Metamath Proof Explorer |
This is the Unicode version. Change to GIF version |
Ref | Description |
idi 1 | (_Note_: This inference r... |
a1ii 2 | (_Note_: This inference r... |
mp2 9 | A double modus ponens infe... |
mp2b 10 | A double modus ponens infe... |
a1i 11 | Inference introducing an a... |
2a1i 12 | Inference introducing two ... |
mp1i 13 | Inference detaching an ant... |
a2i 14 | Inference distributing an ... |
mpd 15 | A modus ponens deduction. ... |
imim2i 16 | Inference adding common an... |
syl 17 | An inference version of th... |
3syl 18 | Inference chaining two syl... |
4syl 19 | Inference chaining three s... |
mpi 20 | A nested modus ponens infe... |
mpisyl 21 | A syllogism combined with ... |
id 22 | Principle of identity. Th... |
idALT 23 | Alternate proof of ~ id . ... |
idd 24 | Principle of identity ~ id... |
a1d 25 | Deduction introducing an e... |
2a1d 26 | Deduction introducing two ... |
a1i13 27 | Add two antecedents to a w... |
2a1 28 | A double form of ~ ax-1 . ... |
a2d 29 | Deduction distributing an ... |
sylcom 30 | Syllogism inference with c... |
syl5com 31 | Syllogism inference with c... |
com12 32 | Inference that swaps (comm... |
syl11 33 | A syllogism inference. Co... |
syl5 34 | A syllogism rule of infere... |
syl6 35 | A syllogism rule of infere... |
syl56 36 | Combine ~ syl5 and ~ syl6 ... |
syl6com 37 | Syllogism inference with c... |
mpcom 38 | Modus ponens inference wit... |
syli 39 | Syllogism inference with c... |
syl2im 40 | Replace two antecedents. ... |
syl2imc 41 | A commuted version of ~ sy... |
pm2.27 42 | This theorem, sometimes ca... |
mpdd 43 | A nested modus ponens dedu... |
mpid 44 | A nested modus ponens dedu... |
mpdi 45 | A nested modus ponens dedu... |
mpii 46 | A doubly nested modus pone... |
syld 47 | Syllogism deduction. Dedu... |
syldc 48 | Syllogism deduction. Comm... |
mp2d 49 | A double modus ponens dedu... |
a1dd 50 | Double deduction introduci... |
2a1dd 51 | Double deduction introduci... |
pm2.43i 52 | Inference absorbing redund... |
pm2.43d 53 | Deduction absorbing redund... |
pm2.43a 54 | Inference absorbing redund... |
pm2.43b 55 | Inference absorbing redund... |
pm2.43 56 | Absorption of redundant an... |
imim2d 57 | Deduction adding nested an... |
imim2 58 | A closed form of syllogism... |
embantd 59 | Deduction embedding an ant... |
3syld 60 | Triple syllogism deduction... |
sylsyld 61 | A double syllogism inferen... |
imim12i 62 | Inference joining two impl... |
imim1i 63 | Inference adding common co... |
imim3i 64 | Inference adding three nes... |
sylc 65 | A syllogism inference comb... |
syl3c 66 | A syllogism inference comb... |
syl6mpi 67 | A syllogism inference. (C... |
mpsyl 68 | Modus ponens combined with... |
mpsylsyld 69 | Modus ponens combined with... |
syl6c 70 | Inference combining ~ syl6... |
syl6ci 71 | A syllogism inference comb... |
syldd 72 | Nested syllogism deduction... |
syl5d 73 | A nested syllogism deducti... |
syl7 74 | A syllogism rule of infere... |
syl6d 75 | A nested syllogism deducti... |
syl8 76 | A syllogism rule of infere... |
syl9 77 | A nested syllogism inferen... |
syl9r 78 | A nested syllogism inferen... |
syl10 79 | A nested syllogism inferen... |
a1ddd 80 | Triple deduction introduci... |
imim12d 81 | Deduction combining antece... |
imim1d 82 | Deduction adding nested co... |
imim1 83 | A closed form of syllogism... |
pm2.83 84 | Theorem *2.83 of [Whitehea... |
peirceroll 85 | Over minimal implicational... |
com23 86 | Commutation of antecedents... |
com3r 87 | Commutation of antecedents... |
com13 88 | Commutation of antecedents... |
com3l 89 | Commutation of antecedents... |
pm2.04 90 | Swap antecedents. Theorem... |
com34 91 | Commutation of antecedents... |
com4l 92 | Commutation of antecedents... |
com4t 93 | Commutation of antecedents... |
com4r 94 | Commutation of antecedents... |
com24 95 | Commutation of antecedents... |
com14 96 | Commutation of antecedents... |
com45 97 | Commutation of antecedents... |
com35 98 | Commutation of antecedents... |
com25 99 | Commutation of antecedents... |
com5l 100 | Commutation of antecedents... |
com15 101 | Commutation of antecedents... |
com52l 102 | Commutation of antecedents... |
com52r 103 | Commutation of antecedents... |
com5r 104 | Commutation of antecedents... |
imim12 105 | Closed form of ~ imim12i a... |
jarr 106 | Elimination of a nested an... |
jarri 107 | Inference associated with ... |
pm2.86d 108 | Deduction associated with ... |
pm2.86 109 | Converse of Axiom ~ ax-2 .... |
pm2.86i 110 | Inference associated with ... |
loolin 111 | The Linearity Axiom of the... |
loowoz 112 | An alternate for the Linea... |
con4 113 | Alias for ~ ax-3 to be use... |
con4i 114 | Inference associated with ... |
con4d 115 | Deduction associated with ... |
mt4 116 | The rule of modus tollens.... |
mt4d 117 | Modus tollens deduction. ... |
mt4i 118 | Modus tollens inference. ... |
pm2.21i 119 | A contradiction implies an... |
pm2.24ii 120 | A contradiction implies an... |
pm2.21d 121 | A contradiction implies an... |
pm2.21ddALT 122 | Alternate proof of ~ pm2.2... |
pm2.21 123 | From a wff and its negatio... |
pm2.24 124 | Theorem *2.24 of [Whitehea... |
jarl 125 | Elimination of a nested an... |
jarli 126 | Inference associated with ... |
pm2.18d 127 | Deduction form of the Clav... |
pm2.18 128 | Clavius law, or "consequen... |
pm2.18i 129 | Inference associated with ... |
notnotr 130 | Double negation eliminatio... |
notnotri 131 | Inference associated with ... |
notnotriALT 132 | Alternate proof of ~ notno... |
notnotrd 133 | Deduction associated with ... |
con2d 134 | A contraposition deduction... |
con2 135 | Contraposition. Theorem *... |
mt2d 136 | Modus tollens deduction. ... |
mt2i 137 | Modus tollens inference. ... |
nsyl3 138 | A negated syllogism infere... |
con2i 139 | A contraposition inference... |
nsyl 140 | A negated syllogism infere... |
nsyl2 141 | A negated syllogism infere... |
notnot 142 | Double negation introducti... |
notnoti 143 | Inference associated with ... |
notnotd 144 | Deduction associated with ... |
con1d 145 | A contraposition deduction... |
con1 146 | Contraposition. Theorem *... |
con1i 147 | A contraposition inference... |
mt3d 148 | Modus tollens deduction. ... |
mt3i 149 | Modus tollens inference. ... |
pm2.24i 150 | Inference associated with ... |
pm2.24d 151 | Deduction form of ~ pm2.24... |
con3d 152 | A contraposition deduction... |
con3 153 | Contraposition. Theorem *... |
con3i 154 | A contraposition inference... |
con3rr3 155 | Rotate through consequent ... |
nsyld 156 | A negated syllogism deduct... |
nsyli 157 | A negated syllogism infere... |
nsyl4 158 | A negated syllogism infere... |
nsyl5 159 | A negated syllogism infere... |
pm3.2im 160 | Theorem *3.2 of [Whitehead... |
jc 161 | Deduction joining the cons... |
jcn 162 | Theorem joining the conseq... |
jcnd 163 | Deduction joining the cons... |
impi 164 | An importation inference. ... |
expi 165 | An exportation inference. ... |
simprim 166 | Simplification. Similar t... |
simplim 167 | Simplification. Similar t... |
pm2.5g 168 | General instance of Theore... |
pm2.5 169 | Theorem *2.5 of [Whitehead... |
conax1 170 | Contrapositive of ~ ax-1 .... |
conax1k 171 | Weakening of ~ conax1 . G... |
pm2.51 172 | Theorem *2.51 of [Whitehea... |
pm2.52 173 | Theorem *2.52 of [Whitehea... |
pm2.521g 174 | A general instance of Theo... |
pm2.521g2 175 | A general instance of Theo... |
pm2.521 176 | Theorem *2.521 of [Whitehe... |
expt 177 | Exportation theorem ~ pm3.... |
impt 178 | Importation theorem ~ pm3.... |
pm2.61d 179 | Deduction eliminating an a... |
pm2.61d1 180 | Inference eliminating an a... |
pm2.61d2 181 | Inference eliminating an a... |
pm2.61i 182 | Inference eliminating an a... |
pm2.61ii 183 | Inference eliminating two ... |
pm2.61nii 184 | Inference eliminating two ... |
pm2.61iii 185 | Inference eliminating thre... |
ja 186 | Inference joining the ante... |
jad 187 | Deduction form of ~ ja . ... |
pm2.01 188 | Weak Clavius law. If a fo... |
pm2.01d 189 | Deduction based on reducti... |
pm2.6 190 | Theorem *2.6 of [Whitehead... |
pm2.61 191 | Theorem *2.61 of [Whitehea... |
pm2.65 192 | Theorem *2.65 of [Whitehea... |
pm2.65i 193 | Inference for proof by con... |
pm2.21dd 194 | A contradiction implies an... |
pm2.65d 195 | Deduction for proof by con... |
mto 196 | The rule of modus tollens.... |
mtod 197 | Modus tollens deduction. ... |
mtoi 198 | Modus tollens inference. ... |
mt2 199 | A rule similar to modus to... |
mt3 200 | A rule similar to modus to... |
peirce 201 | Peirce's axiom. A non-int... |
looinv 202 | The Inversion Axiom of the... |
bijust0 203 | A self-implication (see ~ ... |
bijust 204 | Theorem used to justify th... |
impbi 207 | Property of the biconditio... |
impbii 208 | Infer an equivalence from ... |
impbidd 209 | Deduce an equivalence from... |
impbid21d 210 | Deduce an equivalence from... |
impbid 211 | Deduce an equivalence from... |
dfbi1 212 | Relate the biconditional c... |
dfbi1ALT 213 | Alternate proof of ~ dfbi1... |
biimp 214 | Property of the biconditio... |
biimpi 215 | Infer an implication from ... |
sylbi 216 | A mixed syllogism inferenc... |
sylib 217 | A mixed syllogism inferenc... |
sylbb 218 | A mixed syllogism inferenc... |
biimpr 219 | Property of the biconditio... |
bicom1 220 | Commutative law for the bi... |
bicom 221 | Commutative law for the bi... |
bicomd 222 | Commute two sides of a bic... |
bicomi 223 | Inference from commutative... |
impbid1 224 | Infer an equivalence from ... |
impbid2 225 | Infer an equivalence from ... |
impcon4bid 226 | A variation on ~ impbid wi... |
biimpri 227 | Infer a converse implicati... |
biimpd 228 | Deduce an implication from... |
mpbi 229 | An inference from a bicond... |
mpbir 230 | An inference from a bicond... |
mpbid 231 | A deduction from a bicondi... |
mpbii 232 | An inference from a nested... |
sylibr 233 | A mixed syllogism inferenc... |
sylbir 234 | A mixed syllogism inferenc... |
sylbbr 235 | A mixed syllogism inferenc... |
sylbb1 236 | A mixed syllogism inferenc... |
sylbb2 237 | A mixed syllogism inferenc... |
sylibd 238 | A syllogism deduction. (C... |
sylbid 239 | A syllogism deduction. (C... |
mpbidi 240 | A deduction from a bicondi... |
syl5bi 241 | A mixed syllogism inferenc... |
syl5bir 242 | A mixed syllogism inferenc... |
syl5ib 243 | A mixed syllogism inferenc... |
syl5ibcom 244 | A mixed syllogism inferenc... |
syl5ibr 245 | A mixed syllogism inferenc... |
syl5ibrcom 246 | A mixed syllogism inferenc... |
biimprd 247 | Deduce a converse implicat... |
biimpcd 248 | Deduce a commuted implicat... |
biimprcd 249 | Deduce a converse commuted... |
syl6ib 250 | A mixed syllogism inferenc... |
syl6ibr 251 | A mixed syllogism inferenc... |
syl6bi 252 | A mixed syllogism inferenc... |
syl6bir 253 | A mixed syllogism inferenc... |
syl7bi 254 | A mixed syllogism inferenc... |
syl8ib 255 | A syllogism rule of infere... |
mpbird 256 | A deduction from a bicondi... |
mpbiri 257 | An inference from a nested... |
sylibrd 258 | A syllogism deduction. (C... |
sylbird 259 | A syllogism deduction. (C... |
biid 260 | Principle of identity for ... |
biidd 261 | Principle of identity with... |
pm5.1im 262 | Two propositions are equiv... |
2th 263 | Two truths are equivalent.... |
2thd 264 | Two truths are equivalent.... |
monothetic 265 | Two self-implications (see... |
ibi 266 | Inference that converts a ... |
ibir 267 | Inference that converts a ... |
ibd 268 | Deduction that converts a ... |
pm5.74 269 | Distribution of implicatio... |
pm5.74i 270 | Distribution of implicatio... |
pm5.74ri 271 | Distribution of implicatio... |
pm5.74d 272 | Distribution of implicatio... |
pm5.74rd 273 | Distribution of implicatio... |
bitri 274 | An inference from transiti... |
bitr2i 275 | An inference from transiti... |
bitr3i 276 | An inference from transiti... |
bitr4i 277 | An inference from transiti... |
bitrd 278 | Deduction form of ~ bitri ... |
bitr2d 279 | Deduction form of ~ bitr2i... |
bitr3d 280 | Deduction form of ~ bitr3i... |
bitr4d 281 | Deduction form of ~ bitr4i... |
syl5bb 282 | A syllogism inference from... |
bitr2id 283 | A syllogism inference from... |
bitr3id 284 | A syllogism inference from... |
bitr3di 285 | A syllogism inference from... |
bitrdi 286 | A syllogism inference from... |
bitr2di 287 | A syllogism inference from... |
bitr4di 288 | A syllogism inference from... |
bitr4id 289 | A syllogism inference from... |
3imtr3i 290 | A mixed syllogism inferenc... |
3imtr4i 291 | A mixed syllogism inferenc... |
3imtr3d 292 | More general version of ~ ... |
3imtr4d 293 | More general version of ~ ... |
3imtr3g 294 | More general version of ~ ... |
3imtr4g 295 | More general version of ~ ... |
3bitri 296 | A chained inference from t... |
3bitrri 297 | A chained inference from t... |
3bitr2i 298 | A chained inference from t... |
3bitr2ri 299 | A chained inference from t... |
3bitr3i 300 | A chained inference from t... |
3bitr3ri 301 | A chained inference from t... |
3bitr4i 302 | A chained inference from t... |
3bitr4ri 303 | A chained inference from t... |
3bitrd 304 | Deduction from transitivit... |
3bitrrd 305 | Deduction from transitivit... |
3bitr2d 306 | Deduction from transitivit... |
3bitr2rd 307 | Deduction from transitivit... |
3bitr3d 308 | Deduction from transitivit... |
3bitr3rd 309 | Deduction from transitivit... |
3bitr4d 310 | Deduction from transitivit... |
3bitr4rd 311 | Deduction from transitivit... |
3bitr3g 312 | More general version of ~ ... |
3bitr4g 313 | More general version of ~ ... |
notnotb 314 | Double negation. Theorem ... |
con34b 315 | A biconditional form of co... |
con4bid 316 | A contraposition deduction... |
notbid 317 | Deduction negating both si... |
notbi 318 | Contraposition. Theorem *... |
notbii 319 | Negate both sides of a log... |
con4bii 320 | A contraposition inference... |
mtbi 321 | An inference from a bicond... |
mtbir 322 | An inference from a bicond... |
mtbid 323 | A deduction from a bicondi... |
mtbird 324 | A deduction from a bicondi... |
mtbii 325 | An inference from a bicond... |
mtbiri 326 | An inference from a bicond... |
sylnib 327 | A mixed syllogism inferenc... |
sylnibr 328 | A mixed syllogism inferenc... |
sylnbi 329 | A mixed syllogism inferenc... |
sylnbir 330 | A mixed syllogism inferenc... |
xchnxbi 331 | Replacement of a subexpres... |
xchnxbir 332 | Replacement of a subexpres... |
xchbinx 333 | Replacement of a subexpres... |
xchbinxr 334 | Replacement of a subexpres... |
imbi2i 335 | Introduce an antecedent to... |
jcndOLD 336 | Obsolete version of ~ jcnd... |
bibi2i 337 | Inference adding a bicondi... |
bibi1i 338 | Inference adding a bicondi... |
bibi12i 339 | The equivalence of two equ... |
imbi2d 340 | Deduction adding an antece... |
imbi1d 341 | Deduction adding a consequ... |
bibi2d 342 | Deduction adding a bicondi... |
bibi1d 343 | Deduction adding a bicondi... |
imbi12d 344 | Deduction joining two equi... |
bibi12d 345 | Deduction joining two equi... |
imbi12 346 | Closed form of ~ imbi12i .... |
imbi1 347 | Theorem *4.84 of [Whitehea... |
imbi2 348 | Theorem *4.85 of [Whitehea... |
imbi1i 349 | Introduce a consequent to ... |
imbi12i 350 | Join two logical equivalen... |
bibi1 351 | Theorem *4.86 of [Whitehea... |
bitr3 352 | Closed nested implication ... |
con2bi 353 | Contraposition. Theorem *... |
con2bid 354 | A contraposition deduction... |
con1bid 355 | A contraposition deduction... |
con1bii 356 | A contraposition inference... |
con2bii 357 | A contraposition inference... |
con1b 358 | Contraposition. Bidirecti... |
con2b 359 | Contraposition. Bidirecti... |
biimt 360 | A wff is equivalent to its... |
pm5.5 361 | Theorem *5.5 of [Whitehead... |
a1bi 362 | Inference introducing a th... |
mt2bi 363 | A false consequent falsifi... |
mtt 364 | Modus-tollens-like theorem... |
imnot 365 | If a proposition is false,... |
pm5.501 366 | Theorem *5.501 of [Whitehe... |
ibib 367 | Implication in terms of im... |
ibibr 368 | Implication in terms of im... |
tbt 369 | A wff is equivalent to its... |
nbn2 370 | The negation of a wff is e... |
bibif 371 | Transfer negation via an e... |
nbn 372 | The negation of a wff is e... |
nbn3 373 | Transfer falsehood via equ... |
pm5.21im 374 | Two propositions are equiv... |
2false 375 | Two falsehoods are equival... |
2falsed 376 | Two falsehoods are equival... |
2falsedOLD 377 | Obsolete version of ~ 2fal... |
pm5.21ni 378 | Two propositions implying ... |
pm5.21nii 379 | Eliminate an antecedent im... |
pm5.21ndd 380 | Eliminate an antecedent im... |
bija 381 | Combine antecedents into a... |
pm5.18 382 | Theorem *5.18 of [Whitehea... |
xor3 383 | Two ways to express "exclu... |
nbbn 384 | Move negation outside of b... |
biass 385 | Associative law for the bi... |
biluk 386 | Lukasiewicz's shortest axi... |
pm5.19 387 | Theorem *5.19 of [Whitehea... |
bi2.04 388 | Logical equivalence of com... |
pm5.4 389 | Antecedent absorption impl... |
imdi 390 | Distributive law for impli... |
pm5.41 391 | Theorem *5.41 of [Whitehea... |
pm4.8 392 | Theorem *4.8 of [Whitehead... |
pm4.81 393 | A formula is equivalent to... |
imim21b 394 | Simplify an implication be... |
pm4.63 397 | Theorem *4.63 of [Whitehea... |
pm4.67 398 | Theorem *4.67 of [Whitehea... |
imnan 399 | Express an implication in ... |
imnani 400 | Infer an implication from ... |
iman 401 | Implication in terms of co... |
pm3.24 402 | Law of noncontradiction. ... |
annim 403 | Express a conjunction in t... |
pm4.61 404 | Theorem *4.61 of [Whitehea... |
pm4.65 405 | Theorem *4.65 of [Whitehea... |
imp 406 | Importation inference. (C... |
impcom 407 | Importation inference with... |
con3dimp 408 | Variant of ~ con3d with im... |
mpnanrd 409 | Eliminate the right side o... |
impd 410 | Importation deduction. (C... |
impcomd 411 | Importation deduction with... |
ex 412 | Exportation inference. (T... |
expcom 413 | Exportation inference with... |
expdcom 414 | Commuted form of ~ expd . ... |
expd 415 | Exportation deduction. (C... |
expcomd 416 | Deduction form of ~ expcom... |
imp31 417 | An importation inference. ... |
imp32 418 | An importation inference. ... |
exp31 419 | An exportation inference. ... |
exp32 420 | An exportation inference. ... |
imp4b 421 | An importation inference. ... |
imp4a 422 | An importation inference. ... |
imp4c 423 | An importation inference. ... |
imp4d 424 | An importation inference. ... |
imp41 425 | An importation inference. ... |
imp42 426 | An importation inference. ... |
imp43 427 | An importation inference. ... |
imp44 428 | An importation inference. ... |
imp45 429 | An importation inference. ... |
exp4b 430 | An exportation inference. ... |
exp4a 431 | An exportation inference. ... |
exp4c 432 | An exportation inference. ... |
exp4d 433 | An exportation inference. ... |
exp41 434 | An exportation inference. ... |
exp42 435 | An exportation inference. ... |
exp43 436 | An exportation inference. ... |
exp44 437 | An exportation inference. ... |
exp45 438 | An exportation inference. ... |
imp5d 439 | An importation inference. ... |
imp5a 440 | An importation inference. ... |
imp5g 441 | An importation inference. ... |
imp55 442 | An importation inference. ... |
imp511 443 | An importation inference. ... |
exp5c 444 | An exportation inference. ... |
exp5j 445 | An exportation inference. ... |
exp5l 446 | An exportation inference. ... |
exp53 447 | An exportation inference. ... |
pm3.3 448 | Theorem *3.3 (Exp) of [Whi... |
pm3.31 449 | Theorem *3.31 (Imp) of [Wh... |
impexp 450 | Import-export theorem. Pa... |
impancom 451 | Mixed importation/commutat... |
expdimp 452 | A deduction version of exp... |
expimpd 453 | Exportation followed by a ... |
impr 454 | Import a wff into a right ... |
impl 455 | Export a wff from a left c... |
expr 456 | Export a wff from a right ... |
expl 457 | Export a wff from a left c... |
ancoms 458 | Inference commuting conjun... |
pm3.22 459 | Theorem *3.22 of [Whitehea... |
ancom 460 | Commutative law for conjun... |
ancomd 461 | Commutation of conjuncts i... |
biancomi 462 | Commuting conjunction in a... |
biancomd 463 | Commuting conjunction in a... |
ancomst 464 | Closed form of ~ ancoms . ... |
ancomsd 465 | Deduction commuting conjun... |
anasss 466 | Associative law for conjun... |
anassrs 467 | Associative law for conjun... |
anass 468 | Associative law for conjun... |
pm3.2 469 | Join antecedents with conj... |
pm3.2i 470 | Infer conjunction of premi... |
pm3.21 471 | Join antecedents with conj... |
pm3.43i 472 | Nested conjunction of ante... |
pm3.43 473 | Theorem *3.43 (Comp) of [W... |
dfbi2 474 | A theorem similar to the s... |
dfbi 475 | Definition ~ df-bi rewritt... |
biimpa 476 | Importation inference from... |
biimpar 477 | Importation inference from... |
biimpac 478 | Importation inference from... |
biimparc 479 | Importation inference from... |
adantr 480 | Inference adding a conjunc... |
adantl 481 | Inference adding a conjunc... |
simpl 482 | Elimination of a conjunct.... |
simpli 483 | Inference eliminating a co... |
simpr 484 | Elimination of a conjunct.... |
simpri 485 | Inference eliminating a co... |
intnan 486 | Introduction of conjunct i... |
intnanr 487 | Introduction of conjunct i... |
intnand 488 | Introduction of conjunct i... |
intnanrd 489 | Introduction of conjunct i... |
adantld 490 | Deduction adding a conjunc... |
adantrd 491 | Deduction adding a conjunc... |
pm3.41 492 | Theorem *3.41 of [Whitehea... |
pm3.42 493 | Theorem *3.42 of [Whitehea... |
simpld 494 | Deduction eliminating a co... |
simprd 495 | Deduction eliminating a co... |
simprbi 496 | Deduction eliminating a co... |
simplbi 497 | Deduction eliminating a co... |
simprbda 498 | Deduction eliminating a co... |
simplbda 499 | Deduction eliminating a co... |
simplbi2 500 | Deduction eliminating a co... |
simplbi2comt 501 | Closed form of ~ simplbi2c... |
simplbi2com 502 | A deduction eliminating a ... |
simpl2im 503 | Implication from an elimin... |
simplbiim 504 | Implication from an elimin... |
impel 505 | An inference for implicati... |
mpan9 506 | Modus ponens conjoining di... |
sylan9 507 | Nested syllogism inference... |
sylan9r 508 | Nested syllogism inference... |
sylan9bb 509 | Nested syllogism inference... |
sylan9bbr 510 | Nested syllogism inference... |
jca 511 | Deduce conjunction of the ... |
jcad 512 | Deduction conjoining the c... |
jca2 513 | Inference conjoining the c... |
jca31 514 | Join three consequents. (... |
jca32 515 | Join three consequents. (... |
jcai 516 | Deduction replacing implic... |
jcab 517 | Distributive law for impli... |
pm4.76 518 | Theorem *4.76 of [Whitehea... |
jctil 519 | Inference conjoining a the... |
jctir 520 | Inference conjoining a the... |
jccir 521 | Inference conjoining a con... |
jccil 522 | Inference conjoining a con... |
jctl 523 | Inference conjoining a the... |
jctr 524 | Inference conjoining a the... |
jctild 525 | Deduction conjoining a the... |
jctird 526 | Deduction conjoining a the... |
iba 527 | Introduction of antecedent... |
ibar 528 | Introduction of antecedent... |
biantru 529 | A wff is equivalent to its... |
biantrur 530 | A wff is equivalent to its... |
biantrud 531 | A wff is equivalent to its... |
biantrurd 532 | A wff is equivalent to its... |
bianfi 533 | A wff conjoined with false... |
bianfd 534 | A wff conjoined with false... |
baib 535 | Move conjunction outside o... |
baibr 536 | Move conjunction outside o... |
rbaibr 537 | Move conjunction outside o... |
rbaib 538 | Move conjunction outside o... |
baibd 539 | Move conjunction outside o... |
rbaibd 540 | Move conjunction outside o... |
bianabs 541 | Absorb a hypothesis into t... |
pm5.44 542 | Theorem *5.44 of [Whitehea... |
pm5.42 543 | Theorem *5.42 of [Whitehea... |
ancl 544 | Conjoin antecedent to left... |
anclb 545 | Conjoin antecedent to left... |
ancr 546 | Conjoin antecedent to righ... |
ancrb 547 | Conjoin antecedent to righ... |
ancli 548 | Deduction conjoining antec... |
ancri 549 | Deduction conjoining antec... |
ancld 550 | Deduction conjoining antec... |
ancrd 551 | Deduction conjoining antec... |
impac 552 | Importation with conjuncti... |
anc2l 553 | Conjoin antecedent to left... |
anc2r 554 | Conjoin antecedent to righ... |
anc2li 555 | Deduction conjoining antec... |
anc2ri 556 | Deduction conjoining antec... |
pm4.71 557 | Implication in terms of bi... |
pm4.71r 558 | Implication in terms of bi... |
pm4.71i 559 | Inference converting an im... |
pm4.71ri 560 | Inference converting an im... |
pm4.71d 561 | Deduction converting an im... |
pm4.71rd 562 | Deduction converting an im... |
pm4.24 563 | Theorem *4.24 of [Whitehea... |
anidm 564 | Idempotent law for conjunc... |
anidmdbi 565 | Conjunction idempotence wi... |
anidms 566 | Inference from idempotent ... |
imdistan 567 | Distribution of implicatio... |
imdistani 568 | Distribution of implicatio... |
imdistanri 569 | Distribution of implicatio... |
imdistand 570 | Distribution of implicatio... |
imdistanda 571 | Distribution of implicatio... |
pm5.3 572 | Theorem *5.3 of [Whitehead... |
pm5.32 573 | Distribution of implicatio... |
pm5.32i 574 | Distribution of implicatio... |
pm5.32ri 575 | Distribution of implicatio... |
pm5.32d 576 | Distribution of implicatio... |
pm5.32rd 577 | Distribution of implicatio... |
pm5.32da 578 | Distribution of implicatio... |
sylan 579 | A syllogism inference. (C... |
sylanb 580 | A syllogism inference. (C... |
sylanbr 581 | A syllogism inference. (C... |
sylanbrc 582 | Syllogism inference. (Con... |
syl2anc 583 | Syllogism inference combin... |
syl2anc2 584 | Double syllogism inference... |
sylancl 585 | Syllogism inference combin... |
sylancr 586 | Syllogism inference combin... |
sylancom 587 | Syllogism inference with c... |
sylanblc 588 | Syllogism inference combin... |
sylanblrc 589 | Syllogism inference combin... |
syldan 590 | A syllogism deduction with... |
sylbida 591 | A syllogism deduction. (C... |
sylan2 592 | A syllogism inference. (C... |
sylan2b 593 | A syllogism inference. (C... |
sylan2br 594 | A syllogism inference. (C... |
syl2an 595 | A double syllogism inferen... |
syl2anr 596 | A double syllogism inferen... |
syl2anb 597 | A double syllogism inferen... |
syl2anbr 598 | A double syllogism inferen... |
sylancb 599 | A syllogism inference comb... |
sylancbr 600 | A syllogism inference comb... |
syldanl 601 | A syllogism deduction with... |
syland 602 | A syllogism deduction. (C... |
sylani 603 | A syllogism inference. (C... |
sylan2d 604 | A syllogism deduction. (C... |
sylan2i 605 | A syllogism inference. (C... |
syl2ani 606 | A syllogism inference. (C... |
syl2and 607 | A syllogism deduction. (C... |
anim12d 608 | Conjoin antecedents and co... |
anim12d1 609 | Variant of ~ anim12d where... |
anim1d 610 | Add a conjunct to right of... |
anim2d 611 | Add a conjunct to left of ... |
anim12i 612 | Conjoin antecedents and co... |
anim12ci 613 | Variant of ~ anim12i with ... |
anim1i 614 | Introduce conjunct to both... |
anim1ci 615 | Introduce conjunct to both... |
anim2i 616 | Introduce conjunct to both... |
anim12ii 617 | Conjoin antecedents and co... |
anim12dan 618 | Conjoin antecedents and co... |
im2anan9 619 | Deduction joining nested i... |
im2anan9r 620 | Deduction joining nested i... |
pm3.45 621 | Theorem *3.45 (Fact) of [W... |
anbi2i 622 | Introduce a left conjunct ... |
anbi1i 623 | Introduce a right conjunct... |
anbi2ci 624 | Variant of ~ anbi2i with c... |
anbi1ci 625 | Variant of ~ anbi1i with c... |
anbi12i 626 | Conjoin both sides of two ... |
anbi12ci 627 | Variant of ~ anbi12i with ... |
anbi2d 628 | Deduction adding a left co... |
anbi1d 629 | Deduction adding a right c... |
anbi12d 630 | Deduction joining two equi... |
anbi1 631 | Introduce a right conjunct... |
anbi2 632 | Introduce a left conjunct ... |
anbi1cd 633 | Introduce a proposition as... |
pm4.38 634 | Theorem *4.38 of [Whitehea... |
bi2anan9 635 | Deduction joining two equi... |
bi2anan9r 636 | Deduction joining two equi... |
bi2bian9 637 | Deduction joining two bico... |
bianass 638 | An inference to merge two ... |
bianassc 639 | An inference to merge two ... |
an21 640 | Swap two conjuncts. (Cont... |
an12 641 | Swap two conjuncts. Note ... |
an32 642 | A rearrangement of conjunc... |
an13 643 | A rearrangement of conjunc... |
an31 644 | A rearrangement of conjunc... |
an12s 645 | Swap two conjuncts in ante... |
ancom2s 646 | Inference commuting a nest... |
an13s 647 | Swap two conjuncts in ante... |
an32s 648 | Swap two conjuncts in ante... |
ancom1s 649 | Inference commuting a nest... |
an31s 650 | Swap two conjuncts in ante... |
anass1rs 651 | Commutative-associative la... |
an4 652 | Rearrangement of 4 conjunc... |
an42 653 | Rearrangement of 4 conjunc... |
an43 654 | Rearrangement of 4 conjunc... |
an3 655 | A rearrangement of conjunc... |
an4s 656 | Inference rearranging 4 co... |
an42s 657 | Inference rearranging 4 co... |
anabs1 658 | Absorption into embedded c... |
anabs5 659 | Absorption into embedded c... |
anabs7 660 | Absorption into embedded c... |
anabsan 661 | Absorption of antecedent w... |
anabss1 662 | Absorption of antecedent i... |
anabss4 663 | Absorption of antecedent i... |
anabss5 664 | Absorption of antecedent i... |
anabsi5 665 | Absorption of antecedent i... |
anabsi6 666 | Absorption of antecedent i... |
anabsi7 667 | Absorption of antecedent i... |
anabsi8 668 | Absorption of antecedent i... |
anabss7 669 | Absorption of antecedent i... |
anabsan2 670 | Absorption of antecedent w... |
anabss3 671 | Absorption of antecedent i... |
anandi 672 | Distribution of conjunctio... |
anandir 673 | Distribution of conjunctio... |
anandis 674 | Inference that undistribut... |
anandirs 675 | Inference that undistribut... |
sylanl1 676 | A syllogism inference. (C... |
sylanl2 677 | A syllogism inference. (C... |
sylanr1 678 | A syllogism inference. (C... |
sylanr2 679 | A syllogism inference. (C... |
syl6an 680 | A syllogism deduction comb... |
syl2an2r 681 | ~ syl2anr with antecedents... |
syl2an2 682 | ~ syl2an with antecedents ... |
mpdan 683 | An inference based on modu... |
mpancom 684 | An inference based on modu... |
mpidan 685 | A deduction which "stacks"... |
mpan 686 | An inference based on modu... |
mpan2 687 | An inference based on modu... |
mp2an 688 | An inference based on modu... |
mp4an 689 | An inference based on modu... |
mpan2d 690 | A deduction based on modus... |
mpand 691 | A deduction based on modus... |
mpani 692 | An inference based on modu... |
mpan2i 693 | An inference based on modu... |
mp2ani 694 | An inference based on modu... |
mp2and 695 | A deduction based on modus... |
mpanl1 696 | An inference based on modu... |
mpanl2 697 | An inference based on modu... |
mpanl12 698 | An inference based on modu... |
mpanr1 699 | An inference based on modu... |
mpanr2 700 | An inference based on modu... |
mpanr12 701 | An inference based on modu... |
mpanlr1 702 | An inference based on modu... |
mpbirand 703 | Detach truth from conjunct... |
mpbiran2d 704 | Detach truth from conjunct... |
mpbiran 705 | Detach truth from conjunct... |
mpbiran2 706 | Detach truth from conjunct... |
mpbir2an 707 | Detach a conjunction of tr... |
mpbi2and 708 | Detach a conjunction of tr... |
mpbir2and 709 | Detach a conjunction of tr... |
adantll 710 | Deduction adding a conjunc... |
adantlr 711 | Deduction adding a conjunc... |
adantrl 712 | Deduction adding a conjunc... |
adantrr 713 | Deduction adding a conjunc... |
adantlll 714 | Deduction adding a conjunc... |
adantllr 715 | Deduction adding a conjunc... |
adantlrl 716 | Deduction adding a conjunc... |
adantlrr 717 | Deduction adding a conjunc... |
adantrll 718 | Deduction adding a conjunc... |
adantrlr 719 | Deduction adding a conjunc... |
adantrrl 720 | Deduction adding a conjunc... |
adantrrr 721 | Deduction adding a conjunc... |
ad2antrr 722 | Deduction adding two conju... |
ad2antlr 723 | Deduction adding two conju... |
ad2antrl 724 | Deduction adding two conju... |
ad2antll 725 | Deduction adding conjuncts... |
ad3antrrr 726 | Deduction adding three con... |
ad3antlr 727 | Deduction adding three con... |
ad4antr 728 | Deduction adding 4 conjunc... |
ad4antlr 729 | Deduction adding 4 conjunc... |
ad5antr 730 | Deduction adding 5 conjunc... |
ad5antlr 731 | Deduction adding 5 conjunc... |
ad6antr 732 | Deduction adding 6 conjunc... |
ad6antlr 733 | Deduction adding 6 conjunc... |
ad7antr 734 | Deduction adding 7 conjunc... |
ad7antlr 735 | Deduction adding 7 conjunc... |
ad8antr 736 | Deduction adding 8 conjunc... |
ad8antlr 737 | Deduction adding 8 conjunc... |
ad9antr 738 | Deduction adding 9 conjunc... |
ad9antlr 739 | Deduction adding 9 conjunc... |
ad10antr 740 | Deduction adding 10 conjun... |
ad10antlr 741 | Deduction adding 10 conjun... |
ad2ant2l 742 | Deduction adding two conju... |
ad2ant2r 743 | Deduction adding two conju... |
ad2ant2lr 744 | Deduction adding two conju... |
ad2ant2rl 745 | Deduction adding two conju... |
adantl3r 746 | Deduction adding 1 conjunc... |
ad4ant13 747 | Deduction adding conjuncts... |
ad4ant14 748 | Deduction adding conjuncts... |
ad4ant23 749 | Deduction adding conjuncts... |
ad4ant24 750 | Deduction adding conjuncts... |
adantl4r 751 | Deduction adding 1 conjunc... |
ad5ant12 752 | Deduction adding conjuncts... |
ad5ant13 753 | Deduction adding conjuncts... |
ad5ant14 754 | Deduction adding conjuncts... |
ad5ant15 755 | Deduction adding conjuncts... |
ad5ant23 756 | Deduction adding conjuncts... |
ad5ant24 757 | Deduction adding conjuncts... |
ad5ant25 758 | Deduction adding conjuncts... |
adantl5r 759 | Deduction adding 1 conjunc... |
adantl6r 760 | Deduction adding 1 conjunc... |
pm3.33 761 | Theorem *3.33 (Syll) of [W... |
pm3.34 762 | Theorem *3.34 (Syll) of [W... |
simpll 763 | Simplification of a conjun... |
simplld 764 | Deduction form of ~ simpll... |
simplr 765 | Simplification of a conjun... |
simplrd 766 | Deduction eliminating a do... |
simprl 767 | Simplification of a conjun... |
simprld 768 | Deduction eliminating a do... |
simprr 769 | Simplification of a conjun... |
simprrd 770 | Deduction form of ~ simprr... |
simplll 771 | Simplification of a conjun... |
simpllr 772 | Simplification of a conjun... |
simplrl 773 | Simplification of a conjun... |
simplrr 774 | Simplification of a conjun... |
simprll 775 | Simplification of a conjun... |
simprlr 776 | Simplification of a conjun... |
simprrl 777 | Simplification of a conjun... |
simprrr 778 | Simplification of a conjun... |
simp-4l 779 | Simplification of a conjun... |
simp-4r 780 | Simplification of a conjun... |
simp-5l 781 | Simplification of a conjun... |
simp-5r 782 | Simplification of a conjun... |
simp-6l 783 | Simplification of a conjun... |
simp-6r 784 | Simplification of a conjun... |
simp-7l 785 | Simplification of a conjun... |
simp-7r 786 | Simplification of a conjun... |
simp-8l 787 | Simplification of a conjun... |
simp-8r 788 | Simplification of a conjun... |
simp-9l 789 | Simplification of a conjun... |
simp-9r 790 | Simplification of a conjun... |
simp-10l 791 | Simplification of a conjun... |
simp-10r 792 | Simplification of a conjun... |
simp-11l 793 | Simplification of a conjun... |
simp-11r 794 | Simplification of a conjun... |
pm2.01da 795 | Deduction based on reducti... |
pm2.18da 796 | Deduction based on reducti... |
impbida 797 | Deduce an equivalence from... |
pm5.21nd 798 | Eliminate an antecedent im... |
pm3.35 799 | Conjunctive detachment. T... |
pm5.74da 800 | Distribution of implicatio... |
bitr 801 | Theorem *4.22 of [Whitehea... |
biantr 802 | A transitive law of equiva... |
pm4.14 803 | Theorem *4.14 of [Whitehea... |
pm3.37 804 | Theorem *3.37 (Transp) of ... |
anim12 805 | Conjoin antecedents and co... |
pm3.4 806 | Conjunction implies implic... |
exbiri 807 | Inference form of ~ exbir ... |
pm2.61ian 808 | Elimination of an antecede... |
pm2.61dan 809 | Elimination of an antecede... |
pm2.61ddan 810 | Elimination of two anteced... |
pm2.61dda 811 | Elimination of two anteced... |
mtand 812 | A modus tollens deduction.... |
pm2.65da 813 | Deduction for proof by con... |
condan 814 | Proof by contradiction. (... |
biadan 815 | An implication is equivale... |
biadani 816 | Inference associated with ... |
biadaniALT 817 | Alternate proof of ~ biada... |
biadanii 818 | Inference associated with ... |
biadanid 819 | Deduction associated with ... |
pm5.1 820 | Two propositions are equiv... |
pm5.21 821 | Two propositions are equiv... |
pm5.35 822 | Theorem *5.35 of [Whitehea... |
abai 823 | Introduce one conjunct as ... |
pm4.45im 824 | Conjunction with implicati... |
impimprbi 825 | An implication and its rev... |
nan 826 | Theorem to move a conjunct... |
pm5.31 827 | Theorem *5.31 of [Whitehea... |
pm5.31r 828 | Variant of ~ pm5.31 . (Co... |
pm4.15 829 | Theorem *4.15 of [Whitehea... |
pm5.36 830 | Theorem *5.36 of [Whitehea... |
annotanannot 831 | A conjunction with a negat... |
pm5.33 832 | Theorem *5.33 of [Whitehea... |
syl12anc 833 | Syllogism combined with co... |
syl21anc 834 | Syllogism combined with co... |
syl22anc 835 | Syllogism combined with co... |
syl1111anc 836 | Four-hypothesis eliminatio... |
syldbl2 837 | Stacked hypotheseis implie... |
mpsyl4anc 838 | An elimination deduction. ... |
pm4.87 839 | Theorem *4.87 of [Whitehea... |
bimsc1 840 | Removal of conjunct from o... |
a2and 841 | Deduction distributing a c... |
animpimp2impd 842 | Deduction deriving nested ... |
pm4.64 845 | Theorem *4.64 of [Whitehea... |
pm4.66 846 | Theorem *4.66 of [Whitehea... |
pm2.53 847 | Theorem *2.53 of [Whitehea... |
pm2.54 848 | Theorem *2.54 of [Whitehea... |
imor 849 | Implication in terms of di... |
imori 850 | Infer disjunction from imp... |
imorri 851 | Infer implication from dis... |
pm4.62 852 | Theorem *4.62 of [Whitehea... |
jaoi 853 | Inference disjoining the a... |
jao1i 854 | Add a disjunct in the ante... |
jaod 855 | Deduction disjoining the a... |
mpjaod 856 | Eliminate a disjunction in... |
ori 857 | Infer implication from dis... |
orri 858 | Infer disjunction from imp... |
orrd 859 | Deduce disjunction from im... |
ord 860 | Deduce implication from di... |
orci 861 | Deduction introducing a di... |
olci 862 | Deduction introducing a di... |
orc 863 | Introduction of a disjunct... |
olc 864 | Introduction of a disjunct... |
pm1.4 865 | Axiom *1.4 of [WhiteheadRu... |
orcom 866 | Commutative law for disjun... |
orcomd 867 | Commutation of disjuncts i... |
orcoms 868 | Commutation of disjuncts i... |
orcd 869 | Deduction introducing a di... |
olcd 870 | Deduction introducing a di... |
orcs 871 | Deduction eliminating disj... |
olcs 872 | Deduction eliminating disj... |
olcnd 873 | A lemma for Conjunctive No... |
unitreslOLD 874 | Obsolete version of ~ olcn... |
orcnd 875 | A lemma for Conjunctive No... |
mtord 876 | A modus tollens deduction ... |
pm3.2ni 877 | Infer negated disjunction ... |
pm2.45 878 | Theorem *2.45 of [Whitehea... |
pm2.46 879 | Theorem *2.46 of [Whitehea... |
pm2.47 880 | Theorem *2.47 of [Whitehea... |
pm2.48 881 | Theorem *2.48 of [Whitehea... |
pm2.49 882 | Theorem *2.49 of [Whitehea... |
norbi 883 | If neither of two proposit... |
nbior 884 | If two propositions are no... |
orel1 885 | Elimination of disjunction... |
pm2.25 886 | Theorem *2.25 of [Whitehea... |
orel2 887 | Elimination of disjunction... |
pm2.67-2 888 | Slight generalization of T... |
pm2.67 889 | Theorem *2.67 of [Whitehea... |
curryax 890 | A non-intuitionistic posit... |
exmid 891 | Law of excluded middle, al... |
exmidd 892 | Law of excluded middle in ... |
pm2.1 893 | Theorem *2.1 of [Whitehead... |
pm2.13 894 | Theorem *2.13 of [Whitehea... |
pm2.621 895 | Theorem *2.621 of [Whitehe... |
pm2.62 896 | Theorem *2.62 of [Whitehea... |
pm2.68 897 | Theorem *2.68 of [Whitehea... |
dfor2 898 | Logical 'or' expressed in ... |
pm2.07 899 | Theorem *2.07 of [Whitehea... |
pm1.2 900 | Axiom *1.2 of [WhiteheadRu... |
oridm 901 | Idempotent law for disjunc... |
pm4.25 902 | Theorem *4.25 of [Whitehea... |
pm2.4 903 | Theorem *2.4 of [Whitehead... |
pm2.41 904 | Theorem *2.41 of [Whitehea... |
orim12i 905 | Disjoin antecedents and co... |
orim1i 906 | Introduce disjunct to both... |
orim2i 907 | Introduce disjunct to both... |
orim12dALT 908 | Alternate proof of ~ orim1... |
orbi2i 909 | Inference adding a left di... |
orbi1i 910 | Inference adding a right d... |
orbi12i 911 | Infer the disjunction of t... |
orbi2d 912 | Deduction adding a left di... |
orbi1d 913 | Deduction adding a right d... |
orbi1 914 | Theorem *4.37 of [Whitehea... |
orbi12d 915 | Deduction joining two equi... |
pm1.5 916 | Axiom *1.5 (Assoc) of [Whi... |
or12 917 | Swap two disjuncts. (Cont... |
orass 918 | Associative law for disjun... |
pm2.31 919 | Theorem *2.31 of [Whitehea... |
pm2.32 920 | Theorem *2.32 of [Whitehea... |
pm2.3 921 | Theorem *2.3 of [Whitehead... |
or32 922 | A rearrangement of disjunc... |
or4 923 | Rearrangement of 4 disjunc... |
or42 924 | Rearrangement of 4 disjunc... |
orordi 925 | Distribution of disjunctio... |
orordir 926 | Distribution of disjunctio... |
orimdi 927 | Disjunction distributes ov... |
pm2.76 928 | Theorem *2.76 of [Whitehea... |
pm2.85 929 | Theorem *2.85 of [Whitehea... |
pm2.75 930 | Theorem *2.75 of [Whitehea... |
pm4.78 931 | Implication distributes ov... |
biort 932 | A disjunction with a true ... |
biorf 933 | A wff is equivalent to its... |
biortn 934 | A wff is equivalent to its... |
biorfi 935 | A wff is equivalent to its... |
pm2.26 936 | Theorem *2.26 of [Whitehea... |
pm2.63 937 | Theorem *2.63 of [Whitehea... |
pm2.64 938 | Theorem *2.64 of [Whitehea... |
pm2.42 939 | Theorem *2.42 of [Whitehea... |
pm5.11g 940 | A general instance of Theo... |
pm5.11 941 | Theorem *5.11 of [Whitehea... |
pm5.12 942 | Theorem *5.12 of [Whitehea... |
pm5.14 943 | Theorem *5.14 of [Whitehea... |
pm5.13 944 | Theorem *5.13 of [Whitehea... |
pm5.55 945 | Theorem *5.55 of [Whitehea... |
pm4.72 946 | Implication in terms of bi... |
imimorb 947 | Simplify an implication be... |
oibabs 948 | Absorption of disjunction ... |
orbidi 949 | Disjunction distributes ov... |
pm5.7 950 | Disjunction distributes ov... |
jaao 951 | Inference conjoining and d... |
jaoa 952 | Inference disjoining and c... |
jaoian 953 | Inference disjoining the a... |
jaodan 954 | Deduction disjoining the a... |
mpjaodan 955 | Eliminate a disjunction in... |
pm3.44 956 | Theorem *3.44 of [Whitehea... |
jao 957 | Disjunction of antecedents... |
jaob 958 | Disjunction of antecedents... |
pm4.77 959 | Theorem *4.77 of [Whitehea... |
pm3.48 960 | Theorem *3.48 of [Whitehea... |
orim12d 961 | Disjoin antecedents and co... |
orim1d 962 | Disjoin antecedents and co... |
orim2d 963 | Disjoin antecedents and co... |
orim2 964 | Axiom *1.6 (Sum) of [White... |
pm2.38 965 | Theorem *2.38 of [Whitehea... |
pm2.36 966 | Theorem *2.36 of [Whitehea... |
pm2.37 967 | Theorem *2.37 of [Whitehea... |
pm2.81 968 | Theorem *2.81 of [Whitehea... |
pm2.8 969 | Theorem *2.8 of [Whitehead... |
pm2.73 970 | Theorem *2.73 of [Whitehea... |
pm2.74 971 | Theorem *2.74 of [Whitehea... |
pm2.82 972 | Theorem *2.82 of [Whitehea... |
pm4.39 973 | Theorem *4.39 of [Whitehea... |
animorl 974 | Conjunction implies disjun... |
animorr 975 | Conjunction implies disjun... |
animorlr 976 | Conjunction implies disjun... |
animorrl 977 | Conjunction implies disjun... |
ianor 978 | Negated conjunction in ter... |
anor 979 | Conjunction in terms of di... |
ioran 980 | Negated disjunction in ter... |
pm4.52 981 | Theorem *4.52 of [Whitehea... |
pm4.53 982 | Theorem *4.53 of [Whitehea... |
pm4.54 983 | Theorem *4.54 of [Whitehea... |
pm4.55 984 | Theorem *4.55 of [Whitehea... |
pm4.56 985 | Theorem *4.56 of [Whitehea... |
oran 986 | Disjunction in terms of co... |
pm4.57 987 | Theorem *4.57 of [Whitehea... |
pm3.1 988 | Theorem *3.1 of [Whitehead... |
pm3.11 989 | Theorem *3.11 of [Whitehea... |
pm3.12 990 | Theorem *3.12 of [Whitehea... |
pm3.13 991 | Theorem *3.13 of [Whitehea... |
pm3.14 992 | Theorem *3.14 of [Whitehea... |
pm4.44 993 | Theorem *4.44 of [Whitehea... |
pm4.45 994 | Theorem *4.45 of [Whitehea... |
orabs 995 | Absorption of redundant in... |
oranabs 996 | Absorb a disjunct into a c... |
pm5.61 997 | Theorem *5.61 of [Whitehea... |
pm5.6 998 | Conjunction in antecedent ... |
orcanai 999 | Change disjunction in cons... |
pm4.79 1000 | Theorem *4.79 of [Whitehea... |
pm5.53 1001 | Theorem *5.53 of [Whitehea... |
ordi 1002 | Distributive law for disju... |
ordir 1003 | Distributive law for disju... |
andi 1004 | Distributive law for conju... |
andir 1005 | Distributive law for conju... |
orddi 1006 | Double distributive law fo... |
anddi 1007 | Double distributive law fo... |
pm5.17 1008 | Theorem *5.17 of [Whitehea... |
pm5.15 1009 | Theorem *5.15 of [Whitehea... |
pm5.16 1010 | Theorem *5.16 of [Whitehea... |
xor 1011 | Two ways to express exclus... |
nbi2 1012 | Two ways to express "exclu... |
xordi 1013 | Conjunction distributes ov... |
pm5.54 1014 | Theorem *5.54 of [Whitehea... |
pm5.62 1015 | Theorem *5.62 of [Whitehea... |
pm5.63 1016 | Theorem *5.63 of [Whitehea... |
niabn 1017 | Miscellaneous inference re... |
ninba 1018 | Miscellaneous inference re... |
pm4.43 1019 | Theorem *4.43 of [Whitehea... |
pm4.82 1020 | Theorem *4.82 of [Whitehea... |
pm4.83 1021 | Theorem *4.83 of [Whitehea... |
pclem6 1022 | Negation inferred from emb... |
bigolden 1023 | Dijkstra-Scholten's Golden... |
pm5.71 1024 | Theorem *5.71 of [Whitehea... |
pm5.75 1025 | Theorem *5.75 of [Whitehea... |
ecase2d 1026 | Deduction for elimination ... |
ecase2dOLD 1027 | Obsolete version of ~ ecas... |
ecase3 1028 | Inference for elimination ... |
ecase 1029 | Inference for elimination ... |
ecase3d 1030 | Deduction for elimination ... |
ecased 1031 | Deduction for elimination ... |
ecase3ad 1032 | Deduction for elimination ... |
ecase3adOLD 1033 | Obsolete version of ~ ecas... |
ccase 1034 | Inference for combining ca... |
ccased 1035 | Deduction for combining ca... |
ccase2 1036 | Inference for combining ca... |
4cases 1037 | Inference eliminating two ... |
4casesdan 1038 | Deduction eliminating two ... |
cases 1039 | Case disjunction according... |
dedlem0a 1040 | Lemma for an alternate ver... |
dedlem0b 1041 | Lemma for an alternate ver... |
dedlema 1042 | Lemma for weak deduction t... |
dedlemb 1043 | Lemma for weak deduction t... |
cases2 1044 | Case disjunction according... |
cases2ALT 1045 | Alternate proof of ~ cases... |
dfbi3 1046 | An alternate definition of... |
pm5.24 1047 | Theorem *5.24 of [Whitehea... |
4exmid 1048 | The disjunction of the fou... |
consensus 1049 | The consensus theorem. Th... |
pm4.42 1050 | Theorem *4.42 of [Whitehea... |
prlem1 1051 | A specialized lemma for se... |
prlem2 1052 | A specialized lemma for se... |
oplem1 1053 | A specialized lemma for se... |
dn1 1054 | A single axiom for Boolean... |
bianir 1055 | A closed form of ~ mpbir ,... |
jaoi2 1056 | Inference removing a negat... |
jaoi3 1057 | Inference separating a dis... |
ornld 1058 | Selecting one statement fr... |
dfifp2 1061 | Alternate definition of th... |
dfifp3 1062 | Alternate definition of th... |
dfifp4 1063 | Alternate definition of th... |
dfifp5 1064 | Alternate definition of th... |
dfifp6 1065 | Alternate definition of th... |
dfifp7 1066 | Alternate definition of th... |
ifpdfbi 1067 | Define the biconditional a... |
anifp 1068 | The conditional operator i... |
ifpor 1069 | The conditional operator i... |
ifpn 1070 | Conditional operator for t... |
ifpnOLD 1071 | Obsolete version of ~ ifpn... |
ifptru 1072 | Value of the conditional o... |
ifpfal 1073 | Value of the conditional o... |
ifpid 1074 | Value of the conditional o... |
casesifp 1075 | Version of ~ cases express... |
ifpbi123d 1076 | Equivalence deduction for ... |
ifpbi123dOLD 1077 | Obsolete version of ~ ifpb... |
ifpbi23d 1078 | Equivalence deduction for ... |
ifpimpda 1079 | Separation of the values o... |
1fpid3 1080 | The value of the condition... |
elimh 1081 | Hypothesis builder for the... |
dedt 1082 | The weak deduction theorem... |
con3ALT 1083 | Proof of ~ con3 from its a... |
3orass 1088 | Associative law for triple... |
3orel1 1089 | Partial elimination of a t... |
3orrot 1090 | Rotation law for triple di... |
3orcoma 1091 | Commutation law for triple... |
3orcomb 1092 | Commutation law for triple... |
3anass 1093 | Associative law for triple... |
3anan12 1094 | Convert triple conjunction... |
3anan32 1095 | Convert triple conjunction... |
3ancoma 1096 | Commutation law for triple... |
3ancomb 1097 | Commutation law for triple... |
3anrot 1098 | Rotation law for triple co... |
3anrev 1099 | Reversal law for triple co... |
anandi3 1100 | Distribution of triple con... |
anandi3r 1101 | Distribution of triple con... |
3anidm 1102 | Idempotent law for conjunc... |
3an4anass 1103 | Associative law for four c... |
3ioran 1104 | Negated triple disjunction... |
3ianor 1105 | Negated triple conjunction... |
3anor 1106 | Triple conjunction express... |
3oran 1107 | Triple disjunction in term... |
3impa 1108 | Importation from double to... |
3imp 1109 | Importation inference. (C... |
3imp31 1110 | The importation inference ... |
3imp231 1111 | Importation inference. (C... |
3imp21 1112 | The importation inference ... |
3impb 1113 | Importation from double to... |
3impib 1114 | Importation to triple conj... |
3impia 1115 | Importation to triple conj... |
3expa 1116 | Exportation from triple to... |
3exp 1117 | Exportation inference. (C... |
3expb 1118 | Exportation from triple to... |
3expia 1119 | Exportation from triple co... |
3expib 1120 | Exportation from triple co... |
3com12 1121 | Commutation in antecedent.... |
3com13 1122 | Commutation in antecedent.... |
3comr 1123 | Commutation in antecedent.... |
3com23 1124 | Commutation in antecedent.... |
3coml 1125 | Commutation in antecedent.... |
3jca 1126 | Join consequents with conj... |
3jcad 1127 | Deduction conjoining the c... |
3adant1 1128 | Deduction adding a conjunc... |
3adant2 1129 | Deduction adding a conjunc... |
3adant3 1130 | Deduction adding a conjunc... |
3ad2ant1 1131 | Deduction adding conjuncts... |
3ad2ant2 1132 | Deduction adding conjuncts... |
3ad2ant3 1133 | Deduction adding conjuncts... |
simp1 1134 | Simplification of triple c... |
simp2 1135 | Simplification of triple c... |
simp3 1136 | Simplification of triple c... |
simp1i 1137 | Infer a conjunct from a tr... |
simp2i 1138 | Infer a conjunct from a tr... |
simp3i 1139 | Infer a conjunct from a tr... |
simp1d 1140 | Deduce a conjunct from a t... |
simp2d 1141 | Deduce a conjunct from a t... |
simp3d 1142 | Deduce a conjunct from a t... |
simp1bi 1143 | Deduce a conjunct from a t... |
simp2bi 1144 | Deduce a conjunct from a t... |
simp3bi 1145 | Deduce a conjunct from a t... |
3simpa 1146 | Simplification of triple c... |
3simpb 1147 | Simplification of triple c... |
3simpc 1148 | Simplification of triple c... |
3anim123i 1149 | Join antecedents and conse... |
3anim1i 1150 | Add two conjuncts to antec... |
3anim2i 1151 | Add two conjuncts to antec... |
3anim3i 1152 | Add two conjuncts to antec... |
3anbi123i 1153 | Join 3 biconditionals with... |
3orbi123i 1154 | Join 3 biconditionals with... |
3anbi1i 1155 | Inference adding two conju... |
3anbi2i 1156 | Inference adding two conju... |
3anbi3i 1157 | Inference adding two conju... |
syl3an 1158 | A triple syllogism inferen... |
syl3anb 1159 | A triple syllogism inferen... |
syl3anbr 1160 | A triple syllogism inferen... |
syl3an1 1161 | A syllogism inference. (C... |
syl3an2 1162 | A syllogism inference. (C... |
syl3an3 1163 | A syllogism inference. (C... |
3adantl1 1164 | Deduction adding a conjunc... |
3adantl2 1165 | Deduction adding a conjunc... |
3adantl3 1166 | Deduction adding a conjunc... |
3adantr1 1167 | Deduction adding a conjunc... |
3adantr2 1168 | Deduction adding a conjunc... |
3adantr3 1169 | Deduction adding a conjunc... |
ad4ant123 1170 | Deduction adding conjuncts... |
ad4ant124 1171 | Deduction adding conjuncts... |
ad4ant134 1172 | Deduction adding conjuncts... |
ad4ant234 1173 | Deduction adding conjuncts... |
3adant1l 1174 | Deduction adding a conjunc... |
3adant1r 1175 | Deduction adding a conjunc... |
3adant2l 1176 | Deduction adding a conjunc... |
3adant2r 1177 | Deduction adding a conjunc... |
3adant3l 1178 | Deduction adding a conjunc... |
3adant3r 1179 | Deduction adding a conjunc... |
3adant3r1 1180 | Deduction adding a conjunc... |
3adant3r2 1181 | Deduction adding a conjunc... |
3adant3r3 1182 | Deduction adding a conjunc... |
3ad2antl1 1183 | Deduction adding conjuncts... |
3ad2antl2 1184 | Deduction adding conjuncts... |
3ad2antl3 1185 | Deduction adding conjuncts... |
3ad2antr1 1186 | Deduction adding conjuncts... |
3ad2antr2 1187 | Deduction adding conjuncts... |
3ad2antr3 1188 | Deduction adding conjuncts... |
simpl1 1189 | Simplification of conjunct... |
simpl2 1190 | Simplification of conjunct... |
simpl3 1191 | Simplification of conjunct... |
simpr1 1192 | Simplification of conjunct... |
simpr2 1193 | Simplification of conjunct... |
simpr3 1194 | Simplification of conjunct... |
simp1l 1195 | Simplification of triple c... |
simp1r 1196 | Simplification of triple c... |
simp2l 1197 | Simplification of triple c... |
simp2r 1198 | Simplification of triple c... |
simp3l 1199 | Simplification of triple c... |
simp3r 1200 | Simplification of triple c... |
simp11 1201 | Simplification of doubly t... |
simp12 1202 | Simplification of doubly t... |
simp13 1203 | Simplification of doubly t... |
simp21 1204 | Simplification of doubly t... |
simp22 1205 | Simplification of doubly t... |
simp23 1206 | Simplification of doubly t... |
simp31 1207 | Simplification of doubly t... |
simp32 1208 | Simplification of doubly t... |
simp33 1209 | Simplification of doubly t... |
simpll1 1210 | Simplification of conjunct... |
simpll2 1211 | Simplification of conjunct... |
simpll3 1212 | Simplification of conjunct... |
simplr1 1213 | Simplification of conjunct... |
simplr2 1214 | Simplification of conjunct... |
simplr3 1215 | Simplification of conjunct... |
simprl1 1216 | Simplification of conjunct... |
simprl2 1217 | Simplification of conjunct... |
simprl3 1218 | Simplification of conjunct... |
simprr1 1219 | Simplification of conjunct... |
simprr2 1220 | Simplification of conjunct... |
simprr3 1221 | Simplification of conjunct... |
simpl1l 1222 | Simplification of conjunct... |
simpl1r 1223 | Simplification of conjunct... |
simpl2l 1224 | Simplification of conjunct... |
simpl2r 1225 | Simplification of conjunct... |
simpl3l 1226 | Simplification of conjunct... |
simpl3r 1227 | Simplification of conjunct... |
simpr1l 1228 | Simplification of conjunct... |
simpr1r 1229 | Simplification of conjunct... |
simpr2l 1230 | Simplification of conjunct... |
simpr2r 1231 | Simplification of conjunct... |
simpr3l 1232 | Simplification of conjunct... |
simpr3r 1233 | Simplification of conjunct... |
simp1ll 1234 | Simplification of conjunct... |
simp1lr 1235 | Simplification of conjunct... |
simp1rl 1236 | Simplification of conjunct... |
simp1rr 1237 | Simplification of conjunct... |
simp2ll 1238 | Simplification of conjunct... |
simp2lr 1239 | Simplification of conjunct... |
simp2rl 1240 | Simplification of conjunct... |
simp2rr 1241 | Simplification of conjunct... |
simp3ll 1242 | Simplification of conjunct... |
simp3lr 1243 | Simplification of conjunct... |
simp3rl 1244 | Simplification of conjunct... |
simp3rr 1245 | Simplification of conjunct... |
simpl11 1246 | Simplification of conjunct... |
simpl12 1247 | Simplification of conjunct... |
simpl13 1248 | Simplification of conjunct... |
simpl21 1249 | Simplification of conjunct... |
simpl22 1250 | Simplification of conjunct... |
simpl23 1251 | Simplification of conjunct... |
simpl31 1252 | Simplification of conjunct... |
simpl32 1253 | Simplification of conjunct... |
simpl33 1254 | Simplification of conjunct... |
simpr11 1255 | Simplification of conjunct... |
simpr12 1256 | Simplification of conjunct... |
simpr13 1257 | Simplification of conjunct... |
simpr21 1258 | Simplification of conjunct... |
simpr22 1259 | Simplification of conjunct... |
simpr23 1260 | Simplification of conjunct... |
simpr31 1261 | Simplification of conjunct... |
simpr32 1262 | Simplification of conjunct... |
simpr33 1263 | Simplification of conjunct... |
simp1l1 1264 | Simplification of conjunct... |
simp1l2 1265 | Simplification of conjunct... |
simp1l3 1266 | Simplification of conjunct... |
simp1r1 1267 | Simplification of conjunct... |
simp1r2 1268 | Simplification of conjunct... |
simp1r3 1269 | Simplification of conjunct... |
simp2l1 1270 | Simplification of conjunct... |
simp2l2 1271 | Simplification of conjunct... |
simp2l3 1272 | Simplification of conjunct... |
simp2r1 1273 | Simplification of conjunct... |
simp2r2 1274 | Simplification of conjunct... |
simp2r3 1275 | Simplification of conjunct... |
simp3l1 1276 | Simplification of conjunct... |
simp3l2 1277 | Simplification of conjunct... |
simp3l3 1278 | Simplification of conjunct... |
simp3r1 1279 | Simplification of conjunct... |
simp3r2 1280 | Simplification of conjunct... |
simp3r3 1281 | Simplification of conjunct... |
simp11l 1282 | Simplification of conjunct... |
simp11r 1283 | Simplification of conjunct... |
simp12l 1284 | Simplification of conjunct... |
simp12r 1285 | Simplification of conjunct... |
simp13l 1286 | Simplification of conjunct... |
simp13r 1287 | Simplification of conjunct... |
simp21l 1288 | Simplification of conjunct... |
simp21r 1289 | Simplification of conjunct... |
simp22l 1290 | Simplification of conjunct... |
simp22r 1291 | Simplification of conjunct... |
simp23l 1292 | Simplification of conjunct... |
simp23r 1293 | Simplification of conjunct... |
simp31l 1294 | Simplification of conjunct... |
simp31r 1295 | Simplification of conjunct... |
simp32l 1296 | Simplification of conjunct... |
simp32r 1297 | Simplification of conjunct... |
simp33l 1298 | Simplification of conjunct... |
simp33r 1299 | Simplification of conjunct... |
simp111 1300 | Simplification of conjunct... |
simp112 1301 | Simplification of conjunct... |
simp113 1302 | Simplification of conjunct... |
simp121 1303 | Simplification of conjunct... |
simp122 1304 | Simplification of conjunct... |
simp123 1305 | Simplification of conjunct... |
simp131 1306 | Simplification of conjunct... |
simp132 1307 | Simplification of conjunct... |
simp133 1308 | Simplification of conjunct... |
simp211 1309 | Simplification of conjunct... |
simp212 1310 | Simplification of conjunct... |
simp213 1311 | Simplification of conjunct... |
simp221 1312 | Simplification of conjunct... |
simp222 1313 | Simplification of conjunct... |
simp223 1314 | Simplification of conjunct... |
simp231 1315 | Simplification of conjunct... |
simp232 1316 | Simplification of conjunct... |
simp233 1317 | Simplification of conjunct... |
simp311 1318 | Simplification of conjunct... |
simp312 1319 | Simplification of conjunct... |
simp313 1320 | Simplification of conjunct... |
simp321 1321 | Simplification of conjunct... |
simp322 1322 | Simplification of conjunct... |
simp323 1323 | Simplification of conjunct... |
simp331 1324 | Simplification of conjunct... |
simp332 1325 | Simplification of conjunct... |
simp333 1326 | Simplification of conjunct... |
3anibar 1327 | Remove a hypothesis from t... |
3mix1 1328 | Introduction in triple dis... |
3mix2 1329 | Introduction in triple dis... |
3mix3 1330 | Introduction in triple dis... |
3mix1i 1331 | Introduction in triple dis... |
3mix2i 1332 | Introduction in triple dis... |
3mix3i 1333 | Introduction in triple dis... |
3mix1d 1334 | Deduction introducing trip... |
3mix2d 1335 | Deduction introducing trip... |
3mix3d 1336 | Deduction introducing trip... |
3pm3.2i 1337 | Infer conjunction of premi... |
pm3.2an3 1338 | Version of ~ pm3.2 for a t... |
mpbir3an 1339 | Detach a conjunction of tr... |
mpbir3and 1340 | Detach a conjunction of tr... |
syl3anbrc 1341 | Syllogism inference. (Con... |
syl21anbrc 1342 | Syllogism inference. (Con... |
3imp3i2an 1343 | An elimination deduction. ... |
ex3 1344 | Apply ~ ex to a hypothesis... |
3imp1 1345 | Importation to left triple... |
3impd 1346 | Importation deduction for ... |
3imp2 1347 | Importation to right tripl... |
3impdi 1348 | Importation inference (und... |
3impdir 1349 | Importation inference (und... |
3exp1 1350 | Exportation from left trip... |
3expd 1351 | Exportation deduction for ... |
3exp2 1352 | Exportation from right tri... |
exp5o 1353 | A triple exportation infer... |
exp516 1354 | A triple exportation infer... |
exp520 1355 | A triple exportation infer... |
3impexp 1356 | Version of ~ impexp for a ... |
3an1rs 1357 | Swap conjuncts. (Contribu... |
3anassrs 1358 | Associative law for conjun... |
ad5ant245 1359 | Deduction adding conjuncts... |
ad5ant234 1360 | Deduction adding conjuncts... |
ad5ant235 1361 | Deduction adding conjuncts... |
ad5ant123 1362 | Deduction adding conjuncts... |
ad5ant124 1363 | Deduction adding conjuncts... |
ad5ant125 1364 | Deduction adding conjuncts... |
ad5ant134 1365 | Deduction adding conjuncts... |
ad5ant135 1366 | Deduction adding conjuncts... |
ad5ant145 1367 | Deduction adding conjuncts... |
ad5ant2345 1368 | Deduction adding conjuncts... |
syl3anc 1369 | Syllogism combined with co... |
syl13anc 1370 | Syllogism combined with co... |
syl31anc 1371 | Syllogism combined with co... |
syl112anc 1372 | Syllogism combined with co... |
syl121anc 1373 | Syllogism combined with co... |
syl211anc 1374 | Syllogism combined with co... |
syl23anc 1375 | Syllogism combined with co... |
syl32anc 1376 | Syllogism combined with co... |
syl122anc 1377 | Syllogism combined with co... |
syl212anc 1378 | Syllogism combined with co... |
syl221anc 1379 | Syllogism combined with co... |
syl113anc 1380 | Syllogism combined with co... |
syl131anc 1381 | Syllogism combined with co... |
syl311anc 1382 | Syllogism combined with co... |
syl33anc 1383 | Syllogism combined with co... |
syl222anc 1384 | Syllogism combined with co... |
syl123anc 1385 | Syllogism combined with co... |
syl132anc 1386 | Syllogism combined with co... |
syl213anc 1387 | Syllogism combined with co... |
syl231anc 1388 | Syllogism combined with co... |
syl312anc 1389 | Syllogism combined with co... |
syl321anc 1390 | Syllogism combined with co... |
syl133anc 1391 | Syllogism combined with co... |
syl313anc 1392 | Syllogism combined with co... |
syl331anc 1393 | Syllogism combined with co... |
syl223anc 1394 | Syllogism combined with co... |
syl232anc 1395 | Syllogism combined with co... |
syl322anc 1396 | Syllogism combined with co... |
syl233anc 1397 | Syllogism combined with co... |
syl323anc 1398 | Syllogism combined with co... |
syl332anc 1399 | Syllogism combined with co... |
syl333anc 1400 | A syllogism inference comb... |
syl3an1b 1401 | A syllogism inference. (C... |
syl3an2b 1402 | A syllogism inference. (C... |
syl3an3b 1403 | A syllogism inference. (C... |
syl3an1br 1404 | A syllogism inference. (C... |
syl3an2br 1405 | A syllogism inference. (C... |
syl3an3br 1406 | A syllogism inference. (C... |
syld3an3 1407 | A syllogism inference. (C... |
syld3an1 1408 | A syllogism inference. (C... |
syld3an2 1409 | A syllogism inference. (C... |
syl3anl1 1410 | A syllogism inference. (C... |
syl3anl2 1411 | A syllogism inference. (C... |
syl3anl3 1412 | A syllogism inference. (C... |
syl3anl 1413 | A triple syllogism inferen... |
syl3anr1 1414 | A syllogism inference. (C... |
syl3anr2 1415 | A syllogism inference. (C... |
syl3anr3 1416 | A syllogism inference. (C... |
3anidm12 1417 | Inference from idempotent ... |
3anidm13 1418 | Inference from idempotent ... |
3anidm23 1419 | Inference from idempotent ... |
syl2an3an 1420 | ~ syl3an with antecedents ... |
syl2an23an 1421 | Deduction related to ~ syl... |
3ori 1422 | Infer implication from tri... |
3jao 1423 | Disjunction of three antec... |
3jaob 1424 | Disjunction of three antec... |
3jaoi 1425 | Disjunction of three antec... |
3jaod 1426 | Disjunction of three antec... |
3jaoian 1427 | Disjunction of three antec... |
3jaodan 1428 | Disjunction of three antec... |
mpjao3dan 1429 | Eliminate a three-way disj... |
mpjao3danOLD 1430 | Obsolete version of ~ mpja... |
3jaao 1431 | Inference conjoining and d... |
syl3an9b 1432 | Nested syllogism inference... |
3orbi123d 1433 | Deduction joining 3 equiva... |
3anbi123d 1434 | Deduction joining 3 equiva... |
3anbi12d 1435 | Deduction conjoining and a... |
3anbi13d 1436 | Deduction conjoining and a... |
3anbi23d 1437 | Deduction conjoining and a... |
3anbi1d 1438 | Deduction adding conjuncts... |
3anbi2d 1439 | Deduction adding conjuncts... |
3anbi3d 1440 | Deduction adding conjuncts... |
3anim123d 1441 | Deduction joining 3 implic... |
3orim123d 1442 | Deduction joining 3 implic... |
an6 1443 | Rearrangement of 6 conjunc... |
3an6 1444 | Analogue of ~ an4 for trip... |
3or6 1445 | Analogue of ~ or4 for trip... |
mp3an1 1446 | An inference based on modu... |
mp3an2 1447 | An inference based on modu... |
mp3an3 1448 | An inference based on modu... |
mp3an12 1449 | An inference based on modu... |
mp3an13 1450 | An inference based on modu... |
mp3an23 1451 | An inference based on modu... |
mp3an1i 1452 | An inference based on modu... |
mp3anl1 1453 | An inference based on modu... |
mp3anl2 1454 | An inference based on modu... |
mp3anl3 1455 | An inference based on modu... |
mp3anr1 1456 | An inference based on modu... |
mp3anr2 1457 | An inference based on modu... |
mp3anr3 1458 | An inference based on modu... |
mp3an 1459 | An inference based on modu... |
mpd3an3 1460 | An inference based on modu... |
mpd3an23 1461 | An inference based on modu... |
mp3and 1462 | A deduction based on modus... |
mp3an12i 1463 | ~ mp3an with antecedents i... |
mp3an2i 1464 | ~ mp3an with antecedents i... |
mp3an3an 1465 | ~ mp3an with antecedents i... |
mp3an2ani 1466 | An elimination deduction. ... |
biimp3a 1467 | Infer implication from a l... |
biimp3ar 1468 | Infer implication from a l... |
3anandis 1469 | Inference that undistribut... |
3anandirs 1470 | Inference that undistribut... |
ecase23d 1471 | Deduction for elimination ... |
3ecase 1472 | Inference for elimination ... |
3bior1fd 1473 | A disjunction is equivalen... |
3bior1fand 1474 | A disjunction is equivalen... |
3bior2fd 1475 | A wff is equivalent to its... |
3biant1d 1476 | A conjunction is equivalen... |
intn3an1d 1477 | Introduction of a triple c... |
intn3an2d 1478 | Introduction of a triple c... |
intn3an3d 1479 | Introduction of a triple c... |
an3andi 1480 | Distribution of conjunctio... |
an33rean 1481 | Rearrange a 9-fold conjunc... |
an33reanOLD 1482 | Obsolete version of ~ an33... |
nanan 1485 | Conjunction in terms of al... |
dfnan2 1486 | Alternative denial in term... |
nanor 1487 | Alternative denial in term... |
nancom 1488 | Alternative denial is comm... |
nannan 1489 | Nested alternative denials... |
nanim 1490 | Implication in terms of al... |
nannot 1491 | Negation in terms of alter... |
nanbi 1492 | Biconditional in terms of ... |
nanbi1 1493 | Introduce a right anti-con... |
nanbi2 1494 | Introduce a left anti-conj... |
nanbi12 1495 | Join two logical equivalen... |
nanbi1i 1496 | Introduce a right anti-con... |
nanbi2i 1497 | Introduce a left anti-conj... |
nanbi12i 1498 | Join two logical equivalen... |
nanbi1d 1499 | Introduce a right anti-con... |
nanbi2d 1500 | Introduce a left anti-conj... |
nanbi12d 1501 | Join two logical equivalen... |
nanass 1502 | A characterization of when... |
xnor 1505 | Two ways to write XNOR (ex... |
xorcom 1506 | The connector ` \/_ ` is c... |
xorcomOLD 1507 | Obsolete version of ~ xorc... |
xorass 1508 | The connector ` \/_ ` is a... |
excxor 1509 | This tautology shows that ... |
xor2 1510 | Two ways to express "exclu... |
xoror 1511 | Exclusive disjunction impl... |
xornan 1512 | Exclusive disjunction impl... |
xornan2 1513 | XOR implies NAND (written ... |
xorneg2 1514 | The connector ` \/_ ` is n... |
xorneg1 1515 | The connector ` \/_ ` is n... |
xorneg 1516 | The connector ` \/_ ` is u... |
xorbi12i 1517 | Equality property for excl... |
xorbi12iOLD 1518 | Obsolete version of ~ xorb... |
xorbi12d 1519 | Equality property for excl... |
anxordi 1520 | Conjunction distributes ov... |
xorexmid 1521 | Exclusive-or variant of th... |
norcom 1524 | The connector ` -\/ ` is c... |
norcomOLD 1525 | Obsolete version of ~ norc... |
nornot 1526 | ` -. ` is expressible via ... |
nornotOLD 1527 | Obsolete version of ~ norn... |
noran 1528 | ` /\ ` is expressible via ... |
noranOLD 1529 | Obsolete version of ~ nora... |
noror 1530 | ` \/ ` is expressible via ... |
nororOLD 1531 | Obsolete version of ~ noro... |
norasslem1 1532 | This lemma shows the equiv... |
norasslem2 1533 | This lemma specializes ~ b... |
norasslem3 1534 | This lemma specializes ~ b... |
norass 1535 | A characterization of when... |
norassOLD 1536 | Obsolete version of ~ nora... |
trujust 1541 | Soundness justification th... |
tru 1543 | The truth value ` T. ` is ... |
dftru2 1544 | An alternate definition of... |
trut 1545 | A proposition is equivalen... |
mptru 1546 | Eliminate ` T. ` as an ant... |
tbtru 1547 | A proposition is equivalen... |
bitru 1548 | A theorem is equivalent to... |
trud 1549 | Anything implies ` T. ` . ... |
truan 1550 | True can be removed from a... |
fal 1553 | The truth value ` F. ` is ... |
nbfal 1554 | The negation of a proposit... |
bifal 1555 | A contradiction is equival... |
falim 1556 | The truth value ` F. ` imp... |
falimd 1557 | The truth value ` F. ` imp... |
dfnot 1558 | Given falsum ` F. ` , we c... |
inegd 1559 | Negation introduction rule... |
efald 1560 | Deduction based on reducti... |
pm2.21fal 1561 | If a wff and its negation ... |
truimtru 1562 | A ` -> ` identity. (Contr... |
truimfal 1563 | A ` -> ` identity. (Contr... |
falimtru 1564 | A ` -> ` identity. (Contr... |
falimfal 1565 | A ` -> ` identity. (Contr... |
nottru 1566 | A ` -. ` identity. (Contr... |
notfal 1567 | A ` -. ` identity. (Contr... |
trubitru 1568 | A ` <-> ` identity. (Cont... |
falbitru 1569 | A ` <-> ` identity. (Cont... |
trubifal 1570 | A ` <-> ` identity. (Cont... |
falbifal 1571 | A ` <-> ` identity. (Cont... |
truantru 1572 | A ` /\ ` identity. (Contr... |
truanfal 1573 | A ` /\ ` identity. (Contr... |
falantru 1574 | A ` /\ ` identity. (Contr... |
falanfal 1575 | A ` /\ ` identity. (Contr... |
truortru 1576 | A ` \/ ` identity. (Contr... |
truorfal 1577 | A ` \/ ` identity. (Contr... |
falortru 1578 | A ` \/ ` identity. (Contr... |
falorfal 1579 | A ` \/ ` identity. (Contr... |
trunantru 1580 | A ` -/\ ` identity. (Cont... |
trunanfal 1581 | A ` -/\ ` identity. (Cont... |
falnantru 1582 | A ` -/\ ` identity. (Cont... |
falnanfal 1583 | A ` -/\ ` identity. (Cont... |
truxortru 1584 | A ` \/_ ` identity. (Cont... |
truxorfal 1585 | A ` \/_ ` identity. (Cont... |
falxortru 1586 | A ` \/_ ` identity. (Cont... |
falxorfal 1587 | A ` \/_ ` identity. (Cont... |
trunortru 1588 | A ` -\/ ` identity. (Cont... |
trunortruOLD 1589 | Obsolete version of ~ trun... |
trunorfal 1590 | A ` -\/ ` identity. (Cont... |
trunorfalOLD 1591 | Obsolete version of ~ trun... |
falnortru 1592 | A ` -\/ ` identity. (Cont... |
falnorfal 1593 | A ` -\/ ` identity. (Cont... |
falnorfalOLD 1594 | Obsolete version of ~ faln... |
hadbi123d 1597 | Equality theorem for the a... |
hadbi123i 1598 | Equality theorem for the a... |
hadass 1599 | Associative law for the ad... |
hadbi 1600 | The adder sum is the same ... |
hadcoma 1601 | Commutative law for the ad... |
hadcomaOLD 1602 | Obsolete version of ~ hadc... |
hadcomb 1603 | Commutative law for the ad... |
hadrot 1604 | Rotation law for the adder... |
hadnot 1605 | The adder sum distributes ... |
had1 1606 | If the first input is true... |
had0 1607 | If the first input is fals... |
hadifp 1608 | The value of the adder sum... |
cador 1611 | The adder carry in disjunc... |
cadan 1612 | The adder carry in conjunc... |
cadbi123d 1613 | Equality theorem for the a... |
cadbi123i 1614 | Equality theorem for the a... |
cadcoma 1615 | Commutative law for the ad... |
cadcomb 1616 | Commutative law for the ad... |
cadrot 1617 | Rotation law for the adder... |
cadnot 1618 | The adder carry distribute... |
cad11 1619 | If (at least) two inputs a... |
cad1 1620 | If one input is true, then... |
cad0 1621 | If one input is false, the... |
cad0OLD 1622 | Obsolete version of ~ cad0... |
cadifp 1623 | The value of the carry is,... |
cadtru 1624 | The adder carry is true as... |
minimp 1625 | A single axiom for minimal... |
minimp-syllsimp 1626 | Derivation of Syll-Simp ( ... |
minimp-ax1 1627 | Derivation of ~ ax-1 from ... |
minimp-ax2c 1628 | Derivation of a commuted f... |
minimp-ax2 1629 | Derivation of ~ ax-2 from ... |
minimp-pm2.43 1630 | Derivation of ~ pm2.43 (al... |
impsingle 1631 | The shortest single axiom ... |
impsingle-step4 1632 | Derivation of impsingle-st... |
impsingle-step8 1633 | Derivation of impsingle-st... |
impsingle-ax1 1634 | Derivation of impsingle-ax... |
impsingle-step15 1635 | Derivation of impsingle-st... |
impsingle-step18 1636 | Derivation of impsingle-st... |
impsingle-step19 1637 | Derivation of impsingle-st... |
impsingle-step20 1638 | Derivation of impsingle-st... |
impsingle-step21 1639 | Derivation of impsingle-st... |
impsingle-step22 1640 | Derivation of impsingle-st... |
impsingle-step25 1641 | Derivation of impsingle-st... |
impsingle-imim1 1642 | Derivation of impsingle-im... |
impsingle-peirce 1643 | Derivation of impsingle-pe... |
tarski-bernays-ax2 1644 | Derivation of ~ ax-2 from ... |
meredith 1645 | Carew Meredith's sole axio... |
merlem1 1646 | Step 3 of Meredith's proof... |
merlem2 1647 | Step 4 of Meredith's proof... |
merlem3 1648 | Step 7 of Meredith's proof... |
merlem4 1649 | Step 8 of Meredith's proof... |
merlem5 1650 | Step 11 of Meredith's proo... |
merlem6 1651 | Step 12 of Meredith's proo... |
merlem7 1652 | Between steps 14 and 15 of... |
merlem8 1653 | Step 15 of Meredith's proo... |
merlem9 1654 | Step 18 of Meredith's proo... |
merlem10 1655 | Step 19 of Meredith's proo... |
merlem11 1656 | Step 20 of Meredith's proo... |
merlem12 1657 | Step 28 of Meredith's proo... |
merlem13 1658 | Step 35 of Meredith's proo... |
luk-1 1659 | 1 of 3 axioms for proposit... |
luk-2 1660 | 2 of 3 axioms for proposit... |
luk-3 1661 | 3 of 3 axioms for proposit... |
luklem1 1662 | Used to rederive standard ... |
luklem2 1663 | Used to rederive standard ... |
luklem3 1664 | Used to rederive standard ... |
luklem4 1665 | Used to rederive standard ... |
luklem5 1666 | Used to rederive standard ... |
luklem6 1667 | Used to rederive standard ... |
luklem7 1668 | Used to rederive standard ... |
luklem8 1669 | Used to rederive standard ... |
ax1 1670 | Standard propositional axi... |
ax2 1671 | Standard propositional axi... |
ax3 1672 | Standard propositional axi... |
nic-dfim 1673 | This theorem "defines" imp... |
nic-dfneg 1674 | This theorem "defines" neg... |
nic-mp 1675 | Derive Nicod's rule of mod... |
nic-mpALT 1676 | A direct proof of ~ nic-mp... |
nic-ax 1677 | Nicod's axiom derived from... |
nic-axALT 1678 | A direct proof of ~ nic-ax... |
nic-imp 1679 | Inference for ~ nic-mp usi... |
nic-idlem1 1680 | Lemma for ~ nic-id . (Con... |
nic-idlem2 1681 | Lemma for ~ nic-id . Infe... |
nic-id 1682 | Theorem ~ id expressed wit... |
nic-swap 1683 | The connector ` -/\ ` is s... |
nic-isw1 1684 | Inference version of ~ nic... |
nic-isw2 1685 | Inference for swapping nes... |
nic-iimp1 1686 | Inference version of ~ nic... |
nic-iimp2 1687 | Inference version of ~ nic... |
nic-idel 1688 | Inference to remove the tr... |
nic-ich 1689 | Chained inference. (Contr... |
nic-idbl 1690 | Double the terms. Since d... |
nic-bijust 1691 | Biconditional justificatio... |
nic-bi1 1692 | Inference to extract one s... |
nic-bi2 1693 | Inference to extract the o... |
nic-stdmp 1694 | Derive the standard modus ... |
nic-luk1 1695 | Proof of ~ luk-1 from ~ ni... |
nic-luk2 1696 | Proof of ~ luk-2 from ~ ni... |
nic-luk3 1697 | Proof of ~ luk-3 from ~ ni... |
lukshef-ax1 1698 | This alternative axiom for... |
lukshefth1 1699 | Lemma for ~ renicax . (Co... |
lukshefth2 1700 | Lemma for ~ renicax . (Co... |
renicax 1701 | A rederivation of ~ nic-ax... |
tbw-bijust 1702 | Justification for ~ tbw-ne... |
tbw-negdf 1703 | The definition of negation... |
tbw-ax1 1704 | The first of four axioms i... |
tbw-ax2 1705 | The second of four axioms ... |
tbw-ax3 1706 | The third of four axioms i... |
tbw-ax4 1707 | The fourth of four axioms ... |
tbwsyl 1708 | Used to rederive the Lukas... |
tbwlem1 1709 | Used to rederive the Lukas... |
tbwlem2 1710 | Used to rederive the Lukas... |
tbwlem3 1711 | Used to rederive the Lukas... |
tbwlem4 1712 | Used to rederive the Lukas... |
tbwlem5 1713 | Used to rederive the Lukas... |
re1luk1 1714 | ~ luk-1 derived from the T... |
re1luk2 1715 | ~ luk-2 derived from the T... |
re1luk3 1716 | ~ luk-3 derived from the T... |
merco1 1717 | A single axiom for proposi... |
merco1lem1 1718 | Used to rederive the Tarsk... |
retbwax4 1719 | ~ tbw-ax4 rederived from ~... |
retbwax2 1720 | ~ tbw-ax2 rederived from ~... |
merco1lem2 1721 | Used to rederive the Tarsk... |
merco1lem3 1722 | Used to rederive the Tarsk... |
merco1lem4 1723 | Used to rederive the Tarsk... |
merco1lem5 1724 | Used to rederive the Tarsk... |
merco1lem6 1725 | Used to rederive the Tarsk... |
merco1lem7 1726 | Used to rederive the Tarsk... |
retbwax3 1727 | ~ tbw-ax3 rederived from ~... |
merco1lem8 1728 | Used to rederive the Tarsk... |
merco1lem9 1729 | Used to rederive the Tarsk... |
merco1lem10 1730 | Used to rederive the Tarsk... |
merco1lem11 1731 | Used to rederive the Tarsk... |
merco1lem12 1732 | Used to rederive the Tarsk... |
merco1lem13 1733 | Used to rederive the Tarsk... |
merco1lem14 1734 | Used to rederive the Tarsk... |
merco1lem15 1735 | Used to rederive the Tarsk... |
merco1lem16 1736 | Used to rederive the Tarsk... |
merco1lem17 1737 | Used to rederive the Tarsk... |
merco1lem18 1738 | Used to rederive the Tarsk... |
retbwax1 1739 | ~ tbw-ax1 rederived from ~... |
merco2 1740 | A single axiom for proposi... |
mercolem1 1741 | Used to rederive the Tarsk... |
mercolem2 1742 | Used to rederive the Tarsk... |
mercolem3 1743 | Used to rederive the Tarsk... |
mercolem4 1744 | Used to rederive the Tarsk... |
mercolem5 1745 | Used to rederive the Tarsk... |
mercolem6 1746 | Used to rederive the Tarsk... |
mercolem7 1747 | Used to rederive the Tarsk... |
mercolem8 1748 | Used to rederive the Tarsk... |
re1tbw1 1749 | ~ tbw-ax1 rederived from ~... |
re1tbw2 1750 | ~ tbw-ax2 rederived from ~... |
re1tbw3 1751 | ~ tbw-ax3 rederived from ~... |
re1tbw4 1752 | ~ tbw-ax4 rederived from ~... |
rb-bijust 1753 | Justification for ~ rb-imd... |
rb-imdf 1754 | The definition of implicat... |
anmp 1755 | Modus ponens for ` { \/ , ... |
rb-ax1 1756 | The first of four axioms i... |
rb-ax2 1757 | The second of four axioms ... |
rb-ax3 1758 | The third of four axioms i... |
rb-ax4 1759 | The fourth of four axioms ... |
rbsyl 1760 | Used to rederive the Lukas... |
rblem1 1761 | Used to rederive the Lukas... |
rblem2 1762 | Used to rederive the Lukas... |
rblem3 1763 | Used to rederive the Lukas... |
rblem4 1764 | Used to rederive the Lukas... |
rblem5 1765 | Used to rederive the Lukas... |
rblem6 1766 | Used to rederive the Lukas... |
rblem7 1767 | Used to rederive the Lukas... |
re1axmp 1768 | ~ ax-mp derived from Russe... |
re2luk1 1769 | ~ luk-1 derived from Russe... |
re2luk2 1770 | ~ luk-2 derived from Russe... |
re2luk3 1771 | ~ luk-3 derived from Russe... |
mptnan 1772 | Modus ponendo tollens 1, o... |
mptxor 1773 | Modus ponendo tollens 2, o... |
mtpor 1774 | Modus tollendo ponens (inc... |
mtpxor 1775 | Modus tollendo ponens (ori... |
stoic1a 1776 | Stoic logic Thema 1 (part ... |
stoic1b 1777 | Stoic logic Thema 1 (part ... |
stoic2a 1778 | Stoic logic Thema 2 versio... |
stoic2b 1779 | Stoic logic Thema 2 versio... |
stoic3 1780 | Stoic logic Thema 3. Stat... |
stoic4a 1781 | Stoic logic Thema 4 versio... |
stoic4b 1782 | Stoic logic Thema 4 versio... |
alnex 1785 | Universal quantification o... |
eximal 1786 | An equivalence between an ... |
nf2 1789 | Alternate definition of no... |
nf3 1790 | Alternate definition of no... |
nf4 1791 | Alternate definition of no... |
nfi 1792 | Deduce that ` x ` is not f... |
nfri 1793 | Consequence of the definit... |
nfd 1794 | Deduce that ` x ` is not f... |
nfrd 1795 | Consequence of the definit... |
nftht 1796 | Closed form of ~ nfth . (... |
nfntht 1797 | Closed form of ~ nfnth . ... |
nfntht2 1798 | Closed form of ~ nfnth . ... |
gen2 1800 | Generalization applied twi... |
mpg 1801 | Modus ponens combined with... |
mpgbi 1802 | Modus ponens on biconditio... |
mpgbir 1803 | Modus ponens on biconditio... |
nex 1804 | Generalization rule for ne... |
nfth 1805 | No variable is (effectivel... |
nfnth 1806 | No variable is (effectivel... |
hbth 1807 | No variable is (effectivel... |
nftru 1808 | The true constant has no f... |
nffal 1809 | The false constant has no ... |
sptruw 1810 | Version of ~ sp when ` ph ... |
altru 1811 | For all sets, ` T. ` is tr... |
alfal 1812 | For all sets, ` -. F. ` is... |
alim 1814 | Restatement of Axiom ~ ax-... |
alimi 1815 | Inference quantifying both... |
2alimi 1816 | Inference doubly quantifyi... |
ala1 1817 | Add an antecedent in a uni... |
al2im 1818 | Closed form of ~ al2imi . ... |
al2imi 1819 | Inference quantifying ante... |
alanimi 1820 | Variant of ~ al2imi with c... |
alimdh 1821 | Deduction form of Theorem ... |
albi 1822 | Theorem 19.15 of [Margaris... |
albii 1823 | Inference adding universal... |
2albii 1824 | Inference adding two unive... |
sylgt 1825 | Closed form of ~ sylg . (... |
sylg 1826 | A syllogism combined with ... |
alrimih 1827 | Inference form of Theorem ... |
hbxfrbi 1828 | A utility lemma to transfe... |
alex 1829 | Universal quantifier in te... |
exnal 1830 | Existential quantification... |
2nalexn 1831 | Part of theorem *11.5 in [... |
2exnaln 1832 | Theorem *11.22 in [Whitehe... |
2nexaln 1833 | Theorem *11.25 in [Whitehe... |
alimex 1834 | An equivalence between an ... |
aleximi 1835 | A variant of ~ al2imi : in... |
alexbii 1836 | Biconditional form of ~ al... |
exim 1837 | Theorem 19.22 of [Margaris... |
eximi 1838 | Inference adding existenti... |
2eximi 1839 | Inference adding two exist... |
eximii 1840 | Inference associated with ... |
exa1 1841 | Add an antecedent in an ex... |
19.38 1842 | Theorem 19.38 of [Margaris... |
19.38a 1843 | Under a nonfreeness hypoth... |
19.38b 1844 | Under a nonfreeness hypoth... |
imnang 1845 | Quantified implication in ... |
alinexa 1846 | A transformation of quanti... |
exnalimn 1847 | Existential quantification... |
alexn 1848 | A relationship between two... |
2exnexn 1849 | Theorem *11.51 in [Whitehe... |
exbi 1850 | Theorem 19.18 of [Margaris... |
exbii 1851 | Inference adding existenti... |
2exbii 1852 | Inference adding two exist... |
3exbii 1853 | Inference adding three exi... |
nfbiit 1854 | Equivalence theorem for th... |
nfbii 1855 | Equality theorem for the n... |
nfxfr 1856 | A utility lemma to transfe... |
nfxfrd 1857 | A utility lemma to transfe... |
nfnbi 1858 | A variable is nonfree in a... |
nfnbiOLD 1859 | Obsolete version of ~ nfnb... |
nfnt 1860 | If a variable is nonfree i... |
nfn 1861 | Inference associated with ... |
nfnd 1862 | Deduction associated with ... |
exanali 1863 | A transformation of quanti... |
2exanali 1864 | Theorem *11.521 in [Whiteh... |
exancom 1865 | Commutation of conjunction... |
exan 1866 | Place a conjunct in the sc... |
alrimdh 1867 | Deduction form of Theorem ... |
eximdh 1868 | Deduction from Theorem 19.... |
nexdh 1869 | Deduction for generalizati... |
albidh 1870 | Formula-building rule for ... |
exbidh 1871 | Formula-building rule for ... |
exsimpl 1872 | Simplification of an exist... |
exsimpr 1873 | Simplification of an exist... |
19.26 1874 | Theorem 19.26 of [Margaris... |
19.26-2 1875 | Theorem ~ 19.26 with two q... |
19.26-3an 1876 | Theorem ~ 19.26 with tripl... |
19.29 1877 | Theorem 19.29 of [Margaris... |
19.29r 1878 | Variation of ~ 19.29 . (C... |
19.29r2 1879 | Variation of ~ 19.29r with... |
19.29x 1880 | Variation of ~ 19.29 with ... |
19.35 1881 | Theorem 19.35 of [Margaris... |
19.35i 1882 | Inference associated with ... |
19.35ri 1883 | Inference associated with ... |
19.25 1884 | Theorem 19.25 of [Margaris... |
19.30 1885 | Theorem 19.30 of [Margaris... |
19.43 1886 | Theorem 19.43 of [Margaris... |
19.43OLD 1887 | Obsolete proof of ~ 19.43 ... |
19.33 1888 | Theorem 19.33 of [Margaris... |
19.33b 1889 | The antecedent provides a ... |
19.40 1890 | Theorem 19.40 of [Margaris... |
19.40-2 1891 | Theorem *11.42 in [Whitehe... |
19.40b 1892 | The antecedent provides a ... |
albiim 1893 | Split a biconditional and ... |
2albiim 1894 | Split a biconditional and ... |
exintrbi 1895 | Add/remove a conjunct in t... |
exintr 1896 | Introduce a conjunct in th... |
alsyl 1897 | Universally quantified and... |
nfimd 1898 | If in a context ` x ` is n... |
nfimt 1899 | Closed form of ~ nfim and ... |
nfim 1900 | If ` x ` is not free in ` ... |
nfand 1901 | If in a context ` x ` is n... |
nf3and 1902 | Deduction form of bound-va... |
nfan 1903 | If ` x ` is not free in ` ... |
nfnan 1904 | If ` x ` is not free in ` ... |
nf3an 1905 | If ` x ` is not free in ` ... |
nfbid 1906 | If in a context ` x ` is n... |
nfbi 1907 | If ` x ` is not free in ` ... |
nfor 1908 | If ` x ` is not free in ` ... |
nf3or 1909 | If ` x ` is not free in ` ... |
empty 1910 | Two characterizations of t... |
emptyex 1911 | On the empty domain, any e... |
emptyal 1912 | On the empty domain, any u... |
emptynf 1913 | On the empty domain, any v... |
ax5d 1915 | Version of ~ ax-5 with ant... |
ax5e 1916 | A rephrasing of ~ ax-5 usi... |
ax5ea 1917 | If a formula holds for som... |
nfv 1918 | If ` x ` is not present in... |
nfvd 1919 | ~ nfv with antecedent. Us... |
alimdv 1920 | Deduction form of Theorem ... |
eximdv 1921 | Deduction form of Theorem ... |
2alimdv 1922 | Deduction form of Theorem ... |
2eximdv 1923 | Deduction form of Theorem ... |
albidv 1924 | Formula-building rule for ... |
exbidv 1925 | Formula-building rule for ... |
nfbidv 1926 | An equality theorem for no... |
2albidv 1927 | Formula-building rule for ... |
2exbidv 1928 | Formula-building rule for ... |
3exbidv 1929 | Formula-building rule for ... |
4exbidv 1930 | Formula-building rule for ... |
alrimiv 1931 | Inference form of Theorem ... |
alrimivv 1932 | Inference form of Theorem ... |
alrimdv 1933 | Deduction form of Theorem ... |
exlimiv 1934 | Inference form of Theorem ... |
exlimiiv 1935 | Inference (Rule C) associa... |
exlimivv 1936 | Inference form of Theorem ... |
exlimdv 1937 | Deduction form of Theorem ... |
exlimdvv 1938 | Deduction form of Theorem ... |
exlimddv 1939 | Existential elimination ru... |
nexdv 1940 | Deduction for generalizati... |
2ax5 1941 | Quantification of two vari... |
stdpc5v 1942 | Version of ~ stdpc5 with a... |
19.21v 1943 | Version of ~ 19.21 with a ... |
19.32v 1944 | Version of ~ 19.32 with a ... |
19.31v 1945 | Version of ~ 19.31 with a ... |
19.23v 1946 | Version of ~ 19.23 with a ... |
19.23vv 1947 | Theorem ~ 19.23v extended ... |
pm11.53v 1948 | Version of ~ pm11.53 with ... |
19.36imv 1949 | One direction of ~ 19.36v ... |
19.36imvOLD 1950 | Obsolete version of ~ 19.3... |
19.36iv 1951 | Inference associated with ... |
19.37imv 1952 | One direction of ~ 19.37v ... |
19.37iv 1953 | Inference associated with ... |
19.41v 1954 | Version of ~ 19.41 with a ... |
19.41vv 1955 | Version of ~ 19.41 with tw... |
19.41vvv 1956 | Version of ~ 19.41 with th... |
19.41vvvv 1957 | Version of ~ 19.41 with fo... |
19.42v 1958 | Version of ~ 19.42 with a ... |
exdistr 1959 | Distribution of existentia... |
exdistrv 1960 | Distribute a pair of exist... |
4exdistrv 1961 | Distribute two pairs of ex... |
19.42vv 1962 | Version of ~ 19.42 with tw... |
exdistr2 1963 | Distribution of existentia... |
19.42vvv 1964 | Version of ~ 19.42 with th... |
3exdistr 1965 | Distribution of existentia... |
4exdistr 1966 | Distribution of existentia... |
weq 1967 | Extend wff definition to i... |
speimfw 1968 | Specialization, with addit... |
speimfwALT 1969 | Alternate proof of ~ speim... |
spimfw 1970 | Specialization, with addit... |
ax12i 1971 | Inference that has ~ ax-12... |
ax6v 1973 | Axiom B7 of [Tarski] p. 75... |
ax6ev 1974 | At least one individual ex... |
spimw 1975 | Specialization. Lemma 8 o... |
spimew 1976 | Existential introduction, ... |
speiv 1977 | Inference from existential... |
speivw 1978 | Version of ~ spei with a d... |
exgen 1979 | Rule of existential genera... |
extru 1980 | There exists a variable su... |
19.2 1981 | Theorem 19.2 of [Margaris]... |
19.2d 1982 | Deduction associated with ... |
19.8w 1983 | Weak version of ~ 19.8a an... |
spnfw 1984 | Weak version of ~ sp . Us... |
spvw 1985 | Version of ~ sp when ` x `... |
19.3v 1986 | Version of ~ 19.3 with a d... |
19.8v 1987 | Version of ~ 19.8a with a ... |
19.9v 1988 | Version of ~ 19.9 with a d... |
19.39 1989 | Theorem 19.39 of [Margaris... |
19.24 1990 | Theorem 19.24 of [Margaris... |
19.34 1991 | Theorem 19.34 of [Margaris... |
19.36v 1992 | Version of ~ 19.36 with a ... |
19.12vvv 1993 | Version of ~ 19.12vv with ... |
19.27v 1994 | Version of ~ 19.27 with a ... |
19.28v 1995 | Version of ~ 19.28 with a ... |
19.37v 1996 | Version of ~ 19.37 with a ... |
19.44v 1997 | Version of ~ 19.44 with a ... |
19.45v 1998 | Version of ~ 19.45 with a ... |
spimevw 1999 | Existential introduction, ... |
spimvw 2000 | A weak form of specializat... |
spvv 2001 | Specialization, using impl... |
spfalw 2002 | Version of ~ sp when ` ph ... |
chvarvv 2003 | Implicit substitution of `... |
equs4v 2004 | Version of ~ equs4 with a ... |
alequexv 2005 | Version of ~ equs4v with i... |
exsbim 2006 | One direction of the equiv... |
equsv 2007 | If a formula does not cont... |
equsalvw 2008 | Version of ~ equsalv with ... |
equsexvw 2009 | Version of ~ equsexv with ... |
cbvaliw 2010 | Change bound variable. Us... |
cbvalivw 2011 | Change bound variable. Us... |
ax7v 2013 | Weakened version of ~ ax-7... |
ax7v1 2014 | First of two weakened vers... |
ax7v2 2015 | Second of two weakened ver... |
equid 2016 | Identity law for equality.... |
nfequid 2017 | Bound-variable hypothesis ... |
equcomiv 2018 | Weaker form of ~ equcomi w... |
ax6evr 2019 | A commuted form of ~ ax6ev... |
ax7 2020 | Proof of ~ ax-7 from ~ ax7... |
equcomi 2021 | Commutative law for equali... |
equcom 2022 | Commutative law for equali... |
equcomd 2023 | Deduction form of ~ equcom... |
equcoms 2024 | An inference commuting equ... |
equtr 2025 | A transitive law for equal... |
equtrr 2026 | A transitive law for equal... |
equeuclr 2027 | Commuted version of ~ eque... |
equeucl 2028 | Equality is a left-Euclide... |
equequ1 2029 | An equivalence law for equ... |
equequ2 2030 | An equivalence law for equ... |
equtr2 2031 | Equality is a left-Euclide... |
stdpc6 2032 | One of the two equality ax... |
equvinv 2033 | A variable introduction la... |
equvinva 2034 | A modified version of the ... |
equvelv 2035 | A biconditional form of ~ ... |
ax13b 2036 | An equivalence between two... |
spfw 2037 | Weak version of ~ sp . Us... |
spw 2038 | Weak version of the specia... |
cbvalw 2039 | Change bound variable. Us... |
cbvalvw 2040 | Change bound variable. Us... |
cbvexvw 2041 | Change bound variable. Us... |
cbvaldvaw 2042 | Rule used to change the bo... |
cbvexdvaw 2043 | Rule used to change the bo... |
cbval2vw 2044 | Rule used to change bound ... |
cbvex2vw 2045 | Rule used to change bound ... |
cbvex4vw 2046 | Rule used to change bound ... |
alcomiw 2047 | Weak version of ~ alcom . ... |
alcomiwOLD 2048 | Obsolete version of ~ alco... |
hbn1fw 2049 | Weak version of ~ ax-10 fr... |
hbn1w 2050 | Weak version of ~ hbn1 . ... |
hba1w 2051 | Weak version of ~ hba1 . ... |
hbe1w 2052 | Weak version of ~ hbe1 . ... |
hbalw 2053 | Weak version of ~ hbal . ... |
19.8aw 2054 | If a formula is true, then... |
exexw 2055 | Existential quantification... |
spaev 2056 | A special instance of ~ sp... |
cbvaev 2057 | Change bound variable in a... |
aevlem0 2058 | Lemma for ~ aevlem . Inst... |
aevlem 2059 | Lemma for ~ aev and ~ axc1... |
aeveq 2060 | The antecedent ` A. x x = ... |
aev 2061 | A "distinctor elimination"... |
aev2 2062 | A version of ~ aev with tw... |
hbaev 2063 | All variables are effectiv... |
naev 2064 | If some set variables can ... |
naev2 2065 | Generalization of ~ hbnaev... |
hbnaev 2066 | Any variable is free in ` ... |
sbjust 2067 | Justification theorem for ... |
sbt 2070 | A substitution into a theo... |
sbtru 2071 | The result of substituting... |
stdpc4 2072 | The specialization axiom o... |
sbtALT 2073 | Alternate proof of ~ sbt ,... |
2stdpc4 2074 | A double specialization us... |
sbi1 2075 | Distribute substitution ov... |
spsbim 2076 | Distribute substitution ov... |
spsbbi 2077 | Biconditional property for... |
sbimi 2078 | Distribute substitution ov... |
sb2imi 2079 | Distribute substitution ov... |
sbbii 2080 | Infer substitution into bo... |
2sbbii 2081 | Infer double substitution ... |
sbimdv 2082 | Deduction substituting bot... |
sbbidv 2083 | Deduction substituting bot... |
sban 2084 | Conjunction inside and out... |
sb3an 2085 | Threefold conjunction insi... |
spsbe 2086 | Existential generalization... |
sbequ 2087 | Equality property for subs... |
sbequi 2088 | An equality theorem for su... |
sb6 2089 | Alternate definition of su... |
2sb6 2090 | Equivalence for double sub... |
sb1v 2091 | One direction of ~ sb5 , p... |
sbv 2092 | Substitution for a variabl... |
sbcom4 2093 | Commutativity law for subs... |
pm11.07 2094 | Axiom *11.07 in [Whitehead... |
sbrimvlem 2095 | Common proof template for ... |
sbrimvw 2096 | Substitution in an implica... |
sbievw 2097 | Conversion of implicit sub... |
sbiedvw 2098 | Conversion of implicit sub... |
2sbievw 2099 | Conversion of double impli... |
sbcom3vv 2100 | Substituting ` y ` for ` x... |
sbievw2 2101 | ~ sbievw applied twice, av... |
sbco2vv 2102 | A composition law for subs... |
equsb3 2103 | Substitution in an equalit... |
equsb3r 2104 | Substitution applied to th... |
equsb1v 2105 | Substitution applied to an... |
nsb 2106 | Any substitution in an alw... |
sbn1 2107 | One direction of ~ sbn , u... |
wel 2109 | Extend wff definition to i... |
ax8v 2111 | Weakened version of ~ ax-8... |
ax8v1 2112 | First of two weakened vers... |
ax8v2 2113 | Second of two weakened ver... |
ax8 2114 | Proof of ~ ax-8 from ~ ax8... |
elequ1 2115 | An identity law for the no... |
elsb1 2116 | Substitution for the first... |
cleljust 2117 | When the class variables i... |
ax9v 2119 | Weakened version of ~ ax-9... |
ax9v1 2120 | First of two weakened vers... |
ax9v2 2121 | Second of two weakened ver... |
ax9 2122 | Proof of ~ ax-9 from ~ ax9... |
elequ2 2123 | An identity law for the no... |
elequ2g 2124 | A form of ~ elequ2 with a ... |
elsb2 2125 | Substitution for the secon... |
ax6dgen 2126 | Tarski's system uses the w... |
ax10w 2127 | Weak version of ~ ax-10 fr... |
ax11w 2128 | Weak version of ~ ax-11 fr... |
ax11dgen 2129 | Degenerate instance of ~ a... |
ax12wlem 2130 | Lemma for weak version of ... |
ax12w 2131 | Weak version of ~ ax-12 fr... |
ax12dgen 2132 | Degenerate instance of ~ a... |
ax12wdemo 2133 | Example of an application ... |
ax13w 2134 | Weak version (principal in... |
ax13dgen1 2135 | Degenerate instance of ~ a... |
ax13dgen2 2136 | Degenerate instance of ~ a... |
ax13dgen3 2137 | Degenerate instance of ~ a... |
ax13dgen4 2138 | Degenerate instance of ~ a... |
hbn1 2140 | Alias for ~ ax-10 to be us... |
hbe1 2141 | The setvar ` x ` is not fr... |
hbe1a 2142 | Dual statement of ~ hbe1 .... |
nf5-1 2143 | One direction of ~ nf5 can... |
nf5i 2144 | Deduce that ` x ` is not f... |
nf5dh 2145 | Deduce that ` x ` is not f... |
nf5dv 2146 | Apply the definition of no... |
nfnaew 2147 | All variables are effectiv... |
nfnaewOLD 2148 | Obsolete version of ~ nfna... |
nfe1 2149 | The setvar ` x ` is not fr... |
nfa1 2150 | The setvar ` x ` is not fr... |
nfna1 2151 | A convenience theorem part... |
nfia1 2152 | Lemma 23 of [Monk2] p. 114... |
nfnf1 2153 | The setvar ` x ` is not fr... |
modal5 2154 | The analogue in our predic... |
nfs1v 2155 | The setvar ` x ` is not fr... |
alcoms 2157 | Swap quantifiers in an ant... |
alcom 2158 | Theorem 19.5 of [Margaris]... |
alrot3 2159 | Theorem *11.21 in [Whitehe... |
alrot4 2160 | Rotate four universal quan... |
sbal 2161 | Move universal quantifier ... |
sbalv 2162 | Quantify with new variable... |
sbcom2 2163 | Commutativity law for subs... |
excom 2164 | Theorem 19.11 of [Margaris... |
excomim 2165 | One direction of Theorem 1... |
excom13 2166 | Swap 1st and 3rd existenti... |
exrot3 2167 | Rotate existential quantif... |
exrot4 2168 | Rotate existential quantif... |
hbal 2169 | If ` x ` is not free in ` ... |
hbald 2170 | Deduction form of bound-va... |
hbsbw 2171 | If ` z ` is not free in ` ... |
nfa2 2172 | Lemma 24 of [Monk2] p. 114... |
ax12v 2174 | This is essentially Axiom ... |
ax12v2 2175 | It is possible to remove a... |
19.8a 2176 | If a wff is true, it is tr... |
19.8ad 2177 | If a wff is true, it is tr... |
sp 2178 | Specialization. A univers... |
spi 2179 | Inference rule of universa... |
sps 2180 | Generalization of antecede... |
2sp 2181 | A double specialization (s... |
spsd 2182 | Deduction generalizing ant... |
19.2g 2183 | Theorem 19.2 of [Margaris]... |
19.21bi 2184 | Inference form of ~ 19.21 ... |
19.21bbi 2185 | Inference removing two uni... |
19.23bi 2186 | Inference form of Theorem ... |
nexr 2187 | Inference associated with ... |
qexmid 2188 | Quantified excluded middle... |
nf5r 2189 | Consequence of the definit... |
nf5rOLD 2190 | Obsolete version of ~ nfrd... |
nf5ri 2191 | Consequence of the definit... |
nf5rd 2192 | Consequence of the definit... |
spimedv 2193 | Deduction version of ~ spi... |
spimefv 2194 | Version of ~ spime with a ... |
nfim1 2195 | A closed form of ~ nfim . ... |
nfan1 2196 | A closed form of ~ nfan . ... |
19.3t 2197 | Closed form of ~ 19.3 and ... |
19.3 2198 | A wff may be quantified wi... |
19.9d 2199 | A deduction version of one... |
19.9t 2200 | Closed form of ~ 19.9 and ... |
19.9 2201 | A wff may be existentially... |
19.21t 2202 | Closed form of Theorem 19.... |
19.21 2203 | Theorem 19.21 of [Margaris... |
stdpc5 2204 | An axiom scheme of standar... |
19.21-2 2205 | Version of ~ 19.21 with tw... |
19.23t 2206 | Closed form of Theorem 19.... |
19.23 2207 | Theorem 19.23 of [Margaris... |
alimd 2208 | Deduction form of Theorem ... |
alrimi 2209 | Inference form of Theorem ... |
alrimdd 2210 | Deduction form of Theorem ... |
alrimd 2211 | Deduction form of Theorem ... |
eximd 2212 | Deduction form of Theorem ... |
exlimi 2213 | Inference associated with ... |
exlimd 2214 | Deduction form of Theorem ... |
exlimimdd 2215 | Existential elimination ru... |
exlimdd 2216 | Existential elimination ru... |
nexd 2217 | Deduction for generalizati... |
albid 2218 | Formula-building rule for ... |
exbid 2219 | Formula-building rule for ... |
nfbidf 2220 | An equality theorem for ef... |
19.16 2221 | Theorem 19.16 of [Margaris... |
19.17 2222 | Theorem 19.17 of [Margaris... |
19.27 2223 | Theorem 19.27 of [Margaris... |
19.28 2224 | Theorem 19.28 of [Margaris... |
19.19 2225 | Theorem 19.19 of [Margaris... |
19.36 2226 | Theorem 19.36 of [Margaris... |
19.36i 2227 | Inference associated with ... |
19.37 2228 | Theorem 19.37 of [Margaris... |
19.32 2229 | Theorem 19.32 of [Margaris... |
19.31 2230 | Theorem 19.31 of [Margaris... |
19.41 2231 | Theorem 19.41 of [Margaris... |
19.42 2232 | Theorem 19.42 of [Margaris... |
19.44 2233 | Theorem 19.44 of [Margaris... |
19.45 2234 | Theorem 19.45 of [Margaris... |
spimfv 2235 | Specialization, using impl... |
chvarfv 2236 | Implicit substitution of `... |
cbv3v2 2237 | Version of ~ cbv3 with two... |
sbalex 2238 | Equivalence of two ways to... |
sb4av 2239 | Version of ~ sb4a with a d... |
sbimd 2240 | Deduction substituting bot... |
sbbid 2241 | Deduction substituting bot... |
2sbbid 2242 | Deduction doubly substitut... |
sbequ1 2243 | An equality theorem for su... |
sbequ2 2244 | An equality theorem for su... |
sbequ2OLD 2245 | Obsolete version of ~ sbeq... |
stdpc7 2246 | One of the two equality ax... |
sbequ12 2247 | An equality theorem for su... |
sbequ12r 2248 | An equality theorem for su... |
sbelx 2249 | Elimination of substitutio... |
sbequ12a 2250 | An equality theorem for su... |
sbid 2251 | An identity theorem for su... |
sbcov 2252 | A composition law for subs... |
sb6a 2253 | Equivalence for substituti... |
sbid2vw 2254 | Reverting substitution yie... |
axc16g 2255 | Generalization of ~ axc16 ... |
axc16 2256 | Proof of older axiom ~ ax-... |
axc16gb 2257 | Biconditional strengthenin... |
axc16nf 2258 | If ~ dtru is false, then t... |
axc11v 2259 | Version of ~ axc11 with a ... |
axc11rv 2260 | Version of ~ axc11r with a... |
drsb2 2261 | Formula-building lemma for... |
equsalv 2262 | An equivalence related to ... |
equsexv 2263 | An equivalence related to ... |
equsexvOLD 2264 | Obsolete version of ~ equs... |
sbft 2265 | Substitution has no effect... |
sbf 2266 | Substitution for a variabl... |
sbf2 2267 | Substitution has no effect... |
sbh 2268 | Substitution for a variabl... |
hbs1 2269 | The setvar ` x ` is not fr... |
nfs1f 2270 | If ` x ` is not free in ` ... |
sb5 2271 | Alternate definition of su... |
sb5OLD 2272 | Obsolete version of ~ sb5 ... |
sb56OLD 2273 | Obsolete version of ~ sbal... |
equs5av 2274 | A property related to subs... |
2sb5 2275 | Equivalence for double sub... |
sbco4lem 2276 | Lemma for ~ sbco4 . It re... |
sbco4lemOLD 2277 | Obsolete version of ~ sbco... |
sbco4 2278 | Two ways of exchanging two... |
dfsb7 2279 | An alternate definition of... |
sbn 2280 | Negation inside and outsid... |
sbex 2281 | Move existential quantifie... |
nf5 2282 | Alternate definition of ~ ... |
nf6 2283 | An alternate definition of... |
nf5d 2284 | Deduce that ` x ` is not f... |
nf5di 2285 | Since the converse holds b... |
19.9h 2286 | A wff may be existentially... |
19.21h 2287 | Theorem 19.21 of [Margaris... |
19.23h 2288 | Theorem 19.23 of [Margaris... |
exlimih 2289 | Inference associated with ... |
exlimdh 2290 | Deduction form of Theorem ... |
equsalhw 2291 | Version of ~ equsalh with ... |
equsexhv 2292 | An equivalence related to ... |
hba1 2293 | The setvar ` x ` is not fr... |
hbnt 2294 | Closed theorem version of ... |
hbn 2295 | If ` x ` is not free in ` ... |
hbnd 2296 | Deduction form of bound-va... |
hbim1 2297 | A closed form of ~ hbim . ... |
hbimd 2298 | Deduction form of bound-va... |
hbim 2299 | If ` x ` is not free in ` ... |
hban 2300 | If ` x ` is not free in ` ... |
hb3an 2301 | If ` x ` is not free in ` ... |
sbi2 2302 | Introduction of implicatio... |
sbim 2303 | Implication inside and out... |
sbrim 2304 | Substitution in an implica... |
sbrimv 2305 | Substitution in an implica... |
sblim 2306 | Substitution in an implica... |
sbor 2307 | Disjunction inside and out... |
sbbi 2308 | Equivalence inside and out... |
sblbis 2309 | Introduce left bicondition... |
sbrbis 2310 | Introduce right biconditio... |
sbrbif 2311 | Introduce right biconditio... |
sbiev 2312 | Conversion of implicit sub... |
sbiedw 2313 | Conversion of implicit sub... |
sbiedwOLD 2314 | Obsolete version of ~ sbie... |
axc7 2315 | Show that the original axi... |
axc7e 2316 | Abbreviated version of ~ a... |
modal-b 2317 | The analogue in our predic... |
19.9ht 2318 | A closed version of ~ 19.9... |
axc4 2319 | Show that the original axi... |
axc4i 2320 | Inference version of ~ axc... |
nfal 2321 | If ` x ` is not free in ` ... |
nfex 2322 | If ` x ` is not free in ` ... |
hbex 2323 | If ` x ` is not free in ` ... |
nfnf 2324 | If ` x ` is not free in ` ... |
19.12 2325 | Theorem 19.12 of [Margaris... |
nfald 2326 | Deduction form of ~ nfal .... |
nfexd 2327 | If ` x ` is not free in ` ... |
nfsbv 2328 | If ` z ` is not free in ` ... |
nfsbvOLD 2329 | Obsolete version of ~ nfsb... |
hbsbwOLD 2330 | Obsolete version of ~ hbsb... |
sbco2v 2331 | A composition law for subs... |
aaan 2332 | Distribute universal quant... |
eeor 2333 | Distribute existential qua... |
cbv3v 2334 | Rule used to change bound ... |
cbv1v 2335 | Rule used to change bound ... |
cbv2w 2336 | Rule used to change bound ... |
cbvaldw 2337 | Deduction used to change b... |
cbvexdw 2338 | Deduction used to change b... |
cbv3hv 2339 | Rule used to change bound ... |
cbvalv1 2340 | Rule used to change bound ... |
cbvexv1 2341 | Rule used to change bound ... |
cbval2v 2342 | Rule used to change bound ... |
cbval2vOLD 2343 | Obsolete version of ~ cbva... |
cbvex2v 2344 | Rule used to change bound ... |
dvelimhw 2345 | Proof of ~ dvelimh without... |
pm11.53 2346 | Theorem *11.53 in [Whitehe... |
19.12vv 2347 | Special case of ~ 19.12 wh... |
eean 2348 | Distribute existential qua... |
eeanv 2349 | Distribute a pair of exist... |
eeeanv 2350 | Distribute three existenti... |
ee4anv 2351 | Distribute two pairs of ex... |
sb8v 2352 | Substitution of variable i... |
sb8ev 2353 | Substitution of variable i... |
2sb8ev 2354 | An equivalent expression f... |
sb6rfv 2355 | Reversed substitution. Ve... |
sbnf2 2356 | Two ways of expressing " `... |
exsb 2357 | An equivalent expression f... |
2exsb 2358 | An equivalent expression f... |
sbbib 2359 | Reversal of substitution. ... |
sbbibvv 2360 | Reversal of substitution. ... |
sbievg 2361 | Substitution applied to ex... |
cleljustALT 2362 | Alternate proof of ~ clelj... |
cleljustALT2 2363 | Alternate proof of ~ clelj... |
equs5aALT 2364 | Alternate proof of ~ equs5... |
equs5eALT 2365 | Alternate proof of ~ equs5... |
axc11r 2366 | Same as ~ axc11 but with r... |
dral1v 2367 | Formula-building lemma for... |
dral1vOLD 2368 | Obsolete version of ~ dral... |
drex1v 2369 | Formula-building lemma for... |
drnf1v 2370 | Formula-building lemma for... |
drnf1vOLD 2371 | Obsolete version of ~ drnf... |
ax13v 2373 | A weaker version of ~ ax-1... |
ax13lem1 2374 | A version of ~ ax13v with ... |
ax13 2375 | Derive ~ ax-13 from ~ ax13... |
ax13lem2 2376 | Lemma for ~ nfeqf2 . This... |
nfeqf2 2377 | An equation between setvar... |
dveeq2 2378 | Quantifier introduction wh... |
nfeqf1 2379 | An equation between setvar... |
dveeq1 2380 | Quantifier introduction wh... |
nfeqf 2381 | A variable is effectively ... |
axc9 2382 | Derive set.mm's original ~... |
ax6e 2383 | At least one individual ex... |
ax6 2384 | Theorem showing that ~ ax-... |
axc10 2385 | Show that the original axi... |
spimt 2386 | Closed theorem form of ~ s... |
spim 2387 | Specialization, using impl... |
spimed 2388 | Deduction version of ~ spi... |
spime 2389 | Existential introduction, ... |
spimv 2390 | A version of ~ spim with a... |
spimvALT 2391 | Alternate proof of ~ spimv... |
spimev 2392 | Distinct-variable version ... |
spv 2393 | Specialization, using impl... |
spei 2394 | Inference from existential... |
chvar 2395 | Implicit substitution of `... |
chvarv 2396 | Implicit substitution of `... |
cbv3 2397 | Rule used to change bound ... |
cbval 2398 | Rule used to change bound ... |
cbvex 2399 | Rule used to change bound ... |
cbvalv 2400 | Rule used to change bound ... |
cbvexv 2401 | Rule used to change bound ... |
cbv1 2402 | Rule used to change bound ... |
cbv2 2403 | Rule used to change bound ... |
cbv3h 2404 | Rule used to change bound ... |
cbv1h 2405 | Rule used to change bound ... |
cbv2h 2406 | Rule used to change bound ... |
cbvald 2407 | Deduction used to change b... |
cbvexd 2408 | Deduction used to change b... |
cbvaldva 2409 | Rule used to change the bo... |
cbvexdva 2410 | Rule used to change the bo... |
cbval2 2411 | Rule used to change bound ... |
cbvex2 2412 | Rule used to change bound ... |
cbval2vv 2413 | Rule used to change bound ... |
cbvex2vv 2414 | Rule used to change bound ... |
cbvex4v 2415 | Rule used to change bound ... |
equs4 2416 | Lemma used in proofs of im... |
equsal 2417 | An equivalence related to ... |
equsex 2418 | An equivalence related to ... |
equsexALT 2419 | Alternate proof of ~ equse... |
equsalh 2420 | An equivalence related to ... |
equsexh 2421 | An equivalence related to ... |
axc15 2422 | Derivation of set.mm's ori... |
ax12 2423 | Rederivation of Axiom ~ ax... |
ax12b 2424 | A bidirectional version of... |
ax13ALT 2425 | Alternate proof of ~ ax13 ... |
axc11n 2426 | Derive set.mm's original ~... |
aecom 2427 | Commutation law for identi... |
aecoms 2428 | A commutation rule for ide... |
naecoms 2429 | A commutation rule for dis... |
axc11 2430 | Show that ~ ax-c11 can be ... |
hbae 2431 | All variables are effectiv... |
hbnae 2432 | All variables are effectiv... |
nfae 2433 | All variables are effectiv... |
nfnae 2434 | All variables are effectiv... |
hbnaes 2435 | Rule that applies ~ hbnae ... |
axc16i 2436 | Inference with ~ axc16 as ... |
axc16nfALT 2437 | Alternate proof of ~ axc16... |
dral2 2438 | Formula-building lemma for... |
dral1 2439 | Formula-building lemma for... |
dral1ALT 2440 | Alternate proof of ~ dral1... |
drex1 2441 | Formula-building lemma for... |
drex2 2442 | Formula-building lemma for... |
drnf1 2443 | Formula-building lemma for... |
drnf2 2444 | Formula-building lemma for... |
nfald2 2445 | Variation on ~ nfald which... |
nfexd2 2446 | Variation on ~ nfexd which... |
exdistrf 2447 | Distribution of existentia... |
dvelimf 2448 | Version of ~ dvelimv witho... |
dvelimdf 2449 | Deduction form of ~ dvelim... |
dvelimh 2450 | Version of ~ dvelim withou... |
dvelim 2451 | This theorem can be used t... |
dvelimv 2452 | Similar to ~ dvelim with f... |
dvelimnf 2453 | Version of ~ dvelim using ... |
dveeq2ALT 2454 | Alternate proof of ~ dveeq... |
equvini 2455 | A variable introduction la... |
equvel 2456 | A variable elimination law... |
equs5a 2457 | A property related to subs... |
equs5e 2458 | A property related to subs... |
equs45f 2459 | Two ways of expressing sub... |
equs5 2460 | Lemma used in proofs of su... |
dveel1 2461 | Quantifier introduction wh... |
dveel2 2462 | Quantifier introduction wh... |
axc14 2463 | Axiom ~ ax-c14 is redundan... |
sb6x 2464 | Equivalence involving subs... |
sbequ5 2465 | Substitution does not chan... |
sbequ6 2466 | Substitution does not chan... |
sb5rf 2467 | Reversed substitution. Us... |
sb6rf 2468 | Reversed substitution. Fo... |
ax12vALT 2469 | Alternate proof of ~ ax12v... |
2ax6elem 2470 | We can always find values ... |
2ax6e 2471 | We can always find values ... |
2sb5rf 2472 | Reversed double substituti... |
2sb6rf 2473 | Reversed double substituti... |
sbel2x 2474 | Elimination of double subs... |
sb4b 2475 | Simplified definition of s... |
sb4bOLD 2476 | Obsolete version of ~ sb4b... |
sb3b 2477 | Simplified definition of s... |
sb3 2478 | One direction of a simplif... |
sb1 2479 | One direction of a simplif... |
sb2 2480 | One direction of a simplif... |
sb3OLD 2481 | Obsolete version of ~ sb3 ... |
sb1OLD 2482 | Obsolete version of ~ sb1 ... |
sb3bOLD 2483 | Obsolete version of ~ sb3b... |
sb4a 2484 | A version of one implicati... |
dfsb1 2485 | Alternate definition of su... |
hbsb2 2486 | Bound-variable hypothesis ... |
nfsb2 2487 | Bound-variable hypothesis ... |
hbsb2a 2488 | Special case of a bound-va... |
sb4e 2489 | One direction of a simplif... |
hbsb2e 2490 | Special case of a bound-va... |
hbsb3 2491 | If ` y ` is not free in ` ... |
nfs1 2492 | If ` y ` is not free in ` ... |
axc16ALT 2493 | Alternate proof of ~ axc16... |
axc16gALT 2494 | Alternate proof of ~ axc16... |
equsb1 2495 | Substitution applied to an... |
equsb2 2496 | Substitution applied to an... |
dfsb2 2497 | An alternate definition of... |
dfsb3 2498 | An alternate definition of... |
drsb1 2499 | Formula-building lemma for... |
sb2ae 2500 | In the case of two success... |
sb6f 2501 | Equivalence for substituti... |
sb5f 2502 | Equivalence for substituti... |
nfsb4t 2503 | A variable not free in a p... |
nfsb4 2504 | A variable not free in a p... |
sbequ8 2505 | Elimination of equality fr... |
sbie 2506 | Conversion of implicit sub... |
sbied 2507 | Conversion of implicit sub... |
sbiedv 2508 | Conversion of implicit sub... |
2sbiev 2509 | Conversion of double impli... |
sbcom3 2510 | Substituting ` y ` for ` x... |
sbco 2511 | A composition law for subs... |
sbid2 2512 | An identity law for substi... |
sbid2v 2513 | An identity law for substi... |
sbidm 2514 | An idempotent law for subs... |
sbco2 2515 | A composition law for subs... |
sbco2d 2516 | A composition law for subs... |
sbco3 2517 | A composition law for subs... |
sbcom 2518 | A commutativity law for su... |
sbtrt 2519 | Partially closed form of ~... |
sbtr 2520 | A partial converse to ~ sb... |
sb8 2521 | Substitution of variable i... |
sb8e 2522 | Substitution of variable i... |
sb9 2523 | Commutation of quantificat... |
sb9i 2524 | Commutation of quantificat... |
sbhb 2525 | Two ways of expressing " `... |
nfsbd 2526 | Deduction version of ~ nfs... |
nfsb 2527 | If ` z ` is not free in ` ... |
nfsbOLD 2528 | Obsolete version of ~ nfsb... |
hbsb 2529 | If ` z ` is not free in ` ... |
sb7f 2530 | This version of ~ dfsb7 do... |
sb7h 2531 | This version of ~ dfsb7 do... |
sb10f 2532 | Hao Wang's identity axiom ... |
sbal1 2533 | Check out ~ sbal for a ver... |
sbal2 2534 | Move quantifier in and out... |
2sb8e 2535 | An equivalent expression f... |
dfmoeu 2536 | An elementary proof of ~ m... |
dfeumo 2537 | An elementary proof showin... |
mojust 2539 | Soundness justification th... |
nexmo 2541 | Nonexistence implies uniqu... |
exmo 2542 | Any proposition holds for ... |
moabs 2543 | Absorption of existence co... |
moim 2544 | The at-most-one quantifier... |
moimi 2545 | The at-most-one quantifier... |
moimdv 2546 | The at-most-one quantifier... |
mobi 2547 | Equivalence theorem for th... |
mobii 2548 | Formula-building rule for ... |
mobidv 2549 | Formula-building rule for ... |
mobid 2550 | Formula-building rule for ... |
moa1 2551 | If an implication holds fo... |
moan 2552 | "At most one" is still the... |
moani 2553 | "At most one" is still tru... |
moor 2554 | "At most one" is still the... |
mooran1 2555 | "At most one" imports disj... |
mooran2 2556 | "At most one" exports disj... |
nfmo1 2557 | Bound-variable hypothesis ... |
nfmod2 2558 | Bound-variable hypothesis ... |
nfmodv 2559 | Bound-variable hypothesis ... |
nfmov 2560 | Bound-variable hypothesis ... |
nfmod 2561 | Bound-variable hypothesis ... |
nfmo 2562 | Bound-variable hypothesis ... |
mof 2563 | Version of ~ df-mo with di... |
mo3 2564 | Alternate definition of th... |
mo 2565 | Equivalent definitions of ... |
mo4 2566 | At-most-one quantifier exp... |
mo4f 2567 | At-most-one quantifier exp... |
eu3v 2570 | An alternate way to expres... |
eujust 2571 | Soundness justification th... |
eujustALT 2572 | Alternate proof of ~ eujus... |
eu6lem 2573 | Lemma of ~ eu6im . A diss... |
eu6 2574 | Alternate definition of th... |
eu6im 2575 | One direction of ~ eu6 nee... |
euf 2576 | Version of ~ eu6 with disj... |
euex 2577 | Existential uniqueness imp... |
eumo 2578 | Existential uniqueness imp... |
eumoi 2579 | Uniqueness inferred from e... |
exmoeub 2580 | Existence implies that uni... |
exmoeu 2581 | Existence is equivalent to... |
moeuex 2582 | Uniqueness implies that ex... |
moeu 2583 | Uniqueness is equivalent t... |
eubi 2584 | Equivalence theorem for th... |
eubii 2585 | Introduce unique existenti... |
eubidv 2586 | Formula-building rule for ... |
eubid 2587 | Formula-building rule for ... |
nfeu1 2588 | Bound-variable hypothesis ... |
nfeu1ALT 2589 | Alternate proof of ~ nfeu1... |
nfeud2 2590 | Bound-variable hypothesis ... |
nfeudw 2591 | Bound-variable hypothesis ... |
nfeud 2592 | Bound-variable hypothesis ... |
nfeuw 2593 | Bound-variable hypothesis ... |
nfeu 2594 | Bound-variable hypothesis ... |
dfeu 2595 | Rederive ~ df-eu from the ... |
dfmo 2596 | Rederive ~ df-mo from the ... |
euequ 2597 | There exists a unique set ... |
sb8eulem 2598 | Lemma. Factor out the com... |
sb8euv 2599 | Variable substitution in u... |
sb8eu 2600 | Variable substitution in u... |
sb8mo 2601 | Variable substitution for ... |
cbvmovw 2602 | Change bound variable. Us... |
cbvmow 2603 | Rule used to change bound ... |
cbvmowOLD 2604 | Obsolete version of ~ cbvm... |
cbvmo 2605 | Rule used to change bound ... |
cbveuvw 2606 | Change bound variable. Us... |
cbveuw 2607 | Version of ~ cbveu with a ... |
cbveuwOLD 2608 | Obsolete version of ~ cbve... |
cbveu 2609 | Rule used to change bound ... |
cbveuALT 2610 | Alternative proof of ~ cbv... |
eu2 2611 | An alternate way of defini... |
eu1 2612 | An alternate way to expres... |
euor 2613 | Introduce a disjunct into ... |
euorv 2614 | Introduce a disjunct into ... |
euor2 2615 | Introduce or eliminate a d... |
sbmo 2616 | Substitution into an at-mo... |
eu4 2617 | Uniqueness using implicit ... |
euimmo 2618 | Existential uniqueness imp... |
euim 2619 | Add unique existential qua... |
moanimlem 2620 | Factor out the common proo... |
moanimv 2621 | Introduction of a conjunct... |
moanim 2622 | Introduction of a conjunct... |
euan 2623 | Introduction of a conjunct... |
moanmo 2624 | Nested at-most-one quantif... |
moaneu 2625 | Nested at-most-one and uni... |
euanv 2626 | Introduction of a conjunct... |
mopick 2627 | "At most one" picks a vari... |
moexexlem 2628 | Factor out the proof skele... |
2moexv 2629 | Double quantification with... |
moexexvw 2630 | "At most one" double quant... |
2moswapv 2631 | A condition allowing to sw... |
2euswapv 2632 | A condition allowing to sw... |
2euexv 2633 | Double quantification with... |
2exeuv 2634 | Double existential uniquen... |
eupick 2635 | Existential uniqueness "pi... |
eupicka 2636 | Version of ~ eupick with c... |
eupickb 2637 | Existential uniqueness "pi... |
eupickbi 2638 | Theorem *14.26 in [Whitehe... |
mopick2 2639 | "At most one" can show the... |
moexex 2640 | "At most one" double quant... |
moexexv 2641 | "At most one" double quant... |
2moex 2642 | Double quantification with... |
2euex 2643 | Double quantification with... |
2eumo 2644 | Nested unique existential ... |
2eu2ex 2645 | Double existential uniquen... |
2moswap 2646 | A condition allowing to sw... |
2euswap 2647 | A condition allowing to sw... |
2exeu 2648 | Double existential uniquen... |
2mo2 2649 | Two ways of expressing "th... |
2mo 2650 | Two ways of expressing "th... |
2mos 2651 | Double "there exists at mo... |
2eu1 2652 | Double existential uniquen... |
2eu1v 2653 | Double existential uniquen... |
2eu2 2654 | Double existential uniquen... |
2eu3 2655 | Double existential uniquen... |
2eu4 2656 | This theorem provides us w... |
2eu5 2657 | An alternate definition of... |
2eu6 2658 | Two equivalent expressions... |
2eu7 2659 | Two equivalent expressions... |
2eu8 2660 | Two equivalent expressions... |
euae 2661 | Two ways to express "exact... |
exists1 2662 | Two ways to express "exact... |
exists2 2663 | A condition implying that ... |
barbara 2664 | "Barbara", one of the fund... |
celarent 2665 | "Celarent", one of the syl... |
darii 2666 | "Darii", one of the syllog... |
dariiALT 2667 | Alternate proof of ~ darii... |
ferio 2668 | "Ferio" ("Ferioque"), one ... |
barbarilem 2669 | Lemma for ~ barbari and th... |
barbari 2670 | "Barbari", one of the syll... |
barbariALT 2671 | Alternate proof of ~ barba... |
celaront 2672 | "Celaront", one of the syl... |
cesare 2673 | "Cesare", one of the syllo... |
camestres 2674 | "Camestres", one of the sy... |
festino 2675 | "Festino", one of the syll... |
festinoALT 2676 | Alternate proof of ~ festi... |
baroco 2677 | "Baroco", one of the syllo... |
barocoALT 2678 | Alternate proof of ~ festi... |
cesaro 2679 | "Cesaro", one of the syllo... |
camestros 2680 | "Camestros", one of the sy... |
datisi 2681 | "Datisi", one of the syllo... |
disamis 2682 | "Disamis", one of the syll... |
ferison 2683 | "Ferison", one of the syll... |
bocardo 2684 | "Bocardo", one of the syll... |
darapti 2685 | "Darapti", one of the syll... |
daraptiALT 2686 | Alternate proof of ~ darap... |
felapton 2687 | "Felapton", one of the syl... |
calemes 2688 | "Calemes", one of the syll... |
dimatis 2689 | "Dimatis", one of the syll... |
fresison 2690 | "Fresison", one of the syl... |
calemos 2691 | "Calemos", one of the syll... |
fesapo 2692 | "Fesapo", one of the syllo... |
bamalip 2693 | "Bamalip", one of the syll... |
axia1 2694 | Left 'and' elimination (in... |
axia2 2695 | Right 'and' elimination (i... |
axia3 2696 | 'And' introduction (intuit... |
axin1 2697 | 'Not' introduction (intuit... |
axin2 2698 | 'Not' elimination (intuiti... |
axio 2699 | Definition of 'or' (intuit... |
axi4 2700 | Specialization (intuitioni... |
axi5r 2701 | Converse of ~ axc4 (intuit... |
axial 2702 | The setvar ` x ` is not fr... |
axie1 2703 | The setvar ` x ` is not fr... |
axie2 2704 | A key property of existent... |
axi9 2705 | Axiom of existence (intuit... |
axi10 2706 | Axiom of Quantifier Substi... |
axi12 2707 | Axiom of Quantifier Introd... |
axbnd 2708 | Axiom of Bundling (intuiti... |
axexte 2710 | The axiom of extensionalit... |
axextg 2711 | A generalization of the ax... |
axextb 2712 | A bidirectional version of... |
axextmo 2713 | There exists at most one s... |
nulmo 2714 | There exists at most one e... |
eleq1ab 2717 | Extension (in the sense of... |
cleljustab 2718 | Extension of ~ cleljust fr... |
abid 2719 | Simplification of class ab... |
vexwt 2720 | A standard theorem of pred... |
vexw 2721 | If ` ph ` is a theorem, th... |
vextru 2722 | Every setvar is a member o... |
nfsab1 2723 | Bound-variable hypothesis ... |
hbab1 2724 | Bound-variable hypothesis ... |
hbab1OLD 2725 | Obsolete version of ~ hbab... |
hbab 2726 | Bound-variable hypothesis ... |
hbabg 2727 | Bound-variable hypothesis ... |
nfsab 2728 | Bound-variable hypothesis ... |
nfsabg 2729 | Bound-variable hypothesis ... |
dfcleq 2731 | The defining characterizat... |
cvjust 2732 | Every set is a class. Pro... |
ax9ALT 2733 | Proof of ~ ax-9 from Tarsk... |
eleq2w2 2734 | A weaker version of ~ eleq... |
eqriv 2735 | Infer equality of classes ... |
eqrdv 2736 | Deduce equality of classes... |
eqrdav 2737 | Deduce equality of classes... |
eqid 2738 | Law of identity (reflexivi... |
eqidd 2739 | Class identity law with an... |
eqeq1d 2740 | Deduction from equality to... |
eqeq1dALT 2741 | Alternate proof of ~ eqeq1... |
eqeq1 2742 | Equality implies equivalen... |
eqeq1i 2743 | Inference from equality to... |
eqcomd 2744 | Deduction from commutative... |
eqcom 2745 | Commutative law for class ... |
eqcoms 2746 | Inference applying commuta... |
eqcomi 2747 | Inference from commutative... |
neqcomd 2748 | Commute an inequality. (C... |
eqeq2d 2749 | Deduction from equality to... |
eqeq2 2750 | Equality implies equivalen... |
eqeq2i 2751 | Inference from equality to... |
eqeqan12d 2752 | A useful inference for sub... |
eqeqan12rd 2753 | A useful inference for sub... |
eqeq12d 2754 | A useful inference for sub... |
eqeq12 2755 | Equality relationship amon... |
eqeq12i 2756 | A useful inference for sub... |
eqeq12OLD 2757 | Obsolete version of ~ eqeq... |
eqeq12dOLD 2758 | Obsolete version of ~ eqeq... |
eqeqan12dOLD 2759 | Obsolete version of ~ eqeq... |
eqeqan12dALT 2760 | Alternate proof of ~ eqeqa... |
eqtr 2761 | Transitive law for class e... |
eqtr2 2762 | A transitive law for class... |
eqtr2OLD 2763 | Obsolete version of eqtr2 ... |
eqtr3 2764 | A transitive law for class... |
eqtr3OLD 2765 | Obsolete version of ~ eqtr... |
eqtri 2766 | An equality transitivity i... |
eqtr2i 2767 | An equality transitivity i... |
eqtr3i 2768 | An equality transitivity i... |
eqtr4i 2769 | An equality transitivity i... |
3eqtri 2770 | An inference from three ch... |
3eqtrri 2771 | An inference from three ch... |
3eqtr2i 2772 | An inference from three ch... |
3eqtr2ri 2773 | An inference from three ch... |
3eqtr3i 2774 | An inference from three ch... |
3eqtr3ri 2775 | An inference from three ch... |
3eqtr4i 2776 | An inference from three ch... |
3eqtr4ri 2777 | An inference from three ch... |
eqtrd 2778 | An equality transitivity d... |
eqtr2d 2779 | An equality transitivity d... |
eqtr3d 2780 | An equality transitivity e... |
eqtr4d 2781 | An equality transitivity e... |
3eqtrd 2782 | A deduction from three cha... |
3eqtrrd 2783 | A deduction from three cha... |
3eqtr2d 2784 | A deduction from three cha... |
3eqtr2rd 2785 | A deduction from three cha... |
3eqtr3d 2786 | A deduction from three cha... |
3eqtr3rd 2787 | A deduction from three cha... |
3eqtr4d 2788 | A deduction from three cha... |
3eqtr4rd 2789 | A deduction from three cha... |
eqtrid 2790 | An equality transitivity d... |
syl5eq 2791 | Renamed to ~ eqtrid . Kep... |
eqtr2id 2792 | An equality transitivity d... |
eqtr3id 2793 | An equality transitivity d... |
eqtr3di 2794 | An equality transitivity d... |
eqtrdi 2795 | An equality transitivity d... |
eqtr2di 2796 | An equality transitivity d... |
eqtr4di 2797 | An equality transitivity d... |
eqtr4id 2798 | An equality transitivity d... |
sylan9eq 2799 | An equality transitivity d... |
sylan9req 2800 | An equality transitivity d... |
sylan9eqr 2801 | An equality transitivity d... |
3eqtr3g 2802 | A chained equality inferen... |
3eqtr3a 2803 | A chained equality inferen... |
3eqtr4g 2804 | A chained equality inferen... |
3eqtr4a 2805 | A chained equality inferen... |
eq2tri 2806 | A compound transitive infe... |
abbi1 2807 | Equivalent formulas yield ... |
abbidv 2808 | Equivalent wff's yield equ... |
abbii 2809 | Equivalent wff's yield equ... |
abbid 2810 | Equivalent wff's yield equ... |
abbi 2811 | Equivalent formulas define... |
cbvabv 2812 | Rule used to change bound ... |
cbvabw 2813 | Rule used to change bound ... |
cbvabwOLD 2814 | Obsolete version of ~ cbva... |
cbvab 2815 | Rule used to change bound ... |
abeq2w 2816 | Version of ~ abeq2 using i... |
dfclel 2818 | Characterization of the el... |
elissetv 2819 | An element of a class exis... |
elisset 2820 | An element of a class exis... |
eleq1w 2821 | Weaker version of ~ eleq1 ... |
eleq2w 2822 | Weaker version of ~ eleq2 ... |
eleq1d 2823 | Deduction from equality to... |
eleq2d 2824 | Deduction from equality to... |
eleq2dALT 2825 | Alternate proof of ~ eleq2... |
eleq1 2826 | Equality implies equivalen... |
eleq2 2827 | Equality implies equivalen... |
eleq12 2828 | Equality implies equivalen... |
eleq1i 2829 | Inference from equality to... |
eleq2i 2830 | Inference from equality to... |
eleq12i 2831 | Inference from equality to... |
eqneltri 2832 | If a class is not an eleme... |
eleq12d 2833 | Deduction from equality to... |
eleq1a 2834 | A transitive-type law rela... |
eqeltri 2835 | Substitution of equal clas... |
eqeltrri 2836 | Substitution of equal clas... |
eleqtri 2837 | Substitution of equal clas... |
eleqtrri 2838 | Substitution of equal clas... |
eqeltrd 2839 | Substitution of equal clas... |
eqeltrrd 2840 | Deduction that substitutes... |
eleqtrd 2841 | Deduction that substitutes... |
eleqtrrd 2842 | Deduction that substitutes... |
eqeltrid 2843 | A membership and equality ... |
eqeltrrid 2844 | A membership and equality ... |
eleqtrid 2845 | A membership and equality ... |
eleqtrrid 2846 | A membership and equality ... |
eqeltrdi 2847 | A membership and equality ... |
eqeltrrdi 2848 | A membership and equality ... |
eleqtrdi 2849 | A membership and equality ... |
eleqtrrdi 2850 | A membership and equality ... |
3eltr3i 2851 | Substitution of equal clas... |
3eltr4i 2852 | Substitution of equal clas... |
3eltr3d 2853 | Substitution of equal clas... |
3eltr4d 2854 | Substitution of equal clas... |
3eltr3g 2855 | Substitution of equal clas... |
3eltr4g 2856 | Substitution of equal clas... |
eleq2s 2857 | Substitution of equal clas... |
eqneltrd 2858 | If a class is not an eleme... |
eqneltrrd 2859 | If a class is not an eleme... |
neleqtrd 2860 | If a class is not an eleme... |
neleqtrrd 2861 | If a class is not an eleme... |
cleqh 2862 | Establish equality between... |
nelneq 2863 | A way of showing two class... |
nelneq2 2864 | A way of showing two class... |
eqsb1 2865 | Substitution for the left-... |
clelsb1 2866 | Substitution for the first... |
clelsb2 2867 | Substitution for the secon... |
hbxfreq 2868 | A utility lemma to transfe... |
hblem 2869 | Change the free variable o... |
hblemg 2870 | Change the free variable o... |
abeq2 2871 | Equality of a class variab... |
abeq1 2872 | Equality of a class variab... |
abeq2d 2873 | Equality of a class variab... |
abeq2i 2874 | Equality of a class variab... |
abeq1i 2875 | Equality of a class variab... |
abbi2dv 2876 | Deduction from a wff to a ... |
abbi1dv 2877 | Deduction from a wff to a ... |
abbi2i 2878 | Equality of a class variab... |
abbiOLD 2879 | Obsolete proof of ~ abbi a... |
abid1 2880 | Every class is equal to a ... |
abid2 2881 | A simplification of class ... |
clelab 2882 | Membership of a class vari... |
clelabOLD 2883 | Obsolete version of ~ clel... |
clabel 2884 | Membership of a class abst... |
sbab 2885 | The right-hand side of the... |
nfcjust 2887 | Justification theorem for ... |
nfci 2889 | Deduce that a class ` A ` ... |
nfcii 2890 | Deduce that a class ` A ` ... |
nfcr 2891 | Consequence of the not-fre... |
nfcrALT 2892 | Alternate version of ~ nfc... |
nfcri 2893 | Consequence of the not-fre... |
nfcd 2894 | Deduce that a class ` A ` ... |
nfcrd 2895 | Consequence of the not-fre... |
nfcriOLD 2896 | Obsolete version of ~ nfcr... |
nfcriOLDOLD 2897 | Obsolete version of ~ nfcr... |
nfcrii 2898 | Consequence of the not-fre... |
nfcriiOLD 2899 | Obsolete version of ~ nfcr... |
nfcriOLDOLDOLD 2900 | Obsolete version of ~ nfcr... |
nfceqdf 2901 | An equality theorem for ef... |
nfceqdfOLD 2902 | Obsolete version of ~ nfce... |
nfceqi 2903 | Equality theorem for class... |
nfcxfr 2904 | A utility lemma to transfe... |
nfcxfrd 2905 | A utility lemma to transfe... |
nfcv 2906 | If ` x ` is disjoint from ... |
nfcvd 2907 | If ` x ` is disjoint from ... |
nfab1 2908 | Bound-variable hypothesis ... |
nfnfc1 2909 | The setvar ` x ` is bound ... |
clelsb1fw 2910 | Substitution for the first... |
clelsb1f 2911 | Substitution for the first... |
nfab 2912 | Bound-variable hypothesis ... |
nfabg 2913 | Bound-variable hypothesis ... |
nfaba1 2914 | Bound-variable hypothesis ... |
nfaba1g 2915 | Bound-variable hypothesis ... |
nfeqd 2916 | Hypothesis builder for equ... |
nfeld 2917 | Hypothesis builder for ele... |
nfnfc 2918 | Hypothesis builder for ` F... |
nfeq 2919 | Hypothesis builder for equ... |
nfel 2920 | Hypothesis builder for ele... |
nfeq1 2921 | Hypothesis builder for equ... |
nfel1 2922 | Hypothesis builder for ele... |
nfeq2 2923 | Hypothesis builder for equ... |
nfel2 2924 | Hypothesis builder for ele... |
drnfc1 2925 | Formula-building lemma for... |
drnfc1OLD 2926 | Obsolete version of ~ drnf... |
drnfc2 2927 | Formula-building lemma for... |
drnfc2OLD 2928 | Obsolete version of ~ drnf... |
nfabdw 2929 | Bound-variable hypothesis ... |
nfabdwOLD 2930 | Obsolete version of ~ nfab... |
nfabd 2931 | Bound-variable hypothesis ... |
nfabd2 2932 | Bound-variable hypothesis ... |
dvelimdc 2933 | Deduction form of ~ dvelim... |
dvelimc 2934 | Version of ~ dvelim for cl... |
nfcvf 2935 | If ` x ` and ` y ` are dis... |
nfcvf2 2936 | If ` x ` and ` y ` are dis... |
cleqf 2937 | Establish equality between... |
abid2f 2938 | A simplification of class ... |
abeq2f 2939 | Equality of a class variab... |
sbabel 2940 | Theorem to move a substitu... |
sbabelOLD 2941 | Obsolete version of ~ sbab... |
neii 2944 | Inference associated with ... |
neir 2945 | Inference associated with ... |
nne 2946 | Negation of inequality. (... |
neneqd 2947 | Deduction eliminating ineq... |
neneq 2948 | From inequality to non-equ... |
neqned 2949 | If it is not the case that... |
neqne 2950 | From non-equality to inequ... |
neirr 2951 | No class is unequal to its... |
exmidne 2952 | Excluded middle with equal... |
eqneqall 2953 | A contradiction concerning... |
nonconne 2954 | Law of noncontradiction wi... |
necon3ad 2955 | Contrapositive law deducti... |
necon3bd 2956 | Contrapositive law deducti... |
necon2ad 2957 | Contrapositive inference f... |
necon2bd 2958 | Contrapositive inference f... |
necon1ad 2959 | Contrapositive deduction f... |
necon1bd 2960 | Contrapositive deduction f... |
necon4ad 2961 | Contrapositive inference f... |
necon4bd 2962 | Contrapositive inference f... |
necon3d 2963 | Contrapositive law deducti... |
necon1d 2964 | Contrapositive law deducti... |
necon2d 2965 | Contrapositive inference f... |
necon4d 2966 | Contrapositive inference f... |
necon3ai 2967 | Contrapositive inference f... |
necon3aiOLD 2968 | Obsolete version of ~ neco... |
necon3bi 2969 | Contrapositive inference f... |
necon1ai 2970 | Contrapositive inference f... |
necon1bi 2971 | Contrapositive inference f... |
necon2ai 2972 | Contrapositive inference f... |
necon2bi 2973 | Contrapositive inference f... |
necon4ai 2974 | Contrapositive inference f... |
necon3i 2975 | Contrapositive inference f... |
necon1i 2976 | Contrapositive inference f... |
necon2i 2977 | Contrapositive inference f... |
necon4i 2978 | Contrapositive inference f... |
necon3abid 2979 | Deduction from equality to... |
necon3bbid 2980 | Deduction from equality to... |
necon1abid 2981 | Contrapositive deduction f... |
necon1bbid 2982 | Contrapositive inference f... |
necon4abid 2983 | Contrapositive law deducti... |
necon4bbid 2984 | Contrapositive law deducti... |
necon2abid 2985 | Contrapositive deduction f... |
necon2bbid 2986 | Contrapositive deduction f... |
necon3bid 2987 | Deduction from equality to... |
necon4bid 2988 | Contrapositive law deducti... |
necon3abii 2989 | Deduction from equality to... |
necon3bbii 2990 | Deduction from equality to... |
necon1abii 2991 | Contrapositive inference f... |
necon1bbii 2992 | Contrapositive inference f... |
necon2abii 2993 | Contrapositive inference f... |
necon2bbii 2994 | Contrapositive inference f... |
necon3bii 2995 | Inference from equality to... |
necom 2996 | Commutation of inequality.... |
necomi 2997 | Inference from commutative... |
necomd 2998 | Deduction from commutative... |
nesym 2999 | Characterization of inequa... |
nesymi 3000 | Inference associated with ... |
nesymir 3001 | Inference associated with ... |
neeq1d 3002 | Deduction for inequality. ... |
neeq2d 3003 | Deduction for inequality. ... |
neeq12d 3004 | Deduction for inequality. ... |
neeq1 3005 | Equality theorem for inequ... |
neeq2 3006 | Equality theorem for inequ... |
neeq1i 3007 | Inference for inequality. ... |
neeq2i 3008 | Inference for inequality. ... |
neeq12i 3009 | Inference for inequality. ... |
eqnetrd 3010 | Substitution of equal clas... |
eqnetrrd 3011 | Substitution of equal clas... |
neeqtrd 3012 | Substitution of equal clas... |
eqnetri 3013 | Substitution of equal clas... |
eqnetrri 3014 | Substitution of equal clas... |
neeqtri 3015 | Substitution of equal clas... |
neeqtrri 3016 | Substitution of equal clas... |
neeqtrrd 3017 | Substitution of equal clas... |
eqnetrrid 3018 | A chained equality inferen... |
3netr3d 3019 | Substitution of equality i... |
3netr4d 3020 | Substitution of equality i... |
3netr3g 3021 | Substitution of equality i... |
3netr4g 3022 | Substitution of equality i... |
nebi 3023 | Contraposition law for ine... |
pm13.18 3024 | Theorem *13.18 in [Whitehe... |
pm13.181 3025 | Theorem *13.181 in [Whiteh... |
pm13.181OLD 3026 | Obsolete version of ~ pm13... |
pm2.61ine 3027 | Inference eliminating an i... |
pm2.21ddne 3028 | A contradiction implies an... |
pm2.61ne 3029 | Deduction eliminating an i... |
pm2.61dne 3030 | Deduction eliminating an i... |
pm2.61dane 3031 | Deduction eliminating an i... |
pm2.61da2ne 3032 | Deduction eliminating two ... |
pm2.61da3ne 3033 | Deduction eliminating thre... |
pm2.61iine 3034 | Equality version of ~ pm2.... |
neor 3035 | Logical OR with an equalit... |
neanior 3036 | A De Morgan's law for ineq... |
ne3anior 3037 | A De Morgan's law for ineq... |
neorian 3038 | A De Morgan's law for ineq... |
nemtbir 3039 | An inference from an inequ... |
nelne1 3040 | Two classes are different ... |
nelne2 3041 | Two classes are different ... |
nelelne 3042 | Two classes are different ... |
neneor 3043 | If two classes are differe... |
nfne 3044 | Bound-variable hypothesis ... |
nfned 3045 | Bound-variable hypothesis ... |
nabbi 3046 | Not equivalent wff's corre... |
mteqand 3047 | A modus tollens deduction ... |
neli 3050 | Inference associated with ... |
nelir 3051 | Inference associated with ... |
neleq12d 3052 | Equality theorem for negat... |
neleq1 3053 | Equality theorem for negat... |
neleq2 3054 | Equality theorem for negat... |
nfnel 3055 | Bound-variable hypothesis ... |
nfneld 3056 | Bound-variable hypothesis ... |
nnel 3057 | Negation of negated member... |
elnelne1 3058 | Two classes are different ... |
elnelne2 3059 | Two classes are different ... |
nelcon3d 3060 | Contrapositive law deducti... |
elnelall 3061 | A contradiction concerning... |
pm2.61danel 3062 | Deduction eliminating an e... |
rgen 3073 | Generalization rule for re... |
ralel 3074 | All elements of a class ar... |
rgenw 3075 | Generalization rule for re... |
rgen2w 3076 | Generalization rule for re... |
mprg 3077 | Modus ponens combined with... |
mprgbir 3078 | Modus ponens on biconditio... |
alral 3079 | Universal quantification i... |
raln 3080 | Restricted universally qua... |
ral2imi 3081 | Inference quantifying ante... |
ralim 3082 | Distribution of restricted... |
ralimi2 3083 | Inference quantifying both... |
ralimia 3084 | Inference quantifying both... |
ralimiaa 3085 | Inference quantifying both... |
ralimi 3086 | Inference quantifying both... |
2ralimi 3087 | Inference quantifying both... |
ralbii2 3088 | Inference adding different... |
ralbiia 3089 | Inference adding restricte... |
ralbii 3090 | Inference adding restricte... |
2ralbii 3091 | Inference adding two restr... |
ralbi 3092 | Distribute a restricted un... |
ralanid 3093 | Cancellation law for restr... |
r19.26 3094 | Restricted quantifier vers... |
r19.26-2 3095 | Restricted quantifier vers... |
r19.26-3 3096 | Version of ~ r19.26 with t... |
r19.26m 3097 | Version of ~ 19.26 and ~ r... |
ralbiim 3098 | Split a biconditional and ... |
2ralbiim 3099 | Split a biconditional and ... |
r19.21v 3100 | Restricted quantifier vers... |
ralimdv2 3101 | Inference quantifying both... |
ralimdva 3102 | Deduction quantifying both... |
ralimdv 3103 | Deduction quantifying both... |
ralimdvva 3104 | Deduction doubly quantifyi... |
hbralrimi 3105 | Inference from Theorem 19.... |
ralrimiv 3106 | Inference from Theorem 19.... |
ralrimiva 3107 | Inference from Theorem 19.... |
ralrimivw 3108 | Inference from Theorem 19.... |
r19.27v 3109 | Restricted quantitifer ver... |
r19.28v 3110 | Restricted quantifier vers... |
ralrimdv 3111 | Inference from Theorem 19.... |
ralrimdva 3112 | Inference from Theorem 19.... |
ralrimivv 3113 | Inference from Theorem 19.... |
ralrimivva 3114 | Inference from Theorem 19.... |
ralrimivvva 3115 | Inference from Theorem 19.... |
ralrimdvv 3116 | Inference from Theorem 19.... |
ralrimdvva 3117 | Inference from Theorem 19.... |
ralbidv2 3118 | Formula-building rule for ... |
ralbidva 3119 | Formula-building rule for ... |
ralbidv 3120 | Formula-building rule for ... |
2ralbidva 3121 | Formula-building rule for ... |
2ralbidv 3122 | Formula-building rule for ... |
r2allem 3123 | Lemma factoring out common... |
r2al 3124 | Double restricted universa... |
r3al 3125 | Triple restricted universa... |
rgen2 3126 | Generalization rule for re... |
rgen3 3127 | Generalization rule for re... |
rspw 3128 | Restricted specialization.... |
rsp 3129 | Restricted specialization.... |
rspa 3130 | Restricted specialization.... |
rspec 3131 | Specialization rule for re... |
r19.21bi 3132 | Inference from Theorem 19.... |
r19.21be 3133 | Inference from Theorem 19.... |
rspec2 3134 | Specialization rule for re... |
rspec3 3135 | Specialization rule for re... |
rsp2 3136 | Restricted specialization,... |
r19.21t 3137 | Restricted quantifier vers... |
r19.21 3138 | Restricted quantifier vers... |
ralrimi 3139 | Inference from Theorem 19.... |
ralimdaa 3140 | Deduction quantifying both... |
ralrimd 3141 | Inference from Theorem 19.... |
nfra1 3142 | The setvar ` x ` is not fr... |
hbra1 3143 | The setvar ` x ` is not fr... |
hbral 3144 | Bound-variable hypothesis ... |
r2alf 3145 | Double restricted universa... |
nfraldw 3146 | Deduction version of ~ nfr... |
nfraldwOLD 3147 | Obsolete version of ~ nfra... |
nfrald 3148 | Deduction version of ~ nfr... |
nfralw 3149 | Bound-variable hypothesis ... |
nfral 3150 | Bound-variable hypothesis ... |
nfra2w 3151 | Similar to Lemma 24 of [Mo... |
nfra2wOLD 3152 | Obsolete version of ~ nfra... |
nfra2wOLDOLD 3153 | Obsolete version of ~ nfra... |
nfra2 3154 | Similar to Lemma 24 of [Mo... |
rgen2a 3155 | Generalization rule for re... |
ralbida 3156 | Formula-building rule for ... |
ralbidaOLD 3157 | Obsolete version of ~ ralb... |
ralbid 3158 | Formula-building rule for ... |
2ralbida 3159 | Formula-building rule for ... |
raleqbii 3160 | Equality deduction for res... |
ralcom4 3161 | Commutation of restricted ... |
ralcom4OLD 3162 | Obsolete version of ~ ralc... |
ralnex 3163 | Relationship between restr... |
dfral2 3164 | Relationship between restr... |
rexnal 3165 | Relationship between restr... |
dfrex2 3166 | Relationship between restr... |
rexex 3167 | Restricted existence impli... |
rexim 3168 | Theorem 19.22 of [Margaris... |
rexbi 3169 | Distribute restricted quan... |
rexbiOLD 3170 | Obsolete version of ~ rexb... |
reximi2 3171 | Inference quantifying both... |
reximia 3172 | Inference quantifying both... |
reximiaOLD 3173 | Obsolete version of ~ rexi... |
reximi 3174 | Inference quantifying both... |
rexbii2 3175 | Inference adding different... |
rexbiia 3176 | Inference adding restricte... |
rexbii 3177 | Inference adding restricte... |
2rexbii 3178 | Inference adding two restr... |
rexcom4 3179 | Commutation of restricted ... |
2ex2rexrot 3180 | Rotate two existential qua... |
rexcom4a 3181 | Specialized existential co... |
rexanid 3182 | Cancellation law for restr... |
r19.29 3183 | Restricted quantifier vers... |
r19.29r 3184 | Restricted quantifier vers... |
r19.29imd 3185 | Theorem 19.29 of [Margaris... |
rexnal2 3186 | Relationship between two r... |
rexnal3 3187 | Relationship between three... |
ralnex2 3188 | Relationship between two r... |
ralnex3 3189 | Relationship between three... |
ralinexa 3190 | A transformation of restri... |
rexanali 3191 | A transformation of restri... |
nrexralim 3192 | Negation of a complex pred... |
risset 3193 | Two ways to say " ` A ` be... |
nelb 3194 | A definition of ` -. A e. ... |
nelbOLD 3195 | Obsolete version of ~ nelb... |
nrex 3196 | Inference adding restricte... |
nrexdv 3197 | Deduction adding restricte... |
reximdv2 3198 | Deduction quantifying both... |
reximdvai 3199 | Deduction quantifying both... |
reximdvaiOLD 3200 | Obsolete version of ~ rexi... |
reximdv 3201 | Deduction from Theorem 19.... |
reximdva 3202 | Deduction quantifying both... |
reximddv 3203 | Deduction from Theorem 19.... |
reximssdv 3204 | Derivation of a restricted... |
reximdvva 3205 | Deduction doubly quantifyi... |
reximddv2 3206 | Double deduction from Theo... |
r19.23v 3207 | Restricted quantifier vers... |
rexlimiv 3208 | Inference from Theorem 19.... |
rexlimiva 3209 | Inference from Theorem 19.... |
rexlimivw 3210 | Weaker version of ~ rexlim... |
rexlimdv 3211 | Inference from Theorem 19.... |
rexlimdva 3212 | Inference from Theorem 19.... |
rexlimdvaa 3213 | Inference from Theorem 19.... |
rexlimdv3a 3214 | Inference from Theorem 19.... |
rexlimdva2 3215 | Inference from Theorem 19.... |
r19.29an 3216 | A commonly used pattern in... |
r19.29a 3217 | A commonly used pattern in... |
rexlimdvw 3218 | Inference from Theorem 19.... |
rexlimddv 3219 | Restricted existential eli... |
rexlimivv 3220 | Inference from Theorem 19.... |
rexlimdvv 3221 | Inference from Theorem 19.... |
rexlimdvva 3222 | Inference from Theorem 19.... |
rexbidv2 3223 | Formula-building rule for ... |
rexbidva 3224 | Formula-building rule for ... |
rexbidv 3225 | Formula-building rule for ... |
2rexbiia 3226 | Inference adding two restr... |
2rexbidva 3227 | Formula-building rule for ... |
2rexbidv 3228 | Formula-building rule for ... |
rexralbidv 3229 | Formula-building rule for ... |
r2exlem 3230 | Lemma factoring out common... |
r2ex 3231 | Double restricted existent... |
rspe 3232 | Restricted specialization.... |
rsp2e 3233 | Restricted specialization.... |
nfre1 3234 | The setvar ` x ` is not fr... |
nfrexd 3235 | Deduction version of ~ nfr... |
nfrexdg 3236 | Deduction version of ~ nfr... |
nfrex 3237 | Bound-variable hypothesis ... |
nfrexg 3238 | Bound-variable hypothesis ... |
reximdai 3239 | Deduction from Theorem 19.... |
reximd2a 3240 | Deduction quantifying both... |
r19.23t 3241 | Closed theorem form of ~ r... |
r19.23 3242 | Restricted quantifier vers... |
rexlimi 3243 | Restricted quantifier vers... |
rexlimd2 3244 | Version of ~ rexlimd with ... |
rexlimd 3245 | Deduction form of ~ rexlim... |
rexbida 3246 | Formula-building rule for ... |
rexbidvaALT 3247 | Alternate proof of ~ rexbi... |
rexbid 3248 | Formula-building rule for ... |
rexbidvALT 3249 | Alternate proof of ~ rexbi... |
ralrexbid 3250 | Formula-building rule for ... |
ralrexbidOLD 3251 | Obsolete version of ~ ralr... |
r19.12 3252 | Restricted quantifier vers... |
r19.12OLD 3253 | Obsolete version of ~ 19.1... |
r2exf 3254 | Double restricted existent... |
rexeqbii 3255 | Equality deduction for res... |
reuanid 3256 | Cancellation law for restr... |
rmoanid 3257 | Cancellation law for restr... |
r19.29af2 3258 | A commonly used pattern ba... |
r19.29af 3259 | A commonly used pattern ba... |
2r19.29 3260 | Theorem ~ r19.29 with two ... |
r19.29d2r 3261 | Theorem 19.29 of [Margaris... |
r19.29d2rOLD 3262 | Obsolete version of ~ r19.... |
r19.29vva 3263 | A commonly used pattern ba... |
r19.29vvaOLD 3264 | Obsolete version of ~ r19.... |
r19.30 3265 | Restricted quantifier vers... |
r19.30OLD 3266 | Obsolete version of ~ 19.3... |
r19.32v 3267 | Restricted quantifier vers... |
r19.35 3268 | Restricted quantifier vers... |
r19.36v 3269 | Restricted quantifier vers... |
r19.37 3270 | Restricted quantifier vers... |
r19.37v 3271 | Restricted quantifier vers... |
r19.40 3272 | Restricted quantifier vers... |
r19.41v 3273 | Restricted quantifier vers... |
r19.41 3274 | Restricted quantifier vers... |
r19.41vv 3275 | Version of ~ r19.41v with ... |
r19.42v 3276 | Restricted quantifier vers... |
r19.43 3277 | Restricted quantifier vers... |
r19.44v 3278 | One direction of a restric... |
r19.45v 3279 | Restricted quantifier vers... |
ralcom 3280 | Commutation of restricted ... |
rexcom 3281 | Commutation of restricted ... |
ralcomf 3282 | Commutation of restricted ... |
rexcomf 3283 | Commutation of restricted ... |
ralcom13 3284 | Swap first and third restr... |
rexcom13 3285 | Swap first and third restr... |
ralrot3 3286 | Rotate three restricted un... |
rexrot4 3287 | Rotate four restricted exi... |
ralcom2 3288 | Commutation of restricted ... |
ralcom3 3289 | A commutation law for rest... |
reeanlem 3290 | Lemma factoring out common... |
reean 3291 | Rearrange restricted exist... |
reeanv 3292 | Rearrange restricted exist... |
3reeanv 3293 | Rearrange three restricted... |
2ralor 3294 | Distribute restricted univ... |
2ralorOLD 3295 | Obsolete version of ~ 2ral... |
nfreu1 3296 | The setvar ` x ` is not fr... |
nfrmo1 3297 | The setvar ` x ` is not fr... |
nfreud 3298 | Deduction version of ~ nfr... |
nfrmod 3299 | Deduction version of ~ nfr... |
nfreuw 3300 | Bound-variable hypothesis ... |
nfrmow 3301 | Bound-variable hypothesis ... |
nfreu 3302 | Bound-variable hypothesis ... |
nfrmo 3303 | Bound-variable hypothesis ... |
rabid 3304 | An "identity" law of concr... |
rabrab 3305 | Abstract builder restricte... |
rabidim1 3306 | Membership in a restricted... |
rabid2 3307 | An "identity" law for rest... |
rabid2f 3308 | An "identity" law for rest... |
rabbi 3309 | Equivalent wff's correspon... |
nfrab1 3310 | The abstraction variable i... |
nfrabw 3311 | A variable not free in a w... |
nfrab 3312 | A variable not free in a w... |
reubida 3313 | Formula-building rule for ... |
reubidva 3314 | Formula-building rule for ... |
reubidv 3315 | Formula-building rule for ... |
reubiia 3316 | Formula-building rule for ... |
reubii 3317 | Formula-building rule for ... |
rmobida 3318 | Formula-building rule for ... |
rmobidva 3319 | Formula-building rule for ... |
rmobidv 3320 | Formula-building rule for ... |
rmobiia 3321 | Formula-building rule for ... |
rmobii 3322 | Formula-building rule for ... |
raleqf 3323 | Equality theorem for restr... |
rexeqf 3324 | Equality theorem for restr... |
reueq1f 3325 | Equality theorem for restr... |
rmoeq1f 3326 | Equality theorem for restr... |
raleqbidv 3327 | Equality deduction for res... |
rexeqbidv 3328 | Equality deduction for res... |
raleqbidvv 3329 | Version of ~ raleqbidv wit... |
rexeqbidvv 3330 | Version of ~ rexeqbidv wit... |
raleqbi1dv 3331 | Equality deduction for res... |
rexeqbi1dv 3332 | Equality deduction for res... |
raleq 3333 | Equality theorem for restr... |
rexeq 3334 | Equality theorem for restr... |
reueq1 3335 | Equality theorem for restr... |
rmoeq1 3336 | Equality theorem for restr... |
raleqi 3337 | Equality inference for res... |
rexeqi 3338 | Equality inference for res... |
raleqdv 3339 | Equality deduction for res... |
rexeqdv 3340 | Equality deduction for res... |
reueqd 3341 | Equality deduction for res... |
rmoeqd 3342 | Equality deduction for res... |
raleqbid 3343 | Equality deduction for res... |
rexeqbid 3344 | Equality deduction for res... |
raleqbidva 3345 | Equality deduction for res... |
rexeqbidva 3346 | Equality deduction for res... |
raleleq 3347 | All elements of a class ar... |
raleleqALT 3348 | Alternate proof of ~ ralel... |
moel 3349 | "At most one" element in a... |
mormo 3350 | Unrestricted "at most one"... |
reu5 3351 | Restricted uniqueness in t... |
reurex 3352 | Restricted unique existenc... |
2reu2rex 3353 | Double restricted existent... |
reurmo 3354 | Restricted existential uni... |
rmo5 3355 | Restricted "at most one" i... |
nrexrmo 3356 | Nonexistence implies restr... |
reueubd 3357 | Restricted existential uni... |
cbvralfw 3358 | Rule used to change bound ... |
cbvralfwOLD 3359 | Obsolete version of ~ cbvr... |
cbvrexfw 3360 | Rule used to change bound ... |
cbvralf 3361 | Rule used to change bound ... |
cbvrexf 3362 | Rule used to change bound ... |
cbvralw 3363 | Rule used to change bound ... |
cbvrexw 3364 | Rule used to change bound ... |
cbvreuw 3365 | Change the bound variable ... |
cbvrmow 3366 | Change the bound variable ... |
cbvrmowOLD 3367 | Obsolete version of ~ cbvr... |
cbvral 3368 | Rule used to change bound ... |
cbvrex 3369 | Rule used to change bound ... |
cbvreu 3370 | Change the bound variable ... |
cbvrmo 3371 | Change the bound variable ... |
cbvralvw 3372 | Change the bound variable ... |
cbvrexvw 3373 | Change the bound variable ... |
cbvrmovw 3374 | Change the bound variable ... |
cbvreuvw 3375 | Change the bound variable ... |
cbvreuvwOLD 3376 | Obsolete version of ~ cbvr... |
cbvralv 3377 | Change the bound variable ... |
cbvrexv 3378 | Change the bound variable ... |
cbvreuv 3379 | Change the bound variable ... |
cbvrmov 3380 | Change the bound variable ... |
cbvraldva2 3381 | Rule used to change the bo... |
cbvrexdva2 3382 | Rule used to change the bo... |
cbvraldva 3383 | Rule used to change the bo... |
cbvrexdva 3384 | Rule used to change the bo... |
cbvral2vw 3385 | Change bound variables of ... |
cbvrex2vw 3386 | Change bound variables of ... |
cbvral3vw 3387 | Change bound variables of ... |
cbvral2v 3388 | Change bound variables of ... |
cbvrex2v 3389 | Change bound variables of ... |
cbvral3v 3390 | Change bound variables of ... |
cbvralsvw 3391 | Change bound variable by u... |
cbvrexsvw 3392 | Change bound variable by u... |
cbvralsv 3393 | Change bound variable by u... |
cbvrexsv 3394 | Change bound variable by u... |
sbralie 3395 | Implicit to explicit subst... |
rabbiia 3396 | Equivalent formulas yield ... |
rabbii 3397 | Equivalent wff's correspon... |
rabbida 3398 | Equivalent wff's yield equ... |
rabbid 3399 | Version of ~ rabbidv with ... |
rabbidva2 3400 | Equivalent wff's yield equ... |
rabbia2 3401 | Equivalent wff's yield equ... |
rabbidva 3402 | Equivalent wff's yield equ... |
rabbidvaOLD 3403 | Obsolete proof of ~ rabbid... |
rabbidv 3404 | Equivalent wff's yield equ... |
rabeqf 3405 | Equality theorem for restr... |
rabeqi 3406 | Equality theorem for restr... |
rabeqiOLD 3407 | Obsolete version of ~ rabe... |
rabeq 3408 | Equality theorem for restr... |
rabeqdv 3409 | Equality of restricted cla... |
rabeqbidv 3410 | Equality of restricted cla... |
rabeqbidva 3411 | Equality of restricted cla... |
rabeq2i 3412 | Inference from equality of... |
rabswap 3413 | Swap with a membership rel... |
cbvrabw 3414 | Rule to change the bound v... |
cbvrab 3415 | Rule to change the bound v... |
cbvrabv 3416 | Rule to change the bound v... |
rabrabi 3417 | Abstract builder restricte... |
rabrabiOLD 3418 | Obsolete version of ~ rabr... |
rabeqcda 3419 | When ` ps ` is always true... |
ralrimia 3420 | Inference from Theorem 19.... |
ralimda 3421 | Deduction quantifying both... |
vjust 3423 | Justification theorem for ... |
dfv2 3425 | Alternate definition of th... |
vex 3426 | All setvar variables are s... |
vexOLD 3427 | Obsolete version of ~ vex ... |
elv 3428 | If a proposition is implie... |
elvd 3429 | If a proposition is implie... |
el2v 3430 | If a proposition is implie... |
eqv 3431 | The universe contains ever... |
eqvf 3432 | The universe contains ever... |
abv 3433 | The class of sets verifyin... |
abvALT 3434 | Alternate proof of ~ abv ,... |
isset 3435 | Two ways to express that "... |
issetf 3436 | A version of ~ isset that ... |
isseti 3437 | A way to say " ` A ` is a ... |
issetri 3438 | A way to say " ` A ` is a ... |
eqvisset 3439 | A class equal to a variabl... |
elex 3440 | If a class is a member of ... |
elexi 3441 | If a class is a member of ... |
elexd 3442 | If a class is a member of ... |
elex2 3443 | If a class contains anothe... |
elex22 3444 | If two classes each contai... |
prcnel 3445 | A proper class doesn't bel... |
ralv 3446 | A universal quantifier res... |
rexv 3447 | An existential quantifier ... |
reuv 3448 | A unique existential quant... |
rmov 3449 | An at-most-one quantifier ... |
rabab 3450 | A class abstraction restri... |
rexcom4b 3451 | Specialized existential co... |
ceqsalt 3452 | Closed theorem version of ... |
ceqsralt 3453 | Restricted quantifier vers... |
ceqsalg 3454 | A representation of explic... |
ceqsalgALT 3455 | Alternate proof of ~ ceqsa... |
ceqsal 3456 | A representation of explic... |
ceqsalv 3457 | A representation of explic... |
ceqsalvOLD 3458 | Obsolete version of ~ ceqs... |
ceqsralv 3459 | Restricted quantifier vers... |
ceqsralvOLD 3460 | Obsolete version of ~ ceqs... |
gencl 3461 | Implicit substitution for ... |
2gencl 3462 | Implicit substitution for ... |
3gencl 3463 | Implicit substitution for ... |
cgsexg 3464 | Implicit substitution infe... |
cgsex2g 3465 | Implicit substitution infe... |
cgsex4g 3466 | An implicit substitution i... |
cgsex4gOLD 3467 | Obsolete version of ~ cgse... |
ceqsex 3468 | Elimination of an existent... |
ceqsexv 3469 | Elimination of an existent... |
ceqsexvOLD 3470 | Obsolete version of ~ ceqs... |
ceqsexv2d 3471 | Elimination of an existent... |
ceqsex2 3472 | Elimination of two existen... |
ceqsex2v 3473 | Elimination of two existen... |
ceqsex3v 3474 | Elimination of three exist... |
ceqsex4v 3475 | Elimination of four existe... |
ceqsex6v 3476 | Elimination of six existen... |
ceqsex8v 3477 | Elimination of eight exist... |
gencbvex 3478 | Change of bound variable u... |
gencbvex2 3479 | Restatement of ~ gencbvex ... |
gencbval 3480 | Change of bound variable u... |
sbhypf 3481 | Introduce an explicit subs... |
vtoclgft 3482 | Closed theorem form of ~ v... |
vtocldf 3483 | Implicit substitution of a... |
vtocld 3484 | Implicit substitution of a... |
vtocldOLD 3485 | Obsolete version of ~ vtoc... |
vtocl2d 3486 | Implicit substitution of t... |
vtoclf 3487 | Implicit substitution of a... |
vtocl 3488 | Implicit substitution of a... |
vtoclALT 3489 | Alternate proof of ~ vtocl... |
vtocl2 3490 | Implicit substitution of c... |
vtocl3 3491 | Implicit substitution of c... |
vtoclb 3492 | Implicit substitution of a... |
vtoclgf 3493 | Implicit substitution of a... |
vtoclg1f 3494 | Version of ~ vtoclgf with ... |
vtoclg 3495 | Implicit substitution of a... |
vtoclgOLD 3496 | Obsolete version of ~ vtoc... |
vtoclbg 3497 | Implicit substitution of a... |
vtocl2gf 3498 | Implicit substitution of a... |
vtocl3gf 3499 | Implicit substitution of a... |
vtocl2g 3500 | Implicit substitution of 2... |
vtocl3g 3501 | Implicit substitution of a... |
vtoclgaf 3502 | Implicit substitution of a... |
vtoclga 3503 | Implicit substitution of a... |
vtocl2ga 3504 | Implicit substitution of 2... |
vtocl2gaf 3505 | Implicit substitution of 2... |
vtocl3gaf 3506 | Implicit substitution of 3... |
vtocl3ga 3507 | Implicit substitution of 3... |
vtocl3gaOLD 3508 | Obsolete version of ~ vtoc... |
vtocl4g 3509 | Implicit substitution of 4... |
vtocl4ga 3510 | Implicit substitution of 4... |
vtocleg 3511 | Implicit substitution of a... |
vtoclegft 3512 | Implicit substitution of a... |
vtoclef 3513 | Implicit substitution of a... |
vtocle 3514 | Implicit substitution of a... |
vtoclri 3515 | Implicit substitution of a... |
spcimgft 3516 | A closed version of ~ spci... |
spcgft 3517 | A closed version of ~ spcg... |
spcimgf 3518 | Rule of specialization, us... |
spcimegf 3519 | Existential specialization... |
spcgf 3520 | Rule of specialization, us... |
spcegf 3521 | Existential specialization... |
spcimdv 3522 | Restricted specialization,... |
spcdv 3523 | Rule of specialization, us... |
spcimedv 3524 | Restricted existential spe... |
spcgv 3525 | Rule of specialization, us... |
spcegv 3526 | Existential specialization... |
spcedv 3527 | Existential specialization... |
spc2egv 3528 | Existential specialization... |
spc2gv 3529 | Specialization with two qu... |
spc2ed 3530 | Existential specialization... |
spc2d 3531 | Specialization with 2 quan... |
spc3egv 3532 | Existential specialization... |
spc3gv 3533 | Specialization with three ... |
spcv 3534 | Rule of specialization, us... |
spcev 3535 | Existential specialization... |
spc2ev 3536 | Existential specialization... |
rspct 3537 | A closed version of ~ rspc... |
rspcdf 3538 | Restricted specialization,... |
rspc 3539 | Restricted specialization,... |
rspce 3540 | Restricted existential spe... |
rspcimdv 3541 | Restricted specialization,... |
rspcimedv 3542 | Restricted existential spe... |
rspcdv 3543 | Restricted specialization,... |
rspcedv 3544 | Restricted existential spe... |
rspcebdv 3545 | Restricted existential spe... |
rspcdv2 3546 | Restricted specialization,... |
rspcv 3547 | Restricted specialization,... |
rspcvOLD 3548 | Obsolete version of ~ rspc... |
rspccv 3549 | Restricted specialization,... |
rspcva 3550 | Restricted specialization,... |
rspccva 3551 | Restricted specialization,... |
rspcev 3552 | Restricted existential spe... |
rspcevOLD 3553 | Obsolete version of ~ rspc... |
rspcdva 3554 | Restricted specialization,... |
rspcedvd 3555 | Restricted existential spe... |
rspcime 3556 | Prove a restricted existen... |
rspceaimv 3557 | Restricted existential spe... |
rspcedeq1vd 3558 | Restricted existential spe... |
rspcedeq2vd 3559 | Restricted existential spe... |
rspc2 3560 | Restricted specialization ... |
rspc2gv 3561 | Restricted specialization ... |
rspc2v 3562 | 2-variable restricted spec... |
rspc2va 3563 | 2-variable restricted spec... |
rspc2ev 3564 | 2-variable restricted exis... |
rspc3v 3565 | 3-variable restricted spec... |
rspc3ev 3566 | 3-variable restricted exis... |
rspceeqv 3567 | Restricted existential spe... |
ralxpxfr2d 3568 | Transfer a universal quant... |
rexraleqim 3569 | Statement following from e... |
eqvincg 3570 | A variable introduction la... |
eqvinc 3571 | A variable introduction la... |
eqvincf 3572 | A variable introduction la... |
alexeqg 3573 | Two ways to express substi... |
ceqex 3574 | Equality implies equivalen... |
ceqsexg 3575 | A representation of explic... |
ceqsexgv 3576 | Elimination of an existent... |
ceqsexgvOLD 3577 | Obsolete version of ~ ceqs... |
ceqsrexv 3578 | Elimination of a restricte... |
ceqsrexbv 3579 | Elimination of a restricte... |
ceqsrex2v 3580 | Elimination of a restricte... |
clel2g 3581 | Alternate definition of me... |
clel2gOLD 3582 | Obsolete version of ~ clel... |
clel2 3583 | Alternate definition of me... |
clel3g 3584 | Alternate definition of me... |
clel3 3585 | Alternate definition of me... |
clel4g 3586 | Alternate definition of me... |
clel4 3587 | Alternate definition of me... |
clel4OLD 3588 | Obsolete version of ~ clel... |
clel5 3589 | Alternate definition of cl... |
pm13.183 3590 | Compare theorem *13.183 in... |
rr19.3v 3591 | Restricted quantifier vers... |
rr19.28v 3592 | Restricted quantifier vers... |
elab6g 3593 | Membership in a class abst... |
elabd2 3594 | Membership in a class abst... |
elabd3 3595 | Membership in a class abst... |
elabgt 3596 | Membership in a class abst... |
elabgtOLD 3597 | Obsolete version of ~ elab... |
elabgf 3598 | Membership in a class abst... |
elabf 3599 | Membership in a class abst... |
elabg 3600 | Membership in a class abst... |
elabgOLD 3601 | Obsolete version of ~ elab... |
elab 3602 | Membership in a class abst... |
elabOLD 3603 | Obsolete version of ~ elab... |
elab2g 3604 | Membership in a class abst... |
elabd 3605 | Explicit demonstration the... |
elab2 3606 | Membership in a class abst... |
elab4g 3607 | Membership in a class abst... |
elab3gf 3608 | Membership in a class abst... |
elab3g 3609 | Membership in a class abst... |
elab3 3610 | Membership in a class abst... |
elrabi 3611 | Implication for the member... |
elrabiOLD 3612 | Obsolete version of ~ elra... |
elrabf 3613 | Membership in a restricted... |
rabtru 3614 | Abstract builder using the... |
rabeqc 3615 | A restricted class abstrac... |
elrab3t 3616 | Membership in a restricted... |
elrab 3617 | Membership in a restricted... |
elrab3 3618 | Membership in a restricted... |
elrabd 3619 | Membership in a restricted... |
elrab2 3620 | Membership in a restricted... |
ralab 3621 | Universal quantification o... |
ralabOLD 3622 | Obsolete version of ~ rala... |
ralrab 3623 | Universal quantification o... |
rexab 3624 | Existential quantification... |
rexabOLD 3625 | Obsolete version of ~ rexa... |
rexrab 3626 | Existential quantification... |
ralab2 3627 | Universal quantification o... |
ralab2OLD 3628 | Obsolete version of ~ rala... |
ralrab2 3629 | Universal quantification o... |
rexab2 3630 | Existential quantification... |
rexab2OLD 3631 | Obsolete version of ~ rexa... |
rexrab2 3632 | Existential quantification... |
abidnf 3633 | Identity used to create cl... |
dedhb 3634 | A deduction theorem for co... |
nelrdva 3635 | Deduce negative membership... |
eqeu 3636 | A condition which implies ... |
moeq 3637 | There exists at most one s... |
eueq 3638 | A class is a set if and on... |
eueqi 3639 | There exists a unique set ... |
eueq2 3640 | Equality has existential u... |
eueq3 3641 | Equality has existential u... |
moeq3 3642 | "At most one" property of ... |
mosub 3643 | "At most one" remains true... |
mo2icl 3644 | Theorem for inferring "at ... |
mob2 3645 | Consequence of "at most on... |
moi2 3646 | Consequence of "at most on... |
mob 3647 | Equality implied by "at mo... |
moi 3648 | Equality implied by "at mo... |
morex 3649 | Derive membership from uni... |
euxfr2w 3650 | Transfer existential uniqu... |
euxfrw 3651 | Transfer existential uniqu... |
euxfr2 3652 | Transfer existential uniqu... |
euxfr 3653 | Transfer existential uniqu... |
euind 3654 | Existential uniqueness via... |
reu2 3655 | A way to express restricte... |
reu6 3656 | A way to express restricte... |
reu3 3657 | A way to express restricte... |
reu6i 3658 | A condition which implies ... |
eqreu 3659 | A condition which implies ... |
rmo4 3660 | Restricted "at most one" u... |
reu4 3661 | Restricted uniqueness usin... |
reu7 3662 | Restricted uniqueness usin... |
reu8 3663 | Restricted uniqueness usin... |
rmo3f 3664 | Restricted "at most one" u... |
rmo4f 3665 | Restricted "at most one" u... |
reu2eqd 3666 | Deduce equality from restr... |
reueq 3667 | Equality has existential u... |
rmoeq 3668 | Equality's restricted exis... |
rmoan 3669 | Restricted "at most one" s... |
rmoim 3670 | Restricted "at most one" i... |
rmoimia 3671 | Restricted "at most one" i... |
rmoimi 3672 | Restricted "at most one" i... |
rmoimi2 3673 | Restricted "at most one" i... |
2reu5a 3674 | Double restricted existent... |
reuimrmo 3675 | Restricted uniqueness impl... |
2reuswap 3676 | A condition allowing swap ... |
2reuswap2 3677 | A condition allowing swap ... |
reuxfrd 3678 | Transfer existential uniqu... |
reuxfr 3679 | Transfer existential uniqu... |
reuxfr1d 3680 | Transfer existential uniqu... |
reuxfr1ds 3681 | Transfer existential uniqu... |
reuxfr1 3682 | Transfer existential uniqu... |
reuind 3683 | Existential uniqueness via... |
2rmorex 3684 | Double restricted quantifi... |
2reu5lem1 3685 | Lemma for ~ 2reu5 . Note ... |
2reu5lem2 3686 | Lemma for ~ 2reu5 . (Cont... |
2reu5lem3 3687 | Lemma for ~ 2reu5 . This ... |
2reu5 3688 | Double restricted existent... |
2reurmo 3689 | Double restricted quantifi... |
2reurex 3690 | Double restricted quantifi... |
2rmoswap 3691 | A condition allowing to sw... |
2rexreu 3692 | Double restricted existent... |
cdeqi 3695 | Deduce conditional equalit... |
cdeqri 3696 | Property of conditional eq... |
cdeqth 3697 | Deduce conditional equalit... |
cdeqnot 3698 | Distribute conditional equ... |
cdeqal 3699 | Distribute conditional equ... |
cdeqab 3700 | Distribute conditional equ... |
cdeqal1 3701 | Distribute conditional equ... |
cdeqab1 3702 | Distribute conditional equ... |
cdeqim 3703 | Distribute conditional equ... |
cdeqcv 3704 | Conditional equality for s... |
cdeqeq 3705 | Distribute conditional equ... |
cdeqel 3706 | Distribute conditional equ... |
nfcdeq 3707 | If we have a conditional e... |
nfccdeq 3708 | Variation of ~ nfcdeq for ... |
rru 3709 | Relative version of Russel... |
ru 3710 | Russell's Paradox. Propos... |
dfsbcq 3713 | Proper substitution of a c... |
dfsbcq2 3714 | This theorem, which is sim... |
sbsbc 3715 | Show that ~ df-sb and ~ df... |
sbceq1d 3716 | Equality theorem for class... |
sbceq1dd 3717 | Equality theorem for class... |
sbceqbid 3718 | Equality theorem for class... |
sbc8g 3719 | This is the closest we can... |
sbc2or 3720 | The disjunction of two equ... |
sbcex 3721 | By our definition of prope... |
sbceq1a 3722 | Equality theorem for class... |
sbceq2a 3723 | Equality theorem for class... |
spsbc 3724 | Specialization: if a formu... |
spsbcd 3725 | Specialization: if a formu... |
sbcth 3726 | A substitution into a theo... |
sbcthdv 3727 | Deduction version of ~ sbc... |
sbcid 3728 | An identity theorem for su... |
nfsbc1d 3729 | Deduction version of ~ nfs... |
nfsbc1 3730 | Bound-variable hypothesis ... |
nfsbc1v 3731 | Bound-variable hypothesis ... |
nfsbcdw 3732 | Deduction version of ~ nfs... |
nfsbcw 3733 | Bound-variable hypothesis ... |
sbccow 3734 | A composition law for clas... |
nfsbcd 3735 | Deduction version of ~ nfs... |
nfsbc 3736 | Bound-variable hypothesis ... |
sbcco 3737 | A composition law for clas... |
sbcco2 3738 | A composition law for clas... |
sbc5 3739 | An equivalence for class s... |
sbc5ALT 3740 | Alternate proof of ~ sbc5 ... |
sbc6g 3741 | An equivalence for class s... |
sbc6gOLD 3742 | Obsolete version of ~ sbc6... |
sbc6 3743 | An equivalence for class s... |
sbc7 3744 | An equivalence for class s... |
cbvsbcw 3745 | Change bound variables in ... |
cbvsbcvw 3746 | Change the bound variable ... |
cbvsbc 3747 | Change bound variables in ... |
cbvsbcv 3748 | Change the bound variable ... |
sbciegft 3749 | Conversion of implicit sub... |
sbciegf 3750 | Conversion of implicit sub... |
sbcieg 3751 | Conversion of implicit sub... |
sbciegOLD 3752 | Obsolete version of ~ sbci... |
sbcie2g 3753 | Conversion of implicit sub... |
sbcie 3754 | Conversion of implicit sub... |
sbciedf 3755 | Conversion of implicit sub... |
sbcied 3756 | Conversion of implicit sub... |
sbciedOLD 3757 | Obsolete version of ~ sbci... |
sbcied2 3758 | Conversion of implicit sub... |
elrabsf 3759 | Membership in a restricted... |
eqsbc1 3760 | Substitution for the left-... |
sbcng 3761 | Move negation in and out o... |
sbcimg 3762 | Distribution of class subs... |
sbcan 3763 | Distribution of class subs... |
sbcor 3764 | Distribution of class subs... |
sbcbig 3765 | Distribution of class subs... |
sbcn1 3766 | Move negation in and out o... |
sbcim1 3767 | Distribution of class subs... |
sbcim1OLD 3768 | Obsolete version of ~ sbci... |
sbcbid 3769 | Formula-building deduction... |
sbcbidv 3770 | Formula-building deduction... |
sbcbidvOLD 3771 | Obsolete version of ~ sbcb... |
sbcbii 3772 | Formula-building inference... |
sbcbi1 3773 | Distribution of class subs... |
sbcbi2 3774 | Substituting into equivale... |
sbcbi2OLD 3775 | Obsolete proof of ~ sbcbi2... |
sbcal 3776 | Move universal quantifier ... |
sbcex2 3777 | Move existential quantifie... |
sbceqal 3778 | Class version of one impli... |
sbceqalOLD 3779 | Obsolete version of ~ sbce... |
sbeqalb 3780 | Theorem *14.121 in [Whiteh... |
eqsbc2 3781 | Substitution for the right... |
sbc3an 3782 | Distribution of class subs... |
sbcel1v 3783 | Class substitution into a ... |
sbcel2gv 3784 | Class substitution into a ... |
sbcel21v 3785 | Class substitution into a ... |
sbcimdv 3786 | Substitution analogue of T... |
sbcimdvOLD 3787 | Obsolete version of ~ sbci... |
sbctt 3788 | Substitution for a variabl... |
sbcgf 3789 | Substitution for a variabl... |
sbc19.21g 3790 | Substitution for a variabl... |
sbcg 3791 | Substitution for a variabl... |
sbcgOLD 3792 | Obsolete version of ~ sbcg... |
sbcgfi 3793 | Substitution for a variabl... |
sbc2iegf 3794 | Conversion of implicit sub... |
sbc2ie 3795 | Conversion of implicit sub... |
sbc2ieOLD 3796 | Obsolete version of ~ sbc2... |
sbc2iedv 3797 | Conversion of implicit sub... |
sbc3ie 3798 | Conversion of implicit sub... |
sbccomlem 3799 | Lemma for ~ sbccom . (Con... |
sbccom 3800 | Commutative law for double... |
sbcralt 3801 | Interchange class substitu... |
sbcrext 3802 | Interchange class substitu... |
sbcralg 3803 | Interchange class substitu... |
sbcrex 3804 | Interchange class substitu... |
sbcreu 3805 | Interchange class substitu... |
reu8nf 3806 | Restricted uniqueness usin... |
sbcabel 3807 | Interchange class substitu... |
rspsbc 3808 | Restricted quantifier vers... |
rspsbca 3809 | Restricted quantifier vers... |
rspesbca 3810 | Existence form of ~ rspsbc... |
spesbc 3811 | Existence form of ~ spsbc ... |
spesbcd 3812 | form of ~ spsbc . (Contri... |
sbcth2 3813 | A substitution into a theo... |
ra4v 3814 | Version of ~ ra4 with a di... |
ra4 3815 | Restricted quantifier vers... |
rmo2 3816 | Alternate definition of re... |
rmo2i 3817 | Condition implying restric... |
rmo3 3818 | Restricted "at most one" u... |
rmob 3819 | Consequence of "at most on... |
rmoi 3820 | Consequence of "at most on... |
rmob2 3821 | Consequence of "restricted... |
rmoi2 3822 | Consequence of "restricted... |
rmoanim 3823 | Introduction of a conjunct... |
rmoanimALT 3824 | Alternate proof of ~ rmoan... |
reuan 3825 | Introduction of a conjunct... |
2reu1 3826 | Double restricted existent... |
2reu2 3827 | Double restricted existent... |
csb2 3830 | Alternate expression for t... |
csbeq1 3831 | Analogue of ~ dfsbcq for p... |
csbeq1d 3832 | Equality deduction for pro... |
csbeq2 3833 | Substituting into equivale... |
csbeq2d 3834 | Formula-building deduction... |
csbeq2dv 3835 | Formula-building deduction... |
csbeq2i 3836 | Formula-building inference... |
csbeq12dv 3837 | Formula-building inference... |
cbvcsbw 3838 | Change bound variables in ... |
cbvcsb 3839 | Change bound variables in ... |
cbvcsbv 3840 | Change the bound variable ... |
csbid 3841 | Analogue of ~ sbid for pro... |
csbeq1a 3842 | Equality theorem for prope... |
csbcow 3843 | Composition law for chaine... |
csbco 3844 | Composition law for chaine... |
csbtt 3845 | Substitution doesn't affec... |
csbconstgf 3846 | Substitution doesn't affec... |
csbconstg 3847 | Substitution doesn't affec... |
csbconstgOLD 3848 | Obsolete version of ~ csbc... |
csbgfi 3849 | Substitution for a variabl... |
csbconstgi 3850 | The proper substitution of... |
nfcsb1d 3851 | Bound-variable hypothesis ... |
nfcsb1 3852 | Bound-variable hypothesis ... |
nfcsb1v 3853 | Bound-variable hypothesis ... |
nfcsbd 3854 | Deduction version of ~ nfc... |
nfcsbw 3855 | Bound-variable hypothesis ... |
nfcsb 3856 | Bound-variable hypothesis ... |
csbhypf 3857 | Introduce an explicit subs... |
csbiebt 3858 | Conversion of implicit sub... |
csbiedf 3859 | Conversion of implicit sub... |
csbieb 3860 | Bidirectional conversion b... |
csbiebg 3861 | Bidirectional conversion b... |
csbiegf 3862 | Conversion of implicit sub... |
csbief 3863 | Conversion of implicit sub... |
csbie 3864 | Conversion of implicit sub... |
csbieOLD 3865 | Obsolete version of ~ csbi... |
csbied 3866 | Conversion of implicit sub... |
csbiedOLD 3867 | Obsolete version of ~ csbi... |
csbied2 3868 | Conversion of implicit sub... |
csbie2t 3869 | Conversion of implicit sub... |
csbie2 3870 | Conversion of implicit sub... |
csbie2g 3871 | Conversion of implicit sub... |
cbvrabcsfw 3872 | Version of ~ cbvrabcsf wit... |
cbvralcsf 3873 | A more general version of ... |
cbvrexcsf 3874 | A more general version of ... |
cbvreucsf 3875 | A more general version of ... |
cbvrabcsf 3876 | A more general version of ... |
cbvralv2 3877 | Rule used to change the bo... |
cbvrexv2 3878 | Rule used to change the bo... |
rspc2vd 3879 | Deduction version of 2-var... |
difjust 3885 | Soundness justification th... |
unjust 3887 | Soundness justification th... |
injust 3889 | Soundness justification th... |
dfin5 3891 | Alternate definition for t... |
dfdif2 3892 | Alternate definition of cl... |
eldif 3893 | Expansion of membership in... |
eldifd 3894 | If a class is in one class... |
eldifad 3895 | If a class is in the diffe... |
eldifbd 3896 | If a class is in the diffe... |
elneeldif 3897 | The elements of a set diff... |
velcomp 3898 | Characterization of setvar... |
elin 3899 | Expansion of membership in... |
dfss 3901 | Variant of subclass defini... |
dfss2 3903 | Alternate definition of th... |
dfss2OLD 3904 | Obsolete version of ~ dfss... |
dfss3 3905 | Alternate definition of su... |
dfss6 3906 | Alternate definition of su... |
dfss2f 3907 | Equivalence for subclass r... |
dfss3f 3908 | Equivalence for subclass r... |
nfss 3909 | If ` x ` is not free in ` ... |
ssel 3910 | Membership relationships f... |
sselOLD 3911 | Obsolete version of ~ ssel... |
ssel2 3912 | Membership relationships f... |
sseli 3913 | Membership implication fro... |
sselii 3914 | Membership inference from ... |
sselid 3915 | Membership inference from ... |
sseld 3916 | Membership deduction from ... |
sselda 3917 | Membership deduction from ... |
sseldd 3918 | Membership inference from ... |
ssneld 3919 | If a class is not in anoth... |
ssneldd 3920 | If an element is not in a ... |
ssriv 3921 | Inference based on subclas... |
ssrd 3922 | Deduction based on subclas... |
ssrdv 3923 | Deduction based on subclas... |
sstr2 3924 | Transitivity of subclass r... |
sstr 3925 | Transitivity of subclass r... |
sstri 3926 | Subclass transitivity infe... |
sstrd 3927 | Subclass transitivity dedu... |
sstrid 3928 | Subclass transitivity dedu... |
sstrdi 3929 | Subclass transitivity dedu... |
sylan9ss 3930 | A subclass transitivity de... |
sylan9ssr 3931 | A subclass transitivity de... |
eqss 3932 | The subclass relationship ... |
eqssi 3933 | Infer equality from two su... |
eqssd 3934 | Equality deduction from tw... |
sssseq 3935 | If a class is a subclass o... |
eqrd 3936 | Deduce equality of classes... |
eqri 3937 | Infer equality of classes ... |
eqelssd 3938 | Equality deduction from su... |
ssid 3939 | Any class is a subclass of... |
ssidd 3940 | Weakening of ~ ssid . (Co... |
ssv 3941 | Any class is a subclass of... |
sseq1 3942 | Equality theorem for subcl... |
sseq2 3943 | Equality theorem for the s... |
sseq12 3944 | Equality theorem for the s... |
sseq1i 3945 | An equality inference for ... |
sseq2i 3946 | An equality inference for ... |
sseq12i 3947 | An equality inference for ... |
sseq1d 3948 | An equality deduction for ... |
sseq2d 3949 | An equality deduction for ... |
sseq12d 3950 | An equality deduction for ... |
eqsstri 3951 | Substitution of equality i... |
eqsstrri 3952 | Substitution of equality i... |
sseqtri 3953 | Substitution of equality i... |
sseqtrri 3954 | Substitution of equality i... |
eqsstrd 3955 | Substitution of equality i... |
eqsstrrd 3956 | Substitution of equality i... |
sseqtrd 3957 | Substitution of equality i... |
sseqtrrd 3958 | Substitution of equality i... |
3sstr3i 3959 | Substitution of equality i... |
3sstr4i 3960 | Substitution of equality i... |
3sstr3g 3961 | Substitution of equality i... |
3sstr4g 3962 | Substitution of equality i... |
3sstr3d 3963 | Substitution of equality i... |
3sstr4d 3964 | Substitution of equality i... |
eqsstrid 3965 | A chained subclass and equ... |
eqsstrrid 3966 | A chained subclass and equ... |
sseqtrdi 3967 | A chained subclass and equ... |
sseqtrrdi 3968 | A chained subclass and equ... |
sseqtrid 3969 | Subclass transitivity dedu... |
sseqtrrid 3970 | Subclass transitivity dedu... |
eqsstrdi 3971 | A chained subclass and equ... |
eqsstrrdi 3972 | A chained subclass and equ... |
eqimss 3973 | Equality implies inclusion... |
eqimss2 3974 | Equality implies inclusion... |
eqimssi 3975 | Infer subclass relationshi... |
eqimss2i 3976 | Infer subclass relationshi... |
nssne1 3977 | Two classes are different ... |
nssne2 3978 | Two classes are different ... |
nss 3979 | Negation of subclass relat... |
nelss 3980 | Demonstrate by witnesses t... |
ssrexf 3981 | Restricted existential qua... |
ssrmof 3982 | "At most one" existential ... |
ssralv 3983 | Quantification restricted ... |
ssrexv 3984 | Existential quantification... |
ss2ralv 3985 | Two quantifications restri... |
ss2rexv 3986 | Two existential quantifica... |
ralss 3987 | Restricted universal quant... |
rexss 3988 | Restricted existential qua... |
ss2ab 3989 | Class abstractions in a su... |
abss 3990 | Class abstraction in a sub... |
ssab 3991 | Subclass of a class abstra... |
ssabral 3992 | The relation for a subclas... |
ss2abdv 3993 | Deduction of abstraction s... |
ss2abdvALT 3994 | Alternate proof of ~ ss2ab... |
ss2abdvOLD 3995 | Obsolete version of ~ ss2a... |
ss2abi 3996 | Inference of abstraction s... |
ss2abiOLD 3997 | Obsolete version of ~ ss2a... |
abssdv 3998 | Deduction of abstraction s... |
abssi 3999 | Inference of abstraction s... |
ss2rab 4000 | Restricted abstraction cla... |
rabss 4001 | Restricted class abstracti... |
ssrab 4002 | Subclass of a restricted c... |
ssrabdv 4003 | Subclass of a restricted c... |
rabssdv 4004 | Subclass of a restricted c... |
ss2rabdv 4005 | Deduction of restricted ab... |
ss2rabi 4006 | Inference of restricted ab... |
rabss2 4007 | Subclass law for restricte... |
ssab2 4008 | Subclass relation for the ... |
ssrab2 4009 | Subclass relation for a re... |
ssrab2OLD 4010 | Obsolete version of ~ ssra... |
ssrab3 4011 | Subclass relation for a re... |
rabssrabd 4012 | Subclass of a restricted c... |
ssrabeq 4013 | If the restricting class o... |
rabssab 4014 | A restricted class is a su... |
uniiunlem 4015 | A subset relationship usef... |
dfpss2 4016 | Alternate definition of pr... |
dfpss3 4017 | Alternate definition of pr... |
psseq1 4018 | Equality theorem for prope... |
psseq2 4019 | Equality theorem for prope... |
psseq1i 4020 | An equality inference for ... |
psseq2i 4021 | An equality inference for ... |
psseq12i 4022 | An equality inference for ... |
psseq1d 4023 | An equality deduction for ... |
psseq2d 4024 | An equality deduction for ... |
psseq12d 4025 | An equality deduction for ... |
pssss 4026 | A proper subclass is a sub... |
pssne 4027 | Two classes in a proper su... |
pssssd 4028 | Deduce subclass from prope... |
pssned 4029 | Proper subclasses are uneq... |
sspss 4030 | Subclass in terms of prope... |
pssirr 4031 | Proper subclass is irrefle... |
pssn2lp 4032 | Proper subclass has no 2-c... |
sspsstri 4033 | Two ways of stating tricho... |
ssnpss 4034 | Partial trichotomy law for... |
psstr 4035 | Transitive law for proper ... |
sspsstr 4036 | Transitive law for subclas... |
psssstr 4037 | Transitive law for subclas... |
psstrd 4038 | Proper subclass inclusion ... |
sspsstrd 4039 | Transitivity involving sub... |
psssstrd 4040 | Transitivity involving sub... |
npss 4041 | A class is not a proper su... |
ssnelpss 4042 | A subclass missing a membe... |
ssnelpssd 4043 | Subclass inclusion with on... |
ssexnelpss 4044 | If there is an element of ... |
dfdif3 4045 | Alternate definition of cl... |
difeq1 4046 | Equality theorem for class... |
difeq2 4047 | Equality theorem for class... |
difeq12 4048 | Equality theorem for class... |
difeq1i 4049 | Inference adding differenc... |
difeq2i 4050 | Inference adding differenc... |
difeq12i 4051 | Equality inference for cla... |
difeq1d 4052 | Deduction adding differenc... |
difeq2d 4053 | Deduction adding differenc... |
difeq12d 4054 | Equality deduction for cla... |
difeqri 4055 | Inference from membership ... |
nfdif 4056 | Bound-variable hypothesis ... |
eldifi 4057 | Implication of membership ... |
eldifn 4058 | Implication of membership ... |
elndif 4059 | A set does not belong to a... |
neldif 4060 | Implication of membership ... |
difdif 4061 | Double class difference. ... |
difss 4062 | Subclass relationship for ... |
difssd 4063 | A difference of two classe... |
difss2 4064 | If a class is contained in... |
difss2d 4065 | If a class is contained in... |
ssdifss 4066 | Preservation of a subclass... |
ddif 4067 | Double complement under un... |
ssconb 4068 | Contraposition law for sub... |
sscon 4069 | Contraposition law for sub... |
ssdif 4070 | Difference law for subsets... |
ssdifd 4071 | If ` A ` is contained in `... |
sscond 4072 | If ` A ` is contained in `... |
ssdifssd 4073 | If ` A ` is contained in `... |
ssdif2d 4074 | If ` A ` is contained in `... |
raldifb 4075 | Restricted universal quant... |
rexdifi 4076 | Restricted existential qua... |
complss 4077 | Complementation reverses i... |
compleq 4078 | Two classes are equal if a... |
elun 4079 | Expansion of membership in... |
elunnel1 4080 | A member of a union that i... |
uneqri 4081 | Inference from membership ... |
unidm 4082 | Idempotent law for union o... |
uncom 4083 | Commutative law for union ... |
equncom 4084 | If a class equals the unio... |
equncomi 4085 | Inference form of ~ equnco... |
uneq1 4086 | Equality theorem for the u... |
uneq2 4087 | Equality theorem for the u... |
uneq12 4088 | Equality theorem for the u... |
uneq1i 4089 | Inference adding union to ... |
uneq2i 4090 | Inference adding union to ... |
uneq12i 4091 | Equality inference for the... |
uneq1d 4092 | Deduction adding union to ... |
uneq2d 4093 | Deduction adding union to ... |
uneq12d 4094 | Equality deduction for the... |
nfun 4095 | Bound-variable hypothesis ... |
unass 4096 | Associative law for union ... |
un12 4097 | A rearrangement of union. ... |
un23 4098 | A rearrangement of union. ... |
un4 4099 | A rearrangement of the uni... |
unundi 4100 | Union distributes over its... |
unundir 4101 | Union distributes over its... |
ssun1 4102 | Subclass relationship for ... |
ssun2 4103 | Subclass relationship for ... |
ssun3 4104 | Subclass law for union of ... |
ssun4 4105 | Subclass law for union of ... |
elun1 4106 | Membership law for union o... |
elun2 4107 | Membership law for union o... |
elunant 4108 | A statement is true for ev... |
unss1 4109 | Subclass law for union of ... |
ssequn1 4110 | A relationship between sub... |
unss2 4111 | Subclass law for union of ... |
unss12 4112 | Subclass law for union of ... |
ssequn2 4113 | A relationship between sub... |
unss 4114 | The union of two subclasse... |
unssi 4115 | An inference showing the u... |
unssd 4116 | A deduction showing the un... |
unssad 4117 | If ` ( A u. B ) ` is conta... |
unssbd 4118 | If ` ( A u. B ) ` is conta... |
ssun 4119 | A condition that implies i... |
rexun 4120 | Restricted existential qua... |
ralunb 4121 | Restricted quantification ... |
ralun 4122 | Restricted quantification ... |
elini 4123 | Membership in an intersect... |
elind 4124 | Deduce membership in an in... |
elinel1 4125 | Membership in an intersect... |
elinel2 4126 | Membership in an intersect... |
elin2 4127 | Membership in a class defi... |
elin1d 4128 | Elementhood in the first s... |
elin2d 4129 | Elementhood in the first s... |
elin3 4130 | Membership in a class defi... |
incom 4131 | Commutative law for inters... |
incomOLD 4132 | Obsolete version of ~ inco... |
ineqcom 4133 | Two ways of expressing tha... |
ineqcomi 4134 | Two ways of expressing tha... |
ineqri 4135 | Inference from membership ... |
ineq1 4136 | Equality theorem for inter... |
ineq2 4137 | Equality theorem for inter... |
ineq12 4138 | Equality theorem for inter... |
ineq1i 4139 | Equality inference for int... |
ineq2i 4140 | Equality inference for int... |
ineq12i 4141 | Equality inference for int... |
ineq1d 4142 | Equality deduction for int... |
ineq2d 4143 | Equality deduction for int... |
ineq12d 4144 | Equality deduction for int... |
ineqan12d 4145 | Equality deduction for int... |
sseqin2 4146 | A relationship between sub... |
nfin 4147 | Bound-variable hypothesis ... |
rabbi2dva 4148 | Deduction from a wff to a ... |
inidm 4149 | Idempotent law for interse... |
inass 4150 | Associative law for inters... |
in12 4151 | A rearrangement of interse... |
in32 4152 | A rearrangement of interse... |
in13 4153 | A rearrangement of interse... |
in31 4154 | A rearrangement of interse... |
inrot 4155 | Rotate the intersection of... |
in4 4156 | Rearrangement of intersect... |
inindi 4157 | Intersection distributes o... |
inindir 4158 | Intersection distributes o... |
inss1 4159 | The intersection of two cl... |
inss2 4160 | The intersection of two cl... |
ssin 4161 | Subclass of intersection. ... |
ssini 4162 | An inference showing that ... |
ssind 4163 | A deduction showing that a... |
ssrin 4164 | Add right intersection to ... |
sslin 4165 | Add left intersection to s... |
ssrind 4166 | Add right intersection to ... |
ss2in 4167 | Intersection of subclasses... |
ssinss1 4168 | Intersection preserves sub... |
inss 4169 | Inclusion of an intersecti... |
rexin 4170 | Restricted existential qua... |
dfss7 4171 | Alternate definition of su... |
symdifcom 4174 | Symmetric difference commu... |
symdifeq1 4175 | Equality theorem for symme... |
symdifeq2 4176 | Equality theorem for symme... |
nfsymdif 4177 | Hypothesis builder for sym... |
elsymdif 4178 | Membership in a symmetric ... |
dfsymdif4 4179 | Alternate definition of th... |
elsymdifxor 4180 | Membership in a symmetric ... |
dfsymdif2 4181 | Alternate definition of th... |
symdifass 4182 | Symmetric difference is as... |
difsssymdif 4183 | The symmetric difference c... |
difsymssdifssd 4184 | If the symmetric differenc... |
unabs 4185 | Absorption law for union. ... |
inabs 4186 | Absorption law for interse... |
nssinpss 4187 | Negation of subclass expre... |
nsspssun 4188 | Negation of subclass expre... |
dfss4 4189 | Subclass defined in terms ... |
dfun2 4190 | An alternate definition of... |
dfin2 4191 | An alternate definition of... |
difin 4192 | Difference with intersecti... |
ssdifim 4193 | Implication of a class dif... |
ssdifsym 4194 | Symmetric class difference... |
dfss5 4195 | Alternate definition of su... |
dfun3 4196 | Union defined in terms of ... |
dfin3 4197 | Intersection defined in te... |
dfin4 4198 | Alternate definition of th... |
invdif 4199 | Intersection with universa... |
indif 4200 | Intersection with class di... |
indif2 4201 | Bring an intersection in a... |
indif1 4202 | Bring an intersection in a... |
indifcom 4203 | Commutation law for inters... |
indi 4204 | Distributive law for inter... |
undi 4205 | Distributive law for union... |
indir 4206 | Distributive law for inter... |
undir 4207 | Distributive law for union... |
unineq 4208 | Infer equality from equali... |
uneqin 4209 | Equality of union and inte... |
difundi 4210 | Distributive law for class... |
difundir 4211 | Distributive law for class... |
difindi 4212 | Distributive law for class... |
difindir 4213 | Distributive law for class... |
indifdi 4214 | Distribute intersection ov... |
indifdir 4215 | Distribute intersection ov... |
indifdirOLD 4216 | Obsolete version of ~ indi... |
difdif2 4217 | Class difference by a clas... |
undm 4218 | De Morgan's law for union.... |
indm 4219 | De Morgan's law for inters... |
difun1 4220 | A relationship involving d... |
undif3 4221 | An equality involving clas... |
difin2 4222 | Represent a class differen... |
dif32 4223 | Swap second and third argu... |
difabs 4224 | Absorption-like law for cl... |
sscon34b 4225 | Relative complementation r... |
rcompleq 4226 | Two subclasses are equal i... |
dfsymdif3 4227 | Alternate definition of th... |
unabw 4228 | Union of two class abstrac... |
unab 4229 | Union of two class abstrac... |
inab 4230 | Intersection of two class ... |
difab 4231 | Difference of two class ab... |
abanssl 4232 | A class abstraction with a... |
abanssr 4233 | A class abstraction with a... |
notabw 4234 | A class abstraction define... |
notab 4235 | A class abstraction define... |
unrab 4236 | Union of two restricted cl... |
inrab 4237 | Intersection of two restri... |
inrab2 4238 | Intersection with a restri... |
difrab 4239 | Difference of two restrict... |
dfrab3 4240 | Alternate definition of re... |
dfrab2 4241 | Alternate definition of re... |
notrab 4242 | Complementation of restric... |
dfrab3ss 4243 | Restricted class abstracti... |
rabun2 4244 | Abstraction restricted to ... |
reuun2 4245 | Transfer uniqueness to a s... |
reuss2 4246 | Transfer uniqueness to a s... |
reuss 4247 | Transfer uniqueness to a s... |
reuun1 4248 | Transfer uniqueness to a s... |
reupick 4249 | Restricted uniqueness "pic... |
reupick3 4250 | Restricted uniqueness "pic... |
reupick2 4251 | Restricted uniqueness "pic... |
euelss 4252 | Transfer uniqueness of an ... |
dfnul4 4255 | Alternate definition of th... |
dfnul2 4256 | Alternate definition of th... |
dfnul3 4257 | Alternate definition of th... |
dfnul2OLD 4258 | Obsolete version of ~ dfnu... |
dfnul3OLD 4259 | Obsolete version of ~ dfnu... |
dfnul4OLD 4260 | Obsolete version of ~ dfnu... |
noel 4261 | The empty set has no eleme... |
noelOLD 4262 | Obsolete version of ~ noel... |
nel02 4263 | The empty set has no eleme... |
n0i 4264 | If a class has elements, t... |
ne0i 4265 | If a class has elements, t... |
ne0d 4266 | Deduction form of ~ ne0i .... |
n0ii 4267 | If a class has elements, t... |
ne0ii 4268 | If a class has elements, t... |
vn0 4269 | The universal class is not... |
vn0ALT 4270 | Alternate proof of ~ vn0 .... |
eq0f 4271 | A class is equal to the em... |
neq0f 4272 | A class is not empty if an... |
n0f 4273 | A class is nonempty if and... |
eq0 4274 | A class is equal to the em... |
eq0ALT 4275 | Alternate proof of ~ eq0 .... |
neq0 4276 | A class is not empty if an... |
n0 4277 | A class is nonempty if and... |
eq0OLDOLD 4278 | Obsolete version of ~ eq0 ... |
neq0OLD 4279 | Obsolete version of ~ neq0... |
n0OLD 4280 | Obsolete version of ~ n0 a... |
nel0 4281 | From the general negation ... |
reximdva0 4282 | Restricted existence deduc... |
rspn0 4283 | Specialization for restric... |
rspn0OLD 4284 | Obsolete version of ~ rspn... |
n0rex 4285 | There is an element in a n... |
ssn0rex 4286 | There is an element in a c... |
n0moeu 4287 | A case of equivalence of "... |
rex0 4288 | Vacuous restricted existen... |
reu0 4289 | Vacuous restricted uniquen... |
rmo0 4290 | Vacuous restricted at-most... |
0el 4291 | Membership of the empty se... |
n0el 4292 | Negated membership of the ... |
eqeuel 4293 | A condition which implies ... |
ssdif0 4294 | Subclass expressed in term... |
difn0 4295 | If the difference of two s... |
pssdifn0 4296 | A proper subclass has a no... |
pssdif 4297 | A proper subclass has a no... |
ndisj 4298 | Express that an intersecti... |
difin0ss 4299 | Difference, intersection, ... |
inssdif0 4300 | Intersection, subclass, an... |
difid 4301 | The difference between a c... |
difidALT 4302 | Alternate proof of ~ difid... |
dif0 4303 | The difference between a c... |
ab0w 4304 | The class of sets verifyin... |
ab0 4305 | The class of sets verifyin... |
ab0OLD 4306 | Obsolete version of ~ ab0 ... |
ab0ALT 4307 | Alternate proof of ~ ab0 ,... |
dfnf5 4308 | Characterization of nonfre... |
ab0orv 4309 | The class abstraction defi... |
ab0orvALT 4310 | Alternate proof of ~ ab0or... |
abn0 4311 | Nonempty class abstraction... |
abn0OLD 4312 | Obsolete version of ~ abn0... |
rab0 4313 | Any restricted class abstr... |
rabeq0w 4314 | Condition for a restricted... |
rabeq0 4315 | Condition for a restricted... |
rabn0 4316 | Nonempty restricted class ... |
rabxm 4317 | Law of excluded middle, in... |
rabnc 4318 | Law of noncontradiction, i... |
elneldisj 4319 | The set of elements ` s ` ... |
elnelun 4320 | The union of the set of el... |
un0 4321 | The union of a class with ... |
in0 4322 | The intersection of a clas... |
0un 4323 | The union of the empty set... |
0in 4324 | The intersection of the em... |
inv1 4325 | The intersection of a clas... |
unv 4326 | The union of a class with ... |
0ss 4327 | The null set is a subset o... |
ss0b 4328 | Any subset of the empty se... |
ss0 4329 | Any subset of the empty se... |
sseq0 4330 | A subclass of an empty cla... |
ssn0 4331 | A class with a nonempty su... |
0dif 4332 | The difference between the... |
abf 4333 | A class abstraction determ... |
abfOLD 4334 | Obsolete version of ~ abf ... |
eq0rdv 4335 | Deduction for equality to ... |
eq0rdvALT 4336 | Alternate proof of ~ eq0rd... |
csbprc 4337 | The proper substitution of... |
csb0 4338 | The proper substitution of... |
sbcel12 4339 | Distribute proper substitu... |
sbceqg 4340 | Distribute proper substitu... |
sbceqi 4341 | Distribution of class subs... |
sbcnel12g 4342 | Distribute proper substitu... |
sbcne12 4343 | Distribute proper substitu... |
sbcel1g 4344 | Move proper substitution i... |
sbceq1g 4345 | Move proper substitution t... |
sbcel2 4346 | Move proper substitution i... |
sbceq2g 4347 | Move proper substitution t... |
csbcom 4348 | Commutative law for double... |
sbcnestgfw 4349 | Nest the composition of tw... |
csbnestgfw 4350 | Nest the composition of tw... |
sbcnestgw 4351 | Nest the composition of tw... |
csbnestgw 4352 | Nest the composition of tw... |
sbcco3gw 4353 | Composition of two substit... |
sbcnestgf 4354 | Nest the composition of tw... |
csbnestgf 4355 | Nest the composition of tw... |
sbcnestg 4356 | Nest the composition of tw... |
csbnestg 4357 | Nest the composition of tw... |
sbcco3g 4358 | Composition of two substit... |
csbco3g 4359 | Composition of two class s... |
csbnest1g 4360 | Nest the composition of tw... |
csbidm 4361 | Idempotent law for class s... |
csbvarg 4362 | The proper substitution of... |
csbvargi 4363 | The proper substitution of... |
sbccsb 4364 | Substitution into a wff ex... |
sbccsb2 4365 | Substitution into a wff ex... |
rspcsbela 4366 | Special case related to ~ ... |
sbnfc2 4367 | Two ways of expressing " `... |
csbab 4368 | Move substitution into a c... |
csbun 4369 | Distribution of class subs... |
csbin 4370 | Distribute proper substitu... |
csbie2df 4371 | Conversion of implicit sub... |
2nreu 4372 | If there are two different... |
un00 4373 | Two classes are empty iff ... |
vss 4374 | Only the universal class h... |
0pss 4375 | The null set is a proper s... |
npss0 4376 | No set is a proper subset ... |
pssv 4377 | Any non-universal class is... |
disj 4378 | Two ways of saying that tw... |
disjOLD 4379 | Obsolete version of ~ disj... |
disjr 4380 | Two ways of saying that tw... |
disj1 4381 | Two ways of saying that tw... |
reldisj 4382 | Two ways of saying that tw... |
reldisjOLD 4383 | Obsolete version of ~ reld... |
disj3 4384 | Two ways of saying that tw... |
disjne 4385 | Members of disjoint sets a... |
disjeq0 4386 | Two disjoint sets are equa... |
disjel 4387 | A set can't belong to both... |
disj2 4388 | Two ways of saying that tw... |
disj4 4389 | Two ways of saying that tw... |
ssdisj 4390 | Intersection with a subcla... |
disjpss 4391 | A class is a proper subset... |
undisj1 4392 | The union of disjoint clas... |
undisj2 4393 | The union of disjoint clas... |
ssindif0 4394 | Subclass expressed in term... |
inelcm 4395 | The intersection of classe... |
minel 4396 | A minimum element of a cla... |
undif4 4397 | Distribute union over diff... |
disjssun 4398 | Subset relation for disjoi... |
vdif0 4399 | Universal class equality i... |
difrab0eq 4400 | If the difference between ... |
pssnel 4401 | A proper subclass has a me... |
disjdif 4402 | A class and its relative c... |
disjdifr 4403 | A class and its relative c... |
difin0 4404 | The difference of a class ... |
unvdif 4405 | The union of a class and i... |
undif1 4406 | Absorption of difference b... |
undif2 4407 | Absorption of difference b... |
undifabs 4408 | Absorption of difference b... |
inundif 4409 | The intersection and class... |
disjdif2 4410 | The difference of a class ... |
difun2 4411 | Absorption of union by dif... |
undif 4412 | Union of complementary par... |
ssdifin0 4413 | A subset of a difference d... |
ssdifeq0 4414 | A class is a subclass of i... |
ssundif 4415 | A condition equivalent to ... |
difcom 4416 | Swap the arguments of a cl... |
pssdifcom1 4417 | Two ways to express overla... |
pssdifcom2 4418 | Two ways to express non-co... |
difdifdir 4419 | Distributive law for class... |
uneqdifeq 4420 | Two ways to say that ` A `... |
raldifeq 4421 | Equality theorem for restr... |
r19.2z 4422 | Theorem 19.2 of [Margaris]... |
r19.2zb 4423 | A response to the notion t... |
r19.3rz 4424 | Restricted quantification ... |
r19.28z 4425 | Restricted quantifier vers... |
r19.3rzv 4426 | Restricted quantification ... |
r19.9rzv 4427 | Restricted quantification ... |
r19.28zv 4428 | Restricted quantifier vers... |
r19.37zv 4429 | Restricted quantifier vers... |
r19.45zv 4430 | Restricted version of Theo... |
r19.44zv 4431 | Restricted version of Theo... |
r19.27z 4432 | Restricted quantifier vers... |
r19.27zv 4433 | Restricted quantifier vers... |
r19.36zv 4434 | Restricted quantifier vers... |
ralidmw 4435 | Idempotent law for restric... |
rzal 4436 | Vacuous quantification is ... |
rzalALT 4437 | Alternate proof of ~ rzal ... |
rexn0 4438 | Restricted existential qua... |
ralidm 4439 | Idempotent law for restric... |
ral0 4440 | Vacuous universal quantifi... |
ralf0 4441 | The quantification of a fa... |
rexn0OLD 4442 | Obsolete version of ~ rexn... |
ralidmOLD 4443 | Obsolete version of ~ rali... |
ral0OLD 4444 | Obsolete version of ~ ral0... |
ralf0OLD 4445 | Obsolete version of ~ ralf... |
ralnralall 4446 | A contradiction concerning... |
falseral0 4447 | A false statement can only... |
raaan 4448 | Rearrange restricted quant... |
raaanv 4449 | Rearrange restricted quant... |
sbss 4450 | Set substitution into the ... |
sbcssg 4451 | Distribute proper substitu... |
raaan2 4452 | Rearrange restricted quant... |
2reu4lem 4453 | Lemma for ~ 2reu4 . (Cont... |
2reu4 4454 | Definition of double restr... |
csbdif 4455 | Distribution of class subs... |
dfif2 4458 | An alternate definition of... |
dfif6 4459 | An alternate definition of... |
ifeq1 4460 | Equality theorem for condi... |
ifeq2 4461 | Equality theorem for condi... |
iftrue 4462 | Value of the conditional o... |
iftruei 4463 | Inference associated with ... |
iftrued 4464 | Value of the conditional o... |
iffalse 4465 | Value of the conditional o... |
iffalsei 4466 | Inference associated with ... |
iffalsed 4467 | Value of the conditional o... |
ifnefalse 4468 | When values are unequal, b... |
ifsb 4469 | Distribute a function over... |
dfif3 4470 | Alternate definition of th... |
dfif4 4471 | Alternate definition of th... |
dfif5 4472 | Alternate definition of th... |
ifssun 4473 | A conditional class is inc... |
ifeq12 4474 | Equality theorem for condi... |
ifeq1d 4475 | Equality deduction for con... |
ifeq2d 4476 | Equality deduction for con... |
ifeq12d 4477 | Equality deduction for con... |
ifbi 4478 | Equivalence theorem for co... |
ifbid 4479 | Equivalence deduction for ... |
ifbieq1d 4480 | Equivalence/equality deduc... |
ifbieq2i 4481 | Equivalence/equality infer... |
ifbieq2d 4482 | Equivalence/equality deduc... |
ifbieq12i 4483 | Equivalence deduction for ... |
ifbieq12d 4484 | Equivalence deduction for ... |
nfifd 4485 | Deduction form of ~ nfif .... |
nfif 4486 | Bound-variable hypothesis ... |
ifeq1da 4487 | Conditional equality. (Co... |
ifeq2da 4488 | Conditional equality. (Co... |
ifeq12da 4489 | Equivalence deduction for ... |
ifbieq12d2 4490 | Equivalence deduction for ... |
ifclda 4491 | Conditional closure. (Con... |
ifeqda 4492 | Separation of the values o... |
elimif 4493 | Elimination of a condition... |
ifbothda 4494 | A wff ` th ` containing a ... |
ifboth 4495 | A wff ` th ` containing a ... |
ifid 4496 | Identical true and false a... |
eqif 4497 | Expansion of an equality w... |
ifval 4498 | Another expression of the ... |
elif 4499 | Membership in a conditiona... |
ifel 4500 | Membership of a conditiona... |
ifcl 4501 | Membership (closure) of a ... |
ifcld 4502 | Membership (closure) of a ... |
ifcli 4503 | Inference associated with ... |
ifexd 4504 | Existence of the condition... |
ifexg 4505 | Existence of the condition... |
ifex 4506 | Existence of the condition... |
ifeqor 4507 | The possible values of a c... |
ifnot 4508 | Negating the first argumen... |
ifan 4509 | Rewrite a conjunction in a... |
ifor 4510 | Rewrite a disjunction in a... |
2if2 4511 | Resolve two nested conditi... |
ifcomnan 4512 | Commute the conditions in ... |
csbif 4513 | Distribute proper substitu... |
dedth 4514 | Weak deduction theorem tha... |
dedth2h 4515 | Weak deduction theorem eli... |
dedth3h 4516 | Weak deduction theorem eli... |
dedth4h 4517 | Weak deduction theorem eli... |
dedth2v 4518 | Weak deduction theorem for... |
dedth3v 4519 | Weak deduction theorem for... |
dedth4v 4520 | Weak deduction theorem for... |
elimhyp 4521 | Eliminate a hypothesis con... |
elimhyp2v 4522 | Eliminate a hypothesis con... |
elimhyp3v 4523 | Eliminate a hypothesis con... |
elimhyp4v 4524 | Eliminate a hypothesis con... |
elimel 4525 | Eliminate a membership hyp... |
elimdhyp 4526 | Version of ~ elimhyp where... |
keephyp 4527 | Transform a hypothesis ` p... |
keephyp2v 4528 | Keep a hypothesis containi... |
keephyp3v 4529 | Keep a hypothesis containi... |
pwjust 4531 | Soundness justification th... |
elpwg 4533 | Membership in a power clas... |
elpw 4534 | Membership in a power clas... |
velpw 4535 | Setvar variable membership... |
elpwOLD 4536 | Obsolete proof of ~ elpw a... |
elpwgOLD 4537 | Obsolete proof of ~ elpwg ... |
elpwd 4538 | Membership in a power clas... |
elpwi 4539 | Subset relation implied by... |
elpwb 4540 | Characterization of the el... |
elpwid 4541 | An element of a power clas... |
elelpwi 4542 | If ` A ` belongs to a part... |
sspw 4543 | The powerclass preserves i... |
sspwi 4544 | The powerclass preserves i... |
sspwd 4545 | The powerclass preserves i... |
pweq 4546 | Equality theorem for power... |
pweqALT 4547 | Alternate proof of ~ pweq ... |
pweqi 4548 | Equality inference for pow... |
pweqd 4549 | Equality deduction for pow... |
pwunss 4550 | The power class of the uni... |
nfpw 4551 | Bound-variable hypothesis ... |
pwidg 4552 | A set is an element of its... |
pwidb 4553 | A class is an element of i... |
pwid 4554 | A set is a member of its p... |
pwss 4555 | Subclass relationship for ... |
pwundif 4556 | Break up the power class o... |
snjust 4557 | Soundness justification th... |
sneq 4568 | Equality theorem for singl... |
sneqi 4569 | Equality inference for sin... |
sneqd 4570 | Equality deduction for sin... |
dfsn2 4571 | Alternate definition of si... |
elsng 4572 | There is exactly one eleme... |
elsn 4573 | There is exactly one eleme... |
velsn 4574 | There is only one element ... |
elsni 4575 | There is at most one eleme... |
absn 4576 | Condition for a class abst... |
dfpr2 4577 | Alternate definition of a ... |
dfsn2ALT 4578 | Alternate definition of si... |
elprg 4579 | A member of a pair of clas... |
elpri 4580 | If a class is an element o... |
elpr 4581 | A member of a pair of clas... |
elpr2g 4582 | A member of a pair of sets... |
elpr2 4583 | A member of a pair of sets... |
elpr2OLD 4584 | Obsolete version of ~ elpr... |
nelpr2 4585 | If a class is not an eleme... |
nelpr1 4586 | If a class is not an eleme... |
nelpri 4587 | If an element doesn't matc... |
prneli 4588 | If an element doesn't matc... |
nelprd 4589 | If an element doesn't matc... |
eldifpr 4590 | Membership in a set with t... |
rexdifpr 4591 | Restricted existential qua... |
snidg 4592 | A set is a member of its s... |
snidb 4593 | A class is a set iff it is... |
snid 4594 | A set is a member of its s... |
vsnid 4595 | A setvar variable is a mem... |
elsn2g 4596 | There is exactly one eleme... |
elsn2 4597 | There is exactly one eleme... |
nelsn 4598 | If a class is not equal to... |
rabeqsn 4599 | Conditions for a restricte... |
rabsssn 4600 | Conditions for a restricte... |
ralsnsg 4601 | Substitution expressed in ... |
rexsns 4602 | Restricted existential qua... |
rexsngf 4603 | Restricted existential qua... |
ralsngf 4604 | Restricted universal quant... |
reusngf 4605 | Restricted existential uni... |
ralsng 4606 | Substitution expressed in ... |
rexsng 4607 | Restricted existential qua... |
reusng 4608 | Restricted existential uni... |
2ralsng 4609 | Substitution expressed in ... |
ralsngOLD 4610 | Obsolete version of ~ rals... |
rexsngOLD 4611 | Obsolete version of ~ rexs... |
rexreusng 4612 | Restricted existential uni... |
exsnrex 4613 | There is a set being the e... |
ralsn 4614 | Convert a universal quanti... |
rexsn 4615 | Convert an existential qua... |
elpwunsn 4616 | Membership in an extension... |
eqoreldif 4617 | An element of a set is eit... |
eltpg 4618 | Members of an unordered tr... |
eldiftp 4619 | Membership in a set with t... |
eltpi 4620 | A member of an unordered t... |
eltp 4621 | A member of an unordered t... |
dftp2 4622 | Alternate definition of un... |
nfpr 4623 | Bound-variable hypothesis ... |
ifpr 4624 | Membership of a conditiona... |
ralprgf 4625 | Convert a restricted unive... |
rexprgf 4626 | Convert a restricted exist... |
ralprg 4627 | Convert a restricted unive... |
ralprgOLD 4628 | Obsolete version of ~ ralp... |
rexprg 4629 | Convert a restricted exist... |
rexprgOLD 4630 | Obsolete version of ~ rexp... |
raltpg 4631 | Convert a restricted unive... |
rextpg 4632 | Convert a restricted exist... |
ralpr 4633 | Convert a restricted unive... |
rexpr 4634 | Convert a restricted exist... |
reuprg0 4635 | Convert a restricted exist... |
reuprg 4636 | Convert a restricted exist... |
reurexprg 4637 | Convert a restricted exist... |
raltp 4638 | Convert a universal quanti... |
rextp 4639 | Convert an existential qua... |
nfsn 4640 | Bound-variable hypothesis ... |
csbsng 4641 | Distribute proper substitu... |
csbprg 4642 | Distribute proper substitu... |
elinsn 4643 | If the intersection of two... |
disjsn 4644 | Intersection with the sing... |
disjsn2 4645 | Two distinct singletons ar... |
disjpr2 4646 | Two completely distinct un... |
disjprsn 4647 | The disjoint intersection ... |
disjtpsn 4648 | The disjoint intersection ... |
disjtp2 4649 | Two completely distinct un... |
snprc 4650 | The singleton of a proper ... |
snnzb 4651 | A singleton is nonempty if... |
rmosn 4652 | A restricted at-most-one q... |
r19.12sn 4653 | Special case of ~ r19.12 w... |
rabsn 4654 | Condition where a restrict... |
rabsnifsb 4655 | A restricted class abstrac... |
rabsnif 4656 | A restricted class abstrac... |
rabrsn 4657 | A restricted class abstrac... |
euabsn2 4658 | Another way to express exi... |
euabsn 4659 | Another way to express exi... |
reusn 4660 | A way to express restricte... |
absneu 4661 | Restricted existential uni... |
rabsneu 4662 | Restricted existential uni... |
eusn 4663 | Two ways to express " ` A ... |
rabsnt 4664 | Truth implied by equality ... |
prcom 4665 | Commutative law for unorde... |
preq1 4666 | Equality theorem for unord... |
preq2 4667 | Equality theorem for unord... |
preq12 4668 | Equality theorem for unord... |
preq1i 4669 | Equality inference for uno... |
preq2i 4670 | Equality inference for uno... |
preq12i 4671 | Equality inference for uno... |
preq1d 4672 | Equality deduction for uno... |
preq2d 4673 | Equality deduction for uno... |
preq12d 4674 | Equality deduction for uno... |
tpeq1 4675 | Equality theorem for unord... |
tpeq2 4676 | Equality theorem for unord... |
tpeq3 4677 | Equality theorem for unord... |
tpeq1d 4678 | Equality theorem for unord... |
tpeq2d 4679 | Equality theorem for unord... |
tpeq3d 4680 | Equality theorem for unord... |
tpeq123d 4681 | Equality theorem for unord... |
tprot 4682 | Rotation of the elements o... |
tpcoma 4683 | Swap 1st and 2nd members o... |
tpcomb 4684 | Swap 2nd and 3rd members o... |
tpass 4685 | Split off the first elemen... |
qdass 4686 | Two ways to write an unord... |
qdassr 4687 | Two ways to write an unord... |
tpidm12 4688 | Unordered triple ` { A , A... |
tpidm13 4689 | Unordered triple ` { A , B... |
tpidm23 4690 | Unordered triple ` { A , B... |
tpidm 4691 | Unordered triple ` { A , A... |
tppreq3 4692 | An unordered triple is an ... |
prid1g 4693 | An unordered pair contains... |
prid2g 4694 | An unordered pair contains... |
prid1 4695 | An unordered pair contains... |
prid2 4696 | An unordered pair contains... |
ifpprsnss 4697 | An unordered pair is a sin... |
prprc1 4698 | A proper class vanishes in... |
prprc2 4699 | A proper class vanishes in... |
prprc 4700 | An unordered pair containi... |
tpid1 4701 | One of the three elements ... |
tpid1g 4702 | Closed theorem form of ~ t... |
tpid2 4703 | One of the three elements ... |
tpid2g 4704 | Closed theorem form of ~ t... |
tpid3g 4705 | Closed theorem form of ~ t... |
tpid3 4706 | One of the three elements ... |
snnzg 4707 | The singleton of a set is ... |
snn0d 4708 | The singleton of a set is ... |
snnz 4709 | The singleton of a set is ... |
prnz 4710 | A pair containing a set is... |
prnzg 4711 | A pair containing a set is... |
tpnz 4712 | An unordered triple contai... |
tpnzd 4713 | An unordered triple contai... |
raltpd 4714 | Convert a universal quanti... |
snssg 4715 | The singleton of an elemen... |
snss 4716 | The singleton of an elemen... |
eldifsn 4717 | Membership in a set with a... |
ssdifsn 4718 | Subset of a set with an el... |
elpwdifsn 4719 | A subset of a set is an el... |
eldifsni 4720 | Membership in a set with a... |
eldifsnneq 4721 | An element of a difference... |
neldifsn 4722 | The class ` A ` is not in ... |
neldifsnd 4723 | The class ` A ` is not in ... |
rexdifsn 4724 | Restricted existential qua... |
raldifsni 4725 | Rearrangement of a propert... |
raldifsnb 4726 | Restricted universal quant... |
eldifvsn 4727 | A set is an element of the... |
difsn 4728 | An element not in a set ca... |
difprsnss 4729 | Removal of a singleton fro... |
difprsn1 4730 | Removal of a singleton fro... |
difprsn2 4731 | Removal of a singleton fro... |
diftpsn3 4732 | Removal of a singleton fro... |
difpr 4733 | Removing two elements as p... |
tpprceq3 4734 | An unordered triple is an ... |
tppreqb 4735 | An unordered triple is an ... |
difsnb 4736 | ` ( B \ { A } ) ` equals `... |
difsnpss 4737 | ` ( B \ { A } ) ` is a pro... |
snssi 4738 | The singleton of an elemen... |
snssd 4739 | The singleton of an elemen... |
difsnid 4740 | If we remove a single elem... |
eldifeldifsn 4741 | An element of a difference... |
pw0 4742 | Compute the power set of t... |
pwpw0 4743 | Compute the power set of t... |
snsspr1 4744 | A singleton is a subset of... |
snsspr2 4745 | A singleton is a subset of... |
snsstp1 4746 | A singleton is a subset of... |
snsstp2 4747 | A singleton is a subset of... |
snsstp3 4748 | A singleton is a subset of... |
prssg 4749 | A pair of elements of a cl... |
prss 4750 | A pair of elements of a cl... |
prssi 4751 | A pair of elements of a cl... |
prssd 4752 | Deduction version of ~ prs... |
prsspwg 4753 | An unordered pair belongs ... |
ssprss 4754 | A pair as subset of a pair... |
ssprsseq 4755 | A proper pair is a subset ... |
sssn 4756 | The subsets of a singleton... |
ssunsn2 4757 | The property of being sand... |
ssunsn 4758 | Possible values for a set ... |
eqsn 4759 | Two ways to express that a... |
issn 4760 | A sufficient condition for... |
n0snor2el 4761 | A nonempty set is either a... |
ssunpr 4762 | Possible values for a set ... |
sspr 4763 | The subsets of a pair. (C... |
sstp 4764 | The subsets of an unordere... |
tpss 4765 | An unordered triple of ele... |
tpssi 4766 | An unordered triple of ele... |
sneqrg 4767 | Closed form of ~ sneqr . ... |
sneqr 4768 | If the singletons of two s... |
snsssn 4769 | If a singleton is a subset... |
mosneq 4770 | There exists at most one s... |
sneqbg 4771 | Two singletons of sets are... |
snsspw 4772 | The singleton of a class i... |
prsspw 4773 | An unordered pair belongs ... |
preq1b 4774 | Biconditional equality lem... |
preq2b 4775 | Biconditional equality lem... |
preqr1 4776 | Reverse equality lemma for... |
preqr2 4777 | Reverse equality lemma for... |
preq12b 4778 | Equality relationship for ... |
opthpr 4779 | An unordered pair has the ... |
preqr1g 4780 | Reverse equality lemma for... |
preq12bg 4781 | Closed form of ~ preq12b .... |
prneimg 4782 | Two pairs are not equal if... |
prnebg 4783 | A (proper) pair is not equ... |
pr1eqbg 4784 | A (proper) pair is equal t... |
pr1nebg 4785 | A (proper) pair is not equ... |
preqsnd 4786 | Equivalence for a pair equ... |
prnesn 4787 | A proper unordered pair is... |
prneprprc 4788 | A proper unordered pair is... |
preqsn 4789 | Equivalence for a pair equ... |
preq12nebg 4790 | Equality relationship for ... |
prel12g 4791 | Equality of two unordered ... |
opthprneg 4792 | An unordered pair has the ... |
elpreqprlem 4793 | Lemma for ~ elpreqpr . (C... |
elpreqpr 4794 | Equality and membership ru... |
elpreqprb 4795 | A set is an element of an ... |
elpr2elpr 4796 | For an element ` A ` of an... |
dfopif 4797 | Rewrite ~ df-op using ` if... |
dfopifOLD 4798 | Obsolete version of ~ dfop... |
dfopg 4799 | Value of the ordered pair ... |
dfop 4800 | Value of an ordered pair w... |
opeq1 4801 | Equality theorem for order... |
opeq2 4802 | Equality theorem for order... |
opeq12 4803 | Equality theorem for order... |
opeq1i 4804 | Equality inference for ord... |
opeq2i 4805 | Equality inference for ord... |
opeq12i 4806 | Equality inference for ord... |
opeq1d 4807 | Equality deduction for ord... |
opeq2d 4808 | Equality deduction for ord... |
opeq12d 4809 | Equality deduction for ord... |
oteq1 4810 | Equality theorem for order... |
oteq2 4811 | Equality theorem for order... |
oteq3 4812 | Equality theorem for order... |
oteq1d 4813 | Equality deduction for ord... |
oteq2d 4814 | Equality deduction for ord... |
oteq3d 4815 | Equality deduction for ord... |
oteq123d 4816 | Equality deduction for ord... |
nfop 4817 | Bound-variable hypothesis ... |
nfopd 4818 | Deduction version of bound... |
csbopg 4819 | Distribution of class subs... |
opidg 4820 | The ordered pair ` <. A , ... |
opid 4821 | The ordered pair ` <. A , ... |
ralunsn 4822 | Restricted quantification ... |
2ralunsn 4823 | Double restricted quantifi... |
opprc 4824 | Expansion of an ordered pa... |
opprc1 4825 | Expansion of an ordered pa... |
opprc2 4826 | Expansion of an ordered pa... |
oprcl 4827 | If an ordered pair has an ... |
pwsn 4828 | The power set of a singlet... |
pwsnOLD 4829 | Obsolete version of ~ pwsn... |
pwpr 4830 | The power set of an unorde... |
pwtp 4831 | The power set of an unorde... |
pwpwpw0 4832 | Compute the power set of t... |
pwv 4833 | The power class of the uni... |
prproe 4834 | For an element of a proper... |
3elpr2eq 4835 | If there are three element... |
dfuni2 4838 | Alternate definition of cl... |
eluni 4839 | Membership in class union.... |
eluni2 4840 | Membership in class union.... |
elunii 4841 | Membership in class union.... |
nfunid 4842 | Deduction version of ~ nfu... |
nfuni 4843 | Bound-variable hypothesis ... |
uniss 4844 | Subclass relationship for ... |
unissi 4845 | Subclass relationship for ... |
unissd 4846 | Subclass relationship for ... |
unieq 4847 | Equality theorem for class... |
unieqOLD 4848 | Obsolete version of ~ unie... |
unieqi 4849 | Inference of equality of t... |
unieqd 4850 | Deduction of equality of t... |
eluniab 4851 | Membership in union of a c... |
elunirab 4852 | Membership in union of a c... |
uniprg 4853 | The union of a pair is the... |
unipr 4854 | The union of a pair is the... |
uniprOLD 4855 | Obsolete version of ~ unip... |
uniprgOLD 4856 | Obsolete version of ~ unip... |
unisng 4857 | A set equals the union of ... |
unisn 4858 | A set equals the union of ... |
unisn3 4859 | Union of a singleton in th... |
dfnfc2 4860 | An alternative statement o... |
uniun 4861 | The class union of the uni... |
uniin 4862 | The class union of the int... |
ssuni 4863 | Subclass relationship for ... |
uni0b 4864 | The union of a set is empt... |
uni0c 4865 | The union of a set is empt... |
uni0 4866 | The union of the empty set... |
csbuni 4867 | Distribute proper substitu... |
elssuni 4868 | An element of a class is a... |
unissel 4869 | Condition turning a subcla... |
unissb 4870 | Relationship involving mem... |
uniss2 4871 | A subclass condition on th... |
unidif 4872 | If the difference ` A \ B ... |
ssunieq 4873 | Relationship implying unio... |
unimax 4874 | Any member of a class is t... |
pwuni 4875 | A class is a subclass of t... |
dfint2 4878 | Alternate definition of cl... |
inteq 4879 | Equality law for intersect... |
inteqi 4880 | Equality inference for cla... |
inteqd 4881 | Equality deduction for cla... |
elint 4882 | Membership in class inters... |
elint2 4883 | Membership in class inters... |
elintg 4884 | Membership in class inters... |
elinti 4885 | Membership in class inters... |
nfint 4886 | Bound-variable hypothesis ... |
elintab 4887 | Membership in the intersec... |
elintrab 4888 | Membership in the intersec... |
elintrabg 4889 | Membership in the intersec... |
int0 4890 | The intersection of the em... |
intss1 4891 | An element of a class incl... |
ssint 4892 | Subclass of a class inters... |
ssintab 4893 | Subclass of the intersecti... |
ssintub 4894 | Subclass of the least uppe... |
ssmin 4895 | Subclass of the minimum va... |
intmin 4896 | Any member of a class is t... |
intss 4897 | Intersection of subclasses... |
intssuni 4898 | The intersection of a none... |
ssintrab 4899 | Subclass of the intersecti... |
unissint 4900 | If the union of a class is... |
intssuni2 4901 | Subclass relationship for ... |
intminss 4902 | Under subset ordering, the... |
intmin2 4903 | Any set is the smallest of... |
intmin3 4904 | Under subset ordering, the... |
intmin4 4905 | Elimination of a conjunct ... |
intab 4906 | The intersection of a spec... |
int0el 4907 | The intersection of a clas... |
intun 4908 | The class intersection of ... |
intprg 4909 | The intersection of a pair... |
intpr 4910 | The intersection of a pair... |
intprOLD 4911 | Obsolete version of ~ intp... |
intprgOLD 4912 | Obsolete version of ~ intp... |
intsng 4913 | Intersection of a singleto... |
intsn 4914 | The intersection of a sing... |
uniintsn 4915 | Two ways to express " ` A ... |
uniintab 4916 | The union and the intersec... |
intunsn 4917 | Theorem joining a singleto... |
rint0 4918 | Relative intersection of a... |
elrint 4919 | Membership in a restricted... |
elrint2 4920 | Membership in a restricted... |
eliun 4925 | Membership in indexed unio... |
eliin 4926 | Membership in indexed inte... |
eliuni 4927 | Membership in an indexed u... |
iuncom 4928 | Commutation of indexed uni... |
iuncom4 4929 | Commutation of union with ... |
iunconst 4930 | Indexed union of a constan... |
iinconst 4931 | Indexed intersection of a ... |
iuneqconst 4932 | Indexed union of identical... |
iuniin 4933 | Law combining indexed unio... |
iinssiun 4934 | An indexed intersection is... |
iunss1 4935 | Subclass theorem for index... |
iinss1 4936 | Subclass theorem for index... |
iuneq1 4937 | Equality theorem for index... |
iineq1 4938 | Equality theorem for index... |
ss2iun 4939 | Subclass theorem for index... |
iuneq2 4940 | Equality theorem for index... |
iineq2 4941 | Equality theorem for index... |
iuneq2i 4942 | Equality inference for ind... |
iineq2i 4943 | Equality inference for ind... |
iineq2d 4944 | Equality deduction for ind... |
iuneq2dv 4945 | Equality deduction for ind... |
iineq2dv 4946 | Equality deduction for ind... |
iuneq12df 4947 | Equality deduction for ind... |
iuneq1d 4948 | Equality theorem for index... |
iuneq12d 4949 | Equality deduction for ind... |
iuneq2d 4950 | Equality deduction for ind... |
nfiun 4951 | Bound-variable hypothesis ... |
nfiin 4952 | Bound-variable hypothesis ... |
nfiung 4953 | Bound-variable hypothesis ... |
nfiing 4954 | Bound-variable hypothesis ... |
nfiu1 4955 | Bound-variable hypothesis ... |
nfii1 4956 | Bound-variable hypothesis ... |
dfiun2g 4957 | Alternate definition of in... |
dfiin2g 4958 | Alternate definition of in... |
dfiun2 4959 | Alternate definition of in... |
dfiin2 4960 | Alternate definition of in... |
dfiunv2 4961 | Define double indexed unio... |
cbviun 4962 | Rule used to change the bo... |
cbviin 4963 | Change bound variables in ... |
cbviung 4964 | Rule used to change the bo... |
cbviing 4965 | Change bound variables in ... |
cbviunv 4966 | Rule used to change the bo... |
cbviinv 4967 | Change bound variables in ... |
cbviunvg 4968 | Rule used to change the bo... |
cbviinvg 4969 | Change bound variables in ... |
iunssf 4970 | Subset theorem for an inde... |
iunss 4971 | Subset theorem for an inde... |
ssiun 4972 | Subset implication for an ... |
ssiun2 4973 | Identity law for subset of... |
ssiun2s 4974 | Subset relationship for an... |
iunss2 4975 | A subclass condition on th... |
iunssd 4976 | Subset theorem for an inde... |
iunab 4977 | The indexed union of a cla... |
iunrab 4978 | The indexed union of a res... |
iunxdif2 4979 | Indexed union with a class... |
ssiinf 4980 | Subset theorem for an inde... |
ssiin 4981 | Subset theorem for an inde... |
iinss 4982 | Subset implication for an ... |
iinss2 4983 | An indexed intersection is... |
uniiun 4984 | Class union in terms of in... |
intiin 4985 | Class intersection in term... |
iunid 4986 | An indexed union of single... |
iun0 4987 | An indexed union of the em... |
0iun 4988 | An empty indexed union is ... |
0iin 4989 | An empty indexed intersect... |
viin 4990 | Indexed intersection with ... |
iunsn 4991 | Indexed union of a singlet... |
iunn0 4992 | There is a nonempty class ... |
iinab 4993 | Indexed intersection of a ... |
iinrab 4994 | Indexed intersection of a ... |
iinrab2 4995 | Indexed intersection of a ... |
iunin2 4996 | Indexed union of intersect... |
iunin1 4997 | Indexed union of intersect... |
iinun2 4998 | Indexed intersection of un... |
iundif2 4999 | Indexed union of class dif... |
iindif1 5000 | Indexed intersection of cl... |
2iunin 5001 | Rearrange indexed unions o... |
iindif2 5002 | Indexed intersection of cl... |
iinin2 5003 | Indexed intersection of in... |
iinin1 5004 | Indexed intersection of in... |
iinvdif 5005 | The indexed intersection o... |
elriin 5006 | Elementhood in a relative ... |
riin0 5007 | Relative intersection of a... |
riinn0 5008 | Relative intersection of a... |
riinrab 5009 | Relative intersection of a... |
symdif0 5010 | Symmetric difference with ... |
symdifv 5011 | The symmetric difference w... |
symdifid 5012 | The symmetric difference o... |
iinxsng 5013 | A singleton index picks ou... |
iinxprg 5014 | Indexed intersection with ... |
iunxsng 5015 | A singleton index picks ou... |
iunxsn 5016 | A singleton index picks ou... |
iunxsngf 5017 | A singleton index picks ou... |
iunun 5018 | Separate a union in an ind... |
iunxun 5019 | Separate a union in the in... |
iunxdif3 5020 | An indexed union where som... |
iunxprg 5021 | A pair index picks out two... |
iunxiun 5022 | Separate an indexed union ... |
iinuni 5023 | A relationship involving u... |
iununi 5024 | A relationship involving u... |
sspwuni 5025 | Subclass relationship for ... |
pwssb 5026 | Two ways to express a coll... |
elpwpw 5027 | Characterization of the el... |
pwpwab 5028 | The double power class wri... |
pwpwssunieq 5029 | The class of sets whose un... |
elpwuni 5030 | Relationship for power cla... |
iinpw 5031 | The power class of an inte... |
iunpwss 5032 | Inclusion of an indexed un... |
intss2 5033 | A nonempty intersection of... |
rintn0 5034 | Relative intersection of a... |
dfdisj2 5037 | Alternate definition for d... |
disjss2 5038 | If each element of a colle... |
disjeq2 5039 | Equality theorem for disjo... |
disjeq2dv 5040 | Equality deduction for dis... |
disjss1 5041 | A subset of a disjoint col... |
disjeq1 5042 | Equality theorem for disjo... |
disjeq1d 5043 | Equality theorem for disjo... |
disjeq12d 5044 | Equality theorem for disjo... |
cbvdisj 5045 | Change bound variables in ... |
cbvdisjv 5046 | Change bound variables in ... |
nfdisjw 5047 | Bound-variable hypothesis ... |
nfdisj 5048 | Bound-variable hypothesis ... |
nfdisj1 5049 | Bound-variable hypothesis ... |
disjor 5050 | Two ways to say that a col... |
disjors 5051 | Two ways to say that a col... |
disji2 5052 | Property of a disjoint col... |
disji 5053 | Property of a disjoint col... |
invdisj 5054 | If there is a function ` C... |
invdisjrabw 5055 | Version of ~ invdisjrab wi... |
invdisjrab 5056 | The restricted class abstr... |
disjiun 5057 | A disjoint collection yiel... |
disjord 5058 | Conditions for a collectio... |
disjiunb 5059 | Two ways to say that a col... |
disjiund 5060 | Conditions for a collectio... |
sndisj 5061 | Any collection of singleto... |
0disj 5062 | Any collection of empty se... |
disjxsn 5063 | A singleton collection is ... |
disjx0 5064 | An empty collection is dis... |
disjprgw 5065 | Version of ~ disjprg with ... |
disjprg 5066 | A pair collection is disjo... |
disjxiun 5067 | An indexed union of a disj... |
disjxun 5068 | The union of two disjoint ... |
disjss3 5069 | Expand a disjoint collecti... |
breq 5072 | Equality theorem for binar... |
breq1 5073 | Equality theorem for a bin... |
breq2 5074 | Equality theorem for a bin... |
breq12 5075 | Equality theorem for a bin... |
breqi 5076 | Equality inference for bin... |
breq1i 5077 | Equality inference for a b... |
breq2i 5078 | Equality inference for a b... |
breq12i 5079 | Equality inference for a b... |
breq1d 5080 | Equality deduction for a b... |
breqd 5081 | Equality deduction for a b... |
breq2d 5082 | Equality deduction for a b... |
breq12d 5083 | Equality deduction for a b... |
breq123d 5084 | Equality deduction for a b... |
breqdi 5085 | Equality deduction for a b... |
breqan12d 5086 | Equality deduction for a b... |
breqan12rd 5087 | Equality deduction for a b... |
eqnbrtrd 5088 | Substitution of equal clas... |
nbrne1 5089 | Two classes are different ... |
nbrne2 5090 | Two classes are different ... |
eqbrtri 5091 | Substitution of equal clas... |
eqbrtrd 5092 | Substitution of equal clas... |
eqbrtrri 5093 | Substitution of equal clas... |
eqbrtrrd 5094 | Substitution of equal clas... |
breqtri 5095 | Substitution of equal clas... |
breqtrd 5096 | Substitution of equal clas... |
breqtrri 5097 | Substitution of equal clas... |
breqtrrd 5098 | Substitution of equal clas... |
3brtr3i 5099 | Substitution of equality i... |
3brtr4i 5100 | Substitution of equality i... |
3brtr3d 5101 | Substitution of equality i... |
3brtr4d 5102 | Substitution of equality i... |
3brtr3g 5103 | Substitution of equality i... |
3brtr4g 5104 | Substitution of equality i... |
eqbrtrid 5105 | A chained equality inferen... |
eqbrtrrid 5106 | A chained equality inferen... |
breqtrid 5107 | A chained equality inferen... |
breqtrrid 5108 | A chained equality inferen... |
eqbrtrdi 5109 | A chained equality inferen... |
eqbrtrrdi 5110 | A chained equality inferen... |
breqtrdi 5111 | A chained equality inferen... |
breqtrrdi 5112 | A chained equality inferen... |
ssbrd 5113 | Deduction from a subclass ... |
ssbr 5114 | Implication from a subclas... |
ssbri 5115 | Inference from a subclass ... |
nfbrd 5116 | Deduction version of bound... |
nfbr 5117 | Bound-variable hypothesis ... |
brab1 5118 | Relationship between a bin... |
br0 5119 | The empty binary relation ... |
brne0 5120 | If two sets are in a binar... |
brun 5121 | The union of two binary re... |
brin 5122 | The intersection of two re... |
brdif 5123 | The difference of two bina... |
sbcbr123 5124 | Move substitution in and o... |
sbcbr 5125 | Move substitution in and o... |
sbcbr12g 5126 | Move substitution in and o... |
sbcbr1g 5127 | Move substitution in and o... |
sbcbr2g 5128 | Move substitution in and o... |
brsymdif 5129 | Characterization of the sy... |
brralrspcev 5130 | Restricted existential spe... |
brimralrspcev 5131 | Restricted existential spe... |
opabss 5134 | The collection of ordered ... |
opabbid 5135 | Equivalent wff's yield equ... |
opabbidv 5136 | Equivalent wff's yield equ... |
opabbii 5137 | Equivalent wff's yield equ... |
nfopabd 5138 | Bound-variable hypothesis ... |
nfopab 5139 | Bound-variable hypothesis ... |
nfopab1 5140 | The first abstraction vari... |
nfopab2 5141 | The second abstraction var... |
cbvopab 5142 | Rule used to change bound ... |
cbvopabv 5143 | Rule used to change bound ... |
cbvopabvOLD 5144 | Obsolete version of ~ cbvo... |
cbvopab1 5145 | Change first bound variabl... |
cbvopab1g 5146 | Change first bound variabl... |
cbvopab2 5147 | Change second bound variab... |
cbvopab1s 5148 | Change first bound variabl... |
cbvopab1v 5149 | Rule used to change the fi... |
cbvopab1vOLD 5150 | Obsolete version of ~ cbvo... |
cbvopab2v 5151 | Rule used to change the se... |
unopab 5152 | Union of two ordered pair ... |
mpteq12da 5155 | An equality inference for ... |
mpteq12df 5156 | An equality inference for ... |
mpteq12dfOLD 5157 | Obsolete version of ~ mpte... |
mpteq12f 5158 | An equality theorem for th... |
mpteq12dva 5159 | An equality inference for ... |
mpteq12dvaOLD 5160 | Obsolete version of ~ mpte... |
mpteq12dv 5161 | An equality inference for ... |
mpteq12 5162 | An equality theorem for th... |
mpteq1 5163 | An equality theorem for th... |
mpteq1OLD 5164 | Obsolete version of ~ mpte... |
mpteq1d 5165 | An equality theorem for th... |
mpteq1i 5166 | An equality theorem for th... |
mpteq1iOLD 5167 | An equality theorem for th... |
mpteq2da 5168 | Slightly more general equa... |
mpteq2daOLD 5169 | Obsolete version of ~ mpte... |
mpteq2dva 5170 | Slightly more general equa... |
mpteq2dvaOLD 5171 | Obsolete version of ~ mpte... |
mpteq2dv 5172 | An equality inference for ... |
mpteq2ia 5173 | An equality inference for ... |
mpteq2iaOLD 5174 | Obsolete version of ~ mpte... |
mpteq2i 5175 | An equality inference for ... |
mpteq12i 5176 | An equality inference for ... |
nfmpt 5177 | Bound-variable hypothesis ... |
nfmpt1 5178 | Bound-variable hypothesis ... |
cbvmptf 5179 | Rule to change the bound v... |
cbvmptfg 5180 | Rule to change the bound v... |
cbvmpt 5181 | Rule to change the bound v... |
cbvmptg 5182 | Rule to change the bound v... |
cbvmptv 5183 | Rule to change the bound v... |
cbvmptvOLD 5184 | Obsolete version of ~ cbvm... |
cbvmptvg 5185 | Rule to change the bound v... |
mptv 5186 | Function with universal do... |
dftr2 5189 | An alternate way of defini... |
dftr5 5190 | An alternate way of defini... |
dftr3 5191 | An alternate way of defini... |
dftr4 5192 | An alternate way of defini... |
treq 5193 | Equality theorem for the t... |
trel 5194 | In a transitive class, the... |
trel3 5195 | In a transitive class, the... |
trss 5196 | An element of a transitive... |
trin 5197 | The intersection of transi... |
tr0 5198 | The empty set is transitiv... |
trv 5199 | The universe is transitive... |
triun 5200 | An indexed union of a clas... |
truni 5201 | The union of a class of tr... |
triin 5202 | An indexed intersection of... |
trint 5203 | The intersection of a clas... |
trintss 5204 | Any nonempty transitive cl... |
axrep1 5206 | The version of the Axiom o... |
axreplem 5207 | Lemma for ~ axrep2 and ~ a... |
axrep2 5208 | Axiom of Replacement expre... |
axrep3 5209 | Axiom of Replacement sligh... |
axrep4 5210 | A more traditional version... |
axrep5 5211 | Axiom of Replacement (simi... |
axrep6 5212 | A condensed form of ~ ax-r... |
zfrepclf 5213 | An inference based on the ... |
zfrep3cl 5214 | An inference based on the ... |
zfrep4 5215 | A version of Replacement u... |
axsepgfromrep 5216 | A more general version ~ a... |
axsep 5217 | Axiom scheme of separation... |
axsepg 5219 | A more general version of ... |
zfauscl 5220 | Separation Scheme (Aussond... |
bm1.3ii 5221 | Convert implication to equ... |
ax6vsep 5222 | Derive ~ ax6v (a weakened ... |
axnulALT 5223 | Alternate proof of ~ axnul... |
axnul 5224 | The Null Set Axiom of ZF s... |
0ex 5226 | The Null Set Axiom of ZF s... |
al0ssb 5227 | The empty set is the uniqu... |
sseliALT 5228 | Alternate proof of ~ sseli... |
csbexg 5229 | The existence of proper su... |
csbex 5230 | The existence of proper su... |
unisn2 5231 | A version of ~ unisn witho... |
nalset 5232 | No set contains all sets. ... |
vnex 5233 | The universal class does n... |
vprc 5234 | The universal class is not... |
nvel 5235 | The universal class does n... |
inex1 5236 | Separation Scheme (Aussond... |
inex2 5237 | Separation Scheme (Aussond... |
inex1g 5238 | Closed-form, generalized S... |
inex2g 5239 | Sufficient condition for a... |
ssex 5240 | The subset of a set is als... |
ssexi 5241 | The subset of a set is als... |
ssexg 5242 | The subset of a set is als... |
ssexd 5243 | A subclass of a set is a s... |
prcssprc 5244 | The superclass of a proper... |
sselpwd 5245 | Elementhood to a power set... |
difexg 5246 | Existence of a difference.... |
difexi 5247 | Existence of a difference,... |
difexd 5248 | Existence of a difference.... |
zfausab 5249 | Separation Scheme (Aussond... |
rabexg 5250 | Separation Scheme in terms... |
rabex 5251 | Separation Scheme in terms... |
rabexd 5252 | Separation Scheme in terms... |
rabex2 5253 | Separation Scheme in terms... |
rab2ex 5254 | A class abstraction based ... |
elssabg 5255 | Membership in a class abst... |
intex 5256 | The intersection of a none... |
intnex 5257 | If a class intersection is... |
intexab 5258 | The intersection of a none... |
intexrab 5259 | The intersection of a none... |
iinexg 5260 | The existence of a class i... |
intabs 5261 | Absorption of a redundant ... |
inuni 5262 | The intersection of a unio... |
elpw2g 5263 | Membership in a power clas... |
elpw2 5264 | Membership in a power clas... |
elpwi2 5265 | Membership in a power clas... |
elpwi2OLD 5266 | Obsolete version of ~ elpw... |
pwnss 5267 | The power set of a set is ... |
pwne 5268 | No set equals its power se... |
difelpw 5269 | A difference is an element... |
rabelpw 5270 | A restricted class abstrac... |
class2set 5271 | Construct, from any class ... |
class2seteq 5272 | Equality theorem based on ... |
0elpw 5273 | Every power class contains... |
pwne0 5274 | A power class is never emp... |
0nep0 5275 | The empty set and its powe... |
0inp0 5276 | Something cannot be equal ... |
unidif0 5277 | The removal of the empty s... |
eqsnuniex 5278 | If a class is equal to the... |
iin0 5279 | An indexed intersection of... |
notzfaus 5280 | In the Separation Scheme ~... |
intv 5281 | The intersection of the un... |
axpweq 5282 | Two equivalent ways to exp... |
zfpow 5284 | Axiom of Power Sets expres... |
axpow2 5285 | A variant of the Axiom of ... |
axpow3 5286 | A variant of the Axiom of ... |
el 5287 | Every set is an element of... |
dtru 5288 | At least two sets exist (o... |
dtrucor 5289 | Corollary of ~ dtru . Thi... |
dtrucor2 5290 | The theorem form of the de... |
dvdemo1 5291 | Demonstration of a theorem... |
dvdemo2 5292 | Demonstration of a theorem... |
nfnid 5293 | A setvar variable is not f... |
nfcvb 5294 | The "distinctor" expressio... |
vpwex 5295 | Power set axiom: the power... |
pwexg 5296 | Power set axiom expressed ... |
pwexd 5297 | Deduction version of the p... |
pwex 5298 | Power set axiom expressed ... |
pwel 5299 | Quantitative version of ~ ... |
abssexg 5300 | Existence of a class of su... |
snexALT 5301 | Alternate proof of ~ snex ... |
p0ex 5302 | The power set of the empty... |
p0exALT 5303 | Alternate proof of ~ p0ex ... |
pp0ex 5304 | The power set of the power... |
ord3ex 5305 | The ordinal number 3 is a ... |
dtruALT 5306 | Alternate proof of ~ dtru ... |
axc16b 5307 | This theorem shows that Ax... |
eunex 5308 | Existential uniqueness imp... |
eusv1 5309 | Two ways to express single... |
eusvnf 5310 | Even if ` x ` is free in `... |
eusvnfb 5311 | Two ways to say that ` A (... |
eusv2i 5312 | Two ways to express single... |
eusv2nf 5313 | Two ways to express single... |
eusv2 5314 | Two ways to express single... |
reusv1 5315 | Two ways to express single... |
reusv2lem1 5316 | Lemma for ~ reusv2 . (Con... |
reusv2lem2 5317 | Lemma for ~ reusv2 . (Con... |
reusv2lem3 5318 | Lemma for ~ reusv2 . (Con... |
reusv2lem4 5319 | Lemma for ~ reusv2 . (Con... |
reusv2lem5 5320 | Lemma for ~ reusv2 . (Con... |
reusv2 5321 | Two ways to express single... |
reusv3i 5322 | Two ways of expressing exi... |
reusv3 5323 | Two ways to express single... |
eusv4 5324 | Two ways to express single... |
alxfr 5325 | Transfer universal quantif... |
ralxfrd 5326 | Transfer universal quantif... |
rexxfrd 5327 | Transfer universal quantif... |
ralxfr2d 5328 | Transfer universal quantif... |
rexxfr2d 5329 | Transfer universal quantif... |
ralxfrd2 5330 | Transfer universal quantif... |
rexxfrd2 5331 | Transfer existence from a ... |
ralxfr 5332 | Transfer universal quantif... |
ralxfrALT 5333 | Alternate proof of ~ ralxf... |
rexxfr 5334 | Transfer existence from a ... |
rabxfrd 5335 | Membership in a restricted... |
rabxfr 5336 | Membership in a restricted... |
reuhypd 5337 | A theorem useful for elimi... |
reuhyp 5338 | A theorem useful for elimi... |
zfpair 5339 | The Axiom of Pairing of Ze... |
axprALT 5340 | Alternate proof of ~ axpr ... |
axprlem1 5341 | Lemma for ~ axpr . There ... |
axprlem2 5342 | Lemma for ~ axpr . There ... |
axprlem3 5343 | Lemma for ~ axpr . Elimin... |
axprlem4 5344 | Lemma for ~ axpr . The fi... |
axprlem5 5345 | Lemma for ~ axpr . The se... |
axpr 5346 | Unabbreviated version of t... |
zfpair2 5348 | Derive the abbreviated ver... |
snex 5349 | A singleton is a set. The... |
prex 5350 | The Axiom of Pairing using... |
sels 5351 | If a class is a set, then ... |
elALT 5352 | Alternate proof of ~ el , ... |
dtruALT2 5353 | Alternate proof of ~ dtru ... |
snelpwi 5354 | A singleton of a set belon... |
snelpw 5355 | A singleton of a set belon... |
prelpw 5356 | A pair of two sets belongs... |
prelpwi 5357 | A pair of two sets belongs... |
rext 5358 | A theorem similar to exten... |
sspwb 5359 | The powerclass constructio... |
unipw 5360 | A class equals the union o... |
univ 5361 | The union of the universe ... |
pwtr 5362 | A class is transitive iff ... |
ssextss 5363 | An extensionality-like pri... |
ssext 5364 | An extensionality-like pri... |
nssss 5365 | Negation of subclass relat... |
pweqb 5366 | Classes are equal if and o... |
intid 5367 | The intersection of all se... |
moabex 5368 | "At most one" existence im... |
rmorabex 5369 | Restricted "at most one" e... |
euabex 5370 | The abstraction of a wff w... |
nnullss 5371 | A nonempty class (even if ... |
exss 5372 | Restricted existence in a ... |
opex 5373 | An ordered pair of classes... |
otex 5374 | An ordered triple of class... |
elopg 5375 | Characterization of the el... |
elop 5376 | Characterization of the el... |
opi1 5377 | One of the two elements in... |
opi2 5378 | One of the two elements of... |
opeluu 5379 | Each member of an ordered ... |
op1stb 5380 | Extract the first member o... |
brv 5381 | Two classes are always in ... |
opnz 5382 | An ordered pair is nonempt... |
opnzi 5383 | An ordered pair is nonempt... |
opth1 5384 | Equality of the first memb... |
opth 5385 | The ordered pair theorem. ... |
opthg 5386 | Ordered pair theorem. ` C ... |
opth1g 5387 | Equality of the first memb... |
opthg2 5388 | Ordered pair theorem. (Co... |
opth2 5389 | Ordered pair theorem. (Co... |
opthneg 5390 | Two ordered pairs are not ... |
opthne 5391 | Two ordered pairs are not ... |
otth2 5392 | Ordered triple theorem, wi... |
otth 5393 | Ordered triple theorem. (... |
otthg 5394 | Ordered triple theorem, cl... |
eqvinop 5395 | A variable introduction la... |
sbcop1 5396 | The proper substitution of... |
sbcop 5397 | The proper substitution of... |
copsexgw 5398 | Version of ~ copsexg with ... |
copsexg 5399 | Substitution of class ` A ... |
copsex2t 5400 | Closed theorem form of ~ c... |
copsex2g 5401 | Implicit substitution infe... |
copsex2gOLD 5402 | Obsolete version of ~ cops... |
copsex4g 5403 | An implicit substitution i... |
0nelop 5404 | A property of ordered pair... |
opwo0id 5405 | An ordered pair is equal t... |
opeqex 5406 | Equivalence of existence i... |
oteqex2 5407 | Equivalence of existence i... |
oteqex 5408 | Equivalence of existence i... |
opcom 5409 | An ordered pair commutes i... |
moop2 5410 | "At most one" property of ... |
opeqsng 5411 | Equivalence for an ordered... |
opeqsn 5412 | Equivalence for an ordered... |
opeqpr 5413 | Equivalence for an ordered... |
snopeqop 5414 | Equivalence for an ordered... |
propeqop 5415 | Equivalence for an ordered... |
propssopi 5416 | If a pair of ordered pairs... |
snopeqopsnid 5417 | Equivalence for an ordered... |
mosubopt 5418 | "At most one" remains true... |
mosubop 5419 | "At most one" remains true... |
euop2 5420 | Transfer existential uniqu... |
euotd 5421 | Prove existential uniquene... |
opthwiener 5422 | Justification theorem for ... |
uniop 5423 | The union of an ordered pa... |
uniopel 5424 | Ordered pair membership is... |
opthhausdorff 5425 | Justification theorem for ... |
opthhausdorff0 5426 | Justification theorem for ... |
otsndisj 5427 | The singletons consisting ... |
otiunsndisj 5428 | The union of singletons co... |
iunopeqop 5429 | Implication of an ordered ... |
brsnop 5430 | Binary relation for an ord... |
opabidw 5431 | The law of concretion. Sp... |
opabid 5432 | The law of concretion. Sp... |
elopab 5433 | Membership in a class abst... |
rexopabb 5434 | Restricted existential qua... |
vopelopabsb 5435 | The law of concretion in t... |
opelopabsb 5436 | The law of concretion in t... |
brabsb 5437 | The law of concretion in t... |
opelopabt 5438 | Closed theorem form of ~ o... |
opelopabga 5439 | The law of concretion. Th... |
brabga 5440 | The law of concretion for ... |
opelopab2a 5441 | Ordered pair membership in... |
opelopaba 5442 | The law of concretion. Th... |
braba 5443 | The law of concretion for ... |
opelopabg 5444 | The law of concretion. Th... |
brabg 5445 | The law of concretion for ... |
opelopabgf 5446 | The law of concretion. Th... |
opelopab2 5447 | Ordered pair membership in... |
opelopab 5448 | The law of concretion. Th... |
brab 5449 | The law of concretion for ... |
opelopabaf 5450 | The law of concretion. Th... |
opelopabf 5451 | The law of concretion. Th... |
ssopab2 5452 | Equivalence of ordered pai... |
ssopab2bw 5453 | Equivalence of ordered pai... |
eqopab2bw 5454 | Equivalence of ordered pai... |
ssopab2b 5455 | Equivalence of ordered pai... |
ssopab2i 5456 | Inference of ordered pair ... |
ssopab2dv 5457 | Inference of ordered pair ... |
eqopab2b 5458 | Equivalence of ordered pai... |
opabn0 5459 | Nonempty ordered pair clas... |
opab0 5460 | Empty ordered pair class a... |
csbopab 5461 | Move substitution into a c... |
csbopabgALT 5462 | Move substitution into a c... |
csbmpt12 5463 | Move substitution into a m... |
csbmpt2 5464 | Move substitution into the... |
iunopab 5465 | Move indexed union inside ... |
elopabr 5466 | Membership in an ordered-p... |
elopabran 5467 | Membership in an ordered-p... |
rbropapd 5468 | Properties of a pair in an... |
rbropap 5469 | Properties of a pair in a ... |
2rbropap 5470 | Properties of a pair in a ... |
0nelopab 5471 | The empty set is never an ... |
0nelopabOLD 5472 | Obsolete version of ~ 0nel... |
brabv 5473 | If two classes are in a re... |
pwin 5474 | The power class of the int... |
pwunssOLD 5475 | Obsolete version of ~ pwun... |
pwssun 5476 | The power class of the uni... |
pwundifOLD 5477 | Obsolete proof of ~ pwundi... |
pwun 5478 | The power class of the uni... |
dfid4 5481 | The identity function expr... |
dfid2 5482 | Alternate definition of th... |
dfid3 5483 | A stronger version of ~ df... |
dfid2OLD 5484 | Obsolete version of ~ dfid... |
epelg 5487 | The membership relation an... |
epeli 5488 | The membership relation an... |
epel 5489 | The membership relation an... |
0sn0ep 5490 | An example for the members... |
epn0 5491 | The membership relation is... |
poss 5496 | Subset theorem for the par... |
poeq1 5497 | Equality theorem for parti... |
poeq2 5498 | Equality theorem for parti... |
nfpo 5499 | Bound-variable hypothesis ... |
nfso 5500 | Bound-variable hypothesis ... |
pocl 5501 | Characteristic properties ... |
poclOLD 5502 | Obsolete version of ~ pocl... |
ispod 5503 | Sufficient conditions for ... |
swopolem 5504 | Perform the substitutions ... |
swopo 5505 | A strict weak order is a p... |
poirr 5506 | A partial order is irrefle... |
potr 5507 | A partial order is a trans... |
po2nr 5508 | A partial order has no 2-c... |
po3nr 5509 | A partial order has no 3-c... |
po2ne 5510 | Two sets related by a part... |
po0 5511 | Any relation is a partial ... |
pofun 5512 | The inverse image of a par... |
sopo 5513 | A strict linear order is a... |
soss 5514 | Subset theorem for the str... |
soeq1 5515 | Equality theorem for the s... |
soeq2 5516 | Equality theorem for the s... |
sonr 5517 | A strict order relation is... |
sotr 5518 | A strict order relation is... |
solin 5519 | A strict order relation is... |
so2nr 5520 | A strict order relation ha... |
so3nr 5521 | A strict order relation ha... |
sotric 5522 | A strict order relation sa... |
sotrieq 5523 | Trichotomy law for strict ... |
sotrieq2 5524 | Trichotomy law for strict ... |
soasym 5525 | Asymmetry law for strict o... |
sotr2 5526 | A transitivity relation. ... |
issod 5527 | An irreflexive, transitive... |
issoi 5528 | An irreflexive, transitive... |
isso2i 5529 | Deduce strict ordering fro... |
so0 5530 | Any relation is a strict o... |
somo 5531 | A totally ordered set has ... |
dffr6 5538 | Alternate definition of ~ ... |
frd 5539 | A nonempty subset of an ` ... |
fri 5540 | A nonempty subset of an ` ... |
friOLD 5541 | Obsolete version of ~ fri ... |
seex 5542 | The ` R ` -preimage of an ... |
exse 5543 | Any relation on a set is s... |
dffr2 5544 | Alternate definition of we... |
dffr2ALT 5545 | Alternate proof of ~ dffr2... |
frc 5546 | Property of well-founded r... |
frss 5547 | Subset theorem for the wel... |
sess1 5548 | Subset theorem for the set... |
sess2 5549 | Subset theorem for the set... |
freq1 5550 | Equality theorem for the w... |
freq2 5551 | Equality theorem for the w... |
seeq1 5552 | Equality theorem for the s... |
seeq2 5553 | Equality theorem for the s... |
nffr 5554 | Bound-variable hypothesis ... |
nfse 5555 | Bound-variable hypothesis ... |
nfwe 5556 | Bound-variable hypothesis ... |
frirr 5557 | A well-founded relation is... |
fr2nr 5558 | A well-founded relation ha... |
fr0 5559 | Any relation is well-found... |
frminex 5560 | If an element of a well-fo... |
efrirr 5561 | A well-founded class does ... |
efrn2lp 5562 | A well-founded class conta... |
epse 5563 | The membership relation is... |
tz7.2 5564 | Similar to Theorem 7.2 of ... |
dfepfr 5565 | An alternate way of saying... |
epfrc 5566 | A subset of a well-founded... |
wess 5567 | Subset theorem for the wel... |
weeq1 5568 | Equality theorem for the w... |
weeq2 5569 | Equality theorem for the w... |
wefr 5570 | A well-ordering is well-fo... |
weso 5571 | A well-ordering is a stric... |
wecmpep 5572 | The elements of a class we... |
wetrep 5573 | On a class well-ordered by... |
wefrc 5574 | A nonempty subclass of a c... |
we0 5575 | Any relation is a well-ord... |
wereu 5576 | A nonempty subset of an ` ... |
wereu2 5577 | A nonempty subclass of an ... |
xpeq1 5594 | Equality theorem for Carte... |
xpss12 5595 | Subset theorem for Cartesi... |
xpss 5596 | A Cartesian product is inc... |
inxpssres 5597 | Intersection with a Cartes... |
relxp 5598 | A Cartesian product is a r... |
xpss1 5599 | Subset relation for Cartes... |
xpss2 5600 | Subset relation for Cartes... |
xpeq2 5601 | Equality theorem for Carte... |
elxpi 5602 | Membership in a Cartesian ... |
elxp 5603 | Membership in a Cartesian ... |
elxp2 5604 | Membership in a Cartesian ... |
xpeq12 5605 | Equality theorem for Carte... |
xpeq1i 5606 | Equality inference for Car... |
xpeq2i 5607 | Equality inference for Car... |
xpeq12i 5608 | Equality inference for Car... |
xpeq1d 5609 | Equality deduction for Car... |
xpeq2d 5610 | Equality deduction for Car... |
xpeq12d 5611 | Equality deduction for Car... |
sqxpeqd 5612 | Equality deduction for a C... |
nfxp 5613 | Bound-variable hypothesis ... |
0nelxp 5614 | The empty set is not a mem... |
0nelelxp 5615 | A member of a Cartesian pr... |
opelxp 5616 | Ordered pair membership in... |
opelxpi 5617 | Ordered pair membership in... |
opelxpd 5618 | Ordered pair membership in... |
opelvv 5619 | Ordered pair membership in... |
opelvvg 5620 | Ordered pair membership in... |
opelxp1 5621 | The first member of an ord... |
opelxp2 5622 | The second member of an or... |
otelxp1 5623 | The first member of an ord... |
otel3xp 5624 | An ordered triple is an el... |
opabssxpd 5625 | An ordered-pair class abst... |
rabxp 5626 | Class abstraction restrict... |
brxp 5627 | Binary relation on a Carte... |
pwvrel 5628 | A set is a binary relation... |
pwvabrel 5629 | The powerclass of the cart... |
brrelex12 5630 | Two classes related by a b... |
brrelex1 5631 | If two classes are related... |
brrelex2 5632 | If two classes are related... |
brrelex12i 5633 | Two classes that are relat... |
brrelex1i 5634 | The first argument of a bi... |
brrelex2i 5635 | The second argument of a b... |
nprrel12 5636 | Proper classes are not rel... |
nprrel 5637 | No proper class is related... |
0nelrel0 5638 | A binary relation does not... |
0nelrel 5639 | A binary relation does not... |
fconstmpt 5640 | Representation of a consta... |
vtoclr 5641 | Variable to class conversi... |
opthprc 5642 | Justification theorem for ... |
brel 5643 | Two things in a binary rel... |
elxp3 5644 | Membership in a Cartesian ... |
opeliunxp 5645 | Membership in a union of C... |
xpundi 5646 | Distributive law for Carte... |
xpundir 5647 | Distributive law for Carte... |
xpiundi 5648 | Distributive law for Carte... |
xpiundir 5649 | Distributive law for Carte... |
iunxpconst 5650 | Membership in a union of C... |
xpun 5651 | The Cartesian product of t... |
elvv 5652 | Membership in universal cl... |
elvvv 5653 | Membership in universal cl... |
elvvuni 5654 | An ordered pair contains i... |
brinxp2 5655 | Intersection of binary rel... |
brinxp 5656 | Intersection of binary rel... |
opelinxp 5657 | Ordered pair element in an... |
poinxp 5658 | Intersection of partial or... |
soinxp 5659 | Intersection of total orde... |
frinxp 5660 | Intersection of well-found... |
seinxp 5661 | Intersection of set-like r... |
weinxp 5662 | Intersection of well-order... |
posn 5663 | Partial ordering of a sing... |
sosn 5664 | Strict ordering on a singl... |
frsn 5665 | Founded relation on a sing... |
wesn 5666 | Well-ordering of a singlet... |
elopaelxp 5667 | Membership in an ordered-p... |
bropaex12 5668 | Two classes related by an ... |
opabssxp 5669 | An abstraction relation is... |
brab2a 5670 | The law of concretion for ... |
optocl 5671 | Implicit substitution of c... |
2optocl 5672 | Implicit substitution of c... |
3optocl 5673 | Implicit substitution of c... |
opbrop 5674 | Ordered pair membership in... |
0xp 5675 | The Cartesian product with... |
csbxp 5676 | Distribute proper substitu... |
releq 5677 | Equality theorem for the r... |
releqi 5678 | Equality inference for the... |
releqd 5679 | Equality deduction for the... |
nfrel 5680 | Bound-variable hypothesis ... |
sbcrel 5681 | Distribute proper substitu... |
relss 5682 | Subclass theorem for relat... |
ssrel 5683 | A subclass relationship de... |
eqrel 5684 | Extensionality principle f... |
ssrel2 5685 | A subclass relationship de... |
relssi 5686 | Inference from subclass pr... |
relssdv 5687 | Deduction from subclass pr... |
eqrelriv 5688 | Inference from extensional... |
eqrelriiv 5689 | Inference from extensional... |
eqbrriv 5690 | Inference from extensional... |
eqrelrdv 5691 | Deduce equality of relatio... |
eqbrrdv 5692 | Deduction from extensional... |
eqbrrdiv 5693 | Deduction from extensional... |
eqrelrdv2 5694 | A version of ~ eqrelrdv . ... |
ssrelrel 5695 | A subclass relationship de... |
eqrelrel 5696 | Extensionality principle f... |
elrel 5697 | A member of a relation is ... |
rel0 5698 | The empty set is a relatio... |
nrelv 5699 | The universal class is not... |
relsng 5700 | A singleton is a relation ... |
relsnb 5701 | An at-most-singleton is a ... |
relsnopg 5702 | A singleton of an ordered ... |
relsn 5703 | A singleton is a relation ... |
relsnop 5704 | A singleton of an ordered ... |
copsex2gb 5705 | Implicit substitution infe... |
copsex2ga 5706 | Implicit substitution infe... |
elopaba 5707 | Membership in an ordered-p... |
xpsspw 5708 | A Cartesian product is inc... |
unixpss 5709 | The double class union of ... |
relun 5710 | The union of two relations... |
relin1 5711 | The intersection with a re... |
relin2 5712 | The intersection with a re... |
relinxp 5713 | Intersection with a Cartes... |
reldif 5714 | A difference cutting down ... |
reliun 5715 | An indexed union is a rela... |
reliin 5716 | An indexed intersection is... |
reluni 5717 | The union of a class is a ... |
relint 5718 | The intersection of a clas... |
relopabiv 5719 | A class of ordered pairs i... |
relopabv 5720 | A class of ordered pairs i... |
relopabi 5721 | A class of ordered pairs i... |
relopabiALT 5722 | Alternate proof of ~ relop... |
relopab 5723 | A class of ordered pairs i... |
mptrel 5724 | The maps-to notation alway... |
reli 5725 | The identity relation is a... |
rele 5726 | The membership relation is... |
opabid2 5727 | A relation expressed as an... |
inopab 5728 | Intersection of two ordere... |
difopab 5729 | Difference of two ordered-... |
inxp 5730 | Intersection of two Cartes... |
xpindi 5731 | Distributive law for Carte... |
xpindir 5732 | Distributive law for Carte... |
xpiindi 5733 | Distributive law for Carte... |
xpriindi 5734 | Distributive law for Carte... |
eliunxp 5735 | Membership in a union of C... |
opeliunxp2 5736 | Membership in a union of C... |
raliunxp 5737 | Write a double restricted ... |
rexiunxp 5738 | Write a double restricted ... |
ralxp 5739 | Universal quantification r... |
rexxp 5740 | Existential quantification... |
exopxfr 5741 | Transfer ordered-pair exis... |
exopxfr2 5742 | Transfer ordered-pair exis... |
djussxp 5743 | Disjoint union is a subset... |
ralxpf 5744 | Version of ~ ralxp with bo... |
rexxpf 5745 | Version of ~ rexxp with bo... |
iunxpf 5746 | Indexed union on a Cartesi... |
opabbi2dv 5747 | Deduce equality of a relat... |
relop 5748 | A necessary and sufficient... |
ideqg 5749 | For sets, the identity rel... |
ideq 5750 | For sets, the identity rel... |
ididg 5751 | A set is identical to itse... |
issetid 5752 | Two ways of expressing set... |
coss1 5753 | Subclass theorem for compo... |
coss2 5754 | Subclass theorem for compo... |
coeq1 5755 | Equality theorem for compo... |
coeq2 5756 | Equality theorem for compo... |
coeq1i 5757 | Equality inference for com... |
coeq2i 5758 | Equality inference for com... |
coeq1d 5759 | Equality deduction for com... |
coeq2d 5760 | Equality deduction for com... |
coeq12i 5761 | Equality inference for com... |
coeq12d 5762 | Equality deduction for com... |
nfco 5763 | Bound-variable hypothesis ... |
brcog 5764 | Ordered pair membership in... |
opelco2g 5765 | Ordered pair membership in... |
brcogw 5766 | Ordered pair membership in... |
eqbrrdva 5767 | Deduction from extensional... |
brco 5768 | Binary relation on a compo... |
opelco 5769 | Ordered pair membership in... |
cnvss 5770 | Subset theorem for convers... |
cnveq 5771 | Equality theorem for conve... |
cnveqi 5772 | Equality inference for con... |
cnveqd 5773 | Equality deduction for con... |
elcnv 5774 | Membership in a converse r... |
elcnv2 5775 | Membership in a converse r... |
nfcnv 5776 | Bound-variable hypothesis ... |
brcnvg 5777 | The converse of a binary r... |
opelcnvg 5778 | Ordered-pair membership in... |
opelcnv 5779 | Ordered-pair membership in... |
brcnv 5780 | The converse of a binary r... |
csbcnv 5781 | Move class substitution in... |
csbcnvgALT 5782 | Move class substitution in... |
cnvco 5783 | Distributive law of conver... |
cnvuni 5784 | The converse of a class un... |
dfdm3 5785 | Alternate definition of do... |
dfrn2 5786 | Alternate definition of ra... |
dfrn3 5787 | Alternate definition of ra... |
elrn2g 5788 | Membership in a range. (C... |
elrng 5789 | Membership in a range. (C... |
elrn2 5790 | Membership in a range. (C... |
elrn 5791 | Membership in a range. (C... |
ssrelrn 5792 | If a relation is a subset ... |
dfdm4 5793 | Alternate definition of do... |
dfdmf 5794 | Definition of domain, usin... |
csbdm 5795 | Distribute proper substitu... |
eldmg 5796 | Domain membership. Theore... |
eldm2g 5797 | Domain membership. Theore... |
eldm 5798 | Membership in a domain. T... |
eldm2 5799 | Membership in a domain. T... |
dmss 5800 | Subset theorem for domain.... |
dmeq 5801 | Equality theorem for domai... |
dmeqi 5802 | Equality inference for dom... |
dmeqd 5803 | Equality deduction for dom... |
opeldmd 5804 | Membership of first of an ... |
opeldm 5805 | Membership of first of an ... |
breldm 5806 | Membership of first of a b... |
breldmg 5807 | Membership of first of a b... |
dmun 5808 | The domain of a union is t... |
dmin 5809 | The domain of an intersect... |
breldmd 5810 | Membership of first of a b... |
dmiun 5811 | The domain of an indexed u... |
dmuni 5812 | The domain of a union. Pa... |
dmopab 5813 | The domain of a class of o... |
dmopabelb 5814 | A set is an element of the... |
dmopab2rex 5815 | The domain of an ordered p... |
dmopabss 5816 | Upper bound for the domain... |
dmopab3 5817 | The domain of a restricted... |
dm0 5818 | The domain of the empty se... |
dmi 5819 | The domain of the identity... |
dmv 5820 | The domain of the universe... |
dmep 5821 | The domain of the membersh... |
domepOLD 5822 | Obsolete proof of ~ dmep a... |
dm0rn0 5823 | An empty domain is equival... |
rn0 5824 | The range of the empty set... |
rnep 5825 | The range of the membershi... |
reldm0 5826 | A relation is empty iff it... |
dmxp 5827 | The domain of a Cartesian ... |
dmxpid 5828 | The domain of a Cartesian ... |
dmxpin 5829 | The domain of the intersec... |
xpid11 5830 | The Cartesian square is a ... |
dmcnvcnv 5831 | The domain of the double c... |
rncnvcnv 5832 | The range of the double co... |
elreldm 5833 | The first member of an ord... |
rneq 5834 | Equality theorem for range... |
rneqi 5835 | Equality inference for ran... |
rneqd 5836 | Equality deduction for ran... |
rnss 5837 | Subset theorem for range. ... |
rnssi 5838 | Subclass inference for ran... |
brelrng 5839 | The second argument of a b... |
brelrn 5840 | The second argument of a b... |
opelrn 5841 | Membership of second membe... |
releldm 5842 | The first argument of a bi... |
relelrn 5843 | The second argument of a b... |
releldmb 5844 | Membership in a domain. (... |
relelrnb 5845 | Membership in a range. (C... |
releldmi 5846 | The first argument of a bi... |
relelrni 5847 | The second argument of a b... |
dfrnf 5848 | Definition of range, using... |
nfdm 5849 | Bound-variable hypothesis ... |
nfrn 5850 | Bound-variable hypothesis ... |
dmiin 5851 | Domain of an intersection.... |
rnopab 5852 | The range of a class of or... |
rnmpt 5853 | The range of a function in... |
elrnmpt 5854 | The range of a function in... |
elrnmpt1s 5855 | Elementhood in an image se... |
elrnmpt1 5856 | Elementhood in an image se... |
elrnmptg 5857 | Membership in the range of... |
elrnmpti 5858 | Membership in the range of... |
elrnmptd 5859 | The range of a function in... |
elrnmptdv 5860 | Elementhood in the range o... |
elrnmpt2d 5861 | Elementhood in the range o... |
dfiun3g 5862 | Alternate definition of in... |
dfiin3g 5863 | Alternate definition of in... |
dfiun3 5864 | Alternate definition of in... |
dfiin3 5865 | Alternate definition of in... |
riinint 5866 | Express a relative indexed... |
relrn0 5867 | A relation is empty iff it... |
dmrnssfld 5868 | The domain and range of a ... |
dmcoss 5869 | Domain of a composition. ... |
rncoss 5870 | Range of a composition. (... |
dmcosseq 5871 | Domain of a composition. ... |
dmcoeq 5872 | Domain of a composition. ... |
rncoeq 5873 | Range of a composition. (... |
reseq1 5874 | Equality theorem for restr... |
reseq2 5875 | Equality theorem for restr... |
reseq1i 5876 | Equality inference for res... |
reseq2i 5877 | Equality inference for res... |
reseq12i 5878 | Equality inference for res... |
reseq1d 5879 | Equality deduction for res... |
reseq2d 5880 | Equality deduction for res... |
reseq12d 5881 | Equality deduction for res... |
nfres 5882 | Bound-variable hypothesis ... |
csbres 5883 | Distribute proper substitu... |
res0 5884 | A restriction to the empty... |
dfres3 5885 | Alternate definition of re... |
opelres 5886 | Ordered pair elementhood i... |
brres 5887 | Binary relation on a restr... |
opelresi 5888 | Ordered pair membership in... |
brresi 5889 | Binary relation on a restr... |
opres 5890 | Ordered pair membership in... |
resieq 5891 | A restricted identity rela... |
opelidres 5892 | ` <. A , A >. ` belongs to... |
resres 5893 | The restriction of a restr... |
resundi 5894 | Distributive law for restr... |
resundir 5895 | Distributive law for restr... |
resindi 5896 | Class restriction distribu... |
resindir 5897 | Class restriction distribu... |
inres 5898 | Move intersection into cla... |
resdifcom 5899 | Commutative law for restri... |
resiun1 5900 | Distribution of restrictio... |
resiun2 5901 | Distribution of restrictio... |
dmres 5902 | The domain of a restrictio... |
ssdmres 5903 | A domain restricted to a s... |
dmresexg 5904 | The domain of a restrictio... |
resss 5905 | A class includes its restr... |
rescom 5906 | Commutative law for restri... |
ssres 5907 | Subclass theorem for restr... |
ssres2 5908 | Subclass theorem for restr... |
relres 5909 | A restriction is a relatio... |
resabs1 5910 | Absorption law for restric... |
resabs1d 5911 | Absorption law for restric... |
resabs2 5912 | Absorption law for restric... |
residm 5913 | Idempotent law for restric... |
resima 5914 | A restriction to an image.... |
resima2 5915 | Image under a restricted c... |
rnresss 5916 | The range of a restriction... |
xpssres 5917 | Restriction of a constant ... |
elinxp 5918 | Membership in an intersect... |
elres 5919 | Membership in a restrictio... |
elsnres 5920 | Membership in restriction ... |
relssres 5921 | Simplification law for res... |
dmressnsn 5922 | The domain of a restrictio... |
eldmressnsn 5923 | The element of the domain ... |
eldmeldmressn 5924 | An element of the domain (... |
resdm 5925 | A relation restricted to i... |
resexg 5926 | The restriction of a set i... |
resexd 5927 | The restriction of a set i... |
resex 5928 | The restriction of a set i... |
resindm 5929 | When restricting a relatio... |
resdmdfsn 5930 | Restricting a relation to ... |
resopab 5931 | Restriction of a class abs... |
iss 5932 | A subclass of the identity... |
resopab2 5933 | Restriction of a class abs... |
resmpt 5934 | Restriction of the mapping... |
resmpt3 5935 | Unconditional restriction ... |
resmptf 5936 | Restriction of the mapping... |
resmptd 5937 | Restriction of the mapping... |
dfres2 5938 | Alternate definition of th... |
mptss 5939 | Sufficient condition for i... |
elidinxp 5940 | Characterization of the el... |
elidinxpid 5941 | Characterization of the el... |
elrid 5942 | Characterization of the el... |
idinxpres 5943 | The intersection of the id... |
idinxpresid 5944 | The intersection of the id... |
idssxp 5945 | A diagonal set as a subset... |
opabresid 5946 | The restricted identity re... |
mptresid 5947 | The restricted identity re... |
opabresidOLD 5948 | Obsolete version of ~ opab... |
mptresidOLD 5949 | Obsolete version of ~ mptr... |
dmresi 5950 | The domain of a restricted... |
restidsing 5951 | Restriction of the identit... |
iresn0n0 5952 | The identity function rest... |
imaeq1 5953 | Equality theorem for image... |
imaeq2 5954 | Equality theorem for image... |
imaeq1i 5955 | Equality theorem for image... |
imaeq2i 5956 | Equality theorem for image... |
imaeq1d 5957 | Equality theorem for image... |
imaeq2d 5958 | Equality theorem for image... |
imaeq12d 5959 | Equality theorem for image... |
dfima2 5960 | Alternate definition of im... |
dfima3 5961 | Alternate definition of im... |
elimag 5962 | Membership in an image. T... |
elima 5963 | Membership in an image. T... |
elima2 5964 | Membership in an image. T... |
elima3 5965 | Membership in an image. T... |
nfima 5966 | Bound-variable hypothesis ... |
nfimad 5967 | Deduction version of bound... |
imadmrn 5968 | The image of the domain of... |
imassrn 5969 | The image of a class is a ... |
mptima 5970 | Image of a function in map... |
imai 5971 | Image under the identity r... |
rnresi 5972 | The range of the restricte... |
resiima 5973 | The image of a restriction... |
ima0 5974 | Image of the empty set. T... |
0ima 5975 | Image under the empty rela... |
csbima12 5976 | Move class substitution in... |
imadisj 5977 | A class whose image under ... |
cnvimass 5978 | A preimage under any class... |
cnvimarndm 5979 | The preimage of the range ... |
imasng 5980 | The image of a singleton. ... |
relimasn 5981 | The image of a singleton. ... |
elrelimasn 5982 | Elementhood in the image o... |
elimasng1 5983 | Membership in an image of ... |
elimasn1 5984 | Membership in an image of ... |
elimasng 5985 | Membership in an image of ... |
elimasn 5986 | Membership in an image of ... |
elimasngOLD 5987 | Obsolete version of ~ elim... |
elimasni 5988 | Membership in an image of ... |
args 5989 | Two ways to express the cl... |
elinisegg 5990 | Membership in the inverse ... |
eliniseg 5991 | Membership in the inverse ... |
epin 5992 | Any set is equal to its pr... |
epini 5993 | Any set is equal to its pr... |
iniseg 5994 | An idiom that signifies an... |
inisegn0 5995 | Nonemptiness of an initial... |
dffr3 5996 | Alternate definition of we... |
dfse2 5997 | Alternate definition of se... |
imass1 5998 | Subset theorem for image. ... |
imass2 5999 | Subset theorem for image. ... |
ndmima 6000 | The image of a singleton o... |
relcnv 6001 | A converse is a relation. ... |
relbrcnvg 6002 | When ` R ` is a relation, ... |
eliniseg2 6003 | Eliminate the class existe... |
relbrcnv 6004 | When ` R ` is a relation, ... |
cotrg 6005 | Two ways of saying that th... |
cotr 6006 | Two ways of saying a relat... |
idrefALT 6007 | Alternate proof of ~ idref... |
cnvsym 6008 | Two ways of saying a relat... |
intasym 6009 | Two ways of saying a relat... |
asymref 6010 | Two ways of saying a relat... |
asymref2 6011 | Two ways of saying a relat... |
intirr 6012 | Two ways of saying a relat... |
brcodir 6013 | Two ways of saying that tw... |
codir 6014 | Two ways of saying a relat... |
qfto 6015 | A quantifier-free way of e... |
xpidtr 6016 | A Cartesian square is a tr... |
trin2 6017 | The intersection of two tr... |
poirr2 6018 | A partial order is irrefle... |
trinxp 6019 | The relation induced by a ... |
soirri 6020 | A strict order relation is... |
sotri 6021 | A strict order relation is... |
son2lpi 6022 | A strict order relation ha... |
sotri2 6023 | A transitivity relation. ... |
sotri3 6024 | A transitivity relation. ... |
poleloe 6025 | Express "less than or equa... |
poltletr 6026 | Transitive law for general... |
somin1 6027 | Property of a minimum in a... |
somincom 6028 | Commutativity of minimum i... |
somin2 6029 | Property of a minimum in a... |
soltmin 6030 | Being less than a minimum,... |
cnvopab 6031 | The converse of a class ab... |
mptcnv 6032 | The converse of a mapping ... |
cnv0 6033 | The converse of the empty ... |
cnvi 6034 | The converse of the identi... |
cnvun 6035 | The converse of a union is... |
cnvdif 6036 | Distributive law for conve... |
cnvin 6037 | Distributive law for conve... |
rnun 6038 | Distributive law for range... |
rnin 6039 | The range of an intersecti... |
rniun 6040 | The range of an indexed un... |
rnuni 6041 | The range of a union. Par... |
imaundi 6042 | Distributive law for image... |
imaundir 6043 | The image of a union. (Co... |
cnvimassrndm 6044 | The preimage of a superset... |
dminss 6045 | An upper bound for interse... |
imainss 6046 | An upper bound for interse... |
inimass 6047 | The image of an intersecti... |
inimasn 6048 | The intersection of the im... |
cnvxp 6049 | The converse of a Cartesia... |
xp0 6050 | The Cartesian product with... |
xpnz 6051 | The Cartesian product of n... |
xpeq0 6052 | At least one member of an ... |
xpdisj1 6053 | Cartesian products with di... |
xpdisj2 6054 | Cartesian products with di... |
xpsndisj 6055 | Cartesian products with tw... |
difxp 6056 | Difference of Cartesian pr... |
difxp1 6057 | Difference law for Cartesi... |
difxp2 6058 | Difference law for Cartesi... |
djudisj 6059 | Disjoint unions with disjo... |
xpdifid 6060 | The set of distinct couple... |
resdisj 6061 | A double restriction to di... |
rnxp 6062 | The range of a Cartesian p... |
dmxpss 6063 | The domain of a Cartesian ... |
rnxpss 6064 | The range of a Cartesian p... |
rnxpid 6065 | The range of a Cartesian s... |
ssxpb 6066 | A Cartesian product subcla... |
xp11 6067 | The Cartesian product of n... |
xpcan 6068 | Cancellation law for Carte... |
xpcan2 6069 | Cancellation law for Carte... |
ssrnres 6070 | Two ways to express surjec... |
rninxp 6071 | Two ways to express surjec... |
dminxp 6072 | Two ways to express totali... |
imainrect 6073 | Image by a restricted and ... |
xpima 6074 | Direct image by a Cartesia... |
xpima1 6075 | Direct image by a Cartesia... |
xpima2 6076 | Direct image by a Cartesia... |
xpimasn 6077 | Direct image of a singleto... |
sossfld 6078 | The base set of a strict o... |
sofld 6079 | The base set of a nonempty... |
cnvcnv3 6080 | The set of all ordered pai... |
dfrel2 6081 | Alternate definition of re... |
dfrel4v 6082 | A relation can be expresse... |
dfrel4 6083 | A relation can be expresse... |
cnvcnv 6084 | The double converse of a c... |
cnvcnv2 6085 | The double converse of a c... |
cnvcnvss 6086 | The double converse of a c... |
cnvrescnv 6087 | Two ways to express the co... |
cnveqb 6088 | Equality theorem for conve... |
cnveq0 6089 | A relation empty iff its c... |
dfrel3 6090 | Alternate definition of re... |
elid 6091 | Characterization of the el... |
dmresv 6092 | The domain of a universal ... |
rnresv 6093 | The range of a universal r... |
dfrn4 6094 | Range defined in terms of ... |
csbrn 6095 | Distribute proper substitu... |
rescnvcnv 6096 | The restriction of the dou... |
cnvcnvres 6097 | The double converse of the... |
imacnvcnv 6098 | The image of the double co... |
dmsnn0 6099 | The domain of a singleton ... |
rnsnn0 6100 | The range of a singleton i... |
dmsn0 6101 | The domain of the singleto... |
cnvsn0 6102 | The converse of the single... |
dmsn0el 6103 | The domain of a singleton ... |
relsn2 6104 | A singleton is a relation ... |
dmsnopg 6105 | The domain of a singleton ... |
dmsnopss 6106 | The domain of a singleton ... |
dmpropg 6107 | The domain of an unordered... |
dmsnop 6108 | The domain of a singleton ... |
dmprop 6109 | The domain of an unordered... |
dmtpop 6110 | The domain of an unordered... |
cnvcnvsn 6111 | Double converse of a singl... |
dmsnsnsn 6112 | The domain of the singleto... |
rnsnopg 6113 | The range of a singleton o... |
rnpropg 6114 | The range of a pair of ord... |
cnvsng 6115 | Converse of a singleton of... |
rnsnop 6116 | The range of a singleton o... |
op1sta 6117 | Extract the first member o... |
cnvsn 6118 | Converse of a singleton of... |
op2ndb 6119 | Extract the second member ... |
op2nda 6120 | Extract the second member ... |
opswap 6121 | Swap the members of an ord... |
cnvresima 6122 | An image under the convers... |
resdm2 6123 | A class restricted to its ... |
resdmres 6124 | Restriction to the domain ... |
resresdm 6125 | A restriction by an arbitr... |
imadmres 6126 | The image of the domain of... |
resdmss 6127 | Subset relationship for th... |
resdifdi 6128 | Distributive law for restr... |
resdifdir 6129 | Distributive law for restr... |
mptpreima 6130 | The preimage of a function... |
mptiniseg 6131 | Converse singleton image o... |
dmmpt 6132 | The domain of the mapping ... |
dmmptss 6133 | The domain of a mapping is... |
dmmptg 6134 | The domain of the mapping ... |
rnmpt0f 6135 | The range of a function in... |
rnmptn0 6136 | The range of a function in... |
relco 6137 | A composition is a relatio... |
dfco2 6138 | Alternate definition of a ... |
dfco2a 6139 | Generalization of ~ dfco2 ... |
coundi 6140 | Class composition distribu... |
coundir 6141 | Class composition distribu... |
cores 6142 | Restricted first member of... |
resco 6143 | Associative law for the re... |
imaco 6144 | Image of the composition o... |
rnco 6145 | The range of the compositi... |
rnco2 6146 | The range of the compositi... |
dmco 6147 | The domain of a compositio... |
coeq0 6148 | A composition of two relat... |
coiun 6149 | Composition with an indexe... |
cocnvcnv1 6150 | A composition is not affec... |
cocnvcnv2 6151 | A composition is not affec... |
cores2 6152 | Absorption of a reverse (p... |
co02 6153 | Composition with the empty... |
co01 6154 | Composition with the empty... |
coi1 6155 | Composition with the ident... |
coi2 6156 | Composition with the ident... |
coires1 6157 | Composition with a restric... |
coass 6158 | Associative law for class ... |
relcnvtrg 6159 | General form of ~ relcnvtr... |
relcnvtr 6160 | A relation is transitive i... |
relssdmrn 6161 | A relation is included in ... |
resssxp 6162 | If the ` R ` -image of a c... |
cnvssrndm 6163 | The converse is a subset o... |
cossxp 6164 | Composition as a subset of... |
relrelss 6165 | Two ways to describe the s... |
unielrel 6166 | The membership relation fo... |
relfld 6167 | The double union of a rela... |
relresfld 6168 | Restriction of a relation ... |
relcoi2 6169 | Composition with the ident... |
relcoi1 6170 | Composition with the ident... |
unidmrn 6171 | The double union of the co... |
relcnvfld 6172 | if ` R ` is a relation, it... |
dfdm2 6173 | Alternate definition of do... |
unixp 6174 | The double class union of ... |
unixp0 6175 | A Cartesian product is emp... |
unixpid 6176 | Field of a Cartesian squar... |
ressn 6177 | Restriction of a class to ... |
cnviin 6178 | The converse of an interse... |
cnvpo 6179 | The converse of a partial ... |
cnvso 6180 | The converse of a strict o... |
xpco 6181 | Composition of two Cartesi... |
xpcoid 6182 | Composition of two Cartesi... |
elsnxp 6183 | Membership in a Cartesian ... |
reu3op 6184 | There is a unique ordered ... |
reuop 6185 | There is a unique ordered ... |
opreu2reurex 6186 | There is a unique ordered ... |
opreu2reu 6187 | If there is a unique order... |
dfpo2 6188 | Quantifier-free definition... |
csbcog 6189 | Distribute proper substitu... |
predeq123 6192 | Equality theorem for the p... |
predeq1 6193 | Equality theorem for the p... |
predeq2 6194 | Equality theorem for the p... |
predeq3 6195 | Equality theorem for the p... |
nfpred 6196 | Bound-variable hypothesis ... |
csbpredg 6197 | Move class substitution in... |
predpredss 6198 | If ` A ` is a subset of ` ... |
predss 6199 | The predecessor class of `... |
sspred 6200 | Another subset/predecessor... |
dfpred2 6201 | An alternate definition of... |
dfpred3 6202 | An alternate definition of... |
dfpred3g 6203 | An alternate definition of... |
elpredgg 6204 | Membership in a predecesso... |
elpredg 6205 | Membership in a predecesso... |
elpredimg 6206 | Membership in a predecesso... |
elpredim 6207 | Membership in a predecesso... |
elpred 6208 | Membership in a predecesso... |
predexg 6209 | The predecessor class exis... |
predasetexOLD 6210 | Obsolete form of ~ predexg... |
dffr4 6211 | Alternate definition of we... |
predel 6212 | Membership in the predeces... |
predbrg 6213 | Closed form of ~ elpredim ... |
predtrss 6214 | If ` R ` is transitive ove... |
predpo 6215 | Property of the predecesso... |
predso 6216 | Property of the predecesso... |
setlikespec 6217 | If ` R ` is set-like in ` ... |
predidm 6218 | Idempotent law for the pre... |
predin 6219 | Intersection law for prede... |
predun 6220 | Union law for predecessor ... |
preddif 6221 | Difference law for predece... |
predep 6222 | The predecessor under the ... |
trpred 6223 | The class of predecessors ... |
preddowncl 6224 | A property of classes that... |
predpoirr 6225 | Given a partial ordering, ... |
predfrirr 6226 | Given a well-founded relat... |
pred0 6227 | The predecessor class over... |
frpomin 6228 | Every nonempty (possibly p... |
frpomin2 6229 | Every nonempty (possibly p... |
frpoind 6230 | The principle of well-foun... |
frpoinsg 6231 | Well-Founded Induction Sch... |
frpoins2fg 6232 | Well-Founded Induction sch... |
frpoins2g 6233 | Well-Founded Induction sch... |
frpoins3g 6234 | Well-Founded Induction sch... |
tz6.26 6235 | All nonempty subclasses of... |
tz6.26OLD 6236 | Obsolete proof of ~ tz6.26... |
tz6.26i 6237 | All nonempty subclasses of... |
wfi 6238 | The Principle of Well-Orde... |
wfiOLD 6239 | Obsolete proof of ~ wfi as... |
wfii 6240 | The Principle of Well-Orde... |
wfisg 6241 | Well-Ordered Induction Sch... |
wfisgOLD 6242 | Obsolete proof of ~ wfisg ... |
wfis 6243 | Well-Ordered Induction Sch... |
wfis2fg 6244 | Well-Ordered Induction Sch... |
wfis2fgOLD 6245 | Obsolete proof of ~ wfis2f... |
wfis2f 6246 | Well-Ordered Induction sch... |
wfis2g 6247 | Well-Ordered Induction Sch... |
wfis2 6248 | Well-Ordered Induction sch... |
wfis3 6249 | Well-Ordered Induction sch... |
ordeq 6258 | Equality theorem for the o... |
elong 6259 | An ordinal number is an or... |
elon 6260 | An ordinal number is an or... |
eloni 6261 | An ordinal number has the ... |
elon2 6262 | An ordinal number is an or... |
limeq 6263 | Equality theorem for the l... |
ordwe 6264 | Membership well-orders eve... |
ordtr 6265 | An ordinal class is transi... |
ordfr 6266 | Membership is well-founded... |
ordelss 6267 | An element of an ordinal c... |
trssord 6268 | A transitive subclass of a... |
ordirr 6269 | No ordinal class is a memb... |
nordeq 6270 | A member of an ordinal cla... |
ordn2lp 6271 | An ordinal class cannot be... |
tz7.5 6272 | A nonempty subclass of an ... |
ordelord 6273 | An element of an ordinal c... |
tron 6274 | The class of all ordinal n... |
ordelon 6275 | An element of an ordinal c... |
onelon 6276 | An element of an ordinal n... |
tz7.7 6277 | A transitive class belongs... |
ordelssne 6278 | For ordinal classes, membe... |
ordelpss 6279 | For ordinal classes, membe... |
ordsseleq 6280 | For ordinal classes, inclu... |
ordin 6281 | The intersection of two or... |
onin 6282 | The intersection of two or... |
ordtri3or 6283 | A trichotomy law for ordin... |
ordtri1 6284 | A trichotomy law for ordin... |
ontri1 6285 | A trichotomy law for ordin... |
ordtri2 6286 | A trichotomy law for ordin... |
ordtri3 6287 | A trichotomy law for ordin... |
ordtri4 6288 | A trichotomy law for ordin... |
orddisj 6289 | An ordinal class and its s... |
onfr 6290 | The ordinal class is well-... |
onelpss 6291 | Relationship between membe... |
onsseleq 6292 | Relationship between subse... |
onelss 6293 | An element of an ordinal n... |
ordtr1 6294 | Transitive law for ordinal... |
ordtr2 6295 | Transitive law for ordinal... |
ordtr3 6296 | Transitive law for ordinal... |
ontr1 6297 | Transitive law for ordinal... |
ontr2 6298 | Transitive law for ordinal... |
ordunidif 6299 | The union of an ordinal st... |
ordintdif 6300 | If ` B ` is smaller than `... |
onintss 6301 | If a property is true for ... |
oneqmini 6302 | A way to show that an ordi... |
ord0 6303 | The empty set is an ordina... |
0elon 6304 | The empty set is an ordina... |
ord0eln0 6305 | A nonempty ordinal contain... |
on0eln0 6306 | An ordinal number contains... |
dflim2 6307 | An alternate definition of... |
inton 6308 | The intersection of the cl... |
nlim0 6309 | The empty set is not a lim... |
limord 6310 | A limit ordinal is ordinal... |
limuni 6311 | A limit ordinal is its own... |
limuni2 6312 | The union of a limit ordin... |
0ellim 6313 | A limit ordinal contains t... |
limelon 6314 | A limit ordinal class that... |
onn0 6315 | The class of all ordinal n... |
suceq 6316 | Equality of successors. (... |
elsuci 6317 | Membership in a successor.... |
elsucg 6318 | Membership in a successor.... |
elsuc2g 6319 | Variant of membership in a... |
elsuc 6320 | Membership in a successor.... |
elsuc2 6321 | Membership in a successor.... |
nfsuc 6322 | Bound-variable hypothesis ... |
elelsuc 6323 | Membership in a successor.... |
sucel 6324 | Membership of a successor ... |
suc0 6325 | The successor of the empty... |
sucprc 6326 | A proper class is its own ... |
unisuc 6327 | A transitive class is equa... |
sssucid 6328 | A class is included in its... |
sucidg 6329 | Part of Proposition 7.23 o... |
sucid 6330 | A set belongs to its succe... |
nsuceq0 6331 | No successor is empty. (C... |
eqelsuc 6332 | A set belongs to the succe... |
iunsuc 6333 | Inductive definition for t... |
suctr 6334 | The successor of a transit... |
trsuc 6335 | A set whose successor belo... |
trsucss 6336 | A member of the successor ... |
ordsssuc 6337 | An ordinal is a subset of ... |
onsssuc 6338 | A subset of an ordinal num... |
ordsssuc2 6339 | An ordinal subset of an or... |
onmindif 6340 | When its successor is subt... |
ordnbtwn 6341 | There is no set between an... |
onnbtwn 6342 | There is no set between an... |
sucssel 6343 | A set whose successor is a... |
orddif 6344 | Ordinal derived from its s... |
orduniss 6345 | An ordinal class includes ... |
ordtri2or 6346 | A trichotomy law for ordin... |
ordtri2or2 6347 | A trichotomy law for ordin... |
ordtri2or3 6348 | A consequence of total ord... |
ordelinel 6349 | The intersection of two or... |
ordssun 6350 | Property of a subclass of ... |
ordequn 6351 | The maximum (i.e. union) o... |
ordun 6352 | The maximum (i.e. union) o... |
ordunisssuc 6353 | A subclass relationship fo... |
suc11 6354 | The successor operation be... |
onun2 6355 | The union of two ordinals ... |
onordi 6356 | An ordinal number is an or... |
ontrci 6357 | An ordinal number is a tra... |
onirri 6358 | An ordinal number is not a... |
oneli 6359 | A member of an ordinal num... |
onelssi 6360 | A member of an ordinal num... |
onssneli 6361 | An ordering law for ordina... |
onssnel2i 6362 | An ordering law for ordina... |
onelini 6363 | An element of an ordinal n... |
oneluni 6364 | An ordinal number equals i... |
onunisuci 6365 | An ordinal number is equal... |
onsseli 6366 | Subset is equivalent to me... |
onun2i 6367 | The union of two ordinal n... |
unizlim 6368 | An ordinal equal to its ow... |
on0eqel 6369 | An ordinal number either e... |
snsn0non 6370 | The singleton of the singl... |
onxpdisj 6371 | Ordinal numbers and ordere... |
onnev 6372 | The class of ordinal numbe... |
onnevOLD 6373 | Obsolete version of ~ onne... |
iotajust 6375 | Soundness justification th... |
dfiota2 6377 | Alternate definition for d... |
nfiota1 6378 | Bound-variable hypothesis ... |
nfiotadw 6379 | Deduction version of ~ nfi... |
nfiotaw 6380 | Bound-variable hypothesis ... |
nfiotad 6381 | Deduction version of ~ nfi... |
nfiota 6382 | Bound-variable hypothesis ... |
cbviotaw 6383 | Change bound variables in ... |
cbviotavw 6384 | Change bound variables in ... |
cbviotavwOLD 6385 | Obsolete version of ~ cbvi... |
cbviota 6386 | Change bound variables in ... |
cbviotav 6387 | Change bound variables in ... |
sb8iota 6388 | Variable substitution in d... |
iotaeq 6389 | Equality theorem for descr... |
iotabi 6390 | Equivalence theorem for de... |
uniabio 6391 | Part of Theorem 8.17 in [Q... |
iotaval 6392 | Theorem 8.19 in [Quine] p.... |
iotauni 6393 | Equivalence between two di... |
iotaint 6394 | Equivalence between two di... |
iota1 6395 | Property of iota. (Contri... |
iotanul 6396 | Theorem 8.22 in [Quine] p.... |
iotassuni 6397 | The ` iota ` class is a su... |
iotaex 6398 | Theorem 8.23 in [Quine] p.... |
iota4 6399 | Theorem *14.22 in [Whitehe... |
iota4an 6400 | Theorem *14.23 in [Whitehe... |
iota5 6401 | A method for computing iot... |
iotabidv 6402 | Formula-building deduction... |
iotabii 6403 | Formula-building deduction... |
iotacl 6404 | Membership law for descrip... |
iota2df 6405 | A condition that allows us... |
iota2d 6406 | A condition that allows us... |
iota2 6407 | The unique element such th... |
iotan0 6408 | Representation of "the uni... |
sniota 6409 | A class abstraction with a... |
dfiota4 6410 | The ` iota ` operation usi... |
csbiota 6411 | Class substitution within ... |
dffun2 6428 | Alternate definition of a ... |
dffun3 6429 | Alternate definition of fu... |
dffun4 6430 | Alternate definition of a ... |
dffun5 6431 | Alternate definition of fu... |
dffun6f 6432 | Definition of function, us... |
dffun6 6433 | Alternate definition of a ... |
funmo 6434 | A function has at most one... |
funrel 6435 | A function is a relation. ... |
0nelfun 6436 | A function does not contai... |
funss 6437 | Subclass theorem for funct... |
funeq 6438 | Equality theorem for funct... |
funeqi 6439 | Equality inference for the... |
funeqd 6440 | Equality deduction for the... |
nffun 6441 | Bound-variable hypothesis ... |
sbcfung 6442 | Distribute proper substitu... |
funeu 6443 | There is exactly one value... |
funeu2 6444 | There is exactly one value... |
dffun7 6445 | Alternate definition of a ... |
dffun8 6446 | Alternate definition of a ... |
dffun9 6447 | Alternate definition of a ... |
funfn 6448 | A class is a function if a... |
funfnd 6449 | A function is a function o... |
funi 6450 | The identity relation is a... |
nfunv 6451 | The universal class is not... |
funopg 6452 | A Kuratowski ordered pair ... |
funopab 6453 | A class of ordered pairs i... |
funopabeq 6454 | A class of ordered pairs o... |
funopab4 6455 | A class of ordered pairs o... |
funmpt 6456 | A function in maps-to nota... |
funmpt2 6457 | Functionality of a class g... |
funco 6458 | The composition of two fun... |
funresfunco 6459 | Composition of two functio... |
funres 6460 | A restriction of a functio... |
funresd 6461 | A restriction of a functio... |
funssres 6462 | The restriction of a funct... |
fun2ssres 6463 | Equality of restrictions o... |
funun 6464 | The union of functions wit... |
fununmo 6465 | If the union of classes is... |
fununfun 6466 | If the union of classes is... |
fundif 6467 | A function with removed el... |
funcnvsn 6468 | The converse singleton of ... |
funsng 6469 | A singleton of an ordered ... |
fnsng 6470 | Functionality and domain o... |
funsn 6471 | A singleton of an ordered ... |
funprg 6472 | A set of two pairs is a fu... |
funtpg 6473 | A set of three pairs is a ... |
funpr 6474 | A function with a domain o... |
funtp 6475 | A function with a domain o... |
fnsn 6476 | Functionality and domain o... |
fnprg 6477 | Function with a domain of ... |
fntpg 6478 | Function with a domain of ... |
fntp 6479 | A function with a domain o... |
funcnvpr 6480 | The converse pair of order... |
funcnvtp 6481 | The converse triple of ord... |
funcnvqp 6482 | The converse quadruple of ... |
fun0 6483 | The empty set is a functio... |
funcnv0 6484 | The converse of the empty ... |
funcnvcnv 6485 | The double converse of a f... |
funcnv2 6486 | A simpler equivalence for ... |
funcnv 6487 | The converse of a class is... |
funcnv3 6488 | A condition showing a clas... |
fun2cnv 6489 | The double converse of a c... |
svrelfun 6490 | A single-valued relation i... |
fncnv 6491 | Single-rootedness (see ~ f... |
fun11 6492 | Two ways of stating that `... |
fununi 6493 | The union of a chain (with... |
funin 6494 | The intersection with a fu... |
funres11 6495 | The restriction of a one-t... |
funcnvres 6496 | The converse of a restrict... |
cnvresid 6497 | Converse of a restricted i... |
funcnvres2 6498 | The converse of a restrict... |
funimacnv 6499 | The image of the preimage ... |
funimass1 6500 | A kind of contraposition l... |
funimass2 6501 | A kind of contraposition l... |
imadif 6502 | The image of a difference ... |
imain 6503 | The image of an intersecti... |
funimaexg 6504 | Axiom of Replacement using... |
funimaex 6505 | The image of a set under a... |
isarep1 6506 | Part of a study of the Axi... |
isarep2 6507 | Part of a study of the Axi... |
fneq1 6508 | Equality theorem for funct... |
fneq2 6509 | Equality theorem for funct... |
fneq1d 6510 | Equality deduction for fun... |
fneq2d 6511 | Equality deduction for fun... |
fneq12d 6512 | Equality deduction for fun... |
fneq12 6513 | Equality theorem for funct... |
fneq1i 6514 | Equality inference for fun... |
fneq2i 6515 | Equality inference for fun... |
nffn 6516 | Bound-variable hypothesis ... |
fnfun 6517 | A function with domain is ... |
fnfund 6518 | A function with domain is ... |
fnrel 6519 | A function with domain is ... |
fndm 6520 | The domain of a function. ... |
fndmi 6521 | The domain of a function. ... |
fndmd 6522 | The domain of a function. ... |
funfni 6523 | Inference to convert a fun... |
fndmu 6524 | A function has a unique do... |
fnbr 6525 | The first argument of bina... |
fnop 6526 | The first argument of an o... |
fneu 6527 | There is exactly one value... |
fneu2 6528 | There is exactly one value... |
fnun 6529 | The union of two functions... |
fnund 6530 | The union of two functions... |
fnunop 6531 | Extension of a function wi... |
fncofn 6532 | Composition of a function ... |
fnco 6533 | Composition of two functio... |
fncoOLD 6534 | Obsolete version of ~ fnco... |
fnresdm 6535 | A function does not change... |
fnresdisj 6536 | A function restricted to a... |
2elresin 6537 | Membership in two function... |
fnssresb 6538 | Restriction of a function ... |
fnssres 6539 | Restriction of a function ... |
fnssresd 6540 | Restriction of a function ... |
fnresin1 6541 | Restriction of a function'... |
fnresin2 6542 | Restriction of a function'... |
fnres 6543 | An equivalence for functio... |
idfn 6544 | The identity relation is a... |
fnresi 6545 | The restricted identity re... |
fnresiOLD 6546 | Obsolete proof of ~ fnresi... |
fnima 6547 | The image of a function's ... |
fn0 6548 | A function with empty doma... |
fnimadisj 6549 | A class that is disjoint w... |
fnimaeq0 6550 | Images under a function ne... |
dfmpt3 6551 | Alternate definition for t... |
mptfnf 6552 | The maps-to notation defin... |
fnmptf 6553 | The maps-to notation defin... |
fnopabg 6554 | Functionality and domain o... |
fnopab 6555 | Functionality and domain o... |
mptfng 6556 | The maps-to notation defin... |
fnmpt 6557 | The maps-to notation defin... |
fnmptd 6558 | The maps-to notation defin... |
mpt0 6559 | A mapping operation with e... |
fnmpti 6560 | Functionality and domain o... |
dmmpti 6561 | Domain of the mapping oper... |
dmmptd 6562 | The domain of the mapping ... |
mptun 6563 | Union of mappings which ar... |
partfun 6564 | Rewrite a function defined... |
feq1 6565 | Equality theorem for funct... |
feq2 6566 | Equality theorem for funct... |
feq3 6567 | Equality theorem for funct... |
feq23 6568 | Equality theorem for funct... |
feq1d 6569 | Equality deduction for fun... |
feq2d 6570 | Equality deduction for fun... |
feq3d 6571 | Equality deduction for fun... |
feq12d 6572 | Equality deduction for fun... |
feq123d 6573 | Equality deduction for fun... |
feq123 6574 | Equality theorem for funct... |
feq1i 6575 | Equality inference for fun... |
feq2i 6576 | Equality inference for fun... |
feq12i 6577 | Equality inference for fun... |
feq23i 6578 | Equality inference for fun... |
feq23d 6579 | Equality deduction for fun... |
nff 6580 | Bound-variable hypothesis ... |
sbcfng 6581 | Distribute proper substitu... |
sbcfg 6582 | Distribute proper substitu... |
elimf 6583 | Eliminate a mapping hypoth... |
ffn 6584 | A mapping is a function wi... |
ffnd 6585 | A mapping is a function wi... |
dffn2 6586 | Any function is a mapping ... |
ffun 6587 | A mapping is a function. ... |
ffund 6588 | A mapping is a function, d... |
frel 6589 | A mapping is a relation. ... |
freld 6590 | A mapping is a relation. ... |
frn 6591 | The range of a mapping. (... |
frnd 6592 | Deduction form of ~ frn . ... |
fdm 6593 | The domain of a mapping. ... |
fdmOLD 6594 | Obsolete version of ~ fdm ... |
fdmd 6595 | Deduction form of ~ fdm . ... |
fdmi 6596 | Inference associated with ... |
dffn3 6597 | A function maps to its ran... |
ffrn 6598 | A function maps to its ran... |
ffrnb 6599 | Characterization of a func... |
ffrnbd 6600 | A function maps to its ran... |
fss 6601 | Expanding the codomain of ... |
fssd 6602 | Expanding the codomain of ... |
fssdmd 6603 | Expressing that a class is... |
fssdm 6604 | Expressing that a class is... |
fimass 6605 | The image of a class under... |
fimacnv 6606 | The preimage of the codoma... |
fcof 6607 | Composition of a function ... |
fco 6608 | Composition of two functio... |
fcoOLD 6609 | Obsolete version of ~ fco ... |
fcod 6610 | Composition of two mapping... |
fco2 6611 | Functionality of a composi... |
fssxp 6612 | A mapping is a class of or... |
funssxp 6613 | Two ways of specifying a p... |
ffdm 6614 | A mapping is a partial fun... |
ffdmd 6615 | The domain of a function. ... |
fdmrn 6616 | A different way to write `... |
funcofd 6617 | Composition of two functio... |
fco3OLD 6618 | Obsolete version of ~ func... |
opelf 6619 | The members of an ordered ... |
fun 6620 | The union of two functions... |
fun2 6621 | The union of two functions... |
fun2d 6622 | The union of functions wit... |
fnfco 6623 | Composition of two functio... |
fssres 6624 | Restriction of a function ... |
fssresd 6625 | Restriction of a function ... |
fssres2 6626 | Restriction of a restricte... |
fresin 6627 | An identity for the mappin... |
resasplit 6628 | If two functions agree on ... |
fresaun 6629 | The union of two functions... |
fresaunres2 6630 | From the union of two func... |
fresaunres1 6631 | From the union of two func... |
fcoi1 6632 | Composition of a mapping a... |
fcoi2 6633 | Composition of restricted ... |
feu 6634 | There is exactly one value... |
fcnvres 6635 | The converse of a restrict... |
fimacnvdisj 6636 | The preimage of a class di... |
fint 6637 | Function into an intersect... |
fin 6638 | Mapping into an intersecti... |
f0 6639 | The empty function. (Cont... |
f00 6640 | A class is a function with... |
f0bi 6641 | A function with empty doma... |
f0dom0 6642 | A function is empty iff it... |
f0rn0 6643 | If there is no element in ... |
fconst 6644 | A Cartesian product with a... |
fconstg 6645 | A Cartesian product with a... |
fnconstg 6646 | A Cartesian product with a... |
fconst6g 6647 | Constant function with loo... |
fconst6 6648 | A constant function as a m... |
f1eq1 6649 | Equality theorem for one-t... |
f1eq2 6650 | Equality theorem for one-t... |
f1eq3 6651 | Equality theorem for one-t... |
nff1 6652 | Bound-variable hypothesis ... |
dff12 6653 | Alternate definition of a ... |
f1f 6654 | A one-to-one mapping is a ... |
f1fn 6655 | A one-to-one mapping is a ... |
f1fun 6656 | A one-to-one mapping is a ... |
f1rel 6657 | A one-to-one onto mapping ... |
f1dm 6658 | The domain of a one-to-one... |
f1dmOLD 6659 | Obsolete version of ~ f1dm... |
f1ss 6660 | A function that is one-to-... |
f1ssr 6661 | A function that is one-to-... |
f1ssres 6662 | A function that is one-to-... |
f1resf1 6663 | The restriction of an inje... |
f1cnvcnv 6664 | Two ways to express that a... |
f1cof1 6665 | Composition of two one-to-... |
f1co 6666 | Composition of one-to-one ... |
f1coOLD 6667 | Obsolete version of ~ f1co... |
foeq1 6668 | Equality theorem for onto ... |
foeq2 6669 | Equality theorem for onto ... |
foeq3 6670 | Equality theorem for onto ... |
nffo 6671 | Bound-variable hypothesis ... |
fof 6672 | An onto mapping is a mappi... |
fofun 6673 | An onto mapping is a funct... |
fofn 6674 | An onto mapping is a funct... |
forn 6675 | The codomain of an onto fu... |
dffo2 6676 | Alternate definition of an... |
foima 6677 | The image of the domain of... |
dffn4 6678 | A function maps onto its r... |
funforn 6679 | A function maps its domain... |
fodmrnu 6680 | An onto function has uniqu... |
fimadmfo 6681 | A function is a function o... |
fores 6682 | Restriction of an onto fun... |
fimadmfoALT 6683 | Alternate proof of ~ fimad... |
focnvimacdmdm 6684 | The preimage of the codoma... |
focofo 6685 | Composition of onto functi... |
foco 6686 | Composition of onto functi... |
foconst 6687 | A nonzero constant functio... |
f1oeq1 6688 | Equality theorem for one-t... |
f1oeq2 6689 | Equality theorem for one-t... |
f1oeq3 6690 | Equality theorem for one-t... |
f1oeq23 6691 | Equality theorem for one-t... |
f1eq123d 6692 | Equality deduction for one... |
foeq123d 6693 | Equality deduction for ont... |
f1oeq123d 6694 | Equality deduction for one... |
f1oeq1d 6695 | Equality deduction for one... |
f1oeq2d 6696 | Equality deduction for one... |
f1oeq3d 6697 | Equality deduction for one... |
nff1o 6698 | Bound-variable hypothesis ... |
f1of1 6699 | A one-to-one onto mapping ... |
f1of 6700 | A one-to-one onto mapping ... |
f1ofn 6701 | A one-to-one onto mapping ... |
f1ofun 6702 | A one-to-one onto mapping ... |
f1orel 6703 | A one-to-one onto mapping ... |
f1odm 6704 | The domain of a one-to-one... |
dff1o2 6705 | Alternate definition of on... |
dff1o3 6706 | Alternate definition of on... |
f1ofo 6707 | A one-to-one onto function... |
dff1o4 6708 | Alternate definition of on... |
dff1o5 6709 | Alternate definition of on... |
f1orn 6710 | A one-to-one function maps... |
f1f1orn 6711 | A one-to-one function maps... |
f1ocnv 6712 | The converse of a one-to-o... |
f1ocnvb 6713 | A relation is a one-to-one... |
f1ores 6714 | The restriction of a one-t... |
f1orescnv 6715 | The converse of a one-to-o... |
f1imacnv 6716 | Preimage of an image. (Co... |
foimacnv 6717 | A reverse version of ~ f1i... |
foun 6718 | The union of two onto func... |
f1oun 6719 | The union of two one-to-on... |
resdif 6720 | The restriction of a one-t... |
resin 6721 | The restriction of a one-t... |
f1oco 6722 | Composition of one-to-one ... |
f1cnv 6723 | The converse of an injecti... |
funcocnv2 6724 | Composition with the conve... |
fococnv2 6725 | The composition of an onto... |
f1ococnv2 6726 | The composition of a one-t... |
f1cocnv2 6727 | Composition of an injectiv... |
f1ococnv1 6728 | The composition of a one-t... |
f1cocnv1 6729 | Composition of an injectiv... |
funcoeqres 6730 | Express a constraint on a ... |
f1ssf1 6731 | A subset of an injective f... |
f10 6732 | The empty set maps one-to-... |
f10d 6733 | The empty set maps one-to-... |
f1o00 6734 | One-to-one onto mapping of... |
fo00 6735 | Onto mapping of the empty ... |
f1o0 6736 | One-to-one onto mapping of... |
f1oi 6737 | A restriction of the ident... |
f1ovi 6738 | The identity relation is a... |
f1osn 6739 | A singleton of an ordered ... |
f1osng 6740 | A singleton of an ordered ... |
f1sng 6741 | A singleton of an ordered ... |
fsnd 6742 | A singleton of an ordered ... |
f1oprswap 6743 | A two-element swap is a bi... |
f1oprg 6744 | An unordered pair of order... |
tz6.12-2 6745 | Function value when ` F ` ... |
fveu 6746 | The value of a function at... |
brprcneu 6747 | If ` A ` is a proper class... |
fvprc 6748 | A function's value at a pr... |
fvprcALT 6749 | Alternate proof of ~ fvprc... |
rnfvprc 6750 | The range of a function va... |
fv2 6751 | Alternate definition of fu... |
dffv3 6752 | A definition of function v... |
dffv4 6753 | The previous definition of... |
elfv 6754 | Membership in a function v... |
fveq1 6755 | Equality theorem for funct... |
fveq2 6756 | Equality theorem for funct... |
fveq1i 6757 | Equality inference for fun... |
fveq1d 6758 | Equality deduction for fun... |
fveq2i 6759 | Equality inference for fun... |
fveq2d 6760 | Equality deduction for fun... |
2fveq3 6761 | Equality theorem for neste... |
fveq12i 6762 | Equality deduction for fun... |
fveq12d 6763 | Equality deduction for fun... |
fveqeq2d 6764 | Equality deduction for fun... |
fveqeq2 6765 | Equality deduction for fun... |
nffv 6766 | Bound-variable hypothesis ... |
nffvmpt1 6767 | Bound-variable hypothesis ... |
nffvd 6768 | Deduction version of bound... |
fvex 6769 | The value of a class exist... |
fvexi 6770 | The value of a class exist... |
fvexd 6771 | The value of a class exist... |
fvif 6772 | Move a conditional outside... |
iffv 6773 | Move a conditional outside... |
fv3 6774 | Alternate definition of th... |
fvres 6775 | The value of a restricted ... |
fvresd 6776 | The value of a restricted ... |
funssfv 6777 | The value of a member of t... |
tz6.12-1 6778 | Function value. Theorem 6... |
tz6.12 6779 | Function value. Theorem 6... |
tz6.12f 6780 | Function value, using boun... |
tz6.12c 6781 | Corollary of Theorem 6.12(... |
tz6.12i 6782 | Corollary of Theorem 6.12(... |
fvbr0 6783 | Two possibilities for the ... |
fvrn0 6784 | A function value is a memb... |
fvssunirn 6785 | The result of a function v... |
ndmfv 6786 | The value of a class outsi... |
ndmfvrcl 6787 | Reverse closure law for fu... |
elfvdm 6788 | If a function value has a ... |
elfvex 6789 | If a function value has a ... |
elfvexd 6790 | If a function value has a ... |
eliman0 6791 | A nonempty function value ... |
nfvres 6792 | The value of a non-member ... |
nfunsn 6793 | If the restriction of a cl... |
fvfundmfvn0 6794 | If the "value of a class" ... |
0fv 6795 | Function value of the empt... |
fv2prc 6796 | A function value of a func... |
elfv2ex 6797 | If a function value of a f... |
fveqres 6798 | Equal values imply equal v... |
csbfv12 6799 | Move class substitution in... |
csbfv2g 6800 | Move class substitution in... |
csbfv 6801 | Substitution for a functio... |
funbrfv 6802 | The second argument of a b... |
funopfv 6803 | The second element in an o... |
fnbrfvb 6804 | Equivalence of function va... |
fnopfvb 6805 | Equivalence of function va... |
funbrfvb 6806 | Equivalence of function va... |
funopfvb 6807 | Equivalence of function va... |
fnbrfvb2 6808 | Version of ~ fnbrfvb for f... |
funbrfv2b 6809 | Function value in terms of... |
dffn5 6810 | Representation of a functi... |
fnrnfv 6811 | The range of a function ex... |
fvelrnb 6812 | A member of a function's r... |
foelrni 6813 | A member of a surjective f... |
dfimafn 6814 | Alternate definition of th... |
dfimafn2 6815 | Alternate definition of th... |
funimass4 6816 | Membership relation for th... |
fvelima 6817 | Function value in an image... |
fvelimad 6818 | Function value in an image... |
feqmptd 6819 | Deduction form of ~ dffn5 ... |
feqresmpt 6820 | Express a restricted funct... |
feqmptdf 6821 | Deduction form of ~ dffn5f... |
dffn5f 6822 | Representation of a functi... |
fvelimab 6823 | Function value in an image... |
fvelimabd 6824 | Deduction form of ~ fvelim... |
unima 6825 | Image of a union. (Contri... |
fvi 6826 | The value of the identity ... |
fviss 6827 | The value of the identity ... |
fniinfv 6828 | The indexed intersection o... |
fnsnfv 6829 | Singleton of function valu... |
fnsnfvOLD 6830 | Obsolete version of ~ fnsn... |
opabiotafun 6831 | Define a function whose va... |
opabiotadm 6832 | Define a function whose va... |
opabiota 6833 | Define a function whose va... |
fnimapr 6834 | The image of a pair under ... |
ssimaex 6835 | The existence of a subimag... |
ssimaexg 6836 | The existence of a subimag... |
funfv 6837 | A simplified expression fo... |
funfv2 6838 | The value of a function. ... |
funfv2f 6839 | The value of a function. ... |
fvun 6840 | Value of the union of two ... |
fvun1 6841 | The value of a union when ... |
fvun2 6842 | The value of a union when ... |
fvun1d 6843 | The value of a union when ... |
fvun2d 6844 | The value of a union when ... |
dffv2 6845 | Alternate definition of fu... |
dmfco 6846 | Domains of a function comp... |
fvco2 6847 | Value of a function compos... |
fvco 6848 | Value of a function compos... |
fvco3 6849 | Value of a function compos... |
fvco3d 6850 | Value of a function compos... |
fvco4i 6851 | Conditions for a compositi... |
fvopab3g 6852 | Value of a function given ... |
fvopab3ig 6853 | Value of a function given ... |
brfvopabrbr 6854 | The binary relation of a f... |
fvmptg 6855 | Value of a function given ... |
fvmpti 6856 | Value of a function given ... |
fvmpt 6857 | Value of a function given ... |
fvmpt2f 6858 | Value of a function given ... |
fvtresfn 6859 | Functionality of a tuple-r... |
fvmpts 6860 | Value of a function given ... |
fvmpt3 6861 | Value of a function given ... |
fvmpt3i 6862 | Value of a function given ... |
fvmptdf 6863 | Deduction version of ~ fvm... |
fvmptd 6864 | Deduction version of ~ fvm... |
fvmptd2 6865 | Deduction version of ~ fvm... |
mptrcl 6866 | Reverse closure for a mapp... |
fvmpt2i 6867 | Value of a function given ... |
fvmpt2 6868 | Value of a function given ... |
fvmptss 6869 | If all the values of the m... |
fvmpt2d 6870 | Deduction version of ~ fvm... |
fvmptex 6871 | Express a function ` F ` w... |
fvmptd3f 6872 | Alternate deduction versio... |
fvmptd2f 6873 | Alternate deduction versio... |
fvmptdv 6874 | Alternate deduction versio... |
fvmptdv2 6875 | Alternate deduction versio... |
mpteqb 6876 | Bidirectional equality the... |
fvmptt 6877 | Closed theorem form of ~ f... |
fvmptf 6878 | Value of a function given ... |
fvmptnf 6879 | The value of a function gi... |
fvmptd3 6880 | Deduction version of ~ fvm... |
fvmptn 6881 | This somewhat non-intuitiv... |
fvmptss2 6882 | A mapping always evaluates... |
elfvmptrab1w 6883 | Implications for the value... |
elfvmptrab1 6884 | Implications for the value... |
elfvmptrab 6885 | Implications for the value... |
fvopab4ndm 6886 | Value of a function given ... |
fvmptndm 6887 | Value of a function given ... |
fvmptrabfv 6888 | Value of a function mappin... |
fvopab5 6889 | The value of a function th... |
fvopab6 6890 | Value of a function given ... |
eqfnfv 6891 | Equality of functions is d... |
eqfnfv2 6892 | Equality of functions is d... |
eqfnfv3 6893 | Derive equality of functio... |
eqfnfvd 6894 | Deduction for equality of ... |
eqfnfv2f 6895 | Equality of functions is d... |
eqfunfv 6896 | Equality of functions is d... |
fvreseq0 6897 | Equality of restricted fun... |
fvreseq1 6898 | Equality of a function res... |
fvreseq 6899 | Equality of restricted fun... |
fnmptfvd 6900 | A function with a given do... |
fndmdif 6901 | Two ways to express the lo... |
fndmdifcom 6902 | The difference set between... |
fndmdifeq0 6903 | The difference set of two ... |
fndmin 6904 | Two ways to express the lo... |
fneqeql 6905 | Two functions are equal if... |
fneqeql2 6906 | Two functions are equal if... |
fnreseql 6907 | Two functions are equal on... |
chfnrn 6908 | The range of a choice func... |
funfvop 6909 | Ordered pair with function... |
funfvbrb 6910 | Two ways to say that ` A `... |
fvimacnvi 6911 | A member of a preimage is ... |
fvimacnv 6912 | The argument of a function... |
funimass3 6913 | A kind of contraposition l... |
funimass5 6914 | A subclass of a preimage i... |
funconstss 6915 | Two ways of specifying tha... |
fvimacnvALT 6916 | Alternate proof of ~ fvima... |
elpreima 6917 | Membership in the preimage... |
elpreimad 6918 | Membership in the preimage... |
fniniseg 6919 | Membership in the preimage... |
fncnvima2 6920 | Inverse images under funct... |
fniniseg2 6921 | Inverse point images under... |
unpreima 6922 | Preimage of a union. (Con... |
inpreima 6923 | Preimage of an intersectio... |
difpreima 6924 | Preimage of a difference. ... |
respreima 6925 | The preimage of a restrict... |
cnvimainrn 6926 | The preimage of the inters... |
sspreima 6927 | The preimage of a subset i... |
iinpreima 6928 | Preimage of an intersectio... |
intpreima 6929 | Preimage of an intersectio... |
fimacnvOLD 6930 | Obsolete version of ~ fima... |
fimacnvinrn 6931 | Taking the converse image ... |
fimacnvinrn2 6932 | Taking the converse image ... |
rescnvimafod 6933 | The restriction of a funct... |
fvn0ssdmfun 6934 | If a class' function value... |
fnopfv 6935 | Ordered pair with function... |
fvelrn 6936 | A function's value belongs... |
nelrnfvne 6937 | A function value cannot be... |
fveqdmss 6938 | If the empty set is not co... |
fveqressseq 6939 | If the empty set is not co... |
fnfvelrn 6940 | A function's value belongs... |
ffvelrn 6941 | A function's value belongs... |
ffvelrni 6942 | A function's value belongs... |
ffvelrnda 6943 | A function's value belongs... |
ffvelrnd 6944 | A function's value belongs... |
rexrn 6945 | Restricted existential qua... |
ralrn 6946 | Restricted universal quant... |
elrnrexdm 6947 | For any element in the ran... |
elrnrexdmb 6948 | For any element in the ran... |
eldmrexrn 6949 | For any element in the dom... |
eldmrexrnb 6950 | For any element in the dom... |
fvcofneq 6951 | The values of two function... |
ralrnmptw 6952 | A restricted quantifier ov... |
rexrnmptw 6953 | A restricted quantifier ov... |
ralrnmpt 6954 | A restricted quantifier ov... |
rexrnmpt 6955 | A restricted quantifier ov... |
f0cli 6956 | Unconditional closure of a... |
dff2 6957 | Alternate definition of a ... |
dff3 6958 | Alternate definition of a ... |
dff4 6959 | Alternate definition of a ... |
dffo3 6960 | An onto mapping expressed ... |
dffo4 6961 | Alternate definition of an... |
dffo5 6962 | Alternate definition of an... |
exfo 6963 | A relation equivalent to t... |
foelrn 6964 | Property of a surjective f... |
foco2 6965 | If a composition of two fu... |
fmpt 6966 | Functionality of the mappi... |
f1ompt 6967 | Express bijection for a ma... |
fmpti 6968 | Functionality of the mappi... |
fvmptelrn 6969 | The value of a function at... |
fmptd 6970 | Domain and codomain of the... |
fmpttd 6971 | Version of ~ fmptd with in... |
fmpt3d 6972 | Domain and codomain of the... |
fmptdf 6973 | A version of ~ fmptd using... |
ffnfv 6974 | A function maps to a class... |
ffnfvf 6975 | A function maps to a class... |
fnfvrnss 6976 | An upper bound for range d... |
frnssb 6977 | A function is a function i... |
rnmptss 6978 | The range of an operation ... |
fmpt2d 6979 | Domain and codomain of the... |
ffvresb 6980 | A necessary and sufficient... |
f1oresrab 6981 | Build a bijection between ... |
f1ossf1o 6982 | Restricting a bijection, w... |
fmptco 6983 | Composition of two functio... |
fmptcof 6984 | Version of ~ fmptco where ... |
fmptcos 6985 | Composition of two functio... |
cofmpt 6986 | Express composition of a m... |
fcompt 6987 | Express composition of two... |
fcoconst 6988 | Composition with a constan... |
fsn 6989 | A function maps a singleto... |
fsn2 6990 | A function that maps a sin... |
fsng 6991 | A function maps a singleto... |
fsn2g 6992 | A function that maps a sin... |
xpsng 6993 | The Cartesian product of t... |
xpprsng 6994 | The Cartesian product of a... |
xpsn 6995 | The Cartesian product of t... |
f1o2sn 6996 | A singleton consisting in ... |
residpr 6997 | Restriction of the identit... |
dfmpt 6998 | Alternate definition for t... |
fnasrn 6999 | A function expressed as th... |
idref 7000 | Two ways to state that a r... |
funiun 7001 | A function is a union of s... |
funopsn 7002 | If a function is an ordere... |
funop 7003 | An ordered pair is a funct... |
funopdmsn 7004 | The domain of a function w... |
funsndifnop 7005 | A singleton of an ordered ... |
funsneqopb 7006 | A singleton of an ordered ... |
ressnop0 7007 | If ` A ` is not in ` C ` ,... |
fpr 7008 | A function with a domain o... |
fprg 7009 | A function with a domain o... |
ftpg 7010 | A function with a domain o... |
ftp 7011 | A function with a domain o... |
fnressn 7012 | A function restricted to a... |
funressn 7013 | A function restricted to a... |
fressnfv 7014 | The value of a function re... |
fvrnressn 7015 | If the value of a function... |
fvressn 7016 | The value of a function re... |
fvn0fvelrn 7017 | If the value of a function... |
fvconst 7018 | The value of a constant fu... |
fnsnr 7019 | If a class belongs to a fu... |
fnsnb 7020 | A function whose domain is... |
fmptsn 7021 | Express a singleton functi... |
fmptsng 7022 | Express a singleton functi... |
fmptsnd 7023 | Express a singleton functi... |
fmptap 7024 | Append an additional value... |
fmptapd 7025 | Append an additional value... |
fmptpr 7026 | Express a pair function in... |
fvresi 7027 | The value of a restricted ... |
fninfp 7028 | Express the class of fixed... |
fnelfp 7029 | Property of a fixed point ... |
fndifnfp 7030 | Express the class of non-f... |
fnelnfp 7031 | Property of a non-fixed po... |
fnnfpeq0 7032 | A function is the identity... |
fvunsn 7033 | Remove an ordered pair not... |
fvsng 7034 | The value of a singleton o... |
fvsn 7035 | The value of a singleton o... |
fvsnun1 7036 | The value of a function wi... |
fvsnun2 7037 | The value of a function wi... |
fnsnsplit 7038 | Split a function into a si... |
fsnunf 7039 | Adjoining a point to a fun... |
fsnunf2 7040 | Adjoining a point to a pun... |
fsnunfv 7041 | Recover the added point fr... |
fsnunres 7042 | Recover the original funct... |
funresdfunsn 7043 | Restricting a function to ... |
fvpr1g 7044 | The value of a function wi... |
fvpr2g 7045 | The value of a function wi... |
fvpr2gOLD 7046 | Obsolete version of ~ fvpr... |
fvpr1 7047 | The value of a function wi... |
fvpr1OLD 7048 | Obsolete version of ~ fvpr... |
fvpr2 7049 | The value of a function wi... |
fvpr2OLD 7050 | Obsolete version of ~ fvpr... |
fprb 7051 | A condition for functionho... |
fvtp1 7052 | The first value of a funct... |
fvtp2 7053 | The second value of a func... |
fvtp3 7054 | The third value of a funct... |
fvtp1g 7055 | The value of a function wi... |
fvtp2g 7056 | The value of a function wi... |
fvtp3g 7057 | The value of a function wi... |
tpres 7058 | An unordered triple of ord... |
fvconst2g 7059 | The value of a constant fu... |
fconst2g 7060 | A constant function expres... |
fvconst2 7061 | The value of a constant fu... |
fconst2 7062 | A constant function expres... |
fconst5 7063 | Two ways to express that a... |
rnmptc 7064 | Range of a constant functi... |
rnmptcOLD 7065 | Obsolete version of ~ rnmp... |
fnprb 7066 | A function whose domain ha... |
fntpb 7067 | A function whose domain ha... |
fnpr2g 7068 | A function whose domain ha... |
fpr2g 7069 | A function that maps a pai... |
fconstfv 7070 | A constant function expres... |
fconst3 7071 | Two ways to express a cons... |
fconst4 7072 | Two ways to express a cons... |
resfunexg 7073 | The restriction of a funct... |
resiexd 7074 | The restriction of the ide... |
fnex 7075 | If the domain of a functio... |
fnexd 7076 | If the domain of a functio... |
funex 7077 | If the domain of a functio... |
opabex 7078 | Existence of a function ex... |
mptexg 7079 | If the domain of a functio... |
mptexgf 7080 | If the domain of a functio... |
mptex 7081 | If the domain of a functio... |
mptexd 7082 | If the domain of a functio... |
mptrabex 7083 | If the domain of a functio... |
fex 7084 | If the domain of a mapping... |
fexd 7085 | If the domain of a mapping... |
mptfvmpt 7086 | A function in maps-to nota... |
eufnfv 7087 | A function is uniquely det... |
funfvima 7088 | A function's value in a pr... |
funfvima2 7089 | A function's value in an i... |
funfvima2d 7090 | A function's value in a pr... |
fnfvima 7091 | The function value of an o... |
fnfvimad 7092 | A function's value belongs... |
resfvresima 7093 | The value of the function ... |
funfvima3 7094 | A class including a functi... |
rexima 7095 | Existential quantification... |
ralima 7096 | Universal quantification u... |
fvclss 7097 | Upper bound for the class ... |
elabrex 7098 | Elementhood in an image se... |
abrexco 7099 | Composition of two image m... |
imaiun 7100 | The image of an indexed un... |
imauni 7101 | The image of a union is th... |
fniunfv 7102 | The indexed union of a fun... |
funiunfv 7103 | The indexed union of a fun... |
funiunfvf 7104 | The indexed union of a fun... |
eluniima 7105 | Membership in the union of... |
elunirn 7106 | Membership in the union of... |
elunirnALT 7107 | Alternate proof of ~ eluni... |
fnunirn 7108 | Membership in a union of s... |
dff13 7109 | A one-to-one function in t... |
dff13f 7110 | A one-to-one function in t... |
f1veqaeq 7111 | If the values of a one-to-... |
f1cofveqaeq 7112 | If the values of a composi... |
f1cofveqaeqALT 7113 | Alternate proof of ~ f1cof... |
2f1fvneq 7114 | If two one-to-one function... |
f1mpt 7115 | Express injection for a ma... |
f1fveq 7116 | Equality of function value... |
f1elima 7117 | Membership in the image of... |
f1imass 7118 | Taking images under a one-... |
f1imaeq 7119 | Taking images under a one-... |
f1imapss 7120 | Taking images under a one-... |
fpropnf1 7121 | A function, given by an un... |
f1dom3fv3dif 7122 | The function values for a ... |
f1dom3el3dif 7123 | The range of a 1-1 functio... |
dff14a 7124 | A one-to-one function in t... |
dff14b 7125 | A one-to-one function in t... |
f12dfv 7126 | A one-to-one function with... |
f13dfv 7127 | A one-to-one function with... |
dff1o6 7128 | A one-to-one onto function... |
f1ocnvfv1 7129 | The converse value of the ... |
f1ocnvfv2 7130 | The value of the converse ... |
f1ocnvfv 7131 | Relationship between the v... |
f1ocnvfvb 7132 | Relationship between the v... |
nvof1o 7133 | An involution is a bijecti... |
nvocnv 7134 | The converse of an involut... |
fsnex 7135 | Relate a function with a s... |
f1prex 7136 | Relate a one-to-one functi... |
f1ocnvdm 7137 | The value of the converse ... |
f1ocnvfvrneq 7138 | If the values of a one-to-... |
fcof1 7139 | An application is injectiv... |
fcofo 7140 | An application is surjecti... |
cbvfo 7141 | Change bound variable betw... |
cbvexfo 7142 | Change bound variable betw... |
cocan1 7143 | An injection is left-cance... |
cocan2 7144 | A surjection is right-canc... |
fcof1oinvd 7145 | Show that a function is th... |
fcof1od 7146 | A function is bijective if... |
2fcoidinvd 7147 | Show that a function is th... |
fcof1o 7148 | Show that two functions ar... |
2fvcoidd 7149 | Show that the composition ... |
2fvidf1od 7150 | A function is bijective if... |
2fvidinvd 7151 | Show that two functions ar... |
foeqcnvco 7152 | Condition for function equ... |
f1eqcocnv 7153 | Condition for function equ... |
f1eqcocnvOLD 7154 | Obsolete version of ~ f1eq... |
fveqf1o 7155 | Given a bijection ` F ` , ... |
nf1const 7156 | A constant function from a... |
nf1oconst 7157 | A constant function from a... |
f1ofvswap 7158 | Swapping two values in a b... |
fliftrel 7159 | ` F ` , a function lift, i... |
fliftel 7160 | Elementhood in the relatio... |
fliftel1 7161 | Elementhood in the relatio... |
fliftcnv 7162 | Converse of the relation `... |
fliftfun 7163 | The function ` F ` is the ... |
fliftfund 7164 | The function ` F ` is the ... |
fliftfuns 7165 | The function ` F ` is the ... |
fliftf 7166 | The domain and range of th... |
fliftval 7167 | The value of the function ... |
isoeq1 7168 | Equality theorem for isomo... |
isoeq2 7169 | Equality theorem for isomo... |
isoeq3 7170 | Equality theorem for isomo... |
isoeq4 7171 | Equality theorem for isomo... |
isoeq5 7172 | Equality theorem for isomo... |
nfiso 7173 | Bound-variable hypothesis ... |
isof1o 7174 | An isomorphism is a one-to... |
isof1oidb 7175 | A function is a bijection ... |
isof1oopb 7176 | A function is a bijection ... |
isorel 7177 | An isomorphism connects bi... |
soisores 7178 | Express the condition of i... |
soisoi 7179 | Infer isomorphism from one... |
isoid 7180 | Identity law for isomorphi... |
isocnv 7181 | Converse law for isomorphi... |
isocnv2 7182 | Converse law for isomorphi... |
isocnv3 7183 | Complementation law for is... |
isores2 7184 | An isomorphism from one we... |
isores1 7185 | An isomorphism from one we... |
isores3 7186 | Induced isomorphism on a s... |
isotr 7187 | Composition (transitive) l... |
isomin 7188 | Isomorphisms preserve mini... |
isoini 7189 | Isomorphisms preserve init... |
isoini2 7190 | Isomorphisms are isomorphi... |
isofrlem 7191 | Lemma for ~ isofr . (Cont... |
isoselem 7192 | Lemma for ~ isose . (Cont... |
isofr 7193 | An isomorphism preserves w... |
isose 7194 | An isomorphism preserves s... |
isofr2 7195 | A weak form of ~ isofr tha... |
isopolem 7196 | Lemma for ~ isopo . (Cont... |
isopo 7197 | An isomorphism preserves t... |
isosolem 7198 | Lemma for ~ isoso . (Cont... |
isoso 7199 | An isomorphism preserves t... |
isowe 7200 | An isomorphism preserves t... |
isowe2 7201 | A weak form of ~ isowe tha... |
f1oiso 7202 | Any one-to-one onto functi... |
f1oiso2 7203 | Any one-to-one onto functi... |
f1owe 7204 | Well-ordering of isomorphi... |
weniso 7205 | A set-like well-ordering h... |
weisoeq 7206 | Thus, there is at most one... |
weisoeq2 7207 | Thus, there is at most one... |
knatar 7208 | The Knaster-Tarski theorem... |
canth 7209 | No set ` A ` is equinumero... |
ncanth 7210 | Cantor's theorem fails for... |
riotaeqdv 7213 | Formula-building deduction... |
riotabidv 7214 | Formula-building deduction... |
riotaeqbidv 7215 | Equality deduction for res... |
riotaex 7216 | Restricted iota is a set. ... |
riotav 7217 | An iota restricted to the ... |
riotauni 7218 | Restricted iota in terms o... |
nfriota1 7219 | The abstraction variable i... |
nfriotadw 7220 | Deduction version of ~ nfr... |
cbvriotaw 7221 | Change bound variable in a... |
cbvriotavw 7222 | Change bound variable in a... |
cbvriotavwOLD 7223 | Obsolete version of ~ cbvr... |
nfriotad 7224 | Deduction version of ~ nfr... |
nfriota 7225 | A variable not free in a w... |
cbvriota 7226 | Change bound variable in a... |
cbvriotav 7227 | Change bound variable in a... |
csbriota 7228 | Interchange class substitu... |
riotacl2 7229 | Membership law for "the un... |
riotacl 7230 | Closure of restricted iota... |
riotasbc 7231 | Substitution law for descr... |
riotabidva 7232 | Equivalent wff's yield equ... |
riotabiia 7233 | Equivalent wff's yield equ... |
riota1 7234 | Property of restricted iot... |
riota1a 7235 | Property of iota. (Contri... |
riota2df 7236 | A deduction version of ~ r... |
riota2f 7237 | This theorem shows a condi... |
riota2 7238 | This theorem shows a condi... |
riotaeqimp 7239 | If two restricted iota des... |
riotaprop 7240 | Properties of a restricted... |
riota5f 7241 | A method for computing res... |
riota5 7242 | A method for computing res... |
riotass2 7243 | Restriction of a unique el... |
riotass 7244 | Restriction of a unique el... |
moriotass 7245 | Restriction of a unique el... |
snriota 7246 | A restricted class abstrac... |
riotaxfrd 7247 | Change the variable ` x ` ... |
eusvobj2 7248 | Specify the same property ... |
eusvobj1 7249 | Specify the same object in... |
f1ofveu 7250 | There is one domain elemen... |
f1ocnvfv3 7251 | Value of the converse of a... |
riotaund 7252 | Restricted iota equals the... |
riotassuni 7253 | The restricted iota class ... |
riotaclb 7254 | Bidirectional closure of r... |
oveq 7261 | Equality theorem for opera... |
oveq1 7262 | Equality theorem for opera... |
oveq2 7263 | Equality theorem for opera... |
oveq12 7264 | Equality theorem for opera... |
oveq1i 7265 | Equality inference for ope... |
oveq2i 7266 | Equality inference for ope... |
oveq12i 7267 | Equality inference for ope... |
oveqi 7268 | Equality inference for ope... |
oveq123i 7269 | Equality inference for ope... |
oveq1d 7270 | Equality deduction for ope... |
oveq2d 7271 | Equality deduction for ope... |
oveqd 7272 | Equality deduction for ope... |
oveq12d 7273 | Equality deduction for ope... |
oveqan12d 7274 | Equality deduction for ope... |
oveqan12rd 7275 | Equality deduction for ope... |
oveq123d 7276 | Equality deduction for ope... |
fvoveq1d 7277 | Equality deduction for nes... |
fvoveq1 7278 | Equality theorem for neste... |
ovanraleqv 7279 | Equality theorem for a con... |
imbrov2fvoveq 7280 | Equality theorem for neste... |
ovrspc2v 7281 | If an operation value is e... |
oveqrspc2v 7282 | Restricted specialization ... |
oveqdr 7283 | Equality of two operations... |
nfovd 7284 | Deduction version of bound... |
nfov 7285 | Bound-variable hypothesis ... |
oprabidw 7286 | The law of concretion. Sp... |
oprabid 7287 | The law of concretion. Sp... |
ovex 7288 | The result of an operation... |
ovexi 7289 | The result of an operation... |
ovexd 7290 | The result of an operation... |
ovssunirn 7291 | The result of an operation... |
0ov 7292 | Operation value of the emp... |
ovprc 7293 | The value of an operation ... |
ovprc1 7294 | The value of an operation ... |
ovprc2 7295 | The value of an operation ... |
ovrcl 7296 | Reverse closure for an ope... |
csbov123 7297 | Move class substitution in... |
csbov 7298 | Move class substitution in... |
csbov12g 7299 | Move class substitution in... |
csbov1g 7300 | Move class substitution in... |
csbov2g 7301 | Move class substitution in... |
rspceov 7302 | A frequently used special ... |
elovimad 7303 | Elementhood of the image s... |
fnbrovb 7304 | Value of a binary operatio... |
fnotovb 7305 | Equivalence of operation v... |
opabbrex 7306 | A collection of ordered pa... |
opabresex2d 7307 | Restrictions of a collecti... |
fvmptopab 7308 | The function value of a ma... |
f1opr 7309 | Condition for an operation... |
brfvopab 7310 | The classes involved in a ... |
dfoprab2 7311 | Class abstraction for oper... |
reloprab 7312 | An operation class abstrac... |
oprabv 7313 | If a pair and a class are ... |
nfoprab1 7314 | The abstraction variables ... |
nfoprab2 7315 | The abstraction variables ... |
nfoprab3 7316 | The abstraction variables ... |
nfoprab 7317 | Bound-variable hypothesis ... |
oprabbid 7318 | Equivalent wff's yield equ... |
oprabbidv 7319 | Equivalent wff's yield equ... |
oprabbii 7320 | Equivalent wff's yield equ... |
ssoprab2 7321 | Equivalence of ordered pai... |
ssoprab2b 7322 | Equivalence of ordered pai... |
eqoprab2bw 7323 | Equivalence of ordered pai... |
eqoprab2b 7324 | Equivalence of ordered pai... |
mpoeq123 7325 | An equality theorem for th... |
mpoeq12 7326 | An equality theorem for th... |
mpoeq123dva 7327 | An equality deduction for ... |
mpoeq123dv 7328 | An equality deduction for ... |
mpoeq123i 7329 | An equality inference for ... |
mpoeq3dva 7330 | Slightly more general equa... |
mpoeq3ia 7331 | An equality inference for ... |
mpoeq3dv 7332 | An equality deduction for ... |
nfmpo1 7333 | Bound-variable hypothesis ... |
nfmpo2 7334 | Bound-variable hypothesis ... |
nfmpo 7335 | Bound-variable hypothesis ... |
0mpo0 7336 | A mapping operation with e... |
mpo0v 7337 | A mapping operation with e... |
mpo0 7338 | A mapping operation with e... |
oprab4 7339 | Two ways to state the doma... |
cbvoprab1 7340 | Rule used to change first ... |
cbvoprab2 7341 | Change the second bound va... |
cbvoprab12 7342 | Rule used to change first ... |
cbvoprab12v 7343 | Rule used to change first ... |
cbvoprab3 7344 | Rule used to change the th... |
cbvoprab3v 7345 | Rule used to change the th... |
cbvmpox 7346 | Rule to change the bound v... |
cbvmpo 7347 | Rule to change the bound v... |
cbvmpov 7348 | Rule to change the bound v... |
elimdelov 7349 | Eliminate a hypothesis whi... |
ovif 7350 | Move a conditional outside... |
ovif2 7351 | Move a conditional outside... |
ovif12 7352 | Move a conditional outside... |
ifov 7353 | Move a conditional outside... |
dmoprab 7354 | The domain of an operation... |
dmoprabss 7355 | The domain of an operation... |
rnoprab 7356 | The range of an operation ... |
rnoprab2 7357 | The range of a restricted ... |
reldmoprab 7358 | The domain of an operation... |
oprabss 7359 | Structure of an operation ... |
eloprabga 7360 | The law of concretion for ... |
eloprabgaOLD 7361 | Obsolete version of ~ elop... |
eloprabg 7362 | The law of concretion for ... |
ssoprab2i 7363 | Inference of operation cla... |
mpov 7364 | Operation with universal d... |
mpomptx 7365 | Express a two-argument fun... |
mpompt 7366 | Express a two-argument fun... |
mpodifsnif 7367 | A mapping with two argumen... |
mposnif 7368 | A mapping with two argumen... |
fconstmpo 7369 | Representation of a consta... |
resoprab 7370 | Restriction of an operatio... |
resoprab2 7371 | Restriction of an operator... |
resmpo 7372 | Restriction of the mapping... |
funoprabg 7373 | "At most one" is a suffici... |
funoprab 7374 | "At most one" is a suffici... |
fnoprabg 7375 | Functionality and domain o... |
mpofun 7376 | The maps-to notation for a... |
mpofunOLD 7377 | Obsolete version of ~ mpof... |
fnoprab 7378 | Functionality and domain o... |
ffnov 7379 | An operation maps to a cla... |
fovcl 7380 | Closure law for an operati... |
eqfnov 7381 | Equality of two operations... |
eqfnov2 7382 | Two operators with the sam... |
fnov 7383 | Representation of a functi... |
mpo2eqb 7384 | Bidirectional equality the... |
rnmpo 7385 | The range of an operation ... |
reldmmpo 7386 | The domain of an operation... |
elrnmpog 7387 | Membership in the range of... |
elrnmpo 7388 | Membership in the range of... |
elrnmpores 7389 | Membership in the range of... |
ralrnmpo 7390 | A restricted quantifier ov... |
rexrnmpo 7391 | A restricted quantifier ov... |
ovid 7392 | The value of an operation ... |
ovidig 7393 | The value of an operation ... |
ovidi 7394 | The value of an operation ... |
ov 7395 | The value of an operation ... |
ovigg 7396 | The value of an operation ... |
ovig 7397 | The value of an operation ... |
ovmpt4g 7398 | Value of a function given ... |
ovmpos 7399 | Value of a function given ... |
ov2gf 7400 | The value of an operation ... |
ovmpodxf 7401 | Value of an operation give... |
ovmpodx 7402 | Value of an operation give... |
ovmpod 7403 | Value of an operation give... |
ovmpox 7404 | The value of an operation ... |
ovmpoga 7405 | Value of an operation give... |
ovmpoa 7406 | Value of an operation give... |
ovmpodf 7407 | Alternate deduction versio... |
ovmpodv 7408 | Alternate deduction versio... |
ovmpodv2 7409 | Alternate deduction versio... |
ovmpog 7410 | Value of an operation give... |
ovmpo 7411 | Value of an operation give... |
fvmpopr2d 7412 | Value of an operation give... |
ov3 7413 | The value of an operation ... |
ov6g 7414 | The value of an operation ... |
ovg 7415 | The value of an operation ... |
ovres 7416 | The value of a restricted ... |
ovresd 7417 | Lemma for converting metri... |
oprres 7418 | The restriction of an oper... |
oprssov 7419 | The value of a member of t... |
fovrn 7420 | An operation's value belon... |
fovrnda 7421 | An operation's value belon... |
fovrnd 7422 | An operation's value belon... |
fnrnov 7423 | The range of an operation ... |
foov 7424 | An onto mapping of an oper... |
fnovrn 7425 | An operation's value belon... |
ovelrn 7426 | A member of an operation's... |
funimassov 7427 | Membership relation for th... |
ovelimab 7428 | Operation value in an imag... |
ovima0 7429 | An operation value is a me... |
ovconst2 7430 | The value of a constant op... |
oprssdm 7431 | Domain of closure of an op... |
nssdmovg 7432 | The value of an operation ... |
ndmovg 7433 | The value of an operation ... |
ndmov 7434 | The value of an operation ... |
ndmovcl 7435 | The closure of an operatio... |
ndmovrcl 7436 | Reverse closure law, when ... |
ndmovcom 7437 | Any operation is commutati... |
ndmovass 7438 | Any operation is associati... |
ndmovdistr 7439 | Any operation is distribut... |
ndmovord 7440 | Elimination of redundant a... |
ndmovordi 7441 | Elimination of redundant a... |
caovclg 7442 | Convert an operation closu... |
caovcld 7443 | Convert an operation closu... |
caovcl 7444 | Convert an operation closu... |
caovcomg 7445 | Convert an operation commu... |
caovcomd 7446 | Convert an operation commu... |
caovcom 7447 | Convert an operation commu... |
caovassg 7448 | Convert an operation assoc... |
caovassd 7449 | Convert an operation assoc... |
caovass 7450 | Convert an operation assoc... |
caovcang 7451 | Convert an operation cance... |
caovcand 7452 | Convert an operation cance... |
caovcanrd 7453 | Commute the arguments of a... |
caovcan 7454 | Convert an operation cance... |
caovordig 7455 | Convert an operation order... |
caovordid 7456 | Convert an operation order... |
caovordg 7457 | Convert an operation order... |
caovordd 7458 | Convert an operation order... |
caovord2d 7459 | Operation ordering law wit... |
caovord3d 7460 | Ordering law. (Contribute... |
caovord 7461 | Convert an operation order... |
caovord2 7462 | Operation ordering law wit... |
caovord3 7463 | Ordering law. (Contribute... |
caovdig 7464 | Convert an operation distr... |
caovdid 7465 | Convert an operation distr... |
caovdir2d 7466 | Convert an operation distr... |
caovdirg 7467 | Convert an operation rever... |
caovdird 7468 | Convert an operation distr... |
caovdi 7469 | Convert an operation distr... |
caov32d 7470 | Rearrange arguments in a c... |
caov12d 7471 | Rearrange arguments in a c... |
caov31d 7472 | Rearrange arguments in a c... |
caov13d 7473 | Rearrange arguments in a c... |
caov4d 7474 | Rearrange arguments in a c... |
caov411d 7475 | Rearrange arguments in a c... |
caov42d 7476 | Rearrange arguments in a c... |
caov32 7477 | Rearrange arguments in a c... |
caov12 7478 | Rearrange arguments in a c... |
caov31 7479 | Rearrange arguments in a c... |
caov13 7480 | Rearrange arguments in a c... |
caov4 7481 | Rearrange arguments in a c... |
caov411 7482 | Rearrange arguments in a c... |
caov42 7483 | Rearrange arguments in a c... |
caovdir 7484 | Reverse distributive law. ... |
caovdilem 7485 | Lemma used by real number ... |
caovlem2 7486 | Lemma used in real number ... |
caovmo 7487 | Uniqueness of inverse elem... |
mpondm0 7488 | The value of an operation ... |
elmpocl 7489 | If a two-parameter class i... |
elmpocl1 7490 | If a two-parameter class i... |
elmpocl2 7491 | If a two-parameter class i... |
elovmpo 7492 | Utility lemma for two-para... |
elovmporab 7493 | Implications for the value... |
elovmporab1w 7494 | Implications for the value... |
elovmporab1 7495 | Implications for the value... |
2mpo0 7496 | If the operation value of ... |
relmptopab 7497 | Any function to sets of or... |
f1ocnvd 7498 | Describe an implicit one-t... |
f1od 7499 | Describe an implicit one-t... |
f1ocnv2d 7500 | Describe an implicit one-t... |
f1o2d 7501 | Describe an implicit one-t... |
f1opw2 7502 | A one-to-one mapping induc... |
f1opw 7503 | A one-to-one mapping induc... |
elovmpt3imp 7504 | If the value of a function... |
ovmpt3rab1 7505 | The value of an operation ... |
ovmpt3rabdm 7506 | If the value of a function... |
elovmpt3rab1 7507 | Implications for the value... |
elovmpt3rab 7508 | Implications for the value... |
ofeqd 7513 | Equality theorem for funct... |
ofeq 7514 | Equality theorem for funct... |
ofreq 7515 | Equality theorem for funct... |
ofexg 7516 | A function operation restr... |
nfof 7517 | Hypothesis builder for fun... |
nfofr 7518 | Hypothesis builder for fun... |
ofrfvalg 7519 | Value of a relation applie... |
offval 7520 | Value of an operation appl... |
ofrfval 7521 | Value of a relation applie... |
ofval 7522 | Evaluate a function operat... |
ofrval 7523 | Exhibit a function relatio... |
offn 7524 | The function operation pro... |
offun 7525 | The function operation pro... |
offval2f 7526 | The function operation exp... |
ofmresval 7527 | Value of a restriction of ... |
fnfvof 7528 | Function value of a pointw... |
off 7529 | The function operation pro... |
ofres 7530 | Restrict the operands of a... |
offval2 7531 | The function operation exp... |
ofrfval2 7532 | The function relation acti... |
ofmpteq 7533 | Value of a pointwise opera... |
ofco 7534 | The composition of a funct... |
offveq 7535 | Convert an identity of the... |
offveqb 7536 | Equivalent expressions for... |
ofc1 7537 | Left operation by a consta... |
ofc2 7538 | Right operation by a const... |
ofc12 7539 | Function operation on two ... |
caofref 7540 | Transfer a reflexive law t... |
caofinvl 7541 | Transfer a left inverse la... |
caofid0l 7542 | Transfer a left identity l... |
caofid0r 7543 | Transfer a right identity ... |
caofid1 7544 | Transfer a right absorptio... |
caofid2 7545 | Transfer a right absorptio... |
caofcom 7546 | Transfer a commutative law... |
caofrss 7547 | Transfer a relation subset... |
caofass 7548 | Transfer an associative la... |
caoftrn 7549 | Transfer a transitivity la... |
caofdi 7550 | Transfer a distributive la... |
caofdir 7551 | Transfer a reverse distrib... |
caonncan 7552 | Transfer ~ nncan -shaped l... |
relrpss 7555 | The proper subset relation... |
brrpssg 7556 | The proper subset relation... |
brrpss 7557 | The proper subset relation... |
porpss 7558 | Every class is partially o... |
sorpss 7559 | Express strict ordering un... |
sorpssi 7560 | Property of a chain of set... |
sorpssun 7561 | A chain of sets is closed ... |
sorpssin 7562 | A chain of sets is closed ... |
sorpssuni 7563 | In a chain of sets, a maxi... |
sorpssint 7564 | In a chain of sets, a mini... |
sorpsscmpl 7565 | The componentwise compleme... |
zfun 7567 | Axiom of Union expressed w... |
axun2 7568 | A variant of the Axiom of ... |
uniex2 7569 | The Axiom of Union using t... |
vuniex 7570 | The union of a setvar is a... |
uniexg 7571 | The ZF Axiom of Union in c... |
uniex 7572 | The Axiom of Union in clas... |
uniexd 7573 | Deduction version of the Z... |
unex 7574 | The union of two sets is a... |
tpex 7575 | An unordered triple of cla... |
unexb 7576 | Existence of union is equi... |
unexg 7577 | A union of two sets is a s... |
xpexg 7578 | The Cartesian product of t... |
xpexd 7579 | The Cartesian product of t... |
3xpexg 7580 | The Cartesian product of t... |
xpex 7581 | The Cartesian product of t... |
unexd 7582 | The union of two sets is a... |
sqxpexg 7583 | The Cartesian square of a ... |
abnexg 7584 | Sufficient condition for a... |
abnex 7585 | Sufficient condition for a... |
snnex 7586 | The class of all singleton... |
pwnex 7587 | The class of all power set... |
difex2 7588 | If the subtrahend of a cla... |
difsnexi 7589 | If the difference of a cla... |
uniuni 7590 | Expression for double unio... |
uniexr 7591 | Converse of the Axiom of U... |
uniexb 7592 | The Axiom of Union and its... |
pwexr 7593 | Converse of the Axiom of P... |
pwexb 7594 | The Axiom of Power Sets an... |
elpwpwel 7595 | A class belongs to a doubl... |
eldifpw 7596 | Membership in a power clas... |
elpwun 7597 | Membership in the power cl... |
pwuncl 7598 | Power classes are closed u... |
iunpw 7599 | An indexed union of a powe... |
fr3nr 7600 | A well-founded relation ha... |
epne3 7601 | A well-founded class conta... |
dfwe2 7602 | Alternate definition of we... |
epweon 7603 | The membership relation we... |
ordon 7604 | The class of all ordinal n... |
onprc 7605 | No set contains all ordina... |
ssorduni 7606 | The union of a class of or... |
ssonuni 7607 | The union of a set of ordi... |
ssonunii 7608 | The union of a set of ordi... |
ordeleqon 7609 | A way to express the ordin... |
ordsson 7610 | Any ordinal class is a sub... |
onss 7611 | An ordinal number is a sub... |
predon 7612 | The predecessor of an ordi... |
predonOLD 7613 | Obsolete version of ~ pred... |
ssonprc 7614 | Two ways of saying a class... |
onuni 7615 | The union of an ordinal nu... |
orduni 7616 | The union of an ordinal cl... |
onint 7617 | The intersection (infimum)... |
onint0 7618 | The intersection of a clas... |
onssmin 7619 | A nonempty class of ordina... |
onminesb 7620 | If a property is true for ... |
onminsb 7621 | If a property is true for ... |
oninton 7622 | The intersection of a none... |
onintrab 7623 | The intersection of a clas... |
onintrab2 7624 | An existence condition equ... |
onnmin 7625 | No member of a set of ordi... |
onnminsb 7626 | An ordinal number smaller ... |
oneqmin 7627 | A way to show that an ordi... |
uniordint 7628 | The union of a set of ordi... |
onminex 7629 | If a wff is true for an or... |
sucon 7630 | The class of all ordinal n... |
sucexb 7631 | A successor exists iff its... |
sucexg 7632 | The successor of a set is ... |
sucex 7633 | The successor of a set is ... |
onmindif2 7634 | The minimum of a class of ... |
suceloni 7635 | The successor of an ordina... |
ordsuc 7636 | The successor of an ordina... |
ordpwsuc 7637 | The collection of ordinals... |
onpwsuc 7638 | The collection of ordinal ... |
sucelon 7639 | The successor of an ordina... |
ordsucss 7640 | The successor of an elemen... |
onpsssuc 7641 | An ordinal number is a pro... |
ordelsuc 7642 | A set belongs to an ordina... |
onsucmin 7643 | The successor of an ordina... |
ordsucelsuc 7644 | Membership is inherited by... |
ordsucsssuc 7645 | The subclass relationship ... |
ordsucuniel 7646 | Given an element ` A ` of ... |
ordsucun 7647 | The successor of the maxim... |
ordunpr 7648 | The maximum of two ordinal... |
ordunel 7649 | The maximum of two ordinal... |
onsucuni 7650 | A class of ordinal numbers... |
ordsucuni 7651 | An ordinal class is a subc... |
orduniorsuc 7652 | An ordinal class is either... |
unon 7653 | The class of all ordinal n... |
ordunisuc 7654 | An ordinal class is equal ... |
orduniss2 7655 | The union of the ordinal s... |
onsucuni2 7656 | A successor ordinal is the... |
0elsuc 7657 | The successor of an ordina... |
limon 7658 | The class of ordinal numbe... |
onssi 7659 | An ordinal number is a sub... |
onsuci 7660 | The successor of an ordina... |
onuniorsuci 7661 | An ordinal number is eithe... |
onuninsuci 7662 | A limit ordinal is not a s... |
onsucssi 7663 | A set belongs to an ordina... |
nlimsucg 7664 | A successor is not a limit... |
orduninsuc 7665 | An ordinal equal to its un... |
ordunisuc2 7666 | An ordinal equal to its un... |
ordzsl 7667 | An ordinal is zero, a succ... |
onzsl 7668 | An ordinal number is zero,... |
dflim3 7669 | An alternate definition of... |
dflim4 7670 | An alternate definition of... |
limsuc 7671 | The successor of a member ... |
limsssuc 7672 | A class includes a limit o... |
nlimon 7673 | Two ways to express the cl... |
limuni3 7674 | The union of a nonempty cl... |
tfi 7675 | The Principle of Transfini... |
tfis 7676 | Transfinite Induction Sche... |
tfis2f 7677 | Transfinite Induction Sche... |
tfis2 7678 | Transfinite Induction Sche... |
tfis3 7679 | Transfinite Induction Sche... |
tfisi 7680 | A transfinite induction sc... |
tfinds 7681 | Principle of Transfinite I... |
tfindsg 7682 | Transfinite Induction (inf... |
tfindsg2 7683 | Transfinite Induction (inf... |
tfindes 7684 | Transfinite Induction with... |
tfinds2 7685 | Transfinite Induction (inf... |
tfinds3 7686 | Principle of Transfinite I... |
dfom2 7689 | An alternate definition of... |
elom 7690 | Membership in omega. The ... |
omsson 7691 | Omega is a subset of ` On ... |
limomss 7692 | The class of natural numbe... |
nnon 7693 | A natural number is an ord... |
nnoni 7694 | A natural number is an ord... |
nnord 7695 | A natural number is ordina... |
trom 7696 | The class of finite ordina... |
ordom 7697 | The class of finite ordina... |
elnn 7698 | A member of a natural numb... |
omon 7699 | The class of natural numbe... |
omelon2 7700 | Omega is an ordinal number... |
nnlim 7701 | A natural number is not a ... |
omssnlim 7702 | The class of natural numbe... |
limom 7703 | Omega is a limit ordinal. ... |
peano2b 7704 | A class belongs to omega i... |
nnsuc 7705 | A nonzero natural number i... |
omsucne 7706 | A natural number is not th... |
ssnlim 7707 | An ordinal subclass of non... |
omsinds 7708 | Strong (or "total") induct... |
omsindsOLD 7709 | Obsolete version of ~ omsi... |
peano1 7710 | Zero is a natural number. ... |
peano2 7711 | The successor of any natur... |
peano3 7712 | The successor of any natur... |
peano4 7713 | Two natural numbers are eq... |
peano5 7714 | The induction postulate: a... |
peano5OLD 7715 | Obsolete version of ~ pean... |
nn0suc 7716 | A natural number is either... |
find 7717 | The Principle of Finite In... |
findOLD 7718 | Obsolete version of ~ find... |
finds 7719 | Principle of Finite Induct... |
findsg 7720 | Principle of Finite Induct... |
finds2 7721 | Principle of Finite Induct... |
finds1 7722 | Principle of Finite Induct... |
findes 7723 | Finite induction with expl... |
dmexg 7724 | The domain of a set is a s... |
rnexg 7725 | The range of a set is a se... |
dmexd 7726 | The domain of a set is a s... |
fndmexd 7727 | If a function is a set, it... |
dmfex 7728 | If a mapping is a set, its... |
fndmexb 7729 | The domain of a function i... |
fdmexb 7730 | The domain of a function i... |
dmfexALT 7731 | Alternate proof of ~ dmfex... |
dmex 7732 | The domain of a set is a s... |
rnex 7733 | The range of a set is a se... |
iprc 7734 | The identity function is a... |
resiexg 7735 | The existence of a restric... |
imaexg 7736 | The image of a set is a se... |
imaex 7737 | The image of a set is a se... |
exse2 7738 | Any set relation is set-li... |
xpexr 7739 | If a Cartesian product is ... |
xpexr2 7740 | If a nonempty Cartesian pr... |
xpexcnv 7741 | A condition where the conv... |
soex 7742 | If the relation in a stric... |
elxp4 7743 | Membership in a Cartesian ... |
elxp5 7744 | Membership in a Cartesian ... |
cnvexg 7745 | The converse of a set is a... |
cnvex 7746 | The converse of a set is a... |
relcnvexb 7747 | A relation is a set iff it... |
f1oexrnex 7748 | If the range of a 1-1 onto... |
f1oexbi 7749 | There is a one-to-one onto... |
coexg 7750 | The composition of two set... |
coex 7751 | The composition of two set... |
funcnvuni 7752 | The union of a chain (with... |
fun11uni 7753 | The union of a chain (with... |
fex2 7754 | A function with bounded do... |
fabexg 7755 | Existence of a set of func... |
fabex 7756 | Existence of a set of func... |
f1oabexg 7757 | The class of all 1-1-onto ... |
fiunlem 7758 | Lemma for ~ fiun and ~ f1i... |
fiun 7759 | The union of a chain (with... |
f1iun 7760 | The union of a chain (with... |
fviunfun 7761 | The function value of an i... |
ffoss 7762 | Relationship between a map... |
f11o 7763 | Relationship between one-t... |
resfunexgALT 7764 | Alternate proof of ~ resfu... |
cofunexg 7765 | Existence of a composition... |
cofunex2g 7766 | Existence of a composition... |
fnexALT 7767 | Alternate proof of ~ fnex ... |
funexw 7768 | Weak version of ~ funex th... |
mptexw 7769 | Weak version of ~ mptex th... |
funrnex 7770 | If the domain of a functio... |
zfrep6 7771 | A version of the Axiom of ... |
fornex 7772 | If the domain of an onto f... |
f1dmex 7773 | If the codomain of a one-t... |
f1ovv 7774 | The range of a 1-1 onto fu... |
fvclex 7775 | Existence of the class of ... |
fvresex 7776 | Existence of the class of ... |
abrexexg 7777 | Existence of a class abstr... |
abrexex 7778 | Existence of a class abstr... |
iunexg 7779 | The existence of an indexe... |
abrexex2g 7780 | Existence of an existentia... |
opabex3d 7781 | Existence of an ordered pa... |
opabex3rd 7782 | Existence of an ordered pa... |
opabex3 7783 | Existence of an ordered pa... |
iunex 7784 | The existence of an indexe... |
abrexex2 7785 | Existence of an existentia... |
abexssex 7786 | Existence of a class abstr... |
abexex 7787 | A condition where a class ... |
f1oweALT 7788 | Alternate proof of ~ f1owe... |
wemoiso 7789 | Thus, there is at most one... |
wemoiso2 7790 | Thus, there is at most one... |
oprabexd 7791 | Existence of an operator a... |
oprabex 7792 | Existence of an operation ... |
oprabex3 7793 | Existence of an operation ... |
oprabrexex2 7794 | Existence of an existentia... |
ab2rexex 7795 | Existence of a class abstr... |
ab2rexex2 7796 | Existence of an existentia... |
xpexgALT 7797 | Alternate proof of ~ xpexg... |
offval3 7798 | General value of ` ( F oF ... |
offres 7799 | Pointwise combination comm... |
ofmres 7800 | Equivalent expressions for... |
ofmresex 7801 | Existence of a restriction... |
1stval 7806 | The value of the function ... |
2ndval 7807 | The value of the function ... |
1stnpr 7808 | Value of the first-member ... |
2ndnpr 7809 | Value of the second-member... |
1st0 7810 | The value of the first-mem... |
2nd0 7811 | The value of the second-me... |
op1st 7812 | Extract the first member o... |
op2nd 7813 | Extract the second member ... |
op1std 7814 | Extract the first member o... |
op2ndd 7815 | Extract the second member ... |
op1stg 7816 | Extract the first member o... |
op2ndg 7817 | Extract the second member ... |
ot1stg 7818 | Extract the first member o... |
ot2ndg 7819 | Extract the second member ... |
ot3rdg 7820 | Extract the third member o... |
1stval2 7821 | Alternate value of the fun... |
2ndval2 7822 | Alternate value of the fun... |
oteqimp 7823 | The components of an order... |
fo1st 7824 | The ` 1st ` function maps ... |
fo2nd 7825 | The ` 2nd ` function maps ... |
br1steqg 7826 | Uniqueness condition for t... |
br2ndeqg 7827 | Uniqueness condition for t... |
f1stres 7828 | Mapping of a restriction o... |
f2ndres 7829 | Mapping of a restriction o... |
fo1stres 7830 | Onto mapping of a restrict... |
fo2ndres 7831 | Onto mapping of a restrict... |
1st2val 7832 | Value of an alternate defi... |
2nd2val 7833 | Value of an alternate defi... |
1stcof 7834 | Composition of the first m... |
2ndcof 7835 | Composition of the second ... |
xp1st 7836 | Location of the first elem... |
xp2nd 7837 | Location of the second ele... |
elxp6 7838 | Membership in a Cartesian ... |
elxp7 7839 | Membership in a Cartesian ... |
eqopi 7840 | Equality with an ordered p... |
xp2 7841 | Representation of Cartesia... |
unielxp 7842 | The membership relation fo... |
1st2nd2 7843 | Reconstruction of a member... |
1st2ndb 7844 | Reconstruction of an order... |
xpopth 7845 | An ordered pair theorem fo... |
eqop 7846 | Two ways to express equali... |
eqop2 7847 | Two ways to express equali... |
op1steq 7848 | Two ways of expressing tha... |
opreuopreu 7849 | There is a unique ordered ... |
el2xptp 7850 | A member of a nested Carte... |
el2xptp0 7851 | A member of a nested Carte... |
2nd1st 7852 | Swap the members of an ord... |
1st2nd 7853 | Reconstruction of a member... |
1stdm 7854 | The first ordered pair com... |
2ndrn 7855 | The second ordered pair co... |
1st2ndbr 7856 | Express an element of a re... |
releldm2 7857 | Two ways of expressing mem... |
reldm 7858 | An expression for the doma... |
releldmdifi 7859 | One way of expressing memb... |
funfv1st2nd 7860 | The function value for the... |
funelss 7861 | If the first component of ... |
funeldmdif 7862 | Two ways of expressing mem... |
sbcopeq1a 7863 | Equality theorem for subst... |
csbopeq1a 7864 | Equality theorem for subst... |
dfopab2 7865 | A way to define an ordered... |
dfoprab3s 7866 | A way to define an operati... |
dfoprab3 7867 | Operation class abstractio... |
dfoprab4 7868 | Operation class abstractio... |
dfoprab4f 7869 | Operation class abstractio... |
opabex2 7870 | Condition for an operation... |
opabn1stprc 7871 | An ordered-pair class abst... |
opiota 7872 | The property of a uniquely... |
cnvoprab 7873 | The converse of a class ab... |
dfxp3 7874 | Define the Cartesian produ... |
elopabi 7875 | A consequence of membershi... |
eloprabi 7876 | A consequence of membershi... |
mpomptsx 7877 | Express a two-argument fun... |
mpompts 7878 | Express a two-argument fun... |
dmmpossx 7879 | The domain of a mapping is... |
fmpox 7880 | Functionality, domain and ... |
fmpo 7881 | Functionality, domain and ... |
fnmpo 7882 | Functionality and domain o... |
fnmpoi 7883 | Functionality and domain o... |
dmmpo 7884 | Domain of a class given by... |
ovmpoelrn 7885 | An operation's value belon... |
dmmpoga 7886 | Domain of an operation giv... |
dmmpogaOLD 7887 | Obsolete version of ~ dmmp... |
dmmpog 7888 | Domain of an operation giv... |
mpoexxg 7889 | Existence of an operation ... |
mpoexg 7890 | Existence of an operation ... |
mpoexga 7891 | If the domain of an operat... |
mpoexw 7892 | Weak version of ~ mpoex th... |
mpoex 7893 | If the domain of an operat... |
mptmpoopabbrd 7894 | The operation value of a f... |
mptmpoopabovd 7895 | The operation value of a f... |
el2mpocsbcl 7896 | If the operation value of ... |
el2mpocl 7897 | If the operation value of ... |
fnmpoovd 7898 | A function with a Cartesia... |
offval22 7899 | The function operation exp... |
brovpreldm 7900 | If a binary relation holds... |
bropopvvv 7901 | If a binary relation holds... |
bropfvvvvlem 7902 | Lemma for ~ bropfvvvv . (... |
bropfvvvv 7903 | If a binary relation holds... |
ovmptss 7904 | If all the values of the m... |
relmpoopab 7905 | Any function to sets of or... |
fmpoco 7906 | Composition of two functio... |
oprabco 7907 | Composition of a function ... |
oprab2co 7908 | Composition of operator ab... |
df1st2 7909 | An alternate possible defi... |
df2nd2 7910 | An alternate possible defi... |
1stconst 7911 | The mapping of a restricti... |
2ndconst 7912 | The mapping of a restricti... |
dfmpo 7913 | Alternate definition for t... |
mposn 7914 | An operation (in maps-to n... |
curry1 7915 | Composition with ` ``' ( 2... |
curry1val 7916 | The value of a curried fun... |
curry1f 7917 | Functionality of a curried... |
curry2 7918 | Composition with ` ``' ( 1... |
curry2f 7919 | Functionality of a curried... |
curry2val 7920 | The value of a curried fun... |
cnvf1olem 7921 | Lemma for ~ cnvf1o . (Con... |
cnvf1o 7922 | Describe a function that m... |
fparlem1 7923 | Lemma for ~ fpar . (Contr... |
fparlem2 7924 | Lemma for ~ fpar . (Contr... |
fparlem3 7925 | Lemma for ~ fpar . (Contr... |
fparlem4 7926 | Lemma for ~ fpar . (Contr... |
fpar 7927 | Merge two functions in par... |
fsplit 7928 | A function that can be use... |
fsplitOLD 7929 | Obsolete proof of ~ fsplit... |
fsplitfpar 7930 | Merge two functions with a... |
offsplitfpar 7931 | Express the function opera... |
f2ndf 7932 | The ` 2nd ` (second compon... |
fo2ndf 7933 | The ` 2nd ` (second compon... |
f1o2ndf1 7934 | The ` 2nd ` (second compon... |
opco1 7935 | Value of an operation prec... |
opco2 7936 | Value of an operation prec... |
opco1i 7937 | Inference form of ~ opco1 ... |
frxp 7938 | A lexicographical ordering... |
xporderlem 7939 | Lemma for lexicographical ... |
poxp 7940 | A lexicographical ordering... |
soxp 7941 | A lexicographical ordering... |
wexp 7942 | A lexicographical ordering... |
fnwelem 7943 | Lemma for ~ fnwe . (Contr... |
fnwe 7944 | A variant on lexicographic... |
fnse 7945 | Condition for the well-ord... |
fvproj 7946 | Value of a function on ord... |
fimaproj 7947 | Image of a cartesian produ... |
suppval 7950 | The value of the operation... |
supp0prc 7951 | The support of a class is ... |
suppvalbr 7952 | The value of the operation... |
supp0 7953 | The support of the empty s... |
suppval1 7954 | The value of the operation... |
suppvalfng 7955 | The value of the operation... |
suppvalfn 7956 | The value of the operation... |
elsuppfng 7957 | An element of the support ... |
elsuppfn 7958 | An element of the support ... |
cnvimadfsn 7959 | The support of functions "... |
suppimacnvss 7960 | The support of functions "... |
suppimacnv 7961 | Support sets of functions ... |
frnsuppeq 7962 | Two ways of writing the su... |
frnsuppeqg 7963 | Version of ~ frnsuppeq avo... |
suppssdm 7964 | The support of a function ... |
suppsnop 7965 | The support of a singleton... |
snopsuppss 7966 | The support of a singleton... |
fvn0elsupp 7967 | If the function value for ... |
fvn0elsuppb 7968 | The function value for a g... |
rexsupp 7969 | Existential quantification... |
ressuppss 7970 | The support of the restric... |
suppun 7971 | The support of a class/fun... |
ressuppssdif 7972 | The support of the restric... |
mptsuppdifd 7973 | The support of a function ... |
mptsuppd 7974 | The support of a function ... |
extmptsuppeq 7975 | The support of an extended... |
suppfnss 7976 | The support of a function ... |
funsssuppss 7977 | The support of a function ... |
fnsuppres 7978 | Two ways to express restri... |
fnsuppeq0 7979 | The support of a function ... |
fczsupp0 7980 | The support of a constant ... |
suppss 7981 | Show that the support of a... |
suppssOLD 7982 | Obsolete version of ~ supp... |
suppssr 7983 | A function is zero outside... |
suppssrg 7984 | A function is zero outside... |
suppssov1 7985 | Formula building theorem f... |
suppssof1 7986 | Formula building theorem f... |
suppss2 7987 | Show that the support of a... |
suppsssn 7988 | Show that the support of a... |
suppssfv 7989 | Formula building theorem f... |
suppofssd 7990 | Condition for the support ... |
suppofss1d 7991 | Condition for the support ... |
suppofss2d 7992 | Condition for the support ... |
suppco 7993 | The support of the composi... |
suppcoss 7994 | The support of the composi... |
supp0cosupp0 7995 | The support of the composi... |
imacosupp 7996 | The image of the support o... |
opeliunxp2f 7997 | Membership in a union of C... |
mpoxeldm 7998 | If there is an element of ... |
mpoxneldm 7999 | If the first argument of a... |
mpoxopn0yelv 8000 | If there is an element of ... |
mpoxopynvov0g 8001 | If the second argument of ... |
mpoxopxnop0 8002 | If the first argument of a... |
mpoxopx0ov0 8003 | If the first argument of a... |
mpoxopxprcov0 8004 | If the components of the f... |
mpoxopynvov0 8005 | If the second argument of ... |
mpoxopoveq 8006 | Value of an operation give... |
mpoxopovel 8007 | Element of the value of an... |
mpoxopoveqd 8008 | Value of an operation give... |
brovex 8009 | A binary relation of the v... |
brovmpoex 8010 | A binary relation of the v... |
sprmpod 8011 | The extension of a binary ... |
tposss 8014 | Subset theorem for transpo... |
tposeq 8015 | Equality theorem for trans... |
tposeqd 8016 | Equality theorem for trans... |
tposssxp 8017 | The transposition is a sub... |
reltpos 8018 | The transposition is a rel... |
brtpos2 8019 | Value of the transposition... |
brtpos0 8020 | The behavior of ` tpos ` w... |
reldmtpos 8021 | Necessary and sufficient c... |
brtpos 8022 | The transposition swaps ar... |
ottpos 8023 | The transposition swaps th... |
relbrtpos 8024 | The transposition swaps ar... |
dmtpos 8025 | The domain of ` tpos F ` w... |
rntpos 8026 | The range of ` tpos F ` wh... |
tposexg 8027 | The transposition of a set... |
ovtpos 8028 | The transposition swaps th... |
tposfun 8029 | The transposition of a fun... |
dftpos2 8030 | Alternate definition of ` ... |
dftpos3 8031 | Alternate definition of ` ... |
dftpos4 8032 | Alternate definition of ` ... |
tpostpos 8033 | Value of the double transp... |
tpostpos2 8034 | Value of the double transp... |
tposfn2 8035 | The domain of a transposit... |
tposfo2 8036 | Condition for a surjective... |
tposf2 8037 | The domain and range of a ... |
tposf12 8038 | Condition for an injective... |
tposf1o2 8039 | Condition of a bijective t... |
tposfo 8040 | The domain and range of a ... |
tposf 8041 | The domain and range of a ... |
tposfn 8042 | Functionality of a transpo... |
tpos0 8043 | Transposition of the empty... |
tposco 8044 | Transposition of a composi... |
tpossym 8045 | Two ways to say a function... |
tposeqi 8046 | Equality theorem for trans... |
tposex 8047 | A transposition is a set. ... |
nftpos 8048 | Hypothesis builder for tra... |
tposoprab 8049 | Transposition of a class o... |
tposmpo 8050 | Transposition of a two-arg... |
tposconst 8051 | The transposition of a con... |
mpocurryd 8056 | The currying of an operati... |
mpocurryvald 8057 | The value of a curried ope... |
fvmpocurryd 8058 | The value of the value of ... |
pwuninel2 8061 | Direct proof of ~ pwuninel... |
pwuninel 8062 | The power set of the union... |
undefval 8063 | Value of the undefined val... |
undefnel2 8064 | The undefined value genera... |
undefnel 8065 | The undefined value genera... |
undefne0 8066 | The undefined value genera... |
frecseq123 8069 | Equality theorem for the w... |
nffrecs 8070 | Bound-variable hypothesis ... |
csbfrecsg 8071 | Move class substitution in... |
fpr3g 8072 | Functions defined by well-... |
frrlem1 8073 | Lemma for well-founded rec... |
frrlem2 8074 | Lemma for well-founded rec... |
frrlem3 8075 | Lemma for well-founded rec... |
frrlem4 8076 | Lemma for well-founded rec... |
frrlem5 8077 | Lemma for well-founded rec... |
frrlem6 8078 | Lemma for well-founded rec... |
frrlem7 8079 | Lemma for well-founded rec... |
frrlem8 8080 | Lemma for well-founded rec... |
frrlem9 8081 | Lemma for well-founded rec... |
frrlem10 8082 | Lemma for well-founded rec... |
frrlem11 8083 | Lemma for well-founded rec... |
frrlem12 8084 | Lemma for well-founded rec... |
frrlem13 8085 | Lemma for well-founded rec... |
frrlem14 8086 | Lemma for well-founded rec... |
fprlem1 8087 | Lemma for well-founded rec... |
fprlem2 8088 | Lemma for well-founded rec... |
fpr2a 8089 | Weak version of ~ fpr2 whi... |
fpr1 8090 | Law of well-founded recurs... |
fpr2 8091 | Law of well-founded recurs... |
fpr3 8092 | Law of well-founded recurs... |
frrrel 8093 | Show without using the axi... |
frrdmss 8094 | Show without using the axi... |
frrdmcl 8095 | Show without using the axi... |
fprfung 8096 | A "function" defined by we... |
fprresex 8097 | The restriction of a funct... |
dfwrecsOLD 8100 | Obsolete definition of the... |
wrecseq123 8101 | General equality theorem f... |
wrecseq123OLD 8102 | Obsolete proof of ~ wrecse... |
nfwrecs 8103 | Bound-variable hypothesis ... |
nfwrecsOLD 8104 | Obsolete proof of ~ nfwrec... |
wrecseq1 8105 | Equality theorem for the w... |
wrecseq2 8106 | Equality theorem for the w... |
wrecseq3 8107 | Equality theorem for the w... |
csbwrecsg 8108 | Move class substitution in... |
wfr3g 8109 | Functions defined by well-... |
wfrlem1OLD 8110 | Lemma for well-ordered rec... |
wfrlem2OLD 8111 | Lemma for well-ordered rec... |
wfrlem3OLD 8112 | Lemma for well-ordered rec... |
wfrlem3OLDa 8113 | Lemma for well-ordered rec... |
wfrlem4OLD 8114 | Lemma for well-ordered rec... |
wfrlem5OLD 8115 | Lemma for well-ordered rec... |
wfrrelOLD 8116 | Obsolete proof of ~ wfrrel... |
wfrdmssOLD 8117 | Obsolete proof of ~ wfrdms... |
wfrlem8OLD 8118 | Lemma for well-ordered rec... |
wfrdmclOLD 8119 | Obsolete proof of ~ wfrdmc... |
wfrlem10OLD 8120 | Lemma for well-ordered rec... |
wfrfunOLD 8121 | Obsolete proof of ~ wfrfun... |
wfrlem12OLD 8122 | Lemma for well-ordered rec... |
wfrlem13OLD 8123 | Lemma for well-ordered rec... |
wfrlem14OLD 8124 | Lemma for well-ordered rec... |
wfrlem15OLD 8125 | Lemma for well-ordered rec... |
wfrlem16OLD 8126 | Lemma for well-ordered rec... |
wfrlem17OLD 8127 | Without using ~ ax-rep , s... |
wfr2aOLD 8128 | Obsolete proof of ~ wfr2a ... |
wfr1OLD 8129 | Obsolete proof of ~ wfr1 a... |
wfr2OLD 8130 | Obsolete proof of ~ wfr2 a... |
wfrrel 8131 | The well-ordered recursion... |
wfrdmss 8132 | The domain of the well-ord... |
wfrdmcl 8133 | The predecessor class of a... |
wfrfun 8134 | The "function" generated b... |
wfrresex 8135 | Show without using the axi... |
wfr2a 8136 | A weak version of ~ wfr2 w... |
wfr1 8137 | The Principle of Well-Orde... |
wfr2 8138 | The Principle of Well-Orde... |
wfr3 8139 | The principle of Well-Orde... |
wfr3OLD 8140 | Obsolete form of ~ wfr3 as... |
iunon 8141 | The indexed union of a set... |
iinon 8142 | The nonempty indexed inter... |
onfununi 8143 | A property of functions on... |
onovuni 8144 | A variant of ~ onfununi fo... |
onoviun 8145 | A variant of ~ onovuni wit... |
onnseq 8146 | There are no length ` _om ... |
dfsmo2 8149 | Alternate definition of a ... |
issmo 8150 | Conditions for which ` A `... |
issmo2 8151 | Alternate definition of a ... |
smoeq 8152 | Equality theorem for stric... |
smodm 8153 | The domain of a strictly m... |
smores 8154 | A strictly monotone functi... |
smores3 8155 | A strictly monotone functi... |
smores2 8156 | A strictly monotone ordina... |
smodm2 8157 | The domain of a strictly m... |
smofvon2 8158 | The function values of a s... |
iordsmo 8159 | The identity relation rest... |
smo0 8160 | The null set is a strictly... |
smofvon 8161 | If ` B ` is a strictly mon... |
smoel 8162 | If ` x ` is less than ` y ... |
smoiun 8163 | The value of a strictly mo... |
smoiso 8164 | If ` F ` is an isomorphism... |
smoel2 8165 | A strictly monotone ordina... |
smo11 8166 | A strictly monotone ordina... |
smoord 8167 | A strictly monotone ordina... |
smoword 8168 | A strictly monotone ordina... |
smogt 8169 | A strictly monotone ordina... |
smorndom 8170 | The range of a strictly mo... |
smoiso2 8171 | The strictly monotone ordi... |
dfrecs3 8174 | The old definition of tran... |
dfrecs3OLD 8175 | Obsolete proof of ~ dfrecs... |
recseq 8176 | Equality theorem for ` rec... |
nfrecs 8177 | Bound-variable hypothesis ... |
tfrlem1 8178 | A technical lemma for tran... |
tfrlem3a 8179 | Lemma for transfinite recu... |
tfrlem3 8180 | Lemma for transfinite recu... |
tfrlem4 8181 | Lemma for transfinite recu... |
tfrlem5 8182 | Lemma for transfinite recu... |
recsfval 8183 | Lemma for transfinite recu... |
tfrlem6 8184 | Lemma for transfinite recu... |
tfrlem7 8185 | Lemma for transfinite recu... |
tfrlem8 8186 | Lemma for transfinite recu... |
tfrlem9 8187 | Lemma for transfinite recu... |
tfrlem9a 8188 | Lemma for transfinite recu... |
tfrlem10 8189 | Lemma for transfinite recu... |
tfrlem11 8190 | Lemma for transfinite recu... |
tfrlem12 8191 | Lemma for transfinite recu... |
tfrlem13 8192 | Lemma for transfinite recu... |
tfrlem14 8193 | Lemma for transfinite recu... |
tfrlem15 8194 | Lemma for transfinite recu... |
tfrlem16 8195 | Lemma for finite recursion... |
tfr1a 8196 | A weak version of ~ tfr1 w... |
tfr2a 8197 | A weak version of ~ tfr2 w... |
tfr2b 8198 | Without assuming ~ ax-rep ... |
tfr1 8199 | Principle of Transfinite R... |
tfr2 8200 | Principle of Transfinite R... |
tfr3 8201 | Principle of Transfinite R... |
tfr1ALT 8202 | Alternate proof of ~ tfr1 ... |
tfr2ALT 8203 | Alternate proof of ~ tfr2 ... |
tfr3ALT 8204 | Alternate proof of ~ tfr3 ... |
recsfnon 8205 | Strong transfinite recursi... |
recsval 8206 | Strong transfinite recursi... |
tz7.44lem1 8207 | The ordered pair abstracti... |
tz7.44-1 8208 | The value of ` F ` at ` (/... |
tz7.44-2 8209 | The value of ` F ` at a su... |
tz7.44-3 8210 | The value of ` F ` at a li... |
rdgeq1 8213 | Equality theorem for the r... |
rdgeq2 8214 | Equality theorem for the r... |
rdgeq12 8215 | Equality theorem for the r... |
nfrdg 8216 | Bound-variable hypothesis ... |
rdglem1 8217 | Lemma used with the recurs... |
rdgfun 8218 | The recursive definition g... |
rdgdmlim 8219 | The domain of the recursiv... |
rdgfnon 8220 | The recursive definition g... |
rdgvalg 8221 | Value of the recursive def... |
rdgval 8222 | Value of the recursive def... |
rdg0 8223 | The initial value of the r... |
rdgseg 8224 | The initial segments of th... |
rdgsucg 8225 | The value of the recursive... |
rdgsuc 8226 | The value of the recursive... |
rdglimg 8227 | The value of the recursive... |
rdglim 8228 | The value of the recursive... |
rdg0g 8229 | The initial value of the r... |
rdgsucmptf 8230 | The value of the recursive... |
rdgsucmptnf 8231 | The value of the recursive... |
rdgsucmpt2 8232 | This version of ~ rdgsucmp... |
rdgsucmpt 8233 | The value of the recursive... |
rdglim2 8234 | The value of the recursive... |
rdglim2a 8235 | The value of the recursive... |
frfnom 8236 | The function generated by ... |
fr0g 8237 | The initial value resultin... |
frsuc 8238 | The successor value result... |
frsucmpt 8239 | The successor value result... |
frsucmptn 8240 | The value of the finite re... |
frsucmpt2 8241 | The successor value result... |
tz7.48lem 8242 | A way of showing an ordina... |
tz7.48-2 8243 | Proposition 7.48(2) of [Ta... |
tz7.48-1 8244 | Proposition 7.48(1) of [Ta... |
tz7.48-3 8245 | Proposition 7.48(3) of [Ta... |
tz7.49 8246 | Proposition 7.49 of [Takeu... |
tz7.49c 8247 | Corollary of Proposition 7... |
seqomlem0 8250 | Lemma for ` seqom ` . Cha... |
seqomlem1 8251 | Lemma for ` seqom ` . The... |
seqomlem2 8252 | Lemma for ` seqom ` . (Co... |
seqomlem3 8253 | Lemma for ` seqom ` . (Co... |
seqomlem4 8254 | Lemma for ` seqom ` . (Co... |
seqomeq12 8255 | Equality theorem for ` seq... |
fnseqom 8256 | An index-aware recursive d... |
seqom0g 8257 | Value of an index-aware re... |
seqomsuc 8258 | Value of an index-aware re... |
omsucelsucb 8259 | Membership is inherited by... |
1on 8274 | Ordinal 1 is an ordinal nu... |
2on 8275 | Ordinal 2 is an ordinal nu... |
2on0 8276 | Ordinal two is not zero. ... |
3on 8277 | Ordinal 3 is an ordinal nu... |
4on 8278 | Ordinal 3 is an ordinal nu... |
df1o2 8279 | Expanded value of the ordi... |
1oex 8280 | Ordinal 1 is a set. (Cont... |
1oexOLD 8281 | Obsolete version of ~ 1oex... |
df2o3 8282 | Expanded value of the ordi... |
df2o2 8283 | Expanded value of the ordi... |
2oex 8284 | ` 2o ` is a set. (Contrib... |
2oexOLD 8285 | Obsolete version of ~ 2oex... |
1n0 8286 | Ordinal one is not equal t... |
xp01disj 8287 | Cartesian products with th... |
xp01disjl 8288 | Cartesian products with th... |
ordgt0ge1 8289 | Two ways to express that a... |
ordge1n0 8290 | An ordinal greater than or... |
el1o 8291 | Membership in ordinal one.... |
dif1o 8292 | Two ways to say that ` A `... |
ondif1 8293 | Two ways to say that ` A `... |
ondif2 8294 | Two ways to say that ` A `... |
2oconcl 8295 | Closure of the pair swappi... |
0lt1o 8296 | Ordinal zero is less than ... |
dif20el 8297 | An ordinal greater than on... |
0we1 8298 | The empty set is a well-or... |
brwitnlem 8299 | Lemma for relations which ... |
fnoa 8300 | Functionality and domain o... |
fnom 8301 | Functionality and domain o... |
fnoe 8302 | Functionality and domain o... |
oav 8303 | Value of ordinal addition.... |
omv 8304 | Value of ordinal multiplic... |
oe0lem 8305 | A helper lemma for ~ oe0 a... |
oev 8306 | Value of ordinal exponenti... |
oevn0 8307 | Value of ordinal exponenti... |
oa0 8308 | Addition with zero. Propo... |
om0 8309 | Ordinal multiplication wit... |
oe0m 8310 | Value of zero raised to an... |
om0x 8311 | Ordinal multiplication wit... |
oe0m0 8312 | Ordinal exponentiation wit... |
oe0m1 8313 | Ordinal exponentiation wit... |
oe0 8314 | Ordinal exponentiation wit... |
oev2 8315 | Alternate value of ordinal... |
oasuc 8316 | Addition with successor. ... |
oesuclem 8317 | Lemma for ~ oesuc . (Cont... |
omsuc 8318 | Multiplication with succes... |
oesuc 8319 | Ordinal exponentiation wit... |
onasuc 8320 | Addition with successor. ... |
onmsuc 8321 | Multiplication with succes... |
onesuc 8322 | Exponentiation with a succ... |
oa1suc 8323 | Addition with 1 is same as... |
oalim 8324 | Ordinal addition with a li... |
omlim 8325 | Ordinal multiplication wit... |
oelim 8326 | Ordinal exponentiation wit... |
oacl 8327 | Closure law for ordinal ad... |
omcl 8328 | Closure law for ordinal mu... |
oecl 8329 | Closure law for ordinal ex... |
oa0r 8330 | Ordinal addition with zero... |
om0r 8331 | Ordinal multiplication wit... |
o1p1e2 8332 | 1 + 1 = 2 for ordinal numb... |
o2p2e4 8333 | 2 + 2 = 4 for ordinal numb... |
o2p2e4OLD 8334 | Obsolete version of ~ o2p2... |
om1 8335 | Ordinal multiplication wit... |
om1r 8336 | Ordinal multiplication wit... |
oe1 8337 | Ordinal exponentiation wit... |
oe1m 8338 | Ordinal exponentiation wit... |
oaordi 8339 | Ordering property of ordin... |
oaord 8340 | Ordering property of ordin... |
oacan 8341 | Left cancellation law for ... |
oaword 8342 | Weak ordering property of ... |
oawordri 8343 | Weak ordering property of ... |
oaord1 8344 | An ordinal is less than it... |
oaword1 8345 | An ordinal is less than or... |
oaword2 8346 | An ordinal is less than or... |
oawordeulem 8347 | Lemma for ~ oawordex . (C... |
oawordeu 8348 | Existence theorem for weak... |
oawordexr 8349 | Existence theorem for weak... |
oawordex 8350 | Existence theorem for weak... |
oaordex 8351 | Existence theorem for orde... |
oa00 8352 | An ordinal sum is zero iff... |
oalimcl 8353 | The ordinal sum with a lim... |
oaass 8354 | Ordinal addition is associ... |
oarec 8355 | Recursive definition of or... |
oaf1o 8356 | Left addition by a constan... |
oacomf1olem 8357 | Lemma for ~ oacomf1o . (C... |
oacomf1o 8358 | Define a bijection from ` ... |
omordi 8359 | Ordering property of ordin... |
omord2 8360 | Ordering property of ordin... |
omord 8361 | Ordering property of ordin... |
omcan 8362 | Left cancellation law for ... |
omword 8363 | Weak ordering property of ... |
omwordi 8364 | Weak ordering property of ... |
omwordri 8365 | Weak ordering property of ... |
omword1 8366 | An ordinal is less than or... |
omword2 8367 | An ordinal is less than or... |
om00 8368 | The product of two ordinal... |
om00el 8369 | The product of two nonzero... |
omordlim 8370 | Ordering involving the pro... |
omlimcl 8371 | The product of any nonzero... |
odi 8372 | Distributive law for ordin... |
omass 8373 | Multiplication of ordinal ... |
oneo 8374 | If an ordinal number is ev... |
omeulem1 8375 | Lemma for ~ omeu : existen... |
omeulem2 8376 | Lemma for ~ omeu : uniquen... |
omopth2 8377 | An ordered pair-like theor... |
omeu 8378 | The division algorithm for... |
oen0 8379 | Ordinal exponentiation wit... |
oeordi 8380 | Ordering law for ordinal e... |
oeord 8381 | Ordering property of ordin... |
oecan 8382 | Left cancellation law for ... |
oeword 8383 | Weak ordering property of ... |
oewordi 8384 | Weak ordering property of ... |
oewordri 8385 | Weak ordering property of ... |
oeworde 8386 | Ordinal exponentiation com... |
oeordsuc 8387 | Ordering property of ordin... |
oelim2 8388 | Ordinal exponentiation wit... |
oeoalem 8389 | Lemma for ~ oeoa . (Contr... |
oeoa 8390 | Sum of exponents law for o... |
oeoelem 8391 | Lemma for ~ oeoe . (Contr... |
oeoe 8392 | Product of exponents law f... |
oelimcl 8393 | The ordinal exponential wi... |
oeeulem 8394 | Lemma for ~ oeeu . (Contr... |
oeeui 8395 | The division algorithm for... |
oeeu 8396 | The division algorithm for... |
nna0 8397 | Addition with zero. Theor... |
nnm0 8398 | Multiplication with zero. ... |
nnasuc 8399 | Addition with successor. ... |
nnmsuc 8400 | Multiplication with succes... |
nnesuc 8401 | Exponentiation with a succ... |
nna0r 8402 | Addition to zero. Remark ... |
nnm0r 8403 | Multiplication with zero. ... |
nnacl 8404 | Closure of addition of nat... |
nnmcl 8405 | Closure of multiplication ... |
nnecl 8406 | Closure of exponentiation ... |
nnacli 8407 | ` _om ` is closed under ad... |
nnmcli 8408 | ` _om ` is closed under mu... |
nnarcl 8409 | Reverse closure law for ad... |
nnacom 8410 | Addition of natural number... |
nnaordi 8411 | Ordering property of addit... |
nnaord 8412 | Ordering property of addit... |
nnaordr 8413 | Ordering property of addit... |
nnawordi 8414 | Adding to both sides of an... |
nnaass 8415 | Addition of natural number... |
nndi 8416 | Distributive law for natur... |
nnmass 8417 | Multiplication of natural ... |
nnmsucr 8418 | Multiplication with succes... |
nnmcom 8419 | Multiplication of natural ... |
nnaword 8420 | Weak ordering property of ... |
nnacan 8421 | Cancellation law for addit... |
nnaword1 8422 | Weak ordering property of ... |
nnaword2 8423 | Weak ordering property of ... |
nnmordi 8424 | Ordering property of multi... |
nnmord 8425 | Ordering property of multi... |
nnmword 8426 | Weak ordering property of ... |
nnmcan 8427 | Cancellation law for multi... |
nnmwordi 8428 | Weak ordering property of ... |
nnmwordri 8429 | Weak ordering property of ... |
nnawordex 8430 | Equivalence for weak order... |
nnaordex 8431 | Equivalence for ordering. ... |
1onn 8432 | One is a natural number. ... |
2onn 8433 | The ordinal 2 is a natural... |
3onn 8434 | The ordinal 3 is a natural... |
4onn 8435 | The ordinal 4 is a natural... |
1one2o 8436 | Ordinal one is not ordinal... |
oaabslem 8437 | Lemma for ~ oaabs . (Cont... |
oaabs 8438 | Ordinal addition absorbs a... |
oaabs2 8439 | The absorption law ~ oaabs... |
omabslem 8440 | Lemma for ~ omabs . (Cont... |
omabs 8441 | Ordinal multiplication is ... |
nnm1 8442 | Multiply an element of ` _... |
nnm2 8443 | Multiply an element of ` _... |
nn2m 8444 | Multiply an element of ` _... |
nnneo 8445 | If a natural number is eve... |
nneob 8446 | A natural number is even i... |
omsmolem 8447 | Lemma for ~ omsmo . (Cont... |
omsmo 8448 | A strictly monotonic ordin... |
omopthlem1 8449 | Lemma for ~ omopthi . (Co... |
omopthlem2 8450 | Lemma for ~ omopthi . (Co... |
omopthi 8451 | An ordered pair theorem fo... |
omopth 8452 | An ordered pair theorem fo... |
dfer2 8457 | Alternate definition of eq... |
dfec2 8459 | Alternate definition of ` ... |
ecexg 8460 | An equivalence class modul... |
ecexr 8461 | A nonempty equivalence cla... |
ereq1 8463 | Equality theorem for equiv... |
ereq2 8464 | Equality theorem for equiv... |
errel 8465 | An equivalence relation is... |
erdm 8466 | The domain of an equivalen... |
ercl 8467 | Elementhood in the field o... |
ersym 8468 | An equivalence relation is... |
ercl2 8469 | Elementhood in the field o... |
ersymb 8470 | An equivalence relation is... |
ertr 8471 | An equivalence relation is... |
ertrd 8472 | A transitivity relation fo... |
ertr2d 8473 | A transitivity relation fo... |
ertr3d 8474 | A transitivity relation fo... |
ertr4d 8475 | A transitivity relation fo... |
erref 8476 | An equivalence relation is... |
ercnv 8477 | The converse of an equival... |
errn 8478 | The range and domain of an... |
erssxp 8479 | An equivalence relation is... |
erex 8480 | An equivalence relation is... |
erexb 8481 | An equivalence relation is... |
iserd 8482 | A reflexive, symmetric, tr... |
iseri 8483 | A reflexive, symmetric, tr... |
iseriALT 8484 | Alternate proof of ~ iseri... |
brdifun 8485 | Evaluate the incomparabili... |
swoer 8486 | Incomparability under a st... |
swoord1 8487 | The incomparability equiva... |
swoord2 8488 | The incomparability equiva... |
swoso 8489 | If the incomparability rel... |
eqerlem 8490 | Lemma for ~ eqer . (Contr... |
eqer 8491 | Equivalence relation invol... |
ider 8492 | The identity relation is a... |
0er 8493 | The empty set is an equiva... |
eceq1 8494 | Equality theorem for equiv... |
eceq1d 8495 | Equality theorem for equiv... |
eceq2 8496 | Equality theorem for equiv... |
eceq2i 8497 | Equality theorem for the `... |
eceq2d 8498 | Equality theorem for the `... |
elecg 8499 | Membership in an equivalen... |
elec 8500 | Membership in an equivalen... |
relelec 8501 | Membership in an equivalen... |
ecss 8502 | An equivalence class is a ... |
ecdmn0 8503 | A representative of a none... |
ereldm 8504 | Equality of equivalence cl... |
erth 8505 | Basic property of equivale... |
erth2 8506 | Basic property of equivale... |
erthi 8507 | Basic property of equivale... |
erdisj 8508 | Equivalence classes do not... |
ecidsn 8509 | An equivalence class modul... |
qseq1 8510 | Equality theorem for quoti... |
qseq2 8511 | Equality theorem for quoti... |
qseq2i 8512 | Equality theorem for quoti... |
qseq2d 8513 | Equality theorem for quoti... |
qseq12 8514 | Equality theorem for quoti... |
elqsg 8515 | Closed form of ~ elqs . (... |
elqs 8516 | Membership in a quotient s... |
elqsi 8517 | Membership in a quotient s... |
elqsecl 8518 | Membership in a quotient s... |
ecelqsg 8519 | Membership of an equivalen... |
ecelqsi 8520 | Membership of an equivalen... |
ecopqsi 8521 | "Closure" law for equivale... |
qsexg 8522 | A quotient set exists. (C... |
qsex 8523 | A quotient set exists. (C... |
uniqs 8524 | The union of a quotient se... |
qsss 8525 | A quotient set is a set of... |
uniqs2 8526 | The union of a quotient se... |
snec 8527 | The singleton of an equiva... |
ecqs 8528 | Equivalence class in terms... |
ecid 8529 | A set is equal to its cose... |
qsid 8530 | A set is equal to its quot... |
ectocld 8531 | Implicit substitution of c... |
ectocl 8532 | Implicit substitution of c... |
elqsn0 8533 | A quotient set does not co... |
ecelqsdm 8534 | Membership of an equivalen... |
xpider 8535 | A Cartesian square is an e... |
iiner 8536 | The intersection of a none... |
riiner 8537 | The relative intersection ... |
erinxp 8538 | A restricted equivalence r... |
ecinxp 8539 | Restrict the relation in a... |
qsinxp 8540 | Restrict the equivalence r... |
qsdisj 8541 | Members of a quotient set ... |
qsdisj2 8542 | A quotient set is a disjoi... |
qsel 8543 | If an element of a quotien... |
uniinqs 8544 | Class union distributes ov... |
qliftlem 8545 | Lemma for theorems about a... |
qliftrel 8546 | ` F ` , a function lift, i... |
qliftel 8547 | Elementhood in the relatio... |
qliftel1 8548 | Elementhood in the relatio... |
qliftfun 8549 | The function ` F ` is the ... |
qliftfund 8550 | The function ` F ` is the ... |
qliftfuns 8551 | The function ` F ` is the ... |
qliftf 8552 | The domain and range of th... |
qliftval 8553 | The value of the function ... |
ecoptocl 8554 | Implicit substitution of c... |
2ecoptocl 8555 | Implicit substitution of c... |
3ecoptocl 8556 | Implicit substitution of c... |
brecop 8557 | Binary relation on a quoti... |
brecop2 8558 | Binary relation on a quoti... |
eroveu 8559 | Lemma for ~ erov and ~ ero... |
erovlem 8560 | Lemma for ~ erov and ~ ero... |
erov 8561 | The value of an operation ... |
eroprf 8562 | Functionality of an operat... |
erov2 8563 | The value of an operation ... |
eroprf2 8564 | Functionality of an operat... |
ecopoveq 8565 | This is the first of sever... |
ecopovsym 8566 | Assuming the operation ` F... |
ecopovtrn 8567 | Assuming that operation ` ... |
ecopover 8568 | Assuming that operation ` ... |
eceqoveq 8569 | Equality of equivalence re... |
ecovcom 8570 | Lemma used to transfer a c... |
ecovass 8571 | Lemma used to transfer an ... |
ecovdi 8572 | Lemma used to transfer a d... |
mapprc 8577 | When ` A ` is a proper cla... |
pmex 8578 | The class of all partial f... |
mapex 8579 | The class of all functions... |
fnmap 8580 | Set exponentiation has a u... |
fnpm 8581 | Partial function exponenti... |
reldmmap 8582 | Set exponentiation is a we... |
mapvalg 8583 | The value of set exponenti... |
pmvalg 8584 | The value of the partial m... |
mapval 8585 | The value of set exponenti... |
elmapg 8586 | Membership relation for se... |
elmapd 8587 | Deduction form of ~ elmapg... |
mapdm0 8588 | The empty set is the only ... |
elpmg 8589 | The predicate "is a partia... |
elpm2g 8590 | The predicate "is a partia... |
elpm2r 8591 | Sufficient condition for b... |
elpmi 8592 | A partial function is a fu... |
pmfun 8593 | A partial function is a fu... |
elmapex 8594 | Eliminate antecedent for m... |
elmapi 8595 | A mapping is a function, f... |
mapfset 8596 | If ` B ` is a set, the val... |
mapssfset 8597 | The value of the set expon... |
mapfoss 8598 | The value of the set expon... |
fsetsspwxp 8599 | The class of all functions... |
fset0 8600 | The set of functions from ... |
fsetdmprc0 8601 | The set of functions with ... |
fsetex 8602 | The set of functions betwe... |
f1setex 8603 | The set of injections betw... |
fosetex 8604 | The set of surjections bet... |
f1osetex 8605 | The set of bijections betw... |
fsetfcdm 8606 | The class of functions wit... |
fsetfocdm 8607 | The class of functions wit... |
fsetprcnex 8608 | The class of all functions... |
fsetcdmex 8609 | The class of all functions... |
fsetexb 8610 | The class of all functions... |
elmapfn 8611 | A mapping is a function wi... |
elmapfun 8612 | A mapping is always a func... |
elmapssres 8613 | A restricted mapping is a ... |
fpmg 8614 | A total function is a part... |
pmss12g 8615 | Subset relation for the se... |
pmresg 8616 | Elementhood of a restricte... |
elmap 8617 | Membership relation for se... |
mapval2 8618 | Alternate expression for t... |
elpm 8619 | The predicate "is a partia... |
elpm2 8620 | The predicate "is a partia... |
fpm 8621 | A total function is a part... |
mapsspm 8622 | Set exponentiation is a su... |
pmsspw 8623 | Partial maps are a subset ... |
mapsspw 8624 | Set exponentiation is a su... |
mapfvd 8625 | The value of a function th... |
elmapresaun 8626 | ~ fresaun transposed to ma... |
fvmptmap 8627 | Special case of ~ fvmpt fo... |
map0e 8628 | Set exponentiation with an... |
map0b 8629 | Set exponentiation with an... |
map0g 8630 | Set exponentiation is empt... |
0map0sn0 8631 | The set of mappings of the... |
mapsnd 8632 | The value of set exponenti... |
map0 8633 | Set exponentiation is empt... |
mapsn 8634 | The value of set exponenti... |
mapss 8635 | Subset inheritance for set... |
fdiagfn 8636 | Functionality of the diago... |
fvdiagfn 8637 | Functionality of the diago... |
mapsnconst 8638 | Every singleton map is a c... |
mapsncnv 8639 | Expression for the inverse... |
mapsnf1o2 8640 | Explicit bijection between... |
mapsnf1o3 8641 | Explicit bijection in the ... |
ralxpmap 8642 | Quantification over functi... |
dfixp 8645 | Eliminate the expression `... |
ixpsnval 8646 | The value of an infinite C... |
elixp2 8647 | Membership in an infinite ... |
fvixp 8648 | Projection of a factor of ... |
ixpfn 8649 | A nuple is a function. (C... |
elixp 8650 | Membership in an infinite ... |
elixpconst 8651 | Membership in an infinite ... |
ixpconstg 8652 | Infinite Cartesian product... |
ixpconst 8653 | Infinite Cartesian product... |
ixpeq1 8654 | Equality theorem for infin... |
ixpeq1d 8655 | Equality theorem for infin... |
ss2ixp 8656 | Subclass theorem for infin... |
ixpeq2 8657 | Equality theorem for infin... |
ixpeq2dva 8658 | Equality theorem for infin... |
ixpeq2dv 8659 | Equality theorem for infin... |
cbvixp 8660 | Change bound variable in a... |
cbvixpv 8661 | Change bound variable in a... |
nfixpw 8662 | Bound-variable hypothesis ... |
nfixp 8663 | Bound-variable hypothesis ... |
nfixp1 8664 | The index variable in an i... |
ixpprc 8665 | A cartesian product of pro... |
ixpf 8666 | A member of an infinite Ca... |
uniixp 8667 | The union of an infinite C... |
ixpexg 8668 | The existence of an infini... |
ixpin 8669 | The intersection of two in... |
ixpiin 8670 | The indexed intersection o... |
ixpint 8671 | The intersection of a coll... |
ixp0x 8672 | An infinite Cartesian prod... |
ixpssmap2g 8673 | An infinite Cartesian prod... |
ixpssmapg 8674 | An infinite Cartesian prod... |
0elixp 8675 | Membership of the empty se... |
ixpn0 8676 | The infinite Cartesian pro... |
ixp0 8677 | The infinite Cartesian pro... |
ixpssmap 8678 | An infinite Cartesian prod... |
resixp 8679 | Restriction of an element ... |
undifixp 8680 | Union of two projections o... |
mptelixpg 8681 | Condition for an explicit ... |
resixpfo 8682 | Restriction of elements of... |
elixpsn 8683 | Membership in a class of s... |
ixpsnf1o 8684 | A bijection between a clas... |
mapsnf1o 8685 | A bijection between a set ... |
boxriin 8686 | A rectangular subset of a ... |
boxcutc 8687 | The relative complement of... |
relen 8696 | Equinumerosity is a relati... |
reldom 8697 | Dominance is a relation. ... |
relsdom 8698 | Strict dominance is a rela... |
encv 8699 | If two classes are equinum... |
breng 8700 | Equinumerosity relation. ... |
bren 8701 | Equinumerosity relation. ... |
brenOLD 8702 | Obsolete version of ~ bren... |
brdomg 8703 | Dominance relation. (Cont... |
brdomi 8704 | Dominance relation. (Cont... |
brdom 8705 | Dominance relation. (Cont... |
domen 8706 | Dominance in terms of equi... |
domeng 8707 | Dominance in terms of equi... |
ctex 8708 | A countable set is a set. ... |
f1oen3g 8709 | The domain and range of a ... |
f1dom3g 8710 | The domain of a one-to-one... |
f1oen2g 8711 | The domain and range of a ... |
f1dom2g 8712 | The domain of a one-to-one... |
f1dom2gOLD 8713 | Obsolete version of ~ f1do... |
f1oeng 8714 | The domain and range of a ... |
f1domg 8715 | The domain of a one-to-one... |
f1oen 8716 | The domain and range of a ... |
f1dom 8717 | The domain of a one-to-one... |
brsdom 8718 | Strict dominance relation,... |
isfi 8719 | Express " ` A ` is finite"... |
enssdom 8720 | Equinumerosity implies dom... |
dfdom2 8721 | Alternate definition of do... |
endom 8722 | Equinumerosity implies dom... |
sdomdom 8723 | Strict dominance implies d... |
sdomnen 8724 | Strict dominance implies n... |
brdom2 8725 | Dominance in terms of stri... |
bren2 8726 | Equinumerosity expressed i... |
enrefg 8727 | Equinumerosity is reflexiv... |
enref 8728 | Equinumerosity is reflexiv... |
eqeng 8729 | Equality implies equinumer... |
domrefg 8730 | Dominance is reflexive. (... |
en2d 8731 | Equinumerosity inference f... |
en3d 8732 | Equinumerosity inference f... |
en2i 8733 | Equinumerosity inference f... |
en3i 8734 | Equinumerosity inference f... |
dom2lem 8735 | A mapping (first hypothesi... |
dom2d 8736 | A mapping (first hypothesi... |
dom3d 8737 | A mapping (first hypothesi... |
dom2 8738 | A mapping (first hypothesi... |
dom3 8739 | A mapping (first hypothesi... |
idssen 8740 | Equality implies equinumer... |
ssdomg 8741 | A set dominates its subset... |
ener 8742 | Equinumerosity is an equiv... |
ensymb 8743 | Symmetry of equinumerosity... |
ensym 8744 | Symmetry of equinumerosity... |
ensymi 8745 | Symmetry of equinumerosity... |
ensymd 8746 | Symmetry of equinumerosity... |
entr 8747 | Transitivity of equinumero... |
domtr 8748 | Transitivity of dominance ... |
entri 8749 | A chained equinumerosity i... |
entr2i 8750 | A chained equinumerosity i... |
entr3i 8751 | A chained equinumerosity i... |
entr4i 8752 | A chained equinumerosity i... |
endomtr 8753 | Transitivity of equinumero... |
domentr 8754 | Transitivity of dominance ... |
f1imaeng 8755 | If a function is one-to-on... |
f1imaen2g 8756 | If a function is one-to-on... |
f1imaen 8757 | If a function is one-to-on... |
en0 8758 | The empty set is equinumer... |
en0OLD 8759 | Obsolete version of ~ en0 ... |
en0ALT 8760 | Shorter proof of ~ en0 , d... |
ensn1 8761 | A singleton is equinumerou... |
ensn1OLD 8762 | Obsolete version of ~ ensn... |
ensn1g 8763 | A singleton is equinumerou... |
enpr1g 8764 | ` { A , A } ` has only one... |
en1 8765 | A set is equinumerous to o... |
en1OLD 8766 | Obsolete version of ~ en1 ... |
en1b 8767 | A set is equinumerous to o... |
en1bOLD 8768 | Obsolete version of ~ en1b... |
reuen1 8769 | Two ways to express "exact... |
euen1 8770 | Two ways to express "exact... |
euen1b 8771 | Two ways to express " ` A ... |
en1uniel 8772 | A singleton contains its s... |
en1unielOLD 8773 | Obsolete version of ~ en1u... |
2dom 8774 | A set that dominates ordin... |
fundmen 8775 | A function is equinumerous... |
fundmeng 8776 | A function is equinumerous... |
cnven 8777 | A relational set is equinu... |
cnvct 8778 | If a set is countable, so ... |
fndmeng 8779 | A function is equinumerate... |
mapsnend 8780 | Set exponentiation to a si... |
mapsnen 8781 | Set exponentiation to a si... |
snmapen 8782 | Set exponentiation: a sing... |
snmapen1 8783 | Set exponentiation: a sing... |
map1 8784 | Set exponentiation: ordina... |
en2sn 8785 | Two singletons are equinum... |
en2snOLD 8786 | Obsolete version of ~ en2s... |
en2snOLDOLD 8787 | Obsolete version of ~ en2s... |
snfi 8788 | A singleton is finite. (C... |
fiprc 8789 | The class of finite sets i... |
unen 8790 | Equinumerosity of union of... |
enrefnn 8791 | Equinumerosity is reflexiv... |
enpr2d 8792 | A pair with distinct eleme... |
ssct 8793 | Any subset of a countable ... |
difsnen 8794 | All decrements of a set ar... |
domdifsn 8795 | Dominance over a set with ... |
xpsnen 8796 | A set is equinumerous to i... |
xpsneng 8797 | A set is equinumerous to i... |
xp1en 8798 | One times a cardinal numbe... |
endisj 8799 | Any two sets are equinumer... |
undom 8800 | Dominance law for union. ... |
xpcomf1o 8801 | The canonical bijection fr... |
xpcomco 8802 | Composition with the bijec... |
xpcomen 8803 | Commutative law for equinu... |
xpcomeng 8804 | Commutative law for equinu... |
xpsnen2g 8805 | A set is equinumerous to i... |
xpassen 8806 | Associative law for equinu... |
xpdom2 8807 | Dominance law for Cartesia... |
xpdom2g 8808 | Dominance law for Cartesia... |
xpdom1g 8809 | Dominance law for Cartesia... |
xpdom3 8810 | A set is dominated by its ... |
xpdom1 8811 | Dominance law for Cartesia... |
domunsncan 8812 | A singleton cancellation l... |
omxpenlem 8813 | Lemma for ~ omxpen . (Con... |
omxpen 8814 | The cardinal and ordinal p... |
omf1o 8815 | Construct an explicit bije... |
pw2f1olem 8816 | Lemma for ~ pw2f1o . (Con... |
pw2f1o 8817 | The power set of a set is ... |
pw2eng 8818 | The power set of a set is ... |
pw2en 8819 | The power set of a set is ... |
fopwdom 8820 | Covering implies injection... |
enfixsn 8821 | Given two equipollent sets... |
sucdom2 8822 | Strict dominance of a set ... |
sbthlem1 8823 | Lemma for ~ sbth . (Contr... |
sbthlem2 8824 | Lemma for ~ sbth . (Contr... |
sbthlem3 8825 | Lemma for ~ sbth . (Contr... |
sbthlem4 8826 | Lemma for ~ sbth . (Contr... |
sbthlem5 8827 | Lemma for ~ sbth . (Contr... |
sbthlem6 8828 | Lemma for ~ sbth . (Contr... |
sbthlem7 8829 | Lemma for ~ sbth . (Contr... |
sbthlem8 8830 | Lemma for ~ sbth . (Contr... |
sbthlem9 8831 | Lemma for ~ sbth . (Contr... |
sbthlem10 8832 | Lemma for ~ sbth . (Contr... |
sbth 8833 | Schroeder-Bernstein Theore... |
sbthb 8834 | Schroeder-Bernstein Theore... |
sbthcl 8835 | Schroeder-Bernstein Theore... |
dfsdom2 8836 | Alternate definition of st... |
brsdom2 8837 | Alternate definition of st... |
sdomnsym 8838 | Strict dominance is asymme... |
domnsym 8839 | Theorem 22(i) of [Suppes] ... |
0domg 8840 | Any set dominates the empt... |
dom0 8841 | A set dominated by the emp... |
0sdomg 8842 | A set strictly dominates t... |
0dom 8843 | Any set dominates the empt... |
0sdom 8844 | A set strictly dominates t... |
sdom0 8845 | The empty set does not str... |
sdomdomtr 8846 | Transitivity of strict dom... |
sdomentr 8847 | Transitivity of strict dom... |
domsdomtr 8848 | Transitivity of dominance ... |
ensdomtr 8849 | Transitivity of equinumero... |
sdomirr 8850 | Strict dominance is irrefl... |
sdomtr 8851 | Strict dominance is transi... |
sdomn2lp 8852 | Strict dominance has no 2-... |
enen1 8853 | Equality-like theorem for ... |
enen2 8854 | Equality-like theorem for ... |
domen1 8855 | Equality-like theorem for ... |
domen2 8856 | Equality-like theorem for ... |
sdomen1 8857 | Equality-like theorem for ... |
sdomen2 8858 | Equality-like theorem for ... |
domtriord 8859 | Dominance is trichotomous ... |
sdomel 8860 | For ordinals, strict domin... |
sdomdif 8861 | The difference of a set fr... |
onsdominel 8862 | An ordinal with more eleme... |
domunsn 8863 | Dominance over a set with ... |
fodomr 8864 | There exists a mapping fro... |
pwdom 8865 | Injection of sets implies ... |
canth2 8866 | Cantor's Theorem. No set ... |
canth2g 8867 | Cantor's theorem with the ... |
2pwuninel 8868 | The power set of the power... |
2pwne 8869 | No set equals the power se... |
disjen 8870 | A stronger form of ~ pwuni... |
disjenex 8871 | Existence version of ~ dis... |
domss2 8872 | A corollary of ~ disjenex ... |
domssex2 8873 | A corollary of ~ disjenex ... |
domssex 8874 | Weakening of ~ domssex2 to... |
xpf1o 8875 | Construct a bijection on a... |
xpen 8876 | Equinumerosity law for Car... |
mapen 8877 | Two set exponentiations ar... |
mapdom1 8878 | Order-preserving property ... |
mapxpen 8879 | Equinumerosity law for dou... |
xpmapenlem 8880 | Lemma for ~ xpmapen . (Co... |
xpmapen 8881 | Equinumerosity law for set... |
mapunen 8882 | Equinumerosity law for set... |
map2xp 8883 | A cardinal power with expo... |
mapdom2 8884 | Order-preserving property ... |
mapdom3 8885 | Set exponentiation dominat... |
pwen 8886 | If two sets are equinumero... |
ssenen 8887 | Equinumerosity of equinume... |
limenpsi 8888 | A limit ordinal is equinum... |
limensuci 8889 | A limit ordinal is equinum... |
limensuc 8890 | A limit ordinal is equinum... |
infensuc 8891 | Any infinite ordinal is eq... |
phplem1 8892 | Lemma for Pigeonhole Princ... |
phplem2 8893 | Lemma for Pigeonhole Princ... |
phplem3 8894 | Lemma for Pigeonhole Princ... |
phplem4 8895 | Lemma for Pigeonhole Princ... |
nneneq 8896 | Two equinumerous natural n... |
php 8897 | Pigeonhole Principle. A n... |
php2 8898 | Corollary of Pigeonhole Pr... |
php3 8899 | Corollary of Pigeonhole Pr... |
php4 8900 | Corollary of the Pigeonhol... |
php5 8901 | Corollary of the Pigeonhol... |
phpeqd 8902 | Corollary of the Pigeonhol... |
snnen2o 8903 | A singleton ` { A } ` is n... |
nndomog 8904 | Cardinal ordering agrees w... |
dif1enlem 8905 | Lemma for ~ rexdif1en and ... |
rexdif1en 8906 | If a set is equinumerous t... |
dif1en 8907 | If a set ` A ` is equinume... |
findcard 8908 | Schema for induction on th... |
findcard2 8909 | Schema for induction on th... |
findcard2s 8910 | Variation of ~ findcard2 r... |
findcard2d 8911 | Deduction version of ~ fin... |
nnfi 8912 | Natural numbers are finite... |
pssnn 8913 | A proper subset of a natur... |
ssnnfi 8914 | A subset of a natural numb... |
ssnnfiOLD 8915 | Obsolete version of ~ ssnn... |
0fin 8916 | The empty set is finite. ... |
unfi 8917 | The union of two finite se... |
ssfi 8918 | A subset of a finite set i... |
ssfiALT 8919 | Shorter proof of ~ ssfi us... |
imafi 8920 | Images of finite sets are ... |
pwfir 8921 | If the power set of a set ... |
pwfilem 8922 | Lemma for ~ pwfi . (Contr... |
pwfi 8923 | The power set of a finite ... |
cnvfi 8924 | If a set is finite, its co... |
fnfi 8925 | A version of ~ fnex for fi... |
f1oenfi 8926 | If the domain of a one-to-... |
f1oenfirn 8927 | If the range of a one-to-o... |
f1domfi 8928 | If the codomain of a one-t... |
enreffi 8929 | Equinumerosity is reflexiv... |
ensymfib 8930 | Symmetry of equinumerosity... |
entrfil 8931 | Transitivity of equinumero... |
enfii 8932 | A set equinumerous to a fi... |
enfi 8933 | Equinumerous sets have the... |
enfiALT 8934 | Shorter proof of ~ enfi us... |
domfi 8935 | A set dominated by a finit... |
entrfi 8936 | Transitivity of equinumero... |
entrfir 8937 | Transitivity of equinumero... |
domtrfi 8938 | Transitivity of dominance ... |
f1imaenfi 8939 | If a function is one-to-on... |
ssdomfi 8940 | A finite set dominates its... |
sbthfilem 8941 | Lemma for ~ sbthfi . (Con... |
sbthfi 8942 | Schroeder-Bernstein Theore... |
onomeneq 8943 | An ordinal number equinume... |
onfin 8944 | An ordinal number is finit... |
onfin2 8945 | A set is a natural number ... |
nnfiOLD 8946 | Obsolete version of ~ nnfi... |
nndomo 8947 | Cardinal ordering agrees w... |
nnsdomo 8948 | Cardinal ordering agrees w... |
sucdom 8949 | Strict dominance of a set ... |
0sdom1dom 8950 | Strict dominance over zero... |
1sdom2 8951 | Ordinal 1 is strictly domi... |
sdom1 8952 | A set has less than one me... |
modom 8953 | Two ways to express "at mo... |
modom2 8954 | Two ways to express "at mo... |
1sdom 8955 | A set that strictly domina... |
unxpdomlem1 8956 | Lemma for ~ unxpdom . (Tr... |
unxpdomlem2 8957 | Lemma for ~ unxpdom . (Co... |
unxpdomlem3 8958 | Lemma for ~ unxpdom . (Co... |
unxpdom 8959 | Cartesian product dominate... |
unxpdom2 8960 | Corollary of ~ unxpdom . ... |
sucxpdom 8961 | Cartesian product dominate... |
pssinf 8962 | A set equinumerous to a pr... |
fisseneq 8963 | A finite set is equal to i... |
ominf 8964 | The set of natural numbers... |
isinf 8965 | Any set that is not finite... |
fineqvlem 8966 | Lemma for ~ fineqv . (Con... |
fineqv 8967 | If the Axiom of Infinity i... |
enfiiOLD 8968 | Obsolete version of ~ enfi... |
pssnnOLD 8969 | Obsolete version of ~ pssn... |
xpfir 8970 | The components of a nonemp... |
ssfid 8971 | A subset of a finite set i... |
infi 8972 | The intersection of two se... |
rabfi 8973 | A restricted class built f... |
finresfin 8974 | The restriction of a finit... |
f1finf1o 8975 | Any injection from one fin... |
nfielex 8976 | If a class is not finite, ... |
en1eqsn 8977 | A set with one element is ... |
en1eqsnbi 8978 | A set containing an elemen... |
diffi 8979 | If ` A ` is finite, ` ( A ... |
dif1enALT 8980 | Alternate proof of ~ dif1e... |
enp1ilem 8981 | Lemma for uses of ~ enp1i ... |
enp1i 8982 | Proof induction for ~ en2i... |
en2 8983 | A set equinumerous to ordi... |
en3 8984 | A set equinumerous to ordi... |
en4 8985 | A set equinumerous to ordi... |
findcard2OLD 8986 | Obsolete version of ~ find... |
findcard3 8987 | Schema for strong inductio... |
ac6sfi 8988 | A version of ~ ac6s for fi... |
frfi 8989 | A partial order is well-fo... |
fimax2g 8990 | A finite set has a maximum... |
fimaxg 8991 | A finite set has a maximum... |
fisupg 8992 | Lemma showing existence an... |
wofi 8993 | A total order on a finite ... |
ordunifi 8994 | The maximum of a finite co... |
nnunifi 8995 | The union (supremum) of a ... |
unblem1 8996 | Lemma for ~ unbnn . After... |
unblem2 8997 | Lemma for ~ unbnn . The v... |
unblem3 8998 | Lemma for ~ unbnn . The v... |
unblem4 8999 | Lemma for ~ unbnn . The f... |
unbnn 9000 | Any unbounded subset of na... |
unbnn2 9001 | Version of ~ unbnn that do... |
isfinite2 9002 | Any set strictly dominated... |
nnsdomg 9003 | Omega strictly dominates a... |
isfiniteg 9004 | A set is finite iff it is ... |
infsdomnn 9005 | An infinite set strictly d... |
infn0 9006 | An infinite set is not emp... |
fin2inf 9007 | This (useless) theorem, wh... |
unfilem1 9008 | Lemma for proving that the... |
unfilem2 9009 | Lemma for proving that the... |
unfilem3 9010 | Lemma for proving that the... |
unfiOLD 9011 | Obsolete version of ~ unfi... |
unfir 9012 | If a union is finite, the ... |
unfi2 9013 | The union of two finite se... |
difinf 9014 | An infinite set ` A ` minu... |
xpfi 9015 | The Cartesian product of t... |
3xpfi 9016 | The Cartesian product of t... |
domunfican 9017 | A finite set union cancell... |
infcntss 9018 | Every infinite set has a d... |
prfi 9019 | An unordered pair is finit... |
tpfi 9020 | An unordered triple is fin... |
fiint 9021 | Equivalent ways of stating... |
fodomfi 9022 | An onto function implies d... |
fodomfib 9023 | Equivalence of an onto map... |
fofinf1o 9024 | Any surjection from one fi... |
rneqdmfinf1o 9025 | Any function from a finite... |
fidomdm 9026 | Any finite set dominates i... |
dmfi 9027 | The domain of a finite set... |
fundmfibi 9028 | A function is finite if an... |
resfnfinfin 9029 | The restriction of a funct... |
residfi 9030 | A restricted identity func... |
cnvfiALT 9031 | Shorter proof of ~ cnvfi u... |
rnfi 9032 | The range of a finite set ... |
f1dmvrnfibi 9033 | A one-to-one function whos... |
f1vrnfibi 9034 | A one-to-one function whic... |
fofi 9035 | If a function has a finite... |
f1fi 9036 | If a 1-to-1 function has a... |
iunfi 9037 | The finite union of finite... |
unifi 9038 | The finite union of finite... |
unifi2 9039 | The finite union of finite... |
infssuni 9040 | If an infinite set ` A ` i... |
unirnffid 9041 | The union of the range of ... |
imafiALT 9042 | Shorter proof of ~ imafi u... |
pwfilemOLD 9043 | Obsolete version of ~ pwfi... |
pwfiOLD 9044 | Obsolete version of ~ pwfi... |
mapfi 9045 | Set exponentiation of fini... |
ixpfi 9046 | A Cartesian product of fin... |
ixpfi2 9047 | A Cartesian product of fin... |
mptfi 9048 | A finite mapping set is fi... |
abrexfi 9049 | An image set from a finite... |
cnvimamptfin 9050 | A preimage of a mapping wi... |
elfpw 9051 | Membership in a class of f... |
unifpw 9052 | A set is the union of its ... |
f1opwfi 9053 | A one-to-one mapping induc... |
fissuni 9054 | A finite subset of a union... |
fipreima 9055 | Given a finite subset ` A ... |
finsschain 9056 | A finite subset of the uni... |
indexfi 9057 | If for every element of a ... |
relfsupp 9060 | The property of a function... |
relprcnfsupp 9061 | A proper class is never fi... |
isfsupp 9062 | The property of a class to... |
funisfsupp 9063 | The property of a function... |
fsuppimp 9064 | Implications of a class be... |
fsuppimpd 9065 | A finitely supported funct... |
fisuppfi 9066 | A function on a finite set... |
fdmfisuppfi 9067 | The support of a function ... |
fdmfifsupp 9068 | A function with a finite d... |
fsuppmptdm 9069 | A mapping with a finite do... |
fndmfisuppfi 9070 | The support of a function ... |
fndmfifsupp 9071 | A function with a finite d... |
suppeqfsuppbi 9072 | If two functions have the ... |
suppssfifsupp 9073 | If the support of a functi... |
fsuppsssupp 9074 | If the support of a functi... |
fsuppxpfi 9075 | The cartesian product of t... |
fczfsuppd 9076 | A constant function with v... |
fsuppun 9077 | The union of two finitely ... |
fsuppunfi 9078 | The union of the support o... |
fsuppunbi 9079 | If the union of two classe... |
0fsupp 9080 | The empty set is a finitel... |
snopfsupp 9081 | A singleton containing an ... |
funsnfsupp 9082 | Finite support for a funct... |
fsuppres 9083 | The restriction of a finit... |
ressuppfi 9084 | If the support of the rest... |
resfsupp 9085 | If the restriction of a fu... |
resfifsupp 9086 | The restriction of a funct... |
frnfsuppbi 9087 | Two ways of saying that a ... |
fsuppmptif 9088 | A function mapping an argu... |
sniffsupp 9089 | A function mapping all but... |
fsuppcolem 9090 | Lemma for ~ fsuppco . For... |
fsuppco 9091 | The composition of a 1-1 f... |
fsuppco2 9092 | The composition of a funct... |
fsuppcor 9093 | The composition of a funct... |
mapfienlem1 9094 | Lemma 1 for ~ mapfien . (... |
mapfienlem2 9095 | Lemma 2 for ~ mapfien . (... |
mapfienlem3 9096 | Lemma 3 for ~ mapfien . (... |
mapfien 9097 | A bijection of the base se... |
mapfien2 9098 | Equinumerousity relation f... |
fival 9101 | The set of all the finite ... |
elfi 9102 | Specific properties of an ... |
elfi2 9103 | The empty intersection nee... |
elfir 9104 | Sufficient condition for a... |
intrnfi 9105 | Sufficient condition for t... |
iinfi 9106 | An indexed intersection of... |
inelfi 9107 | The intersection of two se... |
ssfii 9108 | Any element of a set ` A `... |
fi0 9109 | The set of finite intersec... |
fieq0 9110 | A set is empty iff the cla... |
fiin 9111 | The elements of ` ( fi `` ... |
dffi2 9112 | The set of finite intersec... |
fiss 9113 | Subset relationship for fu... |
inficl 9114 | A set which is closed unde... |
fipwuni 9115 | The set of finite intersec... |
fisn 9116 | A singleton is closed unde... |
fiuni 9117 | The union of the finite in... |
fipwss 9118 | If a set is a family of su... |
elfiun 9119 | A finite intersection of e... |
dffi3 9120 | The set of finite intersec... |
fifo 9121 | Describe a surjection from... |
marypha1lem 9122 | Core induction for Philip ... |
marypha1 9123 | (Philip) Hall's marriage t... |
marypha2lem1 9124 | Lemma for ~ marypha2 . Pr... |
marypha2lem2 9125 | Lemma for ~ marypha2 . Pr... |
marypha2lem3 9126 | Lemma for ~ marypha2 . Pr... |
marypha2lem4 9127 | Lemma for ~ marypha2 . Pr... |
marypha2 9128 | Version of ~ marypha1 usin... |
dfsup2 9133 | Quantifier-free definition... |
supeq1 9134 | Equality theorem for supre... |
supeq1d 9135 | Equality deduction for sup... |
supeq1i 9136 | Equality inference for sup... |
supeq2 9137 | Equality theorem for supre... |
supeq3 9138 | Equality theorem for supre... |
supeq123d 9139 | Equality deduction for sup... |
nfsup 9140 | Hypothesis builder for sup... |
supmo 9141 | Any class ` B ` has at mos... |
supexd 9142 | A supremum is a set. (Con... |
supeu 9143 | A supremum is unique. Sim... |
supval2 9144 | Alternate expression for t... |
eqsup 9145 | Sufficient condition for a... |
eqsupd 9146 | Sufficient condition for a... |
supcl 9147 | A supremum belongs to its ... |
supub 9148 | A supremum is an upper bou... |
suplub 9149 | A supremum is the least up... |
suplub2 9150 | Bidirectional form of ~ su... |
supnub 9151 | An upper bound is not less... |
supex 9152 | A supremum is a set. (Con... |
sup00 9153 | The supremum under an empt... |
sup0riota 9154 | The supremum of an empty s... |
sup0 9155 | The supremum of an empty s... |
supmax 9156 | The greatest element of a ... |
fisup2g 9157 | A finite set satisfies the... |
fisupcl 9158 | A nonempty finite set cont... |
supgtoreq 9159 | The supremum of a finite s... |
suppr 9160 | The supremum of a pair. (... |
supsn 9161 | The supremum of a singleto... |
supisolem 9162 | Lemma for ~ supiso . (Con... |
supisoex 9163 | Lemma for ~ supiso . (Con... |
supiso 9164 | Image of a supremum under ... |
infeq1 9165 | Equality theorem for infim... |
infeq1d 9166 | Equality deduction for inf... |
infeq1i 9167 | Equality inference for inf... |
infeq2 9168 | Equality theorem for infim... |
infeq3 9169 | Equality theorem for infim... |
infeq123d 9170 | Equality deduction for inf... |
nfinf 9171 | Hypothesis builder for inf... |
infexd 9172 | An infimum is a set. (Con... |
eqinf 9173 | Sufficient condition for a... |
eqinfd 9174 | Sufficient condition for a... |
infval 9175 | Alternate expression for t... |
infcllem 9176 | Lemma for ~ infcl , ~ infl... |
infcl 9177 | An infimum belongs to its ... |
inflb 9178 | An infimum is a lower boun... |
infglb 9179 | An infimum is the greatest... |
infglbb 9180 | Bidirectional form of ~ in... |
infnlb 9181 | A lower bound is not great... |
infex 9182 | An infimum is a set. (Con... |
infmin 9183 | The smallest element of a ... |
infmo 9184 | Any class ` B ` has at mos... |
infeu 9185 | An infimum is unique. (Co... |
fimin2g 9186 | A finite set has a minimum... |
fiming 9187 | A finite set has a minimum... |
fiinfg 9188 | Lemma showing existence an... |
fiinf2g 9189 | A finite set satisfies the... |
fiinfcl 9190 | A nonempty finite set cont... |
infltoreq 9191 | The infimum of a finite se... |
infpr 9192 | The infimum of a pair. (C... |
infsupprpr 9193 | The infimum of a proper pa... |
infsn 9194 | The infimum of a singleton... |
inf00 9195 | The infimum regarding an e... |
infempty 9196 | The infimum of an empty se... |
infiso 9197 | Image of an infimum under ... |
dfoi 9200 | Rewrite ~ df-oi with abbre... |
oieq1 9201 | Equality theorem for ordin... |
oieq2 9202 | Equality theorem for ordin... |
nfoi 9203 | Hypothesis builder for ord... |
ordiso2 9204 | Generalize ~ ordiso to pro... |
ordiso 9205 | Order-isomorphic ordinal n... |
ordtypecbv 9206 | Lemma for ~ ordtype . (Co... |
ordtypelem1 9207 | Lemma for ~ ordtype . (Co... |
ordtypelem2 9208 | Lemma for ~ ordtype . (Co... |
ordtypelem3 9209 | Lemma for ~ ordtype . (Co... |
ordtypelem4 9210 | Lemma for ~ ordtype . (Co... |
ordtypelem5 9211 | Lemma for ~ ordtype . (Co... |
ordtypelem6 9212 | Lemma for ~ ordtype . (Co... |
ordtypelem7 9213 | Lemma for ~ ordtype . ` ra... |
ordtypelem8 9214 | Lemma for ~ ordtype . (Co... |
ordtypelem9 9215 | Lemma for ~ ordtype . Eit... |
ordtypelem10 9216 | Lemma for ~ ordtype . Usi... |
oi0 9217 | Definition of the ordinal ... |
oicl 9218 | The order type of the well... |
oif 9219 | The order isomorphism of t... |
oiiso2 9220 | The order isomorphism of t... |
ordtype 9221 | For any set-like well-orde... |
oiiniseg 9222 | ` ran F ` is an initial se... |
ordtype2 9223 | For any set-like well-orde... |
oiexg 9224 | The order isomorphism on a... |
oion 9225 | The order type of the well... |
oiiso 9226 | The order isomorphism of t... |
oien 9227 | The order type of a well-o... |
oieu 9228 | Uniqueness of the unique o... |
oismo 9229 | When ` A ` is a subclass o... |
oiid 9230 | The order type of an ordin... |
hartogslem1 9231 | Lemma for ~ hartogs . (Co... |
hartogslem2 9232 | Lemma for ~ hartogs . (Co... |
hartogs 9233 | The class of ordinals domi... |
wofib 9234 | The only sets which are we... |
wemaplem1 9235 | Value of the lexicographic... |
wemaplem2 9236 | Lemma for ~ wemapso . Tra... |
wemaplem3 9237 | Lemma for ~ wemapso . Tra... |
wemappo 9238 | Construct lexicographic or... |
wemapsolem 9239 | Lemma for ~ wemapso . (Co... |
wemapso 9240 | Construct lexicographic or... |
wemapso2lem 9241 | Lemma for ~ wemapso2 . (C... |
wemapso2 9242 | An alternative to having a... |
card2on 9243 | The alternate definition o... |
card2inf 9244 | The alternate definition o... |
harf 9247 | Functionality of the Harto... |
harcl 9248 | Values of the Hartogs func... |
harval 9249 | Function value of the Hart... |
elharval 9250 | The Hartogs number of a se... |
harndom 9251 | The Hartogs number of a se... |
harword 9252 | Weak ordering property of ... |
relwdom 9255 | Weak dominance is a relati... |
brwdom 9256 | Property of weak dominance... |
brwdomi 9257 | Property of weak dominance... |
brwdomn0 9258 | Weak dominance over nonemp... |
0wdom 9259 | Any set weakly dominates t... |
fowdom 9260 | An onto function implies w... |
wdomref 9261 | Reflexivity of weak domina... |
brwdom2 9262 | Alternate characterization... |
domwdom 9263 | Weak dominance is implied ... |
wdomtr 9264 | Transitivity of weak domin... |
wdomen1 9265 | Equality-like theorem for ... |
wdomen2 9266 | Equality-like theorem for ... |
wdompwdom 9267 | Weak dominance strengthens... |
canthwdom 9268 | Cantor's Theorem, stated u... |
wdom2d 9269 | Deduce weak dominance from... |
wdomd 9270 | Deduce weak dominance from... |
brwdom3 9271 | Condition for weak dominan... |
brwdom3i 9272 | Weak dominance implies exi... |
unwdomg 9273 | Weak dominance of a (disjo... |
xpwdomg 9274 | Weak dominance of a Cartes... |
wdomima2g 9275 | A set is weakly dominant o... |
wdomimag 9276 | A set is weakly dominant o... |
unxpwdom2 9277 | Lemma for ~ unxpwdom . (C... |
unxpwdom 9278 | If a Cartesian product is ... |
ixpiunwdom 9279 | Describe an onto function ... |
harwdom 9280 | The value of the Hartogs f... |
axreg2 9282 | Axiom of Regularity expres... |
zfregcl 9283 | The Axiom of Regularity wi... |
zfreg 9284 | The Axiom of Regularity us... |
elirrv 9285 | The membership relation is... |
elirr 9286 | No class is a member of it... |
elneq 9287 | A class is not equal to an... |
nelaneq 9288 | A class is not an element ... |
epinid0 9289 | The membership relation an... |
sucprcreg 9290 | A class is equal to its su... |
ruv 9291 | The Russell class is equal... |
ruALT 9292 | Alternate proof of ~ ru , ... |
zfregfr 9293 | The membership relation is... |
en2lp 9294 | No class has 2-cycle membe... |
elnanel 9295 | Two classes are not elemen... |
cnvepnep 9296 | The membership (epsilon) r... |
epnsym 9297 | The membership (epsilon) r... |
elnotel 9298 | A class cannot be an eleme... |
elnel 9299 | A class cannot be an eleme... |
en3lplem1 9300 | Lemma for ~ en3lp . (Cont... |
en3lplem2 9301 | Lemma for ~ en3lp . (Cont... |
en3lp 9302 | No class has 3-cycle membe... |
preleqg 9303 | Equality of two unordered ... |
preleq 9304 | Equality of two unordered ... |
preleqALT 9305 | Alternate proof of ~ prele... |
opthreg 9306 | Theorem for alternate repr... |
suc11reg 9307 | The successor operation be... |
dford2 9308 | Assuming ~ ax-reg , an ord... |
inf0 9309 | Existence of ` _om ` impli... |
inf1 9310 | Variation of Axiom of Infi... |
inf2 9311 | Variation of Axiom of Infi... |
inf3lema 9312 | Lemma for our Axiom of Inf... |
inf3lemb 9313 | Lemma for our Axiom of Inf... |
inf3lemc 9314 | Lemma for our Axiom of Inf... |
inf3lemd 9315 | Lemma for our Axiom of Inf... |
inf3lem1 9316 | Lemma for our Axiom of Inf... |
inf3lem2 9317 | Lemma for our Axiom of Inf... |
inf3lem3 9318 | Lemma for our Axiom of Inf... |
inf3lem4 9319 | Lemma for our Axiom of Inf... |
inf3lem5 9320 | Lemma for our Axiom of Inf... |
inf3lem6 9321 | Lemma for our Axiom of Inf... |
inf3lem7 9322 | Lemma for our Axiom of Inf... |
inf3 9323 | Our Axiom of Infinity ~ ax... |
infeq5i 9324 | Half of ~ infeq5 . (Contr... |
infeq5 9325 | The statement "there exist... |
zfinf 9327 | Axiom of Infinity expresse... |
axinf2 9328 | A standard version of Axio... |
zfinf2 9330 | A standard version of the ... |
omex 9331 | The existence of omega (th... |
axinf 9332 | The first version of the A... |
inf5 9333 | The statement "there exist... |
omelon 9334 | Omega is an ordinal number... |
dfom3 9335 | The class of natural numbe... |
elom3 9336 | A simplification of ~ elom... |
dfom4 9337 | A simplification of ~ df-o... |
dfom5 9338 | ` _om ` is the smallest li... |
oancom 9339 | Ordinal addition is not co... |
isfinite 9340 | A set is finite iff it is ... |
fict 9341 | A finite set is countable ... |
nnsdom 9342 | A natural number is strict... |
omenps 9343 | Omega is equinumerous to a... |
omensuc 9344 | The set of natural numbers... |
infdifsn 9345 | Removing a singleton from ... |
infdiffi 9346 | Removing a finite set from... |
unbnn3 9347 | Any unbounded subset of na... |
noinfep 9348 | Using the Axiom of Regular... |
cantnffval 9351 | The value of the Cantor no... |
cantnfdm 9352 | The domain of the Cantor n... |
cantnfvalf 9353 | Lemma for ~ cantnf . The ... |
cantnfs 9354 | Elementhood in the set of ... |
cantnfcl 9355 | Basic properties of the or... |
cantnfval 9356 | The value of the Cantor no... |
cantnfval2 9357 | Alternate expression for t... |
cantnfsuc 9358 | The value of the recursive... |
cantnfle 9359 | A lower bound on the ` CNF... |
cantnflt 9360 | An upper bound on the part... |
cantnflt2 9361 | An upper bound on the ` CN... |
cantnff 9362 | The ` CNF ` function is a ... |
cantnf0 9363 | The value of the zero func... |
cantnfrescl 9364 | A function is finitely sup... |
cantnfres 9365 | The ` CNF ` function respe... |
cantnfp1lem1 9366 | Lemma for ~ cantnfp1 . (C... |
cantnfp1lem2 9367 | Lemma for ~ cantnfp1 . (C... |
cantnfp1lem3 9368 | Lemma for ~ cantnfp1 . (C... |
cantnfp1 9369 | If ` F ` is created by add... |
oemapso 9370 | The relation ` T ` is a st... |
oemapval 9371 | Value of the relation ` T ... |
oemapvali 9372 | If ` F < G ` , then there ... |
cantnflem1a 9373 | Lemma for ~ cantnf . (Con... |
cantnflem1b 9374 | Lemma for ~ cantnf . (Con... |
cantnflem1c 9375 | Lemma for ~ cantnf . (Con... |
cantnflem1d 9376 | Lemma for ~ cantnf . (Con... |
cantnflem1 9377 | Lemma for ~ cantnf . This... |
cantnflem2 9378 | Lemma for ~ cantnf . (Con... |
cantnflem3 9379 | Lemma for ~ cantnf . Here... |
cantnflem4 9380 | Lemma for ~ cantnf . Comp... |
cantnf 9381 | The Cantor Normal Form the... |
oemapwe 9382 | The lexicographic order on... |
cantnffval2 9383 | An alternate definition of... |
cantnff1o 9384 | Simplify the isomorphism o... |
wemapwe 9385 | Construct lexicographic or... |
oef1o 9386 | A bijection of the base se... |
cnfcomlem 9387 | Lemma for ~ cnfcom . (Con... |
cnfcom 9388 | Any ordinal ` B ` is equin... |
cnfcom2lem 9389 | Lemma for ~ cnfcom2 . (Co... |
cnfcom2 9390 | Any nonzero ordinal ` B ` ... |
cnfcom3lem 9391 | Lemma for ~ cnfcom3 . (Co... |
cnfcom3 9392 | Any infinite ordinal ` B `... |
cnfcom3clem 9393 | Lemma for ~ cnfcom3c . (C... |
cnfcom3c 9394 | Wrap the construction of ~... |
dftrpred2 9397 | A definition of the transi... |
trpredeq1 9398 | Equality theorem for trans... |
trpredeq2 9399 | Equality theorem for trans... |
trpredeq3 9400 | Equality theorem for trans... |
trpredeq1d 9401 | Equality deduction for tra... |
trpredeq2d 9402 | Equality deduction for tra... |
trpredeq3d 9403 | Equality deduction for tra... |
eltrpred 9404 | A class is a transitive pr... |
trpredlem1 9405 | Technical lemma for transi... |
trpredpred 9406 | Assuming it is a set, the ... |
trpredss 9407 | The transitive predecessor... |
trpredtr 9408 | Predecessors of a transiti... |
trpredmintr 9409 | The transitive predecessor... |
trpred0 9410 | The class of transitive pr... |
trpredelss 9411 | Given a transitive predece... |
dftrpred3g 9412 | The transitive predecessor... |
dftrpred4g 9413 | Another recursive expressi... |
trpredpo 9414 | If ` R ` partially orders ... |
trpredrec 9415 | A transitive predecessor o... |
trpredex 9416 | The transitive predecessor... |
trcl 9417 | For any set ` A ` , show t... |
tz9.1 9418 | Every set has a transitive... |
tz9.1c 9419 | Alternate expression for t... |
epfrs 9420 | The strong form of the Axi... |
zfregs 9421 | The strong form of the Axi... |
zfregs2 9422 | Alternate strong form of t... |
setind 9423 | Set (epsilon) induction. ... |
setind2 9424 | Set (epsilon) induction, s... |
tcvalg 9427 | Value of the transitive cl... |
tcid 9428 | Defining property of the t... |
tctr 9429 | Defining property of the t... |
tcmin 9430 | Defining property of the t... |
tc2 9431 | A variant of the definitio... |
tcsni 9432 | The transitive closure of ... |
tcss 9433 | The transitive closure fun... |
tcel 9434 | The transitive closure fun... |
tcidm 9435 | The transitive closure fun... |
tc0 9436 | The transitive closure of ... |
tc00 9437 | The transitive closure is ... |
frmin 9438 | Every (possibly proper) su... |
frind 9439 | A subclass of a well-found... |
frinsg 9440 | Well-Founded Induction Sch... |
frins 9441 | Well-Founded Induction Sch... |
frins2f 9442 | Well-Founded Induction sch... |
frins2 9443 | Well-Founded Induction sch... |
frins3 9444 | Well-Founded Induction sch... |
frr3g 9445 | Functions defined by well-... |
frrlem15 9446 | Lemma for general well-fou... |
frrlem16 9447 | Lemma for general well-fou... |
frr1 9448 | Law of general well-founde... |
frr2 9449 | Law of general well-founde... |
frr3 9450 | Law of general well-founde... |
r1funlim 9455 | The cumulative hierarchy o... |
r1fnon 9456 | The cumulative hierarchy o... |
r10 9457 | Value of the cumulative hi... |
r1sucg 9458 | Value of the cumulative hi... |
r1suc 9459 | Value of the cumulative hi... |
r1limg 9460 | Value of the cumulative hi... |
r1lim 9461 | Value of the cumulative hi... |
r1fin 9462 | The first ` _om ` levels o... |
r1sdom 9463 | Each stage in the cumulati... |
r111 9464 | The cumulative hierarchy i... |
r1tr 9465 | The cumulative hierarchy o... |
r1tr2 9466 | The union of a cumulative ... |
r1ordg 9467 | Ordering relation for the ... |
r1ord3g 9468 | Ordering relation for the ... |
r1ord 9469 | Ordering relation for the ... |
r1ord2 9470 | Ordering relation for the ... |
r1ord3 9471 | Ordering relation for the ... |
r1sssuc 9472 | The value of the cumulativ... |
r1pwss 9473 | Each set of the cumulative... |
r1sscl 9474 | Each set of the cumulative... |
r1val1 9475 | The value of the cumulativ... |
tz9.12lem1 9476 | Lemma for ~ tz9.12 . (Con... |
tz9.12lem2 9477 | Lemma for ~ tz9.12 . (Con... |
tz9.12lem3 9478 | Lemma for ~ tz9.12 . (Con... |
tz9.12 9479 | A set is well-founded if a... |
tz9.13 9480 | Every set is well-founded,... |
tz9.13g 9481 | Every set is well-founded,... |
rankwflemb 9482 | Two ways of saying a set i... |
rankf 9483 | The domain and range of th... |
rankon 9484 | The rank of a set is an or... |
r1elwf 9485 | Any member of the cumulati... |
rankvalb 9486 | Value of the rank function... |
rankr1ai 9487 | One direction of ~ rankr1a... |
rankvaln 9488 | Value of the rank function... |
rankidb 9489 | Identity law for the rank ... |
rankdmr1 9490 | A rank is a member of the ... |
rankr1ag 9491 | A version of ~ rankr1a tha... |
rankr1bg 9492 | A relationship between ran... |
r1rankidb 9493 | Any set is a subset of the... |
r1elssi 9494 | The range of the ` R1 ` fu... |
r1elss 9495 | The range of the ` R1 ` fu... |
pwwf 9496 | A power set is well-founde... |
sswf 9497 | A subset of a well-founded... |
snwf 9498 | A singleton is well-founde... |
unwf 9499 | A binary union is well-fou... |
prwf 9500 | An unordered pair is well-... |
opwf 9501 | An ordered pair is well-fo... |
unir1 9502 | The cumulative hierarchy o... |
jech9.3 9503 | Every set belongs to some ... |
rankwflem 9504 | Every set is well-founded,... |
rankval 9505 | Value of the rank function... |
rankvalg 9506 | Value of the rank function... |
rankval2 9507 | Value of an alternate defi... |
uniwf 9508 | A union is well-founded if... |
rankr1clem 9509 | Lemma for ~ rankr1c . (Co... |
rankr1c 9510 | A relationship between the... |
rankidn 9511 | A relationship between the... |
rankpwi 9512 | The rank of a power set. ... |
rankelb 9513 | The membership relation is... |
wfelirr 9514 | A well-founded set is not ... |
rankval3b 9515 | The value of the rank func... |
ranksnb 9516 | The rank of a singleton. ... |
rankonidlem 9517 | Lemma for ~ rankonid . (C... |
rankonid 9518 | The rank of an ordinal num... |
onwf 9519 | The ordinals are all well-... |
onssr1 9520 | Initial segments of the or... |
rankr1g 9521 | A relationship between the... |
rankid 9522 | Identity law for the rank ... |
rankr1 9523 | A relationship between the... |
ssrankr1 9524 | A relationship between an ... |
rankr1a 9525 | A relationship between ran... |
r1val2 9526 | The value of the cumulativ... |
r1val3 9527 | The value of the cumulativ... |
rankel 9528 | The membership relation is... |
rankval3 9529 | The value of the rank func... |
bndrank 9530 | Any class whose elements h... |
unbndrank 9531 | The elements of a proper c... |
rankpw 9532 | The rank of a power set. ... |
ranklim 9533 | The rank of a set belongs ... |
r1pw 9534 | A stronger property of ` R... |
r1pwALT 9535 | Alternate shorter proof of... |
r1pwcl 9536 | The cumulative hierarchy o... |
rankssb 9537 | The subset relation is inh... |
rankss 9538 | The subset relation is inh... |
rankunb 9539 | The rank of the union of t... |
rankprb 9540 | The rank of an unordered p... |
rankopb 9541 | The rank of an ordered pai... |
rankuni2b 9542 | The value of the rank func... |
ranksn 9543 | The rank of a singleton. ... |
rankuni2 9544 | The rank of a union. Part... |
rankun 9545 | The rank of the union of t... |
rankpr 9546 | The rank of an unordered p... |
rankop 9547 | The rank of an ordered pai... |
r1rankid 9548 | Any set is a subset of the... |
rankeq0b 9549 | A set is empty iff its ran... |
rankeq0 9550 | A set is empty iff its ran... |
rankr1id 9551 | The rank of the hierarchy ... |
rankuni 9552 | The rank of a union. Part... |
rankr1b 9553 | A relationship between ran... |
ranksuc 9554 | The rank of a successor. ... |
rankuniss 9555 | Upper bound of the rank of... |
rankval4 9556 | The rank of a set is the s... |
rankbnd 9557 | The rank of a set is bound... |
rankbnd2 9558 | The rank of a set is bound... |
rankc1 9559 | A relationship that can be... |
rankc2 9560 | A relationship that can be... |
rankelun 9561 | Rank membership is inherit... |
rankelpr 9562 | Rank membership is inherit... |
rankelop 9563 | Rank membership is inherit... |
rankxpl 9564 | A lower bound on the rank ... |
rankxpu 9565 | An upper bound on the rank... |
rankfu 9566 | An upper bound on the rank... |
rankmapu 9567 | An upper bound on the rank... |
rankxplim 9568 | The rank of a Cartesian pr... |
rankxplim2 9569 | If the rank of a Cartesian... |
rankxplim3 9570 | The rank of a Cartesian pr... |
rankxpsuc 9571 | The rank of a Cartesian pr... |
tcwf 9572 | The transitive closure fun... |
tcrank 9573 | This theorem expresses two... |
scottex 9574 | Scott's trick collects all... |
scott0 9575 | Scott's trick collects all... |
scottexs 9576 | Theorem scheme version of ... |
scott0s 9577 | Theorem scheme version of ... |
cplem1 9578 | Lemma for the Collection P... |
cplem2 9579 | Lemma for the Collection P... |
cp 9580 | Collection Principle. Thi... |
bnd 9581 | A very strong generalizati... |
bnd2 9582 | A variant of the Boundedne... |
kardex 9583 | The collection of all sets... |
karden 9584 | If we allow the Axiom of R... |
htalem 9585 | Lemma for defining an emul... |
hta 9586 | A ZFC emulation of Hilbert... |
djueq12 9593 | Equality theorem for disjo... |
djueq1 9594 | Equality theorem for disjo... |
djueq2 9595 | Equality theorem for disjo... |
nfdju 9596 | Bound-variable hypothesis ... |
djuex 9597 | The disjoint union of sets... |
djuexb 9598 | The disjoint union of two ... |
djulcl 9599 | Left closure of disjoint u... |
djurcl 9600 | Right closure of disjoint ... |
djulf1o 9601 | The left injection functio... |
djurf1o 9602 | The right injection functi... |
inlresf 9603 | The left injection restric... |
inlresf1 9604 | The left injection restric... |
inrresf 9605 | The right injection restri... |
inrresf1 9606 | The right injection restri... |
djuin 9607 | The images of any classes ... |
djur 9608 | A member of a disjoint uni... |
djuss 9609 | A disjoint union is a subc... |
djuunxp 9610 | The union of a disjoint un... |
djuexALT 9611 | Alternate proof of ~ djuex... |
eldju1st 9612 | The first component of an ... |
eldju2ndl 9613 | The second component of an... |
eldju2ndr 9614 | The second component of an... |
djuun 9615 | The disjoint union of two ... |
1stinl 9616 | The first component of the... |
2ndinl 9617 | The second component of th... |
1stinr 9618 | The first component of the... |
2ndinr 9619 | The second component of th... |
updjudhf 9620 | The mapping of an element ... |
updjudhcoinlf 9621 | The composition of the map... |
updjudhcoinrg 9622 | The composition of the map... |
updjud 9623 | Universal property of the ... |
cardf2 9632 | The cardinality function i... |
cardon 9633 | The cardinal number of a s... |
isnum2 9634 | A way to express well-orde... |
isnumi 9635 | A set equinumerous to an o... |
ennum 9636 | Equinumerous sets are equi... |
finnum 9637 | Every finite set is numera... |
onenon 9638 | Every ordinal number is nu... |
tskwe 9639 | A Tarski set is well-order... |
xpnum 9640 | The cartesian product of n... |
cardval3 9641 | An alternate definition of... |
cardid2 9642 | Any numerable set is equin... |
isnum3 9643 | A set is numerable iff it ... |
oncardval 9644 | The value of the cardinal ... |
oncardid 9645 | Any ordinal number is equi... |
cardonle 9646 | The cardinal of an ordinal... |
card0 9647 | The cardinality of the emp... |
cardidm 9648 | The cardinality function i... |
oncard 9649 | A set is a cardinal number... |
ficardom 9650 | The cardinal number of a f... |
ficardid 9651 | A finite set is equinumero... |
cardnn 9652 | The cardinality of a natur... |
cardnueq0 9653 | The empty set is the only ... |
cardne 9654 | No member of a cardinal nu... |
carden2a 9655 | If two sets have equal non... |
carden2b 9656 | If two sets are equinumero... |
card1 9657 | A set has cardinality one ... |
cardsn 9658 | A singleton has cardinalit... |
carddomi2 9659 | Two sets have the dominanc... |
sdomsdomcardi 9660 | A set strictly dominates i... |
cardlim 9661 | An infinite cardinal is a ... |
cardsdomelir 9662 | A cardinal strictly domina... |
cardsdomel 9663 | A cardinal strictly domina... |
iscard 9664 | Two ways to express the pr... |
iscard2 9665 | Two ways to express the pr... |
carddom2 9666 | Two numerable sets have th... |
harcard 9667 | The class of ordinal numbe... |
cardprclem 9668 | Lemma for ~ cardprc . (Co... |
cardprc 9669 | The class of all cardinal ... |
carduni 9670 | The union of a set of card... |
cardiun 9671 | The indexed union of a set... |
cardennn 9672 | If ` A ` is equinumerous t... |
cardsucinf 9673 | The cardinality of the suc... |
cardsucnn 9674 | The cardinality of the suc... |
cardom 9675 | The set of natural numbers... |
carden2 9676 | Two numerable sets are equ... |
cardsdom2 9677 | A numerable set is strictl... |
domtri2 9678 | Trichotomy of dominance fo... |
nnsdomel 9679 | Strict dominance and eleme... |
cardval2 9680 | An alternate version of th... |
isinffi 9681 | An infinite set contains s... |
fidomtri 9682 | Trichotomy of dominance wi... |
fidomtri2 9683 | Trichotomy of dominance wi... |
harsdom 9684 | The Hartogs number of a we... |
onsdom 9685 | Any well-orderable set is ... |
harval2 9686 | An alternate expression fo... |
harsucnn 9687 | The next cardinal after a ... |
cardmin2 9688 | The smallest ordinal that ... |
pm54.43lem 9689 | In Theorem *54.43 of [Whit... |
pm54.43 9690 | Theorem *54.43 of [Whitehe... |
pr2nelem 9691 | Lemma for ~ pr2ne . (Cont... |
pr2ne 9692 | If an unordered pair has t... |
prdom2 9693 | An unordered pair has at m... |
en2eqpr 9694 | Building a set with two el... |
en2eleq 9695 | Express a set of pair card... |
en2other2 9696 | Taking the other element t... |
dif1card 9697 | The cardinality of a nonem... |
leweon 9698 | Lexicographical order is a... |
r0weon 9699 | A set-like well-ordering o... |
infxpenlem 9700 | Lemma for ~ infxpen . (Co... |
infxpen 9701 | Every infinite ordinal is ... |
xpomen 9702 | The Cartesian product of o... |
xpct 9703 | The cartesian product of t... |
infxpidm2 9704 | Every infinite well-ordera... |
infxpenc 9705 | A canonical version of ~ i... |
infxpenc2lem1 9706 | Lemma for ~ infxpenc2 . (... |
infxpenc2lem2 9707 | Lemma for ~ infxpenc2 . (... |
infxpenc2lem3 9708 | Lemma for ~ infxpenc2 . (... |
infxpenc2 9709 | Existence form of ~ infxpe... |
iunmapdisj 9710 | The union ` U_ n e. C ( A ... |
fseqenlem1 9711 | Lemma for ~ fseqen . (Con... |
fseqenlem2 9712 | Lemma for ~ fseqen . (Con... |
fseqdom 9713 | One half of ~ fseqen . (C... |
fseqen 9714 | A set that is equinumerous... |
infpwfidom 9715 | The collection of finite s... |
dfac8alem 9716 | Lemma for ~ dfac8a . If t... |
dfac8a 9717 | Numeration theorem: every ... |
dfac8b 9718 | The well-ordering theorem:... |
dfac8clem 9719 | Lemma for ~ dfac8c . (Con... |
dfac8c 9720 | If the union of a set is w... |
ac10ct 9721 | A proof of the well-orderi... |
ween 9722 | A set is numerable iff it ... |
ac5num 9723 | A version of ~ ac5b with t... |
ondomen 9724 | If a set is dominated by a... |
numdom 9725 | A set dominated by a numer... |
ssnum 9726 | A subset of a numerable se... |
onssnum 9727 | All subsets of the ordinal... |
indcardi 9728 | Indirect strong induction ... |
acnrcl 9729 | Reverse closure for the ch... |
acneq 9730 | Equality theorem for the c... |
isacn 9731 | The property of being a ch... |
acni 9732 | The property of being a ch... |
acni2 9733 | The property of being a ch... |
acni3 9734 | The property of being a ch... |
acnlem 9735 | Construct a mapping satisf... |
numacn 9736 | A well-orderable set has c... |
finacn 9737 | Every set has finite choic... |
acndom 9738 | A set with long choice seq... |
acnnum 9739 | A set ` X ` which has choi... |
acnen 9740 | The class of choice sets o... |
acndom2 9741 | A set smaller than one wit... |
acnen2 9742 | The class of sets with cho... |
fodomacn 9743 | A version of ~ fodom that ... |
fodomnum 9744 | A version of ~ fodom that ... |
fonum 9745 | A surjection maps numerabl... |
numwdom 9746 | A surjection maps numerabl... |
fodomfi2 9747 | Onto functions define domi... |
wdomfil 9748 | Weak dominance agrees with... |
infpwfien 9749 | Any infinite well-orderabl... |
inffien 9750 | The set of finite intersec... |
wdomnumr 9751 | Weak dominance agrees with... |
alephfnon 9752 | The aleph function is a fu... |
aleph0 9753 | The first infinite cardina... |
alephlim 9754 | Value of the aleph functio... |
alephsuc 9755 | Value of the aleph functio... |
alephon 9756 | An aleph is an ordinal num... |
alephcard 9757 | Every aleph is a cardinal ... |
alephnbtwn 9758 | No cardinal can be sandwic... |
alephnbtwn2 9759 | No set has equinumerosity ... |
alephordilem1 9760 | Lemma for ~ alephordi . (... |
alephordi 9761 | Strict ordering property o... |
alephord 9762 | Ordering property of the a... |
alephord2 9763 | Ordering property of the a... |
alephord2i 9764 | Ordering property of the a... |
alephord3 9765 | Ordering property of the a... |
alephsucdom 9766 | A set dominated by an alep... |
alephsuc2 9767 | An alternate representatio... |
alephdom 9768 | Relationship between inclu... |
alephgeom 9769 | Every aleph is greater tha... |
alephislim 9770 | Every aleph is a limit ord... |
aleph11 9771 | The aleph function is one-... |
alephf1 9772 | The aleph function is a on... |
alephsdom 9773 | If an ordinal is smaller t... |
alephdom2 9774 | A dominated initial ordina... |
alephle 9775 | The argument of the aleph ... |
cardaleph 9776 | Given any transfinite card... |
cardalephex 9777 | Every transfinite cardinal... |
infenaleph 9778 | An infinite numerable set ... |
isinfcard 9779 | Two ways to express the pr... |
iscard3 9780 | Two ways to express the pr... |
cardnum 9781 | Two ways to express the cl... |
alephinit 9782 | An infinite initial ordina... |
carduniima 9783 | The union of the image of ... |
cardinfima 9784 | If a mapping to cardinals ... |
alephiso 9785 | Aleph is an order isomorph... |
alephprc 9786 | The class of all transfini... |
alephsson 9787 | The class of transfinite c... |
unialeph 9788 | The union of the class of ... |
alephsmo 9789 | The aleph function is stri... |
alephf1ALT 9790 | Alternate proof of ~ aleph... |
alephfplem1 9791 | Lemma for ~ alephfp . (Co... |
alephfplem2 9792 | Lemma for ~ alephfp . (Co... |
alephfplem3 9793 | Lemma for ~ alephfp . (Co... |
alephfplem4 9794 | Lemma for ~ alephfp . (Co... |
alephfp 9795 | The aleph function has a f... |
alephfp2 9796 | The aleph function has at ... |
alephval3 9797 | An alternate way to expres... |
alephsucpw2 9798 | The power set of an aleph ... |
mappwen 9799 | Power rule for cardinal ar... |
finnisoeu 9800 | A finite totally ordered s... |
iunfictbso 9801 | Countability of a countabl... |
aceq1 9804 | Equivalence of two version... |
aceq0 9805 | Equivalence of two version... |
aceq2 9806 | Equivalence of two version... |
aceq3lem 9807 | Lemma for ~ dfac3 . (Cont... |
dfac3 9808 | Equivalence of two version... |
dfac4 9809 | Equivalence of two version... |
dfac5lem1 9810 | Lemma for ~ dfac5 . (Cont... |
dfac5lem2 9811 | Lemma for ~ dfac5 . (Cont... |
dfac5lem3 9812 | Lemma for ~ dfac5 . (Cont... |
dfac5lem4 9813 | Lemma for ~ dfac5 . (Cont... |
dfac5lem5 9814 | Lemma for ~ dfac5 . (Cont... |
dfac5 9815 | Equivalence of two version... |
dfac2a 9816 | Our Axiom of Choice (in th... |
dfac2b 9817 | Axiom of Choice (first for... |
dfac2 9818 | Axiom of Choice (first for... |
dfac7 9819 | Equivalence of the Axiom o... |
dfac0 9820 | Equivalence of two version... |
dfac1 9821 | Equivalence of two version... |
dfac8 9822 | A proof of the equivalency... |
dfac9 9823 | Equivalence of the axiom o... |
dfac10 9824 | Axiom of Choice equivalent... |
dfac10c 9825 | Axiom of Choice equivalent... |
dfac10b 9826 | Axiom of Choice equivalent... |
acacni 9827 | A choice equivalent: every... |
dfacacn 9828 | A choice equivalent: every... |
dfac13 9829 | The axiom of choice holds ... |
dfac12lem1 9830 | Lemma for ~ dfac12 . (Con... |
dfac12lem2 9831 | Lemma for ~ dfac12 . (Con... |
dfac12lem3 9832 | Lemma for ~ dfac12 . (Con... |
dfac12r 9833 | The axiom of choice holds ... |
dfac12k 9834 | Equivalence of ~ dfac12 an... |
dfac12a 9835 | The axiom of choice holds ... |
dfac12 9836 | The axiom of choice holds ... |
kmlem1 9837 | Lemma for 5-quantifier AC ... |
kmlem2 9838 | Lemma for 5-quantifier AC ... |
kmlem3 9839 | Lemma for 5-quantifier AC ... |
kmlem4 9840 | Lemma for 5-quantifier AC ... |
kmlem5 9841 | Lemma for 5-quantifier AC ... |
kmlem6 9842 | Lemma for 5-quantifier AC ... |
kmlem7 9843 | Lemma for 5-quantifier AC ... |
kmlem8 9844 | Lemma for 5-quantifier AC ... |
kmlem9 9845 | Lemma for 5-quantifier AC ... |
kmlem10 9846 | Lemma for 5-quantifier AC ... |
kmlem11 9847 | Lemma for 5-quantifier AC ... |
kmlem12 9848 | Lemma for 5-quantifier AC ... |
kmlem13 9849 | Lemma for 5-quantifier AC ... |
kmlem14 9850 | Lemma for 5-quantifier AC ... |
kmlem15 9851 | Lemma for 5-quantifier AC ... |
kmlem16 9852 | Lemma for 5-quantifier AC ... |
dfackm 9853 | Equivalence of the Axiom o... |
undjudom 9854 | Cardinal addition dominate... |
endjudisj 9855 | Equinumerosity of a disjoi... |
djuen 9856 | Disjoint unions of equinum... |
djuenun 9857 | Disjoint union is equinume... |
dju1en 9858 | Cardinal addition with car... |
dju1dif 9859 | Adding and subtracting one... |
dju1p1e2 9860 | 1+1=2 for cardinal number ... |
dju1p1e2ALT 9861 | Alternate proof of ~ dju1p... |
dju0en 9862 | Cardinal addition with car... |
xp2dju 9863 | Two times a cardinal numbe... |
djucomen 9864 | Commutative law for cardin... |
djuassen 9865 | Associative law for cardin... |
xpdjuen 9866 | Cardinal multiplication di... |
mapdjuen 9867 | Sum of exponents law for c... |
pwdjuen 9868 | Sum of exponents law for c... |
djudom1 9869 | Ordering law for cardinal ... |
djudom2 9870 | Ordering law for cardinal ... |
djudoml 9871 | A set is dominated by its ... |
djuxpdom 9872 | Cartesian product dominate... |
djufi 9873 | The disjoint union of two ... |
cdainflem 9874 | Any partition of omega int... |
djuinf 9875 | A set is infinite iff the ... |
infdju1 9876 | An infinite set is equinum... |
pwdju1 9877 | The sum of a powerset with... |
pwdjuidm 9878 | If the natural numbers inj... |
djulepw 9879 | If ` A ` is idempotent und... |
onadju 9880 | The cardinal and ordinal s... |
cardadju 9881 | The cardinal sum is equinu... |
djunum 9882 | The disjoint union of two ... |
unnum 9883 | The union of two numerable... |
nnadju 9884 | The cardinal and ordinal s... |
nnadjuALT 9885 | Shorter proof of ~ nnadju ... |
ficardadju 9886 | The disjoint union of fini... |
ficardun 9887 | The cardinality of the uni... |
ficardunOLD 9888 | Obsolete version of ~ fica... |
ficardun2 9889 | The cardinality of the uni... |
ficardun2OLD 9890 | Obsolete version of ~ fica... |
pwsdompw 9891 | Lemma for ~ domtriom . Th... |
unctb 9892 | The union of two countable... |
infdjuabs 9893 | Absorption law for additio... |
infunabs 9894 | An infinite set is equinum... |
infdju 9895 | The sum of two cardinal nu... |
infdif 9896 | The cardinality of an infi... |
infdif2 9897 | Cardinality ordering for a... |
infxpdom 9898 | Dominance law for multipli... |
infxpabs 9899 | Absorption law for multipl... |
infunsdom1 9900 | The union of two sets that... |
infunsdom 9901 | The union of two sets that... |
infxp 9902 | Absorption law for multipl... |
pwdjudom 9903 | A property of dominance ov... |
infpss 9904 | Every infinite set has an ... |
infmap2 9905 | An exponentiation law for ... |
ackbij2lem1 9906 | Lemma for ~ ackbij2 . (Co... |
ackbij1lem1 9907 | Lemma for ~ ackbij2 . (Co... |
ackbij1lem2 9908 | Lemma for ~ ackbij2 . (Co... |
ackbij1lem3 9909 | Lemma for ~ ackbij2 . (Co... |
ackbij1lem4 9910 | Lemma for ~ ackbij2 . (Co... |
ackbij1lem5 9911 | Lemma for ~ ackbij2 . (Co... |
ackbij1lem6 9912 | Lemma for ~ ackbij2 . (Co... |
ackbij1lem7 9913 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem8 9914 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem9 9915 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem10 9916 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem11 9917 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem12 9918 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem13 9919 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem14 9920 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem15 9921 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem16 9922 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem17 9923 | Lemma for ~ ackbij1 . (Co... |
ackbij1lem18 9924 | Lemma for ~ ackbij1 . (Co... |
ackbij1 9925 | The Ackermann bijection, p... |
ackbij1b 9926 | The Ackermann bijection, p... |
ackbij2lem2 9927 | Lemma for ~ ackbij2 . (Co... |
ackbij2lem3 9928 | Lemma for ~ ackbij2 . (Co... |
ackbij2lem4 9929 | Lemma for ~ ackbij2 . (Co... |
ackbij2 9930 | The Ackermann bijection, p... |
r1om 9931 | The set of hereditarily fi... |
fictb 9932 | A set is countable iff its... |
cflem 9933 | A lemma used to simplify c... |
cfval 9934 | Value of the cofinality fu... |
cff 9935 | Cofinality is a function o... |
cfub 9936 | An upper bound on cofinali... |
cflm 9937 | Value of the cofinality fu... |
cf0 9938 | Value of the cofinality fu... |
cardcf 9939 | Cofinality is a cardinal n... |
cflecard 9940 | Cofinality is bounded by t... |
cfle 9941 | Cofinality is bounded by i... |
cfon 9942 | The cofinality of any set ... |
cfeq0 9943 | Only the ordinal zero has ... |
cfsuc 9944 | Value of the cofinality fu... |
cff1 9945 | There is always a map from... |
cfflb 9946 | If there is a cofinal map ... |
cfval2 9947 | Another expression for the... |
coflim 9948 | A simpler expression for t... |
cflim3 9949 | Another expression for the... |
cflim2 9950 | The cofinality function is... |
cfom 9951 | Value of the cofinality fu... |
cfss 9952 | There is a cofinal subset ... |
cfslb 9953 | Any cofinal subset of ` A ... |
cfslbn 9954 | Any subset of ` A ` smalle... |
cfslb2n 9955 | Any small collection of sm... |
cofsmo 9956 | Any cofinal map implies th... |
cfsmolem 9957 | Lemma for ~ cfsmo . (Cont... |
cfsmo 9958 | The map in ~ cff1 can be a... |
cfcoflem 9959 | Lemma for ~ cfcof , showin... |
coftr 9960 | If there is a cofinal map ... |
cfcof 9961 | If there is a cofinal map ... |
cfidm 9962 | The cofinality function is... |
alephsing 9963 | The cofinality of a limit ... |
sornom 9964 | The range of a single-step... |
isfin1a 9979 | Definition of a Ia-finite ... |
fin1ai 9980 | Property of a Ia-finite se... |
isfin2 9981 | Definition of a II-finite ... |
fin2i 9982 | Property of a II-finite se... |
isfin3 9983 | Definition of a III-finite... |
isfin4 9984 | Definition of a IV-finite ... |
fin4i 9985 | Infer that a set is IV-inf... |
isfin5 9986 | Definition of a V-finite s... |
isfin6 9987 | Definition of a VI-finite ... |
isfin7 9988 | Definition of a VII-finite... |
sdom2en01 9989 | A set with less than two e... |
infpssrlem1 9990 | Lemma for ~ infpssr . (Co... |
infpssrlem2 9991 | Lemma for ~ infpssr . (Co... |
infpssrlem3 9992 | Lemma for ~ infpssr . (Co... |
infpssrlem4 9993 | Lemma for ~ infpssr . (Co... |
infpssrlem5 9994 | Lemma for ~ infpssr . (Co... |
infpssr 9995 | Dedekind infinity implies ... |
fin4en1 9996 | Dedekind finite is a cardi... |
ssfin4 9997 | Dedekind finite sets have ... |
domfin4 9998 | A set dominated by a Dedek... |
ominf4 9999 | ` _om ` is Dedekind infini... |
infpssALT 10000 | Alternate proof of ~ infps... |
isfin4-2 10001 | Alternate definition of IV... |
isfin4p1 10002 | Alternate definition of IV... |
fin23lem7 10003 | Lemma for ~ isfin2-2 . Th... |
fin23lem11 10004 | Lemma for ~ isfin2-2 . (C... |
fin2i2 10005 | A II-finite set contains m... |
isfin2-2 10006 | ` Fin2 ` expressed in term... |
ssfin2 10007 | A subset of a II-finite se... |
enfin2i 10008 | II-finiteness is a cardina... |
fin23lem24 10009 | Lemma for ~ fin23 . In a ... |
fincssdom 10010 | In a chain of finite sets,... |
fin23lem25 10011 | Lemma for ~ fin23 . In a ... |
fin23lem26 10012 | Lemma for ~ fin23lem22 . ... |
fin23lem23 10013 | Lemma for ~ fin23lem22 . ... |
fin23lem22 10014 | Lemma for ~ fin23 but coul... |
fin23lem27 10015 | The mapping constructed in... |
isfin3ds 10016 | Property of a III-finite s... |
ssfin3ds 10017 | A subset of a III-finite s... |
fin23lem12 10018 | The beginning of the proof... |
fin23lem13 10019 | Lemma for ~ fin23 . Each ... |
fin23lem14 10020 | Lemma for ~ fin23 . ` U ` ... |
fin23lem15 10021 | Lemma for ~ fin23 . ` U ` ... |
fin23lem16 10022 | Lemma for ~ fin23 . ` U ` ... |
fin23lem19 10023 | Lemma for ~ fin23 . The f... |
fin23lem20 10024 | Lemma for ~ fin23 . ` X ` ... |
fin23lem17 10025 | Lemma for ~ fin23 . By ? ... |
fin23lem21 10026 | Lemma for ~ fin23 . ` X ` ... |
fin23lem28 10027 | Lemma for ~ fin23 . The r... |
fin23lem29 10028 | Lemma for ~ fin23 . The r... |
fin23lem30 10029 | Lemma for ~ fin23 . The r... |
fin23lem31 10030 | Lemma for ~ fin23 . The r... |
fin23lem32 10031 | Lemma for ~ fin23 . Wrap ... |
fin23lem33 10032 | Lemma for ~ fin23 . Disch... |
fin23lem34 10033 | Lemma for ~ fin23 . Estab... |
fin23lem35 10034 | Lemma for ~ fin23 . Stric... |
fin23lem36 10035 | Lemma for ~ fin23 . Weak ... |
fin23lem38 10036 | Lemma for ~ fin23 . The c... |
fin23lem39 10037 | Lemma for ~ fin23 . Thus,... |
fin23lem40 10038 | Lemma for ~ fin23 . ` Fin2... |
fin23lem41 10039 | Lemma for ~ fin23 . A set... |
isf32lem1 10040 | Lemma for ~ isfin3-2 . De... |
isf32lem2 10041 | Lemma for ~ isfin3-2 . No... |
isf32lem3 10042 | Lemma for ~ isfin3-2 . Be... |
isf32lem4 10043 | Lemma for ~ isfin3-2 . Be... |
isf32lem5 10044 | Lemma for ~ isfin3-2 . Th... |
isf32lem6 10045 | Lemma for ~ isfin3-2 . Ea... |
isf32lem7 10046 | Lemma for ~ isfin3-2 . Di... |
isf32lem8 10047 | Lemma for ~ isfin3-2 . K ... |
isf32lem9 10048 | Lemma for ~ isfin3-2 . Co... |
isf32lem10 10049 | Lemma for isfin3-2 . Writ... |
isf32lem11 10050 | Lemma for ~ isfin3-2 . Re... |
isf32lem12 10051 | Lemma for ~ isfin3-2 . (C... |
isfin32i 10052 | One half of ~ isfin3-2 . ... |
isf33lem 10053 | Lemma for ~ isfin3-3 . (C... |
isfin3-2 10054 | Weakly Dedekind-infinite s... |
isfin3-3 10055 | Weakly Dedekind-infinite s... |
fin33i 10056 | Inference from ~ isfin3-3 ... |
compsscnvlem 10057 | Lemma for ~ compsscnv . (... |
compsscnv 10058 | Complementation on a power... |
isf34lem1 10059 | Lemma for ~ isfin3-4 . (C... |
isf34lem2 10060 | Lemma for ~ isfin3-4 . (C... |
compssiso 10061 | Complementation is an anti... |
isf34lem3 10062 | Lemma for ~ isfin3-4 . (C... |
compss 10063 | Express image under of the... |
isf34lem4 10064 | Lemma for ~ isfin3-4 . (C... |
isf34lem5 10065 | Lemma for ~ isfin3-4 . (C... |
isf34lem7 10066 | Lemma for ~ isfin3-4 . (C... |
isf34lem6 10067 | Lemma for ~ isfin3-4 . (C... |
fin34i 10068 | Inference from ~ isfin3-4 ... |
isfin3-4 10069 | Weakly Dedekind-infinite s... |
fin11a 10070 | Every I-finite set is Ia-f... |
enfin1ai 10071 | Ia-finiteness is a cardina... |
isfin1-2 10072 | A set is finite in the usu... |
isfin1-3 10073 | A set is I-finite iff ever... |
isfin1-4 10074 | A set is I-finite iff ever... |
dffin1-5 10075 | Compact quantifier-free ve... |
fin23 10076 | Every II-finite set (every... |
fin34 10077 | Every III-finite set is IV... |
isfin5-2 10078 | Alternate definition of V-... |
fin45 10079 | Every IV-finite set is V-f... |
fin56 10080 | Every V-finite set is VI-f... |
fin17 10081 | Every I-finite set is VII-... |
fin67 10082 | Every VI-finite set is VII... |
isfin7-2 10083 | A set is VII-finite iff it... |
fin71num 10084 | A well-orderable set is VI... |
dffin7-2 10085 | Class form of ~ isfin7-2 .... |
dfacfin7 10086 | Axiom of Choice equivalent... |
fin1a2lem1 10087 | Lemma for ~ fin1a2 . (Con... |
fin1a2lem2 10088 | Lemma for ~ fin1a2 . (Con... |
fin1a2lem3 10089 | Lemma for ~ fin1a2 . (Con... |
fin1a2lem4 10090 | Lemma for ~ fin1a2 . (Con... |
fin1a2lem5 10091 | Lemma for ~ fin1a2 . (Con... |
fin1a2lem6 10092 | Lemma for ~ fin1a2 . Esta... |
fin1a2lem7 10093 | Lemma for ~ fin1a2 . Spli... |
fin1a2lem8 10094 | Lemma for ~ fin1a2 . Spli... |
fin1a2lem9 10095 | Lemma for ~ fin1a2 . In a... |
fin1a2lem10 10096 | Lemma for ~ fin1a2 . A no... |
fin1a2lem11 10097 | Lemma for ~ fin1a2 . (Con... |
fin1a2lem12 10098 | Lemma for ~ fin1a2 . (Con... |
fin1a2lem13 10099 | Lemma for ~ fin1a2 . (Con... |
fin12 10100 | Weak theorem which skips I... |
fin1a2s 10101 | An II-infinite set can hav... |
fin1a2 10102 | Every Ia-finite set is II-... |
itunifval 10103 | Function value of iterated... |
itunifn 10104 | Functionality of the itera... |
ituni0 10105 | A zero-fold iterated union... |
itunisuc 10106 | Successor iterated union. ... |
itunitc1 10107 | Each union iterate is a me... |
itunitc 10108 | The union of all union ite... |
ituniiun 10109 | Unwrap an iterated union f... |
hsmexlem7 10110 | Lemma for ~ hsmex . Prope... |
hsmexlem8 10111 | Lemma for ~ hsmex . Prope... |
hsmexlem9 10112 | Lemma for ~ hsmex . Prope... |
hsmexlem1 10113 | Lemma for ~ hsmex . Bound... |
hsmexlem2 10114 | Lemma for ~ hsmex . Bound... |
hsmexlem3 10115 | Lemma for ~ hsmex . Clear... |
hsmexlem4 10116 | Lemma for ~ hsmex . The c... |
hsmexlem5 10117 | Lemma for ~ hsmex . Combi... |
hsmexlem6 10118 | Lemma for ~ hsmex . (Cont... |
hsmex 10119 | The collection of heredita... |
hsmex2 10120 | The set of hereditary size... |
hsmex3 10121 | The set of hereditary size... |
axcc2lem 10123 | Lemma for ~ axcc2 . (Cont... |
axcc2 10124 | A possibly more useful ver... |
axcc3 10125 | A possibly more useful ver... |
axcc4 10126 | A version of ~ axcc3 that ... |
acncc 10127 | An ~ ax-cc equivalent: eve... |
axcc4dom 10128 | Relax the constraint on ~ ... |
domtriomlem 10129 | Lemma for ~ domtriom . (C... |
domtriom 10130 | Trichotomy of equinumerosi... |
fin41 10131 | Under countable choice, th... |
dominf 10132 | A nonempty set that is a s... |
dcomex 10134 | The Axiom of Dependent Cho... |
axdc2lem 10135 | Lemma for ~ axdc2 . We co... |
axdc2 10136 | An apparent strengthening ... |
axdc3lem 10137 | The class ` S ` of finite ... |
axdc3lem2 10138 | Lemma for ~ axdc3 . We ha... |
axdc3lem3 10139 | Simple substitution lemma ... |
axdc3lem4 10140 | Lemma for ~ axdc3 . We ha... |
axdc3 10141 | Dependent Choice. Axiom D... |
axdc4lem 10142 | Lemma for ~ axdc4 . (Cont... |
axdc4 10143 | A more general version of ... |
axcclem 10144 | Lemma for ~ axcc . (Contr... |
axcc 10145 | Although CC can be proven ... |
zfac 10147 | Axiom of Choice expressed ... |
ac2 10148 | Axiom of Choice equivalent... |
ac3 10149 | Axiom of Choice using abbr... |
axac3 10151 | This theorem asserts that ... |
ackm 10152 | A remarkable equivalent to... |
axac2 10153 | Derive ~ ax-ac2 from ~ ax-... |
axac 10154 | Derive ~ ax-ac from ~ ax-a... |
axaci 10155 | Apply a choice equivalent.... |
cardeqv 10156 | All sets are well-orderabl... |
numth3 10157 | All sets are well-orderabl... |
numth2 10158 | Numeration theorem: any se... |
numth 10159 | Numeration theorem: every ... |
ac7 10160 | An Axiom of Choice equival... |
ac7g 10161 | An Axiom of Choice equival... |
ac4 10162 | Equivalent of Axiom of Cho... |
ac4c 10163 | Equivalent of Axiom of Cho... |
ac5 10164 | An Axiom of Choice equival... |
ac5b 10165 | Equivalent of Axiom of Cho... |
ac6num 10166 | A version of ~ ac6 which t... |
ac6 10167 | Equivalent of Axiom of Cho... |
ac6c4 10168 | Equivalent of Axiom of Cho... |
ac6c5 10169 | Equivalent of Axiom of Cho... |
ac9 10170 | An Axiom of Choice equival... |
ac6s 10171 | Equivalent of Axiom of Cho... |
ac6n 10172 | Equivalent of Axiom of Cho... |
ac6s2 10173 | Generalization of the Axio... |
ac6s3 10174 | Generalization of the Axio... |
ac6sg 10175 | ~ ac6s with sethood as ant... |
ac6sf 10176 | Version of ~ ac6 with boun... |
ac6s4 10177 | Generalization of the Axio... |
ac6s5 10178 | Generalization of the Axio... |
ac8 10179 | An Axiom of Choice equival... |
ac9s 10180 | An Axiom of Choice equival... |
numthcor 10181 | Any set is strictly domina... |
weth 10182 | Well-ordering theorem: any... |
zorn2lem1 10183 | Lemma for ~ zorn2 . (Cont... |
zorn2lem2 10184 | Lemma for ~ zorn2 . (Cont... |
zorn2lem3 10185 | Lemma for ~ zorn2 . (Cont... |
zorn2lem4 10186 | Lemma for ~ zorn2 . (Cont... |
zorn2lem5 10187 | Lemma for ~ zorn2 . (Cont... |
zorn2lem6 10188 | Lemma for ~ zorn2 . (Cont... |
zorn2lem7 10189 | Lemma for ~ zorn2 . (Cont... |
zorn2g 10190 | Zorn's Lemma of [Monk1] p.... |
zorng 10191 | Zorn's Lemma. If the unio... |
zornn0g 10192 | Variant of Zorn's lemma ~ ... |
zorn2 10193 | Zorn's Lemma of [Monk1] p.... |
zorn 10194 | Zorn's Lemma. If the unio... |
zornn0 10195 | Variant of Zorn's lemma ~ ... |
ttukeylem1 10196 | Lemma for ~ ttukey . Expa... |
ttukeylem2 10197 | Lemma for ~ ttukey . A pr... |
ttukeylem3 10198 | Lemma for ~ ttukey . (Con... |
ttukeylem4 10199 | Lemma for ~ ttukey . (Con... |
ttukeylem5 10200 | Lemma for ~ ttukey . The ... |
ttukeylem6 10201 | Lemma for ~ ttukey . (Con... |
ttukeylem7 10202 | Lemma for ~ ttukey . (Con... |
ttukey2g 10203 | The Teichmüller-Tukey... |
ttukeyg 10204 | The Teichmüller-Tukey... |
ttukey 10205 | The Teichmüller-Tukey... |
axdclem 10206 | Lemma for ~ axdc . (Contr... |
axdclem2 10207 | Lemma for ~ axdc . Using ... |
axdc 10208 | This theorem derives ~ ax-... |
fodomg 10209 | An onto function implies d... |
fodom 10210 | An onto function implies d... |
dmct 10211 | The domain of a countable ... |
rnct 10212 | The range of a countable s... |
fodomb 10213 | Equivalence of an onto map... |
wdomac 10214 | When assuming AC, weak and... |
brdom3 10215 | Equivalence to a dominance... |
brdom5 10216 | An equivalence to a domina... |
brdom4 10217 | An equivalence to a domina... |
brdom7disj 10218 | An equivalence to a domina... |
brdom6disj 10219 | An equivalence to a domina... |
fin71ac 10220 | Once we allow AC, the "str... |
imadomg 10221 | An image of a function und... |
fimact 10222 | The image by a function of... |
fnrndomg 10223 | The range of a function is... |
fnct 10224 | If the domain of a functio... |
mptct 10225 | A countable mapping set is... |
iunfo 10226 | Existence of an onto funct... |
iundom2g 10227 | An upper bound for the car... |
iundomg 10228 | An upper bound for the car... |
iundom 10229 | An upper bound for the car... |
unidom 10230 | An upper bound for the car... |
uniimadom 10231 | An upper bound for the car... |
uniimadomf 10232 | An upper bound for the car... |
cardval 10233 | The value of the cardinal ... |
cardid 10234 | Any set is equinumerous to... |
cardidg 10235 | Any set is equinumerous to... |
cardidd 10236 | Any set is equinumerous to... |
cardf 10237 | The cardinality function i... |
carden 10238 | Two sets are equinumerous ... |
cardeq0 10239 | Only the empty set has car... |
unsnen 10240 | Equinumerosity of a set wi... |
carddom 10241 | Two sets have the dominanc... |
cardsdom 10242 | Two sets have the strict d... |
domtri 10243 | Trichotomy law for dominan... |
entric 10244 | Trichotomy of equinumerosi... |
entri2 10245 | Trichotomy of dominance an... |
entri3 10246 | Trichotomy of dominance. ... |
sdomsdomcard 10247 | A set strictly dominates i... |
canth3 10248 | Cantor's theorem in terms ... |
infxpidm 10249 | Every infinite class is eq... |
ondomon 10250 | The class of ordinals domi... |
cardmin 10251 | The smallest ordinal that ... |
ficard 10252 | A set is finite iff its ca... |
infinf 10253 | Equivalence between two in... |
unirnfdomd 10254 | The union of the range of ... |
konigthlem 10255 | Lemma for ~ konigth . (Co... |
konigth 10256 | Konig's Theorem. If ` m (... |
alephsucpw 10257 | The power set of an aleph ... |
aleph1 10258 | The set exponentiation of ... |
alephval2 10259 | An alternate way to expres... |
dominfac 10260 | A nonempty set that is a s... |
iunctb 10261 | The countable union of cou... |
unictb 10262 | The countable union of cou... |
infmap 10263 | An exponentiation law for ... |
alephadd 10264 | The sum of two alephs is t... |
alephmul 10265 | The product of two alephs ... |
alephexp1 10266 | An exponentiation law for ... |
alephsuc3 10267 | An alternate representatio... |
alephexp2 10268 | An expression equinumerous... |
alephreg 10269 | A successor aleph is regul... |
pwcfsdom 10270 | A corollary of Konig's The... |
cfpwsdom 10271 | A corollary of Konig's The... |
alephom 10272 | From ~ canth2 , we know th... |
smobeth 10273 | The beth function is stric... |
nd1 10274 | A lemma for proving condit... |
nd2 10275 | A lemma for proving condit... |
nd3 10276 | A lemma for proving condit... |
nd4 10277 | A lemma for proving condit... |
axextnd 10278 | A version of the Axiom of ... |
axrepndlem1 10279 | Lemma for the Axiom of Rep... |
axrepndlem2 10280 | Lemma for the Axiom of Rep... |
axrepnd 10281 | A version of the Axiom of ... |
axunndlem1 10282 | Lemma for the Axiom of Uni... |
axunnd 10283 | A version of the Axiom of ... |
axpowndlem1 10284 | Lemma for the Axiom of Pow... |
axpowndlem2 10285 | Lemma for the Axiom of Pow... |
axpowndlem3 10286 | Lemma for the Axiom of Pow... |
axpowndlem4 10287 | Lemma for the Axiom of Pow... |
axpownd 10288 | A version of the Axiom of ... |
axregndlem1 10289 | Lemma for the Axiom of Reg... |
axregndlem2 10290 | Lemma for the Axiom of Reg... |
axregnd 10291 | A version of the Axiom of ... |
axinfndlem1 10292 | Lemma for the Axiom of Inf... |
axinfnd 10293 | A version of the Axiom of ... |
axacndlem1 10294 | Lemma for the Axiom of Cho... |
axacndlem2 10295 | Lemma for the Axiom of Cho... |
axacndlem3 10296 | Lemma for the Axiom of Cho... |
axacndlem4 10297 | Lemma for the Axiom of Cho... |
axacndlem5 10298 | Lemma for the Axiom of Cho... |
axacnd 10299 | A version of the Axiom of ... |
zfcndext 10300 | Axiom of Extensionality ~ ... |
zfcndrep 10301 | Axiom of Replacement ~ ax-... |
zfcndun 10302 | Axiom of Union ~ ax-un , r... |
zfcndpow 10303 | Axiom of Power Sets ~ ax-p... |
zfcndreg 10304 | Axiom of Regularity ~ ax-r... |
zfcndinf 10305 | Axiom of Infinity ~ ax-inf... |
zfcndac 10306 | Axiom of Choice ~ ax-ac , ... |
elgch 10309 | Elementhood in the collect... |
fingch 10310 | A finite set is a GCH-set.... |
gchi 10311 | The only GCH-sets which ha... |
gchen1 10312 | If ` A <_ B < ~P A ` , and... |
gchen2 10313 | If ` A < B <_ ~P A ` , and... |
gchor 10314 | If ` A <_ B <_ ~P A ` , an... |
engch 10315 | The property of being a GC... |
gchdomtri 10316 | Under certain conditions, ... |
fpwwe2cbv 10317 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem1 10318 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem2 10319 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem3 10320 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem4 10321 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem5 10322 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem6 10323 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem7 10324 | Lemma for ~ fpwwe2 . Show... |
fpwwe2lem8 10325 | Lemma for ~ fpwwe2 . Give... |
fpwwe2lem9 10326 | Lemma for ~ fpwwe2 . Give... |
fpwwe2lem10 10327 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem11 10328 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2lem12 10329 | Lemma for ~ fpwwe2 . (Con... |
fpwwe2 10330 | Given any function ` F ` f... |
fpwwecbv 10331 | Lemma for ~ fpwwe . (Cont... |
fpwwelem 10332 | Lemma for ~ fpwwe . (Cont... |
fpwwe 10333 | Given any function ` F ` f... |
canth4 10334 | An "effective" form of Can... |
canthnumlem 10335 | Lemma for ~ canthnum . (C... |
canthnum 10336 | The set of well-orderable ... |
canthwelem 10337 | Lemma for ~ canthwe . (Co... |
canthwe 10338 | The set of well-orders of ... |
canthp1lem1 10339 | Lemma for ~ canthp1 . (Co... |
canthp1lem2 10340 | Lemma for ~ canthp1 . (Co... |
canthp1 10341 | A slightly stronger form o... |
finngch 10342 | The exclusion of finite se... |
gchdju1 10343 | An infinite GCH-set is ide... |
gchinf 10344 | An infinite GCH-set is Ded... |
pwfseqlem1 10345 | Lemma for ~ pwfseq . Deri... |
pwfseqlem2 10346 | Lemma for ~ pwfseq . (Con... |
pwfseqlem3 10347 | Lemma for ~ pwfseq . Usin... |
pwfseqlem4a 10348 | Lemma for ~ pwfseqlem4 . ... |
pwfseqlem4 10349 | Lemma for ~ pwfseq . Deri... |
pwfseqlem5 10350 | Lemma for ~ pwfseq . Alth... |
pwfseq 10351 | The powerset of a Dedekind... |
pwxpndom2 10352 | The powerset of a Dedekind... |
pwxpndom 10353 | The powerset of a Dedekind... |
pwdjundom 10354 | The powerset of a Dedekind... |
gchdjuidm 10355 | An infinite GCH-set is ide... |
gchxpidm 10356 | An infinite GCH-set is ide... |
gchpwdom 10357 | A relationship between dom... |
gchaleph 10358 | If ` ( aleph `` A ) ` is a... |
gchaleph2 10359 | If ` ( aleph `` A ) ` and ... |
hargch 10360 | If ` A + ~~ ~P A ` , then ... |
alephgch 10361 | If ` ( aleph `` suc A ) ` ... |
gch2 10362 | It is sufficient to requir... |
gch3 10363 | An equivalent formulation ... |
gch-kn 10364 | The equivalence of two ver... |
gchaclem 10365 | Lemma for ~ gchac (obsolet... |
gchhar 10366 | A "local" form of ~ gchac ... |
gchacg 10367 | A "local" form of ~ gchac ... |
gchac 10368 | The Generalized Continuum ... |
elwina 10373 | Conditions of weak inacces... |
elina 10374 | Conditions of strong inacc... |
winaon 10375 | A weakly inaccessible card... |
inawinalem 10376 | Lemma for ~ inawina . (Co... |
inawina 10377 | Every strongly inaccessibl... |
omina 10378 | ` _om ` is a strongly inac... |
winacard 10379 | A weakly inaccessible card... |
winainflem 10380 | A weakly inaccessible card... |
winainf 10381 | A weakly inaccessible card... |
winalim 10382 | A weakly inaccessible card... |
winalim2 10383 | A nontrivial weakly inacce... |
winafp 10384 | A nontrivial weakly inacce... |
winafpi 10385 | This theorem, which states... |
gchina 10386 | Assuming the GCH, weakly a... |
iswun 10391 | Properties of a weak unive... |
wuntr 10392 | A weak universe is transit... |
wununi 10393 | A weak universe is closed ... |
wunpw 10394 | A weak universe is closed ... |
wunelss 10395 | The elements of a weak uni... |
wunpr 10396 | A weak universe is closed ... |
wunun 10397 | A weak universe is closed ... |
wuntp 10398 | A weak universe is closed ... |
wunss 10399 | A weak universe is closed ... |
wunin 10400 | A weak universe is closed ... |
wundif 10401 | A weak universe is closed ... |
wunint 10402 | A weak universe is closed ... |
wunsn 10403 | A weak universe is closed ... |
wunsuc 10404 | A weak universe is closed ... |
wun0 10405 | A weak universe contains t... |
wunr1om 10406 | A weak universe is infinit... |
wunom 10407 | A weak universe contains a... |
wunfi 10408 | A weak universe contains a... |
wunop 10409 | A weak universe is closed ... |
wunot 10410 | A weak universe is closed ... |
wunxp 10411 | A weak universe is closed ... |
wunpm 10412 | A weak universe is closed ... |
wunmap 10413 | A weak universe is closed ... |
wunf 10414 | A weak universe is closed ... |
wundm 10415 | A weak universe is closed ... |
wunrn 10416 | A weak universe is closed ... |
wuncnv 10417 | A weak universe is closed ... |
wunres 10418 | A weak universe is closed ... |
wunfv 10419 | A weak universe is closed ... |
wunco 10420 | A weak universe is closed ... |
wuntpos 10421 | A weak universe is closed ... |
intwun 10422 | The intersection of a coll... |
r1limwun 10423 | Each limit stage in the cu... |
r1wunlim 10424 | The weak universes in the ... |
wunex2 10425 | Construct a weak universe ... |
wunex 10426 | Construct a weak universe ... |
uniwun 10427 | Every set is contained in ... |
wunex3 10428 | Construct a weak universe ... |
wuncval 10429 | Value of the weak universe... |
wuncid 10430 | The weak universe closure ... |
wunccl 10431 | The weak universe closure ... |
wuncss 10432 | The weak universe closure ... |
wuncidm 10433 | The weak universe closure ... |
wuncval2 10434 | Our earlier expression for... |
eltskg 10437 | Properties of a Tarski cla... |
eltsk2g 10438 | Properties of a Tarski cla... |
tskpwss 10439 | First axiom of a Tarski cl... |
tskpw 10440 | Second axiom of a Tarski c... |
tsken 10441 | Third axiom of a Tarski cl... |
0tsk 10442 | The empty set is a (transi... |
tsksdom 10443 | An element of a Tarski cla... |
tskssel 10444 | A part of a Tarski class s... |
tskss 10445 | The subsets of an element ... |
tskin 10446 | The intersection of two el... |
tsksn 10447 | A singleton of an element ... |
tsktrss 10448 | A transitive element of a ... |
tsksuc 10449 | If an element of a Tarski ... |
tsk0 10450 | A nonempty Tarski class co... |
tsk1 10451 | One is an element of a non... |
tsk2 10452 | Two is an element of a non... |
2domtsk 10453 | If a Tarski class is not e... |
tskr1om 10454 | A nonempty Tarski class is... |
tskr1om2 10455 | A nonempty Tarski class co... |
tskinf 10456 | A nonempty Tarski class is... |
tskpr 10457 | If ` A ` and ` B ` are mem... |
tskop 10458 | If ` A ` and ` B ` are mem... |
tskxpss 10459 | A Cartesian product of two... |
tskwe2 10460 | A Tarski class is well-ord... |
inttsk 10461 | The intersection of a coll... |
inar1 10462 | ` ( R1 `` A ) ` for ` A ` ... |
r1omALT 10463 | Alternate proof of ~ r1om ... |
rankcf 10464 | Any set must be at least a... |
inatsk 10465 | ` ( R1 `` A ) ` for ` A ` ... |
r1omtsk 10466 | The set of hereditarily fi... |
tskord 10467 | A Tarski class contains al... |
tskcard 10468 | An even more direct relati... |
r1tskina 10469 | There is a direct relation... |
tskuni 10470 | The union of an element of... |
tskwun 10471 | A nonempty transitive Tars... |
tskint 10472 | The intersection of an ele... |
tskun 10473 | The union of two elements ... |
tskxp 10474 | The Cartesian product of t... |
tskmap 10475 | Set exponentiation is an e... |
tskurn 10476 | A transitive Tarski class ... |
elgrug 10479 | Properties of a Grothendie... |
grutr 10480 | A Grothendieck universe is... |
gruelss 10481 | A Grothendieck universe is... |
grupw 10482 | A Grothendieck universe co... |
gruss 10483 | Any subset of an element o... |
grupr 10484 | A Grothendieck universe co... |
gruurn 10485 | A Grothendieck universe co... |
gruiun 10486 | If ` B ( x ) ` is a family... |
gruuni 10487 | A Grothendieck universe co... |
grurn 10488 | A Grothendieck universe co... |
gruima 10489 | A Grothendieck universe co... |
gruel 10490 | Any element of an element ... |
grusn 10491 | A Grothendieck universe co... |
gruop 10492 | A Grothendieck universe co... |
gruun 10493 | A Grothendieck universe co... |
gruxp 10494 | A Grothendieck universe co... |
grumap 10495 | A Grothendieck universe co... |
gruixp 10496 | A Grothendieck universe co... |
gruiin 10497 | A Grothendieck universe co... |
gruf 10498 | A Grothendieck universe co... |
gruen 10499 | A Grothendieck universe co... |
gruwun 10500 | A nonempty Grothendieck un... |
intgru 10501 | The intersection of a fami... |
ingru 10502 | The intersection of a univ... |
wfgru 10503 | The wellfounded part of a ... |
grudomon 10504 | Each ordinal that is compa... |
gruina 10505 | If a Grothendieck universe... |
grur1a 10506 | A characterization of Grot... |
grur1 10507 | A characterization of Grot... |
grutsk1 10508 | Grothendieck universes are... |
grutsk 10509 | Grothendieck universes are... |
axgroth5 10511 | The Tarski-Grothendieck ax... |
axgroth2 10512 | Alternate version of the T... |
grothpw 10513 | Derive the Axiom of Power ... |
grothpwex 10514 | Derive the Axiom of Power ... |
axgroth6 10515 | The Tarski-Grothendieck ax... |
grothomex 10516 | The Tarski-Grothendieck Ax... |
grothac 10517 | The Tarski-Grothendieck Ax... |
axgroth3 10518 | Alternate version of the T... |
axgroth4 10519 | Alternate version of the T... |
grothprimlem 10520 | Lemma for ~ grothprim . E... |
grothprim 10521 | The Tarski-Grothendieck Ax... |
grothtsk 10522 | The Tarski-Grothendieck Ax... |
inaprc 10523 | An equivalent to the Tarsk... |
tskmval 10526 | Value of our tarski map. ... |
tskmid 10527 | The set ` A ` is an elemen... |
tskmcl 10528 | A Tarski class that contai... |
sstskm 10529 | Being a part of ` ( tarski... |
eltskm 10530 | Belonging to ` ( tarskiMap... |
elni 10563 | Membership in the class of... |
elni2 10564 | Membership in the class of... |
pinn 10565 | A positive integer is a na... |
pion 10566 | A positive integer is an o... |
piord 10567 | A positive integer is ordi... |
niex 10568 | The class of positive inte... |
0npi 10569 | The empty set is not a pos... |
1pi 10570 | Ordinal 'one' is a positiv... |
addpiord 10571 | Positive integer addition ... |
mulpiord 10572 | Positive integer multiplic... |
mulidpi 10573 | 1 is an identity element f... |
ltpiord 10574 | Positive integer 'less tha... |
ltsopi 10575 | Positive integer 'less tha... |
ltrelpi 10576 | Positive integer 'less tha... |
dmaddpi 10577 | Domain of addition on posi... |
dmmulpi 10578 | Domain of multiplication o... |
addclpi 10579 | Closure of addition of pos... |
mulclpi 10580 | Closure of multiplication ... |
addcompi 10581 | Addition of positive integ... |
addasspi 10582 | Addition of positive integ... |
mulcompi 10583 | Multiplication of positive... |
mulasspi 10584 | Multiplication of positive... |
distrpi 10585 | Multiplication of positive... |
addcanpi 10586 | Addition cancellation law ... |
mulcanpi 10587 | Multiplication cancellatio... |
addnidpi 10588 | There is no identity eleme... |
ltexpi 10589 | Ordering on positive integ... |
ltapi 10590 | Ordering property of addit... |
ltmpi 10591 | Ordering property of multi... |
1lt2pi 10592 | One is less than two (one ... |
nlt1pi 10593 | No positive integer is les... |
indpi 10594 | Principle of Finite Induct... |
enqbreq 10606 | Equivalence relation for p... |
enqbreq2 10607 | Equivalence relation for p... |
enqer 10608 | The equivalence relation f... |
enqex 10609 | The equivalence relation f... |
nqex 10610 | The class of positive frac... |
0nnq 10611 | The empty set is not a pos... |
elpqn 10612 | Each positive fraction is ... |
ltrelnq 10613 | Positive fraction 'less th... |
pinq 10614 | The representatives of pos... |
1nq 10615 | The positive fraction 'one... |
nqereu 10616 | There is a unique element ... |
nqerf 10617 | Corollary of ~ nqereu : th... |
nqercl 10618 | Corollary of ~ nqereu : cl... |
nqerrel 10619 | Any member of ` ( N. X. N.... |
nqerid 10620 | Corollary of ~ nqereu : th... |
enqeq 10621 | Corollary of ~ nqereu : if... |
nqereq 10622 | The function ` /Q ` acts a... |
addpipq2 10623 | Addition of positive fract... |
addpipq 10624 | Addition of positive fract... |
addpqnq 10625 | Addition of positive fract... |
mulpipq2 10626 | Multiplication of positive... |
mulpipq 10627 | Multiplication of positive... |
mulpqnq 10628 | Multiplication of positive... |
ordpipq 10629 | Ordering of positive fract... |
ordpinq 10630 | Ordering of positive fract... |
addpqf 10631 | Closure of addition on pos... |
addclnq 10632 | Closure of addition on pos... |
mulpqf 10633 | Closure of multiplication ... |
mulclnq 10634 | Closure of multiplication ... |
addnqf 10635 | Domain of addition on posi... |
mulnqf 10636 | Domain of multiplication o... |
addcompq 10637 | Addition of positive fract... |
addcomnq 10638 | Addition of positive fract... |
mulcompq 10639 | Multiplication of positive... |
mulcomnq 10640 | Multiplication of positive... |
adderpqlem 10641 | Lemma for ~ adderpq . (Co... |
mulerpqlem 10642 | Lemma for ~ mulerpq . (Co... |
adderpq 10643 | Addition is compatible wit... |
mulerpq 10644 | Multiplication is compatib... |
addassnq 10645 | Addition of positive fract... |
mulassnq 10646 | Multiplication of positive... |
mulcanenq 10647 | Lemma for distributive law... |
distrnq 10648 | Multiplication of positive... |
1nqenq 10649 | The equivalence class of r... |
mulidnq 10650 | Multiplication identity el... |
recmulnq 10651 | Relationship between recip... |
recidnq 10652 | A positive fraction times ... |
recclnq 10653 | Closure law for positive f... |
recrecnq 10654 | Reciprocal of reciprocal o... |
dmrecnq 10655 | Domain of reciprocal on po... |
ltsonq 10656 | 'Less than' is a strict or... |
lterpq 10657 | Compatibility of ordering ... |
ltanq 10658 | Ordering property of addit... |
ltmnq 10659 | Ordering property of multi... |
1lt2nq 10660 | One is less than two (one ... |
ltaddnq 10661 | The sum of two fractions i... |
ltexnq 10662 | Ordering on positive fract... |
halfnq 10663 | One-half of any positive f... |
nsmallnq 10664 | The is no smallest positiv... |
ltbtwnnq 10665 | There exists a number betw... |
ltrnq 10666 | Ordering property of recip... |
archnq 10667 | For any fraction, there is... |
npex 10673 | The class of positive real... |
elnp 10674 | Membership in positive rea... |
elnpi 10675 | Membership in positive rea... |
prn0 10676 | A positive real is not emp... |
prpssnq 10677 | A positive real is a subse... |
elprnq 10678 | A positive real is a set o... |
0npr 10679 | The empty set is not a pos... |
prcdnq 10680 | A positive real is closed ... |
prub 10681 | A positive fraction not in... |
prnmax 10682 | A positive real has no lar... |
npomex 10683 | A simplifying observation,... |
prnmadd 10684 | A positive real has no lar... |
ltrelpr 10685 | Positive real 'less than' ... |
genpv 10686 | Value of general operation... |
genpelv 10687 | Membership in value of gen... |
genpprecl 10688 | Pre-closure law for genera... |
genpdm 10689 | Domain of general operatio... |
genpn0 10690 | The result of an operation... |
genpss 10691 | The result of an operation... |
genpnnp 10692 | The result of an operation... |
genpcd 10693 | Downward closure of an ope... |
genpnmax 10694 | An operation on positive r... |
genpcl 10695 | Closure of an operation on... |
genpass 10696 | Associativity of an operat... |
plpv 10697 | Value of addition on posit... |
mpv 10698 | Value of multiplication on... |
dmplp 10699 | Domain of addition on posi... |
dmmp 10700 | Domain of multiplication o... |
nqpr 10701 | The canonical embedding of... |
1pr 10702 | The positive real number '... |
addclprlem1 10703 | Lemma to prove downward cl... |
addclprlem2 10704 | Lemma to prove downward cl... |
addclpr 10705 | Closure of addition on pos... |
mulclprlem 10706 | Lemma to prove downward cl... |
mulclpr 10707 | Closure of multiplication ... |
addcompr 10708 | Addition of positive reals... |
addasspr 10709 | Addition of positive reals... |
mulcompr 10710 | Multiplication of positive... |
mulasspr 10711 | Multiplication of positive... |
distrlem1pr 10712 | Lemma for distributive law... |
distrlem4pr 10713 | Lemma for distributive law... |
distrlem5pr 10714 | Lemma for distributive law... |
distrpr 10715 | Multiplication of positive... |
1idpr 10716 | 1 is an identity element f... |
ltprord 10717 | Positive real 'less than' ... |
psslinpr 10718 | Proper subset is a linear ... |
ltsopr 10719 | Positive real 'less than' ... |
prlem934 10720 | Lemma 9-3.4 of [Gleason] p... |
ltaddpr 10721 | The sum of two positive re... |
ltaddpr2 10722 | The sum of two positive re... |
ltexprlem1 10723 | Lemma for Proposition 9-3.... |
ltexprlem2 10724 | Lemma for Proposition 9-3.... |
ltexprlem3 10725 | Lemma for Proposition 9-3.... |
ltexprlem4 10726 | Lemma for Proposition 9-3.... |
ltexprlem5 10727 | Lemma for Proposition 9-3.... |
ltexprlem6 10728 | Lemma for Proposition 9-3.... |
ltexprlem7 10729 | Lemma for Proposition 9-3.... |
ltexpri 10730 | Proposition 9-3.5(iv) of [... |
ltaprlem 10731 | Lemma for Proposition 9-3.... |
ltapr 10732 | Ordering property of addit... |
addcanpr 10733 | Addition cancellation law ... |
prlem936 10734 | Lemma 9-3.6 of [Gleason] p... |
reclem2pr 10735 | Lemma for Proposition 9-3.... |
reclem3pr 10736 | Lemma for Proposition 9-3.... |
reclem4pr 10737 | Lemma for Proposition 9-3.... |
recexpr 10738 | The reciprocal of a positi... |
suplem1pr 10739 | The union of a nonempty, b... |
suplem2pr 10740 | The union of a set of posi... |
supexpr 10741 | The union of a nonempty, b... |
enrer 10750 | The equivalence relation f... |
nrex1 10751 | The class of signed reals ... |
enrbreq 10752 | Equivalence relation for s... |
enreceq 10753 | Equivalence class equality... |
enrex 10754 | The equivalence relation f... |
ltrelsr 10755 | Signed real 'less than' is... |
addcmpblnr 10756 | Lemma showing compatibilit... |
mulcmpblnrlem 10757 | Lemma used in lemma showin... |
mulcmpblnr 10758 | Lemma showing compatibilit... |
prsrlem1 10759 | Decomposing signed reals i... |
addsrmo 10760 | There is at most one resul... |
mulsrmo 10761 | There is at most one resul... |
addsrpr 10762 | Addition of signed reals i... |
mulsrpr 10763 | Multiplication of signed r... |
ltsrpr 10764 | Ordering of signed reals i... |
gt0srpr 10765 | Greater than zero in terms... |
0nsr 10766 | The empty set is not a sig... |
0r 10767 | The constant ` 0R ` is a s... |
1sr 10768 | The constant ` 1R ` is a s... |
m1r 10769 | The constant ` -1R ` is a ... |
addclsr 10770 | Closure of addition on sig... |
mulclsr 10771 | Closure of multiplication ... |
dmaddsr 10772 | Domain of addition on sign... |
dmmulsr 10773 | Domain of multiplication o... |
addcomsr 10774 | Addition of signed reals i... |
addasssr 10775 | Addition of signed reals i... |
mulcomsr 10776 | Multiplication of signed r... |
mulasssr 10777 | Multiplication of signed r... |
distrsr 10778 | Multiplication of signed r... |
m1p1sr 10779 | Minus one plus one is zero... |
m1m1sr 10780 | Minus one times minus one ... |
ltsosr 10781 | Signed real 'less than' is... |
0lt1sr 10782 | 0 is less than 1 for signe... |
1ne0sr 10783 | 1 and 0 are distinct for s... |
0idsr 10784 | The signed real number 0 i... |
1idsr 10785 | 1 is an identity element f... |
00sr 10786 | A signed real times 0 is 0... |
ltasr 10787 | Ordering property of addit... |
pn0sr 10788 | A signed real plus its neg... |
negexsr 10789 | Existence of negative sign... |
recexsrlem 10790 | The reciprocal of a positi... |
addgt0sr 10791 | The sum of two positive si... |
mulgt0sr 10792 | The product of two positiv... |
sqgt0sr 10793 | The square of a nonzero si... |
recexsr 10794 | The reciprocal of a nonzer... |
mappsrpr 10795 | Mapping from positive sign... |
ltpsrpr 10796 | Mapping of order from posi... |
map2psrpr 10797 | Equivalence for positive s... |
supsrlem 10798 | Lemma for supremum theorem... |
supsr 10799 | A nonempty, bounded set of... |
opelcn 10816 | Ordered pair membership in... |
opelreal 10817 | Ordered pair membership in... |
elreal 10818 | Membership in class of rea... |
elreal2 10819 | Ordered pair membership in... |
0ncn 10820 | The empty set is not a com... |
ltrelre 10821 | 'Less than' is a relation ... |
addcnsr 10822 | Addition of complex number... |
mulcnsr 10823 | Multiplication of complex ... |
eqresr 10824 | Equality of real numbers i... |
addresr 10825 | Addition of real numbers i... |
mulresr 10826 | Multiplication of real num... |
ltresr 10827 | Ordering of real subset of... |
ltresr2 10828 | Ordering of real subset of... |
dfcnqs 10829 | Technical trick to permit ... |
addcnsrec 10830 | Technical trick to permit ... |
mulcnsrec 10831 | Technical trick to permit ... |
axaddf 10832 | Addition is an operation o... |
axmulf 10833 | Multiplication is an opera... |
axcnex 10834 | The complex numbers form a... |
axresscn 10835 | The real numbers are a sub... |
ax1cn 10836 | 1 is a complex number. Ax... |
axicn 10837 | ` _i ` is a complex number... |
axaddcl 10838 | Closure law for addition o... |
axaddrcl 10839 | Closure law for addition i... |
axmulcl 10840 | Closure law for multiplica... |
axmulrcl 10841 | Closure law for multiplica... |
axmulcom 10842 | Multiplication of complex ... |
axaddass 10843 | Addition of complex number... |
axmulass 10844 | Multiplication of complex ... |
axdistr 10845 | Distributive law for compl... |
axi2m1 10846 | i-squared equals -1 (expre... |
ax1ne0 10847 | 1 and 0 are distinct. Axi... |
ax1rid 10848 | ` 1 ` is an identity eleme... |
axrnegex 10849 | Existence of negative of r... |
axrrecex 10850 | Existence of reciprocal of... |
axcnre 10851 | A complex number can be ex... |
axpre-lttri 10852 | Ordering on reals satisfie... |
axpre-lttrn 10853 | Ordering on reals is trans... |
axpre-ltadd 10854 | Ordering property of addit... |
axpre-mulgt0 10855 | The product of two positiv... |
axpre-sup 10856 | A nonempty, bounded-above ... |
wuncn 10857 | A weak universe containing... |
cnex 10883 | Alias for ~ ax-cnex . See... |
addcl 10884 | Alias for ~ ax-addcl , for... |
readdcl 10885 | Alias for ~ ax-addrcl , fo... |
mulcl 10886 | Alias for ~ ax-mulcl , for... |
remulcl 10887 | Alias for ~ ax-mulrcl , fo... |
mulcom 10888 | Alias for ~ ax-mulcom , fo... |
addass 10889 | Alias for ~ ax-addass , fo... |
mulass 10890 | Alias for ~ ax-mulass , fo... |
adddi 10891 | Alias for ~ ax-distr , for... |
recn 10892 | A real number is a complex... |
reex 10893 | The real numbers form a se... |
reelprrecn 10894 | Reals are a subset of the ... |
cnelprrecn 10895 | Complex numbers are a subs... |
elimne0 10896 | Hypothesis for weak deduct... |
adddir 10897 | Distributive law for compl... |
0cn 10898 | Zero is a complex number. ... |
0cnd 10899 | Zero is a complex number, ... |
c0ex 10900 | Zero is a set. (Contribut... |
1cnd 10901 | One is a complex number, d... |
1ex 10902 | One is a set. (Contribute... |
cnre 10903 | Alias for ~ ax-cnre , for ... |
mulid1 10904 | The number 1 is an identit... |
mulid2 10905 | Identity law for multiplic... |
1re 10906 | The number 1 is real. Thi... |
1red 10907 | The number 1 is real, dedu... |
0re 10908 | The number 0 is real. Rem... |
0red 10909 | The number 0 is real, dedu... |
mulid1i 10910 | Identity law for multiplic... |
mulid2i 10911 | Identity law for multiplic... |
addcli 10912 | Closure law for addition. ... |
mulcli 10913 | Closure law for multiplica... |
mulcomi 10914 | Commutative law for multip... |
mulcomli 10915 | Commutative law for multip... |
addassi 10916 | Associative law for additi... |
mulassi 10917 | Associative law for multip... |
adddii 10918 | Distributive law (left-dis... |
adddiri 10919 | Distributive law (right-di... |
recni 10920 | A real number is a complex... |
readdcli 10921 | Closure law for addition o... |
remulcli 10922 | Closure law for multiplica... |
mulid1d 10923 | Identity law for multiplic... |
mulid2d 10924 | Identity law for multiplic... |
addcld 10925 | Closure law for addition. ... |
mulcld 10926 | Closure law for multiplica... |
mulcomd 10927 | Commutative law for multip... |
addassd 10928 | Associative law for additi... |
mulassd 10929 | Associative law for multip... |
adddid 10930 | Distributive law (left-dis... |
adddird 10931 | Distributive law (right-di... |
adddirp1d 10932 | Distributive law, plus 1 v... |
joinlmuladdmuld 10933 | Join AB+CB into (A+C) on L... |
recnd 10934 | Deduction from real number... |
readdcld 10935 | Closure law for addition o... |
remulcld 10936 | Closure law for multiplica... |
pnfnre 10947 | Plus infinity is not a rea... |
pnfnre2 10948 | Plus infinity is not a rea... |
mnfnre 10949 | Minus infinity is not a re... |
ressxr 10950 | The standard reals are a s... |
rexpssxrxp 10951 | The Cartesian product of s... |
rexr 10952 | A standard real is an exte... |
0xr 10953 | Zero is an extended real. ... |
renepnf 10954 | No (finite) real equals pl... |
renemnf 10955 | No real equals minus infin... |
rexrd 10956 | A standard real is an exte... |
renepnfd 10957 | No (finite) real equals pl... |
renemnfd 10958 | No real equals minus infin... |
pnfex 10959 | Plus infinity exists. (Co... |
pnfxr 10960 | Plus infinity belongs to t... |
pnfnemnf 10961 | Plus and minus infinity ar... |
mnfnepnf 10962 | Minus and plus infinity ar... |
mnfxr 10963 | Minus infinity belongs to ... |
rexri 10964 | A standard real is an exte... |
1xr 10965 | ` 1 ` is an extended real ... |
renfdisj 10966 | The reals and the infiniti... |
ltrelxr 10967 | "Less than" is a relation ... |
ltrel 10968 | "Less than" is a relation.... |
lerelxr 10969 | "Less than or equal to" is... |
lerel 10970 | "Less than or equal to" is... |
xrlenlt 10971 | "Less than or equal to" ex... |
xrlenltd 10972 | "Less than or equal to" ex... |
xrltnle 10973 | "Less than" expressed in t... |
xrnltled 10974 | "Not less than" implies "l... |
ssxr 10975 | The three (non-exclusive) ... |
ltxrlt 10976 | The standard less-than ` <... |
axlttri 10977 | Ordering on reals satisfie... |
axlttrn 10978 | Ordering on reals is trans... |
axltadd 10979 | Ordering property of addit... |
axmulgt0 10980 | The product of two positiv... |
axsup 10981 | A nonempty, bounded-above ... |
lttr 10982 | Alias for ~ axlttrn , for ... |
mulgt0 10983 | The product of two positiv... |
lenlt 10984 | 'Less than or equal to' ex... |
ltnle 10985 | 'Less than' expressed in t... |
ltso 10986 | 'Less than' is a strict or... |
gtso 10987 | 'Greater than' is a strict... |
lttri2 10988 | Consequence of trichotomy.... |
lttri3 10989 | Trichotomy law for 'less t... |
lttri4 10990 | Trichotomy law for 'less t... |
letri3 10991 | Trichotomy law. (Contribu... |
leloe 10992 | 'Less than or equal to' ex... |
eqlelt 10993 | Equality in terms of 'less... |
ltle 10994 | 'Less than' implies 'less ... |
leltne 10995 | 'Less than or equal to' im... |
lelttr 10996 | Transitive law. (Contribu... |
ltletr 10997 | Transitive law. (Contribu... |
ltleletr 10998 | Transitive law, weaker for... |
letr 10999 | Transitive law. (Contribu... |
ltnr 11000 | 'Less than' is irreflexive... |
leid 11001 | 'Less than or equal to' is... |
ltne 11002 | 'Less than' implies not eq... |
ltnsym 11003 | 'Less than' is not symmetr... |
ltnsym2 11004 | 'Less than' is antisymmetr... |
letric 11005 | Trichotomy law. (Contribu... |
ltlen 11006 | 'Less than' expressed in t... |
eqle 11007 | Equality implies 'less tha... |
eqled 11008 | Equality implies 'less tha... |
ltadd2 11009 | Addition to both sides of ... |
ne0gt0 11010 | A nonzero nonnegative numb... |
lecasei 11011 | Ordering elimination by ca... |
lelttric 11012 | Trichotomy law. (Contribu... |
ltlecasei 11013 | Ordering elimination by ca... |
ltnri 11014 | 'Less than' is irreflexive... |
eqlei 11015 | Equality implies 'less tha... |
eqlei2 11016 | Equality implies 'less tha... |
gtneii 11017 | 'Less than' implies not eq... |
ltneii 11018 | 'Greater than' implies not... |
lttri2i 11019 | Consequence of trichotomy.... |
lttri3i 11020 | Consequence of trichotomy.... |
letri3i 11021 | Consequence of trichotomy.... |
leloei 11022 | 'Less than or equal to' in... |
ltleni 11023 | 'Less than' expressed in t... |
ltnsymi 11024 | 'Less than' is not symmetr... |
lenlti 11025 | 'Less than or equal to' in... |
ltnlei 11026 | 'Less than' in terms of 'l... |
ltlei 11027 | 'Less than' implies 'less ... |
ltleii 11028 | 'Less than' implies 'less ... |
ltnei 11029 | 'Less than' implies not eq... |
letrii 11030 | Trichotomy law for 'less t... |
lttri 11031 | 'Less than' is transitive.... |
lelttri 11032 | 'Less than or equal to', '... |
ltletri 11033 | 'Less than', 'less than or... |
letri 11034 | 'Less than or equal to' is... |
le2tri3i 11035 | Extended trichotomy law fo... |
ltadd2i 11036 | Addition to both sides of ... |
mulgt0i 11037 | The product of two positiv... |
mulgt0ii 11038 | The product of two positiv... |
ltnrd 11039 | 'Less than' is irreflexive... |
gtned 11040 | 'Less than' implies not eq... |
ltned 11041 | 'Greater than' implies not... |
ne0gt0d 11042 | A nonzero nonnegative numb... |
lttrid 11043 | Ordering on reals satisfie... |
lttri2d 11044 | Consequence of trichotomy.... |
lttri3d 11045 | Consequence of trichotomy.... |
lttri4d 11046 | Trichotomy law for 'less t... |
letri3d 11047 | Consequence of trichotomy.... |
leloed 11048 | 'Less than or equal to' in... |
eqleltd 11049 | Equality in terms of 'less... |
ltlend 11050 | 'Less than' expressed in t... |
lenltd 11051 | 'Less than or equal to' in... |
ltnled 11052 | 'Less than' in terms of 'l... |
ltled 11053 | 'Less than' implies 'less ... |
ltnsymd 11054 | 'Less than' implies 'less ... |
nltled 11055 | 'Not less than ' implies '... |
lensymd 11056 | 'Less than or equal to' im... |
letrid 11057 | Trichotomy law for 'less t... |
leltned 11058 | 'Less than or equal to' im... |
leneltd 11059 | 'Less than or equal to' an... |
mulgt0d 11060 | The product of two positiv... |
ltadd2d 11061 | Addition to both sides of ... |
letrd 11062 | Transitive law deduction f... |
lelttrd 11063 | Transitive law deduction f... |
ltadd2dd 11064 | Addition to both sides of ... |
ltletrd 11065 | Transitive law deduction f... |
lttrd 11066 | Transitive law deduction f... |
lelttrdi 11067 | If a number is less than a... |
dedekind 11068 | The Dedekind cut theorem. ... |
dedekindle 11069 | The Dedekind cut theorem, ... |
mul12 11070 | Commutative/associative la... |
mul32 11071 | Commutative/associative la... |
mul31 11072 | Commutative/associative la... |
mul4 11073 | Rearrangement of 4 factors... |
mul4r 11074 | Rearrangement of 4 factors... |
muladd11 11075 | A simple product of sums e... |
1p1times 11076 | Two times a number. (Cont... |
peano2cn 11077 | A theorem for complex numb... |
peano2re 11078 | A theorem for reals analog... |
readdcan 11079 | Cancellation law for addit... |
00id 11080 | ` 0 ` is its own additive ... |
mul02lem1 11081 | Lemma for ~ mul02 . If an... |
mul02lem2 11082 | Lemma for ~ mul02 . Zero ... |
mul02 11083 | Multiplication by ` 0 ` . ... |
mul01 11084 | Multiplication by ` 0 ` . ... |
addid1 11085 | ` 0 ` is an additive ident... |
cnegex 11086 | Existence of the negative ... |
cnegex2 11087 | Existence of a left invers... |
addid2 11088 | ` 0 ` is a left identity f... |
addcan 11089 | Cancellation law for addit... |
addcan2 11090 | Cancellation law for addit... |
addcom 11091 | Addition commutes. This u... |
addid1i 11092 | ` 0 ` is an additive ident... |
addid2i 11093 | ` 0 ` is a left identity f... |
mul02i 11094 | Multiplication by 0. Theo... |
mul01i 11095 | Multiplication by ` 0 ` . ... |
addcomi 11096 | Addition commutes. Based ... |
addcomli 11097 | Addition commutes. (Contr... |
addcani 11098 | Cancellation law for addit... |
addcan2i 11099 | Cancellation law for addit... |
mul12i 11100 | Commutative/associative la... |
mul32i 11101 | Commutative/associative la... |
mul4i 11102 | Rearrangement of 4 factors... |
mul02d 11103 | Multiplication by 0. Theo... |
mul01d 11104 | Multiplication by ` 0 ` . ... |
addid1d 11105 | ` 0 ` is an additive ident... |
addid2d 11106 | ` 0 ` is a left identity f... |
addcomd 11107 | Addition commutes. Based ... |
addcand 11108 | Cancellation law for addit... |
addcan2d 11109 | Cancellation law for addit... |
addcanad 11110 | Cancelling a term on the l... |
addcan2ad 11111 | Cancelling a term on the r... |
addneintrd 11112 | Introducing a term on the ... |
addneintr2d 11113 | Introducing a term on the ... |
mul12d 11114 | Commutative/associative la... |
mul32d 11115 | Commutative/associative la... |
mul31d 11116 | Commutative/associative la... |
mul4d 11117 | Rearrangement of 4 factors... |
muladd11r 11118 | A simple product of sums e... |
comraddd 11119 | Commute RHS addition, in d... |
ltaddneg 11120 | Adding a negative number t... |
ltaddnegr 11121 | Adding a negative number t... |
add12 11122 | Commutative/associative la... |
add32 11123 | Commutative/associative la... |
add32r 11124 | Commutative/associative la... |
add4 11125 | Rearrangement of 4 terms i... |
add42 11126 | Rearrangement of 4 terms i... |
add12i 11127 | Commutative/associative la... |
add32i 11128 | Commutative/associative la... |
add4i 11129 | Rearrangement of 4 terms i... |
add42i 11130 | Rearrangement of 4 terms i... |
add12d 11131 | Commutative/associative la... |
add32d 11132 | Commutative/associative la... |
add4d 11133 | Rearrangement of 4 terms i... |
add42d 11134 | Rearrangement of 4 terms i... |
0cnALT 11139 | Alternate proof of ~ 0cn w... |
0cnALT2 11140 | Alternate proof of ~ 0cnAL... |
negeu 11141 | Existential uniqueness of ... |
subval 11142 | Value of subtraction, whic... |
negeq 11143 | Equality theorem for negat... |
negeqi 11144 | Equality inference for neg... |
negeqd 11145 | Equality deduction for neg... |
nfnegd 11146 | Deduction version of ~ nfn... |
nfneg 11147 | Bound-variable hypothesis ... |
csbnegg 11148 | Move class substitution in... |
negex 11149 | A negative is a set. (Con... |
subcl 11150 | Closure law for subtractio... |
negcl 11151 | Closure law for negative. ... |
negicn 11152 | ` -u _i ` is a complex num... |
subf 11153 | Subtraction is an operatio... |
subadd 11154 | Relationship between subtr... |
subadd2 11155 | Relationship between subtr... |
subsub23 11156 | Swap subtrahend and result... |
pncan 11157 | Cancellation law for subtr... |
pncan2 11158 | Cancellation law for subtr... |
pncan3 11159 | Subtraction and addition o... |
npcan 11160 | Cancellation law for subtr... |
addsubass 11161 | Associative-type law for a... |
addsub 11162 | Law for addition and subtr... |
subadd23 11163 | Commutative/associative la... |
addsub12 11164 | Commutative/associative la... |
2addsub 11165 | Law for subtraction and ad... |
addsubeq4 11166 | Relation between sums and ... |
pncan3oi 11167 | Subtraction and addition o... |
mvrraddi 11168 | Move the right term in a s... |
mvlladdi 11169 | Move the left term in a su... |
subid 11170 | Subtraction of a number fr... |
subid1 11171 | Identity law for subtracti... |
npncan 11172 | Cancellation law for subtr... |
nppcan 11173 | Cancellation law for subtr... |
nnpcan 11174 | Cancellation law for subtr... |
nppcan3 11175 | Cancellation law for subtr... |
subcan2 11176 | Cancellation law for subtr... |
subeq0 11177 | If the difference between ... |
npncan2 11178 | Cancellation law for subtr... |
subsub2 11179 | Law for double subtraction... |
nncan 11180 | Cancellation law for subtr... |
subsub 11181 | Law for double subtraction... |
nppcan2 11182 | Cancellation law for subtr... |
subsub3 11183 | Law for double subtraction... |
subsub4 11184 | Law for double subtraction... |
sub32 11185 | Swap the second and third ... |
nnncan 11186 | Cancellation law for subtr... |
nnncan1 11187 | Cancellation law for subtr... |
nnncan2 11188 | Cancellation law for subtr... |
npncan3 11189 | Cancellation law for subtr... |
pnpcan 11190 | Cancellation law for mixed... |
pnpcan2 11191 | Cancellation law for mixed... |
pnncan 11192 | Cancellation law for mixed... |
ppncan 11193 | Cancellation law for mixed... |
addsub4 11194 | Rearrangement of 4 terms i... |
subadd4 11195 | Rearrangement of 4 terms i... |
sub4 11196 | Rearrangement of 4 terms i... |
neg0 11197 | Minus 0 equals 0. (Contri... |
negid 11198 | Addition of a number and i... |
negsub 11199 | Relationship between subtr... |
subneg 11200 | Relationship between subtr... |
negneg 11201 | A number is equal to the n... |
neg11 11202 | Negative is one-to-one. (... |
negcon1 11203 | Negative contraposition la... |
negcon2 11204 | Negative contraposition la... |
negeq0 11205 | A number is zero iff its n... |
subcan 11206 | Cancellation law for subtr... |
negsubdi 11207 | Distribution of negative o... |
negdi 11208 | Distribution of negative o... |
negdi2 11209 | Distribution of negative o... |
negsubdi2 11210 | Distribution of negative o... |
neg2sub 11211 | Relationship between subtr... |
renegcli 11212 | Closure law for negative o... |
resubcli 11213 | Closure law for subtractio... |
renegcl 11214 | Closure law for negative o... |
resubcl 11215 | Closure law for subtractio... |
negreb 11216 | The negative of a real is ... |
peano2cnm 11217 | "Reverse" second Peano pos... |
peano2rem 11218 | "Reverse" second Peano pos... |
negcli 11219 | Closure law for negative. ... |
negidi 11220 | Addition of a number and i... |
negnegi 11221 | A number is equal to the n... |
subidi 11222 | Subtraction of a number fr... |
subid1i 11223 | Identity law for subtracti... |
negne0bi 11224 | A number is nonzero iff it... |
negrebi 11225 | The negative of a real is ... |
negne0i 11226 | The negative of a nonzero ... |
subcli 11227 | Closure law for subtractio... |
pncan3i 11228 | Subtraction and addition o... |
negsubi 11229 | Relationship between subtr... |
subnegi 11230 | Relationship between subtr... |
subeq0i 11231 | If the difference between ... |
neg11i 11232 | Negative is one-to-one. (... |
negcon1i 11233 | Negative contraposition la... |
negcon2i 11234 | Negative contraposition la... |
negdii 11235 | Distribution of negative o... |
negsubdii 11236 | Distribution of negative o... |
negsubdi2i 11237 | Distribution of negative o... |
subaddi 11238 | Relationship between subtr... |
subadd2i 11239 | Relationship between subtr... |
subaddrii 11240 | Relationship between subtr... |
subsub23i 11241 | Swap subtrahend and result... |
addsubassi 11242 | Associative-type law for s... |
addsubi 11243 | Law for subtraction and ad... |
subcani 11244 | Cancellation law for subtr... |
subcan2i 11245 | Cancellation law for subtr... |
pnncani 11246 | Cancellation law for mixed... |
addsub4i 11247 | Rearrangement of 4 terms i... |
0reALT 11248 | Alternate proof of ~ 0re .... |
negcld 11249 | Closure law for negative. ... |
subidd 11250 | Subtraction of a number fr... |
subid1d 11251 | Identity law for subtracti... |
negidd 11252 | Addition of a number and i... |
negnegd 11253 | A number is equal to the n... |
negeq0d 11254 | A number is zero iff its n... |
negne0bd 11255 | A number is nonzero iff it... |
negcon1d 11256 | Contraposition law for una... |
negcon1ad 11257 | Contraposition law for una... |
neg11ad 11258 | The negatives of two compl... |
negned 11259 | If two complex numbers are... |
negne0d 11260 | The negative of a nonzero ... |
negrebd 11261 | The negative of a real is ... |
subcld 11262 | Closure law for subtractio... |
pncand 11263 | Cancellation law for subtr... |
pncan2d 11264 | Cancellation law for subtr... |
pncan3d 11265 | Subtraction and addition o... |
npcand 11266 | Cancellation law for subtr... |
nncand 11267 | Cancellation law for subtr... |
negsubd 11268 | Relationship between subtr... |
subnegd 11269 | Relationship between subtr... |
subeq0d 11270 | If the difference between ... |
subne0d 11271 | Two unequal numbers have n... |
subeq0ad 11272 | The difference of two comp... |
subne0ad 11273 | If the difference of two c... |
neg11d 11274 | If the difference between ... |
negdid 11275 | Distribution of negative o... |
negdi2d 11276 | Distribution of negative o... |
negsubdid 11277 | Distribution of negative o... |
negsubdi2d 11278 | Distribution of negative o... |
neg2subd 11279 | Relationship between subtr... |
subaddd 11280 | Relationship between subtr... |
subadd2d 11281 | Relationship between subtr... |
addsubassd 11282 | Associative-type law for s... |
addsubd 11283 | Law for subtraction and ad... |
subadd23d 11284 | Commutative/associative la... |
addsub12d 11285 | Commutative/associative la... |
npncand 11286 | Cancellation law for subtr... |
nppcand 11287 | Cancellation law for subtr... |
nppcan2d 11288 | Cancellation law for subtr... |
nppcan3d 11289 | Cancellation law for subtr... |
subsubd 11290 | Law for double subtraction... |
subsub2d 11291 | Law for double subtraction... |
subsub3d 11292 | Law for double subtraction... |
subsub4d 11293 | Law for double subtraction... |
sub32d 11294 | Swap the second and third ... |
nnncand 11295 | Cancellation law for subtr... |
nnncan1d 11296 | Cancellation law for subtr... |
nnncan2d 11297 | Cancellation law for subtr... |
npncan3d 11298 | Cancellation law for subtr... |
pnpcand 11299 | Cancellation law for mixed... |
pnpcan2d 11300 | Cancellation law for mixed... |
pnncand 11301 | Cancellation law for mixed... |
ppncand 11302 | Cancellation law for mixed... |
subcand 11303 | Cancellation law for subtr... |
subcan2d 11304 | Cancellation law for subtr... |
subcanad 11305 | Cancellation law for subtr... |
subneintrd 11306 | Introducing subtraction on... |
subcan2ad 11307 | Cancellation law for subtr... |
subneintr2d 11308 | Introducing subtraction on... |
addsub4d 11309 | Rearrangement of 4 terms i... |
subadd4d 11310 | Rearrangement of 4 terms i... |
sub4d 11311 | Rearrangement of 4 terms i... |
2addsubd 11312 | Law for subtraction and ad... |
addsubeq4d 11313 | Relation between sums and ... |
subeqxfrd 11314 | Transfer two terms of a su... |
mvlraddd 11315 | Move the right term in a s... |
mvlladdd 11316 | Move the left term in a su... |
mvrraddd 11317 | Move the right term in a s... |
mvrladdd 11318 | Move the left term in a su... |
assraddsubd 11319 | Associate RHS addition-sub... |
subaddeqd 11320 | Transfer two terms of a su... |
addlsub 11321 | Left-subtraction: Subtrac... |
addrsub 11322 | Right-subtraction: Subtra... |
subexsub 11323 | A subtraction law: Exchan... |
addid0 11324 | If adding a number to a an... |
addn0nid 11325 | Adding a nonzero number to... |
pnpncand 11326 | Addition/subtraction cance... |
subeqrev 11327 | Reverse the order of subtr... |
addeq0 11328 | Two complex numbers add up... |
pncan1 11329 | Cancellation law for addit... |
npcan1 11330 | Cancellation law for subtr... |
subeq0bd 11331 | If two complex numbers are... |
renegcld 11332 | Closure law for negative o... |
resubcld 11333 | Closure law for subtractio... |
negn0 11334 | The image under negation o... |
negf1o 11335 | Negation is an isomorphism... |
kcnktkm1cn 11336 | k times k minus 1 is a com... |
muladd 11337 | Product of two sums. (Con... |
subdi 11338 | Distribution of multiplica... |
subdir 11339 | Distribution of multiplica... |
ine0 11340 | The imaginary unit ` _i ` ... |
mulneg1 11341 | Product with negative is n... |
mulneg2 11342 | The product with a negativ... |
mulneg12 11343 | Swap the negative sign in ... |
mul2neg 11344 | Product of two negatives. ... |
submul2 11345 | Convert a subtraction to a... |
mulm1 11346 | Product with minus one is ... |
addneg1mul 11347 | Addition with product with... |
mulsub 11348 | Product of two differences... |
mulsub2 11349 | Swap the order of subtract... |
mulm1i 11350 | Product with minus one is ... |
mulneg1i 11351 | Product with negative is n... |
mulneg2i 11352 | Product with negative is n... |
mul2negi 11353 | Product of two negatives. ... |
subdii 11354 | Distribution of multiplica... |
subdiri 11355 | Distribution of multiplica... |
muladdi 11356 | Product of two sums. (Con... |
mulm1d 11357 | Product with minus one is ... |
mulneg1d 11358 | Product with negative is n... |
mulneg2d 11359 | Product with negative is n... |
mul2negd 11360 | Product of two negatives. ... |
subdid 11361 | Distribution of multiplica... |
subdird 11362 | Distribution of multiplica... |
muladdd 11363 | Product of two sums. (Con... |
mulsubd 11364 | Product of two differences... |
muls1d 11365 | Multiplication by one minu... |
mulsubfacd 11366 | Multiplication followed by... |
addmulsub 11367 | The product of a sum and a... |
subaddmulsub 11368 | The difference with a prod... |
mulsubaddmulsub 11369 | A special difference of a ... |
gt0ne0 11370 | Positive implies nonzero. ... |
lt0ne0 11371 | A number which is less tha... |
ltadd1 11372 | Addition to both sides of ... |
leadd1 11373 | Addition to both sides of ... |
leadd2 11374 | Addition to both sides of ... |
ltsubadd 11375 | 'Less than' relationship b... |
ltsubadd2 11376 | 'Less than' relationship b... |
lesubadd 11377 | 'Less than or equal to' re... |
lesubadd2 11378 | 'Less than or equal to' re... |
ltaddsub 11379 | 'Less than' relationship b... |
ltaddsub2 11380 | 'Less than' relationship b... |
leaddsub 11381 | 'Less than or equal to' re... |
leaddsub2 11382 | 'Less than or equal to' re... |
suble 11383 | Swap subtrahends in an ine... |
lesub 11384 | Swap subtrahends in an ine... |
ltsub23 11385 | 'Less than' relationship b... |
ltsub13 11386 | 'Less than' relationship b... |
le2add 11387 | Adding both sides of two '... |
ltleadd 11388 | Adding both sides of two o... |
leltadd 11389 | Adding both sides of two o... |
lt2add 11390 | Adding both sides of two '... |
addgt0 11391 | The sum of 2 positive numb... |
addgegt0 11392 | The sum of nonnegative and... |
addgtge0 11393 | The sum of nonnegative and... |
addge0 11394 | The sum of 2 nonnegative n... |
ltaddpos 11395 | Adding a positive number t... |
ltaddpos2 11396 | Adding a positive number t... |
ltsubpos 11397 | Subtracting a positive num... |
posdif 11398 | Comparison of two numbers ... |
lesub1 11399 | Subtraction from both side... |
lesub2 11400 | Subtraction of both sides ... |
ltsub1 11401 | Subtraction from both side... |
ltsub2 11402 | Subtraction of both sides ... |
lt2sub 11403 | Subtracting both sides of ... |
le2sub 11404 | Subtracting both sides of ... |
ltneg 11405 | Negative of both sides of ... |
ltnegcon1 11406 | Contraposition of negative... |
ltnegcon2 11407 | Contraposition of negative... |
leneg 11408 | Negative of both sides of ... |
lenegcon1 11409 | Contraposition of negative... |
lenegcon2 11410 | Contraposition of negative... |
lt0neg1 11411 | Comparison of a number and... |
lt0neg2 11412 | Comparison of a number and... |
le0neg1 11413 | Comparison of a number and... |
le0neg2 11414 | Comparison of a number and... |
addge01 11415 | A number is less than or e... |
addge02 11416 | A number is less than or e... |
add20 11417 | Two nonnegative numbers ar... |
subge0 11418 | Nonnegative subtraction. ... |
suble0 11419 | Nonpositive subtraction. ... |
leaddle0 11420 | The sum of a real number a... |
subge02 11421 | Nonnegative subtraction. ... |
lesub0 11422 | Lemma to show a nonnegativ... |
mulge0 11423 | The product of two nonnega... |
mullt0 11424 | The product of two negativ... |
msqgt0 11425 | A nonzero square is positi... |
msqge0 11426 | A square is nonnegative. ... |
0lt1 11427 | 0 is less than 1. Theorem... |
0le1 11428 | 0 is less than or equal to... |
relin01 11429 | An interval law for less t... |
ltordlem 11430 | Lemma for ~ ltord1 . (Con... |
ltord1 11431 | Infer an ordering relation... |
leord1 11432 | Infer an ordering relation... |
eqord1 11433 | A strictly increasing real... |
ltord2 11434 | Infer an ordering relation... |
leord2 11435 | Infer an ordering relation... |
eqord2 11436 | A strictly decreasing real... |
wloglei 11437 | Form of ~ wlogle where bot... |
wlogle 11438 | If the predicate ` ch ( x ... |
leidi 11439 | 'Less than or equal to' is... |
gt0ne0i 11440 | Positive means nonzero (us... |
gt0ne0ii 11441 | Positive implies nonzero. ... |
msqgt0i 11442 | A nonzero square is positi... |
msqge0i 11443 | A square is nonnegative. ... |
addgt0i 11444 | Addition of 2 positive num... |
addge0i 11445 | Addition of 2 nonnegative ... |
addgegt0i 11446 | Addition of nonnegative an... |
addgt0ii 11447 | Addition of 2 positive num... |
add20i 11448 | Two nonnegative numbers ar... |
ltnegi 11449 | Negative of both sides of ... |
lenegi 11450 | Negative of both sides of ... |
ltnegcon2i 11451 | Contraposition of negative... |
mulge0i 11452 | The product of two nonnega... |
lesub0i 11453 | Lemma to show a nonnegativ... |
ltaddposi 11454 | Adding a positive number t... |
posdifi 11455 | Comparison of two numbers ... |
ltnegcon1i 11456 | Contraposition of negative... |
lenegcon1i 11457 | Contraposition of negative... |
subge0i 11458 | Nonnegative subtraction. ... |
ltadd1i 11459 | Addition to both sides of ... |
leadd1i 11460 | Addition to both sides of ... |
leadd2i 11461 | Addition to both sides of ... |
ltsubaddi 11462 | 'Less than' relationship b... |
lesubaddi 11463 | 'Less than or equal to' re... |
ltsubadd2i 11464 | 'Less than' relationship b... |
lesubadd2i 11465 | 'Less than or equal to' re... |
ltaddsubi 11466 | 'Less than' relationship b... |
lt2addi 11467 | Adding both side of two in... |
le2addi 11468 | Adding both side of two in... |
gt0ne0d 11469 | Positive implies nonzero. ... |
lt0ne0d 11470 | Something less than zero i... |
leidd 11471 | 'Less than or equal to' is... |
msqgt0d 11472 | A nonzero square is positi... |
msqge0d 11473 | A square is nonnegative. ... |
lt0neg1d 11474 | Comparison of a number and... |
lt0neg2d 11475 | Comparison of a number and... |
le0neg1d 11476 | Comparison of a number and... |
le0neg2d 11477 | Comparison of a number and... |
addgegt0d 11478 | Addition of nonnegative an... |
addgtge0d 11479 | Addition of positive and n... |
addgt0d 11480 | Addition of 2 positive num... |
addge0d 11481 | Addition of 2 nonnegative ... |
mulge0d 11482 | The product of two nonnega... |
ltnegd 11483 | Negative of both sides of ... |
lenegd 11484 | Negative of both sides of ... |
ltnegcon1d 11485 | Contraposition of negative... |
ltnegcon2d 11486 | Contraposition of negative... |
lenegcon1d 11487 | Contraposition of negative... |
lenegcon2d 11488 | Contraposition of negative... |
ltaddposd 11489 | Adding a positive number t... |
ltaddpos2d 11490 | Adding a positive number t... |
ltsubposd 11491 | Subtracting a positive num... |
posdifd 11492 | Comparison of two numbers ... |
addge01d 11493 | A number is less than or e... |
addge02d 11494 | A number is less than or e... |
subge0d 11495 | Nonnegative subtraction. ... |
suble0d 11496 | Nonpositive subtraction. ... |
subge02d 11497 | Nonnegative subtraction. ... |
ltadd1d 11498 | Addition to both sides of ... |
leadd1d 11499 | Addition to both sides of ... |
leadd2d 11500 | Addition to both sides of ... |
ltsubaddd 11501 | 'Less than' relationship b... |
lesubaddd 11502 | 'Less than or equal to' re... |
ltsubadd2d 11503 | 'Less than' relationship b... |
lesubadd2d 11504 | 'Less than or equal to' re... |
ltaddsubd 11505 | 'Less than' relationship b... |
ltaddsub2d 11506 | 'Less than' relationship b... |
leaddsub2d 11507 | 'Less than or equal to' re... |
subled 11508 | Swap subtrahends in an ine... |
lesubd 11509 | Swap subtrahends in an ine... |
ltsub23d 11510 | 'Less than' relationship b... |
ltsub13d 11511 | 'Less than' relationship b... |
lesub1d 11512 | Subtraction from both side... |
lesub2d 11513 | Subtraction of both sides ... |
ltsub1d 11514 | Subtraction from both side... |
ltsub2d 11515 | Subtraction of both sides ... |
ltadd1dd 11516 | Addition to both sides of ... |
ltsub1dd 11517 | Subtraction from both side... |
ltsub2dd 11518 | Subtraction of both sides ... |
leadd1dd 11519 | Addition to both sides of ... |
leadd2dd 11520 | Addition to both sides of ... |
lesub1dd 11521 | Subtraction from both side... |
lesub2dd 11522 | Subtraction of both sides ... |
lesub3d 11523 | The result of subtracting ... |
le2addd 11524 | Adding both side of two in... |
le2subd 11525 | Subtracting both sides of ... |
ltleaddd 11526 | Adding both sides of two o... |
leltaddd 11527 | Adding both sides of two o... |
lt2addd 11528 | Adding both side of two in... |
lt2subd 11529 | Subtracting both sides of ... |
possumd 11530 | Condition for a positive s... |
sublt0d 11531 | When a subtraction gives a... |
ltaddsublt 11532 | Addition and subtraction o... |
1le1 11533 | One is less than or equal ... |
ixi 11534 | ` _i ` times itself is min... |
recextlem1 11535 | Lemma for ~ recex . (Cont... |
recextlem2 11536 | Lemma for ~ recex . (Cont... |
recex 11537 | Existence of reciprocal of... |
mulcand 11538 | Cancellation law for multi... |
mulcan2d 11539 | Cancellation law for multi... |
mulcanad 11540 | Cancellation of a nonzero ... |
mulcan2ad 11541 | Cancellation of a nonzero ... |
mulcan 11542 | Cancellation law for multi... |
mulcan2 11543 | Cancellation law for multi... |
mulcani 11544 | Cancellation law for multi... |
mul0or 11545 | If a product is zero, one ... |
mulne0b 11546 | The product of two nonzero... |
mulne0 11547 | The product of two nonzero... |
mulne0i 11548 | The product of two nonzero... |
muleqadd 11549 | Property of numbers whose ... |
receu 11550 | Existential uniqueness of ... |
mulnzcnopr 11551 | Multiplication maps nonzer... |
msq0i 11552 | A number is zero iff its s... |
mul0ori 11553 | If a product is zero, one ... |
msq0d 11554 | A number is zero iff its s... |
mul0ord 11555 | If a product is zero, one ... |
mulne0bd 11556 | The product of two nonzero... |
mulne0d 11557 | The product of two nonzero... |
mulcan1g 11558 | A generalized form of the ... |
mulcan2g 11559 | A generalized form of the ... |
mulne0bad 11560 | A factor of a nonzero comp... |
mulne0bbd 11561 | A factor of a nonzero comp... |
1div0 11564 | You can't divide by zero, ... |
divval 11565 | Value of division: if ` A ... |
divmul 11566 | Relationship between divis... |
divmul2 11567 | Relationship between divis... |
divmul3 11568 | Relationship between divis... |
divcl 11569 | Closure law for division. ... |
reccl 11570 | Closure law for reciprocal... |
divcan2 11571 | A cancellation law for div... |
divcan1 11572 | A cancellation law for div... |
diveq0 11573 | A ratio is zero iff the nu... |
divne0b 11574 | The ratio of nonzero numbe... |
divne0 11575 | The ratio of nonzero numbe... |
recne0 11576 | The reciprocal of a nonzer... |
recid 11577 | Multiplication of a number... |
recid2 11578 | Multiplication of a number... |
divrec 11579 | Relationship between divis... |
divrec2 11580 | Relationship between divis... |
divass 11581 | An associative law for div... |
div23 11582 | A commutative/associative ... |
div32 11583 | A commutative/associative ... |
div13 11584 | A commutative/associative ... |
div12 11585 | A commutative/associative ... |
divmulass 11586 | An associative law for div... |
divmulasscom 11587 | An associative/commutative... |
divdir 11588 | Distribution of division o... |
divcan3 11589 | A cancellation law for div... |
divcan4 11590 | A cancellation law for div... |
div11 11591 | One-to-one relationship fo... |
divid 11592 | A number divided by itself... |
div0 11593 | Division into zero is zero... |
div1 11594 | A number divided by 1 is i... |
1div1e1 11595 | 1 divided by 1 is 1. (Con... |
diveq1 11596 | Equality in terms of unit ... |
divneg 11597 | Move negative sign inside ... |
muldivdir 11598 | Distribution of division o... |
divsubdir 11599 | Distribution of division o... |
subdivcomb1 11600 | Bring a term in a subtract... |
subdivcomb2 11601 | Bring a term in a subtract... |
recrec 11602 | A number is equal to the r... |
rec11 11603 | Reciprocal is one-to-one. ... |
rec11r 11604 | Mutual reciprocals. (Cont... |
divmuldiv 11605 | Multiplication of two rati... |
divdivdiv 11606 | Division of two ratios. T... |
divcan5 11607 | Cancellation of common fac... |
divmul13 11608 | Swap the denominators in t... |
divmul24 11609 | Swap the numerators in the... |
divmuleq 11610 | Cross-multiply in an equal... |
recdiv 11611 | The reciprocal of a ratio.... |
divcan6 11612 | Cancellation of inverted f... |
divdiv32 11613 | Swap denominators in a div... |
divcan7 11614 | Cancel equal divisors in a... |
dmdcan 11615 | Cancellation law for divis... |
divdiv1 11616 | Division into a fraction. ... |
divdiv2 11617 | Division by a fraction. (... |
recdiv2 11618 | Division into a reciprocal... |
ddcan 11619 | Cancellation in a double d... |
divadddiv 11620 | Addition of two ratios. T... |
divsubdiv 11621 | Subtraction of two ratios.... |
conjmul 11622 | Two numbers whose reciproc... |
rereccl 11623 | Closure law for reciprocal... |
redivcl 11624 | Closure law for division o... |
eqneg 11625 | A number equal to its nega... |
eqnegd 11626 | A complex number equals it... |
eqnegad 11627 | If a complex number equals... |
div2neg 11628 | Quotient of two negatives.... |
divneg2 11629 | Move negative sign inside ... |
recclzi 11630 | Closure law for reciprocal... |
recne0zi 11631 | The reciprocal of a nonzer... |
recidzi 11632 | Multiplication of a number... |
div1i 11633 | A number divided by 1 is i... |
eqnegi 11634 | A number equal to its nega... |
reccli 11635 | Closure law for reciprocal... |
recidi 11636 | Multiplication of a number... |
recreci 11637 | A number is equal to the r... |
dividi 11638 | A number divided by itself... |
div0i 11639 | Division into zero is zero... |
divclzi 11640 | Closure law for division. ... |
divcan1zi 11641 | A cancellation law for div... |
divcan2zi 11642 | A cancellation law for div... |
divreczi 11643 | Relationship between divis... |
divcan3zi 11644 | A cancellation law for div... |
divcan4zi 11645 | A cancellation law for div... |
rec11i 11646 | Reciprocal is one-to-one. ... |
divcli 11647 | Closure law for division. ... |
divcan2i 11648 | A cancellation law for div... |
divcan1i 11649 | A cancellation law for div... |
divreci 11650 | Relationship between divis... |
divcan3i 11651 | A cancellation law for div... |
divcan4i 11652 | A cancellation law for div... |
divne0i 11653 | The ratio of nonzero numbe... |
rec11ii 11654 | Reciprocal is one-to-one. ... |
divasszi 11655 | An associative law for div... |
divmulzi 11656 | Relationship between divis... |
divdirzi 11657 | Distribution of division o... |
divdiv23zi 11658 | Swap denominators in a div... |
divmuli 11659 | Relationship between divis... |
divdiv32i 11660 | Swap denominators in a div... |
divassi 11661 | An associative law for div... |
divdiri 11662 | Distribution of division o... |
div23i 11663 | A commutative/associative ... |
div11i 11664 | One-to-one relationship fo... |
divmuldivi 11665 | Multiplication of two rati... |
divmul13i 11666 | Swap denominators of two r... |
divadddivi 11667 | Addition of two ratios. T... |
divdivdivi 11668 | Division of two ratios. T... |
rerecclzi 11669 | Closure law for reciprocal... |
rereccli 11670 | Closure law for reciprocal... |
redivclzi 11671 | Closure law for division o... |
redivcli 11672 | Closure law for division o... |
div1d 11673 | A number divided by 1 is i... |
reccld 11674 | Closure law for reciprocal... |
recne0d 11675 | The reciprocal of a nonzer... |
recidd 11676 | Multiplication of a number... |
recid2d 11677 | Multiplication of a number... |
recrecd 11678 | A number is equal to the r... |
dividd 11679 | A number divided by itself... |
div0d 11680 | Division into zero is zero... |
divcld 11681 | Closure law for division. ... |
divcan1d 11682 | A cancellation law for div... |
divcan2d 11683 | A cancellation law for div... |
divrecd 11684 | Relationship between divis... |
divrec2d 11685 | Relationship between divis... |
divcan3d 11686 | A cancellation law for div... |
divcan4d 11687 | A cancellation law for div... |
diveq0d 11688 | A ratio is zero iff the nu... |
diveq1d 11689 | Equality in terms of unit ... |
diveq1ad 11690 | The quotient of two comple... |
diveq0ad 11691 | A fraction of complex numb... |
divne1d 11692 | If two complex numbers are... |
divne0bd 11693 | A ratio is zero iff the nu... |
divnegd 11694 | Move negative sign inside ... |
divneg2d 11695 | Move negative sign inside ... |
div2negd 11696 | Quotient of two negatives.... |
divne0d 11697 | The ratio of nonzero numbe... |
recdivd 11698 | The reciprocal of a ratio.... |
recdiv2d 11699 | Division into a reciprocal... |
divcan6d 11700 | Cancellation of inverted f... |
ddcand 11701 | Cancellation in a double d... |
rec11d 11702 | Reciprocal is one-to-one. ... |
divmuld 11703 | Relationship between divis... |
div32d 11704 | A commutative/associative ... |
div13d 11705 | A commutative/associative ... |
divdiv32d 11706 | Swap denominators in a div... |
divcan5d 11707 | Cancellation of common fac... |
divcan5rd 11708 | Cancellation of common fac... |
divcan7d 11709 | Cancel equal divisors in a... |
dmdcand 11710 | Cancellation law for divis... |
dmdcan2d 11711 | Cancellation law for divis... |
divdiv1d 11712 | Division into a fraction. ... |
divdiv2d 11713 | Division by a fraction. (... |
divmul2d 11714 | Relationship between divis... |
divmul3d 11715 | Relationship between divis... |
divassd 11716 | An associative law for div... |
div12d 11717 | A commutative/associative ... |
div23d 11718 | A commutative/associative ... |
divdird 11719 | Distribution of division o... |
divsubdird 11720 | Distribution of division o... |
div11d 11721 | One-to-one relationship fo... |
divmuldivd 11722 | Multiplication of two rati... |
divmul13d 11723 | Swap denominators of two r... |
divmul24d 11724 | Swap the numerators in the... |
divadddivd 11725 | Addition of two ratios. T... |
divsubdivd 11726 | Subtraction of two ratios.... |
divmuleqd 11727 | Cross-multiply in an equal... |
divdivdivd 11728 | Division of two ratios. T... |
diveq1bd 11729 | If two complex numbers are... |
div2sub 11730 | Swap the order of subtract... |
div2subd 11731 | Swap subtrahend and minuen... |
rereccld 11732 | Closure law for reciprocal... |
redivcld 11733 | Closure law for division o... |
subrec 11734 | Subtraction of reciprocals... |
subreci 11735 | Subtraction of reciprocals... |
subrecd 11736 | Subtraction of reciprocals... |
mvllmuld 11737 | Move the left term in a pr... |
mvllmuli 11738 | Move the left term in a pr... |
ldiv 11739 | Left-division. (Contribut... |
rdiv 11740 | Right-division. (Contribu... |
mdiv 11741 | A division law. (Contribu... |
lineq 11742 | Solution of a (scalar) lin... |
elimgt0 11743 | Hypothesis for weak deduct... |
elimge0 11744 | Hypothesis for weak deduct... |
ltp1 11745 | A number is less than itse... |
lep1 11746 | A number is less than or e... |
ltm1 11747 | A number minus 1 is less t... |
lem1 11748 | A number minus 1 is less t... |
letrp1 11749 | A transitive property of '... |
p1le 11750 | A transitive property of p... |
recgt0 11751 | The reciprocal of a positi... |
prodgt0 11752 | Infer that a multiplicand ... |
prodgt02 11753 | Infer that a multiplier is... |
ltmul1a 11754 | Lemma for ~ ltmul1 . Mult... |
ltmul1 11755 | Multiplication of both sid... |
ltmul2 11756 | Multiplication of both sid... |
lemul1 11757 | Multiplication of both sid... |
lemul2 11758 | Multiplication of both sid... |
lemul1a 11759 | Multiplication of both sid... |
lemul2a 11760 | Multiplication of both sid... |
ltmul12a 11761 | Comparison of product of t... |
lemul12b 11762 | Comparison of product of t... |
lemul12a 11763 | Comparison of product of t... |
mulgt1 11764 | The product of two numbers... |
ltmulgt11 11765 | Multiplication by a number... |
ltmulgt12 11766 | Multiplication by a number... |
lemulge11 11767 | Multiplication by a number... |
lemulge12 11768 | Multiplication by a number... |
ltdiv1 11769 | Division of both sides of ... |
lediv1 11770 | Division of both sides of ... |
gt0div 11771 | Division of a positive num... |
ge0div 11772 | Division of a nonnegative ... |
divgt0 11773 | The ratio of two positive ... |
divge0 11774 | The ratio of nonnegative a... |
mulge0b 11775 | A condition for multiplica... |
mulle0b 11776 | A condition for multiplica... |
mulsuble0b 11777 | A condition for multiplica... |
ltmuldiv 11778 | 'Less than' relationship b... |
ltmuldiv2 11779 | 'Less than' relationship b... |
ltdivmul 11780 | 'Less than' relationship b... |
ledivmul 11781 | 'Less than or equal to' re... |
ltdivmul2 11782 | 'Less than' relationship b... |
lt2mul2div 11783 | 'Less than' relationship b... |
ledivmul2 11784 | 'Less than or equal to' re... |
lemuldiv 11785 | 'Less than or equal' relat... |
lemuldiv2 11786 | 'Less than or equal' relat... |
ltrec 11787 | The reciprocal of both sid... |
lerec 11788 | The reciprocal of both sid... |
lt2msq1 11789 | Lemma for ~ lt2msq . (Con... |
lt2msq 11790 | Two nonnegative numbers co... |
ltdiv2 11791 | Division of a positive num... |
ltrec1 11792 | Reciprocal swap in a 'less... |
lerec2 11793 | Reciprocal swap in a 'less... |
ledivdiv 11794 | Invert ratios of positive ... |
lediv2 11795 | Division of a positive num... |
ltdiv23 11796 | Swap denominator with othe... |
lediv23 11797 | Swap denominator with othe... |
lediv12a 11798 | Comparison of ratio of two... |
lediv2a 11799 | Division of both sides of ... |
reclt1 11800 | The reciprocal of a positi... |
recgt1 11801 | The reciprocal of a positi... |
recgt1i 11802 | The reciprocal of a number... |
recp1lt1 11803 | Construct a number less th... |
recreclt 11804 | Given a positive number ` ... |
le2msq 11805 | The square function on non... |
msq11 11806 | The square of a nonnegativ... |
ledivp1 11807 | "Less than or equal to" an... |
squeeze0 11808 | If a nonnegative number is... |
ltp1i 11809 | A number is less than itse... |
recgt0i 11810 | The reciprocal of a positi... |
recgt0ii 11811 | The reciprocal of a positi... |
prodgt0i 11812 | Infer that a multiplicand ... |
divgt0i 11813 | The ratio of two positive ... |
divge0i 11814 | The ratio of nonnegative a... |
ltreci 11815 | The reciprocal of both sid... |
lereci 11816 | The reciprocal of both sid... |
lt2msqi 11817 | The square function on non... |
le2msqi 11818 | The square function on non... |
msq11i 11819 | The square of a nonnegativ... |
divgt0i2i 11820 | The ratio of two positive ... |
ltrecii 11821 | The reciprocal of both sid... |
divgt0ii 11822 | The ratio of two positive ... |
ltmul1i 11823 | Multiplication of both sid... |
ltdiv1i 11824 | Division of both sides of ... |
ltmuldivi 11825 | 'Less than' relationship b... |
ltmul2i 11826 | Multiplication of both sid... |
lemul1i 11827 | Multiplication of both sid... |
lemul2i 11828 | Multiplication of both sid... |
ltdiv23i 11829 | Swap denominator with othe... |
ledivp1i 11830 | "Less than or equal to" an... |
ltdivp1i 11831 | Less-than and division rel... |
ltdiv23ii 11832 | Swap denominator with othe... |
ltmul1ii 11833 | Multiplication of both sid... |
ltdiv1ii 11834 | Division of both sides of ... |
ltp1d 11835 | A number is less than itse... |
lep1d 11836 | A number is less than or e... |
ltm1d 11837 | A number minus 1 is less t... |
lem1d 11838 | A number minus 1 is less t... |
recgt0d 11839 | The reciprocal of a positi... |
divgt0d 11840 | The ratio of two positive ... |
mulgt1d 11841 | The product of two numbers... |
lemulge11d 11842 | Multiplication by a number... |
lemulge12d 11843 | Multiplication by a number... |
lemul1ad 11844 | Multiplication of both sid... |
lemul2ad 11845 | Multiplication of both sid... |
ltmul12ad 11846 | Comparison of product of t... |
lemul12ad 11847 | Comparison of product of t... |
lemul12bd 11848 | Comparison of product of t... |
fimaxre 11849 | A finite set of real numbe... |
fimaxre2 11850 | A nonempty finite set of r... |
fimaxre3 11851 | A nonempty finite set of r... |
fiminre 11852 | A nonempty finite set of r... |
fiminre2 11853 | A nonempty finite set of r... |
negfi 11854 | The negation of a finite s... |
lbreu 11855 | If a set of reals contains... |
lbcl 11856 | If a set of reals contains... |
lble 11857 | If a set of reals contains... |
lbinf 11858 | If a set of reals contains... |
lbinfcl 11859 | If a set of reals contains... |
lbinfle 11860 | If a set of reals contains... |
sup2 11861 | A nonempty, bounded-above ... |
sup3 11862 | A version of the completen... |
infm3lem 11863 | Lemma for ~ infm3 . (Cont... |
infm3 11864 | The completeness axiom for... |
suprcl 11865 | Closure of supremum of a n... |
suprub 11866 | A member of a nonempty bou... |
suprubd 11867 | Natural deduction form of ... |
suprcld 11868 | Natural deduction form of ... |
suprlub 11869 | The supremum of a nonempty... |
suprnub 11870 | An upper bound is not less... |
suprleub 11871 | The supremum of a nonempty... |
supaddc 11872 | The supremum function dist... |
supadd 11873 | The supremum function dist... |
supmul1 11874 | The supremum function dist... |
supmullem1 11875 | Lemma for ~ supmul . (Con... |
supmullem2 11876 | Lemma for ~ supmul . (Con... |
supmul 11877 | The supremum function dist... |
sup3ii 11878 | A version of the completen... |
suprclii 11879 | Closure of supremum of a n... |
suprubii 11880 | A member of a nonempty bou... |
suprlubii 11881 | The supremum of a nonempty... |
suprnubii 11882 | An upper bound is not less... |
suprleubii 11883 | The supremum of a nonempty... |
riotaneg 11884 | The negative of the unique... |
negiso 11885 | Negation is an order anti-... |
dfinfre 11886 | The infimum of a set of re... |
infrecl 11887 | Closure of infimum of a no... |
infrenegsup 11888 | The infimum of a set of re... |
infregelb 11889 | Any lower bound of a nonem... |
infrelb 11890 | If a nonempty set of real ... |
infrefilb 11891 | The infimum of a finite se... |
supfirege 11892 | The supremum of a finite s... |
inelr 11893 | The imaginary unit ` _i ` ... |
rimul 11894 | A real number times the im... |
cru 11895 | The representation of comp... |
crne0 11896 | The real representation of... |
creur 11897 | The real part of a complex... |
creui 11898 | The imaginary part of a co... |
cju 11899 | The complex conjugate of a... |
ofsubeq0 11900 | Function analogue of ~ sub... |
ofnegsub 11901 | Function analogue of ~ neg... |
ofsubge0 11902 | Function analogue of ~ sub... |
nnexALT 11905 | Alternate proof of ~ nnex ... |
peano5nni 11906 | Peano's inductive postulat... |
nnssre 11907 | The positive integers are ... |
nnsscn 11908 | The positive integers are ... |
nnex 11909 | The set of positive intege... |
nnre 11910 | A positive integer is a re... |
nncn 11911 | A positive integer is a co... |
nnrei 11912 | A positive integer is a re... |
nncni 11913 | A positive integer is a co... |
1nn 11914 | Peano postulate: 1 is a po... |
peano2nn 11915 | Peano postulate: a success... |
dfnn2 11916 | Alternate definition of th... |
dfnn3 11917 | Alternate definition of th... |
nnred 11918 | A positive integer is a re... |
nncnd 11919 | A positive integer is a co... |
peano2nnd 11920 | Peano postulate: a success... |
nnind 11921 | Principle of Mathematical ... |
nnindALT 11922 | Principle of Mathematical ... |
nnindd 11923 | Principle of Mathematical ... |
nn1m1nn 11924 | Every positive integer is ... |
nn1suc 11925 | If a statement holds for 1... |
nnaddcl 11926 | Closure of addition of pos... |
nnmulcl 11927 | Closure of multiplication ... |
nnmulcli 11928 | Closure of multiplication ... |
nnmtmip 11929 | "Minus times minus is plus... |
nn2ge 11930 | There exists a positive in... |
nnge1 11931 | A positive integer is one ... |
nngt1ne1 11932 | A positive integer is grea... |
nnle1eq1 11933 | A positive integer is less... |
nngt0 11934 | A positive integer is posi... |
nnnlt1 11935 | A positive integer is not ... |
nnnle0 11936 | A positive integer is not ... |
nnne0 11937 | A positive integer is nonz... |
nnneneg 11938 | No positive integer is equ... |
0nnn 11939 | Zero is not a positive int... |
0nnnALT 11940 | Alternate proof of ~ 0nnn ... |
nnne0ALT 11941 | Alternate version of ~ nnn... |
nngt0i 11942 | A positive integer is posi... |
nnne0i 11943 | A positive integer is nonz... |
nndivre 11944 | The quotient of a real and... |
nnrecre 11945 | The reciprocal of a positi... |
nnrecgt0 11946 | The reciprocal of a positi... |
nnsub 11947 | Subtraction of positive in... |
nnsubi 11948 | Subtraction of positive in... |
nndiv 11949 | Two ways to express " ` A ... |
nndivtr 11950 | Transitive property of div... |
nnge1d 11951 | A positive integer is one ... |
nngt0d 11952 | A positive integer is posi... |
nnne0d 11953 | A positive integer is nonz... |
nnrecred 11954 | The reciprocal of a positi... |
nnaddcld 11955 | Closure of addition of pos... |
nnmulcld 11956 | Closure of multiplication ... |
nndivred 11957 | A positive integer is one ... |
0ne1 11974 | Zero is different from one... |
1m1e0 11975 | One minus one equals zero.... |
2nn 11976 | 2 is a positive integer. ... |
2re 11977 | The number 2 is real. (Co... |
2cn 11978 | The number 2 is a complex ... |
2cnALT 11979 | Alternate proof of ~ 2cn .... |
2ex 11980 | The number 2 is a set. (C... |
2cnd 11981 | The number 2 is a complex ... |
3nn 11982 | 3 is a positive integer. ... |
3re 11983 | The number 3 is real. (Co... |
3cn 11984 | The number 3 is a complex ... |
3ex 11985 | The number 3 is a set. (C... |
4nn 11986 | 4 is a positive integer. ... |
4re 11987 | The number 4 is real. (Co... |
4cn 11988 | The number 4 is a complex ... |
5nn 11989 | 5 is a positive integer. ... |
5re 11990 | The number 5 is real. (Co... |
5cn 11991 | The number 5 is a complex ... |
6nn 11992 | 6 is a positive integer. ... |
6re 11993 | The number 6 is real. (Co... |
6cn 11994 | The number 6 is a complex ... |
7nn 11995 | 7 is a positive integer. ... |
7re 11996 | The number 7 is real. (Co... |
7cn 11997 | The number 7 is a complex ... |
8nn 11998 | 8 is a positive integer. ... |
8re 11999 | The number 8 is real. (Co... |
8cn 12000 | The number 8 is a complex ... |
9nn 12001 | 9 is a positive integer. ... |
9re 12002 | The number 9 is real. (Co... |
9cn 12003 | The number 9 is a complex ... |
0le0 12004 | Zero is nonnegative. (Con... |
0le2 12005 | The number 0 is less than ... |
2pos 12006 | The number 2 is positive. ... |
2ne0 12007 | The number 2 is nonzero. ... |
3pos 12008 | The number 3 is positive. ... |
3ne0 12009 | The number 3 is nonzero. ... |
4pos 12010 | The number 4 is positive. ... |
4ne0 12011 | The number 4 is nonzero. ... |
5pos 12012 | The number 5 is positive. ... |
6pos 12013 | The number 6 is positive. ... |
7pos 12014 | The number 7 is positive. ... |
8pos 12015 | The number 8 is positive. ... |
9pos 12016 | The number 9 is positive. ... |
neg1cn 12017 | -1 is a complex number. (... |
neg1rr 12018 | -1 is a real number. (Con... |
neg1ne0 12019 | -1 is nonzero. (Contribut... |
neg1lt0 12020 | -1 is less than 0. (Contr... |
negneg1e1 12021 | ` -u -u 1 ` is 1. (Contri... |
1pneg1e0 12022 | ` 1 + -u 1 ` is 0. (Contr... |
0m0e0 12023 | 0 minus 0 equals 0. (Cont... |
1m0e1 12024 | 1 - 0 = 1. (Contributed b... |
0p1e1 12025 | 0 + 1 = 1. (Contributed b... |
fv0p1e1 12026 | Function value at ` N + 1 ... |
1p0e1 12027 | 1 + 0 = 1. (Contributed b... |
1p1e2 12028 | 1 + 1 = 2. (Contributed b... |
2m1e1 12029 | 2 - 1 = 1. The result is ... |
1e2m1 12030 | 1 = 2 - 1. (Contributed b... |
3m1e2 12031 | 3 - 1 = 2. (Contributed b... |
4m1e3 12032 | 4 - 1 = 3. (Contributed b... |
5m1e4 12033 | 5 - 1 = 4. (Contributed b... |
6m1e5 12034 | 6 - 1 = 5. (Contributed b... |
7m1e6 12035 | 7 - 1 = 6. (Contributed b... |
8m1e7 12036 | 8 - 1 = 7. (Contributed b... |
9m1e8 12037 | 9 - 1 = 8. (Contributed b... |
2p2e4 12038 | Two plus two equals four. ... |
2times 12039 | Two times a number. (Cont... |
times2 12040 | A number times 2. (Contri... |
2timesi 12041 | Two times a number. (Cont... |
times2i 12042 | A number times 2. (Contri... |
2txmxeqx 12043 | Two times a complex number... |
2div2e1 12044 | 2 divided by 2 is 1. (Con... |
2p1e3 12045 | 2 + 1 = 3. (Contributed b... |
1p2e3 12046 | 1 + 2 = 3. For a shorter ... |
1p2e3ALT 12047 | Alternate proof of ~ 1p2e3... |
3p1e4 12048 | 3 + 1 = 4. (Contributed b... |
4p1e5 12049 | 4 + 1 = 5. (Contributed b... |
5p1e6 12050 | 5 + 1 = 6. (Contributed b... |
6p1e7 12051 | 6 + 1 = 7. (Contributed b... |
7p1e8 12052 | 7 + 1 = 8. (Contributed b... |
8p1e9 12053 | 8 + 1 = 9. (Contributed b... |
3p2e5 12054 | 3 + 2 = 5. (Contributed b... |
3p3e6 12055 | 3 + 3 = 6. (Contributed b... |
4p2e6 12056 | 4 + 2 = 6. (Contributed b... |
4p3e7 12057 | 4 + 3 = 7. (Contributed b... |
4p4e8 12058 | 4 + 4 = 8. (Contributed b... |
5p2e7 12059 | 5 + 2 = 7. (Contributed b... |
5p3e8 12060 | 5 + 3 = 8. (Contributed b... |
5p4e9 12061 | 5 + 4 = 9. (Contributed b... |
6p2e8 12062 | 6 + 2 = 8. (Contributed b... |
6p3e9 12063 | 6 + 3 = 9. (Contributed b... |
7p2e9 12064 | 7 + 2 = 9. (Contributed b... |
1t1e1 12065 | 1 times 1 equals 1. (Cont... |
2t1e2 12066 | 2 times 1 equals 2. (Cont... |
2t2e4 12067 | 2 times 2 equals 4. (Cont... |
3t1e3 12068 | 3 times 1 equals 3. (Cont... |
3t2e6 12069 | 3 times 2 equals 6. (Cont... |
3t3e9 12070 | 3 times 3 equals 9. (Cont... |
4t2e8 12071 | 4 times 2 equals 8. (Cont... |
2t0e0 12072 | 2 times 0 equals 0. (Cont... |
4d2e2 12073 | One half of four is two. ... |
1lt2 12074 | 1 is less than 2. (Contri... |
2lt3 12075 | 2 is less than 3. (Contri... |
1lt3 12076 | 1 is less than 3. (Contri... |
3lt4 12077 | 3 is less than 4. (Contri... |
2lt4 12078 | 2 is less than 4. (Contri... |
1lt4 12079 | 1 is less than 4. (Contri... |
4lt5 12080 | 4 is less than 5. (Contri... |
3lt5 12081 | 3 is less than 5. (Contri... |
2lt5 12082 | 2 is less than 5. (Contri... |
1lt5 12083 | 1 is less than 5. (Contri... |
5lt6 12084 | 5 is less than 6. (Contri... |
4lt6 12085 | 4 is less than 6. (Contri... |
3lt6 12086 | 3 is less than 6. (Contri... |
2lt6 12087 | 2 is less than 6. (Contri... |
1lt6 12088 | 1 is less than 6. (Contri... |
6lt7 12089 | 6 is less than 7. (Contri... |
5lt7 12090 | 5 is less than 7. (Contri... |
4lt7 12091 | 4 is less than 7. (Contri... |
3lt7 12092 | 3 is less than 7. (Contri... |
2lt7 12093 | 2 is less than 7. (Contri... |
1lt7 12094 | 1 is less than 7. (Contri... |
7lt8 12095 | 7 is less than 8. (Contri... |
6lt8 12096 | 6 is less than 8. (Contri... |
5lt8 12097 | 5 is less than 8. (Contri... |
4lt8 12098 | 4 is less than 8. (Contri... |
3lt8 12099 | 3 is less than 8. (Contri... |
2lt8 12100 | 2 is less than 8. (Contri... |
1lt8 12101 | 1 is less than 8. (Contri... |
8lt9 12102 | 8 is less than 9. (Contri... |
7lt9 12103 | 7 is less than 9. (Contri... |
6lt9 12104 | 6 is less than 9. (Contri... |
5lt9 12105 | 5 is less than 9. (Contri... |
4lt9 12106 | 4 is less than 9. (Contri... |
3lt9 12107 | 3 is less than 9. (Contri... |
2lt9 12108 | 2 is less than 9. (Contri... |
1lt9 12109 | 1 is less than 9. (Contri... |
0ne2 12110 | 0 is not equal to 2. (Con... |
1ne2 12111 | 1 is not equal to 2. (Con... |
1le2 12112 | 1 is less than or equal to... |
2cnne0 12113 | 2 is a nonzero complex num... |
2rene0 12114 | 2 is a nonzero real number... |
1le3 12115 | 1 is less than or equal to... |
neg1mulneg1e1 12116 | ` -u 1 x. -u 1 ` is 1. (C... |
halfre 12117 | One-half is real. (Contri... |
halfcn 12118 | One-half is a complex numb... |
halfgt0 12119 | One-half is greater than z... |
halfge0 12120 | One-half is not negative. ... |
halflt1 12121 | One-half is less than one.... |
1mhlfehlf 12122 | Prove that 1 - 1/2 = 1/2. ... |
8th4div3 12123 | An eighth of four thirds i... |
halfpm6th 12124 | One half plus or minus one... |
it0e0 12125 | i times 0 equals 0. (Cont... |
2mulicn 12126 | ` ( 2 x. _i ) e. CC ` . (... |
2muline0 12127 | ` ( 2 x. _i ) =/= 0 ` . (... |
halfcl 12128 | Closure of half of a numbe... |
rehalfcl 12129 | Real closure of half. (Co... |
half0 12130 | Half of a number is zero i... |
2halves 12131 | Two halves make a whole. ... |
halfpos2 12132 | A number is positive iff i... |
halfpos 12133 | A positive number is great... |
halfnneg2 12134 | A number is nonnegative if... |
halfaddsubcl 12135 | Closure of half-sum and ha... |
halfaddsub 12136 | Sum and difference of half... |
subhalfhalf 12137 | Subtracting the half of a ... |
lt2halves 12138 | A sum is less than the who... |
addltmul 12139 | Sum is less than product f... |
nominpos 12140 | There is no smallest posit... |
avglt1 12141 | Ordering property for aver... |
avglt2 12142 | Ordering property for aver... |
avgle1 12143 | Ordering property for aver... |
avgle2 12144 | Ordering property for aver... |
avgle 12145 | The average of two numbers... |
2timesd 12146 | Two times a number. (Cont... |
times2d 12147 | A number times 2. (Contri... |
halfcld 12148 | Closure of half of a numbe... |
2halvesd 12149 | Two halves make a whole. ... |
rehalfcld 12150 | Real closure of half. (Co... |
lt2halvesd 12151 | A sum is less than the who... |
rehalfcli 12152 | Half a real number is real... |
lt2addmuld 12153 | If two real numbers are le... |
add1p1 12154 | Adding two times 1 to a nu... |
sub1m1 12155 | Subtracting two times 1 fr... |
cnm2m1cnm3 12156 | Subtracting 2 and afterwar... |
xp1d2m1eqxm1d2 12157 | A complex number increased... |
div4p1lem1div2 12158 | An integer greater than 5,... |
nnunb 12159 | The set of positive intege... |
arch 12160 | Archimedean property of re... |
nnrecl 12161 | There exists a positive in... |
bndndx 12162 | A bounded real sequence ` ... |
elnn0 12165 | Nonnegative integers expre... |
nnssnn0 12166 | Positive naturals are a su... |
nn0ssre 12167 | Nonnegative integers are a... |
nn0sscn 12168 | Nonnegative integers are a... |
nn0ex 12169 | The set of nonnegative int... |
nnnn0 12170 | A positive integer is a no... |
nnnn0i 12171 | A positive integer is a no... |
nn0re 12172 | A nonnegative integer is a... |
nn0cn 12173 | A nonnegative integer is a... |
nn0rei 12174 | A nonnegative integer is a... |
nn0cni 12175 | A nonnegative integer is a... |
dfn2 12176 | The set of positive intege... |
elnnne0 12177 | The positive integer prope... |
0nn0 12178 | 0 is a nonnegative integer... |
1nn0 12179 | 1 is a nonnegative integer... |
2nn0 12180 | 2 is a nonnegative integer... |
3nn0 12181 | 3 is a nonnegative integer... |
4nn0 12182 | 4 is a nonnegative integer... |
5nn0 12183 | 5 is a nonnegative integer... |
6nn0 12184 | 6 is a nonnegative integer... |
7nn0 12185 | 7 is a nonnegative integer... |
8nn0 12186 | 8 is a nonnegative integer... |
9nn0 12187 | 9 is a nonnegative integer... |
nn0ge0 12188 | A nonnegative integer is g... |
nn0nlt0 12189 | A nonnegative integer is n... |
nn0ge0i 12190 | Nonnegative integers are n... |
nn0le0eq0 12191 | A nonnegative integer is l... |
nn0p1gt0 12192 | A nonnegative integer incr... |
nnnn0addcl 12193 | A positive integer plus a ... |
nn0nnaddcl 12194 | A nonnegative integer plus... |
0mnnnnn0 12195 | The result of subtracting ... |
un0addcl 12196 | If ` S ` is closed under a... |
un0mulcl 12197 | If ` S ` is closed under m... |
nn0addcl 12198 | Closure of addition of non... |
nn0mulcl 12199 | Closure of multiplication ... |
nn0addcli 12200 | Closure of addition of non... |
nn0mulcli 12201 | Closure of multiplication ... |
nn0p1nn 12202 | A nonnegative integer plus... |
peano2nn0 12203 | Second Peano postulate for... |
nnm1nn0 12204 | A positive integer minus 1... |
elnn0nn 12205 | The nonnegative integer pr... |
elnnnn0 12206 | The positive integer prope... |
elnnnn0b 12207 | The positive integer prope... |
elnnnn0c 12208 | The positive integer prope... |
nn0addge1 12209 | A number is less than or e... |
nn0addge2 12210 | A number is less than or e... |
nn0addge1i 12211 | A number is less than or e... |
nn0addge2i 12212 | A number is less than or e... |
nn0sub 12213 | Subtraction of nonnegative... |
ltsubnn0 12214 | Subtracting a nonnegative ... |
nn0negleid 12215 | A nonnegative integer is g... |
difgtsumgt 12216 | If the difference of a rea... |
nn0le2xi 12217 | A nonnegative integer is l... |
nn0lele2xi 12218 | 'Less than or equal to' im... |
frnnn0supp 12219 | Two ways to write the supp... |
frnnn0fsupp 12220 | A function on ` NN0 ` is f... |
frnnn0suppg 12221 | Version of ~ frnnn0supp av... |
frnnn0fsuppg 12222 | Version of ~ frnnn0fsupp a... |
nnnn0d 12223 | A positive integer is a no... |
nn0red 12224 | A nonnegative integer is a... |
nn0cnd 12225 | A nonnegative integer is a... |
nn0ge0d 12226 | A nonnegative integer is g... |
nn0addcld 12227 | Closure of addition of non... |
nn0mulcld 12228 | Closure of multiplication ... |
nn0readdcl 12229 | Closure law for addition o... |
nn0n0n1ge2 12230 | A nonnegative integer whic... |
nn0n0n1ge2b 12231 | A nonnegative integer is n... |
nn0ge2m1nn 12232 | If a nonnegative integer i... |
nn0ge2m1nn0 12233 | If a nonnegative integer i... |
nn0nndivcl 12234 | Closure law for dividing o... |
elxnn0 12237 | An extended nonnegative in... |
nn0ssxnn0 12238 | The standard nonnegative i... |
nn0xnn0 12239 | A standard nonnegative int... |
xnn0xr 12240 | An extended nonnegative in... |
0xnn0 12241 | Zero is an extended nonneg... |
pnf0xnn0 12242 | Positive infinity is an ex... |
nn0nepnf 12243 | No standard nonnegative in... |
nn0xnn0d 12244 | A standard nonnegative int... |
nn0nepnfd 12245 | No standard nonnegative in... |
xnn0nemnf 12246 | No extended nonnegative in... |
xnn0xrnemnf 12247 | The extended nonnegative i... |
xnn0nnn0pnf 12248 | An extended nonnegative in... |
elz 12251 | Membership in the set of i... |
nnnegz 12252 | The negative of a positive... |
zre 12253 | An integer is a real. (Co... |
zcn 12254 | An integer is a complex nu... |
zrei 12255 | An integer is a real numbe... |
zssre 12256 | The integers are a subset ... |
zsscn 12257 | The integers are a subset ... |
zex 12258 | The set of integers exists... |
elnnz 12259 | Positive integer property ... |
0z 12260 | Zero is an integer. (Cont... |
0zd 12261 | Zero is an integer, deduct... |
elnn0z 12262 | Nonnegative integer proper... |
elznn0nn 12263 | Integer property expressed... |
elznn0 12264 | Integer property expressed... |
elznn 12265 | Integer property expressed... |
zle0orge1 12266 | There is no integer in the... |
elz2 12267 | Membership in the set of i... |
dfz2 12268 | Alternative definition of ... |
zexALT 12269 | Alternate proof of ~ zex .... |
nnssz 12270 | Positive integers are a su... |
nn0ssz 12271 | Nonnegative integers are a... |
nnz 12272 | A positive integer is an i... |
nn0z 12273 | A nonnegative integer is a... |
nnzi 12274 | A positive integer is an i... |
nn0zi 12275 | A nonnegative integer is a... |
elnnz1 12276 | Positive integer property ... |
znnnlt1 12277 | An integer is not a positi... |
nnzrab 12278 | Positive integers expresse... |
nn0zrab 12279 | Nonnegative integers expre... |
1z 12280 | One is an integer. (Contr... |
1zzd 12281 | One is an integer, deducti... |
2z 12282 | 2 is an integer. (Contrib... |
3z 12283 | 3 is an integer. (Contrib... |
4z 12284 | 4 is an integer. (Contrib... |
znegcl 12285 | Closure law for negative i... |
neg1z 12286 | -1 is an integer. (Contri... |
znegclb 12287 | A complex number is an int... |
nn0negz 12288 | The negative of a nonnegat... |
nn0negzi 12289 | The negative of a nonnegat... |
zaddcl 12290 | Closure of addition of int... |
peano2z 12291 | Second Peano postulate gen... |
zsubcl 12292 | Closure of subtraction of ... |
peano2zm 12293 | "Reverse" second Peano pos... |
zletr 12294 | Transitive law of ordering... |
zrevaddcl 12295 | Reverse closure law for ad... |
znnsub 12296 | The positive difference of... |
znn0sub 12297 | The nonnegative difference... |
nzadd 12298 | The sum of a real number n... |
zmulcl 12299 | Closure of multiplication ... |
zltp1le 12300 | Integer ordering relation.... |
zleltp1 12301 | Integer ordering relation.... |
zlem1lt 12302 | Integer ordering relation.... |
zltlem1 12303 | Integer ordering relation.... |
zgt0ge1 12304 | An integer greater than ` ... |
nnleltp1 12305 | Positive integer ordering ... |
nnltp1le 12306 | Positive integer ordering ... |
nnaddm1cl 12307 | Closure of addition of pos... |
nn0ltp1le 12308 | Nonnegative integer orderi... |
nn0leltp1 12309 | Nonnegative integer orderi... |
nn0ltlem1 12310 | Nonnegative integer orderi... |
nn0sub2 12311 | Subtraction of nonnegative... |
nn0lt10b 12312 | A nonnegative integer less... |
nn0lt2 12313 | A nonnegative integer less... |
nn0le2is012 12314 | A nonnegative integer whic... |
nn0lem1lt 12315 | Nonnegative integer orderi... |
nnlem1lt 12316 | Positive integer ordering ... |
nnltlem1 12317 | Positive integer ordering ... |
nnm1ge0 12318 | A positive integer decreas... |
nn0ge0div 12319 | Division of a nonnegative ... |
zdiv 12320 | Two ways to express " ` M ... |
zdivadd 12321 | Property of divisibility: ... |
zdivmul 12322 | Property of divisibility: ... |
zextle 12323 | An extensionality-like pro... |
zextlt 12324 | An extensionality-like pro... |
recnz 12325 | The reciprocal of a number... |
btwnnz 12326 | A number between an intege... |
gtndiv 12327 | A larger number does not d... |
halfnz 12328 | One-half is not an integer... |
3halfnz 12329 | Three halves is not an int... |
suprzcl 12330 | The supremum of a bounded-... |
prime 12331 | Two ways to express " ` A ... |
msqznn 12332 | The square of a nonzero in... |
zneo 12333 | No even integer equals an ... |
nneo 12334 | A positive integer is even... |
nneoi 12335 | A positive integer is even... |
zeo 12336 | An integer is even or odd.... |
zeo2 12337 | An integer is even or odd ... |
peano2uz2 12338 | Second Peano postulate for... |
peano5uzi 12339 | Peano's inductive postulat... |
peano5uzti 12340 | Peano's inductive postulat... |
dfuzi 12341 | An expression for the uppe... |
uzind 12342 | Induction on the upper int... |
uzind2 12343 | Induction on the upper int... |
uzind3 12344 | Induction on the upper int... |
nn0ind 12345 | Principle of Mathematical ... |
nn0indALT 12346 | Principle of Mathematical ... |
nn0indd 12347 | Principle of Mathematical ... |
fzind 12348 | Induction on the integers ... |
fnn0ind 12349 | Induction on the integers ... |
nn0ind-raph 12350 | Principle of Mathematical ... |
zindd 12351 | Principle of Mathematical ... |
btwnz 12352 | Any real number can be san... |
nn0zd 12353 | A positive integer is an i... |
nnzd 12354 | A nonnegative integer is a... |
zred 12355 | An integer is a real numbe... |
zcnd 12356 | An integer is a complex nu... |
znegcld 12357 | Closure law for negative i... |
peano2zd 12358 | Deduction from second Pean... |
zaddcld 12359 | Closure of addition of int... |
zsubcld 12360 | Closure of subtraction of ... |
zmulcld 12361 | Closure of multiplication ... |
znnn0nn 12362 | The negative of a negative... |
zadd2cl 12363 | Increasing an integer by 2... |
zriotaneg 12364 | The negative of the unique... |
suprfinzcl 12365 | The supremum of a nonempty... |
9p1e10 12368 | 9 + 1 = 10. (Contributed ... |
dfdec10 12369 | Version of the definition ... |
decex 12370 | A decimal number is a set.... |
deceq1 12371 | Equality theorem for the d... |
deceq2 12372 | Equality theorem for the d... |
deceq1i 12373 | Equality theorem for the d... |
deceq2i 12374 | Equality theorem for the d... |
deceq12i 12375 | Equality theorem for the d... |
numnncl 12376 | Closure for a numeral (wit... |
num0u 12377 | Add a zero in the units pl... |
num0h 12378 | Add a zero in the higher p... |
numcl 12379 | Closure for a decimal inte... |
numsuc 12380 | The successor of a decimal... |
deccl 12381 | Closure for a numeral. (C... |
10nn 12382 | 10 is a positive integer. ... |
10pos 12383 | The number 10 is positive.... |
10nn0 12384 | 10 is a nonnegative intege... |
10re 12385 | The number 10 is real. (C... |
decnncl 12386 | Closure for a numeral. (C... |
dec0u 12387 | Add a zero in the units pl... |
dec0h 12388 | Add a zero in the higher p... |
numnncl2 12389 | Closure for a decimal inte... |
decnncl2 12390 | Closure for a decimal inte... |
numlt 12391 | Comparing two decimal inte... |
numltc 12392 | Comparing two decimal inte... |
le9lt10 12393 | A "decimal digit" (i.e. a ... |
declt 12394 | Comparing two decimal inte... |
decltc 12395 | Comparing two decimal inte... |
declth 12396 | Comparing two decimal inte... |
decsuc 12397 | The successor of a decimal... |
3declth 12398 | Comparing two decimal inte... |
3decltc 12399 | Comparing two decimal inte... |
decle 12400 | Comparing two decimal inte... |
decleh 12401 | Comparing two decimal inte... |
declei 12402 | Comparing a digit to a dec... |
numlti 12403 | Comparing a digit to a dec... |
declti 12404 | Comparing a digit to a dec... |
decltdi 12405 | Comparing a digit to a dec... |
numsucc 12406 | The successor of a decimal... |
decsucc 12407 | The successor of a decimal... |
1e0p1 12408 | The successor of zero. (C... |
dec10p 12409 | Ten plus an integer. (Con... |
numma 12410 | Perform a multiply-add of ... |
nummac 12411 | Perform a multiply-add of ... |
numma2c 12412 | Perform a multiply-add of ... |
numadd 12413 | Add two decimal integers `... |
numaddc 12414 | Add two decimal integers `... |
nummul1c 12415 | The product of a decimal i... |
nummul2c 12416 | The product of a decimal i... |
decma 12417 | Perform a multiply-add of ... |
decmac 12418 | Perform a multiply-add of ... |
decma2c 12419 | Perform a multiply-add of ... |
decadd 12420 | Add two numerals ` M ` and... |
decaddc 12421 | Add two numerals ` M ` and... |
decaddc2 12422 | Add two numerals ` M ` and... |
decrmanc 12423 | Perform a multiply-add of ... |
decrmac 12424 | Perform a multiply-add of ... |
decaddm10 12425 | The sum of two multiples o... |
decaddi 12426 | Add two numerals ` M ` and... |
decaddci 12427 | Add two numerals ` M ` and... |
decaddci2 12428 | Add two numerals ` M ` and... |
decsubi 12429 | Difference between a numer... |
decmul1 12430 | The product of a numeral w... |
decmul1c 12431 | The product of a numeral w... |
decmul2c 12432 | The product of a numeral w... |
decmulnc 12433 | The product of a numeral w... |
11multnc 12434 | The product of 11 (as nume... |
decmul10add 12435 | A multiplication of a numb... |
6p5lem 12436 | Lemma for ~ 6p5e11 and rel... |
5p5e10 12437 | 5 + 5 = 10. (Contributed ... |
6p4e10 12438 | 6 + 4 = 10. (Contributed ... |
6p5e11 12439 | 6 + 5 = 11. (Contributed ... |
6p6e12 12440 | 6 + 6 = 12. (Contributed ... |
7p3e10 12441 | 7 + 3 = 10. (Contributed ... |
7p4e11 12442 | 7 + 4 = 11. (Contributed ... |
7p5e12 12443 | 7 + 5 = 12. (Contributed ... |
7p6e13 12444 | 7 + 6 = 13. (Contributed ... |
7p7e14 12445 | 7 + 7 = 14. (Contributed ... |
8p2e10 12446 | 8 + 2 = 10. (Contributed ... |
8p3e11 12447 | 8 + 3 = 11. (Contributed ... |
8p4e12 12448 | 8 + 4 = 12. (Contributed ... |
8p5e13 12449 | 8 + 5 = 13. (Contributed ... |
8p6e14 12450 | 8 + 6 = 14. (Contributed ... |
8p7e15 12451 | 8 + 7 = 15. (Contributed ... |
8p8e16 12452 | 8 + 8 = 16. (Contributed ... |
9p2e11 12453 | 9 + 2 = 11. (Contributed ... |
9p3e12 12454 | 9 + 3 = 12. (Contributed ... |
9p4e13 12455 | 9 + 4 = 13. (Contributed ... |
9p5e14 12456 | 9 + 5 = 14. (Contributed ... |
9p6e15 12457 | 9 + 6 = 15. (Contributed ... |
9p7e16 12458 | 9 + 7 = 16. (Contributed ... |
9p8e17 12459 | 9 + 8 = 17. (Contributed ... |
9p9e18 12460 | 9 + 9 = 18. (Contributed ... |
10p10e20 12461 | 10 + 10 = 20. (Contribute... |
10m1e9 12462 | 10 - 1 = 9. (Contributed ... |
4t3lem 12463 | Lemma for ~ 4t3e12 and rel... |
4t3e12 12464 | 4 times 3 equals 12. (Con... |
4t4e16 12465 | 4 times 4 equals 16. (Con... |
5t2e10 12466 | 5 times 2 equals 10. (Con... |
5t3e15 12467 | 5 times 3 equals 15. (Con... |
5t4e20 12468 | 5 times 4 equals 20. (Con... |
5t5e25 12469 | 5 times 5 equals 25. (Con... |
6t2e12 12470 | 6 times 2 equals 12. (Con... |
6t3e18 12471 | 6 times 3 equals 18. (Con... |
6t4e24 12472 | 6 times 4 equals 24. (Con... |
6t5e30 12473 | 6 times 5 equals 30. (Con... |
6t6e36 12474 | 6 times 6 equals 36. (Con... |
7t2e14 12475 | 7 times 2 equals 14. (Con... |
7t3e21 12476 | 7 times 3 equals 21. (Con... |
7t4e28 12477 | 7 times 4 equals 28. (Con... |
7t5e35 12478 | 7 times 5 equals 35. (Con... |
7t6e42 12479 | 7 times 6 equals 42. (Con... |
7t7e49 12480 | 7 times 7 equals 49. (Con... |
8t2e16 12481 | 8 times 2 equals 16. (Con... |
8t3e24 12482 | 8 times 3 equals 24. (Con... |
8t4e32 12483 | 8 times 4 equals 32. (Con... |
8t5e40 12484 | 8 times 5 equals 40. (Con... |
8t6e48 12485 | 8 times 6 equals 48. (Con... |
8t7e56 12486 | 8 times 7 equals 56. (Con... |
8t8e64 12487 | 8 times 8 equals 64. (Con... |
9t2e18 12488 | 9 times 2 equals 18. (Con... |
9t3e27 12489 | 9 times 3 equals 27. (Con... |
9t4e36 12490 | 9 times 4 equals 36. (Con... |
9t5e45 12491 | 9 times 5 equals 45. (Con... |
9t6e54 12492 | 9 times 6 equals 54. (Con... |
9t7e63 12493 | 9 times 7 equals 63. (Con... |
9t8e72 12494 | 9 times 8 equals 72. (Con... |
9t9e81 12495 | 9 times 9 equals 81. (Con... |
9t11e99 12496 | 9 times 11 equals 99. (Co... |
9lt10 12497 | 9 is less than 10. (Contr... |
8lt10 12498 | 8 is less than 10. (Contr... |
7lt10 12499 | 7 is less than 10. (Contr... |
6lt10 12500 | 6 is less than 10. (Contr... |
5lt10 12501 | 5 is less than 10. (Contr... |
4lt10 12502 | 4 is less than 10. (Contr... |
3lt10 12503 | 3 is less than 10. (Contr... |
2lt10 12504 | 2 is less than 10. (Contr... |
1lt10 12505 | 1 is less than 10. (Contr... |
decbin0 12506 | Decompose base 4 into base... |
decbin2 12507 | Decompose base 4 into base... |
decbin3 12508 | Decompose base 4 into base... |
halfthird 12509 | Half minus a third. (Cont... |
5recm6rec 12510 | One fifth minus one sixth.... |
uzval 12513 | The value of the upper int... |
uzf 12514 | The domain and range of th... |
eluz1 12515 | Membership in the upper se... |
eluzel2 12516 | Implication of membership ... |
eluz2 12517 | Membership in an upper set... |
eluzmn 12518 | Membership in an earlier u... |
eluz1i 12519 | Membership in an upper set... |
eluzuzle 12520 | An integer in an upper set... |
eluzelz 12521 | A member of an upper set o... |
eluzelre 12522 | A member of an upper set o... |
eluzelcn 12523 | A member of an upper set o... |
eluzle 12524 | Implication of membership ... |
eluz 12525 | Membership in an upper set... |
uzid 12526 | Membership of the least me... |
uzidd 12527 | Membership of the least me... |
uzn0 12528 | The upper integers are all... |
uztrn 12529 | Transitive law for sets of... |
uztrn2 12530 | Transitive law for sets of... |
uzneg 12531 | Contraposition law for upp... |
uzssz 12532 | An upper set of integers i... |
uzssre 12533 | An upper set of integers i... |
uzss 12534 | Subset relationship for tw... |
uztric 12535 | Totality of the ordering r... |
uz11 12536 | The upper integers functio... |
eluzp1m1 12537 | Membership in the next upp... |
eluzp1l 12538 | Strict ordering implied by... |
eluzp1p1 12539 | Membership in the next upp... |
eluzaddi 12540 | Membership in a later uppe... |
eluzsubi 12541 | Membership in an earlier u... |
eluzadd 12542 | Membership in a later uppe... |
eluzsub 12543 | Membership in an earlier u... |
subeluzsub 12544 | Membership of a difference... |
uzm1 12545 | Choices for an element of ... |
uznn0sub 12546 | The nonnegative difference... |
uzin 12547 | Intersection of two upper ... |
uzp1 12548 | Choices for an element of ... |
nn0uz 12549 | Nonnegative integers expre... |
nnuz 12550 | Positive integers expresse... |
elnnuz 12551 | A positive integer express... |
elnn0uz 12552 | A nonnegative integer expr... |
eluz2nn 12553 | An integer greater than or... |
eluz4eluz2 12554 | An integer greater than or... |
eluz4nn 12555 | An integer greater than or... |
eluzge2nn0 12556 | If an integer is greater t... |
eluz2n0 12557 | An integer greater than or... |
uzuzle23 12558 | An integer in the upper se... |
eluzge3nn 12559 | If an integer is greater t... |
uz3m2nn 12560 | An integer greater than or... |
1eluzge0 12561 | 1 is an integer greater th... |
2eluzge0 12562 | 2 is an integer greater th... |
2eluzge1 12563 | 2 is an integer greater th... |
uznnssnn 12564 | The upper integers startin... |
raluz 12565 | Restricted universal quant... |
raluz2 12566 | Restricted universal quant... |
rexuz 12567 | Restricted existential qua... |
rexuz2 12568 | Restricted existential qua... |
2rexuz 12569 | Double existential quantif... |
peano2uz 12570 | Second Peano postulate for... |
peano2uzs 12571 | Second Peano postulate for... |
peano2uzr 12572 | Reversed second Peano axio... |
uzaddcl 12573 | Addition closure law for a... |
nn0pzuz 12574 | The sum of a nonnegative i... |
uzind4 12575 | Induction on the upper set... |
uzind4ALT 12576 | Induction on the upper set... |
uzind4s 12577 | Induction on the upper set... |
uzind4s2 12578 | Induction on the upper set... |
uzind4i 12579 | Induction on the upper int... |
uzwo 12580 | Well-ordering principle: a... |
uzwo2 12581 | Well-ordering principle: a... |
nnwo 12582 | Well-ordering principle: a... |
nnwof 12583 | Well-ordering principle: a... |
nnwos 12584 | Well-ordering principle: a... |
indstr 12585 | Strong Mathematical Induct... |
eluznn0 12586 | Membership in a nonnegativ... |
eluznn 12587 | Membership in a positive u... |
eluz2b1 12588 | Two ways to say "an intege... |
eluz2gt1 12589 | An integer greater than or... |
eluz2b2 12590 | Two ways to say "an intege... |
eluz2b3 12591 | Two ways to say "an intege... |
uz2m1nn 12592 | One less than an integer g... |
1nuz2 12593 | 1 is not in ` ( ZZ>= `` 2 ... |
elnn1uz2 12594 | A positive integer is eith... |
uz2mulcl 12595 | Closure of multiplication ... |
indstr2 12596 | Strong Mathematical Induct... |
uzinfi 12597 | Extract the lower bound of... |
nninf 12598 | The infimum of the set of ... |
nn0inf 12599 | The infimum of the set of ... |
infssuzle 12600 | The infimum of a subset of... |
infssuzcl 12601 | The infimum of a subset of... |
ublbneg 12602 | The image under negation o... |
eqreznegel 12603 | Two ways to express the im... |
supminf 12604 | The supremum of a bounded-... |
lbzbi 12605 | If a set of reals is bound... |
zsupss 12606 | Any nonempty bounded subse... |
suprzcl2 12607 | The supremum of a bounded-... |
suprzub 12608 | The supremum of a bounded-... |
uzsupss 12609 | Any bounded subset of an u... |
nn01to3 12610 | A (nonnegative) integer be... |
nn0ge2m1nnALT 12611 | Alternate proof of ~ nn0ge... |
uzwo3 12612 | Well-ordering principle: a... |
zmin 12613 | There is a unique smallest... |
zmax 12614 | There is a unique largest ... |
zbtwnre 12615 | There is a unique integer ... |
rebtwnz 12616 | There is a unique greatest... |
elq 12619 | Membership in the set of r... |
qmulz 12620 | If ` A ` is rational, then... |
znq 12621 | The ratio of an integer an... |
qre 12622 | A rational number is a rea... |
zq 12623 | An integer is a rational n... |
qred 12624 | A rational number is a rea... |
zssq 12625 | The integers are a subset ... |
nn0ssq 12626 | The nonnegative integers a... |
nnssq 12627 | The positive integers are ... |
qssre 12628 | The rationals are a subset... |
qsscn 12629 | The rationals are a subset... |
qex 12630 | The set of rational number... |
nnq 12631 | A positive integer is rati... |
qcn 12632 | A rational number is a com... |
qexALT 12633 | Alternate proof of ~ qex .... |
qaddcl 12634 | Closure of addition of rat... |
qnegcl 12635 | Closure law for the negati... |
qmulcl 12636 | Closure of multiplication ... |
qsubcl 12637 | Closure of subtraction of ... |
qreccl 12638 | Closure of reciprocal of r... |
qdivcl 12639 | Closure of division of rat... |
qrevaddcl 12640 | Reverse closure law for ad... |
nnrecq 12641 | The reciprocal of a positi... |
irradd 12642 | The sum of an irrational n... |
irrmul 12643 | The product of an irration... |
elpq 12644 | A positive rational is the... |
elpqb 12645 | A class is a positive rati... |
rpnnen1lem2 12646 | Lemma for ~ rpnnen1 . (Co... |
rpnnen1lem1 12647 | Lemma for ~ rpnnen1 . (Co... |
rpnnen1lem3 12648 | Lemma for ~ rpnnen1 . (Co... |
rpnnen1lem4 12649 | Lemma for ~ rpnnen1 . (Co... |
rpnnen1lem5 12650 | Lemma for ~ rpnnen1 . (Co... |
rpnnen1lem6 12651 | Lemma for ~ rpnnen1 . (Co... |
rpnnen1 12652 | One half of ~ rpnnen , whe... |
reexALT 12653 | Alternate proof of ~ reex ... |
cnref1o 12654 | There is a natural one-to-... |
cnexALT 12655 | The set of complex numbers... |
xrex 12656 | The set of extended reals ... |
addex 12657 | The addition operation is ... |
mulex 12658 | The multiplication operati... |
elrp 12661 | Membership in the set of p... |
elrpii 12662 | Membership in the set of p... |
1rp 12663 | 1 is a positive real. (Co... |
2rp 12664 | 2 is a positive real. (Co... |
3rp 12665 | 3 is a positive real. (Co... |
rpssre 12666 | The positive reals are a s... |
rpre 12667 | A positive real is a real.... |
rpxr 12668 | A positive real is an exte... |
rpcn 12669 | A positive real is a compl... |
nnrp 12670 | A positive integer is a po... |
rpgt0 12671 | A positive real is greater... |
rpge0 12672 | A positive real is greater... |
rpregt0 12673 | A positive real is a posit... |
rprege0 12674 | A positive real is a nonne... |
rpne0 12675 | A positive real is nonzero... |
rprene0 12676 | A positive real is a nonze... |
rpcnne0 12677 | A positive real is a nonze... |
rpcndif0 12678 | A positive real number is ... |
ralrp 12679 | Quantification over positi... |
rexrp 12680 | Quantification over positi... |
rpaddcl 12681 | Closure law for addition o... |
rpmulcl 12682 | Closure law for multiplica... |
rpmtmip 12683 | "Minus times minus is plus... |
rpdivcl 12684 | Closure law for division o... |
rpreccl 12685 | Closure law for reciprocat... |
rphalfcl 12686 | Closure law for half of a ... |
rpgecl 12687 | A number greater than or e... |
rphalflt 12688 | Half of a positive real is... |
rerpdivcl 12689 | Closure law for division o... |
ge0p1rp 12690 | A nonnegative number plus ... |
rpneg 12691 | Either a nonzero real or i... |
negelrp 12692 | Elementhood of a negation ... |
negelrpd 12693 | The negation of a negative... |
0nrp 12694 | Zero is not a positive rea... |
ltsubrp 12695 | Subtracting a positive rea... |
ltaddrp 12696 | Adding a positive number t... |
difrp 12697 | Two ways to say one number... |
elrpd 12698 | Membership in the set of p... |
nnrpd 12699 | A positive integer is a po... |
zgt1rpn0n1 12700 | An integer greater than 1 ... |
rpred 12701 | A positive real is a real.... |
rpxrd 12702 | A positive real is an exte... |
rpcnd 12703 | A positive real is a compl... |
rpgt0d 12704 | A positive real is greater... |
rpge0d 12705 | A positive real is greater... |
rpne0d 12706 | A positive real is nonzero... |
rpregt0d 12707 | A positive real is real an... |
rprege0d 12708 | A positive real is real an... |
rprene0d 12709 | A positive real is a nonze... |
rpcnne0d 12710 | A positive real is a nonze... |
rpreccld 12711 | Closure law for reciprocat... |
rprecred 12712 | Closure law for reciprocat... |
rphalfcld 12713 | Closure law for half of a ... |
reclt1d 12714 | The reciprocal of a positi... |
recgt1d 12715 | The reciprocal of a positi... |
rpaddcld 12716 | Closure law for addition o... |
rpmulcld 12717 | Closure law for multiplica... |
rpdivcld 12718 | Closure law for division o... |
ltrecd 12719 | The reciprocal of both sid... |
lerecd 12720 | The reciprocal of both sid... |
ltrec1d 12721 | Reciprocal swap in a 'less... |
lerec2d 12722 | Reciprocal swap in a 'less... |
lediv2ad 12723 | Division of both sides of ... |
ltdiv2d 12724 | Division of a positive num... |
lediv2d 12725 | Division of a positive num... |
ledivdivd 12726 | Invert ratios of positive ... |
divge1 12727 | The ratio of a number over... |
divlt1lt 12728 | A real number divided by a... |
divle1le 12729 | A real number divided by a... |
ledivge1le 12730 | If a number is less than o... |
ge0p1rpd 12731 | A nonnegative number plus ... |
rerpdivcld 12732 | Closure law for division o... |
ltsubrpd 12733 | Subtracting a positive rea... |
ltaddrpd 12734 | Adding a positive number t... |
ltaddrp2d 12735 | Adding a positive number t... |
ltmulgt11d 12736 | Multiplication by a number... |
ltmulgt12d 12737 | Multiplication by a number... |
gt0divd 12738 | Division of a positive num... |
ge0divd 12739 | Division of a nonnegative ... |
rpgecld 12740 | A number greater than or e... |
divge0d 12741 | The ratio of nonnegative a... |
ltmul1d 12742 | The ratio of nonnegative a... |
ltmul2d 12743 | Multiplication of both sid... |
lemul1d 12744 | Multiplication of both sid... |
lemul2d 12745 | Multiplication of both sid... |
ltdiv1d 12746 | Division of both sides of ... |
lediv1d 12747 | Division of both sides of ... |
ltmuldivd 12748 | 'Less than' relationship b... |
ltmuldiv2d 12749 | 'Less than' relationship b... |
lemuldivd 12750 | 'Less than or equal to' re... |
lemuldiv2d 12751 | 'Less than or equal to' re... |
ltdivmuld 12752 | 'Less than' relationship b... |
ltdivmul2d 12753 | 'Less than' relationship b... |
ledivmuld 12754 | 'Less than or equal to' re... |
ledivmul2d 12755 | 'Less than or equal to' re... |
ltmul1dd 12756 | The ratio of nonnegative a... |
ltmul2dd 12757 | Multiplication of both sid... |
ltdiv1dd 12758 | Division of both sides of ... |
lediv1dd 12759 | Division of both sides of ... |
lediv12ad 12760 | Comparison of ratio of two... |
mul2lt0rlt0 12761 | If the result of a multipl... |
mul2lt0rgt0 12762 | If the result of a multipl... |
mul2lt0llt0 12763 | If the result of a multipl... |
mul2lt0lgt0 12764 | If the result of a multipl... |
mul2lt0bi 12765 | If the result of a multipl... |
prodge0rd 12766 | Infer that a multiplicand ... |
prodge0ld 12767 | Infer that a multiplier is... |
ltdiv23d 12768 | Swap denominator with othe... |
lediv23d 12769 | Swap denominator with othe... |
lt2mul2divd 12770 | The ratio of nonnegative a... |
nnledivrp 12771 | Division of a positive int... |
nn0ledivnn 12772 | Division of a nonnegative ... |
addlelt 12773 | If the sum of a real numbe... |
ltxr 12780 | The 'less than' binary rel... |
elxr 12781 | Membership in the set of e... |
xrnemnf 12782 | An extended real other tha... |
xrnepnf 12783 | An extended real other tha... |
xrltnr 12784 | The extended real 'less th... |
ltpnf 12785 | Any (finite) real is less ... |
ltpnfd 12786 | Any (finite) real is less ... |
0ltpnf 12787 | Zero is less than plus inf... |
mnflt 12788 | Minus infinity is less tha... |
mnfltd 12789 | Minus infinity is less tha... |
mnflt0 12790 | Minus infinity is less tha... |
mnfltpnf 12791 | Minus infinity is less tha... |
mnfltxr 12792 | Minus infinity is less tha... |
pnfnlt 12793 | No extended real is greate... |
nltmnf 12794 | No extended real is less t... |
pnfge 12795 | Plus infinity is an upper ... |
xnn0n0n1ge2b 12796 | An extended nonnegative in... |
0lepnf 12797 | 0 less than or equal to po... |
xnn0ge0 12798 | An extended nonnegative in... |
mnfle 12799 | Minus infinity is less tha... |
xrltnsym 12800 | Ordering on the extended r... |
xrltnsym2 12801 | 'Less than' is antisymmetr... |
xrlttri 12802 | Ordering on the extended r... |
xrlttr 12803 | Ordering on the extended r... |
xrltso 12804 | 'Less than' is a strict or... |
xrlttri2 12805 | Trichotomy law for 'less t... |
xrlttri3 12806 | Trichotomy law for 'less t... |
xrleloe 12807 | 'Less than or equal' expre... |
xrleltne 12808 | 'Less than or equal to' im... |
xrltlen 12809 | 'Less than' expressed in t... |
dfle2 12810 | Alternative definition of ... |
dflt2 12811 | Alternative definition of ... |
xrltle 12812 | 'Less than' implies 'less ... |
xrltled 12813 | 'Less than' implies 'less ... |
xrleid 12814 | 'Less than or equal to' is... |
xrleidd 12815 | 'Less than or equal to' is... |
xrletri 12816 | Trichotomy law for extende... |
xrletri3 12817 | Trichotomy law for extende... |
xrletrid 12818 | Trichotomy law for extende... |
xrlelttr 12819 | Transitive law for orderin... |
xrltletr 12820 | Transitive law for orderin... |
xrletr 12821 | Transitive law for orderin... |
xrlttrd 12822 | Transitive law for orderin... |
xrlelttrd 12823 | Transitive law for orderin... |
xrltletrd 12824 | Transitive law for orderin... |
xrletrd 12825 | Transitive law for orderin... |
xrltne 12826 | 'Less than' implies not eq... |
nltpnft 12827 | An extended real is not le... |
xgepnf 12828 | An extended real which is ... |
ngtmnft 12829 | An extended real is not gr... |
xlemnf 12830 | An extended real which is ... |
xrrebnd 12831 | An extended real is real i... |
xrre 12832 | A way of proving that an e... |
xrre2 12833 | An extended real between t... |
xrre3 12834 | A way of proving that an e... |
ge0gtmnf 12835 | A nonnegative extended rea... |
ge0nemnf 12836 | A nonnegative extended rea... |
xrrege0 12837 | A nonnegative extended rea... |
xrmax1 12838 | An extended real is less t... |
xrmax2 12839 | An extended real is less t... |
xrmin1 12840 | The minimum of two extende... |
xrmin2 12841 | The minimum of two extende... |
xrmaxeq 12842 | The maximum of two extende... |
xrmineq 12843 | The minimum of two extende... |
xrmaxlt 12844 | Two ways of saying the max... |
xrltmin 12845 | Two ways of saying an exte... |
xrmaxle 12846 | Two ways of saying the max... |
xrlemin 12847 | Two ways of saying a numbe... |
max1 12848 | A number is less than or e... |
max1ALT 12849 | A number is less than or e... |
max2 12850 | A number is less than or e... |
2resupmax 12851 | The supremum of two real n... |
min1 12852 | The minimum of two numbers... |
min2 12853 | The minimum of two numbers... |
maxle 12854 | Two ways of saying the max... |
lemin 12855 | Two ways of saying a numbe... |
maxlt 12856 | Two ways of saying the max... |
ltmin 12857 | Two ways of saying a numbe... |
lemaxle 12858 | A real number which is les... |
max0sub 12859 | Decompose a real number in... |
ifle 12860 | An if statement transforms... |
z2ge 12861 | There exists an integer gr... |
qbtwnre 12862 | The rational numbers are d... |
qbtwnxr 12863 | The rational numbers are d... |
qsqueeze 12864 | If a nonnegative real is l... |
qextltlem 12865 | Lemma for ~ qextlt and qex... |
qextlt 12866 | An extensionality-like pro... |
qextle 12867 | An extensionality-like pro... |
xralrple 12868 | Show that ` A ` is less th... |
alrple 12869 | Show that ` A ` is less th... |
xnegeq 12870 | Equality of two extended n... |
xnegex 12871 | A negative extended real e... |
xnegpnf 12872 | Minus ` +oo ` . Remark of... |
xnegmnf 12873 | Minus ` -oo ` . Remark of... |
rexneg 12874 | Minus a real number. Rema... |
xneg0 12875 | The negative of zero. (Co... |
xnegcl 12876 | Closure of extended real n... |
xnegneg 12877 | Extended real version of ~... |
xneg11 12878 | Extended real version of ~... |
xltnegi 12879 | Forward direction of ~ xlt... |
xltneg 12880 | Extended real version of ~... |
xleneg 12881 | Extended real version of ~... |
xlt0neg1 12882 | Extended real version of ~... |
xlt0neg2 12883 | Extended real version of ~... |
xle0neg1 12884 | Extended real version of ~... |
xle0neg2 12885 | Extended real version of ~... |
xaddval 12886 | Value of the extended real... |
xaddf 12887 | The extended real addition... |
xmulval 12888 | Value of the extended real... |
xaddpnf1 12889 | Addition of positive infin... |
xaddpnf2 12890 | Addition of positive infin... |
xaddmnf1 12891 | Addition of negative infin... |
xaddmnf2 12892 | Addition of negative infin... |
pnfaddmnf 12893 | Addition of positive and n... |
mnfaddpnf 12894 | Addition of negative and p... |
rexadd 12895 | The extended real addition... |
rexsub 12896 | Extended real subtraction ... |
rexaddd 12897 | The extended real addition... |
xnn0xaddcl 12898 | The extended nonnegative i... |
xaddnemnf 12899 | Closure of extended real a... |
xaddnepnf 12900 | Closure of extended real a... |
xnegid 12901 | Extended real version of ~... |
xaddcl 12902 | The extended real addition... |
xaddcom 12903 | The extended real addition... |
xaddid1 12904 | Extended real version of ~... |
xaddid2 12905 | Extended real version of ~... |
xaddid1d 12906 | ` 0 ` is a right identity ... |
xnn0lem1lt 12907 | Extended nonnegative integ... |
xnn0lenn0nn0 12908 | An extended nonnegative in... |
xnn0le2is012 12909 | An extended nonnegative in... |
xnn0xadd0 12910 | The sum of two extended no... |
xnegdi 12911 | Extended real version of ~... |
xaddass 12912 | Associativity of extended ... |
xaddass2 12913 | Associativity of extended ... |
xpncan 12914 | Extended real version of ~... |
xnpcan 12915 | Extended real version of ~... |
xleadd1a 12916 | Extended real version of ~... |
xleadd2a 12917 | Commuted form of ~ xleadd1... |
xleadd1 12918 | Weakened version of ~ xlea... |
xltadd1 12919 | Extended real version of ~... |
xltadd2 12920 | Extended real version of ~... |
xaddge0 12921 | The sum of nonnegative ext... |
xle2add 12922 | Extended real version of ~... |
xlt2add 12923 | Extended real version of ~... |
xsubge0 12924 | Extended real version of ~... |
xposdif 12925 | Extended real version of ~... |
xlesubadd 12926 | Under certain conditions, ... |
xmullem 12927 | Lemma for ~ rexmul . (Con... |
xmullem2 12928 | Lemma for ~ xmulneg1 . (C... |
xmulcom 12929 | Extended real multiplicati... |
xmul01 12930 | Extended real version of ~... |
xmul02 12931 | Extended real version of ~... |
xmulneg1 12932 | Extended real version of ~... |
xmulneg2 12933 | Extended real version of ~... |
rexmul 12934 | The extended real multipli... |
xmulf 12935 | The extended real multipli... |
xmulcl 12936 | Closure of extended real m... |
xmulpnf1 12937 | Multiplication by plus inf... |
xmulpnf2 12938 | Multiplication by plus inf... |
xmulmnf1 12939 | Multiplication by minus in... |
xmulmnf2 12940 | Multiplication by minus in... |
xmulpnf1n 12941 | Multiplication by plus inf... |
xmulid1 12942 | Extended real version of ~... |
xmulid2 12943 | Extended real version of ~... |
xmulm1 12944 | Extended real version of ~... |
xmulasslem2 12945 | Lemma for ~ xmulass . (Co... |
xmulgt0 12946 | Extended real version of ~... |
xmulge0 12947 | Extended real version of ~... |
xmulasslem 12948 | Lemma for ~ xmulass . (Co... |
xmulasslem3 12949 | Lemma for ~ xmulass . (Co... |
xmulass 12950 | Associativity of the exten... |
xlemul1a 12951 | Extended real version of ~... |
xlemul2a 12952 | Extended real version of ~... |
xlemul1 12953 | Extended real version of ~... |
xlemul2 12954 | Extended real version of ~... |
xltmul1 12955 | Extended real version of ~... |
xltmul2 12956 | Extended real version of ~... |
xadddilem 12957 | Lemma for ~ xadddi . (Con... |
xadddi 12958 | Distributive property for ... |
xadddir 12959 | Commuted version of ~ xadd... |
xadddi2 12960 | The assumption that the mu... |
xadddi2r 12961 | Commuted version of ~ xadd... |
x2times 12962 | Extended real version of ~... |
xnegcld 12963 | Closure of extended real n... |
xaddcld 12964 | The extended real addition... |
xmulcld 12965 | Closure of extended real m... |
xadd4d 12966 | Rearrangement of 4 terms i... |
xnn0add4d 12967 | Rearrangement of 4 terms i... |
xrsupexmnf 12968 | Adding minus infinity to a... |
xrinfmexpnf 12969 | Adding plus infinity to a ... |
xrsupsslem 12970 | Lemma for ~ xrsupss . (Co... |
xrinfmsslem 12971 | Lemma for ~ xrinfmss . (C... |
xrsupss 12972 | Any subset of extended rea... |
xrinfmss 12973 | Any subset of extended rea... |
xrinfmss2 12974 | Any subset of extended rea... |
xrub 12975 | By quantifying only over r... |
supxr 12976 | The supremum of a set of e... |
supxr2 12977 | The supremum of a set of e... |
supxrcl 12978 | The supremum of an arbitra... |
supxrun 12979 | The supremum of the union ... |
supxrmnf 12980 | Adding minus infinity to a... |
supxrpnf 12981 | The supremum of a set of e... |
supxrunb1 12982 | The supremum of an unbound... |
supxrunb2 12983 | The supremum of an unbound... |
supxrbnd1 12984 | The supremum of a bounded-... |
supxrbnd2 12985 | The supremum of a bounded-... |
xrsup0 12986 | The supremum of an empty s... |
supxrub 12987 | A member of a set of exten... |
supxrlub 12988 | The supremum of a set of e... |
supxrleub 12989 | The supremum of a set of e... |
supxrre 12990 | The real and extended real... |
supxrbnd 12991 | The supremum of a bounded-... |
supxrgtmnf 12992 | The supremum of a nonempty... |
supxrre1 12993 | The supremum of a nonempty... |
supxrre2 12994 | The supremum of a nonempty... |
supxrss 12995 | Smaller sets of extended r... |
infxrcl 12996 | The infimum of an arbitrar... |
infxrlb 12997 | A member of a set of exten... |
infxrgelb 12998 | The infimum of a set of ex... |
infxrre 12999 | The real and extended real... |
infxrmnf 13000 | The infinimum of a set of ... |
xrinf0 13001 | The infimum of the empty s... |
infxrss 13002 | Larger sets of extended re... |
reltre 13003 | For all real numbers there... |
rpltrp 13004 | For all positive real numb... |
reltxrnmnf 13005 | For all extended real numb... |
infmremnf 13006 | The infimum of the reals i... |
infmrp1 13007 | The infimum of the positiv... |
ixxval 13016 | Value of the interval func... |
elixx1 13017 | Membership in an interval ... |
ixxf 13018 | The set of intervals of ex... |
ixxex 13019 | The set of intervals of ex... |
ixxssxr 13020 | The set of intervals of ex... |
elixx3g 13021 | Membership in a set of ope... |
ixxssixx 13022 | An interval is a subset of... |
ixxdisj 13023 | Split an interval into dis... |
ixxun 13024 | Split an interval into two... |
ixxin 13025 | Intersection of two interv... |
ixxss1 13026 | Subset relationship for in... |
ixxss2 13027 | Subset relationship for in... |
ixxss12 13028 | Subset relationship for in... |
ixxub 13029 | Extract the upper bound of... |
ixxlb 13030 | Extract the lower bound of... |
iooex 13031 | The set of open intervals ... |
iooval 13032 | Value of the open interval... |
ioo0 13033 | An empty open interval of ... |
ioon0 13034 | An open interval of extend... |
ndmioo 13035 | The open interval function... |
iooid 13036 | An open interval with iden... |
elioo3g 13037 | Membership in a set of ope... |
elioore 13038 | A member of an open interv... |
lbioo 13039 | An open interval does not ... |
ubioo 13040 | An open interval does not ... |
iooval2 13041 | Value of the open interval... |
iooin 13042 | Intersection of two open i... |
iooss1 13043 | Subset relationship for op... |
iooss2 13044 | Subset relationship for op... |
iocval 13045 | Value of the open-below, c... |
icoval 13046 | Value of the closed-below,... |
iccval 13047 | Value of the closed interv... |
elioo1 13048 | Membership in an open inte... |
elioo2 13049 | Membership in an open inte... |
elioc1 13050 | Membership in an open-belo... |
elico1 13051 | Membership in a closed-bel... |
elicc1 13052 | Membership in a closed int... |
iccid 13053 | A closed interval with ide... |
ico0 13054 | An empty open interval of ... |
ioc0 13055 | An empty open interval of ... |
icc0 13056 | An empty closed interval o... |
dfrp2 13057 | Alternate definition of th... |
elicod 13058 | Membership in a left-close... |
icogelb 13059 | An element of a left-close... |
elicore 13060 | A member of a left-closed ... |
ubioc1 13061 | The upper bound belongs to... |
lbico1 13062 | The lower bound belongs to... |
iccleub 13063 | An element of a closed int... |
iccgelb 13064 | An element of a closed int... |
elioo5 13065 | Membership in an open inte... |
eliooxr 13066 | A nonempty open interval s... |
eliooord 13067 | Ordering implied by a memb... |
elioo4g 13068 | Membership in an open inte... |
ioossre 13069 | An open interval is a set ... |
ioosscn 13070 | An open interval is a set ... |
elioc2 13071 | Membership in an open-belo... |
elico2 13072 | Membership in a closed-bel... |
elicc2 13073 | Membership in a closed rea... |
elicc2i 13074 | Inference for membership i... |
elicc4 13075 | Membership in a closed rea... |
iccss 13076 | Condition for a closed int... |
iccssioo 13077 | Condition for a closed int... |
icossico 13078 | Condition for a closed-bel... |
iccss2 13079 | Condition for a closed int... |
iccssico 13080 | Condition for a closed int... |
iccssioo2 13081 | Condition for a closed int... |
iccssico2 13082 | Condition for a closed int... |
ioomax 13083 | The open interval from min... |
iccmax 13084 | The closed interval from m... |
ioopos 13085 | The set of positive reals ... |
ioorp 13086 | The set of positive reals ... |
iooshf 13087 | Shift the arguments of the... |
iocssre 13088 | A closed-above interval wi... |
icossre 13089 | A closed-below interval wi... |
iccssre 13090 | A closed real interval is ... |
iccssxr 13091 | A closed interval is a set... |
iocssxr 13092 | An open-below, closed-abov... |
icossxr 13093 | A closed-below, open-above... |
ioossicc 13094 | An open interval is a subs... |
iccssred 13095 | A closed real interval is ... |
eliccxr 13096 | A member of a closed inter... |
icossicc 13097 | A closed-below, open-above... |
iocssicc 13098 | A closed-above, open-below... |
ioossico 13099 | An open interval is a subs... |
iocssioo 13100 | Condition for a closed int... |
icossioo 13101 | Condition for a closed int... |
ioossioo 13102 | Condition for an open inte... |
iccsupr 13103 | A nonempty subset of a clo... |
elioopnf 13104 | Membership in an unbounded... |
elioomnf 13105 | Membership in an unbounded... |
elicopnf 13106 | Membership in a closed unb... |
repos 13107 | Two ways of saying that a ... |
ioof 13108 | The set of open intervals ... |
iccf 13109 | The set of closed interval... |
unirnioo 13110 | The union of the range of ... |
dfioo2 13111 | Alternate definition of th... |
ioorebas 13112 | Open intervals are element... |
xrge0neqmnf 13113 | A nonnegative extended rea... |
xrge0nre 13114 | An extended real which is ... |
elrege0 13115 | The predicate "is a nonneg... |
nn0rp0 13116 | A nonnegative integer is a... |
rge0ssre 13117 | Nonnegative real numbers a... |
elxrge0 13118 | Elementhood in the set of ... |
0e0icopnf 13119 | 0 is a member of ` ( 0 [,)... |
0e0iccpnf 13120 | 0 is a member of ` ( 0 [,]... |
ge0addcl 13121 | The nonnegative reals are ... |
ge0mulcl 13122 | The nonnegative reals are ... |
ge0xaddcl 13123 | The nonnegative reals are ... |
ge0xmulcl 13124 | The nonnegative extended r... |
lbicc2 13125 | The lower bound of a close... |
ubicc2 13126 | The upper bound of a close... |
elicc01 13127 | Membership in the closed r... |
elunitrn 13128 | The closed unit interval i... |
elunitcn 13129 | The closed unit interval i... |
0elunit 13130 | Zero is an element of the ... |
1elunit 13131 | One is an element of the c... |
iooneg 13132 | Membership in a negated op... |
iccneg 13133 | Membership in a negated cl... |
icoshft 13134 | A shifted real is a member... |
icoshftf1o 13135 | Shifting a closed-below, o... |
icoun 13136 | The union of two adjacent ... |
icodisj 13137 | Adjacent left-closed right... |
ioounsn 13138 | The union of an open inter... |
snunioo 13139 | The closure of one end of ... |
snunico 13140 | The closure of the open en... |
snunioc 13141 | The closure of the open en... |
prunioo 13142 | The closure of an open rea... |
ioodisj 13143 | If the upper bound of one ... |
ioojoin 13144 | Join two open intervals to... |
difreicc 13145 | The class difference of ` ... |
iccsplit 13146 | Split a closed interval in... |
iccshftr 13147 | Membership in a shifted in... |
iccshftri 13148 | Membership in a shifted in... |
iccshftl 13149 | Membership in a shifted in... |
iccshftli 13150 | Membership in a shifted in... |
iccdil 13151 | Membership in a dilated in... |
iccdili 13152 | Membership in a dilated in... |
icccntr 13153 | Membership in a contracted... |
icccntri 13154 | Membership in a contracted... |
divelunit 13155 | A condition for a ratio to... |
lincmb01cmp 13156 | A linear combination of tw... |
iccf1o 13157 | Describe a bijection from ... |
iccen 13158 | Any nontrivial closed inte... |
xov1plusxeqvd 13159 | A complex number ` X ` is ... |
unitssre 13160 | ` ( 0 [,] 1 ) ` is a subse... |
unitsscn 13161 | The closed unit interval i... |
supicc 13162 | Supremum of a bounded set ... |
supiccub 13163 | The supremum of a bounded ... |
supicclub 13164 | The supremum of a bounded ... |
supicclub2 13165 | The supremum of a bounded ... |
zltaddlt1le 13166 | The sum of an integer and ... |
xnn0xrge0 13167 | An extended nonnegative in... |
fzval 13170 | The value of a finite set ... |
fzval2 13171 | An alternative way of expr... |
fzf 13172 | Establish the domain and c... |
elfz1 13173 | Membership in a finite set... |
elfz 13174 | Membership in a finite set... |
elfz2 13175 | Membership in a finite set... |
elfzd 13176 | Membership in a finite set... |
elfz5 13177 | Membership in a finite set... |
elfz4 13178 | Membership in a finite set... |
elfzuzb 13179 | Membership in a finite set... |
eluzfz 13180 | Membership in a finite set... |
elfzuz 13181 | A member of a finite set o... |
elfzuz3 13182 | Membership in a finite set... |
elfzel2 13183 | Membership in a finite set... |
elfzel1 13184 | Membership in a finite set... |
elfzelz 13185 | A member of a finite set o... |
elfzelzd 13186 | A member of a finite set o... |
fzssz 13187 | A finite sequence of integ... |
elfzle1 13188 | A member of a finite set o... |
elfzle2 13189 | A member of a finite set o... |
elfzuz2 13190 | Implication of membership ... |
elfzle3 13191 | Membership in a finite set... |
eluzfz1 13192 | Membership in a finite set... |
eluzfz2 13193 | Membership in a finite set... |
eluzfz2b 13194 | Membership in a finite set... |
elfz3 13195 | Membership in a finite set... |
elfz1eq 13196 | Membership in a finite set... |
elfzubelfz 13197 | If there is a member in a ... |
peano2fzr 13198 | A Peano-postulate-like the... |
fzn0 13199 | Properties of a finite int... |
fz0 13200 | A finite set of sequential... |
fzn 13201 | A finite set of sequential... |
fzen 13202 | A shifted finite set of se... |
fz1n 13203 | A 1-based finite set of se... |
0nelfz1 13204 | 0 is not an element of a f... |
0fz1 13205 | Two ways to say a finite 1... |
fz10 13206 | There are no integers betw... |
uzsubsubfz 13207 | Membership of an integer g... |
uzsubsubfz1 13208 | Membership of an integer g... |
ige3m2fz 13209 | Membership of an integer g... |
fzsplit2 13210 | Split a finite interval of... |
fzsplit 13211 | Split a finite interval of... |
fzdisj 13212 | Condition for two finite i... |
fz01en 13213 | 0-based and 1-based finite... |
elfznn 13214 | A member of a finite set o... |
elfz1end 13215 | A nonempty finite range of... |
fz1ssnn 13216 | A finite set of positive i... |
fznn0sub 13217 | Subtraction closure for a ... |
fzmmmeqm 13218 | Subtracting the difference... |
fzaddel 13219 | Membership of a sum in a f... |
fzadd2 13220 | Membership of a sum in a f... |
fzsubel 13221 | Membership of a difference... |
fzopth 13222 | A finite set of sequential... |
fzass4 13223 | Two ways to express a nond... |
fzss1 13224 | Subset relationship for fi... |
fzss2 13225 | Subset relationship for fi... |
fzssuz 13226 | A finite set of sequential... |
fzsn 13227 | A finite interval of integ... |
fzssp1 13228 | Subset relationship for fi... |
fzssnn 13229 | Finite sets of sequential ... |
ssfzunsnext 13230 | A subset of a finite seque... |
ssfzunsn 13231 | A subset of a finite seque... |
fzsuc 13232 | Join a successor to the en... |
fzpred 13233 | Join a predecessor to the ... |
fzpreddisj 13234 | A finite set of sequential... |
elfzp1 13235 | Append an element to a fin... |
fzp1ss 13236 | Subset relationship for fi... |
fzelp1 13237 | Membership in a set of seq... |
fzp1elp1 13238 | Add one to an element of a... |
fznatpl1 13239 | Shift membership in a fini... |
fzpr 13240 | A finite interval of integ... |
fztp 13241 | A finite interval of integ... |
fz12pr 13242 | An integer range between 1... |
fzsuc2 13243 | Join a successor to the en... |
fzp1disj 13244 | ` ( M ... ( N + 1 ) ) ` is... |
fzdifsuc 13245 | Remove a successor from th... |
fzprval 13246 | Two ways of defining the f... |
fztpval 13247 | Two ways of defining the f... |
fzrev 13248 | Reversal of start and end ... |
fzrev2 13249 | Reversal of start and end ... |
fzrev2i 13250 | Reversal of start and end ... |
fzrev3 13251 | The "complement" of a memb... |
fzrev3i 13252 | The "complement" of a memb... |
fznn 13253 | Finite set of sequential i... |
elfz1b 13254 | Membership in a 1-based fi... |
elfz1uz 13255 | Membership in a 1-based fi... |
elfzm11 13256 | Membership in a finite set... |
uzsplit 13257 | Express an upper integer s... |
uzdisj 13258 | The first ` N ` elements o... |
fseq1p1m1 13259 | Add/remove an item to/from... |
fseq1m1p1 13260 | Add/remove an item to/from... |
fz1sbc 13261 | Quantification over a one-... |
elfzp1b 13262 | An integer is a member of ... |
elfzm1b 13263 | An integer is a member of ... |
elfzp12 13264 | Options for membership in ... |
fzm1 13265 | Choices for an element of ... |
fzneuz 13266 | No finite set of sequentia... |
fznuz 13267 | Disjointness of the upper ... |
uznfz 13268 | Disjointness of the upper ... |
fzp1nel 13269 | One plus the upper bound o... |
fzrevral 13270 | Reversal of scanning order... |
fzrevral2 13271 | Reversal of scanning order... |
fzrevral3 13272 | Reversal of scanning order... |
fzshftral 13273 | Shift the scanning order i... |
ige2m1fz1 13274 | Membership of an integer g... |
ige2m1fz 13275 | Membership in a 0-based fi... |
elfz2nn0 13276 | Membership in a finite set... |
fznn0 13277 | Characterization of a fini... |
elfznn0 13278 | A member of a finite set o... |
elfz3nn0 13279 | The upper bound of a nonem... |
fz0ssnn0 13280 | Finite sets of sequential ... |
fz1ssfz0 13281 | Subset relationship for fi... |
0elfz 13282 | 0 is an element of a finit... |
nn0fz0 13283 | A nonnegative integer is a... |
elfz0add 13284 | An element of a finite set... |
fz0sn 13285 | An integer range from 0 to... |
fz0tp 13286 | An integer range from 0 to... |
fz0to3un2pr 13287 | An integer range from 0 to... |
fz0to4untppr 13288 | An integer range from 0 to... |
elfz0ubfz0 13289 | An element of a finite set... |
elfz0fzfz0 13290 | A member of a finite set o... |
fz0fzelfz0 13291 | If a member of a finite se... |
fznn0sub2 13292 | Subtraction closure for a ... |
uzsubfz0 13293 | Membership of an integer g... |
fz0fzdiffz0 13294 | The difference of an integ... |
elfzmlbm 13295 | Subtracting the lower boun... |
elfzmlbp 13296 | Subtracting the lower boun... |
fzctr 13297 | Lemma for theorems about t... |
difelfzle 13298 | The difference of two inte... |
difelfznle 13299 | The difference of two inte... |
nn0split 13300 | Express the set of nonnega... |
nn0disj 13301 | The first ` N + 1 ` elemen... |
fz0sn0fz1 13302 | A finite set of sequential... |
fvffz0 13303 | The function value of a fu... |
1fv 13304 | A function on a singleton.... |
4fvwrd4 13305 | The first four function va... |
2ffzeq 13306 | Two functions over 0-based... |
preduz 13307 | The value of the predecess... |
prednn 13308 | The value of the predecess... |
prednn0 13309 | The value of the predecess... |
predfz 13310 | Calculate the predecessor ... |
fzof 13313 | Functionality of the half-... |
elfzoel1 13314 | Reverse closure for half-o... |
elfzoel2 13315 | Reverse closure for half-o... |
elfzoelz 13316 | Reverse closure for half-o... |
fzoval 13317 | Value of the half-open int... |
elfzo 13318 | Membership in a half-open ... |
elfzo2 13319 | Membership in a half-open ... |
elfzouz 13320 | Membership in a half-open ... |
nelfzo 13321 | An integer not being a mem... |
fzolb 13322 | The left endpoint of a hal... |
fzolb2 13323 | The left endpoint of a hal... |
elfzole1 13324 | A member in a half-open in... |
elfzolt2 13325 | A member in a half-open in... |
elfzolt3 13326 | Membership in a half-open ... |
elfzolt2b 13327 | A member in a half-open in... |
elfzolt3b 13328 | Membership in a half-open ... |
fzonel 13329 | A half-open range does not... |
elfzouz2 13330 | The upper bound of a half-... |
elfzofz 13331 | A half-open range is conta... |
elfzo3 13332 | Express membership in a ha... |
fzon0 13333 | A half-open integer interv... |
fzossfz 13334 | A half-open range is conta... |
fzossz 13335 | A half-open integer interv... |
fzon 13336 | A half-open set of sequent... |
fzo0n 13337 | A half-open range of nonne... |
fzonlt0 13338 | A half-open integer range ... |
fzo0 13339 | Half-open sets with equal ... |
fzonnsub 13340 | If ` K < N ` then ` N - K ... |
fzonnsub2 13341 | If ` M < N ` then ` N - M ... |
fzoss1 13342 | Subset relationship for ha... |
fzoss2 13343 | Subset relationship for ha... |
fzossrbm1 13344 | Subset of a half-open rang... |
fzo0ss1 13345 | Subset relationship for ha... |
fzossnn0 13346 | A half-open integer range ... |
fzospliti 13347 | One direction of splitting... |
fzosplit 13348 | Split a half-open integer ... |
fzodisj 13349 | Abutting half-open integer... |
fzouzsplit 13350 | Split an upper integer set... |
fzouzdisj 13351 | A half-open integer range ... |
fzoun 13352 | A half-open integer range ... |
fzodisjsn 13353 | A half-open integer range ... |
prinfzo0 13354 | The intersection of a half... |
lbfzo0 13355 | An integer is strictly gre... |
elfzo0 13356 | Membership in a half-open ... |
elfzo0z 13357 | Membership in a half-open ... |
nn0p1elfzo 13358 | A nonnegative integer incr... |
elfzo0le 13359 | A member in a half-open ra... |
elfzonn0 13360 | A member of a half-open ra... |
fzonmapblen 13361 | The result of subtracting ... |
fzofzim 13362 | If a nonnegative integer i... |
fz1fzo0m1 13363 | Translation of one between... |
fzossnn 13364 | Half-open integer ranges s... |
elfzo1 13365 | Membership in a half-open ... |
fzo1fzo0n0 13366 | An integer between 1 and a... |
fzo0n0 13367 | A half-open integer range ... |
fzoaddel 13368 | Translate membership in a ... |
fzo0addel 13369 | Translate membership in a ... |
fzo0addelr 13370 | Translate membership in a ... |
fzoaddel2 13371 | Translate membership in a ... |
elfzoext 13372 | Membership of an integer i... |
elincfzoext 13373 | Membership of an increased... |
fzosubel 13374 | Translate membership in a ... |
fzosubel2 13375 | Membership in a translated... |
fzosubel3 13376 | Membership in a translated... |
eluzgtdifelfzo 13377 | Membership of the differen... |
ige2m2fzo 13378 | Membership of an integer g... |
fzocatel 13379 | Translate membership in a ... |
ubmelfzo 13380 | If an integer in a 1-based... |
elfzodifsumelfzo 13381 | If an integer is in a half... |
elfzom1elp1fzo 13382 | Membership of an integer i... |
elfzom1elfzo 13383 | Membership in a half-open ... |
fzval3 13384 | Expressing a closed intege... |
fz0add1fz1 13385 | Translate membership in a ... |
fzosn 13386 | Expressing a singleton as ... |
elfzomin 13387 | Membership of an integer i... |
zpnn0elfzo 13388 | Membership of an integer i... |
zpnn0elfzo1 13389 | Membership of an integer i... |
fzosplitsnm1 13390 | Removing a singleton from ... |
elfzonlteqm1 13391 | If an element of a half-op... |
fzonn0p1 13392 | A nonnegative integer is e... |
fzossfzop1 13393 | A half-open range of nonne... |
fzonn0p1p1 13394 | If a nonnegative integer i... |
elfzom1p1elfzo 13395 | Increasing an element of a... |
fzo0ssnn0 13396 | Half-open integer ranges s... |
fzo01 13397 | Expressing the singleton o... |
fzo12sn 13398 | A 1-based half-open intege... |
fzo13pr 13399 | A 1-based half-open intege... |
fzo0to2pr 13400 | A half-open integer range ... |
fzo0to3tp 13401 | A half-open integer range ... |
fzo0to42pr 13402 | A half-open integer range ... |
fzo1to4tp 13403 | A half-open integer range ... |
fzo0sn0fzo1 13404 | A half-open range of nonne... |
elfzo0l 13405 | A member of a half-open ra... |
fzoend 13406 | The endpoint of a half-ope... |
fzo0end 13407 | The endpoint of a zero-bas... |
ssfzo12 13408 | Subset relationship for ha... |
ssfzoulel 13409 | If a half-open integer ran... |
ssfzo12bi 13410 | Subset relationship for ha... |
ubmelm1fzo 13411 | The result of subtracting ... |
fzofzp1 13412 | If a point is in a half-op... |
fzofzp1b 13413 | If a point is in a half-op... |
elfzom1b 13414 | An integer is a member of ... |
elfzom1elp1fzo1 13415 | Membership of a nonnegativ... |
elfzo1elm1fzo0 13416 | Membership of a positive i... |
elfzonelfzo 13417 | If an element of a half-op... |
fzonfzoufzol 13418 | If an element of a half-op... |
elfzomelpfzo 13419 | An integer increased by an... |
elfznelfzo 13420 | A value in a finite set of... |
elfznelfzob 13421 | A value in a finite set of... |
peano2fzor 13422 | A Peano-postulate-like the... |
fzosplitsn 13423 | Extending a half-open rang... |
fzosplitpr 13424 | Extending a half-open inte... |
fzosplitprm1 13425 | Extending a half-open inte... |
fzosplitsni 13426 | Membership in a half-open ... |
fzisfzounsn 13427 | A finite interval of integ... |
elfzr 13428 | A member of a finite inter... |
elfzlmr 13429 | A member of a finite inter... |
elfz0lmr 13430 | A member of a finite inter... |
fzostep1 13431 | Two possibilities for a nu... |
fzoshftral 13432 | Shift the scanning order i... |
fzind2 13433 | Induction on the integers ... |
fvinim0ffz 13434 | The function values for th... |
injresinjlem 13435 | Lemma for ~ injresinj . (... |
injresinj 13436 | A function whose restricti... |
subfzo0 13437 | The difference between two... |
flval 13442 | Value of the floor (greate... |
flcl 13443 | The floor (greatest intege... |
reflcl 13444 | The floor (greatest intege... |
fllelt 13445 | A basic property of the fl... |
flcld 13446 | The floor (greatest intege... |
flle 13447 | A basic property of the fl... |
flltp1 13448 | A basic property of the fl... |
fllep1 13449 | A basic property of the fl... |
fraclt1 13450 | The fractional part of a r... |
fracle1 13451 | The fractional part of a r... |
fracge0 13452 | The fractional part of a r... |
flge 13453 | The floor function value i... |
fllt 13454 | The floor function value i... |
flflp1 13455 | Move floor function betwee... |
flid 13456 | An integer is its own floo... |
flidm 13457 | The floor function is idem... |
flidz 13458 | A real number equals its f... |
flltnz 13459 | The floor of a non-integer... |
flwordi 13460 | Ordering relation for the ... |
flword2 13461 | Ordering relation for the ... |
flval2 13462 | An alternate way to define... |
flval3 13463 | An alternate way to define... |
flbi 13464 | A condition equivalent to ... |
flbi2 13465 | A condition equivalent to ... |
adddivflid 13466 | The floor of a sum of an i... |
ico01fl0 13467 | The floor of a real number... |
flge0nn0 13468 | The floor of a number grea... |
flge1nn 13469 | The floor of a number grea... |
fldivnn0 13470 | The floor function of a di... |
refldivcl 13471 | The floor function of a di... |
divfl0 13472 | The floor of a fraction is... |
fladdz 13473 | An integer can be moved in... |
flzadd 13474 | An integer can be moved in... |
flmulnn0 13475 | Move a nonnegative integer... |
btwnzge0 13476 | A real bounded between an ... |
2tnp1ge0ge0 13477 | Two times an integer plus ... |
flhalf 13478 | Ordering relation for the ... |
fldivle 13479 | The floor function of a di... |
fldivnn0le 13480 | The floor function of a di... |
flltdivnn0lt 13481 | The floor function of a di... |
ltdifltdiv 13482 | If the dividend of a divis... |
fldiv4p1lem1div2 13483 | The floor of an integer eq... |
fldiv4lem1div2uz2 13484 | The floor of an integer gr... |
fldiv4lem1div2 13485 | The floor of a positive in... |
ceilval 13486 | The value of the ceiling f... |
dfceil2 13487 | Alternative definition of ... |
ceilval2 13488 | The value of the ceiling f... |
ceicl 13489 | The ceiling function retur... |
ceilcl 13490 | Closure of the ceiling fun... |
ceilcld 13491 | Closure of the ceiling fun... |
ceige 13492 | The ceiling of a real numb... |
ceilge 13493 | The ceiling of a real numb... |
ceilged 13494 | The ceiling of a real numb... |
ceim1l 13495 | One less than the ceiling ... |
ceilm1lt 13496 | One less than the ceiling ... |
ceile 13497 | The ceiling of a real numb... |
ceille 13498 | The ceiling of a real numb... |
ceilid 13499 | An integer is its own ceil... |
ceilidz 13500 | A real number equals its c... |
flleceil 13501 | The floor of a real number... |
fleqceilz 13502 | A real number is an intege... |
quoremz 13503 | Quotient and remainder of ... |
quoremnn0 13504 | Quotient and remainder of ... |
quoremnn0ALT 13505 | Alternate proof of ~ quore... |
intfrac2 13506 | Decompose a real into inte... |
intfracq 13507 | Decompose a rational numbe... |
fldiv 13508 | Cancellation of the embedd... |
fldiv2 13509 | Cancellation of an embedde... |
fznnfl 13510 | Finite set of sequential i... |
uzsup 13511 | An upper set of integers i... |
ioopnfsup 13512 | An upper set of reals is u... |
icopnfsup 13513 | An upper set of reals is u... |
rpsup 13514 | The positive reals are unb... |
resup 13515 | The real numbers are unbou... |
xrsup 13516 | The extended real numbers ... |
modval 13519 | The value of the modulo op... |
modvalr 13520 | The value of the modulo op... |
modcl 13521 | Closure law for the modulo... |
flpmodeq 13522 | Partition of a division in... |
modcld 13523 | Closure law for the modulo... |
mod0 13524 | ` A mod B ` is zero iff ` ... |
mulmod0 13525 | The product of an integer ... |
negmod0 13526 | ` A ` is divisible by ` B ... |
modge0 13527 | The modulo operation is no... |
modlt 13528 | The modulo operation is le... |
modelico 13529 | Modular reduction produces... |
moddiffl 13530 | Value of the modulo operat... |
moddifz 13531 | The modulo operation diffe... |
modfrac 13532 | The fractional part of a n... |
flmod 13533 | The floor function express... |
intfrac 13534 | Break a number into its in... |
zmod10 13535 | An integer modulo 1 is 0. ... |
zmod1congr 13536 | Two arbitrary integers are... |
modmulnn 13537 | Move a positive integer in... |
modvalp1 13538 | The value of the modulo op... |
zmodcl 13539 | Closure law for the modulo... |
zmodcld 13540 | Closure law for the modulo... |
zmodfz 13541 | An integer mod ` B ` lies ... |
zmodfzo 13542 | An integer mod ` B ` lies ... |
zmodfzp1 13543 | An integer mod ` B ` lies ... |
modid 13544 | Identity law for modulo. ... |
modid0 13545 | A positive real number mod... |
modid2 13546 | Identity law for modulo. ... |
zmodid2 13547 | Identity law for modulo re... |
zmodidfzo 13548 | Identity law for modulo re... |
zmodidfzoimp 13549 | Identity law for modulo re... |
0mod 13550 | Special case: 0 modulo a p... |
1mod 13551 | Special case: 1 modulo a r... |
modabs 13552 | Absorption law for modulo.... |
modabs2 13553 | Absorption law for modulo.... |
modcyc 13554 | The modulo operation is pe... |
modcyc2 13555 | The modulo operation is pe... |
modadd1 13556 | Addition property of the m... |
modaddabs 13557 | Absorption law for modulo.... |
modaddmod 13558 | The sum of a real number m... |
muladdmodid 13559 | The sum of a positive real... |
mulp1mod1 13560 | The product of an integer ... |
modmuladd 13561 | Decomposition of an intege... |
modmuladdim 13562 | Implication of a decomposi... |
modmuladdnn0 13563 | Implication of a decomposi... |
negmod 13564 | The negation of a number m... |
m1modnnsub1 13565 | Minus one modulo a positiv... |
m1modge3gt1 13566 | Minus one modulo an intege... |
addmodid 13567 | The sum of a positive inte... |
addmodidr 13568 | The sum of a positive inte... |
modadd2mod 13569 | The sum of a real number m... |
modm1p1mod0 13570 | If a real number modulo a ... |
modltm1p1mod 13571 | If a real number modulo a ... |
modmul1 13572 | Multiplication property of... |
modmul12d 13573 | Multiplication property of... |
modnegd 13574 | Negation property of the m... |
modadd12d 13575 | Additive property of the m... |
modsub12d 13576 | Subtraction property of th... |
modsubmod 13577 | The difference of a real n... |
modsubmodmod 13578 | The difference of a real n... |
2txmodxeq0 13579 | Two times a positive real ... |
2submod 13580 | If a real number is betwee... |
modifeq2int 13581 | If a nonnegative integer i... |
modaddmodup 13582 | The sum of an integer modu... |
modaddmodlo 13583 | The sum of an integer modu... |
modmulmod 13584 | The product of a real numb... |
modmulmodr 13585 | The product of an integer ... |
modaddmulmod 13586 | The sum of a real number a... |
moddi 13587 | Distribute multiplication ... |
modsubdir 13588 | Distribute the modulo oper... |
modeqmodmin 13589 | A real number equals the d... |
modirr 13590 | A number modulo an irratio... |
modfzo0difsn 13591 | For a number within a half... |
modsumfzodifsn 13592 | The sum of a number within... |
modlteq 13593 | Two nonnegative integers l... |
addmodlteq 13594 | Two nonnegative integers l... |
om2uz0i 13595 | The mapping ` G ` is a one... |
om2uzsuci 13596 | The value of ` G ` (see ~ ... |
om2uzuzi 13597 | The value ` G ` (see ~ om2... |
om2uzlti 13598 | Less-than relation for ` G... |
om2uzlt2i 13599 | The mapping ` G ` (see ~ o... |
om2uzrani 13600 | Range of ` G ` (see ~ om2u... |
om2uzf1oi 13601 | ` G ` (see ~ om2uz0i ) is ... |
om2uzisoi 13602 | ` G ` (see ~ om2uz0i ) is ... |
om2uzoi 13603 | An alternative definition ... |
om2uzrdg 13604 | A helper lemma for the val... |
uzrdglem 13605 | A helper lemma for the val... |
uzrdgfni 13606 | The recursive definition g... |
uzrdg0i 13607 | Initial value of a recursi... |
uzrdgsuci 13608 | Successor value of a recur... |
ltweuz 13609 | ` < ` is a well-founded re... |
ltwenn 13610 | Less than well-orders the ... |
ltwefz 13611 | Less than well-orders a se... |
uzenom 13612 | An upper integer set is de... |
uzinf 13613 | An upper integer set is in... |
nnnfi 13614 | The set of positive intege... |
uzrdgxfr 13615 | Transfer the value of the ... |
fzennn 13616 | The cardinality of a finit... |
fzen2 13617 | The cardinality of a finit... |
cardfz 13618 | The cardinality of a finit... |
hashgf1o 13619 | ` G ` maps ` _om ` one-to-... |
fzfi 13620 | A finite interval of integ... |
fzfid 13621 | Commonly used special case... |
fzofi 13622 | Half-open integer sets are... |
fsequb 13623 | The values of a finite rea... |
fsequb2 13624 | The values of a finite rea... |
fseqsupcl 13625 | The values of a finite rea... |
fseqsupubi 13626 | The values of a finite rea... |
nn0ennn 13627 | The nonnegative integers a... |
nnenom 13628 | The set of positive intege... |
nnct 13629 | ` NN ` is countable. (Con... |
uzindi 13630 | Indirect strong induction ... |
axdc4uzlem 13631 | Lemma for ~ axdc4uz . (Co... |
axdc4uz 13632 | A version of ~ axdc4 that ... |
ssnn0fi 13633 | A subset of the nonnegativ... |
rabssnn0fi 13634 | A subset of the nonnegativ... |
uzsinds 13635 | Strong (or "total") induct... |
nnsinds 13636 | Strong (or "total") induct... |
nn0sinds 13637 | Strong (or "total") induct... |
fsuppmapnn0fiublem 13638 | Lemma for ~ fsuppmapnn0fiu... |
fsuppmapnn0fiub 13639 | If all functions of a fini... |
fsuppmapnn0fiubex 13640 | If all functions of a fini... |
fsuppmapnn0fiub0 13641 | If all functions of a fini... |
suppssfz 13642 | Condition for a function o... |
fsuppmapnn0ub 13643 | If a function over the non... |
fsuppmapnn0fz 13644 | If a function over the non... |
mptnn0fsupp 13645 | A mapping from the nonnega... |
mptnn0fsuppd 13646 | A mapping from the nonnega... |
mptnn0fsuppr 13647 | A finitely supported mappi... |
f13idfv 13648 | A one-to-one function with... |
seqex 13651 | Existence of the sequence ... |
seqeq1 13652 | Equality theorem for the s... |
seqeq2 13653 | Equality theorem for the s... |
seqeq3 13654 | Equality theorem for the s... |
seqeq1d 13655 | Equality deduction for the... |
seqeq2d 13656 | Equality deduction for the... |
seqeq3d 13657 | Equality deduction for the... |
seqeq123d 13658 | Equality deduction for the... |
nfseq 13659 | Hypothesis builder for the... |
seqval 13660 | Value of the sequence buil... |
seqfn 13661 | The sequence builder funct... |
seq1 13662 | Value of the sequence buil... |
seq1i 13663 | Value of the sequence buil... |
seqp1 13664 | Value of the sequence buil... |
seqexw 13665 | Weak version of ~ seqex th... |
seqp1d 13666 | Value of the sequence buil... |
seqp1iOLD 13667 | Obsolete version of ~ seqp... |
seqm1 13668 | Value of the sequence buil... |
seqcl2 13669 | Closure properties of the ... |
seqf2 13670 | Range of the recursive seq... |
seqcl 13671 | Closure properties of the ... |
seqf 13672 | Range of the recursive seq... |
seqfveq2 13673 | Equality of sequences. (C... |
seqfeq2 13674 | Equality of sequences. (C... |
seqfveq 13675 | Equality of sequences. (C... |
seqfeq 13676 | Equality of sequences. (C... |
seqshft2 13677 | Shifting the index set of ... |
seqres 13678 | Restricting its characteri... |
serf 13679 | An infinite series of comp... |
serfre 13680 | An infinite series of real... |
monoord 13681 | Ordering relation for a mo... |
monoord2 13682 | Ordering relation for a mo... |
sermono 13683 | The partial sums in an inf... |
seqsplit 13684 | Split a sequence into two ... |
seq1p 13685 | Removing the first term fr... |
seqcaopr3 13686 | Lemma for ~ seqcaopr2 . (... |
seqcaopr2 13687 | The sum of two infinite se... |
seqcaopr 13688 | The sum of two infinite se... |
seqf1olem2a 13689 | Lemma for ~ seqf1o . (Con... |
seqf1olem1 13690 | Lemma for ~ seqf1o . (Con... |
seqf1olem2 13691 | Lemma for ~ seqf1o . (Con... |
seqf1o 13692 | Rearrange a sum via an arb... |
seradd 13693 | The sum of two infinite se... |
sersub 13694 | The difference of two infi... |
seqid3 13695 | A sequence that consists e... |
seqid 13696 | Discarding the first few t... |
seqid2 13697 | The last few partial sums ... |
seqhomo 13698 | Apply a homomorphism to a ... |
seqz 13699 | If the operation ` .+ ` ha... |
seqfeq4 13700 | Equality of series under d... |
seqfeq3 13701 | Equality of series under d... |
seqdistr 13702 | The distributive property ... |
ser0 13703 | The value of the partial s... |
ser0f 13704 | A zero-valued infinite ser... |
serge0 13705 | A finite sum of nonnegativ... |
serle 13706 | Comparison of partial sums... |
ser1const 13707 | Value of the partial serie... |
seqof 13708 | Distribute function operat... |
seqof2 13709 | Distribute function operat... |
expval 13712 | Value of exponentiation to... |
expnnval 13713 | Value of exponentiation to... |
exp0 13714 | Value of a complex number ... |
0exp0e1 13715 | The zeroth power of zero e... |
exp1 13716 | Value of a complex number ... |
expp1 13717 | Value of a complex number ... |
expneg 13718 | Value of a complex number ... |
expneg2 13719 | Value of a complex number ... |
expn1 13720 | A number to the negative o... |
expcllem 13721 | Lemma for proving nonnegat... |
expcl2lem 13722 | Lemma for proving integer ... |
nnexpcl 13723 | Closure of exponentiation ... |
nn0expcl 13724 | Closure of exponentiation ... |
zexpcl 13725 | Closure of exponentiation ... |
qexpcl 13726 | Closure of exponentiation ... |
reexpcl 13727 | Closure of exponentiation ... |
expcl 13728 | Closure law for nonnegativ... |
rpexpcl 13729 | Closure law for exponentia... |
reexpclz 13730 | Closure of exponentiation ... |
qexpclz 13731 | Closure of exponentiation ... |
m1expcl2 13732 | Closure of exponentiation ... |
m1expcl 13733 | Closure of exponentiation ... |
expclzlem 13734 | Closure law for integer ex... |
expclz 13735 | Closure law for integer ex... |
zexpcld 13736 | Closure of exponentiation ... |
nn0expcli 13737 | Closure of exponentiation ... |
nn0sqcl 13738 | The square of a nonnegativ... |
expm1t 13739 | Exponentiation in terms of... |
1exp 13740 | Value of one raised to a n... |
expeq0 13741 | Positive integer exponenti... |
expne0 13742 | Positive integer exponenti... |
expne0i 13743 | Nonnegative integer expone... |
expgt0 13744 | A positive real raised to ... |
expnegz 13745 | Value of a complex number ... |
0exp 13746 | Value of zero raised to a ... |
expge0 13747 | A nonnegative real raised ... |
expge1 13748 | A real greater than or equ... |
expgt1 13749 | A real greater than 1 rais... |
mulexp 13750 | Nonnegative integer expone... |
mulexpz 13751 | Integer exponentiation of ... |
exprec 13752 | Integer exponentiation of ... |
expadd 13753 | Sum of exponents law for n... |
expaddzlem 13754 | Lemma for ~ expaddz . (Co... |
expaddz 13755 | Sum of exponents law for i... |
expmul 13756 | Product of exponents law f... |
expmulz 13757 | Product of exponents law f... |
m1expeven 13758 | Exponentiation of negative... |
expsub 13759 | Exponent subtraction law f... |
expp1z 13760 | Value of a nonzero complex... |
expm1 13761 | Value of a complex number ... |
expdiv 13762 | Nonnegative integer expone... |
sqval 13763 | Value of the square of a c... |
sqneg 13764 | The square of the negative... |
sqsubswap 13765 | Swap the order of subtract... |
sqcl 13766 | Closure of square. (Contr... |
sqmul 13767 | Distribution of square ove... |
sqeq0 13768 | A number is zero iff its s... |
sqdiv 13769 | Distribution of square ove... |
sqdivid 13770 | The square of a nonzero nu... |
sqne0 13771 | A number is nonzero iff it... |
resqcl 13772 | Closure of the square of a... |
sqgt0 13773 | The square of a nonzero re... |
sqn0rp 13774 | The square of a nonzero re... |
nnsqcl 13775 | The naturals are closed un... |
zsqcl 13776 | Integers are closed under ... |
qsqcl 13777 | The square of a rational i... |
sq11 13778 | The square function is one... |
nn0sq11 13779 | The square function is one... |
lt2sq 13780 | The square function on non... |
le2sq 13781 | The square function on non... |
le2sq2 13782 | The square of a 'less than... |
sqge0 13783 | A square of a real is nonn... |
zsqcl2 13784 | The square of an integer i... |
0expd 13785 | Value of zero raised to a ... |
exp0d 13786 | Value of a complex number ... |
exp1d 13787 | Value of a complex number ... |
expeq0d 13788 | Positive integer exponenti... |
sqvald 13789 | Value of square. Inferenc... |
sqcld 13790 | Closure of square. (Contr... |
sqeq0d 13791 | A number is zero iff its s... |
expcld 13792 | Closure law for nonnegativ... |
expp1d 13793 | Value of a complex number ... |
expaddd 13794 | Sum of exponents law for n... |
expmuld 13795 | Product of exponents law f... |
sqrecd 13796 | Square of reciprocal. (Co... |
expclzd 13797 | Closure law for integer ex... |
expne0d 13798 | Nonnegative integer expone... |
expnegd 13799 | Value of a complex number ... |
exprecd 13800 | Nonnegative integer expone... |
expp1zd 13801 | Value of a nonzero complex... |
expm1d 13802 | Value of a complex number ... |
expsubd 13803 | Exponent subtraction law f... |
sqmuld 13804 | Distribution of square ove... |
sqdivd 13805 | Distribution of square ove... |
expdivd 13806 | Nonnegative integer expone... |
mulexpd 13807 | Positive integer exponenti... |
znsqcld 13808 | The square of a nonzero in... |
reexpcld 13809 | Closure of exponentiation ... |
expge0d 13810 | A nonnegative real raised ... |
expge1d 13811 | A real greater than or equ... |
ltexp2a 13812 | Ordering relationship for ... |
expmordi 13813 | Base ordering relationship... |
rpexpmord 13814 | Base ordering relationship... |
expcan 13815 | Cancellation law for expon... |
ltexp2 13816 | Ordering law for exponenti... |
leexp2 13817 | Ordering law for exponenti... |
leexp2a 13818 | Weak ordering relationship... |
ltexp2r 13819 | The power of a positive nu... |
leexp2r 13820 | Weak ordering relationship... |
leexp1a 13821 | Weak base ordering relatio... |
exple1 13822 | A real between 0 and 1 inc... |
expubnd 13823 | An upper bound on ` A ^ N ... |
sumsqeq0 13824 | Two real numbers are equal... |
sqvali 13825 | Value of square. Inferenc... |
sqcli 13826 | Closure of square. (Contr... |
sqeq0i 13827 | A number is zero iff its s... |
sqrecii 13828 | Square of reciprocal. (Co... |
sqmuli 13829 | Distribution of square ove... |
sqdivi 13830 | Distribution of square ove... |
resqcli 13831 | Closure of square in reals... |
sqgt0i 13832 | The square of a nonzero re... |
sqge0i 13833 | A square of a real is nonn... |
lt2sqi 13834 | The square function on non... |
le2sqi 13835 | The square function on non... |
sq11i 13836 | The square function is one... |
sq0 13837 | The square of 0 is 0. (Co... |
sq0i 13838 | If a number is zero, its s... |
sq0id 13839 | If a number is zero, its s... |
sq1 13840 | The square of 1 is 1. (Co... |
neg1sqe1 13841 | ` -u 1 ` squared is 1. (C... |
sq2 13842 | The square of 2 is 4. (Co... |
sq3 13843 | The square of 3 is 9. (Co... |
sq4e2t8 13844 | The square of 4 is 2 times... |
cu2 13845 | The cube of 2 is 8. (Cont... |
irec 13846 | The reciprocal of ` _i ` .... |
i2 13847 | ` _i ` squared. (Contribu... |
i3 13848 | ` _i ` cubed. (Contribute... |
i4 13849 | ` _i ` to the fourth power... |
nnlesq 13850 | A positive integer is less... |
iexpcyc 13851 | Taking ` _i ` to the ` K `... |
expnass 13852 | A counterexample showing t... |
sqlecan 13853 | Cancel one factor of a squ... |
subsq 13854 | Factor the difference of t... |
subsq2 13855 | Express the difference of ... |
binom2i 13856 | The square of a binomial. ... |
subsqi 13857 | Factor the difference of t... |
sqeqori 13858 | The squares of two complex... |
subsq0i 13859 | The two solutions to the d... |
sqeqor 13860 | The squares of two complex... |
binom2 13861 | The square of a binomial. ... |
binom21 13862 | Special case of ~ binom2 w... |
binom2sub 13863 | Expand the square of a sub... |
binom2sub1 13864 | Special case of ~ binom2su... |
binom2subi 13865 | Expand the square of a sub... |
mulbinom2 13866 | The square of a binomial w... |
binom3 13867 | The cube of a binomial. (... |
sq01 13868 | If a complex number equals... |
zesq 13869 | An integer is even iff its... |
nnesq 13870 | A positive integer is even... |
crreczi 13871 | Reciprocal of a complex nu... |
bernneq 13872 | Bernoulli's inequality, du... |
bernneq2 13873 | Variation of Bernoulli's i... |
bernneq3 13874 | A corollary of ~ bernneq .... |
expnbnd 13875 | Exponentiation with a base... |
expnlbnd 13876 | The reciprocal of exponent... |
expnlbnd2 13877 | The reciprocal of exponent... |
expmulnbnd 13878 | Exponentiation with a base... |
digit2 13879 | Two ways to express the ` ... |
digit1 13880 | Two ways to express the ` ... |
modexp 13881 | Exponentiation property of... |
discr1 13882 | A nonnegative quadratic fo... |
discr 13883 | If a quadratic polynomial ... |
expnngt1 13884 | If an integer power with a... |
expnngt1b 13885 | An integer power with an i... |
sqoddm1div8 13886 | A squared odd number minus... |
nnsqcld 13887 | The naturals are closed un... |
nnexpcld 13888 | Closure of exponentiation ... |
nn0expcld 13889 | Closure of exponentiation ... |
rpexpcld 13890 | Closure law for exponentia... |
ltexp2rd 13891 | The power of a positive nu... |
reexpclzd 13892 | Closure of exponentiation ... |
resqcld 13893 | Closure of square in reals... |
sqge0d 13894 | A square of a real is nonn... |
sqgt0d 13895 | The square of a nonzero re... |
ltexp2d 13896 | Ordering relationship for ... |
leexp2d 13897 | Ordering law for exponenti... |
expcand 13898 | Ordering relationship for ... |
leexp2ad 13899 | Ordering relationship for ... |
leexp2rd 13900 | Ordering relationship for ... |
lt2sqd 13901 | The square function on non... |
le2sqd 13902 | The square function on non... |
sq11d 13903 | The square function is one... |
mulsubdivbinom2 13904 | The square of a binomial w... |
muldivbinom2 13905 | The square of a binomial w... |
sq10 13906 | The square of 10 is 100. ... |
sq10e99m1 13907 | The square of 10 is 99 plu... |
3dec 13908 | A "decimal constructor" wh... |
nn0le2msqi 13909 | The square function on non... |
nn0opthlem1 13910 | A rather pretty lemma for ... |
nn0opthlem2 13911 | Lemma for ~ nn0opthi . (C... |
nn0opthi 13912 | An ordered pair theorem fo... |
nn0opth2i 13913 | An ordered pair theorem fo... |
nn0opth2 13914 | An ordered pair theorem fo... |
facnn 13917 | Value of the factorial fun... |
fac0 13918 | The factorial of 0. (Cont... |
fac1 13919 | The factorial of 1. (Cont... |
facp1 13920 | The factorial of a success... |
fac2 13921 | The factorial of 2. (Cont... |
fac3 13922 | The factorial of 3. (Cont... |
fac4 13923 | The factorial of 4. (Cont... |
facnn2 13924 | Value of the factorial fun... |
faccl 13925 | Closure of the factorial f... |
faccld 13926 | Closure of the factorial f... |
facmapnn 13927 | The factorial function res... |
facne0 13928 | The factorial function is ... |
facdiv 13929 | A positive integer divides... |
facndiv 13930 | No positive integer (great... |
facwordi 13931 | Ordering property of facto... |
faclbnd 13932 | A lower bound for the fact... |
faclbnd2 13933 | A lower bound for the fact... |
faclbnd3 13934 | A lower bound for the fact... |
faclbnd4lem1 13935 | Lemma for ~ faclbnd4 . Pr... |
faclbnd4lem2 13936 | Lemma for ~ faclbnd4 . Us... |
faclbnd4lem3 13937 | Lemma for ~ faclbnd4 . Th... |
faclbnd4lem4 13938 | Lemma for ~ faclbnd4 . Pr... |
faclbnd4 13939 | Variant of ~ faclbnd5 prov... |
faclbnd5 13940 | The factorial function gro... |
faclbnd6 13941 | Geometric lower bound for ... |
facubnd 13942 | An upper bound for the fac... |
facavg 13943 | The product of two factori... |
bcval 13946 | Value of the binomial coef... |
bcval2 13947 | Value of the binomial coef... |
bcval3 13948 | Value of the binomial coef... |
bcval4 13949 | Value of the binomial coef... |
bcrpcl 13950 | Closure of the binomial co... |
bccmpl 13951 | "Complementing" its second... |
bcn0 13952 | ` N ` choose 0 is 1. Rema... |
bc0k 13953 | The binomial coefficient "... |
bcnn 13954 | ` N ` choose ` N ` is 1. ... |
bcn1 13955 | Binomial coefficient: ` N ... |
bcnp1n 13956 | Binomial coefficient: ` N ... |
bcm1k 13957 | The proportion of one bino... |
bcp1n 13958 | The proportion of one bino... |
bcp1nk 13959 | The proportion of one bino... |
bcval5 13960 | Write out the top and bott... |
bcn2 13961 | Binomial coefficient: ` N ... |
bcp1m1 13962 | Compute the binomial coeff... |
bcpasc 13963 | Pascal's rule for the bino... |
bccl 13964 | A binomial coefficient, in... |
bccl2 13965 | A binomial coefficient, in... |
bcn2m1 13966 | Compute the binomial coeff... |
bcn2p1 13967 | Compute the binomial coeff... |
permnn 13968 | The number of permutations... |
bcnm1 13969 | The binomial coefficent of... |
4bc3eq4 13970 | The value of four choose t... |
4bc2eq6 13971 | The value of four choose t... |
hashkf 13974 | The finite part of the siz... |
hashgval 13975 | The value of the ` # ` fun... |
hashginv 13976 | The converse of ` G ` maps... |
hashinf 13977 | The value of the ` # ` fun... |
hashbnd 13978 | If ` A ` has size bounded ... |
hashfxnn0 13979 | The size function is a fun... |
hashf 13980 | The size function maps all... |
hashxnn0 13981 | The value of the hash func... |
hashresfn 13982 | Restriction of the domain ... |
dmhashres 13983 | Restriction of the domain ... |
hashnn0pnf 13984 | The value of the hash func... |
hashnnn0genn0 13985 | If the size of a set is no... |
hashnemnf 13986 | The size of a set is never... |
hashv01gt1 13987 | The size of a set is eithe... |
hashfz1 13988 | The set ` ( 1 ... N ) ` ha... |
hashen 13989 | Two finite sets have the s... |
hasheni 13990 | Equinumerous sets have the... |
hasheqf1o 13991 | The size of two finite set... |
fiinfnf1o 13992 | There is no bijection betw... |
focdmex 13993 | The codomain of an onto fu... |
hasheqf1oi 13994 | The size of two sets is eq... |
hashf1rn 13995 | The size of a finite set w... |
hasheqf1od 13996 | The size of two sets is eq... |
fz1eqb 13997 | Two possibly-empty 1-based... |
hashcard 13998 | The size function of the c... |
hashcl 13999 | Closure of the ` # ` funct... |
hashxrcl 14000 | Extended real closure of t... |
hashclb 14001 | Reverse closure of the ` #... |
nfile 14002 | The size of any infinite s... |
hashvnfin 14003 | A set of finite size is a ... |
hashnfinnn0 14004 | The size of an infinite se... |
isfinite4 14005 | A finite set is equinumero... |
hasheq0 14006 | Two ways of saying a finit... |
hashneq0 14007 | Two ways of saying a set i... |
hashgt0n0 14008 | If the size of a set is gr... |
hashnncl 14009 | Positive natural closure o... |
hash0 14010 | The empty set has size zer... |
hashelne0d 14011 | A set with an element has ... |
hashsng 14012 | The size of a singleton. ... |
hashen1 14013 | A set has size 1 if and on... |
hash1elsn 14014 | A set of size 1 with a kno... |
hashrabrsn 14015 | The size of a restricted c... |
hashrabsn01 14016 | The size of a restricted c... |
hashrabsn1 14017 | If the size of a restricte... |
hashfn 14018 | A function is equinumerous... |
fseq1hash 14019 | The value of the size func... |
hashgadd 14020 | ` G ` maps ordinal additio... |
hashgval2 14021 | A short expression for the... |
hashdom 14022 | Dominance relation for the... |
hashdomi 14023 | Non-strict order relation ... |
hashsdom 14024 | Strict dominance relation ... |
hashun 14025 | The size of the union of d... |
hashun2 14026 | The size of the union of f... |
hashun3 14027 | The size of the union of f... |
hashinfxadd 14028 | The extended real addition... |
hashunx 14029 | The size of the union of d... |
hashge0 14030 | The cardinality of a set i... |
hashgt0 14031 | The cardinality of a nonem... |
hashge1 14032 | The cardinality of a nonem... |
1elfz0hash 14033 | 1 is an element of the fin... |
hashnn0n0nn 14034 | If a nonnegative integer i... |
hashunsng 14035 | The size of the union of a... |
hashunsngx 14036 | The size of the union of a... |
hashunsnggt 14037 | The size of a set is great... |
hashprg 14038 | The size of an unordered p... |
elprchashprn2 14039 | If one element of an unord... |
hashprb 14040 | The size of an unordered p... |
hashprdifel 14041 | The elements of an unorder... |
prhash2ex 14042 | There is (at least) one se... |
hashle00 14043 | If the size of a set is le... |
hashgt0elex 14044 | If the size of a set is gr... |
hashgt0elexb 14045 | The size of a set is great... |
hashp1i 14046 | Size of a finite ordinal. ... |
hash1 14047 | Size of a finite ordinal. ... |
hash2 14048 | Size of a finite ordinal. ... |
hash3 14049 | Size of a finite ordinal. ... |
hash4 14050 | Size of a finite ordinal. ... |
pr0hash2ex 14051 | There is (at least) one se... |
hashss 14052 | The size of a subset is le... |
prsshashgt1 14053 | The size of a superset of ... |
hashin 14054 | The size of the intersecti... |
hashssdif 14055 | The size of the difference... |
hashdif 14056 | The size of the difference... |
hashdifsn 14057 | The size of the difference... |
hashdifpr 14058 | The size of the difference... |
hashsn01 14059 | The size of a singleton is... |
hashsnle1 14060 | The size of a singleton is... |
hashsnlei 14061 | Get an upper bound on a co... |
hash1snb 14062 | The size of a set is 1 if ... |
euhash1 14063 | The size of a set is 1 in ... |
hash1n0 14064 | If the size of a set is 1 ... |
hashgt12el 14065 | In a set with more than on... |
hashgt12el2 14066 | In a set with more than on... |
hashgt23el 14067 | A set with more than two e... |
hashunlei 14068 | Get an upper bound on a co... |
hashsslei 14069 | Get an upper bound on a co... |
hashfz 14070 | Value of the numeric cardi... |
fzsdom2 14071 | Condition for finite range... |
hashfzo 14072 | Cardinality of a half-open... |
hashfzo0 14073 | Cardinality of a half-open... |
hashfzp1 14074 | Value of the numeric cardi... |
hashfz0 14075 | Value of the numeric cardi... |
hashxplem 14076 | Lemma for ~ hashxp . (Con... |
hashxp 14077 | The size of the Cartesian ... |
hashmap 14078 | The size of the set expone... |
hashpw 14079 | The size of the power set ... |
hashfun 14080 | A finite set is a function... |
hashres 14081 | The number of elements of ... |
hashreshashfun 14082 | The number of elements of ... |
hashimarn 14083 | The size of the image of a... |
hashimarni 14084 | If the size of the image o... |
resunimafz0 14085 | TODO-AV: Revise using ` F... |
fnfz0hash 14086 | The size of a function on ... |
ffz0hash 14087 | The size of a function on ... |
fnfz0hashnn0 14088 | The size of a function on ... |
ffzo0hash 14089 | The size of a function on ... |
fnfzo0hash 14090 | The size of a function on ... |
fnfzo0hashnn0 14091 | The value of the size func... |
hashbclem 14092 | Lemma for ~ hashbc : induc... |
hashbc 14093 | The binomial coefficient c... |
hashfacen 14094 | The number of bijections b... |
hashfacenOLD 14095 | Obsolete version of ~ hash... |
hashf1lem1 14096 | Lemma for ~ hashf1 . (Con... |
hashf1lem1OLD 14097 | Obsolete version of ~ hash... |
hashf1lem2 14098 | Lemma for ~ hashf1 . (Con... |
hashf1 14099 | The permutation number ` |... |
hashfac 14100 | A factorial counts the num... |
leiso 14101 | Two ways to write a strict... |
leisorel 14102 | Version of ~ isorel for st... |
fz1isolem 14103 | Lemma for ~ fz1iso . (Con... |
fz1iso 14104 | Any finite ordered set has... |
ishashinf 14105 | Any set that is not finite... |
seqcoll 14106 | The function ` F ` contain... |
seqcoll2 14107 | The function ` F ` contain... |
phphashd 14108 | Corollary of the Pigeonhol... |
phphashrd 14109 | Corollary of the Pigeonhol... |
hashprlei 14110 | An unordered pair has at m... |
hash2pr 14111 | A set of size two is an un... |
hash2prde 14112 | A set of size two is an un... |
hash2exprb 14113 | A set of size two is an un... |
hash2prb 14114 | A set of size two is a pro... |
prprrab 14115 | The set of proper pairs of... |
nehash2 14116 | The cardinality of a set w... |
hash2prd 14117 | A set of size two is an un... |
hash2pwpr 14118 | If the size of a subset of... |
hashle2pr 14119 | A nonempty set of size les... |
hashle2prv 14120 | A nonempty subset of a pow... |
pr2pwpr 14121 | The set of subsets of a pa... |
hashge2el2dif 14122 | A set with size at least 2... |
hashge2el2difr 14123 | A set with at least 2 diff... |
hashge2el2difb 14124 | A set has size at least 2 ... |
hashdmpropge2 14125 | The size of the domain of ... |
hashtplei 14126 | An unordered triple has at... |
hashtpg 14127 | The size of an unordered t... |
hashge3el3dif 14128 | A set with size at least 3... |
elss2prb 14129 | An element of the set of s... |
hash2sspr 14130 | A subset of size two is an... |
exprelprel 14131 | If there is an element of ... |
hash3tr 14132 | A set of size three is an ... |
hash1to3 14133 | If the size of a set is be... |
fundmge2nop0 14134 | A function with a domain c... |
fundmge2nop 14135 | A function with a domain c... |
fun2dmnop0 14136 | A function with a domain c... |
fun2dmnop 14137 | A function with a domain c... |
hashdifsnp1 14138 | If the size of a set is a ... |
fi1uzind 14139 | Properties of an ordered p... |
brfi1uzind 14140 | Properties of a binary rel... |
brfi1ind 14141 | Properties of a binary rel... |
brfi1indALT 14142 | Alternate proof of ~ brfi1... |
opfi1uzind 14143 | Properties of an ordered p... |
opfi1ind 14144 | Properties of an ordered p... |
iswrd 14147 | Property of being a word o... |
wrdval 14148 | Value of the set of words ... |
iswrdi 14149 | A zero-based sequence is a... |
wrdf 14150 | A word is a zero-based seq... |
iswrdb 14151 | A word over an alphabet is... |
wrddm 14152 | The indices of a word (i.e... |
sswrd 14153 | The set of words respects ... |
snopiswrd 14154 | A singleton of an ordered ... |
wrdexg 14155 | The set of words over a se... |
wrdexb 14156 | The set of words over a se... |
wrdexi 14157 | The set of words over a se... |
wrdsymbcl 14158 | A symbol within a word ove... |
wrdfn 14159 | A word is a function with ... |
wrdv 14160 | A word over an alphabet is... |
wrdlndm 14161 | The length of a word is no... |
iswrdsymb 14162 | An arbitrary word is a wor... |
wrdfin 14163 | A word is a finite set. (... |
lencl 14164 | The length of a word is a ... |
lennncl 14165 | The length of a nonempty w... |
wrdffz 14166 | A word is a function from ... |
wrdeq 14167 | Equality theorem for the s... |
wrdeqi 14168 | Equality theorem for the s... |
iswrddm0 14169 | A function with empty doma... |
wrd0 14170 | The empty set is a word (t... |
0wrd0 14171 | The empty word is the only... |
ffz0iswrd 14172 | A sequence with zero-based... |
wrdsymb 14173 | A word is a word over the ... |
nfwrd 14174 | Hypothesis builder for ` W... |
csbwrdg 14175 | Class substitution for the... |
wrdnval 14176 | Words of a fixed length ar... |
wrdmap 14177 | Words as a mapping. (Cont... |
hashwrdn 14178 | If there is only a finite ... |
wrdnfi 14179 | If there is only a finite ... |
wrdsymb0 14180 | A symbol at a position "ou... |
wrdlenge1n0 14181 | A word with length at leas... |
len0nnbi 14182 | The length of a word is a ... |
wrdlenge2n0 14183 | A word with length at leas... |
wrdsymb1 14184 | The first symbol of a none... |
wrdlen1 14185 | A word of length 1 starts ... |
fstwrdne 14186 | The first symbol of a none... |
fstwrdne0 14187 | The first symbol of a none... |
eqwrd 14188 | Two words are equal iff th... |
elovmpowrd 14189 | Implications for the value... |
elovmptnn0wrd 14190 | Implications for the value... |
wrdred1 14191 | A word truncated by a symb... |
wrdred1hash 14192 | The length of a word trunc... |
lsw 14195 | Extract the last symbol of... |
lsw0 14196 | The last symbol of an empt... |
lsw0g 14197 | The last symbol of an empt... |
lsw1 14198 | The last symbol of a word ... |
lswcl 14199 | Closure of the last symbol... |
lswlgt0cl 14200 | The last symbol of a nonem... |
ccatfn 14203 | The concatenation operator... |
ccatfval 14204 | Value of the concatenation... |
ccatcl 14205 | The concatenation of two w... |
ccatlen 14206 | The length of a concatenat... |
ccatlenOLD 14207 | Obsolete version of ~ ccat... |
ccat0 14208 | The concatenation of two w... |
ccatval1 14209 | Value of a symbol in the l... |
ccatval1OLD 14210 | Obsolete version of ~ ccat... |
ccatval2 14211 | Value of a symbol in the r... |
ccatval3 14212 | Value of a symbol in the r... |
elfzelfzccat 14213 | An element of a finite set... |
ccatvalfn 14214 | The concatenation of two w... |
ccatsymb 14215 | The symbol at a given posi... |
ccatfv0 14216 | The first symbol of a conc... |
ccatval1lsw 14217 | The last symbol of the lef... |
ccatval21sw 14218 | The first symbol of the ri... |
ccatlid 14219 | Concatenation of a word by... |
ccatrid 14220 | Concatenation of a word by... |
ccatass 14221 | Associative law for concat... |
ccatrn 14222 | The range of a concatenate... |
ccatidid 14223 | Concatenation of the empty... |
lswccatn0lsw 14224 | The last symbol of a word ... |
lswccat0lsw 14225 | The last symbol of a word ... |
ccatalpha 14226 | A concatenation of two arb... |
ccatrcl1 14227 | Reverse closure of a conca... |
ids1 14230 | Identity function protecti... |
s1val 14231 | Value of a singleton word.... |
s1rn 14232 | The range of a singleton w... |
s1eq 14233 | Equality theorem for a sin... |
s1eqd 14234 | Equality theorem for a sin... |
s1cl 14235 | A singleton word is a word... |
s1cld 14236 | A singleton word is a word... |
s1prc 14237 | Value of a singleton word ... |
s1cli 14238 | A singleton word is a word... |
s1len 14239 | Length of a singleton word... |
s1nz 14240 | A singleton word is not th... |
s1dm 14241 | The domain of a singleton ... |
s1dmALT 14242 | Alternate version of ~ s1d... |
s1fv 14243 | Sole symbol of a singleton... |
lsws1 14244 | The last symbol of a singl... |
eqs1 14245 | A word of length 1 is a si... |
wrdl1exs1 14246 | A word of length 1 is a si... |
wrdl1s1 14247 | A word of length 1 is a si... |
s111 14248 | The singleton word functio... |
ccatws1cl 14249 | The concatenation of a wor... |
ccatws1clv 14250 | The concatenation of a wor... |
ccat2s1cl 14251 | The concatenation of two s... |
ccats1alpha 14252 | A concatenation of a word ... |
ccatws1len 14253 | The length of the concaten... |
ccatws1lenp1b 14254 | The length of a word is ` ... |
wrdlenccats1lenm1 14255 | The length of a word is th... |
ccat2s1len 14256 | The length of the concaten... |
ccat2s1lenOLD 14257 | Obsolete version of ~ ccat... |
ccatw2s1cl 14258 | The concatenation of a wor... |
ccatw2s1len 14259 | The length of the concaten... |
ccats1val1 14260 | Value of a symbol in the l... |
ccats1val1OLD 14261 | Obsolete version of ~ ccat... |
ccats1val2 14262 | Value of the symbol concat... |
ccat1st1st 14263 | The first symbol of a word... |
ccat2s1p1 14264 | Extract the first of two c... |
ccat2s1p2 14265 | Extract the second of two ... |
ccat2s1p1OLD 14266 | Obsolete version of ~ ccat... |
ccat2s1p2OLD 14267 | Obsolete version of ~ ccat... |
ccatw2s1ass 14268 | Associative law for a conc... |
ccatw2s1assOLD 14269 | Obsolete version of ~ ccat... |
ccatws1n0 14270 | The concatenation of a wor... |
ccatws1ls 14271 | The last symbol of the con... |
lswccats1 14272 | The last symbol of a word ... |
lswccats1fst 14273 | The last symbol of a nonem... |
ccatw2s1p1 14274 | Extract the symbol of the ... |
ccatw2s1p1OLD 14275 | Obsolete version of ~ ccat... |
ccatw2s1p2 14276 | Extract the second of two ... |
ccat2s1fvw 14277 | Extract a symbol of a word... |
ccat2s1fvwOLD 14278 | Obsolete version of ~ ccat... |
ccat2s1fst 14279 | The first symbol of the co... |
ccat2s1fstOLD 14280 | Obsolete version of ~ ccat... |
swrdnznd 14283 | The value of a subword ope... |
swrdval 14284 | Value of a subword. (Cont... |
swrd00 14285 | A zero length substring. ... |
swrdcl 14286 | Closure of the subword ext... |
swrdval2 14287 | Value of the subword extra... |
swrdlen 14288 | Length of an extracted sub... |
swrdfv 14289 | A symbol in an extracted s... |
swrdfv0 14290 | The first symbol in an ext... |
swrdf 14291 | A subword of a word is a f... |
swrdvalfn 14292 | Value of the subword extra... |
swrdrn 14293 | The range of a subword of ... |
swrdlend 14294 | The value of the subword e... |
swrdnd 14295 | The value of the subword e... |
swrdnd2 14296 | Value of the subword extra... |
swrdnnn0nd 14297 | The value of a subword ope... |
swrdnd0 14298 | The value of a subword ope... |
swrd0 14299 | A subword of an empty set ... |
swrdrlen 14300 | Length of a right-anchored... |
swrdlen2 14301 | Length of an extracted sub... |
swrdfv2 14302 | A symbol in an extracted s... |
swrdwrdsymb 14303 | A subword is a word over t... |
swrdsb0eq 14304 | Two subwords with the same... |
swrdsbslen 14305 | Two subwords with the same... |
swrdspsleq 14306 | Two words have a common su... |
swrds1 14307 | Extract a single symbol fr... |
swrdlsw 14308 | Extract the last single sy... |
ccatswrd 14309 | Joining two adjacent subwo... |
swrdccat2 14310 | Recover the right half of ... |
pfxnndmnd 14313 | The value of a prefix oper... |
pfxval 14314 | Value of a prefix operatio... |
pfx00 14315 | The zero length prefix is ... |
pfx0 14316 | A prefix of an empty set i... |
pfxval0 14317 | Value of a prefix operatio... |
pfxcl 14318 | Closure of the prefix extr... |
pfxmpt 14319 | Value of the prefix extrac... |
pfxres 14320 | Value of the subword extra... |
pfxf 14321 | A prefix of a word is a fu... |
pfxfn 14322 | Value of the prefix extrac... |
pfxfv 14323 | A symbol in a prefix of a ... |
pfxlen 14324 | Length of a prefix. (Cont... |
pfxid 14325 | A word is a prefix of itse... |
pfxrn 14326 | The range of a prefix of a... |
pfxn0 14327 | A prefix consisting of at ... |
pfxnd 14328 | The value of a prefix oper... |
pfxnd0 14329 | The value of a prefix oper... |
pfxwrdsymb 14330 | A prefix of a word is a wo... |
addlenrevpfx 14331 | The sum of the lengths of ... |
addlenpfx 14332 | The sum of the lengths of ... |
pfxfv0 14333 | The first symbol of a pref... |
pfxtrcfv 14334 | A symbol in a word truncat... |
pfxtrcfv0 14335 | The first symbol in a word... |
pfxfvlsw 14336 | The last symbol in a nonem... |
pfxeq 14337 | The prefixes of two words ... |
pfxtrcfvl 14338 | The last symbol in a word ... |
pfxsuffeqwrdeq 14339 | Two words are equal if and... |
pfxsuff1eqwrdeq 14340 | Two (nonempty) words are e... |
disjwrdpfx 14341 | Sets of words are disjoint... |
ccatpfx 14342 | Concatenating a prefix wit... |
pfxccat1 14343 | Recover the left half of a... |
pfx1 14344 | The prefix of length one o... |
swrdswrdlem 14345 | Lemma for ~ swrdswrd . (C... |
swrdswrd 14346 | A subword of a subword is ... |
pfxswrd 14347 | A prefix of a subword is a... |
swrdpfx 14348 | A subword of a prefix is a... |
pfxpfx 14349 | A prefix of a prefix is a ... |
pfxpfxid 14350 | A prefix of a prefix with ... |
pfxcctswrd 14351 | The concatenation of the p... |
lenpfxcctswrd 14352 | The length of the concaten... |
lenrevpfxcctswrd 14353 | The length of the concaten... |
pfxlswccat 14354 | Reconstruct a nonempty wor... |
ccats1pfxeq 14355 | The last symbol of a word ... |
ccats1pfxeqrex 14356 | There exists a symbol such... |
ccatopth 14357 | An ~ opth -like theorem fo... |
ccatopth2 14358 | An ~ opth -like theorem fo... |
ccatlcan 14359 | Concatenation of words is ... |
ccatrcan 14360 | Concatenation of words is ... |
wrdeqs1cat 14361 | Decompose a nonempty word ... |
cats1un 14362 | Express a word with an ext... |
wrdind 14363 | Perform induction over the... |
wrd2ind 14364 | Perform induction over the... |
swrdccatfn 14365 | The subword of a concatena... |
swrdccatin1 14366 | The subword of a concatena... |
pfxccatin12lem4 14367 | Lemma 4 for ~ pfxccatin12 ... |
pfxccatin12lem2a 14368 | Lemma for ~ pfxccatin12lem... |
pfxccatin12lem1 14369 | Lemma 1 for ~ pfxccatin12 ... |
swrdccatin2 14370 | The subword of a concatena... |
pfxccatin12lem2c 14371 | Lemma for ~ pfxccatin12lem... |
pfxccatin12lem2 14372 | Lemma 2 for ~ pfxccatin12 ... |
pfxccatin12lem3 14373 | Lemma 3 for ~ pfxccatin12 ... |
pfxccatin12 14374 | The subword of a concatena... |
pfxccat3 14375 | The subword of a concatena... |
swrdccat 14376 | The subword of a concatena... |
pfxccatpfx1 14377 | A prefix of a concatenatio... |
pfxccatpfx2 14378 | A prefix of a concatenatio... |
pfxccat3a 14379 | A prefix of a concatenatio... |
swrdccat3blem 14380 | Lemma for ~ swrdccat3b . ... |
swrdccat3b 14381 | A suffix of a concatenatio... |
pfxccatid 14382 | A prefix of a concatenatio... |
ccats1pfxeqbi 14383 | A word is a prefix of a wo... |
swrdccatin1d 14384 | The subword of a concatena... |
swrdccatin2d 14385 | The subword of a concatena... |
pfxccatin12d 14386 | The subword of a concatena... |
reuccatpfxs1lem 14387 | Lemma for ~ reuccatpfxs1 .... |
reuccatpfxs1 14388 | There is a unique word hav... |
reuccatpfxs1v 14389 | There is a unique word hav... |
splval 14392 | Value of the substring rep... |
splcl 14393 | Closure of the substring r... |
splid 14394 | Splicing a subword for the... |
spllen 14395 | The length of a splice. (... |
splfv1 14396 | Symbols to the left of a s... |
splfv2a 14397 | Symbols within the replace... |
splval2 14398 | Value of a splice, assumin... |
revval 14401 | Value of the word reversin... |
revcl 14402 | The reverse of a word is a... |
revlen 14403 | The reverse of a word has ... |
revfv 14404 | Reverse of a word at a poi... |
rev0 14405 | The empty word is its own ... |
revs1 14406 | Singleton words are their ... |
revccat 14407 | Antiautomorphic property o... |
revrev 14408 | Reversal is an involution ... |
reps 14411 | Construct a function mappi... |
repsundef 14412 | A function mapping a half-... |
repsconst 14413 | Construct a function mappi... |
repsf 14414 | The constructed function m... |
repswsymb 14415 | The symbols of a "repeated... |
repsw 14416 | A function mapping a half-... |
repswlen 14417 | The length of a "repeated ... |
repsw0 14418 | The "repeated symbol word"... |
repsdf2 14419 | Alternative definition of ... |
repswsymball 14420 | All the symbols of a "repe... |
repswsymballbi 14421 | A word is a "repeated symb... |
repswfsts 14422 | The first symbol of a none... |
repswlsw 14423 | The last symbol of a nonem... |
repsw1 14424 | The "repeated symbol word"... |
repswswrd 14425 | A subword of a "repeated s... |
repswpfx 14426 | A prefix of a repeated sym... |
repswccat 14427 | The concatenation of two "... |
repswrevw 14428 | The reverse of a "repeated... |
cshfn 14431 | Perform a cyclical shift f... |
cshword 14432 | Perform a cyclical shift f... |
cshnz 14433 | A cyclical shift is the em... |
0csh0 14434 | Cyclically shifting an emp... |
cshw0 14435 | A word cyclically shifted ... |
cshwmodn 14436 | Cyclically shifting a word... |
cshwsublen 14437 | Cyclically shifting a word... |
cshwn 14438 | A word cyclically shifted ... |
cshwcl 14439 | A cyclically shifted word ... |
cshwlen 14440 | The length of a cyclically... |
cshwf 14441 | A cyclically shifted word ... |
cshwfn 14442 | A cyclically shifted word ... |
cshwrn 14443 | The range of a cyclically ... |
cshwidxmod 14444 | The symbol at a given inde... |
cshwidxmodr 14445 | The symbol at a given inde... |
cshwidx0mod 14446 | The symbol at index 0 of a... |
cshwidx0 14447 | The symbol at index 0 of a... |
cshwidxm1 14448 | The symbol at index ((n-N)... |
cshwidxm 14449 | The symbol at index (n-N) ... |
cshwidxn 14450 | The symbol at index (n-1) ... |
cshf1 14451 | Cyclically shifting a word... |
cshinj 14452 | If a word is injectiv (reg... |
repswcshw 14453 | A cyclically shifted "repe... |
2cshw 14454 | Cyclically shifting a word... |
2cshwid 14455 | Cyclically shifting a word... |
lswcshw 14456 | The last symbol of a word ... |
2cshwcom 14457 | Cyclically shifting a word... |
cshwleneq 14458 | If the results of cyclical... |
3cshw 14459 | Cyclically shifting a word... |
cshweqdif2 14460 | If cyclically shifting two... |
cshweqdifid 14461 | If cyclically shifting a w... |
cshweqrep 14462 | If cyclically shifting a w... |
cshw1 14463 | If cyclically shifting a w... |
cshw1repsw 14464 | If cyclically shifting a w... |
cshwsexa 14465 | The class of (different!) ... |
2cshwcshw 14466 | If a word is a cyclically ... |
scshwfzeqfzo 14467 | For a nonempty word the se... |
cshwcshid 14468 | A cyclically shifted word ... |
cshwcsh2id 14469 | A cyclically shifted word ... |
cshimadifsn 14470 | The image of a cyclically ... |
cshimadifsn0 14471 | The image of a cyclically ... |
wrdco 14472 | Mapping a word by a functi... |
lenco 14473 | Length of a mapped word is... |
s1co 14474 | Mapping of a singleton wor... |
revco 14475 | Mapping of words (i.e., a ... |
ccatco 14476 | Mapping of words commutes ... |
cshco 14477 | Mapping of words commutes ... |
swrdco 14478 | Mapping of words commutes ... |
pfxco 14479 | Mapping of words commutes ... |
lswco 14480 | Mapping of (nonempty) word... |
repsco 14481 | Mapping of words commutes ... |
cats1cld 14496 | Closure of concatenation w... |
cats1co 14497 | Closure of concatenation w... |
cats1cli 14498 | Closure of concatenation w... |
cats1fvn 14499 | The last symbol of a conca... |
cats1fv 14500 | A symbol other than the la... |
cats1len 14501 | The length of concatenatio... |
cats1cat 14502 | Closure of concatenation w... |
cats2cat 14503 | Closure of concatenation o... |
s2eqd 14504 | Equality theorem for a dou... |
s3eqd 14505 | Equality theorem for a len... |
s4eqd 14506 | Equality theorem for a len... |
s5eqd 14507 | Equality theorem for a len... |
s6eqd 14508 | Equality theorem for a len... |
s7eqd 14509 | Equality theorem for a len... |
s8eqd 14510 | Equality theorem for a len... |
s3eq2 14511 | Equality theorem for a len... |
s2cld 14512 | A doubleton word is a word... |
s3cld 14513 | A length 3 string is a wor... |
s4cld 14514 | A length 4 string is a wor... |
s5cld 14515 | A length 5 string is a wor... |
s6cld 14516 | A length 6 string is a wor... |
s7cld 14517 | A length 7 string is a wor... |
s8cld 14518 | A length 7 string is a wor... |
s2cl 14519 | A doubleton word is a word... |
s3cl 14520 | A length 3 string is a wor... |
s2cli 14521 | A doubleton word is a word... |
s3cli 14522 | A length 3 string is a wor... |
s4cli 14523 | A length 4 string is a wor... |
s5cli 14524 | A length 5 string is a wor... |
s6cli 14525 | A length 6 string is a wor... |
s7cli 14526 | A length 7 string is a wor... |
s8cli 14527 | A length 8 string is a wor... |
s2fv0 14528 | Extract the first symbol f... |
s2fv1 14529 | Extract the second symbol ... |
s2len 14530 | The length of a doubleton ... |
s2dm 14531 | The domain of a doubleton ... |
s3fv0 14532 | Extract the first symbol f... |
s3fv1 14533 | Extract the second symbol ... |
s3fv2 14534 | Extract the third symbol f... |
s3len 14535 | The length of a length 3 s... |
s4fv0 14536 | Extract the first symbol f... |
s4fv1 14537 | Extract the second symbol ... |
s4fv2 14538 | Extract the third symbol f... |
s4fv3 14539 | Extract the fourth symbol ... |
s4len 14540 | The length of a length 4 s... |
s5len 14541 | The length of a length 5 s... |
s6len 14542 | The length of a length 6 s... |
s7len 14543 | The length of a length 7 s... |
s8len 14544 | The length of a length 8 s... |
lsws2 14545 | The last symbol of a doubl... |
lsws3 14546 | The last symbol of a 3 let... |
lsws4 14547 | The last symbol of a 4 let... |
s2prop 14548 | A length 2 word is an unor... |
s2dmALT 14549 | Alternate version of ~ s2d... |
s3tpop 14550 | A length 3 word is an unor... |
s4prop 14551 | A length 4 word is a union... |
s3fn 14552 | A length 3 word is a funct... |
funcnvs1 14553 | The converse of a singleto... |
funcnvs2 14554 | The converse of a length 2... |
funcnvs3 14555 | The converse of a length 3... |
funcnvs4 14556 | The converse of a length 4... |
s2f1o 14557 | A length 2 word with mutua... |
f1oun2prg 14558 | A union of unordered pairs... |
s4f1o 14559 | A length 4 word with mutua... |
s4dom 14560 | The domain of a length 4 w... |
s2co 14561 | Mapping a doubleton word b... |
s3co 14562 | Mapping a length 3 string ... |
s0s1 14563 | Concatenation of fixed len... |
s1s2 14564 | Concatenation of fixed len... |
s1s3 14565 | Concatenation of fixed len... |
s1s4 14566 | Concatenation of fixed len... |
s1s5 14567 | Concatenation of fixed len... |
s1s6 14568 | Concatenation of fixed len... |
s1s7 14569 | Concatenation of fixed len... |
s2s2 14570 | Concatenation of fixed len... |
s4s2 14571 | Concatenation of fixed len... |
s4s3 14572 | Concatenation of fixed len... |
s4s4 14573 | Concatenation of fixed len... |
s3s4 14574 | Concatenation of fixed len... |
s2s5 14575 | Concatenation of fixed len... |
s5s2 14576 | Concatenation of fixed len... |
s2eq2s1eq 14577 | Two length 2 words are equ... |
s2eq2seq 14578 | Two length 2 words are equ... |
s3eqs2s1eq 14579 | Two length 3 words are equ... |
s3eq3seq 14580 | Two length 3 words are equ... |
swrds2 14581 | Extract two adjacent symbo... |
swrds2m 14582 | Extract two adjacent symbo... |
wrdlen2i 14583 | Implications of a word of ... |
wrd2pr2op 14584 | A word of length two repre... |
wrdlen2 14585 | A word of length two. (Co... |
wrdlen2s2 14586 | A word of length two as do... |
wrdl2exs2 14587 | A word of length two is a ... |
pfx2 14588 | A prefix of length two. (... |
wrd3tpop 14589 | A word of length three rep... |
wrdlen3s3 14590 | A word of length three as ... |
repsw2 14591 | The "repeated symbol word"... |
repsw3 14592 | The "repeated symbol word"... |
swrd2lsw 14593 | Extract the last two symbo... |
2swrd2eqwrdeq 14594 | Two words of length at lea... |
ccatw2s1ccatws2 14595 | The concatenation of a wor... |
ccatw2s1ccatws2OLD 14596 | Obsolete version of ~ ccat... |
ccat2s1fvwALT 14597 | Alternate proof of ~ ccat2... |
ccat2s1fvwALTOLD 14598 | Obsolete version of ~ ccat... |
wwlktovf 14599 | Lemma 1 for ~ wrd2f1tovbij... |
wwlktovf1 14600 | Lemma 2 for ~ wrd2f1tovbij... |
wwlktovfo 14601 | Lemma 3 for ~ wrd2f1tovbij... |
wwlktovf1o 14602 | Lemma 4 for ~ wrd2f1tovbij... |
wrd2f1tovbij 14603 | There is a bijection betwe... |
eqwrds3 14604 | A word is equal with a len... |
wrdl3s3 14605 | A word of length 3 is a le... |
s3sndisj 14606 | The singletons consisting ... |
s3iunsndisj 14607 | The union of singletons co... |
ofccat 14608 | Letterwise operations on w... |
ofs1 14609 | Letterwise operations on a... |
ofs2 14610 | Letterwise operations on a... |
coss12d 14611 | Subset deduction for compo... |
trrelssd 14612 | The composition of subclas... |
xpcogend 14613 | The most interesting case ... |
xpcoidgend 14614 | If two classes are not dis... |
cotr2g 14615 | Two ways of saying that th... |
cotr2 14616 | Two ways of saying a relat... |
cotr3 14617 | Two ways of saying a relat... |
coemptyd 14618 | Deduction about compositio... |
xptrrel 14619 | The cross product is alway... |
0trrel 14620 | The empty class is a trans... |
cleq1lem 14621 | Equality implies bijection... |
cleq1 14622 | Equality of relations impl... |
clsslem 14623 | The closure of a subclass ... |
trcleq1 14628 | Equality of relations impl... |
trclsslem 14629 | The transitive closure (as... |
trcleq2lem 14630 | Equality implies bijection... |
cvbtrcl 14631 | Change of bound variable i... |
trcleq12lem 14632 | Equality implies bijection... |
trclexlem 14633 | Existence of relation impl... |
trclublem 14634 | If a relation exists then ... |
trclubi 14635 | The Cartesian product of t... |
trclubgi 14636 | The union with the Cartesi... |
trclub 14637 | The Cartesian product of t... |
trclubg 14638 | The union with the Cartesi... |
trclfv 14639 | The transitive closure of ... |
brintclab 14640 | Two ways to express a bina... |
brtrclfv 14641 | Two ways of expressing the... |
brcnvtrclfv 14642 | Two ways of expressing the... |
brtrclfvcnv 14643 | Two ways of expressing the... |
brcnvtrclfvcnv 14644 | Two ways of expressing the... |
trclfvss 14645 | The transitive closure (as... |
trclfvub 14646 | The transitive closure of ... |
trclfvlb 14647 | The transitive closure of ... |
trclfvcotr 14648 | The transitive closure of ... |
trclfvlb2 14649 | The transitive closure of ... |
trclfvlb3 14650 | The transitive closure of ... |
cotrtrclfv 14651 | The transitive closure of ... |
trclidm 14652 | The transitive closure of ... |
trclun 14653 | Transitive closure of a un... |
trclfvg 14654 | The value of the transitiv... |
trclfvcotrg 14655 | The value of the transitiv... |
reltrclfv 14656 | The transitive closure of ... |
dmtrclfv 14657 | The domain of the transiti... |
reldmrelexp 14660 | The domain of the repeated... |
relexp0g 14661 | A relation composed zero t... |
relexp0 14662 | A relation composed zero t... |
relexp0d 14663 | A relation composed zero t... |
relexpsucnnr 14664 | A reduction for relation e... |
relexp1g 14665 | A relation composed once i... |
dfid5 14666 | Identity relation is equal... |
dfid6 14667 | Identity relation expresse... |
relexp1d 14668 | A relation composed once i... |
relexpsucnnl 14669 | A reduction for relation e... |
relexpsucl 14670 | A reduction for relation e... |
relexpsucr 14671 | A reduction for relation e... |
relexpsucrd 14672 | A reduction for relation e... |
relexpsucld 14673 | A reduction for relation e... |
relexpcnv 14674 | Commutation of converse an... |
relexpcnvd 14675 | Commutation of converse an... |
relexp0rel 14676 | The exponentiation of a cl... |
relexprelg 14677 | The exponentiation of a cl... |
relexprel 14678 | The exponentiation of a re... |
relexpreld 14679 | The exponentiation of a re... |
relexpnndm 14680 | The domain of an exponenti... |
relexpdmg 14681 | The domain of an exponenti... |
relexpdm 14682 | The domain of an exponenti... |
relexpdmd 14683 | The domain of an exponenti... |
relexpnnrn 14684 | The range of an exponentia... |
relexprng 14685 | The range of an exponentia... |
relexprn 14686 | The range of an exponentia... |
relexprnd 14687 | The range of an exponentia... |
relexpfld 14688 | The field of an exponentia... |
relexpfldd 14689 | The field of an exponentia... |
relexpaddnn 14690 | Relation composition becom... |
relexpuzrel 14691 | The exponentiation of a cl... |
relexpaddg 14692 | Relation composition becom... |
relexpaddd 14693 | Relation composition becom... |
rtrclreclem1 14696 | The reflexive, transitive ... |
dfrtrclrec2 14697 | If two elements are connec... |
rtrclreclem2 14698 | The reflexive, transitive ... |
rtrclreclem3 14699 | The reflexive, transitive ... |
rtrclreclem4 14700 | The reflexive, transitive ... |
dfrtrcl2 14701 | The two definitions ` t* `... |
relexpindlem 14702 | Principle of transitive in... |
relexpind 14703 | Principle of transitive in... |
rtrclind 14704 | Principle of transitive in... |
shftlem 14707 | Two ways to write a shifte... |
shftuz 14708 | A shift of the upper integ... |
shftfval 14709 | The value of the sequence ... |
shftdm 14710 | Domain of a relation shift... |
shftfib 14711 | Value of a fiber of the re... |
shftfn 14712 | Functionality and domain o... |
shftval 14713 | Value of a sequence shifte... |
shftval2 14714 | Value of a sequence shifte... |
shftval3 14715 | Value of a sequence shifte... |
shftval4 14716 | Value of a sequence shifte... |
shftval5 14717 | Value of a shifted sequenc... |
shftf 14718 | Functionality of a shifted... |
2shfti 14719 | Composite shift operations... |
shftidt2 14720 | Identity law for the shift... |
shftidt 14721 | Identity law for the shift... |
shftcan1 14722 | Cancellation law for the s... |
shftcan2 14723 | Cancellation law for the s... |
seqshft 14724 | Shifting the index set of ... |
sgnval 14727 | Value of the signum functi... |
sgn0 14728 | The signum of 0 is 0. (Co... |
sgnp 14729 | The signum of a positive e... |
sgnrrp 14730 | The signum of a positive r... |
sgn1 14731 | The signum of 1 is 1. (Co... |
sgnpnf 14732 | The signum of ` +oo ` is 1... |
sgnn 14733 | The signum of a negative e... |
sgnmnf 14734 | The signum of ` -oo ` is -... |
cjval 14741 | The value of the conjugate... |
cjth 14742 | The defining property of t... |
cjf 14743 | Domain and codomain of the... |
cjcl 14744 | The conjugate of a complex... |
reval 14745 | The value of the real part... |
imval 14746 | The value of the imaginary... |
imre 14747 | The imaginary part of a co... |
reim 14748 | The real part of a complex... |
recl 14749 | The real part of a complex... |
imcl 14750 | The imaginary part of a co... |
ref 14751 | Domain and codomain of the... |
imf 14752 | Domain and codomain of the... |
crre 14753 | The real part of a complex... |
crim 14754 | The real part of a complex... |
replim 14755 | Reconstruct a complex numb... |
remim 14756 | Value of the conjugate of ... |
reim0 14757 | The imaginary part of a re... |
reim0b 14758 | A number is real iff its i... |
rereb 14759 | A number is real iff it eq... |
mulre 14760 | A product with a nonzero r... |
rere 14761 | A real number equals its r... |
cjreb 14762 | A number is real iff it eq... |
recj 14763 | Real part of a complex con... |
reneg 14764 | Real part of negative. (C... |
readd 14765 | Real part distributes over... |
resub 14766 | Real part distributes over... |
remullem 14767 | Lemma for ~ remul , ~ immu... |
remul 14768 | Real part of a product. (... |
remul2 14769 | Real part of a product. (... |
rediv 14770 | Real part of a division. ... |
imcj 14771 | Imaginary part of a comple... |
imneg 14772 | The imaginary part of a ne... |
imadd 14773 | Imaginary part distributes... |
imsub 14774 | Imaginary part distributes... |
immul 14775 | Imaginary part of a produc... |
immul2 14776 | Imaginary part of a produc... |
imdiv 14777 | Imaginary part of a divisi... |
cjre 14778 | A real number equals its c... |
cjcj 14779 | The conjugate of the conju... |
cjadd 14780 | Complex conjugate distribu... |
cjmul 14781 | Complex conjugate distribu... |
ipcnval 14782 | Standard inner product on ... |
cjmulrcl 14783 | A complex number times its... |
cjmulval 14784 | A complex number times its... |
cjmulge0 14785 | A complex number times its... |
cjneg 14786 | Complex conjugate of negat... |
addcj 14787 | A number plus its conjugat... |
cjsub 14788 | Complex conjugate distribu... |
cjexp 14789 | Complex conjugate of posit... |
imval2 14790 | The imaginary part of a nu... |
re0 14791 | The real part of zero. (C... |
im0 14792 | The imaginary part of zero... |
re1 14793 | The real part of one. (Co... |
im1 14794 | The imaginary part of one.... |
rei 14795 | The real part of ` _i ` . ... |
imi 14796 | The imaginary part of ` _i... |
cj0 14797 | The conjugate of zero. (C... |
cji 14798 | The complex conjugate of t... |
cjreim 14799 | The conjugate of a represe... |
cjreim2 14800 | The conjugate of the repre... |
cj11 14801 | Complex conjugate is a one... |
cjne0 14802 | A number is nonzero iff it... |
cjdiv 14803 | Complex conjugate distribu... |
cnrecnv 14804 | The inverse to the canonic... |
sqeqd 14805 | A deduction for showing tw... |
recli 14806 | The real part of a complex... |
imcli 14807 | The imaginary part of a co... |
cjcli 14808 | Closure law for complex co... |
replimi 14809 | Construct a complex number... |
cjcji 14810 | The conjugate of the conju... |
reim0bi 14811 | A number is real iff its i... |
rerebi 14812 | A real number equals its r... |
cjrebi 14813 | A number is real iff it eq... |
recji 14814 | Real part of a complex con... |
imcji 14815 | Imaginary part of a comple... |
cjmulrcli 14816 | A complex number times its... |
cjmulvali 14817 | A complex number times its... |
cjmulge0i 14818 | A complex number times its... |
renegi 14819 | Real part of negative. (C... |
imnegi 14820 | Imaginary part of negative... |
cjnegi 14821 | Complex conjugate of negat... |
addcji 14822 | A number plus its conjugat... |
readdi 14823 | Real part distributes over... |
imaddi 14824 | Imaginary part distributes... |
remuli 14825 | Real part of a product. (... |
immuli 14826 | Imaginary part of a produc... |
cjaddi 14827 | Complex conjugate distribu... |
cjmuli 14828 | Complex conjugate distribu... |
ipcni 14829 | Standard inner product on ... |
cjdivi 14830 | Complex conjugate distribu... |
crrei 14831 | The real part of a complex... |
crimi 14832 | The imaginary part of a co... |
recld 14833 | The real part of a complex... |
imcld 14834 | The imaginary part of a co... |
cjcld 14835 | Closure law for complex co... |
replimd 14836 | Construct a complex number... |
remimd 14837 | Value of the conjugate of ... |
cjcjd 14838 | The conjugate of the conju... |
reim0bd 14839 | A number is real iff its i... |
rerebd 14840 | A real number equals its r... |
cjrebd 14841 | A number is real iff it eq... |
cjne0d 14842 | A number is nonzero iff it... |
recjd 14843 | Real part of a complex con... |
imcjd 14844 | Imaginary part of a comple... |
cjmulrcld 14845 | A complex number times its... |
cjmulvald 14846 | A complex number times its... |
cjmulge0d 14847 | A complex number times its... |
renegd 14848 | Real part of negative. (C... |
imnegd 14849 | Imaginary part of negative... |
cjnegd 14850 | Complex conjugate of negat... |
addcjd 14851 | A number plus its conjugat... |
cjexpd 14852 | Complex conjugate of posit... |
readdd 14853 | Real part distributes over... |
imaddd 14854 | Imaginary part distributes... |
resubd 14855 | Real part distributes over... |
imsubd 14856 | Imaginary part distributes... |
remuld 14857 | Real part of a product. (... |
immuld 14858 | Imaginary part of a produc... |
cjaddd 14859 | Complex conjugate distribu... |
cjmuld 14860 | Complex conjugate distribu... |
ipcnd 14861 | Standard inner product on ... |
cjdivd 14862 | Complex conjugate distribu... |
rered 14863 | A real number equals its r... |
reim0d 14864 | The imaginary part of a re... |
cjred 14865 | A real number equals its c... |
remul2d 14866 | Real part of a product. (... |
immul2d 14867 | Imaginary part of a produc... |
redivd 14868 | Real part of a division. ... |
imdivd 14869 | Imaginary part of a divisi... |
crred 14870 | The real part of a complex... |
crimd 14871 | The imaginary part of a co... |
sqrtval 14876 | Value of square root funct... |
absval 14877 | The absolute value (modulu... |
rennim 14878 | A real number does not lie... |
cnpart 14879 | The specification of restr... |
sqr0lem 14880 | Square root of zero. (Con... |
sqrt0 14881 | Square root of zero. (Con... |
sqrlem1 14882 | Lemma for ~ 01sqrex . (Co... |
sqrlem2 14883 | Lemma for ~ 01sqrex . (Co... |
sqrlem3 14884 | Lemma for ~ 01sqrex . (Co... |
sqrlem4 14885 | Lemma for ~ 01sqrex . (Co... |
sqrlem5 14886 | Lemma for ~ 01sqrex . (Co... |
sqrlem6 14887 | Lemma for ~ 01sqrex . (Co... |
sqrlem7 14888 | Lemma for ~ 01sqrex . (Co... |
01sqrex 14889 | Existence of a square root... |
resqrex 14890 | Existence of a square root... |
sqrmo 14891 | Uniqueness for the square ... |
resqreu 14892 | Existence and uniqueness f... |
resqrtcl 14893 | Closure of the square root... |
resqrtthlem 14894 | Lemma for ~ resqrtth . (C... |
resqrtth 14895 | Square root theorem over t... |
remsqsqrt 14896 | Square of square root. (C... |
sqrtge0 14897 | The square root function i... |
sqrtgt0 14898 | The square root function i... |
sqrtmul 14899 | Square root distributes ov... |
sqrtle 14900 | Square root is monotonic. ... |
sqrtlt 14901 | Square root is strictly mo... |
sqrt11 14902 | The square root function i... |
sqrt00 14903 | A square root is zero iff ... |
rpsqrtcl 14904 | The square root of a posit... |
sqrtdiv 14905 | Square root distributes ov... |
sqrtneglem 14906 | The square root of a negat... |
sqrtneg 14907 | The square root of a negat... |
sqrtsq2 14908 | Relationship between squar... |
sqrtsq 14909 | Square root of square. (C... |
sqrtmsq 14910 | Square root of square. (C... |
sqrt1 14911 | The square root of 1 is 1.... |
sqrt4 14912 | The square root of 4 is 2.... |
sqrt9 14913 | The square root of 9 is 3.... |
sqrt2gt1lt2 14914 | The square root of 2 is bo... |
sqrtm1 14915 | The imaginary unit is the ... |
nn0sqeq1 14916 | A natural number with squa... |
absneg 14917 | Absolute value of the oppo... |
abscl 14918 | Real closure of absolute v... |
abscj 14919 | The absolute value of a nu... |
absvalsq 14920 | Square of value of absolut... |
absvalsq2 14921 | Square of value of absolut... |
sqabsadd 14922 | Square of absolute value o... |
sqabssub 14923 | Square of absolute value o... |
absval2 14924 | Value of absolute value fu... |
abs0 14925 | The absolute value of 0. ... |
absi 14926 | The absolute value of the ... |
absge0 14927 | Absolute value is nonnegat... |
absrpcl 14928 | The absolute value of a no... |
abs00 14929 | The absolute value of a nu... |
abs00ad 14930 | A complex number is zero i... |
abs00bd 14931 | If a complex number is zer... |
absreimsq 14932 | Square of the absolute val... |
absreim 14933 | Absolute value of a number... |
absmul 14934 | Absolute value distributes... |
absdiv 14935 | Absolute value distributes... |
absid 14936 | A nonnegative number is it... |
abs1 14937 | The absolute value of one ... |
absnid 14938 | A negative number is the n... |
leabs 14939 | A real number is less than... |
absor 14940 | The absolute value of a re... |
absre 14941 | Absolute value of a real n... |
absresq 14942 | Square of the absolute val... |
absmod0 14943 | ` A ` is divisible by ` B ... |
absexp 14944 | Absolute value of positive... |
absexpz 14945 | Absolute value of integer ... |
abssq 14946 | Square can be moved in and... |
sqabs 14947 | The squares of two reals a... |
absrele 14948 | The absolute value of a co... |
absimle 14949 | The absolute value of a co... |
max0add 14950 | The sum of the positive an... |
absz 14951 | A real number is an intege... |
nn0abscl 14952 | The absolute value of an i... |
zabscl 14953 | The absolute value of an i... |
abslt 14954 | Absolute value and 'less t... |
absle 14955 | Absolute value and 'less t... |
abssubne0 14956 | If the absolute value of a... |
absdiflt 14957 | The absolute value of a di... |
absdifle 14958 | The absolute value of a di... |
elicc4abs 14959 | Membership in a symmetric ... |
lenegsq 14960 | Comparison to a nonnegativ... |
releabs 14961 | The real part of a number ... |
recval 14962 | Reciprocal expressed with ... |
absidm 14963 | The absolute value functio... |
absgt0 14964 | The absolute value of a no... |
nnabscl 14965 | The absolute value of a no... |
abssub 14966 | Swapping order of subtract... |
abssubge0 14967 | Absolute value of a nonneg... |
abssuble0 14968 | Absolute value of a nonpos... |
absmax 14969 | The maximum of two numbers... |
abstri 14970 | Triangle inequality for ab... |
abs3dif 14971 | Absolute value of differen... |
abs2dif 14972 | Difference of absolute val... |
abs2dif2 14973 | Difference of absolute val... |
abs2difabs 14974 | Absolute value of differen... |
abs1m 14975 | For any complex number, th... |
recan 14976 | Cancellation law involving... |
absf 14977 | Mapping domain and codomai... |
abs3lem 14978 | Lemma involving absolute v... |
abslem2 14979 | Lemma involving absolute v... |
rddif 14980 | The difference between a r... |
absrdbnd 14981 | Bound on the absolute valu... |
fzomaxdiflem 14982 | Lemma for ~ fzomaxdif . (... |
fzomaxdif 14983 | A bound on the separation ... |
uzin2 14984 | The upper integers are clo... |
rexanuz 14985 | Combine two different uppe... |
rexanre 14986 | Combine two different uppe... |
rexfiuz 14987 | Combine finitely many diff... |
rexuz3 14988 | Restrict the base of the u... |
rexanuz2 14989 | Combine two different uppe... |
r19.29uz 14990 | A version of ~ 19.29 for u... |
r19.2uz 14991 | A version of ~ r19.2z for ... |
rexuzre 14992 | Convert an upper real quan... |
rexico 14993 | Restrict the base of an up... |
cau3lem 14994 | Lemma for ~ cau3 . (Contr... |
cau3 14995 | Convert between three-quan... |
cau4 14996 | Change the base of a Cauch... |
caubnd2 14997 | A Cauchy sequence of compl... |
caubnd 14998 | A Cauchy sequence of compl... |
sqreulem 14999 | Lemma for ~ sqreu : write ... |
sqreu 15000 | Existence and uniqueness f... |
sqrtcl 15001 | Closure of the square root... |
sqrtthlem 15002 | Lemma for ~ sqrtth . (Con... |
sqrtf 15003 | Mapping domain and codomai... |
sqrtth 15004 | Square root theorem over t... |
sqrtrege0 15005 | The square root function m... |
eqsqrtor 15006 | Solve an equation containi... |
eqsqrtd 15007 | A deduction for showing th... |
eqsqrt2d 15008 | A deduction for showing th... |
amgm2 15009 | Arithmetic-geometric mean ... |
sqrtthi 15010 | Square root theorem. Theo... |
sqrtcli 15011 | The square root of a nonne... |
sqrtgt0i 15012 | The square root of a posit... |
sqrtmsqi 15013 | Square root of square. (C... |
sqrtsqi 15014 | Square root of square. (C... |
sqsqrti 15015 | Square of square root. (C... |
sqrtge0i 15016 | The square root of a nonne... |
absidi 15017 | A nonnegative number is it... |
absnidi 15018 | A negative number is the n... |
leabsi 15019 | A real number is less than... |
absori 15020 | The absolute value of a re... |
absrei 15021 | Absolute value of a real n... |
sqrtpclii 15022 | The square root of a posit... |
sqrtgt0ii 15023 | The square root of a posit... |
sqrt11i 15024 | The square root function i... |
sqrtmuli 15025 | Square root distributes ov... |
sqrtmulii 15026 | Square root distributes ov... |
sqrtmsq2i 15027 | Relationship between squar... |
sqrtlei 15028 | Square root is monotonic. ... |
sqrtlti 15029 | Square root is strictly mo... |
abslti 15030 | Absolute value and 'less t... |
abslei 15031 | Absolute value and 'less t... |
cnsqrt00 15032 | A square root of a complex... |
absvalsqi 15033 | Square of value of absolut... |
absvalsq2i 15034 | Square of value of absolut... |
abscli 15035 | Real closure of absolute v... |
absge0i 15036 | Absolute value is nonnegat... |
absval2i 15037 | Value of absolute value fu... |
abs00i 15038 | The absolute value of a nu... |
absgt0i 15039 | The absolute value of a no... |
absnegi 15040 | Absolute value of negative... |
abscji 15041 | The absolute value of a nu... |
releabsi 15042 | The real part of a number ... |
abssubi 15043 | Swapping order of subtract... |
absmuli 15044 | Absolute value distributes... |
sqabsaddi 15045 | Square of absolute value o... |
sqabssubi 15046 | Square of absolute value o... |
absdivzi 15047 | Absolute value distributes... |
abstrii 15048 | Triangle inequality for ab... |
abs3difi 15049 | Absolute value of differen... |
abs3lemi 15050 | Lemma involving absolute v... |
rpsqrtcld 15051 | The square root of a posit... |
sqrtgt0d 15052 | The square root of a posit... |
absnidd 15053 | A negative number is the n... |
leabsd 15054 | A real number is less than... |
absord 15055 | The absolute value of a re... |
absred 15056 | Absolute value of a real n... |
resqrtcld 15057 | The square root of a nonne... |
sqrtmsqd 15058 | Square root of square. (C... |
sqrtsqd 15059 | Square root of square. (C... |
sqrtge0d 15060 | The square root of a nonne... |
sqrtnegd 15061 | The square root of a negat... |
absidd 15062 | A nonnegative number is it... |
sqrtdivd 15063 | Square root distributes ov... |
sqrtmuld 15064 | Square root distributes ov... |
sqrtsq2d 15065 | Relationship between squar... |
sqrtled 15066 | Square root is monotonic. ... |
sqrtltd 15067 | Square root is strictly mo... |
sqr11d 15068 | The square root function i... |
absltd 15069 | Absolute value and 'less t... |
absled 15070 | Absolute value and 'less t... |
abssubge0d 15071 | Absolute value of a nonneg... |
abssuble0d 15072 | Absolute value of a nonpos... |
absdifltd 15073 | The absolute value of a di... |
absdifled 15074 | The absolute value of a di... |
icodiamlt 15075 | Two elements in a half-ope... |
abscld 15076 | Real closure of absolute v... |
sqrtcld 15077 | Closure of the square root... |
sqrtrege0d 15078 | The real part of the squar... |
sqsqrtd 15079 | Square root theorem. Theo... |
msqsqrtd 15080 | Square root theorem. Theo... |
sqr00d 15081 | A square root is zero iff ... |
absvalsqd 15082 | Square of value of absolut... |
absvalsq2d 15083 | Square of value of absolut... |
absge0d 15084 | Absolute value is nonnegat... |
absval2d 15085 | Value of absolute value fu... |
abs00d 15086 | The absolute value of a nu... |
absne0d 15087 | The absolute value of a nu... |
absrpcld 15088 | The absolute value of a no... |
absnegd 15089 | Absolute value of negative... |
abscjd 15090 | The absolute value of a nu... |
releabsd 15091 | The real part of a number ... |
absexpd 15092 | Absolute value of positive... |
abssubd 15093 | Swapping order of subtract... |
absmuld 15094 | Absolute value distributes... |
absdivd 15095 | Absolute value distributes... |
abstrid 15096 | Triangle inequality for ab... |
abs2difd 15097 | Difference of absolute val... |
abs2dif2d 15098 | Difference of absolute val... |
abs2difabsd 15099 | Absolute value of differen... |
abs3difd 15100 | Absolute value of differen... |
abs3lemd 15101 | Lemma involving absolute v... |
reusq0 15102 | A complex number is the sq... |
bhmafibid1cn 15103 | The Brahmagupta-Fibonacci ... |
bhmafibid2cn 15104 | The Brahmagupta-Fibonacci ... |
bhmafibid1 15105 | The Brahmagupta-Fibonacci ... |
bhmafibid2 15106 | The Brahmagupta-Fibonacci ... |
limsupgord 15109 | Ordering property of the s... |
limsupcl 15110 | Closure of the superior li... |
limsupval 15111 | The superior limit of an i... |
limsupgf 15112 | Closure of the superior li... |
limsupgval 15113 | Value of the superior limi... |
limsupgle 15114 | The defining property of t... |
limsuple 15115 | The defining property of t... |
limsuplt 15116 | The defining property of t... |
limsupval2 15117 | The superior limit, relati... |
limsupgre 15118 | If a sequence of real numb... |
limsupbnd1 15119 | If a sequence is eventuall... |
limsupbnd2 15120 | If a sequence is eventuall... |
climrel 15129 | The limit relation is a re... |
rlimrel 15130 | The limit relation is a re... |
clim 15131 | Express the predicate: Th... |
rlim 15132 | Express the predicate: Th... |
rlim2 15133 | Rewrite ~ rlim for a mappi... |
rlim2lt 15134 | Use strictly less-than in ... |
rlim3 15135 | Restrict the range of the ... |
climcl 15136 | Closure of the limit of a ... |
rlimpm 15137 | Closure of a function with... |
rlimf 15138 | Closure of a function with... |
rlimss 15139 | Domain closure of a functi... |
rlimcl 15140 | Closure of the limit of a ... |
clim2 15141 | Express the predicate: Th... |
clim2c 15142 | Express the predicate ` F ... |
clim0 15143 | Express the predicate ` F ... |
clim0c 15144 | Express the predicate ` F ... |
rlim0 15145 | Express the predicate ` B ... |
rlim0lt 15146 | Use strictly less-than in ... |
climi 15147 | Convergence of a sequence ... |
climi2 15148 | Convergence of a sequence ... |
climi0 15149 | Convergence of a sequence ... |
rlimi 15150 | Convergence at infinity of... |
rlimi2 15151 | Convergence at infinity of... |
ello1 15152 | Elementhood in the set of ... |
ello12 15153 | Elementhood in the set of ... |
ello12r 15154 | Sufficient condition for e... |
lo1f 15155 | An eventually upper bounde... |
lo1dm 15156 | An eventually upper bounde... |
lo1bdd 15157 | The defining property of a... |
ello1mpt 15158 | Elementhood in the set of ... |
ello1mpt2 15159 | Elementhood in the set of ... |
ello1d 15160 | Sufficient condition for e... |
lo1bdd2 15161 | If an eventually bounded f... |
lo1bddrp 15162 | Refine ~ o1bdd2 to give a ... |
elo1 15163 | Elementhood in the set of ... |
elo12 15164 | Elementhood in the set of ... |
elo12r 15165 | Sufficient condition for e... |
o1f 15166 | An eventually bounded func... |
o1dm 15167 | An eventually bounded func... |
o1bdd 15168 | The defining property of a... |
lo1o1 15169 | A function is eventually b... |
lo1o12 15170 | A function is eventually b... |
elo1mpt 15171 | Elementhood in the set of ... |
elo1mpt2 15172 | Elementhood in the set of ... |
elo1d 15173 | Sufficient condition for e... |
o1lo1 15174 | A real function is eventua... |
o1lo12 15175 | A lower bounded real funct... |
o1lo1d 15176 | A real eventually bounded ... |
icco1 15177 | Derive eventual boundednes... |
o1bdd2 15178 | If an eventually bounded f... |
o1bddrp 15179 | Refine ~ o1bdd2 to give a ... |
climconst 15180 | An (eventually) constant s... |
rlimconst 15181 | A constant sequence conver... |
rlimclim1 15182 | Forward direction of ~ rli... |
rlimclim 15183 | A sequence on an upper int... |
climrlim2 15184 | Produce a real limit from ... |
climconst2 15185 | A constant sequence conver... |
climz 15186 | The zero sequence converge... |
rlimuni 15187 | A real function whose doma... |
rlimdm 15188 | Two ways to express that a... |
climuni 15189 | An infinite sequence of co... |
fclim 15190 | The limit relation is func... |
climdm 15191 | Two ways to express that a... |
climeu 15192 | An infinite sequence of co... |
climreu 15193 | An infinite sequence of co... |
climmo 15194 | An infinite sequence of co... |
rlimres 15195 | The restriction of a funct... |
lo1res 15196 | The restriction of an even... |
o1res 15197 | The restriction of an even... |
rlimres2 15198 | The restriction of a funct... |
lo1res2 15199 | The restriction of a funct... |
o1res2 15200 | The restriction of a funct... |
lo1resb 15201 | The restriction of a funct... |
rlimresb 15202 | The restriction of a funct... |
o1resb 15203 | The restriction of a funct... |
climeq 15204 | Two functions that are eve... |
lo1eq 15205 | Two functions that are eve... |
rlimeq 15206 | Two functions that are eve... |
o1eq 15207 | Two functions that are eve... |
climmpt 15208 | Exhibit a function ` G ` w... |
2clim 15209 | If two sequences converge ... |
climmpt2 15210 | Relate an integer limit on... |
climshftlem 15211 | A shifted function converg... |
climres 15212 | A function restricted to u... |
climshft 15213 | A shifted function converg... |
serclim0 15214 | The zero series converges ... |
rlimcld2 15215 | If ` D ` is a closed set i... |
rlimrege0 15216 | The limit of a sequence of... |
rlimrecl 15217 | The limit of a real sequen... |
rlimge0 15218 | The limit of a sequence of... |
climshft2 15219 | A shifted function converg... |
climrecl 15220 | The limit of a convergent ... |
climge0 15221 | A nonnegative sequence con... |
climabs0 15222 | Convergence to zero of the... |
o1co 15223 | Sufficient condition for t... |
o1compt 15224 | Sufficient condition for t... |
rlimcn1 15225 | Image of a limit under a c... |
rlimcn1b 15226 | Image of a limit under a c... |
rlimcn3 15227 | Image of a limit under a c... |
rlimcn2 15228 | Image of a limit under a c... |
climcn1 15229 | Image of a limit under a c... |
climcn2 15230 | Image of a limit under a c... |
addcn2 15231 | Complex number addition is... |
subcn2 15232 | Complex number subtraction... |
mulcn2 15233 | Complex number multiplicat... |
reccn2 15234 | The reciprocal function is... |
cn1lem 15235 | A sufficient condition for... |
abscn2 15236 | The absolute value functio... |
cjcn2 15237 | The complex conjugate func... |
recn2 15238 | The real part function is ... |
imcn2 15239 | The imaginary part functio... |
climcn1lem 15240 | The limit of a continuous ... |
climabs 15241 | Limit of the absolute valu... |
climcj 15242 | Limit of the complex conju... |
climre 15243 | Limit of the real part of ... |
climim 15244 | Limit of the imaginary par... |
rlimmptrcl 15245 | Reverse closure for a real... |
rlimabs 15246 | Limit of the absolute valu... |
rlimcj 15247 | Limit of the complex conju... |
rlimre 15248 | Limit of the real part of ... |
rlimim 15249 | Limit of the imaginary par... |
o1of2 15250 | Show that a binary operati... |
o1add 15251 | The sum of two eventually ... |
o1mul 15252 | The product of two eventua... |
o1sub 15253 | The difference of two even... |
rlimo1 15254 | Any function with a finite... |
rlimdmo1 15255 | A convergent function is e... |
o1rlimmul 15256 | The product of an eventual... |
o1const 15257 | A constant function is eve... |
lo1const 15258 | A constant function is eve... |
lo1mptrcl 15259 | Reverse closure for an eve... |
o1mptrcl 15260 | Reverse closure for an eve... |
o1add2 15261 | The sum of two eventually ... |
o1mul2 15262 | The product of two eventua... |
o1sub2 15263 | The product of two eventua... |
lo1add 15264 | The sum of two eventually ... |
lo1mul 15265 | The product of an eventual... |
lo1mul2 15266 | The product of an eventual... |
o1dif 15267 | If the difference of two f... |
lo1sub 15268 | The difference of an event... |
climadd 15269 | Limit of the sum of two co... |
climmul 15270 | Limit of the product of tw... |
climsub 15271 | Limit of the difference of... |
climaddc1 15272 | Limit of a constant ` C ` ... |
climaddc2 15273 | Limit of a constant ` C ` ... |
climmulc2 15274 | Limit of a sequence multip... |
climsubc1 15275 | Limit of a constant ` C ` ... |
climsubc2 15276 | Limit of a constant ` C ` ... |
climle 15277 | Comparison of the limits o... |
climsqz 15278 | Convergence of a sequence ... |
climsqz2 15279 | Convergence of a sequence ... |
rlimadd 15280 | Limit of the sum of two co... |
rlimaddOLD 15281 | Obsolete version of ~ rlim... |
rlimsub 15282 | Limit of the difference of... |
rlimmul 15283 | Limit of the product of tw... |
rlimmulOLD 15284 | Obsolete version of ~ rlim... |
rlimdiv 15285 | Limit of the quotient of t... |
rlimneg 15286 | Limit of the negative of a... |
rlimle 15287 | Comparison of the limits o... |
rlimsqzlem 15288 | Lemma for ~ rlimsqz and ~ ... |
rlimsqz 15289 | Convergence of a sequence ... |
rlimsqz2 15290 | Convergence of a sequence ... |
lo1le 15291 | Transfer eventual upper bo... |
o1le 15292 | Transfer eventual boundedn... |
rlimno1 15293 | A function whose inverse c... |
clim2ser 15294 | The limit of an infinite s... |
clim2ser2 15295 | The limit of an infinite s... |
iserex 15296 | An infinite series converg... |
isermulc2 15297 | Multiplication of an infin... |
climlec2 15298 | Comparison of a constant t... |
iserle 15299 | Comparison of the limits o... |
iserge0 15300 | The limit of an infinite s... |
climub 15301 | The limit of a monotonic s... |
climserle 15302 | The partial sums of a conv... |
isershft 15303 | Index shift of the limit o... |
isercolllem1 15304 | Lemma for ~ isercoll . (C... |
isercolllem2 15305 | Lemma for ~ isercoll . (C... |
isercolllem3 15306 | Lemma for ~ isercoll . (C... |
isercoll 15307 | Rearrange an infinite seri... |
isercoll2 15308 | Generalize ~ isercoll so t... |
climsup 15309 | A bounded monotonic sequen... |
climcau 15310 | A converging sequence of c... |
climbdd 15311 | A converging sequence of c... |
caucvgrlem 15312 | Lemma for ~ caurcvgr . (C... |
caurcvgr 15313 | A Cauchy sequence of real ... |
caucvgrlem2 15314 | Lemma for ~ caucvgr . (Co... |
caucvgr 15315 | A Cauchy sequence of compl... |
caurcvg 15316 | A Cauchy sequence of real ... |
caurcvg2 15317 | A Cauchy sequence of real ... |
caucvg 15318 | A Cauchy sequence of compl... |
caucvgb 15319 | A function is convergent i... |
serf0 15320 | If an infinite series conv... |
iseraltlem1 15321 | Lemma for ~ iseralt . A d... |
iseraltlem2 15322 | Lemma for ~ iseralt . The... |
iseraltlem3 15323 | Lemma for ~ iseralt . Fro... |
iseralt 15324 | The alternating series tes... |
sumex 15327 | A sum is a set. (Contribu... |
sumeq1 15328 | Equality theorem for a sum... |
nfsum1 15329 | Bound-variable hypothesis ... |
nfsum 15330 | Bound-variable hypothesis ... |
nfsumOLD 15331 | Obsolete version of ~ nfsu... |
sumeq2w 15332 | Equality theorem for sum, ... |
sumeq2ii 15333 | Equality theorem for sum, ... |
sumeq2 15334 | Equality theorem for sum. ... |
cbvsum 15335 | Change bound variable in a... |
cbvsumv 15336 | Change bound variable in a... |
cbvsumi 15337 | Change bound variable in a... |
sumeq1i 15338 | Equality inference for sum... |
sumeq2i 15339 | Equality inference for sum... |
sumeq12i 15340 | Equality inference for sum... |
sumeq1d 15341 | Equality deduction for sum... |
sumeq2d 15342 | Equality deduction for sum... |
sumeq2dv 15343 | Equality deduction for sum... |
sumeq2sdv 15344 | Equality deduction for sum... |
2sumeq2dv 15345 | Equality deduction for dou... |
sumeq12dv 15346 | Equality deduction for sum... |
sumeq12rdv 15347 | Equality deduction for sum... |
sum2id 15348 | The second class argument ... |
sumfc 15349 | A lemma to facilitate conv... |
fz1f1o 15350 | A lemma for working with f... |
sumrblem 15351 | Lemma for ~ sumrb . (Cont... |
fsumcvg 15352 | The sequence of partial su... |
sumrb 15353 | Rebase the starting point ... |
summolem3 15354 | Lemma for ~ summo . (Cont... |
summolem2a 15355 | Lemma for ~ summo . (Cont... |
summolem2 15356 | Lemma for ~ summo . (Cont... |
summo 15357 | A sum has at most one limi... |
zsum 15358 | Series sum with index set ... |
isum 15359 | Series sum with an upper i... |
fsum 15360 | The value of a sum over a ... |
sum0 15361 | Any sum over the empty set... |
sumz 15362 | Any sum of zero over a sum... |
fsumf1o 15363 | Re-index a finite sum usin... |
sumss 15364 | Change the index set to a ... |
fsumss 15365 | Change the index set to a ... |
sumss2 15366 | Change the index set of a ... |
fsumcvg2 15367 | The sequence of partial su... |
fsumsers 15368 | Special case of series sum... |
fsumcvg3 15369 | A finite sum is convergent... |
fsumser 15370 | A finite sum expressed in ... |
fsumcl2lem 15371 | - Lemma for finite sum clo... |
fsumcllem 15372 | - Lemma for finite sum clo... |
fsumcl 15373 | Closure of a finite sum of... |
fsumrecl 15374 | Closure of a finite sum of... |
fsumzcl 15375 | Closure of a finite sum of... |
fsumnn0cl 15376 | Closure of a finite sum of... |
fsumrpcl 15377 | Closure of a finite sum of... |
fsumclf 15378 | Closure of a finite sum of... |
fsumzcl2 15379 | A finite sum with integer ... |
fsumadd 15380 | The sum of two finite sums... |
fsumsplit 15381 | Split a sum into two parts... |
fsumsplitf 15382 | Split a sum into two parts... |
sumsnf 15383 | A sum of a singleton is th... |
fsumsplitsn 15384 | Separate out a term in a f... |
fsumsplit1 15385 | Separate out a term in a f... |
sumsn 15386 | A sum of a singleton is th... |
fsum1 15387 | The finite sum of ` A ( k ... |
sumpr 15388 | A sum over a pair is the s... |
sumtp 15389 | A sum over a triple is the... |
sumsns 15390 | A sum of a singleton is th... |
fsumm1 15391 | Separate out the last term... |
fzosump1 15392 | Separate out the last term... |
fsum1p 15393 | Separate out the first ter... |
fsummsnunz 15394 | A finite sum all of whose ... |
fsumsplitsnun 15395 | Separate out a term in a f... |
fsump1 15396 | The addition of the next t... |
isumclim 15397 | An infinite sum equals the... |
isumclim2 15398 | A converging series conver... |
isumclim3 15399 | The sequence of partial fi... |
sumnul 15400 | The sum of a non-convergen... |
isumcl 15401 | The sum of a converging in... |
isummulc2 15402 | An infinite sum multiplied... |
isummulc1 15403 | An infinite sum multiplied... |
isumdivc 15404 | An infinite sum divided by... |
isumrecl 15405 | The sum of a converging in... |
isumge0 15406 | An infinite sum of nonnega... |
isumadd 15407 | Addition of infinite sums.... |
sumsplit 15408 | Split a sum into two parts... |
fsump1i 15409 | Optimized version of ~ fsu... |
fsum2dlem 15410 | Lemma for ~ fsum2d - induc... |
fsum2d 15411 | Write a double sum as a su... |
fsumxp 15412 | Combine two sums into a si... |
fsumcnv 15413 | Transform a region of summ... |
fsumcom2 15414 | Interchange order of summa... |
fsumcom 15415 | Interchange order of summa... |
fsum0diaglem 15416 | Lemma for ~ fsum0diag . (... |
fsum0diag 15417 | Two ways to express "the s... |
mptfzshft 15418 | 1-1 onto function in maps-... |
fsumrev 15419 | Reversal of a finite sum. ... |
fsumshft 15420 | Index shift of a finite su... |
fsumshftm 15421 | Negative index shift of a ... |
fsumrev2 15422 | Reversal of a finite sum. ... |
fsum0diag2 15423 | Two ways to express "the s... |
fsummulc2 15424 | A finite sum multiplied by... |
fsummulc1 15425 | A finite sum multiplied by... |
fsumdivc 15426 | A finite sum divided by a ... |
fsumneg 15427 | Negation of a finite sum. ... |
fsumsub 15428 | Split a finite sum over a ... |
fsum2mul 15429 | Separate the nested sum of... |
fsumconst 15430 | The sum of constant terms ... |
fsumdifsnconst 15431 | The sum of constant terms ... |
modfsummodslem1 15432 | Lemma 1 for ~ modfsummods ... |
modfsummods 15433 | Induction step for ~ modfs... |
modfsummod 15434 | A finite sum modulo a posi... |
fsumge0 15435 | If all of the terms of a f... |
fsumless 15436 | A shorter sum of nonnegati... |
fsumge1 15437 | A sum of nonnegative numbe... |
fsum00 15438 | A sum of nonnegative numbe... |
fsumle 15439 | If all of the terms of fin... |
fsumlt 15440 | If every term in one finit... |
fsumabs 15441 | Generalized triangle inequ... |
telfsumo 15442 | Sum of a telescoping serie... |
telfsumo2 15443 | Sum of a telescoping serie... |
telfsum 15444 | Sum of a telescoping serie... |
telfsum2 15445 | Sum of a telescoping serie... |
fsumparts 15446 | Summation by parts. (Cont... |
fsumrelem 15447 | Lemma for ~ fsumre , ~ fsu... |
fsumre 15448 | The real part of a sum. (... |
fsumim 15449 | The imaginary part of a su... |
fsumcj 15450 | The complex conjugate of a... |
fsumrlim 15451 | Limit of a finite sum of c... |
fsumo1 15452 | The finite sum of eventual... |
o1fsum 15453 | If ` A ( k ) ` is O(1), th... |
seqabs 15454 | Generalized triangle inequ... |
iserabs 15455 | Generalized triangle inequ... |
cvgcmp 15456 | A comparison test for conv... |
cvgcmpub 15457 | An upper bound for the lim... |
cvgcmpce 15458 | A comparison test for conv... |
abscvgcvg 15459 | An absolutely convergent s... |
climfsum 15460 | Limit of a finite sum of c... |
fsumiun 15461 | Sum over a disjoint indexe... |
hashiun 15462 | The cardinality of a disjo... |
hash2iun 15463 | The cardinality of a neste... |
hash2iun1dif1 15464 | The cardinality of a neste... |
hashrabrex 15465 | The number of elements in ... |
hashuni 15466 | The cardinality of a disjo... |
qshash 15467 | The cardinality of a set w... |
ackbijnn 15468 | Translate the Ackermann bi... |
binomlem 15469 | Lemma for ~ binom (binomia... |
binom 15470 | The binomial theorem: ` ( ... |
binom1p 15471 | Special case of the binomi... |
binom11 15472 | Special case of the binomi... |
binom1dif 15473 | A summation for the differ... |
bcxmaslem1 15474 | Lemma for ~ bcxmas . (Con... |
bcxmas 15475 | Parallel summation (Christ... |
incexclem 15476 | Lemma for ~ incexc . (Con... |
incexc 15477 | The inclusion/exclusion pr... |
incexc2 15478 | The inclusion/exclusion pr... |
isumshft 15479 | Index shift of an infinite... |
isumsplit 15480 | Split off the first ` N ` ... |
isum1p 15481 | The infinite sum of a conv... |
isumnn0nn 15482 | Sum from 0 to infinity in ... |
isumrpcl 15483 | The infinite sum of positi... |
isumle 15484 | Comparison of two infinite... |
isumless 15485 | A finite sum of nonnegativ... |
isumsup2 15486 | An infinite sum of nonnega... |
isumsup 15487 | An infinite sum of nonnega... |
isumltss 15488 | A partial sum of a series ... |
climcndslem1 15489 | Lemma for ~ climcnds : bou... |
climcndslem2 15490 | Lemma for ~ climcnds : bou... |
climcnds 15491 | The Cauchy condensation te... |
divrcnv 15492 | The sequence of reciprocal... |
divcnv 15493 | The sequence of reciprocal... |
flo1 15494 | The floor function satisfi... |
divcnvshft 15495 | Limit of a ratio function.... |
supcvg 15496 | Extract a sequence ` f ` i... |
infcvgaux1i 15497 | Auxiliary theorem for appl... |
infcvgaux2i 15498 | Auxiliary theorem for appl... |
harmonic 15499 | The harmonic series ` H ` ... |
arisum 15500 | Arithmetic series sum of t... |
arisum2 15501 | Arithmetic series sum of t... |
trireciplem 15502 | Lemma for ~ trirecip . Sh... |
trirecip 15503 | The sum of the reciprocals... |
expcnv 15504 | A sequence of powers of a ... |
explecnv 15505 | A sequence of terms conver... |
geoserg 15506 | The value of the finite ge... |
geoser 15507 | The value of the finite ge... |
pwdif 15508 | The difference of two numb... |
pwm1geoser 15509 | The n-th power of a number... |
geolim 15510 | The partial sums in the in... |
geolim2 15511 | The partial sums in the ge... |
georeclim 15512 | The limit of a geometric s... |
geo2sum 15513 | The value of the finite ge... |
geo2sum2 15514 | The value of the finite ge... |
geo2lim 15515 | The value of the infinite ... |
geomulcvg 15516 | The geometric series conve... |
geoisum 15517 | The infinite sum of ` 1 + ... |
geoisumr 15518 | The infinite sum of recipr... |
geoisum1 15519 | The infinite sum of ` A ^ ... |
geoisum1c 15520 | The infinite sum of ` A x.... |
0.999... 15521 | The recurring decimal 0.99... |
geoihalfsum 15522 | Prove that the infinite ge... |
cvgrat 15523 | Ratio test for convergence... |
mertenslem1 15524 | Lemma for ~ mertens . (Co... |
mertenslem2 15525 | Lemma for ~ mertens . (Co... |
mertens 15526 | Mertens' theorem. If ` A ... |
prodf 15527 | An infinite product of com... |
clim2prod 15528 | The limit of an infinite p... |
clim2div 15529 | The limit of an infinite p... |
prodfmul 15530 | The product of two infinit... |
prodf1 15531 | The value of the partial p... |
prodf1f 15532 | A one-valued infinite prod... |
prodfclim1 15533 | The constant one product c... |
prodfn0 15534 | No term of a nonzero infin... |
prodfrec 15535 | The reciprocal of an infin... |
prodfdiv 15536 | The quotient of two infini... |
ntrivcvg 15537 | A non-trivially converging... |
ntrivcvgn0 15538 | A product that converges t... |
ntrivcvgfvn0 15539 | Any value of a product seq... |
ntrivcvgtail 15540 | A tail of a non-trivially ... |
ntrivcvgmullem 15541 | Lemma for ~ ntrivcvgmul . ... |
ntrivcvgmul 15542 | The product of two non-tri... |
prodex 15545 | A product is a set. (Cont... |
prodeq1f 15546 | Equality theorem for a pro... |
prodeq1 15547 | Equality theorem for a pro... |
nfcprod1 15548 | Bound-variable hypothesis ... |
nfcprod 15549 | Bound-variable hypothesis ... |
prodeq2w 15550 | Equality theorem for produ... |
prodeq2ii 15551 | Equality theorem for produ... |
prodeq2 15552 | Equality theorem for produ... |
cbvprod 15553 | Change bound variable in a... |
cbvprodv 15554 | Change bound variable in a... |
cbvprodi 15555 | Change bound variable in a... |
prodeq1i 15556 | Equality inference for pro... |
prodeq2i 15557 | Equality inference for pro... |
prodeq12i 15558 | Equality inference for pro... |
prodeq1d 15559 | Equality deduction for pro... |
prodeq2d 15560 | Equality deduction for pro... |
prodeq2dv 15561 | Equality deduction for pro... |
prodeq2sdv 15562 | Equality deduction for pro... |
2cprodeq2dv 15563 | Equality deduction for dou... |
prodeq12dv 15564 | Equality deduction for pro... |
prodeq12rdv 15565 | Equality deduction for pro... |
prod2id 15566 | The second class argument ... |
prodrblem 15567 | Lemma for ~ prodrb . (Con... |
fprodcvg 15568 | The sequence of partial pr... |
prodrblem2 15569 | Lemma for ~ prodrb . (Con... |
prodrb 15570 | Rebase the starting point ... |
prodmolem3 15571 | Lemma for ~ prodmo . (Con... |
prodmolem2a 15572 | Lemma for ~ prodmo . (Con... |
prodmolem2 15573 | Lemma for ~ prodmo . (Con... |
prodmo 15574 | A product has at most one ... |
zprod 15575 | Series product with index ... |
iprod 15576 | Series product with an upp... |
zprodn0 15577 | Nonzero series product wit... |
iprodn0 15578 | Nonzero series product wit... |
fprod 15579 | The value of a product ove... |
fprodntriv 15580 | A non-triviality lemma for... |
prod0 15581 | A product over the empty s... |
prod1 15582 | Any product of one over a ... |
prodfc 15583 | A lemma to facilitate conv... |
fprodf1o 15584 | Re-index a finite product ... |
prodss 15585 | Change the index set to a ... |
fprodss 15586 | Change the index set to a ... |
fprodser 15587 | A finite product expressed... |
fprodcl2lem 15588 | Finite product closure lem... |
fprodcllem 15589 | Finite product closure lem... |
fprodcl 15590 | Closure of a finite produc... |
fprodrecl 15591 | Closure of a finite produc... |
fprodzcl 15592 | Closure of a finite produc... |
fprodnncl 15593 | Closure of a finite produc... |
fprodrpcl 15594 | Closure of a finite produc... |
fprodnn0cl 15595 | Closure of a finite produc... |
fprodcllemf 15596 | Finite product closure lem... |
fprodreclf 15597 | Closure of a finite produc... |
fprodmul 15598 | The product of two finite ... |
fproddiv 15599 | The quotient of two finite... |
prodsn 15600 | A product of a singleton i... |
fprod1 15601 | A finite product of only o... |
prodsnf 15602 | A product of a singleton i... |
climprod1 15603 | The limit of a product ove... |
fprodsplit 15604 | Split a finite product int... |
fprodm1 15605 | Separate out the last term... |
fprod1p 15606 | Separate out the first ter... |
fprodp1 15607 | Multiply in the last term ... |
fprodm1s 15608 | Separate out the last term... |
fprodp1s 15609 | Multiply in the last term ... |
prodsns 15610 | A product of the singleton... |
fprodfac 15611 | Factorial using product no... |
fprodabs 15612 | The absolute value of a fi... |
fprodeq0 15613 | Any finite product contain... |
fprodshft 15614 | Shift the index of a finit... |
fprodrev 15615 | Reversal of a finite produ... |
fprodconst 15616 | The product of constant te... |
fprodn0 15617 | A finite product of nonzer... |
fprod2dlem 15618 | Lemma for ~ fprod2d - indu... |
fprod2d 15619 | Write a double product as ... |
fprodxp 15620 | Combine two products into ... |
fprodcnv 15621 | Transform a product region... |
fprodcom2 15622 | Interchange order of multi... |
fprodcom 15623 | Interchange product order.... |
fprod0diag 15624 | Two ways to express "the p... |
fproddivf 15625 | The quotient of two finite... |
fprodsplitf 15626 | Split a finite product int... |
fprodsplitsn 15627 | Separate out a term in a f... |
fprodsplit1f 15628 | Separate out a term in a f... |
fprodn0f 15629 | A finite product of nonzer... |
fprodclf 15630 | Closure of a finite produc... |
fprodge0 15631 | If all the terms of a fini... |
fprodeq0g 15632 | Any finite product contain... |
fprodge1 15633 | If all of the terms of a f... |
fprodle 15634 | If all the terms of two fi... |
fprodmodd 15635 | If all factors of two fini... |
iprodclim 15636 | An infinite product equals... |
iprodclim2 15637 | A converging product conve... |
iprodclim3 15638 | The sequence of partial fi... |
iprodcl 15639 | The product of a non-trivi... |
iprodrecl 15640 | The product of a non-trivi... |
iprodmul 15641 | Multiplication of infinite... |
risefacval 15646 | The value of the rising fa... |
fallfacval 15647 | The value of the falling f... |
risefacval2 15648 | One-based value of rising ... |
fallfacval2 15649 | One-based value of falling... |
fallfacval3 15650 | A product representation o... |
risefaccllem 15651 | Lemma for rising factorial... |
fallfaccllem 15652 | Lemma for falling factoria... |
risefaccl 15653 | Closure law for rising fac... |
fallfaccl 15654 | Closure law for falling fa... |
rerisefaccl 15655 | Closure law for rising fac... |
refallfaccl 15656 | Closure law for falling fa... |
nnrisefaccl 15657 | Closure law for rising fac... |
zrisefaccl 15658 | Closure law for rising fac... |
zfallfaccl 15659 | Closure law for falling fa... |
nn0risefaccl 15660 | Closure law for rising fac... |
rprisefaccl 15661 | Closure law for rising fac... |
risefallfac 15662 | A relationship between ris... |
fallrisefac 15663 | A relationship between fal... |
risefall0lem 15664 | Lemma for ~ risefac0 and ~... |
risefac0 15665 | The value of the rising fa... |
fallfac0 15666 | The value of the falling f... |
risefacp1 15667 | The value of the rising fa... |
fallfacp1 15668 | The value of the falling f... |
risefacp1d 15669 | The value of the rising fa... |
fallfacp1d 15670 | The value of the falling f... |
risefac1 15671 | The value of rising factor... |
fallfac1 15672 | The value of falling facto... |
risefacfac 15673 | Relate rising factorial to... |
fallfacfwd 15674 | The forward difference of ... |
0fallfac 15675 | The value of the zero fall... |
0risefac 15676 | The value of the zero risi... |
binomfallfaclem1 15677 | Lemma for ~ binomfallfac .... |
binomfallfaclem2 15678 | Lemma for ~ binomfallfac .... |
binomfallfac 15679 | A version of the binomial ... |
binomrisefac 15680 | A version of the binomial ... |
fallfacval4 15681 | Represent the falling fact... |
bcfallfac 15682 | Binomial coefficient in te... |
fallfacfac 15683 | Relate falling factorial t... |
bpolylem 15686 | Lemma for ~ bpolyval . (C... |
bpolyval 15687 | The value of the Bernoulli... |
bpoly0 15688 | The value of the Bernoulli... |
bpoly1 15689 | The value of the Bernoulli... |
bpolycl 15690 | Closure law for Bernoulli ... |
bpolysum 15691 | A sum for Bernoulli polyno... |
bpolydiflem 15692 | Lemma for ~ bpolydif . (C... |
bpolydif 15693 | Calculate the difference b... |
fsumkthpow 15694 | A closed-form expression f... |
bpoly2 15695 | The Bernoulli polynomials ... |
bpoly3 15696 | The Bernoulli polynomials ... |
bpoly4 15697 | The Bernoulli polynomials ... |
fsumcube 15698 | Express the sum of cubes i... |
eftcl 15711 | Closure of a term in the s... |
reeftcl 15712 | The terms of the series ex... |
eftabs 15713 | The absolute value of a te... |
eftval 15714 | The value of a term in the... |
efcllem 15715 | Lemma for ~ efcl . The se... |
ef0lem 15716 | The series defining the ex... |
efval 15717 | Value of the exponential f... |
esum 15718 | Value of Euler's constant ... |
eff 15719 | Domain and codomain of the... |
efcl 15720 | Closure law for the expone... |
efval2 15721 | Value of the exponential f... |
efcvg 15722 | The series that defines th... |
efcvgfsum 15723 | Exponential function conve... |
reefcl 15724 | The exponential function i... |
reefcld 15725 | The exponential function i... |
ere 15726 | Euler's constant ` _e ` = ... |
ege2le3 15727 | Lemma for ~ egt2lt3 . (Co... |
ef0 15728 | Value of the exponential f... |
efcj 15729 | The exponential of a compl... |
efaddlem 15730 | Lemma for ~ efadd (exponen... |
efadd 15731 | Sum of exponents law for e... |
fprodefsum 15732 | Move the exponential funct... |
efcan 15733 | Cancellation law for expon... |
efne0 15734 | The exponential of a compl... |
efneg 15735 | The exponential of the opp... |
eff2 15736 | The exponential function m... |
efsub 15737 | Difference of exponents la... |
efexp 15738 | The exponential of an inte... |
efzval 15739 | Value of the exponential f... |
efgt0 15740 | The exponential of a real ... |
rpefcl 15741 | The exponential of a real ... |
rpefcld 15742 | The exponential of a real ... |
eftlcvg 15743 | The tail series of the exp... |
eftlcl 15744 | Closure of the sum of an i... |
reeftlcl 15745 | Closure of the sum of an i... |
eftlub 15746 | An upper bound on the abso... |
efsep 15747 | Separate out the next term... |
effsumlt 15748 | The partial sums of the se... |
eft0val 15749 | The value of the first ter... |
ef4p 15750 | Separate out the first fou... |
efgt1p2 15751 | The exponential of a posit... |
efgt1p 15752 | The exponential of a posit... |
efgt1 15753 | The exponential of a posit... |
eflt 15754 | The exponential function o... |
efle 15755 | The exponential function o... |
reef11 15756 | The exponential function o... |
reeff1 15757 | The exponential function m... |
eflegeo 15758 | The exponential function o... |
sinval 15759 | Value of the sine function... |
cosval 15760 | Value of the cosine functi... |
sinf 15761 | Domain and codomain of the... |
cosf 15762 | Domain and codomain of the... |
sincl 15763 | Closure of the sine functi... |
coscl 15764 | Closure of the cosine func... |
tanval 15765 | Value of the tangent funct... |
tancl 15766 | The closure of the tangent... |
sincld 15767 | Closure of the sine functi... |
coscld 15768 | Closure of the cosine func... |
tancld 15769 | Closure of the tangent fun... |
tanval2 15770 | Express the tangent functi... |
tanval3 15771 | Express the tangent functi... |
resinval 15772 | The sine of a real number ... |
recosval 15773 | The cosine of a real numbe... |
efi4p 15774 | Separate out the first fou... |
resin4p 15775 | Separate out the first fou... |
recos4p 15776 | Separate out the first fou... |
resincl 15777 | The sine of a real number ... |
recoscl 15778 | The cosine of a real numbe... |
retancl 15779 | The closure of the tangent... |
resincld 15780 | Closure of the sine functi... |
recoscld 15781 | Closure of the cosine func... |
retancld 15782 | Closure of the tangent fun... |
sinneg 15783 | The sine of a negative is ... |
cosneg 15784 | The cosines of a number an... |
tanneg 15785 | The tangent of a negative ... |
sin0 15786 | Value of the sine function... |
cos0 15787 | Value of the cosine functi... |
tan0 15788 | The value of the tangent f... |
efival 15789 | The exponential function i... |
efmival 15790 | The exponential function i... |
sinhval 15791 | Value of the hyperbolic si... |
coshval 15792 | Value of the hyperbolic co... |
resinhcl 15793 | The hyperbolic sine of a r... |
rpcoshcl 15794 | The hyperbolic cosine of a... |
recoshcl 15795 | The hyperbolic cosine of a... |
retanhcl 15796 | The hyperbolic tangent of ... |
tanhlt1 15797 | The hyperbolic tangent of ... |
tanhbnd 15798 | The hyperbolic tangent of ... |
efeul 15799 | Eulerian representation of... |
efieq 15800 | The exponentials of two im... |
sinadd 15801 | Addition formula for sine.... |
cosadd 15802 | Addition formula for cosin... |
tanaddlem 15803 | A useful intermediate step... |
tanadd 15804 | Addition formula for tange... |
sinsub 15805 | Sine of difference. (Cont... |
cossub 15806 | Cosine of difference. (Co... |
addsin 15807 | Sum of sines. (Contribute... |
subsin 15808 | Difference of sines. (Con... |
sinmul 15809 | Product of sines can be re... |
cosmul 15810 | Product of cosines can be ... |
addcos 15811 | Sum of cosines. (Contribu... |
subcos 15812 | Difference of cosines. (C... |
sincossq 15813 | Sine squared plus cosine s... |
sin2t 15814 | Double-angle formula for s... |
cos2t 15815 | Double-angle formula for c... |
cos2tsin 15816 | Double-angle formula for c... |
sinbnd 15817 | The sine of a real number ... |
cosbnd 15818 | The cosine of a real numbe... |
sinbnd2 15819 | The sine of a real number ... |
cosbnd2 15820 | The cosine of a real numbe... |
ef01bndlem 15821 | Lemma for ~ sin01bnd and ~... |
sin01bnd 15822 | Bounds on the sine of a po... |
cos01bnd 15823 | Bounds on the cosine of a ... |
cos1bnd 15824 | Bounds on the cosine of 1.... |
cos2bnd 15825 | Bounds on the cosine of 2.... |
sinltx 15826 | The sine of a positive rea... |
sin01gt0 15827 | The sine of a positive rea... |
cos01gt0 15828 | The cosine of a positive r... |
sin02gt0 15829 | The sine of a positive rea... |
sincos1sgn 15830 | The signs of the sine and ... |
sincos2sgn 15831 | The signs of the sine and ... |
sin4lt0 15832 | The sine of 4 is negative.... |
absefi 15833 | The absolute value of the ... |
absef 15834 | The absolute value of the ... |
absefib 15835 | A complex number is real i... |
efieq1re 15836 | A number whose imaginary e... |
demoivre 15837 | De Moivre's Formula. Proo... |
demoivreALT 15838 | Alternate proof of ~ demoi... |
eirrlem 15841 | Lemma for ~ eirr . (Contr... |
eirr 15842 | ` _e ` is irrational. (Co... |
egt2lt3 15843 | Euler's constant ` _e ` = ... |
epos 15844 | Euler's constant ` _e ` is... |
epr 15845 | Euler's constant ` _e ` is... |
ene0 15846 | ` _e ` is not 0. (Contrib... |
ene1 15847 | ` _e ` is not 1. (Contrib... |
xpnnen 15848 | The Cartesian product of t... |
znnen 15849 | The set of integers and th... |
qnnen 15850 | The rational numbers are c... |
rpnnen2lem1 15851 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem2 15852 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem3 15853 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem4 15854 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem5 15855 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem6 15856 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem7 15857 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem8 15858 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem9 15859 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem10 15860 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem11 15861 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2lem12 15862 | Lemma for ~ rpnnen2 . (Co... |
rpnnen2 15863 | The other half of ~ rpnnen... |
rpnnen 15864 | The cardinality of the con... |
rexpen 15865 | The real numbers are equin... |
cpnnen 15866 | The complex numbers are eq... |
rucALT 15867 | Alternate proof of ~ ruc .... |
ruclem1 15868 | Lemma for ~ ruc (the reals... |
ruclem2 15869 | Lemma for ~ ruc . Orderin... |
ruclem3 15870 | Lemma for ~ ruc . The con... |
ruclem4 15871 | Lemma for ~ ruc . Initial... |
ruclem6 15872 | Lemma for ~ ruc . Domain ... |
ruclem7 15873 | Lemma for ~ ruc . Success... |
ruclem8 15874 | Lemma for ~ ruc . The int... |
ruclem9 15875 | Lemma for ~ ruc . The fir... |
ruclem10 15876 | Lemma for ~ ruc . Every f... |
ruclem11 15877 | Lemma for ~ ruc . Closure... |
ruclem12 15878 | Lemma for ~ ruc . The sup... |
ruclem13 15879 | Lemma for ~ ruc . There i... |
ruc 15880 | The set of positive intege... |
resdomq 15881 | The set of rationals is st... |
aleph1re 15882 | There are at least aleph-o... |
aleph1irr 15883 | There are at least aleph-o... |
cnso 15884 | The complex numbers can be... |
sqrt2irrlem 15885 | Lemma for ~ sqrt2irr . Th... |
sqrt2irr 15886 | The square root of 2 is ir... |
sqrt2re 15887 | The square root of 2 exist... |
sqrt2irr0 15888 | The square root of 2 is an... |
nthruc 15889 | The sequence ` NN ` , ` ZZ... |
nthruz 15890 | The sequence ` NN ` , ` NN... |
divides 15893 | Define the divides relatio... |
dvdsval2 15894 | One nonzero integer divide... |
dvdsval3 15895 | One nonzero integer divide... |
dvdszrcl 15896 | Reverse closure for the di... |
dvdsmod0 15897 | If a positive integer divi... |
p1modz1 15898 | If a number greater than 1... |
dvdsmodexp 15899 | If a positive integer divi... |
nndivdvds 15900 | Strong form of ~ dvdsval2 ... |
nndivides 15901 | Definition of the divides ... |
moddvds 15902 | Two ways to say ` A == B `... |
modm1div 15903 | An integer greater than on... |
dvds0lem 15904 | A lemma to assist theorems... |
dvds1lem 15905 | A lemma to assist theorems... |
dvds2lem 15906 | A lemma to assist theorems... |
iddvds 15907 | An integer divides itself.... |
1dvds 15908 | 1 divides any integer. Th... |
dvds0 15909 | Any integer divides 0. Th... |
negdvdsb 15910 | An integer divides another... |
dvdsnegb 15911 | An integer divides another... |
absdvdsb 15912 | An integer divides another... |
dvdsabsb 15913 | An integer divides another... |
0dvds 15914 | Only 0 is divisible by 0. ... |
dvdsmul1 15915 | An integer divides a multi... |
dvdsmul2 15916 | An integer divides a multi... |
iddvdsexp 15917 | An integer divides a posit... |
muldvds1 15918 | If a product divides an in... |
muldvds2 15919 | If a product divides an in... |
dvdscmul 15920 | Multiplication by a consta... |
dvdsmulc 15921 | Multiplication by a consta... |
dvdscmulr 15922 | Cancellation law for the d... |
dvdsmulcr 15923 | Cancellation law for the d... |
summodnegmod 15924 | The sum of two integers mo... |
modmulconst 15925 | Constant multiplication in... |
dvds2ln 15926 | If an integer divides each... |
dvds2add 15927 | If an integer divides each... |
dvds2sub 15928 | If an integer divides each... |
dvds2addd 15929 | Deduction form of ~ dvds2a... |
dvds2subd 15930 | Deduction form of ~ dvds2s... |
dvdstr 15931 | The divides relation is tr... |
dvdstrd 15932 | The divides relation is tr... |
dvdsmultr1 15933 | If an integer divides anot... |
dvdsmultr1d 15934 | Deduction form of ~ dvdsmu... |
dvdsmultr2 15935 | If an integer divides anot... |
dvdsmultr2d 15936 | Deduction form of ~ dvdsmu... |
ordvdsmul 15937 | If an integer divides eith... |
dvdssub2 15938 | If an integer divides a di... |
dvdsadd 15939 | An integer divides another... |
dvdsaddr 15940 | An integer divides another... |
dvdssub 15941 | An integer divides another... |
dvdssubr 15942 | An integer divides another... |
dvdsadd2b 15943 | Adding a multiple of the b... |
dvdsaddre2b 15944 | Adding a multiple of the b... |
fsumdvds 15945 | If every term in a sum is ... |
dvdslelem 15946 | Lemma for ~ dvdsle . (Con... |
dvdsle 15947 | The divisors of a positive... |
dvdsleabs 15948 | The divisors of a nonzero ... |
dvdsleabs2 15949 | Transfer divisibility to a... |
dvdsabseq 15950 | If two integers divide eac... |
dvdseq 15951 | If two nonnegative integer... |
divconjdvds 15952 | If a nonzero integer ` M `... |
dvdsdivcl 15953 | The complement of a diviso... |
dvdsflip 15954 | An involution of the divis... |
dvdsssfz1 15955 | The set of divisors of a n... |
dvds1 15956 | The only nonnegative integ... |
alzdvds 15957 | Only 0 is divisible by all... |
dvdsext 15958 | Poset extensionality for d... |
fzm1ndvds 15959 | No number between ` 1 ` an... |
fzo0dvdseq 15960 | Zero is the only one of th... |
fzocongeq 15961 | Two different elements of ... |
addmodlteqALT 15962 | Two nonnegative integers l... |
dvdsfac 15963 | A positive integer divides... |
dvdsexp2im 15964 | If an integer divides anot... |
dvdsexp 15965 | A power divides a power wi... |
dvdsmod 15966 | Any number ` K ` whose mod... |
mulmoddvds 15967 | If an integer is divisible... |
3dvds 15968 | A rule for divisibility by... |
3dvdsdec 15969 | A decimal number is divisi... |
3dvds2dec 15970 | A decimal number is divisi... |
fprodfvdvdsd 15971 | A finite product of intege... |
fproddvdsd 15972 | A finite product of intege... |
evenelz 15973 | An even number is an integ... |
zeo3 15974 | An integer is even or odd.... |
zeo4 15975 | An integer is even or odd ... |
zeneo 15976 | No even integer equals an ... |
odd2np1lem 15977 | Lemma for ~ odd2np1 . (Co... |
odd2np1 15978 | An integer is odd iff it i... |
even2n 15979 | An integer is even iff it ... |
oddm1even 15980 | An integer is odd iff its ... |
oddp1even 15981 | An integer is odd iff its ... |
oexpneg 15982 | The exponential of the neg... |
mod2eq0even 15983 | An integer is 0 modulo 2 i... |
mod2eq1n2dvds 15984 | An integer is 1 modulo 2 i... |
oddnn02np1 15985 | A nonnegative integer is o... |
oddge22np1 15986 | An integer greater than on... |
evennn02n 15987 | A nonnegative integer is e... |
evennn2n 15988 | A positive integer is even... |
2tp1odd 15989 | A number which is twice an... |
mulsucdiv2z 15990 | An integer multiplied with... |
sqoddm1div8z 15991 | A squared odd number minus... |
2teven 15992 | A number which is twice an... |
zeo5 15993 | An integer is either even ... |
evend2 15994 | An integer is even iff its... |
oddp1d2 15995 | An integer is odd iff its ... |
zob 15996 | Alternate characterization... |
oddm1d2 15997 | An integer is odd iff its ... |
ltoddhalfle 15998 | An integer is less than ha... |
halfleoddlt 15999 | An integer is greater than... |
opoe 16000 | The sum of two odds is eve... |
omoe 16001 | The difference of two odds... |
opeo 16002 | The sum of an odd and an e... |
omeo 16003 | The difference of an odd a... |
z0even 16004 | 2 divides 0. That means 0... |
n2dvds1 16005 | 2 does not divide 1. That... |
n2dvdsm1 16006 | 2 does not divide -1. Tha... |
z2even 16007 | 2 divides 2. That means 2... |
n2dvds3 16008 | 2 does not divide 3. That... |
z4even 16009 | 2 divides 4. That means 4... |
4dvdseven 16010 | An integer which is divisi... |
m1expe 16011 | Exponentiation of -1 by an... |
m1expo 16012 | Exponentiation of -1 by an... |
m1exp1 16013 | Exponentiation of negative... |
nn0enne 16014 | A positive integer is an e... |
nn0ehalf 16015 | The half of an even nonneg... |
nnehalf 16016 | The half of an even positi... |
nn0onn 16017 | An odd nonnegative integer... |
nn0o1gt2 16018 | An odd nonnegative integer... |
nno 16019 | An alternate characterizat... |
nn0o 16020 | An alternate characterizat... |
nn0ob 16021 | Alternate characterization... |
nn0oddm1d2 16022 | A positive integer is odd ... |
nnoddm1d2 16023 | A positive integer is odd ... |
sumeven 16024 | If every term in a sum is ... |
sumodd 16025 | If every term in a sum is ... |
evensumodd 16026 | If every term in a sum wit... |
oddsumodd 16027 | If every term in a sum wit... |
pwp1fsum 16028 | The n-th power of a number... |
oddpwp1fsum 16029 | An odd power of a number i... |
divalglem0 16030 | Lemma for ~ divalg . (Con... |
divalglem1 16031 | Lemma for ~ divalg . (Con... |
divalglem2 16032 | Lemma for ~ divalg . (Con... |
divalglem4 16033 | Lemma for ~ divalg . (Con... |
divalglem5 16034 | Lemma for ~ divalg . (Con... |
divalglem6 16035 | Lemma for ~ divalg . (Con... |
divalglem7 16036 | Lemma for ~ divalg . (Con... |
divalglem8 16037 | Lemma for ~ divalg . (Con... |
divalglem9 16038 | Lemma for ~ divalg . (Con... |
divalglem10 16039 | Lemma for ~ divalg . (Con... |
divalg 16040 | The division algorithm (th... |
divalgb 16041 | Express the division algor... |
divalg2 16042 | The division algorithm (th... |
divalgmod 16043 | The result of the ` mod ` ... |
divalgmodcl 16044 | The result of the ` mod ` ... |
modremain 16045 | The result of the modulo o... |
ndvdssub 16046 | Corollary of the division ... |
ndvdsadd 16047 | Corollary of the division ... |
ndvdsp1 16048 | Special case of ~ ndvdsadd... |
ndvdsi 16049 | A quick test for non-divis... |
flodddiv4 16050 | The floor of an odd intege... |
fldivndvdslt 16051 | The floor of an integer di... |
flodddiv4lt 16052 | The floor of an odd number... |
flodddiv4t2lthalf 16053 | The floor of an odd number... |
bitsfval 16058 | Expand the definition of t... |
bitsval 16059 | Expand the definition of t... |
bitsval2 16060 | Expand the definition of t... |
bitsss 16061 | The set of bits of an inte... |
bitsf 16062 | The ` bits ` function is a... |
bits0 16063 | Value of the zeroth bit. ... |
bits0e 16064 | The zeroth bit of an even ... |
bits0o 16065 | The zeroth bit of an odd n... |
bitsp1 16066 | The ` M + 1 ` -th bit of `... |
bitsp1e 16067 | The ` M + 1 ` -th bit of `... |
bitsp1o 16068 | The ` M + 1 ` -th bit of `... |
bitsfzolem 16069 | Lemma for ~ bitsfzo . (Co... |
bitsfzo 16070 | The bits of a number are a... |
bitsmod 16071 | Truncating the bit sequenc... |
bitsfi 16072 | Every number is associated... |
bitscmp 16073 | The bit complement of ` N ... |
0bits 16074 | The bits of zero. (Contri... |
m1bits 16075 | The bits of negative one. ... |
bitsinv1lem 16076 | Lemma for ~ bitsinv1 . (C... |
bitsinv1 16077 | There is an explicit inver... |
bitsinv2 16078 | There is an explicit inver... |
bitsf1ocnv 16079 | The ` bits ` function rest... |
bitsf1o 16080 | The ` bits ` function rest... |
bitsf1 16081 | The ` bits ` function is a... |
2ebits 16082 | The bits of a power of two... |
bitsinv 16083 | The inverse of the ` bits ... |
bitsinvp1 16084 | Recursive definition of th... |
sadadd2lem2 16085 | The core of the proof of ~... |
sadfval 16087 | Define the addition of two... |
sadcf 16088 | The carry sequence is a se... |
sadc0 16089 | The initial element of the... |
sadcp1 16090 | The carry sequence (which ... |
sadval 16091 | The full adder sequence is... |
sadcaddlem 16092 | Lemma for ~ sadcadd . (Co... |
sadcadd 16093 | Non-recursive definition o... |
sadadd2lem 16094 | Lemma for ~ sadadd2 . (Co... |
sadadd2 16095 | Sum of initial segments of... |
sadadd3 16096 | Sum of initial segments of... |
sadcl 16097 | The sum of two sequences i... |
sadcom 16098 | The adder sequence functio... |
saddisjlem 16099 | Lemma for ~ sadadd . (Con... |
saddisj 16100 | The sum of disjoint sequen... |
sadaddlem 16101 | Lemma for ~ sadadd . (Con... |
sadadd 16102 | For sequences that corresp... |
sadid1 16103 | The adder sequence functio... |
sadid2 16104 | The adder sequence functio... |
sadasslem 16105 | Lemma for ~ sadass . (Con... |
sadass 16106 | Sequence addition is assoc... |
sadeq 16107 | Any element of a sequence ... |
bitsres 16108 | Restrict the bits of a num... |
bitsuz 16109 | The bits of a number are a... |
bitsshft 16110 | Shifting a bit sequence to... |
smufval 16112 | The multiplication of two ... |
smupf 16113 | The sequence of partial su... |
smup0 16114 | The initial element of the... |
smupp1 16115 | The initial element of the... |
smuval 16116 | Define the addition of two... |
smuval2 16117 | The partial sum sequence s... |
smupvallem 16118 | If ` A ` only has elements... |
smucl 16119 | The product of two sequenc... |
smu01lem 16120 | Lemma for ~ smu01 and ~ sm... |
smu01 16121 | Multiplication of a sequen... |
smu02 16122 | Multiplication of a sequen... |
smupval 16123 | Rewrite the elements of th... |
smup1 16124 | Rewrite ~ smupp1 using onl... |
smueqlem 16125 | Any element of a sequence ... |
smueq 16126 | Any element of a sequence ... |
smumullem 16127 | Lemma for ~ smumul . (Con... |
smumul 16128 | For sequences that corresp... |
gcdval 16131 | The value of the ` gcd ` o... |
gcd0val 16132 | The value, by convention, ... |
gcdn0val 16133 | The value of the ` gcd ` o... |
gcdcllem1 16134 | Lemma for ~ gcdn0cl , ~ gc... |
gcdcllem2 16135 | Lemma for ~ gcdn0cl , ~ gc... |
gcdcllem3 16136 | Lemma for ~ gcdn0cl , ~ gc... |
gcdn0cl 16137 | Closure of the ` gcd ` ope... |
gcddvds 16138 | The gcd of two integers di... |
dvdslegcd 16139 | An integer which divides b... |
nndvdslegcd 16140 | A positive integer which d... |
gcdcl 16141 | Closure of the ` gcd ` ope... |
gcdnncl 16142 | Closure of the ` gcd ` ope... |
gcdcld 16143 | Closure of the ` gcd ` ope... |
gcd2n0cl 16144 | Closure of the ` gcd ` ope... |
zeqzmulgcd 16145 | An integer is the product ... |
divgcdz 16146 | An integer divided by the ... |
gcdf 16147 | Domain and codomain of the... |
gcdcom 16148 | The ` gcd ` operator is co... |
gcdcomd 16149 | The ` gcd ` operator is co... |
divgcdnn 16150 | A positive integer divided... |
divgcdnnr 16151 | A positive integer divided... |
gcdeq0 16152 | The gcd of two integers is... |
gcdn0gt0 16153 | The gcd of two integers is... |
gcd0id 16154 | The gcd of 0 and an intege... |
gcdid0 16155 | The gcd of an integer and ... |
nn0gcdid0 16156 | The gcd of a nonnegative i... |
gcdneg 16157 | Negating one operand of th... |
neggcd 16158 | Negating one operand of th... |
gcdaddmlem 16159 | Lemma for ~ gcdaddm . (Co... |
gcdaddm 16160 | Adding a multiple of one o... |
gcdadd 16161 | The GCD of two numbers is ... |
gcdid 16162 | The gcd of a number and it... |
gcd1 16163 | The gcd of a number with 1... |
gcdabs1 16164 | ` gcd ` of the absolute va... |
gcdabs2 16165 | ` gcd ` of the absolute va... |
gcdabs 16166 | The gcd of two integers is... |
gcdabsOLD 16167 | Obsolete version of ~ gcda... |
modgcd 16168 | The gcd remains unchanged ... |
1gcd 16169 | The GCD of one and an inte... |
gcdmultipled 16170 | The greatest common diviso... |
gcdmultiplez 16171 | The GCD of a multiple of a... |
gcdmultiple 16172 | The GCD of a multiple of a... |
dvdsgcdidd 16173 | The greatest common diviso... |
6gcd4e2 16174 | The greatest common diviso... |
bezoutlem1 16175 | Lemma for ~ bezout . (Con... |
bezoutlem2 16176 | Lemma for ~ bezout . (Con... |
bezoutlem3 16177 | Lemma for ~ bezout . (Con... |
bezoutlem4 16178 | Lemma for ~ bezout . (Con... |
bezout 16179 | Bézout's identity: ... |
dvdsgcd 16180 | An integer which divides e... |
dvdsgcdb 16181 | Biconditional form of ~ dv... |
dfgcd2 16182 | Alternate definition of th... |
gcdass 16183 | Associative law for ` gcd ... |
mulgcd 16184 | Distribute multiplication ... |
absmulgcd 16185 | Distribute absolute value ... |
mulgcdr 16186 | Reverse distribution law f... |
gcddiv 16187 | Division law for GCD. (Con... |
gcdmultipleOLD 16188 | Obsolete proof of ~ gcdmul... |
gcdmultiplezOLD 16189 | Obsolete proof of ~ gcdmul... |
gcdzeq 16190 | A positive integer ` A ` i... |
gcdeq 16191 | ` A ` is equal to its gcd ... |
dvdssqim 16192 | Unidirectional form of ~ d... |
dvdsmulgcd 16193 | A divisibility equivalent ... |
rpmulgcd 16194 | If ` K ` and ` M ` are rel... |
rplpwr 16195 | If ` A ` and ` B ` are rel... |
rprpwr 16196 | If ` A ` and ` B ` are rel... |
rppwr 16197 | If ` A ` and ` B ` are rel... |
sqgcd 16198 | Square distributes over gc... |
dvdssqlem 16199 | Lemma for ~ dvdssq . (Con... |
dvdssq 16200 | Two numbers are divisible ... |
bezoutr 16201 | Partial converse to ~ bezo... |
bezoutr1 16202 | Converse of ~ bezout for w... |
nn0seqcvgd 16203 | A strictly-decreasing nonn... |
seq1st 16204 | A sequence whose iteration... |
algr0 16205 | The value of the algorithm... |
algrf 16206 | An algorithm is a step fun... |
algrp1 16207 | The value of the algorithm... |
alginv 16208 | If ` I ` is an invariant o... |
algcvg 16209 | One way to prove that an a... |
algcvgblem 16210 | Lemma for ~ algcvgb . (Co... |
algcvgb 16211 | Two ways of expressing tha... |
algcvga 16212 | The countdown function ` C... |
algfx 16213 | If ` F ` reaches a fixed p... |
eucalgval2 16214 | The value of the step func... |
eucalgval 16215 | Euclid's Algorithm ~ eucal... |
eucalgf 16216 | Domain and codomain of the... |
eucalginv 16217 | The invariant of the step ... |
eucalglt 16218 | The second member of the s... |
eucalgcvga 16219 | Once Euclid's Algorithm ha... |
eucalg 16220 | Euclid's Algorithm compute... |
lcmval 16225 | Value of the ` lcm ` opera... |
lcmcom 16226 | The ` lcm ` operator is co... |
lcm0val 16227 | The value, by convention, ... |
lcmn0val 16228 | The value of the ` lcm ` o... |
lcmcllem 16229 | Lemma for ~ lcmn0cl and ~ ... |
lcmn0cl 16230 | Closure of the ` lcm ` ope... |
dvdslcm 16231 | The lcm of two integers is... |
lcmledvds 16232 | A positive integer which b... |
lcmeq0 16233 | The lcm of two integers is... |
lcmcl 16234 | Closure of the ` lcm ` ope... |
gcddvdslcm 16235 | The greatest common diviso... |
lcmneg 16236 | Negating one operand of th... |
neglcm 16237 | Negating one operand of th... |
lcmabs 16238 | The lcm of two integers is... |
lcmgcdlem 16239 | Lemma for ~ lcmgcd and ~ l... |
lcmgcd 16240 | The product of two numbers... |
lcmdvds 16241 | The lcm of two integers di... |
lcmid 16242 | The lcm of an integer and ... |
lcm1 16243 | The lcm of an integer and ... |
lcmgcdnn 16244 | The product of two positiv... |
lcmgcdeq 16245 | Two integers' absolute val... |
lcmdvdsb 16246 | Biconditional form of ~ lc... |
lcmass 16247 | Associative law for ` lcm ... |
3lcm2e6woprm 16248 | The least common multiple ... |
6lcm4e12 16249 | The least common multiple ... |
absproddvds 16250 | The absolute value of the ... |
absprodnn 16251 | The absolute value of the ... |
fissn0dvds 16252 | For each finite subset of ... |
fissn0dvdsn0 16253 | For each finite subset of ... |
lcmfval 16254 | Value of the ` _lcm ` func... |
lcmf0val 16255 | The value, by convention, ... |
lcmfn0val 16256 | The value of the ` _lcm ` ... |
lcmfnnval 16257 | The value of the ` _lcm ` ... |
lcmfcllem 16258 | Lemma for ~ lcmfn0cl and ~... |
lcmfn0cl 16259 | Closure of the ` _lcm ` fu... |
lcmfpr 16260 | The value of the ` _lcm ` ... |
lcmfcl 16261 | Closure of the ` _lcm ` fu... |
lcmfnncl 16262 | Closure of the ` _lcm ` fu... |
lcmfeq0b 16263 | The least common multiple ... |
dvdslcmf 16264 | The least common multiple ... |
lcmfledvds 16265 | A positive integer which i... |
lcmf 16266 | Characterization of the le... |
lcmf0 16267 | The least common multiple ... |
lcmfsn 16268 | The least common multiple ... |
lcmftp 16269 | The least common multiple ... |
lcmfunsnlem1 16270 | Lemma for ~ lcmfdvds and ~... |
lcmfunsnlem2lem1 16271 | Lemma 1 for ~ lcmfunsnlem2... |
lcmfunsnlem2lem2 16272 | Lemma 2 for ~ lcmfunsnlem2... |
lcmfunsnlem2 16273 | Lemma for ~ lcmfunsn and ~... |
lcmfunsnlem 16274 | Lemma for ~ lcmfdvds and ~... |
lcmfdvds 16275 | The least common multiple ... |
lcmfdvdsb 16276 | Biconditional form of ~ lc... |
lcmfunsn 16277 | The ` _lcm ` function for ... |
lcmfun 16278 | The ` _lcm ` function for ... |
lcmfass 16279 | Associative law for the ` ... |
lcmf2a3a4e12 16280 | The least common multiple ... |
lcmflefac 16281 | The least common multiple ... |
coprmgcdb 16282 | Two positive integers are ... |
ncoprmgcdne1b 16283 | Two positive integers are ... |
ncoprmgcdgt1b 16284 | Two positive integers are ... |
coprmdvds1 16285 | If two positive integers a... |
coprmdvds 16286 | Euclid's Lemma (see ProofW... |
coprmdvds2 16287 | If an integer is divisible... |
mulgcddvds 16288 | One half of ~ rpmulgcd2 , ... |
rpmulgcd2 16289 | If ` M ` is relatively pri... |
qredeq 16290 | Two equal reduced fraction... |
qredeu 16291 | Every rational number has ... |
rpmul 16292 | If ` K ` is relatively pri... |
rpdvds 16293 | If ` K ` is relatively pri... |
coprmprod 16294 | The product of the element... |
coprmproddvdslem 16295 | Lemma for ~ coprmproddvds ... |
coprmproddvds 16296 | If a positive integer is d... |
congr 16297 | Definition of congruence b... |
divgcdcoprm0 16298 | Integers divided by gcd ar... |
divgcdcoprmex 16299 | Integers divided by gcd ar... |
cncongr1 16300 | One direction of the bicon... |
cncongr2 16301 | The other direction of the... |
cncongr 16302 | Cancellability of Congruen... |
cncongrcoprm 16303 | Corollary 1 of Cancellabil... |
isprm 16306 | The predicate "is a prime ... |
prmnn 16307 | A prime number is a positi... |
prmz 16308 | A prime number is an integ... |
prmssnn 16309 | The prime numbers are a su... |
prmex 16310 | The set of prime numbers e... |
0nprm 16311 | 0 is not a prime number. ... |
1nprm 16312 | 1 is not a prime number. ... |
1idssfct 16313 | The positive divisors of a... |
isprm2lem 16314 | Lemma for ~ isprm2 . (Con... |
isprm2 16315 | The predicate "is a prime ... |
isprm3 16316 | The predicate "is a prime ... |
isprm4 16317 | The predicate "is a prime ... |
prmind2 16318 | A variation on ~ prmind as... |
prmind 16319 | Perform induction over the... |
dvdsprime 16320 | If ` M ` divides a prime, ... |
nprm 16321 | A product of two integers ... |
nprmi 16322 | An inference for composite... |
dvdsnprmd 16323 | If a number is divisible b... |
prm2orodd 16324 | A prime number is either 2... |
2prm 16325 | 2 is a prime number. (Con... |
2mulprm 16326 | A multiple of two is prime... |
3prm 16327 | 3 is a prime number. (Con... |
4nprm 16328 | 4 is not a prime number. ... |
prmuz2 16329 | A prime number is an integ... |
prmgt1 16330 | A prime number is an integ... |
prmm2nn0 16331 | Subtracting 2 from a prime... |
oddprmgt2 16332 | An odd prime is greater th... |
oddprmge3 16333 | An odd prime is greater th... |
ge2nprmge4 16334 | A composite integer greate... |
sqnprm 16335 | A square is never prime. ... |
dvdsprm 16336 | An integer greater than or... |
exprmfct 16337 | Every integer greater than... |
prmdvdsfz 16338 | Each integer greater than ... |
nprmdvds1 16339 | No prime number divides 1.... |
isprm5 16340 | One need only check prime ... |
isprm7 16341 | One need only check prime ... |
maxprmfct 16342 | The set of prime factors o... |
divgcdodd 16343 | Either ` A / ( A gcd B ) `... |
coprm 16344 | A prime number either divi... |
prmrp 16345 | Unequal prime numbers are ... |
euclemma 16346 | Euclid's lemma. A prime n... |
isprm6 16347 | A number is prime iff it s... |
prmdvdsexp 16348 | A prime divides a positive... |
prmdvdsexpb 16349 | A prime divides a positive... |
prmdvdsexpr 16350 | If a prime divides a nonne... |
prmdvdssq 16351 | Condition for a prime divi... |
prmdvdssqOLD 16352 | Obsolete version of ~ prmd... |
prmexpb 16353 | Two positive prime powers ... |
prmfac1 16354 | The factorial of a number ... |
rpexp 16355 | If two numbers ` A ` and `... |
rpexp1i 16356 | Relative primality passes ... |
rpexp12i 16357 | Relative primality passes ... |
prmndvdsfaclt 16358 | A prime number does not di... |
prmdvdsncoprmbd 16359 | Two positive integers are ... |
ncoprmlnprm 16360 | If two positive integers a... |
cncongrprm 16361 | Corollary 2 of Cancellabil... |
isevengcd2 16362 | The predicate "is an even ... |
isoddgcd1 16363 | The predicate "is an odd n... |
3lcm2e6 16364 | The least common multiple ... |
qnumval 16369 | Value of the canonical num... |
qdenval 16370 | Value of the canonical den... |
qnumdencl 16371 | Lemma for ~ qnumcl and ~ q... |
qnumcl 16372 | The canonical numerator of... |
qdencl 16373 | The canonical denominator ... |
fnum 16374 | Canonical numerator define... |
fden 16375 | Canonical denominator defi... |
qnumdenbi 16376 | Two numbers are the canoni... |
qnumdencoprm 16377 | The canonical representati... |
qeqnumdivden 16378 | Recover a rational number ... |
qmuldeneqnum 16379 | Multiplying a rational by ... |
divnumden 16380 | Calculate the reduced form... |
divdenle 16381 | Reducing a quotient never ... |
qnumgt0 16382 | A rational is positive iff... |
qgt0numnn 16383 | A rational is positive iff... |
nn0gcdsq 16384 | Squaring commutes with GCD... |
zgcdsq 16385 | ~ nn0gcdsq extended to int... |
numdensq 16386 | Squaring a rational square... |
numsq 16387 | Square commutes with canon... |
densq 16388 | Square commutes with canon... |
qden1elz 16389 | A rational is an integer i... |
zsqrtelqelz 16390 | If an integer has a ration... |
nonsq 16391 | Any integer strictly betwe... |
phival 16396 | Value of the Euler ` phi `... |
phicl2 16397 | Bounds and closure for the... |
phicl 16398 | Closure for the value of t... |
phibndlem 16399 | Lemma for ~ phibnd . (Con... |
phibnd 16400 | A slightly tighter bound o... |
phicld 16401 | Closure for the value of t... |
phi1 16402 | Value of the Euler ` phi `... |
dfphi2 16403 | Alternate definition of th... |
hashdvds 16404 | The number of numbers in a... |
phiprmpw 16405 | Value of the Euler ` phi `... |
phiprm 16406 | Value of the Euler ` phi `... |
crth 16407 | The Chinese Remainder Theo... |
phimullem 16408 | Lemma for ~ phimul . (Con... |
phimul 16409 | The Euler ` phi ` function... |
eulerthlem1 16410 | Lemma for ~ eulerth . (Co... |
eulerthlem2 16411 | Lemma for ~ eulerth . (Co... |
eulerth 16412 | Euler's theorem, a general... |
fermltl 16413 | Fermat's little theorem. ... |
prmdiv 16414 | Show an explicit expressio... |
prmdiveq 16415 | The modular inverse of ` A... |
prmdivdiv 16416 | The (modular) inverse of t... |
hashgcdlem 16417 | A correspondence between e... |
hashgcdeq 16418 | Number of initial positive... |
phisum 16419 | The divisor sum identity o... |
odzval 16420 | Value of the order functio... |
odzcllem 16421 | - Lemma for ~ odzcl , show... |
odzcl 16422 | The order of a group eleme... |
odzid 16423 | Any element raised to the ... |
odzdvds 16424 | The only powers of ` A ` t... |
odzphi 16425 | The order of any group ele... |
modprm1div 16426 | A prime number divides an ... |
m1dvdsndvds 16427 | If an integer minus 1 is d... |
modprminv 16428 | Show an explicit expressio... |
modprminveq 16429 | The modular inverse of ` A... |
vfermltl 16430 | Variant of Fermat's little... |
vfermltlALT 16431 | Alternate proof of ~ vferm... |
powm2modprm 16432 | If an integer minus 1 is d... |
reumodprminv 16433 | For any prime number and f... |
modprm0 16434 | For two positive integers ... |
nnnn0modprm0 16435 | For a positive integer and... |
modprmn0modprm0 16436 | For an integer not being 0... |
coprimeprodsq 16437 | If three numbers are copri... |
coprimeprodsq2 16438 | If three numbers are copri... |
oddprm 16439 | A prime not equal to ` 2 `... |
nnoddn2prm 16440 | A prime not equal to ` 2 `... |
oddn2prm 16441 | A prime not equal to ` 2 `... |
nnoddn2prmb 16442 | A number is a prime number... |
prm23lt5 16443 | A prime less than 5 is eit... |
prm23ge5 16444 | A prime is either 2 or 3 o... |
pythagtriplem1 16445 | Lemma for ~ pythagtrip . ... |
pythagtriplem2 16446 | Lemma for ~ pythagtrip . ... |
pythagtriplem3 16447 | Lemma for ~ pythagtrip . ... |
pythagtriplem4 16448 | Lemma for ~ pythagtrip . ... |
pythagtriplem10 16449 | Lemma for ~ pythagtrip . ... |
pythagtriplem6 16450 | Lemma for ~ pythagtrip . ... |
pythagtriplem7 16451 | Lemma for ~ pythagtrip . ... |
pythagtriplem8 16452 | Lemma for ~ pythagtrip . ... |
pythagtriplem9 16453 | Lemma for ~ pythagtrip . ... |
pythagtriplem11 16454 | Lemma for ~ pythagtrip . ... |
pythagtriplem12 16455 | Lemma for ~ pythagtrip . ... |
pythagtriplem13 16456 | Lemma for ~ pythagtrip . ... |
pythagtriplem14 16457 | Lemma for ~ pythagtrip . ... |
pythagtriplem15 16458 | Lemma for ~ pythagtrip . ... |
pythagtriplem16 16459 | Lemma for ~ pythagtrip . ... |
pythagtriplem17 16460 | Lemma for ~ pythagtrip . ... |
pythagtriplem18 16461 | Lemma for ~ pythagtrip . ... |
pythagtriplem19 16462 | Lemma for ~ pythagtrip . ... |
pythagtrip 16463 | Parameterize the Pythagore... |
iserodd 16464 | Collect the odd terms in a... |
pclem 16467 | - Lemma for the prime powe... |
pcprecl 16468 | Closure of the prime power... |
pcprendvds 16469 | Non-divisibility property ... |
pcprendvds2 16470 | Non-divisibility property ... |
pcpre1 16471 | Value of the prime power p... |
pcpremul 16472 | Multiplicative property of... |
pcval 16473 | The value of the prime pow... |
pceulem 16474 | Lemma for ~ pceu . (Contr... |
pceu 16475 | Uniqueness for the prime p... |
pczpre 16476 | Connect the prime count pr... |
pczcl 16477 | Closure of the prime power... |
pccl 16478 | Closure of the prime power... |
pccld 16479 | Closure of the prime power... |
pcmul 16480 | Multiplication property of... |
pcdiv 16481 | Division property of the p... |
pcqmul 16482 | Multiplication property of... |
pc0 16483 | The value of the prime pow... |
pc1 16484 | Value of the prime count f... |
pcqcl 16485 | Closure of the general pri... |
pcqdiv 16486 | Division property of the p... |
pcrec 16487 | Prime power of a reciproca... |
pcexp 16488 | Prime power of an exponent... |
pcxnn0cl 16489 | Extended nonnegative integ... |
pcxcl 16490 | Extended real closure of t... |
pcge0 16491 | The prime count of an inte... |
pczdvds 16492 | Defining property of the p... |
pcdvds 16493 | Defining property of the p... |
pczndvds 16494 | Defining property of the p... |
pcndvds 16495 | Defining property of the p... |
pczndvds2 16496 | The remainder after dividi... |
pcndvds2 16497 | The remainder after dividi... |
pcdvdsb 16498 | ` P ^ A ` divides ` N ` if... |
pcelnn 16499 | There are a positive numbe... |
pceq0 16500 | There are zero powers of a... |
pcidlem 16501 | The prime count of a prime... |
pcid 16502 | The prime count of a prime... |
pcneg 16503 | The prime count of a negat... |
pcabs 16504 | The prime count of an abso... |
pcdvdstr 16505 | The prime count increases ... |
pcgcd1 16506 | The prime count of a GCD i... |
pcgcd 16507 | The prime count of a GCD i... |
pc2dvds 16508 | A characterization of divi... |
pc11 16509 | The prime count function, ... |
pcz 16510 | The prime count function c... |
pcprmpw2 16511 | Self-referential expressio... |
pcprmpw 16512 | Self-referential expressio... |
dvdsprmpweq 16513 | If a positive integer divi... |
dvdsprmpweqnn 16514 | If an integer greater than... |
dvdsprmpweqle 16515 | If a positive integer divi... |
difsqpwdvds 16516 | If the difference of two s... |
pcaddlem 16517 | Lemma for ~ pcadd . The o... |
pcadd 16518 | An inequality for the prim... |
pcadd2 16519 | The inequality of ~ pcadd ... |
pcmptcl 16520 | Closure for the prime powe... |
pcmpt 16521 | Construct a function with ... |
pcmpt2 16522 | Dividing two prime count m... |
pcmptdvds 16523 | The partial products of th... |
pcprod 16524 | The product of the primes ... |
sumhash 16525 | The sum of 1 over a set is... |
fldivp1 16526 | The difference between the... |
pcfaclem 16527 | Lemma for ~ pcfac . (Cont... |
pcfac 16528 | Calculate the prime count ... |
pcbc 16529 | Calculate the prime count ... |
qexpz 16530 | If a power of a rational n... |
expnprm 16531 | A second or higher power o... |
oddprmdvds 16532 | Every positive integer whi... |
prmpwdvds 16533 | A relation involving divis... |
pockthlem 16534 | Lemma for ~ pockthg . (Co... |
pockthg 16535 | The generalized Pocklingto... |
pockthi 16536 | Pocklington's theorem, whi... |
unbenlem 16537 | Lemma for ~ unben . (Cont... |
unben 16538 | An unbounded set of positi... |
infpnlem1 16539 | Lemma for ~ infpn . The s... |
infpnlem2 16540 | Lemma for ~ infpn . For a... |
infpn 16541 | There exist infinitely man... |
infpn2 16542 | There exist infinitely man... |
prmunb 16543 | The primes are unbounded. ... |
prminf 16544 | There are an infinite numb... |
prmreclem1 16545 | Lemma for ~ prmrec . Prop... |
prmreclem2 16546 | Lemma for ~ prmrec . Ther... |
prmreclem3 16547 | Lemma for ~ prmrec . The ... |
prmreclem4 16548 | Lemma for ~ prmrec . Show... |
prmreclem5 16549 | Lemma for ~ prmrec . Here... |
prmreclem6 16550 | Lemma for ~ prmrec . If t... |
prmrec 16551 | The sum of the reciprocals... |
1arithlem1 16552 | Lemma for ~ 1arith . (Con... |
1arithlem2 16553 | Lemma for ~ 1arith . (Con... |
1arithlem3 16554 | Lemma for ~ 1arith . (Con... |
1arithlem4 16555 | Lemma for ~ 1arith . (Con... |
1arith 16556 | Fundamental theorem of ari... |
1arith2 16557 | Fundamental theorem of ari... |
elgz 16560 | Elementhood in the gaussia... |
gzcn 16561 | A gaussian integer is a co... |
zgz 16562 | An integer is a gaussian i... |
igz 16563 | ` _i ` is a gaussian integ... |
gznegcl 16564 | The gaussian integers are ... |
gzcjcl 16565 | The gaussian integers are ... |
gzaddcl 16566 | The gaussian integers are ... |
gzmulcl 16567 | The gaussian integers are ... |
gzreim 16568 | Construct a gaussian integ... |
gzsubcl 16569 | The gaussian integers are ... |
gzabssqcl 16570 | The squared norm of a gaus... |
4sqlem5 16571 | Lemma for ~ 4sq . (Contri... |
4sqlem6 16572 | Lemma for ~ 4sq . (Contri... |
4sqlem7 16573 | Lemma for ~ 4sq . (Contri... |
4sqlem8 16574 | Lemma for ~ 4sq . (Contri... |
4sqlem9 16575 | Lemma for ~ 4sq . (Contri... |
4sqlem10 16576 | Lemma for ~ 4sq . (Contri... |
4sqlem1 16577 | Lemma for ~ 4sq . The set... |
4sqlem2 16578 | Lemma for ~ 4sq . Change ... |
4sqlem3 16579 | Lemma for ~ 4sq . Suffici... |
4sqlem4a 16580 | Lemma for ~ 4sqlem4 . (Co... |
4sqlem4 16581 | Lemma for ~ 4sq . We can ... |
mul4sqlem 16582 | Lemma for ~ mul4sq : algeb... |
mul4sq 16583 | Euler's four-square identi... |
4sqlem11 16584 | Lemma for ~ 4sq . Use the... |
4sqlem12 16585 | Lemma for ~ 4sq . For any... |
4sqlem13 16586 | Lemma for ~ 4sq . (Contri... |
4sqlem14 16587 | Lemma for ~ 4sq . (Contri... |
4sqlem15 16588 | Lemma for ~ 4sq . (Contri... |
4sqlem16 16589 | Lemma for ~ 4sq . (Contri... |
4sqlem17 16590 | Lemma for ~ 4sq . (Contri... |
4sqlem18 16591 | Lemma for ~ 4sq . Inducti... |
4sqlem19 16592 | Lemma for ~ 4sq . The pro... |
4sq 16593 | Lagrange's four-square the... |
vdwapfval 16600 | Define the arithmetic prog... |
vdwapf 16601 | The arithmetic progression... |
vdwapval 16602 | Value of the arithmetic pr... |
vdwapun 16603 | Remove the first element o... |
vdwapid1 16604 | The first element of an ar... |
vdwap0 16605 | Value of a length-1 arithm... |
vdwap1 16606 | Value of a length-1 arithm... |
vdwmc 16607 | The predicate " The ` <. R... |
vdwmc2 16608 | Expand out the definition ... |
vdwpc 16609 | The predicate " The colori... |
vdwlem1 16610 | Lemma for ~ vdw . (Contri... |
vdwlem2 16611 | Lemma for ~ vdw . (Contri... |
vdwlem3 16612 | Lemma for ~ vdw . (Contri... |
vdwlem4 16613 | Lemma for ~ vdw . (Contri... |
vdwlem5 16614 | Lemma for ~ vdw . (Contri... |
vdwlem6 16615 | Lemma for ~ vdw . (Contri... |
vdwlem7 16616 | Lemma for ~ vdw . (Contri... |
vdwlem8 16617 | Lemma for ~ vdw . (Contri... |
vdwlem9 16618 | Lemma for ~ vdw . (Contri... |
vdwlem10 16619 | Lemma for ~ vdw . Set up ... |
vdwlem11 16620 | Lemma for ~ vdw . (Contri... |
vdwlem12 16621 | Lemma for ~ vdw . ` K = 2 ... |
vdwlem13 16622 | Lemma for ~ vdw . Main in... |
vdw 16623 | Van der Waerden's theorem.... |
vdwnnlem1 16624 | Corollary of ~ vdw , and l... |
vdwnnlem2 16625 | Lemma for ~ vdwnn . The s... |
vdwnnlem3 16626 | Lemma for ~ vdwnn . (Cont... |
vdwnn 16627 | Van der Waerden's theorem,... |
ramtlecl 16629 | The set ` T ` of numbers w... |
hashbcval 16631 | Value of the "binomial set... |
hashbccl 16632 | The binomial set is a fini... |
hashbcss 16633 | Subset relation for the bi... |
hashbc0 16634 | The set of subsets of size... |
hashbc2 16635 | The size of the binomial s... |
0hashbc 16636 | There are no subsets of th... |
ramval 16637 | The value of the Ramsey nu... |
ramcl2lem 16638 | Lemma for extended real cl... |
ramtcl 16639 | The Ramsey number has the ... |
ramtcl2 16640 | The Ramsey number is an in... |
ramtub 16641 | The Ramsey number is a low... |
ramub 16642 | The Ramsey number is a low... |
ramub2 16643 | It is sufficient to check ... |
rami 16644 | The defining property of a... |
ramcl2 16645 | The Ramsey number is eithe... |
ramxrcl 16646 | The Ramsey number is an ex... |
ramubcl 16647 | If the Ramsey number is up... |
ramlb 16648 | Establish a lower bound on... |
0ram 16649 | The Ramsey number when ` M... |
0ram2 16650 | The Ramsey number when ` M... |
ram0 16651 | The Ramsey number when ` R... |
0ramcl 16652 | Lemma for ~ ramcl : Exist... |
ramz2 16653 | The Ramsey number when ` F... |
ramz 16654 | The Ramsey number when ` F... |
ramub1lem1 16655 | Lemma for ~ ramub1 . (Con... |
ramub1lem2 16656 | Lemma for ~ ramub1 . (Con... |
ramub1 16657 | Inductive step for Ramsey'... |
ramcl 16658 | Ramsey's theorem: the Rams... |
ramsey 16659 | Ramsey's theorem with the ... |
prmoval 16662 | Value of the primorial fun... |
prmocl 16663 | Closure of the primorial f... |
prmone0 16664 | The primorial function is ... |
prmo0 16665 | The primorial of 0. (Cont... |
prmo1 16666 | The primorial of 1. (Cont... |
prmop1 16667 | The primorial of a success... |
prmonn2 16668 | Value of the primorial fun... |
prmo2 16669 | The primorial of 2. (Cont... |
prmo3 16670 | The primorial of 3. (Cont... |
prmdvdsprmo 16671 | The primorial of a number ... |
prmdvdsprmop 16672 | The primorial of a number ... |
fvprmselelfz 16673 | The value of the prime sel... |
fvprmselgcd1 16674 | The greatest common diviso... |
prmolefac 16675 | The primorial of a positiv... |
prmodvdslcmf 16676 | The primorial of a nonnega... |
prmolelcmf 16677 | The primorial of a positiv... |
prmgaplem1 16678 | Lemma for ~ prmgap : The ... |
prmgaplem2 16679 | Lemma for ~ prmgap : The ... |
prmgaplcmlem1 16680 | Lemma for ~ prmgaplcm : T... |
prmgaplcmlem2 16681 | Lemma for ~ prmgaplcm : T... |
prmgaplem3 16682 | Lemma for ~ prmgap . (Con... |
prmgaplem4 16683 | Lemma for ~ prmgap . (Con... |
prmgaplem5 16684 | Lemma for ~ prmgap : for e... |
prmgaplem6 16685 | Lemma for ~ prmgap : for e... |
prmgaplem7 16686 | Lemma for ~ prmgap . (Con... |
prmgaplem8 16687 | Lemma for ~ prmgap . (Con... |
prmgap 16688 | The prime gap theorem: for... |
prmgaplcm 16689 | Alternate proof of ~ prmga... |
prmgapprmolem 16690 | Lemma for ~ prmgapprmo : ... |
prmgapprmo 16691 | Alternate proof of ~ prmga... |
dec2dvds 16692 | Divisibility by two is obv... |
dec5dvds 16693 | Divisibility by five is ob... |
dec5dvds2 16694 | Divisibility by five is ob... |
dec5nprm 16695 | Divisibility by five is ob... |
dec2nprm 16696 | Divisibility by two is obv... |
modxai 16697 | Add exponents in a power m... |
mod2xi 16698 | Double exponents in a powe... |
modxp1i 16699 | Add one to an exponent in ... |
mod2xnegi 16700 | Version of ~ mod2xi with a... |
modsubi 16701 | Subtract from within a mod... |
gcdi 16702 | Calculate a GCD via Euclid... |
gcdmodi 16703 | Calculate a GCD via Euclid... |
decexp2 16704 | Calculate a power of two. ... |
numexp0 16705 | Calculate an integer power... |
numexp1 16706 | Calculate an integer power... |
numexpp1 16707 | Calculate an integer power... |
numexp2x 16708 | Double an integer power. ... |
decsplit0b 16709 | Split a decimal number int... |
decsplit0 16710 | Split a decimal number int... |
decsplit1 16711 | Split a decimal number int... |
decsplit 16712 | Split a decimal number int... |
karatsuba 16713 | The Karatsuba multiplicati... |
2exp4 16714 | Two to the fourth power is... |
2exp5 16715 | Two to the fifth power is ... |
2exp6 16716 | Two to the sixth power is ... |
2exp7 16717 | Two to the seventh power i... |
2exp8 16718 | Two to the eighth power is... |
2exp11 16719 | Two to the eleventh power ... |
2exp16 16720 | Two to the sixteenth power... |
3exp3 16721 | Three to the third power i... |
2expltfac 16722 | The factorial grows faster... |
cshwsidrepsw 16723 | If cyclically shifting a w... |
cshwsidrepswmod0 16724 | If cyclically shifting a w... |
cshwshashlem1 16725 | If cyclically shifting a w... |
cshwshashlem2 16726 | If cyclically shifting a w... |
cshwshashlem3 16727 | If cyclically shifting a w... |
cshwsdisj 16728 | The singletons resulting b... |
cshwsiun 16729 | The set of (different!) wo... |
cshwsex 16730 | The class of (different!) ... |
cshws0 16731 | The size of the set of (di... |
cshwrepswhash1 16732 | The size of the set of (di... |
cshwshashnsame 16733 | If a word (not consisting ... |
cshwshash 16734 | If a word has a length bei... |
prmlem0 16735 | Lemma for ~ prmlem1 and ~ ... |
prmlem1a 16736 | A quick proof skeleton to ... |
prmlem1 16737 | A quick proof skeleton to ... |
5prm 16738 | 5 is a prime number. (Con... |
6nprm 16739 | 6 is not a prime number. ... |
7prm 16740 | 7 is a prime number. (Con... |
8nprm 16741 | 8 is not a prime number. ... |
9nprm 16742 | 9 is not a prime number. ... |
10nprm 16743 | 10 is not a prime number. ... |
11prm 16744 | 11 is a prime number. (Co... |
13prm 16745 | 13 is a prime number. (Co... |
17prm 16746 | 17 is a prime number. (Co... |
19prm 16747 | 19 is a prime number. (Co... |
23prm 16748 | 23 is a prime number. (Co... |
prmlem2 16749 | Our last proving session g... |
37prm 16750 | 37 is a prime number. (Co... |
43prm 16751 | 43 is a prime number. (Co... |
83prm 16752 | 83 is a prime number. (Co... |
139prm 16753 | 139 is a prime number. (C... |
163prm 16754 | 163 is a prime number. (C... |
317prm 16755 | 317 is a prime number. (C... |
631prm 16756 | 631 is a prime number. (C... |
prmo4 16757 | The primorial of 4. (Cont... |
prmo5 16758 | The primorial of 5. (Cont... |
prmo6 16759 | The primorial of 6. (Cont... |
1259lem1 16760 | Lemma for ~ 1259prm . Cal... |
1259lem2 16761 | Lemma for ~ 1259prm . Cal... |
1259lem3 16762 | Lemma for ~ 1259prm . Cal... |
1259lem4 16763 | Lemma for ~ 1259prm . Cal... |
1259lem5 16764 | Lemma for ~ 1259prm . Cal... |
1259prm 16765 | 1259 is a prime number. (... |
2503lem1 16766 | Lemma for ~ 2503prm . Cal... |
2503lem2 16767 | Lemma for ~ 2503prm . Cal... |
2503lem3 16768 | Lemma for ~ 2503prm . Cal... |
2503prm 16769 | 2503 is a prime number. (... |
4001lem1 16770 | Lemma for ~ 4001prm . Cal... |
4001lem2 16771 | Lemma for ~ 4001prm . Cal... |
4001lem3 16772 | Lemma for ~ 4001prm . Cal... |
4001lem4 16773 | Lemma for ~ 4001prm . Cal... |
4001prm 16774 | 4001 is a prime number. (... |
brstruct 16777 | The structure relation is ... |
isstruct2 16778 | The property of being a st... |
structex 16779 | A structure is a set. (Co... |
structn0fun 16780 | A structure without the em... |
isstruct 16781 | The property of being a st... |
structcnvcnv 16782 | Two ways to express the re... |
structfung 16783 | The converse of the conver... |
structfun 16784 | Convert between two kinds ... |
structfn 16785 | Convert between two kinds ... |
strleun 16786 | Combine two structures int... |
strle1 16787 | Make a structure from a si... |
strle2 16788 | Make a structure from a pa... |
strle3 16789 | Make a structure from a tr... |
sbcie2s 16790 | A special version of class... |
sbcie3s 16791 | A special version of class... |
reldmsets 16794 | The structure override ope... |
setsvalg 16795 | Value of the structure rep... |
setsval 16796 | Value of the structure rep... |
fvsetsid 16797 | The value of the structure... |
fsets 16798 | The structure replacement ... |
setsdm 16799 | The domain of a structure ... |
setsfun 16800 | A structure with replaceme... |
setsfun0 16801 | A structure with replaceme... |
setsn0fun 16802 | The value of the structure... |
setsstruct2 16803 | An extensible structure wi... |
setsexstruct2 16804 | An extensible structure wi... |
setsstruct 16805 | An extensible structure wi... |
wunsets 16806 | Closure of structure repla... |
setsres 16807 | The structure replacement ... |
setsabs 16808 | Replacing the same compone... |
setscom 16809 | Component-setting is commu... |
sloteq 16812 | Equality theorem for the `... |
slotfn 16813 | A slot is a function on se... |
strfvnd 16814 | Deduction version of ~ str... |
strfvn 16815 | Value of a structure compo... |
strfvss 16816 | A structure component extr... |
wunstr 16817 | Closure of a structure ind... |
str0 16818 | All components of the empt... |
strfvi 16819 | Structure slot extractors ... |
fveqprc 16820 | Lemma for showing the equa... |
oveqprc 16821 | Lemma for showing the equa... |
wunndx 16824 | Closure of the index extra... |
ndxarg 16825 | Get the numeric argument f... |
ndxid 16826 | A structure component extr... |
strndxid 16827 | The value of a structure c... |
setsidvald 16828 | Value of the structure rep... |
setsidvaldOLD 16829 | Obsolete version of ~ sets... |
strfvd 16830 | Deduction version of ~ str... |
strfv2d 16831 | Deduction version of ~ str... |
strfv2 16832 | A variation on ~ strfv to ... |
strfv 16833 | Extract a structure compon... |
strfv3 16834 | Variant on ~ strfv for lar... |
strssd 16835 | Deduction version of ~ str... |
strss 16836 | Propagate component extrac... |
setsid 16837 | Value of the structure rep... |
setsnid 16838 | Value of the structure rep... |
setsnidOLD 16839 | Obsolete proof of ~ setsni... |
baseval 16842 | Value of the base set extr... |
baseid 16843 | Utility theorem: index-ind... |
basfn 16844 | The base set extractor is ... |
base0 16845 | The base set of the empty ... |
elbasfv 16846 | Utility theorem: reverse c... |
elbasov 16847 | Utility theorem: reverse c... |
strov2rcl 16848 | Partial reverse closure fo... |
basendx 16849 | Index value of the base se... |
basendxnn 16850 | The index value of the bas... |
basendxnnOLD 16851 | Obsolete proof of ~ basend... |
basndxelwund 16852 | The index of the base set ... |
basprssdmsets 16853 | The pair of the base index... |
opelstrbas 16854 | The base set of a structur... |
1strstr 16855 | A constructed one-slot str... |
1strbas 16856 | The base set of a construc... |
1strwunbndx 16857 | A constructed one-slot str... |
1strwun 16858 | A constructed one-slot str... |
1strwunOLD 16859 | Obsolete version of ~ 1str... |
2strstr 16860 | A constructed two-slot str... |
2strbas 16861 | The base set of a construc... |
2strop 16862 | The other slot of a constr... |
2strstr1 16863 | A constructed two-slot str... |
2strstr1OLD 16864 | Obsolete version of ~ 2str... |
2strbas1 16865 | The base set of a construc... |
2strop1 16866 | The other slot of a constr... |
reldmress 16869 | The structure restriction ... |
ressval 16870 | Value of structure restric... |
ressid2 16871 | General behavior of trivia... |
ressval2 16872 | Value of nontrivial struct... |
ressbas 16873 | Base set of a structure re... |
ressbasOLD 16874 | Obsolete proof of ~ ressba... |
ressbas2 16875 | Base set of a structure re... |
ressbasss 16876 | The base set of a restrict... |
resseqnbas 16877 | The components of an exten... |
resslemOLD 16878 | Obsolete version of ~ ress... |
ress0 16879 | All restrictions of the nu... |
ressid 16880 | Behavior of trivial restri... |
ressinbas 16881 | Restriction only cares abo... |
ressval3d 16882 | Value of structure restric... |
ressval3dOLD 16883 | Obsolete version of ~ ress... |
ressress 16884 | Restriction composition la... |
ressabs 16885 | Restriction absorption law... |
wunress 16886 | Closure of structure restr... |
wunressOLD 16887 | Obsolete proof of ~ wunres... |
plusgndx 16914 | Index value of the ~ df-pl... |
plusgid 16915 | Utility theorem: index-ind... |
plusgndxnn 16916 | The index of the slot for ... |
basendxltplusgndx 16917 | The index of the slot for ... |
basendxnplusgndx 16918 | The slot for the base set ... |
basendxnplusgndxOLD 16919 | Obsolete version of ~ base... |
grpstr 16920 | A constructed group is a s... |
grpstrndx 16921 | A constructed group is a s... |
grpbase 16922 | The base set of a construc... |
grpbaseOLD 16923 | Obsolete version of ~ grpb... |
grpplusg 16924 | The operation of a constru... |
grpplusgOLD 16925 | Obsolete version of ~ grpp... |
ressplusg 16926 | ` +g ` is unaffected by re... |
grpbasex 16927 | The base of an explicitly ... |
grpplusgx 16928 | The operation of an explic... |
mulrndx 16929 | Index value of the ~ df-mu... |
mulrid 16930 | Utility theorem: index-ind... |
basendxnmulrndx 16931 | The slot for the base set ... |
basendxnmulrndxOLD 16932 | Obsolete proof of ~ basend... |
plusgndxnmulrndx 16933 | The slot for the group (ad... |
rngstr 16934 | A constructed ring is a st... |
rngbase 16935 | The base set of a construc... |
rngplusg 16936 | The additive operation of ... |
rngmulr 16937 | The multiplicative operati... |
starvndx 16938 | Index value of the ~ df-st... |
starvid 16939 | Utility theorem: index-ind... |
starvndxnbasendx 16940 | The slot for the involutio... |
starvndxnplusgndx 16941 | The slot for the involutio... |
starvndxnmulrndx 16942 | The slot for the involutio... |
ressmulr 16943 | ` .r ` is unaffected by re... |
ressstarv 16944 | ` *r ` is unaffected by re... |
srngstr 16945 | A constructed star ring is... |
srngbase 16946 | The base set of a construc... |
srngplusg 16947 | The addition operation of ... |
srngmulr 16948 | The multiplication operati... |
srnginvl 16949 | The involution function of... |
scandx 16950 | Index value of the ~ df-sc... |
scaid 16951 | Utility theorem: index-ind... |
scandxnbasendx 16952 | The slot for the scalar is... |
scandxnplusgndx 16953 | The slot for the scalar fi... |
scandxnmulrndx 16954 | The slot for the scalar fi... |
vscandx 16955 | Index value of the ~ df-vs... |
vscaid 16956 | Utility theorem: index-ind... |
vscandxnbasendx 16957 | The slot for the scalar pr... |
vscandxnplusgndx 16958 | The slot for the scalar pr... |
vscandxnmulrndx 16959 | The slot for the scalar pr... |
vscandxnscandx 16960 | The slot for the scalar pr... |
lmodstr 16961 | A constructed left module ... |
lmodbase 16962 | The base set of a construc... |
lmodplusg 16963 | The additive operation of ... |
lmodsca 16964 | The set of scalars of a co... |
lmodvsca 16965 | The scalar product operati... |
ipndx 16966 | Index value of the ~ df-ip... |
ipid 16967 | Utility theorem: index-ind... |
ipndxnbasendx 16968 | The slot for the inner pro... |
ipndxnplusgndx 16969 | The slot for the inner pro... |
ipndxnmulrndx 16970 | The slot for the inner pro... |
ipsstr 16971 | Lemma to shorten proofs of... |
ipsbase 16972 | The base set of a construc... |
ipsaddg 16973 | The additive operation of ... |
ipsmulr 16974 | The multiplicative operati... |
ipssca 16975 | The set of scalars of a co... |
ipsvsca 16976 | The scalar product operati... |
ipsip 16977 | The multiplicative operati... |
resssca 16978 | ` Scalar ` is unaffected b... |
ressvsca 16979 | ` .s ` is unaffected by re... |
ressip 16980 | The inner product is unaff... |
phlstr 16981 | A constructed pre-Hilbert ... |
phlbase 16982 | The base set of a construc... |
phlplusg 16983 | The additive operation of ... |
phlsca 16984 | The ring of scalars of a c... |
phlvsca 16985 | The scalar product operati... |
phlip 16986 | The inner product (Hermiti... |
tsetndx 16987 | Index value of the ~ df-ts... |
tsetid 16988 | Utility theorem: index-ind... |
tsetndxnn 16989 | The index of the slot for ... |
basendxlttsetndx 16990 | The index of the slot for ... |
tsetndxnbasendx 16991 | The slot for the topology ... |
tsetndxnplusgndx 16992 | The slot for the topology ... |
tsetndxnmulrndx 16993 | The slot for the topology ... |
slotstnscsi 16994 | The slots ` Scalar ` , ` .... |
topgrpstr 16995 | A constructed topological ... |
topgrpbas 16996 | The base set of a construc... |
topgrpplusg 16997 | The additive operation of ... |
topgrptset 16998 | The topology of a construc... |
resstset 16999 | ` TopSet ` is unaffected b... |
plendx 17000 | Index value of the ~ df-pl... |
pleid 17001 | Utility theorem: self-refe... |
plendxnn 17002 | The index value of the ord... |
basendxltplendx 17003 | The index value of the ` B... |
plendxnbasendx 17004 | The slot for the order is ... |
plendxnplusgndx 17005 | The slot for the "less tha... |
plendxnmulrndx 17006 | The slot for the "less tha... |
plendxnscandx 17007 | The slot for the "less tha... |
plendxnvscandx 17008 | The slot for the "less tha... |
otpsstr 17009 | Functionality of a topolog... |
otpsbas 17010 | The base set of a topologi... |
otpstset 17011 | The open sets of a topolog... |
otpsle 17012 | The order of a topological... |
ressle 17013 | ` le ` is unaffected by re... |
ocndx 17014 | Index value of the ~ df-oc... |
ocid 17015 | Utility theorem: index-ind... |
dsndx 17016 | Index value of the ~ df-ds... |
dsid 17017 | Utility theorem: index-ind... |
dsndxnn 17018 | The index of the slot for ... |
basendxltdsndx 17019 | The index of the slot for ... |
dsndxnbasendx 17020 | The slot for the distance ... |
dsndxnplusgndx 17021 | The slot for the distance ... |
dsndxnmulrndx 17022 | The slot for the distance ... |
slotsdnscsi 17023 | The slots ` Scalar ` , ` .... |
dsndxntsetndx 17024 | The slot for the distance ... |
unifndx 17025 | Index value of the ~ df-un... |
unifid 17026 | Utility theorem: index-ind... |
unifndxnn 17027 | The index of the slot for ... |
basendxltunifndx 17028 | The index of the slot for ... |
unifndxnbasendx 17029 | The slot for the uniform s... |
unifndxntsetndx 17030 | The slot for the uniform s... |
ressunif 17031 | ` UnifSet ` is unaffected ... |
odrngstr 17032 | Functionality of an ordere... |
odrngbas 17033 | The base set of an ordered... |
odrngplusg 17034 | The addition operation of ... |
odrngmulr 17035 | The multiplication operati... |
odrngtset 17036 | The open sets of an ordere... |
odrngle 17037 | The order of an ordered me... |
odrngds 17038 | The metric of an ordered m... |
ressds 17039 | ` dist ` is unaffected by ... |
homndx 17040 | Index value of the ~ df-ho... |
homid 17041 | Utility theorem: index-ind... |
ccondx 17042 | Index value of the ~ df-cc... |
ccoid 17043 | Utility theorem: index-ind... |
slotsbhcdif 17044 | The slots ` Base ` , ` Hom... |
slotsbhcdifOLD 17045 | Obsolete proof of ~ slotsb... |
resshom 17046 | ` Hom ` is unaffected by r... |
ressco 17047 | ` comp ` is unaffected by ... |
restfn 17052 | The subspace topology oper... |
topnfn 17053 | The topology extractor fun... |
restval 17054 | The subspace topology indu... |
elrest 17055 | The predicate "is an open ... |
elrestr 17056 | Sufficient condition for b... |
0rest 17057 | Value of the structure res... |
restid2 17058 | The subspace topology over... |
restsspw 17059 | The subspace topology is a... |
firest 17060 | The finite intersections o... |
restid 17061 | The subspace topology of t... |
topnval 17062 | Value of the topology extr... |
topnid 17063 | Value of the topology extr... |
topnpropd 17064 | The topology extractor fun... |
reldmprds 17076 | The structure product is a... |
prdsbasex 17078 | Lemma for structure produc... |
imasvalstr 17079 | An image structure value i... |
prdsvalstr 17080 | Structure product value is... |
prdsbaslem 17081 | Lemma for ~ prdsbas and si... |
prdsvallem 17082 | Lemma for ~ prdsval . (Co... |
prdsval 17083 | Value of the structure pro... |
prdssca 17084 | Scalar ring of a structure... |
prdsbas 17085 | Base set of a structure pr... |
prdsplusg 17086 | Addition in a structure pr... |
prdsmulr 17087 | Multiplication in a struct... |
prdsvsca 17088 | Scalar multiplication in a... |
prdsip 17089 | Inner product in a structu... |
prdsle 17090 | Structure product weak ord... |
prdsless 17091 | Closure of the order relat... |
prdsds 17092 | Structure product distance... |
prdsdsfn 17093 | Structure product distance... |
prdstset 17094 | Structure product topology... |
prdshom 17095 | Structure product hom-sets... |
prdsco 17096 | Structure product composit... |
prdsbas2 17097 | The base set of a structur... |
prdsbasmpt 17098 | A constructed tuple is a p... |
prdsbasfn 17099 | Points in the structure pr... |
prdsbasprj 17100 | Each point in a structure ... |
prdsplusgval 17101 | Value of a componentwise s... |
prdsplusgfval 17102 | Value of a structure produ... |
prdsmulrval 17103 | Value of a componentwise r... |
prdsmulrfval 17104 | Value of a structure produ... |
prdsleval 17105 | Value of the product order... |
prdsdsval 17106 | Value of the metric in a s... |
prdsvscaval 17107 | Scalar multiplication in a... |
prdsvscafval 17108 | Scalar multiplication of a... |
prdsbas3 17109 | The base set of an indexed... |
prdsbasmpt2 17110 | A constructed tuple is a p... |
prdsbascl 17111 | An element of the base has... |
prdsdsval2 17112 | Value of the metric in a s... |
prdsdsval3 17113 | Value of the metric in a s... |
pwsval 17114 | Value of a structure power... |
pwsbas 17115 | Base set of a structure po... |
pwselbasb 17116 | Membership in the base set... |
pwselbas 17117 | An element of a structure ... |
pwsplusgval 17118 | Value of addition in a str... |
pwsmulrval 17119 | Value of multiplication in... |
pwsle 17120 | Ordering in a structure po... |
pwsleval 17121 | Ordering in a structure po... |
pwsvscafval 17122 | Scalar multiplication in a... |
pwsvscaval 17123 | Scalar multiplication of a... |
pwssca 17124 | The ring of scalars of a s... |
pwsdiagel 17125 | Membership of diagonal ele... |
pwssnf1o 17126 | Triviality of singleton po... |
imasval 17139 | Value of an image structur... |
imasbas 17140 | The base set of an image s... |
imasds 17141 | The distance function of a... |
imasdsfn 17142 | The distance function is a... |
imasdsval 17143 | The distance function of a... |
imasdsval2 17144 | The distance function of a... |
imasplusg 17145 | The group operation in an ... |
imasmulr 17146 | The ring multiplication in... |
imassca 17147 | The scalar field of an ima... |
imasvsca 17148 | The scalar multiplication ... |
imasip 17149 | The inner product of an im... |
imastset 17150 | The topology of an image s... |
imasle 17151 | The ordering of an image s... |
f1ocpbllem 17152 | Lemma for ~ f1ocpbl . (Co... |
f1ocpbl 17153 | An injection is compatible... |
f1ovscpbl 17154 | An injection is compatible... |
f1olecpbl 17155 | An injection is compatible... |
imasaddfnlem 17156 | The image structure operat... |
imasaddvallem 17157 | The operation of an image ... |
imasaddflem 17158 | The image set operations a... |
imasaddfn 17159 | The image structure's grou... |
imasaddval 17160 | The value of an image stru... |
imasaddf 17161 | The image structure's grou... |
imasmulfn 17162 | The image structure's ring... |
imasmulval 17163 | The value of an image stru... |
imasmulf 17164 | The image structure's ring... |
imasvscafn 17165 | The image structure's scal... |
imasvscaval 17166 | The value of an image stru... |
imasvscaf 17167 | The image structure's scal... |
imasless 17168 | The order relation defined... |
imasleval 17169 | The value of the image str... |
qusval 17170 | Value of a quotient struct... |
quslem 17171 | The function in ~ qusval i... |
qusin 17172 | Restrict the equivalence r... |
qusbas 17173 | Base set of a quotient str... |
quss 17174 | The scalar field of a quot... |
divsfval 17175 | Value of the function in ~... |
ercpbllem 17176 | Lemma for ~ ercpbl . (Con... |
ercpbl 17177 | Translate the function com... |
erlecpbl 17178 | Translate the relation com... |
qusaddvallem 17179 | Value of an operation defi... |
qusaddflem 17180 | The operation of a quotien... |
qusaddval 17181 | The base set of an image s... |
qusaddf 17182 | The base set of an image s... |
qusmulval 17183 | The base set of an image s... |
qusmulf 17184 | The base set of an image s... |
fnpr2o 17185 | Function with a domain of ... |
fnpr2ob 17186 | Biconditional version of ~... |
fvpr0o 17187 | The value of a function wi... |
fvpr1o 17188 | The value of a function wi... |
fvprif 17189 | The value of the pair func... |
xpsfrnel 17190 | Elementhood in the target ... |
xpsfeq 17191 | A function on ` 2o ` is de... |
xpsfrnel2 17192 | Elementhood in the target ... |
xpscf 17193 | Equivalent condition for t... |
xpsfval 17194 | The value of the function ... |
xpsff1o 17195 | The function appearing in ... |
xpsfrn 17196 | A short expression for the... |
xpsff1o2 17197 | The function appearing in ... |
xpsval 17198 | Value of the binary struct... |
xpsrnbas 17199 | The indexed structure prod... |
xpsbas 17200 | The base set of the binary... |
xpsaddlem 17201 | Lemma for ~ xpsadd and ~ x... |
xpsadd 17202 | Value of the addition oper... |
xpsmul 17203 | Value of the multiplicatio... |
xpssca 17204 | Value of the scalar field ... |
xpsvsca 17205 | Value of the scalar multip... |
xpsless 17206 | Closure of the ordering in... |
xpsle 17207 | Value of the ordering in a... |
ismre 17216 | Property of being a Moore ... |
fnmre 17217 | The Moore collection gener... |
mresspw 17218 | A Moore collection is a su... |
mress 17219 | A Moore-closed subset is a... |
mre1cl 17220 | In any Moore collection th... |
mreintcl 17221 | A nonempty collection of c... |
mreiincl 17222 | A nonempty indexed interse... |
mrerintcl 17223 | The relative intersection ... |
mreriincl 17224 | The relative intersection ... |
mreincl 17225 | Two closed sets have a clo... |
mreuni 17226 | Since the entire base set ... |
mreunirn 17227 | Two ways to express the no... |
ismred 17228 | Properties that determine ... |
ismred2 17229 | Properties that determine ... |
mremre 17230 | The Moore collections of s... |
submre 17231 | The subcollection of a clo... |
mrcflem 17232 | The domain and range of th... |
fnmrc 17233 | Moore-closure is a well-be... |
mrcfval 17234 | Value of the function expr... |
mrcf 17235 | The Moore closure is a fun... |
mrcval 17236 | Evaluation of the Moore cl... |
mrccl 17237 | The Moore closure of a set... |
mrcsncl 17238 | The Moore closure of a sin... |
mrcid 17239 | The closure of a closed se... |
mrcssv 17240 | The closure of a set is a ... |
mrcidb 17241 | A set is closed iff it is ... |
mrcss 17242 | Closure preserves subset o... |
mrcssid 17243 | The closure of a set is a ... |
mrcidb2 17244 | A set is closed iff it con... |
mrcidm 17245 | The closure operation is i... |
mrcsscl 17246 | The closure is the minimal... |
mrcuni 17247 | Idempotence of closure und... |
mrcun 17248 | Idempotence of closure und... |
mrcssvd 17249 | The Moore closure of a set... |
mrcssd 17250 | Moore closure preserves su... |
mrcssidd 17251 | A set is contained in its ... |
mrcidmd 17252 | Moore closure is idempoten... |
mressmrcd 17253 | In a Moore system, if a se... |
submrc 17254 | In a closure system which ... |
mrieqvlemd 17255 | In a Moore system, if ` Y ... |
mrisval 17256 | Value of the set of indepe... |
ismri 17257 | Criterion for a set to be ... |
ismri2 17258 | Criterion for a subset of ... |
ismri2d 17259 | Criterion for a subset of ... |
ismri2dd 17260 | Definition of independence... |
mriss 17261 | An independent set of a Mo... |
mrissd 17262 | An independent set of a Mo... |
ismri2dad 17263 | Consequence of a set in a ... |
mrieqvd 17264 | In a Moore system, a set i... |
mrieqv2d 17265 | In a Moore system, a set i... |
mrissmrcd 17266 | In a Moore system, if an i... |
mrissmrid 17267 | In a Moore system, subsets... |
mreexd 17268 | In a Moore system, the clo... |
mreexmrid 17269 | In a Moore system whose cl... |
mreexexlemd 17270 | This lemma is used to gene... |
mreexexlem2d 17271 | Used in ~ mreexexlem4d to ... |
mreexexlem3d 17272 | Base case of the induction... |
mreexexlem4d 17273 | Induction step of the indu... |
mreexexd 17274 | Exchange-type theorem. In... |
mreexdomd 17275 | In a Moore system whose cl... |
mreexfidimd 17276 | In a Moore system whose cl... |
isacs 17277 | A set is an algebraic clos... |
acsmre 17278 | Algebraic closure systems ... |
isacs2 17279 | In the definition of an al... |
acsfiel 17280 | A set is closed in an alge... |
acsfiel2 17281 | A set is closed in an alge... |
acsmred 17282 | An algebraic closure syste... |
isacs1i 17283 | A closure system determine... |
mreacs 17284 | Algebraicity is a composab... |
acsfn 17285 | Algebraicity of a conditio... |
acsfn0 17286 | Algebraicity of a point cl... |
acsfn1 17287 | Algebraicity of a one-argu... |
acsfn1c 17288 | Algebraicity of a one-argu... |
acsfn2 17289 | Algebraicity of a two-argu... |
iscat 17298 | The predicate "is a catego... |
iscatd 17299 | Properties that determine ... |
catidex 17300 | Each object in a category ... |
catideu 17301 | Each object in a category ... |
cidfval 17302 | Each object in a category ... |
cidval 17303 | Each object in a category ... |
cidffn 17304 | The identity arrow constru... |
cidfn 17305 | The identity arrow operato... |
catidd 17306 | Deduce the identity arrow ... |
iscatd2 17307 | Version of ~ iscatd with a... |
catidcl 17308 | Each object in a category ... |
catlid 17309 | Left identity property of ... |
catrid 17310 | Right identity property of... |
catcocl 17311 | Closure of a composition a... |
catass 17312 | Associativity of compositi... |
catcone0 17313 | Composition of non-empty h... |
0catg 17314 | Any structure with an empt... |
0cat 17315 | The empty set is a categor... |
homffval 17316 | Value of the functionalize... |
fnhomeqhomf 17317 | If the Hom-set operation i... |
homfval 17318 | Value of the functionalize... |
homffn 17319 | The functionalized Hom-set... |
homfeq 17320 | Condition for two categori... |
homfeqd 17321 | If two structures have the... |
homfeqbas 17322 | Deduce equality of base se... |
homfeqval 17323 | Value of the functionalize... |
comfffval 17324 | Value of the functionalize... |
comffval 17325 | Value of the functionalize... |
comfval 17326 | Value of the functionalize... |
comfffval2 17327 | Value of the functionalize... |
comffval2 17328 | Value of the functionalize... |
comfval2 17329 | Value of the functionalize... |
comfffn 17330 | The functionalized composi... |
comffn 17331 | The functionalized composi... |
comfeq 17332 | Condition for two categori... |
comfeqd 17333 | Condition for two categori... |
comfeqval 17334 | Equality of two compositio... |
catpropd 17335 | Two structures with the sa... |
cidpropd 17336 | Two structures with the sa... |
oppcval 17339 | Value of the opposite cate... |
oppchomfval 17340 | Hom-sets of the opposite c... |
oppchomfvalOLD 17341 | Obsolete proof of ~ oppcho... |
oppchom 17342 | Hom-sets of the opposite c... |
oppccofval 17343 | Composition in the opposit... |
oppcco 17344 | Composition in the opposit... |
oppcbas 17345 | Base set of an opposite ca... |
oppcbasOLD 17346 | Obsolete version of ~ oppc... |
oppccatid 17347 | Lemma for ~ oppccat . (Co... |
oppchomf 17348 | Hom-sets of the opposite c... |
oppcid 17349 | Identity function of an op... |
oppccat 17350 | An opposite category is a ... |
2oppcbas 17351 | The double opposite catego... |
2oppchomf 17352 | The double opposite catego... |
2oppccomf 17353 | The double opposite catego... |
oppchomfpropd 17354 | If two categories have the... |
oppccomfpropd 17355 | If two categories have the... |
oppccatf 17356 | ` oppCat ` restricted to `... |
monfval 17361 | Definition of a monomorphi... |
ismon 17362 | Definition of a monomorphi... |
ismon2 17363 | Write out the monomorphism... |
monhom 17364 | A monomorphism is a morphi... |
moni 17365 | Property of a monomorphism... |
monpropd 17366 | If two categories have the... |
oppcmon 17367 | A monomorphism in the oppo... |
oppcepi 17368 | An epimorphism in the oppo... |
isepi 17369 | Definition of an epimorphi... |
isepi2 17370 | Write out the epimorphism ... |
epihom 17371 | An epimorphism is a morphi... |
epii 17372 | Property of an epimorphism... |
sectffval 17379 | Value of the section opera... |
sectfval 17380 | Value of the section relat... |
sectss 17381 | The section relation is a ... |
issect 17382 | The property " ` F ` is a ... |
issect2 17383 | Property of being a sectio... |
sectcan 17384 | If ` G ` is a section of `... |
sectco 17385 | Composition of two section... |
isofval 17386 | Function value of the func... |
invffval 17387 | Value of the inverse relat... |
invfval 17388 | Value of the inverse relat... |
isinv 17389 | Value of the inverse relat... |
invss 17390 | The inverse relation is a ... |
invsym 17391 | The inverse relation is sy... |
invsym2 17392 | The inverse relation is sy... |
invfun 17393 | The inverse relation is a ... |
isoval 17394 | The isomorphisms are the d... |
inviso1 17395 | If ` G ` is an inverse to ... |
inviso2 17396 | If ` G ` is an inverse to ... |
invf 17397 | The inverse relation is a ... |
invf1o 17398 | The inverse relation is a ... |
invinv 17399 | The inverse of the inverse... |
invco 17400 | The composition of two iso... |
dfiso2 17401 | Alternate definition of an... |
dfiso3 17402 | Alternate definition of an... |
inveq 17403 | If there are two inverses ... |
isofn 17404 | The function value of the ... |
isohom 17405 | An isomorphism is a homomo... |
isoco 17406 | The composition of two iso... |
oppcsect 17407 | A section in the opposite ... |
oppcsect2 17408 | A section in the opposite ... |
oppcinv 17409 | An inverse in the opposite... |
oppciso 17410 | An isomorphism in the oppo... |
sectmon 17411 | If ` F ` is a section of `... |
monsect 17412 | If ` F ` is a monomorphism... |
sectepi 17413 | If ` F ` is a section of `... |
episect 17414 | If ` F ` is an epimorphism... |
sectid 17415 | The identity is a section ... |
invid 17416 | The inverse of the identit... |
idiso 17417 | The identity is an isomorp... |
idinv 17418 | The inverse of the identit... |
invisoinvl 17419 | The inverse of an isomorph... |
invisoinvr 17420 | The inverse of an isomorph... |
invcoisoid 17421 | The inverse of an isomorph... |
isocoinvid 17422 | The inverse of an isomorph... |
rcaninv 17423 | Right cancellation of an i... |
cicfval 17426 | The set of isomorphic obje... |
brcic 17427 | The relation "is isomorphi... |
cic 17428 | Objects ` X ` and ` Y ` in... |
brcici 17429 | Prove that two objects are... |
cicref 17430 | Isomorphism is reflexive. ... |
ciclcl 17431 | Isomorphism implies the le... |
cicrcl 17432 | Isomorphism implies the ri... |
cicsym 17433 | Isomorphism is symmetric. ... |
cictr 17434 | Isomorphism is transitive.... |
cicer 17435 | Isomorphism is an equivale... |
sscrel 17442 | The subcategory subset rel... |
brssc 17443 | The subcategory subset rel... |
sscpwex 17444 | An analogue of ~ pwex for ... |
subcrcl 17445 | Reverse closure for the su... |
sscfn1 17446 | The subcategory subset rel... |
sscfn2 17447 | The subcategory subset rel... |
ssclem 17448 | Lemma for ~ ssc1 and simil... |
isssc 17449 | Value of the subcategory s... |
ssc1 17450 | Infer subset relation on o... |
ssc2 17451 | Infer subset relation on m... |
sscres 17452 | Any function restricted to... |
sscid 17453 | The subcategory subset rel... |
ssctr 17454 | The subcategory subset rel... |
ssceq 17455 | The subcategory subset rel... |
rescval 17456 | Value of the category rest... |
rescval2 17457 | Value of the category rest... |
rescbas 17458 | Base set of the category r... |
rescbasOLD 17459 | Obsolete version of ~ resc... |
reschom 17460 | Hom-sets of the category r... |
reschomf 17461 | Hom-sets of the category r... |
rescco 17462 | Composition in the categor... |
resccoOLD 17463 | Obsolete proof of ~ rescco... |
rescabs 17464 | Restriction absorption law... |
rescabs2 17465 | Restriction absorption law... |
issubc 17466 | Elementhood in the set of ... |
issubc2 17467 | Elementhood in the set of ... |
0ssc 17468 | For any category ` C ` , t... |
0subcat 17469 | For any category ` C ` , t... |
catsubcat 17470 | For any category ` C ` , `... |
subcssc 17471 | An element in the set of s... |
subcfn 17472 | An element in the set of s... |
subcss1 17473 | The objects of a subcatego... |
subcss2 17474 | The morphisms of a subcate... |
subcidcl 17475 | The identity of the origin... |
subccocl 17476 | A subcategory is closed un... |
subccatid 17477 | A subcategory is a categor... |
subcid 17478 | The identity in a subcateg... |
subccat 17479 | A subcategory is a categor... |
issubc3 17480 | Alternate definition of a ... |
fullsubc 17481 | The full subcategory gener... |
fullresc 17482 | The category formed by str... |
resscat 17483 | A category restricted to a... |
subsubc 17484 | A subcategory of a subcate... |
relfunc 17493 | The set of functors is a r... |
funcrcl 17494 | Reverse closure for a func... |
isfunc 17495 | Value of the set of functo... |
isfuncd 17496 | Deduce that an operation i... |
funcf1 17497 | The object part of a funct... |
funcixp 17498 | The morphism part of a fun... |
funcf2 17499 | The morphism part of a fun... |
funcfn2 17500 | The morphism part of a fun... |
funcid 17501 | A functor maps each identi... |
funcco 17502 | A functor maps composition... |
funcsect 17503 | The image of a section und... |
funcinv 17504 | The image of an inverse un... |
funciso 17505 | The image of an isomorphis... |
funcoppc 17506 | A functor on categories yi... |
idfuval 17507 | Value of the identity func... |
idfu2nd 17508 | Value of the morphism part... |
idfu2 17509 | Value of the morphism part... |
idfu1st 17510 | Value of the object part o... |
idfu1 17511 | Value of the object part o... |
idfucl 17512 | The identity functor is a ... |
cofuval 17513 | Value of the composition o... |
cofu1st 17514 | Value of the object part o... |
cofu1 17515 | Value of the object part o... |
cofu2nd 17516 | Value of the morphism part... |
cofu2 17517 | Value of the morphism part... |
cofuval2 17518 | Value of the composition o... |
cofucl 17519 | The composition of two fun... |
cofuass 17520 | Functor composition is ass... |
cofulid 17521 | The identity functor is a ... |
cofurid 17522 | The identity functor is a ... |
resfval 17523 | Value of the functor restr... |
resfval2 17524 | Value of the functor restr... |
resf1st 17525 | Value of the functor restr... |
resf2nd 17526 | Value of the functor restr... |
funcres 17527 | A functor restricted to a ... |
funcres2b 17528 | Condition for a functor to... |
funcres2 17529 | A functor into a restricte... |
wunfunc 17530 | A weak universe is closed ... |
wunfuncOLD 17531 | Obsolete proof of ~ wunfun... |
funcpropd 17532 | If two categories have the... |
funcres2c 17533 | Condition for a functor to... |
fullfunc 17538 | A full functor is a functo... |
fthfunc 17539 | A faithful functor is a fu... |
relfull 17540 | The set of full functors i... |
relfth 17541 | The set of faithful functo... |
isfull 17542 | Value of the set of full f... |
isfull2 17543 | Equivalent condition for a... |
fullfo 17544 | The morphism map of a full... |
fulli 17545 | The morphism map of a full... |
isfth 17546 | Value of the set of faithf... |
isfth2 17547 | Equivalent condition for a... |
isffth2 17548 | A fully faithful functor i... |
fthf1 17549 | The morphism map of a fait... |
fthi 17550 | The morphism map of a fait... |
ffthf1o 17551 | The morphism map of a full... |
fullpropd 17552 | If two categories have the... |
fthpropd 17553 | If two categories have the... |
fulloppc 17554 | The opposite functor of a ... |
fthoppc 17555 | The opposite functor of a ... |
ffthoppc 17556 | The opposite functor of a ... |
fthsect 17557 | A faithful functor reflect... |
fthinv 17558 | A faithful functor reflect... |
fthmon 17559 | A faithful functor reflect... |
fthepi 17560 | A faithful functor reflect... |
ffthiso 17561 | A fully faithful functor r... |
fthres2b 17562 | Condition for a faithful f... |
fthres2c 17563 | Condition for a faithful f... |
fthres2 17564 | A faithful functor into a ... |
idffth 17565 | The identity functor is a ... |
cofull 17566 | The composition of two ful... |
cofth 17567 | The composition of two fai... |
coffth 17568 | The composition of two ful... |
rescfth 17569 | The inclusion functor from... |
ressffth 17570 | The inclusion functor from... |
fullres2c 17571 | Condition for a full funct... |
ffthres2c 17572 | Condition for a fully fait... |
fnfuc 17577 | The ` FuncCat ` operation ... |
natfval 17578 | Value of the function givi... |
isnat 17579 | Property of being a natura... |
isnat2 17580 | Property of being a natura... |
natffn 17581 | The natural transformation... |
natrcl 17582 | Reverse closure for a natu... |
nat1st2nd 17583 | Rewrite the natural transf... |
natixp 17584 | A natural transformation i... |
natcl 17585 | A component of a natural t... |
natfn 17586 | A natural transformation i... |
nati 17587 | Naturality property of a n... |
wunnat 17588 | A weak universe is closed ... |
wunnatOLD 17589 | Obsolete proof of ~ wunnat... |
catstr 17590 | A category structure is a ... |
fucval 17591 | Value of the functor categ... |
fuccofval 17592 | Value of the functor categ... |
fucbas 17593 | The objects of the functor... |
fuchom 17594 | The morphisms in the funct... |
fuchomOLD 17595 | Obsolete proof of ~ fuchom... |
fucco 17596 | Value of the composition o... |
fuccoval 17597 | Value of the functor categ... |
fuccocl 17598 | The composition of two nat... |
fucidcl 17599 | The identity natural trans... |
fuclid 17600 | Left identity of natural t... |
fucrid 17601 | Right identity of natural ... |
fucass 17602 | Associativity of natural t... |
fuccatid 17603 | The functor category is a ... |
fuccat 17604 | The functor category is a ... |
fucid 17605 | The identity morphism in t... |
fucsect 17606 | Two natural transformation... |
fucinv 17607 | Two natural transformation... |
invfuc 17608 | If ` V ( x ) ` is an inver... |
fuciso 17609 | A natural transformation i... |
natpropd 17610 | If two categories have the... |
fucpropd 17611 | If two categories have the... |
initofn 17618 | ` InitO ` is a function on... |
termofn 17619 | ` TermO ` is a function on... |
zeroofn 17620 | ` ZeroO ` is a function on... |
initorcl 17621 | Reverse closure for an ini... |
termorcl 17622 | Reverse closure for a term... |
zeroorcl 17623 | Reverse closure for a zero... |
initoval 17624 | The value of the initial o... |
termoval 17625 | The value of the terminal ... |
zerooval 17626 | The value of the zero obje... |
isinito 17627 | The predicate "is an initi... |
istermo 17628 | The predicate "is a termin... |
iszeroo 17629 | The predicate "is a zero o... |
isinitoi 17630 | Implication of a class bei... |
istermoi 17631 | Implication of a class bei... |
initoid 17632 | For an initial object, the... |
termoid 17633 | For a terminal object, the... |
dfinito2 17634 | An initial object is a ter... |
dftermo2 17635 | A terminal object is an in... |
dfinito3 17636 | An alternate definition of... |
dftermo3 17637 | An alternate definition of... |
initoo 17638 | An initial object is an ob... |
termoo 17639 | A terminal object is an ob... |
iszeroi 17640 | Implication of a class bei... |
2initoinv 17641 | Morphisms between two init... |
initoeu1 17642 | Initial objects are essent... |
initoeu1w 17643 | Initial objects are essent... |
initoeu2lem0 17644 | Lemma 0 for ~ initoeu2 . ... |
initoeu2lem1 17645 | Lemma 1 for ~ initoeu2 . ... |
initoeu2lem2 17646 | Lemma 2 for ~ initoeu2 . ... |
initoeu2 17647 | Initial objects are essent... |
2termoinv 17648 | Morphisms between two term... |
termoeu1 17649 | Terminal objects are essen... |
termoeu1w 17650 | Terminal objects are essen... |
homarcl 17659 | Reverse closure for an arr... |
homafval 17660 | Value of the disjointified... |
homaf 17661 | Functionality of the disjo... |
homaval 17662 | Value of the disjointified... |
elhoma 17663 | Value of the disjointified... |
elhomai 17664 | Produce an arrow from a mo... |
elhomai2 17665 | Produce an arrow from a mo... |
homarcl2 17666 | Reverse closure for the do... |
homarel 17667 | An arrow is an ordered pai... |
homa1 17668 | The first component of an ... |
homahom2 17669 | The second component of an... |
homahom 17670 | The second component of an... |
homadm 17671 | The domain of an arrow wit... |
homacd 17672 | The codomain of an arrow w... |
homadmcd 17673 | Decompose an arrow into do... |
arwval 17674 | The set of arrows is the u... |
arwrcl 17675 | The first component of an ... |
arwhoma 17676 | An arrow is contained in t... |
homarw 17677 | A hom-set is a subset of t... |
arwdm 17678 | The domain of an arrow is ... |
arwcd 17679 | The codomain of an arrow i... |
dmaf 17680 | The domain function is a f... |
cdaf 17681 | The codomain function is a... |
arwhom 17682 | The second component of an... |
arwdmcd 17683 | Decompose an arrow into do... |
idafval 17688 | Value of the identity arro... |
idaval 17689 | Value of the identity arro... |
ida2 17690 | Morphism part of the ident... |
idahom 17691 | Domain and codomain of the... |
idadm 17692 | Domain of the identity arr... |
idacd 17693 | Codomain of the identity a... |
idaf 17694 | The identity arrow functio... |
coafval 17695 | The value of the compositi... |
eldmcoa 17696 | A pair ` <. G , F >. ` is ... |
dmcoass 17697 | The domain of composition ... |
homdmcoa 17698 | If ` F : X --> Y ` and ` G... |
coaval 17699 | Value of composition for c... |
coa2 17700 | The morphism part of arrow... |
coahom 17701 | The composition of two com... |
coapm 17702 | Composition of arrows is a... |
arwlid 17703 | Left identity of a categor... |
arwrid 17704 | Right identity of a catego... |
arwass 17705 | Associativity of compositi... |
setcval 17708 | Value of the category of s... |
setcbas 17709 | Set of objects of the cate... |
setchomfval 17710 | Set of arrows of the categ... |
setchom 17711 | Set of arrows of the categ... |
elsetchom 17712 | A morphism of sets is a fu... |
setccofval 17713 | Composition in the categor... |
setcco 17714 | Composition in the categor... |
setccatid 17715 | Lemma for ~ setccat . (Co... |
setccat 17716 | The category of sets is a ... |
setcid 17717 | The identity arrow in the ... |
setcmon 17718 | A monomorphism of sets is ... |
setcepi 17719 | An epimorphism of sets is ... |
setcsect 17720 | A section in the category ... |
setcinv 17721 | An inverse in the category... |
setciso 17722 | An isomorphism in the cate... |
resssetc 17723 | The restriction of the cat... |
funcsetcres2 17724 | A functor into a smaller c... |
setc2obas 17725 | ` (/) ` and ` 1o ` are dis... |
setc2ohom 17726 | ` ( SetCat `` 2o ) ` is a ... |
cat1lem 17727 | The category of sets in a ... |
cat1 17728 | The definition of category... |
catcval 17731 | Value of the category of c... |
catcbas 17732 | Set of objects of the cate... |
catchomfval 17733 | Set of arrows of the categ... |
catchom 17734 | Set of arrows of the categ... |
catccofval 17735 | Composition in the categor... |
catcco 17736 | Composition in the categor... |
catccatid 17737 | Lemma for ~ catccat . (Co... |
catcid 17738 | The identity arrow in the ... |
catccat 17739 | The category of categories... |
resscatc 17740 | The restriction of the cat... |
catcisolem 17741 | Lemma for ~ catciso . (Co... |
catciso 17742 | A functor is an isomorphis... |
catcbascl 17743 | An element of the base set... |
catcslotelcl 17744 | A slot entry of an element... |
catcbaselcl 17745 | The base set of an element... |
catchomcl 17746 | The Hom-set of an element ... |
catcccocl 17747 | The composition operation ... |
catcoppccl 17748 | The category of categories... |
catcoppcclOLD 17749 | Obsolete proof of ~ catcop... |
catcfuccl 17750 | The category of categories... |
catcfucclOLD 17751 | Obsolete proof of ~ catcfu... |
fncnvimaeqv 17752 | The inverse images of the ... |
bascnvimaeqv 17753 | The inverse image of the u... |
estrcval 17756 | Value of the category of e... |
estrcbas 17757 | Set of objects of the cate... |
estrchomfval 17758 | Set of morphisms ("arrows"... |
estrchom 17759 | The morphisms between exte... |
elestrchom 17760 | A morphism between extensi... |
estrccofval 17761 | Composition in the categor... |
estrcco 17762 | Composition in the categor... |
estrcbasbas 17763 | An element of the base set... |
estrccatid 17764 | Lemma for ~ estrccat . (C... |
estrccat 17765 | The category of extensible... |
estrcid 17766 | The identity arrow in the ... |
estrchomfn 17767 | The Hom-set operation in t... |
estrchomfeqhom 17768 | The functionalized Hom-set... |
estrreslem1 17769 | Lemma 1 for ~ estrres . (... |
estrreslem1OLD 17770 | Obsolete version of ~ estr... |
estrreslem2 17771 | Lemma 2 for ~ estrres . (... |
estrres 17772 | Any restriction of a categ... |
funcestrcsetclem1 17773 | Lemma 1 for ~ funcestrcset... |
funcestrcsetclem2 17774 | Lemma 2 for ~ funcestrcset... |
funcestrcsetclem3 17775 | Lemma 3 for ~ funcestrcset... |
funcestrcsetclem4 17776 | Lemma 4 for ~ funcestrcset... |
funcestrcsetclem5 17777 | Lemma 5 for ~ funcestrcset... |
funcestrcsetclem6 17778 | Lemma 6 for ~ funcestrcset... |
funcestrcsetclem7 17779 | Lemma 7 for ~ funcestrcset... |
funcestrcsetclem8 17780 | Lemma 8 for ~ funcestrcset... |
funcestrcsetclem9 17781 | Lemma 9 for ~ funcestrcset... |
funcestrcsetc 17782 | The "natural forgetful fun... |
fthestrcsetc 17783 | The "natural forgetful fun... |
fullestrcsetc 17784 | The "natural forgetful fun... |
equivestrcsetc 17785 | The "natural forgetful fun... |
setc1strwun 17786 | A constructed one-slot str... |
funcsetcestrclem1 17787 | Lemma 1 for ~ funcsetcestr... |
funcsetcestrclem2 17788 | Lemma 2 for ~ funcsetcestr... |
funcsetcestrclem3 17789 | Lemma 3 for ~ funcsetcestr... |
embedsetcestrclem 17790 | Lemma for ~ embedsetcestrc... |
funcsetcestrclem4 17791 | Lemma 4 for ~ funcsetcestr... |
funcsetcestrclem5 17792 | Lemma 5 for ~ funcsetcestr... |
funcsetcestrclem6 17793 | Lemma 6 for ~ funcsetcestr... |
funcsetcestrclem7 17794 | Lemma 7 for ~ funcsetcestr... |
funcsetcestrclem8 17795 | Lemma 8 for ~ funcsetcestr... |
funcsetcestrclem9 17796 | Lemma 9 for ~ funcsetcestr... |
funcsetcestrc 17797 | The "embedding functor" fr... |
fthsetcestrc 17798 | The "embedding functor" fr... |
fullsetcestrc 17799 | The "embedding functor" fr... |
embedsetcestrc 17800 | The "embedding functor" fr... |
fnxpc 17809 | The binary product of cate... |
xpcval 17810 | Value of the binary produc... |
xpcbas 17811 | Set of objects of the bina... |
xpchomfval 17812 | Set of morphisms of the bi... |
xpchom 17813 | Set of morphisms of the bi... |
relxpchom 17814 | A hom-set in the binary pr... |
xpccofval 17815 | Value of composition in th... |
xpcco 17816 | Value of composition in th... |
xpcco1st 17817 | Value of composition in th... |
xpcco2nd 17818 | Value of composition in th... |
xpchom2 17819 | Value of the set of morphi... |
xpcco2 17820 | Value of composition in th... |
xpccatid 17821 | The product of two categor... |
xpcid 17822 | The identity morphism in t... |
xpccat 17823 | The product of two categor... |
1stfval 17824 | Value of the first project... |
1stf1 17825 | Value of the first project... |
1stf2 17826 | Value of the first project... |
2ndfval 17827 | Value of the first project... |
2ndf1 17828 | Value of the first project... |
2ndf2 17829 | Value of the first project... |
1stfcl 17830 | The first projection funct... |
2ndfcl 17831 | The second projection func... |
prfval 17832 | Value of the pairing funct... |
prf1 17833 | Value of the pairing funct... |
prf2fval 17834 | Value of the pairing funct... |
prf2 17835 | Value of the pairing funct... |
prfcl 17836 | The pairing of functors ` ... |
prf1st 17837 | Cancellation of pairing wi... |
prf2nd 17838 | Cancellation of pairing wi... |
1st2ndprf 17839 | Break a functor into a pro... |
catcxpccl 17840 | The category of categories... |
catcxpcclOLD 17841 | Obsolete proof of ~ catcxp... |
xpcpropd 17842 | If two categories have the... |
evlfval 17851 | Value of the evaluation fu... |
evlf2 17852 | Value of the evaluation fu... |
evlf2val 17853 | Value of the evaluation na... |
evlf1 17854 | Value of the evaluation fu... |
evlfcllem 17855 | Lemma for ~ evlfcl . (Con... |
evlfcl 17856 | The evaluation functor is ... |
curfval 17857 | Value of the curry functor... |
curf1fval 17858 | Value of the object part o... |
curf1 17859 | Value of the object part o... |
curf11 17860 | Value of the double evalua... |
curf12 17861 | The partially evaluated cu... |
curf1cl 17862 | The partially evaluated cu... |
curf2 17863 | Value of the curry functor... |
curf2val 17864 | Value of a component of th... |
curf2cl 17865 | The curry functor at a mor... |
curfcl 17866 | The curry functor of a fun... |
curfpropd 17867 | If two categories have the... |
uncfval 17868 | Value of the uncurry funct... |
uncfcl 17869 | The uncurry operation take... |
uncf1 17870 | Value of the uncurry funct... |
uncf2 17871 | Value of the uncurry funct... |
curfuncf 17872 | Cancellation of curry with... |
uncfcurf 17873 | Cancellation of uncurry wi... |
diagval 17874 | Define the diagonal functo... |
diagcl 17875 | The diagonal functor is a ... |
diag1cl 17876 | The constant functor of ` ... |
diag11 17877 | Value of the constant func... |
diag12 17878 | Value of the constant func... |
diag2 17879 | Value of the diagonal func... |
diag2cl 17880 | The diagonal functor at a ... |
curf2ndf 17881 | As shown in ~ diagval , th... |
hofval 17886 | Value of the Hom functor, ... |
hof1fval 17887 | The object part of the Hom... |
hof1 17888 | The object part of the Hom... |
hof2fval 17889 | The morphism part of the H... |
hof2val 17890 | The morphism part of the H... |
hof2 17891 | The morphism part of the H... |
hofcllem 17892 | Lemma for ~ hofcl . (Cont... |
hofcl 17893 | Closure of the Hom functor... |
oppchofcl 17894 | Closure of the opposite Ho... |
yonval 17895 | Value of the Yoneda embedd... |
yoncl 17896 | The Yoneda embedding is a ... |
yon1cl 17897 | The Yoneda embedding at an... |
yon11 17898 | Value of the Yoneda embedd... |
yon12 17899 | Value of the Yoneda embedd... |
yon2 17900 | Value of the Yoneda embedd... |
hofpropd 17901 | If two categories have the... |
yonpropd 17902 | If two categories have the... |
oppcyon 17903 | Value of the opposite Yone... |
oyoncl 17904 | The opposite Yoneda embedd... |
oyon1cl 17905 | The opposite Yoneda embedd... |
yonedalem1 17906 | Lemma for ~ yoneda . (Con... |
yonedalem21 17907 | Lemma for ~ yoneda . (Con... |
yonedalem3a 17908 | Lemma for ~ yoneda . (Con... |
yonedalem4a 17909 | Lemma for ~ yoneda . (Con... |
yonedalem4b 17910 | Lemma for ~ yoneda . (Con... |
yonedalem4c 17911 | Lemma for ~ yoneda . (Con... |
yonedalem22 17912 | Lemma for ~ yoneda . (Con... |
yonedalem3b 17913 | Lemma for ~ yoneda . (Con... |
yonedalem3 17914 | Lemma for ~ yoneda . (Con... |
yonedainv 17915 | The Yoneda Lemma with expl... |
yonffthlem 17916 | Lemma for ~ yonffth . (Co... |
yoneda 17917 | The Yoneda Lemma. There i... |
yonffth 17918 | The Yoneda Lemma. The Yon... |
yoniso 17919 | If the codomain is recover... |
oduval 17922 | Value of an order dual str... |
oduleval 17923 | Value of the less-equal re... |
oduleg 17924 | Truth of the less-equal re... |
odubas 17925 | Base set of an order dual ... |
isprs 17930 | Property of being a preord... |
prslem 17931 | Lemma for ~ prsref and ~ p... |
prsref 17932 | "Less than or equal to" is... |
prstr 17933 | "Less than or equal to" is... |
isdrs 17934 | Property of being a direct... |
drsdir 17935 | Direction of a directed se... |
drsprs 17936 | A directed set is a proset... |
drsbn0 17937 | The base of a directed set... |
drsdirfi 17938 | Any _finite_ number of ele... |
isdrs2 17939 | Directed sets may be defin... |
ispos 17947 | The predicate "is a poset"... |
ispos2 17948 | A poset is an antisymmetri... |
posprs 17949 | A poset is a proset. (Con... |
posi 17950 | Lemma for poset properties... |
posref 17951 | A poset ordering is reflex... |
posasymb 17952 | A poset ordering is asymme... |
postr 17953 | A poset ordering is transi... |
0pos 17954 | Technical lemma to simplif... |
0posOLD 17955 | Obsolete proof of ~ 0pos a... |
isposd 17956 | Properties that determine ... |
isposi 17957 | Properties that determine ... |
isposix 17958 | Properties that determine ... |
isposixOLD 17959 | Obsolete proof of ~ isposi... |
pospropd 17960 | Posethood is determined on... |
odupos 17961 | Being a poset is a self-du... |
oduposb 17962 | Being a poset is a self-du... |
pltfval 17964 | Value of the less-than rel... |
pltval 17965 | Less-than relation. ( ~ d... |
pltle 17966 | "Less than" implies "less ... |
pltne 17967 | The "less than" relation i... |
pltirr 17968 | The "less than" relation i... |
pleval2i 17969 | One direction of ~ pleval2... |
pleval2 17970 | "Less than or equal to" in... |
pltnle 17971 | "Less than" implies not co... |
pltval3 17972 | Alternate expression for t... |
pltnlt 17973 | The less-than relation imp... |
pltn2lp 17974 | The less-than relation has... |
plttr 17975 | The less-than relation is ... |
pltletr 17976 | Transitive law for chained... |
plelttr 17977 | Transitive law for chained... |
pospo 17978 | Write a poset structure in... |
lubfval 17983 | Value of the least upper b... |
lubdm 17984 | Domain of the least upper ... |
lubfun 17985 | The LUB is a function. (C... |
lubeldm 17986 | Member of the domain of th... |
lubelss 17987 | A member of the domain of ... |
lubeu 17988 | Unique existence proper of... |
lubval 17989 | Value of the least upper b... |
lubcl 17990 | The least upper bound func... |
lubprop 17991 | Properties of greatest low... |
luble 17992 | The greatest lower bound i... |
lublecllem 17993 | Lemma for ~ lublecl and ~ ... |
lublecl 17994 | The set of all elements le... |
lubid 17995 | The LUB of elements less t... |
glbfval 17996 | Value of the greatest lowe... |
glbdm 17997 | Domain of the greatest low... |
glbfun 17998 | The GLB is a function. (C... |
glbeldm 17999 | Member of the domain of th... |
glbelss 18000 | A member of the domain of ... |
glbeu 18001 | Unique existence proper of... |
glbval 18002 | Value of the greatest lowe... |
glbcl 18003 | The least upper bound func... |
glbprop 18004 | Properties of greatest low... |
glble 18005 | The greatest lower bound i... |
joinfval 18006 | Value of join function for... |
joinfval2 18007 | Value of join function for... |
joindm 18008 | Domain of join function fo... |
joindef 18009 | Two ways to say that a joi... |
joinval 18010 | Join value. Since both si... |
joincl 18011 | Closure of join of element... |
joindmss 18012 | Subset property of domain ... |
joinval2lem 18013 | Lemma for ~ joinval2 and ~... |
joinval2 18014 | Value of join for a poset ... |
joineu 18015 | Uniqueness of join of elem... |
joinlem 18016 | Lemma for join properties.... |
lejoin1 18017 | A join's first argument is... |
lejoin2 18018 | A join's second argument i... |
joinle 18019 | A join is less than or equ... |
meetfval 18020 | Value of meet function for... |
meetfval2 18021 | Value of meet function for... |
meetdm 18022 | Domain of meet function fo... |
meetdef 18023 | Two ways to say that a mee... |
meetval 18024 | Meet value. Since both si... |
meetcl 18025 | Closure of meet of element... |
meetdmss 18026 | Subset property of domain ... |
meetval2lem 18027 | Lemma for ~ meetval2 and ~... |
meetval2 18028 | Value of meet for a poset ... |
meeteu 18029 | Uniqueness of meet of elem... |
meetlem 18030 | Lemma for meet properties.... |
lemeet1 18031 | A meet's first argument is... |
lemeet2 18032 | A meet's second argument i... |
meetle 18033 | A meet is less than or equ... |
joincomALT 18034 | The join of a poset is com... |
joincom 18035 | The join of a poset is com... |
meetcomALT 18036 | The meet of a poset is com... |
meetcom 18037 | The meet of a poset is com... |
join0 18038 | Lemma for ~ odumeet . (Co... |
meet0 18039 | Lemma for ~ odujoin . (Co... |
odulub 18040 | Least upper bounds in a du... |
odujoin 18041 | Joins in a dual order are ... |
oduglb 18042 | Greatest lower bounds in a... |
odumeet 18043 | Meets in a dual order are ... |
poslubmo 18044 | Least upper bounds in a po... |
posglbmo 18045 | Greatest lower bounds in a... |
poslubd 18046 | Properties which determine... |
poslubdg 18047 | Properties which determine... |
posglbdg 18048 | Properties which determine... |
istos 18051 | The predicate "is a toset"... |
tosso 18052 | Write the totally ordered ... |
tospos 18053 | A Toset is a Poset. (Cont... |
tleile 18054 | In a Toset, any two elemen... |
tltnle 18055 | In a Toset, "less than" is... |
p0val 18060 | Value of poset zero. (Con... |
p1val 18061 | Value of poset zero. (Con... |
p0le 18062 | Any element is less than o... |
ple1 18063 | Any element is less than o... |
islat 18066 | The predicate "is a lattic... |
odulatb 18067 | Being a lattice is self-du... |
odulat 18068 | Being a lattice is self-du... |
latcl2 18069 | The join and meet of any t... |
latlem 18070 | Lemma for lattice properti... |
latpos 18071 | A lattice is a poset. (Co... |
latjcl 18072 | Closure of join operation ... |
latmcl 18073 | Closure of meet operation ... |
latref 18074 | A lattice ordering is refl... |
latasymb 18075 | A lattice ordering is asym... |
latasym 18076 | A lattice ordering is asym... |
lattr 18077 | A lattice ordering is tran... |
latasymd 18078 | Deduce equality from latti... |
lattrd 18079 | A lattice ordering is tran... |
latjcom 18080 | The join of a lattice comm... |
latlej1 18081 | A join's first argument is... |
latlej2 18082 | A join's second argument i... |
latjle12 18083 | A join is less than or equ... |
latleeqj1 18084 | "Less than or equal to" in... |
latleeqj2 18085 | "Less than or equal to" in... |
latjlej1 18086 | Add join to both sides of ... |
latjlej2 18087 | Add join to both sides of ... |
latjlej12 18088 | Add join to both sides of ... |
latnlej 18089 | An idiom to express that a... |
latnlej1l 18090 | An idiom to express that a... |
latnlej1r 18091 | An idiom to express that a... |
latnlej2 18092 | An idiom to express that a... |
latnlej2l 18093 | An idiom to express that a... |
latnlej2r 18094 | An idiom to express that a... |
latjidm 18095 | Lattice join is idempotent... |
latmcom 18096 | The join of a lattice comm... |
latmle1 18097 | A meet is less than or equ... |
latmle2 18098 | A meet is less than or equ... |
latlem12 18099 | An element is less than or... |
latleeqm1 18100 | "Less than or equal to" in... |
latleeqm2 18101 | "Less than or equal to" in... |
latmlem1 18102 | Add meet to both sides of ... |
latmlem2 18103 | Add meet to both sides of ... |
latmlem12 18104 | Add join to both sides of ... |
latnlemlt 18105 | Negation of "less than or ... |
latnle 18106 | Equivalent expressions for... |
latmidm 18107 | Lattice meet is idempotent... |
latabs1 18108 | Lattice absorption law. F... |
latabs2 18109 | Lattice absorption law. F... |
latledi 18110 | An ortholattice is distrib... |
latmlej11 18111 | Ordering of a meet and joi... |
latmlej12 18112 | Ordering of a meet and joi... |
latmlej21 18113 | Ordering of a meet and joi... |
latmlej22 18114 | Ordering of a meet and joi... |
lubsn 18115 | The least upper bound of a... |
latjass 18116 | Lattice join is associativ... |
latj12 18117 | Swap 1st and 2nd members o... |
latj32 18118 | Swap 2nd and 3rd members o... |
latj13 18119 | Swap 1st and 3rd members o... |
latj31 18120 | Swap 2nd and 3rd members o... |
latjrot 18121 | Rotate lattice join of 3 c... |
latj4 18122 | Rearrangement of lattice j... |
latj4rot 18123 | Rotate lattice join of 4 c... |
latjjdi 18124 | Lattice join distributes o... |
latjjdir 18125 | Lattice join distributes o... |
mod1ile 18126 | The weak direction of the ... |
mod2ile 18127 | The weak direction of the ... |
latmass 18128 | Lattice meet is associativ... |
latdisdlem 18129 | Lemma for ~ latdisd . (Co... |
latdisd 18130 | In a lattice, joins distri... |
isclat 18133 | The predicate "is a comple... |
clatpos 18134 | A complete lattice is a po... |
clatlem 18135 | Lemma for properties of a ... |
clatlubcl 18136 | Any subset of the base set... |
clatlubcl2 18137 | Any subset of the base set... |
clatglbcl 18138 | Any subset of the base set... |
clatglbcl2 18139 | Any subset of the base set... |
oduclatb 18140 | Being a complete lattice i... |
clatl 18141 | A complete lattice is a la... |
isglbd 18142 | Properties that determine ... |
lublem 18143 | Lemma for the least upper ... |
lubub 18144 | The LUB of a complete latt... |
lubl 18145 | The LUB of a complete latt... |
lubss 18146 | Subset law for least upper... |
lubel 18147 | An element of a set is les... |
lubun 18148 | The LUB of a union. (Cont... |
clatglb 18149 | Properties of greatest low... |
clatglble 18150 | The greatest lower bound i... |
clatleglb 18151 | Two ways of expressing "le... |
clatglbss 18152 | Subset law for greatest lo... |
isdlat 18155 | Property of being a distri... |
dlatmjdi 18156 | In a distributive lattice,... |
dlatl 18157 | A distributive lattice is ... |
odudlatb 18158 | The dual of a distributive... |
dlatjmdi 18159 | In a distributive lattice,... |
ipostr 18162 | The structure of ~ df-ipo ... |
ipoval 18163 | Value of the inclusion pos... |
ipobas 18164 | Base set of the inclusion ... |
ipolerval 18165 | Relation of the inclusion ... |
ipotset 18166 | Topology of the inclusion ... |
ipole 18167 | Weak order condition of th... |
ipolt 18168 | Strict order condition of ... |
ipopos 18169 | The inclusion poset on a f... |
isipodrs 18170 | Condition for a family of ... |
ipodrscl 18171 | Direction by inclusion as ... |
ipodrsfi 18172 | Finite upper bound propert... |
fpwipodrs 18173 | The finite subsets of any ... |
ipodrsima 18174 | The monotone image of a di... |
isacs3lem 18175 | An algebraic closure syste... |
acsdrsel 18176 | An algebraic closure syste... |
isacs4lem 18177 | In a closure system in whi... |
isacs5lem 18178 | If closure commutes with d... |
acsdrscl 18179 | In an algebraic closure sy... |
acsficl 18180 | A closure in an algebraic ... |
isacs5 18181 | A closure system is algebr... |
isacs4 18182 | A closure system is algebr... |
isacs3 18183 | A closure system is algebr... |
acsficld 18184 | In an algebraic closure sy... |
acsficl2d 18185 | In an algebraic closure sy... |
acsfiindd 18186 | In an algebraic closure sy... |
acsmapd 18187 | In an algebraic closure sy... |
acsmap2d 18188 | In an algebraic closure sy... |
acsinfd 18189 | In an algebraic closure sy... |
acsdomd 18190 | In an algebraic closure sy... |
acsinfdimd 18191 | In an algebraic closure sy... |
acsexdimd 18192 | In an algebraic closure sy... |
mrelatglb 18193 | Greatest lower bounds in a... |
mrelatglb0 18194 | The empty intersection in ... |
mrelatlub 18195 | Least upper bounds in a Mo... |
mreclatBAD 18196 | A Moore space is a complet... |
isps 18201 | The predicate "is a poset"... |
psrel 18202 | A poset is a relation. (C... |
psref2 18203 | A poset is antisymmetric a... |
pstr2 18204 | A poset is transitive. (C... |
pslem 18205 | Lemma for ~ psref and othe... |
psdmrn 18206 | The domain and range of a ... |
psref 18207 | A poset is reflexive. (Co... |
psrn 18208 | The range of a poset equal... |
psasym 18209 | A poset is antisymmetric. ... |
pstr 18210 | A poset is transitive. (C... |
cnvps 18211 | The converse of a poset is... |
cnvpsb 18212 | The converse of a poset is... |
psss 18213 | Any subset of a partially ... |
psssdm2 18214 | Field of a subposet. (Con... |
psssdm 18215 | Field of a subposet. (Con... |
istsr 18216 | The predicate is a toset. ... |
istsr2 18217 | The predicate is a toset. ... |
tsrlin 18218 | A toset is a linear order.... |
tsrlemax 18219 | Two ways of saying a numbe... |
tsrps 18220 | A toset is a poset. (Cont... |
cnvtsr 18221 | The converse of a toset is... |
tsrss 18222 | Any subset of a totally or... |
ledm 18223 | The domain of ` <_ ` is ` ... |
lern 18224 | The range of ` <_ ` is ` R... |
lefld 18225 | The field of the 'less or ... |
letsr 18226 | The "less than or equal to... |
isdir 18231 | A condition for a relation... |
reldir 18232 | A direction is a relation.... |
dirdm 18233 | A direction's domain is eq... |
dirref 18234 | A direction is reflexive. ... |
dirtr 18235 | A direction is transitive.... |
dirge 18236 | For any two elements of a ... |
tsrdir 18237 | A totally ordered set is a... |
ismgm 18242 | The predicate "is a magma"... |
ismgmn0 18243 | The predicate "is a magma"... |
mgmcl 18244 | Closure of the operation o... |
isnmgm 18245 | A condition for a structur... |
mgmsscl 18246 | If the base set of a magma... |
plusffval 18247 | The group addition operati... |
plusfval 18248 | The group addition operati... |
plusfeq 18249 | If the addition operation ... |
plusffn 18250 | The group addition operati... |
mgmplusf 18251 | The group addition functio... |
issstrmgm 18252 | Characterize a substructur... |
intopsn 18253 | The internal operation for... |
mgmb1mgm1 18254 | The only magma with a base... |
mgm0 18255 | Any set with an empty base... |
mgm0b 18256 | The structure with an empt... |
mgm1 18257 | The structure with one ele... |
opifismgm 18258 | A structure with a group a... |
mgmidmo 18259 | A two-sided identity eleme... |
grpidval 18260 | The value of the identity ... |
grpidpropd 18261 | If two structures have the... |
fn0g 18262 | The group zero extractor i... |
0g0 18263 | The identity element funct... |
ismgmid 18264 | The identity element of a ... |
mgmidcl 18265 | The identity element of a ... |
mgmlrid 18266 | The identity element of a ... |
ismgmid2 18267 | Show that a given element ... |
lidrideqd 18268 | If there is a left and rig... |
lidrididd 18269 | If there is a left and rig... |
grpidd 18270 | Deduce the identity elemen... |
mgmidsssn0 18271 | Property of the set of ide... |
grprinvlem 18272 | Lemma for ~ grprinvd . (C... |
grprinvd 18273 | Deduce right inverse from ... |
grpridd 18274 | Deduce right identity from... |
gsumvalx 18275 | Expand out the substitutio... |
gsumval 18276 | Expand out the substitutio... |
gsumpropd 18277 | The group sum depends only... |
gsumpropd2lem 18278 | Lemma for ~ gsumpropd2 . ... |
gsumpropd2 18279 | A stronger version of ~ gs... |
gsummgmpropd 18280 | A stronger version of ~ gs... |
gsumress 18281 | The group sum in a substru... |
gsumval1 18282 | Value of the group sum ope... |
gsum0 18283 | Value of the empty group s... |
gsumval2a 18284 | Value of the group sum ope... |
gsumval2 18285 | Value of the group sum ope... |
gsumsplit1r 18286 | Splitting off the rightmos... |
gsumprval 18287 | Value of the group sum ope... |
gsumpr12val 18288 | Value of the group sum ope... |
issgrp 18291 | The predicate "is a semigr... |
issgrpv 18292 | The predicate "is a semigr... |
issgrpn0 18293 | The predicate "is a semigr... |
isnsgrp 18294 | A condition for a structur... |
sgrpmgm 18295 | A semigroup is a magma. (... |
sgrpass 18296 | A semigroup operation is a... |
sgrp0 18297 | Any set with an empty base... |
sgrp0b 18298 | The structure with an empt... |
sgrp1 18299 | The structure with one ele... |
ismnddef 18302 | The predicate "is a monoid... |
ismnd 18303 | The predicate "is a monoid... |
isnmnd 18304 | A condition for a structur... |
sgrpidmnd 18305 | A semigroup with an identi... |
mndsgrp 18306 | A monoid is a semigroup. ... |
mndmgm 18307 | A monoid is a magma. (Con... |
mndcl 18308 | Closure of the operation o... |
mndass 18309 | A monoid operation is asso... |
mndid 18310 | A monoid has a two-sided i... |
mndideu 18311 | The two-sided identity ele... |
mnd32g 18312 | Commutative/associative la... |
mnd12g 18313 | Commutative/associative la... |
mnd4g 18314 | Commutative/associative la... |
mndidcl 18315 | The identity element of a ... |
mndbn0 18316 | The base set of a monoid i... |
hashfinmndnn 18317 | A finite monoid has positi... |
mndplusf 18318 | The group addition operati... |
mndlrid 18319 | A monoid's identity elemen... |
mndlid 18320 | The identity element of a ... |
mndrid 18321 | The identity element of a ... |
ismndd 18322 | Deduce a monoid from its p... |
mndpfo 18323 | The addition operation of ... |
mndfo 18324 | The addition operation of ... |
mndpropd 18325 | If two structures have the... |
mndprop 18326 | If two structures have the... |
issubmnd 18327 | Characterize a submonoid b... |
ress0g 18328 | ` 0g ` is unaffected by re... |
submnd0 18329 | The zero of a submonoid is... |
mndinvmod 18330 | Uniqueness of an inverse e... |
prdsplusgcl 18331 | Structure product pointwis... |
prdsidlem 18332 | Characterization of identi... |
prdsmndd 18333 | The product of a family of... |
prds0g 18334 | Zero in a product of monoi... |
pwsmnd 18335 | The structure power of a m... |
pws0g 18336 | Zero in a structure power ... |
imasmnd2 18337 | The image structure of a m... |
imasmnd 18338 | The image structure of a m... |
imasmndf1 18339 | The image of a monoid unde... |
xpsmnd 18340 | The binary product of mono... |
mnd1 18341 | The (smallest) structure r... |
mnd1id 18342 | The singleton element of a... |
ismhm 18347 | Property of a monoid homom... |
mhmrcl1 18348 | Reverse closure of a monoi... |
mhmrcl2 18349 | Reverse closure of a monoi... |
mhmf 18350 | A monoid homomorphism is a... |
mhmpropd 18351 | Monoid homomorphism depend... |
mhmlin 18352 | A monoid homomorphism comm... |
mhm0 18353 | A monoid homomorphism pres... |
idmhm 18354 | The identity homomorphism ... |
mhmf1o 18355 | A monoid homomorphism is b... |
submrcl 18356 | Reverse closure for submon... |
issubm 18357 | Expand definition of a sub... |
issubm2 18358 | Submonoids are subsets tha... |
issubmndb 18359 | The submonoid predicate. ... |
issubmd 18360 | Deduction for proving a su... |
mndissubm 18361 | If the base set of a monoi... |
resmndismnd 18362 | If the base set of a monoi... |
submss 18363 | Submonoids are subsets of ... |
submid 18364 | Every monoid is trivially ... |
subm0cl 18365 | Submonoids contain zero. ... |
submcl 18366 | Submonoids are closed unde... |
submmnd 18367 | Submonoids are themselves ... |
submbas 18368 | The base set of a submonoi... |
subm0 18369 | Submonoids have the same i... |
subsubm 18370 | A submonoid of a submonoid... |
0subm 18371 | The zero submonoid of an a... |
insubm 18372 | The intersection of two su... |
0mhm 18373 | The constant zero linear f... |
resmhm 18374 | Restriction of a monoid ho... |
resmhm2 18375 | One direction of ~ resmhm2... |
resmhm2b 18376 | Restriction of the codomai... |
mhmco 18377 | The composition of monoid ... |
mhmima 18378 | The homomorphic image of a... |
mhmeql 18379 | The equalizer of two monoi... |
submacs 18380 | Submonoids are an algebrai... |
mndind 18381 | Induction in a monoid. In... |
prdspjmhm 18382 | A projection from a produc... |
pwspjmhm 18383 | A projection from a struct... |
pwsdiagmhm 18384 | Diagonal monoid homomorphi... |
pwsco1mhm 18385 | Right composition with a f... |
pwsco2mhm 18386 | Left composition with a mo... |
gsumvallem2 18387 | Lemma for properties of th... |
gsumsubm 18388 | Evaluate a group sum in a ... |
gsumz 18389 | Value of a group sum over ... |
gsumwsubmcl 18390 | Closure of the composite i... |
gsumws1 18391 | A singleton composite reco... |
gsumwcl 18392 | Closure of the composite o... |
gsumsgrpccat 18393 | Homomorphic property of no... |
gsumccatOLD 18394 | Obsolete version of ~ gsum... |
gsumccat 18395 | Homomorphic property of co... |
gsumws2 18396 | Valuation of a pair in a m... |
gsumccatsn 18397 | Homomorphic property of co... |
gsumspl 18398 | The primary purpose of the... |
gsumwmhm 18399 | Behavior of homomorphisms ... |
gsumwspan 18400 | The submonoid generated by... |
frmdval 18405 | Value of the free monoid c... |
frmdbas 18406 | The base set of a free mon... |
frmdelbas 18407 | An element of the base set... |
frmdplusg 18408 | The monoid operation of a ... |
frmdadd 18409 | Value of the monoid operat... |
vrmdfval 18410 | The canonical injection fr... |
vrmdval 18411 | The value of the generatin... |
vrmdf 18412 | The mapping from the index... |
frmdmnd 18413 | A free monoid is a monoid.... |
frmd0 18414 | The identity of the free m... |
frmdsssubm 18415 | The set of words taking va... |
frmdgsum 18416 | Any word in a free monoid ... |
frmdss2 18417 | A subset of generators is ... |
frmdup1 18418 | Any assignment of the gene... |
frmdup2 18419 | The evaluation map has the... |
frmdup3lem 18420 | Lemma for ~ frmdup3 . (Co... |
frmdup3 18421 | Universal property of the ... |
efmnd 18424 | The monoid of endofunction... |
efmndbas 18425 | The base set of the monoid... |
efmndbasabf 18426 | The base set of the monoid... |
elefmndbas 18427 | Two ways of saying a funct... |
elefmndbas2 18428 | Two ways of saying a funct... |
efmndbasf 18429 | Elements in the monoid of ... |
efmndhash 18430 | The monoid of endofunction... |
efmndbasfi 18431 | The monoid of endofunction... |
efmndfv 18432 | The function value of an e... |
efmndtset 18433 | The topology of the monoid... |
efmndplusg 18434 | The group operation of a m... |
efmndov 18435 | The value of the group ope... |
efmndcl 18436 | The group operation of the... |
efmndtopn 18437 | The topology of the monoid... |
symggrplem 18438 | Lemma for ~ symggrp and ~ ... |
efmndmgm 18439 | The monoid of endofunction... |
efmndsgrp 18440 | The monoid of endofunction... |
ielefmnd 18441 | The identity function rest... |
efmndid 18442 | The identity function rest... |
efmndmnd 18443 | The monoid of endofunction... |
efmnd0nmnd 18444 | Even the monoid of endofun... |
efmndbas0 18445 | The base set of the monoid... |
efmnd1hash 18446 | The monoid of endofunction... |
efmnd1bas 18447 | The monoid of endofunction... |
efmnd2hash 18448 | The monoid of endofunction... |
submefmnd 18449 | If the base set of a monoi... |
sursubmefmnd 18450 | The set of surjective endo... |
injsubmefmnd 18451 | The set of injective endof... |
idressubmefmnd 18452 | The singleton containing o... |
idresefmnd 18453 | The structure with the sin... |
smndex1ibas 18454 | The modulo function ` I ` ... |
smndex1iidm 18455 | The modulo function ` I ` ... |
smndex1gbas 18456 | The constant functions ` (... |
smndex1gid 18457 | The composition of a const... |
smndex1igid 18458 | The composition of the mod... |
smndex1basss 18459 | The modulo function ` I ` ... |
smndex1bas 18460 | The base set of the monoid... |
smndex1mgm 18461 | The monoid of endofunction... |
smndex1sgrp 18462 | The monoid of endofunction... |
smndex1mndlem 18463 | Lemma for ~ smndex1mnd and... |
smndex1mnd 18464 | The monoid of endofunction... |
smndex1id 18465 | The modulo function ` I ` ... |
smndex1n0mnd 18466 | The identity of the monoid... |
nsmndex1 18467 | The base set ` B ` of the ... |
smndex2dbas 18468 | The doubling function ` D ... |
smndex2dnrinv 18469 | The doubling function ` D ... |
smndex2hbas 18470 | The halving functions ` H ... |
smndex2dlinvh 18471 | The halving functions ` H ... |
mgm2nsgrplem1 18472 | Lemma 1 for ~ mgm2nsgrp : ... |
mgm2nsgrplem2 18473 | Lemma 2 for ~ mgm2nsgrp . ... |
mgm2nsgrplem3 18474 | Lemma 3 for ~ mgm2nsgrp . ... |
mgm2nsgrplem4 18475 | Lemma 4 for ~ mgm2nsgrp : ... |
mgm2nsgrp 18476 | A small magma (with two el... |
sgrp2nmndlem1 18477 | Lemma 1 for ~ sgrp2nmnd : ... |
sgrp2nmndlem2 18478 | Lemma 2 for ~ sgrp2nmnd . ... |
sgrp2nmndlem3 18479 | Lemma 3 for ~ sgrp2nmnd . ... |
sgrp2rid2 18480 | A small semigroup (with tw... |
sgrp2rid2ex 18481 | A small semigroup (with tw... |
sgrp2nmndlem4 18482 | Lemma 4 for ~ sgrp2nmnd : ... |
sgrp2nmndlem5 18483 | Lemma 5 for ~ sgrp2nmnd : ... |
sgrp2nmnd 18484 | A small semigroup (with tw... |
mgmnsgrpex 18485 | There is a magma which is ... |
sgrpnmndex 18486 | There is a semigroup which... |
sgrpssmgm 18487 | The class of all semigroup... |
mndsssgrp 18488 | The class of all monoids i... |
pwmndgplus 18489 | The operation of the monoi... |
pwmndid 18490 | The identity of the monoid... |
pwmnd 18491 | The power set of a class `... |
isgrp 18498 | The predicate "is a group"... |
grpmnd 18499 | A group is a monoid. (Con... |
grpcl 18500 | Closure of the operation o... |
grpass 18501 | A group operation is assoc... |
grpinvex 18502 | Every member of a group ha... |
grpideu 18503 | The two-sided identity ele... |
grpmndd 18504 | A group is a monoid. (Con... |
grpcld 18505 | Closure of the operation o... |
grpplusf 18506 | The group addition operati... |
grpplusfo 18507 | The group addition operati... |
resgrpplusfrn 18508 | The underlying set of a gr... |
grppropd 18509 | If two structures have the... |
grpprop 18510 | If two structures have the... |
grppropstr 18511 | Generalize a specific 2-el... |
grpss 18512 | Show that a structure exte... |
isgrpd2e 18513 | Deduce a group from its pr... |
isgrpd2 18514 | Deduce a group from its pr... |
isgrpde 18515 | Deduce a group from its pr... |
isgrpd 18516 | Deduce a group from its pr... |
isgrpi 18517 | Properties that determine ... |
grpsgrp 18518 | A group is a semigroup. (... |
dfgrp2 18519 | Alternate definition of a ... |
dfgrp2e 18520 | Alternate definition of a ... |
isgrpix 18521 | Properties that determine ... |
grpidcl 18522 | The identity element of a ... |
grpbn0 18523 | The base set of a group is... |
grplid 18524 | The identity element of a ... |
grprid 18525 | The identity element of a ... |
grpn0 18526 | A group is not empty. (Co... |
hashfingrpnn 18527 | A finite group has positiv... |
grprcan 18528 | Right cancellation law for... |
grpinveu 18529 | The left inverse element o... |
grpid 18530 | Two ways of saying that an... |
isgrpid2 18531 | Properties showing that an... |
grpidd2 18532 | Deduce the identity elemen... |
grpinvfval 18533 | The inverse function of a ... |
grpinvfvalALT 18534 | Shorter proof of ~ grpinvf... |
grpinvval 18535 | The inverse of a group ele... |
grpinvfn 18536 | Functionality of the group... |
grpinvfvi 18537 | The group inverse function... |
grpsubfval 18538 | Group subtraction (divisio... |
grpsubfvalALT 18539 | Shorter proof of ~ grpsubf... |
grpsubval 18540 | Group subtraction (divisio... |
grpinvf 18541 | The group inversion operat... |
grpinvcl 18542 | A group element's inverse ... |
grplinv 18543 | The left inverse of a grou... |
grprinv 18544 | The right inverse of a gro... |
grpinvid1 18545 | The inverse of a group ele... |
grpinvid2 18546 | The inverse of a group ele... |
isgrpinv 18547 | Properties showing that a ... |
grplrinv 18548 | In a group, every member h... |
grpidinv2 18549 | A group's properties using... |
grpidinv 18550 | A group has a left and rig... |
grpinvid 18551 | The inverse of the identit... |
grplcan 18552 | Left cancellation law for ... |
grpasscan1 18553 | An associative cancellatio... |
grpasscan2 18554 | An associative cancellatio... |
grpidrcan 18555 | If right adding an element... |
grpidlcan 18556 | If left adding an element ... |
grpinvinv 18557 | Double inverse law for gro... |
grpinvcnv 18558 | The group inverse is its o... |
grpinv11 18559 | The group inverse is one-t... |
grpinvf1o 18560 | The group inverse is a one... |
grpinvnz 18561 | The inverse of a nonzero g... |
grpinvnzcl 18562 | The inverse of a nonzero g... |
grpsubinv 18563 | Subtraction of an inverse.... |
grplmulf1o 18564 | Left multiplication by a g... |
grpinvpropd 18565 | If two structures have the... |
grpidssd 18566 | If the base set of a group... |
grpinvssd 18567 | If the base set of a group... |
grpinvadd 18568 | The inverse of the group o... |
grpsubf 18569 | Functionality of group sub... |
grpsubcl 18570 | Closure of group subtracti... |
grpsubrcan 18571 | Right cancellation law for... |
grpinvsub 18572 | Inverse of a group subtrac... |
grpinvval2 18573 | A ~ df-neg -like equation ... |
grpsubid 18574 | Subtraction of a group ele... |
grpsubid1 18575 | Subtraction of the identit... |
grpsubeq0 18576 | If the difference between ... |
grpsubadd0sub 18577 | Subtraction expressed as a... |
grpsubadd 18578 | Relationship between group... |
grpsubsub 18579 | Double group subtraction. ... |
grpaddsubass 18580 | Associative-type law for g... |
grppncan 18581 | Cancellation law for subtr... |
grpnpcan 18582 | Cancellation law for subtr... |
grpsubsub4 18583 | Double group subtraction (... |
grppnpcan2 18584 | Cancellation law for mixed... |
grpnpncan 18585 | Cancellation law for group... |
grpnpncan0 18586 | Cancellation law for group... |
grpnnncan2 18587 | Cancellation law for group... |
dfgrp3lem 18588 | Lemma for ~ dfgrp3 . (Con... |
dfgrp3 18589 | Alternate definition of a ... |
dfgrp3e 18590 | Alternate definition of a ... |
grplactfval 18591 | The left group action of e... |
grplactval 18592 | The value of the left grou... |
grplactcnv 18593 | The left group action of e... |
grplactf1o 18594 | The left group action of e... |
grpsubpropd 18595 | Weak property deduction fo... |
grpsubpropd2 18596 | Strong property deduction ... |
grp1 18597 | The (smallest) structure r... |
grp1inv 18598 | The inverse function of th... |
prdsinvlem 18599 | Characterization of invers... |
prdsgrpd 18600 | The product of a family of... |
prdsinvgd 18601 | Negation in a product of g... |
pwsgrp 18602 | A structure power of a gro... |
pwsinvg 18603 | Negation in a group power.... |
pwssub 18604 | Subtraction in a group pow... |
imasgrp2 18605 | The image structure of a g... |
imasgrp 18606 | The image structure of a g... |
imasgrpf1 18607 | The image of a group under... |
qusgrp2 18608 | Prove that a quotient stru... |
xpsgrp 18609 | The binary product of grou... |
mhmlem 18610 | Lemma for ~ mhmmnd and ~ g... |
mhmid 18611 | A surjective monoid morphi... |
mhmmnd 18612 | The image of a monoid ` G ... |
mhmfmhm 18613 | The function fulfilling th... |
ghmgrp 18614 | The image of a group ` G `... |
mulgfval 18617 | Group multiple (exponentia... |
mulgfvalALT 18618 | Shorter proof of ~ mulgfva... |
mulgval 18619 | Value of the group multipl... |
mulgfn 18620 | Functionality of the group... |
mulgfvi 18621 | The group multiple operati... |
mulg0 18622 | Group multiple (exponentia... |
mulgnn 18623 | Group multiple (exponentia... |
mulgnngsum 18624 | Group multiple (exponentia... |
mulgnn0gsum 18625 | Group multiple (exponentia... |
mulg1 18626 | Group multiple (exponentia... |
mulgnnp1 18627 | Group multiple (exponentia... |
mulg2 18628 | Group multiple (exponentia... |
mulgnegnn 18629 | Group multiple (exponentia... |
mulgnn0p1 18630 | Group multiple (exponentia... |
mulgnnsubcl 18631 | Closure of the group multi... |
mulgnn0subcl 18632 | Closure of the group multi... |
mulgsubcl 18633 | Closure of the group multi... |
mulgnncl 18634 | Closure of the group multi... |
mulgnn0cl 18635 | Closure of the group multi... |
mulgcl 18636 | Closure of the group multi... |
mulgneg 18637 | Group multiple (exponentia... |
mulgnegneg 18638 | The inverse of a negative ... |
mulgm1 18639 | Group multiple (exponentia... |
mulgcld 18640 | Deduction associated with ... |
mulgaddcomlem 18641 | Lemma for ~ mulgaddcom . ... |
mulgaddcom 18642 | The group multiple operato... |
mulginvcom 18643 | The group multiple operato... |
mulginvinv 18644 | The group multiple operato... |
mulgnn0z 18645 | A group multiple of the id... |
mulgz 18646 | A group multiple of the id... |
mulgnndir 18647 | Sum of group multiples, fo... |
mulgnn0dir 18648 | Sum of group multiples, ge... |
mulgdirlem 18649 | Lemma for ~ mulgdir . (Co... |
mulgdir 18650 | Sum of group multiples, ge... |
mulgp1 18651 | Group multiple (exponentia... |
mulgneg2 18652 | Group multiple (exponentia... |
mulgnnass 18653 | Product of group multiples... |
mulgnn0ass 18654 | Product of group multiples... |
mulgass 18655 | Product of group multiples... |
mulgassr 18656 | Reversed product of group ... |
mulgmodid 18657 | Casting out multiples of t... |
mulgsubdir 18658 | Subtraction of a group ele... |
mhmmulg 18659 | A homomorphism of monoids ... |
mulgpropd 18660 | Two structures with the sa... |
submmulgcl 18661 | Closure of the group multi... |
submmulg 18662 | A group multiple is the sa... |
pwsmulg 18663 | Value of a group multiple ... |
issubg 18670 | The subgroup predicate. (... |
subgss 18671 | A subgroup is a subset. (... |
subgid 18672 | A group is a subgroup of i... |
subggrp 18673 | A subgroup is a group. (C... |
subgbas 18674 | The base of the restricted... |
subgrcl 18675 | Reverse closure for the su... |
subg0 18676 | A subgroup of a group must... |
subginv 18677 | The inverse of an element ... |
subg0cl 18678 | The group identity is an e... |
subginvcl 18679 | The inverse of an element ... |
subgcl 18680 | A subgroup is closed under... |
subgsubcl 18681 | A subgroup is closed under... |
subgsub 18682 | The subtraction of element... |
subgmulgcl 18683 | Closure of the group multi... |
subgmulg 18684 | A group multiple is the sa... |
issubg2 18685 | Characterize the subgroups... |
issubgrpd2 18686 | Prove a subgroup by closur... |
issubgrpd 18687 | Prove a subgroup by closur... |
issubg3 18688 | A subgroup is a symmetric ... |
issubg4 18689 | A subgroup is a nonempty s... |
grpissubg 18690 | If the base set of a group... |
resgrpisgrp 18691 | If the base set of a group... |
subgsubm 18692 | A subgroup is a submonoid.... |
subsubg 18693 | A subgroup of a subgroup i... |
subgint 18694 | The intersection of a none... |
0subg 18695 | The zero subgroup of an ar... |
trivsubgd 18696 | The only subgroup of a tri... |
trivsubgsnd 18697 | The only subgroup of a tri... |
isnsg 18698 | Property of being a normal... |
isnsg2 18699 | Weaken the condition of ~ ... |
nsgbi 18700 | Defining property of a nor... |
nsgsubg 18701 | A normal subgroup is a sub... |
nsgconj 18702 | The conjugation of an elem... |
isnsg3 18703 | A subgroup is normal iff t... |
subgacs 18704 | Subgroups are an algebraic... |
nsgacs 18705 | Normal subgroups form an a... |
elnmz 18706 | Elementhood in the normali... |
nmzbi 18707 | Defining property of the n... |
nmzsubg 18708 | The normalizer N_G(S) of a... |
ssnmz 18709 | A subgroup is a subset of ... |
isnsg4 18710 | A subgroup is normal iff i... |
nmznsg 18711 | Any subgroup is a normal s... |
0nsg 18712 | The zero subgroup is norma... |
nsgid 18713 | The whole group is a norma... |
0idnsgd 18714 | The whole group and the ze... |
trivnsgd 18715 | The only normal subgroup o... |
triv1nsgd 18716 | A trivial group has exactl... |
1nsgtrivd 18717 | A group with exactly one n... |
releqg 18718 | The left coset equivalence... |
eqgfval 18719 | Value of the subgroup left... |
eqgval 18720 | Value of the subgroup left... |
eqger 18721 | The subgroup coset equival... |
eqglact 18722 | A left coset can be expres... |
eqgid 18723 | The left coset containing ... |
eqgen 18724 | Each coset is equipotent t... |
eqgcpbl 18725 | The subgroup coset equival... |
qusgrp 18726 | If ` Y ` is a normal subgr... |
quseccl 18727 | Closure of the quotient ma... |
qusadd 18728 | Value of the group operati... |
qus0 18729 | Value of the group identit... |
qusinv 18730 | Value of the group inverse... |
qussub 18731 | Value of the group subtrac... |
lagsubg2 18732 | Lagrange's theorem for fin... |
lagsubg 18733 | Lagrange's theorem for Gro... |
cycsubmel 18734 | Characterization of an ele... |
cycsubmcl 18735 | The set of nonnegative int... |
cycsubm 18736 | The set of nonnegative int... |
cyccom 18737 | Condition for an operation... |
cycsubmcom 18738 | The operation of a monoid ... |
cycsubggend 18739 | The cyclic subgroup genera... |
cycsubgcl 18740 | The set of integer powers ... |
cycsubgss 18741 | The cyclic subgroup genera... |
cycsubg 18742 | The cyclic group generated... |
cycsubgcld 18743 | The cyclic subgroup genera... |
cycsubg2 18744 | The subgroup generated by ... |
cycsubg2cl 18745 | Any multiple of an element... |
reldmghm 18748 | Lemma for group homomorphi... |
isghm 18749 | Property of being a homomo... |
isghm3 18750 | Property of a group homomo... |
ghmgrp1 18751 | A group homomorphism is on... |
ghmgrp2 18752 | A group homomorphism is on... |
ghmf 18753 | A group homomorphism is a ... |
ghmlin 18754 | A homomorphism of groups i... |
ghmid 18755 | A homomorphism of groups p... |
ghminv 18756 | A homomorphism of groups p... |
ghmsub 18757 | Linearity of subtraction t... |
isghmd 18758 | Deduction for a group homo... |
ghmmhm 18759 | A group homomorphism is a ... |
ghmmhmb 18760 | Group homomorphisms and mo... |
ghmmulg 18761 | A homomorphism of monoids ... |
ghmrn 18762 | The range of a homomorphis... |
0ghm 18763 | The constant zero linear f... |
idghm 18764 | The identity homomorphism ... |
resghm 18765 | Restriction of a homomorph... |
resghm2 18766 | One direction of ~ resghm2... |
resghm2b 18767 | Restriction of the codomai... |
ghmghmrn 18768 | A group homomorphism from ... |
ghmco 18769 | The composition of group h... |
ghmima 18770 | The image of a subgroup un... |
ghmpreima 18771 | The inverse image of a sub... |
ghmeql 18772 | The equalizer of two group... |
ghmnsgima 18773 | The image of a normal subg... |
ghmnsgpreima 18774 | The inverse image of a nor... |
ghmker 18775 | The kernel of a homomorphi... |
ghmeqker 18776 | Two source points map to t... |
pwsdiagghm 18777 | Diagonal homomorphism into... |
ghmf1 18778 | Two ways of saying a group... |
ghmf1o 18779 | A bijective group homomorp... |
conjghm 18780 | Conjugation is an automorp... |
conjsubg 18781 | A conjugated subgroup is a... |
conjsubgen 18782 | A conjugated subgroup is e... |
conjnmz 18783 | A subgroup is unchanged un... |
conjnmzb 18784 | Alternative condition for ... |
conjnsg 18785 | A normal subgroup is uncha... |
qusghm 18786 | If ` Y ` is a normal subgr... |
ghmpropd 18787 | Group homomorphism depends... |
gimfn 18792 | The group isomorphism func... |
isgim 18793 | An isomorphism of groups i... |
gimf1o 18794 | An isomorphism of groups i... |
gimghm 18795 | An isomorphism of groups i... |
isgim2 18796 | A group isomorphism is a h... |
subggim 18797 | Behavior of subgroups unde... |
gimcnv 18798 | The converse of a bijectiv... |
gimco 18799 | The composition of group i... |
brgic 18800 | The relation "is isomorphi... |
brgici 18801 | Prove isomorphic by an exp... |
gicref 18802 | Isomorphism is reflexive. ... |
giclcl 18803 | Isomorphism implies the le... |
gicrcl 18804 | Isomorphism implies the ri... |
gicsym 18805 | Isomorphism is symmetric. ... |
gictr 18806 | Isomorphism is transitive.... |
gicer 18807 | Isomorphism is an equivale... |
gicen 18808 | Isomorphic groups have equ... |
gicsubgen 18809 | A less trivial example of ... |
isga 18812 | The predicate "is a (left)... |
gagrp 18813 | The left argument of a gro... |
gaset 18814 | The right argument of a gr... |
gagrpid 18815 | The identity of the group ... |
gaf 18816 | The mapping of the group a... |
gafo 18817 | A group action is onto its... |
gaass 18818 | An "associative" property ... |
ga0 18819 | The action of a group on t... |
gaid 18820 | The trivial action of a gr... |
subgga 18821 | A subgroup acts on its par... |
gass 18822 | A subset of a group action... |
gasubg 18823 | The restriction of a group... |
gaid2 18824 | A group operation is a lef... |
galcan 18825 | The action of a particular... |
gacan 18826 | Group inverses cancel in a... |
gapm 18827 | The action of a particular... |
gaorb 18828 | The orbit equivalence rela... |
gaorber 18829 | The orbit equivalence rela... |
gastacl 18830 | The stabilizer subgroup in... |
gastacos 18831 | Write the coset relation f... |
orbstafun 18832 | Existence and uniqueness f... |
orbstaval 18833 | Value of the function at a... |
orbsta 18834 | The Orbit-Stabilizer theor... |
orbsta2 18835 | Relation between the size ... |
cntrval 18840 | Substitute definition of t... |
cntzfval 18841 | First level substitution f... |
cntzval 18842 | Definition substitution fo... |
elcntz 18843 | Elementhood in the central... |
cntzel 18844 | Membership in a centralize... |
cntzsnval 18845 | Special substitution for t... |
elcntzsn 18846 | Value of the centralizer o... |
sscntz 18847 | A centralizer expression f... |
cntzrcl 18848 | Reverse closure for elemen... |
cntzssv 18849 | The centralizer is uncondi... |
cntzi 18850 | Membership in a centralize... |
cntrss 18851 | The center is a subset of ... |
cntri 18852 | Defining property of the c... |
resscntz 18853 | Centralizer in a substruct... |
cntz2ss 18854 | Centralizers reverse the s... |
cntzrec 18855 | Reciprocity relationship f... |
cntziinsn 18856 | Express any centralizer as... |
cntzsubm 18857 | Centralizers in a monoid a... |
cntzsubg 18858 | Centralizers in a group ar... |
cntzidss 18859 | If the elements of ` S ` c... |
cntzmhm 18860 | Centralizers in a monoid a... |
cntzmhm2 18861 | Centralizers in a monoid a... |
cntrsubgnsg 18862 | A central subgroup is norm... |
cntrnsg 18863 | The center of a group is a... |
oppgval 18866 | Value of the opposite grou... |
oppgplusfval 18867 | Value of the addition oper... |
oppgplus 18868 | Value of the addition oper... |
setsplusg 18869 | The other components of an... |
oppglemOLD 18870 | Obsolete version of ~ sets... |
oppgbas 18871 | Base set of an opposite gr... |
oppgbasOLD 18872 | Obsolete version of ~ oppg... |
oppgtset 18873 | Topology of an opposite gr... |
oppgtsetOLD 18874 | Obsolete version of ~ oppg... |
oppgtopn 18875 | Topology of an opposite gr... |
oppgmnd 18876 | The opposite of a monoid i... |
oppgmndb 18877 | Bidirectional form of ~ op... |
oppgid 18878 | Zero in a monoid is a symm... |
oppggrp 18879 | The opposite of a group is... |
oppggrpb 18880 | Bidirectional form of ~ op... |
oppginv 18881 | Inverses in a group are a ... |
invoppggim 18882 | The inverse is an antiauto... |
oppggic 18883 | Every group is (naturally)... |
oppgsubm 18884 | Being a submonoid is a sym... |
oppgsubg 18885 | Being a subgroup is a symm... |
oppgcntz 18886 | A centralizer in a group i... |
oppgcntr 18887 | The center of a group is t... |
gsumwrev 18888 | A sum in an opposite monoi... |
symgval 18891 | The value of the symmetric... |
permsetexOLD 18892 | Obsolete version of ~ f1os... |
symgbas 18893 | The base set of the symmet... |
symgbasexOLD 18894 | Obsolete as of 8-Aug-2024.... |
elsymgbas2 18895 | Two ways of saying a funct... |
elsymgbas 18896 | Two ways of saying a funct... |
symgbasf1o 18897 | Elements in the symmetric ... |
symgbasf 18898 | A permutation (element of ... |
symgbasmap 18899 | A permutation (element of ... |
symghash 18900 | The symmetric group on ` n... |
symgbasfi 18901 | The symmetric group on a f... |
symgfv 18902 | The function value of a pe... |
symgfvne 18903 | The function values of a p... |
symgressbas 18904 | The symmetric group on ` A... |
symgplusg 18905 | The group operation of a s... |
symgov 18906 | The value of the group ope... |
symgcl 18907 | The group operation of the... |
idresperm 18908 | The identity function rest... |
symgmov1 18909 | For a permutation of a set... |
symgmov2 18910 | For a permutation of a set... |
symgbas0 18911 | The base set of the symmet... |
symg1hash 18912 | The symmetric group on a s... |
symg1bas 18913 | The symmetric group on a s... |
symg2hash 18914 | The symmetric group on a (... |
symg2bas 18915 | The symmetric group on a p... |
0symgefmndeq 18916 | The symmetric group on the... |
snsymgefmndeq 18917 | The symmetric group on a s... |
symgpssefmnd 18918 | For a set ` A ` with more ... |
symgvalstruct 18919 | The value of the symmetric... |
symgvalstructOLD 18920 | Obsolete proof of ~ symgva... |
symgsubmefmnd 18921 | The symmetric group on a s... |
symgtset 18922 | The topology of the symmet... |
symggrp 18923 | The symmetric group on a s... |
symgid 18924 | The group identity element... |
symginv 18925 | The group inverse in the s... |
symgsubmefmndALT 18926 | The symmetric group on a s... |
galactghm 18927 | The currying of a group ac... |
lactghmga 18928 | The converse of ~ galactgh... |
symgtopn 18929 | The topology of the symmet... |
symgga 18930 | The symmetric group induce... |
pgrpsubgsymgbi 18931 | Every permutation group is... |
pgrpsubgsymg 18932 | Every permutation group is... |
idressubgsymg 18933 | The singleton containing o... |
idrespermg 18934 | The structure with the sin... |
cayleylem1 18935 | Lemma for ~ cayley . (Con... |
cayleylem2 18936 | Lemma for ~ cayley . (Con... |
cayley 18937 | Cayley's Theorem (construc... |
cayleyth 18938 | Cayley's Theorem (existenc... |
symgfix2 18939 | If a permutation does not ... |
symgextf 18940 | The extension of a permuta... |
symgextfv 18941 | The function value of the ... |
symgextfve 18942 | The function value of the ... |
symgextf1lem 18943 | Lemma for ~ symgextf1 . (... |
symgextf1 18944 | The extension of a permuta... |
symgextfo 18945 | The extension of a permuta... |
symgextf1o 18946 | The extension of a permuta... |
symgextsymg 18947 | The extension of a permuta... |
symgextres 18948 | The restriction of the ext... |
gsumccatsymgsn 18949 | Homomorphic property of co... |
gsmsymgrfixlem1 18950 | Lemma 1 for ~ gsmsymgrfix ... |
gsmsymgrfix 18951 | The composition of permuta... |
fvcosymgeq 18952 | The values of two composit... |
gsmsymgreqlem1 18953 | Lemma 1 for ~ gsmsymgreq .... |
gsmsymgreqlem2 18954 | Lemma 2 for ~ gsmsymgreq .... |
gsmsymgreq 18955 | Two combination of permuta... |
symgfixelq 18956 | A permutation of a set fix... |
symgfixels 18957 | The restriction of a permu... |
symgfixelsi 18958 | The restriction of a permu... |
symgfixf 18959 | The mapping of a permutati... |
symgfixf1 18960 | The mapping of a permutati... |
symgfixfolem1 18961 | Lemma 1 for ~ symgfixfo . ... |
symgfixfo 18962 | The mapping of a permutati... |
symgfixf1o 18963 | The mapping of a permutati... |
f1omvdmvd 18966 | A permutation of any class... |
f1omvdcnv 18967 | A permutation and its inve... |
mvdco 18968 | Composing two permutations... |
f1omvdconj 18969 | Conjugation of a permutati... |
f1otrspeq 18970 | A transposition is charact... |
f1omvdco2 18971 | If exactly one of two perm... |
f1omvdco3 18972 | If a point is moved by exa... |
pmtrfval 18973 | The function generating tr... |
pmtrval 18974 | A generated transposition,... |
pmtrfv 18975 | General value of mapping a... |
pmtrprfv 18976 | In a transposition of two ... |
pmtrprfv3 18977 | In a transposition of two ... |
pmtrf 18978 | Functionality of a transpo... |
pmtrmvd 18979 | A transposition moves prec... |
pmtrrn 18980 | Transposing two points giv... |
pmtrfrn 18981 | A transposition (as a kind... |
pmtrffv 18982 | Mapping of a point under a... |
pmtrrn2 18983 | For any transposition ther... |
pmtrfinv 18984 | A transposition function i... |
pmtrfmvdn0 18985 | A transposition moves at l... |
pmtrff1o 18986 | A transposition function i... |
pmtrfcnv 18987 | A transposition function i... |
pmtrfb 18988 | An intrinsic characterizat... |
pmtrfconj 18989 | Any conjugate of a transpo... |
symgsssg 18990 | The symmetric group has su... |
symgfisg 18991 | The symmetric group has a ... |
symgtrf 18992 | Transpositions are element... |
symggen 18993 | The span of the transposit... |
symggen2 18994 | A finite permutation group... |
symgtrinv 18995 | To invert a permutation re... |
pmtr3ncomlem1 18996 | Lemma 1 for ~ pmtr3ncom . ... |
pmtr3ncomlem2 18997 | Lemma 2 for ~ pmtr3ncom . ... |
pmtr3ncom 18998 | Transpositions over sets w... |
pmtrdifellem1 18999 | Lemma 1 for ~ pmtrdifel . ... |
pmtrdifellem2 19000 | Lemma 2 for ~ pmtrdifel . ... |
pmtrdifellem3 19001 | Lemma 3 for ~ pmtrdifel . ... |
pmtrdifellem4 19002 | Lemma 4 for ~ pmtrdifel . ... |
pmtrdifel 19003 | A transposition of element... |
pmtrdifwrdellem1 19004 | Lemma 1 for ~ pmtrdifwrdel... |
pmtrdifwrdellem2 19005 | Lemma 2 for ~ pmtrdifwrdel... |
pmtrdifwrdellem3 19006 | Lemma 3 for ~ pmtrdifwrdel... |
pmtrdifwrdel2lem1 19007 | Lemma 1 for ~ pmtrdifwrdel... |
pmtrdifwrdel 19008 | A sequence of transpositio... |
pmtrdifwrdel2 19009 | A sequence of transpositio... |
pmtrprfval 19010 | The transpositions on a pa... |
pmtrprfvalrn 19011 | The range of the transposi... |
psgnunilem1 19016 | Lemma for ~ psgnuni . Giv... |
psgnunilem5 19017 | Lemma for ~ psgnuni . It ... |
psgnunilem2 19018 | Lemma for ~ psgnuni . Ind... |
psgnunilem3 19019 | Lemma for ~ psgnuni . Any... |
psgnunilem4 19020 | Lemma for ~ psgnuni . An ... |
m1expaddsub 19021 | Addition and subtraction o... |
psgnuni 19022 | If the same permutation ca... |
psgnfval 19023 | Function definition of the... |
psgnfn 19024 | Functionality and domain o... |
psgndmsubg 19025 | The finitary permutations ... |
psgneldm 19026 | Property of being a finita... |
psgneldm2 19027 | The finitary permutations ... |
psgneldm2i 19028 | A sequence of transpositio... |
psgneu 19029 | A finitary permutation has... |
psgnval 19030 | Value of the permutation s... |
psgnvali 19031 | A finitary permutation has... |
psgnvalii 19032 | Any representation of a pe... |
psgnpmtr 19033 | All transpositions are odd... |
psgn0fv0 19034 | The permutation sign funct... |
sygbasnfpfi 19035 | The class of non-fixed poi... |
psgnfvalfi 19036 | Function definition of the... |
psgnvalfi 19037 | Value of the permutation s... |
psgnran 19038 | The range of the permutati... |
gsmtrcl 19039 | The group sum of transposi... |
psgnfitr 19040 | A permutation of a finite ... |
psgnfieu 19041 | A permutation of a finite ... |
pmtrsn 19042 | The value of the transposi... |
psgnsn 19043 | The permutation sign funct... |
psgnprfval 19044 | The permutation sign funct... |
psgnprfval1 19045 | The permutation sign of th... |
psgnprfval2 19046 | The permutation sign of th... |
odfval 19055 | Value of the order functio... |
odfvalALT 19056 | Shorter proof of ~ odfval ... |
odval 19057 | Second substitution for th... |
odlem1 19058 | The group element order is... |
odcl 19059 | The order of a group eleme... |
odf 19060 | Functionality of the group... |
odid 19061 | Any element to the power o... |
odlem2 19062 | Any positive annihilator o... |
odmodnn0 19063 | Reduce the argument of a g... |
mndodconglem 19064 | Lemma for ~ mndodcong . (... |
mndodcong 19065 | If two multipliers are con... |
mndodcongi 19066 | If two multipliers are con... |
oddvdsnn0 19067 | The only multiples of ` A ... |
odnncl 19068 | If a nonzero multiple of a... |
odmod 19069 | Reduce the argument of a g... |
oddvds 19070 | The only multiples of ` A ... |
oddvdsi 19071 | Any group element is annih... |
odcong 19072 | If two multipliers are con... |
odeq 19073 | The ~ oddvds property uniq... |
odval2 19074 | A non-conditional definiti... |
odcld 19075 | The order of a group eleme... |
odmulgid 19076 | A relationship between the... |
odmulg2 19077 | The order of a multiple di... |
odmulg 19078 | Relationship between the o... |
odmulgeq 19079 | A multiple of a point of f... |
odbezout 19080 | If ` N ` is coprime to the... |
od1 19081 | The order of the group ide... |
odeq1 19082 | The group identity is the ... |
odinv 19083 | The order of the inverse o... |
odf1 19084 | The multiples of an elemen... |
odinf 19085 | The multiples of an elemen... |
dfod2 19086 | An alternative definition ... |
odcl2 19087 | The order of an element of... |
oddvds2 19088 | The order of an element of... |
submod 19089 | The order of an element is... |
subgod 19090 | The order of an element is... |
odsubdvds 19091 | The order of an element of... |
odf1o1 19092 | An element with zero order... |
odf1o2 19093 | An element with nonzero or... |
odhash 19094 | An element of zero order g... |
odhash2 19095 | If an element has nonzero ... |
odhash3 19096 | An element which generates... |
odngen 19097 | A cyclic subgroup of size ... |
gexval 19098 | Value of the exponent of a... |
gexlem1 19099 | The group element order is... |
gexcl 19100 | The exponent of a group is... |
gexid 19101 | Any element to the power o... |
gexlem2 19102 | Any positive annihilator o... |
gexdvdsi 19103 | Any group element is annih... |
gexdvds 19104 | The only ` N ` that annihi... |
gexdvds2 19105 | An integer divides the gro... |
gexod 19106 | Any group element is annih... |
gexcl3 19107 | If the order of every grou... |
gexnnod 19108 | Every group element has fi... |
gexcl2 19109 | The exponent of a finite g... |
gexdvds3 19110 | The exponent of a finite g... |
gex1 19111 | A group or monoid has expo... |
ispgp 19112 | A group is a ` P ` -group ... |
pgpprm 19113 | Reverse closure for the fi... |
pgpgrp 19114 | Reverse closure for the se... |
pgpfi1 19115 | A finite group with order ... |
pgp0 19116 | The identity subgroup is a... |
subgpgp 19117 | A subgroup of a p-group is... |
sylow1lem1 19118 | Lemma for ~ sylow1 . The ... |
sylow1lem2 19119 | Lemma for ~ sylow1 . The ... |
sylow1lem3 19120 | Lemma for ~ sylow1 . One ... |
sylow1lem4 19121 | Lemma for ~ sylow1 . The ... |
sylow1lem5 19122 | Lemma for ~ sylow1 . Usin... |
sylow1 19123 | Sylow's first theorem. If... |
odcau 19124 | Cauchy's theorem for the o... |
pgpfi 19125 | The converse to ~ pgpfi1 .... |
pgpfi2 19126 | Alternate version of ~ pgp... |
pgphash 19127 | The order of a p-group. (... |
isslw 19128 | The property of being a Sy... |
slwprm 19129 | Reverse closure for the fi... |
slwsubg 19130 | A Sylow ` P ` -subgroup is... |
slwispgp 19131 | Defining property of a Syl... |
slwpss 19132 | A proper superset of a Syl... |
slwpgp 19133 | A Sylow ` P ` -subgroup is... |
pgpssslw 19134 | Every ` P ` -subgroup is c... |
slwn0 19135 | Every finite group contain... |
subgslw 19136 | A Sylow subgroup that is c... |
sylow2alem1 19137 | Lemma for ~ sylow2a . An ... |
sylow2alem2 19138 | Lemma for ~ sylow2a . All... |
sylow2a 19139 | A named lemma of Sylow's s... |
sylow2blem1 19140 | Lemma for ~ sylow2b . Eva... |
sylow2blem2 19141 | Lemma for ~ sylow2b . Lef... |
sylow2blem3 19142 | Sylow's second theorem. P... |
sylow2b 19143 | Sylow's second theorem. A... |
slwhash 19144 | A sylow subgroup has cardi... |
fislw 19145 | The sylow subgroups of a f... |
sylow2 19146 | Sylow's second theorem. S... |
sylow3lem1 19147 | Lemma for ~ sylow3 , first... |
sylow3lem2 19148 | Lemma for ~ sylow3 , first... |
sylow3lem3 19149 | Lemma for ~ sylow3 , first... |
sylow3lem4 19150 | Lemma for ~ sylow3 , first... |
sylow3lem5 19151 | Lemma for ~ sylow3 , secon... |
sylow3lem6 19152 | Lemma for ~ sylow3 , secon... |
sylow3 19153 | Sylow's third theorem. Th... |
lsmfval 19158 | The subgroup sum function ... |
lsmvalx 19159 | Subspace sum value (for a ... |
lsmelvalx 19160 | Subspace sum membership (f... |
lsmelvalix 19161 | Subspace sum membership (f... |
oppglsm 19162 | The subspace sum operation... |
lsmssv 19163 | Subgroup sum is a subset o... |
lsmless1x 19164 | Subset implies subgroup su... |
lsmless2x 19165 | Subset implies subgroup su... |
lsmub1x 19166 | Subgroup sum is an upper b... |
lsmub2x 19167 | Subgroup sum is an upper b... |
lsmval 19168 | Subgroup sum value (for a ... |
lsmelval 19169 | Subgroup sum membership (f... |
lsmelvali 19170 | Subgroup sum membership (f... |
lsmelvalm 19171 | Subgroup sum membership an... |
lsmelvalmi 19172 | Membership of vector subtr... |
lsmsubm 19173 | The sum of two commuting s... |
lsmsubg 19174 | The sum of two commuting s... |
lsmcom2 19175 | Subgroup sum commutes. (C... |
smndlsmidm 19176 | The direct product is idem... |
lsmub1 19177 | Subgroup sum is an upper b... |
lsmub2 19178 | Subgroup sum is an upper b... |
lsmunss 19179 | Union of subgroups is a su... |
lsmless1 19180 | Subset implies subgroup su... |
lsmless2 19181 | Subset implies subgroup su... |
lsmless12 19182 | Subset implies subgroup su... |
lsmidm 19183 | Subgroup sum is idempotent... |
lsmidmOLD 19184 | Obsolete proof of ~ lsmidm... |
lsmlub 19185 | The least upper bound prop... |
lsmss1 19186 | Subgroup sum with a subset... |
lsmss1b 19187 | Subgroup sum with a subset... |
lsmss2 19188 | Subgroup sum with a subset... |
lsmss2b 19189 | Subgroup sum with a subset... |
lsmass 19190 | Subgroup sum is associativ... |
mndlsmidm 19191 | Subgroup sum is idempotent... |
lsm01 19192 | Subgroup sum with the zero... |
lsm02 19193 | Subgroup sum with the zero... |
subglsm 19194 | The subgroup sum evaluated... |
lssnle 19195 | Equivalent expressions for... |
lsmmod 19196 | The modular law holds for ... |
lsmmod2 19197 | Modular law dual for subgr... |
lsmpropd 19198 | If two structures have the... |
cntzrecd 19199 | Commute the "subgroups com... |
lsmcntz 19200 | The "subgroups commute" pr... |
lsmcntzr 19201 | The "subgroups commute" pr... |
lsmdisj 19202 | Disjointness from a subgro... |
lsmdisj2 19203 | Association of the disjoin... |
lsmdisj3 19204 | Association of the disjoin... |
lsmdisjr 19205 | Disjointness from a subgro... |
lsmdisj2r 19206 | Association of the disjoin... |
lsmdisj3r 19207 | Association of the disjoin... |
lsmdisj2a 19208 | Association of the disjoin... |
lsmdisj2b 19209 | Association of the disjoin... |
lsmdisj3a 19210 | Association of the disjoin... |
lsmdisj3b 19211 | Association of the disjoin... |
subgdisj1 19212 | Vectors belonging to disjo... |
subgdisj2 19213 | Vectors belonging to disjo... |
subgdisjb 19214 | Vectors belonging to disjo... |
pj1fval 19215 | The left projection functi... |
pj1val 19216 | The left projection functi... |
pj1eu 19217 | Uniqueness of a left proje... |
pj1f 19218 | The left projection functi... |
pj2f 19219 | The right projection funct... |
pj1id 19220 | Any element of a direct su... |
pj1eq 19221 | Any element of a direct su... |
pj1lid 19222 | The left projection functi... |
pj1rid 19223 | The left projection functi... |
pj1ghm 19224 | The left projection functi... |
pj1ghm2 19225 | The left projection functi... |
lsmhash 19226 | The order of the direct pr... |
efgmval 19233 | Value of the formal invers... |
efgmf 19234 | The formal inverse operati... |
efgmnvl 19235 | The inversion function on ... |
efgrcl 19236 | Lemma for ~ efgval . (Con... |
efglem 19237 | Lemma for ~ efgval . (Con... |
efgval 19238 | Value of the free group co... |
efger 19239 | Value of the free group co... |
efgi 19240 | Value of the free group co... |
efgi0 19241 | Value of the free group co... |
efgi1 19242 | Value of the free group co... |
efgtf 19243 | Value of the free group co... |
efgtval 19244 | Value of the extension fun... |
efgval2 19245 | Value of the free group co... |
efgi2 19246 | Value of the free group co... |
efgtlen 19247 | Value of the free group co... |
efginvrel2 19248 | The inverse of the reverse... |
efginvrel1 19249 | The inverse of the reverse... |
efgsf 19250 | Value of the auxiliary fun... |
efgsdm 19251 | Elementhood in the domain ... |
efgsval 19252 | Value of the auxiliary fun... |
efgsdmi 19253 | Property of the last link ... |
efgsval2 19254 | Value of the auxiliary fun... |
efgsrel 19255 | The start and end of any e... |
efgs1 19256 | A singleton of an irreduci... |
efgs1b 19257 | Every extension sequence e... |
efgsp1 19258 | If ` F ` is an extension s... |
efgsres 19259 | An initial segment of an e... |
efgsfo 19260 | For any word, there is a s... |
efgredlema 19261 | The reduced word that form... |
efgredlemf 19262 | Lemma for ~ efgredleme . ... |
efgredlemg 19263 | Lemma for ~ efgred . (Con... |
efgredleme 19264 | Lemma for ~ efgred . (Con... |
efgredlemd 19265 | The reduced word that form... |
efgredlemc 19266 | The reduced word that form... |
efgredlemb 19267 | The reduced word that form... |
efgredlem 19268 | The reduced word that form... |
efgred 19269 | The reduced word that form... |
efgrelexlema 19270 | If two words ` A , B ` are... |
efgrelexlemb 19271 | If two words ` A , B ` are... |
efgrelex 19272 | If two words ` A , B ` are... |
efgredeu 19273 | There is a unique reduced ... |
efgred2 19274 | Two extension sequences ha... |
efgcpbllema 19275 | Lemma for ~ efgrelex . De... |
efgcpbllemb 19276 | Lemma for ~ efgrelex . Sh... |
efgcpbl 19277 | Two extension sequences ha... |
efgcpbl2 19278 | Two extension sequences ha... |
frgpval 19279 | Value of the free group co... |
frgpcpbl 19280 | Compatibility of the group... |
frgp0 19281 | The free group is a group.... |
frgpeccl 19282 | Closure of the quotient ma... |
frgpgrp 19283 | The free group is a group.... |
frgpadd 19284 | Addition in the free group... |
frgpinv 19285 | The inverse of an element ... |
frgpmhm 19286 | The "natural map" from wor... |
vrgpfval 19287 | The canonical injection fr... |
vrgpval 19288 | The value of the generatin... |
vrgpf 19289 | The mapping from the index... |
vrgpinv 19290 | The inverse of a generatin... |
frgpuptf 19291 | Any assignment of the gene... |
frgpuptinv 19292 | Any assignment of the gene... |
frgpuplem 19293 | Any assignment of the gene... |
frgpupf 19294 | Any assignment of the gene... |
frgpupval 19295 | Any assignment of the gene... |
frgpup1 19296 | Any assignment of the gene... |
frgpup2 19297 | The evaluation map has the... |
frgpup3lem 19298 | The evaluation map has the... |
frgpup3 19299 | Universal property of the ... |
0frgp 19300 | The free group on zero gen... |
isabl 19305 | The predicate "is an Abeli... |
ablgrp 19306 | An Abelian group is a grou... |
ablgrpd 19307 | An Abelian group is a grou... |
ablcmn 19308 | An Abelian group is a comm... |
iscmn 19309 | The predicate "is a commut... |
isabl2 19310 | The predicate "is an Abeli... |
cmnpropd 19311 | If two structures have the... |
ablpropd 19312 | If two structures have the... |
ablprop 19313 | If two structures have the... |
iscmnd 19314 | Properties that determine ... |
isabld 19315 | Properties that determine ... |
isabli 19316 | Properties that determine ... |
cmnmnd 19317 | A commutative monoid is a ... |
cmncom 19318 | A commutative monoid is co... |
ablcom 19319 | An Abelian group operation... |
cmn32 19320 | Commutative/associative la... |
cmn4 19321 | Commutative/associative la... |
cmn12 19322 | Commutative/associative la... |
abl32 19323 | Commutative/associative la... |
cmnmndd 19324 | A commutative monoid is a ... |
rinvmod 19325 | Uniqueness of a right inve... |
ablinvadd 19326 | The inverse of an Abelian ... |
ablsub2inv 19327 | Abelian group subtraction ... |
ablsubadd 19328 | Relationship between Abeli... |
ablsub4 19329 | Commutative/associative su... |
abladdsub4 19330 | Abelian group addition/sub... |
abladdsub 19331 | Associative-type law for g... |
ablpncan2 19332 | Cancellation law for subtr... |
ablpncan3 19333 | A cancellation law for com... |
ablsubsub 19334 | Law for double subtraction... |
ablsubsub4 19335 | Law for double subtraction... |
ablpnpcan 19336 | Cancellation law for mixed... |
ablnncan 19337 | Cancellation law for group... |
ablsub32 19338 | Swap the second and third ... |
ablnnncan 19339 | Cancellation law for group... |
ablnnncan1 19340 | Cancellation law for group... |
ablsubsub23 19341 | Swap subtrahend and result... |
mulgnn0di 19342 | Group multiple of a sum, f... |
mulgdi 19343 | Group multiple of a sum. ... |
mulgmhm 19344 | The map from ` x ` to ` n ... |
mulgghm 19345 | The map from ` x ` to ` n ... |
mulgsubdi 19346 | Group multiple of a differ... |
ghmfghm 19347 | The function fulfilling th... |
ghmcmn 19348 | The image of a commutative... |
ghmabl 19349 | The image of an abelian gr... |
invghm 19350 | The inversion map is a gro... |
eqgabl 19351 | Value of the subgroup cose... |
subgabl 19352 | A subgroup of an abelian g... |
subcmn 19353 | A submonoid of a commutati... |
submcmn 19354 | A submonoid of a commutati... |
submcmn2 19355 | A submonoid is commutative... |
cntzcmn 19356 | The centralizer of any sub... |
cntzcmnss 19357 | Any subset in a commutativ... |
cntrcmnd 19358 | The center of a monoid is ... |
cntrabl 19359 | The center of a group is a... |
cntzspan 19360 | If the generators commute,... |
cntzcmnf 19361 | Discharge the centralizer ... |
ghmplusg 19362 | The pointwise sum of two l... |
ablnsg 19363 | Every subgroup of an abeli... |
odadd1 19364 | The order of a product in ... |
odadd2 19365 | The order of a product in ... |
odadd 19366 | The order of a product is ... |
gex2abl 19367 | A group with exponent 2 (o... |
gexexlem 19368 | Lemma for ~ gexex . (Cont... |
gexex 19369 | In an abelian group with f... |
torsubg 19370 | The set of all elements of... |
oddvdssubg 19371 | The set of all elements wh... |
lsmcomx 19372 | Subgroup sum commutes (ext... |
ablcntzd 19373 | All subgroups in an abelia... |
lsmcom 19374 | Subgroup sum commutes. (C... |
lsmsubg2 19375 | The sum of two subgroups i... |
lsm4 19376 | Commutative/associative la... |
prdscmnd 19377 | The product of a family of... |
prdsabld 19378 | The product of a family of... |
pwscmn 19379 | The structure power on a c... |
pwsabl 19380 | The structure power on an ... |
qusabl 19381 | If ` Y ` is a subgroup of ... |
abl1 19382 | The (smallest) structure r... |
abln0 19383 | Abelian groups (and theref... |
cnaddablx 19384 | The complex numbers are an... |
cnaddabl 19385 | The complex numbers are an... |
cnaddid 19386 | The group identity element... |
cnaddinv 19387 | Value of the group inverse... |
zaddablx 19388 | The integers are an Abelia... |
frgpnabllem1 19389 | Lemma for ~ frgpnabl . (C... |
frgpnabllem2 19390 | Lemma for ~ frgpnabl . (C... |
frgpnabl 19391 | The free group on two or m... |
iscyg 19394 | Definition of a cyclic gro... |
iscyggen 19395 | The property of being a cy... |
iscyggen2 19396 | The property of being a cy... |
iscyg2 19397 | A cyclic group is a group ... |
cyggeninv 19398 | The inverse of a cyclic ge... |
cyggenod 19399 | An element is the generato... |
cyggenod2 19400 | In an infinite cyclic grou... |
iscyg3 19401 | Definition of a cyclic gro... |
iscygd 19402 | Definition of a cyclic gro... |
iscygodd 19403 | Show that a group with an ... |
cycsubmcmn 19404 | The set of nonnegative int... |
cyggrp 19405 | A cyclic group is a group.... |
cygabl 19406 | A cyclic group is abelian.... |
cygablOLD 19407 | Obsolete proof of ~ cygabl... |
cygctb 19408 | A cyclic group is countabl... |
0cyg 19409 | The trivial group is cycli... |
prmcyg 19410 | A group with prime order i... |
lt6abl 19411 | A group with fewer than ` ... |
ghmcyg 19412 | The image of a cyclic grou... |
cyggex2 19413 | The exponent of a cyclic g... |
cyggex 19414 | The exponent of a finite c... |
cyggexb 19415 | A finite abelian group is ... |
giccyg 19416 | Cyclicity is a group prope... |
cycsubgcyg 19417 | The cyclic subgroup genera... |
cycsubgcyg2 19418 | The cyclic subgroup genera... |
gsumval3a 19419 | Value of the group sum ope... |
gsumval3eu 19420 | The group sum as defined i... |
gsumval3lem1 19421 | Lemma 1 for ~ gsumval3 . ... |
gsumval3lem2 19422 | Lemma 2 for ~ gsumval3 . ... |
gsumval3 19423 | Value of the group sum ope... |
gsumcllem 19424 | Lemma for ~ gsumcl and rel... |
gsumzres 19425 | Extend a finite group sum ... |
gsumzcl2 19426 | Closure of a finite group ... |
gsumzcl 19427 | Closure of a finite group ... |
gsumzf1o 19428 | Re-index a finite group su... |
gsumres 19429 | Extend a finite group sum ... |
gsumcl2 19430 | Closure of a finite group ... |
gsumcl 19431 | Closure of a finite group ... |
gsumf1o 19432 | Re-index a finite group su... |
gsumreidx 19433 | Re-index a finite group su... |
gsumzsubmcl 19434 | Closure of a group sum in ... |
gsumsubmcl 19435 | Closure of a group sum in ... |
gsumsubgcl 19436 | Closure of a group sum in ... |
gsumzaddlem 19437 | The sum of two group sums.... |
gsumzadd 19438 | The sum of two group sums.... |
gsumadd 19439 | The sum of two group sums.... |
gsummptfsadd 19440 | The sum of two group sums ... |
gsummptfidmadd 19441 | The sum of two group sums ... |
gsummptfidmadd2 19442 | The sum of two group sums ... |
gsumzsplit 19443 | Split a group sum into two... |
gsumsplit 19444 | Split a group sum into two... |
gsumsplit2 19445 | Split a group sum into two... |
gsummptfidmsplit 19446 | Split a group sum expresse... |
gsummptfidmsplitres 19447 | Split a group sum expresse... |
gsummptfzsplit 19448 | Split a group sum expresse... |
gsummptfzsplitl 19449 | Split a group sum expresse... |
gsumconst 19450 | Sum of a constant series. ... |
gsumconstf 19451 | Sum of a constant series. ... |
gsummptshft 19452 | Index shift of a finite gr... |
gsumzmhm 19453 | Apply a group homomorphism... |
gsummhm 19454 | Apply a group homomorphism... |
gsummhm2 19455 | Apply a group homomorphism... |
gsummptmhm 19456 | Apply a group homomorphism... |
gsummulglem 19457 | Lemma for ~ gsummulg and ~... |
gsummulg 19458 | Nonnegative multiple of a ... |
gsummulgz 19459 | Integer multiple of a grou... |
gsumzoppg 19460 | The opposite of a group su... |
gsumzinv 19461 | Inverse of a group sum. (... |
gsuminv 19462 | Inverse of a group sum. (... |
gsummptfidminv 19463 | Inverse of a group sum exp... |
gsumsub 19464 | The difference of two grou... |
gsummptfssub 19465 | The difference of two grou... |
gsummptfidmsub 19466 | The difference of two grou... |
gsumsnfd 19467 | Group sum of a singleton, ... |
gsumsnd 19468 | Group sum of a singleton, ... |
gsumsnf 19469 | Group sum of a singleton, ... |
gsumsn 19470 | Group sum of a singleton. ... |
gsumpr 19471 | Group sum of a pair. (Con... |
gsumzunsnd 19472 | Append an element to a fin... |
gsumunsnfd 19473 | Append an element to a fin... |
gsumunsnd 19474 | Append an element to a fin... |
gsumunsnf 19475 | Append an element to a fin... |
gsumunsn 19476 | Append an element to a fin... |
gsumdifsnd 19477 | Extract a summand from a f... |
gsumpt 19478 | Sum of a family that is no... |
gsummptf1o 19479 | Re-index a finite group su... |
gsummptun 19480 | Group sum of a disjoint un... |
gsummpt1n0 19481 | If only one summand in a f... |
gsummptif1n0 19482 | If only one summand in a f... |
gsummptcl 19483 | Closure of a finite group ... |
gsummptfif1o 19484 | Re-index a finite group su... |
gsummptfzcl 19485 | Closure of a finite group ... |
gsum2dlem1 19486 | Lemma 1 for ~ gsum2d . (C... |
gsum2dlem2 19487 | Lemma for ~ gsum2d . (Con... |
gsum2d 19488 | Write a sum over a two-dim... |
gsum2d2lem 19489 | Lemma for ~ gsum2d2 : show... |
gsum2d2 19490 | Write a group sum over a t... |
gsumcom2 19491 | Two-dimensional commutatio... |
gsumxp 19492 | Write a group sum over a c... |
gsumcom 19493 | Commute the arguments of a... |
gsumcom3 19494 | A commutative law for fini... |
gsumcom3fi 19495 | A commutative law for fini... |
gsumxp2 19496 | Write a group sum over a c... |
prdsgsum 19497 | Finite commutative sums in... |
pwsgsum 19498 | Finite commutative sums in... |
fsfnn0gsumfsffz 19499 | Replacing a finitely suppo... |
nn0gsumfz 19500 | Replacing a finitely suppo... |
nn0gsumfz0 19501 | Replacing a finitely suppo... |
gsummptnn0fz 19502 | A final group sum over a f... |
gsummptnn0fzfv 19503 | A final group sum over a f... |
telgsumfzslem 19504 | Lemma for ~ telgsumfzs (in... |
telgsumfzs 19505 | Telescoping group sum rang... |
telgsumfz 19506 | Telescoping group sum rang... |
telgsumfz0s 19507 | Telescoping finite group s... |
telgsumfz0 19508 | Telescoping finite group s... |
telgsums 19509 | Telescoping finitely suppo... |
telgsum 19510 | Telescoping finitely suppo... |
reldmdprd 19515 | The domain of the internal... |
dmdprd 19516 | The domain of definition o... |
dmdprdd 19517 | Show that a given family i... |
dprddomprc 19518 | A family of subgroups inde... |
dprddomcld 19519 | If a family of subgroups i... |
dprdval0prc 19520 | The internal direct produc... |
dprdval 19521 | The value of the internal ... |
eldprd 19522 | A class ` A ` is an intern... |
dprdgrp 19523 | Reverse closure for the in... |
dprdf 19524 | The function ` S ` is a fa... |
dprdf2 19525 | The function ` S ` is a fa... |
dprdcntz 19526 | The function ` S ` is a fa... |
dprddisj 19527 | The function ` S ` is a fa... |
dprdw 19528 | The property of being a fi... |
dprdwd 19529 | A mapping being a finitely... |
dprdff 19530 | A finitely supported funct... |
dprdfcl 19531 | A finitely supported funct... |
dprdffsupp 19532 | A finitely supported funct... |
dprdfcntz 19533 | A function on the elements... |
dprdssv 19534 | The internal direct produc... |
dprdfid 19535 | A function mapping all but... |
eldprdi 19536 | The domain of definition o... |
dprdfinv 19537 | Take the inverse of a grou... |
dprdfadd 19538 | Take the sum of group sums... |
dprdfsub 19539 | Take the difference of gro... |
dprdfeq0 19540 | The zero function is the o... |
dprdf11 19541 | Two group sums over a dire... |
dprdsubg 19542 | The internal direct produc... |
dprdub 19543 | Each factor is a subset of... |
dprdlub 19544 | The direct product is smal... |
dprdspan 19545 | The direct product is the ... |
dprdres 19546 | Restriction of a direct pr... |
dprdss 19547 | Create a direct product by... |
dprdz 19548 | A family consisting entire... |
dprd0 19549 | The empty family is an int... |
dprdf1o 19550 | Rearrange the index set of... |
dprdf1 19551 | Rearrange the index set of... |
subgdmdprd 19552 | A direct product in a subg... |
subgdprd 19553 | A direct product in a subg... |
dprdsn 19554 | A singleton family is an i... |
dmdprdsplitlem 19555 | Lemma for ~ dmdprdsplit . ... |
dprdcntz2 19556 | The function ` S ` is a fa... |
dprddisj2 19557 | The function ` S ` is a fa... |
dprd2dlem2 19558 | The direct product of a co... |
dprd2dlem1 19559 | The direct product of a co... |
dprd2da 19560 | The direct product of a co... |
dprd2db 19561 | The direct product of a co... |
dprd2d2 19562 | The direct product of a co... |
dmdprdsplit2lem 19563 | Lemma for ~ dmdprdsplit . ... |
dmdprdsplit2 19564 | The direct product splits ... |
dmdprdsplit 19565 | The direct product splits ... |
dprdsplit 19566 | The direct product is the ... |
dmdprdpr 19567 | A singleton family is an i... |
dprdpr 19568 | A singleton family is an i... |
dpjlem 19569 | Lemma for theorems about d... |
dpjcntz 19570 | The two subgroups that app... |
dpjdisj 19571 | The two subgroups that app... |
dpjlsm 19572 | The two subgroups that app... |
dpjfval 19573 | Value of the direct produc... |
dpjval 19574 | Value of the direct produc... |
dpjf 19575 | The ` X ` -th index projec... |
dpjidcl 19576 | The key property of projec... |
dpjeq 19577 | Decompose a group sum into... |
dpjid 19578 | The key property of projec... |
dpjlid 19579 | The ` X ` -th index projec... |
dpjrid 19580 | The ` Y ` -th index projec... |
dpjghm 19581 | The direct product is the ... |
dpjghm2 19582 | The direct product is the ... |
ablfacrplem 19583 | Lemma for ~ ablfacrp2 . (... |
ablfacrp 19584 | A finite abelian group who... |
ablfacrp2 19585 | The factors ` K , L ` of ~... |
ablfac1lem 19586 | Lemma for ~ ablfac1b . Sa... |
ablfac1a 19587 | The factors of ~ ablfac1b ... |
ablfac1b 19588 | Any abelian group is the d... |
ablfac1c 19589 | The factors of ~ ablfac1b ... |
ablfac1eulem 19590 | Lemma for ~ ablfac1eu . (... |
ablfac1eu 19591 | The factorization of ~ abl... |
pgpfac1lem1 19592 | Lemma for ~ pgpfac1 . (Co... |
pgpfac1lem2 19593 | Lemma for ~ pgpfac1 . (Co... |
pgpfac1lem3a 19594 | Lemma for ~ pgpfac1 . (Co... |
pgpfac1lem3 19595 | Lemma for ~ pgpfac1 . (Co... |
pgpfac1lem4 19596 | Lemma for ~ pgpfac1 . (Co... |
pgpfac1lem5 19597 | Lemma for ~ pgpfac1 . (Co... |
pgpfac1 19598 | Factorization of a finite ... |
pgpfaclem1 19599 | Lemma for ~ pgpfac . (Con... |
pgpfaclem2 19600 | Lemma for ~ pgpfac . (Con... |
pgpfaclem3 19601 | Lemma for ~ pgpfac . (Con... |
pgpfac 19602 | Full factorization of a fi... |
ablfaclem1 19603 | Lemma for ~ ablfac . (Con... |
ablfaclem2 19604 | Lemma for ~ ablfac . (Con... |
ablfaclem3 19605 | Lemma for ~ ablfac . (Con... |
ablfac 19606 | The Fundamental Theorem of... |
ablfac2 19607 | Choose generators for each... |
issimpg 19610 | The predicate "is a simple... |
issimpgd 19611 | Deduce a simple group from... |
simpggrp 19612 | A simple group is a group.... |
simpggrpd 19613 | A simple group is a group.... |
simpg2nsg 19614 | A simple group has two nor... |
trivnsimpgd 19615 | Trivial groups are not sim... |
simpgntrivd 19616 | Simple groups are nontrivi... |
simpgnideld 19617 | A simple group contains a ... |
simpgnsgd 19618 | The only normal subgroups ... |
simpgnsgeqd 19619 | A normal subgroup of a sim... |
2nsgsimpgd 19620 | If any normal subgroup of ... |
simpgnsgbid 19621 | A nontrivial group is simp... |
ablsimpnosubgd 19622 | A subgroup of an abelian s... |
ablsimpg1gend 19623 | An abelian simple group is... |
ablsimpgcygd 19624 | An abelian simple group is... |
ablsimpgfindlem1 19625 | Lemma for ~ ablsimpgfind .... |
ablsimpgfindlem2 19626 | Lemma for ~ ablsimpgfind .... |
cycsubggenodd 19627 | Relationship between the o... |
ablsimpgfind 19628 | An abelian simple group is... |
fincygsubgd 19629 | The subgroup referenced in... |
fincygsubgodd 19630 | Calculate the order of a s... |
fincygsubgodexd 19631 | A finite cyclic group has ... |
prmgrpsimpgd 19632 | A group of prime order is ... |
ablsimpgprmd 19633 | An abelian simple group ha... |
ablsimpgd 19634 | An abelian group is simple... |
fnmgp 19637 | The multiplicative group o... |
mgpval 19638 | Value of the multiplicatio... |
mgpplusg 19639 | Value of the group operati... |
mgplemOLD 19640 | Obsolete version of ~ sets... |
mgpbas 19641 | Base set of the multiplica... |
mgpbasOLD 19642 | Obsolete version of ~ mgpb... |
mgpsca 19643 | The multiplication monoid ... |
mgpscaOLD 19644 | Obsolete version of ~ mgps... |
mgptset 19645 | Topology component of the ... |
mgptsetOLD 19646 | Obsolete version of ~ mgpt... |
mgptopn 19647 | Topology of the multiplica... |
mgpds 19648 | Distance function of the m... |
mgpdsOLD 19649 | Obsolete version of ~ mgpd... |
mgpress 19650 | Subgroup commutes with the... |
mgpressOLD 19651 | Obsolete version of ~ mgpr... |
ringidval 19654 | The value of the unity ele... |
dfur2 19655 | The multiplicative identit... |
issrg 19658 | The predicate "is a semiri... |
srgcmn 19659 | A semiring is a commutativ... |
srgmnd 19660 | A semiring is a monoid. (... |
srgmgp 19661 | A semiring is a monoid und... |
srgi 19662 | Properties of a semiring. ... |
srgcl 19663 | Closure of the multiplicat... |
srgass 19664 | Associative law for the mu... |
srgideu 19665 | The unit element of a semi... |
srgfcl 19666 | Functionality of the multi... |
srgdi 19667 | Distributive law for the m... |
srgdir 19668 | Distributive law for the m... |
srgidcl 19669 | The unit element of a semi... |
srg0cl 19670 | The zero element of a semi... |
srgidmlem 19671 | Lemma for ~ srglidm and ~ ... |
srglidm 19672 | The unit element of a semi... |
srgridm 19673 | The unit element of a semi... |
issrgid 19674 | Properties showing that an... |
srgacl 19675 | Closure of the addition op... |
srgcom 19676 | Commutativity of the addit... |
srgrz 19677 | The zero of a semiring is ... |
srglz 19678 | The zero of a semiring is ... |
srgisid 19679 | In a semiring, the only le... |
srg1zr 19680 | The only semiring with a b... |
srgen1zr 19681 | The only semiring with one... |
srgmulgass 19682 | An associative property be... |
srgpcomp 19683 | If two elements of a semir... |
srgpcompp 19684 | If two elements of a semir... |
srgpcomppsc 19685 | If two elements of a semir... |
srglmhm 19686 | Left-multiplication in a s... |
srgrmhm 19687 | Right-multiplication in a ... |
srgsummulcr 19688 | A finite semiring sum mult... |
sgsummulcl 19689 | A finite semiring sum mult... |
srg1expzeq1 19690 | The exponentiation (by a n... |
srgbinomlem1 19691 | Lemma 1 for ~ srgbinomlem ... |
srgbinomlem2 19692 | Lemma 2 for ~ srgbinomlem ... |
srgbinomlem3 19693 | Lemma 3 for ~ srgbinomlem ... |
srgbinomlem4 19694 | Lemma 4 for ~ srgbinomlem ... |
srgbinomlem 19695 | Lemma for ~ srgbinom . In... |
srgbinom 19696 | The binomial theorem for c... |
csrgbinom 19697 | The binomial theorem for c... |
isring 19702 | The predicate "is a (unita... |
ringgrp 19703 | A ring is a group. (Contr... |
ringmgp 19704 | A ring is a monoid under m... |
iscrng 19705 | A commutative ring is a ri... |
crngmgp 19706 | A commutative ring's multi... |
ringgrpd 19707 | A ring is a group. (Contr... |
ringmnd 19708 | A ring is a monoid under a... |
ringmgm 19709 | A ring is a magma. (Contr... |
crngring 19710 | A commutative ring is a ri... |
crngringd 19711 | A commutative ring is a ri... |
crnggrpd 19712 | A commutative ring is a gr... |
mgpf 19713 | Restricted functionality o... |
ringi 19714 | Properties of a unital rin... |
ringcl 19715 | Closure of the multiplicat... |
crngcom 19716 | A commutative ring's multi... |
iscrng2 19717 | A commutative ring is a ri... |
ringass 19718 | Associative law for multip... |
ringideu 19719 | The unit element of a ring... |
ringdi 19720 | Distributive law for the m... |
ringdir 19721 | Distributive law for the m... |
ringidcl 19722 | The unit element of a ring... |
ring0cl 19723 | The zero element of a ring... |
ringidmlem 19724 | Lemma for ~ ringlidm and ~... |
ringlidm 19725 | The unit element of a ring... |
ringridm 19726 | The unit element of a ring... |
isringid 19727 | Properties showing that an... |
ringid 19728 | The multiplication operati... |
ringadd2 19729 | A ring element plus itself... |
rngo2times 19730 | A ring element plus itself... |
ringidss 19731 | A subset of the multiplica... |
ringacl 19732 | Closure of the addition op... |
ringcom 19733 | Commutativity of the addit... |
ringabl 19734 | A ring is an Abelian group... |
ringcmn 19735 | A ring is a commutative mo... |
ringpropd 19736 | If two structures have the... |
crngpropd 19737 | If two structures have the... |
ringprop 19738 | If two structures have the... |
isringd 19739 | Properties that determine ... |
iscrngd 19740 | Properties that determine ... |
ringlz 19741 | The zero of a unital ring ... |
ringrz 19742 | The zero of a unital ring ... |
ringsrg 19743 | Any ring is also a semirin... |
ring1eq0 19744 | If one and zero are equal,... |
ring1ne0 19745 | If a ring has at least two... |
ringinvnz1ne0 19746 | In a unitary ring, a left ... |
ringinvnzdiv 19747 | In a unitary ring, a left ... |
ringnegl 19748 | Negation in a ring is the ... |
rngnegr 19749 | Negation in a ring is the ... |
ringmneg1 19750 | Negation of a product in a... |
ringmneg2 19751 | Negation of a product in a... |
ringm2neg 19752 | Double negation of a produ... |
ringsubdi 19753 | Ring multiplication distri... |
rngsubdir 19754 | Ring multiplication distri... |
mulgass2 19755 | An associative property be... |
ring1 19756 | The (smallest) structure r... |
ringn0 19757 | Rings exist. (Contributed... |
ringlghm 19758 | Left-multiplication in a r... |
ringrghm 19759 | Right-multiplication in a ... |
gsummulc1 19760 | A finite ring sum multipli... |
gsummulc2 19761 | A finite ring sum multipli... |
gsummgp0 19762 | If one factor in a finite ... |
gsumdixp 19763 | Distribute a binary produc... |
prdsmgp 19764 | The multiplicative monoid ... |
prdsmulrcl 19765 | A structure product of rin... |
prdsringd 19766 | A product of rings is a ri... |
prdscrngd 19767 | A product of commutative r... |
prds1 19768 | Value of the ring unit in ... |
pwsring 19769 | A structure power of a rin... |
pws1 19770 | Value of the ring unit in ... |
pwscrng 19771 | A structure power of a com... |
pwsmgp 19772 | The multiplicative group o... |
imasring 19773 | The image structure of a r... |
qusring2 19774 | The quotient structure of ... |
crngbinom 19775 | The binomial theorem for c... |
opprval 19778 | Value of the opposite ring... |
opprmulfval 19779 | Value of the multiplicatio... |
opprmul 19780 | Value of the multiplicatio... |
crngoppr 19781 | In a commutative ring, the... |
opprlem 19782 | Lemma for ~ opprbas and ~ ... |
opprlemOLD 19783 | Obsolete version of ~ oppr... |
opprbas 19784 | Base set of an opposite ri... |
opprbasOLD 19785 | Obsolete proof of ~ opprba... |
oppradd 19786 | Addition operation of an o... |
oppraddOLD 19787 | Obsolete proof of ~ opprba... |
opprring 19788 | An opposite ring is a ring... |
opprringb 19789 | Bidirectional form of ~ op... |
oppr0 19790 | Additive identity of an op... |
oppr1 19791 | Multiplicative identity of... |
opprneg 19792 | The negative function in a... |
opprsubg 19793 | Being a subgroup is a symm... |
mulgass3 19794 | An associative property be... |
reldvdsr 19801 | The divides relation is a ... |
dvdsrval 19802 | Value of the divides relat... |
dvdsr 19803 | Value of the divides relat... |
dvdsr2 19804 | Value of the divides relat... |
dvdsrmul 19805 | A left-multiple of ` X ` i... |
dvdsrcl 19806 | Closure of a dividing elem... |
dvdsrcl2 19807 | Closure of a dividing elem... |
dvdsrid 19808 | An element in a (unital) r... |
dvdsrtr 19809 | Divisibility is transitive... |
dvdsrmul1 19810 | The divisibility relation ... |
dvdsrneg 19811 | An element divides its neg... |
dvdsr01 19812 | In a ring, zero is divisib... |
dvdsr02 19813 | Only zero is divisible by ... |
isunit 19814 | Property of being a unit o... |
1unit 19815 | The multiplicative identit... |
unitcl 19816 | A unit is an element of th... |
unitss 19817 | The set of units is contai... |
opprunit 19818 | Being a unit is a symmetri... |
crngunit 19819 | Property of being a unit i... |
dvdsunit 19820 | A divisor of a unit is a u... |
unitmulcl 19821 | The product of units is a ... |
unitmulclb 19822 | Reversal of ~ unitmulcl in... |
unitgrpbas 19823 | The base set of the group ... |
unitgrp 19824 | The group of units is a gr... |
unitabl 19825 | The group of units of a co... |
unitgrpid 19826 | The identity of the multip... |
unitsubm 19827 | The group of units is a su... |
invrfval 19830 | Multiplicative inverse fun... |
unitinvcl 19831 | The inverse of a unit exis... |
unitinvinv 19832 | The inverse of the inverse... |
ringinvcl 19833 | The inverse of a unit is a... |
unitlinv 19834 | A unit times its inverse i... |
unitrinv 19835 | A unit times its inverse i... |
1rinv 19836 | The inverse of the identit... |
0unit 19837 | The additive identity is a... |
unitnegcl 19838 | The negative of a unit is ... |
dvrfval 19841 | Division operation in a ri... |
dvrval 19842 | Division operation in a ri... |
dvrcl 19843 | Closure of division operat... |
unitdvcl 19844 | The units are closed under... |
dvrid 19845 | A cancellation law for div... |
dvr1 19846 | A cancellation law for div... |
dvrass 19847 | An associative law for div... |
dvrcan1 19848 | A cancellation law for div... |
dvrcan3 19849 | A cancellation law for div... |
dvreq1 19850 | A cancellation law for div... |
ringinvdv 19851 | Write the inverse function... |
rngidpropd 19852 | The ring identity depends ... |
dvdsrpropd 19853 | The divisibility relation ... |
unitpropd 19854 | The set of units depends o... |
invrpropd 19855 | The ring inverse function ... |
isirred 19856 | An irreducible element of ... |
isnirred 19857 | The property of being a no... |
isirred2 19858 | Expand out the class diffe... |
opprirred 19859 | Irreducibility is symmetri... |
irredn0 19860 | The additive identity is n... |
irredcl 19861 | An irreducible element is ... |
irrednu 19862 | An irreducible element is ... |
irredn1 19863 | The multiplicative identit... |
irredrmul 19864 | The product of an irreduci... |
irredlmul 19865 | The product of a unit and ... |
irredmul 19866 | If product of two elements... |
irredneg 19867 | The negative of an irreduc... |
irrednegb 19868 | An element is irreducible ... |
dfrhm2 19876 | The property of a ring hom... |
rhmrcl1 19878 | Reverse closure of a ring ... |
rhmrcl2 19879 | Reverse closure of a ring ... |
isrhm 19880 | A function is a ring homom... |
rhmmhm 19881 | A ring homomorphism is a h... |
isrim0 19882 | An isomorphism of rings is... |
rimrcl 19883 | Reverse closure for an iso... |
rhmghm 19884 | A ring homomorphism is an ... |
rhmf 19885 | A ring homomorphism is a f... |
rhmmul 19886 | A homomorphism of rings pr... |
isrhm2d 19887 | Demonstration of ring homo... |
isrhmd 19888 | Demonstration of ring homo... |
rhm1 19889 | Ring homomorphisms are req... |
idrhm 19890 | The identity homomorphism ... |
rhmf1o 19891 | A ring homomorphism is bij... |
isrim 19892 | An isomorphism of rings is... |
rimf1o 19893 | An isomorphism of rings is... |
rimrhm 19894 | An isomorphism of rings is... |
rimgim 19895 | An isomorphism of rings is... |
rhmco 19896 | The composition of ring ho... |
pwsco1rhm 19897 | Right composition with a f... |
pwsco2rhm 19898 | Left composition with a ri... |
f1ghm0to0 19899 | If a group homomorphism ` ... |
f1rhm0to0ALT 19900 | Alternate proof for ~ f1gh... |
gim0to0 19901 | A group isomorphism maps t... |
kerf1ghm 19902 | A group homomorphism ` F `... |
brric 19903 | The relation "is isomorphi... |
brric2 19904 | The relation "is isomorphi... |
ricgic 19905 | If two rings are (ring) is... |
isdrng 19910 | The predicate "is a divisi... |
drngunit 19911 | Elementhood in the set of ... |
drngui 19912 | The set of units of a divi... |
drngring 19913 | A division ring is a ring.... |
drnggrp 19914 | A division ring is a group... |
isfld 19915 | A field is a commutative d... |
isdrng2 19916 | A division ring can equiva... |
drngprop 19917 | If two structures have the... |
drngmgp 19918 | A division ring contains a... |
drngmcl 19919 | The product of two nonzero... |
drngid 19920 | A division ring's unit is ... |
drngunz 19921 | A division ring's unit is ... |
drngid2 19922 | Properties showing that an... |
drnginvrcl 19923 | Closure of the multiplicat... |
drnginvrn0 19924 | The multiplicative inverse... |
drnginvrl 19925 | Property of the multiplica... |
drnginvrr 19926 | Property of the multiplica... |
drngmul0or 19927 | A product is zero iff one ... |
drngmulne0 19928 | A product is nonzero iff b... |
drngmuleq0 19929 | An element is zero iff its... |
opprdrng 19930 | The opposite of a division... |
isdrngd 19931 | Properties that characteri... |
isdrngrd 19932 | Properties that characteri... |
drngpropd 19933 | If two structures have the... |
fldpropd 19934 | If two structures have the... |
issubrg 19939 | The subring predicate. (C... |
subrgss 19940 | A subring is a subset. (C... |
subrgid 19941 | Every ring is a subring of... |
subrgring 19942 | A subring is a ring. (Con... |
subrgcrng 19943 | A subring of a commutative... |
subrgrcl 19944 | Reverse closure for a subr... |
subrgsubg 19945 | A subring is a subgroup. ... |
subrg0 19946 | A subring always has the s... |
subrg1cl 19947 | A subring contains the mul... |
subrgbas 19948 | Base set of a subring stru... |
subrg1 19949 | A subring always has the s... |
subrgacl 19950 | A subring is closed under ... |
subrgmcl 19951 | A subgroup is closed under... |
subrgsubm 19952 | A subring is a submonoid o... |
subrgdvds 19953 | If an element divides anot... |
subrguss 19954 | A unit of a subring is a u... |
subrginv 19955 | A subring always has the s... |
subrgdv 19956 | A subring always has the s... |
subrgunit 19957 | An element of a ring is a ... |
subrgugrp 19958 | The units of a subring for... |
issubrg2 19959 | Characterize the subrings ... |
opprsubrg 19960 | Being a subring is a symme... |
subrgint 19961 | The intersection of a none... |
subrgin 19962 | The intersection of two su... |
subrgmre 19963 | The subrings of a ring are... |
issubdrg 19964 | Characterize the subfields... |
subsubrg 19965 | A subring of a subring is ... |
subsubrg2 19966 | The set of subrings of a s... |
issubrg3 19967 | A subring is an additive s... |
resrhm 19968 | Restriction of a ring homo... |
rhmeql 19969 | The equalizer of two ring ... |
rhmima 19970 | The homomorphic image of a... |
rnrhmsubrg 19971 | The range of a ring homomo... |
cntzsubr 19972 | Centralizers in a ring are... |
pwsdiagrhm 19973 | Diagonal homomorphism into... |
subrgpropd 19974 | If two structures have the... |
rhmpropd 19975 | Ring homomorphism depends ... |
issdrg 19978 | Property of a division sub... |
sdrgid 19979 | Every division ring is a d... |
sdrgss 19980 | A division subring is a su... |
issdrg2 19981 | Property of a division sub... |
acsfn1p 19982 | Construction of a closure ... |
subrgacs 19983 | Closure property of subrin... |
sdrgacs 19984 | Closure property of divisi... |
cntzsdrg 19985 | Centralizers in division r... |
subdrgint 19986 | The intersection of a none... |
sdrgint 19987 | The intersection of a none... |
primefld 19988 | The smallest sub division ... |
primefld0cl 19989 | The prime field contains t... |
primefld1cl 19990 | The prime field contains t... |
abvfval 19993 | Value of the set of absolu... |
isabv 19994 | Elementhood in the set of ... |
isabvd 19995 | Properties that determine ... |
abvrcl 19996 | Reverse closure for the ab... |
abvfge0 19997 | An absolute value is a fun... |
abvf 19998 | An absolute value is a fun... |
abvcl 19999 | An absolute value is a fun... |
abvge0 20000 | The absolute value of a nu... |
abveq0 20001 | The value of an absolute v... |
abvne0 20002 | The absolute value of a no... |
abvgt0 20003 | The absolute value of a no... |
abvmul 20004 | An absolute value distribu... |
abvtri 20005 | An absolute value satisfie... |
abv0 20006 | The absolute value of zero... |
abv1z 20007 | The absolute value of one ... |
abv1 20008 | The absolute value of one ... |
abvneg 20009 | The absolute value of a ne... |
abvsubtri 20010 | An absolute value satisfie... |
abvrec 20011 | The absolute value distrib... |
abvdiv 20012 | The absolute value distrib... |
abvdom 20013 | Any ring with an absolute ... |
abvres 20014 | The restriction of an abso... |
abvtrivd 20015 | The trivial absolute value... |
abvtriv 20016 | The trivial absolute value... |
abvpropd 20017 | If two structures have the... |
staffval 20022 | The functionalization of t... |
stafval 20023 | The functionalization of t... |
staffn 20024 | The functionalization is e... |
issrng 20025 | The predicate "is a star r... |
srngrhm 20026 | The involution function in... |
srngring 20027 | A star ring is a ring. (C... |
srngcnv 20028 | The involution function in... |
srngf1o 20029 | The involution function in... |
srngcl 20030 | The involution function in... |
srngnvl 20031 | The involution function in... |
srngadd 20032 | The involution function in... |
srngmul 20033 | The involution function in... |
srng1 20034 | The conjugate of the ring ... |
srng0 20035 | The conjugate of the ring ... |
issrngd 20036 | Properties that determine ... |
idsrngd 20037 | A commutative ring is a st... |
islmod 20042 | The predicate "is a left m... |
lmodlema 20043 | Lemma for properties of a ... |
islmodd 20044 | Properties that determine ... |
lmodgrp 20045 | A left module is a group. ... |
lmodring 20046 | The scalar component of a ... |
lmodfgrp 20047 | The scalar component of a ... |
lmodbn0 20048 | The base set of a left mod... |
lmodacl 20049 | Closure of ring addition f... |
lmodmcl 20050 | Closure of ring multiplica... |
lmodsn0 20051 | The set of scalars in a le... |
lmodvacl 20052 | Closure of vector addition... |
lmodass 20053 | Left module vector sum is ... |
lmodlcan 20054 | Left cancellation law for ... |
lmodvscl 20055 | Closure of scalar product ... |
scaffval 20056 | The scalar multiplication ... |
scafval 20057 | The scalar multiplication ... |
scafeq 20058 | If the scalar multiplicati... |
scaffn 20059 | The scalar multiplication ... |
lmodscaf 20060 | The scalar multiplication ... |
lmodvsdi 20061 | Distributive law for scala... |
lmodvsdir 20062 | Distributive law for scala... |
lmodvsass 20063 | Associative law for scalar... |
lmod0cl 20064 | The ring zero in a left mo... |
lmod1cl 20065 | The ring unit in a left mo... |
lmodvs1 20066 | Scalar product with ring u... |
lmod0vcl 20067 | The zero vector is a vecto... |
lmod0vlid 20068 | Left identity law for the ... |
lmod0vrid 20069 | Right identity law for the... |
lmod0vid 20070 | Identity equivalent to the... |
lmod0vs 20071 | Zero times a vector is the... |
lmodvs0 20072 | Anything times the zero ve... |
lmodvsmmulgdi 20073 | Distributive law for a gro... |
lmodfopnelem1 20074 | Lemma 1 for ~ lmodfopne . ... |
lmodfopnelem2 20075 | Lemma 2 for ~ lmodfopne . ... |
lmodfopne 20076 | The (functionalized) opera... |
lcomf 20077 | A linear-combination sum i... |
lcomfsupp 20078 | A linear-combination sum i... |
lmodvnegcl 20079 | Closure of vector negative... |
lmodvnegid 20080 | Addition of a vector with ... |
lmodvneg1 20081 | Minus 1 times a vector is ... |
lmodvsneg 20082 | Multiplication of a vector... |
lmodvsubcl 20083 | Closure of vector subtract... |
lmodcom 20084 | Left module vector sum is ... |
lmodabl 20085 | A left module is an abelia... |
lmodcmn 20086 | A left module is a commuta... |
lmodnegadd 20087 | Distribute negation throug... |
lmod4 20088 | Commutative/associative la... |
lmodvsubadd 20089 | Relationship between vecto... |
lmodvaddsub4 20090 | Vector addition/subtractio... |
lmodvpncan 20091 | Addition/subtraction cance... |
lmodvnpcan 20092 | Cancellation law for vecto... |
lmodvsubval2 20093 | Value of vector subtractio... |
lmodsubvs 20094 | Subtraction of a scalar pr... |
lmodsubdi 20095 | Scalar multiplication dist... |
lmodsubdir 20096 | Scalar multiplication dist... |
lmodsubeq0 20097 | If the difference between ... |
lmodsubid 20098 | Subtraction of a vector fr... |
lmodvsghm 20099 | Scalar multiplication of t... |
lmodprop2d 20100 | If two structures have the... |
lmodpropd 20101 | If two structures have the... |
gsumvsmul 20102 | Pull a scalar multiplicati... |
mptscmfsupp0 20103 | A mapping to a scalar prod... |
mptscmfsuppd 20104 | A function mapping to a sc... |
rmodislmodlem 20105 | Lemma for ~ rmodislmod . ... |
rmodislmod 20106 | The right module ` R ` ind... |
rmodislmodOLD 20107 | Obsolete version of ~ rmod... |
lssset 20110 | The set of all (not necess... |
islss 20111 | The predicate "is a subspa... |
islssd 20112 | Properties that determine ... |
lssss 20113 | A subspace is a set of vec... |
lssel 20114 | A subspace member is a vec... |
lss1 20115 | The set of vectors in a le... |
lssuni 20116 | The union of all subspaces... |
lssn0 20117 | A subspace is not empty. ... |
00lss 20118 | The empty structure has no... |
lsscl 20119 | Closure property of a subs... |
lssvsubcl 20120 | Closure of vector subtract... |
lssvancl1 20121 | Non-closure: if one vector... |
lssvancl2 20122 | Non-closure: if one vector... |
lss0cl 20123 | The zero vector belongs to... |
lsssn0 20124 | The singleton of the zero ... |
lss0ss 20125 | The zero subspace is inclu... |
lssle0 20126 | No subspace is smaller tha... |
lssne0 20127 | A nonzero subspace has a n... |
lssvneln0 20128 | A vector ` X ` which doesn... |
lssneln0 20129 | A vector ` X ` which doesn... |
lssssr 20130 | Conclude subspace ordering... |
lssvacl 20131 | Closure of vector addition... |
lssvscl 20132 | Closure of scalar product ... |
lssvnegcl 20133 | Closure of negative vector... |
lsssubg 20134 | All subspaces are subgroup... |
lsssssubg 20135 | All subspaces are subgroup... |
islss3 20136 | A linear subspace of a mod... |
lsslmod 20137 | A submodule is a module. ... |
lsslss 20138 | The subspaces of a subspac... |
islss4 20139 | A linear subspace is a sub... |
lss1d 20140 | One-dimensional subspace (... |
lssintcl 20141 | The intersection of a none... |
lssincl 20142 | The intersection of two su... |
lssmre 20143 | The subspaces of a module ... |
lssacs 20144 | Submodules are an algebrai... |
prdsvscacl 20145 | Pointwise scalar multiplic... |
prdslmodd 20146 | The product of a family of... |
pwslmod 20147 | A structure power of a lef... |
lspfval 20150 | The span function for a le... |
lspf 20151 | The span operator on a lef... |
lspval 20152 | The span of a set of vecto... |
lspcl 20153 | The span of a set of vecto... |
lspsncl 20154 | The span of a singleton is... |
lspprcl 20155 | The span of a pair is a su... |
lsptpcl 20156 | The span of an unordered t... |
lspsnsubg 20157 | The span of a singleton is... |
00lsp 20158 | ~ fvco4i lemma for linear ... |
lspid 20159 | The span of a subspace is ... |
lspssv 20160 | A span is a set of vectors... |
lspss 20161 | Span preserves subset orde... |
lspssid 20162 | A set of vectors is a subs... |
lspidm 20163 | The span of a set of vecto... |
lspun 20164 | The span of union is the s... |
lspssp 20165 | If a set of vectors is a s... |
mrclsp 20166 | Moore closure generalizes ... |
lspsnss 20167 | The span of the singleton ... |
lspsnel3 20168 | A member of the span of th... |
lspprss 20169 | The span of a pair of vect... |
lspsnid 20170 | A vector belongs to the sp... |
lspsnel6 20171 | Relationship between a vec... |
lspsnel5 20172 | Relationship between a vec... |
lspsnel5a 20173 | Relationship between a vec... |
lspprid1 20174 | A member of a pair of vect... |
lspprid2 20175 | A member of a pair of vect... |
lspprvacl 20176 | The sum of two vectors bel... |
lssats2 20177 | A way to express atomistic... |
lspsneli 20178 | A scalar product with a ve... |
lspsn 20179 | Span of the singleton of a... |
lspsnel 20180 | Member of span of the sing... |
lspsnvsi 20181 | Span of a scalar product o... |
lspsnss2 20182 | Comparable spans of single... |
lspsnneg 20183 | Negation does not change t... |
lspsnsub 20184 | Swapping subtraction order... |
lspsn0 20185 | Span of the singleton of t... |
lsp0 20186 | Span of the empty set. (C... |
lspuni0 20187 | Union of the span of the e... |
lspun0 20188 | The span of a union with t... |
lspsneq0 20189 | Span of the singleton is t... |
lspsneq0b 20190 | Equal singleton spans impl... |
lmodindp1 20191 | Two independent (non-colin... |
lsslsp 20192 | Spans in submodules corres... |
lss0v 20193 | The zero vector in a submo... |
lsspropd 20194 | If two structures have the... |
lsppropd 20195 | If two structures have the... |
reldmlmhm 20202 | Lemma for module homomorph... |
lmimfn 20203 | Lemma for module isomorphi... |
islmhm 20204 | Property of being a homomo... |
islmhm3 20205 | Property of a module homom... |
lmhmlem 20206 | Non-quantified consequence... |
lmhmsca 20207 | A homomorphism of left mod... |
lmghm 20208 | A homomorphism of left mod... |
lmhmlmod2 20209 | A homomorphism of left mod... |
lmhmlmod1 20210 | A homomorphism of left mod... |
lmhmf 20211 | A homomorphism of left mod... |
lmhmlin 20212 | A homomorphism of left mod... |
lmodvsinv 20213 | Multiplication of a vector... |
lmodvsinv2 20214 | Multiplying a negated vect... |
islmhm2 20215 | A one-equation proof of li... |
islmhmd 20216 | Deduction for a module hom... |
0lmhm 20217 | The constant zero linear f... |
idlmhm 20218 | The identity function on a... |
invlmhm 20219 | The negative function on a... |
lmhmco 20220 | The composition of two mod... |
lmhmplusg 20221 | The pointwise sum of two l... |
lmhmvsca 20222 | The pointwise scalar produ... |
lmhmf1o 20223 | A bijective module homomor... |
lmhmima 20224 | The image of a subspace un... |
lmhmpreima 20225 | The inverse image of a sub... |
lmhmlsp 20226 | Homomorphisms preserve spa... |
lmhmrnlss 20227 | The range of a homomorphis... |
lmhmkerlss 20228 | The kernel of a homomorphi... |
reslmhm 20229 | Restriction of a homomorph... |
reslmhm2 20230 | Expansion of the codomain ... |
reslmhm2b 20231 | Expansion of the codomain ... |
lmhmeql 20232 | The equalizer of two modul... |
lspextmo 20233 | A linear function is compl... |
pwsdiaglmhm 20234 | Diagonal homomorphism into... |
pwssplit0 20235 | Splitting for structure po... |
pwssplit1 20236 | Splitting for structure po... |
pwssplit2 20237 | Splitting for structure po... |
pwssplit3 20238 | Splitting for structure po... |
islmim 20239 | An isomorphism of left mod... |
lmimf1o 20240 | An isomorphism of left mod... |
lmimlmhm 20241 | An isomorphism of modules ... |
lmimgim 20242 | An isomorphism of modules ... |
islmim2 20243 | An isomorphism of left mod... |
lmimcnv 20244 | The converse of a bijectiv... |
brlmic 20245 | The relation "is isomorphi... |
brlmici 20246 | Prove isomorphic by an exp... |
lmiclcl 20247 | Isomorphism implies the le... |
lmicrcl 20248 | Isomorphism implies the ri... |
lmicsym 20249 | Module isomorphism is symm... |
lmhmpropd 20250 | Module homomorphism depend... |
islbs 20253 | The predicate " ` B ` is a... |
lbsss 20254 | A basis is a set of vector... |
lbsel 20255 | An element of a basis is a... |
lbssp 20256 | The span of a basis is the... |
lbsind 20257 | A basis is linearly indepe... |
lbsind2 20258 | A basis is linearly indepe... |
lbspss 20259 | No proper subset of a basi... |
lsmcl 20260 | The sum of two subspaces i... |
lsmspsn 20261 | Member of subspace sum of ... |
lsmelval2 20262 | Subspace sum membership in... |
lsmsp 20263 | Subspace sum in terms of s... |
lsmsp2 20264 | Subspace sum of spans of s... |
lsmssspx 20265 | Subspace sum (in its exten... |
lsmpr 20266 | The span of a pair of vect... |
lsppreli 20267 | A vector expressed as a su... |
lsmelpr 20268 | Two ways to say that a vec... |
lsppr0 20269 | The span of a vector paire... |
lsppr 20270 | Span of a pair of vectors.... |
lspprel 20271 | Member of the span of a pa... |
lspprabs 20272 | Absorption of vector sum i... |
lspvadd 20273 | The span of a vector sum i... |
lspsntri 20274 | Triangle-type inequality f... |
lspsntrim 20275 | Triangle-type inequality f... |
lbspropd 20276 | If two structures have the... |
pj1lmhm 20277 | The left projection functi... |
pj1lmhm2 20278 | The left projection functi... |
islvec 20281 | The predicate "is a left v... |
lvecdrng 20282 | The set of scalars of a le... |
lveclmod 20283 | A left vector space is a l... |
lsslvec 20284 | A vector subspace is a vec... |
lvecvs0or 20285 | If a scalar product is zer... |
lvecvsn0 20286 | A scalar product is nonzer... |
lssvs0or 20287 | If a scalar product belong... |
lvecvscan 20288 | Cancellation law for scala... |
lvecvscan2 20289 | Cancellation law for scala... |
lvecinv 20290 | Invert coefficient of scal... |
lspsnvs 20291 | A nonzero scalar product d... |
lspsneleq 20292 | Membership relation that i... |
lspsncmp 20293 | Comparable spans of nonzer... |
lspsnne1 20294 | Two ways to express that v... |
lspsnne2 20295 | Two ways to express that v... |
lspsnnecom 20296 | Swap two vectors with diff... |
lspabs2 20297 | Absorption law for span of... |
lspabs3 20298 | Absorption law for span of... |
lspsneq 20299 | Equal spans of singletons ... |
lspsneu 20300 | Nonzero vectors with equal... |
lspsnel4 20301 | A member of the span of th... |
lspdisj 20302 | The span of a vector not i... |
lspdisjb 20303 | A nonzero vector is not in... |
lspdisj2 20304 | Unequal spans are disjoint... |
lspfixed 20305 | Show membership in the spa... |
lspexch 20306 | Exchange property for span... |
lspexchn1 20307 | Exchange property for span... |
lspexchn2 20308 | Exchange property for span... |
lspindpi 20309 | Partial independence prope... |
lspindp1 20310 | Alternate way to say 3 vec... |
lspindp2l 20311 | Alternate way to say 3 vec... |
lspindp2 20312 | Alternate way to say 3 vec... |
lspindp3 20313 | Independence of 2 vectors ... |
lspindp4 20314 | (Partial) independence of ... |
lvecindp 20315 | Compute the ` X ` coeffici... |
lvecindp2 20316 | Sums of independent vector... |
lspsnsubn0 20317 | Unequal singleton spans im... |
lsmcv 20318 | Subspace sum has the cover... |
lspsolvlem 20319 | Lemma for ~ lspsolv . (Co... |
lspsolv 20320 | If ` X ` is in the span of... |
lssacsex 20321 | In a vector space, subspac... |
lspsnat 20322 | There is no subspace stric... |
lspsncv0 20323 | The span of a singleton co... |
lsppratlem1 20324 | Lemma for ~ lspprat . Let... |
lsppratlem2 20325 | Lemma for ~ lspprat . Sho... |
lsppratlem3 20326 | Lemma for ~ lspprat . In ... |
lsppratlem4 20327 | Lemma for ~ lspprat . In ... |
lsppratlem5 20328 | Lemma for ~ lspprat . Com... |
lsppratlem6 20329 | Lemma for ~ lspprat . Neg... |
lspprat 20330 | A proper subspace of the s... |
islbs2 20331 | An equivalent formulation ... |
islbs3 20332 | An equivalent formulation ... |
lbsacsbs 20333 | Being a basis in a vector ... |
lvecdim 20334 | The dimension theorem for ... |
lbsextlem1 20335 | Lemma for ~ lbsext . The ... |
lbsextlem2 20336 | Lemma for ~ lbsext . Sinc... |
lbsextlem3 20337 | Lemma for ~ lbsext . A ch... |
lbsextlem4 20338 | Lemma for ~ lbsext . ~ lbs... |
lbsextg 20339 | For any linearly independe... |
lbsext 20340 | For any linearly independe... |
lbsexg 20341 | Every vector space has a b... |
lbsex 20342 | Every vector space has a b... |
lvecprop2d 20343 | If two structures have the... |
lvecpropd 20344 | If two structures have the... |
sraval 20353 | Lemma for ~ srabase throug... |
sralem 20354 | Lemma for ~ srabase and si... |
sralemOLD 20355 | Obsolete version of ~ sral... |
srabase 20356 | Base set of a subring alge... |
srabaseOLD 20357 | Obsolete proof of ~ srabas... |
sraaddg 20358 | Additive operation of a su... |
sraaddgOLD 20359 | Obsolete proof of ~ sraadd... |
sramulr 20360 | Multiplicative operation o... |
sramulrOLD 20361 | Obsolete proof of ~ sramul... |
srasca 20362 | The set of scalars of a su... |
sravsca 20363 | The scalar product operati... |
sraip 20364 | The inner product operatio... |
sratset 20365 | Topology component of a su... |
sratsetOLD 20366 | Obsolete proof of ~ sratse... |
sratopn 20367 | Topology component of a su... |
srads 20368 | Distance function of a sub... |
sradsOLD 20369 | Obsolete proof of ~ srads ... |
sralmod 20370 | The subring algebra is a l... |
sralmod0 20371 | The subring module inherit... |
issubrngd2 20372 | Prove a subring by closure... |
rlmfn 20373 | ` ringLMod ` is a function... |
rlmval 20374 | Value of the ring module. ... |
lidlval 20375 | Value of the set of ring i... |
rspval 20376 | Value of the ring span fun... |
rlmval2 20377 | Value of the ring module e... |
rlmbas 20378 | Base set of the ring modul... |
rlmplusg 20379 | Vector addition in the rin... |
rlm0 20380 | Zero vector in the ring mo... |
rlmsub 20381 | Subtraction in the ring mo... |
rlmmulr 20382 | Ring multiplication in the... |
rlmsca 20383 | Scalars in the ring module... |
rlmsca2 20384 | Scalars in the ring module... |
rlmvsca 20385 | Scalar multiplication in t... |
rlmtopn 20386 | Topology component of the ... |
rlmds 20387 | Metric component of the ri... |
rlmlmod 20388 | The ring module is a modul... |
rlmlvec 20389 | The ring module over a div... |
rlmlsm 20390 | Subgroup sum of the ring m... |
rlmvneg 20391 | Vector negation in the rin... |
rlmscaf 20392 | Functionalized scalar mult... |
ixpsnbasval 20393 | The value of an infinite C... |
lidlss 20394 | An ideal is a subset of th... |
islidl 20395 | Predicate of being a (left... |
lidl0cl 20396 | An ideal contains 0. (Con... |
lidlacl 20397 | An ideal is closed under a... |
lidlnegcl 20398 | An ideal contains negative... |
lidlsubg 20399 | An ideal is a subgroup of ... |
lidlsubcl 20400 | An ideal is closed under s... |
lidlmcl 20401 | An ideal is closed under l... |
lidl1el 20402 | An ideal contains 1 iff it... |
lidl0 20403 | Every ring contains a zero... |
lidl1 20404 | Every ring contains a unit... |
lidlacs 20405 | The ideal system is an alg... |
rspcl 20406 | The span of a set of ring ... |
rspssid 20407 | The span of a set of ring ... |
rsp1 20408 | The span of the identity e... |
rsp0 20409 | The span of the zero eleme... |
rspssp 20410 | The ideal span of a set of... |
mrcrsp 20411 | Moore closure generalizes ... |
lidlnz 20412 | A nonzero ideal contains a... |
drngnidl 20413 | A division ring has only t... |
lidlrsppropd 20414 | The left ideals and ring s... |
2idlval 20417 | Definition of a two-sided ... |
2idlcpbl 20418 | The coset equivalence rela... |
qus1 20419 | The multiplicative identit... |
qusring 20420 | If ` S ` is a two-sided id... |
qusrhm 20421 | If ` S ` is a two-sided id... |
crngridl 20422 | In a commutative ring, the... |
crng2idl 20423 | In a commutative ring, a t... |
quscrng 20424 | The quotient of a commutat... |
lpival 20429 | Value of the set of princi... |
islpidl 20430 | Property of being a princi... |
lpi0 20431 | The zero ideal is always p... |
lpi1 20432 | The unit ideal is always p... |
islpir 20433 | Principal ideal rings are ... |
lpiss 20434 | Principal ideals are a sub... |
islpir2 20435 | Principal ideal rings are ... |
lpirring 20436 | Principal ideal rings are ... |
drnglpir 20437 | Division rings are princip... |
rspsn 20438 | Membership in principal id... |
lidldvgen 20439 | An element generates an id... |
lpigen 20440 | An ideal is principal iff ... |
isnzr 20443 | Property of a nonzero ring... |
nzrnz 20444 | One and zero are different... |
nzrring 20445 | A nonzero ring is a ring. ... |
drngnzr 20446 | All division rings are non... |
isnzr2 20447 | Equivalent characterizatio... |
isnzr2hash 20448 | Equivalent characterizatio... |
opprnzr 20449 | The opposite of a nonzero ... |
ringelnzr 20450 | A ring is nonzero if it ha... |
nzrunit 20451 | A unit is nonzero in any n... |
subrgnzr 20452 | A subring of a nonzero rin... |
0ringnnzr 20453 | A ring is a zero ring iff ... |
0ring 20454 | If a ring has only one ele... |
0ring01eq 20455 | In a ring with only one el... |
01eq0ring 20456 | If the zero and the identi... |
0ring01eqbi 20457 | In a unital ring the zero ... |
rng1nnzr 20458 | The (smallest) structure r... |
ring1zr 20459 | The only (unital) ring wit... |
rngen1zr 20460 | The only (unital) ring wit... |
ringen1zr 20461 | The only unital ring with ... |
rng1nfld 20462 | The zero ring is not a fie... |
rrgval 20471 | Value of the set or left-r... |
isrrg 20472 | Membership in the set of l... |
rrgeq0i 20473 | Property of a left-regular... |
rrgeq0 20474 | Left-multiplication by a l... |
rrgsupp 20475 | Left multiplication by a l... |
rrgss 20476 | Left-regular elements are ... |
unitrrg 20477 | Units are regular elements... |
isdomn 20478 | Expand definition of a dom... |
domnnzr 20479 | A domain is a nonzero ring... |
domnring 20480 | A domain is a ring. (Cont... |
domneq0 20481 | In a domain, a product is ... |
domnmuln0 20482 | In a domain, a product of ... |
isdomn2 20483 | A ring is a domain iff all... |
domnrrg 20484 | In a domain, any nonzero e... |
opprdomn 20485 | The opposite of a domain i... |
abvn0b 20486 | Another characterization o... |
drngdomn 20487 | A division ring is a domai... |
isidom 20488 | An integral domain is a co... |
fldidom 20489 | A field is an integral dom... |
fldidomOLD 20490 | Obsolete version of ~ fldi... |
fidomndrnglem 20491 | Lemma for ~ fidomndrng . ... |
fidomndrng 20492 | A finite domain is a divis... |
fiidomfld 20493 | A finite integral domain i... |
cnfldstr 20512 | The field of complex numbe... |
cnfldex 20513 | The field of complex numbe... |
cnfldbas 20514 | The base set of the field ... |
cnfldadd 20515 | The addition operation of ... |
cnfldmul 20516 | The multiplication operati... |
cnfldcj 20517 | The conjugation operation ... |
cnfldtset 20518 | The topology component of ... |
cnfldle 20519 | The ordering of the field ... |
cnfldds 20520 | The metric of the field of... |
cnfldunif 20521 | The uniform structure comp... |
cnfldfun 20522 | The field of complex numbe... |
cnfldfunALT 20523 | Alternate proof of ~ cnfld... |
xrsstr 20524 | The extended real structur... |
xrsex 20525 | The extended real structur... |
xrsbas 20526 | The base set of the extend... |
xrsadd 20527 | The addition operation of ... |
xrsmul 20528 | The multiplication operati... |
xrstset 20529 | The topology component of ... |
xrsle 20530 | The ordering of the extend... |
cncrng 20531 | The complex numbers form a... |
cnring 20532 | The complex numbers form a... |
xrsmcmn 20533 | The "multiplicative group"... |
cnfld0 20534 | Zero is the zero element o... |
cnfld1 20535 | One is the unit element of... |
cnfldneg 20536 | The additive inverse in th... |
cnfldplusf 20537 | The functionalized additio... |
cnfldsub 20538 | The subtraction operator i... |
cndrng 20539 | The complex numbers form a... |
cnflddiv 20540 | The division operation in ... |
cnfldinv 20541 | The multiplicative inverse... |
cnfldmulg 20542 | The group multiple functio... |
cnfldexp 20543 | The exponentiation operato... |
cnsrng 20544 | The complex numbers form a... |
xrsmgm 20545 | The "additive group" of th... |
xrsnsgrp 20546 | The "additive group" of th... |
xrsmgmdifsgrp 20547 | The "additive group" of th... |
xrs1mnd 20548 | The extended real numbers,... |
xrs10 20549 | The zero of the extended r... |
xrs1cmn 20550 | The extended real numbers ... |
xrge0subm 20551 | The nonnegative extended r... |
xrge0cmn 20552 | The nonnegative extended r... |
xrsds 20553 | The metric of the extended... |
xrsdsval 20554 | The metric of the extended... |
xrsdsreval 20555 | The metric of the extended... |
xrsdsreclblem 20556 | Lemma for ~ xrsdsreclb . ... |
xrsdsreclb 20557 | The metric of the extended... |
cnsubmlem 20558 | Lemma for ~ nn0subm and fr... |
cnsubglem 20559 | Lemma for ~ resubdrg and f... |
cnsubrglem 20560 | Lemma for ~ resubdrg and f... |
cnsubdrglem 20561 | Lemma for ~ resubdrg and f... |
qsubdrg 20562 | The rational numbers form ... |
zsubrg 20563 | The integers form a subrin... |
gzsubrg 20564 | The gaussian integers form... |
nn0subm 20565 | The nonnegative integers f... |
rege0subm 20566 | The nonnegative reals form... |
absabv 20567 | The regular absolute value... |
zsssubrg 20568 | The integers are a subset ... |
qsssubdrg 20569 | The rational numbers are a... |
cnsubrg 20570 | There are no subrings of t... |
cnmgpabl 20571 | The unit group of the comp... |
cnmgpid 20572 | The group identity element... |
cnmsubglem 20573 | Lemma for ~ rpmsubg and fr... |
rpmsubg 20574 | The positive reals form a ... |
gzrngunitlem 20575 | Lemma for ~ gzrngunit . (... |
gzrngunit 20576 | The units on ` ZZ [ _i ] `... |
gsumfsum 20577 | Relate a group sum on ` CC... |
regsumfsum 20578 | Relate a group sum on ` ( ... |
expmhm 20579 | Exponentiation is a monoid... |
nn0srg 20580 | The nonnegative integers f... |
rge0srg 20581 | The nonnegative real numbe... |
zringcrng 20584 | The ring of integers is a ... |
zringring 20585 | The ring of integers is a ... |
zringabl 20586 | The ring of integers is an... |
zringgrp 20587 | The ring of integers is an... |
zringbas 20588 | The integers are the base ... |
zringplusg 20589 | The addition operation of ... |
zringmulg 20590 | The multiplication (group ... |
zringmulr 20591 | The multiplication operati... |
zring0 20592 | The neutral element of the... |
zring1 20593 | The multiplicative neutral... |
zringnzr 20594 | The ring of integers is a ... |
dvdsrzring 20595 | Ring divisibility in the r... |
zringlpirlem1 20596 | Lemma for ~ zringlpir . A... |
zringlpirlem2 20597 | Lemma for ~ zringlpir . A... |
zringlpirlem3 20598 | Lemma for ~ zringlpir . A... |
zringinvg 20599 | The additive inverse of an... |
zringunit 20600 | The units of ` ZZ ` are th... |
zringlpir 20601 | The integers are a princip... |
zringndrg 20602 | The integers are not a div... |
zringcyg 20603 | The integers are a cyclic ... |
zringsubgval 20604 | Subtraction in the ring of... |
zringmpg 20605 | The multiplication group o... |
prmirredlem 20606 | A positive integer is irre... |
dfprm2 20607 | The positive irreducible e... |
prmirred 20608 | The irreducible elements o... |
expghm 20609 | Exponentiation is a group ... |
mulgghm2 20610 | The powers of a group elem... |
mulgrhm 20611 | The powers of the element ... |
mulgrhm2 20612 | The powers of the element ... |
zrhval 20621 | Define the unique homomorp... |
zrhval2 20622 | Alternate value of the ` Z... |
zrhmulg 20623 | Value of the ` ZRHom ` hom... |
zrhrhmb 20624 | The ` ZRHom ` homomorphism... |
zrhrhm 20625 | The ` ZRHom ` homomorphism... |
zrh1 20626 | Interpretation of 1 in a r... |
zrh0 20627 | Interpretation of 0 in a r... |
zrhpropd 20628 | The ` ZZ ` ring homomorphi... |
zlmval 20629 | Augment an abelian group w... |
zlmlem 20630 | Lemma for ~ zlmbas and ~ z... |
zlmlemOLD 20631 | Obsolete version of ~ zlml... |
zlmbas 20632 | Base set of a ` ZZ ` -modu... |
zlmbasOLD 20633 | Obsolete version of ~ zlmb... |
zlmplusg 20634 | Group operation of a ` ZZ ... |
zlmplusgOLD 20635 | Obsolete version of ~ zlmb... |
zlmmulr 20636 | Ring operation of a ` ZZ `... |
zlmmulrOLD 20637 | Obsolete version of ~ zlmb... |
zlmsca 20638 | Scalar ring of a ` ZZ ` -m... |
zlmvsca 20639 | Scalar multiplication oper... |
zlmlmod 20640 | The ` ZZ ` -module operati... |
chrval 20641 | Definition substitution of... |
chrcl 20642 | Closure of the characteris... |
chrid 20643 | The canonical ` ZZ ` ring ... |
chrdvds 20644 | The ` ZZ ` ring homomorphi... |
chrcong 20645 | If two integers are congru... |
chrnzr 20646 | Nonzero rings are precisel... |
chrrhm 20647 | The characteristic restric... |
domnchr 20648 | The characteristic of a do... |
znlidl 20649 | The set ` n ZZ ` is an ide... |
zncrng2 20650 | The value of the ` Z/nZ ` ... |
znval 20651 | The value of the ` Z/nZ ` ... |
znle 20652 | The value of the ` Z/nZ ` ... |
znval2 20653 | Self-referential expressio... |
znbaslem 20654 | Lemma for ~ znbas . (Cont... |
znbaslemOLD 20655 | Obsolete version of ~ znba... |
znbas2 20656 | The base set of ` Z/nZ ` i... |
znbas2OLD 20657 | Obsolete version of ~ znba... |
znadd 20658 | The additive structure of ... |
znaddOLD 20659 | Obsolete version of ~ znad... |
znmul 20660 | The multiplicative structu... |
znmulOLD 20661 | Obsolete version of ~ znad... |
znzrh 20662 | The ` ZZ ` ring homomorphi... |
znbas 20663 | The base set of ` Z/nZ ` s... |
zncrng 20664 | ` Z/nZ ` is a commutative ... |
znzrh2 20665 | The ` ZZ ` ring homomorphi... |
znzrhval 20666 | The ` ZZ ` ring homomorphi... |
znzrhfo 20667 | The ` ZZ ` ring homomorphi... |
zncyg 20668 | The group ` ZZ / n ZZ ` is... |
zndvds 20669 | Express equality of equiva... |
zndvds0 20670 | Special case of ~ zndvds w... |
znf1o 20671 | The function ` F ` enumera... |
zzngim 20672 | The ` ZZ ` ring homomorphi... |
znle2 20673 | The ordering of the ` Z/nZ... |
znleval 20674 | The ordering of the ` Z/nZ... |
znleval2 20675 | The ordering of the ` Z/nZ... |
zntoslem 20676 | Lemma for ~ zntos . (Cont... |
zntos 20677 | The ` Z/nZ ` structure is ... |
znhash 20678 | The ` Z/nZ ` structure has... |
znfi 20679 | The ` Z/nZ ` structure is ... |
znfld 20680 | The ` Z/nZ ` structure is ... |
znidomb 20681 | The ` Z/nZ ` structure is ... |
znchr 20682 | Cyclic rings are defined b... |
znunit 20683 | The units of ` Z/nZ ` are ... |
znunithash 20684 | The size of the unit group... |
znrrg 20685 | The regular elements of ` ... |
cygznlem1 20686 | Lemma for ~ cygzn . (Cont... |
cygznlem2a 20687 | Lemma for ~ cygzn . (Cont... |
cygznlem2 20688 | Lemma for ~ cygzn . (Cont... |
cygznlem3 20689 | A cyclic group with ` n ` ... |
cygzn 20690 | A cyclic group with ` n ` ... |
cygth 20691 | The "fundamental theorem o... |
cyggic 20692 | Cyclic groups are isomorph... |
frgpcyg 20693 | A free group is cyclic iff... |
cnmsgnsubg 20694 | The signs form a multiplic... |
cnmsgnbas 20695 | The base set of the sign s... |
cnmsgngrp 20696 | The group of signs under m... |
psgnghm 20697 | The sign is a homomorphism... |
psgnghm2 20698 | The sign is a homomorphism... |
psgninv 20699 | The sign of a permutation ... |
psgnco 20700 | Multiplicativity of the pe... |
zrhpsgnmhm 20701 | Embedding of permutation s... |
zrhpsgninv 20702 | The embedded sign of a per... |
evpmss 20703 | Even permutations are perm... |
psgnevpmb 20704 | A class is an even permuta... |
psgnodpm 20705 | A permutation which is odd... |
psgnevpm 20706 | A permutation which is eve... |
psgnodpmr 20707 | If a permutation has sign ... |
zrhpsgnevpm 20708 | The sign of an even permut... |
zrhpsgnodpm 20709 | The sign of an odd permuta... |
cofipsgn 20710 | Composition of any class `... |
zrhpsgnelbas 20711 | Embedding of permutation s... |
zrhcopsgnelbas 20712 | Embedding of permutation s... |
evpmodpmf1o 20713 | The function for performin... |
pmtrodpm 20714 | A transposition is an odd ... |
psgnfix1 20715 | A permutation of a finite ... |
psgnfix2 20716 | A permutation of a finite ... |
psgndiflemB 20717 | Lemma 1 for ~ psgndif . (... |
psgndiflemA 20718 | Lemma 2 for ~ psgndif . (... |
psgndif 20719 | Embedding of permutation s... |
copsgndif 20720 | Embedding of permutation s... |
rebase 20723 | The base of the field of r... |
remulg 20724 | The multiplication (group ... |
resubdrg 20725 | The real numbers form a di... |
resubgval 20726 | Subtraction in the field o... |
replusg 20727 | The addition operation of ... |
remulr 20728 | The multiplication operati... |
re0g 20729 | The neutral element of the... |
re1r 20730 | The multiplicative neutral... |
rele2 20731 | The ordering relation of t... |
relt 20732 | The ordering relation of t... |
reds 20733 | The distance of the field ... |
redvr 20734 | The division operation of ... |
retos 20735 | The real numbers are a tot... |
refld 20736 | The real numbers form a fi... |
refldcj 20737 | The conjugation operation ... |
recrng 20738 | The real numbers form a st... |
regsumsupp 20739 | The group sum over the rea... |
rzgrp 20740 | The quotient group ` RR / ... |
isphl 20745 | The predicate "is a genera... |
phllvec 20746 | A pre-Hilbert space is a l... |
phllmod 20747 | A pre-Hilbert space is a l... |
phlsrng 20748 | The scalar ring of a pre-H... |
phllmhm 20749 | The inner product of a pre... |
ipcl 20750 | Closure of the inner produ... |
ipcj 20751 | Conjugate of an inner prod... |
iporthcom 20752 | Orthogonality (meaning inn... |
ip0l 20753 | Inner product with a zero ... |
ip0r 20754 | Inner product with a zero ... |
ipeq0 20755 | The inner product of a vec... |
ipdir 20756 | Distributive law for inner... |
ipdi 20757 | Distributive law for inner... |
ip2di 20758 | Distributive law for inner... |
ipsubdir 20759 | Distributive law for inner... |
ipsubdi 20760 | Distributive law for inner... |
ip2subdi 20761 | Distributive law for inner... |
ipass 20762 | Associative law for inner ... |
ipassr 20763 | "Associative" law for seco... |
ipassr2 20764 | "Associative" law for inne... |
ipffval 20765 | The inner product operatio... |
ipfval 20766 | The inner product operatio... |
ipfeq 20767 | If the inner product opera... |
ipffn 20768 | The inner product operatio... |
phlipf 20769 | The inner product operatio... |
ip2eq 20770 | Two vectors are equal iff ... |
isphld 20771 | Properties that determine ... |
phlpropd 20772 | If two structures have the... |
ssipeq 20773 | The inner product on a sub... |
phssipval 20774 | The inner product on a sub... |
phssip 20775 | The inner product (as a fu... |
phlssphl 20776 | A subspace of an inner pro... |
ocvfval 20783 | The orthocomplement operat... |
ocvval 20784 | Value of the orthocompleme... |
elocv 20785 | Elementhood in the orthoco... |
ocvi 20786 | Property of a member of th... |
ocvss 20787 | The orthocomplement of a s... |
ocvocv 20788 | A set is contained in its ... |
ocvlss 20789 | The orthocomplement of a s... |
ocv2ss 20790 | Orthocomplements reverse s... |
ocvin 20791 | An orthocomplement has tri... |
ocvsscon 20792 | Two ways to say that ` S `... |
ocvlsp 20793 | The orthocomplement of a l... |
ocv0 20794 | The orthocomplement of the... |
ocvz 20795 | The orthocomplement of the... |
ocv1 20796 | The orthocomplement of the... |
unocv 20797 | The orthocomplement of a u... |
iunocv 20798 | The orthocomplement of an ... |
cssval 20799 | The set of closed subspace... |
iscss 20800 | The predicate "is a closed... |
cssi 20801 | Property of a closed subsp... |
cssss 20802 | A closed subspace is a sub... |
iscss2 20803 | It is sufficient to prove ... |
ocvcss 20804 | The orthocomplement of any... |
cssincl 20805 | The zero subspace is a clo... |
css0 20806 | The zero subspace is a clo... |
css1 20807 | The whole space is a close... |
csslss 20808 | A closed subspace of a pre... |
lsmcss 20809 | A subset of a pre-Hilbert ... |
cssmre 20810 | The closed subspaces of a ... |
mrccss 20811 | The Moore closure correspo... |
thlval 20812 | Value of the Hilbert latti... |
thlbas 20813 | Base set of the Hilbert la... |
thlle 20814 | Ordering on the Hilbert la... |
thlleval 20815 | Ordering on the Hilbert la... |
thloc 20816 | Orthocomplement on the Hil... |
pjfval 20823 | The value of the projectio... |
pjdm 20824 | A subspace is in the domai... |
pjpm 20825 | The projection map is a pa... |
pjfval2 20826 | Value of the projection ma... |
pjval 20827 | Value of the projection ma... |
pjdm2 20828 | A subspace is in the domai... |
pjff 20829 | A projection is a linear o... |
pjf 20830 | A projection is a function... |
pjf2 20831 | A projection is a function... |
pjfo 20832 | A projection is a surjecti... |
pjcss 20833 | A projection subspace is a... |
ocvpj 20834 | The orthocomplement of a p... |
ishil 20835 | The predicate "is a Hilber... |
ishil2 20836 | The predicate "is a Hilber... |
isobs 20837 | The predicate "is an ortho... |
obsip 20838 | The inner product of two e... |
obsipid 20839 | A basis element has unit l... |
obsrcl 20840 | Reverse closure for an ort... |
obsss 20841 | An orthonormal basis is a ... |
obsne0 20842 | A basis element is nonzero... |
obsocv 20843 | An orthonormal basis has t... |
obs2ocv 20844 | The double orthocomplement... |
obselocv 20845 | A basis element is in the ... |
obs2ss 20846 | A basis has no proper subs... |
obslbs 20847 | An orthogonal basis is a l... |
reldmdsmm 20850 | The direct sum is a well-b... |
dsmmval 20851 | Value of the module direct... |
dsmmbase 20852 | Base set of the module dir... |
dsmmval2 20853 | Self-referential definitio... |
dsmmbas2 20854 | Base set of the direct sum... |
dsmmfi 20855 | For finite products, the d... |
dsmmelbas 20856 | Membership in the finitely... |
dsmm0cl 20857 | The all-zero vector is con... |
dsmmacl 20858 | The finite hull is closed ... |
prdsinvgd2 20859 | Negation of a single coord... |
dsmmsubg 20860 | The finite hull of a produ... |
dsmmlss 20861 | The finite hull of a produ... |
dsmmlmod 20862 | The direct sum of a family... |
frlmval 20865 | Value of the "free module"... |
frlmlmod 20866 | The free module is a modul... |
frlmpws 20867 | The free module as a restr... |
frlmlss 20868 | The base set of the free m... |
frlmpwsfi 20869 | The finite free module is ... |
frlmsca 20870 | The ring of scalars of a f... |
frlm0 20871 | Zero in a free module (rin... |
frlmbas 20872 | Base set of the free modul... |
frlmelbas 20873 | Membership in the base set... |
frlmrcl 20874 | If a free module is inhabi... |
frlmbasfsupp 20875 | Elements of the free modul... |
frlmbasmap 20876 | Elements of the free modul... |
frlmbasf 20877 | Elements of the free modul... |
frlmlvec 20878 | The free module over a div... |
frlmfibas 20879 | The base set of the finite... |
elfrlmbasn0 20880 | If the dimension of a free... |
frlmplusgval 20881 | Addition in a free module.... |
frlmsubgval 20882 | Subtraction in a free modu... |
frlmvscafval 20883 | Scalar multiplication in a... |
frlmvplusgvalc 20884 | Coordinates of a sum with ... |
frlmvscaval 20885 | Coordinates of a scalar mu... |
frlmplusgvalb 20886 | Addition in a free module ... |
frlmvscavalb 20887 | Scalar multiplication in a... |
frlmvplusgscavalb 20888 | Addition combined with sca... |
frlmgsum 20889 | Finite commutative sums in... |
frlmsplit2 20890 | Restriction is homomorphic... |
frlmsslss 20891 | A subset of a free module ... |
frlmsslss2 20892 | A subset of a free module ... |
frlmbas3 20893 | An element of the base set... |
mpofrlmd 20894 | Elements of the free modul... |
frlmip 20895 | The inner product of a fre... |
frlmipval 20896 | The inner product of a fre... |
frlmphllem 20897 | Lemma for ~ frlmphl . (Co... |
frlmphl 20898 | Conditions for a free modu... |
uvcfval 20901 | Value of the unit-vector g... |
uvcval 20902 | Value of a single unit vec... |
uvcvval 20903 | Value of a unit vector coo... |
uvcvvcl 20904 | A coordinate of a unit vec... |
uvcvvcl2 20905 | A unit vector coordinate i... |
uvcvv1 20906 | The unit vector is one at ... |
uvcvv0 20907 | The unit vector is zero at... |
uvcff 20908 | Domain and range of the un... |
uvcf1 20909 | In a nonzero ring, each un... |
uvcresum 20910 | Any element of a free modu... |
frlmssuvc1 20911 | A scalar multiple of a uni... |
frlmssuvc2 20912 | A nonzero scalar multiple ... |
frlmsslsp 20913 | A subset of a free module ... |
frlmlbs 20914 | The unit vectors comprise ... |
frlmup1 20915 | Any assignment of unit vec... |
frlmup2 20916 | The evaluation map has the... |
frlmup3 20917 | The range of such an evalu... |
frlmup4 20918 | Universal property of the ... |
ellspd 20919 | The elements of the span o... |
elfilspd 20920 | Simplified version of ~ el... |
rellindf 20925 | The independent-family pre... |
islinds 20926 | Property of an independent... |
linds1 20927 | An independent set of vect... |
linds2 20928 | An independent set of vect... |
islindf 20929 | Property of an independent... |
islinds2 20930 | Expanded property of an in... |
islindf2 20931 | Property of an independent... |
lindff 20932 | Functional property of a l... |
lindfind 20933 | A linearly independent fam... |
lindsind 20934 | A linearly independent set... |
lindfind2 20935 | In a linearly independent ... |
lindsind2 20936 | In a linearly independent ... |
lindff1 20937 | A linearly independent fam... |
lindfrn 20938 | The range of an independen... |
f1lindf 20939 | Rearranging and deleting e... |
lindfres 20940 | Any restriction of an inde... |
lindsss 20941 | Any subset of an independe... |
f1linds 20942 | A family constructed from ... |
islindf3 20943 | In a nonzero ring, indepen... |
lindfmm 20944 | Linear independence of a f... |
lindsmm 20945 | Linear independence of a s... |
lindsmm2 20946 | The monomorphic image of a... |
lsslindf 20947 | Linear independence is unc... |
lsslinds 20948 | Linear independence is unc... |
islbs4 20949 | A basis is an independent ... |
lbslinds 20950 | A basis is independent. (... |
islinds3 20951 | A subset is linearly indep... |
islinds4 20952 | A set is independent in a ... |
lmimlbs 20953 | The isomorphic image of a ... |
lmiclbs 20954 | Having a basis is an isomo... |
islindf4 20955 | A family is independent if... |
islindf5 20956 | A family is independent if... |
indlcim 20957 | An independent, spanning f... |
lbslcic 20958 | A module with a basis is i... |
lmisfree 20959 | A module has a basis iff i... |
lvecisfrlm 20960 | Every vector space is isom... |
lmimco 20961 | The composition of two iso... |
lmictra 20962 | Module isomorphism is tran... |
uvcf1o 20963 | In a nonzero ring, the map... |
uvcendim 20964 | In a nonzero ring, the num... |
frlmisfrlm 20965 | A free module is isomorphi... |
frlmiscvec 20966 | Every free module is isomo... |
isassa 20973 | The properties of an assoc... |
assalem 20974 | The properties of an assoc... |
assaass 20975 | Left-associative property ... |
assaassr 20976 | Right-associative property... |
assalmod 20977 | An associative algebra is ... |
assaring 20978 | An associative algebra is ... |
assasca 20979 | An associative algebra's s... |
assa2ass 20980 | Left- and right-associativ... |
isassad 20981 | Sufficient condition for b... |
issubassa3 20982 | A subring that is also a s... |
issubassa 20983 | The subalgebras of an asso... |
sraassa 20984 | The subring algebra over a... |
rlmassa 20985 | The ring module over a com... |
assapropd 20986 | If two structures have the... |
aspval 20987 | Value of the algebraic clo... |
asplss 20988 | The algebraic span of a se... |
aspid 20989 | The algebraic span of a su... |
aspsubrg 20990 | The algebraic span of a se... |
aspss 20991 | Span preserves subset orde... |
aspssid 20992 | A set of vectors is a subs... |
asclfval 20993 | Function value of the alge... |
asclval 20994 | Value of a mapped algebra ... |
asclfn 20995 | Unconditional functionalit... |
asclf 20996 | The algebra scalars functi... |
asclghm 20997 | The algebra scalars functi... |
ascl0 20998 | The scalar 0 embedded into... |
ascl1 20999 | The scalar 1 embedded into... |
asclmul1 21000 | Left multiplication by a l... |
asclmul2 21001 | Right multiplication by a ... |
ascldimul 21002 | The algebra scalars functi... |
asclinvg 21003 | The group inverse (negatio... |
asclrhm 21004 | The scalar injection is a ... |
rnascl 21005 | The set of injected scalar... |
issubassa2 21006 | A subring of a unital alge... |
rnasclsubrg 21007 | The scalar multiples of th... |
rnasclmulcl 21008 | (Vector) multiplication is... |
rnasclassa 21009 | The scalar multiples of th... |
ressascl 21010 | The injection of scalars i... |
asclpropd 21011 | If two structures have the... |
aspval2 21012 | The algebraic closure is t... |
assamulgscmlem1 21013 | Lemma 1 for ~ assamulgscm ... |
assamulgscmlem2 21014 | Lemma for ~ assamulgscm (i... |
assamulgscm 21015 | Exponentiation of a scalar... |
zlmassa 21016 | The ` ZZ ` -module operati... |
reldmpsr 21027 | The multivariate power ser... |
psrval 21028 | Value of the multivariate ... |
psrvalstr 21029 | The multivariate power ser... |
psrbag 21030 | Elementhood in the set of ... |
psrbagf 21031 | A finite bag is a function... |
psrbagfOLD 21032 | Obsolete version of ~ psrb... |
psrbagfsupp 21033 | Finite bags have finite su... |
psrbagfsuppOLD 21034 | Obsolete version of ~ psrb... |
snifpsrbag 21035 | A bag containing one eleme... |
fczpsrbag 21036 | The constant function equa... |
psrbaglesupp 21037 | The support of a dominated... |
psrbaglesuppOLD 21038 | Obsolete version of ~ psrb... |
psrbaglecl 21039 | The set of finite bags is ... |
psrbagleclOLD 21040 | Obsolete version of ~ psrb... |
psrbagaddcl 21041 | The sum of two finite bags... |
psrbagaddclOLD 21042 | Obsolete version of ~ psrb... |
psrbagcon 21043 | The analogue of the statem... |
psrbagconOLD 21044 | Obsolete version of ~ psrb... |
psrbaglefi 21045 | There are finitely many ba... |
psrbaglefiOLD 21046 | Obsolete version of ~ psrb... |
psrbagconcl 21047 | The complement of a bag is... |
psrbagconclOLD 21048 | Obsolete version of ~ psrb... |
psrbagconf1o 21049 | Bag complementation is a b... |
psrbagconf1oOLD 21050 | Obsolete version of ~ psrb... |
gsumbagdiaglemOLD 21051 | Obsolete version of ~ gsum... |
gsumbagdiagOLD 21052 | Obsolete version of ~ gsum... |
psrass1lemOLD 21053 | Obsolete version of ~ psra... |
gsumbagdiaglem 21054 | Lemma for ~ gsumbagdiag . ... |
gsumbagdiag 21055 | Two-dimensional commutatio... |
psrass1lem 21056 | A group sum commutation us... |
psrbas 21057 | The base set of the multiv... |
psrelbas 21058 | An element of the set of p... |
psrelbasfun 21059 | An element of the set of p... |
psrplusg 21060 | The addition operation of ... |
psradd 21061 | The addition operation of ... |
psraddcl 21062 | Closure of the power serie... |
psrmulr 21063 | The multiplication operati... |
psrmulfval 21064 | The multiplication operati... |
psrmulval 21065 | The multiplication operati... |
psrmulcllem 21066 | Closure of the power serie... |
psrmulcl 21067 | Closure of the power serie... |
psrsca 21068 | The scalar field of the mu... |
psrvscafval 21069 | The scalar multiplication ... |
psrvsca 21070 | The scalar multiplication ... |
psrvscaval 21071 | The scalar multiplication ... |
psrvscacl 21072 | Closure of the power serie... |
psr0cl 21073 | The zero element of the ri... |
psr0lid 21074 | The zero element of the ri... |
psrnegcl 21075 | The negative function in t... |
psrlinv 21076 | The negative function in t... |
psrgrp 21077 | The ring of power series i... |
psr0 21078 | The zero element of the ri... |
psrneg 21079 | The negative function of t... |
psrlmod 21080 | The ring of power series i... |
psr1cl 21081 | The identity element of th... |
psrlidm 21082 | The identity element of th... |
psrridm 21083 | The identity element of th... |
psrass1 21084 | Associative identity for t... |
psrdi 21085 | Distributive law for the r... |
psrdir 21086 | Distributive law for the r... |
psrass23l 21087 | Associative identity for t... |
psrcom 21088 | Commutative law for the ri... |
psrass23 21089 | Associative identities for... |
psrring 21090 | The ring of power series i... |
psr1 21091 | The identity element of th... |
psrcrng 21092 | The ring of power series i... |
psrassa 21093 | The ring of power series i... |
resspsrbas 21094 | A restricted power series ... |
resspsradd 21095 | A restricted power series ... |
resspsrmul 21096 | A restricted power series ... |
resspsrvsca 21097 | A restricted power series ... |
subrgpsr 21098 | A subring of the base ring... |
mvrfval 21099 | Value of the generating el... |
mvrval 21100 | Value of the generating el... |
mvrval2 21101 | Value of the generating el... |
mvrid 21102 | The ` X i ` -th coefficien... |
mvrf 21103 | The power series variable ... |
mvrf1 21104 | The power series variable ... |
mvrcl2 21105 | A power series variable is... |
reldmmpl 21106 | The multivariate polynomia... |
mplval 21107 | Value of the set of multiv... |
mplbas 21108 | Base set of the set of mul... |
mplelbas 21109 | Property of being a polyno... |
mplrcl 21110 | Reverse closure for the po... |
mplelsfi 21111 | A polynomial treated as a ... |
mplval2 21112 | Self-referential expressio... |
mplbasss 21113 | The set of polynomials is ... |
mplelf 21114 | A polynomial is defined as... |
mplsubglem 21115 | If ` A ` is an ideal of se... |
mpllsslem 21116 | If ` A ` is an ideal of su... |
mplsubglem2 21117 | Lemma for ~ mplsubg and ~ ... |
mplsubg 21118 | The set of polynomials is ... |
mpllss 21119 | The set of polynomials is ... |
mplsubrglem 21120 | Lemma for ~ mplsubrg . (C... |
mplsubrg 21121 | The set of polynomials is ... |
mpl0 21122 | The zero polynomial. (Con... |
mpladd 21123 | The addition operation on ... |
mplneg 21124 | The negative function on m... |
mplmul 21125 | The multiplication operati... |
mpl1 21126 | The identity element of th... |
mplsca 21127 | The scalar field of a mult... |
mplvsca2 21128 | The scalar multiplication ... |
mplvsca 21129 | The scalar multiplication ... |
mplvscaval 21130 | The scalar multiplication ... |
mvrcl 21131 | A power series variable is... |
mplgrp 21132 | The polynomial ring is a g... |
mpllmod 21133 | The polynomial ring is a l... |
mplring 21134 | The polynomial ring is a r... |
mpllvec 21135 | The polynomial ring is a v... |
mplcrng 21136 | The polynomial ring is a c... |
mplassa 21137 | The polynomial ring is an ... |
ressmplbas2 21138 | The base set of a restrict... |
ressmplbas 21139 | A restricted polynomial al... |
ressmpladd 21140 | A restricted polynomial al... |
ressmplmul 21141 | A restricted polynomial al... |
ressmplvsca 21142 | A restricted power series ... |
subrgmpl 21143 | A subring of the base ring... |
subrgmvr 21144 | The variables in a subring... |
subrgmvrf 21145 | The variables in a polynom... |
mplmon 21146 | A monomial is a polynomial... |
mplmonmul 21147 | The product of two monomia... |
mplcoe1 21148 | Decompose a polynomial int... |
mplcoe3 21149 | Decompose a monomial in on... |
mplcoe5lem 21150 | Lemma for ~ mplcoe4 . (Co... |
mplcoe5 21151 | Decompose a monomial into ... |
mplcoe2 21152 | Decompose a monomial into ... |
mplbas2 21153 | An alternative expression ... |
ltbval 21154 | Value of the well-order on... |
ltbwe 21155 | The finite bag order is a ... |
reldmopsr 21156 | Lemma for ordered power se... |
opsrval 21157 | The value of the "ordered ... |
opsrle 21158 | An alternative expression ... |
opsrval2 21159 | Self-referential expressio... |
opsrbaslem 21160 | Get a component of the ord... |
opsrbaslemOLD 21161 | Obsolete version of ~ opsr... |
opsrbas 21162 | The base set of the ordere... |
opsrbasOLD 21163 | Obsolete version of ~ opsr... |
opsrplusg 21164 | The addition operation of ... |
opsrplusgOLD 21165 | Obsolete version of ~ opsr... |
opsrmulr 21166 | The multiplication operati... |
opsrmulrOLD 21167 | Obsolete version of ~ opsr... |
opsrvsca 21168 | The scalar product operati... |
opsrvscaOLD 21169 | Obsolete version of ~ opsr... |
opsrsca 21170 | The scalar ring of the ord... |
opsrscaOLD 21171 | Obsolete version of ~ opsr... |
opsrtoslem1 21172 | Lemma for ~ opsrtos . (Co... |
opsrtoslem2 21173 | Lemma for ~ opsrtos . (Co... |
opsrtos 21174 | The ordered power series s... |
opsrso 21175 | The ordered power series s... |
opsrcrng 21176 | The ring of ordered power ... |
opsrassa 21177 | The ring of ordered power ... |
mvrf2 21178 | The power series/polynomia... |
mplmon2 21179 | Express a scaled monomial.... |
psrbag0 21180 | The empty bag is a bag. (... |
psrbagsn 21181 | A singleton bag is a bag. ... |
mplascl 21182 | Value of the scalar inject... |
mplasclf 21183 | The scalar injection is a ... |
subrgascl 21184 | The scalar injection funct... |
subrgasclcl 21185 | The scalars in a polynomia... |
mplmon2cl 21186 | A scaled monomial is a pol... |
mplmon2mul 21187 | Product of scaled monomial... |
mplind 21188 | Prove a property of polyno... |
mplcoe4 21189 | Decompose a polynomial int... |
evlslem4 21194 | The support of a tensor pr... |
psrbagev1 21195 | A bag of multipliers provi... |
psrbagev1OLD 21196 | Obsolete version of ~ psrb... |
psrbagev2 21197 | Closure of a sum using a b... |
psrbagev2OLD 21198 | Obsolete version of ~ psrb... |
evlslem2 21199 | A linear function on the p... |
evlslem3 21200 | Lemma for ~ evlseu . Poly... |
evlslem6 21201 | Lemma for ~ evlseu . Fini... |
evlslem1 21202 | Lemma for ~ evlseu , give ... |
evlseu 21203 | For a given interpretation... |
reldmevls 21204 | Well-behaved binary operat... |
mpfrcl 21205 | Reverse closure for the se... |
evlsval 21206 | Value of the polynomial ev... |
evlsval2 21207 | Characterizing properties ... |
evlsrhm 21208 | Polynomial evaluation is a... |
evlssca 21209 | Polynomial evaluation maps... |
evlsvar 21210 | Polynomial evaluation maps... |
evlsgsumadd 21211 | Polynomial evaluation maps... |
evlsgsummul 21212 | Polynomial evaluation maps... |
evlspw 21213 | Polynomial evaluation for ... |
evlsvarpw 21214 | Polynomial evaluation for ... |
evlval 21215 | Value of the simple/same r... |
evlrhm 21216 | The simple evaluation map ... |
evlsscasrng 21217 | The evaluation of a scalar... |
evlsca 21218 | Simple polynomial evaluati... |
evlsvarsrng 21219 | The evaluation of the vari... |
evlvar 21220 | Simple polynomial evaluati... |
mpfconst 21221 | Constants are multivariate... |
mpfproj 21222 | Projections are multivaria... |
mpfsubrg 21223 | Polynomial functions are a... |
mpff 21224 | Polynomial functions are f... |
mpfaddcl 21225 | The sum of multivariate po... |
mpfmulcl 21226 | The product of multivariat... |
mpfind 21227 | Prove a property of polyno... |
selvffval 21236 | Value of the "variable sel... |
selvfval 21237 | Value of the "variable sel... |
selvval 21238 | Value of the "variable sel... |
mhpfval 21239 | Value of the "homogeneous ... |
mhpval 21240 | Value of the "homogeneous ... |
ismhp 21241 | Property of being a homoge... |
ismhp2 21242 | Deduce a homogeneous polyn... |
ismhp3 21243 | A polynomial is homogeneou... |
mhpmpl 21244 | A homogeneous polynomial i... |
mhpdeg 21245 | All nonzero terms of a hom... |
mhp0cl 21246 | The zero polynomial is hom... |
mhpsclcl 21247 | A scalar (or constant) pol... |
mhpvarcl 21248 | A power series variable is... |
mhpmulcl 21249 | A product of homogeneous p... |
mhppwdeg 21250 | Degree of a homogeneous po... |
mhpaddcl 21251 | Homogeneous polynomials ar... |
mhpinvcl 21252 | Homogeneous polynomials ar... |
mhpsubg 21253 | Homogeneous polynomials fo... |
mhpvscacl 21254 | Homogeneous polynomials ar... |
mhplss 21255 | Homogeneous polynomials fo... |
psr1baslem 21266 | The set of finite bags on ... |
psr1val 21267 | Value of the ring of univa... |
psr1crng 21268 | The ring of univariate pow... |
psr1assa 21269 | The ring of univariate pow... |
psr1tos 21270 | The ordered power series s... |
psr1bas2 21271 | The base set of the ring o... |
psr1bas 21272 | The base set of the ring o... |
vr1val 21273 | The value of the generator... |
vr1cl2 21274 | The variable ` X ` is a me... |
ply1val 21275 | The value of the set of un... |
ply1bas 21276 | The value of the base set ... |
ply1lss 21277 | Univariate polynomials for... |
ply1subrg 21278 | Univariate polynomials for... |
ply1crng 21279 | The ring of univariate pol... |
ply1assa 21280 | The ring of univariate pol... |
psr1bascl 21281 | A univariate power series ... |
psr1basf 21282 | Univariate power series ba... |
ply1basf 21283 | Univariate polynomial base... |
ply1bascl 21284 | A univariate polynomial is... |
ply1bascl2 21285 | A univariate polynomial is... |
coe1fval 21286 | Value of the univariate po... |
coe1fv 21287 | Value of an evaluated coef... |
fvcoe1 21288 | Value of a multivariate co... |
coe1fval3 21289 | Univariate power series co... |
coe1f2 21290 | Functionality of univariat... |
coe1fval2 21291 | Univariate polynomial coef... |
coe1f 21292 | Functionality of univariat... |
coe1fvalcl 21293 | A coefficient of a univari... |
coe1sfi 21294 | Finite support of univaria... |
coe1fsupp 21295 | The coefficient vector of ... |
mptcoe1fsupp 21296 | A mapping involving coeffi... |
coe1ae0 21297 | The coefficient vector of ... |
vr1cl 21298 | The generator of a univari... |
opsr0 21299 | Zero in the ordered power ... |
opsr1 21300 | One in the ordered power s... |
mplplusg 21301 | Value of addition in a pol... |
mplmulr 21302 | Value of multiplication in... |
psr1plusg 21303 | Value of addition in a uni... |
psr1vsca 21304 | Value of scalar multiplica... |
psr1mulr 21305 | Value of multiplication in... |
ply1plusg 21306 | Value of addition in a uni... |
ply1vsca 21307 | Value of scalar multiplica... |
ply1mulr 21308 | Value of multiplication in... |
ressply1bas2 21309 | The base set of a restrict... |
ressply1bas 21310 | A restricted polynomial al... |
ressply1add 21311 | A restricted polynomial al... |
ressply1mul 21312 | A restricted polynomial al... |
ressply1vsca 21313 | A restricted power series ... |
subrgply1 21314 | A subring of the base ring... |
gsumply1subr 21315 | Evaluate a group sum in a ... |
psrbaspropd 21316 | Property deduction for pow... |
psrplusgpropd 21317 | Property deduction for pow... |
mplbaspropd 21318 | Property deduction for pol... |
psropprmul 21319 | Reversing multiplication i... |
ply1opprmul 21320 | Reversing multiplication i... |
00ply1bas 21321 | Lemma for ~ ply1basfvi and... |
ply1basfvi 21322 | Protection compatibility o... |
ply1plusgfvi 21323 | Protection compatibility o... |
ply1baspropd 21324 | Property deduction for uni... |
ply1plusgpropd 21325 | Property deduction for uni... |
opsrring 21326 | Ordered power series form ... |
opsrlmod 21327 | Ordered power series form ... |
psr1ring 21328 | Univariate power series fo... |
ply1ring 21329 | Univariate polynomials for... |
psr1lmod 21330 | Univariate power series fo... |
psr1sca 21331 | Scalars of a univariate po... |
psr1sca2 21332 | Scalars of a univariate po... |
ply1lmod 21333 | Univariate polynomials for... |
ply1sca 21334 | Scalars of a univariate po... |
ply1sca2 21335 | Scalars of a univariate po... |
ply1mpl0 21336 | The univariate polynomial ... |
ply10s0 21337 | Zero times a univariate po... |
ply1mpl1 21338 | The univariate polynomial ... |
ply1ascl 21339 | The univariate polynomial ... |
subrg1ascl 21340 | The scalar injection funct... |
subrg1asclcl 21341 | The scalars in a polynomia... |
subrgvr1 21342 | The variables in a subring... |
subrgvr1cl 21343 | The variables in a polynom... |
coe1z 21344 | The coefficient vector of ... |
coe1add 21345 | The coefficient vector of ... |
coe1addfv 21346 | A particular coefficient o... |
coe1subfv 21347 | A particular coefficient o... |
coe1mul2lem1 21348 | An equivalence for ~ coe1m... |
coe1mul2lem2 21349 | An equivalence for ~ coe1m... |
coe1mul2 21350 | The coefficient vector of ... |
coe1mul 21351 | The coefficient vector of ... |
ply1moncl 21352 | Closure of the expression ... |
ply1tmcl 21353 | Closure of the expression ... |
coe1tm 21354 | Coefficient vector of a po... |
coe1tmfv1 21355 | Nonzero coefficient of a p... |
coe1tmfv2 21356 | Zero coefficient of a poly... |
coe1tmmul2 21357 | Coefficient vector of a po... |
coe1tmmul 21358 | Coefficient vector of a po... |
coe1tmmul2fv 21359 | Function value of a right-... |
coe1pwmul 21360 | Coefficient vector of a po... |
coe1pwmulfv 21361 | Function value of a right-... |
ply1scltm 21362 | A scalar is a term with ze... |
coe1sclmul 21363 | Coefficient vector of a po... |
coe1sclmulfv 21364 | A single coefficient of a ... |
coe1sclmul2 21365 | Coefficient vector of a po... |
ply1sclf 21366 | A scalar polynomial is a p... |
ply1sclcl 21367 | The value of the algebra s... |
coe1scl 21368 | Coefficient vector of a sc... |
ply1sclid 21369 | Recover the base scalar fr... |
ply1sclf1 21370 | The polynomial scalar func... |
ply1scl0 21371 | The zero scalar is zero. ... |
ply1scln0 21372 | Nonzero scalars create non... |
ply1scl1 21373 | The one scalar is the unit... |
ply1idvr1 21374 | The identity of a polynomi... |
cply1mul 21375 | The product of two constan... |
ply1coefsupp 21376 | The decomposition of a uni... |
ply1coe 21377 | Decompose a univariate pol... |
eqcoe1ply1eq 21378 | Two polynomials over the s... |
ply1coe1eq 21379 | Two polynomials over the s... |
cply1coe0 21380 | All but the first coeffici... |
cply1coe0bi 21381 | A polynomial is constant (... |
coe1fzgsumdlem 21382 | Lemma for ~ coe1fzgsumd (i... |
coe1fzgsumd 21383 | Value of an evaluated coef... |
gsumsmonply1 21384 | A finite group sum of scal... |
gsummoncoe1 21385 | A coefficient of the polyn... |
gsumply1eq 21386 | Two univariate polynomials... |
lply1binom 21387 | The binomial theorem for l... |
lply1binomsc 21388 | The binomial theorem for l... |
reldmevls1 21393 | Well-behaved binary operat... |
ply1frcl 21394 | Reverse closure for the se... |
evls1fval 21395 | Value of the univariate po... |
evls1val 21396 | Value of the univariate po... |
evls1rhmlem 21397 | Lemma for ~ evl1rhm and ~ ... |
evls1rhm 21398 | Polynomial evaluation is a... |
evls1sca 21399 | Univariate polynomial eval... |
evls1gsumadd 21400 | Univariate polynomial eval... |
evls1gsummul 21401 | Univariate polynomial eval... |
evls1pw 21402 | Univariate polynomial eval... |
evls1varpw 21403 | Univariate polynomial eval... |
evl1fval 21404 | Value of the simple/same r... |
evl1val 21405 | Value of the simple/same r... |
evl1fval1lem 21406 | Lemma for ~ evl1fval1 . (... |
evl1fval1 21407 | Value of the simple/same r... |
evl1rhm 21408 | Polynomial evaluation is a... |
fveval1fvcl 21409 | The function value of the ... |
evl1sca 21410 | Polynomial evaluation maps... |
evl1scad 21411 | Polynomial evaluation buil... |
evl1var 21412 | Polynomial evaluation maps... |
evl1vard 21413 | Polynomial evaluation buil... |
evls1var 21414 | Univariate polynomial eval... |
evls1scasrng 21415 | The evaluation of a scalar... |
evls1varsrng 21416 | The evaluation of the vari... |
evl1addd 21417 | Polynomial evaluation buil... |
evl1subd 21418 | Polynomial evaluation buil... |
evl1muld 21419 | Polynomial evaluation buil... |
evl1vsd 21420 | Polynomial evaluation buil... |
evl1expd 21421 | Polynomial evaluation buil... |
pf1const 21422 | Constants are polynomial f... |
pf1id 21423 | The identity is a polynomi... |
pf1subrg 21424 | Polynomial functions are a... |
pf1rcl 21425 | Reverse closure for the se... |
pf1f 21426 | Polynomial functions are f... |
mpfpf1 21427 | Convert a multivariate pol... |
pf1mpf 21428 | Convert a univariate polyn... |
pf1addcl 21429 | The sum of multivariate po... |
pf1mulcl 21430 | The product of multivariat... |
pf1ind 21431 | Prove a property of polyno... |
evl1gsumdlem 21432 | Lemma for ~ evl1gsumd (ind... |
evl1gsumd 21433 | Polynomial evaluation buil... |
evl1gsumadd 21434 | Univariate polynomial eval... |
evl1gsumaddval 21435 | Value of a univariate poly... |
evl1gsummul 21436 | Univariate polynomial eval... |
evl1varpw 21437 | Univariate polynomial eval... |
evl1varpwval 21438 | Value of a univariate poly... |
evl1scvarpw 21439 | Univariate polynomial eval... |
evl1scvarpwval 21440 | Value of a univariate poly... |
evl1gsummon 21441 | Value of a univariate poly... |
mamufval 21444 | Functional value of the ma... |
mamuval 21445 | Multiplication of two matr... |
mamufv 21446 | A cell in the multiplicati... |
mamudm 21447 | The domain of the matrix m... |
mamufacex 21448 | Every solution of the equa... |
mamures 21449 | Rows in a matrix product a... |
mndvcl 21450 | Tuple-wise additive closur... |
mndvass 21451 | Tuple-wise associativity i... |
mndvlid 21452 | Tuple-wise left identity i... |
mndvrid 21453 | Tuple-wise right identity ... |
grpvlinv 21454 | Tuple-wise left inverse in... |
grpvrinv 21455 | Tuple-wise right inverse i... |
mhmvlin 21456 | Tuple extension of monoid ... |
ringvcl 21457 | Tuple-wise multiplication ... |
mamucl 21458 | Operation closure of matri... |
mamuass 21459 | Matrix multiplication is a... |
mamudi 21460 | Matrix multiplication dist... |
mamudir 21461 | Matrix multiplication dist... |
mamuvs1 21462 | Matrix multiplication dist... |
mamuvs2 21463 | Matrix multiplication dist... |
matbas0pc 21466 | There is no matrix with a ... |
matbas0 21467 | There is no matrix for a n... |
matval 21468 | Value of the matrix algebr... |
matrcl 21469 | Reverse closure for the ma... |
matbas 21470 | The matrix ring has the sa... |
matplusg 21471 | The matrix ring has the sa... |
matsca 21472 | The matrix ring has the sa... |
matvsca 21473 | The matrix ring has the sa... |
mat0 21474 | The matrix ring has the sa... |
matinvg 21475 | The matrix ring has the sa... |
mat0op 21476 | Value of a zero matrix as ... |
matsca2 21477 | The scalars of the matrix ... |
matbas2 21478 | The base set of the matrix... |
matbas2i 21479 | A matrix is a function. (... |
matbas2d 21480 | The base set of the matrix... |
eqmat 21481 | Two square matrices of the... |
matecl 21482 | Each entry (according to W... |
matecld 21483 | Each entry (according to W... |
matplusg2 21484 | Addition in the matrix rin... |
matvsca2 21485 | Scalar multiplication in t... |
matlmod 21486 | The matrix ring is a linea... |
matgrp 21487 | The matrix ring is a group... |
matvscl 21488 | Closure of the scalar mult... |
matsubg 21489 | The matrix ring has the sa... |
matplusgcell 21490 | Addition in the matrix rin... |
matsubgcell 21491 | Subtraction in the matrix ... |
matinvgcell 21492 | Additive inversion in the ... |
matvscacell 21493 | Scalar multiplication in t... |
matgsum 21494 | Finite commutative sums in... |
matmulr 21495 | Multiplication in the matr... |
mamumat1cl 21496 | The identity matrix (as op... |
mat1comp 21497 | The components of the iden... |
mamulid 21498 | The identity matrix (as op... |
mamurid 21499 | The identity matrix (as op... |
matring 21500 | Existence of the matrix ri... |
matassa 21501 | Existence of the matrix al... |
matmulcell 21502 | Multiplication in the matr... |
mpomatmul 21503 | Multiplication of two N x ... |
mat1 21504 | Value of an identity matri... |
mat1ov 21505 | Entries of an identity mat... |
mat1bas 21506 | The identity matrix is a m... |
matsc 21507 | The identity matrix multip... |
ofco2 21508 | Distribution law for the f... |
oftpos 21509 | The transposition of the v... |
mattposcl 21510 | The transpose of a square ... |
mattpostpos 21511 | The transpose of the trans... |
mattposvs 21512 | The transposition of a mat... |
mattpos1 21513 | The transposition of the i... |
tposmap 21514 | The transposition of an I ... |
mamutpos 21515 | Behavior of transposes in ... |
mattposm 21516 | Multiplying two transposed... |
matgsumcl 21517 | Closure of a group sum ove... |
madetsumid 21518 | The identity summand in th... |
matepmcl 21519 | Each entry of a matrix wit... |
matepm2cl 21520 | Each entry of a matrix wit... |
madetsmelbas 21521 | A summand of the determina... |
madetsmelbas2 21522 | A summand of the determina... |
mat0dimbas0 21523 | The empty set is the one a... |
mat0dim0 21524 | The zero of the algebra of... |
mat0dimid 21525 | The identity of the algebr... |
mat0dimscm 21526 | The scalar multiplication ... |
mat0dimcrng 21527 | The algebra of matrices wi... |
mat1dimelbas 21528 | A matrix with dimension 1 ... |
mat1dimbas 21529 | A matrix with dimension 1 ... |
mat1dim0 21530 | The zero of the algebra of... |
mat1dimid 21531 | The identity of the algebr... |
mat1dimscm 21532 | The scalar multiplication ... |
mat1dimmul 21533 | The ring multiplication in... |
mat1dimcrng 21534 | The algebra of matrices wi... |
mat1f1o 21535 | There is a 1-1 function fr... |
mat1rhmval 21536 | The value of the ring homo... |
mat1rhmelval 21537 | The value of the ring homo... |
mat1rhmcl 21538 | The value of the ring homo... |
mat1f 21539 | There is a function from a... |
mat1ghm 21540 | There is a group homomorph... |
mat1mhm 21541 | There is a monoid homomorp... |
mat1rhm 21542 | There is a ring homomorphi... |
mat1rngiso 21543 | There is a ring isomorphis... |
mat1ric 21544 | A ring is isomorphic to th... |
dmatval 21549 | The set of ` N ` x ` N ` d... |
dmatel 21550 | A ` N ` x ` N ` diagonal m... |
dmatmat 21551 | An ` N ` x ` N ` diagonal ... |
dmatid 21552 | The identity matrix is a d... |
dmatelnd 21553 | An extradiagonal entry of ... |
dmatmul 21554 | The product of two diagona... |
dmatsubcl 21555 | The difference of two diag... |
dmatsgrp 21556 | The set of diagonal matric... |
dmatmulcl 21557 | The product of two diagona... |
dmatsrng 21558 | The set of diagonal matric... |
dmatcrng 21559 | The subring of diagonal ma... |
dmatscmcl 21560 | The multiplication of a di... |
scmatval 21561 | The set of ` N ` x ` N ` s... |
scmatel 21562 | An ` N ` x ` N ` scalar ma... |
scmatscmid 21563 | A scalar matrix can be exp... |
scmatscmide 21564 | An entry of a scalar matri... |
scmatscmiddistr 21565 | Distributive law for scala... |
scmatmat 21566 | An ` N ` x ` N ` scalar ma... |
scmate 21567 | An entry of an ` N ` x ` N... |
scmatmats 21568 | The set of an ` N ` x ` N ... |
scmateALT 21569 | Alternate proof of ~ scmat... |
scmatscm 21570 | The multiplication of a ma... |
scmatid 21571 | The identity matrix is a s... |
scmatdmat 21572 | A scalar matrix is a diago... |
scmataddcl 21573 | The sum of two scalar matr... |
scmatsubcl 21574 | The difference of two scal... |
scmatmulcl 21575 | The product of two scalar ... |
scmatsgrp 21576 | The set of scalar matrices... |
scmatsrng 21577 | The set of scalar matrices... |
scmatcrng 21578 | The subring of scalar matr... |
scmatsgrp1 21579 | The set of scalar matrices... |
scmatsrng1 21580 | The set of scalar matrices... |
smatvscl 21581 | Closure of the scalar mult... |
scmatlss 21582 | The set of scalar matrices... |
scmatstrbas 21583 | The set of scalar matrices... |
scmatrhmval 21584 | The value of the ring homo... |
scmatrhmcl 21585 | The value of the ring homo... |
scmatf 21586 | There is a function from a... |
scmatfo 21587 | There is a function from a... |
scmatf1 21588 | There is a 1-1 function fr... |
scmatf1o 21589 | There is a bijection betwe... |
scmatghm 21590 | There is a group homomorph... |
scmatmhm 21591 | There is a monoid homomorp... |
scmatrhm 21592 | There is a ring homomorphi... |
scmatrngiso 21593 | There is a ring isomorphis... |
scmatric 21594 | A ring is isomorphic to ev... |
mat0scmat 21595 | The empty matrix over a ri... |
mat1scmat 21596 | A 1-dimensional matrix ove... |
mvmulfval 21599 | Functional value of the ma... |
mvmulval 21600 | Multiplication of a vector... |
mvmulfv 21601 | A cell/element in the vect... |
mavmulval 21602 | Multiplication of a vector... |
mavmulfv 21603 | A cell/element in the vect... |
mavmulcl 21604 | Multiplication of an NxN m... |
1mavmul 21605 | Multiplication of the iden... |
mavmulass 21606 | Associativity of the multi... |
mavmuldm 21607 | The domain of the matrix v... |
mavmulsolcl 21608 | Every solution of the equa... |
mavmul0 21609 | Multiplication of a 0-dime... |
mavmul0g 21610 | The result of the 0-dimens... |
mvmumamul1 21611 | The multiplication of an M... |
mavmumamul1 21612 | The multiplication of an N... |
marrepfval 21617 | First substitution for the... |
marrepval0 21618 | Second substitution for th... |
marrepval 21619 | Third substitution for the... |
marrepeval 21620 | An entry of a matrix with ... |
marrepcl 21621 | Closure of the row replace... |
marepvfval 21622 | First substitution for the... |
marepvval0 21623 | Second substitution for th... |
marepvval 21624 | Third substitution for the... |
marepveval 21625 | An entry of a matrix with ... |
marepvcl 21626 | Closure of the column repl... |
ma1repvcl 21627 | Closure of the column repl... |
ma1repveval 21628 | An entry of an identity ma... |
mulmarep1el 21629 | Element by element multipl... |
mulmarep1gsum1 21630 | The sum of element by elem... |
mulmarep1gsum2 21631 | The sum of element by elem... |
1marepvmarrepid 21632 | Replacing the ith row by 0... |
submabas 21635 | Any subset of the index se... |
submafval 21636 | First substitution for a s... |
submaval0 21637 | Second substitution for a ... |
submaval 21638 | Third substitution for a s... |
submaeval 21639 | An entry of a submatrix of... |
1marepvsma1 21640 | The submatrix of the ident... |
mdetfval 21643 | First substitution for the... |
mdetleib 21644 | Full substitution of our d... |
mdetleib2 21645 | Leibniz' formula can also ... |
nfimdetndef 21646 | The determinant is not def... |
mdetfval1 21647 | First substitution of an a... |
mdetleib1 21648 | Full substitution of an al... |
mdet0pr 21649 | The determinant function f... |
mdet0f1o 21650 | The determinant function f... |
mdet0fv0 21651 | The determinant of the emp... |
mdetf 21652 | Functionality of the deter... |
mdetcl 21653 | The determinant evaluates ... |
m1detdiag 21654 | The determinant of a 1-dim... |
mdetdiaglem 21655 | Lemma for ~ mdetdiag . Pr... |
mdetdiag 21656 | The determinant of a diago... |
mdetdiagid 21657 | The determinant of a diago... |
mdet1 21658 | The determinant of the ide... |
mdetrlin 21659 | The determinant function i... |
mdetrsca 21660 | The determinant function i... |
mdetrsca2 21661 | The determinant function i... |
mdetr0 21662 | The determinant of a matri... |
mdet0 21663 | The determinant of the zer... |
mdetrlin2 21664 | The determinant function i... |
mdetralt 21665 | The determinant function i... |
mdetralt2 21666 | The determinant function i... |
mdetero 21667 | The determinant function i... |
mdettpos 21668 | Determinant is invariant u... |
mdetunilem1 21669 | Lemma for ~ mdetuni . (Co... |
mdetunilem2 21670 | Lemma for ~ mdetuni . (Co... |
mdetunilem3 21671 | Lemma for ~ mdetuni . (Co... |
mdetunilem4 21672 | Lemma for ~ mdetuni . (Co... |
mdetunilem5 21673 | Lemma for ~ mdetuni . (Co... |
mdetunilem6 21674 | Lemma for ~ mdetuni . (Co... |
mdetunilem7 21675 | Lemma for ~ mdetuni . (Co... |
mdetunilem8 21676 | Lemma for ~ mdetuni . (Co... |
mdetunilem9 21677 | Lemma for ~ mdetuni . (Co... |
mdetuni0 21678 | Lemma for ~ mdetuni . (Co... |
mdetuni 21679 | According to the definitio... |
mdetmul 21680 | Multiplicativity of the de... |
m2detleiblem1 21681 | Lemma 1 for ~ m2detleib . ... |
m2detleiblem5 21682 | Lemma 5 for ~ m2detleib . ... |
m2detleiblem6 21683 | Lemma 6 for ~ m2detleib . ... |
m2detleiblem7 21684 | Lemma 7 for ~ m2detleib . ... |
m2detleiblem2 21685 | Lemma 2 for ~ m2detleib . ... |
m2detleiblem3 21686 | Lemma 3 for ~ m2detleib . ... |
m2detleiblem4 21687 | Lemma 4 for ~ m2detleib . ... |
m2detleib 21688 | Leibniz' Formula for 2x2-m... |
mndifsplit 21693 | Lemma for ~ maducoeval2 . ... |
madufval 21694 | First substitution for the... |
maduval 21695 | Second substitution for th... |
maducoeval 21696 | An entry of the adjunct (c... |
maducoeval2 21697 | An entry of the adjunct (c... |
maduf 21698 | Creating the adjunct of ma... |
madutpos 21699 | The adjuct of a transposed... |
madugsum 21700 | The determinant of a matri... |
madurid 21701 | Multiplying a matrix with ... |
madulid 21702 | Multiplying the adjunct of... |
minmar1fval 21703 | First substitution for the... |
minmar1val0 21704 | Second substitution for th... |
minmar1val 21705 | Third substitution for the... |
minmar1eval 21706 | An entry of a matrix for a... |
minmar1marrep 21707 | The minor matrix is a spec... |
minmar1cl 21708 | Closure of the row replace... |
maducoevalmin1 21709 | The coefficients of an adj... |
symgmatr01lem 21710 | Lemma for ~ symgmatr01 . ... |
symgmatr01 21711 | Applying a permutation tha... |
gsummatr01lem1 21712 | Lemma A for ~ gsummatr01 .... |
gsummatr01lem2 21713 | Lemma B for ~ gsummatr01 .... |
gsummatr01lem3 21714 | Lemma 1 for ~ gsummatr01 .... |
gsummatr01lem4 21715 | Lemma 2 for ~ gsummatr01 .... |
gsummatr01 21716 | Lemma 1 for ~ smadiadetlem... |
marep01ma 21717 | Replacing a row of a squar... |
smadiadetlem0 21718 | Lemma 0 for ~ smadiadet : ... |
smadiadetlem1 21719 | Lemma 1 for ~ smadiadet : ... |
smadiadetlem1a 21720 | Lemma 1a for ~ smadiadet :... |
smadiadetlem2 21721 | Lemma 2 for ~ smadiadet : ... |
smadiadetlem3lem0 21722 | Lemma 0 for ~ smadiadetlem... |
smadiadetlem3lem1 21723 | Lemma 1 for ~ smadiadetlem... |
smadiadetlem3lem2 21724 | Lemma 2 for ~ smadiadetlem... |
smadiadetlem3 21725 | Lemma 3 for ~ smadiadet . ... |
smadiadetlem4 21726 | Lemma 4 for ~ smadiadet . ... |
smadiadet 21727 | The determinant of a subma... |
smadiadetglem1 21728 | Lemma 1 for ~ smadiadetg .... |
smadiadetglem2 21729 | Lemma 2 for ~ smadiadetg .... |
smadiadetg 21730 | The determinant of a squar... |
smadiadetg0 21731 | Lemma for ~ smadiadetr : v... |
smadiadetr 21732 | The determinant of a squar... |
invrvald 21733 | If a matrix multiplied wit... |
matinv 21734 | The inverse of a matrix is... |
matunit 21735 | A matrix is a unit in the ... |
slesolvec 21736 | Every solution of a system... |
slesolinv 21737 | The solution of a system o... |
slesolinvbi 21738 | The solution of a system o... |
slesolex 21739 | Every system of linear equ... |
cramerimplem1 21740 | Lemma 1 for ~ cramerimp : ... |
cramerimplem2 21741 | Lemma 2 for ~ cramerimp : ... |
cramerimplem3 21742 | Lemma 3 for ~ cramerimp : ... |
cramerimp 21743 | One direction of Cramer's ... |
cramerlem1 21744 | Lemma 1 for ~ cramer . (C... |
cramerlem2 21745 | Lemma 2 for ~ cramer . (C... |
cramerlem3 21746 | Lemma 3 for ~ cramer . (C... |
cramer0 21747 | Special case of Cramer's r... |
cramer 21748 | Cramer's rule. According ... |
pmatring 21749 | The set of polynomial matr... |
pmatlmod 21750 | The set of polynomial matr... |
pmatassa 21751 | The set of polynomial matr... |
pmat0op 21752 | The zero polynomial matrix... |
pmat1op 21753 | The identity polynomial ma... |
pmat1ovd 21754 | Entries of the identity po... |
pmat0opsc 21755 | The zero polynomial matrix... |
pmat1opsc 21756 | The identity polynomial ma... |
pmat1ovscd 21757 | Entries of the identity po... |
pmatcoe1fsupp 21758 | For a polynomial matrix th... |
1pmatscmul 21759 | The scalar product of the ... |
cpmat 21766 | Value of the constructor o... |
cpmatpmat 21767 | A constant polynomial matr... |
cpmatel 21768 | Property of a constant pol... |
cpmatelimp 21769 | Implication of a set being... |
cpmatel2 21770 | Another property of a cons... |
cpmatelimp2 21771 | Another implication of a s... |
1elcpmat 21772 | The identity of the ring o... |
cpmatacl 21773 | The set of all constant po... |
cpmatinvcl 21774 | The set of all constant po... |
cpmatmcllem 21775 | Lemma for ~ cpmatmcl . (C... |
cpmatmcl 21776 | The set of all constant po... |
cpmatsubgpmat 21777 | The set of all constant po... |
cpmatsrgpmat 21778 | The set of all constant po... |
0elcpmat 21779 | The zero of the ring of al... |
mat2pmatfval 21780 | Value of the matrix transf... |
mat2pmatval 21781 | The result of a matrix tra... |
mat2pmatvalel 21782 | A (matrix) element of the ... |
mat2pmatbas 21783 | The result of a matrix tra... |
mat2pmatbas0 21784 | The result of a matrix tra... |
mat2pmatf 21785 | The matrix transformation ... |
mat2pmatf1 21786 | The matrix transformation ... |
mat2pmatghm 21787 | The transformation of matr... |
mat2pmatmul 21788 | The transformation of matr... |
mat2pmat1 21789 | The transformation of the ... |
mat2pmatmhm 21790 | The transformation of matr... |
mat2pmatrhm 21791 | The transformation of matr... |
mat2pmatlin 21792 | The transformation of matr... |
0mat2pmat 21793 | The transformed zero matri... |
idmatidpmat 21794 | The transformed identity m... |
d0mat2pmat 21795 | The transformed empty set ... |
d1mat2pmat 21796 | The transformation of a ma... |
mat2pmatscmxcl 21797 | A transformed matrix multi... |
m2cpm 21798 | The result of a matrix tra... |
m2cpmf 21799 | The matrix transformation ... |
m2cpmf1 21800 | The matrix transformation ... |
m2cpmghm 21801 | The transformation of matr... |
m2cpmmhm 21802 | The transformation of matr... |
m2cpmrhm 21803 | The transformation of matr... |
m2pmfzmap 21804 | The transformed values of ... |
m2pmfzgsumcl 21805 | Closure of the sum of scal... |
cpm2mfval 21806 | Value of the inverse matri... |
cpm2mval 21807 | The result of an inverse m... |
cpm2mvalel 21808 | A (matrix) element of the ... |
cpm2mf 21809 | The inverse matrix transfo... |
m2cpminvid 21810 | The inverse transformation... |
m2cpminvid2lem 21811 | Lemma for ~ m2cpminvid2 . ... |
m2cpminvid2 21812 | The transformation applied... |
m2cpmfo 21813 | The matrix transformation ... |
m2cpmf1o 21814 | The matrix transformation ... |
m2cpmrngiso 21815 | The transformation of matr... |
matcpmric 21816 | The ring of matrices over ... |
m2cpminv 21817 | The inverse matrix transfo... |
m2cpminv0 21818 | The inverse matrix transfo... |
decpmatval0 21821 | The matrix consisting of t... |
decpmatval 21822 | The matrix consisting of t... |
decpmate 21823 | An entry of the matrix con... |
decpmatcl 21824 | Closure of the decompositi... |
decpmataa0 21825 | The matrix consisting of t... |
decpmatfsupp 21826 | The mapping to the matrice... |
decpmatid 21827 | The matrix consisting of t... |
decpmatmullem 21828 | Lemma for ~ decpmatmul . ... |
decpmatmul 21829 | The matrix consisting of t... |
decpmatmulsumfsupp 21830 | Lemma 0 for ~ pm2mpmhm . ... |
pmatcollpw1lem1 21831 | Lemma 1 for ~ pmatcollpw1 ... |
pmatcollpw1lem2 21832 | Lemma 2 for ~ pmatcollpw1 ... |
pmatcollpw1 21833 | Write a polynomial matrix ... |
pmatcollpw2lem 21834 | Lemma for ~ pmatcollpw2 . ... |
pmatcollpw2 21835 | Write a polynomial matrix ... |
monmatcollpw 21836 | The matrix consisting of t... |
pmatcollpwlem 21837 | Lemma for ~ pmatcollpw . ... |
pmatcollpw 21838 | Write a polynomial matrix ... |
pmatcollpwfi 21839 | Write a polynomial matrix ... |
pmatcollpw3lem 21840 | Lemma for ~ pmatcollpw3 an... |
pmatcollpw3 21841 | Write a polynomial matrix ... |
pmatcollpw3fi 21842 | Write a polynomial matrix ... |
pmatcollpw3fi1lem1 21843 | Lemma 1 for ~ pmatcollpw3f... |
pmatcollpw3fi1lem2 21844 | Lemma 2 for ~ pmatcollpw3f... |
pmatcollpw3fi1 21845 | Write a polynomial matrix ... |
pmatcollpwscmatlem1 21846 | Lemma 1 for ~ pmatcollpwsc... |
pmatcollpwscmatlem2 21847 | Lemma 2 for ~ pmatcollpwsc... |
pmatcollpwscmat 21848 | Write a scalar matrix over... |
pm2mpf1lem 21851 | Lemma for ~ pm2mpf1 . (Co... |
pm2mpval 21852 | Value of the transformatio... |
pm2mpfval 21853 | A polynomial matrix transf... |
pm2mpcl 21854 | The transformation of poly... |
pm2mpf 21855 | The transformation of poly... |
pm2mpf1 21856 | The transformation of poly... |
pm2mpcoe1 21857 | A coefficient of the polyn... |
idpm2idmp 21858 | The transformation of the ... |
mptcoe1matfsupp 21859 | The mapping extracting the... |
mply1topmatcllem 21860 | Lemma for ~ mply1topmatcl ... |
mply1topmatval 21861 | A polynomial over matrices... |
mply1topmatcl 21862 | A polynomial over matrices... |
mp2pm2mplem1 21863 | Lemma 1 for ~ mp2pm2mp . ... |
mp2pm2mplem2 21864 | Lemma 2 for ~ mp2pm2mp . ... |
mp2pm2mplem3 21865 | Lemma 3 for ~ mp2pm2mp . ... |
mp2pm2mplem4 21866 | Lemma 4 for ~ mp2pm2mp . ... |
mp2pm2mplem5 21867 | Lemma 5 for ~ mp2pm2mp . ... |
mp2pm2mp 21868 | A polynomial over matrices... |
pm2mpghmlem2 21869 | Lemma 2 for ~ pm2mpghm . ... |
pm2mpghmlem1 21870 | Lemma 1 for pm2mpghm . (C... |
pm2mpfo 21871 | The transformation of poly... |
pm2mpf1o 21872 | The transformation of poly... |
pm2mpghm 21873 | The transformation of poly... |
pm2mpgrpiso 21874 | The transformation of poly... |
pm2mpmhmlem1 21875 | Lemma 1 for ~ pm2mpmhm . ... |
pm2mpmhmlem2 21876 | Lemma 2 for ~ pm2mpmhm . ... |
pm2mpmhm 21877 | The transformation of poly... |
pm2mprhm 21878 | The transformation of poly... |
pm2mprngiso 21879 | The transformation of poly... |
pmmpric 21880 | The ring of polynomial mat... |
monmat2matmon 21881 | The transformation of a po... |
pm2mp 21882 | The transformation of a su... |
chmatcl 21885 | Closure of the characteris... |
chmatval 21886 | The entries of the charact... |
chpmatfval 21887 | Value of the characteristi... |
chpmatval 21888 | The characteristic polynom... |
chpmatply1 21889 | The characteristic polynom... |
chpmatval2 21890 | The characteristic polynom... |
chpmat0d 21891 | The characteristic polynom... |
chpmat1dlem 21892 | Lemma for ~ chpmat1d . (C... |
chpmat1d 21893 | The characteristic polynom... |
chpdmatlem0 21894 | Lemma 0 for ~ chpdmat . (... |
chpdmatlem1 21895 | Lemma 1 for ~ chpdmat . (... |
chpdmatlem2 21896 | Lemma 2 for ~ chpdmat . (... |
chpdmatlem3 21897 | Lemma 3 for ~ chpdmat . (... |
chpdmat 21898 | The characteristic polynom... |
chpscmat 21899 | The characteristic polynom... |
chpscmat0 21900 | The characteristic polynom... |
chpscmatgsumbin 21901 | The characteristic polynom... |
chpscmatgsummon 21902 | The characteristic polynom... |
chp0mat 21903 | The characteristic polynom... |
chpidmat 21904 | The characteristic polynom... |
chmaidscmat 21905 | The characteristic polynom... |
fvmptnn04if 21906 | The function values of a m... |
fvmptnn04ifa 21907 | The function value of a ma... |
fvmptnn04ifb 21908 | The function value of a ma... |
fvmptnn04ifc 21909 | The function value of a ma... |
fvmptnn04ifd 21910 | The function value of a ma... |
chfacfisf 21911 | The "characteristic factor... |
chfacfisfcpmat 21912 | The "characteristic factor... |
chfacffsupp 21913 | The "characteristic factor... |
chfacfscmulcl 21914 | Closure of a scaled value ... |
chfacfscmul0 21915 | A scaled value of the "cha... |
chfacfscmulfsupp 21916 | A mapping of scaled values... |
chfacfscmulgsum 21917 | Breaking up a sum of value... |
chfacfpmmulcl 21918 | Closure of the value of th... |
chfacfpmmul0 21919 | The value of the "characte... |
chfacfpmmulfsupp 21920 | A mapping of values of the... |
chfacfpmmulgsum 21921 | Breaking up a sum of value... |
chfacfpmmulgsum2 21922 | Breaking up a sum of value... |
cayhamlem1 21923 | Lemma 1 for ~ cayleyhamilt... |
cpmadurid 21924 | The right-hand fundamental... |
cpmidgsum 21925 | Representation of the iden... |
cpmidgsumm2pm 21926 | Representation of the iden... |
cpmidpmatlem1 21927 | Lemma 1 for ~ cpmidpmat . ... |
cpmidpmatlem2 21928 | Lemma 2 for ~ cpmidpmat . ... |
cpmidpmatlem3 21929 | Lemma 3 for ~ cpmidpmat . ... |
cpmidpmat 21930 | Representation of the iden... |
cpmadugsumlemB 21931 | Lemma B for ~ cpmadugsum .... |
cpmadugsumlemC 21932 | Lemma C for ~ cpmadugsum .... |
cpmadugsumlemF 21933 | Lemma F for ~ cpmadugsum .... |
cpmadugsumfi 21934 | The product of the charact... |
cpmadugsum 21935 | The product of the charact... |
cpmidgsum2 21936 | Representation of the iden... |
cpmidg2sum 21937 | Equality of two sums repre... |
cpmadumatpolylem1 21938 | Lemma 1 for ~ cpmadumatpol... |
cpmadumatpolylem2 21939 | Lemma 2 for ~ cpmadumatpol... |
cpmadumatpoly 21940 | The product of the charact... |
cayhamlem2 21941 | Lemma for ~ cayhamlem3 . ... |
chcoeffeqlem 21942 | Lemma for ~ chcoeffeq . (... |
chcoeffeq 21943 | The coefficients of the ch... |
cayhamlem3 21944 | Lemma for ~ cayhamlem4 . ... |
cayhamlem4 21945 | Lemma for ~ cayleyhamilton... |
cayleyhamilton0 21946 | The Cayley-Hamilton theore... |
cayleyhamilton 21947 | The Cayley-Hamilton theore... |
cayleyhamiltonALT 21948 | Alternate proof of ~ cayle... |
cayleyhamilton1 21949 | The Cayley-Hamilton theore... |
istopg 21952 | Express the predicate " ` ... |
istop2g 21953 | Express the predicate " ` ... |
uniopn 21954 | The union of a subset of a... |
iunopn 21955 | The indexed union of a sub... |
inopn 21956 | The intersection of two op... |
fitop 21957 | A topology is closed under... |
fiinopn 21958 | The intersection of a none... |
iinopn 21959 | The intersection of a none... |
unopn 21960 | The union of two open sets... |
0opn 21961 | The empty set is an open s... |
0ntop 21962 | The empty set is not a top... |
topopn 21963 | The underlying set of a to... |
eltopss 21964 | A member of a topology is ... |
riinopn 21965 | A finite indexed relative ... |
rintopn 21966 | A finite relative intersec... |
istopon 21969 | Property of being a topolo... |
topontop 21970 | A topology on a given base... |
toponuni 21971 | The base set of a topology... |
topontopi 21972 | A topology on a given base... |
toponunii 21973 | The base set of a topology... |
toptopon 21974 | Alternative definition of ... |
toptopon2 21975 | A topology is the same thi... |
topontopon 21976 | A topology on a set is a t... |
funtopon 21977 | The class ` TopOn ` is a f... |
toponrestid 21978 | Given a topology on a set,... |
toponsspwpw 21979 | The set of topologies on a... |
dmtopon 21980 | The domain of ` TopOn ` is... |
fntopon 21981 | The class ` TopOn ` is a f... |
toprntopon 21982 | A topology is the same thi... |
toponmax 21983 | The base set of a topology... |
toponss 21984 | A member of a topology is ... |
toponcom 21985 | If ` K ` is a topology on ... |
toponcomb 21986 | Biconditional form of ~ to... |
topgele 21987 | The topologies over the sa... |
topsn 21988 | The only topology on a sin... |
istps 21991 | Express the predicate "is ... |
istps2 21992 | Express the predicate "is ... |
tpsuni 21993 | The base set of a topologi... |
tpstop 21994 | The topology extractor on ... |
tpspropd 21995 | A topological space depend... |
tpsprop2d 21996 | A topological space depend... |
topontopn 21997 | Express the predicate "is ... |
tsettps 21998 | If the topology component ... |
istpsi 21999 | Properties that determine ... |
eltpsg 22000 | Properties that determine ... |
eltpsgOLD 22001 | Obsolete version of ~ eltp... |
eltpsi 22002 | Properties that determine ... |
isbasisg 22005 | Express the predicate "the... |
isbasis2g 22006 | Express the predicate "the... |
isbasis3g 22007 | Express the predicate "the... |
basis1 22008 | Property of a basis. (Con... |
basis2 22009 | Property of a basis. (Con... |
fiinbas 22010 | If a set is closed under f... |
basdif0 22011 | A basis is not affected by... |
baspartn 22012 | A disjoint system of sets ... |
tgval 22013 | The topology generated by ... |
tgval2 22014 | Definition of a topology g... |
eltg 22015 | Membership in a topology g... |
eltg2 22016 | Membership in a topology g... |
eltg2b 22017 | Membership in a topology g... |
eltg4i 22018 | An open set in a topology ... |
eltg3i 22019 | The union of a set of basi... |
eltg3 22020 | Membership in a topology g... |
tgval3 22021 | Alternate expression for t... |
tg1 22022 | Property of a member of a ... |
tg2 22023 | Property of a member of a ... |
bastg 22024 | A member of a basis is a s... |
unitg 22025 | The topology generated by ... |
tgss 22026 | Subset relation for genera... |
tgcl 22027 | Show that a basis generate... |
tgclb 22028 | The property ~ tgcl can be... |
tgtopon 22029 | A basis generates a topolo... |
topbas 22030 | A topology is its own basi... |
tgtop 22031 | A topology is its own basi... |
eltop 22032 | Membership in a topology, ... |
eltop2 22033 | Membership in a topology. ... |
eltop3 22034 | Membership in a topology. ... |
fibas 22035 | A collection of finite int... |
tgdom 22036 | A space has no more open s... |
tgiun 22037 | The indexed union of a set... |
tgidm 22038 | The topology generator fun... |
bastop 22039 | Two ways to express that a... |
tgtop11 22040 | The topology generation fu... |
0top 22041 | The singleton of the empty... |
en1top 22042 | ` { (/) } ` is the only to... |
en2top 22043 | If a topology has two elem... |
tgss3 22044 | A criterion for determinin... |
tgss2 22045 | A criterion for determinin... |
basgen 22046 | Given a topology ` J ` , s... |
basgen2 22047 | Given a topology ` J ` , s... |
2basgen 22048 | Conditions that determine ... |
tgfiss 22049 | If a subbase is included i... |
tgdif0 22050 | A generated topology is no... |
bastop1 22051 | A subset of a topology is ... |
bastop2 22052 | A version of ~ bastop1 tha... |
distop 22053 | The discrete topology on a... |
topnex 22054 | The class of all topologie... |
distopon 22055 | The discrete topology on a... |
sn0topon 22056 | The singleton of the empty... |
sn0top 22057 | The singleton of the empty... |
indislem 22058 | A lemma to eliminate some ... |
indistopon 22059 | The indiscrete topology on... |
indistop 22060 | The indiscrete topology on... |
indisuni 22061 | The base set of the indisc... |
fctop 22062 | The finite complement topo... |
fctop2 22063 | The finite complement topo... |
cctop 22064 | The countable complement t... |
ppttop 22065 | The particular point topol... |
pptbas 22066 | The particular point topol... |
epttop 22067 | The excluded point topolog... |
indistpsx 22068 | The indiscrete topology on... |
indistps 22069 | The indiscrete topology on... |
indistps2 22070 | The indiscrete topology on... |
indistpsALT 22071 | The indiscrete topology on... |
indistpsALTOLD 22072 | Obsolete proof of ~ indist... |
indistps2ALT 22073 | The indiscrete topology on... |
distps 22074 | The discrete topology on a... |
fncld 22081 | The closed-set generator i... |
cldval 22082 | The set of closed sets of ... |
ntrfval 22083 | The interior function on t... |
clsfval 22084 | The closure function on th... |
cldrcl 22085 | Reverse closure of the clo... |
iscld 22086 | The predicate "the class `... |
iscld2 22087 | A subset of the underlying... |
cldss 22088 | A closed set is a subset o... |
cldss2 22089 | The set of closed sets is ... |
cldopn 22090 | The complement of a closed... |
isopn2 22091 | A subset of the underlying... |
opncld 22092 | The complement of an open ... |
difopn 22093 | The difference of a closed... |
topcld 22094 | The underlying set of a to... |
ntrval 22095 | The interior of a subset o... |
clsval 22096 | The closure of a subset of... |
0cld 22097 | The empty set is closed. ... |
iincld 22098 | The indexed intersection o... |
intcld 22099 | The intersection of a set ... |
uncld 22100 | The union of two closed se... |
cldcls 22101 | A closed subset equals its... |
incld 22102 | The intersection of two cl... |
riincld 22103 | An indexed relative inters... |
iuncld 22104 | A finite indexed union of ... |
unicld 22105 | A finite union of closed s... |
clscld 22106 | The closure of a subset of... |
clsf 22107 | The closure function is a ... |
ntropn 22108 | The interior of a subset o... |
clsval2 22109 | Express closure in terms o... |
ntrval2 22110 | Interior expressed in term... |
ntrdif 22111 | An interior of a complemen... |
clsdif 22112 | A closure of a complement ... |
clsss 22113 | Subset relationship for cl... |
ntrss 22114 | Subset relationship for in... |
sscls 22115 | A subset of a topology's u... |
ntrss2 22116 | A subset includes its inte... |
ssntr 22117 | An open subset of a set is... |
clsss3 22118 | The closure of a subset of... |
ntrss3 22119 | The interior of a subset o... |
ntrin 22120 | A pairwise intersection of... |
cmclsopn 22121 | The complement of a closur... |
cmntrcld 22122 | The complement of an inter... |
iscld3 22123 | A subset is closed iff it ... |
iscld4 22124 | A subset is closed iff it ... |
isopn3 22125 | A subset is open iff it eq... |
clsidm 22126 | The closure operation is i... |
ntridm 22127 | The interior operation is ... |
clstop 22128 | The closure of a topology'... |
ntrtop 22129 | The interior of a topology... |
0ntr 22130 | A subset with an empty int... |
clsss2 22131 | If a subset is included in... |
elcls 22132 | Membership in a closure. ... |
elcls2 22133 | Membership in a closure. ... |
clsndisj 22134 | Any open set containing a ... |
ntrcls0 22135 | A subset whose closure has... |
ntreq0 22136 | Two ways to say that a sub... |
cldmre 22137 | The closed sets of a topol... |
mrccls 22138 | Moore closure generalizes ... |
cls0 22139 | The closure of the empty s... |
ntr0 22140 | The interior of the empty ... |
isopn3i 22141 | An open subset equals its ... |
elcls3 22142 | Membership in a closure in... |
opncldf1 22143 | A bijection useful for con... |
opncldf2 22144 | The values of the open-clo... |
opncldf3 22145 | The values of the converse... |
isclo 22146 | A set ` A ` is clopen iff ... |
isclo2 22147 | A set ` A ` is clopen iff ... |
discld 22148 | The open sets of a discret... |
sn0cld 22149 | The closed sets of the top... |
indiscld 22150 | The closed sets of an indi... |
mretopd 22151 | A Moore collection which i... |
toponmre 22152 | The topologies over a give... |
cldmreon 22153 | The closed sets of a topol... |
iscldtop 22154 | A family is the closed set... |
mreclatdemoBAD 22155 | The closed subspaces of a ... |
neifval 22158 | Value of the neighborhood ... |
neif 22159 | The neighborhood function ... |
neiss2 22160 | A set with a neighborhood ... |
neival 22161 | Value of the set of neighb... |
isnei 22162 | The predicate "the class `... |
neiint 22163 | An intuitive definition of... |
isneip 22164 | The predicate "the class `... |
neii1 22165 | A neighborhood is included... |
neisspw 22166 | The neighborhoods of any s... |
neii2 22167 | Property of a neighborhood... |
neiss 22168 | Any neighborhood of a set ... |
ssnei 22169 | A set is included in any o... |
elnei 22170 | A point belongs to any of ... |
0nnei 22171 | The empty set is not a nei... |
neips 22172 | A neighborhood of a set is... |
opnneissb 22173 | An open set is a neighborh... |
opnssneib 22174 | Any superset of an open se... |
ssnei2 22175 | Any subset ` M ` of ` X ` ... |
neindisj 22176 | Any neighborhood of an ele... |
opnneiss 22177 | An open set is a neighborh... |
opnneip 22178 | An open set is a neighborh... |
opnnei 22179 | A set is open iff it is a ... |
tpnei 22180 | The underlying set of a to... |
neiuni 22181 | The union of the neighborh... |
neindisj2 22182 | A point ` P ` belongs to t... |
topssnei 22183 | A finer topology has more ... |
innei 22184 | The intersection of two ne... |
opnneiid 22185 | Only an open set is a neig... |
neissex 22186 | For any neighborhood ` N `... |
0nei 22187 | The empty set is a neighbo... |
neipeltop 22188 | Lemma for ~ neiptopreu . ... |
neiptopuni 22189 | Lemma for ~ neiptopreu . ... |
neiptoptop 22190 | Lemma for ~ neiptopreu . ... |
neiptopnei 22191 | Lemma for ~ neiptopreu . ... |
neiptopreu 22192 | If, to each element ` P ` ... |
lpfval 22197 | The limit point function o... |
lpval 22198 | The set of limit points of... |
islp 22199 | The predicate "the class `... |
lpsscls 22200 | The limit points of a subs... |
lpss 22201 | The limit points of a subs... |
lpdifsn 22202 | ` P ` is a limit point of ... |
lpss3 22203 | Subset relationship for li... |
islp2 22204 | The predicate " ` P ` is a... |
islp3 22205 | The predicate " ` P ` is a... |
maxlp 22206 | A point is a limit point o... |
clslp 22207 | The closure of a subset of... |
islpi 22208 | A point belonging to a set... |
cldlp 22209 | A subset of a topological ... |
isperf 22210 | Definition of a perfect sp... |
isperf2 22211 | Definition of a perfect sp... |
isperf3 22212 | A perfect space is a topol... |
perflp 22213 | The limit points of a perf... |
perfi 22214 | Property of a perfect spac... |
perftop 22215 | A perfect space is a topol... |
restrcl 22216 | Reverse closure for the su... |
restbas 22217 | A subspace topology basis ... |
tgrest 22218 | A subspace can be generate... |
resttop 22219 | A subspace topology is a t... |
resttopon 22220 | A subspace topology is a t... |
restuni 22221 | The underlying set of a su... |
stoig 22222 | The topological space buil... |
restco 22223 | Composition of subspaces. ... |
restabs 22224 | Equivalence of being a sub... |
restin 22225 | When the subspace region i... |
restuni2 22226 | The underlying set of a su... |
resttopon2 22227 | The underlying set of a su... |
rest0 22228 | The subspace topology indu... |
restsn 22229 | The only subspace topology... |
restsn2 22230 | The subspace topology indu... |
restcld 22231 | A closed set of a subspace... |
restcldi 22232 | A closed set is closed in ... |
restcldr 22233 | A set which is closed in t... |
restopnb 22234 | If ` B ` is an open subset... |
ssrest 22235 | If ` K ` is a finer topolo... |
restopn2 22236 | If ` A ` is open, then ` B... |
restdis 22237 | A subspace of a discrete t... |
restfpw 22238 | The restriction of the set... |
neitr 22239 | The neighborhood of a trac... |
restcls 22240 | A closure in a subspace to... |
restntr 22241 | An interior in a subspace ... |
restlp 22242 | The limit points of a subs... |
restperf 22243 | Perfection of a subspace. ... |
perfopn 22244 | An open subset of a perfec... |
resstopn 22245 | The topology of a restrict... |
resstps 22246 | A restricted topological s... |
ordtbaslem 22247 | Lemma for ~ ordtbas . In ... |
ordtval 22248 | Value of the order topolog... |
ordtuni 22249 | Value of the order topolog... |
ordtbas2 22250 | Lemma for ~ ordtbas . (Co... |
ordtbas 22251 | In a total order, the fini... |
ordttopon 22252 | Value of the order topolog... |
ordtopn1 22253 | An upward ray ` ( P , +oo ... |
ordtopn2 22254 | A downward ray ` ( -oo , P... |
ordtopn3 22255 | An open interval ` ( A , B... |
ordtcld1 22256 | A downward ray ` ( -oo , P... |
ordtcld2 22257 | An upward ray ` [ P , +oo ... |
ordtcld3 22258 | A closed interval ` [ A , ... |
ordttop 22259 | The order topology is a to... |
ordtcnv 22260 | The order dual generates t... |
ordtrest 22261 | The subspace topology of a... |
ordtrest2lem 22262 | Lemma for ~ ordtrest2 . (... |
ordtrest2 22263 | An interval-closed set ` A... |
letopon 22264 | The topology of the extend... |
letop 22265 | The topology of the extend... |
letopuni 22266 | The topology of the extend... |
xrstopn 22267 | The topology component of ... |
xrstps 22268 | The extended real number s... |
leordtvallem1 22269 | Lemma for ~ leordtval . (... |
leordtvallem2 22270 | Lemma for ~ leordtval . (... |
leordtval2 22271 | The topology of the extend... |
leordtval 22272 | The topology of the extend... |
iccordt 22273 | A closed interval is close... |
iocpnfordt 22274 | An unbounded above open in... |
icomnfordt 22275 | An unbounded above open in... |
iooordt 22276 | An open interval is open i... |
reordt 22277 | The real numbers are an op... |
lecldbas 22278 | The set of closed interval... |
pnfnei 22279 | A neighborhood of ` +oo ` ... |
mnfnei 22280 | A neighborhood of ` -oo ` ... |
ordtrestixx 22281 | The restriction of the les... |
ordtresticc 22282 | The restriction of the les... |
lmrel 22289 | The topological space conv... |
lmrcl 22290 | Reverse closure for the co... |
lmfval 22291 | The relation "sequence ` f... |
cnfval 22292 | The set of all continuous ... |
cnpfval 22293 | The function mapping the p... |
iscn 22294 | The predicate "the class `... |
cnpval 22295 | The set of all functions f... |
iscnp 22296 | The predicate "the class `... |
iscn2 22297 | The predicate "the class `... |
iscnp2 22298 | The predicate "the class `... |
cntop1 22299 | Reverse closure for a cont... |
cntop2 22300 | Reverse closure for a cont... |
cnptop1 22301 | Reverse closure for a func... |
cnptop2 22302 | Reverse closure for a func... |
iscnp3 22303 | The predicate "the class `... |
cnprcl 22304 | Reverse closure for a func... |
cnf 22305 | A continuous function is a... |
cnpf 22306 | A continuous function at p... |
cnpcl 22307 | The value of a continuous ... |
cnf2 22308 | A continuous function is a... |
cnpf2 22309 | A continuous function at p... |
cnprcl2 22310 | Reverse closure for a func... |
tgcn 22311 | The continuity predicate w... |
tgcnp 22312 | The "continuous at a point... |
subbascn 22313 | The continuity predicate w... |
ssidcn 22314 | The identity function is a... |
cnpimaex 22315 | Property of a function con... |
idcn 22316 | A restricted identity func... |
lmbr 22317 | Express the binary relatio... |
lmbr2 22318 | Express the binary relatio... |
lmbrf 22319 | Express the binary relatio... |
lmconst 22320 | A constant sequence conver... |
lmcvg 22321 | Convergence property of a ... |
iscnp4 22322 | The predicate "the class `... |
cnpnei 22323 | A condition for continuity... |
cnima 22324 | An open subset of the codo... |
cnco 22325 | The composition of two con... |
cnpco 22326 | The composition of a funct... |
cnclima 22327 | A closed subset of the cod... |
iscncl 22328 | A characterization of a co... |
cncls2i 22329 | Property of the preimage o... |
cnntri 22330 | Property of the preimage o... |
cnclsi 22331 | Property of the image of a... |
cncls2 22332 | Continuity in terms of clo... |
cncls 22333 | Continuity in terms of clo... |
cnntr 22334 | Continuity in terms of int... |
cnss1 22335 | If the topology ` K ` is f... |
cnss2 22336 | If the topology ` K ` is f... |
cncnpi 22337 | A continuous function is c... |
cnsscnp 22338 | The set of continuous func... |
cncnp 22339 | A continuous function is c... |
cncnp2 22340 | A continuous function is c... |
cnnei 22341 | Continuity in terms of nei... |
cnconst2 22342 | A constant function is con... |
cnconst 22343 | A constant function is con... |
cnrest 22344 | Continuity of a restrictio... |
cnrest2 22345 | Equivalence of continuity ... |
cnrest2r 22346 | Equivalence of continuity ... |
cnpresti 22347 | One direction of ~ cnprest... |
cnprest 22348 | Equivalence of continuity ... |
cnprest2 22349 | Equivalence of point-conti... |
cndis 22350 | Every function is continuo... |
cnindis 22351 | Every function is continuo... |
cnpdis 22352 | If ` A ` is an isolated po... |
paste 22353 | Pasting lemma. If ` A ` a... |
lmfpm 22354 | If ` F ` converges, then `... |
lmfss 22355 | Inclusion of a function ha... |
lmcl 22356 | Closure of a limit. (Cont... |
lmss 22357 | Limit on a subspace. (Con... |
sslm 22358 | A finer topology has fewer... |
lmres 22359 | A function converges iff i... |
lmff 22360 | If ` F ` converges, there ... |
lmcls 22361 | Any convergent sequence of... |
lmcld 22362 | Any convergent sequence of... |
lmcnp 22363 | The image of a convergent ... |
lmcn 22364 | The image of a convergent ... |
ist0 22379 | The predicate "is a T_0 sp... |
ist1 22380 | The predicate "is a T_1 sp... |
ishaus 22381 | The predicate "is a Hausdo... |
iscnrm 22382 | The property of being comp... |
t0sep 22383 | Any two topologically indi... |
t0dist 22384 | Any two distinct points in... |
t1sncld 22385 | In a T_1 space, singletons... |
t1ficld 22386 | In a T_1 space, finite set... |
hausnei 22387 | Neighborhood property of a... |
t0top 22388 | A T_0 space is a topologic... |
t1top 22389 | A T_1 space is a topologic... |
haustop 22390 | A Hausdorff space is a top... |
isreg 22391 | The predicate "is a regula... |
regtop 22392 | A regular space is a topol... |
regsep 22393 | In a regular space, every ... |
isnrm 22394 | The predicate "is a normal... |
nrmtop 22395 | A normal space is a topolo... |
cnrmtop 22396 | A completely normal space ... |
iscnrm2 22397 | The property of being comp... |
ispnrm 22398 | The property of being perf... |
pnrmnrm 22399 | A perfectly normal space i... |
pnrmtop 22400 | A perfectly normal space i... |
pnrmcld 22401 | A closed set in a perfectl... |
pnrmopn 22402 | An open set in a perfectly... |
ist0-2 22403 | The predicate "is a T_0 sp... |
ist0-3 22404 | The predicate "is a T_0 sp... |
cnt0 22405 | The preimage of a T_0 topo... |
ist1-2 22406 | An alternate characterizat... |
t1t0 22407 | A T_1 space is a T_0 space... |
ist1-3 22408 | A space is T_1 iff every p... |
cnt1 22409 | The preimage of a T_1 topo... |
ishaus2 22410 | Express the predicate " ` ... |
haust1 22411 | A Hausdorff space is a T_1... |
hausnei2 22412 | The Hausdorff condition st... |
cnhaus 22413 | The preimage of a Hausdorf... |
nrmsep3 22414 | In a normal space, given a... |
nrmsep2 22415 | In a normal space, any two... |
nrmsep 22416 | In a normal space, disjoin... |
isnrm2 22417 | An alternate characterizat... |
isnrm3 22418 | A topological space is nor... |
cnrmi 22419 | A subspace of a completely... |
cnrmnrm 22420 | A completely normal space ... |
restcnrm 22421 | A subspace of a completely... |
resthauslem 22422 | Lemma for ~ resthaus and s... |
lpcls 22423 | The limit points of the cl... |
perfcls 22424 | A subset of a perfect spac... |
restt0 22425 | A subspace of a T_0 topolo... |
restt1 22426 | A subspace of a T_1 topolo... |
resthaus 22427 | A subspace of a Hausdorff ... |
t1sep2 22428 | Any two points in a T_1 sp... |
t1sep 22429 | Any two distinct points in... |
sncld 22430 | A singleton is closed in a... |
sshauslem 22431 | Lemma for ~ sshaus and sim... |
sst0 22432 | A topology finer than a T_... |
sst1 22433 | A topology finer than a T_... |
sshaus 22434 | A topology finer than a Ha... |
regsep2 22435 | In a regular space, a clos... |
isreg2 22436 | A topological space is reg... |
dnsconst 22437 | If a continuous mapping to... |
ordtt1 22438 | The order topology is T_1 ... |
lmmo 22439 | A sequence in a Hausdorff ... |
lmfun 22440 | The convergence relation i... |
dishaus 22441 | A discrete topology is Hau... |
ordthauslem 22442 | Lemma for ~ ordthaus . (C... |
ordthaus 22443 | The order topology of a to... |
xrhaus 22444 | The topology of the extend... |
iscmp 22447 | The predicate "is a compac... |
cmpcov 22448 | An open cover of a compact... |
cmpcov2 22449 | Rewrite ~ cmpcov for the c... |
cmpcovf 22450 | Combine ~ cmpcov with ~ ac... |
cncmp 22451 | Compactness is respected b... |
fincmp 22452 | A finite topology is compa... |
0cmp 22453 | The singleton of the empty... |
cmptop 22454 | A compact topology is a to... |
rncmp 22455 | The image of a compact set... |
imacmp 22456 | The image of a compact set... |
discmp 22457 | A discrete topology is com... |
cmpsublem 22458 | Lemma for ~ cmpsub . (Con... |
cmpsub 22459 | Two equivalent ways of des... |
tgcmp 22460 | A topology generated by a ... |
cmpcld 22461 | A closed subset of a compa... |
uncmp 22462 | The union of two compact s... |
fiuncmp 22463 | A finite union of compact ... |
sscmp 22464 | A subset of a compact topo... |
hauscmplem 22465 | Lemma for ~ hauscmp . (Co... |
hauscmp 22466 | A compact subspace of a T2... |
cmpfi 22467 | If a topology is compact a... |
cmpfii 22468 | In a compact topology, a s... |
bwth 22469 | The glorious Bolzano-Weier... |
isconn 22472 | The predicate ` J ` is a c... |
isconn2 22473 | The predicate ` J ` is a c... |
connclo 22474 | The only nonempty clopen s... |
conndisj 22475 | If a topology is connected... |
conntop 22476 | A connected topology is a ... |
indisconn 22477 | The indiscrete topology (o... |
dfconn2 22478 | An alternate definition of... |
connsuba 22479 | Connectedness for a subspa... |
connsub 22480 | Two equivalent ways of say... |
cnconn 22481 | Connectedness is respected... |
nconnsubb 22482 | Disconnectedness for a sub... |
connsubclo 22483 | If a clopen set meets a co... |
connima 22484 | The image of a connected s... |
conncn 22485 | A continuous function from... |
iunconnlem 22486 | Lemma for ~ iunconn . (Co... |
iunconn 22487 | The indexed union of conne... |
unconn 22488 | The union of two connected... |
clsconn 22489 | The closure of a connected... |
conncompid 22490 | The connected component co... |
conncompconn 22491 | The connected component co... |
conncompss 22492 | The connected component co... |
conncompcld 22493 | The connected component co... |
conncompclo 22494 | The connected component co... |
t1connperf 22495 | A connected T_1 space is p... |
is1stc 22500 | The predicate "is a first-... |
is1stc2 22501 | An equivalent way of sayin... |
1stctop 22502 | A first-countable topology... |
1stcclb 22503 | A property of points in a ... |
1stcfb 22504 | For any point ` A ` in a f... |
is2ndc 22505 | The property of being seco... |
2ndctop 22506 | A second-countable topolog... |
2ndci 22507 | A countable basis generate... |
2ndcsb 22508 | Having a countable subbase... |
2ndcredom 22509 | A second-countable space h... |
2ndc1stc 22510 | A second-countable space i... |
1stcrestlem 22511 | Lemma for ~ 1stcrest . (C... |
1stcrest 22512 | A subspace of a first-coun... |
2ndcrest 22513 | A subspace of a second-cou... |
2ndcctbss 22514 | If a topology is second-co... |
2ndcdisj 22515 | Any disjoint family of ope... |
2ndcdisj2 22516 | Any disjoint collection of... |
2ndcomap 22517 | A surjective continuous op... |
2ndcsep 22518 | A second-countable topolog... |
dis2ndc 22519 | A discrete space is second... |
1stcelcls 22520 | A point belongs to the clo... |
1stccnp 22521 | A mapping is continuous at... |
1stccn 22522 | A mapping ` X --> Y ` , wh... |
islly 22527 | The property of being a lo... |
isnlly 22528 | The property of being an n... |
llyeq 22529 | Equality theorem for the `... |
nllyeq 22530 | Equality theorem for the `... |
llytop 22531 | A locally ` A ` space is a... |
nllytop 22532 | A locally ` A ` space is a... |
llyi 22533 | The property of a locally ... |
nllyi 22534 | The property of an n-local... |
nlly2i 22535 | Eliminate the neighborhood... |
llynlly 22536 | A locally ` A ` space is n... |
llyssnlly 22537 | A locally ` A ` space is n... |
llyss 22538 | The "locally" predicate re... |
nllyss 22539 | The "n-locally" predicate ... |
subislly 22540 | The property of a subspace... |
restnlly 22541 | If the property ` A ` pass... |
restlly 22542 | If the property ` A ` pass... |
islly2 22543 | An alternative expression ... |
llyrest 22544 | An open subspace of a loca... |
nllyrest 22545 | An open subspace of an n-l... |
loclly 22546 | If ` A ` is a local proper... |
llyidm 22547 | Idempotence of the "locall... |
nllyidm 22548 | Idempotence of the "n-loca... |
toplly 22549 | A topology is locally a to... |
topnlly 22550 | A topology is n-locally a ... |
hauslly 22551 | A Hausdorff space is local... |
hausnlly 22552 | A Hausdorff space is n-loc... |
hausllycmp 22553 | A compact Hausdorff space ... |
cldllycmp 22554 | A closed subspace of a loc... |
lly1stc 22555 | First-countability is a lo... |
dislly 22556 | The discrete space ` ~P X ... |
disllycmp 22557 | A discrete space is locall... |
dis1stc 22558 | A discrete space is first-... |
hausmapdom 22559 | If ` X ` is a first-counta... |
hauspwdom 22560 | Simplify the cardinal ` A ... |
refrel 22567 | Refinement is a relation. ... |
isref 22568 | The property of being a re... |
refbas 22569 | A refinement covers the sa... |
refssex 22570 | Every set in a refinement ... |
ssref 22571 | A subcover is a refinement... |
refref 22572 | Reflexivity of refinement.... |
reftr 22573 | Refinement is transitive. ... |
refun0 22574 | Adding the empty set prese... |
isptfin 22575 | The statement "is a point-... |
islocfin 22576 | The statement "is a locall... |
finptfin 22577 | A finite cover is a point-... |
ptfinfin 22578 | A point covered by a point... |
finlocfin 22579 | A finite cover of a topolo... |
locfintop 22580 | A locally finite cover cov... |
locfinbas 22581 | A locally finite cover mus... |
locfinnei 22582 | A point covered by a local... |
lfinpfin 22583 | A locally finite cover is ... |
lfinun 22584 | Adding a finite set preser... |
locfincmp 22585 | For a compact space, the l... |
unisngl 22586 | Taking the union of the se... |
dissnref 22587 | The set of singletons is a... |
dissnlocfin 22588 | The set of singletons is l... |
locfindis 22589 | The locally finite covers ... |
locfincf 22590 | A locally finite cover in ... |
comppfsc 22591 | A space where every open c... |
kgenval 22594 | Value of the compact gener... |
elkgen 22595 | Value of the compact gener... |
kgeni 22596 | Property of the open sets ... |
kgentopon 22597 | The compact generator gene... |
kgenuni 22598 | The base set of the compac... |
kgenftop 22599 | The compact generator gene... |
kgenf 22600 | The compact generator is a... |
kgentop 22601 | A compactly generated spac... |
kgenss 22602 | The compact generator gene... |
kgenhaus 22603 | The compact generator gene... |
kgencmp 22604 | The compact generator topo... |
kgencmp2 22605 | The compact generator topo... |
kgenidm 22606 | The compact generator is i... |
iskgen2 22607 | A space is compactly gener... |
iskgen3 22608 | Derive the usual definitio... |
llycmpkgen2 22609 | A locally compact space is... |
cmpkgen 22610 | A compact space is compact... |
llycmpkgen 22611 | A locally compact space is... |
1stckgenlem 22612 | The one-point compactifica... |
1stckgen 22613 | A first-countable space is... |
kgen2ss 22614 | The compact generator pres... |
kgencn 22615 | A function from a compactl... |
kgencn2 22616 | A function ` F : J --> K `... |
kgencn3 22617 | The set of continuous func... |
kgen2cn 22618 | A continuous function is a... |
txval 22623 | Value of the binary topolo... |
txuni2 22624 | The underlying set of the ... |
txbasex 22625 | The basis for the product ... |
txbas 22626 | The set of Cartesian produ... |
eltx 22627 | A set in a product is open... |
txtop 22628 | The product of two topolog... |
ptval 22629 | The value of the product t... |
ptpjpre1 22630 | The preimage of a projecti... |
elpt 22631 | Elementhood in the bases o... |
elptr 22632 | A basic open set in the pr... |
elptr2 22633 | A basic open set in the pr... |
ptbasid 22634 | The base set of the produc... |
ptuni2 22635 | The base set for the produ... |
ptbasin 22636 | The basis for a product to... |
ptbasin2 22637 | The basis for a product to... |
ptbas 22638 | The basis for a product to... |
ptpjpre2 22639 | The basis for a product to... |
ptbasfi 22640 | The basis for the product ... |
pttop 22641 | The product topology is a ... |
ptopn 22642 | A basic open set in the pr... |
ptopn2 22643 | A sub-basic open set in th... |
xkotf 22644 | Functionality of function ... |
xkobval 22645 | Alternative expression for... |
xkoval 22646 | Value of the compact-open ... |
xkotop 22647 | The compact-open topology ... |
xkoopn 22648 | A basic open set of the co... |
txtopi 22649 | The product of two topolog... |
txtopon 22650 | The underlying set of the ... |
txuni 22651 | The underlying set of the ... |
txunii 22652 | The underlying set of the ... |
ptuni 22653 | The base set for the produ... |
ptunimpt 22654 | Base set of a product topo... |
pttopon 22655 | The base set for the produ... |
pttoponconst 22656 | The base set for a product... |
ptuniconst 22657 | The base set for a product... |
xkouni 22658 | The base set of the compac... |
xkotopon 22659 | The base set of the compac... |
ptval2 22660 | The value of the product t... |
txopn 22661 | The product of two open se... |
txcld 22662 | The product of two closed ... |
txcls 22663 | Closure of a rectangle in ... |
txss12 22664 | Subset property of the top... |
txbasval 22665 | It is sufficient to consid... |
neitx 22666 | The Cartesian product of t... |
txcnpi 22667 | Continuity of a two-argume... |
tx1cn 22668 | Continuity of the first pr... |
tx2cn 22669 | Continuity of the second p... |
ptpjcn 22670 | Continuity of a projection... |
ptpjopn 22671 | The projection map is an o... |
ptcld 22672 | A closed box in the produc... |
ptcldmpt 22673 | A closed box in the produc... |
ptclsg 22674 | The closure of a box in th... |
ptcls 22675 | The closure of a box in th... |
dfac14lem 22676 | Lemma for ~ dfac14 . By e... |
dfac14 22677 | Theorem ~ ptcls is an equi... |
xkoccn 22678 | The "constant function" fu... |
txcnp 22679 | If two functions are conti... |
ptcnplem 22680 | Lemma for ~ ptcnp . (Cont... |
ptcnp 22681 | If every projection of a f... |
upxp 22682 | Universal property of the ... |
txcnmpt 22683 | A map into the product of ... |
uptx 22684 | Universal property of the ... |
txcn 22685 | A map into the product of ... |
ptcn 22686 | If every projection of a f... |
prdstopn 22687 | Topology of a structure pr... |
prdstps 22688 | A structure product of top... |
pwstps 22689 | A structure power of a top... |
txrest 22690 | The subspace of a topologi... |
txdis 22691 | The topological product of... |
txindislem 22692 | Lemma for ~ txindis . (Co... |
txindis 22693 | The topological product of... |
txdis1cn 22694 | A function is jointly cont... |
txlly 22695 | If the property ` A ` is p... |
txnlly 22696 | If the property ` A ` is p... |
pthaus 22697 | The product of a collectio... |
ptrescn 22698 | Restriction is a continuou... |
txtube 22699 | The "tube lemma". If ` X ... |
txcmplem1 22700 | Lemma for ~ txcmp . (Cont... |
txcmplem2 22701 | Lemma for ~ txcmp . (Cont... |
txcmp 22702 | The topological product of... |
txcmpb 22703 | The topological product of... |
hausdiag 22704 | A topology is Hausdorff if... |
hauseqlcld 22705 | In a Hausdorff topology, t... |
txhaus 22706 | The topological product of... |
txlm 22707 | Two sequences converge iff... |
lmcn2 22708 | The image of a convergent ... |
tx1stc 22709 | The topological product of... |
tx2ndc 22710 | The topological product of... |
txkgen 22711 | The topological product of... |
xkohaus 22712 | If the codomain space is H... |
xkoptsub 22713 | The compact-open topology ... |
xkopt 22714 | The compact-open topology ... |
xkopjcn 22715 | Continuity of a projection... |
xkoco1cn 22716 | If ` F ` is a continuous f... |
xkoco2cn 22717 | If ` F ` is a continuous f... |
xkococnlem 22718 | Continuity of the composit... |
xkococn 22719 | Continuity of the composit... |
cnmptid 22720 | The identity function is c... |
cnmptc 22721 | A constant function is con... |
cnmpt11 22722 | The composition of continu... |
cnmpt11f 22723 | The composition of continu... |
cnmpt1t 22724 | The composition of continu... |
cnmpt12f 22725 | The composition of continu... |
cnmpt12 22726 | The composition of continu... |
cnmpt1st 22727 | The projection onto the fi... |
cnmpt2nd 22728 | The projection onto the se... |
cnmpt2c 22729 | A constant function is con... |
cnmpt21 22730 | The composition of continu... |
cnmpt21f 22731 | The composition of continu... |
cnmpt2t 22732 | The composition of continu... |
cnmpt22 22733 | The composition of continu... |
cnmpt22f 22734 | The composition of continu... |
cnmpt1res 22735 | The restriction of a conti... |
cnmpt2res 22736 | The restriction of a conti... |
cnmptcom 22737 | The argument converse of a... |
cnmptkc 22738 | The curried first projecti... |
cnmptkp 22739 | The evaluation of the inne... |
cnmptk1 22740 | The composition of a curri... |
cnmpt1k 22741 | The composition of a one-a... |
cnmptkk 22742 | The composition of two cur... |
xkofvcn 22743 | Joint continuity of the fu... |
cnmptk1p 22744 | The evaluation of a currie... |
cnmptk2 22745 | The uncurrying of a currie... |
xkoinjcn 22746 | Continuity of "injection",... |
cnmpt2k 22747 | The currying of a two-argu... |
txconn 22748 | The topological product of... |
imasnopn 22749 | If a relation graph is ope... |
imasncld 22750 | If a relation graph is clo... |
imasncls 22751 | If a relation graph is clo... |
qtopval 22754 | Value of the quotient topo... |
qtopval2 22755 | Value of the quotient topo... |
elqtop 22756 | Value of the quotient topo... |
qtopres 22757 | The quotient topology is u... |
qtoptop2 22758 | The quotient topology is a... |
qtoptop 22759 | The quotient topology is a... |
elqtop2 22760 | Value of the quotient topo... |
qtopuni 22761 | The base set of the quotie... |
elqtop3 22762 | Value of the quotient topo... |
qtoptopon 22763 | The base set of the quotie... |
qtopid 22764 | A quotient map is a contin... |
idqtop 22765 | The quotient topology indu... |
qtopcmplem 22766 | Lemma for ~ qtopcmp and ~ ... |
qtopcmp 22767 | A quotient of a compact sp... |
qtopconn 22768 | A quotient of a connected ... |
qtopkgen 22769 | A quotient of a compactly ... |
basqtop 22770 | An injection maps bases to... |
tgqtop 22771 | An injection maps generate... |
qtopcld 22772 | The property of being a cl... |
qtopcn 22773 | Universal property of a qu... |
qtopss 22774 | A surjective continuous fu... |
qtopeu 22775 | Universal property of the ... |
qtoprest 22776 | If ` A ` is a saturated op... |
qtopomap 22777 | If ` F ` is a surjective c... |
qtopcmap 22778 | If ` F ` is a surjective c... |
imastopn 22779 | The topology of an image s... |
imastps 22780 | The image of a topological... |
qustps 22781 | A quotient structure is a ... |
kqfval 22782 | Value of the function appe... |
kqfeq 22783 | Two points in the Kolmogor... |
kqffn 22784 | The topological indistingu... |
kqval 22785 | Value of the quotient topo... |
kqtopon 22786 | The Kolmogorov quotient is... |
kqid 22787 | The topological indistingu... |
ist0-4 22788 | The topological indistingu... |
kqfvima 22789 | When the image set is open... |
kqsat 22790 | Any open set is saturated ... |
kqdisj 22791 | A version of ~ imain for t... |
kqcldsat 22792 | Any closed set is saturate... |
kqopn 22793 | The topological indistingu... |
kqcld 22794 | The topological indistingu... |
kqt0lem 22795 | Lemma for ~ kqt0 . (Contr... |
isr0 22796 | The property " ` J ` is an... |
r0cld 22797 | The analogue of the T_1 ax... |
regr1lem 22798 | Lemma for ~ regr1 . (Cont... |
regr1lem2 22799 | A Kolmogorov quotient of a... |
kqreglem1 22800 | A Kolmogorov quotient of a... |
kqreglem2 22801 | If the Kolmogorov quotient... |
kqnrmlem1 22802 | A Kolmogorov quotient of a... |
kqnrmlem2 22803 | If the Kolmogorov quotient... |
kqtop 22804 | The Kolmogorov quotient is... |
kqt0 22805 | The Kolmogorov quotient is... |
kqf 22806 | The Kolmogorov quotient is... |
r0sep 22807 | The separation property of... |
nrmr0reg 22808 | A normal R_0 space is also... |
regr1 22809 | A regular space is R_1, wh... |
kqreg 22810 | The Kolmogorov quotient of... |
kqnrm 22811 | The Kolmogorov quotient of... |
hmeofn 22816 | The set of homeomorphisms ... |
hmeofval 22817 | The set of all the homeomo... |
ishmeo 22818 | The predicate F is a homeo... |
hmeocn 22819 | A homeomorphism is continu... |
hmeocnvcn 22820 | The converse of a homeomor... |
hmeocnv 22821 | The converse of a homeomor... |
hmeof1o2 22822 | A homeomorphism is a 1-1-o... |
hmeof1o 22823 | A homeomorphism is a 1-1-o... |
hmeoima 22824 | The image of an open set b... |
hmeoopn 22825 | Homeomorphisms preserve op... |
hmeocld 22826 | Homeomorphisms preserve cl... |
hmeocls 22827 | Homeomorphisms preserve cl... |
hmeontr 22828 | Homeomorphisms preserve in... |
hmeoimaf1o 22829 | The function mapping open ... |
hmeores 22830 | The restriction of a homeo... |
hmeoco 22831 | The composite of two homeo... |
idhmeo 22832 | The identity function is a... |
hmeocnvb 22833 | The converse of a homeomor... |
hmeoqtop 22834 | A homeomorphism is a quoti... |
hmph 22835 | Express the predicate ` J ... |
hmphi 22836 | If there is a homeomorphis... |
hmphtop 22837 | Reverse closure for the ho... |
hmphtop1 22838 | The relation "being homeom... |
hmphtop2 22839 | The relation "being homeom... |
hmphref 22840 | "Is homeomorphic to" is re... |
hmphsym 22841 | "Is homeomorphic to" is sy... |
hmphtr 22842 | "Is homeomorphic to" is tr... |
hmpher 22843 | "Is homeomorphic to" is an... |
hmphen 22844 | Homeomorphisms preserve th... |
hmphsymb 22845 | "Is homeomorphic to" is sy... |
haushmphlem 22846 | Lemma for ~ haushmph and s... |
cmphmph 22847 | Compactness is a topologic... |
connhmph 22848 | Connectedness is a topolog... |
t0hmph 22849 | T_0 is a topological prope... |
t1hmph 22850 | T_1 is a topological prope... |
haushmph 22851 | Hausdorff-ness is a topolo... |
reghmph 22852 | Regularity is a topologica... |
nrmhmph 22853 | Normality is a topological... |
hmph0 22854 | A topology homeomorphic to... |
hmphdis 22855 | Homeomorphisms preserve to... |
hmphindis 22856 | Homeomorphisms preserve to... |
indishmph 22857 | Equinumerous sets equipped... |
hmphen2 22858 | Homeomorphisms preserve th... |
cmphaushmeo 22859 | A continuous bijection fro... |
ordthmeolem 22860 | Lemma for ~ ordthmeo . (C... |
ordthmeo 22861 | An order isomorphism is a ... |
txhmeo 22862 | Lift a pair of homeomorphi... |
txswaphmeolem 22863 | Show inverse for the "swap... |
txswaphmeo 22864 | There is a homeomorphism f... |
pt1hmeo 22865 | The canonical homeomorphis... |
ptuncnv 22866 | Exhibit the converse funct... |
ptunhmeo 22867 | Define a homeomorphism fro... |
xpstopnlem1 22868 | The function ` F ` used in... |
xpstps 22869 | A binary product of topolo... |
xpstopnlem2 22870 | Lemma for ~ xpstopn . (Co... |
xpstopn 22871 | The topology on a binary p... |
ptcmpfi 22872 | A topological product of f... |
xkocnv 22873 | The inverse of the "curryi... |
xkohmeo 22874 | The Exponential Law for to... |
qtopf1 22875 | If a quotient map is injec... |
qtophmeo 22876 | If two functions on a base... |
t0kq 22877 | A topological space is T_0... |
kqhmph 22878 | A topological space is T_0... |
ist1-5lem 22879 | Lemma for ~ ist1-5 and sim... |
t1r0 22880 | A T_1 space is R_0. That ... |
ist1-5 22881 | A topological space is T_1... |
ishaus3 22882 | A topological space is Hau... |
nrmreg 22883 | A normal T_1 space is regu... |
reghaus 22884 | A regular T_0 space is Hau... |
nrmhaus 22885 | A T_1 normal space is Haus... |
elmptrab 22886 | Membership in a one-parame... |
elmptrab2 22887 | Membership in a one-parame... |
isfbas 22888 | The predicate " ` F ` is a... |
fbasne0 22889 | There are no empty filter ... |
0nelfb 22890 | No filter base contains th... |
fbsspw 22891 | A filter base on a set is ... |
fbelss 22892 | An element of the filter b... |
fbdmn0 22893 | The domain of a filter bas... |
isfbas2 22894 | The predicate " ` F ` is a... |
fbasssin 22895 | A filter base contains sub... |
fbssfi 22896 | A filter base contains sub... |
fbssint 22897 | A filter base contains sub... |
fbncp 22898 | A filter base does not con... |
fbun 22899 | A necessary and sufficient... |
fbfinnfr 22900 | No filter base containing ... |
opnfbas 22901 | The collection of open sup... |
trfbas2 22902 | Conditions for the trace o... |
trfbas 22903 | Conditions for the trace o... |
isfil 22906 | The predicate "is a filter... |
filfbas 22907 | A filter is a filter base.... |
0nelfil 22908 | The empty set doesn't belo... |
fileln0 22909 | An element of a filter is ... |
filsspw 22910 | A filter is a subset of th... |
filelss 22911 | An element of a filter is ... |
filss 22912 | A filter is closed under t... |
filin 22913 | A filter is closed under t... |
filtop 22914 | The underlying set belongs... |
isfil2 22915 | Derive the standard axioms... |
isfildlem 22916 | Lemma for ~ isfild . (Con... |
isfild 22917 | Sufficient condition for a... |
filfi 22918 | A filter is closed under t... |
filinn0 22919 | The intersection of two el... |
filintn0 22920 | A filter has the finite in... |
filn0 22921 | The empty set is not a fil... |
infil 22922 | The intersection of two fi... |
snfil 22923 | A singleton is a filter. ... |
fbasweak 22924 | A filter base on any set i... |
snfbas 22925 | Condition for a singleton ... |
fsubbas 22926 | A condition for a set to g... |
fbasfip 22927 | A filter base has the fini... |
fbunfip 22928 | A helpful lemma for showin... |
fgval 22929 | The filter generating clas... |
elfg 22930 | A condition for elements o... |
ssfg 22931 | A filter base is a subset ... |
fgss 22932 | A bigger base generates a ... |
fgss2 22933 | A condition for a filter t... |
fgfil 22934 | A filter generates itself.... |
elfilss 22935 | An element belongs to a fi... |
filfinnfr 22936 | No filter containing a fin... |
fgcl 22937 | A generated filter is a fi... |
fgabs 22938 | Absorption law for filter ... |
neifil 22939 | The neighborhoods of a non... |
filunibas 22940 | Recover the base set from ... |
filunirn 22941 | Two ways to express a filt... |
filconn 22942 | A filter gives rise to a c... |
fbasrn 22943 | Given a filter on a domain... |
filuni 22944 | The union of a nonempty se... |
trfil1 22945 | Conditions for the trace o... |
trfil2 22946 | Conditions for the trace o... |
trfil3 22947 | Conditions for the trace o... |
trfilss 22948 | If ` A ` is a member of th... |
fgtr 22949 | If ` A ` is a member of th... |
trfg 22950 | The trace operation and th... |
trnei 22951 | The trace, over a set ` A ... |
cfinfil 22952 | Relative complements of th... |
csdfil 22953 | The set of all elements wh... |
supfil 22954 | The supersets of a nonempt... |
zfbas 22955 | The set of upper sets of i... |
uzrest 22956 | The restriction of the set... |
uzfbas 22957 | The set of upper sets of i... |
isufil 22962 | The property of being an u... |
ufilfil 22963 | An ultrafilter is a filter... |
ufilss 22964 | For any subset of the base... |
ufilb 22965 | The complement is in an ul... |
ufilmax 22966 | Any filter finer than an u... |
isufil2 22967 | The maximal property of an... |
ufprim 22968 | An ultrafilter is a prime ... |
trufil 22969 | Conditions for the trace o... |
filssufilg 22970 | A filter is contained in s... |
filssufil 22971 | A filter is contained in s... |
isufl 22972 | Define the (strong) ultraf... |
ufli 22973 | Property of a set that sat... |
numufl 22974 | Consequence of ~ filssufil... |
fiufl 22975 | A finite set satisfies the... |
acufl 22976 | The axiom of choice implie... |
ssufl 22977 | If ` Y ` is a subset of ` ... |
ufileu 22978 | If the ultrafilter contain... |
filufint 22979 | A filter is equal to the i... |
uffix 22980 | Lemma for ~ fixufil and ~ ... |
fixufil 22981 | The condition describing a... |
uffixfr 22982 | An ultrafilter is either f... |
uffix2 22983 | A classification of fixed ... |
uffixsn 22984 | The singleton of the gener... |
ufildom1 22985 | An ultrafilter is generate... |
uffinfix 22986 | An ultrafilter containing ... |
cfinufil 22987 | An ultrafilter is free iff... |
ufinffr 22988 | An infinite subset is cont... |
ufilen 22989 | Any infinite set has an ul... |
ufildr 22990 | An ultrafilter gives rise ... |
fin1aufil 22991 | There are no definable fre... |
fmval 23002 | Introduce a function that ... |
fmfil 23003 | A mapping filter is a filt... |
fmf 23004 | Pushing-forward via a func... |
fmss 23005 | A finer filter produces a ... |
elfm 23006 | An element of a mapping fi... |
elfm2 23007 | An element of a mapping fi... |
fmfg 23008 | The image filter of a filt... |
elfm3 23009 | An alternate formulation o... |
imaelfm 23010 | An image of a filter eleme... |
rnelfmlem 23011 | Lemma for ~ rnelfm . (Con... |
rnelfm 23012 | A condition for a filter t... |
fmfnfmlem1 23013 | Lemma for ~ fmfnfm . (Con... |
fmfnfmlem2 23014 | Lemma for ~ fmfnfm . (Con... |
fmfnfmlem3 23015 | Lemma for ~ fmfnfm . (Con... |
fmfnfmlem4 23016 | Lemma for ~ fmfnfm . (Con... |
fmfnfm 23017 | A filter finer than an ima... |
fmufil 23018 | An image filter of an ultr... |
fmid 23019 | The filter map applied to ... |
fmco 23020 | Composition of image filte... |
ufldom 23021 | The ultrafilter lemma prop... |
flimval 23022 | The set of limit points of... |
elflim2 23023 | The predicate "is a limit ... |
flimtop 23024 | Reverse closure for the li... |
flimneiss 23025 | A filter contains the neig... |
flimnei 23026 | A filter contains all of t... |
flimelbas 23027 | A limit point of a filter ... |
flimfil 23028 | Reverse closure for the li... |
flimtopon 23029 | Reverse closure for the li... |
elflim 23030 | The predicate "is a limit ... |
flimss2 23031 | A limit point of a filter ... |
flimss1 23032 | A limit point of a filter ... |
neiflim 23033 | A point is a limit point o... |
flimopn 23034 | The condition for being a ... |
fbflim 23035 | A condition for a filter t... |
fbflim2 23036 | A condition for a filter b... |
flimclsi 23037 | The convergent points of a... |
hausflimlem 23038 | If ` A ` and ` B ` are bot... |
hausflimi 23039 | One direction of ~ hausfli... |
hausflim 23040 | A condition for a topology... |
flimcf 23041 | Fineness is properly chara... |
flimrest 23042 | The set of limit points in... |
flimclslem 23043 | Lemma for ~ flimcls . (Co... |
flimcls 23044 | Closure in terms of filter... |
flimsncls 23045 | If ` A ` is a limit point ... |
hauspwpwf1 23046 | Lemma for ~ hauspwpwdom . ... |
hauspwpwdom 23047 | If ` X ` is a Hausdorff sp... |
flffval 23048 | Given a topology and a fil... |
flfval 23049 | Given a function from a fi... |
flfnei 23050 | The property of being a li... |
flfneii 23051 | A neighborhood of a limit ... |
isflf 23052 | The property of being a li... |
flfelbas 23053 | A limit point of a functio... |
flffbas 23054 | Limit points of a function... |
flftg 23055 | Limit points of a function... |
hausflf 23056 | If a function has its valu... |
hausflf2 23057 | If a convergent function h... |
cnpflfi 23058 | Forward direction of ~ cnp... |
cnpflf2 23059 | ` F ` is continuous at poi... |
cnpflf 23060 | Continuity of a function a... |
cnflf 23061 | A function is continuous i... |
cnflf2 23062 | A function is continuous i... |
flfcnp 23063 | A continuous function pres... |
lmflf 23064 | The topological limit rela... |
txflf 23065 | Two sequences converge in ... |
flfcnp2 23066 | The image of a convergent ... |
fclsval 23067 | The set of all cluster poi... |
isfcls 23068 | A cluster point of a filte... |
fclsfil 23069 | Reverse closure for the cl... |
fclstop 23070 | Reverse closure for the cl... |
fclstopon 23071 | Reverse closure for the cl... |
isfcls2 23072 | A cluster point of a filte... |
fclsopn 23073 | Write the cluster point co... |
fclsopni 23074 | An open neighborhood of a ... |
fclselbas 23075 | A cluster point is in the ... |
fclsneii 23076 | A neighborhood of a cluste... |
fclssscls 23077 | The set of cluster points ... |
fclsnei 23078 | Cluster points in terms of... |
supnfcls 23079 | The filter of supersets of... |
fclsbas 23080 | Cluster points in terms of... |
fclsss1 23081 | A finer topology has fewer... |
fclsss2 23082 | A finer filter has fewer c... |
fclsrest 23083 | The set of cluster points ... |
fclscf 23084 | Characterization of finene... |
flimfcls 23085 | A limit point is a cluster... |
fclsfnflim 23086 | A filter clusters at a poi... |
flimfnfcls 23087 | A filter converges to a po... |
fclscmpi 23088 | Forward direction of ~ fcl... |
fclscmp 23089 | A space is compact iff eve... |
uffclsflim 23090 | The cluster points of an u... |
ufilcmp 23091 | A space is compact iff eve... |
fcfval 23092 | The set of cluster points ... |
isfcf 23093 | The property of being a cl... |
fcfnei 23094 | The property of being a cl... |
fcfelbas 23095 | A cluster point of a funct... |
fcfneii 23096 | A neighborhood of a cluste... |
flfssfcf 23097 | A limit point of a functio... |
uffcfflf 23098 | If the domain filter is an... |
cnpfcfi 23099 | Lemma for ~ cnpfcf . If a... |
cnpfcf 23100 | A function ` F ` is contin... |
cnfcf 23101 | Continuity of a function i... |
flfcntr 23102 | A continuous function's va... |
alexsublem 23103 | Lemma for ~ alexsub . (Co... |
alexsub 23104 | The Alexander Subbase Theo... |
alexsubb 23105 | Biconditional form of the ... |
alexsubALTlem1 23106 | Lemma for ~ alexsubALT . ... |
alexsubALTlem2 23107 | Lemma for ~ alexsubALT . ... |
alexsubALTlem3 23108 | Lemma for ~ alexsubALT . ... |
alexsubALTlem4 23109 | Lemma for ~ alexsubALT . ... |
alexsubALT 23110 | The Alexander Subbase Theo... |
ptcmplem1 23111 | Lemma for ~ ptcmp . (Cont... |
ptcmplem2 23112 | Lemma for ~ ptcmp . (Cont... |
ptcmplem3 23113 | Lemma for ~ ptcmp . (Cont... |
ptcmplem4 23114 | Lemma for ~ ptcmp . (Cont... |
ptcmplem5 23115 | Lemma for ~ ptcmp . (Cont... |
ptcmpg 23116 | Tychonoff's theorem: The ... |
ptcmp 23117 | Tychonoff's theorem: The ... |
cnextval 23120 | The function applying cont... |
cnextfval 23121 | The continuous extension o... |
cnextrel 23122 | In the general case, a con... |
cnextfun 23123 | If the target space is Hau... |
cnextfvval 23124 | The value of the continuou... |
cnextf 23125 | Extension by continuity. ... |
cnextcn 23126 | Extension by continuity. ... |
cnextfres1 23127 | ` F ` and its extension by... |
cnextfres 23128 | ` F ` and its extension by... |
istmd 23133 | The predicate "is a topolo... |
tmdmnd 23134 | A topological monoid is a ... |
tmdtps 23135 | A topological monoid is a ... |
istgp 23136 | The predicate "is a topolo... |
tgpgrp 23137 | A topological group is a g... |
tgptmd 23138 | A topological group is a t... |
tgptps 23139 | A topological group is a t... |
tmdtopon 23140 | The topology of a topologi... |
tgptopon 23141 | The topology of a topologi... |
tmdcn 23142 | In a topological monoid, t... |
tgpcn 23143 | In a topological group, th... |
tgpinv 23144 | In a topological group, th... |
grpinvhmeo 23145 | The inverse function in a ... |
cnmpt1plusg 23146 | Continuity of the group su... |
cnmpt2plusg 23147 | Continuity of the group su... |
tmdcn2 23148 | Write out the definition o... |
tgpsubcn 23149 | In a topological group, th... |
istgp2 23150 | A group with a topology is... |
tmdmulg 23151 | In a topological monoid, t... |
tgpmulg 23152 | In a topological group, th... |
tgpmulg2 23153 | In a topological monoid, t... |
tmdgsum 23154 | In a topological monoid, t... |
tmdgsum2 23155 | For any neighborhood ` U `... |
oppgtmd 23156 | The opposite of a topologi... |
oppgtgp 23157 | The opposite of a topologi... |
distgp 23158 | Any group equipped with th... |
indistgp 23159 | Any group equipped with th... |
efmndtmd 23160 | The monoid of endofunction... |
tmdlactcn 23161 | The left group action of e... |
tgplacthmeo 23162 | The left group action of e... |
submtmd 23163 | A submonoid of a topologic... |
subgtgp 23164 | A subgroup of a topologica... |
symgtgp 23165 | The symmetric group is a t... |
subgntr 23166 | A subgroup of a topologica... |
opnsubg 23167 | An open subgroup of a topo... |
clssubg 23168 | The closure of a subgroup ... |
clsnsg 23169 | The closure of a normal su... |
cldsubg 23170 | A subgroup of finite index... |
tgpconncompeqg 23171 | The connected component co... |
tgpconncomp 23172 | The identity component, th... |
tgpconncompss 23173 | The identity component is ... |
ghmcnp 23174 | A group homomorphism on to... |
snclseqg 23175 | The coset of the closure o... |
tgphaus 23176 | A topological group is Hau... |
tgpt1 23177 | Hausdorff and T1 are equiv... |
tgpt0 23178 | Hausdorff and T0 are equiv... |
qustgpopn 23179 | A quotient map in a topolo... |
qustgplem 23180 | Lemma for ~ qustgp . (Con... |
qustgp 23181 | The quotient of a topologi... |
qustgphaus 23182 | The quotient of a topologi... |
prdstmdd 23183 | The product of a family of... |
prdstgpd 23184 | The product of a family of... |
tsmsfbas 23187 | The collection of all sets... |
tsmslem1 23188 | The finite partial sums of... |
tsmsval2 23189 | Definition of the topologi... |
tsmsval 23190 | Definition of the topologi... |
tsmspropd 23191 | The group sum depends only... |
eltsms 23192 | The property of being a su... |
tsmsi 23193 | The property of being a su... |
tsmscl 23194 | A sum in a topological gro... |
haustsms 23195 | In a Hausdorff topological... |
haustsms2 23196 | In a Hausdorff topological... |
tsmscls 23197 | One half of ~ tgptsmscls ,... |
tsmsgsum 23198 | The convergent points of a... |
tsmsid 23199 | If a sum is finite, the us... |
haustsmsid 23200 | In a Hausdorff topological... |
tsms0 23201 | The sum of zero is zero. ... |
tsmssubm 23202 | Evaluate an infinite group... |
tsmsres 23203 | Extend an infinite group s... |
tsmsf1o 23204 | Re-index an infinite group... |
tsmsmhm 23205 | Apply a continuous group h... |
tsmsadd 23206 | The sum of two infinite gr... |
tsmsinv 23207 | Inverse of an infinite gro... |
tsmssub 23208 | The difference of two infi... |
tgptsmscls 23209 | A sum in a topological gro... |
tgptsmscld 23210 | The set of limit points to... |
tsmssplit 23211 | Split a topological group ... |
tsmsxplem1 23212 | Lemma for ~ tsmsxp . (Con... |
tsmsxplem2 23213 | Lemma for ~ tsmsxp . (Con... |
tsmsxp 23214 | Write a sum over a two-dim... |
istrg 23223 | Express the predicate " ` ... |
trgtmd 23224 | The multiplicative monoid ... |
istdrg 23225 | Express the predicate " ` ... |
tdrgunit 23226 | The unit group of a topolo... |
trgtgp 23227 | A topological ring is a to... |
trgtmd2 23228 | A topological ring is a to... |
trgtps 23229 | A topological ring is a to... |
trgring 23230 | A topological ring is a ri... |
trggrp 23231 | A topological ring is a gr... |
tdrgtrg 23232 | A topological division rin... |
tdrgdrng 23233 | A topological division rin... |
tdrgring 23234 | A topological division rin... |
tdrgtmd 23235 | A topological division rin... |
tdrgtps 23236 | A topological division rin... |
istdrg2 23237 | A topological-ring divisio... |
mulrcn 23238 | The functionalization of t... |
invrcn2 23239 | The multiplicative inverse... |
invrcn 23240 | The multiplicative inverse... |
cnmpt1mulr 23241 | Continuity of ring multipl... |
cnmpt2mulr 23242 | Continuity of ring multipl... |
dvrcn 23243 | The division function is c... |
istlm 23244 | The predicate " ` W ` is a... |
vscacn 23245 | The scalar multiplication ... |
tlmtmd 23246 | A topological module is a ... |
tlmtps 23247 | A topological module is a ... |
tlmlmod 23248 | A topological module is a ... |
tlmtrg 23249 | The scalar ring of a topol... |
tlmscatps 23250 | The scalar ring of a topol... |
istvc 23251 | A topological vector space... |
tvctdrg 23252 | The scalar field of a topo... |
cnmpt1vsca 23253 | Continuity of scalar multi... |
cnmpt2vsca 23254 | Continuity of scalar multi... |
tlmtgp 23255 | A topological vector space... |
tvctlm 23256 | A topological vector space... |
tvclmod 23257 | A topological vector space... |
tvclvec 23258 | A topological vector space... |
ustfn 23261 | The defined uniform struct... |
ustval 23262 | The class of all uniform s... |
isust 23263 | The predicate " ` U ` is a... |
ustssxp 23264 | Entourages are subsets of ... |
ustssel 23265 | A uniform structure is upw... |
ustbasel 23266 | The full set is always an ... |
ustincl 23267 | A uniform structure is clo... |
ustdiag 23268 | The diagonal set is includ... |
ustinvel 23269 | If ` V ` is an entourage, ... |
ustexhalf 23270 | For each entourage ` V ` t... |
ustrel 23271 | The elements of uniform st... |
ustfilxp 23272 | A uniform structure on a n... |
ustne0 23273 | A uniform structure cannot... |
ustssco 23274 | In an uniform structure, a... |
ustexsym 23275 | In an uniform structure, f... |
ustex2sym 23276 | In an uniform structure, f... |
ustex3sym 23277 | In an uniform structure, f... |
ustref 23278 | Any element of the base se... |
ust0 23279 | The unique uniform structu... |
ustn0 23280 | The empty set is not an un... |
ustund 23281 | If two intersecting sets `... |
ustelimasn 23282 | Any point ` A ` is near en... |
ustneism 23283 | For a point ` A ` in ` X `... |
elrnust 23284 | First direction for ~ ustb... |
ustbas2 23285 | Second direction for ~ ust... |
ustuni 23286 | The set union of a uniform... |
ustbas 23287 | Recover the base of an uni... |
ustimasn 23288 | Lemma for ~ ustuqtop . (C... |
trust 23289 | The trace of a uniform str... |
utopval 23292 | The topology induced by a ... |
elutop 23293 | Open sets in the topology ... |
utoptop 23294 | The topology induced by a ... |
utopbas 23295 | The base of the topology i... |
utoptopon 23296 | Topology induced by a unif... |
restutop 23297 | Restriction of a topology ... |
restutopopn 23298 | The restriction of the top... |
ustuqtoplem 23299 | Lemma for ~ ustuqtop . (C... |
ustuqtop0 23300 | Lemma for ~ ustuqtop . (C... |
ustuqtop1 23301 | Lemma for ~ ustuqtop , sim... |
ustuqtop2 23302 | Lemma for ~ ustuqtop . (C... |
ustuqtop3 23303 | Lemma for ~ ustuqtop , sim... |
ustuqtop4 23304 | Lemma for ~ ustuqtop . (C... |
ustuqtop5 23305 | Lemma for ~ ustuqtop . (C... |
ustuqtop 23306 | For a given uniform struct... |
utopsnneiplem 23307 | The neighborhoods of a poi... |
utopsnneip 23308 | The neighborhoods of a poi... |
utopsnnei 23309 | Images of singletons by en... |
utop2nei 23310 | For any symmetrical entour... |
utop3cls 23311 | Relation between a topolog... |
utopreg 23312 | All Hausdorff uniform spac... |
ussval 23319 | The uniform structure on u... |
ussid 23320 | In case the base of the ` ... |
isusp 23321 | The predicate ` W ` is a u... |
ressuss 23322 | Value of the uniform struc... |
ressust 23323 | The uniform structure of a... |
ressusp 23324 | The restriction of a unifo... |
tusval 23325 | The value of the uniform s... |
tuslem 23326 | Lemma for ~ tusbas , ~ tus... |
tuslemOLD 23327 | Obsolete proof of ~ tuslem... |
tusbas 23328 | The base set of a construc... |
tusunif 23329 | The uniform structure of a... |
tususs 23330 | The uniform structure of a... |
tustopn 23331 | The topology induced by a ... |
tususp 23332 | A constructed uniform spac... |
tustps 23333 | A constructed uniform spac... |
uspreg 23334 | If a uniform space is Haus... |
ucnval 23337 | The set of all uniformly c... |
isucn 23338 | The predicate " ` F ` is a... |
isucn2 23339 | The predicate " ` F ` is a... |
ucnimalem 23340 | Reformulate the ` G ` func... |
ucnima 23341 | An equivalent statement of... |
ucnprima 23342 | The preimage by a uniforml... |
iducn 23343 | The identity is uniformly ... |
cstucnd 23344 | A constant function is uni... |
ucncn 23345 | Uniform continuity implies... |
iscfilu 23348 | The predicate " ` F ` is a... |
cfilufbas 23349 | A Cauchy filter base is a ... |
cfiluexsm 23350 | For a Cauchy filter base a... |
fmucndlem 23351 | Lemma for ~ fmucnd . (Con... |
fmucnd 23352 | The image of a Cauchy filt... |
cfilufg 23353 | The filter generated by a ... |
trcfilu 23354 | Condition for the trace of... |
cfiluweak 23355 | A Cauchy filter base is al... |
neipcfilu 23356 | In an uniform space, a nei... |
iscusp 23359 | The predicate " ` W ` is a... |
cuspusp 23360 | A complete uniform space i... |
cuspcvg 23361 | In a complete uniform spac... |
iscusp2 23362 | The predicate " ` W ` is a... |
cnextucn 23363 | Extension by continuity. ... |
ucnextcn 23364 | Extension by continuity. ... |
ispsmet 23365 | Express the predicate " ` ... |
psmetdmdm 23366 | Recover the base set from ... |
psmetf 23367 | The distance function of a... |
psmetcl 23368 | Closure of the distance fu... |
psmet0 23369 | The distance function of a... |
psmettri2 23370 | Triangle inequality for th... |
psmetsym 23371 | The distance function of a... |
psmettri 23372 | Triangle inequality for th... |
psmetge0 23373 | The distance function of a... |
psmetxrge0 23374 | The distance function of a... |
psmetres2 23375 | Restriction of a pseudomet... |
psmetlecl 23376 | Real closure of an extende... |
distspace 23377 | A set ` X ` together with ... |
ismet 23384 | Express the predicate " ` ... |
isxmet 23385 | Express the predicate " ` ... |
ismeti 23386 | Properties that determine ... |
isxmetd 23387 | Properties that determine ... |
isxmet2d 23388 | It is safe to only require... |
metflem 23389 | Lemma for ~ metf and other... |
xmetf 23390 | Mapping of the distance fu... |
metf 23391 | Mapping of the distance fu... |
xmetcl 23392 | Closure of the distance fu... |
metcl 23393 | Closure of the distance fu... |
ismet2 23394 | An extended metric is a me... |
metxmet 23395 | A metric is an extended me... |
xmetdmdm 23396 | Recover the base set from ... |
metdmdm 23397 | Recover the base set from ... |
xmetunirn 23398 | Two ways to express an ext... |
xmeteq0 23399 | The value of an extended m... |
meteq0 23400 | The value of a metric is z... |
xmettri2 23401 | Triangle inequality for th... |
mettri2 23402 | Triangle inequality for th... |
xmet0 23403 | The distance function of a... |
met0 23404 | The distance function of a... |
xmetge0 23405 | The distance function of a... |
metge0 23406 | The distance function of a... |
xmetlecl 23407 | Real closure of an extende... |
xmetsym 23408 | The distance function of a... |
xmetpsmet 23409 | An extended metric is a ps... |
xmettpos 23410 | The distance function of a... |
metsym 23411 | The distance function of a... |
xmettri 23412 | Triangle inequality for th... |
mettri 23413 | Triangle inequality for th... |
xmettri3 23414 | Triangle inequality for th... |
mettri3 23415 | Triangle inequality for th... |
xmetrtri 23416 | One half of the reverse tr... |
xmetrtri2 23417 | The reverse triangle inequ... |
metrtri 23418 | Reverse triangle inequalit... |
xmetgt0 23419 | The distance function of a... |
metgt0 23420 | The distance function of a... |
metn0 23421 | A metric space is nonempty... |
xmetres2 23422 | Restriction of an extended... |
metreslem 23423 | Lemma for ~ metres . (Con... |
metres2 23424 | Lemma for ~ metres . (Con... |
xmetres 23425 | A restriction of an extend... |
metres 23426 | A restriction of a metric ... |
0met 23427 | The empty metric. (Contri... |
prdsdsf 23428 | The product metric is a fu... |
prdsxmetlem 23429 | The product metric is an e... |
prdsxmet 23430 | The product metric is an e... |
prdsmet 23431 | The product metric is a me... |
ressprdsds 23432 | Restriction of a product m... |
resspwsds 23433 | Restriction of a power met... |
imasdsf1olem 23434 | Lemma for ~ imasdsf1o . (... |
imasdsf1o 23435 | The distance function is t... |
imasf1oxmet 23436 | The image of an extended m... |
imasf1omet 23437 | The image of a metric is a... |
xpsdsfn 23438 | Closure of the metric in a... |
xpsdsfn2 23439 | Closure of the metric in a... |
xpsxmetlem 23440 | Lemma for ~ xpsxmet . (Co... |
xpsxmet 23441 | A product metric of extend... |
xpsdsval 23442 | Value of the metric in a b... |
xpsmet 23443 | The direct product of two ... |
blfvalps 23444 | The value of the ball func... |
blfval 23445 | The value of the ball func... |
blvalps 23446 | The ball around a point ` ... |
blval 23447 | The ball around a point ` ... |
elblps 23448 | Membership in a ball. (Co... |
elbl 23449 | Membership in a ball. (Co... |
elbl2ps 23450 | Membership in a ball. (Co... |
elbl2 23451 | Membership in a ball. (Co... |
elbl3ps 23452 | Membership in a ball, with... |
elbl3 23453 | Membership in a ball, with... |
blcomps 23454 | Commute the arguments to t... |
blcom 23455 | Commute the arguments to t... |
xblpnfps 23456 | The infinity ball in an ex... |
xblpnf 23457 | The infinity ball in an ex... |
blpnf 23458 | The infinity ball in a sta... |
bldisj 23459 | Two balls are disjoint if ... |
blgt0 23460 | A nonempty ball implies th... |
bl2in 23461 | Two balls are disjoint if ... |
xblss2ps 23462 | One ball is contained in a... |
xblss2 23463 | One ball is contained in a... |
blss2ps 23464 | One ball is contained in a... |
blss2 23465 | One ball is contained in a... |
blhalf 23466 | A ball of radius ` R / 2 `... |
blfps 23467 | Mapping of a ball. (Contr... |
blf 23468 | Mapping of a ball. (Contr... |
blrnps 23469 | Membership in the range of... |
blrn 23470 | Membership in the range of... |
xblcntrps 23471 | A ball contains its center... |
xblcntr 23472 | A ball contains its center... |
blcntrps 23473 | A ball contains its center... |
blcntr 23474 | A ball contains its center... |
xbln0 23475 | A ball is nonempty iff the... |
bln0 23476 | A ball is not empty. (Con... |
blelrnps 23477 | A ball belongs to the set ... |
blelrn 23478 | A ball belongs to the set ... |
blssm 23479 | A ball is a subset of the ... |
unirnblps 23480 | The union of the set of ba... |
unirnbl 23481 | The union of the set of ba... |
blin 23482 | The intersection of two ba... |
ssblps 23483 | The size of a ball increas... |
ssbl 23484 | The size of a ball increas... |
blssps 23485 | Any point ` P ` in a ball ... |
blss 23486 | Any point ` P ` in a ball ... |
blssexps 23487 | Two ways to express the ex... |
blssex 23488 | Two ways to express the ex... |
ssblex 23489 | A nested ball exists whose... |
blin2 23490 | Given any two balls and a ... |
blbas 23491 | The balls of a metric spac... |
blres 23492 | A ball in a restricted met... |
xmeterval 23493 | Value of the "finitely sep... |
xmeter 23494 | The "finitely separated" r... |
xmetec 23495 | The equivalence classes un... |
blssec 23496 | A ball centered at ` P ` i... |
blpnfctr 23497 | The infinity ball in an ex... |
xmetresbl 23498 | An extended metric restric... |
mopnval 23499 | An open set is a subset of... |
mopntopon 23500 | The set of open sets of a ... |
mopntop 23501 | The set of open sets of a ... |
mopnuni 23502 | The union of all open sets... |
elmopn 23503 | The defining property of a... |
mopnfss 23504 | The family of open sets of... |
mopnm 23505 | The base set of a metric s... |
elmopn2 23506 | A defining property of an ... |
mopnss 23507 | An open set of a metric sp... |
isxms 23508 | Express the predicate " ` ... |
isxms2 23509 | Express the predicate " ` ... |
isms 23510 | Express the predicate " ` ... |
isms2 23511 | Express the predicate " ` ... |
xmstopn 23512 | The topology component of ... |
mstopn 23513 | The topology component of ... |
xmstps 23514 | An extended metric space i... |
msxms 23515 | A metric space is an exten... |
mstps 23516 | A metric space is a topolo... |
xmsxmet 23517 | The distance function, sui... |
msmet 23518 | The distance function, sui... |
msf 23519 | The distance function of a... |
xmsxmet2 23520 | The distance function, sui... |
msmet2 23521 | The distance function, sui... |
mscl 23522 | Closure of the distance fu... |
xmscl 23523 | Closure of the distance fu... |
xmsge0 23524 | The distance function in a... |
xmseq0 23525 | The distance between two p... |
xmssym 23526 | The distance function in a... |
xmstri2 23527 | Triangle inequality for th... |
mstri2 23528 | Triangle inequality for th... |
xmstri 23529 | Triangle inequality for th... |
mstri 23530 | Triangle inequality for th... |
xmstri3 23531 | Triangle inequality for th... |
mstri3 23532 | Triangle inequality for th... |
msrtri 23533 | Reverse triangle inequalit... |
xmspropd 23534 | Property deduction for an ... |
mspropd 23535 | Property deduction for a m... |
setsmsbas 23536 | The base set of a construc... |
setsmsds 23537 | The distance function of a... |
setsmstset 23538 | The topology of a construc... |
setsmstopn 23539 | The topology of a construc... |
setsxms 23540 | The constructed metric spa... |
setsms 23541 | The constructed metric spa... |
tmsval 23542 | For any metric there is an... |
tmslem 23543 | Lemma for ~ tmsbas , ~ tms... |
tmslemOLD 23544 | Obsolete version of ~ tmsl... |
tmsbas 23545 | The base set of a construc... |
tmsds 23546 | The metric of a constructe... |
tmstopn 23547 | The topology of a construc... |
tmsxms 23548 | The constructed metric spa... |
tmsms 23549 | The constructed metric spa... |
imasf1obl 23550 | The image of a metric spac... |
imasf1oxms 23551 | The image of a metric spac... |
imasf1oms 23552 | The image of a metric spac... |
prdsbl 23553 | A ball in the product metr... |
mopni 23554 | An open set of a metric sp... |
mopni2 23555 | An open set of a metric sp... |
mopni3 23556 | An open set of a metric sp... |
blssopn 23557 | The balls of a metric spac... |
unimopn 23558 | The union of a collection ... |
mopnin 23559 | The intersection of two op... |
mopn0 23560 | The empty set is an open s... |
rnblopn 23561 | A ball of a metric space i... |
blopn 23562 | A ball of a metric space i... |
neibl 23563 | The neighborhoods around a... |
blnei 23564 | A ball around a point is a... |
lpbl 23565 | Every ball around a limit ... |
blsscls2 23566 | A smaller closed ball is c... |
blcld 23567 | A "closed ball" in a metri... |
blcls 23568 | The closure of an open bal... |
blsscls 23569 | If two concentric balls ha... |
metss 23570 | Two ways of saying that me... |
metequiv 23571 | Two ways of saying that tw... |
metequiv2 23572 | If there is a sequence of ... |
metss2lem 23573 | Lemma for ~ metss2 . (Con... |
metss2 23574 | If the metric ` D ` is "st... |
comet 23575 | The composition of an exte... |
stdbdmetval 23576 | Value of the standard boun... |
stdbdxmet 23577 | The standard bounded metri... |
stdbdmet 23578 | The standard bounded metri... |
stdbdbl 23579 | The standard bounded metri... |
stdbdmopn 23580 | The standard bounded metri... |
mopnex 23581 | The topology generated by ... |
methaus 23582 | The topology generated by ... |
met1stc 23583 | The topology generated by ... |
met2ndci 23584 | A separable metric space (... |
met2ndc 23585 | A metric space is second-c... |
metrest 23586 | Two alternate formulations... |
ressxms 23587 | The restriction of a metri... |
ressms 23588 | The restriction of a metri... |
prdsmslem1 23589 | Lemma for ~ prdsms . The ... |
prdsxmslem1 23590 | Lemma for ~ prdsms . The ... |
prdsxmslem2 23591 | Lemma for ~ prdsxms . The... |
prdsxms 23592 | The indexed product struct... |
prdsms 23593 | The indexed product struct... |
pwsxms 23594 | A power of an extended met... |
pwsms 23595 | A power of a metric space ... |
xpsxms 23596 | A binary product of metric... |
xpsms 23597 | A binary product of metric... |
tmsxps 23598 | Express the product of two... |
tmsxpsmopn 23599 | Express the product of two... |
tmsxpsval 23600 | Value of the product of tw... |
tmsxpsval2 23601 | Value of the product of tw... |
metcnp3 23602 | Two ways to express that `... |
metcnp 23603 | Two ways to say a mapping ... |
metcnp2 23604 | Two ways to say a mapping ... |
metcn 23605 | Two ways to say a mapping ... |
metcnpi 23606 | Epsilon-delta property of ... |
metcnpi2 23607 | Epsilon-delta property of ... |
metcnpi3 23608 | Epsilon-delta property of ... |
txmetcnp 23609 | Continuity of a binary ope... |
txmetcn 23610 | Continuity of a binary ope... |
metuval 23611 | Value of the uniform struc... |
metustel 23612 | Define a filter base ` F `... |
metustss 23613 | Range of the elements of t... |
metustrel 23614 | Elements of the filter bas... |
metustto 23615 | Any two elements of the fi... |
metustid 23616 | The identity diagonal is i... |
metustsym 23617 | Elements of the filter bas... |
metustexhalf 23618 | For any element ` A ` of t... |
metustfbas 23619 | The filter base generated ... |
metust 23620 | The uniform structure gene... |
cfilucfil 23621 | Given a metric ` D ` and a... |
metuust 23622 | The uniform structure gene... |
cfilucfil2 23623 | Given a metric ` D ` and a... |
blval2 23624 | The ball around a point ` ... |
elbl4 23625 | Membership in a ball, alte... |
metuel 23626 | Elementhood in the uniform... |
metuel2 23627 | Elementhood in the uniform... |
metustbl 23628 | The "section" image of an ... |
psmetutop 23629 | The topology induced by a ... |
xmetutop 23630 | The topology induced by a ... |
xmsusp 23631 | If the uniform set of a me... |
restmetu 23632 | The uniform structure gene... |
metucn 23633 | Uniform continuity in metr... |
dscmet 23634 | The discrete metric on any... |
dscopn 23635 | The discrete metric genera... |
nrmmetd 23636 | Show that a group norm gen... |
abvmet 23637 | An absolute value ` F ` ge... |
nmfval 23650 | The value of the norm func... |
nmval 23651 | The value of the norm as t... |
nmfval0 23652 | The value of the norm func... |
nmfval2 23653 | The value of the norm func... |
nmval2 23654 | The value of the norm on a... |
nmf2 23655 | The norm on a metric group... |
nmpropd 23656 | Weak property deduction fo... |
nmpropd2 23657 | Strong property deduction ... |
isngp 23658 | The property of being a no... |
isngp2 23659 | The property of being a no... |
isngp3 23660 | The property of being a no... |
ngpgrp 23661 | A normed group is a group.... |
ngpms 23662 | A normed group is a metric... |
ngpxms 23663 | A normed group is an exten... |
ngptps 23664 | A normed group is a topolo... |
ngpmet 23665 | The (induced) metric of a ... |
ngpds 23666 | Value of the distance func... |
ngpdsr 23667 | Value of the distance func... |
ngpds2 23668 | Write the distance between... |
ngpds2r 23669 | Write the distance between... |
ngpds3 23670 | Write the distance between... |
ngpds3r 23671 | Write the distance between... |
ngprcan 23672 | Cancel right addition insi... |
ngplcan 23673 | Cancel left addition insid... |
isngp4 23674 | Express the property of be... |
ngpinvds 23675 | Two elements are the same ... |
ngpsubcan 23676 | Cancel right subtraction i... |
nmf 23677 | The norm on a normed group... |
nmcl 23678 | The norm of a normed group... |
nmge0 23679 | The norm of a normed group... |
nmeq0 23680 | The identity is the only e... |
nmne0 23681 | The norm of a nonzero elem... |
nmrpcl 23682 | The norm of a nonzero elem... |
nminv 23683 | The norm of a negated elem... |
nmmtri 23684 | The triangle inequality fo... |
nmsub 23685 | The norm of the difference... |
nmrtri 23686 | Reverse triangle inequalit... |
nm2dif 23687 | Inequality for the differe... |
nmtri 23688 | The triangle inequality fo... |
nmtri2 23689 | Triangle inequality for th... |
ngpi 23690 | The properties of a normed... |
nm0 23691 | Norm of the identity eleme... |
nmgt0 23692 | The norm of a nonzero elem... |
sgrim 23693 | The induced metric on a su... |
sgrimval 23694 | The induced metric on a su... |
subgnm 23695 | The norm in a subgroup. (... |
subgnm2 23696 | A substructure assigns the... |
subgngp 23697 | A normed group restricted ... |
ngptgp 23698 | A normed abelian group is ... |
ngppropd 23699 | Property deduction for a n... |
reldmtng 23700 | The function ` toNrmGrp ` ... |
tngval 23701 | Value of the function whic... |
tnglem 23702 | Lemma for ~ tngbas and sim... |
tnglemOLD 23703 | Obsolete version of ~ tngl... |
tngbas 23704 | The base set of a structur... |
tngbasOLD 23705 | Obsolete proof of ~ tngbas... |
tngplusg 23706 | The group addition of a st... |
tngplusgOLD 23707 | Obsolete proof of ~ tngplu... |
tng0 23708 | The group identity of a st... |
tngmulr 23709 | The ring multiplication of... |
tngmulrOLD 23710 | Obsolete proof of ~ tngmul... |
tngsca 23711 | The scalar ring of a struc... |
tngscaOLD 23712 | Obsolete proof of ~ tngsca... |
tngvsca 23713 | The scalar multiplication ... |
tngvscaOLD 23714 | Obsolete proof of ~ tngvsc... |
tngip 23715 | The inner product operatio... |
tngipOLD 23716 | Obsolete proof of ~ tngip ... |
tngds 23717 | The metric function of a s... |
tngdsOLD 23718 | Obsolete proof of ~ tngds ... |
tngtset 23719 | The topology generated by ... |
tngtopn 23720 | The topology generated by ... |
tngnm 23721 | The topology generated by ... |
tngngp2 23722 | A norm turns a group into ... |
tngngpd 23723 | Derive the axioms for a no... |
tngngp 23724 | Derive the axioms for a no... |
tnggrpr 23725 | If a structure equipped wi... |
tngngp3 23726 | Alternate definition of a ... |
nrmtngdist 23727 | The augmentation of a norm... |
nrmtngnrm 23728 | The augmentation of a norm... |
tngngpim 23729 | The induced metric of a no... |
isnrg 23730 | A normed ring is a ring wi... |
nrgabv 23731 | The norm of a normed ring ... |
nrgngp 23732 | A normed ring is a normed ... |
nrgring 23733 | A normed ring is a ring. ... |
nmmul 23734 | The norm of a product in a... |
nrgdsdi 23735 | Distribute a distance calc... |
nrgdsdir 23736 | Distribute a distance calc... |
nm1 23737 | The norm of one in a nonze... |
unitnmn0 23738 | The norm of a unit is nonz... |
nminvr 23739 | The norm of an inverse in ... |
nmdvr 23740 | The norm of a division in ... |
nrgdomn 23741 | A nonzero normed ring is a... |
nrgtgp 23742 | A normed ring is a topolog... |
subrgnrg 23743 | A normed ring restricted t... |
tngnrg 23744 | Given any absolute value o... |
isnlm 23745 | A normed (left) module is ... |
nmvs 23746 | Defining property of a nor... |
nlmngp 23747 | A normed module is a norme... |
nlmlmod 23748 | A normed module is a left ... |
nlmnrg 23749 | The scalar component of a ... |
nlmngp2 23750 | The scalar component of a ... |
nlmdsdi 23751 | Distribute a distance calc... |
nlmdsdir 23752 | Distribute a distance calc... |
nlmmul0or 23753 | If a scalar product is zer... |
sranlm 23754 | The subring algebra over a... |
nlmvscnlem2 23755 | Lemma for ~ nlmvscn . Com... |
nlmvscnlem1 23756 | Lemma for ~ nlmvscn . (Co... |
nlmvscn 23757 | The scalar multiplication ... |
rlmnlm 23758 | The ring module over a nor... |
rlmnm 23759 | The norm function in the r... |
nrgtrg 23760 | A normed ring is a topolog... |
nrginvrcnlem 23761 | Lemma for ~ nrginvrcn . C... |
nrginvrcn 23762 | The ring inverse function ... |
nrgtdrg 23763 | A normed division ring is ... |
nlmtlm 23764 | A normed module is a topol... |
isnvc 23765 | A normed vector space is j... |
nvcnlm 23766 | A normed vector space is a... |
nvclvec 23767 | A normed vector space is a... |
nvclmod 23768 | A normed vector space is a... |
isnvc2 23769 | A normed vector space is j... |
nvctvc 23770 | A normed vector space is a... |
lssnlm 23771 | A subspace of a normed mod... |
lssnvc 23772 | A subspace of a normed vec... |
rlmnvc 23773 | The ring module over a nor... |
ngpocelbl 23774 | Membership of an off-cente... |
nmoffn 23781 | The function producing ope... |
reldmnghm 23782 | Lemma for normed group hom... |
reldmnmhm 23783 | Lemma for module homomorph... |
nmofval 23784 | Value of the operator norm... |
nmoval 23785 | Value of the operator norm... |
nmogelb 23786 | Property of the operator n... |
nmolb 23787 | Any upper bound on the val... |
nmolb2d 23788 | Any upper bound on the val... |
nmof 23789 | The operator norm is a fun... |
nmocl 23790 | The operator norm of an op... |
nmoge0 23791 | The operator norm of an op... |
nghmfval 23792 | A normed group homomorphis... |
isnghm 23793 | A normed group homomorphis... |
isnghm2 23794 | A normed group homomorphis... |
isnghm3 23795 | A normed group homomorphis... |
bddnghm 23796 | A bounded group homomorphi... |
nghmcl 23797 | A normed group homomorphis... |
nmoi 23798 | The operator norm achieves... |
nmoix 23799 | The operator norm is a bou... |
nmoi2 23800 | The operator norm is a bou... |
nmoleub 23801 | The operator norm, defined... |
nghmrcl1 23802 | Reverse closure for a norm... |
nghmrcl2 23803 | Reverse closure for a norm... |
nghmghm 23804 | A normed group homomorphis... |
nmo0 23805 | The operator norm of the z... |
nmoeq0 23806 | The operator norm is zero ... |
nmoco 23807 | An upper bound on the oper... |
nghmco 23808 | The composition of normed ... |
nmotri 23809 | Triangle inequality for th... |
nghmplusg 23810 | The sum of two bounded lin... |
0nghm 23811 | The zero operator is a nor... |
nmoid 23812 | The operator norm of the i... |
idnghm 23813 | The identity operator is a... |
nmods 23814 | Upper bound for the distan... |
nghmcn 23815 | A normed group homomorphis... |
isnmhm 23816 | A normed module homomorphi... |
nmhmrcl1 23817 | Reverse closure for a norm... |
nmhmrcl2 23818 | Reverse closure for a norm... |
nmhmlmhm 23819 | A normed module homomorphi... |
nmhmnghm 23820 | A normed module homomorphi... |
nmhmghm 23821 | A normed module homomorphi... |
isnmhm2 23822 | A normed module homomorphi... |
nmhmcl 23823 | A normed module homomorphi... |
idnmhm 23824 | The identity operator is a... |
0nmhm 23825 | The zero operator is a bou... |
nmhmco 23826 | The composition of bounded... |
nmhmplusg 23827 | The sum of two bounded lin... |
qtopbaslem 23828 | The set of open intervals ... |
qtopbas 23829 | The set of open intervals ... |
retopbas 23830 | A basis for the standard t... |
retop 23831 | The standard topology on t... |
uniretop 23832 | The underlying set of the ... |
retopon 23833 | The standard topology on t... |
retps 23834 | The standard topological s... |
iooretop 23835 | Open intervals are open se... |
icccld 23836 | Closed intervals are close... |
icopnfcld 23837 | Right-unbounded closed int... |
iocmnfcld 23838 | Left-unbounded closed inte... |
qdensere 23839 | ` QQ ` is dense in the sta... |
cnmetdval 23840 | Value of the distance func... |
cnmet 23841 | The absolute value metric ... |
cnxmet 23842 | The absolute value metric ... |
cnbl0 23843 | Two ways to write the open... |
cnblcld 23844 | Two ways to write the clos... |
cnfldms 23845 | The complex number field i... |
cnfldxms 23846 | The complex number field i... |
cnfldtps 23847 | The complex number field i... |
cnfldnm 23848 | The norm of the field of c... |
cnngp 23849 | The complex numbers form a... |
cnnrg 23850 | The complex numbers form a... |
cnfldtopn 23851 | The topology of the comple... |
cnfldtopon 23852 | The topology of the comple... |
cnfldtop 23853 | The topology of the comple... |
cnfldhaus 23854 | The topology of the comple... |
unicntop 23855 | The underlying set of the ... |
cnopn 23856 | The set of complex numbers... |
zringnrg 23857 | The ring of integers is a ... |
remetdval 23858 | Value of the distance func... |
remet 23859 | The absolute value metric ... |
rexmet 23860 | The absolute value metric ... |
bl2ioo 23861 | A ball in terms of an open... |
ioo2bl 23862 | An open interval of reals ... |
ioo2blex 23863 | An open interval of reals ... |
blssioo 23864 | The balls of the standard ... |
tgioo 23865 | The topology generated by ... |
qdensere2 23866 | ` QQ ` is dense in ` RR ` ... |
blcvx 23867 | An open ball in the comple... |
rehaus 23868 | The standard topology on t... |
tgqioo 23869 | The topology generated by ... |
re2ndc 23870 | The standard topology on t... |
resubmet 23871 | The subspace topology indu... |
tgioo2 23872 | The standard topology on t... |
rerest 23873 | The subspace topology indu... |
tgioo3 23874 | The standard topology on t... |
xrtgioo 23875 | The topology on the extend... |
xrrest 23876 | The subspace topology indu... |
xrrest2 23877 | The subspace topology indu... |
xrsxmet 23878 | The metric on the extended... |
xrsdsre 23879 | The metric on the extended... |
xrsblre 23880 | Any ball of the metric of ... |
xrsmopn 23881 | The metric on the extended... |
zcld 23882 | The integers are a closed ... |
recld2 23883 | The real numbers are a clo... |
zcld2 23884 | The integers are a closed ... |
zdis 23885 | The integers are a discret... |
sszcld 23886 | Every subset of the intege... |
reperflem 23887 | A subset of the real numbe... |
reperf 23888 | The real numbers are a per... |
cnperf 23889 | The complex numbers are a ... |
iccntr 23890 | The interior of a closed i... |
icccmplem1 23891 | Lemma for ~ icccmp . (Con... |
icccmplem2 23892 | Lemma for ~ icccmp . (Con... |
icccmplem3 23893 | Lemma for ~ icccmp . (Con... |
icccmp 23894 | A closed interval in ` RR ... |
reconnlem1 23895 | Lemma for ~ reconn . Conn... |
reconnlem2 23896 | Lemma for ~ reconn . (Con... |
reconn 23897 | A subset of the reals is c... |
retopconn 23898 | Corollary of ~ reconn . T... |
iccconn 23899 | A closed interval is conne... |
opnreen 23900 | Every nonempty open set is... |
rectbntr0 23901 | A countable subset of the ... |
xrge0gsumle 23902 | A finite sum in the nonneg... |
xrge0tsms 23903 | Any finite or infinite sum... |
xrge0tsms2 23904 | Any finite or infinite sum... |
metdcnlem 23905 | The metric function of a m... |
xmetdcn2 23906 | The metric function of an ... |
xmetdcn 23907 | The metric function of an ... |
metdcn2 23908 | The metric function of a m... |
metdcn 23909 | The metric function of a m... |
msdcn 23910 | The metric function of a m... |
cnmpt1ds 23911 | Continuity of the metric f... |
cnmpt2ds 23912 | Continuity of the metric f... |
nmcn 23913 | The norm of a normed group... |
ngnmcncn 23914 | The norm of a normed group... |
abscn 23915 | The absolute value functio... |
metdsval 23916 | Value of the "distance to ... |
metdsf 23917 | The distance from a point ... |
metdsge 23918 | The distance from the poin... |
metds0 23919 | If a point is in a set, it... |
metdstri 23920 | A generalization of the tr... |
metdsle 23921 | The distance from a point ... |
metdsre 23922 | The distance from a point ... |
metdseq0 23923 | The distance from a point ... |
metdscnlem 23924 | Lemma for ~ metdscn . (Co... |
metdscn 23925 | The function ` F ` which g... |
metdscn2 23926 | The function ` F ` which g... |
metnrmlem1a 23927 | Lemma for ~ metnrm . (Con... |
metnrmlem1 23928 | Lemma for ~ metnrm . (Con... |
metnrmlem2 23929 | Lemma for ~ metnrm . (Con... |
metnrmlem3 23930 | Lemma for ~ metnrm . (Con... |
metnrm 23931 | A metric space is normal. ... |
metreg 23932 | A metric space is regular.... |
addcnlem 23933 | Lemma for ~ addcn , ~ subc... |
addcn 23934 | Complex number addition is... |
subcn 23935 | Complex number subtraction... |
mulcn 23936 | Complex number multiplicat... |
divcn 23937 | Complex number division is... |
cnfldtgp 23938 | The complex numbers form a... |
fsumcn 23939 | A finite sum of functions ... |
fsum2cn 23940 | Version of ~ fsumcn for tw... |
expcn 23941 | The power function on comp... |
divccn 23942 | Division by a nonzero cons... |
sqcn 23943 | The square function on com... |
iitopon 23948 | The unit interval is a top... |
iitop 23949 | The unit interval is a top... |
iiuni 23950 | The base set of the unit i... |
dfii2 23951 | Alternate definition of th... |
dfii3 23952 | Alternate definition of th... |
dfii4 23953 | Alternate definition of th... |
dfii5 23954 | The unit interval expresse... |
iicmp 23955 | The unit interval is compa... |
iiconn 23956 | The unit interval is conne... |
cncfval 23957 | The value of the continuou... |
elcncf 23958 | Membership in the set of c... |
elcncf2 23959 | Version of ~ elcncf with a... |
cncfrss 23960 | Reverse closure of the con... |
cncfrss2 23961 | Reverse closure of the con... |
cncff 23962 | A continuous complex funct... |
cncfi 23963 | Defining property of a con... |
elcncf1di 23964 | Membership in the set of c... |
elcncf1ii 23965 | Membership in the set of c... |
rescncf 23966 | A continuous complex funct... |
cncffvrn 23967 | Change the codomain of a c... |
cncfss 23968 | The set of continuous func... |
climcncf 23969 | Image of a limit under a c... |
abscncf 23970 | Absolute value is continuo... |
recncf 23971 | Real part is continuous. ... |
imcncf 23972 | Imaginary part is continuo... |
cjcncf 23973 | Complex conjugate is conti... |
mulc1cncf 23974 | Multiplication by a consta... |
divccncf 23975 | Division by a constant is ... |
cncfco 23976 | The composition of two con... |
cncfcompt2 23977 | Composition of continuous ... |
cncfmet 23978 | Relate complex function co... |
cncfcn 23979 | Relate complex function co... |
cncfcn1 23980 | Relate complex function co... |
cncfmptc 23981 | A constant function is a c... |
cncfmptid 23982 | The identity function is a... |
cncfmpt1f 23983 | Composition of continuous ... |
cncfmpt2f 23984 | Composition of continuous ... |
cncfmpt2ss 23985 | Composition of continuous ... |
addccncf 23986 | Adding a constant is a con... |
idcncf 23987 | The identity function is a... |
sub1cncf 23988 | Subtracting a constant is ... |
sub2cncf 23989 | Subtraction from a constan... |
cdivcncf 23990 | Division with a constant n... |
negcncf 23991 | The negative function is c... |
negfcncf 23992 | The negative of a continuo... |
abscncfALT 23993 | Absolute value is continuo... |
cncfcnvcn 23994 | Rewrite ~ cmphaushmeo for ... |
expcncf 23995 | The power function on comp... |
cnmptre 23996 | Lemma for ~ iirevcn and re... |
cnmpopc 23997 | Piecewise definition of a ... |
iirev 23998 | Reverse the unit interval.... |
iirevcn 23999 | The reversion function is ... |
iihalf1 24000 | Map the first half of ` II... |
iihalf1cn 24001 | The first half function is... |
iihalf2 24002 | Map the second half of ` I... |
iihalf2cn 24003 | The second half function i... |
elii1 24004 | Divide the unit interval i... |
elii2 24005 | Divide the unit interval i... |
iimulcl 24006 | The unit interval is close... |
iimulcn 24007 | Multiplication is a contin... |
icoopnst 24008 | A half-open interval start... |
iocopnst 24009 | A half-open interval endin... |
icchmeo 24010 | The natural bijection from... |
icopnfcnv 24011 | Define a bijection from ` ... |
icopnfhmeo 24012 | The defined bijection from... |
iccpnfcnv 24013 | Define a bijection from ` ... |
iccpnfhmeo 24014 | The defined bijection from... |
xrhmeo 24015 | The bijection from ` [ -u ... |
xrhmph 24016 | The extended reals are hom... |
xrcmp 24017 | The topology of the extend... |
xrconn 24018 | The topology of the extend... |
icccvx 24019 | A linear combination of tw... |
oprpiece1res1 24020 | Restriction to the first p... |
oprpiece1res2 24021 | Restriction to the second ... |
cnrehmeo 24022 | The canonical bijection fr... |
cnheiborlem 24023 | Lemma for ~ cnheibor . (C... |
cnheibor 24024 | Heine-Borel theorem for co... |
cnllycmp 24025 | The topology on the comple... |
rellycmp 24026 | The topology on the reals ... |
bndth 24027 | The Boundedness Theorem. ... |
evth 24028 | The Extreme Value Theorem.... |
evth2 24029 | The Extreme Value Theorem,... |
lebnumlem1 24030 | Lemma for ~ lebnum . The ... |
lebnumlem2 24031 | Lemma for ~ lebnum . As a... |
lebnumlem3 24032 | Lemma for ~ lebnum . By t... |
lebnum 24033 | The Lebesgue number lemma,... |
xlebnum 24034 | Generalize ~ lebnum to ext... |
lebnumii 24035 | Specialize the Lebesgue nu... |
ishtpy 24041 | Membership in the class of... |
htpycn 24042 | A homotopy is a continuous... |
htpyi 24043 | A homotopy evaluated at it... |
ishtpyd 24044 | Deduction for membership i... |
htpycom 24045 | Given a homotopy from ` F ... |
htpyid 24046 | A homotopy from a function... |
htpyco1 24047 | Compose a homotopy with a ... |
htpyco2 24048 | Compose a homotopy with a ... |
htpycc 24049 | Concatenate two homotopies... |
isphtpy 24050 | Membership in the class of... |
phtpyhtpy 24051 | A path homotopy is a homot... |
phtpycn 24052 | A path homotopy is a conti... |
phtpyi 24053 | Membership in the class of... |
phtpy01 24054 | Two path-homotopic paths h... |
isphtpyd 24055 | Deduction for membership i... |
isphtpy2d 24056 | Deduction for membership i... |
phtpycom 24057 | Given a homotopy from ` F ... |
phtpyid 24058 | A homotopy from a path to ... |
phtpyco2 24059 | Compose a path homotopy wi... |
phtpycc 24060 | Concatenate two path homot... |
phtpcrel 24062 | The path homotopy relation... |
isphtpc 24063 | The relation "is path homo... |
phtpcer 24064 | Path homotopy is an equiva... |
phtpc01 24065 | Path homotopic paths have ... |
reparphti 24066 | Lemma for ~ reparpht . (C... |
reparpht 24067 | Reparametrization lemma. ... |
phtpcco2 24068 | Compose a path homotopy wi... |
pcofval 24079 | The value of the path conc... |
pcoval 24080 | The concatenation of two p... |
pcovalg 24081 | Evaluate the concatenation... |
pcoval1 24082 | Evaluate the concatenation... |
pco0 24083 | The starting point of a pa... |
pco1 24084 | The ending point of a path... |
pcoval2 24085 | Evaluate the concatenation... |
pcocn 24086 | The concatenation of two p... |
copco 24087 | The composition of a conca... |
pcohtpylem 24088 | Lemma for ~ pcohtpy . (Co... |
pcohtpy 24089 | Homotopy invariance of pat... |
pcoptcl 24090 | A constant function is a p... |
pcopt 24091 | Concatenation with a point... |
pcopt2 24092 | Concatenation with a point... |
pcoass 24093 | Order of concatenation doe... |
pcorevcl 24094 | Closure for a reversed pat... |
pcorevlem 24095 | Lemma for ~ pcorev . Prov... |
pcorev 24096 | Concatenation with the rev... |
pcorev2 24097 | Concatenation with the rev... |
pcophtb 24098 | The path homotopy equivale... |
om1val 24099 | The definition of the loop... |
om1bas 24100 | The base set of the loop s... |
om1elbas 24101 | Elementhood in the base se... |
om1addcl 24102 | Closure of the group opera... |
om1plusg 24103 | The group operation (which... |
om1tset 24104 | The topology of the loop s... |
om1opn 24105 | The topology of the loop s... |
pi1val 24106 | The definition of the fund... |
pi1bas 24107 | The base set of the fundam... |
pi1blem 24108 | Lemma for ~ pi1buni . (Co... |
pi1buni 24109 | Another way to write the l... |
pi1bas2 24110 | The base set of the fundam... |
pi1eluni 24111 | Elementhood in the base se... |
pi1bas3 24112 | The base set of the fundam... |
pi1cpbl 24113 | The group operation, loop ... |
elpi1 24114 | The elements of the fundam... |
elpi1i 24115 | The elements of the fundam... |
pi1addf 24116 | The group operation of ` p... |
pi1addval 24117 | The concatenation of two p... |
pi1grplem 24118 | Lemma for ~ pi1grp . (Con... |
pi1grp 24119 | The fundamental group is a... |
pi1id 24120 | The identity element of th... |
pi1inv 24121 | An inverse in the fundamen... |
pi1xfrf 24122 | Functionality of the loop ... |
pi1xfrval 24123 | The value of the loop tran... |
pi1xfr 24124 | Given a path ` F ` and its... |
pi1xfrcnvlem 24125 | Given a path ` F ` between... |
pi1xfrcnv 24126 | Given a path ` F ` between... |
pi1xfrgim 24127 | The mapping ` G ` between ... |
pi1cof 24128 | Functionality of the loop ... |
pi1coval 24129 | The value of the loop tran... |
pi1coghm 24130 | The mapping ` G ` between ... |
isclm 24133 | A subcomplex module is a l... |
clmsca 24134 | The ring of scalars ` F ` ... |
clmsubrg 24135 | The base set of the ring o... |
clmlmod 24136 | A subcomplex module is a l... |
clmgrp 24137 | A subcomplex module is an ... |
clmabl 24138 | A subcomplex module is an ... |
clmring 24139 | The scalar ring of a subco... |
clmfgrp 24140 | The scalar ring of a subco... |
clm0 24141 | The zero of the scalar rin... |
clm1 24142 | The identity of the scalar... |
clmadd 24143 | The addition of the scalar... |
clmmul 24144 | The multiplication of the ... |
clmcj 24145 | The conjugation of the sca... |
isclmi 24146 | Reverse direction of ~ isc... |
clmzss 24147 | The scalar ring of a subco... |
clmsscn 24148 | The scalar ring of a subco... |
clmsub 24149 | Subtraction in the scalar ... |
clmneg 24150 | Negation in the scalar rin... |
clmneg1 24151 | Minus one is in the scalar... |
clmabs 24152 | Norm in the scalar ring of... |
clmacl 24153 | Closure of ring addition f... |
clmmcl 24154 | Closure of ring multiplica... |
clmsubcl 24155 | Closure of ring subtractio... |
lmhmclm 24156 | The domain of a linear ope... |
clmvscl 24157 | Closure of scalar product ... |
clmvsass 24158 | Associative law for scalar... |
clmvscom 24159 | Commutative law for the sc... |
clmvsdir 24160 | Distributive law for scala... |
clmvsdi 24161 | Distributive law for scala... |
clmvs1 24162 | Scalar product with ring u... |
clmvs2 24163 | A vector plus itself is tw... |
clm0vs 24164 | Zero times a vector is the... |
clmopfne 24165 | The (functionalized) opera... |
isclmp 24166 | The predicate "is a subcom... |
isclmi0 24167 | Properties that determine ... |
clmvneg1 24168 | Minus 1 times a vector is ... |
clmvsneg 24169 | Multiplication of a vector... |
clmmulg 24170 | The group multiple functio... |
clmsubdir 24171 | Scalar multiplication dist... |
clmpm1dir 24172 | Subtractive distributive l... |
clmnegneg 24173 | Double negative of a vecto... |
clmnegsubdi2 24174 | Distribution of negative o... |
clmsub4 24175 | Rearrangement of 4 terms i... |
clmvsrinv 24176 | A vector minus itself. (C... |
clmvslinv 24177 | Minus a vector plus itself... |
clmvsubval 24178 | Value of vector subtractio... |
clmvsubval2 24179 | Value of vector subtractio... |
clmvz 24180 | Two ways to express the ne... |
zlmclm 24181 | The ` ZZ ` -module operati... |
clmzlmvsca 24182 | The scalar product of a su... |
nmoleub2lem 24183 | Lemma for ~ nmoleub2a and ... |
nmoleub2lem3 24184 | Lemma for ~ nmoleub2a and ... |
nmoleub2lem2 24185 | Lemma for ~ nmoleub2a and ... |
nmoleub2a 24186 | The operator norm is the s... |
nmoleub2b 24187 | The operator norm is the s... |
nmoleub3 24188 | The operator norm is the s... |
nmhmcn 24189 | A linear operator over a n... |
cmodscexp 24190 | The powers of ` _i ` belon... |
cmodscmulexp 24191 | The scalar product of a ve... |
cvslvec 24194 | A subcomplex vector space ... |
cvsclm 24195 | A subcomplex vector space ... |
iscvs 24196 | A subcomplex vector space ... |
iscvsp 24197 | The predicate "is a subcom... |
iscvsi 24198 | Properties that determine ... |
cvsi 24199 | The properties of a subcom... |
cvsunit 24200 | Unit group of the scalar r... |
cvsdiv 24201 | Division of the scalar rin... |
cvsdivcl 24202 | The scalar field of a subc... |
cvsmuleqdivd 24203 | An equality involving rati... |
cvsdiveqd 24204 | An equality involving rati... |
cnlmodlem1 24205 | Lemma 1 for ~ cnlmod . (C... |
cnlmodlem2 24206 | Lemma 2 for ~ cnlmod . (C... |
cnlmodlem3 24207 | Lemma 3 for ~ cnlmod . (C... |
cnlmod4 24208 | Lemma 4 for ~ cnlmod . (C... |
cnlmod 24209 | The set of complex numbers... |
cnstrcvs 24210 | The set of complex numbers... |
cnrbas 24211 | The set of complex numbers... |
cnrlmod 24212 | The complex left module of... |
cnrlvec 24213 | The complex left module of... |
cncvs 24214 | The complex left module of... |
recvs 24215 | The field of the real numb... |
qcvs 24216 | The field of rational numb... |
zclmncvs 24217 | The ring of integers as le... |
isncvsngp 24218 | A normed subcomplex vector... |
isncvsngpd 24219 | Properties that determine ... |
ncvsi 24220 | The properties of a normed... |
ncvsprp 24221 | Proportionality property o... |
ncvsge0 24222 | The norm of a scalar produ... |
ncvsm1 24223 | The norm of the opposite o... |
ncvsdif 24224 | The norm of the difference... |
ncvspi 24225 | The norm of a vector plus ... |
ncvs1 24226 | From any nonzero vector of... |
cnrnvc 24227 | The module of complex numb... |
cnncvs 24228 | The module of complex numb... |
cnnm 24229 | The norm of the normed sub... |
ncvspds 24230 | Value of the distance func... |
cnindmet 24231 | The metric induced on the ... |
cnncvsaddassdemo 24232 | Derive the associative law... |
cnncvsmulassdemo 24233 | Derive the associative law... |
cnncvsabsnegdemo 24234 | Derive the absolute value ... |
iscph 24239 | A subcomplex pre-Hilbert s... |
cphphl 24240 | A subcomplex pre-Hilbert s... |
cphnlm 24241 | A subcomplex pre-Hilbert s... |
cphngp 24242 | A subcomplex pre-Hilbert s... |
cphlmod 24243 | A subcomplex pre-Hilbert s... |
cphlvec 24244 | A subcomplex pre-Hilbert s... |
cphnvc 24245 | A subcomplex pre-Hilbert s... |
cphsubrglem 24246 | Lemma for ~ cphsubrg . (C... |
cphreccllem 24247 | Lemma for ~ cphreccl . (C... |
cphsca 24248 | A subcomplex pre-Hilbert s... |
cphsubrg 24249 | The scalar field of a subc... |
cphreccl 24250 | The scalar field of a subc... |
cphdivcl 24251 | The scalar field of a subc... |
cphcjcl 24252 | The scalar field of a subc... |
cphsqrtcl 24253 | The scalar field of a subc... |
cphabscl 24254 | The scalar field of a subc... |
cphsqrtcl2 24255 | The scalar field of a subc... |
cphsqrtcl3 24256 | If the scalar field of a s... |
cphqss 24257 | The scalar field of a subc... |
cphclm 24258 | A subcomplex pre-Hilbert s... |
cphnmvs 24259 | Norm of a scalar product. ... |
cphipcl 24260 | An inner product is a memb... |
cphnmfval 24261 | The value of the norm in a... |
cphnm 24262 | The square of the norm is ... |
nmsq 24263 | The square of the norm is ... |
cphnmf 24264 | The norm of a vector is a ... |
cphnmcl 24265 | The norm of a vector is a ... |
reipcl 24266 | An inner product of an ele... |
ipge0 24267 | The inner product in a sub... |
cphipcj 24268 | Conjugate of an inner prod... |
cphipipcj 24269 | An inner product times its... |
cphorthcom 24270 | Orthogonality (meaning inn... |
cphip0l 24271 | Inner product with a zero ... |
cphip0r 24272 | Inner product with a zero ... |
cphipeq0 24273 | The inner product of a vec... |
cphdir 24274 | Distributive law for inner... |
cphdi 24275 | Distributive law for inner... |
cph2di 24276 | Distributive law for inner... |
cphsubdir 24277 | Distributive law for inner... |
cphsubdi 24278 | Distributive law for inner... |
cph2subdi 24279 | Distributive law for inner... |
cphass 24280 | Associative law for inner ... |
cphassr 24281 | "Associative" law for seco... |
cph2ass 24282 | Move scalar multiplication... |
cphassi 24283 | Associative law for the fi... |
cphassir 24284 | "Associative" law for the ... |
cphpyth 24285 | The pythagorean theorem fo... |
tcphex 24286 | Lemma for ~ tcphbas and si... |
tcphval 24287 | Define a function to augme... |
tcphbas 24288 | The base set of a subcompl... |
tchplusg 24289 | The addition operation of ... |
tcphsub 24290 | The subtraction operation ... |
tcphmulr 24291 | The ring operation of a su... |
tcphsca 24292 | The scalar field of a subc... |
tcphvsca 24293 | The scalar multiplication ... |
tcphip 24294 | The inner product of a sub... |
tcphtopn 24295 | The topology of a subcompl... |
tcphphl 24296 | Augmentation of a subcompl... |
tchnmfval 24297 | The norm of a subcomplex p... |
tcphnmval 24298 | The norm of a subcomplex p... |
cphtcphnm 24299 | The norm of a norm-augment... |
tcphds 24300 | The distance of a pre-Hilb... |
phclm 24301 | A pre-Hilbert space whose ... |
tcphcphlem3 24302 | Lemma for ~ tcphcph : real... |
ipcau2 24303 | The Cauchy-Schwarz inequal... |
tcphcphlem1 24304 | Lemma for ~ tcphcph : the ... |
tcphcphlem2 24305 | Lemma for ~ tcphcph : homo... |
tcphcph 24306 | The standard definition of... |
ipcau 24307 | The Cauchy-Schwarz inequal... |
nmparlem 24308 | Lemma for ~ nmpar . (Cont... |
nmpar 24309 | A subcomplex pre-Hilbert s... |
cphipval2 24310 | Value of the inner product... |
4cphipval2 24311 | Four times the inner produ... |
cphipval 24312 | Value of the inner product... |
ipcnlem2 24313 | The inner product operatio... |
ipcnlem1 24314 | The inner product operatio... |
ipcn 24315 | The inner product operatio... |
cnmpt1ip 24316 | Continuity of inner produc... |
cnmpt2ip 24317 | Continuity of inner produc... |
csscld 24318 | A "closed subspace" in a s... |
clsocv 24319 | The orthogonal complement ... |
cphsscph 24320 | A subspace of a subcomplex... |
lmmbr 24327 | Express the binary relatio... |
lmmbr2 24328 | Express the binary relatio... |
lmmbr3 24329 | Express the binary relatio... |
lmmcvg 24330 | Convergence property of a ... |
lmmbrf 24331 | Express the binary relatio... |
lmnn 24332 | A condition that implies c... |
cfilfval 24333 | The set of Cauchy filters ... |
iscfil 24334 | The property of being a Ca... |
iscfil2 24335 | The property of being a Ca... |
cfilfil 24336 | A Cauchy filter is a filte... |
cfili 24337 | Property of a Cauchy filte... |
cfil3i 24338 | A Cauchy filter contains b... |
cfilss 24339 | A filter finer than a Cauc... |
fgcfil 24340 | The Cauchy filter conditio... |
fmcfil 24341 | The Cauchy filter conditio... |
iscfil3 24342 | A filter is Cauchy iff it ... |
cfilfcls 24343 | Similar to ultrafilters ( ... |
caufval 24344 | The set of Cauchy sequence... |
iscau 24345 | Express the property " ` F... |
iscau2 24346 | Express the property " ` F... |
iscau3 24347 | Express the Cauchy sequenc... |
iscau4 24348 | Express the property " ` F... |
iscauf 24349 | Express the property " ` F... |
caun0 24350 | A metric with a Cauchy seq... |
caufpm 24351 | Inclusion of a Cauchy sequ... |
caucfil 24352 | A Cauchy sequence predicat... |
iscmet 24353 | The property " ` D ` is a ... |
cmetcvg 24354 | The convergence of a Cauch... |
cmetmet 24355 | A complete metric space is... |
cmetmeti 24356 | A complete metric space is... |
cmetcaulem 24357 | Lemma for ~ cmetcau . (Co... |
cmetcau 24358 | The convergence of a Cauch... |
iscmet3lem3 24359 | Lemma for ~ iscmet3 . (Co... |
iscmet3lem1 24360 | Lemma for ~ iscmet3 . (Co... |
iscmet3lem2 24361 | Lemma for ~ iscmet3 . (Co... |
iscmet3 24362 | The property " ` D ` is a ... |
iscmet2 24363 | A metric ` D ` is complete... |
cfilresi 24364 | A Cauchy filter on a metri... |
cfilres 24365 | Cauchy filter on a metric ... |
caussi 24366 | Cauchy sequence on a metri... |
causs 24367 | Cauchy sequence on a metri... |
equivcfil 24368 | If the metric ` D ` is "st... |
equivcau 24369 | If the metric ` D ` is "st... |
lmle 24370 | If the distance from each ... |
nglmle 24371 | If the norm of each member... |
lmclim 24372 | Relate a limit on the metr... |
lmclimf 24373 | Relate a limit on the metr... |
metelcls 24374 | A point belongs to the clo... |
metcld 24375 | A subset of a metric space... |
metcld2 24376 | A subset of a metric space... |
caubl 24377 | Sufficient condition to en... |
caublcls 24378 | The convergent point of a ... |
metcnp4 24379 | Two ways to say a mapping ... |
metcn4 24380 | Two ways to say a mapping ... |
iscmet3i 24381 | Properties that determine ... |
lmcau 24382 | Every convergent sequence ... |
flimcfil 24383 | Every convergent filter in... |
metsscmetcld 24384 | A complete subspace of a m... |
cmetss 24385 | A subspace of a complete m... |
equivcmet 24386 | If two metrics are strongl... |
relcmpcmet 24387 | If ` D ` is a metric space... |
cmpcmet 24388 | A compact metric space is ... |
cfilucfil3 24389 | Given a metric ` D ` and a... |
cfilucfil4 24390 | Given a metric ` D ` and a... |
cncmet 24391 | The set of complex numbers... |
recmet 24392 | The real numbers are a com... |
bcthlem1 24393 | Lemma for ~ bcth . Substi... |
bcthlem2 24394 | Lemma for ~ bcth . The ba... |
bcthlem3 24395 | Lemma for ~ bcth . The li... |
bcthlem4 24396 | Lemma for ~ bcth . Given ... |
bcthlem5 24397 | Lemma for ~ bcth . The pr... |
bcth 24398 | Baire's Category Theorem. ... |
bcth2 24399 | Baire's Category Theorem, ... |
bcth3 24400 | Baire's Category Theorem, ... |
isbn 24407 | A Banach space is a normed... |
bnsca 24408 | The scalar field of a Bana... |
bnnvc 24409 | A Banach space is a normed... |
bnnlm 24410 | A Banach space is a normed... |
bnngp 24411 | A Banach space is a normed... |
bnlmod 24412 | A Banach space is a left m... |
bncms 24413 | A Banach space is a comple... |
iscms 24414 | A complete metric space is... |
cmscmet 24415 | The induced metric on a co... |
bncmet 24416 | The induced metric on Bana... |
cmsms 24417 | A complete metric space is... |
cmspropd 24418 | Property deduction for a c... |
cmssmscld 24419 | The restriction of a metri... |
cmsss 24420 | The restriction of a compl... |
lssbn 24421 | A subspace of a Banach spa... |
cmetcusp1 24422 | If the uniform set of a co... |
cmetcusp 24423 | The uniform space generate... |
cncms 24424 | The field of complex numbe... |
cnflduss 24425 | The uniform structure of t... |
cnfldcusp 24426 | The field of complex numbe... |
resscdrg 24427 | The real numbers are a sub... |
cncdrg 24428 | The only complete subfield... |
srabn 24429 | The subring algebra over a... |
rlmbn 24430 | The ring module over a com... |
ishl 24431 | The predicate "is a subcom... |
hlbn 24432 | Every subcomplex Hilbert s... |
hlcph 24433 | Every subcomplex Hilbert s... |
hlphl 24434 | Every subcomplex Hilbert s... |
hlcms 24435 | Every subcomplex Hilbert s... |
hlprlem 24436 | Lemma for ~ hlpr . (Contr... |
hlress 24437 | The scalar field of a subc... |
hlpr 24438 | The scalar field of a subc... |
ishl2 24439 | A Hilbert space is a compl... |
cphssphl 24440 | A Banach subspace of a sub... |
cmslssbn 24441 | A complete linear subspace... |
cmscsscms 24442 | A closed subspace of a com... |
bncssbn 24443 | A closed subspace of a Ban... |
cssbn 24444 | A complete subspace of a n... |
csschl 24445 | A complete subspace of a c... |
cmslsschl 24446 | A complete linear subspace... |
chlcsschl 24447 | A closed subspace of a sub... |
retopn 24448 | The topology of the real n... |
recms 24449 | The real numbers form a co... |
reust 24450 | The Uniform structure of t... |
recusp 24451 | The real numbers form a co... |
rrxval 24456 | Value of the generalized E... |
rrxbase 24457 | The base of the generalize... |
rrxprds 24458 | Expand the definition of t... |
rrxip 24459 | The inner product of the g... |
rrxnm 24460 | The norm of the generalize... |
rrxcph 24461 | Generalized Euclidean real... |
rrxds 24462 | The distance over generali... |
rrxvsca 24463 | The scalar product over ge... |
rrxplusgvscavalb 24464 | The result of the addition... |
rrxsca 24465 | The field of real numbers ... |
rrx0 24466 | The zero ("origin") in a g... |
rrx0el 24467 | The zero ("origin") in a g... |
csbren 24468 | Cauchy-Schwarz-Bunjakovsky... |
trirn 24469 | Triangle inequality in R^n... |
rrxf 24470 | Euclidean vectors as funct... |
rrxfsupp 24471 | Euclidean vectors are of f... |
rrxsuppss 24472 | Support of Euclidean vecto... |
rrxmvallem 24473 | Support of the function us... |
rrxmval 24474 | The value of the Euclidean... |
rrxmfval 24475 | The value of the Euclidean... |
rrxmetlem 24476 | Lemma for ~ rrxmet . (Con... |
rrxmet 24477 | Euclidean space is a metri... |
rrxdstprj1 24478 | The distance between two p... |
rrxbasefi 24479 | The base of the generalize... |
rrxdsfi 24480 | The distance over generali... |
rrxmetfi 24481 | Euclidean space is a metri... |
rrxdsfival 24482 | The value of the Euclidean... |
ehlval 24483 | Value of the Euclidean spa... |
ehlbase 24484 | The base of the Euclidean ... |
ehl0base 24485 | The base of the Euclidean ... |
ehl0 24486 | The Euclidean space of dim... |
ehleudis 24487 | The Euclidean distance fun... |
ehleudisval 24488 | The value of the Euclidean... |
ehl1eudis 24489 | The Euclidean distance fun... |
ehl1eudisval 24490 | The value of the Euclidean... |
ehl2eudis 24491 | The Euclidean distance fun... |
ehl2eudisval 24492 | The value of the Euclidean... |
minveclem1 24493 | Lemma for ~ minvec . The ... |
minveclem4c 24494 | Lemma for ~ minvec . The ... |
minveclem2 24495 | Lemma for ~ minvec . Any ... |
minveclem3a 24496 | Lemma for ~ minvec . ` D `... |
minveclem3b 24497 | Lemma for ~ minvec . The ... |
minveclem3 24498 | Lemma for ~ minvec . The ... |
minveclem4a 24499 | Lemma for ~ minvec . ` F `... |
minveclem4b 24500 | Lemma for ~ minvec . The ... |
minveclem4 24501 | Lemma for ~ minvec . The ... |
minveclem5 24502 | Lemma for ~ minvec . Disc... |
minveclem6 24503 | Lemma for ~ minvec . Any ... |
minveclem7 24504 | Lemma for ~ minvec . Sinc... |
minvec 24505 | Minimizing vector theorem,... |
pjthlem1 24506 | Lemma for ~ pjth . (Contr... |
pjthlem2 24507 | Lemma for ~ pjth . (Contr... |
pjth 24508 | Projection Theorem: Any H... |
pjth2 24509 | Projection Theorem with ab... |
cldcss 24510 | Corollary of the Projectio... |
cldcss2 24511 | Corollary of the Projectio... |
hlhil 24512 | Corollary of the Projectio... |
addcncf 24513 | The addition of two contin... |
subcncf 24514 | The addition of two contin... |
mulcncf 24515 | The multiplication of two ... |
divcncf 24516 | The quotient of two contin... |
pmltpclem1 24517 | Lemma for ~ pmltpc . (Con... |
pmltpclem2 24518 | Lemma for ~ pmltpc . (Con... |
pmltpc 24519 | Any function on the reals ... |
ivthlem1 24520 | Lemma for ~ ivth . The se... |
ivthlem2 24521 | Lemma for ~ ivth . Show t... |
ivthlem3 24522 | Lemma for ~ ivth , the int... |
ivth 24523 | The intermediate value the... |
ivth2 24524 | The intermediate value the... |
ivthle 24525 | The intermediate value the... |
ivthle2 24526 | The intermediate value the... |
ivthicc 24527 | The interval between any t... |
evthicc 24528 | Specialization of the Extr... |
evthicc2 24529 | Combine ~ ivthicc with ~ e... |
cniccbdd 24530 | A continuous function on a... |
ovolfcl 24535 | Closure for the interval e... |
ovolfioo 24536 | Unpack the interval coveri... |
ovolficc 24537 | Unpack the interval coveri... |
ovolficcss 24538 | Any (closed) interval cove... |
ovolfsval 24539 | The value of the interval ... |
ovolfsf 24540 | Closure for the interval l... |
ovolsf 24541 | Closure for the partial su... |
ovolval 24542 | The value of the outer mea... |
elovolmlem 24543 | Lemma for ~ elovolm and re... |
elovolm 24544 | Elementhood in the set ` M... |
elovolmr 24545 | Sufficient condition for e... |
ovolmge0 24546 | The set ` M ` is composed ... |
ovolcl 24547 | The volume of a set is an ... |
ovollb 24548 | The outer volume is a lowe... |
ovolgelb 24549 | The outer volume is the gr... |
ovolge0 24550 | The volume of a set is alw... |
ovolf 24551 | The domain and range of th... |
ovollecl 24552 | If an outer volume is boun... |
ovolsslem 24553 | Lemma for ~ ovolss . (Con... |
ovolss 24554 | The volume of a set is mon... |
ovolsscl 24555 | If a set is contained in a... |
ovolssnul 24556 | A subset of a nullset is n... |
ovollb2lem 24557 | Lemma for ~ ovollb2 . (Co... |
ovollb2 24558 | It is often more convenien... |
ovolctb 24559 | The volume of a denumerabl... |
ovolq 24560 | The rational numbers have ... |
ovolctb2 24561 | The volume of a countable ... |
ovol0 24562 | The empty set has 0 outer ... |
ovolfi 24563 | A finite set has 0 outer L... |
ovolsn 24564 | A singleton has 0 outer Le... |
ovolunlem1a 24565 | Lemma for ~ ovolun . (Con... |
ovolunlem1 24566 | Lemma for ~ ovolun . (Con... |
ovolunlem2 24567 | Lemma for ~ ovolun . (Con... |
ovolun 24568 | The Lebesgue outer measure... |
ovolunnul 24569 | Adding a nullset does not ... |
ovolfiniun 24570 | The Lebesgue outer measure... |
ovoliunlem1 24571 | Lemma for ~ ovoliun . (Co... |
ovoliunlem2 24572 | Lemma for ~ ovoliun . (Co... |
ovoliunlem3 24573 | Lemma for ~ ovoliun . (Co... |
ovoliun 24574 | The Lebesgue outer measure... |
ovoliun2 24575 | The Lebesgue outer measure... |
ovoliunnul 24576 | A countable union of nulls... |
shft2rab 24577 | If ` B ` is a shift of ` A... |
ovolshftlem1 24578 | Lemma for ~ ovolshft . (C... |
ovolshftlem2 24579 | Lemma for ~ ovolshft . (C... |
ovolshft 24580 | The Lebesgue outer measure... |
sca2rab 24581 | If ` B ` is a scale of ` A... |
ovolscalem1 24582 | Lemma for ~ ovolsca . (Co... |
ovolscalem2 24583 | Lemma for ~ ovolshft . (C... |
ovolsca 24584 | The Lebesgue outer measure... |
ovolicc1 24585 | The measure of a closed in... |
ovolicc2lem1 24586 | Lemma for ~ ovolicc2 . (C... |
ovolicc2lem2 24587 | Lemma for ~ ovolicc2 . (C... |
ovolicc2lem3 24588 | Lemma for ~ ovolicc2 . (C... |
ovolicc2lem4 24589 | Lemma for ~ ovolicc2 . (C... |
ovolicc2lem5 24590 | Lemma for ~ ovolicc2 . (C... |
ovolicc2 24591 | The measure of a closed in... |
ovolicc 24592 | The measure of a closed in... |
ovolicopnf 24593 | The measure of a right-unb... |
ovolre 24594 | The measure of the real nu... |
ismbl 24595 | The predicate " ` A ` is L... |
ismbl2 24596 | From ~ ovolun , it suffice... |
volres 24597 | A self-referencing abbrevi... |
volf 24598 | The domain and range of th... |
mblvol 24599 | The volume of a measurable... |
mblss 24600 | A measurable set is a subs... |
mblsplit 24601 | The defining property of m... |
volss 24602 | The Lebesgue measure is mo... |
cmmbl 24603 | The complement of a measur... |
nulmbl 24604 | A nullset is measurable. ... |
nulmbl2 24605 | A set of outer measure zer... |
unmbl 24606 | A union of measurable sets... |
shftmbl 24607 | A shift of a measurable se... |
0mbl 24608 | The empty set is measurabl... |
rembl 24609 | The set of all real number... |
unidmvol 24610 | The union of the Lebesgue ... |
inmbl 24611 | An intersection of measura... |
difmbl 24612 | A difference of measurable... |
finiunmbl 24613 | A finite union of measurab... |
volun 24614 | The Lebesgue measure funct... |
volinun 24615 | Addition of non-disjoint s... |
volfiniun 24616 | The volume of a disjoint f... |
iundisj 24617 | Rewrite a countable union ... |
iundisj2 24618 | A disjoint union is disjoi... |
voliunlem1 24619 | Lemma for ~ voliun . (Con... |
voliunlem2 24620 | Lemma for ~ voliun . (Con... |
voliunlem3 24621 | Lemma for ~ voliun . (Con... |
iunmbl 24622 | The measurable sets are cl... |
voliun 24623 | The Lebesgue measure funct... |
volsuplem 24624 | Lemma for ~ volsup . (Con... |
volsup 24625 | The volume of the limit of... |
iunmbl2 24626 | The measurable sets are cl... |
ioombl1lem1 24627 | Lemma for ~ ioombl1 . (Co... |
ioombl1lem2 24628 | Lemma for ~ ioombl1 . (Co... |
ioombl1lem3 24629 | Lemma for ~ ioombl1 . (Co... |
ioombl1lem4 24630 | Lemma for ~ ioombl1 . (Co... |
ioombl1 24631 | An open right-unbounded in... |
icombl1 24632 | A closed unbounded-above i... |
icombl 24633 | A closed-below, open-above... |
ioombl 24634 | An open real interval is m... |
iccmbl 24635 | A closed real interval is ... |
iccvolcl 24636 | A closed real interval has... |
ovolioo 24637 | The measure of an open int... |
volioo 24638 | The measure of an open int... |
ioovolcl 24639 | An open real interval has ... |
ovolfs2 24640 | Alternative expression for... |
ioorcl2 24641 | An open interval with fini... |
ioorf 24642 | Define a function from ope... |
ioorval 24643 | Define a function from ope... |
ioorinv2 24644 | The function ` F ` is an "... |
ioorinv 24645 | The function ` F ` is an "... |
ioorcl 24646 | The function ` F ` does no... |
uniiccdif 24647 | A union of closed interval... |
uniioovol 24648 | A disjoint union of open i... |
uniiccvol 24649 | An almost-disjoint union o... |
uniioombllem1 24650 | Lemma for ~ uniioombl . (... |
uniioombllem2a 24651 | Lemma for ~ uniioombl . (... |
uniioombllem2 24652 | Lemma for ~ uniioombl . (... |
uniioombllem3a 24653 | Lemma for ~ uniioombl . (... |
uniioombllem3 24654 | Lemma for ~ uniioombl . (... |
uniioombllem4 24655 | Lemma for ~ uniioombl . (... |
uniioombllem5 24656 | Lemma for ~ uniioombl . (... |
uniioombllem6 24657 | Lemma for ~ uniioombl . (... |
uniioombl 24658 | A disjoint union of open i... |
uniiccmbl 24659 | An almost-disjoint union o... |
dyadf 24660 | The function ` F ` returns... |
dyadval 24661 | Value of the dyadic ration... |
dyadovol 24662 | Volume of a dyadic rationa... |
dyadss 24663 | Two closed dyadic rational... |
dyaddisjlem 24664 | Lemma for ~ dyaddisj . (C... |
dyaddisj 24665 | Two closed dyadic rational... |
dyadmaxlem 24666 | Lemma for ~ dyadmax . (Co... |
dyadmax 24667 | Any nonempty set of dyadic... |
dyadmbllem 24668 | Lemma for ~ dyadmbl . (Co... |
dyadmbl 24669 | Any union of dyadic ration... |
opnmbllem 24670 | Lemma for ~ opnmbl . (Con... |
opnmbl 24671 | All open sets are measurab... |
opnmblALT 24672 | All open sets are measurab... |
subopnmbl 24673 | Sets which are open in a m... |
volsup2 24674 | The volume of ` A ` is the... |
volcn 24675 | The function formed by res... |
volivth 24676 | The Intermediate Value The... |
vitalilem1 24677 | Lemma for ~ vitali . (Con... |
vitalilem2 24678 | Lemma for ~ vitali . (Con... |
vitalilem3 24679 | Lemma for ~ vitali . (Con... |
vitalilem4 24680 | Lemma for ~ vitali . (Con... |
vitalilem5 24681 | Lemma for ~ vitali . (Con... |
vitali 24682 | If the reals can be well-o... |
ismbf1 24693 | The predicate " ` F ` is a... |
mbff 24694 | A measurable function is a... |
mbfdm 24695 | The domain of a measurable... |
mbfconstlem 24696 | Lemma for ~ mbfconst and r... |
ismbf 24697 | The predicate " ` F ` is a... |
ismbfcn 24698 | A complex function is meas... |
mbfima 24699 | Definitional property of a... |
mbfimaicc 24700 | The preimage of any closed... |
mbfimasn 24701 | The preimage of a point un... |
mbfconst 24702 | A constant function is mea... |
mbf0 24703 | The empty function is meas... |
mbfid 24704 | The identity function is m... |
mbfmptcl 24705 | Lemma for the ` MblFn ` pr... |
mbfdm2 24706 | The domain of a measurable... |
ismbfcn2 24707 | A complex function is meas... |
ismbfd 24708 | Deduction to prove measura... |
ismbf2d 24709 | Deduction to prove measura... |
mbfeqalem1 24710 | Lemma for ~ mbfeqalem2 . ... |
mbfeqalem2 24711 | Lemma for ~ mbfeqa . (Con... |
mbfeqa 24712 | If two functions are equal... |
mbfres 24713 | The restriction of a measu... |
mbfres2 24714 | Measurability of a piecewi... |
mbfss 24715 | Change the domain of a mea... |
mbfmulc2lem 24716 | Multiplication by a consta... |
mbfmulc2re 24717 | Multiplication by a consta... |
mbfmax 24718 | The maximum of two functio... |
mbfneg 24719 | The negative of a measurab... |
mbfpos 24720 | The positive part of a mea... |
mbfposr 24721 | Converse to ~ mbfpos . (C... |
mbfposb 24722 | A function is measurable i... |
ismbf3d 24723 | Simplified form of ~ ismbf... |
mbfimaopnlem 24724 | Lemma for ~ mbfimaopn . (... |
mbfimaopn 24725 | The preimage of any open s... |
mbfimaopn2 24726 | The preimage of any set op... |
cncombf 24727 | The composition of a conti... |
cnmbf 24728 | A continuous function is m... |
mbfaddlem 24729 | The sum of two measurable ... |
mbfadd 24730 | The sum of two measurable ... |
mbfsub 24731 | The difference of two meas... |
mbfmulc2 24732 | A complex constant times a... |
mbfsup 24733 | The supremum of a sequence... |
mbfinf 24734 | The infimum of a sequence ... |
mbflimsup 24735 | The limit supremum of a se... |
mbflimlem 24736 | The pointwise limit of a s... |
mbflim 24737 | The pointwise limit of a s... |
0pval 24740 | The zero function evaluate... |
0plef 24741 | Two ways to say that the f... |
0pledm 24742 | Adjust the domain of the l... |
isi1f 24743 | The predicate " ` F ` is a... |
i1fmbf 24744 | Simple functions are measu... |
i1ff 24745 | A simple function is a fun... |
i1frn 24746 | A simple function has fini... |
i1fima 24747 | Any preimage of a simple f... |
i1fima2 24748 | Any preimage of a simple f... |
i1fima2sn 24749 | Preimage of a singleton. ... |
i1fd 24750 | A simplified set of assump... |
i1f0rn 24751 | Any simple function takes ... |
itg1val 24752 | The value of the integral ... |
itg1val2 24753 | The value of the integral ... |
itg1cl 24754 | Closure of the integral on... |
itg1ge0 24755 | Closure of the integral on... |
i1f0 24756 | The zero function is simpl... |
itg10 24757 | The zero function has zero... |
i1f1lem 24758 | Lemma for ~ i1f1 and ~ itg... |
i1f1 24759 | Base case simple functions... |
itg11 24760 | The integral of an indicat... |
itg1addlem1 24761 | Decompose a preimage, whic... |
i1faddlem 24762 | Decompose the preimage of ... |
i1fmullem 24763 | Decompose the preimage of ... |
i1fadd 24764 | The sum of two simple func... |
i1fmul 24765 | The pointwise product of t... |
itg1addlem2 24766 | Lemma for ~ itg1add . The... |
itg1addlem3 24767 | Lemma for ~ itg1add . (Co... |
itg1addlem4 24768 | Lemma for ~ itg1add . (Co... |
itg1addlem4OLD 24769 | Obsolete version of ~ itg1... |
itg1addlem5 24770 | Lemma for ~ itg1add . (Co... |
itg1add 24771 | The integral of a sum of s... |
i1fmulclem 24772 | Decompose the preimage of ... |
i1fmulc 24773 | A nonnegative constant tim... |
itg1mulc 24774 | The integral of a constant... |
i1fres 24775 | The "restriction" of a sim... |
i1fpos 24776 | The positive part of a sim... |
i1fposd 24777 | Deduction form of ~ i1fpos... |
i1fsub 24778 | The difference of two simp... |
itg1sub 24779 | The integral of a differen... |
itg10a 24780 | The integral of a simple f... |
itg1ge0a 24781 | The integral of an almost ... |
itg1lea 24782 | Approximate version of ~ i... |
itg1le 24783 | If one simple function dom... |
itg1climres 24784 | Restricting the simple fun... |
mbfi1fseqlem1 24785 | Lemma for ~ mbfi1fseq . (... |
mbfi1fseqlem2 24786 | Lemma for ~ mbfi1fseq . (... |
mbfi1fseqlem3 24787 | Lemma for ~ mbfi1fseq . (... |
mbfi1fseqlem4 24788 | Lemma for ~ mbfi1fseq . T... |
mbfi1fseqlem5 24789 | Lemma for ~ mbfi1fseq . V... |
mbfi1fseqlem6 24790 | Lemma for ~ mbfi1fseq . V... |
mbfi1fseq 24791 | A characterization of meas... |
mbfi1flimlem 24792 | Lemma for ~ mbfi1flim . (... |
mbfi1flim 24793 | Any real measurable functi... |
mbfmullem2 24794 | Lemma for ~ mbfmul . (Con... |
mbfmullem 24795 | Lemma for ~ mbfmul . (Con... |
mbfmul 24796 | The product of two measura... |
itg2lcl 24797 | The set of lower sums is a... |
itg2val 24798 | Value of the integral on n... |
itg2l 24799 | Elementhood in the set ` L... |
itg2lr 24800 | Sufficient condition for e... |
xrge0f 24801 | A real function is a nonne... |
itg2cl 24802 | The integral of a nonnegat... |
itg2ub 24803 | The integral of a nonnegat... |
itg2leub 24804 | Any upper bound on the int... |
itg2ge0 24805 | The integral of a nonnegat... |
itg2itg1 24806 | The integral of a nonnegat... |
itg20 24807 | The integral of the zero f... |
itg2lecl 24808 | If an ` S.2 ` integral is ... |
itg2le 24809 | If one function dominates ... |
itg2const 24810 | Integral of a constant fun... |
itg2const2 24811 | When the base set of a con... |
itg2seq 24812 | Definitional property of t... |
itg2uba 24813 | Approximate version of ~ i... |
itg2lea 24814 | Approximate version of ~ i... |
itg2eqa 24815 | Approximate equality of in... |
itg2mulclem 24816 | Lemma for ~ itg2mulc . (C... |
itg2mulc 24817 | The integral of a nonnegat... |
itg2splitlem 24818 | Lemma for ~ itg2split . (... |
itg2split 24819 | The ` S.2 ` integral split... |
itg2monolem1 24820 | Lemma for ~ itg2mono . We... |
itg2monolem2 24821 | Lemma for ~ itg2mono . (C... |
itg2monolem3 24822 | Lemma for ~ itg2mono . (C... |
itg2mono 24823 | The Monotone Convergence T... |
itg2i1fseqle 24824 | Subject to the conditions ... |
itg2i1fseq 24825 | Subject to the conditions ... |
itg2i1fseq2 24826 | In an extension to the res... |
itg2i1fseq3 24827 | Special case of ~ itg2i1fs... |
itg2addlem 24828 | Lemma for ~ itg2add . (Co... |
itg2add 24829 | The ` S.2 ` integral is li... |
itg2gt0 24830 | If the function ` F ` is s... |
itg2cnlem1 24831 | Lemma for ~ itgcn . (Cont... |
itg2cnlem2 24832 | Lemma for ~ itgcn . (Cont... |
itg2cn 24833 | A sort of absolute continu... |
ibllem 24834 | Conditioned equality theor... |
isibl 24835 | The predicate " ` F ` is i... |
isibl2 24836 | The predicate " ` F ` is i... |
iblmbf 24837 | An integrable function is ... |
iblitg 24838 | If a function is integrabl... |
dfitg 24839 | Evaluate the class substit... |
itgex 24840 | An integral is a set. (Co... |
itgeq1f 24841 | Equality theorem for an in... |
itgeq1 24842 | Equality theorem for an in... |
nfitg1 24843 | Bound-variable hypothesis ... |
nfitg 24844 | Bound-variable hypothesis ... |
cbvitg 24845 | Change bound variable in a... |
cbvitgv 24846 | Change bound variable in a... |
itgeq2 24847 | Equality theorem for an in... |
itgresr 24848 | The domain of an integral ... |
itg0 24849 | The integral of anything o... |
itgz 24850 | The integral of zero on an... |
itgeq2dv 24851 | Equality theorem for an in... |
itgmpt 24852 | Change bound variable in a... |
itgcl 24853 | The integral of an integra... |
itgvallem 24854 | Substitution lemma. (Cont... |
itgvallem3 24855 | Lemma for ~ itgposval and ... |
ibl0 24856 | The zero function is integ... |
iblcnlem1 24857 | Lemma for ~ iblcnlem . (C... |
iblcnlem 24858 | Expand out the universal q... |
itgcnlem 24859 | Expand out the sum in ~ df... |
iblrelem 24860 | Integrability of a real fu... |
iblposlem 24861 | Lemma for ~ iblpos . (Con... |
iblpos 24862 | Integrability of a nonnega... |
iblre 24863 | Integrability of a real fu... |
itgrevallem1 24864 | Lemma for ~ itgposval and ... |
itgposval 24865 | The integral of a nonnegat... |
itgreval 24866 | Decompose the integral of ... |
itgrecl 24867 | Real closure of an integra... |
iblcn 24868 | Integrability of a complex... |
itgcnval 24869 | Decompose the integral of ... |
itgre 24870 | Real part of an integral. ... |
itgim 24871 | Imaginary part of an integ... |
iblneg 24872 | The negative of an integra... |
itgneg 24873 | Negation of an integral. ... |
iblss 24874 | A subset of an integrable ... |
iblss2 24875 | Change the domain of an in... |
itgitg2 24876 | Transfer an integral using... |
i1fibl 24877 | A simple function is integ... |
itgitg1 24878 | Transfer an integral using... |
itgle 24879 | Monotonicity of an integra... |
itgge0 24880 | The integral of a positive... |
itgss 24881 | Expand the set of an integ... |
itgss2 24882 | Expand the set of an integ... |
itgeqa 24883 | Approximate equality of in... |
itgss3 24884 | Expand the set of an integ... |
itgioo 24885 | Equality of integrals on o... |
itgless 24886 | Expand the integral of a n... |
iblconst 24887 | A constant function is int... |
itgconst 24888 | Integral of a constant fun... |
ibladdlem 24889 | Lemma for ~ ibladd . (Con... |
ibladd 24890 | Add two integrals over the... |
iblsub 24891 | Subtract two integrals ove... |
itgaddlem1 24892 | Lemma for ~ itgadd . (Con... |
itgaddlem2 24893 | Lemma for ~ itgadd . (Con... |
itgadd 24894 | Add two integrals over the... |
itgsub 24895 | Subtract two integrals ove... |
itgfsum 24896 | Take a finite sum of integ... |
iblabslem 24897 | Lemma for ~ iblabs . (Con... |
iblabs 24898 | The absolute value of an i... |
iblabsr 24899 | A measurable function is i... |
iblmulc2 24900 | Multiply an integral by a ... |
itgmulc2lem1 24901 | Lemma for ~ itgmulc2 : pos... |
itgmulc2lem2 24902 | Lemma for ~ itgmulc2 : rea... |
itgmulc2 24903 | Multiply an integral by a ... |
itgabs 24904 | The triangle inequality fo... |
itgsplit 24905 | The ` S. ` integral splits... |
itgspliticc 24906 | The ` S. ` integral splits... |
itgsplitioo 24907 | The ` S. ` integral splits... |
bddmulibl 24908 | A bounded function times a... |
bddibl 24909 | A bounded function is inte... |
cniccibl 24910 | A continuous function on a... |
bddiblnc 24911 | Choice-free proof of ~ bdd... |
cnicciblnc 24912 | Choice-free proof of ~ cni... |
itggt0 24913 | The integral of a strictly... |
itgcn 24914 | Transfer ~ itg2cn to the f... |
ditgeq1 24917 | Equality theorem for the d... |
ditgeq2 24918 | Equality theorem for the d... |
ditgeq3 24919 | Equality theorem for the d... |
ditgeq3dv 24920 | Equality theorem for the d... |
ditgex 24921 | A directed integral is a s... |
ditg0 24922 | Value of the directed inte... |
cbvditg 24923 | Change bound variable in a... |
cbvditgv 24924 | Change bound variable in a... |
ditgpos 24925 | Value of the directed inte... |
ditgneg 24926 | Value of the directed inte... |
ditgcl 24927 | Closure of a directed inte... |
ditgswap 24928 | Reverse a directed integra... |
ditgsplitlem 24929 | Lemma for ~ ditgsplit . (... |
ditgsplit 24930 | This theorem is the raison... |
reldv 24939 | The derivative function is... |
limcvallem 24940 | Lemma for ~ ellimc . (Con... |
limcfval 24941 | Value and set bounds on th... |
ellimc 24942 | Value of the limit predica... |
limcrcl 24943 | Reverse closure for the li... |
limccl 24944 | Closure of the limit opera... |
limcdif 24945 | It suffices to consider fu... |
ellimc2 24946 | Write the definition of a ... |
limcnlp 24947 | If ` B ` is not a limit po... |
ellimc3 24948 | Write the epsilon-delta de... |
limcflflem 24949 | Lemma for ~ limcflf . (Co... |
limcflf 24950 | The limit operator can be ... |
limcmo 24951 | If ` B ` is a limit point ... |
limcmpt 24952 | Express the limit operator... |
limcmpt2 24953 | Express the limit operator... |
limcresi 24954 | Any limit of ` F ` is also... |
limcres 24955 | If ` B ` is an interior po... |
cnplimc 24956 | A function is continuous a... |
cnlimc 24957 | ` F ` is a continuous func... |
cnlimci 24958 | If ` F ` is a continuous f... |
cnmptlimc 24959 | If ` F ` is a continuous f... |
limccnp 24960 | If the limit of ` F ` at `... |
limccnp2 24961 | The image of a convergent ... |
limcco 24962 | Composition of two limits.... |
limciun 24963 | A point is a limit of ` F ... |
limcun 24964 | A point is a limit of ` F ... |
dvlem 24965 | Closure for a difference q... |
dvfval 24966 | Value and set bounds on th... |
eldv 24967 | The differentiable predica... |
dvcl 24968 | The derivative function ta... |
dvbssntr 24969 | The set of differentiable ... |
dvbss 24970 | The set of differentiable ... |
dvbsss 24971 | The set of differentiable ... |
perfdvf 24972 | The derivative is a functi... |
recnprss 24973 | Both ` RR ` and ` CC ` are... |
recnperf 24974 | Both ` RR ` and ` CC ` are... |
dvfg 24975 | Explicitly write out the f... |
dvf 24976 | The derivative is a functi... |
dvfcn 24977 | The derivative is a functi... |
dvreslem 24978 | Lemma for ~ dvres . (Cont... |
dvres2lem 24979 | Lemma for ~ dvres2 . (Con... |
dvres 24980 | Restriction of a derivativ... |
dvres2 24981 | Restriction of the base se... |
dvres3 24982 | Restriction of a complex d... |
dvres3a 24983 | Restriction of a complex d... |
dvidlem 24984 | Lemma for ~ dvid and ~ dvc... |
dvmptresicc 24985 | Derivative of a function r... |
dvconst 24986 | Derivative of a constant f... |
dvid 24987 | Derivative of the identity... |
dvcnp 24988 | The difference quotient is... |
dvcnp2 24989 | A function is continuous a... |
dvcn 24990 | A differentiable function ... |
dvnfval 24991 | Value of the iterated deri... |
dvnff 24992 | The iterated derivative is... |
dvn0 24993 | Zero times iterated deriva... |
dvnp1 24994 | Successor iterated derivat... |
dvn1 24995 | One times iterated derivat... |
dvnf 24996 | The N-times derivative is ... |
dvnbss 24997 | The set of N-times differe... |
dvnadd 24998 | The ` N ` -th derivative o... |
dvn2bss 24999 | An N-times differentiable ... |
dvnres 25000 | Multiple derivative versio... |
cpnfval 25001 | Condition for n-times cont... |
fncpn 25002 | The ` C^n ` object is a fu... |
elcpn 25003 | Condition for n-times cont... |
cpnord 25004 | ` C^n ` conditions are ord... |
cpncn 25005 | A ` C^n ` function is cont... |
cpnres 25006 | The restriction of a ` C^n... |
dvaddbr 25007 | The sum rule for derivativ... |
dvmulbr 25008 | The product rule for deriv... |
dvadd 25009 | The sum rule for derivativ... |
dvmul 25010 | The product rule for deriv... |
dvaddf 25011 | The sum rule for everywher... |
dvmulf 25012 | The product rule for every... |
dvcmul 25013 | The product rule when one ... |
dvcmulf 25014 | The product rule when one ... |
dvcobr 25015 | The chain rule for derivat... |
dvco 25016 | The chain rule for derivat... |
dvcof 25017 | The chain rule for everywh... |
dvcjbr 25018 | The derivative of the conj... |
dvcj 25019 | The derivative of the conj... |
dvfre 25020 | The derivative of a real f... |
dvnfre 25021 | The ` N ` -th derivative o... |
dvexp 25022 | Derivative of a power func... |
dvexp2 25023 | Derivative of an exponenti... |
dvrec 25024 | Derivative of the reciproc... |
dvmptres3 25025 | Function-builder for deriv... |
dvmptid 25026 | Function-builder for deriv... |
dvmptc 25027 | Function-builder for deriv... |
dvmptcl 25028 | Closure lemma for ~ dvmptc... |
dvmptadd 25029 | Function-builder for deriv... |
dvmptmul 25030 | Function-builder for deriv... |
dvmptres2 25031 | Function-builder for deriv... |
dvmptres 25032 | Function-builder for deriv... |
dvmptcmul 25033 | Function-builder for deriv... |
dvmptdivc 25034 | Function-builder for deriv... |
dvmptneg 25035 | Function-builder for deriv... |
dvmptsub 25036 | Function-builder for deriv... |
dvmptcj 25037 | Function-builder for deriv... |
dvmptre 25038 | Function-builder for deriv... |
dvmptim 25039 | Function-builder for deriv... |
dvmptntr 25040 | Function-builder for deriv... |
dvmptco 25041 | Function-builder for deriv... |
dvrecg 25042 | Derivative of the reciproc... |
dvmptdiv 25043 | Function-builder for deriv... |
dvmptfsum 25044 | Function-builder for deriv... |
dvcnvlem 25045 | Lemma for ~ dvcnvre . (Co... |
dvcnv 25046 | A weak version of ~ dvcnvr... |
dvexp3 25047 | Derivative of an exponenti... |
dveflem 25048 | Derivative of the exponent... |
dvef 25049 | Derivative of the exponent... |
dvsincos 25050 | Derivative of the sine and... |
dvsin 25051 | Derivative of the sine fun... |
dvcos 25052 | Derivative of the cosine f... |
dvferm1lem 25053 | Lemma for ~ dvferm . (Con... |
dvferm1 25054 | One-sided version of ~ dvf... |
dvferm2lem 25055 | Lemma for ~ dvferm . (Con... |
dvferm2 25056 | One-sided version of ~ dvf... |
dvferm 25057 | Fermat's theorem on statio... |
rollelem 25058 | Lemma for ~ rolle . (Cont... |
rolle 25059 | Rolle's theorem. If ` F `... |
cmvth 25060 | Cauchy's Mean Value Theore... |
mvth 25061 | The Mean Value Theorem. I... |
dvlip 25062 | A function with derivative... |
dvlipcn 25063 | A complex function with de... |
dvlip2 25064 | Combine the results of ~ d... |
c1liplem1 25065 | Lemma for ~ c1lip1 . (Con... |
c1lip1 25066 | C^1 functions are Lipschit... |
c1lip2 25067 | C^1 functions are Lipschit... |
c1lip3 25068 | C^1 functions are Lipschit... |
dveq0 25069 | If a continuous function h... |
dv11cn 25070 | Two functions defined on a... |
dvgt0lem1 25071 | Lemma for ~ dvgt0 and ~ dv... |
dvgt0lem2 25072 | Lemma for ~ dvgt0 and ~ dv... |
dvgt0 25073 | A function on a closed int... |
dvlt0 25074 | A function on a closed int... |
dvge0 25075 | A function on a closed int... |
dvle 25076 | If ` A ( x ) , C ( x ) ` a... |
dvivthlem1 25077 | Lemma for ~ dvivth . (Con... |
dvivthlem2 25078 | Lemma for ~ dvivth . (Con... |
dvivth 25079 | Darboux' theorem, or the i... |
dvne0 25080 | A function on a closed int... |
dvne0f1 25081 | A function on a closed int... |
lhop1lem 25082 | Lemma for ~ lhop1 . (Cont... |
lhop1 25083 | L'Hôpital's Rule for... |
lhop2 25084 | L'Hôpital's Rule for... |
lhop 25085 | L'Hôpital's Rule. I... |
dvcnvrelem1 25086 | Lemma for ~ dvcnvre . (Co... |
dvcnvrelem2 25087 | Lemma for ~ dvcnvre . (Co... |
dvcnvre 25088 | The derivative rule for in... |
dvcvx 25089 | A real function with stric... |
dvfsumle 25090 | Compare a finite sum to an... |
dvfsumge 25091 | Compare a finite sum to an... |
dvfsumabs 25092 | Compare a finite sum to an... |
dvmptrecl 25093 | Real closure of a derivati... |
dvfsumrlimf 25094 | Lemma for ~ dvfsumrlim . ... |
dvfsumlem1 25095 | Lemma for ~ dvfsumrlim . ... |
dvfsumlem2 25096 | Lemma for ~ dvfsumrlim . ... |
dvfsumlem3 25097 | Lemma for ~ dvfsumrlim . ... |
dvfsumlem4 25098 | Lemma for ~ dvfsumrlim . ... |
dvfsumrlimge0 25099 | Lemma for ~ dvfsumrlim . ... |
dvfsumrlim 25100 | Compare a finite sum to an... |
dvfsumrlim2 25101 | Compare a finite sum to an... |
dvfsumrlim3 25102 | Conjoin the statements of ... |
dvfsum2 25103 | The reverse of ~ dvfsumrli... |
ftc1lem1 25104 | Lemma for ~ ftc1a and ~ ft... |
ftc1lem2 25105 | Lemma for ~ ftc1 . (Contr... |
ftc1a 25106 | The Fundamental Theorem of... |
ftc1lem3 25107 | Lemma for ~ ftc1 . (Contr... |
ftc1lem4 25108 | Lemma for ~ ftc1 . (Contr... |
ftc1lem5 25109 | Lemma for ~ ftc1 . (Contr... |
ftc1lem6 25110 | Lemma for ~ ftc1 . (Contr... |
ftc1 25111 | The Fundamental Theorem of... |
ftc1cn 25112 | Strengthen the assumptions... |
ftc2 25113 | The Fundamental Theorem of... |
ftc2ditglem 25114 | Lemma for ~ ftc2ditg . (C... |
ftc2ditg 25115 | Directed integral analogue... |
itgparts 25116 | Integration by parts. If ... |
itgsubstlem 25117 | Lemma for ~ itgsubst . (C... |
itgsubst 25118 | Integration by ` u ` -subs... |
itgpowd 25119 | The integral of a monomial... |
reldmmdeg 25124 | Multivariate degree is a b... |
tdeglem1 25125 | Functionality of the total... |
tdeglem1OLD 25126 | Obsolete version of ~ tdeg... |
tdeglem3 25127 | Additivity of the total de... |
tdeglem3OLD 25128 | Obsolete version of ~ tdeg... |
tdeglem4 25129 | There is only one multi-in... |
tdeglem4OLD 25130 | Obsolete version of ~ tdeg... |
tdeglem2 25131 | Simplification of total de... |
mdegfval 25132 | Value of the multivariate ... |
mdegval 25133 | Value of the multivariate ... |
mdegleb 25134 | Property of being of limit... |
mdeglt 25135 | If there is an upper limit... |
mdegldg 25136 | A nonzero polynomial has s... |
mdegxrcl 25137 | Closure of polynomial degr... |
mdegxrf 25138 | Functionality of polynomia... |
mdegcl 25139 | Sharp closure for multivar... |
mdeg0 25140 | Degree of the zero polynom... |
mdegnn0cl 25141 | Degree of a nonzero polyno... |
degltlem1 25142 | Theorem on arithmetic of e... |
degltp1le 25143 | Theorem on arithmetic of e... |
mdegaddle 25144 | The degree of a sum is at ... |
mdegvscale 25145 | The degree of a scalar mul... |
mdegvsca 25146 | The degree of a scalar mul... |
mdegle0 25147 | A polynomial has nonpositi... |
mdegmullem 25148 | Lemma for ~ mdegmulle2 . ... |
mdegmulle2 25149 | The multivariate degree of... |
deg1fval 25150 | Relate univariate polynomi... |
deg1xrf 25151 | Functionality of univariat... |
deg1xrcl 25152 | Closure of univariate poly... |
deg1cl 25153 | Sharp closure of univariat... |
mdegpropd 25154 | Property deduction for pol... |
deg1fvi 25155 | Univariate polynomial degr... |
deg1propd 25156 | Property deduction for pol... |
deg1z 25157 | Degree of the zero univari... |
deg1nn0cl 25158 | Degree of a nonzero univar... |
deg1n0ima 25159 | Degree image of a set of p... |
deg1nn0clb 25160 | A polynomial is nonzero if... |
deg1lt0 25161 | A polynomial is zero iff i... |
deg1ldg 25162 | A nonzero univariate polyn... |
deg1ldgn 25163 | An index at which a polyno... |
deg1ldgdomn 25164 | A nonzero univariate polyn... |
deg1leb 25165 | Property of being of limit... |
deg1val 25166 | Value of the univariate de... |
deg1lt 25167 | If the degree of a univari... |
deg1ge 25168 | Conversely, a nonzero coef... |
coe1mul3 25169 | The coefficient vector of ... |
coe1mul4 25170 | Value of the "leading" coe... |
deg1addle 25171 | The degree of a sum is at ... |
deg1addle2 25172 | If both factors have degre... |
deg1add 25173 | Exact degree of a sum of t... |
deg1vscale 25174 | The degree of a scalar tim... |
deg1vsca 25175 | The degree of a scalar tim... |
deg1invg 25176 | The degree of the negated ... |
deg1suble 25177 | The degree of a difference... |
deg1sub 25178 | Exact degree of a differen... |
deg1mulle2 25179 | Produce a bound on the pro... |
deg1sublt 25180 | Subtraction of two polynom... |
deg1le0 25181 | A polynomial has nonpositi... |
deg1sclle 25182 | A scalar polynomial has no... |
deg1scl 25183 | A nonzero scalar polynomia... |
deg1mul2 25184 | Degree of multiplication o... |
deg1mul3 25185 | Degree of multiplication o... |
deg1mul3le 25186 | Degree of multiplication o... |
deg1tmle 25187 | Limiting degree of a polyn... |
deg1tm 25188 | Exact degree of a polynomi... |
deg1pwle 25189 | Limiting degree of a varia... |
deg1pw 25190 | Exact degree of a variable... |
ply1nz 25191 | Univariate polynomials ove... |
ply1nzb 25192 | Univariate polynomials are... |
ply1domn 25193 | Corollary of ~ deg1mul2 : ... |
ply1idom 25194 | The ring of univariate pol... |
ply1divmo 25205 | Uniqueness of a quotient i... |
ply1divex 25206 | Lemma for ~ ply1divalg : e... |
ply1divalg 25207 | The division algorithm for... |
ply1divalg2 25208 | Reverse the order of multi... |
uc1pval 25209 | Value of the set of unitic... |
isuc1p 25210 | Being a unitic polynomial.... |
mon1pval 25211 | Value of the set of monic ... |
ismon1p 25212 | Being a monic polynomial. ... |
uc1pcl 25213 | Unitic polynomials are pol... |
mon1pcl 25214 | Monic polynomials are poly... |
uc1pn0 25215 | Unitic polynomials are not... |
mon1pn0 25216 | Monic polynomials are not ... |
uc1pdeg 25217 | Unitic polynomials have no... |
uc1pldg 25218 | Unitic polynomials have un... |
mon1pldg 25219 | Unitic polynomials have on... |
mon1puc1p 25220 | Monic polynomials are unit... |
uc1pmon1p 25221 | Make a unitic polynomial m... |
deg1submon1p 25222 | The difference of two moni... |
q1pval 25223 | Value of the univariate po... |
q1peqb 25224 | Characterizing property of... |
q1pcl 25225 | Closure of the quotient by... |
r1pval 25226 | Value of the polynomial re... |
r1pcl 25227 | Closure of remainder follo... |
r1pdeglt 25228 | The remainder has a degree... |
r1pid 25229 | Express the original polyn... |
dvdsq1p 25230 | Divisibility in a polynomi... |
dvdsr1p 25231 | Divisibility in a polynomi... |
ply1remlem 25232 | A term of the form ` x - N... |
ply1rem 25233 | The polynomial remainder t... |
facth1 25234 | The factor theorem and its... |
fta1glem1 25235 | Lemma for ~ fta1g . (Cont... |
fta1glem2 25236 | Lemma for ~ fta1g . (Cont... |
fta1g 25237 | The one-sided fundamental ... |
fta1blem 25238 | Lemma for ~ fta1b . (Cont... |
fta1b 25239 | The assumption that ` R ` ... |
drnguc1p 25240 | Over a division ring, all ... |
ig1peu 25241 | There is a unique monic po... |
ig1pval 25242 | Substitutions for the poly... |
ig1pval2 25243 | Generator of the zero idea... |
ig1pval3 25244 | Characterizing properties ... |
ig1pcl 25245 | The monic generator of an ... |
ig1pdvds 25246 | The monic generator of an ... |
ig1prsp 25247 | Any ideal of polynomials o... |
ply1lpir 25248 | The ring of polynomials ov... |
ply1pid 25249 | The polynomials over a fie... |
plyco0 25258 | Two ways to say that a fun... |
plyval 25259 | Value of the polynomial se... |
plybss 25260 | Reverse closure of the par... |
elply 25261 | Definition of a polynomial... |
elply2 25262 | The coefficient function c... |
plyun0 25263 | The set of polynomials is ... |
plyf 25264 | The polynomial is a functi... |
plyss 25265 | The polynomial set functio... |
plyssc 25266 | Every polynomial ring is c... |
elplyr 25267 | Sufficient condition for e... |
elplyd 25268 | Sufficient condition for e... |
ply1termlem 25269 | Lemma for ~ ply1term . (C... |
ply1term 25270 | A one-term polynomial. (C... |
plypow 25271 | A power is a polynomial. ... |
plyconst 25272 | A constant function is a p... |
ne0p 25273 | A test to show that a poly... |
ply0 25274 | The zero function is a pol... |
plyid 25275 | The identity function is a... |
plyeq0lem 25276 | Lemma for ~ plyeq0 . If `... |
plyeq0 25277 | If a polynomial is zero at... |
plypf1 25278 | Write the set of complex p... |
plyaddlem1 25279 | Derive the coefficient fun... |
plymullem1 25280 | Derive the coefficient fun... |
plyaddlem 25281 | Lemma for ~ plyadd . (Con... |
plymullem 25282 | Lemma for ~ plymul . (Con... |
plyadd 25283 | The sum of two polynomials... |
plymul 25284 | The product of two polynom... |
plysub 25285 | The difference of two poly... |
plyaddcl 25286 | The sum of two polynomials... |
plymulcl 25287 | The product of two polynom... |
plysubcl 25288 | The difference of two poly... |
coeval 25289 | Value of the coefficient f... |
coeeulem 25290 | Lemma for ~ coeeu . (Cont... |
coeeu 25291 | Uniqueness of the coeffici... |
coelem 25292 | Lemma for properties of th... |
coeeq 25293 | If ` A ` satisfies the pro... |
dgrval 25294 | Value of the degree functi... |
dgrlem 25295 | Lemma for ~ dgrcl and simi... |
coef 25296 | The domain and range of th... |
coef2 25297 | The domain and range of th... |
coef3 25298 | The domain and range of th... |
dgrcl 25299 | The degree of any polynomi... |
dgrub 25300 | If the ` M ` -th coefficie... |
dgrub2 25301 | All the coefficients above... |
dgrlb 25302 | If all the coefficients ab... |
coeidlem 25303 | Lemma for ~ coeid . (Cont... |
coeid 25304 | Reconstruct a polynomial a... |
coeid2 25305 | Reconstruct a polynomial a... |
coeid3 25306 | Reconstruct a polynomial a... |
plyco 25307 | The composition of two pol... |
coeeq2 25308 | Compute the coefficient fu... |
dgrle 25309 | Given an explicit expressi... |
dgreq 25310 | If the highest term in a p... |
0dgr 25311 | A constant function has de... |
0dgrb 25312 | A function has degree zero... |
dgrnznn 25313 | A nonzero polynomial with ... |
coefv0 25314 | The result of evaluating a... |
coeaddlem 25315 | Lemma for ~ coeadd and ~ d... |
coemullem 25316 | Lemma for ~ coemul and ~ d... |
coeadd 25317 | The coefficient function o... |
coemul 25318 | A coefficient of a product... |
coe11 25319 | The coefficient function i... |
coemulhi 25320 | The leading coefficient of... |
coemulc 25321 | The coefficient function i... |
coe0 25322 | The coefficients of the ze... |
coesub 25323 | The coefficient function o... |
coe1termlem 25324 | The coefficient function o... |
coe1term 25325 | The coefficient function o... |
dgr1term 25326 | The degree of a monomial. ... |
plycn 25327 | A polynomial is a continuo... |
dgr0 25328 | The degree of the zero pol... |
coeidp 25329 | The coefficients of the id... |
dgrid 25330 | The degree of the identity... |
dgreq0 25331 | The leading coefficient of... |
dgrlt 25332 | Two ways to say that the d... |
dgradd 25333 | The degree of a sum of pol... |
dgradd2 25334 | The degree of a sum of pol... |
dgrmul2 25335 | The degree of a product of... |
dgrmul 25336 | The degree of a product of... |
dgrmulc 25337 | Scalar multiplication by a... |
dgrsub 25338 | The degree of a difference... |
dgrcolem1 25339 | The degree of a compositio... |
dgrcolem2 25340 | Lemma for ~ dgrco . (Cont... |
dgrco 25341 | The degree of a compositio... |
plycjlem 25342 | Lemma for ~ plycj and ~ co... |
plycj 25343 | The double conjugation of ... |
coecj 25344 | Double conjugation of a po... |
plyrecj 25345 | A polynomial with real coe... |
plymul0or 25346 | Polynomial multiplication ... |
ofmulrt 25347 | The set of roots of a prod... |
plyreres 25348 | Real-coefficient polynomia... |
dvply1 25349 | Derivative of a polynomial... |
dvply2g 25350 | The derivative of a polyno... |
dvply2 25351 | The derivative of a polyno... |
dvnply2 25352 | Polynomials have polynomia... |
dvnply 25353 | Polynomials have polynomia... |
plycpn 25354 | Polynomials are smooth. (... |
quotval 25357 | Value of the quotient func... |
plydivlem1 25358 | Lemma for ~ plydivalg . (... |
plydivlem2 25359 | Lemma for ~ plydivalg . (... |
plydivlem3 25360 | Lemma for ~ plydivex . Ba... |
plydivlem4 25361 | Lemma for ~ plydivex . In... |
plydivex 25362 | Lemma for ~ plydivalg . (... |
plydiveu 25363 | Lemma for ~ plydivalg . (... |
plydivalg 25364 | The division algorithm on ... |
quotlem 25365 | Lemma for properties of th... |
quotcl 25366 | The quotient of two polyno... |
quotcl2 25367 | Closure of the quotient fu... |
quotdgr 25368 | Remainder property of the ... |
plyremlem 25369 | Closure of a linear factor... |
plyrem 25370 | The polynomial remainder t... |
facth 25371 | The factor theorem. If a ... |
fta1lem 25372 | Lemma for ~ fta1 . (Contr... |
fta1 25373 | The easy direction of the ... |
quotcan 25374 | Exact division with a mult... |
vieta1lem1 25375 | Lemma for ~ vieta1 . (Con... |
vieta1lem2 25376 | Lemma for ~ vieta1 : induc... |
vieta1 25377 | The first-order Vieta's fo... |
plyexmo 25378 | An infinite set of values ... |
elaa 25381 | Elementhood in the set of ... |
aacn 25382 | An algebraic number is a c... |
aasscn 25383 | The algebraic numbers are ... |
elqaalem1 25384 | Lemma for ~ elqaa . The f... |
elqaalem2 25385 | Lemma for ~ elqaa . (Cont... |
elqaalem3 25386 | Lemma for ~ elqaa . (Cont... |
elqaa 25387 | The set of numbers generat... |
qaa 25388 | Every rational number is a... |
qssaa 25389 | The rational numbers are c... |
iaa 25390 | The imaginary unit is alge... |
aareccl 25391 | The reciprocal of an algeb... |
aacjcl 25392 | The conjugate of an algebr... |
aannenlem1 25393 | Lemma for ~ aannen . (Con... |
aannenlem2 25394 | Lemma for ~ aannen . (Con... |
aannenlem3 25395 | The algebraic numbers are ... |
aannen 25396 | The algebraic numbers are ... |
aalioulem1 25397 | Lemma for ~ aaliou . An i... |
aalioulem2 25398 | Lemma for ~ aaliou . (Con... |
aalioulem3 25399 | Lemma for ~ aaliou . (Con... |
aalioulem4 25400 | Lemma for ~ aaliou . (Con... |
aalioulem5 25401 | Lemma for ~ aaliou . (Con... |
aalioulem6 25402 | Lemma for ~ aaliou . (Con... |
aaliou 25403 | Liouville's theorem on dio... |
geolim3 25404 | Geometric series convergen... |
aaliou2 25405 | Liouville's approximation ... |
aaliou2b 25406 | Liouville's approximation ... |
aaliou3lem1 25407 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem2 25408 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem3 25409 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem8 25410 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem4 25411 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem5 25412 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem6 25413 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem7 25414 | Lemma for ~ aaliou3 . (Co... |
aaliou3lem9 25415 | Example of a "Liouville nu... |
aaliou3 25416 | Example of a "Liouville nu... |
taylfvallem1 25421 | Lemma for ~ taylfval . (C... |
taylfvallem 25422 | Lemma for ~ taylfval . (C... |
taylfval 25423 | Define the Taylor polynomi... |
eltayl 25424 | Value of the Taylor series... |
taylf 25425 | The Taylor series defines ... |
tayl0 25426 | The Taylor series is alway... |
taylplem1 25427 | Lemma for ~ taylpfval and ... |
taylplem2 25428 | Lemma for ~ taylpfval and ... |
taylpfval 25429 | Define the Taylor polynomi... |
taylpf 25430 | The Taylor polynomial is a... |
taylpval 25431 | Value of the Taylor polyno... |
taylply2 25432 | The Taylor polynomial is a... |
taylply 25433 | The Taylor polynomial is a... |
dvtaylp 25434 | The derivative of the Tayl... |
dvntaylp 25435 | The ` M ` -th derivative o... |
dvntaylp0 25436 | The first ` N ` derivative... |
taylthlem1 25437 | Lemma for ~ taylth . This... |
taylthlem2 25438 | Lemma for ~ taylth . (Con... |
taylth 25439 | Taylor's theorem. The Tay... |
ulmrel 25442 | The uniform limit relation... |
ulmscl 25443 | Closure of the base set in... |
ulmval 25444 | Express the predicate: Th... |
ulmcl 25445 | Closure of a uniform limit... |
ulmf 25446 | Closure of a uniform limit... |
ulmpm 25447 | Closure of a uniform limit... |
ulmf2 25448 | Closure of a uniform limit... |
ulm2 25449 | Simplify ~ ulmval when ` F... |
ulmi 25450 | The uniform limit property... |
ulmclm 25451 | A uniform limit of functio... |
ulmres 25452 | A sequence of functions co... |
ulmshftlem 25453 | Lemma for ~ ulmshft . (Co... |
ulmshft 25454 | A sequence of functions co... |
ulm0 25455 | Every function converges u... |
ulmuni 25456 | A sequence of functions un... |
ulmdm 25457 | Two ways to express that a... |
ulmcaulem 25458 | Lemma for ~ ulmcau and ~ u... |
ulmcau 25459 | A sequence of functions co... |
ulmcau2 25460 | A sequence of functions co... |
ulmss 25461 | A uniform limit of functio... |
ulmbdd 25462 | A uniform limit of bounded... |
ulmcn 25463 | A uniform limit of continu... |
ulmdvlem1 25464 | Lemma for ~ ulmdv . (Cont... |
ulmdvlem2 25465 | Lemma for ~ ulmdv . (Cont... |
ulmdvlem3 25466 | Lemma for ~ ulmdv . (Cont... |
ulmdv 25467 | If ` F ` is a sequence of ... |
mtest 25468 | The Weierstrass M-test. I... |
mtestbdd 25469 | Given the hypotheses of th... |
mbfulm 25470 | A uniform limit of measura... |
iblulm 25471 | A uniform limit of integra... |
itgulm 25472 | A uniform limit of integra... |
itgulm2 25473 | A uniform limit of integra... |
pserval 25474 | Value of the function ` G ... |
pserval2 25475 | Value of the function ` G ... |
psergf 25476 | The sequence of terms in t... |
radcnvlem1 25477 | Lemma for ~ radcnvlt1 , ~ ... |
radcnvlem2 25478 | Lemma for ~ radcnvlt1 , ~ ... |
radcnvlem3 25479 | Lemma for ~ radcnvlt1 , ~ ... |
radcnv0 25480 | Zero is always a convergen... |
radcnvcl 25481 | The radius of convergence ... |
radcnvlt1 25482 | If ` X ` is within the ope... |
radcnvlt2 25483 | If ` X ` is within the ope... |
radcnvle 25484 | If ` X ` is a convergent p... |
dvradcnv 25485 | The radius of convergence ... |
pserulm 25486 | If ` S ` is a region conta... |
psercn2 25487 | Since by ~ pserulm the ser... |
psercnlem2 25488 | Lemma for ~ psercn . (Con... |
psercnlem1 25489 | Lemma for ~ psercn . (Con... |
psercn 25490 | An infinite series converg... |
pserdvlem1 25491 | Lemma for ~ pserdv . (Con... |
pserdvlem2 25492 | Lemma for ~ pserdv . (Con... |
pserdv 25493 | The derivative of a power ... |
pserdv2 25494 | The derivative of a power ... |
abelthlem1 25495 | Lemma for ~ abelth . (Con... |
abelthlem2 25496 | Lemma for ~ abelth . The ... |
abelthlem3 25497 | Lemma for ~ abelth . (Con... |
abelthlem4 25498 | Lemma for ~ abelth . (Con... |
abelthlem5 25499 | Lemma for ~ abelth . (Con... |
abelthlem6 25500 | Lemma for ~ abelth . (Con... |
abelthlem7a 25501 | Lemma for ~ abelth . (Con... |
abelthlem7 25502 | Lemma for ~ abelth . (Con... |
abelthlem8 25503 | Lemma for ~ abelth . (Con... |
abelthlem9 25504 | Lemma for ~ abelth . By a... |
abelth 25505 | Abel's theorem. If the po... |
abelth2 25506 | Abel's theorem, restricted... |
efcn 25507 | The exponential function i... |
sincn 25508 | Sine is continuous. (Cont... |
coscn 25509 | Cosine is continuous. (Co... |
reeff1olem 25510 | Lemma for ~ reeff1o . (Co... |
reeff1o 25511 | The real exponential funct... |
reefiso 25512 | The exponential function o... |
efcvx 25513 | The exponential function o... |
reefgim 25514 | The exponential function i... |
pilem1 25515 | Lemma for ~ pire , ~ pigt2... |
pilem2 25516 | Lemma for ~ pire , ~ pigt2... |
pilem3 25517 | Lemma for ~ pire , ~ pigt2... |
pigt2lt4 25518 | ` _pi ` is between 2 and 4... |
sinpi 25519 | The sine of ` _pi ` is 0. ... |
pire 25520 | ` _pi ` is a real number. ... |
picn 25521 | ` _pi ` is a complex numbe... |
pipos 25522 | ` _pi ` is positive. (Con... |
pirp 25523 | ` _pi ` is a positive real... |
negpicn 25524 | ` -u _pi ` is a real numbe... |
sinhalfpilem 25525 | Lemma for ~ sinhalfpi and ... |
halfpire 25526 | ` _pi / 2 ` is real. (Con... |
neghalfpire 25527 | ` -u _pi / 2 ` is real. (... |
neghalfpirx 25528 | ` -u _pi / 2 ` is an exten... |
pidiv2halves 25529 | Adding ` _pi / 2 ` to itse... |
sinhalfpi 25530 | The sine of ` _pi / 2 ` is... |
coshalfpi 25531 | The cosine of ` _pi / 2 ` ... |
cosneghalfpi 25532 | The cosine of ` -u _pi / 2... |
efhalfpi 25533 | The exponential of ` _i _p... |
cospi 25534 | The cosine of ` _pi ` is `... |
efipi 25535 | The exponential of ` _i x.... |
eulerid 25536 | Euler's identity. (Contri... |
sin2pi 25537 | The sine of ` 2 _pi ` is 0... |
cos2pi 25538 | The cosine of ` 2 _pi ` is... |
ef2pi 25539 | The exponential of ` 2 _pi... |
ef2kpi 25540 | If ` K ` is an integer, th... |
efper 25541 | The exponential function i... |
sinperlem 25542 | Lemma for ~ sinper and ~ c... |
sinper 25543 | The sine function is perio... |
cosper 25544 | The cosine function is per... |
sin2kpi 25545 | If ` K ` is an integer, th... |
cos2kpi 25546 | If ` K ` is an integer, th... |
sin2pim 25547 | Sine of a number subtracte... |
cos2pim 25548 | Cosine of a number subtrac... |
sinmpi 25549 | Sine of a number less ` _p... |
cosmpi 25550 | Cosine of a number less ` ... |
sinppi 25551 | Sine of a number plus ` _p... |
cosppi 25552 | Cosine of a number plus ` ... |
efimpi 25553 | The exponential function a... |
sinhalfpip 25554 | The sine of ` _pi / 2 ` pl... |
sinhalfpim 25555 | The sine of ` _pi / 2 ` mi... |
coshalfpip 25556 | The cosine of ` _pi / 2 ` ... |
coshalfpim 25557 | The cosine of ` _pi / 2 ` ... |
ptolemy 25558 | Ptolemy's Theorem. This t... |
sincosq1lem 25559 | Lemma for ~ sincosq1sgn . ... |
sincosq1sgn 25560 | The signs of the sine and ... |
sincosq2sgn 25561 | The signs of the sine and ... |
sincosq3sgn 25562 | The signs of the sine and ... |
sincosq4sgn 25563 | The signs of the sine and ... |
coseq00topi 25564 | Location of the zeroes of ... |
coseq0negpitopi 25565 | Location of the zeroes of ... |
tanrpcl 25566 | Positive real closure of t... |
tangtx 25567 | The tangent function is gr... |
tanabsge 25568 | The tangent function is gr... |
sinq12gt0 25569 | The sine of a number stric... |
sinq12ge0 25570 | The sine of a number betwe... |
sinq34lt0t 25571 | The sine of a number stric... |
cosq14gt0 25572 | The cosine of a number str... |
cosq14ge0 25573 | The cosine of a number bet... |
sincosq1eq 25574 | Complementarity of the sin... |
sincos4thpi 25575 | The sine and cosine of ` _... |
tan4thpi 25576 | The tangent of ` _pi / 4 `... |
sincos6thpi 25577 | The sine and cosine of ` _... |
sincos3rdpi 25578 | The sine and cosine of ` _... |
pigt3 25579 | ` _pi ` is greater than 3.... |
pige3 25580 | ` _pi ` is greater than or... |
pige3ALT 25581 | Alternate proof of ~ pige3... |
abssinper 25582 | The absolute value of sine... |
sinkpi 25583 | The sine of an integer mul... |
coskpi 25584 | The absolute value of the ... |
sineq0 25585 | A complex number whose sin... |
coseq1 25586 | A complex number whose cos... |
cos02pilt1 25587 | Cosine is less than one be... |
cosq34lt1 25588 | Cosine is less than one in... |
efeq1 25589 | A complex number whose exp... |
cosne0 25590 | The cosine function has no... |
cosordlem 25591 | Lemma for ~ cosord . (Con... |
cosord 25592 | Cosine is decreasing over ... |
cos0pilt1 25593 | Cosine is between minus on... |
cos11 25594 | Cosine is one-to-one over ... |
sinord 25595 | Sine is increasing over th... |
recosf1o 25596 | The cosine function is a b... |
resinf1o 25597 | The sine function is a bij... |
tanord1 25598 | The tangent function is st... |
tanord 25599 | The tangent function is st... |
tanregt0 25600 | The real part of the tange... |
negpitopissre 25601 | The interval ` ( -u _pi (,... |
efgh 25602 | The exponential function o... |
efif1olem1 25603 | Lemma for ~ efif1o . (Con... |
efif1olem2 25604 | Lemma for ~ efif1o . (Con... |
efif1olem3 25605 | Lemma for ~ efif1o . (Con... |
efif1olem4 25606 | The exponential function o... |
efif1o 25607 | The exponential function o... |
efifo 25608 | The exponential function o... |
eff1olem 25609 | The exponential function m... |
eff1o 25610 | The exponential function m... |
efabl 25611 | The image of a subgroup of... |
efsubm 25612 | The image of a subgroup of... |
circgrp 25613 | The circle group ` T ` is ... |
circsubm 25614 | The circle group ` T ` is ... |
logrn 25619 | The range of the natural l... |
ellogrn 25620 | Write out the property ` A... |
dflog2 25621 | The natural logarithm func... |
relogrn 25622 | The range of the natural l... |
logrncn 25623 | The range of the natural l... |
eff1o2 25624 | The exponential function r... |
logf1o 25625 | The natural logarithm func... |
dfrelog 25626 | The natural logarithm func... |
relogf1o 25627 | The natural logarithm func... |
logrncl 25628 | Closure of the natural log... |
logcl 25629 | Closure of the natural log... |
logimcl 25630 | Closure of the imaginary p... |
logcld 25631 | The logarithm of a nonzero... |
logimcld 25632 | The imaginary part of the ... |
logimclad 25633 | The imaginary part of the ... |
abslogimle 25634 | The imaginary part of the ... |
logrnaddcl 25635 | The range of the natural l... |
relogcl 25636 | Closure of the natural log... |
eflog 25637 | Relationship between the n... |
logeq0im1 25638 | If the logarithm of a numb... |
logccne0 25639 | The logarithm isn't 0 if i... |
logne0 25640 | Logarithm of a non-1 posit... |
reeflog 25641 | Relationship between the n... |
logef 25642 | Relationship between the n... |
relogef 25643 | Relationship between the n... |
logeftb 25644 | Relationship between the n... |
relogeftb 25645 | Relationship between the n... |
log1 25646 | The natural logarithm of `... |
loge 25647 | The natural logarithm of `... |
logneg 25648 | The natural logarithm of a... |
logm1 25649 | The natural logarithm of n... |
lognegb 25650 | If a number has imaginary ... |
relogoprlem 25651 | Lemma for ~ relogmul and ~... |
relogmul 25652 | The natural logarithm of t... |
relogdiv 25653 | The natural logarithm of t... |
explog 25654 | Exponentiation of a nonzer... |
reexplog 25655 | Exponentiation of a positi... |
relogexp 25656 | The natural logarithm of p... |
relog 25657 | Real part of a logarithm. ... |
relogiso 25658 | The natural logarithm func... |
reloggim 25659 | The natural logarithm is a... |
logltb 25660 | The natural logarithm func... |
logfac 25661 | The logarithm of a factori... |
eflogeq 25662 | Solve an equation involvin... |
logleb 25663 | Natural logarithm preserve... |
rplogcl 25664 | Closure of the logarithm f... |
logge0 25665 | The logarithm of a number ... |
logcj 25666 | The natural logarithm dist... |
efiarg 25667 | The exponential of the "ar... |
cosargd 25668 | The cosine of the argument... |
cosarg0d 25669 | The cosine of the argument... |
argregt0 25670 | Closure of the argument of... |
argrege0 25671 | Closure of the argument of... |
argimgt0 25672 | Closure of the argument of... |
argimlt0 25673 | Closure of the argument of... |
logimul 25674 | Multiplying a number by ` ... |
logneg2 25675 | The logarithm of the negat... |
logmul2 25676 | Generalization of ~ relogm... |
logdiv2 25677 | Generalization of ~ relogd... |
abslogle 25678 | Bound on the magnitude of ... |
tanarg 25679 | The basic relation between... |
logdivlti 25680 | The ` log x / x ` function... |
logdivlt 25681 | The ` log x / x ` function... |
logdivle 25682 | The ` log x / x ` function... |
relogcld 25683 | Closure of the natural log... |
reeflogd 25684 | Relationship between the n... |
relogmuld 25685 | The natural logarithm of t... |
relogdivd 25686 | The natural logarithm of t... |
logled 25687 | Natural logarithm preserve... |
relogefd 25688 | Relationship between the n... |
rplogcld 25689 | Closure of the logarithm f... |
logge0d 25690 | The logarithm of a number ... |
logge0b 25691 | The logarithm of a number ... |
loggt0b 25692 | The logarithm of a number ... |
logle1b 25693 | The logarithm of a number ... |
loglt1b 25694 | The logarithm of a number ... |
divlogrlim 25695 | The inverse logarithm func... |
logno1 25696 | The logarithm function is ... |
dvrelog 25697 | The derivative of the real... |
relogcn 25698 | The real logarithm functio... |
ellogdm 25699 | Elementhood in the "contin... |
logdmn0 25700 | A number in the continuous... |
logdmnrp 25701 | A number in the continuous... |
logdmss 25702 | The continuity domain of `... |
logcnlem2 25703 | Lemma for ~ logcn . (Cont... |
logcnlem3 25704 | Lemma for ~ logcn . (Cont... |
logcnlem4 25705 | Lemma for ~ logcn . (Cont... |
logcnlem5 25706 | Lemma for ~ logcn . (Cont... |
logcn 25707 | The logarithm function is ... |
dvloglem 25708 | Lemma for ~ dvlog . (Cont... |
logdmopn 25709 | The "continuous domain" of... |
logf1o2 25710 | The logarithm maps its con... |
dvlog 25711 | The derivative of the comp... |
dvlog2lem 25712 | Lemma for ~ dvlog2 . (Con... |
dvlog2 25713 | The derivative of the comp... |
advlog 25714 | The antiderivative of the ... |
advlogexp 25715 | The antiderivative of a po... |
efopnlem1 25716 | Lemma for ~ efopn . (Cont... |
efopnlem2 25717 | Lemma for ~ efopn . (Cont... |
efopn 25718 | The exponential map is an ... |
logtayllem 25719 | Lemma for ~ logtayl . (Co... |
logtayl 25720 | The Taylor series for ` -u... |
logtaylsum 25721 | The Taylor series for ` -u... |
logtayl2 25722 | Power series expression fo... |
logccv 25723 | The natural logarithm func... |
cxpval 25724 | Value of the complex power... |
cxpef 25725 | Value of the complex power... |
0cxp 25726 | Value of the complex power... |
cxpexpz 25727 | Relate the complex power f... |
cxpexp 25728 | Relate the complex power f... |
logcxp 25729 | Logarithm of a complex pow... |
cxp0 25730 | Value of the complex power... |
cxp1 25731 | Value of the complex power... |
1cxp 25732 | Value of the complex power... |
ecxp 25733 | Write the exponential func... |
cxpcl 25734 | Closure of the complex pow... |
recxpcl 25735 | Real closure of the comple... |
rpcxpcl 25736 | Positive real closure of t... |
cxpne0 25737 | Complex exponentiation is ... |
cxpeq0 25738 | Complex exponentiation is ... |
cxpadd 25739 | Sum of exponents law for c... |
cxpp1 25740 | Value of a nonzero complex... |
cxpneg 25741 | Value of a complex number ... |
cxpsub 25742 | Exponent subtraction law f... |
cxpge0 25743 | Nonnegative exponentiation... |
mulcxplem 25744 | Lemma for ~ mulcxp . (Con... |
mulcxp 25745 | Complex exponentiation of ... |
cxprec 25746 | Complex exponentiation of ... |
divcxp 25747 | Complex exponentiation of ... |
cxpmul 25748 | Product of exponents law f... |
cxpmul2 25749 | Product of exponents law f... |
cxproot 25750 | The complex power function... |
cxpmul2z 25751 | Generalize ~ cxpmul2 to ne... |
abscxp 25752 | Absolute value of a power,... |
abscxp2 25753 | Absolute value of a power,... |
cxplt 25754 | Ordering property for comp... |
cxple 25755 | Ordering property for comp... |
cxplea 25756 | Ordering property for comp... |
cxple2 25757 | Ordering property for comp... |
cxplt2 25758 | Ordering property for comp... |
cxple2a 25759 | Ordering property for comp... |
cxplt3 25760 | Ordering property for comp... |
cxple3 25761 | Ordering property for comp... |
cxpsqrtlem 25762 | Lemma for ~ cxpsqrt . (Co... |
cxpsqrt 25763 | The complex exponential fu... |
logsqrt 25764 | Logarithm of a square root... |
cxp0d 25765 | Value of the complex power... |
cxp1d 25766 | Value of the complex power... |
1cxpd 25767 | Value of the complex power... |
cxpcld 25768 | Closure of the complex pow... |
cxpmul2d 25769 | Product of exponents law f... |
0cxpd 25770 | Value of the complex power... |
cxpexpzd 25771 | Relate the complex power f... |
cxpefd 25772 | Value of the complex power... |
cxpne0d 25773 | Complex exponentiation is ... |
cxpp1d 25774 | Value of a nonzero complex... |
cxpnegd 25775 | Value of a complex number ... |
cxpmul2zd 25776 | Generalize ~ cxpmul2 to ne... |
cxpaddd 25777 | Sum of exponents law for c... |
cxpsubd 25778 | Exponent subtraction law f... |
cxpltd 25779 | Ordering property for comp... |
cxpled 25780 | Ordering property for comp... |
cxplead 25781 | Ordering property for comp... |
divcxpd 25782 | Complex exponentiation of ... |
recxpcld 25783 | Positive real closure of t... |
cxpge0d 25784 | Nonnegative exponentiation... |
cxple2ad 25785 | Ordering property for comp... |
cxplt2d 25786 | Ordering property for comp... |
cxple2d 25787 | Ordering property for comp... |
mulcxpd 25788 | Complex exponentiation of ... |
cxpsqrtth 25789 | Square root theorem over t... |
2irrexpq 25790 | There exist irrational num... |
cxprecd 25791 | Complex exponentiation of ... |
rpcxpcld 25792 | Positive real closure of t... |
logcxpd 25793 | Logarithm of a complex pow... |
cxplt3d 25794 | Ordering property for comp... |
cxple3d 25795 | Ordering property for comp... |
cxpmuld 25796 | Product of exponents law f... |
cxpcom 25797 | Commutative law for real e... |
dvcxp1 25798 | The derivative of a comple... |
dvcxp2 25799 | The derivative of a comple... |
dvsqrt 25800 | The derivative of the real... |
dvcncxp1 25801 | Derivative of complex powe... |
dvcnsqrt 25802 | Derivative of square root ... |
cxpcn 25803 | Domain of continuity of th... |
cxpcn2 25804 | Continuity of the complex ... |
cxpcn3lem 25805 | Lemma for ~ cxpcn3 . (Con... |
cxpcn3 25806 | Extend continuity of the c... |
resqrtcn 25807 | Continuity of the real squ... |
sqrtcn 25808 | Continuity of the square r... |
cxpaddlelem 25809 | Lemma for ~ cxpaddle . (C... |
cxpaddle 25810 | Ordering property for comp... |
abscxpbnd 25811 | Bound on the absolute valu... |
root1id 25812 | Property of an ` N ` -th r... |
root1eq1 25813 | The only powers of an ` N ... |
root1cj 25814 | Within the ` N ` -th roots... |
cxpeq 25815 | Solve an equation involvin... |
loglesqrt 25816 | An upper bound on the loga... |
logreclem 25817 | Symmetry of the natural lo... |
logrec 25818 | Logarithm of a reciprocal ... |
logbval 25821 | Define the value of the ` ... |
logbcl 25822 | General logarithm closure.... |
logbid1 25823 | General logarithm is 1 whe... |
logb1 25824 | The logarithm of ` 1 ` to ... |
elogb 25825 | The general logarithm of a... |
logbchbase 25826 | Change of base for logarit... |
relogbval 25827 | Value of the general logar... |
relogbcl 25828 | Closure of the general log... |
relogbzcl 25829 | Closure of the general log... |
relogbreexp 25830 | Power law for the general ... |
relogbzexp 25831 | Power law for the general ... |
relogbmul 25832 | The logarithm of the produ... |
relogbmulexp 25833 | The logarithm of the produ... |
relogbdiv 25834 | The logarithm of the quoti... |
relogbexp 25835 | Identity law for general l... |
nnlogbexp 25836 | Identity law for general l... |
logbrec 25837 | Logarithm of a reciprocal ... |
logbleb 25838 | The general logarithm func... |
logblt 25839 | The general logarithm func... |
relogbcxp 25840 | Identity law for the gener... |
cxplogb 25841 | Identity law for the gener... |
relogbcxpb 25842 | The logarithm is the inver... |
logbmpt 25843 | The general logarithm to a... |
logbf 25844 | The general logarithm to a... |
logbfval 25845 | The general logarithm of a... |
relogbf 25846 | The general logarithm to a... |
logblog 25847 | The general logarithm to t... |
logbgt0b 25848 | The logarithm of a positiv... |
logbgcd1irr 25849 | The logarithm of an intege... |
2logb9irr 25850 | Example for ~ logbgcd1irr ... |
logbprmirr 25851 | The logarithm of a prime t... |
2logb3irr 25852 | Example for ~ logbprmirr .... |
2logb9irrALT 25853 | Alternate proof of ~ 2logb... |
sqrt2cxp2logb9e3 25854 | The square root of two to ... |
2irrexpqALT 25855 | Alternate proof of ~ 2irre... |
angval 25856 | Define the angle function,... |
angcan 25857 | Cancel a constant multipli... |
angneg 25858 | Cancel a negative sign in ... |
angvald 25859 | The (signed) angle between... |
angcld 25860 | The (signed) angle between... |
angrteqvd 25861 | Two vectors are at a right... |
cosangneg2d 25862 | The cosine of the angle be... |
angrtmuld 25863 | Perpendicularity of two ve... |
ang180lem1 25864 | Lemma for ~ ang180 . Show... |
ang180lem2 25865 | Lemma for ~ ang180 . Show... |
ang180lem3 25866 | Lemma for ~ ang180 . Sinc... |
ang180lem4 25867 | Lemma for ~ ang180 . Redu... |
ang180lem5 25868 | Lemma for ~ ang180 : Redu... |
ang180 25869 | The sum of angles ` m A B ... |
lawcoslem1 25870 | Lemma for ~ lawcos . Here... |
lawcos 25871 | Law of cosines (also known... |
pythag 25872 | Pythagorean theorem. Give... |
isosctrlem1 25873 | Lemma for ~ isosctr . (Co... |
isosctrlem2 25874 | Lemma for ~ isosctr . Cor... |
isosctrlem3 25875 | Lemma for ~ isosctr . Cor... |
isosctr 25876 | Isosceles triangle theorem... |
ssscongptld 25877 | If two triangles have equa... |
affineequiv 25878 | Equivalence between two wa... |
affineequiv2 25879 | Equivalence between two wa... |
affineequiv3 25880 | Equivalence between two wa... |
affineequiv4 25881 | Equivalence between two wa... |
affineequivne 25882 | Equivalence between two wa... |
angpieqvdlem 25883 | Equivalence used in the pr... |
angpieqvdlem2 25884 | Equivalence used in ~ angp... |
angpined 25885 | If the angle at ABC is ` _... |
angpieqvd 25886 | The angle ABC is ` _pi ` i... |
chordthmlem 25887 | If ` M ` is the midpoint o... |
chordthmlem2 25888 | If M is the midpoint of AB... |
chordthmlem3 25889 | If M is the midpoint of AB... |
chordthmlem4 25890 | If P is on the segment AB ... |
chordthmlem5 25891 | If P is on the segment AB ... |
chordthm 25892 | The intersecting chords th... |
heron 25893 | Heron's formula gives the ... |
quad2 25894 | The quadratic equation, wi... |
quad 25895 | The quadratic equation. (... |
1cubrlem 25896 | The cube roots of unity. ... |
1cubr 25897 | The cube roots of unity. ... |
dcubic1lem 25898 | Lemma for ~ dcubic1 and ~ ... |
dcubic2 25899 | Reverse direction of ~ dcu... |
dcubic1 25900 | Forward direction of ~ dcu... |
dcubic 25901 | Solutions to the depressed... |
mcubic 25902 | Solutions to a monic cubic... |
cubic2 25903 | The solution to the genera... |
cubic 25904 | The cubic equation, which ... |
binom4 25905 | Work out a quartic binomia... |
dquartlem1 25906 | Lemma for ~ dquart . (Con... |
dquartlem2 25907 | Lemma for ~ dquart . (Con... |
dquart 25908 | Solve a depressed quartic ... |
quart1cl 25909 | Closure lemmas for ~ quart... |
quart1lem 25910 | Lemma for ~ quart1 . (Con... |
quart1 25911 | Depress a quartic equation... |
quartlem1 25912 | Lemma for ~ quart . (Cont... |
quartlem2 25913 | Closure lemmas for ~ quart... |
quartlem3 25914 | Closure lemmas for ~ quart... |
quartlem4 25915 | Closure lemmas for ~ quart... |
quart 25916 | The quartic equation, writ... |
asinlem 25923 | The argument to the logari... |
asinlem2 25924 | The argument to the logari... |
asinlem3a 25925 | Lemma for ~ asinlem3 . (C... |
asinlem3 25926 | The argument to the logari... |
asinf 25927 | Domain and range of the ar... |
asincl 25928 | Closure for the arcsin fun... |
acosf 25929 | Domain and range of the ar... |
acoscl 25930 | Closure for the arccos fun... |
atandm 25931 | Since the property is a li... |
atandm2 25932 | This form of ~ atandm is a... |
atandm3 25933 | A compact form of ~ atandm... |
atandm4 25934 | A compact form of ~ atandm... |
atanf 25935 | Domain and range of the ar... |
atancl 25936 | Closure for the arctan fun... |
asinval 25937 | Value of the arcsin functi... |
acosval 25938 | Value of the arccos functi... |
atanval 25939 | Value of the arctan functi... |
atanre 25940 | A real number is in the do... |
asinneg 25941 | The arcsine function is od... |
acosneg 25942 | The negative symmetry rela... |
efiasin 25943 | The exponential of the arc... |
sinasin 25944 | The arcsine function is an... |
cosacos 25945 | The arccosine function is ... |
asinsinlem 25946 | Lemma for ~ asinsin . (Co... |
asinsin 25947 | The arcsine function compo... |
acoscos 25948 | The arccosine function is ... |
asin1 25949 | The arcsine of ` 1 ` is ` ... |
acos1 25950 | The arccosine of ` 1 ` is ... |
reasinsin 25951 | The arcsine function compo... |
asinsinb 25952 | Relationship between sine ... |
acoscosb 25953 | Relationship between cosin... |
asinbnd 25954 | The arcsine function has r... |
acosbnd 25955 | The arccosine function has... |
asinrebnd 25956 | Bounds on the arcsine func... |
asinrecl 25957 | The arcsine function is re... |
acosrecl 25958 | The arccosine function is ... |
cosasin 25959 | The cosine of the arcsine ... |
sinacos 25960 | The sine of the arccosine ... |
atandmneg 25961 | The domain of the arctange... |
atanneg 25962 | The arctangent function is... |
atan0 25963 | The arctangent of zero is ... |
atandmcj 25964 | The arctangent function di... |
atancj 25965 | The arctangent function di... |
atanrecl 25966 | The arctangent function is... |
efiatan 25967 | Value of the exponential o... |
atanlogaddlem 25968 | Lemma for ~ atanlogadd . ... |
atanlogadd 25969 | The rule ` sqrt ( z w ) = ... |
atanlogsublem 25970 | Lemma for ~ atanlogsub . ... |
atanlogsub 25971 | A variation on ~ atanlogad... |
efiatan2 25972 | Value of the exponential o... |
2efiatan 25973 | Value of the exponential o... |
tanatan 25974 | The arctangent function is... |
atandmtan 25975 | The tangent function has r... |
cosatan 25976 | The cosine of an arctangen... |
cosatanne0 25977 | The arctangent function ha... |
atantan 25978 | The arctangent function is... |
atantanb 25979 | Relationship between tange... |
atanbndlem 25980 | Lemma for ~ atanbnd . (Co... |
atanbnd 25981 | The arctangent function is... |
atanord 25982 | The arctangent function is... |
atan1 25983 | The arctangent of ` 1 ` is... |
bndatandm 25984 | A point in the open unit d... |
atans 25985 | The "domain of continuity"... |
atans2 25986 | It suffices to show that `... |
atansopn 25987 | The domain of continuity o... |
atansssdm 25988 | The domain of continuity o... |
ressatans 25989 | The real number line is a ... |
dvatan 25990 | The derivative of the arct... |
atancn 25991 | The arctangent is a contin... |
atantayl 25992 | The Taylor series for ` ar... |
atantayl2 25993 | The Taylor series for ` ar... |
atantayl3 25994 | The Taylor series for ` ar... |
leibpilem1 25995 | Lemma for ~ leibpi . (Con... |
leibpilem2 25996 | The Leibniz formula for ` ... |
leibpi 25997 | The Leibniz formula for ` ... |
leibpisum 25998 | The Leibniz formula for ` ... |
log2cnv 25999 | Using the Taylor series fo... |
log2tlbnd 26000 | Bound the error term in th... |
log2ublem1 26001 | Lemma for ~ log2ub . The ... |
log2ublem2 26002 | Lemma for ~ log2ub . (Con... |
log2ublem3 26003 | Lemma for ~ log2ub . In d... |
log2ub 26004 | ` log 2 ` is less than ` 2... |
log2le1 26005 | ` log 2 ` is less than ` 1... |
birthdaylem1 26006 | Lemma for ~ birthday . (C... |
birthdaylem2 26007 | For general ` N ` and ` K ... |
birthdaylem3 26008 | For general ` N ` and ` K ... |
birthday 26009 | The Birthday Problem. The... |
dmarea 26012 | The domain of the area fun... |
areambl 26013 | The fibers of a measurable... |
areass 26014 | A measurable region is a s... |
dfarea 26015 | Rewrite ~ df-area self-ref... |
areaf 26016 | Area measurement is a func... |
areacl 26017 | The area of a measurable r... |
areage0 26018 | The area of a measurable r... |
areaval 26019 | The area of a measurable r... |
rlimcnp 26020 | Relate a limit of a real-v... |
rlimcnp2 26021 | Relate a limit of a real-v... |
rlimcnp3 26022 | Relate a limit of a real-v... |
xrlimcnp 26023 | Relate a limit of a real-v... |
efrlim 26024 | The limit of the sequence ... |
dfef2 26025 | The limit of the sequence ... |
cxplim 26026 | A power to a negative expo... |
sqrtlim 26027 | The inverse square root fu... |
rlimcxp 26028 | Any power to a positive ex... |
o1cxp 26029 | An eventually bounded func... |
cxp2limlem 26030 | A linear factor grows slow... |
cxp2lim 26031 | Any power grows slower tha... |
cxploglim 26032 | The logarithm grows slower... |
cxploglim2 26033 | Every power of the logarit... |
divsqrtsumlem 26034 | Lemma for ~ divsqrsum and ... |
divsqrsumf 26035 | The function ` F ` used in... |
divsqrsum 26036 | The sum ` sum_ n <_ x ( 1 ... |
divsqrtsum2 26037 | A bound on the distance of... |
divsqrtsumo1 26038 | The sum ` sum_ n <_ x ( 1 ... |
cvxcl 26039 | Closure of a 0-1 linear co... |
scvxcvx 26040 | A strictly convex function... |
jensenlem1 26041 | Lemma for ~ jensen . (Con... |
jensenlem2 26042 | Lemma for ~ jensen . (Con... |
jensen 26043 | Jensen's inequality, a fin... |
amgmlem 26044 | Lemma for ~ amgm . (Contr... |
amgm 26045 | Inequality of arithmetic a... |
logdifbnd 26048 | Bound on the difference of... |
logdiflbnd 26049 | Lower bound on the differe... |
emcllem1 26050 | Lemma for ~ emcl . The se... |
emcllem2 26051 | Lemma for ~ emcl . ` F ` i... |
emcllem3 26052 | Lemma for ~ emcl . The fu... |
emcllem4 26053 | Lemma for ~ emcl . The di... |
emcllem5 26054 | Lemma for ~ emcl . The pa... |
emcllem6 26055 | Lemma for ~ emcl . By the... |
emcllem7 26056 | Lemma for ~ emcl and ~ har... |
emcl 26057 | Closure and bounds for the... |
harmonicbnd 26058 | A bound on the harmonic se... |
harmonicbnd2 26059 | A bound on the harmonic se... |
emre 26060 | The Euler-Mascheroni const... |
emgt0 26061 | The Euler-Mascheroni const... |
harmonicbnd3 26062 | A bound on the harmonic se... |
harmoniclbnd 26063 | A bound on the harmonic se... |
harmonicubnd 26064 | A bound on the harmonic se... |
harmonicbnd4 26065 | The asymptotic behavior of... |
fsumharmonic 26066 | Bound a finite sum based o... |
zetacvg 26069 | The zeta series is converg... |
eldmgm 26076 | Elementhood in the set of ... |
dmgmaddn0 26077 | If ` A ` is not a nonposit... |
dmlogdmgm 26078 | If ` A ` is in the continu... |
rpdmgm 26079 | A positive real number is ... |
dmgmn0 26080 | If ` A ` is not a nonposit... |
dmgmaddnn0 26081 | If ` A ` is not a nonposit... |
dmgmdivn0 26082 | Lemma for ~ lgamf . (Cont... |
lgamgulmlem1 26083 | Lemma for ~ lgamgulm . (C... |
lgamgulmlem2 26084 | Lemma for ~ lgamgulm . (C... |
lgamgulmlem3 26085 | Lemma for ~ lgamgulm . (C... |
lgamgulmlem4 26086 | Lemma for ~ lgamgulm . (C... |
lgamgulmlem5 26087 | Lemma for ~ lgamgulm . (C... |
lgamgulmlem6 26088 | The series ` G ` is unifor... |
lgamgulm 26089 | The series ` G ` is unifor... |
lgamgulm2 26090 | Rewrite the limit of the s... |
lgambdd 26091 | The log-Gamma function is ... |
lgamucov 26092 | The ` U ` regions used in ... |
lgamucov2 26093 | The ` U ` regions used in ... |
lgamcvglem 26094 | Lemma for ~ lgamf and ~ lg... |
lgamcl 26095 | The log-Gamma function is ... |
lgamf 26096 | The log-Gamma function is ... |
gamf 26097 | The Gamma function is a co... |
gamcl 26098 | The exponential of the log... |
eflgam 26099 | The exponential of the log... |
gamne0 26100 | The Gamma function is neve... |
igamval 26101 | Value of the inverse Gamma... |
igamz 26102 | Value of the inverse Gamma... |
igamgam 26103 | Value of the inverse Gamma... |
igamlgam 26104 | Value of the inverse Gamma... |
igamf 26105 | Closure of the inverse Gam... |
igamcl 26106 | Closure of the inverse Gam... |
gamigam 26107 | The Gamma function is the ... |
lgamcvg 26108 | The series ` G ` converges... |
lgamcvg2 26109 | The series ` G ` converges... |
gamcvg 26110 | The pointwise exponential ... |
lgamp1 26111 | The functional equation of... |
gamp1 26112 | The functional equation of... |
gamcvg2lem 26113 | Lemma for ~ gamcvg2 . (Co... |
gamcvg2 26114 | An infinite product expres... |
regamcl 26115 | The Gamma function is real... |
relgamcl 26116 | The log-Gamma function is ... |
rpgamcl 26117 | The log-Gamma function is ... |
lgam1 26118 | The log-Gamma function at ... |
gam1 26119 | The log-Gamma function at ... |
facgam 26120 | The Gamma function general... |
gamfac 26121 | The Gamma function general... |
wilthlem1 26122 | The only elements that are... |
wilthlem2 26123 | Lemma for ~ wilth : induct... |
wilthlem3 26124 | Lemma for ~ wilth . Here ... |
wilth 26125 | Wilson's theorem. A numbe... |
wilthimp 26126 | The forward implication of... |
ftalem1 26127 | Lemma for ~ fta : "growth... |
ftalem2 26128 | Lemma for ~ fta . There e... |
ftalem3 26129 | Lemma for ~ fta . There e... |
ftalem4 26130 | Lemma for ~ fta : Closure... |
ftalem5 26131 | Lemma for ~ fta : Main pr... |
ftalem6 26132 | Lemma for ~ fta : Dischar... |
ftalem7 26133 | Lemma for ~ fta . Shift t... |
fta 26134 | The Fundamental Theorem of... |
basellem1 26135 | Lemma for ~ basel . Closu... |
basellem2 26136 | Lemma for ~ basel . Show ... |
basellem3 26137 | Lemma for ~ basel . Using... |
basellem4 26138 | Lemma for ~ basel . By ~ ... |
basellem5 26139 | Lemma for ~ basel . Using... |
basellem6 26140 | Lemma for ~ basel . The f... |
basellem7 26141 | Lemma for ~ basel . The f... |
basellem8 26142 | Lemma for ~ basel . The f... |
basellem9 26143 | Lemma for ~ basel . Since... |
basel 26144 | The sum of the inverse squ... |
efnnfsumcl 26157 | Finite sum closure in the ... |
ppisval 26158 | The set of primes less tha... |
ppisval2 26159 | The set of primes less tha... |
ppifi 26160 | The set of primes less tha... |
prmdvdsfi 26161 | The set of prime divisors ... |
chtf 26162 | Domain and range of the Ch... |
chtcl 26163 | Real closure of the Chebys... |
chtval 26164 | Value of the Chebyshev fun... |
efchtcl 26165 | The Chebyshev function is ... |
chtge0 26166 | The Chebyshev function is ... |
vmaval 26167 | Value of the von Mangoldt ... |
isppw 26168 | Two ways to say that ` A `... |
isppw2 26169 | Two ways to say that ` A `... |
vmappw 26170 | Value of the von Mangoldt ... |
vmaprm 26171 | Value of the von Mangoldt ... |
vmacl 26172 | Closure for the von Mangol... |
vmaf 26173 | Functionality of the von M... |
efvmacl 26174 | The von Mangoldt is closed... |
vmage0 26175 | The von Mangoldt function ... |
chpval 26176 | Value of the second Chebys... |
chpf 26177 | Functionality of the secon... |
chpcl 26178 | Closure for the second Che... |
efchpcl 26179 | The second Chebyshev funct... |
chpge0 26180 | The second Chebyshev funct... |
ppival 26181 | Value of the prime-countin... |
ppival2 26182 | Value of the prime-countin... |
ppival2g 26183 | Value of the prime-countin... |
ppif 26184 | Domain and range of the pr... |
ppicl 26185 | Real closure of the prime-... |
muval 26186 | The value of the Möbi... |
muval1 26187 | The value of the Möbi... |
muval2 26188 | The value of the Möbi... |
isnsqf 26189 | Two ways to say that a num... |
issqf 26190 | Two ways to say that a num... |
sqfpc 26191 | The prime count of a squar... |
dvdssqf 26192 | A divisor of a squarefree ... |
sqf11 26193 | A squarefree number is com... |
muf 26194 | The Möbius function i... |
mucl 26195 | Closure of the Möbius... |
sgmval 26196 | The value of the divisor f... |
sgmval2 26197 | The value of the divisor f... |
0sgm 26198 | The value of the sum-of-di... |
sgmf 26199 | The divisor function is a ... |
sgmcl 26200 | Closure of the divisor fun... |
sgmnncl 26201 | Closure of the divisor fun... |
mule1 26202 | The Möbius function t... |
chtfl 26203 | The Chebyshev function doe... |
chpfl 26204 | The second Chebyshev funct... |
ppiprm 26205 | The prime-counting functio... |
ppinprm 26206 | The prime-counting functio... |
chtprm 26207 | The Chebyshev function at ... |
chtnprm 26208 | The Chebyshev function at ... |
chpp1 26209 | The second Chebyshev funct... |
chtwordi 26210 | The Chebyshev function is ... |
chpwordi 26211 | The second Chebyshev funct... |
chtdif 26212 | The difference of the Cheb... |
efchtdvds 26213 | The exponentiated Chebyshe... |
ppifl 26214 | The prime-counting functio... |
ppip1le 26215 | The prime-counting functio... |
ppiwordi 26216 | The prime-counting functio... |
ppidif 26217 | The difference of the prim... |
ppi1 26218 | The prime-counting functio... |
cht1 26219 | The Chebyshev function at ... |
vma1 26220 | The von Mangoldt function ... |
chp1 26221 | The second Chebyshev funct... |
ppi1i 26222 | Inference form of ~ ppiprm... |
ppi2i 26223 | Inference form of ~ ppinpr... |
ppi2 26224 | The prime-counting functio... |
ppi3 26225 | The prime-counting functio... |
cht2 26226 | The Chebyshev function at ... |
cht3 26227 | The Chebyshev function at ... |
ppinncl 26228 | Closure of the prime-count... |
chtrpcl 26229 | Closure of the Chebyshev f... |
ppieq0 26230 | The prime-counting functio... |
ppiltx 26231 | The prime-counting functio... |
prmorcht 26232 | Relate the primorial (prod... |
mumullem1 26233 | Lemma for ~ mumul . A mul... |
mumullem2 26234 | Lemma for ~ mumul . The p... |
mumul 26235 | The Möbius function i... |
sqff1o 26236 | There is a bijection from ... |
fsumdvdsdiaglem 26237 | A "diagonal commutation" o... |
fsumdvdsdiag 26238 | A "diagonal commutation" o... |
fsumdvdscom 26239 | A double commutation of di... |
dvdsppwf1o 26240 | A bijection from the divis... |
dvdsflf1o 26241 | A bijection from the numbe... |
dvdsflsumcom 26242 | A sum commutation from ` s... |
fsumfldivdiaglem 26243 | Lemma for ~ fsumfldivdiag ... |
fsumfldivdiag 26244 | The right-hand side of ~ d... |
musum 26245 | The sum of the Möbius... |
musumsum 26246 | Evaluate a collapsing sum ... |
muinv 26247 | The Möbius inversion ... |
dvdsmulf1o 26248 | If ` M ` and ` N ` are two... |
fsumdvdsmul 26249 | Product of two divisor sum... |
sgmppw 26250 | The value of the divisor f... |
0sgmppw 26251 | A prime power ` P ^ K ` ha... |
1sgmprm 26252 | The sum of divisors for a ... |
1sgm2ppw 26253 | The sum of the divisors of... |
sgmmul 26254 | The divisor function for f... |
ppiublem1 26255 | Lemma for ~ ppiub . (Cont... |
ppiublem2 26256 | A prime greater than ` 3 `... |
ppiub 26257 | An upper bound on the prim... |
vmalelog 26258 | The von Mangoldt function ... |
chtlepsi 26259 | The first Chebyshev functi... |
chprpcl 26260 | Closure of the second Cheb... |
chpeq0 26261 | The second Chebyshev funct... |
chteq0 26262 | The first Chebyshev functi... |
chtleppi 26263 | Upper bound on the ` theta... |
chtublem 26264 | Lemma for ~ chtub . (Cont... |
chtub 26265 | An upper bound on the Cheb... |
fsumvma 26266 | Rewrite a sum over the von... |
fsumvma2 26267 | Apply ~ fsumvma for the co... |
pclogsum 26268 | The logarithmic analogue o... |
vmasum 26269 | The sum of the von Mangold... |
logfac2 26270 | Another expression for the... |
chpval2 26271 | Express the second Chebysh... |
chpchtsum 26272 | The second Chebyshev funct... |
chpub 26273 | An upper bound on the seco... |
logfacubnd 26274 | A simple upper bound on th... |
logfaclbnd 26275 | A lower bound on the logar... |
logfacbnd3 26276 | Show the stronger statemen... |
logfacrlim 26277 | Combine the estimates ~ lo... |
logexprlim 26278 | The sum ` sum_ n <_ x , lo... |
logfacrlim2 26279 | Write out ~ logfacrlim as ... |
mersenne 26280 | A Mersenne prime is a prim... |
perfect1 26281 | Euclid's contribution to t... |
perfectlem1 26282 | Lemma for ~ perfect . (Co... |
perfectlem2 26283 | Lemma for ~ perfect . (Co... |
perfect 26284 | The Euclid-Euler theorem, ... |
dchrval 26287 | Value of the group of Diri... |
dchrbas 26288 | Base set of the group of D... |
dchrelbas 26289 | A Dirichlet character is a... |
dchrelbas2 26290 | A Dirichlet character is a... |
dchrelbas3 26291 | A Dirichlet character is a... |
dchrelbasd 26292 | A Dirichlet character is a... |
dchrrcl 26293 | Reverse closure for a Diri... |
dchrmhm 26294 | A Dirichlet character is a... |
dchrf 26295 | A Dirichlet character is a... |
dchrelbas4 26296 | A Dirichlet character is a... |
dchrzrh1 26297 | Value of a Dirichlet chara... |
dchrzrhcl 26298 | A Dirichlet character take... |
dchrzrhmul 26299 | A Dirichlet character is c... |
dchrplusg 26300 | Group operation on the gro... |
dchrmul 26301 | Group operation on the gro... |
dchrmulcl 26302 | Closure of the group opera... |
dchrn0 26303 | A Dirichlet character is n... |
dchr1cl 26304 | Closure of the principal D... |
dchrmulid2 26305 | Left identity for the prin... |
dchrinvcl 26306 | Closure of the group inver... |
dchrabl 26307 | The set of Dirichlet chara... |
dchrfi 26308 | The group of Dirichlet cha... |
dchrghm 26309 | A Dirichlet character rest... |
dchr1 26310 | Value of the principal Dir... |
dchreq 26311 | A Dirichlet character is d... |
dchrresb 26312 | A Dirichlet character is d... |
dchrabs 26313 | A Dirichlet character take... |
dchrinv 26314 | The inverse of a Dirichlet... |
dchrabs2 26315 | A Dirichlet character take... |
dchr1re 26316 | The principal Dirichlet ch... |
dchrptlem1 26317 | Lemma for ~ dchrpt . (Con... |
dchrptlem2 26318 | Lemma for ~ dchrpt . (Con... |
dchrptlem3 26319 | Lemma for ~ dchrpt . (Con... |
dchrpt 26320 | For any element other than... |
dchrsum2 26321 | An orthogonality relation ... |
dchrsum 26322 | An orthogonality relation ... |
sumdchr2 26323 | Lemma for ~ sumdchr . (Co... |
dchrhash 26324 | There are exactly ` phi ( ... |
sumdchr 26325 | An orthogonality relation ... |
dchr2sum 26326 | An orthogonality relation ... |
sum2dchr 26327 | An orthogonality relation ... |
bcctr 26328 | Value of the central binom... |
pcbcctr 26329 | Prime count of a central b... |
bcmono 26330 | The binomial coefficient i... |
bcmax 26331 | The binomial coefficient t... |
bcp1ctr 26332 | Ratio of two central binom... |
bclbnd 26333 | A bound on the binomial co... |
efexple 26334 | Convert a bound on a power... |
bpos1lem 26335 | Lemma for ~ bpos1 . (Cont... |
bpos1 26336 | Bertrand's postulate, chec... |
bposlem1 26337 | An upper bound on the prim... |
bposlem2 26338 | There are no odd primes in... |
bposlem3 26339 | Lemma for ~ bpos . Since ... |
bposlem4 26340 | Lemma for ~ bpos . (Contr... |
bposlem5 26341 | Lemma for ~ bpos . Bound ... |
bposlem6 26342 | Lemma for ~ bpos . By usi... |
bposlem7 26343 | Lemma for ~ bpos . The fu... |
bposlem8 26344 | Lemma for ~ bpos . Evalua... |
bposlem9 26345 | Lemma for ~ bpos . Derive... |
bpos 26346 | Bertrand's postulate: ther... |
zabsle1 26349 | ` { -u 1 , 0 , 1 } ` is th... |
lgslem1 26350 | When ` a ` is coprime to t... |
lgslem2 26351 | The set ` Z ` of all integ... |
lgslem3 26352 | The set ` Z ` of all integ... |
lgslem4 26353 | Lemma for ~ lgsfcl2 . (Co... |
lgsval 26354 | Value of the Legendre symb... |
lgsfval 26355 | Value of the function ` F ... |
lgsfcl2 26356 | The function ` F ` is clos... |
lgscllem 26357 | The Legendre symbol is an ... |
lgsfcl 26358 | Closure of the function ` ... |
lgsfle1 26359 | The function ` F ` has mag... |
lgsval2lem 26360 | Lemma for ~ lgsval2 . (Co... |
lgsval4lem 26361 | Lemma for ~ lgsval4 . (Co... |
lgscl2 26362 | The Legendre symbol is an ... |
lgs0 26363 | The Legendre symbol when t... |
lgscl 26364 | The Legendre symbol is an ... |
lgsle1 26365 | The Legendre symbol has ab... |
lgsval2 26366 | The Legendre symbol at a p... |
lgs2 26367 | The Legendre symbol at ` 2... |
lgsval3 26368 | The Legendre symbol at an ... |
lgsvalmod 26369 | The Legendre symbol is equ... |
lgsval4 26370 | Restate ~ lgsval for nonze... |
lgsfcl3 26371 | Closure of the function ` ... |
lgsval4a 26372 | Same as ~ lgsval4 for posi... |
lgscl1 26373 | The value of the Legendre ... |
lgsneg 26374 | The Legendre symbol is eit... |
lgsneg1 26375 | The Legendre symbol for no... |
lgsmod 26376 | The Legendre (Jacobi) symb... |
lgsdilem 26377 | Lemma for ~ lgsdi and ~ lg... |
lgsdir2lem1 26378 | Lemma for ~ lgsdir2 . (Co... |
lgsdir2lem2 26379 | Lemma for ~ lgsdir2 . (Co... |
lgsdir2lem3 26380 | Lemma for ~ lgsdir2 . (Co... |
lgsdir2lem4 26381 | Lemma for ~ lgsdir2 . (Co... |
lgsdir2lem5 26382 | Lemma for ~ lgsdir2 . (Co... |
lgsdir2 26383 | The Legendre symbol is com... |
lgsdirprm 26384 | The Legendre symbol is com... |
lgsdir 26385 | The Legendre symbol is com... |
lgsdilem2 26386 | Lemma for ~ lgsdi . (Cont... |
lgsdi 26387 | The Legendre symbol is com... |
lgsne0 26388 | The Legendre symbol is non... |
lgsabs1 26389 | The Legendre symbol is non... |
lgssq 26390 | The Legendre symbol at a s... |
lgssq2 26391 | The Legendre symbol at a s... |
lgsprme0 26392 | The Legendre symbol at any... |
1lgs 26393 | The Legendre symbol at ` 1... |
lgs1 26394 | The Legendre symbol at ` 1... |
lgsmodeq 26395 | The Legendre (Jacobi) symb... |
lgsmulsqcoprm 26396 | The Legendre (Jacobi) symb... |
lgsdirnn0 26397 | Variation on ~ lgsdir vali... |
lgsdinn0 26398 | Variation on ~ lgsdi valid... |
lgsqrlem1 26399 | Lemma for ~ lgsqr . (Cont... |
lgsqrlem2 26400 | Lemma for ~ lgsqr . (Cont... |
lgsqrlem3 26401 | Lemma for ~ lgsqr . (Cont... |
lgsqrlem4 26402 | Lemma for ~ lgsqr . (Cont... |
lgsqrlem5 26403 | Lemma for ~ lgsqr . (Cont... |
lgsqr 26404 | The Legendre symbol for od... |
lgsqrmod 26405 | If the Legendre symbol of ... |
lgsqrmodndvds 26406 | If the Legendre symbol of ... |
lgsdchrval 26407 | The Legendre symbol functi... |
lgsdchr 26408 | The Legendre symbol functi... |
gausslemma2dlem0a 26409 | Auxiliary lemma 1 for ~ ga... |
gausslemma2dlem0b 26410 | Auxiliary lemma 2 for ~ ga... |
gausslemma2dlem0c 26411 | Auxiliary lemma 3 for ~ ga... |
gausslemma2dlem0d 26412 | Auxiliary lemma 4 for ~ ga... |
gausslemma2dlem0e 26413 | Auxiliary lemma 5 for ~ ga... |
gausslemma2dlem0f 26414 | Auxiliary lemma 6 for ~ ga... |
gausslemma2dlem0g 26415 | Auxiliary lemma 7 for ~ ga... |
gausslemma2dlem0h 26416 | Auxiliary lemma 8 for ~ ga... |
gausslemma2dlem0i 26417 | Auxiliary lemma 9 for ~ ga... |
gausslemma2dlem1a 26418 | Lemma for ~ gausslemma2dle... |
gausslemma2dlem1 26419 | Lemma 1 for ~ gausslemma2d... |
gausslemma2dlem2 26420 | Lemma 2 for ~ gausslemma2d... |
gausslemma2dlem3 26421 | Lemma 3 for ~ gausslemma2d... |
gausslemma2dlem4 26422 | Lemma 4 for ~ gausslemma2d... |
gausslemma2dlem5a 26423 | Lemma for ~ gausslemma2dle... |
gausslemma2dlem5 26424 | Lemma 5 for ~ gausslemma2d... |
gausslemma2dlem6 26425 | Lemma 6 for ~ gausslemma2d... |
gausslemma2dlem7 26426 | Lemma 7 for ~ gausslemma2d... |
gausslemma2d 26427 | Gauss' Lemma (see also the... |
lgseisenlem1 26428 | Lemma for ~ lgseisen . If... |
lgseisenlem2 26429 | Lemma for ~ lgseisen . Th... |
lgseisenlem3 26430 | Lemma for ~ lgseisen . (C... |
lgseisenlem4 26431 | Lemma for ~ lgseisen . Th... |
lgseisen 26432 | Eisenstein's lemma, an exp... |
lgsquadlem1 26433 | Lemma for ~ lgsquad . Cou... |
lgsquadlem2 26434 | Lemma for ~ lgsquad . Cou... |
lgsquadlem3 26435 | Lemma for ~ lgsquad . (Co... |
lgsquad 26436 | The Law of Quadratic Recip... |
lgsquad2lem1 26437 | Lemma for ~ lgsquad2 . (C... |
lgsquad2lem2 26438 | Lemma for ~ lgsquad2 . (C... |
lgsquad2 26439 | Extend ~ lgsquad to coprim... |
lgsquad3 26440 | Extend ~ lgsquad2 to integ... |
m1lgs 26441 | The first supplement to th... |
2lgslem1a1 26442 | Lemma 1 for ~ 2lgslem1a . ... |
2lgslem1a2 26443 | Lemma 2 for ~ 2lgslem1a . ... |
2lgslem1a 26444 | Lemma 1 for ~ 2lgslem1 . ... |
2lgslem1b 26445 | Lemma 2 for ~ 2lgslem1 . ... |
2lgslem1c 26446 | Lemma 3 for ~ 2lgslem1 . ... |
2lgslem1 26447 | Lemma 1 for ~ 2lgs . (Con... |
2lgslem2 26448 | Lemma 2 for ~ 2lgs . (Con... |
2lgslem3a 26449 | Lemma for ~ 2lgslem3a1 . ... |
2lgslem3b 26450 | Lemma for ~ 2lgslem3b1 . ... |
2lgslem3c 26451 | Lemma for ~ 2lgslem3c1 . ... |
2lgslem3d 26452 | Lemma for ~ 2lgslem3d1 . ... |
2lgslem3a1 26453 | Lemma 1 for ~ 2lgslem3 . ... |
2lgslem3b1 26454 | Lemma 2 for ~ 2lgslem3 . ... |
2lgslem3c1 26455 | Lemma 3 for ~ 2lgslem3 . ... |
2lgslem3d1 26456 | Lemma 4 for ~ 2lgslem3 . ... |
2lgslem3 26457 | Lemma 3 for ~ 2lgs . (Con... |
2lgs2 26458 | The Legendre symbol for ` ... |
2lgslem4 26459 | Lemma 4 for ~ 2lgs : speci... |
2lgs 26460 | The second supplement to t... |
2lgsoddprmlem1 26461 | Lemma 1 for ~ 2lgsoddprm .... |
2lgsoddprmlem2 26462 | Lemma 2 for ~ 2lgsoddprm .... |
2lgsoddprmlem3a 26463 | Lemma 1 for ~ 2lgsoddprmle... |
2lgsoddprmlem3b 26464 | Lemma 2 for ~ 2lgsoddprmle... |
2lgsoddprmlem3c 26465 | Lemma 3 for ~ 2lgsoddprmle... |
2lgsoddprmlem3d 26466 | Lemma 4 for ~ 2lgsoddprmle... |
2lgsoddprmlem3 26467 | Lemma 3 for ~ 2lgsoddprm .... |
2lgsoddprmlem4 26468 | Lemma 4 for ~ 2lgsoddprm .... |
2lgsoddprm 26469 | The second supplement to t... |
2sqlem1 26470 | Lemma for ~ 2sq . (Contri... |
2sqlem2 26471 | Lemma for ~ 2sq . (Contri... |
mul2sq 26472 | Fibonacci's identity (actu... |
2sqlem3 26473 | Lemma for ~ 2sqlem5 . (Co... |
2sqlem4 26474 | Lemma for ~ 2sqlem5 . (Co... |
2sqlem5 26475 | Lemma for ~ 2sq . If a nu... |
2sqlem6 26476 | Lemma for ~ 2sq . If a nu... |
2sqlem7 26477 | Lemma for ~ 2sq . (Contri... |
2sqlem8a 26478 | Lemma for ~ 2sqlem8 . (Co... |
2sqlem8 26479 | Lemma for ~ 2sq . (Contri... |
2sqlem9 26480 | Lemma for ~ 2sq . (Contri... |
2sqlem10 26481 | Lemma for ~ 2sq . Every f... |
2sqlem11 26482 | Lemma for ~ 2sq . (Contri... |
2sq 26483 | All primes of the form ` 4... |
2sqblem 26484 | Lemma for ~ 2sqb . (Contr... |
2sqb 26485 | The converse to ~ 2sq . (... |
2sq2 26486 | ` 2 ` is the sum of square... |
2sqn0 26487 | If the sum of two squares ... |
2sqcoprm 26488 | If the sum of two squares ... |
2sqmod 26489 | Given two decompositions o... |
2sqmo 26490 | There exists at most one d... |
2sqnn0 26491 | All primes of the form ` 4... |
2sqnn 26492 | All primes of the form ` 4... |
addsq2reu 26493 | For each complex number ` ... |
addsqn2reu 26494 | For each complex number ` ... |
addsqrexnreu 26495 | For each complex number, t... |
addsqnreup 26496 | There is no unique decompo... |
addsq2nreurex 26497 | For each complex number ` ... |
addsqn2reurex2 26498 | For each complex number ` ... |
2sqreulem1 26499 | Lemma 1 for ~ 2sqreu . (C... |
2sqreultlem 26500 | Lemma for ~ 2sqreult . (C... |
2sqreultblem 26501 | Lemma for ~ 2sqreultb . (... |
2sqreunnlem1 26502 | Lemma 1 for ~ 2sqreunn . ... |
2sqreunnltlem 26503 | Lemma for ~ 2sqreunnlt . ... |
2sqreunnltblem 26504 | Lemma for ~ 2sqreunnltb . ... |
2sqreulem2 26505 | Lemma 2 for ~ 2sqreu etc. ... |
2sqreulem3 26506 | Lemma 3 for ~ 2sqreu etc. ... |
2sqreulem4 26507 | Lemma 4 for ~ 2sqreu et. ... |
2sqreunnlem2 26508 | Lemma 2 for ~ 2sqreunn . ... |
2sqreu 26509 | There exists a unique deco... |
2sqreunn 26510 | There exists a unique deco... |
2sqreult 26511 | There exists a unique deco... |
2sqreultb 26512 | There exists a unique deco... |
2sqreunnlt 26513 | There exists a unique deco... |
2sqreunnltb 26514 | There exists a unique deco... |
2sqreuop 26515 | There exists a unique deco... |
2sqreuopnn 26516 | There exists a unique deco... |
2sqreuoplt 26517 | There exists a unique deco... |
2sqreuopltb 26518 | There exists a unique deco... |
2sqreuopnnlt 26519 | There exists a unique deco... |
2sqreuopnnltb 26520 | There exists a unique deco... |
2sqreuopb 26521 | There exists a unique deco... |
chebbnd1lem1 26522 | Lemma for ~ chebbnd1 : sho... |
chebbnd1lem2 26523 | Lemma for ~ chebbnd1 : Sh... |
chebbnd1lem3 26524 | Lemma for ~ chebbnd1 : get... |
chebbnd1 26525 | The Chebyshev bound: The ... |
chtppilimlem1 26526 | Lemma for ~ chtppilim . (... |
chtppilimlem2 26527 | Lemma for ~ chtppilim . (... |
chtppilim 26528 | The ` theta ` function is ... |
chto1ub 26529 | The ` theta ` function is ... |
chebbnd2 26530 | The Chebyshev bound, part ... |
chto1lb 26531 | The ` theta ` function is ... |
chpchtlim 26532 | The ` psi ` and ` theta ` ... |
chpo1ub 26533 | The ` psi ` function is up... |
chpo1ubb 26534 | The ` psi ` function is up... |
vmadivsum 26535 | The sum of the von Mangold... |
vmadivsumb 26536 | Give a total bound on the ... |
rplogsumlem1 26537 | Lemma for ~ rplogsum . (C... |
rplogsumlem2 26538 | Lemma for ~ rplogsum . Eq... |
dchrisum0lem1a 26539 | Lemma for ~ dchrisum0lem1 ... |
rpvmasumlem 26540 | Lemma for ~ rpvmasum . Ca... |
dchrisumlema 26541 | Lemma for ~ dchrisum . Le... |
dchrisumlem1 26542 | Lemma for ~ dchrisum . Le... |
dchrisumlem2 26543 | Lemma for ~ dchrisum . Le... |
dchrisumlem3 26544 | Lemma for ~ dchrisum . Le... |
dchrisum 26545 | If ` n e. [ M , +oo ) |-> ... |
dchrmusumlema 26546 | Lemma for ~ dchrmusum and ... |
dchrmusum2 26547 | The sum of the Möbius... |
dchrvmasumlem1 26548 | An alternative expression ... |
dchrvmasum2lem 26549 | Give an expression for ` l... |
dchrvmasum2if 26550 | Combine the results of ~ d... |
dchrvmasumlem2 26551 | Lemma for ~ dchrvmasum . ... |
dchrvmasumlem3 26552 | Lemma for ~ dchrvmasum . ... |
dchrvmasumlema 26553 | Lemma for ~ dchrvmasum and... |
dchrvmasumiflem1 26554 | Lemma for ~ dchrvmasumif .... |
dchrvmasumiflem2 26555 | Lemma for ~ dchrvmasum . ... |
dchrvmasumif 26556 | An asymptotic approximatio... |
dchrvmaeq0 26557 | The set ` W ` is the colle... |
dchrisum0fval 26558 | Value of the function ` F ... |
dchrisum0fmul 26559 | The function ` F ` , the d... |
dchrisum0ff 26560 | The function ` F ` is a re... |
dchrisum0flblem1 26561 | Lemma for ~ dchrisum0flb .... |
dchrisum0flblem2 26562 | Lemma for ~ dchrisum0flb .... |
dchrisum0flb 26563 | The divisor sum of a real ... |
dchrisum0fno1 26564 | The sum ` sum_ k <_ x , F ... |
rpvmasum2 26565 | A partial result along the... |
dchrisum0re 26566 | Suppose ` X ` is a non-pri... |
dchrisum0lema 26567 | Lemma for ~ dchrisum0 . A... |
dchrisum0lem1b 26568 | Lemma for ~ dchrisum0lem1 ... |
dchrisum0lem1 26569 | Lemma for ~ dchrisum0 . (... |
dchrisum0lem2a 26570 | Lemma for ~ dchrisum0 . (... |
dchrisum0lem2 26571 | Lemma for ~ dchrisum0 . (... |
dchrisum0lem3 26572 | Lemma for ~ dchrisum0 . (... |
dchrisum0 26573 | The sum ` sum_ n e. NN , X... |
dchrisumn0 26574 | The sum ` sum_ n e. NN , X... |
dchrmusumlem 26575 | The sum of the Möbius... |
dchrvmasumlem 26576 | The sum of the Möbius... |
dchrmusum 26577 | The sum of the Möbius... |
dchrvmasum 26578 | The sum of the von Mangold... |
rpvmasum 26579 | The sum of the von Mangold... |
rplogsum 26580 | The sum of ` log p / p ` o... |
dirith2 26581 | Dirichlet's theorem: there... |
dirith 26582 | Dirichlet's theorem: there... |
mudivsum 26583 | Asymptotic formula for ` s... |
mulogsumlem 26584 | Lemma for ~ mulogsum . (C... |
mulogsum 26585 | Asymptotic formula for ... |
logdivsum 26586 | Asymptotic analysis of ... |
mulog2sumlem1 26587 | Asymptotic formula for ... |
mulog2sumlem2 26588 | Lemma for ~ mulog2sum . (... |
mulog2sumlem3 26589 | Lemma for ~ mulog2sum . (... |
mulog2sum 26590 | Asymptotic formula for ... |
vmalogdivsum2 26591 | The sum ` sum_ n <_ x , La... |
vmalogdivsum 26592 | The sum ` sum_ n <_ x , La... |
2vmadivsumlem 26593 | Lemma for ~ 2vmadivsum . ... |
2vmadivsum 26594 | The sum ` sum_ m n <_ x , ... |
logsqvma 26595 | A formula for ` log ^ 2 ( ... |
logsqvma2 26596 | The Möbius inverse of... |
log2sumbnd 26597 | Bound on the difference be... |
selberglem1 26598 | Lemma for ~ selberg . Est... |
selberglem2 26599 | Lemma for ~ selberg . (Co... |
selberglem3 26600 | Lemma for ~ selberg . Est... |
selberg 26601 | Selberg's symmetry formula... |
selbergb 26602 | Convert eventual boundedne... |
selberg2lem 26603 | Lemma for ~ selberg2 . Eq... |
selberg2 26604 | Selberg's symmetry formula... |
selberg2b 26605 | Convert eventual boundedne... |
chpdifbndlem1 26606 | Lemma for ~ chpdifbnd . (... |
chpdifbndlem2 26607 | Lemma for ~ chpdifbnd . (... |
chpdifbnd 26608 | A bound on the difference ... |
logdivbnd 26609 | A bound on a sum of logs, ... |
selberg3lem1 26610 | Introduce a log weighting ... |
selberg3lem2 26611 | Lemma for ~ selberg3 . Eq... |
selberg3 26612 | Introduce a log weighting ... |
selberg4lem1 26613 | Lemma for ~ selberg4 . Eq... |
selberg4 26614 | The Selberg symmetry formu... |
pntrval 26615 | Define the residual of the... |
pntrf 26616 | Functionality of the resid... |
pntrmax 26617 | There is a bound on the re... |
pntrsumo1 26618 | A bound on a sum over ` R ... |
pntrsumbnd 26619 | A bound on a sum over ` R ... |
pntrsumbnd2 26620 | A bound on a sum over ` R ... |
selbergr 26621 | Selberg's symmetry formula... |
selberg3r 26622 | Selberg's symmetry formula... |
selberg4r 26623 | Selberg's symmetry formula... |
selberg34r 26624 | The sum of ~ selberg3r and... |
pntsval 26625 | Define the "Selberg functi... |
pntsf 26626 | Functionality of the Selbe... |
selbergs 26627 | Selberg's symmetry formula... |
selbergsb 26628 | Selberg's symmetry formula... |
pntsval2 26629 | The Selberg function can b... |
pntrlog2bndlem1 26630 | The sum of ~ selberg3r and... |
pntrlog2bndlem2 26631 | Lemma for ~ pntrlog2bnd . ... |
pntrlog2bndlem3 26632 | Lemma for ~ pntrlog2bnd . ... |
pntrlog2bndlem4 26633 | Lemma for ~ pntrlog2bnd . ... |
pntrlog2bndlem5 26634 | Lemma for ~ pntrlog2bnd . ... |
pntrlog2bndlem6a 26635 | Lemma for ~ pntrlog2bndlem... |
pntrlog2bndlem6 26636 | Lemma for ~ pntrlog2bnd . ... |
pntrlog2bnd 26637 | A bound on ` R ( x ) log ^... |
pntpbnd1a 26638 | Lemma for ~ pntpbnd . (Co... |
pntpbnd1 26639 | Lemma for ~ pntpbnd . (Co... |
pntpbnd2 26640 | Lemma for ~ pntpbnd . (Co... |
pntpbnd 26641 | Lemma for ~ pnt . Establi... |
pntibndlem1 26642 | Lemma for ~ pntibnd . (Co... |
pntibndlem2a 26643 | Lemma for ~ pntibndlem2 . ... |
pntibndlem2 26644 | Lemma for ~ pntibnd . The... |
pntibndlem3 26645 | Lemma for ~ pntibnd . Pac... |
pntibnd 26646 | Lemma for ~ pnt . Establi... |
pntlemd 26647 | Lemma for ~ pnt . Closure... |
pntlemc 26648 | Lemma for ~ pnt . Closure... |
pntlema 26649 | Lemma for ~ pnt . Closure... |
pntlemb 26650 | Lemma for ~ pnt . Unpack ... |
pntlemg 26651 | Lemma for ~ pnt . Closure... |
pntlemh 26652 | Lemma for ~ pnt . Bounds ... |
pntlemn 26653 | Lemma for ~ pnt . The "na... |
pntlemq 26654 | Lemma for ~ pntlemj . (Co... |
pntlemr 26655 | Lemma for ~ pntlemj . (Co... |
pntlemj 26656 | Lemma for ~ pnt . The ind... |
pntlemi 26657 | Lemma for ~ pnt . Elimina... |
pntlemf 26658 | Lemma for ~ pnt . Add up ... |
pntlemk 26659 | Lemma for ~ pnt . Evaluat... |
pntlemo 26660 | Lemma for ~ pnt . Combine... |
pntleme 26661 | Lemma for ~ pnt . Package... |
pntlem3 26662 | Lemma for ~ pnt . Equatio... |
pntlemp 26663 | Lemma for ~ pnt . Wrappin... |
pntleml 26664 | Lemma for ~ pnt . Equatio... |
pnt3 26665 | The Prime Number Theorem, ... |
pnt2 26666 | The Prime Number Theorem, ... |
pnt 26667 | The Prime Number Theorem: ... |
abvcxp 26668 | Raising an absolute value ... |
padicfval 26669 | Value of the p-adic absolu... |
padicval 26670 | Value of the p-adic absolu... |
ostth2lem1 26671 | Lemma for ~ ostth2 , altho... |
qrngbas 26672 | The base set of the field ... |
qdrng 26673 | The rationals form a divis... |
qrng0 26674 | The zero element of the fi... |
qrng1 26675 | The unit element of the fi... |
qrngneg 26676 | The additive inverse in th... |
qrngdiv 26677 | The division operation in ... |
qabvle 26678 | By using induction on ` N ... |
qabvexp 26679 | Induct the product rule ~ ... |
ostthlem1 26680 | Lemma for ~ ostth . If tw... |
ostthlem2 26681 | Lemma for ~ ostth . Refin... |
qabsabv 26682 | The regular absolute value... |
padicabv 26683 | The p-adic absolute value ... |
padicabvf 26684 | The p-adic absolute value ... |
padicabvcxp 26685 | All positive powers of the... |
ostth1 26686 | - Lemma for ~ ostth : triv... |
ostth2lem2 26687 | Lemma for ~ ostth2 . (Con... |
ostth2lem3 26688 | Lemma for ~ ostth2 . (Con... |
ostth2lem4 26689 | Lemma for ~ ostth2 . (Con... |
ostth2 26690 | - Lemma for ~ ostth : regu... |
ostth3 26691 | - Lemma for ~ ostth : p-ad... |
ostth 26692 | Ostrowski's theorem, which... |
itvndx 26703 | Index value of the Interva... |
lngndx 26704 | Index value of the "line" ... |
itvid 26705 | Utility theorem: index-ind... |
lngid 26706 | Utility theorem: index-ind... |
slotsinbpsd 26707 | The slots ` Base ` , ` +g ... |
slotslnbpsd 26708 | The slots ` Base ` , ` +g ... |
trkgstr 26709 | Functionality of a Tarski ... |
trkgbas 26710 | The base set of a Tarski g... |
trkgdist 26711 | The measure of a distance ... |
trkgitv 26712 | The congruence relation in... |
istrkgc 26719 | Property of being a Tarski... |
istrkgb 26720 | Property of being a Tarski... |
istrkgcb 26721 | Property of being a Tarski... |
istrkge 26722 | Property of fulfilling Euc... |
istrkgl 26723 | Building lines from the se... |
istrkgld 26724 | Property of fulfilling the... |
istrkg2ld 26725 | Property of fulfilling the... |
istrkg3ld 26726 | Property of fulfilling the... |
axtgcgrrflx 26727 | Axiom of reflexivity of co... |
axtgcgrid 26728 | Axiom of identity of congr... |
axtgsegcon 26729 | Axiom of segment construct... |
axtg5seg 26730 | Five segments axiom, Axiom... |
axtgbtwnid 26731 | Identity of Betweenness. ... |
axtgpasch 26732 | Axiom of (Inner) Pasch, Ax... |
axtgcont1 26733 | Axiom of Continuity. Axio... |
axtgcont 26734 | Axiom of Continuity. Axio... |
axtglowdim2 26735 | Lower dimension axiom for ... |
axtgupdim2 26736 | Upper dimension axiom for ... |
axtgeucl 26737 | Euclid's Axiom. Axiom A10... |
tgjustf 26738 | Given any function ` F ` ,... |
tgjustr 26739 | Given any equivalence rela... |
tgjustc1 26740 | A justification for using ... |
tgjustc2 26741 | A justification for using ... |
tgcgrcomimp 26742 | Congruence commutes on the... |
tgcgrcomr 26743 | Congruence commutes on the... |
tgcgrcoml 26744 | Congruence commutes on the... |
tgcgrcomlr 26745 | Congruence commutes on bot... |
tgcgreqb 26746 | Congruence and equality. ... |
tgcgreq 26747 | Congruence and equality. ... |
tgcgrneq 26748 | Congruence and equality. ... |
tgcgrtriv 26749 | Degenerate segments are co... |
tgcgrextend 26750 | Link congruence over a pai... |
tgsegconeq 26751 | Two points that satisfy th... |
tgbtwntriv2 26752 | Betweenness always holds f... |
tgbtwncom 26753 | Betweenness commutes. The... |
tgbtwncomb 26754 | Betweenness commutes, bico... |
tgbtwnne 26755 | Betweenness and inequality... |
tgbtwntriv1 26756 | Betweenness always holds f... |
tgbtwnswapid 26757 | If you can swap the first ... |
tgbtwnintr 26758 | Inner transitivity law for... |
tgbtwnexch3 26759 | Exchange the first endpoin... |
tgbtwnouttr2 26760 | Outer transitivity law for... |
tgbtwnexch2 26761 | Exchange the outer point o... |
tgbtwnouttr 26762 | Outer transitivity law for... |
tgbtwnexch 26763 | Outer transitivity law for... |
tgtrisegint 26764 | A line segment between two... |
tglowdim1 26765 | Lower dimension axiom for ... |
tglowdim1i 26766 | Lower dimension axiom for ... |
tgldimor 26767 | Excluded-middle like state... |
tgldim0eq 26768 | In dimension zero, any two... |
tgldim0itv 26769 | In dimension zero, any two... |
tgldim0cgr 26770 | In dimension zero, any two... |
tgbtwndiff 26771 | There is always a ` c ` di... |
tgdim01 26772 | In geometries of dimension... |
tgifscgr 26773 | Inner five segment congrue... |
tgcgrsub 26774 | Removing identical parts f... |
iscgrg 26777 | The congruence property fo... |
iscgrgd 26778 | The property for two seque... |
iscgrglt 26779 | The property for two seque... |
trgcgrg 26780 | The property for two trian... |
trgcgr 26781 | Triangle congruence. (Con... |
ercgrg 26782 | The shape congruence relat... |
tgcgrxfr 26783 | A line segment can be divi... |
cgr3id 26784 | Reflexivity law for three-... |
cgr3simp1 26785 | Deduce segment congruence ... |
cgr3simp2 26786 | Deduce segment congruence ... |
cgr3simp3 26787 | Deduce segment congruence ... |
cgr3swap12 26788 | Permutation law for three-... |
cgr3swap23 26789 | Permutation law for three-... |
cgr3swap13 26790 | Permutation law for three-... |
cgr3rotr 26791 | Permutation law for three-... |
cgr3rotl 26792 | Permutation law for three-... |
trgcgrcom 26793 | Commutative law for three-... |
cgr3tr 26794 | Transitivity law for three... |
tgbtwnxfr 26795 | A condition for extending ... |
tgcgr4 26796 | Two quadrilaterals to be c... |
isismt 26799 | Property of being an isome... |
ismot 26800 | Property of being an isome... |
motcgr 26801 | Property of a motion: dist... |
idmot 26802 | The identity is a motion. ... |
motf1o 26803 | Motions are bijections. (... |
motcl 26804 | Closure of motions. (Cont... |
motco 26805 | The composition of two mot... |
cnvmot 26806 | The converse of a motion i... |
motplusg 26807 | The operation for motions ... |
motgrp 26808 | The motions of a geometry ... |
motcgrg 26809 | Property of a motion: dist... |
motcgr3 26810 | Property of a motion: dist... |
tglng 26811 | Lines of a Tarski Geometry... |
tglnfn 26812 | Lines as functions. (Cont... |
tglnunirn 26813 | Lines are sets of points. ... |
tglnpt 26814 | Lines are sets of points. ... |
tglngne 26815 | It takes two different poi... |
tglngval 26816 | The line going through poi... |
tglnssp 26817 | Lines are subset of the ge... |
tgellng 26818 | Property of lying on the l... |
tgcolg 26819 | We choose the notation ` (... |
btwncolg1 26820 | Betweenness implies coline... |
btwncolg2 26821 | Betweenness implies coline... |
btwncolg3 26822 | Betweenness implies coline... |
colcom 26823 | Swapping the points defini... |
colrot1 26824 | Rotating the points defini... |
colrot2 26825 | Rotating the points defini... |
ncolcom 26826 | Swapping non-colinear poin... |
ncolrot1 26827 | Rotating non-colinear poin... |
ncolrot2 26828 | Rotating non-colinear poin... |
tgdim01ln 26829 | In geometries of dimension... |
ncoltgdim2 26830 | If there are three non-col... |
lnxfr 26831 | Transfer law for colineari... |
lnext 26832 | Extend a line with a missi... |
tgfscgr 26833 | Congruence law for the gen... |
lncgr 26834 | Congruence rule for lines.... |
lnid 26835 | Identity law for points on... |
tgidinside 26836 | Law for finding a point in... |
tgbtwnconn1lem1 26837 | Lemma for ~ tgbtwnconn1 . ... |
tgbtwnconn1lem2 26838 | Lemma for ~ tgbtwnconn1 . ... |
tgbtwnconn1lem3 26839 | Lemma for ~ tgbtwnconn1 . ... |
tgbtwnconn1 26840 | Connectivity law for betwe... |
tgbtwnconn2 26841 | Another connectivity law f... |
tgbtwnconn3 26842 | Inner connectivity law for... |
tgbtwnconnln3 26843 | Derive colinearity from be... |
tgbtwnconn22 26844 | Double connectivity law fo... |
tgbtwnconnln1 26845 | Derive colinearity from be... |
tgbtwnconnln2 26846 | Derive colinearity from be... |
legval 26849 | Value of the less-than rel... |
legov 26850 | Value of the less-than rel... |
legov2 26851 | An equivalent definition o... |
legid 26852 | Reflexivity of the less-th... |
btwnleg 26853 | Betweenness implies less-t... |
legtrd 26854 | Transitivity of the less-t... |
legtri3 26855 | Equality from the less-tha... |
legtrid 26856 | Trichotomy law for the les... |
leg0 26857 | Degenerated (zero-length) ... |
legeq 26858 | Deduce equality from "less... |
legbtwn 26859 | Deduce betweenness from "l... |
tgcgrsub2 26860 | Removing identical parts f... |
ltgseg 26861 | The set ` E ` denotes the ... |
ltgov 26862 | Strict "shorter than" geom... |
legov3 26863 | An equivalent definition o... |
legso 26864 | The "shorter than" relatio... |
ishlg 26867 | Rays : Definition 6.1 of ... |
hlcomb 26868 | The half-line relation com... |
hlcomd 26869 | The half-line relation com... |
hlne1 26870 | The half-line relation imp... |
hlne2 26871 | The half-line relation imp... |
hlln 26872 | The half-line relation imp... |
hleqnid 26873 | The endpoint does not belo... |
hlid 26874 | The half-line relation is ... |
hltr 26875 | The half-line relation is ... |
hlbtwn 26876 | Betweenness is a sufficien... |
btwnhl1 26877 | Deduce half-line from betw... |
btwnhl2 26878 | Deduce half-line from betw... |
btwnhl 26879 | Swap betweenness for a hal... |
lnhl 26880 | Either a point ` C ` on th... |
hlcgrex 26881 | Construct a point on a hal... |
hlcgreulem 26882 | Lemma for ~ hlcgreu . (Co... |
hlcgreu 26883 | The point constructed in ~... |
btwnlng1 26884 | Betweenness implies coline... |
btwnlng2 26885 | Betweenness implies coline... |
btwnlng3 26886 | Betweenness implies coline... |
lncom 26887 | Swapping the points defini... |
lnrot1 26888 | Rotating the points defini... |
lnrot2 26889 | Rotating the points defini... |
ncolne1 26890 | Non-colinear points are di... |
ncolne2 26891 | Non-colinear points are di... |
tgisline 26892 | The property of being a pr... |
tglnne 26893 | It takes two different poi... |
tglndim0 26894 | There are no lines in dime... |
tgelrnln 26895 | The property of being a pr... |
tglineeltr 26896 | Transitivity law for lines... |
tglineelsb2 26897 | If ` S ` lies on PQ , then... |
tglinerflx1 26898 | Reflexivity law for line m... |
tglinerflx2 26899 | Reflexivity law for line m... |
tglinecom 26900 | Commutativity law for line... |
tglinethru 26901 | If ` A ` is a line contain... |
tghilberti1 26902 | There is a line through an... |
tghilberti2 26903 | There is at most one line ... |
tglinethrueu 26904 | There is a unique line goi... |
tglnne0 26905 | A line ` A ` has at least ... |
tglnpt2 26906 | Find a second point on a l... |
tglineintmo 26907 | Two distinct lines interse... |
tglineineq 26908 | Two distinct lines interse... |
tglineneq 26909 | Given three non-colinear p... |
tglineinteq 26910 | Two distinct lines interse... |
ncolncol 26911 | Deduce non-colinearity fro... |
coltr 26912 | A transitivity law for col... |
coltr3 26913 | A transitivity law for col... |
colline 26914 | Three points are colinear ... |
tglowdim2l 26915 | Reformulation of the lower... |
tglowdim2ln 26916 | There is always one point ... |
mirreu3 26919 | Existential uniqueness of ... |
mirval 26920 | Value of the point inversi... |
mirfv 26921 | Value of the point inversi... |
mircgr 26922 | Property of the image by t... |
mirbtwn 26923 | Property of the image by t... |
ismir 26924 | Property of the image by t... |
mirf 26925 | Point inversion as functio... |
mircl 26926 | Closure of the point inver... |
mirmir 26927 | The point inversion functi... |
mircom 26928 | Variation on ~ mirmir . (... |
mirreu 26929 | Any point has a unique ant... |
mireq 26930 | Equality deduction for poi... |
mirinv 26931 | The only invariant point o... |
mirne 26932 | Mirror of non-center point... |
mircinv 26933 | The center point is invari... |
mirf1o 26934 | The point inversion functi... |
miriso 26935 | The point inversion functi... |
mirbtwni 26936 | Point inversion preserves ... |
mirbtwnb 26937 | Point inversion preserves ... |
mircgrs 26938 | Point inversion preserves ... |
mirmir2 26939 | Point inversion of a point... |
mirmot 26940 | Point investion is a motio... |
mirln 26941 | If two points are on the s... |
mirln2 26942 | If a point and its mirror ... |
mirconn 26943 | Point inversion of connect... |
mirhl 26944 | If two points ` X ` and ` ... |
mirbtwnhl 26945 | If the center of the point... |
mirhl2 26946 | Deduce half-line relation ... |
mircgrextend 26947 | Link congruence over a pai... |
mirtrcgr 26948 | Point inversion of one poi... |
mirauto 26949 | Point inversion preserves ... |
miduniq 26950 | Uniqueness of the middle p... |
miduniq1 26951 | Uniqueness of the middle p... |
miduniq2 26952 | If two point inversions co... |
colmid 26953 | Colinearity and equidistan... |
symquadlem 26954 | Lemma of the symetrial qua... |
krippenlem 26955 | Lemma for ~ krippen . We ... |
krippen 26956 | Krippenlemma (German for c... |
midexlem 26957 | Lemma for the existence of... |
israg 26962 | Property for 3 points A, B... |
ragcom 26963 | Commutative rule for right... |
ragcol 26964 | The right angle property i... |
ragmir 26965 | Right angle property is pr... |
mirrag 26966 | Right angle is conserved b... |
ragtrivb 26967 | Trivial right angle. Theo... |
ragflat2 26968 | Deduce equality from two r... |
ragflat 26969 | Deduce equality from two r... |
ragtriva 26970 | Trivial right angle. Theo... |
ragflat3 26971 | Right angle and colinearit... |
ragcgr 26972 | Right angle and colinearit... |
motrag 26973 | Right angles are preserved... |
ragncol 26974 | Right angle implies non-co... |
perpln1 26975 | Derive a line from perpend... |
perpln2 26976 | Derive a line from perpend... |
isperp 26977 | Property for 2 lines A, B ... |
perpcom 26978 | The "perpendicular" relati... |
perpneq 26979 | Two perpendicular lines ar... |
isperp2 26980 | Property for 2 lines A, B,... |
isperp2d 26981 | One direction of ~ isperp2... |
ragperp 26982 | Deduce that two lines are ... |
footexALT 26983 | Alternative version of ~ f... |
footexlem1 26984 | Lemma for ~ footex . (Con... |
footexlem2 26985 | Lemma for ~ footex . (Con... |
footex 26986 | From a point ` C ` outside... |
foot 26987 | From a point ` C ` outside... |
footne 26988 | Uniqueness of the foot poi... |
footeq 26989 | Uniqueness of the foot poi... |
hlperpnel 26990 | A point on a half-line whi... |
perprag 26991 | Deduce a right angle from ... |
perpdragALT 26992 | Deduce a right angle from ... |
perpdrag 26993 | Deduce a right angle from ... |
colperp 26994 | Deduce a perpendicularity ... |
colperpexlem1 26995 | Lemma for ~ colperp . Fir... |
colperpexlem2 26996 | Lemma for ~ colperpex . S... |
colperpexlem3 26997 | Lemma for ~ colperpex . C... |
colperpex 26998 | In dimension 2 and above, ... |
mideulem2 26999 | Lemma for ~ opphllem , whi... |
opphllem 27000 | Lemma 8.24 of [Schwabhause... |
mideulem 27001 | Lemma for ~ mideu . We ca... |
midex 27002 | Existence of the midpoint,... |
mideu 27003 | Existence and uniqueness o... |
islnopp 27004 | The property for two point... |
islnoppd 27005 | Deduce that ` A ` and ` B ... |
oppne1 27006 | Points lying on opposite s... |
oppne2 27007 | Points lying on opposite s... |
oppne3 27008 | Points lying on opposite s... |
oppcom 27009 | Commutativity rule for "op... |
opptgdim2 27010 | If two points opposite to ... |
oppnid 27011 | The "opposite to a line" r... |
opphllem1 27012 | Lemma for ~ opphl . (Cont... |
opphllem2 27013 | Lemma for ~ opphl . Lemma... |
opphllem3 27014 | Lemma for ~ opphl : We as... |
opphllem4 27015 | Lemma for ~ opphl . (Cont... |
opphllem5 27016 | Second part of Lemma 9.4 o... |
opphllem6 27017 | First part of Lemma 9.4 of... |
oppperpex 27018 | Restating ~ colperpex usin... |
opphl 27019 | If two points ` A ` and ` ... |
outpasch 27020 | Axiom of Pasch, outer form... |
hlpasch 27021 | An application of the axio... |
ishpg 27024 | Value of the half-plane re... |
hpgbr 27025 | Half-planes : property for... |
hpgne1 27026 | Points on the open half pl... |
hpgne2 27027 | Points on the open half pl... |
lnopp2hpgb 27028 | Theorem 9.8 of [Schwabhaus... |
lnoppnhpg 27029 | If two points lie on the o... |
hpgerlem 27030 | Lemma for the proof that t... |
hpgid 27031 | The half-plane relation is... |
hpgcom 27032 | The half-plane relation co... |
hpgtr 27033 | The half-plane relation is... |
colopp 27034 | Opposite sides of a line f... |
colhp 27035 | Half-plane relation for co... |
hphl 27036 | If two points are on the s... |
midf 27041 | Midpoint as a function. (... |
midcl 27042 | Closure of the midpoint. ... |
ismidb 27043 | Property of the midpoint. ... |
midbtwn 27044 | Betweenness of midpoint. ... |
midcgr 27045 | Congruence of midpoint. (... |
midid 27046 | Midpoint of a null segment... |
midcom 27047 | Commutativity rule for the... |
mirmid 27048 | Point inversion preserves ... |
lmieu 27049 | Uniqueness of the line mir... |
lmif 27050 | Line mirror as a function.... |
lmicl 27051 | Closure of the line mirror... |
islmib 27052 | Property of the line mirro... |
lmicom 27053 | The line mirroring functio... |
lmilmi 27054 | Line mirroring is an invol... |
lmireu 27055 | Any point has a unique ant... |
lmieq 27056 | Equality deduction for lin... |
lmiinv 27057 | The invariants of the line... |
lmicinv 27058 | The mirroring line is an i... |
lmimid 27059 | If we have a right angle, ... |
lmif1o 27060 | The line mirroring functio... |
lmiisolem 27061 | Lemma for ~ lmiiso . (Con... |
lmiiso 27062 | The line mirroring functio... |
lmimot 27063 | Line mirroring is a motion... |
hypcgrlem1 27064 | Lemma for ~ hypcgr , case ... |
hypcgrlem2 27065 | Lemma for ~ hypcgr , case ... |
hypcgr 27066 | If the catheti of two righ... |
lmiopp 27067 | Line mirroring produces po... |
lnperpex 27068 | Existence of a perpendicul... |
trgcopy 27069 | Triangle construction: a c... |
trgcopyeulem 27070 | Lemma for ~ trgcopyeu . (... |
trgcopyeu 27071 | Triangle construction: a c... |
iscgra 27074 | Property for two angles AB... |
iscgra1 27075 | A special version of ~ isc... |
iscgrad 27076 | Sufficient conditions for ... |
cgrane1 27077 | Angles imply inequality. ... |
cgrane2 27078 | Angles imply inequality. ... |
cgrane3 27079 | Angles imply inequality. ... |
cgrane4 27080 | Angles imply inequality. ... |
cgrahl1 27081 | Angle congruence is indepe... |
cgrahl2 27082 | Angle congruence is indepe... |
cgracgr 27083 | First direction of proposi... |
cgraid 27084 | Angle congruence is reflex... |
cgraswap 27085 | Swap rays in a congruence ... |
cgrcgra 27086 | Triangle congruence implie... |
cgracom 27087 | Angle congruence commutes.... |
cgratr 27088 | Angle congruence is transi... |
flatcgra 27089 | Flat angles are congruent.... |
cgraswaplr 27090 | Swap both side of angle co... |
cgrabtwn 27091 | Angle congruence preserves... |
cgrahl 27092 | Angle congruence preserves... |
cgracol 27093 | Angle congruence preserves... |
cgrancol 27094 | Angle congruence preserves... |
dfcgra2 27095 | This is the full statement... |
sacgr 27096 | Supplementary angles of co... |
oacgr 27097 | Vertical angle theorem. V... |
acopy 27098 | Angle construction. Theor... |
acopyeu 27099 | Angle construction. Theor... |
isinag 27103 | Property for point ` X ` t... |
isinagd 27104 | Sufficient conditions for ... |
inagflat 27105 | Any point lies in a flat a... |
inagswap 27106 | Swap the order of the half... |
inagne1 27107 | Deduce inequality from the... |
inagne2 27108 | Deduce inequality from the... |
inagne3 27109 | Deduce inequality from the... |
inaghl 27110 | The "point lie in angle" r... |
isleag 27112 | Geometrical "less than" pr... |
isleagd 27113 | Sufficient condition for "... |
leagne1 27114 | Deduce inequality from the... |
leagne2 27115 | Deduce inequality from the... |
leagne3 27116 | Deduce inequality from the... |
leagne4 27117 | Deduce inequality from the... |
cgrg3col4 27118 | Lemma 11.28 of [Schwabhaus... |
tgsas1 27119 | First congruence theorem: ... |
tgsas 27120 | First congruence theorem: ... |
tgsas2 27121 | First congruence theorem: ... |
tgsas3 27122 | First congruence theorem: ... |
tgasa1 27123 | Second congruence theorem:... |
tgasa 27124 | Second congruence theorem:... |
tgsss1 27125 | Third congruence theorem: ... |
tgsss2 27126 | Third congruence theorem: ... |
tgsss3 27127 | Third congruence theorem: ... |
dfcgrg2 27128 | Congruence for two triangl... |
isoas 27129 | Congruence theorem for iso... |
iseqlg 27132 | Property of a triangle bei... |
iseqlgd 27133 | Condition for a triangle t... |
f1otrgds 27134 | Convenient lemma for ~ f1o... |
f1otrgitv 27135 | Convenient lemma for ~ f1o... |
f1otrg 27136 | A bijection between bases ... |
f1otrge 27137 | A bijection between bases ... |
ttgval 27140 | Define a function to augme... |
ttglem 27141 | Lemma for ~ ttgbas , ~ ttg... |
ttglemOLD 27142 | Obsolete version of ~ ttgl... |
ttgbas 27143 | The base set of a subcompl... |
ttgbasOLD 27144 | Obsolete proof of ~ ttgbas... |
ttgplusg 27145 | The addition operation of ... |
ttgplusgOLD 27146 | Obsolete proof of ~ ttgplu... |
ttgsub 27147 | The subtraction operation ... |
ttgvsca 27148 | The scalar product of a su... |
ttgvscaOLD 27149 | Obsolete proof of ~ ttgvsc... |
ttgds 27150 | The metric of a subcomplex... |
ttgdsOLD 27151 | Obsolete proof of ~ ttgds ... |
ttgitvval 27152 | Betweenness for a subcompl... |
ttgelitv 27153 | Betweenness for a subcompl... |
ttgbtwnid 27154 | Any subcomplex module equi... |
ttgcontlem1 27155 | Lemma for % ttgcont . (Co... |
xmstrkgc 27156 | Any metric space fulfills ... |
cchhllem 27157 | Lemma for chlbas and chlvs... |
cchhllemOLD 27158 | Obsolete version of ~ cchh... |
elee 27165 | Membership in a Euclidean ... |
mptelee 27166 | A condition for a mapping ... |
eleenn 27167 | If ` A ` is in ` ( EE `` N... |
eleei 27168 | The forward direction of ~... |
eedimeq 27169 | A point belongs to at most... |
brbtwn 27170 | The binary relation form o... |
brcgr 27171 | The binary relation form o... |
fveere 27172 | The function value of a po... |
fveecn 27173 | The function value of a po... |
eqeefv 27174 | Two points are equal iff t... |
eqeelen 27175 | Two points are equal iff t... |
brbtwn2 27176 | Alternate characterization... |
colinearalglem1 27177 | Lemma for ~ colinearalg . ... |
colinearalglem2 27178 | Lemma for ~ colinearalg . ... |
colinearalglem3 27179 | Lemma for ~ colinearalg . ... |
colinearalglem4 27180 | Lemma for ~ colinearalg . ... |
colinearalg 27181 | An algebraic characterizat... |
eleesub 27182 | Membership of a subtractio... |
eleesubd 27183 | Membership of a subtractio... |
axdimuniq 27184 | The unique dimension axiom... |
axcgrrflx 27185 | ` A ` is as far from ` B `... |
axcgrtr 27186 | Congruence is transitive. ... |
axcgrid 27187 | If there is no distance be... |
axsegconlem1 27188 | Lemma for ~ axsegcon . Ha... |
axsegconlem2 27189 | Lemma for ~ axsegcon . Sh... |
axsegconlem3 27190 | Lemma for ~ axsegcon . Sh... |
axsegconlem4 27191 | Lemma for ~ axsegcon . Sh... |
axsegconlem5 27192 | Lemma for ~ axsegcon . Sh... |
axsegconlem6 27193 | Lemma for ~ axsegcon . Sh... |
axsegconlem7 27194 | Lemma for ~ axsegcon . Sh... |
axsegconlem8 27195 | Lemma for ~ axsegcon . Sh... |
axsegconlem9 27196 | Lemma for ~ axsegcon . Sh... |
axsegconlem10 27197 | Lemma for ~ axsegcon . Sh... |
axsegcon 27198 | Any segment ` A B ` can be... |
ax5seglem1 27199 | Lemma for ~ ax5seg . Rexp... |
ax5seglem2 27200 | Lemma for ~ ax5seg . Rexp... |
ax5seglem3a 27201 | Lemma for ~ ax5seg . (Con... |
ax5seglem3 27202 | Lemma for ~ ax5seg . Comb... |
ax5seglem4 27203 | Lemma for ~ ax5seg . Give... |
ax5seglem5 27204 | Lemma for ~ ax5seg . If `... |
ax5seglem6 27205 | Lemma for ~ ax5seg . Give... |
ax5seglem7 27206 | Lemma for ~ ax5seg . An a... |
ax5seglem8 27207 | Lemma for ~ ax5seg . Use ... |
ax5seglem9 27208 | Lemma for ~ ax5seg . Take... |
ax5seg 27209 | The five segment axiom. T... |
axbtwnid 27210 | Points are indivisible. T... |
axpaschlem 27211 | Lemma for ~ axpasch . Set... |
axpasch 27212 | The inner Pasch axiom. Ta... |
axlowdimlem1 27213 | Lemma for ~ axlowdim . Es... |
axlowdimlem2 27214 | Lemma for ~ axlowdim . Sh... |
axlowdimlem3 27215 | Lemma for ~ axlowdim . Se... |
axlowdimlem4 27216 | Lemma for ~ axlowdim . Se... |
axlowdimlem5 27217 | Lemma for ~ axlowdim . Sh... |
axlowdimlem6 27218 | Lemma for ~ axlowdim . Sh... |
axlowdimlem7 27219 | Lemma for ~ axlowdim . Se... |
axlowdimlem8 27220 | Lemma for ~ axlowdim . Ca... |
axlowdimlem9 27221 | Lemma for ~ axlowdim . Ca... |
axlowdimlem10 27222 | Lemma for ~ axlowdim . Se... |
axlowdimlem11 27223 | Lemma for ~ axlowdim . Ca... |
axlowdimlem12 27224 | Lemma for ~ axlowdim . Ca... |
axlowdimlem13 27225 | Lemma for ~ axlowdim . Es... |
axlowdimlem14 27226 | Lemma for ~ axlowdim . Ta... |
axlowdimlem15 27227 | Lemma for ~ axlowdim . Se... |
axlowdimlem16 27228 | Lemma for ~ axlowdim . Se... |
axlowdimlem17 27229 | Lemma for ~ axlowdim . Es... |
axlowdim1 27230 | The lower dimension axiom ... |
axlowdim2 27231 | The lower two-dimensional ... |
axlowdim 27232 | The general lower dimensio... |
axeuclidlem 27233 | Lemma for ~ axeuclid . Ha... |
axeuclid 27234 | Euclid's axiom. Take an a... |
axcontlem1 27235 | Lemma for ~ axcont . Chan... |
axcontlem2 27236 | Lemma for ~ axcont . The ... |
axcontlem3 27237 | Lemma for ~ axcont . Give... |
axcontlem4 27238 | Lemma for ~ axcont . Give... |
axcontlem5 27239 | Lemma for ~ axcont . Comp... |
axcontlem6 27240 | Lemma for ~ axcont . Stat... |
axcontlem7 27241 | Lemma for ~ axcont . Give... |
axcontlem8 27242 | Lemma for ~ axcont . A po... |
axcontlem9 27243 | Lemma for ~ axcont . Give... |
axcontlem10 27244 | Lemma for ~ axcont . Give... |
axcontlem11 27245 | Lemma for ~ axcont . Elim... |
axcontlem12 27246 | Lemma for ~ axcont . Elim... |
axcont 27247 | The axiom of continuity. ... |
eengv 27250 | The value of the Euclidean... |
eengstr 27251 | The Euclidean geometry as ... |
eengbas 27252 | The Base of the Euclidean ... |
ebtwntg 27253 | The betweenness relation u... |
ecgrtg 27254 | The congruence relation us... |
elntg 27255 | The line definition in the... |
elntg2 27256 | The line definition in the... |
eengtrkg 27257 | The geometry structure for... |
eengtrkge 27258 | The geometry structure for... |
edgfid 27261 | Utility theorem: index-ind... |
edgfndx 27262 | Index value of the ~ df-ed... |
edgfndxnn 27263 | The index value of the edg... |
edgfndxid 27264 | The value of the edge func... |
edgfndxidOLD 27265 | Obsolete version of ~ edgf... |
baseltedgf 27266 | The index value of the ` B... |
baseltedgfOLD 27267 | Obsolete proof of ~ baselt... |
basendxnedgfndx 27268 | The slots ` Base ` and ` .... |
vtxval 27273 | The set of vertices of a g... |
iedgval 27274 | The set of indexed edges o... |
1vgrex 27275 | A graph with at least one ... |
opvtxval 27276 | The set of vertices of a g... |
opvtxfv 27277 | The set of vertices of a g... |
opvtxov 27278 | The set of vertices of a g... |
opiedgval 27279 | The set of indexed edges o... |
opiedgfv 27280 | The set of indexed edges o... |
opiedgov 27281 | The set of indexed edges o... |
opvtxfvi 27282 | The set of vertices of a g... |
opiedgfvi 27283 | The set of indexed edges o... |
funvtxdmge2val 27284 | The set of vertices of an ... |
funiedgdmge2val 27285 | The set of indexed edges o... |
funvtxdm2val 27286 | The set of vertices of an ... |
funiedgdm2val 27287 | The set of indexed edges o... |
funvtxval0 27288 | The set of vertices of an ... |
basvtxval 27289 | The set of vertices of a g... |
edgfiedgval 27290 | The set of indexed edges o... |
funvtxval 27291 | The set of vertices of a g... |
funiedgval 27292 | The set of indexed edges o... |
structvtxvallem 27293 | Lemma for ~ structvtxval a... |
structvtxval 27294 | The set of vertices of an ... |
structiedg0val 27295 | The set of indexed edges o... |
structgrssvtxlem 27296 | Lemma for ~ structgrssvtx ... |
structgrssvtx 27297 | The set of vertices of a g... |
structgrssiedg 27298 | The set of indexed edges o... |
struct2grstr 27299 | A graph represented as an ... |
struct2grvtx 27300 | The set of vertices of a g... |
struct2griedg 27301 | The set of indexed edges o... |
graop 27302 | Any representation of a gr... |
grastruct 27303 | Any representation of a gr... |
gropd 27304 | If any representation of a... |
grstructd 27305 | If any representation of a... |
gropeld 27306 | If any representation of a... |
grstructeld 27307 | If any representation of a... |
setsvtx 27308 | The vertices of a structur... |
setsiedg 27309 | The (indexed) edges of a s... |
snstrvtxval 27310 | The set of vertices of a g... |
snstriedgval 27311 | The set of indexed edges o... |
vtxval0 27312 | Degenerated case 1 for ver... |
iedgval0 27313 | Degenerated case 1 for edg... |
vtxvalsnop 27314 | Degenerated case 2 for ver... |
iedgvalsnop 27315 | Degenerated case 2 for edg... |
vtxval3sn 27316 | Degenerated case 3 for ver... |
iedgval3sn 27317 | Degenerated case 3 for edg... |
vtxvalprc 27318 | Degenerated case 4 for ver... |
iedgvalprc 27319 | Degenerated case 4 for edg... |
edgval 27322 | The edges of a graph. (Co... |
iedgedg 27323 | An indexed edge is an edge... |
edgopval 27324 | The edges of a graph repre... |
edgov 27325 | The edges of a graph repre... |
edgstruct 27326 | The edges of a graph repre... |
edgiedgb 27327 | A set is an edge iff it is... |
edg0iedg0 27328 | There is no edge in a grap... |
isuhgr 27333 | The predicate "is an undir... |
isushgr 27334 | The predicate "is an undir... |
uhgrf 27335 | The edge function of an un... |
ushgrf 27336 | The edge function of an un... |
uhgrss 27337 | An edge is a subset of ver... |
uhgreq12g 27338 | If two sets have the same ... |
uhgrfun 27339 | The edge function of an un... |
uhgrn0 27340 | An edge is a nonempty subs... |
lpvtx 27341 | The endpoints of a loop (w... |
ushgruhgr 27342 | An undirected simple hyper... |
isuhgrop 27343 | The property of being an u... |
uhgr0e 27344 | The empty graph, with vert... |
uhgr0vb 27345 | The null graph, with no ve... |
uhgr0 27346 | The null graph represented... |
uhgrun 27347 | The union ` U ` of two (un... |
uhgrunop 27348 | The union of two (undirect... |
ushgrun 27349 | The union ` U ` of two (un... |
ushgrunop 27350 | The union of two (undirect... |
uhgrstrrepe 27351 | Replacing (or adding) the ... |
incistruhgr 27352 | An _incidence structure_ `... |
isupgr 27357 | The property of being an u... |
wrdupgr 27358 | The property of being an u... |
upgrf 27359 | The edge function of an un... |
upgrfn 27360 | The edge function of an un... |
upgrss 27361 | An edge is a subset of ver... |
upgrn0 27362 | An edge is a nonempty subs... |
upgrle 27363 | An edge of an undirected p... |
upgrfi 27364 | An edge is a finite subset... |
upgrex 27365 | An edge is an unordered pa... |
upgrbi 27366 | Show that an unordered pai... |
upgrop 27367 | A pseudograph represented ... |
isumgr 27368 | The property of being an u... |
isumgrs 27369 | The simplified property of... |
wrdumgr 27370 | The property of being an u... |
umgrf 27371 | The edge function of an un... |
umgrfn 27372 | The edge function of an un... |
umgredg2 27373 | An edge of a multigraph ha... |
umgrbi 27374 | Show that an unordered pai... |
upgruhgr 27375 | An undirected pseudograph ... |
umgrupgr 27376 | An undirected multigraph i... |
umgruhgr 27377 | An undirected multigraph i... |
upgrle2 27378 | An edge of an undirected p... |
umgrnloopv 27379 | In a multigraph, there is ... |
umgredgprv 27380 | In a multigraph, an edge i... |
umgrnloop 27381 | In a multigraph, there is ... |
umgrnloop0 27382 | A multigraph has no loops.... |
umgr0e 27383 | The empty graph, with vert... |
upgr0e 27384 | The empty graph, with vert... |
upgr1elem 27385 | Lemma for ~ upgr1e and ~ u... |
upgr1e 27386 | A pseudograph with one edg... |
upgr0eop 27387 | The empty graph, with vert... |
upgr1eop 27388 | A pseudograph with one edg... |
upgr0eopALT 27389 | Alternate proof of ~ upgr0... |
upgr1eopALT 27390 | Alternate proof of ~ upgr1... |
upgrun 27391 | The union ` U ` of two pse... |
upgrunop 27392 | The union of two pseudogra... |
umgrun 27393 | The union ` U ` of two mul... |
umgrunop 27394 | The union of two multigrap... |
umgrislfupgrlem 27395 | Lemma for ~ umgrislfupgr a... |
umgrislfupgr 27396 | A multigraph is a loop-fre... |
lfgredgge2 27397 | An edge of a loop-free gra... |
lfgrnloop 27398 | A loop-free graph has no l... |
uhgredgiedgb 27399 | In a hypergraph, a set is ... |
uhgriedg0edg0 27400 | A hypergraph has no edges ... |
uhgredgn0 27401 | An edge of a hypergraph is... |
edguhgr 27402 | An edge of a hypergraph is... |
uhgredgrnv 27403 | An edge of a hypergraph co... |
uhgredgss 27404 | The set of edges of a hype... |
upgredgss 27405 | The set of edges of a pseu... |
umgredgss 27406 | The set of edges of a mult... |
edgupgr 27407 | Properties of an edge of a... |
edgumgr 27408 | Properties of an edge of a... |
uhgrvtxedgiedgb 27409 | In a hypergraph, a vertex ... |
upgredg 27410 | For each edge in a pseudog... |
umgredg 27411 | For each edge in a multigr... |
upgrpredgv 27412 | An edge of a pseudograph a... |
umgrpredgv 27413 | An edge of a multigraph al... |
upgredg2vtx 27414 | For a vertex incident to a... |
upgredgpr 27415 | If a proper pair (of verti... |
edglnl 27416 | The edges incident with a ... |
numedglnl 27417 | The number of edges incide... |
umgredgne 27418 | An edge of a multigraph al... |
umgrnloop2 27419 | A multigraph has no loops.... |
umgredgnlp 27420 | An edge of a multigraph is... |
isuspgr 27425 | The property of being a si... |
isusgr 27426 | The property of being a si... |
uspgrf 27427 | The edge function of a sim... |
usgrf 27428 | The edge function of a sim... |
isusgrs 27429 | The property of being a si... |
usgrfs 27430 | The edge function of a sim... |
usgrfun 27431 | The edge function of a sim... |
usgredgss 27432 | The set of edges of a simp... |
edgusgr 27433 | An edge of a simple graph ... |
isuspgrop 27434 | The property of being an u... |
isusgrop 27435 | The property of being an u... |
usgrop 27436 | A simple graph represented... |
isausgr 27437 | The property of an unorder... |
ausgrusgrb 27438 | The equivalence of the def... |
usgrausgri 27439 | A simple graph represented... |
ausgrumgri 27440 | If an alternatively define... |
ausgrusgri 27441 | The equivalence of the def... |
usgrausgrb 27442 | The equivalence of the def... |
usgredgop 27443 | An edge of a simple graph ... |
usgrf1o 27444 | The edge function of a sim... |
usgrf1 27445 | The edge function of a sim... |
uspgrf1oedg 27446 | The edge function of a sim... |
usgrss 27447 | An edge is a subset of ver... |
uspgrushgr 27448 | A simple pseudograph is an... |
uspgrupgr 27449 | A simple pseudograph is an... |
uspgrupgrushgr 27450 | A graph is a simple pseudo... |
usgruspgr 27451 | A simple graph is a simple... |
usgrumgr 27452 | A simple graph is an undir... |
usgrumgruspgr 27453 | A graph is a simple graph ... |
usgruspgrb 27454 | A class is a simple graph ... |
usgrupgr 27455 | A simple graph is an undir... |
usgruhgr 27456 | A simple graph is an undir... |
usgrislfuspgr 27457 | A simple graph is a loop-f... |
uspgrun 27458 | The union ` U ` of two sim... |
uspgrunop 27459 | The union of two simple ps... |
usgrun 27460 | The union ` U ` of two sim... |
usgrunop 27461 | The union of two simple gr... |
usgredg2 27462 | The value of the "edge fun... |
usgredg2ALT 27463 | Alternate proof of ~ usgre... |
usgredgprv 27464 | In a simple graph, an edge... |
usgredgprvALT 27465 | Alternate proof of ~ usgre... |
usgredgppr 27466 | An edge of a simple graph ... |
usgrpredgv 27467 | An edge of a simple graph ... |
edgssv2 27468 | An edge of a simple graph ... |
usgredg 27469 | For each edge in a simple ... |
usgrnloopv 27470 | In a simple graph, there i... |
usgrnloopvALT 27471 | Alternate proof of ~ usgrn... |
usgrnloop 27472 | In a simple graph, there i... |
usgrnloopALT 27473 | Alternate proof of ~ usgrn... |
usgrnloop0 27474 | A simple graph has no loop... |
usgrnloop0ALT 27475 | Alternate proof of ~ usgrn... |
usgredgne 27476 | An edge of a simple graph ... |
usgrf1oedg 27477 | The edge function of a sim... |
uhgr2edg 27478 | If a vertex is adjacent to... |
umgr2edg 27479 | If a vertex is adjacent to... |
usgr2edg 27480 | If a vertex is adjacent to... |
umgr2edg1 27481 | If a vertex is adjacent to... |
usgr2edg1 27482 | If a vertex is adjacent to... |
umgrvad2edg 27483 | If a vertex is adjacent to... |
umgr2edgneu 27484 | If a vertex is adjacent to... |
usgrsizedg 27485 | In a simple graph, the siz... |
usgredg3 27486 | The value of the "edge fun... |
usgredg4 27487 | For a vertex incident to a... |
usgredgreu 27488 | For a vertex incident to a... |
usgredg2vtx 27489 | For a vertex incident to a... |
uspgredg2vtxeu 27490 | For a vertex incident to a... |
usgredg2vtxeu 27491 | For a vertex incident to a... |
usgredg2vtxeuALT 27492 | Alternate proof of ~ usgre... |
uspgredg2vlem 27493 | Lemma for ~ uspgredg2v . ... |
uspgredg2v 27494 | In a simple pseudograph, t... |
usgredg2vlem1 27495 | Lemma 1 for ~ usgredg2v . ... |
usgredg2vlem2 27496 | Lemma 2 for ~ usgredg2v . ... |
usgredg2v 27497 | In a simple graph, the map... |
usgriedgleord 27498 | Alternate version of ~ usg... |
ushgredgedg 27499 | In a simple hypergraph the... |
usgredgedg 27500 | In a simple graph there is... |
ushgredgedgloop 27501 | In a simple hypergraph the... |
uspgredgleord 27502 | In a simple pseudograph th... |
usgredgleord 27503 | In a simple graph the numb... |
usgredgleordALT 27504 | Alternate proof for ~ usgr... |
usgrstrrepe 27505 | Replacing (or adding) the ... |
usgr0e 27506 | The empty graph, with vert... |
usgr0vb 27507 | The null graph, with no ve... |
uhgr0v0e 27508 | The null graph, with no ve... |
uhgr0vsize0 27509 | The size of a hypergraph w... |
uhgr0edgfi 27510 | A graph of order 0 (i.e. w... |
usgr0v 27511 | The null graph, with no ve... |
uhgr0vusgr 27512 | The null graph, with no ve... |
usgr0 27513 | The null graph represented... |
uspgr1e 27514 | A simple pseudograph with ... |
usgr1e 27515 | A simple graph with one ed... |
usgr0eop 27516 | The empty graph, with vert... |
uspgr1eop 27517 | A simple pseudograph with ... |
uspgr1ewop 27518 | A simple pseudograph with ... |
uspgr1v1eop 27519 | A simple pseudograph with ... |
usgr1eop 27520 | A simple graph with (at le... |
uspgr2v1e2w 27521 | A simple pseudograph with ... |
usgr2v1e2w 27522 | A simple graph with two ve... |
edg0usgr 27523 | A class without edges is a... |
lfuhgr1v0e 27524 | A loop-free hypergraph wit... |
usgr1vr 27525 | A simple graph with one ve... |
usgr1v 27526 | A class with one (or no) v... |
usgr1v0edg 27527 | A class with one (or no) v... |
usgrexmpldifpr 27528 | Lemma for ~ usgrexmpledg :... |
usgrexmplef 27529 | Lemma for ~ usgrexmpl . (... |
usgrexmpllem 27530 | Lemma for ~ usgrexmpl . (... |
usgrexmplvtx 27531 | The vertices ` 0 , 1 , 2 ,... |
usgrexmpledg 27532 | The edges ` { 0 , 1 } , { ... |
usgrexmpl 27533 | ` G ` is a simple graph of... |
griedg0prc 27534 | The class of empty graphs ... |
griedg0ssusgr 27535 | The class of all simple gr... |
usgrprc 27536 | The class of simple graphs... |
relsubgr 27539 | The class of the subgraph ... |
subgrv 27540 | If a class is a subgraph o... |
issubgr 27541 | The property of a set to b... |
issubgr2 27542 | The property of a set to b... |
subgrprop 27543 | The properties of a subgra... |
subgrprop2 27544 | The properties of a subgra... |
uhgrissubgr 27545 | The property of a hypergra... |
subgrprop3 27546 | The properties of a subgra... |
egrsubgr 27547 | An empty graph consisting ... |
0grsubgr 27548 | The null graph (represente... |
0uhgrsubgr 27549 | The null graph (as hypergr... |
uhgrsubgrself 27550 | A hypergraph is a subgraph... |
subgrfun 27551 | The edge function of a sub... |
subgruhgrfun 27552 | The edge function of a sub... |
subgreldmiedg 27553 | An element of the domain o... |
subgruhgredgd 27554 | An edge of a subgraph of a... |
subumgredg2 27555 | An edge of a subgraph of a... |
subuhgr 27556 | A subgraph of a hypergraph... |
subupgr 27557 | A subgraph of a pseudograp... |
subumgr 27558 | A subgraph of a multigraph... |
subusgr 27559 | A subgraph of a simple gra... |
uhgrspansubgrlem 27560 | Lemma for ~ uhgrspansubgr ... |
uhgrspansubgr 27561 | A spanning subgraph ` S ` ... |
uhgrspan 27562 | A spanning subgraph ` S ` ... |
upgrspan 27563 | A spanning subgraph ` S ` ... |
umgrspan 27564 | A spanning subgraph ` S ` ... |
usgrspan 27565 | A spanning subgraph ` S ` ... |
uhgrspanop 27566 | A spanning subgraph of a h... |
upgrspanop 27567 | A spanning subgraph of a p... |
umgrspanop 27568 | A spanning subgraph of a m... |
usgrspanop 27569 | A spanning subgraph of a s... |
uhgrspan1lem1 27570 | Lemma 1 for ~ uhgrspan1 . ... |
uhgrspan1lem2 27571 | Lemma 2 for ~ uhgrspan1 . ... |
uhgrspan1lem3 27572 | Lemma 3 for ~ uhgrspan1 . ... |
uhgrspan1 27573 | The induced subgraph ` S `... |
upgrreslem 27574 | Lemma for ~ upgrres . (Co... |
umgrreslem 27575 | Lemma for ~ umgrres and ~ ... |
upgrres 27576 | A subgraph obtained by rem... |
umgrres 27577 | A subgraph obtained by rem... |
usgrres 27578 | A subgraph obtained by rem... |
upgrres1lem1 27579 | Lemma 1 for ~ upgrres1 . ... |
umgrres1lem 27580 | Lemma for ~ umgrres1 . (C... |
upgrres1lem2 27581 | Lemma 2 for ~ upgrres1 . ... |
upgrres1lem3 27582 | Lemma 3 for ~ upgrres1 . ... |
upgrres1 27583 | A pseudograph obtained by ... |
umgrres1 27584 | A multigraph obtained by r... |
usgrres1 27585 | Restricting a simple graph... |
isfusgr 27588 | The property of being a fi... |
fusgrvtxfi 27589 | A finite simple graph has ... |
isfusgrf1 27590 | The property of being a fi... |
isfusgrcl 27591 | The property of being a fi... |
fusgrusgr 27592 | A finite simple graph is a... |
opfusgr 27593 | A finite simple graph repr... |
usgredgffibi 27594 | The number of edges in a s... |
fusgredgfi 27595 | In a finite simple graph t... |
usgr1v0e 27596 | The size of a (finite) sim... |
usgrfilem 27597 | In a finite simple graph, ... |
fusgrfisbase 27598 | Induction base for ~ fusgr... |
fusgrfisstep 27599 | Induction step in ~ fusgrf... |
fusgrfis 27600 | A finite simple graph is o... |
fusgrfupgrfs 27601 | A finite simple graph is a... |
nbgrprc0 27604 | The set of neighbors is em... |
nbgrcl 27605 | If a class ` X ` has at le... |
nbgrval 27606 | The set of neighbors of a ... |
dfnbgr2 27607 | Alternate definition of th... |
dfnbgr3 27608 | Alternate definition of th... |
nbgrnvtx0 27609 | If a class ` X ` is not a ... |
nbgrel 27610 | Characterization of a neig... |
nbgrisvtx 27611 | Every neighbor ` N ` of a ... |
nbgrssvtx 27612 | The neighbors of a vertex ... |
nbuhgr 27613 | The set of neighbors of a ... |
nbupgr 27614 | The set of neighbors of a ... |
nbupgrel 27615 | A neighbor of a vertex in ... |
nbumgrvtx 27616 | The set of neighbors of a ... |
nbumgr 27617 | The set of neighbors of an... |
nbusgrvtx 27618 | The set of neighbors of a ... |
nbusgr 27619 | The set of neighbors of an... |
nbgr2vtx1edg 27620 | If a graph has two vertice... |
nbuhgr2vtx1edgblem 27621 | Lemma for ~ nbuhgr2vtx1edg... |
nbuhgr2vtx1edgb 27622 | If a hypergraph has two ve... |
nbusgreledg 27623 | A class/vertex is a neighb... |
uhgrnbgr0nb 27624 | A vertex which is not endp... |
nbgr0vtxlem 27625 | Lemma for ~ nbgr0vtx and ~... |
nbgr0vtx 27626 | In a null graph (with no v... |
nbgr0edg 27627 | In an empty graph (with no... |
nbgr1vtx 27628 | In a graph with one vertex... |
nbgrnself 27629 | A vertex in a graph is not... |
nbgrnself2 27630 | A class ` X ` is not a nei... |
nbgrssovtx 27631 | The neighbors of a vertex ... |
nbgrssvwo2 27632 | The neighbors of a vertex ... |
nbgrsym 27633 | In a graph, the neighborho... |
nbupgrres 27634 | The neighborhood of a vert... |
usgrnbcnvfv 27635 | Applying the edge function... |
nbusgredgeu 27636 | For each neighbor of a ver... |
edgnbusgreu 27637 | For each edge incident to ... |
nbusgredgeu0 27638 | For each neighbor of a ver... |
nbusgrf1o0 27639 | The mapping of neighbors o... |
nbusgrf1o1 27640 | The set of neighbors of a ... |
nbusgrf1o 27641 | The set of neighbors of a ... |
nbedgusgr 27642 | The number of neighbors of... |
edgusgrnbfin 27643 | The number of neighbors of... |
nbusgrfi 27644 | The class of neighbors of ... |
nbfiusgrfi 27645 | The class of neighbors of ... |
hashnbusgrnn0 27646 | The number of neighbors of... |
nbfusgrlevtxm1 27647 | The number of neighbors of... |
nbfusgrlevtxm2 27648 | If there is a vertex which... |
nbusgrvtxm1 27649 | If the number of neighbors... |
nb3grprlem1 27650 | Lemma 1 for ~ nb3grpr . (... |
nb3grprlem2 27651 | Lemma 2 for ~ nb3grpr . (... |
nb3grpr 27652 | The neighbors of a vertex ... |
nb3grpr2 27653 | The neighbors of a vertex ... |
nb3gr2nb 27654 | If the neighbors of two ve... |
uvtxval 27657 | The set of all universal v... |
uvtxel 27658 | A universal vertex, i.e. a... |
uvtxisvtx 27659 | A universal vertex is a ve... |
uvtxssvtx 27660 | The set of the universal v... |
vtxnbuvtx 27661 | A universal vertex has all... |
uvtxnbgrss 27662 | A universal vertex has all... |
uvtxnbgrvtx 27663 | A universal vertex is neig... |
uvtx0 27664 | There is no universal vert... |
isuvtx 27665 | The set of all universal v... |
uvtxel1 27666 | Characterization of a univ... |
uvtx01vtx 27667 | If a graph/class has no ed... |
uvtx2vtx1edg 27668 | If a graph has two vertice... |
uvtx2vtx1edgb 27669 | If a hypergraph has two ve... |
uvtxnbgr 27670 | A universal vertex has all... |
uvtxnbgrb 27671 | A vertex is universal iff ... |
uvtxusgr 27672 | The set of all universal v... |
uvtxusgrel 27673 | A universal vertex, i.e. a... |
uvtxnm1nbgr 27674 | A universal vertex has ` n... |
nbusgrvtxm1uvtx 27675 | If the number of neighbors... |
uvtxnbvtxm1 27676 | A universal vertex has ` n... |
nbupgruvtxres 27677 | The neighborhood of a univ... |
uvtxupgrres 27678 | A universal vertex is univ... |
cplgruvtxb 27683 | A graph ` G ` is complete ... |
prcliscplgr 27684 | A proper class (representi... |
iscplgr 27685 | The property of being a co... |
iscplgrnb 27686 | A graph is complete iff al... |
iscplgredg 27687 | A graph ` G ` is complete ... |
iscusgr 27688 | The property of being a co... |
cusgrusgr 27689 | A complete simple graph is... |
cusgrcplgr 27690 | A complete simple graph is... |
iscusgrvtx 27691 | A simple graph is complete... |
cusgruvtxb 27692 | A simple graph is complete... |
iscusgredg 27693 | A simple graph is complete... |
cusgredg 27694 | In a complete simple graph... |
cplgr0 27695 | The null graph (with no ve... |
cusgr0 27696 | The null graph (with no ve... |
cplgr0v 27697 | A null graph (with no vert... |
cusgr0v 27698 | A graph with no vertices a... |
cplgr1vlem 27699 | Lemma for ~ cplgr1v and ~ ... |
cplgr1v 27700 | A graph with one vertex is... |
cusgr1v 27701 | A graph with one vertex an... |
cplgr2v 27702 | An undirected hypergraph w... |
cplgr2vpr 27703 | An undirected hypergraph w... |
nbcplgr 27704 | In a complete graph, each ... |
cplgr3v 27705 | A pseudograph with three (... |
cusgr3vnbpr 27706 | The neighbors of a vertex ... |
cplgrop 27707 | A complete graph represent... |
cusgrop 27708 | A complete simple graph re... |
cusgrexilem1 27709 | Lemma 1 for ~ cusgrexi . ... |
usgrexilem 27710 | Lemma for ~ usgrexi . (Co... |
usgrexi 27711 | An arbitrary set regarded ... |
cusgrexilem2 27712 | Lemma 2 for ~ cusgrexi . ... |
cusgrexi 27713 | An arbitrary set ` V ` reg... |
cusgrexg 27714 | For each set there is a se... |
structtousgr 27715 | Any (extensible) structure... |
structtocusgr 27716 | Any (extensible) structure... |
cffldtocusgr 27717 | The field of complex numbe... |
cusgrres 27718 | Restricting a complete sim... |
cusgrsizeindb0 27719 | Base case of the induction... |
cusgrsizeindb1 27720 | Base case of the induction... |
cusgrsizeindslem 27721 | Lemma for ~ cusgrsizeinds ... |
cusgrsizeinds 27722 | Part 1 of induction step i... |
cusgrsize2inds 27723 | Induction step in ~ cusgrs... |
cusgrsize 27724 | The size of a finite compl... |
cusgrfilem1 27725 | Lemma 1 for ~ cusgrfi . (... |
cusgrfilem2 27726 | Lemma 2 for ~ cusgrfi . (... |
cusgrfilem3 27727 | Lemma 3 for ~ cusgrfi . (... |
cusgrfi 27728 | If the size of a complete ... |
usgredgsscusgredg 27729 | A simple graph is a subgra... |
usgrsscusgr 27730 | A simple graph is a subgra... |
sizusglecusglem1 27731 | Lemma 1 for ~ sizusglecusg... |
sizusglecusglem2 27732 | Lemma 2 for ~ sizusglecusg... |
sizusglecusg 27733 | The size of a simple graph... |
fusgrmaxsize 27734 | The maximum size of a fini... |
vtxdgfval 27737 | The value of the vertex de... |
vtxdgval 27738 | The degree of a vertex. (... |
vtxdgfival 27739 | The degree of a vertex for... |
vtxdgop 27740 | The vertex degree expresse... |
vtxdgf 27741 | The vertex degree function... |
vtxdgelxnn0 27742 | The degree of a vertex is ... |
vtxdg0v 27743 | The degree of a vertex in ... |
vtxdg0e 27744 | The degree of a vertex in ... |
vtxdgfisnn0 27745 | The degree of a vertex in ... |
vtxdgfisf 27746 | The vertex degree function... |
vtxdeqd 27747 | Equality theorem for the v... |
vtxduhgr0e 27748 | The degree of a vertex in ... |
vtxdlfuhgr1v 27749 | The degree of the vertex i... |
vdumgr0 27750 | A vertex in a multigraph h... |
vtxdun 27751 | The degree of a vertex in ... |
vtxdfiun 27752 | The degree of a vertex in ... |
vtxduhgrun 27753 | The degree of a vertex in ... |
vtxduhgrfiun 27754 | The degree of a vertex in ... |
vtxdlfgrval 27755 | The value of the vertex de... |
vtxdumgrval 27756 | The value of the vertex de... |
vtxdusgrval 27757 | The value of the vertex de... |
vtxd0nedgb 27758 | A vertex has degree 0 iff ... |
vtxdushgrfvedglem 27759 | Lemma for ~ vtxdushgrfvedg... |
vtxdushgrfvedg 27760 | The value of the vertex de... |
vtxdusgrfvedg 27761 | The value of the vertex de... |
vtxduhgr0nedg 27762 | If a vertex in a hypergrap... |
vtxdumgr0nedg 27763 | If a vertex in a multigrap... |
vtxduhgr0edgnel 27764 | A vertex in a hypergraph h... |
vtxdusgr0edgnel 27765 | A vertex in a simple graph... |
vtxdusgr0edgnelALT 27766 | Alternate proof of ~ vtxdu... |
vtxdgfusgrf 27767 | The vertex degree function... |
vtxdgfusgr 27768 | In a finite simple graph, ... |
fusgrn0degnn0 27769 | In a nonempty, finite grap... |
1loopgruspgr 27770 | A graph with one edge whic... |
1loopgredg 27771 | The set of edges in a grap... |
1loopgrnb0 27772 | In a graph (simple pseudog... |
1loopgrvd2 27773 | The vertex degree of a one... |
1loopgrvd0 27774 | The vertex degree of a one... |
1hevtxdg0 27775 | The vertex degree of verte... |
1hevtxdg1 27776 | The vertex degree of verte... |
1hegrvtxdg1 27777 | The vertex degree of a gra... |
1hegrvtxdg1r 27778 | The vertex degree of a gra... |
1egrvtxdg1 27779 | The vertex degree of a one... |
1egrvtxdg1r 27780 | The vertex degree of a one... |
1egrvtxdg0 27781 | The vertex degree of a one... |
p1evtxdeqlem 27782 | Lemma for ~ p1evtxdeq and ... |
p1evtxdeq 27783 | If an edge ` E ` which doe... |
p1evtxdp1 27784 | If an edge ` E ` (not bein... |
uspgrloopvtx 27785 | The set of vertices in a g... |
uspgrloopvtxel 27786 | A vertex in a graph (simpl... |
uspgrloopiedg 27787 | The set of edges in a grap... |
uspgrloopedg 27788 | The set of edges in a grap... |
uspgrloopnb0 27789 | In a graph (simple pseudog... |
uspgrloopvd2 27790 | The vertex degree of a one... |
umgr2v2evtx 27791 | The set of vertices in a m... |
umgr2v2evtxel 27792 | A vertex in a multigraph w... |
umgr2v2eiedg 27793 | The edge function in a mul... |
umgr2v2eedg 27794 | The set of edges in a mult... |
umgr2v2e 27795 | A multigraph with two edge... |
umgr2v2enb1 27796 | In a multigraph with two e... |
umgr2v2evd2 27797 | In a multigraph with two e... |
hashnbusgrvd 27798 | In a simple graph, the num... |
usgruvtxvdb 27799 | In a finite simple graph w... |
vdiscusgrb 27800 | A finite simple graph with... |
vdiscusgr 27801 | In a finite complete simpl... |
vtxdusgradjvtx 27802 | The degree of a vertex in ... |
usgrvd0nedg 27803 | If a vertex in a simple gr... |
uhgrvd00 27804 | If every vertex in a hyper... |
usgrvd00 27805 | If every vertex in a simpl... |
vdegp1ai 27806 | The induction step for a v... |
vdegp1bi 27807 | The induction step for a v... |
vdegp1ci 27808 | The induction step for a v... |
vtxdginducedm1lem1 27809 | Lemma 1 for ~ vtxdginduced... |
vtxdginducedm1lem2 27810 | Lemma 2 for ~ vtxdginduced... |
vtxdginducedm1lem3 27811 | Lemma 3 for ~ vtxdginduced... |
vtxdginducedm1lem4 27812 | Lemma 4 for ~ vtxdginduced... |
vtxdginducedm1 27813 | The degree of a vertex ` v... |
vtxdginducedm1fi 27814 | The degree of a vertex ` v... |
finsumvtxdg2ssteplem1 27815 | Lemma for ~ finsumvtxdg2ss... |
finsumvtxdg2ssteplem2 27816 | Lemma for ~ finsumvtxdg2ss... |
finsumvtxdg2ssteplem3 27817 | Lemma for ~ finsumvtxdg2ss... |
finsumvtxdg2ssteplem4 27818 | Lemma for ~ finsumvtxdg2ss... |
finsumvtxdg2sstep 27819 | Induction step of ~ finsum... |
finsumvtxdg2size 27820 | The sum of the degrees of ... |
fusgr1th 27821 | The sum of the degrees of ... |
finsumvtxdgeven 27822 | The sum of the degrees of ... |
vtxdgoddnumeven 27823 | The number of vertices of ... |
fusgrvtxdgonume 27824 | The number of vertices of ... |
isrgr 27829 | The property of a class be... |
rgrprop 27830 | The properties of a k-regu... |
isrusgr 27831 | The property of being a k-... |
rusgrprop 27832 | The properties of a k-regu... |
rusgrrgr 27833 | A k-regular simple graph i... |
rusgrusgr 27834 | A k-regular simple graph i... |
finrusgrfusgr 27835 | A finite regular simple gr... |
isrusgr0 27836 | The property of being a k-... |
rusgrprop0 27837 | The properties of a k-regu... |
usgreqdrusgr 27838 | If all vertices in a simpl... |
fusgrregdegfi 27839 | In a nonempty finite simpl... |
fusgrn0eqdrusgr 27840 | If all vertices in a nonem... |
frusgrnn0 27841 | In a nonempty finite k-reg... |
0edg0rgr 27842 | A graph is 0-regular if it... |
uhgr0edg0rgr 27843 | A hypergraph is 0-regular ... |
uhgr0edg0rgrb 27844 | A hypergraph is 0-regular ... |
usgr0edg0rusgr 27845 | A simple graph is 0-regula... |
0vtxrgr 27846 | A null graph (with no vert... |
0vtxrusgr 27847 | A graph with no vertices a... |
0uhgrrusgr 27848 | The null graph as hypergra... |
0grrusgr 27849 | The null graph represented... |
0grrgr 27850 | The null graph represented... |
cusgrrusgr 27851 | A complete simple graph wi... |
cusgrm1rusgr 27852 | A finite simple graph with... |
rusgrpropnb 27853 | The properties of a k-regu... |
rusgrpropedg 27854 | The properties of a k-regu... |
rusgrpropadjvtx 27855 | The properties of a k-regu... |
rusgrnumwrdl2 27856 | In a k-regular simple grap... |
rusgr1vtxlem 27857 | Lemma for ~ rusgr1vtx . (... |
rusgr1vtx 27858 | If a k-regular simple grap... |
rgrusgrprc 27859 | The class of 0-regular sim... |
rusgrprc 27860 | The class of 0-regular sim... |
rgrprc 27861 | The class of 0-regular gra... |
rgrprcx 27862 | The class of 0-regular gra... |
rgrx0ndm 27863 | 0 is not in the domain of ... |
rgrx0nd 27864 | The potentially alternativ... |
ewlksfval 27871 | The set of s-walks of edge... |
isewlk 27872 | Conditions for a function ... |
ewlkprop 27873 | Properties of an s-walk of... |
ewlkinedg 27874 | The intersection (common v... |
ewlkle 27875 | An s-walk of edges is also... |
upgrewlkle2 27876 | In a pseudograph, there is... |
wkslem1 27877 | Lemma 1 for walks to subst... |
wkslem2 27878 | Lemma 2 for walks to subst... |
wksfval 27879 | The set of walks (in an un... |
iswlk 27880 | Properties of a pair of fu... |
wlkprop 27881 | Properties of a walk. (Co... |
wlkv 27882 | The classes involved in a ... |
iswlkg 27883 | Generalization of ~ iswlk ... |
wlkf 27884 | The mapping enumerating th... |
wlkcl 27885 | A walk has length ` # ( F ... |
wlkp 27886 | The mapping enumerating th... |
wlkpwrd 27887 | The sequence of vertices o... |
wlklenvp1 27888 | The number of vertices of ... |
wksv 27889 | The class of walks is a se... |
wlkn0 27890 | The sequence of vertices o... |
wlklenvm1 27891 | The number of edges of a w... |
ifpsnprss 27892 | Lemma for ~ wlkvtxeledg : ... |
wlkvtxeledg 27893 | Each pair of adjacent vert... |
wlkvtxiedg 27894 | The vertices of a walk are... |
relwlk 27895 | The set ` ( Walks `` G ) `... |
wlkvv 27896 | If there is at least one w... |
wlkop 27897 | A walk is an ordered pair.... |
wlkcpr 27898 | A walk as class with two c... |
wlk2f 27899 | If there is a walk ` W ` t... |
wlkcomp 27900 | A walk expressed by proper... |
wlkcompim 27901 | Implications for the prope... |
wlkelwrd 27902 | The components of a walk a... |
wlkeq 27903 | Conditions for two walks (... |
edginwlk 27904 | The value of the edge func... |
upgredginwlk 27905 | The value of the edge func... |
iedginwlk 27906 | The value of the edge func... |
wlkl1loop 27907 | A walk of length 1 from a ... |
wlk1walk 27908 | A walk is a 1-walk "on the... |
wlk1ewlk 27909 | A walk is an s-walk "on th... |
upgriswlk 27910 | Properties of a pair of fu... |
upgrwlkedg 27911 | The edges of a walk in a p... |
upgrwlkcompim 27912 | Implications for the prope... |
wlkvtxedg 27913 | The vertices of a walk are... |
upgrwlkvtxedg 27914 | The pairs of connected ver... |
uspgr2wlkeq 27915 | Conditions for two walks w... |
uspgr2wlkeq2 27916 | Conditions for two walks w... |
uspgr2wlkeqi 27917 | Conditions for two walks w... |
umgrwlknloop 27918 | In a multigraph, each walk... |
wlkRes 27919 | Restrictions of walks (i.e... |
wlkv0 27920 | If there is a walk in the ... |
g0wlk0 27921 | There is no walk in a null... |
0wlk0 27922 | There is no walk for the e... |
wlk0prc 27923 | There is no walk in a null... |
wlklenvclwlk 27924 | The number of vertices in ... |
wlklenvclwlkOLD 27925 | Obsolete version of ~ wlkl... |
wlkson 27926 | The set of walks between t... |
iswlkon 27927 | Properties of a pair of fu... |
wlkonprop 27928 | Properties of a walk betwe... |
wlkpvtx 27929 | A walk connects vertices. ... |
wlkepvtx 27930 | The endpoints of a walk ar... |
wlkoniswlk 27931 | A walk between two vertice... |
wlkonwlk 27932 | A walk is a walk between i... |
wlkonwlk1l 27933 | A walk is a walk from its ... |
wlksoneq1eq2 27934 | Two walks with identical s... |
wlkonl1iedg 27935 | If there is a walk between... |
wlkon2n0 27936 | The length of a walk betwe... |
2wlklem 27937 | Lemma for theorems for wal... |
upgr2wlk 27938 | Properties of a pair of fu... |
wlkreslem 27939 | Lemma for ~ wlkres . (Con... |
wlkres 27940 | The restriction ` <. H , Q... |
redwlklem 27941 | Lemma for ~ redwlk . (Con... |
redwlk 27942 | A walk ending at the last ... |
wlkp1lem1 27943 | Lemma for ~ wlkp1 . (Cont... |
wlkp1lem2 27944 | Lemma for ~ wlkp1 . (Cont... |
wlkp1lem3 27945 | Lemma for ~ wlkp1 . (Cont... |
wlkp1lem4 27946 | Lemma for ~ wlkp1 . (Cont... |
wlkp1lem5 27947 | Lemma for ~ wlkp1 . (Cont... |
wlkp1lem6 27948 | Lemma for ~ wlkp1 . (Cont... |
wlkp1lem7 27949 | Lemma for ~ wlkp1 . (Cont... |
wlkp1lem8 27950 | Lemma for ~ wlkp1 . (Cont... |
wlkp1 27951 | Append one path segment (e... |
wlkdlem1 27952 | Lemma 1 for ~ wlkd . (Con... |
wlkdlem2 27953 | Lemma 2 for ~ wlkd . (Con... |
wlkdlem3 27954 | Lemma 3 for ~ wlkd . (Con... |
wlkdlem4 27955 | Lemma 4 for ~ wlkd . (Con... |
wlkd 27956 | Two words representing a w... |
lfgrwlkprop 27957 | Two adjacent vertices in a... |
lfgriswlk 27958 | Conditions for a pair of f... |
lfgrwlknloop 27959 | In a loop-free graph, each... |
reltrls 27964 | The set ` ( Trails `` G ) ... |
trlsfval 27965 | The set of trails (in an u... |
istrl 27966 | Conditions for a pair of c... |
trliswlk 27967 | A trail is a walk. (Contr... |
trlf1 27968 | The enumeration ` F ` of a... |
trlreslem 27969 | Lemma for ~ trlres . Form... |
trlres 27970 | The restriction ` <. H , Q... |
upgrtrls 27971 | The set of trails in a pse... |
upgristrl 27972 | Properties of a pair of fu... |
upgrf1istrl 27973 | Properties of a pair of a ... |
wksonproplem 27974 | Lemma for theorems for pro... |
trlsonfval 27975 | The set of trails between ... |
istrlson 27976 | Properties of a pair of fu... |
trlsonprop 27977 | Properties of a trail betw... |
trlsonistrl 27978 | A trail between two vertic... |
trlsonwlkon 27979 | A trail between two vertic... |
trlontrl 27980 | A trail is a trail between... |
relpths 27989 | The set ` ( Paths `` G ) `... |
pthsfval 27990 | The set of paths (in an un... |
spthsfval 27991 | The set of simple paths (i... |
ispth 27992 | Conditions for a pair of c... |
isspth 27993 | Conditions for a pair of c... |
pthistrl 27994 | A path is a trail (in an u... |
spthispth 27995 | A simple path is a path (i... |
pthiswlk 27996 | A path is a walk (in an un... |
spthiswlk 27997 | A simple path is a walk (i... |
pthdivtx 27998 | The inner vertices of a pa... |
pthdadjvtx 27999 | The adjacent vertices of a... |
2pthnloop 28000 | A path of length at least ... |
upgr2pthnlp 28001 | A path of length at least ... |
spthdifv 28002 | The vertices of a simple p... |
spthdep 28003 | A simple path (at least of... |
pthdepisspth 28004 | A path with different star... |
upgrwlkdvdelem 28005 | Lemma for ~ upgrwlkdvde . ... |
upgrwlkdvde 28006 | In a pseudograph, all edge... |
upgrspthswlk 28007 | The set of simple paths in... |
upgrwlkdvspth 28008 | A walk consisting of diffe... |
pthsonfval 28009 | The set of paths between t... |
spthson 28010 | The set of simple paths be... |
ispthson 28011 | Properties of a pair of fu... |
isspthson 28012 | Properties of a pair of fu... |
pthsonprop 28013 | Properties of a path betwe... |
spthonprop 28014 | Properties of a simple pat... |
pthonispth 28015 | A path between two vertice... |
pthontrlon 28016 | A path between two vertice... |
pthonpth 28017 | A path is a path between i... |
isspthonpth 28018 | A pair of functions is a s... |
spthonisspth 28019 | A simple path between to v... |
spthonpthon 28020 | A simple path between two ... |
spthonepeq 28021 | The endpoints of a simple ... |
uhgrwkspthlem1 28022 | Lemma 1 for ~ uhgrwkspth .... |
uhgrwkspthlem2 28023 | Lemma 2 for ~ uhgrwkspth .... |
uhgrwkspth 28024 | Any walk of length 1 betwe... |
usgr2wlkneq 28025 | The vertices and edges are... |
usgr2wlkspthlem1 28026 | Lemma 1 for ~ usgr2wlkspth... |
usgr2wlkspthlem2 28027 | Lemma 2 for ~ usgr2wlkspth... |
usgr2wlkspth 28028 | In a simple graph, any wal... |
usgr2trlncl 28029 | In a simple graph, any tra... |
usgr2trlspth 28030 | In a simple graph, any tra... |
usgr2pthspth 28031 | In a simple graph, any pat... |
usgr2pthlem 28032 | Lemma for ~ usgr2pth . (C... |
usgr2pth 28033 | In a simple graph, there i... |
usgr2pth0 28034 | In a simply graph, there i... |
pthdlem1 28035 | Lemma 1 for ~ pthd . (Con... |
pthdlem2lem 28036 | Lemma for ~ pthdlem2 . (C... |
pthdlem2 28037 | Lemma 2 for ~ pthd . (Con... |
pthd 28038 | Two words representing a t... |
clwlks 28041 | The set of closed walks (i... |
isclwlk 28042 | A pair of functions repres... |
clwlkiswlk 28043 | A closed walk is a walk (i... |
clwlkwlk 28044 | Closed walks are walks (in... |
clwlkswks 28045 | Closed walks are walks (in... |
isclwlke 28046 | Properties of a pair of fu... |
isclwlkupgr 28047 | Properties of a pair of fu... |
clwlkcomp 28048 | A closed walk expressed by... |
clwlkcompim 28049 | Implications for the prope... |
upgrclwlkcompim 28050 | Implications for the prope... |
clwlkcompbp 28051 | Basic properties of the co... |
clwlkl1loop 28052 | A closed walk of length 1 ... |
crcts 28057 | The set of circuits (in an... |
cycls 28058 | The set of cycles (in an u... |
iscrct 28059 | Sufficient and necessary c... |
iscycl 28060 | Sufficient and necessary c... |
crctprop 28061 | The properties of a circui... |
cyclprop 28062 | The properties of a cycle:... |
crctisclwlk 28063 | A circuit is a closed walk... |
crctistrl 28064 | A circuit is a trail. (Co... |
crctiswlk 28065 | A circuit is a walk. (Con... |
cyclispth 28066 | A cycle is a path. (Contr... |
cycliswlk 28067 | A cycle is a walk. (Contr... |
cycliscrct 28068 | A cycle is a circuit. (Co... |
cyclnspth 28069 | A (non-trivial) cycle is n... |
cyclispthon 28070 | A cycle is a path starting... |
lfgrn1cycl 28071 | In a loop-free graph there... |
usgr2trlncrct 28072 | In a simple graph, any tra... |
umgrn1cycl 28073 | In a multigraph graph (wit... |
uspgrn2crct 28074 | In a simple pseudograph th... |
usgrn2cycl 28075 | In a simple graph there ar... |
crctcshwlkn0lem1 28076 | Lemma for ~ crctcshwlkn0 .... |
crctcshwlkn0lem2 28077 | Lemma for ~ crctcshwlkn0 .... |
crctcshwlkn0lem3 28078 | Lemma for ~ crctcshwlkn0 .... |
crctcshwlkn0lem4 28079 | Lemma for ~ crctcshwlkn0 .... |
crctcshwlkn0lem5 28080 | Lemma for ~ crctcshwlkn0 .... |
crctcshwlkn0lem6 28081 | Lemma for ~ crctcshwlkn0 .... |
crctcshwlkn0lem7 28082 | Lemma for ~ crctcshwlkn0 .... |
crctcshlem1 28083 | Lemma for ~ crctcsh . (Co... |
crctcshlem2 28084 | Lemma for ~ crctcsh . (Co... |
crctcshlem3 28085 | Lemma for ~ crctcsh . (Co... |
crctcshlem4 28086 | Lemma for ~ crctcsh . (Co... |
crctcshwlkn0 28087 | Cyclically shifting the in... |
crctcshwlk 28088 | Cyclically shifting the in... |
crctcshtrl 28089 | Cyclically shifting the in... |
crctcsh 28090 | Cyclically shifting the in... |
wwlks 28101 | The set of walks (in an un... |
iswwlks 28102 | A word over the set of ver... |
wwlksn 28103 | The set of walks (in an un... |
iswwlksn 28104 | A word over the set of ver... |
wwlksnprcl 28105 | Derivation of the length o... |
iswwlksnx 28106 | Properties of a word to re... |
wwlkbp 28107 | Basic properties of a walk... |
wwlknbp 28108 | Basic properties of a walk... |
wwlknp 28109 | Properties of a set being ... |
wwlknbp1 28110 | Other basic properties of ... |
wwlknvtx 28111 | The symbols of a word ` W ... |
wwlknllvtx 28112 | If a word ` W ` represents... |
wwlknlsw 28113 | If a word represents a wal... |
wspthsn 28114 | The set of simple paths of... |
iswspthn 28115 | An element of the set of s... |
wspthnp 28116 | Properties of a set being ... |
wwlksnon 28117 | The set of walks of a fixe... |
wspthsnon 28118 | The set of simple paths of... |
iswwlksnon 28119 | The set of walks of a fixe... |
wwlksnon0 28120 | Sufficient conditions for ... |
wwlksonvtx 28121 | If a word ` W ` represents... |
iswspthsnon 28122 | The set of simple paths of... |
wwlknon 28123 | An element of the set of w... |
wspthnon 28124 | An element of the set of s... |
wspthnonp 28125 | Properties of a set being ... |
wspthneq1eq2 28126 | Two simple paths with iden... |
wwlksn0s 28127 | The set of all walks as wo... |
wwlkssswrd 28128 | Walks (represented by word... |
wwlksn0 28129 | A walk of length 0 is repr... |
0enwwlksnge1 28130 | In graphs without edges, t... |
wwlkswwlksn 28131 | A walk of a fixed length a... |
wwlkssswwlksn 28132 | The walks of a fixed lengt... |
wlkiswwlks1 28133 | The sequence of vertices i... |
wlklnwwlkln1 28134 | The sequence of vertices i... |
wlkiswwlks2lem1 28135 | Lemma 1 for ~ wlkiswwlks2 ... |
wlkiswwlks2lem2 28136 | Lemma 2 for ~ wlkiswwlks2 ... |
wlkiswwlks2lem3 28137 | Lemma 3 for ~ wlkiswwlks2 ... |
wlkiswwlks2lem4 28138 | Lemma 4 for ~ wlkiswwlks2 ... |
wlkiswwlks2lem5 28139 | Lemma 5 for ~ wlkiswwlks2 ... |
wlkiswwlks2lem6 28140 | Lemma 6 for ~ wlkiswwlks2 ... |
wlkiswwlks2 28141 | A walk as word corresponds... |
wlkiswwlks 28142 | A walk as word corresponds... |
wlkiswwlksupgr2 28143 | A walk as word corresponds... |
wlkiswwlkupgr 28144 | A walk as word corresponds... |
wlkswwlksf1o 28145 | The mapping of (ordinary) ... |
wlkswwlksen 28146 | The set of walks as words ... |
wwlksm1edg 28147 | Removing the trailing edge... |
wlklnwwlkln2lem 28148 | Lemma for ~ wlklnwwlkln2 a... |
wlklnwwlkln2 28149 | A walk of length ` N ` as ... |
wlklnwwlkn 28150 | A walk of length ` N ` as ... |
wlklnwwlklnupgr2 28151 | A walk of length ` N ` as ... |
wlklnwwlknupgr 28152 | A walk of length ` N ` as ... |
wlknewwlksn 28153 | If a walk in a pseudograph... |
wlknwwlksnbij 28154 | The mapping ` ( t e. T |->... |
wlknwwlksnen 28155 | In a simple pseudograph, t... |
wlknwwlksneqs 28156 | The set of walks of a fixe... |
wwlkseq 28157 | Equality of two walks (as ... |
wwlksnred 28158 | Reduction of a walk (as wo... |
wwlksnext 28159 | Extension of a walk (as wo... |
wwlksnextbi 28160 | Extension of a walk (as wo... |
wwlksnredwwlkn 28161 | For each walk (as word) of... |
wwlksnredwwlkn0 28162 | For each walk (as word) of... |
wwlksnextwrd 28163 | Lemma for ~ wwlksnextbij .... |
wwlksnextfun 28164 | Lemma for ~ wwlksnextbij .... |
wwlksnextinj 28165 | Lemma for ~ wwlksnextbij .... |
wwlksnextsurj 28166 | Lemma for ~ wwlksnextbij .... |
wwlksnextbij0 28167 | Lemma for ~ wwlksnextbij .... |
wwlksnextbij 28168 | There is a bijection betwe... |
wwlksnexthasheq 28169 | The number of the extensio... |
disjxwwlksn 28170 | Sets of walks (as words) e... |
wwlksnndef 28171 | Conditions for ` WWalksN `... |
wwlksnfi 28172 | The number of walks repres... |
wlksnfi 28173 | The number of walks of fix... |
wlksnwwlknvbij 28174 | There is a bijection betwe... |
wwlksnextproplem1 28175 | Lemma 1 for ~ wwlksnextpro... |
wwlksnextproplem2 28176 | Lemma 2 for ~ wwlksnextpro... |
wwlksnextproplem3 28177 | Lemma 3 for ~ wwlksnextpro... |
wwlksnextprop 28178 | Adding additional properti... |
disjxwwlkn 28179 | Sets of walks (as words) e... |
hashwwlksnext 28180 | Number of walks (as words)... |
wwlksnwwlksnon 28181 | A walk of fixed length is ... |
wspthsnwspthsnon 28182 | A simple path of fixed len... |
wspthsnonn0vne 28183 | If the set of simple paths... |
wspthsswwlkn 28184 | The set of simple paths of... |
wspthnfi 28185 | In a finite graph, the set... |
wwlksnonfi 28186 | In a finite graph, the set... |
wspthsswwlknon 28187 | The set of simple paths of... |
wspthnonfi 28188 | In a finite graph, the set... |
wspniunwspnon 28189 | The set of nonempty simple... |
wspn0 28190 | If there are no vertices, ... |
2wlkdlem1 28191 | Lemma 1 for ~ 2wlkd . (Co... |
2wlkdlem2 28192 | Lemma 2 for ~ 2wlkd . (Co... |
2wlkdlem3 28193 | Lemma 3 for ~ 2wlkd . (Co... |
2wlkdlem4 28194 | Lemma 4 for ~ 2wlkd . (Co... |
2wlkdlem5 28195 | Lemma 5 for ~ 2wlkd . (Co... |
2pthdlem1 28196 | Lemma 1 for ~ 2pthd . (Co... |
2wlkdlem6 28197 | Lemma 6 for ~ 2wlkd . (Co... |
2wlkdlem7 28198 | Lemma 7 for ~ 2wlkd . (Co... |
2wlkdlem8 28199 | Lemma 8 for ~ 2wlkd . (Co... |
2wlkdlem9 28200 | Lemma 9 for ~ 2wlkd . (Co... |
2wlkdlem10 28201 | Lemma 10 for ~ 3wlkd . (C... |
2wlkd 28202 | Construction of a walk fro... |
2wlkond 28203 | A walk of length 2 from on... |
2trld 28204 | Construction of a trail fr... |
2trlond 28205 | A trail of length 2 from o... |
2pthd 28206 | A path of length 2 from on... |
2spthd 28207 | A simple path of length 2 ... |
2pthond 28208 | A simple path of length 2 ... |
2pthon3v 28209 | For a vertex adjacent to t... |
umgr2adedgwlklem 28210 | Lemma for ~ umgr2adedgwlk ... |
umgr2adedgwlk 28211 | In a multigraph, two adjac... |
umgr2adedgwlkon 28212 | In a multigraph, two adjac... |
umgr2adedgwlkonALT 28213 | Alternate proof for ~ umgr... |
umgr2adedgspth 28214 | In a multigraph, two adjac... |
umgr2wlk 28215 | In a multigraph, there is ... |
umgr2wlkon 28216 | For each pair of adjacent ... |
elwwlks2s3 28217 | A walk of length 2 as word... |
midwwlks2s3 28218 | There is a vertex between ... |
wwlks2onv 28219 | If a length 3 string repre... |
elwwlks2ons3im 28220 | A walk as word of length 2... |
elwwlks2ons3 28221 | For each walk of length 2 ... |
s3wwlks2on 28222 | A length 3 string which re... |
umgrwwlks2on 28223 | A walk of length 2 between... |
wwlks2onsym 28224 | There is a walk of length ... |
elwwlks2on 28225 | A walk of length 2 between... |
elwspths2on 28226 | A simple path of length 2 ... |
wpthswwlks2on 28227 | For two different vertices... |
2wspdisj 28228 | All simple paths of length... |
2wspiundisj 28229 | All simple paths of length... |
usgr2wspthons3 28230 | A simple path of length 2 ... |
usgr2wspthon 28231 | A simple path of length 2 ... |
elwwlks2 28232 | A walk of length 2 between... |
elwspths2spth 28233 | A simple path of length 2 ... |
rusgrnumwwlkl1 28234 | In a k-regular graph, ther... |
rusgrnumwwlkslem 28235 | Lemma for ~ rusgrnumwwlks ... |
rusgrnumwwlklem 28236 | Lemma for ~ rusgrnumwwlk e... |
rusgrnumwwlkb0 28237 | Induction base 0 for ~ rus... |
rusgrnumwwlkb1 28238 | Induction base 1 for ~ rus... |
rusgr0edg 28239 | Special case for graphs wi... |
rusgrnumwwlks 28240 | Induction step for ~ rusgr... |
rusgrnumwwlk 28241 | In a ` K `-regular graph, ... |
rusgrnumwwlkg 28242 | In a ` K `-regular graph, ... |
rusgrnumwlkg 28243 | In a k-regular graph, the ... |
clwwlknclwwlkdif 28244 | The set ` A ` of walks of ... |
clwwlknclwwlkdifnum 28245 | In a ` K `-regular graph, ... |
clwwlk 28248 | The set of closed walks (i... |
isclwwlk 28249 | Properties of a word to re... |
clwwlkbp 28250 | Basic properties of a clos... |
clwwlkgt0 28251 | There is no empty closed w... |
clwwlksswrd 28252 | Closed walks (represented ... |
clwwlk1loop 28253 | A closed walk of length 1 ... |
clwwlkccatlem 28254 | Lemma for ~ clwwlkccat : i... |
clwwlkccat 28255 | The concatenation of two w... |
umgrclwwlkge2 28256 | A closed walk in a multigr... |
clwlkclwwlklem2a1 28257 | Lemma 1 for ~ clwlkclwwlkl... |
clwlkclwwlklem2a2 28258 | Lemma 2 for ~ clwlkclwwlkl... |
clwlkclwwlklem2a3 28259 | Lemma 3 for ~ clwlkclwwlkl... |
clwlkclwwlklem2fv1 28260 | Lemma 4a for ~ clwlkclwwlk... |
clwlkclwwlklem2fv2 28261 | Lemma 4b for ~ clwlkclwwlk... |
clwlkclwwlklem2a4 28262 | Lemma 4 for ~ clwlkclwwlkl... |
clwlkclwwlklem2a 28263 | Lemma for ~ clwlkclwwlklem... |
clwlkclwwlklem1 28264 | Lemma 1 for ~ clwlkclwwlk ... |
clwlkclwwlklem2 28265 | Lemma 2 for ~ clwlkclwwlk ... |
clwlkclwwlklem3 28266 | Lemma 3 for ~ clwlkclwwlk ... |
clwlkclwwlk 28267 | A closed walk as word of l... |
clwlkclwwlk2 28268 | A closed walk corresponds ... |
clwlkclwwlkflem 28269 | Lemma for ~ clwlkclwwlkf .... |
clwlkclwwlkf1lem2 28270 | Lemma 2 for ~ clwlkclwwlkf... |
clwlkclwwlkf1lem3 28271 | Lemma 3 for ~ clwlkclwwlkf... |
clwlkclwwlkfolem 28272 | Lemma for ~ clwlkclwwlkfo ... |
clwlkclwwlkf 28273 | ` F ` is a function from t... |
clwlkclwwlkfo 28274 | ` F ` is a function from t... |
clwlkclwwlkf1 28275 | ` F ` is a one-to-one func... |
clwlkclwwlkf1o 28276 | ` F ` is a bijection betwe... |
clwlkclwwlken 28277 | The set of the nonempty cl... |
clwwisshclwwslemlem 28278 | Lemma for ~ clwwisshclwwsl... |
clwwisshclwwslem 28279 | Lemma for ~ clwwisshclwws ... |
clwwisshclwws 28280 | Cyclically shifting a clos... |
clwwisshclwwsn 28281 | Cyclically shifting a clos... |
erclwwlkrel 28282 | ` .~ ` is a relation. (Co... |
erclwwlkeq 28283 | Two classes are equivalent... |
erclwwlkeqlen 28284 | If two classes are equival... |
erclwwlkref 28285 | ` .~ ` is a reflexive rela... |
erclwwlksym 28286 | ` .~ ` is a symmetric rela... |
erclwwlktr 28287 | ` .~ ` is a transitive rel... |
erclwwlk 28288 | ` .~ ` is an equivalence r... |
clwwlkn 28291 | The set of closed walks of... |
isclwwlkn 28292 | A word over the set of ver... |
clwwlkn0 28293 | There is no closed walk of... |
clwwlkneq0 28294 | Sufficient conditions for ... |
clwwlkclwwlkn 28295 | A closed walk of a fixed l... |
clwwlksclwwlkn 28296 | The closed walks of a fixe... |
clwwlknlen 28297 | The length of a word repre... |
clwwlknnn 28298 | The length of a closed wal... |
clwwlknwrd 28299 | A closed walk of a fixed l... |
clwwlknbp 28300 | Basic properties of a clos... |
isclwwlknx 28301 | Characterization of a word... |
clwwlknp 28302 | Properties of a set being ... |
clwwlknwwlksn 28303 | A word representing a clos... |
clwwlknlbonbgr1 28304 | The last but one vertex in... |
clwwlkinwwlk 28305 | If the initial vertex of a... |
clwwlkn1 28306 | A closed walk of length 1 ... |
loopclwwlkn1b 28307 | The singleton word consist... |
clwwlkn1loopb 28308 | A word represents a closed... |
clwwlkn2 28309 | A closed walk of length 2 ... |
clwwlknfi 28310 | If there is only a finite ... |
clwwlkel 28311 | Obtaining a closed walk (a... |
clwwlkf 28312 | Lemma 1 for ~ clwwlkf1o : ... |
clwwlkfv 28313 | Lemma 2 for ~ clwwlkf1o : ... |
clwwlkf1 28314 | Lemma 3 for ~ clwwlkf1o : ... |
clwwlkfo 28315 | Lemma 4 for ~ clwwlkf1o : ... |
clwwlkf1o 28316 | F is a 1-1 onto function, ... |
clwwlken 28317 | The set of closed walks of... |
clwwlknwwlkncl 28318 | Obtaining a closed walk (a... |
clwwlkwwlksb 28319 | A nonempty word over verti... |
clwwlknwwlksnb 28320 | A word over vertices repre... |
clwwlkext2edg 28321 | If a word concatenated wit... |
wwlksext2clwwlk 28322 | If a word represents a wal... |
wwlksubclwwlk 28323 | Any prefix of a word repre... |
clwwnisshclwwsn 28324 | Cyclically shifting a clos... |
eleclclwwlknlem1 28325 | Lemma 1 for ~ eleclclwwlkn... |
eleclclwwlknlem2 28326 | Lemma 2 for ~ eleclclwwlkn... |
clwwlknscsh 28327 | The set of cyclical shifts... |
clwwlknccat 28328 | The concatenation of two w... |
umgr2cwwk2dif 28329 | If a word represents a clo... |
umgr2cwwkdifex 28330 | If a word represents a clo... |
erclwwlknrel 28331 | ` .~ ` is a relation. (Co... |
erclwwlkneq 28332 | Two classes are equivalent... |
erclwwlkneqlen 28333 | If two classes are equival... |
erclwwlknref 28334 | ` .~ ` is a reflexive rela... |
erclwwlknsym 28335 | ` .~ ` is a symmetric rela... |
erclwwlkntr 28336 | ` .~ ` is a transitive rel... |
erclwwlkn 28337 | ` .~ ` is an equivalence r... |
qerclwwlknfi 28338 | The quotient set of the se... |
hashclwwlkn0 28339 | The number of closed walks... |
eclclwwlkn1 28340 | An equivalence class accor... |
eleclclwwlkn 28341 | A member of an equivalence... |
hashecclwwlkn1 28342 | The size of every equivale... |
umgrhashecclwwlk 28343 | The size of every equivale... |
fusgrhashclwwlkn 28344 | The size of the set of clo... |
clwwlkndivn 28345 | The size of the set of clo... |
clwlknf1oclwwlknlem1 28346 | Lemma 1 for ~ clwlknf1oclw... |
clwlknf1oclwwlknlem2 28347 | Lemma 2 for ~ clwlknf1oclw... |
clwlknf1oclwwlknlem3 28348 | Lemma 3 for ~ clwlknf1oclw... |
clwlknf1oclwwlkn 28349 | There is a one-to-one onto... |
clwlkssizeeq 28350 | The size of the set of clo... |
clwlksndivn 28351 | The size of the set of clo... |
clwwlknonmpo 28354 | ` ( ClWWalksNOn `` G ) ` i... |
clwwlknon 28355 | The set of closed walks on... |
isclwwlknon 28356 | A word over the set of ver... |
clwwlk0on0 28357 | There is no word over the ... |
clwwlknon0 28358 | Sufficient conditions for ... |
clwwlknonfin 28359 | In a finite graph ` G ` , ... |
clwwlknonel 28360 | Characterization of a word... |
clwwlknonccat 28361 | The concatenation of two w... |
clwwlknon1 28362 | The set of closed walks on... |
clwwlknon1loop 28363 | If there is a loop at vert... |
clwwlknon1nloop 28364 | If there is no loop at ver... |
clwwlknon1sn 28365 | The set of (closed) walks ... |
clwwlknon1le1 28366 | There is at most one (clos... |
clwwlknon2 28367 | The set of closed walks on... |
clwwlknon2x 28368 | The set of closed walks on... |
s2elclwwlknon2 28369 | Sufficient conditions of a... |
clwwlknon2num 28370 | In a ` K `-regular graph `... |
clwwlknonwwlknonb 28371 | A word over vertices repre... |
clwwlknonex2lem1 28372 | Lemma 1 for ~ clwwlknonex2... |
clwwlknonex2lem2 28373 | Lemma 2 for ~ clwwlknonex2... |
clwwlknonex2 28374 | Extending a closed walk ` ... |
clwwlknonex2e 28375 | Extending a closed walk ` ... |
clwwlknondisj 28376 | The sets of closed walks o... |
clwwlknun 28377 | The set of closed walks of... |
clwwlkvbij 28378 | There is a bijection betwe... |
0ewlk 28379 | The empty set (empty seque... |
1ewlk 28380 | A sequence of 1 edge is an... |
0wlk 28381 | A pair of an empty set (of... |
is0wlk 28382 | A pair of an empty set (of... |
0wlkonlem1 28383 | Lemma 1 for ~ 0wlkon and ~... |
0wlkonlem2 28384 | Lemma 2 for ~ 0wlkon and ~... |
0wlkon 28385 | A walk of length 0 from a ... |
0wlkons1 28386 | A walk of length 0 from a ... |
0trl 28387 | A pair of an empty set (of... |
is0trl 28388 | A pair of an empty set (of... |
0trlon 28389 | A trail of length 0 from a... |
0pth 28390 | A pair of an empty set (of... |
0spth 28391 | A pair of an empty set (of... |
0pthon 28392 | A path of length 0 from a ... |
0pthon1 28393 | A path of length 0 from a ... |
0pthonv 28394 | For each vertex there is a... |
0clwlk 28395 | A pair of an empty set (of... |
0clwlkv 28396 | Any vertex (more precisely... |
0clwlk0 28397 | There is no closed walk in... |
0crct 28398 | A pair of an empty set (of... |
0cycl 28399 | A pair of an empty set (of... |
1pthdlem1 28400 | Lemma 1 for ~ 1pthd . (Co... |
1pthdlem2 28401 | Lemma 2 for ~ 1pthd . (Co... |
1wlkdlem1 28402 | Lemma 1 for ~ 1wlkd . (Co... |
1wlkdlem2 28403 | Lemma 2 for ~ 1wlkd . (Co... |
1wlkdlem3 28404 | Lemma 3 for ~ 1wlkd . (Co... |
1wlkdlem4 28405 | Lemma 4 for ~ 1wlkd . (Co... |
1wlkd 28406 | In a graph with two vertic... |
1trld 28407 | In a graph with two vertic... |
1pthd 28408 | In a graph with two vertic... |
1pthond 28409 | In a graph with two vertic... |
upgr1wlkdlem1 28410 | Lemma 1 for ~ upgr1wlkd . ... |
upgr1wlkdlem2 28411 | Lemma 2 for ~ upgr1wlkd . ... |
upgr1wlkd 28412 | In a pseudograph with two ... |
upgr1trld 28413 | In a pseudograph with two ... |
upgr1pthd 28414 | In a pseudograph with two ... |
upgr1pthond 28415 | In a pseudograph with two ... |
lppthon 28416 | A loop (which is an edge a... |
lp1cycl 28417 | A loop (which is an edge a... |
1pthon2v 28418 | For each pair of adjacent ... |
1pthon2ve 28419 | For each pair of adjacent ... |
wlk2v2elem1 28420 | Lemma 1 for ~ wlk2v2e : ` ... |
wlk2v2elem2 28421 | Lemma 2 for ~ wlk2v2e : T... |
wlk2v2e 28422 | In a graph with two vertic... |
ntrl2v2e 28423 | A walk which is not a trai... |
3wlkdlem1 28424 | Lemma 1 for ~ 3wlkd . (Co... |
3wlkdlem2 28425 | Lemma 2 for ~ 3wlkd . (Co... |
3wlkdlem3 28426 | Lemma 3 for ~ 3wlkd . (Co... |
3wlkdlem4 28427 | Lemma 4 for ~ 3wlkd . (Co... |
3wlkdlem5 28428 | Lemma 5 for ~ 3wlkd . (Co... |
3pthdlem1 28429 | Lemma 1 for ~ 3pthd . (Co... |
3wlkdlem6 28430 | Lemma 6 for ~ 3wlkd . (Co... |
3wlkdlem7 28431 | Lemma 7 for ~ 3wlkd . (Co... |
3wlkdlem8 28432 | Lemma 8 for ~ 3wlkd . (Co... |
3wlkdlem9 28433 | Lemma 9 for ~ 3wlkd . (Co... |
3wlkdlem10 28434 | Lemma 10 for ~ 3wlkd . (C... |
3wlkd 28435 | Construction of a walk fro... |
3wlkond 28436 | A walk of length 3 from on... |
3trld 28437 | Construction of a trail fr... |
3trlond 28438 | A trail of length 3 from o... |
3pthd 28439 | A path of length 3 from on... |
3pthond 28440 | A path of length 3 from on... |
3spthd 28441 | A simple path of length 3 ... |
3spthond 28442 | A simple path of length 3 ... |
3cycld 28443 | Construction of a 3-cycle ... |
3cyclpd 28444 | Construction of a 3-cycle ... |
upgr3v3e3cycl 28445 | If there is a cycle of len... |
uhgr3cyclexlem 28446 | Lemma for ~ uhgr3cyclex . ... |
uhgr3cyclex 28447 | If there are three differe... |
umgr3cyclex 28448 | If there are three (differ... |
umgr3v3e3cycl 28449 | If and only if there is a ... |
upgr4cycl4dv4e 28450 | If there is a cycle of len... |
dfconngr1 28453 | Alternative definition of ... |
isconngr 28454 | The property of being a co... |
isconngr1 28455 | The property of being a co... |
cusconngr 28456 | A complete hypergraph is c... |
0conngr 28457 | A graph without vertices i... |
0vconngr 28458 | A graph without vertices i... |
1conngr 28459 | A graph with (at most) one... |
conngrv2edg 28460 | A vertex in a connected gr... |
vdn0conngrumgrv2 28461 | A vertex in a connected mu... |
releupth 28464 | The set ` ( EulerPaths `` ... |
eupths 28465 | The Eulerian paths on the ... |
iseupth 28466 | The property " ` <. F , P ... |
iseupthf1o 28467 | The property " ` <. F , P ... |
eupthi 28468 | Properties of an Eulerian ... |
eupthf1o 28469 | The ` F ` function in an E... |
eupthfi 28470 | Any graph with an Eulerian... |
eupthseg 28471 | The ` N ` -th edge in an e... |
upgriseupth 28472 | The property " ` <. F , P ... |
upgreupthi 28473 | Properties of an Eulerian ... |
upgreupthseg 28474 | The ` N ` -th edge in an e... |
eupthcl 28475 | An Eulerian path has lengt... |
eupthistrl 28476 | An Eulerian path is a trai... |
eupthiswlk 28477 | An Eulerian path is a walk... |
eupthpf 28478 | The ` P ` function in an E... |
eupth0 28479 | There is an Eulerian path ... |
eupthres 28480 | The restriction ` <. H , Q... |
eupthp1 28481 | Append one path segment to... |
eupth2eucrct 28482 | Append one path segment to... |
eupth2lem1 28483 | Lemma for ~ eupth2 . (Con... |
eupth2lem2 28484 | Lemma for ~ eupth2 . (Con... |
trlsegvdeglem1 28485 | Lemma for ~ trlsegvdeg . ... |
trlsegvdeglem2 28486 | Lemma for ~ trlsegvdeg . ... |
trlsegvdeglem3 28487 | Lemma for ~ trlsegvdeg . ... |
trlsegvdeglem4 28488 | Lemma for ~ trlsegvdeg . ... |
trlsegvdeglem5 28489 | Lemma for ~ trlsegvdeg . ... |
trlsegvdeglem6 28490 | Lemma for ~ trlsegvdeg . ... |
trlsegvdeglem7 28491 | Lemma for ~ trlsegvdeg . ... |
trlsegvdeg 28492 | Formerly part of proof of ... |
eupth2lem3lem1 28493 | Lemma for ~ eupth2lem3 . ... |
eupth2lem3lem2 28494 | Lemma for ~ eupth2lem3 . ... |
eupth2lem3lem3 28495 | Lemma for ~ eupth2lem3 , f... |
eupth2lem3lem4 28496 | Lemma for ~ eupth2lem3 , f... |
eupth2lem3lem5 28497 | Lemma for ~ eupth2 . (Con... |
eupth2lem3lem6 28498 | Formerly part of proof of ... |
eupth2lem3lem7 28499 | Lemma for ~ eupth2lem3 : ... |
eupthvdres 28500 | Formerly part of proof of ... |
eupth2lem3 28501 | Lemma for ~ eupth2 . (Con... |
eupth2lemb 28502 | Lemma for ~ eupth2 (induct... |
eupth2lems 28503 | Lemma for ~ eupth2 (induct... |
eupth2 28504 | The only vertices of odd d... |
eulerpathpr 28505 | A graph with an Eulerian p... |
eulerpath 28506 | A pseudograph with an Eule... |
eulercrct 28507 | A pseudograph with an Eule... |
eucrctshift 28508 | Cyclically shifting the in... |
eucrct2eupth1 28509 | Removing one edge ` ( I ``... |
eucrct2eupth 28510 | Removing one edge ` ( I ``... |
konigsbergvtx 28511 | The set of vertices of the... |
konigsbergiedg 28512 | The indexed edges of the K... |
konigsbergiedgw 28513 | The indexed edges of the K... |
konigsbergssiedgwpr 28514 | Each subset of the indexed... |
konigsbergssiedgw 28515 | Each subset of the indexed... |
konigsbergumgr 28516 | The Königsberg graph ... |
konigsberglem1 28517 | Lemma 1 for ~ konigsberg :... |
konigsberglem2 28518 | Lemma 2 for ~ konigsberg :... |
konigsberglem3 28519 | Lemma 3 for ~ konigsberg :... |
konigsberglem4 28520 | Lemma 4 for ~ konigsberg :... |
konigsberglem5 28521 | Lemma 5 for ~ konigsberg :... |
konigsberg 28522 | The Königsberg Bridge... |
isfrgr 28525 | The property of being a fr... |
frgrusgr 28526 | A friendship graph is a si... |
frgr0v 28527 | Any null graph (set with n... |
frgr0vb 28528 | Any null graph (without ve... |
frgruhgr0v 28529 | Any null graph (without ve... |
frgr0 28530 | The null graph (graph with... |
frcond1 28531 | The friendship condition: ... |
frcond2 28532 | The friendship condition: ... |
frgreu 28533 | Variant of ~ frcond2 : An... |
frcond3 28534 | The friendship condition, ... |
frcond4 28535 | The friendship condition, ... |
frgr1v 28536 | Any graph with (at most) o... |
nfrgr2v 28537 | Any graph with two (differ... |
frgr3vlem1 28538 | Lemma 1 for ~ frgr3v . (C... |
frgr3vlem2 28539 | Lemma 2 for ~ frgr3v . (C... |
frgr3v 28540 | Any graph with three verti... |
1vwmgr 28541 | Every graph with one verte... |
3vfriswmgrlem 28542 | Lemma for ~ 3vfriswmgr . ... |
3vfriswmgr 28543 | Every friendship graph wit... |
1to2vfriswmgr 28544 | Every friendship graph wit... |
1to3vfriswmgr 28545 | Every friendship graph wit... |
1to3vfriendship 28546 | The friendship theorem for... |
2pthfrgrrn 28547 | Between any two (different... |
2pthfrgrrn2 28548 | Between any two (different... |
2pthfrgr 28549 | Between any two (different... |
3cyclfrgrrn1 28550 | Every vertex in a friendsh... |
3cyclfrgrrn 28551 | Every vertex in a friendsh... |
3cyclfrgrrn2 28552 | Every vertex in a friendsh... |
3cyclfrgr 28553 | Every vertex in a friendsh... |
4cycl2v2nb 28554 | In a (maybe degenerate) 4-... |
4cycl2vnunb 28555 | In a 4-cycle, two distinct... |
n4cyclfrgr 28556 | There is no 4-cycle in a f... |
4cyclusnfrgr 28557 | A graph with a 4-cycle is ... |
frgrnbnb 28558 | If two neighbors ` U ` and... |
frgrconngr 28559 | A friendship graph is conn... |
vdgn0frgrv2 28560 | A vertex in a friendship g... |
vdgn1frgrv2 28561 | Any vertex in a friendship... |
vdgn1frgrv3 28562 | Any vertex in a friendship... |
vdgfrgrgt2 28563 | Any vertex in a friendship... |
frgrncvvdeqlem1 28564 | Lemma 1 for ~ frgrncvvdeq ... |
frgrncvvdeqlem2 28565 | Lemma 2 for ~ frgrncvvdeq ... |
frgrncvvdeqlem3 28566 | Lemma 3 for ~ frgrncvvdeq ... |
frgrncvvdeqlem4 28567 | Lemma 4 for ~ frgrncvvdeq ... |
frgrncvvdeqlem5 28568 | Lemma 5 for ~ frgrncvvdeq ... |
frgrncvvdeqlem6 28569 | Lemma 6 for ~ frgrncvvdeq ... |
frgrncvvdeqlem7 28570 | Lemma 7 for ~ frgrncvvdeq ... |
frgrncvvdeqlem8 28571 | Lemma 8 for ~ frgrncvvdeq ... |
frgrncvvdeqlem9 28572 | Lemma 9 for ~ frgrncvvdeq ... |
frgrncvvdeqlem10 28573 | Lemma 10 for ~ frgrncvvdeq... |
frgrncvvdeq 28574 | In a friendship graph, two... |
frgrwopreglem4a 28575 | In a friendship graph any ... |
frgrwopreglem5a 28576 | If a friendship graph has ... |
frgrwopreglem1 28577 | Lemma 1 for ~ frgrwopreg :... |
frgrwopreglem2 28578 | Lemma 2 for ~ frgrwopreg .... |
frgrwopreglem3 28579 | Lemma 3 for ~ frgrwopreg .... |
frgrwopreglem4 28580 | Lemma 4 for ~ frgrwopreg .... |
frgrwopregasn 28581 | According to statement 5 i... |
frgrwopregbsn 28582 | According to statement 5 i... |
frgrwopreg1 28583 | According to statement 5 i... |
frgrwopreg2 28584 | According to statement 5 i... |
frgrwopreglem5lem 28585 | Lemma for ~ frgrwopreglem5... |
frgrwopreglem5 28586 | Lemma 5 for ~ frgrwopreg .... |
frgrwopreglem5ALT 28587 | Alternate direct proof of ... |
frgrwopreg 28588 | In a friendship graph ther... |
frgrregorufr0 28589 | In a friendship graph ther... |
frgrregorufr 28590 | If there is a vertex havin... |
frgrregorufrg 28591 | If there is a vertex havin... |
frgr2wwlkeu 28592 | For two different vertices... |
frgr2wwlkn0 28593 | In a friendship graph, the... |
frgr2wwlk1 28594 | In a friendship graph, the... |
frgr2wsp1 28595 | In a friendship graph, the... |
frgr2wwlkeqm 28596 | If there is a (simple) pat... |
frgrhash2wsp 28597 | The number of simple paths... |
fusgreg2wsplem 28598 | Lemma for ~ fusgreg2wsp an... |
fusgr2wsp2nb 28599 | The set of paths of length... |
fusgreghash2wspv 28600 | According to statement 7 i... |
fusgreg2wsp 28601 | In a finite simple graph, ... |
2wspmdisj 28602 | The sets of paths of lengt... |
fusgreghash2wsp 28603 | In a finite k-regular grap... |
frrusgrord0lem 28604 | Lemma for ~ frrusgrord0 . ... |
frrusgrord0 28605 | If a nonempty finite frien... |
frrusgrord 28606 | If a nonempty finite frien... |
numclwwlk2lem1lem 28607 | Lemma for ~ numclwwlk2lem1... |
2clwwlklem 28608 | Lemma for ~ clwwnonrepclww... |
clwwnrepclwwn 28609 | If the initial vertex of a... |
clwwnonrepclwwnon 28610 | If the initial vertex of a... |
2clwwlk2clwwlklem 28611 | Lemma for ~ 2clwwlk2clwwlk... |
2clwwlk 28612 | Value of operation ` C ` ,... |
2clwwlk2 28613 | The set ` ( X C 2 ) ` of d... |
2clwwlkel 28614 | Characterization of an ele... |
2clwwlk2clwwlk 28615 | An element of the value of... |
numclwwlk1lem2foalem 28616 | Lemma for ~ numclwwlk1lem2... |
extwwlkfab 28617 | The set ` ( X C N ) ` of d... |
extwwlkfabel 28618 | Characterization of an ele... |
numclwwlk1lem2foa 28619 | Going forth and back from ... |
numclwwlk1lem2f 28620 | ` T ` is a function, mappi... |
numclwwlk1lem2fv 28621 | Value of the function ` T ... |
numclwwlk1lem2f1 28622 | ` T ` is a 1-1 function. ... |
numclwwlk1lem2fo 28623 | ` T ` is an onto function.... |
numclwwlk1lem2f1o 28624 | ` T ` is a 1-1 onto functi... |
numclwwlk1lem2 28625 | The set of double loops of... |
numclwwlk1 28626 | Statement 9 in [Huneke] p.... |
clwwlknonclwlknonf1o 28627 | ` F ` is a bijection betwe... |
clwwlknonclwlknonen 28628 | The sets of the two repres... |
dlwwlknondlwlknonf1olem1 28629 | Lemma 1 for ~ dlwwlknondlw... |
dlwwlknondlwlknonf1o 28630 | ` F ` is a bijection betwe... |
dlwwlknondlwlknonen 28631 | The sets of the two repres... |
wlkl0 28632 | There is exactly one walk ... |
clwlknon2num 28633 | There are k walks of lengt... |
numclwlk1lem1 28634 | Lemma 1 for ~ numclwlk1 (S... |
numclwlk1lem2 28635 | Lemma 2 for ~ numclwlk1 (S... |
numclwlk1 28636 | Statement 9 in [Huneke] p.... |
numclwwlkovh0 28637 | Value of operation ` H ` ,... |
numclwwlkovh 28638 | Value of operation ` H ` ,... |
numclwwlkovq 28639 | Value of operation ` Q ` ,... |
numclwwlkqhash 28640 | In a ` K `-regular graph, ... |
numclwwlk2lem1 28641 | In a friendship graph, for... |
numclwlk2lem2f 28642 | ` R ` is a function mappin... |
numclwlk2lem2fv 28643 | Value of the function ` R ... |
numclwlk2lem2f1o 28644 | ` R ` is a 1-1 onto functi... |
numclwwlk2lem3 28645 | In a friendship graph, the... |
numclwwlk2 28646 | Statement 10 in [Huneke] p... |
numclwwlk3lem1 28647 | Lemma 2 for ~ numclwwlk3 .... |
numclwwlk3lem2lem 28648 | Lemma for ~ numclwwlk3lem2... |
numclwwlk3lem2 28649 | Lemma 1 for ~ numclwwlk3 :... |
numclwwlk3 28650 | Statement 12 in [Huneke] p... |
numclwwlk4 28651 | The total number of closed... |
numclwwlk5lem 28652 | Lemma for ~ numclwwlk5 . ... |
numclwwlk5 28653 | Statement 13 in [Huneke] p... |
numclwwlk7lem 28654 | Lemma for ~ numclwwlk7 , ~... |
numclwwlk6 28655 | For a prime divisor ` P ` ... |
numclwwlk7 28656 | Statement 14 in [Huneke] p... |
numclwwlk8 28657 | The size of the set of clo... |
frgrreggt1 28658 | If a finite nonempty frien... |
frgrreg 28659 | If a finite nonempty frien... |
frgrregord013 28660 | If a finite friendship gra... |
frgrregord13 28661 | If a nonempty finite frien... |
frgrogt3nreg 28662 | If a finite friendship gra... |
friendshipgt3 28663 | The friendship theorem for... |
friendship 28664 | The friendship theorem: I... |
conventions 28665 |
H... |
conventions-labels 28666 |
... |
conventions-comments 28667 |
... |
natded 28668 | Here are typical n... |
ex-natded5.2 28669 | Theorem 5.2 of [Clemente] ... |
ex-natded5.2-2 28670 | A more efficient proof of ... |
ex-natded5.2i 28671 | The same as ~ ex-natded5.2... |
ex-natded5.3 28672 | Theorem 5.3 of [Clemente] ... |
ex-natded5.3-2 28673 | A more efficient proof of ... |
ex-natded5.3i 28674 | The same as ~ ex-natded5.3... |
ex-natded5.5 28675 | Theorem 5.5 of [Clemente] ... |
ex-natded5.7 28676 | Theorem 5.7 of [Clemente] ... |
ex-natded5.7-2 28677 | A more efficient proof of ... |
ex-natded5.8 28678 | Theorem 5.8 of [Clemente] ... |
ex-natded5.8-2 28679 | A more efficient proof of ... |
ex-natded5.13 28680 | Theorem 5.13 of [Clemente]... |
ex-natded5.13-2 28681 | A more efficient proof of ... |
ex-natded9.20 28682 | Theorem 9.20 of [Clemente]... |
ex-natded9.20-2 28683 | A more efficient proof of ... |
ex-natded9.26 28684 | Theorem 9.26 of [Clemente]... |
ex-natded9.26-2 28685 | A more efficient proof of ... |
ex-or 28686 | Example for ~ df-or . Exa... |
ex-an 28687 | Example for ~ df-an . Exa... |
ex-dif 28688 | Example for ~ df-dif . Ex... |
ex-un 28689 | Example for ~ df-un . Exa... |
ex-in 28690 | Example for ~ df-in . Exa... |
ex-uni 28691 | Example for ~ df-uni . Ex... |
ex-ss 28692 | Example for ~ df-ss . Exa... |
ex-pss 28693 | Example for ~ df-pss . Ex... |
ex-pw 28694 | Example for ~ df-pw . Exa... |
ex-pr 28695 | Example for ~ df-pr . (Co... |
ex-br 28696 | Example for ~ df-br . Exa... |
ex-opab 28697 | Example for ~ df-opab . E... |
ex-eprel 28698 | Example for ~ df-eprel . ... |
ex-id 28699 | Example for ~ df-id . Exa... |
ex-po 28700 | Example for ~ df-po . Exa... |
ex-xp 28701 | Example for ~ df-xp . Exa... |
ex-cnv 28702 | Example for ~ df-cnv . Ex... |
ex-co 28703 | Example for ~ df-co . Exa... |
ex-dm 28704 | Example for ~ df-dm . Exa... |
ex-rn 28705 | Example for ~ df-rn . Exa... |
ex-res 28706 | Example for ~ df-res . Ex... |
ex-ima 28707 | Example for ~ df-ima . Ex... |
ex-fv 28708 | Example for ~ df-fv . Exa... |
ex-1st 28709 | Example for ~ df-1st . Ex... |
ex-2nd 28710 | Example for ~ df-2nd . Ex... |
1kp2ke3k 28711 | Example for ~ df-dec , 100... |
ex-fl 28712 | Example for ~ df-fl . Exa... |
ex-ceil 28713 | Example for ~ df-ceil . (... |
ex-mod 28714 | Example for ~ df-mod . (C... |
ex-exp 28715 | Example for ~ df-exp . (C... |
ex-fac 28716 | Example for ~ df-fac . (C... |
ex-bc 28717 | Example for ~ df-bc . (Co... |
ex-hash 28718 | Example for ~ df-hash . (... |
ex-sqrt 28719 | Example for ~ df-sqrt . (... |
ex-abs 28720 | Example for ~ df-abs . (C... |
ex-dvds 28721 | Example for ~ df-dvds : 3 ... |
ex-gcd 28722 | Example for ~ df-gcd . (C... |
ex-lcm 28723 | Example for ~ df-lcm . (C... |
ex-prmo 28724 | Example for ~ df-prmo : ` ... |
aevdemo 28725 | Proof illustrating the com... |
ex-ind-dvds 28726 | Example of a proof by indu... |
ex-fpar 28727 | Formalized example provide... |
avril1 28728 | Poisson d'Avril's Theorem.... |
2bornot2b 28729 | The law of excluded middle... |
helloworld 28730 | The classic "Hello world" ... |
1p1e2apr1 28731 | One plus one equals two. ... |
eqid1 28732 | Law of identity (reflexivi... |
1div0apr 28733 | Division by zero is forbid... |
topnfbey 28734 | Nothing seems to be imposs... |
9p10ne21 28735 | 9 + 10 is not equal to 21.... |
9p10ne21fool 28736 | 9 + 10 equals 21. This as... |
isplig 28739 | The predicate "is a planar... |
ispligb 28740 | The predicate "is a planar... |
tncp 28741 | In any planar incidence ge... |
l2p 28742 | For any line in a planar i... |
lpni 28743 | For any line in a planar i... |
nsnlplig 28744 | There is no "one-point lin... |
nsnlpligALT 28745 | Alternate version of ~ nsn... |
n0lplig 28746 | There is no "empty line" i... |
n0lpligALT 28747 | Alternate version of ~ n0l... |
eulplig 28748 | Through two distinct point... |
pliguhgr 28749 | Any planar incidence geome... |
dummylink 28750 | Alias for ~ a1ii that may ... |
id1 28751 | Alias for ~ idALT that may... |
isgrpo 28760 | The predicate "is a group ... |
isgrpoi 28761 | Properties that determine ... |
grpofo 28762 | A group operation maps ont... |
grpocl 28763 | Closure law for a group op... |
grpolidinv 28764 | A group has a left identit... |
grpon0 28765 | The base set of a group is... |
grpoass 28766 | A group operation is assoc... |
grpoidinvlem1 28767 | Lemma for ~ grpoidinv . (... |
grpoidinvlem2 28768 | Lemma for ~ grpoidinv . (... |
grpoidinvlem3 28769 | Lemma for ~ grpoidinv . (... |
grpoidinvlem4 28770 | Lemma for ~ grpoidinv . (... |
grpoidinv 28771 | A group has a left and rig... |
grpoideu 28772 | The left identity element ... |
grporndm 28773 | A group's range in terms o... |
0ngrp 28774 | The empty set is not a gro... |
gidval 28775 | The value of the identity ... |
grpoidval 28776 | Lemma for ~ grpoidcl and o... |
grpoidcl 28777 | The identity element of a ... |
grpoidinv2 28778 | A group's properties using... |
grpolid 28779 | The identity element of a ... |
grporid 28780 | The identity element of a ... |
grporcan 28781 | Right cancellation law for... |
grpoinveu 28782 | The left inverse element o... |
grpoid 28783 | Two ways of saying that an... |
grporn 28784 | The range of a group opera... |
grpoinvfval 28785 | The inverse function of a ... |
grpoinvval 28786 | The inverse of a group ele... |
grpoinvcl 28787 | A group element's inverse ... |
grpoinv 28788 | The properties of a group ... |
grpolinv 28789 | The left inverse of a grou... |
grporinv 28790 | The right inverse of a gro... |
grpoinvid1 28791 | The inverse of a group ele... |
grpoinvid2 28792 | The inverse of a group ele... |
grpolcan 28793 | Left cancellation law for ... |
grpo2inv 28794 | Double inverse law for gro... |
grpoinvf 28795 | Mapping of the inverse fun... |
grpoinvop 28796 | The inverse of the group o... |
grpodivfval 28797 | Group division (or subtrac... |
grpodivval 28798 | Group division (or subtrac... |
grpodivinv 28799 | Group division by an inver... |
grpoinvdiv 28800 | Inverse of a group divisio... |
grpodivf 28801 | Mapping for group division... |
grpodivcl 28802 | Closure of group division ... |
grpodivdiv 28803 | Double group division. (C... |
grpomuldivass 28804 | Associative-type law for m... |
grpodivid 28805 | Division of a group member... |
grponpcan 28806 | Cancellation law for group... |
isablo 28809 | The predicate "is an Abeli... |
ablogrpo 28810 | An Abelian group operation... |
ablocom 28811 | An Abelian group operation... |
ablo32 28812 | Commutative/associative la... |
ablo4 28813 | Commutative/associative la... |
isabloi 28814 | Properties that determine ... |
ablomuldiv 28815 | Law for group multiplicati... |
ablodivdiv 28816 | Law for double group divis... |
ablodivdiv4 28817 | Law for double group divis... |
ablodiv32 28818 | Swap the second and third ... |
ablonncan 28819 | Cancellation law for group... |
ablonnncan1 28820 | Cancellation law for group... |
vcrel 28823 | The class of all complex v... |
vciOLD 28824 | Obsolete version of ~ cvsi... |
vcsm 28825 | Functionality of th scalar... |
vccl 28826 | Closure of the scalar prod... |
vcidOLD 28827 | Identity element for the s... |
vcdi 28828 | Distributive law for the s... |
vcdir 28829 | Distributive law for the s... |
vcass 28830 | Associative law for the sc... |
vc2OLD 28831 | A vector plus itself is tw... |
vcablo 28832 | Vector addition is an Abel... |
vcgrp 28833 | Vector addition is a group... |
vclcan 28834 | Left cancellation law for ... |
vczcl 28835 | The zero vector is a vecto... |
vc0rid 28836 | The zero vector is a right... |
vc0 28837 | Zero times a vector is the... |
vcz 28838 | Anything times the zero ve... |
vcm 28839 | Minus 1 times a vector is ... |
isvclem 28840 | Lemma for ~ isvcOLD . (Co... |
vcex 28841 | The components of a comple... |
isvcOLD 28842 | The predicate "is a comple... |
isvciOLD 28843 | Properties that determine ... |
cnaddabloOLD 28844 | Obsolete version of ~ cnad... |
cnidOLD 28845 | Obsolete version of ~ cnad... |
cncvcOLD 28846 | Obsolete version of ~ cncv... |
nvss 28856 | Structure of the class of ... |
nvvcop 28857 | A normed complex vector sp... |
nvrel 28865 | The class of all normed co... |
vafval 28866 | Value of the function for ... |
bafval 28867 | Value of the function for ... |
smfval 28868 | Value of the function for ... |
0vfval 28869 | Value of the function for ... |
nmcvfval 28870 | Value of the norm function... |
nvop2 28871 | A normed complex vector sp... |
nvvop 28872 | The vector space component... |
isnvlem 28873 | Lemma for ~ isnv . (Contr... |
nvex 28874 | The components of a normed... |
isnv 28875 | The predicate "is a normed... |
isnvi 28876 | Properties that determine ... |
nvi 28877 | The properties of a normed... |
nvvc 28878 | The vector space component... |
nvablo 28879 | The vector addition operat... |
nvgrp 28880 | The vector addition operat... |
nvgf 28881 | Mapping for the vector add... |
nvsf 28882 | Mapping for the scalar mul... |
nvgcl 28883 | Closure law for the vector... |
nvcom 28884 | The vector addition (group... |
nvass 28885 | The vector addition (group... |
nvadd32 28886 | Commutative/associative la... |
nvrcan 28887 | Right cancellation law for... |
nvadd4 28888 | Rearrangement of 4 terms i... |
nvscl 28889 | Closure law for the scalar... |
nvsid 28890 | Identity element for the s... |
nvsass 28891 | Associative law for the sc... |
nvscom 28892 | Commutative law for the sc... |
nvdi 28893 | Distributive law for the s... |
nvdir 28894 | Distributive law for the s... |
nv2 28895 | A vector plus itself is tw... |
vsfval 28896 | Value of the function for ... |
nvzcl 28897 | Closure law for the zero v... |
nv0rid 28898 | The zero vector is a right... |
nv0lid 28899 | The zero vector is a left ... |
nv0 28900 | Zero times a vector is the... |
nvsz 28901 | Anything times the zero ve... |
nvinv 28902 | Minus 1 times a vector is ... |
nvinvfval 28903 | Function for the negative ... |
nvm 28904 | Vector subtraction in term... |
nvmval 28905 | Value of vector subtractio... |
nvmval2 28906 | Value of vector subtractio... |
nvmfval 28907 | Value of the function for ... |
nvmf 28908 | Mapping for the vector sub... |
nvmcl 28909 | Closure law for the vector... |
nvnnncan1 28910 | Cancellation law for vecto... |
nvmdi 28911 | Distributive law for scala... |
nvnegneg 28912 | Double negative of a vecto... |
nvmul0or 28913 | If a scalar product is zer... |
nvrinv 28914 | A vector minus itself. (C... |
nvlinv 28915 | Minus a vector plus itself... |
nvpncan2 28916 | Cancellation law for vecto... |
nvpncan 28917 | Cancellation law for vecto... |
nvaddsub 28918 | Commutative/associative la... |
nvnpcan 28919 | Cancellation law for a nor... |
nvaddsub4 28920 | Rearrangement of 4 terms i... |
nvmeq0 28921 | The difference between two... |
nvmid 28922 | A vector minus itself is t... |
nvf 28923 | Mapping for the norm funct... |
nvcl 28924 | The norm of a normed compl... |
nvcli 28925 | The norm of a normed compl... |
nvs 28926 | Proportionality property o... |
nvsge0 28927 | The norm of a scalar produ... |
nvm1 28928 | The norm of the negative o... |
nvdif 28929 | The norm of the difference... |
nvpi 28930 | The norm of a vector plus ... |
nvz0 28931 | The norm of a zero vector ... |
nvz 28932 | The norm of a vector is ze... |
nvtri 28933 | Triangle inequality for th... |
nvmtri 28934 | Triangle inequality for th... |
nvabs 28935 | Norm difference property o... |
nvge0 28936 | The norm of a normed compl... |
nvgt0 28937 | A nonzero norm is positive... |
nv1 28938 | From any nonzero vector, c... |
nvop 28939 | A complex inner product sp... |
cnnv 28940 | The set of complex numbers... |
cnnvg 28941 | The vector addition (group... |
cnnvba 28942 | The base set of the normed... |
cnnvs 28943 | The scalar product operati... |
cnnvnm 28944 | The norm operation of the ... |
cnnvm 28945 | The vector subtraction ope... |
elimnv 28946 | Hypothesis elimination lem... |
elimnvu 28947 | Hypothesis elimination lem... |
imsval 28948 | Value of the induced metri... |
imsdval 28949 | Value of the induced metri... |
imsdval2 28950 | Value of the distance func... |
nvnd 28951 | The norm of a normed compl... |
imsdf 28952 | Mapping for the induced me... |
imsmetlem 28953 | Lemma for ~ imsmet . (Con... |
imsmet 28954 | The induced metric of a no... |
imsxmet 28955 | The induced metric of a no... |
cnims 28956 | The metric induced on the ... |
vacn 28957 | Vector addition is jointly... |
nmcvcn 28958 | The norm of a normed compl... |
nmcnc 28959 | The norm of a normed compl... |
smcnlem 28960 | Lemma for ~ smcn . (Contr... |
smcn 28961 | Scalar multiplication is j... |
vmcn 28962 | Vector subtraction is join... |
dipfval 28965 | The inner product function... |
ipval 28966 | Value of the inner product... |
ipval2lem2 28967 | Lemma for ~ ipval3 . (Con... |
ipval2lem3 28968 | Lemma for ~ ipval3 . (Con... |
ipval2lem4 28969 | Lemma for ~ ipval3 . (Con... |
ipval2 28970 | Expansion of the inner pro... |
4ipval2 28971 | Four times the inner produ... |
ipval3 28972 | Expansion of the inner pro... |
ipidsq 28973 | The inner product of a vec... |
ipnm 28974 | Norm expressed in terms of... |
dipcl 28975 | An inner product is a comp... |
ipf 28976 | Mapping for the inner prod... |
dipcj 28977 | The complex conjugate of a... |
ipipcj 28978 | An inner product times its... |
diporthcom 28979 | Orthogonality (meaning inn... |
dip0r 28980 | Inner product with a zero ... |
dip0l 28981 | Inner product with a zero ... |
ipz 28982 | The inner product of a vec... |
dipcn 28983 | Inner product is jointly c... |
sspval 28986 | The set of all subspaces o... |
isssp 28987 | The predicate "is a subspa... |
sspid 28988 | A normed complex vector sp... |
sspnv 28989 | A subspace is a normed com... |
sspba 28990 | The base set of a subspace... |
sspg 28991 | Vector addition on a subsp... |
sspgval 28992 | Vector addition on a subsp... |
ssps 28993 | Scalar multiplication on a... |
sspsval 28994 | Scalar multiplication on a... |
sspmlem 28995 | Lemma for ~ sspm and other... |
sspmval 28996 | Vector addition on a subsp... |
sspm 28997 | Vector subtraction on a su... |
sspz 28998 | The zero vector of a subsp... |
sspn 28999 | The norm on a subspace is ... |
sspnval 29000 | The norm on a subspace in ... |
sspimsval 29001 | The induced metric on a su... |
sspims 29002 | The induced metric on a su... |
lnoval 29015 | The set of linear operator... |
islno 29016 | The predicate "is a linear... |
lnolin 29017 | Basic linearity property o... |
lnof 29018 | A linear operator is a map... |
lno0 29019 | The value of a linear oper... |
lnocoi 29020 | The composition of two lin... |
lnoadd 29021 | Addition property of a lin... |
lnosub 29022 | Subtraction property of a ... |
lnomul 29023 | Scalar multiplication prop... |
nvo00 29024 | Two ways to express a zero... |
nmoofval 29025 | The operator norm function... |
nmooval 29026 | The operator norm function... |
nmosetre 29027 | The set in the supremum of... |
nmosetn0 29028 | The set in the supremum of... |
nmoxr 29029 | The norm of an operator is... |
nmooge0 29030 | The norm of an operator is... |
nmorepnf 29031 | The norm of an operator is... |
nmoreltpnf 29032 | The norm of any operator i... |
nmogtmnf 29033 | The norm of an operator is... |
nmoolb 29034 | A lower bound for an opera... |
nmoubi 29035 | An upper bound for an oper... |
nmoub3i 29036 | An upper bound for an oper... |
nmoub2i 29037 | An upper bound for an oper... |
nmobndi 29038 | Two ways to express that a... |
nmounbi 29039 | Two ways two express that ... |
nmounbseqi 29040 | An unbounded operator dete... |
nmounbseqiALT 29041 | Alternate shorter proof of... |
nmobndseqi 29042 | A bounded sequence determi... |
nmobndseqiALT 29043 | Alternate shorter proof of... |
bloval 29044 | The class of bounded linea... |
isblo 29045 | The predicate "is a bounde... |
isblo2 29046 | The predicate "is a bounde... |
bloln 29047 | A bounded operator is a li... |
blof 29048 | A bounded operator is an o... |
nmblore 29049 | The norm of a bounded oper... |
0ofval 29050 | The zero operator between ... |
0oval 29051 | Value of the zero operator... |
0oo 29052 | The zero operator is an op... |
0lno 29053 | The zero operator is linea... |
nmoo0 29054 | The operator norm of the z... |
0blo 29055 | The zero operator is a bou... |
nmlno0lem 29056 | Lemma for ~ nmlno0i . (Co... |
nmlno0i 29057 | The norm of a linear opera... |
nmlno0 29058 | The norm of a linear opera... |
nmlnoubi 29059 | An upper bound for the ope... |
nmlnogt0 29060 | The norm of a nonzero line... |
lnon0 29061 | The domain of a nonzero li... |
nmblolbii 29062 | A lower bound for the norm... |
nmblolbi 29063 | A lower bound for the norm... |
isblo3i 29064 | The predicate "is a bounde... |
blo3i 29065 | Properties that determine ... |
blometi 29066 | Upper bound for the distan... |
blocnilem 29067 | Lemma for ~ blocni and ~ l... |
blocni 29068 | A linear operator is conti... |
lnocni 29069 | If a linear operator is co... |
blocn 29070 | A linear operator is conti... |
blocn2 29071 | A bounded linear operator ... |
ajfval 29072 | The adjoint function. (Co... |
hmoval 29073 | The set of Hermitian (self... |
ishmo 29074 | The predicate "is a hermit... |
phnv 29077 | Every complex inner produc... |
phrel 29078 | The class of all complex i... |
phnvi 29079 | Every complex inner produc... |
isphg 29080 | The predicate "is a comple... |
phop 29081 | A complex inner product sp... |
cncph 29082 | The set of complex numbers... |
elimph 29083 | Hypothesis elimination lem... |
elimphu 29084 | Hypothesis elimination lem... |
isph 29085 | The predicate "is an inner... |
phpar2 29086 | The parallelogram law for ... |
phpar 29087 | The parallelogram law for ... |
ip0i 29088 | A slight variant of Equati... |
ip1ilem 29089 | Lemma for ~ ip1i . (Contr... |
ip1i 29090 | Equation 6.47 of [Ponnusam... |
ip2i 29091 | Equation 6.48 of [Ponnusam... |
ipdirilem 29092 | Lemma for ~ ipdiri . (Con... |
ipdiri 29093 | Distributive law for inner... |
ipasslem1 29094 | Lemma for ~ ipassi . Show... |
ipasslem2 29095 | Lemma for ~ ipassi . Show... |
ipasslem3 29096 | Lemma for ~ ipassi . Show... |
ipasslem4 29097 | Lemma for ~ ipassi . Show... |
ipasslem5 29098 | Lemma for ~ ipassi . Show... |
ipasslem7 29099 | Lemma for ~ ipassi . Show... |
ipasslem8 29100 | Lemma for ~ ipassi . By ~... |
ipasslem9 29101 | Lemma for ~ ipassi . Conc... |
ipasslem10 29102 | Lemma for ~ ipassi . Show... |
ipasslem11 29103 | Lemma for ~ ipassi . Show... |
ipassi 29104 | Associative law for inner ... |
dipdir 29105 | Distributive law for inner... |
dipdi 29106 | Distributive law for inner... |
ip2dii 29107 | Inner product of two sums.... |
dipass 29108 | Associative law for inner ... |
dipassr 29109 | "Associative" law for seco... |
dipassr2 29110 | "Associative" law for inne... |
dipsubdir 29111 | Distributive law for inner... |
dipsubdi 29112 | Distributive law for inner... |
pythi 29113 | The Pythagorean theorem fo... |
siilem1 29114 | Lemma for ~ sii . (Contri... |
siilem2 29115 | Lemma for ~ sii . (Contri... |
siii 29116 | Inference from ~ sii . (C... |
sii 29117 | Obsolete version of ~ ipca... |
ipblnfi 29118 | A function ` F ` generated... |
ip2eqi 29119 | Two vectors are equal iff ... |
phoeqi 29120 | A condition implying that ... |
ajmoi 29121 | Every operator has at most... |
ajfuni 29122 | The adjoint function is a ... |
ajfun 29123 | The adjoint function is a ... |
ajval 29124 | Value of the adjoint funct... |
iscbn 29127 | A complex Banach space is ... |
cbncms 29128 | The induced metric on comp... |
bnnv 29129 | Every complex Banach space... |
bnrel 29130 | The class of all complex B... |
bnsscmcl 29131 | A subspace of a Banach spa... |
cnbn 29132 | The set of complex numbers... |
ubthlem1 29133 | Lemma for ~ ubth . The fu... |
ubthlem2 29134 | Lemma for ~ ubth . Given ... |
ubthlem3 29135 | Lemma for ~ ubth . Prove ... |
ubth 29136 | Uniform Boundedness Theore... |
minvecolem1 29137 | Lemma for ~ minveco . The... |
minvecolem2 29138 | Lemma for ~ minveco . Any... |
minvecolem3 29139 | Lemma for ~ minveco . The... |
minvecolem4a 29140 | Lemma for ~ minveco . ` F ... |
minvecolem4b 29141 | Lemma for ~ minveco . The... |
minvecolem4c 29142 | Lemma for ~ minveco . The... |
minvecolem4 29143 | Lemma for ~ minveco . The... |
minvecolem5 29144 | Lemma for ~ minveco . Dis... |
minvecolem6 29145 | Lemma for ~ minveco . Any... |
minvecolem7 29146 | Lemma for ~ minveco . Sin... |
minveco 29147 | Minimizing vector theorem,... |
ishlo 29150 | The predicate "is a comple... |
hlobn 29151 | Every complex Hilbert spac... |
hlph 29152 | Every complex Hilbert spac... |
hlrel 29153 | The class of all complex H... |
hlnv 29154 | Every complex Hilbert spac... |
hlnvi 29155 | Every complex Hilbert spac... |
hlvc 29156 | Every complex Hilbert spac... |
hlcmet 29157 | The induced metric on a co... |
hlmet 29158 | The induced metric on a co... |
hlpar2 29159 | The parallelogram law sati... |
hlpar 29160 | The parallelogram law sati... |
hlex 29161 | The base set of a Hilbert ... |
hladdf 29162 | Mapping for Hilbert space ... |
hlcom 29163 | Hilbert space vector addit... |
hlass 29164 | Hilbert space vector addit... |
hl0cl 29165 | The Hilbert space zero vec... |
hladdid 29166 | Hilbert space addition wit... |
hlmulf 29167 | Mapping for Hilbert space ... |
hlmulid 29168 | Hilbert space scalar multi... |
hlmulass 29169 | Hilbert space scalar multi... |
hldi 29170 | Hilbert space scalar multi... |
hldir 29171 | Hilbert space scalar multi... |
hlmul0 29172 | Hilbert space scalar multi... |
hlipf 29173 | Mapping for Hilbert space ... |
hlipcj 29174 | Conjugate law for Hilbert ... |
hlipdir 29175 | Distributive law for Hilbe... |
hlipass 29176 | Associative law for Hilber... |
hlipgt0 29177 | The inner product of a Hil... |
hlcompl 29178 | Completeness of a Hilbert ... |
cnchl 29179 | The set of complex numbers... |
htthlem 29180 | Lemma for ~ htth . The co... |
htth 29181 | Hellinger-Toeplitz Theorem... |
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here | |
h2hva 29237 | The group (addition) opera... |
h2hsm 29238 | The scalar product operati... |
h2hnm 29239 | The norm function of Hilbe... |
h2hvs 29240 | The vector subtraction ope... |
h2hmetdval 29241 | Value of the distance func... |
h2hcau 29242 | The Cauchy sequences of Hi... |
h2hlm 29243 | The limit sequences of Hil... |
axhilex-zf 29244 | Derive Axiom ~ ax-hilex fr... |
axhfvadd-zf 29245 | Derive Axiom ~ ax-hfvadd f... |
axhvcom-zf 29246 | Derive Axiom ~ ax-hvcom fr... |
axhvass-zf 29247 | Derive Axiom ~ ax-hvass fr... |
axhv0cl-zf 29248 | Derive Axiom ~ ax-hv0cl fr... |
axhvaddid-zf 29249 | Derive Axiom ~ ax-hvaddid ... |
axhfvmul-zf 29250 | Derive Axiom ~ ax-hfvmul f... |
axhvmulid-zf 29251 | Derive Axiom ~ ax-hvmulid ... |
axhvmulass-zf 29252 | Derive Axiom ~ ax-hvmulass... |
axhvdistr1-zf 29253 | Derive Axiom ~ ax-hvdistr1... |
axhvdistr2-zf 29254 | Derive Axiom ~ ax-hvdistr2... |
axhvmul0-zf 29255 | Derive Axiom ~ ax-hvmul0 f... |
axhfi-zf 29256 | Derive Axiom ~ ax-hfi from... |
axhis1-zf 29257 | Derive Axiom ~ ax-his1 fro... |
axhis2-zf 29258 | Derive Axiom ~ ax-his2 fro... |
axhis3-zf 29259 | Derive Axiom ~ ax-his3 fro... |
axhis4-zf 29260 | Derive Axiom ~ ax-his4 fro... |
axhcompl-zf 29261 | Derive Axiom ~ ax-hcompl f... |
hvmulex 29274 | The Hilbert space scalar p... |
hvaddcl 29275 | Closure of vector addition... |
hvmulcl 29276 | Closure of scalar multipli... |
hvmulcli 29277 | Closure inference for scal... |
hvsubf 29278 | Mapping domain and codomai... |
hvsubval 29279 | Value of vector subtractio... |
hvsubcl 29280 | Closure of vector subtract... |
hvaddcli 29281 | Closure of vector addition... |
hvcomi 29282 | Commutation of vector addi... |
hvsubvali 29283 | Value of vector subtractio... |
hvsubcli 29284 | Closure of vector subtract... |
ifhvhv0 29285 | Prove ` if ( A e. ~H , A ,... |
hvaddid2 29286 | Addition with the zero vec... |
hvmul0 29287 | Scalar multiplication with... |
hvmul0or 29288 | If a scalar product is zer... |
hvsubid 29289 | Subtraction of a vector fr... |
hvnegid 29290 | Addition of negative of a ... |
hv2neg 29291 | Two ways to express the ne... |
hvaddid2i 29292 | Addition with the zero vec... |
hvnegidi 29293 | Addition of negative of a ... |
hv2negi 29294 | Two ways to express the ne... |
hvm1neg 29295 | Convert minus one times a ... |
hvaddsubval 29296 | Value of vector addition i... |
hvadd32 29297 | Commutative/associative la... |
hvadd12 29298 | Commutative/associative la... |
hvadd4 29299 | Hilbert vector space addit... |
hvsub4 29300 | Hilbert vector space addit... |
hvaddsub12 29301 | Commutative/associative la... |
hvpncan 29302 | Addition/subtraction cance... |
hvpncan2 29303 | Addition/subtraction cance... |
hvaddsubass 29304 | Associativity of sum and d... |
hvpncan3 29305 | Subtraction and addition o... |
hvmulcom 29306 | Scalar multiplication comm... |
hvsubass 29307 | Hilbert vector space assoc... |
hvsub32 29308 | Hilbert vector space commu... |
hvmulassi 29309 | Scalar multiplication asso... |
hvmulcomi 29310 | Scalar multiplication comm... |
hvmul2negi 29311 | Double negative in scalar ... |
hvsubdistr1 29312 | Scalar multiplication dist... |
hvsubdistr2 29313 | Scalar multiplication dist... |
hvdistr1i 29314 | Scalar multiplication dist... |
hvsubdistr1i 29315 | Scalar multiplication dist... |
hvassi 29316 | Hilbert vector space assoc... |
hvadd32i 29317 | Hilbert vector space commu... |
hvsubassi 29318 | Hilbert vector space assoc... |
hvsub32i 29319 | Hilbert vector space commu... |
hvadd12i 29320 | Hilbert vector space commu... |
hvadd4i 29321 | Hilbert vector space addit... |
hvsubsub4i 29322 | Hilbert vector space addit... |
hvsubsub4 29323 | Hilbert vector space addit... |
hv2times 29324 | Two times a vector. (Cont... |
hvnegdii 29325 | Distribution of negative o... |
hvsubeq0i 29326 | If the difference between ... |
hvsubcan2i 29327 | Vector cancellation law. ... |
hvaddcani 29328 | Cancellation law for vecto... |
hvsubaddi 29329 | Relationship between vecto... |
hvnegdi 29330 | Distribution of negative o... |
hvsubeq0 29331 | If the difference between ... |
hvaddeq0 29332 | If the sum of two vectors ... |
hvaddcan 29333 | Cancellation law for vecto... |
hvaddcan2 29334 | Cancellation law for vecto... |
hvmulcan 29335 | Cancellation law for scala... |
hvmulcan2 29336 | Cancellation law for scala... |
hvsubcan 29337 | Cancellation law for vecto... |
hvsubcan2 29338 | Cancellation law for vecto... |
hvsub0 29339 | Subtraction of a zero vect... |
hvsubadd 29340 | Relationship between vecto... |
hvaddsub4 29341 | Hilbert vector space addit... |
hicl 29343 | Closure of inner product. ... |
hicli 29344 | Closure inference for inne... |
his5 29349 | Associative law for inner ... |
his52 29350 | Associative law for inner ... |
his35 29351 | Move scalar multiplication... |
his35i 29352 | Move scalar multiplication... |
his7 29353 | Distributive law for inner... |
hiassdi 29354 | Distributive/associative l... |
his2sub 29355 | Distributive law for inner... |
his2sub2 29356 | Distributive law for inner... |
hire 29357 | A necessary and sufficient... |
hiidrcl 29358 | Real closure of inner prod... |
hi01 29359 | Inner product with the 0 v... |
hi02 29360 | Inner product with the 0 v... |
hiidge0 29361 | Inner product with self is... |
his6 29362 | Zero inner product with se... |
his1i 29363 | Conjugate law for inner pr... |
abshicom 29364 | Commuted inner products ha... |
hial0 29365 | A vector whose inner produ... |
hial02 29366 | A vector whose inner produ... |
hisubcomi 29367 | Two vector subtractions si... |
hi2eq 29368 | Lemma used to prove equali... |
hial2eq 29369 | Two vectors whose inner pr... |
hial2eq2 29370 | Two vectors whose inner pr... |
orthcom 29371 | Orthogonality commutes. (... |
normlem0 29372 | Lemma used to derive prope... |
normlem1 29373 | Lemma used to derive prope... |
normlem2 29374 | Lemma used to derive prope... |
normlem3 29375 | Lemma used to derive prope... |
normlem4 29376 | Lemma used to derive prope... |
normlem5 29377 | Lemma used to derive prope... |
normlem6 29378 | Lemma used to derive prope... |
normlem7 29379 | Lemma used to derive prope... |
normlem8 29380 | Lemma used to derive prope... |
normlem9 29381 | Lemma used to derive prope... |
normlem7tALT 29382 | Lemma used to derive prope... |
bcseqi 29383 | Equality case of Bunjakova... |
normlem9at 29384 | Lemma used to derive prope... |
dfhnorm2 29385 | Alternate definition of th... |
normf 29386 | The norm function maps fro... |
normval 29387 | The value of the norm of a... |
normcl 29388 | Real closure of the norm o... |
normge0 29389 | The norm of a vector is no... |
normgt0 29390 | The norm of nonzero vector... |
norm0 29391 | The norm of a zero vector.... |
norm-i 29392 | Theorem 3.3(i) of [Beran] ... |
normne0 29393 | A norm is nonzero iff its ... |
normcli 29394 | Real closure of the norm o... |
normsqi 29395 | The square of a norm. (Co... |
norm-i-i 29396 | Theorem 3.3(i) of [Beran] ... |
normsq 29397 | The square of a norm. (Co... |
normsub0i 29398 | Two vectors are equal iff ... |
normsub0 29399 | Two vectors are equal iff ... |
norm-ii-i 29400 | Triangle inequality for no... |
norm-ii 29401 | Triangle inequality for no... |
norm-iii-i 29402 | Theorem 3.3(iii) of [Beran... |
norm-iii 29403 | Theorem 3.3(iii) of [Beran... |
normsubi 29404 | Negative doesn't change th... |
normpythi 29405 | Analogy to Pythagorean the... |
normsub 29406 | Swapping order of subtract... |
normneg 29407 | The norm of a vector equal... |
normpyth 29408 | Analogy to Pythagorean the... |
normpyc 29409 | Corollary to Pythagorean t... |
norm3difi 29410 | Norm of differences around... |
norm3adifii 29411 | Norm of differences around... |
norm3lem 29412 | Lemma involving norm of di... |
norm3dif 29413 | Norm of differences around... |
norm3dif2 29414 | Norm of differences around... |
norm3lemt 29415 | Lemma involving norm of di... |
norm3adifi 29416 | Norm of differences around... |
normpari 29417 | Parallelogram law for norm... |
normpar 29418 | Parallelogram law for norm... |
normpar2i 29419 | Corollary of parallelogram... |
polid2i 29420 | Generalized polarization i... |
polidi 29421 | Polarization identity. Re... |
polid 29422 | Polarization identity. Re... |
hilablo 29423 | Hilbert space vector addit... |
hilid 29424 | The group identity element... |
hilvc 29425 | Hilbert space is a complex... |
hilnormi 29426 | Hilbert space norm in term... |
hilhhi 29427 | Deduce the structure of Hi... |
hhnv 29428 | Hilbert space is a normed ... |
hhva 29429 | The group (addition) opera... |
hhba 29430 | The base set of Hilbert sp... |
hh0v 29431 | The zero vector of Hilbert... |
hhsm 29432 | The scalar product operati... |
hhvs 29433 | The vector subtraction ope... |
hhnm 29434 | The norm function of Hilbe... |
hhims 29435 | The induced metric of Hilb... |
hhims2 29436 | Hilbert space distance met... |
hhmet 29437 | The induced metric of Hilb... |
hhxmet 29438 | The induced metric of Hilb... |
hhmetdval 29439 | Value of the distance func... |
hhip 29440 | The inner product operatio... |
hhph 29441 | The Hilbert space of the H... |
bcsiALT 29442 | Bunjakovaskij-Cauchy-Schwa... |
bcsiHIL 29443 | Bunjakovaskij-Cauchy-Schwa... |
bcs 29444 | Bunjakovaskij-Cauchy-Schwa... |
bcs2 29445 | Corollary of the Bunjakova... |
bcs3 29446 | Corollary of the Bunjakova... |
hcau 29447 | Member of the set of Cauch... |
hcauseq 29448 | A Cauchy sequences on a Hi... |
hcaucvg 29449 | A Cauchy sequence on a Hil... |
seq1hcau 29450 | A sequence on a Hilbert sp... |
hlimi 29451 | Express the predicate: Th... |
hlimseqi 29452 | A sequence with a limit on... |
hlimveci 29453 | Closure of the limit of a ... |
hlimconvi 29454 | Convergence of a sequence ... |
hlim2 29455 | The limit of a sequence on... |
hlimadd 29456 | Limit of the sum of two se... |
hilmet 29457 | The Hilbert space norm det... |
hilxmet 29458 | The Hilbert space norm det... |
hilmetdval 29459 | Value of the distance func... |
hilims 29460 | Hilbert space distance met... |
hhcau 29461 | The Cauchy sequences of Hi... |
hhlm 29462 | The limit sequences of Hil... |
hhcmpl 29463 | Lemma used for derivation ... |
hilcompl 29464 | Lemma used for derivation ... |
hhcms 29466 | The Hilbert space induced ... |
hhhl 29467 | The Hilbert space structur... |
hilcms 29468 | The Hilbert space norm det... |
hilhl 29469 | The Hilbert space of the H... |
issh 29471 | Subspace ` H ` of a Hilber... |
issh2 29472 | Subspace ` H ` of a Hilber... |
shss 29473 | A subspace is a subset of ... |
shel 29474 | A member of a subspace of ... |
shex 29475 | The set of subspaces of a ... |
shssii 29476 | A closed subspace of a Hil... |
sheli 29477 | A member of a subspace of ... |
shelii 29478 | A member of a subspace of ... |
sh0 29479 | The zero vector belongs to... |
shaddcl 29480 | Closure of vector addition... |
shmulcl 29481 | Closure of vector scalar m... |
issh3 29482 | Subspace ` H ` of a Hilber... |
shsubcl 29483 | Closure of vector subtract... |
isch 29485 | Closed subspace ` H ` of a... |
isch2 29486 | Closed subspace ` H ` of a... |
chsh 29487 | A closed subspace is a sub... |
chsssh 29488 | Closed subspaces are subsp... |
chex 29489 | The set of closed subspace... |
chshii 29490 | A closed subspace is a sub... |
ch0 29491 | The zero vector belongs to... |
chss 29492 | A closed subspace of a Hil... |
chel 29493 | A member of a closed subsp... |
chssii 29494 | A closed subspace of a Hil... |
cheli 29495 | A member of a closed subsp... |
chelii 29496 | A member of a closed subsp... |
chlimi 29497 | The limit property of a cl... |
hlim0 29498 | The zero sequence in Hilbe... |
hlimcaui 29499 | If a sequence in Hilbert s... |
hlimf 29500 | Function-like behavior of ... |
hlimuni 29501 | A Hilbert space sequence c... |
hlimreui 29502 | The limit of a Hilbert spa... |
hlimeui 29503 | The limit of a Hilbert spa... |
isch3 29504 | A Hilbert subspace is clos... |
chcompl 29505 | Completeness of a closed s... |
helch 29506 | The unit Hilbert lattice e... |
ifchhv 29507 | Prove ` if ( A e. CH , A ,... |
helsh 29508 | Hilbert space is a subspac... |
shsspwh 29509 | Subspaces are subsets of H... |
chsspwh 29510 | Closed subspaces are subse... |
hsn0elch 29511 | The zero subspace belongs ... |
norm1 29512 | From any nonzero Hilbert s... |
norm1exi 29513 | A normalized vector exists... |
norm1hex 29514 | A normalized vector can ex... |
elch0 29517 | Membership in zero for clo... |
h0elch 29518 | The zero subspace is a clo... |
h0elsh 29519 | The zero subspace is a sub... |
hhssva 29520 | The vector addition operat... |
hhsssm 29521 | The scalar multiplication ... |
hhssnm 29522 | The norm operation on a su... |
issubgoilem 29523 | Lemma for ~ hhssabloilem .... |
hhssabloilem 29524 | Lemma for ~ hhssabloi . F... |
hhssabloi 29525 | Abelian group property of ... |
hhssablo 29526 | Abelian group property of ... |
hhssnv 29527 | Normed complex vector spac... |
hhssnvt 29528 | Normed complex vector spac... |
hhsst 29529 | A member of ` SH ` is a su... |
hhshsslem1 29530 | Lemma for ~ hhsssh . (Con... |
hhshsslem2 29531 | Lemma for ~ hhsssh . (Con... |
hhsssh 29532 | The predicate " ` H ` is a... |
hhsssh2 29533 | The predicate " ` H ` is a... |
hhssba 29534 | The base set of a subspace... |
hhssvs 29535 | The vector subtraction ope... |
hhssvsf 29536 | Mapping of the vector subt... |
hhssims 29537 | Induced metric of a subspa... |
hhssims2 29538 | Induced metric of a subspa... |
hhssmet 29539 | Induced metric of a subspa... |
hhssmetdval 29540 | Value of the distance func... |
hhsscms 29541 | The induced metric of a cl... |
hhssbnOLD 29542 | Obsolete version of ~ cssb... |
ocval 29543 | Value of orthogonal comple... |
ocel 29544 | Membership in orthogonal c... |
shocel 29545 | Membership in orthogonal c... |
ocsh 29546 | The orthogonal complement ... |
shocsh 29547 | The orthogonal complement ... |
ocss 29548 | An orthogonal complement i... |
shocss 29549 | An orthogonal complement i... |
occon 29550 | Contraposition law for ort... |
occon2 29551 | Double contraposition for ... |
occon2i 29552 | Double contraposition for ... |
oc0 29553 | The zero vector belongs to... |
ocorth 29554 | Members of a subset and it... |
shocorth 29555 | Members of a subspace and ... |
ococss 29556 | Inclusion in complement of... |
shococss 29557 | Inclusion in complement of... |
shorth 29558 | Members of orthogonal subs... |
ocin 29559 | Intersection of a Hilbert ... |
occon3 29560 | Hilbert lattice contraposi... |
ocnel 29561 | A nonzero vector in the co... |
chocvali 29562 | Value of the orthogonal co... |
shuni 29563 | Two subspaces with trivial... |
chocunii 29564 | Lemma for uniqueness part ... |
pjhthmo 29565 | Projection Theorem, unique... |
occllem 29566 | Lemma for ~ occl . (Contr... |
occl 29567 | Closure of complement of H... |
shoccl 29568 | Closure of complement of H... |
choccl 29569 | Closure of complement of H... |
choccli 29570 | Closure of ` CH ` orthocom... |
shsval 29575 | Value of subspace sum of t... |
shsss 29576 | The subspace sum is a subs... |
shsel 29577 | Membership in the subspace... |
shsel3 29578 | Membership in the subspace... |
shseli 29579 | Membership in subspace sum... |
shscli 29580 | Closure of subspace sum. ... |
shscl 29581 | Closure of subspace sum. ... |
shscom 29582 | Commutative law for subspa... |
shsva 29583 | Vector sum belongs to subs... |
shsel1 29584 | A subspace sum contains a ... |
shsel2 29585 | A subspace sum contains a ... |
shsvs 29586 | Vector subtraction belongs... |
shsub1 29587 | Subspace sum is an upper b... |
shsub2 29588 | Subspace sum is an upper b... |
choc0 29589 | The orthocomplement of the... |
choc1 29590 | The orthocomplement of the... |
chocnul 29591 | Orthogonal complement of t... |
shintcli 29592 | Closure of intersection of... |
shintcl 29593 | The intersection of a none... |
chintcli 29594 | The intersection of a none... |
chintcl 29595 | The intersection (infimum)... |
spanval 29596 | Value of the linear span o... |
hsupval 29597 | Value of supremum of set o... |
chsupval 29598 | The value of the supremum ... |
spancl 29599 | The span of a subset of Hi... |
elspancl 29600 | A member of a span is a ve... |
shsupcl 29601 | Closure of the subspace su... |
hsupcl 29602 | Closure of supremum of set... |
chsupcl 29603 | Closure of supremum of sub... |
hsupss 29604 | Subset relation for suprem... |
chsupss 29605 | Subset relation for suprem... |
hsupunss 29606 | The union of a set of Hilb... |
chsupunss 29607 | The union of a set of clos... |
spanss2 29608 | A subset of Hilbert space ... |
shsupunss 29609 | The union of a set of subs... |
spanid 29610 | A subspace of Hilbert spac... |
spanss 29611 | Ordering relationship for ... |
spanssoc 29612 | The span of a subset of Hi... |
sshjval 29613 | Value of join for subsets ... |
shjval 29614 | Value of join in ` SH ` . ... |
chjval 29615 | Value of join in ` CH ` . ... |
chjvali 29616 | Value of join in ` CH ` . ... |
sshjval3 29617 | Value of join for subsets ... |
sshjcl 29618 | Closure of join for subset... |
shjcl 29619 | Closure of join in ` SH ` ... |
chjcl 29620 | Closure of join in ` CH ` ... |
shjcom 29621 | Commutative law for Hilber... |
shless 29622 | Subset implies subset of s... |
shlej1 29623 | Add disjunct to both sides... |
shlej2 29624 | Add disjunct to both sides... |
shincli 29625 | Closure of intersection of... |
shscomi 29626 | Commutative law for subspa... |
shsvai 29627 | Vector sum belongs to subs... |
shsel1i 29628 | A subspace sum contains a ... |
shsel2i 29629 | A subspace sum contains a ... |
shsvsi 29630 | Vector subtraction belongs... |
shunssi 29631 | Union is smaller than subs... |
shunssji 29632 | Union is smaller than Hilb... |
shsleji 29633 | Subspace sum is smaller th... |
shjcomi 29634 | Commutative law for join i... |
shsub1i 29635 | Subspace sum is an upper b... |
shsub2i 29636 | Subspace sum is an upper b... |
shub1i 29637 | Hilbert lattice join is an... |
shjcli 29638 | Closure of ` CH ` join. (... |
shjshcli 29639 | ` SH ` closure of join. (... |
shlessi 29640 | Subset implies subset of s... |
shlej1i 29641 | Add disjunct to both sides... |
shlej2i 29642 | Add disjunct to both sides... |
shslej 29643 | Subspace sum is smaller th... |
shincl 29644 | Closure of intersection of... |
shub1 29645 | Hilbert lattice join is an... |
shub2 29646 | A subspace is a subset of ... |
shsidmi 29647 | Idempotent law for Hilbert... |
shslubi 29648 | The least upper bound law ... |
shlesb1i 29649 | Hilbert lattice ordering i... |
shsval2i 29650 | An alternate way to expres... |
shsval3i 29651 | An alternate way to expres... |
shmodsi 29652 | The modular law holds for ... |
shmodi 29653 | The modular law is implied... |
pjhthlem1 29654 | Lemma for ~ pjhth . (Cont... |
pjhthlem2 29655 | Lemma for ~ pjhth . (Cont... |
pjhth 29656 | Projection Theorem: Any H... |
pjhtheu 29657 | Projection Theorem: Any H... |
pjhfval 29659 | The value of the projectio... |
pjhval 29660 | Value of a projection. (C... |
pjpreeq 29661 | Equality with a projection... |
pjeq 29662 | Equality with a projection... |
axpjcl 29663 | Closure of a projection in... |
pjhcl 29664 | Closure of a projection in... |
omlsilem 29665 | Lemma for orthomodular law... |
omlsii 29666 | Subspace inference form of... |
omlsi 29667 | Subspace form of orthomodu... |
ococi 29668 | Complement of complement o... |
ococ 29669 | Complement of complement o... |
dfch2 29670 | Alternate definition of th... |
ococin 29671 | The double complement is t... |
hsupval2 29672 | Alternate definition of su... |
chsupval2 29673 | The value of the supremum ... |
sshjval2 29674 | Value of join in the set o... |
chsupid 29675 | A subspace is the supremum... |
chsupsn 29676 | Value of supremum of subse... |
shlub 29677 | Hilbert lattice join is th... |
shlubi 29678 | Hilbert lattice join is th... |
pjhtheu2 29679 | Uniqueness of ` y ` for th... |
pjcli 29680 | Closure of a projection in... |
pjhcli 29681 | Closure of a projection in... |
pjpjpre 29682 | Decomposition of a vector ... |
axpjpj 29683 | Decomposition of a vector ... |
pjclii 29684 | Closure of a projection in... |
pjhclii 29685 | Closure of a projection in... |
pjpj0i 29686 | Decomposition of a vector ... |
pjpji 29687 | Decomposition of a vector ... |
pjpjhth 29688 | Projection Theorem: Any H... |
pjpjhthi 29689 | Projection Theorem: Any H... |
pjop 29690 | Orthocomplement projection... |
pjpo 29691 | Projection in terms of ort... |
pjopi 29692 | Orthocomplement projection... |
pjpoi 29693 | Projection in terms of ort... |
pjoc1i 29694 | Projection of a vector in ... |
pjchi 29695 | Projection of a vector in ... |
pjoccl 29696 | The part of a vector that ... |
pjoc1 29697 | Projection of a vector in ... |
pjomli 29698 | Subspace form of orthomodu... |
pjoml 29699 | Subspace form of orthomodu... |
pjococi 29700 | Proof of orthocomplement t... |
pjoc2i 29701 | Projection of a vector in ... |
pjoc2 29702 | Projection of a vector in ... |
sh0le 29703 | The zero subspace is the s... |
ch0le 29704 | The zero subspace is the s... |
shle0 29705 | No subspace is smaller tha... |
chle0 29706 | No Hilbert lattice element... |
chnlen0 29707 | A Hilbert lattice element ... |
ch0pss 29708 | The zero subspace is a pro... |
orthin 29709 | The intersection of orthog... |
ssjo 29710 | The lattice join of a subs... |
shne0i 29711 | A nonzero subspace has a n... |
shs0i 29712 | Hilbert subspace sum with ... |
shs00i 29713 | Two subspaces are zero iff... |
ch0lei 29714 | The closed subspace zero i... |
chle0i 29715 | No Hilbert closed subspace... |
chne0i 29716 | A nonzero closed subspace ... |
chocini 29717 | Intersection of a closed s... |
chj0i 29718 | Join with lattice zero in ... |
chm1i 29719 | Meet with lattice one in `... |
chjcli 29720 | Closure of ` CH ` join. (... |
chsleji 29721 | Subspace sum is smaller th... |
chseli 29722 | Membership in subspace sum... |
chincli 29723 | Closure of Hilbert lattice... |
chsscon3i 29724 | Hilbert lattice contraposi... |
chsscon1i 29725 | Hilbert lattice contraposi... |
chsscon2i 29726 | Hilbert lattice contraposi... |
chcon2i 29727 | Hilbert lattice contraposi... |
chcon1i 29728 | Hilbert lattice contraposi... |
chcon3i 29729 | Hilbert lattice contraposi... |
chunssji 29730 | Union is smaller than ` CH... |
chjcomi 29731 | Commutative law for join i... |
chub1i 29732 | ` CH ` join is an upper bo... |
chub2i 29733 | ` CH ` join is an upper bo... |
chlubi 29734 | Hilbert lattice join is th... |
chlubii 29735 | Hilbert lattice join is th... |
chlej1i 29736 | Add join to both sides of ... |
chlej2i 29737 | Add join to both sides of ... |
chlej12i 29738 | Add join to both sides of ... |
chlejb1i 29739 | Hilbert lattice ordering i... |
chdmm1i 29740 | De Morgan's law for meet i... |
chdmm2i 29741 | De Morgan's law for meet i... |
chdmm3i 29742 | De Morgan's law for meet i... |
chdmm4i 29743 | De Morgan's law for meet i... |
chdmj1i 29744 | De Morgan's law for join i... |
chdmj2i 29745 | De Morgan's law for join i... |
chdmj3i 29746 | De Morgan's law for join i... |
chdmj4i 29747 | De Morgan's law for join i... |
chnlei 29748 | Equivalent expressions for... |
chjassi 29749 | Associative law for Hilber... |
chj00i 29750 | Two Hilbert lattice elemen... |
chjoi 29751 | The join of a closed subsp... |
chj1i 29752 | Join with Hilbert lattice ... |
chm0i 29753 | Meet with Hilbert lattice ... |
chm0 29754 | Meet with Hilbert lattice ... |
shjshsi 29755 | Hilbert lattice join equal... |
shjshseli 29756 | A closed subspace sum equa... |
chne0 29757 | A nonzero closed subspace ... |
chocin 29758 | Intersection of a closed s... |
chssoc 29759 | A closed subspace less tha... |
chj0 29760 | Join with Hilbert lattice ... |
chslej 29761 | Subspace sum is smaller th... |
chincl 29762 | Closure of Hilbert lattice... |
chsscon3 29763 | Hilbert lattice contraposi... |
chsscon1 29764 | Hilbert lattice contraposi... |
chsscon2 29765 | Hilbert lattice contraposi... |
chpsscon3 29766 | Hilbert lattice contraposi... |
chpsscon1 29767 | Hilbert lattice contraposi... |
chpsscon2 29768 | Hilbert lattice contraposi... |
chjcom 29769 | Commutative law for Hilber... |
chub1 29770 | Hilbert lattice join is gr... |
chub2 29771 | Hilbert lattice join is gr... |
chlub 29772 | Hilbert lattice join is th... |
chlej1 29773 | Add join to both sides of ... |
chlej2 29774 | Add join to both sides of ... |
chlejb1 29775 | Hilbert lattice ordering i... |
chlejb2 29776 | Hilbert lattice ordering i... |
chnle 29777 | Equivalent expressions for... |
chjo 29778 | The join of a closed subsp... |
chabs1 29779 | Hilbert lattice absorption... |
chabs2 29780 | Hilbert lattice absorption... |
chabs1i 29781 | Hilbert lattice absorption... |
chabs2i 29782 | Hilbert lattice absorption... |
chjidm 29783 | Idempotent law for Hilbert... |
chjidmi 29784 | Idempotent law for Hilbert... |
chj12i 29785 | A rearrangement of Hilbert... |
chj4i 29786 | Rearrangement of the join ... |
chjjdiri 29787 | Hilbert lattice join distr... |
chdmm1 29788 | De Morgan's law for meet i... |
chdmm2 29789 | De Morgan's law for meet i... |
chdmm3 29790 | De Morgan's law for meet i... |
chdmm4 29791 | De Morgan's law for meet i... |
chdmj1 29792 | De Morgan's law for join i... |
chdmj2 29793 | De Morgan's law for join i... |
chdmj3 29794 | De Morgan's law for join i... |
chdmj4 29795 | De Morgan's law for join i... |
chjass 29796 | Associative law for Hilber... |
chj12 29797 | A rearrangement of Hilbert... |
chj4 29798 | Rearrangement of the join ... |
ledii 29799 | An ortholattice is distrib... |
lediri 29800 | An ortholattice is distrib... |
lejdii 29801 | An ortholattice is distrib... |
lejdiri 29802 | An ortholattice is distrib... |
ledi 29803 | An ortholattice is distrib... |
spansn0 29804 | The span of the singleton ... |
span0 29805 | The span of the empty set ... |
elspani 29806 | Membership in the span of ... |
spanuni 29807 | The span of a union is the... |
spanun 29808 | The span of a union is the... |
sshhococi 29809 | The join of two Hilbert sp... |
hne0 29810 | Hilbert space has a nonzer... |
chsup0 29811 | The supremum of the empty ... |
h1deoi 29812 | Membership in orthocomplem... |
h1dei 29813 | Membership in 1-dimensiona... |
h1did 29814 | A generating vector belong... |
h1dn0 29815 | A nonzero vector generates... |
h1de2i 29816 | Membership in 1-dimensiona... |
h1de2bi 29817 | Membership in 1-dimensiona... |
h1de2ctlem 29818 | Lemma for ~ h1de2ci . (Co... |
h1de2ci 29819 | Membership in 1-dimensiona... |
spansni 29820 | The span of a singleton in... |
elspansni 29821 | Membership in the span of ... |
spansn 29822 | The span of a singleton in... |
spansnch 29823 | The span of a Hilbert spac... |
spansnsh 29824 | The span of a Hilbert spac... |
spansnchi 29825 | The span of a singleton in... |
spansnid 29826 | A vector belongs to the sp... |
spansnmul 29827 | A scalar product with a ve... |
elspansncl 29828 | A member of a span of a si... |
elspansn 29829 | Membership in the span of ... |
elspansn2 29830 | Membership in the span of ... |
spansncol 29831 | The singletons of collinea... |
spansneleqi 29832 | Membership relation implie... |
spansneleq 29833 | Membership relation that i... |
spansnss 29834 | The span of the singleton ... |
elspansn3 29835 | A member of the span of th... |
elspansn4 29836 | A span membership conditio... |
elspansn5 29837 | A vector belonging to both... |
spansnss2 29838 | The span of the singleton ... |
normcan 29839 | Cancellation-type law that... |
pjspansn 29840 | A projection on the span o... |
spansnpji 29841 | A subset of Hilbert space ... |
spanunsni 29842 | The span of the union of a... |
spanpr 29843 | The span of a pair of vect... |
h1datomi 29844 | A 1-dimensional subspace i... |
h1datom 29845 | A 1-dimensional subspace i... |
cmbr 29847 | Binary relation expressing... |
pjoml2i 29848 | Variation of orthomodular ... |
pjoml3i 29849 | Variation of orthomodular ... |
pjoml4i 29850 | Variation of orthomodular ... |
pjoml5i 29851 | The orthomodular law. Rem... |
pjoml6i 29852 | An equivalent of the ortho... |
cmbri 29853 | Binary relation expressing... |
cmcmlem 29854 | Commutation is symmetric. ... |
cmcmi 29855 | Commutation is symmetric. ... |
cmcm2i 29856 | Commutation with orthocomp... |
cmcm3i 29857 | Commutation with orthocomp... |
cmcm4i 29858 | Commutation with orthocomp... |
cmbr2i 29859 | Alternate definition of th... |
cmcmii 29860 | Commutation is symmetric. ... |
cmcm2ii 29861 | Commutation with orthocomp... |
cmcm3ii 29862 | Commutation with orthocomp... |
cmbr3i 29863 | Alternate definition for t... |
cmbr4i 29864 | Alternate definition for t... |
lecmi 29865 | Comparable Hilbert lattice... |
lecmii 29866 | Comparable Hilbert lattice... |
cmj1i 29867 | A Hilbert lattice element ... |
cmj2i 29868 | A Hilbert lattice element ... |
cmm1i 29869 | A Hilbert lattice element ... |
cmm2i 29870 | A Hilbert lattice element ... |
cmbr3 29871 | Alternate definition for t... |
cm0 29872 | The zero Hilbert lattice e... |
cmidi 29873 | The commutes relation is r... |
pjoml2 29874 | Variation of orthomodular ... |
pjoml3 29875 | Variation of orthomodular ... |
pjoml5 29876 | The orthomodular law. Rem... |
cmcm 29877 | Commutation is symmetric. ... |
cmcm3 29878 | Commutation with orthocomp... |
cmcm2 29879 | Commutation with orthocomp... |
lecm 29880 | Comparable Hilbert lattice... |
fh1 29881 | Foulis-Holland Theorem. I... |
fh2 29882 | Foulis-Holland Theorem. I... |
cm2j 29883 | A lattice element that com... |
fh1i 29884 | Foulis-Holland Theorem. I... |
fh2i 29885 | Foulis-Holland Theorem. I... |
fh3i 29886 | Variation of the Foulis-Ho... |
fh4i 29887 | Variation of the Foulis-Ho... |
cm2ji 29888 | A lattice element that com... |
cm2mi 29889 | A lattice element that com... |
qlax1i 29890 | One of the equations showi... |
qlax2i 29891 | One of the equations showi... |
qlax3i 29892 | One of the equations showi... |
qlax4i 29893 | One of the equations showi... |
qlax5i 29894 | One of the equations showi... |
qlaxr1i 29895 | One of the conditions show... |
qlaxr2i 29896 | One of the conditions show... |
qlaxr4i 29897 | One of the conditions show... |
qlaxr5i 29898 | One of the conditions show... |
qlaxr3i 29899 | A variation of the orthomo... |
chscllem1 29900 | Lemma for ~ chscl . (Cont... |
chscllem2 29901 | Lemma for ~ chscl . (Cont... |
chscllem3 29902 | Lemma for ~ chscl . (Cont... |
chscllem4 29903 | Lemma for ~ chscl . (Cont... |
chscl 29904 | The subspace sum of two cl... |
osumi 29905 | If two closed subspaces of... |
osumcori 29906 | Corollary of ~ osumi . (C... |
osumcor2i 29907 | Corollary of ~ osumi , sho... |
osum 29908 | If two closed subspaces of... |
spansnji 29909 | The subspace sum of a clos... |
spansnj 29910 | The subspace sum of a clos... |
spansnscl 29911 | The subspace sum of a clos... |
sumspansn 29912 | The sum of two vectors bel... |
spansnm0i 29913 | The meet of different one-... |
nonbooli 29914 | A Hilbert lattice with two... |
spansncvi 29915 | Hilbert space has the cove... |
spansncv 29916 | Hilbert space has the cove... |
5oalem1 29917 | Lemma for orthoarguesian l... |
5oalem2 29918 | Lemma for orthoarguesian l... |
5oalem3 29919 | Lemma for orthoarguesian l... |
5oalem4 29920 | Lemma for orthoarguesian l... |
5oalem5 29921 | Lemma for orthoarguesian l... |
5oalem6 29922 | Lemma for orthoarguesian l... |
5oalem7 29923 | Lemma for orthoarguesian l... |
5oai 29924 | Orthoarguesian law 5OA. Th... |
3oalem1 29925 | Lemma for 3OA (weak) ortho... |
3oalem2 29926 | Lemma for 3OA (weak) ortho... |
3oalem3 29927 | Lemma for 3OA (weak) ortho... |
3oalem4 29928 | Lemma for 3OA (weak) ortho... |
3oalem5 29929 | Lemma for 3OA (weak) ortho... |
3oalem6 29930 | Lemma for 3OA (weak) ortho... |
3oai 29931 | 3OA (weak) orthoarguesian ... |
pjorthi 29932 | Projection components on o... |
pjch1 29933 | Property of identity proje... |
pjo 29934 | The orthogonal projection.... |
pjcompi 29935 | Component of a projection.... |
pjidmi 29936 | A projection is idempotent... |
pjadjii 29937 | A projection is self-adjoi... |
pjaddii 29938 | Projection of vector sum i... |
pjinormii 29939 | The inner product of a pro... |
pjmulii 29940 | Projection of (scalar) pro... |
pjsubii 29941 | Projection of vector diffe... |
pjsslem 29942 | Lemma for subset relations... |
pjss2i 29943 | Subset relationship for pr... |
pjssmii 29944 | Projection meet property. ... |
pjssge0ii 29945 | Theorem 4.5(iv)->(v) of [B... |
pjdifnormii 29946 | Theorem 4.5(v)<->(vi) of [... |
pjcji 29947 | The projection on a subspa... |
pjadji 29948 | A projection is self-adjoi... |
pjaddi 29949 | Projection of vector sum i... |
pjinormi 29950 | The inner product of a pro... |
pjsubi 29951 | Projection of vector diffe... |
pjmuli 29952 | Projection of scalar produ... |
pjige0i 29953 | The inner product of a pro... |
pjige0 29954 | The inner product of a pro... |
pjcjt2 29955 | The projection on a subspa... |
pj0i 29956 | The projection of the zero... |
pjch 29957 | Projection of a vector in ... |
pjid 29958 | The projection of a vector... |
pjvec 29959 | The set of vectors belongi... |
pjocvec 29960 | The set of vectors belongi... |
pjocini 29961 | Membership of projection i... |
pjini 29962 | Membership of projection i... |
pjjsi 29963 | A sufficient condition for... |
pjfni 29964 | Functionality of a project... |
pjrni 29965 | The range of a projection.... |
pjfoi 29966 | A projection maps onto its... |
pjfi 29967 | The mapping of a projectio... |
pjvi 29968 | The value of a projection ... |
pjhfo 29969 | A projection maps onto its... |
pjrn 29970 | The range of a projection.... |
pjhf 29971 | The mapping of a projectio... |
pjfn 29972 | Functionality of a project... |
pjsumi 29973 | The projection on a subspa... |
pj11i 29974 | One-to-one correspondence ... |
pjdsi 29975 | Vector decomposition into ... |
pjds3i 29976 | Vector decomposition into ... |
pj11 29977 | One-to-one correspondence ... |
pjmfn 29978 | Functionality of the proje... |
pjmf1 29979 | The projector function map... |
pjoi0 29980 | The inner product of proje... |
pjoi0i 29981 | The inner product of proje... |
pjopythi 29982 | Pythagorean theorem for pr... |
pjopyth 29983 | Pythagorean theorem for pr... |
pjnormi 29984 | The norm of the projection... |
pjpythi 29985 | Pythagorean theorem for pr... |
pjneli 29986 | If a vector does not belon... |
pjnorm 29987 | The norm of the projection... |
pjpyth 29988 | Pythagorean theorem for pr... |
pjnel 29989 | If a vector does not belon... |
pjnorm2 29990 | A vector belongs to the su... |
mayete3i 29991 | Mayet's equation E_3. Par... |
mayetes3i 29992 | Mayet's equation E^*_3, de... |
hosmval 29998 | Value of the sum of two Hi... |
hommval 29999 | Value of the scalar produc... |
hodmval 30000 | Value of the difference of... |
hfsmval 30001 | Value of the sum of two Hi... |
hfmmval 30002 | Value of the scalar produc... |
hosval 30003 | Value of the sum of two Hi... |
homval 30004 | Value of the scalar produc... |
hodval 30005 | Value of the difference of... |
hfsval 30006 | Value of the sum of two Hi... |
hfmval 30007 | Value of the scalar produc... |
hoscl 30008 | Closure of the sum of two ... |
homcl 30009 | Closure of the scalar prod... |
hodcl 30010 | Closure of the difference ... |
ho0val 30013 | Value of the zero Hilbert ... |
ho0f 30014 | Functionality of the zero ... |
df0op2 30015 | Alternate definition of Hi... |
dfiop2 30016 | Alternate definition of Hi... |
hoif 30017 | Functionality of the Hilbe... |
hoival 30018 | The value of the Hilbert s... |
hoico1 30019 | Composition with the Hilbe... |
hoico2 30020 | Composition with the Hilbe... |
hoaddcl 30021 | The sum of Hilbert space o... |
homulcl 30022 | The scalar product of a Hi... |
hoeq 30023 | Equality of Hilbert space ... |
hoeqi 30024 | Equality of Hilbert space ... |
hoscli 30025 | Closure of Hilbert space o... |
hodcli 30026 | Closure of Hilbert space o... |
hocoi 30027 | Composition of Hilbert spa... |
hococli 30028 | Closure of composition of ... |
hocofi 30029 | Mapping of composition of ... |
hocofni 30030 | Functionality of compositi... |
hoaddcli 30031 | Mapping of sum of Hilbert ... |
hosubcli 30032 | Mapping of difference of H... |
hoaddfni 30033 | Functionality of sum of Hi... |
hosubfni 30034 | Functionality of differenc... |
hoaddcomi 30035 | Commutativity of sum of Hi... |
hosubcl 30036 | Mapping of difference of H... |
hoaddcom 30037 | Commutativity of sum of Hi... |
hodsi 30038 | Relationship between Hilbe... |
hoaddassi 30039 | Associativity of sum of Hi... |
hoadd12i 30040 | Commutative/associative la... |
hoadd32i 30041 | Commutative/associative la... |
hocadddiri 30042 | Distributive law for Hilbe... |
hocsubdiri 30043 | Distributive law for Hilbe... |
ho2coi 30044 | Double composition of Hilb... |
hoaddass 30045 | Associativity of sum of Hi... |
hoadd32 30046 | Commutative/associative la... |
hoadd4 30047 | Rearrangement of 4 terms i... |
hocsubdir 30048 | Distributive law for Hilbe... |
hoaddid1i 30049 | Sum of a Hilbert space ope... |
hodidi 30050 | Difference of a Hilbert sp... |
ho0coi 30051 | Composition of the zero op... |
hoid1i 30052 | Composition of Hilbert spa... |
hoid1ri 30053 | Composition of Hilbert spa... |
hoaddid1 30054 | Sum of a Hilbert space ope... |
hodid 30055 | Difference of a Hilbert sp... |
hon0 30056 | A Hilbert space operator i... |
hodseqi 30057 | Subtraction and addition o... |
ho0subi 30058 | Subtraction of Hilbert spa... |
honegsubi 30059 | Relationship between Hilbe... |
ho0sub 30060 | Subtraction of Hilbert spa... |
hosubid1 30061 | The zero operator subtract... |
honegsub 30062 | Relationship between Hilbe... |
homulid2 30063 | An operator equals its sca... |
homco1 30064 | Associative law for scalar... |
homulass 30065 | Scalar product associative... |
hoadddi 30066 | Scalar product distributiv... |
hoadddir 30067 | Scalar product reverse dis... |
homul12 30068 | Swap first and second fact... |
honegneg 30069 | Double negative of a Hilbe... |
hosubneg 30070 | Relationship between opera... |
hosubdi 30071 | Scalar product distributiv... |
honegdi 30072 | Distribution of negative o... |
honegsubdi 30073 | Distribution of negative o... |
honegsubdi2 30074 | Distribution of negative o... |
hosubsub2 30075 | Law for double subtraction... |
hosub4 30076 | Rearrangement of 4 terms i... |
hosubadd4 30077 | Rearrangement of 4 terms i... |
hoaddsubass 30078 | Associative-type law for a... |
hoaddsub 30079 | Law for operator addition ... |
hosubsub 30080 | Law for double subtraction... |
hosubsub4 30081 | Law for double subtraction... |
ho2times 30082 | Two times a Hilbert space ... |
hoaddsubassi 30083 | Associativity of sum and d... |
hoaddsubi 30084 | Law for sum and difference... |
hosd1i 30085 | Hilbert space operator sum... |
hosd2i 30086 | Hilbert space operator sum... |
hopncani 30087 | Hilbert space operator can... |
honpcani 30088 | Hilbert space operator can... |
hosubeq0i 30089 | If the difference between ... |
honpncani 30090 | Hilbert space operator can... |
ho01i 30091 | A condition implying that ... |
ho02i 30092 | A condition implying that ... |
hoeq1 30093 | A condition implying that ... |
hoeq2 30094 | A condition implying that ... |
adjmo 30095 | Every Hilbert space operat... |
adjsym 30096 | Symmetry property of an ad... |
eigrei 30097 | A necessary and sufficient... |
eigre 30098 | A necessary and sufficient... |
eigposi 30099 | A sufficient condition (fi... |
eigorthi 30100 | A necessary and sufficient... |
eigorth 30101 | A necessary and sufficient... |
nmopval 30119 | Value of the norm of a Hil... |
elcnop 30120 | Property defining a contin... |
ellnop 30121 | Property defining a linear... |
lnopf 30122 | A linear Hilbert space ope... |
elbdop 30123 | Property defining a bounde... |
bdopln 30124 | A bounded linear Hilbert s... |
bdopf 30125 | A bounded linear Hilbert s... |
nmopsetretALT 30126 | The set in the supremum of... |
nmopsetretHIL 30127 | The set in the supremum of... |
nmopsetn0 30128 | The set in the supremum of... |
nmopxr 30129 | The norm of a Hilbert spac... |
nmoprepnf 30130 | The norm of a Hilbert spac... |
nmopgtmnf 30131 | The norm of a Hilbert spac... |
nmopreltpnf 30132 | The norm of a Hilbert spac... |
nmopre 30133 | The norm of a bounded oper... |
elbdop2 30134 | Property defining a bounde... |
elunop 30135 | Property defining a unitar... |
elhmop 30136 | Property defining a Hermit... |
hmopf 30137 | A Hermitian operator is a ... |
hmopex 30138 | The class of Hermitian ope... |
nmfnval 30139 | Value of the norm of a Hil... |
nmfnsetre 30140 | The set in the supremum of... |
nmfnsetn0 30141 | The set in the supremum of... |
nmfnxr 30142 | The norm of any Hilbert sp... |
nmfnrepnf 30143 | The norm of a Hilbert spac... |
nlfnval 30144 | Value of the null space of... |
elcnfn 30145 | Property defining a contin... |
ellnfn 30146 | Property defining a linear... |
lnfnf 30147 | A linear Hilbert space fun... |
dfadj2 30148 | Alternate definition of th... |
funadj 30149 | Functionality of the adjoi... |
dmadjss 30150 | The domain of the adjoint ... |
dmadjop 30151 | A member of the domain of ... |
adjeu 30152 | Elementhood in the domain ... |
adjval 30153 | Value of the adjoint funct... |
adjval2 30154 | Value of the adjoint funct... |
cnvadj 30155 | The adjoint function equal... |
funcnvadj 30156 | The converse of the adjoin... |
adj1o 30157 | The adjoint function maps ... |
dmadjrn 30158 | The adjoint of an operator... |
eigvecval 30159 | The set of eigenvectors of... |
eigvalfval 30160 | The eigenvalues of eigenve... |
specval 30161 | The value of the spectrum ... |
speccl 30162 | The spectrum of an operato... |
hhlnoi 30163 | The linear operators of Hi... |
hhnmoi 30164 | The norm of an operator in... |
hhbloi 30165 | A bounded linear operator ... |
hh0oi 30166 | The zero operator in Hilbe... |
hhcno 30167 | The continuous operators o... |
hhcnf 30168 | The continuous functionals... |
dmadjrnb 30169 | The adjoint of an operator... |
nmoplb 30170 | A lower bound for an opera... |
nmopub 30171 | An upper bound for an oper... |
nmopub2tALT 30172 | An upper bound for an oper... |
nmopub2tHIL 30173 | An upper bound for an oper... |
nmopge0 30174 | The norm of any Hilbert sp... |
nmopgt0 30175 | A linear Hilbert space ope... |
cnopc 30176 | Basic continuity property ... |
lnopl 30177 | Basic linearity property o... |
unop 30178 | Basic inner product proper... |
unopf1o 30179 | A unitary operator in Hilb... |
unopnorm 30180 | A unitary operator is idem... |
cnvunop 30181 | The inverse (converse) of ... |
unopadj 30182 | The inverse (converse) of ... |
unoplin 30183 | A unitary operator is line... |
counop 30184 | The composition of two uni... |
hmop 30185 | Basic inner product proper... |
hmopre 30186 | The inner product of the v... |
nmfnlb 30187 | A lower bound for a functi... |
nmfnleub 30188 | An upper bound for the nor... |
nmfnleub2 30189 | An upper bound for the nor... |
nmfnge0 30190 | The norm of any Hilbert sp... |
elnlfn 30191 | Membership in the null spa... |
elnlfn2 30192 | Membership in the null spa... |
cnfnc 30193 | Basic continuity property ... |
lnfnl 30194 | Basic linearity property o... |
adjcl 30195 | Closure of the adjoint of ... |
adj1 30196 | Property of an adjoint Hil... |
adj2 30197 | Property of an adjoint Hil... |
adjeq 30198 | A property that determines... |
adjadj 30199 | Double adjoint. Theorem 3... |
adjvalval 30200 | Value of the value of the ... |
unopadj2 30201 | The adjoint of a unitary o... |
hmopadj 30202 | A Hermitian operator is se... |
hmdmadj 30203 | Every Hermitian operator h... |
hmopadj2 30204 | An operator is Hermitian i... |
hmoplin 30205 | A Hermitian operator is li... |
brafval 30206 | The bra of a vector, expre... |
braval 30207 | A bra-ket juxtaposition, e... |
braadd 30208 | Linearity property of bra ... |
bramul 30209 | Linearity property of bra ... |
brafn 30210 | The bra function is a func... |
bralnfn 30211 | The Dirac bra function is ... |
bracl 30212 | Closure of the bra functio... |
bra0 30213 | The Dirac bra of the zero ... |
brafnmul 30214 | Anti-linearity property of... |
kbfval 30215 | The outer product of two v... |
kbop 30216 | The outer product of two v... |
kbval 30217 | The value of the operator ... |
kbmul 30218 | Multiplication property of... |
kbpj 30219 | If a vector ` A ` has norm... |
eleigvec 30220 | Membership in the set of e... |
eleigvec2 30221 | Membership in the set of e... |
eleigveccl 30222 | Closure of an eigenvector ... |
eigvalval 30223 | The eigenvalue of an eigen... |
eigvalcl 30224 | An eigenvalue is a complex... |
eigvec1 30225 | Property of an eigenvector... |
eighmre 30226 | The eigenvalues of a Hermi... |
eighmorth 30227 | Eigenvectors of a Hermitia... |
nmopnegi 30228 | Value of the norm of the n... |
lnop0 30229 | The value of a linear Hilb... |
lnopmul 30230 | Multiplicative property of... |
lnopli 30231 | Basic scalar product prope... |
lnopfi 30232 | A linear Hilbert space ope... |
lnop0i 30233 | The value of a linear Hilb... |
lnopaddi 30234 | Additive property of a lin... |
lnopmuli 30235 | Multiplicative property of... |
lnopaddmuli 30236 | Sum/product property of a ... |
lnopsubi 30237 | Subtraction property for a... |
lnopsubmuli 30238 | Subtraction/product proper... |
lnopmulsubi 30239 | Product/subtraction proper... |
homco2 30240 | Move a scalar product out ... |
idunop 30241 | The identity function (res... |
0cnop 30242 | The identically zero funct... |
0cnfn 30243 | The identically zero funct... |
idcnop 30244 | The identity function (res... |
idhmop 30245 | The Hilbert space identity... |
0hmop 30246 | The identically zero funct... |
0lnop 30247 | The identically zero funct... |
0lnfn 30248 | The identically zero funct... |
nmop0 30249 | The norm of the zero opera... |
nmfn0 30250 | The norm of the identicall... |
hmopbdoptHIL 30251 | A Hermitian operator is a ... |
hoddii 30252 | Distributive law for Hilbe... |
hoddi 30253 | Distributive law for Hilbe... |
nmop0h 30254 | The norm of any operator o... |
idlnop 30255 | The identity function (res... |
0bdop 30256 | The identically zero opera... |
adj0 30257 | Adjoint of the zero operat... |
nmlnop0iALT 30258 | A linear operator with a z... |
nmlnop0iHIL 30259 | A linear operator with a z... |
nmlnopgt0i 30260 | A linear Hilbert space ope... |
nmlnop0 30261 | A linear operator with a z... |
nmlnopne0 30262 | A linear operator with a n... |
lnopmi 30263 | The scalar product of a li... |
lnophsi 30264 | The sum of two linear oper... |
lnophdi 30265 | The difference of two line... |
lnopcoi 30266 | The composition of two lin... |
lnopco0i 30267 | The composition of a linea... |
lnopeq0lem1 30268 | Lemma for ~ lnopeq0i . Ap... |
lnopeq0lem2 30269 | Lemma for ~ lnopeq0i . (C... |
lnopeq0i 30270 | A condition implying that ... |
lnopeqi 30271 | Two linear Hilbert space o... |
lnopeq 30272 | Two linear Hilbert space o... |
lnopunilem1 30273 | Lemma for ~ lnopunii . (C... |
lnopunilem2 30274 | Lemma for ~ lnopunii . (C... |
lnopunii 30275 | If a linear operator (whos... |
elunop2 30276 | An operator is unitary iff... |
nmopun 30277 | Norm of a unitary Hilbert ... |
unopbd 30278 | A unitary operator is a bo... |
lnophmlem1 30279 | Lemma for ~ lnophmi . (Co... |
lnophmlem2 30280 | Lemma for ~ lnophmi . (Co... |
lnophmi 30281 | A linear operator is Hermi... |
lnophm 30282 | A linear operator is Hermi... |
hmops 30283 | The sum of two Hermitian o... |
hmopm 30284 | The scalar product of a He... |
hmopd 30285 | The difference of two Herm... |
hmopco 30286 | The composition of two com... |
nmbdoplbi 30287 | A lower bound for the norm... |
nmbdoplb 30288 | A lower bound for the norm... |
nmcexi 30289 | Lemma for ~ nmcopexi and ~... |
nmcopexi 30290 | The norm of a continuous l... |
nmcoplbi 30291 | A lower bound for the norm... |
nmcopex 30292 | The norm of a continuous l... |
nmcoplb 30293 | A lower bound for the norm... |
nmophmi 30294 | The norm of the scalar pro... |
bdophmi 30295 | The scalar product of a bo... |
lnconi 30296 | Lemma for ~ lnopconi and ~... |
lnopconi 30297 | A condition equivalent to ... |
lnopcon 30298 | A condition equivalent to ... |
lnopcnbd 30299 | A linear operator is conti... |
lncnopbd 30300 | A continuous linear operat... |
lncnbd 30301 | A continuous linear operat... |
lnopcnre 30302 | A linear operator is conti... |
lnfnli 30303 | Basic property of a linear... |
lnfnfi 30304 | A linear Hilbert space fun... |
lnfn0i 30305 | The value of a linear Hilb... |
lnfnaddi 30306 | Additive property of a lin... |
lnfnmuli 30307 | Multiplicative property of... |
lnfnaddmuli 30308 | Sum/product property of a ... |
lnfnsubi 30309 | Subtraction property for a... |
lnfn0 30310 | The value of a linear Hilb... |
lnfnmul 30311 | Multiplicative property of... |
nmbdfnlbi 30312 | A lower bound for the norm... |
nmbdfnlb 30313 | A lower bound for the norm... |
nmcfnexi 30314 | The norm of a continuous l... |
nmcfnlbi 30315 | A lower bound for the norm... |
nmcfnex 30316 | The norm of a continuous l... |
nmcfnlb 30317 | A lower bound of the norm ... |
lnfnconi 30318 | A condition equivalent to ... |
lnfncon 30319 | A condition equivalent to ... |
lnfncnbd 30320 | A linear functional is con... |
imaelshi 30321 | The image of a subspace un... |
rnelshi 30322 | The range of a linear oper... |
nlelshi 30323 | The null space of a linear... |
nlelchi 30324 | The null space of a contin... |
riesz3i 30325 | A continuous linear functi... |
riesz4i 30326 | A continuous linear functi... |
riesz4 30327 | A continuous linear functi... |
riesz1 30328 | Part 1 of the Riesz repres... |
riesz2 30329 | Part 2 of the Riesz repres... |
cnlnadjlem1 30330 | Lemma for ~ cnlnadji (Theo... |
cnlnadjlem2 30331 | Lemma for ~ cnlnadji . ` G... |
cnlnadjlem3 30332 | Lemma for ~ cnlnadji . By... |
cnlnadjlem4 30333 | Lemma for ~ cnlnadji . Th... |
cnlnadjlem5 30334 | Lemma for ~ cnlnadji . ` F... |
cnlnadjlem6 30335 | Lemma for ~ cnlnadji . ` F... |
cnlnadjlem7 30336 | Lemma for ~ cnlnadji . He... |
cnlnadjlem8 30337 | Lemma for ~ cnlnadji . ` F... |
cnlnadjlem9 30338 | Lemma for ~ cnlnadji . ` F... |
cnlnadji 30339 | Every continuous linear op... |
cnlnadjeui 30340 | Every continuous linear op... |
cnlnadjeu 30341 | Every continuous linear op... |
cnlnadj 30342 | Every continuous linear op... |
cnlnssadj 30343 | Every continuous linear Hi... |
bdopssadj 30344 | Every bounded linear Hilbe... |
bdopadj 30345 | Every bounded linear Hilbe... |
adjbdln 30346 | The adjoint of a bounded l... |
adjbdlnb 30347 | An operator is bounded and... |
adjbd1o 30348 | The mapping of adjoints of... |
adjlnop 30349 | The adjoint of an operator... |
adjsslnop 30350 | Every operator with an adj... |
nmopadjlei 30351 | Property of the norm of an... |
nmopadjlem 30352 | Lemma for ~ nmopadji . (C... |
nmopadji 30353 | Property of the norm of an... |
adjeq0 30354 | An operator is zero iff it... |
adjmul 30355 | The adjoint of the scalar ... |
adjadd 30356 | The adjoint of the sum of ... |
nmoptrii 30357 | Triangle inequality for th... |
nmopcoi 30358 | Upper bound for the norm o... |
bdophsi 30359 | The sum of two bounded lin... |
bdophdi 30360 | The difference between two... |
bdopcoi 30361 | The composition of two bou... |
nmoptri2i 30362 | Triangle-type inequality f... |
adjcoi 30363 | The adjoint of a compositi... |
nmopcoadji 30364 | The norm of an operator co... |
nmopcoadj2i 30365 | The norm of an operator co... |
nmopcoadj0i 30366 | An operator composed with ... |
unierri 30367 | If we approximate a chain ... |
branmfn 30368 | The norm of the bra functi... |
brabn 30369 | The bra of a vector is a b... |
rnbra 30370 | The set of bras equals the... |
bra11 30371 | The bra function maps vect... |
bracnln 30372 | A bra is a continuous line... |
cnvbraval 30373 | Value of the converse of t... |
cnvbracl 30374 | Closure of the converse of... |
cnvbrabra 30375 | The converse bra of the br... |
bracnvbra 30376 | The bra of the converse br... |
bracnlnval 30377 | The vector that a continuo... |
cnvbramul 30378 | Multiplication property of... |
kbass1 30379 | Dirac bra-ket associative ... |
kbass2 30380 | Dirac bra-ket associative ... |
kbass3 30381 | Dirac bra-ket associative ... |
kbass4 30382 | Dirac bra-ket associative ... |
kbass5 30383 | Dirac bra-ket associative ... |
kbass6 30384 | Dirac bra-ket associative ... |
leopg 30385 | Ordering relation for posi... |
leop 30386 | Ordering relation for oper... |
leop2 30387 | Ordering relation for oper... |
leop3 30388 | Operator ordering in terms... |
leoppos 30389 | Binary relation defining a... |
leoprf2 30390 | The ordering relation for ... |
leoprf 30391 | The ordering relation for ... |
leopsq 30392 | The square of a Hermitian ... |
0leop 30393 | The zero operator is a pos... |
idleop 30394 | The identity operator is a... |
leopadd 30395 | The sum of two positive op... |
leopmuli 30396 | The scalar product of a no... |
leopmul 30397 | The scalar product of a po... |
leopmul2i 30398 | Scalar product applied to ... |
leoptri 30399 | The positive operator orde... |
leoptr 30400 | The positive operator orde... |
leopnmid 30401 | A bounded Hermitian operat... |
nmopleid 30402 | A nonzero, bounded Hermiti... |
opsqrlem1 30403 | Lemma for opsqri . (Contr... |
opsqrlem2 30404 | Lemma for opsqri . ` F `` ... |
opsqrlem3 30405 | Lemma for opsqri . (Contr... |
opsqrlem4 30406 | Lemma for opsqri . (Contr... |
opsqrlem5 30407 | Lemma for opsqri . (Contr... |
opsqrlem6 30408 | Lemma for opsqri . (Contr... |
pjhmopi 30409 | A projector is a Hermitian... |
pjlnopi 30410 | A projector is a linear op... |
pjnmopi 30411 | The operator norm of a pro... |
pjbdlni 30412 | A projector is a bounded l... |
pjhmop 30413 | A projection is a Hermitia... |
hmopidmchi 30414 | An idempotent Hermitian op... |
hmopidmpji 30415 | An idempotent Hermitian op... |
hmopidmch 30416 | An idempotent Hermitian op... |
hmopidmpj 30417 | An idempotent Hermitian op... |
pjsdii 30418 | Distributive law for Hilbe... |
pjddii 30419 | Distributive law for Hilbe... |
pjsdi2i 30420 | Chained distributive law f... |
pjcoi 30421 | Composition of projections... |
pjcocli 30422 | Closure of composition of ... |
pjcohcli 30423 | Closure of composition of ... |
pjadjcoi 30424 | Adjoint of composition of ... |
pjcofni 30425 | Functionality of compositi... |
pjss1coi 30426 | Subset relationship for pr... |
pjss2coi 30427 | Subset relationship for pr... |
pjssmi 30428 | Projection meet property. ... |
pjssge0i 30429 | Theorem 4.5(iv)->(v) of [B... |
pjdifnormi 30430 | Theorem 4.5(v)<->(vi) of [... |
pjnormssi 30431 | Theorem 4.5(i)<->(vi) of [... |
pjorthcoi 30432 | Composition of projections... |
pjscji 30433 | The projection of orthogon... |
pjssumi 30434 | The projection on a subspa... |
pjssposi 30435 | Projector ordering can be ... |
pjordi 30436 | The definition of projecto... |
pjssdif2i 30437 | The projection subspace of... |
pjssdif1i 30438 | A necessary and sufficient... |
pjimai 30439 | The image of a projection.... |
pjidmcoi 30440 | A projection is idempotent... |
pjoccoi 30441 | Composition of projections... |
pjtoi 30442 | Subspace sum of projection... |
pjoci 30443 | Projection of orthocomplem... |
pjidmco 30444 | A projection operator is i... |
dfpjop 30445 | Definition of projection o... |
pjhmopidm 30446 | Two ways to express the se... |
elpjidm 30447 | A projection operator is i... |
elpjhmop 30448 | A projection operator is H... |
0leopj 30449 | A projector is a positive ... |
pjadj2 30450 | A projector is self-adjoin... |
pjadj3 30451 | A projector is self-adjoin... |
elpjch 30452 | Reconstruction of the subs... |
elpjrn 30453 | Reconstruction of the subs... |
pjinvari 30454 | A closed subspace ` H ` wi... |
pjin1i 30455 | Lemma for Theorem 1.22 of ... |
pjin2i 30456 | Lemma for Theorem 1.22 of ... |
pjin3i 30457 | Lemma for Theorem 1.22 of ... |
pjclem1 30458 | Lemma for projection commu... |
pjclem2 30459 | Lemma for projection commu... |
pjclem3 30460 | Lemma for projection commu... |
pjclem4a 30461 | Lemma for projection commu... |
pjclem4 30462 | Lemma for projection commu... |
pjci 30463 | Two subspaces commute iff ... |
pjcmul1i 30464 | A necessary and sufficient... |
pjcmul2i 30465 | The projection subspace of... |
pjcohocli 30466 | Closure of composition of ... |
pjadj2coi 30467 | Adjoint of double composit... |
pj2cocli 30468 | Closure of double composit... |
pj3lem1 30469 | Lemma for projection tripl... |
pj3si 30470 | Stronger projection triple... |
pj3i 30471 | Projection triplet theorem... |
pj3cor1i 30472 | Projection triplet corolla... |
pjs14i 30473 | Theorem S-14 of Watanabe, ... |
isst 30476 | Property of a state. (Con... |
ishst 30477 | Property of a complex Hilb... |
sticl 30478 | ` [ 0 , 1 ] ` closure of t... |
stcl 30479 | Real closure of the value ... |
hstcl 30480 | Closure of the value of a ... |
hst1a 30481 | Unit value of a Hilbert-sp... |
hstel2 30482 | Properties of a Hilbert-sp... |
hstorth 30483 | Orthogonality property of ... |
hstosum 30484 | Orthogonal sum property of... |
hstoc 30485 | Sum of a Hilbert-space-val... |
hstnmoc 30486 | Sum of norms of a Hilbert-... |
stge0 30487 | The value of a state is no... |
stle1 30488 | The value of a state is le... |
hstle1 30489 | The norm of the value of a... |
hst1h 30490 | The norm of a Hilbert-spac... |
hst0h 30491 | The norm of a Hilbert-spac... |
hstpyth 30492 | Pythagorean property of a ... |
hstle 30493 | Ordering property of a Hil... |
hstles 30494 | Ordering property of a Hil... |
hstoh 30495 | A Hilbert-space-valued sta... |
hst0 30496 | A Hilbert-space-valued sta... |
sthil 30497 | The value of a state at th... |
stj 30498 | The value of a state on a ... |
sto1i 30499 | The state of a subspace pl... |
sto2i 30500 | The state of the orthocomp... |
stge1i 30501 | If a state is greater than... |
stle0i 30502 | If a state is less than or... |
stlei 30503 | Ordering law for states. ... |
stlesi 30504 | Ordering law for states. ... |
stji1i 30505 | Join of components of Sasa... |
stm1i 30506 | State of component of unit... |
stm1ri 30507 | State of component of unit... |
stm1addi 30508 | Sum of states whose meet i... |
staddi 30509 | If the sum of 2 states is ... |
stm1add3i 30510 | Sum of states whose meet i... |
stadd3i 30511 | If the sum of 3 states is ... |
st0 30512 | The state of the zero subs... |
strlem1 30513 | Lemma for strong state the... |
strlem2 30514 | Lemma for strong state the... |
strlem3a 30515 | Lemma for strong state the... |
strlem3 30516 | Lemma for strong state the... |
strlem4 30517 | Lemma for strong state the... |
strlem5 30518 | Lemma for strong state the... |
strlem6 30519 | Lemma for strong state the... |
stri 30520 | Strong state theorem. The... |
strb 30521 | Strong state theorem (bidi... |
hstrlem2 30522 | Lemma for strong set of CH... |
hstrlem3a 30523 | Lemma for strong set of CH... |
hstrlem3 30524 | Lemma for strong set of CH... |
hstrlem4 30525 | Lemma for strong set of CH... |
hstrlem5 30526 | Lemma for strong set of CH... |
hstrlem6 30527 | Lemma for strong set of CH... |
hstri 30528 | Hilbert space admits a str... |
hstrbi 30529 | Strong CH-state theorem (b... |
largei 30530 | A Hilbert lattice admits a... |
jplem1 30531 | Lemma for Jauch-Piron theo... |
jplem2 30532 | Lemma for Jauch-Piron theo... |
jpi 30533 | The function ` S ` , that ... |
golem1 30534 | Lemma for Godowski's equat... |
golem2 30535 | Lemma for Godowski's equat... |
goeqi 30536 | Godowski's equation, shown... |
stcltr1i 30537 | Property of a strong class... |
stcltr2i 30538 | Property of a strong class... |
stcltrlem1 30539 | Lemma for strong classical... |
stcltrlem2 30540 | Lemma for strong classical... |
stcltrthi 30541 | Theorem for classically st... |
cvbr 30545 | Binary relation expressing... |
cvbr2 30546 | Binary relation expressing... |
cvcon3 30547 | Contraposition law for the... |
cvpss 30548 | The covers relation implie... |
cvnbtwn 30549 | The covers relation implie... |
cvnbtwn2 30550 | The covers relation implie... |
cvnbtwn3 30551 | The covers relation implie... |
cvnbtwn4 30552 | The covers relation implie... |
cvnsym 30553 | The covers relation is not... |
cvnref 30554 | The covers relation is not... |
cvntr 30555 | The covers relation is not... |
spansncv2 30556 | Hilbert space has the cove... |
mdbr 30557 | Binary relation expressing... |
mdi 30558 | Consequence of the modular... |
mdbr2 30559 | Binary relation expressing... |
mdbr3 30560 | Binary relation expressing... |
mdbr4 30561 | Binary relation expressing... |
dmdbr 30562 | Binary relation expressing... |
dmdmd 30563 | The dual modular pair prop... |
mddmd 30564 | The modular pair property ... |
dmdi 30565 | Consequence of the dual mo... |
dmdbr2 30566 | Binary relation expressing... |
dmdi2 30567 | Consequence of the dual mo... |
dmdbr3 30568 | Binary relation expressing... |
dmdbr4 30569 | Binary relation expressing... |
dmdi4 30570 | Consequence of the dual mo... |
dmdbr5 30571 | Binary relation expressing... |
mddmd2 30572 | Relationship between modul... |
mdsl0 30573 | A sublattice condition tha... |
ssmd1 30574 | Ordering implies the modul... |
ssmd2 30575 | Ordering implies the modul... |
ssdmd1 30576 | Ordering implies the dual ... |
ssdmd2 30577 | Ordering implies the dual ... |
dmdsl3 30578 | Sublattice mapping for a d... |
mdsl3 30579 | Sublattice mapping for a m... |
mdslle1i 30580 | Order preservation of the ... |
mdslle2i 30581 | Order preservation of the ... |
mdslj1i 30582 | Join preservation of the o... |
mdslj2i 30583 | Meet preservation of the r... |
mdsl1i 30584 | If the modular pair proper... |
mdsl2i 30585 | If the modular pair proper... |
mdsl2bi 30586 | If the modular pair proper... |
cvmdi 30587 | The covering property impl... |
mdslmd1lem1 30588 | Lemma for ~ mdslmd1i . (C... |
mdslmd1lem2 30589 | Lemma for ~ mdslmd1i . (C... |
mdslmd1lem3 30590 | Lemma for ~ mdslmd1i . (C... |
mdslmd1lem4 30591 | Lemma for ~ mdslmd1i . (C... |
mdslmd1i 30592 | Preservation of the modula... |
mdslmd2i 30593 | Preservation of the modula... |
mdsldmd1i 30594 | Preservation of the dual m... |
mdslmd3i 30595 | Modular pair conditions th... |
mdslmd4i 30596 | Modular pair condition tha... |
csmdsymi 30597 | Cross-symmetry implies M-s... |
mdexchi 30598 | An exchange lemma for modu... |
cvmd 30599 | The covering property impl... |
cvdmd 30600 | The covering property impl... |
ela 30602 | Atoms in a Hilbert lattice... |
elat2 30603 | Expanded membership relati... |
elatcv0 30604 | A Hilbert lattice element ... |
atcv0 30605 | An atom covers the zero su... |
atssch 30606 | Atoms are a subset of the ... |
atelch 30607 | An atom is a Hilbert latti... |
atne0 30608 | An atom is not the Hilbert... |
atss 30609 | A lattice element smaller ... |
atsseq 30610 | Two atoms in a subset rela... |
atcveq0 30611 | A Hilbert lattice element ... |
h1da 30612 | A 1-dimensional subspace i... |
spansna 30613 | The span of the singleton ... |
sh1dle 30614 | A 1-dimensional subspace i... |
ch1dle 30615 | A 1-dimensional subspace i... |
atom1d 30616 | The 1-dimensional subspace... |
superpos 30617 | Superposition Principle. ... |
chcv1 30618 | The Hilbert lattice has th... |
chcv2 30619 | The Hilbert lattice has th... |
chjatom 30620 | The join of a closed subsp... |
shatomici 30621 | The lattice of Hilbert sub... |
hatomici 30622 | The Hilbert lattice is ato... |
hatomic 30623 | A Hilbert lattice is atomi... |
shatomistici 30624 | The lattice of Hilbert sub... |
hatomistici 30625 | ` CH ` is atomistic, i.e. ... |
chpssati 30626 | Two Hilbert lattice elemen... |
chrelati 30627 | The Hilbert lattice is rel... |
chrelat2i 30628 | A consequence of relative ... |
cvati 30629 | If a Hilbert lattice eleme... |
cvbr4i 30630 | An alternate way to expres... |
cvexchlem 30631 | Lemma for ~ cvexchi . (Co... |
cvexchi 30632 | The Hilbert lattice satisf... |
chrelat2 30633 | A consequence of relative ... |
chrelat3 30634 | A consequence of relative ... |
chrelat3i 30635 | A consequence of the relat... |
chrelat4i 30636 | A consequence of relative ... |
cvexch 30637 | The Hilbert lattice satisf... |
cvp 30638 | The Hilbert lattice satisf... |
atnssm0 30639 | The meet of a Hilbert latt... |
atnemeq0 30640 | The meet of distinct atoms... |
atssma 30641 | The meet with an atom's su... |
atcv0eq 30642 | Two atoms covering the zer... |
atcv1 30643 | Two atoms covering the zer... |
atexch 30644 | The Hilbert lattice satisf... |
atomli 30645 | An assertion holding in at... |
atoml2i 30646 | An assertion holding in at... |
atordi 30647 | An ordering law for a Hilb... |
atcvatlem 30648 | Lemma for ~ atcvati . (Co... |
atcvati 30649 | A nonzero Hilbert lattice ... |
atcvat2i 30650 | A Hilbert lattice element ... |
atord 30651 | An ordering law for a Hilb... |
atcvat2 30652 | A Hilbert lattice element ... |
chirredlem1 30653 | Lemma for ~ chirredi . (C... |
chirredlem2 30654 | Lemma for ~ chirredi . (C... |
chirredlem3 30655 | Lemma for ~ chirredi . (C... |
chirredlem4 30656 | Lemma for ~ chirredi . (C... |
chirredi 30657 | The Hilbert lattice is irr... |
chirred 30658 | The Hilbert lattice is irr... |
atcvat3i 30659 | A condition implying that ... |
atcvat4i 30660 | A condition implying exist... |
atdmd 30661 | Two Hilbert lattice elemen... |
atmd 30662 | Two Hilbert lattice elemen... |
atmd2 30663 | Two Hilbert lattice elemen... |
atabsi 30664 | Absorption of an incompara... |
atabs2i 30665 | Absorption of an incompara... |
mdsymlem1 30666 | Lemma for ~ mdsymi . (Con... |
mdsymlem2 30667 | Lemma for ~ mdsymi . (Con... |
mdsymlem3 30668 | Lemma for ~ mdsymi . (Con... |
mdsymlem4 30669 | Lemma for ~ mdsymi . This... |
mdsymlem5 30670 | Lemma for ~ mdsymi . (Con... |
mdsymlem6 30671 | Lemma for ~ mdsymi . This... |
mdsymlem7 30672 | Lemma for ~ mdsymi . Lemm... |
mdsymlem8 30673 | Lemma for ~ mdsymi . Lemm... |
mdsymi 30674 | M-symmetry of the Hilbert ... |
mdsym 30675 | M-symmetry of the Hilbert ... |
dmdsym 30676 | Dual M-symmetry of the Hil... |
atdmd2 30677 | Two Hilbert lattice elemen... |
sumdmdii 30678 | If the subspace sum of two... |
cmmdi 30679 | Commuting subspaces form a... |
cmdmdi 30680 | Commuting subspaces form a... |
sumdmdlem 30681 | Lemma for ~ sumdmdi . The... |
sumdmdlem2 30682 | Lemma for ~ sumdmdi . (Co... |
sumdmdi 30683 | The subspace sum of two Hi... |
dmdbr4ati 30684 | Dual modular pair property... |
dmdbr5ati 30685 | Dual modular pair property... |
dmdbr6ati 30686 | Dual modular pair property... |
dmdbr7ati 30687 | Dual modular pair property... |
mdoc1i 30688 | Orthocomplements form a mo... |
mdoc2i 30689 | Orthocomplements form a mo... |
dmdoc1i 30690 | Orthocomplements form a du... |
dmdoc2i 30691 | Orthocomplements form a du... |
mdcompli 30692 | A condition equivalent to ... |
dmdcompli 30693 | A condition equivalent to ... |
mddmdin0i 30694 | If dual modular implies mo... |
cdjreui 30695 | A member of the sum of dis... |
cdj1i 30696 | Two ways to express " ` A ... |
cdj3lem1 30697 | A property of " ` A ` and ... |
cdj3lem2 30698 | Lemma for ~ cdj3i . Value... |
cdj3lem2a 30699 | Lemma for ~ cdj3i . Closu... |
cdj3lem2b 30700 | Lemma for ~ cdj3i . The f... |
cdj3lem3 30701 | Lemma for ~ cdj3i . Value... |
cdj3lem3a 30702 | Lemma for ~ cdj3i . Closu... |
cdj3lem3b 30703 | Lemma for ~ cdj3i . The s... |
cdj3i 30704 | Two ways to express " ` A ... |
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here | |
mathbox 30705 | (_This theorem is a dummy ... |
sa-abvi 30706 | A theorem about the univer... |
xfree 30707 | A partial converse to ~ 19... |
xfree2 30708 | A partial converse to ~ 19... |
addltmulALT 30709 | A proof readability experi... |
bian1d 30710 | Adding a superfluous conju... |
or3di 30711 | Distributive law for disju... |
or3dir 30712 | Distributive law for disju... |
3o1cs 30713 | Deduction eliminating disj... |
3o2cs 30714 | Deduction eliminating disj... |
3o3cs 30715 | Deduction eliminating disj... |
sbc2iedf 30716 | Conversion of implicit sub... |
rspc2daf 30717 | Double restricted speciali... |
nelbOLDOLD 30718 | Obsolete version of ~ nelb... |
ralcom4f 30719 | Commutation of restricted ... |
rexcom4f 30720 | Commutation of restricted ... |
19.9d2rf 30721 | A deduction version of one... |
19.9d2r 30722 | A deduction version of one... |
r19.29ffa 30723 | A commonly used pattern ba... |
eqtrb 30724 | A transposition of equalit... |
opsbc2ie 30725 | Conversion of implicit sub... |
opreu2reuALT 30726 | Correspondence between uni... |
2reucom 30729 | Double restricted existent... |
2reu2rex1 30730 | Double restricted existent... |
2reureurex 30731 | Double restricted existent... |
2reu2reu2 30732 | Double restricted existent... |
opreu2reu1 30733 | Equivalent definition of t... |
sq2reunnltb 30734 | There exists a unique deco... |
addsqnot2reu 30735 | For each complex number ` ... |
sbceqbidf 30736 | Equality theorem for class... |
sbcies 30737 | A special version of class... |
mo5f 30738 | Alternate definition of "a... |
nmo 30739 | Negation of "at most one".... |
reuxfrdf 30740 | Transfer existential uniqu... |
rexunirn 30741 | Restricted existential qua... |
rmoxfrd 30742 | Transfer "at most one" res... |
rmoun 30743 | "At most one" restricted e... |
rmounid 30744 | A case where an "at most o... |
dmrab 30745 | Domain of a restricted cla... |
difrab2 30746 | Difference of two restrict... |
rabexgfGS 30747 | Separation Scheme in terms... |
rabsnel 30748 | Truth implied by equality ... |
rabeqsnd 30749 | Conditions for a restricte... |
eqrrabd 30750 | Deduce equality with a res... |
foresf1o 30751 | From a surjective function... |
rabfodom 30752 | Domination relation for re... |
abrexdomjm 30753 | An indexed set is dominate... |
abrexdom2jm 30754 | An indexed set is dominate... |
abrexexd 30755 | Existence of a class abstr... |
elabreximd 30756 | Class substitution in an i... |
elabreximdv 30757 | Class substitution in an i... |
abrexss 30758 | A necessary condition for ... |
elunsn 30759 | Elementhood to a union wit... |
nelun 30760 | Negated membership for a u... |
snsssng 30761 | If a singleton is a subset... |
rabss3d 30762 | Subclass law for restricte... |
inin 30763 | Intersection with an inter... |
inindif 30764 | See ~ inundif . (Contribu... |
difininv 30765 | Condition for the intersec... |
difeq 30766 | Rewriting an equation with... |
eqdif 30767 | If both set differences of... |
undif5 30768 | An equality involving clas... |
indifbi 30769 | Two ways to express equali... |
diffib 30770 | Case where ~ diffi is a bi... |
difxp1ss 30771 | Difference law for Cartesi... |
difxp2ss 30772 | Difference law for Cartesi... |
undifr 30773 | Union of complementary par... |
indifundif 30774 | A remarkable equation with... |
elpwincl1 30775 | Closure of intersection wi... |
elpwdifcl 30776 | Closure of class differenc... |
elpwiuncl 30777 | Closure of indexed union w... |
eqsnd 30778 | Deduce that a set is a sin... |
elpreq 30779 | Equality wihin a pair. (C... |
nelpr 30780 | A set ` A ` not in a pair ... |
inpr0 30781 | Rewrite an empty intersect... |
neldifpr1 30782 | The first element of a pai... |
neldifpr2 30783 | The second element of a pa... |
unidifsnel 30784 | The other element of a pai... |
unidifsnne 30785 | The other element of a pai... |
ifeqeqx 30786 | An equality theorem tailor... |
elimifd 30787 | Elimination of a condition... |
elim2if 30788 | Elimination of two conditi... |
elim2ifim 30789 | Elimination of two conditi... |
ifeq3da 30790 | Given an expression ` C ` ... |
uniinn0 30791 | Sufficient and necessary c... |
uniin1 30792 | Union of intersection. Ge... |
uniin2 30793 | Union of intersection. Ge... |
difuncomp 30794 | Express a class difference... |
elpwunicl 30795 | Closure of a set union wit... |
cbviunf 30796 | Rule used to change the bo... |
iuneq12daf 30797 | Equality deduction for ind... |
iunin1f 30798 | Indexed union of intersect... |
ssiun3 30799 | Subset equivalence for an ... |
ssiun2sf 30800 | Subset relationship for an... |
iuninc 30801 | The union of an increasing... |
iundifdifd 30802 | The intersection of a set ... |
iundifdif 30803 | The intersection of a set ... |
iunrdx 30804 | Re-index an indexed union.... |
iunpreima 30805 | Preimage of an indexed uni... |
iunrnmptss 30806 | A subset relation for an i... |
iunxunsn 30807 | Appending a set to an inde... |
iunxunpr 30808 | Appending two sets to an i... |
iinabrex 30809 | Rewriting an indexed inter... |
disjnf 30810 | In case ` x ` is not free ... |
cbvdisjf 30811 | Change bound variables in ... |
disjss1f 30812 | A subset of a disjoint col... |
disjeq1f 30813 | Equality theorem for disjo... |
disjxun0 30814 | Simplify a disjoint union.... |
disjdifprg 30815 | A trivial partition into a... |
disjdifprg2 30816 | A trivial partition of a s... |
disji2f 30817 | Property of a disjoint col... |
disjif 30818 | Property of a disjoint col... |
disjorf 30819 | Two ways to say that a col... |
disjorsf 30820 | Two ways to say that a col... |
disjif2 30821 | Property of a disjoint col... |
disjabrex 30822 | Rewriting a disjoint colle... |
disjabrexf 30823 | Rewriting a disjoint colle... |
disjpreima 30824 | A preimage of a disjoint s... |
disjrnmpt 30825 | Rewriting a disjoint colle... |
disjin 30826 | If a collection is disjoin... |
disjin2 30827 | If a collection is disjoin... |
disjxpin 30828 | Derive a disjunction over ... |
iundisjf 30829 | Rewrite a countable union ... |
iundisj2f 30830 | A disjoint union is disjoi... |
disjrdx 30831 | Re-index a disjunct collec... |
disjex 30832 | Two ways to say that two c... |
disjexc 30833 | A variant of ~ disjex , ap... |
disjunsn 30834 | Append an element to a dis... |
disjun0 30835 | Adding the empty element p... |
disjiunel 30836 | A set of elements B of a d... |
disjuniel 30837 | A set of elements B of a d... |
xpdisjres 30838 | Restriction of a constant ... |
opeldifid 30839 | Ordered pair elementhood o... |
difres 30840 | Case when class difference... |
imadifxp 30841 | Image of the difference wi... |
relfi 30842 | A relation (set) is finite... |
reldisjun 30843 | Split a relation into two ... |
0res 30844 | Restriction of the empty f... |
funresdm1 30845 | Restriction of a disjoint ... |
fnunres1 30846 | Restriction of a disjoint ... |
fcoinver 30847 | Build an equivalence relat... |
fcoinvbr 30848 | Binary relation for the eq... |
brabgaf 30849 | The law of concretion for ... |
brelg 30850 | Two things in a binary rel... |
br8d 30851 | Substitution for an eight-... |
opabdm 30852 | Domain of an ordered-pair ... |
opabrn 30853 | Range of an ordered-pair c... |
opabssi 30854 | Sufficient condition for a... |
opabid2ss 30855 | One direction of ~ opabid2... |
ssrelf 30856 | A subclass relationship de... |
eqrelrd2 30857 | A version of ~ eqrelrdv2 w... |
erbr3b 30858 | Biconditional for equivale... |
iunsnima 30859 | Image of a singleton by an... |
iunsnima2 30860 | Version of ~ iunsnima with... |
ac6sf2 30861 | Alternate version of ~ ac6... |
fnresin 30862 | Restriction of a function ... |
f1o3d 30863 | Describe an implicit one-t... |
eldmne0 30864 | A function of nonempty dom... |
f1rnen 30865 | Equinumerosity of the rang... |
rinvf1o 30866 | Sufficient conditions for ... |
fresf1o 30867 | Conditions for a restricti... |
nfpconfp 30868 | The set of fixed points of... |
fmptco1f1o 30869 | The action of composing (t... |
cofmpt2 30870 | Express composition of a m... |
f1mptrn 30871 | Express injection for a ma... |
dfimafnf 30872 | Alternate definition of th... |
funimass4f 30873 | Membership relation for th... |
elimampt 30874 | Membership in the image of... |
suppss2f 30875 | Show that the support of a... |
fovcld 30876 | Closure law for an operati... |
ofrn 30877 | The range of the function ... |
ofrn2 30878 | The range of the function ... |
off2 30879 | The function operation pro... |
ofresid 30880 | Applying an operation rest... |
fimarab 30881 | Expressing the image of a ... |
unipreima 30882 | Preimage of a class union.... |
opfv 30883 | Value of a function produc... |
xppreima 30884 | The preimage of a Cartesia... |
2ndimaxp 30885 | Image of a cartesian produ... |
djussxp2 30886 | Stronger version of ~ djus... |
2ndresdju 30887 | The ` 2nd ` function restr... |
2ndresdjuf1o 30888 | The ` 2nd ` function restr... |
xppreima2 30889 | The preimage of a Cartesia... |
elunirn2 30890 | Condition for the membersh... |
abfmpunirn 30891 | Membership in a union of a... |
rabfmpunirn 30892 | Membership in a union of a... |
abfmpeld 30893 | Membership in an element o... |
abfmpel 30894 | Membership in an element o... |
fmptdF 30895 | Domain and codomain of the... |
fmptcof2 30896 | Composition of two functio... |
fcomptf 30897 | Express composition of two... |
acunirnmpt 30898 | Axiom of choice for the un... |
acunirnmpt2 30899 | Axiom of choice for the un... |
acunirnmpt2f 30900 | Axiom of choice for the un... |
aciunf1lem 30901 | Choice in an index union. ... |
aciunf1 30902 | Choice in an index union. ... |
ofoprabco 30903 | Function operation as a co... |
ofpreima 30904 | Express the preimage of a ... |
ofpreima2 30905 | Express the preimage of a ... |
funcnvmpt 30906 | Condition for a function i... |
funcnv5mpt 30907 | Two ways to say that a fun... |
funcnv4mpt 30908 | Two ways to say that a fun... |
preimane 30909 | Different elements have di... |
fnpreimac 30910 | Choose a set ` x ` contain... |
fgreu 30911 | Exactly one point of a fun... |
fcnvgreu 30912 | If the converse of a relat... |
rnmposs 30913 | The range of an operation ... |
mptssALT 30914 | Deduce subset relation of ... |
dfcnv2 30915 | Alternative definition of ... |
fnimatp 30916 | The image of an unordered ... |
fnunres2 30917 | Restriction of a disjoint ... |
mpomptxf 30918 | Express a two-argument fun... |
suppovss 30919 | A bound for the support of... |
fvdifsupp 30920 | Function value is zero out... |
fmptssfisupp 30921 | The restriction of a mappi... |
suppiniseg 30922 | Relation between the suppo... |
fsuppinisegfi 30923 | The initial segment ` ( ``... |
fressupp 30924 | The restriction of a funct... |
fdifsuppconst 30925 | A function is a zero const... |
ressupprn 30926 | The range of a function re... |
supppreima 30927 | Express the support of a f... |
fsupprnfi 30928 | Finite support implies fin... |
cosnopne 30929 | Composition of two ordered... |
cosnop 30930 | Composition of two ordered... |
cnvprop 30931 | Converse of a pair of orde... |
brprop 30932 | Binary relation for a pair... |
mptprop 30933 | Rewrite pairs of ordered p... |
coprprop 30934 | Composition of two pairs o... |
gtiso 30935 | Two ways to write a strict... |
isoun 30936 | Infer an isomorphism from ... |
disjdsct 30937 | A disjoint collection is d... |
df1stres 30938 | Definition for a restricti... |
df2ndres 30939 | Definition for a restricti... |
1stpreimas 30940 | The preimage of a singleto... |
1stpreima 30941 | The preimage by ` 1st ` is... |
2ndpreima 30942 | The preimage by ` 2nd ` is... |
curry2ima 30943 | The image of a curried fun... |
preiman0 30944 | The preimage of a nonempty... |
intimafv 30945 | The intersection of an ima... |
supssd 30946 | Inequality deduction for s... |
infssd 30947 | Inequality deduction for i... |
imafi2 30948 | The image by a finite set ... |
unifi3 30949 | If a union is finite, then... |
snct 30950 | A singleton is countable. ... |
prct 30951 | An unordered pair is count... |
mpocti 30952 | An operation is countable ... |
abrexct 30953 | An image set of a countabl... |
mptctf 30954 | A countable mapping set is... |
abrexctf 30955 | An image set of a countabl... |
padct 30956 | Index a countable set with... |
cnvoprabOLD 30957 | The converse of a class ab... |
f1od2 30958 | Sufficient condition for a... |
fcobij 30959 | Composing functions with a... |
fcobijfs 30960 | Composing finitely support... |
suppss3 30961 | Deduce a function's suppor... |
fsuppcurry1 30962 | Finite support of a currie... |
fsuppcurry2 30963 | Finite support of a currie... |
offinsupp1 30964 | Finite support for a funct... |
ffs2 30965 | Rewrite a function's suppo... |
ffsrn 30966 | The range of a finitely su... |
resf1o 30967 | Restriction of functions t... |
maprnin 30968 | Restricting the range of t... |
fpwrelmapffslem 30969 | Lemma for ~ fpwrelmapffs .... |
fpwrelmap 30970 | Define a canonical mapping... |
fpwrelmapffs 30971 | Define a canonical mapping... |
creq0 30972 | The real representation of... |
1nei 30973 | The imaginary unit ` _i ` ... |
1neg1t1neg1 30974 | An integer unit times itse... |
nnmulge 30975 | Multiplying by a positive ... |
lt2addrd 30976 | If the right-hand side of ... |
xrlelttric 30977 | Trichotomy law for extende... |
xaddeq0 30978 | Two extended reals which a... |
xrinfm 30979 | The extended real numbers ... |
le2halvesd 30980 | A sum is less than the who... |
xraddge02 30981 | A number is less than or e... |
xrge0addge 30982 | A number is less than or e... |
xlt2addrd 30983 | If the right-hand side of ... |
xrsupssd 30984 | Inequality deduction for s... |
xrge0infss 30985 | Any subset of nonnegative ... |
xrge0infssd 30986 | Inequality deduction for i... |
xrge0addcld 30987 | Nonnegative extended reals... |
xrge0subcld 30988 | Condition for closure of n... |
infxrge0lb 30989 | A member of a set of nonne... |
infxrge0glb 30990 | The infimum of a set of no... |
infxrge0gelb 30991 | The infimum of a set of no... |
xrofsup 30992 | The supremum is preserved ... |
supxrnemnf 30993 | The supremum of a nonempty... |
xnn0gt0 30994 | Nonzero extended nonnegati... |
xnn01gt 30995 | An extended nonnegative in... |
nn0xmulclb 30996 | Finite multiplication in t... |
joiniooico 30997 | Disjoint joining an open i... |
ubico 30998 | A right-open interval does... |
xeqlelt 30999 | Equality in terms of 'less... |
eliccelico 31000 | Relate elementhood to a cl... |
elicoelioo 31001 | Relate elementhood to a cl... |
iocinioc2 31002 | Intersection between two o... |
xrdifh 31003 | Class difference of a half... |
iocinif 31004 | Relate intersection of two... |
difioo 31005 | The difference between two... |
difico 31006 | The difference between two... |
uzssico 31007 | Upper integer sets are a s... |
fz2ssnn0 31008 | A finite set of sequential... |
nndiffz1 31009 | Upper set of the positive ... |
ssnnssfz 31010 | For any finite subset of `... |
fzne1 31011 | Elementhood in a finite se... |
fzm1ne1 31012 | Elementhood of an integer ... |
fzspl 31013 | Split the last element of ... |
fzdif2 31014 | Split the last element of ... |
fzodif2 31015 | Split the last element of ... |
fzodif1 31016 | Set difference of two half... |
fzsplit3 31017 | Split a finite interval of... |
bcm1n 31018 | The proportion of one bino... |
iundisjfi 31019 | Rewrite a countable union ... |
iundisj2fi 31020 | A disjoint union is disjoi... |
iundisjcnt 31021 | Rewrite a countable union ... |
iundisj2cnt 31022 | A countable disjoint union... |
fzone1 31023 | Elementhood in a half-open... |
fzom1ne1 31024 | Elementhood in a half-open... |
f1ocnt 31025 | Given a countable set ` A ... |
fz1nnct 31026 | NN and integer ranges star... |
fz1nntr 31027 | NN and integer ranges star... |
hashunif 31028 | The cardinality of a disjo... |
hashxpe 31029 | The size of the Cartesian ... |
hashgt1 31030 | Restate "set contains at l... |
dvdszzq 31031 | Divisibility for an intege... |
prmdvdsbc 31032 | Condition for a prime numb... |
numdenneg 31033 | Numerator and denominator ... |
divnumden2 31034 | Calculate the reduced form... |
nnindf 31035 | Principle of Mathematical ... |
nn0min 31036 | Extracting the minimum pos... |
subne0nn 31037 | A nonnegative difference i... |
ltesubnnd 31038 | Subtracting an integer num... |
fprodeq02 31039 | If one of the factors is z... |
pr01ssre 31040 | The range of the indicator... |
fprodex01 31041 | A product of factors equal... |
prodpr 31042 | A product over a pair is t... |
prodtp 31043 | A product over a triple is... |
fsumub 31044 | An upper bound for a term ... |
fsumiunle 31045 | Upper bound for a sum of n... |
dfdec100 31046 | Split the hundreds from a ... |
dp2eq1 31049 | Equality theorem for the d... |
dp2eq2 31050 | Equality theorem for the d... |
dp2eq1i 31051 | Equality theorem for the d... |
dp2eq2i 31052 | Equality theorem for the d... |
dp2eq12i 31053 | Equality theorem for the d... |
dp20u 31054 | Add a zero in the tenths (... |
dp20h 31055 | Add a zero in the unit pla... |
dp2cl 31056 | Closure for the decimal fr... |
dp2clq 31057 | Closure for a decimal frac... |
rpdp2cl 31058 | Closure for a decimal frac... |
rpdp2cl2 31059 | Closure for a decimal frac... |
dp2lt10 31060 | Decimal fraction builds re... |
dp2lt 31061 | Comparing two decimal frac... |
dp2ltsuc 31062 | Comparing a decimal fracti... |
dp2ltc 31063 | Comparing two decimal expa... |
dpval 31066 | Define the value of the de... |
dpcl 31067 | Prove that the closure of ... |
dpfrac1 31068 | Prove a simple equivalence... |
dpval2 31069 | Value of the decimal point... |
dpval3 31070 | Value of the decimal point... |
dpmul10 31071 | Multiply by 10 a decimal e... |
decdiv10 31072 | Divide a decimal number by... |
dpmul100 31073 | Multiply by 100 a decimal ... |
dp3mul10 31074 | Multiply by 10 a decimal e... |
dpmul1000 31075 | Multiply by 1000 a decimal... |
dpval3rp 31076 | Value of the decimal point... |
dp0u 31077 | Add a zero in the tenths p... |
dp0h 31078 | Remove a zero in the units... |
rpdpcl 31079 | Closure of the decimal poi... |
dplt 31080 | Comparing two decimal expa... |
dplti 31081 | Comparing a decimal expans... |
dpgti 31082 | Comparing a decimal expans... |
dpltc 31083 | Comparing two decimal inte... |
dpexpp1 31084 | Add one zero to the mantis... |
0dp2dp 31085 | Multiply by 10 a decimal e... |
dpadd2 31086 | Addition with one decimal,... |
dpadd 31087 | Addition with one decimal.... |
dpadd3 31088 | Addition with two decimals... |
dpmul 31089 | Multiplication with one de... |
dpmul4 31090 | An upper bound to multipli... |
threehalves 31091 | Example theorem demonstrat... |
1mhdrd 31092 | Example theorem demonstrat... |
xdivval 31095 | Value of division: the (un... |
xrecex 31096 | Existence of reciprocal of... |
xmulcand 31097 | Cancellation law for exten... |
xreceu 31098 | Existential uniqueness of ... |
xdivcld 31099 | Closure law for the extend... |
xdivcl 31100 | Closure law for the extend... |
xdivmul 31101 | Relationship between divis... |
rexdiv 31102 | The extended real division... |
xdivrec 31103 | Relationship between divis... |
xdivid 31104 | A number divided by itself... |
xdiv0 31105 | Division into zero is zero... |
xdiv0rp 31106 | Division into zero is zero... |
eliccioo 31107 | Membership in a closed int... |
elxrge02 31108 | Elementhood in the set of ... |
xdivpnfrp 31109 | Plus infinity divided by a... |
rpxdivcld 31110 | Closure law for extended d... |
xrpxdivcld 31111 | Closure law for extended d... |
wrdfd 31112 | A word is a zero-based seq... |
wrdres 31113 | Condition for the restrict... |
wrdsplex 31114 | Existence of a split of a ... |
pfx1s2 31115 | The prefix of length 1 of ... |
pfxrn2 31116 | The range of a prefix of a... |
pfxrn3 31117 | Express the range of a pre... |
pfxf1 31118 | Condition for a prefix to ... |
s1f1 31119 | Conditions for a length 1 ... |
s2rn 31120 | Range of a length 2 string... |
s2f1 31121 | Conditions for a length 2 ... |
s3rn 31122 | Range of a length 3 string... |
s3f1 31123 | Conditions for a length 3 ... |
s3clhash 31124 | Closure of the words of le... |
ccatf1 31125 | Conditions for a concatena... |
pfxlsw2ccat 31126 | Reconstruct a word from it... |
wrdt2ind 31127 | Perform an induction over ... |
swrdrn2 31128 | The range of a subword is ... |
swrdrn3 31129 | Express the range of a sub... |
swrdf1 31130 | Condition for a subword to... |
swrdrndisj 31131 | Condition for the range of... |
splfv3 31132 | Symbols to the right of a ... |
1cshid 31133 | Cyclically shifting a sing... |
cshw1s2 31134 | Cyclically shifting a leng... |
cshwrnid 31135 | Cyclically shifting a word... |
cshf1o 31136 | Condition for the cyclic s... |
ressplusf 31137 | The group operation functi... |
ressnm 31138 | The norm in a restricted s... |
abvpropd2 31139 | Weaker version of ~ abvpro... |
oppgle 31140 | less-than relation of an o... |
oppgleOLD 31141 | Obsolete version of ~ oppg... |
oppglt 31142 | less-than relation of an o... |
ressprs 31143 | The restriction of a prose... |
oduprs 31144 | Being a proset is a self-d... |
posrasymb 31145 | A poset ordering is asymet... |
resspos 31146 | The restriction of a Poset... |
resstos 31147 | The restriction of a Toset... |
odutos 31148 | Being a toset is a self-du... |
tlt2 31149 | In a Toset, two elements m... |
tlt3 31150 | In a Toset, two elements m... |
trleile 31151 | In a Toset, two elements m... |
toslublem 31152 | Lemma for ~ toslub and ~ x... |
toslub 31153 | In a toset, the lowest upp... |
tosglblem 31154 | Lemma for ~ tosglb and ~ x... |
tosglb 31155 | Same theorem as ~ toslub ,... |
clatp0cl 31156 | The poset zero of a comple... |
clatp1cl 31157 | The poset one of a complet... |
mntoval 31162 | Operation value of the mon... |
ismnt 31163 | Express the statement " ` ... |
ismntd 31164 | Property of being a monoto... |
mntf 31165 | A monotone function is a f... |
mgcoval 31166 | Operation value of the mon... |
mgcval 31167 | Monotone Galois connection... |
mgcf1 31168 | The lower adjoint ` F ` of... |
mgcf2 31169 | The upper adjoint ` G ` of... |
mgccole1 31170 | An inequality for the kern... |
mgccole2 31171 | Inequality for the closure... |
mgcmnt1 31172 | The lower adjoint ` F ` of... |
mgcmnt2 31173 | The upper adjoint ` G ` of... |
mgcmntco 31174 | A Galois connection like s... |
dfmgc2lem 31175 | Lemma for dfmgc2, backward... |
dfmgc2 31176 | Alternate definition of th... |
mgcmnt1d 31177 | Galois connection implies ... |
mgcmnt2d 31178 | Galois connection implies ... |
mgccnv 31179 | The inverse Galois connect... |
pwrssmgc 31180 | Given a function ` F ` , e... |
mgcf1olem1 31181 | Property of a Galois conne... |
mgcf1olem2 31182 | Property of a Galois conne... |
mgcf1o 31183 | Given a Galois connection,... |
xrs0 31186 | The zero of the extended r... |
xrslt 31187 | The "strictly less than" r... |
xrsinvgval 31188 | The inversion operation in... |
xrsmulgzz 31189 | The "multiple" function in... |
xrstos 31190 | The extended real numbers ... |
xrsclat 31191 | The extended real numbers ... |
xrsp0 31192 | The poset 0 of the extende... |
xrsp1 31193 | The poset 1 of the extende... |
ressmulgnn 31194 | Values for the group multi... |
ressmulgnn0 31195 | Values for the group multi... |
xrge0base 31196 | The base of the extended n... |
xrge00 31197 | The zero of the extended n... |
xrge0plusg 31198 | The additive law of the ex... |
xrge0le 31199 | The "less than or equal to... |
xrge0mulgnn0 31200 | The group multiple functio... |
xrge0addass 31201 | Associativity of extended ... |
xrge0addgt0 31202 | The sum of nonnegative and... |
xrge0adddir 31203 | Right-distributivity of ex... |
xrge0adddi 31204 | Left-distributivity of ext... |
xrge0npcan 31205 | Extended nonnegative real ... |
fsumrp0cl 31206 | Closure of a finite sum of... |
abliso 31207 | The image of an Abelian gr... |
gsumsubg 31208 | The group sum in a subgrou... |
gsumsra 31209 | The group sum in a subring... |
gsummpt2co 31210 | Split a finite sum into a ... |
gsummpt2d 31211 | Express a finite sum over ... |
lmodvslmhm 31212 | Scalar multiplication in a... |
gsumvsmul1 31213 | Pull a scalar multiplicati... |
gsummptres 31214 | Extend a finite group sum ... |
gsummptres2 31215 | Extend a finite group sum ... |
gsumzresunsn 31216 | Append an element to a fin... |
gsumpart 31217 | Express a group sum as a d... |
gsumhashmul 31218 | Express a group sum by gro... |
xrge0tsmsd 31219 | Any finite or infinite sum... |
xrge0tsmsbi 31220 | Any limit of a finite or i... |
xrge0tsmseq 31221 | Any limit of a finite or i... |
cntzun 31222 | The centralizer of a union... |
cntzsnid 31223 | The centralizer of the ide... |
cntrcrng 31224 | The center of a ring is a ... |
isomnd 31229 | A (left) ordered monoid is... |
isogrp 31230 | A (left-)ordered group is ... |
ogrpgrp 31231 | A left-ordered group is a ... |
omndmnd 31232 | A left-ordered monoid is a... |
omndtos 31233 | A left-ordered monoid is a... |
omndadd 31234 | In an ordered monoid, the ... |
omndaddr 31235 | In a right ordered monoid,... |
omndadd2d 31236 | In a commutative left orde... |
omndadd2rd 31237 | In a left- and right- orde... |
submomnd 31238 | A submonoid of an ordered ... |
xrge0omnd 31239 | The nonnegative extended r... |
omndmul2 31240 | In an ordered monoid, the ... |
omndmul3 31241 | In an ordered monoid, the ... |
omndmul 31242 | In a commutative ordered m... |
ogrpinv0le 31243 | In an ordered group, the o... |
ogrpsub 31244 | In an ordered group, the o... |
ogrpaddlt 31245 | In an ordered group, stric... |
ogrpaddltbi 31246 | In a right ordered group, ... |
ogrpaddltrd 31247 | In a right ordered group, ... |
ogrpaddltrbid 31248 | In a right ordered group, ... |
ogrpsublt 31249 | In an ordered group, stric... |
ogrpinv0lt 31250 | In an ordered group, the o... |
ogrpinvlt 31251 | In an ordered group, the o... |
gsumle 31252 | A finite sum in an ordered... |
symgfcoeu 31253 | Uniqueness property of per... |
symgcom 31254 | Two permutations ` X ` and... |
symgcom2 31255 | Two permutations ` X ` and... |
symgcntz 31256 | All elements of a (finite)... |
odpmco 31257 | The composition of two odd... |
symgsubg 31258 | The value of the group sub... |
pmtrprfv2 31259 | In a transposition of two ... |
pmtrcnel 31260 | Composing a permutation ` ... |
pmtrcnel2 31261 | Variation on ~ pmtrcnel . ... |
pmtrcnelor 31262 | Composing a permutation ` ... |
pmtridf1o 31263 | Transpositions of ` X ` an... |
pmtridfv1 31264 | Value at X of the transpos... |
pmtridfv2 31265 | Value at Y of the transpos... |
psgnid 31266 | Permutation sign of the id... |
psgndmfi 31267 | For a finite base set, the... |
pmtrto1cl 31268 | Useful lemma for the follo... |
psgnfzto1stlem 31269 | Lemma for ~ psgnfzto1st . ... |
fzto1stfv1 31270 | Value of our permutation `... |
fzto1st1 31271 | Special case where the per... |
fzto1st 31272 | The function moving one el... |
fzto1stinvn 31273 | Value of the inverse of ou... |
psgnfzto1st 31274 | The permutation sign for m... |
tocycval 31277 | Value of the cycle builder... |
tocycfv 31278 | Function value of a permut... |
tocycfvres1 31279 | A cyclic permutation is a ... |
tocycfvres2 31280 | A cyclic permutation is th... |
cycpmfvlem 31281 | Lemma for ~ cycpmfv1 and ~... |
cycpmfv1 31282 | Value of a cycle function ... |
cycpmfv2 31283 | Value of a cycle function ... |
cycpmfv3 31284 | Values outside of the orbi... |
cycpmcl 31285 | Cyclic permutations are pe... |
tocycf 31286 | The permutation cycle buil... |
tocyc01 31287 | Permutation cycles built f... |
cycpm2tr 31288 | A cyclic permutation of 2 ... |
cycpm2cl 31289 | Closure for the 2-cycles. ... |
cyc2fv1 31290 | Function value of a 2-cycl... |
cyc2fv2 31291 | Function value of a 2-cycl... |
trsp2cyc 31292 | Exhibit the word a transpo... |
cycpmco2f1 31293 | The word U used in ~ cycpm... |
cycpmco2rn 31294 | The orbit of the compositi... |
cycpmco2lem1 31295 | Lemma for ~ cycpmco2 . (C... |
cycpmco2lem2 31296 | Lemma for ~ cycpmco2 . (C... |
cycpmco2lem3 31297 | Lemma for ~ cycpmco2 . (C... |
cycpmco2lem4 31298 | Lemma for ~ cycpmco2 . (C... |
cycpmco2lem5 31299 | Lemma for ~ cycpmco2 . (C... |
cycpmco2lem6 31300 | Lemma for ~ cycpmco2 . (C... |
cycpmco2lem7 31301 | Lemma for ~ cycpmco2 . (C... |
cycpmco2 31302 | The composition of a cycli... |
cyc2fvx 31303 | Function value of a 2-cycl... |
cycpm3cl 31304 | Closure of the 3-cycles in... |
cycpm3cl2 31305 | Closure of the 3-cycles in... |
cyc3fv1 31306 | Function value of a 3-cycl... |
cyc3fv2 31307 | Function value of a 3-cycl... |
cyc3fv3 31308 | Function value of a 3-cycl... |
cyc3co2 31309 | Represent a 3-cycle as a c... |
cycpmconjvlem 31310 | Lemma for ~ cycpmconjv . ... |
cycpmconjv 31311 | A formula for computing co... |
cycpmrn 31312 | The range of the word used... |
tocyccntz 31313 | All elements of a (finite)... |
evpmval 31314 | Value of the set of even p... |
cnmsgn0g 31315 | The neutral element of the... |
evpmsubg 31316 | The alternating group is a... |
evpmid 31317 | The identity is an even pe... |
altgnsg 31318 | The alternating group ` ( ... |
cyc3evpm 31319 | 3-Cycles are even permutat... |
cyc3genpmlem 31320 | Lemma for ~ cyc3genpm . (... |
cyc3genpm 31321 | The alternating group ` A ... |
cycpmgcl 31322 | Cyclic permutations are pe... |
cycpmconjslem1 31323 | Lemma for ~ cycpmconjs . ... |
cycpmconjslem2 31324 | Lemma for ~ cycpmconjs . ... |
cycpmconjs 31325 | All cycles of the same len... |
cyc3conja 31326 | All 3-cycles are conjugate... |
sgnsv 31329 | The sign mapping. (Contri... |
sgnsval 31330 | The sign value. (Contribu... |
sgnsf 31331 | The sign function. (Contr... |
inftmrel 31336 | The infinitesimal relation... |
isinftm 31337 | Express ` x ` is infinites... |
isarchi 31338 | Express the predicate " ` ... |
pnfinf 31339 | Plus infinity is an infini... |
xrnarchi 31340 | The completed real line is... |
isarchi2 31341 | Alternative way to express... |
submarchi 31342 | A submonoid is archimedean... |
isarchi3 31343 | This is the usual definiti... |
archirng 31344 | Property of Archimedean or... |
archirngz 31345 | Property of Archimedean le... |
archiexdiv 31346 | In an Archimedean group, g... |
archiabllem1a 31347 | Lemma for ~ archiabl : In... |
archiabllem1b 31348 | Lemma for ~ archiabl . (C... |
archiabllem1 31349 | Archimedean ordered groups... |
archiabllem2a 31350 | Lemma for ~ archiabl , whi... |
archiabllem2c 31351 | Lemma for ~ archiabl . (C... |
archiabllem2b 31352 | Lemma for ~ archiabl . (C... |
archiabllem2 31353 | Archimedean ordered groups... |
archiabl 31354 | Archimedean left- and righ... |
isslmd 31357 | The predicate "is a semimo... |
slmdlema 31358 | Lemma for properties of a ... |
lmodslmd 31359 | Left semimodules generaliz... |
slmdcmn 31360 | A semimodule is a commutat... |
slmdmnd 31361 | A semimodule is a monoid. ... |
slmdsrg 31362 | The scalar component of a ... |
slmdbn0 31363 | The base set of a semimodu... |
slmdacl 31364 | Closure of ring addition f... |
slmdmcl 31365 | Closure of ring multiplica... |
slmdsn0 31366 | The set of scalars in a se... |
slmdvacl 31367 | Closure of vector addition... |
slmdass 31368 | Semiring left module vecto... |
slmdvscl 31369 | Closure of scalar product ... |
slmdvsdi 31370 | Distributive law for scala... |
slmdvsdir 31371 | Distributive law for scala... |
slmdvsass 31372 | Associative law for scalar... |
slmd0cl 31373 | The ring zero in a semimod... |
slmd1cl 31374 | The ring unit in a semirin... |
slmdvs1 31375 | Scalar product with ring u... |
slmd0vcl 31376 | The zero vector is a vecto... |
slmd0vlid 31377 | Left identity law for the ... |
slmd0vrid 31378 | Right identity law for the... |
slmd0vs 31379 | Zero times a vector is the... |
slmdvs0 31380 | Anything times the zero ve... |
gsumvsca1 31381 | Scalar product of a finite... |
gsumvsca2 31382 | Scalar product of a finite... |
prmsimpcyc 31383 | A group of prime order is ... |
rngurd 31384 | Deduce the unit of a ring ... |
dvdschrmulg 31385 | In a ring, any multiple of... |
freshmansdream 31386 | For a prime number ` P ` ,... |
frobrhm 31387 | In a commutative ring with... |
ress1r 31388 | ` 1r ` is unaffected by re... |
dvrdir 31389 | Distributive law for the d... |
rdivmuldivd 31390 | Multiplication of two rati... |
ringinvval 31391 | The ring inverse expressed... |
dvrcan5 31392 | Cancellation law for commo... |
subrgchr 31393 | If ` A ` is a subring of `... |
rmfsupp2 31394 | A mapping of a multiplicat... |
primefldchr 31395 | The characteristic of a pr... |
isorng 31400 | An ordered ring is a ring ... |
orngring 31401 | An ordered ring is a ring.... |
orngogrp 31402 | An ordered ring is an orde... |
isofld 31403 | An ordered field is a fiel... |
orngmul 31404 | In an ordered ring, the or... |
orngsqr 31405 | In an ordered ring, all sq... |
ornglmulle 31406 | In an ordered ring, multip... |
orngrmulle 31407 | In an ordered ring, multip... |
ornglmullt 31408 | In an ordered ring, multip... |
orngrmullt 31409 | In an ordered ring, multip... |
orngmullt 31410 | In an ordered ring, the st... |
ofldfld 31411 | An ordered field is a fiel... |
ofldtos 31412 | An ordered field is a tota... |
orng0le1 31413 | In an ordered ring, the ri... |
ofldlt1 31414 | In an ordered field, the r... |
ofldchr 31415 | The characteristic of an o... |
suborng 31416 | Every subring of an ordere... |
subofld 31417 | Every subfield of an order... |
isarchiofld 31418 | Axiom of Archimedes : a ch... |
rhmdvdsr 31419 | A ring homomorphism preser... |
rhmopp 31420 | A ring homomorphism is als... |
elrhmunit 31421 | Ring homomorphisms preserv... |
rhmdvd 31422 | A ring homomorphism preser... |
rhmunitinv 31423 | Ring homomorphisms preserv... |
kerunit 31424 | If a unit element lies in ... |
reldmresv 31427 | The scalar restriction is ... |
resvval 31428 | Value of structure restric... |
resvid2 31429 | General behavior of trivia... |
resvval2 31430 | Value of nontrivial struct... |
resvsca 31431 | Base set of a structure re... |
resvlem 31432 | Other elements of a scalar... |
resvlemOLD 31433 | Obsolete version of ~ resv... |
resvbas 31434 | ` Base ` is unaffected by ... |
resvbasOLD 31435 | Obsolete proof of ~ resvba... |
resvplusg 31436 | ` +g ` is unaffected by sc... |
resvplusgOLD 31437 | Obsolete proof of ