latj4rot 18449 Rotate lattice join of 4 c...
latjjdi 18450 Lattice join distributes o...
latjjdir 18451 Lattice join distributes o...
mod1ile 18452 The weak direction of the ...
mod2ile 18453 The weak direction of the ...
latmass 18454 Lattice meet is associativ...
latdisdlem 18455 Lemma for ~ latdisd . (Co...
latdisd 18456 In a lattice, joins distri...
isclat 18459 The predicate "is a comple...
clatpos 18460 A complete lattice is a po...
clatlem 18461 Lemma for properties of a ...
clatlubcl 18462 Any subset of the base set...
clatlubcl2 18463 Any subset of the base set...
clatglbcl 18464 Any subset of the base set...
clatglbcl2 18465 Any subset of the base set...
oduclatb 18466 Being a complete lattice i...
clatl 18467 A complete lattice is a la...
isglbd 18468 Properties that determine ...
lublem 18469 Lemma for the least upper ...
lubub 18470 The LUB of a complete latt...
lubl 18471 The LUB of a complete latt...
lubss 18472 Subset law for least upper...
lubel 18473 An element of a set is les...
lubun 18474 The LUB of a union. (Cont...
clatglb 18475 Properties of greatest low...
clatglble 18476 The greatest lower bound i...
clatleglb 18477 Two ways of expressing "le...
clatglbss 18478 Subset law for greatest lo...
isdlat 18481 Property of being a distri...
dlatmjdi 18482 In a distributive lattice,...
dlatl 18483 A distributive lattice is ...
odudlatb 18484 The dual of a distributive...
dlatjmdi 18485 In a distributive lattice,...
ipostr 18488 The structure of ~ df-ipo ...
ipoval 18489 Value of the inclusion pos...
ipobas 18490 Base set of the inclusion ...
ipolerval 18491 Relation of the inclusion ...
ipotset 18492 Topology of the inclusion ...
ipole 18493 Weak order condition of th...
ipolt 18494 Strict order condition of ...
ipopos 18495 The inclusion poset on a f...
isipodrs 18496 Condition for a family of ...
ipodrscl 18497 Direction by inclusion as ...
ipodrsfi 18498 Finite upper bound propert...
fpwipodrs 18499 The finite subsets of any ...
ipodrsima 18500 The monotone image of a di...
isacs3lem 18501 An algebraic closure syste...
acsdrsel 18502 An algebraic closure syste...
isacs4lem 18503 In a closure system in whi...
isacs5lem 18504 If closure commutes with d...
acsdrscl 18505 In an algebraic closure sy...
acsficl 18506 A closure in an algebraic ...
isacs5 18507 A closure system is algebr...
isacs4 18508 A closure system is algebr...
isacs3 18509 A closure system is algebr...
acsficld 18510 In an algebraic closure sy...
acsficl2d 18511 In an algebraic closure sy...
acsfiindd 18512 In an algebraic closure sy...
acsmapd 18513 In an algebraic closure sy...
acsmap2d 18514 In an algebraic closure sy...
acsinfd 18515 In an algebraic closure sy...
acsdomd 18516 In an algebraic closure sy...
acsinfdimd 18517 In an algebraic closure sy...
acsexdimd 18518 In an algebraic closure sy...
mrelatglb 18519 Greatest lower bounds in a...
mrelatglb0 18520 The empty intersection in ...
mrelatlub 18521 Least upper bounds in a Mo...
mreclatBAD 18522 A Moore space is a complet...
isps 18527 The predicate "is a poset"...
psrel 18528 A poset is a relation. (C...
psref2 18529 A poset is antisymmetric a...
pstr2 18530 A poset is transitive. (C...
pslem 18531 Lemma for ~ psref and othe...
psdmrn 18532 The domain and range of a ...
psref 18533 A poset is reflexive. (Co...
psrn 18534 The range of a poset equal...
psasym 18535 A poset is antisymmetric. ...
pstr 18536 A poset is transitive. (C...
cnvps 18537 The converse of a poset is...
cnvpsb 18538 The converse of a poset is...
psss 18539 Any subset of a partially ...
psssdm2 18540 Field of a subposet. (Con...
psssdm 18541 Field of a subposet. (Con...
istsr 18542 The predicate is a toset. ...
istsr2 18543 The predicate is a toset. ...
tsrlin 18544 A toset is a linear order....
tsrlemax 18545 Two ways of saying a numbe...
tsrps 18546 A toset is a poset. (Cont...
cnvtsr 18547 The converse of a toset is...
tsrss 18548 Any subset of a totally or...
ledm 18549 The domain of ` <_ ` is ` ...
lern 18550 The range of ` <_ ` is ` R...
lefld 18551 The field of the 'less or ...
letsr 18552 The "less than or equal to...
isdir 18557 A condition for a relation...
reldir 18558 A direction is a relation....
dirdm 18559 A direction's domain is eq...
dirref 18560 A direction is reflexive. ...
dirtr 18561 A direction is transitive....
dirge 18562 For any two elements of a ...
tsrdir 18563 A totally ordered set is a...
ismgm 18568 The predicate "is a magma"...
ismgmn0 18569 The predicate "is a magma"...
mgmcl 18570 Closure of the operation o...
isnmgm 18571 A condition for a structur...
mgmsscl 18572 If the base set of a magma...
plusffval 18573 The group addition operati...
plusfval 18574 The group addition operati...
plusfeq 18575 If the addition operation ...
plusffn 18576 The group addition operati...
mgmplusf 18577 The group addition functio...
mgmpropd 18578 If two structures have the...
ismgmd 18579 Deduce a magma from its pr...
issstrmgm 18580 Characterize a substructur...
intopsn 18581 The internal operation for...
mgmb1mgm1 18582 The only magma with a base...
mgm0 18583 Any set with an empty base...
mgm0b 18584 The structure with an empt...
mgm1 18585 The structure with one ele...
opifismgm 18586 A structure with a group a...
mgmidmo 18587 A two-sided identity eleme...
grpidval 18588 The value of the identity ...
grpidpropd 18589 If two structures have the...
fn0g 18590 The group zero extractor i...
0g0 18591 The identity element funct...
ismgmid 18592 The identity element of a ...
mgmidcl 18593 The identity element of a ...
mgmlrid 18594 The identity element of a ...
ismgmid2 18595 Show that a given element ...
lidrideqd 18596 If there is a left and rig...
lidrididd 18597 If there is a left and rig...
grpidd 18598 Deduce the identity elemen...
mgmidsssn0 18599 Property of the set of ide...
grpinvalem 18600 Lemma for ~ grpinva . (Co...
grpinva 18601 Deduce right inverse from ...
grprida 18602 Deduce right identity from...
gsumvalx 18603 Expand out the substitutio...
gsumval 18604 Expand out the substitutio...
gsumpropd 18605 The group sum depends only...
gsumpropd2lem 18606 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18607 A stronger version of ~ gs...
gsummgmpropd 18608 A stronger version of ~ gs...
gsumress 18609 The group sum in a substru...
gsumval1 18610 Value of the group sum ope...
gsum0 18611 Value of the empty group s...
gsumval2a 18612 Value of the group sum ope...
gsumval2 18613 Value of the group sum ope...
gsumsplit1r 18614 Splitting off the rightmos...
gsumprval 18615 Value of the group sum ope...
gsumpr12val 18616 Value of the group sum ope...
mgmhmrcl 18621 Reverse closure of a magma...
submgmrcl 18622 Reverse closure for submag...
ismgmhm 18623 Property of a magma homomo...
mgmhmf 18624 A magma homomorphism is a ...
mgmhmpropd 18625 Magma homomorphism depends...
mgmhmlin 18626 A magma homomorphism prese...
mgmhmf1o 18627 A magma homomorphism is bi...
idmgmhm 18628 The identity homomorphism ...
issubmgm 18629 Expand definition of a sub...
issubmgm2 18630 Submagmas are subsets that...
rabsubmgmd 18631 Deduction for proving that...
submgmss 18632 Submagmas are subsets of t...
submgmid 18633 Every magma is trivially a...
submgmcl 18634 Submagmas are closed under...
submgmmgm 18635 Submagmas are themselves m...
submgmbas 18636 The base set of a submagma...
subsubmgm 18637 A submagma of a submagma i...
resmgmhm 18638 Restriction of a magma hom...
resmgmhm2 18639 One direction of ~ resmgmh...
resmgmhm2b 18640 Restriction of the codomai...
mgmhmco 18641 The composition of magma h...
mgmhmima 18642 The homomorphic image of a...
mgmhmeql 18643 The equalizer of two magma...
submgmacs 18644 Submagmas are an algebraic...
issgrp 18647 The predicate "is a semigr...
issgrpv 18648 The predicate "is a semigr...
issgrpn0 18649 The predicate "is a semigr...
isnsgrp 18650 A condition for a structur...
sgrpmgm 18651 A semigroup is a magma. (...
sgrpass 18652 A semigroup operation is a...
sgrpcl 18653 Closure of the operation o...
sgrp0 18654 Any set with an empty base...
sgrp0b 18655 The structure with an empt...
sgrp1 18656 The structure with one ele...
issgrpd 18657 Deduce a semigroup from it...
sgrppropd 18658 If two structures are sets...
prdsplusgsgrpcl 18659 Structure product pointwis...
prdssgrpd 18660 The product of a family of...
ismnddef 18663 The predicate "is a monoid...
ismnd 18664 The predicate "is a monoid...
isnmnd 18665 A condition for a structur...
sgrpidmnd 18666 A semigroup with an identi...
mndsgrp 18667 A monoid is a semigroup. ...
mndmgm 18668 A monoid is a magma. (Con...
mndcl 18669 Closure of the operation o...
mndass 18670 A monoid operation is asso...
mndid 18671 A monoid has a two-sided i...
mndideu 18672 The two-sided identity ele...
mnd32g 18673 Commutative/associative la...
mnd12g 18674 Commutative/associative la...
mnd4g 18675 Commutative/associative la...
mndidcl 18676 The identity element of a ...
mndbn0 18677 The base set of a monoid i...
hashfinmndnn 18678 A finite monoid has positi...
mndplusf 18679 The group addition operati...
mndlrid 18680 A monoid's identity elemen...
mndlid 18681 The identity element of a ...
mndrid 18682 The identity element of a ...
ismndd 18683 Deduce a monoid from its p...
mndpfo 18684 The addition operation of ...
mndfo 18685 The addition operation of ...
mndpropd 18686 If two structures have the...
mndprop 18687 If two structures have the...
issubmnd 18688 Characterize a submonoid b...
ress0g 18689 ` 0g ` is unaffected by re...
submnd0 18690 The zero of a submonoid is...
mndinvmod 18691 Uniqueness of an inverse e...
mndpsuppss 18692 The support of a mapping o...
mndpsuppfi 18693 The support of a mapping o...
mndpfsupp 18694 A mapping of a scalar mult...
prdsplusgcl 18695 Structure product pointwis...
prdsidlem 18696 Characterization of identi...
prdsmndd 18697 The product of a family of...
prds0g 18698 The identity in a product ...
pwsmnd 18699 The structure power of a m...
pws0g 18700 The identity in a structur...
imasmnd2 18701 The image structure of a m...
imasmnd 18702 The image structure of a m...
imasmndf1 18703 The image of a monoid unde...
xpsmnd 18704 The binary product of mono...
xpsmnd0 18705 The identity element of a ...
mnd1 18706 The (smallest) structure r...
mnd1id 18707 The singleton element of a...
ismhm 18712 Property of a monoid homom...
ismhmd 18713 Deduction version of ~ ism...
mhmrcl1 18714 Reverse closure of a monoi...
mhmrcl2 18715 Reverse closure of a monoi...
mhmf 18716 A monoid homomorphism is a...
ismhm0 18717 Property of a monoid homom...
mhmismgmhm 18718 Each monoid homomorphism i...
mhmpropd 18719 Monoid homomorphism depend...
mhmlin 18720 A monoid homomorphism comm...
mhm0 18721 A monoid homomorphism pres...
idmhm 18722 The identity homomorphism ...
mhmf1o 18723 A monoid homomorphism is b...
mndvcl 18724 Tuple-wise additive closur...
mndvass 18725 Tuple-wise associativity i...
mndvlid 18726 Tuple-wise left identity i...
mndvrid 18727 Tuple-wise right identity ...
mhmvlin 18728 Tuple extension of monoid ...
submrcl 18729 Reverse closure for submon...
issubm 18730 Expand definition of a sub...
issubm2 18731 Submonoids are subsets tha...
issubmndb 18732 The submonoid predicate. ...
issubmd 18733 Deduction for proving a su...
mndissubm 18734 If the base set of a monoi...
resmndismnd 18735 If the base set of a monoi...
submss 18736 Submonoids are subsets of ...
submid 18737 Every monoid is trivially ...
subm0cl 18738 Submonoids contain zero. ...
submcl 18739 Submonoids are closed unde...
submmnd 18740 Submonoids are themselves ...
submbas 18741 The base set of a submonoi...
subm0 18742 Submonoids have the same i...
subsubm 18743 A submonoid of a submonoid...
0subm 18744 The zero submonoid of an a...
insubm 18745 The intersection of two su...
0mhm 18746 The constant zero linear f...
resmhm 18747 Restriction of a monoid ho...
resmhm2 18748 One direction of ~ resmhm2...
resmhm2b 18749 Restriction of the codomai...
mhmco 18750 The composition of monoid ...
mhmimalem 18751 Lemma for ~ mhmima and sim...
mhmima 18752 The homomorphic image of a...
mhmeql 18753 The equalizer of two monoi...
submacs 18754 Submonoids are an algebrai...
mndind 18755 Induction in a monoid. In...
prdspjmhm 18756 A projection from a produc...
pwspjmhm 18757 A projection from a struct...
pwsdiagmhm 18758 Diagonal monoid homomorphi...
pwsco1mhm 18759 Right composition with a f...
pwsco2mhm 18760 Left composition with a mo...
gsumvallem2 18761 Lemma for properties of th...
gsumsubm 18762 Evaluate a group sum in a ...
gsumz 18763 Value of a group sum over ...
gsumwsubmcl 18764 Closure of the composite i...
gsumws1 18765 A singleton composite reco...
gsumwcl 18766 Closure of the composite o...
gsumsgrpccat 18767 Homomorphic property of no...
gsumccat 18768 Homomorphic property of co...
gsumws2 18769 Valuation of a pair in a m...
gsumccatsn 18770 Homomorphic property of co...
gsumspl 18771 The primary purpose of the...
gsumwmhm 18772 Behavior of homomorphisms ...
gsumwspan 18773 The submonoid generated by...
frmdval 18778 Value of the free monoid c...
frmdbas 18779 The base set of a free mon...
frmdelbas 18780 An element of the base set...
frmdplusg 18781 The monoid operation of a ...
frmdadd 18782 Value of the monoid operat...
vrmdfval 18783 The canonical injection fr...
vrmdval 18784 The value of the generatin...
vrmdf 18785 The mapping from the index...
frmdmnd 18786 A free monoid is a monoid....
frmd0 18787 The identity of the free m...
frmdsssubm 18788 The set of words taking va...
frmdgsum 18789 Any word in a free monoid ...
frmdss2 18790 A subset of generators is ...
frmdup1 18791 Any assignment of the gene...
frmdup2 18792 The evaluation map has the...
frmdup3lem 18793 Lemma for ~ frmdup3 . (Co...
frmdup3 18794 Universal property of the ...
efmnd 18797 The monoid of endofunction...
efmndbas 18798 The base set of the monoid...
efmndbasabf 18799 The base set of the monoid...
elefmndbas 18800 Two ways of saying a funct...
elefmndbas2 18801 Two ways of saying a funct...
efmndbasf 18802 Elements in the monoid of ...
efmndhash 18803 The monoid of endofunction...
efmndbasfi 18804 The monoid of endofunction...
efmndfv 18805 The function value of an e...
efmndtset 18806 The topology of the monoid...
efmndplusg 18807 The group operation of a m...
efmndov 18808 The value of the group ope...
efmndcl 18809 The group operation of the...
efmndtopn 18810 The topology of the monoid...
symggrplem 18811 Lemma for ~ symggrp and ~ ...
efmndmgm 18812 The monoid of endofunction...
efmndsgrp 18813 The monoid of endofunction...
ielefmnd 18814 The identity function rest...
efmndid 18815 The identity function rest...
efmndmnd 18816 The monoid of endofunction...
efmnd0nmnd 18817 Even the monoid of endofun...
efmndbas0 18818 The base set of the monoid...
efmnd1hash 18819 The monoid of endofunction...
efmnd1bas 18820 The monoid of endofunction...
efmnd2hash 18821 The monoid of endofunction...
submefmnd 18822 If the base set of a monoi...
sursubmefmnd 18823 The set of surjective endo...
injsubmefmnd 18824 The set of injective endof...
idressubmefmnd 18825 The singleton containing o...
idresefmnd 18826 The structure with the sin...
smndex1ibas 18827 The modulo function ` I ` ...
smndex1iidm 18828 The modulo function ` I ` ...
smndex1gbas 18829 The constant functions ` (...
smndex1gid 18830 The composition of a const...
smndex1igid 18831 The composition of the mod...
smndex1basss 18832 The modulo function ` I ` ...
smndex1bas 18833 The base set of the monoid...
smndex1mgm 18834 The monoid of endofunction...
smndex1sgrp 18835 The monoid of endofunction...
smndex1mndlem 18836 Lemma for ~ smndex1mnd and...
smndex1mnd 18837 The monoid of endofunction...
smndex1id 18838 The modulo function ` I ` ...
smndex1n0mnd 18839 The identity of the monoid...
nsmndex1 18840 The base set ` B ` of the ...
smndex2dbas 18841 The doubling function ` D ...
smndex2dnrinv 18842 The doubling function ` D ...
smndex2hbas 18843 The halving functions ` H ...
smndex2dlinvh 18844 The halving functions ` H ...
mgm2nsgrplem1 18845 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18846 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18847 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18848 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18849 A small magma (with two el...
sgrp2nmndlem1 18850 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18851 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18852 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18853 A small semigroup (with tw...
sgrp2rid2ex 18854 A small semigroup (with tw...
sgrp2nmndlem4 18855 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18856 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18857 A small semigroup (with tw...
mgmnsgrpex 18858 There is a magma which is ...
sgrpnmndex 18859 There is a semigroup which...
sgrpssmgm 18860 The class of all semigroup...
mndsssgrp 18861 The class of all monoids i...
pwmndgplus 18862 The operation of the monoi...
pwmndid 18863 The identity of the monoid...
pwmnd 18864 The power set of a class `...
isgrp 18871 The predicate "is a group"...
grpmnd 18872 A group is a monoid. (Con...
grpcl 18873 Closure of the operation o...
grpass 18874 A group operation is assoc...
grpinvex 18875 Every member of a group ha...
grpideu 18876 The two-sided identity ele...
grpassd 18877 A group operation is assoc...
grpmndd 18878 A group is a monoid. (Con...
grpcld 18879 Closure of the operation o...
grpplusf 18880 The group addition operati...
grpplusfo 18881 The group addition operati...
resgrpplusfrn 18882 The underlying set of a gr...
grppropd 18883 If two structures have the...
grpprop 18884 If two structures have the...
grppropstr 18885 Generalize a specific 2-el...
grpss 18886 Show that a structure exte...
isgrpd2e 18887 Deduce a group from its pr...
isgrpd2 18888 Deduce a group from its pr...
isgrpde 18889 Deduce a group from its pr...
isgrpd 18890 Deduce a group from its pr...
isgrpi 18891 Properties that determine ...
grpsgrp 18892 A group is a semigroup. (...
grpmgmd 18893 A group is a magma, deduct...
dfgrp2 18894 Alternate definition of a ...
dfgrp2e 18895 Alternate definition of a ...
isgrpix 18896 Properties that determine ...
grpidcl 18897 The identity element of a ...
grpbn0 18898 The base set of a group is...
grplid 18899 The identity element of a ...
grprid 18900 The identity element of a ...
grplidd 18901 The identity element of a ...
grpridd 18902 The identity element of a ...
grpn0 18903 A group is not empty. (Co...
hashfingrpnn 18904 A finite group has positiv...
grprcan 18905 Right cancellation law for...
grpinveu 18906 The left inverse element o...
grpid 18907 Two ways of saying that an...
isgrpid2 18908 Properties showing that an...
grpidd2 18909 Deduce the identity elemen...
grpinvfval 18910 The inverse function of a ...
grpinvfvalALT 18911 Shorter proof of ~ grpinvf...
grpinvval 18912 The inverse of a group ele...
grpinvfn 18913 Functionality of the group...
grpinvfvi 18914 The group inverse function...
grpsubfval 18915 Group subtraction (divisio...
grpsubfvalALT 18916 Shorter proof of ~ grpsubf...
grpsubval 18917 Group subtraction (divisio...
grpinvf 18918 The group inversion operat...
grpinvcl 18919 A group element's inverse ...
grpinvcld 18920 A group element's inverse ...
grplinv 18921 The left inverse of a grou...
grprinv 18922 The right inverse of a gro...
grpinvid1 18923 The inverse of a group ele...
grpinvid2 18924 The inverse of a group ele...
isgrpinv 18925 Properties showing that a ...
grplinvd 18926 The left inverse of a grou...
grprinvd 18927 The right inverse of a gro...
grplrinv 18928 In a group, every member h...
grpidinv2 18929 A group's properties using...
grpidinv 18930 A group has a left and rig...
grpinvid 18931 The inverse of the identit...
grplcan 18932 Left cancellation law for ...
grpasscan1 18933 An associative cancellatio...
grpasscan2 18934 An associative cancellatio...
grpidrcan 18935 If right adding an element...
grpidlcan 18936 If left adding an element ...
grpinvinv 18937 Double inverse law for gro...
grpinvcnv 18938 The group inverse is its o...
grpinv11 18939 The group inverse is one-t...
grpinv11OLD 18940 Obsolete version of ~ grpi...
grpinvf1o 18941 The group inverse is a one...
grpinvnz 18942 The inverse of a nonzero g...
grpinvnzcl 18943 The inverse of a nonzero g...
grpsubinv 18944 Subtraction of an inverse....
grplmulf1o 18945 Left multiplication by a g...
grpraddf1o 18946 Right addition by a group ...
grpinvpropd 18947 If two structures have the...
grpidssd 18948 If the base set of a group...
grpinvssd 18949 If the base set of a group...
grpinvadd 18950 The inverse of the group o...
grpsubf 18951 Functionality of group sub...
grpsubcl 18952 Closure of group subtracti...
grpsubrcan 18953 Right cancellation law for...
grpinvsub 18954 Inverse of a group subtrac...
grpinvval2 18955 A ~ df-neg -like equation ...
grpsubid 18956 Subtraction of a group ele...
grpsubid1 18957 Subtraction of the identit...
grpsubeq0 18958 If the difference between ...
grpsubadd0sub 18959 Subtraction expressed as a...
grpsubadd 18960 Relationship between group...
grpsubsub 18961 Double group subtraction. ...
grpaddsubass 18962 Associative-type law for g...
grppncan 18963 Cancellation law for subtr...
grpnpcan 18964 Cancellation law for subtr...
grpsubsub4 18965 Double group subtraction (...
grppnpcan2 18966 Cancellation law for mixed...
grpnpncan 18967 Cancellation law for group...
grpnpncan0 18968 Cancellation law for group...
grpnnncan2 18969 Cancellation law for group...
dfgrp3lem 18970 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18971 Alternate definition of a ...
dfgrp3e 18972 Alternate definition of a ...
grplactfval 18973 The left group action of e...
grplactval 18974 The value of the left grou...
grplactcnv 18975 The left group action of e...
grplactf1o 18976 The left group action of e...
grpsubpropd 18977 Weak property deduction fo...
grpsubpropd2 18978 Strong property deduction ...
grp1 18979 The (smallest) structure r...
grp1inv 18980 The inverse function of th...
prdsinvlem 18981 Characterization of invers...
prdsgrpd 18982 The product of a family of...
prdsinvgd 18983 Negation in a product of g...
pwsgrp 18984 A structure power of a gro...
pwsinvg 18985 Negation in a group power....
pwssub 18986 Subtraction in a group pow...
imasgrp2 18987 The image structure of a g...
imasgrp 18988 The image structure of a g...
imasgrpf1 18989 The image of a group under...
qusgrp2 18990 Prove that a quotient stru...
xpsgrp 18991 The binary product of grou...
xpsinv 18992 Value of the negation oper...
xpsgrpsub 18993 Value of the subtraction o...
mhmlem 18994 Lemma for ~ mhmmnd and ~ g...
mhmid 18995 A surjective monoid morphi...
mhmmnd 18996 The image of a monoid ` G ...
mhmfmhm 18997 The function fulfilling th...
ghmgrp 18998 The image of a group ` G `...
mulgfval 19001 Group multiple (exponentia...
mulgfvalALT 19002 Shorter proof of ~ mulgfva...
mulgval 19003 Value of the group multipl...
mulgfn 19004 Functionality of the group...
mulgfvi 19005 The group multiple operati...
mulg0 19006 Group multiple (exponentia...
mulgnn 19007 Group multiple (exponentia...
ressmulgnn 19008 Values for the group multi...
ressmulgnn0 19009 Values for the group multi...
ressmulgnnd 19010 Values for the group multi...
mulgnngsum 19011 Group multiple (exponentia...
mulgnn0gsum 19012 Group multiple (exponentia...
mulg1 19013 Group multiple (exponentia...
mulgnnp1 19014 Group multiple (exponentia...
mulg2 19015 Group multiple (exponentia...
mulgnegnn 19016 Group multiple (exponentia...
mulgnn0p1 19017 Group multiple (exponentia...
mulgnnsubcl 19018 Closure of the group multi...
mulgnn0subcl 19019 Closure of the group multi...
mulgsubcl 19020 Closure of the group multi...
mulgnncl 19021 Closure of the group multi...
mulgnn0cl 19022 Closure of the group multi...
mulgcl 19023 Closure of the group multi...
mulgneg 19024 Group multiple (exponentia...
mulgnegneg 19025 The inverse of a negative ...
mulgm1 19026 Group multiple (exponentia...
mulgnn0cld 19027 Closure of the group multi...
mulgcld 19028 Deduction associated with ...
mulgaddcomlem 19029 Lemma for ~ mulgaddcom . ...
mulgaddcom 19030 The group multiple operato...
mulginvcom 19031 The group multiple operato...
mulginvinv 19032 The group multiple operato...
mulgnn0z 19033 A group multiple of the id...
mulgz 19034 A group multiple of the id...
mulgnndir 19035 Sum of group multiples, fo...
mulgnn0dir 19036 Sum of group multiples, ge...
mulgdirlem 19037 Lemma for ~ mulgdir . (Co...
mulgdir 19038 Sum of group multiples, ge...
mulgp1 19039 Group multiple (exponentia...
mulgneg2 19040 Group multiple (exponentia...
mulgnnass 19041 Product of group multiples...
mulgnn0ass 19042 Product of group multiples...
mulgass 19043 Product of group multiples...
mulgassr 19044 Reversed product of group ...
mulgmodid 19045 Casting out multiples of t...
mulgsubdir 19046 Distribution of group mult...
mhmmulg 19047 A homomorphism of monoids ...
mulgpropd 19048 Two structures with the sa...
submmulgcl 19049 Closure of the group multi...
submmulg 19050 A group multiple is the sa...
pwsmulg 19051 Value of a group multiple ...
issubg 19058 The subgroup predicate. (...
subgss 19059 A subgroup is a subset. (...
subgid 19060 A group is a subgroup of i...
subggrp 19061 A subgroup is a group. (C...
subgbas 19062 The base of the restricted...
subgrcl 19063 Reverse closure for the su...
subg0 19064 A subgroup of a group must...
subginv 19065 The inverse of an element ...
subg0cl 19066 The group identity is an e...
subginvcl 19067 The inverse of an element ...
subgcl 19068 A subgroup is closed under...
subgsubcl 19069 A subgroup is closed under...
subgsub 19070 The subtraction of element...
subgmulgcl 19071 Closure of the group multi...
subgmulg 19072 A group multiple is the sa...
issubg2 19073 Characterize the subgroups...
issubgrpd2 19074 Prove a subgroup by closur...
issubgrpd 19075 Prove a subgroup by closur...
issubg3 19076 A subgroup is a symmetric ...
issubg4 19077 A subgroup is a nonempty s...
grpissubg 19078 If the base set of a group...
resgrpisgrp 19079 If the base set of a group...
subgsubm 19080 A subgroup is a submonoid....
subsubg 19081 A subgroup of a subgroup i...
subgint 19082 The intersection of a none...
0subg 19083 The zero subgroup of an ar...
0subgOLD 19084 Obsolete version of ~ 0sub...
trivsubgd 19085 The only subgroup of a tri...
trivsubgsnd 19086 The only subgroup of a tri...
isnsg 19087 Property of being a normal...
isnsg2 19088 Weaken the condition of ~ ...
nsgbi 19089 Defining property of a nor...
nsgsubg 19090 A normal subgroup is a sub...
nsgconj 19091 The conjugation of an elem...
isnsg3 19092 A subgroup is normal iff t...
subgacs 19093 Subgroups are an algebraic...
nsgacs 19094 Normal subgroups form an a...
elnmz 19095 Elementhood in the normali...
nmzbi 19096 Defining property of the n...
nmzsubg 19097 The normalizer N_G(S) of a...
ssnmz 19098 A subgroup is a subset of ...
isnsg4 19099 A subgroup is normal iff i...
nmznsg 19100 Any subgroup is a normal s...
0nsg 19101 The zero subgroup is norma...
nsgid 19102 The whole group is a norma...
0idnsgd 19103 The whole group and the ze...
trivnsgd 19104 The only normal subgroup o...
triv1nsgd 19105 A trivial group has exactl...
1nsgtrivd 19106 A group with exactly one n...
releqg 19107 The left coset equivalence...
eqgfval 19108 Value of the subgroup left...
eqgval 19109 Value of the subgroup left...
eqger 19110 The subgroup coset equival...
eqglact 19111 A left coset can be expres...
eqgid 19112 The left coset containing ...
eqgen 19113 Each coset is equipotent t...
eqgcpbl 19114 The subgroup coset equival...
eqg0el 19115 Equivalence class of a quo...
quselbas 19116 Membership in the base set...
quseccl0 19117 Closure of the quotient ma...
qusgrp 19118 If ` Y ` is a normal subgr...
quseccl 19119 Closure of the quotient ma...
qusadd 19120 Value of the group operati...
qus0 19121 Value of the group identit...
qusinv 19122 Value of the group inverse...
qussub 19123 Value of the group subtrac...
ecqusaddd 19124 Addition of equivalence cl...
ecqusaddcl 19125 Closure of the addition in...
lagsubg2 19126 Lagrange's theorem for fin...
lagsubg 19127 Lagrange's theorem for Gro...
eqg0subg 19128 The coset equivalence rela...
eqg0subgecsn 19129 The equivalence classes mo...
qus0subgbas 19130 The base set of a quotient...
qus0subgadd 19131 The addition in a quotient...
cycsubmel 19132 Characterization of an ele...
cycsubmcl 19133 The set of nonnegative int...
cycsubm 19134 The set of nonnegative int...
cyccom 19135 Condition for an operation...
cycsubmcom 19136 The operation of a monoid ...
cycsubggend 19137 The cyclic subgroup genera...
cycsubgcl 19138 The set of integer powers ...
cycsubgss 19139 The cyclic subgroup genera...
cycsubg 19140 The cyclic group generated...
cycsubgcld 19141 The cyclic subgroup genera...
cycsubg2 19142 The subgroup generated by ...
cycsubg2cl 19143 Any multiple of an element...
reldmghm 19146 Lemma for group homomorphi...
isghm 19147 Property of being a homomo...
isghmOLD 19148 Obsolete version of ~ isgh...
isghm3 19149 Property of a group homomo...
ghmgrp1 19150 A group homomorphism is on...
ghmgrp2 19151 A group homomorphism is on...
ghmf 19152 A group homomorphism is a ...
ghmlin 19153 A homomorphism of groups i...
ghmid 19154 A homomorphism of groups p...
ghminv 19155 A homomorphism of groups p...
ghmsub 19156 Linearity of subtraction t...
isghmd 19157 Deduction for a group homo...
ghmmhm 19158 A group homomorphism is a ...
ghmmhmb 19159 Group homomorphisms and mo...
ghmmulg 19160 A group homomorphism prese...
ghmrn 19161 The range of a homomorphis...
0ghm 19162 The constant zero linear f...
idghm 19163 The identity homomorphism ...
resghm 19164 Restriction of a homomorph...
resghm2 19165 One direction of ~ resghm2...
resghm2b 19166 Restriction of the codomai...
ghmghmrn 19167 A group homomorphism from ...
ghmco 19168 The composition of group h...
ghmima 19169 The image of a subgroup un...
ghmpreima 19170 The inverse image of a sub...
ghmeql 19171 The equalizer of two group...
ghmnsgima 19172 The image of a normal subg...
ghmnsgpreima 19173 The inverse image of a nor...
ghmker 19174 The kernel of a homomorphi...
ghmeqker 19175 Two source points map to t...
pwsdiagghm 19176 Diagonal homomorphism into...
f1ghm0to0 19177 If a group homomorphism ` ...
ghmf1 19178 Two ways of saying a group...
kerf1ghm 19179 A group homomorphism ` F `...
ghmf1o 19180 A bijective group homomorp...
conjghm 19181 Conjugation is an automorp...
conjsubg 19182 A conjugated subgroup is a...
conjsubgen 19183 A conjugated subgroup is e...
conjnmz 19184 A subgroup is unchanged un...
conjnmzb 19185 Alternative condition for ...
conjnsg 19186 A normal subgroup is uncha...
qusghm 19187 If ` Y ` is a normal subgr...
ghmpropd 19188 Group homomorphism depends...
gimfn 19193 The group isomorphism func...
isgim 19194 An isomorphism of groups i...
gimf1o 19195 An isomorphism of groups i...
gimghm 19196 An isomorphism of groups i...
isgim2 19197 A group isomorphism is a h...
subggim 19198 Behavior of subgroups unde...
gimcnv 19199 The converse of a group is...
gimco 19200 The composition of group i...
gim0to0 19201 A group isomorphism maps t...
brgic 19202 The relation "is isomorphi...
brgici 19203 Prove isomorphic by an exp...
gicref 19204 Isomorphism is reflexive. ...
giclcl 19205 Isomorphism implies the le...
gicrcl 19206 Isomorphism implies the ri...
gicsym 19207 Isomorphism is symmetric. ...
gictr 19208 Isomorphism is transitive....
gicer 19209 Isomorphism is an equivale...
gicen 19210 Isomorphic groups have equ...
gicsubgen 19211 A less trivial example of ...
ghmqusnsglem1 19212 Lemma for ~ ghmqusnsg . (...
ghmqusnsglem2 19213 Lemma for ~ ghmqusnsg . (...
ghmqusnsg 19214 The mapping ` H ` induced ...
ghmquskerlem1 19215 Lemma for ~ ghmqusker . (...
ghmquskerco 19216 In the case of theorem ~ g...
ghmquskerlem2 19217 Lemma for ~ ghmqusker . (...
ghmquskerlem3 19218 The mapping ` H ` induced ...
ghmqusker 19219 A surjective group homomor...
gicqusker 19220 The image ` H ` of a group...
isga 19223 The predicate "is a (left)...
gagrp 19224 The left argument of a gro...
gaset 19225 The right argument of a gr...
gagrpid 19226 The identity of the group ...
gaf 19227 The mapping of the group a...
gafo 19228 A group action is onto its...
gaass 19229 An "associative" property ...
ga0 19230 The action of a group on t...
gaid 19231 The trivial action of a gr...
subgga 19232 A subgroup acts on its par...
gass 19233 A subset of a group action...
gasubg 19234 The restriction of a group...
gaid2 19235 A group operation is a lef...
galcan 19236 The action of a particular...
gacan 19237 Group inverses cancel in a...
gapm 19238 The action of a particular...
gaorb 19239 The orbit equivalence rela...
gaorber 19240 The orbit equivalence rela...
gastacl 19241 The stabilizer subgroup in...
gastacos 19242 Write the coset relation f...
orbstafun 19243 Existence and uniqueness f...
orbstaval 19244 Value of the function at a...
orbsta 19245 The Orbit-Stabilizer theor...
orbsta2 19246 Relation between the size ...
cntrval 19251 Substitute definition of t...
cntzfval 19252 First level substitution f...
cntzval 19253 Definition substitution fo...
elcntz 19254 Elementhood in the central...
cntzel 19255 Membership in a centralize...
cntzsnval 19256 Special substitution for t...
elcntzsn 19257 Value of the centralizer o...
sscntz 19258 A centralizer expression f...
cntzrcl 19259 Reverse closure for elemen...
cntzssv 19260 The centralizer is uncondi...
cntzi 19261 Membership in a centralize...
elcntr 19262 Elementhood in the center ...
cntrss 19263 The center is a subset of ...
cntri 19264 Defining property of the c...
resscntz 19265 Centralizer in a substruct...
cntzsgrpcl 19266 Centralizers are closed un...
cntz2ss 19267 Centralizers reverse the s...
cntzrec 19268 Reciprocity relationship f...
cntziinsn 19269 Express any centralizer as...
cntzsubm 19270 Centralizers in a monoid a...
cntzsubg 19271 Centralizers in a group ar...
cntzidss 19272 If the elements of ` S ` c...
cntzmhm 19273 Centralizers in a monoid a...
cntzmhm2 19274 Centralizers in a monoid a...
cntrsubgnsg 19275 A central subgroup is norm...
cntrnsg 19276 The center of a group is a...
oppgval 19279 Value of the opposite grou...
oppgplusfval 19280 Value of the addition oper...
oppgplus 19281 Value of the addition oper...
setsplusg 19282 The other components of an...
oppgbas 19283 Base set of an opposite gr...
oppgtset 19284 Topology of an opposite gr...
oppgtopn 19285 Topology of an opposite gr...
oppgmnd 19286 The opposite of a monoid i...
oppgmndb 19287 Bidirectional form of ~ op...
oppgid 19288 Zero in a monoid is a symm...
oppggrp 19289 The opposite of a group is...
oppggrpb 19290 Bidirectional form of ~ op...
oppginv 19291 Inverses in a group are a ...
invoppggim 19292 The inverse is an antiauto...
oppggic 19293 Every group is (naturally)...
oppgsubm 19294 Being a submonoid is a sym...
oppgsubg 19295 Being a subgroup is a symm...
oppgcntz 19296 A centralizer in a group i...
oppgcntr 19297 The center of a group is t...
gsumwrev 19298 A sum in an opposite monoi...
symgval 19301 The value of the symmetric...
symgbas 19302 The base set of the symmet...
elsymgbas2 19303 Two ways of saying a funct...
elsymgbas 19304 Two ways of saying a funct...
symgbasf1o 19305 Elements in the symmetric ...
symgbasf 19306 A permutation (element of ...
symgbasmap 19307 A permutation (element of ...
symghash 19308 The symmetric group on ` n...
symgbasfi 19309 The symmetric group on a f...
symgfv 19310 The function value of a pe...
symgfvne 19311 The function values of a p...
symgressbas 19312 The symmetric group on ` A...
symgplusg 19313 The group operation of a s...
symgov 19314 The value of the group ope...
symgcl 19315 The group operation of the...
idresperm 19316 The identity function rest...
symgmov1 19317 For a permutation of a set...
symgmov2 19318 For a permutation of a set...
symgbas0 19319 The base set of the symmet...
symg1hash 19320 The symmetric group on a s...
symg1bas 19321 The symmetric group on a s...
symg2hash 19322 The symmetric group on a (...
symg2bas 19323 The symmetric group on a p...
0symgefmndeq 19324 The symmetric group on the...
snsymgefmndeq 19325 The symmetric group on a s...
symgpssefmnd 19326 For a set ` A ` with more ...
symgvalstruct 19327 The value of the symmetric...
symgsubmefmnd 19328 The symmetric group on a s...
symgtset 19329 The topology of the symmet...
symggrp 19330 The symmetric group on a s...
symgid 19331 The group identity element...
symginv 19332 The group inverse in the s...
symgsubmefmndALT 19333 The symmetric group on a s...
galactghm 19334 The currying of a group ac...
lactghmga 19335 The converse of ~ galactgh...
symgtopn 19336 The topology of the symmet...
symgga 19337 The symmetric group induce...
pgrpsubgsymgbi 19338 Every permutation group is...
pgrpsubgsymg 19339 Every permutation group is...
idressubgsymg 19340 The singleton containing o...
idrespermg 19341 The structure with the sin...
cayleylem1 19342 Lemma for ~ cayley . (Con...
cayleylem2 19343 Lemma for ~ cayley . (Con...
cayley 19344 Cayley's Theorem (construc...
cayleyth 19345 Cayley's Theorem (existenc...
symgfix2 19346 If a permutation does not ...
symgextf 19347 The extension of a permuta...
symgextfv 19348 The function value of the ...
symgextfve 19349 The function value of the ...
symgextf1lem 19350 Lemma for ~ symgextf1 . (...
symgextf1 19351 The extension of a permuta...
symgextfo 19352 The extension of a permuta...
symgextf1o 19353 The extension of a permuta...
symgextsymg 19354 The extension of a permuta...
symgextres 19355 The restriction of the ext...
gsumccatsymgsn 19356 Homomorphic property of co...
gsmsymgrfixlem1 19357 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 19358 The composition of permuta...
fvcosymgeq 19359 The values of two composit...
gsmsymgreqlem1 19360 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 19361 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 19362 Two combination of permuta...
symgfixelq 19363 A permutation of a set fix...
symgfixels 19364 The restriction of a permu...
symgfixelsi 19365 The restriction of a permu...
symgfixf 19366 The mapping of a permutati...
symgfixf1 19367 The mapping of a permutati...
symgfixfolem1 19368 Lemma 1 for ~ symgfixfo . ...
symgfixfo 19369 The mapping of a permutati...
symgfixf1o 19370 The mapping of a permutati...
f1omvdmvd 19373 A permutation of any class...
f1omvdcnv 19374 A permutation and its inve...
mvdco 19375 Composing two permutations...
f1omvdconj 19376 Conjugation of a permutati...
f1otrspeq 19377 A transposition is charact...
f1omvdco2 19378 If exactly one of two perm...
f1omvdco3 19379 If a point is moved by exa...
pmtrfval 19380 The function generating tr...
pmtrval 19381 A generated transposition,...
pmtrfv 19382 General value of mapping a...
pmtrprfv 19383 In a transposition of two ...
pmtrprfv3 19384 In a transposition of two ...
pmtrf 19385 Functionality of a transpo...
pmtrmvd 19386 A transposition moves prec...
pmtrrn 19387 Transposing two points giv...
pmtrfrn 19388 A transposition (as a kind...
pmtrffv 19389 Mapping of a point under a...
pmtrrn2 19390 For any transposition ther...
pmtrfinv 19391 A transposition function i...
pmtrfmvdn0 19392 A transposition moves at l...
pmtrff1o 19393 A transposition function i...
pmtrfcnv 19394 A transposition function i...
pmtrfb 19395 An intrinsic characterizat...
pmtrfconj 19396 Any conjugate of a transpo...
symgsssg 19397 The symmetric group has su...
symgfisg 19398 The symmetric group has a ...
symgtrf 19399 Transpositions are element...
symggen 19400 The span of the transposit...
symggen2 19401 A finite permutation group...
symgtrinv 19402 To invert a permutation re...
pmtr3ncomlem1 19403 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 19404 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 19405 Transpositions over sets w...
pmtrdifellem1 19406 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19407 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19408 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19409 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19410 A transposition of element...
pmtrdifwrdellem1 19411 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19412 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19413 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19414 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19415 A sequence of transpositio...
pmtrdifwrdel2 19416 A sequence of transpositio...
pmtrprfval 19417 The transpositions on a pa...
pmtrprfvalrn 19418 The range of the transposi...
psgnunilem1 19423 Lemma for ~ psgnuni . Giv...
psgnunilem5 19424 Lemma for ~ psgnuni . It ...
psgnunilem2 19425 Lemma for ~ psgnuni . Ind...
psgnunilem3 19426 Lemma for ~ psgnuni . Any...
psgnunilem4 19427 Lemma for ~ psgnuni . An ...
m1expaddsub 19428 Addition and subtraction o...
psgnuni 19429 If the same permutation ca...
psgnfval 19430 Function definition of the...
psgnfn 19431 Functionality and domain o...
psgndmsubg 19432 The finitary permutations ...
psgneldm 19433 Property of being a finita...
psgneldm2 19434 The finitary permutations ...
psgneldm2i 19435 A sequence of transpositio...
psgneu 19436 A finitary permutation has...
psgnval 19437 Value of the permutation s...
psgnvali 19438 A finitary permutation has...
psgnvalii 19439 Any representation of a pe...
psgnpmtr 19440 All transpositions are odd...
psgn0fv0 19441 The permutation sign funct...
sygbasnfpfi 19442 The class of non-fixed poi...
psgnfvalfi 19443 Function definition of the...
psgnvalfi 19444 Value of the permutation s...
psgnran 19445 The range of the permutati...
gsmtrcl 19446 The group sum of transposi...
psgnfitr 19447 A permutation of a finite ...
psgnfieu 19448 A permutation of a finite ...
pmtrsn 19449 The value of the transposi...
psgnsn 19450 The permutation sign funct...
psgnprfval 19451 The permutation sign funct...
psgnprfval1 19452 The permutation sign of th...
psgnprfval2 19453 The permutation sign of th...
odfval 19462 Value of the order functio...
odfvalALT 19463 Shorter proof of ~ odfval ...
odval 19464 Second substitution for th...
odlem1 19465 The group element order is...
odcl 19466 The order of a group eleme...
odf 19467 Functionality of the group...
odid 19468 Any element to the power o...
odlem2 19469 Any positive annihilator o...
odmodnn0 19470 Reduce the argument of a g...
mndodconglem 19471 Lemma for ~ mndodcong . (...
mndodcong 19472 If two multipliers are con...
mndodcongi 19473 If two multipliers are con...
oddvdsnn0 19474 The only multiples of ` A ...
odnncl 19475 If a nonzero multiple of a...
odmod 19476 Reduce the argument of a g...
oddvds 19477 The only multiples of ` A ...
oddvdsi 19478 Any group element is annih...
odcong 19479 If two multipliers are con...
odeq 19480 The ~ oddvds property uniq...
odval2 19481 A non-conditional definiti...
odcld 19482 The order of a group eleme...
odm1inv 19483 The (order-1)th multiple o...
odmulgid 19484 A relationship between the...
odmulg2 19485 The order of a multiple di...
odmulg 19486 Relationship between the o...
odmulgeq 19487 A multiple of a point of f...
odbezout 19488 If ` N ` is coprime to the...
od1 19489 The order of the group ide...
odeq1 19490 The group identity is the ...
odinv 19491 The order of the inverse o...
odf1 19492 The multiples of an elemen...
odinf 19493 The multiples of an elemen...
dfod2 19494 An alternative definition ...
odcl2 19495 The order of an element of...
oddvds2 19496 The order of an element of...
finodsubmsubg 19497 A submonoid whose elements...
0subgALT 19498 A shorter proof of ~ 0subg...
submod 19499 The order of an element is...
subgod 19500 The order of an element is...
odsubdvds 19501 The order of an element of...
odf1o1 19502 An element with zero order...
odf1o2 19503 An element with nonzero or...
odhash 19504 An element of zero order g...
odhash2 19505 If an element has nonzero ...
odhash3 19506 An element which generates...
odngen 19507 A cyclic subgroup of size ...
gexval 19508 Value of the exponent of a...
gexlem1 19509 The group element order is...
gexcl 19510 The exponent of a group is...
gexid 19511 Any element to the power o...
gexlem2 19512 Any positive annihilator o...
gexdvdsi 19513 Any group element is annih...
gexdvds 19514 The only ` N ` that annihi...
gexdvds2 19515 An integer divides the gro...
gexod 19516 Any group element is annih...
gexcl3 19517 If the order of every grou...
gexnnod 19518 Every group element has fi...
gexcl2 19519 The exponent of a finite g...
gexdvds3 19520 The exponent of a finite g...
gex1 19521 A group or monoid has expo...
ispgp 19522 A group is a ` P ` -group ...
pgpprm 19523 Reverse closure for the fi...
pgpgrp 19524 Reverse closure for the se...
pgpfi1 19525 A finite group with order ...
pgp0 19526 The identity subgroup is a...
subgpgp 19527 A subgroup of a p-group is...
sylow1lem1 19528 Lemma for ~ sylow1 . The ...
sylow1lem2 19529 Lemma for ~ sylow1 . The ...
sylow1lem3 19530 Lemma for ~ sylow1 . One ...
sylow1lem4 19531 Lemma for ~ sylow1 . The ...
sylow1lem5 19532 Lemma for ~ sylow1 . Usin...
sylow1 19533 Sylow's first theorem. If...
odcau 19534 Cauchy's theorem for the o...
pgpfi 19535 The converse to ~ pgpfi1 ....
pgpfi2 19536 Alternate version of ~ pgp...
pgphash 19537 The order of a p-group. (...
isslw 19538 The property of being a Sy...
slwprm 19539 Reverse closure for the fi...
slwsubg 19540 A Sylow ` P ` -subgroup is...
slwispgp 19541 Defining property of a Syl...
slwpss 19542 A proper superset of a Syl...
slwpgp 19543 A Sylow ` P ` -subgroup is...
pgpssslw 19544 Every ` P ` -subgroup is c...
slwn0 19545 Every finite group contain...
subgslw 19546 A Sylow subgroup that is c...
sylow2alem1 19547 Lemma for ~ sylow2a . An ...
sylow2alem2 19548 Lemma for ~ sylow2a . All...
sylow2a 19549 A named lemma of Sylow's s...
sylow2blem1 19550 Lemma for ~ sylow2b . Eva...
sylow2blem2 19551 Lemma for ~ sylow2b . Lef...
sylow2blem3 19552 Sylow's second theorem. P...
sylow2b 19553 Sylow's second theorem. A...
slwhash 19554 A sylow subgroup has cardi...
fislw 19555 The sylow subgroups of a f...
sylow2 19556 Sylow's second theorem. S...
sylow3lem1 19557 Lemma for ~ sylow3 , first...
sylow3lem2 19558 Lemma for ~ sylow3 , first...
sylow3lem3 19559 Lemma for ~ sylow3 , first...
sylow3lem4 19560 Lemma for ~ sylow3 , first...
sylow3lem5 19561 Lemma for ~ sylow3 , secon...
sylow3lem6 19562 Lemma for ~ sylow3 , secon...
sylow3 19563 Sylow's third theorem. Th...
lsmfval 19568 The subgroup sum function ...
lsmvalx 19569 Subspace sum value (for a ...
lsmelvalx 19570 Subspace sum membership (f...
lsmelvalix 19571 Subspace sum membership (f...
oppglsm 19572 The subspace sum operation...
lsmssv 19573 Subgroup sum is a subset o...
lsmless1x 19574 Subset implies subgroup su...
lsmless2x 19575 Subset implies subgroup su...
lsmub1x 19576 Subgroup sum is an upper b...
lsmub2x 19577 Subgroup sum is an upper b...
lsmval 19578 Subgroup sum value (for a ...
lsmelval 19579 Subgroup sum membership (f...
lsmelvali 19580 Subgroup sum membership (f...
lsmelvalm 19581 Subgroup sum membership an...
lsmelvalmi 19582 Membership of vector subtr...
lsmsubm 19583 The sum of two commuting s...
lsmsubg 19584 The sum of two commuting s...
lsmcom2 19585 Subgroup sum commutes. (C...
smndlsmidm 19586 The direct product is idem...
lsmub1 19587 Subgroup sum is an upper b...
lsmub2 19588 Subgroup sum is an upper b...
lsmunss 19589 Union of subgroups is a su...
lsmless1 19590 Subset implies subgroup su...
lsmless2 19591 Subset implies subgroup su...
lsmless12 19592 Subset implies subgroup su...
lsmidm 19593 Subgroup sum is idempotent...
lsmlub 19594 The least upper bound prop...
lsmss1 19595 Subgroup sum with a subset...
lsmss1b 19596 Subgroup sum with a subset...
lsmss2 19597 Subgroup sum with a subset...
lsmss2b 19598 Subgroup sum with a subset...
lsmass 19599 Subgroup sum is associativ...
mndlsmidm 19600 Subgroup sum is idempotent...
lsm01 19601 Subgroup sum with the zero...
lsm02 19602 Subgroup sum with the zero...
subglsm 19603 The subgroup sum evaluated...
lssnle 19604 Equivalent expressions for...
lsmmod 19605 The modular law holds for ...
lsmmod2 19606 Modular law dual for subgr...
lsmpropd 19607 If two structures have the...
cntzrecd 19608 Commute the "subgroups com...
lsmcntz 19609 The "subgroups commute" pr...
lsmcntzr 19610 The "subgroups commute" pr...
lsmdisj 19611 Disjointness from a subgro...
lsmdisj2 19612 Association of the disjoin...
lsmdisj3 19613 Association of the disjoin...
lsmdisjr 19614 Disjointness from a subgro...
lsmdisj2r 19615 Association of the disjoin...
lsmdisj3r 19616 Association of the disjoin...
lsmdisj2a 19617 Association of the disjoin...
lsmdisj2b 19618 Association of the disjoin...
lsmdisj3a 19619 Association of the disjoin...
lsmdisj3b 19620 Association of the disjoin...
subgdisj1 19621 Vectors belonging to disjo...
subgdisj2 19622 Vectors belonging to disjo...
subgdisjb 19623 Vectors belonging to disjo...
pj1fval 19624 The left projection functi...
pj1val 19625 The left projection functi...
pj1eu 19626 Uniqueness of a left proje...
pj1f 19627 The left projection functi...
pj2f 19628 The right projection funct...
pj1id 19629 Any element of a direct su...
pj1eq 19630 Any element of a direct su...
pj1lid 19631 The left projection functi...
pj1rid 19632 The left projection functi...
pj1ghm 19633 The left projection functi...
pj1ghm2 19634 The left projection functi...
lsmhash 19635 The order of the direct pr...
efgmval 19642 Value of the formal invers...
efgmf 19643 The formal inverse operati...
efgmnvl 19644 The inversion function on ...
efgrcl 19645 Lemma for ~ efgval . (Con...
efglem 19646 Lemma for ~ efgval . (Con...
efgval 19647 Value of the free group co...
efger 19648 Value of the free group co...
efgi 19649 Value of the free group co...
efgi0 19650 Value of the free group co...
efgi1 19651 Value of the free group co...
efgtf 19652 Value of the free group co...
efgtval 19653 Value of the extension fun...
efgval2 19654 Value of the free group co...
efgi2 19655 Value of the free group co...
efgtlen 19656 Value of the free group co...
efginvrel2 19657 The inverse of the reverse...
efginvrel1 19658 The inverse of the reverse...
efgsf 19659 Value of the auxiliary fun...
efgsdm 19660 Elementhood in the domain ...
efgsval 19661 Value of the auxiliary fun...
efgsdmi 19662 Property of the last link ...
efgsval2 19663 Value of the auxiliary fun...
efgsrel 19664 The start and end of any e...
efgs1 19665 A singleton of an irreduci...
efgs1b 19666 Every extension sequence e...
efgsp1 19667 If ` F ` is an extension s...
efgsres 19668 An initial segment of an e...
efgsfo 19669 For any word, there is a s...
efgredlema 19670 The reduced word that form...
efgredlemf 19671 Lemma for ~ efgredleme . ...
efgredlemg 19672 Lemma for ~ efgred . (Con...
efgredleme 19673 Lemma for ~ efgred . (Con...
efgredlemd 19674 The reduced word that form...
efgredlemc 19675 The reduced word that form...
efgredlemb 19676 The reduced word that form...
efgredlem 19677 The reduced word that form...
efgred 19678 The reduced word that form...
efgrelexlema 19679 If two words ` A , B ` are...
efgrelexlemb 19680 If two words ` A , B ` are...
efgrelex 19681 If two words ` A , B ` are...
efgredeu 19682 There is a unique reduced ...
efgred2 19683 Two extension sequences ha...
efgcpbllema 19684 Lemma for ~ efgrelex . De...
efgcpbllemb 19685 Lemma for ~ efgrelex . Sh...
efgcpbl 19686 Two extension sequences ha...
efgcpbl2 19687 Two extension sequences ha...
frgpval 19688 Value of the free group co...
frgpcpbl 19689 Compatibility of the group...
frgp0 19690 The free group is a group....
frgpeccl 19691 Closure of the quotient ma...
frgpgrp 19692 The free group is a group....
frgpadd 19693 Addition in the free group...
frgpinv 19694 The inverse of an element ...
frgpmhm 19695 The "natural map" from wor...
vrgpfval 19696 The canonical injection fr...
vrgpval 19697 The value of the generatin...
vrgpf 19698 The mapping from the index...
vrgpinv 19699 The inverse of a generatin...
frgpuptf 19700 Any assignment of the gene...
frgpuptinv 19701 Any assignment of the gene...
frgpuplem 19702 Any assignment of the gene...
frgpupf 19703 Any assignment of the gene...
frgpupval 19704 Any assignment of the gene...
frgpup1 19705 Any assignment of the gene...
frgpup2 19706 The evaluation map has the...
frgpup3lem 19707 The evaluation map has the...
frgpup3 19708 Universal property of the ...
0frgp 19709 The free group on zero gen...
isabl 19714 The predicate "is an Abeli...
ablgrp 19715 An Abelian group is a grou...
ablgrpd 19716 An Abelian group is a grou...
ablcmn 19717 An Abelian group is a comm...
ablcmnd 19718 An Abelian group is a comm...
iscmn 19719 The predicate "is a commut...
isabl2 19720 The predicate "is an Abeli...
cmnpropd 19721 If two structures have the...
ablpropd 19722 If two structures have the...
ablprop 19723 If two structures have the...
iscmnd 19724 Properties that determine ...
isabld 19725 Properties that determine ...
isabli 19726 Properties that determine ...
cmnmnd 19727 A commutative monoid is a ...
cmncom 19728 A commutative monoid is co...
ablcom 19729 An Abelian group operation...
cmn32 19730 Commutative/associative la...
cmn4 19731 Commutative/associative la...
cmn12 19732 Commutative/associative la...
abl32 19733 Commutative/associative la...
cmnmndd 19734 A commutative monoid is a ...
cmnbascntr 19735 The base set of a commutat...
rinvmod 19736 Uniqueness of a right inve...
ablinvadd 19737 The inverse of an Abelian ...
ablsub2inv 19738 Abelian group subtraction ...
ablsubadd 19739 Relationship between Abeli...
ablsub4 19740 Commutative/associative su...
abladdsub4 19741 Abelian group addition/sub...
abladdsub 19742 Associative-type law for g...
ablsubadd23 19743 Commutative/associative la...
ablsubaddsub 19744 Double subtraction and add...
ablpncan2 19745 Cancellation law for subtr...
ablpncan3 19746 A cancellation law for Abe...
ablsubsub 19747 Law for double subtraction...
ablsubsub4 19748 Law for double subtraction...
ablpnpcan 19749 Cancellation law for mixed...
ablnncan 19750 Cancellation law for group...
ablsub32 19751 Swap the second and third ...
ablnnncan 19752 Cancellation law for group...
ablnnncan1 19753 Cancellation law for group...
ablsubsub23 19754 Swap subtrahend and result...
mulgnn0di 19755 Group multiple of a sum, f...
mulgdi 19756 Group multiple of a sum. ...
mulgmhm 19757 The map from ` x ` to ` n ...
mulgghm 19758 The map from ` x ` to ` n ...
mulgsubdi 19759 Group multiple of a differ...
ghmfghm 19760 The function fulfilling th...
ghmcmn 19761 The image of a commutative...
ghmabl 19762 The image of an abelian gr...
invghm 19763 The inversion map is a gro...
eqgabl 19764 Value of the subgroup cose...
qusecsub 19765 Two subgroup cosets are eq...
subgabl 19766 A subgroup of an abelian g...
subcmn 19767 A submonoid of a commutati...
submcmn 19768 A submonoid of a commutati...
submcmn2 19769 A submonoid is commutative...
cntzcmn 19770 The centralizer of any sub...
cntzcmnss 19771 Any subset in a commutativ...
cntrcmnd 19772 The center of a monoid is ...
cntrabl 19773 The center of a group is a...
cntzspan 19774 If the generators commute,...
cntzcmnf 19775 Discharge the centralizer ...
ghmplusg 19776 The pointwise sum of two l...
ablnsg 19777 Every subgroup of an abeli...
odadd1 19778 The order of a product in ...
odadd2 19779 The order of a product in ...
odadd 19780 The order of a product is ...
gex2abl 19781 A group with exponent 2 (o...
gexexlem 19782 Lemma for ~ gexex . (Cont...
gexex 19783 In an abelian group with f...
torsubg 19784 The set of all elements of...
oddvdssubg 19785 The set of all elements wh...
lsmcomx 19786 Subgroup sum commutes (ext...
ablcntzd 19787 All subgroups in an abelia...
lsmcom 19788 Subgroup sum commutes. (C...
lsmsubg2 19789 The sum of two subgroups i...
lsm4 19790 Commutative/associative la...
prdscmnd 19791 The product of a family of...
prdsabld 19792 The product of a family of...
pwscmn 19793 The structure power on a c...
pwsabl 19794 The structure power on an ...
qusabl 19795 If ` Y ` is a subgroup of ...
abl1 19796 The (smallest) structure r...
abln0 19797 Abelian groups (and theref...
cnaddablx 19798 The complex numbers are an...
cnaddabl 19799 The complex numbers are an...
cnaddid 19800 The group identity element...
cnaddinv 19801 Value of the group inverse...
zaddablx 19802 The integers are an Abelia...
frgpnabllem1 19803 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19804 Lemma for ~ frgpnabl . (C...
frgpnabl 19805 The free group on two or m...
imasabl 19806 The image structure of an ...
iscyg 19809 Definition of a cyclic gro...
iscyggen 19810 The property of being a cy...
iscyggen2 19811 The property of being a cy...
iscyg2 19812 A cyclic group is a group ...
cyggeninv 19813 The inverse of a cyclic ge...
cyggenod 19814 An element is the generato...
cyggenod2 19815 In an infinite cyclic grou...
iscyg3 19816 Definition of a cyclic gro...
iscygd 19817 Definition of a cyclic gro...
iscygodd 19818 Show that a group with an ...
cycsubmcmn 19819 The set of nonnegative int...
cyggrp 19820 A cyclic group is a group....
cygabl 19821 A cyclic group is abelian....
cygctb 19822 A cyclic group is countabl...
0cyg 19823 The trivial group is cycli...
prmcyg 19824 A group with prime order i...
lt6abl 19825 A group with fewer than ` ...
ghmcyg 19826 The image of a cyclic grou...
cyggex2 19827 The exponent of a cyclic g...
cyggex 19828 The exponent of a finite c...
cyggexb 19829 A finite abelian group is ...
giccyg 19830 Cyclicity is a group prope...
cycsubgcyg 19831 The cyclic subgroup genera...
cycsubgcyg2 19832 The cyclic subgroup genera...
gsumval3a 19833 Value of the group sum ope...
gsumval3eu 19834 The group sum as defined i...
gsumval3lem1 19835 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19836 Lemma 2 for ~ gsumval3 . ...
gsumval3 19837 Value of the group sum ope...
gsumcllem 19838 Lemma for ~ gsumcl and rel...
gsumzres 19839 Extend a finite group sum ...
gsumzcl2 19840 Closure of a finite group ...
gsumzcl 19841 Closure of a finite group ...
gsumzf1o 19842 Re-index a finite group su...
gsumres 19843 Extend a finite group sum ...
gsumcl2 19844 Closure of a finite group ...
gsumcl 19845 Closure of a finite group ...
gsumf1o 19846 Re-index a finite group su...
gsumreidx 19847 Re-index a finite group su...
gsumzsubmcl 19848 Closure of a group sum in ...
gsumsubmcl 19849 Closure of a group sum in ...
gsumsubgcl 19850 Closure of a group sum in ...
gsumzaddlem 19851 The sum of two group sums....
gsumzadd 19852 The sum of two group sums....
gsumadd 19853 The sum of two group sums....
gsummptfsadd 19854 The sum of two group sums ...
gsummptfidmadd 19855 The sum of two group sums ...
gsummptfidmadd2 19856 The sum of two group sums ...
gsumzsplit 19857 Split a group sum into two...
gsumsplit 19858 Split a group sum into two...
gsumsplit2 19859 Split a group sum into two...
gsummptfidmsplit 19860 Split a group sum expresse...
gsummptfidmsplitres 19861 Split a group sum expresse...
gsummptfzsplit 19862 Split a group sum expresse...
gsummptfzsplitl 19863 Split a group sum expresse...
gsumconst 19864 Sum of a constant series. ...
gsumconstf 19865 Sum of a constant series. ...
gsummptshft 19866 Index shift of a finite gr...
gsumzmhm 19867 Apply a group homomorphism...
gsummhm 19868 Apply a group homomorphism...
gsummhm2 19869 Apply a group homomorphism...
gsummptmhm 19870 Apply a group homomorphism...
gsummulglem 19871 Lemma for ~ gsummulg and ~...
gsummulg 19872 Nonnegative multiple of a ...
gsummulgz 19873 Integer multiple of a grou...
gsumzoppg 19874 The opposite of a group su...
gsumzinv 19875 Inverse of a group sum. (...
gsuminv 19876 Inverse of a group sum. (...
gsummptfidminv 19877 Inverse of a group sum exp...
gsumsub 19878 The difference of two grou...
gsummptfssub 19879 The difference of two grou...
gsummptfidmsub 19880 The difference of two grou...
gsumsnfd 19881 Group sum of a singleton, ...
gsumsnd 19882 Group sum of a singleton, ...
gsumsnf 19883 Group sum of a singleton, ...
gsumsn 19884 Group sum of a singleton. ...
gsumpr 19885 Group sum of a pair. (Con...
gsumzunsnd 19886 Append an element to a fin...
gsumunsnfd 19887 Append an element to a fin...
gsumunsnd 19888 Append an element to a fin...
gsumunsnf 19889 Append an element to a fin...
gsumunsn 19890 Append an element to a fin...
gsumdifsnd 19891 Extract a summand from a f...
gsumpt 19892 Sum of a family that is no...
gsummptf1o 19893 Re-index a finite group su...
gsummptun 19894 Group sum of a disjoint un...
gsummpt1n0 19895 If only one summand in a f...
gsummptif1n0 19896 If only one summand in a f...
gsummptcl 19897 Closure of a finite group ...
gsummptfif1o 19898 Re-index a finite group su...
gsummptfzcl 19899 Closure of a finite group ...
gsum2dlem1 19900 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19901 Lemma for ~ gsum2d . (Con...
gsum2d 19902 Write a sum over a two-dim...
gsum2d2lem 19903 Lemma for ~ gsum2d2 : show...
gsum2d2 19904 Write a group sum over a t...
gsumcom2 19905 Two-dimensional commutatio...
gsumxp 19906 Write a group sum over a c...
gsumcom 19907 Commute the arguments of a...
gsumcom3 19908 A commutative law for fini...
gsumcom3fi 19909 A commutative law for fini...
gsumxp2 19910 Write a group sum over a c...
prdsgsum 19911 Finite commutative sums in...
pwsgsum 19912 Finite commutative sums in...
fsfnn0gsumfsffz 19913 Replacing a finitely suppo...
nn0gsumfz 19914 Replacing a finitely suppo...
nn0gsumfz0 19915 Replacing a finitely suppo...
gsummptnn0fz 19916 A final group sum over a f...
gsummptnn0fzfv 19917 A final group sum over a f...
telgsumfzslem 19918 Lemma for ~ telgsumfzs (in...
telgsumfzs 19919 Telescoping group sum rang...
telgsumfz 19920 Telescoping group sum rang...
telgsumfz0s 19921 Telescoping finite group s...
telgsumfz0 19922 Telescoping finite group s...
telgsums 19923 Telescoping finitely suppo...
telgsum 19924 Telescoping finitely suppo...
reldmdprd 19929 The domain of the internal...
dmdprd 19930 The domain of definition o...
dmdprdd 19931 Show that a given family i...
dprddomprc 19932 A family of subgroups inde...
dprddomcld 19933 If a family of subgroups i...
dprdval0prc 19934 The internal direct produc...
dprdval 19935 The value of the internal ...
eldprd 19936 A class ` A ` is an intern...
dprdgrp 19937 Reverse closure for the in...
dprdf 19938 The function ` S ` is a fa...
dprdf2 19939 The function ` S ` is a fa...
dprdcntz 19940 The function ` S ` is a fa...
dprddisj 19941 The function ` S ` is a fa...
dprdw 19942 The property of being a fi...
dprdwd 19943 A mapping being a finitely...
dprdff 19944 A finitely supported funct...
dprdfcl 19945 A finitely supported funct...
dprdffsupp 19946 A finitely supported funct...
dprdfcntz 19947 A function on the elements...
dprdssv 19948 The internal direct produc...
dprdfid 19949 A function mapping all but...
eldprdi 19950 The domain of definition o...
dprdfinv 19951 Take the inverse of a grou...
dprdfadd 19952 Take the sum of group sums...
dprdfsub 19953 Take the difference of gro...
dprdfeq0 19954 The zero function is the o...
dprdf11 19955 Two group sums over a dire...
dprdsubg 19956 The internal direct produc...
dprdub 19957 Each factor is a subset of...
dprdlub 19958 The direct product is smal...
dprdspan 19959 The direct product is the ...
dprdres 19960 Restriction of a direct pr...
dprdss 19961 Create a direct product by...
dprdz 19962 A family consisting entire...
dprd0 19963 The empty family is an int...
dprdf1o 19964 Rearrange the index set of...
dprdf1 19965 Rearrange the index set of...
subgdmdprd 19966 A direct product in a subg...
subgdprd 19967 A direct product in a subg...
dprdsn 19968 A singleton family is an i...
dmdprdsplitlem 19969 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19970 The function ` S ` is a fa...
dprddisj2 19971 The function ` S ` is a fa...
dprd2dlem2 19972 The direct product of a co...
dprd2dlem1 19973 The direct product of a co...
dprd2da 19974 The direct product of a co...
dprd2db 19975 The direct product of a co...
dprd2d2 19976 The direct product of a co...
dmdprdsplit2lem 19977 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 19978 The direct product splits ...
dmdprdsplit 19979 The direct product splits ...
dprdsplit 19980 The direct product is the ...
dmdprdpr 19981 A singleton family is an i...
dprdpr 19982 A singleton family is an i...
dpjlem 19983 Lemma for theorems about d...
dpjcntz 19984 The two subgroups that app...
dpjdisj 19985 The two subgroups that app...
dpjlsm 19986 The two subgroups that app...
dpjfval 19987 Value of the direct produc...
dpjval 19988 Value of the direct produc...
dpjf 19989 The ` X ` -th index projec...
dpjidcl 19990 The key property of projec...
dpjeq 19991 Decompose a group sum into...
dpjid 19992 The key property of projec...
dpjlid 19993 The ` X ` -th index projec...
dpjrid 19994 The ` Y ` -th index projec...
dpjghm 19995 The direct product is the ...
dpjghm2 19996 The direct product is the ...
ablfacrplem 19997 Lemma for ~ ablfacrp2 . (...
ablfacrp 19998 A finite abelian group who...
ablfacrp2 19999 The factors ` K , L ` of ~...
ablfac1lem 20000 Lemma for ~ ablfac1b . Sa...
ablfac1a 20001 The factors of ~ ablfac1b ...
ablfac1b 20002 Any abelian group is the d...
ablfac1c 20003 The factors of ~ ablfac1b ...
ablfac1eulem 20004 Lemma for ~ ablfac1eu . (...
ablfac1eu 20005 The factorization of ~ abl...
pgpfac1lem1 20006 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 20007 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 20008 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 20009 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 20010 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 20011 Lemma for ~ pgpfac1 . (Co...
pgpfac1 20012 Factorization of a finite ...
pgpfaclem1 20013 Lemma for ~ pgpfac . (Con...
pgpfaclem2 20014 Lemma for ~ pgpfac . (Con...
pgpfaclem3 20015 Lemma for ~ pgpfac . (Con...
pgpfac 20016 Full factorization of a fi...
ablfaclem1 20017 Lemma for ~ ablfac . (Con...
ablfaclem2 20018 Lemma for ~ ablfac . (Con...
ablfaclem3 20019 Lemma for ~ ablfac . (Con...
ablfac 20020 The Fundamental Theorem of...
ablfac2 20021 Choose generators for each...
issimpg 20024 The predicate "is a simple...
issimpgd 20025 Deduce a simple group from...
simpggrp 20026 A simple group is a group....
simpggrpd 20027 A simple group is a group....
simpg2nsg 20028 A simple group has two nor...
trivnsimpgd 20029 Trivial groups are not sim...
simpgntrivd 20030 Simple groups are nontrivi...
simpgnideld 20031 A simple group contains a ...
simpgnsgd 20032 The only normal subgroups ...
simpgnsgeqd 20033 A normal subgroup of a sim...
2nsgsimpgd 20034 If any normal subgroup of ...
simpgnsgbid 20035 A nontrivial group is simp...
ablsimpnosubgd 20036 A subgroup of an abelian s...
ablsimpg1gend 20037 An abelian simple group is...
ablsimpgcygd 20038 An abelian simple group is...
ablsimpgfindlem1 20039 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 20040 Lemma for ~ ablsimpgfind ....
cycsubggenodd 20041 Relationship between the o...
ablsimpgfind 20042 An abelian simple group is...
fincygsubgd 20043 The subgroup referenced in...
fincygsubgodd 20044 Calculate the order of a s...
fincygsubgodexd 20045 A finite cyclic group has ...
prmgrpsimpgd 20046 A group of prime order is ...
ablsimpgprmd 20047 An abelian simple group ha...
ablsimpgd 20048 An abelian group is simple...
fnmgp 20051 The multiplicative group o...
mgpval 20052 Value of the multiplicatio...
mgpplusg 20053 Value of the group operati...
mgpbas 20054 Base set of the multiplica...
mgpsca 20055 The multiplication monoid ...
mgptset 20056 Topology component of the ...
mgptopn 20057 Topology of the multiplica...
mgpds 20058 Distance function of the m...
mgpress 20059 Subgroup commutes with the...
prdsmgp 20060 The multiplicative monoid ...
isrng 20063 The predicate "is a non-un...
rngabl 20064 A non-unital ring is an (a...
rngmgp 20065 A non-unital ring is a sem...
rngmgpf 20066 Restricted functionality o...
rnggrp 20067 A non-unital ring is a (ad...
rngass 20068 Associative law for the mu...
rngdi 20069 Distributive law for the m...
rngdir 20070 Distributive law for the m...
rngacl 20071 Closure of the addition op...
rng0cl 20072 The zero element of a non-...
rngcl 20073 Closure of the multiplicat...
rnglz 20074 The zero of a non-unital r...
rngrz 20075 The zero of a non-unital r...
rngmneg1 20076 Negation of a product in a...
rngmneg2 20077 Negation of a product in a...
rngm2neg 20078 Double negation of a produ...
rngansg 20079 Every additive subgroup of...
rngsubdi 20080 Ring multiplication distri...
rngsubdir 20081 Ring multiplication distri...
isrngd 20082 Properties that determine ...
rngpropd 20083 If two structures have the...
prdsmulrngcl 20084 Closure of the multiplicat...
prdsrngd 20085 A product of non-unital ri...
imasrng 20086 The image structure of a n...
imasrngf1 20087 The image of a non-unital ...
xpsrngd 20088 A product of two non-unita...
qusrng 20089 The quotient structure of ...
ringidval 20092 The value of the unity ele...
dfur2 20093 The multiplicative identit...
ringurd 20094 Deduce the unity element o...
issrg 20097 The predicate "is a semiri...
srgcmn 20098 A semiring is a commutativ...
srgmnd 20099 A semiring is a monoid. (...
srgmgp 20100 A semiring is a monoid und...
srgdilem 20101 Lemma for ~ srgdi and ~ sr...
srgcl 20102 Closure of the multiplicat...
srgass 20103 Associative law for the mu...
srgideu 20104 The unity element of a sem...
srgfcl 20105 Functionality of the multi...
srgdi 20106 Distributive law for the m...
srgdir 20107 Distributive law for the m...
srgidcl 20108 The unity element of a sem...
srg0cl 20109 The zero element of a semi...
srgidmlem 20110 Lemma for ~ srglidm and ~ ...
srglidm 20111 The unity element of a sem...
srgridm 20112 The unity element of a sem...
issrgid 20113 Properties showing that an...
srgacl 20114 Closure of the addition op...
srgcom 20115 Commutativity of the addit...
srgrz 20116 The zero of a semiring is ...
srglz 20117 The zero of a semiring is ...
srgisid 20118 In a semiring, the only le...
o2timesd 20119 An element of a ring-like ...
rglcom4d 20120 Restricted commutativity o...
srgo2times 20121 A semiring element plus it...
srgcom4lem 20122 Lemma for ~ srgcom4 . Thi...
srgcom4 20123 Restricted commutativity o...
srg1zr 20124 The only semiring with a b...
srgen1zr 20125 The only semiring with one...
srgmulgass 20126 An associative property be...
srgpcomp 20127 If two elements of a semir...
srgpcompp 20128 If two elements of a semir...
srgpcomppsc 20129 If two elements of a semir...
srglmhm 20130 Left-multiplication in a s...
srgrmhm 20131 Right-multiplication in a ...
srgsummulcr 20132 A finite semiring sum mult...
sgsummulcl 20133 A finite semiring sum mult...
srg1expzeq1 20134 The exponentiation (by a n...
srgbinomlem1 20135 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 20136 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 20137 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 20138 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 20139 Lemma for ~ srgbinom . In...
srgbinom 20140 The binomial theorem for c...
csrgbinom 20141 The binomial theorem for c...
isring 20146 The predicate "is a (unita...
ringgrp 20147 A ring is a group. (Contr...
ringmgp 20148 A ring is a monoid under m...
iscrng 20149 A commutative ring is a ri...
crngmgp 20150 A commutative ring's multi...
ringgrpd 20151 A ring is a group. (Contr...
ringmnd 20152 A ring is a monoid under a...
ringmgm 20153 A ring is a magma. (Contr...
crngring 20154 A commutative ring is a ri...
crngringd 20155 A commutative ring is a ri...
crnggrpd 20156 A commutative ring is a gr...
mgpf 20157 Restricted functionality o...
ringdilem 20158 Properties of a unital rin...
ringcl 20159 Closure of the multiplicat...
crngcom 20160 A commutative ring's multi...
iscrng2 20161 A commutative ring is a ri...
ringass 20162 Associative law for multip...
ringideu 20163 The unity element of a rin...
crngcomd 20164 Multiplication is commutat...
crngbascntr 20165 The base set of a commutat...
ringassd 20166 Associative law for multip...
crng12d 20167 Commutative/associative la...
crng32d 20168 Commutative/associative la...
ringcld 20169 Closure of the multiplicat...
ringdi 20170 Distributive law for the m...
ringdir 20171 Distributive law for the m...
ringdid 20172 Distributive law for the m...
ringdird 20173 Distributive law for the m...
ringidcl 20174 The unity element of a rin...
ringidcld 20175 The unity element of a rin...
ring0cl 20176 The zero element of a ring...
ringidmlem 20177 Lemma for ~ ringlidm and ~...
ringlidm 20178 The unity element of a rin...
ringridm 20179 The unity element of a rin...
isringid 20180 Properties showing that an...
ringlidmd 20181 The unity element of a rin...
ringridmd 20182 The unity element of a rin...
ringid 20183 The multiplication operati...
ringo2times 20184 A ring element plus itself...
ringadd2 20185 A ring element plus itself...
ringidss 20186 A subset of the multiplica...
ringacl 20187 Closure of the addition op...
ringcomlem 20188 Lemma for ~ ringcom . Thi...
ringcom 20189 Commutativity of the addit...
ringabl 20190 A ring is an Abelian group...
ringcmn 20191 A ring is a commutative mo...
ringabld 20192 A ring is an Abelian group...
ringcmnd 20193 A ring is a commutative mo...
ringrng 20194 A unital ring is a non-uni...
ringssrng 20195 The unital rings are non-u...
isringrng 20196 The predicate "is a unital...
ringpropd 20197 If two structures have the...
crngpropd 20198 If two structures have the...
ringprop 20199 If two structures have the...
isringd 20200 Properties that determine ...
iscrngd 20201 Properties that determine ...
ringlz 20202 The zero of a unital ring ...
ringrz 20203 The zero of a unital ring ...
ringlzd 20204 The zero of a unital ring ...
ringrzd 20205 The zero of a unital ring ...
ringsrg 20206 Any ring is also a semirin...
ring1eq0 20207 If one and zero are equal,...
ring1ne0 20208 If a ring has at least two...
ringinvnz1ne0 20209 In a unital ring, a left i...
ringinvnzdiv 20210 In a unital ring, a left i...
ringnegl 20211 Negation in a ring is the ...
ringnegr 20212 Negation in a ring is the ...
ringmneg1 20213 Negation of a product in a...
ringmneg2 20214 Negation of a product in a...
ringm2neg 20215 Double negation of a produ...
ringsubdi 20216 Ring multiplication distri...
ringsubdir 20217 Ring multiplication distri...
mulgass2 20218 An associative property be...
ring1 20219 The (smallest) structure r...
ringn0 20220 Rings exist. (Contributed...
ringlghm 20221 Left-multiplication in a r...
ringrghm 20222 Right-multiplication in a ...
gsummulc1OLD 20223 Obsolete version of ~ gsum...
gsummulc2OLD 20224 Obsolete version of ~ gsum...
gsummulc1 20225 A finite ring sum multipli...
gsummulc2 20226 A finite ring sum multipli...
gsummgp0 20227 If one factor in a finite ...
gsumdixp 20228 Distribute a binary produc...
prdsmulrcl 20229 A structure product of rin...
prdsringd 20230 A product of rings is a ri...
prdscrngd 20231 A product of commutative r...
prds1 20232 Value of the ring unity in...
pwsring 20233 A structure power of a rin...
pws1 20234 Value of the ring unity in...
pwscrng 20235 A structure power of a com...
pwsmgp 20236 The multiplicative group o...
pwspjmhmmgpd 20237 The projection given by ~ ...
pwsexpg 20238 Value of a group exponenti...
imasring 20239 The image structure of a r...
imasringf1 20240 The image of a ring under ...
xpsringd 20241 A product of two rings is ...
xpsring1d 20242 The multiplicative identit...
qusring2 20243 The quotient structure of ...
crngbinom 20244 The binomial theorem for c...
opprval 20247 Value of the opposite ring...
opprmulfval 20248 Value of the multiplicatio...
opprmul 20249 Value of the multiplicatio...
crngoppr 20250 In a commutative ring, the...
opprlem 20251 Lemma for ~ opprbas and ~ ...
opprbas 20252 Base set of an opposite ri...
oppradd 20253 Addition operation of an o...
opprrng 20254 An opposite non-unital rin...
opprrngb 20255 A class is a non-unital ri...
opprring 20256 An opposite ring is a ring...
opprringb 20257 Bidirectional form of ~ op...
oppr0 20258 Additive identity of an op...
oppr1 20259 Multiplicative identity of...
opprneg 20260 The negative function in a...
opprsubg 20261 Being a subgroup is a symm...
mulgass3 20262 An associative property be...
reldvdsr 20269 The divides relation is a ...
dvdsrval 20270 Value of the divides relat...
dvdsr 20271 Value of the divides relat...
dvdsr2 20272 Value of the divides relat...
dvdsrmul 20273 A left-multiple of ` X ` i...
dvdsrcl 20274 Closure of a dividing elem...
dvdsrcl2 20275 Closure of a dividing elem...
dvdsrid 20276 An element in a (unital) r...
dvdsrtr 20277 Divisibility is transitive...
dvdsrmul1 20278 The divisibility relation ...
dvdsrneg 20279 An element divides its neg...
dvdsr01 20280 In a ring, zero is divisib...
dvdsr02 20281 Only zero is divisible by ...
isunit 20282 Property of being a unit o...
1unit 20283 The multiplicative identit...
unitcl 20284 A unit is an element of th...
unitss 20285 The set of units is contai...
opprunit 20286 Being a unit is a symmetri...
crngunit 20287 Property of being a unit i...
dvdsunit 20288 A divisor of a unit is a u...
unitmulcl 20289 The product of units is a ...
unitmulclb 20290 Reversal of ~ unitmulcl in...
unitgrpbas 20291 The base set of the group ...
unitgrp 20292 The group of units is a gr...
unitabl 20293 The group of units of a co...
unitgrpid 20294 The identity of the group ...
unitsubm 20295 The group of units is a su...
invrfval 20298 Multiplicative inverse fun...
unitinvcl 20299 The inverse of a unit exis...
unitinvinv 20300 The inverse of the inverse...
ringinvcl 20301 The inverse of a unit is a...
unitlinv 20302 A unit times its inverse i...
unitrinv 20303 A unit times its inverse i...
1rinv 20304 The inverse of the ring un...
0unit 20305 The additive identity is a...
unitnegcl 20306 The negative of a unit is ...
ringunitnzdiv 20307 In a unitary ring, a unit ...
ring1nzdiv 20308 In a unitary ring, the rin...
dvrfval 20311 Division operation in a ri...
dvrval 20312 Division operation in a ri...
dvrcl 20313 Closure of division operat...
unitdvcl 20314 The units are closed under...
dvrid 20315 A ring element divided by ...
dvr1 20316 A ring element divided by ...
dvrass 20317 An associative law for div...
dvrcan1 20318 A cancellation law for div...
dvrcan3 20319 A cancellation law for div...
dvreq1 20320 Equality in terms of ratio...
dvrdir 20321 Distributive law for the d...
rdivmuldivd 20322 Multiplication of two rati...
ringinvdv 20323 Write the inverse function...
rngidpropd 20324 The ring unity depends onl...
dvdsrpropd 20325 The divisibility relation ...
unitpropd 20326 The set of units depends o...
invrpropd 20327 The ring inverse function ...
isirred 20328 An irreducible element of ...
isnirred 20329 The property of being a no...
isirred2 20330 Expand out the class diffe...
opprirred 20331 Irreducibility is symmetri...
irredn0 20332 The additive identity is n...
irredcl 20333 An irreducible element is ...
irrednu 20334 An irreducible element is ...
irredn1 20335 The multiplicative identit...
irredrmul 20336 The product of an irreduci...
irredlmul 20337 The product of a unit and ...
irredmul 20338 If product of two elements...
irredneg 20339 The negative of an irreduc...
irrednegb 20340 An element is irreducible ...
rnghmrcl 20347 Reverse closure of a non-u...
rnghmfn 20348 The mapping of two non-uni...
rnghmval 20349 The set of the non-unital ...
isrnghm 20350 A function is a non-unital...
isrnghmmul 20351 A function is a non-unital...
rnghmmgmhm 20352 A non-unital ring homomorp...
rnghmval2 20353 The non-unital ring homomo...
isrngim 20354 An isomorphism of non-unit...
rngimrcl 20355 Reverse closure for an iso...
rnghmghm 20356 A non-unital ring homomorp...
rnghmf 20357 A ring homomorphism is a f...
rnghmmul 20358 A homomorphism of non-unit...
isrnghm2d 20359 Demonstration of non-unita...
isrnghmd 20360 Demonstration of non-unita...
rnghmf1o 20361 A non-unital ring homomorp...
isrngim2 20362 An isomorphism of non-unit...
rngimf1o 20363 An isomorphism of non-unit...
rngimrnghm 20364 An isomorphism of non-unit...
rngimcnv 20365 The converse of an isomorp...
rnghmco 20366 The composition of non-uni...
idrnghm 20367 The identity homomorphism ...
c0mgm 20368 The constant mapping to ze...
c0mhm 20369 The constant mapping to ze...
c0ghm 20370 The constant mapping to ze...
c0snmgmhm 20371 The constant mapping to ze...
c0snmhm 20372 The constant mapping to ze...
c0snghm 20373 The constant mapping to ze...
rngisomfv1 20374 If there is a non-unital r...
rngisom1 20375 If there is a non-unital r...
rngisomring 20376 If there is a non-unital r...
rngisomring1 20377 If there is a non-unital r...
dfrhm2 20383 The property of a ring hom...
rhmrcl1 20385 Reverse closure of a ring ...
rhmrcl2 20386 Reverse closure of a ring ...
isrhm 20387 A function is a ring homom...
rhmmhm 20388 A ring homomorphism is a h...
rhmisrnghm 20389 Each unital ring homomorph...
isrim0OLD 20390 Obsolete version of ~ isri...
rimrcl 20391 Reverse closure for an iso...
isrim0 20392 A ring isomorphism is a ho...
rhmghm 20393 A ring homomorphism is an ...
rhmf 20394 A ring homomorphism is a f...
rhmmul 20395 A homomorphism of rings pr...
isrhm2d 20396 Demonstration of ring homo...
isrhmd 20397 Demonstration of ring homo...
rhm1 20398 Ring homomorphisms are req...
idrhm 20399 The identity homomorphism ...
rhmf1o 20400 A ring homomorphism is bij...
isrim 20401 An isomorphism of rings is...
isrimOLD 20402 Obsolete version of ~ isri...
rimf1o 20403 An isomorphism of rings is...
rimrhmOLD 20404 Obsolete version of ~ rimr...
rimrhm 20405 A ring isomorphism is a ho...
rimgim 20406 An isomorphism of rings is...
rimisrngim 20407 Each unital ring isomorphi...
rhmfn 20408 The mapping of two rings t...
rhmval 20409 The ring homomorphisms bet...
rhmco 20410 The composition of ring ho...
pwsco1rhm 20411 Right composition with a f...
pwsco2rhm 20412 Left composition with a ri...
brric 20413 The relation "is isomorphi...
brrici 20414 Prove isomorphic by an exp...
brric2 20415 The relation "is isomorphi...
ricgic 20416 If two rings are (ring) is...
rhmdvdsr 20417 A ring homomorphism preser...
rhmopp 20418 A ring homomorphism is als...
elrhmunit 20419 Ring homomorphisms preserv...
rhmunitinv 20420 Ring homomorphisms preserv...
isnzr 20423 Property of a nonzero ring...
nzrnz 20424 One and zero are different...
nzrring 20425 A nonzero ring is a ring. ...
nzrringOLD 20426 Obsolete version of ~ nzrr...
isnzr2 20427 Equivalent characterizatio...
isnzr2hash 20428 Equivalent characterizatio...
nzrpropd 20429 If two structures have the...
opprnzrb 20430 The opposite of a nonzero ...
opprnzr 20431 The opposite of a nonzero ...
ringelnzr 20432 A ring is nonzero if it ha...
nzrunit 20433 A unit is nonzero in any n...
0ringnnzr 20434 A ring is a zero ring iff ...
0ring 20435 If a ring has only one ele...
0ringdif 20436 A zero ring is a ring whic...
0ringbas 20437 The base set of a zero rin...
0ring01eq 20438 In a ring with only one el...
01eq0ring 20439 If the zero and the identi...
01eq0ringOLD 20440 Obsolete version of ~ 01eq...
0ring01eqbi 20441 In a unital ring the zero ...
0ring1eq0 20442 In a zero ring, a ring whi...
c0rhm 20443 The constant mapping to ze...
c0rnghm 20444 The constant mapping to ze...
zrrnghm 20445 The constant mapping to ze...
nrhmzr 20446 There is no ring homomorph...
islring 20449 The predicate "is a local ...
lringnzr 20450 A local ring is a nonzero ...
lringring 20451 A local ring is a ring. (...
lringnz 20452 A local ring is a nonzero ...
lringuplu 20453 If the sum of two elements...
issubrng 20456 The subring of non-unital ...
subrngss 20457 A subring is a subset. (C...
subrngid 20458 Every non-unital ring is a...
subrngrng 20459 A subring is a non-unital ...
subrngrcl 20460 Reverse closure for a subr...
subrngsubg 20461 A subring is a subgroup. ...
subrngringnsg 20462 A subring is a normal subg...
subrngbas 20463 Base set of a subring stru...
subrng0 20464 A subring always has the s...
subrngacl 20465 A subring is closed under ...
subrngmcl 20466 A subring is closed under ...
issubrng2 20467 Characterize the subrings ...
opprsubrng 20468 Being a subring is a symme...
subrngint 20469 The intersection of a none...
subrngin 20470 The intersection of two su...
subrngmre 20471 The subrings of a non-unit...
subsubrng 20472 A subring of a subring is ...
subsubrng2 20473 The set of subrings of a s...
rhmimasubrnglem 20474 Lemma for ~ rhmimasubrng :...
rhmimasubrng 20475 The homomorphic image of a...
cntzsubrng 20476 Centralizers in a non-unit...
subrngpropd 20477 If two structures have the...
issubrg 20480 The subring predicate. (C...
subrgss 20481 A subring is a subset. (C...
subrgid 20482 Every ring is a subring of...
subrgring 20483 A subring is a ring. (Con...
subrgcrng 20484 A subring of a commutative...
subrgrcl 20485 Reverse closure for a subr...
subrgsubg 20486 A subring is a subgroup. ...
subrgsubrng 20487 A subring of a unital ring...
subrg0 20488 A subring always has the s...
subrg1cl 20489 A subring contains the mul...
subrgbas 20490 Base set of a subring stru...
subrg1 20491 A subring always has the s...
subrgacl 20492 A subring is closed under ...
subrgmcl 20493 A subring is closed under ...
subrgsubm 20494 A subring is a submonoid o...
subrgdvds 20495 If an element divides anot...
subrguss 20496 A unit of a subring is a u...
subrginv 20497 A subring always has the s...
subrgdv 20498 A subring always has the s...
subrgunit 20499 An element of a ring is a ...
subrgugrp 20500 The units of a subring for...
issubrg2 20501 Characterize the subrings ...
opprsubrg 20502 Being a subring is a symme...
subrgnzr 20503 A subring of a nonzero rin...
subrgint 20504 The intersection of a none...
subrgin 20505 The intersection of two su...
subrgmre 20506 The subrings of a ring are...
subsubrg 20507 A subring of a subring is ...
subsubrg2 20508 The set of subrings of a s...
issubrg3 20509 A subring is an additive s...
resrhm 20510 Restriction of a ring homo...
resrhm2b 20511 Restriction of the codomai...
rhmeql 20512 The equalizer of two ring ...
rhmima 20513 The homomorphic image of a...
rnrhmsubrg 20514 The range of a ring homomo...
cntzsubr 20515 Centralizers in a ring are...
pwsdiagrhm 20516 Diagonal homomorphism into...
subrgpropd 20517 If two structures have the...
rhmpropd 20518 Ring homomorphism depends ...
rgspnval 20521 Value of the ring-span of ...
rgspncl 20522 The ring-span of a set is ...
rgspnssid 20523 The ring-span of a set con...
rgspnmin 20524 The ring-span is contained...
rngcval 20527 Value of the category of n...
rnghmresfn 20528 The class of non-unital ri...
rnghmresel 20529 An element of the non-unit...
rngcbas 20530 Set of objects of the cate...
rngchomfval 20531 Set of arrows of the categ...
rngchom 20532 Set of arrows of the categ...
elrngchom 20533 A morphism of non-unital r...
rngchomfeqhom 20534 The functionalized Hom-set...
rngccofval 20535 Composition in the categor...
rngcco 20536 Composition in the categor...
dfrngc2 20537 Alternate definition of th...
rnghmsscmap2 20538 The non-unital ring homomo...
rnghmsscmap 20539 The non-unital ring homomo...
rnghmsubcsetclem1 20540 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 20541 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 20542 The non-unital ring homomo...
rngccat 20543 The category of non-unital...
rngcid 20544 The identity arrow in the ...
rngcsect 20545 A section in the category ...
rngcinv 20546 An inverse in the category...
rngciso 20547 An isomorphism in the cate...
rngcifuestrc 20548 The "inclusion functor" fr...
funcrngcsetc 20549 The "natural forgetful fun...
funcrngcsetcALT 20550 Alternate proof of ~ funcr...
zrinitorngc 20551 The zero ring is an initia...
zrtermorngc 20552 The zero ring is a termina...
zrzeroorngc 20553 The zero ring is a zero ob...
ringcval 20556 Value of the category of u...
rhmresfn 20557 The class of unital ring h...
rhmresel 20558 An element of the unital r...
ringcbas 20559 Set of objects of the cate...
ringchomfval 20560 Set of arrows of the categ...
ringchom 20561 Set of arrows of the categ...
elringchom 20562 A morphism of unital rings...
ringchomfeqhom 20563 The functionalized Hom-set...
ringccofval 20564 Composition in the categor...
ringcco 20565 Composition in the categor...
dfringc2 20566 Alternate definition of th...
rhmsscmap2 20567 The unital ring homomorphi...
rhmsscmap 20568 The unital ring homomorphi...
rhmsubcsetclem1 20569 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 20570 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 20571 The unital ring homomorphi...
ringccat 20572 The category of unital rin...
ringcid 20573 The identity arrow in the ...
rhmsscrnghm 20574 The unital ring homomorphi...
rhmsubcrngclem1 20575 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 20576 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 20577 The unital ring homomorphi...
rngcresringcat 20578 The restriction of the cat...
ringcsect 20579 A section in the category ...
ringcinv 20580 An inverse in the category...
ringciso 20581 An isomorphism in the cate...
ringcbasbas 20582 An element of the base set...
funcringcsetc 20583 The "natural forgetful fun...
zrtermoringc 20584 The zero ring is a termina...
zrninitoringc 20585 The zero ring is not an in...
srhmsubclem1 20586 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 20587 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 20588 Lemma 3 for ~ srhmsubc . ...
srhmsubc 20589 According to ~ df-subc , t...
sringcat 20590 The restriction of the cat...
crhmsubc 20591 According to ~ df-subc , t...
cringcat 20592 The restriction of the cat...
rngcrescrhm 20593 The category of non-unital...
rhmsubclem1 20594 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 20595 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 20596 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 20597 Lemma 4 for ~ rhmsubc . (...
rhmsubc 20598 According to ~ df-subc , t...
rhmsubccat 20599 The restriction of the cat...
rrgval 20606 Value of the set or left-r...
isrrg 20607 Membership in the set of l...
rrgeq0i 20608 Property of a left-regular...
rrgeq0 20609 Left-multiplication by a l...
rrgsupp 20610 Left multiplication by a l...
rrgss 20611 Left-regular elements are ...
unitrrg 20612 Units are regular elements...
rrgnz 20613 In a nonzero ring, the zer...
isdomn 20614 Expand definition of a dom...
domnnzr 20615 A domain is a nonzero ring...
domnring 20616 A domain is a ring. (Cont...
domneq0 20617 In a domain, a product is ...
domnmuln0 20618 In a domain, a product of ...
isdomn5 20619 The equivalence between th...
isdomn2 20620 A ring is a domain iff all...
isdomn2OLD 20621 Obsolete version of ~ isdo...
domnrrg 20622 In a domain, a nonzero ele...
isdomn6 20623 A ring is a domain iff the...
isdomn3 20624 Nonzero elements form a mu...
isdomn4 20625 A ring is a domain iff it ...
opprdomnb 20626 A class is a domain if and...
opprdomn 20627 The opposite of a domain i...
isdomn4r 20628 A ring is a domain iff it ...
domnlcanb 20629 Left-cancellation law for ...
domnlcan 20630 Left-cancellation law for ...
domnrcanb 20631 Right-cancellation law for...
domnrcan 20632 Right-cancellation law for...
domneq0r 20633 Right multiplication by a ...
isidom 20634 An integral domain is a co...
idomdomd 20635 An integral domain is a do...
idomcringd 20636 An integral domain is a co...
idomringd 20637 An integral domain is a ri...
isdrng 20642 The predicate "is a divisi...
drngunit 20643 Elementhood in the set of ...
drngui 20644 The set of units of a divi...
drngring 20645 A division ring is a ring....
drngringd 20646 A division ring is a ring....
drnggrpd 20647 A division ring is a group...
drnggrp 20648 A division ring is a group...
isfld 20649 A field is a commutative d...
flddrngd 20650 A field is a division ring...
fldcrngd 20651 A field is a commutative r...
isdrng2 20652 A division ring can equiva...
drngprop 20653 If two structures have the...
drngmgp 20654 A division ring contains a...
drngid 20655 A division ring's unity is...
drngunz 20656 A division ring's unity is...
drngnzr 20657 A division ring is a nonze...
drngdomn 20658 A division ring is a domai...
drngmcl 20659 The product of two nonzero...
drngmclOLD 20660 Obsolete version of ~ drng...
drngid2 20661 Properties showing that an...
drnginvrcl 20662 Closure of the multiplicat...
drnginvrn0 20663 The multiplicative inverse...
drnginvrcld 20664 Closure of the multiplicat...
drnginvrl 20665 Property of the multiplica...
drnginvrr 20666 Property of the multiplica...
drnginvrld 20667 Property of the multiplica...
drnginvrrd 20668 Property of the multiplica...
drngmul0or 20669 A product is zero iff one ...
drngmul0orOLD 20670 Obsolete version of ~ drng...
drngmulne0 20671 A product is nonzero iff b...
drngmuleq0 20672 An element is zero iff its...
opprdrng 20673 The opposite of a division...
isdrngd 20674 Properties that characteri...
isdrngrd 20675 Properties that characteri...
isdrngdOLD 20676 Obsolete version of ~ isdr...
isdrngrdOLD 20677 Obsolete version of ~ isdr...
drngpropd 20678 If two structures have the...
fldpropd 20679 If two structures have the...
fldidom 20680 A field is an integral dom...
fidomndrnglem 20681 Lemma for ~ fidomndrng . ...
fidomndrng 20682 A finite domain is a divis...
fiidomfld 20683 A finite integral domain i...
rng1nnzr 20684 The (smallest) structure r...
ring1zr 20685 The only (unital) ring wit...
rngen1zr 20686 The only (unital) ring wit...
ringen1zr 20687 The only unital ring with ...
rng1nfld 20688 The zero ring is not a fie...
issubdrg 20689 Characterize the subfields...
drhmsubc 20690 According to ~ df-subc , t...
drngcat 20691 The restriction of the cat...
fldcat 20692 The restriction of the cat...
fldc 20693 The restriction of the cat...
fldhmsubc 20694 According to ~ df-subc , t...
issdrg 20697 Property of a division sub...
sdrgrcl 20698 Reverse closure for a sub-...
sdrgdrng 20699 A sub-division-ring is a d...
sdrgsubrg 20700 A sub-division-ring is a s...
sdrgid 20701 Every division ring is a d...
sdrgss 20702 A division subring is a su...
sdrgbas 20703 Base set of a sub-division...
issdrg2 20704 Property of a division sub...
sdrgunit 20705 A unit of a sub-division-r...
imadrhmcl 20706 The image of a (nontrivial...
fldsdrgfld 20707 A sub-division-ring of a f...
acsfn1p 20708 Construction of a closure ...
subrgacs 20709 Closure property of subrin...
sdrgacs 20710 Closure property of divisi...
cntzsdrg 20711 Centralizers in division r...
subdrgint 20712 The intersection of a none...
sdrgint 20713 The intersection of a none...
primefld 20714 The smallest sub division ...
primefld0cl 20715 The prime field contains t...
primefld1cl 20716 The prime field contains t...
abvfval 20719 Value of the set of absolu...
isabv 20720 Elementhood in the set of ...
isabvd 20721 Properties that determine ...
abvrcl 20722 Reverse closure for the ab...
abvfge0 20723 An absolute value is a fun...
abvf 20724 An absolute value is a fun...
abvcl 20725 An absolute value is a fun...
abvge0 20726 The absolute value of a nu...
abveq0 20727 The value of an absolute v...
abvne0 20728 The absolute value of a no...
abvgt0 20729 The absolute value of a no...
abvmul 20730 An absolute value distribu...
abvtri 20731 An absolute value satisfie...
abv0 20732 The absolute value of zero...
abv1z 20733 The absolute value of one ...
abv1 20734 The absolute value of one ...
abvneg 20735 The absolute value of a ne...
abvsubtri 20736 An absolute value satisfie...
abvrec 20737 The absolute value distrib...
abvdiv 20738 The absolute value distrib...
abvdom 20739 Any ring with an absolute ...
abvres 20740 The restriction of an abso...
abvtrivd 20741 The trivial absolute value...
abvtrivg 20742 The trivial absolute value...
abvtriv 20743 The trivial absolute value...
abvpropd 20744 If two structures have the...
abvn0b 20745 Another characterization o...
staffval 20750 The functionalization of t...
stafval 20751 The functionalization of t...
staffn 20752 The functionalization is e...
issrng 20753 The predicate "is a star r...
srngrhm 20754 The involution function in...
srngring 20755 A star ring is a ring. (C...
srngcnv 20756 The involution function in...
srngf1o 20757 The involution function in...
srngcl 20758 The involution function in...
srngnvl 20759 The involution function in...
srngadd 20760 The involution function in...
srngmul 20761 The involution function in...
srng1 20762 The conjugate of the ring ...
srng0 20763 The conjugate of the ring ...
issrngd 20764 Properties that determine ...
idsrngd 20765 A commutative ring is a st...
islmod 20770 The predicate "is a left m...
lmodlema 20771 Lemma for properties of a ...
islmodd 20772 Properties that determine ...
lmodgrp 20773 A left module is a group. ...
lmodring 20774 The scalar component of a ...
lmodfgrp 20775 The scalar component of a ...
lmodgrpd 20776 A left module is a group. ...
lmodbn0 20777 The base set of a left mod...
lmodacl 20778 Closure of ring addition f...
lmodmcl 20779 Closure of ring multiplica...
lmodsn0 20780 The set of scalars in a le...
lmodvacl 20781 Closure of vector addition...
lmodass 20782 Left module vector sum is ...
lmodlcan 20783 Left cancellation law for ...
lmodvscl 20784 Closure of scalar product ...
lmodvscld 20785 Closure of scalar product ...
scaffval 20786 The scalar multiplication ...
scafval 20787 The scalar multiplication ...
scafeq 20788 If the scalar multiplicati...
scaffn 20789 The scalar multiplication ...
lmodscaf 20790 The scalar multiplication ...
lmodvsdi 20791 Distributive law for scala...
lmodvsdir 20792 Distributive law for scala...
lmodvsass 20793 Associative law for scalar...
lmod0cl 20794 The ring zero in a left mo...
lmod1cl 20795 The ring unity in a left m...
lmodvs1 20796 Scalar product with the ri...
lmod0vcl 20797 The zero vector is a vecto...
lmod0vlid 20798 Left identity law for the ...
lmod0vrid 20799 Right identity law for the...
lmod0vid 20800 Identity equivalent to the...
lmod0vs 20801 Zero times a vector is the...
lmodvs0 20802 Anything times the zero ve...
lmodvsmmulgdi 20803 Distributive law for a gro...
lmodfopnelem1 20804 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20805 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20806 The (functionalized) opera...
lcomf 20807 A linear-combination sum i...
lcomfsupp 20808 A linear-combination sum i...
lmodvnegcl 20809 Closure of vector negative...
lmodvnegid 20810 Addition of a vector with ...
lmodvneg1 20811 Minus 1 times a vector is ...
lmodvsneg 20812 Multiplication of a vector...
lmodvsubcl 20813 Closure of vector subtract...
lmodcom 20814 Left module vector sum is ...
lmodabl 20815 A left module is an abelia...
lmodcmn 20816 A left module is a commuta...
lmodnegadd 20817 Distribute negation throug...
lmod4 20818 Commutative/associative la...
lmodvsubadd 20819 Relationship between vecto...
lmodvaddsub4 20820 Vector addition/subtractio...
lmodvpncan 20821 Addition/subtraction cance...
lmodvnpcan 20822 Cancellation law for vecto...
lmodvsubval2 20823 Value of vector subtractio...
lmodsubvs 20824 Subtraction of a scalar pr...
lmodsubdi 20825 Scalar multiplication dist...
lmodsubdir 20826 Scalar multiplication dist...
lmodsubeq0 20827 If the difference between ...
lmodsubid 20828 Subtraction of a vector fr...
lmodvsghm 20829 Scalar multiplication of t...
lmodprop2d 20830 If two structures have the...
lmodpropd 20831 If two structures have the...
gsumvsmul 20832 Pull a scalar multiplicati...
mptscmfsupp0 20833 A mapping to a scalar prod...
mptscmfsuppd 20834 A function mapping to a sc...
rmodislmodlem 20835 Lemma for ~ rmodislmod . ...
rmodislmod 20836 The right module ` R ` ind...
lssset 20839 The set of all (not necess...
islss 20840 The predicate "is a subspa...
islssd 20841 Properties that determine ...
lssss 20842 A subspace is a set of vec...
lssel 20843 A subspace member is a vec...
lss1 20844 The set of vectors in a le...
lssuni 20845 The union of all subspaces...
lssn0 20846 A subspace is not empty. ...
00lss 20847 The empty structure has no...
lsscl 20848 Closure property of a subs...
lssvacl 20849 Closure of vector addition...
lssvsubcl 20850 Closure of vector subtract...
lssvancl1 20851 Non-closure: if one vector...
lssvancl2 20852 Non-closure: if one vector...
lss0cl 20853 The zero vector belongs to...
lsssn0 20854 The singleton of the zero ...
lss0ss 20855 The zero subspace is inclu...
lssle0 20856 No subspace is smaller tha...
lssne0 20857 A nonzero subspace has a n...
lssvneln0 20858 A vector ` X ` which doesn...
lssneln0 20859 A vector ` X ` which doesn...
lssssr 20860 Conclude subspace ordering...
lssvscl 20861 Closure of scalar product ...
lssvnegcl 20862 Closure of negative vector...
lsssubg 20863 All subspaces are subgroup...
lsssssubg 20864 All subspaces are subgroup...
islss3 20865 A linear subspace of a mod...
lsslmod 20866 A submodule is a module. ...
lsslss 20867 The subspaces of a subspac...
islss4 20868 A linear subspace is a sub...
lss1d 20869 One-dimensional subspace (...
lssintcl 20870 The intersection of a none...
lssincl 20871 The intersection of two su...
lssmre 20872 The subspaces of a module ...
lssacs 20873 Submodules are an algebrai...
prdsvscacl 20874 Pointwise scalar multiplic...
prdslmodd 20875 The product of a family of...
pwslmod 20876 A structure power of a lef...
lspfval 20879 The span function for a le...
lspf 20880 The span function on a lef...
lspval 20881 The span of a set of vecto...
lspcl 20882 The span of a set of vecto...
lspsncl 20883 The span of a singleton is...
lspprcl 20884 The span of a pair is a su...
lsptpcl 20885 The span of an unordered t...
lspsnsubg 20886 The span of a singleton is...
00lsp 20887 ~ fvco4i lemma for linear ...
lspid 20888 The span of a subspace is ...
lspssv 20889 A span is a set of vectors...
lspss 20890 Span preserves subset orde...
lspssid 20891 A set of vectors is a subs...
lspidm 20892 The span of a set of vecto...
lspun 20893 The span of union is the s...
lspssp 20894 If a set of vectors is a s...
mrclsp 20895 Moore closure generalizes ...
lspsnss 20896 The span of the singleton ...
ellspsn3 20897 A member of the span of th...
lspprss 20898 The span of a pair of vect...
lspsnid 20899 A vector belongs to the sp...
ellspsn6 20900 Relationship between a vec...
ellspsn5b 20901 Relationship between a vec...
ellspsn5 20902 Relationship between a vec...
lspprid1 20903 A member of a pair of vect...
lspprid2 20904 A member of a pair of vect...
lspprvacl 20905 The sum of two vectors bel...
lssats2 20906 A way to express atomistic...
ellspsni 20907 A scalar product with a ve...
lspsn 20908 Span of the singleton of a...
ellspsn 20909 Member of span of the sing...
lspsnvsi 20910 Span of a scalar product o...
lspsnss2 20911 Comparable spans of single...
lspsnneg 20912 Negation does not change t...
lspsnsub 20913 Swapping subtraction order...
lspsn0 20914 Span of the singleton of t...
lsp0 20915 Span of the empty set. (C...
lspuni0 20916 Union of the span of the e...
lspun0 20917 The span of a union with t...
lspsneq0 20918 Span of the singleton is t...
lspsneq0b 20919 Equal singleton spans impl...
lmodindp1 20920 Two independent (non-colin...
lsslsp 20921 Spans in submodules corres...
lsslspOLD 20922 Obsolete version of ~ lssl...
lss0v 20923 The zero vector in a submo...
lsspropd 20924 If two structures have the...
lsppropd 20925 If two structures have the...
reldmlmhm 20932 Lemma for module homomorph...
lmimfn 20933 Lemma for module isomorphi...
islmhm 20934 Property of being a homomo...
islmhm3 20935 Property of a module homom...
lmhmlem 20936 Non-quantified consequence...
lmhmsca 20937 A homomorphism of left mod...
lmghm 20938 A homomorphism of left mod...
lmhmlmod2 20939 A homomorphism of left mod...
lmhmlmod1 20940 A homomorphism of left mod...
lmhmf 20941 A homomorphism of left mod...
lmhmlin 20942 A homomorphism of left mod...
lmodvsinv 20943 Multiplication of a vector...
lmodvsinv2 20944 Multiplying a negated vect...
islmhm2 20945 A one-equation proof of li...
islmhmd 20946 Deduction for a module hom...
0lmhm 20947 The constant zero linear f...
idlmhm 20948 The identity function on a...
invlmhm 20949 The negative function on a...
lmhmco 20950 The composition of two mod...
lmhmplusg 20951 The pointwise sum of two l...
lmhmvsca 20952 The pointwise scalar produ...
lmhmf1o 20953 A bijective module homomor...
lmhmima 20954 The image of a subspace un...
lmhmpreima 20955 The inverse image of a sub...
lmhmlsp 20956 Homomorphisms preserve spa...
lmhmrnlss 20957 The range of a homomorphis...
lmhmkerlss 20958 The kernel of a homomorphi...
reslmhm 20959 Restriction of a homomorph...
reslmhm2 20960 Expansion of the codomain ...
reslmhm2b 20961 Expansion of the codomain ...
lmhmeql 20962 The equalizer of two modul...
lspextmo 20963 A linear function is compl...
pwsdiaglmhm 20964 Diagonal homomorphism into...
pwssplit0 20965 Splitting for structure po...
pwssplit1 20966 Splitting for structure po...
pwssplit2 20967 Splitting for structure po...
pwssplit3 20968 Splitting for structure po...
islmim 20969 An isomorphism of left mod...
lmimf1o 20970 An isomorphism of left mod...
lmimlmhm 20971 An isomorphism of modules ...
lmimgim 20972 An isomorphism of modules ...
islmim2 20973 An isomorphism of left mod...
lmimcnv 20974 The converse of a bijectiv...
brlmic 20975 The relation "is isomorphi...
brlmici 20976 Prove isomorphic by an exp...
lmiclcl 20977 Isomorphism implies the le...
lmicrcl 20978 Isomorphism implies the ri...
lmicsym 20979 Module isomorphism is symm...
lmhmpropd 20980 Module homomorphism depend...
islbs 20983 The predicate " ` B ` is a...
lbsss 20984 A basis is a set of vector...
lbsel 20985 An element of a basis is a...
lbssp 20986 The span of a basis is the...
lbsind 20987 A basis is linearly indepe...
lbsind2 20988 A basis is linearly indepe...
lbspss 20989 No proper subset of a basi...
lsmcl 20990 The sum of two subspaces i...
lsmspsn 20991 Member of subspace sum of ...
lsmelval2 20992 Subspace sum membership in...
lsmsp 20993 Subspace sum in terms of s...
lsmsp2 20994 Subspace sum of spans of s...
lsmssspx 20995 Subspace sum (in its exten...
lsmpr 20996 The span of a pair of vect...
lsppreli 20997 A vector expressed as a su...
lsmelpr 20998 Two ways to say that a vec...
lsppr0 20999 The span of a vector paire...
lsppr 21000 Span of a pair of vectors....
lspprel 21001 Member of the span of a pa...
lspprabs 21002 Absorption of vector sum i...
lspvadd 21003 The span of a vector sum i...
lspsntri 21004 Triangle-type inequality f...
lspsntrim 21005 Triangle-type inequality f...
lbspropd 21006 If two structures have the...
pj1lmhm 21007 The left projection functi...
pj1lmhm2 21008 The left projection functi...
islvec 21011 The predicate "is a left v...
lvecdrng 21012 The set of scalars of a le...
lveclmod 21013 A left vector space is a l...
lveclmodd 21014 A vector space is a left m...
lvecgrpd 21015 A vector space is a group....
lsslvec 21016 A vector subspace is a vec...
lmhmlvec 21017 The property for modules t...
lvecvs0or 21018 If a scalar product is zer...
lvecvsn0 21019 A scalar product is nonzer...
lssvs0or 21020 If a scalar product belong...
lvecvscan 21021 Cancellation law for scala...
lvecvscan2 21022 Cancellation law for scala...
lvecinv 21023 Invert coefficient of scal...
lspsnvs 21024 A nonzero scalar product d...
lspsneleq 21025 Membership relation that i...
lspsncmp 21026 Comparable spans of nonzer...
lspsnne1 21027 Two ways to express that v...
lspsnne2 21028 Two ways to express that v...
lspsnnecom 21029 Swap two vectors with diff...
lspabs2 21030 Absorption law for span of...
lspabs3 21031 Absorption law for span of...
lspsneq 21032 Equal spans of singletons ...
lspsneu 21033 Nonzero vectors with equal...
ellspsn4 21034 A member of the span of th...
lspdisj 21035 The span of a vector not i...
lspdisjb 21036 A nonzero vector is not in...
lspdisj2 21037 Unequal spans are disjoint...
lspfixed 21038 Show membership in the spa...
lspexch 21039 Exchange property for span...
lspexchn1 21040 Exchange property for span...
lspexchn2 21041 Exchange property for span...
lspindpi 21042 Partial independence prope...
lspindp1 21043 Alternate way to say 3 vec...
lspindp2l 21044 Alternate way to say 3 vec...
lspindp2 21045 Alternate way to say 3 vec...
lspindp3 21046 Independence of 2 vectors ...
lspindp4 21047 (Partial) independence of ...
lvecindp 21048 Compute the ` X ` coeffici...
lvecindp2 21049 Sums of independent vector...
lspsnsubn0 21050 Unequal singleton spans im...
lsmcv 21051 Subspace sum has the cover...
lspsolvlem 21052 Lemma for ~ lspsolv . (Co...
lspsolv 21053 If ` X ` is in the span of...
lssacsex 21054 In a vector space, subspac...
lspsnat 21055 There is no subspace stric...
lspsncv0 21056 The span of a singleton co...
lsppratlem1 21057 Lemma for ~ lspprat . Let...
lsppratlem2 21058 Lemma for ~ lspprat . Sho...
lsppratlem3 21059 Lemma for ~ lspprat . In ...
lsppratlem4 21060 Lemma for ~ lspprat . In ...
lsppratlem5 21061 Lemma for ~ lspprat . Com...
lsppratlem6 21062 Lemma for ~ lspprat . Neg...
lspprat 21063 A proper subspace of the s...
islbs2 21064 An equivalent formulation ...
islbs3 21065 An equivalent formulation ...
lbsacsbs 21066 Being a basis in a vector ...
lvecdim 21067 The dimension theorem for ...
lbsextlem1 21068 Lemma for ~ lbsext . The ...
lbsextlem2 21069 Lemma for ~ lbsext . Sinc...
lbsextlem3 21070 Lemma for ~ lbsext . A ch...
lbsextlem4 21071 Lemma for ~ lbsext . ~ lbs...
lbsextg 21072 For any linearly independe...
lbsext 21073 For any linearly independe...
lbsexg 21074 Every vector space has a b...
lbsex 21075 Every vector space has a b...
lvecprop2d 21076 If two structures have the...
lvecpropd 21077 If two structures have the...
sraval 21082 Lemma for ~ srabase throug...
sralem 21083 Lemma for ~ srabase and si...
srabase 21084 Base set of a subring alge...
sraaddg 21085 Additive operation of a su...
sramulr 21086 Multiplicative operation o...
srasca 21087 The set of scalars of a su...
sravsca 21088 The scalar product operati...
sraip 21089 The inner product operatio...
sratset 21090 Topology component of a su...
sratopn 21091 Topology component of a su...
srads 21092 Distance function of a sub...
sraring 21093 Condition for a subring al...
sralmod 21094 The subring algebra is a l...
sralmod0 21095 The subring module inherit...
issubrgd 21096 Prove a subring by closure...
rlmfn 21097 ` ringLMod ` is a function...
rlmval 21098 Value of the ring module. ...
rlmval2 21099 Value of the ring module e...
rlmbas 21100 Base set of the ring modul...
rlmplusg 21101 Vector addition in the rin...
rlm0 21102 Zero vector in the ring mo...
rlmsub 21103 Subtraction in the ring mo...
rlmmulr 21104 Ring multiplication in the...
rlmsca 21105 Scalars in the ring module...
rlmsca2 21106 Scalars in the ring module...
rlmvsca 21107 Scalar multiplication in t...
rlmtopn 21108 Topology component of the ...
rlmds 21109 Metric component of the ri...
rlmlmod 21110 The ring module is a modul...
rlmlvec 21111 The ring module over a div...
rlmlsm 21112 Subgroup sum of the ring m...
rlmvneg 21113 Vector negation in the rin...
rlmscaf 21114 Functionalized scalar mult...
ixpsnbasval 21115 The value of an infinite C...
lidlval 21120 Value of the set of ring i...
rspval 21121 Value of the ring span fun...
lidlss 21122 An ideal is a subset of th...
lidlssbas 21123 The base set of the restri...
lidlbas 21124 A (left) ideal of a ring i...
islidl 21125 Predicate of being a (left...
rnglidlmcl 21126 A (left) ideal containing ...
rngridlmcl 21127 A right ideal (which is a ...
dflidl2rng 21128 Alternate (the usual textb...
isridlrng 21129 A right ideal is a left id...
lidl0cl 21130 An ideal contains 0. (Con...
lidlacl 21131 An ideal is closed under a...
lidlnegcl 21132 An ideal contains negative...
lidlsubg 21133 An ideal is a subgroup of ...
lidlsubcl 21134 An ideal is closed under s...
lidlmcl 21135 An ideal is closed under l...
lidl1el 21136 An ideal contains 1 iff it...
dflidl2 21137 Alternate (the usual textb...
lidl0ALT 21138 Alternate proof for ~ lidl...
rnglidl0 21139 Every non-unital ring cont...
lidl0 21140 Every ring contains a zero...
lidl1ALT 21141 Alternate proof for ~ lidl...
rnglidl1 21142 The base set of every non-...
lidl1 21143 Every ring contains a unit...
lidlacs 21144 The ideal system is an alg...
rspcl 21145 The span of a set of ring ...
rspssid 21146 The span of a set of ring ...
rsp1 21147 The span of the identity e...
rsp0 21148 The span of the zero eleme...
rspssp 21149 The ideal span of a set of...
elrspsn 21150 Membership in a principal ...
mrcrsp 21151 Moore closure generalizes ...
lidlnz 21152 A nonzero ideal contains a...
drngnidl 21153 A division ring has only t...
lidlrsppropd 21154 The left ideals and ring s...
rnglidlmmgm 21155 The multiplicative group o...
rnglidlmsgrp 21156 The multiplicative group o...
rnglidlrng 21157 A (left) ideal of a non-un...
lidlnsg 21158 An ideal is a normal subgr...
2idlval 21161 Definition of a two-sided ...
isridl 21162 A right ideal is a left id...
2idlelb 21163 Membership in a two-sided ...
2idllidld 21164 A two-sided ideal is a lef...
2idlridld 21165 A two-sided ideal is a rig...
df2idl2rng 21166 Alternate (the usual textb...
df2idl2 21167 Alternate (the usual textb...
ridl0 21168 Every ring contains a zero...
ridl1 21169 Every ring contains a unit...
2idl0 21170 Every ring contains a zero...
2idl1 21171 Every ring contains a unit...
2idlss 21172 A two-sided ideal is a sub...
2idlbas 21173 The base set of a two-side...
2idlelbas 21174 The base set of a two-side...
rng2idlsubrng 21175 A two-sided ideal of a non...
rng2idlnsg 21176 A two-sided ideal of a non...
rng2idl0 21177 The zero (additive identit...
rng2idlsubgsubrng 21178 A two-sided ideal of a non...
rng2idlsubgnsg 21179 A two-sided ideal of a non...
rng2idlsubg0 21180 The zero (additive identit...
2idlcpblrng 21181 The coset equivalence rela...
2idlcpbl 21182 The coset equivalence rela...
qus2idrng 21183 The quotient of a non-unit...
qus1 21184 The multiplicative identit...
qusring 21185 If ` S ` is a two-sided id...
qusrhm 21186 If ` S ` is a two-sided id...
rhmpreimaidl 21187 The preimage of an ideal b...
kerlidl 21188 The kernel of a ring homom...
qusmul2idl 21189 Value of the ring operatio...
crngridl 21190 In a commutative ring, the...
crng2idl 21191 In a commutative ring, a t...
qusmulrng 21192 Value of the multiplicatio...
quscrng 21193 The quotient of a commutat...
qusmulcrng 21194 Value of the ring operatio...
rhmqusnsg 21195 The mapping ` J ` induced ...
rngqiprng1elbas 21196 The ring unity of a two-si...
rngqiprngghmlem1 21197 Lemma 1 for ~ rngqiprngghm...
rngqiprngghmlem2 21198 Lemma 2 for ~ rngqiprngghm...
rngqiprngghmlem3 21199 Lemma 3 for ~ rngqiprngghm...
rngqiprngimfolem 21200 Lemma for ~ rngqiprngimfo ...
rngqiprnglinlem1 21201 Lemma 1 for ~ rngqiprnglin...
rngqiprnglinlem2 21202 Lemma 2 for ~ rngqiprnglin...
rngqiprnglinlem3 21203 Lemma 3 for ~ rngqiprnglin...
rngqiprngimf1lem 21204 Lemma for ~ rngqiprngimf1 ...
rngqipbas 21205 The base set of the produc...
rngqiprng 21206 The product of the quotien...
rngqiprngimf 21207 ` F ` is a function from (...
rngqiprngimfv 21208 The value of the function ...
rngqiprngghm 21209 ` F ` is a homomorphism of...
rngqiprngimf1 21210 ` F ` is a one-to-one func...
rngqiprngimfo 21211 ` F ` is a function from (...
rngqiprnglin 21212 ` F ` is linear with respe...
rngqiprngho 21213 ` F ` is a homomorphism of...
rngqiprngim 21214 ` F ` is an isomorphism of...
rng2idl1cntr 21215 The unity of a two-sided i...
rngringbdlem1 21216 In a unital ring, the quot...
rngringbdlem2 21217 A non-unital ring is unita...
rngringbd 21218 A non-unital ring is unita...
ring2idlqus 21219 For every unital ring ther...
ring2idlqusb 21220 A non-unital ring is unita...
rngqiprngfulem1 21221 Lemma 1 for ~ rngqiprngfu ...
rngqiprngfulem2 21222 Lemma 2 for ~ rngqiprngfu ...
rngqiprngfulem3 21223 Lemma 3 for ~ rngqiprngfu ...
rngqiprngfulem4 21224 Lemma 4 for ~ rngqiprngfu ...
rngqiprngfulem5 21225 Lemma 5 for ~ rngqiprngfu ...
rngqipring1 21226 The ring unity of the prod...
rngqiprngfu 21227 The function value of ` F ...
rngqiprngu 21228 If a non-unital ring has a...
ring2idlqus1 21229 If a non-unital ring has a...
lpival 21234 Value of the set of princi...
islpidl 21235 Property of being a princi...
lpi0 21236 The zero ideal is always p...
lpi1 21237 The unit ideal is always p...
islpir 21238 Principal ideal rings are ...
lpiss 21239 Principal ideals are a sub...
islpir2 21240 Principal ideal rings are ...
lpirring 21241 Principal ideal rings are ...
drnglpir 21242 Division rings are princip...
rspsn 21243 Membership in principal id...
lidldvgen 21244 An element generates an id...
lpigen 21245 An ideal is principal iff ...
cnfldstr 21266 The field of complex numbe...
cnfldex 21267 The field of complex numbe...
cnfldbas 21268 The base set of the field ...
mpocnfldadd 21269 The addition operation of ...
cnfldadd 21270 The addition operation of ...
mpocnfldmul 21271 The multiplication operati...
cnfldmul 21272 The multiplication operati...
cnfldcj 21273 The conjugation operation ...
cnfldtset 21274 The topology component of ...
cnfldle 21275 The ordering of the field ...
cnfldds 21276 The metric of the field of...
cnfldunif 21277 The uniform structure comp...
cnfldfun 21278 The field of complex numbe...
cnfldfunALT 21279 The field of complex numbe...
dfcnfldOLD 21280 Obsolete version of ~ df-c...
cnfldstrOLD 21281 Obsolete version of ~ cnfl...
cnfldexOLD 21282 Obsolete version of ~ cnfl...
cnfldbasOLD 21283 Obsolete version of ~ cnfl...
cnfldaddOLD 21284 Obsolete version of ~ cnfl...
cnfldmulOLD 21285 Obsolete version of ~ cnfl...
cnfldcjOLD 21286 Obsolete version of ~ cnfl...
cnfldtsetOLD 21287 Obsolete version of ~ cnfl...
cnfldleOLD 21288 Obsolete version of ~ cnfl...
cnflddsOLD 21289 Obsolete version of ~ cnfl...
cnfldunifOLD 21290 Obsolete version of ~ cnfl...
cnfldfunOLD 21291 Obsolete version of ~ cnfl...
cnfldfunALTOLD 21292 Obsolete version of ~ cnfl...
xrsstr 21293 The extended real structur...
xrsex 21294 The extended real structur...
xrsbas 21295 The base set of the extend...
xrsadd 21296 The addition operation of ...
xrsmul 21297 The multiplication operati...
xrstset 21298 The topology component of ...
xrsle 21299 The ordering of the extend...
cncrng 21300 The complex numbers form a...
cncrngOLD 21301 Obsolete version of ~ cncr...
cnring 21302 The complex numbers form a...
xrsmcmn 21303 The "multiplicative group"...
cnfld0 21304 Zero is the zero element o...
cnfld1 21305 One is the unity element o...
cnfld1OLD 21306 Obsolete version of ~ cnfl...
cnfldneg 21307 The additive inverse in th...
cnfldplusf 21308 The functionalized additio...
cnfldsub 21309 The subtraction operator i...
cndrng 21310 The complex numbers form a...
cndrngOLD 21311 Obsolete version of ~ cndr...
cnflddiv 21312 The division operation in ...
cnflddivOLD 21313 Obsolete version of ~ cnfl...
cnfldinv 21314 The multiplicative inverse...
cnfldmulg 21315 The group multiple functio...
cnfldexp 21316 The exponentiation operato...
cnsrng 21317 The complex numbers form a...
xrsmgm 21318 The "additive group" of th...
xrsnsgrp 21319 The "additive group" of th...
xrsmgmdifsgrp 21320 The "additive group" of th...
xrs1mnd 21321 The extended real numbers,...
xrs10 21322 The zero of the extended r...
xrs1cmn 21323 The extended real numbers ...
xrge0subm 21324 The nonnegative extended r...
xrge0cmn 21325 The nonnegative extended r...
xrsds 21326 The metric of the extended...
xrsdsval 21327 The metric of the extended...
xrsdsreval 21328 The metric of the extended...
xrsdsreclblem 21329 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 21330 The metric of the extended...
cnsubmlem 21331 Lemma for ~ nn0subm and fr...
cnsubglem 21332 Lemma for ~ resubdrg and f...
cnsubrglem 21333 Lemma for ~ resubdrg and f...
cnsubrglemOLD 21334 Obsolete version of ~ cnsu...
cnsubdrglem 21335 Lemma for ~ resubdrg and f...
qsubdrg 21336 The rational numbers form ...
zsubrg 21337 The integers form a subrin...
gzsubrg 21338 The gaussian integers form...
nn0subm 21339 The nonnegative integers f...
rege0subm 21340 The nonnegative reals form...
absabv 21341 The regular absolute value...
zsssubrg 21342 The integers are a subset ...
qsssubdrg 21343 The rational numbers are a...
cnsubrg 21344 There are no subrings of t...
cnmgpabl 21345 The unit group of the comp...
cnmgpid 21346 The group identity element...
cnmsubglem 21347 Lemma for ~ rpmsubg and fr...
rpmsubg 21348 The positive reals form a ...
gzrngunitlem 21349 Lemma for ~ gzrngunit . (...
gzrngunit 21350 The units on ` ZZ [ _i ] `...
gsumfsum 21351 Relate a group sum on ` CC...
regsumfsum 21352 Relate a group sum on ` ( ...
expmhm 21353 Exponentiation is a monoid...
nn0srg 21354 The nonnegative integers f...
rge0srg 21355 The nonnegative real numbe...
zringcrng 21358 The ring of integers is a ...
zringring 21359 The ring of integers is a ...
zringrng 21360 The ring of integers is a ...
zringabl 21361 The ring of integers is an...
zringgrp 21362 The ring of integers is an...
zringbas 21363 The integers are the base ...
zringplusg 21364 The addition operation of ...
zringsub 21365 The subtraction of element...
zringmulg 21366 The multiplication (group ...
zringmulr 21367 The multiplication operati...
zring0 21368 The zero element of the ri...
zring1 21369 The unity element of the r...
zringnzr 21370 The ring of integers is a ...
dvdsrzring 21371 Ring divisibility in the r...
zringlpirlem1 21372 Lemma for ~ zringlpir . A...
zringlpirlem2 21373 Lemma for ~ zringlpir . A...
zringlpirlem3 21374 Lemma for ~ zringlpir . A...
zringinvg 21375 The additive inverse of an...
zringunit 21376 The units of ` ZZ ` are th...
zringlpir 21377 The integers are a princip...
zringndrg 21378 The integers are not a div...
zringcyg 21379 The integers are a cyclic ...
zringsubgval 21380 Subtraction in the ring of...
zringmpg 21381 The multiplicative group o...
prmirredlem 21382 A positive integer is irre...
dfprm2 21383 The positive irreducible e...
prmirred 21384 The irreducible elements o...
expghm 21385 Exponentiation is a group ...
mulgghm2 21386 The powers of a group elem...
mulgrhm 21387 The powers of the element ...
mulgrhm2 21388 The powers of the element ...
irinitoringc 21389 The ring of integers is an...
nzerooringczr 21390 There is no zero object in...
pzriprnglem1 21391 Lemma 1 for ~ pzriprng : `...
pzriprnglem2 21392 Lemma 2 for ~ pzriprng : ...
pzriprnglem3 21393 Lemma 3 for ~ pzriprng : ...
pzriprnglem4 21394 Lemma 4 for ~ pzriprng : `...
pzriprnglem5 21395 Lemma 5 for ~ pzriprng : `...
pzriprnglem6 21396 Lemma 6 for ~ pzriprng : `...
pzriprnglem7 21397 Lemma 7 for ~ pzriprng : `...
pzriprnglem8 21398 Lemma 8 for ~ pzriprng : `...
pzriprnglem9 21399 Lemma 9 for ~ pzriprng : ...
pzriprnglem10 21400 Lemma 10 for ~ pzriprng : ...
pzriprnglem11 21401 Lemma 11 for ~ pzriprng : ...
pzriprnglem12 21402 Lemma 12 for ~ pzriprng : ...
pzriprnglem13 21403 Lemma 13 for ~ pzriprng : ...
pzriprnglem14 21404 Lemma 14 for ~ pzriprng : ...
pzriprngALT 21405 The non-unital ring ` ( ZZ...
pzriprng1ALT 21406 The ring unity of the ring...
pzriprng 21407 The non-unital ring ` ( ZZ...
pzriprng1 21408 The ring unity of the ring...
zrhval 21417 Define the unique homomorp...
zrhval2 21418 Alternate value of the ` Z...
zrhmulg 21419 Value of the ` ZRHom ` hom...
zrhrhmb 21420 The ` ZRHom ` homomorphism...
zrhrhm 21421 The ` ZRHom ` homomorphism...
zrh1 21422 Interpretation of 1 in a r...
zrh0 21423 Interpretation of 0 in a r...
zrhpropd 21424 The ` ZZ ` ring homomorphi...
zlmval 21425 Augment an abelian group w...
zlmlem 21426 Lemma for ~ zlmbas and ~ z...
zlmbas 21427 Base set of a ` ZZ ` -modu...
zlmplusg 21428 Group operation of a ` ZZ ...
zlmmulr 21429 Ring operation of a ` ZZ `...
zlmsca 21430 Scalar ring of a ` ZZ ` -m...
zlmvsca 21431 Scalar multiplication oper...
zlmlmod 21432 The ` ZZ ` -module operati...
chrval 21433 Definition substitution of...
chrcl 21434 Closure of the characteris...
chrid 21435 The canonical ` ZZ ` ring ...
chrdvds 21436 The ` ZZ ` ring homomorphi...
chrcong 21437 If two integers are congru...
dvdschrmulg 21438 In a ring, any multiple of...
fermltlchr 21439 A generalization of Fermat...
chrnzr 21440 Nonzero rings are precisel...
chrrhm 21441 The characteristic restric...
domnchr 21442 The characteristic of a do...
znlidl 21443 The set ` n ZZ ` is an ide...
zncrng2 21444 Making a commutative ring ...
znval 21445 The value of the ` Z/nZ ` ...
znle 21446 The value of the ` Z/nZ ` ...
znval2 21447 Self-referential expressio...
znbaslem 21448 Lemma for ~ znbas . (Cont...
znbas2 21449 The base set of ` Z/nZ ` i...
znadd 21450 The additive structure of ...
znmul 21451 The multiplicative structu...
znzrh 21452 The ` ZZ ` ring homomorphi...
znbas 21453 The base set of ` Z/nZ ` s...
zncrng 21454 ` Z/nZ ` is a commutative ...
znzrh2 21455 The ` ZZ ` ring homomorphi...
znzrhval 21456 The ` ZZ ` ring homomorphi...
znzrhfo 21457 The ` ZZ ` ring homomorphi...
zncyg 21458 The group ` ZZ / n ZZ ` is...
zndvds 21459 Express equality of equiva...
zndvds0 21460 Special case of ~ zndvds w...
znf1o 21461 The function ` F ` enumera...
zzngim 21462 The ` ZZ ` ring homomorphi...
znle2 21463 The ordering of the ` Z/nZ...
znleval 21464 The ordering of the ` Z/nZ...
znleval2 21465 The ordering of the ` Z/nZ...
zntoslem 21466 Lemma for ~ zntos . (Cont...
zntos 21467 The ` Z/nZ ` structure is ...
znhash 21468 The ` Z/nZ ` structure has...
znfi 21469 The ` Z/nZ ` structure is ...
znfld 21470 The ` Z/nZ ` structure is ...
znidomb 21471 The ` Z/nZ ` structure is ...
znchr 21472 Cyclic rings are defined b...
znunit 21473 The units of ` Z/nZ ` are ...
znunithash 21474 The size of the unit group...
znrrg 21475 The regular elements of ` ...
cygznlem1 21476 Lemma for ~ cygzn . (Cont...
cygznlem2a 21477 Lemma for ~ cygzn . (Cont...
cygznlem2 21478 Lemma for ~ cygzn . (Cont...
cygznlem3 21479 A cyclic group with ` n ` ...
cygzn 21480 A cyclic group with ` n ` ...
cygth 21481 The "fundamental theorem o...
cyggic 21482 Cyclic groups are isomorph...
frgpcyg 21483 A free group is cyclic iff...
freshmansdream 21484 For a prime number ` P ` ,...
frobrhm 21485 In a commutative ring with...
cnmsgnsubg 21486 The signs form a multiplic...
cnmsgnbas 21487 The base set of the sign s...
cnmsgngrp 21488 The group of signs under m...
psgnghm 21489 The sign is a homomorphism...
psgnghm2 21490 The sign is a homomorphism...
psgninv 21491 The sign of a permutation ...
psgnco 21492 Multiplicativity of the pe...
zrhpsgnmhm 21493 Embedding of permutation s...
zrhpsgninv 21494 The embedded sign of a per...
evpmss 21495 Even permutations are perm...
psgnevpmb 21496 A class is an even permuta...
psgnodpm 21497 A permutation which is odd...
psgnevpm 21498 A permutation which is eve...
psgnodpmr 21499 If a permutation has sign ...
zrhpsgnevpm 21500 The sign of an even permut...
zrhpsgnodpm 21501 The sign of an odd permuta...
cofipsgn 21502 Composition of any class `...
zrhpsgnelbas 21503 Embedding of permutation s...
zrhcopsgnelbas 21504 Embedding of permutation s...
evpmodpmf1o 21505 The function for performin...
pmtrodpm 21506 A transposition is an odd ...
psgnfix1 21507 A permutation of a finite ...
psgnfix2 21508 A permutation of a finite ...
psgndiflemB 21509 Lemma 1 for ~ psgndif . (...
psgndiflemA 21510 Lemma 2 for ~ psgndif . (...
psgndif 21511 Embedding of permutation s...
copsgndif 21512 Embedding of permutation s...
rebase 21515 The base of the field of r...
remulg 21516 The multiplication (group ...
resubdrg 21517 The real numbers form a di...
resubgval 21518 Subtraction in the field o...
replusg 21519 The addition operation of ...
remulr 21520 The multiplication operati...
re0g 21521 The zero element of the fi...
re1r 21522 The unity element of the f...
rele2 21523 The ordering relation of t...
relt 21524 The ordering relation of t...
reds 21525 The distance of the field ...
redvr 21526 The division operation of ...
retos 21527 The real numbers are a tot...
refld 21528 The real numbers form a fi...
refldcj 21529 The conjugation operation ...
resrng 21530 The real numbers form a st...
regsumsupp 21531 The group sum over the rea...
rzgrp 21532 The quotient group ` RR / ...
isphl 21537 The predicate "is a genera...
phllvec 21538 A pre-Hilbert space is a l...
phllmod 21539 A pre-Hilbert space is a l...
phlsrng 21540 The scalar ring of a pre-H...
phllmhm 21541 The inner product of a pre...
ipcl 21542 Closure of the inner produ...
ipcj 21543 Conjugate of an inner prod...
iporthcom 21544 Orthogonality (meaning inn...
ip0l 21545 Inner product with a zero ...
ip0r 21546 Inner product with a zero ...
ipeq0 21547 The inner product of a vec...
ipdir 21548 Distributive law for inner...
ipdi 21549 Distributive law for inner...
ip2di 21550 Distributive law for inner...
ipsubdir 21551 Distributive law for inner...
ipsubdi 21552 Distributive law for inner...
ip2subdi 21553 Distributive law for inner...
ipass 21554 Associative law for inner ...
ipassr 21555 "Associative" law for seco...
ipassr2 21556 "Associative" law for inne...
ipffval 21557 The inner product operatio...
ipfval 21558 The inner product operatio...
ipfeq 21559 If the inner product opera...
ipffn 21560 The inner product operatio...
phlipf 21561 The inner product operatio...
ip2eq 21562 Two vectors are equal iff ...
isphld 21563 Properties that determine ...
phlpropd 21564 If two structures have the...
ssipeq 21565 The inner product on a sub...
phssipval 21566 The inner product on a sub...
phssip 21567 The inner product (as a fu...
phlssphl 21568 A subspace of an inner pro...
ocvfval 21575 The orthocomplement operat...
ocvval 21576 Value of the orthocompleme...
elocv 21577 Elementhood in the orthoco...
ocvi 21578 Property of a member of th...
ocvss 21579 The orthocomplement of a s...
ocvocv 21580 A set is contained in its ...
ocvlss 21581 The orthocomplement of a s...
ocv2ss 21582 Orthocomplements reverse s...
ocvin 21583 An orthocomplement has tri...
ocvsscon 21584 Two ways to say that ` S `...
ocvlsp 21585 The orthocomplement of a l...
ocv0 21586 The orthocomplement of the...
ocvz 21587 The orthocomplement of the...
ocv1 21588 The orthocomplement of the...
unocv 21589 The orthocomplement of a u...
iunocv 21590 The orthocomplement of an ...
cssval 21591 The set of closed subspace...
iscss 21592 The predicate "is a closed...
cssi 21593 Property of a closed subsp...
cssss 21594 A closed subspace is a sub...
iscss2 21595 It is sufficient to prove ...
ocvcss 21596 The orthocomplement of any...
cssincl 21597 The zero subspace is a clo...
css0 21598 The zero subspace is a clo...
css1 21599 The whole space is a close...
csslss 21600 A closed subspace of a pre...
lsmcss 21601 A subset of a pre-Hilbert ...
cssmre 21602 The closed subspaces of a ...
mrccss 21603 The Moore closure correspo...
thlval 21604 Value of the Hilbert latti...
thlbas 21605 Base set of the Hilbert la...
thlle 21606 Ordering on the Hilbert la...
thlleval 21607 Ordering on the Hilbert la...
thloc 21608 Orthocomplement on the Hil...
pjfval 21615 The value of the projectio...
pjdm 21616 A subspace is in the domai...
pjpm 21617 The projection map is a pa...
pjfval2 21618 Value of the projection ma...
pjval 21619 Value of the projection ma...
pjdm2 21620 A subspace is in the domai...
pjff 21621 A projection is a linear o...
pjf 21622 A projection is a function...
pjf2 21623 A projection is a function...
pjfo 21624 A projection is a surjecti...
pjcss 21625 A projection subspace is a...
ocvpj 21626 The orthocomplement of a p...
ishil 21627 The predicate "is a Hilber...
ishil2 21628 The predicate "is a Hilber...
isobs 21629 The predicate "is an ortho...
obsip 21630 The inner product of two e...
obsipid 21631 A basis element has length...
obsrcl 21632 Reverse closure for an ort...
obsss 21633 An orthonormal basis is a ...
obsne0 21634 A basis element is nonzero...
obsocv 21635 An orthonormal basis has t...
obs2ocv 21636 The double orthocomplement...
obselocv 21637 A basis element is in the ...
obs2ss 21638 A basis has no proper subs...
obslbs 21639 An orthogonal basis is a l...
reldmdsmm 21642 The direct sum is a well-b...
dsmmval 21643 Value of the module direct...
dsmmbase 21644 Base set of the module dir...
dsmmval2 21645 Self-referential definitio...
dsmmbas2 21646 Base set of the direct sum...
dsmmfi 21647 For finite products, the d...
dsmmelbas 21648 Membership in the finitely...
dsmm0cl 21649 The all-zero vector is con...
dsmmacl 21650 The finite hull is closed ...
prdsinvgd2 21651 Negation of a single coord...
dsmmsubg 21652 The finite hull of a produ...
dsmmlss 21653 The finite hull of a produ...
dsmmlmod 21654 The direct sum of a family...
frlmval 21657 Value of the "free module"...
frlmlmod 21658 The free module is a modul...
frlmpws 21659 The free module as a restr...
frlmlss 21660 The base set of the free m...
frlmpwsfi 21661 The finite free module is ...
frlmsca 21662 The ring of scalars of a f...
frlm0 21663 Zero in a free module (rin...
frlmbas 21664 Base set of the free modul...
frlmelbas 21665 Membership in the base set...
frlmrcl 21666 If a free module is inhabi...
frlmbasfsupp 21667 Elements of the free modul...
frlmbasmap 21668 Elements of the free modul...
frlmbasf 21669 Elements of the free modul...
frlmlvec 21670 The free module over a div...
frlmfibas 21671 The base set of the finite...
elfrlmbasn0 21672 If the dimension of a free...
frlmplusgval 21673 Addition in a free module....
frlmsubgval 21674 Subtraction in a free modu...
frlmvscafval 21675 Scalar multiplication in a...
frlmvplusgvalc 21676 Coordinates of a sum with ...
frlmvscaval 21677 Coordinates of a scalar mu...
frlmplusgvalb 21678 Addition in a free module ...
frlmvscavalb 21679 Scalar multiplication in a...
frlmvplusgscavalb 21680 Addition combined with sca...
frlmgsum 21681 Finite commutative sums in...
frlmsplit2 21682 Restriction is homomorphic...
frlmsslss 21683 A subset of a free module ...
frlmsslss2 21684 A subset of a free module ...
frlmbas3 21685 An element of the base set...
mpofrlmd 21686 Elements of the free modul...
frlmip 21687 The inner product of a fre...
frlmipval 21688 The inner product of a fre...
frlmphllem 21689 Lemma for ~ frlmphl . (Co...
frlmphl 21690 Conditions for a free modu...
uvcfval 21693 Value of the unit-vector g...
uvcval 21694 Value of a single unit vec...
uvcvval 21695 Value of a unit vector coo...
uvcvvcl 21696 A coordinate of a unit vec...
uvcvvcl2 21697 A unit vector coordinate i...
uvcvv1 21698 The unit vector is one at ...
uvcvv0 21699 The unit vector is zero at...
uvcff 21700 Domain and codomain of the...
uvcf1 21701 In a nonzero ring, each un...
uvcresum 21702 Any element of a free modu...
frlmssuvc1 21703 A scalar multiple of a uni...
frlmssuvc2 21704 A nonzero scalar multiple ...
frlmsslsp 21705 A subset of a free module ...
frlmlbs 21706 The unit vectors comprise ...
frlmup1 21707 Any assignment of unit vec...
frlmup2 21708 The evaluation map has the...
frlmup3 21709 The range of such an evalu...
frlmup4 21710 Universal property of the ...
ellspd 21711 The elements of the span o...
elfilspd 21712 Simplified version of ~ el...
rellindf 21717 The independent-family pre...
islinds 21718 Property of an independent...
linds1 21719 An independent set of vect...
linds2 21720 An independent set of vect...
islindf 21721 Property of an independent...
islinds2 21722 Expanded property of an in...
islindf2 21723 Property of an independent...
lindff 21724 Functional property of a l...
lindfind 21725 A linearly independent fam...
lindsind 21726 A linearly independent set...
lindfind2 21727 In a linearly independent ...
lindsind2 21728 In a linearly independent ...
lindff1 21729 A linearly independent fam...
lindfrn 21730 The range of an independen...
f1lindf 21731 Rearranging and deleting e...
lindfres 21732 Any restriction of an inde...
lindsss 21733 Any subset of an independe...
f1linds 21734 A family constructed from ...
islindf3 21735 In a nonzero ring, indepen...
lindfmm 21736 Linear independence of a f...
lindsmm 21737 Linear independence of a s...
lindsmm2 21738 The monomorphic image of a...
lsslindf 21739 Linear independence is unc...
lsslinds 21740 Linear independence is unc...
islbs4 21741 A basis is an independent ...
lbslinds 21742 A basis is independent. (...
islinds3 21743 A subset is linearly indep...
islinds4 21744 A set is independent in a ...
lmimlbs 21745 The isomorphic image of a ...
lmiclbs 21746 Having a basis is an isomo...
islindf4 21747 A family is independent if...
islindf5 21748 A family is independent if...
indlcim 21749 An independent, spanning f...
lbslcic 21750 A module with a basis is i...
lmisfree 21751 A module has a basis iff i...
lvecisfrlm 21752 Every vector space is isom...
lmimco 21753 The composition of two iso...
lmictra 21754 Module isomorphism is tran...
uvcf1o 21755 In a nonzero ring, the map...
uvcendim 21756 In a nonzero ring, the num...
frlmisfrlm 21757 A free module is isomorphi...
frlmiscvec 21758 Every free module is isomo...
isassa 21765 The properties of an assoc...
assalem 21766 The properties of an assoc...
assaass 21767 Left-associative property ...
assaassr 21768 Right-associative property...
assalmod 21769 An associative algebra is ...
assaring 21770 An associative algebra is ...
assasca 21771 The scalars of an associat...
assa2ass 21772 Left- and right-associativ...
assa2ass2 21773 Left- and right-associativ...
isassad 21774 Sufficient condition for b...
issubassa3 21775 A subring that is also a s...
issubassa 21776 The subalgebras of an asso...
sraassab 21777 A subring algebra is an as...
sraassa 21778 The subring algebra over a...
sraassaOLD 21779 Obsolete version of ~ sraa...
rlmassa 21780 The ring module over a com...
assapropd 21781 If two structures have the...
aspval 21782 Value of the algebraic clo...
asplss 21783 The algebraic span of a se...
aspid 21784 The algebraic span of a su...
aspsubrg 21785 The algebraic span of a se...
aspss 21786 Span preserves subset orde...
aspssid 21787 A set of vectors is a subs...
asclfval 21788 Function value of the alge...
asclval 21789 Value of a mapped algebra ...
asclfn 21790 Unconditional functionalit...
asclf 21791 The algebra scalar lifting...
asclghm 21792 The algebra scalar lifting...
ascl0 21793 The scalar 0 embedded into...
ascl1 21794 The scalar 1 embedded into...
asclmul1 21795 Left multiplication by a l...
asclmul2 21796 Right multiplication by a ...
ascldimul 21797 The algebra scalar lifting...
asclinvg 21798 The group inverse (negatio...
asclrhm 21799 The algebra scalar lifting...
rnascl 21800 The set of lifted scalars ...
issubassa2 21801 A subring of a unital alge...
rnasclsubrg 21802 The scalar multiples of th...
rnasclmulcl 21803 (Vector) multiplication is...
rnasclassa 21804 The scalar multiples of th...
ressascl 21805 The lifting of scalars is ...
asclpropd 21806 If two structures have the...
aspval2 21807 The algebraic closure is t...
assamulgscmlem1 21808 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21809 Lemma for ~ assamulgscm (i...
assamulgscm 21810 Exponentiation of a scalar...
asclmulg 21811 Apply group multiplication...
zlmassa 21812 The ` ZZ ` -module operati...
reldmpsr 21823 The multivariate power ser...
psrval 21824 Value of the multivariate ...
psrvalstr 21825 The multivariate power ser...
psrbag 21826 Elementhood in the set of ...
psrbagf 21827 A finite bag is a function...
psrbagfsupp 21828 Finite bags have finite su...
snifpsrbag 21829 A bag containing one eleme...
fczpsrbag 21830 The constant function equa...
psrbaglesupp 21831 The support of a dominated...
psrbaglecl 21832 The set of finite bags is ...
psrbagaddcl 21833 The sum of two finite bags...
psrbagcon 21834 The analogue of the statem...
psrbaglefi 21835 There are finitely many ba...
psrbagconcl 21836 The complement of a bag is...
psrbagleadd1 21837 The analogue of " ` X <_ F...
psrbagconf1o 21838 Bag complementation is a b...
gsumbagdiaglem 21839 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21840 Two-dimensional commutatio...
psrass1lem 21841 A group sum commutation us...
psrbas 21842 The base set of the multiv...
psrelbas 21843 An element of the set of p...
psrelbasfun 21844 An element of the set of p...
psrplusg 21845 The addition operation of ...
psradd 21846 The addition operation of ...
psraddcl 21847 Closure of the power serie...
psraddclOLD 21848 Obsolete version of ~ psra...
rhmpsrlem1 21849 Lemma for ~ rhmpsr et al. ...
rhmpsrlem2 21850 Lemma for ~ rhmpsr et al. ...
psrmulr 21851 The multiplication operati...
psrmulfval 21852 The multiplication operati...
psrmulval 21853 The multiplication operati...
psrmulcllem 21854 Closure of the power serie...
psrmulcl 21855 Closure of the power serie...
psrsca 21856 The scalar field of the mu...
psrvscafval 21857 The scalar multiplication ...
psrvsca 21858 The scalar multiplication ...
psrvscaval 21859 The scalar multiplication ...
psrvscacl 21860 Closure of the power serie...
psr0cl 21861 The zero element of the ri...
psr0lid 21862 The zero element of the ri...
psrnegcl 21863 The negative function in t...
psrlinv 21864 The negative function in t...
psrgrp 21865 The ring of power series i...
psrgrpOLD 21866 Obsolete version of ~ psrg...
psr0 21867 The zero element of the ri...
psrneg 21868 The negative function of t...
psrlmod 21869 The ring of power series i...
psr1cl 21870 The identity element of th...
psrlidm 21871 The identity element of th...
psrridm 21872 The identity element of th...
psrass1 21873 Associative identity for t...
psrdi 21874 Distributive law for the r...
psrdir 21875 Distributive law for the r...
psrass23l 21876 Associative identity for t...
psrcom 21877 Commutative law for the ri...
psrass23 21878 Associative identities for...
psrring 21879 The ring of power series i...
psr1 21880 The identity element of th...
psrcrng 21881 The ring of power series i...
psrassa 21882 The ring of power series i...
resspsrbas 21883 A restricted power series ...
resspsradd 21884 A restricted power series ...
resspsrmul 21885 A restricted power series ...
resspsrvsca 21886 A restricted power series ...
subrgpsr 21887 A subring of the base ring...
psrascl 21888 Value of the scalar inject...
psrasclcl 21889 A scalar is lifted into a ...
mvrfval 21890 Value of the generating el...
mvrval 21891 Value of the generating el...
mvrval2 21892 Value of the generating el...
mvrid 21893 The ` X i ` -th coefficien...
mvrf 21894 The power series variable ...
mvrf1 21895 The power series variable ...
mvrcl2 21896 A power series variable is...
reldmmpl 21897 The multivariate polynomia...
mplval 21898 Value of the set of multiv...
mplbas 21899 Base set of the set of mul...
mplelbas 21900 Property of being a polyno...
mvrcl 21901 A power series variable is...
mvrf2 21902 The power series/polynomia...
mplrcl 21903 Reverse closure for the po...
mplelsfi 21904 A polynomial treated as a ...
mplval2 21905 Self-referential expressio...
mplbasss 21906 The set of polynomials is ...
mplelf 21907 A polynomial is defined as...
mplsubglem 21908 If ` A ` is an ideal of se...
mpllsslem 21909 If ` A ` is an ideal of su...
mplsubglem2 21910 Lemma for ~ mplsubg and ~ ...
mplsubg 21911 The set of polynomials is ...
mpllss 21912 The set of polynomials is ...
mplsubrglem 21913 Lemma for ~ mplsubrg . (C...
mplsubrg 21914 The set of polynomials is ...
mpl0 21915 The zero polynomial. (Con...
mplplusg 21916 Value of addition in a pol...
mplmulr 21917 Value of multiplication in...
mpladd 21918 The addition operation on ...
mplneg 21919 The negative function on m...
mplmul 21920 The multiplication operati...
mpl1 21921 The identity element of th...
mplsca 21922 The scalar field of a mult...
mplvsca2 21923 The scalar multiplication ...
mplvsca 21924 The scalar multiplication ...
mplvscaval 21925 The scalar multiplication ...
mplgrp 21926 The polynomial ring is a g...
mpllmod 21927 The polynomial ring is a l...
mplring 21928 The polynomial ring is a r...
mpllvec 21929 The polynomial ring is a v...
mplcrng 21930 The polynomial ring is a c...
mplassa 21931 The polynomial ring is an ...
mplringd 21932 The polynomial ring is a r...
mpllmodd 21933 The polynomial ring is a l...
ressmplbas2 21934 The base set of a restrict...
ressmplbas 21935 A restricted polynomial al...
ressmpladd 21936 A restricted polynomial al...
ressmplmul 21937 A restricted polynomial al...
ressmplvsca 21938 A restricted power series ...
subrgmpl 21939 A subring of the base ring...
subrgmvr 21940 The variables in a subring...
subrgmvrf 21941 The variables in a polynom...
mplmon 21942 A monomial is a polynomial...
mplmonmul 21943 The product of two monomia...
mplcoe1 21944 Decompose a polynomial int...
mplcoe3 21945 Decompose a monomial in on...
mplcoe5lem 21946 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21947 Decompose a monomial into ...
mplcoe2 21948 Decompose a monomial into ...
mplbas2 21949 An alternative expression ...
ltbval 21950 Value of the well-order on...
ltbwe 21951 The finite bag order is a ...
reldmopsr 21952 Lemma for ordered power se...
opsrval 21953 The value of the "ordered ...
opsrle 21954 An alternative expression ...
opsrval2 21955 Self-referential expressio...
opsrbaslem 21956 Get a component of the ord...
opsrbas 21957 The base set of the ordere...
opsrplusg 21958 The addition operation of ...
opsrmulr 21959 The multiplication operati...
opsrvsca 21960 The scalar product operati...
opsrsca 21961 The scalar ring of the ord...
opsrtoslem1 21962 Lemma for ~ opsrtos . (Co...
opsrtoslem2 21963 Lemma for ~ opsrtos . (Co...
opsrtos 21964 The ordered power series s...
opsrso 21965 The ordered power series s...
opsrcrng 21966 The ring of ordered power ...
opsrassa 21967 The ring of ordered power ...
mplmon2 21968 Express a scaled monomial....
psrbag0 21969 The empty bag is a bag. (...
psrbagsn 21970 A singleton bag is a bag. ...
mplascl 21971 Value of the scalar inject...
mplasclf 21972 The scalar injection is a ...
subrgascl 21973 The scalar injection funct...
subrgasclcl 21974 The scalars in a polynomia...
mplmon2cl 21975 A scaled monomial is a pol...
mplmon2mul 21976 Product of scaled monomial...
mplind 21977 Prove a property of polyno...
mplcoe4 21978 Decompose a polynomial int...
evlslem4 21983 The support of a tensor pr...
psrbagev1 21984 A bag of multipliers provi...
psrbagev2 21985 Closure of a sum using a b...
evlslem2 21986 A linear function on the p...
evlslem3 21987 Lemma for ~ evlseu . Poly...
evlslem6 21988 Lemma for ~ evlseu . Fini...
evlslem1 21989 Lemma for ~ evlseu , give ...
evlseu 21990 For a given interpretation...
reldmevls 21991 Well-behaved binary operat...
mpfrcl 21992 Reverse closure for the se...
evlsval 21993 Value of the polynomial ev...
evlsval2 21994 Characterizing properties ...
evlsrhm 21995 Polynomial evaluation is a...
evlssca 21996 Polynomial evaluation maps...
evlsvar 21997 Polynomial evaluation maps...
evlsgsumadd 21998 Polynomial evaluation maps...
evlsgsummul 21999 Polynomial evaluation maps...
evlspw 22000 Polynomial evaluation for ...
evlsvarpw 22001 Polynomial evaluation for ...
evlval 22002 Value of the simple/same r...
evlrhm 22003 The simple evaluation map ...
evlsscasrng 22004 The evaluation of a scalar...
evlsca 22005 Simple polynomial evaluati...
evlsvarsrng 22006 The evaluation of the vari...
evlvar 22007 Simple polynomial evaluati...
mpfconst 22008 Constants are multivariate...
mpfproj 22009 Projections are multivaria...
mpfsubrg 22010 Polynomial functions are a...
mpff 22011 Polynomial functions are f...
mpfaddcl 22012 The sum of multivariate po...
mpfmulcl 22013 The product of multivariat...
mpfind 22014 Prove a property of polyno...
selvffval 22020 Value of the "variable sel...
selvfval 22021 Value of the "variable sel...
selvval 22022 Value of the "variable sel...
reldmmhp 22024 The domain of the homogene...
mhpfval 22025 Value of the "homogeneous ...
mhpval 22026 Value of the "homogeneous ...
ismhp 22027 Property of being a homoge...
ismhp2 22028 Deduce a homogeneous polyn...
ismhp3 22029 A polynomial is homogeneou...
mhprcl 22030 Reverse closure for homoge...
mhpmpl 22031 A homogeneous polynomial i...
mhpdeg 22032 All nonzero terms of a hom...
mhp0cl 22033 The zero polynomial is hom...
mhpsclcl 22034 A scalar (or constant) pol...
mhpvarcl 22035 A power series variable is...
mhpmulcl 22036 A product of homogeneous p...
mhppwdeg 22037 Degree of a homogeneous po...
mhpaddcl 22038 Homogeneous polynomials ar...
mhpinvcl 22039 Homogeneous polynomials ar...
mhpsubg 22040 Homogeneous polynomials fo...
mhpvscacl 22041 Homogeneous polynomials ar...
mhplss 22042 Homogeneous polynomials fo...
psdffval 22044 Value of the power series ...
psdfval 22045 Give a map between power s...
psdval 22046 Evaluate the partial deriv...
psdcoef 22047 Coefficient of a term of t...
psdcl 22048 The derivative of a power ...
psdmplcl 22049 The derivative of a polyno...
psdadd 22050 The derivative of a sum is...
psdvsca 22051 The derivative of a scaled...
psdmullem 22052 Lemma for ~ psdmul . Tran...
psdmul 22053 Product rule for power ser...
psd1 22054 The derivative of one is z...
psdascl 22055 The derivative of a consta...
psdmvr 22056 The partial derivative of ...
psdpw 22057 Power rule for partial der...
psr1baslem 22069 The set of finite bags on ...
psr1val 22070 Value of the ring of univa...
psr1crng 22071 The ring of univariate pow...
psr1assa 22072 The ring of univariate pow...
psr1tos 22073 The ordered power series s...
psr1bas2 22074 The base set of the ring o...
psr1bas 22075 The base set of the ring o...
vr1val 22076 The value of the generator...
vr1cl2 22077 The variable ` X ` is a me...
ply1val 22078 The value of the set of un...
ply1bas 22079 The value of the base set ...
ply1basOLD 22080 Obsolete version of ~ ply1...
ply1lss 22081 Univariate polynomials for...
ply1subrg 22082 Univariate polynomials for...
ply1crng 22083 The ring of univariate pol...
ply1assa 22084 The ring of univariate pol...
psr1bascl 22085 A univariate power series ...
psr1basf 22086 Univariate power series ba...
ply1basf 22087 Univariate polynomial base...
ply1bascl 22088 A univariate polynomial is...
ply1bascl2 22089 A univariate polynomial is...
coe1fval 22090 Value of the univariate po...
coe1fv 22091 Value of an evaluated coef...
fvcoe1 22092 Value of a multivariate co...
coe1fval3 22093 Univariate power series co...
coe1f2 22094 Functionality of univariat...
coe1fval2 22095 Univariate polynomial coef...
coe1f 22096 Functionality of univariat...
coe1fvalcl 22097 A coefficient of a univari...
coe1sfi 22098 Finite support of univaria...
coe1fsupp 22099 The coefficient vector of ...
mptcoe1fsupp 22100 A mapping involving coeffi...
coe1ae0 22101 The coefficient vector of ...
vr1cl 22102 The generator of a univari...
opsr0 22103 Zero in the ordered power ...
opsr1 22104 One in the ordered power s...
psr1plusg 22105 Value of addition in a uni...
psr1vsca 22106 Value of scalar multiplica...
psr1mulr 22107 Value of multiplication in...
ply1plusg 22108 Value of addition in a uni...
ply1vsca 22109 Value of scalar multiplica...
ply1mulr 22110 Value of multiplication in...
ply1ass23l 22111 Associative identity with ...
ressply1bas2 22112 The base set of a restrict...
ressply1bas 22113 A restricted polynomial al...
ressply1add 22114 A restricted polynomial al...
ressply1mul 22115 A restricted polynomial al...
ressply1vsca 22116 A restricted power series ...
subrgply1 22117 A subring of the base ring...
gsumply1subr 22118 Evaluate a group sum in a ...
psrbaspropd 22119 Property deduction for pow...
psrplusgpropd 22120 Property deduction for pow...
mplbaspropd 22121 Property deduction for pol...
psropprmul 22122 Reversing multiplication i...
ply1opprmul 22123 Reversing multiplication i...
00ply1bas 22124 Lemma for ~ ply1basfvi and...
ply1basfvi 22125 Protection compatibility o...
ply1plusgfvi 22126 Protection compatibility o...
ply1baspropd 22127 Property deduction for uni...
ply1plusgpropd 22128 Property deduction for uni...
opsrring 22129 Ordered power series form ...
opsrlmod 22130 Ordered power series form ...
psr1ring 22131 Univariate power series fo...
ply1ring 22132 Univariate polynomials for...
psr1lmod 22133 Univariate power series fo...
psr1sca 22134 Scalars of a univariate po...
psr1sca2 22135 Scalars of a univariate po...
ply1lmod 22136 Univariate polynomials for...
ply1sca 22137 Scalars of a univariate po...
ply1sca2 22138 Scalars of a univariate po...
ply1ascl0 22139 The zero scalar as a polyn...
ply1ascl1 22140 The multiplicative identit...
ply1mpl0 22141 The univariate polynomial ...
ply10s0 22142 Zero times a univariate po...
ply1mpl1 22143 The univariate polynomial ...
ply1ascl 22144 The univariate polynomial ...
subrg1ascl 22145 The scalar injection funct...
subrg1asclcl 22146 The scalars in a polynomia...
subrgvr1 22147 The variables in a subring...
subrgvr1cl 22148 The variables in a polynom...
coe1z 22149 The coefficient vector of ...
coe1add 22150 The coefficient vector of ...
coe1addfv 22151 A particular coefficient o...
coe1subfv 22152 A particular coefficient o...
coe1mul2lem1 22153 An equivalence for ~ coe1m...
coe1mul2lem2 22154 An equivalence for ~ coe1m...
coe1mul2 22155 The coefficient vector of ...
coe1mul 22156 The coefficient vector of ...
ply1moncl 22157 Closure of the expression ...
ply1tmcl 22158 Closure of the expression ...
coe1tm 22159 Coefficient vector of a po...
coe1tmfv1 22160 Nonzero coefficient of a p...
coe1tmfv2 22161 Zero coefficient of a poly...
coe1tmmul2 22162 Coefficient vector of a po...
coe1tmmul 22163 Coefficient vector of a po...
coe1tmmul2fv 22164 Function value of a right-...
coe1pwmul 22165 Coefficient vector of a po...
coe1pwmulfv 22166 Function value of a right-...
ply1scltm 22167 A scalar is a term with ze...
coe1sclmul 22168 Coefficient vector of a po...
coe1sclmulfv 22169 A single coefficient of a ...
coe1sclmul2 22170 Coefficient vector of a po...
ply1sclf 22171 A scalar polynomial is a p...
ply1sclcl 22172 The value of the algebra s...
coe1scl 22173 Coefficient vector of a sc...
ply1sclid 22174 Recover the base scalar fr...
ply1sclf1 22175 The polynomial scalar func...
ply1scl0 22176 The zero scalar is zero. ...
ply1scl0OLD 22177 Obsolete version of ~ ply1...
ply1scln0 22178 Nonzero scalars create non...
ply1scl1 22179 The one scalar is the unit...
ply1scl1OLD 22180 Obsolete version of ~ ply1...
ply1idvr1 22181 The identity of a polynomi...
ply1idvr1OLD 22182 Obsolete version of ~ ply1...
cply1mul 22183 The product of two constan...
ply1coefsupp 22184 The decomposition of a uni...
ply1coe 22185 Decompose a univariate pol...
eqcoe1ply1eq 22186 Two polynomials over the s...
ply1coe1eq 22187 Two polynomials over the s...
cply1coe0 22188 All but the first coeffici...
cply1coe0bi 22189 A polynomial is constant (...
coe1fzgsumdlem 22190 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 22191 Value of an evaluated coef...
ply1scleq 22192 Equality of a constant pol...
ply1chr 22193 The characteristic of a po...
gsumsmonply1 22194 A finite group sum of scal...
gsummoncoe1 22195 A coefficient of the polyn...
gsumply1eq 22196 Two univariate polynomials...
lply1binom 22197 The binomial theorem for l...
lply1binomsc 22198 The binomial theorem for l...
ply1fermltlchr 22199 Fermat's little theorem fo...
reldmevls1 22204 Well-behaved binary operat...
ply1frcl 22205 Reverse closure for the se...
evls1fval 22206 Value of the univariate po...
evls1val 22207 Value of the univariate po...
evls1rhmlem 22208 Lemma for ~ evl1rhm and ~ ...
evls1rhm 22209 Polynomial evaluation is a...
evls1sca 22210 Univariate polynomial eval...
evls1gsumadd 22211 Univariate polynomial eval...
evls1gsummul 22212 Univariate polynomial eval...
evls1pw 22213 Univariate polynomial eval...
evls1varpw 22214 Univariate polynomial eval...
evl1fval 22215 Value of the simple/same r...
evl1val 22216 Value of the simple/same r...
evl1fval1lem 22217 Lemma for ~ evl1fval1 . (...
evl1fval1 22218 Value of the simple/same r...
evl1rhm 22219 Polynomial evaluation is a...
fveval1fvcl 22220 The function value of the ...
evl1sca 22221 Polynomial evaluation maps...
evl1scad 22222 Polynomial evaluation buil...
evl1var 22223 Polynomial evaluation maps...
evl1vard 22224 Polynomial evaluation buil...
evls1var 22225 Univariate polynomial eval...
evls1scasrng 22226 The evaluation of a scalar...
evls1varsrng 22227 The evaluation of the vari...
evl1addd 22228 Polynomial evaluation buil...
evl1subd 22229 Polynomial evaluation buil...
evl1muld 22230 Polynomial evaluation buil...
evl1vsd 22231 Polynomial evaluation buil...
evl1expd 22232 Polynomial evaluation buil...
pf1const 22233 Constants are polynomial f...
pf1id 22234 The identity is a polynomi...
pf1subrg 22235 Polynomial functions are a...
pf1rcl 22236 Reverse closure for the se...
pf1f 22237 Polynomial functions are f...
mpfpf1 22238 Convert a multivariate pol...
pf1mpf 22239 Convert a univariate polyn...
pf1addcl 22240 The sum of multivariate po...
pf1mulcl 22241 The product of multivariat...
pf1ind 22242 Prove a property of polyno...
evl1gsumdlem 22243 Lemma for ~ evl1gsumd (ind...
evl1gsumd 22244 Polynomial evaluation buil...
evl1gsumadd 22245 Univariate polynomial eval...
evl1gsumaddval 22246 Value of a univariate poly...
evl1gsummul 22247 Univariate polynomial eval...
evl1varpw 22248 Univariate polynomial eval...
evl1varpwval 22249 Value of a univariate poly...
evl1scvarpw 22250 Univariate polynomial eval...
evl1scvarpwval 22251 Value of a univariate poly...
evl1gsummon 22252 Value of a univariate poly...
evls1scafv 22253 Value of the univariate po...
evls1expd 22254 Univariate polynomial eval...
evls1varpwval 22255 Univariate polynomial eval...
evls1fpws 22256 Evaluation of a univariate...
ressply1evl 22257 Evaluation of a univariate...
evls1addd 22258 Univariate polynomial eval...
evls1muld 22259 Univariate polynomial eval...
evls1vsca 22260 Univariate polynomial eval...
asclply1subcl 22261 Closure of the algebra sca...
evls1fvcl 22262 Variant of ~ fveval1fvcl f...
evls1maprhm 22263 The function ` F ` mapping...
evls1maplmhm 22264 The function ` F ` mapping...
evls1maprnss 22265 The function ` F ` mapping...
evl1maprhm 22266 The function ` F ` mapping...
mhmcompl 22267 The composition of a monoi...
mhmcoaddmpl 22268 Show that the ring homomor...
rhmcomulmpl 22269 Show that the ring homomor...
rhmmpl 22270 Provide a ring homomorphis...
ply1vscl 22271 Closure of scalar multipli...
mhmcoply1 22272 The composition of a monoi...
rhmply1 22273 Provide a ring homomorphis...
rhmply1vr1 22274 A ring homomorphism betwee...
rhmply1vsca 22275 Apply a ring homomorphism ...
rhmply1mon 22276 Apply a ring homomorphism ...
mamufval 22279 Functional value of the ma...
mamuval 22280 Multiplication of two matr...
mamufv 22281 A cell in the multiplicati...
mamudm 22282 The domain of the matrix m...
mamufacex 22283 Every solution of the equa...
mamures 22284 Rows in a matrix product a...
grpvlinv 22285 Tuple-wise left inverse in...
grpvrinv 22286 Tuple-wise right inverse i...
ringvcl 22287 Tuple-wise multiplication ...
mamucl 22288 Operation closure of matri...
mamuass 22289 Matrix multiplication is a...
mamudi 22290 Matrix multiplication dist...
mamudir 22291 Matrix multiplication dist...
mamuvs1 22292 Matrix multiplication dist...
mamuvs2 22293 Matrix multiplication dist...
matbas0pc 22296 There is no matrix with a ...
matbas0 22297 There is no matrix for a n...
matval 22298 Value of the matrix algebr...
matrcl 22299 Reverse closure for the ma...
matbas 22300 The matrix ring has the sa...
matplusg 22301 The matrix ring has the sa...
matsca 22302 The matrix ring has the sa...
matvsca 22303 The matrix ring has the sa...
mat0 22304 The matrix ring has the sa...
matinvg 22305 The matrix ring has the sa...
mat0op 22306 Value of a zero matrix as ...
matsca2 22307 The scalars of the matrix ...
matbas2 22308 The base set of the matrix...
matbas2i 22309 A matrix is a function. (...
matbas2d 22310 The base set of the matrix...
eqmat 22311 Two square matrices of the...
matecl 22312 Each entry (according to W...
matecld 22313 Each entry (according to W...
matplusg2 22314 Addition in the matrix rin...
matvsca2 22315 Scalar multiplication in t...
matlmod 22316 The matrix ring is a linea...
matgrp 22317 The matrix ring is a group...
matvscl 22318 Closure of the scalar mult...
matsubg 22319 The matrix ring has the sa...
matplusgcell 22320 Addition in the matrix rin...
matsubgcell 22321 Subtraction in the matrix ...
matinvgcell 22322 Additive inversion in the ...
matvscacell 22323 Scalar multiplication in t...
matgsum 22324 Finite commutative sums in...
matmulr 22325 Multiplication in the matr...
mamumat1cl 22326 The identity matrix (as op...
mat1comp 22327 The components of the iden...
mamulid 22328 The identity matrix (as op...
mamurid 22329 The identity matrix (as op...
matring 22330 Existence of the matrix ri...
matassa 22331 Existence of the matrix al...
matmulcell 22332 Multiplication in the matr...
mpomatmul 22333 Multiplication of two N x ...
mat1 22334 Value of an identity matri...
mat1ov 22335 Entries of an identity mat...
mat1bas 22336 The identity matrix is a m...
matsc 22337 The identity matrix multip...
ofco2 22338 Distribution law for the f...
oftpos 22339 The transposition of the v...
mattposcl 22340 The transpose of a square ...
mattpostpos 22341 The transpose of the trans...
mattposvs 22342 The transposition of a mat...
mattpos1 22343 The transposition of the i...
tposmap 22344 The transposition of an I ...
mamutpos 22345 Behavior of transposes in ...
mattposm 22346 Multiplying two transposed...
matgsumcl 22347 Closure of a group sum ove...
madetsumid 22348 The identity summand in th...
matepmcl 22349 Each entry of a matrix wit...
matepm2cl 22350 Each entry of a matrix wit...
madetsmelbas 22351 A summand of the determina...
madetsmelbas2 22352 A summand of the determina...
mat0dimbas0 22353 The empty set is the one a...
mat0dim0 22354 The zero of the algebra of...
mat0dimid 22355 The identity of the algebr...
mat0dimscm 22356 The scalar multiplication ...
mat0dimcrng 22357 The algebra of matrices wi...
mat1dimelbas 22358 A matrix with dimension 1 ...
mat1dimbas 22359 A matrix with dimension 1 ...
mat1dim0 22360 The zero of the algebra of...
mat1dimid 22361 The identity of the algebr...
mat1dimscm 22362 The scalar multiplication ...
mat1dimmul 22363 The ring multiplication in...
mat1dimcrng 22364 The algebra of matrices wi...
mat1f1o 22365 There is a 1-1 function fr...
mat1rhmval 22366 The value of the ring homo...
mat1rhmelval 22367 The value of the ring homo...
mat1rhmcl 22368 The value of the ring homo...
mat1f 22369 There is a function from a...
mat1ghm 22370 There is a group homomorph...
mat1mhm 22371 There is a monoid homomorp...
mat1rhm 22372 There is a ring homomorphi...
mat1rngiso 22373 There is a ring isomorphis...
mat1ric 22374 A ring is isomorphic to th...
dmatval 22379 The set of ` N ` x ` N ` d...
dmatel 22380 A ` N ` x ` N ` diagonal m...
dmatmat 22381 An ` N ` x ` N ` diagonal ...
dmatid 22382 The identity matrix is a d...
dmatelnd 22383 An extradiagonal entry of ...
dmatmul 22384 The product of two diagona...
dmatsubcl 22385 The difference of two diag...
dmatsgrp 22386 The set of diagonal matric...
dmatmulcl 22387 The product of two diagona...
dmatsrng 22388 The set of diagonal matric...
dmatcrng 22389 The subring of diagonal ma...
dmatscmcl 22390 The multiplication of a di...
scmatval 22391 The set of ` N ` x ` N ` s...
scmatel 22392 An ` N ` x ` N ` scalar ma...
scmatscmid 22393 A scalar matrix can be exp...
scmatscmide 22394 An entry of a scalar matri...
scmatscmiddistr 22395 Distributive law for scala...
scmatmat 22396 An ` N ` x ` N ` scalar ma...
scmate 22397 An entry of an ` N ` x ` N...
scmatmats 22398 The set of an ` N ` x ` N ...
scmateALT 22399 Alternate proof of ~ scmat...
scmatscm 22400 The multiplication of a ma...
scmatid 22401 The identity matrix is a s...
scmatdmat 22402 A scalar matrix is a diago...
scmataddcl 22403 The sum of two scalar matr...
scmatsubcl 22404 The difference of two scal...
scmatmulcl 22405 The product of two scalar ...
scmatsgrp 22406 The set of scalar matrices...
scmatsrng 22407 The set of scalar matrices...
scmatcrng 22408 The subring of scalar matr...
scmatsgrp1 22409 The set of scalar matrices...
scmatsrng1 22410 The set of scalar matrices...
smatvscl 22411 Closure of the scalar mult...
scmatlss 22412 The set of scalar matrices...
scmatstrbas 22413 The set of scalar matrices...
scmatrhmval 22414 The value of the ring homo...
scmatrhmcl 22415 The value of the ring homo...
scmatf 22416 There is a function from a...
scmatfo 22417 There is a function from a...
scmatf1 22418 There is a 1-1 function fr...
scmatf1o 22419 There is a bijection betwe...
scmatghm 22420 There is a group homomorph...
scmatmhm 22421 There is a monoid homomorp...
scmatrhm 22422 There is a ring homomorphi...
scmatrngiso 22423 There is a ring isomorphis...
scmatric 22424 A ring is isomorphic to ev...
mat0scmat 22425 The empty matrix over a ri...
mat1scmat 22426 A 1-dimensional matrix ove...
mvmulfval 22429 Functional value of the ma...
mvmulval 22430 Multiplication of a vector...
mvmulfv 22431 A cell/element in the vect...
mavmulval 22432 Multiplication of a vector...
mavmulfv 22433 A cell/element in the vect...
mavmulcl 22434 Multiplication of an NxN m...
1mavmul 22435 Multiplication of the iden...
mavmulass 22436 Associativity of the multi...
mavmuldm 22437 The domain of the matrix v...
mavmulsolcl 22438 Every solution of the equa...
mavmul0 22439 Multiplication of a 0-dime...
mavmul0g 22440 The result of the 0-dimens...
mvmumamul1 22441 The multiplication of an M...
mavmumamul1 22442 The multiplication of an N...
marrepfval 22447 First substitution for the...
marrepval0 22448 Second substitution for th...
marrepval 22449 Third substitution for the...
marrepeval 22450 An entry of a matrix with ...
marrepcl 22451 Closure of the row replace...
marepvfval 22452 First substitution for the...
marepvval0 22453 Second substitution for th...
marepvval 22454 Third substitution for the...
marepveval 22455 An entry of a matrix with ...
marepvcl 22456 Closure of the column repl...
ma1repvcl 22457 Closure of the column repl...
ma1repveval 22458 An entry of an identity ma...
mulmarep1el 22459 Element by element multipl...
mulmarep1gsum1 22460 The sum of element by elem...
mulmarep1gsum2 22461 The sum of element by elem...
1marepvmarrepid 22462 Replacing the ith row by 0...
submabas 22465 Any subset of the index se...
submafval 22466 First substitution for a s...
submaval0 22467 Second substitution for a ...
submaval 22468 Third substitution for a s...
submaeval 22469 An entry of a submatrix of...
1marepvsma1 22470 The submatrix of the ident...
mdetfval 22473 First substitution for the...
mdetleib 22474 Full substitution of our d...
mdetleib2 22475 Leibniz' formula can also ...
nfimdetndef 22476 The determinant is not def...
mdetfval1 22477 First substitution of an a...
mdetleib1 22478 Full substitution of an al...
mdet0pr 22479 The determinant function f...
mdet0f1o 22480 The determinant function f...
mdet0fv0 22481 The determinant of the emp...
mdetf 22482 Functionality of the deter...
mdetcl 22483 The determinant evaluates ...
m1detdiag 22484 The determinant of a 1-dim...
mdetdiaglem 22485 Lemma for ~ mdetdiag . Pr...
mdetdiag 22486 The determinant of a diago...
mdetdiagid 22487 The determinant of a diago...
mdet1 22488 The determinant of the ide...
mdetrlin 22489 The determinant function i...
mdetrsca 22490 The determinant function i...
mdetrsca2 22491 The determinant function i...
mdetr0 22492 The determinant of a matri...
mdet0 22493 The determinant of the zer...
mdetrlin2 22494 The determinant function i...
mdetralt 22495 The determinant function i...
mdetralt2 22496 The determinant function i...
mdetero 22497 The determinant function i...
mdettpos 22498 Determinant is invariant u...
mdetunilem1 22499 Lemma for ~ mdetuni . (Co...
mdetunilem2 22500 Lemma for ~ mdetuni . (Co...
mdetunilem3 22501 Lemma for ~ mdetuni . (Co...
mdetunilem4 22502 Lemma for ~ mdetuni . (Co...
mdetunilem5 22503 Lemma for ~ mdetuni . (Co...
mdetunilem6 22504 Lemma for ~ mdetuni . (Co...
mdetunilem7 22505 Lemma for ~ mdetuni . (Co...
mdetunilem8 22506 Lemma for ~ mdetuni . (Co...
mdetunilem9 22507 Lemma for ~ mdetuni . (Co...
mdetuni0 22508 Lemma for ~ mdetuni . (Co...
mdetuni 22509 According to the definitio...
mdetmul 22510 Multiplicativity of the de...
m2detleiblem1 22511 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 22512 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 22513 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 22514 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 22515 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 22516 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 22517 Lemma 4 for ~ m2detleib . ...
m2detleib 22518 Leibniz' Formula for 2x2-m...
mndifsplit 22523 Lemma for ~ maducoeval2 . ...
madufval 22524 First substitution for the...
maduval 22525 Second substitution for th...
maducoeval 22526 An entry of the adjunct (c...
maducoeval2 22527 An entry of the adjunct (c...
maduf 22528 Creating the adjunct of ma...
madutpos 22529 The adjuct of a transposed...
madugsum 22530 The determinant of a matri...
madurid 22531 Multiplying a matrix with ...
madulid 22532 Multiplying the adjunct of...
minmar1fval 22533 First substitution for the...
minmar1val0 22534 Second substitution for th...
minmar1val 22535 Third substitution for the...
minmar1eval 22536 An entry of a matrix for a...
minmar1marrep 22537 The minor matrix is a spec...
minmar1cl 22538 Closure of the row replace...
maducoevalmin1 22539 The coefficients of an adj...
symgmatr01lem 22540 Lemma for ~ symgmatr01 . ...
symgmatr01 22541 Applying a permutation tha...
gsummatr01lem1 22542 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 22543 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 22544 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 22545 Lemma 2 for ~ gsummatr01 ....
gsummatr01 22546 Lemma 1 for ~ smadiadetlem...
marep01ma 22547 Replacing a row of a squar...
smadiadetlem0 22548 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 22549 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 22550 Lemma 1a for ~ smadiadet :...
smadiadetlem2 22551 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 22552 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 22553 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 22554 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 22555 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 22556 Lemma 4 for ~ smadiadet . ...
smadiadet 22557 The determinant of a subma...
smadiadetglem1 22558 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 22559 Lemma 2 for ~ smadiadetg ....
smadiadetg 22560 The determinant of a squar...
smadiadetg0 22561 Lemma for ~ smadiadetr : v...
smadiadetr 22562 The determinant of a squar...
invrvald 22563 If a matrix multiplied wit...
matinv 22564 The inverse of a matrix is...
matunit 22565 A matrix is a unit in the ...
slesolvec 22566 Every solution of a system...
slesolinv 22567 The solution of a system o...
slesolinvbi 22568 The solution of a system o...
slesolex 22569 Every system of linear equ...
cramerimplem1 22570 Lemma 1 for ~ cramerimp : ...
cramerimplem2 22571 Lemma 2 for ~ cramerimp : ...
cramerimplem3 22572 Lemma 3 for ~ cramerimp : ...
cramerimp 22573 One direction of Cramer's ...
cramerlem1 22574 Lemma 1 for ~ cramer . (C...
cramerlem2 22575 Lemma 2 for ~ cramer . (C...
cramerlem3 22576 Lemma 3 for ~ cramer . (C...
cramer0 22577 Special case of Cramer's r...
cramer 22578 Cramer's rule. According ...
pmatring 22579 The set of polynomial matr...
pmatlmod 22580 The set of polynomial matr...
pmatassa 22581 The set of polynomial matr...
pmat0op 22582 The zero polynomial matrix...
pmat1op 22583 The identity polynomial ma...
pmat1ovd 22584 Entries of the identity po...
pmat0opsc 22585 The zero polynomial matrix...
pmat1opsc 22586 The identity polynomial ma...
pmat1ovscd 22587 Entries of the identity po...
pmatcoe1fsupp 22588 For a polynomial matrix th...
1pmatscmul 22589 The scalar product of the ...
cpmat 22596 Value of the constructor o...
cpmatpmat 22597 A constant polynomial matr...
cpmatel 22598 Property of a constant pol...
cpmatelimp 22599 Implication of a set being...
cpmatel2 22600 Another property of a cons...
cpmatelimp2 22601 Another implication of a s...
1elcpmat 22602 The identity of the ring o...
cpmatacl 22603 The set of all constant po...
cpmatinvcl 22604 The set of all constant po...
cpmatmcllem 22605 Lemma for ~ cpmatmcl . (C...
cpmatmcl 22606 The set of all constant po...
cpmatsubgpmat 22607 The set of all constant po...
cpmatsrgpmat 22608 The set of all constant po...
0elcpmat 22609 The zero of the ring of al...
mat2pmatfval 22610 Value of the matrix transf...
mat2pmatval 22611 The result of a matrix tra...
mat2pmatvalel 22612 A (matrix) element of the ...
mat2pmatbas 22613 The result of a matrix tra...
mat2pmatbas0 22614 The result of a matrix tra...
mat2pmatf 22615 The matrix transformation ...
mat2pmatf1 22616 The matrix transformation ...
mat2pmatghm 22617 The transformation of matr...
mat2pmatmul 22618 The transformation of matr...
mat2pmat1 22619 The transformation of the ...
mat2pmatmhm 22620 The transformation of matr...
mat2pmatrhm 22621 The transformation of matr...
mat2pmatlin 22622 The transformation of matr...
0mat2pmat 22623 The transformed zero matri...
idmatidpmat 22624 The transformed identity m...
d0mat2pmat 22625 The transformed empty set ...
d1mat2pmat 22626 The transformation of a ma...
mat2pmatscmxcl 22627 A transformed matrix multi...
m2cpm 22628 The result of a matrix tra...
m2cpmf 22629 The matrix transformation ...
m2cpmf1 22630 The matrix transformation ...
m2cpmghm 22631 The transformation of matr...
m2cpmmhm 22632 The transformation of matr...
m2cpmrhm 22633 The transformation of matr...
m2pmfzmap 22634 The transformed values of ...
m2pmfzgsumcl 22635 Closure of the sum of scal...
cpm2mfval 22636 Value of the inverse matri...
cpm2mval 22637 The result of an inverse m...
cpm2mvalel 22638 A (matrix) element of the ...
cpm2mf 22639 The inverse matrix transfo...
m2cpminvid 22640 The inverse transformation...
m2cpminvid2lem 22641 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 22642 The transformation applied...
m2cpmfo 22643 The matrix transformation ...
m2cpmf1o 22644 The matrix transformation ...
m2cpmrngiso 22645 The transformation of matr...
matcpmric 22646 The ring of matrices over ...
m2cpminv 22647 The inverse matrix transfo...
m2cpminv0 22648 The inverse matrix transfo...
decpmatval0 22651 The matrix consisting of t...
decpmatval 22652 The matrix consisting of t...
decpmate 22653 An entry of the matrix con...
decpmatcl 22654 Closure of the decompositi...
decpmataa0 22655 The matrix consisting of t...
decpmatfsupp 22656 The mapping to the matrice...
decpmatid 22657 The matrix consisting of t...
decpmatmullem 22658 Lemma for ~ decpmatmul . ...
decpmatmul 22659 The matrix consisting of t...
decpmatmulsumfsupp 22660 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 22661 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 22662 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 22663 Write a polynomial matrix ...
pmatcollpw2lem 22664 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 22665 Write a polynomial matrix ...
monmatcollpw 22666 The matrix consisting of t...
pmatcollpwlem 22667 Lemma for ~ pmatcollpw . ...
pmatcollpw 22668 Write a polynomial matrix ...
pmatcollpwfi 22669 Write a polynomial matrix ...
pmatcollpw3lem 22670 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 22671 Write a polynomial matrix ...
pmatcollpw3fi 22672 Write a polynomial matrix ...
pmatcollpw3fi1lem1 22673 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 22674 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 22675 Write a polynomial matrix ...
pmatcollpwscmatlem1 22676 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 22677 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 22678 Write a scalar matrix over...
pm2mpf1lem 22681 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 22682 Value of the transformatio...
pm2mpfval 22683 A polynomial matrix transf...
pm2mpcl 22684 The transformation of poly...
pm2mpf 22685 The transformation of poly...
pm2mpf1 22686 The transformation of poly...
pm2mpcoe1 22687 A coefficient of the polyn...
idpm2idmp 22688 The transformation of the ...
mptcoe1matfsupp 22689 The mapping extracting the...
mply1topmatcllem 22690 Lemma for ~ mply1topmatcl ...
mply1topmatval 22691 A polynomial over matrices...
mply1topmatcl 22692 A polynomial over matrices...
mp2pm2mplem1 22693 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 22694 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 22695 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 22696 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 22697 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 22698 A polynomial over matrices...
pm2mpghmlem2 22699 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 22700 Lemma 1 for pm2mpghm . (C...
pm2mpfo 22701 The transformation of poly...
pm2mpf1o 22702 The transformation of poly...
pm2mpghm 22703 The transformation of poly...
pm2mpgrpiso 22704 The transformation of poly...
pm2mpmhmlem1 22705 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 22706 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 22707 The transformation of poly...
pm2mprhm 22708 The transformation of poly...
pm2mprngiso 22709 The transformation of poly...
pmmpric 22710 The ring of polynomial mat...
monmat2matmon 22711 The transformation of a po...
pm2mp 22712 The transformation of a su...
chmatcl 22715 Closure of the characteris...
chmatval 22716 The entries of the charact...
chpmatfval 22717 Value of the characteristi...
chpmatval 22718 The characteristic polynom...
chpmatply1 22719 The characteristic polynom...
chpmatval2 22720 The characteristic polynom...
chpmat0d 22721 The characteristic polynom...
chpmat1dlem 22722 Lemma for ~ chpmat1d . (C...
chpmat1d 22723 The characteristic polynom...
chpdmatlem0 22724 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 22725 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 22726 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 22727 Lemma 3 for ~ chpdmat . (...
chpdmat 22728 The characteristic polynom...
chpscmat 22729 The characteristic polynom...
chpscmat0 22730 The characteristic polynom...
chpscmatgsumbin 22731 The characteristic polynom...
chpscmatgsummon 22732 The characteristic polynom...
chp0mat 22733 The characteristic polynom...
chpidmat 22734 The characteristic polynom...
chmaidscmat 22735 The characteristic polynom...
fvmptnn04if 22736 The function values of a m...
fvmptnn04ifa 22737 The function value of a ma...
fvmptnn04ifb 22738 The function value of a ma...
fvmptnn04ifc 22739 The function value of a ma...
fvmptnn04ifd 22740 The function value of a ma...
chfacfisf 22741 The "characteristic factor...
chfacfisfcpmat 22742 The "characteristic factor...
chfacffsupp 22743 The "characteristic factor...
chfacfscmulcl 22744 Closure of a scaled value ...
chfacfscmul0 22745 A scaled value of the "cha...
chfacfscmulfsupp 22746 A mapping of scaled values...
chfacfscmulgsum 22747 Breaking up a sum of value...
chfacfpmmulcl 22748 Closure of the value of th...
chfacfpmmul0 22749 The value of the "characte...
chfacfpmmulfsupp 22750 A mapping of values of the...
chfacfpmmulgsum 22751 Breaking up a sum of value...
chfacfpmmulgsum2 22752 Breaking up a sum of value...
cayhamlem1 22753 Lemma 1 for ~ cayleyhamilt...
cpmadurid 22754 The right-hand fundamental...
cpmidgsum 22755 Representation of the iden...
cpmidgsumm2pm 22756 Representation of the iden...
cpmidpmatlem1 22757 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 22758 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 22759 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 22760 Representation of the iden...
cpmadugsumlemB 22761 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 22762 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 22763 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 22764 The product of the charact...
cpmadugsum 22765 The product of the charact...
cpmidgsum2 22766 Representation of the iden...
cpmidg2sum 22767 Equality of two sums repre...
cpmadumatpolylem1 22768 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 22769 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 22770 The product of the charact...
cayhamlem2 22771 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 22772 Lemma for ~ chcoeffeq . (...
chcoeffeq 22773 The coefficients of the ch...
cayhamlem3 22774 Lemma for ~ cayhamlem4 . ...
cayhamlem4 22775 Lemma for ~ cayleyhamilton...
cayleyhamilton0 22776 The Cayley-Hamilton theore...
cayleyhamilton 22777 The Cayley-Hamilton theore...
cayleyhamiltonALT 22778 Alternate proof of ~ cayle...
cayleyhamilton1 22779 The Cayley-Hamilton theore...
istopg 22782 Express the predicate " ` ...
istop2g 22783 Express the predicate " ` ...
uniopn 22784 The union of a subset of a...
iunopn 22785 The indexed union of a sub...
inopn 22786 The intersection of two op...
fitop 22787 A topology is closed under...
fiinopn 22788 The intersection of a none...
iinopn 22789 The intersection of a none...
unopn 22790 The union of two open sets...
0opn 22791 The empty set is an open s...
0ntop 22792 The empty set is not a top...
topopn 22793 The underlying set of a to...
eltopss 22794 A member of a topology is ...
riinopn 22795 A finite indexed relative ...
rintopn 22796 A finite relative intersec...
istopon 22799 Property of being a topolo...
topontop 22800 A topology on a given base...
toponuni 22801 The base set of a topology...
topontopi 22802 A topology on a given base...
toponunii 22803 The base set of a topology...
toptopon 22804 Alternative definition of ...
toptopon2 22805 A topology is the same thi...
topontopon 22806 A topology on a set is a t...
funtopon 22807 The class ` TopOn ` is a f...
toponrestid 22808 Given a topology on a set,...
toponsspwpw 22809 The set of topologies on a...
dmtopon 22810 The domain of ` TopOn ` is...
fntopon 22811 The class ` TopOn ` is a f...
toprntopon 22812 A topology is the same thi...
toponmax 22813 The base set of a topology...
toponss 22814 A member of a topology is ...
toponcom 22815 If ` K ` is a topology on ...
toponcomb 22816 Biconditional form of ~ to...
topgele 22817 The topologies over the sa...
topsn 22818 The only topology on a sin...
istps 22821 Express the predicate "is ...
istps2 22822 Express the predicate "is ...
tpsuni 22823 The base set of a topologi...
tpstop 22824 The topology extractor on ...
tpspropd 22825 A topological space depend...
tpsprop2d 22826 A topological space depend...
topontopn 22827 Express the predicate "is ...
tsettps 22828 If the topology component ...
istpsi 22829 Properties that determine ...
eltpsg 22830 Properties that determine ...
eltpsi 22831 Properties that determine ...
isbasisg 22834 Express the predicate "the...
isbasis2g 22835 Express the predicate "the...
isbasis3g 22836 Express the predicate "the...
basis1 22837 Property of a basis. (Con...
basis2 22838 Property of a basis. (Con...
fiinbas 22839 If a set is closed under f...
basdif0 22840 A basis is not affected by...
baspartn 22841 A disjoint system of sets ...
tgval 22842 The topology generated by ...
tgval2 22843 Definition of a topology g...
eltg 22844 Membership in a topology g...
eltg2 22845 Membership in a topology g...
eltg2b 22846 Membership in a topology g...
eltg4i 22847 An open set in a topology ...
eltg3i 22848 The union of a set of basi...
eltg3 22849 Membership in a topology g...
tgval3 22850 Alternate expression for t...
tg1 22851 Property of a member of a ...
tg2 22852 Property of a member of a ...
bastg 22853 A member of a basis is a s...
unitg 22854 The topology generated by ...
tgss 22855 Subset relation for genera...
tgcl 22856 Show that a basis generate...
tgclb 22857 The property ~ tgcl can be...
tgtopon 22858 A basis generates a topolo...
topbas 22859 A topology is its own basi...
tgtop 22860 A topology is its own basi...
eltop 22861 Membership in a topology, ...
eltop2 22862 Membership in a topology. ...
eltop3 22863 Membership in a topology. ...
fibas 22864 A collection of finite int...
tgdom 22865 A space has no more open s...
tgiun 22866 The indexed union of a set...
tgidm 22867 The topology generator fun...
bastop 22868 Two ways to express that a...
tgtop11 22869 The topology generation fu...
0top 22870 The singleton of the empty...
en1top 22871 ` { (/) } ` is the only to...
en2top 22872 If a topology has two elem...
tgss3 22873 A criterion for determinin...
tgss2 22874 A criterion for determinin...
basgen 22875 Given a topology ` J ` , s...
basgen2 22876 Given a topology ` J ` , s...
2basgen 22877 Conditions that determine ...
tgfiss 22878 If a subbase is included i...
tgdif0 22879 A generated topology is no...
bastop1 22880 A subset of a topology is ...
bastop2 22881 A version of ~ bastop1 tha...
distop 22882 The discrete topology on a...
topnex 22883 The class of all topologie...
distopon 22884 The discrete topology on a...
sn0topon 22885 The singleton of the empty...
sn0top 22886 The singleton of the empty...
indislem 22887 A lemma to eliminate some ...
indistopon 22888 The indiscrete topology on...
indistop 22889 The indiscrete topology on...
indisuni 22890 The base set of the indisc...
fctop 22891 The finite complement topo...
fctop2 22892 The finite complement topo...
cctop 22893 The countable complement t...
ppttop 22894 The particular point topol...
pptbas 22895 The particular point topol...
epttop 22896 The excluded point topolog...
indistpsx 22897 The indiscrete topology on...
indistps 22898 The indiscrete topology on...
indistps2 22899 The indiscrete topology on...
indistpsALT 22900 The indiscrete topology on...
indistps2ALT 22901 The indiscrete topology on...
distps 22902 The discrete topology on a...
fncld 22909 The closed-set generator i...
cldval 22910 The set of closed sets of ...
ntrfval 22911 The interior function on t...
clsfval 22912 The closure function on th...
cldrcl 22913 Reverse closure of the clo...
iscld 22914 The predicate "the class `...
iscld2 22915 A subset of the underlying...
cldss 22916 A closed set is a subset o...
cldss2 22917 The set of closed sets is ...
cldopn 22918 The complement of a closed...
isopn2 22919 A subset of the underlying...
opncld 22920 The complement of an open ...
difopn 22921 The difference of a closed...
topcld 22922 The underlying set of a to...
ntrval 22923 The interior of a subset o...
clsval 22924 The closure of a subset of...
0cld 22925 The empty set is closed. ...
iincld 22926 The indexed intersection o...
intcld 22927 The intersection of a set ...
uncld 22928 The union of two closed se...
cldcls 22929 A closed subset equals its...
incld 22930 The intersection of two cl...
riincld 22931 An indexed relative inters...
iuncld 22932 A finite indexed union of ...
unicld 22933 A finite union of closed s...
clscld 22934 The closure of a subset of...
clsf 22935 The closure function is a ...
ntropn 22936 The interior of a subset o...
clsval2 22937 Express closure in terms o...
ntrval2 22938 Interior expressed in term...
ntrdif 22939 An interior of a complemen...
clsdif 22940 A closure of a complement ...
clsss 22941 Subset relationship for cl...
ntrss 22942 Subset relationship for in...
sscls 22943 A subset of a topology's u...
ntrss2 22944 A subset includes its inte...
ssntr 22945 An open subset of a set is...
clsss3 22946 The closure of a subset of...
ntrss3 22947 The interior of a subset o...
ntrin 22948 A pairwise intersection of...
cmclsopn 22949 The complement of a closur...
cmntrcld 22950 The complement of an inter...
iscld3 22951 A subset is closed iff it ...
iscld4 22952 A subset is closed iff it ...
isopn3 22953 A subset is open iff it eq...
clsidm 22954 The closure operation is i...
ntridm 22955 The interior operation is ...
clstop 22956 The closure of a topology'...
ntrtop 22957 The interior of a topology...
0ntr 22958 A subset with an empty int...
clsss2 22959 If a subset is included in...
elcls 22960 Membership in a closure. ...
elcls2 22961 Membership in a closure. ...
clsndisj 22962 Any open set containing a ...
ntrcls0 22963 A subset whose closure has...
ntreq0 22964 Two ways to say that a sub...
cldmre 22965 The closed sets of a topol...
mrccls 22966 Moore closure generalizes ...
cls0 22967 The closure of the empty s...
ntr0 22968 The interior of the empty ...
isopn3i 22969 An open subset equals its ...
elcls3 22970 Membership in a closure in...
opncldf1 22971 A bijection useful for con...
opncldf2 22972 The values of the open-clo...
opncldf3 22973 The values of the converse...
isclo 22974 A set ` A ` is clopen iff ...
isclo2 22975 A set ` A ` is clopen iff ...
discld 22976 The open sets of a discret...
sn0cld 22977 The closed sets of the top...
indiscld 22978 The closed sets of an indi...
mretopd 22979 A Moore collection which i...
toponmre 22980 The topologies over a give...
cldmreon 22981 The closed sets of a topol...
iscldtop 22982 A family is the closed set...
mreclatdemoBAD 22983 The closed subspaces of a ...
neifval 22986 Value of the neighborhood ...
neif 22987 The neighborhood function ...
neiss2 22988 A set with a neighborhood ...
neival 22989 Value of the set of neighb...
isnei 22990 The predicate "the class `...
neiint 22991 An intuitive definition of...
isneip 22992 The predicate "the class `...
neii1 22993 A neighborhood is included...
neisspw 22994 The neighborhoods of any s...
neii2 22995 Property of a neighborhood...
neiss 22996 Any neighborhood of a set ...
ssnei 22997 A set is included in any o...
elnei 22998 A point belongs to any of ...
0nnei 22999 The empty set is not a nei...
neips 23000 A neighborhood of a set is...
opnneissb 23001 An open set is a neighborh...
opnssneib 23002 Any superset of an open se...
ssnei2 23003 Any subset ` M ` of ` X ` ...
neindisj 23004 Any neighborhood of an ele...
opnneiss 23005 An open set is a neighborh...
opnneip 23006 An open set is a neighborh...
opnnei 23007 A set is open iff it is a ...
tpnei 23008 The underlying set of a to...
neiuni 23009 The union of the neighborh...
neindisj2 23010 A point ` P ` belongs to t...
topssnei 23011 A finer topology has more ...
innei 23012 The intersection of two ne...
opnneiid 23013 Only an open set is a neig...
neissex 23014 For any neighborhood ` N `...
0nei 23015 The empty set is a neighbo...
neipeltop 23016 Lemma for ~ neiptopreu . ...
neiptopuni 23017 Lemma for ~ neiptopreu . ...
neiptoptop 23018 Lemma for ~ neiptopreu . ...
neiptopnei 23019 Lemma for ~ neiptopreu . ...
neiptopreu 23020 If, to each element ` P ` ...
lpfval 23025 The limit point function o...
lpval 23026 The set of limit points of...
islp 23027 The predicate "the class `...
lpsscls 23028 The limit points of a subs...
lpss 23029 The limit points of a subs...
lpdifsn 23030 ` P ` is a limit point of ...
lpss3 23031 Subset relationship for li...
islp2 23032 The predicate " ` P ` is a...
islp3 23033 The predicate " ` P ` is a...
maxlp 23034 A point is a limit point o...
clslp 23035 The closure of a subset of...
islpi 23036 A point belonging to a set...
cldlp 23037 A subset of a topological ...
isperf 23038 Definition of a perfect sp...
isperf2 23039 Definition of a perfect sp...
isperf3 23040 A perfect space is a topol...
perflp 23041 The limit points of a perf...
perfi 23042 Property of a perfect spac...
perftop 23043 A perfect space is a topol...
restrcl 23044 Reverse closure for the su...
restbas 23045 A subspace topology basis ...
tgrest 23046 A subspace can be generate...
resttop 23047 A subspace topology is a t...
resttopon 23048 A subspace topology is a t...
restuni 23049 The underlying set of a su...
stoig 23050 The topological space buil...
restco 23051 Composition of subspaces. ...
restabs 23052 Equivalence of being a sub...
restin 23053 When the subspace region i...
restuni2 23054 The underlying set of a su...
resttopon2 23055 The underlying set of a su...
rest0 23056 The subspace topology indu...
restsn 23057 The only subspace topology...
restsn2 23058 The subspace topology indu...
restcld 23059 A closed set of a subspace...
restcldi 23060 A closed set is closed in ...
restcldr 23061 A set which is closed in t...
restopnb 23062 If ` B ` is an open subset...
ssrest 23063 If ` K ` is a finer topolo...
restopn2 23064 If ` A ` is open, then ` B...
restdis 23065 A subspace of a discrete t...
restfpw 23066 The restriction of the set...
neitr 23067 The neighborhood of a trac...
restcls 23068 A closure in a subspace to...
restntr 23069 An interior in a subspace ...
restlp 23070 The limit points of a subs...
restperf 23071 Perfection of a subspace. ...
perfopn 23072 An open subset of a perfec...
resstopn 23073 The topology of a restrict...
resstps 23074 A restricted topological s...
ordtbaslem 23075 Lemma for ~ ordtbas . In ...
ordtval 23076 Value of the order topolog...
ordtuni 23077 Value of the order topolog...
ordtbas2 23078 Lemma for ~ ordtbas . (Co...
ordtbas 23079 In a total order, the fini...
ordttopon 23080 Value of the order topolog...
ordtopn1 23081 An upward ray ` ( P , +oo ...
ordtopn2 23082 A downward ray ` ( -oo , P...
ordtopn3 23083 An open interval ` ( A , B...
ordtcld1 23084 A downward ray ` ( -oo , P...
ordtcld2 23085 An upward ray ` [ P , +oo ...
ordtcld3 23086 A closed interval ` [ A , ...
ordttop 23087 The order topology is a to...
ordtcnv 23088 The order dual generates t...
ordtrest 23089 The subspace topology of a...
ordtrest2lem 23090 Lemma for ~ ordtrest2 . (...
ordtrest2 23091 An interval-closed set ` A...
letopon 23092 The topology of the extend...
letop 23093 The topology of the extend...
letopuni 23094 The topology of the extend...
xrstopn 23095 The topology component of ...
xrstps 23096 The extended real number s...
leordtvallem1 23097 Lemma for ~ leordtval . (...
leordtvallem2 23098 Lemma for ~ leordtval . (...
leordtval2 23099 The topology of the extend...
leordtval 23100 The topology of the extend...
iccordt 23101 A closed interval is close...
iocpnfordt 23102 An unbounded above open in...
icomnfordt 23103 An unbounded above open in...
iooordt 23104 An open interval is open i...
reordt 23105 The real numbers are an op...
lecldbas 23106 The set of closed interval...
pnfnei 23107 A neighborhood of ` +oo ` ...
mnfnei 23108 A neighborhood of ` -oo ` ...
ordtrestixx 23109 The restriction of the les...
ordtresticc 23110 The restriction of the les...
lmrel 23117 The topological space conv...
lmrcl 23118 Reverse closure for the co...
lmfval 23119 The relation "sequence ` f...
cnfval 23120 The set of all continuous ...
cnpfval 23121 The function mapping the p...
iscn 23122 The predicate "the class `...
cnpval 23123 The set of all functions f...
iscnp 23124 The predicate "the class `...
iscn2 23125 The predicate "the class `...
iscnp2 23126 The predicate "the class `...
cntop1 23127 Reverse closure for a cont...
cntop2 23128 Reverse closure for a cont...
cnptop1 23129 Reverse closure for a func...
cnptop2 23130 Reverse closure for a func...
iscnp3 23131 The predicate "the class `...
cnprcl 23132 Reverse closure for a func...
cnf 23133 A continuous function is a...
cnpf 23134 A continuous function at p...
cnpcl 23135 The value of a continuous ...
cnf2 23136 A continuous function is a...
cnpf2 23137 A continuous function at p...
cnprcl2 23138 Reverse closure for a func...
tgcn 23139 The continuity predicate w...
tgcnp 23140 The "continuous at a point...
subbascn 23141 The continuity predicate w...
ssidcn 23142 The identity function is a...
cnpimaex 23143 Property of a function con...
idcn 23144 A restricted identity func...
lmbr 23145 Express the binary relatio...
lmbr2 23146 Express the binary relatio...
lmbrf 23147 Express the binary relatio...
lmconst 23148 A constant sequence conver...
lmcvg 23149 Convergence property of a ...
iscnp4 23150 The predicate "the class `...
cnpnei 23151 A condition for continuity...
cnima 23152 An open subset of the codo...
cnco 23153 The composition of two con...
cnpco 23154 The composition of a funct...
cnclima 23155 A closed subset of the cod...
iscncl 23156 A characterization of a co...
cncls2i 23157 Property of the preimage o...
cnntri 23158 Property of the preimage o...
cnclsi 23159 Property of the image of a...
cncls2 23160 Continuity in terms of clo...
cncls 23161 Continuity in terms of clo...
cnntr 23162 Continuity in terms of int...
cnss1 23163 If the topology ` K ` is f...
cnss2 23164 If the topology ` K ` is f...
cncnpi 23165 A continuous function is c...
cnsscnp 23166 The set of continuous func...
cncnp 23167 A continuous function is c...
cncnp2 23168 A continuous function is c...
cnnei 23169 Continuity in terms of nei...
cnconst2 23170 A constant function is con...
cnconst 23171 A constant function is con...
cnrest 23172 Continuity of a restrictio...
cnrest2 23173 Equivalence of continuity ...
cnrest2r 23174 Equivalence of continuity ...
cnpresti 23175 One direction of ~ cnprest...
cnprest 23176 Equivalence of continuity ...
cnprest2 23177 Equivalence of point-conti...
cndis 23178 Every function is continuo...
cnindis 23179 Every function is continuo...
cnpdis 23180 If ` A ` is an isolated po...
paste 23181 Pasting lemma. If ` A ` a...
lmfpm 23182 If ` F ` converges, then `...
lmfss 23183 Inclusion of a function ha...
lmcl 23184 Closure of a limit. (Cont...
lmss 23185 Limit on a subspace. (Con...
sslm 23186 A finer topology has fewer...
lmres 23187 A function converges iff i...
lmff 23188 If ` F ` converges, there ...
lmcls 23189 Any convergent sequence of...
lmcld 23190 Any convergent sequence of...
lmcnp 23191 The image of a convergent ...
lmcn 23192 The image of a convergent ...
ist0 23207 The predicate "is a T_0 sp...
ist1 23208 The predicate "is a T_1 sp...
ishaus 23209 The predicate "is a Hausdo...
iscnrm 23210 The property of being comp...
t0sep 23211 Any two topologically indi...
t0dist 23212 Any two distinct points in...
t1sncld 23213 In a T_1 space, singletons...
t1ficld 23214 In a T_1 space, finite set...
hausnei 23215 Neighborhood property of a...
t0top 23216 A T_0 space is a topologic...
t1top 23217 A T_1 space is a topologic...
haustop 23218 A Hausdorff space is a top...
isreg 23219 The predicate "is a regula...
regtop 23220 A regular space is a topol...
regsep 23221 In a regular space, every ...
isnrm 23222 The predicate "is a normal...
nrmtop 23223 A normal space is a topolo...
cnrmtop 23224 A completely normal space ...
iscnrm2 23225 The property of being comp...
ispnrm 23226 The property of being perf...
pnrmnrm 23227 A perfectly normal space i...
pnrmtop 23228 A perfectly normal space i...
pnrmcld 23229 A closed set in a perfectl...
pnrmopn 23230 An open set in a perfectly...
ist0-2 23231 The predicate "is a T_0 sp...
ist0-3 23232 The predicate "is a T_0 sp...
cnt0 23233 The preimage of a T_0 topo...
ist1-2 23234 An alternate characterizat...
t1t0 23235 A T_1 space is a T_0 space...
ist1-3 23236 A space is T_1 iff every p...
cnt1 23237 The preimage of a T_1 topo...
ishaus2 23238 Express the predicate " ` ...
haust1 23239 A Hausdorff space is a T_1...
hausnei2 23240 The Hausdorff condition st...
cnhaus 23241 The preimage of a Hausdorf...
nrmsep3 23242 In a normal space, given a...
nrmsep2 23243 In a normal space, any two...
nrmsep 23244 In a normal space, disjoin...
isnrm2 23245 An alternate characterizat...
isnrm3 23246 A topological space is nor...
cnrmi 23247 A subspace of a completely...
cnrmnrm 23248 A completely normal space ...
restcnrm 23249 A subspace of a completely...
resthauslem 23250 Lemma for ~ resthaus and s...
lpcls 23251 The limit points of the cl...
perfcls 23252 A subset of a perfect spac...
restt0 23253 A subspace of a T_0 topolo...
restt1 23254 A subspace of a T_1 topolo...
resthaus 23255 A subspace of a Hausdorff ...
t1sep2 23256 Any two points in a T_1 sp...
t1sep 23257 Any two distinct points in...
sncld 23258 A singleton is closed in a...
sshauslem 23259 Lemma for ~ sshaus and sim...
sst0 23260 A topology finer than a T_...
sst1 23261 A topology finer than a T_...
sshaus 23262 A topology finer than a Ha...
regsep2 23263 In a regular space, a clos...
isreg2 23264 A topological space is reg...
dnsconst 23265 If a continuous mapping to...
ordtt1 23266 The order topology is T_1 ...
lmmo 23267 A sequence in a Hausdorff ...
lmfun 23268 The convergence relation i...
dishaus 23269 A discrete topology is Hau...
ordthauslem 23270 Lemma for ~ ordthaus . (C...
ordthaus 23271 The order topology of a to...
xrhaus 23272 The topology of the extend...
iscmp 23275 The predicate "is a compac...
cmpcov 23276 An open cover of a compact...
cmpcov2 23277 Rewrite ~ cmpcov for the c...
cmpcovf 23278 Combine ~ cmpcov with ~ ac...
cncmp 23279 Compactness is respected b...
fincmp 23280 A finite topology is compa...
0cmp 23281 The singleton of the empty...
cmptop 23282 A compact topology is a to...
rncmp 23283 The image of a compact set...
imacmp 23284 The image of a compact set...
discmp 23285 A discrete topology is com...
cmpsublem 23286 Lemma for ~ cmpsub . (Con...
cmpsub 23287 Two equivalent ways of des...
tgcmp 23288 A topology generated by a ...
cmpcld 23289 A closed subset of a compa...
uncmp 23290 The union of two compact s...
fiuncmp 23291 A finite union of compact ...
sscmp 23292 A subset of a compact topo...
hauscmplem 23293 Lemma for ~ hauscmp . (Co...
hauscmp 23294 A compact subspace of a T2...
cmpfi 23295 If a topology is compact a...
cmpfii 23296 In a compact topology, a s...
bwth 23297 The glorious Bolzano-Weier...
isconn 23300 The predicate ` J ` is a c...
isconn2 23301 The predicate ` J ` is a c...
connclo 23302 The only nonempty clopen s...
conndisj 23303 If a topology is connected...
conntop 23304 A connected topology is a ...
indisconn 23305 The indiscrete topology (o...
dfconn2 23306 An alternate definition of...
connsuba 23307 Connectedness for a subspa...
connsub 23308 Two equivalent ways of say...
cnconn 23309 Connectedness is respected...
nconnsubb 23310 Disconnectedness for a sub...
connsubclo 23311 If a clopen set meets a co...
connima 23312 The image of a connected s...
conncn 23313 A continuous function from...
iunconnlem 23314 Lemma for ~ iunconn . (Co...
iunconn 23315 The indexed union of conne...
unconn 23316 The union of two connected...
clsconn 23317 The closure of a connected...
conncompid 23318 The connected component co...
conncompconn 23319 The connected component co...
conncompss 23320 The connected component co...
conncompcld 23321 The connected component co...
conncompclo 23322 The connected component co...
t1connperf 23323 A connected T_1 space is p...
is1stc 23328 The predicate "is a first-...
is1stc2 23329 An equivalent way of sayin...
1stctop 23330 A first-countable topology...
1stcclb 23331 A property of points in a ...
1stcfb 23332 For any point ` A ` in a f...
is2ndc 23333 The property of being seco...
2ndctop 23334 A second-countable topolog...
2ndci 23335 A countable basis generate...
2ndcsb 23336 Having a countable subbase...
2ndcredom 23337 A second-countable space h...
2ndc1stc 23338 A second-countable space i...
1stcrestlem 23339 Lemma for ~ 1stcrest . (C...
1stcrest 23340 A subspace of a first-coun...
2ndcrest 23341 A subspace of a second-cou...
2ndcctbss 23342 If a topology is second-co...
2ndcdisj 23343 Any disjoint family of ope...
2ndcdisj2 23344 Any disjoint collection of...
2ndcomap 23345 A surjective continuous op...
2ndcsep 23346 A second-countable topolog...
dis2ndc 23347 A discrete space is second...
1stcelcls 23348 A point belongs to the clo...
1stccnp 23349 A mapping is continuous at...
1stccn 23350 A mapping ` X --> Y ` , wh...
islly 23355 The property of being a lo...
isnlly 23356 The property of being an n...
llyeq 23357 Equality theorem for the `...
nllyeq 23358 Equality theorem for the `...
llytop 23359 A locally ` A ` space is a...
nllytop 23360 A locally ` A ` space is a...
llyi 23361 The property of a locally ...
nllyi 23362 The property of an n-local...
nlly2i 23363 Eliminate the neighborhood...
llynlly 23364 A locally ` A ` space is n...
llyssnlly 23365 A locally ` A ` space is n...
llyss 23366 The "locally" predicate re...
nllyss 23367 The "n-locally" predicate ...
subislly 23368 The property of a subspace...
restnlly 23369 If the property ` A ` pass...
restlly 23370 If the property ` A ` pass...
islly2 23371 An alternative expression ...
llyrest 23372 An open subspace of a loca...
nllyrest 23373 An open subspace of an n-l...
loclly 23374 If ` A ` is a local proper...
llyidm 23375 Idempotence of the "locall...
nllyidm 23376 Idempotence of the "n-loca...
toplly 23377 A topology is locally a to...
topnlly 23378 A topology is n-locally a ...
hauslly 23379 A Hausdorff space is local...
hausnlly 23380 A Hausdorff space is n-loc...
hausllycmp 23381 A compact Hausdorff space ...
cldllycmp 23382 A closed subspace of a loc...
lly1stc 23383 First-countability is a lo...
dislly 23384 The discrete space ` ~P X ...
disllycmp 23385 A discrete space is locall...
dis1stc 23386 A discrete space is first-...
hausmapdom 23387 If ` X ` is a first-counta...
hauspwdom 23388 Simplify the cardinal ` A ...
refrel 23395 Refinement is a relation. ...
isref 23396 The property of being a re...
refbas 23397 A refinement covers the sa...
refssex 23398 Every set in a refinement ...
ssref 23399 A subcover is a refinement...
refref 23400 Reflexivity of refinement....
reftr 23401 Refinement is transitive. ...
refun0 23402 Adding the empty set prese...
isptfin 23403 The statement "is a point-...
islocfin 23404 The statement "is a locall...
finptfin 23405 A finite cover is a point-...
ptfinfin 23406 A point covered by a point...
finlocfin 23407 A finite cover of a topolo...
locfintop 23408 A locally finite cover cov...
locfinbas 23409 A locally finite cover mus...
locfinnei 23410 A point covered by a local...
lfinpfin 23411 A locally finite cover is ...
lfinun 23412 Adding a finite set preser...
locfincmp 23413 For a compact space, the l...
unisngl 23414 Taking the union of the se...
dissnref 23415 The set of singletons is a...
dissnlocfin 23416 The set of singletons is l...
locfindis 23417 The locally finite covers ...
locfincf 23418 A locally finite cover in ...
comppfsc 23419 A space where every open c...
kgenval 23422 Value of the compact gener...
elkgen 23423 Value of the compact gener...
kgeni 23424 Property of the open sets ...
kgentopon 23425 The compact generator gene...
kgenuni 23426 The base set of the compac...
kgenftop 23427 The compact generator gene...
kgenf 23428 The compact generator is a...
kgentop 23429 A compactly generated spac...
kgenss 23430 The compact generator gene...
kgenhaus 23431 The compact generator gene...
kgencmp 23432 The compact generator topo...
kgencmp2 23433 The compact generator topo...
kgenidm 23434 The compact generator is i...
iskgen2 23435 A space is compactly gener...
iskgen3 23436 Derive the usual definitio...
llycmpkgen2 23437 A locally compact space is...
cmpkgen 23438 A compact space is compact...
llycmpkgen 23439 A locally compact space is...
1stckgenlem 23440 The one-point compactifica...
1stckgen 23441 A first-countable space is...
kgen2ss 23442 The compact generator pres...
kgencn 23443 A function from a compactl...
kgencn2 23444 A function ` F : J --> K `...
kgencn3 23445 The set of continuous func...
kgen2cn 23446 A continuous function is a...
txval 23451 Value of the binary topolo...
txuni2 23452 The underlying set of the ...
txbasex 23453 The basis for the product ...
txbas 23454 The set of Cartesian produ...
eltx 23455 A set in a product is open...
txtop 23456 The product of two topolog...
ptval 23457 The value of the product t...
ptpjpre1 23458 The preimage of a projecti...
elpt 23459 Elementhood in the bases o...
elptr 23460 A basic open set in the pr...
elptr2 23461 A basic open set in the pr...
ptbasid 23462 The base set of the produc...
ptuni2 23463 The base set for the produ...
ptbasin 23464 The basis for a product to...
ptbasin2 23465 The basis for a product to...
ptbas 23466 The basis for a product to...
ptpjpre2 23467 The basis for a product to...
ptbasfi 23468 The basis for the product ...
pttop 23469 The product topology is a ...
ptopn 23470 A basic open set in the pr...
ptopn2 23471 A sub-basic open set in th...
xkotf 23472 Functionality of function ...
xkobval 23473 Alternative expression for...
xkoval 23474 Value of the compact-open ...
xkotop 23475 The compact-open topology ...
xkoopn 23476 A basic open set of the co...
txtopi 23477 The product of two topolog...
txtopon 23478 The underlying set of the ...
txuni 23479 The underlying set of the ...
txunii 23480 The underlying set of the ...
ptuni 23481 The base set for the produ...
ptunimpt 23482 Base set of a product topo...
pttopon 23483 The base set for the produ...
pttoponconst 23484 The base set for a product...
ptuniconst 23485 The base set for a product...
xkouni 23486 The base set of the compac...
xkotopon 23487 The base set of the compac...
ptval2 23488 The value of the product t...
txopn 23489 The product of two open se...
txcld 23490 The product of two closed ...
txcls 23491 Closure of a rectangle in ...
txss12 23492 Subset property of the top...
txbasval 23493 It is sufficient to consid...
neitx 23494 The Cartesian product of t...
txcnpi 23495 Continuity of a two-argume...
tx1cn 23496 Continuity of the first pr...
tx2cn 23497 Continuity of the second p...
ptpjcn 23498 Continuity of a projection...
ptpjopn 23499 The projection map is an o...
ptcld 23500 A closed box in the produc...
ptcldmpt 23501 A closed box in the produc...
ptclsg 23502 The closure of a box in th...
ptcls 23503 The closure of a box in th...
dfac14lem 23504 Lemma for ~ dfac14 . By e...
dfac14 23505 Theorem ~ ptcls is an equi...
xkoccn 23506 The "constant function" fu...
txcnp 23507 If two functions are conti...
ptcnplem 23508 Lemma for ~ ptcnp . (Cont...
ptcnp 23509 If every projection of a f...
upxp 23510 Universal property of the ...
txcnmpt 23511 A map into the product of ...
uptx 23512 Universal property of the ...
txcn 23513 A map into the product of ...
ptcn 23514 If every projection of a f...
prdstopn 23515 Topology of a structure pr...
prdstps 23516 A structure product of top...
pwstps 23517 A structure power of a top...
txrest 23518 The subspace of a topologi...
txdis 23519 The topological product of...
txindislem 23520 Lemma for ~ txindis . (Co...
txindis 23521 The topological product of...
txdis1cn 23522 A function is jointly cont...
txlly 23523 If the property ` A ` is p...
txnlly 23524 If the property ` A ` is p...
pthaus 23525 The product of a collectio...
ptrescn 23526 Restriction is a continuou...
txtube 23527 The "tube lemma". If ` X ...
txcmplem1 23528 Lemma for ~ txcmp . (Cont...
txcmplem2 23529 Lemma for ~ txcmp . (Cont...
txcmp 23530 The topological product of...
txcmpb 23531 The topological product of...
hausdiag 23532 A topology is Hausdorff if...
hauseqlcld 23533 In a Hausdorff topology, t...
txhaus 23534 The topological product of...
txlm 23535 Two sequences converge iff...
lmcn2 23536 The image of a convergent ...
tx1stc 23537 The topological product of...
tx2ndc 23538 The topological product of...
txkgen 23539 The topological product of...
xkohaus 23540 If the codomain space is H...
xkoptsub 23541 The compact-open topology ...
xkopt 23542 The compact-open topology ...
xkopjcn 23543 Continuity of a projection...
xkoco1cn 23544 If ` F ` is a continuous f...
xkoco2cn 23545 If ` F ` is a continuous f...
xkococnlem 23546 Continuity of the composit...
xkococn 23547 Continuity of the composit...
cnmptid 23548 The identity function is c...
cnmptc 23549 A constant function is con...
cnmpt11 23550 The composition of continu...
cnmpt11f 23551 The composition of continu...
cnmpt1t 23552 The composition of continu...
cnmpt12f 23553 The composition of continu...
cnmpt12 23554 The composition of continu...
cnmpt1st 23555 The projection onto the fi...
cnmpt2nd 23556 The projection onto the se...
cnmpt2c 23557 A constant function is con...
cnmpt21 23558 The composition of continu...
cnmpt21f 23559 The composition of continu...
cnmpt2t 23560 The composition of continu...
cnmpt22 23561 The composition of continu...
cnmpt22f 23562 The composition of continu...
cnmpt1res 23563 The restriction of a conti...
cnmpt2res 23564 The restriction of a conti...
cnmptcom 23565 The argument converse of a...
cnmptkc 23566 The curried first projecti...
cnmptkp 23567 The evaluation of the inne...
cnmptk1 23568 The composition of a curri...
cnmpt1k 23569 The composition of a one-a...
cnmptkk 23570 The composition of two cur...
xkofvcn 23571 Joint continuity of the fu...
cnmptk1p 23572 The evaluation of a currie...
cnmptk2 23573 The uncurrying of a currie...
xkoinjcn 23574 Continuity of "injection",...
cnmpt2k 23575 The currying of a two-argu...
txconn 23576 The topological product of...
imasnopn 23577 If a relation graph is ope...
imasncld 23578 If a relation graph is clo...
imasncls 23579 If a relation graph is clo...
qtopval 23582 Value of the quotient topo...
qtopval2 23583 Value of the quotient topo...
elqtop 23584 Value of the quotient topo...
qtopres 23585 The quotient topology is u...
qtoptop2 23586 The quotient topology is a...
qtoptop 23587 The quotient topology is a...
elqtop2 23588 Value of the quotient topo...
qtopuni 23589 The base set of the quotie...
elqtop3 23590 Value of the quotient topo...
qtoptopon 23591 The base set of the quotie...
qtopid 23592 A quotient map is a contin...
idqtop 23593 The quotient topology indu...
qtopcmplem 23594 Lemma for ~ qtopcmp and ~ ...
qtopcmp 23595 A quotient of a compact sp...
qtopconn 23596 A quotient of a connected ...
qtopkgen 23597 A quotient of a compactly ...
basqtop 23598 An injection maps bases to...
tgqtop 23599 An injection maps generate...
qtopcld 23600 The property of being a cl...
qtopcn 23601 Universal property of a qu...
qtopss 23602 A surjective continuous fu...
qtopeu 23603 Universal property of the ...
qtoprest 23604 If ` A ` is a saturated op...
qtopomap 23605 If ` F ` is a surjective c...
qtopcmap 23606 If ` F ` is a surjective c...
imastopn 23607 The topology of an image s...
imastps 23608 The image of a topological...
qustps 23609 A quotient structure is a ...
kqfval 23610 Value of the function appe...
kqfeq 23611 Two points in the Kolmogor...
kqffn 23612 The topological indistingu...
kqval 23613 Value of the quotient topo...
kqtopon 23614 The Kolmogorov quotient is...
kqid 23615 The topological indistingu...
ist0-4 23616 The topological indistingu...
kqfvima 23617 When the image set is open...
kqsat 23618 Any open set is saturated ...
kqdisj 23619 A version of ~ imain for t...
kqcldsat 23620 Any closed set is saturate...
kqopn 23621 The topological indistingu...
kqcld 23622 The topological indistingu...
kqt0lem 23623 Lemma for ~ kqt0 . (Contr...
isr0 23624 The property " ` J ` is an...
r0cld 23625 The analogue of the T_1 ax...
regr1lem 23626 Lemma for ~ regr1 . (Cont...
regr1lem2 23627 A Kolmogorov quotient of a...
kqreglem1 23628 A Kolmogorov quotient of a...
kqreglem2 23629 If the Kolmogorov quotient...
kqnrmlem1 23630 A Kolmogorov quotient of a...
kqnrmlem2 23631 If the Kolmogorov quotient...
kqtop 23632 The Kolmogorov quotient is...
kqt0 23633 The Kolmogorov quotient is...
kqf 23634 The Kolmogorov quotient is...
r0sep 23635 The separation property of...
nrmr0reg 23636 A normal R_0 space is also...
regr1 23637 A regular space is R_1, wh...
kqreg 23638 The Kolmogorov quotient of...
kqnrm 23639 The Kolmogorov quotient of...
hmeofn 23644 The set of homeomorphisms ...
hmeofval 23645 The set of all the homeomo...
ishmeo 23646 The predicate F is a homeo...
hmeocn 23647 A homeomorphism is continu...
hmeocnvcn 23648 The converse of a homeomor...
hmeocnv 23649 The converse of a homeomor...
hmeof1o2 23650 A homeomorphism is a 1-1-o...
hmeof1o 23651 A homeomorphism is a 1-1-o...
hmeoima 23652 The image of an open set b...
hmeoopn 23653 Homeomorphisms preserve op...
hmeocld 23654 Homeomorphisms preserve cl...
hmeocls 23655 Homeomorphisms preserve cl...
hmeontr 23656 Homeomorphisms preserve in...
hmeoimaf1o 23657 The function mapping open ...
hmeores 23658 The restriction of a homeo...
hmeoco 23659 The composite of two homeo...
idhmeo 23660 The identity function is a...
hmeocnvb 23661 The converse of a homeomor...
hmeoqtop 23662 A homeomorphism is a quoti...
hmph 23663 Express the predicate ` J ...
hmphi 23664 If there is a homeomorphis...
hmphtop 23665 Reverse closure for the ho...
hmphtop1 23666 The relation "being homeom...
hmphtop2 23667 The relation "being homeom...
hmphref 23668 "Is homeomorphic to" is re...
hmphsym 23669 "Is homeomorphic to" is sy...
hmphtr 23670 "Is homeomorphic to" is tr...
hmpher 23671 "Is homeomorphic to" is an...
hmphen 23672 Homeomorphisms preserve th...
hmphsymb 23673 "Is homeomorphic to" is sy...
haushmphlem 23674 Lemma for ~ haushmph and s...
cmphmph 23675 Compactness is a topologic...
connhmph 23676 Connectedness is a topolog...
t0hmph 23677 T_0 is a topological prope...
t1hmph 23678 T_1 is a topological prope...
haushmph 23679 Hausdorff-ness is a topolo...
reghmph 23680 Regularity is a topologica...
nrmhmph 23681 Normality is a topological...
hmph0 23682 A topology homeomorphic to...
hmphdis 23683 Homeomorphisms preserve to...
hmphindis 23684 Homeomorphisms preserve to...
indishmph 23685 Equinumerous sets equipped...
hmphen2 23686 Homeomorphisms preserve th...
cmphaushmeo 23687 A continuous bijection fro...
ordthmeolem 23688 Lemma for ~ ordthmeo . (C...
ordthmeo 23689 An order isomorphism is a ...
txhmeo 23690 Lift a pair of homeomorphi...
txswaphmeolem 23691 Show inverse for the "swap...
txswaphmeo 23692 There is a homeomorphism f...
pt1hmeo 23693 The canonical homeomorphis...
ptuncnv 23694 Exhibit the converse funct...
ptunhmeo 23695 Define a homeomorphism fro...
xpstopnlem1 23696 The function ` F ` used in...
xpstps 23697 A binary product of topolo...
xpstopnlem2 23698 Lemma for ~ xpstopn . (Co...
xpstopn 23699 The topology on a binary p...
ptcmpfi 23700 A topological product of f...
xkocnv 23701 The inverse of the "curryi...
xkohmeo 23702 The Exponential Law for to...
qtopf1 23703 If a quotient map is injec...
qtophmeo 23704 If two functions on a base...
t0kq 23705 A topological space is T_0...
kqhmph 23706 A topological space is T_0...
ist1-5lem 23707 Lemma for ~ ist1-5 and sim...
t1r0 23708 A T_1 space is R_0. That ...
ist1-5 23709 A topological space is T_1...
ishaus3 23710 A topological space is Hau...
nrmreg 23711 A normal T_1 space is regu...
reghaus 23712 A regular T_0 space is Hau...
nrmhaus 23713 A T_1 normal space is Haus...
elmptrab 23714 Membership in a one-parame...
elmptrab2 23715 Membership in a one-parame...
isfbas 23716 The predicate " ` F ` is a...
fbasne0 23717 There are no empty filter ...
0nelfb 23718 No filter base contains th...
fbsspw 23719 A filter base on a set is ...
fbelss 23720 An element of the filter b...
fbdmn0 23721 The domain of a filter bas...
isfbas2 23722 The predicate " ` F ` is a...
fbasssin 23723 A filter base contains sub...
fbssfi 23724 A filter base contains sub...
fbssint 23725 A filter base contains sub...
fbncp 23726 A filter base does not con...
fbun 23727 A necessary and sufficient...
fbfinnfr 23728 No filter base containing ...
opnfbas 23729 The collection of open sup...
trfbas2 23730 Conditions for the trace o...
trfbas 23731 Conditions for the trace o...
isfil 23734 The predicate "is a filter...
filfbas 23735 A filter is a filter base....
0nelfil 23736 The empty set doesn't belo...
fileln0 23737 An element of a filter is ...
filsspw 23738 A filter is a subset of th...
filelss 23739 An element of a filter is ...
filss 23740 A filter is closed under t...
filin 23741 A filter is closed under t...
filtop 23742 The underlying set belongs...
isfil2 23743 Derive the standard axioms...
isfildlem 23744 Lemma for ~ isfild . (Con...
isfild 23745 Sufficient condition for a...
filfi 23746 A filter is closed under t...
filinn0 23747 The intersection of two el...
filintn0 23748 A filter has the finite in...
filn0 23749 The empty set is not a fil...
infil 23750 The intersection of two fi...
snfil 23751 A singleton is a filter. ...
fbasweak 23752 A filter base on any set i...
snfbas 23753 Condition for a singleton ...
fsubbas 23754 A condition for a set to g...
fbasfip 23755 A filter base has the fini...
fbunfip 23756 A helpful lemma for showin...
fgval 23757 The filter generating clas...
elfg 23758 A condition for elements o...
ssfg 23759 A filter base is a subset ...
fgss 23760 A bigger base generates a ...
fgss2 23761 A condition for a filter t...
fgfil 23762 A filter generates itself....
elfilss 23763 An element belongs to a fi...
filfinnfr 23764 No filter containing a fin...
fgcl 23765 A generated filter is a fi...
fgabs 23766 Absorption law for filter ...
neifil 23767 The neighborhoods of a non...
filunibas 23768 Recover the base set from ...
filunirn 23769 Two ways to express a filt...
filconn 23770 A filter gives rise to a c...
fbasrn 23771 Given a filter on a domain...
filuni 23772 The union of a nonempty se...
trfil1 23773 Conditions for the trace o...
trfil2 23774 Conditions for the trace o...
trfil3 23775 Conditions for the trace o...
trfilss 23776 If ` A ` is a member of th...
fgtr 23777 If ` A ` is a member of th...
trfg 23778 The trace operation and th...
trnei 23779 The trace, over a set ` A ...
cfinfil 23780 Relative complements of th...
csdfil 23781 The set of all elements wh...
supfil 23782 The supersets of a nonempt...
zfbas 23783 The set of upper sets of i...
uzrest 23784 The restriction of the set...
uzfbas 23785 The set of upper sets of i...
isufil 23790 The property of being an u...
ufilfil 23791 An ultrafilter is a filter...
ufilss 23792 For any subset of the base...
ufilb 23793 The complement is in an ul...
ufilmax 23794 Any filter finer than an u...
isufil2 23795 The maximal property of an...
ufprim 23796 An ultrafilter is a prime ...
trufil 23797 Conditions for the trace o...
filssufilg 23798 A filter is contained in s...
filssufil 23799 A filter is contained in s...
isufl 23800 Define the (strong) ultraf...
ufli 23801 Property of a set that sat...
numufl 23802 Consequence of ~ filssufil...
fiufl 23803 A finite set satisfies the...
acufl 23804 The axiom of choice implie...
ssufl 23805 If ` Y ` is a subset of ` ...
ufileu 23806 If the ultrafilter contain...
filufint 23807 A filter is equal to the i...
uffix 23808 Lemma for ~ fixufil and ~ ...
fixufil 23809 The condition describing a...
uffixfr 23810 An ultrafilter is either f...
uffix2 23811 A classification of fixed ...
uffixsn 23812 The singleton of the gener...
ufildom1 23813 An ultrafilter is generate...
uffinfix 23814 An ultrafilter containing ...
cfinufil 23815 An ultrafilter is free iff...
ufinffr 23816 An infinite subset is cont...
ufilen 23817 Any infinite set has an ul...
ufildr 23818 An ultrafilter gives rise ...
fin1aufil 23819 There are no definable fre...
fmval 23830 Introduce a function that ...
fmfil 23831 A mapping filter is a filt...
fmf 23832 Pushing-forward via a func...
fmss 23833 A finer filter produces a ...
elfm 23834 An element of a mapping fi...
elfm2 23835 An element of a mapping fi...
fmfg 23836 The image filter of a filt...
elfm3 23837 An alternate formulation o...
imaelfm 23838 An image of a filter eleme...
rnelfmlem 23839 Lemma for ~ rnelfm . (Con...
rnelfm 23840 A condition for a filter t...
fmfnfmlem1 23841 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23842 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23843 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23844 Lemma for ~ fmfnfm . (Con...
fmfnfm 23845 A filter finer than an ima...
fmufil 23846 An image filter of an ultr...
fmid 23847 The filter map applied to ...
fmco 23848 Composition of image filte...
ufldom 23849 The ultrafilter lemma prop...
flimval 23850 The set of limit points of...
elflim2 23851 The predicate "is a limit ...
flimtop 23852 Reverse closure for the li...
flimneiss 23853 A filter contains the neig...
flimnei 23854 A filter contains all of t...
flimelbas 23855 A limit point of a filter ...
flimfil 23856 Reverse closure for the li...
flimtopon 23857 Reverse closure for the li...
elflim 23858 The predicate "is a limit ...
flimss2 23859 A limit point of a filter ...
flimss1 23860 A limit point of a filter ...
neiflim 23861 A point is a limit point o...
flimopn 23862 The condition for being a ...
fbflim 23863 A condition for a filter t...
fbflim2 23864 A condition for a filter b...
flimclsi 23865 The convergent points of a...
hausflimlem 23866 If ` A ` and ` B ` are bot...
hausflimi 23867 One direction of ~ hausfli...
hausflim 23868 A condition for a topology...
flimcf 23869 Fineness is properly chara...
flimrest 23870 The set of limit points in...
flimclslem 23871 Lemma for ~ flimcls . (Co...
flimcls 23872 Closure in terms of filter...
flimsncls 23873 If ` A ` is a limit point ...
hauspwpwf1 23874 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23875 If ` X ` is a Hausdorff sp...
flffval 23876 Given a topology and a fil...
flfval 23877 Given a function from a fi...
flfnei 23878 The property of being a li...
flfneii 23879 A neighborhood of a limit ...
isflf 23880 The property of being a li...
flfelbas 23881 A limit point of a functio...
flffbas 23882 Limit points of a function...
flftg 23883 Limit points of a function...
hausflf 23884 If a function has its valu...
hausflf2 23885 If a convergent function h...
cnpflfi 23886 Forward direction of ~ cnp...
cnpflf2 23887 ` F ` is continuous at poi...
cnpflf 23888 Continuity of a function a...
cnflf 23889 A function is continuous i...
cnflf2 23890 A function is continuous i...
flfcnp 23891 A continuous function pres...
lmflf 23892 The topological limit rela...
txflf 23893 Two sequences converge in ...
flfcnp2 23894 The image of a convergent ...
fclsval 23895 The set of all cluster poi...
isfcls 23896 A cluster point of a filte...
fclsfil 23897 Reverse closure for the cl...
fclstop 23898 Reverse closure for the cl...
fclstopon 23899 Reverse closure for the cl...
isfcls2 23900 A cluster point of a filte...
fclsopn 23901 Write the cluster point co...
fclsopni 23902 An open neighborhood of a ...
fclselbas 23903 A cluster point is in the ...
fclsneii 23904 A neighborhood of a cluste...
fclssscls 23905 The set of cluster points ...
fclsnei 23906 Cluster points in terms of...
supnfcls 23907 The filter of supersets of...
fclsbas 23908 Cluster points in terms of...
fclsss1 23909 A finer topology has fewer...
fclsss2 23910 A finer filter has fewer c...
fclsrest 23911 The set of cluster points ...
fclscf 23912 Characterization of finene...
flimfcls 23913 A limit point is a cluster...
fclsfnflim 23914 A filter clusters at a poi...
flimfnfcls 23915 A filter converges to a po...
fclscmpi 23916 Forward direction of ~ fcl...
fclscmp 23917 A space is compact iff eve...
uffclsflim 23918 The cluster points of an u...
ufilcmp 23919 A space is compact iff eve...
fcfval 23920 The set of cluster points ...
isfcf 23921 The property of being a cl...
fcfnei 23922 The property of being a cl...
fcfelbas 23923 A cluster point of a funct...
fcfneii 23924 A neighborhood of a cluste...
flfssfcf 23925 A limit point of a functio...
uffcfflf 23926 If the domain filter is an...
cnpfcfi 23927 Lemma for ~ cnpfcf . If a...
cnpfcf 23928 A function ` F ` is contin...
cnfcf 23929 Continuity of a function i...
flfcntr 23930 A continuous function's va...
alexsublem 23931 Lemma for ~ alexsub . (Co...
alexsub 23932 The Alexander Subbase Theo...
alexsubb 23933 Biconditional form of the ...
alexsubALTlem1 23934 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23935 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23936 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23937 Lemma for ~ alexsubALT . ...
alexsubALT 23938 The Alexander Subbase Theo...
ptcmplem1 23939 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23940 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23941 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23942 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23943 Lemma for ~ ptcmp . (Cont...
ptcmpg 23944 Tychonoff's theorem: The ...
ptcmp 23945 Tychonoff's theorem: The ...
cnextval 23948 The function applying cont...
cnextfval 23949 The continuous extension o...
cnextrel 23950 In the general case, a con...
cnextfun 23951 If the target space is Hau...
cnextfvval 23952 The value of the continuou...
cnextf 23953 Extension by continuity. ...
cnextcn 23954 Extension by continuity. ...
cnextfres1 23955 ` F ` and its extension by...
cnextfres 23956 ` F ` and its extension by...
istmd 23961 The predicate "is a topolo...
tmdmnd 23962 A topological monoid is a ...
tmdtps 23963 A topological monoid is a ...
istgp 23964 The predicate "is a topolo...
tgpgrp 23965 A topological group is a g...
tgptmd 23966 A topological group is a t...
tgptps 23967 A topological group is a t...
tmdtopon 23968 The topology of a topologi...
tgptopon 23969 The topology of a topologi...
tmdcn 23970 In a topological monoid, t...
tgpcn 23971 In a topological group, th...
tgpinv 23972 In a topological group, th...
grpinvhmeo 23973 The inverse function in a ...
cnmpt1plusg 23974 Continuity of the group su...
cnmpt2plusg 23975 Continuity of the group su...
tmdcn2 23976 Write out the definition o...
tgpsubcn 23977 In a topological group, th...
istgp2 23978 A group with a topology is...
tmdmulg 23979 In a topological monoid, t...
tgpmulg 23980 In a topological group, th...
tgpmulg2 23981 In a topological monoid, t...
tmdgsum 23982 In a topological monoid, t...
tmdgsum2 23983 For any neighborhood ` U `...
oppgtmd 23984 The opposite of a topologi...
oppgtgp 23985 The opposite of a topologi...
distgp 23986 Any group equipped with th...
indistgp 23987 Any group equipped with th...
efmndtmd 23988 The monoid of endofunction...
tmdlactcn 23989 The left group action of e...
tgplacthmeo 23990 The left group action of e...
submtmd 23991 A submonoid of a topologic...
subgtgp 23992 A subgroup of a topologica...
symgtgp 23993 The symmetric group is a t...
subgntr 23994 A subgroup of a topologica...
opnsubg 23995 An open subgroup of a topo...
clssubg 23996 The closure of a subgroup ...
clsnsg 23997 The closure of a normal su...
cldsubg 23998 A subgroup of finite index...
tgpconncompeqg 23999 The connected component co...
tgpconncomp 24000 The identity component, th...
tgpconncompss 24001 The identity component is ...
ghmcnp 24002 A group homomorphism on to...
snclseqg 24003 The coset of the closure o...
tgphaus 24004 A topological group is Hau...
tgpt1 24005 Hausdorff and T1 are equiv...
tgpt0 24006 Hausdorff and T0 are equiv...
qustgpopn 24007 A quotient map in a topolo...
qustgplem 24008 Lemma for ~ qustgp . (Con...
qustgp 24009 The quotient of a topologi...
qustgphaus 24010 The quotient of a topologi...
prdstmdd 24011 The product of a family of...
prdstgpd 24012 The product of a family of...
tsmsfbas 24015 The collection of all sets...
tsmslem1 24016 The finite partial sums of...
tsmsval2 24017 Definition of the topologi...
tsmsval 24018 Definition of the topologi...
tsmspropd 24019 The group sum depends only...
eltsms 24020 The property of being a su...
tsmsi 24021 The property of being a su...
tsmscl 24022 A sum in a topological gro...
haustsms 24023 In a Hausdorff topological...
haustsms2 24024 In a Hausdorff topological...
tsmscls 24025 One half of ~ tgptsmscls ,...
tsmsgsum 24026 The convergent points of a...
tsmsid 24027 If a sum is finite, the us...
haustsmsid 24028 In a Hausdorff topological...
tsms0 24029 The sum of zero is zero. ...
tsmssubm 24030 Evaluate an infinite group...
tsmsres 24031 Extend an infinite group s...
tsmsf1o 24032 Re-index an infinite group...
tsmsmhm 24033 Apply a continuous group h...
tsmsadd 24034 The sum of two infinite gr...
tsmsinv 24035 Inverse of an infinite gro...
tsmssub 24036 The difference of two infi...
tgptsmscls 24037 A sum in a topological gro...
tgptsmscld 24038 The set of limit points to...
tsmssplit 24039 Split a topological group ...
tsmsxplem1 24040 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 24041 Lemma for ~ tsmsxp . (Con...
tsmsxp 24042 Write a sum over a two-dim...
istrg 24051 Express the predicate " ` ...
trgtmd 24052 The multiplicative monoid ...
istdrg 24053 Express the predicate " ` ...
tdrgunit 24054 The unit group of a topolo...
trgtgp 24055 A topological ring is a to...
trgtmd2 24056 A topological ring is a to...
trgtps 24057 A topological ring is a to...
trgring 24058 A topological ring is a ri...
trggrp 24059 A topological ring is a gr...
tdrgtrg 24060 A topological division rin...
tdrgdrng 24061 A topological division rin...
tdrgring 24062 A topological division rin...
tdrgtmd 24063 A topological division rin...
tdrgtps 24064 A topological division rin...
istdrg2 24065 A topological-ring divisio...
mulrcn 24066 The functionalization of t...
invrcn2 24067 The multiplicative inverse...
invrcn 24068 The multiplicative inverse...
cnmpt1mulr 24069 Continuity of ring multipl...
cnmpt2mulr 24070 Continuity of ring multipl...
dvrcn 24071 The division function is c...
istlm 24072 The predicate " ` W ` is a...
vscacn 24073 The scalar multiplication ...
tlmtmd 24074 A topological module is a ...
tlmtps 24075 A topological module is a ...
tlmlmod 24076 A topological module is a ...
tlmtrg 24077 The scalar ring of a topol...
tlmscatps 24078 The scalar ring of a topol...
istvc 24079 A topological vector space...
tvctdrg 24080 The scalar field of a topo...
cnmpt1vsca 24081 Continuity of scalar multi...
cnmpt2vsca 24082 Continuity of scalar multi...
tlmtgp 24083 A topological vector space...
tvctlm 24084 A topological vector space...
tvclmod 24085 A topological vector space...
tvclvec 24086 A topological vector space...
ustfn 24089 The defined uniform struct...
ustval 24090 The class of all uniform s...
isust 24091 The predicate " ` U ` is a...
ustssxp 24092 Entourages are subsets of ...
ustssel 24093 A uniform structure is upw...
ustbasel 24094 The full set is always an ...
ustincl 24095 A uniform structure is clo...
ustdiag 24096 The diagonal set is includ...
ustinvel 24097 If ` V ` is an entourage, ...
ustexhalf 24098 For each entourage ` V ` t...
ustrel 24099 The elements of uniform st...
ustfilxp 24100 A uniform structure on a n...
ustne0 24101 A uniform structure cannot...
ustssco 24102 In an uniform structure, a...
ustexsym 24103 In an uniform structure, f...
ustex2sym 24104 In an uniform structure, f...
ustex3sym 24105 In an uniform structure, f...
ustref 24106 Any element of the base se...
ust0 24107 The unique uniform structu...
ustn0 24108 The empty set is not an un...
ustund 24109 If two intersecting sets `...
ustelimasn 24110 Any point ` A ` is near en...
ustneism 24111 For a point ` A ` in ` X `...
elrnustOLD 24112 Obsolete version of ~ elfv...
ustbas2 24113 Second direction for ~ ust...
ustuni 24114 The set union of a uniform...
ustbas 24115 Recover the base of an uni...
ustimasn 24116 Lemma for ~ ustuqtop . (C...
trust 24117 The trace of a uniform str...
utopval 24120 The topology induced by a ...
elutop 24121 Open sets in the topology ...
utoptop 24122 The topology induced by a ...
utopbas 24123 The base of the topology i...
utoptopon 24124 Topology induced by a unif...
restutop 24125 Restriction of a topology ...
restutopopn 24126 The restriction of the top...
ustuqtoplem 24127 Lemma for ~ ustuqtop . (C...
ustuqtop0 24128 Lemma for ~ ustuqtop . (C...
ustuqtop1 24129 Lemma for ~ ustuqtop , sim...
ustuqtop2 24130 Lemma for ~ ustuqtop . (C...
ustuqtop3 24131 Lemma for ~ ustuqtop , sim...
ustuqtop4 24132 Lemma for ~ ustuqtop . (C...
ustuqtop5 24133 Lemma for ~ ustuqtop . (C...
ustuqtop 24134 For a given uniform struct...
utopsnneiplem 24135 The neighborhoods of a poi...
utopsnneip 24136 The neighborhoods of a poi...
utopsnnei 24137 Images of singletons by en...
utop2nei 24138 For any symmetrical entour...
utop3cls 24139 Relation between a topolog...
utopreg 24140 All Hausdorff uniform spac...
ussval 24147 The uniform structure on u...
ussid 24148 In case the base of the ` ...
isusp 24149 The predicate ` W ` is a u...
ressuss 24150 Value of the uniform struc...
ressust 24151 The uniform structure of a...
ressusp 24152 The restriction of a unifo...
tusval 24153 The value of the uniform s...
tuslem 24154 Lemma for ~ tusbas , ~ tus...
tusbas 24155 The base set of a construc...
tusunif 24156 The uniform structure of a...
tususs 24157 The uniform structure of a...
tustopn 24158 The topology induced by a ...
tususp 24159 A constructed uniform spac...
tustps 24160 A constructed uniform spac...
uspreg 24161 If a uniform space is Haus...
ucnval 24164 The set of all uniformly c...
isucn 24165 The predicate " ` F ` is a...
isucn2 24166 The predicate " ` F ` is a...
ucnimalem 24167 Reformulate the ` G ` func...
ucnima 24168 An equivalent statement of...
ucnprima 24169 The preimage by a uniforml...
iducn 24170 The identity is uniformly ...
cstucnd 24171 A constant function is uni...
ucncn 24172 Uniform continuity implies...
iscfilu 24175 The predicate " ` F ` is a...
cfilufbas 24176 A Cauchy filter base is a ...
cfiluexsm 24177 For a Cauchy filter base a...
fmucndlem 24178 Lemma for ~ fmucnd . (Con...
fmucnd 24179 The image of a Cauchy filt...
cfilufg 24180 The filter generated by a ...
trcfilu 24181 Condition for the trace of...
cfiluweak 24182 A Cauchy filter base is al...
neipcfilu 24183 In an uniform space, a nei...
iscusp 24186 The predicate " ` W ` is a...
cuspusp 24187 A complete uniform space i...
cuspcvg 24188 In a complete uniform spac...
iscusp2 24189 The predicate " ` W ` is a...
cnextucn 24190 Extension by continuity. ...
ucnextcn 24191 Extension by continuity. ...
ispsmet 24192 Express the predicate " ` ...
psmetdmdm 24193 Recover the base set from ...
psmetf 24194 The distance function of a...
psmetcl 24195 Closure of the distance fu...
psmet0 24196 The distance function of a...
psmettri2 24197 Triangle inequality for th...
psmetsym 24198 The distance function of a...
psmettri 24199 Triangle inequality for th...
psmetge0 24200 The distance function of a...
psmetxrge0 24201 The distance function of a...
psmetres2 24202 Restriction of a pseudomet...
psmetlecl 24203 Real closure of an extende...
distspace 24204 A set ` X ` together with ...
ismet 24211 Express the predicate " ` ...
isxmet 24212 Express the predicate " ` ...
ismeti 24213 Properties that determine ...
isxmetd 24214 Properties that determine ...
isxmet2d 24215 It is safe to only require...
metflem 24216 Lemma for ~ metf and other...
xmetf 24217 Mapping of the distance fu...
metf 24218 Mapping of the distance fu...
xmetcl 24219 Closure of the distance fu...
metcl 24220 Closure of the distance fu...
ismet2 24221 An extended metric is a me...
metxmet 24222 A metric is an extended me...
xmetdmdm 24223 Recover the base set from ...
metdmdm 24224 Recover the base set from ...
xmetunirn 24225 Two ways to express an ext...
xmeteq0 24226 The value of an extended m...
meteq0 24227 The value of a metric is z...
xmettri2 24228 Triangle inequality for th...
mettri2 24229 Triangle inequality for th...
xmet0 24230 The distance function of a...
met0 24231 The distance function of a...
xmetge0 24232 The distance function of a...
metge0 24233 The distance function of a...
xmetlecl 24234 Real closure of an extende...
xmetsym 24235 The distance function of a...
xmetpsmet 24236 An extended metric is a ps...
xmettpos 24237 The distance function of a...
metsym 24238 The distance function of a...
xmettri 24239 Triangle inequality for th...
mettri 24240 Triangle inequality for th...
xmettri3 24241 Triangle inequality for th...
mettri3 24242 Triangle inequality for th...
xmetrtri 24243 One half of the reverse tr...
xmetrtri2 24244 The reverse triangle inequ...
metrtri 24245 Reverse triangle inequalit...
xmetgt0 24246 The distance function of a...
metgt0 24247 The distance function of a...
metn0 24248 A metric space is nonempty...
xmetres2 24249 Restriction of an extended...
metreslem 24250 Lemma for ~ metres . (Con...
metres2 24251 Lemma for ~ metres . (Con...
xmetres 24252 A restriction of an extend...
metres 24253 A restriction of a metric ...
0met 24254 The empty metric. (Contri...
prdsdsf 24255 The product metric is a fu...
prdsxmetlem 24256 The product metric is an e...
prdsxmet 24257 The product metric is an e...
prdsmet 24258 The product metric is a me...
ressprdsds 24259 Restriction of a product m...
resspwsds 24260 Restriction of a power met...
imasdsf1olem 24261 Lemma for ~ imasdsf1o . (...
imasdsf1o 24262 The distance function is t...
imasf1oxmet 24263 The image of an extended m...
imasf1omet 24264 The image of a metric is a...
xpsdsfn 24265 Closure of the metric in a...
xpsdsfn2 24266 Closure of the metric in a...
xpsxmetlem 24267 Lemma for ~ xpsxmet . (Co...
xpsxmet 24268 A product metric of extend...
xpsdsval 24269 Value of the metric in a b...
xpsmet 24270 The direct product of two ...
blfvalps 24271 The value of the ball func...
blfval 24272 The value of the ball func...
blvalps 24273 The ball around a point ` ...
blval 24274 The ball around a point ` ...
elblps 24275 Membership in a ball. (Co...
elbl 24276 Membership in a ball. (Co...
elbl2ps 24277 Membership in a ball. (Co...
elbl2 24278 Membership in a ball. (Co...
elbl3ps 24279 Membership in a ball, with...
elbl3 24280 Membership in a ball, with...
blcomps 24281 Commute the arguments to t...
blcom 24282 Commute the arguments to t...
xblpnfps 24283 The infinity ball in an ex...
xblpnf 24284 The infinity ball in an ex...
blpnf 24285 The infinity ball in a sta...
bldisj 24286 Two balls are disjoint if ...
blgt0 24287 A nonempty ball implies th...
bl2in 24288 Two balls are disjoint if ...
xblss2ps 24289 One ball is contained in a...
xblss2 24290 One ball is contained in a...
blss2ps 24291 One ball is contained in a...
blss2 24292 One ball is contained in a...
blhalf 24293 A ball of radius ` R / 2 `...
blfps 24294 Mapping of a ball. (Contr...
blf 24295 Mapping of a ball. (Contr...
blrnps 24296 Membership in the range of...
blrn 24297 Membership in the range of...
xblcntrps 24298 A ball contains its center...
xblcntr 24299 A ball contains its center...
blcntrps 24300 A ball contains its center...
blcntr 24301 A ball contains its center...
xbln0 24302 A ball is nonempty iff the...
bln0 24303 A ball is not empty. (Con...
blelrnps 24304 A ball belongs to the set ...
blelrn 24305 A ball belongs to the set ...
blssm 24306 A ball is a subset of the ...
unirnblps 24307 The union of the set of ba...
unirnbl 24308 The union of the set of ba...
blin 24309 The intersection of two ba...
ssblps 24310 The size of a ball increas...
ssbl 24311 The size of a ball increas...
blssps 24312 Any point ` P ` in a ball ...
blss 24313 Any point ` P ` in a ball ...
blssexps 24314 Two ways to express the ex...
blssex 24315 Two ways to express the ex...
ssblex 24316 A nested ball exists whose...
blin2 24317 Given any two balls and a ...
blbas 24318 The balls of a metric spac...
blres 24319 A ball in a restricted met...
xmeterval 24320 Value of the "finitely sep...
xmeter 24321 The "finitely separated" r...
xmetec 24322 The equivalence classes un...
blssec 24323 A ball centered at ` P ` i...
blpnfctr 24324 The infinity ball in an ex...
xmetresbl 24325 An extended metric restric...
mopnval 24326 An open set is a subset of...
mopntopon 24327 The set of open sets of a ...
mopntop 24328 The set of open sets of a ...
mopnuni 24329 The union of all open sets...
elmopn 24330 The defining property of a...
mopnfss 24331 The family of open sets of...
mopnm 24332 The base set of a metric s...
elmopn2 24333 A defining property of an ...
mopnss 24334 An open set of a metric sp...
isxms 24335 Express the predicate " ` ...
isxms2 24336 Express the predicate " ` ...
isms 24337 Express the predicate " ` ...
isms2 24338 Express the predicate " ` ...
xmstopn 24339 The topology component of ...
mstopn 24340 The topology component of ...
xmstps 24341 An extended metric space i...
msxms 24342 A metric space is an exten...
mstps 24343 A metric space is a topolo...
xmsxmet 24344 The distance function, sui...
msmet 24345 The distance function, sui...
msf 24346 The distance function of a...
xmsxmet2 24347 The distance function, sui...
msmet2 24348 The distance function, sui...
mscl 24349 Closure of the distance fu...
xmscl 24350 Closure of the distance fu...
xmsge0 24351 The distance function in a...
xmseq0 24352 The distance between two p...
xmssym 24353 The distance function in a...
xmstri2 24354 Triangle inequality for th...
mstri2 24355 Triangle inequality for th...
xmstri 24356 Triangle inequality for th...
mstri 24357 Triangle inequality for th...
xmstri3 24358 Triangle inequality for th...
mstri3 24359 Triangle inequality for th...
msrtri 24360 Reverse triangle inequalit...
xmspropd 24361 Property deduction for an ...
mspropd 24362 Property deduction for a m...
setsmsbas 24363 The base set of a construc...
setsmsds 24364 The distance function of a...
setsmstset 24365 The topology of a construc...
setsmstopn 24366 The topology of a construc...
setsxms 24367 The constructed metric spa...
setsms 24368 The constructed metric spa...
tmsval 24369 For any metric there is an...
tmslem 24370 Lemma for ~ tmsbas , ~ tms...
tmsbas 24371 The base set of a construc...
tmsds 24372 The metric of a constructe...
tmstopn 24373 The topology of a construc...
tmsxms 24374 The constructed metric spa...
tmsms 24375 The constructed metric spa...
imasf1obl 24376 The image of a metric spac...
imasf1oxms 24377 The image of a metric spac...
imasf1oms 24378 The image of a metric spac...
prdsbl 24379 A ball in the product metr...
mopni 24380 An open set of a metric sp...
mopni2 24381 An open set of a metric sp...
mopni3 24382 An open set of a metric sp...
blssopn 24383 The balls of a metric spac...
unimopn 24384 The union of a collection ...
mopnin 24385 The intersection of two op...
mopn0 24386 The empty set is an open s...
rnblopn 24387 A ball of a metric space i...
blopn 24388 A ball of a metric space i...
neibl 24389 The neighborhoods around a...
blnei 24390 A ball around a point is a...
lpbl 24391 Every ball around a limit ...
blsscls2 24392 A smaller closed ball is c...
blcld 24393 A "closed ball" in a metri...
blcls 24394 The closure of an open bal...
blsscls 24395 If two concentric balls ha...
metss 24396 Two ways of saying that me...
metequiv 24397 Two ways of saying that tw...
metequiv2 24398 If there is a sequence of ...
metss2lem 24399 Lemma for ~ metss2 . (Con...
metss2 24400 If the metric ` D ` is "st...
comet 24401 The composition of an exte...
stdbdmetval 24402 Value of the standard boun...
stdbdxmet 24403 The standard bounded metri...
stdbdmet 24404 The standard bounded metri...
stdbdbl 24405 The standard bounded metri...
stdbdmopn 24406 The standard bounded metri...
mopnex 24407 The topology generated by ...
methaus 24408 The topology generated by ...
met1stc 24409 The topology generated by ...
met2ndci 24410 A separable metric space (...
met2ndc 24411 A metric space is second-c...
metrest 24412 Two alternate formulations...
ressxms 24413 The restriction of a metri...
ressms 24414 The restriction of a metri...
prdsmslem1 24415 Lemma for ~ prdsms . The ...
prdsxmslem1 24416 Lemma for ~ prdsms . The ...
prdsxmslem2 24417 Lemma for ~ prdsxms . The...
prdsxms 24418 The indexed product struct...
prdsms 24419 The indexed product struct...
pwsxms 24420 A power of an extended met...
pwsms 24421 A power of a metric space ...
xpsxms 24422 A binary product of metric...
xpsms 24423 A binary product of metric...
tmsxps 24424 Express the product of two...
tmsxpsmopn 24425 Express the product of two...
tmsxpsval 24426 Value of the product of tw...
tmsxpsval2 24427 Value of the product of tw...
metcnp3 24428 Two ways to express that `...
metcnp 24429 Two ways to say a mapping ...
metcnp2 24430 Two ways to say a mapping ...
metcn 24431 Two ways to say a mapping ...
metcnpi 24432 Epsilon-delta property of ...
metcnpi2 24433 Epsilon-delta property of ...
metcnpi3 24434 Epsilon-delta property of ...
txmetcnp 24435 Continuity of a binary ope...
txmetcn 24436 Continuity of a binary ope...
metuval 24437 Value of the uniform struc...
metustel 24438 Define a filter base ` F `...
metustss 24439 Range of the elements of t...
metustrel 24440 Elements of the filter bas...
metustto 24441 Any two elements of the fi...
metustid 24442 The identity diagonal is i...
metustsym 24443 Elements of the filter bas...
metustexhalf 24444 For any element ` A ` of t...
metustfbas 24445 The filter base generated ...
metust 24446 The uniform structure gene...
cfilucfil 24447 Given a metric ` D ` and a...
metuust 24448 The uniform structure gene...
cfilucfil2 24449 Given a metric ` D ` and a...
blval2 24450 The ball around a point ` ...
elbl4 24451 Membership in a ball, alte...
metuel 24452 Elementhood in the uniform...
metuel2 24453 Elementhood in the uniform...
metustbl 24454 The "section" image of an ...
psmetutop 24455 The topology induced by a ...
xmetutop 24456 The topology induced by a ...
xmsusp 24457 If the uniform set of a me...
restmetu 24458 The uniform structure gene...
metucn 24459 Uniform continuity in metr...
dscmet 24460 The discrete metric on any...
dscopn 24461 The discrete metric genera...
nrmmetd 24462 Show that a group norm gen...
abvmet 24463 An absolute value ` F ` ge...
nmfval 24476 The value of the norm func...
nmval 24477 The value of the norm as t...
nmfval0 24478 The value of the norm func...
nmfval2 24479 The value of the norm func...
nmval2 24480 The value of the norm on a...
nmf2 24481 The norm on a metric group...
nmpropd 24482 Weak property deduction fo...
nmpropd2 24483 Strong property deduction ...
isngp 24484 The property of being a no...
isngp2 24485 The property of being a no...
isngp3 24486 The property of being a no...
ngpgrp 24487 A normed group is a group....
ngpms 24488 A normed group is a metric...
ngpxms 24489 A normed group is an exten...
ngptps 24490 A normed group is a topolo...
ngpmet 24491 The (induced) metric of a ...
ngpds 24492 Value of the distance func...
ngpdsr 24493 Value of the distance func...
ngpds2 24494 Write the distance between...
ngpds2r 24495 Write the distance between...
ngpds3 24496 Write the distance between...
ngpds3r 24497 Write the distance between...
ngprcan 24498 Cancel right addition insi...
ngplcan 24499 Cancel left addition insid...
isngp4 24500 Express the property of be...
ngpinvds 24501 Two elements are the same ...
ngpsubcan 24502 Cancel right subtraction i...
nmf 24503 The norm on a normed group...
nmcl 24504 The norm of a normed group...
nmge0 24505 The norm of a normed group...
nmeq0 24506 The identity is the only e...
nmne0 24507 The norm of a nonzero elem...
nmrpcl 24508 The norm of a nonzero elem...
nminv 24509 The norm of a negated elem...
nmmtri 24510 The triangle inequality fo...
nmsub 24511 The norm of the difference...
nmrtri 24512 Reverse triangle inequalit...
nm2dif 24513 Inequality for the differe...
nmtri 24514 The triangle inequality fo...
nmtri2 24515 Triangle inequality for th...
ngpi 24516 The properties of a normed...
nm0 24517 Norm of the identity eleme...
nmgt0 24518 The norm of a nonzero elem...
sgrim 24519 The induced metric on a su...
sgrimval 24520 The induced metric on a su...
subgnm 24521 The norm in a subgroup. (...
subgnm2 24522 A substructure assigns the...
subgngp 24523 A normed group restricted ...
ngptgp 24524 A normed abelian group is ...
ngppropd 24525 Property deduction for a n...
reldmtng 24526 The function ` toNrmGrp ` ...
tngval 24527 Value of the function whic...
tnglem 24528 Lemma for ~ tngbas and sim...
tngbas 24529 The base set of a structur...
tngplusg 24530 The group addition of a st...
tng0 24531 The group identity of a st...
tngmulr 24532 The ring multiplication of...
tngsca 24533 The scalar ring of a struc...
tngvsca 24534 The scalar multiplication ...
tngip 24535 The inner product operatio...
tngds 24536 The metric function of a s...
tngtset 24537 The topology generated by ...
tngtopn 24538 The topology generated by ...
tngnm 24539 The topology generated by ...
tngngp2 24540 A norm turns a group into ...
tngngpd 24541 Derive the axioms for a no...
tngngp 24542 Derive the axioms for a no...
tnggrpr 24543 If a structure equipped wi...
tngngp3 24544 Alternate definition of a ...
nrmtngdist 24545 The augmentation of a norm...
nrmtngnrm 24546 The augmentation of a norm...
tngngpim 24547 The induced metric of a no...
isnrg 24548 A normed ring is a ring wi...
nrgabv 24549 The norm of a normed ring ...
nrgngp 24550 A normed ring is a normed ...
nrgring 24551 A normed ring is a ring. ...
nmmul 24552 The norm of a product in a...
nrgdsdi 24553 Distribute a distance calc...
nrgdsdir 24554 Distribute a distance calc...
nm1 24555 The norm of one in a nonze...
unitnmn0 24556 The norm of a unit is nonz...
nminvr 24557 The norm of an inverse in ...
nmdvr 24558 The norm of a division in ...
nrgdomn 24559 A nonzero normed ring is a...
nrgtgp 24560 A normed ring is a topolog...
subrgnrg 24561 A normed ring restricted t...
tngnrg 24562 Given any absolute value o...
isnlm 24563 A normed (left) module is ...
nmvs 24564 Defining property of a nor...
nlmngp 24565 A normed module is a norme...
nlmlmod 24566 A normed module is a left ...
nlmnrg 24567 The scalar component of a ...
nlmngp2 24568 The scalar component of a ...
nlmdsdi 24569 Distribute a distance calc...
nlmdsdir 24570 Distribute a distance calc...
nlmmul0or 24571 If a scalar product is zer...
sranlm 24572 The subring algebra over a...
nlmvscnlem2 24573 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 24574 Lemma for ~ nlmvscn . (Co...
nlmvscn 24575 The scalar multiplication ...
rlmnlm 24576 The ring module over a nor...
rlmnm 24577 The norm function in the r...
nrgtrg 24578 A normed ring is a topolog...
nrginvrcnlem 24579 Lemma for ~ nrginvrcn . C...
nrginvrcn 24580 The ring inverse function ...
nrgtdrg 24581 A normed division ring is ...
nlmtlm 24582 A normed module is a topol...
isnvc 24583 A normed vector space is j...
nvcnlm 24584 A normed vector space is a...
nvclvec 24585 A normed vector space is a...
nvclmod 24586 A normed vector space is a...
isnvc2 24587 A normed vector space is j...
nvctvc 24588 A normed vector space is a...
lssnlm 24589 A subspace of a normed mod...
lssnvc 24590 A subspace of a normed vec...
rlmnvc 24591 The ring module over a nor...
ngpocelbl 24592 Membership of an off-cente...
nmoffn 24599 The function producing ope...
reldmnghm 24600 Lemma for normed group hom...
reldmnmhm 24601 Lemma for module homomorph...
nmofval 24602 Value of the operator norm...
nmoval 24603 Value of the operator norm...
nmogelb 24604 Property of the operator n...
nmolb 24605 Any upper bound on the val...
nmolb2d 24606 Any upper bound on the val...
nmof 24607 The operator norm is a fun...
nmocl 24608 The operator norm of an op...
nmoge0 24609 The operator norm of an op...
nghmfval 24610 A normed group homomorphis...
isnghm 24611 A normed group homomorphis...
isnghm2 24612 A normed group homomorphis...
isnghm3 24613 A normed group homomorphis...
bddnghm 24614 A bounded group homomorphi...
nghmcl 24615 A normed group homomorphis...
nmoi 24616 The operator norm achieves...
nmoix 24617 The operator norm is a bou...
nmoi2 24618 The operator norm is a bou...
nmoleub 24619 The operator norm, defined...
nghmrcl1 24620 Reverse closure for a norm...
nghmrcl2 24621 Reverse closure for a norm...
nghmghm 24622 A normed group homomorphis...
nmo0 24623 The operator norm of the z...
nmoeq0 24624 The operator norm is zero ...
nmoco 24625 An upper bound on the oper...
nghmco 24626 The composition of normed ...
nmotri 24627 Triangle inequality for th...
nghmplusg 24628 The sum of two bounded lin...
0nghm 24629 The zero operator is a nor...
nmoid 24630 The operator norm of the i...
idnghm 24631 The identity operator is a...
nmods 24632 Upper bound for the distan...
nghmcn 24633 A normed group homomorphis...
isnmhm 24634 A normed module homomorphi...
nmhmrcl1 24635 Reverse closure for a norm...
nmhmrcl2 24636 Reverse closure for a norm...
nmhmlmhm 24637 A normed module homomorphi...
nmhmnghm 24638 A normed module homomorphi...
nmhmghm 24639 A normed module homomorphi...
isnmhm2 24640 A normed module homomorphi...
nmhmcl 24641 A normed module homomorphi...
idnmhm 24642 The identity operator is a...
0nmhm 24643 The zero operator is a bou...
nmhmco 24644 The composition of bounded...
nmhmplusg 24645 The sum of two bounded lin...
qtopbaslem 24646 The set of open intervals ...
qtopbas 24647 The set of open intervals ...
retopbas 24648 A basis for the standard t...
retop 24649 The standard topology on t...
uniretop 24650 The underlying set of the ...
retopon 24651 The standard topology on t...
retps 24652 The standard topological s...
iooretop 24653 Open intervals are open se...
icccld 24654 Closed intervals are close...
icopnfcld 24655 Right-unbounded closed int...
iocmnfcld 24656 Left-unbounded closed inte...
qdensere 24657 ` QQ ` is dense in the sta...
cnmetdval 24658 Value of the distance func...
cnmet 24659 The absolute value metric ...
cnxmet 24660 The absolute value metric ...
cnbl0 24661 Two ways to write the open...
cnblcld 24662 Two ways to write the clos...
cnfldms 24663 The complex number field i...
cnfldxms 24664 The complex number field i...
cnfldtps 24665 The complex number field i...
cnfldnm 24666 The norm of the field of c...
cnngp 24667 The complex numbers form a...
cnnrg 24668 The complex numbers form a...
cnfldtopn 24669 The topology of the comple...
cnfldtopon 24670 The topology of the comple...
cnfldtop 24671 The topology of the comple...
cnfldhaus 24672 The topology of the comple...
unicntop 24673 The underlying set of the ...
cnopn 24674 The set of complex numbers...
cnn0opn 24675 The set of nonzero complex...
zringnrg 24676 The ring of integers is a ...
remetdval 24677 Value of the distance func...
remet 24678 The absolute value metric ...
rexmet 24679 The absolute value metric ...
bl2ioo 24680 A ball in terms of an open...
ioo2bl 24681 An open interval of reals ...
ioo2blex 24682 An open interval of reals ...
blssioo 24683 The balls of the standard ...
tgioo 24684 The topology generated by ...
qdensere2 24685 ` QQ ` is dense in ` RR ` ...
blcvx 24686 An open ball in the comple...
rehaus 24687 The standard topology on t...
tgqioo 24688 The topology generated by ...
re2ndc 24689 The standard topology on t...
resubmet 24690 The subspace topology indu...
tgioo2 24691 The standard topology on t...
rerest 24692 The subspace topology indu...
tgioo4 24693 The standard topology on t...
tgioo3 24694 The standard topology on t...
xrtgioo 24695 The topology on the extend...
xrrest 24696 The subspace topology indu...
xrrest2 24697 The subspace topology indu...
xrsxmet 24698 The metric on the extended...
xrsdsre 24699 The metric on the extended...
xrsblre 24700 Any ball of the metric of ...
xrsmopn 24701 The metric on the extended...
zcld 24702 The integers are a closed ...
recld2 24703 The real numbers are a clo...
zcld2 24704 The integers are a closed ...
zdis 24705 The integers are a discret...
sszcld 24706 Every subset of the intege...
reperflem 24707 A subset of the real numbe...
reperf 24708 The real numbers are a per...
cnperf 24709 The complex numbers are a ...
iccntr 24710 The interior of a closed i...
icccmplem1 24711 Lemma for ~ icccmp . (Con...
icccmplem2 24712 Lemma for ~ icccmp . (Con...
icccmplem3 24713 Lemma for ~ icccmp . (Con...
icccmp 24714 A closed interval in ` RR ...
reconnlem1 24715 Lemma for ~ reconn . Conn...
reconnlem2 24716 Lemma for ~ reconn . (Con...
reconn 24717 A subset of the reals is c...
retopconn 24718 Corollary of ~ reconn . T...
iccconn 24719 A closed interval is conne...
opnreen 24720 Every nonempty open set is...
rectbntr0 24721 A countable subset of the ...
xrge0gsumle 24722 A finite sum in the nonneg...
xrge0tsms 24723 Any finite or infinite sum...
xrge0tsms2 24724 Any finite or infinite sum...
metdcnlem 24725 The metric function of a m...
xmetdcn2 24726 The metric function of an ...
xmetdcn 24727 The metric function of an ...
metdcn2 24728 The metric function of a m...
metdcn 24729 The metric function of a m...
msdcn 24730 The metric function of a m...
cnmpt1ds 24731 Continuity of the metric f...
cnmpt2ds 24732 Continuity of the metric f...
nmcn 24733 The norm of a normed group...
ngnmcncn 24734 The norm of a normed group...
abscn 24735 The absolute value functio...
metdsval 24736 Value of the "distance to ...
metdsf 24737 The distance from a point ...
metdsge 24738 The distance from the poin...
metds0 24739 If a point is in a set, it...
metdstri 24740 A generalization of the tr...
metdsle 24741 The distance from a point ...
metdsre 24742 The distance from a point ...
metdseq0 24743 The distance from a point ...
metdscnlem 24744 Lemma for ~ metdscn . (Co...
metdscn 24745 The function ` F ` which g...
metdscn2 24746 The function ` F ` which g...
metnrmlem1a 24747 Lemma for ~ metnrm . (Con...
metnrmlem1 24748 Lemma for ~ metnrm . (Con...
metnrmlem2 24749 Lemma for ~ metnrm . (Con...
metnrmlem3 24750 Lemma for ~ metnrm . (Con...
metnrm 24751 A metric space is normal. ...
metreg 24752 A metric space is regular....
addcnlem 24753 Lemma for ~ addcn , ~ subc...
addcn 24754 Complex number addition is...
subcn 24755 Complex number subtraction...
mulcn 24756 Complex number multiplicat...
divcnOLD 24757 Obsolete version of ~ divc...
mpomulcn 24758 Complex number multiplicat...
divcn 24759 Complex number division is...
cnfldtgp 24760 The complex numbers form a...
fsumcn 24761 A finite sum of functions ...
fsum2cn 24762 Version of ~ fsumcn for tw...
expcn 24763 The power function on comp...
divccn 24764 Division by a nonzero cons...
expcnOLD 24765 Obsolete version of ~ expc...
divccnOLD 24766 Obsolete version of ~ divc...
sqcn 24767 The square function on com...
iitopon 24772 The unit interval is a top...
iitop 24773 The unit interval is a top...
iiuni 24774 The base set of the unit i...
dfii2 24775 Alternate definition of th...
dfii3 24776 Alternate definition of th...
dfii4 24777 Alternate definition of th...
dfii5 24778 The unit interval expresse...
iicmp 24779 The unit interval is compa...
iiconn 24780 The unit interval is conne...
cncfval 24781 The value of the continuou...
elcncf 24782 Membership in the set of c...
elcncf2 24783 Version of ~ elcncf with a...
cncfrss 24784 Reverse closure of the con...
cncfrss2 24785 Reverse closure of the con...
cncff 24786 A continuous complex funct...
cncfi 24787 Defining property of a con...
elcncf1di 24788 Membership in the set of c...
elcncf1ii 24789 Membership in the set of c...
rescncf 24790 A continuous complex funct...
cncfcdm 24791 Change the codomain of a c...
cncfss 24792 The set of continuous func...
climcncf 24793 Image of a limit under a c...
abscncf 24794 Absolute value is continuo...
recncf 24795 Real part is continuous. ...
imcncf 24796 Imaginary part is continuo...
cjcncf 24797 Complex conjugate is conti...
mulc1cncf 24798 Multiplication by a consta...
divccncf 24799 Division by a constant is ...
cncfco 24800 The composition of two con...
cncfcompt2 24801 Composition of continuous ...
cncfmet 24802 Relate complex function co...
cncfcn 24803 Relate complex function co...
cncfcn1 24804 Relate complex function co...
cncfmptc 24805 A constant function is a c...
cncfmptid 24806 The identity function is a...
cncfmpt1f 24807 Composition of continuous ...
cncfmpt2f 24808 Composition of continuous ...
cncfmpt2ss 24809 Composition of continuous ...
addccncf 24810 Adding a constant is a con...
idcncf 24811 The identity function is a...
sub1cncf 24812 Subtracting a constant is ...
sub2cncf 24813 Subtraction from a constan...
cdivcncf 24814 Division with a constant n...
negcncf 24815 The negative function is c...
negcncfOLD 24816 Obsolete version of ~ negc...
negfcncf 24817 The negative of a continuo...
abscncfALT 24818 Absolute value is continuo...
cncfcnvcn 24819 Rewrite ~ cmphaushmeo for ...
expcncf 24820 The power function on comp...
cnmptre 24821 Lemma for ~ iirevcn and re...
cnmpopc 24822 Piecewise definition of a ...
iirev 24823 Reverse the unit interval....
iirevcn 24824 The reversion function is ...
iihalf1 24825 Map the first half of ` II...
iihalf1cn 24826 The first half function is...
iihalf1cnOLD 24827 Obsolete version of ~ iiha...
iihalf2 24828 Map the second half of ` I...
iihalf2cn 24829 The second half function i...
iihalf2cnOLD 24830 Obsolete version of ~ iiha...
elii1 24831 Divide the unit interval i...
elii2 24832 Divide the unit interval i...
iimulcl 24833 The unit interval is close...
iimulcn 24834 Multiplication is a contin...
iimulcnOLD 24835 Obsolete version of ~ iimu...
icoopnst 24836 A half-open interval start...
iocopnst 24837 A half-open interval endin...
icchmeo 24838 The natural bijection from...
icchmeoOLD 24839 Obsolete version of ~ icch...
icopnfcnv 24840 Define a bijection from ` ...
icopnfhmeo 24841 The defined bijection from...
iccpnfcnv 24842 Define a bijection from ` ...
iccpnfhmeo 24843 The defined bijection from...
xrhmeo 24844 The bijection from ` [ -u ...
xrhmph 24845 The extended reals are hom...
xrcmp 24846 The topology of the extend...
xrconn 24847 The topology of the extend...
icccvx 24848 A linear combination of tw...
oprpiece1res1 24849 Restriction to the first p...
oprpiece1res2 24850 Restriction to the second ...
cnrehmeo 24851 The canonical bijection fr...
cnrehmeoOLD 24852 Obsolete version of ~ cnre...
cnheiborlem 24853 Lemma for ~ cnheibor . (C...
cnheibor 24854 Heine-Borel theorem for co...
cnllycmp 24855 The topology on the comple...
rellycmp 24856 The topology on the reals ...
bndth 24857 The Boundedness Theorem. ...
evth 24858 The Extreme Value Theorem....
evth2 24859 The Extreme Value Theorem,...
lebnumlem1 24860 Lemma for ~ lebnum . The ...
lebnumlem2 24861 Lemma for ~ lebnum . As a...
lebnumlem3 24862 Lemma for ~ lebnum . By t...
lebnum 24863 The Lebesgue number lemma,...
xlebnum 24864 Generalize ~ lebnum to ext...
lebnumii 24865 Specialize the Lebesgue nu...
ishtpy 24871 Membership in the class of...
htpycn 24872 A homotopy is a continuous...
htpyi 24873 A homotopy evaluated at it...
ishtpyd 24874 Deduction for membership i...
htpycom 24875 Given a homotopy from ` F ...
htpyid 24876 A homotopy from a function...
htpyco1 24877 Compose a homotopy with a ...
htpyco2 24878 Compose a homotopy with a ...
htpycc 24879 Concatenate two homotopies...
isphtpy 24880 Membership in the class of...
phtpyhtpy 24881 A path homotopy is a homot...
phtpycn 24882 A path homotopy is a conti...
phtpyi 24883 Membership in the class of...
phtpy01 24884 Two path-homotopic paths h...
isphtpyd 24885 Deduction for membership i...
isphtpy2d 24886 Deduction for membership i...
phtpycom 24887 Given a homotopy from ` F ...
phtpyid 24888 A homotopy from a path to ...
phtpyco2 24889 Compose a path homotopy wi...
phtpycc 24890 Concatenate two path homot...
phtpcrel 24892 The path homotopy relation...
isphtpc 24893 The relation "is path homo...
phtpcer 24894 Path homotopy is an equiva...
phtpc01 24895 Path homotopic paths have ...
reparphti 24896 Lemma for ~ reparpht . (C...
reparphtiOLD 24897 Obsolete version of ~ repa...
reparpht 24898 Reparametrization lemma. ...
phtpcco2 24899 Compose a path homotopy wi...
pcofval 24910 The value of the path conc...
pcoval 24911 The concatenation of two p...
pcovalg 24912 Evaluate the concatenation...
pcoval1 24913 Evaluate the concatenation...
pco0 24914 The starting point of a pa...
pco1 24915 The ending point of a path...
pcoval2 24916 Evaluate the concatenation...
pcocn 24917 The concatenation of two p...
copco 24918 The composition of a conca...
pcohtpylem 24919 Lemma for ~ pcohtpy . (Co...
pcohtpy 24920 Homotopy invariance of pat...
pcoptcl 24921 A constant function is a p...
pcopt 24922 Concatenation with a point...
pcopt2 24923 Concatenation with a point...
pcoass 24924 Order of concatenation doe...
pcorevcl 24925 Closure for a reversed pat...
pcorevlem 24926 Lemma for ~ pcorev . Prov...
pcorev 24927 Concatenation with the rev...
pcorev2 24928 Concatenation with the rev...
pcophtb 24929 The path homotopy equivale...
om1val 24930 The definition of the loop...
om1bas 24931 The base set of the loop s...
om1elbas 24932 Elementhood in the base se...
om1addcl 24933 Closure of the group opera...
om1plusg 24934 The group operation (which...
om1tset 24935 The topology of the loop s...
om1opn 24936 The topology of the loop s...
pi1val 24937 The definition of the fund...
pi1bas 24938 The base set of the fundam...
pi1blem 24939 Lemma for ~ pi1buni . (Co...
pi1buni 24940 Another way to write the l...
pi1bas2 24941 The base set of the fundam...
pi1eluni 24942 Elementhood in the base se...
pi1bas3 24943 The base set of the fundam...
pi1cpbl 24944 The group operation, loop ...
elpi1 24945 The elements of the fundam...
elpi1i 24946 The elements of the fundam...
pi1addf 24947 The group operation of ` p...
pi1addval 24948 The concatenation of two p...
pi1grplem 24949 Lemma for ~ pi1grp . (Con...
pi1grp 24950 The fundamental group is a...
pi1id 24951 The identity element of th...
pi1inv 24952 An inverse in the fundamen...
pi1xfrf 24953 Functionality of the loop ...
pi1xfrval 24954 The value of the loop tran...
pi1xfr 24955 Given a path ` F ` and its...
pi1xfrcnvlem 24956 Given a path ` F ` between...
pi1xfrcnv 24957 Given a path ` F ` between...
pi1xfrgim 24958 The mapping ` G ` between ...
pi1cof 24959 Functionality of the loop ...
pi1coval 24960 The value of the loop tran...
pi1coghm 24961 The mapping ` G ` between ...
isclm 24964 A subcomplex module is a l...
clmsca 24965 The ring of scalars ` F ` ...
clmsubrg 24966 The base set of the ring o...
clmlmod 24967 A subcomplex module is a l...
clmgrp 24968 A subcomplex module is an ...
clmabl 24969 A subcomplex module is an ...
clmring 24970 The scalar ring of a subco...
clmfgrp 24971 The scalar ring of a subco...
clm0 24972 The zero of the scalar rin...
clm1 24973 The identity of the scalar...
clmadd 24974 The addition of the scalar...
clmmul 24975 The multiplication of the ...
clmcj 24976 The conjugation of the sca...
isclmi 24977 Reverse direction of ~ isc...
clmzss 24978 The scalar ring of a subco...
clmsscn 24979 The scalar ring of a subco...
clmsub 24980 Subtraction in the scalar ...
clmneg 24981 Negation in the scalar rin...
clmneg1 24982 Minus one is in the scalar...
clmabs 24983 Norm in the scalar ring of...
clmacl 24984 Closure of ring addition f...
clmmcl 24985 Closure of ring multiplica...
clmsubcl 24986 Closure of ring subtractio...
lmhmclm 24987 The domain of a linear ope...
clmvscl 24988 Closure of scalar product ...
clmvsass 24989 Associative law for scalar...
clmvscom 24990 Commutative law for the sc...
clmvsdir 24991 Distributive law for scala...
clmvsdi 24992 Distributive law for scala...
clmvs1 24993 Scalar product with ring u...
clmvs2 24994 A vector plus itself is tw...
clm0vs 24995 Zero times a vector is the...
clmopfne 24996 The (functionalized) opera...
isclmp 24997 The predicate "is a subcom...
isclmi0 24998 Properties that determine ...
clmvneg1 24999 Minus 1 times a vector is ...
clmvsneg 25000 Multiplication of a vector...
clmmulg 25001 The group multiple functio...
clmsubdir 25002 Scalar multiplication dist...
clmpm1dir 25003 Subtractive distributive l...
clmnegneg 25004 Double negative of a vecto...
clmnegsubdi2 25005 Distribution of negative o...
clmsub4 25006 Rearrangement of 4 terms i...
clmvsrinv 25007 A vector minus itself. (C...
clmvslinv 25008 Minus a vector plus itself...
clmvsubval 25009 Value of vector subtractio...
clmvsubval2 25010 Value of vector subtractio...
clmvz 25011 Two ways to express the ne...
zlmclm 25012 The ` ZZ ` -module operati...
clmzlmvsca 25013 The scalar product of a su...
nmoleub2lem 25014 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 25015 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 25016 Lemma for ~ nmoleub2a and ...
nmoleub2a 25017 The operator norm is the s...
nmoleub2b 25018 The operator norm is the s...
nmoleub3 25019 The operator norm is the s...
nmhmcn 25020 A linear operator over a n...
cmodscexp 25021 The powers of ` _i ` belon...
cmodscmulexp 25022 The scalar product of a ve...
cvslvec 25025 A subcomplex vector space ...
cvsclm 25026 A subcomplex vector space ...
iscvs 25027 A subcomplex vector space ...
iscvsp 25028 The predicate "is a subcom...
iscvsi 25029 Properties that determine ...
cvsi 25030 The properties of a subcom...
cvsunit 25031 Unit group of the scalar r...
cvsdiv 25032 Division of the scalar rin...
cvsdivcl 25033 The scalar field of a subc...
cvsmuleqdivd 25034 An equality involving rati...
cvsdiveqd 25035 An equality involving rati...
cnlmodlem1 25036 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 25037 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 25038 Lemma 3 for ~ cnlmod . (C...
cnlmod4 25039 Lemma 4 for ~ cnlmod . (C...
cnlmod 25040 The set of complex numbers...
cnstrcvs 25041 The set of complex numbers...
cnrbas 25042 The set of complex numbers...
cnrlmod 25043 The complex left module of...
cnrlvec 25044 The complex left module of...
cncvs 25045 The complex left module of...
recvs 25046 The field of the real numb...
qcvs 25047 The field of rational numb...
zclmncvs 25048 The ring of integers as le...
isncvsngp 25049 A normed subcomplex vector...
isncvsngpd 25050 Properties that determine ...
ncvsi 25051 The properties of a normed...
ncvsprp 25052 Proportionality property o...
ncvsge0 25053 The norm of a scalar produ...
ncvsm1 25054 The norm of the opposite o...
ncvsdif 25055 The norm of the difference...
ncvspi 25056 The norm of a vector plus ...
ncvs1 25057 From any nonzero vector of...
cnrnvc 25058 The module of complex numb...
cnncvs 25059 The module of complex numb...
cnnm 25060 The norm of the normed sub...
ncvspds 25061 Value of the distance func...
cnindmet 25062 The metric induced on the ...
cnncvsaddassdemo 25063 Derive the associative law...
cnncvsmulassdemo 25064 Derive the associative law...
cnncvsabsnegdemo 25065 Derive the absolute value ...
iscph 25070 A subcomplex pre-Hilbert s...
cphphl 25071 A subcomplex pre-Hilbert s...
cphnlm 25072 A subcomplex pre-Hilbert s...
cphngp 25073 A subcomplex pre-Hilbert s...
cphlmod 25074 A subcomplex pre-Hilbert s...
cphlvec 25075 A subcomplex pre-Hilbert s...
cphnvc 25076 A subcomplex pre-Hilbert s...
cphsubrglem 25077 Lemma for ~ cphsubrg . (C...
cphreccllem 25078 Lemma for ~ cphreccl . (C...
cphsca 25079 A subcomplex pre-Hilbert s...
cphsubrg 25080 The scalar field of a subc...
cphreccl 25081 The scalar field of a subc...
cphdivcl 25082 The scalar field of a subc...
cphcjcl 25083 The scalar field of a subc...
cphsqrtcl 25084 The scalar field of a subc...
cphabscl 25085 The scalar field of a subc...
cphsqrtcl2 25086 The scalar field of a subc...
cphsqrtcl3 25087 If the scalar field of a s...
cphqss 25088 The scalar field of a subc...
cphclm 25089 A subcomplex pre-Hilbert s...
cphnmvs 25090 Norm of a scalar product. ...
cphipcl 25091 An inner product is a memb...
cphnmfval 25092 The value of the norm in a...
cphnm 25093 The square of the norm is ...
nmsq 25094 The square of the norm is ...
cphnmf 25095 The norm of a vector is a ...
cphnmcl 25096 The norm of a vector is a ...
reipcl 25097 An inner product of an ele...
ipge0 25098 The inner product in a sub...
cphipcj 25099 Conjugate of an inner prod...
cphipipcj 25100 An inner product times its...
cphorthcom 25101 Orthogonality (meaning inn...
cphip0l 25102 Inner product with a zero ...
cphip0r 25103 Inner product with a zero ...
cphipeq0 25104 The inner product of a vec...
cphdir 25105 Distributive law for inner...
cphdi 25106 Distributive law for inner...
cph2di 25107 Distributive law for inner...
cphsubdir 25108 Distributive law for inner...
cphsubdi 25109 Distributive law for inner...
cph2subdi 25110 Distributive law for inner...
cphass 25111 Associative law for inner ...
cphassr 25112 "Associative" law for seco...
cph2ass 25113 Move scalar multiplication...
cphassi 25114 Associative law for the fi...
cphassir 25115 "Associative" law for the ...
cphpyth 25116 The pythagorean theorem fo...
tcphex 25117 Lemma for ~ tcphbas and si...
tcphval 25118 Define a function to augme...
tcphbas 25119 The base set of a subcompl...
tchplusg 25120 The addition operation of ...
tcphsub 25121 The subtraction operation ...
tcphmulr 25122 The ring operation of a su...
tcphsca 25123 The scalar field of a subc...
tcphvsca 25124 The scalar multiplication ...
tcphip 25125 The inner product of a sub...
tcphtopn 25126 The topology of a subcompl...
tcphphl 25127 Augmentation of a subcompl...
tchnmfval 25128 The norm of a subcomplex p...
tcphnmval 25129 The norm of a subcomplex p...
cphtcphnm 25130 The norm of a norm-augment...
tcphds 25131 The distance of a pre-Hilb...
phclm 25132 A pre-Hilbert space whose ...
tcphcphlem3 25133 Lemma for ~ tcphcph : real...
ipcau2 25134 The Cauchy-Schwarz inequal...
tcphcphlem1 25135 Lemma for ~ tcphcph : the ...
tcphcphlem2 25136 Lemma for ~ tcphcph : homo...
tcphcph 25137 The standard definition of...
ipcau 25138 The Cauchy-Schwarz inequal...
nmparlem 25139 Lemma for ~ nmpar . (Cont...
nmpar 25140 A subcomplex pre-Hilbert s...
cphipval2 25141 Value of the inner product...
4cphipval2 25142 Four times the inner produ...
cphipval 25143 Value of the inner product...
ipcnlem2 25144 The inner product operatio...
ipcnlem1 25145 The inner product operatio...
ipcn 25146 The inner product operatio...
cnmpt1ip 25147 Continuity of inner produc...
cnmpt2ip 25148 Continuity of inner produc...
csscld 25149 A "closed subspace" in a s...
clsocv 25150 The orthogonal complement ...
cphsscph 25151 A subspace of a subcomplex...
lmmbr 25158 Express the binary relatio...
lmmbr2 25159 Express the binary relatio...
lmmbr3 25160 Express the binary relatio...
lmmcvg 25161 Convergence property of a ...
lmmbrf 25162 Express the binary relatio...
lmnn 25163 A condition that implies c...
cfilfval 25164 The set of Cauchy filters ...
iscfil 25165 The property of being a Ca...
iscfil2 25166 The property of being a Ca...
cfilfil 25167 A Cauchy filter is a filte...
cfili 25168 Property of a Cauchy filte...
cfil3i 25169 A Cauchy filter contains b...
cfilss 25170 A filter finer than a Cauc...
fgcfil 25171 The Cauchy filter conditio...
fmcfil 25172 The Cauchy filter conditio...
iscfil3 25173 A filter is Cauchy iff it ...
cfilfcls 25174 Similar to ultrafilters ( ...
caufval 25175 The set of Cauchy sequence...
iscau 25176 Express the property " ` F...
iscau2 25177 Express the property " ` F...
iscau3 25178 Express the Cauchy sequenc...
iscau4 25179 Express the property " ` F...
iscauf 25180 Express the property " ` F...
caun0 25181 A metric with a Cauchy seq...
caufpm 25182 Inclusion of a Cauchy sequ...
caucfil 25183 A Cauchy sequence predicat...
iscmet 25184 The property " ` D ` is a ...
cmetcvg 25185 The convergence of a Cauch...
cmetmet 25186 A complete metric space is...
cmetmeti 25187 A complete metric space is...
cmetcaulem 25188 Lemma for ~ cmetcau . (Co...
cmetcau 25189 The convergence of a Cauch...
iscmet3lem3 25190 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 25191 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 25192 Lemma for ~ iscmet3 . (Co...
iscmet3 25193 The property " ` D ` is a ...
iscmet2 25194 A metric ` D ` is complete...
cfilresi 25195 A Cauchy filter on a metri...
cfilres 25196 Cauchy filter on a metric ...
caussi 25197 Cauchy sequence on a metri...
causs 25198 Cauchy sequence on a metri...
equivcfil 25199 If the metric ` D ` is "st...
equivcau 25200 If the metric ` D ` is "st...
lmle 25201 If the distance from each ...
nglmle 25202 If the norm of each member...
lmclim 25203 Relate a limit on the metr...
lmclimf 25204 Relate a limit on the metr...
metelcls 25205 A point belongs to the clo...
metcld 25206 A subset of a metric space...
metcld2 25207 A subset of a metric space...
caubl 25208 Sufficient condition to en...
caublcls 25209 The convergent point of a ...
metcnp4 25210 Two ways to say a mapping ...
metcn4 25211 Two ways to say a mapping ...
iscmet3i 25212 Properties that determine ...
lmcau 25213 Every convergent sequence ...
flimcfil 25214 Every convergent filter in...
metsscmetcld 25215 A complete subspace of a m...
cmetss 25216 A subspace of a complete m...
equivcmet 25217 If two metrics are strongl...
relcmpcmet 25218 If ` D ` is a metric space...
cmpcmet 25219 A compact metric space is ...
cfilucfil3 25220 Given a metric ` D ` and a...
cfilucfil4 25221 Given a metric ` D ` and a...
cncmet 25222 The set of complex numbers...
recmet 25223 The real numbers are a com...
bcthlem1 25224 Lemma for ~ bcth . Substi...
bcthlem2 25225 Lemma for ~ bcth . The ba...
bcthlem3 25226 Lemma for ~ bcth . The li...
bcthlem4 25227 Lemma for ~ bcth . Given ...
bcthlem5 25228 Lemma for ~ bcth . The pr...
bcth 25229 Baire's Category Theorem. ...
bcth2 25230 Baire's Category Theorem, ...
bcth3 25231 Baire's Category Theorem, ...
isbn 25238 A Banach space is a normed...
bnsca 25239 The scalar field of a Bana...
bnnvc 25240 A Banach space is a normed...
bnnlm 25241 A Banach space is a normed...
bnngp 25242 A Banach space is a normed...
bnlmod 25243 A Banach space is a left m...
bncms 25244 A Banach space is a comple...
iscms 25245 A complete metric space is...
cmscmet 25246 The induced metric on a co...
bncmet 25247 The induced metric on Bana...
cmsms 25248 A complete metric space is...
cmspropd 25249 Property deduction for a c...
cmssmscld 25250 The restriction of a metri...
cmsss 25251 The restriction of a compl...
lssbn 25252 A subspace of a Banach spa...
cmetcusp1 25253 If the uniform set of a co...
cmetcusp 25254 The uniform space generate...
cncms 25255 The field of complex numbe...
cnflduss 25256 The uniform structure of t...
cnfldcusp 25257 The field of complex numbe...
resscdrg 25258 The real numbers are a sub...
cncdrg 25259 The only complete subfield...
srabn 25260 The subring algebra over a...
rlmbn 25261 The ring module over a com...
ishl 25262 The predicate "is a subcom...
hlbn 25263 Every subcomplex Hilbert s...
hlcph 25264 Every subcomplex Hilbert s...
hlphl 25265 Every subcomplex Hilbert s...
hlcms 25266 Every subcomplex Hilbert s...
hlprlem 25267 Lemma for ~ hlpr . (Contr...
hlress 25268 The scalar field of a subc...
hlpr 25269 The scalar field of a subc...
ishl2 25270 A Hilbert space is a compl...
cphssphl 25271 A Banach subspace of a sub...
cmslssbn 25272 A complete linear subspace...
cmscsscms 25273 A closed subspace of a com...
bncssbn 25274 A closed subspace of a Ban...
cssbn 25275 A complete subspace of a n...
csschl 25276 A complete subspace of a c...
cmslsschl 25277 A complete linear subspace...
chlcsschl 25278 A closed subspace of a sub...
retopn 25279 The topology of the real n...
recms 25280 The real numbers form a co...
reust 25281 The Uniform structure of t...
recusp 25282 The real numbers form a co...
rrxval 25287 Value of the generalized E...
rrxbase 25288 The base of the generalize...
rrxprds 25289 Expand the definition of t...
rrxip 25290 The inner product of the g...
rrxnm 25291 The norm of the generalize...
rrxcph 25292 Generalized Euclidean real...
rrxds 25293 The distance over generali...
rrxvsca 25294 The scalar product over ge...
rrxplusgvscavalb 25295 The result of the addition...
rrxsca 25296 The field of real numbers ...
rrx0 25297 The zero ("origin") in a g...
rrx0el 25298 The zero ("origin") in a g...
csbren 25299 Cauchy-Schwarz-Bunjakovsky...
trirn 25300 Triangle inequality in R^n...
rrxf 25301 Euclidean vectors as funct...
rrxfsupp 25302 Euclidean vectors are of f...
rrxsuppss 25303 Support of Euclidean vecto...
rrxmvallem 25304 Support of the function us...
rrxmval 25305 The value of the Euclidean...
rrxmfval 25306 The value of the Euclidean...
rrxmetlem 25307 Lemma for ~ rrxmet . (Con...
rrxmet 25308 Euclidean space is a metri...
rrxdstprj1 25309 The distance between two p...
rrxbasefi 25310 The base of the generalize...
rrxdsfi 25311 The distance over generali...
rrxmetfi 25312 Euclidean space is a metri...
rrxdsfival 25313 The value of the Euclidean...
ehlval 25314 Value of the Euclidean spa...
ehlbase 25315 The base of the Euclidean ...
ehl0base 25316 The base of the Euclidean ...
ehl0 25317 The Euclidean space of dim...
ehleudis 25318 The Euclidean distance fun...
ehleudisval 25319 The value of the Euclidean...
ehl1eudis 25320 The Euclidean distance fun...
ehl1eudisval 25321 The value of the Euclidean...
ehl2eudis 25322 The Euclidean distance fun...
ehl2eudisval 25323 The value of the Euclidean...
minveclem1 25324 Lemma for ~ minvec . The ...
minveclem4c 25325 Lemma for ~ minvec . The ...
minveclem2 25326 Lemma for ~ minvec . Any ...
minveclem3a 25327 Lemma for ~ minvec . ` D `...
minveclem3b 25328 Lemma for ~ minvec . The ...
minveclem3 25329 Lemma for ~ minvec . The ...
minveclem4a 25330 Lemma for ~ minvec . ` F `...
minveclem4b 25331 Lemma for ~ minvec . The ...
minveclem4 25332 Lemma for ~ minvec . The ...
minveclem5 25333 Lemma for ~ minvec . Disc...
minveclem6 25334 Lemma for ~ minvec . Any ...
minveclem7 25335 Lemma for ~ minvec . Sinc...
minvec 25336 Minimizing vector theorem,...
pjthlem1 25337 Lemma for ~ pjth . (Contr...
pjthlem2 25338 Lemma for ~ pjth . (Contr...
pjth 25339 Projection Theorem: Any H...
pjth2 25340 Projection Theorem with ab...
cldcss 25341 Corollary of the Projectio...
cldcss2 25342 Corollary of the Projectio...
hlhil 25343 Corollary of the Projectio...
addcncf 25344 The addition of two contin...
subcncf 25345 The subtraction of two con...
mulcncf 25346 The multiplication of two ...
mulcncfOLD 25347 Obsolete version of ~ mulc...
divcncf 25348 The quotient of two contin...
pmltpclem1 25349 Lemma for ~ pmltpc . (Con...
pmltpclem2 25350 Lemma for ~ pmltpc . (Con...
pmltpc 25351 Any function on the reals ...
ivthlem1 25352 Lemma for ~ ivth . The se...
ivthlem2 25353 Lemma for ~ ivth . Show t...
ivthlem3 25354 Lemma for ~ ivth , the int...
ivth 25355 The intermediate value the...
ivth2 25356 The intermediate value the...
ivthle 25357 The intermediate value the...
ivthle2 25358 The intermediate value the...
ivthicc 25359 The interval between any t...
evthicc 25360 Specialization of the Extr...
evthicc2 25361 Combine ~ ivthicc with ~ e...
cniccbdd 25362 A continuous function on a...
ovolfcl 25367 Closure for the interval e...
ovolfioo 25368 Unpack the interval coveri...
ovolficc 25369 Unpack the interval coveri...
ovolficcss 25370 Any (closed) interval cove...
ovolfsval 25371 The value of the interval ...
ovolfsf 25372 Closure for the interval l...
ovolsf 25373 Closure for the partial su...
ovolval 25374 The value of the outer mea...
elovolmlem 25375 Lemma for ~ elovolm and re...
elovolm 25376 Elementhood in the set ` M...
elovolmr 25377 Sufficient condition for e...
ovolmge0 25378 The set ` M ` is composed ...
ovolcl 25379 The volume of a set is an ...
ovollb 25380 The outer volume is a lowe...
ovolgelb 25381 The outer volume is the gr...
ovolge0 25382 The volume of a set is alw...
ovolf 25383 The domain and codomain of...
ovollecl 25384 If an outer volume is boun...
ovolsslem 25385 Lemma for ~ ovolss . (Con...
ovolss 25386 The volume of a set is mon...
ovolsscl 25387 If a set is contained in a...
ovolssnul 25388 A subset of a nullset is n...
ovollb2lem 25389 Lemma for ~ ovollb2 . (Co...
ovollb2 25390 It is often more convenien...
ovolctb 25391 The volume of a denumerabl...
ovolq 25392 The rational numbers have ...
ovolctb2 25393 The volume of a countable ...
ovol0 25394 The empty set has 0 outer ...
ovolfi 25395 A finite set has 0 outer L...
ovolsn 25396 A singleton has 0 outer Le...
ovolunlem1a 25397 Lemma for ~ ovolun . (Con...
ovolunlem1 25398 Lemma for ~ ovolun . (Con...
ovolunlem2 25399 Lemma for ~ ovolun . (Con...
ovolun 25400 The Lebesgue outer measure...
ovolunnul 25401 Adding a nullset does not ...
ovolfiniun 25402 The Lebesgue outer measure...
ovoliunlem1 25403 Lemma for ~ ovoliun . (Co...
ovoliunlem2 25404 Lemma for ~ ovoliun . (Co...
ovoliunlem3 25405 Lemma for ~ ovoliun . (Co...
ovoliun 25406 The Lebesgue outer measure...
ovoliun2 25407 The Lebesgue outer measure...
ovoliunnul 25408 A countable union of nulls...
shft2rab 25409 If ` B ` is a shift of ` A...
ovolshftlem1 25410 Lemma for ~ ovolshft . (C...
ovolshftlem2 25411 Lemma for ~ ovolshft . (C...
ovolshft 25412 The Lebesgue outer measure...
sca2rab 25413 If ` B ` is a scale of ` A...
ovolscalem1 25414 Lemma for ~ ovolsca . (Co...
ovolscalem2 25415 Lemma for ~ ovolshft . (C...
ovolsca 25416 The Lebesgue outer measure...
ovolicc1 25417 The measure of a closed in...
ovolicc2lem1 25418 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 25419 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 25420 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 25421 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 25422 Lemma for ~ ovolicc2 . (C...
ovolicc2 25423 The measure of a closed in...
ovolicc 25424 The measure of a closed in...
ovolicopnf 25425 The measure of a right-unb...
ovolre 25426 The measure of the real nu...
ismbl 25427 The predicate " ` A ` is L...
ismbl2 25428 From ~ ovolun , it suffice...
volres 25429 A self-referencing abbrevi...
volf 25430 The domain and codomain of...
mblvol 25431 The volume of a measurable...
mblss 25432 A measurable set is a subs...
mblsplit 25433 The defining property of m...
volss 25434 The Lebesgue measure is mo...
cmmbl 25435 The complement of a measur...
nulmbl 25436 A nullset is measurable. ...
nulmbl2 25437 A set of outer measure zer...
unmbl 25438 A union of measurable sets...
shftmbl 25439 A shift of a measurable se...
0mbl 25440 The empty set is measurabl...
rembl 25441 The set of all real number...
unidmvol 25442 The union of the Lebesgue ...
inmbl 25443 An intersection of measura...
difmbl 25444 A difference of measurable...
finiunmbl 25445 A finite union of measurab...
volun 25446 The Lebesgue measure funct...
volinun 25447 Addition of non-disjoint s...
volfiniun 25448 The volume of a disjoint f...
iundisj 25449 Rewrite a countable union ...
iundisj2 25450 A disjoint union is disjoi...
voliunlem1 25451 Lemma for ~ voliun . (Con...
voliunlem2 25452 Lemma for ~ voliun . (Con...
voliunlem3 25453 Lemma for ~ voliun . (Con...
iunmbl 25454 The measurable sets are cl...
voliun 25455 The Lebesgue measure funct...
volsuplem 25456 Lemma for ~ volsup . (Con...
volsup 25457 The volume of the limit of...
iunmbl2 25458 The measurable sets are cl...
ioombl1lem1 25459 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 25460 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 25461 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 25462 Lemma for ~ ioombl1 . (Co...
ioombl1 25463 An open right-unbounded in...
icombl1 25464 A closed unbounded-above i...
icombl 25465 A closed-below, open-above...
ioombl 25466 An open real interval is m...
iccmbl 25467 A closed real interval is ...
iccvolcl 25468 A closed real interval has...
ovolioo 25469 The measure of an open int...
volioo 25470 The measure of an open int...
ioovolcl 25471 An open real interval has ...
ovolfs2 25472 Alternative expression for...
ioorcl2 25473 An open interval with fini...
ioorf 25474 Define a function from ope...
ioorval 25475 Define a function from ope...
ioorinv2 25476 The function ` F ` is an "...
ioorinv 25477 The function ` F ` is an "...
ioorcl 25478 The function ` F ` does no...
uniiccdif 25479 A union of closed interval...
uniioovol 25480 A disjoint union of open i...
uniiccvol 25481 An almost-disjoint union o...
uniioombllem1 25482 Lemma for ~ uniioombl . (...
uniioombllem2a 25483 Lemma for ~ uniioombl . (...
uniioombllem2 25484 Lemma for ~ uniioombl . (...
uniioombllem3a 25485 Lemma for ~ uniioombl . (...
uniioombllem3 25486 Lemma for ~ uniioombl . (...
uniioombllem4 25487 Lemma for ~ uniioombl . (...
uniioombllem5 25488 Lemma for ~ uniioombl . (...
uniioombllem6 25489 Lemma for ~ uniioombl . (...
uniioombl 25490 A disjoint union of open i...
uniiccmbl 25491 An almost-disjoint union o...
dyadf 25492 The function ` F ` returns...
dyadval 25493 Value of the dyadic ration...
dyadovol 25494 Volume of a dyadic rationa...
dyadss 25495 Two closed dyadic rational...
dyaddisjlem 25496 Lemma for ~ dyaddisj . (C...
dyaddisj 25497 Two closed dyadic rational...
dyadmaxlem 25498 Lemma for ~ dyadmax . (Co...
dyadmax 25499 Any nonempty set of dyadic...
dyadmbllem 25500 Lemma for ~ dyadmbl . (Co...
dyadmbl 25501 Any union of dyadic ration...
opnmbllem 25502 Lemma for ~ opnmbl . (Con...
opnmbl 25503 All open sets are measurab...
opnmblALT 25504 All open sets are measurab...
subopnmbl 25505 Sets which are open in a m...
volsup2 25506 The volume of ` A ` is the...
volcn 25507 The function formed by res...
volivth 25508 The Intermediate Value The...
vitalilem1 25509 Lemma for ~ vitali . (Con...
vitalilem2 25510 Lemma for ~ vitali . (Con...
vitalilem3 25511 Lemma for ~ vitali . (Con...
vitalilem4 25512 Lemma for ~ vitali . (Con...
vitalilem5 25513 Lemma for ~ vitali . (Con...
vitali 25514 If the reals can be well-o...
ismbf1 25525 The predicate " ` F ` is a...
mbff 25526 A measurable function is a...
mbfdm 25527 The domain of a measurable...
mbfconstlem 25528 Lemma for ~ mbfconst and r...
ismbf 25529 The predicate " ` F ` is a...
ismbfcn 25530 A complex function is meas...
mbfima 25531 Definitional property of a...
mbfimaicc 25532 The preimage of any closed...
mbfimasn 25533 The preimage of a point un...
mbfconst 25534 A constant function is mea...
mbf0 25535 The empty function is meas...
mbfid 25536 The identity function is m...
mbfmptcl 25537 Lemma for the ` MblFn ` pr...
mbfdm2 25538 The domain of a measurable...
ismbfcn2 25539 A complex function is meas...
ismbfd 25540 Deduction to prove measura...
ismbf2d 25541 Deduction to prove measura...
mbfeqalem1 25542 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 25543 Lemma for ~ mbfeqa . (Con...
mbfeqa 25544 If two functions are equal...
mbfres 25545 The restriction of a measu...
mbfres2 25546 Measurability of a piecewi...
mbfss 25547 Change the domain of a mea...
mbfmulc2lem 25548 Multiplication by a consta...
mbfmulc2re 25549 Multiplication by a consta...
mbfmax 25550 The maximum of two functio...
mbfneg 25551 The negative of a measurab...
mbfpos 25552 The positive part of a mea...
mbfposr 25553 Converse to ~ mbfpos . (C...
mbfposb 25554 A function is measurable i...
ismbf3d 25555 Simplified form of ~ ismbf...
mbfimaopnlem 25556 Lemma for ~ mbfimaopn . (...
mbfimaopn 25557 The preimage of any open s...
mbfimaopn2 25558 The preimage of any set op...
cncombf 25559 The composition of a conti...
cnmbf 25560 A continuous function is m...
mbfaddlem 25561 The sum of two measurable ...
mbfadd 25562 The sum of two measurable ...
mbfsub 25563 The difference of two meas...
mbfmulc2 25564 A complex constant times a...
mbfsup 25565 The supremum of a sequence...
mbfinf 25566 The infimum of a sequence ...
mbflimsup 25567 The limit supremum of a se...
mbflimlem 25568 The pointwise limit of a s...
mbflim 25569 The pointwise limit of a s...
0pval 25572 The zero function evaluate...
0plef 25573 Two ways to say that the f...
0pledm 25574 Adjust the domain of the l...
isi1f 25575 The predicate " ` F ` is a...
i1fmbf 25576 Simple functions are measu...
i1ff 25577 A simple function is a fun...
i1frn 25578 A simple function has fini...
i1fima 25579 Any preimage of a simple f...
i1fima2 25580 Any preimage of a simple f...
i1fima2sn 25581 Preimage of a singleton. ...
i1fd 25582 A simplified set of assump...
i1f0rn 25583 Any simple function takes ...
itg1val 25584 The value of the integral ...
itg1val2 25585 The value of the integral ...
itg1cl 25586 Closure of the integral on...
itg1ge0 25587 Closure of the integral on...
i1f0 25588 The zero function is simpl...
itg10 25589 The zero function has zero...
i1f1lem 25590 Lemma for ~ i1f1 and ~ itg...
i1f1 25591 Base case simple functions...
itg11 25592 The integral of an indicat...
itg1addlem1 25593 Decompose a preimage, whic...
i1faddlem 25594 Decompose the preimage of ...
i1fmullem 25595 Decompose the preimage of ...
i1fadd 25596 The sum of two simple func...
i1fmul 25597 The pointwise product of t...
itg1addlem2 25598 Lemma for ~ itg1add . The...
itg1addlem3 25599 Lemma for ~ itg1add . (Co...
itg1addlem4 25600 Lemma for ~ itg1add . (Co...
itg1addlem5 25601 Lemma for ~ itg1add . (Co...
itg1add 25602 The integral of a sum of s...
i1fmulclem 25603 Decompose the preimage of ...
i1fmulc 25604 A nonnegative constant tim...
itg1mulc 25605 The integral of a constant...
i1fres 25606 The "restriction" of a sim...
i1fpos 25607 The positive part of a sim...
i1fposd 25608 Deduction form of ~ i1fpos...
i1fsub 25609 The difference of two simp...
itg1sub 25610 The integral of a differen...
itg10a 25611 The integral of a simple f...
itg1ge0a 25612 The integral of an almost ...
itg1lea 25613 Approximate version of ~ i...
itg1le 25614 If one simple function dom...
itg1climres 25615 Restricting the simple fun...
mbfi1fseqlem1 25616 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 25617 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 25618 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 25619 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 25620 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 25621 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 25622 A characterization of meas...
mbfi1flimlem 25623 Lemma for ~ mbfi1flim . (...
mbfi1flim 25624 Any real measurable functi...
mbfmullem2 25625 Lemma for ~ mbfmul . (Con...
mbfmullem 25626 Lemma for ~ mbfmul . (Con...
mbfmul 25627 The product of two measura...
itg2lcl 25628 The set of lower sums is a...
itg2val 25629 Value of the integral on n...
itg2l 25630 Elementhood in the set ` L...
itg2lr 25631 Sufficient condition for e...
xrge0f 25632 A real function is a nonne...
itg2cl 25633 The integral of a nonnegat...
itg2ub 25634 The integral of a nonnegat...
itg2leub 25635 Any upper bound on the int...
itg2ge0 25636 The integral of a nonnegat...
itg2itg1 25637 The integral of a nonnegat...
itg20 25638 The integral of the zero f...
itg2lecl 25639 If an ` S.2 ` integral is ...
itg2le 25640 If one function dominates ...
itg2const 25641 Integral of a constant fun...
itg2const2 25642 When the base set of a con...
itg2seq 25643 Definitional property of t...
itg2uba 25644 Approximate version of ~ i...
itg2lea 25645 Approximate version of ~ i...
itg2eqa 25646 Approximate equality of in...
itg2mulclem 25647 Lemma for ~ itg2mulc . (C...
itg2mulc 25648 The integral of a nonnegat...
itg2splitlem 25649 Lemma for ~ itg2split . (...
itg2split 25650 The ` S.2 ` integral split...
itg2monolem1 25651 Lemma for ~ itg2mono . We...
itg2monolem2 25652 Lemma for ~ itg2mono . (C...
itg2monolem3 25653 Lemma for ~ itg2mono . (C...
itg2mono 25654 The Monotone Convergence T...
itg2i1fseqle 25655 Subject to the conditions ...
itg2i1fseq 25656 Subject to the conditions ...
itg2i1fseq2 25657 In an extension to the res...
itg2i1fseq3 25658 Special case of ~ itg2i1fs...
itg2addlem 25659 Lemma for ~ itg2add . (Co...
itg2add 25660 The ` S.2 ` integral is li...
itg2gt0 25661 If the function ` F ` is s...
itg2cnlem1 25662 Lemma for ~ itgcn . (Cont...
itg2cnlem2 25663 Lemma for ~ itgcn . (Cont...
itg2cn 25664 A sort of absolute continu...
ibllem 25665 Conditioned equality theor...
isibl 25666 The predicate " ` F ` is i...
isibl2 25667 The predicate " ` F ` is i...
iblmbf 25668 An integrable function is ...
iblitg 25669 If a function is integrabl...
dfitg 25670 Evaluate the class substit...
itgex 25671 An integral is a set. (Co...
itgeq1f 25672 Equality theorem for an in...
itgeq1fOLD 25673 Obsolete version of ~ itge...
itgeq1 25674 Equality theorem for an in...
nfitg1 25675 Bound-variable hypothesis ...
nfitg 25676 Bound-variable hypothesis ...
cbvitg 25677 Change bound variable in a...
cbvitgv 25678 Change bound variable in a...
itgeq2 25679 Equality theorem for an in...
itgresr 25680 The domain of an integral ...
itg0 25681 The integral of anything o...
itgz 25682 The integral of zero on an...
itgeq2dv 25683 Equality theorem for an in...
itgmpt 25684 Change bound variable in a...
itgcl 25685 The integral of an integra...
itgvallem 25686 Substitution lemma. (Cont...
itgvallem3 25687 Lemma for ~ itgposval and ...
ibl0 25688 The zero function is integ...
iblcnlem1 25689 Lemma for ~ iblcnlem . (C...
iblcnlem 25690 Expand out the universal q...
itgcnlem 25691 Expand out the sum in ~ df...
iblrelem 25692 Integrability of a real fu...
iblposlem 25693 Lemma for ~ iblpos . (Con...
iblpos 25694 Integrability of a nonnega...
iblre 25695 Integrability of a real fu...
itgrevallem1 25696 Lemma for ~ itgposval and ...
itgposval 25697 The integral of a nonnegat...
itgreval 25698 Decompose the integral of ...
itgrecl 25699 Real closure of an integra...
iblcn 25700 Integrability of a complex...
itgcnval 25701 Decompose the integral of ...
itgre 25702 Real part of an integral. ...
itgim 25703 Imaginary part of an integ...
iblneg 25704 The negative of an integra...
itgneg 25705 Negation of an integral. ...
iblss 25706 A subset of an integrable ...
iblss2 25707 Change the domain of an in...
itgitg2 25708 Transfer an integral using...
i1fibl 25709 A simple function is integ...
itgitg1 25710 Transfer an integral using...
itgle 25711 Monotonicity of an integra...
itgge0 25712 The integral of a positive...
itgss 25713 Expand the set of an integ...
itgss2 25714 Expand the set of an integ...
itgeqa 25715 Approximate equality of in...
itgss3 25716 Expand the set of an integ...
itgioo 25717 Equality of integrals on o...
itgless 25718 Expand the integral of a n...
iblconst 25719 A constant function is int...
itgconst 25720 Integral of a constant fun...
ibladdlem 25721 Lemma for ~ ibladd . (Con...
ibladd 25722 Add two integrals over the...
iblsub 25723 Subtract two integrals ove...
itgaddlem1 25724 Lemma for ~ itgadd . (Con...
itgaddlem2 25725 Lemma for ~ itgadd . (Con...
itgadd 25726 Add two integrals over the...
itgsub 25727 Subtract two integrals ove...
itgfsum 25728 Take a finite sum of integ...
iblabslem 25729 Lemma for ~ iblabs . (Con...
iblabs 25730 The absolute value of an i...
iblabsr 25731 A measurable function is i...
iblmulc2 25732 Multiply an integral by a ...
itgmulc2lem1 25733 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 25734 Lemma for ~ itgmulc2 : rea...
itgmulc2 25735 Multiply an integral by a ...
itgabs 25736 The triangle inequality fo...
itgsplit 25737 The ` S. ` integral splits...
itgspliticc 25738 The ` S. ` integral splits...
itgsplitioo 25739 The ` S. ` integral splits...
bddmulibl 25740 A bounded function times a...
bddibl 25741 A bounded function is inte...
cniccibl 25742 A continuous function on a...
bddiblnc 25743 Choice-free proof of ~ bdd...
cnicciblnc 25744 Choice-free proof of ~ cni...
itggt0 25745 The integral of a strictly...
itgcn 25746 Transfer ~ itg2cn to the f...
ditgeq1 25749 Equality theorem for the d...
ditgeq2 25750 Equality theorem for the d...
ditgeq3 25751 Equality theorem for the d...
ditgeq3dv 25752 Equality theorem for the d...
ditgex 25753 A directed integral is a s...
ditg0 25754 Value of the directed inte...
cbvditg 25755 Change bound variable in a...
cbvditgv 25756 Change bound variable in a...
ditgpos 25757 Value of the directed inte...
ditgneg 25758 Value of the directed inte...
ditgcl 25759 Closure of a directed inte...
ditgswap 25760 Reverse a directed integra...
ditgsplitlem 25761 Lemma for ~ ditgsplit . (...
ditgsplit 25762 This theorem is the raison...
reldv 25771 The derivative function is...
limcvallem 25772 Lemma for ~ ellimc . (Con...
limcfval 25773 Value and set bounds on th...
ellimc 25774 Value of the limit predica...
limcrcl 25775 Reverse closure for the li...
limccl 25776 Closure of the limit opera...
limcdif 25777 It suffices to consider fu...
ellimc2 25778 Write the definition of a ...
limcnlp 25779 If ` B ` is not a limit po...
ellimc3 25780 Write the epsilon-delta de...
limcflflem 25781 Lemma for ~ limcflf . (Co...
limcflf 25782 The limit operator can be ...
limcmo 25783 If ` B ` is a limit point ...
limcmpt 25784 Express the limit operator...
limcmpt2 25785 Express the limit operator...
limcresi 25786 Any limit of ` F ` is also...
limcres 25787 If ` B ` is an interior po...
cnplimc 25788 A function is continuous a...
cnlimc 25789 ` F ` is a continuous func...
cnlimci 25790 If ` F ` is a continuous f...
cnmptlimc 25791 If ` F ` is a continuous f...
limccnp 25792 If the limit of ` F ` at `...
limccnp2 25793 The image of a convergent ...
limcco 25794 Composition of two limits....
limciun 25795 A point is a limit of ` F ...
limcun 25796 A point is a limit of ` F ...
dvlem 25797 Closure for a difference q...
dvfval 25798 Value and set bounds on th...
eldv 25799 The differentiable predica...
dvcl 25800 The derivative function ta...
dvbssntr 25801 The set of differentiable ...
dvbss 25802 The set of differentiable ...
dvbsss 25803 The set of differentiable ...
perfdvf 25804 The derivative is a functi...
recnprss 25805 Both ` RR ` and ` CC ` are...
recnperf 25806 Both ` RR ` and ` CC ` are...
dvfg 25807 Explicitly write out the f...
dvf 25808 The derivative is a functi...
dvfcn 25809 The derivative is a functi...
dvreslem 25810 Lemma for ~ dvres . (Cont...
dvres2lem 25811 Lemma for ~ dvres2 . (Con...
dvres 25812 Restriction of a derivativ...
dvres2 25813 Restriction of the base se...
dvres3 25814 Restriction of a complex d...
dvres3a 25815 Restriction of a complex d...
dvidlem 25816 Lemma for ~ dvid and ~ dvc...
dvmptresicc 25817 Derivative of a function r...
dvconst 25818 Derivative of a constant f...
dvid 25819 Derivative of the identity...
dvcnp 25820 The difference quotient is...
dvcnp2 25821 A function is continuous a...
dvcnp2OLD 25822 Obsolete version of ~ dvcn...
dvcn 25823 A differentiable function ...
dvnfval 25824 Value of the iterated deri...
dvnff 25825 The iterated derivative is...
dvn0 25826 Zero times iterated deriva...
dvnp1 25827 Successor iterated derivat...
dvn1 25828 One times iterated derivat...
dvnf 25829 The N-times derivative is ...
dvnbss 25830 The set of N-times differe...
dvnadd 25831 The ` N ` -th derivative o...
dvn2bss 25832 An N-times differentiable ...
dvnres 25833 Multiple derivative versio...
cpnfval 25834 Condition for n-times cont...
fncpn 25835 The ` C^n ` object is a fu...
elcpn 25836 Condition for n-times cont...
cpnord 25837 ` C^n ` conditions are ord...
cpncn 25838 A ` C^n ` function is cont...
cpnres 25839 The restriction of a ` C^n...
dvaddbr 25840 The sum rule for derivativ...
dvmulbr 25841 The product rule for deriv...
dvmulbrOLD 25842 Obsolete version of ~ dvmu...
dvadd 25843 The sum rule for derivativ...
dvmul 25844 The product rule for deriv...
dvaddf 25845 The sum rule for everywher...
dvmulf 25846 The product rule for every...
dvcmul 25847 The product rule when one ...
dvcmulf 25848 The product rule when one ...
dvcobr 25849 The chain rule for derivat...
dvcobrOLD 25850 Obsolete version of ~ dvco...
dvco 25851 The chain rule for derivat...
dvcof 25852 The chain rule for everywh...
dvcjbr 25853 The derivative of the conj...
dvcj 25854 The derivative of the conj...
dvfre 25855 The derivative of a real f...
dvnfre 25856 The ` N ` -th derivative o...
dvexp 25857 Derivative of a power func...
dvexp2 25858 Derivative of an exponenti...
dvrec 25859 Derivative of the reciproc...
dvmptres3 25860 Function-builder for deriv...
dvmptid 25861 Function-builder for deriv...
dvmptc 25862 Function-builder for deriv...
dvmptcl 25863 Closure lemma for ~ dvmptc...
dvmptadd 25864 Function-builder for deriv...
dvmptmul 25865 Function-builder for deriv...
dvmptres2 25866 Function-builder for deriv...
dvmptres 25867 Function-builder for deriv...
dvmptcmul 25868 Function-builder for deriv...
dvmptdivc 25869 Function-builder for deriv...
dvmptneg 25870 Function-builder for deriv...
dvmptsub 25871 Function-builder for deriv...
dvmptcj 25872 Function-builder for deriv...
dvmptre 25873 Function-builder for deriv...
dvmptim 25874 Function-builder for deriv...
dvmptntr 25875 Function-builder for deriv...
dvmptco 25876 Function-builder for deriv...
dvrecg 25877 Derivative of the reciproc...
dvmptdiv 25878 Function-builder for deriv...
dvmptfsum 25879 Function-builder for deriv...
dvcnvlem 25880 Lemma for ~ dvcnvre . (Co...
dvcnv 25881 A weak version of ~ dvcnvr...
dvexp3 25882 Derivative of an exponenti...
dveflem 25883 Derivative of the exponent...
dvef 25884 Derivative of the exponent...
dvsincos 25885 Derivative of the sine and...
dvsin 25886 Derivative of the sine fun...
dvcos 25887 Derivative of the cosine f...
dvferm1lem 25888 Lemma for ~ dvferm . (Con...
dvferm1 25889 One-sided version of ~ dvf...
dvferm2lem 25890 Lemma for ~ dvferm . (Con...
dvferm2 25891 One-sided version of ~ dvf...
dvferm 25892 Fermat's theorem on statio...
rollelem 25893 Lemma for ~ rolle . (Cont...
rolle 25894 Rolle's theorem. If ` F `...
cmvth 25895 Cauchy's Mean Value Theore...
cmvthOLD 25896 Obsolete version of ~ cmvt...
mvth 25897 The Mean Value Theorem. I...
dvlip 25898 A function with derivative...
dvlipcn 25899 A complex function with de...
dvlip2 25900 Combine the results of ~ d...
c1liplem1 25901 Lemma for ~ c1lip1 . (Con...
c1lip1 25902 C^1 functions are Lipschit...
c1lip2 25903 C^1 functions are Lipschit...
c1lip3 25904 C^1 functions are Lipschit...
dveq0 25905 If a continuous function h...
dv11cn 25906 Two functions defined on a...
dvgt0lem1 25907 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25908 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25909 A function on a closed int...
dvlt0 25910 A function on a closed int...
dvge0 25911 A function on a closed int...
dvle 25912 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25913 Lemma for ~ dvivth . (Con...
dvivthlem2 25914 Lemma for ~ dvivth . (Con...
dvivth 25915 Darboux' theorem, or the i...
dvne0 25916 A function on a closed int...
dvne0f1 25917 A function on a closed int...
lhop1lem 25918 Lemma for ~ lhop1 . (Cont...
lhop1 25919 L'Hôpital's Rule for...
lhop2 25920 L'Hôpital's Rule for...
lhop 25921 L'Hôpital's Rule. I...
dvcnvrelem1 25922 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25923 Lemma for ~ dvcnvre . (Co...
dvcnvre 25924 The derivative rule for in...
dvcvx 25925 A real function with stric...
dvfsumle 25926 Compare a finite sum to an...
dvfsumleOLD 25927 Obsolete version of ~ dvfs...
dvfsumge 25928 Compare a finite sum to an...
dvfsumabs 25929 Compare a finite sum to an...
dvmptrecl 25930 Real closure of a derivati...
dvfsumrlimf 25931 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25932 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25933 Lemma for ~ dvfsumrlim . ...
dvfsumlem2OLD 25934 Obsolete version of ~ dvfs...
dvfsumlem3 25935 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25936 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25937 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25938 Compare a finite sum to an...
dvfsumrlim2 25939 Compare a finite sum to an...
dvfsumrlim3 25940 Conjoin the statements of ...
dvfsum2 25941 The reverse of ~ dvfsumrli...
ftc1lem1 25942 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 25943 Lemma for ~ ftc1 . (Contr...
ftc1a 25944 The Fundamental Theorem of...
ftc1lem3 25945 Lemma for ~ ftc1 . (Contr...
ftc1lem4 25946 Lemma for ~ ftc1 . (Contr...
ftc1lem5 25947 Lemma for ~ ftc1 . (Contr...
ftc1lem6 25948 Lemma for ~ ftc1 . (Contr...
ftc1 25949 The Fundamental Theorem of...
ftc1cn 25950 Strengthen the assumptions...
ftc2 25951 The Fundamental Theorem of...
ftc2ditglem 25952 Lemma for ~ ftc2ditg . (C...
ftc2ditg 25953 Directed integral analogue...
itgparts 25954 Integration by parts. If ...
itgsubstlem 25955 Lemma for ~ itgsubst . (C...
itgsubst 25956 Integration by ` u ` -subs...
itgpowd 25957 The integral of a monomial...
reldmmdeg 25962 Multivariate degree is a b...
tdeglem1 25963 Functionality of the total...
tdeglem3 25964 Additivity of the total de...
tdeglem4 25965 There is only one multi-in...
tdeglem2 25966 Simplification of total de...
mdegfval 25967 Value of the multivariate ...
mdegval 25968 Value of the multivariate ...
mdegleb 25969 Property of being of limit...
mdeglt 25970 If there is an upper limit...
mdegldg 25971 A nonzero polynomial has s...
mdegxrcl 25972 Closure of polynomial degr...
mdegxrf 25973 Functionality of polynomia...
mdegcl 25974 Sharp closure for multivar...
mdeg0 25975 Degree of the zero polynom...
mdegnn0cl 25976 Degree of a nonzero polyno...
degltlem1 25977 Theorem on arithmetic of e...
degltp1le 25978 Theorem on arithmetic of e...
mdegaddle 25979 The degree of a sum is at ...
mdegvscale 25980 The degree of a scalar mul...
mdegvsca 25981 The degree of a scalar mul...
mdegle0 25982 A polynomial has nonpositi...
mdegmullem 25983 Lemma for ~ mdegmulle2 . ...
mdegmulle2 25984 The multivariate degree of...
deg1fval 25985 Relate univariate polynomi...
deg1xrf 25986 Functionality of univariat...
deg1xrcl 25987 Closure of univariate poly...
deg1cl 25988 Sharp closure of univariat...
mdegpropd 25989 Property deduction for pol...
deg1fvi 25990 Univariate polynomial degr...
deg1propd 25991 Property deduction for pol...
deg1z 25992 Degree of the zero univari...
deg1nn0cl 25993 Degree of a nonzero univar...
deg1n0ima 25994 Degree image of a set of p...
deg1nn0clb 25995 A polynomial is nonzero if...
deg1lt0 25996 A polynomial is zero iff i...
deg1ldg 25997 A nonzero univariate polyn...
deg1ldgn 25998 An index at which a polyno...
deg1ldgdomn 25999 A nonzero univariate polyn...
deg1leb 26000 Property of being of limit...
deg1val 26001 Value of the univariate de...
deg1lt 26002 If the degree of a univari...
deg1ge 26003 Conversely, a nonzero coef...
coe1mul3 26004 The coefficient vector of ...
coe1mul4 26005 Value of the "leading" coe...
deg1addle 26006 The degree of a sum is at ...
deg1addle2 26007 If both factors have degre...
deg1add 26008 Exact degree of a sum of t...
deg1vscale 26009 The degree of a scalar tim...
deg1vsca 26010 The degree of a scalar tim...
deg1invg 26011 The degree of the negated ...
deg1suble 26012 The degree of a difference...
deg1sub 26013 Exact degree of a differen...
deg1mulle2 26014 Produce a bound on the pro...
deg1sublt 26015 Subtraction of two polynom...
deg1le0 26016 A polynomial has nonpositi...
deg1sclle 26017 A scalar polynomial has no...
deg1scl 26018 A nonzero scalar polynomia...
deg1mul2 26019 Degree of multiplication o...
deg1mul 26020 Degree of multiplication o...
deg1mul3 26021 Degree of multiplication o...
deg1mul3le 26022 Degree of multiplication o...
deg1tmle 26023 Limiting degree of a polyn...
deg1tm 26024 Exact degree of a polynomi...
deg1pwle 26025 Limiting degree of a varia...
deg1pw 26026 Exact degree of a variable...
ply1nz 26027 Univariate polynomials ove...
ply1nzb 26028 Univariate polynomials are...
ply1domn 26029 Corollary of ~ deg1mul2 : ...
ply1idom 26030 The ring of univariate pol...
ply1divmo 26041 Uniqueness of a quotient i...
ply1divex 26042 Lemma for ~ ply1divalg : e...
ply1divalg 26043 The division algorithm for...
ply1divalg2 26044 Reverse the order of multi...
uc1pval 26045 Value of the set of unitic...
isuc1p 26046 Being a unitic polynomial....
mon1pval 26047 Value of the set of monic ...
ismon1p 26048 Being a monic polynomial. ...
uc1pcl 26049 Unitic polynomials are pol...
mon1pcl 26050 Monic polynomials are poly...
uc1pn0 26051 Unitic polynomials are not...
mon1pn0 26052 Monic polynomials are not ...
uc1pdeg 26053 Unitic polynomials have no...
uc1pldg 26054 Unitic polynomials have un...
mon1pldg 26055 Unitic polynomials have on...
mon1puc1p 26056 Monic polynomials are unit...
uc1pmon1p 26057 Make a unitic polynomial m...
deg1submon1p 26058 The difference of two moni...
mon1pid 26059 Monicity and degree of the...
q1pval 26060 Value of the univariate po...
q1peqb 26061 Characterizing property of...
q1pcl 26062 Closure of the quotient by...
r1pval 26063 Value of the polynomial re...
r1pcl 26064 Closure of remainder follo...
r1pdeglt 26065 The remainder has a degree...
r1pid 26066 Express the original polyn...
r1pid2 26067 Identity law for polynomia...
dvdsq1p 26068 Divisibility in a polynomi...
dvdsr1p 26069 Divisibility in a polynomi...
ply1remlem 26070 A term of the form ` x - N...
ply1rem 26071 The polynomial remainder t...
facth1 26072 The factor theorem and its...
fta1glem1 26073 Lemma for ~ fta1g . (Cont...
fta1glem2 26074 Lemma for ~ fta1g . (Cont...
fta1g 26075 The one-sided fundamental ...
fta1blem 26076 Lemma for ~ fta1b . (Cont...
fta1b 26077 The assumption that ` R ` ...
idomrootle 26078 No element of an integral ...
drnguc1p 26079 Over a division ring, all ...
ig1peu 26080 There is a unique monic po...
ig1pval 26081 Substitutions for the poly...
ig1pval2 26082 Generator of the zero idea...
ig1pval3 26083 Characterizing properties ...
ig1pcl 26084 The monic generator of an ...
ig1pdvds 26085 The monic generator of an ...
ig1prsp 26086 Any ideal of polynomials o...
ply1lpir 26087 The ring of polynomials ov...
ply1pid 26088 The polynomials over a fie...
plyco0 26097 Two ways to say that a fun...
plyval 26098 Value of the polynomial se...
plybss 26099 Reverse closure of the par...
elply 26100 Definition of a polynomial...
elply2 26101 The coefficient function c...
plyun0 26102 The set of polynomials is ...
plyf 26103 A polynomial is a function...
plyss 26104 The polynomial set functio...
plyssc 26105 Every polynomial ring is c...
elplyr 26106 Sufficient condition for e...
elplyd 26107 Sufficient condition for e...
ply1termlem 26108 Lemma for ~ ply1term . (C...
ply1term 26109 A one-term polynomial. (C...
plypow 26110 A power is a polynomial. ...
plyconst 26111 A constant function is a p...
ne0p 26112 A test to show that a poly...
ply0 26113 The zero function is a pol...
plyid 26114 The identity function is a...
plyeq0lem 26115 Lemma for ~ plyeq0 . If `...
plyeq0 26116 If a polynomial is zero at...
plypf1 26117 Write the set of complex p...
plyaddlem1 26118 Derive the coefficient fun...
plymullem1 26119 Derive the coefficient fun...
plyaddlem 26120 Lemma for ~ plyadd . (Con...
plymullem 26121 Lemma for ~ plymul . (Con...
plyadd 26122 The sum of two polynomials...
plymul 26123 The product of two polynom...
plysub 26124 The difference of two poly...
plyaddcl 26125 The sum of two polynomials...
plymulcl 26126 The product of two polynom...
plysubcl 26127 The difference of two poly...
coeval 26128 Value of the coefficient f...
coeeulem 26129 Lemma for ~ coeeu . (Cont...
coeeu 26130 Uniqueness of the coeffici...
coelem 26131 Lemma for properties of th...
coeeq 26132 If ` A ` satisfies the pro...
dgrval 26133 Value of the degree functi...
dgrlem 26134 Lemma for ~ dgrcl and simi...
coef 26135 The domain and codomain of...
coef2 26136 The domain and codomain of...
coef3 26137 The domain and codomain of...
dgrcl 26138 The degree of any polynomi...
dgrub 26139 If the ` M ` -th coefficie...
dgrub2 26140 All the coefficients above...
dgrlb 26141 If all the coefficients ab...
coeidlem 26142 Lemma for ~ coeid . (Cont...
coeid 26143 Reconstruct a polynomial a...
coeid2 26144 Reconstruct a polynomial a...
coeid3 26145 Reconstruct a polynomial a...
plyco 26146 The composition of two pol...
coeeq2 26147 Compute the coefficient fu...
dgrle 26148 Given an explicit expressi...
dgreq 26149 If the highest term in a p...
0dgr 26150 A constant function has de...
0dgrb 26151 A function has degree zero...
dgrnznn 26152 A nonzero polynomial with ...
coefv0 26153 The result of evaluating a...
coeaddlem 26154 Lemma for ~ coeadd and ~ d...
coemullem 26155 Lemma for ~ coemul and ~ d...
coeadd 26156 The coefficient function o...
coemul 26157 A coefficient of a product...
coe11 26158 The coefficient function i...
coemulhi 26159 The leading coefficient of...
coemulc 26160 The coefficient function i...
coe0 26161 The coefficients of the ze...
coesub 26162 The coefficient function o...
coe1termlem 26163 The coefficient function o...
coe1term 26164 The coefficient function o...
dgr1term 26165 The degree of a monomial. ...
plycn 26166 A polynomial is a continuo...
plycnOLD 26167 Obsolete version of ~ plyc...
dgr0 26168 The degree of the zero pol...
coeidp 26169 The coefficients of the id...
dgrid 26170 The degree of the identity...
dgreq0 26171 The leading coefficient of...
dgrlt 26172 Two ways to say that the d...
dgradd 26173 The degree of a sum of pol...
dgradd2 26174 The degree of a sum of pol...
dgrmul2 26175 The degree of a product of...
dgrmul 26176 The degree of a product of...
dgrmulc 26177 Scalar multiplication by a...
dgrsub 26178 The degree of a difference...
dgrcolem1 26179 The degree of a compositio...
dgrcolem2 26180 Lemma for ~ dgrco . (Cont...
dgrco 26181 The degree of a compositio...
plycjlem 26182 Lemma for ~ plycj and ~ co...
plycj 26183 The double conjugation of ...
coecj 26184 Double conjugation of a po...
plycjOLD 26185 Obsolete version of ~ plyc...
coecjOLD 26186 Obsolete version of ~ coec...
plyrecj 26187 A polynomial with real coe...
plymul0or 26188 Polynomial multiplication ...
ofmulrt 26189 The set of roots of a prod...
plyreres 26190 Real-coefficient polynomia...
dvply1 26191 Derivative of a polynomial...
dvply2g 26192 The derivative of a polyno...
dvply2gOLD 26193 Obsolete version of ~ dvpl...
dvply2 26194 The derivative of a polyno...
dvnply2 26195 Polynomials have polynomia...
dvnply 26196 Polynomials have polynomia...
plycpn 26197 Polynomials are smooth. (...
quotval 26200 Value of the quotient func...
plydivlem1 26201 Lemma for ~ plydivalg . (...
plydivlem2 26202 Lemma for ~ plydivalg . (...
plydivlem3 26203 Lemma for ~ plydivex . Ba...
plydivlem4 26204 Lemma for ~ plydivex . In...
plydivex 26205 Lemma for ~ plydivalg . (...
plydiveu 26206 Lemma for ~ plydivalg . (...
plydivalg 26207 The division algorithm on ...
quotlem 26208 Lemma for properties of th...
quotcl 26209 The quotient of two polyno...
quotcl2 26210 Closure of the quotient fu...
quotdgr 26211 Remainder property of the ...
plyremlem 26212 Closure of a linear factor...
plyrem 26213 The polynomial remainder t...
facth 26214 The factor theorem. If a ...
fta1lem 26215 Lemma for ~ fta1 . (Contr...
fta1 26216 The easy direction of the ...
quotcan 26217 Exact division with a mult...
vieta1lem1 26218 Lemma for ~ vieta1 . (Con...
vieta1lem2 26219 Lemma for ~ vieta1 : induc...
vieta1 26220 The first-order Vieta's fo...
plyexmo 26221 An infinite set of values ...
elaa 26224 Elementhood in the set of ...
aacn 26225 An algebraic number is a c...
aasscn 26226 The algebraic numbers are ...
elqaalem1 26227 Lemma for ~ elqaa . The f...
elqaalem2 26228 Lemma for ~ elqaa . (Cont...
elqaalem3 26229 Lemma for ~ elqaa . (Cont...
elqaa 26230 The set of numbers generat...
qaa 26231 Every rational number is a...
qssaa 26232 The rational numbers are c...
iaa 26233 The imaginary unit is alge...
aareccl 26234 The reciprocal of an algeb...
aacjcl 26235 The conjugate of an algebr...
aannenlem1 26236 Lemma for ~ aannen . (Con...
aannenlem2 26237 Lemma for ~ aannen . (Con...
aannenlem3 26238 The algebraic numbers are ...
aannen 26239 The algebraic numbers are ...
aalioulem1 26240 Lemma for ~ aaliou . An i...
aalioulem2 26241 Lemma for ~ aaliou . (Con...
aalioulem3 26242 Lemma for ~ aaliou . (Con...
aalioulem4 26243 Lemma for ~ aaliou . (Con...
aalioulem5 26244 Lemma for ~ aaliou . (Con...
aalioulem6 26245 Lemma for ~ aaliou . (Con...
aaliou 26246 Liouville's theorem on dio...
geolim3 26247 Geometric series convergen...
aaliou2 26248 Liouville's approximation ...
aaliou2b 26249 Liouville's approximation ...
aaliou3lem1 26250 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 26251 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 26252 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 26253 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 26254 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 26255 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 26256 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 26257 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 26258 Example of a "Liouville nu...
aaliou3 26259 Example of a "Liouville nu...
taylfvallem1 26264 Lemma for ~ taylfval . (C...
taylfvallem 26265 Lemma for ~ taylfval . (C...
taylfval 26266 Define the Taylor polynomi...
eltayl 26267 Value of the Taylor series...
taylf 26268 The Taylor series defines ...
tayl0 26269 The Taylor series is alway...
taylplem1 26270 Lemma for ~ taylpfval and ...
taylplem2 26271 Lemma for ~ taylpfval and ...
taylpfval 26272 Define the Taylor polynomi...
taylpf 26273 The Taylor polynomial is a...
taylpval 26274 Value of the Taylor polyno...
taylply2 26275 The Taylor polynomial is a...
taylply2OLD 26276 Obsolete version of ~ tayl...
taylply 26277 The Taylor polynomial is a...
dvtaylp 26278 The derivative of the Tayl...
dvntaylp 26279 The ` M ` -th derivative o...
dvntaylp0 26280 The first ` N ` derivative...
taylthlem1 26281 Lemma for ~ taylth . This...
taylthlem2 26282 Lemma for ~ taylth . (Con...
taylthlem2OLD 26283 Obsolete version of ~ tayl...
taylth 26284 Taylor's theorem. The Tay...
ulmrel 26287 The uniform limit relation...
ulmscl 26288 Closure of the base set in...
ulmval 26289 Express the predicate: Th...
ulmcl 26290 Closure of a uniform limit...
ulmf 26291 Closure of a uniform limit...
ulmpm 26292 Closure of a uniform limit...
ulmf2 26293 Closure of a uniform limit...
ulm2 26294 Simplify ~ ulmval when ` F...
ulmi 26295 The uniform limit property...
ulmclm 26296 A uniform limit of functio...
ulmres 26297 A sequence of functions co...
ulmshftlem 26298 Lemma for ~ ulmshft . (Co...
ulmshft 26299 A sequence of functions co...
ulm0 26300 Every function converges u...
ulmuni 26301 A sequence of functions un...
ulmdm 26302 Two ways to express that a...
ulmcaulem 26303 Lemma for ~ ulmcau and ~ u...
ulmcau 26304 A sequence of functions co...
ulmcau2 26305 A sequence of functions co...
ulmss 26306 A uniform limit of functio...
ulmbdd 26307 A uniform limit of bounded...
ulmcn 26308 A uniform limit of continu...
ulmdvlem1 26309 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 26310 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 26311 Lemma for ~ ulmdv . (Cont...
ulmdv 26312 If ` F ` is a sequence of ...
mtest 26313 The Weierstrass M-test. I...
mtestbdd 26314 Given the hypotheses of th...
mbfulm 26315 A uniform limit of measura...
iblulm 26316 A uniform limit of integra...
itgulm 26317 A uniform limit of integra...
itgulm2 26318 A uniform limit of integra...
pserval 26319 Value of the function ` G ...
pserval2 26320 Value of the function ` G ...
psergf 26321 The sequence of terms in t...
radcnvlem1 26322 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 26323 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 26324 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 26325 Zero is always a convergen...
radcnvcl 26326 The radius of convergence ...
radcnvlt1 26327 If ` X ` is within the ope...
radcnvlt2 26328 If ` X ` is within the ope...
radcnvle 26329 If ` X ` is a convergent p...
dvradcnv 26330 The radius of convergence ...
pserulm 26331 If ` S ` is a region conta...
psercn2 26332 Since by ~ pserulm the ser...
psercn2OLD 26333 Obsolete version of ~ pser...
psercnlem2 26334 Lemma for ~ psercn . (Con...
psercnlem1 26335 Lemma for ~ psercn . (Con...
psercn 26336 An infinite series converg...
pserdvlem1 26337 Lemma for ~ pserdv . (Con...
pserdvlem2 26338 Lemma for ~ pserdv . (Con...
pserdv 26339 The derivative of a power ...
pserdv2 26340 The derivative of a power ...
abelthlem1 26341 Lemma for ~ abelth . (Con...
abelthlem2 26342 Lemma for ~ abelth . The ...
abelthlem3 26343 Lemma for ~ abelth . (Con...
abelthlem4 26344 Lemma for ~ abelth . (Con...
abelthlem5 26345 Lemma for ~ abelth . (Con...
abelthlem6 26346 Lemma for ~ abelth . (Con...
abelthlem7a 26347 Lemma for ~ abelth . (Con...
abelthlem7 26348 Lemma for ~ abelth . (Con...
abelthlem8 26349 Lemma for ~ abelth . (Con...
abelthlem9 26350 Lemma for ~ abelth . By a...
abelth 26351 Abel's theorem. If the po...
abelth2 26352 Abel's theorem, restricted...
efcn 26353 The exponential function i...
sincn 26354 Sine is continuous. (Cont...
coscn 26355 Cosine is continuous. (Co...
reeff1olem 26356 Lemma for ~ reeff1o . (Co...
reeff1o 26357 The real exponential funct...
reefiso 26358 The exponential function o...
efcvx 26359 The exponential function o...
reefgim 26360 The exponential function i...
pilem1 26361 Lemma for ~ pire , ~ pigt2...
pilem2 26362 Lemma for ~ pire , ~ pigt2...
pilem3 26363 Lemma for ~ pire , ~ pigt2...
pigt2lt4 26364 ` _pi ` is between 2 and 4...
sinpi 26365 The sine of ` _pi ` is 0. ...
pire 26366 ` _pi ` is a real number. ...
picn 26367 ` _pi ` is a complex numbe...
pipos 26368 ` _pi ` is positive. (Con...
pine0 26369 ` _pi ` is nonzero. (Cont...
pirp 26370 ` _pi ` is a positive real...
negpicn 26371 ` -u _pi ` is a real numbe...
sinhalfpilem 26372 Lemma for ~ sinhalfpi and ...
halfpire 26373 ` _pi / 2 ` is real. (Con...
neghalfpire 26374 ` -u _pi / 2 ` is real. (...
neghalfpirx 26375 ` -u _pi / 2 ` is an exten...
pidiv2halves 26376 Adding ` _pi / 2 ` to itse...
sinhalfpi 26377 The sine of ` _pi / 2 ` is...
coshalfpi 26378 The cosine of ` _pi / 2 ` ...
cosneghalfpi 26379 The cosine of ` -u _pi / 2...
efhalfpi 26380 The exponential of ` _i _p...
cospi 26381 The cosine of ` _pi ` is `...
efipi 26382 The exponential of ` _i x....
eulerid 26383 Euler's identity. (Contri...
sin2pi 26384 The sine of ` 2 _pi ` is 0...
cos2pi 26385 The cosine of ` 2 _pi ` is...
ef2pi 26386 The exponential of ` 2 _pi...
ef2kpi 26387 If ` K ` is an integer, th...
efper 26388 The exponential function i...
sinperlem 26389 Lemma for ~ sinper and ~ c...
sinper 26390 The sine function is perio...
cosper 26391 The cosine function is per...
sin2kpi 26392 If ` K ` is an integer, th...
cos2kpi 26393 If ` K ` is an integer, th...
sin2pim 26394 Sine of a number subtracte...
cos2pim 26395 Cosine of a number subtrac...
sinmpi 26396 Sine of a number less ` _p...
cosmpi 26397 Cosine of a number less ` ...
sinppi 26398 Sine of a number plus ` _p...
cosppi 26399 Cosine of a number plus ` ...
efimpi 26400 The exponential function a...
sinhalfpip 26401 The sine of ` _pi / 2 ` pl...
sinhalfpim 26402 The sine of ` _pi / 2 ` mi...
coshalfpip 26403 The cosine of ` _pi / 2 ` ...
coshalfpim 26404 The cosine of ` _pi / 2 ` ...
ptolemy 26405 Ptolemy's Theorem. This t...
sincosq1lem 26406 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 26407 The signs of the sine and ...
sincosq2sgn 26408 The signs of the sine and ...
sincosq3sgn 26409 The signs of the sine and ...
sincosq4sgn 26410 The signs of the sine and ...
coseq00topi 26411 Location of the zeroes of ...
coseq0negpitopi 26412 Location of the zeroes of ...
tanrpcl 26413 Positive real closure of t...
tangtx 26414 The tangent function is gr...
tanabsge 26415 The tangent function is gr...
sinq12gt0 26416 The sine of a number stric...
sinq12ge0 26417 The sine of a number betwe...
sinq34lt0t 26418 The sine of a number stric...
cosq14gt0 26419 The cosine of a number str...
cosq14ge0 26420 The cosine of a number bet...
sincosq1eq 26421 Complementarity of the sin...
sincos4thpi 26422 The sine and cosine of ` _...
tan4thpi 26423 The tangent of ` _pi / 4 `...
tan4thpiOLD 26424 Obsolete version of ~ tan4...
sincos6thpi 26425 The sine and cosine of ` _...
sincos3rdpi 26426 The sine and cosine of ` _...
pigt3 26427 ` _pi ` is greater than 3....
pige3 26428 ` _pi ` is greater than or...
pige3ALT 26429 Alternate proof of ~ pige3...
abssinper 26430 The absolute value of sine...
sinkpi 26431 The sine of an integer mul...
coskpi 26432 The absolute value of the ...
sineq0 26433 A complex number whose sin...
coseq1 26434 A complex number whose cos...
cos02pilt1 26435 Cosine is less than one be...
cosq34lt1 26436 Cosine is less than one in...
efeq1 26437 A complex number whose exp...
cosne0 26438 The cosine function has no...
cosordlem 26439 Lemma for ~ cosord . (Con...
cosord 26440 Cosine is decreasing over ...
cos0pilt1 26441 Cosine is between minus on...
cos11 26442 Cosine is one-to-one over ...
sinord 26443 Sine is increasing over th...
recosf1o 26444 The cosine function is a b...
resinf1o 26445 The sine function is a bij...
tanord1 26446 The tangent function is st...
tanord 26447 The tangent function is st...
tanregt0 26448 The real part of the tange...
negpitopissre 26449 The interval ` ( -u _pi (,...
efgh 26450 The exponential function o...
efif1olem1 26451 Lemma for ~ efif1o . (Con...
efif1olem2 26452 Lemma for ~ efif1o . (Con...
efif1olem3 26453 Lemma for ~ efif1o . (Con...
efif1olem4 26454 The exponential function o...
efif1o 26455 The exponential function o...
efifo 26456 The exponential function o...
eff1olem 26457 The exponential function m...
eff1o 26458 The exponential function m...
efabl 26459 The image of a subgroup of...
efsubm 26460 The image of a subgroup of...
circgrp 26461 The circle group ` T ` is ...
circsubm 26462 The circle group ` T ` is ...
logrn 26467 The range of the natural l...
ellogrn 26468 Write out the property ` A...
dflog2 26469 The natural logarithm func...
relogrn 26470 The range of the natural l...
logrncn 26471 The range of the natural l...
eff1o2 26472 The exponential function r...
logf1o 26473 The natural logarithm func...
dfrelog 26474 The natural logarithm func...
relogf1o 26475 The natural logarithm func...
logrncl 26476 Closure of the natural log...
logcl 26477 Closure of the natural log...
logimcl 26478 Closure of the imaginary p...
logcld 26479 The logarithm of a nonzero...
logimcld 26480 The imaginary part of the ...
logimclad 26481 The imaginary part of the ...
abslogimle 26482 The imaginary part of the ...
logrnaddcl 26483 The range of the natural l...
relogcl 26484 Closure of the natural log...
eflog 26485 Relationship between the n...
logeq0im1 26486 If the logarithm of a numb...
logccne0 26487 The logarithm isn't 0 if i...
logne0 26488 Logarithm of a non-1 posit...
reeflog 26489 Relationship between the n...
logef 26490 Relationship between the n...
relogef 26491 Relationship between the n...
logeftb 26492 Relationship between the n...
relogeftb 26493 Relationship between the n...
log1 26494 The natural logarithm of `...
loge 26495 The natural logarithm of `...
logi 26496 The natural logarithm of `...
logneg 26497 The natural logarithm of a...
logm1 26498 The natural logarithm of n...
lognegb 26499 If a number has imaginary ...
relogoprlem 26500 Lemma for ~ relogmul and ~...
relogmul 26501 The natural logarithm of t...
relogdiv 26502 The natural logarithm of t...
explog 26503 Exponentiation of a nonzer...
reexplog 26504 Exponentiation of a positi...
relogexp 26505 The natural logarithm of p...
relog 26506 Real part of a logarithm. ...
relogiso 26507 The natural logarithm func...
reloggim 26508 The natural logarithm is a...
logltb 26509 The natural logarithm func...
logfac 26510 The logarithm of a factori...
eflogeq 26511 Solve an equation involvin...
logleb 26512 Natural logarithm preserve...
rplogcl 26513 Closure of the logarithm f...
logge0 26514 The logarithm of a number ...
logcj 26515 The natural logarithm dist...
efiarg 26516 The exponential of the "ar...
cosargd 26517 The cosine of the argument...
cosarg0d 26518 The cosine of the argument...
argregt0 26519 Closure of the argument of...
argrege0 26520 Closure of the argument of...
argimgt0 26521 Closure of the argument of...
argimlt0 26522 Closure of the argument of...
logimul 26523 Multiplying a number by ` ...
logneg2 26524 The logarithm of the negat...
logmul2 26525 Generalization of ~ relogm...
logdiv2 26526 Generalization of ~ relogd...
abslogle 26527 Bound on the magnitude of ...
tanarg 26528 The basic relation between...
logdivlti 26529 The ` log x / x ` function...
logdivlt 26530 The ` log x / x ` function...
logdivle 26531 The ` log x / x ` function...
relogcld 26532 Closure of the natural log...
reeflogd 26533 Relationship between the n...
relogmuld 26534 The natural logarithm of t...
relogdivd 26535 The natural logarithm of t...
logled 26536 Natural logarithm preserve...
relogefd 26537 Relationship between the n...
rplogcld 26538 Closure of the logarithm f...
logge0d 26539 The logarithm of a number ...
logge0b 26540 The logarithm of a number ...
loggt0b 26541 The logarithm of a number ...
logle1b 26542 The logarithm of a number ...
loglt1b 26543 The logarithm of a number ...
divlogrlim 26544 The inverse logarithm func...
logno1 26545 The logarithm function is ...
dvrelog 26546 The derivative of the real...
relogcn 26547 The real logarithm functio...
ellogdm 26548 Elementhood in the "contin...
logdmn0 26549 A number in the continuous...
logdmnrp 26550 A number in the continuous...
logdmss 26551 The continuity domain of `...
logcnlem2 26552 Lemma for ~ logcn . (Cont...
logcnlem3 26553 Lemma for ~ logcn . (Cont...
logcnlem4 26554 Lemma for ~ logcn . (Cont...
logcnlem5 26555 Lemma for ~ logcn . (Cont...
logcn 26556 The logarithm function is ...
dvloglem 26557 Lemma for ~ dvlog . (Cont...
logdmopn 26558 The "continuous domain" of...
logf1o2 26559 The logarithm maps its con...
dvlog 26560 The derivative of the comp...
dvlog2lem 26561 Lemma for ~ dvlog2 . (Con...
dvlog2 26562 The derivative of the comp...
advlog 26563 The antiderivative of the ...
advlogexp 26564 The antiderivative of a po...
efopnlem1 26565 Lemma for ~ efopn . (Cont...
efopnlem2 26566 Lemma for ~ efopn . (Cont...
efopn 26567 The exponential map is an ...
logtayllem 26568 Lemma for ~ logtayl . (Co...
logtayl 26569 The Taylor series for ` -u...
logtaylsum 26570 The Taylor series for ` -u...
logtayl2 26571 Power series expression fo...
logccv 26572 The natural logarithm func...
cxpval 26573 Value of the complex power...
cxpef 26574 Value of the complex power...
0cxp 26575 Value of the complex power...
cxpexpz 26576 Relate the complex power f...
cxpexp 26577 Relate the complex power f...
logcxp 26578 Logarithm of a complex pow...
cxp0 26579 Value of the complex power...
cxp1 26580 Value of the complex power...
1cxp 26581 Value of the complex power...
ecxp 26582 Write the exponential func...
cxpcl 26583 Closure of the complex pow...
recxpcl 26584 Real closure of the comple...
rpcxpcl 26585 Positive real closure of t...
cxpne0 26586 Complex exponentiation is ...
cxpeq0 26587 Complex exponentiation is ...
cxpadd 26588 Sum of exponents law for c...
cxpp1 26589 Value of a nonzero complex...
cxpneg 26590 Value of a complex number ...
cxpsub 26591 Exponent subtraction law f...
cxpge0 26592 Nonnegative exponentiation...
mulcxplem 26593 Lemma for ~ mulcxp . (Con...
mulcxp 26594 Complex exponentiation of ...
cxprec 26595 Complex exponentiation of ...
divcxp 26596 Complex exponentiation of ...
cxpmul 26597 Product of exponents law f...
cxpmul2 26598 Product of exponents law f...
cxproot 26599 The complex power function...
cxpmul2z 26600 Generalize ~ cxpmul2 to ne...
abscxp 26601 Absolute value of a power,...
abscxp2 26602 Absolute value of a power,...
cxplt 26603 Ordering property for comp...
cxple 26604 Ordering property for comp...
cxplea 26605 Ordering property for comp...
cxple2 26606 Ordering property for comp...
cxplt2 26607 Ordering property for comp...
cxple2a 26608 Ordering property for comp...
cxplt3 26609 Ordering property for comp...
cxple3 26610 Ordering property for comp...
cxpsqrtlem 26611 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 26612 The complex exponential fu...
logsqrt 26613 Logarithm of a square root...
cxp0d 26614 Value of the complex power...
cxp1d 26615 Value of the complex power...
1cxpd 26616 Value of the complex power...
cxpcld 26617 Closure of the complex pow...
cxpmul2d 26618 Product of exponents law f...
0cxpd 26619 Value of the complex power...
cxpexpzd 26620 Relate the complex power f...
cxpefd 26621 Value of the complex power...
cxpne0d 26622 Complex exponentiation is ...
cxpp1d 26623 Value of a nonzero complex...
cxpnegd 26624 Value of a complex number ...
cxpmul2zd 26625 Generalize ~ cxpmul2 to ne...
cxpaddd 26626 Sum of exponents law for c...
cxpsubd 26627 Exponent subtraction law f...
cxpltd 26628 Ordering property for comp...
cxpled 26629 Ordering property for comp...
cxplead 26630 Ordering property for comp...
divcxpd 26631 Complex exponentiation of ...
recxpcld 26632 Positive real closure of t...
cxpge0d 26633 Nonnegative exponentiation...
cxple2ad 26634 Ordering property for comp...
cxplt2d 26635 Ordering property for comp...
cxple2d 26636 Ordering property for comp...
mulcxpd 26637 Complex exponentiation of ...
recxpf1lem 26638 Complex exponentiation on ...
cxpsqrtth 26639 Square root theorem over t...
2irrexpq 26640 There exist irrational num...
cxprecd 26641 Complex exponentiation of ...
rpcxpcld 26642 Positive real closure of t...
logcxpd 26643 Logarithm of a complex pow...
cxplt3d 26644 Ordering property for comp...
cxple3d 26645 Ordering property for comp...
cxpmuld 26646 Product of exponents law f...
cxpgt0d 26647 A positive real raised to ...
cxpcom 26648 Commutative law for real e...
dvcxp1 26649 The derivative of a comple...
dvcxp2 26650 The derivative of a comple...
dvsqrt 26651 The derivative of the real...
dvcncxp1 26652 Derivative of complex powe...
dvcnsqrt 26653 Derivative of square root ...
cxpcn 26654 Domain of continuity of th...
cxpcnOLD 26655 Obsolete version of ~ cxpc...
cxpcn2 26656 Continuity of the complex ...
cxpcn3lem 26657 Lemma for ~ cxpcn3 . (Con...
cxpcn3 26658 Extend continuity of the c...
resqrtcn 26659 Continuity of the real squ...
sqrtcn 26660 Continuity of the square r...
cxpaddlelem 26661 Lemma for ~ cxpaddle . (C...
cxpaddle 26662 Ordering property for comp...
abscxpbnd 26663 Bound on the absolute valu...
root1id 26664 Property of an ` N ` -th r...
root1eq1 26665 The only powers of an ` N ...
root1cj 26666 Within the ` N ` -th roots...
cxpeq 26667 Solve an equation involvin...
zrtelqelz 26668 If the ` N ` -th root of a...
zrtdvds 26669 A positive integer root di...
rtprmirr 26670 The root of a prime number...
loglesqrt 26671 An upper bound on the loga...
logreclem 26672 Symmetry of the natural lo...
logrec 26673 Logarithm of a reciprocal ...
logbval 26676 Define the value of the ` ...
logbcl 26677 General logarithm closure....
logbid1 26678 General logarithm is 1 whe...
logb1 26679 The logarithm of ` 1 ` to ...
elogb 26680 The general logarithm of a...
logbchbase 26681 Change of base for logarit...
relogbval 26682 Value of the general logar...
relogbcl 26683 Closure of the general log...
relogbzcl 26684 Closure of the general log...
relogbreexp 26685 Power law for the general ...
relogbzexp 26686 Power law for the general ...
relogbmul 26687 The logarithm of the produ...
relogbmulexp 26688 The logarithm of the produ...
relogbdiv 26689 The logarithm of the quoti...
relogbexp 26690 Identity law for general l...
nnlogbexp 26691 Identity law for general l...
logbrec 26692 Logarithm of a reciprocal ...
logbleb 26693 The general logarithm func...
logblt 26694 The general logarithm func...
relogbcxp 26695 Identity law for the gener...
cxplogb 26696 Identity law for the gener...
relogbcxpb 26697 The logarithm is the inver...
logbmpt 26698 The general logarithm to a...
logbf 26699 The general logarithm to a...
logbfval 26700 The general logarithm of a...
relogbf 26701 The general logarithm to a...
logblog 26702 The general logarithm to t...
logbgt0b 26703 The logarithm of a positiv...
logbgcd1irr 26704 The logarithm of an intege...
2logb9irr 26705 Example for ~ logbgcd1irr ...
logbprmirr 26706 The logarithm of a prime t...
2logb3irr 26707 Example for ~ logbprmirr ....
2logb9irrALT 26708 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 26709 The square root of two to ...
2irrexpqALT 26710 Alternate proof of ~ 2irre...
angval 26711 Define the angle function,...
angcan 26712 Cancel a constant multipli...
angneg 26713 Cancel a negative sign in ...
angvald 26714 The (signed) angle between...
angcld 26715 The (signed) angle between...
angrteqvd 26716 Two vectors are at a right...
cosangneg2d 26717 The cosine of the angle be...
angrtmuld 26718 Perpendicularity of two ve...
ang180lem1 26719 Lemma for ~ ang180 . Show...
ang180lem2 26720 Lemma for ~ ang180 . Show...
ang180lem3 26721 Lemma for ~ ang180 . Sinc...
ang180lem4 26722 Lemma for ~ ang180 . Redu...
ang180lem5 26723 Lemma for ~ ang180 : Redu...
ang180 26724 The sum of angles ` m A B ...
lawcoslem1 26725 Lemma for ~ lawcos . Here...
lawcos 26726 Law of cosines (also known...
pythag 26727 Pythagorean theorem. Give...
isosctrlem1 26728 Lemma for ~ isosctr . (Co...
isosctrlem2 26729 Lemma for ~ isosctr . Cor...
isosctrlem3 26730 Lemma for ~ isosctr . Cor...
isosctr 26731 Isosceles triangle theorem...
ssscongptld 26732 If two triangles have equa...
affineequiv 26733 Equivalence between two wa...
affineequiv2 26734 Equivalence between two wa...
affineequiv3 26735 Equivalence between two wa...
affineequiv4 26736 Equivalence between two wa...
affineequivne 26737 Equivalence between two wa...
angpieqvdlem 26738 Equivalence used in the pr...
angpieqvdlem2 26739 Equivalence used in ~ angp...
angpined 26740 If the angle at ABC is ` _...
angpieqvd 26741 The angle ABC is ` _pi ` i...
chordthmlem 26742 If ` M ` is the midpoint o...
chordthmlem2 26743 If M is the midpoint of AB...
chordthmlem3 26744 If M is the midpoint of AB...
chordthmlem4 26745 If P is on the segment AB ...
chordthmlem5 26746 If P is on the segment AB ...
chordthm 26747 The intersecting chords th...
heron 26748 Heron's formula gives the ...
quad2 26749 The quadratic equation, wi...
quad 26750 The quadratic equation. (...
1cubrlem 26751 The cube roots of unity. ...
1cubr 26752 The cube roots of unity. ...
dcubic1lem 26753 Lemma for ~ dcubic1 and ~ ...
dcubic2 26754 Reverse direction of ~ dcu...
dcubic1 26755 Forward direction of ~ dcu...
dcubic 26756 Solutions to the depressed...
mcubic 26757 Solutions to a monic cubic...
cubic2 26758 The solution to the genera...
cubic 26759 The cubic equation, which ...
binom4 26760 Work out a quartic binomia...
dquartlem1 26761 Lemma for ~ dquart . (Con...
dquartlem2 26762 Lemma for ~ dquart . (Con...
dquart 26763 Solve a depressed quartic ...
quart1cl 26764 Closure lemmas for ~ quart...
quart1lem 26765 Lemma for ~ quart1 . (Con...
quart1 26766 Depress a quartic equation...
quartlem1 26767 Lemma for ~ quart . (Cont...
quartlem2 26768 Closure lemmas for ~ quart...
quartlem3 26769 Closure lemmas for ~ quart...
quartlem4 26770 Closure lemmas for ~ quart...
quart 26771 The quartic equation, writ...
asinlem 26778 The argument to the logari...
asinlem2 26779 The argument to the logari...
asinlem3a 26780 Lemma for ~ asinlem3 . (C...
asinlem3 26781 The argument to the logari...
asinf 26782 Domain and codomain of the...
asincl 26783 Closure for the arcsin fun...
acosf 26784 Domain and codoamin of the...
acoscl 26785 Closure for the arccos fun...
atandm 26786 Since the property is a li...
atandm2 26787 This form of ~ atandm is a...
atandm3 26788 A compact form of ~ atandm...
atandm4 26789 A compact form of ~ atandm...
atanf 26790 Domain and codoamin of the...
atancl 26791 Closure for the arctan fun...
asinval 26792 Value of the arcsin functi...
acosval 26793 Value of the arccos functi...
atanval 26794 Value of the arctan functi...
atanre 26795 A real number is in the do...
asinneg 26796 The arcsine function is od...
acosneg 26797 The negative symmetry rela...
efiasin 26798 The exponential of the arc...
sinasin 26799 The arcsine function is an...
cosacos 26800 The arccosine function is ...
asinsinlem 26801 Lemma for ~ asinsin . (Co...
asinsin 26802 The arcsine function compo...
acoscos 26803 The arccosine function is ...
asin1 26804 The arcsine of ` 1 ` is ` ...
acos1 26805 The arccosine of ` 1 ` is ...
reasinsin 26806 The arcsine function compo...
asinsinb 26807 Relationship between sine ...
acoscosb 26808 Relationship between cosin...
asinbnd 26809 The arcsine function has r...
acosbnd 26810 The arccosine function has...
asinrebnd 26811 Bounds on the arcsine func...
asinrecl 26812 The arcsine function is re...
acosrecl 26813 The arccosine function is ...
cosasin 26814 The cosine of the arcsine ...
sinacos 26815 The sine of the arccosine ...
atandmneg 26816 The domain of the arctange...
atanneg 26817 The arctangent function is...
atan0 26818 The arctangent of zero is ...
atandmcj 26819 The arctangent function di...
atancj 26820 The arctangent function di...
atanrecl 26821 The arctangent function is...
efiatan 26822 Value of the exponential o...
atanlogaddlem 26823 Lemma for ~ atanlogadd . ...
atanlogadd 26824 The rule ` sqrt ( z w ) = ...
atanlogsublem 26825 Lemma for ~ atanlogsub . ...
atanlogsub 26826 A variation on ~ atanlogad...
efiatan2 26827 Value of the exponential o...
2efiatan 26828 Value of the exponential o...
tanatan 26829 The arctangent function is...
atandmtan 26830 The tangent function has r...
cosatan 26831 The cosine of an arctangen...
cosatanne0 26832 The arctangent function ha...
atantan 26833 The arctangent function is...
atantanb 26834 Relationship between tange...
atanbndlem 26835 Lemma for ~ atanbnd . (Co...
atanbnd 26836 The arctangent function is...
atanord 26837 The arctangent function is...
atan1 26838 The arctangent of ` 1 ` is...
bndatandm 26839 A point in the open unit d...
atans 26840 The "domain of continuity"...
atans2 26841 It suffices to show that `...
atansopn 26842 The domain of continuity o...
atansssdm 26843 The domain of continuity o...
ressatans 26844 The real number line is a ...
dvatan 26845 The derivative of the arct...
atancn 26846 The arctangent is a contin...
atantayl 26847 The Taylor series for ` ar...
atantayl2 26848 The Taylor series for ` ar...
atantayl3 26849 The Taylor series for ` ar...
leibpilem1 26850 Lemma for ~ leibpi . (Con...
leibpilem2 26851 The Leibniz formula for ` ...
leibpi 26852 The Leibniz formula for ` ...
leibpisum 26853 The Leibniz formula for ` ...
log2cnv 26854 Using the Taylor series fo...
log2tlbnd 26855 Bound the error term in th...
log2ublem1 26856 Lemma for ~ log2ub . The ...
log2ublem2 26857 Lemma for ~ log2ub . (Con...
log2ublem3 26858 Lemma for ~ log2ub . In d...
log2ub 26859 ` log 2 ` is less than ` 2...
log2le1 26860 ` log 2 ` is less than ` 1...
birthdaylem1 26861 Lemma for ~ birthday . (C...
birthdaylem2 26862 For general ` N ` and ` K ...
birthdaylem3 26863 For general ` N ` and ` K ...
birthday 26864 The Birthday Problem. The...
dmarea 26867 The domain of the area fun...
areambl 26868 The fibers of a measurable...
areass 26869 A measurable region is a s...
dfarea 26870 Rewrite ~ df-area self-ref...
areaf 26871 Area measurement is a func...
areacl 26872 The area of a measurable r...
areage0 26873 The area of a measurable r...
areaval 26874 The area of a measurable r...
rlimcnp 26875 Relate a limit of a real-v...
rlimcnp2 26876 Relate a limit of a real-v...
rlimcnp3 26877 Relate a limit of a real-v...
xrlimcnp 26878 Relate a limit of a real-v...
efrlim 26879 The limit of the sequence ...
efrlimOLD 26880 Obsolete version of ~ efrl...
dfef2 26881 The limit of the sequence ...
cxplim 26882 A power to a negative expo...
sqrtlim 26883 The inverse square root fu...
rlimcxp 26884 Any power to a positive ex...
o1cxp 26885 An eventually bounded func...
cxp2limlem 26886 A linear factor grows slow...
cxp2lim 26887 Any power grows slower tha...
cxploglim 26888 The logarithm grows slower...
cxploglim2 26889 Every power of the logarit...
divsqrtsumlem 26890 Lemma for ~ divsqrsum and ...
divsqrsumf 26891 The function ` F ` used in...
divsqrsum 26892 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26893 A bound on the distance of...
divsqrtsumo1 26894 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26895 Closure of a 0-1 linear co...
scvxcvx 26896 A strictly convex function...
jensenlem1 26897 Lemma for ~ jensen . (Con...
jensenlem2 26898 Lemma for ~ jensen . (Con...
jensen 26899 Jensen's inequality, a fin...
amgmlem 26900 Lemma for ~ amgm . (Contr...
amgm 26901 Inequality of arithmetic a...
logdifbnd 26904 Bound on the difference of...
logdiflbnd 26905 Lower bound on the differe...
emcllem1 26906 Lemma for ~ emcl . The se...
emcllem2 26907 Lemma for ~ emcl . ` F ` i...
emcllem3 26908 Lemma for ~ emcl . The fu...
emcllem4 26909 Lemma for ~ emcl . The di...
emcllem5 26910 Lemma for ~ emcl . The pa...
emcllem6 26911 Lemma for ~ emcl . By the...
emcllem7 26912 Lemma for ~ emcl and ~ har...
emcl 26913 Closure and bounds for the...
harmonicbnd 26914 A bound on the harmonic se...
harmonicbnd2 26915 A bound on the harmonic se...
emre 26916 The Euler-Mascheroni const...
emgt0 26917 The Euler-Mascheroni const...
harmonicbnd3 26918 A bound on the harmonic se...
harmoniclbnd 26919 A bound on the harmonic se...
harmonicubnd 26920 A bound on the harmonic se...
harmonicbnd4 26921 The asymptotic behavior of...
fsumharmonic 26922 Bound a finite sum based o...
zetacvg 26925 The zeta series is converg...
eldmgm 26932 Elementhood in the set of ...
dmgmaddn0 26933 If ` A ` is not a nonposit...
dmlogdmgm 26934 If ` A ` is in the continu...
rpdmgm 26935 A positive real number is ...
dmgmn0 26936 If ` A ` is not a nonposit...
dmgmaddnn0 26937 If ` A ` is not a nonposit...
dmgmdivn0 26938 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26939 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26940 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26941 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26942 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26943 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26944 The series ` G ` is unifor...
lgamgulm 26945 The series ` G ` is unifor...
lgamgulm2 26946 Rewrite the limit of the s...
lgambdd 26947 The log-Gamma function is ...
lgamucov 26948 The ` U ` regions used in ...
lgamucov2 26949 The ` U ` regions used in ...
lgamcvglem 26950 Lemma for ~ lgamf and ~ lg...
lgamcl 26951 The log-Gamma function is ...
lgamf 26952 The log-Gamma function is ...
gamf 26953 The Gamma function is a co...
gamcl 26954 The exponential of the log...
eflgam 26955 The exponential of the log...
gamne0 26956 The Gamma function is neve...
igamval 26957 Value of the inverse Gamma...
igamz 26958 Value of the inverse Gamma...
igamgam 26959 Value of the inverse Gamma...
igamlgam 26960 Value of the inverse Gamma...
igamf 26961 Closure of the inverse Gam...
igamcl 26962 Closure of the inverse Gam...
gamigam 26963 The Gamma function is the ...
lgamcvg 26964 The series ` G ` converges...
lgamcvg2 26965 The series ` G ` converges...
gamcvg 26966 The pointwise exponential ...
lgamp1 26967 The functional equation of...
gamp1 26968 The functional equation of...
gamcvg2lem 26969 Lemma for ~ gamcvg2 . (Co...
gamcvg2 26970 An infinite product expres...
regamcl 26971 The Gamma function is real...
relgamcl 26972 The log-Gamma function is ...
rpgamcl 26973 The log-Gamma function is ...
lgam1 26974 The log-Gamma function at ...
gam1 26975 The log-Gamma function at ...
facgam 26976 The Gamma function general...
gamfac 26977 The Gamma function general...
wilthlem1 26978 The only elements that are...
wilthlem2 26979 Lemma for ~ wilth : induct...
wilthlem3 26980 Lemma for ~ wilth . Here ...
wilth 26981 Wilson's theorem. A numbe...
wilthimp 26982 The forward implication of...
ftalem1 26983 Lemma for ~ fta : "growth...
ftalem2 26984 Lemma for ~ fta . There e...
ftalem3 26985 Lemma for ~ fta . There e...
ftalem4 26986 Lemma for ~ fta : Closure...
ftalem5 26987 Lemma for ~ fta : Main pr...
ftalem6 26988 Lemma for ~ fta : Dischar...
ftalem7 26989 Lemma for ~ fta . Shift t...
fta 26990 The Fundamental Theorem of...
basellem1 26991 Lemma for ~ basel . Closu...
basellem2 26992 Lemma for ~ basel . Show ...
basellem3 26993 Lemma for ~ basel . Using...
basellem4 26994 Lemma for ~ basel . By ~ ...
basellem5 26995 Lemma for ~ basel . Using...
basellem6 26996 Lemma for ~ basel . The f...
basellem7 26997 Lemma for ~ basel . The f...
basellem8 26998 Lemma for ~ basel . The f...
basellem9 26999 Lemma for ~ basel . Since...
basel 27000 The sum of the inverse squ...
efnnfsumcl 27013 Finite sum closure in the ...
ppisval 27014 The set of primes less tha...
ppisval2 27015 The set of primes less tha...
ppifi 27016 The set of primes less tha...
prmdvdsfi 27017 The set of prime divisors ...
chtf 27018 Domain and codoamin of the...
chtcl 27019 Real closure of the Chebys...
chtval 27020 Value of the Chebyshev fun...
efchtcl 27021 The Chebyshev function is ...
chtge0 27022 The Chebyshev function is ...
vmaval 27023 Value of the von Mangoldt ...
isppw 27024 Two ways to say that ` A `...
isppw2 27025 Two ways to say that ` A `...
vmappw 27026 Value of the von Mangoldt ...
vmaprm 27027 Value of the von Mangoldt ...
vmacl 27028 Closure for the von Mangol...
vmaf 27029 Functionality of the von M...
efvmacl 27030 The von Mangoldt is closed...
vmage0 27031 The von Mangoldt function ...
chpval 27032 Value of the second Chebys...
chpf 27033 Functionality of the secon...
chpcl 27034 Closure for the second Che...
efchpcl 27035 The second Chebyshev funct...
chpge0 27036 The second Chebyshev funct...
ppival 27037 Value of the prime-countin...
ppival2 27038 Value of the prime-countin...
ppival2g 27039 Value of the prime-countin...
ppif 27040 Domain and codomain of the...
ppicl 27041 Real closure of the prime-...
muval 27042 The value of the Möbi...
muval1 27043 The value of the Möbi...
muval2 27044 The value of the Möbi...
isnsqf 27045 Two ways to say that a num...
issqf 27046 Two ways to say that a num...
sqfpc 27047 The prime count of a squar...
dvdssqf 27048 A divisor of a squarefree ...
sqf11 27049 A squarefree number is com...
muf 27050 The Möbius function i...
mucl 27051 Closure of the Möbius...
sgmval 27052 The value of the divisor f...
sgmval2 27053 The value of the divisor f...
0sgm 27054 The value of the sum-of-di...
sgmf 27055 The divisor function is a ...
sgmcl 27056 Closure of the divisor fun...
sgmnncl 27057 Closure of the divisor fun...
mule1 27058 The Möbius function t...
chtfl 27059 The Chebyshev function doe...
chpfl 27060 The second Chebyshev funct...
ppiprm 27061 The prime-counting functio...
ppinprm 27062 The prime-counting functio...
chtprm 27063 The Chebyshev function at ...
chtnprm 27064 The Chebyshev function at ...
chpp1 27065 The second Chebyshev funct...
chtwordi 27066 The Chebyshev function is ...
chpwordi 27067 The second Chebyshev funct...
chtdif 27068 The difference of the Cheb...
efchtdvds 27069 The exponentiated Chebyshe...
ppifl 27070 The prime-counting functio...
ppip1le 27071 The prime-counting functio...
ppiwordi 27072 The prime-counting functio...
ppidif 27073 The difference of the prim...
ppi1 27074 The prime-counting functio...
cht1 27075 The Chebyshev function at ...
vma1 27076 The von Mangoldt function ...
chp1 27077 The second Chebyshev funct...
ppi1i 27078 Inference form of ~ ppiprm...
ppi2i 27079 Inference form of ~ ppinpr...
ppi2 27080 The prime-counting functio...
ppi3 27081 The prime-counting functio...
cht2 27082 The Chebyshev function at ...
cht3 27083 The Chebyshev function at ...
ppinncl 27084 Closure of the prime-count...
chtrpcl 27085 Closure of the Chebyshev f...
ppieq0 27086 The prime-counting functio...
ppiltx 27087 The prime-counting functio...
prmorcht 27088 Relate the primorial (prod...
mumullem1 27089 Lemma for ~ mumul . A mul...
mumullem2 27090 Lemma for ~ mumul . The p...
mumul 27091 The Möbius function i...
sqff1o 27092 There is a bijection from ...
fsumdvdsdiaglem 27093 A "diagonal commutation" o...
fsumdvdsdiag 27094 A "diagonal commutation" o...
fsumdvdscom 27095 A double commutation of di...
dvdsppwf1o 27096 A bijection between the di...
dvdsflf1o 27097 A bijection from the numbe...
dvdsflsumcom 27098 A sum commutation from ` s...
fsumfldivdiaglem 27099 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 27100 The right-hand side of ~ d...
musum 27101 The sum of the Möbius...
musumsum 27102 Evaluate a collapsing sum ...
muinv 27103 The Möbius inversion ...
mpodvdsmulf1o 27104 If ` M ` and ` N ` are two...
fsumdvdsmul 27105 Product of two divisor sum...
dvdsmulf1o 27106 If ` M ` and ` N ` are two...
fsumdvdsmulOLD 27107 Obsolete version of ~ fsum...
sgmppw 27108 The value of the divisor f...
0sgmppw 27109 A prime power ` P ^ K ` ha...
1sgmprm 27110 The sum of divisors for a ...
1sgm2ppw 27111 The sum of the divisors of...
sgmmul 27112 The divisor function for f...
ppiublem1 27113 Lemma for ~ ppiub . (Cont...
ppiublem2 27114 A prime greater than ` 3 `...
ppiub 27115 An upper bound on the prim...
vmalelog 27116 The von Mangoldt function ...
chtlepsi 27117 The first Chebyshev functi...
chprpcl 27118 Closure of the second Cheb...
chpeq0 27119 The second Chebyshev funct...
chteq0 27120 The first Chebyshev functi...
chtleppi 27121 Upper bound on the ` theta...
chtublem 27122 Lemma for ~ chtub . (Cont...
chtub 27123 An upper bound on the Cheb...
fsumvma 27124 Rewrite a sum over the von...
fsumvma2 27125 Apply ~ fsumvma for the co...
pclogsum 27126 The logarithmic analogue o...
vmasum 27127 The sum of the von Mangold...
logfac2 27128 Another expression for the...
chpval2 27129 Express the second Chebysh...
chpchtsum 27130 The second Chebyshev funct...
chpub 27131 An upper bound on the seco...
logfacubnd 27132 A simple upper bound on th...
logfaclbnd 27133 A lower bound on the logar...
logfacbnd3 27134 Show the stronger statemen...
logfacrlim 27135 Combine the estimates ~ lo...
logexprlim 27136 The sum ` sum_ n <_ x , lo...
logfacrlim2 27137 Write out ~ logfacrlim as ...
mersenne 27138 A Mersenne prime is a prim...
perfect1 27139 Euclid's contribution to t...
perfectlem1 27140 Lemma for ~ perfect . (Co...
perfectlem2 27141 Lemma for ~ perfect . (Co...
perfect 27142 The Euclid-Euler theorem, ...
dchrval 27145 Value of the group of Diri...
dchrbas 27146 Base set of the group of D...
dchrelbas 27147 A Dirichlet character is a...
dchrelbas2 27148 A Dirichlet character is a...
dchrelbas3 27149 A Dirichlet character is a...
dchrelbasd 27150 A Dirichlet character is a...
dchrrcl 27151 Reverse closure for a Diri...
dchrmhm 27152 A Dirichlet character is a...
dchrf 27153 A Dirichlet character is a...
dchrelbas4 27154 A Dirichlet character is a...
dchrzrh1 27155 Value of a Dirichlet chara...
dchrzrhcl 27156 A Dirichlet character take...
dchrzrhmul 27157 A Dirichlet character is c...
dchrplusg 27158 Group operation on the gro...
dchrmul 27159 Group operation on the gro...
dchrmulcl 27160 Closure of the group opera...
dchrn0 27161 A Dirichlet character is n...
dchr1cl 27162 Closure of the principal D...
dchrmullid 27163 Left identity for the prin...
dchrinvcl 27164 Closure of the group inver...
dchrabl 27165 The set of Dirichlet chara...
dchrfi 27166 The group of Dirichlet cha...
dchrghm 27167 A Dirichlet character rest...
dchr1 27168 Value of the principal Dir...
dchreq 27169 A Dirichlet character is d...
dchrresb 27170 A Dirichlet character is d...
dchrabs 27171 A Dirichlet character take...
dchrinv 27172 The inverse of a Dirichlet...
dchrabs2 27173 A Dirichlet character take...
dchr1re 27174 The principal Dirichlet ch...
dchrptlem1 27175 Lemma for ~ dchrpt . (Con...
dchrptlem2 27176 Lemma for ~ dchrpt . (Con...
dchrptlem3 27177 Lemma for ~ dchrpt . (Con...
dchrpt 27178 For any element other than...
dchrsum2 27179 An orthogonality relation ...
dchrsum 27180 An orthogonality relation ...
sumdchr2 27181 Lemma for ~ sumdchr . (Co...
dchrhash 27182 There are exactly ` phi ( ...
sumdchr 27183 An orthogonality relation ...
dchr2sum 27184 An orthogonality relation ...
sum2dchr 27185 An orthogonality relation ...
bcctr 27186 Value of the central binom...
pcbcctr 27187 Prime count of a central b...
bcmono 27188 The binomial coefficient i...
bcmax 27189 The binomial coefficient t...
bcp1ctr 27190 Ratio of two central binom...
bclbnd 27191 A bound on the binomial co...
efexple 27192 Convert a bound on a power...
bpos1lem 27193 Lemma for ~ bpos1 . (Cont...
bpos1 27194 Bertrand's postulate, chec...
bposlem1 27195 An upper bound on the prim...
bposlem2 27196 There are no odd primes in...
bposlem3 27197 Lemma for ~ bpos . Since ...
bposlem4 27198 Lemma for ~ bpos . (Contr...
bposlem5 27199 Lemma for ~ bpos . Bound ...
bposlem6 27200 Lemma for ~ bpos . By usi...
bposlem7 27201 Lemma for ~ bpos . The fu...
bposlem8 27202 Lemma for ~ bpos . Evalua...
bposlem9 27203 Lemma for ~ bpos . Derive...
bpos 27204 Bertrand's postulate: ther...
zabsle1 27207 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 27208 When ` a ` is coprime to t...
lgslem2 27209 The set ` Z ` of all integ...
lgslem3 27210 The set ` Z ` of all integ...
lgslem4 27211 Lemma for ~ lgsfcl2 . (Co...
lgsval 27212 Value of the Legendre symb...
lgsfval 27213 Value of the function ` F ...
lgsfcl2 27214 The function ` F ` is clos...
lgscllem 27215 The Legendre symbol is an ...
lgsfcl 27216 Closure of the function ` ...
lgsfle1 27217 The function ` F ` has mag...
lgsval2lem 27218 Lemma for ~ lgsval2 . (Co...
lgsval4lem 27219 Lemma for ~ lgsval4 . (Co...
lgscl2 27220 The Legendre symbol is an ...
lgs0 27221 The Legendre symbol when t...
lgscl 27222 The Legendre symbol is an ...
lgsle1 27223 The Legendre symbol has ab...
lgsval2 27224 The Legendre symbol at a p...
lgs2 27225 The Legendre symbol at ` 2...
lgsval3 27226 The Legendre symbol at an ...
lgsvalmod 27227 The Legendre symbol is equ...
lgsval4 27228 Restate ~ lgsval for nonze...
lgsfcl3 27229 Closure of the function ` ...
lgsval4a 27230 Same as ~ lgsval4 for posi...
lgscl1 27231 The value of the Legendre ...
lgsneg 27232 The Legendre symbol is eit...
lgsneg1 27233 The Legendre symbol for no...
lgsmod 27234 The Legendre (Jacobi) symb...
lgsdilem 27235 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 27236 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 27237 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 27238 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 27239 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 27240 Lemma for ~ lgsdir2 . (Co...
lgsdir2 27241 The Legendre symbol is com...
lgsdirprm 27242 The Legendre symbol is com...
lgsdir 27243 The Legendre symbol is com...
lgsdilem2 27244 Lemma for ~ lgsdi . (Cont...
lgsdi 27245 The Legendre symbol is com...
lgsne0 27246 The Legendre symbol is non...
lgsabs1 27247 The Legendre symbol is non...
lgssq 27248 The Legendre symbol at a s...
lgssq2 27249 The Legendre symbol at a s...
lgsprme0 27250 The Legendre symbol at any...
1lgs 27251 The Legendre symbol at ` 1...
lgs1 27252 The Legendre symbol at ` 1...
lgsmodeq 27253 The Legendre (Jacobi) symb...
lgsmulsqcoprm 27254 The Legendre (Jacobi) symb...
lgsdirnn0 27255 Variation on ~ lgsdir vali...
lgsdinn0 27256 Variation on ~ lgsdi valid...
lgsqrlem1 27257 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 27258 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 27259 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 27260 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 27261 Lemma for ~ lgsqr . (Cont...
lgsqr 27262 The Legendre symbol for od...
lgsqrmod 27263 If the Legendre symbol of ...
lgsqrmodndvds 27264 If the Legendre symbol of ...
lgsdchrval 27265 The Legendre symbol functi...
lgsdchr 27266 The Legendre symbol functi...
gausslemma2dlem0a 27267 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 27268 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 27269 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 27270 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 27271 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 27272 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 27273 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 27274 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 27275 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 27276 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 27277 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 27278 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 27279 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 27280 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 27281 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 27282 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 27283 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 27284 Lemma 7 for ~ gausslemma2d...
gausslemma2d 27285 Gauss' Lemma (see also the...
lgseisenlem1 27286 Lemma for ~ lgseisen . If...
lgseisenlem2 27287 Lemma for ~ lgseisen . Th...
lgseisenlem3 27288 Lemma for ~ lgseisen . (C...
lgseisenlem4 27289 Lemma for ~ lgseisen . (C...
lgseisen 27290 Eisenstein's lemma, an exp...
lgsquadlem1 27291 Lemma for ~ lgsquad . Cou...
lgsquadlem2 27292 Lemma for ~ lgsquad . Cou...
lgsquadlem3 27293 Lemma for ~ lgsquad . (Co...
lgsquad 27294 The Law of Quadratic Recip...
lgsquad2lem1 27295 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 27296 Lemma for ~ lgsquad2 . (C...
lgsquad2 27297 Extend ~ lgsquad to coprim...
lgsquad3 27298 Extend ~ lgsquad2 to integ...
m1lgs 27299 The first supplement to th...
2lgslem1a1 27300 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 27301 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 27302 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 27303 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 27304 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 27305 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 27306 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 27307 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 27308 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 27309 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 27310 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 27311 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 27312 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 27313 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 27314 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 27315 Lemma 3 for ~ 2lgs . (Con...
2lgs2 27316 The Legendre symbol for ` ...
2lgslem4 27317 Lemma 4 for ~ 2lgs : speci...
2lgs 27318 The second supplement to t...
2lgsoddprmlem1 27319 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 27320 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 27321 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 27322 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 27323 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 27324 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 27325 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 27326 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 27327 The second supplement to t...
2sqlem1 27328 Lemma for ~ 2sq . (Contri...
2sqlem2 27329 Lemma for ~ 2sq . (Contri...
mul2sq 27330 Fibonacci's identity (actu...
2sqlem3 27331 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 27332 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 27333 Lemma for ~ 2sq . If a nu...
2sqlem6 27334 Lemma for ~ 2sq . If a nu...
2sqlem7 27335 Lemma for ~ 2sq . (Contri...
2sqlem8a 27336 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 27337 Lemma for ~ 2sq . (Contri...
2sqlem9 27338 Lemma for ~ 2sq . (Contri...
2sqlem10 27339 Lemma for ~ 2sq . Every f...
2sqlem11 27340 Lemma for ~ 2sq . (Contri...
2sq 27341 All primes of the form ` 4...
2sqblem 27342 Lemma for ~ 2sqb . (Contr...
2sqb 27343 The converse to ~ 2sq . (...
2sq2 27344 ` 2 ` is the sum of square...
2sqn0 27345 If the sum of two squares ...
2sqcoprm 27346 If the sum of two squares ...
2sqmod 27347 Given two decompositions o...
2sqmo 27348 There exists at most one d...
2sqnn0 27349 All primes of the form ` 4...
2sqnn 27350 All primes of the form ` 4...
addsq2reu 27351 For each complex number ` ...
addsqn2reu 27352 For each complex number ` ...
addsqrexnreu 27353 For each complex number, t...
addsqnreup 27354 There is no unique decompo...
addsq2nreurex 27355 For each complex number ` ...
addsqn2reurex2 27356 For each complex number ` ...
2sqreulem1 27357 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 27358 Lemma for ~ 2sqreult . (C...
2sqreultblem 27359 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 27360 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 27361 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 27362 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 27363 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 27364 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 27365 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 27366 Lemma 2 for ~ 2sqreunn . ...
2sqreu 27367 There exists a unique deco...
2sqreunn 27368 There exists a unique deco...
2sqreult 27369 There exists a unique deco...
2sqreultb 27370 There exists a unique deco...
2sqreunnlt 27371 There exists a unique deco...
2sqreunnltb 27372 There exists a unique deco...
2sqreuop 27373 There exists a unique deco...
2sqreuopnn 27374 There exists a unique deco...
2sqreuoplt 27375 There exists a unique deco...
2sqreuopltb 27376 There exists a unique deco...
2sqreuopnnlt 27377 There exists a unique deco...
2sqreuopnnltb 27378 There exists a unique deco...
2sqreuopb 27379 There exists a unique deco...
chebbnd1lem1 27380 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 27381 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 27382 Lemma for ~ chebbnd1 : get...
chebbnd1 27383 The Chebyshev bound: The ...
chtppilimlem1 27384 Lemma for ~ chtppilim . (...
chtppilimlem2 27385 Lemma for ~ chtppilim . (...
chtppilim 27386 The ` theta ` function is ...
chto1ub 27387 The ` theta ` function is ...
chebbnd2 27388 The Chebyshev bound, part ...
chto1lb 27389 The ` theta ` function is ...
chpchtlim 27390 The ` psi ` and ` theta ` ...
chpo1ub 27391 The ` psi ` function is up...
chpo1ubb 27392 The ` psi ` function is up...
vmadivsum 27393 The sum of the von Mangold...
vmadivsumb 27394 Give a total bound on the ...
rplogsumlem1 27395 Lemma for ~ rplogsum . (C...
rplogsumlem2 27396 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 27397 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 27398 Lemma for ~ rpvmasum . Ca...
dchrisumlema 27399 Lemma for ~ dchrisum . Le...
dchrisumlem1 27400 Lemma for ~ dchrisum . Le...
dchrisumlem2 27401 Lemma for ~ dchrisum . Le...
dchrisumlem3 27402 Lemma for ~ dchrisum . Le...
dchrisum 27403 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 27404 Lemma for ~ dchrmusum and ...
dchrmusum2 27405 The sum of the Möbius...
dchrvmasumlem1 27406 An alternative expression ...
dchrvmasum2lem 27407 Give an expression for ` l...
dchrvmasum2if 27408 Combine the results of ~ d...
dchrvmasumlem2 27409 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 27410 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 27411 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 27412 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 27413 Lemma for ~ dchrvmasum . ...
dchrvmasumif 27414 An asymptotic approximatio...
dchrvmaeq0 27415 The set ` W ` is the colle...
dchrisum0fval 27416 Value of the function ` F ...
dchrisum0fmul 27417 The function ` F ` , the d...
dchrisum0ff 27418 The function ` F ` is a re...
dchrisum0flblem1 27419 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 27420 Lemma for ~ dchrisum0flb ....
dchrisum0flb 27421 The divisor sum of a real ...
dchrisum0fno1 27422 The sum ` sum_ k <_ x , F ...
rpvmasum2 27423 A partial result along the...
dchrisum0re 27424 Suppose ` X ` is a non-pri...
dchrisum0lema 27425 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 27426 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 27427 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 27428 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 27429 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 27430 Lemma for ~ dchrisum0 . (...
dchrisum0 27431 The sum ` sum_ n e. NN , X...
dchrisumn0 27432 The sum ` sum_ n e. NN , X...
dchrmusumlem 27433 The sum of the Möbius...
dchrvmasumlem 27434 The sum of the Möbius...
dchrmusum 27435 The sum of the Möbius...
dchrvmasum 27436 The sum of the von Mangold...
rpvmasum 27437 The sum of the von Mangold...
rplogsum 27438 The sum of ` log p / p ` o...
dirith2 27439 Dirichlet's theorem: there...
dirith 27440 Dirichlet's theorem: there...
mudivsum 27441 Asymptotic formula for ` s...
mulogsumlem 27442 Lemma for ~ mulogsum . (C...
mulogsum 27443 Asymptotic formula for ...
logdivsum 27444 Asymptotic analysis of ...
mulog2sumlem1 27445 Asymptotic formula for ...
mulog2sumlem2 27446 Lemma for ~ mulog2sum . (...
mulog2sumlem3 27447 Lemma for ~ mulog2sum . (...
mulog2sum 27448 Asymptotic formula for ...
vmalogdivsum2 27449 The sum ` sum_ n <_ x , La...
vmalogdivsum 27450 The sum ` sum_ n <_ x , La...
2vmadivsumlem 27451 Lemma for ~ 2vmadivsum . ...
2vmadivsum 27452 The sum ` sum_ m n <_ x , ...
logsqvma 27453 A formula for ` log ^ 2 ( ...
logsqvma2 27454 The Möbius inverse of...
log2sumbnd 27455 Bound on the difference be...
selberglem1 27456 Lemma for ~ selberg . Est...
selberglem2 27457 Lemma for ~ selberg . (Co...
selberglem3 27458 Lemma for ~ selberg . Est...
selberg 27459 Selberg's symmetry formula...
selbergb 27460 Convert eventual boundedne...
selberg2lem 27461 Lemma for ~ selberg2 . Eq...
selberg2 27462 Selberg's symmetry formula...
selberg2b 27463 Convert eventual boundedne...
chpdifbndlem1 27464 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 27465 Lemma for ~ chpdifbnd . (...
chpdifbnd 27466 A bound on the difference ...
logdivbnd 27467 A bound on a sum of logs, ...
selberg3lem1 27468 Introduce a log weighting ...
selberg3lem2 27469 Lemma for ~ selberg3 . Eq...
selberg3 27470 Introduce a log weighting ...
selberg4lem1 27471 Lemma for ~ selberg4 . Eq...
selberg4 27472 The Selberg symmetry formu...
pntrval 27473 Define the residual of the...
pntrf 27474 Functionality of the resid...
pntrmax 27475 There is a bound on the re...
pntrsumo1 27476 A bound on a sum over ` R ...
pntrsumbnd 27477 A bound on a sum over ` R ...
pntrsumbnd2 27478 A bound on a sum over ` R ...
selbergr 27479 Selberg's symmetry formula...
selberg3r 27480 Selberg's symmetry formula...
selberg4r 27481 Selberg's symmetry formula...
selberg34r 27482 The sum of ~ selberg3r and...
pntsval 27483 Define the "Selberg functi...
pntsf 27484 Functionality of the Selbe...
selbergs 27485 Selberg's symmetry formula...
selbergsb 27486 Selberg's symmetry formula...
pntsval2 27487 The Selberg function can b...
pntrlog2bndlem1 27488 The sum of ~ selberg3r and...
pntrlog2bndlem2 27489 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 27490 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 27491 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 27492 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 27493 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 27494 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 27495 A bound on ` R ( x ) log ^...
pntpbnd1a 27496 Lemma for ~ pntpbnd . (Co...
pntpbnd1 27497 Lemma for ~ pntpbnd . (Co...
pntpbnd2 27498 Lemma for ~ pntpbnd . (Co...
pntpbnd 27499 Lemma for ~ pnt . Establi...
pntibndlem1 27500 Lemma for ~ pntibnd . (Co...
pntibndlem2a 27501 Lemma for ~ pntibndlem2 . ...
pntibndlem2 27502 Lemma for ~ pntibnd . The...
pntibndlem3 27503 Lemma for ~ pntibnd . Pac...
pntibnd 27504 Lemma for ~ pnt . Establi...
pntlemd 27505 Lemma for ~ pnt . Closure...
pntlemc 27506 Lemma for ~ pnt . Closure...
pntlema 27507 Lemma for ~ pnt . Closure...
pntlemb 27508 Lemma for ~ pnt . Unpack ...
pntlemg 27509 Lemma for ~ pnt . Closure...
pntlemh 27510 Lemma for ~ pnt . Bounds ...
pntlemn 27511 Lemma for ~ pnt . The "na...
pntlemq 27512 Lemma for ~ pntlemj . (Co...
pntlemr 27513 Lemma for ~ pntlemj . (Co...
pntlemj 27514 Lemma for ~ pnt . The ind...
pntlemi 27515 Lemma for ~ pnt . Elimina...
pntlemf 27516 Lemma for ~ pnt . Add up ...
pntlemk 27517 Lemma for ~ pnt . Evaluat...
pntlemo 27518 Lemma for ~ pnt . Combine...
pntleme 27519 Lemma for ~ pnt . Package...
pntlem3 27520 Lemma for ~ pnt . Equatio...
pntlemp 27521 Lemma for ~ pnt . Wrappin...
pntleml 27522 Lemma for ~ pnt . Equatio...
pnt3 27523 The Prime Number Theorem, ...
pnt2 27524 The Prime Number Theorem, ...
pnt 27525 The Prime Number Theorem: ...
abvcxp 27526 Raising an absolute value ...
padicfval 27527 Value of the p-adic absolu...
padicval 27528 Value of the p-adic absolu...
ostth2lem1 27529 Lemma for ~ ostth2 , altho...
qrngbas 27530 The base set of the field ...
qdrng 27531 The rationals form a divis...
qrng0 27532 The zero element of the fi...
qrng1 27533 The unity element of the f...
qrngneg 27534 The additive inverse in th...
qrngdiv 27535 The division operation in ...
qabvle 27536 By using induction on ` N ...
qabvexp 27537 Induct the product rule ~ ...
ostthlem1 27538 Lemma for ~ ostth . If tw...
ostthlem2 27539 Lemma for ~ ostth . Refin...
qabsabv 27540 The regular absolute value...
padicabv 27541 The p-adic absolute value ...
padicabvf 27542 The p-adic absolute value ...
padicabvcxp 27543 All positive powers of the...
ostth1 27544 - Lemma for ~ ostth : triv...
ostth2lem2 27545 Lemma for ~ ostth2 . (Con...
ostth2lem3 27546 Lemma for ~ ostth2 . (Con...
ostth2lem4 27547 Lemma for ~ ostth2 . (Con...
ostth2 27548 - Lemma for ~ ostth : regu...
ostth3 27549 - Lemma for ~ ostth : p-ad...
ostth 27550 Ostrowski's theorem, which...
elno 27557 Membership in the surreals...
elnoOLD 27558 Obsolete version of ~ elno...
sltval 27559 The value of the surreal l...
bdayval 27560 The value of the birthday ...
nofun 27561 A surreal is a function. ...
nodmon 27562 The domain of a surreal is...
norn 27563 The range of a surreal is ...
nofnbday 27564 A surreal is a function ov...
nodmord 27565 The domain of a surreal ha...
elno2 27566 An alternative condition f...
elno3 27567 Another condition for memb...
sltval2 27568 Alternate expression for s...
nofv 27569 The function value of a su...
nosgnn0 27570 ` (/) ` is not a surreal s...
nosgnn0i 27571 If ` X ` is a surreal sign...
noreson 27572 The restriction of a surre...
sltintdifex 27573 If ` A
sltres 27574 If the restrictions of two...
noxp1o 27575 The Cartesian product of a...
noseponlem 27576 Lemma for ~ nosepon . Con...
nosepon 27577 Given two unequal surreals...
noextend 27578 Extending a surreal by one...
noextendseq 27579 Extend a surreal by a sequ...
noextenddif 27580 Calculate the place where ...
noextendlt 27581 Extending a surreal with a...
noextendgt 27582 Extending a surreal with a...
nolesgn2o 27583 Given ` A ` less-than or e...
nolesgn2ores 27584 Given ` A ` less-than or e...
nogesgn1o 27585 Given ` A ` greater than o...
nogesgn1ores 27586 Given ` A ` greater than o...
sltsolem1 27587 Lemma for ~ sltso . The "...
sltso 27588 Less-than totally orders t...
bdayfo 27589 The birthday function maps...
fvnobday 27590 The value of a surreal at ...
nosepnelem 27591 Lemma for ~ nosepne . (Co...
nosepne 27592 The value of two non-equal...
nosep1o 27593 If the value of a surreal ...
nosep2o 27594 If the value of a surreal ...
nosepdmlem 27595 Lemma for ~ nosepdm . (Co...
nosepdm 27596 The first place two surrea...
nosepeq 27597 The values of two surreals...
nosepssdm 27598 Given two non-equal surrea...
nodenselem4 27599 Lemma for ~ nodense . Sho...
nodenselem5 27600 Lemma for ~ nodense . If ...
nodenselem6 27601 The restriction of a surre...
nodenselem7 27602 Lemma for ~ nodense . ` A ...
nodenselem8 27603 Lemma for ~ nodense . Giv...
nodense 27604 Given two distinct surreal...
bdayimaon 27605 Lemma for full-eta propert...
nolt02olem 27606 Lemma for ~ nolt02o . If ...
nolt02o 27607 Given ` A ` less-than ` B ...
nogt01o 27608 Given ` A ` greater than `...
noresle 27609 Restriction law for surrea...
nomaxmo 27610 A class of surreals has at...
nominmo 27611 A class of surreals has at...
nosupprefixmo 27612 In any class of surreals, ...
noinfprefixmo 27613 In any class of surreals, ...
nosupcbv 27614 Lemma to change bound vari...
nosupno 27615 The next several theorems ...
nosupdm 27616 The domain of the surreal ...
nosupbday 27617 Birthday bounding law for ...
nosupfv 27618 The value of surreal supre...
nosupres 27619 A restriction law for surr...
nosupbnd1lem1 27620 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 27621 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 27622 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 27623 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 27624 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 27625 Lemma for ~ nosupbnd1 . E...
nosupbnd1 27626 Bounding law from below fo...
nosupbnd2lem1 27627 Bounding law from above wh...
nosupbnd2 27628 Bounding law from above fo...
noinfcbv 27629 Change bound variables for...
noinfno 27630 The next several theorems ...
noinfdm 27631 Next, we calculate the dom...
noinfbday 27632 Birthday bounding law for ...
noinffv 27633 The value of surreal infim...
noinfres 27634 The restriction of surreal...
noinfbnd1lem1 27635 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 27636 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 27637 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 27638 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 27639 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 27640 Lemma for ~ noinfbnd1 . E...
noinfbnd1 27641 Bounding law from above fo...
noinfbnd2lem1 27642 Bounding law from below wh...
noinfbnd2 27643 Bounding law from below fo...
nosupinfsep 27644 Given two sets of surreals...
noetasuplem1 27645 Lemma for ~ noeta . Estab...
noetasuplem2 27646 Lemma for ~ noeta . The r...
noetasuplem3 27647 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 27648 Lemma for ~ noeta . When ...
noetainflem1 27649 Lemma for ~ noeta . Estab...
noetainflem2 27650 Lemma for ~ noeta . The r...
noetainflem3 27651 Lemma for ~ noeta . ` W ` ...
noetainflem4 27652 Lemma for ~ noeta . If ` ...
noetalem1 27653 Lemma for ~ noeta . Eithe...
noetalem2 27654 Lemma for ~ noeta . The f...
noeta 27655 The full-eta axiom for the...
sltirr 27658 Surreal less-than is irref...
slttr 27659 Surreal less-than is trans...
sltasym 27660 Surreal less-than is asymm...
sltlin 27661 Surreal less-than obeys tr...
slttrieq2 27662 Trichotomy law for surreal...
slttrine 27663 Trichotomy law for surreal...
slenlt 27664 Surreal less-than or equal...
sltnle 27665 Surreal less-than in terms...
sleloe 27666 Surreal less-than or equal...
sletri3 27667 Trichotomy law for surreal...
sltletr 27668 Surreal transitive law. (...
slelttr 27669 Surreal transitive law. (...
sletr 27670 Surreal transitive law. (...
slttrd 27671 Surreal less-than is trans...
sltletrd 27672 Surreal less-than is trans...
slelttrd 27673 Surreal less-than is trans...
sletrd 27674 Surreal less-than or equal...
slerflex 27675 Surreal less-than or equal...
sletric 27676 Surreal trichotomy law. (...
maxs1 27677 A surreal is less than or ...
maxs2 27678 A surreal is less than or ...
mins1 27679 The minimum of two surreal...
mins2 27680 The minimum of two surreal...
sltled 27681 Surreal less-than implies ...
sltne 27682 Surreal less-than implies ...
sltlend 27683 Surreal less-than in terms...
bdayfun 27684 The birthday function is a...
bdayfn 27685 The birthday function is a...
bdaydm 27686 The birthday function's do...
bdayrn 27687 The birthday function's ra...
bdayelon 27688 The value of the birthday ...
nocvxminlem 27689 Lemma for ~ nocvxmin . Gi...
nocvxmin 27690 Given a nonempty convex cl...
noprc 27691 The surreal numbers are a ...
noeta2 27696 A version of ~ noeta with ...
brsslt 27697 Binary relation form of th...
ssltex1 27698 The first argument of surr...
ssltex2 27699 The second argument of sur...
ssltss1 27700 The first argument of surr...
ssltss2 27701 The second argument of sur...
ssltsep 27702 The separation property of...
ssltd 27703 Deduce surreal set less-th...
ssltsn 27704 Surreal set less-than of t...
ssltsepc 27705 Two elements of separated ...
ssltsepcd 27706 Two elements of separated ...
sssslt1 27707 Relation between surreal s...
sssslt2 27708 Relation between surreal s...
nulsslt 27709 The empty set is less-than...
nulssgt 27710 The empty set is greater t...
conway 27711 Conway's Simplicity Theore...
scutval 27712 The value of the surreal c...
scutcut 27713 Cut properties of the surr...
scutcl 27714 Closure law for surreal cu...
scutcld 27715 Closure law for surreal cu...
scutbday 27716 The birthday of the surrea...
eqscut 27717 Condition for equality to ...
eqscut2 27718 Condition for equality to ...
sslttr 27719 Transitive law for surreal...
ssltun1 27720 Union law for surreal set ...
ssltun2 27721 Union law for surreal set ...
scutun12 27722 Union law for surreal cuts...
dmscut 27723 The domain of the surreal ...
scutf 27724 Functionality statement fo...
etasslt 27725 A restatement of ~ noeta u...
etasslt2 27726 A version of ~ etasslt wit...
scutbdaybnd 27727 An upper bound on the birt...
scutbdaybnd2 27728 An upper bound on the birt...
scutbdaybnd2lim 27729 An upper bound on the birt...
scutbdaylt 27730 If a surreal lies in a gap...
slerec 27731 A comparison law for surre...
sltrec 27732 A comparison law for surre...
ssltdisj 27733 If ` A ` preceeds ` B ` , ...
0sno 27738 Surreal zero is a surreal....
1sno 27739 Surreal one is a surreal. ...
bday0s 27740 Calculate the birthday of ...
0slt1s 27741 Surreal zero is less than ...
bday0b 27742 The only surreal with birt...
bday1s 27743 The birthday of surreal on...
cuteq0 27744 Condition for a surreal cu...
cutneg 27745 The simplest number greate...
cuteq1 27746 Condition for a surreal cu...
sgt0ne0 27747 A positive surreal is not ...
sgt0ne0d 27748 A positive surreal is not ...
1sne0s 27749 Surreal zero does not equa...
madeval 27760 The value of the made by f...
madeval2 27761 Alternative characterizati...
oldval 27762 The value of the old optio...
newval 27763 The value of the new optio...
madef 27764 The made function is a fun...
oldf 27765 The older function is a fu...
newf 27766 The new function is a func...
old0 27767 No surreal is older than `...
madessno 27768 Made sets are surreals. (...
oldssno 27769 Old sets are surreals. (C...
newssno 27770 New sets are surreals. (C...
leftval 27771 The value of the left opti...
rightval 27772 The value of the right opt...
elleft 27773 Membership in the left set...
elright 27774 Membership in the right se...
leftlt 27775 A member of a surreal's le...
rightgt 27776 A member of a surreal's ri...
leftf 27777 The functionality of the l...
rightf 27778 The functionality of the r...
elmade 27779 Membership in the made fun...
elmade2 27780 Membership in the made fun...
elold 27781 Membership in an old set. ...
ssltleft 27782 A surreal is greater than ...
ssltright 27783 A surreal is less than its...
lltropt 27784 The left options of a surr...
made0 27785 The only surreal made on d...
new0 27786 The only surreal new on da...
old1 27787 The only surreal older tha...
madess 27788 If ` A ` is less than or e...
oldssmade 27789 The older-than set is a su...
leftssold 27790 The left options are a sub...
rightssold 27791 The right options are a su...
leftssno 27792 The left set of a surreal ...
rightssno 27793 The right set of a surreal...
madecut 27794 Given a section that is a ...
madeun 27795 The made set is the union ...
madeoldsuc 27796 The made set is the old se...
oldsuc 27797 The value of the old set a...
oldlim 27798 The value of the old set a...
madebdayim 27799 If a surreal is a member o...
oldbdayim 27800 If ` X ` is in the old set...
oldirr 27801 No surreal is a member of ...
leftirr 27802 No surreal is a member of ...
rightirr 27803 No surreal is a member of ...
left0s 27804 The left set of ` 0s ` is ...
right0s 27805 The right set of ` 0s ` is...
left1s 27806 The left set of ` 1s ` is ...
right1s 27807 The right set of ` 1s ` is...
lrold 27808 The union of the left and ...
madebdaylemold 27809 Lemma for ~ madebday . If...
madebdaylemlrcut 27810 Lemma for ~ madebday . If...
madebday 27811 A surreal is part of the s...
oldbday 27812 A surreal is part of the s...
newbday 27813 A surreal is an element of...
newbdayim 27814 One direction of the bicon...
lrcut 27815 A surreal is equal to the ...
scutfo 27816 The surreal cut function i...
sltn0 27817 If ` X ` is less than ` Y ...
lruneq 27818 If two surreals share a bi...
sltlpss 27819 If two surreals share a bi...
slelss 27820 If two surreals ` A ` and ...
0elold 27821 Zero is in the old set of ...
0elleft 27822 Zero is in the left set of...
0elright 27823 Zero is in the right set o...
madefi 27824 The made set of an ordinal...
oldfi 27825 The old set of an ordinal ...
cofsslt 27826 If every element of ` A ` ...
coinitsslt 27827 If ` B ` is coinitial with...
cofcut1 27828 If ` C ` is cofinal with `...
cofcut1d 27829 If ` C ` is cofinal with `...
cofcut2 27830 If ` A ` and ` C ` are mut...
cofcut2d 27831 If ` A ` and ` C ` are mut...
cofcutr 27832 If ` X ` is the cut of ` A...
cofcutr1d 27833 If ` X ` is the cut of ` A...
cofcutr2d 27834 If ` X ` is the cut of ` A...
cofcutrtime 27835 If ` X ` is the cut of ` A...
cofcutrtime1d 27836 If ` X ` is a timely cut o...
cofcutrtime2d 27837 If ` X ` is a timely cut o...
cofss 27838 Cofinality for a subset. ...
coiniss 27839 Coinitiality for a subset....
cutlt 27840 Eliminating all elements b...
cutpos 27841 Reduce the elements of a c...
cutmax 27842 If ` A ` has a maximum, th...
cutmin 27843 If ` B ` has a minimum, th...
lrrecval 27846 The next step in the devel...
lrrecval2 27847 Next, we establish an alte...
lrrecpo 27848 Now, we establish that ` R...
lrrecse 27849 Next, we show that ` R ` i...
lrrecfr 27850 Now we show that ` R ` is ...
lrrecpred 27851 Finally, we calculate the ...
noinds 27852 Induction principle for a ...
norecfn 27853 Surreal recursion over one...
norecov 27854 Calculate the value of the...
noxpordpo 27857 To get through most of the...
noxpordfr 27858 Next we establish the foun...
noxpordse 27859 Next we establish the set-...
noxpordpred 27860 Next we calculate the pred...
no2indslem 27861 Double induction on surrea...
no2inds 27862 Double induction on surrea...
norec2fn 27863 The double-recursion opera...
norec2ov 27864 The value of the double-re...
no3inds 27865 Triple induction over surr...
addsfn 27868 Surreal addition is a func...
addsval 27869 The value of surreal addit...
addsval2 27870 The value of surreal addit...
addsrid 27871 Surreal addition to zero i...
addsridd 27872 Surreal addition to zero i...
addscom 27873 Surreal addition commutes....
addscomd 27874 Surreal addition commutes....
addslid 27875 Surreal addition to zero i...
addsproplem1 27876 Lemma for surreal addition...
addsproplem2 27877 Lemma for surreal addition...
addsproplem3 27878 Lemma for surreal addition...
addsproplem4 27879 Lemma for surreal addition...
addsproplem5 27880 Lemma for surreal addition...
addsproplem6 27881 Lemma for surreal addition...
addsproplem7 27882 Lemma for surreal addition...
addsprop 27883 Inductively show that surr...
addscutlem 27884 Lemma for ~ addscut . Sho...
addscut 27885 Demonstrate the cut proper...
addscut2 27886 Show that the cut involved...
addscld 27887 Surreal numbers are closed...
addscl 27888 Surreal numbers are closed...
addsf 27889 Function statement for sur...
addsfo 27890 Surreal addition is onto. ...
peano2no 27891 A theorem for surreals tha...
sltadd1im 27892 Surreal less-than is prese...
sltadd2im 27893 Surreal less-than is prese...
sleadd1im 27894 Surreal less-than or equal...
sleadd2im 27895 Surreal less-than or equal...
sleadd1 27896 Addition to both sides of ...
sleadd2 27897 Addition to both sides of ...
sltadd2 27898 Addition to both sides of ...
sltadd1 27899 Addition to both sides of ...
addscan2 27900 Cancellation law for surre...
addscan1 27901 Cancellation law for surre...
sleadd1d 27902 Addition to both sides of ...
sleadd2d 27903 Addition to both sides of ...
sltadd2d 27904 Addition to both sides of ...
sltadd1d 27905 Addition to both sides of ...
addscan2d 27906 Cancellation law for surre...
addscan1d 27907 Cancellation law for surre...
addsuniflem 27908 Lemma for ~ addsunif . St...
addsunif 27909 Uniformity theorem for sur...
addsasslem1 27910 Lemma for addition associa...
addsasslem2 27911 Lemma for addition associa...
addsass 27912 Surreal addition is associ...
addsassd 27913 Surreal addition is associ...
adds32d 27914 Commutative/associative la...
adds12d 27915 Commutative/associative la...
adds4d 27916 Rearrangement of four term...
adds42d 27917 Rearrangement of four term...
sltaddpos1d 27918 Addition of a positive num...
sltaddpos2d 27919 Addition of a positive num...
slt2addd 27920 Adding both sides of two s...
addsgt0d 27921 The sum of two positive su...
sltp1d 27922 A surreal is less than its...
addsbdaylem 27923 Lemma for ~ addsbday . (C...
addsbday 27924 The birthday of the sum of...
negsfn 27929 Surreal negation is a func...
subsfn 27930 Surreal subtraction is a f...
negsval 27931 The value of the surreal n...
negs0s 27932 Negative surreal zero is s...
negs1s 27933 An expression for negative...
negsproplem1 27934 Lemma for surreal negation...
negsproplem2 27935 Lemma for surreal negation...
negsproplem3 27936 Lemma for surreal negation...
negsproplem4 27937 Lemma for surreal negation...
negsproplem5 27938 Lemma for surreal negation...
negsproplem6 27939 Lemma for surreal negation...
negsproplem7 27940 Lemma for surreal negation...
negsprop 27941 Show closure and ordering ...
negscl 27942 The surreals are closed un...
negscld 27943 The surreals are closed un...
sltnegim 27944 The forward direction of t...
negscut 27945 The cut properties of surr...
negscut2 27946 The cut that defines surre...
negsid 27947 Surreal addition of a numb...
negsidd 27948 Surreal addition of a numb...
negsex 27949 Every surreal has a negati...
negnegs 27950 A surreal is equal to the ...
sltneg 27951 Negative of both sides of ...
sleneg 27952 Negative of both sides of ...
sltnegd 27953 Negative of both sides of ...
slenegd 27954 Negative of both sides of ...
negs11 27955 Surreal negation is one-to...
negsdi 27956 Distribution of surreal ne...
slt0neg2d 27957 Comparison of a surreal an...
negsf 27958 Function statement for sur...
negsfo 27959 Function statement for sur...
negsf1o 27960 Surreal negation is a bije...
negsunif 27961 Uniformity property for su...
negsbdaylem 27962 Lemma for ~ negsbday . Bo...
negsbday 27963 Negation of a surreal numb...
subsval 27964 The value of surreal subtr...
subsvald 27965 The value of surreal subtr...
subscl 27966 Closure law for surreal su...
subscld 27967 Closure law for surreal su...
subsf 27968 Function statement for sur...
subsfo 27969 Surreal subtraction is an ...
negsval2 27970 Surreal negation in terms ...
negsval2d 27971 Surreal negation in terms ...
subsid1 27972 Identity law for subtracti...
subsid 27973 Subtraction of a surreal f...
subadds 27974 Relationship between addit...
subaddsd 27975 Relationship between addit...
pncans 27976 Cancellation law for surre...
pncan3s 27977 Subtraction and addition o...
pncan2s 27978 Cancellation law for surre...
npcans 27979 Cancellation law for surre...
sltsub1 27980 Subtraction from both side...
sltsub2 27981 Subtraction from both side...
sltsub1d 27982 Subtraction from both side...
sltsub2d 27983 Subtraction from both side...
negsubsdi2d 27984 Distribution of negative o...
addsubsassd 27985 Associative-type law for s...
addsubsd 27986 Law for surreal addition a...
sltsubsubbd 27987 Equivalence for the surrea...
sltsubsub2bd 27988 Equivalence for the surrea...
sltsubsub3bd 27989 Equivalence for the surrea...
slesubsubbd 27990 Equivalence for the surrea...
slesubsub2bd 27991 Equivalence for the surrea...
slesubsub3bd 27992 Equivalence for the surrea...
sltsubaddd 27993 Surreal less-than relation...
sltsubadd2d 27994 Surreal less-than relation...
sltaddsubd 27995 Surreal less-than relation...
sltaddsub2d 27996 Surreal less-than relation...
slesubaddd 27997 Surreal less-than or equal...
subsubs4d 27998 Law for double surreal sub...
subsubs2d 27999 Law for double surreal sub...
nncansd 28000 Cancellation law for surre...
posdifsd 28001 Comparison of two surreals...
sltsubposd 28002 Subtraction of a positive ...
subsge0d 28003 Non-negative subtraction. ...
addsubs4d 28004 Rearrangement of four term...
sltm1d 28005 A surreal is greater than ...
subscan1d 28006 Cancellation law for surre...
subscan2d 28007 Cancellation law for surre...
subseq0d 28008 The difference between two...
mulsfn 28011 Surreal multiplication is ...
mulsval 28012 The value of surreal multi...
mulsval2lem 28013 Lemma for ~ mulsval2 . Ch...
mulsval2 28014 The value of surreal multi...
muls01 28015 Surreal multiplication by ...
mulsrid 28016 Surreal one is a right ide...
mulsridd 28017 Surreal one is a right ide...
mulsproplemcbv 28018 Lemma for surreal multipli...
mulsproplem1 28019 Lemma for surreal multipli...
mulsproplem2 28020 Lemma for surreal multipli...
mulsproplem3 28021 Lemma for surreal multipli...
mulsproplem4 28022 Lemma for surreal multipli...
mulsproplem5 28023 Lemma for surreal multipli...
mulsproplem6 28024 Lemma for surreal multipli...
mulsproplem7 28025 Lemma for surreal multipli...
mulsproplem8 28026 Lemma for surreal multipli...
mulsproplem9 28027 Lemma for surreal multipli...
mulsproplem10 28028 Lemma for surreal multipli...
mulsproplem11 28029 Lemma for surreal multipli...
mulsproplem12 28030 Lemma for surreal multipli...
mulsproplem13 28031 Lemma for surreal multipli...
mulsproplem14 28032 Lemma for surreal multipli...
mulsprop 28033 Surreals are closed under ...
mulscutlem 28034 Lemma for ~ mulscut . Sta...
mulscut 28035 Show the cut properties of...
mulscut2 28036 Show that the cut involved...
mulscl 28037 The surreals are closed un...
mulscld 28038 The surreals are closed un...
sltmul 28039 An ordering relationship f...
sltmuld 28040 An ordering relationship f...
slemuld 28041 An ordering relationship f...
mulscom 28042 Surreal multiplication com...
mulscomd 28043 Surreal multiplication com...
muls02 28044 Surreal multiplication by ...
mulslid 28045 Surreal one is a left iden...
mulslidd 28046 Surreal one is a left iden...
mulsgt0 28047 The product of two positiv...
mulsgt0d 28048 The product of two positiv...
mulsge0d 28049 The product of two non-neg...
ssltmul1 28050 One surreal set less-than ...
ssltmul2 28051 One surreal set less-than ...
mulsuniflem 28052 Lemma for ~ mulsunif . St...
mulsunif 28053 Surreal multiplication has...
addsdilem1 28054 Lemma for surreal distribu...
addsdilem2 28055 Lemma for surreal distribu...
addsdilem3 28056 Lemma for ~ addsdi . Show...
addsdilem4 28057 Lemma for ~ addsdi . Show...
addsdi 28058 Distributive law for surre...
addsdid 28059 Distributive law for surre...
addsdird 28060 Distributive law for surre...
subsdid 28061 Distribution of surreal mu...
subsdird 28062 Distribution of surreal mu...
mulnegs1d 28063 Product with negative is n...
mulnegs2d 28064 Product with negative is n...
mul2negsd 28065 Surreal product of two neg...
mulsasslem1 28066 Lemma for ~ mulsass . Exp...
mulsasslem2 28067 Lemma for ~ mulsass . Exp...
mulsasslem3 28068 Lemma for ~ mulsass . Dem...
mulsass 28069 Associative law for surrea...
mulsassd 28070 Associative law for surrea...
muls4d 28071 Rearrangement of four surr...
mulsunif2lem 28072 Lemma for ~ mulsunif2 . S...
mulsunif2 28073 Alternate expression for s...
sltmul2 28074 Multiplication of both sid...
sltmul2d 28075 Multiplication of both sid...
sltmul1d 28076 Multiplication of both sid...
slemul2d 28077 Multiplication of both sid...
slemul1d 28078 Multiplication of both sid...
sltmulneg1d 28079 Multiplication of both sid...
sltmulneg2d 28080 Multiplication of both sid...
mulscan2dlem 28081 Lemma for ~ mulscan2d . C...
mulscan2d 28082 Cancellation of surreal mu...
mulscan1d 28083 Cancellation of surreal mu...
muls12d 28084 Commutative/associative la...
slemul1ad 28085 Multiplication of both sid...
sltmul12ad 28086 Comparison of the product ...
divsmo 28087 Uniqueness of surreal inve...
muls0ord 28088 If a surreal product is ze...
mulsne0bd 28089 The product of two non-zer...
divsval 28092 The value of surreal divis...
norecdiv 28093 If a surreal has a recipro...
noreceuw 28094 If a surreal has a recipro...
recsne0 28095 If a surreal has a recipro...
divsmulw 28096 Relationship between surre...
divsmulwd 28097 Relationship between surre...
divsclw 28098 Weak division closure law....
divsclwd 28099 Weak division closure law....
divscan2wd 28100 A weak cancellation law fo...
divscan1wd 28101 A weak cancellation law fo...
sltdivmulwd 28102 Surreal less-than relation...
sltdivmul2wd 28103 Surreal less-than relation...
sltmuldivwd 28104 Surreal less-than relation...
sltmuldiv2wd 28105 Surreal less-than relation...
divsasswd 28106 An associative law for sur...
divs1 28107 A surreal divided by one i...
precsexlemcbv 28108 Lemma for surreal reciproc...
precsexlem1 28109 Lemma for surreal reciproc...
precsexlem2 28110 Lemma for surreal reciproc...
precsexlem3 28111 Lemma for surreal reciproc...
precsexlem4 28112 Lemma for surreal reciproc...
precsexlem5 28113 Lemma for surreal reciproc...
precsexlem6 28114 Lemma for surreal reciproc...
precsexlem7 28115 Lemma for surreal reciproc...
precsexlem8 28116 Lemma for surreal reciproc...
precsexlem9 28117 Lemma for surreal reciproc...
precsexlem10 28118 Lemma for surreal reciproc...
precsexlem11 28119 Lemma for surreal reciproc...
precsex 28120 Every positive surreal has...
recsex 28121 A non-zero surreal has a r...
recsexd 28122 A non-zero surreal has a r...
divsmul 28123 Relationship between surre...
divsmuld 28124 Relationship between surre...
divscl 28125 Surreal division closure l...
divscld 28126 Surreal division closure l...
divscan2d 28127 A cancellation law for sur...
divscan1d 28128 A cancellation law for sur...
sltdivmuld 28129 Surreal less-than relation...
sltdivmul2d 28130 Surreal less-than relation...
sltmuldivd 28131 Surreal less-than relation...
sltmuldiv2d 28132 Surreal less-than relation...
divsassd 28133 An associative law for sur...
divmuldivsd 28134 Multiplication of two surr...
divdivs1d 28135 Surreal division into a fr...
divsrecd 28136 Relationship between surre...
divsdird 28137 Distribution of surreal di...
divscan3d 28138 A cancellation law for sur...
abssval 28141 The value of surreal absol...
absscl 28142 Closure law for surreal ab...
abssid 28143 The absolute value of a no...
abs0s 28144 The absolute value of surr...
abssnid 28145 For a negative surreal, it...
absmuls 28146 Surreal absolute value dis...
abssge0 28147 The absolute value of a su...
abssor 28148 The absolute value of a su...
abssneg 28149 Surreal absolute value of ...
sleabs 28150 A surreal is less than or ...
absslt 28151 Surreal absolute value and...
elons 28154 Membership in the class of...
onssno 28155 The surreal ordinals are a...
onsno 28156 A surreal ordinal is a sur...
0ons 28157 Surreal zero is a surreal ...
1ons 28158 Surreal one is a surreal o...
elons2 28159 A surreal is ordinal iff i...
elons2d 28160 The cut of any set of surr...
onsleft 28161 The left set of a surreal ...
sltonold 28162 The class of ordinals less...
sltonex 28163 The class of ordinals less...
onscutleft 28164 A surreal ordinal is equal...
onscutlt 28165 A surreal ordinal is the s...
bday11on 28166 The birthday function is o...
onnolt 28167 If a surreal ordinal is le...
onslt 28168 Less-than is the same as b...
onsiso 28169 The birthday function rest...
onswe 28170 Surreal less-than well-ord...
onsse 28171 Surreal less-than is set-l...
onsis 28172 Transfinite induction sche...
bdayon 28173 The birthday of a surreal ...
onaddscl 28174 The surreal ordinals are c...
onmulscl 28175 The surreal ordinals are c...
peano2ons 28176 The successor of a surreal...
seqsex 28179 Existence of the surreal s...
seqseq123d 28180 Equality deduction for the...
nfseqs 28181 Hypothesis builder for the...
seqsval 28182 The value of the surreal s...
noseqex 28183 The next several theorems ...
noseq0 28184 The surreal ` A ` is a mem...
noseqp1 28185 One plus an element of ` Z...
noseqind 28186 Peano's inductive postulat...
noseqinds 28187 Induction schema for surre...
noseqssno 28188 A surreal sequence is a su...
noseqno 28189 An element of a surreal se...
om2noseq0 28190 The mapping ` G ` is a one...
om2noseqsuc 28191 The value of ` G ` at a su...
om2noseqfo 28192 Function statement for ` G...
om2noseqlt 28193 Surreal less-than relation...
om2noseqlt2 28194 The mapping ` G ` preserve...
om2noseqf1o 28195 ` G ` is a bijection. (Co...
om2noseqiso 28196 ` G ` is an isomorphism fr...
om2noseqoi 28197 An alternative definition ...
om2noseqrdg 28198 A helper lemma for the val...
noseqrdglem 28199 A helper lemma for the val...
noseqrdgfn 28200 The recursive definition g...
noseqrdg0 28201 Initial value of a recursi...
noseqrdgsuc 28202 Successor value of a recur...
seqsfn 28203 The surreal sequence build...
seqs1 28204 The value of the surreal s...
seqsp1 28205 The value of the surreal s...
n0sex 28210 The set of all non-negativ...
nnsex 28211 The set of all positive su...
peano5n0s 28212 Peano's inductive postulat...
n0ssno 28213 The non-negative surreal i...
nnssn0s 28214 The positive surreal integ...
nnssno 28215 The positive surreal integ...
n0sno 28216 A non-negative surreal int...
nnsno 28217 A positive surreal integer...
n0snod 28218 A non-negative surreal int...
nnsnod 28219 A positive surreal integer...
nnn0s 28220 A positive surreal integer...
nnn0sd 28221 A positive surreal integer...
0n0s 28222 Peano postulate: ` 0s ` is...
peano2n0s 28223 Peano postulate: the succe...
dfn0s2 28224 Alternate definition of th...
n0sind 28225 Principle of Mathematical ...
n0scut 28226 A cut form for non-negativ...
n0scut2 28227 A cut form for the success...
n0ons 28228 A surreal natural is a sur...
nnne0s 28229 A surreal positive integer...
n0sge0 28230 A non-negative integer is ...
nnsgt0 28231 A positive integer is grea...
elnns 28232 Membership in the positive...
elnns2 28233 A positive surreal integer...
n0s0suc 28234 A non-negative surreal int...
nnsge1 28235 A positive surreal integer...
n0addscl 28236 The non-negative surreal i...
n0mulscl 28237 The non-negative surreal i...
nnaddscl 28238 The positive surreal integ...
nnmulscl 28239 The positive surreal integ...
1n0s 28240 Surreal one is a non-negat...
1nns 28241 Surreal one is a positive ...
peano2nns 28242 Peano postulate for positi...
nnsrecgt0d 28243 The reciprocal of a positi...
n0sbday 28244 A non-negative surreal int...
n0ssold 28245 The non-negative surreal i...
n0sfincut 28246 The simplest number greate...
onsfi 28247 A surreal ordinal with a f...
onltn0s 28248 A surreal ordinal that is ...
n0cutlt 28249 A non-negative surreal int...
seqn0sfn 28250 The surreal sequence build...
eln0s 28251 A non-negative surreal int...
n0s0m1 28252 Every non-negative surreal...
n0subs 28253 Subtraction of non-negativ...
n0subs2 28254 Subtraction of non-negativ...
n0sltp1le 28255 Non-negative surreal order...
n0sleltp1 28256 Non-negative surreal order...
n0slem1lt 28257 Non-negative surreal order...
bdayn0p1 28258 The birthday of ` A +s 1s ...
bdayn0sf1o 28259 The birthday function rest...
n0p1nns 28260 One plus a non-negative su...
dfnns2 28261 Alternate definition of th...
nnsind 28262 Principle of Mathematical ...
nn1m1nns 28263 Every positive surreal int...
nnm1n0s 28264 A positive surreal integer...
eucliddivs 28265 Euclid's division lemma fo...
zsex 28268 The surreal integers form ...
zssno 28269 The surreal integers are a...
zno 28270 A surreal integer is a sur...
znod 28271 A surreal integer is a sur...
elzs 28272 Membership in the set of s...
nnzsubs 28273 The difference of two surr...
nnzs 28274 A positive surreal integer...
nnzsd 28275 A positive surreal integer...
0zs 28276 Zero is a surreal integer....
n0zs 28277 A non-negative surreal int...
n0zsd 28278 A non-negative surreal int...
1zs 28279 One is a surreal integer. ...
znegscl 28280 The surreal integers are c...
znegscld 28281 The surreal integers are c...
zaddscl 28282 The surreal integers are c...
zaddscld 28283 The surreal integers are c...
zsubscld 28284 The surreal integers are c...
zmulscld 28285 The surreal integers are c...
elzn0s 28286 A surreal integer is a sur...
elzs2 28287 A surreal integer is eithe...
eln0zs 28288 Non-negative surreal integ...
elnnzs 28289 Positive surreal integer p...
elznns 28290 Surreal integer property e...
zn0subs 28291 The non-negative differenc...
peano5uzs 28292 Peano's inductive postulat...
uzsind 28293 Induction on the upper sur...
zsbday 28294 A surreal integer has a fi...
zscut 28295 A cut expression for surre...
1p1e2s 28302 One plus one is two. Surr...
no2times 28303 Version of ~ 2times for su...
2nns 28304 Surreal two is a surreal n...
2sno 28305 Surreal two is a surreal n...
2ne0s 28306 Surreal two is non-zero. ...
n0seo 28307 A non-negative surreal int...
zseo 28308 A surreal integer is eithe...
twocut 28309 Two times the cut of zero ...
nohalf 28310 An explicit expression for...
expsval 28311 The value of surreal expon...
expsnnval 28312 Value of surreal exponenti...
exps0 28313 Surreal exponentiation to ...
exps1 28314 Surreal exponentiation to ...
expsp1 28315 Value of a surreal number ...
expscllem 28316 Lemma for proving non-nega...
expscl 28317 Closure law for surreal ex...
n0expscl 28318 Closure law for non-negati...
nnexpscl 28319 Closure law for positive s...
expadds 28320 Sum of exponents law for s...
expsne0 28321 A non-negative surreal int...
expsgt0 28322 A non-negative surreal int...
pw2recs 28323 Any power of two has a mul...
pw2divscld 28324 Division closure for power...
pw2divsmuld 28325 Relationship between surre...
pw2divscan3d 28326 Cancellation law for surre...
pw2divscan2d 28327 A cancellation law for sur...
pw2gt0divsd 28328 Division of a positive sur...
pw2ge0divsd 28329 Divison of a non-negative ...
pw2divsrecd 28330 Relationship between surre...
pw2divsdird 28331 Distribution of surreal di...
pw2divsnegd 28332 Move negative sign inside ...
halfcut 28333 Relate the cut of twice of...
addhalfcut 28334 The cut of a surreal non-n...
pw2cut 28335 Extend ~ halfcut to arbitr...
pw2cutp1 28336 Simplify ~ pw2cut in the c...
elzs12 28337 Membership in the dyadic f...
zs12ex 28338 The class of dyadic fracti...
zzs12 28339 A surreal integer is a dya...
zs12negscl 28340 The dyadics are closed und...
zs12negsclb 28341 A surreal is a dyadic frac...
zs12ge0 28342 An expression for non-nega...
zs12bday 28343 A dyadic fraction has a fi...
elreno 28346 Membership in the set of s...
recut 28347 The cut involved in defini...
0reno 28348 Surreal zero is a surreal ...
renegscl 28349 The surreal reals are clos...
readdscl 28350 The surreal reals are clos...
remulscllem1 28351 Lemma for ~ remulscl . Sp...
remulscllem2 28352 Lemma for ~ remulscl . Bo...
remulscl 28353 The surreal reals are clos...
itvndx 28364 Index value of the Interva...
lngndx 28365 Index value of the "line" ...
itvid 28366 Utility theorem: index-ind...
lngid 28367 Utility theorem: index-ind...
slotsinbpsd 28368 The slots ` Base ` , ` +g ...
slotslnbpsd 28369 The slots ` Base ` , ` +g ...
lngndxnitvndx 28370 The slot for the line is n...
trkgstr 28371 Functionality of a Tarski ...
trkgbas 28372 The base set of a Tarski g...
trkgdist 28373 The measure of a distance ...
trkgitv 28374 The congruence relation in...
istrkgc 28381 Property of being a Tarski...
istrkgb 28382 Property of being a Tarski...
istrkgcb 28383 Property of being a Tarski...
istrkge 28384 Property of fulfilling Euc...
istrkgl 28385 Building lines from the se...
istrkgld 28386 Property of fulfilling the...
istrkg2ld 28387 Property of fulfilling the...
istrkg3ld 28388 Property of fulfilling the...
axtgcgrrflx 28389 Axiom of reflexivity of co...
axtgcgrid 28390 Axiom of identity of congr...
axtgsegcon 28391 Axiom of segment construct...
axtg5seg 28392 Five segments axiom, Axiom...
axtgbtwnid 28393 Identity of Betweenness. ...
axtgpasch 28394 Axiom of (Inner) Pasch, Ax...
axtgcont1 28395 Axiom of Continuity. Axio...
axtgcont 28396 Axiom of Continuity. Axio...
axtglowdim2 28397 Lower dimension axiom for ...
axtgupdim2 28398 Upper dimension axiom for ...
axtgeucl 28399 Euclid's Axiom. Axiom A10...
tgjustf 28400 Given any function ` F ` ,...
tgjustr 28401 Given any equivalence rela...
tgjustc1 28402 A justification for using ...
tgjustc2 28403 A justification for using ...
tgcgrcomimp 28404 Congruence commutes on the...
tgcgrcomr 28405 Congruence commutes on the...
tgcgrcoml 28406 Congruence commutes on the...
tgcgrcomlr 28407 Congruence commutes on bot...
tgcgreqb 28408 Congruence and equality. ...
tgcgreq 28409 Congruence and equality. ...
tgcgrneq 28410 Congruence and equality. ...
tgcgrtriv 28411 Degenerate segments are co...
tgcgrextend 28412 Link congruence over a pai...
tgsegconeq 28413 Two points that satisfy th...
tgbtwntriv2 28414 Betweenness always holds f...
tgbtwncom 28415 Betweenness commutes. The...
tgbtwncomb 28416 Betweenness commutes, bico...
tgbtwnne 28417 Betweenness and inequality...
tgbtwntriv1 28418 Betweenness always holds f...
tgbtwnswapid 28419 If you can swap the first ...
tgbtwnintr 28420 Inner transitivity law for...
tgbtwnexch3 28421 Exchange the first endpoin...
tgbtwnouttr2 28422 Outer transitivity law for...
tgbtwnexch2 28423 Exchange the outer point o...
tgbtwnouttr 28424 Outer transitivity law for...
tgbtwnexch 28425 Outer transitivity law for...
tgtrisegint 28426 A line segment between two...
tglowdim1 28427 Lower dimension axiom for ...
tglowdim1i 28428 Lower dimension axiom for ...
tgldimor 28429 Excluded-middle like state...
tgldim0eq 28430 In dimension zero, any two...
tgldim0itv 28431 In dimension zero, any two...
tgldim0cgr 28432 In dimension zero, any two...
tgbtwndiff 28433 There is always a ` c ` di...
tgdim01 28434 In geometries of dimension...
tgifscgr 28435 Inner five segment congrue...
tgcgrsub 28436 Removing identical parts f...
iscgrg 28439 The congruence property fo...
iscgrgd 28440 The property for two seque...
iscgrglt 28441 The property for two seque...
trgcgrg 28442 The property for two trian...
trgcgr 28443 Triangle congruence. (Con...
ercgrg 28444 The shape congruence relat...
tgcgrxfr 28445 A line segment can be divi...
cgr3id 28446 Reflexivity law for three-...
cgr3simp1 28447 Deduce segment congruence ...
cgr3simp2 28448 Deduce segment congruence ...
cgr3simp3 28449 Deduce segment congruence ...
cgr3swap12 28450 Permutation law for three-...
cgr3swap23 28451 Permutation law for three-...
cgr3swap13 28452 Permutation law for three-...
cgr3rotr 28453 Permutation law for three-...
cgr3rotl 28454 Permutation law for three-...
trgcgrcom 28455 Commutative law for three-...
cgr3tr 28456 Transitivity law for three...
tgbtwnxfr 28457 A condition for extending ...
tgcgr4 28458 Two quadrilaterals to be c...
isismt 28461 Property of being an isome...
ismot 28462 Property of being an isome...
motcgr 28463 Property of a motion: dist...
idmot 28464 The identity is a motion. ...
motf1o 28465 Motions are bijections. (...
motcl 28466 Closure of motions. (Cont...
motco 28467 The composition of two mot...
cnvmot 28468 The converse of a motion i...
motplusg 28469 The operation for motions ...
motgrp 28470 The motions of a geometry ...
motcgrg 28471 Property of a motion: dist...
motcgr3 28472 Property of a motion: dist...
tglng 28473 Lines of a Tarski Geometry...
tglnfn 28474 Lines as functions. (Cont...
tglnunirn 28475 Lines are sets of points. ...
tglnpt 28476 Lines are sets of points. ...
tglngne 28477 It takes two different poi...
tglngval 28478 The line going through poi...
tglnssp 28479 Lines are subset of the ge...
tgellng 28480 Property of lying on the l...
tgcolg 28481 We choose the notation ` (...
btwncolg1 28482 Betweenness implies coline...
btwncolg2 28483 Betweenness implies coline...
btwncolg3 28484 Betweenness implies coline...
colcom 28485 Swapping the points defini...
colrot1 28486 Rotating the points defini...
colrot2 28487 Rotating the points defini...
ncolcom 28488 Swapping non-colinear poin...
ncolrot1 28489 Rotating non-colinear poin...
ncolrot2 28490 Rotating non-colinear poin...
tgdim01ln 28491 In geometries of dimension...
ncoltgdim2 28492 If there are three non-col...
lnxfr 28493 Transfer law for colineari...
lnext 28494 Extend a line with a missi...
tgfscgr 28495 Congruence law for the gen...
lncgr 28496 Congruence rule for lines....
lnid 28497 Identity law for points on...
tgidinside 28498 Law for finding a point in...
tgbtwnconn1lem1 28499 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 28500 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 28501 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 28502 Connectivity law for betwe...
tgbtwnconn2 28503 Another connectivity law f...
tgbtwnconn3 28504 Inner connectivity law for...
tgbtwnconnln3 28505 Derive colinearity from be...
tgbtwnconn22 28506 Double connectivity law fo...
tgbtwnconnln1 28507 Derive colinearity from be...
tgbtwnconnln2 28508 Derive colinearity from be...
legval 28511 Value of the less-than rel...
legov 28512 Value of the less-than rel...
legov2 28513 An equivalent definition o...
legid 28514 Reflexivity of the less-th...
btwnleg 28515 Betweenness implies less-t...
legtrd 28516 Transitivity of the less-t...
legtri3 28517 Equality from the less-tha...
legtrid 28518 Trichotomy law for the les...
leg0 28519 Degenerated (zero-length) ...
legeq 28520 Deduce equality from "less...
legbtwn 28521 Deduce betweenness from "l...
tgcgrsub2 28522 Removing identical parts f...
ltgseg 28523 The set ` E ` denotes the ...
ltgov 28524 Strict "shorter than" geom...
legov3 28525 An equivalent definition o...
legso 28526 The "shorter than" relatio...
ishlg 28529 Rays : Definition 6.1 of ...
hlcomb 28530 The half-line relation com...
hlcomd 28531 The half-line relation com...
hlne1 28532 The half-line relation imp...
hlne2 28533 The half-line relation imp...
hlln 28534 The half-line relation imp...
hleqnid 28535 The endpoint does not belo...
hlid 28536 The half-line relation is ...
hltr 28537 The half-line relation is ...
hlbtwn 28538 Betweenness is a sufficien...
btwnhl1 28539 Deduce half-line from betw...
btwnhl2 28540 Deduce half-line from betw...
btwnhl 28541 Swap betweenness for a hal...
lnhl 28542 Either a point ` C ` on th...
hlcgrex 28543 Construct a point on a hal...
hlcgreulem 28544 Lemma for ~ hlcgreu . (Co...
hlcgreu 28545 The point constructed in ~...
btwnlng1 28546 Betweenness implies coline...
btwnlng2 28547 Betweenness implies coline...
btwnlng3 28548 Betweenness implies coline...
lncom 28549 Swapping the points defini...
lnrot1 28550 Rotating the points defini...
lnrot2 28551 Rotating the points defini...
ncolne1 28552 Non-colinear points are di...
ncolne2 28553 Non-colinear points are di...
tgisline 28554 The property of being a pr...
tglnne 28555 It takes two different poi...
tglndim0 28556 There are no lines in dime...
tgelrnln 28557 The property of being a pr...
tglineeltr 28558 Transitivity law for lines...
tglineelsb2 28559 If ` S ` lies on PQ , then...
tglinerflx1 28560 Reflexivity law for line m...
tglinerflx2 28561 Reflexivity law for line m...
tglinecom 28562 Commutativity law for line...
tglinethru 28563 If ` A ` is a line contain...
tghilberti1 28564 There is a line through an...
tghilberti2 28565 There is at most one line ...
tglinethrueu 28566 There is a unique line goi...
tglnne0 28567 A line ` A ` has at least ...
tglnpt2 28568 Find a second point on a l...
tglineintmo 28569 Two distinct lines interse...
tglineineq 28570 Two distinct lines interse...
tglineneq 28571 Given three non-colinear p...
tglineinteq 28572 Two distinct lines interse...
ncolncol 28573 Deduce non-colinearity fro...
coltr 28574 A transitivity law for col...
coltr3 28575 A transitivity law for col...
colline 28576 Three points are colinear ...
tglowdim2l 28577 Reformulation of the lower...
tglowdim2ln 28578 There is always one point ...
mirreu3 28581 Existential uniqueness of ...
mirval 28582 Value of the point inversi...
mirfv 28583 Value of the point inversi...
mircgr 28584 Property of the image by t...
mirbtwn 28585 Property of the image by t...
ismir 28586 Property of the image by t...
mirf 28587 Point inversion as functio...
mircl 28588 Closure of the point inver...
mirmir 28589 The point inversion functi...
mircom 28590 Variation on ~ mirmir . (...
mirreu 28591 Any point has a unique ant...
mireq 28592 Equality deduction for poi...
mirinv 28593 The only invariant point o...
mirne 28594 Mirror of non-center point...
mircinv 28595 The center point is invari...
mirf1o 28596 The point inversion functi...
miriso 28597 The point inversion functi...
mirbtwni 28598 Point inversion preserves ...
mirbtwnb 28599 Point inversion preserves ...
mircgrs 28600 Point inversion preserves ...
mirmir2 28601 Point inversion of a point...
mirmot 28602 Point investion is a motio...
mirln 28603 If two points are on the s...
mirln2 28604 If a point and its mirror ...
mirconn 28605 Point inversion of connect...
mirhl 28606 If two points ` X ` and ` ...
mirbtwnhl 28607 If the center of the point...
mirhl2 28608 Deduce half-line relation ...
mircgrextend 28609 Link congruence over a pai...
mirtrcgr 28610 Point inversion of one poi...
mirauto 28611 Point inversion preserves ...
miduniq 28612 Uniqueness of the middle p...
miduniq1 28613 Uniqueness of the middle p...
miduniq2 28614 If two point inversions co...
colmid 28615 Colinearity and equidistan...
symquadlem 28616 Lemma of the symetrial qua...
krippenlem 28617 Lemma for ~ krippen . We ...
krippen 28618 Krippenlemma (German for c...
midexlem 28619 Lemma for the existence of...
israg 28624 Property for 3 points A, B...
ragcom 28625 Commutative rule for right...
ragcol 28626 The right angle property i...
ragmir 28627 Right angle property is pr...
mirrag 28628 Right angle is conserved b...
ragtrivb 28629 Trivial right angle. Theo...
ragflat2 28630 Deduce equality from two r...
ragflat 28631 Deduce equality from two r...
ragtriva 28632 Trivial right angle. Theo...
ragflat3 28633 Right angle and colinearit...
ragcgr 28634 Right angle and colinearit...
motrag 28635 Right angles are preserved...
ragncol 28636 Right angle implies non-co...
perpln1 28637 Derive a line from perpend...
perpln2 28638 Derive a line from perpend...
isperp 28639 Property for 2 lines A, B ...
perpcom 28640 The "perpendicular" relati...
perpneq 28641 Two perpendicular lines ar...
isperp2 28642 Property for 2 lines A, B,...
isperp2d 28643 One direction of ~ isperp2...
ragperp 28644 Deduce that two lines are ...
footexALT 28645 Alternative version of ~ f...
footexlem1 28646 Lemma for ~ footex . (Con...
footexlem2 28647 Lemma for ~ footex . (Con...
footex 28648 From a point ` C ` outside...
foot 28649 From a point ` C ` outside...
footne 28650 Uniqueness of the foot poi...
footeq 28651 Uniqueness of the foot poi...
hlperpnel 28652 A point on a half-line whi...
perprag 28653 Deduce a right angle from ...
perpdragALT 28654 Deduce a right angle from ...
perpdrag 28655 Deduce a right angle from ...
colperp 28656 Deduce a perpendicularity ...
colperpexlem1 28657 Lemma for ~ colperp . Fir...
colperpexlem2 28658 Lemma for ~ colperpex . S...
colperpexlem3 28659 Lemma for ~ colperpex . C...
colperpex 28660 In dimension 2 and above, ...
mideulem2 28661 Lemma for ~ opphllem , whi...
opphllem 28662 Lemma 8.24 of [Schwabhause...
mideulem 28663 Lemma for ~ mideu . We ca...
midex 28664 Existence of the midpoint,...
mideu 28665 Existence and uniqueness o...
islnopp 28666 The property for two point...
islnoppd 28667 Deduce that ` A ` and ` B ...
oppne1 28668 Points lying on opposite s...
oppne2 28669 Points lying on opposite s...
oppne3 28670 Points lying on opposite s...
oppcom 28671 Commutativity rule for "op...
opptgdim2 28672 If two points opposite to ...
oppnid 28673 The "opposite to a line" r...
opphllem1 28674 Lemma for ~ opphl . (Cont...
opphllem2 28675 Lemma for ~ opphl . Lemma...
opphllem3 28676 Lemma for ~ opphl : We as...
opphllem4 28677 Lemma for ~ opphl . (Cont...
opphllem5 28678 Second part of Lemma 9.4 o...
opphllem6 28679 First part of Lemma 9.4 of...
oppperpex 28680 Restating ~ colperpex usin...
opphl 28681 If two points ` A ` and ` ...
outpasch 28682 Axiom of Pasch, outer form...
hlpasch 28683 An application of the axio...
ishpg 28686 Value of the half-plane re...
hpgbr 28687 Half-planes : property for...
hpgne1 28688 Points on the open half pl...
hpgne2 28689 Points on the open half pl...
lnopp2hpgb 28690 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 28691 If two points lie on the o...
hpgerlem 28692 Lemma for the proof that t...
hpgid 28693 The half-plane relation is...
hpgcom 28694 The half-plane relation co...
hpgtr 28695 The half-plane relation is...
colopp 28696 Opposite sides of a line f...
colhp 28697 Half-plane relation for co...
hphl 28698 If two points are on the s...
midf 28703 Midpoint as a function. (...
midcl 28704 Closure of the midpoint. ...
ismidb 28705 Property of the midpoint. ...
midbtwn 28706 Betweenness of midpoint. ...
midcgr 28707 Congruence of midpoint. (...
midid 28708 Midpoint of a null segment...
midcom 28709 Commutativity rule for the...
mirmid 28710 Point inversion preserves ...
lmieu 28711 Uniqueness of the line mir...
lmif 28712 Line mirror as a function....
lmicl 28713 Closure of the line mirror...
islmib 28714 Property of the line mirro...
lmicom 28715 The line mirroring functio...
lmilmi 28716 Line mirroring is an invol...
lmireu 28717 Any point has a unique ant...
lmieq 28718 Equality deduction for lin...
lmiinv 28719 The invariants of the line...
lmicinv 28720 The mirroring line is an i...
lmimid 28721 If we have a right angle, ...
lmif1o 28722 The line mirroring functio...
lmiisolem 28723 Lemma for ~ lmiiso . (Con...
lmiiso 28724 The line mirroring functio...
lmimot 28725 Line mirroring is a motion...
hypcgrlem1 28726 Lemma for ~ hypcgr , case ...
hypcgrlem2 28727 Lemma for ~ hypcgr , case ...
hypcgr 28728 If the catheti of two righ...
lmiopp 28729 Line mirroring produces po...
lnperpex 28730 Existence of a perpendicul...
trgcopy 28731 Triangle construction: a c...
trgcopyeulem 28732 Lemma for ~ trgcopyeu . (...
trgcopyeu 28733 Triangle construction: a c...
iscgra 28736 Property for two angles AB...
iscgra1 28737 A special version of ~ isc...
iscgrad 28738 Sufficient conditions for ...
cgrane1 28739 Angles imply inequality. ...
cgrane2 28740 Angles imply inequality. ...
cgrane3 28741 Angles imply inequality. ...
cgrane4 28742 Angles imply inequality. ...
cgrahl1 28743 Angle congruence is indepe...
cgrahl2 28744 Angle congruence is indepe...
cgracgr 28745 First direction of proposi...
cgraid 28746 Angle congruence is reflex...
cgraswap 28747 Swap rays in a congruence ...
cgrcgra 28748 Triangle congruence implie...
cgracom 28749 Angle congruence commutes....
cgratr 28750 Angle congruence is transi...
flatcgra 28751 Flat angles are congruent....
cgraswaplr 28752 Swap both side of angle co...
cgrabtwn 28753 Angle congruence preserves...
cgrahl 28754 Angle congruence preserves...
cgracol 28755 Angle congruence preserves...
cgrancol 28756 Angle congruence preserves...
dfcgra2 28757 This is the full statement...
sacgr 28758 Supplementary angles of co...
oacgr 28759 Vertical angle theorem. V...
acopy 28760 Angle construction. Theor...
acopyeu 28761 Angle construction. Theor...
isinag 28765 Property for point ` X ` t...
isinagd 28766 Sufficient conditions for ...
inagflat 28767 Any point lies in a flat a...
inagswap 28768 Swap the order of the half...
inagne1 28769 Deduce inequality from the...
inagne2 28770 Deduce inequality from the...
inagne3 28771 Deduce inequality from the...
inaghl 28772 The "point lie in angle" r...
isleag 28774 Geometrical "less than" pr...
isleagd 28775 Sufficient condition for "...
leagne1 28776 Deduce inequality from the...
leagne2 28777 Deduce inequality from the...
leagne3 28778 Deduce inequality from the...
leagne4 28779 Deduce inequality from the...
cgrg3col4 28780 Lemma 11.28 of [Schwabhaus...
tgsas1 28781 First congruence theorem: ...
tgsas 28782 First congruence theorem: ...
tgsas2 28783 First congruence theorem: ...
tgsas3 28784 First congruence theorem: ...
tgasa1 28785 Second congruence theorem:...
tgasa 28786 Second congruence theorem:...
tgsss1 28787 Third congruence theorem: ...
tgsss2 28788 Third congruence theorem: ...
tgsss3 28789 Third congruence theorem: ...
dfcgrg2 28790 Congruence for two triangl...
isoas 28791 Congruence theorem for iso...
iseqlg 28794 Property of a triangle bei...
iseqlgd 28795 Condition for a triangle t...
f1otrgds 28796 Convenient lemma for ~ f1o...
f1otrgitv 28797 Convenient lemma for ~ f1o...
f1otrg 28798 A bijection between bases ...
f1otrge 28799 A bijection between bases ...
ttgval 28802 Define a function to augme...
ttglem 28803 Lemma for ~ ttgbas , ~ ttg...
ttgbas 28804 The base set of a subcompl...
ttgplusg 28805 The addition operation of ...
ttgsub 28806 The subtraction operation ...
ttgvsca 28807 The scalar product of a su...
ttgds 28808 The metric of a subcomplex...
ttgitvval 28809 Betweenness for a subcompl...
ttgelitv 28810 Betweenness for a subcompl...
ttgbtwnid 28811 Any subcomplex module equi...
ttgcontlem1 28812 Lemma for % ttgcont . (Co...
xmstrkgc 28813 Any metric space fulfills ...
cchhllem 28814 Lemma for chlbas and chlvs...
elee 28821 Membership in a Euclidean ...
mptelee 28822 A condition for a mapping ...
eleenn 28823 If ` A ` is in ` ( EE `` N...
eleei 28824 The forward direction of ~...
eedimeq 28825 A point belongs to at most...
brbtwn 28826 The binary relation form o...
brcgr 28827 The binary relation form o...
fveere 28828 The function value of a po...
fveecn 28829 The function value of a po...
eqeefv 28830 Two points are equal iff t...
eqeelen 28831 Two points are equal iff t...
brbtwn2 28832 Alternate characterization...
colinearalglem1 28833 Lemma for ~ colinearalg . ...
colinearalglem2 28834 Lemma for ~ colinearalg . ...
colinearalglem3 28835 Lemma for ~ colinearalg . ...
colinearalglem4 28836 Lemma for ~ colinearalg . ...
colinearalg 28837 An algebraic characterizat...
eleesub 28838 Membership of a subtractio...
eleesubd 28839 Membership of a subtractio...
axdimuniq 28840 The unique dimension axiom...
axcgrrflx 28841 ` A ` is as far from ` B `...
axcgrtr 28842 Congruence is transitive. ...
axcgrid 28843 If there is no distance be...
axsegconlem1 28844 Lemma for ~ axsegcon . Ha...
axsegconlem2 28845 Lemma for ~ axsegcon . Sh...
axsegconlem3 28846 Lemma for ~ axsegcon . Sh...
axsegconlem4 28847 Lemma for ~ axsegcon . Sh...
axsegconlem5 28848 Lemma for ~ axsegcon . Sh...
axsegconlem6 28849 Lemma for ~ axsegcon . Sh...
axsegconlem7 28850 Lemma for ~ axsegcon . Sh...
axsegconlem8 28851 Lemma for ~ axsegcon . Sh...
axsegconlem9 28852 Lemma for ~ axsegcon . Sh...
axsegconlem10 28853 Lemma for ~ axsegcon . Sh...
axsegcon 28854 Any segment ` A B ` can be...
ax5seglem1 28855 Lemma for ~ ax5seg . Rexp...
ax5seglem2 28856 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 28857 Lemma for ~ ax5seg . (Con...
ax5seglem3 28858 Lemma for ~ ax5seg . Comb...
ax5seglem4 28859 Lemma for ~ ax5seg . Give...
ax5seglem5 28860 Lemma for ~ ax5seg . If `...
ax5seglem6 28861 Lemma for ~ ax5seg . Give...
ax5seglem7 28862 Lemma for ~ ax5seg . An a...
ax5seglem8 28863 Lemma for ~ ax5seg . Use ...
ax5seglem9 28864 Lemma for ~ ax5seg . Take...
ax5seg 28865 The five segment axiom. T...
axbtwnid 28866 Points are indivisible. T...
axpaschlem 28867 Lemma for ~ axpasch . Set...
axpasch 28868 The inner Pasch axiom. Ta...
axlowdimlem1 28869 Lemma for ~ axlowdim . Es...
axlowdimlem2 28870 Lemma for ~ axlowdim . Sh...
axlowdimlem3 28871 Lemma for ~ axlowdim . Se...
axlowdimlem4 28872 Lemma for ~ axlowdim . Se...
axlowdimlem5 28873 Lemma for ~ axlowdim . Sh...
axlowdimlem6 28874 Lemma for ~ axlowdim . Sh...
axlowdimlem7 28875 Lemma for ~ axlowdim . Se...
axlowdimlem8 28876 Lemma for ~ axlowdim . Ca...
axlowdimlem9 28877 Lemma for ~ axlowdim . Ca...
axlowdimlem10 28878 Lemma for ~ axlowdim . Se...
axlowdimlem11 28879 Lemma for ~ axlowdim . Ca...
axlowdimlem12 28880 Lemma for ~ axlowdim . Ca...
axlowdimlem13 28881 Lemma for ~ axlowdim . Es...
axlowdimlem14 28882 Lemma for ~ axlowdim . Ta...
axlowdimlem15 28883 Lemma for ~ axlowdim . Se...
axlowdimlem16 28884 Lemma for ~ axlowdim . Se...
axlowdimlem17 28885 Lemma for ~ axlowdim . Es...
axlowdim1 28886 The lower dimension axiom ...
axlowdim2 28887 The lower two-dimensional ...
axlowdim 28888 The general lower dimensio...
axeuclidlem 28889 Lemma for ~ axeuclid . Ha...
axeuclid 28890 Euclid's axiom. Take an a...
axcontlem1 28891 Lemma for ~ axcont . Chan...
axcontlem2 28892 Lemma for ~ axcont . The ...
axcontlem3 28893 Lemma for ~ axcont . Give...
axcontlem4 28894 Lemma for ~ axcont . Give...
axcontlem5 28895 Lemma for ~ axcont . Comp...
axcontlem6 28896 Lemma for ~ axcont . Stat...
axcontlem7 28897 Lemma for ~ axcont . Give...
axcontlem8 28898 Lemma for ~ axcont . A po...
axcontlem9 28899 Lemma for ~ axcont . Give...
axcontlem10 28900 Lemma for ~ axcont . Give...
axcontlem11 28901 Lemma for ~ axcont . Elim...
axcontlem12 28902 Lemma for ~ axcont . Elim...
axcont 28903 The axiom of continuity. ...
eengv 28906 The value of the Euclidean...
eengstr 28907 The Euclidean geometry as ...
eengbas 28908 The Base of the Euclidean ...
ebtwntg 28909 The betweenness relation u...
ecgrtg 28910 The congruence relation us...
elntg 28911 The line definition in the...
elntg2 28912 The line definition in the...
eengtrkg 28913 The geometry structure for...
eengtrkge 28914 The geometry structure for...
edgfid 28917 Utility theorem: index-ind...
edgfndx 28918 Index value of the ~ df-ed...
edgfndxnn 28919 The index value of the edg...
edgfndxid 28920 The value of the edge func...
basendxltedgfndx 28921 The index value of the ` B...
basendxnedgfndx 28922 The slots ` Base ` and ` ....
vtxval 28927 The set of vertices of a g...
iedgval 28928 The set of indexed edges o...
1vgrex 28929 A graph with at least one ...
opvtxval 28930 The set of vertices of a g...
opvtxfv 28931 The set of vertices of a g...
opvtxov 28932 The set of vertices of a g...
opiedgval 28933 The set of indexed edges o...
opiedgfv 28934 The set of indexed edges o...
opiedgov 28935 The set of indexed edges o...
opvtxfvi 28936 The set of vertices of a g...
opiedgfvi 28937 The set of indexed edges o...
funvtxdmge2val 28938 The set of vertices of an ...
funiedgdmge2val 28939 The set of indexed edges o...
funvtxdm2val 28940 The set of vertices of an ...
funiedgdm2val 28941 The set of indexed edges o...
funvtxval0 28942 The set of vertices of an ...
basvtxval 28943 The set of vertices of a g...
edgfiedgval 28944 The set of indexed edges o...
funvtxval 28945 The set of vertices of a g...
funiedgval 28946 The set of indexed edges o...
structvtxvallem 28947 Lemma for ~ structvtxval a...
structvtxval 28948 The set of vertices of an ...
structiedg0val 28949 The set of indexed edges o...
structgrssvtxlem 28950 Lemma for ~ structgrssvtx ...
structgrssvtx 28951 The set of vertices of a g...
structgrssiedg 28952 The set of indexed edges o...
struct2grstr 28953 A graph represented as an ...
struct2grvtx 28954 The set of vertices of a g...
struct2griedg 28955 The set of indexed edges o...
graop 28956 Any representation of a gr...
grastruct 28957 Any representation of a gr...
gropd 28958 If any representation of a...
grstructd 28959 If any representation of a...
gropeld 28960 If any representation of a...
grstructeld 28961 If any representation of a...
setsvtx 28962 The vertices of a structur...
setsiedg 28963 The (indexed) edges of a s...
snstrvtxval 28964 The set of vertices of a g...
snstriedgval 28965 The set of indexed edges o...
vtxval0 28966 Degenerated case 1 for ver...
iedgval0 28967 Degenerated case 1 for edg...
vtxvalsnop 28968 Degenerated case 2 for ver...
iedgvalsnop 28969 Degenerated case 2 for edg...
vtxval3sn 28970 Degenerated case 3 for ver...
iedgval3sn 28971 Degenerated case 3 for edg...
vtxvalprc 28972 Degenerated case 4 for ver...
iedgvalprc 28973 Degenerated case 4 for edg...
edgval 28976 The edges of a graph. (Co...
iedgedg 28977 An indexed edge is an edge...
edgopval 28978 The edges of a graph repre...
edgov 28979 The edges of a graph repre...
edgstruct 28980 The edges of a graph repre...
edgiedgb 28981 A set is an edge iff it is...
edg0iedg0 28982 There is no edge in a grap...
isuhgr 28987 The predicate "is an undir...
isushgr 28988 The predicate "is an undir...
uhgrf 28989 The edge function of an un...
ushgrf 28990 The edge function of an un...
uhgrss 28991 An edge is a subset of ver...
uhgreq12g 28992 If two sets have the same ...
uhgrfun 28993 The edge function of an un...
uhgrn0 28994 An edge is a nonempty subs...
lpvtx 28995 The endpoints of a loop (w...
ushgruhgr 28996 An undirected simple hyper...
isuhgrop 28997 The property of being an u...
uhgr0e 28998 The empty graph, with vert...
uhgr0vb 28999 The null graph, with no ve...
uhgr0 29000 The null graph represented...
uhgrun 29001 The union ` U ` of two (un...
uhgrunop 29002 The union of two (undirect...
ushgrun 29003 The union ` U ` of two (un...
ushgrunop 29004 The union of two (undirect...
uhgrstrrepe 29005 Replacing (or adding) the ...
incistruhgr 29006 An _incidence structure_ `...
isupgr 29011 The property of being an u...
wrdupgr 29012 The property of being an u...
upgrf 29013 The edge function of an un...
upgrfn 29014 The edge function of an un...
upgrss 29015 An edge is a subset of ver...
upgrn0 29016 An edge is a nonempty subs...
upgrle 29017 An edge of an undirected p...
upgrfi 29018 An edge is a finite subset...
upgrex 29019 An edge is an unordered pa...
upgrbi 29020 Show that an unordered pai...
upgrop 29021 A pseudograph represented ...
isumgr 29022 The property of being an u...
isumgrs 29023 The simplified property of...
wrdumgr 29024 The property of being an u...
umgrf 29025 The edge function of an un...
umgrfn 29026 The edge function of an un...
umgredg2 29027 An edge of a multigraph ha...
umgrbi 29028 Show that an unordered pai...
upgruhgr 29029 An undirected pseudograph ...
umgrupgr 29030 An undirected multigraph i...
umgruhgr 29031 An undirected multigraph i...
upgrle2 29032 An edge of an undirected p...
umgrnloopv 29033 In a multigraph, there is ...
umgredgprv 29034 In a multigraph, an edge i...
umgrnloop 29035 In a multigraph, there is ...
umgrnloop0 29036 A multigraph has no loops....
umgr0e 29037 The empty graph, with vert...
upgr0e 29038 The empty graph, with vert...
upgr1elem 29039 Lemma for ~ upgr1e and ~ u...
upgr1e 29040 A pseudograph with one edg...
upgr0eop 29041 The empty graph, with vert...
upgr1eop 29042 A pseudograph with one edg...
upgr0eopALT 29043 Alternate proof of ~ upgr0...
upgr1eopALT 29044 Alternate proof of ~ upgr1...
upgrun 29045 The union ` U ` of two pse...
upgrunop 29046 The union of two pseudogra...
umgrun 29047 The union ` U ` of two mul...
umgrunop 29048 The union of two multigrap...
umgrislfupgrlem 29049 Lemma for ~ umgrislfupgr a...
umgrislfupgr 29050 A multigraph is a loop-fre...
lfgredgge2 29051 An edge of a loop-free gra...
lfgrnloop 29052 A loop-free graph has no l...
uhgredgiedgb 29053 In a hypergraph, a set is ...
uhgriedg0edg0 29054 A hypergraph has no edges ...
uhgredgn0 29055 An edge of a hypergraph is...
edguhgr 29056 An edge of a hypergraph is...
uhgredgrnv 29057 An edge of a hypergraph co...
uhgredgss 29058 The set of edges of a hype...
upgredgss 29059 The set of edges of a pseu...
umgredgss 29060 The set of edges of a mult...
edgupgr 29061 Properties of an edge of a...
edgumgr 29062 Properties of an edge of a...
uhgrvtxedgiedgb 29063 In a hypergraph, a vertex ...
upgredg 29064 For each edge in a pseudog...
umgredg 29065 For each edge in a multigr...
upgrpredgv 29066 An edge of a pseudograph a...
umgrpredgv 29067 An edge of a multigraph al...
upgredg2vtx 29068 For a vertex incident to a...
upgredgpr 29069 If a proper pair (of verti...
edglnl 29070 The edges incident with a ...
numedglnl 29071 The number of edges incide...
umgredgne 29072 An edge of a multigraph al...
umgrnloop2 29073 A multigraph has no loops....
umgredgnlp 29074 An edge of a multigraph is...
isuspgr 29079 The property of being a si...
isusgr 29080 The property of being a si...
uspgrf 29081 The edge function of a sim...
usgrf 29082 The edge function of a sim...
isusgrs 29083 The property of being a si...
usgrfs 29084 The edge function of a sim...
usgrfun 29085 The edge function of a sim...
usgredgss 29086 The set of edges of a simp...
edgusgr 29087 An edge of a simple graph ...
isuspgrop 29088 The property of being an u...
isusgrop 29089 The property of being an u...
usgrop 29090 A simple graph represented...
isausgr 29091 The property of an unorder...
ausgrusgrb 29092 The equivalence of the def...
usgrausgri 29093 A simple graph represented...
ausgrumgri 29094 If an alternatively define...
ausgrusgri 29095 The equivalence of the def...
usgrausgrb 29096 The equivalence of the def...
usgredgop 29097 An edge of a simple graph ...
usgrf1o 29098 The edge function of a sim...
usgrf1 29099 The edge function of a sim...
uspgrf1oedg 29100 The edge function of a sim...
usgrss 29101 An edge is a subset of ver...
uspgredgiedg 29102 In a simple pseudograph, f...
uspgriedgedg 29103 In a simple pseudograph, f...
uspgrushgr 29104 A simple pseudograph is an...
uspgrupgr 29105 A simple pseudograph is an...
uspgrupgrushgr 29106 A graph is a simple pseudo...
usgruspgr 29107 A simple graph is a simple...
usgrumgr 29108 A simple graph is an undir...
usgrumgruspgr 29109 A graph is a simple graph ...
usgruspgrb 29110 A class is a simple graph ...
uspgruhgr 29111 An undirected simple pseud...
usgrupgr 29112 A simple graph is an undir...
usgruhgr 29113 A simple graph is an undir...
usgrislfuspgr 29114 A simple graph is a loop-f...
uspgrun 29115 The union ` U ` of two sim...
uspgrunop 29116 The union of two simple ps...
usgrun 29117 The union ` U ` of two sim...
usgrunop 29118 The union of two simple gr...
usgredg2 29119 The value of the "edge fun...
usgredg2ALT 29120 Alternate proof of ~ usgre...
usgredgprv 29121 In a simple graph, an edge...
usgredgprvALT 29122 Alternate proof of ~ usgre...
usgredgppr 29123 An edge of a simple graph ...
usgrpredgv 29124 An edge of a simple graph ...
edgssv2 29125 An edge of a simple graph ...
usgredg 29126 For each edge in a simple ...
usgrnloopv 29127 In a simple graph, there i...
usgrnloopvALT 29128 Alternate proof of ~ usgrn...
usgrnloop 29129 In a simple graph, there i...
usgrnloopALT 29130 Alternate proof of ~ usgrn...
usgrnloop0 29131 A simple graph has no loop...
usgrnloop0ALT 29132 Alternate proof of ~ usgrn...
usgredgne 29133 An edge of a simple graph ...
usgrf1oedg 29134 The edge function of a sim...
uhgr2edg 29135 If a vertex is adjacent to...
umgr2edg 29136 If a vertex is adjacent to...
usgr2edg 29137 If a vertex is adjacent to...
umgr2edg1 29138 If a vertex is adjacent to...
usgr2edg1 29139 If a vertex is adjacent to...
umgrvad2edg 29140 If a vertex is adjacent to...
umgr2edgneu 29141 If a vertex is adjacent to...
usgrsizedg 29142 In a simple graph, the siz...
usgredg3 29143 The value of the "edge fun...
usgredg4 29144 For a vertex incident to a...
usgredgreu 29145 For a vertex incident to a...
usgredg2vtx 29146 For a vertex incident to a...
uspgredg2vtxeu 29147 For a vertex incident to a...
usgredg2vtxeu 29148 For a vertex incident to a...
usgredg2vtxeuALT 29149 Alternate proof of ~ usgre...
uspgredg2vlem 29150 Lemma for ~ uspgredg2v . ...
uspgredg2v 29151 In a simple pseudograph, t...
usgredg2vlem1 29152 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 29153 Lemma 2 for ~ usgredg2v . ...
usgredg2v 29154 In a simple graph, the map...
usgriedgleord 29155 Alternate version of ~ usg...
ushgredgedg 29156 In a simple hypergraph the...
usgredgedg 29157 In a simple graph there is...
ushgredgedgloop 29158 In a simple hypergraph the...
uspgredgleord 29159 In a simple pseudograph th...
usgredgleord 29160 In a simple graph the numb...
usgredgleordALT 29161 Alternate proof for ~ usgr...
usgrstrrepe 29162 Replacing (or adding) the ...
usgr0e 29163 The empty graph, with vert...
usgr0vb 29164 The null graph, with no ve...
uhgr0v0e 29165 The null graph, with no ve...
uhgr0vsize0 29166 The size of a hypergraph w...
uhgr0edgfi 29167 A graph of order 0 (i.e. w...
usgr0v 29168 The null graph, with no ve...
uhgr0vusgr 29169 The null graph, with no ve...
usgr0 29170 The null graph represented...
uspgr1e 29171 A simple pseudograph with ...
usgr1e 29172 A simple graph with one ed...
usgr0eop 29173 The empty graph, with vert...
uspgr1eop 29174 A simple pseudograph with ...
uspgr1ewop 29175 A simple pseudograph with ...
uspgr1v1eop 29176 A simple pseudograph with ...
usgr1eop 29177 A simple graph with (at le...
uspgr2v1e2w 29178 A simple pseudograph with ...
usgr2v1e2w 29179 A simple graph with two ve...
edg0usgr 29180 A class without edges is a...
lfuhgr1v0e 29181 A loop-free hypergraph wit...
usgr1vr 29182 A simple graph with one ve...
usgr1v 29183 A class with one (or no) v...
usgr1v0edg 29184 A class with one (or no) v...
usgrexmpldifpr 29185 Lemma for ~ usgrexmpledg :...
usgrexmplef 29186 Lemma for ~ usgrexmpl . (...
usgrexmpllem 29187 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 29188 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 29189 The edges ` { 0 , 1 } , { ...
usgrexmpl 29190 ` G ` is a simple graph of...
griedg0prc 29191 The class of empty graphs ...
griedg0ssusgr 29192 The class of all simple gr...
usgrprc 29193 The class of simple graphs...
relsubgr 29196 The class of the subgraph ...
subgrv 29197 If a class is a subgraph o...
issubgr 29198 The property of a set to b...
issubgr2 29199 The property of a set to b...
subgrprop 29200 The properties of a subgra...
subgrprop2 29201 The properties of a subgra...
uhgrissubgr 29202 The property of a hypergra...
subgrprop3 29203 The properties of a subgra...
egrsubgr 29204 An empty graph consisting ...
0grsubgr 29205 The null graph (represente...
0uhgrsubgr 29206 The null graph (as hypergr...
uhgrsubgrself 29207 A hypergraph is a subgraph...
subgrfun 29208 The edge function of a sub...
subgruhgrfun 29209 The edge function of a sub...
subgreldmiedg 29210 An element of the domain o...
subgruhgredgd 29211 An edge of a subgraph of a...
subumgredg2 29212 An edge of a subgraph of a...
subuhgr 29213 A subgraph of a hypergraph...
subupgr 29214 A subgraph of a pseudograp...
subumgr 29215 A subgraph of a multigraph...
subusgr 29216 A subgraph of a simple gra...
uhgrspansubgrlem 29217 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 29218 A spanning subgraph ` S ` ...
uhgrspan 29219 A spanning subgraph ` S ` ...
upgrspan 29220 A spanning subgraph ` S ` ...
umgrspan 29221 A spanning subgraph ` S ` ...
usgrspan 29222 A spanning subgraph ` S ` ...
uhgrspanop 29223 A spanning subgraph of a h...
upgrspanop 29224 A spanning subgraph of a p...
umgrspanop 29225 A spanning subgraph of a m...
usgrspanop 29226 A spanning subgraph of a s...
uhgrspan1lem1 29227 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 29228 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 29229 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 29230 The induced subgraph ` S `...
upgrreslem 29231 Lemma for ~ upgrres . (Co...
umgrreslem 29232 Lemma for ~ umgrres and ~ ...
upgrres 29233 A subgraph obtained by rem...
umgrres 29234 A subgraph obtained by rem...
usgrres 29235 A subgraph obtained by rem...
upgrres1lem1 29236 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 29237 Lemma for ~ umgrres1 . (C...
upgrres1lem2 29238 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 29239 Lemma 3 for ~ upgrres1 . ...
upgrres1 29240 A pseudograph obtained by ...
umgrres1 29241 A multigraph obtained by r...
usgrres1 29242 Restricting a simple graph...
isfusgr 29245 The property of being a fi...
fusgrvtxfi 29246 A finite simple graph has ...
isfusgrf1 29247 The property of being a fi...
isfusgrcl 29248 The property of being a fi...
fusgrusgr 29249 A finite simple graph is a...
opfusgr 29250 A finite simple graph repr...
usgredgffibi 29251 The number of edges in a s...
fusgredgfi 29252 In a finite simple graph t...
usgr1v0e 29253 The size of a (finite) sim...
usgrfilem 29254 In a finite simple graph, ...
fusgrfisbase 29255 Induction base for ~ fusgr...
fusgrfisstep 29256 Induction step in ~ fusgrf...
fusgrfis 29257 A finite simple graph is o...
fusgrfupgrfs 29258 A finite simple graph is a...
nbgrprc0 29261 The set of neighbors is em...
nbgrcl 29262 If a class ` X ` has at le...
nbgrval 29263 The set of neighbors of a ...
dfnbgr2 29264 Alternate definition of th...
dfnbgr3 29265 Alternate definition of th...
nbgrnvtx0 29266 If a class ` X ` is not a ...
nbgrel 29267 Characterization of a neig...
nbgrisvtx 29268 Every neighbor ` N ` of a ...
nbgrssvtx 29269 The neighbors of a vertex ...
nbuhgr 29270 The set of neighbors of a ...
nbupgr 29271 The set of neighbors of a ...
nbupgrel 29272 A neighbor of a vertex in ...
nbumgrvtx 29273 The set of neighbors of a ...
nbumgr 29274 The set of neighbors of an...
nbusgrvtx 29275 The set of neighbors of a ...
nbusgr 29276 The set of neighbors of an...
nbgr2vtx1edg 29277 If a graph has two vertice...
nbuhgr2vtx1edgblem 29278 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 29279 If a hypergraph has two ve...
nbusgreledg 29280 A class/vertex is a neighb...
uhgrnbgr0nb 29281 A vertex which is not endp...
nbgr0vtx 29282 In a null graph (with no v...
nbgr0edglem 29283 Lemma for ~ nbgr0edg and ~...
nbgr0edg 29284 In an empty graph (with no...
nbgr1vtx 29285 In a graph with one vertex...
nbgrnself 29286 A vertex in a graph is not...
nbgrnself2 29287 A class ` X ` is not a nei...
nbgrssovtx 29288 The neighbors of a vertex ...
nbgrssvwo2 29289 The neighbors of a vertex ...
nbgrsym 29290 In a graph, the neighborho...
nbupgrres 29291 The neighborhood of a vert...
usgrnbcnvfv 29292 Applying the edge function...
nbusgredgeu 29293 For each neighbor of a ver...
edgnbusgreu 29294 For each edge incident to ...
nbusgredgeu0 29295 For each neighbor of a ver...
nbusgrf1o0 29296 The mapping of neighbors o...
nbusgrf1o1 29297 The set of neighbors of a ...
nbusgrf1o 29298 The set of neighbors of a ...
nbedgusgr 29299 The number of neighbors of...
edgusgrnbfin 29300 The number of neighbors of...
nbusgrfi 29301 The class of neighbors of ...
nbfiusgrfi 29302 The class of neighbors of ...
hashnbusgrnn0 29303 The number of neighbors of...
nbfusgrlevtxm1 29304 The number of neighbors of...
nbfusgrlevtxm2 29305 If there is a vertex which...
nbusgrvtxm1 29306 If the number of neighbors...
nb3grprlem1 29307 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 29308 Lemma 2 for ~ nb3grpr . (...
nb3grpr 29309 The neighbors of a vertex ...
nb3grpr2 29310 The neighbors of a vertex ...
nb3gr2nb 29311 If the neighbors of two ve...
uvtxval 29314 The set of all universal v...
uvtxel 29315 A universal vertex, i.e. a...
uvtxisvtx 29316 A universal vertex is a ve...
uvtxssvtx 29317 The set of the universal v...
vtxnbuvtx 29318 A universal vertex has all...
uvtxnbgrss 29319 A universal vertex has all...
uvtxnbgrvtx 29320 A universal vertex is neig...
uvtx0 29321 There is no universal vert...
isuvtx 29322 The set of all universal v...
uvtxel1 29323 Characterization of a univ...
uvtx01vtx 29324 If a graph/class has no ed...
uvtx2vtx1edg 29325 If a graph has two vertice...
uvtx2vtx1edgb 29326 If a hypergraph has two ve...
uvtxnbgr 29327 A universal vertex has all...
uvtxnbgrb 29328 A vertex is universal iff ...
uvtxusgr 29329 The set of all universal v...
uvtxusgrel 29330 A universal vertex, i.e. a...
uvtxnm1nbgr 29331 A universal vertex has ` n...
nbusgrvtxm1uvtx 29332 If the number of neighbors...
uvtxnbvtxm1 29333 A universal vertex has ` n...
nbupgruvtxres 29334 The neighborhood of a univ...
uvtxupgrres 29335 A universal vertex is univ...
cplgruvtxb 29340 A graph ` G ` is complete ...
prcliscplgr 29341 A proper class (representi...
iscplgr 29342 The property of being a co...
iscplgrnb 29343 A graph is complete iff al...
iscplgredg 29344 A graph ` G ` is complete ...
iscusgr 29345 The property of being a co...
cusgrusgr 29346 A complete simple graph is...
cusgrcplgr 29347 A complete simple graph is...
iscusgrvtx 29348 A simple graph is complete...
cusgruvtxb 29349 A simple graph is complete...
iscusgredg 29350 A simple graph is complete...
cusgredg 29351 In a complete simple graph...
cplgr0 29352 The null graph (with no ve...
cusgr0 29353 The null graph (with no ve...
cplgr0v 29354 A null graph (with no vert...
cusgr0v 29355 A graph with no vertices a...
cplgr1vlem 29356 Lemma for ~ cplgr1v and ~ ...
cplgr1v 29357 A graph with one vertex is...
cusgr1v 29358 A graph with one vertex an...
cplgr2v 29359 An undirected hypergraph w...
cplgr2vpr 29360 An undirected hypergraph w...
nbcplgr 29361 In a complete graph, each ...
cplgr3v 29362 A pseudograph with three (...
cusgr3vnbpr 29363 The neighbors of a vertex ...
cplgrop 29364 A complete graph represent...
cusgrop 29365 A complete simple graph re...
cusgrexilem1 29366 Lemma 1 for ~ cusgrexi . ...
usgrexilem 29367 Lemma for ~ usgrexi . (Co...
usgrexi 29368 An arbitrary set regarded ...
cusgrexilem2 29369 Lemma 2 for ~ cusgrexi . ...
cusgrexi 29370 An arbitrary set ` V ` reg...
cusgrexg 29371 For each set there is a se...
structtousgr 29372 Any (extensible) structure...
structtocusgr 29373 Any (extensible) structure...
cffldtocusgr 29374 The field of complex numbe...
cffldtocusgrOLD 29375 Obsolete version of ~ cffl...
cusgrres 29376 Restricting a complete sim...
cusgrsizeindb0 29377 Base case of the induction...
cusgrsizeindb1 29378 Base case of the induction...
cusgrsizeindslem 29379 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 29380 Part 1 of induction step i...
cusgrsize2inds 29381 Induction step in ~ cusgrs...
cusgrsize 29382 The size of a finite compl...
cusgrfilem1 29383 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 29384 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 29385 Lemma 3 for ~ cusgrfi . (...
cusgrfi 29386 If the size of a complete ...
usgredgsscusgredg 29387 A simple graph is a subgra...
usgrsscusgr 29388 A simple graph is a subgra...
sizusglecusglem1 29389 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 29390 Lemma 2 for ~ sizusglecusg...
sizusglecusg 29391 The size of a simple graph...
fusgrmaxsize 29392 The maximum size of a fini...
vtxdgfval 29395 The value of the vertex de...
vtxdgval 29396 The degree of a vertex. (...
vtxdgfival 29397 The degree of a vertex for...
vtxdgop 29398 The vertex degree expresse...
vtxdgf 29399 The vertex degree function...
vtxdgelxnn0 29400 The degree of a vertex is ...
vtxdg0v 29401 The degree of a vertex in ...
vtxdg0e 29402 The degree of a vertex in ...
vtxdgfisnn0 29403 The degree of a vertex in ...
vtxdgfisf 29404 The vertex degree function...
vtxdeqd 29405 Equality theorem for the v...
vtxduhgr0e 29406 The degree of a vertex in ...
vtxdlfuhgr1v 29407 The degree of the vertex i...
vdumgr0 29408 A vertex in a multigraph h...
vtxdun 29409 The degree of a vertex in ...
vtxdfiun 29410 The degree of a vertex in ...
vtxduhgrun 29411 The degree of a vertex in ...
vtxduhgrfiun 29412 The degree of a vertex in ...
vtxdlfgrval 29413 The value of the vertex de...
vtxdumgrval 29414 The value of the vertex de...
vtxdusgrval 29415 The value of the vertex de...
vtxd0nedgb 29416 A vertex has degree 0 iff ...
vtxdushgrfvedglem 29417 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 29418 The value of the vertex de...
vtxdusgrfvedg 29419 The value of the vertex de...
vtxduhgr0nedg 29420 If a vertex in a hypergrap...
vtxdumgr0nedg 29421 If a vertex in a multigrap...
vtxduhgr0edgnel 29422 A vertex in a hypergraph h...
vtxdusgr0edgnel 29423 A vertex in a simple graph...
vtxdusgr0edgnelALT 29424 Alternate proof of ~ vtxdu...
vtxdgfusgrf 29425 The vertex degree function...
vtxdgfusgr 29426 In a finite simple graph, ...
fusgrn0degnn0 29427 In a nonempty, finite grap...
1loopgruspgr 29428 A graph with one edge whic...
1loopgredg 29429 The set of edges in a grap...
1loopgrnb0 29430 In a graph (simple pseudog...
1loopgrvd2 29431 The vertex degree of a one...
1loopgrvd0 29432 The vertex degree of a one...
1hevtxdg0 29433 The vertex degree of verte...
1hevtxdg1 29434 The vertex degree of verte...
1hegrvtxdg1 29435 The vertex degree of a gra...
1hegrvtxdg1r 29436 The vertex degree of a gra...
1egrvtxdg1 29437 The vertex degree of a one...
1egrvtxdg1r 29438 The vertex degree of a one...
1egrvtxdg0 29439 The vertex degree of a one...
p1evtxdeqlem 29440 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 29441 If an edge ` E ` which doe...
p1evtxdp1 29442 If an edge ` E ` (not bein...
uspgrloopvtx 29443 The set of vertices in a g...
uspgrloopvtxel 29444 A vertex in a graph (simpl...
uspgrloopiedg 29445 The set of edges in a grap...
uspgrloopedg 29446 The set of edges in a grap...
uspgrloopnb0 29447 In a graph (simple pseudog...
uspgrloopvd2 29448 The vertex degree of a one...
umgr2v2evtx 29449 The set of vertices in a m...
umgr2v2evtxel 29450 A vertex in a multigraph w...
umgr2v2eiedg 29451 The edge function in a mul...
umgr2v2eedg 29452 The set of edges in a mult...
umgr2v2e 29453 A multigraph with two edge...
umgr2v2enb1 29454 In a multigraph with two e...
umgr2v2evd2 29455 In a multigraph with two e...
hashnbusgrvd 29456 In a simple graph, the num...
usgruvtxvdb 29457 In a finite simple graph w...
vdiscusgrb 29458 A finite simple graph with...
vdiscusgr 29459 In a finite complete simpl...
vtxdusgradjvtx 29460 The degree of a vertex in ...
usgrvd0nedg 29461 If a vertex in a simple gr...
uhgrvd00 29462 If every vertex in a hyper...
usgrvd00 29463 If every vertex in a simpl...
vdegp1ai 29464 The induction step for a v...
vdegp1bi 29465 The induction step for a v...
vdegp1ci 29466 The induction step for a v...
vtxdginducedm1lem1 29467 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 29468 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 29469 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 29470 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 29471 The degree of a vertex ` v...
vtxdginducedm1fi 29472 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 29473 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 29474 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 29475 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 29476 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 29477 Induction step of ~ finsum...
finsumvtxdg2size 29478 The sum of the degrees of ...
fusgr1th 29479 The sum of the degrees of ...
finsumvtxdgeven 29480 The sum of the degrees of ...
vtxdgoddnumeven 29481 The number of vertices of ...
fusgrvtxdgonume 29482 The number of vertices of ...
isrgr 29487 The property of a class be...
rgrprop 29488 The properties of a k-regu...
isrusgr 29489 The property of being a k-...
rusgrprop 29490 The properties of a k-regu...
rusgrrgr 29491 A k-regular simple graph i...
rusgrusgr 29492 A k-regular simple graph i...
finrusgrfusgr 29493 A finite regular simple gr...
isrusgr0 29494 The property of being a k-...
rusgrprop0 29495 The properties of a k-regu...
usgreqdrusgr 29496 If all vertices in a simpl...
fusgrregdegfi 29497 In a nonempty finite simpl...
fusgrn0eqdrusgr 29498 If all vertices in a nonem...
frusgrnn0 29499 In a nonempty finite k-reg...
0edg0rgr 29500 A graph is 0-regular if it...
uhgr0edg0rgr 29501 A hypergraph is 0-regular ...
uhgr0edg0rgrb 29502 A hypergraph is 0-regular ...
usgr0edg0rusgr 29503 A simple graph is 0-regula...
0vtxrgr 29504 A null graph (with no vert...
0vtxrusgr 29505 A graph with no vertices a...
0uhgrrusgr 29506 The null graph as hypergra...
0grrusgr 29507 The null graph represented...
0grrgr 29508 The null graph represented...
cusgrrusgr 29509 A complete simple graph wi...
cusgrm1rusgr 29510 A finite simple graph with...
rusgrpropnb 29511 The properties of a k-regu...
rusgrpropedg 29512 The properties of a k-regu...
rusgrpropadjvtx 29513 The properties of a k-regu...
rusgrnumwrdl2 29514 In a k-regular simple grap...
rusgr1vtxlem 29515 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 29516 If a k-regular simple grap...
rgrusgrprc 29517 The class of 0-regular sim...
rusgrprc 29518 The class of 0-regular sim...
rgrprc 29519 The class of 0-regular gra...
rgrprcx 29520 The class of 0-regular gra...
rgrx0ndm 29521 0 is not in the domain of ...
rgrx0nd 29522 The potentially alternativ...
ewlksfval 29529 The set of s-walks of edge...
isewlk 29530 Conditions for a function ...
ewlkprop 29531 Properties of an s-walk of...
ewlkinedg 29532 The intersection (common v...
ewlkle 29533 An s-walk of edges is also...
upgrewlkle2 29534 In a pseudograph, there is...
wkslem1 29535 Lemma 1 for walks to subst...
wkslem2 29536 Lemma 2 for walks to subst...
wksfval 29537 The set of walks (in an un...
iswlk 29538 Properties of a pair of fu...
wlkprop 29539 Properties of a walk. (Co...
wlkv 29540 The classes involved in a ...
iswlkg 29541 Generalization of ~ iswlk ...
wlkf 29542 The mapping enumerating th...
wlkcl 29543 A walk has length ` # ( F ...
wlkp 29544 The mapping enumerating th...
wlkpwrd 29545 The sequence of vertices o...
wlklenvp1 29546 The number of vertices of ...
wksv 29547 The class of walks is a se...
wksvOLD 29548 Obsolete version of ~ wksv...
wlkn0 29549 The sequence of vertices o...
wlklenvm1 29550 The number of edges of a w...
ifpsnprss 29551 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 29552 Each pair of adjacent vert...
wlkvtxiedg 29553 The vertices of a walk are...
relwlk 29554 The set ` ( Walks `` G ) `...
wlkvv 29555 If there is at least one w...
wlkop 29556 A walk is an ordered pair....
wlkcpr 29557 A walk as class with two c...
wlk2f 29558 If there is a walk ` W ` t...
wlkcomp 29559 A walk expressed by proper...
wlkcompim 29560 Implications for the prope...
wlkelwrd 29561 The components of a walk a...
wlkeq 29562 Conditions for two walks (...
edginwlk 29563 The value of the edge func...
upgredginwlk 29564 The value of the edge func...
iedginwlk 29565 The value of the edge func...
wlkl1loop 29566 A walk of length 1 from a ...
wlk1walk 29567 A walk is a 1-walk "on the...
wlk1ewlk 29568 A walk is an s-walk "on th...
upgriswlk 29569 Properties of a pair of fu...
upgrwlkedg 29570 The edges of a walk in a p...
upgrwlkcompim 29571 Implications for the prope...
wlkvtxedg 29572 The vertices of a walk are...
upgrwlkvtxedg 29573 The pairs of connected ver...
uspgr2wlkeq 29574 Conditions for two walks w...
uspgr2wlkeq2 29575 Conditions for two walks w...
uspgr2wlkeqi 29576 Conditions for two walks w...
umgrwlknloop 29577 In a multigraph, each walk...
wlkResOLD 29578 Obsolete version of ~ opab...
wlkv0 29579 If there is a walk in the ...
g0wlk0 29580 There is no walk in a null...
0wlk0 29581 There is no walk for the e...
wlk0prc 29582 There is no walk in a null...
wlklenvclwlk 29583 The number of vertices in ...
wlkson 29584 The set of walks between t...
iswlkon 29585 Properties of a pair of fu...
wlkonprop 29586 Properties of a walk betwe...
wlkpvtx 29587 A walk connects vertices. ...
wlkepvtx 29588 The endpoints of a walk ar...
wlkoniswlk 29589 A walk between two vertice...
wlkonwlk 29590 A walk is a walk between i...
wlkonwlk1l 29591 A walk is a walk from its ...
wlksoneq1eq2 29592 Two walks with identical s...
wlkonl1iedg 29593 If there is a walk between...
wlkon2n0 29594 The length of a walk betwe...
2wlklem 29595 Lemma for theorems for wal...
upgr2wlk 29596 Properties of a pair of fu...
wlkreslem 29597 Lemma for ~ wlkres . (Con...
wlkres 29598 The restriction ` <. H , Q...
redwlklem 29599 Lemma for ~ redwlk . (Con...
redwlk 29600 A walk ending at the last ...
wlkp1lem1 29601 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 29602 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 29603 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 29604 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 29605 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 29606 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 29607 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 29608 Lemma for ~ wlkp1 . (Cont...
wlkp1 29609 Append one path segment (e...
wlkdlem1 29610 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 29611 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 29612 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 29613 Lemma 4 for ~ wlkd . (Con...
wlkd 29614 Two words representing a w...
lfgrwlkprop 29615 Two adjacent vertices in a...
lfgriswlk 29616 Conditions for a pair of f...
lfgrwlknloop 29617 In a loop-free graph, each...
reltrls 29622 The set ` ( Trails `` G ) ...
trlsfval 29623 The set of trails (in an u...
istrl 29624 Conditions for a pair of c...
trliswlk 29625 A trail is a walk. (Contr...
trlf1 29626 The enumeration ` F ` of a...
trlreslem 29627 Lemma for ~ trlres . Form...
trlres 29628 The restriction ` <. H , Q...
upgrtrls 29629 The set of trails in a pse...
upgristrl 29630 Properties of a pair of fu...
upgrf1istrl 29631 Properties of a pair of a ...
wksonproplem 29632 Lemma for theorems for pro...
wksonproplemOLD 29633 Obsolete version of ~ wkso...
trlsonfval 29634 The set of trails between ...
istrlson 29635 Properties of a pair of fu...
trlsonprop 29636 Properties of a trail betw...
trlsonistrl 29637 A trail between two vertic...
trlsonwlkon 29638 A trail between two vertic...
trlontrl 29639 A trail is a trail between...
relpths 29648 The set ` ( Paths `` G ) `...
pthsfval 29649 The set of paths (in an un...
spthsfval 29650 The set of simple paths (i...
ispth 29651 Conditions for a pair of c...
isspth 29652 Conditions for a pair of c...
pthistrl 29653 A path is a trail (in an u...
spthispth 29654 A simple path is a path (i...
pthiswlk 29655 A path is a walk (in an un...
spthiswlk 29656 A simple path is a walk (i...
pthdivtx 29657 The inner vertices of a pa...
pthdadjvtx 29658 The adjacent vertices of a...
dfpth2 29659 Alternate definition for a...
pthdifv 29660 The vertices of a path are...
2pthnloop 29661 A path of length at least ...
upgr2pthnlp 29662 A path of length at least ...
spthdifv 29663 The vertices of a simple p...
spthdep 29664 A simple path (at least of...
pthdepisspth 29665 A path with different star...
upgrwlkdvdelem 29666 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 29667 In a pseudograph, all edge...
upgrspthswlk 29668 The set of simple paths in...
upgrwlkdvspth 29669 A walk consisting of diffe...
pthsonfval 29670 The set of paths between t...
spthson 29671 The set of simple paths be...
ispthson 29672 Properties of a pair of fu...
isspthson 29673 Properties of a pair of fu...
pthsonprop 29674 Properties of a path betwe...
spthonprop 29675 Properties of a simple pat...
pthonispth 29676 A path between two vertice...
pthontrlon 29677 A path between two vertice...
pthonpth 29678 A path is a path between i...
isspthonpth 29679 A pair of functions is a s...
spthonisspth 29680 A simple path between to v...
spthonpthon 29681 A simple path between two ...
spthonepeq 29682 The endpoints of a simple ...
uhgrwkspthlem1 29683 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 29684 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 29685 Any walk of length 1 betwe...
usgr2wlkneq 29686 The vertices and edges are...
usgr2wlkspthlem1 29687 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 29688 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 29689 In a simple graph, any wal...
usgr2trlncl 29690 In a simple graph, any tra...
usgr2trlspth 29691 In a simple graph, any tra...
usgr2pthspth 29692 In a simple graph, any pat...
usgr2pthlem 29693 Lemma for ~ usgr2pth . (C...
usgr2pth 29694 In a simple graph, there i...
usgr2pth0 29695 In a simply graph, there i...
pthdlem1 29696 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 29697 Lemma for ~ pthdlem2 . (C...
pthdlem2 29698 Lemma 2 for ~ pthd . (Con...
pthd 29699 Two words representing a t...
clwlks 29702 The set of closed walks (i...
isclwlk 29703 A pair of functions repres...
clwlkiswlk 29704 A closed walk is a walk (i...
clwlkwlk 29705 Closed walks are walks (in...
clwlkswks 29706 Closed walks are walks (in...
isclwlke 29707 Properties of a pair of fu...
isclwlkupgr 29708 Properties of a pair of fu...
clwlkcomp 29709 A closed walk expressed by...
clwlkcompim 29710 Implications for the prope...
upgrclwlkcompim 29711 Implications for the prope...
clwlkcompbp 29712 Basic properties of the co...
clwlkl1loop 29713 A closed walk of length 1 ...
crcts 29718 The set of circuits (in an...
cycls 29719 The set of cycles (in an u...
iscrct 29720 Sufficient and necessary c...
iscycl 29721 Sufficient and necessary c...
crctprop 29722 The properties of a circui...
cyclprop 29723 The properties of a cycle:...
crctisclwlk 29724 A circuit is a closed walk...
crctistrl 29725 A circuit is a trail. (Co...
crctiswlk 29726 A circuit is a walk. (Con...
cyclispth 29727 A cycle is a path. (Contr...
cycliswlk 29728 A cycle is a walk. (Contr...
cycliscrct 29729 A cycle is a circuit. (Co...
cyclnumvtx 29730 The number of vertices of ...
cyclnspth 29731 A (non-trivial) cycle is n...
pthisspthorcycl 29732 A path is either a simple ...
pthspthcyc 29733 A pair ` <. F , P >. ` rep...
cyclispthon 29734 A cycle is a path starting...
lfgrn1cycl 29735 In a loop-free graph there...
usgr2trlncrct 29736 In a simple graph, any tra...
umgrn1cycl 29737 In a multigraph graph (wit...
uspgrn2crct 29738 In a simple pseudograph th...
usgrn2cycl 29739 In a simple graph there ar...
crctcshwlkn0lem1 29740 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 29741 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 29742 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 29743 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 29744 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 29745 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 29746 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 29747 Lemma for ~ crctcsh . (Co...
crctcshlem2 29748 Lemma for ~ crctcsh . (Co...
crctcshlem3 29749 Lemma for ~ crctcsh . (Co...
crctcshlem4 29750 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 29751 Cyclically shifting the in...
crctcshwlk 29752 Cyclically shifting the in...
crctcshtrl 29753 Cyclically shifting the in...
crctcsh 29754 Cyclically shifting the in...
wwlks 29765 The set of walks (in an un...
iswwlks 29766 A word over the set of ver...
wwlksn 29767 The set of walks (in an un...
iswwlksn 29768 A word over the set of ver...
wwlksnprcl 29769 Derivation of the length o...
iswwlksnx 29770 Properties of a word to re...
wwlkbp 29771 Basic properties of a walk...
wwlknbp 29772 Basic properties of a walk...
wwlknp 29773 Properties of a set being ...
wwlknbp1 29774 Other basic properties of ...
wwlknvtx 29775 The symbols of a word ` W ...
wwlknllvtx 29776 If a word ` W ` represents...
wwlknlsw 29777 If a word represents a wal...
wspthsn 29778 The set of simple paths of...
iswspthn 29779 An element of the set of s...
wspthnp 29780 Properties of a set being ...
wwlksnon 29781 The set of walks of a fixe...
wspthsnon 29782 The set of simple paths of...
iswwlksnon 29783 The set of walks of a fixe...
wwlksnon0 29784 Sufficient conditions for ...
wwlksonvtx 29785 If a word ` W ` represents...
iswspthsnon 29786 The set of simple paths of...
wwlknon 29787 An element of the set of w...
wspthnon 29788 An element of the set of s...
wspthnonp 29789 Properties of a set being ...
wspthneq1eq2 29790 Two simple paths with iden...
wwlksn0s 29791 The set of all walks as wo...
wwlkssswrd 29792 Walks (represented by word...
wwlksn0 29793 A walk of length 0 is repr...
0enwwlksnge1 29794 In graphs without edges, t...
wwlkswwlksn 29795 A walk of a fixed length a...
wwlkssswwlksn 29796 The walks of a fixed lengt...
wlkiswwlks1 29797 The sequence of vertices i...
wlklnwwlkln1 29798 The sequence of vertices i...
wlkiswwlks2lem1 29799 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 29800 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 29801 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 29802 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 29803 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 29804 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 29805 A walk as word corresponds...
wlkiswwlks 29806 A walk as word corresponds...
wlkiswwlksupgr2 29807 A walk as word corresponds...
wlkiswwlkupgr 29808 A walk as word corresponds...
wlkswwlksf1o 29809 The mapping of (ordinary) ...
wlkswwlksen 29810 The set of walks as words ...
wwlksm1edg 29811 Removing the trailing edge...
wlklnwwlkln2lem 29812 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 29813 A walk of length ` N ` as ...
wlklnwwlkn 29814 A walk of length ` N ` as ...
wlklnwwlklnupgr2 29815 A walk of length ` N ` as ...
wlklnwwlknupgr 29816 A walk of length ` N ` as ...
wlknewwlksn 29817 If a walk in a pseudograph...
wlknwwlksnbij 29818 The mapping ` ( t e. T |->...
wlknwwlksnen 29819 In a simple pseudograph, t...
wlknwwlksneqs 29820 The set of walks of a fixe...
wwlkseq 29821 Equality of two walks (as ...
wwlksnred 29822 Reduction of a walk (as wo...
wwlksnext 29823 Extension of a walk (as wo...
wwlksnextbi 29824 Extension of a walk (as wo...
wwlksnredwwlkn 29825 For each walk (as word) of...
wwlksnredwwlkn0 29826 For each walk (as word) of...
wwlksnextwrd 29827 Lemma for ~ wwlksnextbij ....
wwlksnextfun 29828 Lemma for ~ wwlksnextbij ....
wwlksnextinj 29829 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 29830 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 29831 Lemma for ~ wwlksnextbij ....
wwlksnextbij 29832 There is a bijection betwe...
wwlksnexthasheq 29833 The number of the extensio...
disjxwwlksn 29834 Sets of walks (as words) e...
wwlksnndef 29835 Conditions for ` WWalksN `...
wwlksnfi 29836 The number of walks repres...
wlksnfi 29837 The number of walks of fix...
wlksnwwlknvbij 29838 There is a bijection betwe...
wwlksnextproplem1 29839 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 29840 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 29841 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 29842 Adding additional properti...
disjxwwlkn 29843 Sets of walks (as words) e...
hashwwlksnext 29844 Number of walks (as words)...
wwlksnwwlksnon 29845 A walk of fixed length is ...
wspthsnwspthsnon 29846 A simple path of fixed len...
wspthsnonn0vne 29847 If the set of simple paths...
wspthsswwlkn 29848 The set of simple paths of...
wspthnfi 29849 In a finite graph, the set...
wwlksnonfi 29850 In a finite graph, the set...
wspthsswwlknon 29851 The set of simple paths of...
wspthnonfi 29852 In a finite graph, the set...
wspniunwspnon 29853 The set of nonempty simple...
wspn0 29854 If there are no vertices, ...
2wlkdlem1 29855 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 29856 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 29857 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 29858 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 29859 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 29860 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 29861 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 29862 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 29863 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 29864 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 29865 Lemma 10 for ~ 3wlkd . (C...
2wlkd 29866 Construction of a walk fro...
2wlkond 29867 A walk of length 2 from on...
2trld 29868 Construction of a trail fr...
2trlond 29869 A trail of length 2 from o...
2pthd 29870 A path of length 2 from on...
2spthd 29871 A simple path of length 2 ...
2pthond 29872 A simple path of length 2 ...
2pthon3v 29873 For a vertex adjacent to t...
umgr2adedgwlklem 29874 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 29875 In a multigraph, two adjac...
umgr2adedgwlkon 29876 In a multigraph, two adjac...
umgr2adedgwlkonALT 29877 Alternate proof for ~ umgr...
umgr2adedgspth 29878 In a multigraph, two adjac...
umgr2wlk 29879 In a multigraph, there is ...
umgr2wlkon 29880 For each pair of adjacent ...
elwwlks2s3 29881 A walk of length 2 as word...
midwwlks2s3 29882 There is a vertex between ...
wwlks2onv 29883 If a length 3 string repre...
elwwlks2ons3im 29884 A walk as word of length 2...
elwwlks2ons3 29885 For each walk of length 2 ...
s3wwlks2on 29886 A length 3 string which re...
umgrwwlks2on 29887 A walk of length 2 between...
wwlks2onsym 29888 There is a walk of length ...
elwwlks2on 29889 A walk of length 2 between...
elwspths2on 29890 A simple path of length 2 ...
wpthswwlks2on 29891 For two different vertices...
2wspdisj 29892 All simple paths of length...
2wspiundisj 29893 All simple paths of length...
usgr2wspthons3 29894 A simple path of length 2 ...
usgr2wspthon 29895 A simple path of length 2 ...
elwwlks2 29896 A walk of length 2 between...
elwspths2spth 29897 A simple path of length 2 ...
rusgrnumwwlkl1 29898 In a k-regular graph, ther...
rusgrnumwwlkslem 29899 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 29900 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 29901 Induction base 0 for ~ rus...
rusgrnumwwlkb1 29902 Induction base 1 for ~ rus...
rusgr0edg 29903 Special case for graphs wi...
rusgrnumwwlks 29904 Induction step for ~ rusgr...
rusgrnumwwlk 29905 In a ` K `-regular graph, ...
rusgrnumwwlkg 29906 In a ` K `-regular graph, ...
rusgrnumwlkg 29907 In a k-regular graph, the ...
clwwlknclwwlkdif 29908 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 29909 In a ` K `-regular graph, ...
clwwlk 29912 The set of closed walks (i...
isclwwlk 29913 Properties of a word to re...
clwwlkbp 29914 Basic properties of a clos...
clwwlkgt0 29915 There is no empty closed w...
clwwlksswrd 29916 Closed walks (represented ...
clwwlk1loop 29917 A closed walk of length 1 ...
clwwlkccatlem 29918 Lemma for ~ clwwlkccat : i...
clwwlkccat 29919 The concatenation of two w...
umgrclwwlkge2 29920 A closed walk in a multigr...
clwlkclwwlklem2a1 29921 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 29922 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 29923 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 29924 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 29925 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 29926 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 29927 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 29928 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 29929 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 29930 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 29931 A closed walk as word of l...
clwlkclwwlk2 29932 A closed walk corresponds ...
clwlkclwwlkflem 29933 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 29934 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 29935 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 29936 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 29937 ` F ` is a function from t...
clwlkclwwlkfo 29938 ` F ` is a function from t...
clwlkclwwlkf1 29939 ` F ` is a one-to-one func...
clwlkclwwlkf1o 29940 ` F ` is a bijection betwe...
clwlkclwwlken 29941 The set of the nonempty cl...
clwwisshclwwslemlem 29942 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 29943 Lemma for ~ clwwisshclwws ...
clwwisshclwws 29944 Cyclically shifting a clos...
clwwisshclwwsn 29945 Cyclically shifting a clos...
erclwwlkrel 29946 ` .~ ` is a relation. (Co...
erclwwlkeq 29947 Two classes are equivalent...
erclwwlkeqlen 29948 If two classes are equival...
erclwwlkref 29949 ` .~ ` is a reflexive rela...
erclwwlksym 29950 ` .~ ` is a symmetric rela...
erclwwlktr 29951 ` .~ ` is a transitive rel...
erclwwlk 29952 ` .~ ` is an equivalence r...
clwwlkn 29955 The set of closed walks of...
isclwwlkn 29956 A word over the set of ver...
clwwlkn0 29957 There is no closed walk of...
clwwlkneq0 29958 Sufficient conditions for ...
clwwlkclwwlkn 29959 A closed walk of a fixed l...
clwwlksclwwlkn 29960 The closed walks of a fixe...
clwwlknlen 29961 The length of a word repre...
clwwlknnn 29962 The length of a closed wal...
clwwlknwrd 29963 A closed walk of a fixed l...
clwwlknbp 29964 Basic properties of a clos...
isclwwlknx 29965 Characterization of a word...
clwwlknp 29966 Properties of a set being ...
clwwlknwwlksn 29967 A word representing a clos...
clwwlknlbonbgr1 29968 The last but one vertex in...
clwwlkinwwlk 29969 If the initial vertex of a...
clwwlkn1 29970 A closed walk of length 1 ...
loopclwwlkn1b 29971 The singleton word consist...
clwwlkn1loopb 29972 A word represents a closed...
clwwlkn2 29973 A closed walk of length 2 ...
clwwlknfi 29974 If there is only a finite ...
clwwlkel 29975 Obtaining a closed walk (a...
clwwlkf 29976 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 29977 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 29978 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 29979 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 29980 F is a 1-1 onto function, ...
clwwlken 29981 The set of closed walks of...
clwwlknwwlkncl 29982 Obtaining a closed walk (a...
clwwlkwwlksb 29983 A nonempty word over verti...
clwwlknwwlksnb 29984 A word over vertices repre...
clwwlkext2edg 29985 If a word concatenated wit...
wwlksext2clwwlk 29986 If a word represents a wal...
wwlksubclwwlk 29987 Any prefix of a word repre...
clwwnisshclwwsn 29988 Cyclically shifting a clos...
eleclclwwlknlem1 29989 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 29990 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 29991 The set of cyclical shifts...
clwwlknccat 29992 The concatenation of two w...
umgr2cwwk2dif 29993 If a word represents a clo...
umgr2cwwkdifex 29994 If a word represents a clo...
erclwwlknrel 29995 ` .~ ` is a relation. (Co...
erclwwlkneq 29996 Two classes are equivalent...
erclwwlkneqlen 29997 If two classes are equival...
erclwwlknref 29998 ` .~ ` is a reflexive rela...
erclwwlknsym 29999 ` .~ ` is a symmetric rela...
erclwwlkntr 30000 ` .~ ` is a transitive rel...
erclwwlkn 30001 ` .~ ` is an equivalence r...
qerclwwlknfi 30002 The quotient set of the se...
hashclwwlkn0 30003 The number of closed walks...
eclclwwlkn1 30004 An equivalence class accor...
eleclclwwlkn 30005 A member of an equivalence...
hashecclwwlkn1 30006 The size of every equivale...
umgrhashecclwwlk 30007 The size of every equivale...
fusgrhashclwwlkn 30008 The size of the set of clo...
clwwlkndivn 30009 The size of the set of clo...
clwlknf1oclwwlknlem1 30010 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 30011 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 30012 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 30013 There is a one-to-one onto...
clwlkssizeeq 30014 The size of the set of clo...
clwlksndivn 30015 The size of the set of clo...
clwwlknonmpo 30018 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 30019 The set of closed walks on...
isclwwlknon 30020 A word over the set of ver...
clwwlk0on0 30021 There is no word over the ...
clwwlknon0 30022 Sufficient conditions for ...
clwwlknonfin 30023 In a finite graph ` G ` , ...
clwwlknonel 30024 Characterization of a word...
clwwlknonccat 30025 The concatenation of two w...
clwwlknon1 30026 The set of closed walks on...
clwwlknon1loop 30027 If there is a loop at vert...
clwwlknon1nloop 30028 If there is no loop at ver...
clwwlknon1sn 30029 The set of (closed) walks ...
clwwlknon1le1 30030 There is at most one (clos...
clwwlknon2 30031 The set of closed walks on...
clwwlknon2x 30032 The set of closed walks on...
s2elclwwlknon2 30033 Sufficient conditions of a...
clwwlknon2num 30034 In a ` K `-regular graph `...
clwwlknonwwlknonb 30035 A word over vertices repre...
clwwlknonex2lem1 30036 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 30037 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 30038 Extending a closed walk ` ...
clwwlknonex2e 30039 Extending a closed walk ` ...
clwwlknondisj 30040 The sets of closed walks o...
clwwlknun 30041 The set of closed walks of...
clwwlkvbij 30042 There is a bijection betwe...
0ewlk 30043 The empty set (empty seque...
1ewlk 30044 A sequence of 1 edge is an...
0wlk 30045 A pair of an empty set (of...
is0wlk 30046 A pair of an empty set (of...
0wlkonlem1 30047 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 30048 Lemma 2 for ~ 0wlkon and ~...
0wlkon 30049 A walk of length 0 from a ...
0wlkons1 30050 A walk of length 0 from a ...
0trl 30051 A pair of an empty set (of...
is0trl 30052 A pair of an empty set (of...
0trlon 30053 A trail of length 0 from a...
0pth 30054 A pair of an empty set (of...
0spth 30055 A pair of an empty set (of...
0pthon 30056 A path of length 0 from a ...
0pthon1 30057 A path of length 0 from a ...
0pthonv 30058 For each vertex there is a...
0clwlk 30059 A pair of an empty set (of...
0clwlkv 30060 Any vertex (more precisely...
0clwlk0 30061 There is no closed walk in...
0crct 30062 A pair of an empty set (of...
0cycl 30063 A pair of an empty set (of...
1pthdlem1 30064 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 30065 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 30066 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 30067 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 30068 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 30069 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 30070 In a graph with two vertic...
1trld 30071 In a graph with two vertic...
1pthd 30072 In a graph with two vertic...
1pthond 30073 In a graph with two vertic...
upgr1wlkdlem1 30074 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 30075 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 30076 In a pseudograph with two ...
upgr1trld 30077 In a pseudograph with two ...
upgr1pthd 30078 In a pseudograph with two ...
upgr1pthond 30079 In a pseudograph with two ...
lppthon 30080 A loop (which is an edge a...
lp1cycl 30081 A loop (which is an edge a...
1pthon2v 30082 For each pair of adjacent ...
1pthon2ve 30083 For each pair of adjacent ...
wlk2v2elem1 30084 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 30085 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 30086 In a graph with two vertic...
ntrl2v2e 30087 A walk which is not a trai...
3wlkdlem1 30088 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 30089 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 30090 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 30091 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 30092 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 30093 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 30094 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 30095 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 30096 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 30097 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 30098 Lemma 10 for ~ 3wlkd . (C...
3wlkd 30099 Construction of a walk fro...
3wlkond 30100 A walk of length 3 from on...
3trld 30101 Construction of a trail fr...
3trlond 30102 A trail of length 3 from o...
3pthd 30103 A path of length 3 from on...
3pthond 30104 A path of length 3 from on...
3spthd 30105 A simple path of length 3 ...
3spthond 30106 A simple path of length 3 ...
3cycld 30107 Construction of a 3-cycle ...
3cyclpd 30108 Construction of a 3-cycle ...
upgr3v3e3cycl 30109 If there is a cycle of len...
uhgr3cyclexlem 30110 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 30111 If there are three differe...
umgr3cyclex 30112 If there are three (differ...
umgr3v3e3cycl 30113 If and only if there is a ...
upgr4cycl4dv4e 30114 If there is a cycle of len...
dfconngr1 30117 Alternative definition of ...
isconngr 30118 The property of being a co...
isconngr1 30119 The property of being a co...
cusconngr 30120 A complete hypergraph is c...
0conngr 30121 A graph without vertices i...
0vconngr 30122 A graph without vertices i...
1conngr 30123 A graph with (at most) one...
conngrv2edg 30124 A vertex in a connected gr...
vdn0conngrumgrv2 30125 A vertex in a connected mu...
releupth 30128 The set ` ( EulerPaths `` ...
eupths 30129 The Eulerian paths on the ...
iseupth 30130 The property " ` <. F , P ...
iseupthf1o 30131 The property " ` <. F , P ...
eupthi 30132 Properties of an Eulerian ...
eupthf1o 30133 The ` F ` function in an E...
eupthfi 30134 Any graph with an Eulerian...
eupthseg 30135 The ` N ` -th edge in an e...
upgriseupth 30136 The property " ` <. F , P ...
upgreupthi 30137 Properties of an Eulerian ...
upgreupthseg 30138 The ` N ` -th edge in an e...
eupthcl 30139 An Eulerian path has lengt...
eupthistrl 30140 An Eulerian path is a trai...
eupthiswlk 30141 An Eulerian path is a walk...
eupthpf 30142 The ` P ` function in an E...
eupth0 30143 There is an Eulerian path ...
eupthres 30144 The restriction ` <. H , Q...
eupthp1 30145 Append one path segment to...
eupth2eucrct 30146 Append one path segment to...
eupth2lem1 30147 Lemma for ~ eupth2 . (Con...
eupth2lem2 30148 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 30149 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 30150 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 30151 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 30152 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 30153 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 30154 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 30155 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 30156 Formerly part of proof of ...
eupth2lem3lem1 30157 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 30158 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 30159 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 30160 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 30161 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 30162 Formerly part of proof of ...
eupth2lem3lem7 30163 Lemma for ~ eupth2lem3 : ...
eupthvdres 30164 Formerly part of proof of ...
eupth2lem3 30165 Lemma for ~ eupth2 . (Con...
eupth2lemb 30166 Lemma for ~ eupth2 (induct...
eupth2lems 30167 Lemma for ~ eupth2 (induct...
eupth2 30168 The only vertices of odd d...
eulerpathpr 30169 A graph with an Eulerian p...
eulerpath 30170 A pseudograph with an Eule...
eulercrct 30171 A pseudograph with an Eule...
eucrctshift 30172 Cyclically shifting the in...
eucrct2eupth1 30173 Removing one edge ` ( I ``...
eucrct2eupth 30174 Removing one edge ` ( I ``...
konigsbergvtx 30175 The set of vertices of the...
konigsbergiedg 30176 The indexed edges of the K...
konigsbergiedgw 30177 The indexed edges of the K...
konigsbergssiedgwpr 30178 Each subset of the indexed...
konigsbergssiedgw 30179 Each subset of the indexed...
konigsbergumgr 30180 The Königsberg graph ...
konigsberglem1 30181 Lemma 1 for ~ konigsberg :...
konigsberglem2 30182 Lemma 2 for ~ konigsberg :...
konigsberglem3 30183 Lemma 3 for ~ konigsberg :...
konigsberglem4 30184 Lemma 4 for ~ konigsberg :...
konigsberglem5 30185 Lemma 5 for ~ konigsberg :...
konigsberg 30186 The Königsberg Bridge...
isfrgr 30189 The property of being a fr...
frgrusgr 30190 A friendship graph is a si...
frgr0v 30191 Any null graph (set with n...
frgr0vb 30192 Any null graph (without ve...
frgruhgr0v 30193 Any null graph (without ve...
frgr0 30194 The null graph (graph with...
frcond1 30195 The friendship condition: ...
frcond2 30196 The friendship condition: ...
frgreu 30197 Variant of ~ frcond2 : An...
frcond3 30198 The friendship condition, ...
frcond4 30199 The friendship condition, ...
frgr1v 30200 Any graph with (at most) o...
nfrgr2v 30201 Any graph with two (differ...
frgr3vlem1 30202 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 30203 Lemma 2 for ~ frgr3v . (C...
frgr3v 30204 Any graph with three verti...
1vwmgr 30205 Every graph with one verte...
3vfriswmgrlem 30206 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 30207 Every friendship graph wit...
1to2vfriswmgr 30208 Every friendship graph wit...
1to3vfriswmgr 30209 Every friendship graph wit...
1to3vfriendship 30210 The friendship theorem for...
2pthfrgrrn 30211 Between any two (different...
2pthfrgrrn2 30212 Between any two (different...
2pthfrgr 30213 Between any two (different...
3cyclfrgrrn1 30214 Every vertex in a friendsh...
3cyclfrgrrn 30215 Every vertex in a friendsh...
3cyclfrgrrn2 30216 Every vertex in a friendsh...
3cyclfrgr 30217 Every vertex in a friendsh...
4cycl2v2nb 30218 In a (maybe degenerate) 4-...
4cycl2vnunb 30219 In a 4-cycle, two distinct...
n4cyclfrgr 30220 There is no 4-cycle in a f...
4cyclusnfrgr 30221 A graph with a 4-cycle is ...
frgrnbnb 30222 If two neighbors ` U ` and...
frgrconngr 30223 A friendship graph is conn...
vdgn0frgrv2 30224 A vertex in a friendship g...
vdgn1frgrv2 30225 Any vertex in a friendship...
vdgn1frgrv3 30226 Any vertex in a friendship...
vdgfrgrgt2 30227 Any vertex in a friendship...
frgrncvvdeqlem1 30228 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 30229 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 30230 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 30231 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 30232 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 30233 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 30234 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 30235 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 30236 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 30237 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 30238 In a friendship graph, two...
frgrwopreglem4a 30239 In a friendship graph any ...
frgrwopreglem5a 30240 If a friendship graph has ...
frgrwopreglem1 30241 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 30242 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 30243 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 30244 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 30245 According to statement 5 i...
frgrwopregbsn 30246 According to statement 5 i...
frgrwopreg1 30247 According to statement 5 i...
frgrwopreg2 30248 According to statement 5 i...
frgrwopreglem5lem 30249 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 30250 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 30251 Alternate direct proof of ...
frgrwopreg 30252 In a friendship graph ther...
frgrregorufr0 30253 In a friendship graph ther...
frgrregorufr 30254 If there is a vertex havin...
frgrregorufrg 30255 If there is a vertex havin...
frgr2wwlkeu 30256 For two different vertices...
frgr2wwlkn0 30257 In a friendship graph, the...
frgr2wwlk1 30258 In a friendship graph, the...
frgr2wsp1 30259 In a friendship graph, the...
frgr2wwlkeqm 30260 If there is a (simple) pat...
frgrhash2wsp 30261 The number of simple paths...
fusgreg2wsplem 30262 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 30263 The set of paths of length...
fusgreghash2wspv 30264 According to statement 7 i...
fusgreg2wsp 30265 In a finite simple graph, ...
2wspmdisj 30266 The sets of paths of lengt...
fusgreghash2wsp 30267 In a finite k-regular grap...
frrusgrord0lem 30268 Lemma for ~ frrusgrord0 . ...
frrusgrord0 30269 If a nonempty finite frien...
frrusgrord 30270 If a nonempty finite frien...
numclwwlk2lem1lem 30271 Lemma for ~ numclwwlk2lem1...
2clwwlklem 30272 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 30273 If the initial vertex of a...
clwwnonrepclwwnon 30274 If the initial vertex of a...
2clwwlk2clwwlklem 30275 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 30276 Value of operation ` C ` ,...
2clwwlk2 30277 The set ` ( X C 2 ) ` of d...
2clwwlkel 30278 Characterization of an ele...
2clwwlk2clwwlk 30279 An element of the value of...
numclwwlk1lem2foalem 30280 Lemma for ~ numclwwlk1lem2...
extwwlkfab 30281 The set ` ( X C N ) ` of d...
extwwlkfabel 30282 Characterization of an ele...
numclwwlk1lem2foa 30283 Going forth and back from ...
numclwwlk1lem2f 30284 ` T ` is a function, mappi...
numclwwlk1lem2fv 30285 Value of the function ` T ...
numclwwlk1lem2f1 30286 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 30287 ` T ` is an onto function....
numclwwlk1lem2f1o 30288 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 30289 The set of double loops of...
numclwwlk1 30290 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 30291 ` F ` is a bijection betwe...
clwwlknonclwlknonen 30292 The sets of the two repres...
dlwwlknondlwlknonf1olem1 30293 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 30294 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 30295 The sets of the two repres...
wlkl0 30296 There is exactly one walk ...
clwlknon2num 30297 There are k walks of lengt...
numclwlk1lem1 30298 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 30299 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 30300 Statement 9 in [Huneke] p....
numclwwlkovh0 30301 Value of operation ` H ` ,...
numclwwlkovh 30302 Value of operation ` H ` ,...
numclwwlkovq 30303 Value of operation ` Q ` ,...
numclwwlkqhash 30304 In a ` K `-regular graph, ...
numclwwlk2lem1 30305 In a friendship graph, for...
numclwlk2lem2f 30306 ` R ` is a function mappin...
numclwlk2lem2fv 30307 Value of the function ` R ...
numclwlk2lem2f1o 30308 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 30309 In a friendship graph, the...
numclwwlk2 30310 Statement 10 in [Huneke] p...
numclwwlk3lem1 30311 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 30312 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 30313 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 30314 Statement 12 in [Huneke] p...
numclwwlk4 30315 The total number of closed...
numclwwlk5lem 30316 Lemma for ~ numclwwlk5 . ...
numclwwlk5 30317 Statement 13 in [Huneke] p...
numclwwlk7lem 30318 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 30319 For a prime divisor ` P ` ...
numclwwlk7 30320 Statement 14 in [Huneke] p...
numclwwlk8 30321 The size of the set of clo...
frgrreggt1 30322 If a finite nonempty frien...
frgrreg 30323 If a finite nonempty frien...
frgrregord013 30324 If a finite friendship gra...
frgrregord13 30325 If a nonempty finite frien...
frgrogt3nreg 30326 If a finite friendship gra...
friendshipgt3 30327 The friendship theorem for...
friendship 30328 The friendship theorem: I...
conventions 30329

H...

conventions-labels 30330

...

conventions-comments 30331

...

natded 30332 Here are typical n...
ex-natded5.2 30333 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 30334 A more efficient proof of ...
ex-natded5.2i 30335 The same as ~ ex-natded5.2...
ex-natded5.3 30336 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 30337 A more efficient proof of ...
ex-natded5.3i 30338 The same as ~ ex-natded5.3...
ex-natded5.5 30339 Theorem 5.5 of [Clemente] ...
ex-natded5.7 30340 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 30341 A more efficient proof of ...
ex-natded5.8 30342 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 30343 A more efficient proof of ...
ex-natded5.13 30344 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 30345 A more efficient proof of ...
ex-natded9.20 30346 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 30347 A more efficient proof of ...
ex-natded9.26 30348 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 30349 A more efficient proof of ...
ex-or 30350 Example for ~ df-or . Exa...
ex-an 30351 Example for ~ df-an . Exa...
ex-dif 30352 Example for ~ df-dif . Ex...
ex-un 30353 Example for ~ df-un . Exa...
ex-in 30354 Example for ~ df-in . Exa...
ex-uni 30355 Example for ~ df-uni . Ex...
ex-ss 30356 Example for ~ df-ss . Exa...
ex-pss 30357 Example for ~ df-pss . Ex...
ex-pw 30358 Example for ~ df-pw . Exa...
ex-pr 30359 Example for ~ df-pr . (Co...
ex-br 30360 Example for ~ df-br . Exa...
ex-opab 30361 Example for ~ df-opab . E...
ex-eprel 30362 Example for ~ df-eprel . ...
ex-id 30363 Example for ~ df-id . Exa...
ex-po 30364 Example for ~ df-po . Exa...
ex-xp 30365 Example for ~ df-xp . Exa...
ex-cnv 30366 Example for ~ df-cnv . Ex...
ex-co 30367 Example for ~ df-co . Exa...
ex-dm 30368 Example for ~ df-dm . Exa...
ex-rn 30369 Example for ~ df-rn . Exa...
ex-res 30370 Example for ~ df-res . Ex...
ex-ima 30371 Example for ~ df-ima . Ex...
ex-fv 30372 Example for ~ df-fv . Exa...
ex-1st 30373 Example for ~ df-1st . Ex...
ex-2nd 30374 Example for ~ df-2nd . Ex...
1kp2ke3k 30375 Example for ~ df-dec , 100...
ex-fl 30376 Example for ~ df-fl . Exa...
ex-ceil 30377 Example for ~ df-ceil . (...
ex-mod 30378 Example for ~ df-mod . (C...
ex-exp 30379 Example for ~ df-exp . (C...
ex-fac 30380 Example for ~ df-fac . (C...
ex-bc 30381 Example for ~ df-bc . (Co...
ex-hash 30382 Example for ~ df-hash . (...
ex-sqrt 30383 Example for ~ df-sqrt . (...
ex-abs 30384 Example for ~ df-abs . (C...
ex-dvds 30385 Example for ~ df-dvds : 3 ...
ex-gcd 30386 Example for ~ df-gcd . (C...
ex-lcm 30387 Example for ~ df-lcm . (C...
ex-prmo 30388 Example for ~ df-prmo : ` ...
aevdemo 30389 Proof illustrating the com...
ex-ind-dvds 30390 Example of a proof by indu...
ex-fpar 30391 Formalized example provide...
avril1 30392 Poisson d'Avril's Theorem....
2bornot2b 30393 The law of excluded middle...
helloworld 30394 The classic "Hello world" ...
1p1e2apr1 30395 One plus one equals two. ...
eqid1 30396 Law of identity (reflexivi...
1div0apr 30397 Division by zero is forbid...
topnfbey 30398 Nothing seems to be imposs...
9p10ne21 30399 9 + 10 is not equal to 21....
9p10ne21fool 30400 9 + 10 equals 21. This as...
nrt2irr 30402 The ` N ` -th root of 2 is...
isplig 30405 The predicate "is a planar...
ispligb 30406 The predicate "is a planar...
tncp 30407 In any planar incidence ge...
l2p 30408 For any line in a planar i...
lpni 30409 For any line in a planar i...
nsnlplig 30410 There is no "one-point lin...
nsnlpligALT 30411 Alternate version of ~ nsn...
n0lplig 30412 There is no "empty line" i...
n0lpligALT 30413 Alternate version of ~ n0l...
eulplig 30414 Through two distinct point...
pliguhgr 30415 Any planar incidence geome...
dummylink 30416 Alias for ~ a1ii that may ...
id1 30417 Alias for ~ idALT that may...
isgrpo 30426 The predicate "is a group ...
isgrpoi 30427 Properties that determine ...
grpofo 30428 A group operation maps ont...
grpocl 30429 Closure law for a group op...
grpolidinv 30430 A group has a left identit...
grpon0 30431 The base set of a group is...
grpoass 30432 A group operation is assoc...
grpoidinvlem1 30433 Lemma for ~ grpoidinv . (...
grpoidinvlem2 30434 Lemma for ~ grpoidinv . (...
grpoidinvlem3 30435 Lemma for ~ grpoidinv . (...
grpoidinvlem4 30436 Lemma for ~ grpoidinv . (...
grpoidinv 30437 A group has a left and rig...
grpoideu 30438 The left identity element ...
grporndm 30439 A group's range in terms o...
0ngrp 30440 The empty set is not a gro...
gidval 30441 The value of the identity ...
grpoidval 30442 Lemma for ~ grpoidcl and o...
grpoidcl 30443 The identity element of a ...
grpoidinv2 30444 A group's properties using...
grpolid 30445 The identity element of a ...
grporid 30446 The identity element of a ...
grporcan 30447 Right cancellation law for...
grpoinveu 30448 The left inverse element o...
grpoid 30449 Two ways of saying that an...
grporn 30450 The range of a group opera...
grpoinvfval 30451 The inverse function of a ...
grpoinvval 30452 The inverse of a group ele...
grpoinvcl 30453 A group element's inverse ...
grpoinv 30454 The properties of a group ...
grpolinv 30455 The left inverse of a grou...
grporinv 30456 The right inverse of a gro...
grpoinvid1 30457 The inverse of a group ele...
grpoinvid2 30458 The inverse of a group ele...
grpolcan 30459 Left cancellation law for ...
grpo2inv 30460 Double inverse law for gro...
grpoinvf 30461 Mapping of the inverse fun...
grpoinvop 30462 The inverse of the group o...
grpodivfval 30463 Group division (or subtrac...
grpodivval 30464 Group division (or subtrac...
grpodivinv 30465 Group division by an inver...
grpoinvdiv 30466 Inverse of a group divisio...
grpodivf 30467 Mapping for group division...
grpodivcl 30468 Closure of group division ...
grpodivdiv 30469 Double group division. (C...
grpomuldivass 30470 Associative-type law for m...
grpodivid 30471 Division of a group member...
grponpcan 30472 Cancellation law for group...
isablo 30475 The predicate "is an Abeli...
ablogrpo 30476 An Abelian group operation...
ablocom 30477 An Abelian group operation...
ablo32 30478 Commutative/associative la...
ablo4 30479 Commutative/associative la...
isabloi 30480 Properties that determine ...
ablomuldiv 30481 Law for group multiplicati...
ablodivdiv 30482 Law for double group divis...
ablodivdiv4 30483 Law for double group divis...
ablodiv32 30484 Swap the second and third ...
ablonncan 30485 Cancellation law for group...
ablonnncan1 30486 Cancellation law for group...
vcrel 30489 The class of all complex v...
vciOLD 30490 Obsolete version of ~ cvsi...
vcsm 30491 Functionality of th scalar...
vccl 30492 Closure of the scalar prod...
vcidOLD 30493 Identity element for the s...
vcdi 30494 Distributive law for the s...
vcdir 30495 Distributive law for the s...
vcass 30496 Associative law for the sc...
vc2OLD 30497 A vector plus itself is tw...
vcablo 30498 Vector addition is an Abel...
vcgrp 30499 Vector addition is a group...
vclcan 30500 Left cancellation law for ...
vczcl 30501 The zero vector is a vecto...
vc0rid 30502 The zero vector is a right...
vc0 30503 Zero times a vector is the...
vcz 30504 Anything times the zero ve...
vcm 30505 Minus 1 times a vector is ...
isvclem 30506 Lemma for ~ isvcOLD . (Co...
vcex 30507 The components of a comple...
isvcOLD 30508 The predicate "is a comple...
isvciOLD 30509 Properties that determine ...
cnaddabloOLD 30510 Obsolete version of ~ cnad...
cnidOLD 30511 Obsolete version of ~ cnad...
cncvcOLD 30512 Obsolete version of ~ cncv...
nvss 30522 Structure of the class of ...
nvvcop 30523 A normed complex vector sp...
nvrel 30531 The class of all normed co...
vafval 30532 Value of the function for ...
bafval 30533 Value of the function for ...
smfval 30534 Value of the function for ...
0vfval 30535 Value of the function for ...
nmcvfval 30536 Value of the norm function...
nvop2 30537 A normed complex vector sp...
nvvop 30538 The vector space component...
isnvlem 30539 Lemma for ~ isnv . (Contr...
nvex 30540 The components of a normed...
isnv 30541 The predicate "is a normed...
isnvi 30542 Properties that determine ...
nvi 30543 The properties of a normed...
nvvc 30544 The vector space component...
nvablo 30545 The vector addition operat...
nvgrp 30546 The vector addition operat...
nvgf 30547 Mapping for the vector add...
nvsf 30548 Mapping for the scalar mul...
nvgcl 30549 Closure law for the vector...
nvcom 30550 The vector addition (group...
nvass 30551 The vector addition (group...
nvadd32 30552 Commutative/associative la...
nvrcan 30553 Right cancellation law for...
nvadd4 30554 Rearrangement of 4 terms i...
nvscl 30555 Closure law for the scalar...
nvsid 30556 Identity element for the s...
nvsass 30557 Associative law for the sc...
nvscom 30558 Commutative law for the sc...
nvdi 30559 Distributive law for the s...
nvdir 30560 Distributive law for the s...
nv2 30561 A vector plus itself is tw...
vsfval 30562 Value of the function for ...
nvzcl 30563 Closure law for the zero v...
nv0rid 30564 The zero vector is a right...
nv0lid 30565 The zero vector is a left ...
nv0 30566 Zero times a vector is the...
nvsz 30567 Anything times the zero ve...
nvinv 30568 Minus 1 times a vector is ...
nvinvfval 30569 Function for the negative ...
nvm 30570 Vector subtraction in term...
nvmval 30571 Value of vector subtractio...
nvmval2 30572 Value of vector subtractio...
nvmfval 30573 Value of the function for ...
nvmf 30574 Mapping for the vector sub...
nvmcl 30575 Closure law for the vector...
nvnnncan1 30576 Cancellation law for vecto...
nvmdi 30577 Distributive law for scala...
nvnegneg 30578 Double negative of a vecto...
nvmul0or 30579 If a scalar product is zer...
nvrinv 30580 A vector minus itself. (C...
nvlinv 30581 Minus a vector plus itself...
nvpncan2 30582 Cancellation law for vecto...
nvpncan 30583 Cancellation law for vecto...
nvaddsub 30584 Commutative/associative la...
nvnpcan 30585 Cancellation law for a nor...
nvaddsub4 30586 Rearrangement of 4 terms i...
nvmeq0 30587 The difference between two...
nvmid 30588 A vector minus itself is t...
nvf 30589 Mapping for the norm funct...
nvcl 30590 The norm of a normed compl...
nvcli 30591 The norm of a normed compl...
nvs 30592 Proportionality property o...
nvsge0 30593 The norm of a scalar produ...
nvm1 30594 The norm of the negative o...
nvdif 30595 The norm of the difference...
nvpi 30596 The norm of a vector plus ...
nvz0 30597 The norm of a zero vector ...
nvz 30598 The norm of a vector is ze...
nvtri 30599 Triangle inequality for th...
nvmtri 30600 Triangle inequality for th...
nvabs 30601 Norm difference property o...
nvge0 30602 The norm of a normed compl...
nvgt0 30603 A nonzero norm is positive...
nv1 30604 From any nonzero vector, c...
nvop 30605 A complex inner product sp...
cnnv 30606 The set of complex numbers...
cnnvg 30607 The vector addition (group...
cnnvba 30608 The base set of the normed...
cnnvs 30609 The scalar product operati...
cnnvnm 30610 The norm operation of the ...
cnnvm 30611 The vector subtraction ope...
elimnv 30612 Hypothesis elimination lem...
elimnvu 30613 Hypothesis elimination lem...
imsval 30614 Value of the induced metri...
imsdval 30615 Value of the induced metri...
imsdval2 30616 Value of the distance func...
nvnd 30617 The norm of a normed compl...
imsdf 30618 Mapping for the induced me...
imsmetlem 30619 Lemma for ~ imsmet . (Con...
imsmet 30620 The induced metric of a no...
imsxmet 30621 The induced metric of a no...
cnims 30622 The metric induced on the ...
vacn 30623 Vector addition is jointly...
nmcvcn 30624 The norm of a normed compl...
nmcnc 30625 The norm of a normed compl...
smcnlem 30626 Lemma for ~ smcn . (Contr...
smcn 30627 Scalar multiplication is j...
vmcn 30628 Vector subtraction is join...
dipfval 30631 The inner product function...
ipval 30632 Value of the inner product...
ipval2lem2 30633 Lemma for ~ ipval3 . (Con...
ipval2lem3 30634 Lemma for ~ ipval3 . (Con...
ipval2lem4 30635 Lemma for ~ ipval3 . (Con...
ipval2 30636 Expansion of the inner pro...
4ipval2 30637 Four times the inner produ...
ipval3 30638 Expansion of the inner pro...
ipidsq 30639 The inner product of a vec...
ipnm 30640 Norm expressed in terms of...
dipcl 30641 An inner product is a comp...
ipf 30642 Mapping for the inner prod...
dipcj 30643 The complex conjugate of a...
ipipcj 30644 An inner product times its...
diporthcom 30645 Orthogonality (meaning inn...
dip0r 30646 Inner product with a zero ...
dip0l 30647 Inner product with a zero ...
ipz 30648 The inner product of a vec...
dipcn 30649 Inner product is jointly c...
sspval 30652 The set of all subspaces o...
isssp 30653 The predicate "is a subspa...
sspid 30654 A normed complex vector sp...
sspnv 30655 A subspace is a normed com...
sspba 30656 The base set of a subspace...
sspg 30657 Vector addition on a subsp...
sspgval 30658 Vector addition on a subsp...
ssps 30659 Scalar multiplication on a...
sspsval 30660 Scalar multiplication on a...
sspmlem 30661 Lemma for ~ sspm and other...
sspmval 30662 Vector addition on a subsp...
sspm 30663 Vector subtraction on a su...
sspz 30664 The zero vector of a subsp...
sspn 30665 The norm on a subspace is ...
sspnval 30666 The norm on a subspace in ...
sspimsval 30667 The induced metric on a su...
sspims 30668 The induced metric on a su...
lnoval 30681 The set of linear operator...
islno 30682 The predicate "is a linear...
lnolin 30683 Basic linearity property o...
lnof 30684 A linear operator is a map...
lno0 30685 The value of a linear oper...
lnocoi 30686 The composition of two lin...
lnoadd 30687 Addition property of a lin...
lnosub 30688 Subtraction property of a ...
lnomul 30689 Scalar multiplication prop...
nvo00 30690 Two ways to express a zero...
nmoofval 30691 The operator norm function...
nmooval 30692 The operator norm function...
nmosetre 30693 The set in the supremum of...
nmosetn0 30694 The set in the supremum of...
nmoxr 30695 The norm of an operator is...
nmooge0 30696 The norm of an operator is...
nmorepnf 30697 The norm of an operator is...
nmoreltpnf 30698 The norm of any operator i...
nmogtmnf 30699 The norm of an operator is...
nmoolb 30700 A lower bound for an opera...
nmoubi 30701 An upper bound for an oper...
nmoub3i 30702 An upper bound for an oper...
nmoub2i 30703 An upper bound for an oper...
nmobndi 30704 Two ways to express that a...
nmounbi 30705 Two ways two express that ...
nmounbseqi 30706 An unbounded operator dete...
nmounbseqiALT 30707 Alternate shorter proof of...
nmobndseqi 30708 A bounded sequence determi...
nmobndseqiALT 30709 Alternate shorter proof of...
bloval 30710 The class of bounded linea...
isblo 30711 The predicate "is a bounde...
isblo2 30712 The predicate "is a bounde...
bloln 30713 A bounded operator is a li...
blof 30714 A bounded operator is an o...
nmblore 30715 The norm of a bounded oper...
0ofval 30716 The zero operator between ...
0oval 30717 Value of the zero operator...
0oo 30718 The zero operator is an op...
0lno 30719 The zero operator is linea...
nmoo0 30720 The operator norm of the z...
0blo 30721 The zero operator is a bou...
nmlno0lem 30722 Lemma for ~ nmlno0i . (Co...
nmlno0i 30723 The norm of a linear opera...
nmlno0 30724 The norm of a linear opera...
nmlnoubi 30725 An upper bound for the ope...
nmlnogt0 30726 The norm of a nonzero line...
lnon0 30727 The domain of a nonzero li...
nmblolbii 30728 A lower bound for the norm...
nmblolbi 30729 A lower bound for the norm...
isblo3i 30730 The predicate "is a bounde...
blo3i 30731 Properties that determine ...
blometi 30732 Upper bound for the distan...
blocnilem 30733 Lemma for ~ blocni and ~ l...
blocni 30734 A linear operator is conti...
lnocni 30735 If a linear operator is co...
blocn 30736 A linear operator is conti...
blocn2 30737 A bounded linear operator ...
ajfval 30738 The adjoint function. (Co...
hmoval 30739 The set of Hermitian (self...
ishmo 30740 The predicate "is a hermit...
phnv 30743 Every complex inner produc...
phrel 30744 The class of all complex i...
phnvi 30745 Every complex inner produc...
isphg 30746 The predicate "is a comple...
phop 30747 A complex inner product sp...
cncph 30748 The set of complex numbers...
elimph 30749 Hypothesis elimination lem...
elimphu 30750 Hypothesis elimination lem...
isph 30751 The predicate "is an inner...
phpar2 30752 The parallelogram law for ...
phpar 30753 The parallelogram law for ...
ip0i 30754 A slight variant of Equati...
ip1ilem 30755 Lemma for ~ ip1i . (Contr...
ip1i 30756 Equation 6.47 of [Ponnusam...
ip2i 30757 Equation 6.48 of [Ponnusam...
ipdirilem 30758 Lemma for ~ ipdiri . (Con...
ipdiri 30759 Distributive law for inner...
ipasslem1 30760 Lemma for ~ ipassi . Show...
ipasslem2 30761 Lemma for ~ ipassi . Show...
ipasslem3 30762 Lemma for ~ ipassi . Show...
ipasslem4 30763 Lemma for ~ ipassi . Show...
ipasslem5 30764 Lemma for ~ ipassi . Show...
ipasslem7 30765 Lemma for ~ ipassi . Show...
ipasslem8 30766 Lemma for ~ ipassi . By ~...
ipasslem9 30767 Lemma for ~ ipassi . Conc...
ipasslem10 30768 Lemma for ~ ipassi . Show...
ipasslem11 30769 Lemma for ~ ipassi . Show...
ipassi 30770 Associative law for inner ...
dipdir 30771 Distributive law for inner...
dipdi 30772 Distributive law for inner...
ip2dii 30773 Inner product of two sums....
dipass 30774 Associative law for inner ...
dipassr 30775 "Associative" law for seco...
dipassr2 30776 "Associative" law for inne...
dipsubdir 30777 Distributive law for inner...
dipsubdi 30778 Distributive law for inner...
pythi 30779 The Pythagorean theorem fo...
siilem1 30780 Lemma for ~ sii . (Contri...
siilem2 30781 Lemma for ~ sii . (Contri...
siii 30782 Inference from ~ sii . (C...
sii 30783 Obsolete version of ~ ipca...
ipblnfi 30784 A function ` F ` generated...
ip2eqi 30785 Two vectors are equal iff ...
phoeqi 30786 A condition implying that ...
ajmoi 30787 Every operator has at most...
ajfuni 30788 The adjoint function is a ...
ajfun 30789 The adjoint function is a ...
ajval 30790 Value of the adjoint funct...
iscbn 30793 A complex Banach space is ...
cbncms 30794 The induced metric on comp...
bnnv 30795 Every complex Banach space...
bnrel 30796 The class of all complex B...
bnsscmcl 30797 A subspace of a Banach spa...
cnbn 30798 The set of complex numbers...
ubthlem1 30799 Lemma for ~ ubth . The fu...
ubthlem2 30800 Lemma for ~ ubth . Given ...
ubthlem3 30801 Lemma for ~ ubth . Prove ...
ubth 30802 Uniform Boundedness Theore...
minvecolem1 30803 Lemma for ~ minveco . The...
minvecolem2 30804 Lemma for ~ minveco . Any...
minvecolem3 30805 Lemma for ~ minveco . The...
minvecolem4a 30806 Lemma for ~ minveco . ` F ...
minvecolem4b 30807 Lemma for ~ minveco . The...
minvecolem4c 30808 Lemma for ~ minveco . The...
minvecolem4 30809 Lemma for ~ minveco . The...
minvecolem5 30810 Lemma for ~ minveco . Dis...
minvecolem6 30811 Lemma for ~ minveco . Any...
minvecolem7 30812 Lemma for ~ minveco . Sin...
minveco 30813 Minimizing vector theorem,...
ishlo 30816 The predicate "is a comple...
hlobn 30817 Every complex Hilbert spac...
hlph 30818 Every complex Hilbert spac...
hlrel 30819 The class of all complex H...
hlnv 30820 Every complex Hilbert spac...
hlnvi 30821 Every complex Hilbert spac...
hlvc 30822 Every complex Hilbert spac...
hlcmet 30823 The induced metric on a co...
hlmet 30824 The induced metric on a co...
hlpar2 30825 The parallelogram law sati...
hlpar 30826 The parallelogram law sati...
hlex 30827 The base set of a Hilbert ...
hladdf 30828 Mapping for Hilbert space ...
hlcom 30829 Hilbert space vector addit...
hlass 30830 Hilbert space vector addit...
hl0cl 30831 The Hilbert space zero vec...
hladdid 30832 Hilbert space addition wit...
hlmulf 30833 Mapping for Hilbert space ...
hlmulid 30834 Hilbert space scalar multi...
hlmulass 30835 Hilbert space scalar multi...
hldi 30836 Hilbert space scalar multi...
hldir 30837 Hilbert space scalar multi...
hlmul0 30838 Hilbert space scalar multi...
hlipf 30839 Mapping for Hilbert space ...
hlipcj 30840 Conjugate law for Hilbert ...
hlipdir 30841 Distributive law for Hilbe...
hlipass 30842 Associative law for Hilber...
hlipgt0 30843 The inner product of a Hil...
hlcompl 30844 Completeness of a Hilbert ...
cnchl 30845 The set of complex numbers...
htthlem 30846 Lemma for ~ htth . The co...
htth 30847 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 30903 The group (addition) opera...
h2hsm 30904 The scalar product operati...
h2hnm 30905 The norm function of Hilbe...
h2hvs 30906 The vector subtraction ope...
h2hmetdval 30907 Value of the distance func...
h2hcau 30908 The Cauchy sequences of Hi...
h2hlm 30909 The limit sequences of Hil...
axhilex-zf 30910 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 30911 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 30912 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 30913 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 30914 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 30915 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 30916 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 30917 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 30918 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 30919 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 30920 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 30921 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 30922 Derive Axiom ~ ax-hfi from...
axhis1-zf 30923 Derive Axiom ~ ax-his1 fro...
axhis2-zf 30924 Derive Axiom ~ ax-his2 fro...
axhis3-zf 30925 Derive Axiom ~ ax-his3 fro...
axhis4-zf 30926 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 30927 Derive Axiom ~ ax-hcompl f...
hvmulex 30940 The Hilbert space scalar p...
hvaddcl 30941 Closure of vector addition...
hvmulcl 30942 Closure of scalar multipli...
hvmulcli 30943 Closure inference for scal...
hvsubf 30944 Mapping domain and codomai...
hvsubval 30945 Value of vector subtractio...
hvsubcl 30946 Closure of vector subtract...
hvaddcli 30947 Closure of vector addition...
hvcomi 30948 Commutation of vector addi...
hvsubvali 30949 Value of vector subtractio...
hvsubcli 30950 Closure of vector subtract...
ifhvhv0 30951 Prove ` if ( A e. ~H , A ,...
hvaddlid 30952 Addition with the zero vec...
hvmul0 30953 Scalar multiplication with...
hvmul0or 30954 If a scalar product is zer...
hvsubid 30955 Subtraction of a vector fr...
hvnegid 30956 Addition of negative of a ...
hv2neg 30957 Two ways to express the ne...
hvaddlidi 30958 Addition with the zero vec...
hvnegidi 30959 Addition of negative of a ...
hv2negi 30960 Two ways to express the ne...
hvm1neg 30961 Convert minus one times a ...
hvaddsubval 30962 Value of vector addition i...
hvadd32 30963 Commutative/associative la...
hvadd12 30964 Commutative/associative la...
hvadd4 30965 Hilbert vector space addit...
hvsub4 30966 Hilbert vector space addit...
hvaddsub12 30967 Commutative/associative la...
hvpncan 30968 Addition/subtraction cance...
hvpncan2 30969 Addition/subtraction cance...
hvaddsubass 30970 Associativity of sum and d...
hvpncan3 30971 Subtraction and addition o...
hvmulcom 30972 Scalar multiplication comm...
hvsubass 30973 Hilbert vector space assoc...
hvsub32 30974 Hilbert vector space commu...
hvmulassi 30975 Scalar multiplication asso...
hvmulcomi 30976 Scalar multiplication comm...
hvmul2negi 30977 Double negative in scalar ...
hvsubdistr1 30978 Scalar multiplication dist...
hvsubdistr2 30979 Scalar multiplication dist...
hvdistr1i 30980 Scalar multiplication dist...
hvsubdistr1i 30981 Scalar multiplication dist...
hvassi 30982 Hilbert vector space assoc...
hvadd32i 30983 Hilbert vector space commu...
hvsubassi 30984 Hilbert vector space assoc...
hvsub32i 30985 Hilbert vector space commu...
hvadd12i 30986 Hilbert vector space commu...
hvadd4i 30987 Hilbert vector space addit...
hvsubsub4i 30988 Hilbert vector space addit...
hvsubsub4 30989 Hilbert vector space addit...
hv2times 30990 Two times a vector. (Cont...
hvnegdii 30991 Distribution of negative o...
hvsubeq0i 30992 If the difference between ...
hvsubcan2i 30993 Vector cancellation law. ...
hvaddcani 30994 Cancellation law for vecto...
hvsubaddi 30995 Relationship between vecto...
hvnegdi 30996 Distribution of negative o...
hvsubeq0 30997 If the difference between ...
hvaddeq0 30998 If the sum of two vectors ...
hvaddcan 30999 Cancellation law for vecto...
hvaddcan2 31000 Cancellation law for vecto...
hvmulcan 31001 Cancellation law for scala...
hvmulcan2 31002 Cancellation law for scala...
hvsubcan 31003 Cancellation law for vecto...
hvsubcan2 31004 Cancellation law for vecto...
hvsub0 31005 Subtraction of a zero vect...
hvsubadd 31006 Relationship between vecto...
hvaddsub4 31007 Hilbert vector space addit...
hicl 31009 Closure of inner product. ...
hicli 31010 Closure inference for inne...
his5 31015 Associative law for inner ...
his52 31016 Associative law for inner ...
his35 31017 Move scalar multiplication...
his35i 31018 Move scalar multiplication...
his7 31019 Distributive law for inner...
hiassdi 31020 Distributive/associative l...
his2sub 31021 Distributive law for inner...
his2sub2 31022 Distributive law for inner...
hire 31023 A necessary and sufficient...
hiidrcl 31024 Real closure of inner prod...
hi01 31025 Inner product with the 0 v...
hi02 31026 Inner product with the 0 v...
hiidge0 31027 Inner product with self is...
his6 31028 Zero inner product with se...
his1i 31029 Conjugate law for inner pr...
abshicom 31030 Commuted inner products ha...
hial0 31031 A vector whose inner produ...
hial02 31032 A vector whose inner produ...
hisubcomi 31033 Two vector subtractions si...
hi2eq 31034 Lemma used to prove equali...
hial2eq 31035 Two vectors whose inner pr...
hial2eq2 31036 Two vectors whose inner pr...
orthcom 31037 Orthogonality commutes. (...
normlem0 31038 Lemma used to derive prope...
normlem1 31039 Lemma used to derive prope...
normlem2 31040 Lemma used to derive prope...
normlem3 31041 Lemma used to derive prope...
normlem4 31042 Lemma used to derive prope...
normlem5 31043 Lemma used to derive prope...
normlem6 31044 Lemma used to derive prope...
normlem7 31045 Lemma used to derive prope...
normlem8 31046 Lemma used to derive prope...
normlem9 31047 Lemma used to derive prope...
normlem7tALT 31048 Lemma used to derive prope...
bcseqi 31049 Equality case of Bunjakova...
normlem9at 31050 Lemma used to derive prope...
dfhnorm2 31051 Alternate definition of th...
normf 31052 The norm function maps fro...
normval 31053 The value of the norm of a...
normcl 31054 Real closure of the norm o...
normge0 31055 The norm of a vector is no...
normgt0 31056 The norm of nonzero vector...
norm0 31057 The norm of a zero vector....
norm-i 31058 Theorem 3.3(i) of [Beran] ...
normne0 31059 A norm is nonzero iff its ...
normcli 31060 Real closure of the norm o...
normsqi 31061 The square of a norm. (Co...
norm-i-i 31062 Theorem 3.3(i) of [Beran] ...
normsq 31063 The square of a norm. (Co...
normsub0i 31064 Two vectors are equal iff ...
normsub0 31065 Two vectors are equal iff ...
norm-ii-i 31066 Triangle inequality for no...
norm-ii 31067 Triangle inequality for no...
norm-iii-i 31068 Theorem 3.3(iii) of [Beran...
norm-iii 31069 Theorem 3.3(iii) of [Beran...
normsubi 31070 Negative doesn't change th...
normpythi 31071 Analogy to Pythagorean the...
normsub 31072 Swapping order of subtract...
normneg 31073 The norm of a vector equal...
normpyth 31074 Analogy to Pythagorean the...
normpyc 31075 Corollary to Pythagorean t...
norm3difi 31076 Norm of differences around...
norm3adifii 31077 Norm of differences around...
norm3lem 31078 Lemma involving norm of di...
norm3dif 31079 Norm of differences around...
norm3dif2 31080 Norm of differences around...
norm3lemt 31081 Lemma involving norm of di...
norm3adifi 31082 Norm of differences around...
normpari 31083 Parallelogram law for norm...
normpar 31084 Parallelogram law for norm...
normpar2i 31085 Corollary of parallelogram...
polid2i 31086 Generalized polarization i...
polidi 31087 Polarization identity. Re...
polid 31088 Polarization identity. Re...
hilablo 31089 Hilbert space vector addit...
hilid 31090 The group identity element...
hilvc 31091 Hilbert space is a complex...
hilnormi 31092 Hilbert space norm in term...
hilhhi 31093 Deduce the structure of Hi...
hhnv 31094 Hilbert space is a normed ...
hhva 31095 The group (addition) opera...
hhba 31096 The base set of Hilbert sp...
hh0v 31097 The zero vector of Hilbert...
hhsm 31098 The scalar product operati...
hhvs 31099 The vector subtraction ope...
hhnm 31100 The norm function of Hilbe...
hhims 31101 The induced metric of Hilb...
hhims2 31102 Hilbert space distance met...
hhmet 31103 The induced metric of Hilb...
hhxmet 31104 The induced metric of Hilb...
hhmetdval 31105 Value of the distance func...
hhip 31106 The inner product operatio...
hhph 31107 The Hilbert space of the H...
bcsiALT 31108 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 31109 Bunjakovaskij-Cauchy-Schwa...
bcs 31110 Bunjakovaskij-Cauchy-Schwa...
bcs2 31111 Corollary of the Bunjakova...
bcs3 31112 Corollary of the Bunjakova...
hcau 31113 Member of the set of Cauch...
hcauseq 31114 A Cauchy sequences on a Hi...
hcaucvg 31115 A Cauchy sequence on a Hil...
seq1hcau 31116 A sequence on a Hilbert sp...
hlimi 31117 Express the predicate: Th...
hlimseqi 31118 A sequence with a limit on...
hlimveci 31119 Closure of the limit of a ...
hlimconvi 31120 Convergence of a sequence ...
hlim2 31121 The limit of a sequence on...
hlimadd 31122 Limit of the sum of two se...
hilmet 31123 The Hilbert space norm det...
hilxmet 31124 The Hilbert space norm det...
hilmetdval 31125 Value of the distance func...
hilims 31126 Hilbert space distance met...
hhcau 31127 The Cauchy sequences of Hi...
hhlm 31128 The limit sequences of Hil...
hhcmpl 31129 Lemma used for derivation ...
hilcompl 31130 Lemma used for derivation ...
hhcms 31132 The Hilbert space induced ...
hhhl 31133 The Hilbert space structur...
hilcms 31134 The Hilbert space norm det...
hilhl 31135 The Hilbert space of the H...
issh 31137 Subspace ` H ` of a Hilber...
issh2 31138 Subspace ` H ` of a Hilber...
shss 31139 A subspace is a subset of ...
shel 31140 A member of a subspace of ...
shex 31141 The set of subspaces of a ...
shssii 31142 A closed subspace of a Hil...
sheli 31143 A member of a subspace of ...
shelii 31144 A member of a subspace of ...
sh0 31145 The zero vector belongs to...
shaddcl 31146 Closure of vector addition...
shmulcl 31147 Closure of vector scalar m...
issh3 31148 Subspace ` H ` of a Hilber...
shsubcl 31149 Closure of vector subtract...
isch 31151 Closed subspace ` H ` of a...
isch2 31152 Closed subspace ` H ` of a...
chsh 31153 A closed subspace is a sub...
chsssh 31154 Closed subspaces are subsp...
chex 31155 The set of closed subspace...
chshii 31156 A closed subspace is a sub...
ch0 31157 The zero vector belongs to...
chss 31158 A closed subspace of a Hil...
chel 31159 A member of a closed subsp...
chssii 31160 A closed subspace of a Hil...
cheli 31161 A member of a closed subsp...
chelii 31162 A member of a closed subsp...
chlimi 31163 The limit property of a cl...
hlim0 31164 The zero sequence in Hilbe...
hlimcaui 31165 If a sequence in Hilbert s...
hlimf 31166 Function-like behavior of ...
hlimuni 31167 A Hilbert space sequence c...
hlimreui 31168 The limit of a Hilbert spa...
hlimeui 31169 The limit of a Hilbert spa...
isch3 31170 A Hilbert subspace is clos...
chcompl 31171 Completeness of a closed s...
helch 31172 The Hilbert lattice one (w...
ifchhv 31173 Prove ` if ( A e. CH , A ,...
helsh 31174 Hilbert space is a subspac...
shsspwh 31175 Subspaces are subsets of H...
chsspwh 31176 Closed subspaces are subse...
hsn0elch 31177 The zero subspace belongs ...
norm1 31178 From any nonzero Hilbert s...
norm1exi 31179 A normalized vector exists...
norm1hex 31180 A normalized vector can ex...
elch0 31183 Membership in zero for clo...
h0elch 31184 The zero subspace is a clo...
h0elsh 31185 The zero subspace is a sub...
hhssva 31186 The vector addition operat...
hhsssm 31187 The scalar multiplication ...
hhssnm 31188 The norm operation on a su...
issubgoilem 31189 Lemma for ~ hhssabloilem ....
hhssabloilem 31190 Lemma for ~ hhssabloi . F...
hhssabloi 31191 Abelian group property of ...
hhssablo 31192 Abelian group property of ...
hhssnv 31193 Normed complex vector spac...
hhssnvt 31194 Normed complex vector spac...
hhsst 31195 A member of ` SH ` is a su...
hhshsslem1 31196 Lemma for ~ hhsssh . (Con...
hhshsslem2 31197 Lemma for ~ hhsssh . (Con...
hhsssh 31198 The predicate " ` H ` is a...
hhsssh2 31199 The predicate " ` H ` is a...
hhssba 31200 The base set of a subspace...
hhssvs 31201 The vector subtraction ope...
hhssvsf 31202 Mapping of the vector subt...
hhssims 31203 Induced metric of a subspa...
hhssims2 31204 Induced metric of a subspa...
hhssmet 31205 Induced metric of a subspa...
hhssmetdval 31206 Value of the distance func...
hhsscms 31207 The induced metric of a cl...
hhssbnOLD 31208 Obsolete version of ~ cssb...
ocval 31209 Value of orthogonal comple...
ocel 31210 Membership in orthogonal c...
shocel 31211 Membership in orthogonal c...
ocsh 31212 The orthogonal complement ...
shocsh 31213 The orthogonal complement ...
ocss 31214 An orthogonal complement i...
shocss 31215 An orthogonal complement i...
occon 31216 Contraposition law for ort...
occon2 31217 Double contraposition for ...
occon2i 31218 Double contraposition for ...
oc0 31219 The zero vector belongs to...
ocorth 31220 Members of a subset and it...
shocorth 31221 Members of a subspace and ...
ococss 31222 Inclusion in complement of...
shococss 31223 Inclusion in complement of...
shorth 31224 Members of orthogonal subs...
ocin 31225 Intersection of a Hilbert ...
occon3 31226 Hilbert lattice contraposi...
ocnel 31227 A nonzero vector in the co...
chocvali 31228 Value of the orthogonal co...
shuni 31229 Two subspaces with trivial...
chocunii 31230 Lemma for uniqueness part ...
pjhthmo 31231 Projection Theorem, unique...
occllem 31232 Lemma for ~ occl . (Contr...
occl 31233 Closure of complement of H...
shoccl 31234 Closure of complement of H...
choccl 31235 Closure of complement of H...
choccli 31236 Closure of ` CH ` orthocom...
shsval 31241 Value of subspace sum of t...
shsss 31242 The subspace sum is a subs...
shsel 31243 Membership in the subspace...
shsel3 31244 Membership in the subspace...
shseli 31245 Membership in subspace sum...
shscli 31246 Closure of subspace sum. ...
shscl 31247 Closure of subspace sum. ...
shscom 31248 Commutative law for subspa...
shsva 31249 Vector sum belongs to subs...
shsel1 31250 A subspace sum contains a ...
shsel2 31251 A subspace sum contains a ...
shsvs 31252 Vector subtraction belongs...
shsub1 31253 Subspace sum is an upper b...
shsub2 31254 Subspace sum is an upper b...
choc0 31255 The orthocomplement of the...
choc1 31256 The orthocomplement of the...
chocnul 31257 Orthogonal complement of t...
shintcli 31258 Closure of intersection of...
shintcl 31259 The intersection of a none...
chintcli 31260 The intersection of a none...
chintcl 31261 The intersection (infimum)...
spanval 31262 Value of the linear span o...
hsupval 31263 Value of supremum of set o...
chsupval 31264 The value of the supremum ...
spancl 31265 The span of a subset of Hi...
elspancl 31266 A member of a span is a ve...
shsupcl 31267 Closure of the subspace su...
hsupcl 31268 Closure of supremum of set...
chsupcl 31269 Closure of supremum of sub...
hsupss 31270 Subset relation for suprem...
chsupss 31271 Subset relation for suprem...
hsupunss 31272 The union of a set of Hilb...
chsupunss 31273 The union of a set of clos...
spanss2 31274 A subset of Hilbert space ...
shsupunss 31275 The union of a set of subs...
spanid 31276 A subspace of Hilbert spac...
spanss 31277 Ordering relationship for ...
spanssoc 31278 The span of a subset of Hi...
sshjval 31279 Value of join for subsets ...
shjval 31280 Value of join in ` SH ` . ...
chjval 31281 Value of join in ` CH ` . ...
chjvali 31282 Value of join in ` CH ` . ...
sshjval3 31283 Value of join for subsets ...
sshjcl 31284 Closure of join for subset...
shjcl 31285 Closure of join in ` SH ` ...
chjcl 31286 Closure of join in ` CH ` ...
shjcom 31287 Commutative law for Hilber...
shless 31288 Subset implies subset of s...
shlej1 31289 Add disjunct to both sides...
shlej2 31290 Add disjunct to both sides...
shincli 31291 Closure of intersection of...
shscomi 31292 Commutative law for subspa...
shsvai 31293 Vector sum belongs to subs...
shsel1i 31294 A subspace sum contains a ...
shsel2i 31295 A subspace sum contains a ...
shsvsi 31296 Vector subtraction belongs...
shunssi 31297 Union is smaller than subs...
shunssji 31298 Union is smaller than Hilb...
shsleji 31299 Subspace sum is smaller th...
shjcomi 31300 Commutative law for join i...
shsub1i 31301 Subspace sum is an upper b...
shsub2i 31302 Subspace sum is an upper b...
shub1i 31303 Hilbert lattice join is an...
shjcli 31304 Closure of ` CH ` join. (...
shjshcli 31305 ` SH ` closure of join. (...
shlessi 31306 Subset implies subset of s...
shlej1i 31307 Add disjunct to both sides...
shlej2i 31308 Add disjunct to both sides...
shslej 31309 Subspace sum is smaller th...
shincl 31310 Closure of intersection of...
shub1 31311 Hilbert lattice join is an...
shub2 31312 A subspace is a subset of ...
shsidmi 31313 Idempotent law for Hilbert...
shslubi 31314 The least upper bound law ...
shlesb1i 31315 Hilbert lattice ordering i...
shsval2i 31316 An alternate way to expres...
shsval3i 31317 An alternate way to expres...
shmodsi 31318 The modular law holds for ...
shmodi 31319 The modular law is implied...
pjhthlem1 31320 Lemma for ~ pjhth . (Cont...
pjhthlem2 31321 Lemma for ~ pjhth . (Cont...
pjhth 31322 Projection Theorem: Any H...
pjhtheu 31323 Projection Theorem: Any H...
pjhfval 31325 The value of the projectio...
pjhval 31326 Value of a projection. (C...
pjpreeq 31327 Equality with a projection...
pjeq 31328 Equality with a projection...
axpjcl 31329 Closure of a projection in...
pjhcl 31330 Closure of a projection in...
omlsilem 31331 Lemma for orthomodular law...
omlsii 31332 Subspace inference form of...
omlsi 31333 Subspace form of orthomodu...
ococi 31334 Complement of complement o...
ococ 31335 Complement of complement o...
dfch2 31336 Alternate definition of th...
ococin 31337 The double complement is t...
hsupval2 31338 Alternate definition of su...
chsupval2 31339 The value of the supremum ...
sshjval2 31340 Value of join in the set o...
chsupid 31341 A subspace is the supremum...
chsupsn 31342 Value of supremum of subse...
shlub 31343 Hilbert lattice join is th...
shlubi 31344 Hilbert lattice join is th...
pjhtheu2 31345 Uniqueness of ` y ` for th...
pjcli 31346 Closure of a projection in...
pjhcli 31347 Closure of a projection in...
pjpjpre 31348 Decomposition of a vector ...
axpjpj 31349 Decomposition of a vector ...
pjclii 31350 Closure of a projection in...
pjhclii 31351 Closure of a projection in...
pjpj0i 31352 Decomposition of a vector ...
pjpji 31353 Decomposition of a vector ...
pjpjhth 31354 Projection Theorem: Any H...
pjpjhthi 31355 Projection Theorem: Any H...
pjop 31356 Orthocomplement projection...
pjpo 31357 Projection in terms of ort...
pjopi 31358 Orthocomplement projection...
pjpoi 31359 Projection in terms of ort...
pjoc1i 31360 Projection of a vector in ...
pjchi 31361 Projection of a vector in ...
pjoccl 31362 The part of a vector that ...
pjoc1 31363 Projection of a vector in ...
pjomli 31364 Subspace form of orthomodu...
pjoml 31365 Subspace form of orthomodu...
pjococi 31366 Proof of orthocomplement t...
pjoc2i 31367 Projection of a vector in ...
pjoc2 31368 Projection of a vector in ...
sh0le 31369 The zero subspace is the s...
ch0le 31370 The zero subspace is the s...
shle0 31371 No subspace is smaller tha...
chle0 31372 No Hilbert lattice element...
chnlen0 31373 A Hilbert lattice element ...
ch0pss 31374 The zero subspace is a pro...
orthin 31375 The intersection of orthog...
ssjo 31376 The lattice join of a subs...
shne0i 31377 A nonzero subspace has a n...
shs0i 31378 Hilbert subspace sum with ...
shs00i 31379 Two subspaces are zero iff...
ch0lei 31380 The closed subspace zero i...
chle0i 31381 No Hilbert closed subspace...
chne0i 31382 A nonzero closed subspace ...
chocini 31383 Intersection of a closed s...
chj0i 31384 Join with lattice zero in ...
chm1i 31385 Meet with lattice one in `...
chjcli 31386 Closure of ` CH ` join. (...
chsleji 31387 Subspace sum is smaller th...
chseli 31388 Membership in subspace sum...
chincli 31389 Closure of Hilbert lattice...
chsscon3i 31390 Hilbert lattice contraposi...
chsscon1i 31391 Hilbert lattice contraposi...
chsscon2i 31392 Hilbert lattice contraposi...
chcon2i 31393 Hilbert lattice contraposi...
chcon1i 31394 Hilbert lattice contraposi...
chcon3i 31395 Hilbert lattice contraposi...
chunssji 31396 Union is smaller than ` CH...
chjcomi 31397 Commutative law for join i...
chub1i 31398 ` CH ` join is an upper bo...
chub2i 31399 ` CH ` join is an upper bo...
chlubi 31400 Hilbert lattice join is th...
chlubii 31401 Hilbert lattice join is th...
chlej1i 31402 Add join to both sides of ...
chlej2i 31403 Add join to both sides of ...
chlej12i 31404 Add join to both sides of ...
chlejb1i 31405 Hilbert lattice ordering i...
chdmm1i 31406 De Morgan's law for meet i...
chdmm2i 31407 De Morgan's law for meet i...
chdmm3i 31408 De Morgan's law for meet i...
chdmm4i 31409 De Morgan's law for meet i...
chdmj1i 31410 De Morgan's law for join i...
chdmj2i 31411 De Morgan's law for join i...
chdmj3i 31412 De Morgan's law for join i...
chdmj4i 31413 De Morgan's law for join i...
chnlei 31414 Equivalent expressions for...
chjassi 31415 Associative law for Hilber...
chj00i 31416 Two Hilbert lattice elemen...
chjoi 31417 The join of a closed subsp...
chj1i 31418 Join with Hilbert lattice ...
chm0i 31419 Meet with Hilbert lattice ...
chm0 31420 Meet with Hilbert lattice ...
shjshsi 31421 Hilbert lattice join equal...
shjshseli 31422 A closed subspace sum equa...
chne0 31423 A nonzero closed subspace ...
chocin 31424 Intersection of a closed s...
chssoc 31425 A closed subspace less tha...
chj0 31426 Join with Hilbert lattice ...
chslej 31427 Subspace sum is smaller th...
chincl 31428 Closure of Hilbert lattice...
chsscon3 31429 Hilbert lattice contraposi...
chsscon1 31430 Hilbert lattice contraposi...
chsscon2 31431 Hilbert lattice contraposi...
chpsscon3 31432 Hilbert lattice contraposi...
chpsscon1 31433 Hilbert lattice contraposi...
chpsscon2 31434 Hilbert lattice contraposi...
chjcom 31435 Commutative law for Hilber...
chub1 31436 Hilbert lattice join is gr...
chub2 31437 Hilbert lattice join is gr...
chlub 31438 Hilbert lattice join is th...
chlej1 31439 Add join to both sides of ...
chlej2 31440 Add join to both sides of ...
chlejb1 31441 Hilbert lattice ordering i...
chlejb2 31442 Hilbert lattice ordering i...
chnle 31443 Equivalent expressions for...
chjo 31444 The join of a closed subsp...
chabs1 31445 Hilbert lattice absorption...
chabs2 31446 Hilbert lattice absorption...
chabs1i 31447 Hilbert lattice absorption...
chabs2i 31448 Hilbert lattice absorption...
chjidm 31449 Idempotent law for Hilbert...
chjidmi 31450 Idempotent law for Hilbert...
chj12i 31451 A rearrangement of Hilbert...
chj4i 31452 Rearrangement of the join ...
chjjdiri 31453 Hilbert lattice join distr...
chdmm1 31454 De Morgan's law for meet i...
chdmm2 31455 De Morgan's law for meet i...
chdmm3 31456 De Morgan's law for meet i...
chdmm4 31457 De Morgan's law for meet i...
chdmj1 31458 De Morgan's law for join i...
chdmj2 31459 De Morgan's law for join i...
chdmj3 31460 De Morgan's law for join i...
chdmj4 31461 De Morgan's law for join i...
chjass 31462 Associative law for Hilber...
chj12 31463 A rearrangement of Hilbert...
chj4 31464 Rearrangement of the join ...
ledii 31465 An ortholattice is distrib...
lediri 31466 An ortholattice is distrib...
lejdii 31467 An ortholattice is distrib...
lejdiri 31468 An ortholattice is distrib...
ledi 31469 An ortholattice is distrib...
spansn0 31470 The span of the singleton ...
span0 31471 The span of the empty set ...
elspani 31472 Membership in the span of ...
spanuni 31473 The span of a union is the...
spanun 31474 The span of a union is the...
sshhococi 31475 The join of two Hilbert sp...
hne0 31476 Hilbert space has a nonzer...
chsup0 31477 The supremum of the empty ...
h1deoi 31478 Membership in orthocomplem...
h1dei 31479 Membership in 1-dimensiona...
h1did 31480 A generating vector belong...
h1dn0 31481 A nonzero vector generates...
h1de2i 31482 Membership in 1-dimensiona...
h1de2bi 31483 Membership in 1-dimensiona...
h1de2ctlem 31484 Lemma for ~ h1de2ci . (Co...
h1de2ci 31485 Membership in 1-dimensiona...
spansni 31486 The span of a singleton in...
elspansni 31487 Membership in the span of ...
spansn 31488 The span of a singleton in...
spansnch 31489 The span of a Hilbert spac...
spansnsh 31490 The span of a Hilbert spac...
spansnchi 31491 The span of a singleton in...
spansnid 31492 A vector belongs to the sp...
spansnmul 31493 A scalar product with a ve...
elspansncl 31494 A member of a span of a si...
elspansn 31495 Membership in the span of ...
elspansn2 31496 Membership in the span of ...
spansncol 31497 The singletons of collinea...
spansneleqi 31498 Membership relation implie...
spansneleq 31499 Membership relation that i...
spansnss 31500 The span of the singleton ...
elspansn3 31501 A member of the span of th...
elspansn4 31502 A span membership conditio...
elspansn5 31503 A vector belonging to both...
spansnss2 31504 The span of the singleton ...
normcan 31505 Cancellation-type law that...
pjspansn 31506 A projection on the span o...
spansnpji 31507 A subset of Hilbert space ...
spanunsni 31508 The span of the union of a...
spanpr 31509 The span of a pair of vect...
h1datomi 31510 A 1-dimensional subspace i...
h1datom 31511 A 1-dimensional subspace i...
cmbr 31513 Binary relation expressing...
pjoml2i 31514 Variation of orthomodular ...
pjoml3i 31515 Variation of orthomodular ...
pjoml4i 31516 Variation of orthomodular ...
pjoml5i 31517 The orthomodular law. Rem...
pjoml6i 31518 An equivalent of the ortho...
cmbri 31519 Binary relation expressing...
cmcmlem 31520 Commutation is symmetric. ...
cmcmi 31521 Commutation is symmetric. ...
cmcm2i 31522 Commutation with orthocomp...
cmcm3i 31523 Commutation with orthocomp...
cmcm4i 31524 Commutation with orthocomp...
cmbr2i 31525 Alternate definition of th...
cmcmii 31526 Commutation is symmetric. ...
cmcm2ii 31527 Commutation with orthocomp...
cmcm3ii 31528 Commutation with orthocomp...
cmbr3i 31529 Alternate definition for t...
cmbr4i 31530 Alternate definition for t...
lecmi 31531 Comparable Hilbert lattice...
lecmii 31532 Comparable Hilbert lattice...
cmj1i 31533 A Hilbert lattice element ...
cmj2i 31534 A Hilbert lattice element ...
cmm1i 31535 A Hilbert lattice element ...
cmm2i 31536 A Hilbert lattice element ...
cmbr3 31537 Alternate definition for t...
cm0 31538 The zero Hilbert lattice e...
cmidi 31539 The commutes relation is r...
pjoml2 31540 Variation of orthomodular ...
pjoml3 31541 Variation of orthomodular ...
pjoml5 31542 The orthomodular law. Rem...
cmcm 31543 Commutation is symmetric. ...
cmcm3 31544 Commutation with orthocomp...
cmcm2 31545 Commutation with orthocomp...
lecm 31546 Comparable Hilbert lattice...
fh1 31547 Foulis-Holland Theorem. I...
fh2 31548 Foulis-Holland Theorem. I...
cm2j 31549 A lattice element that com...
fh1i 31550 Foulis-Holland Theorem. I...
fh2i 31551 Foulis-Holland Theorem. I...
fh3i 31552 Variation of the Foulis-Ho...
fh4i 31553 Variation of the Foulis-Ho...
cm2ji 31554 A lattice element that com...
cm2mi 31555 A lattice element that com...
qlax1i 31556 One of the equations showi...
qlax2i 31557 One of the equations showi...
qlax3i 31558 One of the equations showi...
qlax4i 31559 One of the equations showi...
qlax5i 31560 One of the equations showi...
qlaxr1i 31561 One of the conditions show...
qlaxr2i 31562 One of the conditions show...
qlaxr4i 31563 One of the conditions show...
qlaxr5i 31564 One of the conditions show...
qlaxr3i 31565 A variation of the orthomo...
chscllem1 31566 Lemma for ~ chscl . (Cont...
chscllem2 31567 Lemma for ~ chscl . (Cont...
chscllem3 31568 Lemma for ~ chscl . (Cont...
chscllem4 31569 Lemma for ~ chscl . (Cont...
chscl 31570 The subspace sum of two cl...
osumi 31571 If two closed subspaces of...
osumcori 31572 Corollary of ~ osumi . (C...
osumcor2i 31573 Corollary of ~ osumi , sho...
osum 31574 If two closed subspaces of...
spansnji 31575 The subspace sum of a clos...
spansnj 31576 The subspace sum of a clos...
spansnscl 31577 The subspace sum of a clos...
sumspansn 31578 The sum of two vectors bel...
spansnm0i 31579 The meet of different one-...
nonbooli 31580 A Hilbert lattice with two...
spansncvi 31581 Hilbert space has the cove...
spansncv 31582 Hilbert space has the cove...
5oalem1 31583 Lemma for orthoarguesian l...
5oalem2 31584 Lemma for orthoarguesian l...
5oalem3 31585 Lemma for orthoarguesian l...
5oalem4 31586 Lemma for orthoarguesian l...
5oalem5 31587 Lemma for orthoarguesian l...
5oalem6 31588 Lemma for orthoarguesian l...
5oalem7 31589 Lemma for orthoarguesian l...
5oai 31590 Orthoarguesian law 5OA. Th...
3oalem1 31591 Lemma for 3OA (weak) ortho...
3oalem2 31592 Lemma for 3OA (weak) ortho...
3oalem3 31593 Lemma for 3OA (weak) ortho...
3oalem4 31594 Lemma for 3OA (weak) ortho...
3oalem5 31595 Lemma for 3OA (weak) ortho...
3oalem6 31596 Lemma for 3OA (weak) ortho...
3oai 31597 3OA (weak) orthoarguesian ...
pjorthi 31598 Projection components on o...
pjch1 31599 Property of identity proje...
pjo 31600 The orthogonal projection....
pjcompi 31601 Component of a projection....
pjidmi 31602 A projection is idempotent...
pjadjii 31603 A projection is self-adjoi...
pjaddii 31604 Projection of vector sum i...
pjinormii 31605 The inner product of a pro...
pjmulii 31606 Projection of (scalar) pro...
pjsubii 31607 Projection of vector diffe...
pjsslem 31608 Lemma for subset relations...
pjss2i 31609 Subset relationship for pr...
pjssmii 31610 Projection meet property. ...
pjssge0ii 31611 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 31612 Theorem 4.5(v)<->(vi) of [...
pjcji 31613 The projection on a subspa...
pjadji 31614 A projection is self-adjoi...
pjaddi 31615 Projection of vector sum i...
pjinormi 31616 The inner product of a pro...
pjsubi 31617 Projection of vector diffe...
pjmuli 31618 Projection of scalar produ...
pjige0i 31619 The inner product of a pro...
pjige0 31620 The inner product of a pro...
pjcjt2 31621 The projection on a subspa...
pj0i 31622 The projection of the zero...
pjch 31623 Projection of a vector in ...
pjid 31624 The projection of a vector...
pjvec 31625 The set of vectors belongi...
pjocvec 31626 The set of vectors belongi...
pjocini 31627 Membership of projection i...
pjini 31628 Membership of projection i...
pjjsi 31629 A sufficient condition for...
pjfni 31630 Functionality of a project...
pjrni 31631 The range of a projection....
pjfoi 31632 A projection maps onto its...
pjfi 31633 The mapping of a projectio...
pjvi 31634 The value of a projection ...
pjhfo 31635 A projection maps onto its...
pjrn 31636 The range of a projection....
pjhf 31637 The mapping of a projectio...
pjfn 31638 Functionality of a project...
pjsumi 31639 The projection on a subspa...
pj11i 31640 One-to-one correspondence ...
pjdsi 31641 Vector decomposition into ...
pjds3i 31642 Vector decomposition into ...
pj11 31643 One-to-one correspondence ...
pjmfn 31644 Functionality of the proje...
pjmf1 31645 The projector function map...
pjoi0 31646 The inner product of proje...
pjoi0i 31647 The inner product of proje...
pjopythi 31648 Pythagorean theorem for pr...
pjopyth 31649 Pythagorean theorem for pr...
pjnormi 31650 The norm of the projection...
pjpythi 31651 Pythagorean theorem for pr...
pjneli 31652 If a vector does not belon...
pjnorm 31653 The norm of the projection...
pjpyth 31654 Pythagorean theorem for pr...
pjnel 31655 If a vector does not belon...
pjnorm2 31656 A vector belongs to the su...
mayete3i 31657 Mayet's equation E_3. Par...
mayetes3i 31658 Mayet's equation E^*_3, de...
hosmval 31664 Value of the sum of two Hi...
hommval 31665 Value of the scalar produc...
hodmval 31666 Value of the difference of...
hfsmval 31667 Value of the sum of two Hi...
hfmmval 31668 Value of the scalar produc...
hosval 31669 Value of the sum of two Hi...
homval 31670 Value of the scalar produc...
hodval 31671 Value of the difference of...
hfsval 31672 Value of the sum of two Hi...
hfmval 31673 Value of the scalar produc...
hoscl 31674 Closure of the sum of two ...
homcl 31675 Closure of the scalar prod...
hodcl 31676 Closure of the difference ...
ho0val 31679 Value of the zero Hilbert ...
ho0f 31680 Functionality of the zero ...
df0op2 31681 Alternate definition of Hi...
dfiop2 31682 Alternate definition of Hi...
hoif 31683 Functionality of the Hilbe...
hoival 31684 The value of the Hilbert s...
hoico1 31685 Composition with the Hilbe...
hoico2 31686 Composition with the Hilbe...
hoaddcl 31687 The sum of Hilbert space o...
homulcl 31688 The scalar product of a Hi...
hoeq 31689 Equality of Hilbert space ...
hoeqi 31690 Equality of Hilbert space ...
hoscli 31691 Closure of Hilbert space o...
hodcli 31692 Closure of Hilbert space o...
hocoi 31693 Composition of Hilbert spa...
hococli 31694 Closure of composition of ...
hocofi 31695 Mapping of composition of ...
hocofni 31696 Functionality of compositi...
hoaddcli 31697 Mapping of sum of Hilbert ...
hosubcli 31698 Mapping of difference of H...
hoaddfni 31699 Functionality of sum of Hi...
hosubfni 31700 Functionality of differenc...
hoaddcomi 31701 Commutativity of sum of Hi...
hosubcl 31702 Mapping of difference of H...
hoaddcom 31703 Commutativity of sum of Hi...
hodsi 31704 Relationship between Hilbe...
hoaddassi 31705 Associativity of sum of Hi...
hoadd12i 31706 Commutative/associative la...
hoadd32i 31707 Commutative/associative la...
hocadddiri 31708 Distributive law for Hilbe...
hocsubdiri 31709 Distributive law for Hilbe...
ho2coi 31710 Double composition of Hilb...
hoaddass 31711 Associativity of sum of Hi...
hoadd32 31712 Commutative/associative la...
hoadd4 31713 Rearrangement of 4 terms i...
hocsubdir 31714 Distributive law for Hilbe...
hoaddridi 31715 Sum of a Hilbert space ope...
hodidi 31716 Difference of a Hilbert sp...
ho0coi 31717 Composition of the zero op...
hoid1i 31718 Composition of Hilbert spa...
hoid1ri 31719 Composition of Hilbert spa...
hoaddrid 31720 Sum of a Hilbert space ope...
hodid 31721 Difference of a Hilbert sp...
hon0 31722 A Hilbert space operator i...
hodseqi 31723 Subtraction and addition o...
ho0subi 31724 Subtraction of Hilbert spa...
honegsubi 31725 Relationship between Hilbe...
ho0sub 31726 Subtraction of Hilbert spa...
hosubid1 31727 The zero operator subtract...
honegsub 31728 Relationship between Hilbe...
homullid 31729 An operator equals its sca...
homco1 31730 Associative law for scalar...
homulass 31731 Scalar product associative...
hoadddi 31732 Scalar product distributiv...
hoadddir 31733 Scalar product reverse dis...
homul12 31734 Swap first and second fact...
honegneg 31735 Double negative of a Hilbe...
hosubneg 31736 Relationship between opera...
hosubdi 31737 Scalar product distributiv...
honegdi 31738 Distribution of negative o...
honegsubdi 31739 Distribution of negative o...
honegsubdi2 31740 Distribution of negative o...
hosubsub2 31741 Law for double subtraction...
hosub4 31742 Rearrangement of 4 terms i...
hosubadd4 31743 Rearrangement of 4 terms i...
hoaddsubass 31744 Associative-type law for a...
hoaddsub 31745 Law for operator addition ...
hosubsub 31746 Law for double subtraction...
hosubsub4 31747 Law for double subtraction...
ho2times 31748 Two times a Hilbert space ...
hoaddsubassi 31749 Associativity of sum and d...
hoaddsubi 31750 Law for sum and difference...
hosd1i 31751 Hilbert space operator sum...
hosd2i 31752 Hilbert space operator sum...
hopncani 31753 Hilbert space operator can...
honpcani 31754 Hilbert space operator can...
hosubeq0i 31755 If the difference between ...
honpncani 31756 Hilbert space operator can...
ho01i 31757 A condition implying that ...
ho02i 31758 A condition implying that ...
hoeq1 31759 A condition implying that ...
hoeq2 31760 A condition implying that ...
adjmo 31761 Every Hilbert space operat...
adjsym 31762 Symmetry property of an ad...
eigrei 31763 A necessary and sufficient...
eigre 31764 A necessary and sufficient...
eigposi 31765 A sufficient condition (fi...
eigorthi 31766 A necessary and sufficient...
eigorth 31767 A necessary and sufficient...
nmopval 31785 Value of the norm of a Hil...
elcnop 31786 Property defining a contin...
ellnop 31787 Property defining a linear...
lnopf 31788 A linear Hilbert space ope...
elbdop 31789 Property defining a bounde...
bdopln 31790 A bounded linear Hilbert s...
bdopf 31791 A bounded linear Hilbert s...
nmopsetretALT 31792 The set in the supremum of...
nmopsetretHIL 31793 The set in the supremum of...
nmopsetn0 31794 The set in the supremum of...
nmopxr 31795 The norm of a Hilbert spac...
nmoprepnf 31796 The norm of a Hilbert spac...
nmopgtmnf 31797 The norm of a Hilbert spac...
nmopreltpnf 31798 The norm of a Hilbert spac...
nmopre 31799 The norm of a bounded oper...
elbdop2 31800 Property defining a bounde...
elunop 31801 Property defining a unitar...
elhmop 31802 Property defining a Hermit...
hmopf 31803 A Hermitian operator is a ...
hmopex 31804 The class of Hermitian ope...
nmfnval 31805 Value of the norm of a Hil...
nmfnsetre 31806 The set in the supremum of...
nmfnsetn0 31807 The set in the supremum of...
nmfnxr 31808 The norm of any Hilbert sp...
nmfnrepnf 31809 The norm of a Hilbert spac...
nlfnval 31810 Value of the null space of...
elcnfn 31811 Property defining a contin...
ellnfn 31812 Property defining a linear...
lnfnf 31813 A linear Hilbert space fun...
dfadj2 31814 Alternate definition of th...
funadj 31815 Functionality of the adjoi...
dmadjss 31816 The domain of the adjoint ...
dmadjop 31817 A member of the domain of ...
adjeu 31818 Elementhood in the domain ...
adjval 31819 Value of the adjoint funct...
adjval2 31820 Value of the adjoint funct...
cnvadj 31821 The adjoint function equal...
funcnvadj 31822 The converse of the adjoin...
adj1o 31823 The adjoint function maps ...
dmadjrn 31824 The adjoint of an operator...
eigvecval 31825 The set of eigenvectors of...
eigvalfval 31826 The eigenvalues of eigenve...
specval 31827 The value of the spectrum ...
speccl 31828 The spectrum of an operato...
hhlnoi 31829 The linear operators of Hi...
hhnmoi 31830 The norm of an operator in...
hhbloi 31831 A bounded linear operator ...
hh0oi 31832 The zero operator in Hilbe...
hhcno 31833 The continuous operators o...
hhcnf 31834 The continuous functionals...
dmadjrnb 31835 The adjoint of an operator...
nmoplb 31836 A lower bound for an opera...
nmopub 31837 An upper bound for an oper...
nmopub2tALT 31838 An upper bound for an oper...
nmopub2tHIL 31839 An upper bound for an oper...
nmopge0 31840 The norm of any Hilbert sp...
nmopgt0 31841 A linear Hilbert space ope...
cnopc 31842 Basic continuity property ...
lnopl 31843 Basic linearity property o...
unop 31844 Basic inner product proper...
unopf1o 31845 A unitary operator in Hilb...
unopnorm 31846 A unitary operator is idem...
cnvunop 31847 The inverse (converse) of ...
unopadj 31848 The inverse (converse) of ...
unoplin 31849 A unitary operator is line...
counop 31850 The composition of two uni...
hmop 31851 Basic inner product proper...
hmopre 31852 The inner product of the v...
nmfnlb 31853 A lower bound for a functi...
nmfnleub 31854 An upper bound for the nor...
nmfnleub2 31855 An upper bound for the nor...
nmfnge0 31856 The norm of any Hilbert sp...
elnlfn 31857 Membership in the null spa...
elnlfn2 31858 Membership in the null spa...
cnfnc 31859 Basic continuity property ...
lnfnl 31860 Basic linearity property o...
adjcl 31861 Closure of the adjoint of ...
adj1 31862 Property of an adjoint Hil...
adj2 31863 Property of an adjoint Hil...
adjeq 31864 A property that determines...
adjadj 31865 Double adjoint. Theorem 3...
adjvalval 31866 Value of the value of the ...
unopadj2 31867 The adjoint of a unitary o...
hmopadj 31868 A Hermitian operator is se...
hmdmadj 31869 Every Hermitian operator h...
hmopadj2 31870 An operator is Hermitian i...
hmoplin 31871 A Hermitian operator is li...
brafval 31872 The bra of a vector, expre...
braval 31873 A bra-ket juxtaposition, e...
braadd 31874 Linearity property of bra ...
bramul 31875 Linearity property of bra ...
brafn 31876 The bra function is a func...
bralnfn 31877 The Dirac bra function is ...
bracl 31878 Closure of the bra functio...
bra0 31879 The Dirac bra of the zero ...
brafnmul 31880 Anti-linearity property of...
kbfval 31881 The outer product of two v...
kbop 31882 The outer product of two v...
kbval 31883 The value of the operator ...
kbmul 31884 Multiplication property of...
kbpj 31885 If a vector ` A ` has norm...
eleigvec 31886 Membership in the set of e...
eleigvec2 31887 Membership in the set of e...
eleigveccl 31888 Closure of an eigenvector ...
eigvalval 31889 The eigenvalue of an eigen...
eigvalcl 31890 An eigenvalue is a complex...
eigvec1 31891 Property of an eigenvector...
eighmre 31892 The eigenvalues of a Hermi...
eighmorth 31893 Eigenvectors of a Hermitia...
nmopnegi 31894 Value of the norm of the n...
lnop0 31895 The value of a linear Hilb...
lnopmul 31896 Multiplicative property of...
lnopli 31897 Basic scalar product prope...
lnopfi 31898 A linear Hilbert space ope...
lnop0i 31899 The value of a linear Hilb...
lnopaddi 31900 Additive property of a lin...
lnopmuli 31901 Multiplicative property of...
lnopaddmuli 31902 Sum/product property of a ...
lnopsubi 31903 Subtraction property for a...
lnopsubmuli 31904 Subtraction/product proper...
lnopmulsubi 31905 Product/subtraction proper...
homco2 31906 Move a scalar product out ...
idunop 31907 The identity function (res...
0cnop 31908 The identically zero funct...
0cnfn 31909 The identically zero funct...
idcnop 31910 The identity function (res...
idhmop 31911 The Hilbert space identity...
0hmop 31912 The identically zero funct...
0lnop 31913 The identically zero funct...
0lnfn 31914 The identically zero funct...
nmop0 31915 The norm of the zero opera...
nmfn0 31916 The norm of the identicall...
hmopbdoptHIL 31917 A Hermitian operator is a ...
hoddii 31918 Distributive law for Hilbe...
hoddi 31919 Distributive law for Hilbe...
nmop0h 31920 The norm of any operator o...
idlnop 31921 The identity function (res...
0bdop 31922 The identically zero opera...
adj0 31923 Adjoint of the zero operat...
nmlnop0iALT 31924 A linear operator with a z...
nmlnop0iHIL 31925 A linear operator with a z...
nmlnopgt0i 31926 A linear Hilbert space ope...
nmlnop0 31927 A linear operator with a z...
nmlnopne0 31928 A linear operator with a n...
lnopmi 31929 The scalar product of a li...
lnophsi 31930 The sum of two linear oper...
lnophdi 31931 The difference of two line...
lnopcoi 31932 The composition of two lin...
lnopco0i 31933 The composition of a linea...
lnopeq0lem1 31934 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 31935 Lemma for ~ lnopeq0i . (C...
lnopeq0i 31936 A condition implying that ...
lnopeqi 31937 Two linear Hilbert space o...
lnopeq 31938 Two linear Hilbert space o...
lnopunilem1 31939 Lemma for ~ lnopunii . (C...
lnopunilem2 31940 Lemma for ~ lnopunii . (C...
lnopunii 31941 If a linear operator (whos...
elunop2 31942 An operator is unitary iff...
nmopun 31943 Norm of a unitary Hilbert ...
unopbd 31944 A unitary operator is a bo...
lnophmlem1 31945 Lemma for ~ lnophmi . (Co...
lnophmlem2 31946 Lemma for ~ lnophmi . (Co...
lnophmi 31947 A linear operator is Hermi...
lnophm 31948 A linear operator is Hermi...
hmops 31949 The sum of two Hermitian o...
hmopm 31950 The scalar product of a He...
hmopd 31951 The difference of two Herm...
hmopco 31952 The composition of two com...
nmbdoplbi 31953 A lower bound for the norm...
nmbdoplb 31954 A lower bound for the norm...
nmcexi 31955 Lemma for ~ nmcopexi and ~...
nmcopexi 31956 The norm of a continuous l...
nmcoplbi 31957 A lower bound for the norm...
nmcopex 31958 The norm of a continuous l...
nmcoplb 31959 A lower bound for the norm...
nmophmi 31960 The norm of the scalar pro...
bdophmi 31961 The scalar product of a bo...
lnconi 31962 Lemma for ~ lnopconi and ~...
lnopconi 31963 A condition equivalent to ...
lnopcon 31964 A condition equivalent to ...
lnopcnbd 31965 A linear operator is conti...
lncnopbd 31966 A continuous linear operat...
lncnbd 31967 A continuous linear operat...
lnopcnre 31968 A linear operator is conti...
lnfnli 31969 Basic property of a linear...
lnfnfi 31970 A linear Hilbert space fun...
lnfn0i 31971 The value of a linear Hilb...
lnfnaddi 31972 Additive property of a lin...
lnfnmuli 31973 Multiplicative property of...
lnfnaddmuli 31974 Sum/product property of a ...
lnfnsubi 31975 Subtraction property for a...
lnfn0 31976 The value of a linear Hilb...
lnfnmul 31977 Multiplicative property of...
nmbdfnlbi 31978 A lower bound for the norm...
nmbdfnlb 31979 A lower bound for the norm...
nmcfnexi 31980 The norm of a continuous l...
nmcfnlbi 31981 A lower bound for the norm...
nmcfnex 31982 The norm of a continuous l...
nmcfnlb 31983 A lower bound of the norm ...
lnfnconi 31984 A condition equivalent to ...
lnfncon 31985 A condition equivalent to ...
lnfncnbd 31986 A linear functional is con...
imaelshi 31987 The image of a subspace un...
rnelshi 31988 The range of a linear oper...
nlelshi 31989 The null space of a linear...
nlelchi 31990 The null space of a contin...
riesz3i 31991 A continuous linear functi...
riesz4i 31992 A continuous linear functi...
riesz4 31993 A continuous linear functi...
riesz1 31994 Part 1 of the Riesz repres...
riesz2 31995 Part 2 of the Riesz repres...
cnlnadjlem1 31996 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 31997 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 31998 Lemma for ~ cnlnadji . By...
cnlnadjlem4 31999 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 32000 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 32001 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 32002 Lemma for ~ cnlnadji . He...
cnlnadjlem8 32003 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 32004 Lemma for ~ cnlnadji . ` F...
cnlnadji 32005 Every continuous linear op...
cnlnadjeui 32006 Every continuous linear op...
cnlnadjeu 32007 Every continuous linear op...
cnlnadj 32008 Every continuous linear op...
cnlnssadj 32009 Every continuous linear Hi...
bdopssadj 32010 Every bounded linear Hilbe...
bdopadj 32011 Every bounded linear Hilbe...
adjbdln 32012 The adjoint of a bounded l...
adjbdlnb 32013 An operator is bounded and...
adjbd1o 32014 The mapping of adjoints of...
adjlnop 32015 The adjoint of an operator...
adjsslnop 32016 Every operator with an adj...
nmopadjlei 32017 Property of the norm of an...
nmopadjlem 32018 Lemma for ~ nmopadji . (C...
nmopadji 32019 Property of the norm of an...
adjeq0 32020 An operator is zero iff it...
adjmul 32021 The adjoint of the scalar ...
adjadd 32022 The adjoint of the sum of ...
nmoptrii 32023 Triangle inequality for th...
nmopcoi 32024 Upper bound for the norm o...
bdophsi 32025 The sum of two bounded lin...
bdophdi 32026 The difference between two...
bdopcoi 32027 The composition of two bou...
nmoptri2i 32028 Triangle-type inequality f...
adjcoi 32029 The adjoint of a compositi...
nmopcoadji 32030 The norm of an operator co...
nmopcoadj2i 32031 The norm of an operator co...
nmopcoadj0i 32032 An operator composed with ...
unierri 32033 If we approximate a chain ...
branmfn 32034 The norm of the bra functi...
brabn 32035 The bra of a vector is a b...
rnbra 32036 The set of bras equals the...
bra11 32037 The bra function maps vect...
bracnln 32038 A bra is a continuous line...
cnvbraval 32039 Value of the converse of t...
cnvbracl 32040 Closure of the converse of...
cnvbrabra 32041 The converse bra of the br...
bracnvbra 32042 The bra of the converse br...
bracnlnval 32043 The vector that a continuo...
cnvbramul 32044 Multiplication property of...
kbass1 32045 Dirac bra-ket associative ...
kbass2 32046 Dirac bra-ket associative ...
kbass3 32047 Dirac bra-ket associative ...
kbass4 32048 Dirac bra-ket associative ...
kbass5 32049 Dirac bra-ket associative ...
kbass6 32050 Dirac bra-ket associative ...
leopg 32051 Ordering relation for posi...
leop 32052 Ordering relation for oper...
leop2 32053 Ordering relation for oper...
leop3 32054 Operator ordering in terms...
leoppos 32055 Binary relation defining a...
leoprf2 32056 The ordering relation for ...
leoprf 32057 The ordering relation for ...
leopsq 32058 The square of a Hermitian ...
0leop 32059 The zero operator is a pos...
idleop 32060 The identity operator is a...
leopadd 32061 The sum of two positive op...
leopmuli 32062 The scalar product of a no...
leopmul 32063 The scalar product of a po...
leopmul2i 32064 Scalar product applied to ...
leoptri 32065 The positive operator orde...
leoptr 32066 The positive operator orde...
leopnmid 32067 A bounded Hermitian operat...
nmopleid 32068 A nonzero, bounded Hermiti...
opsqrlem1 32069 Lemma for opsqri . (Contr...
opsqrlem2 32070 Lemma for opsqri . ` F `` ...
opsqrlem3 32071 Lemma for opsqri . (Contr...
opsqrlem4 32072 Lemma for opsqri . (Contr...
opsqrlem5 32073 Lemma for opsqri . (Contr...
opsqrlem6 32074 Lemma for opsqri . (Contr...
pjhmopi 32075 A projector is a Hermitian...
pjlnopi 32076 A projector is a linear op...
pjnmopi 32077 The operator norm of a pro...
pjbdlni 32078 A projector is a bounded l...
pjhmop 32079 A projection is a Hermitia...
hmopidmchi 32080 An idempotent Hermitian op...
hmopidmpji 32081 An idempotent Hermitian op...
hmopidmch 32082 An idempotent Hermitian op...
hmopidmpj 32083 An idempotent Hermitian op...
pjsdii 32084 Distributive law for Hilbe...
pjddii 32085 Distributive law for Hilbe...
pjsdi2i 32086 Chained distributive law f...
pjcoi 32087 Composition of projections...
pjcocli 32088 Closure of composition of ...
pjcohcli 32089 Closure of composition of ...
pjadjcoi 32090 Adjoint of composition of ...
pjcofni 32091 Functionality of compositi...
pjss1coi 32092 Subset relationship for pr...
pjss2coi 32093 Subset relationship for pr...
pjssmi 32094 Projection meet property. ...
pjssge0i 32095 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 32096 Theorem 4.5(v)<->(vi) of [...
pjnormssi 32097 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 32098 Composition of projections...
pjscji 32099 The projection of orthogon...
pjssumi 32100 The projection on a subspa...
pjssposi 32101 Projector ordering can be ...
pjordi 32102 The definition of projecto...
pjssdif2i 32103 The projection subspace of...
pjssdif1i 32104 A necessary and sufficient...
pjimai 32105 The image of a projection....
pjidmcoi 32106 A projection is idempotent...
pjoccoi 32107 Composition of projections...
pjtoi 32108 Subspace sum of projection...
pjoci 32109 Projection of orthocomplem...
pjidmco 32110 A projection operator is i...
dfpjop 32111 Definition of projection o...
pjhmopidm 32112 Two ways to express the se...
elpjidm 32113 A projection operator is i...
elpjhmop 32114 A projection operator is H...
0leopj 32115 A projector is a positive ...
pjadj2 32116 A projector is self-adjoin...
pjadj3 32117 A projector is self-adjoin...
elpjch 32118 Reconstruction of the subs...
elpjrn 32119 Reconstruction of the subs...
pjinvari 32120 A closed subspace ` H ` wi...
pjin1i 32121 Lemma for Theorem 1.22 of ...
pjin2i 32122 Lemma for Theorem 1.22 of ...
pjin3i 32123 Lemma for Theorem 1.22 of ...
pjclem1 32124 Lemma for projection commu...
pjclem2 32125 Lemma for projection commu...
pjclem3 32126 Lemma for projection commu...
pjclem4a 32127 Lemma for projection commu...
pjclem4 32128 Lemma for projection commu...
pjci 32129 Two subspaces commute iff ...
pjcmul1i 32130 A necessary and sufficient...
pjcmul2i 32131 The projection subspace of...
pjcohocli 32132 Closure of composition of ...
pjadj2coi 32133 Adjoint of double composit...
pj2cocli 32134 Closure of double composit...
pj3lem1 32135 Lemma for projection tripl...
pj3si 32136 Stronger projection triple...
pj3i 32137 Projection triplet theorem...
pj3cor1i 32138 Projection triplet corolla...
pjs14i 32139 Theorem S-14 of Watanabe, ...
isst 32142 Property of a state. (Con...
ishst 32143 Property of a complex Hilb...
sticl 32144 ` [ 0 , 1 ] ` closure of t...
stcl 32145 Real closure of the value ...
hstcl 32146 Closure of the value of a ...
hst1a 32147 Unit value of a Hilbert-sp...
hstel2 32148 Properties of a Hilbert-sp...
hstorth 32149 Orthogonality property of ...
hstosum 32150 Orthogonal sum property of...
hstoc 32151 Sum of a Hilbert-space-val...
hstnmoc 32152 Sum of norms of a Hilbert-...
stge0 32153 The value of a state is no...
stle1 32154 The value of a state is le...
hstle1 32155 The norm of the value of a...
hst1h 32156 The norm of a Hilbert-spac...
hst0h 32157 The norm of a Hilbert-spac...
hstpyth 32158 Pythagorean property of a ...
hstle 32159 Ordering property of a Hil...
hstles 32160 Ordering property of a Hil...
hstoh 32161 A Hilbert-space-valued sta...
hst0 32162 A Hilbert-space-valued sta...
sthil 32163 The value of a state at th...
stj 32164 The value of a state on a ...
sto1i 32165 The state of a subspace pl...
sto2i 32166 The state of the orthocomp...
stge1i 32167 If a state is greater than...
stle0i 32168 If a state is less than or...
stlei 32169 Ordering law for states. ...
stlesi 32170 Ordering law for states. ...
stji1i 32171 Join of components of Sasa...
stm1i 32172 State of component of unit...
stm1ri 32173 State of component of unit...
stm1addi 32174 Sum of states whose meet i...
staddi 32175 If the sum of 2 states is ...
stm1add3i 32176 Sum of states whose meet i...
stadd3i 32177 If the sum of 3 states is ...
st0 32178 The state of the zero subs...
strlem1 32179 Lemma for strong state the...
strlem2 32180 Lemma for strong state the...
strlem3a 32181 Lemma for strong state the...
strlem3 32182 Lemma for strong state the...
strlem4 32183 Lemma for strong state the...
strlem5 32184 Lemma for strong state the...
strlem6 32185 Lemma for strong state the...
stri 32186 Strong state theorem. The...
strb 32187 Strong state theorem (bidi...
hstrlem2 32188 Lemma for strong set of CH...
hstrlem3a 32189 Lemma for strong set of CH...
hstrlem3 32190 Lemma for strong set of CH...
hstrlem4 32191 Lemma for strong set of CH...
hstrlem5 32192 Lemma for strong set of CH...
hstrlem6 32193 Lemma for strong set of CH...
hstri 32194 Hilbert space admits a str...
hstrbi 32195 Strong CH-state theorem (b...
largei 32196 A Hilbert lattice admits a...
jplem1 32197 Lemma for Jauch-Piron theo...
jplem2 32198 Lemma for Jauch-Piron theo...
jpi 32199 The function ` S ` , that ...
golem1 32200 Lemma for Godowski's equat...
golem2 32201 Lemma for Godowski's equat...
goeqi 32202 Godowski's equation, shown...
stcltr1i 32203 Property of a strong class...
stcltr2i 32204 Property of a strong class...
stcltrlem1 32205 Lemma for strong classical...
stcltrlem2 32206 Lemma for strong classical...
stcltrthi 32207 Theorem for classically st...
cvbr 32211 Binary relation expressing...
cvbr2 32212 Binary relation expressing...
cvcon3 32213 Contraposition law for the...
cvpss 32214 The covers relation implie...
cvnbtwn 32215 The covers relation implie...
cvnbtwn2 32216 The covers relation implie...
cvnbtwn3 32217 The covers relation implie...
cvnbtwn4 32218 The covers relation implie...
cvnsym 32219 The covers relation is not...
cvnref 32220 The covers relation is not...
cvntr 32221 The covers relation is not...
spansncv2 32222 Hilbert space has the cove...
mdbr 32223 Binary relation expressing...
mdi 32224 Consequence of the modular...
mdbr2 32225 Binary relation expressing...
mdbr3 32226 Binary relation expressing...
mdbr4 32227 Binary relation expressing...
dmdbr 32228 Binary relation expressing...
dmdmd 32229 The dual modular pair prop...
mddmd 32230 The modular pair property ...
dmdi 32231 Consequence of the dual mo...
dmdbr2 32232 Binary relation expressing...
dmdi2 32233 Consequence of the dual mo...
dmdbr3 32234 Binary relation expressing...
dmdbr4 32235 Binary relation expressing...
dmdi4 32236 Consequence of the dual mo...
dmdbr5 32237 Binary relation expressing...
mddmd2 32238 Relationship between modul...
mdsl0 32239 A sublattice condition tha...
ssmd1 32240 Ordering implies the modul...
ssmd2 32241 Ordering implies the modul...
ssdmd1 32242 Ordering implies the dual ...
ssdmd2 32243 Ordering implies the dual ...
dmdsl3 32244 Sublattice mapping for a d...
mdsl3 32245 Sublattice mapping for a m...
mdslle1i 32246 Order preservation of the ...
mdslle2i 32247 Order preservation of the ...
mdslj1i 32248 Join preservation of the o...
mdslj2i 32249 Meet preservation of the r...
mdsl1i 32250 If the modular pair proper...
mdsl2i 32251 If the modular pair proper...
mdsl2bi 32252 If the modular pair proper...
cvmdi 32253 The covering property impl...
mdslmd1lem1 32254 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 32255 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 32256 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 32257 Lemma for ~ mdslmd1i . (C...
mdslmd1i 32258 Preservation of the modula...
mdslmd2i 32259 Preservation of the modula...
mdsldmd1i 32260 Preservation of the dual m...
mdslmd3i 32261 Modular pair conditions th...
mdslmd4i 32262 Modular pair condition tha...
csmdsymi 32263 Cross-symmetry implies M-s...
mdexchi 32264 An exchange lemma for modu...
cvmd 32265 The covering property impl...
cvdmd 32266 The covering property impl...
ela 32268 Atoms in a Hilbert lattice...
elat2 32269 Expanded membership relati...
elatcv0 32270 A Hilbert lattice element ...
atcv0 32271 An atom covers the zero su...
atssch 32272 Atoms are a subset of the ...
atelch 32273 An atom is a Hilbert latti...
atne0 32274 An atom is not the Hilbert...
atss 32275 A lattice element smaller ...
atsseq 32276 Two atoms in a subset rela...
atcveq0 32277 A Hilbert lattice element ...
h1da 32278 A 1-dimensional subspace i...
spansna 32279 The span of the singleton ...
sh1dle 32280 A 1-dimensional subspace i...
ch1dle 32281 A 1-dimensional subspace i...
atom1d 32282 The 1-dimensional subspace...
superpos 32283 Superposition Principle. ...
chcv1 32284 The Hilbert lattice has th...
chcv2 32285 The Hilbert lattice has th...
chjatom 32286 The join of a closed subsp...
shatomici 32287 The lattice of Hilbert sub...
hatomici 32288 The Hilbert lattice is ato...
hatomic 32289 A Hilbert lattice is atomi...
shatomistici 32290 The lattice of Hilbert sub...
hatomistici 32291 ` CH ` is atomistic, i.e. ...
chpssati 32292 Two Hilbert lattice elemen...
chrelati 32293 The Hilbert lattice is rel...
chrelat2i 32294 A consequence of relative ...
cvati 32295 If a Hilbert lattice eleme...
cvbr4i 32296 An alternate way to expres...
cvexchlem 32297 Lemma for ~ cvexchi . (Co...
cvexchi 32298 The Hilbert lattice satisf...
chrelat2 32299 A consequence of relative ...
chrelat3 32300 A consequence of relative ...
chrelat3i 32301 A consequence of the relat...
chrelat4i 32302 A consequence of relative ...
cvexch 32303 The Hilbert lattice satisf...
cvp 32304 The Hilbert lattice satisf...
atnssm0 32305 The meet of a Hilbert latt...
atnemeq0 32306 The meet of distinct atoms...
atssma 32307 The meet with an atom's su...
atcv0eq 32308 Two atoms covering the zer...
atcv1 32309 Two atoms covering the zer...
atexch 32310 The Hilbert lattice satisf...
atomli 32311 An assertion holding in at...
atoml2i 32312 An assertion holding in at...
atordi 32313 An ordering law for a Hilb...
atcvatlem 32314 Lemma for ~ atcvati . (Co...
atcvati 32315 A nonzero Hilbert lattice ...
atcvat2i 32316 A Hilbert lattice element ...
atord 32317 An ordering law for a Hilb...
atcvat2 32318 A Hilbert lattice element ...
chirredlem1 32319 Lemma for ~ chirredi . (C...
chirredlem2 32320 Lemma for ~ chirredi . (C...
chirredlem3 32321 Lemma for ~ chirredi . (C...
chirredlem4 32322 Lemma for ~ chirredi . (C...
chirredi 32323 The Hilbert lattice is irr...
chirred 32324 The Hilbert lattice is irr...
atcvat3i 32325 A condition implying that ...
atcvat4i 32326 A condition implying exist...
atdmd 32327 Two Hilbert lattice elemen...
atmd 32328 Two Hilbert lattice elemen...
atmd2 32329 Two Hilbert lattice elemen...
atabsi 32330 Absorption of an incompara...
atabs2i 32331 Absorption of an incompara...
mdsymlem1 32332 Lemma for ~ mdsymi . (Con...
mdsymlem2 32333 Lemma for ~ mdsymi . (Con...
mdsymlem3 32334 Lemma for ~ mdsymi . (Con...
mdsymlem4 32335 Lemma for ~ mdsymi . This...
mdsymlem5 32336 Lemma for ~ mdsymi . (Con...
mdsymlem6 32337 Lemma for ~ mdsymi . This...
mdsymlem7 32338 Lemma for ~ mdsymi . Lemm...
mdsymlem8 32339 Lemma for ~ mdsymi . Lemm...
mdsymi 32340 M-symmetry of the Hilbert ...
mdsym 32341 M-symmetry of the Hilbert ...
dmdsym 32342 Dual M-symmetry of the Hil...
atdmd2 32343 Two Hilbert lattice elemen...
sumdmdii 32344 If the subspace sum of two...
cmmdi 32345 Commuting subspaces form a...
cmdmdi 32346 Commuting subspaces form a...
sumdmdlem 32347 Lemma for ~ sumdmdi . The...
sumdmdlem2 32348 Lemma for ~ sumdmdi . (Co...
sumdmdi 32349 The subspace sum of two Hi...
dmdbr4ati 32350 Dual modular pair property...
dmdbr5ati 32351 Dual modular pair property...
dmdbr6ati 32352 Dual modular pair property...
dmdbr7ati 32353 Dual modular pair property...
mdoc1i 32354 Orthocomplements form a mo...
mdoc2i 32355 Orthocomplements form a mo...
dmdoc1i 32356 Orthocomplements form a du...
dmdoc2i 32357 Orthocomplements form a du...
mdcompli 32358 A condition equivalent to ...
dmdcompli 32359 A condition equivalent to ...
mddmdin0i 32360 If dual modular implies mo...
cdjreui 32361 A member of the sum of dis...
cdj1i 32362 Two ways to express " ` A ...
cdj3lem1 32363 A property of " ` A ` and ...
cdj3lem2 32364 Lemma for ~ cdj3i . Value...
cdj3lem2a 32365 Lemma for ~ cdj3i . Closu...
cdj3lem2b 32366 Lemma for ~ cdj3i . The f...
cdj3lem3 32367 Lemma for ~ cdj3i . Value...
cdj3lem3a 32368 Lemma for ~ cdj3i . Closu...
cdj3lem3b 32369 Lemma for ~ cdj3i . The s...
cdj3i 32370 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 32371 (_This theorem is a dummy ...
sa-abvi 32372 A theorem about the univer...
xfree 32373 A partial converse to ~ 19...
xfree2 32374 A partial converse to ~ 19...
addltmulALT 32375 A proof readability experi...
ad11antr 32376 Deduction adding 11 conjun...
simp-12l 32377 Simplification of a conjun...
simp-12r 32378 Simplification of a conjun...
an42ds 32379 Inference exchanging the l...
an52ds 32380 Inference exchanging the l...
an62ds 32381 Inference exchanging the l...
an72ds 32382 Inference exchanging the l...
an82ds 32383 Inference exchanging the l...
syl22anbrc 32384 Syllogism inference. (Con...
bian1d 32385 Adding a superfluous conju...
bian1dOLD 32386 Obsolete version of ~ bian...
orim12da 32387 Deduce a disjunction from ...
or3di 32388 Distributive law for disju...
or3dir 32389 Distributive law for disju...
3o1cs 32390 Deduction eliminating disj...
3o2cs 32391 Deduction eliminating disj...
3o3cs 32392 Deduction eliminating disj...
13an22anass 32393 Associative law for four c...
sbc2iedf 32394 Conversion of implicit sub...
rspc2daf 32395 Double restricted speciali...
ralcom4f 32396 Commutation of restricted ...
rexcom4f 32397 Commutation of restricted ...
19.9d2rf 32398 A deduction version of one...
19.9d2r 32399 A deduction version of one...
r19.29ffa 32400 A commonly used pattern ba...
n0limd 32401 Deduction rule for nonempt...
reu6dv 32402 A condition which implies ...
eqtrb 32403 A transposition of equalit...
eqelbid 32404 A variable elimination law...
opsbc2ie 32405 Conversion of implicit sub...
opreu2reuALT 32406 Correspondence between uni...
2reucom 32409 Double restricted existent...
2reu2rex1 32410 Double restricted existent...
2reureurex 32411 Double restricted existent...
2reu2reu2 32412 Double restricted existent...
opreu2reu1 32413 Equivalent definition of t...
sq2reunnltb 32414 There exists a unique deco...
addsqnot2reu 32415 For each complex number ` ...
sbceqbidf 32416 Equality theorem for class...
sbcies 32417 A special version of class...
mo5f 32418 Alternate definition of "a...
nmo 32419 Negation of "at most one"....
reuxfrdf 32420 Transfer existential uniqu...
rexunirn 32421 Restricted existential qua...
rmoxfrd 32422 Transfer "at most one" res...
rmoun 32423 "At most one" restricted e...
rmounid 32424 A case where an "at most o...
riotaeqbidva 32425 Equivalent wff's yield equ...
dmrab 32426 Domain of a restricted cla...
difrab2 32427 Difference of two restrict...
rabexgfGS 32428 Separation Scheme in terms...
rabsnel 32429 Truth implied by equality ...
rabsspr 32430 Conditions for a restricte...
rabsstp 32431 Conditions for a restricte...
3unrab 32432 Union of three restricted ...
foresf1o 32433 From a surjective function...
rabfodom 32434 Domination relation for re...
rabrexfi 32435 Conditions for a class abs...
abrexdomjm 32436 An indexed set is dominate...
abrexdom2jm 32437 An indexed set is dominate...
abrexexd 32438 Existence of a class abstr...
elabreximd 32439 Class substitution in an i...
elabreximdv 32440 Class substitution in an i...
abrexss 32441 A necessary condition for ...
nelun 32442 Negated membership for a u...
snsssng 32443 If a singleton is a subset...
n0nsnel 32444 If a class with one elemen...
inin 32445 Intersection with an inter...
difininv 32446 Condition for the intersec...
difeq 32447 Rewriting an equation with...
eqdif 32448 If both set differences of...
indifbi 32449 Two ways to express equali...
diffib 32450 Case where ~ diffi is a bi...
difxp1ss 32451 Difference law for Cartesi...
difxp2ss 32452 Difference law for Cartesi...
indifundif 32453 A remarkable equation with...
elpwincl1 32454 Closure of intersection wi...
elpwdifcl 32455 Closure of class differenc...
elpwiuncl 32456 Closure of indexed union w...
elpreq 32457 Equality wihin a pair. (C...
prssad 32458 If a pair is a subset of a...
prssbd 32459 If a pair is a subset of a...
nelpr 32460 A set ` A ` not in a pair ...
inpr0 32461 Rewrite an empty intersect...
neldifpr1 32462 The first element of a pai...
neldifpr2 32463 The second element of a pa...
unidifsnel 32464 The other element of a pai...
unidifsnne 32465 The other element of a pai...
tpssg 32466 An unordered triple of ele...
tpssd 32467 Deduction version of tpssi...
tpssad 32468 If an ordered triple is a ...
tpssbd 32469 If an ordered triple is a ...
tpsscd 32470 If an ordered triple is a ...
ifeqeqx 32471 An equality theorem tailor...
elimifd 32472 Elimination of a condition...
elim2if 32473 Elimination of two conditi...
elim2ifim 32474 Elimination of two conditi...
ifeq3da 32475 Given an expression ` C ` ...
ifnetrue 32476 Deduce truth from a condit...
ifnefals 32477 Deduce falsehood from a co...
ifnebib 32478 The converse of ~ ifbi hol...
uniinn0 32479 Sufficient and necessary c...
uniin1 32480 Union of intersection. Ge...
uniin2 32481 Union of intersection. Ge...
difuncomp 32482 Express a class difference...
elpwunicl 32483 Closure of a set union wit...
cbviunf 32484 Rule used to change the bo...
iuneq12daf 32485 Equality deduction for ind...
iunin1f 32486 Indexed union of intersect...
ssiun3 32487 Subset equivalence for an ...
ssiun2sf 32488 Subset relationship for an...
iuninc 32489 The union of an increasing...
iundifdifd 32490 The intersection of a set ...
iundifdif 32491 The intersection of a set ...
iunrdx 32492 Re-index an indexed union....
iunpreima 32493 Preimage of an indexed uni...
iunrnmptss 32494 A subset relation for an i...
iunxunsn 32495 Appending a set to an inde...
iunxunpr 32496 Appending two sets to an i...
iunxpssiun1 32497 Provide an upper bound for...
iinabrex 32498 Rewriting an indexed inter...
disjnf 32499 In case ` x ` is not free ...
cbvdisjf 32500 Change bound variables in ...
disjss1f 32501 A subset of a disjoint col...
disjeq1f 32502 Equality theorem for disjo...
disjxun0 32503 Simplify a disjoint union....
disjdifprg 32504 A trivial partition into a...
disjdifprg2 32505 A trivial partition of a s...
disji2f 32506 Property of a disjoint col...
disjif 32507 Property of a disjoint col...
disjorf 32508 Two ways to say that a col...
disjorsf 32509 Two ways to say that a col...
disjif2 32510 Property of a disjoint col...
disjabrex 32511 Rewriting a disjoint colle...
disjabrexf 32512 Rewriting a disjoint colle...
disjpreima 32513 A preimage of a disjoint s...
disjrnmpt 32514 Rewriting a disjoint colle...
disjin 32515 If a collection is disjoin...
disjin2 32516 If a collection is disjoin...
disjxpin 32517 Derive a disjunction over ...
iundisjf 32518 Rewrite a countable union ...
iundisj2f 32519 A disjoint union is disjoi...
disjrdx 32520 Re-index a disjunct collec...
disjex 32521 Two ways to say that two c...
disjexc 32522 A variant of ~ disjex , ap...
disjunsn 32523 Append an element to a dis...
disjun0 32524 Adding the empty element p...
disjiunel 32525 A set of elements B of a d...
disjuniel 32526 A set of elements B of a d...
xpdisjres 32527 Restriction of a constant ...
opeldifid 32528 Ordered pair elementhood o...
difres 32529 Case when class difference...
imadifxp 32530 Image of the difference wi...
relfi 32531 A relation (set) is finite...
0res 32532 Restriction of the empty f...
fcoinver 32533 Build an equivalence relat...
fcoinvbr 32534 Binary relation for the eq...
brab2d 32535 Expressing that two sets a...
brabgaf 32536 The law of concretion for ...
brelg 32537 Two things in a binary rel...
br8d 32538 Substitution for an eight-...
opabdm 32539 Domain of an ordered-pair ...
opabrn 32540 Range of an ordered-pair c...
opabssi 32541 Sufficient condition for a...
opabid2ss 32542 One direction of ~ opabid2...
ssrelf 32543 A subclass relationship de...
eqrelrd2 32544 A version of ~ eqrelrdv2 w...
erbr3b 32545 Biconditional for equivale...
iunsnima 32546 Image of a singleton by an...
iunsnima2 32547 Version of ~ iunsnima with...
ac6sf2 32548 Alternate version of ~ ac6...
ac6mapd 32549 Axiom of choice equivalent...
fnresin 32550 Restriction of a function ...
f1o3d 32551 Describe an implicit one-t...
eldmne0 32552 A function of nonempty dom...
f1rnen 32553 Equinumerosity of the rang...
rinvf1o 32554 Sufficient conditions for ...
fresf1o 32555 Conditions for a restricti...
nfpconfp 32556 The set of fixed points of...
fmptco1f1o 32557 The action of composing (t...
cofmpt2 32558 Express composition of a m...
f1mptrn 32559 Express injection for a ma...
dfimafnf 32560 Alternate definition of th...
funimass4f 32561 Membership relation for th...
suppss2f 32562 Show that the support of a...
ofrn 32563 The range of the function ...
ofrn2 32564 The range of the function ...
off2 32565 The function operation pro...
ofresid 32566 Applying an operation rest...
unipreima 32567 Preimage of a class union....
opfv 32568 Value of a function produc...
xppreima 32569 The preimage of a Cartesia...
2ndimaxp 32570 Image of a cartesian produ...
dmdju 32571 Domain of a disjoint union...
djussxp2 32572 Stronger version of ~ djus...
2ndresdju 32573 The ` 2nd ` function restr...
2ndresdjuf1o 32574 The ` 2nd ` function restr...
xppreima2 32575 The preimage of a Cartesia...
abfmpunirn 32576 Membership in a union of a...
rabfmpunirn 32577 Membership in a union of a...
abfmpeld 32578 Membership in an element o...
abfmpel 32579 Membership in an element o...
fmptdF 32580 Domain and codomain of the...
fmptcof2 32581 Composition of two functio...
fcomptf 32582 Express composition of two...
acunirnmpt 32583 Axiom of choice for the un...
acunirnmpt2 32584 Axiom of choice for the un...
acunirnmpt2f 32585 Axiom of choice for the un...
aciunf1lem 32586 Choice in an index union. ...
aciunf1 32587 Choice in an index union. ...
ofoprabco 32588 Function operation as a co...
ofpreima 32589 Express the preimage of a ...
ofpreima2 32590 Express the preimage of a ...
funcnvmpt 32591 Condition for a function i...
funcnv5mpt 32592 Two ways to say that a fun...
funcnv4mpt 32593 Two ways to say that a fun...
preimane 32594 Different elements have di...
fnpreimac 32595 Choose a set ` x ` contain...
fgreu 32596 Exactly one point of a fun...
fcnvgreu 32597 If the converse of a relat...
rnmposs 32598 The range of an operation ...
mptssALT 32599 Deduce subset relation of ...
dfcnv2 32600 Alternative definition of ...
mpomptxf 32601 Express a two-argument fun...
of0r 32602 Function operation with th...
elmaprd 32603 Deduction associated with ...
suppovss 32604 A bound for the support of...
elsuppfnd 32605 Deduce membership in the s...
fisuppov1 32606 Formula building theorem f...
suppun2 32607 The support of a union is ...
fdifsupp 32608 Express the support of a f...
suppiniseg 32609 Relation between the suppo...
fsuppinisegfi 32610 The initial segment ` ( ``...
fressupp 32611 The restriction of a funct...
fdifsuppconst 32612 A function is a zero const...
ressupprn 32613 The range of a function re...
supppreima 32614 Express the support of a f...
fsupprnfi 32615 Finite support implies fin...
mptiffisupp 32616 Conditions for a mapping f...
cosnopne 32617 Composition of two ordered...
cosnop 32618 Composition of two ordered...
cnvprop 32619 Converse of a pair of orde...
brprop 32620 Binary relation for a pair...
mptprop 32621 Rewrite pairs of ordered p...
coprprop 32622 Composition of two pairs o...
fmptunsnop 32623 Two ways to express a func...
gtiso 32624 Two ways to write a strict...
isoun 32625 Infer an isomorphism from ...
disjdsct 32626 A disjoint collection is d...
df1stres 32627 Definition for a restricti...
df2ndres 32628 Definition for a restricti...
1stpreimas 32629 The preimage of a singleto...
1stpreima 32630 The preimage by ` 1st ` is...
2ndpreima 32631 The preimage by ` 2nd ` is...
curry2ima 32632 The image of a curried fun...
preiman0 32633 The preimage of a nonempty...
intimafv 32634 The intersection of an ima...
imafi2 32635 The image by a finite set ...
unifi3 32636 If a union is finite, then...
snct 32637 A singleton is countable. ...
prct 32638 An unordered pair is count...
mpocti 32639 An operation is countable ...
abrexct 32640 An image set of a countabl...
mptctf 32641 A countable mapping set is...
abrexctf 32642 An image set of a countabl...
padct 32643 Index a countable set with...
f1od2 32644 Sufficient condition for a...
fcobij 32645 Composing functions with a...
fcobijfs 32646 Composing finitely support...
suppss3 32647 Deduce a function's suppor...
fsuppcurry1 32648 Finite support of a currie...
fsuppcurry2 32649 Finite support of a currie...
offinsupp1 32650 Finite support for a funct...
ffs2 32651 Rewrite a function's suppo...
ffsrn 32652 The range of a finitely su...
resf1o 32653 Restriction of functions t...
maprnin 32654 Restricting the range of t...
fpwrelmapffslem 32655 Lemma for ~ fpwrelmapffs ....
fpwrelmap 32656 Define a canonical mapping...
fpwrelmapffs 32657 Define a canonical mapping...
sgnval2 32658 Value of the signum of a r...
creq0 32659 The real representation of...
1nei 32660 The imaginary unit ` _i ` ...
1neg1t1neg1 32661 An integer unit times itse...
nnmulge 32662 Multiplying by a positive ...
submuladdd 32663 The product of a differenc...
muldivdid 32664 Distribution of division o...
binom2subadd 32665 The difference of the squa...
cjsubd 32666 Complex conjugate distribu...
re0cj 32667 The conjugate of a pure im...
receqid 32668 Real numbers equal to thei...
pythagreim 32669 A simplified version of th...
efiargd 32670 The exponential of the "ar...
arginv 32671 The argument of the invers...
argcj 32672 The argument of the conjug...
quad3d 32673 Variant of quadratic equat...
lt2addrd 32674 If the right-hand side of ...
xrlelttric 32675 Trichotomy law for extende...
xaddeq0 32676 Two extended reals which a...
rexmul2 32677 If the result ` A ` of an ...
xrinfm 32678 The extended real numbers ...
le2halvesd 32679 A sum is less than the who...
xraddge02 32680 A number is less than or e...
xrge0addge 32681 A number is less than or e...
xlt2addrd 32682 If the right-hand side of ...
xrge0infss 32683 Any subset of nonnegative ...
xrge0infssd 32684 Inequality deduction for i...
xrge0addcld 32685 Nonnegative extended reals...
xrge0subcld 32686 Condition for closure of n...
infxrge0lb 32687 A member of a set of nonne...
infxrge0glb 32688 The infimum of a set of no...
infxrge0gelb 32689 The infimum of a set of no...
xrofsup 32690 The supremum is preserved ...
supxrnemnf 32691 The supremum of a nonempty...
xnn0gt0 32692 Nonzero extended nonnegati...
xnn01gt 32693 An extended nonnegative in...
nn0xmulclb 32694 Finite multiplication in t...
xnn0nn0d 32695 Conditions for an extended...
xnn0nnd 32696 Conditions for an extended...
joiniooico 32697 Disjoint joining an open i...
ubico 32698 A right-open interval does...
xeqlelt 32699 Equality in terms of 'less...
eliccelico 32700 Relate elementhood to a cl...
elicoelioo 32701 Relate elementhood to a cl...
iocinioc2 32702 Intersection between two o...
xrdifh 32703 Class difference of a half...
iocinif 32704 Relate intersection of two...
difioo 32705 The difference between two...
difico 32706 The difference between two...
uzssico 32707 Upper integer sets are a s...
fz2ssnn0 32708 A finite set of sequential...
nndiffz1 32709 Upper set of the positive ...
ssnnssfz 32710 For any finite subset of `...
fzm1ne1 32711 Elementhood of an integer ...
fzspl 32712 Split the last element of ...
fzdif2 32713 Split the last element of ...
fzodif2 32714 Split the last element of ...
fzodif1 32715 Set difference of two half...
fzsplit3 32716 Split a finite interval of...
elfzodif0 32717 If an integer ` M ` is in ...
bcm1n 32718 The proportion of one bino...
iundisjfi 32719 Rewrite a countable union ...
iundisj2fi 32720 A disjoint union is disjoi...
iundisjcnt 32721 Rewrite a countable union ...
iundisj2cnt 32722 A countable disjoint union...
fzone1 32723 Elementhood in a half-open...
fzom1ne1 32724 Elementhood in a half-open...
f1ocnt 32725 Given a countable set ` A ...
fz1nnct 32726 NN and integer ranges star...
fz1nntr 32727 NN and integer ranges star...
fzo0opth 32728 Equality for a half open i...
nn0difffzod 32729 A nonnegative integer that...
suppssnn0 32730 Show that the support of a...
hashunif 32731 The cardinality of a disjo...
hashxpe 32732 The size of the Cartesian ...
hashgt1 32733 Restate "set contains at l...
hashpss 32734 The size of a proper subse...
hashne0 32735 Deduce that the size of a ...
elq2 32736 Elementhood in the rationa...
znumd 32737 Numerator of an integer. ...
zdend 32738 Denominator of an integer....
numdenneg 32739 Numerator and denominator ...
divnumden2 32740 Calculate the reduced form...
expgt0b 32741 A real number ` A ` raised...
nn0split01 32742 Split 0 and 1 from the non...
nn0disj01 32743 The pair ` { 0 , 1 } ` doe...
nnindf 32744 Principle of Mathematical ...
nn0min 32745 Extracting the minimum pos...
subne0nn 32746 A nonnegative difference i...
ltesubnnd 32747 Subtracting an integer num...
fprodeq02 32748 If one of the factors is z...
pr01ssre 32749 The range of the indicator...
fprodex01 32750 A product of factors equal...
prodpr 32751 A product over a pair is t...
prodtp 32752 A product over a triple is...
fsumub 32753 An upper bound for a term ...
fsumiunle 32754 Upper bound for a sum of n...
dfdec100 32755 Split the hundreds from a ...
sgncl 32756 Closure of the signum. (C...
sgnclre 32757 Closure of the signum. (C...
sgnneg 32758 Negation of the signum. (...
sgn3da 32759 A conditional containing a...
sgnmul 32760 Signum of a product. (Con...
sgnmulrp2 32761 Multiplication by a positi...
sgnsub 32762 Subtraction of a number of...
sgnnbi 32763 Negative signum. (Contrib...
sgnpbi 32764 Positive signum. (Contrib...
sgn0bi 32765 Zero signum. (Contributed...
sgnsgn 32766 Signum is idempotent. (Co...
sgnmulsgn 32767 If two real numbers are of...
sgnmulsgp 32768 If two real numbers are of...
nexple 32769 A lower bound for an expon...
2exple2exp 32770 If a nonnegative integer `...
expevenpos 32771 Even powers are positive. ...
oexpled 32772 Odd power monomials are mo...
indv 32775 Value of the indicator fun...
indval 32776 Value of the indicator fun...
indval2 32777 Alternate value of the ind...
indf 32778 An indicator function as a...
indfval 32779 Value of the indicator fun...
ind1 32780 Value of the indicator fun...
ind0 32781 Value of the indicator fun...
ind1a 32782 Value of the indicator fun...
indpi1 32783 Preimage of the singleton ...
indsum 32784 Finite sum of a product wi...
indsumin 32785 Finite sum of a product wi...
prodindf 32786 The product of indicators ...
indf1o 32787 The bijection between a po...
indpreima 32788 A function with range ` { ...
indf1ofs 32789 The bijection between fini...
indsupp 32790 The support of the indicat...
dp2eq1 32793 Equality theorem for the d...
dp2eq2 32794 Equality theorem for the d...
dp2eq1i 32795 Equality theorem for the d...
dp2eq2i 32796 Equality theorem for the d...
dp2eq12i 32797 Equality theorem for the d...
dp20u 32798 Add a zero in the tenths (...
dp20h 32799 Add a zero in the unit pla...
dp2cl 32800 Closure for the decimal fr...
dp2clq 32801 Closure for a decimal frac...
rpdp2cl 32802 Closure for a decimal frac...
rpdp2cl2 32803 Closure for a decimal frac...
dp2lt10 32804 Decimal fraction builds re...
dp2lt 32805 Comparing two decimal frac...
dp2ltsuc 32806 Comparing a decimal fracti...
dp2ltc 32807 Comparing two decimal expa...
dpval 32810 Define the value of the de...
dpcl 32811 Prove that the closure of ...
dpfrac1 32812 Prove a simple equivalence...
dpval2 32813 Value of the decimal point...
dpval3 32814 Value of the decimal point...
dpmul10 32815 Multiply by 10 a decimal e...
decdiv10 32816 Divide a decimal number by...
dpmul100 32817 Multiply by 100 a decimal ...
dp3mul10 32818 Multiply by 10 a decimal e...
dpmul1000 32819 Multiply by 1000 a decimal...
dpval3rp 32820 Value of the decimal point...
dp0u 32821 Add a zero in the tenths p...
dp0h 32822 Remove a zero in the units...
rpdpcl 32823 Closure of the decimal poi...
dplt 32824 Comparing two decimal expa...
dplti 32825 Comparing a decimal expans...
dpgti 32826 Comparing a decimal expans...
dpltc 32827 Comparing two decimal inte...
dpexpp1 32828 Add one zero to the mantis...
0dp2dp 32829 Multiply by 10 a decimal e...
dpadd2 32830 Addition with one decimal,...
dpadd 32831 Addition with one decimal....
dpadd3 32832 Addition with two decimals...
dpmul 32833 Multiplication with one de...
dpmul4 32834 An upper bound to multipli...
threehalves 32835 Example theorem demonstrat...
1mhdrd 32836 Example theorem demonstrat...
xdivval 32839 Value of division: the (un...
xrecex 32840 Existence of reciprocal of...
xmulcand 32841 Cancellation law for exten...
xreceu 32842 Existential uniqueness of ...
xdivcld 32843 Closure law for the extend...
xdivcl 32844 Closure law for the extend...
xdivmul 32845 Relationship between divis...
rexdiv 32846 The extended real division...
xdivrec 32847 Relationship between divis...
xdivid 32848 A number divided by itself...
xdiv0 32849 Division into zero is zero...
xdiv0rp 32850 Division into zero is zero...
eliccioo 32851 Membership in a closed int...
elxrge02 32852 Elementhood in the set of ...
xdivpnfrp 32853 Plus infinity divided by a...
rpxdivcld 32854 Closure law for extended d...
xrpxdivcld 32855 Closure law for extended d...
wrdres 32856 Condition for the restrict...
wrdsplex 32857 Existence of a split of a ...
wrdfsupp 32858 A word has finite support....
wrdpmcl 32859 Closure of a word with per...
pfx1s2 32860 The prefix of length 1 of ...
pfxrn2 32861 The range of a prefix of a...
pfxrn3 32862 Express the range of a pre...
pfxf1 32863 Condition for a prefix to ...
s1f1 32864 Conditions for a length 1 ...
s2rnOLD 32865 Obsolete version of ~ s2rn...
s2f1 32866 Conditions for a length 2 ...
s3rnOLD 32867 Obsolete version of ~ s2rn...
s3f1 32868 Conditions for a length 3 ...
s3clhash 32869 Closure of the words of le...
ccatf1 32870 Conditions for a concatena...
ccatdmss 32871 The domain of a concatenat...
pfxlsw2ccat 32872 Reconstruct a word from it...
ccatws1f1o 32873 Conditions for the concate...
ccatws1f1olast 32874 Two ways to reorder symbol...
wrdt2ind 32875 Perform an induction over ...
swrdrn2 32876 The range of a subword is ...
swrdrn3 32877 Express the range of a sub...
swrdf1 32878 Condition for a subword to...
swrdrndisj 32879 Condition for the range of...
splfv3 32880 Symbols to the right of a ...
1cshid 32881 Cyclically shifting a sing...
cshw1s2 32882 Cyclically shifting a leng...
cshwrnid 32883 Cyclically shifting a word...
cshf1o 32884 Condition for the cyclic s...
ressplusf 32885 The group operation functi...
ressnm 32886 The norm in a restricted s...
abvpropd2 32887 Weaker version of ~ abvpro...
oppgle 32888 less-than relation of an o...
oppglt 32889 less-than relation of an o...
ressprs 32890 The restriction of a prose...
posrasymb 32891 A poset ordering is asymet...
resspos 32892 The restriction of a Poset...
resstos 32893 The restriction of a Toset...
odutos 32894 Being a toset is a self-du...
tlt2 32895 In a Toset, two elements m...
tlt3 32896 In a Toset, two elements m...
trleile 32897 In a Toset, two elements m...
toslublem 32898 Lemma for ~ toslub and ~ x...
toslub 32899 In a toset, the lowest upp...
tosglblem 32900 Lemma for ~ tosglb and ~ x...
tosglb 32901 Same theorem as ~ toslub ,...
clatp0cl 32902 The poset zero of a comple...
clatp1cl 32903 The poset one of a complet...
mntoval 32908 Operation value of the mon...
ismnt 32909 Express the statement " ` ...
ismntd 32910 Property of being a monoto...
mntf 32911 A monotone function is a f...
mgcoval 32912 Operation value of the mon...
mgcval 32913 Monotone Galois connection...
mgcf1 32914 The lower adjoint ` F ` of...
mgcf2 32915 The upper adjoint ` G ` of...
mgccole1 32916 An inequality for the kern...
mgccole2 32917 Inequality for the closure...
mgcmnt1 32918 The lower adjoint ` F ` of...
mgcmnt2 32919 The upper adjoint ` G ` of...
mgcmntco 32920 A Galois connection like s...
dfmgc2lem 32921 Lemma for dfmgc2, backward...
dfmgc2 32922 Alternate definition of th...
mgcmnt1d 32923 Galois connection implies ...
mgcmnt2d 32924 Galois connection implies ...
mgccnv 32925 The inverse Galois connect...
pwrssmgc 32926 Given a function ` F ` , e...
mgcf1olem1 32927 Property of a Galois conne...
mgcf1olem2 32928 Property of a Galois conne...
mgcf1o 32929 Given a Galois connection,...
ischn 32932 Property of being a chain....
chnwrd 32933 A chain is an ordered sequ...
chnltm1 32934 Basic property of a chain....
pfxchn 32935 A prefix of a chain is sti...
s1chn 32936 A singleton word is always...
chnind 32937 Induction over a chain. S...
chnub 32938 In a chain, the last eleme...
chnlt 32939 Compare any two elements i...
chnso 32940 A chain induces a total or...
chnccats1 32941 Extend a chain with a sing...
xrs0 32944 The zero of the extended r...
xrslt 32945 The "strictly less than" r...
xrsinvgval 32946 The inversion operation in...
xrsmulgzz 32947 The "multiple" function in...
xrstos 32948 The extended real numbers ...
xrsclat 32949 The extended real numbers ...
xrsp0 32950 The poset 0 of the extende...
xrsp1 32951 The poset 1 of the extende...
xrge0base 32952 The base of the extended n...
xrge00 32953 The zero of the extended n...
xrge0plusg 32954 The additive law of the ex...
xrge0le 32955 The "less than or equal to...
xrge0mulgnn0 32956 The group multiple functio...
xrge0addass 32957 Associativity of extended ...
xrge0addgt0 32958 The sum of nonnegative and...
xrge0adddir 32959 Right-distributivity of ex...
xrge0adddi 32960 Left-distributivity of ext...
xrge0npcan 32961 Extended nonnegative real ...
fsumrp0cl 32962 Closure of a finite sum of...
mndcld 32963 Closure of the operation o...
mndassd 32964 A monoid operation is asso...
mndlrinv 32965 In a monoid, if an element...
mndlrinvb 32966 In a monoid, if an element...
mndlactf1 32967 If an element ` X ` of a m...
mndlactfo 32968 An element ` X ` of a mono...
mndractf1 32969 If an element ` X ` of a m...
mndractfo 32970 An element ` X ` of a mono...
mndlactf1o 32971 An element ` X ` of a mono...
mndractf1o 32972 An element ` X ` of a mono...
cmn4d 32973 Commutative/associative la...
cmn246135 32974 Rearrange terms in a commu...
cmn145236 32975 Rearrange terms in a commu...
submcld 32976 Submonoids are closed unde...
abliso 32977 The image of an Abelian gr...
lmhmghmd 32978 A module homomorphism is a...
mhmimasplusg 32979 Value of the operation of ...
lmhmimasvsca 32980 Value of the scalar produc...
grpsubcld 32981 Closure of group subtracti...
subgcld 32982 A subgroup is closed under...
subgsubcld 32983 A subgroup is closed under...
subgmulgcld 32984 Closure of the group multi...
ressmulgnn0d 32985 Values for the group multi...
gsumsubg 32986 The group sum in a subgrou...
gsumsra 32987 The group sum in a subring...
gsummpt2co 32988 Split a finite sum into a ...
gsummpt2d 32989 Express a finite sum over ...
lmodvslmhm 32990 Scalar multiplication in a...
gsumvsmul1 32991 Pull a scalar multiplicati...
gsummptres 32992 Extend a finite group sum ...
gsummptres2 32993 Extend a finite group sum ...
gsummptfsf1o 32994 Re-index a finite group su...
gsumfs2d 32995 Express a finite sum over ...
gsumzresunsn 32996 Append an element to a fin...
gsumpart 32997 Express a group sum as a d...
gsumtp 32998 Group sum of an unordered ...
gsumzrsum 32999 Relate a group sum on ` ZZ...
gsummulgc2 33000 A finite group sum multipl...
gsumhashmul 33001 Express a group sum by gro...
xrge0tsmsd 33002 Any finite or infinite sum...
xrge0tsmsbi 33003 Any limit of a finite or i...
xrge0tsmseq 33004 Any limit of a finite or i...
gsumwun 33005 In a commutative ring, a g...
gsumwrd2dccatlem 33006 Lemma for ~ gsumwrd2dccat ...
gsumwrd2dccat 33007 Rewrite a sum ranging over...
cntzun 33008 The centralizer of a union...
cntzsnid 33009 The centralizer of the ide...
cntrcrng 33010 The center of a ring is a ...
isomnd 33015 A (left) ordered monoid is...
isogrp 33016 A (left-)ordered group is ...
ogrpgrp 33017 A left-ordered group is a ...
omndmnd 33018 A left-ordered monoid is a...
omndtos 33019 A left-ordered monoid is a...
omndadd 33020 In an ordered monoid, the ...
omndaddr 33021 In a right ordered monoid,...
omndadd2d 33022 In a commutative left orde...
omndadd2rd 33023 In a left- and right- orde...
submomnd 33024 A submonoid of an ordered ...
xrge0omnd 33025 The nonnegative extended r...
omndmul2 33026 In an ordered monoid, the ...
omndmul3 33027 In an ordered monoid, the ...
omndmul 33028 In a commutative ordered m...
ogrpinv0le 33029 In an ordered group, the o...
ogrpsub 33030 In an ordered group, the o...
ogrpaddlt 33031 In an ordered group, stric...
ogrpaddltbi 33032 In a right ordered group, ...
ogrpaddltrd 33033 In a right ordered group, ...
ogrpaddltrbid 33034 In a right ordered group, ...
ogrpsublt 33035 In an ordered group, stric...
ogrpinv0lt 33036 In an ordered group, the o...
ogrpinvlt 33037 In an ordered group, the o...
gsumle 33038 A finite sum in an ordered...
symgfcoeu 33039 Uniqueness property of per...
symgcom 33040 Two permutations ` X ` and...
symgcom2 33041 Two permutations ` X ` and...
symgcntz 33042 All elements of a (finite)...
odpmco 33043 The composition of two odd...
symgsubg 33044 The value of the group sub...
pmtrprfv2 33045 In a transposition of two ...
pmtrcnel 33046 Composing a permutation ` ...
pmtrcnel2 33047 Variation on ~ pmtrcnel . ...
pmtrcnelor 33048 Composing a permutation ` ...
fzo0pmtrlast 33049 Reorder a half-open intege...
wrdpmtrlast 33050 Reorder a word, so that th...
pmtridf1o 33051 Transpositions of ` X ` an...
pmtridfv1 33052 Value at X of the transpos...
pmtridfv2 33053 Value at Y of the transpos...
psgnid 33054 Permutation sign of the id...
psgndmfi 33055 For a finite base set, the...
pmtrto1cl 33056 Useful lemma for the follo...
psgnfzto1stlem 33057 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 33058 Value of our permutation `...
fzto1st1 33059 Special case where the per...
fzto1st 33060 The function moving one el...
fzto1stinvn 33061 Value of the inverse of ou...
psgnfzto1st 33062 The permutation sign for m...
tocycval 33065 Value of the cycle builder...
tocycfv 33066 Function value of a permut...
tocycfvres1 33067 A cyclic permutation is a ...
tocycfvres2 33068 A cyclic permutation is th...
cycpmfvlem 33069 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 33070 Value of a cycle function ...
cycpmfv2 33071 Value of a cycle function ...
cycpmfv3 33072 Values outside of the orbi...
cycpmcl 33073 Cyclic permutations are pe...
tocycf 33074 The permutation cycle buil...
tocyc01 33075 Permutation cycles built f...
cycpm2tr 33076 A cyclic permutation of 2 ...
cycpm2cl 33077 Closure for the 2-cycles. ...
cyc2fv1 33078 Function value of a 2-cycl...
cyc2fv2 33079 Function value of a 2-cycl...
trsp2cyc 33080 Exhibit the word a transpo...
cycpmco2f1 33081 The word U used in ~ cycpm...
cycpmco2rn 33082 The orbit of the compositi...
cycpmco2lem1 33083 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 33084 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 33085 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 33086 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 33087 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 33088 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 33089 Lemma for ~ cycpmco2 . (C...
cycpmco2 33090 The composition of a cycli...
cyc2fvx 33091 Function value of a 2-cycl...
cycpm3cl 33092 Closure of the 3-cycles in...
cycpm3cl2 33093 Closure of the 3-cycles in...
cyc3fv1 33094 Function value of a 3-cycl...
cyc3fv2 33095 Function value of a 3-cycl...
cyc3fv3 33096 Function value of a 3-cycl...
cyc3co2 33097 Represent a 3-cycle as a c...
cycpmconjvlem 33098 Lemma for ~ cycpmconjv . ...
cycpmconjv 33099 A formula for computing co...
cycpmrn 33100 The range of the word used...
tocyccntz 33101 All elements of a (finite)...
evpmval 33102 Value of the set of even p...
cnmsgn0g 33103 The neutral element of the...
evpmsubg 33104 The alternating group is a...
evpmid 33105 The identity is an even pe...
altgnsg 33106 The alternating group ` ( ...
cyc3evpm 33107 3-Cycles are even permutat...
cyc3genpmlem 33108 Lemma for ~ cyc3genpm . (...
cyc3genpm 33109 The alternating group ` A ...
cycpmgcl 33110 Cyclic permutations are pe...
cycpmconjslem1 33111 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 33112 Lemma for ~ cycpmconjs . ...
cycpmconjs 33113 All cycles of the same len...
cyc3conja 33114 All 3-cycles are conjugate...
sgnsv 33117 The sign mapping. (Contri...
sgnsval 33118 The sign value. (Contribu...
sgnsf 33119 The sign function. (Contr...
fxpval 33122 Value of the set of fixed ...
fxpss 33123 The set of fixed points is...
fxpgaval 33124 Value of the set of fixed ...
isfxp 33125 Property of being a fixed ...
fxpgaeq 33126 A fixed point ` X ` is inv...
conjga 33127 Group conjugation induces ...
cntrval2 33128 Express the center ` Z ` o...
fxpsubm 33129 Provided the group action ...
inftmrel 33134 The infinitesimal relation...
isinftm 33135 Express ` x ` is infinites...
isarchi 33136 Express the predicate " ` ...
pnfinf 33137 Plus infinity is an infini...
xrnarchi 33138 The completed real line is...
isarchi2 33139 Alternative way to express...
submarchi 33140 A submonoid is archimedean...
isarchi3 33141 This is the usual definiti...
archirng 33142 Property of Archimedean or...
archirngz 33143 Property of Archimedean le...
archiexdiv 33144 In an Archimedean group, g...
archiabllem1a 33145 Lemma for ~ archiabl : In...
archiabllem1b 33146 Lemma for ~ archiabl . (C...
archiabllem1 33147 Archimedean ordered groups...
archiabllem2a 33148 Lemma for ~ archiabl , whi...
archiabllem2c 33149 Lemma for ~ archiabl . (C...
archiabllem2b 33150 Lemma for ~ archiabl . (C...
archiabllem2 33151 Archimedean ordered groups...
archiabl 33152 Archimedean left- and righ...
isslmd 33155 The predicate "is a semimo...
slmdlema 33156 Lemma for properties of a ...
lmodslmd 33157 Left semimodules generaliz...
slmdcmn 33158 A semimodule is a commutat...
slmdmnd 33159 A semimodule is a monoid. ...
slmdsrg 33160 The scalar component of a ...
slmdbn0 33161 The base set of a semimodu...
slmdacl 33162 Closure of ring addition f...
slmdmcl 33163 Closure of ring multiplica...
slmdsn0 33164 The set of scalars in a se...
slmdvacl 33165 Closure of vector addition...
slmdass 33166 Semiring left module vecto...
slmdvscl 33167 Closure of scalar product ...
slmdvsdi 33168 Distributive law for scala...
slmdvsdir 33169 Distributive law for scala...
slmdvsass 33170 Associative law for scalar...
slmd0cl 33171 The ring zero in a semimod...
slmd1cl 33172 The ring unity in a semiri...
slmdvs1 33173 Scalar product with ring u...
slmd0vcl 33174 The zero vector is a vecto...
slmd0vlid 33175 Left identity law for the ...
slmd0vrid 33176 Right identity law for the...
slmd0vs 33177 Zero times a vector is the...
slmdvs0 33178 Anything times the zero ve...
gsumvsca1 33179 Scalar product of a finite...
gsumvsca2 33180 Scalar product of a finite...
prmsimpcyc 33181 A group of prime order is ...
ringdi22 33182 Expand the product of two ...
urpropd 33183 Sufficient condition for r...
subrgmcld 33184 A subring is closed under ...
ress1r 33185 ` 1r ` is unaffected by re...
ringinvval 33186 The ring inverse expressed...
dvrcan5 33187 Cancellation law for commo...
subrgchr 33188 If ` A ` is a subring of `...
rmfsupp2 33189 A mapping of a multiplicat...
unitnz 33190 In a nonzero ring, a unit ...
isunit2 33191 Alternate definition of be...
isunit3 33192 Alternate definition of be...
elrgspnlem1 33193 Lemma for ~ elrgspn . (Co...
elrgspnlem2 33194 Lemma for ~ elrgspn . (Co...
elrgspnlem3 33195 Lemma for ~ elrgspn . (Co...
elrgspnlem4 33196 Lemma for ~ elrgspn . (Co...
elrgspn 33197 Membership in the subring ...
elrgspnsubrunlem1 33198 Lemma for ~ elrgspnsubrun ...
elrgspnsubrunlem2 33199 Lemma for ~ elrgspnsubrun ...
elrgspnsubrun 33200 Membership in the ring spa...
irrednzr 33201 A ring with an irreducible...
0ringsubrg 33202 A subring of a zero ring i...
0ringcring 33203 The zero ring is commutati...
reldmrloc 33208 Ring localization is a pro...
erlval 33209 Value of the ring localiza...
rlocval 33210 Expand the value of the ri...
erlcl1 33211 Closure for the ring local...
erlcl2 33212 Closure for the ring local...
erldi 33213 Main property of the ring ...
erlbrd 33214 Deduce the ring localizati...
erlbr2d 33215 Deduce the ring localizati...
erler 33216 The relation used to build...
elrlocbasi 33217 Membership in the basis of...
rlocbas 33218 The base set of a ring loc...
rlocaddval 33219 Value of the addition in t...
rlocmulval 33220 Value of the addition in t...
rloccring 33221 The ring localization ` L ...
rloc0g 33222 The zero of a ring localiz...
rloc1r 33223 The multiplicative identit...
rlocf1 33224 The embedding ` F ` of a r...
domnmuln0rd 33225 In a domain, factors of a ...
domnprodn0 33226 In a domain, a finite prod...
domnpropd 33227 If two structures have the...
idompropd 33228 If two structures have the...
idomrcan 33229 Right-cancellation law for...
domnlcanOLD 33230 Obsolete version of ~ domn...
domnlcanbOLD 33231 Obsolete version of ~ domn...
idomrcanOLD 33232 Obsolete version of ~ idom...
1rrg 33233 The multiplicative identit...
rrgsubm 33234 The left regular elements ...
subrdom 33235 A subring of a domain is a...
subridom 33236 A subring of an integral d...
subrfld 33237 A subring of a field is an...
eufndx 33240 Index value of the Euclide...
eufid 33241 Utility theorem: index-ind...
ringinveu 33244 If a ring unit element ` X...
isdrng4 33245 A division ring is a ring ...
rndrhmcl 33246 The image of a division ri...
qfld 33247 The field of rational numb...
subsdrg 33248 A subring of a sub-divisio...
sdrgdvcl 33249 A sub-division-ring is clo...
sdrginvcl 33250 A sub-division-ring is clo...
primefldchr 33251 The characteristic of a pr...
fracval 33254 Value of the field of frac...
fracbas 33255 The base of the field of f...
fracerl 33256 Rewrite the ring localizat...
fracf1 33257 The embedding of a commuta...
fracfld 33258 The field of fractions of ...
idomsubr 33259 Every integral domain is i...
fldgenval 33262 Value of the field generat...
fldgenssid 33263 The field generated by a s...
fldgensdrg 33264 A generated subfield is a ...
fldgenssv 33265 A generated subfield is a ...
fldgenss 33266 Generated subfields preser...
fldgenidfld 33267 The subfield generated by ...
fldgenssp 33268 The field generated by a s...
fldgenid 33269 The subfield of a field ` ...
fldgenfld 33270 A generated subfield is a ...
primefldgen1 33271 The prime field of a divis...
1fldgenq 33272 The field of rational numb...
isorng 33277 An ordered ring is a ring ...
orngring 33278 An ordered ring is a ring....
orngogrp 33279 An ordered ring is an orde...
isofld 33280 An ordered field is a fiel...
orngmul 33281 In an ordered ring, the or...
orngsqr 33282 In an ordered ring, all sq...
ornglmulle 33283 In an ordered ring, multip...
orngrmulle 33284 In an ordered ring, multip...
ornglmullt 33285 In an ordered ring, multip...
orngrmullt 33286 In an ordered ring, multip...
orngmullt 33287 In an ordered ring, the st...
ofldfld 33288 An ordered field is a fiel...
ofldtos 33289 An ordered field is a tota...
orng0le1 33290 In an ordered ring, the ri...
ofldlt1 33291 In an ordered field, the r...
ofldchr 33292 The characteristic of an o...
suborng 33293 Every subring of an ordere...
subofld 33294 Every subfield of an order...
isarchiofld 33295 Axiom of Archimedes : a ch...
rhmdvd 33296 A ring homomorphism preser...
kerunit 33297 If a unit element lies in ...
reldmresv 33300 The scalar restriction is ...
resvval 33301 Value of structure restric...
resvid2 33302 General behavior of trivia...
resvval2 33303 Value of nontrivial struct...
resvsca 33304 Base set of a structure re...
resvlem 33305 Other elements of a scalar...
resvbas 33306 ` Base ` is unaffected by ...
resvplusg 33307 ` +g ` is unaffected by sc...
resvvsca 33308 ` .s ` is unaffected by sc...
resvmulr 33309 ` .r ` is unaffected by sc...
resv0g 33310 ` 0g ` is unaffected by sc...
resv1r 33311 ` 1r ` is unaffected by sc...
resvcmn 33312 Scalar restriction preserv...
gzcrng 33313 The gaussian integers form...
cnfldfld 33314 The complex numbers form a...
reofld 33315 The real numbers form an o...
nn0omnd 33316 The nonnegative integers f...
rearchi 33317 The field of the real numb...
nn0archi 33318 The monoid of the nonnegat...
xrge0slmod 33319 The extended nonnegative r...
qusker 33320 The kernel of a quotient m...
eqgvscpbl 33321 The left coset equivalence...
qusvscpbl 33322 The quotient map distribut...
qusvsval 33323 Value of the scalar multip...
imaslmod 33324 The image structure of a l...
imasmhm 33325 Given a function ` F ` wit...
imasghm 33326 Given a function ` F ` wit...
imasrhm 33327 Given a function ` F ` wit...
imaslmhm 33328 Given a function ` F ` wit...
quslmod 33329 If ` G ` is a submodule in...
quslmhm 33330 If ` G ` is a submodule of...
quslvec 33331 If ` S ` is a vector subsp...
ecxpid 33332 The equivalence class of a...
qsxpid 33333 The quotient set of a cart...
qusxpid 33334 The Group quotient equival...
qustriv 33335 The quotient of a group ` ...
qustrivr 33336 Converse of ~ qustriv . (...
znfermltl 33337 Fermat's little theorem in...
islinds5 33338 A set is linearly independ...
ellspds 33339 Variation on ~ ellspd . (...
0ellsp 33340 Zero is in all spans. (Co...
0nellinds 33341 The group identity cannot ...
rspsnid 33342 A principal ideal contains...
elrsp 33343 Write the elements of a ri...
ellpi 33344 Elementhood in a left prin...
lpirlidllpi 33345 In a principal ideal ring,...
rspidlid 33346 The ideal span of an ideal...
pidlnz 33347 A principal ideal generate...
lbslsp 33348 Any element of a left modu...
lindssn 33349 Any singleton of a nonzero...
lindflbs 33350 Conditions for an independ...
islbs5 33351 An equivalent formulation ...
linds2eq 33352 Deduce equality of element...
lindfpropd 33353 Property deduction for lin...
lindspropd 33354 Property deduction for lin...
dvdsruassoi 33355 If two elements ` X ` and ...
dvdsruasso 33356 Two elements ` X ` and ` Y...
dvdsruasso2 33357 A reformulation of ~ dvdsr...
dvdsrspss 33358 In a ring, an element ` X ...
rspsnasso 33359 Two elements ` X ` and ` Y...
unitprodclb 33360 A finite product is a unit...
elgrplsmsn 33361 Membership in a sumset wit...
lsmsnorb 33362 The sumset of a group with...
lsmsnorb2 33363 The sumset of a single ele...
elringlsm 33364 Membership in a product of...
elringlsmd 33365 Membership in a product of...
ringlsmss 33366 Closure of the product of ...
ringlsmss1 33367 The product of an ideal ` ...
ringlsmss2 33368 The product with an ideal ...
lsmsnpridl 33369 The product of the ring wi...
lsmsnidl 33370 The product of the ring wi...
lsmidllsp 33371 The sum of two ideals is t...
lsmidl 33372 The sum of two ideals is a...
lsmssass 33373 Group sum is associative, ...
grplsm0l 33374 Sumset with the identity s...
grplsmid 33375 The direct sum of an eleme...
quslsm 33376 Express the image by the q...
qusbas2 33377 Alternate definition of th...
qus0g 33378 The identity element of a ...
qusima 33379 The image of a subgroup by...
qusrn 33380 The natural map from eleme...
nsgqus0 33381 A normal subgroup ` N ` is...
nsgmgclem 33382 Lemma for ~ nsgmgc . (Con...
nsgmgc 33383 There is a monotone Galois...
nsgqusf1olem1 33384 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 33385 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 33386 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 33387 The canonical projection h...
lmhmqusker 33388 A surjective module homomo...
lmicqusker 33389 The image ` H ` of a modul...
lidlmcld 33390 An ideal is closed under l...
intlidl 33391 The intersection of a none...
0ringidl 33392 The zero ideal is the only...
pidlnzb 33393 A principal ideal is nonze...
lidlunitel 33394 If an ideal ` I ` contains...
unitpidl1 33395 The ideal ` I ` generated ...
rhmquskerlem 33396 The mapping ` J ` induced ...
rhmqusker 33397 A surjective ring homomorp...
ricqusker 33398 The image ` H ` of a ring ...
elrspunidl 33399 Elementhood in the span of...
elrspunsn 33400 Membership to the span of ...
lidlincl 33401 Ideals are closed under in...
idlinsubrg 33402 The intersection between a...
rhmimaidl 33403 The image of an ideal ` I ...
drngidl 33404 A nonzero ring is a divisi...
drngidlhash 33405 A ring is a division ring ...
prmidlval 33408 The class of prime ideals ...
isprmidl 33409 The predicate "is a prime ...
prmidlnr 33410 A prime ideal is a proper ...
prmidl 33411 The main property of a pri...
prmidl2 33412 A condition that shows an ...
idlmulssprm 33413 Let ` P ` be a prime ideal...
pridln1 33414 A proper ideal cannot cont...
prmidlidl 33415 A prime ideal is an ideal....
prmidlssidl 33416 Prime ideals as a subset o...
cringm4 33417 Commutative/associative la...
isprmidlc 33418 The predicate "is prime id...
prmidlc 33419 Property of a prime ideal ...
0ringprmidl 33420 The trivial ring does not ...
prmidl0 33421 The zero ideal of a commut...
rhmpreimaprmidl 33422 The preimage of a prime id...
qsidomlem1 33423 If the quotient ring of a ...
qsidomlem2 33424 A quotient by a prime idea...
qsidom 33425 An ideal ` I ` in the comm...
qsnzr 33426 A quotient of a non-zero r...
ssdifidllem 33427 Lemma for ~ ssdifidl : Th...
ssdifidl 33428 Let ` R ` be a ring, and l...
ssdifidlprm 33429 If the set ` S ` of ~ ssdi...
mxidlval 33432 The set of maximal ideals ...
ismxidl 33433 The predicate "is a maxima...
mxidlidl 33434 A maximal ideal is an idea...
mxidlnr 33435 A maximal ideal is proper....
mxidlmax 33436 A maximal ideal is a maxim...
mxidln1 33437 One is not contained in an...
mxidlnzr 33438 A ring with a maximal idea...
mxidlmaxv 33439 An ideal ` I ` strictly co...
crngmxidl 33440 In a commutative ring, max...
mxidlprm 33441 Every maximal ideal is pri...
mxidlirredi 33442 In an integral domain, the...
mxidlirred 33443 In a principal ideal domai...
ssmxidllem 33444 The set ` P ` used in the ...
ssmxidl 33445 Let ` R ` be a ring, and l...
drnglidl1ne0 33446 In a nonzero ring, the zer...
drng0mxidl 33447 In a division ring, the ze...
drngmxidl 33448 The zero ideal is the only...
drngmxidlr 33449 If a ring's only maximal i...
krull 33450 Krull's theorem: Any nonz...
mxidlnzrb 33451 A ring is nonzero if and o...
krullndrng 33452 Krull's theorem for non-di...
opprabs 33453 The opposite ring of the o...
oppreqg 33454 Group coset equivalence re...
opprnsg 33455 Normal subgroups of the op...
opprlidlabs 33456 The ideals of the opposite...
oppr2idl 33457 Two sided ideal of the opp...
opprmxidlabs 33458 The maximal ideal of the o...
opprqusbas 33459 The base of the quotient o...
opprqusplusg 33460 The group operation of the...
opprqus0g 33461 The group identity element...
opprqusmulr 33462 The multiplication operati...
opprqus1r 33463 The ring unity of the quot...
opprqusdrng 33464 The quotient of the opposi...
qsdrngilem 33465 Lemma for ~ qsdrngi . (Co...
qsdrngi 33466 A quotient by a maximal le...
qsdrnglem2 33467 Lemma for ~ qsdrng . (Con...
qsdrng 33468 An ideal ` M ` is both lef...
qsfld 33469 An ideal ` M ` in the comm...
mxidlprmALT 33470 Every maximal ideal is pri...
idlsrgstr 33473 A constructed semiring of ...
idlsrgval 33474 Lemma for ~ idlsrgbas thro...
idlsrgbas 33475 Base of the ideals of a ri...
idlsrgplusg 33476 Additive operation of the ...
idlsrg0g 33477 The zero ideal is the addi...
idlsrgmulr 33478 Multiplicative operation o...
idlsrgtset 33479 Topology component of the ...
idlsrgmulrval 33480 Value of the ring multipli...
idlsrgmulrcl 33481 Ideals of a ring ` R ` are...
idlsrgmulrss1 33482 In a commutative ring, the...
idlsrgmulrss2 33483 The product of two ideals ...
idlsrgmulrssin 33484 In a commutative ring, the...
idlsrgmnd 33485 The ideals of a ring form ...
idlsrgcmnd 33486 The ideals of a ring form ...
rprmval 33487 The prime elements of a ri...
isrprm 33488 Property for ` P ` to be a...
rprmcl 33489 A ring prime is an element...
rprmdvds 33490 If a ring prime ` Q ` divi...
rprmnz 33491 A ring prime is nonzero. ...
rprmnunit 33492 A ring prime is not a unit...
rsprprmprmidl 33493 In a commutative ring, ide...
rsprprmprmidlb 33494 In an integral domain, an ...
rprmndvdsr1 33495 A ring prime element does ...
rprmasso 33496 In an integral domain, the...
rprmasso2 33497 In an integral domain, if ...
rprmasso3 33498 In an integral domain, if ...
unitmulrprm 33499 A ring unit multiplied by ...
rprmndvdsru 33500 A ring prime element does ...
rprmirredlem 33501 Lemma for ~ rprmirred . (...
rprmirred 33502 In an integral domain, rin...
rprmirredb 33503 In a principal ideal domai...
rprmdvdspow 33504 If a prime element divides...
rprmdvdsprod 33505 If a prime element ` Q ` d...
1arithidomlem1 33506 Lemma for ~ 1arithidom . ...
1arithidomlem2 33507 Lemma for ~ 1arithidom : i...
1arithidom 33508 Uniqueness of prime factor...
isufd 33511 The property of being a Un...
ufdprmidl 33512 In a unique factorization ...
ufdidom 33513 A nonzero unique factoriza...
pidufd 33514 Every principal ideal doma...
1arithufdlem1 33515 Lemma for ~ 1arithufd . T...
1arithufdlem2 33516 Lemma for ~ 1arithufd . T...
1arithufdlem3 33517 Lemma for ~ 1arithufd . I...
1arithufdlem4 33518 Lemma for ~ 1arithufd . N...
1arithufd 33519 Existence of a factorizati...
dfufd2lem 33520 Lemma for ~ dfufd2 . (Con...
dfufd2 33521 Alternative definition of ...
zringidom 33522 The ring of integers is an...
zringpid 33523 The ring of integers is a ...
dfprm3 33524 The (positive) prime eleme...
zringfrac 33525 The field of fractions of ...
0ringmon1p 33526 There are no monic polynom...
fply1 33527 Conditions for a function ...
ply1lvec 33528 In a division ring, the un...
evls1fn 33529 Functionality of the subri...
evls1dm 33530 The domain of the subring ...
evls1fvf 33531 The subring evaluation fun...
evl1fvf 33532 The univariate polynomial ...
evl1fpws 33533 Evaluation of a univariate...
ressply1evls1 33534 Subring evaluation of a un...
ressdeg1 33535 The degree of a univariate...
ressply10g 33536 A restricted polynomial al...
ressply1mon1p 33537 The monic polynomials of a...
ressply1invg 33538 An element of a restricted...
ressply1sub 33539 A restricted polynomial al...
ressasclcl 33540 Closure of the univariate ...
evls1subd 33541 Univariate polynomial eval...
deg1le0eq0 33542 A polynomial with nonposit...
ply1asclunit 33543 A non-zero scalar polynomi...
ply1unit 33544 In a field ` F ` , a polyn...
evl1deg1 33545 Evaluation of a univariate...
evl1deg2 33546 Evaluation of a univariate...
evl1deg3 33547 Evaluation of a univariate...
ply1dg1rt 33548 Express the root ` - B / A...
ply1dg1rtn0 33549 Polynomials of degree 1 ov...
ply1mulrtss 33550 The roots of a factor ` F ...
ply1dg3rt0irred 33551 If a cubic polynomial over...
m1pmeq 33552 If two monic polynomials `...
ply1fermltl 33553 Fermat's little theorem fo...
coe1mon 33554 Coefficient vector of a mo...
ply1moneq 33555 Two monomials are equal if...
coe1zfv 33556 The coefficients of the ze...
coe1vr1 33557 Polynomial coefficient of ...
deg1vr 33558 The degree of the variable...
vr1nz 33559 A univariate polynomial va...
ply1degltel 33560 Characterize elementhood i...
ply1degleel 33561 Characterize elementhood i...
ply1degltlss 33562 The space ` S ` of the uni...
gsummoncoe1fzo 33563 A coefficient of the polyn...
ply1gsumz 33564 If a polynomial given as a...
deg1addlt 33565 If both factors have degre...
ig1pnunit 33566 The polynomial ideal gener...
ig1pmindeg 33567 The polynomial ideal gener...
q1pdir 33568 Distribution of univariate...
q1pvsca 33569 Scalar multiplication prop...
r1pvsca 33570 Scalar multiplication prop...
r1p0 33571 Polynomial remainder opera...
r1pcyc 33572 The polynomial remainder o...
r1padd1 33573 Addition property of the p...
r1pid2OLD 33574 Obsolete version of ~ r1pi...
r1plmhm 33575 The univariate polynomial ...
r1pquslmic 33576 The univariate polynomial ...
sra1r 33577 The unity element of a sub...
sradrng 33578 Condition for a subring al...
sraidom 33579 Condition for a subring al...
srasubrg 33580 A subring of the original ...
sralvec 33581 Given a sub division ring ...
srafldlvec 33582 Given a subfield ` F ` of ...
resssra 33583 The subring algebra of a r...
lsssra 33584 A subring is a subspace of...
drgext0g 33585 The additive neutral eleme...
drgextvsca 33586 The scalar multiplication ...
drgext0gsca 33587 The additive neutral eleme...
drgextsubrg 33588 The scalar field is a subr...
drgextlsp 33589 The scalar field is a subs...
drgextgsum 33590 Group sum in a division ri...
lvecdimfi 33591 Finite version of ~ lvecdi...
exsslsb 33592 Any finite generating set ...
lbslelsp 33593 The size of a basis ` X ` ...
dimval 33596 The dimension of a vector ...
dimvalfi 33597 The dimension of a vector ...
dimcl 33598 Closure of the vector spac...
lmimdim 33599 Module isomorphisms preser...
lmicdim 33600 Module isomorphisms preser...
lvecdim0i 33601 A vector space of dimensio...
lvecdim0 33602 A vector space of dimensio...
lssdimle 33603 The dimension of a linear ...
dimpropd 33604 If two structures have the...
rlmdim 33605 The left vector space indu...
rgmoddimOLD 33606 Obsolete version of ~ rlmd...
frlmdim 33607 Dimension of a free left m...
tnglvec 33608 Augmenting a structure wit...
tngdim 33609 Dimension of a left vector...
rrxdim 33610 Dimension of the generaliz...
matdim 33611 Dimension of the space of ...
lbslsat 33612 A nonzero vector ` X ` is ...
lsatdim 33613 A line, spanned by a nonze...
drngdimgt0 33614 The dimension of a vector ...
lmhmlvec2 33615 A homomorphism of left vec...
kerlmhm 33616 The kernel of a vector spa...
imlmhm 33617 The image of a vector spac...
ply1degltdimlem 33618 Lemma for ~ ply1degltdim ....
ply1degltdim 33619 The space ` S ` of the uni...
lindsunlem 33620 Lemma for ~ lindsun . (Co...
lindsun 33621 Condition for the union of...
lbsdiflsp0 33622 The linear spans of two di...
dimkerim 33623 Given a linear map ` F ` b...
qusdimsum 33624 Let ` W ` be a vector spac...
fedgmullem1 33625 Lemma for ~ fedgmul . (Co...
fedgmullem2 33626 Lemma for ~ fedgmul . (Co...
fedgmul 33627 The multiplicativity formu...
dimlssid 33628 If the dimension of a line...
lvecendof1f1o 33629 If an endomorphism ` U ` o...
lactlmhm 33630 In an associative algebra ...
assalactf1o 33631 In an associative algebra ...
assarrginv 33632 If an element ` X ` of an ...
assafld 33633 If an algebra ` A ` of fin...
relfldext 33640 The field extension is a r...
brfldext 33641 The field extension relati...
ccfldextrr 33642 The field of the complex n...
fldextfld1 33643 A field extension is only ...
fldextfld2 33644 A field extension is only ...
fldextsubrg 33645 Field extension implies a ...
sdrgfldext 33646 A field ` E ` and any sub-...
fldextress 33647 Field extension implies a ...
brfinext 33648 The finite field extension...
extdgval 33649 Value of the field extensi...
fldextsdrg 33650 Deduce sub-division-ring f...
fldextsralvec 33651 The subring algebra associ...
extdgcl 33652 Closure of the field exten...
extdggt0 33653 Degrees of field extension...
fldexttr 33654 Field extension is a trans...
fldextid 33655 The field extension relati...
extdgid 33656 A trivial field extension ...
fldsdrgfldext 33657 A sub-division-ring of a f...
fldsdrgfldext2 33658 A sub-sub-division-ring of...
extdgmul 33659 The multiplicativity formu...
finexttrb 33660 The extension ` E ` of ` K...
extdg1id 33661 If the degree of the exten...
extdg1b 33662 The degree of the extensio...
fldgenfldext 33663 A subfield ` F ` extended ...
fldextchr 33664 The characteristic of a su...
evls1fldgencl 33665 Closure of the subring pol...
ccfldsrarelvec 33666 The subring algebra of the...
ccfldextdgrr 33667 The degree of the field ex...
fldextrspunlsplem 33668 Lemma for ~ fldextrspunlsp...
fldextrspunlsp 33669 Lemma for ~ fldextrspunfld...
fldextrspunlem1 33670 Lemma for ~ fldextrspunfld...
fldextrspunfld 33671 The ring generated by the ...
fldextrspunlem2 33672 Part of the proof of Propo...
fldextrspundgle 33673 Inequality involving the d...
fldextrspundglemul 33674 Given two field extensions...
fldextrspundgdvdslem 33675 Lemma for ~ fldextrspundgd...
fldextrspundgdvds 33676 Given two finite extension...
fldext2rspun 33677 Given two field extensions...
irngval 33680 The elements of a field ` ...
elirng 33681 Property for an element ` ...
irngss 33682 All elements of a subring ...
irngssv 33683 An integral element is an ...
0ringirng 33684 A zero ring ` R ` has no i...
irngnzply1lem 33685 In the case of a field ` E...
irngnzply1 33686 In the case of a field ` E...
ply1annidllem 33691 Write the set ` Q ` of pol...
ply1annidl 33692 The set ` Q ` of polynomia...
ply1annnr 33693 The set ` Q ` of polynomia...
ply1annig1p 33694 The ideal ` Q ` of polynom...
minplyval 33695 Expand the value of the mi...
minplycl 33696 The minimal polynomial is ...
ply1annprmidl 33697 The set ` Q ` of polynomia...
minplymindeg 33698 The minimal polynomial of ...
minplyann 33699 The minimal polynomial for...
minplyirredlem 33700 Lemma for ~ minplyirred . ...
minplyirred 33701 A nonzero minimal polynomi...
irngnminplynz 33702 Integral elements have non...
minplym1p 33703 A minimal polynomial is mo...
minplynzm1p 33704 If a minimal polynomial is...
minplyelirng 33705 If the minimial polynomial...
irredminply 33706 An irreducible, monic, ann...
algextdeglem1 33707 Lemma for ~ algextdeg . (...
algextdeglem2 33708 Lemma for ~ algextdeg . B...
algextdeglem3 33709 Lemma for ~ algextdeg . T...
algextdeglem4 33710 Lemma for ~ algextdeg . B...
algextdeglem5 33711 Lemma for ~ algextdeg . T...
algextdeglem6 33712 Lemma for ~ algextdeg . B...
algextdeglem7 33713 Lemma for ~ algextdeg . T...
algextdeglem8 33714 Lemma for ~ algextdeg . T...
algextdeg 33715 The degree of an algebraic...
rtelextdg2lem 33716 Lemma for ~ rtelextdg2 : ...
rtelextdg2 33717 If an element ` X ` is a s...
fldext2chn 33718 In a non-empty chain ` T `...
constrrtll 33721 In the construction of con...
constrrtlc1 33722 In the construction of con...
constrrtlc2 33723 In the construction of con...
constrrtcclem 33724 In the construction of con...
constrrtcc 33725 In the construction of con...
isconstr 33726 Property of being a constr...
constr0 33727 The first step of the cons...
constrsuc 33728 Membership in the successo...
constrlim 33729 Limit step of the construc...
constrsscn 33730 Closure of the constructib...
constrsslem 33731 Lemma for ~ constrss . Th...
constr01 33732 ` 0 ` and ` 1 ` are in all...
constrss 33733 Constructed points are in ...
constrmon 33734 The construction of constr...
constrconj 33735 If a point ` X ` of the co...
constrfin 33736 Each step of the construct...
constrelextdg2 33737 If the ` N ` -th step ` ( ...
constrextdg2lem 33738 Lemma for ~ constrextdg2 (...
constrextdg2 33739 Any step ` ( C `` N ) ` of...
constrext2chnlem 33740 Lemma for ~ constrext2chn ...
constrfiss 33741 For any finite set ` A ` o...
constrllcllem 33742 Constructible numbers are ...
constrlccllem 33743 Constructible numbers are ...
constrcccllem 33744 Constructible numbers are ...
constrcbvlem 33745 Technical lemma for elimin...
constrllcl 33746 Constructible numbers are ...
constrlccl 33747 Constructible numbers are ...
constrcccl 33748 Constructible numbers are ...
constrext2chn 33749 If a constructible number ...
constrcn 33750 Constructible numbers are ...
nn0constr 33751 Nonnegative integers are c...
constraddcl 33752 Constructive numbers are c...
constrnegcl 33753 Constructible numbers are ...
zconstr 33754 Integers are constructible...
constrdircl 33755 Constructible numbers are ...
iconstr 33756 The imaginary unit ` _i ` ...
constrremulcl 33757 If two real numbers ` X ` ...
constrcjcl 33758 Constructible numbers are ...
constrrecl 33759 Constructible numbers are ...
constrimcl 33760 Constructible numbers are ...
constrmulcl 33761 Constructible numbers are ...
constrreinvcl 33762 If a real number ` X ` is ...
constrinvcl 33763 Constructible numbers are ...
constrcon 33764 Contradiction of construct...
constrsdrg 33765 Constructible numbers form...
constrfld 33766 The constructible numbers ...
constrresqrtcl 33767 If a positive real number ...
constrabscl 33768 Constructible numbers are ...
constrsqrtcl 33769 Constructible numbers are ...
2sqr3minply 33770 The polynomial ` ( ( X ^ 3...
2sqr3nconstr 33771 Doubling the cube is an im...
cos9thpiminplylem1 33772 The polynomial ` ( ( X ^ 3...
cos9thpiminplylem2 33773 The polynomial ` ( ( X ^ 3...
cos9thpiminplylem3 33774 Lemma for ~ cos9thpiminply...
cos9thpiminplylem4 33775 Lemma for ~ cos9thpiminply...
cos9thpiminplylem5 33776 The constructed complex nu...
cos9thpiminplylem6 33777 Evaluation of the polynomi...
cos9thpiminply 33778 The polynomial ` ( ( X ^ 3...
cos9thpinconstrlem1 33779 The complex number ` O ` ,...
cos9thpinconstrlem2 33780 The complex number ` A ` i...
cos9thpinconstr 33781 Trisecting an angle is an ...
trisecnconstr 33782 Not all angles can be tris...
smatfval 33785 Value of the submatrix. (...
smatrcl 33786 Closure of the rectangular...
smatlem 33787 Lemma for the next theorem...
smattl 33788 Entries of a submatrix, to...
smattr 33789 Entries of a submatrix, to...
smatbl 33790 Entries of a submatrix, bo...
smatbr 33791 Entries of a submatrix, bo...
smatcl 33792 Closure of the square subm...
matmpo 33793 Write a square matrix as a...
1smat1 33794 The submatrix of the ident...
submat1n 33795 One case where the submatr...
submatres 33796 Special case where the sub...
submateqlem1 33797 Lemma for ~ submateq . (C...
submateqlem2 33798 Lemma for ~ submateq . (C...
submateq 33799 Sufficient condition for t...
submatminr1 33800 If we take a submatrix by ...
lmatval 33803 Value of the literal matri...
lmatfval 33804 Entries of a literal matri...
lmatfvlem 33805 Useful lemma to extract li...
lmatcl 33806 Closure of the literal mat...
lmat22lem 33807 Lemma for ~ lmat22e11 and ...
lmat22e11 33808 Entry of a 2x2 literal mat...
lmat22e12 33809 Entry of a 2x2 literal mat...
lmat22e21 33810 Entry of a 2x2 literal mat...
lmat22e22 33811 Entry of a 2x2 literal mat...
lmat22det 33812 The determinant of a liter...
mdetpmtr1 33813 The determinant of a matri...
mdetpmtr2 33814 The determinant of a matri...
mdetpmtr12 33815 The determinant of a matri...
mdetlap1 33816 A Laplace expansion of the...
madjusmdetlem1 33817 Lemma for ~ madjusmdet . ...
madjusmdetlem2 33818 Lemma for ~ madjusmdet . ...
madjusmdetlem3 33819 Lemma for ~ madjusmdet . ...
madjusmdetlem4 33820 Lemma for ~ madjusmdet . ...
madjusmdet 33821 Express the cofactor of th...
mdetlap 33822 Laplace expansion of the d...
ist0cld 33823 The predicate "is a T_0 sp...
txomap 33824 Given two open maps ` F ` ...
qtopt1 33825 If every equivalence class...
qtophaus 33826 If an open map's graph in ...
circtopn 33827 The topology of the unit c...
circcn 33828 The function gluing the re...
reff 33829 For any cover refinement, ...
locfinreflem 33830 A locally finite refinemen...
locfinref 33831 A locally finite refinemen...
iscref 33834 The property that every op...
crefeq 33835 Equality theorem for the "...
creftop 33836 A space where every open c...
crefi 33837 The property that every op...
crefdf 33838 A formulation of ~ crefi e...
crefss 33839 The "every open cover has ...
cmpcref 33840 Equivalent definition of c...
cmpfiref 33841 Every open cover of a Comp...
ldlfcntref 33844 Every open cover of a Lind...
ispcmp 33847 The predicate "is a paraco...
cmppcmp 33848 Every compact space is par...
dispcmp 33849 Every discrete space is pa...
pcmplfin 33850 Given a paracompact topolo...
pcmplfinf 33851 Given a paracompact topolo...
rspecval 33854 Value of the spectrum of t...
rspecbas 33855 The prime ideals form the ...
rspectset 33856 Topology component of the ...
rspectopn 33857 The topology component of ...
zarcls0 33858 The closure of the identit...
zarcls1 33859 The unit ideal ` B ` is th...
zarclsun 33860 The union of two closed se...
zarclsiin 33861 In a Zariski topology, the...
zarclsint 33862 The intersection of a fami...
zarclssn 33863 The closed points of Zaris...
zarcls 33864 The open sets of the Zaris...
zartopn 33865 The Zariski topology is a ...
zartop 33866 The Zariski topology is a ...
zartopon 33867 The points of the Zariski ...
zar0ring 33868 The Zariski Topology of th...
zart0 33869 The Zariski topology is T_...
zarmxt1 33870 The Zariski topology restr...
zarcmplem 33871 Lemma for ~ zarcmp . (Con...
zarcmp 33872 The Zariski topology is co...
rspectps 33873 The spectrum of a ring ` R...
rhmpreimacnlem 33874 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 33875 The function mapping a pri...
metidval 33880 Value of the metric identi...
metidss 33881 As a relation, the metric ...
metidv 33882 ` A ` and ` B ` identify b...
metideq 33883 Basic property of the metr...
metider 33884 The metric identification ...
pstmval 33885 Value of the metric induce...
pstmfval 33886 Function value of the metr...
pstmxmet 33887 The metric induced by a ps...
hauseqcn 33888 In a Hausdorff topology, t...
elunitge0 33889 An element of the closed u...
unitssxrge0 33890 The closed unit interval i...
unitdivcld 33891 Necessary conditions for a...
iistmd 33892 The closed unit interval f...
unicls 33893 The union of the closed se...
tpr2tp 33894 The usual topology on ` ( ...
tpr2uni 33895 The usual topology on ` ( ...
xpinpreima 33896 Rewrite the cartesian prod...
xpinpreima2 33897 Rewrite the cartesian prod...
sqsscirc1 33898 The complex square of side...
sqsscirc2 33899 The complex square of side...
cnre2csqlem 33900 Lemma for ~ cnre2csqima . ...
cnre2csqima 33901 Image of a centered square...
tpr2rico 33902 For any point of an open s...
cnvordtrestixx 33903 The restriction of the 'gr...
prsdm 33904 Domain of the relation of ...
prsrn 33905 Range of the relation of a...
prsss 33906 Relation of a subproset. ...
prsssdm 33907 Domain of a subproset rela...
ordtprsval 33908 Value of the order topolog...
ordtprsuni 33909 Value of the order topolog...
ordtcnvNEW 33910 The order dual generates t...
ordtrestNEW 33911 The subspace topology of a...
ordtrest2NEWlem 33912 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 33913 An interval-closed set ` A...
ordtconnlem1 33914 Connectedness in the order...
ordtconn 33915 Connectedness in the order...
mndpluscn 33916 A mapping that is both a h...
mhmhmeotmd 33917 Deduce a Topological Monoi...
rmulccn 33918 Multiplication by a real c...
raddcn 33919 Addition in the real numbe...
xrmulc1cn 33920 The operation multiplying ...
fmcncfil 33921 The image of a Cauchy filt...
xrge0hmph 33922 The extended nonnegative r...
xrge0iifcnv 33923 Define a bijection from ` ...
xrge0iifcv 33924 The defined function's val...
xrge0iifiso 33925 The defined bijection from...
xrge0iifhmeo 33926 Expose a homeomorphism fro...
xrge0iifhom 33927 The defined function from ...
xrge0iif1 33928 Condition for the defined ...
xrge0iifmhm 33929 The defined function from ...
xrge0pluscn 33930 The addition operation of ...
xrge0mulc1cn 33931 The operation multiplying ...
xrge0tps 33932 The extended nonnegative r...
xrge0topn 33933 The topology of the extend...
xrge0haus 33934 The topology of the extend...
xrge0tmd 33935 The extended nonnegative r...
xrge0tmdALT 33936 Alternate proof of ~ xrge0...
lmlim 33937 Relate a limit in a given ...
lmlimxrge0 33938 Relate a limit in the nonn...
rge0scvg 33939 Implication of convergence...
fsumcvg4 33940 A serie with finite suppor...
pnfneige0 33941 A neighborhood of ` +oo ` ...
lmxrge0 33942 Express "sequence ` F ` co...
lmdvg 33943 If a monotonic sequence of...
lmdvglim 33944 If a monotonic real number...
pl1cn 33945 A univariate polynomial is...
zringnm 33948 The norm (function) for a ...
zzsnm 33949 The norm of the ring of th...
zlm0 33950 Zero of a ` ZZ ` -module. ...
zlm1 33951 Unity element of a ` ZZ ` ...
zlmds 33952 Distance in a ` ZZ ` -modu...
zlmtset 33953 Topology in a ` ZZ ` -modu...
zlmnm 33954 Norm of a ` ZZ ` -module (...
zhmnrg 33955 The ` ZZ ` -module built f...
nmmulg 33956 The norm of a group produc...
zrhnm 33957 The norm of the image by `...
cnzh 33958 The ` ZZ ` -module of ` CC...
rezh 33959 The ` ZZ ` -module of ` RR...
qqhval 33962 Value of the canonical hom...
zrhf1ker 33963 The kernel of the homomorp...
zrhchr 33964 The kernel of the homomorp...
zrhker 33965 The kernel of the homomorp...
zrhunitpreima 33966 The preimage by ` ZRHom ` ...
elzrhunit 33967 Condition for the image by...
zrhneg 33968 The canonical homomorphism...
zrhcntr 33969 The canonical representati...
elzdif0 33970 Lemma for ~ qqhval2 . (Co...
qqhval2lem 33971 Lemma for ~ qqhval2 . (Co...
qqhval2 33972 Value of the canonical hom...
qqhvval 33973 Value of the canonical hom...
qqh0 33974 The image of ` 0 ` by the ...
qqh1 33975 The image of ` 1 ` by the ...
qqhf 33976 ` QQHom ` as a function. ...
qqhvq 33977 The image of a quotient by...
qqhghm 33978 The ` QQHom ` homomorphism...
qqhrhm 33979 The ` QQHom ` homomorphism...
qqhnm 33980 The norm of the image by `...
qqhcn 33981 The ` QQHom ` homomorphism...
qqhucn 33982 The ` QQHom ` homomorphism...
rrhval 33986 Value of the canonical hom...
rrhcn 33987 If the topology of ` R ` i...
rrhf 33988 If the topology of ` R ` i...
isrrext 33990 Express the property " ` R...
rrextnrg 33991 An extension of ` RR ` is ...
rrextdrg 33992 An extension of ` RR ` is ...
rrextnlm 33993 The norm of an extension o...
rrextchr 33994 The ring characteristic of...
rrextcusp 33995 An extension of ` RR ` is ...
rrexttps 33996 An extension of ` RR ` is ...
rrexthaus 33997 The topology of an extensi...
rrextust 33998 The uniformity of an exten...
rerrext 33999 The field of the real numb...
cnrrext 34000 The field of the complex n...
qqtopn 34001 The topology of the field ...
rrhfe 34002 If ` R ` is an extension o...
rrhcne 34003 If ` R ` is an extension o...
rrhqima 34004 The ` RRHom ` homomorphism...
rrh0 34005 The image of ` 0 ` by the ...
xrhval 34008 The value of the embedding...
zrhre 34009 The ` ZRHom ` homomorphism...
qqhre 34010 The ` QQHom ` homomorphism...
rrhre 34011 The ` RRHom ` homomorphism...
relmntop 34014 Manifold is a relation. (...
ismntoplly 34015 Property of being a manifo...
ismntop 34016 Property of being a manifo...
esumex 34019 An extended sum is a set b...
esumcl 34020 Closure for extended sum i...
esumeq12dvaf 34021 Equality deduction for ext...
esumeq12dva 34022 Equality deduction for ext...
esumeq12d 34023 Equality deduction for ext...
esumeq1 34024 Equality theorem for an ex...
esumeq1d 34025 Equality theorem for an ex...
esumeq2 34026 Equality theorem for exten...
esumeq2d 34027 Equality deduction for ext...
esumeq2dv 34028 Equality deduction for ext...
esumeq2sdv 34029 Equality deduction for ext...
nfesum1 34030 Bound-variable hypothesis ...
nfesum2 34031 Bound-variable hypothesis ...
cbvesum 34032 Change bound variable in a...
cbvesumv 34033 Change bound variable in a...
esumid 34034 Identify the extended sum ...
esumgsum 34035 A finite extended sum is t...
esumval 34036 Develop the value of the e...
esumel 34037 The extended sum is a limi...
esumnul 34038 Extended sum over the empt...
esum0 34039 Extended sum of zero. (Co...
esumf1o 34040 Re-index an extended sum u...
esumc 34041 Convert from the collectio...
esumrnmpt 34042 Rewrite an extended sum in...
esumsplit 34043 Split an extended sum into...
esummono 34044 Extended sum is monotonic....
esumpad 34045 Extend an extended sum by ...
esumpad2 34046 Remove zeroes from an exte...
esumadd 34047 Addition of infinite sums....
esumle 34048 If all of the terms of an ...
gsumesum 34049 Relate a group sum on ` ( ...
esumlub 34050 The extended sum is the lo...
esumaddf 34051 Addition of infinite sums....
esumlef 34052 If all of the terms of an ...
esumcst 34053 The extended sum of a cons...
esumsnf 34054 The extended sum of a sing...
esumsn 34055 The extended sum of a sing...
esumpr 34056 Extended sum over a pair. ...
esumpr2 34057 Extended sum over a pair, ...
esumrnmpt2 34058 Rewrite an extended sum in...
esumfzf 34059 Formulating a partial exte...
esumfsup 34060 Formulating an extended su...
esumfsupre 34061 Formulating an extended su...
esumss 34062 Change the index set to a ...
esumpinfval 34063 The value of the extended ...
esumpfinvallem 34064 Lemma for ~ esumpfinval . ...
esumpfinval 34065 The value of the extended ...
esumpfinvalf 34066 Same as ~ esumpfinval , mi...
esumpinfsum 34067 The value of the extended ...
esumpcvgval 34068 The value of the extended ...
esumpmono 34069 The partial sums in an ext...
esumcocn 34070 Lemma for ~ esummulc2 and ...
esummulc1 34071 An extended sum multiplied...
esummulc2 34072 An extended sum multiplied...
esumdivc 34073 An extended sum divided by...
hashf2 34074 Lemma for ~ hasheuni . (C...
hasheuni 34075 The cardinality of a disjo...
esumcvg 34076 The sequence of partial su...
esumcvg2 34077 Simpler version of ~ esumc...
esumcvgsum 34078 The value of the extended ...
esumsup 34079 Express an extended sum as...
esumgect 34080 "Send ` n ` to ` +oo ` " i...
esumcvgre 34081 All terms of a converging ...
esum2dlem 34082 Lemma for ~ esum2d (finite...
esum2d 34083 Write a double extended su...
esumiun 34084 Sum over a nonnecessarily ...
ofceq 34087 Equality theorem for funct...
ofcfval 34088 Value of an operation appl...
ofcval 34089 Evaluate a function/consta...
ofcfn 34090 The function operation pro...
ofcfeqd2 34091 Equality theorem for funct...
ofcfval3 34092 General value of ` ( F oFC...
ofcf 34093 The function/constant oper...
ofcfval2 34094 The function operation exp...
ofcfval4 34095 The function/constant oper...
ofcc 34096 Left operation by a consta...
ofcof 34097 Relate function operation ...
sigaex 34100 Lemma for ~ issiga and ~ i...
sigaval 34101 The set of sigma-algebra w...
issiga 34102 An alternative definition ...
isrnsiga 34103 The property of being a si...
0elsiga 34104 A sigma-algebra contains t...
baselsiga 34105 A sigma-algebra contains i...
sigasspw 34106 A sigma-algebra is a set o...
sigaclcu 34107 A sigma-algebra is closed ...
sigaclcuni 34108 A sigma-algebra is closed ...
sigaclfu 34109 A sigma-algebra is closed ...
sigaclcu2 34110 A sigma-algebra is closed ...
sigaclfu2 34111 A sigma-algebra is closed ...
sigaclcu3 34112 A sigma-algebra is closed ...
issgon 34113 Property of being a sigma-...
sgon 34114 A sigma-algebra is a sigma...
elsigass 34115 An element of a sigma-alge...
elrnsiga 34116 Dropping the base informat...
isrnsigau 34117 The property of being a si...
unielsiga 34118 A sigma-algebra contains i...
dmvlsiga 34119 Lebesgue-measurable subset...
pwsiga 34120 Any power set forms a sigm...
prsiga 34121 The smallest possible sigm...
sigaclci 34122 A sigma-algebra is closed ...
difelsiga 34123 A sigma-algebra is closed ...
unelsiga 34124 A sigma-algebra is closed ...
inelsiga 34125 A sigma-algebra is closed ...
sigainb 34126 Building a sigma-algebra f...
insiga 34127 The intersection of a coll...
sigagenval 34130 Value of the generated sig...
sigagensiga 34131 A generated sigma-algebra ...
sgsiga 34132 A generated sigma-algebra ...
unisg 34133 The sigma-algebra generate...
dmsigagen 34134 A sigma-algebra can be gen...
sssigagen 34135 A set is a subset of the s...
sssigagen2 34136 A subset of the generating...
elsigagen 34137 Any element of a set is al...
elsigagen2 34138 Any countable union of ele...
sigagenss 34139 The generated sigma-algebr...
sigagenss2 34140 Sufficient condition for i...
sigagenid 34141 The sigma-algebra generate...
ispisys 34142 The property of being a pi...
ispisys2 34143 The property of being a pi...
inelpisys 34144 Pi-systems are closed unde...
sigapisys 34145 All sigma-algebras are pi-...
isldsys 34146 The property of being a la...
pwldsys 34147 The power set of the unive...
unelldsys 34148 Lambda-systems are closed ...
sigaldsys 34149 All sigma-algebras are lam...
ldsysgenld 34150 The intersection of all la...
sigapildsyslem 34151 Lemma for ~ sigapildsys . ...
sigapildsys 34152 Sigma-algebra are exactly ...
ldgenpisyslem1 34153 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 34154 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 34155 Lemma for ~ ldgenpisys . ...
ldgenpisys 34156 The lambda system ` E ` ge...
dynkin 34157 Dynkin's lambda-pi theorem...
isros 34158 The property of being a ri...
rossspw 34159 A ring of sets is a collec...
0elros 34160 A ring of sets contains th...
unelros 34161 A ring of sets is closed u...
difelros 34162 A ring of sets is closed u...
inelros 34163 A ring of sets is closed u...
fiunelros 34164 A ring of sets is closed u...
issros 34165 The property of being a se...
srossspw 34166 A semiring of sets is a co...
0elsros 34167 A semiring of sets contain...
inelsros 34168 A semiring of sets is clos...
diffiunisros 34169 In semiring of sets, compl...
rossros 34170 Rings of sets are semiring...
brsiga 34173 The Borel Algebra on real ...
brsigarn 34174 The Borel Algebra is a sig...
brsigasspwrn 34175 The Borel Algebra is a set...
unibrsiga 34176 The union of the Borel Alg...
cldssbrsiga 34177 A Borel Algebra contains a...
sxval 34180 Value of the product sigma...
sxsiga 34181 A product sigma-algebra is...
sxsigon 34182 A product sigma-algebra is...
sxuni 34183 The base set of a product ...
elsx 34184 The cartesian product of t...
measbase 34187 The base set of a measure ...
measval 34188 The value of the ` measure...
ismeas 34189 The property of being a me...
isrnmeas 34190 The property of being a me...
dmmeas 34191 The domain of a measure is...
measbasedom 34192 The base set of a measure ...
measfrge0 34193 A measure is a function ov...
measfn 34194 A measure is a function on...
measvxrge0 34195 The values of a measure ar...
measvnul 34196 The measure of the empty s...
measge0 34197 A measure is nonnegative. ...
measle0 34198 If the measure of a given ...
measvun 34199 The measure of a countable...
measxun2 34200 The measure the union of t...
measun 34201 The measure the union of t...
measvunilem 34202 Lemma for ~ measvuni . (C...
measvunilem0 34203 Lemma for ~ measvuni . (C...
measvuni 34204 The measure of a countable...
measssd 34205 A measure is monotone with...
measunl 34206 A measure is sub-additive ...
measiuns 34207 The measure of the union o...
measiun 34208 A measure is sub-additive....
meascnbl 34209 A measure is continuous fr...
measinblem 34210 Lemma for ~ measinb . (Co...
measinb 34211 Building a measure restric...
measres 34212 Building a measure restric...
measinb2 34213 Building a measure restric...
measdivcst 34214 Division of a measure by a...
measdivcstALTV 34215 Alternate version of ~ mea...
cntmeas 34216 The Counting measure is a ...
pwcntmeas 34217 The counting measure is a ...
cntnevol 34218 Counting and Lebesgue meas...
voliune 34219 The Lebesgue measure funct...
volfiniune 34220 The Lebesgue measure funct...
volmeas 34221 The Lebesgue measure is a ...
ddeval1 34224 Value of the delta measure...
ddeval0 34225 Value of the delta measure...
ddemeas 34226 The Dirac delta measure is...
relae 34230 'almost everywhere' is a r...
brae 34231 'almost everywhere' relati...
braew 34232 'almost everywhere' relati...
truae 34233 A truth holds almost every...
aean 34234 A conjunction holds almost...
faeval 34236 Value of the 'almost every...
relfae 34237 The 'almost everywhere' bu...
brfae 34238 'almost everywhere' relati...
ismbfm 34241 The predicate " ` F ` is a...
elunirnmbfm 34242 The property of being a me...
mbfmfun 34243 A measurable function is a...
mbfmf 34244 A measurable function as a...
isanmbfmOLD 34245 Obsolete version of ~ isan...
mbfmcnvima 34246 The preimage by a measurab...
isanmbfm 34247 The predicate to be a meas...
mbfmbfmOLD 34248 A measurable function to a...
mbfmbfm 34249 A measurable function to a...
mbfmcst 34250 A constant function is mea...
1stmbfm 34251 The first projection map i...
2ndmbfm 34252 The second projection map ...
imambfm 34253 If the sigma-algebra in th...
cnmbfm 34254 A continuous function is m...
mbfmco 34255 The composition of two mea...
mbfmco2 34256 The pair building of two m...
mbfmvolf 34257 Measurable functions with ...
elmbfmvol2 34258 Measurable functions with ...
mbfmcnt 34259 All functions are measurab...
br2base 34260 The base set for the gener...
dya2ub 34261 An upper bound for a dyadi...
sxbrsigalem0 34262 The closed half-spaces of ...
sxbrsigalem3 34263 The sigma-algebra generate...
dya2iocival 34264 The function ` I ` returns...
dya2iocress 34265 Dyadic intervals are subse...
dya2iocbrsiga 34266 Dyadic intervals are Borel...
dya2icobrsiga 34267 Dyadic intervals are Borel...
dya2icoseg 34268 For any point and any clos...
dya2icoseg2 34269 For any point and any open...
dya2iocrfn 34270 The function returning dya...
dya2iocct 34271 The dyadic rectangle set i...
dya2iocnrect 34272 For any point of an open r...
dya2iocnei 34273 For any point of an open s...
dya2iocuni 34274 Every open set of ` ( RR X...
dya2iocucvr 34275 The dyadic rectangular set...
sxbrsigalem1 34276 The Borel algebra on ` ( R...
sxbrsigalem2 34277 The sigma-algebra generate...
sxbrsigalem4 34278 The Borel algebra on ` ( R...
sxbrsigalem5 34279 First direction for ~ sxbr...
sxbrsigalem6 34280 First direction for ~ sxbr...
sxbrsiga 34281 The product sigma-algebra ...
omsval 34284 Value of the function mapp...
omsfval 34285 Value of the outer measure...
omscl 34286 A closure lemma for the co...
omsf 34287 A constructed outer measur...
oms0 34288 A constructed outer measur...
omsmon 34289 A constructed outer measur...
omssubaddlem 34290 For any small margin ` E `...
omssubadd 34291 A constructed outer measur...
carsgval 34294 Value of the Caratheodory ...
carsgcl 34295 Closure of the Caratheodor...
elcarsg 34296 Property of being a Carath...
baselcarsg 34297 The universe set, ` O ` , ...
0elcarsg 34298 The empty set is Caratheod...
carsguni 34299 The union of all Caratheod...
elcarsgss 34300 Caratheodory measurable se...
difelcarsg 34301 The Caratheodory measurabl...
inelcarsg 34302 The Caratheodory measurabl...
unelcarsg 34303 The Caratheodory-measurabl...
difelcarsg2 34304 The Caratheodory-measurabl...
carsgmon 34305 Utility lemma: Apply mono...
carsgsigalem 34306 Lemma for the following th...
fiunelcarsg 34307 The Caratheodory measurabl...
carsgclctunlem1 34308 Lemma for ~ carsgclctun . ...
carsggect 34309 The outer measure is count...
carsgclctunlem2 34310 Lemma for ~ carsgclctun . ...
carsgclctunlem3 34311 Lemma for ~ carsgclctun . ...
carsgclctun 34312 The Caratheodory measurabl...
carsgsiga 34313 The Caratheodory measurabl...
omsmeas 34314 The restriction of a const...
pmeasmono 34315 This theorem's hypotheses ...
pmeasadd 34316 A premeasure on a ring of ...
itgeq12dv 34317 Equality theorem for an in...
sitgval 34323 Value of the simple functi...
issibf 34324 The predicate " ` F ` is a...
sibf0 34325 The constant zero function...
sibfmbl 34326 A simple function is measu...
sibff 34327 A simple function is a fun...
sibfrn 34328 A simple function has fini...
sibfima 34329 Any preimage of a singleto...
sibfinima 34330 The measure of the interse...
sibfof 34331 Applying function operatio...
sitgfval 34332 Value of the Bochner integ...
sitgclg 34333 Closure of the Bochner int...
sitgclbn 34334 Closure of the Bochner int...
sitgclcn 34335 Closure of the Bochner int...
sitgclre 34336 Closure of the Bochner int...
sitg0 34337 The integral of the consta...
sitgf 34338 The integral for simple fu...
sitgaddlemb 34339 Lemma for * sitgadd . (Co...
sitmval 34340 Value of the simple functi...
sitmfval 34341 Value of the integral dist...
sitmcl 34342 Closure of the integral di...
sitmf 34343 The integral metric as a f...
oddpwdc 34345 Lemma for ~ eulerpart . T...
oddpwdcv 34346 Lemma for ~ eulerpart : va...
eulerpartlemsv1 34347 Lemma for ~ eulerpart . V...
eulerpartlemelr 34348 Lemma for ~ eulerpart . (...
eulerpartlemsv2 34349 Lemma for ~ eulerpart . V...
eulerpartlemsf 34350 Lemma for ~ eulerpart . (...
eulerpartlems 34351 Lemma for ~ eulerpart . (...
eulerpartlemsv3 34352 Lemma for ~ eulerpart . V...
eulerpartlemgc 34353 Lemma for ~ eulerpart . (...
eulerpartleme 34354 Lemma for ~ eulerpart . (...
eulerpartlemv 34355 Lemma for ~ eulerpart . (...
eulerpartlemo 34356 Lemma for ~ eulerpart : ` ...
eulerpartlemd 34357 Lemma for ~ eulerpart : ` ...
eulerpartlem1 34358 Lemma for ~ eulerpart . (...
eulerpartlemb 34359 Lemma for ~ eulerpart . T...
eulerpartlemt0 34360 Lemma for ~ eulerpart . (...
eulerpartlemf 34361 Lemma for ~ eulerpart : O...
eulerpartlemt 34362 Lemma for ~ eulerpart . (...
eulerpartgbij 34363 Lemma for ~ eulerpart : T...
eulerpartlemgv 34364 Lemma for ~ eulerpart : va...
eulerpartlemr 34365 Lemma for ~ eulerpart . (...
eulerpartlemmf 34366 Lemma for ~ eulerpart . (...
eulerpartlemgvv 34367 Lemma for ~ eulerpart : va...
eulerpartlemgu 34368 Lemma for ~ eulerpart : R...
eulerpartlemgh 34369 Lemma for ~ eulerpart : T...
eulerpartlemgf 34370 Lemma for ~ eulerpart : I...
eulerpartlemgs2 34371 Lemma for ~ eulerpart : T...
eulerpartlemn 34372 Lemma for ~ eulerpart . (...
eulerpart 34373 Euler's theorem on partiti...
subiwrd 34376 Lemma for ~ sseqp1 . (Con...
subiwrdlen 34377 Length of a subword of an ...
iwrdsplit 34378 Lemma for ~ sseqp1 . (Con...
sseqval 34379 Value of the strong sequen...
sseqfv1 34380 Value of the strong sequen...
sseqfn 34381 A strong recursive sequenc...
sseqmw 34382 Lemma for ~ sseqf amd ~ ss...
sseqf 34383 A strong recursive sequenc...
sseqfres 34384 The first elements in the ...
sseqfv2 34385 Value of the strong sequen...
sseqp1 34386 Value of the strong sequen...
fiblem 34389 Lemma for ~ fib0 , ~ fib1 ...
fib0 34390 Value of the Fibonacci seq...
fib1 34391 Value of the Fibonacci seq...
fibp1 34392 Value of the Fibonacci seq...
fib2 34393 Value of the Fibonacci seq...
fib3 34394 Value of the Fibonacci seq...
fib4 34395 Value of the Fibonacci seq...
fib5 34396 Value of the Fibonacci seq...
fib6 34397 Value of the Fibonacci seq...
elprob 34400 The property of being a pr...
domprobmeas 34401 A probability measure is a...
domprobsiga 34402 The domain of a probabilit...
probtot 34403 The probability of the uni...
prob01 34404 A probability is an elemen...
probnul 34405 The probability of the emp...
unveldomd 34406 The universe is an element...
unveldom 34407 The universe is an element...
nuleldmp 34408 The empty set is an elemen...
probcun 34409 The probability of the uni...
probun 34410 The probability of the uni...
probdif 34411 The probability of the dif...
probinc 34412 A probability law is incre...
probdsb 34413 The probability of the com...
probmeasd 34414 A probability measure is a...
probvalrnd 34415 The value of a probability...
probtotrnd 34416 The probability of the uni...
totprobd 34417 Law of total probability, ...
totprob 34418 Law of total probability. ...
probfinmeasb 34419 Build a probability measur...
probfinmeasbALTV 34420 Alternate version of ~ pro...
probmeasb 34421 Build a probability from a...
cndprobval 34424 The value of the condition...
cndprobin 34425 An identity linking condit...
cndprob01 34426 The conditional probabilit...
cndprobtot 34427 The conditional probabilit...
cndprobnul 34428 The conditional probabilit...
cndprobprob 34429 The conditional probabilit...
bayesth 34430 Bayes Theorem. (Contribut...
rrvmbfm 34433 A real-valued random varia...
isrrvv 34434 Elementhood to the set of ...
rrvvf 34435 A real-valued random varia...
rrvfn 34436 A real-valued random varia...
rrvdm 34437 The domain of a random var...
rrvrnss 34438 The range of a random vari...
rrvf2 34439 A real-valued random varia...
rrvdmss 34440 The domain of a random var...
rrvfinvima 34441 For a real-value random va...
0rrv 34442 The constant function equa...
rrvadd 34443 The sum of two random vari...
rrvmulc 34444 A random variable multipli...
rrvsum 34445 An indexed sum of random v...
boolesineq 34446 Boole's inequality (union ...
orvcval 34449 Value of the preimage mapp...
orvcval2 34450 Another way to express the...
elorvc 34451 Elementhood of a preimage....
orvcval4 34452 The value of the preimage ...
orvcoel 34453 If the relation produces o...
orvccel 34454 If the relation produces c...
elorrvc 34455 Elementhood of a preimage ...
orrvcval4 34456 The value of the preimage ...
orrvcoel 34457 If the relation produces o...
orrvccel 34458 If the relation produces c...
orvcgteel 34459 Preimage maps produced by ...
orvcelval 34460 Preimage maps produced by ...
orvcelel 34461 Preimage maps produced by ...
dstrvval 34462 The value of the distribut...
dstrvprob 34463 The distribution of a rand...
orvclteel 34464 Preimage maps produced by ...
dstfrvel 34465 Elementhood of preimage ma...
dstfrvunirn 34466 The limit of all preimage ...
orvclteinc 34467 Preimage maps produced by ...
dstfrvinc 34468 A cumulative distribution ...
dstfrvclim1 34469 The limit of the cumulativ...
coinfliplem 34470 Division in the extended r...
coinflipprob 34471 The ` P ` we defined for c...
coinflipspace 34472 The space of our coin-flip...
coinflipuniv 34473 The universe of our coin-f...
coinfliprv 34474 The ` X ` we defined for c...
coinflippv 34475 The probability of heads i...
coinflippvt 34476 The probability of tails i...
ballotlemoex 34477 ` O ` is a set. (Contribu...
ballotlem1 34478 The size of the universe i...
ballotlemelo 34479 Elementhood in ` O ` . (C...
ballotlem2 34480 The probability that the f...
ballotlemfval 34481 The value of ` F ` . (Con...
ballotlemfelz 34482 ` ( F `` C ) ` has values ...
ballotlemfp1 34483 If the ` J ` th ballot is ...
ballotlemfc0 34484 ` F ` takes value 0 betwee...
ballotlemfcc 34485 ` F ` takes value 0 betwee...
ballotlemfmpn 34486 ` ( F `` C ) ` finishes co...
ballotlemfval0 34487 ` ( F `` C ) ` always star...
ballotleme 34488 Elements of ` E ` . (Cont...
ballotlemodife 34489 Elements of ` ( O \ E ) ` ...
ballotlem4 34490 If the first pick is a vot...
ballotlem5 34491 If A is not ahead througho...
ballotlemi 34492 Value of ` I ` for a given...
ballotlemiex 34493 Properties of ` ( I `` C )...
ballotlemi1 34494 The first tie cannot be re...
ballotlemii 34495 The first tie cannot be re...
ballotlemsup 34496 The set of zeroes of ` F `...
ballotlemimin 34497 ` ( I `` C ) ` is the firs...
ballotlemic 34498 If the first vote is for B...
ballotlem1c 34499 If the first vote is for A...
ballotlemsval 34500 Value of ` S ` . (Contrib...
ballotlemsv 34501 Value of ` S ` evaluated a...
ballotlemsgt1 34502 ` S ` maps values less tha...
ballotlemsdom 34503 Domain of ` S ` for a give...
ballotlemsel1i 34504 The range ` ( 1 ... ( I ``...
ballotlemsf1o 34505 The defined ` S ` is a bij...
ballotlemsi 34506 The image by ` S ` of the ...
ballotlemsima 34507 The image by ` S ` of an i...
ballotlemieq 34508 If two countings share the...
ballotlemrval 34509 Value of ` R ` . (Contrib...
ballotlemscr 34510 The image of ` ( R `` C ) ...
ballotlemrv 34511 Value of ` R ` evaluated a...
ballotlemrv1 34512 Value of ` R ` before the ...
ballotlemrv2 34513 Value of ` R ` after the t...
ballotlemro 34514 Range of ` R ` is included...
ballotlemgval 34515 Expand the value of ` .^ `...
ballotlemgun 34516 A property of the defined ...
ballotlemfg 34517 Express the value of ` ( F...
ballotlemfrc 34518 Express the value of ` ( F...
ballotlemfrci 34519 Reverse counting preserves...
ballotlemfrceq 34520 Value of ` F ` for a rever...
ballotlemfrcn0 34521 Value of ` F ` for a rever...
ballotlemrc 34522 Range of ` R ` . (Contrib...
ballotlemirc 34523 Applying ` R ` does not ch...
ballotlemrinv0 34524 Lemma for ~ ballotlemrinv ...
ballotlemrinv 34525 ` R ` is its own inverse :...
ballotlem1ri 34526 When the vote on the first...
ballotlem7 34527 ` R ` is a bijection betwe...
ballotlem8 34528 There are as many counting...
ballotth 34529 Bertrand's ballot problem ...
fzssfzo 34530 Condition for an integer i...
gsumncl 34531 Closure of a group sum in ...
gsumnunsn 34532 Closure of a group sum in ...
ccatmulgnn0dir 34533 Concatenation of words fol...
ofcccat 34534 Letterwise operations on w...
ofcs1 34535 Letterwise operations on a...
ofcs2 34536 Letterwise operations on a...
plymul02 34537 Product of a polynomial wi...
plymulx0 34538 Coefficients of a polynomi...
plymulx 34539 Coefficients of a polynomi...
plyrecld 34540 Closure of a polynomial wi...
signsplypnf 34541 The quotient of a polynomi...
signsply0 34542 Lemma for the rule of sign...
signspval 34543 The value of the skipping ...
signsw0glem 34544 Neutral element property o...
signswbase 34545 The base of ` W ` is the u...
signswplusg 34546 The operation of ` W ` . ...
signsw0g 34547 The neutral element of ` W...
signswmnd 34548 ` W ` is a monoid structur...
signswrid 34549 The zero-skipping operatio...
signswlid 34550 The zero-skipping operatio...
signswn0 34551 The zero-skipping operatio...
signswch 34552 The zero-skipping operatio...
signslema 34553 Computational part of ~~? ...
signstfv 34554 Value of the zero-skipping...
signstfval 34555 Value of the zero-skipping...
signstcl 34556 Closure of the zero skippi...
signstf 34557 The zero skipping sign wor...
signstlen 34558 Length of the zero skippin...
signstf0 34559 Sign of a single letter wo...
signstfvn 34560 Zero-skipping sign in a wo...
signsvtn0 34561 If the last letter is nonz...
signstfvp 34562 Zero-skipping sign in a wo...
signstfvneq0 34563 In case the first letter i...
signstfvcl 34564 Closure of the zero skippi...
signstfvc 34565 Zero-skipping sign in a wo...
signstres 34566 Restriction of a zero skip...
signstfveq0a 34567 Lemma for ~ signstfveq0 . ...
signstfveq0 34568 In case the last letter is...
signsvvfval 34569 The value of ` V ` , which...
signsvvf 34570 ` V ` is a function. (Con...
signsvf0 34571 There is no change of sign...
signsvf1 34572 In a single-letter word, w...
signsvfn 34573 Number of changes in a wor...
signsvtp 34574 Adding a letter of the sam...
signsvtn 34575 Adding a letter of a diffe...
signsvfpn 34576 Adding a letter of the sam...
signsvfnn 34577 Adding a letter of a diffe...
signlem0 34578 Adding a zero as the highe...
signshf 34579 ` H ` , corresponding to t...
signshwrd 34580 ` H ` , corresponding to t...
signshlen 34581 Length of ` H ` , correspo...
signshnz 34582 ` H ` is not the empty wor...
iblidicc 34583 The identity function is i...
rpsqrtcn 34584 Continuity of the real pos...
divsqrtid 34585 A real number divided by i...
cxpcncf1 34586 The power function on comp...
efmul2picn 34587 Multiplying by ` ( _i x. (...
fct2relem 34588 Lemma for ~ ftc2re . (Con...
ftc2re 34589 The Fundamental Theorem of...
fdvposlt 34590 Functions with a positive ...
fdvneggt 34591 Functions with a negative ...
fdvposle 34592 Functions with a nonnegati...
fdvnegge 34593 Functions with a nonpositi...
prodfzo03 34594 A product of three factors...
actfunsnf1o 34595 The action ` F ` of extend...
actfunsnrndisj 34596 The action ` F ` of extend...
itgexpif 34597 The basis for the circle m...
fsum2dsub 34598 Lemma for ~ breprexp - Re-...
reprval 34601 Value of the representatio...
repr0 34602 There is exactly one repre...
reprf 34603 Members of the representat...
reprsum 34604 Sums of values of the memb...
reprle 34605 Upper bound to the terms i...
reprsuc 34606 Express the representation...
reprfi 34607 Bounded representations ar...
reprss 34608 Representations with terms...
reprinrn 34609 Representations with term ...
reprlt 34610 There are no representatio...
hashreprin 34611 Express a sum of represent...
reprgt 34612 There are no representatio...
reprinfz1 34613 For the representation of ...
reprfi2 34614 Corollary of ~ reprinfz1 ....
reprfz1 34615 Corollary of ~ reprinfz1 ....
hashrepr 34616 Develop the number of repr...
reprpmtf1o 34617 Transposing ` 0 ` and ` X ...
reprdifc 34618 Express the representation...
chpvalz 34619 Value of the second Chebys...
chtvalz 34620 Value of the Chebyshev fun...
breprexplema 34621 Lemma for ~ breprexp (indu...
breprexplemb 34622 Lemma for ~ breprexp (clos...
breprexplemc 34623 Lemma for ~ breprexp (indu...
breprexp 34624 Express the ` S ` th power...
breprexpnat 34625 Express the ` S ` th power...
vtsval 34628 Value of the Vinogradov tr...
vtscl 34629 Closure of the Vinogradov ...
vtsprod 34630 Express the Vinogradov tri...
circlemeth 34631 The Hardy, Littlewood and ...
circlemethnat 34632 The Hardy, Littlewood and ...
circlevma 34633 The Circle Method, where t...
circlemethhgt 34634 The circle method, where t...
hgt750lemc 34638 An upper bound to the summ...
hgt750lemd 34639 An upper bound to the summ...
hgt749d 34640 A deduction version of ~ a...
logdivsqrle 34641 Conditions for ` ( ( log `...
hgt750lem 34642 Lemma for ~ tgoldbachgtd ....
hgt750lem2 34643 Decimal multiplication gal...
hgt750lemf 34644 Lemma for the statement 7....
hgt750lemg 34645 Lemma for the statement 7....
oddprm2 34646 Two ways to write the set ...
hgt750lemb 34647 An upper bound on the cont...
hgt750lema 34648 An upper bound on the cont...
hgt750leme 34649 An upper bound on the cont...
tgoldbachgnn 34650 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 34651 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 34652 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 34653 Odd integers greater than ...
tgoldbachgt 34654 Odd integers greater than ...
istrkg2d 34657 Property of fulfilling dim...
axtglowdim2ALTV 34658 Alternate version of ~ axt...
axtgupdim2ALTV 34659 Alternate version of ~ axt...
afsval 34662 Value of the AFS relation ...
brafs 34663 Binary relation form of th...
tg5segofs 34664 Rephrase ~ axtg5seg using ...
lpadval 34667 Value of the ` leftpad ` f...
lpadlem1 34668 Lemma for the ` leftpad ` ...
lpadlem3 34669 Lemma for ~ lpadlen1 . (C...
lpadlen1 34670 Length of a left-padded wo...
lpadlem2 34671 Lemma for the ` leftpad ` ...
lpadlen2 34672 Length of a left-padded wo...
lpadmax 34673 Length of a left-padded wo...
lpadleft 34674 The contents of prefix of ...
lpadright 34675 The suffix of a left-padde...
bnj170 34688 ` /\ ` -manipulation. (Co...
bnj240 34689 ` /\ ` -manipulation. (Co...
bnj248 34690 ` /\ ` -manipulation. (Co...
bnj250 34691 ` /\ ` -manipulation. (Co...
bnj251 34692 ` /\ ` -manipulation. (Co...
bnj252 34693 ` /\ ` -manipulation. (Co...
bnj253 34694 ` /\ ` -manipulation. (Co...
bnj255 34695 ` /\ ` -manipulation. (Co...
bnj256 34696 ` /\ ` -manipulation. (Co...
bnj257 34697 ` /\ ` -manipulation. (Co...
bnj258 34698 ` /\ ` -manipulation. (Co...
bnj268 34699 ` /\ ` -manipulation. (Co...
bnj290 34700 ` /\ ` -manipulation. (Co...
bnj291 34701 ` /\ ` -manipulation. (Co...
bnj312 34702 ` /\ ` -manipulation. (Co...
bnj334 34703 ` /\ ` -manipulation. (Co...
bnj345 34704 ` /\ ` -manipulation. (Co...
bnj422 34705 ` /\ ` -manipulation. (Co...
bnj432 34706 ` /\ ` -manipulation. (Co...
bnj446 34707 ` /\ ` -manipulation. (Co...
bnj23 34708 First-order logic and set ...
bnj31 34709 First-order logic and set ...
bnj62 34710 First-order logic and set ...
bnj89 34711 First-order logic and set ...
bnj90 34712 First-order logic and set ...
bnj101 34713 First-order logic and set ...
bnj105 34714 First-order logic and set ...
bnj115 34715 First-order logic and set ...
bnj132 34716 First-order logic and set ...
bnj133 34717 First-order logic and set ...
bnj156 34718 First-order logic and set ...
bnj158 34719 First-order logic and set ...
bnj168 34720 First-order logic and set ...
bnj206 34721 First-order logic and set ...
bnj216 34722 First-order logic and set ...
bnj219 34723 First-order logic and set ...
bnj226 34724 First-order logic and set ...
bnj228 34725 First-order logic and set ...
bnj519 34726 First-order logic and set ...
bnj524 34727 First-order logic and set ...
bnj525 34728 First-order logic and set ...
bnj534 34729 First-order logic and set ...
bnj538 34730 First-order logic and set ...
bnj529 34731 First-order logic and set ...
bnj551 34732 First-order logic and set ...
bnj563 34733 First-order logic and set ...
bnj564 34734 First-order logic and set ...
bnj593 34735 First-order logic and set ...
bnj596 34736 First-order logic and set ...
bnj610 34737 Pass from equality ( ` x =...
bnj642 34738 ` /\ ` -manipulation. (Co...
bnj643 34739 ` /\ ` -manipulation. (Co...
bnj645 34740 ` /\ ` -manipulation. (Co...
bnj658 34741 ` /\ ` -manipulation. (Co...
bnj667 34742 ` /\ ` -manipulation. (Co...
bnj705 34743 ` /\ ` -manipulation. (Co...
bnj706 34744 ` /\ ` -manipulation. (Co...
bnj707 34745 ` /\ ` -manipulation. (Co...
bnj708 34746 ` /\ ` -manipulation. (Co...
bnj721 34747 ` /\ ` -manipulation. (Co...
bnj832 34748 ` /\ ` -manipulation. (Co...
bnj835 34749 ` /\ ` -manipulation. (Co...
bnj836 34750 ` /\ ` -manipulation. (Co...
bnj837 34751 ` /\ ` -manipulation. (Co...
bnj769 34752 ` /\ ` -manipulation. (Co...
bnj770 34753 ` /\ ` -manipulation. (Co...
bnj771 34754 ` /\ ` -manipulation. (Co...
bnj887 34755 ` /\ ` -manipulation. (Co...
bnj918 34756 First-order logic and set ...
bnj919 34757 First-order logic and set ...
bnj923 34758 First-order logic and set ...
bnj927 34759 First-order logic and set ...
bnj931 34760 First-order logic and set ...
bnj937 34761 First-order logic and set ...
bnj941 34762 First-order logic and set ...
bnj945 34763 Technical lemma for ~ bnj6...
bnj946 34764 First-order logic and set ...
bnj951 34765 ` /\ ` -manipulation. (Co...
bnj956 34766 First-order logic and set ...
bnj976 34767 First-order logic and set ...
bnj982 34768 First-order logic and set ...
bnj1019 34769 First-order logic and set ...
bnj1023 34770 First-order logic and set ...
bnj1095 34771 First-order logic and set ...
bnj1096 34772 First-order logic and set ...
bnj1098 34773 First-order logic and set ...
bnj1101 34774 First-order logic and set ...
bnj1113 34775 First-order logic and set ...
bnj1109 34776 First-order logic and set ...
bnj1131 34777 First-order logic and set ...
bnj1138 34778 First-order logic and set ...
bnj1142 34779 First-order logic and set ...
bnj1143 34780 First-order logic and set ...
bnj1146 34781 First-order logic and set ...
bnj1149 34782 First-order logic and set ...
bnj1185 34783 First-order logic and set ...
bnj1196 34784 First-order logic and set ...
bnj1198 34785 First-order logic and set ...
bnj1209 34786 First-order logic and set ...
bnj1211 34787 First-order logic and set ...
bnj1213 34788 First-order logic and set ...
bnj1212 34789 First-order logic and set ...
bnj1219 34790 First-order logic and set ...
bnj1224 34791 First-order logic and set ...
bnj1230 34792 First-order logic and set ...
bnj1232 34793 First-order logic and set ...
bnj1235 34794 First-order logic and set ...
bnj1239 34795 First-order logic and set ...
bnj1238 34796 First-order logic and set ...
bnj1241 34797 First-order logic and set ...
bnj1247 34798 First-order logic and set ...
bnj1254 34799 First-order logic and set ...
bnj1262 34800 First-order logic and set ...
bnj1266 34801 First-order logic and set ...
bnj1265 34802 First-order logic and set ...
bnj1275 34803 First-order logic and set ...
bnj1276 34804 First-order logic and set ...
bnj1292 34805 First-order logic and set ...
bnj1293 34806 First-order logic and set ...
bnj1294 34807 First-order logic and set ...
bnj1299 34808 First-order logic and set ...
bnj1304 34809 First-order logic and set ...
bnj1316 34810 First-order logic and set ...
bnj1317 34811 First-order logic and set ...
bnj1322 34812 First-order logic and set ...
bnj1340 34813 First-order logic and set ...
bnj1345 34814 First-order logic and set ...
bnj1350 34815 First-order logic and set ...
bnj1351 34816 First-order logic and set ...
bnj1352 34817 First-order logic and set ...
bnj1361 34818 First-order logic and set ...
bnj1366 34819 First-order logic and set ...
bnj1379 34820 First-order logic and set ...
bnj1383 34821 First-order logic and set ...
bnj1385 34822 First-order logic and set ...
bnj1386 34823 First-order logic and set ...
bnj1397 34824 First-order logic and set ...
bnj1400 34825 First-order logic and set ...
bnj1405 34826 First-order logic and set ...
bnj1422 34827 First-order logic and set ...
bnj1424 34828 First-order logic and set ...
bnj1436 34829 First-order logic and set ...
bnj1441 34830 First-order logic and set ...
bnj1441g 34831 First-order logic and set ...
bnj1454 34832 First-order logic and set ...
bnj1459 34833 First-order logic and set ...
bnj1464 34834 Conversion of implicit sub...
bnj1465 34835 First-order logic and set ...
bnj1468 34836 Conversion of implicit sub...
bnj1476 34837 First-order logic and set ...
bnj1502 34838 First-order logic and set ...
bnj1503 34839 First-order logic and set ...
bnj1517 34840 First-order logic and set ...
bnj1521 34841 First-order logic and set ...
bnj1533 34842 First-order logic and set ...
bnj1534 34843 First-order logic and set ...
bnj1536 34844 First-order logic and set ...
bnj1538 34845 First-order logic and set ...
bnj1541 34846 First-order logic and set ...
bnj1542 34847 First-order logic and set ...
bnj110 34848 Well-founded induction res...
bnj157 34849 Well-founded induction res...
bnj66 34850 Technical lemma for ~ bnj6...
bnj91 34851 First-order logic and set ...
bnj92 34852 First-order logic and set ...
bnj93 34853 Technical lemma for ~ bnj9...
bnj95 34854 Technical lemma for ~ bnj1...
bnj96 34855 Technical lemma for ~ bnj1...
bnj97 34856 Technical lemma for ~ bnj1...
bnj98 34857 Technical lemma for ~ bnj1...
bnj106 34858 First-order logic and set ...
bnj118 34859 First-order logic and set ...
bnj121 34860 First-order logic and set ...
bnj124 34861 Technical lemma for ~ bnj1...
bnj125 34862 Technical lemma for ~ bnj1...
bnj126 34863 Technical lemma for ~ bnj1...
bnj130 34864 Technical lemma for ~ bnj1...
bnj149 34865 Technical lemma for ~ bnj1...
bnj150 34866 Technical lemma for ~ bnj1...
bnj151 34867 Technical lemma for ~ bnj1...
bnj154 34868 Technical lemma for ~ bnj1...
bnj155 34869 Technical lemma for ~ bnj1...
bnj153 34870 Technical lemma for ~ bnj8...
bnj207 34871 Technical lemma for ~ bnj8...
bnj213 34872 First-order logic and set ...
bnj222 34873 Technical lemma for ~ bnj2...
bnj229 34874 Technical lemma for ~ bnj5...
bnj517 34875 Technical lemma for ~ bnj5...
bnj518 34876 Technical lemma for ~ bnj8...
bnj523 34877 Technical lemma for ~ bnj8...
bnj526 34878 Technical lemma for ~ bnj8...
bnj528 34879 Technical lemma for ~ bnj8...
bnj535 34880 Technical lemma for ~ bnj8...
bnj539 34881 Technical lemma for ~ bnj8...
bnj540 34882 Technical lemma for ~ bnj8...
bnj543 34883 Technical lemma for ~ bnj8...
bnj544 34884 Technical lemma for ~ bnj8...
bnj545 34885 Technical lemma for ~ bnj8...
bnj546 34886 Technical lemma for ~ bnj8...
bnj548 34887 Technical lemma for ~ bnj8...
bnj553 34888 Technical lemma for ~ bnj8...
bnj554 34889 Technical lemma for ~ bnj8...
bnj556 34890 Technical lemma for ~ bnj8...
bnj557 34891 Technical lemma for ~ bnj8...
bnj558 34892 Technical lemma for ~ bnj8...
bnj561 34893 Technical lemma for ~ bnj8...
bnj562 34894 Technical lemma for ~ bnj8...
bnj570 34895 Technical lemma for ~ bnj8...
bnj571 34896 Technical lemma for ~ bnj8...
bnj605 34897 Technical lemma. This lem...
bnj581 34898 Technical lemma for ~ bnj5...
bnj589 34899 Technical lemma for ~ bnj8...
bnj590 34900 Technical lemma for ~ bnj8...
bnj591 34901 Technical lemma for ~ bnj8...
bnj594 34902 Technical lemma for ~ bnj8...
bnj580 34903 Technical lemma for ~ bnj5...
bnj579 34904 Technical lemma for ~ bnj8...
bnj602 34905 Equality theorem for the `...
bnj607 34906 Technical lemma for ~ bnj8...
bnj609 34907 Technical lemma for ~ bnj8...
bnj611 34908 Technical lemma for ~ bnj8...
bnj600 34909 Technical lemma for ~ bnj8...
bnj601 34910 Technical lemma for ~ bnj8...
bnj852 34911 Technical lemma for ~ bnj6...
bnj864 34912 Technical lemma for ~ bnj6...
bnj865 34913 Technical lemma for ~ bnj6...
bnj873 34914 Technical lemma for ~ bnj6...
bnj849 34915 Technical lemma for ~ bnj6...
bnj882 34916 Definition (using hypothes...
bnj18eq1 34917 Equality theorem for trans...
bnj893 34918 Property of ` _trCl ` . U...
bnj900 34919 Technical lemma for ~ bnj6...
bnj906 34920 Property of ` _trCl ` . (...
bnj908 34921 Technical lemma for ~ bnj6...
bnj911 34922 Technical lemma for ~ bnj6...
bnj916 34923 Technical lemma for ~ bnj6...
bnj917 34924 Technical lemma for ~ bnj6...
bnj934 34925 Technical lemma for ~ bnj6...
bnj929 34926 Technical lemma for ~ bnj6...
bnj938 34927 Technical lemma for ~ bnj6...
bnj944 34928 Technical lemma for ~ bnj6...
bnj953 34929 Technical lemma for ~ bnj6...
bnj958 34930 Technical lemma for ~ bnj6...
bnj1000 34931 Technical lemma for ~ bnj8...
bnj965 34932 Technical lemma for ~ bnj8...
bnj964 34933 Technical lemma for ~ bnj6...
bnj966 34934 Technical lemma for ~ bnj6...
bnj967 34935 Technical lemma for ~ bnj6...
bnj969 34936 Technical lemma for ~ bnj6...
bnj970 34937 Technical lemma for ~ bnj6...
bnj910 34938 Technical lemma for ~ bnj6...
bnj978 34939 Technical lemma for ~ bnj6...
bnj981 34940 Technical lemma for ~ bnj6...
bnj983 34941 Technical lemma for ~ bnj6...
bnj984 34942 Technical lemma for ~ bnj6...
bnj985v 34943 Version of ~ bnj985 with a...
bnj985 34944 Technical lemma for ~ bnj6...
bnj986 34945 Technical lemma for ~ bnj6...
bnj996 34946 Technical lemma for ~ bnj6...
bnj998 34947 Technical lemma for ~ bnj6...
bnj999 34948 Technical lemma for ~ bnj6...
bnj1001 34949 Technical lemma for ~ bnj6...
bnj1006 34950 Technical lemma for ~ bnj6...
bnj1014 34951 Technical lemma for ~ bnj6...
bnj1015 34952 Technical lemma for ~ bnj6...
bnj1018g 34953 Version of ~ bnj1018 with ...
bnj1018 34954 Technical lemma for ~ bnj6...
bnj1020 34955 Technical lemma for ~ bnj6...
bnj1021 34956 Technical lemma for ~ bnj6...
bnj907 34957 Technical lemma for ~ bnj6...
bnj1029 34958 Property of ` _trCl ` . (...
bnj1033 34959 Technical lemma for ~ bnj6...
bnj1034 34960 Technical lemma for ~ bnj6...
bnj1039 34961 Technical lemma for ~ bnj6...
bnj1040 34962 Technical lemma for ~ bnj6...
bnj1047 34963 Technical lemma for ~ bnj6...
bnj1049 34964 Technical lemma for ~ bnj6...
bnj1052 34965 Technical lemma for ~ bnj6...
bnj1053 34966 Technical lemma for ~ bnj6...
bnj1071 34967 Technical lemma for ~ bnj6...
bnj1083 34968 Technical lemma for ~ bnj6...
bnj1090 34969 Technical lemma for ~ bnj6...
bnj1093 34970 Technical lemma for ~ bnj6...
bnj1097 34971 Technical lemma for ~ bnj6...
bnj1110 34972 Technical lemma for ~ bnj6...
bnj1112 34973 Technical lemma for ~ bnj6...
bnj1118 34974 Technical lemma for ~ bnj6...
bnj1121 34975 Technical lemma for ~ bnj6...
bnj1123 34976 Technical lemma for ~ bnj6...
bnj1030 34977 Technical lemma for ~ bnj6...
bnj1124 34978 Property of ` _trCl ` . (...
bnj1133 34979 Technical lemma for ~ bnj6...
bnj1128 34980 Technical lemma for ~ bnj6...
bnj1127 34981 Property of ` _trCl ` . (...
bnj1125 34982 Property of ` _trCl ` . (...
bnj1145 34983 Technical lemma for ~ bnj6...
bnj1147 34984 Property of ` _trCl ` . (...
bnj1137 34985 Property of ` _trCl ` . (...
bnj1148 34986 Property of ` _pred ` . (...
bnj1136 34987 Technical lemma for ~ bnj6...
bnj1152 34988 Technical lemma for ~ bnj6...
bnj1154 34989 Property of ` Fr ` . (Con...
bnj1171 34990 Technical lemma for ~ bnj6...
bnj1172 34991 Technical lemma for ~ bnj6...
bnj1173 34992 Technical lemma for ~ bnj6...
bnj1174 34993 Technical lemma for ~ bnj6...
bnj1175 34994 Technical lemma for ~ bnj6...
bnj1176 34995 Technical lemma for ~ bnj6...
bnj1177 34996 Technical lemma for ~ bnj6...
bnj1186 34997 Technical lemma for ~ bnj6...
bnj1190 34998 Technical lemma for ~ bnj6...
bnj1189 34999 Technical lemma for ~ bnj6...
bnj69 35000 Existence of a minimal ele...
bnj1228 35001 Existence of a minimal ele...
bnj1204 35002 Well-founded induction. T...
bnj1234 35003 Technical lemma for ~ bnj6...
bnj1245 35004 Technical lemma for ~ bnj6...
bnj1256 35005 Technical lemma for ~ bnj6...
bnj1259 35006 Technical lemma for ~ bnj6...
bnj1253 35007 Technical lemma for ~ bnj6...
bnj1279 35008 Technical lemma for ~ bnj6...
bnj1286 35009 Technical lemma for ~ bnj6...
bnj1280 35010 Technical lemma for ~ bnj6...
bnj1296 35011 Technical lemma for ~ bnj6...
bnj1309 35012 Technical lemma for ~ bnj6...
bnj1307 35013 Technical lemma for ~ bnj6...
bnj1311 35014 Technical lemma for ~ bnj6...
bnj1318 35015 Technical lemma for ~ bnj6...
bnj1326 35016 Technical lemma for ~ bnj6...
bnj1321 35017 Technical lemma for ~ bnj6...
bnj1364 35018 Property of ` _FrSe ` . (...
bnj1371 35019 Technical lemma for ~ bnj6...
bnj1373 35020 Technical lemma for ~ bnj6...
bnj1374 35021 Technical lemma for ~ bnj6...
bnj1384 35022 Technical lemma for ~ bnj6...
bnj1388 35023 Technical lemma for ~ bnj6...
bnj1398 35024 Technical lemma for ~ bnj6...
bnj1413 35025 Property of ` _trCl ` . (...
bnj1408 35026 Technical lemma for ~ bnj1...
bnj1414 35027 Property of ` _trCl ` . (...
bnj1415 35028 Technical lemma for ~ bnj6...
bnj1416 35029 Technical lemma for ~ bnj6...
bnj1418 35030 Property of ` _pred ` . (...
bnj1417 35031 Technical lemma for ~ bnj6...
bnj1421 35032 Technical lemma for ~ bnj6...
bnj1444 35033 Technical lemma for ~ bnj6...
bnj1445 35034 Technical lemma for ~ bnj6...
bnj1446 35035 Technical lemma for ~ bnj6...
bnj1447 35036 Technical lemma for ~ bnj6...
bnj1448 35037 Technical lemma for ~ bnj6...
bnj1449 35038 Technical lemma for ~ bnj6...
bnj1442 35039 Technical lemma for ~ bnj6...
bnj1450 35040 Technical lemma for ~ bnj6...
bnj1423 35041 Technical lemma for ~ bnj6...
bnj1452 35042 Technical lemma for ~ bnj6...
bnj1466 35043 Technical lemma for ~ bnj6...
bnj1467 35044 Technical lemma for ~ bnj6...
bnj1463 35045 Technical lemma for ~ bnj6...
bnj1489 35046 Technical lemma for ~ bnj6...
bnj1491 35047 Technical lemma for ~ bnj6...
bnj1312 35048 Technical lemma for ~ bnj6...
bnj1493 35049 Technical lemma for ~ bnj6...
bnj1497 35050 Technical lemma for ~ bnj6...
bnj1498 35051 Technical lemma for ~ bnj6...
bnj60 35052 Well-founded recursion, pa...
bnj1514 35053 Technical lemma for ~ bnj1...
bnj1518 35054 Technical lemma for ~ bnj1...
bnj1519 35055 Technical lemma for ~ bnj1...
bnj1520 35056 Technical lemma for ~ bnj1...
bnj1501 35057 Technical lemma for ~ bnj1...
bnj1500 35058 Well-founded recursion, pa...
bnj1525 35059 Technical lemma for ~ bnj1...
bnj1529 35060 Technical lemma for ~ bnj1...
bnj1523 35061 Technical lemma for ~ bnj1...
bnj1522 35062 Well-founded recursion, pa...
nfan1c 35063 Variant of ~ nfan and comm...
cbvex1v 35064 Rule used to change bound ...
dvelimalcased 35065 Eliminate a disjoint varia...
dvelimalcasei 35066 Eliminate a disjoint varia...
dvelimexcased 35067 Eliminate a disjoint varia...
dvelimexcasei 35068 Eliminate a disjoint varia...
exdifsn 35069 There exists an element in...
srcmpltd 35070 If a statement is true for...
prsrcmpltd 35071 If a statement is true for...
axsepg2 35072 A generalization of ~ ax-s...
axsepg2ALT 35073 Alternate proof of ~ axsep...
dff15 35074 A one-to-one function in t...
f1resveqaeq 35075 If a function restricted t...
f1resrcmplf1dlem 35076 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 35077 If a function's restrictio...
funen1cnv 35078 If a function is equinumer...
fnrelpredd 35079 A function that preserves ...
cardpred 35080 The cardinality function p...
nummin 35081 Every nonempty class of nu...
axnulg 35082 A generalization of ~ ax-n...
axnulALT2 35083 Alternate proof of ~ axnul...
prcinf 35084 Any proper class is litera...
fineqvrep 35085 If the Axiom of Infinity i...
fineqvpow 35086 If the Axiom of Infinity i...
fineqvac 35087 If the Axiom of Infinity i...
fineqvacALT 35088 Shorter proof of ~ fineqva...
gblacfnacd 35089 If ` G ` is a global choic...
onvf1odlem1 35090 Lemma for ~ onvf1od . (Co...
onvf1odlem2 35091 Lemma for ~ onvf1od . (Co...
onvf1odlem3 35092 Lemma for ~ onvf1od . The...
onvf1odlem4 35093 Lemma for ~ onvf1od . If ...
onvf1od 35094 If ` G ` is a global choic...
vonf1owev 35095 If ` F ` is a bijection fr...
wevgblacfn 35096 If ` R ` is a well-orderin...
zltp1ne 35097 Integer ordering relation....
nnltp1ne 35098 Positive integer ordering ...
nn0ltp1ne 35099 Nonnegative integer orderi...
0nn0m1nnn0 35100 A number is zero if and on...
f1resfz0f1d 35101 If a function with a seque...
fisshasheq 35102 A finite set is equal to i...
revpfxsfxrev 35103 The reverse of a prefix of...
swrdrevpfx 35104 A subword expressed in ter...
lfuhgr 35105 A hypergraph is loop-free ...
lfuhgr2 35106 A hypergraph is loop-free ...
lfuhgr3 35107 A hypergraph is loop-free ...
cplgredgex 35108 Any two (distinct) vertice...
cusgredgex 35109 Any two (distinct) vertice...
cusgredgex2 35110 Any two distinct vertices ...
pfxwlk 35111 A prefix of a walk is a wa...
revwlk 35112 The reverse of a walk is a...
revwlkb 35113 Two words represent a walk...
swrdwlk 35114 Two matching subwords of a...
pthhashvtx 35115 A graph containing a path ...
spthcycl 35116 A walk is a trivial path i...
usgrgt2cycl 35117 A non-trivial cycle in a s...
usgrcyclgt2v 35118 A simple graph with a non-...
subgrwlk 35119 If a walk exists in a subg...
subgrtrl 35120 If a trail exists in a sub...
subgrpth 35121 If a path exists in a subg...
subgrcycl 35122 If a cycle exists in a sub...
cusgr3cyclex 35123 Every complete simple grap...
loop1cycl 35124 A hypergraph has a cycle o...
2cycld 35125 Construction of a 2-cycle ...
2cycl2d 35126 Construction of a 2-cycle ...
umgr2cycllem 35127 Lemma for ~ umgr2cycl . (...
umgr2cycl 35128 A multigraph with two dist...
dfacycgr1 35131 An alternate definition of...
isacycgr 35132 The property of being an a...
isacycgr1 35133 The property of being an a...
acycgrcycl 35134 Any cycle in an acyclic gr...
acycgr0v 35135 A null graph (with no vert...
acycgr1v 35136 A multigraph with one vert...
acycgr2v 35137 A simple graph with two ve...
prclisacycgr 35138 A proper class (representi...
acycgrislfgr 35139 An acyclic hypergraph is a...
upgracycumgr 35140 An acyclic pseudograph is ...
umgracycusgr 35141 An acyclic multigraph is a...
upgracycusgr 35142 An acyclic pseudograph is ...
cusgracyclt3v 35143 A complete simple graph is...
pthacycspth 35144 A path in an acyclic graph...
acycgrsubgr 35145 The subgraph of an acyclic...
quartfull 35152 The quartic equation, writ...
deranglem 35153 Lemma for derangements. (...
derangval 35154 Define the derangement fun...
derangf 35155 The derangement number is ...
derang0 35156 The derangement number of ...
derangsn 35157 The derangement number of ...
derangenlem 35158 One half of ~ derangen . ...
derangen 35159 The derangement number is ...
subfacval 35160 The subfactorial is define...
derangen2 35161 Write the derangement numb...
subfacf 35162 The subfactorial is a func...
subfaclefac 35163 The subfactorial is less t...
subfac0 35164 The subfactorial at zero. ...
subfac1 35165 The subfactorial at one. ...
subfacp1lem1 35166 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 35167 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 35168 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 35169 Lemma for ~ subfacp1 . In...
subfacp1lem4 35170 Lemma for ~ subfacp1 . Th...
subfacp1lem5 35171 Lemma for ~ subfacp1 . In...
subfacp1lem6 35172 Lemma for ~ subfacp1 . By...
subfacp1 35173 A two-term recurrence for ...
subfacval2 35174 A closed-form expression f...
subfaclim 35175 The subfactorial converges...
subfacval3 35176 Another closed form expres...
derangfmla 35177 The derangements formula, ...
erdszelem1 35178 Lemma for ~ erdsze . (Con...
erdszelem2 35179 Lemma for ~ erdsze . (Con...
erdszelem3 35180 Lemma for ~ erdsze . (Con...
erdszelem4 35181 Lemma for ~ erdsze . (Con...
erdszelem5 35182 Lemma for ~ erdsze . (Con...
erdszelem6 35183 Lemma for ~ erdsze . (Con...
erdszelem7 35184 Lemma for ~ erdsze . (Con...
erdszelem8 35185 Lemma for ~ erdsze . (Con...
erdszelem9 35186 Lemma for ~ erdsze . (Con...
erdszelem10 35187 Lemma for ~ erdsze . (Con...
erdszelem11 35188 Lemma for ~ erdsze . (Con...
erdsze 35189 The Erdős-Szekeres th...
erdsze2lem1 35190 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 35191 Lemma for ~ erdsze2 . (Co...
erdsze2 35192 Generalize the statement o...
kur14lem1 35193 Lemma for ~ kur14 . (Cont...
kur14lem2 35194 Lemma for ~ kur14 . Write...
kur14lem3 35195 Lemma for ~ kur14 . A clo...
kur14lem4 35196 Lemma for ~ kur14 . Compl...
kur14lem5 35197 Lemma for ~ kur14 . Closu...
kur14lem6 35198 Lemma for ~ kur14 . If ` ...
kur14lem7 35199 Lemma for ~ kur14 : main p...
kur14lem8 35200 Lemma for ~ kur14 . Show ...
kur14lem9 35201 Lemma for ~ kur14 . Since...
kur14lem10 35202 Lemma for ~ kur14 . Disch...
kur14 35203 Kuratowski's closure-compl...
ispconn 35210 The property of being a pa...
pconncn 35211 The property of being a pa...
pconntop 35212 A simply connected space i...
issconn 35213 The property of being a si...
sconnpconn 35214 A simply connected space i...
sconntop 35215 A simply connected space i...
sconnpht 35216 A closed path in a simply ...
cnpconn 35217 An image of a path-connect...
pconnconn 35218 A path-connected space is ...
txpconn 35219 The topological product of...
ptpconn 35220 The topological product of...
indispconn 35221 The indiscrete topology (o...
connpconn 35222 A connected and locally pa...
qtoppconn 35223 A quotient of a path-conne...
pconnpi1 35224 All fundamental groups in ...
sconnpht2 35225 Any two paths in a simply ...
sconnpi1 35226 A path-connected topologic...
txsconnlem 35227 Lemma for ~ txsconn . (Co...
txsconn 35228 The topological product of...
cvxpconn 35229 A convex subset of the com...
cvxsconn 35230 A convex subset of the com...
blsconn 35231 An open ball in the comple...
cnllysconn 35232 The topology of the comple...
resconn 35233 A subset of ` RR ` is simp...
ioosconn 35234 An open interval is simply...
iccsconn 35235 A closed interval is simpl...
retopsconn 35236 The real numbers are simpl...
iccllysconn 35237 A closed interval is local...
rellysconn 35238 The real numbers are local...
iisconn 35239 The unit interval is simpl...
iillysconn 35240 The unit interval is local...
iinllyconn 35241 The unit interval is local...
fncvm 35244 Lemma for covering maps. ...
cvmscbv 35245 Change bound variables in ...
iscvm 35246 The property of being a co...
cvmtop1 35247 Reverse closure for a cove...
cvmtop2 35248 Reverse closure for a cove...
cvmcn 35249 A covering map is a contin...
cvmcov 35250 Property of a covering map...
cvmsrcl 35251 Reverse closure for an eve...
cvmsi 35252 One direction of ~ cvmsval...
cvmsval 35253 Elementhood in the set ` S...
cvmsss 35254 An even covering is a subs...
cvmsn0 35255 An even covering is nonemp...
cvmsuni 35256 An even covering of ` U ` ...
cvmsdisj 35257 An even covering of ` U ` ...
cvmshmeo 35258 Every element of an even c...
cvmsf1o 35259 ` F ` , localized to an el...
cvmscld 35260 The sets of an even coveri...
cvmsss2 35261 An open subset of an evenl...
cvmcov2 35262 The covering map property ...
cvmseu 35263 Every element in ` U. T ` ...
cvmsiota 35264 Identify the unique elemen...
cvmopnlem 35265 Lemma for ~ cvmopn . (Con...
cvmfolem 35266 Lemma for ~ cvmfo . (Cont...
cvmopn 35267 A covering map is an open ...
cvmliftmolem1 35268 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 35269 Lemma for ~ cvmliftmo . (...
cvmliftmoi 35270 A lift of a continuous fun...
cvmliftmo 35271 A lift of a continuous fun...
cvmliftlem1 35272 Lemma for ~ cvmlift . In ...
cvmliftlem2 35273 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 35274 Lemma for ~ cvmlift . Sin...
cvmliftlem4 35275 Lemma for ~ cvmlift . The...
cvmliftlem5 35276 Lemma for ~ cvmlift . Def...
cvmliftlem6 35277 Lemma for ~ cvmlift . Ind...
cvmliftlem7 35278 Lemma for ~ cvmlift . Pro...
cvmliftlem8 35279 Lemma for ~ cvmlift . The...
cvmliftlem9 35280 Lemma for ~ cvmlift . The...
cvmliftlem10 35281 Lemma for ~ cvmlift . The...
cvmliftlem11 35282 Lemma for ~ cvmlift . (Co...
cvmliftlem13 35283 Lemma for ~ cvmlift . The...
cvmliftlem14 35284 Lemma for ~ cvmlift . Put...
cvmliftlem15 35285 Lemma for ~ cvmlift . Dis...
cvmlift 35286 One of the important prope...
cvmfo 35287 A covering map is an onto ...
cvmliftiota 35288 Write out a function ` H `...
cvmlift2lem1 35289 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 35290 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 35291 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 35292 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 35293 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 35294 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 35295 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 35296 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 35297 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 35298 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 35299 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 35300 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 35301 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 35302 Lemma for ~ cvmlift2 . (C...
cvmlift2 35303 A two-dimensional version ...
cvmliftphtlem 35304 Lemma for ~ cvmliftpht . ...
cvmliftpht 35305 If ` G ` and ` H ` are pat...
cvmlift3lem1 35306 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 35307 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 35308 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 35309 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 35310 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 35311 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 35312 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 35313 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 35314 Lemma for ~ cvmlift2 . (C...
cvmlift3 35315 A general version of ~ cvm...
snmlff 35316 The function ` F ` from ~ ...
snmlfval 35317 The function ` F ` from ~ ...
snmlval 35318 The property " ` A ` is si...
snmlflim 35319 If ` A ` is simply normal,...
goel 35334 A "Godel-set of membership...
goelel3xp 35335 A "Godel-set of membership...
goeleq12bg 35336 Two "Godel-set of membersh...
gonafv 35337 The "Godel-set for the She...
goaleq12d 35338 Equality of the "Godel-set...
gonanegoal 35339 The Godel-set for the Shef...
satf 35340 The satisfaction predicate...
satfsucom 35341 The satisfaction predicate...
satfn 35342 The satisfaction predicate...
satom 35343 The satisfaction predicate...
satfvsucom 35344 The satisfaction predicate...
satfv0 35345 The value of the satisfact...
satfvsuclem1 35346 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 35347 Lemma 2 for ~ satfvsuc . ...
satfvsuc 35348 The value of the satisfact...
satfv1lem 35349 Lemma for ~ satfv1 . (Con...
satfv1 35350 The value of the satisfact...
satfsschain 35351 The binary relation of a s...
satfvsucsuc 35352 The satisfaction predicate...
satfbrsuc 35353 The binary relation of a s...
satfrel 35354 The value of the satisfact...
satfdmlem 35355 Lemma for ~ satfdm . (Con...
satfdm 35356 The domain of the satisfac...
satfrnmapom 35357 The range of the satisfact...
satfv0fun 35358 The value of the satisfact...
satf0 35359 The satisfaction predicate...
satf0sucom 35360 The satisfaction predicate...
satf00 35361 The value of the satisfact...
satf0suclem 35362 Lemma for ~ satf0suc , ~ s...
satf0suc 35363 The value of the satisfact...
satf0op 35364 An element of a value of t...
satf0n0 35365 The value of the satisfact...
sat1el2xp 35366 The first component of an ...
fmlafv 35367 The valid Godel formulas o...
fmla 35368 The set of all valid Godel...
fmla0 35369 The valid Godel formulas o...
fmla0xp 35370 The valid Godel formulas o...
fmlasuc0 35371 The valid Godel formulas o...
fmlafvel 35372 A class is a valid Godel f...
fmlasuc 35373 The valid Godel formulas o...
fmla1 35374 The valid Godel formulas o...
isfmlasuc 35375 The characterization of a ...
fmlasssuc 35376 The Godel formulas of heig...
fmlaomn0 35377 The empty set is not a God...
fmlan0 35378 The empty set is not a God...
gonan0 35379 The "Godel-set of NAND" is...
goaln0 35380 The "Godel-set of universa...
gonarlem 35381 Lemma for ~ gonar (inducti...
gonar 35382 If the "Godel-set of NAND"...
goalrlem 35383 Lemma for ~ goalr (inducti...
goalr 35384 If the "Godel-set of unive...
fmla0disjsuc 35385 The set of valid Godel for...
fmlasucdisj 35386 The valid Godel formulas o...
satfdmfmla 35387 The domain of the satisfac...
satffunlem 35388 Lemma for ~ satffunlem1lem...
satffunlem1lem1 35389 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 35390 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 35391 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 35392 The domain of an ordered p...
satffunlem2lem2 35393 Lemma 2 for ~ satffunlem2 ...
satffunlem1 35394 Lemma 1 for ~ satffun : in...
satffunlem2 35395 Lemma 2 for ~ satffun : in...
satffun 35396 The value of the satisfact...
satff 35397 The satisfaction predicate...
satfun 35398 The satisfaction predicate...
satfvel 35399 An element of the value of...
satfv0fvfmla0 35400 The value of the satisfact...
satefv 35401 The simplified satisfactio...
sate0 35402 The simplified satisfactio...
satef 35403 The simplified satisfactio...
sate0fv0 35404 A simplified satisfaction ...
satefvfmla0 35405 The simplified satisfactio...
sategoelfvb 35406 Characterization of a valu...
sategoelfv 35407 Condition of a valuation `...
ex-sategoelel 35408 Example of a valuation of ...
ex-sategoel 35409 Instance of ~ sategoelfv f...
satfv1fvfmla1 35410 The value of the satisfact...
2goelgoanfmla1 35411 Two Godel-sets of membersh...
satefvfmla1 35412 The simplified satisfactio...
ex-sategoelelomsuc 35413 Example of a valuation of ...
ex-sategoelel12 35414 Example of a valuation of ...
prv 35415 The "proves" relation on a...
elnanelprv 35416 The wff ` ( A e. B -/\ B e...
prv0 35417 Every wff encoded as ` U `...
prv1n 35418 No wff encoded as a Godel-...
mvtval 35487 The set of variable typeco...
mrexval 35488 The set of "raw expression...
mexval 35489 The set of expressions, wh...
mexval2 35490 The set of expressions, wh...
mdvval 35491 The set of disjoint variab...
mvrsval 35492 The set of variables in an...
mvrsfpw 35493 The set of variables in an...
mrsubffval 35494 The substitution of some v...
mrsubfval 35495 The substitution of some v...
mrsubval 35496 The substitution of some v...
mrsubcv 35497 The value of a substituted...
mrsubvr 35498 The value of a substituted...
mrsubff 35499 A substitution is a functi...
mrsubrn 35500 Although it is defined for...
mrsubff1 35501 When restricted to complet...
mrsubff1o 35502 When restricted to complet...
mrsub0 35503 The value of the substitut...
mrsubf 35504 A substitution is a functi...
mrsubccat 35505 Substitution distributes o...
mrsubcn 35506 A substitution does not ch...
elmrsubrn 35507 Characterization of the su...
mrsubco 35508 The composition of two sub...
mrsubvrs 35509 The set of variables in a ...
msubffval 35510 A substitution applied to ...
msubfval 35511 A substitution applied to ...
msubval 35512 A substitution applied to ...
msubrsub 35513 A substitution applied to ...
msubty 35514 The type of a substituted ...
elmsubrn 35515 Characterization of substi...
msubrn 35516 Although it is defined for...
msubff 35517 A substitution is a functi...
msubco 35518 The composition of two sub...
msubf 35519 A substitution is a functi...
mvhfval 35520 Value of the function mapp...
mvhval 35521 Value of the function mapp...
mpstval 35522 A pre-statement is an orde...
elmpst 35523 Property of being a pre-st...
msrfval 35524 Value of the reduct of a p...
msrval 35525 Value of the reduct of a p...
mpstssv 35526 A pre-statement is an orde...
mpst123 35527 Decompose a pre-statement ...
mpstrcl 35528 The elements of a pre-stat...
msrf 35529 The reduct of a pre-statem...
msrrcl 35530 If ` X ` and ` Y ` have th...
mstaval 35531 Value of the set of statem...
msrid 35532 The reduct of a statement ...
msrfo 35533 The reduct of a pre-statem...
mstapst 35534 A statement is a pre-state...
elmsta 35535 Property of being a statem...
ismfs 35536 A formal system is a tuple...
mfsdisj 35537 The constants and variable...
mtyf2 35538 The type function maps var...
mtyf 35539 The type function maps var...
mvtss 35540 The set of variable typeco...
maxsta 35541 An axiom is a statement. ...
mvtinf 35542 Each variable typecode has...
msubff1 35543 When restricted to complet...
msubff1o 35544 When restricted to complet...
mvhf 35545 The function mapping varia...
mvhf1 35546 The function mapping varia...
msubvrs 35547 The set of variables in a ...
mclsrcl 35548 Reverse closure for the cl...
mclsssvlem 35549 Lemma for ~ mclsssv . (Co...
mclsval 35550 The function mapping varia...
mclsssv 35551 The closure of a set of ex...
ssmclslem 35552 Lemma for ~ ssmcls . (Con...
vhmcls 35553 All variable hypotheses ar...
ssmcls 35554 The original expressions a...
ss2mcls 35555 The closure is monotonic u...
mclsax 35556 The closure is closed unde...
mclsind 35557 Induction theorem for clos...
mppspstlem 35558 Lemma for ~ mppspst . (Co...
mppsval 35559 Definition of a provable p...
elmpps 35560 Definition of a provable p...
mppspst 35561 A provable pre-statement i...
mthmval 35562 A theorem is a pre-stateme...
elmthm 35563 A theorem is a pre-stateme...
mthmi 35564 A statement whose reduct i...
mthmsta 35565 A theorem is a pre-stateme...
mppsthm 35566 A provable pre-statement i...
mthmblem 35567 Lemma for ~ mthmb . (Cont...
mthmb 35568 If two statements have the...
mthmpps 35569 Given a theorem, there is ...
mclsppslem 35570 The closure is closed unde...
mclspps 35571 The closure is closed unde...
rexxfr3d 35625 Transfer existential quant...
rexxfr3dALT 35626 Longer proof of ~ rexxfr3d...
rspssbasd 35627 The span of a set of ring ...
ellcsrspsn 35628 Membership in a left coset...
ply1divalg3 35629 Uniqueness of polynomial r...
r1peuqusdeg1 35630 Uniqueness of polynomial r...
problem1 35652 Practice problem 1. Clues...
problem2 35653 Practice problem 2. Clues...
problem3 35654 Practice problem 3. Clues...
problem4 35655 Practice problem 4. Clues...
problem5 35656 Practice problem 5. Clues...
quad3 35657 Variant of quadratic equat...
climuzcnv 35658 Utility lemma to convert b...
sinccvglem 35659 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 35660 ` ( ( sin `` x ) / x ) ~~>...
circum 35661 The circumference of a cir...
elfzm12 35662 Membership in a curtailed ...
nn0seqcvg 35663 A strictly-decreasing nonn...
lediv2aALT 35664 Division of both sides of ...
abs2sqlei 35665 The absolute values of two...
abs2sqlti 35666 The absolute values of two...
abs2sqle 35667 The absolute values of two...
abs2sqlt 35668 The absolute values of two...
abs2difi 35669 Difference of absolute val...
abs2difabsi 35670 Absolute value of differen...
2thALT 35671 Alternate proof of ~ 2th ....
orbi2iALT 35672 Alternate proof of ~ orbi2...
pm3.48ALT 35673 Alternate proof of ~ pm3.4...
3jcadALT 35674 Alternate proof of ~ 3jcad...
currybi 35675 Biconditional version of C...
antnest 35676 Suppose ` ph ` , ` ps ` ar...
antnestlaw3lem 35677 Lemma for ~ antnestlaw3 . ...
antnestlaw1 35678 A law of nested antecedent...
antnestlaw2 35679 A law of nested antecedent...
antnestlaw3 35680 A law of nested antecedent...
antnestALT 35681 Alternative proof of ~ ant...
axextprim 35688 ~ ax-ext without distinct ...
axrepprim 35689 ~ ax-rep without distinct ...
axunprim 35690 ~ ax-un without distinct v...
axpowprim 35691 ~ ax-pow without distinct ...
axregprim 35692 ~ ax-reg without distinct ...
axinfprim 35693 ~ ax-inf without distinct ...
axacprim 35694 ~ ax-ac without distinct v...
untelirr 35695 We call a class "untanged"...
untuni 35696 The union of a class is un...
untsucf 35697 If a class is untangled, t...
unt0 35698 The null set is untangled....
untint 35699 If there is an untangled e...
efrunt 35700 If ` A ` is well-founded b...
untangtr 35701 A transitive class is unta...
3jaodd 35702 Double deduction form of ~...
3orit 35703 Closed form of ~ 3ori . (...
biimpexp 35704 A biconditional in the ant...
nepss 35705 Two classes are unequal if...
3ccased 35706 Triple disjunction form of...
dfso3 35707 Expansion of the definitio...
brtpid1 35708 A binary relation involvin...
brtpid2 35709 A binary relation involvin...
brtpid3 35710 A binary relation involvin...
iota5f 35711 A method for computing iot...
jath 35712 Closed form of ~ ja . Pro...
xpab 35713 Cartesian product of two c...
nnuni 35714 The union of a finite ordi...
sqdivzi 35715 Distribution of square ove...
supfz 35716 The supremum of a finite s...
inffz 35717 The infimum of a finite se...
fz0n 35718 The sequence ` ( 0 ... ( N...
shftvalg 35719 Value of a sequence shifte...
divcnvlin 35720 Limit of the ratio of two ...
climlec3 35721 Comparison of a constant t...
iexpire 35722 ` _i ` raised to itself is...
bcneg1 35723 The binomial coefficient o...
bcm1nt 35724 The proportion of one bino...
bcprod 35725 A product identity for bin...
bccolsum 35726 A column-sum rule for bino...
iprodefisumlem 35727 Lemma for ~ iprodefisum . ...
iprodefisum 35728 Applying the exponential f...
iprodgam 35729 An infinite product versio...
faclimlem1 35730 Lemma for ~ faclim . Clos...
faclimlem2 35731 Lemma for ~ faclim . Show...
faclimlem3 35732 Lemma for ~ faclim . Alge...
faclim 35733 An infinite product expres...
iprodfac 35734 An infinite product expres...
faclim2 35735 Another factorial limit du...
gcd32 35736 Swap the second and third ...
gcdabsorb 35737 Absorption law for gcd. (...
dftr6 35738 A potential definition of ...
coep 35739 Composition with the membe...
coepr 35740 Composition with the conve...
dffr5 35741 A quantifier-free definiti...
dfso2 35742 Quantifier-free definition...
br8 35743 Substitution for an eight-...
br6 35744 Substitution for a six-pla...
br4 35745 Substitution for a four-pl...
cnvco1 35746 Another distributive law o...
cnvco2 35747 Another distributive law o...
eldm3 35748 Quantifier-free definition...
elrn3 35749 Quantifier-free definition...
pocnv 35750 The converse of a partial ...
socnv 35751 The converse of a strict o...
elintfv 35752 Membership in an intersect...
funpsstri 35753 A condition for subset tri...
fundmpss 35754 If a class ` F ` is a prop...
funsseq 35755 Given two functions with e...
fununiq 35756 The uniqueness condition o...
funbreq 35757 An equality condition for ...
br1steq 35758 Uniqueness condition for t...
br2ndeq 35759 Uniqueness condition for t...
dfdm5 35760 Definition of domain in te...
dfrn5 35761 Definition of range in ter...
opelco3 35762 Alternate way of saying th...
elima4 35763 Quantifier-free expression...
fv1stcnv 35764 The value of the converse ...
fv2ndcnv 35765 The value of the converse ...
setinds 35766 Principle of set induction...
setinds2f 35767 ` _E ` induction schema, u...
setinds2 35768 ` _E ` induction schema, u...
elpotr 35769 A class of transitive sets...
dford5reg 35770 Given ~ ax-reg , an ordina...
dfon2lem1 35771 Lemma for ~ dfon2 . (Cont...
dfon2lem2 35772 Lemma for ~ dfon2 . (Cont...
dfon2lem3 35773 Lemma for ~ dfon2 . All s...
dfon2lem4 35774 Lemma for ~ dfon2 . If tw...
dfon2lem5 35775 Lemma for ~ dfon2 . Two s...
dfon2lem6 35776 Lemma for ~ dfon2 . A tra...
dfon2lem7 35777 Lemma for ~ dfon2 . All e...
dfon2lem8 35778 Lemma for ~ dfon2 . The i...
dfon2lem9 35779 Lemma for ~ dfon2 . A cla...
dfon2 35780 ` On ` consists of all set...
rdgprc0 35781 The value of the recursive...
rdgprc 35782 The value of the recursive...
dfrdg2 35783 Alternate definition of th...
dfrdg3 35784 Generalization of ~ dfrdg2...
axextdfeq 35785 A version of ~ ax-ext for ...
ax8dfeq 35786 A version of ~ ax-8 for us...
axextdist 35787 ~ ax-ext with distinctors ...
axextbdist 35788 ~ axextb with distinctors ...
19.12b 35789 Version of ~ 19.12vv with ...
exnel 35790 There is always a set not ...
distel 35791 Distinctors in terms of me...
axextndbi 35792 ~ axextnd as a bicondition...
hbntg 35793 A more general form of ~ h...
hbimtg 35794 A more general and closed ...
hbaltg 35795 A more general and closed ...
hbng 35796 A more general form of ~ h...
hbimg 35797 A more general form of ~ h...
wsuceq123 35802 Equality theorem for well-...
wsuceq1 35803 Equality theorem for well-...
wsuceq2 35804 Equality theorem for well-...
wsuceq3 35805 Equality theorem for well-...
nfwsuc 35806 Bound-variable hypothesis ...
wlimeq12 35807 Equality theorem for the l...
wlimeq1 35808 Equality theorem for the l...
wlimeq2 35809 Equality theorem for the l...
nfwlim 35810 Bound-variable hypothesis ...
elwlim 35811 Membership in the limit cl...
wzel 35812 The zero of a well-founded...
wsuclem 35813 Lemma for the supremum pro...
wsucex 35814 Existence theorem for well...
wsuccl 35815 If ` X ` is a set with an ...
wsuclb 35816 A well-founded successor i...
wlimss 35817 The class of limit points ...
txpss3v 35866 A tail Cartesian product i...
txprel 35867 A tail Cartesian product i...
brtxp 35868 Characterize a ternary rel...
brtxp2 35869 The binary relation over a...
dfpprod2 35870 Expanded definition of par...
pprodcnveq 35871 A converse law for paralle...
pprodss4v 35872 The parallel product is a ...
brpprod 35873 Characterize a quaternary ...
brpprod3a 35874 Condition for parallel pro...
brpprod3b 35875 Condition for parallel pro...
relsset 35876 The subset class is a bina...
brsset 35877 For sets, the ` SSet ` bin...
idsset 35878 ` _I ` is equal to the int...
eltrans 35879 Membership in the class of...
dfon3 35880 A quantifier-free definiti...
dfon4 35881 Another quantifier-free de...
brtxpsd 35882 Expansion of a common form...
brtxpsd2 35883 Another common abbreviatio...
brtxpsd3 35884 A third common abbreviatio...
relbigcup 35885 The ` Bigcup ` relationshi...
brbigcup 35886 Binary relation over ` Big...
dfbigcup2 35887 ` Bigcup ` using maps-to n...
fobigcup 35888 ` Bigcup ` maps the univer...
fnbigcup 35889 ` Bigcup ` is a function o...
fvbigcup 35890 For sets, ` Bigcup ` yield...
elfix 35891 Membership in the fixpoint...
elfix2 35892 Alternative membership in ...
dffix2 35893 The fixpoints of a class i...
fixssdm 35894 The fixpoints of a class a...
fixssrn 35895 The fixpoints of a class a...
fixcnv 35896 The fixpoints of a class a...
fixun 35897 The fixpoint operator dist...
ellimits 35898 Membership in the class of...
limitssson 35899 The class of all limit ord...
dfom5b 35900 A quantifier-free definiti...
sscoid 35901 A condition for subset and...
dffun10 35902 Another potential definiti...
elfuns 35903 Membership in the class of...
elfunsg 35904 Closed form of ~ elfuns . ...
brsingle 35905 The binary relation form o...
elsingles 35906 Membership in the class of...
fnsingle 35907 The singleton relationship...
fvsingle 35908 The value of the singleton...
dfsingles2 35909 Alternate definition of th...
snelsingles 35910 A singleton is a member of...
dfiota3 35911 A definition of iota using...
dffv5 35912 Another quantifier-free de...
unisnif 35913 Express union of singleton...
brimage 35914 Binary relation form of th...
brimageg 35915 Closed form of ~ brimage ....
funimage 35916 ` Image A ` is a function....
fnimage 35917 ` Image R ` is a function ...
imageval 35918 The image functor in maps-...
fvimage 35919 Value of the image functor...
brcart 35920 Binary relation form of th...
brdomain 35921 Binary relation form of th...
brrange 35922 Binary relation form of th...
brdomaing 35923 Closed form of ~ brdomain ...
brrangeg 35924 Closed form of ~ brrange ....
brimg 35925 Binary relation form of th...
brapply 35926 Binary relation form of th...
brcup 35927 Binary relation form of th...
brcap 35928 Binary relation form of th...
brsuccf 35929 Binary relation form of th...
funpartlem 35930 Lemma for ~ funpartfun . ...
funpartfun 35931 The functional part of ` F...
funpartss 35932 The functional part of ` F...
funpartfv 35933 The function value of the ...
fullfunfnv 35934 The full functional part o...
fullfunfv 35935 The function value of the ...
brfullfun 35936 A binary relation form con...
brrestrict 35937 Binary relation form of th...
dfrecs2 35938 A quantifier-free definiti...
dfrdg4 35939 A quantifier-free definiti...
dfint3 35940 Quantifier-free definition...
imagesset 35941 The Image functor applied ...
brub 35942 Binary relation form of th...
brlb 35943 Binary relation form of th...
altopex 35948 Alternative ordered pairs ...
altopthsn 35949 Two alternate ordered pair...
altopeq12 35950 Equality for alternate ord...
altopeq1 35951 Equality for alternate ord...
altopeq2 35952 Equality for alternate ord...
altopth1 35953 Equality of the first memb...
altopth2 35954 Equality of the second mem...
altopthg 35955 Alternate ordered pair the...
altopthbg 35956 Alternate ordered pair the...
altopth 35957 The alternate ordered pair...
altopthb 35958 Alternate ordered pair the...
altopthc 35959 Alternate ordered pair the...
altopthd 35960 Alternate ordered pair the...
altxpeq1 35961 Equality for alternate Car...
altxpeq2 35962 Equality for alternate Car...
elaltxp 35963 Membership in alternate Ca...
altopelaltxp 35964 Alternate ordered pair mem...
altxpsspw 35965 An inclusion rule for alte...
altxpexg 35966 The alternate Cartesian pr...
rankaltopb 35967 Compute the rank of an alt...
nfaltop 35968 Bound-variable hypothesis ...
sbcaltop 35969 Distribution of class subs...
cgrrflx2d 35972 Deduction form of ~ axcgrr...
cgrtr4d 35973 Deduction form of ~ axcgrt...
cgrtr4and 35974 Deduction form of ~ axcgrt...
cgrrflx 35975 Reflexivity law for congru...
cgrrflxd 35976 Deduction form of ~ cgrrfl...
cgrcomim 35977 Congruence commutes on the...
cgrcom 35978 Congruence commutes betwee...
cgrcomand 35979 Deduction form of ~ cgrcom...
cgrtr 35980 Transitivity law for congr...
cgrtrand 35981 Deduction form of ~ cgrtr ...
cgrtr3 35982 Transitivity law for congr...
cgrtr3and 35983 Deduction form of ~ cgrtr3...
cgrcoml 35984 Congruence commutes on the...
cgrcomr 35985 Congruence commutes on the...
cgrcomlr 35986 Congruence commutes on bot...
cgrcomland 35987 Deduction form of ~ cgrcom...
cgrcomrand 35988 Deduction form of ~ cgrcom...
cgrcomlrand 35989 Deduction form of ~ cgrcom...
cgrtriv 35990 Degenerate segments are co...
cgrid2 35991 Identity law for congruenc...
cgrdegen 35992 Two congruent segments are...
brofs 35993 Binary relation form of th...
5segofs 35994 Rephrase ~ ax5seg using th...
ofscom 35995 The outer five segment pre...
cgrextend 35996 Link congruence over a pai...
cgrextendand 35997 Deduction form of ~ cgrext...
segconeq 35998 Two points that satisfy th...
segconeu 35999 Existential uniqueness ver...
btwntriv2 36000 Betweenness always holds f...
btwncomim 36001 Betweenness commutes. Imp...
btwncom 36002 Betweenness commutes. (Co...
btwncomand 36003 Deduction form of ~ btwnco...
btwntriv1 36004 Betweenness always holds f...
btwnswapid 36005 If you can swap the first ...
btwnswapid2 36006 If you can swap arguments ...
btwnintr 36007 Inner transitivity law for...
btwnexch3 36008 Exchange the first endpoin...
btwnexch3and 36009 Deduction form of ~ btwnex...
btwnouttr2 36010 Outer transitivity law for...
btwnexch2 36011 Exchange the outer point o...
btwnouttr 36012 Outer transitivity law for...
btwnexch 36013 Outer transitivity law for...
btwnexchand 36014 Deduction form of ~ btwnex...
btwndiff 36015 There is always a ` c ` di...
trisegint 36016 A line segment between two...
funtransport 36019 The ` TransportTo ` relati...
fvtransport 36020 Calculate the value of the...
transportcl 36021 Closure law for segment tr...
transportprops 36022 Calculate the defining pro...
brifs 36031 Binary relation form of th...
ifscgr 36032 Inner five segment congrue...
cgrsub 36033 Removing identical parts f...
brcgr3 36034 Binary relation form of th...
cgr3permute3 36035 Permutation law for three-...
cgr3permute1 36036 Permutation law for three-...
cgr3permute2 36037 Permutation law for three-...
cgr3permute4 36038 Permutation law for three-...
cgr3permute5 36039 Permutation law for three-...
cgr3tr4 36040 Transitivity law for three...
cgr3com 36041 Commutativity law for thre...
cgr3rflx 36042 Identity law for three-pla...
cgrxfr 36043 A line segment can be divi...
btwnxfr 36044 A condition for extending ...
colinrel 36045 Colinearity is a relations...
brcolinear2 36046 Alternate colinearity bina...
brcolinear 36047 The binary relation form o...
colinearex 36048 The colinear predicate exi...
colineardim1 36049 If ` A ` is colinear with ...
colinearperm1 36050 Permutation law for coline...
colinearperm3 36051 Permutation law for coline...
colinearperm2 36052 Permutation law for coline...
colinearperm4 36053 Permutation law for coline...
colinearperm5 36054 Permutation law for coline...
colineartriv1 36055 Trivial case of colinearit...
colineartriv2 36056 Trivial case of colinearit...
btwncolinear1 36057 Betweenness implies coline...
btwncolinear2 36058 Betweenness implies coline...
btwncolinear3 36059 Betweenness implies coline...
btwncolinear4 36060 Betweenness implies coline...
btwncolinear5 36061 Betweenness implies coline...
btwncolinear6 36062 Betweenness implies coline...
colinearxfr 36063 Transfer law for colineari...
lineext 36064 Extend a line with a missi...
brofs2 36065 Change some conditions for...
brifs2 36066 Change some conditions for...
brfs 36067 Binary relation form of th...
fscgr 36068 Congruence law for the gen...
linecgr 36069 Congruence rule for lines....
linecgrand 36070 Deduction form of ~ linecg...
lineid 36071 Identity law for points on...
idinside 36072 Law for finding a point in...
endofsegid 36073 If ` A ` , ` B ` , and ` C...
endofsegidand 36074 Deduction form of ~ endofs...
btwnconn1lem1 36075 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 36076 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 36077 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 36078 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 36079 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 36080 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 36081 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 36082 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 36083 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 36084 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 36085 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 36086 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 36087 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 36088 Lemma for ~ btwnconn1 . F...
btwnconn1 36089 Connectitivy law for betwe...
btwnconn2 36090 Another connectivity law f...
btwnconn3 36091 Inner connectivity law for...
midofsegid 36092 If two points fall in the ...
segcon2 36093 Generalization of ~ axsegc...
brsegle 36096 Binary relation form of th...
brsegle2 36097 Alternate characterization...
seglecgr12im 36098 Substitution law for segme...
seglecgr12 36099 Substitution law for segme...
seglerflx 36100 Segment comparison is refl...
seglemin 36101 Any segment is at least as...
segletr 36102 Segment less than is trans...
segleantisym 36103 Antisymmetry law for segme...
seglelin 36104 Linearity law for segment ...
btwnsegle 36105 If ` B ` falls between ` A...
colinbtwnle 36106 Given three colinear point...
broutsideof 36109 Binary relation form of ` ...
broutsideof2 36110 Alternate form of ` Outsid...
outsidene1 36111 Outsideness implies inequa...
outsidene2 36112 Outsideness implies inequa...
btwnoutside 36113 A principle linking outsid...
broutsideof3 36114 Characterization of outsid...
outsideofrflx 36115 Reflexivity of outsideness...
outsideofcom 36116 Commutativity law for outs...
outsideoftr 36117 Transitivity law for outsi...
outsideofeq 36118 Uniqueness law for ` Outsi...
outsideofeu 36119 Given a nondegenerate ray,...
outsidele 36120 Relate ` OutsideOf ` to ` ...
outsideofcol 36121 Outside of implies colinea...
funray 36128 Show that the ` Ray ` rela...
fvray 36129 Calculate the value of the...
funline 36130 Show that the ` Line ` rel...
linedegen 36131 When ` Line ` is applied w...
fvline 36132 Calculate the value of the...
liness 36133 A line is a subset of the ...
fvline2 36134 Alternate definition of a ...
lineunray 36135 A line is composed of a po...
lineelsb2 36136 If ` S ` lies on ` P Q ` ,...
linerflx1 36137 Reflexivity law for line m...
linecom 36138 Commutativity law for line...
linerflx2 36139 Reflexivity law for line m...
ellines 36140 Membership in the set of a...
linethru 36141 If ` A ` is a line contain...
hilbert1.1 36142 There is a line through an...
hilbert1.2 36143 There is at most one line ...
linethrueu 36144 There is a unique line goi...
lineintmo 36145 Two distinct lines interse...
fwddifval 36150 Calculate the value of the...
fwddifnval 36151 The value of the forward d...
fwddifn0 36152 The value of the n-iterate...
fwddifnp1 36153 The value of the n-iterate...
rankung 36154 The rank of the union of t...
ranksng 36155 The rank of a singleton. ...
rankelg 36156 The membership relation is...
rankpwg 36157 The rank of a power set. ...
rank0 36158 The rank of the empty set ...
rankeq1o 36159 The only set with rank ` 1...
elhf 36162 Membership in the heredita...
elhf2 36163 Alternate form of membersh...
elhf2g 36164 Hereditarily finiteness vi...
0hf 36165 The empty set is a heredit...
hfun 36166 The union of two HF sets i...
hfsn 36167 The singleton of an HF set...
hfadj 36168 Adjoining one HF element t...
hfelhf 36169 Any member of an HF set is...
hftr 36170 The class of all hereditar...
hfext 36171 Extensionality for HF sets...
hfuni 36172 The union of an HF set is ...
hfpw 36173 The power class of an HF s...
hfninf 36174 ` _om ` is not hereditaril...
rmoeqi 36175 Equality inference for res...
rmoeqbii 36176 Equality inference for res...
reueqi 36177 Equality inference for res...
reueqbii 36178 Equality inference for res...
sbceqbii 36179 Formula-building inference...
disjeq1i 36180 Equality theorem for disjo...
disjeq12i 36181 Equality theorem for disjo...
rabeqbii 36182 Equality theorem for restr...
iuneq12i 36183 Equality theorem for index...
iineq1i 36184 Equality theorem for index...
iineq12i 36185 Equality theorem for index...
riotaeqbii 36186 Equivalent wff's and equal...
riotaeqi 36187 Equal domains yield equal ...
ixpeq1i 36188 Equality inference for inf...
ixpeq12i 36189 Equality inference for inf...
sumeq2si 36190 Equality inference for sum...
sumeq12si 36191 Equality inference for sum...
prodeq2si 36192 Equality inference for pro...
prodeq12si 36193 Equality inference for pro...
itgeq12i 36194 Equality inference for an ...
itgeq1i 36195 Equality inference for an ...
itgeq2i 36196 Equality inference for an ...
ditgeq123i 36197 Equality inference for the...
ditgeq12i 36198 Equality inference for the...
ditgeq3i 36199 Equality inference for the...
rmoeqdv 36200 Formula-building rule for ...
rmoeqbidv 36201 Formula-building rule for ...
sbequbidv 36202 Deduction substituting bot...
disjeq12dv 36203 Equality theorem for disjo...
ixpeq12dv 36204 Equality theorem for infin...
sumeq12sdv 36205 Equality deduction for sum...
prodeq12sdv 36206 Equality deduction for pro...
itgeq12sdv 36207 Equality theorem for an in...
itgeq2sdv 36208 Equality theorem for an in...
ditgeq123dv 36209 Equality theorem for the d...
ditgeq12d 36210 Equality theorem for the d...
ditgeq3sdv 36211 Equality theorem for the d...
in-ax8 36212 A proof of ~ ax-8 that doe...
ss-ax8 36213 A proof of ~ ax-8 that doe...
cbvralvw2 36214 Change bound variable and ...
cbvrexvw2 36215 Change bound variable and ...
cbvrmovw2 36216 Change bound variable and ...
cbvreuvw2 36217 Change bound variable and ...
cbvsbcvw2 36218 Change bound variable of a...
cbvcsbvw2 36219 Change bound variable of a...
cbviunvw2 36220 Change bound variable and ...
cbviinvw2 36221 Change bound variable and ...
cbvmptvw2 36222 Change bound variable and ...
cbvdisjvw2 36223 Change bound variable and ...
cbvriotavw2 36224 Change bound variable and ...
cbvoprab1vw 36225 Change the first bound var...
cbvoprab2vw 36226 Change the second bound va...
cbvoprab123vw 36227 Change all bound variables...
cbvoprab23vw 36228 Change the second and thir...
cbvoprab13vw 36229 Change the first and third...
cbvmpovw2 36230 Change bound variables and...
cbvmpo1vw2 36231 Change domains and the fir...
cbvmpo2vw2 36232 Change domains and the sec...
cbvixpvw2 36233 Change bound variable and ...
cbvsumvw2 36234 Change bound variable and ...
cbvprodvw2 36235 Change bound variable and ...
cbvitgvw2 36236 Change bound variable and ...
cbvditgvw2 36237 Change bound variable and ...
cbvmodavw 36238 Change bound variable in t...
cbveudavw 36239 Change bound variable in t...
cbvrmodavw 36240 Change bound variable in t...
cbvreudavw 36241 Change bound variable in t...
cbvsbdavw 36242 Change bound variable in p...
cbvsbdavw2 36243 Change bound variable in p...
cbvabdavw 36244 Change bound variable in c...
cbvsbcdavw 36245 Change bound variable of a...
cbvsbcdavw2 36246 Change bound variable of a...
cbvcsbdavw 36247 Change bound variable of a...
cbvcsbdavw2 36248 Change bound variable of a...
cbvrabdavw 36249 Change bound variable in r...
cbviundavw 36250 Change bound variable in i...
cbviindavw 36251 Change bound variable in i...
cbvopab1davw 36252 Change the first bound var...
cbvopab2davw 36253 Change the second bound va...
cbvopabdavw 36254 Change bound variables in ...
cbvmptdavw 36255 Change bound variable in a...
cbvdisjdavw 36256 Change bound variable in a...
cbviotadavw 36257 Change bound variable in a...
cbvriotadavw 36258 Change bound variable in a...
cbvoprab1davw 36259 Change the first bound var...
cbvoprab2davw 36260 Change the second bound va...
cbvoprab3davw 36261 Change the third bound var...
cbvoprab123davw 36262 Change all bound variables...
cbvoprab12davw 36263 Change the first and secon...
cbvoprab23davw 36264 Change the second and thir...
cbvoprab13davw 36265 Change the first and third...
cbvixpdavw 36266 Change bound variable in a...
cbvsumdavw 36267 Change bound variable in a...
cbvproddavw 36268 Change bound variable in a...
cbvitgdavw 36269 Change bound variable in a...
cbvditgdavw 36270 Change bound variable in a...
cbvrmodavw2 36271 Change bound variable and ...
cbvreudavw2 36272 Change bound variable and ...
cbvrabdavw2 36273 Change bound variable and ...
cbviundavw2 36274 Change bound variable and ...
cbviindavw2 36275 Change bound variable and ...
cbvmptdavw2 36276 Change bound variable and ...
cbvdisjdavw2 36277 Change bound variable and ...
cbvriotadavw2 36278 Change bound variable and ...
cbvmpodavw2 36279 Change bound variable and ...
cbvmpo1davw2 36280 Change first bound variabl...
cbvmpo2davw2 36281 Change second bound variab...
cbvixpdavw2 36282 Change bound variable and ...
cbvsumdavw2 36283 Change bound variable and ...
cbvproddavw2 36284 Change bound variable and ...
cbvitgdavw2 36285 Change bound variable and ...
cbvditgdavw2 36286 Change bound variable and ...
mpomulnzcnf 36287 Multiplication maps nonzer...
a1i14 36288 Add two antecedents to a w...
a1i24 36289 Add two antecedents to a w...
exp5d 36290 An exportation inference. ...
exp5g 36291 An exportation inference. ...
exp5k 36292 An exportation inference. ...
exp56 36293 An exportation inference. ...
exp58 36294 An exportation inference. ...
exp510 36295 An exportation inference. ...
exp511 36296 An exportation inference. ...
exp512 36297 An exportation inference. ...
3com12d 36298 Commutation in consequent....
imp5p 36299 A triple importation infer...
imp5q 36300 A triple importation infer...
ecase13d 36301 Deduction for elimination ...
subtr 36302 Transitivity of implicit s...
subtr2 36303 Transitivity of implicit s...
trer 36304 A relation intersected wit...
elicc3 36305 An equivalent membership c...
finminlem 36306 A useful lemma about finit...
gtinf 36307 Any number greater than an...
opnrebl 36308 A set is open in the stand...
opnrebl2 36309 A set is open in the stand...
nn0prpwlem 36310 Lemma for ~ nn0prpw . Use...
nn0prpw 36311 Two nonnegative integers a...
topbnd 36312 Two equivalent expressions...
opnbnd 36313 A set is open iff it is di...
cldbnd 36314 A set is closed iff it con...
ntruni 36315 A union of interiors is a ...
clsun 36316 A pairwise union of closur...
clsint2 36317 The closure of an intersec...
opnregcld 36318 A set is regularly closed ...
cldregopn 36319 A set if regularly open if...
neiin 36320 Two neighborhoods intersec...
hmeoclda 36321 Homeomorphisms preserve cl...
hmeocldb 36322 Homeomorphisms preserve cl...
ivthALT 36323 An alternate proof of the ...
fnerel 36326 Fineness is a relation. (...
isfne 36327 The predicate " ` B ` is f...
isfne4 36328 The predicate " ` B ` is f...
isfne4b 36329 A condition for a topology...
isfne2 36330 The predicate " ` B ` is f...
isfne3 36331 The predicate " ` B ` is f...
fnebas 36332 A finer cover covers the s...
fnetg 36333 A finer cover generates a ...
fnessex 36334 If ` B ` is finer than ` A...
fneuni 36335 If ` B ` is finer than ` A...
fneint 36336 If a cover is finer than a...
fness 36337 A cover is finer than its ...
fneref 36338 Reflexivity of the finenes...
fnetr 36339 Transitivity of the finene...
fneval 36340 Two covers are finer than ...
fneer 36341 Fineness intersected with ...
topfne 36342 Fineness for covers corres...
topfneec 36343 A cover is equivalent to a...
topfneec2 36344 A topology is precisely id...
fnessref 36345 A cover is finer iff it ha...
refssfne 36346 A cover is a refinement if...
neibastop1 36347 A collection of neighborho...
neibastop2lem 36348 Lemma for ~ neibastop2 . ...
neibastop2 36349 In the topology generated ...
neibastop3 36350 The topology generated by ...
topmtcl 36351 The meet of a collection o...
topmeet 36352 Two equivalent formulation...
topjoin 36353 Two equivalent formulation...
fnemeet1 36354 The meet of a collection o...
fnemeet2 36355 The meet of equivalence cl...
fnejoin1 36356 Join of equivalence classe...
fnejoin2 36357 Join of equivalence classe...
fgmin 36358 Minimality property of a g...
neifg 36359 The neighborhood filter of...
tailfval 36360 The tail function for a di...
tailval 36361 The tail of an element in ...
eltail 36362 An element of a tail. (Co...
tailf 36363 The tail function of a dir...
tailini 36364 A tail contains its initia...
tailfb 36365 The collection of tails of...
filnetlem1 36366 Lemma for ~ filnet . Chan...
filnetlem2 36367 Lemma for ~ filnet . The ...
filnetlem3 36368 Lemma for ~ filnet . (Con...
filnetlem4 36369 Lemma for ~ filnet . (Con...
filnet 36370 A filter has the same conv...
tb-ax1 36371 The first of three axioms ...
tb-ax2 36372 The second of three axioms...
tb-ax3 36373 The third of three axioms ...
tbsyl 36374 The weak syllogism from Ta...
re1ax2lem 36375 Lemma for ~ re1ax2 . (Con...
re1ax2 36376 ~ ax-2 rederived from the ...
naim1 36377 Constructor theorem for ` ...
naim2 36378 Constructor theorem for ` ...
naim1i 36379 Constructor rule for ` -/\...
naim2i 36380 Constructor rule for ` -/\...
naim12i 36381 Constructor rule for ` -/\...
nabi1i 36382 Constructor rule for ` -/\...
nabi2i 36383 Constructor rule for ` -/\...
nabi12i 36384 Constructor rule for ` -/\...
df3nandALT1 36387 The double nand expressed ...
df3nandALT2 36388 The double nand expressed ...
andnand1 36389 Double and in terms of dou...
imnand2 36390 An ` -> ` nand relation. ...
nalfal 36391 Not all sets hold ` F. ` a...
nexntru 36392 There does not exist a set...
nexfal 36393 There does not exist a set...
neufal 36394 There does not exist exact...
neutru 36395 There does not exist exact...
nmotru 36396 There does not exist at mo...
mofal 36397 There exist at most one se...
nrmo 36398 "At most one" restricted e...
meran1 36399 A single axiom for proposi...
meran2 36400 A single axiom for proposi...
meran3 36401 A single axiom for proposi...
waj-ax 36402 A single axiom for proposi...
lukshef-ax2 36403 A single axiom for proposi...
arg-ax 36404 A single axiom for proposi...
negsym1 36405 In the paper "On Variable ...
imsym1 36406 A symmetry with ` -> ` . ...
bisym1 36407 A symmetry with ` <-> ` . ...
consym1 36408 A symmetry with ` /\ ` . ...
dissym1 36409 A symmetry with ` \/ ` . ...
nandsym1 36410 A symmetry with ` -/\ ` . ...
unisym1 36411 A symmetry with ` A. ` . ...
exisym1 36412 A symmetry with ` E. ` . ...
unqsym1 36413 A symmetry with ` E! ` . ...
amosym1 36414 A symmetry with ` E* ` . ...
subsym1 36415 A symmetry with ` [ x / y ...
ontopbas 36416 An ordinal number is a top...
onsstopbas 36417 The class of ordinal numbe...
onpsstopbas 36418 The class of ordinal numbe...
ontgval 36419 The topology generated fro...
ontgsucval 36420 The topology generated fro...
onsuctop 36421 A successor ordinal number...
onsuctopon 36422 One of the topologies on a...
ordtoplem 36423 Membership of the class of...
ordtop 36424 An ordinal is a topology i...
onsucconni 36425 A successor ordinal number...
onsucconn 36426 A successor ordinal number...
ordtopconn 36427 An ordinal topology is con...
onintopssconn 36428 An ordinal topology is con...
onsuct0 36429 A successor ordinal number...
ordtopt0 36430 An ordinal topology is T_0...
onsucsuccmpi 36431 The successor of a success...
onsucsuccmp 36432 The successor of a success...
limsucncmpi 36433 The successor of a limit o...
limsucncmp 36434 The successor of a limit o...
ordcmp 36435 An ordinal topology is com...
ssoninhaus 36436 The ordinal topologies ` 1...
onint1 36437 The ordinal T_1 spaces are...
oninhaus 36438 The ordinal Hausdorff spac...
fveleq 36439 Please add description her...
findfvcl 36440 Please add description her...
findreccl 36441 Please add description her...
findabrcl 36442 Please add description her...
nnssi2 36443 Convert a theorem for real...
nnssi3 36444 Convert a theorem for real...
nndivsub 36445 Please add description her...
nndivlub 36446 A factor of a positive int...
ee7.2aOLD 36449 Lemma for Euclid's Element...
weiunlem1 36450 Lemma for ~ weiunpo , ~ we...
weiunlem2 36451 Lemma for ~ weiunpo , ~ we...
weiunfrlem 36452 Lemma for ~ weiunfr . (Co...
weiunpo 36453 A partial ordering on an i...
weiunso 36454 A strict ordering on an in...
weiunfr 36455 A well-founded relation on...
weiunse 36456 The relation constructed i...
weiunwe 36457 A well-ordering on an inde...
numiunnum 36458 An indexed union of sets i...
dnival 36459 Value of the "distance to ...
dnicld1 36460 Closure theorem for the "d...
dnicld2 36461 Closure theorem for the "d...
dnif 36462 The "distance to nearest i...
dnizeq0 36463 The distance to nearest in...
dnizphlfeqhlf 36464 The distance to nearest in...
rddif2 36465 Variant of ~ rddif . (Con...
dnibndlem1 36466 Lemma for ~ dnibnd . (Con...
dnibndlem2 36467 Lemma for ~ dnibnd . (Con...
dnibndlem3 36468 Lemma for ~ dnibnd . (Con...
dnibndlem4 36469 Lemma for ~ dnibnd . (Con...
dnibndlem5 36470 Lemma for ~ dnibnd . (Con...
dnibndlem6 36471 Lemma for ~ dnibnd . (Con...
dnibndlem7 36472 Lemma for ~ dnibnd . (Con...
dnibndlem8 36473 Lemma for ~ dnibnd . (Con...
dnibndlem9 36474 Lemma for ~ dnibnd . (Con...
dnibndlem10 36475 Lemma for ~ dnibnd . (Con...
dnibndlem11 36476 Lemma for ~ dnibnd . (Con...
dnibndlem12 36477 Lemma for ~ dnibnd . (Con...
dnibndlem13 36478 Lemma for ~ dnibnd . (Con...
dnibnd 36479 The "distance to nearest i...
dnicn 36480 The "distance to nearest i...
knoppcnlem1 36481 Lemma for ~ knoppcn . (Co...
knoppcnlem2 36482 Lemma for ~ knoppcn . (Co...
knoppcnlem3 36483 Lemma for ~ knoppcn . (Co...
knoppcnlem4 36484 Lemma for ~ knoppcn . (Co...
knoppcnlem5 36485 Lemma for ~ knoppcn . (Co...
knoppcnlem6 36486 Lemma for ~ knoppcn . (Co...
knoppcnlem7 36487 Lemma for ~ knoppcn . (Co...
knoppcnlem8 36488 Lemma for ~ knoppcn . (Co...
knoppcnlem9 36489 Lemma for ~ knoppcn . (Co...
knoppcnlem10 36490 Lemma for ~ knoppcn . (Co...
knoppcnlem11 36491 Lemma for ~ knoppcn . (Co...
knoppcn 36492 The continuous nowhere dif...
knoppcld 36493 Closure theorem for Knopp'...
unblimceq0lem 36494 Lemma for ~ unblimceq0 . ...
unblimceq0 36495 If ` F ` is unbounded near...
unbdqndv1 36496 If the difference quotient...
unbdqndv2lem1 36497 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 36498 Lemma for ~ unbdqndv2 . (...
unbdqndv2 36499 Variant of ~ unbdqndv1 wit...
knoppndvlem1 36500 Lemma for ~ knoppndv . (C...
knoppndvlem2 36501 Lemma for ~ knoppndv . (C...
knoppndvlem3 36502 Lemma for ~ knoppndv . (C...
knoppndvlem4 36503 Lemma for ~ knoppndv . (C...
knoppndvlem5 36504 Lemma for ~ knoppndv . (C...
knoppndvlem6 36505 Lemma for ~ knoppndv . (C...
knoppndvlem7 36506 Lemma for ~ knoppndv . (C...
knoppndvlem8 36507 Lemma for ~ knoppndv . (C...
knoppndvlem9 36508 Lemma for ~ knoppndv . (C...
knoppndvlem10 36509 Lemma for ~ knoppndv . (C...
knoppndvlem11 36510 Lemma for ~ knoppndv . (C...
knoppndvlem12 36511 Lemma for ~ knoppndv . (C...
knoppndvlem13 36512 Lemma for ~ knoppndv . (C...
knoppndvlem14 36513 Lemma for ~ knoppndv . (C...
knoppndvlem15 36514 Lemma for ~ knoppndv . (C...
knoppndvlem16 36515 Lemma for ~ knoppndv . (C...
knoppndvlem17 36516 Lemma for ~ knoppndv . (C...
knoppndvlem18 36517 Lemma for ~ knoppndv . (C...
knoppndvlem19 36518 Lemma for ~ knoppndv . (C...
knoppndvlem20 36519 Lemma for ~ knoppndv . (C...
knoppndvlem21 36520 Lemma for ~ knoppndv . (C...
knoppndvlem22 36521 Lemma for ~ knoppndv . (C...
knoppndv 36522 The continuous nowhere dif...
knoppf 36523 Knopp's function is a func...
knoppcn2 36524 Variant of ~ knoppcn with ...
cnndvlem1 36525 Lemma for ~ cnndv . (Cont...
cnndvlem2 36526 Lemma for ~ cnndv . (Cont...
cnndv 36527 There exists a continuous ...
bj-mp2c 36528 A double _modus ponens_ in...
bj-mp2d 36529 A double _modus ponens_ in...
bj-0 36530 A syntactic theorem. See ...
bj-1 36531 In this proof, the use of ...
bj-a1k 36532 Weakening of ~ ax-1 . As ...
bj-poni 36533 Inference associated with ...
bj-nnclav 36534 When ` F. ` is substituted...
bj-nnclavi 36535 Inference associated with ...
bj-nnclavc 36536 Commuted form of ~ bj-nncl...
bj-nnclavci 36537 Inference associated with ...
bj-jarrii 36538 Inference associated with ...
bj-imim21 36539 The propositional function...
bj-imim21i 36540 Inference associated with ...
bj-peircestab 36541 Over minimal implicational...
bj-stabpeirce 36542 This minimal implicational...
bj-syl66ib 36543 A mixed syllogism inferenc...
bj-orim2 36544 Proof of ~ orim2 from the ...
bj-currypeirce 36545 Curry's axiom ~ curryax (a...
bj-peircecurry 36546 Peirce's axiom ~ peirce im...
bj-animbi 36547 Conjunction in terms of im...
bj-currypara 36548 Curry's paradox. Note tha...
bj-con2com 36549 A commuted form of the con...
bj-con2comi 36550 Inference associated with ...
bj-nimn 36551 If a formula is true, then...
bj-nimni 36552 Inference associated with ...
bj-peircei 36553 Inference associated with ...
bj-looinvi 36554 Inference associated with ...
bj-looinvii 36555 Inference associated with ...
bj-mt2bi 36556 Version of ~ mt2 where the...
bj-ntrufal 36557 The negation of a theorem ...
bj-fal 36558 Shortening of ~ fal using ...
bj-jaoi1 36559 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 36560 Shortens ~ consensus (110>...
bj-dfbi4 36561 Alternate definition of th...
bj-dfbi5 36562 Alternate definition of th...
bj-dfbi6 36563 Alternate definition of th...
bj-bijust0ALT 36564 Alternate proof of ~ bijus...
bj-bijust00 36565 A self-implication does no...
bj-consensus 36566 Version of ~ consensus exp...
bj-consensusALT 36567 Alternate proof of ~ bj-co...
bj-df-ifc 36568 Candidate definition for t...
bj-dfif 36569 Alternate definition of th...
bj-ififc 36570 A biconditional connecting...
bj-imbi12 36571 Uncurried (imported) form ...
bj-falor 36572 Dual of ~ truan (which has...
bj-falor2 36573 Dual of ~ truan . (Contri...
bj-bibibi 36574 A property of the bicondit...
bj-imn3ani 36575 Duplication of ~ bnj1224 ....
bj-andnotim 36576 Two ways of expressing a c...
bj-bi3ant 36577 This used to be in the mai...
bj-bisym 36578 This used to be in the mai...
bj-bixor 36579 Equivalence of two ternary...
bj-axdd2 36580 This implication, proved u...
bj-axd2d 36581 This implication, proved u...
bj-axtd 36582 This implication, proved f...
bj-gl4 36583 In a normal modal logic, t...
bj-axc4 36584 Over minimal calculus, the...
prvlem1 36589 An elementary property of ...
prvlem2 36590 An elementary property of ...
bj-babygodel 36591 See the section header com...
bj-babylob 36592 See the section header com...
bj-godellob 36593 Proof of Gödel's theo...
bj-genr 36594 Generalization rule on the...
bj-genl 36595 Generalization rule on the...
bj-genan 36596 Generalization rule on a c...
bj-mpgs 36597 From a closed form theorem...
bj-2alim 36598 Closed form of ~ 2alimi . ...
bj-2exim 36599 Closed form of ~ 2eximi . ...
bj-alanim 36600 Closed form of ~ alanimi ....
bj-2albi 36601 Closed form of ~ 2albii . ...
bj-notalbii 36602 Equivalence of universal q...
bj-2exbi 36603 Closed form of ~ 2exbii . ...
bj-3exbi 36604 Closed form of ~ 3exbii . ...
bj-sylggt 36605 Stronger form of ~ sylgt ,...
bj-sylgt2 36606 Uncurried (imported) form ...
bj-alrimg 36607 The general form of the *a...
bj-alrimd 36608 A slightly more general ~ ...
bj-sylget 36609 Dual statement of ~ sylgt ...
bj-sylget2 36610 Uncurried (imported) form ...
bj-exlimg 36611 The general form of the *e...
bj-sylge 36612 Dual statement of ~ sylg (...
bj-exlimd 36613 A slightly more general ~ ...
bj-nfimexal 36614 A weak from of nonfreeness...
bj-alexim 36615 Closed form of ~ aleximi ....
bj-nexdh 36616 Closed form of ~ nexdh (ac...
bj-nexdh2 36617 Uncurried (imported) form ...
bj-hbxfrbi 36618 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 36619 Version of ~ bj-hbxfrbi wi...
bj-exalim 36620 Distribute quantifiers ove...
bj-exalimi 36621 An inference for distribut...
bj-exalims 36622 Distributing quantifiers o...
bj-exalimsi 36623 An inference for distribut...
bj-ax12ig 36624 A lemma used to prove a we...
bj-ax12i 36625 A weakening of ~ bj-ax12ig...
bj-nfimt 36626 Closed form of ~ nfim and ...
bj-cbvalimt 36627 A lemma in closed form use...
bj-cbveximt 36628 A lemma in closed form use...
bj-eximALT 36629 Alternate proof of ~ exim ...
bj-aleximiALT 36630 Alternate proof of ~ alexi...
bj-eximcom 36631 A commuted form of ~ exim ...
bj-ax12wlem 36632 A lemma used to prove a we...
bj-cbvalim 36633 A lemma used to prove ~ bj...
bj-cbvexim 36634 A lemma used to prove ~ bj...
bj-cbvalimi 36635 An equality-free general i...
bj-cbveximi 36636 An equality-free general i...
bj-cbval 36637 Changing a bound variable ...
bj-cbvex 36638 Changing a bound variable ...
bj-ssbeq 36641 Substitution in an equalit...
bj-ssblem1 36642 A lemma for the definiens ...
bj-ssblem2 36643 An instance of ~ ax-11 pro...
bj-ax12v 36644 A weaker form of ~ ax-12 a...
bj-ax12 36645 Remove a DV condition from...
bj-ax12ssb 36646 Axiom ~ bj-ax12 expressed ...
bj-19.41al 36647 Special case of ~ 19.41 pr...
bj-equsexval 36648 Special case of ~ equsexv ...
bj-subst 36649 Proof of ~ sbalex from cor...
bj-ssbid2 36650 A special case of ~ sbequ2...
bj-ssbid2ALT 36651 Alternate proof of ~ bj-ss...
bj-ssbid1 36652 A special case of ~ sbequ1...
bj-ssbid1ALT 36653 Alternate proof of ~ bj-ss...
bj-ax6elem1 36654 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 36655 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 36656 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 36657 Closed form of ~ spimvw . ...
bj-spnfw 36658 Theorem close to a closed ...
bj-cbvexiw 36659 Change bound variable. Th...
bj-cbvexivw 36660 Change bound variable. Th...
bj-modald 36661 A short form of the axiom ...
bj-denot 36662 A weakening of ~ ax-6 and ...
bj-eqs 36663 A lemma for substitutions,...
bj-cbvexw 36664 Change bound variable. Th...
bj-ax12w 36665 The general statement that...
bj-ax89 36666 A theorem which could be u...
bj-cleljusti 36667 One direction of ~ cleljus...
bj-alcomexcom 36668 Commutation of two existen...
bj-hbalt 36669 Closed form of ~ hbal . W...
axc11n11 36670 Proof of ~ axc11n from { ~...
axc11n11r 36671 Proof of ~ axc11n from { ~...
bj-axc16g16 36672 Proof of ~ axc16g from { ~...
bj-ax12v3 36673 A weak version of ~ ax-12 ...
bj-ax12v3ALT 36674 Alternate proof of ~ bj-ax...
bj-sb 36675 A weak variant of ~ sbid2 ...
bj-modalbe 36676 The predicate-calculus ver...
bj-spst 36677 Closed form of ~ sps . On...
bj-19.21bit 36678 Closed form of ~ 19.21bi ....
bj-19.23bit 36679 Closed form of ~ 19.23bi ....
bj-nexrt 36680 Closed form of ~ nexr . C...
bj-alrim 36681 Closed form of ~ alrimi . ...
bj-alrim2 36682 Uncurried (imported) form ...
bj-nfdt0 36683 A theorem close to a close...
bj-nfdt 36684 Closed form of ~ nf5d and ...
bj-nexdt 36685 Closed form of ~ nexd . (...
bj-nexdvt 36686 Closed form of ~ nexdv . ...
bj-alexbiex 36687 Adding a second quantifier...
bj-exexbiex 36688 Adding a second quantifier...
bj-alalbial 36689 Adding a second quantifier...
bj-exalbial 36690 Adding a second quantifier...
bj-19.9htbi 36691 Strengthening ~ 19.9ht by ...
bj-hbntbi 36692 Strengthening ~ hbnt by re...
bj-biexal1 36693 A general FOL biconditiona...
bj-biexal2 36694 When ` ph ` is substituted...
bj-biexal3 36695 When ` ph ` is substituted...
bj-bialal 36696 When ` ph ` is substituted...
bj-biexex 36697 When ` ph ` is substituted...
bj-hbext 36698 Closed form of ~ hbex . (...
bj-nfalt 36699 Closed form of ~ nfal . (...
bj-nfext 36700 Closed form of ~ nfex . (...
bj-eeanvw 36701 Version of ~ exdistrv with...
bj-modal4 36702 First-order logic form of ...
bj-modal4e 36703 First-order logic form of ...
bj-modalb 36704 A short form of the axiom ...
bj-wnf1 36705 When ` ph ` is substituted...
bj-wnf2 36706 When ` ph ` is substituted...
bj-wnfanf 36707 When ` ph ` is substituted...
bj-wnfenf 36708 When ` ph ` is substituted...
bj-substax12 36709 Equivalent form of the axi...
bj-substw 36710 Weak form of the LHS of ~ ...
bj-nnfbi 36713 If two formulas are equiva...
bj-nnfbd 36714 If two formulas are equiva...
bj-nnfbii 36715 If two formulas are equiva...
bj-nnfa 36716 Nonfreeness implies the eq...
bj-nnfad 36717 Nonfreeness implies the eq...
bj-nnfai 36718 Nonfreeness implies the eq...
bj-nnfe 36719 Nonfreeness implies the eq...
bj-nnfed 36720 Nonfreeness implies the eq...
bj-nnfei 36721 Nonfreeness implies the eq...
bj-nnfea 36722 Nonfreeness implies the eq...
bj-nnfead 36723 Nonfreeness implies the eq...
bj-nnfeai 36724 Nonfreeness implies the eq...
bj-dfnnf2 36725 Alternate definition of ~ ...
bj-nnfnfTEMP 36726 New nonfreeness implies ol...
bj-wnfnf 36727 When ` ph ` is substituted...
bj-nnfnt 36728 A variable is nonfree in a...
bj-nnftht 36729 A variable is nonfree in a...
bj-nnfth 36730 A variable is nonfree in a...
bj-nnfnth 36731 A variable is nonfree in t...
bj-nnfim1 36732 A consequence of nonfreene...
bj-nnfim2 36733 A consequence of nonfreene...
bj-nnfim 36734 Nonfreeness in the anteced...
bj-nnfimd 36735 Nonfreeness in the anteced...
bj-nnfan 36736 Nonfreeness in both conjun...
bj-nnfand 36737 Nonfreeness in both conjun...
bj-nnfor 36738 Nonfreeness in both disjun...
bj-nnford 36739 Nonfreeness in both disjun...
bj-nnfbit 36740 Nonfreeness in both sides ...
bj-nnfbid 36741 Nonfreeness in both sides ...
bj-nnfv 36742 A non-occurring variable i...
bj-nnf-alrim 36743 Proof of the closed form o...
bj-nnf-exlim 36744 Proof of the closed form o...
bj-dfnnf3 36745 Alternate definition of no...
bj-nfnnfTEMP 36746 New nonfreeness is equival...
bj-nnfa1 36747 See ~ nfa1 . (Contributed...
bj-nnfe1 36748 See ~ nfe1 . (Contributed...
bj-19.12 36749 See ~ 19.12 . Could be la...
bj-nnflemaa 36750 One of four lemmas for non...
bj-nnflemee 36751 One of four lemmas for non...
bj-nnflemae 36752 One of four lemmas for non...
bj-nnflemea 36753 One of four lemmas for non...
bj-nnfalt 36754 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 36755 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 36756 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 36757 Statement ~ 19.21t proved ...
bj-19.23t 36758 Statement ~ 19.23t proved ...
bj-19.36im 36759 One direction of ~ 19.36 f...
bj-19.37im 36760 One direction of ~ 19.37 f...
bj-19.42t 36761 Closed form of ~ 19.42 fro...
bj-19.41t 36762 Closed form of ~ 19.41 fro...
bj-sbft 36763 Version of ~ sbft using ` ...
bj-pm11.53vw 36764 Version of ~ pm11.53v with...
bj-pm11.53v 36765 Version of ~ pm11.53v with...
bj-pm11.53a 36766 A variant of ~ pm11.53v . ...
bj-equsvt 36767 A variant of ~ equsv . (C...
bj-equsalvwd 36768 Variant of ~ equsalvw . (...
bj-equsexvwd 36769 Variant of ~ equsexvw . (...
bj-sbievwd 36770 Variant of ~ sbievw . (Co...
bj-axc10 36771 Alternate proof of ~ axc10...
bj-alequex 36772 A fol lemma. See ~ aleque...
bj-spimt2 36773 A step in the proof of ~ s...
bj-cbv3ta 36774 Closed form of ~ cbv3 . (...
bj-cbv3tb 36775 Closed form of ~ cbv3 . (...
bj-hbsb3t 36776 A theorem close to a close...
bj-hbsb3 36777 Shorter proof of ~ hbsb3 ....
bj-nfs1t 36778 A theorem close to a close...
bj-nfs1t2 36779 A theorem close to a close...
bj-nfs1 36780 Shorter proof of ~ nfs1 (t...
bj-axc10v 36781 Version of ~ axc10 with a ...
bj-spimtv 36782 Version of ~ spimt with a ...
bj-cbv3hv2 36783 Version of ~ cbv3h with tw...
bj-cbv1hv 36784 Version of ~ cbv1h with a ...
bj-cbv2hv 36785 Version of ~ cbv2h with a ...
bj-cbv2v 36786 Version of ~ cbv2 with a d...
bj-cbvaldv 36787 Version of ~ cbvald with a...
bj-cbvexdv 36788 Version of ~ cbvexd with a...
bj-cbval2vv 36789 Version of ~ cbval2vv with...
bj-cbvex2vv 36790 Version of ~ cbvex2vv with...
bj-cbvaldvav 36791 Version of ~ cbvaldva with...
bj-cbvexdvav 36792 Version of ~ cbvexdva with...
bj-cbvex4vv 36793 Version of ~ cbvex4v with ...
bj-equsalhv 36794 Version of ~ equsalh with ...
bj-axc11nv 36795 Version of ~ axc11n with a...
bj-aecomsv 36796 Version of ~ aecoms with a...
bj-axc11v 36797 Version of ~ axc11 with a ...
bj-drnf2v 36798 Version of ~ drnf2 with a ...
bj-equs45fv 36799 Version of ~ equs45f with ...
bj-hbs1 36800 Version of ~ hbsb2 with a ...
bj-nfs1v 36801 Version of ~ nfsb2 with a ...
bj-hbsb2av 36802 Version of ~ hbsb2a with a...
bj-hbsb3v 36803 Version of ~ hbsb3 with a ...
bj-nfsab1 36804 Remove dependency on ~ ax-...
bj-dtrucor2v 36805 Version of ~ dtrucor2 with...
bj-hbaeb2 36806 Biconditional version of a...
bj-hbaeb 36807 Biconditional version of ~...
bj-hbnaeb 36808 Biconditional version of ~...
bj-dvv 36809 A special instance of ~ bj...
bj-equsal1t 36810 Duplication of ~ wl-equsal...
bj-equsal1ti 36811 Inference associated with ...
bj-equsal1 36812 One direction of ~ equsal ...
bj-equsal2 36813 One direction of ~ equsal ...
bj-equsal 36814 Shorter proof of ~ equsal ...
stdpc5t 36815 Closed form of ~ stdpc5 . ...
bj-stdpc5 36816 More direct proof of ~ std...
2stdpc5 36817 A double ~ stdpc5 (one dir...
bj-19.21t0 36818 Proof of ~ 19.21t from ~ s...
exlimii 36819 Inference associated with ...
ax11-pm 36820 Proof of ~ ax-11 similar t...
ax6er 36821 Commuted form of ~ ax6e . ...
exlimiieq1 36822 Inferring a theorem when i...
exlimiieq2 36823 Inferring a theorem when i...
ax11-pm2 36824 Proof of ~ ax-11 from the ...
bj-sbsb 36825 Biconditional showing two ...
bj-dfsb2 36826 Alternate (dual) definitio...
bj-sbf3 36827 Substitution has no effect...
bj-sbf4 36828 Substitution has no effect...
bj-eu3f 36829 Version of ~ eu3v where th...
bj-sblem1 36830 Lemma for substitution. (...
bj-sblem2 36831 Lemma for substitution. (...
bj-sblem 36832 Lemma for substitution. (...
bj-sbievw1 36833 Lemma for substitution. (...
bj-sbievw2 36834 Lemma for substitution. (...
bj-sbievw 36835 Lemma for substitution. C...
bj-sbievv 36836 Version of ~ sbie with a s...
bj-moeub 36837 Uniqueness is equivalent t...
bj-sbidmOLD 36838 Obsolete proof of ~ sbidm ...
bj-dvelimdv 36839 Deduction form of ~ dvelim...
bj-dvelimdv1 36840 Curried (exported) form of...
bj-dvelimv 36841 A version of ~ dvelim usin...
bj-nfeel2 36842 Nonfreeness in a membershi...
bj-axc14nf 36843 Proof of a version of ~ ax...
bj-axc14 36844 Alternate proof of ~ axc14...
mobidvALT 36845 Alternate proof of ~ mobid...
sbn1ALT 36846 Alternate proof of ~ sbn1 ...
eliminable1 36847 A theorem used to prove th...
eliminable2a 36848 A theorem used to prove th...
eliminable2b 36849 A theorem used to prove th...
eliminable2c 36850 A theorem used to prove th...
eliminable3a 36851 A theorem used to prove th...
eliminable3b 36852 A theorem used to prove th...
eliminable-velab 36853 A theorem used to prove th...
eliminable-veqab 36854 A theorem used to prove th...
eliminable-abeqv 36855 A theorem used to prove th...
eliminable-abeqab 36856 A theorem used to prove th...
eliminable-abelv 36857 A theorem used to prove th...
eliminable-abelab 36858 A theorem used to prove th...
bj-denoteslem 36859 Duplicate of ~ issettru an...
bj-denotesALTV 36860 Moved to main as ~ iseqset...
bj-issettruALTV 36861 Moved to main as ~ issettr...
bj-elabtru 36862 This is as close as we can...
bj-issetwt 36863 Closed form of ~ bj-issetw...
bj-issetw 36864 The closest one can get to...
bj-issetiv 36865 Version of ~ bj-isseti wit...
bj-isseti 36866 Version of ~ isseti with a...
bj-ralvw 36867 A weak version of ~ ralv n...
bj-rexvw 36868 A weak version of ~ rexv n...
bj-rababw 36869 A weak version of ~ rabab ...
bj-rexcom4bv 36870 Version of ~ rexcom4b and ...
bj-rexcom4b 36871 Remove from ~ rexcom4b dep...
bj-ceqsalt0 36872 The FOL content of ~ ceqsa...
bj-ceqsalt1 36873 The FOL content of ~ ceqsa...
bj-ceqsalt 36874 Remove from ~ ceqsalt depe...
bj-ceqsaltv 36875 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 36876 The FOL content of ~ ceqsa...
bj-ceqsalg 36877 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 36878 Alternate proof of ~ bj-ce...
bj-ceqsalgv 36879 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 36880 Alternate proof of ~ bj-ce...
bj-ceqsal 36881 Remove from ~ ceqsal depen...
bj-ceqsalv 36882 Remove from ~ ceqsalv depe...
bj-spcimdv 36883 Remove from ~ spcimdv depe...
bj-spcimdvv 36884 Remove from ~ spcimdv depe...
elelb 36885 Equivalence between two co...
bj-pwvrelb 36886 Characterization of the el...
bj-nfcsym 36887 The nonfreeness quantifier...
bj-sbeqALT 36888 Substitution in an equalit...
bj-sbeq 36889 Distribute proper substitu...
bj-sbceqgALT 36890 Distribute proper substitu...
bj-csbsnlem 36891 Lemma for ~ bj-csbsn (in t...
bj-csbsn 36892 Substitution in a singleto...
bj-sbel1 36893 Version of ~ sbcel1g when ...
bj-abv 36894 The class of sets verifyin...
bj-abvALT 36895 Alternate version of ~ bj-...
bj-ab0 36896 The class of sets verifyin...
bj-abf 36897 Shorter proof of ~ abf (wh...
bj-csbprc 36898 More direct proof of ~ csb...
bj-exlimvmpi 36899 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 36900 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 36901 Lemma for theorems of the ...
bj-exlimmpbir 36902 Lemma for theorems of the ...
bj-vtoclf 36903 Remove dependency on ~ ax-...
bj-vtocl 36904 Remove dependency on ~ ax-...
bj-vtoclg1f1 36905 The FOL content of ~ vtocl...
bj-vtoclg1f 36906 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 36907 Version of ~ bj-vtoclg1f w...
bj-vtoclg 36908 A version of ~ vtoclg with...
bj-rabeqbid 36909 Version of ~ rabeqbidv wit...
bj-seex 36910 Version of ~ seex with a d...
bj-nfcf 36911 Version of ~ df-nfc with a...
bj-zfauscl 36912 General version of ~ zfaus...
bj-elabd2ALT 36913 Alternate proof of ~ elabd...
bj-unrab 36914 Generalization of ~ unrab ...
bj-inrab 36915 Generalization of ~ inrab ...
bj-inrab2 36916 Shorter proof of ~ inrab ....
bj-inrab3 36917 Generalization of ~ dfrab3...
bj-rabtr 36918 Restricted class abstracti...
bj-rabtrALT 36919 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 36920 Proof of ~ bj-rabtr found ...
bj-gabss 36923 Inclusion of generalized c...
bj-gabssd 36924 Inclusion of generalized c...
bj-gabeqd 36925 Equality of generalized cl...
bj-gabeqis 36926 Equality of generalized cl...
bj-elgab 36927 Elements of a generalized ...
bj-gabima 36928 Generalized class abstract...
bj-ru1 36931 A version of Russell's par...
bj-ru 36932 Remove dependency on ~ ax-...
currysetlem 36933 Lemma for ~ currysetlem , ...
curryset 36934 Curry's paradox in set the...
currysetlem1 36935 Lemma for ~ currysetALT . ...
currysetlem2 36936 Lemma for ~ currysetALT . ...
currysetlem3 36937 Lemma for ~ currysetALT . ...
currysetALT 36938 Alternate proof of ~ curry...
bj-n0i 36939 Inference associated with ...
bj-disjsn01 36940 Disjointness of the single...
bj-0nel1 36941 The empty set does not bel...
bj-1nel0 36942 ` 1o ` does not belong to ...
bj-xpimasn 36943 The image of a singleton, ...
bj-xpima1sn 36944 The image of a singleton b...
bj-xpima1snALT 36945 Alternate proof of ~ bj-xp...
bj-xpima2sn 36946 The image of a singleton b...
bj-xpnzex 36947 If the first factor of a p...
bj-xpexg2 36948 Curried (exported) form of...
bj-xpnzexb 36949 If the first factor of a p...
bj-cleq 36950 Substitution property for ...
bj-snsetex 36951 The class of sets "whose s...
bj-clexab 36952 Sethood of certain classes...
bj-sngleq 36955 Substitution property for ...
bj-elsngl 36956 Characterization of the el...
bj-snglc 36957 Characterization of the el...
bj-snglss 36958 The singletonization of a ...
bj-0nelsngl 36959 The empty set is not a mem...
bj-snglinv 36960 Inverse of singletonizatio...
bj-snglex 36961 A class is a set if and on...
bj-tageq 36964 Substitution property for ...
bj-eltag 36965 Characterization of the el...
bj-0eltag 36966 The empty set belongs to t...
bj-tagn0 36967 The tagging of a class is ...
bj-tagss 36968 The tagging of a class is ...
bj-snglsstag 36969 The singletonization is in...
bj-sngltagi 36970 The singletonization is in...
bj-sngltag 36971 The singletonization and t...
bj-tagci 36972 Characterization of the el...
bj-tagcg 36973 Characterization of the el...
bj-taginv 36974 Inverse of tagging. (Cont...
bj-tagex 36975 A class is a set if and on...
bj-xtageq 36976 The products of a given cl...
bj-xtagex 36977 The product of a set and t...
bj-projeq 36980 Substitution property for ...
bj-projeq2 36981 Substitution property for ...
bj-projun 36982 The class projection on a ...
bj-projex 36983 Sethood of the class proje...
bj-projval 36984 Value of the class project...
bj-1upleq 36987 Substitution property for ...
bj-pr1eq 36990 Substitution property for ...
bj-pr1un 36991 The first projection prese...
bj-pr1val 36992 Value of the first project...
bj-pr11val 36993 Value of the first project...
bj-pr1ex 36994 Sethood of the first proje...
bj-1uplth 36995 The characteristic propert...
bj-1uplex 36996 A monuple is a set if and ...
bj-1upln0 36997 A monuple is nonempty. (C...
bj-2upleq 37000 Substitution property for ...
bj-pr21val 37001 Value of the first project...
bj-pr2eq 37004 Substitution property for ...
bj-pr2un 37005 The second projection pres...
bj-pr2val 37006 Value of the second projec...
bj-pr22val 37007 Value of the second projec...
bj-pr2ex 37008 Sethood of the second proj...
bj-2uplth 37009 The characteristic propert...
bj-2uplex 37010 A couple is a set if and o...
bj-2upln0 37011 A couple is nonempty. (Co...
bj-2upln1upl 37012 A couple is never equal to...
bj-rcleqf 37013 Relative version of ~ cleq...
bj-rcleq 37014 Relative version of ~ dfcl...
bj-reabeq 37015 Relative form of ~ eqabb ....
bj-disj2r 37016 Relative version of ~ ssdi...
bj-sscon 37017 Contraposition law for rel...
bj-abex 37018 Two ways of stating that t...
bj-clex 37019 Two ways of stating that a...
bj-axsn 37020 Two ways of stating the ax...
bj-snexg 37022 A singleton built on a set...
bj-snex 37023 A singleton is a set. See...
bj-axbun 37024 Two ways of stating the ax...
bj-unexg 37026 Existence of binary unions...
bj-prexg 37027 Existence of unordered pai...
bj-prex 37028 Existence of unordered pai...
bj-axadj 37029 Two ways of stating the ax...
bj-adjg1 37031 Existence of the result of...
bj-snfromadj 37032 Singleton from adjunction ...
bj-prfromadj 37033 Unordered pair from adjunc...
bj-adjfrombun 37034 Adjunction from singleton ...
eleq2w2ALT 37035 Alternate proof of ~ eleq2...
bj-clel3gALT 37036 Alternate proof of ~ clel3...
bj-pw0ALT 37037 Alternate proof of ~ pw0 ....
bj-sselpwuni 37038 Quantitative version of ~ ...
bj-unirel 37039 Quantitative version of ~ ...
bj-elpwg 37040 If the intersection of two...
bj-velpwALT 37041 This theorem ~ bj-velpwALT...
bj-elpwgALT 37042 Alternate proof of ~ elpwg...
bj-vjust 37043 Justification theorem for ...
bj-nul 37044 Two formulations of the ax...
bj-nuliota 37045 Definition of the empty se...
bj-nuliotaALT 37046 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 37047 Alternate proof of ~ vtocl...
bj-elsn12g 37048 Join of ~ elsng and ~ elsn...
bj-elsnb 37049 Biconditional version of ~...
bj-pwcfsdom 37050 Remove hypothesis from ~ p...
bj-grur1 37051 Remove hypothesis from ~ g...
bj-bm1.3ii 37052 The extension of a predica...
bj-dfid2ALT 37053 Alternate version of ~ dfi...
bj-0nelopab 37054 The empty set is never an ...
bj-brrelex12ALT 37055 Two classes related by a b...
bj-epelg 37056 The membership relation an...
bj-epelb 37057 Two classes are related by...
bj-nsnid 37058 A set does not contain the...
bj-rdg0gALT 37059 Alternate proof of ~ rdg0g...
bj-evaleq 37060 Equality theorem for the `...
bj-evalfun 37061 The evaluation at a class ...
bj-evalfn 37062 The evaluation at a class ...
bj-evalval 37063 Value of the evaluation at...
bj-evalid 37064 The evaluation at a set of...
bj-ndxarg 37065 Proof of ~ ndxarg from ~ b...
bj-evalidval 37066 Closed general form of ~ s...
bj-rest00 37069 An elementwise intersectio...
bj-restsn 37070 An elementwise intersectio...
bj-restsnss 37071 Special case of ~ bj-rests...
bj-restsnss2 37072 Special case of ~ bj-rests...
bj-restsn0 37073 An elementwise intersectio...
bj-restsn10 37074 Special case of ~ bj-rests...
bj-restsnid 37075 The elementwise intersecti...
bj-rest10 37076 An elementwise intersectio...
bj-rest10b 37077 Alternate version of ~ bj-...
bj-restn0 37078 An elementwise intersectio...
bj-restn0b 37079 Alternate version of ~ bj-...
bj-restpw 37080 The elementwise intersecti...
bj-rest0 37081 An elementwise intersectio...
bj-restb 37082 An elementwise intersectio...
bj-restv 37083 An elementwise intersectio...
bj-resta 37084 An elementwise intersectio...
bj-restuni 37085 The union of an elementwis...
bj-restuni2 37086 The union of an elementwis...
bj-restreg 37087 A reformulation of the axi...
bj-raldifsn 37088 All elements in a set sati...
bj-0int 37089 If ` A ` is a collection o...
bj-mooreset 37090 A Moore collection is a se...
bj-ismoore 37093 Characterization of Moore ...
bj-ismoored0 37094 Necessary condition to be ...
bj-ismoored 37095 Necessary condition to be ...
bj-ismoored2 37096 Necessary condition to be ...
bj-ismooredr 37097 Sufficient condition to be...
bj-ismooredr2 37098 Sufficient condition to be...
bj-discrmoore 37099 The powerclass ` ~P A ` is...
bj-0nmoore 37100 The empty set is not a Moo...
bj-snmoore 37101 A singleton is a Moore col...
bj-snmooreb 37102 A singleton is a Moore col...
bj-prmoore 37103 A pair formed of two neste...
bj-0nelmpt 37104 The empty set is not an el...
bj-mptval 37105 Value of a function given ...
bj-dfmpoa 37106 An equivalent definition o...
bj-mpomptALT 37107 Alternate proof of ~ mpomp...
setsstrset 37124 Relation between ~ df-sets...
bj-nfald 37125 Variant of ~ nfald . (Con...
bj-nfexd 37126 Variant of ~ nfexd . (Con...
copsex2d 37127 Implicit substitution dedu...
copsex2b 37128 Biconditional form of ~ co...
opelopabd 37129 Membership of an ordere pa...
opelopabb 37130 Membership of an ordered p...
opelopabbv 37131 Membership of an ordered p...
bj-opelrelex 37132 The coordinates of an orde...
bj-opelresdm 37133 If an ordered pair is in a...
bj-brresdm 37134 If two classes are related...
brabd0 37135 Expressing that two sets a...
brabd 37136 Expressing that two sets a...
bj-brab2a1 37137 "Unbounded" version of ~ b...
bj-opabssvv 37138 A variant of ~ relopabiv (...
bj-funidres 37139 The restricted identity re...
bj-opelidb 37140 Characterization of the or...
bj-opelidb1 37141 Characterization of the or...
bj-inexeqex 37142 Lemma for ~ bj-opelid (but...
bj-elsn0 37143 If the intersection of two...
bj-opelid 37144 Characterization of the or...
bj-ideqg 37145 Characterization of the cl...
bj-ideqgALT 37146 Alternate proof of ~ bj-id...
bj-ideqb 37147 Characterization of classe...
bj-idres 37148 Alternate expression for t...
bj-opelidres 37149 Characterization of the or...
bj-idreseq 37150 Sufficient condition for t...
bj-idreseqb 37151 Characterization for two c...
bj-ideqg1 37152 For sets, the identity rel...
bj-ideqg1ALT 37153 Alternate proof of bj-ideq...
bj-opelidb1ALT 37154 Characterization of the co...
bj-elid3 37155 Characterization of the co...
bj-elid4 37156 Characterization of the el...
bj-elid5 37157 Characterization of the el...
bj-elid6 37158 Characterization of the el...
bj-elid7 37159 Characterization of the el...
bj-diagval 37162 Value of the functionalize...
bj-diagval2 37163 Value of the functionalize...
bj-eldiag 37164 Characterization of the el...
bj-eldiag2 37165 Characterization of the el...
bj-imdirvallem 37168 Lemma for ~ bj-imdirval an...
bj-imdirval 37169 Value of the functionalize...
bj-imdirval2lem 37170 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 37171 Value of the functionalize...
bj-imdirval3 37172 Value of the functionalize...
bj-imdiridlem 37173 Lemma for ~ bj-imdirid and...
bj-imdirid 37174 Functorial property of the...
bj-opelopabid 37175 Membership in an ordered-p...
bj-opabco 37176 Composition of ordered-pai...
bj-xpcossxp 37177 The composition of two Car...
bj-imdirco 37178 Functorial property of the...
bj-iminvval 37181 Value of the functionalize...
bj-iminvval2 37182 Value of the functionalize...
bj-iminvid 37183 Functorial property of the...
bj-inftyexpitaufo 37190 The function ` inftyexpita...
bj-inftyexpitaudisj 37193 An element of the circle a...
bj-inftyexpiinv 37196 Utility theorem for the in...
bj-inftyexpiinj 37197 Injectivity of the paramet...
bj-inftyexpidisj 37198 An element of the circle a...
bj-ccinftydisj 37201 The circle at infinity is ...
bj-elccinfty 37202 A lemma for infinite exten...
bj-ccssccbar 37205 Complex numbers are extend...
bj-ccinftyssccbar 37206 Infinite extended complex ...
bj-pinftyccb 37209 The class ` pinfty ` is an...
bj-pinftynrr 37210 The extended complex numbe...
bj-minftyccb 37213 The class ` minfty ` is an...
bj-minftynrr 37214 The extended complex numbe...
bj-pinftynminfty 37215 The extended complex numbe...
bj-rrhatsscchat 37224 The real projective line i...
bj-imafv 37239 If the direct image of a s...
bj-funun 37240 Value of a function expres...
bj-fununsn1 37241 Value of a function expres...
bj-fununsn2 37242 Value of a function expres...
bj-fvsnun1 37243 The value of a function wi...
bj-fvsnun2 37244 The value of a function wi...
bj-fvmptunsn1 37245 Value of a function expres...
bj-fvmptunsn2 37246 Value of a function expres...
bj-iomnnom 37247 The canonical bijection fr...
bj-smgrpssmgm 37256 Semigroups are magmas. (C...
bj-smgrpssmgmel 37257 Semigroups are magmas (ele...
bj-mndsssmgrp 37258 Monoids are semigroups. (...
bj-mndsssmgrpel 37259 Monoids are semigroups (el...
bj-cmnssmnd 37260 Commutative monoids are mo...
bj-cmnssmndel 37261 Commutative monoids are mo...
bj-grpssmnd 37262 Groups are monoids. (Cont...
bj-grpssmndel 37263 Groups are monoids (elemen...
bj-ablssgrp 37264 Abelian groups are groups....
bj-ablssgrpel 37265 Abelian groups are groups ...
bj-ablsscmn 37266 Abelian groups are commuta...
bj-ablsscmnel 37267 Abelian groups are commuta...
bj-modssabl 37268 (The additive groups of) m...
bj-vecssmod 37269 Vector spaces are modules....
bj-vecssmodel 37270 Vector spaces are modules ...
bj-finsumval0 37273 Value of a finite sum. (C...
bj-fvimacnv0 37274 Variant of ~ fvimacnv wher...
bj-isvec 37275 The predicate "is a vector...
bj-fldssdrng 37276 Fields are division rings....
bj-flddrng 37277 Fields are division rings ...
bj-rrdrg 37278 The field of real numbers ...
bj-isclm 37279 The predicate "is a subcom...
bj-isrvec 37282 The predicate "is a real v...
bj-rvecmod 37283 Real vector spaces are mod...
bj-rvecssmod 37284 Real vector spaces are mod...
bj-rvecrr 37285 The field of scalars of a ...
bj-isrvecd 37286 The predicate "is a real v...
bj-rvecvec 37287 Real vector spaces are vec...
bj-isrvec2 37288 The predicate "is a real v...
bj-rvecssvec 37289 Real vector spaces are vec...
bj-rveccmod 37290 Real vector spaces are sub...
bj-rvecsscmod 37291 Real vector spaces are sub...
bj-rvecsscvec 37292 Real vector spaces are sub...
bj-rveccvec 37293 Real vector spaces are sub...
bj-rvecssabl 37294 (The additive groups of) r...
bj-rvecabl 37295 (The additive groups of) r...
bj-subcom 37296 A consequence of commutati...
bj-lineqi 37297 Solution of a (scalar) lin...
bj-bary1lem 37298 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 37299 Lemma for ~ bj-bary1 : com...
bj-bary1 37300 Barycentric coordinates in...
bj-endval 37303 Value of the monoid of end...
bj-endbase 37304 Base set of the monoid of ...
bj-endcomp 37305 Composition law of the mon...
bj-endmnd 37306 The monoid of endomorphism...
taupilem3 37307 Lemma for tau-related theo...
taupilemrplb 37308 A set of positive reals ha...
taupilem1 37309 Lemma for ~ taupi . A pos...
taupilem2 37310 Lemma for ~ taupi . The s...
taupi 37311 Relationship between ` _ta...
dfgcd3 37312 Alternate definition of th...
irrdifflemf 37313 Lemma for ~ irrdiff . The...
irrdiff 37314 The irrationals are exactl...
iccioo01 37315 The closed unit interval i...
csbrecsg 37316 Move class substitution in...
csbrdgg 37317 Move class substitution in...
csboprabg 37318 Move class substitution in...
csbmpo123 37319 Move class substitution in...
con1bii2 37320 A contraposition inference...
con2bii2 37321 A contraposition inference...
vtoclefex 37322 Implicit substitution of a...
rnmptsn 37323 The range of a function ma...
f1omptsnlem 37324 This is the core of the pr...
f1omptsn 37325 A function mapping to sing...
mptsnunlem 37326 This is the core of the pr...
mptsnun 37327 A class ` B ` is equal to ...
dissneqlem 37328 This is the core of the pr...
dissneq 37329 Any topology that contains...
exlimim 37330 Closed form of ~ exlimimd ...
exlimimd 37331 Existential elimination ru...
exellim 37332 Closed form of ~ exellimdd...
exellimddv 37333 Eliminate an antecedent wh...
topdifinfindis 37334 Part of Exercise 3 of [Mun...
topdifinffinlem 37335 This is the core of the pr...
topdifinffin 37336 Part of Exercise 3 of [Mun...
topdifinf 37337 Part of Exercise 3 of [Mun...
topdifinfeq 37338 Two different ways of defi...
icorempo 37339 Closed-below, open-above i...
icoreresf 37340 Closed-below, open-above i...
icoreval 37341 Value of the closed-below,...
icoreelrnab 37342 Elementhood in the set of ...
isbasisrelowllem1 37343 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 37344 Lemma for ~ isbasisrelowl ...
icoreclin 37345 The set of closed-below, o...
isbasisrelowl 37346 The set of all closed-belo...
icoreunrn 37347 The union of all closed-be...
istoprelowl 37348 The set of all closed-belo...
icoreelrn 37349 A class abstraction which ...
iooelexlt 37350 An element of an open inte...
relowlssretop 37351 The lower limit topology o...
relowlpssretop 37352 The lower limit topology o...
sucneqond 37353 Inequality of an ordinal s...
sucneqoni 37354 Inequality of an ordinal s...
onsucuni3 37355 If an ordinal number has a...
1oequni2o 37356 The ordinal number ` 1o ` ...
rdgsucuni 37357 If an ordinal number has a...
rdgeqoa 37358 If a recursive function wi...
elxp8 37359 Membership in a Cartesian ...
cbveud 37360 Deduction used to change b...
cbvreud 37361 Deduction used to change b...
difunieq 37362 The difference of unions i...
inunissunidif 37363 Theorem about subsets of t...
rdgellim 37364 Elementhood in a recursive...
rdglimss 37365 A recursive definition at ...
rdgssun 37366 In a recursive definition ...
exrecfnlem 37367 Lemma for ~ exrecfn . (Co...
exrecfn 37368 Theorem about the existenc...
exrecfnpw 37369 For any base set, a set wh...
finorwe 37370 If the Axiom of Infinity i...
dffinxpf 37373 This theorem is the same a...
finxpeq1 37374 Equality theorem for Carte...
finxpeq2 37375 Equality theorem for Carte...
csbfinxpg 37376 Distribute proper substitu...
finxpreclem1 37377 Lemma for ` ^^ ` recursion...
finxpreclem2 37378 Lemma for ` ^^ ` recursion...
finxp0 37379 The value of Cartesian exp...
finxp1o 37380 The value of Cartesian exp...
finxpreclem3 37381 Lemma for ` ^^ ` recursion...
finxpreclem4 37382 Lemma for ` ^^ ` recursion...
finxpreclem5 37383 Lemma for ` ^^ ` recursion...
finxpreclem6 37384 Lemma for ` ^^ ` recursion...
finxpsuclem 37385 Lemma for ~ finxpsuc . (C...
finxpsuc 37386 The value of Cartesian exp...
finxp2o 37387 The value of Cartesian exp...
finxp3o 37388 The value of Cartesian exp...
finxpnom 37389 Cartesian exponentiation w...
finxp00 37390 Cartesian exponentiation o...
iunctb2 37391 Using the axiom of countab...
domalom 37392 A class which dominates ev...
isinf2 37393 The converse of ~ isinf . ...
ctbssinf 37394 Using the axiom of choice,...
ralssiun 37395 The index set of an indexe...
nlpineqsn 37396 For every point ` p ` of a...
nlpfvineqsn 37397 Given a subset ` A ` of ` ...
fvineqsnf1 37398 A theorem about functions ...
fvineqsneu 37399 A theorem about functions ...
fvineqsneq 37400 A theorem about functions ...
pibp16 37401 Property P000016 of pi-bas...
pibp19 37402 Property P000019 of pi-bas...
pibp21 37403 Property P000021 of pi-bas...
pibt1 37404 Theorem T000001 of pi-base...
pibt2 37405 Theorem T000002 of pi-base...
wl-section-prop 37406 Intuitionistic logic is no...
wl-section-boot 37410 In this section, I provide...
wl-luk-imim1i 37411 Inference adding common co...
wl-luk-syl 37412 An inference version of th...
wl-luk-imtrid 37413 A syllogism rule of infere...
wl-luk-pm2.18d 37414 Deduction based on reducti...
wl-luk-con4i 37415 Inference rule. Copy of ~...
wl-luk-pm2.24i 37416 Inference rule. Copy of ~...
wl-luk-a1i 37417 Inference rule. Copy of ~...
wl-luk-mpi 37418 A nested _modus ponens_ in...
wl-luk-imim2i 37419 Inference adding common an...
wl-luk-imtrdi 37420 A syllogism rule of infere...
wl-luk-ax3 37421 ~ ax-3 proved from Lukasie...
wl-luk-ax1 37422 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 37423 This theorem, called "Asse...
wl-luk-com12 37424 Inference that swaps (comm...
wl-luk-pm2.21 37425 From a wff and its negatio...
wl-luk-con1i 37426 A contraposition inference...
wl-luk-ja 37427 Inference joining the ante...
wl-luk-imim2 37428 A closed form of syllogism...
wl-luk-a1d 37429 Deduction introducing an e...
wl-luk-ax2 37430 ~ ax-2 proved from Lukasie...
wl-luk-id 37431 Principle of identity. Th...
wl-luk-notnotr 37432 Converse of double negatio...
wl-luk-pm2.04 37433 Swap antecedents. Theorem...
wl-section-impchain 37434 An implication like ` ( ps...
wl-impchain-mp-x 37435 This series of theorems pr...
wl-impchain-mp-0 37436 This theorem is the start ...
wl-impchain-mp-1 37437 This theorem is in fact a ...
wl-impchain-mp-2 37438 This theorem is in fact a ...
wl-impchain-com-1.x 37439 It is often convenient to ...
wl-impchain-com-1.1 37440 A degenerate form of antec...
wl-impchain-com-1.2 37441 This theorem is in fact a ...
wl-impchain-com-1.3 37442 This theorem is in fact a ...
wl-impchain-com-1.4 37443 This theorem is in fact a ...
wl-impchain-com-n.m 37444 This series of theorems al...
wl-impchain-com-2.3 37445 This theorem is in fact a ...
wl-impchain-com-2.4 37446 This theorem is in fact a ...
wl-impchain-com-3.2.1 37447 This theorem is in fact a ...
wl-impchain-a1-x 37448 If an implication chain is...
wl-impchain-a1-1 37449 Inference rule, a copy of ...
wl-impchain-a1-2 37450 Inference rule, a copy of ...
wl-impchain-a1-3 37451 Inference rule, a copy of ...
wl-ifp-ncond1 37452 If one case of an ` if- ` ...
wl-ifp-ncond2 37453 If one case of an ` if- ` ...
wl-ifpimpr 37454 If one case of an ` if- ` ...
wl-ifp4impr 37455 If one case of an ` if- ` ...
wl-df-3xor 37456 Alternative definition of ...
wl-df3xor2 37457 Alternative definition of ...
wl-df3xor3 37458 Alternative form of ~ wl-d...
wl-3xortru 37459 If the first input is true...
wl-3xorfal 37460 If the first input is fals...
wl-3xorbi 37461 Triple xor can be replaced...
wl-3xorbi2 37462 Alternative form of ~ wl-3...
wl-3xorbi123d 37463 Equivalence theorem for tr...
wl-3xorbi123i 37464 Equivalence theorem for tr...
wl-3xorrot 37465 Rotation law for triple xo...
wl-3xorcoma 37466 Commutative law for triple...
wl-3xorcomb 37467 Commutative law for triple...
wl-3xornot1 37468 Flipping the first input f...
wl-3xornot 37469 Triple xor distributes ove...
wl-1xor 37470 In the recursive scheme ...
wl-2xor 37471 In the recursive scheme ...
wl-df-3mintru2 37472 Alternative definition of ...
wl-df2-3mintru2 37473 The adder carry in disjunc...
wl-df3-3mintru2 37474 The adder carry in conjunc...
wl-df4-3mintru2 37475 An alternative definition ...
wl-1mintru1 37476 Using the recursion formul...
wl-1mintru2 37477 Using the recursion formul...
wl-2mintru1 37478 Using the recursion formul...
wl-2mintru2 37479 Using the recursion formul...
wl-df3maxtru1 37480 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 37482 A version of ~ ax-wl-13v w...
wl-cleq-0 37483
Disclaimer:
wl-cleq-1 37484
Disclaimer:
wl-cleq-2 37485
Disclaimer:
wl-cleq-3 37486
Disclaimer:
wl-cleq-4 37487
Disclaimer:
wl-cleq-5 37488
Disclaimer:
wl-cleq-6 37489
Disclaimer:
wl-df-clab 37492 Disclaimer: The material ...
wl-isseteq 37493 A class equal to a set var...
wl-ax12v2cl 37494 The class version of ~ ax1...
wl-mps 37495 Replacing a nested consequ...
wl-syls1 37496 Replacing a nested consequ...
wl-syls2 37497 Replacing a nested anteced...
wl-embant 37498 A true wff can always be a...
wl-orel12 37499 In a conjunctive normal fo...
wl-cases2-dnf 37500 A particular instance of ~...
wl-cbvmotv 37501 Change bound variable. Us...
wl-moteq 37502 Change bound variable. Us...
wl-motae 37503 Change bound variable. Us...
wl-moae 37504 Two ways to express "at mo...
wl-euae 37505 Two ways to express "exact...
wl-nax6im 37506 The following series of th...
wl-hbae1 37507 This specialization of ~ h...
wl-naevhba1v 37508 An instance of ~ hbn1w app...
wl-spae 37509 Prove an instance of ~ sp ...
wl-speqv 37510 Under the assumption ` -. ...
wl-19.8eqv 37511 Under the assumption ` -. ...
wl-19.2reqv 37512 Under the assumption ` -. ...
wl-nfalv 37513 If ` x ` is not present in...
wl-nfimf1 37514 An antecedent is irrelevan...
wl-nfae1 37515 Unlike ~ nfae , this speci...
wl-nfnae1 37516 Unlike ~ nfnae , this spec...
wl-aetr 37517 A transitive law for varia...
wl-axc11r 37518 Same as ~ axc11r , but usi...
wl-dral1d 37519 A version of ~ dral1 with ...
wl-cbvalnaed 37520 ~ wl-cbvalnae with a conte...
wl-cbvalnae 37521 A more general version of ...
wl-exeq 37522 The semantics of ` E. x y ...
wl-aleq 37523 The semantics of ` A. x y ...
wl-nfeqfb 37524 Extend ~ nfeqf to an equiv...
wl-nfs1t 37525 If ` y ` is not free in ` ...
wl-equsalvw 37526 Version of ~ equsalv with ...
wl-equsald 37527 Deduction version of ~ equ...
wl-equsaldv 37528 Deduction version of ~ equ...
wl-equsal 37529 A useful equivalence relat...
wl-equsal1t 37530 The expression ` x = y ` i...
wl-equsalcom 37531 This simple equivalence ea...
wl-equsal1i 37532 The antecedent ` x = y ` i...
wl-sbid2ft 37533 A more general version of ...
wl-cbvalsbi 37534 Change bounded variables i...
wl-sbrimt 37535 Substitution with a variab...
wl-sblimt 37536 Substitution with a variab...
wl-sb9v 37537 Commutation of quantificat...
wl-sb8ft 37538 Substitution of variable i...
wl-sb8eft 37539 Substitution of variable i...
wl-sb8t 37540 Substitution of variable i...
wl-sb8et 37541 Substitution of variable i...
wl-sbhbt 37542 Closed form of ~ sbhb . C...
wl-sbnf1 37543 Two ways expressing that `...
wl-equsb3 37544 ~ equsb3 with a distinctor...
wl-equsb4 37545 Substitution applied to an...
wl-2sb6d 37546 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 37547 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 37548 Lemma used to prove ~ wl-s...
wl-sbcom2d 37549 Version of ~ sbcom2 with a...
wl-sbalnae 37550 A theorem used in eliminat...
wl-sbal1 37551 A theorem used in eliminat...
wl-sbal2 37552 Move quantifier in and out...
wl-2spsbbi 37553 ~ spsbbi applied twice. (...
wl-lem-exsb 37554 This theorem provides a ba...
wl-lem-nexmo 37555 This theorem provides a ba...
wl-lem-moexsb 37556 The antecedent ` A. x ( ph...
wl-alanbii 37557 This theorem extends ~ ala...
wl-mo2df 37558 Version of ~ mof with a co...
wl-mo2tf 37559 Closed form of ~ mof with ...
wl-eudf 37560 Version of ~ eu6 with a co...
wl-eutf 37561 Closed form of ~ eu6 with ...
wl-euequf 37562 ~ euequ proved with a dist...
wl-mo2t 37563 Closed form of ~ mof . (C...
wl-mo3t 37564 Closed form of ~ mo3 . (C...
wl-nfsbtv 37565 Closed form of ~ nfsbv . ...
wl-sb8eut 37566 Substitution of variable i...
wl-sb8eutv 37567 Substitution of variable i...
wl-sb8mot 37568 Substitution of variable i...
wl-sb8motv 37569 Substitution of variable i...
wl-issetft 37570 A closed form of ~ issetf ...
wl-axc11rc11 37571 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 37573 A transitive law for varia...
wl-ax11-lem2 37574 Lemma. (Contributed by Wo...
wl-ax11-lem3 37575 Lemma. (Contributed by Wo...
wl-ax11-lem4 37576 Lemma. (Contributed by Wo...
wl-ax11-lem5 37577 Lemma. (Contributed by Wo...
wl-ax11-lem6 37578 Lemma. (Contributed by Wo...
wl-ax11-lem7 37579 Lemma. (Contributed by Wo...
wl-ax11-lem8 37580 Lemma. (Contributed by Wo...
wl-ax11-lem9 37581 The easy part when ` x ` c...
wl-ax11-lem10 37582 We now have prepared every...
wl-clabv 37583 Variant of ~ df-clab , whe...
wl-dfclab 37584 Rederive ~ df-clab from ~ ...
wl-clabtv 37585 Using class abstraction in...
wl-clabt 37586 Using class abstraction in...
rabiun 37587 Abstraction restricted to ...
iundif1 37588 Indexed union of class dif...
imadifss 37589 The difference of images i...
cureq 37590 Equality theorem for curry...
unceq 37591 Equality theorem for uncur...
curf 37592 Functional property of cur...
uncf 37593 Functional property of unc...
curfv 37594 Value of currying. (Contr...
uncov 37595 Value of uncurrying. (Con...
curunc 37596 Currying of uncurrying. (...
unccur 37597 Uncurrying of currying. (...
phpreu 37598 Theorem related to pigeonh...
finixpnum 37599 A finite Cartesian product...
fin2solem 37600 Lemma for ~ fin2so . (Con...
fin2so 37601 Any totally ordered Tarski...
ltflcei 37602 Theorem to move the floor ...
leceifl 37603 Theorem to move the floor ...
sin2h 37604 Half-angle rule for sine. ...
cos2h 37605 Half-angle rule for cosine...
tan2h 37606 Half-angle rule for tangen...
lindsadd 37607 In a vector space, the uni...
lindsdom 37608 A linearly independent set...
lindsenlbs 37609 A maximal linearly indepen...
matunitlindflem1 37610 One direction of ~ matunit...
matunitlindflem2 37611 One direction of ~ matunit...
matunitlindf 37612 A matrix over a field is i...
ptrest 37613 Expressing a restriction o...
ptrecube 37614 Any point in an open set o...
poimirlem1 37615 Lemma for ~ poimir - the v...
poimirlem2 37616 Lemma for ~ poimir - conse...
poimirlem3 37617 Lemma for ~ poimir to add ...
poimirlem4 37618 Lemma for ~ poimir connect...
poimirlem5 37619 Lemma for ~ poimir to esta...
poimirlem6 37620 Lemma for ~ poimir establi...
poimirlem7 37621 Lemma for ~ poimir , simil...
poimirlem8 37622 Lemma for ~ poimir , estab...
poimirlem9 37623 Lemma for ~ poimir , estab...
poimirlem10 37624 Lemma for ~ poimir establi...
poimirlem11 37625 Lemma for ~ poimir connect...
poimirlem12 37626 Lemma for ~ poimir connect...
poimirlem13 37627 Lemma for ~ poimir - for a...
poimirlem14 37628 Lemma for ~ poimir - for a...
poimirlem15 37629 Lemma for ~ poimir , that ...
poimirlem16 37630 Lemma for ~ poimir establi...
poimirlem17 37631 Lemma for ~ poimir establi...
poimirlem18 37632 Lemma for ~ poimir stating...
poimirlem19 37633 Lemma for ~ poimir establi...
poimirlem20 37634 Lemma for ~ poimir establi...
poimirlem21 37635 Lemma for ~ poimir stating...
poimirlem22 37636 Lemma for ~ poimir , that ...
poimirlem23 37637 Lemma for ~ poimir , two w...
poimirlem24 37638 Lemma for ~ poimir , two w...
poimirlem25 37639 Lemma for ~ poimir stating...
poimirlem26 37640 Lemma for ~ poimir showing...
poimirlem27 37641 Lemma for ~ poimir showing...
poimirlem28 37642 Lemma for ~ poimir , a var...
poimirlem29 37643 Lemma for ~ poimir connect...
poimirlem30 37644 Lemma for ~ poimir combini...
poimirlem31 37645 Lemma for ~ poimir , assig...
poimirlem32 37646 Lemma for ~ poimir , combi...
poimir 37647 Poincare-Miranda theorem. ...
broucube 37648 Brouwer - or as Kulpa call...
heicant 37649 Heine-Cantor theorem: a co...
opnmbllem0 37650 Lemma for ~ ismblfin ; cou...
mblfinlem1 37651 Lemma for ~ ismblfin , ord...
mblfinlem2 37652 Lemma for ~ ismblfin , eff...
mblfinlem3 37653 The difference between two...
mblfinlem4 37654 Backward direction of ~ is...
ismblfin 37655 Measurability in terms of ...
ovoliunnfl 37656 ~ ovoliun is incompatible ...
ex-ovoliunnfl 37657 Demonstration of ~ ovoliun...
voliunnfl 37658 ~ voliun is incompatible w...
volsupnfl 37659 ~ volsup is incompatible w...
mbfresfi 37660 Measurability of a piecewi...
mbfposadd 37661 If the sum of two measurab...
cnambfre 37662 A real-valued, a.e. contin...
dvtanlem 37663 Lemma for ~ dvtan - the do...
dvtan 37664 Derivative of tangent. (C...
itg2addnclem 37665 An alternate expression fo...
itg2addnclem2 37666 Lemma for ~ itg2addnc . T...
itg2addnclem3 37667 Lemma incomprehensible in ...
itg2addnc 37668 Alternate proof of ~ itg2a...
itg2gt0cn 37669 ~ itg2gt0 holds on functio...
ibladdnclem 37670 Lemma for ~ ibladdnc ; cf ...
ibladdnc 37671 Choice-free analogue of ~ ...
itgaddnclem1 37672 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 37673 Lemma for ~ itgaddnc ; cf....
itgaddnc 37674 Choice-free analogue of ~ ...
iblsubnc 37675 Choice-free analogue of ~ ...
itgsubnc 37676 Choice-free analogue of ~ ...
iblabsnclem 37677 Lemma for ~ iblabsnc ; cf....
iblabsnc 37678 Choice-free analogue of ~ ...
iblmulc2nc 37679 Choice-free analogue of ~ ...
itgmulc2nclem1 37680 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 37681 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 37682 Choice-free analogue of ~ ...
itgabsnc 37683 Choice-free analogue of ~ ...
itggt0cn 37684 ~ itggt0 holds for continu...
ftc1cnnclem 37685 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 37686 Choice-free proof of ~ ftc...
ftc1anclem1 37687 Lemma for ~ ftc1anc - the ...
ftc1anclem2 37688 Lemma for ~ ftc1anc - rest...
ftc1anclem3 37689 Lemma for ~ ftc1anc - the ...
ftc1anclem4 37690 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 37691 Lemma for ~ ftc1anc , the ...
ftc1anclem6 37692 Lemma for ~ ftc1anc - cons...
ftc1anclem7 37693 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 37694 Lemma for ~ ftc1anc . (Co...
ftc1anc 37695 ~ ftc1a holds for function...
ftc2nc 37696 Choice-free proof of ~ ftc...
asindmre 37697 Real part of domain of dif...
dvasin 37698 Derivative of arcsine. (C...
dvacos 37699 Derivative of arccosine. ...
dvreasin 37700 Real derivative of arcsine...
dvreacos 37701 Real derivative of arccosi...
areacirclem1 37702 Antiderivative of cross-se...
areacirclem2 37703 Endpoint-inclusive continu...
areacirclem3 37704 Integrability of cross-sec...
areacirclem4 37705 Endpoint-inclusive continu...
areacirclem5 37706 Finding the cross-section ...
areacirc 37707 The area of a circle of ra...
unirep 37708 Define a quantity whose de...
cover2 37709 Two ways of expressing the...
cover2g 37710 Two ways of expressing the...
brabg2 37711 Relation by a binary relat...
opelopab3 37712 Ordered pair membership in...
cocanfo 37713 Cancellation of a surjecti...
brresi2 37714 Restriction of a binary re...
fnopabeqd 37715 Equality deduction for fun...
fvopabf4g 37716 Function value of an opera...
fnopabco 37717 Composition of a function ...
opropabco 37718 Composition of an operator...
cocnv 37719 Composition with a functio...
f1ocan1fv 37720 Cancel a composition by a ...
f1ocan2fv 37721 Cancel a composition by th...
inixp 37722 Intersection of Cartesian ...
upixp 37723 Universal property of the ...
abrexdom 37724 An indexed set is dominate...
abrexdom2 37725 An indexed set is dominate...
ac6gf 37726 Axiom of Choice. (Contrib...
indexa 37727 If for every element of an...
indexdom 37728 If for every element of an...
frinfm 37729 A subset of a well-founded...
welb 37730 A nonempty subset of a wel...
supex2g 37731 Existence of supremum. (C...
supclt 37732 Closure of supremum. (Con...
supubt 37733 Upper bound property of su...
filbcmb 37734 Combine a finite set of lo...
fzmul 37735 Membership of a product in...
sdclem2 37736 Lemma for ~ sdc . (Contri...
sdclem1 37737 Lemma for ~ sdc . (Contri...
sdc 37738 Strong dependent choice. ...
fdc 37739 Finite version of dependen...
fdc1 37740 Variant of ~ fdc with no s...
seqpo 37741 Two ways to say that a seq...
incsequz 37742 An increasing sequence of ...
incsequz2 37743 An increasing sequence of ...
nnubfi 37744 A bounded above set of pos...
nninfnub 37745 An infinite set of positiv...
subspopn 37746 An open set is open in the...
neificl 37747 Neighborhoods are closed u...
lpss2 37748 Limit points of a subset a...
metf1o 37749 Use a bijection with a met...
blssp 37750 A ball in the subspace met...
mettrifi 37751 Generalized triangle inequ...
lmclim2 37752 A sequence in a metric spa...
geomcau 37753 If the distance between co...
caures 37754 The restriction of a Cauch...
caushft 37755 A shifted Cauchy sequence ...
constcncf 37756 A constant function is a c...
cnres2 37757 The restriction of a conti...
cnresima 37758 A continuous function is c...
cncfres 37759 A continuous function on c...
istotbnd 37763 The predicate "is a totall...
istotbnd2 37764 The predicate "is a totall...
istotbnd3 37765 A metric space is totally ...
totbndmet 37766 The predicate "totally bou...
0totbnd 37767 The metric (there is only ...
sstotbnd2 37768 Condition for a subset of ...
sstotbnd 37769 Condition for a subset of ...
sstotbnd3 37770 Use a net that is not nece...
totbndss 37771 A subset of a totally boun...
equivtotbnd 37772 If the metric ` M ` is "st...
isbnd 37774 The predicate "is a bounde...
bndmet 37775 A bounded metric space is ...
isbndx 37776 A "bounded extended metric...
isbnd2 37777 The predicate "is a bounde...
isbnd3 37778 A metric space is bounded ...
isbnd3b 37779 A metric space is bounded ...
bndss 37780 A subset of a bounded metr...
blbnd 37781 A ball is bounded. (Contr...
ssbnd 37782 A subset of a metric space...
totbndbnd 37783 A totally bounded metric s...
equivbnd 37784 If the metric ` M ` is "st...
bnd2lem 37785 Lemma for ~ equivbnd2 and ...
equivbnd2 37786 If balls are totally bound...
prdsbnd 37787 The product metric over fi...
prdstotbnd 37788 The product metric over fi...
prdsbnd2 37789 If balls are totally bound...
cntotbnd 37790 A subset of the complex nu...
cnpwstotbnd 37791 A subset of ` A ^ I ` , wh...
ismtyval 37794 The set of isometries betw...
isismty 37795 The condition "is an isome...
ismtycnv 37796 The inverse of an isometry...
ismtyima 37797 The image of a ball under ...
ismtyhmeolem 37798 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 37799 An isometry is a homeomorp...
ismtybndlem 37800 Lemma for ~ ismtybnd . (C...
ismtybnd 37801 Isometries preserve bounde...
ismtyres 37802 A restriction of an isomet...
heibor1lem 37803 Lemma for ~ heibor1 . A c...
heibor1 37804 One half of ~ heibor , tha...
heiborlem1 37805 Lemma for ~ heibor . We w...
heiborlem2 37806 Lemma for ~ heibor . Subs...
heiborlem3 37807 Lemma for ~ heibor . Usin...
heiborlem4 37808 Lemma for ~ heibor . Usin...
heiborlem5 37809 Lemma for ~ heibor . The ...
heiborlem6 37810 Lemma for ~ heibor . Sinc...
heiborlem7 37811 Lemma for ~ heibor . Sinc...
heiborlem8 37812 Lemma for ~ heibor . The ...
heiborlem9 37813 Lemma for ~ heibor . Disc...
heiborlem10 37814 Lemma for ~ heibor . The ...
heibor 37815 Generalized Heine-Borel Th...
bfplem1 37816 Lemma for ~ bfp . The seq...
bfplem2 37817 Lemma for ~ bfp . Using t...
bfp 37818 Banach fixed point theorem...
rrnval 37821 The n-dimensional Euclidea...
rrnmval 37822 The value of the Euclidean...
rrnmet 37823 Euclidean space is a metri...
rrndstprj1 37824 The distance between two p...
rrndstprj2 37825 Bound on the distance betw...
rrncmslem 37826 Lemma for ~ rrncms . (Con...
rrncms 37827 Euclidean space is complet...
repwsmet 37828 The supremum metric on ` R...
rrnequiv 37829 The supremum metric on ` R...
rrntotbnd 37830 A set in Euclidean space i...
rrnheibor 37831 Heine-Borel theorem for Eu...
ismrer1 37832 An isometry between ` RR `...
reheibor 37833 Heine-Borel theorem for re...
iccbnd 37834 A closed interval in ` RR ...
icccmpALT 37835 A closed interval in ` RR ...
isass 37840 The predicate "is an assoc...
isexid 37841 The predicate ` G ` has a ...
ismgmOLD 37844 Obsolete version of ~ ismg...
clmgmOLD 37845 Obsolete version of ~ mgmc...
opidonOLD 37846 Obsolete version of ~ mndp...
rngopidOLD 37847 Obsolete version of ~ mndp...
opidon2OLD 37848 Obsolete version of ~ mndp...
isexid2 37849 If ` G e. ( Magma i^i ExId...
exidu1 37850 Uniqueness of the left and...
idrval 37851 The value of the identity ...
iorlid 37852 A magma right and left ide...
cmpidelt 37853 A magma right and left ide...
smgrpismgmOLD 37856 Obsolete version of ~ sgrp...
issmgrpOLD 37857 Obsolete version of ~ issg...
smgrpmgm 37858 A semigroup is a magma. (...
smgrpassOLD 37859 Obsolete version of ~ sgrp...
mndoissmgrpOLD 37862 Obsolete version of ~ mnds...
mndoisexid 37863 A monoid has an identity e...
mndoismgmOLD 37864 Obsolete version of ~ mndm...
mndomgmid 37865 A monoid is a magma with a...
ismndo 37866 The predicate "is a monoid...
ismndo1 37867 The predicate "is a monoid...
ismndo2 37868 The predicate "is a monoid...
grpomndo 37869 A group is a monoid. (Con...
exidcl 37870 Closure of the binary oper...
exidreslem 37871 Lemma for ~ exidres and ~ ...
exidres 37872 The restriction of a binar...
exidresid 37873 The restriction of a binar...
ablo4pnp 37874 A commutative/associative ...
grpoeqdivid 37875 Two group elements are equ...
grposnOLD 37876 The group operation for th...
elghomlem1OLD 37879 Obsolete as of 15-Mar-2020...
elghomlem2OLD 37880 Obsolete as of 15-Mar-2020...
elghomOLD 37881 Obsolete version of ~ isgh...
ghomlinOLD 37882 Obsolete version of ~ ghml...
ghomidOLD 37883 Obsolete version of ~ ghmi...
ghomf 37884 Mapping property of a grou...
ghomco 37885 The composition of two gro...
ghomdiv 37886 Group homomorphisms preser...
grpokerinj 37887 A group homomorphism is in...
relrngo 37890 The class of all unital ri...
isrngo 37891 The predicate "is a (unita...
isrngod 37892 Conditions that determine ...
rngoi 37893 The properties of a unital...
rngosm 37894 Functionality of the multi...
rngocl 37895 Closure of the multiplicat...
rngoid 37896 The multiplication operati...
rngoideu 37897 The unity element of a rin...
rngodi 37898 Distributive law for the m...
rngodir 37899 Distributive law for the m...
rngoass 37900 Associative law for the mu...
rngo2 37901 A ring element plus itself...
rngoablo 37902 A ring's addition operatio...
rngoablo2 37903 In a unital ring the addit...
rngogrpo 37904 A ring's addition operatio...
rngone0 37905 The base set of a ring is ...
rngogcl 37906 Closure law for the additi...
rngocom 37907 The addition operation of ...
rngoaass 37908 The addition operation of ...
rngoa32 37909 The addition operation of ...
rngoa4 37910 Rearrangement of 4 terms i...
rngorcan 37911 Right cancellation law for...
rngolcan 37912 Left cancellation law for ...
rngo0cl 37913 A ring has an additive ide...
rngo0rid 37914 The additive identity of a...
rngo0lid 37915 The additive identity of a...
rngolz 37916 The zero of a unital ring ...
rngorz 37917 The zero of a unital ring ...
rngosn3 37918 Obsolete as of 25-Jan-2020...
rngosn4 37919 Obsolete as of 25-Jan-2020...
rngosn6 37920 Obsolete as of 25-Jan-2020...
rngonegcl 37921 A ring is closed under neg...
rngoaddneg1 37922 Adding the negative in a r...
rngoaddneg2 37923 Adding the negative in a r...
rngosub 37924 Subtraction in a ring, in ...
rngmgmbs4 37925 The range of an internal o...
rngodm1dm2 37926 In a unital ring the domai...
rngorn1 37927 In a unital ring the range...
rngorn1eq 37928 In a unital ring the range...
rngomndo 37929 In a unital ring the multi...
rngoidmlem 37930 The unity element of a rin...
rngolidm 37931 The unity element of a rin...
rngoridm 37932 The unity element of a rin...
rngo1cl 37933 The unity element of a rin...
rngoueqz 37934 Obsolete as of 23-Jan-2020...
rngonegmn1l 37935 Negation in a ring is the ...
rngonegmn1r 37936 Negation in a ring is the ...
rngoneglmul 37937 Negation of a product in a...
rngonegrmul 37938 Negation of a product in a...
rngosubdi 37939 Ring multiplication distri...
rngosubdir 37940 Ring multiplication distri...
zerdivemp1x 37941 In a unital ring a left in...
isdivrngo 37944 The predicate "is a divisi...
drngoi 37945 The properties of a divisi...
gidsn 37946 Obsolete as of 23-Jan-2020...
zrdivrng 37947 The zero ring is not a div...
dvrunz 37948 In a division ring the rin...
isgrpda 37949 Properties that determine ...
isdrngo1 37950 The predicate "is a divisi...
divrngcl 37951 The product of two nonzero...
isdrngo2 37952 A division ring is a ring ...
isdrngo3 37953 A division ring is a ring ...
rngohomval 37958 The set of ring homomorphi...
isrngohom 37959 The predicate "is a ring h...
rngohomf 37960 A ring homomorphism is a f...
rngohomcl 37961 Closure law for a ring hom...
rngohom1 37962 A ring homomorphism preser...
rngohomadd 37963 Ring homomorphisms preserv...
rngohommul 37964 Ring homomorphisms preserv...
rngogrphom 37965 A ring homomorphism is a g...
rngohom0 37966 A ring homomorphism preser...
rngohomsub 37967 Ring homomorphisms preserv...
rngohomco 37968 The composition of two rin...
rngokerinj 37969 A ring homomorphism is inj...
rngoisoval 37971 The set of ring isomorphis...
isrngoiso 37972 The predicate "is a ring i...
rngoiso1o 37973 A ring isomorphism is a bi...
rngoisohom 37974 A ring isomorphism is a ri...
rngoisocnv 37975 The inverse of a ring isom...
rngoisoco 37976 The composition of two rin...
isriscg 37978 The ring isomorphism relat...
isrisc 37979 The ring isomorphism relat...
risc 37980 The ring isomorphism relat...
risci 37981 Determine that two rings a...
riscer 37982 Ring isomorphism is an equ...
iscom2 37989 A device to add commutativ...
iscrngo 37990 The predicate "is a commut...
iscrngo2 37991 The predicate "is a commut...
iscringd 37992 Conditions that determine ...
flddivrng 37993 A field is a division ring...
crngorngo 37994 A commutative ring is a ri...
crngocom 37995 The multiplication operati...
crngm23 37996 Commutative/associative la...
crngm4 37997 Commutative/associative la...
fldcrngo 37998 A field is a commutative r...
isfld2 37999 The predicate "is a field"...
crngohomfo 38000 The image of a homomorphis...
idlval 38007 The class of ideals of a r...
isidl 38008 The predicate "is an ideal...
isidlc 38009 The predicate "is an ideal...
idlss 38010 An ideal of ` R ` is a sub...
idlcl 38011 An element of an ideal is ...
idl0cl 38012 An ideal contains ` 0 ` . ...
idladdcl 38013 An ideal is closed under a...
idllmulcl 38014 An ideal is closed under m...
idlrmulcl 38015 An ideal is closed under m...
idlnegcl 38016 An ideal is closed under n...
idlsubcl 38017 An ideal is closed under s...
rngoidl 38018 A ring ` R ` is an ` R ` i...
0idl 38019 The set containing only ` ...
1idl 38020 Two ways of expressing the...
0rngo 38021 In a ring, ` 0 = 1 ` iff t...
divrngidl 38022 The only ideals in a divis...
intidl 38023 The intersection of a none...
inidl 38024 The intersection of two id...
unichnidl 38025 The union of a nonempty ch...
keridl 38026 The kernel of a ring homom...
pridlval 38027 The class of prime ideals ...
ispridl 38028 The predicate "is a prime ...
pridlidl 38029 A prime ideal is an ideal....
pridlnr 38030 A prime ideal is a proper ...
pridl 38031 The main property of a pri...
ispridl2 38032 A condition that shows an ...
maxidlval 38033 The set of maximal ideals ...
ismaxidl 38034 The predicate "is a maxima...
maxidlidl 38035 A maximal ideal is an idea...
maxidlnr 38036 A maximal ideal is proper....
maxidlmax 38037 A maximal ideal is a maxim...
maxidln1 38038 One is not contained in an...
maxidln0 38039 A ring with a maximal idea...
isprrngo 38044 The predicate "is a prime ...
prrngorngo 38045 A prime ring is a ring. (...
smprngopr 38046 A simple ring (one whose o...
divrngpr 38047 A division ring is a prime...
isdmn 38048 The predicate "is a domain...
isdmn2 38049 The predicate "is a domain...
dmncrng 38050 A domain is a commutative ...
dmnrngo 38051 A domain is a ring. (Cont...
flddmn 38052 A field is a domain. (Con...
igenval 38055 The ideal generated by a s...
igenss 38056 A set is a subset of the i...
igenidl 38057 The ideal generated by a s...
igenmin 38058 The ideal generated by a s...
igenidl2 38059 The ideal generated by an ...
igenval2 38060 The ideal generated by a s...
prnc 38061 A principal ideal (an idea...
isfldidl 38062 Determine if a ring is a f...
isfldidl2 38063 Determine if a ring is a f...
ispridlc 38064 The predicate "is a prime ...
pridlc 38065 Property of a prime ideal ...
pridlc2 38066 Property of a prime ideal ...
pridlc3 38067 Property of a prime ideal ...
isdmn3 38068 The predicate "is a domain...
dmnnzd 38069 A domain has no zero-divis...
dmncan1 38070 Cancellation law for domai...
dmncan2 38071 Cancellation law for domai...
efald2 38072 A proof by contradiction. ...
notbinot1 38073 Simplification rule of neg...
bicontr 38074 Biconditional of its own n...
impor 38075 An equivalent formula for ...
orfa 38076 The falsum ` F. ` can be r...
notbinot2 38077 Commutation rule between n...
biimpor 38078 A rewriting rule for bicon...
orfa1 38079 Add a contradicting disjun...
orfa2 38080 Remove a contradicting dis...
bifald 38081 Infer the equivalence to a...
orsild 38082 A lemma for not-or-not eli...
orsird 38083 A lemma for not-or-not eli...
cnf1dd 38084 A lemma for Conjunctive No...
cnf2dd 38085 A lemma for Conjunctive No...
cnfn1dd 38086 A lemma for Conjunctive No...
cnfn2dd 38087 A lemma for Conjunctive No...
or32dd 38088 A rearrangement of disjunc...
notornotel1 38089 A lemma for not-or-not eli...
notornotel2 38090 A lemma for not-or-not eli...
contrd 38091 A proof by contradiction, ...
an12i 38092 An inference from commutin...
exmid2 38093 An excluded middle law. (...
selconj 38094 An inference for selecting...
truconj 38095 Add true as a conjunct. (...
orel 38096 An inference for disjuncti...
negel 38097 An inference for negation ...
botel 38098 An inference for bottom el...
tradd 38099 Add top ad a conjunct. (C...
gm-sbtru 38100 Substitution does not chan...
sbfal 38101 Substitution does not chan...
sbcani 38102 Distribution of class subs...
sbcori 38103 Distribution of class subs...
sbcimi 38104 Distribution of class subs...
sbcni 38105 Move class substitution in...
sbali 38106 Discard class substitution...
sbexi 38107 Discard class substitution...
sbcalf 38108 Move universal quantifier ...
sbcexf 38109 Move existential quantifie...
sbcalfi 38110 Move universal quantifier ...
sbcexfi 38111 Move existential quantifie...
spsbcdi 38112 A lemma for eliminating a ...
alrimii 38113 A lemma for introducing a ...
spesbcdi 38114 A lemma for introducing an...
exlimddvf 38115 A lemma for eliminating an...
exlimddvfi 38116 A lemma for eliminating an...
sbceq1ddi 38117 A lemma for eliminating in...
sbccom2lem 38118 Lemma for ~ sbccom2 . (Co...
sbccom2 38119 Commutative law for double...
sbccom2f 38120 Commutative law for double...
sbccom2fi 38121 Commutative law for double...
csbcom2fi 38122 Commutative law for double...
fald 38123 Refutation of falsity, in ...
tsim1 38124 A Tseitin axiom for logica...
tsim2 38125 A Tseitin axiom for logica...
tsim3 38126 A Tseitin axiom for logica...
tsbi1 38127 A Tseitin axiom for logica...
tsbi2 38128 A Tseitin axiom for logica...
tsbi3 38129 A Tseitin axiom for logica...
tsbi4 38130 A Tseitin axiom for logica...
tsxo1 38131 A Tseitin axiom for logica...
tsxo2 38132 A Tseitin axiom for logica...
tsxo3 38133 A Tseitin axiom for logica...
tsxo4 38134 A Tseitin axiom for logica...
tsan1 38135 A Tseitin axiom for logica...
tsan2 38136 A Tseitin axiom for logica...
tsan3 38137 A Tseitin axiom for logica...
tsna1 38138 A Tseitin axiom for logica...
tsna2 38139 A Tseitin axiom for logica...
tsna3 38140 A Tseitin axiom for logica...
tsor1 38141 A Tseitin axiom for logica...
tsor2 38142 A Tseitin axiom for logica...
tsor3 38143 A Tseitin axiom for logica...
ts3an1 38144 A Tseitin axiom for triple...
ts3an2 38145 A Tseitin axiom for triple...
ts3an3 38146 A Tseitin axiom for triple...
ts3or1 38147 A Tseitin axiom for triple...
ts3or2 38148 A Tseitin axiom for triple...
ts3or3 38149 A Tseitin axiom for triple...
iuneq2f 38150 Equality deduction for ind...
rabeq12f 38151 Equality deduction for res...
csbeq12 38152 Equality deduction for sub...
sbeqi 38153 Equality deduction for sub...
ralbi12f 38154 Equality deduction for res...
oprabbi 38155 Equality deduction for cla...
mpobi123f 38156 Equality deduction for map...
iuneq12f 38157 Equality deduction for ind...
iineq12f 38158 Equality deduction for ind...
opabbi 38159 Equality deduction for cla...
mptbi12f 38160 Equality deduction for map...
orcomdd 38161 Commutativity of logic dis...
scottexf 38162 A version of ~ scottex wit...
scott0f 38163 A version of ~ scott0 with...
scottn0f 38164 A version of ~ scott0f wit...
ac6s3f 38165 Generalization of the Axio...
ac6s6 38166 Generalization of the Axio...
ac6s6f 38167 Generalization of the Axio...
el2v1 38211 New way ( ~ elv , and the ...
el3v1 38212 New way ( ~ elv , and the ...
el3v2 38213 New way ( ~ elv , and the ...
el3v12 38214 New way ( ~ elv , and the ...
el3v13 38215 New way ( ~ elv , and the ...
el3v23 38216 New way ( ~ elv , and the ...
anan 38217 Multiple commutations in c...
triantru3 38218 A wff is equivalent to its...
biorfd 38219 A wff is equivalent to its...
eqbrtr 38220 Substitution of equal clas...
eqbrb 38221 Substitution of equal clas...
eqeltr 38222 Substitution of equal clas...
eqelb 38223 Substitution of equal clas...
eqeqan2d 38224 Implication of introducing...
suceqsneq 38225 One-to-one relationship be...
sucdifsn2 38226 Absorption of union with a...
sucdifsn 38227 The difference between the...
disjresin 38228 The restriction to a disjo...
disjresdisj 38229 The intersection of restri...
disjresdif 38230 The difference between res...
disjresundif 38231 Lemma for ~ ressucdifsn2 ....
ressucdifsn2 38232 The difference between res...
ressucdifsn 38233 The difference between res...
inres2 38234 Two ways of expressing the...
coideq 38235 Equality theorem for compo...
nexmo1 38236 If there is no case where ...
eqab2 38237 Implication of a class abs...
r2alan 38238 Double restricted universa...
ssrabi 38239 Inference of restricted ab...
rabimbieq 38240 Restricted equivalent wff'...
abeqin 38241 Intersection with class ab...
abeqinbi 38242 Intersection with class ab...
rabeqel 38243 Class element of a restric...
eqrelf 38244 The equality connective be...
br1cnvinxp 38245 Binary relation on the con...
releleccnv 38246 Elementhood in a converse ...
releccnveq 38247 Equality of converse ` R `...
opelvvdif 38248 Negated elementhood of ord...
vvdifopab 38249 Ordered-pair class abstrac...
brvdif 38250 Binary relation with unive...
brvdif2 38251 Binary relation with unive...
brvvdif 38252 Binary relation with the c...
brvbrvvdif 38253 Binary relation with the c...
brcnvep 38254 The converse of the binary...
elecALTV 38255 Elementhood in the ` R ` -...
brcnvepres 38256 Restricted converse epsilo...
brres2 38257 Binary relation on a restr...
br1cnvres 38258 Binary relation on the con...
eldmres 38259 Elementhood in the domain ...
elrnres 38260 Element of the range of a ...
eldmressnALTV 38261 Element of the domain of a...
elrnressn 38262 Element of the range of a ...
eldm4 38263 Elementhood in a domain. ...
eldmres2 38264 Elementhood in the domain ...
eldmres3 38265 Elementhood in the domain ...
eceq1i 38266 Equality theorem for ` C `...
ecres 38267 Restricted coset of ` B ` ...
eccnvepres 38268 Restricted converse epsilo...
eleccnvep 38269 Elementhood in the convers...
eccnvep 38270 The converse epsilon coset...
extep 38271 Property of epsilon relati...
disjeccnvep 38272 Property of the epsilon re...
eccnvepres2 38273 The restricted converse ep...
eccnvepres3 38274 Condition for a restricted...
eldmqsres 38275 Elementhood in a restricte...
eldmqsres2 38276 Elementhood in a restricte...
qsss1 38277 Subclass theorem for quoti...
qseq1i 38278 Equality theorem for quoti...
brinxprnres 38279 Binary relation on a restr...
inxprnres 38280 Restriction of a class as ...
dfres4 38281 Alternate definition of th...
exan3 38282 Equivalent expressions wit...
exanres 38283 Equivalent expressions wit...
exanres3 38284 Equivalent expressions wit...
exanres2 38285 Equivalent expressions wit...
cnvepres 38286 Restricted converse epsilo...
eqrel2 38287 Equality of relations. (C...
rncnv 38288 Range of converse is the d...
dfdm6 38289 Alternate definition of do...
dfrn6 38290 Alternate definition of ra...
rncnvepres 38291 The range of the restricte...
dmecd 38292 Equality of the coset of `...
dmec2d 38293 Equality of the coset of `...
brid 38294 Property of the identity b...
ideq2 38295 For sets, the identity bin...
idresssidinxp 38296 Condition for the identity...
idreseqidinxp 38297 Condition for the identity...
extid 38298 Property of identity relat...
inxpss 38299 Two ways to say that an in...
idinxpss 38300 Two ways to say that an in...
ref5 38301 Two ways to say that an in...
inxpss3 38302 Two ways to say that an in...
inxpss2 38303 Two ways to say that inter...
inxpssidinxp 38304 Two ways to say that inter...
idinxpssinxp 38305 Two ways to say that inter...
idinxpssinxp2 38306 Identity intersection with...
idinxpssinxp3 38307 Identity intersection with...
idinxpssinxp4 38308 Identity intersection with...
relcnveq3 38309 Two ways of saying a relat...
relcnveq 38310 Two ways of saying a relat...
relcnveq2 38311 Two ways of saying a relat...
relcnveq4 38312 Two ways of saying a relat...
qsresid 38313 Simplification of a specia...
n0elqs 38314 Two ways of expressing tha...
n0elqs2 38315 Two ways of expressing tha...
rnresequniqs 38316 The range of a restriction...
n0el2 38317 Two ways of expressing tha...
cnvepresex 38318 Sethood condition for the ...
cnvepima 38319 The image of converse epsi...
inex3 38320 Sufficient condition for t...
inxpex 38321 Sufficient condition for a...
eqres 38322 Converting a class constan...
brrabga 38323 The law of concretion for ...
brcnvrabga 38324 The law of concretion for ...
opideq 38325 Equality conditions for or...
iss2 38326 A subclass of the identity...
eldmcnv 38327 Elementhood in a domain of...
dfrel5 38328 Alternate definition of th...
dfrel6 38329 Alternate definition of th...
cnvresrn 38330 Converse restricted to ran...
relssinxpdmrn 38331 Subset of restriction, spe...
cnvref4 38332 Two ways to say that a rel...
cnvref5 38333 Two ways to say that a rel...
ecin0 38334 Two ways of saying that th...
ecinn0 38335 Two ways of saying that th...
ineleq 38336 Equivalence of restricted ...
inecmo 38337 Equivalence of a double re...
inecmo2 38338 Equivalence of a double re...
ineccnvmo 38339 Equivalence of a double re...
alrmomorn 38340 Equivalence of an "at most...
alrmomodm 38341 Equivalence of an "at most...
ineccnvmo2 38342 Equivalence of a double un...
inecmo3 38343 Equivalence of a double un...
moeu2 38344 Uniqueness is equivalent t...
mopickr 38345 "At most one" picks a vari...
moantr 38346 Sufficient condition for t...
brabidgaw 38347 The law of concretion for ...
brabidga 38348 The law of concretion for ...
inxp2 38349 Intersection with a Cartes...
opabf 38350 A class abstraction of a c...
ec0 38351 The empty-coset of a class...
brcnvin 38352 Intersection with a conver...
xrnss3v 38354 A range Cartesian product ...
xrnrel 38355 A range Cartesian product ...
brxrn 38356 Characterize a ternary rel...
brxrn2 38357 A characterization of the ...
dfxrn2 38358 Alternate definition of th...
brxrncnvep 38359 The range product with con...
dmxrn 38360 Domain of the range produc...
dmcnvep 38361 Domain of converse epsilon...
dmxrncnvep 38362 Domain of the range produc...
xrneq1 38363 Equality theorem for the r...
xrneq1i 38364 Equality theorem for the r...
xrneq1d 38365 Equality theorem for the r...
xrneq2 38366 Equality theorem for the r...
xrneq2i 38367 Equality theorem for the r...
xrneq2d 38368 Equality theorem for the r...
xrneq12 38369 Equality theorem for the r...
xrneq12i 38370 Equality theorem for the r...
xrneq12d 38371 Equality theorem for the r...
elecxrn 38372 Elementhood in the ` ( R |...
ecxrn 38373 The ` ( R |X. S ) ` -coset...
disjressuc2 38374 Double restricted quantifi...
disjecxrn 38375 Two ways of saying that ` ...
disjecxrncnvep 38376 Two ways of saying that co...
disjsuc2 38377 Double restricted quantifi...
xrninxp 38378 Intersection of a range Ca...
xrninxp2 38379 Intersection of a range Ca...
xrninxpex 38380 Sufficient condition for t...
inxpxrn 38381 Two ways to express the in...
br1cnvxrn2 38382 The converse of a binary r...
elec1cnvxrn2 38383 Elementhood in the convers...
rnxrn 38384 Range of the range Cartesi...
rnxrnres 38385 Range of a range Cartesian...
rnxrncnvepres 38386 Range of a range Cartesian...
rnxrnidres 38387 Range of a range Cartesian...
xrnres 38388 Two ways to express restri...
xrnres2 38389 Two ways to express restri...
xrnres3 38390 Two ways to express restri...
xrnres4 38391 Two ways to express restri...
xrnresex 38392 Sufficient condition for a...
xrnidresex 38393 Sufficient condition for a...
xrncnvepresex 38394 Sufficient condition for a...
dmxrncnvepres 38395 Domain of the range produc...
eldmxrncnvepres 38396 Element of the domain of t...
eldmxrncnvepres2 38397 Element of the domain of t...
eceldmqsxrncnvepres 38398 An ` ( R |X. ( ` ' E | ` A...
eceldmqsxrncnvepres2 38399 An ` ( R |X. ( ` ' E | ` A...
brin2 38400 Binary relation on an inte...
brin3 38401 Binary relation on an inte...
dfcoss2 38404 Alternate definition of th...
dfcoss3 38405 Alternate definition of th...
dfcoss4 38406 Alternate definition of th...
cosscnv 38407 Class of cosets by the con...
coss1cnvres 38408 Class of cosets by the con...
coss2cnvepres 38409 Special case of ~ coss1cnv...
cossex 38410 If ` A ` is a set then the...
cosscnvex 38411 If ` A ` is a set then the...
1cosscnvepresex 38412 Sufficient condition for a...
1cossxrncnvepresex 38413 Sufficient condition for a...
relcoss 38414 Cosets by ` R ` is a relat...
relcoels 38415 Coelements on ` A ` is a r...
cossss 38416 Subclass theorem for the c...
cosseq 38417 Equality theorem for the c...
cosseqi 38418 Equality theorem for the c...
cosseqd 38419 Equality theorem for the c...
1cossres 38420 The class of cosets by a r...
dfcoels 38421 Alternate definition of th...
brcoss 38422 ` A ` and ` B ` are cosets...
brcoss2 38423 Alternate form of the ` A ...
brcoss3 38424 Alternate form of the ` A ...
brcosscnvcoss 38425 For sets, the ` A ` and ` ...
brcoels 38426 ` B ` and ` C ` are coelem...
cocossss 38427 Two ways of saying that co...
cnvcosseq 38428 The converse of cosets by ...
br2coss 38429 Cosets by ` ,~ R ` binary ...
br1cossres 38430 ` B ` and ` C ` are cosets...
br1cossres2 38431 ` B ` and ` C ` are cosets...
brressn 38432 Binary relation on a restr...
ressn2 38433 A class ' R ' restricted t...
refressn 38434 Any class ' R ' restricted...
antisymressn 38435 Every class ' R ' restrict...
trressn 38436 Any class ' R ' restricted...
relbrcoss 38437 ` A ` and ` B ` are cosets...
br1cossinres 38438 ` B ` and ` C ` are cosets...
br1cossxrnres 38439 ` <. B , C >. ` and ` <. D...
br1cossinidres 38440 ` B ` and ` C ` are cosets...
br1cossincnvepres 38441 ` B ` and ` C ` are cosets...
br1cossxrnidres 38442 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 38443 ` <. B , C >. ` and ` <. D...
dmcoss3 38444 The domain of cosets is th...
dmcoss2 38445 The domain of cosets is th...
rncossdmcoss 38446 The range of cosets is the...
dm1cosscnvepres 38447 The domain of cosets of th...
dmcoels 38448 The domain of coelements i...
eldmcoss 38449 Elementhood in the domain ...
eldmcoss2 38450 Elementhood in the domain ...
eldm1cossres 38451 Elementhood in the domain ...
eldm1cossres2 38452 Elementhood in the domain ...
refrelcosslem 38453 Lemma for the left side of...
refrelcoss3 38454 The class of cosets by ` R...
refrelcoss2 38455 The class of cosets by ` R...
symrelcoss3 38456 The class of cosets by ` R...
symrelcoss2 38457 The class of cosets by ` R...
cossssid 38458 Equivalent expressions for...
cossssid2 38459 Equivalent expressions for...
cossssid3 38460 Equivalent expressions for...
cossssid4 38461 Equivalent expressions for...
cossssid5 38462 Equivalent expressions for...
brcosscnv 38463 ` A ` and ` B ` are cosets...
brcosscnv2 38464 ` A ` and ` B ` are cosets...
br1cosscnvxrn 38465 ` A ` and ` B ` are cosets...
1cosscnvxrn 38466 Cosets by the converse ran...
cosscnvssid3 38467 Equivalent expressions for...
cosscnvssid4 38468 Equivalent expressions for...
cosscnvssid5 38469 Equivalent expressions for...
coss0 38470 Cosets by the empty set ar...
cossid 38471 Cosets by the identity rel...
cosscnvid 38472 Cosets by the converse ide...
trcoss 38473 Sufficient condition for t...
eleccossin 38474 Two ways of saying that th...
trcoss2 38475 Equivalent expressions for...
elrels2 38477 The element of the relatio...
elrelsrel 38478 The element of the relatio...
elrelsrelim 38479 The element of the relatio...
elrels5 38480 Equivalent expressions for...
elrels6 38481 Equivalent expressions for...
elrelscnveq3 38482 Two ways of saying a relat...
elrelscnveq 38483 Two ways of saying a relat...
elrelscnveq2 38484 Two ways of saying a relat...
elrelscnveq4 38485 Two ways of saying a relat...
cnvelrels 38486 The converse of a set is a...
cosselrels 38487 Cosets of sets are element...
cosscnvelrels 38488 Cosets of converse sets ar...
dfssr2 38490 Alternate definition of th...
relssr 38491 The subset relation is a r...
brssr 38492 The subset relation and su...
brssrid 38493 Any set is a subset of its...
issetssr 38494 Two ways of expressing set...
brssrres 38495 Restricted subset binary r...
br1cnvssrres 38496 Restricted converse subset...
brcnvssr 38497 The converse of a subset r...
brcnvssrid 38498 Any set is a converse subs...
br1cossxrncnvssrres 38499 ` <. B , C >. ` and ` <. D...
extssr 38500 Property of subset relatio...
dfrefrels2 38504 Alternate definition of th...
dfrefrels3 38505 Alternate definition of th...
dfrefrel2 38506 Alternate definition of th...
dfrefrel3 38507 Alternate definition of th...
dfrefrel5 38508 Alternate definition of th...
elrefrels2 38509 Element of the class of re...
elrefrels3 38510 Element of the class of re...
elrefrelsrel 38511 For sets, being an element...
refreleq 38512 Equality theorem for refle...
refrelid 38513 Identity relation is refle...
refrelcoss 38514 The class of cosets by ` R...
refrelressn 38515 Any class ' R ' restricted...
dfcnvrefrels2 38519 Alternate definition of th...
dfcnvrefrels3 38520 Alternate definition of th...
dfcnvrefrel2 38521 Alternate definition of th...
dfcnvrefrel3 38522 Alternate definition of th...
dfcnvrefrel4 38523 Alternate definition of th...
dfcnvrefrel5 38524 Alternate definition of th...
elcnvrefrels2 38525 Element of the class of co...
elcnvrefrels3 38526 Element of the class of co...
elcnvrefrelsrel 38527 For sets, being an element...
cnvrefrelcoss2 38528 Necessary and sufficient c...
cosselcnvrefrels2 38529 Necessary and sufficient c...
cosselcnvrefrels3 38530 Necessary and sufficient c...
cosselcnvrefrels4 38531 Necessary and sufficient c...
cosselcnvrefrels5 38532 Necessary and sufficient c...
dfsymrels2 38536 Alternate definition of th...
dfsymrels3 38537 Alternate definition of th...
dfsymrels4 38538 Alternate definition of th...
dfsymrels5 38539 Alternate definition of th...
dfsymrel2 38540 Alternate definition of th...
dfsymrel3 38541 Alternate definition of th...
dfsymrel4 38542 Alternate definition of th...
dfsymrel5 38543 Alternate definition of th...
elsymrels2 38544 Element of the class of sy...
elsymrels3 38545 Element of the class of sy...
elsymrels4 38546 Element of the class of sy...
elsymrels5 38547 Element of the class of sy...
elsymrelsrel 38548 For sets, being an element...
symreleq 38549 Equality theorem for symme...
symrelim 38550 Symmetric relation implies...
symrelcoss 38551 The class of cosets by ` R...
idsymrel 38552 The identity relation is s...
epnsymrel 38553 The membership (epsilon) r...
symrefref2 38554 Symmetry is a sufficient c...
symrefref3 38555 Symmetry is a sufficient c...
refsymrels2 38556 Elements of the class of r...
refsymrels3 38557 Elements of the class of r...
refsymrel2 38558 A relation which is reflex...
refsymrel3 38559 A relation which is reflex...
elrefsymrels2 38560 Elements of the class of r...
elrefsymrels3 38561 Elements of the class of r...
elrefsymrelsrel 38562 For sets, being an element...
dftrrels2 38566 Alternate definition of th...
dftrrels3 38567 Alternate definition of th...
dftrrel2 38568 Alternate definition of th...
dftrrel3 38569 Alternate definition of th...
eltrrels2 38570 Element of the class of tr...
eltrrels3 38571 Element of the class of tr...
eltrrelsrel 38572 For sets, being an element...
trreleq 38573 Equality theorem for the t...
trrelressn 38574 Any class ' R ' restricted...
dfeqvrels2 38579 Alternate definition of th...
dfeqvrels3 38580 Alternate definition of th...
dfeqvrel2 38581 Alternate definition of th...
dfeqvrel3 38582 Alternate definition of th...
eleqvrels2 38583 Element of the class of eq...
eleqvrels3 38584 Element of the class of eq...
eleqvrelsrel 38585 For sets, being an element...
elcoeleqvrels 38586 Elementhood in the coeleme...
elcoeleqvrelsrel 38587 For sets, being an element...
eqvrelrel 38588 An equivalence relation is...
eqvrelrefrel 38589 An equivalence relation is...
eqvrelsymrel 38590 An equivalence relation is...
eqvreltrrel 38591 An equivalence relation is...
eqvrelim 38592 Equivalence relation impli...
eqvreleq 38593 Equality theorem for equiv...
eqvreleqi 38594 Equality theorem for equiv...
eqvreleqd 38595 Equality theorem for equiv...
eqvrelsym 38596 An equivalence relation is...
eqvrelsymb 38597 An equivalence relation is...
eqvreltr 38598 An equivalence relation is...
eqvreltrd 38599 A transitivity relation fo...
eqvreltr4d 38600 A transitivity relation fo...
eqvrelref 38601 An equivalence relation is...
eqvrelth 38602 Basic property of equivale...
eqvrelcl 38603 Elementhood in the field o...
eqvrelthi 38604 Basic property of equivale...
eqvreldisj 38605 Equivalence classes do not...
qsdisjALTV 38606 Elements of a quotient set...
eqvrelqsel 38607 If an element of a quotien...
eqvrelcoss 38608 Two ways to express equiva...
eqvrelcoss3 38609 Two ways to express equiva...
eqvrelcoss2 38610 Two ways to express equiva...
eqvrelcoss4 38611 Two ways to express equiva...
dfcoeleqvrels 38612 Alternate definition of th...
dfcoeleqvrel 38613 Alternate definition of th...
brredunds 38617 Binary relation on the cla...
brredundsredund 38618 For sets, binary relation ...
redundss3 38619 Implication of redundancy ...
redundeq1 38620 Equivalence of redundancy ...
redundpim3 38621 Implication of redundancy ...
redundpbi1 38622 Equivalence of redundancy ...
refrelsredund4 38623 The naive version of the c...
refrelsredund2 38624 The naive version of the c...
refrelsredund3 38625 The naive version of the c...
refrelredund4 38626 The naive version of the d...
refrelredund2 38627 The naive version of the d...
refrelredund3 38628 The naive version of the d...
dmqseq 38631 Equality theorem for domai...
dmqseqi 38632 Equality theorem for domai...
dmqseqd 38633 Equality theorem for domai...
dmqseqeq1 38634 Equality theorem for domai...
dmqseqeq1i 38635 Equality theorem for domai...
dmqseqeq1d 38636 Equality theorem for domai...
brdmqss 38637 The domain quotient binary...
brdmqssqs 38638 If ` A ` and ` R ` are set...
n0eldmqs 38639 The empty set is not an el...
qseq 38640 The quotient set equal to ...
n0eldmqseq 38641 The empty set is not an el...
n0elim 38642 Implication of that the em...
n0el3 38643 Two ways of expressing tha...
cnvepresdmqss 38644 The domain quotient binary...
cnvepresdmqs 38645 The domain quotient predic...
unidmqs 38646 The range of a relation is...
unidmqseq 38647 The union of the domain qu...
dmqseqim 38648 If the domain quotient of ...
dmqseqim2 38649 Lemma for ~ erimeq2 . (Co...
releldmqs 38650 Elementhood in the domain ...
eldmqs1cossres 38651 Elementhood in the domain ...
releldmqscoss 38652 Elementhood in the domain ...
dmqscoelseq 38653 Two ways to express the eq...
dmqs1cosscnvepreseq 38654 Two ways to express the eq...
brers 38659 Binary equivalence relatio...
dferALTV2 38660 Equivalence relation with ...
erALTVeq1 38661 Equality theorem for equiv...
erALTVeq1i 38662 Equality theorem for equiv...
erALTVeq1d 38663 Equality theorem for equiv...
dfcomember 38664 Alternate definition of th...
dfcomember2 38665 Alternate definition of th...
dfcomember3 38666 Alternate definition of th...
eqvreldmqs 38667 Two ways to express comemb...
eqvreldmqs2 38668 Two ways to express comemb...
brerser 38669 Binary equivalence relatio...
erimeq2 38670 Equivalence relation on it...
erimeq 38671 Equivalence relation on it...
dffunsALTV 38675 Alternate definition of th...
dffunsALTV2 38676 Alternate definition of th...
dffunsALTV3 38677 Alternate definition of th...
dffunsALTV4 38678 Alternate definition of th...
dffunsALTV5 38679 Alternate definition of th...
dffunALTV2 38680 Alternate definition of th...
dffunALTV3 38681 Alternate definition of th...
dffunALTV4 38682 Alternate definition of th...
dffunALTV5 38683 Alternate definition of th...
elfunsALTV 38684 Elementhood in the class o...
elfunsALTV2 38685 Elementhood in the class o...
elfunsALTV3 38686 Elementhood in the class o...
elfunsALTV4 38687 Elementhood in the class o...
elfunsALTV5 38688 Elementhood in the class o...
elfunsALTVfunALTV 38689 The element of the class o...
funALTVfun 38690 Our definition of the func...
funALTVss 38691 Subclass theorem for funct...
funALTVeq 38692 Equality theorem for funct...
funALTVeqi 38693 Equality inference for the...
funALTVeqd 38694 Equality deduction for the...
dfdisjs 38700 Alternate definition of th...
dfdisjs2 38701 Alternate definition of th...
dfdisjs3 38702 Alternate definition of th...
dfdisjs4 38703 Alternate definition of th...
dfdisjs5 38704 Alternate definition of th...
dfdisjALTV 38705 Alternate definition of th...
dfdisjALTV2 38706 Alternate definition of th...
dfdisjALTV3 38707 Alternate definition of th...
dfdisjALTV4 38708 Alternate definition of th...
dfdisjALTV5 38709 Alternate definition of th...
dfeldisj2 38710 Alternate definition of th...
dfeldisj3 38711 Alternate definition of th...
dfeldisj4 38712 Alternate definition of th...
dfeldisj5 38713 Alternate definition of th...
eldisjs 38714 Elementhood in the class o...
eldisjs2 38715 Elementhood in the class o...
eldisjs3 38716 Elementhood in the class o...
eldisjs4 38717 Elementhood in the class o...
eldisjs5 38718 Elementhood in the class o...
eldisjsdisj 38719 The element of the class o...
eleldisjs 38720 Elementhood in the disjoin...
eleldisjseldisj 38721 The element of the disjoin...
disjrel 38722 Disjoint relation is a rel...
disjss 38723 Subclass theorem for disjo...
disjssi 38724 Subclass theorem for disjo...
disjssd 38725 Subclass theorem for disjo...
disjeq 38726 Equality theorem for disjo...
disjeqi 38727 Equality theorem for disjo...
disjeqd 38728 Equality theorem for disjo...
disjdmqseqeq1 38729 Lemma for the equality the...
eldisjss 38730 Subclass theorem for disjo...
eldisjssi 38731 Subclass theorem for disjo...
eldisjssd 38732 Subclass theorem for disjo...
eldisjeq 38733 Equality theorem for disjo...
eldisjeqi 38734 Equality theorem for disjo...
eldisjeqd 38735 Equality theorem for disjo...
disjres 38736 Disjoint restriction. (Co...
eldisjn0elb 38737 Two forms of disjoint elem...
disjxrn 38738 Two ways of saying that a ...
disjxrnres5 38739 Disjoint range Cartesian p...
disjorimxrn 38740 Disjointness condition for...
disjimxrn 38741 Disjointness condition for...
disjimres 38742 Disjointness condition for...
disjimin 38743 Disjointness condition for...
disjiminres 38744 Disjointness condition for...
disjimxrnres 38745 Disjointness condition for...
disjALTV0 38746 The null class is disjoint...
disjALTVid 38747 The class of identity rela...
disjALTVidres 38748 The class of identity rela...
disjALTVinidres 38749 The intersection with rest...
disjALTVxrnidres 38750 The class of range Cartesi...
disjsuc 38751 Disjoint range Cartesian p...
dfantisymrel4 38753 Alternate definition of th...
dfantisymrel5 38754 Alternate definition of th...
antisymrelres 38755 (Contributed by Peter Mazs...
antisymrelressn 38756 (Contributed by Peter Mazs...
dfpart2 38761 Alternate definition of th...
dfmembpart2 38762 Alternate definition of th...
brparts 38763 Binary partitions relation...
brparts2 38764 Binary partitions relation...
brpartspart 38765 Binary partition and the p...
parteq1 38766 Equality theorem for parti...
parteq2 38767 Equality theorem for parti...
parteq12 38768 Equality theorem for parti...
parteq1i 38769 Equality theorem for parti...
parteq1d 38770 Equality theorem for parti...
partsuc2 38771 Property of the partition....
partsuc 38772 Property of the partition....
disjim 38773 The "Divide et Aequivalere...
disjimi 38774 Every disjoint relation ge...
detlem 38775 If a relation is disjoint,...
eldisjim 38776 If the elements of ` A ` a...
eldisjim2 38777 Alternate form of ~ eldisj...
eqvrel0 38778 The null class is an equiv...
det0 38779 The cosets by the null cla...
eqvrelcoss0 38780 The cosets by the null cla...
eqvrelid 38781 The identity relation is a...
eqvrel1cossidres 38782 The cosets by a restricted...
eqvrel1cossinidres 38783 The cosets by an intersect...
eqvrel1cossxrnidres 38784 The cosets by a range Cart...
detid 38785 The cosets by the identity...
eqvrelcossid 38786 The cosets by the identity...
detidres 38787 The cosets by the restrict...
detinidres 38788 The cosets by the intersec...
detxrnidres 38789 The cosets by the range Ca...
disjlem14 38790 Lemma for ~ disjdmqseq , ~...
disjlem17 38791 Lemma for ~ disjdmqseq , ~...
disjlem18 38792 Lemma for ~ disjdmqseq , ~...
disjlem19 38793 Lemma for ~ disjdmqseq , ~...
disjdmqsss 38794 Lemma for ~ disjdmqseq via...
disjdmqscossss 38795 Lemma for ~ disjdmqseq via...
disjdmqs 38796 If a relation is disjoint,...
disjdmqseq 38797 If a relation is disjoint,...
eldisjn0el 38798 Special case of ~ disjdmqs...
partim2 38799 Disjoint relation on its n...
partim 38800 Partition implies equivale...
partimeq 38801 Partition implies that the...
eldisjlem19 38802 Special case of ~ disjlem1...
membpartlem19 38803 Together with ~ disjlem19 ...
petlem 38804 If you can prove that the ...
petlemi 38805 If you can prove disjointn...
pet02 38806 Class ` A ` is a partition...
pet0 38807 Class ` A ` is a partition...
petid2 38808 Class ` A ` is a partition...
petid 38809 A class is a partition by ...
petidres2 38810 Class ` A ` is a partition...
petidres 38811 A class is a partition by ...
petinidres2 38812 Class ` A ` is a partition...
petinidres 38813 A class is a partition by ...
petxrnidres2 38814 Class ` A ` is a partition...
petxrnidres 38815 A class is a partition by ...
eqvreldisj1 38816 The elements of the quotie...
eqvreldisj2 38817 The elements of the quotie...
eqvreldisj3 38818 The elements of the quotie...
eqvreldisj4 38819 Intersection with the conv...
eqvreldisj5 38820 Range Cartesian product wi...
eqvrelqseqdisj2 38821 Implication of ~ eqvreldis...
fences3 38822 Implication of ~ eqvrelqse...
eqvrelqseqdisj3 38823 Implication of ~ eqvreldis...
eqvrelqseqdisj4 38824 Lemma for ~ petincnvepres2...
eqvrelqseqdisj5 38825 Lemma for the Partition-Eq...
mainer 38826 The Main Theorem of Equiva...
partimcomember 38827 Partition with general ` R...
mpet3 38828 Member Partition-Equivalen...
cpet2 38829 The conventional form of t...
cpet 38830 The conventional form of M...
mpet 38831 Member Partition-Equivalen...
mpet2 38832 Member Partition-Equivalen...
mpets2 38833 Member Partition-Equivalen...
mpets 38834 Member Partition-Equivalen...
mainpart 38835 Partition with general ` R...
fences 38836 The Theorem of Fences by E...
fences2 38837 The Theorem of Fences by E...
mainer2 38838 The Main Theorem of Equiva...
mainerim 38839 Every equivalence relation...
petincnvepres2 38840 A partition-equivalence th...
petincnvepres 38841 The shortest form of a par...
pet2 38842 Partition-Equivalence Theo...
pet 38843 Partition-Equivalence Theo...
pets 38844 Partition-Equivalence Theo...
dmqsblocks 38845 If the ~ pet span ` ( R |X...
prtlem60 38846 Lemma for ~ prter3 . (Con...
bicomdd 38847 Commute two sides of a bic...
jca2r 38848 Inference conjoining the c...
jca3 38849 Inference conjoining the c...
prtlem70 38850 Lemma for ~ prter3 : a rea...
ibdr 38851 Reverse of ~ ibd . (Contr...
prtlem100 38852 Lemma for ~ prter3 . (Con...
prtlem5 38853 Lemma for ~ prter1 , ~ prt...
prtlem80 38854 Lemma for ~ prter2 . (Con...
brabsb2 38855 A closed form of ~ brabsb ...
eqbrrdv2 38856 Other version of ~ eqbrrdi...
prtlem9 38857 Lemma for ~ prter3 . (Con...
prtlem10 38858 Lemma for ~ prter3 . (Con...
prtlem11 38859 Lemma for ~ prter2 . (Con...
prtlem12 38860 Lemma for ~ prtex and ~ pr...
prtlem13 38861 Lemma for ~ prter1 , ~ prt...
prtlem16 38862 Lemma for ~ prtex , ~ prte...
prtlem400 38863 Lemma for ~ prter2 and als...
erprt 38866 The quotient set of an equ...
prtlem14 38867 Lemma for ~ prter1 , ~ prt...
prtlem15 38868 Lemma for ~ prter1 and ~ p...
prtlem17 38869 Lemma for ~ prter2 . (Con...
prtlem18 38870 Lemma for ~ prter2 . (Con...
prtlem19 38871 Lemma for ~ prter2 . (Con...
prter1 38872 Every partition generates ...
prtex 38873 The equivalence relation g...
prter2 38874 The quotient set of the eq...
prter3 38875 For every partition there ...
axc5 38886 This theorem repeats ~ sp ...
ax4fromc4 38887 Rederivation of Axiom ~ ax...
ax10fromc7 38888 Rederivation of Axiom ~ ax...
ax6fromc10 38889 Rederivation of Axiom ~ ax...
hba1-o 38890 The setvar ` x ` is not fr...
axc4i-o 38891 Inference version of ~ ax-...
equid1 38892 Proof of ~ equid from our ...
equcomi1 38893 Proof of ~ equcomi from ~ ...
aecom-o 38894 Commutation law for identi...
aecoms-o 38895 A commutation rule for ide...
hbae-o 38896 All variables are effectiv...
dral1-o 38897 Formula-building lemma for...
ax12fromc15 38898 Rederivation of Axiom ~ ax...
ax13fromc9 38899 Derive ~ ax-13 from ~ ax-c...
ax5ALT 38900 Axiom to quantify a variab...
sps-o 38901 Generalization of antecede...
hbequid 38902 Bound-variable hypothesis ...
nfequid-o 38903 Bound-variable hypothesis ...
axc5c7 38904 Proof of a single axiom th...
axc5c7toc5 38905 Rederivation of ~ ax-c5 fr...
axc5c7toc7 38906 Rederivation of ~ ax-c7 fr...
axc711 38907 Proof of a single axiom th...
nfa1-o 38908 ` x ` is not free in ` A. ...
axc711toc7 38909 Rederivation of ~ ax-c7 fr...
axc711to11 38910 Rederivation of ~ ax-11 fr...
axc5c711 38911 Proof of a single axiom th...
axc5c711toc5 38912 Rederivation of ~ ax-c5 fr...
axc5c711toc7 38913 Rederivation of ~ ax-c7 fr...
axc5c711to11 38914 Rederivation of ~ ax-11 fr...
equidqe 38915 ~ equid with existential q...
axc5sp1 38916 A special case of ~ ax-c5 ...
equidq 38917 ~ equid with universal qua...
equid1ALT 38918 Alternate proof of ~ equid...
axc11nfromc11 38919 Rederivation of ~ ax-c11n ...
naecoms-o 38920 A commutation rule for dis...
hbnae-o 38921 All variables are effectiv...
dvelimf-o 38922 Proof of ~ dvelimh that us...
dral2-o 38923 Formula-building lemma for...
aev-o 38924 A "distinctor elimination"...
ax5eq 38925 Theorem to add distinct qu...
dveeq2-o 38926 Quantifier introduction wh...
axc16g-o 38927 A generalization of Axiom ...
dveeq1-o 38928 Quantifier introduction wh...
dveeq1-o16 38929 Version of ~ dveeq1 using ...
ax5el 38930 Theorem to add distinct qu...
axc11n-16 38931 This theorem shows that, g...
dveel2ALT 38932 Alternate proof of ~ dveel...
ax12f 38933 Basis step for constructin...
ax12eq 38934 Basis step for constructin...
ax12el 38935 Basis step for constructin...
ax12indn 38936 Induction step for constru...
ax12indi 38937 Induction step for constru...
ax12indalem 38938 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 38939 Alternate proof of ~ ax12i...
ax12inda2 38940 Induction step for constru...
ax12inda 38941 Induction step for constru...
ax12v2-o 38942 Rederivation of ~ ax-c15 f...
ax12a2-o 38943 Derive ~ ax-c15 from a hyp...
axc11-o 38944 Show that ~ ax-c11 can be ...
fsumshftd 38945 Index shift of a finite su...
riotaclbgBAD 38947 Closure of restricted iota...
riotaclbBAD 38948 Closure of restricted iota...
riotasvd 38949 Deduction version of ~ rio...
riotasv2d 38950 Value of description binde...
riotasv2s 38951 The value of description b...
riotasv 38952 Value of description binde...
riotasv3d 38953 A property ` ch ` holding ...
elimhyps 38954 A version of ~ elimhyp usi...
dedths 38955 A version of weak deductio...
renegclALT 38956 Closure law for negative o...
elimhyps2 38957 Generalization of ~ elimhy...
dedths2 38958 Generalization of ~ dedths...
nfcxfrdf 38959 A utility lemma to transfe...
nfded 38960 A deduction theorem that c...
nfded2 38961 A deduction theorem that c...
nfunidALT2 38962 Deduction version of ~ nfu...
nfunidALT 38963 Deduction version of ~ nfu...
nfopdALT 38964 Deduction version of bound...
cnaddcom 38965 Recover the commutative la...
toycom 38966 Show the commutative law f...
lshpset 38971 The set of all hyperplanes...
islshp 38972 The predicate "is a hyperp...
islshpsm 38973 Hyperplane properties expr...
lshplss 38974 A hyperplane is a subspace...
lshpne 38975 A hyperplane is not equal ...
lshpnel 38976 A hyperplane's generating ...
lshpnelb 38977 The subspace sum of a hype...
lshpnel2N 38978 Condition that determines ...
lshpne0 38979 The member of the span in ...
lshpdisj 38980 A hyperplane and the span ...
lshpcmp 38981 If two hyperplanes are com...
lshpinN 38982 The intersection of two di...
lsatset 38983 The set of all 1-dim subsp...
islsat 38984 The predicate "is a 1-dim ...
lsatlspsn2 38985 The span of a nonzero sing...
lsatlspsn 38986 The span of a nonzero sing...
islsati 38987 A 1-dim subspace (atom) (o...
lsateln0 38988 A 1-dim subspace (atom) (o...
lsatlss 38989 The set of 1-dim subspaces...
lsatlssel 38990 An atom is a subspace. (C...
lsatssv 38991 An atom is a set of vector...
lsatn0 38992 A 1-dim subspace (atom) of...
lsatspn0 38993 The span of a vector is an...
lsator0sp 38994 The span of a vector is ei...
lsatssn0 38995 A subspace (or any class) ...
lsatcmp 38996 If two atoms are comparabl...
lsatcmp2 38997 If an atom is included in ...
lsatel 38998 A nonzero vector in an ato...
lsatelbN 38999 A nonzero vector in an ato...
lsat2el 39000 Two atoms sharing a nonzer...
lsmsat 39001 Convert comparison of atom...
lsatfixedN 39002 Show equality with the spa...
lsmsatcv 39003 Subspace sum has the cover...
lssatomic 39004 The lattice of subspaces i...
lssats 39005 The lattice of subspaces i...
lpssat 39006 Two subspaces in a proper ...
lrelat 39007 Subspaces are relatively a...
lssatle 39008 The ordering of two subspa...
lssat 39009 Two subspaces in a proper ...
islshpat 39010 Hyperplane properties expr...
lcvfbr 39013 The covers relation for a ...
lcvbr 39014 The covers relation for a ...
lcvbr2 39015 The covers relation for a ...
lcvbr3 39016 The covers relation for a ...
lcvpss 39017 The covers relation implie...
lcvnbtwn 39018 The covers relation implie...
lcvntr 39019 The covers relation is not...
lcvnbtwn2 39020 The covers relation implie...
lcvnbtwn3 39021 The covers relation implie...
lsmcv2 39022 Subspace sum has the cover...
lcvat 39023 If a subspace covers anoth...
lsatcv0 39024 An atom covers the zero su...
lsatcveq0 39025 A subspace covered by an a...
lsat0cv 39026 A subspace is an atom iff ...
lcvexchlem1 39027 Lemma for ~ lcvexch . (Co...
lcvexchlem2 39028 Lemma for ~ lcvexch . (Co...
lcvexchlem3 39029 Lemma for ~ lcvexch . (Co...
lcvexchlem4 39030 Lemma for ~ lcvexch . (Co...
lcvexchlem5 39031 Lemma for ~ lcvexch . (Co...
lcvexch 39032 Subspaces satisfy the exch...
lcvp 39033 Covering property of Defin...
lcv1 39034 Covering property of a sub...
lcv2 39035 Covering property of a sub...
lsatexch 39036 The atom exchange property...
lsatnle 39037 The meet of a subspace and...
lsatnem0 39038 The meet of distinct atoms...
lsatexch1 39039 The atom exch1ange propert...
lsatcv0eq 39040 If the sum of two atoms co...
lsatcv1 39041 Two atoms covering the zer...
lsatcvatlem 39042 Lemma for ~ lsatcvat . (C...
lsatcvat 39043 A nonzero subspace less th...
lsatcvat2 39044 A subspace covered by the ...
lsatcvat3 39045 A condition implying that ...
islshpcv 39046 Hyperplane properties expr...
l1cvpat 39047 A subspace covered by the ...
l1cvat 39048 Create an atom under an el...
lshpat 39049 Create an atom under a hyp...
lflset 39052 The set of linear function...
islfl 39053 The predicate "is a linear...
lfli 39054 Property of a linear funct...
islfld 39055 Properties that determine ...
lflf 39056 A linear functional is a f...
lflcl 39057 A linear functional value ...
lfl0 39058 A linear functional is zer...
lfladd 39059 Property of a linear funct...
lflsub 39060 Property of a linear funct...
lflmul 39061 Property of a linear funct...
lfl0f 39062 The zero function is a fun...
lfl1 39063 A nonzero functional has a...
lfladdcl 39064 Closure of addition of two...
lfladdcom 39065 Commutativity of functiona...
lfladdass 39066 Associativity of functiona...
lfladd0l 39067 Functional addition with t...
lflnegcl 39068 Closure of the negative of...
lflnegl 39069 A functional plus its nega...
lflvscl 39070 Closure of a scalar produc...
lflvsdi1 39071 Distributive law for (righ...
lflvsdi2 39072 Reverse distributive law f...
lflvsdi2a 39073 Reverse distributive law f...
lflvsass 39074 Associative law for (right...
lfl0sc 39075 The (right vector space) s...
lflsc0N 39076 The scalar product with th...
lfl1sc 39077 The (right vector space) s...
lkrfval 39080 The kernel of a functional...
lkrval 39081 Value of the kernel of a f...
ellkr 39082 Membership in the kernel o...
lkrval2 39083 Value of the kernel of a f...
ellkr2 39084 Membership in the kernel o...
lkrcl 39085 A member of the kernel of ...
lkrf0 39086 The value of a functional ...
lkr0f 39087 The kernel of the zero fun...
lkrlss 39088 The kernel of a linear fun...
lkrssv 39089 The kernel of a linear fun...
lkrsc 39090 The kernel of a nonzero sc...
lkrscss 39091 The kernel of a scalar pro...
eqlkr 39092 Two functionals with the s...
eqlkr2 39093 Two functionals with the s...
eqlkr3 39094 Two functionals with the s...
lkrlsp 39095 The subspace sum of a kern...
lkrlsp2 39096 The subspace sum of a kern...
lkrlsp3 39097 The subspace sum of a kern...
lkrshp 39098 The kernel of a nonzero fu...
lkrshp3 39099 The kernels of nonzero fun...
lkrshpor 39100 The kernel of a functional...
lkrshp4 39101 A kernel is a hyperplane i...
lshpsmreu 39102 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 39103 Lemma for ~ lshpkrex . Th...
lshpkrlem2 39104 Lemma for ~ lshpkrex . Th...
lshpkrlem3 39105 Lemma for ~ lshpkrex . De...
lshpkrlem4 39106 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 39107 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 39108 Lemma for ~ lshpkrex . Sh...
lshpkrcl 39109 The set ` G ` defined by h...
lshpkr 39110 The kernel of functional `...
lshpkrex 39111 There exists a functional ...
lshpset2N 39112 The set of all hyperplanes...
islshpkrN 39113 The predicate "is a hyperp...
lfl1dim 39114 Equivalent expressions for...
lfl1dim2N 39115 Equivalent expressions for...
ldualset 39118 Define the (left) dual of ...
ldualvbase 39119 The vectors of a dual spac...
ldualelvbase 39120 Utility theorem for conver...
ldualfvadd 39121 Vector addition in the dua...
ldualvadd 39122 Vector addition in the dua...
ldualvaddcl 39123 The value of vector additi...
ldualvaddval 39124 The value of the value of ...
ldualsca 39125 The ring of scalars of the...
ldualsbase 39126 Base set of scalar ring fo...
ldualsaddN 39127 Scalar addition for the du...
ldualsmul 39128 Scalar multiplication for ...
ldualfvs 39129 Scalar product operation f...
ldualvs 39130 Scalar product operation v...
ldualvsval 39131 Value of scalar product op...
ldualvscl 39132 The scalar product operati...
ldualvaddcom 39133 Commutative law for vector...
ldualvsass 39134 Associative law for scalar...
ldualvsass2 39135 Associative law for scalar...
ldualvsdi1 39136 Distributive law for scala...
ldualvsdi2 39137 Reverse distributive law f...
ldualgrplem 39138 Lemma for ~ ldualgrp . (C...
ldualgrp 39139 The dual of a vector space...
ldual0 39140 The zero scalar of the dua...
ldual1 39141 The unit scalar of the dua...
ldualneg 39142 The negative of a scalar o...
ldual0v 39143 The zero vector of the dua...
ldual0vcl 39144 The dual zero vector is a ...
lduallmodlem 39145 Lemma for ~ lduallmod . (...
lduallmod 39146 The dual of a left module ...
lduallvec 39147 The dual of a left vector ...
ldualvsub 39148 The value of vector subtra...
ldualvsubcl 39149 Closure of vector subtract...
ldualvsubval 39150 The value of the value of ...
ldualssvscl 39151 Closure of scalar product ...
ldualssvsubcl 39152 Closure of vector subtract...
ldual0vs 39153 Scalar zero times a functi...
lkr0f2 39154 The kernel of the zero fun...
lduallkr3 39155 The kernels of nonzero fun...
lkrpssN 39156 Proper subset relation bet...
lkrin 39157 Intersection of the kernel...
eqlkr4 39158 Two functionals with the s...
ldual1dim 39159 Equivalent expressions for...
ldualkrsc 39160 The kernel of a nonzero sc...
lkrss 39161 The kernel of a scalar pro...
lkrss2N 39162 Two functionals with kerne...
lkreqN 39163 Proportional functionals h...
lkrlspeqN 39164 Condition for colinear fun...
isopos 39173 The predicate "is an ortho...
opposet 39174 Every orthoposet is a pose...
oposlem 39175 Lemma for orthoposet prope...
op01dm 39176 Conditions necessary for z...
op0cl 39177 An orthoposet has a zero e...
op1cl 39178 An orthoposet has a unity ...
op0le 39179 Orthoposet zero is less th...
ople0 39180 An element less than or eq...
opnlen0 39181 An element not less than a...
lub0N 39182 The least upper bound of t...
opltn0 39183 A lattice element greater ...
ople1 39184 Any element is less than t...
op1le 39185 If the orthoposet unity is...
glb0N 39186 The greatest lower bound o...
opoccl 39187 Closure of orthocomplement...
opococ 39188 Double negative law for or...
opcon3b 39189 Contraposition law for ort...
opcon2b 39190 Orthocomplement contraposi...
opcon1b 39191 Orthocomplement contraposi...
oplecon3 39192 Contraposition law for ort...
oplecon3b 39193 Contraposition law for ort...
oplecon1b 39194 Contraposition law for str...
opoc1 39195 Orthocomplement of orthopo...
opoc0 39196 Orthocomplement of orthopo...
opltcon3b 39197 Contraposition law for str...
opltcon1b 39198 Contraposition law for str...
opltcon2b 39199 Contraposition law for str...
opexmid 39200 Law of excluded middle for...
opnoncon 39201 Law of contradiction for o...
riotaocN 39202 The orthocomplement of the...
cmtfvalN 39203 Value of commutes relation...
cmtvalN 39204 Equivalence for commutes r...
isolat 39205 The predicate "is an ortho...
ollat 39206 An ortholattice is a latti...
olop 39207 An ortholattice is an orth...
olposN 39208 An ortholattice is a poset...
isolatiN 39209 Properties that determine ...
oldmm1 39210 De Morgan's law for meet i...
oldmm2 39211 De Morgan's law for meet i...
oldmm3N 39212 De Morgan's law for meet i...
oldmm4 39213 De Morgan's law for meet i...
oldmj1 39214 De Morgan's law for join i...
oldmj2 39215 De Morgan's law for join i...
oldmj3 39216 De Morgan's law for join i...
oldmj4 39217 De Morgan's law for join i...
olj01 39218 An ortholattice element jo...
olj02 39219 An ortholattice element jo...
olm11 39220 The meet of an ortholattic...
olm12 39221 The meet of an ortholattic...
latmassOLD 39222 Ortholattice meet is assoc...
latm12 39223 A rearrangement of lattice...
latm32 39224 A rearrangement of lattice...
latmrot 39225 Rotate lattice meet of 3 c...
latm4 39226 Rearrangement of lattice m...
latmmdiN 39227 Lattice meet distributes o...
latmmdir 39228 Lattice meet distributes o...
olm01 39229 Meet with lattice zero is ...
olm02 39230 Meet with lattice zero is ...
isoml 39231 The predicate "is an ortho...
isomliN 39232 Properties that determine ...
omlol 39233 An orthomodular lattice is...
omlop 39234 An orthomodular lattice is...
omllat 39235 An orthomodular lattice is...
omllaw 39236 The orthomodular law. (Co...
omllaw2N 39237 Variation of orthomodular ...
omllaw3 39238 Orthomodular law equivalen...
omllaw4 39239 Orthomodular law equivalen...
omllaw5N 39240 The orthomodular law. Rem...
cmtcomlemN 39241 Lemma for ~ cmtcomN . ( ~...
cmtcomN 39242 Commutation is symmetric. ...
cmt2N 39243 Commutation with orthocomp...
cmt3N 39244 Commutation with orthocomp...
cmt4N 39245 Commutation with orthocomp...
cmtbr2N 39246 Alternate definition of th...
cmtbr3N 39247 Alternate definition for t...
cmtbr4N 39248 Alternate definition for t...
lecmtN 39249 Ordered elements commute. ...
cmtidN 39250 Any element commutes with ...
omlfh1N 39251 Foulis-Holland Theorem, pa...
omlfh3N 39252 Foulis-Holland Theorem, pa...
omlmod1i2N 39253 Analogue of modular law ~ ...
omlspjN 39254 Contraction of a Sasaki pr...
cvrfval 39261 Value of covers relation "...
cvrval 39262 Binary relation expressing...
cvrlt 39263 The covers relation implie...
cvrnbtwn 39264 There is no element betwee...
ncvr1 39265 No element covers the latt...
cvrletrN 39266 Property of an element abo...
cvrval2 39267 Binary relation expressing...
cvrnbtwn2 39268 The covers relation implie...
cvrnbtwn3 39269 The covers relation implie...
cvrcon3b 39270 Contraposition law for the...
cvrle 39271 The covers relation implie...
cvrnbtwn4 39272 The covers relation implie...
cvrnle 39273 The covers relation implie...
cvrne 39274 The covers relation implie...
cvrnrefN 39275 The covers relation is not...
cvrcmp 39276 If two lattice elements th...
cvrcmp2 39277 If two lattice elements co...
pats 39278 The set of atoms in a pose...
isat 39279 The predicate "is an atom"...
isat2 39280 The predicate "is an atom"...
atcvr0 39281 An atom covers zero. ( ~ ...
atbase 39282 An atom is a member of the...
atssbase 39283 The set of atoms is a subs...
0ltat 39284 An atom is greater than ze...
leatb 39285 A poset element less than ...
leat 39286 A poset element less than ...
leat2 39287 A nonzero poset element le...
leat3 39288 A poset element less than ...
meetat 39289 The meet of any element wi...
meetat2 39290 The meet of any element wi...
isatl 39292 The predicate "is an atomi...
atllat 39293 An atomic lattice is a lat...
atlpos 39294 An atomic lattice is a pos...
atl0dm 39295 Condition necessary for ze...
atl0cl 39296 An atomic lattice has a ze...
atl0le 39297 Orthoposet zero is less th...
atlle0 39298 An element less than or eq...
atlltn0 39299 A lattice element greater ...
isat3 39300 The predicate "is an atom"...
atn0 39301 An atom is not zero. ( ~ ...
atnle0 39302 An atom is not less than o...
atlen0 39303 A lattice element is nonze...
atcmp 39304 If two atoms are comparabl...
atncmp 39305 Frequently-used variation ...
atnlt 39306 Two atoms cannot satisfy t...
atcvreq0 39307 An element covered by an a...
atncvrN 39308 Two atoms cannot satisfy t...
atlex 39309 Every nonzero element of a...
atnle 39310 Two ways of expressing "an...
atnem0 39311 The meet of distinct atoms...
atlatmstc 39312 An atomic, complete, ortho...
atlatle 39313 The ordering of two Hilber...
atlrelat1 39314 An atomistic lattice with ...
iscvlat 39316 The predicate "is an atomi...
iscvlat2N 39317 The predicate "is an atomi...
cvlatl 39318 An atomic lattice with the...
cvllat 39319 An atomic lattice with the...
cvlposN 39320 An atomic lattice with the...
cvlexch1 39321 An atomic covering lattice...
cvlexch2 39322 An atomic covering lattice...
cvlexchb1 39323 An atomic covering lattice...
cvlexchb2 39324 An atomic covering lattice...
cvlexch3 39325 An atomic covering lattice...
cvlexch4N 39326 An atomic covering lattice...
cvlatexchb1 39327 A version of ~ cvlexchb1 f...
cvlatexchb2 39328 A version of ~ cvlexchb2 f...
cvlatexch1 39329 Atom exchange property. (...
cvlatexch2 39330 Atom exchange property. (...
cvlatexch3 39331 Atom exchange property. (...
cvlcvr1 39332 The covering property. Pr...
cvlcvrp 39333 A Hilbert lattice satisfie...
cvlatcvr1 39334 An atom is covered by its ...
cvlatcvr2 39335 An atom is covered by its ...
cvlsupr2 39336 Two equivalent ways of exp...
cvlsupr3 39337 Two equivalent ways of exp...
cvlsupr4 39338 Consequence of superpositi...
cvlsupr5 39339 Consequence of superpositi...
cvlsupr6 39340 Consequence of superpositi...
cvlsupr7 39341 Consequence of superpositi...
cvlsupr8 39342 Consequence of superpositi...
ishlat1 39345 The predicate "is a Hilber...
ishlat2 39346 The predicate "is a Hilber...
ishlat3N 39347 The predicate "is a Hilber...
ishlatiN 39348 Properties that determine ...
hlomcmcv 39349 A Hilbert lattice is ortho...
hloml 39350 A Hilbert lattice is ortho...
hlclat 39351 A Hilbert lattice is compl...
hlcvl 39352 A Hilbert lattice is an at...
hlatl 39353 A Hilbert lattice is atomi...
hlol 39354 A Hilbert lattice is an or...
hlop 39355 A Hilbert lattice is an or...
hllat 39356 A Hilbert lattice is a lat...
hllatd 39357 Deduction form of ~ hllat ...
hlomcmat 39358 A Hilbert lattice is ortho...
hlpos 39359 A Hilbert lattice is a pos...
hlatjcl 39360 Closure of join operation....
hlatjcom 39361 Commutatitivity of join op...
hlatjidm 39362 Idempotence of join operat...
hlatjass 39363 Lattice join is associativ...
hlatj12 39364 Swap 1st and 2nd members o...
hlatj32 39365 Swap 2nd and 3rd members o...
hlatjrot 39366 Rotate lattice join of 3 c...
hlatj4 39367 Rearrangement of lattice j...
hlatlej1 39368 A join's first argument is...
hlatlej2 39369 A join's second argument i...
glbconN 39370 De Morgan's law for GLB an...
glbconNOLD 39371 Obsolete version of ~ glbc...
glbconxN 39372 De Morgan's law for GLB an...
atnlej1 39373 If an atom is not less tha...
atnlej2 39374 If an atom is not less tha...
hlsuprexch 39375 A Hilbert lattice has the ...
hlexch1 39376 A Hilbert lattice has the ...
hlexch2 39377 A Hilbert lattice has the ...
hlexchb1 39378 A Hilbert lattice has the ...
hlexchb2 39379 A Hilbert lattice has the ...
hlsupr 39380 A Hilbert lattice has the ...
hlsupr2 39381 A Hilbert lattice has the ...
hlhgt4 39382 A Hilbert lattice has a he...
hlhgt2 39383 A Hilbert lattice has a he...
hl0lt1N 39384 Lattice 0 is less than lat...
hlexch3 39385 A Hilbert lattice has the ...
hlexch4N 39386 A Hilbert lattice has the ...
hlatexchb1 39387 A version of ~ hlexchb1 fo...
hlatexchb2 39388 A version of ~ hlexchb2 fo...
hlatexch1 39389 Atom exchange property. (...
hlatexch2 39390 Atom exchange property. (...
hlatmstcOLDN 39391 An atomic, complete, ortho...
hlatle 39392 The ordering of two Hilber...
hlateq 39393 The equality of two Hilber...
hlrelat1 39394 An atomistic lattice with ...
hlrelat5N 39395 An atomistic lattice with ...
hlrelat 39396 A Hilbert lattice is relat...
hlrelat2 39397 A consequence of relative ...
exatleN 39398 A condition for an atom to...
hl2at 39399 A Hilbert lattice has at l...
atex 39400 At least one atom exists. ...
intnatN 39401 If the intersection with a...
2llnne2N 39402 Condition implying that tw...
2llnneN 39403 Condition implying that tw...
cvr1 39404 A Hilbert lattice has the ...
cvr2N 39405 Less-than and covers equiv...
hlrelat3 39406 The Hilbert lattice is rel...
cvrval3 39407 Binary relation expressing...
cvrval4N 39408 Binary relation expressing...
cvrval5 39409 Binary relation expressing...
cvrp 39410 A Hilbert lattice satisfie...
atcvr1 39411 An atom is covered by its ...
atcvr2 39412 An atom is covered by its ...
cvrexchlem 39413 Lemma for ~ cvrexch . ( ~...
cvrexch 39414 A Hilbert lattice satisfie...
cvratlem 39415 Lemma for ~ cvrat . ( ~ a...
cvrat 39416 A nonzero Hilbert lattice ...
ltltncvr 39417 A chained strong ordering ...
ltcvrntr 39418 Non-transitive condition f...
cvrntr 39419 The covers relation is not...
atcvr0eq 39420 The covers relation is not...
lnnat 39421 A line (the join of two di...
atcvrj0 39422 Two atoms covering the zer...
cvrat2 39423 A Hilbert lattice element ...
atcvrneN 39424 Inequality derived from at...
atcvrj1 39425 Condition for an atom to b...
atcvrj2b 39426 Condition for an atom to b...
atcvrj2 39427 Condition for an atom to b...
atleneN 39428 Inequality derived from at...
atltcvr 39429 An equivalence of less-tha...
atle 39430 Any nonzero element has an...
atlt 39431 Two atoms are unequal iff ...
atlelt 39432 Transfer less-than relatio...
2atlt 39433 Given an atom less than an...
atexchcvrN 39434 Atom exchange property. V...
atexchltN 39435 Atom exchange property. V...
cvrat3 39436 A condition implying that ...
cvrat4 39437 A condition implying exist...
cvrat42 39438 Commuted version of ~ cvra...
2atjm 39439 The meet of a line (expres...
atbtwn 39440 Property of a 3rd atom ` R...
atbtwnexOLDN 39441 There exists a 3rd atom ` ...
atbtwnex 39442 Given atoms ` P ` in ` X `...
3noncolr2 39443 Two ways to express 3 non-...
3noncolr1N 39444 Two ways to express 3 non-...
hlatcon3 39445 Atom exchange combined wit...
hlatcon2 39446 Atom exchange combined wit...
4noncolr3 39447 A way to express 4 non-col...
4noncolr2 39448 A way to express 4 non-col...
4noncolr1 39449 A way to express 4 non-col...
athgt 39450 A Hilbert lattice, whose h...
3dim0 39451 There exists a 3-dimension...
3dimlem1 39452 Lemma for ~ 3dim1 . (Cont...
3dimlem2 39453 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 39454 Lemma for ~ 3dim3 . (Cont...
3dimlem3 39455 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 39456 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 39457 Lemma for ~ 3dim3 . (Cont...
3dimlem4 39458 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 39459 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 39460 Lemma for ~ 3dim1 . (Cont...
3dim1 39461 Construct a 3-dimensional ...
3dim2 39462 Construct 2 new layers on ...
3dim3 39463 Construct a new layer on t...
2dim 39464 Generate a height-3 elemen...
1dimN 39465 An atom is covered by a he...
1cvrco 39466 The orthocomplement of an ...
1cvratex 39467 There exists an atom less ...
1cvratlt 39468 An atom less than or equal...
1cvrjat 39469 An element covered by the ...
1cvrat 39470 Create an atom under an el...
ps-1 39471 The join of two atoms ` R ...
ps-2 39472 Lattice analogue for the p...
2atjlej 39473 Two atoms are different if...
hlatexch3N 39474 Rearrange join of atoms in...
hlatexch4 39475 Exchange 2 atoms. (Contri...
ps-2b 39476 Variation of projective ge...
3atlem1 39477 Lemma for ~ 3at . (Contri...
3atlem2 39478 Lemma for ~ 3at . (Contri...
3atlem3 39479 Lemma for ~ 3at . (Contri...
3atlem4 39480 Lemma for ~ 3at . (Contri...
3atlem5 39481 Lemma for ~ 3at . (Contri...
3atlem6 39482 Lemma for ~ 3at . (Contri...
3atlem7 39483 Lemma for ~ 3at . (Contri...
3at 39484 Any three non-colinear ato...
llnset 39499 The set of lattice lines i...
islln 39500 The predicate "is a lattic...
islln4 39501 The predicate "is a lattic...
llni 39502 Condition implying a latti...
llnbase 39503 A lattice line is a lattic...
islln3 39504 The predicate "is a lattic...
islln2 39505 The predicate "is a lattic...
llni2 39506 The join of two different ...
llnnleat 39507 An atom cannot majorize a ...
llnneat 39508 A lattice line is not an a...
2atneat 39509 The join of two distinct a...
llnn0 39510 A lattice line is nonzero....
islln2a 39511 The predicate "is a lattic...
llnle 39512 Any element greater than 0...
atcvrlln2 39513 An atom under a line is co...
atcvrlln 39514 An element covering an ato...
llnexatN 39515 Given an atom on a line, t...
llncmp 39516 If two lattice lines are c...
llnnlt 39517 Two lattice lines cannot s...
2llnmat 39518 Two intersecting lines int...
2at0mat0 39519 Special case of ~ 2atmat0 ...
2atmat0 39520 The meet of two unequal li...
2atm 39521 An atom majorized by two d...
ps-2c 39522 Variation of projective ge...
lplnset 39523 The set of lattice planes ...
islpln 39524 The predicate "is a lattic...
islpln4 39525 The predicate "is a lattic...
lplni 39526 Condition implying a latti...
islpln3 39527 The predicate "is a lattic...
lplnbase 39528 A lattice plane is a latti...
islpln5 39529 The predicate "is a lattic...
islpln2 39530 The predicate "is a lattic...
lplni2 39531 The join of 3 different at...
lvolex3N 39532 There is an atom outside o...
llnmlplnN 39533 The intersection of a line...
lplnle 39534 Any element greater than 0...
lplnnle2at 39535 A lattice line (or atom) c...
lplnnleat 39536 A lattice plane cannot maj...
lplnnlelln 39537 A lattice plane is not les...
2atnelpln 39538 The join of two atoms is n...
lplnneat 39539 No lattice plane is an ato...
lplnnelln 39540 No lattice plane is a latt...
lplnn0N 39541 A lattice plane is nonzero...
islpln2a 39542 The predicate "is a lattic...
islpln2ah 39543 The predicate "is a lattic...
lplnriaN 39544 Property of a lattice plan...
lplnribN 39545 Property of a lattice plan...
lplnric 39546 Property of a lattice plan...
lplnri1 39547 Property of a lattice plan...
lplnri2N 39548 Property of a lattice plan...
lplnri3N 39549 Property of a lattice plan...
lplnllnneN 39550 Two lattice lines defined ...
llncvrlpln2 39551 A lattice line under a lat...
llncvrlpln 39552 An element covering a latt...
2lplnmN 39553 If the join of two lattice...
2llnmj 39554 The meet of two lattice li...
2atmat 39555 The meet of two intersecti...
lplncmp 39556 If two lattice planes are ...
lplnexatN 39557 Given a lattice line on a ...
lplnexllnN 39558 Given an atom on a lattice...
lplnnlt 39559 Two lattice planes cannot ...
2llnjaN 39560 The join of two different ...
2llnjN 39561 The join of two different ...
2llnm2N 39562 The meet of two different ...
2llnm3N 39563 Two lattice lines in a lat...
2llnm4 39564 Two lattice lines that maj...
2llnmeqat 39565 An atom equals the interse...
lvolset 39566 The set of 3-dim lattice v...
islvol 39567 The predicate "is a 3-dim ...
islvol4 39568 The predicate "is a 3-dim ...
lvoli 39569 Condition implying a 3-dim...
islvol3 39570 The predicate "is a 3-dim ...
lvoli3 39571 Condition implying a 3-dim...
lvolbase 39572 A 3-dim lattice volume is ...
islvol5 39573 The predicate "is a 3-dim ...
islvol2 39574 The predicate "is a 3-dim ...
lvoli2 39575 The join of 4 different at...
lvolnle3at 39576 A lattice plane (or lattic...
lvolnleat 39577 An atom cannot majorize a ...
lvolnlelln 39578 A lattice line cannot majo...
lvolnlelpln 39579 A lattice plane cannot maj...
3atnelvolN 39580 The join of 3 atoms is not...
2atnelvolN 39581 The join of two atoms is n...
lvolneatN 39582 No lattice volume is an at...
lvolnelln 39583 No lattice volume is a lat...
lvolnelpln 39584 No lattice volume is a lat...
lvoln0N 39585 A lattice volume is nonzer...
islvol2aN 39586 The predicate "is a lattic...
4atlem0a 39587 Lemma for ~ 4at . (Contri...
4atlem0ae 39588 Lemma for ~ 4at . (Contri...
4atlem0be 39589 Lemma for ~ 4at . (Contri...
4atlem3 39590 Lemma for ~ 4at . Break i...
4atlem3a 39591 Lemma for ~ 4at . Break i...
4atlem3b 39592 Lemma for ~ 4at . Break i...
4atlem4a 39593 Lemma for ~ 4at . Frequen...
4atlem4b 39594 Lemma for ~ 4at . Frequen...
4atlem4c 39595 Lemma for ~ 4at . Frequen...
4atlem4d 39596 Lemma for ~ 4at . Frequen...
4atlem9 39597 Lemma for ~ 4at . Substit...
4atlem10a 39598 Lemma for ~ 4at . Substit...
4atlem10b 39599 Lemma for ~ 4at . Substit...
4atlem10 39600 Lemma for ~ 4at . Combine...
4atlem11a 39601 Lemma for ~ 4at . Substit...
4atlem11b 39602 Lemma for ~ 4at . Substit...
4atlem11 39603 Lemma for ~ 4at . Combine...
4atlem12a 39604 Lemma for ~ 4at . Substit...
4atlem12b 39605 Lemma for ~ 4at . Substit...
4atlem12 39606 Lemma for ~ 4at . Combine...
4at 39607 Four atoms determine a lat...
4at2 39608 Four atoms determine a lat...
lplncvrlvol2 39609 A lattice line under a lat...
lplncvrlvol 39610 An element covering a latt...
lvolcmp 39611 If two lattice planes are ...
lvolnltN 39612 Two lattice volumes cannot...
2lplnja 39613 The join of two different ...
2lplnj 39614 The join of two different ...
2lplnm2N 39615 The meet of two different ...
2lplnmj 39616 The meet of two lattice pl...
dalemkehl 39617 Lemma for ~ dath . Freque...
dalemkelat 39618 Lemma for ~ dath . Freque...
dalemkeop 39619 Lemma for ~ dath . Freque...
dalempea 39620 Lemma for ~ dath . Freque...
dalemqea 39621 Lemma for ~ dath . Freque...
dalemrea 39622 Lemma for ~ dath . Freque...
dalemsea 39623 Lemma for ~ dath . Freque...
dalemtea 39624 Lemma for ~ dath . Freque...
dalemuea 39625 Lemma for ~ dath . Freque...
dalemyeo 39626 Lemma for ~ dath . Freque...
dalemzeo 39627 Lemma for ~ dath . Freque...
dalemclpjs 39628 Lemma for ~ dath . Freque...
dalemclqjt 39629 Lemma for ~ dath . Freque...
dalemclrju 39630 Lemma for ~ dath . Freque...
dalem-clpjq 39631 Lemma for ~ dath . Freque...
dalemceb 39632 Lemma for ~ dath . Freque...
dalempeb 39633 Lemma for ~ dath . Freque...
dalemqeb 39634 Lemma for ~ dath . Freque...
dalemreb 39635 Lemma for ~ dath . Freque...
dalemseb 39636 Lemma for ~ dath . Freque...
dalemteb 39637 Lemma for ~ dath . Freque...
dalemueb 39638 Lemma for ~ dath . Freque...
dalempjqeb 39639 Lemma for ~ dath . Freque...
dalemsjteb 39640 Lemma for ~ dath . Freque...
dalemtjueb 39641 Lemma for ~ dath . Freque...
dalemqrprot 39642 Lemma for ~ dath . Freque...
dalemyeb 39643 Lemma for ~ dath . Freque...
dalemcnes 39644 Lemma for ~ dath . Freque...
dalempnes 39645 Lemma for ~ dath . Freque...
dalemqnet 39646 Lemma for ~ dath . Freque...
dalempjsen 39647 Lemma for ~ dath . Freque...
dalemply 39648 Lemma for ~ dath . Freque...
dalemsly 39649 Lemma for ~ dath . Freque...
dalemswapyz 39650 Lemma for ~ dath . Swap t...
dalemrot 39651 Lemma for ~ dath . Rotate...
dalemrotyz 39652 Lemma for ~ dath . Rotate...
dalem1 39653 Lemma for ~ dath . Show t...
dalemcea 39654 Lemma for ~ dath . Freque...
dalem2 39655 Lemma for ~ dath . Show t...
dalemdea 39656 Lemma for ~ dath . Freque...
dalemeea 39657 Lemma for ~ dath . Freque...
dalem3 39658 Lemma for ~ dalemdnee . (...
dalem4 39659 Lemma for ~ dalemdnee . (...
dalemdnee 39660 Lemma for ~ dath . Axis o...
dalem5 39661 Lemma for ~ dath . Atom `...
dalem6 39662 Lemma for ~ dath . Analog...
dalem7 39663 Lemma for ~ dath . Analog...
dalem8 39664 Lemma for ~ dath . Plane ...
dalem-cly 39665 Lemma for ~ dalem9 . Cent...
dalem9 39666 Lemma for ~ dath . Since ...
dalem10 39667 Lemma for ~ dath . Atom `...
dalem11 39668 Lemma for ~ dath . Analog...
dalem12 39669 Lemma for ~ dath . Analog...
dalem13 39670 Lemma for ~ dalem14 . (Co...
dalem14 39671 Lemma for ~ dath . Planes...
dalem15 39672 Lemma for ~ dath . The ax...
dalem16 39673 Lemma for ~ dath . The at...
dalem17 39674 Lemma for ~ dath . When p...
dalem18 39675 Lemma for ~ dath . Show t...
dalem19 39676 Lemma for ~ dath . Show t...
dalemccea 39677 Lemma for ~ dath . Freque...
dalemddea 39678 Lemma for ~ dath . Freque...
dalem-ccly 39679 Lemma for ~ dath . Freque...
dalem-ddly 39680 Lemma for ~ dath . Freque...
dalemccnedd 39681 Lemma for ~ dath . Freque...
dalemclccjdd 39682 Lemma for ~ dath . Freque...
dalemcceb 39683 Lemma for ~ dath . Freque...
dalemswapyzps 39684 Lemma for ~ dath . Swap t...
dalemrotps 39685 Lemma for ~ dath . Rotate...
dalemcjden 39686 Lemma for ~ dath . Show t...
dalem20 39687 Lemma for ~ dath . Show t...
dalem21 39688 Lemma for ~ dath . Show t...
dalem22 39689 Lemma for ~ dath . Show t...
dalem23 39690 Lemma for ~ dath . Show t...
dalem24 39691 Lemma for ~ dath . Show t...
dalem25 39692 Lemma for ~ dath . Show t...
dalem27 39693 Lemma for ~ dath . Show t...
dalem28 39694 Lemma for ~ dath . Lemma ...
dalem29 39695 Lemma for ~ dath . Analog...
dalem30 39696 Lemma for ~ dath . Analog...
dalem31N 39697 Lemma for ~ dath . Analog...
dalem32 39698 Lemma for ~ dath . Analog...
dalem33 39699 Lemma for ~ dath . Analog...
dalem34 39700 Lemma for ~ dath . Analog...
dalem35 39701 Lemma for ~ dath . Analog...
dalem36 39702 Lemma for ~ dath . Analog...
dalem37 39703 Lemma for ~ dath . Analog...
dalem38 39704 Lemma for ~ dath . Plane ...
dalem39 39705 Lemma for ~ dath . Auxili...
dalem40 39706 Lemma for ~ dath . Analog...
dalem41 39707 Lemma for ~ dath . (Contr...
dalem42 39708 Lemma for ~ dath . Auxili...
dalem43 39709 Lemma for ~ dath . Planes...
dalem44 39710 Lemma for ~ dath . Dummy ...
dalem45 39711 Lemma for ~ dath . Dummy ...
dalem46 39712 Lemma for ~ dath . Analog...
dalem47 39713 Lemma for ~ dath . Analog...
dalem48 39714 Lemma for ~ dath . Analog...
dalem49 39715 Lemma for ~ dath . Analog...
dalem50 39716 Lemma for ~ dath . Analog...
dalem51 39717 Lemma for ~ dath . Constr...
dalem52 39718 Lemma for ~ dath . Lines ...
dalem53 39719 Lemma for ~ dath . The au...
dalem54 39720 Lemma for ~ dath . Line `...
dalem55 39721 Lemma for ~ dath . Lines ...
dalem56 39722 Lemma for ~ dath . Analog...
dalem57 39723 Lemma for ~ dath . Axis o...
dalem58 39724 Lemma for ~ dath . Analog...
dalem59 39725 Lemma for ~ dath . Analog...
dalem60 39726 Lemma for ~ dath . ` B ` i...
dalem61 39727 Lemma for ~ dath . Show t...
dalem62 39728 Lemma for ~ dath . Elimin...
dalem63 39729 Lemma for ~ dath . Combin...
dath 39730 Desargues's theorem of pro...
dath2 39731 Version of Desargues's the...
lineset 39732 The set of lines in a Hilb...
isline 39733 The predicate "is a line"....
islinei 39734 Condition implying "is a l...
pointsetN 39735 The set of points in a Hil...
ispointN 39736 The predicate "is a point"...
atpointN 39737 The singleton of an atom i...
psubspset 39738 The set of projective subs...
ispsubsp 39739 The predicate "is a projec...
ispsubsp2 39740 The predicate "is a projec...
psubspi 39741 Property of a projective s...
psubspi2N 39742 Property of a projective s...
0psubN 39743 The empty set is a project...
snatpsubN 39744 The singleton of an atom i...
pointpsubN 39745 A point (singleton of an a...
linepsubN 39746 A line is a projective sub...
atpsubN 39747 The set of all atoms is a ...
psubssat 39748 A projective subspace cons...
psubatN 39749 A member of a projective s...
pmapfval 39750 The projective map of a Hi...
pmapval 39751 Value of the projective ma...
elpmap 39752 Member of a projective map...
pmapssat 39753 The projective map of a Hi...
pmapssbaN 39754 A weakening of ~ pmapssat ...
pmaple 39755 The projective map of a Hi...
pmap11 39756 The projective map of a Hi...
pmapat 39757 The projective map of an a...
elpmapat 39758 Member of the projective m...
pmap0 39759 Value of the projective ma...
pmapeq0 39760 A projective map value is ...
pmap1N 39761 Value of the projective ma...
pmapsub 39762 The projective map of a Hi...
pmapglbx 39763 The projective map of the ...
pmapglb 39764 The projective map of the ...
pmapglb2N 39765 The projective map of the ...
pmapglb2xN 39766 The projective map of the ...
pmapmeet 39767 The projective map of a me...
isline2 39768 Definition of line in term...
linepmap 39769 A line described with a pr...
isline3 39770 Definition of line in term...
isline4N 39771 Definition of line in term...
lneq2at 39772 A line equals the join of ...
lnatexN 39773 There is an atom in a line...
lnjatN 39774 Given an atom in a line, t...
lncvrelatN 39775 A lattice element covered ...
lncvrat 39776 A line covers the atoms it...
lncmp 39777 If two lines are comparabl...
2lnat 39778 Two intersecting lines int...
2atm2atN 39779 Two joins with a common at...
2llnma1b 39780 Generalization of ~ 2llnma...
2llnma1 39781 Two different intersecting...
2llnma3r 39782 Two different intersecting...
2llnma2 39783 Two different intersecting...
2llnma2rN 39784 Two different intersecting...
cdlema1N 39785 A condition for required f...
cdlema2N 39786 A condition for required f...
cdlemblem 39787 Lemma for ~ cdlemb . (Con...
cdlemb 39788 Given two atoms not less t...
paddfval 39791 Projective subspace sum op...
paddval 39792 Projective subspace sum op...
elpadd 39793 Member of a projective sub...
elpaddn0 39794 Member of projective subsp...
paddvaln0N 39795 Projective subspace sum op...
elpaddri 39796 Condition implying members...
elpaddatriN 39797 Condition implying members...
elpaddat 39798 Membership in a projective...
elpaddatiN 39799 Consequence of membership ...
elpadd2at 39800 Membership in a projective...
elpadd2at2 39801 Membership in a projective...
paddunssN 39802 Projective subspace sum in...
elpadd0 39803 Member of projective subsp...
paddval0 39804 Projective subspace sum wi...
padd01 39805 Projective subspace sum wi...
padd02 39806 Projective subspace sum wi...
paddcom 39807 Projective subspace sum co...
paddssat 39808 A projective subspace sum ...
sspadd1 39809 A projective subspace sum ...
sspadd2 39810 A projective subspace sum ...
paddss1 39811 Subset law for projective ...
paddss2 39812 Subset law for projective ...
paddss12 39813 Subset law for projective ...
paddasslem1 39814 Lemma for ~ paddass . (Co...
paddasslem2 39815 Lemma for ~ paddass . (Co...
paddasslem3 39816 Lemma for ~ paddass . Res...
paddasslem4 39817 Lemma for ~ paddass . Com...
paddasslem5 39818 Lemma for ~ paddass . Sho...
paddasslem6 39819 Lemma for ~ paddass . (Co...
paddasslem7 39820 Lemma for ~ paddass . Com...
paddasslem8 39821 Lemma for ~ paddass . (Co...
paddasslem9 39822 Lemma for ~ paddass . Com...
paddasslem10 39823 Lemma for ~ paddass . Use...
paddasslem11 39824 Lemma for ~ paddass . The...
paddasslem12 39825 Lemma for ~ paddass . The...
paddasslem13 39826 Lemma for ~ paddass . The...
paddasslem14 39827 Lemma for ~ paddass . Rem...
paddasslem15 39828 Lemma for ~ paddass . Use...
paddasslem16 39829 Lemma for ~ paddass . Use...
paddasslem17 39830 Lemma for ~ paddass . The...
paddasslem18 39831 Lemma for ~ paddass . Com...
paddass 39832 Projective subspace sum is...
padd12N 39833 Commutative/associative la...
padd4N 39834 Rearrangement of 4 terms i...
paddidm 39835 Projective subspace sum is...
paddclN 39836 The projective sum of two ...
paddssw1 39837 Subset law for projective ...
paddssw2 39838 Subset law for projective ...
paddss 39839 Subset law for projective ...
pmodlem1 39840 Lemma for ~ pmod1i . (Con...
pmodlem2 39841 Lemma for ~ pmod1i . (Con...
pmod1i 39842 The modular law holds in a...
pmod2iN 39843 Dual of the modular law. ...
pmodN 39844 The modular law for projec...
pmodl42N 39845 Lemma derived from modular...
pmapjoin 39846 The projective map of the ...
pmapjat1 39847 The projective map of the ...
pmapjat2 39848 The projective map of the ...
pmapjlln1 39849 The projective map of the ...
hlmod1i 39850 A version of the modular l...
atmod1i1 39851 Version of modular law ~ p...
atmod1i1m 39852 Version of modular law ~ p...
atmod1i2 39853 Version of modular law ~ p...
llnmod1i2 39854 Version of modular law ~ p...
atmod2i1 39855 Version of modular law ~ p...
atmod2i2 39856 Version of modular law ~ p...
llnmod2i2 39857 Version of modular law ~ p...
atmod3i1 39858 Version of modular law tha...
atmod3i2 39859 Version of modular law tha...
atmod4i1 39860 Version of modular law tha...
atmod4i2 39861 Version of modular law tha...
llnexchb2lem 39862 Lemma for ~ llnexchb2 . (...
llnexchb2 39863 Line exchange property (co...
llnexch2N 39864 Line exchange property (co...
dalawlem1 39865 Lemma for ~ dalaw . Speci...
dalawlem2 39866 Lemma for ~ dalaw . Utili...
dalawlem3 39867 Lemma for ~ dalaw . First...
dalawlem4 39868 Lemma for ~ dalaw . Secon...
dalawlem5 39869 Lemma for ~ dalaw . Speci...
dalawlem6 39870 Lemma for ~ dalaw . First...
dalawlem7 39871 Lemma for ~ dalaw . Secon...
dalawlem8 39872 Lemma for ~ dalaw . Speci...
dalawlem9 39873 Lemma for ~ dalaw . Speci...
dalawlem10 39874 Lemma for ~ dalaw . Combi...
dalawlem11 39875 Lemma for ~ dalaw . First...
dalawlem12 39876 Lemma for ~ dalaw . Secon...
dalawlem13 39877 Lemma for ~ dalaw . Speci...
dalawlem14 39878 Lemma for ~ dalaw . Combi...
dalawlem15 39879 Lemma for ~ dalaw . Swap ...
dalaw 39880 Desargues's law, derived f...
pclfvalN 39883 The projective subspace cl...
pclvalN 39884 Value of the projective su...
pclclN 39885 Closure of the projective ...
elpclN 39886 Membership in the projecti...
elpcliN 39887 Implication of membership ...
pclssN 39888 Ordering is preserved by s...
pclssidN 39889 A set of atoms is included...
pclidN 39890 The projective subspace cl...
pclbtwnN 39891 A projective subspace sand...
pclunN 39892 The projective subspace cl...
pclun2N 39893 The projective subspace cl...
pclfinN 39894 The projective subspace cl...
pclcmpatN 39895 The set of projective subs...
polfvalN 39898 The projective subspace po...
polvalN 39899 Value of the projective su...
polval2N 39900 Alternate expression for v...
polsubN 39901 The polarity of a set of a...
polssatN 39902 The polarity of a set of a...
pol0N 39903 The polarity of the empty ...
pol1N 39904 The polarity of the whole ...
2pol0N 39905 The closed subspace closur...
polpmapN 39906 The polarity of a projecti...
2polpmapN 39907 Double polarity of a proje...
2polvalN 39908 Value of double polarity. ...
2polssN 39909 A set of atoms is a subset...
3polN 39910 Triple polarity cancels to...
polcon3N 39911 Contraposition law for pol...
2polcon4bN 39912 Contraposition law for pol...
polcon2N 39913 Contraposition law for pol...
polcon2bN 39914 Contraposition law for pol...
pclss2polN 39915 The projective subspace cl...
pcl0N 39916 The projective subspace cl...
pcl0bN 39917 The projective subspace cl...
pmaplubN 39918 The LUB of a projective ma...
sspmaplubN 39919 A set of atoms is a subset...
2pmaplubN 39920 Double projective map of a...
paddunN 39921 The closure of the project...
poldmj1N 39922 De Morgan's law for polari...
pmapj2N 39923 The projective map of the ...
pmapocjN 39924 The projective map of the ...
polatN 39925 The polarity of the single...
2polatN 39926 Double polarity of the sin...
pnonsingN 39927 The intersection of a set ...
psubclsetN 39930 The set of closed projecti...
ispsubclN 39931 The predicate "is a closed...
psubcliN 39932 Property of a closed proje...
psubcli2N 39933 Property of a closed proje...
psubclsubN 39934 A closed projective subspa...
psubclssatN 39935 A closed projective subspa...
pmapidclN 39936 Projective map of the LUB ...
0psubclN 39937 The empty set is a closed ...
1psubclN 39938 The set of all atoms is a ...
atpsubclN 39939 A point (singleton of an a...
pmapsubclN 39940 A projective map value is ...
ispsubcl2N 39941 Alternate predicate for "i...
psubclinN 39942 The intersection of two cl...
paddatclN 39943 The projective sum of a cl...
pclfinclN 39944 The projective subspace cl...
linepsubclN 39945 A line is a closed project...
polsubclN 39946 A polarity is a closed pro...
poml4N 39947 Orthomodular law for proje...
poml5N 39948 Orthomodular law for proje...
poml6N 39949 Orthomodular law for proje...
osumcllem1N 39950 Lemma for ~ osumclN . (Co...
osumcllem2N 39951 Lemma for ~ osumclN . (Co...
osumcllem3N 39952 Lemma for ~ osumclN . (Co...
osumcllem4N 39953 Lemma for ~ osumclN . (Co...
osumcllem5N 39954 Lemma for ~ osumclN . (Co...
osumcllem6N 39955 Lemma for ~ osumclN . Use...
osumcllem7N 39956 Lemma for ~ osumclN . (Co...
osumcllem8N 39957 Lemma for ~ osumclN . (Co...
osumcllem9N 39958 Lemma for ~ osumclN . (Co...
osumcllem10N 39959 Lemma for ~ osumclN . Con...
osumcllem11N 39960 Lemma for ~ osumclN . (Co...
osumclN 39961 Closure of orthogonal sum....
pmapojoinN 39962 For orthogonal elements, p...
pexmidN 39963 Excluded middle law for cl...
pexmidlem1N 39964 Lemma for ~ pexmidN . Hol...
pexmidlem2N 39965 Lemma for ~ pexmidN . (Co...
pexmidlem3N 39966 Lemma for ~ pexmidN . Use...
pexmidlem4N 39967 Lemma for ~ pexmidN . (Co...
pexmidlem5N 39968 Lemma for ~ pexmidN . (Co...
pexmidlem6N 39969 Lemma for ~ pexmidN . (Co...
pexmidlem7N 39970 Lemma for ~ pexmidN . Con...
pexmidlem8N 39971 Lemma for ~ pexmidN . The...
pexmidALTN 39972 Excluded middle law for cl...
pl42lem1N 39973 Lemma for ~ pl42N . (Cont...
pl42lem2N 39974 Lemma for ~ pl42N . (Cont...
pl42lem3N 39975 Lemma for ~ pl42N . (Cont...
pl42lem4N 39976 Lemma for ~ pl42N . (Cont...
pl42N 39977 Law holding in a Hilbert l...
watfvalN 39986 The W atoms function. (Co...
watvalN 39987 Value of the W atoms funct...
iswatN 39988 The predicate "is a W atom...
lhpset 39989 The set of co-atoms (latti...
islhp 39990 The predicate "is a co-ato...
islhp2 39991 The predicate "is a co-ato...
lhpbase 39992 A co-atom is a member of t...
lhp1cvr 39993 The lattice unity covers a...
lhplt 39994 An atom under a co-atom is...
lhp2lt 39995 The join of two atoms unde...
lhpexlt 39996 There exists an atom less ...
lhp0lt 39997 A co-atom is greater than ...
lhpn0 39998 A co-atom is nonzero. TOD...
lhpexle 39999 There exists an atom under...
lhpexnle 40000 There exists an atom not u...
lhpexle1lem 40001 Lemma for ~ lhpexle1 and o...
lhpexle1 40002 There exists an atom under...
lhpexle2lem 40003 Lemma for ~ lhpexle2 . (C...
lhpexle2 40004 There exists atom under a ...
lhpexle3lem 40005 There exists atom under a ...
lhpexle3 40006 There exists atom under a ...
lhpex2leN 40007 There exist at least two d...
lhpoc 40008 The orthocomplement of a c...
lhpoc2N 40009 The orthocomplement of an ...
lhpocnle 40010 The orthocomplement of a c...
lhpocat 40011 The orthocomplement of a c...
lhpocnel 40012 The orthocomplement of a c...
lhpocnel2 40013 The orthocomplement of a c...
lhpjat1 40014 The join of a co-atom (hyp...
lhpjat2 40015 The join of a co-atom (hyp...
lhpj1 40016 The join of a co-atom (hyp...
lhpmcvr 40017 The meet of a lattice hype...
lhpmcvr2 40018 Alternate way to express t...
lhpmcvr3 40019 Specialization of ~ lhpmcv...
lhpmcvr4N 40020 Specialization of ~ lhpmcv...
lhpmcvr5N 40021 Specialization of ~ lhpmcv...
lhpmcvr6N 40022 Specialization of ~ lhpmcv...
lhpm0atN 40023 If the meet of a lattice h...
lhpmat 40024 An element covered by the ...
lhpmatb 40025 An element covered by the ...
lhp2at0 40026 Join and meet with differe...
lhp2atnle 40027 Inequality for 2 different...
lhp2atne 40028 Inequality for joins with ...
lhp2at0nle 40029 Inequality for 2 different...
lhp2at0ne 40030 Inequality for joins with ...
lhpelim 40031 Eliminate an atom not unde...
lhpmod2i2 40032 Modular law for hyperplane...
lhpmod6i1 40033 Modular law for hyperplane...
lhprelat3N 40034 The Hilbert lattice is rel...
cdlemb2 40035 Given two atoms not under ...
lhple 40036 Property of a lattice elem...
lhpat 40037 Create an atom under a co-...
lhpat4N 40038 Property of an atom under ...
lhpat2 40039 Create an atom under a co-...
lhpat3 40040 There is only one atom und...
4atexlemk 40041 Lemma for ~ 4atexlem7 . (...
4atexlemw 40042 Lemma for ~ 4atexlem7 . (...
4atexlempw 40043 Lemma for ~ 4atexlem7 . (...
4atexlemp 40044 Lemma for ~ 4atexlem7 . (...
4atexlemq 40045 Lemma for ~ 4atexlem7 . (...
4atexlems 40046 Lemma for ~ 4atexlem7 . (...
4atexlemt 40047 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 40048 Lemma for ~ 4atexlem7 . (...
4atexlempnq 40049 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 40050 Lemma for ~ 4atexlem7 . (...
4atexlemkl 40051 Lemma for ~ 4atexlem7 . (...
4atexlemkc 40052 Lemma for ~ 4atexlem7 . (...
4atexlemwb 40053 Lemma for ~ 4atexlem7 . (...
4atexlempsb 40054 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 40055 Lemma for ~ 4atexlem7 . (...
4atexlempns 40056 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 40057 Lemma for ~ 4atexlem7 . S...
4atexlemu 40058 Lemma for ~ 4atexlem7 . (...
4atexlemv 40059 Lemma for ~ 4atexlem7 . (...
4atexlemunv 40060 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 40061 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 40062 Lemma for ~ 4atexlem7 . (...
4atexlemc 40063 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 40064 Lemma for ~ 4atexlem7 . (...
4atexlemex2 40065 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 40066 Lemma for ~ 4atexlem7 . (...
4atexlemex4 40067 Lemma for ~ 4atexlem7 . S...
4atexlemex6 40068 Lemma for ~ 4atexlem7 . (...
4atexlem7 40069 Whenever there are at leas...
4atex 40070 Whenever there are at leas...
4atex2 40071 More general version of ~ ...
4atex2-0aOLDN 40072 Same as ~ 4atex2 except th...
4atex2-0bOLDN 40073 Same as ~ 4atex2 except th...
4atex2-0cOLDN 40074 Same as ~ 4atex2 except th...
4atex3 40075 More general version of ~ ...
lautset 40076 The set of lattice automor...
islaut 40077 The predicate "is a lattic...
lautle 40078 Less-than or equal propert...
laut1o 40079 A lattice automorphism is ...
laut11 40080 One-to-one property of a l...
lautcl 40081 A lattice automorphism val...
lautcnvclN 40082 Reverse closure of a latti...
lautcnvle 40083 Less-than or equal propert...
lautcnv 40084 The converse of a lattice ...
lautlt 40085 Less-than property of a la...
lautcvr 40086 Covering property of a lat...
lautj 40087 Meet property of a lattice...
lautm 40088 Meet property of a lattice...
lauteq 40089 A lattice automorphism arg...
idlaut 40090 The identity function is a...
lautco 40091 The composition of two lat...
pautsetN 40092 The set of projective auto...
ispautN 40093 The predicate "is a projec...
ldilfset 40102 The mapping from fiducial ...
ldilset 40103 The set of lattice dilatio...
isldil 40104 The predicate "is a lattic...
ldillaut 40105 A lattice dilation is an a...
ldil1o 40106 A lattice dilation is a on...
ldilval 40107 Value of a lattice dilatio...
idldil 40108 The identity function is a...
ldilcnv 40109 The converse of a lattice ...
ldilco 40110 The composition of two lat...
ltrnfset 40111 The set of all lattice tra...
ltrnset 40112 The set of lattice transla...
isltrn 40113 The predicate "is a lattic...
isltrn2N 40114 The predicate "is a lattic...
ltrnu 40115 Uniqueness property of a l...
ltrnldil 40116 A lattice translation is a...
ltrnlaut 40117 A lattice translation is a...
ltrn1o 40118 A lattice translation is a...
ltrncl 40119 Closure of a lattice trans...
ltrn11 40120 One-to-one property of a l...
ltrncnvnid 40121 If a translation is differ...
ltrncoidN 40122 Two translations are equal...
ltrnle 40123 Less-than or equal propert...
ltrncnvleN 40124 Less-than or equal propert...
ltrnm 40125 Lattice translation of a m...
ltrnj 40126 Lattice translation of a m...
ltrncvr 40127 Covering property of a lat...
ltrnval1 40128 Value of a lattice transla...
ltrnid 40129 A lattice translation is t...
ltrnnid 40130 If a lattice translation i...
ltrnatb 40131 The lattice translation of...
ltrncnvatb 40132 The converse of the lattic...
ltrnel 40133 The lattice translation of...
ltrnat 40134 The lattice translation of...
ltrncnvat 40135 The converse of the lattic...
ltrncnvel 40136 The converse of the lattic...
ltrncoelN 40137 Composition of lattice tra...
ltrncoat 40138 Composition of lattice tra...
ltrncoval 40139 Two ways to express value ...
ltrncnv 40140 The converse of a lattice ...
ltrn11at 40141 Frequently used one-to-one...
ltrneq2 40142 The equality of two transl...
ltrneq 40143 The equality of two transl...
idltrn 40144 The identity function is a...
ltrnmw 40145 Property of lattice transl...
dilfsetN 40146 The mapping from fiducial ...
dilsetN 40147 The set of dilations for a...
isdilN 40148 The predicate "is a dilati...
trnfsetN 40149 The mapping from fiducial ...
trnsetN 40150 The set of translations fo...
istrnN 40151 The predicate "is a transl...
trlfset 40154 The set of all traces of l...
trlset 40155 The set of traces of latti...
trlval 40156 The value of the trace of ...
trlval2 40157 The value of the trace of ...
trlcl 40158 Closure of the trace of a ...
trlcnv 40159 The trace of the converse ...
trljat1 40160 The value of a translation...
trljat2 40161 The value of a translation...
trljat3 40162 The value of a translation...
trlat 40163 If an atom differs from it...
trl0 40164 If an atom not under the f...
trlator0 40165 The trace of a lattice tra...
trlatn0 40166 The trace of a lattice tra...
trlnidat 40167 The trace of a lattice tra...
ltrnnidn 40168 If a lattice translation i...
ltrnideq 40169 Property of the identity l...
trlid0 40170 The trace of the identity ...
trlnidatb 40171 A lattice translation is n...
trlid0b 40172 A lattice translation is t...
trlnid 40173 Different translations wit...
ltrn2ateq 40174 Property of the equality o...
ltrnateq 40175 If any atom (under ` W ` )...
ltrnatneq 40176 If any atom (under ` W ` )...
ltrnatlw 40177 If the value of an atom eq...
trlle 40178 The trace of a lattice tra...
trlne 40179 The trace of a lattice tra...
trlnle 40180 The atom not under the fid...
trlval3 40181 The value of the trace of ...
trlval4 40182 The value of the trace of ...
trlval5 40183 The value of the trace of ...
arglem1N 40184 Lemma for Desargues's law....
cdlemc1 40185 Part of proof of Lemma C i...
cdlemc2 40186 Part of proof of Lemma C i...
cdlemc3 40187 Part of proof of Lemma C i...
cdlemc4 40188 Part of proof of Lemma C i...
cdlemc5 40189 Lemma for ~ cdlemc . (Con...
cdlemc6 40190 Lemma for ~ cdlemc . (Con...
cdlemc 40191 Lemma C in [Crawley] p. 11...
cdlemd1 40192 Part of proof of Lemma D i...
cdlemd2 40193 Part of proof of Lemma D i...
cdlemd3 40194 Part of proof of Lemma D i...
cdlemd4 40195 Part of proof of Lemma D i...
cdlemd5 40196 Part of proof of Lemma D i...
cdlemd6 40197 Part of proof of Lemma D i...
cdlemd7 40198 Part of proof of Lemma D i...
cdlemd8 40199 Part of proof of Lemma D i...
cdlemd9 40200 Part of proof of Lemma D i...
cdlemd 40201 If two translations agree ...
ltrneq3 40202 Two translations agree at ...
cdleme00a 40203 Part of proof of Lemma E i...
cdleme0aa 40204 Part of proof of Lemma E i...
cdleme0a 40205 Part of proof of Lemma E i...
cdleme0b 40206 Part of proof of Lemma E i...
cdleme0c 40207 Part of proof of Lemma E i...
cdleme0cp 40208 Part of proof of Lemma E i...
cdleme0cq 40209 Part of proof of Lemma E i...
cdleme0dN 40210 Part of proof of Lemma E i...
cdleme0e 40211 Part of proof of Lemma E i...
cdleme0fN 40212 Part of proof of Lemma E i...
cdleme0gN 40213 Part of proof of Lemma E i...
cdlemeulpq 40214 Part of proof of Lemma E i...
cdleme01N 40215 Part of proof of Lemma E i...
cdleme02N 40216 Part of proof of Lemma E i...
cdleme0ex1N 40217 Part of proof of Lemma E i...
cdleme0ex2N 40218 Part of proof of Lemma E i...
cdleme0moN 40219 Part of proof of Lemma E i...
cdleme1b 40220 Part of proof of Lemma E i...
cdleme1 40221 Part of proof of Lemma E i...
cdleme2 40222 Part of proof of Lemma E i...
cdleme3b 40223 Part of proof of Lemma E i...
cdleme3c 40224 Part of proof of Lemma E i...
cdleme3d 40225 Part of proof of Lemma E i...
cdleme3e 40226 Part of proof of Lemma E i...
cdleme3fN 40227 Part of proof of Lemma E i...
cdleme3g 40228 Part of proof of Lemma E i...
cdleme3h 40229 Part of proof of Lemma E i...
cdleme3fa 40230 Part of proof of Lemma E i...
cdleme3 40231 Part of proof of Lemma E i...
cdleme4 40232 Part of proof of Lemma E i...
cdleme4a 40233 Part of proof of Lemma E i...
cdleme5 40234 Part of proof of Lemma E i...
cdleme6 40235 Part of proof of Lemma E i...
cdleme7aa 40236 Part of proof of Lemma E i...
cdleme7a 40237 Part of proof of Lemma E i...
cdleme7b 40238 Part of proof of Lemma E i...
cdleme7c 40239 Part of proof of Lemma E i...
cdleme7d 40240 Part of proof of Lemma E i...
cdleme7e 40241 Part of proof of Lemma E i...
cdleme7ga 40242 Part of proof of Lemma E i...
cdleme7 40243 Part of proof of Lemma E i...
cdleme8 40244 Part of proof of Lemma E i...
cdleme9a 40245 Part of proof of Lemma E i...
cdleme9b 40246 Utility lemma for Lemma E ...
cdleme9 40247 Part of proof of Lemma E i...
cdleme10 40248 Part of proof of Lemma E i...
cdleme8tN 40249 Part of proof of Lemma E i...
cdleme9taN 40250 Part of proof of Lemma E i...
cdleme9tN 40251 Part of proof of Lemma E i...
cdleme10tN 40252 Part of proof of Lemma E i...
cdleme16aN 40253 Part of proof of Lemma E i...
cdleme11a 40254 Part of proof of Lemma E i...
cdleme11c 40255 Part of proof of Lemma E i...
cdleme11dN 40256 Part of proof of Lemma E i...
cdleme11e 40257 Part of proof of Lemma E i...
cdleme11fN 40258 Part of proof of Lemma E i...
cdleme11g 40259 Part of proof of Lemma E i...
cdleme11h 40260 Part of proof of Lemma E i...
cdleme11j 40261 Part of proof of Lemma E i...
cdleme11k 40262 Part of proof of Lemma E i...
cdleme11l 40263 Part of proof of Lemma E i...
cdleme11 40264 Part of proof of Lemma E i...
cdleme12 40265 Part of proof of Lemma E i...
cdleme13 40266 Part of proof of Lemma E i...
cdleme14 40267 Part of proof of Lemma E i...
cdleme15a 40268 Part of proof of Lemma E i...
cdleme15b 40269 Part of proof of Lemma E i...
cdleme15c 40270 Part of proof of Lemma E i...
cdleme15d 40271 Part of proof of Lemma E i...
cdleme15 40272 Part of proof of Lemma E i...
cdleme16b 40273 Part of proof of Lemma E i...
cdleme16c 40274 Part of proof of Lemma E i...
cdleme16d 40275 Part of proof of Lemma E i...
cdleme16e 40276 Part of proof of Lemma E i...
cdleme16f 40277 Part of proof of Lemma E i...
cdleme16g 40278 Part of proof of Lemma E i...
cdleme16 40279 Part of proof of Lemma E i...
cdleme17a 40280 Part of proof of Lemma E i...
cdleme17b 40281 Lemma leading to ~ cdleme1...
cdleme17c 40282 Part of proof of Lemma E i...
cdleme17d1 40283 Part of proof of Lemma E i...
cdleme0nex 40284 Part of proof of Lemma E i...
cdleme18a 40285 Part of proof of Lemma E i...
cdleme18b 40286 Part of proof of Lemma E i...
cdleme18c 40287 Part of proof of Lemma E i...
cdleme22gb 40288 Utility lemma for Lemma E ...
cdleme18d 40289 Part of proof of Lemma E i...
cdlemesner 40290 Part of proof of Lemma E i...
cdlemedb 40291 Part of proof of Lemma E i...
cdlemeda 40292 Part of proof of Lemma E i...
cdlemednpq 40293 Part of proof of Lemma E i...
cdlemednuN 40294 Part of proof of Lemma E i...
cdleme20zN 40295 Part of proof of Lemma E i...
cdleme20y 40296 Part of proof of Lemma E i...
cdleme19a 40297 Part of proof of Lemma E i...
cdleme19b 40298 Part of proof of Lemma E i...
cdleme19c 40299 Part of proof of Lemma E i...
cdleme19d 40300 Part of proof of Lemma E i...
cdleme19e 40301 Part of proof of Lemma E i...
cdleme19f 40302 Part of proof of Lemma E i...
cdleme20aN 40303 Part of proof of Lemma E i...
cdleme20bN 40304 Part of proof of Lemma E i...
cdleme20c 40305 Part of proof of Lemma E i...
cdleme20d 40306 Part of proof of Lemma E i...
cdleme20e 40307 Part of proof of Lemma E i...
cdleme20f 40308 Part of proof of Lemma E i...
cdleme20g 40309 Part of proof of Lemma E i...
cdleme20h 40310 Part of proof of Lemma E i...
cdleme20i 40311 Part of proof of Lemma E i...
cdleme20j 40312 Part of proof of Lemma E i...
cdleme20k 40313 Part of proof of Lemma E i...
cdleme20l1 40314 Part of proof of Lemma E i...
cdleme20l2 40315 Part of proof of Lemma E i...
cdleme20l 40316 Part of proof of Lemma E i...
cdleme20m 40317 Part of proof of Lemma E i...
cdleme20 40318 Combine ~ cdleme19f and ~ ...
cdleme21a 40319 Part of proof of Lemma E i...
cdleme21b 40320 Part of proof of Lemma E i...
cdleme21c 40321 Part of proof of Lemma E i...
cdleme21at 40322 Part of proof of Lemma E i...
cdleme21ct 40323 Part of proof of Lemma E i...
cdleme21d 40324 Part of proof of Lemma E i...
cdleme21e 40325 Part of proof of Lemma E i...
cdleme21f 40326 Part of proof of Lemma E i...
cdleme21g 40327 Part of proof of Lemma E i...
cdleme21h 40328 Part of proof of Lemma E i...
cdleme21i 40329 Part of proof of Lemma E i...
cdleme21j 40330 Combine ~ cdleme20 and ~ c...
cdleme21 40331 Part of proof of Lemma E i...
cdleme21k 40332 Eliminate ` S =/= T ` cond...
cdleme22aa 40333 Part of proof of Lemma E i...
cdleme22a 40334 Part of proof of Lemma E i...
cdleme22b 40335 Part of proof of Lemma E i...
cdleme22cN 40336 Part of proof of Lemma E i...
cdleme22d 40337 Part of proof of Lemma E i...
cdleme22e 40338 Part of proof of Lemma E i...
cdleme22eALTN 40339 Part of proof of Lemma E i...
cdleme22f 40340 Part of proof of Lemma E i...
cdleme22f2 40341 Part of proof of Lemma E i...
cdleme22g 40342 Part of proof of Lemma E i...
cdleme23a 40343 Part of proof of Lemma E i...
cdleme23b 40344 Part of proof of Lemma E i...
cdleme23c 40345 Part of proof of Lemma E i...
cdleme24 40346 Quantified version of ~ cd...
cdleme25a 40347 Lemma for ~ cdleme25b . (...
cdleme25b 40348 Transform ~ cdleme24 . TO...
cdleme25c 40349 Transform ~ cdleme25b . (...
cdleme25dN 40350 Transform ~ cdleme25c . (...
cdleme25cl 40351 Show closure of the unique...
cdleme25cv 40352 Change bound variables in ...
cdleme26e 40353 Part of proof of Lemma E i...
cdleme26ee 40354 Part of proof of Lemma E i...
cdleme26eALTN 40355 Part of proof of Lemma E i...
cdleme26fALTN 40356 Part of proof of Lemma E i...
cdleme26f 40357 Part of proof of Lemma E i...
cdleme26f2ALTN 40358 Part of proof of Lemma E i...
cdleme26f2 40359 Part of proof of Lemma E i...
cdleme27cl 40360 Part of proof of Lemma E i...
cdleme27a 40361 Part of proof of Lemma E i...
cdleme27b 40362 Lemma for ~ cdleme27N . (...
cdleme27N 40363 Part of proof of Lemma E i...
cdleme28a 40364 Lemma for ~ cdleme25b . T...
cdleme28b 40365 Lemma for ~ cdleme25b . T...
cdleme28c 40366 Part of proof of Lemma E i...
cdleme28 40367 Quantified version of ~ cd...
cdleme29ex 40368 Lemma for ~ cdleme29b . (...
cdleme29b 40369 Transform ~ cdleme28 . (C...
cdleme29c 40370 Transform ~ cdleme28b . (...
cdleme29cl 40371 Show closure of the unique...
cdleme30a 40372 Part of proof of Lemma E i...
cdleme31so 40373 Part of proof of Lemma E i...
cdleme31sn 40374 Part of proof of Lemma E i...
cdleme31sn1 40375 Part of proof of Lemma E i...
cdleme31se 40376 Part of proof of Lemma D i...
cdleme31se2 40377 Part of proof of Lemma D i...
cdleme31sc 40378 Part of proof of Lemma E i...
cdleme31sde 40379 Part of proof of Lemma D i...
cdleme31snd 40380 Part of proof of Lemma D i...
cdleme31sdnN 40381 Part of proof of Lemma E i...
cdleme31sn1c 40382 Part of proof of Lemma E i...
cdleme31sn2 40383 Part of proof of Lemma E i...
cdleme31fv 40384 Part of proof of Lemma E i...
cdleme31fv1 40385 Part of proof of Lemma E i...
cdleme31fv1s 40386 Part of proof of Lemma E i...
cdleme31fv2 40387 Part of proof of Lemma E i...
cdleme31id 40388 Part of proof of Lemma E i...
cdlemefrs29pre00 40389 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 40390 TODO fix comment. (Contri...
cdlemefrs29bpre1 40391 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 40392 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 40393 TODO: NOT USED? Show clo...
cdlemefrs32fva 40394 Part of proof of Lemma E i...
cdlemefrs32fva1 40395 Part of proof of Lemma E i...
cdlemefr29exN 40396 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 40397 Part of proof of Lemma E i...
cdlemefr32sn2aw 40398 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 40399 Show closure of ` [_ R / s...
cdlemefr29bpre0N 40400 TODO fix comment. (Contri...
cdlemefr29clN 40401 Show closure of the unique...
cdleme43frv1snN 40402 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 40403 Part of proof of Lemma E i...
cdlemefr32fva1 40404 Part of proof of Lemma E i...
cdlemefr31fv1 40405 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 40406 FIX COMMENT. TODO: see if ...
cdlemefs27cl 40407 Part of proof of Lemma E i...
cdlemefs32sn1aw 40408 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 40409 Show closure of ` [_ R / s...
cdlemefs29bpre0N 40410 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 40411 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 40412 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 40413 Show closure of the unique...
cdleme43fsv1snlem 40414 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 40415 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 40416 Part of proof of Lemma E i...
cdlemefs32fva1 40417 Part of proof of Lemma E i...
cdlemefs31fv1 40418 Value of ` ( F `` R ) ` wh...
cdlemefr44 40419 Value of f(r) when r is an...
cdlemefs44 40420 Value of f_s(r) when r is ...
cdlemefr45 40421 Value of f(r) when r is an...
cdlemefr45e 40422 Explicit expansion of ~ cd...
cdlemefs45 40423 Value of f_s(r) when r is ...
cdlemefs45ee 40424 Explicit expansion of ~ cd...
cdlemefs45eN 40425 Explicit expansion of ~ cd...
cdleme32sn1awN 40426 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 40427 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 40428 Show that ` [_ R / s ]_ N ...
cdleme32snaw 40429 Show that ` [_ R / s ]_ N ...
cdleme32snb 40430 Show closure of ` [_ R / s...
cdleme32fva 40431 Part of proof of Lemma D i...
cdleme32fva1 40432 Part of proof of Lemma D i...
cdleme32fvaw 40433 Show that ` ( F `` R ) ` i...
cdleme32fvcl 40434 Part of proof of Lemma D i...
cdleme32a 40435 Part of proof of Lemma D i...
cdleme32b 40436 Part of proof of Lemma D i...
cdleme32c 40437 Part of proof of Lemma D i...
cdleme32d 40438 Part of proof of Lemma D i...
cdleme32e 40439 Part of proof of Lemma D i...
cdleme32f 40440 Part of proof of Lemma D i...
cdleme32le 40441 Part of proof of Lemma D i...
cdleme35a 40442 Part of proof of Lemma E i...
cdleme35fnpq 40443 Part of proof of Lemma E i...
cdleme35b 40444 Part of proof of Lemma E i...
cdleme35c 40445 Part of proof of Lemma E i...
cdleme35d 40446 Part of proof of Lemma E i...
cdleme35e 40447 Part of proof of Lemma E i...
cdleme35f 40448 Part of proof of Lemma E i...
cdleme35g 40449 Part of proof of Lemma E i...
cdleme35h 40450 Part of proof of Lemma E i...
cdleme35h2 40451 Part of proof of Lemma E i...
cdleme35sn2aw 40452 Part of proof of Lemma E i...
cdleme35sn3a 40453 Part of proof of Lemma E i...
cdleme36a 40454 Part of proof of Lemma E i...
cdleme36m 40455 Part of proof of Lemma E i...
cdleme37m 40456 Part of proof of Lemma E i...
cdleme38m 40457 Part of proof of Lemma E i...
cdleme38n 40458 Part of proof of Lemma E i...
cdleme39a 40459 Part of proof of Lemma E i...
cdleme39n 40460 Part of proof of Lemma E i...
cdleme40m 40461 Part of proof of Lemma E i...
cdleme40n 40462 Part of proof of Lemma E i...
cdleme40v 40463 Part of proof of Lemma E i...
cdleme40w 40464 Part of proof of Lemma E i...
cdleme42a 40465 Part of proof of Lemma E i...
cdleme42c 40466 Part of proof of Lemma E i...
cdleme42d 40467 Part of proof of Lemma E i...
cdleme41sn3aw 40468 Part of proof of Lemma E i...
cdleme41sn4aw 40469 Part of proof of Lemma E i...
cdleme41snaw 40470 Part of proof of Lemma E i...
cdleme41fva11 40471 Part of proof of Lemma E i...
cdleme42b 40472 Part of proof of Lemma E i...
cdleme42e 40473 Part of proof of Lemma E i...
cdleme42f 40474 Part of proof of Lemma E i...
cdleme42g 40475 Part of proof of Lemma E i...
cdleme42h 40476 Part of proof of Lemma E i...
cdleme42i 40477 Part of proof of Lemma E i...
cdleme42k 40478 Part of proof of Lemma E i...
cdleme42ke 40479 Part of proof of Lemma E i...
cdleme42keg 40480 Part of proof of Lemma E i...
cdleme42mN 40481 Part of proof of Lemma E i...
cdleme42mgN 40482 Part of proof of Lemma E i...
cdleme43aN 40483 Part of proof of Lemma E i...
cdleme43bN 40484 Lemma for Lemma E in [Craw...
cdleme43cN 40485 Part of proof of Lemma E i...
cdleme43dN 40486 Part of proof of Lemma E i...
cdleme46f2g2 40487 Conversion for ` G ` to re...
cdleme46f2g1 40488 Conversion for ` G ` to re...
cdleme17d2 40489 Part of proof of Lemma E i...
cdleme17d3 40490 TODO: FIX COMMENT. (Contr...
cdleme17d4 40491 TODO: FIX COMMENT. (Contr...
cdleme17d 40492 Part of proof of Lemma E i...
cdleme48fv 40493 Part of proof of Lemma D i...
cdleme48fvg 40494 Remove ` P =/= Q ` conditi...
cdleme46fvaw 40495 Show that ` ( F `` R ) ` i...
cdleme48bw 40496 TODO: fix comment. TODO: ...
cdleme48b 40497 TODO: fix comment. (Contr...
cdleme46frvlpq 40498 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 40499 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 40500 TODO: fix comment. (Contr...
cdleme4gfv 40501 Part of proof of Lemma D i...
cdlemeg47b 40502 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 40503 Value of g_s(r) when r is ...
cdlemeg47rv2 40504 Value of g_s(r) when r is ...
cdlemeg49le 40505 Part of proof of Lemma D i...
cdlemeg46bOLDN 40506 TODO FIX COMMENT. (Contrib...
cdlemeg46c 40507 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 40508 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 40509 Value of g_s(r) when r is ...
cdlemeg46fvaw 40510 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 40511 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 40512 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 40513 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 40514 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 40515 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 40516 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 40517 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 40518 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 40519 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 40520 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 40521 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 40522 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 40523 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 40524 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 40525 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 40526 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 40527 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 40528 TODO FIX COMMENT p. 116 pe...
cdleme48d 40529 TODO: fix comment. (Contr...
cdleme48gfv1 40530 TODO: fix comment. (Contr...
cdleme48gfv 40531 TODO: fix comment. (Contr...
cdleme48fgv 40532 TODO: fix comment. (Contr...
cdlemeg49lebilem 40533 Part of proof of Lemma D i...
cdleme50lebi 40534 Part of proof of Lemma D i...
cdleme50eq 40535 Part of proof of Lemma D i...
cdleme50f 40536 Part of proof of Lemma D i...
cdleme50f1 40537 Part of proof of Lemma D i...
cdleme50rnlem 40538 Part of proof of Lemma D i...
cdleme50rn 40539 Part of proof of Lemma D i...
cdleme50f1o 40540 Part of proof of Lemma D i...
cdleme50laut 40541 Part of proof of Lemma D i...
cdleme50ldil 40542 Part of proof of Lemma D i...
cdleme50trn1 40543 Part of proof that ` F ` i...
cdleme50trn2a 40544 Part of proof that ` F ` i...
cdleme50trn2 40545 Part of proof that ` F ` i...
cdleme50trn12 40546 Part of proof that ` F ` i...
cdleme50trn3 40547 Part of proof that ` F ` i...
cdleme50trn123 40548 Part of proof that ` F ` i...
cdleme51finvfvN 40549 Part of proof of Lemma E i...
cdleme51finvN 40550 Part of proof of Lemma E i...
cdleme50ltrn 40551 Part of proof of Lemma E i...
cdleme51finvtrN 40552 Part of proof of Lemma E i...
cdleme50ex 40553 Part of Lemma E in [Crawle...
cdleme 40554 Lemma E in [Crawley] p. 11...
cdlemf1 40555 Part of Lemma F in [Crawle...
cdlemf2 40556 Part of Lemma F in [Crawle...
cdlemf 40557 Lemma F in [Crawley] p. 11...
cdlemfnid 40558 ~ cdlemf with additional c...
cdlemftr3 40559 Special case of ~ cdlemf s...
cdlemftr2 40560 Special case of ~ cdlemf s...
cdlemftr1 40561 Part of proof of Lemma G o...
cdlemftr0 40562 Special case of ~ cdlemf s...
trlord 40563 The ordering of two Hilber...
cdlemg1a 40564 Shorter expression for ` G...
cdlemg1b2 40565 This theorem can be used t...
cdlemg1idlemN 40566 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 40567 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 40568 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 40569 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 40570 This theorem can be used t...
cdlemg1idN 40571 Version of ~ cdleme31id wi...
ltrniotafvawN 40572 Version of ~ cdleme46fvaw ...
ltrniotacl 40573 Version of ~ cdleme50ltrn ...
ltrniotacnvN 40574 Version of ~ cdleme51finvt...
ltrniotaval 40575 Value of the unique transl...
ltrniotacnvval 40576 Converse value of the uniq...
ltrniotaidvalN 40577 Value of the unique transl...
ltrniotavalbN 40578 Value of the unique transl...
cdlemeiota 40579 A translation is uniquely ...
cdlemg1ci2 40580 Any function of the form o...
cdlemg1cN 40581 Any translation belongs to...
cdlemg1cex 40582 Any translation is one of ...
cdlemg2cN 40583 Any translation belongs to...
cdlemg2dN 40584 This theorem can be used t...
cdlemg2cex 40585 Any translation is one of ...
cdlemg2ce 40586 Utility theorem to elimina...
cdlemg2jlemOLDN 40587 Part of proof of Lemma E i...
cdlemg2fvlem 40588 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 40589 ~ cdleme42keg with simpler...
cdlemg2idN 40590 Version of ~ cdleme31id wi...
cdlemg3a 40591 Part of proof of Lemma G i...
cdlemg2jOLDN 40592 TODO: Replace this with ~...
cdlemg2fv 40593 Value of a translation in ...
cdlemg2fv2 40594 Value of a translation in ...
cdlemg2k 40595 ~ cdleme42keg with simpler...
cdlemg2kq 40596 ~ cdlemg2k with ` P ` and ...
cdlemg2l 40597 TODO: FIX COMMENT. (Contr...
cdlemg2m 40598 TODO: FIX COMMENT. (Contr...
cdlemg5 40599 TODO: Is there a simpler ...
cdlemb3 40600 Given two atoms not under ...
cdlemg7fvbwN 40601 Properties of a translatio...
cdlemg4a 40602 TODO: FIX COMMENT If fg(p...
cdlemg4b1 40603 TODO: FIX COMMENT. (Contr...
cdlemg4b2 40604 TODO: FIX COMMENT. (Contr...
cdlemg4b12 40605 TODO: FIX COMMENT. (Contr...
cdlemg4c 40606 TODO: FIX COMMENT. (Contr...
cdlemg4d 40607 TODO: FIX COMMENT. (Contr...
cdlemg4e 40608 TODO: FIX COMMENT. (Contr...
cdlemg4f 40609 TODO: FIX COMMENT. (Contr...
cdlemg4g 40610 TODO: FIX COMMENT. (Contr...
cdlemg4 40611 TODO: FIX COMMENT. (Contr...
cdlemg6a 40612 TODO: FIX COMMENT. TODO: ...
cdlemg6b 40613 TODO: FIX COMMENT. TODO: ...
cdlemg6c 40614 TODO: FIX COMMENT. (Contr...
cdlemg6d 40615 TODO: FIX COMMENT. (Contr...
cdlemg6e 40616 TODO: FIX COMMENT. (Contr...
cdlemg6 40617 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 40618 Value of a translation com...
cdlemg7aN 40619 TODO: FIX COMMENT. (Contr...
cdlemg7N 40620 TODO: FIX COMMENT. (Contr...
cdlemg8a 40621 TODO: FIX COMMENT. (Contr...
cdlemg8b 40622 TODO: FIX COMMENT. (Contr...
cdlemg8c 40623 TODO: FIX COMMENT. (Contr...
cdlemg8d 40624 TODO: FIX COMMENT. (Contr...
cdlemg8 40625 TODO: FIX COMMENT. (Contr...
cdlemg9a 40626 TODO: FIX COMMENT. (Contr...
cdlemg9b 40627 The triples ` <. P , ( F `...
cdlemg9 40628 The triples ` <. P , ( F `...
cdlemg10b 40629 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 40630 TODO: FIX COMMENT. TODO: ...
cdlemg11a 40631 TODO: FIX COMMENT. (Contr...
cdlemg11aq 40632 TODO: FIX COMMENT. TODO: ...
cdlemg10c 40633 TODO: FIX COMMENT. TODO: ...
cdlemg10a 40634 TODO: FIX COMMENT. (Contr...
cdlemg10 40635 TODO: FIX COMMENT. (Contr...
cdlemg11b 40636 TODO: FIX COMMENT. (Contr...
cdlemg12a 40637 TODO: FIX COMMENT. (Contr...
cdlemg12b 40638 The triples ` <. P , ( F `...
cdlemg12c 40639 The triples ` <. P , ( F `...
cdlemg12d 40640 TODO: FIX COMMENT. (Contr...
cdlemg12e 40641 TODO: FIX COMMENT. (Contr...
cdlemg12f 40642 TODO: FIX COMMENT. (Contr...
cdlemg12g 40643 TODO: FIX COMMENT. TODO: ...
cdlemg12 40644 TODO: FIX COMMENT. (Contr...
cdlemg13a 40645 TODO: FIX COMMENT. (Contr...
cdlemg13 40646 TODO: FIX COMMENT. (Contr...
cdlemg14f 40647 TODO: FIX COMMENT. (Contr...
cdlemg14g 40648 TODO: FIX COMMENT. (Contr...
cdlemg15a 40649 Eliminate the ` ( F `` P )...
cdlemg15 40650 Eliminate the ` ( (...
cdlemg16 40651 Part of proof of Lemma G o...
cdlemg16ALTN 40652 This version of ~ cdlemg16...
cdlemg16z 40653 Eliminate ` ( ( F `...
cdlemg16zz 40654 Eliminate ` P =/= Q ` from...
cdlemg17a 40655 TODO: FIX COMMENT. (Contr...
cdlemg17b 40656 Part of proof of Lemma G i...
cdlemg17dN 40657 TODO: fix comment. (Contr...
cdlemg17dALTN 40658 Same as ~ cdlemg17dN with ...
cdlemg17e 40659 TODO: fix comment. (Contr...
cdlemg17f 40660 TODO: fix comment. (Contr...
cdlemg17g 40661 TODO: fix comment. (Contr...
cdlemg17h 40662 TODO: fix comment. (Contr...
cdlemg17i 40663 TODO: fix comment. (Contr...
cdlemg17ir 40664 TODO: fix comment. (Contr...
cdlemg17j 40665 TODO: fix comment. (Contr...
cdlemg17pq 40666 Utility theorem for swappi...
cdlemg17bq 40667 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 40668 ~ cdlemg17i with ` P ` and...
cdlemg17irq 40669 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 40670 ~ cdlemg17j with ` P ` and...
cdlemg17 40671 Part of Lemma G of [Crawle...
cdlemg18a 40672 Show two lines are differe...
cdlemg18b 40673 Lemma for ~ cdlemg18c . T...
cdlemg18c 40674 Show two lines intersect a...
cdlemg18d 40675 Show two lines intersect a...
cdlemg18 40676 Show two lines intersect a...
cdlemg19a 40677 Show two lines intersect a...
cdlemg19 40678 Show two lines intersect a...
cdlemg20 40679 Show two lines intersect a...
cdlemg21 40680 Version of cdlemg19 with `...
cdlemg22 40681 ~ cdlemg21 with ` ( F `` P...
cdlemg24 40682 Combine ~ cdlemg16z and ~ ...
cdlemg37 40683 Use ~ cdlemg8 to eliminate...
cdlemg25zz 40684 ~ cdlemg16zz restated for ...
cdlemg26zz 40685 ~ cdlemg16zz restated for ...
cdlemg27a 40686 For use with case when ` (...
cdlemg28a 40687 Part of proof of Lemma G o...
cdlemg31b0N 40688 TODO: Fix comment. (Cont...
cdlemg31b0a 40689 TODO: Fix comment. (Cont...
cdlemg27b 40690 TODO: Fix comment. (Cont...
cdlemg31a 40691 TODO: fix comment. (Contr...
cdlemg31b 40692 TODO: fix comment. (Contr...
cdlemg31c 40693 Show that when ` N ` is an...
cdlemg31d 40694 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 40695 TODO: Fix comment. (Cont...
cdlemg33c0 40696 TODO: Fix comment. (Cont...
cdlemg28b 40697 Part of proof of Lemma G o...
cdlemg28 40698 Part of proof of Lemma G o...
cdlemg29 40699 Eliminate ` ( F `` P ) =/=...
cdlemg33a 40700 TODO: Fix comment. (Cont...
cdlemg33b 40701 TODO: Fix comment. (Cont...
cdlemg33c 40702 TODO: Fix comment. (Cont...
cdlemg33d 40703 TODO: Fix comment. (Cont...
cdlemg33e 40704 TODO: Fix comment. (Cont...
cdlemg33 40705 Combine ~ cdlemg33b , ~ cd...
cdlemg34 40706 Use cdlemg33 to eliminate ...
cdlemg35 40707 TODO: Fix comment. TODO:...
cdlemg36 40708 Use cdlemg35 to eliminate ...
cdlemg38 40709 Use ~ cdlemg37 to eliminat...
cdlemg39 40710 Eliminate ` =/= ` conditio...
cdlemg40 40711 Eliminate ` P =/= Q ` cond...
cdlemg41 40712 Convert ~ cdlemg40 to func...
ltrnco 40713 The composition of two tra...
trlcocnv 40714 Swap the arguments of the ...
trlcoabs 40715 Absorption into a composit...
trlcoabs2N 40716 Absorption of the trace of...
trlcoat 40717 The trace of a composition...
trlcocnvat 40718 Commonly used special case...
trlconid 40719 The composition of two dif...
trlcolem 40720 Lemma for ~ trlco . (Cont...
trlco 40721 The trace of a composition...
trlcone 40722 If two translations have d...
cdlemg42 40723 Part of proof of Lemma G o...
cdlemg43 40724 Part of proof of Lemma G o...
cdlemg44a 40725 Part of proof of Lemma G o...
cdlemg44b 40726 Eliminate ` ( F `` P ) =/=...
cdlemg44 40727 Part of proof of Lemma G o...
cdlemg47a 40728 TODO: fix comment. TODO: ...
cdlemg46 40729 Part of proof of Lemma G o...
cdlemg47 40730 Part of proof of Lemma G o...
cdlemg48 40731 Eliminate ` h ` from ~ cdl...
ltrncom 40732 Composition is commutative...
ltrnco4 40733 Rearrange a composition of...
trljco 40734 Trace joined with trace of...
trljco2 40735 Trace joined with trace of...
tgrpfset 40738 The translation group maps...
tgrpset 40739 The translation group for ...
tgrpbase 40740 The base set of the transl...
tgrpopr 40741 The group operation of the...
tgrpov 40742 The group operation value ...
tgrpgrplem 40743 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 40744 The translation group is a...
tgrpabl 40745 The translation group is a...
tendofset 40752 The set of all trace-prese...
tendoset 40753 The set of trace-preservin...
istendo 40754 The predicate "is a trace-...
tendotp 40755 Trace-preserving property ...
istendod 40756 Deduce the predicate "is a...
tendof 40757 Functionality of a trace-p...
tendoeq1 40758 Condition determining equa...
tendovalco 40759 Value of composition of tr...
tendocoval 40760 Value of composition of en...
tendocl 40761 Closure of a trace-preserv...
tendoco2 40762 Distribution of compositio...
tendoidcl 40763 The identity is a trace-pr...
tendo1mul 40764 Multiplicative identity mu...
tendo1mulr 40765 Multiplicative identity mu...
tendococl 40766 The composition of two tra...
tendoid 40767 The identity value of a tr...
tendoeq2 40768 Condition determining equa...
tendoplcbv 40769 Define sum operation for t...
tendopl 40770 Value of endomorphism sum ...
tendopl2 40771 Value of result of endomor...
tendoplcl2 40772 Value of result of endomor...
tendoplco2 40773 Value of result of endomor...
tendopltp 40774 Trace-preserving property ...
tendoplcl 40775 Endomorphism sum is a trac...
tendoplcom 40776 The endomorphism sum opera...
tendoplass 40777 The endomorphism sum opera...
tendodi1 40778 Endomorphism composition d...
tendodi2 40779 Endomorphism composition d...
tendo0cbv 40780 Define additive identity f...
tendo02 40781 Value of additive identity...
tendo0co2 40782 The additive identity trac...
tendo0tp 40783 Trace-preserving property ...
tendo0cl 40784 The additive identity is a...
tendo0pl 40785 Property of the additive i...
tendo0plr 40786 Property of the additive i...
tendoicbv 40787 Define inverse function fo...
tendoi 40788 Value of inverse endomorph...
tendoi2 40789 Value of additive inverse ...
tendoicl 40790 Closure of the additive in...
tendoipl 40791 Property of the additive i...
tendoipl2 40792 Property of the additive i...
erngfset 40793 The division rings on trac...
erngset 40794 The division ring on trace...
erngbase 40795 The base set of the divisi...
erngfplus 40796 Ring addition operation. ...
erngplus 40797 Ring addition operation. ...
erngplus2 40798 Ring addition operation. ...
erngfmul 40799 Ring multiplication operat...
erngmul 40800 Ring addition operation. ...
erngfset-rN 40801 The division rings on trac...
erngset-rN 40802 The division ring on trace...
erngbase-rN 40803 The base set of the divisi...
erngfplus-rN 40804 Ring addition operation. ...
erngplus-rN 40805 Ring addition operation. ...
erngplus2-rN 40806 Ring addition operation. ...
erngfmul-rN 40807 Ring multiplication operat...
erngmul-rN 40808 Ring addition operation. ...
cdlemh1 40809 Part of proof of Lemma H o...
cdlemh2 40810 Part of proof of Lemma H o...
cdlemh 40811 Lemma H of [Crawley] p. 11...
cdlemi1 40812 Part of proof of Lemma I o...
cdlemi2 40813 Part of proof of Lemma I o...
cdlemi 40814 Lemma I of [Crawley] p. 11...
cdlemj1 40815 Part of proof of Lemma J o...
cdlemj2 40816 Part of proof of Lemma J o...
cdlemj3 40817 Part of proof of Lemma J o...
tendocan 40818 Cancellation law: if the v...
tendoid0 40819 A trace-preserving endomor...
tendo0mul 40820 Additive identity multipli...
tendo0mulr 40821 Additive identity multipli...
tendo1ne0 40822 The identity (unity) is no...
tendoconid 40823 The composition (product) ...
tendotr 40824 The trace of the value of ...
cdlemk1 40825 Part of proof of Lemma K o...
cdlemk2 40826 Part of proof of Lemma K o...
cdlemk3 40827 Part of proof of Lemma K o...
cdlemk4 40828 Part of proof of Lemma K o...
cdlemk5a 40829 Part of proof of Lemma K o...
cdlemk5 40830 Part of proof of Lemma K o...
cdlemk6 40831 Part of proof of Lemma K o...
cdlemk8 40832 Part of proof of Lemma K o...
cdlemk9 40833 Part of proof of Lemma K o...
cdlemk9bN 40834 Part of proof of Lemma K o...
cdlemki 40835 Part of proof of Lemma K o...
cdlemkvcl 40836 Part of proof of Lemma K o...
cdlemk10 40837 Part of proof of Lemma K o...
cdlemksv 40838 Part of proof of Lemma K o...
cdlemksel 40839 Part of proof of Lemma K o...
cdlemksat 40840 Part of proof of Lemma K o...
cdlemksv2 40841 Part of proof of Lemma K o...
cdlemk7 40842 Part of proof of Lemma K o...
cdlemk11 40843 Part of proof of Lemma K o...
cdlemk12 40844 Part of proof of Lemma K o...
cdlemkoatnle 40845 Utility lemma. (Contribut...
cdlemk13 40846 Part of proof of Lemma K o...
cdlemkole 40847 Utility lemma. (Contribut...
cdlemk14 40848 Part of proof of Lemma K o...
cdlemk15 40849 Part of proof of Lemma K o...
cdlemk16a 40850 Part of proof of Lemma K o...
cdlemk16 40851 Part of proof of Lemma K o...
cdlemk17 40852 Part of proof of Lemma K o...
cdlemk1u 40853 Part of proof of Lemma K o...
cdlemk5auN 40854 Part of proof of Lemma K o...
cdlemk5u 40855 Part of proof of Lemma K o...
cdlemk6u 40856 Part of proof of Lemma K o...
cdlemkj 40857 Part of proof of Lemma K o...
cdlemkuvN 40858 Part of proof of Lemma K o...
cdlemkuel 40859 Part of proof of Lemma K o...
cdlemkuat 40860 Part of proof of Lemma K o...
cdlemkuv2 40861 Part of proof of Lemma K o...
cdlemk18 40862 Part of proof of Lemma K o...
cdlemk19 40863 Part of proof of Lemma K o...
cdlemk7u 40864 Part of proof of Lemma K o...
cdlemk11u 40865 Part of proof of Lemma K o...
cdlemk12u 40866 Part of proof of Lemma K o...
cdlemk21N 40867 Part of proof of Lemma K o...
cdlemk20 40868 Part of proof of Lemma K o...
cdlemkoatnle-2N 40869 Utility lemma. (Contribut...
cdlemk13-2N 40870 Part of proof of Lemma K o...
cdlemkole-2N 40871 Utility lemma. (Contribut...
cdlemk14-2N 40872 Part of proof of Lemma K o...
cdlemk15-2N 40873 Part of proof of Lemma K o...
cdlemk16-2N 40874 Part of proof of Lemma K o...
cdlemk17-2N 40875 Part of proof of Lemma K o...
cdlemkj-2N 40876 Part of proof of Lemma K o...
cdlemkuv-2N 40877 Part of proof of Lemma K o...
cdlemkuel-2N 40878 Part of proof of Lemma K o...
cdlemkuv2-2 40879 Part of proof of Lemma K o...
cdlemk18-2N 40880 Part of proof of Lemma K o...
cdlemk19-2N 40881 Part of proof of Lemma K o...
cdlemk7u-2N 40882 Part of proof of Lemma K o...
cdlemk11u-2N 40883 Part of proof of Lemma K o...
cdlemk12u-2N 40884 Part of proof of Lemma K o...
cdlemk21-2N 40885 Part of proof of Lemma K o...
cdlemk20-2N 40886 Part of proof of Lemma K o...
cdlemk22 40887 Part of proof of Lemma K o...
cdlemk30 40888 Part of proof of Lemma K o...
cdlemkuu 40889 Convert between function a...
cdlemk31 40890 Part of proof of Lemma K o...
cdlemk32 40891 Part of proof of Lemma K o...
cdlemkuel-3 40892 Part of proof of Lemma K o...
cdlemkuv2-3N 40893 Part of proof of Lemma K o...
cdlemk18-3N 40894 Part of proof of Lemma K o...
cdlemk22-3 40895 Part of proof of Lemma K o...
cdlemk23-3 40896 Part of proof of Lemma K o...
cdlemk24-3 40897 Part of proof of Lemma K o...
cdlemk25-3 40898 Part of proof of Lemma K o...
cdlemk26b-3 40899 Part of proof of Lemma K o...
cdlemk26-3 40900 Part of proof of Lemma K o...
cdlemk27-3 40901 Part of proof of Lemma K o...
cdlemk28-3 40902 Part of proof of Lemma K o...
cdlemk33N 40903 Part of proof of Lemma K o...
cdlemk34 40904 Part of proof of Lemma K o...
cdlemk29-3 40905 Part of proof of Lemma K o...
cdlemk35 40906 Part of proof of Lemma K o...
cdlemk36 40907 Part of proof of Lemma K o...
cdlemk37 40908 Part of proof of Lemma K o...
cdlemk38 40909 Part of proof of Lemma K o...
cdlemk39 40910 Part of proof of Lemma K o...
cdlemk40 40911 TODO: fix comment. (Contr...
cdlemk40t 40912 TODO: fix comment. (Contr...
cdlemk40f 40913 TODO: fix comment. (Contr...
cdlemk41 40914 Part of proof of Lemma K o...
cdlemkfid1N 40915 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 40916 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 40917 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 40918 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 40919 TODO: is this useful or sh...
cdlemky 40920 Part of proof of Lemma K o...
cdlemkyu 40921 Convert between function a...
cdlemkyuu 40922 ~ cdlemkyu with some hypot...
cdlemk11ta 40923 Part of proof of Lemma K o...
cdlemk19ylem 40924 Lemma for ~ cdlemk19y . (...
cdlemk11tb 40925 Part of proof of Lemma K o...
cdlemk19y 40926 ~ cdlemk19 with simpler hy...
cdlemkid3N 40927 Lemma for ~ cdlemkid . (C...
cdlemkid4 40928 Lemma for ~ cdlemkid . (C...
cdlemkid5 40929 Lemma for ~ cdlemkid . (C...
cdlemkid 40930 The value of the tau funct...
cdlemk35s 40931 Substitution version of ~ ...
cdlemk35s-id 40932 Substitution version of ~ ...
cdlemk39s 40933 Substitution version of ~ ...
cdlemk39s-id 40934 Substitution version of ~ ...
cdlemk42 40935 Part of proof of Lemma K o...
cdlemk19xlem 40936 Lemma for ~ cdlemk19x . (...
cdlemk19x 40937 ~ cdlemk19 with simpler hy...
cdlemk42yN 40938 Part of proof of Lemma K o...
cdlemk11tc 40939 Part of proof of Lemma K o...
cdlemk11t 40940 Part of proof of Lemma K o...
cdlemk45 40941 Part of proof of Lemma K o...
cdlemk46 40942 Part of proof of Lemma K o...
cdlemk47 40943 Part of proof of Lemma K o...
cdlemk48 40944 Part of proof of Lemma K o...
cdlemk49 40945 Part of proof of Lemma K o...
cdlemk50 40946 Part of proof of Lemma K o...
cdlemk51 40947 Part of proof of Lemma K o...
cdlemk52 40948 Part of proof of Lemma K o...
cdlemk53a 40949 Lemma for ~ cdlemk53 . (C...
cdlemk53b 40950 Lemma for ~ cdlemk53 . (C...
cdlemk53 40951 Part of proof of Lemma K o...
cdlemk54 40952 Part of proof of Lemma K o...
cdlemk55a 40953 Lemma for ~ cdlemk55 . (C...
cdlemk55b 40954 Lemma for ~ cdlemk55 . (C...
cdlemk55 40955 Part of proof of Lemma K o...
cdlemkyyN 40956 Part of proof of Lemma K o...
cdlemk43N 40957 Part of proof of Lemma K o...
cdlemk35u 40958 Substitution version of ~ ...
cdlemk55u1 40959 Lemma for ~ cdlemk55u . (...
cdlemk55u 40960 Part of proof of Lemma K o...
cdlemk39u1 40961 Lemma for ~ cdlemk39u . (...
cdlemk39u 40962 Part of proof of Lemma K o...
cdlemk19u1 40963 ~ cdlemk19 with simpler hy...
cdlemk19u 40964 Part of Lemma K of [Crawle...
cdlemk56 40965 Part of Lemma K of [Crawle...
cdlemk19w 40966 Use a fixed element to eli...
cdlemk56w 40967 Use a fixed element to eli...
cdlemk 40968 Lemma K of [Crawley] p. 11...
tendoex 40969 Generalization of Lemma K ...
cdleml1N 40970 Part of proof of Lemma L o...
cdleml2N 40971 Part of proof of Lemma L o...
cdleml3N 40972 Part of proof of Lemma L o...
cdleml4N 40973 Part of proof of Lemma L o...
cdleml5N 40974 Part of proof of Lemma L o...
cdleml6 40975 Part of proof of Lemma L o...
cdleml7 40976 Part of proof of Lemma L o...
cdleml8 40977 Part of proof of Lemma L o...
cdleml9 40978 Part of proof of Lemma L o...
dva1dim 40979 Two expressions for the 1-...
dvhb1dimN 40980 Two expressions for the 1-...
erng1lem 40981 Value of the endomorphism ...
erngdvlem1 40982 Lemma for ~ eringring . (...
erngdvlem2N 40983 Lemma for ~ eringring . (...
erngdvlem3 40984 Lemma for ~ eringring . (...
erngdvlem4 40985 Lemma for ~ erngdv . (Con...
eringring 40986 An endomorphism ring is a ...
erngdv 40987 An endomorphism ring is a ...
erng0g 40988 The division ring zero of ...
erng1r 40989 The division ring unity of...
erngdvlem1-rN 40990 Lemma for ~ eringring . (...
erngdvlem2-rN 40991 Lemma for ~ eringring . (...
erngdvlem3-rN 40992 Lemma for ~ eringring . (...
erngdvlem4-rN 40993 Lemma for ~ erngdv . (Con...
erngring-rN 40994 An endomorphism ring is a ...
erngdv-rN 40995 An endomorphism ring is a ...
dvafset 40998 The constructed partial ve...
dvaset 40999 The constructed partial ve...
dvasca 41000 The ring base set of the c...
dvabase 41001 The ring base set of the c...
dvafplusg 41002 Ring addition operation fo...
dvaplusg 41003 Ring addition operation fo...
dvaplusgv 41004 Ring addition operation fo...
dvafmulr 41005 Ring multiplication operat...
dvamulr 41006 Ring multiplication operat...
dvavbase 41007 The vectors (vector base s...
dvafvadd 41008 The vector sum operation f...
dvavadd 41009 Ring addition operation fo...
dvafvsca 41010 Ring addition operation fo...
dvavsca 41011 Ring addition operation fo...
tendospcl 41012 Closure of endomorphism sc...
tendospass 41013 Associative law for endomo...
tendospdi1 41014 Forward distributive law f...
tendocnv 41015 Converse of a trace-preser...
tendospdi2 41016 Reverse distributive law f...
tendospcanN 41017 Cancellation law for trace...
dvaabl 41018 The constructed partial ve...
dvalveclem 41019 Lemma for ~ dvalvec . (Co...
dvalvec 41020 The constructed partial ve...
dva0g 41021 The zero vector of partial...
diaffval 41024 The partial isomorphism A ...
diafval 41025 The partial isomorphism A ...
diaval 41026 The partial isomorphism A ...
diaelval 41027 Member of the partial isom...
diafn 41028 Functionality and domain o...
diadm 41029 Domain of the partial isom...
diaeldm 41030 Member of domain of the pa...
diadmclN 41031 A member of domain of the ...
diadmleN 41032 A member of domain of the ...
dian0 41033 The value of the partial i...
dia0eldmN 41034 The lattice zero belongs t...
dia1eldmN 41035 The fiducial hyperplane (t...
diass 41036 The value of the partial i...
diael 41037 A member of the value of t...
diatrl 41038 Trace of a member of the p...
diaelrnN 41039 Any value of the partial i...
dialss 41040 The value of partial isomo...
diaord 41041 The partial isomorphism A ...
dia11N 41042 The partial isomorphism A ...
diaf11N 41043 The partial isomorphism A ...
diaclN 41044 Closure of partial isomorp...
diacnvclN 41045 Closure of partial isomorp...
dia0 41046 The value of the partial i...
dia1N 41047 The value of the partial i...
dia1elN 41048 The largest subspace in th...
diaglbN 41049 Partial isomorphism A of a...
diameetN 41050 Partial isomorphism A of a...
diainN 41051 Inverse partial isomorphis...
diaintclN 41052 The intersection of partia...
diasslssN 41053 The partial isomorphism A ...
diassdvaN 41054 The partial isomorphism A ...
dia1dim 41055 Two expressions for the 1-...
dia1dim2 41056 Two expressions for a 1-di...
dia1dimid 41057 A vector (translation) bel...
dia2dimlem1 41058 Lemma for ~ dia2dim . Sho...
dia2dimlem2 41059 Lemma for ~ dia2dim . Def...
dia2dimlem3 41060 Lemma for ~ dia2dim . Def...
dia2dimlem4 41061 Lemma for ~ dia2dim . Sho...
dia2dimlem5 41062 Lemma for ~ dia2dim . The...
dia2dimlem6 41063 Lemma for ~ dia2dim . Eli...
dia2dimlem7 41064 Lemma for ~ dia2dim . Eli...
dia2dimlem8 41065 Lemma for ~ dia2dim . Eli...
dia2dimlem9 41066 Lemma for ~ dia2dim . Eli...
dia2dimlem10 41067 Lemma for ~ dia2dim . Con...
dia2dimlem11 41068 Lemma for ~ dia2dim . Con...
dia2dimlem12 41069 Lemma for ~ dia2dim . Obt...
dia2dimlem13 41070 Lemma for ~ dia2dim . Eli...
dia2dim 41071 A two-dimensional subspace...
dvhfset 41074 The constructed full vecto...
dvhset 41075 The constructed full vecto...
dvhsca 41076 The ring of scalars of the...
dvhbase 41077 The ring base set of the c...
dvhfplusr 41078 Ring addition operation fo...
dvhfmulr 41079 Ring multiplication operat...
dvhmulr 41080 Ring multiplication operat...
dvhvbase 41081 The vectors (vector base s...
dvhelvbasei 41082 Vector membership in the c...
dvhvaddcbv 41083 Change bound variables to ...
dvhvaddval 41084 The vector sum operation f...
dvhfvadd 41085 The vector sum operation f...
dvhvadd 41086 The vector sum operation f...
dvhopvadd 41087 The vector sum operation f...
dvhopvadd2 41088 The vector sum operation f...
dvhvaddcl 41089 Closure of the vector sum ...
dvhvaddcomN 41090 Commutativity of vector su...
dvhvaddass 41091 Associativity of vector su...
dvhvscacbv 41092 Change bound variables to ...
dvhvscaval 41093 The scalar product operati...
dvhfvsca 41094 Scalar product operation f...
dvhvsca 41095 Scalar product operation f...
dvhopvsca 41096 Scalar product operation f...
dvhvscacl 41097 Closure of the scalar prod...
tendoinvcl 41098 Closure of multiplicative ...
tendolinv 41099 Left multiplicative invers...
tendorinv 41100 Right multiplicative inver...
dvhgrp 41101 The full vector space ` U ...
dvhlveclem 41102 Lemma for ~ dvhlvec . TOD...
dvhlvec 41103 The full vector space ` U ...
dvhlmod 41104 The full vector space ` U ...
dvh0g 41105 The zero vector of vector ...
dvheveccl 41106 Properties of a unit vecto...
dvhopclN 41107 Closure of a ` DVecH ` vec...
dvhopaddN 41108 Sum of ` DVecH ` vectors e...
dvhopspN 41109 Scalar product of ` DVecH ...
dvhopN 41110 Decompose a ` DVecH ` vect...
dvhopellsm 41111 Ordered pair membership in...
cdlemm10N 41112 The image of the map ` G `...
docaffvalN 41115 Subspace orthocomplement f...
docafvalN 41116 Subspace orthocomplement f...
docavalN 41117 Subspace orthocomplement f...
docaclN 41118 Closure of subspace orthoc...
diaocN 41119 Value of partial isomorphi...
doca2N 41120 Double orthocomplement of ...
doca3N 41121 Double orthocomplement of ...
dvadiaN 41122 Any closed subspace is a m...
diarnN 41123 Partial isomorphism A maps...
diaf1oN 41124 The partial isomorphism A ...
djaffvalN 41127 Subspace join for ` DVecA ...
djafvalN 41128 Subspace join for ` DVecA ...
djavalN 41129 Subspace join for ` DVecA ...
djaclN 41130 Closure of subspace join f...
djajN 41131 Transfer lattice join to `...
dibffval 41134 The partial isomorphism B ...
dibfval 41135 The partial isomorphism B ...
dibval 41136 The partial isomorphism B ...
dibopelvalN 41137 Member of the partial isom...
dibval2 41138 Value of the partial isomo...
dibopelval2 41139 Member of the partial isom...
dibval3N 41140 Value of the partial isomo...
dibelval3 41141 Member of the partial isom...
dibopelval3 41142 Member of the partial isom...
dibelval1st 41143 Membership in value of the...
dibelval1st1 41144 Membership in value of the...
dibelval1st2N 41145 Membership in value of the...
dibelval2nd 41146 Membership in value of the...
dibn0 41147 The value of the partial i...
dibfna 41148 Functionality and domain o...
dibdiadm 41149 Domain of the partial isom...
dibfnN 41150 Functionality and domain o...
dibdmN 41151 Domain of the partial isom...
dibeldmN 41152 Member of domain of the pa...
dibord 41153 The isomorphism B for a la...
dib11N 41154 The isomorphism B for a la...
dibf11N 41155 The partial isomorphism A ...
dibclN 41156 Closure of partial isomorp...
dibvalrel 41157 The value of partial isomo...
dib0 41158 The value of partial isomo...
dib1dim 41159 Two expressions for the 1-...
dibglbN 41160 Partial isomorphism B of a...
dibintclN 41161 The intersection of partia...
dib1dim2 41162 Two expressions for a 1-di...
dibss 41163 The partial isomorphism B ...
diblss 41164 The value of partial isomo...
diblsmopel 41165 Membership in subspace sum...
dicffval 41168 The partial isomorphism C ...
dicfval 41169 The partial isomorphism C ...
dicval 41170 The partial isomorphism C ...
dicopelval 41171 Membership in value of the...
dicelvalN 41172 Membership in value of the...
dicval2 41173 The partial isomorphism C ...
dicelval3 41174 Member of the partial isom...
dicopelval2 41175 Membership in value of the...
dicelval2N 41176 Membership in value of the...
dicfnN 41177 Functionality and domain o...
dicdmN 41178 Domain of the partial isom...
dicvalrelN 41179 The value of partial isomo...
dicssdvh 41180 The partial isomorphism C ...
dicelval1sta 41181 Membership in value of the...
dicelval1stN 41182 Membership in value of the...
dicelval2nd 41183 Membership in value of the...
dicvaddcl 41184 Membership in value of the...
dicvscacl 41185 Membership in value of the...
dicn0 41186 The value of the partial i...
diclss 41187 The value of partial isomo...
diclspsn 41188 The value of isomorphism C...
cdlemn2 41189 Part of proof of Lemma N o...
cdlemn2a 41190 Part of proof of Lemma N o...
cdlemn3 41191 Part of proof of Lemma N o...
cdlemn4 41192 Part of proof of Lemma N o...
cdlemn4a 41193 Part of proof of Lemma N o...
cdlemn5pre 41194 Part of proof of Lemma N o...
cdlemn5 41195 Part of proof of Lemma N o...
cdlemn6 41196 Part of proof of Lemma N o...
cdlemn7 41197 Part of proof of Lemma N o...
cdlemn8 41198 Part of proof of Lemma N o...
cdlemn9 41199 Part of proof of Lemma N o...
cdlemn10 41200 Part of proof of Lemma N o...
cdlemn11a 41201 Part of proof of Lemma N o...
cdlemn11b 41202 Part of proof of Lemma N o...
cdlemn11c 41203 Part of proof of Lemma N o...
cdlemn11pre 41204 Part of proof of Lemma N o...
cdlemn11 41205 Part of proof of Lemma N o...
cdlemn 41206 Lemma N of [Crawley] p. 12...
dihordlem6 41207 Part of proof of Lemma N o...
dihordlem7 41208 Part of proof of Lemma N o...
dihordlem7b 41209 Part of proof of Lemma N o...
dihjustlem 41210 Part of proof after Lemma ...
dihjust 41211 Part of proof after Lemma ...
dihord1 41212 Part of proof after Lemma ...
dihord2a 41213 Part of proof after Lemma ...
dihord2b 41214 Part of proof after Lemma ...
dihord2cN 41215 Part of proof after Lemma ...
dihord11b 41216 Part of proof after Lemma ...
dihord10 41217 Part of proof after Lemma ...
dihord11c 41218 Part of proof after Lemma ...
dihord2pre 41219 Part of proof after Lemma ...
dihord2pre2 41220 Part of proof after Lemma ...
dihord2 41221 Part of proof after Lemma ...
dihffval 41224 The isomorphism H for a la...
dihfval 41225 Isomorphism H for a lattic...
dihval 41226 Value of isomorphism H for...
dihvalc 41227 Value of isomorphism H for...
dihlsscpre 41228 Closure of isomorphism H f...
dihvalcqpre 41229 Value of isomorphism H for...
dihvalcq 41230 Value of isomorphism H for...
dihvalb 41231 Value of isomorphism H for...
dihopelvalbN 41232 Ordered pair member of the...
dihvalcqat 41233 Value of isomorphism H for...
dih1dimb 41234 Two expressions for a 1-di...
dih1dimb2 41235 Isomorphism H at an atom u...
dih1dimc 41236 Isomorphism H at an atom n...
dib2dim 41237 Extend ~ dia2dim to partia...
dih2dimb 41238 Extend ~ dib2dim to isomor...
dih2dimbALTN 41239 Extend ~ dia2dim to isomor...
dihopelvalcqat 41240 Ordered pair member of the...
dihvalcq2 41241 Value of isomorphism H for...
dihopelvalcpre 41242 Member of value of isomorp...
dihopelvalc 41243 Member of value of isomorp...
dihlss 41244 The value of isomorphism H...
dihss 41245 The value of isomorphism H...
dihssxp 41246 An isomorphism H value is ...
dihopcl 41247 Closure of an ordered pair...
xihopellsmN 41248 Ordered pair membership in...
dihopellsm 41249 Ordered pair membership in...
dihord6apre 41250 Part of proof that isomorp...
dihord3 41251 The isomorphism H for a la...
dihord4 41252 The isomorphism H for a la...
dihord5b 41253 Part of proof that isomorp...
dihord6b 41254 Part of proof that isomorp...
dihord6a 41255 Part of proof that isomorp...
dihord5apre 41256 Part of proof that isomorp...
dihord5a 41257 Part of proof that isomorp...
dihord 41258 The isomorphism H is order...
dih11 41259 The isomorphism H is one-t...
dihf11lem 41260 Functionality of the isomo...
dihf11 41261 The isomorphism H for a la...
dihfn 41262 Functionality and domain o...
dihdm 41263 Domain of isomorphism H. (...
dihcl 41264 Closure of isomorphism H. ...
dihcnvcl 41265 Closure of isomorphism H c...
dihcnvid1 41266 The converse isomorphism o...
dihcnvid2 41267 The isomorphism of a conve...
dihcnvord 41268 Ordering property for conv...
dihcnv11 41269 The converse of isomorphis...
dihsslss 41270 The isomorphism H maps to ...
dihrnlss 41271 The isomorphism H maps to ...
dihrnss 41272 The isomorphism H maps to ...
dihvalrel 41273 The value of isomorphism H...
dih0 41274 The value of isomorphism H...
dih0bN 41275 A lattice element is zero ...
dih0vbN 41276 A vector is zero iff its s...
dih0cnv 41277 The isomorphism H converse...
dih0rn 41278 The zero subspace belongs ...
dih0sb 41279 A subspace is zero iff the...
dih1 41280 The value of isomorphism H...
dih1rn 41281 The full vector space belo...
dih1cnv 41282 The isomorphism H converse...
dihwN 41283 Value of isomorphism H at ...
dihmeetlem1N 41284 Isomorphism H of a conjunc...
dihglblem5apreN 41285 A conjunction property of ...
dihglblem5aN 41286 A conjunction property of ...
dihglblem2aN 41287 Lemma for isomorphism H of...
dihglblem2N 41288 The GLB of a set of lattic...
dihglblem3N 41289 Isomorphism H of a lattice...
dihglblem3aN 41290 Isomorphism H of a lattice...
dihglblem4 41291 Isomorphism H of a lattice...
dihglblem5 41292 Isomorphism H of a lattice...
dihmeetlem2N 41293 Isomorphism H of a conjunc...
dihglbcpreN 41294 Isomorphism H of a lattice...
dihglbcN 41295 Isomorphism H of a lattice...
dihmeetcN 41296 Isomorphism H of a lattice...
dihmeetbN 41297 Isomorphism H of a lattice...
dihmeetbclemN 41298 Lemma for isomorphism H of...
dihmeetlem3N 41299 Lemma for isomorphism H of...
dihmeetlem4preN 41300 Lemma for isomorphism H of...
dihmeetlem4N 41301 Lemma for isomorphism H of...
dihmeetlem5 41302 Part of proof that isomorp...
dihmeetlem6 41303 Lemma for isomorphism H of...
dihmeetlem7N 41304 Lemma for isomorphism H of...
dihjatc1 41305 Lemma for isomorphism H of...
dihjatc2N 41306 Isomorphism H of join with...
dihjatc3 41307 Isomorphism H of join with...
dihmeetlem8N 41308 Lemma for isomorphism H of...
dihmeetlem9N 41309 Lemma for isomorphism H of...
dihmeetlem10N 41310 Lemma for isomorphism H of...
dihmeetlem11N 41311 Lemma for isomorphism H of...
dihmeetlem12N 41312 Lemma for isomorphism H of...
dihmeetlem13N 41313 Lemma for isomorphism H of...
dihmeetlem14N 41314 Lemma for isomorphism H of...
dihmeetlem15N 41315 Lemma for isomorphism H of...
dihmeetlem16N 41316 Lemma for isomorphism H of...
dihmeetlem17N 41317 Lemma for isomorphism H of...
dihmeetlem18N 41318 Lemma for isomorphism H of...
dihmeetlem19N 41319 Lemma for isomorphism H of...
dihmeetlem20N 41320 Lemma for isomorphism H of...
dihmeetALTN 41321 Isomorphism H of a lattice...
dih1dimatlem0 41322 Lemma for ~ dih1dimat . (...
dih1dimatlem 41323 Lemma for ~ dih1dimat . (...
dih1dimat 41324 Any 1-dimensional subspace...
dihlsprn 41325 The span of a vector belon...
dihlspsnssN 41326 A subspace included in a 1...
dihlspsnat 41327 The inverse isomorphism H ...
dihatlat 41328 The isomorphism H of an at...
dihat 41329 There exists at least one ...
dihpN 41330 The value of isomorphism H...
dihlatat 41331 The reverse isomorphism H ...
dihatexv 41332 There is a nonzero vector ...
dihatexv2 41333 There is a nonzero vector ...
dihglblem6 41334 Isomorphism H of a lattice...
dihglb 41335 Isomorphism H of a lattice...
dihglb2 41336 Isomorphism H of a lattice...
dihmeet 41337 Isomorphism H of a lattice...
dihintcl 41338 The intersection of closed...
dihmeetcl 41339 Closure of closed subspace...
dihmeet2 41340 Reverse isomorphism H of a...
dochffval 41343 Subspace orthocomplement f...
dochfval 41344 Subspace orthocomplement f...
dochval 41345 Subspace orthocomplement f...
dochval2 41346 Subspace orthocomplement f...
dochcl 41347 Closure of subspace orthoc...
dochlss 41348 A subspace orthocomplement...
dochssv 41349 A subspace orthocomplement...
dochfN 41350 Domain and codomain of the...
dochvalr 41351 Orthocomplement of a close...
doch0 41352 Orthocomplement of the zer...
doch1 41353 Orthocomplement of the uni...
dochoc0 41354 The zero subspace is close...
dochoc1 41355 The unit subspace (all vec...
dochvalr2 41356 Orthocomplement of a close...
dochvalr3 41357 Orthocomplement of a close...
doch2val2 41358 Double orthocomplement for...
dochss 41359 Subset law for orthocomple...
dochocss 41360 Double negative law for or...
dochoc 41361 Double negative law for or...
dochsscl 41362 If a set of vectors is inc...
dochoccl 41363 A set of vectors is closed...
dochord 41364 Ordering law for orthocomp...
dochord2N 41365 Ordering law for orthocomp...
dochord3 41366 Ordering law for orthocomp...
doch11 41367 Orthocomplement is one-to-...
dochsordN 41368 Strict ordering law for or...
dochn0nv 41369 An orthocomplement is nonz...
dihoml4c 41370 Version of ~ dihoml4 with ...
dihoml4 41371 Orthomodular law for const...
dochspss 41372 The span of a set of vecto...
dochocsp 41373 The span of an orthocomple...
dochspocN 41374 The span of an orthocomple...
dochocsn 41375 The double orthocomplement...
dochsncom 41376 Swap vectors in an orthoco...
dochsat 41377 The double orthocomplement...
dochshpncl 41378 If a hyperplane is not clo...
dochlkr 41379 Equivalent conditions for ...
dochkrshp 41380 The closure of a kernel is...
dochkrshp2 41381 Properties of the closure ...
dochkrshp3 41382 Properties of the closure ...
dochkrshp4 41383 Properties of the closure ...
dochdmj1 41384 De Morgan-like law for sub...
dochnoncon 41385 Law of noncontradiction. ...
dochnel2 41386 A nonzero member of a subs...
dochnel 41387 A nonzero vector doesn't b...
djhffval 41390 Subspace join for ` DVecH ...
djhfval 41391 Subspace join for ` DVecH ...
djhval 41392 Subspace join for ` DVecH ...
djhval2 41393 Value of subspace join for...
djhcl 41394 Closure of subspace join f...
djhlj 41395 Transfer lattice join to `...
djhljjN 41396 Lattice join in terms of `...
djhjlj 41397 ` DVecH ` vector space clo...
djhj 41398 ` DVecH ` vector space clo...
djhcom 41399 Subspace join commutes. (...
djhspss 41400 Subspace span of union is ...
djhsumss 41401 Subspace sum is a subset o...
dihsumssj 41402 The subspace sum of two is...
djhunssN 41403 Subspace union is a subset...
dochdmm1 41404 De Morgan-like law for clo...
djhexmid 41405 Excluded middle property o...
djh01 41406 Closed subspace join with ...
djh02 41407 Closed subspace join with ...
djhlsmcl 41408 A closed subspace sum equa...
djhcvat42 41409 A covering property. ( ~ ...
dihjatb 41410 Isomorphism H of lattice j...
dihjatc 41411 Isomorphism H of lattice j...
dihjatcclem1 41412 Lemma for isomorphism H of...
dihjatcclem2 41413 Lemma for isomorphism H of...
dihjatcclem3 41414 Lemma for ~ dihjatcc . (C...
dihjatcclem4 41415 Lemma for isomorphism H of...
dihjatcc 41416 Isomorphism H of lattice j...
dihjat 41417 Isomorphism H of lattice j...
dihprrnlem1N 41418 Lemma for ~ dihprrn , show...
dihprrnlem2 41419 Lemma for ~ dihprrn . (Co...
dihprrn 41420 The span of a vector pair ...
djhlsmat 41421 The sum of two subspace at...
dihjat1lem 41422 Subspace sum of a closed s...
dihjat1 41423 Subspace sum of a closed s...
dihsmsprn 41424 Subspace sum of a closed s...
dihjat2 41425 The subspace sum of a clos...
dihjat3 41426 Isomorphism H of lattice j...
dihjat4 41427 Transfer the subspace sum ...
dihjat6 41428 Transfer the subspace sum ...
dihsmsnrn 41429 The subspace sum of two si...
dihsmatrn 41430 The subspace sum of a clos...
dihjat5N 41431 Transfer lattice join with...
dvh4dimat 41432 There is an atom that is o...
dvh3dimatN 41433 There is an atom that is o...
dvh2dimatN 41434 Given an atom, there exist...
dvh1dimat 41435 There exists an atom. (Co...
dvh1dim 41436 There exists a nonzero vec...
dvh4dimlem 41437 Lemma for ~ dvh4dimN . (C...
dvhdimlem 41438 Lemma for ~ dvh2dim and ~ ...
dvh2dim 41439 There is a vector that is ...
dvh3dim 41440 There is a vector that is ...
dvh4dimN 41441 There is a vector that is ...
dvh3dim2 41442 There is a vector that is ...
dvh3dim3N 41443 There is a vector that is ...
dochsnnz 41444 The orthocomplement of a s...
dochsatshp 41445 The orthocomplement of a s...
dochsatshpb 41446 The orthocomplement of a s...
dochsnshp 41447 The orthocomplement of a n...
dochshpsat 41448 A hyperplane is closed iff...
dochkrsat 41449 The orthocomplement of a k...
dochkrsat2 41450 The orthocomplement of a k...
dochsat0 41451 The orthocomplement of a k...
dochkrsm 41452 The subspace sum of a clos...
dochexmidat 41453 Special case of excluded m...
dochexmidlem1 41454 Lemma for ~ dochexmid . H...
dochexmidlem2 41455 Lemma for ~ dochexmid . (...
dochexmidlem3 41456 Lemma for ~ dochexmid . U...
dochexmidlem4 41457 Lemma for ~ dochexmid . (...
dochexmidlem5 41458 Lemma for ~ dochexmid . (...
dochexmidlem6 41459 Lemma for ~ dochexmid . (...
dochexmidlem7 41460 Lemma for ~ dochexmid . C...
dochexmidlem8 41461 Lemma for ~ dochexmid . T...
dochexmid 41462 Excluded middle law for cl...
dochsnkrlem1 41463 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 41464 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 41465 Lemma for ~ dochsnkr . (C...
dochsnkr 41466 A (closed) kernel expresse...
dochsnkr2 41467 Kernel of the explicit fun...
dochsnkr2cl 41468 The ` X ` determining func...
dochflcl 41469 Closure of the explicit fu...
dochfl1 41470 The value of the explicit ...
dochfln0 41471 The value of a functional ...
dochkr1 41472 A nonzero functional has a...
dochkr1OLDN 41473 A nonzero functional has a...
lpolsetN 41476 The set of polarities of a...
islpolN 41477 The predicate "is a polari...
islpoldN 41478 Properties that determine ...
lpolfN 41479 Functionality of a polarit...
lpolvN 41480 The polarity of the whole ...
lpolconN 41481 Contraposition property of...
lpolsatN 41482 The polarity of an atomic ...
lpolpolsatN 41483 Property of a polarity. (...
dochpolN 41484 The subspace orthocompleme...
lcfl1lem 41485 Property of a functional w...
lcfl1 41486 Property of a functional w...
lcfl2 41487 Property of a functional w...
lcfl3 41488 Property of a functional w...
lcfl4N 41489 Property of a functional w...
lcfl5 41490 Property of a functional w...
lcfl5a 41491 Property of a functional w...
lcfl6lem 41492 Lemma for ~ lcfl6 . A fun...
lcfl7lem 41493 Lemma for ~ lcfl7N . If t...
lcfl6 41494 Property of a functional w...
lcfl7N 41495 Property of a functional w...
lcfl8 41496 Property of a functional w...
lcfl8a 41497 Property of a functional w...
lcfl8b 41498 Property of a nonzero func...
lcfl9a 41499 Property implying that a f...
lclkrlem1 41500 The set of functionals hav...
lclkrlem2a 41501 Lemma for ~ lclkr . Use ~...
lclkrlem2b 41502 Lemma for ~ lclkr . (Cont...
lclkrlem2c 41503 Lemma for ~ lclkr . (Cont...
lclkrlem2d 41504 Lemma for ~ lclkr . (Cont...
lclkrlem2e 41505 Lemma for ~ lclkr . The k...
lclkrlem2f 41506 Lemma for ~ lclkr . Const...
lclkrlem2g 41507 Lemma for ~ lclkr . Compa...
lclkrlem2h 41508 Lemma for ~ lclkr . Elimi...
lclkrlem2i 41509 Lemma for ~ lclkr . Elimi...
lclkrlem2j 41510 Lemma for ~ lclkr . Kerne...
lclkrlem2k 41511 Lemma for ~ lclkr . Kerne...
lclkrlem2l 41512 Lemma for ~ lclkr . Elimi...
lclkrlem2m 41513 Lemma for ~ lclkr . Const...
lclkrlem2n 41514 Lemma for ~ lclkr . (Cont...
lclkrlem2o 41515 Lemma for ~ lclkr . When ...
lclkrlem2p 41516 Lemma for ~ lclkr . When ...
lclkrlem2q 41517 Lemma for ~ lclkr . The s...
lclkrlem2r 41518 Lemma for ~ lclkr . When ...
lclkrlem2s 41519 Lemma for ~ lclkr . Thus,...
lclkrlem2t 41520 Lemma for ~ lclkr . We el...
lclkrlem2u 41521 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 41522 Lemma for ~ lclkr . When ...
lclkrlem2w 41523 Lemma for ~ lclkr . This ...
lclkrlem2x 41524 Lemma for ~ lclkr . Elimi...
lclkrlem2y 41525 Lemma for ~ lclkr . Resta...
lclkrlem2 41526 The set of functionals hav...
lclkr 41527 The set of functionals wit...
lcfls1lem 41528 Property of a functional w...
lcfls1N 41529 Property of a functional w...
lcfls1c 41530 Property of a functional w...
lclkrslem1 41531 The set of functionals hav...
lclkrslem2 41532 The set of functionals hav...
lclkrs 41533 The set of functionals hav...
lclkrs2 41534 The set of functionals wit...
lcfrvalsnN 41535 Reconstruction from the du...
lcfrlem1 41536 Lemma for ~ lcfr . Note t...
lcfrlem2 41537 Lemma for ~ lcfr . (Contr...
lcfrlem3 41538 Lemma for ~ lcfr . (Contr...
lcfrlem4 41539 Lemma for ~ lcfr . (Contr...
lcfrlem5 41540 Lemma for ~ lcfr . The se...
lcfrlem6 41541 Lemma for ~ lcfr . Closur...
lcfrlem7 41542 Lemma for ~ lcfr . Closur...
lcfrlem8 41543 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 41544 Lemma for ~ lcf1o . (This...
lcf1o 41545 Define a function ` J ` th...
lcfrlem10 41546 Lemma for ~ lcfr . (Contr...
lcfrlem11 41547 Lemma for ~ lcfr . (Contr...
lcfrlem12N 41548 Lemma for ~ lcfr . (Contr...
lcfrlem13 41549 Lemma for ~ lcfr . (Contr...
lcfrlem14 41550 Lemma for ~ lcfr . (Contr...
lcfrlem15 41551 Lemma for ~ lcfr . (Contr...
lcfrlem16 41552 Lemma for ~ lcfr . (Contr...
lcfrlem17 41553 Lemma for ~ lcfr . Condit...
lcfrlem18 41554 Lemma for ~ lcfr . (Contr...
lcfrlem19 41555 Lemma for ~ lcfr . (Contr...
lcfrlem20 41556 Lemma for ~ lcfr . (Contr...
lcfrlem21 41557 Lemma for ~ lcfr . (Contr...
lcfrlem22 41558 Lemma for ~ lcfr . (Contr...
lcfrlem23 41559 Lemma for ~ lcfr . TODO: ...
lcfrlem24 41560 Lemma for ~ lcfr . (Contr...
lcfrlem25 41561 Lemma for ~ lcfr . Specia...
lcfrlem26 41562 Lemma for ~ lcfr . Specia...
lcfrlem27 41563 Lemma for ~ lcfr . Specia...
lcfrlem28 41564 Lemma for ~ lcfr . TODO: ...
lcfrlem29 41565 Lemma for ~ lcfr . (Contr...
lcfrlem30 41566 Lemma for ~ lcfr . (Contr...
lcfrlem31 41567 Lemma for ~ lcfr . (Contr...
lcfrlem32 41568 Lemma for ~ lcfr . (Contr...
lcfrlem33 41569 Lemma for ~ lcfr . (Contr...
lcfrlem34 41570 Lemma for ~ lcfr . (Contr...
lcfrlem35 41571 Lemma for ~ lcfr . (Contr...
lcfrlem36 41572 Lemma for ~ lcfr . (Contr...
lcfrlem37 41573 Lemma for ~ lcfr . (Contr...
lcfrlem38 41574 Lemma for ~ lcfr . Combin...
lcfrlem39 41575 Lemma for ~ lcfr . Elimin...
lcfrlem40 41576 Lemma for ~ lcfr . Elimin...
lcfrlem41 41577 Lemma for ~ lcfr . Elimin...
lcfrlem42 41578 Lemma for ~ lcfr . Elimin...
lcfr 41579 Reconstruction of a subspa...
lcdfval 41582 Dual vector space of funct...
lcdval 41583 Dual vector space of funct...
lcdval2 41584 Dual vector space of funct...
lcdlvec 41585 The dual vector space of f...
lcdlmod 41586 The dual vector space of f...
lcdvbase 41587 Vector base set of a dual ...
lcdvbasess 41588 The vector base set of the...
lcdvbaselfl 41589 A vector in the base set o...
lcdvbasecl 41590 Closure of the value of a ...
lcdvadd 41591 Vector addition for the cl...
lcdvaddval 41592 The value of the value of ...
lcdsca 41593 The ring of scalars of the...
lcdsbase 41594 Base set of scalar ring fo...
lcdsadd 41595 Scalar addition for the cl...
lcdsmul 41596 Scalar multiplication for ...
lcdvs 41597 Scalar product for the clo...
lcdvsval 41598 Value of scalar product op...
lcdvscl 41599 The scalar product operati...
lcdlssvscl 41600 Closure of scalar product ...
lcdvsass 41601 Associative law for scalar...
lcd0 41602 The zero scalar of the clo...
lcd1 41603 The unit scalar of the clo...
lcdneg 41604 The unit scalar of the clo...
lcd0v 41605 The zero functional in the...
lcd0v2 41606 The zero functional in the...
lcd0vvalN 41607 Value of the zero function...
lcd0vcl 41608 Closure of the zero functi...
lcd0vs 41609 A scalar zero times a func...
lcdvs0N 41610 A scalar times the zero fu...
lcdvsub 41611 The value of vector subtra...
lcdvsubval 41612 The value of the value of ...
lcdlss 41613 Subspaces of a dual vector...
lcdlss2N 41614 Subspaces of a dual vector...
lcdlsp 41615 Span in the set of functio...
lcdlkreqN 41616 Colinear functionals have ...
lcdlkreq2N 41617 Colinear functionals have ...
mapdffval 41620 Projectivity from vector s...
mapdfval 41621 Projectivity from vector s...
mapdval 41622 Value of projectivity from...
mapdvalc 41623 Value of projectivity from...
mapdval2N 41624 Value of projectivity from...
mapdval3N 41625 Value of projectivity from...
mapdval4N 41626 Value of projectivity from...
mapdval5N 41627 Value of projectivity from...
mapdordlem1a 41628 Lemma for ~ mapdord . (Co...
mapdordlem1bN 41629 Lemma for ~ mapdord . (Co...
mapdordlem1 41630 Lemma for ~ mapdord . (Co...
mapdordlem2 41631 Lemma for ~ mapdord . Ord...
mapdord 41632 Ordering property of the m...
mapd11 41633 The map defined by ~ df-ma...
mapddlssN 41634 The mapping of a subspace ...
mapdsn 41635 Value of the map defined b...
mapdsn2 41636 Value of the map defined b...
mapdsn3 41637 Value of the map defined b...
mapd1dim2lem1N 41638 Value of the map defined b...
mapdrvallem2 41639 Lemma for ~ mapdrval . TO...
mapdrvallem3 41640 Lemma for ~ mapdrval . (C...
mapdrval 41641 Given a dual subspace ` R ...
mapd1o 41642 The map defined by ~ df-ma...
mapdrn 41643 Range of the map defined b...
mapdunirnN 41644 Union of the range of the ...
mapdrn2 41645 Range of the map defined b...
mapdcnvcl 41646 Closure of the converse of...
mapdcl 41647 Closure the value of the m...
mapdcnvid1N 41648 Converse of the value of t...
mapdsord 41649 Strong ordering property o...
mapdcl2 41650 The mapping of a subspace ...
mapdcnvid2 41651 Value of the converse of t...
mapdcnvordN 41652 Ordering property of the c...
mapdcnv11N 41653 The converse of the map de...
mapdcv 41654 Covering property of the c...
mapdincl 41655 Closure of dual subspace i...
mapdin 41656 Subspace intersection is p...
mapdlsmcl 41657 Closure of dual subspace s...
mapdlsm 41658 Subspace sum is preserved ...
mapd0 41659 Projectivity map of the ze...
mapdcnvatN 41660 Atoms are preserved by the...
mapdat 41661 Atoms are preserved by the...
mapdspex 41662 The map of a span equals t...
mapdn0 41663 Transfer nonzero property ...
mapdncol 41664 Transfer non-colinearity f...
mapdindp 41665 Transfer (part of) vector ...
mapdpglem1 41666 Lemma for ~ mapdpg . Baer...
mapdpglem2 41667 Lemma for ~ mapdpg . Baer...
mapdpglem2a 41668 Lemma for ~ mapdpg . (Con...
mapdpglem3 41669 Lemma for ~ mapdpg . Baer...
mapdpglem4N 41670 Lemma for ~ mapdpg . (Con...
mapdpglem5N 41671 Lemma for ~ mapdpg . (Con...
mapdpglem6 41672 Lemma for ~ mapdpg . Baer...
mapdpglem8 41673 Lemma for ~ mapdpg . Baer...
mapdpglem9 41674 Lemma for ~ mapdpg . Baer...
mapdpglem10 41675 Lemma for ~ mapdpg . Baer...
mapdpglem11 41676 Lemma for ~ mapdpg . (Con...
mapdpglem12 41677 Lemma for ~ mapdpg . TODO...
mapdpglem13 41678 Lemma for ~ mapdpg . (Con...
mapdpglem14 41679 Lemma for ~ mapdpg . (Con...
mapdpglem15 41680 Lemma for ~ mapdpg . (Con...
mapdpglem16 41681 Lemma for ~ mapdpg . Baer...
mapdpglem17N 41682 Lemma for ~ mapdpg . Baer...
mapdpglem18 41683 Lemma for ~ mapdpg . Baer...
mapdpglem19 41684 Lemma for ~ mapdpg . Baer...
mapdpglem20 41685 Lemma for ~ mapdpg . Baer...
mapdpglem21 41686 Lemma for ~ mapdpg . (Con...
mapdpglem22 41687 Lemma for ~ mapdpg . Baer...
mapdpglem23 41688 Lemma for ~ mapdpg . Baer...
mapdpglem30a 41689 Lemma for ~ mapdpg . (Con...
mapdpglem30b 41690 Lemma for ~ mapdpg . (Con...
mapdpglem25 41691 Lemma for ~ mapdpg . Baer...
mapdpglem26 41692 Lemma for ~ mapdpg . Baer...
mapdpglem27 41693 Lemma for ~ mapdpg . Baer...
mapdpglem29 41694 Lemma for ~ mapdpg . Baer...
mapdpglem28 41695 Lemma for ~ mapdpg . Baer...
mapdpglem30 41696 Lemma for ~ mapdpg . Baer...
mapdpglem31 41697 Lemma for ~ mapdpg . Baer...
mapdpglem24 41698 Lemma for ~ mapdpg . Exis...
mapdpglem32 41699 Lemma for ~ mapdpg . Uniq...
mapdpg 41700 Part 1 of proof of the fir...
baerlem3lem1 41701 Lemma for ~ baerlem3 . (C...
baerlem5alem1 41702 Lemma for ~ baerlem5a . (...
baerlem5blem1 41703 Lemma for ~ baerlem5b . (...
baerlem3lem2 41704 Lemma for ~ baerlem3 . (C...
baerlem5alem2 41705 Lemma for ~ baerlem5a . (...
baerlem5blem2 41706 Lemma for ~ baerlem5b . (...
baerlem3 41707 An equality that holds whe...
baerlem5a 41708 An equality that holds whe...
baerlem5b 41709 An equality that holds whe...
baerlem5amN 41710 An equality that holds whe...
baerlem5bmN 41711 An equality that holds whe...
baerlem5abmN 41712 An equality that holds whe...
mapdindp0 41713 Vector independence lemma....
mapdindp1 41714 Vector independence lemma....
mapdindp2 41715 Vector independence lemma....
mapdindp3 41716 Vector independence lemma....
mapdindp4 41717 Vector independence lemma....
mapdhval 41718 Lemmma for ~~? mapdh . (C...
mapdhval0 41719 Lemmma for ~~? mapdh . (C...
mapdhval2 41720 Lemmma for ~~? mapdh . (C...
mapdhcl 41721 Lemmma for ~~? mapdh . (C...
mapdheq 41722 Lemmma for ~~? mapdh . Th...
mapdheq2 41723 Lemmma for ~~? mapdh . On...
mapdheq2biN 41724 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 41725 Lemma for ~ mapdheq4 . Pa...
mapdheq4 41726 Lemma for ~~? mapdh . Par...
mapdh6lem1N 41727 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 41728 Lemma for ~ mapdh6N . Par...
mapdh6aN 41729 Lemma for ~ mapdh6N . Par...
mapdh6b0N 41730 Lemmma for ~ mapdh6N . (C...
mapdh6bN 41731 Lemmma for ~ mapdh6N . (C...
mapdh6cN 41732 Lemmma for ~ mapdh6N . (C...
mapdh6dN 41733 Lemmma for ~ mapdh6N . (C...
mapdh6eN 41734 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 41735 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 41736 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 41737 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 41738 Lemmma for ~ mapdh6N . El...
mapdh6jN 41739 Lemmma for ~ mapdh6N . El...
mapdh6kN 41740 Lemmma for ~ mapdh6N . El...
mapdh6N 41741 Part (6) of [Baer] p. 47 l...
mapdh7eN 41742 Part (7) of [Baer] p. 48 l...
mapdh7cN 41743 Part (7) of [Baer] p. 48 l...
mapdh7dN 41744 Part (7) of [Baer] p. 48 l...
mapdh7fN 41745 Part (7) of [Baer] p. 48 l...
mapdh75e 41746 Part (7) of [Baer] p. 48 l...
mapdh75cN 41747 Part (7) of [Baer] p. 48 l...
mapdh75d 41748 Part (7) of [Baer] p. 48 l...
mapdh75fN 41749 Part (7) of [Baer] p. 48 l...
hvmapffval 41752 Map from nonzero vectors t...
hvmapfval 41753 Map from nonzero vectors t...
hvmapval 41754 Value of map from nonzero ...
hvmapvalvalN 41755 Value of value of map (i.e...
hvmapidN 41756 The value of the vector to...
hvmap1o 41757 The vector to functional m...
hvmapclN 41758 Closure of the vector to f...
hvmap1o2 41759 The vector to functional m...
hvmapcl2 41760 Closure of the vector to f...
hvmaplfl 41761 The vector to functional m...
hvmaplkr 41762 Kernel of the vector to fu...
mapdhvmap 41763 Relationship between ` map...
lspindp5 41764 Obtain an independent vect...
hdmaplem1 41765 Lemma to convert a frequen...
hdmaplem2N 41766 Lemma to convert a frequen...
hdmaplem3 41767 Lemma to convert a frequen...
hdmaplem4 41768 Lemma to convert a frequen...
mapdh8a 41769 Part of Part (8) in [Baer]...
mapdh8aa 41770 Part of Part (8) in [Baer]...
mapdh8ab 41771 Part of Part (8) in [Baer]...
mapdh8ac 41772 Part of Part (8) in [Baer]...
mapdh8ad 41773 Part of Part (8) in [Baer]...
mapdh8b 41774 Part of Part (8) in [Baer]...
mapdh8c 41775 Part of Part (8) in [Baer]...
mapdh8d0N 41776 Part of Part (8) in [Baer]...
mapdh8d 41777 Part of Part (8) in [Baer]...
mapdh8e 41778 Part of Part (8) in [Baer]...
mapdh8g 41779 Part of Part (8) in [Baer]...
mapdh8i 41780 Part of Part (8) in [Baer]...
mapdh8j 41781 Part of Part (8) in [Baer]...
mapdh8 41782 Part (8) in [Baer] p. 48. ...
mapdh9a 41783 Lemma for part (9) in [Bae...
mapdh9aOLDN 41784 Lemma for part (9) in [Bae...
hdmap1ffval 41789 Preliminary map from vecto...
hdmap1fval 41790 Preliminary map from vecto...
hdmap1vallem 41791 Value of preliminary map f...
hdmap1val 41792 Value of preliminary map f...
hdmap1val0 41793 Value of preliminary map f...
hdmap1val2 41794 Value of preliminary map f...
hdmap1eq 41795 The defining equation for ...
hdmap1cbv 41796 Frequently used lemma to c...
hdmap1valc 41797 Connect the value of the p...
hdmap1cl 41798 Convert closure theorem ~ ...
hdmap1eq2 41799 Convert ~ mapdheq2 to use ...
hdmap1eq4N 41800 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 41801 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 41802 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 41803 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 41804 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 41805 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 41806 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 41807 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 41808 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 41809 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 41810 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 41811 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 41812 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 41813 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 41814 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 41815 Part (6) of [Baer] p. 47 l...
hdmap1eulem 41816 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 41817 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 41818 Convert ~ mapdh9a to use t...
hdmap1euOLDN 41819 Convert ~ mapdh9aOLDN to u...
hdmapffval 41820 Map from vectors to functi...
hdmapfval 41821 Map from vectors to functi...
hdmapval 41822 Value of map from vectors ...
hdmapfnN 41823 Functionality of map from ...
hdmapcl 41824 Closure of map from vector...
hdmapval2lem 41825 Lemma for ~ hdmapval2 . (...
hdmapval2 41826 Value of map from vectors ...
hdmapval0 41827 Value of map from vectors ...
hdmapeveclem 41828 Lemma for ~ hdmapevec . T...
hdmapevec 41829 Value of map from vectors ...
hdmapevec2 41830 The inner product of the r...
hdmapval3lemN 41831 Value of map from vectors ...
hdmapval3N 41832 Value of map from vectors ...
hdmap10lem 41833 Lemma for ~ hdmap10 . (Co...
hdmap10 41834 Part 10 in [Baer] p. 48 li...
hdmap11lem1 41835 Lemma for ~ hdmapadd . (C...
hdmap11lem2 41836 Lemma for ~ hdmapadd . (C...
hdmapadd 41837 Part 11 in [Baer] p. 48 li...
hdmapeq0 41838 Part of proof of part 12 i...
hdmapnzcl 41839 Nonzero vector closure of ...
hdmapneg 41840 Part of proof of part 12 i...
hdmapsub 41841 Part of proof of part 12 i...
hdmap11 41842 Part of proof of part 12 i...
hdmaprnlem1N 41843 Part of proof of part 12 i...
hdmaprnlem3N 41844 Part of proof of part 12 i...
hdmaprnlem3uN 41845 Part of proof of part 12 i...
hdmaprnlem4tN 41846 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 41847 Part of proof of part 12 i...
hdmaprnlem6N 41848 Part of proof of part 12 i...
hdmaprnlem7N 41849 Part of proof of part 12 i...
hdmaprnlem8N 41850 Part of proof of part 12 i...
hdmaprnlem9N 41851 Part of proof of part 12 i...
hdmaprnlem3eN 41852 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 41853 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 41854 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 41855 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 41856 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 41857 Lemma for ~ hdmaprnN . In...
hdmaprnN 41858 Part of proof of part 12 i...
hdmapf1oN 41859 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 41860 Prior to part 14 in [Baer]...
hdmap14lem2a 41861 Prior to part 14 in [Baer]...
hdmap14lem1 41862 Prior to part 14 in [Baer]...
hdmap14lem2N 41863 Prior to part 14 in [Baer]...
hdmap14lem3 41864 Prior to part 14 in [Baer]...
hdmap14lem4a 41865 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 41866 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 41867 Case where ` F ` is zero. ...
hdmap14lem7 41868 Combine cases of ` F ` . ...
hdmap14lem8 41869 Part of proof of part 14 i...
hdmap14lem9 41870 Part of proof of part 14 i...
hdmap14lem10 41871 Part of proof of part 14 i...
hdmap14lem11 41872 Part of proof of part 14 i...
hdmap14lem12 41873 Lemma for proof of part 14...
hdmap14lem13 41874 Lemma for proof of part 14...
hdmap14lem14 41875 Part of proof of part 14 i...
hdmap14lem15 41876 Part of proof of part 14 i...
hgmapffval 41879 Map from the scalar divisi...
hgmapfval 41880 Map from the scalar divisi...
hgmapval 41881 Value of map from the scal...
hgmapfnN 41882 Functionality of scalar si...
hgmapcl 41883 Closure of scalar sigma ma...
hgmapdcl 41884 Closure of the vector spac...
hgmapvs 41885 Part 15 of [Baer] p. 50 li...
hgmapval0 41886 Value of the scalar sigma ...
hgmapval1 41887 Value of the scalar sigma ...
hgmapadd 41888 Part 15 of [Baer] p. 50 li...
hgmapmul 41889 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 41890 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 41891 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 41892 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 41893 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 41894 Lemma for ~ hgmaprnN . El...
hgmaprnN 41895 Part of proof of part 16 i...
hgmap11 41896 The scalar sigma map is on...
hgmapf1oN 41897 The scalar sigma map is a ...
hgmapeq0 41898 The scalar sigma map is ze...
hdmapipcl 41899 The inner product (Hermiti...
hdmapln1 41900 Linearity property that wi...
hdmaplna1 41901 Additive property of first...
hdmaplns1 41902 Subtraction property of fi...
hdmaplnm1 41903 Multiplicative property of...
hdmaplna2 41904 Additive property of secon...
hdmapglnm2 41905 g-linear property of secon...
hdmapgln2 41906 g-linear property that wil...
hdmaplkr 41907 Kernel of the vector to du...
hdmapellkr 41908 Membership in the kernel (...
hdmapip0 41909 Zero property that will be...
hdmapip1 41910 Construct a proportional v...
hdmapip0com 41911 Commutation property of Ba...
hdmapinvlem1 41912 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 41913 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 41914 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 41915 Part 1.1 of Proposition 1 ...
hdmapglem5 41916 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 41917 Involution property of sca...
hgmapvvlem2 41918 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 41919 Lemma for ~ hgmapvv . Eli...
hgmapvv 41920 Value of a double involuti...
hdmapglem7a 41921 Lemma for ~ hdmapg . (Con...
hdmapglem7b 41922 Lemma for ~ hdmapg . (Con...
hdmapglem7 41923 Lemma for ~ hdmapg . Line...
hdmapg 41924 Apply the scalar sigma fun...
hdmapoc 41925 Express our constructed or...
hlhilset 41928 The final Hilbert space co...
hlhilsca 41929 The scalar of the final co...
hlhilbase 41930 The base set of the final ...
hlhilplus 41931 The vector addition for th...
hlhilslem 41932 Lemma for ~ hlhilsbase etc...
hlhilsbase 41933 The scalar base set of the...
hlhilsplus 41934 Scalar addition for the fi...
hlhilsmul 41935 Scalar multiplication for ...
hlhilsbase2 41936 The scalar base set of the...
hlhilsplus2 41937 Scalar addition for the fi...
hlhilsmul2 41938 Scalar multiplication for ...
hlhils0 41939 The scalar ring zero for t...
hlhils1N 41940 The scalar ring unity for ...
hlhilvsca 41941 The scalar product for the...
hlhilip 41942 Inner product operation fo...
hlhilipval 41943 Value of inner product ope...
hlhilnvl 41944 The involution operation o...
hlhillvec 41945 The final constructed Hilb...
hlhildrng 41946 The star division ring for...
hlhilsrnglem 41947 Lemma for ~ hlhilsrng . (...
hlhilsrng 41948 The star division ring for...
hlhil0 41949 The zero vector for the fi...
hlhillsm 41950 The vector sum operation f...
hlhilocv 41951 The orthocomplement for th...
hlhillcs 41952 The closed subspaces of th...
hlhilphllem 41953 Lemma for ~ hlhil . (Cont...
hlhilhillem 41954 Lemma for ~ hlhil . (Cont...
hlathil 41955 Construction of a Hilbert ...
iscsrg 41958 A commutative semiring is ...
rhmzrhval 41959 Evaluation of integers acr...
zndvdchrrhm 41960 Construction of a ring hom...
relogbcld 41961 Closure of the general log...
relogbexpd 41962 Identity law for general l...
relogbzexpd 41963 Power law for the general ...
logblebd 41964 The general logarithm is m...
uzindd 41965 Induction on the upper int...
fzadd2d 41966 Membership of a sum in a f...
zltp1led 41967 Integer ordering relation,...
fzne2d 41968 Elementhood in a finite se...
eqfnfv2d2 41969 Equality of functions is d...
fzsplitnd 41970 Split a finite interval of...
fzsplitnr 41971 Split a finite interval of...
addassnni 41972 Associative law for additi...
addcomnni 41973 Commutative law for additi...
mulassnni 41974 Associative law for multip...
mulcomnni 41975 Commutative law for multip...
gcdcomnni 41976 Commutative law for gcd. ...
gcdnegnni 41977 Negation invariance for gc...
neggcdnni 41978 Negation invariance for gc...
bccl2d 41979 Closure of the binomial co...
recbothd 41980 Take reciprocal on both si...
gcdmultiplei 41981 The GCD of a multiple of a...
gcdaddmzz2nni 41982 Adding a multiple of one o...
gcdaddmzz2nncomi 41983 Adding a multiple of one o...
gcdnncli 41984 Closure of the gcd operato...
muldvds1d 41985 If a product divides an in...
muldvds2d 41986 If a product divides an in...
nndivdvdsd 41987 A positive integer divides...
nnproddivdvdsd 41988 A product of natural numbe...
coprmdvds2d 41989 If an integer is divisible...
imadomfi 41990 An image of a function und...
12gcd5e1 41991 The gcd of 12 and 5 is 1. ...
60gcd6e6 41992 The gcd of 60 and 6 is 6. ...
60gcd7e1 41993 The gcd of 60 and 7 is 1. ...
420gcd8e4 41994 The gcd of 420 and 8 is 4....
lcmeprodgcdi 41995 Calculate the least common...
12lcm5e60 41996 The lcm of 12 and 5 is 60....
60lcm6e60 41997 The lcm of 60 and 6 is 60....
60lcm7e420 41998 The lcm of 60 and 7 is 420...
420lcm8e840 41999 The lcm of 420 and 8 is 84...
lcmfunnnd 42000 Useful equation to calcula...
lcm1un 42001 Least common multiple of n...
lcm2un 42002 Least common multiple of n...
lcm3un 42003 Least common multiple of n...
lcm4un 42004 Least common multiple of n...
lcm5un 42005 Least common multiple of n...
lcm6un 42006 Least common multiple of n...
lcm7un 42007 Least common multiple of n...
lcm8un 42008 Least common multiple of n...
3factsumint1 42009 Move constants out of inte...
3factsumint2 42010 Move constants out of inte...
3factsumint3 42011 Move constants out of inte...
3factsumint4 42012 Move constants out of inte...
3factsumint 42013 Helpful equation for lcm i...
resopunitintvd 42014 Restrict continuous functi...
resclunitintvd 42015 Restrict continuous functi...
resdvopclptsd 42016 Restrict derivative on uni...
lcmineqlem1 42017 Part of lcm inequality lem...
lcmineqlem2 42018 Part of lcm inequality lem...
lcmineqlem3 42019 Part of lcm inequality lem...
lcmineqlem4 42020 Part of lcm inequality lem...
lcmineqlem5 42021 Technical lemma for recipr...
lcmineqlem6 42022 Part of lcm inequality lem...
lcmineqlem7 42023 Derivative of 1-x for chai...
lcmineqlem8 42024 Derivative of (1-x)^(N-M)....
lcmineqlem9 42025 (1-x)^(N-M) is continuous....
lcmineqlem10 42026 Induction step of ~ lcmine...
lcmineqlem11 42027 Induction step, continuati...
lcmineqlem12 42028 Base case for induction. ...
lcmineqlem13 42029 Induction proof for lcm in...
lcmineqlem14 42030 Technical lemma for inequa...
lcmineqlem15 42031 F times the least common m...
lcmineqlem16 42032 Technical divisibility lem...
lcmineqlem17 42033 Inequality of 2^{2n}. (Co...
lcmineqlem18 42034 Technical lemma to shift f...
lcmineqlem19 42035 Dividing implies inequalit...
lcmineqlem20 42036 Inequality for lcm lemma. ...
lcmineqlem21 42037 The lcm inequality lemma w...
lcmineqlem22 42038 The lcm inequality lemma w...
lcmineqlem23 42039 Penultimate step to the lc...
lcmineqlem 42040 The least common multiple ...
3exp7 42041 3 to the power of 7 equals...
3lexlogpow5ineq1 42042 First inequality in inequa...
3lexlogpow5ineq2 42043 Second inequality in inequ...
3lexlogpow5ineq4 42044 Sharper logarithm inequali...
3lexlogpow5ineq3 42045 Combined inequality chain ...
3lexlogpow2ineq1 42046 Result for bound in AKS in...
3lexlogpow2ineq2 42047 Result for bound in AKS in...
3lexlogpow5ineq5 42048 Result for bound in AKS in...
intlewftc 42049 Inequality inference by in...
aks4d1lem1 42050 Technical lemma to reduce ...
aks4d1p1p1 42051 Exponential law for finite...
dvrelog2 42052 The derivative of the loga...
dvrelog3 42053 The derivative of the loga...
dvrelog2b 42054 Derivative of the binary l...
0nonelalab 42055 Technical lemma for open i...
dvrelogpow2b 42056 Derivative of the power of...
aks4d1p1p3 42057 Bound of a ceiling of the ...
aks4d1p1p2 42058 Rewrite ` A ` in more suit...
aks4d1p1p4 42059 Technical step for inequal...
dvle2 42060 Collapsed ~ dvle . (Contr...
aks4d1p1p6 42061 Inequality lift to differe...
aks4d1p1p7 42062 Bound of intermediary of i...
aks4d1p1p5 42063 Show inequality for existe...
aks4d1p1 42064 Show inequality for existe...
aks4d1p2 42065 Technical lemma for existe...
aks4d1p3 42066 There exists a small enoug...
aks4d1p4 42067 There exists a small enoug...
aks4d1p5 42068 Show that ` N ` and ` R ` ...
aks4d1p6 42069 The maximal prime power ex...
aks4d1p7d1 42070 Technical step in AKS lemm...
aks4d1p7 42071 Technical step in AKS lemm...
aks4d1p8d1 42072 If a prime divides one num...
aks4d1p8d2 42073 Any prime power dividing a...
aks4d1p8d3 42074 The remainder of a divisio...
aks4d1p8 42075 Show that ` N ` and ` R ` ...
aks4d1p9 42076 Show that the order is bou...
aks4d1 42077 Lemma 4.1 from ~ https://w...
fldhmf1 42078 A field homomorphism is in...
isprimroot 42081 The value of a primitive r...
isprimroot2 42082 Alternative way of creatin...
mndmolinv 42083 An element of a monoid tha...
linvh 42084 If an element has a unique...
primrootsunit1 42085 Primitive roots have left ...
primrootsunit 42086 Primitive roots have left ...
primrootscoprmpow 42087 Coprime powers of primitiv...
posbezout 42088 Bezout's identity restrict...
primrootscoprf 42089 Coprime powers of primitiv...
primrootscoprbij 42090 A bijection between coprim...
primrootscoprbij2 42091 A bijection between coprim...
remexz 42092 Division with rest. (Cont...
primrootlekpowne0 42093 There is no smaller power ...
primrootspoweq0 42094 The power of a ` R ` -th p...
aks6d1c1p1 42095 Definition of the introspe...
aks6d1c1p1rcl 42096 Reverse closure of the int...
aks6d1c1p2 42097 ` P ` and linear factors a...
aks6d1c1p3 42098 In a field with a Frobeniu...
aks6d1c1p4 42099 The product of polynomials...
aks6d1c1p5 42100 The product of exponents i...
aks6d1c1p7 42101 ` X ` is introspective to ...
aks6d1c1p6 42102 If a polynomials ` F ` is ...
aks6d1c1p8 42103 If a number ` E ` is intro...
aks6d1c1 42104 Claim 1 of Theorem 6.1 ~ h...
evl1gprodd 42105 Polynomial evaluation buil...
aks6d1c2p1 42106 In the AKS-theorem the sub...
aks6d1c2p2 42107 Injective condition for co...
hashscontpowcl 42108 Closure of E for ~ https:/...
hashscontpow1 42109 Helper lemma for to prove ...
hashscontpow 42110 If a set contains all ` N ...
aks6d1c3 42111 Claim 3 of Theorem 6.1 of ...
aks6d1c4 42112 Claim 4 of Theorem 6.1 of ...
aks6d1c1rh 42113 Claim 1 of AKS primality p...
aks6d1c2lem3 42114 Lemma for ~ aks6d1c2 to si...
aks6d1c2lem4 42115 Claim 2 of Theorem 6.1 AKS...
hashnexinj 42116 If the number of elements ...
hashnexinjle 42117 If the number of elements ...
aks6d1c2 42118 Claim 2 of Theorem 6.1 of ...
rspcsbnea 42119 Special case related to ~ ...
idomnnzpownz 42120 A non-zero power in an int...
idomnnzgmulnz 42121 A finite product of non-ze...
ringexp0nn 42122 Zero to the power of a pos...
aks6d1c5lem0 42123 Lemma for Claim 5 of Theor...
aks6d1c5lem1 42124 Lemma for claim 5, evaluat...
aks6d1c5lem3 42125 Lemma for Claim 5, polynom...
aks6d1c5lem2 42126 Lemma for Claim 5, contrad...
aks6d1c5 42127 Claim 5 of Theorem 6.1 ~ h...
deg1gprod 42128 Degree multiplication is a...
deg1pow 42129 Exact degree of a power of...
5bc2eq10 42130 The value of 5 choose 2. ...
facp2 42131 The factorial of a success...
2np3bcnp1 42132 Part of induction step for...
2ap1caineq 42133 Inequality for Theorem 6.6...
sticksstones1 42134 Different strictly monoton...
sticksstones2 42135 The range function on stri...
sticksstones3 42136 The range function on stri...
sticksstones4 42137 Equinumerosity lemma for s...
sticksstones5 42138 Count the number of strict...
sticksstones6 42139 Function induces an order ...
sticksstones7 42140 Closure property of sticks...
sticksstones8 42141 Establish mapping between ...
sticksstones9 42142 Establish mapping between ...
sticksstones10 42143 Establish mapping between ...
sticksstones11 42144 Establish bijective mappin...
sticksstones12a 42145 Establish bijective mappin...
sticksstones12 42146 Establish bijective mappin...
sticksstones13 42147 Establish bijective mappin...
sticksstones14 42148 Sticks and stones with def...
sticksstones15 42149 Sticks and stones with alm...
sticksstones16 42150 Sticks and stones with col...
sticksstones17 42151 Extend sticks and stones t...
sticksstones18 42152 Extend sticks and stones t...
sticksstones19 42153 Extend sticks and stones t...
sticksstones20 42154 Lift sticks and stones to ...
sticksstones21 42155 Lift sticks and stones to ...
sticksstones22 42156 Non-exhaustive sticks and ...
sticksstones23 42157 Non-exhaustive sticks and ...
aks6d1c6lem1 42158 Lemma for claim 6, deduce ...
aks6d1c6lem2 42159 Every primitive root is ro...
aks6d1c6lem3 42160 Claim 6 of Theorem 6.1 of ...
aks6d1c6lem4 42161 Claim 6 of Theorem 6.1 of ...
aks6d1c6isolem1 42162 Lemma to construct the map...
aks6d1c6isolem2 42163 Lemma to construct the gro...
aks6d1c6isolem3 42164 The preimage of a map send...
aks6d1c6lem5 42165 Eliminate the size hypothe...
bcled 42166 Inequality for binomial co...
bcle2d 42167 Inequality for binomial co...
aks6d1c7lem1 42168 The last set of inequaliti...
aks6d1c7lem2 42169 Contradiction to Claim 2 a...
aks6d1c7lem3 42170 Remove lots of hypotheses ...
aks6d1c7lem4 42171 In the AKS algorithm there...
aks6d1c7 42172 ` N ` is a prime power if ...
rhmqusspan 42173 Ring homomorphism out of a...
aks5lem1 42174 Section 5 of ~ https://www...
aks5lem2 42175 Lemma for section 5 ~ http...
ply1asclzrhval 42176 Transfer results from alge...
aks5lem3a 42177 Lemma for AKS section 5. ...
aks5lem4a 42178 Lemma for AKS section 5, r...
aks5lem5a 42179 Lemma for AKS, section 5, ...
aks5lem6 42180 Connect results of section...
indstrd 42181 Strong induction, deductio...
grpods 42182 Relate sums of elements of...
unitscyglem1 42183 Lemma for unitscyg. (Cont...
unitscyglem2 42184 Lemma for unitscyg. (Cont...
unitscyglem3 42185 Lemma for unitscyg. (Cont...
unitscyglem4 42186 Lemma for unitscyg (Contri...
unitscyglem5 42187 Lemma for unitscyg (Contri...
aks5lem7 42188 Lemma for aks5. We clean ...
aks5lem8 42189 Lemma for aks5. Clean up ...
exfinfldd 42191 For any prime ` P ` and an...
aks5 42192 The AKS Primality test, gi...
jarrii 42193 Inference associated with ...
intnanrt 42194 Introduction of conjunct i...
ioin9i8 42195 Miscellaneous inference cr...
jaodd 42196 Double deduction form of ~...
syl3an12 42197 A double syllogism inferen...
exbiii 42198 Inference associated with ...
sbtd 42199 A true statement is true u...
sbor2 42200 One direction of ~ sbor , ...
sbalexi 42201 Inference form of ~ sbalex...
19.9dev 42202 ~ 19.9d in the case of an ...
3rspcedvd 42203 Triple application of ~ rs...
sn-axrep5v 42204 A condensed form of ~ axre...
sn-axprlem3 42205 ~ axprlem3 using only Tars...
sn-exelALT 42206 Alternate proof of ~ exel ...
ss2ab1 42207 Class abstractions in a su...
ssabdv 42208 Deduction of abstraction s...
sn-iotalem 42209 An unused lemma showing th...
sn-iotalemcor 42210 Corollary of ~ sn-iotalem ...
abbi1sn 42211 Originally part of ~ uniab...
brif2 42212 Move a relation inside and...
brif12 42213 Move a relation inside and...
pssexg 42214 The proper subset of a set...
pssn0 42215 A proper superset is nonem...
psspwb 42216 Classes are proper subclas...
xppss12 42217 Proper subset theorem for ...
elpwbi 42218 Membership in a power set,...
imaopab 42219 The image of a class of or...
eqresfnbd 42220 Property of being the rest...
f1o2d2 42221 Sufficient condition for a...
fmpocos 42222 Composition of two functio...
ovmpogad 42223 Value of an operation give...
ofun 42224 A function operation of un...
dfqs2 42225 Alternate definition of qu...
dfqs3 42226 Alternate definition of qu...
qseq12d 42227 Equality theorem for quoti...
qsalrel 42228 The quotient set is equal ...
elmapssresd 42229 A restricted mapping is a ...
supinf 42230 The supremum is the infimu...
mapcod 42231 Compose two mappings. (Co...
fisdomnn 42232 A finite set is dominated ...
ltex 42233 The less-than relation is ...
leex 42234 The less-than-or-equal-to ...
subex 42235 The subtraction operation ...
absex 42236 The absolute value functio...
cjex 42237 The conjugate function is ...
fzosumm1 42238 Separate out the last term...
ccatcan2d 42239 Cancellation law for conca...
c0exALT 42240 Alternate proof of ~ c0ex ...
0cnALT3 42241 Alternate proof of ~ 0cn u...
elre0re 42242 Specialized version of ~ 0...
1t1e1ALT 42243 Alternate proof of ~ 1t1e1...
lttrii 42244 'Less than' is transitive....
remulcan2d 42245 ~ mulcan2d for real number...
readdridaddlidd 42246 Given some real number ` B...
1p3e4 42247 1 + 3 = 4. (Contributed b...
5ne0 42248 The number 5 is nonzero. ...
6ne0 42249 The number 6 is nonzero. ...
7ne0 42250 The number 7 is nonzero. ...
8ne0 42251 The number 8 is nonzero. ...
9ne0 42252 The number 9 is nonzero. ...
sn-1ne2 42253 A proof of ~ 1ne2 without ...
nnn1suc 42254 A positive integer that is...
nnadd1com 42255 Addition with 1 is commuta...
nnaddcom 42256 Addition is commutative fo...
nnaddcomli 42257 Version of ~ addcomli for ...
nnadddir 42258 Right-distributivity for n...
nnmul1com 42259 Multiplication with 1 is c...
nnmulcom 42260 Multiplication is commutat...
readdrcl2d 42261 Reverse closure for additi...
mvrrsubd 42262 Move a subtraction in the ...
laddrotrd 42263 Rotate the variables right...
raddswap12d 42264 Swap the first two variabl...
lsubrotld 42265 Rotate the variables left ...
rsubrotld 42266 Rotate the variables left ...
lsubswap23d 42267 Swap the second and third ...
addsubeq4com 42268 Relation between sums and ...
sqsumi 42269 A sum squared. (Contribut...
negn0nposznnd 42270 Lemma for ~ dffltz . (Con...
sqmid3api 42271 Value of the square of the...
decaddcom 42272 Commute ones place in addi...
sqn5i 42273 The square of a number end...
sqn5ii 42274 The square of a number end...
decpmulnc 42275 Partial products algorithm...
decpmul 42276 Partial products algorithm...
sqdeccom12 42277 The square of a number in ...
sq3deccom12 42278 Variant of ~ sqdeccom12 wi...
4t5e20 42279 4 times 5 equals 20. (Con...
3rdpwhole 42280 A third of a number plus t...
sq4 42281 The square of 4 is 16. (C...
sq5 42282 The square of 5 is 25. (C...
sq6 42283 The square of 6 is 36. (C...
sq7 42284 The square of 7 is 49. (C...
sq8 42285 The square of 8 is 64. (C...
sq9 42286 The square of 9 is 81. (C...
rpsscn 42287 The positive reals are a s...
4rp 42288 4 is a positive real. (Co...
6rp 42289 6 is a positive real. (Co...
7rp 42290 7 is a positive real. (Co...
8rp 42291 8 is a positive real. (Co...
9rp 42292 9 is a positive real. (Co...
235t711 42293 Calculate a product by lon...
ex-decpmul 42294 Example usage of ~ decpmul...
eluzp1 42295 Membership in a successor ...
sn-eluzp1l 42296 Shorter proof of ~ eluzp1l...
fz1sumconst 42297 The sum of ` N ` constant ...
fz1sump1 42298 Add one more term to a sum...
oddnumth 42299 The Odd Number Theorem. T...
nicomachus 42300 Nicomachus's Theorem. The...
sumcubes 42301 The sum of the first ` N `...
ine1 42302 ` _i ` is not 1. (Contrib...
0tie0 42303 0 times ` _i ` equals 0. ...
it1ei 42304 ` _i ` times 1 equals ` _i...
1tiei 42305 1 times ` _i ` equals ` _i...
itrere 42306 ` _i ` times a real is rea...
retire 42307 A real times ` _i ` is rea...
iocioodisjd 42308 Adjacent intervals where t...
rpabsid 42309 A positive real is its own...
oexpreposd 42310 Lemma for ~ dffltz . For ...
explt1d 42311 A nonnegative real number ...
expeq1d 42312 A nonnegative real number ...
expeqidd 42313 A nonnegative real number ...
exp11d 42314 ~ exp11nnd for nonzero int...
0dvds0 42315 0 divides 0. (Contributed...
absdvdsabsb 42316 Divisibility is invariant ...
gcdnn0id 42317 The ` gcd ` of a nonnegati...
gcdle1d 42318 The greatest common diviso...
gcdle2d 42319 The greatest common diviso...
dvdsexpad 42320 Deduction associated with ...
dvdsexpnn 42321 ~ dvdssqlem generalized to...
dvdsexpnn0 42322 ~ dvdsexpnn generalized to...
dvdsexpb 42323 ~ dvdssq generalized to po...
posqsqznn 42324 When a positive rational s...
zdivgd 42325 Two ways to express " ` N ...
efsubd 42326 Difference of exponents la...
ef11d 42327 General condition for the ...
logccne0d 42328 The logarithm isn't 0 if i...
cxp112d 42329 General condition for comp...
cxp111d 42330 General condition for comp...
cxpi11d 42331 ` _i ` to the powers of ` ...
logne0d 42332 Deduction form of ~ logne0...
rxp112d 42333 Real exponentiation is one...
log11d 42334 The natural logarithm is o...
rplog11d 42335 The natural logarithm is o...
rxp11d 42336 Real exponentiation is one...
tanhalfpim 42337 The tangent of ` _pi / 2 `...
sinpim 42338 Sine of a number subtracte...
cospim 42339 Cosine of a number subtrac...
tan3rdpi 42340 The tangent of ` _pi / 3 `...
sin2t3rdpi 42341 The sine of ` 2 x. ( _pi /...
cos2t3rdpi 42342 The cosine of ` 2 x. ( _pi...
sin4t3rdpi 42343 The sine of ` 4 x. ( _pi /...
cos4t3rdpi 42344 The cosine of ` 4 x. ( _pi...
asin1half 42345 The arcsine of ` 1 / 2 ` i...
acos1half 42346 The arccosine of ` 1 / 2 `...
dvun 42347 Condition for the union of...
redvmptabs 42348 The derivative of the abso...
readvrec2 42349 The antiderivative of 1/x ...
readvrec 42350 For real numbers, the anti...
resuppsinopn 42351 The support of sin ( ~ df-...
readvcot 42352 Real antiderivative of cot...
resubval 42355 Value of real subtraction,...
renegeulemv 42356 Lemma for ~ renegeu and si...
renegeulem 42357 Lemma for ~ renegeu and si...
renegeu 42358 Existential uniqueness of ...
rernegcl 42359 Closure law for negative r...
renegadd 42360 Relationship between real ...
renegid 42361 Addition of a real number ...
reneg0addlid 42362 Negative zero is a left ad...
resubeulem1 42363 Lemma for ~ resubeu . A v...
resubeulem2 42364 Lemma for ~ resubeu . A v...
resubeu 42365 Existential uniqueness of ...
rersubcl 42366 Closure for real subtracti...
resubadd 42367 Relation between real subt...
resubaddd 42368 Relationship between subtr...
resubf 42369 Real subtraction is an ope...
repncan2 42370 Addition and subtraction o...
repncan3 42371 Addition and subtraction o...
readdsub 42372 Law for addition and subtr...
reladdrsub 42373 Move LHS of a sum into RHS...
reltsub1 42374 Subtraction from both side...
reltsubadd2 42375 'Less than' relationship b...
resubcan2 42376 Cancellation law for real ...
resubsub4 42377 Law for double subtraction...
rennncan2 42378 Cancellation law for real ...
renpncan3 42379 Cancellation law for real ...
repnpcan 42380 Cancellation law for addit...
reppncan 42381 Cancellation law for mixed...
resubidaddlidlem 42382 Lemma for ~ resubidaddlid ...
resubidaddlid 42383 Any real number subtracted...
resubdi 42384 Distribution of multiplica...
re1m1e0m0 42385 Equality of two left-addit...
sn-00idlem1 42386 Lemma for ~ sn-00id . (Co...
sn-00idlem2 42387 Lemma for ~ sn-00id . (Co...
sn-00idlem3 42388 Lemma for ~ sn-00id . (Co...
sn-00id 42389 ~ 00id proven without ~ ax...
re0m0e0 42390 Real number version of ~ 0...
readdlid 42391 Real number version of ~ a...
sn-addlid 42392 ~ addlid without ~ ax-mulc...
remul02 42393 Real number version of ~ m...
sn-0ne2 42394 ~ 0ne2 without ~ ax-mulcom...
remul01 42395 Real number version of ~ m...
sn-remul0ord 42396 A product is zero iff one ...
resubid 42397 Subtraction of a real numb...
readdrid 42398 Real number version of ~ a...
resubid1 42399 Real number version of ~ s...
renegneg 42400 A real number is equal to ...
readdcan2 42401 Commuted version of ~ read...
renegid2 42402 Commuted version of ~ rene...
remulneg2d 42403 Product with negative is n...
sn-it0e0 42404 Proof of ~ it0e0 without ~...
sn-negex12 42405 A combination of ~ cnegex ...
sn-negex 42406 Proof of ~ cnegex without ...
sn-negex2 42407 Proof of ~ cnegex2 without...
sn-addcand 42408 ~ addcand without ~ ax-mul...
sn-addrid 42409 ~ addrid without ~ ax-mulc...
sn-addcan2d 42410 ~ addcan2d without ~ ax-mu...
reixi 42411 ~ ixi without ~ ax-mulcom ...
rei4 42412 ~ i4 without ~ ax-mulcom ....
sn-addid0 42413 A number that sums to itse...
sn-mul01 42414 ~ mul01 without ~ ax-mulco...
sn-subeu 42415 ~ negeu without ~ ax-mulco...
sn-subcl 42416 ~ subcl without ~ ax-mulco...
sn-subf 42417 ~ subf without ~ ax-mulcom...
resubeqsub 42418 Equivalence between real s...
subresre 42419 Subtraction restricted to ...
addinvcom 42420 A number commutes with its...
remulinvcom 42421 A left multiplicative inve...
remullid 42422 Commuted version of ~ ax-1...
sn-1ticom 42423 Lemma for ~ sn-mullid and ...
sn-mullid 42424 ~ mullid without ~ ax-mulc...
sn-it1ei 42425 ~ it1ei without ~ ax-mulco...
ipiiie0 42426 The multiplicative inverse...
remulcand 42427 Commuted version of ~ remu...
redivvald 42430 Value of real division, wh...
rediveud 42431 Existential uniqueness of ...
sn-redivcld 42432 Closure law for real divis...
redivmuld 42433 Relationship between divis...
redivcan2d 42434 A cancellation law for div...
redivcan3d 42435 A cancellation law for div...
sn-rereccld 42436 Closure law for reciprocal...
rerecid 42437 Multiplication of a number...
rerecid2 42438 Multiplication of a number...
sn-0tie0 42439 Lemma for ~ sn-mul02 . Co...
sn-mul02 42440 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 42441 ~ ltaddpos without ~ ax-mu...
sn-ltaddneg 42442 ~ ltaddneg without ~ ax-mu...
reposdif 42443 Comparison of two numbers ...
relt0neg1 42444 Comparison of a real and i...
relt0neg2 42445 Comparison of a real and i...
sn-addlt0d 42446 The sum of negative number...
sn-addgt0d 42447 The sum of positive number...
sn-nnne0 42448 ~ nnne0 without ~ ax-mulco...
reelznn0nn 42449 ~ elznn0nn restated using ...
nn0addcom 42450 Addition is commutative fo...
zaddcomlem 42451 Lemma for ~ zaddcom . (Co...
zaddcom 42452 Addition is commutative fo...
renegmulnnass 42453 Move multiplication by a n...
nn0mulcom 42454 Multiplication is commutat...
zmulcomlem 42455 Lemma for ~ zmulcom . (Co...
zmulcom 42456 Multiplication is commutat...
mulgt0con1dlem 42457 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 42458 Counterpart to ~ mulgt0con...
mulgt0con2d 42459 Lemma for ~ mulgt0b1d and ...
mulgt0b1d 42460 Biconditional, deductive f...
sn-ltmul2d 42461 ~ ltmul2d without ~ ax-mul...
sn-ltmulgt11d 42462 ~ ltmulgt11d without ~ ax-...
sn-0lt1 42463 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 42464 ~ ltp1 without ~ ax-mulcom...
sn-recgt0d 42465 The reciprocal of a positi...
mulgt0b2d 42466 Biconditional, deductive f...
sn-mulgt1d 42467 ~ mulgt1d without ~ ax-mul...
reneg1lt0 42468 Negative one is a negative...
sn-reclt0d 42469 The reciprocal of a negati...
mulltgt0d 42470 Negative times positive is...
mullt0b1d 42471 When the first term is neg...
mullt0b2d 42472 When the second term is ne...
sn-mullt0d 42473 The product of two negativ...
sn-msqgt0d 42474 A nonzero square is positi...
sn-inelr 42475 ~ inelr without ~ ax-mulco...
sn-itrere 42476 ` _i ` times a real is rea...
sn-retire 42477 Commuted version of ~ sn-i...
cnreeu 42478 The reals in the expressio...
sn-sup2 42479 ~ sup2 with exactly the sa...
sn-sup3d 42480 ~ sup3 without ~ ax-mulcom...
sn-suprcld 42481 ~ suprcld without ~ ax-mul...
sn-suprubd 42482 ~ suprubd without ~ ax-mul...
sn-base0 42483 Avoid axioms in ~ base0 by...
nelsubginvcld 42484 The inverse of a non-subgr...
nelsubgcld 42485 A non-subgroup-member plus...
nelsubgsubcld 42486 A non-subgroup-member minu...
rnasclg 42487 The set of injected scalar...
frlmfielbas 42488 The vectors of a finite fr...
frlmfzwrd 42489 A vector of a module with ...
frlmfzowrd 42490 A vector of a module with ...
frlmfzolen 42491 The dimension of a vector ...
frlmfzowrdb 42492 The vectors of a module wi...
frlmfzoccat 42493 The concatenation of two v...
frlmvscadiccat 42494 Scalar multiplication dist...
grpasscan2d 42495 An associative cancellatio...
grpcominv1 42496 If two elements commute, t...
grpcominv2 42497 If two elements commute, t...
finsubmsubg 42498 A submonoid of a finite gr...
opprmndb 42499 A class is a monoid if and...
opprgrpb 42500 A class is a group if and ...
opprablb 42501 A class is an Abelian grou...
imacrhmcl 42502 The image of a commutative...
rimrcl1 42503 Reverse closure of a ring ...
rimrcl2 42504 Reverse closure of a ring ...
rimcnv 42505 The converse of a ring iso...
rimco 42506 The composition of ring is...
ricsym 42507 Ring isomorphism is symmet...
rictr 42508 Ring isomorphism is transi...
riccrng1 42509 Ring isomorphism preserves...
riccrng 42510 A ring is commutative if a...
domnexpgn0cl 42511 In a domain, a (nonnegativ...
drnginvrn0d 42512 A multiplicative inverse i...
drngmullcan 42513 Cancellation of a nonzero ...
drngmulrcan 42514 Cancellation of a nonzero ...
drnginvmuld 42515 Inverse of a nonzero produ...
ricdrng1 42516 A ring isomorphism maps a ...
ricdrng 42517 A ring is a division ring ...
ricfld 42518 A ring is a field if and o...
asclf1 42519 Two ways of saying the sca...
abvexp 42520 Move exponentiation in and...
fimgmcyclem 42521 Lemma for ~ fimgmcyc . (C...
fimgmcyc 42522 Version of ~ odcl2 for fin...
fidomncyc 42523 Version of ~ odcl2 for mul...
fiabv 42524 In a finite domain (a fini...
lvecgrp 42525 A vector space is a group....
lvecring 42526 The scalar component of a ...
frlm0vald 42527 All coordinates of the zer...
frlmsnic 42528 Given a free module with a...
uvccl 42529 A unit vector is a vector....
uvcn0 42530 A unit vector is nonzero. ...
pwselbasr 42531 The reverse direction of ~...
pwsgprod 42532 Finite products in a power...
psrmnd 42533 The ring of power series i...
psrbagres 42534 Restrict a bag of variable...
mplcrngd 42535 The polynomial ring is a c...
mplsubrgcl 42536 An element of a polynomial...
mhmcopsr 42537 The composition of a monoi...
mhmcoaddpsr 42538 Show that the ring homomor...
rhmcomulpsr 42539 Show that the ring homomor...
rhmpsr 42540 Provide a ring homomorphis...
rhmpsr1 42541 Provide a ring homomorphis...
mplascl0 42542 The zero scalar as a polyn...
mplascl1 42543 The one scalar as a polyno...
mplmapghm 42544 The function ` H ` mapping...
evl0 42545 The zero polynomial evalua...
evlscl 42546 A polynomial over the ring...
evlsval3 42547 Give a formula for the pol...
evlsvval 42548 Give a formula for the eva...
evlsvvvallem 42549 Lemma for ~ evlsvvval akin...
evlsvvvallem2 42550 Lemma for theorems using ~...
evlsvvval 42551 Give a formula for the eva...
evlsscaval 42552 Polynomial evaluation buil...
evlsvarval 42553 Polynomial evaluation buil...
evlsbagval 42554 Polynomial evaluation buil...
evlsexpval 42555 Polynomial evaluation buil...
evlsaddval 42556 Polynomial evaluation buil...
evlsmulval 42557 Polynomial evaluation buil...
evlsmaprhm 42558 The function ` F ` mapping...
evlsevl 42559 Evaluation in a subring is...
evlcl 42560 A polynomial over the ring...
evlvvval 42561 Give a formula for the eva...
evlvvvallem 42562 Lemma for theorems using ~...
evladdval 42563 Polynomial evaluation buil...
evlmulval 42564 Polynomial evaluation buil...
selvcllem1 42565 ` T ` is an associative al...
selvcllem2 42566 ` D ` is a ring homomorphi...
selvcllem3 42567 The third argument passed ...
selvcllemh 42568 Apply the third argument (...
selvcllem4 42569 The fourth argument passed...
selvcllem5 42570 The fifth argument passed ...
selvcl 42571 Closure of the "variable s...
selvval2 42572 Value of the "variable sel...
selvvvval 42573 Recover the original polyn...
evlselvlem 42574 Lemma for ~ evlselv . Use...
evlselv 42575 Evaluating a selection of ...
selvadd 42576 The "variable selection" f...
selvmul 42577 The "variable selection" f...
fsuppind 42578 Induction on functions ` F...
fsuppssindlem1 42579 Lemma for ~ fsuppssind . ...
fsuppssindlem2 42580 Lemma for ~ fsuppssind . ...
fsuppssind 42581 Induction on functions ` F...
mhpind 42582 The homogeneous polynomial...
evlsmhpvvval 42583 Give a formula for the eva...
mhphflem 42584 Lemma for ~ mhphf . Add s...
mhphf 42585 A homogeneous polynomial d...
mhphf2 42586 A homogeneous polynomial d...
mhphf3 42587 A homogeneous polynomial d...
mhphf4 42588 A homogeneous polynomial d...
prjspval 42591 Value of the projective sp...
prjsprel 42592 Utility theorem regarding ...
prjspertr 42593 The relation in ` PrjSp ` ...
prjsperref 42594 The relation in ` PrjSp ` ...
prjspersym 42595 The relation in ` PrjSp ` ...
prjsper 42596 The relation used to defin...
prjspreln0 42597 Two nonzero vectors are eq...
prjspvs 42598 A nonzero multiple of a ve...
prjsprellsp 42599 Two vectors are equivalent...
prjspeclsp 42600 The vectors equivalent to ...
prjspval2 42601 Alternate definition of pr...
prjspnval 42604 Value of the n-dimensional...
prjspnerlem 42605 A lemma showing that the e...
prjspnval2 42606 Value of the n-dimensional...
prjspner 42607 The relation used to defin...
prjspnvs 42608 A nonzero multiple of a ve...
prjspnssbas 42609 A projective point spans a...
prjspnn0 42610 A projective point is none...
0prjspnlem 42611 Lemma for ~ 0prjspn . The...
prjspnfv01 42612 Any vector is equivalent t...
prjspner01 42613 Any vector is equivalent t...
prjspner1 42614 Two vectors whose zeroth c...
0prjspnrel 42615 In the zero-dimensional pr...
0prjspn 42616 A zero-dimensional project...
prjcrvfval 42619 Value of the projective cu...
prjcrvval 42620 Value of the projective cu...
prjcrv0 42621 The "curve" (zero set) cor...
dffltz 42622 Fermat's Last Theorem (FLT...
fltmul 42623 A counterexample to FLT st...
fltdiv 42624 A counterexample to FLT st...
flt0 42625 A counterexample for FLT d...
fltdvdsabdvdsc 42626 Any factor of both ` A ` a...
fltabcoprmex 42627 A counterexample to FLT im...
fltaccoprm 42628 A counterexample to FLT wi...
fltbccoprm 42629 A counterexample to FLT wi...
fltabcoprm 42630 A counterexample to FLT wi...
infdesc 42631 Infinite descent. The hyp...
fltne 42632 If a counterexample to FLT...
flt4lem 42633 Raising a number to the fo...
flt4lem1 42634 Satisfy the antecedent use...
flt4lem2 42635 If ` A ` is even, ` B ` is...
flt4lem3 42636 Equivalent to ~ pythagtrip...
flt4lem4 42637 If the product of two copr...
flt4lem5 42638 In the context of the lemm...
flt4lem5elem 42639 Version of ~ fltaccoprm an...
flt4lem5a 42640 Part 1 of Equation 1 of ...
flt4lem5b 42641 Part 2 of Equation 1 of ...
flt4lem5c 42642 Part 2 of Equation 2 of ...
flt4lem5d 42643 Part 3 of Equation 2 of ...
flt4lem5e 42644 Satisfy the hypotheses of ...
flt4lem5f 42645 Final equation of ~...
flt4lem6 42646 Remove shared factors in a...
flt4lem7 42647 Convert ~ flt4lem5f into a...
nna4b4nsq 42648 Strengthening of Fermat's ...
fltltc 42649 ` ( C ^ N ) ` is the large...
fltnltalem 42650 Lemma for ~ fltnlta . A l...
fltnlta 42651 In a Fermat counterexample...
iddii 42652 Version of ~ a1ii with the...
bicomdALT 42653 Alternate proof of ~ bicom...
alan 42654 Alias for ~ 19.26 for easi...
exor 42655 Alias for ~ 19.43 for easi...
rexor 42656 Alias for ~ r19.43 for eas...
ruvALT 42657 Alternate proof of ~ ruv w...
sn-wcdeq 42658 Alternative to ~ wcdeq and...
sq45 42659 45 squared is 2025. (Cont...
sum9cubes 42660 The sum of the first nine ...
sn-isghm 42661 Longer proof of ~ isghm , ...
aprilfools2025 42662 An abuse of notation. (Co...
nfa1w 42663 Replace ~ ax-10 in ~ nfa1 ...
eu6w 42664 Replace ~ ax-10 , ~ ax-12 ...
abbibw 42665 Replace ~ ax-10 , ~ ax-11 ...
absnw 42666 Replace ~ ax-10 , ~ ax-11 ...
euabsn2w 42667 Replace ~ ax-10 , ~ ax-11 ...
sn-tz6.12-2 42668 ~ tz6.12-2 without ~ ax-10...
cu3addd 42669 Cube of sum of three numbe...
negexpidd 42670 The sum of a real number t...
rexlimdv3d 42671 An extended version of ~ r...
3cubeslem1 42672 Lemma for ~ 3cubes . (Con...
3cubeslem2 42673 Lemma for ~ 3cubes . Used...
3cubeslem3l 42674 Lemma for ~ 3cubes . (Con...
3cubeslem3r 42675 Lemma for ~ 3cubes . (Con...
3cubeslem3 42676 Lemma for ~ 3cubes . (Con...
3cubeslem4 42677 Lemma for ~ 3cubes . This...
3cubes 42678 Every rational number is a...
rntrclfvOAI 42679 The range of the transitiv...
moxfr 42680 Transfer at-most-one betwe...
imaiinfv 42681 Indexed intersection of an...
elrfi 42682 Elementhood in a set of re...
elrfirn 42683 Elementhood in a set of re...
elrfirn2 42684 Elementhood in a set of re...
cmpfiiin 42685 In a compact topology, a s...
ismrcd1 42686 Any function from the subs...
ismrcd2 42687 Second half of ~ ismrcd1 ....
istopclsd 42688 A closure function which s...
ismrc 42689 A function is a Moore clos...
isnacs 42692 Expand definition of Noeth...
nacsfg 42693 In a Noetherian-type closu...
isnacs2 42694 Express Noetherian-type cl...
mrefg2 42695 Slight variation on finite...
mrefg3 42696 Slight variation on finite...
nacsacs 42697 A closure system of Noethe...
isnacs3 42698 A choice-free order equiva...
incssnn0 42699 Transitivity induction of ...
nacsfix 42700 An increasing sequence of ...
constmap 42701 A constant (represented wi...
mapco2g 42702 Renaming indices in a tupl...
mapco2 42703 Post-composition (renaming...
mapfzcons 42704 Extending a one-based mapp...
mapfzcons1 42705 Recover prefix mapping fro...
mapfzcons1cl 42706 A nonempty mapping has a p...
mapfzcons2 42707 Recover added element from...
mptfcl 42708 Interpret range of a maps-...
mzpclval 42713 Substitution lemma for ` m...
elmzpcl 42714 Double substitution lemma ...
mzpclall 42715 The set of all functions w...
mzpcln0 42716 Corollary of ~ mzpclall : ...
mzpcl1 42717 Defining property 1 of a p...
mzpcl2 42718 Defining property 2 of a p...
mzpcl34 42719 Defining properties 3 and ...
mzpval 42720 Value of the ` mzPoly ` fu...
dmmzp 42721 ` mzPoly ` is defined for ...
mzpincl 42722 Polynomial closedness is a...
mzpconst 42723 Constant functions are pol...
mzpf 42724 A polynomial function is a...
mzpproj 42725 A projection function is p...
mzpadd 42726 The pointwise sum of two p...
mzpmul 42727 The pointwise product of t...
mzpconstmpt 42728 A constant function expres...
mzpaddmpt 42729 Sum of polynomial function...
mzpmulmpt 42730 Product of polynomial func...
mzpsubmpt 42731 The difference of two poly...
mzpnegmpt 42732 Negation of a polynomial f...
mzpexpmpt 42733 Raise a polynomial functio...
mzpindd 42734 "Structural" induction to ...
mzpmfp 42735 Relationship between multi...
mzpsubst 42736 Substituting polynomials f...
mzprename 42737 Simplified version of ~ mz...
mzpresrename 42738 A polynomial is a polynomi...
mzpcompact2lem 42739 Lemma for ~ mzpcompact2 . ...
mzpcompact2 42740 Polynomials are finitary o...
coeq0i 42741 ~ coeq0 but without explic...
fzsplit1nn0 42742 Split a finite 1-based set...
eldiophb 42745 Initial expression of Diop...
eldioph 42746 Condition for a set to be ...
diophrw 42747 Renaming and adding unused...
eldioph2lem1 42748 Lemma for ~ eldioph2 . Co...
eldioph2lem2 42749 Lemma for ~ eldioph2 . Co...
eldioph2 42750 Construct a Diophantine se...
eldioph2b 42751 While Diophantine sets wer...
eldiophelnn0 42752 Remove antecedent on ` B `...
eldioph3b 42753 Define Diophantine sets in...
eldioph3 42754 Inference version of ~ eld...
ellz1 42755 Membership in a lower set ...
lzunuz 42756 The union of a lower set o...
fz1eqin 42757 Express a one-based finite...
lzenom 42758 Lower integers are countab...
elmapresaunres2 42759 ~ fresaunres2 transposed t...
diophin 42760 If two sets are Diophantin...
diophun 42761 If two sets are Diophantin...
eldiophss 42762 Diophantine sets are sets ...
diophrex 42763 Projecting a Diophantine s...
eq0rabdioph 42764 This is the first of a num...
eqrabdioph 42765 Diophantine set builder fo...
0dioph 42766 The null set is Diophantin...
vdioph 42767 The "universal" set (as la...
anrabdioph 42768 Diophantine set builder fo...
orrabdioph 42769 Diophantine set builder fo...
3anrabdioph 42770 Diophantine set builder fo...
3orrabdioph 42771 Diophantine set builder fo...
2sbcrex 42772 Exchange an existential qu...
sbcrexgOLD 42773 Interchange class substitu...
2sbcrexOLD 42774 Exchange an existential qu...
sbc2rex 42775 Exchange a substitution wi...
sbc2rexgOLD 42776 Exchange a substitution wi...
sbc4rex 42777 Exchange a substitution wi...
sbc4rexgOLD 42778 Exchange a substitution wi...
sbcrot3 42779 Rotate a sequence of three...
sbcrot5 42780 Rotate a sequence of five ...
sbccomieg 42781 Commute two explicit subst...
rexrabdioph 42782 Diophantine set builder fo...
rexfrabdioph 42783 Diophantine set builder fo...
2rexfrabdioph 42784 Diophantine set builder fo...
3rexfrabdioph 42785 Diophantine set builder fo...
4rexfrabdioph 42786 Diophantine set builder fo...
6rexfrabdioph 42787 Diophantine set builder fo...
7rexfrabdioph 42788 Diophantine set builder fo...
rabdiophlem1 42789 Lemma for arithmetic dioph...
rabdiophlem2 42790 Lemma for arithmetic dioph...
elnn0rabdioph 42791 Diophantine set builder fo...
rexzrexnn0 42792 Rewrite an existential qua...
lerabdioph 42793 Diophantine set builder fo...
eluzrabdioph 42794 Diophantine set builder fo...
elnnrabdioph 42795 Diophantine set builder fo...
ltrabdioph 42796 Diophantine set builder fo...
nerabdioph 42797 Diophantine set builder fo...
dvdsrabdioph 42798 Divisibility is a Diophant...
eldioph4b 42799 Membership in ` Dioph ` ex...
eldioph4i 42800 Forward-only version of ~ ...
diophren 42801 Change variables in a Diop...
rabrenfdioph 42802 Change variable numbers in...
rabren3dioph 42803 Change variable numbers in...
fphpd 42804 Pigeonhole principle expre...
fphpdo 42805 Pigeonhole principle for s...
ctbnfien 42806 An infinite subset of a co...
fiphp3d 42807 Infinite pigeonhole princi...
rencldnfilem 42808 Lemma for ~ rencldnfi . (...
rencldnfi 42809 A set of real numbers whic...
irrapxlem1 42810 Lemma for ~ irrapx1 . Div...
irrapxlem2 42811 Lemma for ~ irrapx1 . Two...
irrapxlem3 42812 Lemma for ~ irrapx1 . By ...
irrapxlem4 42813 Lemma for ~ irrapx1 . Eli...
irrapxlem5 42814 Lemma for ~ irrapx1 . Swi...
irrapxlem6 42815 Lemma for ~ irrapx1 . Exp...
irrapx1 42816 Dirichlet's approximation ...
pellexlem1 42817 Lemma for ~ pellex . Arit...
pellexlem2 42818 Lemma for ~ pellex . Arit...
pellexlem3 42819 Lemma for ~ pellex . To e...
pellexlem4 42820 Lemma for ~ pellex . Invo...
pellexlem5 42821 Lemma for ~ pellex . Invo...
pellexlem6 42822 Lemma for ~ pellex . Doin...
pellex 42823 Every Pell equation has a ...
pell1qrval 42834 Value of the set of first-...
elpell1qr 42835 Membership in a first-quad...
pell14qrval 42836 Value of the set of positi...
elpell14qr 42837 Membership in the set of p...
pell1234qrval 42838 Value of the set of genera...
elpell1234qr 42839 Membership in the set of g...
pell1234qrre 42840 General Pell solutions are...
pell1234qrne0 42841 No solution to a Pell equa...
pell1234qrreccl 42842 General solutions of the P...
pell1234qrmulcl 42843 General solutions of the P...
pell14qrss1234 42844 A positive Pell solution i...
pell14qrre 42845 A positive Pell solution i...
pell14qrne0 42846 A positive Pell solution i...
pell14qrgt0 42847 A positive Pell solution i...
pell14qrrp 42848 A positive Pell solution i...
pell1234qrdich 42849 A general Pell solution is...
elpell14qr2 42850 A number is a positive Pel...
pell14qrmulcl 42851 Positive Pell solutions ar...
pell14qrreccl 42852 Positive Pell solutions ar...
pell14qrdivcl 42853 Positive Pell solutions ar...
pell14qrexpclnn0 42854 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 42855 Positive Pell solutions ar...
pell1qrss14 42856 First-quadrant Pell soluti...
pell14qrdich 42857 A positive Pell solution i...
pell1qrge1 42858 A Pell solution in the fir...
pell1qr1 42859 1 is a Pell solution and i...
elpell1qr2 42860 The first quadrant solutio...
pell1qrgaplem 42861 Lemma for ~ pell1qrgap . ...
pell1qrgap 42862 First-quadrant Pell soluti...
pell14qrgap 42863 Positive Pell solutions ar...
pell14qrgapw 42864 Positive Pell solutions ar...
pellqrexplicit 42865 Condition for a calculated...
infmrgelbi 42866 Any lower bound of a nonem...
pellqrex 42867 There is a nontrivial solu...
pellfundval 42868 Value of the fundamental s...
pellfundre 42869 The fundamental solution o...
pellfundge 42870 Lower bound on the fundame...
pellfundgt1 42871 Weak lower bound on the Pe...
pellfundlb 42872 A nontrivial first quadran...
pellfundglb 42873 If a real is larger than t...
pellfundex 42874 The fundamental solution a...
pellfund14gap 42875 There are no solutions bet...
pellfundrp 42876 The fundamental Pell solut...
pellfundne1 42877 The fundamental Pell solut...
reglogcl 42878 General logarithm is a rea...
reglogltb 42879 General logarithm preserve...
reglogleb 42880 General logarithm preserve...
reglogmul 42881 Multiplication law for gen...
reglogexp 42882 Power law for general log....
reglogbas 42883 General log of the base is...
reglog1 42884 General log of 1 is 0. (C...
reglogexpbas 42885 General log of a power of ...
pellfund14 42886 Every positive Pell soluti...
pellfund14b 42887 The positive Pell solution...
rmxfval 42892 Value of the X sequence. ...
rmyfval 42893 Value of the Y sequence. ...
rmspecsqrtnq 42894 The discriminant used to d...
rmspecnonsq 42895 The discriminant used to d...
qirropth 42896 This lemma implements the ...
rmspecfund 42897 The base of exponent used ...
rmxyelqirr 42898 The solutions used to cons...
rmxyelqirrOLD 42899 Obsolete version of ~ rmxy...
rmxypairf1o 42900 The function used to extra...
rmxyelxp 42901 Lemma for ~ frmx and ~ frm...
frmx 42902 The X sequence is a nonneg...
frmy 42903 The Y sequence is an integ...
rmxyval 42904 Main definition of the X a...
rmspecpos 42905 The discriminant used to d...
rmxycomplete 42906 The X and Y sequences take...
rmxynorm 42907 The X and Y sequences defi...
rmbaserp 42908 The base of exponentiation...
rmxyneg 42909 Negation law for X and Y s...
rmxyadd 42910 Addition formula for X and...
rmxy1 42911 Value of the X and Y seque...
rmxy0 42912 Value of the X and Y seque...
rmxneg 42913 Negation law (even functio...
rmx0 42914 Value of X sequence at 0. ...
rmx1 42915 Value of X sequence at 1. ...
rmxadd 42916 Addition formula for X seq...
rmyneg 42917 Negation formula for Y seq...
rmy0 42918 Value of Y sequence at 0. ...
rmy1 42919 Value of Y sequence at 1. ...
rmyadd 42920 Addition formula for Y seq...
rmxp1 42921 Special addition-of-1 form...
rmyp1 42922 Special addition of 1 form...
rmxm1 42923 Subtraction of 1 formula f...
rmym1 42924 Subtraction of 1 formula f...
rmxluc 42925 The X sequence is a Lucas ...
rmyluc 42926 The Y sequence is a Lucas ...
rmyluc2 42927 Lucas sequence property of...
rmxdbl 42928 "Double-angle formula" for...
rmydbl 42929 "Double-angle formula" for...
monotuz 42930 A function defined on an u...
monotoddzzfi 42931 A function which is odd an...
monotoddzz 42932 A function (given implicit...
oddcomabszz 42933 An odd function which take...
2nn0ind 42934 Induction on nonnegative i...
zindbi 42935 Inductively transfer a pro...
rmxypos 42936 For all nonnegative indice...
ltrmynn0 42937 The Y-sequence is strictly...
ltrmxnn0 42938 The X-sequence is strictly...
lermxnn0 42939 The X-sequence is monotoni...
rmxnn 42940 The X-sequence is defined ...
ltrmy 42941 The Y-sequence is strictly...
rmyeq0 42942 Y is zero only at zero. (...
rmyeq 42943 Y is one-to-one. (Contrib...
lermy 42944 Y is monotonic (non-strict...
rmynn 42945 ` rmY ` is positive for po...
rmynn0 42946 ` rmY ` is nonnegative for...
rmyabs 42947 ` rmY ` commutes with ` ab...
jm2.24nn 42948 X(n) is strictly greater t...
jm2.17a 42949 First half of lemma 2.17 o...
jm2.17b 42950 Weak form of the second ha...
jm2.17c 42951 Second half of lemma 2.17 ...
jm2.24 42952 Lemma 2.24 of [JonesMatija...
rmygeid 42953 Y(n) increases faster than...
congtr 42954 A wff of the form ` A || (...
congadd 42955 If two pairs of numbers ar...
congmul 42956 If two pairs of numbers ar...
congsym 42957 Congruence mod ` A ` is a ...
congneg 42958 If two integers are congru...
congsub 42959 If two pairs of numbers ar...
congid 42960 Every integer is congruent...
mzpcong 42961 Polynomials commute with c...
congrep 42962 Every integer is congruent...
congabseq 42963 If two integers are congru...
acongid 42964 A wff like that in this th...
acongsym 42965 Symmetry of alternating co...
acongneg2 42966 Negate right side of alter...
acongtr 42967 Transitivity of alternatin...
acongeq12d 42968 Substitution deduction for...
acongrep 42969 Every integer is alternati...
fzmaxdif 42970 Bound on the difference be...
fzneg 42971 Reflection of a finite ran...
acongeq 42972 Two numbers in the fundame...
dvdsacongtr 42973 Alternating congruence pas...
coprmdvdsb 42974 Multiplication by a coprim...
modabsdifz 42975 Divisibility in terms of m...
dvdsabsmod0 42976 Divisibility in terms of m...
jm2.18 42977 Theorem 2.18 of [JonesMati...
jm2.19lem1 42978 Lemma for ~ jm2.19 . X an...
jm2.19lem2 42979 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 42980 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 42981 Lemma for ~ jm2.19 . Exte...
jm2.19 42982 Lemma 2.19 of [JonesMatija...
jm2.21 42983 Lemma for ~ jm2.20nn . Ex...
jm2.22 42984 Lemma for ~ jm2.20nn . Ap...
jm2.23 42985 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 42986 Lemma 2.20 of [JonesMatija...
jm2.25lem1 42987 Lemma for ~ jm2.26 . (Con...
jm2.25 42988 Lemma for ~ jm2.26 . Rema...
jm2.26a 42989 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 42990 Lemma for ~ jm2.26 . Use ...
jm2.26 42991 Lemma 2.26 of [JonesMatija...
jm2.15nn0 42992 Lemma 2.15 of [JonesMatija...
jm2.16nn0 42993 Lemma 2.16 of [JonesMatija...
jm2.27a 42994 Lemma for ~ jm2.27 . Reve...
jm2.27b 42995 Lemma for ~ jm2.27 . Expa...
jm2.27c 42996 Lemma for ~ jm2.27 . Forw...
jm2.27 42997 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 42998 Lemma for ~ rmydioph . Su...
jm2.27dlem2 42999 Lemma for ~ rmydioph . Th...
jm2.27dlem3 43000 Lemma for ~ rmydioph . In...
jm2.27dlem4 43001 Lemma for ~ rmydioph . In...
jm2.27dlem5 43002 Lemma for ~ rmydioph . Us...
rmydioph 43003 ~ jm2.27 restated in terms...
rmxdiophlem 43004 X can be expressed in term...
rmxdioph 43005 X is a Diophantine functio...
jm3.1lem1 43006 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 43007 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 43008 Lemma for ~ jm3.1 . (Cont...
jm3.1 43009 Diophantine expression for...
expdiophlem1 43010 Lemma for ~ expdioph . Fu...
expdiophlem2 43011 Lemma for ~ expdioph . Ex...
expdioph 43012 The exponential function i...
setindtr 43013 Set induction for sets con...
setindtrs 43014 Set induction scheme witho...
dford3lem1 43015 Lemma for ~ dford3 . (Con...
dford3lem2 43016 Lemma for ~ dford3 . (Con...
dford3 43017 Ordinals are precisely the...
dford4 43018 ~ dford3 expressed in prim...
wopprc 43019 Unrelated: Wiener pairs t...
rpnnen3lem 43020 Lemma for ~ rpnnen3 . (Co...
rpnnen3 43021 Dedekind cut injection of ...
axac10 43022 Characterization of choice...
harinf 43023 The Hartogs number of an i...
wdom2d2 43024 Deduction for weak dominan...
ttac 43025 Tarski's theorem about cho...
pw2f1ocnv 43026 Define a bijection between...
pw2f1o2 43027 Define a bijection between...
pw2f1o2val 43028 Function value of the ~ pw...
pw2f1o2val2 43029 Membership in a mapped set...
limsuc2 43030 Limit ordinals in the sens...
wepwsolem 43031 Transfer an ordering on ch...
wepwso 43032 A well-ordering induces a ...
dnnumch1 43033 Define an enumeration of a...
dnnumch2 43034 Define an enumeration (wea...
dnnumch3lem 43035 Value of the ordinal injec...
dnnumch3 43036 Define an injection from a...
dnwech 43037 Define a well-ordering fro...
fnwe2val 43038 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 43039 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 43040 Lemma for ~ fnwe2 . An el...
fnwe2lem3 43041 Lemma for ~ fnwe2 . Trich...
fnwe2 43042 A well-ordering can be con...
aomclem1 43043 Lemma for ~ dfac11 . This...
aomclem2 43044 Lemma for ~ dfac11 . Succ...
aomclem3 43045 Lemma for ~ dfac11 . Succ...
aomclem4 43046 Lemma for ~ dfac11 . Limi...
aomclem5 43047 Lemma for ~ dfac11 . Comb...
aomclem6 43048 Lemma for ~ dfac11 . Tran...
aomclem7 43049 Lemma for ~ dfac11 . ` ( R...
aomclem8 43050 Lemma for ~ dfac11 . Perf...
dfac11 43051 The right-hand side of thi...
kelac1 43052 Kelley's choice, basic for...
kelac2lem 43053 Lemma for ~ kelac2 and ~ d...
kelac2 43054 Kelley's choice, most comm...
dfac21 43055 Tychonoff's theorem is a c...
islmodfg 43058 Property of a finitely gen...
islssfg 43059 Property of a finitely gen...
islssfg2 43060 Property of a finitely gen...
islssfgi 43061 Finitely spanned subspaces...
fglmod 43062 Finitely generated left mo...
lsmfgcl 43063 The sum of two finitely ge...
islnm 43066 Property of being a Noethe...
islnm2 43067 Property of being a Noethe...
lnmlmod 43068 A Noetherian left module i...
lnmlssfg 43069 A submodule of Noetherian ...
lnmlsslnm 43070 All submodules of a Noethe...
lnmfg 43071 A Noetherian left module i...
kercvrlsm 43072 The domain of a linear fun...
lmhmfgima 43073 A homomorphism maps finite...
lnmepi 43074 Epimorphic images of Noeth...
lmhmfgsplit 43075 If the kernel and range of...
lmhmlnmsplit 43076 If the kernel and range of...
lnmlmic 43077 Noetherian is an invariant...
pwssplit4 43078 Splitting for structure po...
filnm 43079 Finite left modules are No...
pwslnmlem0 43080 Zeroeth powers are Noether...
pwslnmlem1 43081 First powers are Noetheria...
pwslnmlem2 43082 A sum of powers is Noether...
pwslnm 43083 Finite powers of Noetheria...
unxpwdom3 43084 Weaker version of ~ unxpwd...
pwfi2f1o 43085 The ~ pw2f1o bijection rel...
pwfi2en 43086 Finitely supported indicat...
frlmpwfi 43087 Formal linear combinations...
gicabl 43088 Being Abelian is a group i...
imasgim 43089 A relabeling of the elemen...
isnumbasgrplem1 43090 A set which is equipollent...
harn0 43091 The Hartogs number of a se...
numinfctb 43092 A numerable infinite set c...
isnumbasgrplem2 43093 If the (to be thought of a...
isnumbasgrplem3 43094 Every nonempty numerable s...
isnumbasabl 43095 A set is numerable iff it ...
isnumbasgrp 43096 A set is numerable iff it ...
dfacbasgrp 43097 A choice equivalent in abs...
islnr 43100 Property of a left-Noether...
lnrring 43101 Left-Noetherian rings are ...
lnrlnm 43102 Left-Noetherian rings have...
islnr2 43103 Property of being a left-N...
islnr3 43104 Relate left-Noetherian rin...
lnr2i 43105 Given an ideal in a left-N...
lpirlnr 43106 Left principal ideal rings...
lnrfrlm 43107 Finite-dimensional free mo...
lnrfg 43108 Finitely-generated modules...
lnrfgtr 43109 A submodule of a finitely ...
hbtlem1 43112 Value of the leading coeff...
hbtlem2 43113 Leading coefficient ideals...
hbtlem7 43114 Functionality of leading c...
hbtlem4 43115 The leading ideal function...
hbtlem3 43116 The leading ideal function...
hbtlem5 43117 The leading ideal function...
hbtlem6 43118 There is a finite set of p...
hbt 43119 The Hilbert Basis Theorem ...
dgrsub2 43124 Subtracting two polynomial...
elmnc 43125 Property of a monic polyno...
mncply 43126 A monic polynomial is a po...
mnccoe 43127 A monic polynomial has lea...
mncn0 43128 A monic polynomial is not ...
dgraaval 43133 Value of the degree functi...
dgraalem 43134 Properties of the degree o...
dgraacl 43135 Closure of the degree func...
dgraaf 43136 Degree function on algebra...
dgraaub 43137 Upper bound on degree of a...
dgraa0p 43138 A rational polynomial of d...
mpaaeu 43139 An algebraic number has ex...
mpaaval 43140 Value of the minimal polyn...
mpaalem 43141 Properties of the minimal ...
mpaacl 43142 Minimal polynomial is a po...
mpaadgr 43143 Minimal polynomial has deg...
mpaaroot 43144 The minimal polynomial of ...
mpaamn 43145 Minimal polynomial is moni...
itgoval 43150 Value of the integral-over...
aaitgo 43151 The standard algebraic num...
itgoss 43152 An integral element is int...
itgocn 43153 All integral elements are ...
cnsrexpcl 43154 Exponentiation is closed i...
fsumcnsrcl 43155 Finite sums are closed in ...
cnsrplycl 43156 Polynomials are closed in ...
rgspnid 43157 The span of a subring is i...
rngunsnply 43158 Adjoining one element to a...
flcidc 43159 Finite linear combinations...
algstr 43162 Lemma to shorten proofs of...
algbase 43163 The base set of a construc...
algaddg 43164 The additive operation of ...
algmulr 43165 The multiplicative operati...
algsca 43166 The set of scalars of a co...
algvsca 43167 The scalar product operati...
mendval 43168 Value of the module endomo...
mendbas 43169 Base set of the module end...
mendplusgfval 43170 Addition in the module end...
mendplusg 43171 A specific addition in the...
mendmulrfval 43172 Multiplication in the modu...
mendmulr 43173 A specific multiplication ...
mendsca 43174 The module endomorphism al...
mendvscafval 43175 Scalar multiplication in t...
mendvsca 43176 A specific scalar multipli...
mendring 43177 The module endomorphism al...
mendlmod 43178 The module endomorphism al...
mendassa 43179 The module endomorphism al...
idomodle 43180 Limit on the number of ` N...
fiuneneq 43181 Two finite sets of equal s...
idomsubgmo 43182 The units of an integral d...
proot1mul 43183 Any primitive ` N ` -th ro...
proot1hash 43184 If an integral domain has ...
proot1ex 43185 The complex field has prim...
mon1psubm 43188 Monic polynomials are a mu...
deg1mhm 43189 Homomorphic property of th...
cytpfn 43190 Functionality of the cyclo...
cytpval 43191 Substitutions for the Nth ...
fgraphopab 43192 Express a function as a su...
fgraphxp 43193 Express a function as a su...
hausgraph 43194 The graph of a continuous ...
r1sssucd 43199 Deductive form of ~ r1sssu...
iocunico 43200 Split an open interval int...
iocinico 43201 The intersection of two se...
iocmbl 43202 An open-below, closed-abov...
cnioobibld 43203 A bounded, continuous func...
arearect 43204 The area of a rectangle wh...
areaquad 43205 The area of a quadrilatera...
uniel 43206 Two ways to say a union is...
unielss 43207 Two ways to say the union ...
unielid 43208 Two ways to say the union ...
ssunib 43209 Two ways to say a class is...
rp-intrabeq 43210 Equality theorem for supre...
rp-unirabeq 43211 Equality theorem for infim...
onmaxnelsup 43212 Two ways to say the maximu...
onsupneqmaxlim0 43213 If the supremum of a class...
onsupcl2 43214 The supremum of a set of o...
onuniintrab 43215 The union of a set of ordi...
onintunirab 43216 The intersection of a non-...
onsupnmax 43217 If the union of a class of...
onsupuni 43218 The supremum of a set of o...
onsupuni2 43219 The supremum of a set of o...
onsupintrab 43220 The supremum of a set of o...
onsupintrab2 43221 The supremum of a set of o...
onsupcl3 43222 The supremum of a set of o...
onsupex3 43223 The supremum of a set of o...
onuniintrab2 43224 The union of a set of ordi...
oninfint 43225 The infimum of a non-empty...
oninfunirab 43226 The infimum of a non-empty...
oninfcl2 43227 The infimum of a non-empty...
onsupmaxb 43228 The union of a class of or...
onexgt 43229 For any ordinal, there is ...
onexomgt 43230 For any ordinal, there is ...
omlimcl2 43231 The product of a limit ord...
onexlimgt 43232 For any ordinal, there is ...
onexoegt 43233 For any ordinal, there is ...
oninfex2 43234 The infimum of a non-empty...
onsupeqmax 43235 Condition when the supremu...
onsupeqnmax 43236 Condition when the supremu...
onsuplub 43237 The supremum of a set of o...
onsupnub 43238 An upper bound of a set of...
onfisupcl 43239 Sufficient condition when ...
onelord 43240 Every element of a ordinal...
onepsuc 43241 Every ordinal is less than...
epsoon 43242 The ordinals are strictly ...
epirron 43243 The strict order on the or...
oneptr 43244 The strict order on the or...
oneltr 43245 The elementhood relation o...
oneptri 43246 The strict, complete (line...
ordeldif 43247 Membership in the differen...
ordeldifsucon 43248 Membership in the differen...
ordeldif1o 43249 Membership in the differen...
ordne0gt0 43250 Ordinal zero is less than ...
ondif1i 43251 Ordinal zero is less than ...
onsucelab 43252 The successor of every ord...
dflim6 43253 A limit ordinal is a non-z...
limnsuc 43254 A limit ordinal is not an ...
onsucss 43255 If one ordinal is less tha...
ordnexbtwnsuc 43256 For any distinct pair of o...
orddif0suc 43257 For any distinct pair of o...
onsucf1lem 43258 For ordinals, the successo...
onsucf1olem 43259 The successor operation is...
onsucrn 43260 The successor operation is...
onsucf1o 43261 The successor operation is...
dflim7 43262 A limit ordinal is a non-z...
onov0suclim 43263 Compactly express rules fo...
oa0suclim 43264 Closed form expression of ...
om0suclim 43265 Closed form expression of ...
oe0suclim 43266 Closed form expression of ...
oaomoecl 43267 The operations of addition...
onsupsucismax 43268 If the union of a set of o...
onsssupeqcond 43269 If for every element of a ...
limexissup 43270 An ordinal which is a limi...
limiun 43271 A limit ordinal is the uni...
limexissupab 43272 An ordinal which is a limi...
om1om1r 43273 Ordinal one is both a left...
oe0rif 43274 Ordinal zero raised to any...
oasubex 43275 While subtraction can't be...
nnamecl 43276 Natural numbers are closed...
onsucwordi 43277 The successor operation pr...
oalim2cl 43278 The ordinal sum of any ord...
oaltublim 43279 Given ` C ` is a limit ord...
oaordi3 43280 Ordinal addition of the sa...
oaord3 43281 When the same ordinal is a...
1oaomeqom 43282 Ordinal one plus omega is ...
oaabsb 43283 The right addend absorbs t...
oaordnrex 43284 When omega is added on the...
oaordnr 43285 When the same ordinal is a...
omge1 43286 Any non-zero ordinal produ...
omge2 43287 Any non-zero ordinal produ...
omlim2 43288 The non-zero product with ...
omord2lim 43289 Given a limit ordinal, the...
omord2i 43290 Ordinal multiplication of ...
omord2com 43291 When the same non-zero ord...
2omomeqom 43292 Ordinal two times omega is...
omnord1ex 43293 When omega is multiplied o...
omnord1 43294 When the same non-zero ord...
oege1 43295 Any non-zero ordinal power...
oege2 43296 Any power of an ordinal at...
rp-oelim2 43297 The power of an ordinal at...
oeord2lim 43298 Given a limit ordinal, the...
oeord2i 43299 Ordinal exponentiation of ...
oeord2com 43300 When the same base at leas...
nnoeomeqom 43301 Any natural number at leas...
df3o2 43302 Ordinal 3 is the unordered...
df3o3 43303 Ordinal 3, fully expanded....
oenord1ex 43304 When ordinals two and thre...
oenord1 43305 When two ordinals (both at...
oaomoencom 43306 Ordinal addition, multipli...
oenassex 43307 Ordinal two raised to two ...
oenass 43308 Ordinal exponentiation is ...
cantnftermord 43309 For terms of the form of a...
cantnfub 43310 Given a finite number of t...
cantnfub2 43311 Given a finite number of t...
bropabg 43312 Equivalence for two classe...
cantnfresb 43313 A Cantor normal form which...
cantnf2 43314 For every ordinal, ` A ` ,...
oawordex2 43315 If ` C ` is between ` A ` ...
nnawordexg 43316 If an ordinal, ` B ` , is ...
succlg 43317 Closure law for ordinal su...
dflim5 43318 A limit ordinal is either ...
oacl2g 43319 Closure law for ordinal ad...
onmcl 43320 If an ordinal is less than...
omabs2 43321 Ordinal multiplication by ...
omcl2 43322 Closure law for ordinal mu...
omcl3g 43323 Closure law for ordinal mu...
ordsssucb 43324 An ordinal number is less ...
tfsconcatlem 43325 Lemma for ~ tfsconcatun . ...
tfsconcatun 43326 The concatenation of two t...
tfsconcatfn 43327 The concatenation of two t...
tfsconcatfv1 43328 An early value of the conc...
tfsconcatfv2 43329 A latter value of the conc...
tfsconcatfv 43330 The value of the concatena...
tfsconcatrn 43331 The range of the concatena...
tfsconcatfo 43332 The concatenation of two t...
tfsconcatb0 43333 The concatentation with th...
tfsconcat0i 43334 The concatentation with th...
tfsconcat0b 43335 The concatentation with th...
tfsconcat00 43336 The concatentation of two ...
tfsconcatrev 43337 If the domain of a transfi...
tfsconcatrnss12 43338 The range of the concatena...
tfsconcatrnss 43339 The concatenation of trans...
tfsconcatrnsson 43340 The concatenation of trans...
tfsnfin 43341 A transfinite sequence is ...
rp-tfslim 43342 The limit of a sequence of...
ofoafg 43343 Addition operator for func...
ofoaf 43344 Addition operator for func...
ofoafo 43345 Addition operator for func...
ofoacl 43346 Closure law for component ...
ofoaid1 43347 Identity law for component...
ofoaid2 43348 Identity law for component...
ofoaass 43349 Component-wise addition of...
ofoacom 43350 Component-wise addition of...
naddcnff 43351 Addition operator for Cant...
naddcnffn 43352 Addition operator for Cant...
naddcnffo 43353 Addition of Cantor normal ...
naddcnfcl 43354 Closure law for component-...
naddcnfcom 43355 Component-wise ordinal add...
naddcnfid1 43356 Identity law for component...
naddcnfid2 43357 Identity law for component...
naddcnfass 43358 Component-wise addition of...
onsucunifi 43359 The successor to the union...
sucunisn 43360 The successor to the union...
onsucunipr 43361 The successor to the union...
onsucunitp 43362 The successor to the union...
oaun3lem1 43363 The class of all ordinal s...
oaun3lem2 43364 The class of all ordinal s...
oaun3lem3 43365 The class of all ordinal s...
oaun3lem4 43366 The class of all ordinal s...
rp-abid 43367 Two ways to express a clas...
oadif1lem 43368 Express the set difference...
oadif1 43369 Express the set difference...
oaun2 43370 Ordinal addition as a unio...
oaun3 43371 Ordinal addition as a unio...
naddov4 43372 Alternate expression for n...
nadd2rabtr 43373 The set of ordinals which ...
nadd2rabord 43374 The set of ordinals which ...
nadd2rabex 43375 The class of ordinals whic...
nadd2rabon 43376 The set of ordinals which ...
nadd1rabtr 43377 The set of ordinals which ...
nadd1rabord 43378 The set of ordinals which ...
nadd1rabex 43379 The class of ordinals whic...
nadd1rabon 43380 The set of ordinals which ...
nadd1suc 43381 Natural addition with 1 is...
naddass1 43382 Natural addition of ordina...
naddgeoa 43383 Natural addition results i...
naddonnn 43384 Natural addition with a na...
naddwordnexlem0 43385 When ` A ` is the sum of a...
naddwordnexlem1 43386 When ` A ` is the sum of a...
naddwordnexlem2 43387 When ` A ` is the sum of a...
naddwordnexlem3 43388 When ` A ` is the sum of a...
oawordex3 43389 When ` A ` is the sum of a...
naddwordnexlem4 43390 When ` A ` is the sum of a...
ordsssucim 43391 If an ordinal is less than...
insucid 43392 The intersection of a clas...
om2 43393 Two ways to double an ordi...
oaltom 43394 Multiplication eventually ...
oe2 43395 Two ways to square an ordi...
omltoe 43396 Exponentiation eventually ...
abeqabi 43397 Generalized condition for ...
abpr 43398 Condition for a class abst...
abtp 43399 Condition for a class abst...
ralopabb 43400 Restricted universal quant...
fpwfvss 43401 Functions into a powerset ...
sdomne0 43402 A class that strictly domi...
sdomne0d 43403 A class that strictly domi...
safesnsupfiss 43404 If ` B ` is a finite subse...
safesnsupfiub 43405 If ` B ` is a finite subse...
safesnsupfidom1o 43406 If ` B ` is a finite subse...
safesnsupfilb 43407 If ` B ` is a finite subse...
isoeq145d 43408 Equality deduction for iso...
resisoeq45d 43409 Equality deduction for equ...
negslem1 43410 An equivalence between ide...
nvocnvb 43411 Equivalence to saying the ...
rp-brsslt 43412 Binary relation form of a ...
nla0002 43413 Extending a linear order t...
nla0003 43414 Extending a linear order t...
nla0001 43415 Extending a linear order t...
faosnf0.11b 43416 ` B ` is called a non-limi...
dfno2 43417 A surreal number, in the f...
onnog 43418 Every ordinal maps to a su...
onnobdayg 43419 Every ordinal maps to a su...
bdaybndex 43420 Bounds formed from the bir...
bdaybndbday 43421 Bounds formed from the bir...
onno 43422 Every ordinal maps to a su...
onnoi 43423 Every ordinal maps to a su...
0no 43424 Ordinal zero maps to a sur...
1no 43425 Ordinal one maps to a surr...
2no 43426 Ordinal two maps to a surr...
3no 43427 Ordinal three maps to a su...
4no 43428 Ordinal four maps to a sur...
fnimafnex 43429 The functional image of a ...
nlimsuc 43430 A successor is not a limit...
nlim1NEW 43431 1 is not a limit ordinal. ...
nlim2NEW 43432 2 is not a limit ordinal. ...
nlim3 43433 3 is not a limit ordinal. ...
nlim4 43434 4 is not a limit ordinal. ...
oa1un 43435 Given ` A e. On ` , let ` ...
oa1cl 43436 ` A +o 1o ` is in ` On ` ....
0finon 43437 0 is a finite ordinal. Se...
1finon 43438 1 is a finite ordinal. Se...
2finon 43439 2 is a finite ordinal. Se...
3finon 43440 3 is a finite ordinal. Se...
4finon 43441 4 is a finite ordinal. Se...
finona1cl 43442 The finite ordinals are cl...
finonex 43443 The finite ordinals are a ...
fzunt 43444 Union of two adjacent fini...
fzuntd 43445 Union of two adjacent fini...
fzunt1d 43446 Union of two overlapping f...
fzuntgd 43447 Union of two adjacent or o...
ifpan123g 43448 Conjunction of conditional...
ifpan23 43449 Conjunction of conditional...
ifpdfor2 43450 Define or in terms of cond...
ifporcor 43451 Corollary of commutation o...
ifpdfan2 43452 Define and with conditiona...
ifpancor 43453 Corollary of commutation o...
ifpdfor 43454 Define or in terms of cond...
ifpdfan 43455 Define and with conditiona...
ifpbi2 43456 Equivalence theorem for co...
ifpbi3 43457 Equivalence theorem for co...
ifpim1 43458 Restate implication as con...
ifpnot 43459 Restate negated wff as con...
ifpid2 43460 Restate wff as conditional...
ifpim2 43461 Restate implication as con...
ifpbi23 43462 Equivalence theorem for co...
ifpbiidcor 43463 Restatement of ~ biid . (...
ifpbicor 43464 Corollary of commutation o...
ifpxorcor 43465 Corollary of commutation o...
ifpbi1 43466 Equivalence theorem for co...
ifpnot23 43467 Negation of conditional lo...
ifpnotnotb 43468 Factor conditional logic o...
ifpnorcor 43469 Corollary of commutation o...
ifpnancor 43470 Corollary of commutation o...
ifpnot23b 43471 Negation of conditional lo...
ifpbiidcor2 43472 Restatement of ~ biid . (...
ifpnot23c 43473 Negation of conditional lo...
ifpnot23d 43474 Negation of conditional lo...
ifpdfnan 43475 Define nand as conditional...
ifpdfxor 43476 Define xor as conditional ...
ifpbi12 43477 Equivalence theorem for co...
ifpbi13 43478 Equivalence theorem for co...
ifpbi123 43479 Equivalence theorem for co...
ifpidg 43480 Restate wff as conditional...
ifpid3g 43481 Restate wff as conditional...
ifpid2g 43482 Restate wff as conditional...
ifpid1g 43483 Restate wff as conditional...
ifpim23g 43484 Restate implication as con...
ifpim3 43485 Restate implication as con...
ifpnim1 43486 Restate negated implicatio...
ifpim4 43487 Restate implication as con...
ifpnim2 43488 Restate negated implicatio...
ifpim123g 43489 Implication of conditional...
ifpim1g 43490 Implication of conditional...
ifp1bi 43491 Substitute the first eleme...
ifpbi1b 43492 When the first variable is...
ifpimimb 43493 Factor conditional logic o...
ifpororb 43494 Factor conditional logic o...
ifpananb 43495 Factor conditional logic o...
ifpnannanb 43496 Factor conditional logic o...
ifpor123g 43497 Disjunction of conditional...
ifpimim 43498 Consequnce of implication....
ifpbibib 43499 Factor conditional logic o...
ifpxorxorb 43500 Factor conditional logic o...
rp-fakeimass 43501 A special case where impli...
rp-fakeanorass 43502 A special case where a mix...
rp-fakeoranass 43503 A special case where a mix...
rp-fakeinunass 43504 A special case where a mix...
rp-fakeuninass 43505 A special case where a mix...
rp-isfinite5 43506 A set is said to be finite...
rp-isfinite6 43507 A set is said to be finite...
intabssd 43508 When for each element ` y ...
eu0 43509 There is only one empty se...
epelon2 43510 Over the ordinal numbers, ...
ontric3g 43511 For all ` x , y e. On ` , ...
dfsucon 43512 ` A ` is called a successo...
snen1g 43513 A singleton is equinumerou...
snen1el 43514 A singleton is equinumerou...
sn1dom 43515 A singleton is dominated b...
pr2dom 43516 An unordered pair is domin...
tr3dom 43517 An unordered triple is dom...
ensucne0 43518 A class equinumerous to a ...
ensucne0OLD 43519 A class equinumerous to a ...
dfom6 43520 Let ` _om ` be defined to ...
infordmin 43521 ` _om ` is the smallest in...
iscard4 43522 Two ways to express the pr...
minregex 43523 Given any cardinal number ...
minregex2 43524 Given any cardinal number ...
iscard5 43525 Two ways to express the pr...
elrncard 43526 Let us define a cardinal n...
harval3 43527 ` ( har `` A ) ` is the le...
harval3on 43528 For any ordinal number ` A...
omssrncard 43529 All natural numbers are ca...
0iscard 43530 0 is a cardinal number. (...
1iscard 43531 1 is a cardinal number. (...
omiscard 43532 ` _om ` is a cardinal numb...
sucomisnotcard 43533 ` _om +o 1o ` is not a car...
nna1iscard 43534 For any natural number, th...
har2o 43535 The least cardinal greater...
en2pr 43536 A class is equinumerous to...
pr2cv 43537 If an unordered pair is eq...
pr2el1 43538 If an unordered pair is eq...
pr2cv1 43539 If an unordered pair is eq...
pr2el2 43540 If an unordered pair is eq...
pr2cv2 43541 If an unordered pair is eq...
pren2 43542 An unordered pair is equin...
pr2eldif1 43543 If an unordered pair is eq...
pr2eldif2 43544 If an unordered pair is eq...
pren2d 43545 A pair of two distinct set...
aleph1min 43546 ` ( aleph `` 1o ) ` is the...
alephiso2 43547 ` aleph ` is a strictly or...
alephiso3 43548 ` aleph ` is a strictly or...
pwelg 43549 The powerclass is an eleme...
pwinfig 43550 The powerclass of an infin...
pwinfi2 43551 The powerclass of an infin...
pwinfi3 43552 The powerclass of an infin...
pwinfi 43553 The powerclass of an infin...
fipjust 43554 A definition of the finite...
cllem0 43555 The class of all sets with...
superficl 43556 The class of all supersets...
superuncl 43557 The class of all supersets...
ssficl 43558 The class of all subsets o...
ssuncl 43559 The class of all subsets o...
ssdifcl 43560 The class of all subsets o...
sssymdifcl 43561 The class of all subsets o...
fiinfi 43562 If two classes have the fi...
rababg 43563 Condition when restricted ...
elinintab 43564 Two ways of saying a set i...
elmapintrab 43565 Two ways to say a set is a...
elinintrab 43566 Two ways of saying a set i...
inintabss 43567 Upper bound on intersectio...
inintabd 43568 Value of the intersection ...
xpinintabd 43569 Value of the intersection ...
relintabex 43570 If the intersection of a c...
elcnvcnvintab 43571 Two ways of saying a set i...
relintab 43572 Value of the intersection ...
nonrel 43573 A non-relation is equal to...
elnonrel 43574 Only an ordered pair where...
cnvssb 43575 Subclass theorem for conve...
relnonrel 43576 The non-relation part of a...
cnvnonrel 43577 The converse of the non-re...
brnonrel 43578 A non-relation cannot rela...
dmnonrel 43579 The domain of the non-rela...
rnnonrel 43580 The range of the non-relat...
resnonrel 43581 A restriction of the non-r...
imanonrel 43582 An image under the non-rel...
cononrel1 43583 Composition with the non-r...
cononrel2 43584 Composition with the non-r...
elmapintab 43585 Two ways to say a set is a...
fvnonrel 43586 The function value of any ...
elinlem 43587 Two ways to say a set is a...
elcnvcnvlem 43588 Two ways to say a set is a...
cnvcnvintabd 43589 Value of the relationship ...
elcnvlem 43590 Two ways to say a set is a...
elcnvintab 43591 Two ways of saying a set i...
cnvintabd 43592 Value of the converse of t...
undmrnresiss 43593 Two ways of saying the ide...
reflexg 43594 Two ways of saying a relat...
cnvssco 43595 A condition weaker than re...
refimssco 43596 Reflexive relations are su...
cleq2lem 43597 Equality implies bijection...
cbvcllem 43598 Change of bound variable i...
clublem 43599 If a superset ` Y ` of ` X...
clss2lem 43600 The closure of a property ...
dfid7 43601 Definition of identity rel...
mptrcllem 43602 Show two versions of a clo...
cotrintab 43603 The intersection of a clas...
rclexi 43604 The reflexive closure of a...
rtrclexlem 43605 Existence of relation impl...
rtrclex 43606 The reflexive-transitive c...
trclubgNEW 43607 If a relation exists then ...
trclubNEW 43608 If a relation exists then ...
trclexi 43609 The transitive closure of ...
rtrclexi 43610 The reflexive-transitive c...
clrellem 43611 When the property ` ps ` h...
clcnvlem 43612 When ` A ` , an upper boun...
cnvtrucl0 43613 The converse of the trivia...
cnvrcl0 43614 The converse of the reflex...
cnvtrcl0 43615 The converse of the transi...
dmtrcl 43616 The domain of the transiti...
rntrcl 43617 The range of the transitiv...
dfrtrcl5 43618 Definition of reflexive-tr...
trcleq2lemRP 43619 Equality implies bijection...
sqrtcvallem1 43620 Two ways of saying a compl...
reabsifneg 43621 Alternate expression for t...
reabsifnpos 43622 Alternate expression for t...
reabsifpos 43623 Alternate expression for t...
reabsifnneg 43624 Alternate expression for t...
reabssgn 43625 Alternate expression for t...
sqrtcvallem2 43626 Equivalent to saying that ...
sqrtcvallem3 43627 Equivalent to saying that ...
sqrtcvallem4 43628 Equivalent to saying that ...
sqrtcvallem5 43629 Equivalent to saying that ...
sqrtcval 43630 Explicit formula for the c...
sqrtcval2 43631 Explicit formula for the c...
resqrtval 43632 Real part of the complex s...
imsqrtval 43633 Imaginary part of the comp...
resqrtvalex 43634 Example for ~ resqrtval . ...
imsqrtvalex 43635 Example for ~ imsqrtval . ...
al3im 43636 Version of ~ ax-4 for a ne...
intima0 43637 Two ways of expressing the...
elimaint 43638 Element of image of inters...
cnviun 43639 Converse of indexed union....
imaiun1 43640 The image of an indexed un...
coiun1 43641 Composition with an indexe...
elintima 43642 Element of intersection of...
intimass 43643 The image under the inters...
intimass2 43644 The image under the inters...
intimag 43645 Requirement for the image ...
intimasn 43646 Two ways to express the im...
intimasn2 43647 Two ways to express the im...
ss2iundf 43648 Subclass theorem for index...
ss2iundv 43649 Subclass theorem for index...
cbviuneq12df 43650 Rule used to change the bo...
cbviuneq12dv 43651 Rule used to change the bo...
conrel1d 43652 Deduction about compositio...
conrel2d 43653 Deduction about compositio...
trrelind 43654 The intersection of transi...
xpintrreld 43655 The intersection of a tran...
restrreld 43656 The restriction of a trans...
trrelsuperreldg 43657 Concrete construction of a...
trficl 43658 The class of all transitiv...
cnvtrrel 43659 The converse of a transiti...
trrelsuperrel2dg 43660 Concrete construction of a...
dfrcl2 43663 Reflexive closure of a rel...
dfrcl3 43664 Reflexive closure of a rel...
dfrcl4 43665 Reflexive closure of a rel...
relexp2 43666 A set operated on by the r...
relexpnul 43667 If the domain and range of...
eliunov2 43668 Membership in the indexed ...
eltrclrec 43669 Membership in the indexed ...
elrtrclrec 43670 Membership in the indexed ...
briunov2 43671 Two classes related by the...
brmptiunrelexpd 43672 If two elements are connec...
fvmptiunrelexplb0d 43673 If the indexed union range...
fvmptiunrelexplb0da 43674 If the indexed union range...
fvmptiunrelexplb1d 43675 If the indexed union range...
brfvid 43676 If two elements are connec...
brfvidRP 43677 If two elements are connec...
fvilbd 43678 A set is a subset of its i...
fvilbdRP 43679 A set is a subset of its i...
brfvrcld 43680 If two elements are connec...
brfvrcld2 43681 If two elements are connec...
fvrcllb0d 43682 A restriction of the ident...
fvrcllb0da 43683 A restriction of the ident...
fvrcllb1d 43684 A set is a subset of its i...
brtrclrec 43685 Two classes related by the...
brrtrclrec 43686 Two classes related by the...
briunov2uz 43687 Two classes related by the...
eliunov2uz 43688 Membership in the indexed ...
ov2ssiunov2 43689 Any particular operator va...
relexp0eq 43690 The zeroth power of relati...
iunrelexp0 43691 Simplification of zeroth p...
relexpxpnnidm 43692 Any positive power of a Ca...
relexpiidm 43693 Any power of any restricti...
relexpss1d 43694 The relational power of a ...
comptiunov2i 43695 The composition two indexe...
corclrcl 43696 The reflexive closure is i...
iunrelexpmin1 43697 The indexed union of relat...
relexpmulnn 43698 With exponents limited to ...
relexpmulg 43699 With ordered exponents, th...
trclrelexplem 43700 The union of relational po...
iunrelexpmin2 43701 The indexed union of relat...
relexp01min 43702 With exponents limited to ...
relexp1idm 43703 Repeated raising a relatio...
relexp0idm 43704 Repeated raising a relatio...
relexp0a 43705 Absorption law for zeroth ...
relexpxpmin 43706 The composition of powers ...
relexpaddss 43707 The composition of two pow...
iunrelexpuztr 43708 The indexed union of relat...
dftrcl3 43709 Transitive closure of a re...
brfvtrcld 43710 If two elements are connec...
fvtrcllb1d 43711 A set is a subset of its i...
trclfvcom 43712 The transitive closure of ...
cnvtrclfv 43713 The converse of the transi...
cotrcltrcl 43714 The transitive closure is ...
trclimalb2 43715 Lower bound for image unde...
brtrclfv2 43716 Two ways to indicate two e...
trclfvdecomr 43717 The transitive closure of ...
trclfvdecoml 43718 The transitive closure of ...
dmtrclfvRP 43719 The domain of the transiti...
rntrclfvRP 43720 The range of the transitiv...
rntrclfv 43721 The range of the transitiv...
dfrtrcl3 43722 Reflexive-transitive closu...
brfvrtrcld 43723 If two elements are connec...
fvrtrcllb0d 43724 A restriction of the ident...
fvrtrcllb0da 43725 A restriction of the ident...
fvrtrcllb1d 43726 A set is a subset of its i...
dfrtrcl4 43727 Reflexive-transitive closu...
corcltrcl 43728 The composition of the ref...
cortrcltrcl 43729 Composition with the refle...
corclrtrcl 43730 Composition with the refle...
cotrclrcl 43731 The composition of the ref...
cortrclrcl 43732 Composition with the refle...
cotrclrtrcl 43733 Composition with the refle...
cortrclrtrcl 43734 The reflexive-transitive c...
frege77d 43735 If the images of both ` { ...
frege81d 43736 If the image of ` U ` is a...
frege83d 43737 If the image of the union ...
frege96d 43738 If ` C ` follows ` A ` in ...
frege87d 43739 If the images of both ` { ...
frege91d 43740 If ` B ` follows ` A ` in ...
frege97d 43741 If ` A ` contains all elem...
frege98d 43742 If ` C ` follows ` A ` and...
frege102d 43743 If either ` A ` and ` C ` ...
frege106d 43744 If ` B ` follows ` A ` in ...
frege108d 43745 If either ` A ` and ` C ` ...
frege109d 43746 If ` A ` contains all elem...
frege114d 43747 If either ` R ` relates ` ...
frege111d 43748 If either ` A ` and ` C ` ...
frege122d 43749 If ` F ` is a function, ` ...
frege124d 43750 If ` F ` is a function, ` ...
frege126d 43751 If ` F ` is a function, ` ...
frege129d 43752 If ` F ` is a function and...
frege131d 43753 If ` F ` is a function and...
frege133d 43754 If ` F ` is a function and...
dfxor4 43755 Express exclusive-or in te...
dfxor5 43756 Express exclusive-or in te...
df3or2 43757 Express triple-or in terms...
df3an2 43758 Express triple-and in term...
nev 43759 Express that not every set...
0pssin 43760 Express that an intersecti...
dfhe2 43763 The property of relation `...
dfhe3 43764 The property of relation `...
heeq12 43765 Equality law for relations...
heeq1 43766 Equality law for relations...
heeq2 43767 Equality law for relations...
sbcheg 43768 Distribute proper substitu...
hess 43769 Subclass law for relations...
xphe 43770 Any Cartesian product is h...
0he 43771 The empty relation is here...
0heALT 43772 The empty relation is here...
he0 43773 Any relation is hereditary...
unhe1 43774 The union of two relations...
snhesn 43775 Any singleton is hereditar...
idhe 43776 The identity relation is h...
psshepw 43777 The relation between sets ...
sshepw 43778 The relation between sets ...
rp-simp2-frege 43781 Simplification of triple c...
rp-simp2 43782 Simplification of triple c...
rp-frege3g 43783 Add antecedent to ~ ax-fre...
frege3 43784 Add antecedent to ~ ax-fre...
rp-misc1-frege 43785 Double-use of ~ ax-frege2 ...
rp-frege24 43786 Introducing an embedded an...
rp-frege4g 43787 Deduction related to distr...
frege4 43788 Special case of closed for...
frege5 43789 A closed form of ~ syl . ...
rp-7frege 43790 Distribute antecedent and ...
rp-4frege 43791 Elimination of a nested an...
rp-6frege 43792 Elimination of a nested an...
rp-8frege 43793 Eliminate antecedent when ...
rp-frege25 43794 Closed form for ~ a1dd . ...
frege6 43795 A closed form of ~ imim2d ...
axfrege8 43796 Swap antecedents. Identic...
frege7 43797 A closed form of ~ syl6 . ...
frege26 43799 Identical to ~ idd . Prop...
frege27 43800 We cannot (at the same tim...
frege9 43801 Closed form of ~ syl with ...
frege12 43802 A closed form of ~ com23 ....
frege11 43803 Elimination of a nested an...
frege24 43804 Closed form for ~ a1d . D...
frege16 43805 A closed form of ~ com34 ....
frege25 43806 Closed form for ~ a1dd . ...
frege18 43807 Closed form of a syllogism...
frege22 43808 A closed form of ~ com45 ....
frege10 43809 Result commuting anteceden...
frege17 43810 A closed form of ~ com3l ....
frege13 43811 A closed form of ~ com3r ....
frege14 43812 Closed form of a deduction...
frege19 43813 A closed form of ~ syl6 . ...
frege23 43814 Syllogism followed by rota...
frege15 43815 A closed form of ~ com4r ....
frege21 43816 Replace antecedent in ante...
frege20 43817 A closed form of ~ syl8 . ...
axfrege28 43818 Contraposition. Identical...
frege29 43820 Closed form of ~ con3d . ...
frege30 43821 Commuted, closed form of ~...
axfrege31 43822 Identical to ~ notnotr . ...
frege32 43824 Deduce ~ con1 from ~ con3 ...
frege33 43825 If ` ph ` or ` ps ` takes ...
frege34 43826 If as a consequence of the...
frege35 43827 Commuted, closed form of ~...
frege36 43828 The case in which ` ps ` i...
frege37 43829 If ` ch ` is a necessary c...
frege38 43830 Identical to ~ pm2.21 . P...
frege39 43831 Syllogism between ~ pm2.18...
frege40 43832 Anything implies ~ pm2.18 ...
axfrege41 43833 Identical to ~ notnot . A...
frege42 43835 Not not ~ id . Propositio...
frege43 43836 If there is a choice only ...
frege44 43837 Similar to a commuted ~ pm...
frege45 43838 Deduce ~ pm2.6 from ~ con1...
frege46 43839 If ` ps ` holds when ` ph ...
frege47 43840 Deduce consequence follows...
frege48 43841 Closed form of syllogism w...
frege49 43842 Closed form of deduction w...
frege50 43843 Closed form of ~ jaoi . P...
frege51 43844 Compare with ~ jaod . Pro...
axfrege52a 43845 Justification for ~ ax-fre...
frege52aid 43847 The case when the content ...
frege53aid 43848 Specialization of ~ frege5...
frege53a 43849 Lemma for ~ frege55a . Pr...
axfrege54a 43850 Justification for ~ ax-fre...
frege54cor0a 43852 Synonym for logical equiva...
frege54cor1a 43853 Reflexive equality. (Cont...
frege55aid 43854 Lemma for ~ frege57aid . ...
frege55lem1a 43855 Necessary deduction regard...
frege55lem2a 43856 Core proof of Proposition ...
frege55a 43857 Proposition 55 of [Frege18...
frege55cor1a 43858 Proposition 55 of [Frege18...
frege56aid 43859 Lemma for ~ frege57aid . ...
frege56a 43860 Proposition 56 of [Frege18...
frege57aid 43861 This is the all important ...
frege57a 43862 Analogue of ~ frege57aid ....
axfrege58a 43863 Identical to ~ anifp . Ju...
frege58acor 43865 Lemma for ~ frege59a . (C...
frege59a 43866 A kind of Aristotelian inf...
frege60a 43867 Swap antecedents of ~ ax-f...
frege61a 43868 Lemma for ~ frege65a . Pr...
frege62a 43869 A kind of Aristotelian inf...
frege63a 43870 Proposition 63 of [Frege18...
frege64a 43871 Lemma for ~ frege65a . Pr...
frege65a 43872 A kind of Aristotelian inf...
frege66a 43873 Swap antecedents of ~ freg...
frege67a 43874 Lemma for ~ frege68a . Pr...
frege68a 43875 Combination of applying a ...
axfrege52c 43876 Justification for ~ ax-fre...
frege52b 43878 The case when the content ...
frege53b 43879 Lemma for frege102 (via ~ ...
axfrege54c 43880 Reflexive equality of clas...
frege54b 43882 Reflexive equality of sets...
frege54cor1b 43883 Reflexive equality. (Cont...
frege55lem1b 43884 Necessary deduction regard...
frege55lem2b 43885 Lemma for ~ frege55b . Co...
frege55b 43886 Lemma for ~ frege57b . Pr...
frege56b 43887 Lemma for ~ frege57b . Pr...
frege57b 43888 Analogue of ~ frege57aid ....
axfrege58b 43889 If ` A. x ph ` is affirmed...
frege58bid 43891 If ` A. x ph ` is affirmed...
frege58bcor 43892 Lemma for ~ frege59b . (C...
frege59b 43893 A kind of Aristotelian inf...
frege60b 43894 Swap antecedents of ~ ax-f...
frege61b 43895 Lemma for ~ frege65b . Pr...
frege62b 43896 A kind of Aristotelian inf...
frege63b 43897 Lemma for ~ frege91 . Pro...
frege64b 43898 Lemma for ~ frege65b . Pr...
frege65b 43899 A kind of Aristotelian inf...
frege66b 43900 Swap antecedents of ~ freg...
frege67b 43901 Lemma for ~ frege68b . Pr...
frege68b 43902 Combination of applying a ...
frege53c 43903 Proposition 53 of [Frege18...
frege54cor1c 43904 Reflexive equality. (Cont...
frege55lem1c 43905 Necessary deduction regard...
frege55lem2c 43906 Core proof of Proposition ...
frege55c 43907 Proposition 55 of [Frege18...
frege56c 43908 Lemma for ~ frege57c . Pr...
frege57c 43909 Swap order of implication ...
frege58c 43910 Principle related to ~ sp ...
frege59c 43911 A kind of Aristotelian inf...
frege60c 43912 Swap antecedents of ~ freg...
frege61c 43913 Lemma for ~ frege65c . Pr...
frege62c 43914 A kind of Aristotelian inf...
frege63c 43915 Analogue of ~ frege63b . ...
frege64c 43916 Lemma for ~ frege65c . Pr...
frege65c 43917 A kind of Aristotelian inf...
frege66c 43918 Swap antecedents of ~ freg...
frege67c 43919 Lemma for ~ frege68c . Pr...
frege68c 43920 Combination of applying a ...
dffrege69 43921 If from the proposition th...
frege70 43922 Lemma for ~ frege72 . Pro...
frege71 43923 Lemma for ~ frege72 . Pro...
frege72 43924 If property ` A ` is hered...
frege73 43925 Lemma for ~ frege87 . Pro...
frege74 43926 If ` X ` has a property ` ...
frege75 43927 If from the proposition th...
dffrege76 43928 If from the two propositio...
frege77 43929 If ` Y ` follows ` X ` in ...
frege78 43930 Commuted form of ~ frege77...
frege79 43931 Distributed form of ~ freg...
frege80 43932 Add additional condition t...
frege81 43933 If ` X ` has a property ` ...
frege82 43934 Closed-form deduction base...
frege83 43935 Apply commuted form of ~ f...
frege84 43936 Commuted form of ~ frege81...
frege85 43937 Commuted form of ~ frege77...
frege86 43938 Conclusion about element o...
frege87 43939 If ` Z ` is a result of an...
frege88 43940 Commuted form of ~ frege87...
frege89 43941 One direction of ~ dffrege...
frege90 43942 Add antecedent to ~ frege8...
frege91 43943 Every result of an applica...
frege92 43944 Inference from ~ frege91 ....
frege93 43945 Necessary condition for tw...
frege94 43946 Looking one past a pair re...
frege95 43947 Looking one past a pair re...
frege96 43948 Every result of an applica...
frege97 43949 The property of following ...
frege98 43950 If ` Y ` follows ` X ` and...
dffrege99 43951 If ` Z ` is identical with...
frege100 43952 One direction of ~ dffrege...
frege101 43953 Lemma for ~ frege102 . Pr...
frege102 43954 If ` Z ` belongs to the ` ...
frege103 43955 Proposition 103 of [Frege1...
frege104 43956 Proposition 104 of [Frege1...
frege105 43957 Proposition 105 of [Frege1...
frege106 43958 Whatever follows ` X ` in ...
frege107 43959 Proposition 107 of [Frege1...
frege108 43960 If ` Y ` belongs to the ` ...
frege109 43961 The property of belonging ...
frege110 43962 Proposition 110 of [Frege1...
frege111 43963 If ` Y ` belongs to the ` ...
frege112 43964 Identity implies belonging...
frege113 43965 Proposition 113 of [Frege1...
frege114 43966 If ` X ` belongs to the ` ...
dffrege115 43967 If from the circumstance t...
frege116 43968 One direction of ~ dffrege...
frege117 43969 Lemma for ~ frege118 . Pr...
frege118 43970 Simplified application of ...
frege119 43971 Lemma for ~ frege120 . Pr...
frege120 43972 Simplified application of ...
frege121 43973 Lemma for ~ frege122 . Pr...
frege122 43974 If ` X ` is a result of an...
frege123 43975 Lemma for ~ frege124 . Pr...
frege124 43976 If ` X ` is a result of an...
frege125 43977 Lemma for ~ frege126 . Pr...
frege126 43978 If ` M ` follows ` Y ` in ...
frege127 43979 Communte antecedents of ~ ...
frege128 43980 Lemma for ~ frege129 . Pr...
frege129 43981 If the procedure ` R ` is ...
frege130 43982 Lemma for ~ frege131 . Pr...
frege131 43983 If the procedure ` R ` is ...
frege132 43984 Lemma for ~ frege133 . Pr...
frege133 43985 If the procedure ` R ` is ...
enrelmap 43986 The set of all possible re...
enrelmapr 43987 The set of all possible re...
enmappw 43988 The set of all mappings fr...
enmappwid 43989 The set of all mappings fr...
rfovd 43990 Value of the operator, ` (...
rfovfvd 43991 Value of the operator, ` (...
rfovfvfvd 43992 Value of the operator, ` (...
rfovcnvf1od 43993 Properties of the operator...
rfovcnvd 43994 Value of the converse of t...
rfovf1od 43995 The value of the operator,...
rfovcnvfvd 43996 Value of the converse of t...
fsovd 43997 Value of the operator, ` (...
fsovrfovd 43998 The operator which gives a...
fsovfvd 43999 Value of the operator, ` (...
fsovfvfvd 44000 Value of the operator, ` (...
fsovfd 44001 The operator, ` ( A O B ) ...
fsovcnvlem 44002 The ` O ` operator, which ...
fsovcnvd 44003 The value of the converse ...
fsovcnvfvd 44004 The value of the converse ...
fsovf1od 44005 The value of ` ( A O B ) `...
dssmapfvd 44006 Value of the duality opera...
dssmapfv2d 44007 Value of the duality opera...
dssmapfv3d 44008 Value of the duality opera...
dssmapnvod 44009 For any base set ` B ` the...
dssmapf1od 44010 For any base set ` B ` the...
dssmap2d 44011 For any base set ` B ` the...
or3or 44012 Decompose disjunction into...
andi3or 44013 Distribute over triple dis...
uneqsn 44014 If a union of classes is e...
brfvimex 44015 If a binary relation holds...
brovmptimex 44016 If a binary relation holds...
brovmptimex1 44017 If a binary relation holds...
brovmptimex2 44018 If a binary relation holds...
brcoffn 44019 Conditions allowing the de...
brcofffn 44020 Conditions allowing the de...
brco2f1o 44021 Conditions allowing the de...
brco3f1o 44022 Conditions allowing the de...
ntrclsbex 44023 If (pseudo-)interior and (...
ntrclsrcomplex 44024 The relative complement of...
neik0imk0p 44025 Kuratowski's K0 axiom impl...
ntrk2imkb 44026 If an interior function is...
ntrkbimka 44027 If the interiors of disjoi...
ntrk0kbimka 44028 If the interiors of disjoi...
clsk3nimkb 44029 If the base set is not emp...
clsk1indlem0 44030 The ansatz closure functio...
clsk1indlem2 44031 The ansatz closure functio...
clsk1indlem3 44032 The ansatz closure functio...
clsk1indlem4 44033 The ansatz closure functio...
clsk1indlem1 44034 The ansatz closure functio...
clsk1independent 44035 For generalized closure fu...
neik0pk1imk0 44036 Kuratowski's K0' and K1 ax...
isotone1 44037 Two different ways to say ...
isotone2 44038 Two different ways to say ...
ntrk1k3eqk13 44039 An interior function is bo...
ntrclsf1o 44040 If (pseudo-)interior and (...
ntrclsnvobr 44041 If (pseudo-)interior and (...
ntrclsiex 44042 If (pseudo-)interior and (...
ntrclskex 44043 If (pseudo-)interior and (...
ntrclsfv1 44044 If (pseudo-)interior and (...
ntrclsfv2 44045 If (pseudo-)interior and (...
ntrclselnel1 44046 If (pseudo-)interior and (...
ntrclselnel2 44047 If (pseudo-)interior and (...
ntrclsfv 44048 The value of the interior ...
ntrclsfveq1 44049 If interior and closure fu...
ntrclsfveq2 44050 If interior and closure fu...
ntrclsfveq 44051 If interior and closure fu...
ntrclsss 44052 If interior and closure fu...
ntrclsneine0lem 44053 If (pseudo-)interior and (...
ntrclsneine0 44054 If (pseudo-)interior and (...
ntrclscls00 44055 If (pseudo-)interior and (...
ntrclsiso 44056 If (pseudo-)interior and (...
ntrclsk2 44057 An interior function is co...
ntrclskb 44058 The interiors of disjoint ...
ntrclsk3 44059 The intersection of interi...
ntrclsk13 44060 The interior of the inters...
ntrclsk4 44061 Idempotence of the interio...
ntrneibex 44062 If (pseudo-)interior and (...
ntrneircomplex 44063 The relative complement of...
ntrneif1o 44064 If (pseudo-)interior and (...
ntrneiiex 44065 If (pseudo-)interior and (...
ntrneinex 44066 If (pseudo-)interior and (...
ntrneicnv 44067 If (pseudo-)interior and (...
ntrneifv1 44068 If (pseudo-)interior and (...
ntrneifv2 44069 If (pseudo-)interior and (...
ntrneiel 44070 If (pseudo-)interior and (...
ntrneifv3 44071 The value of the neighbors...
ntrneineine0lem 44072 If (pseudo-)interior and (...
ntrneineine1lem 44073 If (pseudo-)interior and (...
ntrneifv4 44074 The value of the interior ...
ntrneiel2 44075 Membership in iterated int...
ntrneineine0 44076 If (pseudo-)interior and (...
ntrneineine1 44077 If (pseudo-)interior and (...
ntrneicls00 44078 If (pseudo-)interior and (...
ntrneicls11 44079 If (pseudo-)interior and (...
ntrneiiso 44080 If (pseudo-)interior and (...
ntrneik2 44081 An interior function is co...
ntrneix2 44082 An interior (closure) func...
ntrneikb 44083 The interiors of disjoint ...
ntrneixb 44084 The interiors (closures) o...
ntrneik3 44085 The intersection of interi...
ntrneix3 44086 The closure of the union o...
ntrneik13 44087 The interior of the inters...
ntrneix13 44088 The closure of the union o...
ntrneik4w 44089 Idempotence of the interio...
ntrneik4 44090 Idempotence of the interio...
clsneibex 44091 If (pseudo-)closure and (p...
clsneircomplex 44092 The relative complement of...
clsneif1o 44093 If a (pseudo-)closure func...
clsneicnv 44094 If a (pseudo-)closure func...
clsneikex 44095 If closure and neighborhoo...
clsneinex 44096 If closure and neighborhoo...
clsneiel1 44097 If a (pseudo-)closure func...
clsneiel2 44098 If a (pseudo-)closure func...
clsneifv3 44099 Value of the neighborhoods...
clsneifv4 44100 Value of the closure (inte...
neicvgbex 44101 If (pseudo-)neighborhood a...
neicvgrcomplex 44102 The relative complement of...
neicvgf1o 44103 If neighborhood and conver...
neicvgnvo 44104 If neighborhood and conver...
neicvgnvor 44105 If neighborhood and conver...
neicvgmex 44106 If the neighborhoods and c...
neicvgnex 44107 If the neighborhoods and c...
neicvgel1 44108 A subset being an element ...
neicvgel2 44109 The complement of a subset...
neicvgfv 44110 The value of the neighborh...
ntrrn 44111 The range of the interior ...
ntrf 44112 The interior function of a...
ntrf2 44113 The interior function is a...
ntrelmap 44114 The interior function is a...
clsf2 44115 The closure function is a ...
clselmap 44116 The closure function is a ...
dssmapntrcls 44117 The interior and closure o...
dssmapclsntr 44118 The closure and interior o...
gneispa 44119 Each point ` p ` of the ne...
gneispb 44120 Given a neighborhood ` N `...
gneispace2 44121 The predicate that ` F ` i...
gneispace3 44122 The predicate that ` F ` i...
gneispace 44123 The predicate that ` F ` i...
gneispacef 44124 A generic neighborhood spa...
gneispacef2 44125 A generic neighborhood spa...
gneispacefun 44126 A generic neighborhood spa...
gneispacern 44127 A generic neighborhood spa...
gneispacern2 44128 A generic neighborhood spa...
gneispace0nelrn 44129 A generic neighborhood spa...
gneispace0nelrn2 44130 A generic neighborhood spa...
gneispace0nelrn3 44131 A generic neighborhood spa...
gneispaceel 44132 Every neighborhood of a po...
gneispaceel2 44133 Every neighborhood of a po...
gneispacess 44134 All supersets of a neighbo...
gneispacess2 44135 All supersets of a neighbo...
k0004lem1 44136 Application of ~ ssin to r...
k0004lem2 44137 A mapping with a particula...
k0004lem3 44138 When the value of a mappin...
k0004val 44139 The topological simplex of...
k0004ss1 44140 The topological simplex of...
k0004ss2 44141 The topological simplex of...
k0004ss3 44142 The topological simplex of...
k0004val0 44143 The topological simplex of...
inductionexd 44144 Simple induction example. ...
wwlemuld 44145 Natural deduction form of ...
leeq1d 44146 Specialization of ~ breq1d...
leeq2d 44147 Specialization of ~ breq2d...
absmulrposd 44148 Specialization of absmuld ...
imadisjld 44149 Natural dduction form of o...
wnefimgd 44150 The image of a mapping fro...
fco2d 44151 Natural deduction form of ...
wfximgfd 44152 The value of a function on...
extoimad 44153 If |f(x)| <= C for all x t...
imo72b2lem0 44154 Lemma for ~ imo72b2 . (Co...
suprleubrd 44155 Natural deduction form of ...
imo72b2lem2 44156 Lemma for ~ imo72b2 . (Co...
suprlubrd 44157 Natural deduction form of ...
imo72b2lem1 44158 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 44159 'Less than or equal to' re...
lemuldiv4d 44160 'Less than or equal to' re...
imo72b2 44161 IMO 1972 B2. (14th Intern...
int-addcomd 44162 AdditionCommutativity gene...
int-addassocd 44163 AdditionAssociativity gene...
int-addsimpd 44164 AdditionSimplification gen...
int-mulcomd 44165 MultiplicationCommutativit...
int-mulassocd 44166 MultiplicationAssociativit...
int-mulsimpd 44167 MultiplicationSimplificati...
int-leftdistd 44168 AdditionMultiplicationLeft...
int-rightdistd 44169 AdditionMultiplicationRigh...
int-sqdefd 44170 SquareDefinition generator...
int-mul11d 44171 First MultiplicationOne ge...
int-mul12d 44172 Second MultiplicationOne g...
int-add01d 44173 First AdditionZero generat...
int-add02d 44174 Second AdditionZero genera...
int-sqgeq0d 44175 SquareGEQZero generator ru...
int-eqprincd 44176 PrincipleOfEquality genera...
int-eqtransd 44177 EqualityTransitivity gener...
int-eqmvtd 44178 EquMoveTerm generator rule...
int-eqineqd 44179 EquivalenceImpliesDoubleIn...
int-ineqmvtd 44180 IneqMoveTerm generator rul...
int-ineq1stprincd 44181 FirstPrincipleOfInequality...
int-ineq2ndprincd 44182 SecondPrincipleOfInequalit...
int-ineqtransd 44183 InequalityTransitivity gen...
unitadd 44184 Theorem used in conjunctio...
gsumws3 44185 Valuation of a length 3 wo...
gsumws4 44186 Valuation of a length 4 wo...
amgm2d 44187 Arithmetic-geometric mean ...
amgm3d 44188 Arithmetic-geometric mean ...
amgm4d 44189 Arithmetic-geometric mean ...
spALT 44190 ~ sp can be proven from th...
elnelneqd 44191 Two classes are not equal ...
elnelneq2d 44192 Two classes are not equal ...
rr-spce 44193 Prove an existential. (Co...
rexlimdvaacbv 44194 Unpack a restricted existe...
rexlimddvcbvw 44195 Unpack a restricted existe...
rexlimddvcbv 44196 Unpack a restricted existe...
rr-elrnmpt3d 44197 Elementhood in an image se...
rr-phpd 44198 Equivalent of ~ php withou...
tfindsd 44199 Deduction associated with ...
mnringvald 44202 Value of the monoid ring f...
mnringnmulrd 44203 Components of a monoid rin...
mnringbased 44204 The base set of a monoid r...
mnringbaserd 44205 The base set of a monoid r...
mnringelbased 44206 Membership in the base set...
mnringbasefd 44207 Elements of a monoid ring ...
mnringbasefsuppd 44208 Elements of a monoid ring ...
mnringaddgd 44209 The additive operation of ...
mnring0gd 44210 The additive identity of a...
mnring0g2d 44211 The additive identity of a...
mnringmulrd 44212 The ring product of a mono...
mnringscad 44213 The scalar ring of a monoi...
mnringvscad 44214 The scalar product of a mo...
mnringlmodd 44215 Monoid rings are left modu...
mnringmulrvald 44216 Value of multiplication in...
mnringmulrcld 44217 Monoid rings are closed un...
gru0eld 44218 A nonempty Grothendieck un...
grusucd 44219 Grothendieck universes are...
r1rankcld 44220 Any rank of the cumulative...
grur1cld 44221 Grothendieck universes are...
grurankcld 44222 Grothendieck universes are...
grurankrcld 44223 If a Grothendieck universe...
scotteqd 44226 Equality theorem for the S...
scotteq 44227 Closed form of ~ scotteqd ...
nfscott 44228 Bound-variable hypothesis ...
scottabf 44229 Value of the Scott operati...
scottab 44230 Value of the Scott operati...
scottabes 44231 Value of the Scott operati...
scottss 44232 Scott's trick produces a s...
elscottab 44233 An element of the output o...
scottex2 44234 ~ scottex expressed using ...
scotteld 44235 The Scott operation sends ...
scottelrankd 44236 Property of a Scott's tric...
scottrankd 44237 Rank of a nonempty Scott's...
gruscottcld 44238 If a Grothendieck universe...
dfcoll2 44241 Alternate definition of th...
colleq12d 44242 Equality theorem for the c...
colleq1 44243 Equality theorem for the c...
colleq2 44244 Equality theorem for the c...
nfcoll 44245 Bound-variable hypothesis ...
collexd 44246 The output of the collecti...
cpcolld 44247 Property of the collection...
cpcoll2d 44248 ~ cpcolld with an extra ex...
grucollcld 44249 A Grothendieck universe co...
ismnu 44250 The hypothesis of this the...
mnuop123d 44251 Operations of a minimal un...
mnussd 44252 Minimal universes are clos...
mnuss2d 44253 ~ mnussd with arguments pr...
mnu0eld 44254 A nonempty minimal univers...
mnuop23d 44255 Second and third operation...
mnupwd 44256 Minimal universes are clos...
mnusnd 44257 Minimal universes are clos...
mnuprssd 44258 A minimal universe contain...
mnuprss2d 44259 Special case of ~ mnuprssd...
mnuop3d 44260 Third operation of a minim...
mnuprdlem1 44261 Lemma for ~ mnuprd . (Con...
mnuprdlem2 44262 Lemma for ~ mnuprd . (Con...
mnuprdlem3 44263 Lemma for ~ mnuprd . (Con...
mnuprdlem4 44264 Lemma for ~ mnuprd . Gene...
mnuprd 44265 Minimal universes are clos...
mnuunid 44266 Minimal universes are clos...
mnuund 44267 Minimal universes are clos...
mnutrcld 44268 Minimal universes contain ...
mnutrd 44269 Minimal universes are tran...
mnurndlem1 44270 Lemma for ~ mnurnd . (Con...
mnurndlem2 44271 Lemma for ~ mnurnd . Dedu...
mnurnd 44272 Minimal universes contain ...
mnugrud 44273 Minimal universes are Grot...
grumnudlem 44274 Lemma for ~ grumnud . (Co...
grumnud 44275 Grothendieck universes are...
grumnueq 44276 The class of Grothendieck ...
expandan 44277 Expand conjunction to prim...
expandexn 44278 Expand an existential quan...
expandral 44279 Expand a restricted univer...
expandrexn 44280 Expand a restricted existe...
expandrex 44281 Expand a restricted existe...
expanduniss 44282 Expand ` U. A C_ B ` to pr...
ismnuprim 44283 Express the predicate on `...
rr-grothprimbi 44284 Express "every set is cont...
inagrud 44285 Inaccessible levels of the...
inaex 44286 Assuming the Tarski-Grothe...
gruex 44287 Assuming the Tarski-Grothe...
rr-groth 44288 An equivalent of ~ ax-grot...
rr-grothprim 44289 An equivalent of ~ ax-grot...
ismnushort 44290 Express the predicate on `...
dfuniv2 44291 Alternative definition of ...
rr-grothshortbi 44292 Express "every set is cont...
rr-grothshort 44293 A shorter equivalent of ~ ...
nanorxor 44294 'nand' is equivalent to th...
undisjrab 44295 Union of two disjoint rest...
iso0 44296 The empty set is an ` R , ...
ssrecnpr 44297 ` RR ` is a subset of both...
seff 44298 Let set ` S ` be the real ...
sblpnf 44299 The infinity ball in the a...
prmunb2 44300 The primes are unbounded. ...
dvgrat 44301 Ratio test for divergence ...
cvgdvgrat 44302 Ratio test for convergence...
radcnvrat 44303 Let ` L ` be the limit, if...
reldvds 44304 The divides relation is in...
nznngen 44305 All positive integers in t...
nzss 44306 The set of multiples of _m...
nzin 44307 The intersection of the se...
nzprmdif 44308 Subtract one prime's multi...
hashnzfz 44309 Special case of ~ hashdvds...
hashnzfz2 44310 Special case of ~ hashnzfz...
hashnzfzclim 44311 As the upper bound ` K ` o...
caofcan 44312 Transfer a cancellation la...
ofsubid 44313 Function analogue of ~ sub...
ofmul12 44314 Function analogue of ~ mul...
ofdivrec 44315 Function analogue of ~ div...
ofdivcan4 44316 Function analogue of ~ div...
ofdivdiv2 44317 Function analogue of ~ div...
lhe4.4ex1a 44318 Example of the Fundamental...
dvsconst 44319 Derivative of a constant f...
dvsid 44320 Derivative of the identity...
dvsef 44321 Derivative of the exponent...
expgrowthi 44322 Exponential growth and dec...
dvconstbi 44323 The derivative of a functi...
expgrowth 44324 Exponential growth and dec...
bccval 44327 Value of the generalized b...
bcccl 44328 Closure of the generalized...
bcc0 44329 The generalized binomial c...
bccp1k 44330 Generalized binomial coeff...
bccm1k 44331 Generalized binomial coeff...
bccn0 44332 Generalized binomial coeff...
bccn1 44333 Generalized binomial coeff...
bccbc 44334 The binomial coefficient a...
uzmptshftfval 44335 When ` F ` is a maps-to fu...
dvradcnv2 44336 The radius of convergence ...
binomcxplemwb 44337 Lemma for ~ binomcxp . Th...
binomcxplemnn0 44338 Lemma for ~ binomcxp . Wh...
binomcxplemrat 44339 Lemma for ~ binomcxp . As...
binomcxplemfrat 44340 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 44341 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 44342 Lemma for ~ binomcxp . By...
binomcxplemcvg 44343 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 44344 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 44345 Lemma for ~ binomcxp . Wh...
binomcxp 44346 Generalize the binomial th...
pm10.12 44347 Theorem *10.12 in [Whitehe...
pm10.14 44348 Theorem *10.14 in [Whitehe...
pm10.251 44349 Theorem *10.251 in [Whiteh...
pm10.252 44350 Theorem *10.252 in [Whiteh...
pm10.253 44351 Theorem *10.253 in [Whiteh...
albitr 44352 Theorem *10.301 in [Whiteh...
pm10.42 44353 Theorem *10.42 in [Whitehe...
pm10.52 44354 Theorem *10.52 in [Whitehe...
pm10.53 44355 Theorem *10.53 in [Whitehe...
pm10.541 44356 Theorem *10.541 in [Whiteh...
pm10.542 44357 Theorem *10.542 in [Whiteh...
pm10.55 44358 Theorem *10.55 in [Whitehe...
pm10.56 44359 Theorem *10.56 in [Whitehe...
pm10.57 44360 Theorem *10.57 in [Whitehe...
2alanimi 44361 Removes two universal quan...
2al2imi 44362 Removes two universal quan...
pm11.11 44363 Theorem *11.11 in [Whitehe...
pm11.12 44364 Theorem *11.12 in [Whitehe...
19.21vv 44365 Compare Theorem *11.3 in [...
2alim 44366 Theorem *11.32 in [Whitehe...
2albi 44367 Theorem *11.33 in [Whitehe...
2exim 44368 Theorem *11.34 in [Whitehe...
2exbi 44369 Theorem *11.341 in [Whiteh...
spsbce-2 44370 Theorem *11.36 in [Whitehe...
19.33-2 44371 Theorem *11.421 in [Whiteh...
19.36vv 44372 Theorem *11.43 in [Whitehe...
19.31vv 44373 Theorem *11.44 in [Whitehe...
19.37vv 44374 Theorem *11.46 in [Whitehe...
19.28vv 44375 Theorem *11.47 in [Whitehe...
pm11.52 44376 Theorem *11.52 in [Whitehe...
aaanv 44377 Theorem *11.56 in [Whitehe...
pm11.57 44378 Theorem *11.57 in [Whitehe...
pm11.58 44379 Theorem *11.58 in [Whitehe...
pm11.59 44380 Theorem *11.59 in [Whitehe...
pm11.6 44381 Theorem *11.6 in [Whitehea...
pm11.61 44382 Theorem *11.61 in [Whitehe...
pm11.62 44383 Theorem *11.62 in [Whitehe...
pm11.63 44384 Theorem *11.63 in [Whitehe...
pm11.7 44385 Theorem *11.7 in [Whitehea...
pm11.71 44386 Theorem *11.71 in [Whitehe...
sbeqal1 44387 If ` x = y ` always implie...
sbeqal1i 44388 Suppose you know ` x = y `...
sbeqal2i 44389 If ` x = y ` implies ` x =...
axc5c4c711 44390 Proof of a theorem that ca...
axc5c4c711toc5 44391 Rederivation of ~ sp from ...
axc5c4c711toc4 44392 Rederivation of ~ axc4 fro...
axc5c4c711toc7 44393 Rederivation of ~ axc7 fro...
axc5c4c711to11 44394 Rederivation of ~ ax-11 fr...
axc11next 44395 This theorem shows that, g...
pm13.13a 44396 One result of theorem *13....
pm13.13b 44397 Theorem *13.13 in [Whitehe...
pm13.14 44398 Theorem *13.14 in [Whitehe...
pm13.192 44399 Theorem *13.192 in [Whiteh...
pm13.193 44400 Theorem *13.193 in [Whiteh...
pm13.194 44401 Theorem *13.194 in [Whiteh...
pm13.195 44402 Theorem *13.195 in [Whiteh...
pm13.196a 44403 Theorem *13.196 in [Whiteh...
2sbc6g 44404 Theorem *13.21 in [Whitehe...
2sbc5g 44405 Theorem *13.22 in [Whitehe...
iotain 44406 Equivalence between two di...
iotaexeu 44407 The iota class exists. Th...
iotasbc 44408 Definition *14.01 in [Whit...
iotasbc2 44409 Theorem *14.111 in [Whiteh...
pm14.12 44410 Theorem *14.12 in [Whitehe...
pm14.122a 44411 Theorem *14.122 in [Whiteh...
pm14.122b 44412 Theorem *14.122 in [Whiteh...
pm14.122c 44413 Theorem *14.122 in [Whiteh...
pm14.123a 44414 Theorem *14.123 in [Whiteh...
pm14.123b 44415 Theorem *14.123 in [Whiteh...
pm14.123c 44416 Theorem *14.123 in [Whiteh...
pm14.18 44417 Theorem *14.18 in [Whitehe...
iotaequ 44418 Theorem *14.2 in [Whitehea...
iotavalb 44419 Theorem *14.202 in [Whiteh...
iotasbc5 44420 Theorem *14.205 in [Whiteh...
pm14.24 44421 Theorem *14.24 in [Whitehe...
iotavalsb 44422 Theorem *14.242 in [Whiteh...
sbiota1 44423 Theorem *14.25 in [Whitehe...
sbaniota 44424 Theorem *14.26 in [Whitehe...
eubiOLD 44425 Obsolete proof of ~ eubi a...
iotasbcq 44426 Theorem *14.272 in [Whiteh...
elnev 44427 Any set that contains one ...
rusbcALT 44428 A version of Russell's par...
compeq 44429 Equality between two ways ...
compne 44430 The complement of ` A ` is...
compab 44431 Two ways of saying "the co...
conss2 44432 Contrapositive law for sub...
conss1 44433 Contrapositive law for sub...
ralbidar 44434 More general form of ~ ral...
rexbidar 44435 More general form of ~ rex...
dropab1 44436 Theorem to aid use of the ...
dropab2 44437 Theorem to aid use of the ...
ipo0 44438 If the identity relation p...
ifr0 44439 A class that is founded by...
ordpss 44440 ~ ordelpss with an anteced...
fvsb 44441 Explicit substitution of a...
fveqsb 44442 Implicit substitution of a...
xpexb 44443 A Cartesian product exists...
trelpss 44444 An element of a transitive...
addcomgi 44445 Generalization of commutat...
addrval 44455 Value of the operation of ...
subrval 44456 Value of the operation of ...
mulvval 44457 Value of the operation of ...
addrfv 44458 Vector addition at a value...
subrfv 44459 Vector subtraction at a va...
mulvfv 44460 Scalar multiplication at a...
addrfn 44461 Vector addition produces a...
subrfn 44462 Vector subtraction produce...
mulvfn 44463 Scalar multiplication prod...
addrcom 44464 Vector addition is commuta...
idiALT 44468 Placeholder for ~ idi . T...
exbir 44469 Exportation implication al...
3impexpbicom 44470 Version of ~ 3impexp where...
3impexpbicomi 44471 Inference associated with ...
bi1imp 44472 Importation inference simi...
bi2imp 44473 Importation inference simi...
bi3impb 44474 Similar to ~ 3impb with im...
bi3impa 44475 Similar to ~ 3impa with im...
bi23impib 44476 ~ 3impib with the inner im...
bi13impib 44477 ~ 3impib with the outer im...
bi123impib 44478 ~ 3impib with the implicat...
bi13impia 44479 ~ 3impia with the outer im...
bi123impia 44480 ~ 3impia with the implicat...
bi33imp12 44481 ~ 3imp with innermost impl...
bi13imp23 44482 ~ 3imp with outermost impl...
bi13imp2 44483 Similar to ~ 3imp except t...
bi12imp3 44484 Similar to ~ 3imp except a...
bi23imp1 44485 Similar to ~ 3imp except a...
bi123imp0 44486 Similar to ~ 3imp except a...
4animp1 44487 A single hypothesis unific...
4an31 44488 A rearrangement of conjunc...
4an4132 44489 A rearrangement of conjunc...
expcomdg 44490 Biconditional form of ~ ex...
iidn3 44491 ~ idn3 without virtual ded...
ee222 44492 ~ e222 without virtual ded...
ee3bir 44493 Right-biconditional form o...
ee13 44494 ~ e13 without virtual dedu...
ee121 44495 ~ e121 without virtual ded...
ee122 44496 ~ e122 without virtual ded...
ee333 44497 ~ e333 without virtual ded...
ee323 44498 ~ e323 without virtual ded...
3ornot23 44499 If the second and third di...
orbi1r 44500 ~ orbi1 with order of disj...
3orbi123 44501 ~ pm4.39 with a 3-conjunct...
syl5imp 44502 Closed form of ~ syl5 . D...
impexpd 44503 The following User's Proof...
com3rgbi 44504 The following User's Proof...
impexpdcom 44505 The following User's Proof...
ee1111 44506 Non-virtual deduction form...
pm2.43bgbi 44507 Logical equivalence of a 2...
pm2.43cbi 44508 Logical equivalence of a 3...
ee233 44509 Non-virtual deduction form...
imbi13 44510 Join three logical equival...
ee33 44511 Non-virtual deduction form...
con5 44512 Biconditional contrapositi...
con5i 44513 Inference form of ~ con5 ....
exlimexi 44514 Inference similar to Theor...
sb5ALT 44515 Equivalence for substituti...
eexinst01 44516 ~ exinst01 without virtual...
eexinst11 44517 ~ exinst11 without virtual...
vk15.4j 44518 Excercise 4j of Unit 15 of...
notnotrALT 44519 Converse of double negatio...
con3ALT2 44520 Contraposition. Alternate...
ssralv2 44521 Quantification restricted ...
sbc3or 44522 ~ sbcor with a 3-disjuncts...
alrim3con13v 44523 Closed form of ~ alrimi wi...
rspsbc2 44524 ~ rspsbc with two quantify...
sbcoreleleq 44525 Substitution of a setvar v...
tratrb 44526 If a class is transitive a...
ordelordALT 44527 An element of an ordinal c...
sbcim2g 44528 Distribution of class subs...
sbcbi 44529 Implication form of ~ sbcb...
trsbc 44530 Formula-building inference...
truniALT 44531 The union of a class of tr...
onfrALTlem5 44532 Lemma for ~ onfrALT . (Co...
onfrALTlem4 44533 Lemma for ~ onfrALT . (Co...
onfrALTlem3 44534 Lemma for ~ onfrALT . (Co...
ggen31 44535 ~ gen31 without virtual de...
onfrALTlem2 44536 Lemma for ~ onfrALT . (Co...
cbvexsv 44537 A theorem pertaining to th...
onfrALTlem1 44538 Lemma for ~ onfrALT . (Co...
onfrALT 44539 The membership relation is...
19.41rg 44540 Closed form of right-to-le...
opelopab4 44541 Ordered pair membership in...
2pm13.193 44542 ~ pm13.193 for two variabl...
hbntal 44543 A closed form of ~ hbn . ~...
hbimpg 44544 A closed form of ~ hbim . ...
hbalg 44545 Closed form of ~ hbal . D...
hbexg 44546 Closed form of ~ nfex . D...
ax6e2eq 44547 Alternate form of ~ ax6e f...
ax6e2nd 44548 If at least two sets exist...
ax6e2ndeq 44549 "At least two sets exist" ...
2sb5nd 44550 Equivalence for double sub...
2uasbanh 44551 Distribute the unabbreviat...
2uasban 44552 Distribute the unabbreviat...
e2ebind 44553 Absorption of an existenti...
elpwgded 44554 ~ elpwgdedVD in convention...
trelded 44555 Deduction form of ~ trel ....
jaoded 44556 Deduction form of ~ jao . ...
sbtT 44557 A substitution into a theo...
not12an2impnot1 44558 If a double conjunction is...
in1 44561 Inference form of ~ df-vd1...
iin1 44562 ~ in1 without virtual dedu...
dfvd1ir 44563 Inference form of ~ df-vd1...
idn1 44564 Virtual deduction identity...
dfvd1imp 44565 Left-to-right part of defi...
dfvd1impr 44566 Right-to-left part of defi...
dfvd2 44569 Definition of a 2-hypothes...
dfvd2an 44572 Definition of a 2-hypothes...
dfvd2ani 44573 Inference form of ~ dfvd2a...
dfvd2anir 44574 Right-to-left inference fo...
dfvd2i 44575 Inference form of ~ dfvd2 ...
dfvd2ir 44576 Right-to-left inference fo...
dfvd3 44581 Definition of a 3-hypothes...
dfvd3i 44582 Inference form of ~ dfvd3 ...
dfvd3ir 44583 Right-to-left inference fo...
dfvd3an 44584 Definition of a 3-hypothes...
dfvd3ani 44585 Inference form of ~ dfvd3a...
dfvd3anir 44586 Right-to-left inference fo...
vd01 44587 A virtual hypothesis virtu...
vd02 44588 Two virtual hypotheses vir...
vd03 44589 A theorem is virtually inf...
vd12 44590 A virtual deduction with 1...
vd13 44591 A virtual deduction with 1...
vd23 44592 A virtual deduction with 2...
dfvd2imp 44593 The virtual deduction form...
dfvd2impr 44594 A 2-antecedent nested impl...
in2 44595 The virtual deduction intr...
int2 44596 The virtual deduction intr...
iin2 44597 ~ in2 without virtual dedu...
in2an 44598 The virtual deduction intr...
in3 44599 The virtual deduction intr...
iin3 44600 ~ in3 without virtual dedu...
in3an 44601 The virtual deduction intr...
int3 44602 The virtual deduction intr...
idn2 44603 Virtual deduction identity...
iden2 44604 Virtual deduction identity...
idn3 44605 Virtual deduction identity...
gen11 44606 Virtual deduction generali...
gen11nv 44607 Virtual deduction generali...
gen12 44608 Virtual deduction generali...
gen21 44609 Virtual deduction generali...
gen21nv 44610 Virtual deduction form of ...
gen31 44611 Virtual deduction generali...
gen22 44612 Virtual deduction generali...
ggen22 44613 ~ gen22 without virtual de...
exinst 44614 Existential Instantiation....
exinst01 44615 Existential Instantiation....
exinst11 44616 Existential Instantiation....
e1a 44617 A Virtual deduction elimin...
el1 44618 A Virtual deduction elimin...
e1bi 44619 Biconditional form of ~ e1...
e1bir 44620 Right biconditional form o...
e2 44621 A virtual deduction elimin...
e2bi 44622 Biconditional form of ~ e2...
e2bir 44623 Right biconditional form o...
ee223 44624 ~ e223 without virtual ded...
e223 44625 A virtual deduction elimin...
e222 44626 A virtual deduction elimin...
e220 44627 A virtual deduction elimin...
ee220 44628 ~ e220 without virtual ded...
e202 44629 A virtual deduction elimin...
ee202 44630 ~ e202 without virtual ded...
e022 44631 A virtual deduction elimin...
ee022 44632 ~ e022 without virtual ded...
e002 44633 A virtual deduction elimin...
ee002 44634 ~ e002 without virtual ded...
e020 44635 A virtual deduction elimin...
ee020 44636 ~ e020 without virtual ded...
e200 44637 A virtual deduction elimin...
ee200 44638 ~ e200 without virtual ded...
e221 44639 A virtual deduction elimin...
ee221 44640 ~ e221 without virtual ded...
e212 44641 A virtual deduction elimin...
ee212 44642 ~ e212 without virtual ded...
e122 44643 A virtual deduction elimin...
e112 44644 A virtual deduction elimin...
ee112 44645 ~ e112 without virtual ded...
e121 44646 A virtual deduction elimin...
e211 44647 A virtual deduction elimin...
ee211 44648 ~ e211 without virtual ded...
e210 44649 A virtual deduction elimin...
ee210 44650 ~ e210 without virtual ded...
e201 44651 A virtual deduction elimin...
ee201 44652 ~ e201 without virtual ded...
e120 44653 A virtual deduction elimin...
ee120 44654 Virtual deduction rule ~ e...
e021 44655 A virtual deduction elimin...
ee021 44656 ~ e021 without virtual ded...
e012 44657 A virtual deduction elimin...
ee012 44658 ~ e012 without virtual ded...
e102 44659 A virtual deduction elimin...
ee102 44660 ~ e102 without virtual ded...
e22 44661 A virtual deduction elimin...
e22an 44662 Conjunction form of ~ e22 ...
ee22an 44663 ~ e22an without virtual de...
e111 44664 A virtual deduction elimin...
e1111 44665 A virtual deduction elimin...
e110 44666 A virtual deduction elimin...
ee110 44667 ~ e110 without virtual ded...
e101 44668 A virtual deduction elimin...
ee101 44669 ~ e101 without virtual ded...
e011 44670 A virtual deduction elimin...
ee011 44671 ~ e011 without virtual ded...
e100 44672 A virtual deduction elimin...
ee100 44673 ~ e100 without virtual ded...
e010 44674 A virtual deduction elimin...
ee010 44675 ~ e010 without virtual ded...
e001 44676 A virtual deduction elimin...
ee001 44677 ~ e001 without virtual ded...
e11 44678 A virtual deduction elimin...
e11an 44679 Conjunction form of ~ e11 ...
ee11an 44680 ~ e11an without virtual de...
e01 44681 A virtual deduction elimin...
e01an 44682 Conjunction form of ~ e01 ...
ee01an 44683 ~ e01an without virtual de...
e10 44684 A virtual deduction elimin...
e10an 44685 Conjunction form of ~ e10 ...
ee10an 44686 ~ e10an without virtual de...
e02 44687 A virtual deduction elimin...
e02an 44688 Conjunction form of ~ e02 ...
ee02an 44689 ~ e02an without virtual de...
eel021old 44690 ~ el021old without virtual...
el021old 44691 A virtual deduction elimin...
eel000cT 44692 An elimination deduction. ...
eel0TT 44693 An elimination deduction. ...
eelT00 44694 An elimination deduction. ...
eelTTT 44695 An elimination deduction. ...
eelT11 44696 An elimination deduction. ...
eelT1 44697 Syllogism inference combin...
eelT12 44698 An elimination deduction. ...
eelTT1 44699 An elimination deduction. ...
eelT01 44700 An elimination deduction. ...
eel0T1 44701 An elimination deduction. ...
eel12131 44702 An elimination deduction. ...
eel2131 44703 ~ syl2an with antecedents ...
eel3132 44704 ~ syl2an with antecedents ...
eel0321old 44705 ~ el0321old without virtua...
el0321old 44706 A virtual deduction elimin...
eel2122old 44707 ~ el2122old without virtua...
el2122old 44708 A virtual deduction elimin...
eel0000 44709 Elimination rule similar t...
eel00001 44710 An elimination deduction. ...
eel00000 44711 Elimination rule similar ~...
eel11111 44712 Five-hypothesis eliminatio...
e12 44713 A virtual deduction elimin...
e12an 44714 Conjunction form of ~ e12 ...
el12 44715 Virtual deduction form of ...
e20 44716 A virtual deduction elimin...
e20an 44717 Conjunction form of ~ e20 ...
ee20an 44718 ~ e20an without virtual de...
e21 44719 A virtual deduction elimin...
e21an 44720 Conjunction form of ~ e21 ...
ee21an 44721 ~ e21an without virtual de...
e333 44722 A virtual deduction elimin...
e33 44723 A virtual deduction elimin...
e33an 44724 Conjunction form of ~ e33 ...
ee33an 44725 ~ e33an without virtual de...
e3 44726 Meta-connective form of ~ ...
e3bi 44727 Biconditional form of ~ e3...
e3bir 44728 Right biconditional form o...
e03 44729 A virtual deduction elimin...
ee03 44730 ~ e03 without virtual dedu...
e03an 44731 Conjunction form of ~ e03 ...
ee03an 44732 Conjunction form of ~ ee03...
e30 44733 A virtual deduction elimin...
ee30 44734 ~ e30 without virtual dedu...
e30an 44735 A virtual deduction elimin...
ee30an 44736 Conjunction form of ~ ee30...
e13 44737 A virtual deduction elimin...
e13an 44738 A virtual deduction elimin...
ee13an 44739 ~ e13an without virtual de...
e31 44740 A virtual deduction elimin...
ee31 44741 ~ e31 without virtual dedu...
e31an 44742 A virtual deduction elimin...
ee31an 44743 ~ e31an without virtual de...
e23 44744 A virtual deduction elimin...
e23an 44745 A virtual deduction elimin...
ee23an 44746 ~ e23an without virtual de...
e32 44747 A virtual deduction elimin...
ee32 44748 ~ e32 without virtual dedu...
e32an 44749 A virtual deduction elimin...
ee32an 44750 ~ e33an without virtual de...
e123 44751 A virtual deduction elimin...
ee123 44752 ~ e123 without virtual ded...
el123 44753 A virtual deduction elimin...
e233 44754 A virtual deduction elimin...
e323 44755 A virtual deduction elimin...
e000 44756 A virtual deduction elimin...
e00 44757 Elimination rule identical...
e00an 44758 Elimination rule identical...
eel00cT 44759 An elimination deduction. ...
eelTT 44760 An elimination deduction. ...
e0a 44761 Elimination rule identical...
eelT 44762 An elimination deduction. ...
eel0cT 44763 An elimination deduction. ...
eelT0 44764 An elimination deduction. ...
e0bi 44765 Elimination rule identical...
e0bir 44766 Elimination rule identical...
uun0.1 44767 Convention notation form o...
un0.1 44768 ` T. ` is the constant tru...
uunT1 44769 A deduction unionizing a n...
uunT1p1 44770 A deduction unionizing a n...
uunT21 44771 A deduction unionizing a n...
uun121 44772 A deduction unionizing a n...
uun121p1 44773 A deduction unionizing a n...
uun132 44774 A deduction unionizing a n...
uun132p1 44775 A deduction unionizing a n...
anabss7p1 44776 A deduction unionizing a n...
un10 44777 A unionizing deduction. (...
un01 44778 A unionizing deduction. (...
un2122 44779 A deduction unionizing a n...
uun2131 44780 A deduction unionizing a n...
uun2131p1 44781 A deduction unionizing a n...
uunTT1 44782 A deduction unionizing a n...
uunTT1p1 44783 A deduction unionizing a n...
uunTT1p2 44784 A deduction unionizing a n...
uunT11 44785 A deduction unionizing a n...
uunT11p1 44786 A deduction unionizing a n...
uunT11p2 44787 A deduction unionizing a n...
uunT12 44788 A deduction unionizing a n...
uunT12p1 44789 A deduction unionizing a n...
uunT12p2 44790 A deduction unionizing a n...
uunT12p3 44791 A deduction unionizing a n...
uunT12p4 44792 A deduction unionizing a n...
uunT12p5 44793 A deduction unionizing a n...
uun111 44794 A deduction unionizing a n...
3anidm12p1 44795 A deduction unionizing a n...
3anidm12p2 44796 A deduction unionizing a n...
uun123 44797 A deduction unionizing a n...
uun123p1 44798 A deduction unionizing a n...
uun123p2 44799 A deduction unionizing a n...
uun123p3 44800 A deduction unionizing a n...
uun123p4 44801 A deduction unionizing a n...
uun2221 44802 A deduction unionizing a n...
uun2221p1 44803 A deduction unionizing a n...
uun2221p2 44804 A deduction unionizing a n...
3impdirp1 44805 A deduction unionizing a n...
3impcombi 44806 A 1-hypothesis proposition...
trsspwALT 44807 Virtual deduction proof of...
trsspwALT2 44808 Virtual deduction proof of...
trsspwALT3 44809 Short predicate calculus p...
sspwtr 44810 Virtual deduction proof of...
sspwtrALT 44811 Virtual deduction proof of...
sspwtrALT2 44812 Short predicate calculus p...
pwtrVD 44813 Virtual deduction proof of...
pwtrrVD 44814 Virtual deduction proof of...
suctrALT 44815 The successor of a transit...
snssiALTVD 44816 Virtual deduction proof of...
snssiALT 44817 If a class is an element o...
snsslVD 44818 Virtual deduction proof of...
snssl 44819 If a singleton is a subcla...
snelpwrVD 44820 Virtual deduction proof of...
unipwrVD 44821 Virtual deduction proof of...
unipwr 44822 A class is a subclass of t...
sstrALT2VD 44823 Virtual deduction proof of...
sstrALT2 44824 Virtual deduction proof of...
suctrALT2VD 44825 Virtual deduction proof of...
suctrALT2 44826 Virtual deduction proof of...
elex2VD 44827 Virtual deduction proof of...
elex22VD 44828 Virtual deduction proof of...
eqsbc2VD 44829 Virtual deduction proof of...
zfregs2VD 44830 Virtual deduction proof of...
tpid3gVD 44831 Virtual deduction proof of...
en3lplem1VD 44832 Virtual deduction proof of...
en3lplem2VD 44833 Virtual deduction proof of...
en3lpVD 44834 Virtual deduction proof of...
simplbi2VD 44835 Virtual deduction proof of...
3ornot23VD 44836 Virtual deduction proof of...
orbi1rVD 44837 Virtual deduction proof of...
bitr3VD 44838 Virtual deduction proof of...
3orbi123VD 44839 Virtual deduction proof of...
sbc3orgVD 44840 Virtual deduction proof of...
19.21a3con13vVD 44841 Virtual deduction proof of...
exbirVD 44842 Virtual deduction proof of...
exbiriVD 44843 Virtual deduction proof of...
rspsbc2VD 44844 Virtual deduction proof of...
3impexpVD 44845 Virtual deduction proof of...
3impexpbicomVD 44846 Virtual deduction proof of...
3impexpbicomiVD 44847 Virtual deduction proof of...
sbcoreleleqVD 44848 Virtual deduction proof of...
hbra2VD 44849 Virtual deduction proof of...
tratrbVD 44850 Virtual deduction proof of...
al2imVD 44851 Virtual deduction proof of...
syl5impVD 44852 Virtual deduction proof of...
idiVD 44853 Virtual deduction proof of...
ancomstVD 44854 Closed form of ~ ancoms . ...
ssralv2VD 44855 Quantification restricted ...
ordelordALTVD 44856 An element of an ordinal c...
equncomVD 44857 If a class equals the unio...
equncomiVD 44858 Inference form of ~ equnco...
sucidALTVD 44859 A set belongs to its succe...
sucidALT 44860 A set belongs to its succe...
sucidVD 44861 A set belongs to its succe...
imbi12VD 44862 Implication form of ~ imbi...
imbi13VD 44863 Join three logical equival...
sbcim2gVD 44864 Distribution of class subs...
sbcbiVD 44865 Implication form of ~ sbcb...
trsbcVD 44866 Formula-building inference...
truniALTVD 44867 The union of a class of tr...
ee33VD 44868 Non-virtual deduction form...
trintALTVD 44869 The intersection of a clas...
trintALT 44870 The intersection of a clas...
undif3VD 44871 The first equality of Exer...
sbcssgVD 44872 Virtual deduction proof of...
csbingVD 44873 Virtual deduction proof of...
onfrALTlem5VD 44874 Virtual deduction proof of...
onfrALTlem4VD 44875 Virtual deduction proof of...
onfrALTlem3VD 44876 Virtual deduction proof of...
simplbi2comtVD 44877 Virtual deduction proof of...
onfrALTlem2VD 44878 Virtual deduction proof of...
onfrALTlem1VD 44879 Virtual deduction proof of...
onfrALTVD 44880 Virtual deduction proof of...
csbeq2gVD 44881 Virtual deduction proof of...
csbsngVD 44882 Virtual deduction proof of...
csbxpgVD 44883 Virtual deduction proof of...
csbresgVD 44884 Virtual deduction proof of...
csbrngVD 44885 Virtual deduction proof of...
csbima12gALTVD 44886 Virtual deduction proof of...
csbunigVD 44887 Virtual deduction proof of...
csbfv12gALTVD 44888 Virtual deduction proof of...
con5VD 44889 Virtual deduction proof of...
relopabVD 44890 Virtual deduction proof of...
19.41rgVD 44891 Virtual deduction proof of...
2pm13.193VD 44892 Virtual deduction proof of...
hbimpgVD 44893 Virtual deduction proof of...
hbalgVD 44894 Virtual deduction proof of...
hbexgVD 44895 Virtual deduction proof of...
ax6e2eqVD 44896 The following User's Proof...
ax6e2ndVD 44897 The following User's Proof...
ax6e2ndeqVD 44898 The following User's Proof...
2sb5ndVD 44899 The following User's Proof...
2uasbanhVD 44900 The following User's Proof...
e2ebindVD 44901 The following User's Proof...
sb5ALTVD 44902 The following User's Proof...
vk15.4jVD 44903 The following User's Proof...
notnotrALTVD 44904 The following User's Proof...
con3ALTVD 44905 The following User's Proof...
elpwgdedVD 44906 Membership in a power clas...
sspwimp 44907 If a class is a subclass o...
sspwimpVD 44908 The following User's Proof...
sspwimpcf 44909 If a class is a subclass o...
sspwimpcfVD 44910 The following User's Proof...
suctrALTcf 44911 The successor of a transit...
suctrALTcfVD 44912 The following User's Proof...
suctrALT3 44913 The successor of a transit...
sspwimpALT 44914 If a class is a subclass o...
unisnALT 44915 A set equals the union of ...
notnotrALT2 44916 Converse of double negatio...
sspwimpALT2 44917 If a class is a subclass o...
e2ebindALT 44918 Absorption of an existenti...
ax6e2ndALT 44919 If at least two sets exist...
ax6e2ndeqALT 44920 "At least two sets exist" ...
2sb5ndALT 44921 Equivalence for double sub...
chordthmALT 44922 The intersecting chords th...
isosctrlem1ALT 44923 Lemma for ~ isosctr . Thi...
iunconnlem2 44924 The indexed union of conne...
iunconnALT 44925 The indexed union of conne...
sineq0ALT 44926 A complex number whose sin...
rspesbcd 44927 Restricted quantifier vers...
rext0 44928 Nonempty existential quant...
dfbi1ALTa 44929 Version of ~ dfbi1ALT usin...
simprimi 44930 Inference associated with ...
dfbi1ALTb 44931 Further shorten ~ dfbi1ALT...
relpeq1 44934 Equality theorem for relat...
relpeq2 44935 Equality theorem for relat...
relpeq3 44936 Equality theorem for relat...
relpeq4 44937 Equality theorem for relat...
relpeq5 44938 Equality theorem for relat...
nfrelp 44939 Bound-variable hypothesis ...
relpf 44940 A relation-preserving func...
relprel 44941 A relation-preserving func...
relpmin 44942 A preimage of a minimal el...
relpfrlem 44943 Lemma for ~ relpfr . Prov...
relpfr 44944 If the image of a set unde...
orbitex 44945 Orbits exist. Given a set...
orbitinit 44946 A set is contained in its ...
orbitcl 44947 The orbit under a function...
orbitclmpt 44948 Version of ~ orbitcl using...
trwf 44949 The class of well-founded ...
rankrelp 44950 The rank function preserve...
wffr 44951 The class of well-founded ...
trfr 44952 A transitive class well-fo...
tcfr 44953 A set is well-founded if a...
xpwf 44954 The Cartesian product of t...
dmwf 44955 The domain of a well-found...
rnwf 44956 The range of a well-founde...
relwf 44957 A relation is a well-found...
ralabso 44958 Simplification of restrict...
rexabso 44959 Simplification of restrict...
ralabsod 44960 Deduction form of ~ ralabs...
rexabsod 44961 Deduction form of ~ rexabs...
ralabsobidv 44962 Formula-building lemma for...
rexabsobidv 44963 Formula-building lemma for...
ssabso 44964 The notion " ` x ` is a su...
disjabso 44965 Disjointness is absolute f...
n0abso 44966 Nonemptiness is absolute f...
traxext 44967 A transitive class models ...
modelaxreplem1 44968 Lemma for ~ modelaxrep . ...
modelaxreplem2 44969 Lemma for ~ modelaxrep . ...
modelaxreplem3 44970 Lemma for ~ modelaxrep . ...
modelaxrep 44971 Conditions which guarantee...
ssclaxsep 44972 A class that is closed und...
0elaxnul 44973 A class that contains the ...
pwclaxpow 44974 Suppose ` M ` is a transit...
prclaxpr 44975 A class that is closed und...
uniclaxun 44976 A class that is closed und...
sswfaxreg 44977 A subclass of the class of...
omssaxinf2 44978 A class that contains all ...
omelaxinf2 44979 A transitive class that co...
dfac5prim 44980 ~ dfac5 expanded into prim...
ac8prim 44981 ~ ac8 expanded into primit...
modelac8prim 44982 If ` M ` is a transitive c...
wfaxext 44983 The class of well-founded ...
wfaxrep 44984 The class of well-founded ...
wfaxsep 44985 The class of well-founded ...
wfaxnul 44986 The class of well-founded ...
wfaxpow 44987 The class of well-founded ...
wfaxpr 44988 The class of well-founded ...
wfaxun 44989 The class of well-founded ...
wfaxreg 44990 The class of well-founded ...
wfaxinf2 44991 The class of well-founded ...
wfac8prim 44992 The class of well-founded ...
brpermmodel 44993 The membership relation in...
brpermmodelcnv 44994 Ordinary membership expres...
permaxext 44995 The Axiom of Extensionalit...
permaxrep 44996 The Axiom of Replacement ~...
permaxsep 44997 The Axiom of Separation ~ ...
permaxnul 44998 The Null Set Axiom ~ ax-nu...
permaxpow 44999 The Axiom of Power Sets ~ ...
permaxpr 45000 The Axiom of Pairing ~ ax-...
permaxun 45001 The Axiom of Union ~ ax-un...
permaxinf2lem 45002 Lemma for ~ permaxinf2 . ...
permaxinf2 45003 The Axiom of Infinity ~ ax...
permac8prim 45004 The Axiom of Choice ~ ac8p...
nregmodelf1o 45005 Define a permutation ` F `...
nregmodellem 45006 Lemma for ~ nregmodel . (...
nregmodel 45007 The Axiom of Regularity ~ ...
nregmodelaxext 45008 The Axiom of Extensionalit...
evth2f 45009 A version of ~ evth2 using...
elunif 45010 A version of ~ eluni using...
rzalf 45011 A version of ~ rzal using ...
fvelrnbf 45012 A version of ~ fvelrnb usi...
rfcnpre1 45013 If F is a continuous funct...
ubelsupr 45014 If U belongs to A and U is...
fsumcnf 45015 A finite sum of functions ...
mulltgt0 45016 The product of a negative ...
rspcegf 45017 A version of ~ rspcev usin...
rabexgf 45018 A version of ~ rabexg usin...
fcnre 45019 A function continuous with...
sumsnd 45020 A sum of a singleton is th...
evthf 45021 A version of ~ evth using ...
cnfex 45022 The class of continuous fu...
fnchoice 45023 For a finite set, a choice...
refsumcn 45024 A finite sum of continuous...
rfcnpre2 45025 If ` F ` is a continuous f...
cncmpmax 45026 When the hypothesis for th...
rfcnpre3 45027 If F is a continuous funct...
rfcnpre4 45028 If F is a continuous funct...
sumpair 45029 Sum of two distinct comple...
rfcnnnub 45030 Given a real continuous fu...
refsum2cnlem1 45031 This is the core Lemma for...
refsum2cn 45032 The sum of two continuus r...
adantlllr 45033 Deduction adding a conjunc...
3adantlr3 45034 Deduction adding a conjunc...
3adantll2 45035 Deduction adding a conjunc...
3adantll3 45036 Deduction adding a conjunc...
ssnel 45037 If not element of a set, t...
sncldre 45038 A singleton is closed w.r....
n0p 45039 A polynomial with a nonzer...
pm2.65ni 45040 Inference rule for proof b...
iuneq2df 45041 Equality deduction for ind...
nnfoctb 45042 There exists a mapping fro...
elpwinss 45043 An element of the powerset...
unidmex 45044 If ` F ` is a set, then ` ...
ndisj2 45045 A non-disjointness conditi...
zenom 45046 The set of integer numbers...
uzwo4 45047 Well-ordering principle: a...
unisn0 45048 The union of the singleton...
ssin0 45049 If two classes are disjoin...
inabs3 45050 Absorption law for interse...
pwpwuni 45051 Relationship between power...
disjiun2 45052 In a disjoint collection, ...
0pwfi 45053 The empty set is in any po...
ssinss2d 45054 Intersection preserves sub...
zct 45055 The set of integer numbers...
pwfin0 45056 A finite set always belong...
uzct 45057 An upper integer set is co...
iunxsnf 45058 A singleton index picks ou...
fiiuncl 45059 If a set is closed under t...
iunp1 45060 The addition of the next s...
fiunicl 45061 If a set is closed under t...
ixpeq2d 45062 Equality theorem for infin...
disjxp1 45063 The sets of a cartesian pr...
disjsnxp 45064 The sets in the cartesian ...
eliind 45065 Membership in indexed inte...
rspcef 45066 Restricted existential spe...
ixpssmapc 45067 An infinite Cartesian prod...
elintd 45068 Membership in class inters...
ssdf 45069 A sufficient condition for...
brneqtrd 45070 Substitution of equal clas...
ssnct 45071 A set containing an uncoun...
ssuniint 45072 Sufficient condition for b...
elintdv 45073 Membership in class inters...
ssd 45074 A sufficient condition for...
ralimralim 45075 Introducing any antecedent...
snelmap 45076 Membership of the element ...
xrnmnfpnf 45077 An extended real that is n...
nelrnmpt 45078 Non-membership in the rang...
iuneq1i 45079 Equality theorem for index...
nssrex 45080 Negation of subclass relat...
ssinc 45081 Inclusion relation for a m...
ssdec 45082 Inclusion relation for a m...
elixpconstg 45083 Membership in an infinite ...
iineq1d 45084 Equality theorem for index...
metpsmet 45085 A metric is a pseudometric...
ixpssixp 45086 Subclass theorem for infin...
ballss3 45087 A sufficient condition for...
iunincfi 45088 Given a sequence of increa...
nsstr 45089 If it's not a subclass, it...
rexanuz3 45090 Combine two different uppe...
cbvmpo2 45091 Rule to change the second ...
cbvmpo1 45092 Rule to change the first b...
eliuniin 45093 Indexed union of indexed i...
ssabf 45094 Subclass of a class abstra...
pssnssi 45095 A proper subclass does not...
rabidim2 45096 Membership in a restricted...
eluni2f 45097 Membership in class union....
eliin2f 45098 Membership in indexed inte...
nssd 45099 Negation of subclass relat...
iineq12dv 45100 Equality deduction for ind...
supxrcld 45101 The supremum of an arbitra...
elrestd 45102 A sufficient condition for...
eliuniincex 45103 Counterexample to show tha...
eliincex 45104 Counterexample to show tha...
eliinid 45105 Membership in an indexed i...
abssf 45106 Class abstraction in a sub...
supxrubd 45107 A member of a set of exten...
ssrabf 45108 Subclass of a restricted c...
ssrabdf 45109 Subclass of a restricted c...
eliin2 45110 Membership in indexed inte...
ssrab2f 45111 Subclass relation for a re...
restuni3 45112 The underlying set of a su...
rabssf 45113 Restricted class abstracti...
eliuniin2 45114 Indexed union of indexed i...
restuni4 45115 The underlying set of a su...
restuni6 45116 The underlying set of a su...
restuni5 45117 The underlying set of a su...
unirestss 45118 The union of an elementwis...
iniin1 45119 Indexed intersection of in...
iniin2 45120 Indexed intersection of in...
cbvrabv2 45121 A more general version of ...
cbvrabv2w 45122 A more general version of ...
iinssiin 45123 Subset implication for an ...
eliind2 45124 Membership in indexed inte...
iinssd 45125 Subset implication for an ...
rabbida2 45126 Equivalent wff's yield equ...
iinexd 45127 The existence of an indexe...
rabexf 45128 Separation Scheme in terms...
rabbida3 45129 Equivalent wff's yield equ...
r19.36vf 45130 Restricted quantifier vers...
raleqd 45131 Equality deduction for res...
iinssf 45132 Subset implication for an ...
iinssdf 45133 Subset implication for an ...
resabs2i 45134 Absorption law for restric...
ssdf2 45135 A sufficient condition for...
rabssd 45136 Restricted class abstracti...
rexnegd 45137 Minus a real number. (Con...
rexlimd3 45138 * Inference from Theorem 1...
nel1nelini 45139 Membership in an intersect...
nel2nelini 45140 Membership in an intersect...
eliunid 45141 Membership in indexed unio...
reximdd 45142 Deduction from Theorem 19....
inopnd 45143 The intersection of two op...
ss2rabdf 45144 Deduction of restricted ab...
restopn3 45145 If ` A ` is open, then ` A...
restopnssd 45146 A topology restricted to a...
restsubel 45147 A subset belongs in the sp...
toprestsubel 45148 A subset is open in the to...
rabidd 45149 An "identity" law of concr...
iunssdf 45150 Subset theorem for an inde...
iinss2d 45151 Subset implication for an ...
r19.3rzf 45152 Restricted quantification ...
r19.28zf 45153 Restricted quantifier vers...
iindif2f 45154 Indexed intersection of cl...
ralfal 45155 Two ways of expressing emp...
archd 45156 Archimedean property of re...
nimnbi 45157 If an implication is false...
nimnbi2 45158 If an implication is false...
notbicom 45159 Commutative law for the ne...
rexeqif 45160 Equality inference for res...
rspced 45161 Restricted existential spe...
fnresdmss 45162 A function does not change...
fmptsnxp 45163 Maps-to notation and Carte...
fvmpt2bd 45164 Value of a function given ...
rnmptfi 45165 The range of a function wi...
fresin2 45166 Restriction of a function ...
ffi 45167 A function with finite dom...
suprnmpt 45168 An explicit bound for the ...
rnffi 45169 The range of a function wi...
mptelpm 45170 A function in maps-to nota...
rnmptpr 45171 Range of a function define...
resmpti 45172 Restriction of the mapping...
founiiun 45173 Union expressed as an inde...
rnresun 45174 Distribution law for range...
elrnmptf 45175 The range of a function in...
rnmptssrn 45176 Inclusion relation for two...
disjf1 45177 A 1 to 1 mapping built fro...
rnsnf 45178 The range of a function wh...
wessf1ornlem 45179 Given a function ` F ` on ...
wessf1orn 45180 Given a function ` F ` on ...
nelrnres 45181 If ` A ` is not in the ran...
disjrnmpt2 45182 Disjointness of the range ...
elrnmpt1sf 45183 Elementhood in an image se...
founiiun0 45184 Union expressed as an inde...
disjf1o 45185 A bijection built from dis...
disjinfi 45186 Only a finite number of di...
fvovco 45187 Value of the composition o...
ssnnf1octb 45188 There exists a bijection b...
nnf1oxpnn 45189 There is a bijection betwe...
rnmptssd 45190 The range of a function gi...
projf1o 45191 A biijection from a set to...
fvmap 45192 Function value for a membe...
fvixp2 45193 Projection of a factor of ...
choicefi 45194 For a finite set, a choice...
mpct 45195 The exponentiation of a co...
cnmetcoval 45196 Value of the distance func...
fcomptss 45197 Express composition of two...
elmapsnd 45198 Membership in a set expone...
mapss2 45199 Subset inheritance for set...
fsneq 45200 Equality condition for two...
difmap 45201 Difference of two sets exp...
unirnmap 45202 Given a subset of a set ex...
inmap 45203 Intersection of two sets e...
fcoss 45204 Composition of two mapping...
fsneqrn 45205 Equality condition for two...
difmapsn 45206 Difference of two sets exp...
mapssbi 45207 Subset inheritance for set...
unirnmapsn 45208 Equality theorem for a sub...
iunmapss 45209 The indexed union of set e...
ssmapsn 45210 A subset ` C ` of a set ex...
iunmapsn 45211 The indexed union of set e...
absfico 45212 Mapping domain and codomai...
icof 45213 The set of left-closed rig...
elpmrn 45214 The range of a partial fun...
imaexi 45215 The image of a set is a se...
axccdom 45216 Relax the constraint on ax...
dmmptdff 45217 The domain of the mapping ...
dmmptdf 45218 The domain of the mapping ...
elpmi2 45219 The domain of a partial fu...
dmrelrnrel 45220 A relation preserving func...
fvcod 45221 Value of a function compos...
elrnmpoid 45222 Membership in the range of...
axccd 45223 An alternative version of ...
axccd2 45224 An alternative version of ...
feqresmptf 45225 Express a restricted funct...
dmmptssf 45226 The domain of a mapping is...
dmmptdf2 45227 The domain of the mapping ...
dmuz 45228 Domain of the upper intege...
fmptd2f 45229 Domain and codomain of the...
mpteq1df 45230 An equality theorem for th...
mptexf 45231 If the domain of a functio...
fvmpt4 45232 Value of a function given ...
fmptf 45233 Functionality of the mappi...
resimass 45234 The image of a restriction...
mptssid 45235 The mapping operation expr...
mptfnd 45236 The maps-to notation defin...
rnmptlb 45237 Boundness below of the ran...
rnmptbddlem 45238 Boundness of the range of ...
rnmptbdd 45239 Boundness of the range of ...
funimaeq 45240 Membership relation for th...
rnmptssf 45241 The range of a function gi...
rnmptbd2lem 45242 Boundness below of the ran...
rnmptbd2 45243 Boundness below of the ran...
infnsuprnmpt 45244 The indexed infimum of rea...
suprclrnmpt 45245 Closure of the indexed sup...
suprubrnmpt2 45246 A member of a nonempty ind...
suprubrnmpt 45247 A member of a nonempty ind...
rnmptssdf 45248 The range of a function gi...
rnmptbdlem 45249 Boundness above of the ran...
rnmptbd 45250 Boundness above of the ran...
rnmptss2 45251 The range of a function gi...
elmptima 45252 The image of a function in...
ralrnmpt3 45253 A restricted quantifier ov...
rnmptssbi 45254 The range of a function gi...
imass2d 45255 Subset theorem for image. ...
imassmpt 45256 Membership relation for th...
fpmd 45257 A total function is a part...
fconst7 45258 An alternative way to expr...
fnmptif 45259 Functionality and domain o...
dmmptif 45260 Domain of the mapping oper...
mpteq2dfa 45261 Slightly more general equa...
dmmpt1 45262 The domain of the mapping ...
fmptff 45263 Functionality of the mappi...
fvmptelcdmf 45264 The value of a function at...
fmptdff 45265 A version of ~ fmptd using...
fvmpt2df 45266 Deduction version of ~ fvm...
rn1st 45267 The range of a function wi...
rnmptssff 45268 The range of a function gi...
rnmptssdff 45269 The range of a function gi...
fvmpt4d 45270 Value of a function given ...
sub2times 45271 Subtracting from a number,...
nnxrd 45272 A natural number is an ext...
nnxr 45273 A natural number is an ext...
abssubrp 45274 The distance of two distin...
elfzfzo 45275 Relationship between membe...
oddfl 45276 Odd number representation ...
abscosbd 45277 Bound for the absolute val...
mul13d 45278 Commutative/associative la...
negpilt0 45279 Negative ` _pi ` is negati...
dstregt0 45280 A complex number ` A ` tha...
subadd4b 45281 Rearrangement of 4 terms i...
xrlttri5d 45282 Not equal and not larger i...
zltlesub 45283 If an integer ` N ` is les...
divlt0gt0d 45284 The ratio of a negative nu...
subsub23d 45285 Swap subtrahend and result...
2timesgt 45286 Double of a positive real ...
reopn 45287 The reals are open with re...
sub31 45288 Swap the first and third t...
nnne1ge2 45289 A positive integer which i...
lefldiveq 45290 A closed enough, smaller r...
negsubdi3d 45291 Distribution of negative o...
ltdiv2dd 45292 Division of a positive num...
abssinbd 45293 Bound for the absolute val...
halffl 45294 Floor of ` ( 1 / 2 ) ` . ...
monoords 45295 Ordering relation for a st...
hashssle 45296 The size of a subset of a ...
lttri5d 45297 Not equal and not larger i...
fzisoeu 45298 A finite ordered set has a...
lt3addmuld 45299 If three real numbers are ...
absnpncan2d 45300 Triangular inequality, com...
fperiodmullem 45301 A function with period ` T...
fperiodmul 45302 A function with period T i...
upbdrech 45303 Choice of an upper bound f...
lt4addmuld 45304 If four real numbers are l...
absnpncan3d 45305 Triangular inequality, com...
upbdrech2 45306 Choice of an upper bound f...
ssfiunibd 45307 A finite union of bounded ...
fzdifsuc2 45308 Remove a successor from th...
fzsscn 45309 A finite sequence of integ...
divcan8d 45310 A cancellation law for div...
dmmcand 45311 Cancellation law for divis...
fzssre 45312 A finite sequence of integ...
bccld 45313 A binomial coefficient, in...
fzssnn0 45314 A finite set of sequential...
xreqle 45315 Equality implies 'less tha...
xaddlidd 45316 ` 0 ` is a left identity f...
xadd0ge 45317 A number is less than or e...
xrgtned 45318 'Greater than' implies not...
xrleneltd 45319 'Less than or equal to' an...
xaddcomd 45320 The extended real addition...
supxrre3 45321 The supremum of a nonempty...
uzfissfz 45322 For any finite subset of t...
xleadd2d 45323 Addition of extended reals...
suprltrp 45324 The supremum of a nonempty...
xleadd1d 45325 Addition of extended reals...
xreqled 45326 Equality implies 'less tha...
xrgepnfd 45327 An extended real greater t...
xrge0nemnfd 45328 A nonnegative extended rea...
supxrgere 45329 If a real number can be ap...
iuneqfzuzlem 45330 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 45331 If two unions indexed by u...
xle2addd 45332 Adding both side of two in...
supxrgelem 45333 If an extended real number...
supxrge 45334 If an extended real number...
suplesup 45335 If any element of ` A ` ca...
infxrglb 45336 The infimum of a set of ex...
xadd0ge2 45337 A number is less than or e...
nepnfltpnf 45338 An extended real that is n...
ltadd12dd 45339 Addition to both sides of ...
nemnftgtmnft 45340 An extended real that is n...
xrgtso 45341 'Greater than' is a strict...
rpex 45342 The positive reals form a ...
xrge0ge0 45343 A nonnegative extended rea...
xrssre 45344 A subset of extended reals...
ssuzfz 45345 A finite subset of the upp...
absfun 45346 The absolute value is a fu...
infrpge 45347 The infimum of a nonempty,...
xrlexaddrp 45348 If an extended real number...
supsubc 45349 The supremum function dist...
xralrple2 45350 Show that ` A ` is less th...
nnuzdisj 45351 The first ` N ` elements o...
ltdivgt1 45352 Divsion by a number greate...
xrltned 45353 'Less than' implies not eq...
nnsplit 45354 Express the set of positiv...
divdiv3d 45355 Division into a fraction. ...
abslt2sqd 45356 Comparison of the square o...
qenom 45357 The set of rational number...
qct 45358 The set of rational number...
xrltnled 45359 'Less than' in terms of 'l...
lenlteq 45360 'less than or equal to' bu...
xrred 45361 An extended real that is n...
rr2sscn2 45362 The cartesian square of ` ...
infxr 45363 The infimum of a set of ex...
infxrunb2 45364 The infimum of an unbounde...
infxrbnd2 45365 The infimum of a bounded-b...
infleinflem1 45366 Lemma for ~ infleinf , cas...
infleinflem2 45367 Lemma for ~ infleinf , whe...
infleinf 45368 If any element of ` B ` ca...
xralrple4 45369 Show that ` A ` is less th...
xralrple3 45370 Show that ` A ` is less th...
eluzelzd 45371 A member of an upper set o...
suplesup2 45372 If any element of ` A ` is...
recnnltrp 45373 ` N ` is a natural number ...
nnn0 45374 The set of positive intege...
fzct 45375 A finite set of sequential...
rpgtrecnn 45376 Any positive real number i...
fzossuz 45377 A half-open integer interv...
infxrrefi 45378 The real and extended real...
xrralrecnnle 45379 Show that ` A ` is less th...
fzoct 45380 A finite set of sequential...
frexr 45381 A function taking real val...
nnrecrp 45382 The reciprocal of a positi...
reclt0d 45383 The reciprocal of a negati...
lt0neg1dd 45384 If a number is negative, i...
infxrcld 45385 The infimum of an arbitrar...
xrralrecnnge 45386 Show that ` A ` is less th...
reclt0 45387 The reciprocal of a negati...
ltmulneg 45388 Multiplying by a negative ...
allbutfi 45389 For all but finitely many....
ltdiv23neg 45390 Swap denominator with othe...
xreqnltd 45391 A consequence of trichotom...
mnfnre2 45392 Minus infinity is not a re...
zssxr 45393 The integers are a subset ...
fisupclrnmpt 45394 A nonempty finite indexed ...
supxrunb3 45395 The supremum of an unbound...
elfzod 45396 Membership in a half-open ...
fimaxre4 45397 A nonempty finite set of r...
ren0 45398 The set of reals is nonemp...
eluzelz2 45399 A member of an upper set o...
resabs2d 45400 Absorption law for restric...
uzid2 45401 Membership of the least me...
supxrleubrnmpt 45402 The supremum of a nonempty...
uzssre2 45403 An upper set of integers i...
uzssd 45404 Subset relationship for tw...
eluzd 45405 Membership in an upper set...
infxrlbrnmpt2 45406 A member of a nonempty ind...
xrre4 45407 An extended real is real i...
uz0 45408 The upper integers functio...
eluzelz2d 45409 A member of an upper set o...
infleinf2 45410 If any element in ` B ` is...
unb2ltle 45411 "Unbounded below" expresse...
uzidd2 45412 Membership of the least me...
uzssd2 45413 Subset relationship for tw...
rexabslelem 45414 An indexed set of absolute...
rexabsle 45415 An indexed set of absolute...
allbutfiinf 45416 Given a "for all but finit...
supxrrernmpt 45417 The real and extended real...
suprleubrnmpt 45418 The supremum of a nonempty...
infrnmptle 45419 An indexed infimum of exte...
infxrunb3 45420 The infimum of an unbounde...
uzn0d 45421 The upper integers are all...
uzssd3 45422 Subset relationship for tw...
rexabsle2 45423 An indexed set of absolute...
infxrunb3rnmpt 45424 The infimum of an unbounde...
supxrre3rnmpt 45425 The indexed supremum of a ...
uzublem 45426 A set of reals, indexed by...
uzub 45427 A set of reals, indexed by...
ssrexr 45428 A subset of the reals is a...
supxrmnf2 45429 Removing minus infinity fr...
supxrcli 45430 The supremum of an arbitra...
uzid3 45431 Membership of the least me...
infxrlesupxr 45432 The supremum of a nonempty...
xnegeqd 45433 Equality of two extended n...
xnegrecl 45434 The extended real negative...
xnegnegi 45435 Extended real version of ~...
xnegeqi 45436 Equality of two extended n...
nfxnegd 45437 Deduction version of ~ nfx...
xnegnegd 45438 Extended real version of ~...
uzred 45439 An upper integer is a real...
xnegcli 45440 Closure of extended real n...
supminfrnmpt 45441 The indexed supremum of a ...
infxrpnf 45442 Adding plus infinity to a ...
infxrrnmptcl 45443 The infimum of an arbitrar...
leneg2d 45444 Negative of one side of 'l...
supxrltinfxr 45445 The supremum of the empty ...
max1d 45446 A number is less than or e...
supxrleubrnmptf 45447 The supremum of a nonempty...
nleltd 45448 'Not less than or equal to...
zxrd 45449 An integer is an extended ...
infxrgelbrnmpt 45450 The infimum of an indexed ...
rphalfltd 45451 Half of a positive real is...
uzssz2 45452 An upper set of integers i...
leneg3d 45453 Negative of one side of 'l...
max2d 45454 A number is less than or e...
uzn0bi 45455 The upper integers functio...
xnegrecl2 45456 If the extended real negat...
nfxneg 45457 Bound-variable hypothesis ...
uzxrd 45458 An upper integer is an ext...
infxrpnf2 45459 Removing plus infinity fro...
supminfxr 45460 The extended real suprema ...
infrpgernmpt 45461 The infimum of a nonempty,...
xnegre 45462 An extended real is real i...
xnegrecl2d 45463 If the extended real negat...
uzxr 45464 An upper integer is an ext...
supminfxr2 45465 The extended real suprema ...
xnegred 45466 An extended real is real i...
supminfxrrnmpt 45467 The indexed supremum of a ...
min1d 45468 The minimum of two numbers...
min2d 45469 The minimum of two numbers...
xrnpnfmnf 45470 An extended real that is n...
uzsscn 45471 An upper set of integers i...
absimnre 45472 The absolute value of the ...
uzsscn2 45473 An upper set of integers i...
xrtgcntopre 45474 The standard topologies on...
absimlere 45475 The absolute value of the ...
rpssxr 45476 The positive reals are a s...
monoordxrv 45477 Ordering relation for a mo...
monoordxr 45478 Ordering relation for a mo...
monoord2xrv 45479 Ordering relation for a mo...
monoord2xr 45480 Ordering relation for a mo...
xrpnf 45481 An extended real is plus i...
xlenegcon1 45482 Extended real version of ~...
xlenegcon2 45483 Extended real version of ~...
pimxrneun 45484 The preimage of a set of e...
caucvgbf 45485 A function is convergent i...
cvgcau 45486 A convergent function is C...
cvgcaule 45487 A convergent function is C...
rexanuz2nf 45488 A simple counterexample re...
gtnelioc 45489 A real number larger than ...
ioossioc 45490 An open interval is a subs...
ioondisj2 45491 A condition for two open i...
ioondisj1 45492 A condition for two open i...
ioogtlb 45493 An element of a closed int...
evthiccabs 45494 Extreme Value Theorem on y...
ltnelicc 45495 A real number smaller than...
eliood 45496 Membership in an open real...
iooabslt 45497 An upper bound for the dis...
gtnelicc 45498 A real number greater than...
iooinlbub 45499 An open interval has empty...
iocgtlb 45500 An element of a left-open ...
iocleub 45501 An element of a left-open ...
eliccd 45502 Membership in a closed rea...
eliccre 45503 A member of a closed inter...
eliooshift 45504 Element of an open interva...
eliocd 45505 Membership in a left-open ...
icoltub 45506 An element of a left-close...
eliocre 45507 A member of a left-open ri...
iooltub 45508 An element of an open inte...
ioontr 45509 The interior of an interva...
snunioo1 45510 The closure of one end of ...
lbioc 45511 A left-open right-closed i...
ioomidp 45512 The midpoint is an element...
iccdifioo 45513 If the open inverval is re...
iccdifprioo 45514 An open interval is the cl...
ioossioobi 45515 Biconditional form of ~ io...
iccshift 45516 A closed interval shifted ...
iccsuble 45517 An upper bound to the dist...
iocopn 45518 A left-open right-closed i...
eliccelioc 45519 Membership in a closed int...
iooshift 45520 An open interval shifted b...
iccintsng 45521 Intersection of two adiace...
icoiccdif 45522 Left-closed right-open int...
icoopn 45523 A left-closed right-open i...
icoub 45524 A left-closed, right-open ...
eliccxrd 45525 Membership in a closed rea...
pnfel0pnf 45526 ` +oo ` is a nonnegative e...
eliccnelico 45527 An element of a closed int...
eliccelicod 45528 A member of a closed inter...
ge0xrre 45529 A nonnegative extended rea...
ge0lere 45530 A nonnegative extended Rea...
elicores 45531 Membership in a left-close...
inficc 45532 The infimum of a nonempty ...
qinioo 45533 The rational numbers are d...
lenelioc 45534 A real number smaller than...
ioonct 45535 A nonempty open interval i...
xrgtnelicc 45536 A real number greater than...
iccdificc 45537 The difference of two clos...
iocnct 45538 A nonempty left-open, righ...
iccnct 45539 A closed interval, with mo...
iooiinicc 45540 A closed interval expresse...
iccgelbd 45541 An element of a closed int...
iooltubd 45542 An element of an open inte...
icoltubd 45543 An element of a left-close...
qelioo 45544 The rational numbers are d...
tgqioo2 45545 Every open set of reals is...
iccleubd 45546 An element of a closed int...
elioored 45547 A member of an open interv...
ioogtlbd 45548 An element of a closed int...
ioofun 45549 ` (,) ` is a function. (C...
icomnfinre 45550 A left-closed, right-open,...
sqrlearg 45551 The square compared with i...
ressiocsup 45552 If the supremum belongs to...
ressioosup 45553 If the supremum does not b...
iooiinioc 45554 A left-open, right-closed ...
ressiooinf 45555 If the infimum does not be...
iocleubd 45556 An element of a left-open ...
uzinico 45557 An upper interval of integ...
preimaiocmnf 45558 Preimage of a right-closed...
uzinico2 45559 An upper interval of integ...
uzinico3 45560 An upper interval of integ...
dmico 45561 The domain of the closed-b...
ndmico 45562 The closed-below, open-abo...
uzubioo 45563 The upper integers are unb...
uzubico 45564 The upper integers are unb...
uzubioo2 45565 The upper integers are unb...
uzubico2 45566 The upper integers are unb...
iocgtlbd 45567 An element of a left-open ...
xrtgioo2 45568 The topology on the extend...
fsummulc1f 45569 Closure of a finite sum of...
fsumnncl 45570 Closure of a nonempty, fin...
fsumge0cl 45571 The finite sum of nonnegat...
fsumf1of 45572 Re-index a finite sum usin...
fsumiunss 45573 Sum over a disjoint indexe...
fsumreclf 45574 Closure of a finite sum of...
fsumlessf 45575 A shorter sum of nonnegati...
fsumsupp0 45576 Finite sum of function val...
fsumsermpt 45577 A finite sum expressed in ...
fmul01 45578 Multiplying a finite numbe...
fmulcl 45579 If ' Y ' is closed under t...
fmuldfeqlem1 45580 induction step for the pro...
fmuldfeq 45581 X and Z are two equivalent...
fmul01lt1lem1 45582 Given a finite multiplicat...
fmul01lt1lem2 45583 Given a finite multiplicat...
fmul01lt1 45584 Given a finite multiplicat...
cncfmptss 45585 A continuous complex funct...
rrpsscn 45586 The positive reals are a s...
mulc1cncfg 45587 A version of ~ mulc1cncf u...
infrglb 45588 The infimum of a nonempty ...
expcnfg 45589 If ` F ` is a complex cont...
prodeq2ad 45590 Equality deduction for pro...
fprodsplit1 45591 Separate out a term in a f...
fprodexp 45592 Positive integer exponenti...
fprodabs2 45593 The absolute value of a fi...
fprod0 45594 A finite product with a ze...
mccllem 45595 * Induction step for ~ mcc...
mccl 45596 A multinomial coefficient,...
fprodcnlem 45597 A finite product of functi...
fprodcn 45598 A finite product of functi...
clim1fr1 45599 A class of sequences of fr...
isumneg 45600 Negation of a converging s...
climrec 45601 Limit of the reciprocal of...
climmulf 45602 A version of ~ climmul usi...
climexp 45603 The limit of natural power...
climinf 45604 A bounded monotonic noninc...
climsuselem1 45605 The subsequence index ` I ...
climsuse 45606 A subsequence ` G ` of a c...
climrecf 45607 A version of ~ climrec usi...
climneg 45608 Complex limit of the negat...
climinff 45609 A version of ~ climinf usi...
climdivf 45610 Limit of the ratio of two ...
climreeq 45611 If ` F ` is a real functio...
ellimciota 45612 An explicit value for the ...
climaddf 45613 A version of ~ climadd usi...
mullimc 45614 Limit of the product of tw...
ellimcabssub0 45615 An equivalent condition fo...
limcdm0 45616 If a function has empty do...
islptre 45617 An equivalence condition f...
limccog 45618 Limit of the composition o...
limciccioolb 45619 The limit of a function at...
climf 45620 Express the predicate: Th...
mullimcf 45621 Limit of the multiplicatio...
constlimc 45622 Limit of constant function...
rexlim2d 45623 Inference removing two res...
idlimc 45624 Limit of the identity func...
divcnvg 45625 The sequence of reciprocal...
limcperiod 45626 If ` F ` is a periodic fun...
limcrecl 45627 If ` F ` is a real-valued ...
sumnnodd 45628 A series indexed by ` NN `...
lptioo2 45629 The upper bound of an open...
lptioo1 45630 The lower bound of an open...
elprn1 45631 A member of an unordered p...
elprn2 45632 A member of an unordered p...
limcmptdm 45633 The domain of a maps-to fu...
clim2f 45634 Express the predicate: Th...
limcicciooub 45635 The limit of a function at...
ltmod 45636 A sufficient condition for...
islpcn 45637 A characterization for a l...
lptre2pt 45638 If a set in the real line ...
limsupre 45639 If a sequence is bounded, ...
limcresiooub 45640 The left limit doesn't cha...
limcresioolb 45641 The right limit doesn't ch...
limcleqr 45642 If the left and the right ...
lptioo2cn 45643 The upper bound of an open...
lptioo1cn 45644 The lower bound of an open...
neglimc 45645 Limit of the negative func...
addlimc 45646 Sum of two limits. (Contr...
0ellimcdiv 45647 If the numerator converges...
clim2cf 45648 Express the predicate ` F ...
limclner 45649 For a limit point, both fr...
sublimc 45650 Subtraction of two limits....
reclimc 45651 Limit of the reciprocal of...
clim0cf 45652 Express the predicate ` F ...
limclr 45653 For a limit point, both fr...
divlimc 45654 Limit of the quotient of t...
expfac 45655 Factorial grows faster tha...
climconstmpt 45656 A constant sequence conver...
climresmpt 45657 A function restricted to u...
climsubmpt 45658 Limit of the difference of...
climsubc2mpt 45659 Limit of the difference of...
climsubc1mpt 45660 Limit of the difference of...
fnlimfv 45661 The value of the limit fun...
climreclf 45662 The limit of a convergent ...
climeldmeq 45663 Two functions that are eve...
climf2 45664 Express the predicate: Th...
fnlimcnv 45665 The sequence of function v...
climeldmeqmpt 45666 Two functions that are eve...
climfveq 45667 Two functions that are eve...
clim2f2 45668 Express the predicate: Th...
climfveqmpt 45669 Two functions that are eve...
climd 45670 Express the predicate: Th...
clim2d 45671 The limit of complex numbe...
fnlimfvre 45672 The limit function of real...
allbutfifvre 45673 Given a sequence of real-v...
climleltrp 45674 The limit of complex numbe...
fnlimfvre2 45675 The limit function of real...
fnlimf 45676 The limit function of real...
fnlimabslt 45677 A sequence of function val...
climfveqf 45678 Two functions that are eve...
climmptf 45679 Exhibit a function ` G ` w...
climfveqmpt3 45680 Two functions that are eve...
climeldmeqf 45681 Two functions that are eve...
climreclmpt 45682 The limit of B convergent ...
limsupref 45683 If a sequence is bounded, ...
limsupbnd1f 45684 If a sequence is eventuall...
climbddf 45685 A converging sequence of c...
climeqf 45686 Two functions that are eve...
climeldmeqmpt3 45687 Two functions that are eve...
limsupcld 45688 Closure of the superior li...
climfv 45689 The limit of a convergent ...
limsupval3 45690 The superior limit of an i...
climfveqmpt2 45691 Two functions that are eve...
limsup0 45692 The superior limit of the ...
climeldmeqmpt2 45693 Two functions that are eve...
limsupresre 45694 The supremum limit of a fu...
climeqmpt 45695 Two functions that are eve...
climfvd 45696 The limit of a convergent ...
limsuplesup 45697 An upper bound for the sup...
limsupresico 45698 The superior limit doesn't...
limsuppnfdlem 45699 If the restriction of a fu...
limsuppnfd 45700 If the restriction of a fu...
limsupresuz 45701 If the real part of the do...
limsupub 45702 If the limsup is not ` +oo...
limsupres 45703 The superior limit of a re...
climinf2lem 45704 A convergent, nonincreasin...
climinf2 45705 A convergent, nonincreasin...
limsupvaluz 45706 The superior limit, when t...
limsupresuz2 45707 If the domain of a functio...
limsuppnflem 45708 If the restriction of a fu...
limsuppnf 45709 If the restriction of a fu...
limsupubuzlem 45710 If the limsup is not ` +oo...
limsupubuz 45711 For a real-valued function...
climinf2mpt 45712 A bounded below, monotonic...
climinfmpt 45713 A bounded below, monotonic...
climinf3 45714 A convergent, nonincreasin...
limsupvaluzmpt 45715 The superior limit, when t...
limsupequzmpt2 45716 Two functions that are eve...
limsupubuzmpt 45717 If the limsup is not ` +oo...
limsupmnflem 45718 The superior limit of a fu...
limsupmnf 45719 The superior limit of a fu...
limsupequzlem 45720 Two functions that are eve...
limsupequz 45721 Two functions that are eve...
limsupre2lem 45722 Given a function on the ex...
limsupre2 45723 Given a function on the ex...
limsupmnfuzlem 45724 The superior limit of a fu...
limsupmnfuz 45725 The superior limit of a fu...
limsupequzmptlem 45726 Two functions that are eve...
limsupequzmpt 45727 Two functions that are eve...
limsupre2mpt 45728 Given a function on the ex...
limsupequzmptf 45729 Two functions that are eve...
limsupre3lem 45730 Given a function on the ex...
limsupre3 45731 Given a function on the ex...
limsupre3mpt 45732 Given a function on the ex...
limsupre3uzlem 45733 Given a function on the ex...
limsupre3uz 45734 Given a function on the ex...
limsupreuz 45735 Given a function on the re...
limsupvaluz2 45736 The superior limit, when t...
limsupreuzmpt 45737 Given a function on the re...
supcnvlimsup 45738 If a function on a set of ...
supcnvlimsupmpt 45739 If a function on a set of ...
0cnv 45740 If ` (/) ` is a complex nu...
climuzlem 45741 Express the predicate: Th...
climuz 45742 Express the predicate: Th...
lmbr3v 45743 Express the binary relatio...
climisp 45744 If a sequence converges to...
lmbr3 45745 Express the binary relatio...
climrescn 45746 A sequence converging w.r....
climxrrelem 45747 If a sequence ranging over...
climxrre 45748 If a sequence ranging over...
limsuplt2 45751 The defining property of t...
liminfgord 45752 Ordering property of the i...
limsupvald 45753 The superior limit of a se...
limsupresicompt 45754 The superior limit doesn't...
limsupcli 45755 Closure of the superior li...
liminfgf 45756 Closure of the inferior li...
liminfval 45757 The inferior limit of a se...
climlimsup 45758 A sequence of real numbers...
limsupge 45759 The defining property of t...
liminfgval 45760 Value of the inferior limi...
liminfcl 45761 Closure of the inferior li...
liminfvald 45762 The inferior limit of a se...
liminfval5 45763 The inferior limit of an i...
limsupresxr 45764 The superior limit of a fu...
liminfresxr 45765 The inferior limit of a fu...
liminfval2 45766 The superior limit, relati...
climlimsupcex 45767 Counterexample for ~ climl...
liminfcld 45768 Closure of the inferior li...
liminfresico 45769 The inferior limit doesn't...
limsup10exlem 45770 The range of the given fun...
limsup10ex 45771 The superior limit of a fu...
liminf10ex 45772 The inferior limit of a fu...
liminflelimsuplem 45773 The superior limit is grea...
liminflelimsup 45774 The superior limit is grea...
limsupgtlem 45775 For any positive real, the...
limsupgt 45776 Given a sequence of real n...
liminfresre 45777 The inferior limit of a fu...
liminfresicompt 45778 The inferior limit doesn't...
liminfltlimsupex 45779 An example where the ` lim...
liminfgelimsup 45780 The inferior limit is grea...
liminfvalxr 45781 Alternate definition of ` ...
liminfresuz 45782 If the real part of the do...
liminflelimsupuz 45783 The superior limit is grea...
liminfvalxrmpt 45784 Alternate definition of ` ...
liminfresuz2 45785 If the domain of a functio...
liminfgelimsupuz 45786 The inferior limit is grea...
liminfval4 45787 Alternate definition of ` ...
liminfval3 45788 Alternate definition of ` ...
liminfequzmpt2 45789 Two functions that are eve...
liminfvaluz 45790 Alternate definition of ` ...
liminf0 45791 The inferior limit of the ...
limsupval4 45792 Alternate definition of ` ...
liminfvaluz2 45793 Alternate definition of ` ...
liminfvaluz3 45794 Alternate definition of ` ...
liminflelimsupcex 45795 A counterexample for ~ lim...
limsupvaluz3 45796 Alternate definition of ` ...
liminfvaluz4 45797 Alternate definition of ` ...
limsupvaluz4 45798 Alternate definition of ` ...
climliminflimsupd 45799 If a sequence of real numb...
liminfreuzlem 45800 Given a function on the re...
liminfreuz 45801 Given a function on the re...
liminfltlem 45802 Given a sequence of real n...
liminflt 45803 Given a sequence of real n...
climliminf 45804 A sequence of real numbers...
liminflimsupclim 45805 A sequence of real numbers...
climliminflimsup 45806 A sequence of real numbers...
climliminflimsup2 45807 A sequence of real numbers...
climliminflimsup3 45808 A sequence of real numbers...
climliminflimsup4 45809 A sequence of real numbers...
limsupub2 45810 A extended real valued fun...
limsupubuz2 45811 A sequence with values in ...
xlimpnfxnegmnf 45812 A sequence converges to ` ...
liminflbuz2 45813 A sequence with values in ...
liminfpnfuz 45814 The inferior limit of a fu...
liminflimsupxrre 45815 A sequence with values in ...
xlimrel 45818 The limit on extended real...
xlimres 45819 A function converges iff i...
xlimcl 45820 The limit of a sequence of...
rexlimddv2 45821 Restricted existential eli...
xlimclim 45822 Given a sequence of reals,...
xlimconst 45823 A constant sequence conver...
climxlim 45824 A converging sequence in t...
xlimbr 45825 Express the binary relatio...
fuzxrpmcn 45826 A function mapping from an...
cnrefiisplem 45827 Lemma for ~ cnrefiisp (som...
cnrefiisp 45828 A non-real, complex number...
xlimxrre 45829 If a sequence ranging over...
xlimmnfvlem1 45830 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 45831 Lemma for ~ xlimmnf : the ...
xlimmnfv 45832 A function converges to mi...
xlimconst2 45833 A sequence that eventually...
xlimpnfvlem1 45834 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 45835 Lemma for ~ xlimpnfv : the...
xlimpnfv 45836 A function converges to pl...
xlimclim2lem 45837 Lemma for ~ xlimclim2 . H...
xlimclim2 45838 Given a sequence of extend...
xlimmnf 45839 A function converges to mi...
xlimpnf 45840 A function converges to pl...
xlimmnfmpt 45841 A function converges to pl...
xlimpnfmpt 45842 A function converges to pl...
climxlim2lem 45843 In this lemma for ~ climxl...
climxlim2 45844 A sequence of extended rea...
dfxlim2v 45845 An alternative definition ...
dfxlim2 45846 An alternative definition ...
climresd 45847 A function restricted to u...
climresdm 45848 A real function converges ...
dmclimxlim 45849 A real valued sequence tha...
xlimmnflimsup2 45850 A sequence of extended rea...
xlimuni 45851 An infinite sequence conve...
xlimclimdm 45852 A sequence of extended rea...
xlimfun 45853 The convergence relation o...
xlimmnflimsup 45854 If a sequence of extended ...
xlimdm 45855 Two ways to express that a...
xlimpnfxnegmnf2 45856 A sequence converges to ` ...
xlimresdm 45857 A function converges in th...
xlimpnfliminf 45858 If a sequence of extended ...
xlimpnfliminf2 45859 A sequence of extended rea...
xlimliminflimsup 45860 A sequence of extended rea...
xlimlimsupleliminf 45861 A sequence of extended rea...
coseq0 45862 A complex number whose cos...
sinmulcos 45863 Multiplication formula for...
coskpi2 45864 The cosine of an integer m...
cosnegpi 45865 The cosine of negative ` _...
sinaover2ne0 45866 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 45867 The cosine of an integer m...
mulcncff 45868 The multiplication of two ...
cncfmptssg 45869 A continuous complex funct...
constcncfg 45870 A constant function is a c...
idcncfg 45871 The identity function is a...
cncfshift 45872 A periodic continuous func...
resincncf 45873 ` sin ` restricted to real...
addccncf2 45874 Adding a constant is a con...
0cnf 45875 The empty set is a continu...
fsumcncf 45876 The finite sum of continuo...
cncfperiod 45877 A periodic continuous func...
subcncff 45878 The subtraction of two con...
negcncfg 45879 The opposite of a continuo...
cnfdmsn 45880 A function with a singleto...
cncfcompt 45881 Composition of continuous ...
addcncff 45882 The sum of two continuous ...
ioccncflimc 45883 Limit at the upper bound o...
cncfuni 45884 A complex function on a su...
icccncfext 45885 A continuous function on a...
cncficcgt0 45886 A the absolute value of a ...
icocncflimc 45887 Limit at the lower bound, ...
cncfdmsn 45888 A complex function with a ...
divcncff 45889 The quotient of two contin...
cncfshiftioo 45890 A periodic continuous func...
cncfiooicclem1 45891 A continuous function ` F ...
cncfiooicc 45892 A continuous function ` F ...
cncfiooiccre 45893 A continuous function ` F ...
cncfioobdlem 45894 ` G ` actually extends ` F...
cncfioobd 45895 A continuous function ` F ...
jumpncnp 45896 Jump discontinuity or disc...
cxpcncf2 45897 The complex power function...
fprodcncf 45898 The finite product of cont...
add1cncf 45899 Addition to a constant is ...
add2cncf 45900 Addition to a constant is ...
sub1cncfd 45901 Subtracting a constant is ...
sub2cncfd 45902 Subtraction from a constan...
fprodsub2cncf 45903 ` F ` is continuous. (Con...
fprodadd2cncf 45904 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 45905 The sequence ` S ` of fini...
fprodsubrecnncnv 45906 The sequence ` S ` of fini...
fprodaddrecnncnvlem 45907 The sequence ` S ` of fini...
fprodaddrecnncnv 45908 The sequence ` S ` of fini...
dvsinexp 45909 The derivative of sin^N . ...
dvcosre 45910 The real derivative of the...
dvsinax 45911 Derivative exercise: the d...
dvsubf 45912 The subtraction rule for e...
dvmptconst 45913 Function-builder for deriv...
dvcnre 45914 From complex differentiati...
dvmptidg 45915 Function-builder for deriv...
dvresntr 45916 Function-builder for deriv...
fperdvper 45917 The derivative of a period...
dvasinbx 45918 Derivative exercise: the d...
dvresioo 45919 Restriction of a derivativ...
dvdivf 45920 The quotient rule for ever...
dvdivbd 45921 A sufficient condition for...
dvsubcncf 45922 A sufficient condition for...
dvmulcncf 45923 A sufficient condition for...
dvcosax 45924 Derivative exercise: the d...
dvdivcncf 45925 A sufficient condition for...
dvbdfbdioolem1 45926 Given a function with boun...
dvbdfbdioolem2 45927 A function on an open inte...
dvbdfbdioo 45928 A function on an open inte...
ioodvbdlimc1lem1 45929 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 45930 Limit at the lower bound o...
ioodvbdlimc1 45931 A real function with bound...
ioodvbdlimc2lem 45932 Limit at the upper bound o...
ioodvbdlimc2 45933 A real function with bound...
dvdmsscn 45934 ` X ` is a subset of ` CC ...
dvmptmulf 45935 Function-builder for deriv...
dvnmptdivc 45936 Function-builder for itera...
dvdsn1add 45937 If ` K ` divides ` N ` but...
dvxpaek 45938 Derivative of the polynomi...
dvnmptconst 45939 The ` N ` -th derivative o...
dvnxpaek 45940 The ` n ` -th derivative o...
dvnmul 45941 Function-builder for the `...
dvmptfprodlem 45942 Induction step for ~ dvmpt...
dvmptfprod 45943 Function-builder for deriv...
dvnprodlem1 45944 ` D ` is bijective. (Cont...
dvnprodlem2 45945 Induction step for ~ dvnpr...
dvnprodlem3 45946 The multinomial formula fo...
dvnprod 45947 The multinomial formula fo...
itgsin0pilem1 45948 Calculation of the integra...
ibliccsinexp 45949 sin^n on a closed interval...
itgsin0pi 45950 Calculation of the integra...
iblioosinexp 45951 sin^n on an open integral ...
itgsinexplem1 45952 Integration by parts is ap...
itgsinexp 45953 A recursive formula for th...
iblconstmpt 45954 A constant function is int...
itgeq1d 45955 Equality theorem for an in...
mbfres2cn 45956 Measurability of a piecewi...
vol0 45957 The measure of the empty s...
ditgeqiooicc 45958 A function ` F ` on an ope...
volge0 45959 The volume of a set is alw...
cnbdibl 45960 A continuous bounded funct...
snmbl 45961 A singleton is measurable....
ditgeq3d 45962 Equality theorem for the d...
iblempty 45963 The empty function is inte...
iblsplit 45964 The union of two integrabl...
volsn 45965 A singleton has 0 Lebesgue...
itgvol0 45966 If the domani is negligibl...
itgcoscmulx 45967 Exercise: the integral of ...
iblsplitf 45968 A version of ~ iblsplit us...
ibliooicc 45969 If a function is integrabl...
volioc 45970 The measure of a left-open...
iblspltprt 45971 If a function is integrabl...
itgsincmulx 45972 Exercise: the integral of ...
itgsubsticclem 45973 lemma for ~ itgsubsticc . ...
itgsubsticc 45974 Integration by u-substitut...
itgioocnicc 45975 The integral of a piecewis...
iblcncfioo 45976 A continuous function ` F ...
itgspltprt 45977 The ` S. ` integral splits...
itgiccshift 45978 The integral of a function...
itgperiod 45979 The integral of a periodic...
itgsbtaddcnst 45980 Integral substitution, add...
volico 45981 The measure of left-closed...
sublevolico 45982 The Lebesgue measure of a ...
dmvolss 45983 Lebesgue measurable sets a...
ismbl3 45984 The predicate " ` A ` is L...
volioof 45985 The function that assigns ...
ovolsplit 45986 The Lebesgue outer measure...
fvvolioof 45987 The function value of the ...
volioore 45988 The measure of an open int...
fvvolicof 45989 The function value of the ...
voliooico 45990 An open interval and a lef...
ismbl4 45991 The predicate " ` A ` is L...
volioofmpt 45992 ` ( ( vol o. (,) ) o. F ) ...
volicoff 45993 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 45994 The Lebesgue measure of op...
volicofmpt 45995 ` ( ( vol o. [,) ) o. F ) ...
volicc 45996 The Lebesgue measure of a ...
voliccico 45997 A closed interval and a le...
mbfdmssre 45998 The domain of a measurable...
stoweidlem1 45999 Lemma for ~ stoweid . Thi...
stoweidlem2 46000 lemma for ~ stoweid : here...
stoweidlem3 46001 Lemma for ~ stoweid : if `...
stoweidlem4 46002 Lemma for ~ stoweid : a cl...
stoweidlem5 46003 There exists a δ as ...
stoweidlem6 46004 Lemma for ~ stoweid : two ...
stoweidlem7 46005 This lemma is used to prov...
stoweidlem8 46006 Lemma for ~ stoweid : two ...
stoweidlem9 46007 Lemma for ~ stoweid : here...
stoweidlem10 46008 Lemma for ~ stoweid . Thi...
stoweidlem11 46009 This lemma is used to prov...
stoweidlem12 46010 Lemma for ~ stoweid . Thi...
stoweidlem13 46011 Lemma for ~ stoweid . Thi...
stoweidlem14 46012 There exists a ` k ` as in...
stoweidlem15 46013 This lemma is used to prov...
stoweidlem16 46014 Lemma for ~ stoweid . The...
stoweidlem17 46015 This lemma proves that the...
stoweidlem18 46016 This theorem proves Lemma ...
stoweidlem19 46017 If a set of real functions...
stoweidlem20 46018 If a set A of real functio...
stoweidlem21 46019 Once the Stone Weierstrass...
stoweidlem22 46020 If a set of real functions...
stoweidlem23 46021 This lemma is used to prov...
stoweidlem24 46022 This lemma proves that for...
stoweidlem25 46023 This lemma proves that for...
stoweidlem26 46024 This lemma is used to prov...
stoweidlem27 46025 This lemma is used to prov...
stoweidlem28 46026 There exists a δ as ...
stoweidlem29 46027 When the hypothesis for th...
stoweidlem30 46028 This lemma is used to prov...
stoweidlem31 46029 This lemma is used to prov...
stoweidlem32 46030 If a set A of real functio...
stoweidlem33 46031 If a set of real functions...
stoweidlem34 46032 This lemma proves that for...
stoweidlem35 46033 This lemma is used to prov...
stoweidlem36 46034 This lemma is used to prov...
stoweidlem37 46035 This lemma is used to prov...
stoweidlem38 46036 This lemma is used to prov...
stoweidlem39 46037 This lemma is used to prov...
stoweidlem40 46038 This lemma proves that q_n...
stoweidlem41 46039 This lemma is used to prov...
stoweidlem42 46040 This lemma is used to prov...
stoweidlem43 46041 This lemma is used to prov...
stoweidlem44 46042 This lemma is used to prov...
stoweidlem45 46043 This lemma proves that, gi...
stoweidlem46 46044 This lemma proves that set...
stoweidlem47 46045 Subtracting a constant fro...
stoweidlem48 46046 This lemma is used to prov...
stoweidlem49 46047 There exists a function q_...
stoweidlem50 46048 This lemma proves that set...
stoweidlem51 46049 There exists a function x ...
stoweidlem52 46050 There exists a neighborhoo...
stoweidlem53 46051 This lemma is used to prov...
stoweidlem54 46052 There exists a function ` ...
stoweidlem55 46053 This lemma proves the exis...
stoweidlem56 46054 This theorem proves Lemma ...
stoweidlem57 46055 There exists a function x ...
stoweidlem58 46056 This theorem proves Lemma ...
stoweidlem59 46057 This lemma proves that the...
stoweidlem60 46058 This lemma proves that the...
stoweidlem61 46059 This lemma proves that the...
stoweidlem62 46060 This theorem proves the St...
stoweid 46061 This theorem proves the St...
stowei 46062 This theorem proves the St...
wallispilem1 46063 ` I ` is monotone: increas...
wallispilem2 46064 A first set of properties ...
wallispilem3 46065 I maps to real values. (C...
wallispilem4 46066 ` F ` maps to explicit exp...
wallispilem5 46067 The sequence ` H ` converg...
wallispi 46068 Wallis' formula for π :...
wallispi2lem1 46069 An intermediate step betwe...
wallispi2lem2 46070 Two expressions are proven...
wallispi2 46071 An alternative version of ...
stirlinglem1 46072 A simple limit of fraction...
stirlinglem2 46073 ` A ` maps to positive rea...
stirlinglem3 46074 Long but simple algebraic ...
stirlinglem4 46075 Algebraic manipulation of ...
stirlinglem5 46076 If ` T ` is between ` 0 ` ...
stirlinglem6 46077 A series that converges to...
stirlinglem7 46078 Algebraic manipulation of ...
stirlinglem8 46079 If ` A ` converges to ` C ...
stirlinglem9 46080 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 46081 A bound for any B(N)-B(N +...
stirlinglem11 46082 ` B ` is decreasing. (Con...
stirlinglem12 46083 The sequence ` B ` is boun...
stirlinglem13 46084 ` B ` is decreasing and ha...
stirlinglem14 46085 The sequence ` A ` converg...
stirlinglem15 46086 The Stirling's formula is ...
stirling 46087 Stirling's approximation f...
stirlingr 46088 Stirling's approximation f...
dirkerval 46089 The N_th Dirichlet Kernel....
dirker2re 46090 The Dirichlet Kernel value...
dirkerdenne0 46091 The Dirichlet Kernel denom...
dirkerval2 46092 The N_th Dirichlet Kernel ...
dirkerre 46093 The Dirichlet Kernel at an...
dirkerper 46094 the Dirichlet Kernel has p...
dirkerf 46095 For any natural number ` N...
dirkertrigeqlem1 46096 Sum of an even number of a...
dirkertrigeqlem2 46097 Trigonomic equality lemma ...
dirkertrigeqlem3 46098 Trigonometric equality lem...
dirkertrigeq 46099 Trigonometric equality for...
dirkeritg 46100 The definite integral of t...
dirkercncflem1 46101 If ` Y ` is a multiple of ...
dirkercncflem2 46102 Lemma used to prove that t...
dirkercncflem3 46103 The Dirichlet Kernel is co...
dirkercncflem4 46104 The Dirichlet Kernel is co...
dirkercncf 46105 For any natural number ` N...
fourierdlem1 46106 A partition interval is a ...
fourierdlem2 46107 Membership in a partition....
fourierdlem3 46108 Membership in a partition....
fourierdlem4 46109 ` E ` is a function that m...
fourierdlem5 46110 ` S ` is a function. (Con...
fourierdlem6 46111 ` X ` is in the periodic p...
fourierdlem7 46112 The difference between the...
fourierdlem8 46113 A partition interval is a ...
fourierdlem9 46114 ` H ` is a complex functio...
fourierdlem10 46115 Condition on the bounds of...
fourierdlem11 46116 If there is a partition, t...
fourierdlem12 46117 A point of a partition is ...
fourierdlem13 46118 Value of ` V ` in terms of...
fourierdlem14 46119 Given the partition ` V ` ...
fourierdlem15 46120 The range of the partition...
fourierdlem16 46121 The coefficients of the fo...
fourierdlem17 46122 The defined ` L ` is actua...
fourierdlem18 46123 The function ` S ` is cont...
fourierdlem19 46124 If two elements of ` D ` h...
fourierdlem20 46125 Every interval in the part...
fourierdlem21 46126 The coefficients of the fo...
fourierdlem22 46127 The coefficients of the fo...
fourierdlem23 46128 If ` F ` is continuous and...
fourierdlem24 46129 A sufficient condition for...
fourierdlem25 46130 If ` C ` is not in the ran...
fourierdlem26 46131 Periodic image of a point ...
fourierdlem27 46132 A partition open interval ...
fourierdlem28 46133 Derivative of ` ( F `` ( X...
fourierdlem29 46134 Explicit function value fo...
fourierdlem30 46135 Sum of three small pieces ...
fourierdlem31 46136 If ` A ` is finite and for...
fourierdlem32 46137 Limit of a continuous func...
fourierdlem33 46138 Limit of a continuous func...
fourierdlem34 46139 A partition is one to one....
fourierdlem35 46140 There is a single point in...
fourierdlem36 46141 ` F ` is an isomorphism. ...
fourierdlem37 46142 ` I ` is a function that m...
fourierdlem38 46143 The function ` F ` is cont...
fourierdlem39 46144 Integration by parts of ...
fourierdlem40 46145 ` H ` is a continuous func...
fourierdlem41 46146 Lemma used to prove that e...
fourierdlem42 46147 The set of points in a mov...
fourierdlem43 46148 ` K ` is a real function. ...
fourierdlem44 46149 A condition for having ` (...
fourierdlem46 46150 The function ` F ` has a l...
fourierdlem47 46151 For ` r ` large enough, th...
fourierdlem48 46152 The given periodic functio...
fourierdlem49 46153 The given periodic functio...
fourierdlem50 46154 Continuity of ` O ` and it...
fourierdlem51 46155 ` X ` is in the periodic p...
fourierdlem52 46156 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 46157 The limit of ` F ( s ) ` a...
fourierdlem54 46158 Given a partition ` Q ` an...
fourierdlem55 46159 ` U ` is a real function. ...
fourierdlem56 46160 Derivative of the ` K ` fu...
fourierdlem57 46161 The derivative of ` O ` . ...
fourierdlem58 46162 The derivative of ` K ` is...
fourierdlem59 46163 The derivative of ` H ` is...
fourierdlem60 46164 Given a differentiable fun...
fourierdlem61 46165 Given a differentiable fun...
fourierdlem62 46166 The function ` K ` is cont...
fourierdlem63 46167 The upper bound of interva...
fourierdlem64 46168 The partition ` V ` is fin...
fourierdlem65 46169 The distance of two adjace...
fourierdlem66 46170 Value of the ` G ` functio...
fourierdlem67 46171 ` G ` is a function. (Con...
fourierdlem68 46172 The derivative of ` O ` is...
fourierdlem69 46173 A piecewise continuous fun...
fourierdlem70 46174 A piecewise continuous fun...
fourierdlem71 46175 A periodic piecewise conti...
fourierdlem72 46176 The derivative of ` O ` is...
fourierdlem73 46177 A version of the Riemann L...
fourierdlem74 46178 Given a piecewise smooth f...
fourierdlem75 46179 Given a piecewise smooth f...
fourierdlem76 46180 Continuity of ` O ` and it...
fourierdlem77 46181 If ` H ` is bounded, then ...
fourierdlem78 46182 ` G ` is continuous when r...
fourierdlem79 46183 ` E ` projects every inter...
fourierdlem80 46184 The derivative of ` O ` is...
fourierdlem81 46185 The integral of a piecewis...
fourierdlem82 46186 Integral by substitution, ...
fourierdlem83 46187 The fourier partial sum fo...
fourierdlem84 46188 If ` F ` is piecewise cont...
fourierdlem85 46189 Limit of the function ` G ...
fourierdlem86 46190 Continuity of ` O ` and it...
fourierdlem87 46191 The integral of ` G ` goes...
fourierdlem88 46192 Given a piecewise continuo...
fourierdlem89 46193 Given a piecewise continuo...
fourierdlem90 46194 Given a piecewise continuo...
fourierdlem91 46195 Given a piecewise continuo...
fourierdlem92 46196 The integral of a piecewis...
fourierdlem93 46197 Integral by substitution (...
fourierdlem94 46198 For a piecewise smooth fun...
fourierdlem95 46199 Algebraic manipulation of ...
fourierdlem96 46200 limit for ` F ` at the low...
fourierdlem97 46201 ` F ` is continuous on the...
fourierdlem98 46202 ` F ` is continuous on the...
fourierdlem99 46203 limit for ` F ` at the upp...
fourierdlem100 46204 A piecewise continuous fun...
fourierdlem101 46205 Integral by substitution f...
fourierdlem102 46206 For a piecewise smooth fun...
fourierdlem103 46207 The half lower part of the...
fourierdlem104 46208 The half upper part of the...
fourierdlem105 46209 A piecewise continuous fun...
fourierdlem106 46210 For a piecewise smooth fun...
fourierdlem107 46211 The integral of a piecewis...
fourierdlem108 46212 The integral of a piecewis...
fourierdlem109 46213 The integral of a piecewis...
fourierdlem110 46214 The integral of a piecewis...
fourierdlem111 46215 The fourier partial sum fo...
fourierdlem112 46216 Here abbreviations (local ...
fourierdlem113 46217 Fourier series convergence...
fourierdlem114 46218 Fourier series convergence...
fourierdlem115 46219 Fourier serier convergence...
fourierd 46220 Fourier series convergence...
fourierclimd 46221 Fourier series convergence...
fourierclim 46222 Fourier series convergence...
fourier 46223 Fourier series convergence...
fouriercnp 46224 If ` F ` is continuous at ...
fourier2 46225 Fourier series convergence...
sqwvfoura 46226 Fourier coefficients for t...
sqwvfourb 46227 Fourier series ` B ` coeff...
fourierswlem 46228 The Fourier series for the...
fouriersw 46229 Fourier series convergence...
fouriercn 46230 If the derivative of ` F `...
elaa2lem 46231 Elementhood in the set of ...
elaa2 46232 Elementhood in the set of ...
etransclem1 46233 ` H ` is a function. (Con...
etransclem2 46234 Derivative of ` G ` . (Co...
etransclem3 46235 The given ` if ` term is a...
etransclem4 46236 ` F ` expressed as a finit...
etransclem5 46237 A change of bound variable...
etransclem6 46238 A change of bound variable...
etransclem7 46239 The given product is an in...
etransclem8 46240 ` F ` is a function. (Con...
etransclem9 46241 If ` K ` divides ` N ` but...
etransclem10 46242 The given ` if ` term is a...
etransclem11 46243 A change of bound variable...
etransclem12 46244 ` C ` applied to ` N ` . ...
etransclem13 46245 ` F ` applied to ` Y ` . ...
etransclem14 46246 Value of the term ` T ` , ...
etransclem15 46247 Value of the term ` T ` , ...
etransclem16 46248 Every element in the range...
etransclem17 46249 The ` N ` -th derivative o...
etransclem18 46250 The given function is inte...
etransclem19 46251 The ` N ` -th derivative o...
etransclem20 46252 ` H ` is smooth. (Contrib...
etransclem21 46253 The ` N ` -th derivative o...
etransclem22 46254 The ` N ` -th derivative o...
etransclem23 46255 This is the claim proof in...
etransclem24 46256 ` P ` divides the I -th de...
etransclem25 46257 ` P ` factorial divides th...
etransclem26 46258 Every term in the sum of t...
etransclem27 46259 The ` N ` -th derivative o...
etransclem28 46260 ` ( P - 1 ) ` factorial di...
etransclem29 46261 The ` N ` -th derivative o...
etransclem30 46262 The ` N ` -th derivative o...
etransclem31 46263 The ` N ` -th derivative o...
etransclem32 46264 This is the proof for the ...
etransclem33 46265 ` F ` is smooth. (Contrib...
etransclem34 46266 The ` N ` -th derivative o...
etransclem35 46267 ` P ` does not divide the ...
etransclem36 46268 The ` N ` -th derivative o...
etransclem37 46269 ` ( P - 1 ) ` factorial di...
etransclem38 46270 ` P ` divides the I -th de...
etransclem39 46271 ` G ` is a function. (Con...
etransclem40 46272 The ` N ` -th derivative o...
etransclem41 46273 ` P ` does not divide the ...
etransclem42 46274 The ` N ` -th derivative o...
etransclem43 46275 ` G ` is a continuous func...
etransclem44 46276 The given finite sum is no...
etransclem45 46277 ` K ` is an integer. (Con...
etransclem46 46278 This is the proof for equa...
etransclem47 46279 ` _e ` is transcendental. ...
etransclem48 46280 ` _e ` is transcendental. ...
etransc 46281 ` _e ` is transcendental. ...
rrxtopn 46282 The topology of the genera...
rrxngp 46283 Generalized Euclidean real...
rrxtps 46284 Generalized Euclidean real...
rrxtopnfi 46285 The topology of the n-dime...
rrxtopon 46286 The topology on generalize...
rrxtop 46287 The topology on generalize...
rrndistlt 46288 Given two points in the sp...
rrxtoponfi 46289 The topology on n-dimensio...
rrxunitopnfi 46290 The base set of the standa...
rrxtopn0 46291 The topology of the zero-d...
qndenserrnbllem 46292 n-dimensional rational num...
qndenserrnbl 46293 n-dimensional rational num...
rrxtopn0b 46294 The topology of the zero-d...
qndenserrnopnlem 46295 n-dimensional rational num...
qndenserrnopn 46296 n-dimensional rational num...
qndenserrn 46297 n-dimensional rational num...
rrxsnicc 46298 A multidimensional singlet...
rrnprjdstle 46299 The distance between two p...
rrndsmet 46300 ` D ` is a metric for the ...
rrndsxmet 46301 ` D ` is an extended metri...
ioorrnopnlem 46302 The a point in an indexed ...
ioorrnopn 46303 The indexed product of ope...
ioorrnopnxrlem 46304 Given a point ` F ` that b...
ioorrnopnxr 46305 The indexed product of ope...
issal 46312 Express the predicate " ` ...
pwsal 46313 The power set of a given s...
salunicl 46314 SAlg sigma-algebra is clos...
saluncl 46315 The union of two sets in a...
prsal 46316 The pair of the empty set ...
saldifcl 46317 The complement of an eleme...
0sal 46318 The empty set belongs to e...
salgenval 46319 The sigma-algebra generate...
saliunclf 46320 SAlg sigma-algebra is clos...
saliuncl 46321 SAlg sigma-algebra is clos...
salincl 46322 The intersection of two se...
saluni 46323 A set is an element of any...
saliinclf 46324 SAlg sigma-algebra is clos...
saliincl 46325 SAlg sigma-algebra is clos...
saldifcl2 46326 The difference of two elem...
intsaluni 46327 The union of an arbitrary ...
intsal 46328 The arbitrary intersection...
salgenn0 46329 The set used in the defini...
salgencl 46330 ` SalGen ` actually genera...
issald 46331 Sufficient condition to pr...
salexct 46332 An example of nontrivial s...
sssalgen 46333 A set is a subset of the s...
salgenss 46334 The sigma-algebra generate...
salgenuni 46335 The base set of the sigma-...
issalgend 46336 One side of ~ dfsalgen2 . ...
salexct2 46337 An example of a subset tha...
unisalgen 46338 The union of a set belongs...
dfsalgen2 46339 Alternate characterization...
salexct3 46340 An example of a sigma-alge...
salgencntex 46341 This counterexample shows ...
salgensscntex 46342 This counterexample shows ...
issalnnd 46343 Sufficient condition to pr...
dmvolsal 46344 Lebesgue measurable sets f...
saldifcld 46345 The complement of an eleme...
saluncld 46346 The union of two sets in a...
salgencld 46347 ` SalGen ` actually genera...
0sald 46348 The empty set belongs to e...
iooborel 46349 An open interval is a Bore...
salincld 46350 The intersection of two se...
salunid 46351 A set is an element of any...
unisalgen2 46352 The union of a set belongs...
bor1sal 46353 The Borel sigma-algebra on...
iocborel 46354 A left-open, right-closed ...
subsaliuncllem 46355 A subspace sigma-algebra i...
subsaliuncl 46356 A subspace sigma-algebra i...
subsalsal 46357 A subspace sigma-algebra i...
subsaluni 46358 A set belongs to the subsp...
salrestss 46359 A sigma-algebra restricted...
sge0rnre 46362 When ` sum^ ` is applied t...
fge0icoicc 46363 If ` F ` maps to nonnegati...
sge0val 46364 The value of the sum of no...
fge0npnf 46365 If ` F ` maps to nonnegati...
sge0rnn0 46366 The range used in the defi...
sge0vald 46367 The value of the sum of no...
fge0iccico 46368 A range of nonnegative ext...
gsumge0cl 46369 Closure of group sum, for ...
sge0reval 46370 Value of the sum of nonneg...
sge0pnfval 46371 If a term in the sum of no...
fge0iccre 46372 A range of nonnegative ext...
sge0z 46373 Any nonnegative extended s...
sge00 46374 The sum of nonnegative ext...
fsumlesge0 46375 Every finite subsum of non...
sge0revalmpt 46376 Value of the sum of nonneg...
sge0sn 46377 A sum of a nonnegative ext...
sge0tsms 46378 ` sum^ ` applied to a nonn...
sge0cl 46379 The arbitrary sum of nonne...
sge0f1o 46380 Re-index a nonnegative ext...
sge0snmpt 46381 A sum of a nonnegative ext...
sge0ge0 46382 The sum of nonnegative ext...
sge0xrcl 46383 The arbitrary sum of nonne...
sge0repnf 46384 The of nonnegative extende...
sge0fsum 46385 The arbitrary sum of a fin...
sge0rern 46386 If the sum of nonnegative ...
sge0supre 46387 If the arbitrary sum of no...
sge0fsummpt 46388 The arbitrary sum of a fin...
sge0sup 46389 The arbitrary sum of nonne...
sge0less 46390 A shorter sum of nonnegati...
sge0rnbnd 46391 The range used in the defi...
sge0pr 46392 Sum of a pair of nonnegati...
sge0gerp 46393 The arbitrary sum of nonne...
sge0pnffigt 46394 If the sum of nonnegative ...
sge0ssre 46395 If a sum of nonnegative ex...
sge0lefi 46396 A sum of nonnegative exten...
sge0lessmpt 46397 A shorter sum of nonnegati...
sge0ltfirp 46398 If the sum of nonnegative ...
sge0prle 46399 The sum of a pair of nonne...
sge0gerpmpt 46400 The arbitrary sum of nonne...
sge0resrnlem 46401 The sum of nonnegative ext...
sge0resrn 46402 The sum of nonnegative ext...
sge0ssrempt 46403 If a sum of nonnegative ex...
sge0resplit 46404 ` sum^ ` splits into two p...
sge0le 46405 If all of the terms of sum...
sge0ltfirpmpt 46406 If the extended sum of non...
sge0split 46407 Split a sum of nonnegative...
sge0lempt 46408 If all of the terms of sum...
sge0splitmpt 46409 Split a sum of nonnegative...
sge0ss 46410 Change the index set to a ...
sge0iunmptlemfi 46411 Sum of nonnegative extende...
sge0p1 46412 The addition of the next t...
sge0iunmptlemre 46413 Sum of nonnegative extende...
sge0fodjrnlem 46414 Re-index a nonnegative ext...
sge0fodjrn 46415 Re-index a nonnegative ext...
sge0iunmpt 46416 Sum of nonnegative extende...
sge0iun 46417 Sum of nonnegative extende...
sge0nemnf 46418 The generalized sum of non...
sge0rpcpnf 46419 The sum of an infinite num...
sge0rernmpt 46420 If the sum of nonnegative ...
sge0lefimpt 46421 A sum of nonnegative exten...
nn0ssge0 46422 Nonnegative integers are n...
sge0clmpt 46423 The generalized sum of non...
sge0ltfirpmpt2 46424 If the extended sum of non...
sge0isum 46425 If a series of nonnegative...
sge0xrclmpt 46426 The generalized sum of non...
sge0xp 46427 Combine two generalized su...
sge0isummpt 46428 If a series of nonnegative...
sge0ad2en 46429 The value of the infinite ...
sge0isummpt2 46430 If a series of nonnegative...
sge0xaddlem1 46431 The extended addition of t...
sge0xaddlem2 46432 The extended addition of t...
sge0xadd 46433 The extended addition of t...
sge0fsummptf 46434 The generalized sum of a f...
sge0snmptf 46435 A sum of a nonnegative ext...
sge0ge0mpt 46436 The sum of nonnegative ext...
sge0repnfmpt 46437 The of nonnegative extende...
sge0pnffigtmpt 46438 If the generalized sum of ...
sge0splitsn 46439 Separate out a term in a g...
sge0pnffsumgt 46440 If the sum of nonnegative ...
sge0gtfsumgt 46441 If the generalized sum of ...
sge0uzfsumgt 46442 If a real number is smalle...
sge0pnfmpt 46443 If a term in the sum of no...
sge0seq 46444 A series of nonnegative re...
sge0reuz 46445 Value of the generalized s...
sge0reuzb 46446 Value of the generalized s...
ismea 46449 Express the predicate " ` ...
dmmeasal 46450 The domain of a measure is...
meaf 46451 A measure is a function th...
mea0 46452 The measure of the empty s...
nnfoctbdjlem 46453 There exists a mapping fro...
nnfoctbdj 46454 There exists a mapping fro...
meadjuni 46455 The measure of the disjoin...
meacl 46456 The measure of a set is a ...
iundjiunlem 46457 The sets in the sequence `...
iundjiun 46458 Given a sequence ` E ` of ...
meaxrcl 46459 The measure of a set is an...
meadjun 46460 The measure of the union o...
meassle 46461 The measure of a set is gr...
meaunle 46462 The measure of the union o...
meadjiunlem 46463 The sum of nonnegative ext...
meadjiun 46464 The measure of the disjoin...
ismeannd 46465 Sufficient condition to pr...
meaiunlelem 46466 The measure of the union o...
meaiunle 46467 The measure of the union o...
psmeasurelem 46468 ` M ` applied to a disjoin...
psmeasure 46469 Point supported measure, R...
voliunsge0lem 46470 The Lebesgue measure funct...
voliunsge0 46471 The Lebesgue measure funct...
volmea 46472 The Lebesgue measure on th...
meage0 46473 If the measure of a measur...
meadjunre 46474 The measure of the union o...
meassre 46475 If the measure of a measur...
meale0eq0 46476 A measure that is less tha...
meadif 46477 The measure of the differe...
meaiuninclem 46478 Measures are continuous fr...
meaiuninc 46479 Measures are continuous fr...
meaiuninc2 46480 Measures are continuous fr...
meaiunincf 46481 Measures are continuous fr...
meaiuninc3v 46482 Measures are continuous fr...
meaiuninc3 46483 Measures are continuous fr...
meaiininclem 46484 Measures are continuous fr...
meaiininc 46485 Measures are continuous fr...
meaiininc2 46486 Measures are continuous fr...
caragenval 46491 The sigma-algebra generate...
isome 46492 Express the predicate " ` ...
caragenel 46493 Membership in the Caratheo...
omef 46494 An outer measure is a func...
ome0 46495 The outer measure of the e...
omessle 46496 The outer measure of a set...
omedm 46497 The domain of an outer mea...
caragensplit 46498 If ` E ` is in the set gen...
caragenelss 46499 An element of the Caratheo...
carageneld 46500 Membership in the Caratheo...
omecl 46501 The outer measure of a set...
caragenss 46502 The sigma-algebra generate...
omeunile 46503 The outer measure of the u...
caragen0 46504 The empty set belongs to a...
omexrcl 46505 The outer measure of a set...
caragenunidm 46506 The base set of an outer m...
caragensspw 46507 The sigma-algebra generate...
omessre 46508 If the outer measure of a ...
caragenuni 46509 The base set of the sigma-...
caragenuncllem 46510 The Caratheodory's constru...
caragenuncl 46511 The Caratheodory's constru...
caragendifcl 46512 The Caratheodory's constru...
caragenfiiuncl 46513 The Caratheodory's constru...
omeunle 46514 The outer measure of the u...
omeiunle 46515 The outer measure of the i...
omelesplit 46516 The outer measure of a set...
omeiunltfirp 46517 If the outer measure of a ...
omeiunlempt 46518 The outer measure of the i...
carageniuncllem1 46519 The outer measure of ` A i...
carageniuncllem2 46520 The Caratheodory's constru...
carageniuncl 46521 The Caratheodory's constru...
caragenunicl 46522 The Caratheodory's constru...
caragensal 46523 Caratheodory's method gene...
caratheodorylem1 46524 Lemma used to prove that C...
caratheodorylem2 46525 Caratheodory's constructio...
caratheodory 46526 Caratheodory's constructio...
0ome 46527 The map that assigns 0 to ...
isomenndlem 46528 ` O ` is sub-additive w.r....
isomennd 46529 Sufficient condition to pr...
caragenel2d 46530 Membership in the Caratheo...
omege0 46531 If the outer measure of a ...
omess0 46532 If the outer measure of a ...
caragencmpl 46533 A measure built with the C...
vonval 46538 Value of the Lebesgue meas...
ovnval 46539 Value of the Lebesgue oute...
elhoi 46540 Membership in a multidimen...
icoresmbl 46541 A closed-below, open-above...
hoissre 46542 The projection of a half-o...
ovnval2 46543 Value of the Lebesgue oute...
volicorecl 46544 The Lebesgue measure of a ...
hoiprodcl 46545 The pre-measure of half-op...
hoicvr 46546 ` I ` is a countable set o...
hoissrrn 46547 A half-open interval is a ...
ovn0val 46548 The Lebesgue outer measure...
ovnn0val 46549 The value of a (multidimen...
ovnval2b 46550 Value of the Lebesgue oute...
volicorescl 46551 The Lebesgue measure of a ...
ovnprodcl 46552 The product used in the de...
hoiprodcl2 46553 The pre-measure of half-op...
hoicvrrex 46554 Any subset of the multidim...
ovnsupge0 46555 The set used in the defini...
ovnlecvr 46556 Given a subset of multidim...
ovnpnfelsup 46557 ` +oo ` is an element of t...
ovnsslelem 46558 The (multidimensional, non...
ovnssle 46559 The (multidimensional) Leb...
ovnlerp 46560 The Lebesgue outer measure...
ovnf 46561 The Lebesgue outer measure...
ovncvrrp 46562 The Lebesgue outer measure...
ovn0lem 46563 For any finite dimension, ...
ovn0 46564 For any finite dimension, ...
ovncl 46565 The Lebesgue outer measure...
ovn02 46566 For the zero-dimensional s...
ovnxrcl 46567 The Lebesgue outer measure...
ovnsubaddlem1 46568 The Lebesgue outer measure...
ovnsubaddlem2 46569 ` ( voln* `` X ) ` is suba...
ovnsubadd 46570 ` ( voln* `` X ) ` is suba...
ovnome 46571 ` ( voln* `` X ) ` is an o...
vonmea 46572 ` ( voln `` X ) ` is a mea...
volicon0 46573 The measure of a nonempty ...
hsphoif 46574 ` H ` is a function (that ...
hoidmvval 46575 The dimensional volume of ...
hoissrrn2 46576 A half-open interval is a ...
hsphoival 46577 ` H ` is a function (that ...
hoiprodcl3 46578 The pre-measure of half-op...
volicore 46579 The Lebesgue measure of a ...
hoidmvcl 46580 The dimensional volume of ...
hoidmv0val 46581 The dimensional volume of ...
hoidmvn0val 46582 The dimensional volume of ...
hsphoidmvle2 46583 The dimensional volume of ...
hsphoidmvle 46584 The dimensional volume of ...
hoidmvval0 46585 The dimensional volume of ...
hoiprodp1 46586 The dimensional volume of ...
sge0hsphoire 46587 If the generalized sum of ...
hoidmvval0b 46588 The dimensional volume of ...
hoidmv1lelem1 46589 The supremum of ` U ` belo...
hoidmv1lelem2 46590 This is the contradiction ...
hoidmv1lelem3 46591 The dimensional volume of ...
hoidmv1le 46592 The dimensional volume of ...
hoidmvlelem1 46593 The supremum of ` U ` belo...
hoidmvlelem2 46594 This is the contradiction ...
hoidmvlelem3 46595 This is the contradiction ...
hoidmvlelem4 46596 The dimensional volume of ...
hoidmvlelem5 46597 The dimensional volume of ...
hoidmvle 46598 The dimensional volume of ...
ovnhoilem1 46599 The Lebesgue outer measure...
ovnhoilem2 46600 The Lebesgue outer measure...
ovnhoi 46601 The Lebesgue outer measure...
dmovn 46602 The domain of the Lebesgue...
hoicoto2 46603 The half-open interval exp...
dmvon 46604 Lebesgue measurable n-dime...
hoi2toco 46605 The half-open interval exp...
hoidifhspval 46606 ` D ` is a function that r...
hspval 46607 The value of the half-spac...
ovnlecvr2 46608 Given a subset of multidim...
ovncvr2 46609 ` B ` and ` T ` are the le...
dmovnsal 46610 The domain of the Lebesgue...
unidmovn 46611 Base set of the n-dimensio...
rrnmbl 46612 The set of n-dimensional R...
hoidifhspval2 46613 ` D ` is a function that r...
hspdifhsp 46614 A n-dimensional half-open ...
unidmvon 46615 Base set of the n-dimensio...
hoidifhspf 46616 ` D ` is a function that r...
hoidifhspval3 46617 ` D ` is a function that r...
hoidifhspdmvle 46618 The dimensional volume of ...
voncmpl 46619 The Lebesgue measure is co...
hoiqssbllem1 46620 The center of the n-dimens...
hoiqssbllem2 46621 The center of the n-dimens...
hoiqssbllem3 46622 A n-dimensional ball conta...
hoiqssbl 46623 A n-dimensional ball conta...
hspmbllem1 46624 Any half-space of the n-di...
hspmbllem2 46625 Any half-space of the n-di...
hspmbllem3 46626 Any half-space of the n-di...
hspmbl 46627 Any half-space of the n-di...
hoimbllem 46628 Any n-dimensional half-ope...
hoimbl 46629 Any n-dimensional half-ope...
opnvonmbllem1 46630 The half-open interval exp...
opnvonmbllem2 46631 An open subset of the n-di...
opnvonmbl 46632 An open subset of the n-di...
opnssborel 46633 Open sets of a generalized...
borelmbl 46634 All Borel subsets of the n...
volicorege0 46635 The Lebesgue measure of a ...
isvonmbl 46636 The predicate " ` A ` is m...
mblvon 46637 The n-dimensional Lebesgue...
vonmblss 46638 n-dimensional Lebesgue mea...
volico2 46639 The measure of left-closed...
vonmblss2 46640 n-dimensional Lebesgue mea...
ovolval2lem 46641 The value of the Lebesgue ...
ovolval2 46642 The value of the Lebesgue ...
ovnsubadd2lem 46643 ` ( voln* `` X ) ` is suba...
ovnsubadd2 46644 ` ( voln* `` X ) ` is suba...
ovolval3 46645 The value of the Lebesgue ...
ovnsplit 46646 The n-dimensional Lebesgue...
ovolval4lem1 46647 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 46648 The value of the Lebesgue ...
ovolval4 46649 The value of the Lebesgue ...
ovolval5lem1 46650 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 46651 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 46652 The value of the Lebesgue ...
ovolval5 46653 The value of the Lebesgue ...
ovnovollem1 46654 if ` F ` is a cover of ` B...
ovnovollem2 46655 if ` I ` is a cover of ` (...
ovnovollem3 46656 The 1-dimensional Lebesgue...
ovnovol 46657 The 1-dimensional Lebesgue...
vonvolmbllem 46658 If a subset ` B ` of real ...
vonvolmbl 46659 A subset of Real numbers i...
vonvol 46660 The 1-dimensional Lebesgue...
vonvolmbl2 46661 A subset ` X ` of the spac...
vonvol2 46662 The 1-dimensional Lebesgue...
hoimbl2 46663 Any n-dimensional half-ope...
voncl 46664 The Lebesgue measure of a ...
vonhoi 46665 The Lebesgue outer measure...
vonxrcl 46666 The Lebesgue measure of a ...
ioosshoi 46667 A n-dimensional open inter...
vonn0hoi 46668 The Lebesgue outer measure...
von0val 46669 The Lebesgue measure (for ...
vonhoire 46670 The Lebesgue measure of a ...
iinhoiicclem 46671 A n-dimensional closed int...
iinhoiicc 46672 A n-dimensional closed int...
iunhoiioolem 46673 A n-dimensional open inter...
iunhoiioo 46674 A n-dimensional open inter...
ioovonmbl 46675 Any n-dimensional open int...
iccvonmbllem 46676 Any n-dimensional closed i...
iccvonmbl 46677 Any n-dimensional closed i...
vonioolem1 46678 The sequence of the measur...
vonioolem2 46679 The n-dimensional Lebesgue...
vonioo 46680 The n-dimensional Lebesgue...
vonicclem1 46681 The sequence of the measur...
vonicclem2 46682 The n-dimensional Lebesgue...
vonicc 46683 The n-dimensional Lebesgue...
snvonmbl 46684 A n-dimensional singleton ...
vonn0ioo 46685 The n-dimensional Lebesgue...
vonn0icc 46686 The n-dimensional Lebesgue...
ctvonmbl 46687 Any n-dimensional countabl...
vonn0ioo2 46688 The n-dimensional Lebesgue...
vonsn 46689 The n-dimensional Lebesgue...
vonn0icc2 46690 The n-dimensional Lebesgue...
vonct 46691 The n-dimensional Lebesgue...
vitali2 46692 There are non-measurable s...
pimltmnf2f 46695 Given a real-valued functi...
pimltmnf2 46696 Given a real-valued functi...
preimagelt 46697 The preimage of a right-op...
preimalegt 46698 The preimage of a left-ope...
pimconstlt0 46699 Given a constant function,...
pimconstlt1 46700 Given a constant function,...
pimltpnff 46701 Given a real-valued functi...
pimltpnf 46702 Given a real-valued functi...
pimgtpnf2f 46703 Given a real-valued functi...
pimgtpnf2 46704 Given a real-valued functi...
salpreimagelt 46705 If all the preimages of le...
pimrecltpos 46706 The preimage of an unbound...
salpreimalegt 46707 If all the preimages of ri...
pimiooltgt 46708 The preimage of an open in...
preimaicomnf 46709 Preimage of an open interv...
pimltpnf2f 46710 Given a real-valued functi...
pimltpnf2 46711 Given a real-valued functi...
pimgtmnf2 46712 Given a real-valued functi...
pimdecfgtioc 46713 Given a nonincreasing func...
pimincfltioc 46714 Given a nondecreasing func...
pimdecfgtioo 46715 Given a nondecreasing func...
pimincfltioo 46716 Given a nondecreasing func...
preimaioomnf 46717 Preimage of an open interv...
preimageiingt 46718 A preimage of a left-close...
preimaleiinlt 46719 A preimage of a left-open,...
pimgtmnff 46720 Given a real-valued functi...
pimgtmnf 46721 Given a real-valued functi...
pimrecltneg 46722 The preimage of an unbound...
salpreimagtge 46723 If all the preimages of le...
salpreimaltle 46724 If all the preimages of ri...
issmflem 46725 The predicate " ` F ` is a...
issmf 46726 The predicate " ` F ` is a...
salpreimalelt 46727 If all the preimages of ri...
salpreimagtlt 46728 If all the preimages of le...
smfpreimalt 46729 Given a function measurabl...
smff 46730 A function measurable w.r....
smfdmss 46731 The domain of a function m...
issmff 46732 The predicate " ` F ` is a...
issmfd 46733 A sufficient condition for...
smfpreimaltf 46734 Given a function measurabl...
issmfdf 46735 A sufficient condition for...
sssmf 46736 The restriction of a sigma...
mbfresmf 46737 A real-valued measurable f...
cnfsmf 46738 A continuous function is m...
incsmflem 46739 A nondecreasing function i...
incsmf 46740 A real-valued, nondecreasi...
smfsssmf 46741 If a function is measurabl...
issmflelem 46742 The predicate " ` F ` is a...
issmfle 46743 The predicate " ` F ` is a...
smfpimltmpt 46744 Given a function measurabl...
smfpimltxr 46745 Given a function measurabl...
issmfdmpt 46746 A sufficient condition for...
smfconst 46747 Given a sigma-algebra over...
sssmfmpt 46748 The restriction of a sigma...
cnfrrnsmf 46749 A function, continuous fro...
smfid 46750 The identity function is B...
bormflebmf 46751 A Borel measurable functio...
smfpreimale 46752 Given a function measurabl...
issmfgtlem 46753 The predicate " ` F ` is a...
issmfgt 46754 The predicate " ` F ` is a...
issmfled 46755 A sufficient condition for...
smfpimltxrmptf 46756 Given a function measurabl...
smfpimltxrmpt 46757 Given a function measurabl...
smfmbfcex 46758 A constant function, with ...
issmfgtd 46759 A sufficient condition for...
smfpreimagt 46760 Given a function measurabl...
smfaddlem1 46761 Given the sum of two funct...
smfaddlem2 46762 The sum of two sigma-measu...
smfadd 46763 The sum of two sigma-measu...
decsmflem 46764 A nonincreasing function i...
decsmf 46765 A real-valued, nonincreasi...
smfpreimagtf 46766 Given a function measurabl...
issmfgelem 46767 The predicate " ` F ` is a...
issmfge 46768 The predicate " ` F ` is a...
smflimlem1 46769 Lemma for the proof that t...
smflimlem2 46770 Lemma for the proof that t...
smflimlem3 46771 The limit of sigma-measura...
smflimlem4 46772 Lemma for the proof that t...
smflimlem5 46773 Lemma for the proof that t...
smflimlem6 46774 Lemma for the proof that t...
smflim 46775 The limit of sigma-measura...
nsssmfmbflem 46776 The sigma-measurable funct...
nsssmfmbf 46777 The sigma-measurable funct...
smfpimgtxr 46778 Given a function measurabl...
smfpimgtmpt 46779 Given a function measurabl...
smfpreimage 46780 Given a function measurabl...
mbfpsssmf 46781 Real-valued measurable fun...
smfpimgtxrmptf 46782 Given a function measurabl...
smfpimgtxrmpt 46783 Given a function measurabl...
smfpimioompt 46784 Given a function measurabl...
smfpimioo 46785 Given a function measurabl...
smfresal 46786 Given a sigma-measurable f...
smfrec 46787 The reciprocal of a sigma-...
smfres 46788 The restriction of sigma-m...
smfmullem1 46789 The multiplication of two ...
smfmullem2 46790 The multiplication of two ...
smfmullem3 46791 The multiplication of two ...
smfmullem4 46792 The multiplication of two ...
smfmul 46793 The multiplication of two ...
smfmulc1 46794 A sigma-measurable functio...
smfdiv 46795 The fraction of two sigma-...
smfpimbor1lem1 46796 Every open set belongs to ...
smfpimbor1lem2 46797 Given a sigma-measurable f...
smfpimbor1 46798 Given a sigma-measurable f...
smf2id 46799 Twice the identity functio...
smfco 46800 The composition of a Borel...
smfneg 46801 The negative of a sigma-me...
smffmptf 46802 A function measurable w.r....
smffmpt 46803 A function measurable w.r....
smflim2 46804 The limit of a sequence of...
smfpimcclem 46805 Lemma for ~ smfpimcc given...
smfpimcc 46806 Given a countable set of s...
issmfle2d 46807 A sufficient condition for...
smflimmpt 46808 The limit of a sequence of...
smfsuplem1 46809 The supremum of a countabl...
smfsuplem2 46810 The supremum of a countabl...
smfsuplem3 46811 The supremum of a countabl...
smfsup 46812 The supremum of a countabl...
smfsupmpt 46813 The supremum of a countabl...
smfsupxr 46814 The supremum of a countabl...
smfinflem 46815 The infimum of a countable...
smfinf 46816 The infimum of a countable...
smfinfmpt 46817 The infimum of a countable...
smflimsuplem1 46818 If ` H ` converges, the ` ...
smflimsuplem2 46819 The superior limit of a se...
smflimsuplem3 46820 The limit of the ` ( H `` ...
smflimsuplem4 46821 If ` H ` converges, the ` ...
smflimsuplem5 46822 ` H ` converges to the sup...
smflimsuplem6 46823 The superior limit of a se...
smflimsuplem7 46824 The superior limit of a se...
smflimsuplem8 46825 The superior limit of a se...
smflimsup 46826 The superior limit of a se...
smflimsupmpt 46827 The superior limit of a se...
smfliminflem 46828 The inferior limit of a co...
smfliminf 46829 The inferior limit of a co...
smfliminfmpt 46830 The inferior limit of a co...
adddmmbl 46831 If two functions have doma...
adddmmbl2 46832 If two functions have doma...
muldmmbl 46833 If two functions have doma...
muldmmbl2 46834 If two functions have doma...
smfdmmblpimne 46835 If a measurable function w...
smfdivdmmbl 46836 If a functions and a sigma...
smfpimne 46837 Given a function measurabl...
smfpimne2 46838 Given a function measurabl...
smfdivdmmbl2 46839 If a functions and a sigma...
fsupdm 46840 The domain of the sup func...
fsupdm2 46841 The domain of the sup func...
smfsupdmmbllem 46842 If a countable set of sigm...
smfsupdmmbl 46843 If a countable set of sigm...
finfdm 46844 The domain of the inf func...
finfdm2 46845 The domain of the inf func...
smfinfdmmbllem 46846 If a countable set of sigm...
smfinfdmmbl 46847 If a countable set of sigm...
sigarval 46848 Define the signed area by ...
sigarim 46849 Signed area takes value in...
sigarac 46850 Signed area is anticommuta...
sigaraf 46851 Signed area is additive by...
sigarmf 46852 Signed area is additive (w...
sigaras 46853 Signed area is additive by...
sigarms 46854 Signed area is additive (w...
sigarls 46855 Signed area is linear by t...
sigarid 46856 Signed area of a flat para...
sigarexp 46857 Expand the signed area for...
sigarperm 46858 Signed area ` ( A - C ) G ...
sigardiv 46859 If signed area between vec...
sigarimcd 46860 Signed area takes value in...
sigariz 46861 If signed area is zero, th...
sigarcol 46862 Given three points ` A ` ,...
sharhght 46863 Let ` A B C ` be a triangl...
sigaradd 46864 Subtracting (double) area ...
cevathlem1 46865 Ceva's theorem first lemma...
cevathlem2 46866 Ceva's theorem second lemm...
cevath 46867 Ceva's theorem. Let ` A B...
simpcntrab 46868 The center of a simple gro...
et-ltneverrefl 46869 Less-than class is never r...
et-equeucl 46870 Alternative proof that equ...
et-sqrtnegnre 46871 The square root of a negat...
ormklocald 46872 If elements of a certain s...
ormkglobd 46873 If all adjacent elements o...
natlocalincr 46874 Global monotonicity on hal...
natglobalincr 46875 Local monotonicity on half...
upwordnul 46878 Empty set is an increasing...
upwordisword 46879 Any increasing sequence is...
singoutnword 46880 Singleton with character o...
singoutnupword 46881 Singleton with character o...
upwordsing 46882 Singleton is an increasing...
upwordsseti 46883 Strictly increasing sequen...
tworepnotupword 46884 Concatenation of identical...
upwrdfi 46885 There is a finite number o...
evenwodadd 46886 If an integer is multiplie...
squeezedltsq 46887 If a real value is squeeze...
lambert0 46888 A value of Lambert W (prod...
lamberte 46889 A value of Lambert W (prod...
cjnpoly 46890 Complex conjugation operat...
tannpoly 46891 The tangent function is no...
sinnpoly 46892 Sine function is not a pol...
hirstL-ax3 46893 The third axiom of a syste...
ax3h 46894 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 46895 A closed form showing (a i...
aibandbiaiaiffb 46896 A closed form showing (a i...
notatnand 46897 Do not use. Use intnanr i...
aistia 46898 Given a is equivalent to `...
aisfina 46899 Given a is equivalent to `...
bothtbothsame 46900 Given both a, b are equiva...
bothfbothsame 46901 Given both a, b are equiva...
aiffbbtat 46902 Given a is equivalent to b...
aisbbisfaisf 46903 Given a is equivalent to b...
axorbtnotaiffb 46904 Given a is exclusive to b,...
aiffnbandciffatnotciffb 46905 Given a is equivalent to (...
axorbciffatcxorb 46906 Given a is equivalent to (...
aibnbna 46907 Given a implies b, (not b)...
aibnbaif 46908 Given a implies b, not b, ...
aiffbtbat 46909 Given a is equivalent to b...
astbstanbst 46910 Given a is equivalent to T...
aistbistaandb 46911 Given a is equivalent to T...
aisbnaxb 46912 Given a is equivalent to b...
atbiffatnnb 46913 If a implies b, then a imp...
bisaiaisb 46914 Application of bicom1 with...
atbiffatnnbalt 46915 If a implies b, then a imp...
abnotbtaxb 46916 Assuming a, not b, there e...
abnotataxb 46917 Assuming not a, b, there e...
conimpf 46918 Assuming a, not b, and a i...
conimpfalt 46919 Assuming a, not b, and a i...
aistbisfiaxb 46920 Given a is equivalent to T...
aisfbistiaxb 46921 Given a is equivalent to F...
aifftbifffaibif 46922 Given a is equivalent to T...
aifftbifffaibifff 46923 Given a is equivalent to T...
atnaiana 46924 Given a, it is not the cas...
ainaiaandna 46925 Given a, a implies it is n...
abcdta 46926 Given (((a and b) and c) a...
abcdtb 46927 Given (((a and b) and c) a...
abcdtc 46928 Given (((a and b) and c) a...
abcdtd 46929 Given (((a and b) and c) a...
abciffcbatnabciffncba 46930 Operands in a biconditiona...
abciffcbatnabciffncbai 46931 Operands in a biconditiona...
nabctnabc 46932 not ( a -> ( b /\ c ) ) we...
jabtaib 46933 For when pm3.4 lacks a pm3...
onenotinotbothi 46934 From one negated implicati...
twonotinotbothi 46935 From these two negated imp...
clifte 46936 show d is the same as an i...
cliftet 46937 show d is the same as an i...
clifteta 46938 show d is the same as an i...
cliftetb 46939 show d is the same as an i...
confun 46940 Given the hypotheses there...
confun2 46941 Confun simplified to two p...
confun3 46942 Confun's more complex form...
confun4 46943 An attempt at derivative. ...
confun5 46944 An attempt at derivative. ...
plcofph 46945 Given, a,b and a "definiti...
pldofph 46946 Given, a,b c, d, "definiti...
plvcofph 46947 Given, a,b,d, and "definit...
plvcofphax 46948 Given, a,b,d, and "definit...
plvofpos 46949 rh is derivable because ON...
mdandyv0 46950 Given the equivalences set...
mdandyv1 46951 Given the equivalences set...
mdandyv2 46952 Given the equivalences set...
mdandyv3 46953 Given the equivalences set...
mdandyv4 46954 Given the equivalences set...
mdandyv5 46955 Given the equivalences set...
mdandyv6 46956 Given the equivalences set...
mdandyv7 46957 Given the equivalences set...
mdandyv8 46958 Given the equivalences set...
mdandyv9 46959 Given the equivalences set...
mdandyv10 46960 Given the equivalences set...
mdandyv11 46961 Given the equivalences set...
mdandyv12 46962 Given the equivalences set...
mdandyv13 46963 Given the equivalences set...
mdandyv14 46964 Given the equivalences set...
mdandyv15 46965 Given the equivalences set...
mdandyvr0 46966 Given the equivalences set...
mdandyvr1 46967 Given the equivalences set...
mdandyvr2 46968 Given the equivalences set...
mdandyvr3 46969 Given the equivalences set...
mdandyvr4 46970 Given the equivalences set...
mdandyvr5 46971 Given the equivalences set...
mdandyvr6 46972 Given the equivalences set...
mdandyvr7 46973 Given the equivalences set...
mdandyvr8 46974 Given the equivalences set...
mdandyvr9 46975 Given the equivalences set...
mdandyvr10 46976 Given the equivalences set...
mdandyvr11 46977 Given the equivalences set...
mdandyvr12 46978 Given the equivalences set...
mdandyvr13 46979 Given the equivalences set...
mdandyvr14 46980 Given the equivalences set...
mdandyvr15 46981 Given the equivalences set...
mdandyvrx0 46982 Given the exclusivities se...
mdandyvrx1 46983 Given the exclusivities se...
mdandyvrx2 46984 Given the exclusivities se...
mdandyvrx3 46985 Given the exclusivities se...
mdandyvrx4 46986 Given the exclusivities se...
mdandyvrx5 46987 Given the exclusivities se...
mdandyvrx6 46988 Given the exclusivities se...
mdandyvrx7 46989 Given the exclusivities se...
mdandyvrx8 46990 Given the exclusivities se...
mdandyvrx9 46991 Given the exclusivities se...
mdandyvrx10 46992 Given the exclusivities se...
mdandyvrx11 46993 Given the exclusivities se...
mdandyvrx12 46994 Given the exclusivities se...
mdandyvrx13 46995 Given the exclusivities se...
mdandyvrx14 46996 Given the exclusivities se...
mdandyvrx15 46997 Given the exclusivities se...
H15NH16TH15IH16 46998 Given 15 hypotheses and a ...
dandysum2p2e4 46999 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 47000 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 47001 Replacement of a nested an...
adh-minim 47002 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 47003 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 47004 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 47005 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 47006 Fourth lemma for the deriv...
adh-minim-ax1 47007 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 47008 Fifth lemma for the deriva...
adh-minim-ax2-lem6 47009 Sixth lemma for the deriva...
adh-minim-ax2c 47010 Derivation of a commuted f...
adh-minim-ax2 47011 Derivation of ~ ax-2 from ...
adh-minim-idALT 47012 Derivation of ~ id (reflex...
adh-minim-pm2.43 47013 Derivation of ~ pm2.43 Whi...
adh-minimp 47014 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 47015 First lemma for the deriva...
adh-minimp-jarr-lem2 47016 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 47017 Third lemma for the deriva...
adh-minimp-sylsimp 47018 Derivation of ~ jarr (also...
adh-minimp-ax1 47019 Derivation of ~ ax-1 from ...
adh-minimp-imim1 47020 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 47021 Derivation of a commuted f...
adh-minimp-ax2-lem4 47022 Fourth lemma for the deriv...
adh-minimp-ax2 47023 Derivation of ~ ax-2 from ...
adh-minimp-idALT 47024 Derivation of ~ id (reflex...
adh-minimp-pm2.43 47025 Derivation of ~ pm2.43 Whi...
n0nsn2el 47026 If a class with one elemen...
eusnsn 47027 There is a unique element ...
absnsb 47028 If the class abstraction `...
euabsneu 47029 Another way to express exi...
elprneb 47030 An element of a proper uno...
oppr 47031 Equality for ordered pairs...
opprb 47032 Equality for unordered pai...
or2expropbilem1 47033 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 47034 Lemma 2 for ~ or2expropbi ...
or2expropbi 47035 If two classes are strictl...
eubrv 47036 If there is a unique set w...
eubrdm 47037 If there is a unique set w...
eldmressn 47038 Element of the domain of a...
iota0def 47039 Example for a defined iota...
iota0ndef 47040 Example for an undefined i...
fveqvfvv 47041 If a function's value at a...
fnresfnco 47042 Composition of two functio...
funcoressn 47043 A composition restricted t...
funressnfv 47044 A restriction to a singlet...
funressndmfvrn 47045 The value of a function ` ...
funressnvmo 47046 A function restricted to a...
funressnmo 47047 A function restricted to a...
funressneu 47048 There is exactly one value...
fresfo 47049 Conditions for a restricti...
fsetsniunop 47050 The class of all functions...
fsetabsnop 47051 The class of all functions...
fsetsnf 47052 The mapping of an element ...
fsetsnf1 47053 The mapping of an element ...
fsetsnfo 47054 The mapping of an element ...
fsetsnf1o 47055 The mapping of an element ...
fsetsnprcnex 47056 The class of all functions...
cfsetssfset 47057 The class of constant func...
cfsetsnfsetfv 47058 The function value of the ...
cfsetsnfsetf 47059 The mapping of the class o...
cfsetsnfsetf1 47060 The mapping of the class o...
cfsetsnfsetfo 47061 The mapping of the class o...
cfsetsnfsetf1o 47062 The mapping of the class o...
fsetprcnexALT 47063 First version of proof for...
fcoreslem1 47064 Lemma 1 for ~ fcores . (C...
fcoreslem2 47065 Lemma 2 for ~ fcores . (C...
fcoreslem3 47066 Lemma 3 for ~ fcores . (C...
fcoreslem4 47067 Lemma 4 for ~ fcores . (C...
fcores 47068 Every composite function `...
fcoresf1lem 47069 Lemma for ~ fcoresf1 . (C...
fcoresf1 47070 If a composition is inject...
fcoresf1b 47071 A composition is injective...
fcoresfo 47072 If a composition is surjec...
fcoresfob 47073 A composition is surjectiv...
fcoresf1ob 47074 A composition is bijective...
f1cof1blem 47075 Lemma for ~ f1cof1b and ~ ...
3f1oss1 47076 The composition of three b...
3f1oss2 47077 The composition of three b...
f1cof1b 47078 If the range of ` F ` equa...
funfocofob 47079 If the domain of a functio...
fnfocofob 47080 If the domain of a functio...
focofob 47081 If the domain of a functio...
f1ocof1ob 47082 If the range of ` F ` equa...
f1ocof1ob2 47083 If the range of ` F ` equa...
aiotajust 47085 Soundness justification th...
dfaiota2 47087 Alternate definition of th...
reuabaiotaiota 47088 The iota and the alternate...
reuaiotaiota 47089 The iota and the alternate...
aiotaexb 47090 The alternate iota over a ...
aiotavb 47091 The alternate iota over a ...
aiotaint 47092 This is to ~ df-aiota what...
dfaiota3 47093 Alternate definition of ` ...
iotan0aiotaex 47094 If the iota over a wff ` p...
aiotaexaiotaiota 47095 The alternate iota over a ...
aiotaval 47096 Theorem 8.19 in [Quine] p....
aiota0def 47097 Example for a defined alte...
aiota0ndef 47098 Example for an undefined a...
r19.32 47099 Theorem 19.32 of [Margaris...
rexsb 47100 An equivalent expression f...
rexrsb 47101 An equivalent expression f...
2rexsb 47102 An equivalent expression f...
2rexrsb 47103 An equivalent expression f...
cbvral2 47104 Change bound variables of ...
cbvrex2 47105 Change bound variables of ...
ralndv1 47106 Example for a theorem abou...
ralndv2 47107 Second example for a theor...
reuf1odnf 47108 There is exactly one eleme...
reuf1od 47109 There is exactly one eleme...
euoreqb 47110 There is a set which is eq...
2reu3 47111 Double restricted existent...
2reu7 47112 Two equivalent expressions...
2reu8 47113 Two equivalent expressions...
2reu8i 47114 Implication of a double re...
2reuimp0 47115 Implication of a double re...
2reuimp 47116 Implication of a double re...
ralbinrald 47123 Elemination of a restricte...
nvelim 47124 If a class is the universa...
alneu 47125 If a statement holds for a...
eu2ndop1stv 47126 If there is a unique secon...
dfateq12d 47127 Equality deduction for "de...
nfdfat 47128 Bound-variable hypothesis ...
dfdfat2 47129 Alternate definition of th...
fundmdfat 47130 A function is defined at a...
dfatprc 47131 A function is not defined ...
dfatelrn 47132 The value of a function ` ...
dfafv2 47133 Alternative definition of ...
afveq12d 47134 Equality deduction for fun...
afveq1 47135 Equality theorem for funct...
afveq2 47136 Equality theorem for funct...
nfafv 47137 Bound-variable hypothesis ...
csbafv12g 47138 Move class substitution in...
afvfundmfveq 47139 If a class is a function r...
afvnfundmuv 47140 If a set is not in the dom...
ndmafv 47141 The value of a class outsi...
afvvdm 47142 If the function value of a...
nfunsnafv 47143 If the restriction of a cl...
afvvfunressn 47144 If the function value of a...
afvprc 47145 A function's value at a pr...
afvvv 47146 If a function's value at a...
afvpcfv0 47147 If the value of the altern...
afvnufveq 47148 The value of the alternati...
afvvfveq 47149 The value of the alternati...
afv0fv0 47150 If the value of the altern...
afvfvn0fveq 47151 If the function's value at...
afv0nbfvbi 47152 The function's value at an...
afvfv0bi 47153 The function's value at an...
afveu 47154 The value of a function at...
fnbrafvb 47155 Equivalence of function va...
fnopafvb 47156 Equivalence of function va...
funbrafvb 47157 Equivalence of function va...
funopafvb 47158 Equivalence of function va...
funbrafv 47159 The second argument of a b...
funbrafv2b 47160 Function value in terms of...
dfafn5a 47161 Representation of a functi...
dfafn5b 47162 Representation of a functi...
fnrnafv 47163 The range of a function ex...
afvelrnb 47164 A member of a function's r...
afvelrnb0 47165 A member of a function's r...
dfaimafn 47166 Alternate definition of th...
dfaimafn2 47167 Alternate definition of th...
afvelima 47168 Function value in an image...
afvelrn 47169 A function's value belongs...
fnafvelrn 47170 A function's value belongs...
fafvelcdm 47171 A function's value belongs...
ffnafv 47172 A function maps to a class...
afvres 47173 The value of a restricted ...
tz6.12-afv 47174 Function value. Theorem 6...
tz6.12-1-afv 47175 Function value (Theorem 6....
dmfcoafv 47176 Domains of a function comp...
afvco2 47177 Value of a function compos...
rlimdmafv 47178 Two ways to express that a...
aoveq123d 47179 Equality deduction for ope...
nfaov 47180 Bound-variable hypothesis ...
csbaovg 47181 Move class substitution in...
aovfundmoveq 47182 If a class is a function r...
aovnfundmuv 47183 If an ordered pair is not ...
ndmaov 47184 The value of an operation ...
ndmaovg 47185 The value of an operation ...
aovvdm 47186 If the operation value of ...
nfunsnaov 47187 If the restriction of a cl...
aovvfunressn 47188 If the operation value of ...
aovprc 47189 The value of an operation ...
aovrcl 47190 Reverse closure for an ope...
aovpcov0 47191 If the alternative value o...
aovnuoveq 47192 The alternative value of t...
aovvoveq 47193 The alternative value of t...
aov0ov0 47194 If the alternative value o...
aovovn0oveq 47195 If the operation's value a...
aov0nbovbi 47196 The operation's value on a...
aovov0bi 47197 The operation's value on a...
rspceaov 47198 A frequently used special ...
fnotaovb 47199 Equivalence of operation v...
ffnaov 47200 An operation maps to a cla...
faovcl 47201 Closure law for an operati...
aovmpt4g 47202 Value of a function given ...
aoprssdm 47203 Domain of closure of an op...
ndmaovcl 47204 The "closure" of an operat...
ndmaovrcl 47205 Reverse closure law, in co...
ndmaovcom 47206 Any operation is commutati...
ndmaovass 47207 Any operation is associati...
ndmaovdistr 47208 Any operation is distribut...
dfatafv2iota 47211 If a function is defined a...
ndfatafv2 47212 The alternate function val...
ndfatafv2undef 47213 The alternate function val...
dfatafv2ex 47214 The alternate function val...
afv2ex 47215 The alternate function val...
afv2eq12d 47216 Equality deduction for fun...
afv2eq1 47217 Equality theorem for funct...
afv2eq2 47218 Equality theorem for funct...
nfafv2 47219 Bound-variable hypothesis ...
csbafv212g 47220 Move class substitution in...
fexafv2ex 47221 The alternate function val...
ndfatafv2nrn 47222 The alternate function val...
ndmafv2nrn 47223 The value of a class outsi...
funressndmafv2rn 47224 The alternate function val...
afv2ndefb 47225 Two ways to say that an al...
nfunsnafv2 47226 If the restriction of a cl...
afv2prc 47227 A function's value at a pr...
dfatafv2rnb 47228 The alternate function val...
afv2orxorb 47229 If a set is in the range o...
dmafv2rnb 47230 The alternate function val...
fundmafv2rnb 47231 The alternate function val...
afv2elrn 47232 An alternate function valu...
afv20defat 47233 If the alternate function ...
fnafv2elrn 47234 An alternate function valu...
fafv2elcdm 47235 An alternate function valu...
fafv2elrnb 47236 An alternate function valu...
fcdmvafv2v 47237 If the codomain of a funct...
tz6.12-2-afv2 47238 Function value when ` F ` ...
afv2eu 47239 The value of a function at...
afv2res 47240 The value of a restricted ...
tz6.12-afv2 47241 Function value (Theorem 6....
tz6.12-1-afv2 47242 Function value (Theorem 6....
tz6.12c-afv2 47243 Corollary of Theorem 6.12(...
tz6.12i-afv2 47244 Corollary of Theorem 6.12(...
funressnbrafv2 47245 The second argument of a b...
dfatbrafv2b 47246 Equivalence of function va...
dfatopafv2b 47247 Equivalence of function va...
funbrafv2 47248 The second argument of a b...
fnbrafv2b 47249 Equivalence of function va...
fnopafv2b 47250 Equivalence of function va...
funbrafv22b 47251 Equivalence of function va...
funopafv2b 47252 Equivalence of function va...
dfatsnafv2 47253 Singleton of function valu...
dfafv23 47254 A definition of function v...
dfatdmfcoafv2 47255 Domain of a function compo...
dfatcolem 47256 Lemma for ~ dfatco . (Con...
dfatco 47257 The predicate "defined at"...
afv2co2 47258 Value of a function compos...
rlimdmafv2 47259 Two ways to express that a...
dfafv22 47260 Alternate definition of ` ...
afv2ndeffv0 47261 If the alternate function ...
dfatafv2eqfv 47262 If a function is defined a...
afv2rnfveq 47263 If the alternate function ...
afv20fv0 47264 If the alternate function ...
afv2fvn0fveq 47265 If the function's value at...
afv2fv0 47266 If the function's value at...
afv2fv0b 47267 The function's value at an...
afv2fv0xorb 47268 If a set is in the range o...
an4com24 47269 Rearrangement of 4 conjunc...
3an4ancom24 47270 Commutative law for a conj...
4an21 47271 Rearrangement of 4 conjunc...
dfnelbr2 47274 Alternate definition of th...
nelbr 47275 The binary relation of a s...
nelbrim 47276 If a set is related to ano...
nelbrnel 47277 A set is related to anothe...
nelbrnelim 47278 If a set is related to ano...
ralralimp 47279 Selecting one of two alter...
otiunsndisjX 47280 The union of singletons co...
fvifeq 47281 Equality of function value...
rnfdmpr 47282 The range of a one-to-one ...
imarnf1pr 47283 The image of the range of ...
funop1 47284 A function is an ordered p...
fun2dmnopgexmpl 47285 A function with a domain c...
opabresex0d 47286 A collection of ordered pa...
opabbrfex0d 47287 A collection of ordered pa...
opabresexd 47288 A collection of ordered pa...
opabbrfexd 47289 A collection of ordered pa...
f1oresf1orab 47290 Build a bijection by restr...
f1oresf1o 47291 Build a bijection by restr...
f1oresf1o2 47292 Build a bijection by restr...
fvmptrab 47293 Value of a function mappin...
fvmptrabdm 47294 Value of a function mappin...
cnambpcma 47295 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 47296 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 47297 The sum of two complex num...
leaddsuble 47298 Addition and subtraction o...
2leaddle2 47299 If two real numbers are le...
ltnltne 47300 Variant of trichotomy law ...
p1lep2 47301 A real number increasd by ...
ltsubsubaddltsub 47302 If the result of subtracti...
zm1nn 47303 An integer minus 1 is posi...
readdcnnred 47304 The sum of a real number a...
resubcnnred 47305 The difference of a real n...
recnmulnred 47306 The product of a real numb...
cndivrenred 47307 The quotient of an imagina...
sqrtnegnre 47308 The square root of a negat...
nn0resubcl 47309 Closure law for subtractio...
zgeltp1eq 47310 If an integer is between a...
1t10e1p1e11 47311 11 is 1 times 10 to the po...
deccarry 47312 Add 1 to a 2 digit number ...
eluzge0nn0 47313 If an integer is greater t...
nltle2tri 47314 Negated extended trichotom...
ssfz12 47315 Subset relationship for fi...
elfz2z 47316 Membership of an integer i...
2elfz3nn0 47317 If there are two elements ...
fz0addcom 47318 The addition of two member...
2elfz2melfz 47319 If the sum of two integers...
fz0addge0 47320 The sum of two integers in...
elfzlble 47321 Membership of an integer i...
elfzelfzlble 47322 Membership of an element o...
fzopred 47323 Join a predecessor to the ...
fzopredsuc 47324 Join a predecessor and a s...
1fzopredsuc 47325 Join 0 and a successor to ...
el1fzopredsuc 47326 An element of an open inte...
subsubelfzo0 47327 Subtracting a difference f...
2ffzoeq 47328 Two functions over a half-...
2ltceilhalf 47329 The ceiling of half of an ...
ceilhalfgt1 47330 The ceiling of half of an ...
ceilhalfelfzo1 47331 A positive integer less th...
gpgedgvtx1lem 47332 Lemma for ~ gpgedgvtx1 . ...
2tceilhalfelfzo1 47333 Two times a positive integ...
ceilbi 47334 A condition equivalent to ...
ceilhalf1 47335 The ceiling of one half is...
rehalfge1 47336 Half of a real number grea...
ceilhalfnn 47337 The ceiling of half of a p...
1elfzo1ceilhalf1 47338 1 is in the half-open inte...
fldivmod 47339 Expressing the floor of a ...
ceildivmod 47340 Expressing the ceiling of ...
ceil5half3 47341 The ceiling of half of 5 i...
submodaddmod 47342 Subtraction and addition m...
difltmodne 47343 Two nonnegative integers a...
zplusmodne 47344 A nonnegative integer is n...
addmodne 47345 The sum of a nonnegative i...
plusmod5ne 47346 A nonnegative integer is n...
zp1modne 47347 An integer is not itself p...
p1modne 47348 A nonnegative integer is n...
m1modne 47349 A nonnegative integer is n...
minusmod5ne 47350 A nonnegative integer is n...
submodlt 47351 The difference of an eleme...
submodneaddmod 47352 An integer minus ` B ` is ...
m1modnep2mod 47353 A nonnegative integer minu...
minusmodnep2tmod 47354 A nonnegative integer minu...
m1mod0mod1 47355 An integer decreased by 1 ...
elmod2 47356 An integer modulo 2 is eit...
mod0mul 47357 If an integer is 0 modulo ...
modn0mul 47358 If an integer is not 0 mod...
m1modmmod 47359 An integer decreased by 1 ...
difmodm1lt 47360 The difference between an ...
8mod5e3 47361 8 modulo 5 is 3. (Contrib...
modmkpkne 47362 If an integer minus a cons...
modmknepk 47363 A nonnegative integer less...
modlt0b 47364 An integer with an absolut...
mod2addne 47365 The sums of a nonnegative ...
modm1nep1 47366 A nonnegative integer less...
modm2nep1 47367 A nonnegative integer less...
modp2nep1 47368 A nonnegative integer less...
modm1nep2 47369 A nonnegative integer less...
modm1nem2 47370 A nonnegative integer less...
modm1p1ne 47371 If an integer minus one eq...
smonoord 47372 Ordering relation for a st...
fsummsndifre 47373 A finite sum with one of i...
fsumsplitsndif 47374 Separate out a term in a f...
fsummmodsndifre 47375 A finite sum of summands m...
fsummmodsnunz 47376 A finite sum of summands m...
setsidel 47377 The injected slot is an el...
setsnidel 47378 The injected slot is an el...
setsv 47379 The value of the structure...
preimafvsnel 47380 The preimage of a function...
preimafvn0 47381 The preimage of a function...
uniimafveqt 47382 The union of the image of ...
uniimaprimaeqfv 47383 The union of the image of ...
setpreimafvex 47384 The class ` P ` of all pre...
elsetpreimafvb 47385 The characterization of an...
elsetpreimafv 47386 An element of the class ` ...
elsetpreimafvssdm 47387 An element of the class ` ...
fvelsetpreimafv 47388 There is an element in a p...
preimafvelsetpreimafv 47389 The preimage of a function...
preimafvsspwdm 47390 The class ` P ` of all pre...
0nelsetpreimafv 47391 The empty set is not an el...
elsetpreimafvbi 47392 An element of the preimage...
elsetpreimafveqfv 47393 The elements of the preima...
eqfvelsetpreimafv 47394 If an element of the domai...
elsetpreimafvrab 47395 An element of the preimage...
imaelsetpreimafv 47396 The image of an element of...
uniimaelsetpreimafv 47397 The union of the image of ...
elsetpreimafveq 47398 If two preimages of functi...
fundcmpsurinjlem1 47399 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 47400 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 47401 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 47402 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 47403 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 47404 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 47405 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 47406 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 47407 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 47408 Every function ` F : A -->...
fundcmpsurinjpreimafv 47409 Every function ` F : A -->...
fundcmpsurinj 47410 Every function ` F : A -->...
fundcmpsurbijinj 47411 Every function ` F : A -->...
fundcmpsurinjimaid 47412 Every function ` F : A -->...
fundcmpsurinjALT 47413 Alternate proof of ~ fundc...
iccpval 47416 Partition consisting of a ...
iccpart 47417 A special partition. Corr...
iccpartimp 47418 Implications for a class b...
iccpartres 47419 The restriction of a parti...
iccpartxr 47420 If there is a partition, t...
iccpartgtprec 47421 If there is a partition, t...
iccpartipre 47422 If there is a partition, t...
iccpartiltu 47423 If there is a partition, t...
iccpartigtl 47424 If there is a partition, t...
iccpartlt 47425 If there is a partition, t...
iccpartltu 47426 If there is a partition, t...
iccpartgtl 47427 If there is a partition, t...
iccpartgt 47428 If there is a partition, t...
iccpartleu 47429 If there is a partition, t...
iccpartgel 47430 If there is a partition, t...
iccpartrn 47431 If there is a partition, t...
iccpartf 47432 The range of the partition...
iccpartel 47433 If there is a partition, t...
iccelpart 47434 An element of any partitio...
iccpartiun 47435 A half-open interval of ex...
icceuelpartlem 47436 Lemma for ~ icceuelpart . ...
icceuelpart 47437 An element of a partitione...
iccpartdisj 47438 The segments of a partitio...
iccpartnel 47439 A point of a partition is ...
fargshiftfv 47440 If a class is a function, ...
fargshiftf 47441 If a class is a function, ...
fargshiftf1 47442 If a function is 1-1, then...
fargshiftfo 47443 If a function is onto, the...
fargshiftfva 47444 The values of a shifted fu...
lswn0 47445 The last symbol of a not e...
nfich1 47448 The first interchangeable ...
nfich2 47449 The second interchangeable...
ichv 47450 Setvar variables are inter...
ichf 47451 Setvar variables are inter...
ichid 47452 A setvar variable is alway...
icht 47453 A theorem is interchangeab...
ichbidv 47454 Formula building rule for ...
ichcircshi 47455 The setvar variables are i...
ichan 47456 If two setvar variables ar...
ichn 47457 Negation does not affect i...
ichim 47458 Formula building rule for ...
dfich2 47459 Alternate definition of th...
ichcom 47460 The interchangeability of ...
ichbi12i 47461 Equivalence for interchang...
icheqid 47462 In an equality for the sam...
icheq 47463 In an equality of setvar v...
ichnfimlem 47464 Lemma for ~ ichnfim : A s...
ichnfim 47465 If in an interchangeabilit...
ichnfb 47466 If ` x ` and ` y ` are int...
ichal 47467 Move a universal quantifie...
ich2al 47468 Two setvar variables are a...
ich2ex 47469 Two setvar variables are a...
ichexmpl1 47470 Example for interchangeabl...
ichexmpl2 47471 Example for interchangeabl...
ich2exprop 47472 If the setvar variables ar...
ichnreuop 47473 If the setvar variables ar...
ichreuopeq 47474 If the setvar variables ar...
sprid 47475 Two identical representati...
elsprel 47476 An unordered pair is an el...
spr0nelg 47477 The empty set is not an el...
sprval 47480 The set of all unordered p...
sprvalpw 47481 The set of all unordered p...
sprssspr 47482 The set of all unordered p...
spr0el 47483 The empty set is not an un...
sprvalpwn0 47484 The set of all unordered p...
sprel 47485 An element of the set of a...
prssspr 47486 An element of a subset of ...
prelspr 47487 An unordered pair of eleme...
prsprel 47488 The elements of a pair fro...
prsssprel 47489 The elements of a pair fro...
sprvalpwle2 47490 The set of all unordered p...
sprsymrelfvlem 47491 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 47492 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 47493 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 47494 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 47495 The value of the function ...
sprsymrelf 47496 The mapping ` F ` is a fun...
sprsymrelf1 47497 The mapping ` F ` is a one...
sprsymrelfo 47498 The mapping ` F ` is a fun...
sprsymrelf1o 47499 The mapping ` F ` is a bij...
sprbisymrel 47500 There is a bijection betwe...
sprsymrelen 47501 The class ` P ` of subsets...
prpair 47502 Characterization of a prop...
prproropf1olem0 47503 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 47504 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 47505 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 47506 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 47507 Lemma 4 for ~ prproropf1o ...
prproropf1o 47508 There is a bijection betwe...
prproropen 47509 The set of proper pairs an...
prproropreud 47510 There is exactly one order...
pairreueq 47511 Two equivalent representat...
paireqne 47512 Two sets are not equal iff...
prprval 47515 The set of all proper unor...
prprvalpw 47516 The set of all proper unor...
prprelb 47517 An element of the set of a...
prprelprb 47518 A set is an element of the...
prprspr2 47519 The set of all proper unor...
prprsprreu 47520 There is a unique proper u...
prprreueq 47521 There is a unique proper u...
sbcpr 47522 The proper substitution of...
reupr 47523 There is a unique unordere...
reuprpr 47524 There is a unique proper u...
poprelb 47525 Equality for unordered pai...
2exopprim 47526 The existence of an ordere...
reuopreuprim 47527 There is a unique unordere...
fmtno 47530 The ` N ` th Fermat number...
fmtnoge3 47531 Each Fermat number is grea...
fmtnonn 47532 Each Fermat number is a po...
fmtnom1nn 47533 A Fermat number minus one ...
fmtnoodd 47534 Each Fermat number is odd....
fmtnorn 47535 A Fermat number is a funct...
fmtnof1 47536 The enumeration of the Fer...
fmtnoinf 47537 The set of Fermat numbers ...
fmtnorec1 47538 The first recurrence relat...
sqrtpwpw2p 47539 The floor of the square ro...
fmtnosqrt 47540 The floor of the square ro...
fmtno0 47541 The ` 0 ` th Fermat number...
fmtno1 47542 The ` 1 ` st Fermat number...
fmtnorec2lem 47543 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 47544 The second recurrence rela...
fmtnodvds 47545 Any Fermat number divides ...
goldbachthlem1 47546 Lemma 1 for ~ goldbachth ....
goldbachthlem2 47547 Lemma 2 for ~ goldbachth ....
goldbachth 47548 Goldbach's theorem: Two d...
fmtnorec3 47549 The third recurrence relat...
fmtnorec4 47550 The fourth recurrence rela...
fmtno2 47551 The ` 2 ` nd Fermat number...
fmtno3 47552 The ` 3 ` rd Fermat number...
fmtno4 47553 The ` 4 ` th Fermat number...
fmtno5lem1 47554 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 47555 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 47556 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 47557 Lemma 4 for ~ fmtno5 . (C...
fmtno5 47558 The ` 5 ` th Fermat number...
fmtno0prm 47559 The ` 0 ` th Fermat number...
fmtno1prm 47560 The ` 1 ` st Fermat number...
fmtno2prm 47561 The ` 2 ` nd Fermat number...
257prm 47562 257 is a prime number (the...
fmtno3prm 47563 The ` 3 ` rd Fermat number...
odz2prm2pw 47564 Any power of two is coprim...
fmtnoprmfac1lem 47565 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 47566 Divisor of Fermat number (...
fmtnoprmfac2lem1 47567 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 47568 Divisor of Fermat number (...
fmtnofac2lem 47569 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 47570 Divisor of Fermat number (...
fmtnofac1 47571 Divisor of Fermat number (...
fmtno4sqrt 47572 The floor of the square ro...
fmtno4prmfac 47573 If P was a (prime) factor ...
fmtno4prmfac193 47574 If P was a (prime) factor ...
fmtno4nprmfac193 47575 193 is not a (prime) facto...
fmtno4prm 47576 The ` 4 `-th Fermat number...
65537prm 47577 65537 is a prime number (t...
fmtnofz04prm 47578 The first five Fermat numb...
fmtnole4prm 47579 The first five Fermat numb...
fmtno5faclem1 47580 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 47581 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 47582 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 47583 The factorization of the `...
fmtno5nprm 47584 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 47585 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 47586 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 47587 The mapping of a Fermat nu...
prmdvdsfmtnof1 47588 The mapping of a Fermat nu...
prminf2 47589 The set of prime numbers i...
2pwp1prm 47590 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 47591 Every prime number of the ...
m2prm 47592 The second Mersenne number...
m3prm 47593 The third Mersenne number ...
flsqrt 47594 A condition equivalent to ...
flsqrt5 47595 The floor of the square ro...
3ndvds4 47596 3 does not divide 4. (Con...
139prmALT 47597 139 is a prime number. In...
31prm 47598 31 is a prime number. In ...
m5prm 47599 The fifth Mersenne number ...
127prm 47600 127 is a prime number. (C...
m7prm 47601 The seventh Mersenne numbe...
m11nprm 47602 The eleventh Mersenne numb...
mod42tp1mod8 47603 If a number is ` 3 ` modul...
sfprmdvdsmersenne 47604 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 47605 If ` P ` is a Sophie Germa...
lighneallem1 47606 Lemma 1 for ~ lighneal . ...
lighneallem2 47607 Lemma 2 for ~ lighneal . ...
lighneallem3 47608 Lemma 3 for ~ lighneal . ...
lighneallem4a 47609 Lemma 1 for ~ lighneallem4...
lighneallem4b 47610 Lemma 2 for ~ lighneallem4...
lighneallem4 47611 Lemma 3 for ~ lighneal . ...
lighneal 47612 If a power of a prime ` P ...
modexp2m1d 47613 The square of an integer w...
proththdlem 47614 Lemma for ~ proththd . (C...
proththd 47615 Proth's theorem (1878). I...
5tcu2e40 47616 5 times the cube of 2 is 4...
3exp4mod41 47617 3 to the fourth power is -...
41prothprmlem1 47618 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 47619 Lemma 2 for ~ 41prothprm ....
41prothprm 47620 41 is a _Proth prime_. (C...
quad1 47621 A condition for a quadrati...
requad01 47622 A condition for a quadrati...
requad1 47623 A condition for a quadrati...
requad2 47624 A condition for a quadrati...
iseven 47629 The predicate "is an even ...
isodd 47630 The predicate "is an odd n...
evenz 47631 An even number is an integ...
oddz 47632 An odd number is an intege...
evendiv2z 47633 The result of dividing an ...
oddp1div2z 47634 The result of dividing an ...
oddm1div2z 47635 The result of dividing an ...
isodd2 47636 The predicate "is an odd n...
dfodd2 47637 Alternate definition for o...
dfodd6 47638 Alternate definition for o...
dfeven4 47639 Alternate definition for e...
evenm1odd 47640 The predecessor of an even...
evenp1odd 47641 The successor of an even n...
oddp1eveni 47642 The successor of an odd nu...
oddm1eveni 47643 The predecessor of an odd ...
evennodd 47644 An even number is not an o...
oddneven 47645 An odd number is not an ev...
enege 47646 The negative of an even nu...
onego 47647 The negative of an odd num...
m1expevenALTV 47648 Exponentiation of -1 by an...
m1expoddALTV 47649 Exponentiation of -1 by an...
dfeven2 47650 Alternate definition for e...
dfodd3 47651 Alternate definition for o...
iseven2 47652 The predicate "is an even ...
isodd3 47653 The predicate "is an odd n...
2dvdseven 47654 2 divides an even number. ...
m2even 47655 A multiple of 2 is an even...
2ndvdsodd 47656 2 does not divide an odd n...
2dvdsoddp1 47657 2 divides an odd number in...
2dvdsoddm1 47658 2 divides an odd number de...
dfeven3 47659 Alternate definition for e...
dfodd4 47660 Alternate definition for o...
dfodd5 47661 Alternate definition for o...
zefldiv2ALTV 47662 The floor of an even numbe...
zofldiv2ALTV 47663 The floor of an odd number...
oddflALTV 47664 Odd number representation ...
iseven5 47665 The predicate "is an even ...
isodd7 47666 The predicate "is an odd n...
dfeven5 47667 Alternate definition for e...
dfodd7 47668 Alternate definition for o...
gcd2odd1 47669 The greatest common diviso...
zneoALTV 47670 No even integer equals an ...
zeoALTV 47671 An integer is even or odd....
zeo2ALTV 47672 An integer is even or odd ...
nneoALTV 47673 A positive integer is even...
nneoiALTV 47674 A positive integer is even...
odd2np1ALTV 47675 An integer is odd iff it i...
oddm1evenALTV 47676 An integer is odd iff its ...
oddp1evenALTV 47677 An integer is odd iff its ...
oexpnegALTV 47678 The exponential of the neg...
oexpnegnz 47679 The exponential of the neg...
bits0ALTV 47680 Value of the zeroth bit. ...
bits0eALTV 47681 The zeroth bit of an even ...
bits0oALTV 47682 The zeroth bit of an odd n...
divgcdoddALTV 47683 Either ` A / ( A gcd B ) `...
opoeALTV 47684 The sum of two odds is eve...
opeoALTV 47685 The sum of an odd and an e...
omoeALTV 47686 The difference of two odds...
omeoALTV 47687 The difference of an odd a...
oddprmALTV 47688 A prime not equal to ` 2 `...
0evenALTV 47689 0 is an even number. (Con...
0noddALTV 47690 0 is not an odd number. (...
1oddALTV 47691 1 is an odd number. (Cont...
1nevenALTV 47692 1 is not an even number. ...
2evenALTV 47693 2 is an even number. (Con...
2noddALTV 47694 2 is not an odd number. (...
nn0o1gt2ALTV 47695 An odd nonnegative integer...
nnoALTV 47696 An alternate characterizat...
nn0oALTV 47697 An alternate characterizat...
nn0e 47698 An alternate characterizat...
nneven 47699 An alternate characterizat...
nn0onn0exALTV 47700 For each odd nonnegative i...
nn0enn0exALTV 47701 For each even nonnegative ...
nnennexALTV 47702 For each even positive int...
nnpw2evenALTV 47703 2 to the power of a positi...
epoo 47704 The sum of an even and an ...
emoo 47705 The difference of an even ...
epee 47706 The sum of two even number...
emee 47707 The difference of two even...
evensumeven 47708 If a summand is even, the ...
3odd 47709 3 is an odd number. (Cont...
4even 47710 4 is an even number. (Con...
5odd 47711 5 is an odd number. (Cont...
6even 47712 6 is an even number. (Con...
7odd 47713 7 is an odd number. (Cont...
8even 47714 8 is an even number. (Con...
evenprm2 47715 A prime number is even iff...
oddprmne2 47716 Every prime number not bei...
oddprmuzge3 47717 A prime number which is od...
evenltle 47718 If an even number is great...
odd2prm2 47719 If an odd number is the su...
even3prm2 47720 If an even number is the s...
mogoldbblem 47721 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 47722 Lemma for ~ perfectALTV . ...
perfectALTVlem2 47723 Lemma for ~ perfectALTV . ...
perfectALTV 47724 The Euclid-Euler theorem, ...
fppr 47727 The set of Fermat pseudopr...
fpprmod 47728 The set of Fermat pseudopr...
fpprel 47729 A Fermat pseudoprime to th...
fpprbasnn 47730 The base of a Fermat pseud...
fpprnn 47731 A Fermat pseudoprime to th...
fppr2odd 47732 A Fermat pseudoprime to th...
11t31e341 47733 341 is the product of 11 a...
2exp340mod341 47734 Eight to the eighth power ...
341fppr2 47735 341 is the (smallest) _Pou...
4fppr1 47736 4 is the (smallest) Fermat...
8exp8mod9 47737 Eight to the eighth power ...
9fppr8 47738 9 is the (smallest) Fermat...
dfwppr 47739 Alternate definition of a ...
fpprwppr 47740 A Fermat pseudoprime to th...
fpprwpprb 47741 An integer ` X ` which is ...
fpprel2 47742 An alternate definition fo...
nfermltl8rev 47743 Fermat's little theorem wi...
nfermltl2rev 47744 Fermat's little theorem wi...
nfermltlrev 47745 Fermat's little theorem re...
isgbe 47752 The predicate "is an even ...
isgbow 47753 The predicate "is a weak o...
isgbo 47754 The predicate "is an odd G...
gbeeven 47755 An even Goldbach number is...
gbowodd 47756 A weak odd Goldbach number...
gbogbow 47757 A (strong) odd Goldbach nu...
gboodd 47758 An odd Goldbach number is ...
gbepos 47759 Any even Goldbach number i...
gbowpos 47760 Any weak odd Goldbach numb...
gbopos 47761 Any odd Goldbach number is...
gbegt5 47762 Any even Goldbach number i...
gbowgt5 47763 Any weak odd Goldbach numb...
gbowge7 47764 Any weak odd Goldbach numb...
gboge9 47765 Any odd Goldbach number is...
gbege6 47766 Any even Goldbach number i...
gbpart6 47767 The Goldbach partition of ...
gbpart7 47768 The (weak) Goldbach partit...
gbpart8 47769 The Goldbach partition of ...
gbpart9 47770 The (strong) Goldbach part...
gbpart11 47771 The (strong) Goldbach part...
6gbe 47772 6 is an even Goldbach numb...
7gbow 47773 7 is a weak odd Goldbach n...
8gbe 47774 8 is an even Goldbach numb...
9gbo 47775 9 is an odd Goldbach numbe...
11gbo 47776 11 is an odd Goldbach numb...
stgoldbwt 47777 If the strong ternary Gold...
sbgoldbwt 47778 If the strong binary Goldb...
sbgoldbst 47779 If the strong binary Goldb...
sbgoldbaltlem1 47780 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 47781 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 47782 An alternate (related to t...
sbgoldbb 47783 If the strong binary Goldb...
sgoldbeven3prm 47784 If the binary Goldbach con...
sbgoldbm 47785 If the strong binary Goldb...
mogoldbb 47786 If the modern version of t...
sbgoldbmb 47787 The strong binary Goldbach...
sbgoldbo 47788 If the strong binary Goldb...
nnsum3primes4 47789 4 is the sum of at most 3 ...
nnsum4primes4 47790 4 is the sum of at most 4 ...
nnsum3primesprm 47791 Every prime is "the sum of...
nnsum4primesprm 47792 Every prime is "the sum of...
nnsum3primesgbe 47793 Any even Goldbach number i...
nnsum4primesgbe 47794 Any even Goldbach number i...
nnsum3primesle9 47795 Every integer greater than...
nnsum4primesle9 47796 Every integer greater than...
nnsum4primesodd 47797 If the (weak) ternary Gold...
nnsum4primesoddALTV 47798 If the (strong) ternary Go...
evengpop3 47799 If the (weak) ternary Gold...
evengpoap3 47800 If the (strong) ternary Go...
nnsum4primeseven 47801 If the (weak) ternary Gold...
nnsum4primesevenALTV 47802 If the (strong) ternary Go...
wtgoldbnnsum4prm 47803 If the (weak) ternary Gold...
stgoldbnnsum4prm 47804 If the (strong) ternary Go...
bgoldbnnsum3prm 47805 If the binary Goldbach con...
bgoldbtbndlem1 47806 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 47807 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 47808 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 47809 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 47810 If the binary Goldbach con...
tgoldbachgtALTV 47813 Variant of Thierry Arnoux'...
bgoldbachlt 47814 The binary Goldbach conjec...
tgblthelfgott 47816 The ternary Goldbach conje...
tgoldbachlt 47817 The ternary Goldbach conje...
tgoldbach 47818 The ternary Goldbach conje...
clnbgrprc0 47821 The closed neighborhood is...
clnbgrcl 47822 If a class ` X ` has at le...
clnbgrval 47823 The closed neighborhood of...
dfclnbgr2 47824 Alternate definition of th...
dfclnbgr4 47825 Alternate definition of th...
elclnbgrelnbgr 47826 An element of the closed n...
dfclnbgr3 47827 Alternate definition of th...
clnbgrnvtx0 47828 If a class ` X ` is not a ...
clnbgrel 47829 Characterization of a memb...
clnbgrvtxel 47830 Every vertex ` K ` is a me...
clnbgrisvtx 47831 Every member ` N ` of the ...
clnbgrssvtx 47832 The closed neighborhood of...
clnbgrn0 47833 The closed neighborhood of...
clnbupgr 47834 The closed neighborhood of...
clnbupgrel 47835 A member of the closed nei...
clnbgr0vtx 47836 In a null graph (with no v...
clnbgr0edg 47837 In an empty graph (with no...
clnbgrsym 47838 In a graph, the closed nei...
predgclnbgrel 47839 If a (not necessarily prop...
clnbgredg 47840 A vertex connected by an e...
clnbgrssedg 47841 The vertices connected by ...
edgusgrclnbfin 47842 The size of the closed nei...
clnbusgrfi 47843 The closed neighborhood of...
clnbfiusgrfi 47844 The closed neighborhood of...
clnbgrlevtx 47845 The size of the closed nei...
dfsclnbgr2 47846 Alternate definition of th...
sclnbgrel 47847 Characterization of a memb...
sclnbgrelself 47848 A vertex ` N ` is a member...
sclnbgrisvtx 47849 Every member ` X ` of the ...
dfclnbgr5 47850 Alternate definition of th...
dfnbgr5 47851 Alternate definition of th...
dfnbgrss 47852 Subset chain for different...
dfvopnbgr2 47853 Alternate definition of th...
vopnbgrel 47854 Characterization of a memb...
vopnbgrelself 47855 A vertex ` N ` is a member...
dfclnbgr6 47856 Alternate definition of th...
dfnbgr6 47857 Alternate definition of th...
dfsclnbgr6 47858 Alternate definition of a ...
dfnbgrss2 47859 Subset chain for different...
isisubgr 47862 The subgraph induced by a ...
isubgriedg 47863 The edges of an induced su...
isubgrvtxuhgr 47864 The subgraph induced by th...
isubgredgss 47865 The edges of an induced su...
isubgredg 47866 An edge of an induced subg...
isubgrvtx 47867 The vertices of an induced...
isubgruhgr 47868 An induced subgraph of a h...
isubgrsubgr 47869 An induced subgraph of a h...
isubgrupgr 47870 An induced subgraph of a p...
isubgrumgr 47871 An induced subgraph of a m...
isubgrusgr 47872 An induced subgraph of a s...
isubgr0uhgr 47873 The subgraph induced by an...
grimfn 47879 The graph isomorphism func...
grimdmrel 47880 The domain of the graph is...
isgrim 47882 An isomorphism of graphs i...
grimprop 47883 Properties of an isomorphi...
grimf1o 47884 An isomorphism of graphs i...
grimidvtxedg 47885 The identity relation rest...
grimid 47886 The identity relation rest...
grimuhgr 47887 If there is a graph isomor...
grimcnv 47888 The converse of a graph is...
grimco 47889 The composition of graph i...
uhgrimedgi 47890 An isomorphism between gra...
uhgrimedg 47891 An isomorphism between gra...
uhgrimprop 47892 An isomorphism between hyp...
isuspgrim0lem 47893 An isomorphism of simple p...
isuspgrim0 47894 An isomorphism of simple p...
isuspgrimlem 47895 Lemma for ~ isuspgrim . (...
isuspgrim 47896 A class is an isomorphism ...
upgrimwlklem1 47897 Lemma 1 for ~ upgrimwlk an...
upgrimwlklem2 47898 Lemma 2 for ~ upgrimwlk . ...
upgrimwlklem3 47899 Lemma 3 for ~ upgrimwlk . ...
upgrimwlklem4 47900 Lemma 4 for ~ upgrimwlk . ...
upgrimwlklem5 47901 Lemma 5 for ~ upgrimwlk . ...
upgrimwlk 47902 Graph isomorphisms between...
upgrimwlklen 47903 Graph isomorphisms between...
upgrimtrlslem1 47904 Lemma 1 for ~ upgrimtrls ....
upgrimtrlslem2 47905 Lemma 2 for ~ upgrimtrls ....
upgrimtrls 47906 Graph isomorphisms between...
upgrimpthslem1 47907 Lemma 1 for ~ upgrimpths ....
upgrimpthslem2 47908 Lemma 2 for ~ upgrimpths ....
upgrimpths 47909 Graph isomorphisms between...
upgrimspths 47910 Graph isomorphisms between...
upgrimcycls 47911 Graph isomorphisms between...
brgric 47912 The relation "is isomorphi...
brgrici 47913 Prove that two graphs are ...
gricrcl 47914 Reverse closure of the "is...
dfgric2 47915 Alternate, explicit defini...
gricbri 47916 Implications of two graphs...
gricushgr 47917 The "is isomorphic to" rel...
gricuspgr 47918 The "is isomorphic to" rel...
gricrel 47919 The "is isomorphic to" rel...
gricref 47920 Graph isomorphism is refle...
gricsym 47921 Graph isomorphism is symme...
gricsymb 47922 Graph isomorphism is symme...
grictr 47923 Graph isomorphism is trans...
gricer 47924 Isomorphism is an equivale...
gricen 47925 Isomorphic graphs have equ...
opstrgric 47926 A graph represented as an ...
ushggricedg 47927 A simple hypergraph (with ...
cycldlenngric 47928 Two simple pseudographs ar...
isubgrgrim 47929 Isomorphic subgraphs induc...
uhgrimisgrgriclem 47930 Lemma for ~ uhgrimisgrgric...
uhgrimisgrgric 47931 For isomorphic hypergraphs...
clnbgrisubgrgrim 47932 Isomorphic subgraphs induc...
clnbgrgrimlem 47933 Lemma for ~ clnbgrgrim : ...
clnbgrgrim 47934 Graph isomorphisms between...
grimedg 47935 Graph isomorphisms map edg...
grtriproplem 47938 Lemma for ~ grtriprop . (...
grtri 47939 The triangles in a graph. ...
grtriprop 47940 The properties of a triang...
grtrif1o 47941 Any bijection onto a trian...
isgrtri 47942 A triangle in a graph. (C...
grtrissvtx 47943 A triangle is a subset of ...
grtriclwlk3 47944 A triangle induces a close...
cycl3grtrilem 47945 Lemma for ~ cycl3grtri . ...
cycl3grtri 47946 The vertices of a cycle of...
grtrimap 47947 Conditions for mapping tri...
grimgrtri 47948 Graph isomorphisms map tri...
usgrgrtrirex 47949 Conditions for a simple gr...
stgrfv 47952 The star graph S_N. (Contr...
stgrvtx 47953 The vertices of the star g...
stgriedg 47954 The indexed edges of the s...
stgredg 47955 The edges of the star grap...
stgredgel 47956 An edge of the star graph ...
stgredgiun 47957 The edges of the star grap...
stgrusgra 47958 The star graph S_N is a si...
stgr0 47959 The star graph S_0 consist...
stgr1 47960 The star graph S_1 consist...
stgrvtx0 47961 The center ("internal node...
stgrorder 47962 The order of a star graph ...
stgrnbgr0 47963 All vertices of a star gra...
stgrclnbgr0 47964 All vertices of a star gra...
isubgr3stgrlem1 47965 Lemma 1 for ~ isubgr3stgr ...
isubgr3stgrlem2 47966 Lemma 2 for ~ isubgr3stgr ...
isubgr3stgrlem3 47967 Lemma 3 for ~ isubgr3stgr ...
isubgr3stgrlem4 47968 Lemma 4 for ~ isubgr3stgr ...
isubgr3stgrlem5 47969 Lemma 5 for ~ isubgr3stgr ...
isubgr3stgrlem6 47970 Lemma 6 for ~ isubgr3stgr ...
isubgr3stgrlem7 47971 Lemma 7 for ~ isubgr3stgr ...
isubgr3stgrlem8 47972 Lemma 8 for ~ isubgr3stgr ...
isubgr3stgrlem9 47973 Lemma 9 for ~ isubgr3stgr ...
isubgr3stgr 47974 If a vertex of a simple gr...
grlimfn 47978 The graph local isomorphis...
grlimdmrel 47979 The domain of the graph lo...
isgrlim 47981 A local isomorphism of gra...
isgrlim2 47982 A local isomorphism of gra...
grlimprop 47983 Properties of a local isom...
grlimf1o 47984 A local isomorphism of gra...
grlimprop2 47985 Properties of a local isom...
uhgrimgrlim 47986 An isomorphism of hypergra...
uspgrlimlem1 47987 Lemma 1 for ~ uspgrlim . ...
uspgrlimlem2 47988 Lemma 2 for ~ uspgrlim . ...
uspgrlimlem3 47989 Lemma 3 for ~ uspgrlim . ...
uspgrlimlem4 47990 Lemma 4 for ~ uspgrlim . ...
uspgrlim 47991 A local isomorphism of sim...
usgrlimprop 47992 Properties of a local isom...
grlimgrtrilem1 47993 Lemma 3 for ~ grlimgrtri ....
grlimgrtrilem2 47994 Lemma 3 for ~ grlimgrtri ....
grlimgrtri 47995 Local isomorphisms between...
brgrlic 47996 The relation "is locally i...
brgrilci 47997 Prove that two graphs are ...
grlicrel 47998 The "is locally isomorphic...
grlicrcl 47999 Reverse closure of the "is...
dfgrlic2 48000 Alternate, explicit defini...
grilcbri 48001 Implications of two graphs...
dfgrlic3 48002 Alternate, explicit defini...
grilcbri2 48003 Implications of two graphs...
grlicref 48004 Graph local isomorphism is...
grlicsym 48005 Graph local isomorphism is...
grlicsymb 48006 Graph local isomorphism is...
grlictr 48007 Graph local isomorphism is...
grlicer 48008 Local isomorphism is an eq...
grlicen 48009 Locally isomorphic graphs ...
gricgrlic 48010 Isomorphic hypergraphs are...
clnbgr3stgrgrlic 48011 If all (closed) neighborho...
usgrexmpl1lem 48012 Lemma for ~ usgrexmpl1 . ...
usgrexmpl1 48013 ` G ` is a simple graph of...
usgrexmpl1vtx 48014 The vertices ` 0 , 1 , 2 ,...
usgrexmpl1edg 48015 The edges ` { 0 , 1 } , { ...
usgrexmpl1tri 48016 ` G ` contains a triangle ...
usgrexmpl2lem 48017 Lemma for ~ usgrexmpl2 . ...
usgrexmpl2 48018 ` G ` is a simple graph of...
usgrexmpl2vtx 48019 The vertices ` 0 , 1 , 2 ,...
usgrexmpl2edg 48020 The edges ` { 0 , 1 } , { ...
usgrexmpl2nblem 48021 Lemma for ~ usgrexmpl2nb0 ...
usgrexmpl2nb0 48022 The neighborhood of the fi...
usgrexmpl2nb1 48023 The neighborhood of the se...
usgrexmpl2nb2 48024 The neighborhood of the th...
usgrexmpl2nb3 48025 The neighborhood of the fo...
usgrexmpl2nb4 48026 The neighborhood of the fi...
usgrexmpl2nb5 48027 The neighborhood of the si...
usgrexmpl2trifr 48028 ` G ` is triangle-free. (...
usgrexmpl12ngric 48029 The graphs ` H ` and ` G `...
usgrexmpl12ngrlic 48030 The graphs ` H ` and ` G `...
gpgov 48033 The generalized Petersen g...
gpgvtx 48034 The vertices of the genera...
gpgiedg 48035 The indexed edges of the g...
gpgedg 48036 The edges of the generaliz...
gpgiedgdmellem 48037 Lemma for ~ gpgiedgdmel an...
gpgvtxel 48038 A vertex in a generalized ...
gpgvtxel2 48039 The second component of a ...
gpgiedgdmel 48040 An index of edges of the g...
gpgedgel 48041 An edge in a generalized P...
gpgprismgriedgdmel 48042 An index of edges of the g...
gpgprismgriedgdmss 48043 A subset of the index of e...
gpgvtx0 48044 The outside vertices in a ...
gpgvtx1 48045 The inside vertices in a g...
opgpgvtx 48046 A vertex in a generalized ...
gpgusgralem 48047 Lemma for ~ gpgusgra . (C...
gpgusgra 48048 The generalized Petersen g...
gpgprismgrusgra 48049 The generalized Petersen g...
gpgorder 48050 The order of the generaliz...
gpg5order 48051 The order of a generalized...
gpgedgvtx0 48052 The edges starting at an o...
gpgedgvtx1 48053 The edges starting at an i...
gpgvtxedg0 48054 The edges starting at an o...
gpgvtxedg1 48055 The edges starting at an i...
gpgedgiov 48056 The edges of the generaliz...
gpgedg2ov 48057 The edges of the generaliz...
gpgedg2iv 48058 The edges of the generaliz...
gpg5nbgrvtx03starlem1 48059 Lemma 1 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx03starlem2 48060 Lemma 2 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx03starlem3 48061 Lemma 3 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx13starlem1 48062 Lemma 1 for ~ gpg5nbgr3sta...
gpg5nbgrvtx13starlem2 48063 Lemma 2 for ~ gpg5nbgr3sta...
gpg5nbgrvtx13starlem3 48064 Lemma 3 for ~ gpg5nbgr3sta...
gpgnbgrvtx0 48065 The (open) neighborhood of...
gpgnbgrvtx1 48066 The (open) neighborhood of...
gpg3nbgrvtx0 48067 In a generalized Petersen ...
gpg3nbgrvtx0ALT 48068 In a generalized Petersen ...
gpg3nbgrvtx1 48069 In a generalized Petersen ...
gpgcubic 48070 Every generalized Petersen...
gpg5nbgrvtx03star 48071 In a generalized Petersen ...
gpg5nbgr3star 48072 In a generalized Petersen ...
gpgvtxdg3 48073 Every vertex in a generali...
gpg3kgrtriexlem1 48074 Lemma 1 for ~ gpg3kgrtriex...
gpg3kgrtriexlem2 48075 Lemma 2 for ~ gpg3kgrtriex...
gpg3kgrtriexlem3 48076 Lemma 3 for ~ gpg3kgrtriex...
gpg3kgrtriexlem4 48077 Lemma 4 for ~ gpg3kgrtriex...
gpg3kgrtriexlem5 48078 Lemma 5 for ~ gpg3kgrtriex...
gpg3kgrtriexlem6 48079 Lemma 6 for ~ gpg3kgrtriex...
gpg3kgrtriex 48080 All generalized Petersen g...
gpg5gricstgr3 48081 Each closed neighborhood i...
pglem 48082 Lemma for theorems about P...
pgjsgr 48083 A Petersen graph is a simp...
gpg5grlic 48084 The two generalized Peters...
gpgprismgr4cycllem1 48085 Lemma 1 for ~ gpgprismgr4c...
gpgprismgr4cycllem2 48086 Lemma 2 for ~ gpgprismgr4c...
gpgprismgr4cycllem3 48087 Lemma 3 for ~ gpgprismgr4c...
gpgprismgr4cycllem4 48088 Lemma 4 for ~ gpgprismgr4c...
gpgprismgr4cycllem5 48089 Lemma 5 for ~ gpgprismgr4c...
gpgprismgr4cycllem6 48090 Lemma 6 for ~ gpgprismgr4c...
gpgprismgr4cycllem7 48091 Lemma 7 for ~ gpgprismgr4c...
gpgprismgr4cycllem8 48092 Lemma 8 for ~ gpgprismgr4c...
gpgprismgr4cycllem9 48093 Lemma 9 for ~ gpgprismgr4c...
gpgprismgr4cycllem10 48094 Lemma 10 for ~ gpgprismgr4...
gpgprismgr4cycllem11 48095 Lemma 11 for ~ gpgprismgr4...
gpgprismgr4cycl0 48096 The generalized Petersen g...
gpgprismgr4cyclex 48097 The generalized Petersen g...
pgnioedg1 48098 An inside and an outside v...
pgnioedg2 48099 An inside and an outside v...
pgnioedg3 48100 An inside and an outside v...
pgnioedg4 48101 An inside and an outside v...
pgnioedg5 48102 An inside and an outside v...
pgnbgreunbgrlem1 48103 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem1 48104 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem2 48105 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem3 48106 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2 48107 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem3 48108 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem4 48109 Lemma 4 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem1 48110 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem2 48111 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem3 48112 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5 48113 Lemma 5 for ~ pgnbgreunbgr...
pgnbgreunbgrlem6 48114 Lemma 6 for ~ pgnbgreunbgr...
pgnbgreunbgr 48115 In a Petersen graph, two d...
pgn4cyclex 48116 A cycle in a Petersen grap...
pg4cyclnex 48117 In the Petersen graph G(5,...
gpg5ngric 48118 The two generalized Peters...
lgricngricex 48119 There are two different lo...
1hegrlfgr 48120 A graph ` G ` with one hyp...
upwlksfval 48123 The set of simple walks (i...
isupwlk 48124 Properties of a pair of fu...
isupwlkg 48125 Generalization of ~ isupwl...
upwlkbprop 48126 Basic properties of a simp...
upwlkwlk 48127 A simple walk is a walk. ...
upgrwlkupwlk 48128 In a pseudograph, a walk i...
upgrwlkupwlkb 48129 In a pseudograph, the defi...
upgrisupwlkALT 48130 Alternate proof of ~ upgri...
upgredgssspr 48131 The set of edges of a pseu...
uspgropssxp 48132 The set ` G ` of "simple p...
uspgrsprfv 48133 The value of the function ...
uspgrsprf 48134 The mapping ` F ` is a fun...
uspgrsprf1 48135 The mapping ` F ` is a one...
uspgrsprfo 48136 The mapping ` F ` is a fun...
uspgrsprf1o 48137 The mapping ` F ` is a bij...
uspgrex 48138 The class ` G ` of all "si...
uspgrbispr 48139 There is a bijection betwe...
uspgrspren 48140 The set ` G ` of the "simp...
uspgrymrelen 48141 The set ` G ` of the "simp...
uspgrbisymrel 48142 There is a bijection betwe...
uspgrbisymrelALT 48143 Alternate proof of ~ uspgr...
ovn0dmfun 48144 If a class operation value...
xpsnopab 48145 A Cartesian product with a...
xpiun 48146 A Cartesian product expres...
ovn0ssdmfun 48147 If a class' operation valu...
fnxpdmdm 48148 The domain of the domain o...
cnfldsrngbas 48149 The base set of a subring ...
cnfldsrngadd 48150 The group addition operati...
cnfldsrngmul 48151 The ring multiplication op...
plusfreseq 48152 If the empty set is not co...
mgmplusfreseq 48153 If the empty set is not co...
0mgm 48154 A set with an empty base s...
opmpoismgm 48155 A structure with a group a...
copissgrp 48156 A structure with a constan...
copisnmnd 48157 A structure with a constan...
0nodd 48158 0 is not an odd integer. ...
1odd 48159 1 is an odd integer. (Con...
2nodd 48160 2 is not an odd integer. ...
oddibas 48161 Lemma 1 for ~ oddinmgm : ...
oddiadd 48162 Lemma 2 for ~ oddinmgm : ...
oddinmgm 48163 The structure of all odd i...
nnsgrpmgm 48164 The structure of positive ...
nnsgrp 48165 The structure of positive ...
nnsgrpnmnd 48166 The structure of positive ...
nn0mnd 48167 The set of nonnegative int...
gsumsplit2f 48168 Split a group sum into two...
gsumdifsndf 48169 Extract a summand from a f...
gsumfsupp 48170 A group sum of a family ca...
iscllaw 48177 The predicate "is a closed...
iscomlaw 48178 The predicate "is a commut...
clcllaw 48179 Closure of a closed operat...
isasslaw 48180 The predicate "is an assoc...
asslawass 48181 Associativity of an associ...
mgmplusgiopALT 48182 Slot 2 (group operation) o...
sgrpplusgaopALT 48183 Slot 2 (group operation) o...
intopval 48190 The internal (binary) oper...
intop 48191 An internal (binary) opera...
clintopval 48192 The closed (internal binar...
assintopval 48193 The associative (closed in...
assintopmap 48194 The associative (closed in...
isclintop 48195 The predicate "is a closed...
clintop 48196 A closed (internal binary)...
assintop 48197 An associative (closed int...
isassintop 48198 The predicate "is an assoc...
clintopcllaw 48199 The closure law holds for ...
assintopcllaw 48200 The closure low holds for ...
assintopasslaw 48201 The associative low holds ...
assintopass 48202 An associative (closed int...
ismgmALT 48211 The predicate "is a magma"...
iscmgmALT 48212 The predicate "is a commut...
issgrpALT 48213 The predicate "is a semigr...
iscsgrpALT 48214 The predicate "is a commut...
mgm2mgm 48215 Equivalence of the two def...
sgrp2sgrp 48216 Equivalence of the two def...
lmod0rng 48217 If the scalar ring of a mo...
nzrneg1ne0 48218 The additive inverse of th...
lidldomn1 48219 If a (left) ideal (which i...
lidlabl 48220 A (left) ideal of a ring i...
lidlrng 48221 A (left) ideal of a ring i...
zlidlring 48222 The zero (left) ideal of a...
uzlidlring 48223 Only the zero (left) ideal...
lidldomnnring 48224 A (left) ideal of a domain...
0even 48225 0 is an even integer. (Co...
1neven 48226 1 is not an even integer. ...
2even 48227 2 is an even integer. (Co...
2zlidl 48228 The even integers are a (l...
2zrng 48229 The ring of integers restr...
2zrngbas 48230 The base set of R is the s...
2zrngadd 48231 The group addition operati...
2zrng0 48232 The additive identity of R...
2zrngamgm 48233 R is an (additive) magma. ...
2zrngasgrp 48234 R is an (additive) semigro...
2zrngamnd 48235 R is an (additive) monoid....
2zrngacmnd 48236 R is a commutative (additi...
2zrngagrp 48237 R is an (additive) group. ...
2zrngaabl 48238 R is an (additive) abelian...
2zrngmul 48239 The ring multiplication op...
2zrngmmgm 48240 R is a (multiplicative) ma...
2zrngmsgrp 48241 R is a (multiplicative) se...
2zrngALT 48242 The ring of integers restr...
2zrngnmlid 48243 R has no multiplicative (l...
2zrngnmrid 48244 R has no multiplicative (r...
2zrngnmlid2 48245 R has no multiplicative (l...
2zrngnring 48246 R is not a unital ring. (...
cznrnglem 48247 Lemma for ~ cznrng : The ...
cznabel 48248 The ring constructed from ...
cznrng 48249 The ring constructed from ...
cznnring 48250 The ring constructed from ...
rngcvalALTV 48253 Value of the category of n...
rngcbasALTV 48254 Set of objects of the cate...
rngchomfvalALTV 48255 Set of arrows of the categ...
rngchomALTV 48256 Set of arrows of the categ...
elrngchomALTV 48257 A morphism of non-unital r...
rngccofvalALTV 48258 Composition in the categor...
rngccoALTV 48259 Composition in the categor...
rngccatidALTV 48260 Lemma for ~ rngccatALTV . ...
rngccatALTV 48261 The category of non-unital...
rngcidALTV 48262 The identity arrow in the ...
rngcsectALTV 48263 A section in the category ...
rngcinvALTV 48264 An inverse in the category...
rngcisoALTV 48265 An isomorphism in the cate...
rngchomffvalALTV 48266 The value of the functiona...
rngchomrnghmresALTV 48267 The value of the functiona...
rngcrescrhmALTV 48268 The category of non-unital...
rhmsubcALTVlem1 48269 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 48270 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 48271 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 48272 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 48273 According to ~ df-subc , t...
rhmsubcALTVcat 48274 The restriction of the cat...
ringcvalALTV 48277 Value of the category of r...
funcringcsetcALTV2lem1 48278 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 48279 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 48280 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 48281 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 48282 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 48283 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 48284 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 48285 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 48286 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 48287 The "natural forgetful fun...
ringcbasALTV 48288 Set of objects of the cate...
ringchomfvalALTV 48289 Set of arrows of the categ...
ringchomALTV 48290 Set of arrows of the categ...
elringchomALTV 48291 A morphism of rings is a f...
ringccofvalALTV 48292 Composition in the categor...
ringccoALTV 48293 Composition in the categor...
ringccatidALTV 48294 Lemma for ~ ringccatALTV ....
ringccatALTV 48295 The category of rings is a...
ringcidALTV 48296 The identity arrow in the ...
ringcsectALTV 48297 A section in the category ...
ringcinvALTV 48298 An inverse in the category...
ringcisoALTV 48299 An isomorphism in the cate...
ringcbasbasALTV 48300 An element of the base set...
funcringcsetclem1ALTV 48301 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 48302 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 48303 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 48304 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 48305 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 48306 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 48307 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 48308 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 48309 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 48310 The "natural forgetful fun...
srhmsubcALTVlem1 48311 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 48312 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 48313 According to ~ df-subc , t...
sringcatALTV 48314 The restriction of the cat...
crhmsubcALTV 48315 According to ~ df-subc , t...
cringcatALTV 48316 The restriction of the cat...
drhmsubcALTV 48317 According to ~ df-subc , t...
drngcatALTV 48318 The restriction of the cat...
fldcatALTV 48319 The restriction of the cat...
fldcALTV 48320 The restriction of the cat...
fldhmsubcALTV 48321 According to ~ df-subc , t...
eliunxp2 48322 Membership in a union of C...
mpomptx2 48323 Express a two-argument fun...
cbvmpox2 48324 Rule to change the bound v...
dmmpossx2 48325 The domain of a mapping is...
mpoexxg2 48326 Existence of an operation ...
ovmpordxf 48327 Value of an operation give...
ovmpordx 48328 Value of an operation give...
ovmpox2 48329 The value of an operation ...
fdmdifeqresdif 48330 The restriction of a condi...
ofaddmndmap 48331 The function operation app...
mapsnop 48332 A singleton of an ordered ...
fprmappr 48333 A function with a domain o...
mapprop 48334 An unordered pair containi...
ztprmneprm 48335 A prime is not an integer ...
2t6m3t4e0 48336 2 times 6 minus 3 times 4 ...
ssnn0ssfz 48337 For any finite subset of `...
nn0sumltlt 48338 If the sum of two nonnegat...
bcpascm1 48339 Pascal's rule for the bino...
altgsumbc 48340 The sum of binomial coeffi...
altgsumbcALT 48341 Alternate proof of ~ altgs...
zlmodzxzlmod 48342 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 48343 An element of the (base se...
zlmodzxz0 48344 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 48345 The scalar multiplication ...
zlmodzxzadd 48346 The addition of the ` ZZ `...
zlmodzxzsubm 48347 The subtraction of the ` Z...
zlmodzxzsub 48348 The subtraction of the ` Z...
mgpsumunsn 48349 Extract a summand/factor f...
mgpsumz 48350 If the group sum for the m...
mgpsumn 48351 If the group sum for the m...
exple2lt6 48352 A nonnegative integer to t...
pgrple2abl 48353 Every symmetric group on a...
pgrpgt2nabl 48354 Every symmetric group on a...
invginvrid 48355 Identity for a multiplicat...
rmsupp0 48356 The support of a mapping o...
domnmsuppn0 48357 The support of a mapping o...
rmsuppss 48358 The support of a mapping o...
scmsuppss 48359 The support of a mapping o...
rmsuppfi 48360 The support of a mapping o...
rmfsupp 48361 A mapping of a multiplicat...
scmsuppfi 48362 The support of a mapping o...
scmfsupp 48363 A mapping of a scalar mult...
suppmptcfin 48364 The support of a mapping w...
mptcfsupp 48365 A mapping with value 0 exc...
fsuppmptdmf 48366 A mapping with a finite do...
lmodvsmdi 48367 Multiple distributive law ...
gsumlsscl 48368 Closure of a group sum in ...
assaascl0 48369 The scalar 0 embedded into...
assaascl1 48370 The scalar 1 embedded into...
ply1vr1smo 48371 The variable in a polynomi...
ply1sclrmsm 48372 The ring multiplication of...
coe1id 48373 Coefficient vector of the ...
coe1sclmulval 48374 The value of the coefficie...
ply1mulgsumlem1 48375 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 48376 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 48377 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 48378 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 48379 The product of two polynom...
evl1at0 48380 Polynomial evaluation for ...
evl1at1 48381 Polynomial evaluation for ...
linply1 48382 A term of the form ` x - C...
lineval 48383 A term of the form ` x - C...
linevalexample 48384 The polynomial ` x - 3 ` o...
dmatALTval 48389 The algebra of ` N ` x ` N...
dmatALTbas 48390 The base set of the algebr...
dmatALTbasel 48391 An element of the base set...
dmatbas 48392 The set of all ` N ` x ` N...
lincop 48397 A linear combination as op...
lincval 48398 The value of a linear comb...
dflinc2 48399 Alternative definition of ...
lcoop 48400 A linear combination as op...
lcoval 48401 The value of a linear comb...
lincfsuppcl 48402 A linear combination of ve...
linccl 48403 A linear combination of ve...
lincval0 48404 The value of an empty line...
lincvalsng 48405 The linear combination ove...
lincvalsn 48406 The linear combination ove...
lincvalpr 48407 The linear combination ove...
lincval1 48408 The linear combination ove...
lcosn0 48409 Properties of a linear com...
lincvalsc0 48410 The linear combination whe...
lcoc0 48411 Properties of a linear com...
linc0scn0 48412 If a set contains the zero...
lincdifsn 48413 A vector is a linear combi...
linc1 48414 A vector is a linear combi...
lincellss 48415 A linear combination of a ...
lco0 48416 The set of empty linear co...
lcoel0 48417 The zero vector is always ...
lincsum 48418 The sum of two linear comb...
lincscm 48419 A linear combinations mult...
lincsumcl 48420 The sum of two linear comb...
lincscmcl 48421 The multiplication of a li...
lincsumscmcl 48422 The sum of a linear combin...
lincolss 48423 According to the statement...
ellcoellss 48424 Every linear combination o...
lcoss 48425 A set of vectors of a modu...
lspsslco 48426 Lemma for ~ lspeqlco . (C...
lcosslsp 48427 Lemma for ~ lspeqlco . (C...
lspeqlco 48428 Equivalence of a _span_ of...
rellininds 48432 The class defining the rel...
linindsv 48434 The classes of the module ...
islininds 48435 The property of being a li...
linindsi 48436 The implications of being ...
linindslinci 48437 The implications of being ...
islinindfis 48438 The property of being a li...
islinindfiss 48439 The property of being a li...
linindscl 48440 A linearly independent set...
lindepsnlininds 48441 A linearly dependent subse...
islindeps 48442 The property of being a li...
lincext1 48443 Property 1 of an extension...
lincext2 48444 Property 2 of an extension...
lincext3 48445 Property 3 of an extension...
lindslinindsimp1 48446 Implication 1 for ~ lindsl...
lindslinindimp2lem1 48447 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 48448 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 48449 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 48450 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 48451 Lemma 5 for ~ lindslininds...
lindslinindsimp2 48452 Implication 2 for ~ lindsl...
lindslininds 48453 Equivalence of definitions...
linds0 48454 The empty set is always a ...
el0ldep 48455 A set containing the zero ...
el0ldepsnzr 48456 A set containing the zero ...
lindsrng01 48457 Any subset of a module is ...
lindszr 48458 Any subset of a module ove...
snlindsntorlem 48459 Lemma for ~ snlindsntor . ...
snlindsntor 48460 A singleton is linearly in...
ldepsprlem 48461 Lemma for ~ ldepspr . (Co...
ldepspr 48462 If a vector is a scalar mu...
lincresunit3lem3 48463 Lemma 3 for ~ lincresunit3...
lincresunitlem1 48464 Lemma 1 for properties of ...
lincresunitlem2 48465 Lemma for properties of a ...
lincresunit1 48466 Property 1 of a specially ...
lincresunit2 48467 Property 2 of a specially ...
lincresunit3lem1 48468 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 48469 Lemma 2 for ~ lincresunit3...
lincresunit3 48470 Property 3 of a specially ...
lincreslvec3 48471 Property 3 of a specially ...
islindeps2 48472 Conditions for being a lin...
islininds2 48473 Implication of being a lin...
isldepslvec2 48474 Alternative definition of ...
lindssnlvec 48475 A singleton not containing...
lmod1lem1 48476 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 48477 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 48478 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 48479 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 48480 Lemma 5 for ~ lmod1 . (Co...
lmod1 48481 The (smallest) structure r...
lmod1zr 48482 The (smallest) structure r...
lmod1zrnlvec 48483 There is a (left) module (...
lmodn0 48484 Left modules exist. (Cont...
zlmodzxzequa 48485 Example of an equation wit...
zlmodzxznm 48486 Example of a linearly depe...
zlmodzxzldeplem 48487 A and B are not equal. (C...
zlmodzxzequap 48488 Example of an equation wit...
zlmodzxzldeplem1 48489 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 48490 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 48491 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 48492 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 48493 { A , B } is a linearly de...
ldepsnlinclem1 48494 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 48495 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 48496 The class of all (left) ve...
ldepsnlinc 48497 The reverse implication of...
ldepslinc 48498 For (left) vector spaces, ...
suppdm 48499 If the range of a function...
eluz2cnn0n1 48500 An integer greater than 1 ...
divge1b 48501 The ratio of a real number...
divgt1b 48502 The ratio of a real number...
ltsubaddb 48503 Equivalence for the "less ...
ltsubsubb 48504 Equivalence for the "less ...
ltsubadd2b 48505 Equivalence for the "less ...
divsub1dir 48506 Distribution of division o...
expnegico01 48507 An integer greater than 1 ...
elfzolborelfzop1 48508 An element of a half-open ...
pw2m1lepw2m1 48509 2 to the power of a positi...
zgtp1leeq 48510 If an integer is between a...
flsubz 48511 An integer can be moved in...
nn0onn0ex 48512 For each odd nonnegative i...
nn0enn0ex 48513 For each even nonnegative ...
nnennex 48514 For each even positive int...
nneop 48515 A positive integer is even...
nneom 48516 A positive integer is even...
nn0eo 48517 A nonnegative integer is e...
nnpw2even 48518 2 to the power of a positi...
zefldiv2 48519 The floor of an even integ...
zofldiv2 48520 The floor of an odd intege...
nn0ofldiv2 48521 The floor of an odd nonneg...
flnn0div2ge 48522 The floor of a positive in...
flnn0ohalf 48523 The floor of the half of a...
logcxp0 48524 Logarithm of a complex pow...
regt1loggt0 48525 The natural logarithm for ...
fdivval 48528 The quotient of two functi...
fdivmpt 48529 The quotient of two functi...
fdivmptf 48530 The quotient of two functi...
refdivmptf 48531 The quotient of two functi...
fdivpm 48532 The quotient of two functi...
refdivpm 48533 The quotient of two functi...
fdivmptfv 48534 The function value of a qu...
refdivmptfv 48535 The function value of a qu...
bigoval 48538 Set of functions of order ...
elbigofrcl 48539 Reverse closure of the "bi...
elbigo 48540 Properties of a function o...
elbigo2 48541 Properties of a function o...
elbigo2r 48542 Sufficient condition for a...
elbigof 48543 A function of order G(x) i...
elbigodm 48544 The domain of a function o...
elbigoimp 48545 The defining property of a...
elbigolo1 48546 A function (into the posit...
rege1logbrege0 48547 The general logarithm, wit...
rege1logbzge0 48548 The general logarithm, wit...
fllogbd 48549 A real number is between t...
relogbmulbexp 48550 The logarithm of the produ...
relogbdivb 48551 The logarithm of the quoti...
logbge0b 48552 The logarithm of a number ...
logblt1b 48553 The logarithm of a number ...
fldivexpfllog2 48554 The floor of a positive re...
nnlog2ge0lt1 48555 A positive integer is 1 if...
logbpw2m1 48556 The floor of the binary lo...
fllog2 48557 The floor of the binary lo...
blenval 48560 The binary length of an in...
blen0 48561 The binary length of 0. (...
blenn0 48562 The binary length of a "nu...
blenre 48563 The binary length of a pos...
blennn 48564 The binary length of a pos...
blennnelnn 48565 The binary length of a pos...
blennn0elnn 48566 The binary length of a non...
blenpw2 48567 The binary length of a pow...
blenpw2m1 48568 The binary length of a pow...
nnpw2blen 48569 A positive integer is betw...
nnpw2blenfzo 48570 A positive integer is betw...
nnpw2blenfzo2 48571 A positive integer is eith...
nnpw2pmod 48572 Every positive integer can...
blen1 48573 The binary length of 1. (...
blen2 48574 The binary length of 2. (...
nnpw2p 48575 Every positive integer can...
nnpw2pb 48576 A number is a positive int...
blen1b 48577 The binary length of a non...
blennnt2 48578 The binary length of a pos...
nnolog2flm1 48579 The floor of the binary lo...
blennn0em1 48580 The binary length of the h...
blennngt2o2 48581 The binary length of an od...
blengt1fldiv2p1 48582 The binary length of an in...
blennn0e2 48583 The binary length of an ev...
digfval 48586 Operation to obtain the ` ...
digval 48587 The ` K ` th digit of a no...
digvalnn0 48588 The ` K ` th digit of a no...
nn0digval 48589 The ` K ` th digit of a no...
dignn0fr 48590 The digits of the fraction...
dignn0ldlem 48591 Lemma for ~ dignnld . (Co...
dignnld 48592 The leading digits of a po...
dig2nn0ld 48593 The leading digits of a po...
dig2nn1st 48594 The first (relevant) digit...
dig0 48595 All digits of 0 are 0. (C...
digexp 48596 The ` K ` th digit of a po...
dig1 48597 All but one digits of 1 ar...
0dig1 48598 The ` 0 ` th digit of 1 is...
0dig2pr01 48599 The integers 0 and 1 corre...
dig2nn0 48600 A digit of a nonnegative i...
0dig2nn0e 48601 The last bit of an even in...
0dig2nn0o 48602 The last bit of an odd int...
dig2bits 48603 The ` K ` th digit of a no...
dignn0flhalflem1 48604 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 48605 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 48606 The digits of the half of ...
dignn0flhalf 48607 The digits of the rounded ...
nn0sumshdiglemA 48608 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 48609 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 48610 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 48611 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 48612 A nonnegative integer can ...
nn0mulfsum 48613 Trivial algorithm to calcu...
nn0mullong 48614 Standard algorithm (also k...
naryfval 48617 The set of the n-ary (endo...
naryfvalixp 48618 The set of the n-ary (endo...
naryfvalel 48619 An n-ary (endo)function on...
naryrcl 48620 Reverse closure for n-ary ...
naryfvalelfv 48621 The value of an n-ary (end...
naryfvalelwrdf 48622 An n-ary (endo)function on...
0aryfvalel 48623 A nullary (endo)function o...
0aryfvalelfv 48624 The value of a nullary (en...
1aryfvalel 48625 A unary (endo)function on ...
fv1arycl 48626 Closure of a unary (endo)f...
1arympt1 48627 A unary (endo)function in ...
1arympt1fv 48628 The value of a unary (endo...
1arymaptfv 48629 The value of the mapping o...
1arymaptf 48630 The mapping of unary (endo...
1arymaptf1 48631 The mapping of unary (endo...
1arymaptfo 48632 The mapping of unary (endo...
1arymaptf1o 48633 The mapping of unary (endo...
1aryenef 48634 The set of unary (endo)fun...
1aryenefmnd 48635 The set of unary (endo)fun...
2aryfvalel 48636 A binary (endo)function on...
fv2arycl 48637 Closure of a binary (endo)...
2arympt 48638 A binary (endo)function in...
2arymptfv 48639 The value of a binary (end...
2arymaptfv 48640 The value of the mapping o...
2arymaptf 48641 The mapping of binary (end...
2arymaptf1 48642 The mapping of binary (end...
2arymaptfo 48643 The mapping of binary (end...
2arymaptf1o 48644 The mapping of binary (end...
2aryenef 48645 The set of binary (endo)fu...
itcoval 48650 The value of the function ...
itcoval0 48651 A function iterated zero t...
itcoval1 48652 A function iterated once. ...
itcoval2 48653 A function iterated twice....
itcoval3 48654 A function iterated three ...
itcoval0mpt 48655 A mapping iterated zero ti...
itcovalsuc 48656 The value of the function ...
itcovalsucov 48657 The value of the function ...
itcovalendof 48658 The n-th iterate of an end...
itcovalpclem1 48659 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 48660 Lemma 2 for ~ itcovalpc : ...
itcovalpc 48661 The value of the function ...
itcovalt2lem2lem1 48662 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 48663 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 48664 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 48665 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 48666 The value of the function ...
ackvalsuc1mpt 48667 The Ackermann function at ...
ackvalsuc1 48668 The Ackermann function at ...
ackval0 48669 The Ackermann function at ...
ackval1 48670 The Ackermann function at ...
ackval2 48671 The Ackermann function at ...
ackval3 48672 The Ackermann function at ...
ackendofnn0 48673 The Ackermann function at ...
ackfnnn0 48674 The Ackermann function at ...
ackval0val 48675 The Ackermann function at ...
ackvalsuc0val 48676 The Ackermann function at ...
ackvalsucsucval 48677 The Ackermann function at ...
ackval0012 48678 The Ackermann function at ...
ackval1012 48679 The Ackermann function at ...
ackval2012 48680 The Ackermann function at ...
ackval3012 48681 The Ackermann function at ...
ackval40 48682 The Ackermann function at ...
ackval41a 48683 The Ackermann function at ...
ackval41 48684 The Ackermann function at ...
ackval42 48685 The Ackermann function at ...
ackval42a 48686 The Ackermann function at ...
ackval50 48687 The Ackermann function at ...
fv1prop 48688 The function value of unor...
fv2prop 48689 The function value of unor...
submuladdmuld 48690 Transformation of a sum of...
affinecomb1 48691 Combination of two real af...
affinecomb2 48692 Combination of two real af...
affineid 48693 Identity of an affine comb...
1subrec1sub 48694 Subtract the reciprocal of...
resum2sqcl 48695 The sum of two squares of ...
resum2sqgt0 48696 The sum of the square of a...
resum2sqrp 48697 The sum of the square of a...
resum2sqorgt0 48698 The sum of the square of t...
reorelicc 48699 Membership in and outside ...
rrx2pxel 48700 The x-coordinate of a poin...
rrx2pyel 48701 The y-coordinate of a poin...
prelrrx2 48702 An unordered pair of order...
prelrrx2b 48703 An unordered pair of order...
rrx2pnecoorneor 48704 If two different points ` ...
rrx2pnedifcoorneor 48705 If two different points ` ...
rrx2pnedifcoorneorr 48706 If two different points ` ...
rrx2xpref1o 48707 There is a bijection betwe...
rrx2xpreen 48708 The set of points in the t...
rrx2plord 48709 The lexicographical orderi...
rrx2plord1 48710 The lexicographical orderi...
rrx2plord2 48711 The lexicographical orderi...
rrx2plordisom 48712 The set of points in the t...
rrx2plordso 48713 The lexicographical orderi...
ehl2eudisval0 48714 The Euclidean distance of ...
ehl2eudis0lt 48715 An upper bound of the Eucl...
lines 48720 The lines passing through ...
line 48721 The line passing through t...
rrxlines 48722 Definition of lines passin...
rrxline 48723 The line passing through t...
rrxlinesc 48724 Definition of lines passin...
rrxlinec 48725 The line passing through t...
eenglngeehlnmlem1 48726 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 48727 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 48728 The line definition in the...
rrx2line 48729 The line passing through t...
rrx2vlinest 48730 The vertical line passing ...
rrx2linest 48731 The line passing through t...
rrx2linesl 48732 The line passing through t...
rrx2linest2 48733 The line passing through t...
elrrx2linest2 48734 The line passing through t...
spheres 48735 The spheres for given cent...
sphere 48736 A sphere with center ` X `...
rrxsphere 48737 The sphere with center ` M...
2sphere 48738 The sphere with center ` M...
2sphere0 48739 The sphere around the orig...
line2ylem 48740 Lemma for ~ line2y . This...
line2 48741 Example for a line ` G ` p...
line2xlem 48742 Lemma for ~ line2x . This...
line2x 48743 Example for a horizontal l...
line2y 48744 Example for a vertical lin...
itsclc0lem1 48745 Lemma for theorems about i...
itsclc0lem2 48746 Lemma for theorems about i...
itsclc0lem3 48747 Lemma for theorems about i...
itscnhlc0yqe 48748 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 48749 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 48750 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 48751 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 48752 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 48753 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 48754 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 48755 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 48756 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 48757 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 48758 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 48759 Lemma for ~ itsclc0 . Sol...
itsclc0 48760 The intersection points of...
itsclc0b 48761 The intersection points of...
itsclinecirc0 48762 The intersection points of...
itsclinecirc0b 48763 The intersection points of...
itsclinecirc0in 48764 The intersection points of...
itsclquadb 48765 Quadratic equation for the...
itsclquadeu 48766 Quadratic equation for the...
2itscplem1 48767 Lemma 1 for ~ 2itscp . (C...
2itscplem2 48768 Lemma 2 for ~ 2itscp . (C...
2itscplem3 48769 Lemma D for ~ 2itscp . (C...
2itscp 48770 A condition for a quadrati...
itscnhlinecirc02plem1 48771 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 48772 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 48773 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 48774 Intersection of a nonhoriz...
inlinecirc02plem 48775 Lemma for ~ inlinecirc02p ...
inlinecirc02p 48776 Intersection of a line wit...
inlinecirc02preu 48777 Intersection of a line wit...
pm4.71da 48778 Deduction converting a bic...
logic1 48779 Distribution of implicatio...
logic1a 48780 Variant of ~ logic1 . (Co...
logic2 48781 Variant of ~ logic1 . (Co...
pm5.32dav 48782 Distribution of implicatio...
pm5.32dra 48783 Reverse distribution of im...
exp12bd 48784 The import-export theorem ...
mpbiran3d 48785 Equivalence with a conjunc...
mpbiran4d 48786 Equivalence with a conjunc...
dtrucor3 48787 An example of how ~ ax-5 w...
ralbidb 48788 Formula-building rule for ...
ralbidc 48789 Formula-building rule for ...
r19.41dv 48790 A complex deduction form o...
rmotru 48791 Two ways of expressing "at...
reutru 48792 Two ways of expressing "ex...
reutruALT 48793 Alternate proof of ~ reutr...
reueqbidva 48794 Formula-building rule for ...
reuxfr1dd 48795 Transfer existential uniqu...
ssdisjd 48796 Subset preserves disjointn...
ssdisjdr 48797 Subset preserves disjointn...
disjdifb 48798 Relative complement is ant...
predisj 48799 Preimages of disjoint sets...
vsn 48800 The singleton of the unive...
mosn 48801 "At most one" element in a...
mo0 48802 "At most one" element in a...
mosssn 48803 "At most one" element in a...
mo0sn 48804 Two ways of expressing "at...
mosssn2 48805 Two ways of expressing "at...
unilbss 48806 Superclass of the greatest...
iuneq0 48807 An indexed union is empty ...
iineq0 48808 An indexed intersection is...
iunlub 48809 The indexed union is the t...
iinglb 48810 The indexed intersection i...
iuneqconst2 48811 Indexed union of identical...
iineqconst2 48812 Indexed intersection of id...
inpw 48813 Two ways of expressing a c...
opth1neg 48814 Two ordered pairs are not ...
opth2neg 48815 Two ordered pairs are not ...
brab2dd 48816 Expressing that two sets a...
brab2ddw 48817 Expressing that two sets a...
brab2ddw2 48818 Expressing that two sets a...
iinxp 48819 Indexed intersection of Ca...
intxp 48820 Intersection of Cartesian ...
coxp 48821 Composition with a Cartesi...
cosn 48822 Composition with an ordere...
cosni 48823 Composition with an ordere...
inisegn0a 48824 The inverse image of a sin...
dmrnxp 48825 A Cartesian product is the...
mof0 48826 There is at most one funct...
mof02 48827 A variant of ~ mof0 . (Co...
mof0ALT 48828 Alternate proof of ~ mof0 ...
eufsnlem 48829 There is exactly one funct...
eufsn 48830 There is exactly one funct...
eufsn2 48831 There is exactly one funct...
mofsn 48832 There is at most one funct...
mofsn2 48833 There is at most one funct...
mofsssn 48834 There is at most one funct...
mofmo 48835 There is at most one funct...
mofeu 48836 The uniqueness of a functi...
elfvne0 48837 If a function value has a ...
fdomne0 48838 A function with non-empty ...
f1sn2g 48839 A function that maps a sin...
f102g 48840 A function that maps the e...
f1mo 48841 A function that maps a set...
f002 48842 A function with an empty c...
map0cor 48843 A function exists iff an e...
ffvbr 48844 Relation with function val...
xpco2 48845 Composition of a Cartesian...
ovsng 48846 The operation value of a s...
ovsng2 48847 The operation value of a s...
ovsn 48848 The operation value of a s...
ovsn2 48849 The operation value of a s...
fvconstr 48850 Two ways of expressing ` A...
fvconstrn0 48851 Two ways of expressing ` A...
fvconstr2 48852 Two ways of expressing ` A...
ovmpt4d 48853 Deduction version of ~ ovm...
eqfnovd 48854 Deduction for equality of ...
fonex 48855 The domain of a surjection...
eloprab1st2nd 48856 Reconstruction of a nested...
fmpodg 48857 Domain and codomain of the...
fmpod 48858 Domain and codomain of the...
resinsnlem 48859 Lemma for ~ resinsnALT . ...
resinsn 48860 Restriction to the interse...
resinsnALT 48861 Restriction to the interse...
dftpos5 48862 Alternate definition of ` ...
dftpos6 48863 Alternate definition of ` ...
dmtposss 48864 The domain of ` tpos F ` i...
tposres0 48865 The transposition of a set...
tposresg 48866 The transposition restrict...
tposrescnv 48867 The transposition restrict...
tposres2 48868 The transposition restrict...
tposres3 48869 The transposition restrict...
tposres 48870 The transposition restrict...
tposresxp 48871 The transposition restrict...
tposf1o 48872 Condition of a bijective t...
tposid 48873 Swap an ordered pair. (Co...
tposidres 48874 Swap an ordered pair. (Co...
tposidf1o 48875 The swap function, or the ...
tposideq 48876 Two ways of expressing the...
tposideq2 48877 Two ways of expressing the...
ixpv 48878 Infinite Cartesian product...
fvconst0ci 48879 A constant function's valu...
fvconstdomi 48880 A constant function's valu...
f1omo 48881 There is at most one eleme...
f1omoOLD 48882 Obsolete version of ~ f1om...
f1omoALT 48883 There is at most one eleme...
iccin 48884 Intersection of two closed...
iccdisj2 48885 If the upper bound of one ...
iccdisj 48886 If the upper bound of one ...
slotresfo 48887 The condition of a structu...
mreuniss 48888 The union of a collection ...
clduni 48889 The union of closed sets i...
opncldeqv 48890 Conditions on open sets ar...
opndisj 48891 Two ways of saying that tw...
clddisj 48892 Two ways of saying that tw...
neircl 48893 Reverse closure of the nei...
opnneilem 48894 Lemma factoring out common...
opnneir 48895 If something is true for a...
opnneirv 48896 A variant of ~ opnneir wit...
opnneilv 48897 The converse of ~ opnneir ...
opnneil 48898 A variant of ~ opnneilv . ...
opnneieqv 48899 The equivalence between ne...
opnneieqvv 48900 The equivalence between ne...
restcls2lem 48901 A closed set in a subspace...
restcls2 48902 A closed set in a subspace...
restclsseplem 48903 Lemma for ~ restclssep . ...
restclssep 48904 Two disjoint closed sets i...
cnneiima 48905 Given a continuous functio...
iooii 48906 Open intervals are open se...
icccldii 48907 Closed intervals are close...
i0oii 48908 ` ( 0 [,) A ) ` is open in...
io1ii 48909 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 48910 Lemma for ~ sepnsepo . (C...
sepnsepolem2 48911 Open neighborhood and neig...
sepnsepo 48912 Open neighborhood and neig...
sepdisj 48913 Separated sets are disjoin...
seposep 48914 If two sets are separated ...
sepcsepo 48915 If two sets are separated ...
sepfsepc 48916 If two sets are separated ...
seppsepf 48917 If two sets are precisely ...
seppcld 48918 If two sets are precisely ...
isnrm4 48919 A topological space is nor...
dfnrm2 48920 A topological space is nor...
dfnrm3 48921 A topological space is nor...
iscnrm3lem1 48922 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 48923 Lemma for ~ iscnrm3 provin...
iscnrm3lem4 48924 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 48925 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 48926 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 48927 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 48928 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 48929 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 48930 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 48931 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 48932 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 48933 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 48934 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 48935 Lemma for ~ iscnrm3r . Di...
iscnrm3r 48936 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 48937 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 48938 Lemma for ~ iscnrm3l . If...
iscnrm3l 48939 Lemma for ~ iscnrm3 . Giv...
iscnrm3 48940 A completely normal topolo...
iscnrm3v 48941 A topology is completely n...
iscnrm4 48942 A completely normal topolo...
isprsd 48943 Property of being a preord...
lubeldm2 48944 Member of the domain of th...
glbeldm2 48945 Member of the domain of th...
lubeldm2d 48946 Member of the domain of th...
glbeldm2d 48947 Member of the domain of th...
lubsscl 48948 If a subset of ` S ` conta...
glbsscl 48949 If a subset of ` S ` conta...
lubprlem 48950 Lemma for ~ lubprdm and ~ ...
lubprdm 48951 The set of two comparable ...
lubpr 48952 The LUB of the set of two ...
glbprlem 48953 Lemma for ~ glbprdm and ~ ...
glbprdm 48954 The set of two comparable ...
glbpr 48955 The GLB of the set of two ...
joindm2 48956 The join of any two elemen...
joindm3 48957 The join of any two elemen...
meetdm2 48958 The meet of any two elemen...
meetdm3 48959 The meet of any two elemen...
posjidm 48960 Poset join is idempotent. ...
posmidm 48961 Poset meet is idempotent. ...
resiposbas 48962 Construct a poset ( ~ resi...
resipos 48963 A set equipped with an ord...
exbaspos 48964 There exists a poset for a...
exbasprs 48965 There exists a preordered ...
basresposfo 48966 The base function restrict...
basresprsfo 48967 The base function restrict...
posnex 48968 The class of posets is a p...
prsnex 48969 The class of preordered se...
toslat 48970 A toset is a lattice. (Co...
isclatd 48971 The predicate "is a comple...
intubeu 48972 Existential uniqueness of ...
unilbeu 48973 Existential uniqueness of ...
ipolublem 48974 Lemma for ~ ipolubdm and ~...
ipolubdm 48975 The domain of the LUB of t...
ipolub 48976 The LUB of the inclusion p...
ipoglblem 48977 Lemma for ~ ipoglbdm and ~...
ipoglbdm 48978 The domain of the GLB of t...
ipoglb 48979 The GLB of the inclusion p...
ipolub0 48980 The LUB of the empty set i...
ipolub00 48981 The LUB of the empty set i...
ipoglb0 48982 The GLB of the empty set i...
mrelatlubALT 48983 Least upper bounds in a Mo...
mrelatglbALT 48984 Greatest lower bounds in a...
mreclat 48985 A Moore space is a complet...
topclat 48986 A topology is a complete l...
toplatglb0 48987 The empty intersection in ...
toplatlub 48988 Least upper bounds in a to...
toplatglb 48989 Greatest lower bounds in a...
toplatjoin 48990 Joins in a topology are re...
toplatmeet 48991 Meets in a topology are re...
topdlat 48992 A topology is a distributi...
elmgpcntrd 48993 The center of a ring. (Co...
asclelbas 48994 Lifted scalars are in the ...
asclelbasALT 48995 Alternate proof of ~ ascle...
asclcntr 48996 The algebra scalar lifting...
asclcom 48997 Scalars are commutative af...
homf0 48998 The base is empty iff the ...
catprslem 48999 Lemma for ~ catprs . (Con...
catprs 49000 A preorder can be extracte...
catprs2 49001 A category equipped with t...
catprsc 49002 A construction of the preo...
catprsc2 49003 An alternate construction ...
endmndlem 49004 A diagonal hom-set in a ca...
oppccatb 49005 An opposite category is a ...
oppcmndclem 49006 Lemma for ~ oppcmndc . Ev...
oppcendc 49007 The opposite category of a...
oppcmndc 49008 The opposite category of a...
idmon 49009 An identity arrow, or an i...
idepi 49010 An identity arrow, or an i...
sectrcl 49011 Reverse closure for sectio...
sectrcl2 49012 Reverse closure for sectio...
invrcl 49013 Reverse closure for invers...
invrcl2 49014 Reverse closure for invers...
isinv2 49015 The property " ` F ` is an...
isisod 49016 The predicate "is an isomo...
upeu2lem 49017 Lemma for ~ upeu2 . There...
sectfn 49018 The function value of the ...
invfn 49019 The function value of the ...
isofnALT 49020 The function value of the ...
isofval2 49021 Function value of the func...
isorcl 49022 Reverse closure for isomor...
isorcl2 49023 Reverse closure for isomor...
isoval2 49024 The isomorphisms are the d...
sectpropdlem 49025 Lemma for ~ sectpropd . (...
sectpropd 49026 Two structures with the sa...
invpropdlem 49027 Lemma for ~ invpropd . (C...
invpropd 49028 Two structures with the sa...
isopropdlem 49029 Lemma for ~ isopropd . (C...
isopropd 49030 Two structures with the sa...
cicfn 49031 ` ~=c ` is a function on `...
cicrcl2 49032 Isomorphism implies the st...
oppccic 49033 Isomorphic objects are iso...
relcic 49034 The set of isomorphic obje...
cicerALT 49035 Isomorphism is an equivale...
cic1st2nd 49036 Reconstruction of a pair o...
cic1st2ndbr 49037 Rewrite the predicate of i...
cicpropdlem 49038 Lemma for ~ cicpropd . (C...
cicpropd 49039 Two structures with the sa...
oppccicb 49040 Isomorphic objects are iso...
oppcciceq 49041 The opposite category has ...
dmdm 49042 The double domain of a fun...
iinfssclem1 49043 Lemma for ~ iinfssc . (Co...
iinfssclem2 49044 Lemma for ~ iinfssc . (Co...
iinfssclem3 49045 Lemma for ~ iinfssc . (Co...
iinfssc 49046 Indexed intersection of su...
iinfsubc 49047 Indexed intersection of su...
iinfprg 49048 Indexed intersection of fu...
infsubc 49049 The intersection of two su...
infsubc2 49050 The intersection of two su...
infsubc2d 49051 The intersection of two su...
discsubclem 49052 Lemma for ~ discsubc . (C...
discsubc 49053 A discrete category, whose...
iinfconstbaslem 49054 Lemma for ~ iinfconstbas ....
iinfconstbas 49055 The discrete category is t...
nelsubclem 49056 Lemma for ~ nelsubc . (Co...
nelsubc 49057 An empty "hom-set" for non...
nelsubc2 49058 An empty "hom-set" for non...
nelsubc3lem 49059 Lemma for ~ nelsubc3 . (C...
nelsubc3 49060 Remark 4.2(2) of [Adamek] ...
ssccatid 49061 A category ` C ` restricte...
resccatlem 49062 Lemma for ~ resccat . (Co...
resccat 49063 A class ` C ` restricted b...
reldmfunc 49064 The domain of ` Func ` is ...
func1st2nd 49065 Rewrite the functor predic...
func1st 49066 Extract the first member o...
func2nd 49067 Extract the second member ...
funcrcl2 49068 Reverse closure for a func...
funcrcl3 49069 Reverse closure for a func...
funcf2lem 49070 A utility theorem for prov...
funcf2lem2 49071 A utility theorem for prov...
0funcglem 49072 Lemma for ~ 0funcg . (Con...
0funcg2 49073 The functor from the empty...
0funcg 49074 The functor from the empty...
0funclem 49075 Lemma for ~ 0funcALT . (C...
0func 49076 The functor from the empty...
0funcALT 49077 Alternate proof of ~ 0func...
func0g 49078 The source category of a f...
func0g2 49079 The source category of a f...
initc 49080 Sets with empty base are t...
cofu1st2nd 49081 Rewrite the functor compos...
rescofuf 49082 The restriction of functor...
cofu1a 49083 Value of the object part o...
cofu2a 49084 Value of the morphism part...
cofucla 49085 The composition of two fun...
funchomf 49086 Source categories of a fun...
idfurcl 49087 Reverse closure for an ide...
idfu1stf1o 49088 The identity functor/inclu...
idfu1stalem 49089 Lemma for ~ idfu1sta . (C...
idfu1sta 49090 Value of the object part o...
idfu1a 49091 Value of the object part o...
idfu2nda 49092 Value of the morphism part...
imasubclem1 49093 Lemma for ~ imasubc . (Co...
imasubclem2 49094 Lemma for ~ imasubc . (Co...
imasubclem3 49095 Lemma for ~ imasubc . (Co...
imaf1homlem 49096 Lemma for ~ imaf1hom and o...
imaf1hom 49097 The hom-set of an image of...
imaidfu2lem 49098 Lemma for ~ imaidfu2 . (C...
imaidfu 49099 The image of the identity ...
imaidfu2 49100 The image of the identity ...
cofid1a 49101 Express the object part of...
cofid2a 49102 Express the morphism part ...
cofid1 49103 Express the object part of...
cofid2 49104 Express the morphism part ...
cofidvala 49105 The property " ` F ` is a ...
cofidf2a 49106 If " ` F ` is a section of...
cofidf1a 49107 If " ` F ` is a section of...
cofidval 49108 The property " ` <. F , G ...
cofidf2 49109 If " ` F ` is a section of...
cofidf1 49110 If " ` <. F , G >. ` is a ...
oppffn 49113 ` oppFunc ` is a function ...
reldmoppf 49114 The domain of ` oppFunc ` ...
oppfvalg 49115 Value of the opposite func...
oppfrcllem 49116 Lemma for ~ oppfrcl . (Co...
oppfrcl 49117 If an opposite functor of ...
oppfrcl2 49118 If an opposite functor of ...
oppfrcl3 49119 If an opposite functor of ...
oppf1st2nd 49120 Rewrite the opposite funct...
2oppf 49121 The double opposite functo...
eloppf 49122 The pre-image of a non-emp...
eloppf2 49123 Both components of a pre-i...
oppfvallem 49124 Lemma for ~ oppfval . (Co...
oppfval 49125 Value of the opposite func...
oppfval2 49126 Value of the opposite func...
oppfval3 49127 Value of the opposite func...
oppf1 49128 Value of the object part o...
oppf2 49129 Value of the morphism part...
oppfoppc 49130 The opposite functor is a ...
oppfoppc2 49131 The opposite functor is a ...
funcoppc2 49132 A functor on opposite cate...
funcoppc4 49133 A functor on opposite cate...
funcoppc5 49134 A functor on opposite cate...
2oppffunc 49135 The opposite functor of an...
funcoppc3 49136 A functor on opposite cate...
oppff1 49137 The operation generating o...
oppff1o 49138 The operation generating o...
cofuoppf 49139 Composition of opposite fu...
imasubc 49140 An image of a full functor...
imasubc2 49141 An image of a full functor...
imassc 49142 An image of a functor sati...
imaid 49143 An image of a functor pres...
imaf1co 49144 An image of a functor whos...
imasubc3 49145 An image of a functor inje...
fthcomf 49146 Source categories of a fai...
idfth 49147 The inclusion functor is a...
idemb 49148 The inclusion functor is a...
idsubc 49149 The source category of an ...
idfullsubc 49150 The source category of an ...
cofidfth 49151 If " ` F ` is a section of...
fulloppf 49152 The opposite functor of a ...
fthoppf 49153 The opposite functor of a ...
ffthoppf 49154 The opposite functor of a ...
upciclem1 49155 Lemma for ~ upcic , ~ upeu...
upciclem2 49156 Lemma for ~ upciclem3 and ...
upciclem3 49157 Lemma for ~ upciclem4 . (...
upciclem4 49158 Lemma for ~ upcic and ~ up...
upcic 49159 A universal property defin...
upeu 49160 A universal property defin...
upeu2 49161 Generate new universal mor...
reldmup 49164 The domain of ` UP ` is a ...
upfval 49165 Function value of the clas...
upfval2 49166 Function value of the clas...
upfval3 49167 Function value of the clas...
isuplem 49168 Lemma for ~ isup and other...
isup 49169 The predicate "is a univer...
uppropd 49170 If two categories have the...
reldmup2 49171 The domain of ` ( D UP E )...
relup 49172 The set of universal pairs...
uprcl 49173 Reverse closure for the cl...
up1st2nd 49174 Rewrite the universal prop...
up1st2ndr 49175 Combine separated parts in...
up1st2ndb 49176 Combine/separate parts in ...
up1st2nd2 49177 Rewrite the universal prop...
uprcl2 49178 Reverse closure for the cl...
uprcl3 49179 Reverse closure for the cl...
uprcl4 49180 Reverse closure for the cl...
uprcl5 49181 Reverse closure for the cl...
uobrcl 49182 Reverse closure for univer...
isup2 49183 The universal property of ...
upeu3 49184 The universal pair ` <. X ...
upeu4 49185 Generate a new universal m...
uptposlem 49186 Lemma for ~ uptpos . (Con...
uptpos 49187 Rewrite the predicate of u...
oppcuprcl4 49188 Reverse closure for the cl...
oppcuprcl3 49189 Reverse closure for the cl...
oppcuprcl5 49190 Reverse closure for the cl...
oppcuprcl2 49191 Reverse closure for the cl...
uprcl2a 49192 Reverse closure for the cl...
oppfuprcl 49193 Reverse closure for the cl...
oppfuprcl2 49194 Reverse closure for the cl...
oppcup3lem 49195 Lemma for ~ oppcup3 . (Co...
oppcup 49196 The universal pair ` <. X ...
oppcup2 49197 The universal property for...
oppcup3 49198 The universal property for...
uptrlem1 49199 Lemma for ~ uptr . (Contr...
uptrlem2 49200 Lemma for ~ uptr . (Contr...
uptrlem3 49201 Lemma for ~ uptr . (Contr...
uptr 49202 Universal property and ful...
uptri 49203 Universal property and ful...
uptra 49204 Universal property and ful...
uptrar 49205 Universal property and ful...
uptrai 49206 Universal property and ful...
uobffth 49207 A fully faithful functor g...
uobeqw 49208 If a full functor (in fact...
uobeq 49209 If a full functor (in fact...
uptr2 49210 Universal property and ful...
uptr2a 49211 Universal property and ful...
isnatd 49212 Property of being a natura...
natrcl2 49213 Reverse closure for a natu...
natrcl3 49214 Reverse closure for a natu...
catbas 49215 The base of the category s...
cathomfval 49216 The hom-sets of the catego...
catcofval 49217 Composition of the categor...
natoppf 49218 A natural transformation i...
natoppf2 49219 A natural transformation i...
natoppfb 49220 A natural transformation i...
initoo2 49221 An initial object is an ob...
termoo2 49222 A terminal object is an ob...
zeroo2 49223 A zero object is an object...
oppcinito 49224 Initial objects are termin...
oppctermo 49225 Terminal objects are initi...
oppczeroo 49226 Zero objects are zero in t...
termoeu2 49227 Terminal objects are essen...
initopropdlemlem 49228 Lemma for ~ initopropdlem ...
initopropdlem 49229 Lemma for ~ initopropd . ...
termopropdlem 49230 Lemma for ~ termopropd . ...
zeroopropdlem 49231 Lemma for ~ zeroopropd . ...
initopropd 49232 Two structures with the sa...
termopropd 49233 Two structures with the sa...
zeroopropd 49234 Two structures with the sa...
reldmxpc 49235 The binary product of cate...
reldmxpcALT 49236 Alternate proof of ~ reldm...
elxpcbasex1 49237 A non-empty base set of th...
elxpcbasex1ALT 49238 Alternate proof of ~ elxpc...
elxpcbasex2 49239 A non-empty base set of th...
elxpcbasex2ALT 49240 Alternate proof of ~ elxpc...
xpcfucbas 49241 The base set of the produc...
xpcfuchomfval 49242 Set of morphisms of the bi...
xpcfuchom 49243 Set of morphisms of the bi...
xpcfuchom2 49244 Value of the set of morphi...
xpcfucco2 49245 Value of composition in th...
xpcfuccocl 49246 The composition of two nat...
xpcfucco3 49247 Value of composition in th...
dfswapf2 49250 Alternate definition of ` ...
swapfval 49251 Value of the swap functor....
swapfelvv 49252 A swap functor is an order...
swapf2fvala 49253 The morphism part of the s...
swapf2fval 49254 The morphism part of the s...
swapf1vala 49255 The object part of the swa...
swapf1val 49256 The object part of the swa...
swapf2fn 49257 The morphism part of the s...
swapf1a 49258 The object part of the swa...
swapf2vala 49259 The morphism part of the s...
swapf2a 49260 The morphism part of the s...
swapf1 49261 The object part of the swa...
swapf2val 49262 The morphism part of the s...
swapf2 49263 The morphism part of the s...
swapf1f1o 49264 The object part of the swa...
swapf2f1o 49265 The morphism part of the s...
swapf2f1oa 49266 The morphism part of the s...
swapf2f1oaALT 49267 Alternate proof of ~ swapf...
swapfid 49268 Each identity morphism in ...
swapfida 49269 Each identity morphism in ...
swapfcoa 49270 Composition in the source ...
swapffunc 49271 The swap functor is a func...
swapfffth 49272 The swap functor is a full...
swapffunca 49273 The swap functor is a func...
swapfiso 49274 The swap functor is an iso...
swapciso 49275 The product category is ca...
oppc1stflem 49276 A utility theorem for prov...
oppc1stf 49277 The opposite functor of th...
oppc2ndf 49278 The opposite functor of th...
1stfpropd 49279 If two categories have the...
2ndfpropd 49280 If two categories have the...
diagpropd 49281 If two categories have the...
cofuswapfcl 49282 The bifunctor pre-composed...
cofuswapf1 49283 The object part of a bifun...
cofuswapf2 49284 The morphism part of a bif...
tposcurf1cl 49285 The partially evaluated tr...
tposcurf11 49286 Value of the double evalua...
tposcurf12 49287 The partially evaluated tr...
tposcurf1 49288 Value of the object part o...
tposcurf2 49289 Value of the transposed cu...
tposcurf2val 49290 Value of a component of th...
tposcurf2cl 49291 The transposed curry funct...
tposcurfcl 49292 The transposed curry funct...
diag1 49293 The constant functor of ` ...
diag1a 49294 The constant functor of ` ...
diag1f1lem 49295 The object part of the dia...
diag1f1 49296 The object part of the dia...
diag2f1lem 49297 Lemma for ~ diag2f1 . The...
diag2f1 49298 If ` B ` is non-empty, the...
fucofulem1 49299 Lemma for proving functor ...
fucofulem2 49300 Lemma for proving functor ...
fuco2el 49301 Equivalence of product fun...
fuco2eld 49302 Equivalence of product fun...
fuco2eld2 49303 Equivalence of product fun...
fuco2eld3 49304 Equivalence of product fun...
fucofvalg 49307 Value of the function givi...
fucofval 49308 Value of the function givi...
fucoelvv 49309 A functor composition bifu...
fuco1 49310 The object part of the fun...
fucof1 49311 The object part of the fun...
fuco2 49312 The morphism part of the f...
fucofn2 49313 The morphism part of the f...
fucofvalne 49314 Value of the function givi...
fuco11 49315 The object part of the fun...
fuco11cl 49316 The object part of the fun...
fuco11a 49317 The object part of the fun...
fuco112 49318 The object part of the fun...
fuco111 49319 The object part of the fun...
fuco111x 49320 The object part of the fun...
fuco112x 49321 The object part of the fun...
fuco112xa 49322 The object part of the fun...
fuco11id 49323 The identity morphism of t...
fuco11idx 49324 The identity morphism of t...
fuco21 49325 The morphism part of the f...
fuco11b 49326 The object part of the fun...
fuco11bALT 49327 Alternate proof of ~ fuco1...
fuco22 49328 The morphism part of the f...
fucofn22 49329 The morphism part of the f...
fuco23 49330 The morphism part of the f...
fuco22natlem1 49331 Lemma for ~ fuco22nat . T...
fuco22natlem2 49332 Lemma for ~ fuco22nat . T...
fuco22natlem3 49333 Combine ~ fuco22natlem2 wi...
fuco22natlem 49334 The composed natural trans...
fuco22nat 49335 The composed natural trans...
fucof21 49336 The morphism part of the f...
fucoid 49337 Each identity morphism in ...
fucoid2 49338 Each identity morphism in ...
fuco22a 49339 The morphism part of the f...
fuco23alem 49340 The naturality property ( ...
fuco23a 49341 The morphism part of the f...
fucocolem1 49342 Lemma for ~ fucoco . Asso...
fucocolem2 49343 Lemma for ~ fucoco . The ...
fucocolem3 49344 Lemma for ~ fucoco . The ...
fucocolem4 49345 Lemma for ~ fucoco . The ...
fucoco 49346 Composition in the source ...
fucoco2 49347 Composition in the source ...
fucofunc 49348 The functor composition bi...
fucofunca 49349 The functor composition bi...
fucolid 49350 Post-compose a natural tra...
fucorid 49351 Pre-composing a natural tr...
fucorid2 49352 Pre-composing a natural tr...
postcofval 49353 Value of the post-composit...
postcofcl 49354 The post-composition funct...
precofvallem 49355 Lemma for ~ precofval to e...
precofval 49356 Value of the pre-compositi...
precofvalALT 49357 Alternate proof of ~ preco...
precofval2 49358 Value of the pre-compositi...
precofcl 49359 The pre-composition functo...
precofval3 49360 Value of the pre-compositi...
precoffunc 49361 The pre-composition functo...
reldmprcof 49364 The domain of ` -o.F ` is ...
prcofvalg 49365 Value of the pre-compositi...
prcofvala 49366 Value of the pre-compositi...
prcofval 49367 Value of the pre-compositi...
prcofpropd 49368 If the categories have the...
prcofelvv 49369 The pre-composition functo...
reldmprcof1 49370 The domain of the object p...
reldmprcof2 49371 The domain of the morphism...
prcoftposcurfuco 49372 The pre-composition functo...
prcoftposcurfucoa 49373 The pre-composition functo...
prcoffunc 49374 The pre-composition functo...
prcoffunca 49375 The pre-composition functo...
prcoffunca2 49376 The pre-composition functo...
prcof1 49377 The object part of the pre...
prcof2a 49378 The morphism part of the p...
prcof2 49379 The morphism part of the p...
prcof21a 49380 The morphism part of the p...
prcof22a 49381 The morphism part of the p...
prcofdiag1 49382 A constant functor pre-com...
prcofdiag 49383 A diagonal functor post-co...
catcrcl 49384 Reverse closure for the ca...
catcrcl2 49385 Reverse closure for the ca...
elcatchom 49386 A morphism of the category...
catcsect 49387 The property " ` F ` is a ...
catcinv 49388 The property " ` F ` is an...
catcisoi 49389 A functor is an isomorphis...
uobeq2 49390 If a full functor (in fact...
uobeq3 49391 An isomorphism between cat...
opf11 49392 The object part of the op ...
opf12 49393 The object part of the op ...
opf2fval 49394 The morphism part of the o...
opf2 49395 The morphism part of the o...
fucoppclem 49396 Lemma for ~ fucoppc . (Co...
fucoppcid 49397 The opposite category of f...
fucoppcco 49398 The opposite category of f...
fucoppc 49399 The isomorphism from the o...
fucoppcffth 49400 A fully faithful functor f...
fucoppcfunc 49401 A functor from the opposit...
fucoppccic 49402 The opposite category of f...
oppfdiag1 49403 A constant functor for opp...
oppfdiag1a 49404 A constant functor for opp...
oppfdiag 49405 A diagonal functor for opp...
isthinc 49408 The predicate "is a thin c...
isthinc2 49409 A thin category is a categ...
isthinc3 49410 A thin category is a categ...
thincc 49411 A thin category is a categ...
thinccd 49412 A thin category is a categ...
thincssc 49413 A thin category is a categ...
isthincd2lem1 49414 Lemma for ~ isthincd2 and ...
thincmo2 49415 Morphisms in the same hom-...
thinchom 49416 A non-empty hom-set of a t...
thincmo 49417 There is at most one morph...
thincmoALT 49418 Alternate proof of ~ thinc...
thincmod 49419 At most one morphism in ea...
thincn0eu 49420 In a thin category, a hom-...
thincid 49421 In a thin category, a morp...
thincmon 49422 In a thin category, all mo...
thincepi 49423 In a thin category, all mo...
isthincd2lem2 49424 Lemma for ~ isthincd2 . (...
isthincd 49425 The predicate "is a thin c...
isthincd2 49426 The predicate " ` C ` is a...
oppcthin 49427 The opposite category of a...
oppcthinco 49428 If the opposite category o...
oppcthinendc 49429 The opposite category of a...
oppcthinendcALT 49430 Alternate proof of ~ oppct...
thincpropd 49431 Two structures with the sa...
subthinc 49432 A subcategory of a thin ca...
functhinclem1 49433 Lemma for ~ functhinc . G...
functhinclem2 49434 Lemma for ~ functhinc . (...
functhinclem3 49435 Lemma for ~ functhinc . T...
functhinclem4 49436 Lemma for ~ functhinc . O...
functhinc 49437 A functor to a thin catego...
functhincfun 49438 A functor to a thin catego...
fullthinc 49439 A functor to a thin catego...
fullthinc2 49440 A full functor to a thin c...
thincfth 49441 A functor from a thin cate...
thincciso 49442 Two thin categories are is...
thinccisod 49443 Two thin categories are is...
thincciso2 49444 Categories isomorphic to a...
thincciso3 49445 Categories isomorphic to a...
thincciso4 49446 Two isomorphic categories ...
0thincg 49447 Any structure with an empt...
0thinc 49448 The empty category (see ~ ...
indcthing 49449 An indiscrete category, i....
discthing 49450 A discrete category, i.e.,...
indthinc 49451 An indiscrete category in ...
indthincALT 49452 An alternate proof of ~ in...
prsthinc 49453 Preordered sets as categor...
setcthin 49454 A category of sets all of ...
setc2othin 49455 The category ` ( SetCat ``...
thincsect 49456 In a thin category, one mo...
thincsect2 49457 In a thin category, ` F ` ...
thincinv 49458 In a thin category, ` F ` ...
thinciso 49459 In a thin category, ` F : ...
thinccic 49460 In a thin category, two ob...
istermc 49463 The predicate "is a termin...
istermc2 49464 The predicate "is a termin...
istermc3 49465 The predicate "is a termin...
termcthin 49466 A terminal category is a t...
termcthind 49467 A terminal category is a t...
termccd 49468 A terminal category is a c...
termcbas 49469 The base of a terminal cat...
termco 49470 The object of a terminal c...
termcbas2 49471 The base of a terminal cat...
termcbasmo 49472 Two objects in a terminal ...
termchomn0 49473 All hom-sets of a terminal...
termchommo 49474 All morphisms of a termina...
termcid 49475 The morphism of a terminal...
termcid2 49476 The morphism of a terminal...
termchom 49477 The hom-set of a terminal ...
termchom2 49478 The hom-set of a terminal ...
setcsnterm 49479 The category of one set, e...
setc1oterm 49480 The category ` ( SetCat ``...
setc1obas 49481 The base of the trivial ca...
setc1ohomfval 49482 Set of morphisms of the tr...
setc1ocofval 49483 Composition in the trivial...
setc1oid 49484 The identity morphism of t...
funcsetc1ocl 49485 The functor to the trivial...
funcsetc1o 49486 Value of the functor to th...
isinito2lem 49487 The predicate "is an initi...
isinito2 49488 The predicate "is an initi...
isinito3 49489 The predicate "is an initi...
dfinito4 49490 An alternate definition of...
dftermo4 49491 An alternate definition of...
termcpropd 49492 Two structures with the sa...
oppctermhom 49493 The opposite category of a...
oppctermco 49494 The opposite category of a...
oppcterm 49495 The opposite category of a...
functermclem 49496 Lemma for ~ functermc . (...
functermc 49497 Functor to a terminal cate...
functermc2 49498 Functor to a terminal cate...
functermceu 49499 There exists a unique func...
fulltermc 49500 A functor to a terminal ca...
fulltermc2 49501 Given a full functor to a ...
termcterm 49502 A terminal category is a t...
termcterm2 49503 A terminal object of the c...
termcterm3 49504 In the category of small c...
termcciso 49505 A category is isomorphic t...
termccisoeu 49506 The isomorphism between te...
termc2 49507 If there exists a unique f...
termc 49508 Alternate definition of ` ...
dftermc2 49509 Alternate definition of ` ...
eufunclem 49510 If there exists a unique f...
eufunc 49511 If there exists a unique f...
idfudiag1lem 49512 Lemma for ~ idfudiag1bas a...
idfudiag1bas 49513 If the identity functor of...
idfudiag1 49514 If the identity functor of...
euendfunc 49515 If there exists a unique e...
euendfunc2 49516 If there exists a unique e...
termcarweu 49517 There exists a unique disj...
arweuthinc 49518 If a structure has a uniqu...
arweutermc 49519 If a structure has a uniqu...
dftermc3 49520 Alternate definition of ` ...
termcfuncval 49521 The value of a functor fro...
diag1f1olem 49522 To any functor from a term...
diag1f1o 49523 The object part of the dia...
termcnatval 49524 Value of natural transform...
diag2f1olem 49525 Lemma for ~ diag2f1o . (C...
diag2f1o 49526 If ` D ` is terminal, the ...
diagffth 49527 The diagonal functor is a ...
diagciso 49528 The diagonal functor is an...
diagcic 49529 Any category ` C ` is isom...
funcsn 49530 The category of one functo...
fucterm 49531 The category of functors t...
0fucterm 49532 The category of functors f...
termfucterm 49533 All functors between two t...
cofuterm 49534 Post-compose with a functo...
uobeqterm 49535 Universal objects and term...
isinito4 49536 The predicate "is an initi...
isinito4a 49537 The predicate "is an initi...
prstcval 49540 Lemma for ~ prstcnidlem an...
prstcnidlem 49541 Lemma for ~ prstcnid and ~...
prstcnid 49542 Components other than ` Ho...
prstcbas 49543 The base set is unchanged....
prstcleval 49544 Value of the less-than-or-...
prstcle 49545 Value of the less-than-or-...
prstcocval 49546 Orthocomplementation is un...
prstcoc 49547 Orthocomplementation is un...
prstchomval 49548 Hom-sets of the constructe...
prstcprs 49549 The category is a preorder...
prstcthin 49550 The preordered set is equi...
prstchom 49551 Hom-sets of the constructe...
prstchom2 49552 Hom-sets of the constructe...
prstchom2ALT 49553 Hom-sets of the constructe...
oduoppcbas 49554 The dual of a preordered s...
oduoppcciso 49555 The dual of a preordered s...
postcpos 49556 The converted category is ...
postcposALT 49557 Alternate proof of ~ postc...
postc 49558 The converted category is ...
discsntermlem 49559 A singlegon is an element ...
basrestermcfolem 49560 An element of the class of...
discbas 49561 A discrete category (a cat...
discthin 49562 A discrete category (a cat...
discsnterm 49563 A discrete category (a cat...
basrestermcfo 49564 The base function restrict...
termcnex 49565 The class of all terminal ...
mndtcval 49568 Value of the category buil...
mndtcbasval 49569 The base set of the catego...
mndtcbas 49570 The category built from a ...
mndtcob 49571 Lemma for ~ mndtchom and ~...
mndtcbas2 49572 Two objects in a category ...
mndtchom 49573 The only hom-set of the ca...
mndtcco 49574 The composition of the cat...
mndtcco2 49575 The composition of the cat...
mndtccatid 49576 Lemma for ~ mndtccat and ~...
mndtccat 49577 The function value is a ca...
mndtcid 49578 The identity morphism, or ...
oppgoppchom 49579 The converted opposite mon...
oppgoppcco 49580 The converted opposite mon...
oppgoppcid 49581 The converted opposite mon...
grptcmon 49582 All morphisms in a categor...
grptcepi 49583 All morphisms in a categor...
2arwcatlem1 49584 Lemma for ~ 2arwcat . (Co...
2arwcatlem2 49585 Lemma for ~ 2arwcat . (Co...
2arwcatlem3 49586 Lemma for ~ 2arwcat . (Co...
2arwcatlem4 49587 Lemma for ~ 2arwcat . (Co...
2arwcatlem5 49588 Lemma for ~ 2arwcat . (Co...
2arwcat 49589 The condition for a struct...
incat 49590 Constructing a category wi...
setc1onsubc 49591 Construct a category with ...
cnelsubclem 49592 Lemma for ~ cnelsubc . (C...
cnelsubc 49593 Remark 4.2(2) of [Adamek] ...
lanfn 49598 ` Lan ` is a function on `...
ranfn 49599 ` Ran ` is a function on `...
reldmlan 49600 The domain of ` Lan ` is a...
reldmran 49601 The domain of ` Ran ` is a...
lanfval 49602 Value of the function gene...
ranfval 49603 Value of the function gene...
lanpropd 49604 If the categories have the...
ranpropd 49605 If the categories have the...
reldmlan2 49606 The domain of ` ( P Lan E ...
reldmran2 49607 The domain of ` ( P Ran E ...
lanval 49608 Value of the set of left K...
ranval 49609 Value of the set of right ...
lanrcl 49610 Reverse closure for left K...
ranrcl 49611 Reverse closure for right ...
rellan 49612 The set of left Kan extens...
relran 49613 The set of right Kan exten...
islan 49614 A left Kan extension is a ...
islan2 49615 A left Kan extension is a ...
lanval2 49616 The set of left Kan extens...
isran 49617 A right Kan extension is a...
isran2 49618 A right Kan extension is a...
ranval2 49619 The set of right Kan exten...
ranval3 49620 The set of right Kan exten...
lanrcl2 49621 Reverse closure for left K...
lanrcl3 49622 Reverse closure for left K...
lanrcl4 49623 The first component of a l...
lanrcl5 49624 The second component of a ...
ranrcl2 49625 Reverse closure for right ...
ranrcl3 49626 Reverse closure for right ...
ranrcl4lem 49627 Lemma for ~ ranrcl4 and ~ ...
ranrcl4 49628 The first component of a r...
ranrcl5 49629 The second component of a ...
lanup 49630 The universal property of ...
ranup 49631 The universal property of ...
reldmlmd 49636 The domain of ` Limit ` is...
reldmcmd 49637 The domain of ` Colimit ` ...
lmdfval 49638 Function value of ` Limit ...
cmdfval 49639 Function value of ` Colimi...
lmdrcl 49640 Reverse closure for a limi...
cmdrcl 49641 Reverse closure for a coli...
reldmlmd2 49642 The domain of ` ( C Limit ...
reldmcmd2 49643 The domain of ` ( C Colimi...
lmdfval2 49644 The set of limits of a dia...
cmdfval2 49645 The set of colimits of a d...
lmdpropd 49646 If the categories have the...
cmdpropd 49647 If the categories have the...
rellmd 49648 The set of limits of a dia...
relcmd 49649 The set of colimits of a d...
concl 49650 A natural transformation f...
coccl 49651 A natural transformation t...
concom 49652 A cone to a diagram commut...
coccom 49653 A co-cone to a diagram com...
islmd 49654 The universal property of ...
iscmd 49655 The universal property of ...
lmddu 49656 The duality of limits and ...
cmddu 49657 The duality of limits and ...
initocmd 49658 Initial objects are the ob...
termolmd 49659 Terminal objects are the o...
lmdran 49660 To each limit of a diagram...
cmdlan 49661 To each colimit of a diagr...
nfintd 49662 Bound-variable hypothesis ...
nfiund 49663 Bound-variable hypothesis ...
nfiundg 49664 Bound-variable hypothesis ...
iunord 49665 The indexed union of a col...
iunordi 49666 The indexed union of a col...
spd 49667 Specialization deduction, ...
spcdvw 49668 A version of ~ spcdv where...
tfis2d 49669 Transfinite Induction Sche...
bnd2d 49670 Deduction form of ~ bnd2 ....
dffun3f 49671 Alternate definition of fu...
setrecseq 49674 Equality theorem for set r...
nfsetrecs 49675 Bound-variable hypothesis ...
setrec1lem1 49676 Lemma for ~ setrec1 . Thi...
setrec1lem2 49677 Lemma for ~ setrec1 . If ...
setrec1lem3 49678 Lemma for ~ setrec1 . If ...
setrec1lem4 49679 Lemma for ~ setrec1 . If ...
setrec1 49680 This is the first of two f...
setrec2fun 49681 This is the second of two ...
setrec2lem1 49682 Lemma for ~ setrec2 . The...
setrec2lem2 49683 Lemma for ~ setrec2 . The...
setrec2 49684 This is the second of two ...
setrec2v 49685 Version of ~ setrec2 with ...
setrec2mpt 49686 Version of ~ setrec2 where...
setis 49687 Version of ~ setrec2 expre...
elsetrecslem 49688 Lemma for ~ elsetrecs . A...
elsetrecs 49689 A set ` A ` is an element ...
setrecsss 49690 The ` setrecs ` operator r...
setrecsres 49691 A recursively generated cl...
vsetrec 49692 Construct ` _V ` using set...
0setrec 49693 If a function sends the em...
onsetreclem1 49694 Lemma for ~ onsetrec . (C...
onsetreclem2 49695 Lemma for ~ onsetrec . (C...
onsetreclem3 49696 Lemma for ~ onsetrec . (C...
onsetrec 49697 Construct ` On ` using set...
elpglem1 49700 Lemma for ~ elpg . (Contr...
elpglem2 49701 Lemma for ~ elpg . (Contr...
elpglem3 49702 Lemma for ~ elpg . (Contr...
elpg 49703 Membership in the class of...
pgindlem 49704 Lemma for ~ pgind . (Cont...
pgindnf 49705 Version of ~ pgind with ex...
pgind 49706 Induction on partizan game...
sbidd 49707 An identity theorem for su...
sbidd-misc 49708 An identity theorem for su...
gte-lte 49713 Simple relationship betwee...
gt-lt 49714 Simple relationship betwee...
gte-lteh 49715 Relationship between ` <_ ...
gt-lth 49716 Relationship between ` < `...
ex-gt 49717 Simple example of ` > ` , ...
ex-gte 49718 Simple example of ` >_ ` ,...
sinhval-named 49725 Value of the named sinh fu...
coshval-named 49726 Value of the named cosh fu...
tanhval-named 49727 Value of the named tanh fu...
sinh-conventional 49728 Conventional definition of...
sinhpcosh 49729 Prove that ` ( sinh `` A )...
secval 49736 Value of the secant functi...
cscval 49737 Value of the cosecant func...
cotval 49738 Value of the cotangent fun...
seccl 49739 The closure of the secant ...
csccl 49740 The closure of the cosecan...
cotcl 49741 The closure of the cotange...
reseccl 49742 The closure of the secant ...
recsccl 49743 The closure of the cosecan...
recotcl 49744 The closure of the cotange...
recsec 49745 The reciprocal of secant i...
reccsc 49746 The reciprocal of cosecant...
reccot 49747 The reciprocal of cotangen...
rectan 49748 The reciprocal of tangent ...
sec0 49749 The value of the secant fu...
onetansqsecsq 49750 Prove the tangent squared ...
cotsqcscsq 49751 Prove the tangent squared ...
ifnmfalse 49752 If A is not a member of B,...
logb2aval 49753 Define the value of the ` ...
mvlraddi 49760 Move the right term in a s...
assraddsubi 49761 Associate RHS addition-sub...
joinlmuladdmuli 49762 Join AB+CB into (A+C) on L...
joinlmulsubmuld 49763 Join AB-CB into (A-C) on L...
joinlmulsubmuli 49764 Join AB-CB into (A-C) on L...
mvlrmuld 49765 Move the right term in a p...
mvlrmuli 49766 Move the right term in a p...
i2linesi 49767 Solve for the intersection...
i2linesd 49768 Solve for the intersection...
alimp-surprise 49769 Demonstrate that when usin...
alimp-no-surprise 49770 There is no "surprise" in ...
empty-surprise 49771 Demonstrate that when usin...
empty-surprise2 49772 "Prove" that false is true...
eximp-surprise 49773 Show what implication insi...
eximp-surprise2 49774 Show that "there exists" w...
alsconv 49779 There is an equivalence be...
alsi1d 49780 Deduction rule: Given "al...
alsi2d 49781 Deduction rule: Given "al...
alsc1d 49782 Deduction rule: Given "al...
alsc2d 49783 Deduction rule: Given "al...
alscn0d 49784 Deduction rule: Given "al...
alsi-no-surprise 49785 Demonstrate that there is ...
5m4e1 49786 Prove that 5 - 4 = 1. (Co...
2p2ne5 49787 Prove that ` 2 + 2 =/= 5 `...
resolution 49788 Resolution rule. This is ...
testable 49789 In classical logic all wff...
aacllem 49790 Lemma for other theorems a...
amgmwlem 49791 Weighted version of ~ amgm...
amgmlemALT 49792 Alternate proof of ~ amgml...
amgmw2d 49793 Weighted arithmetic-geomet...
young2d 49794 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator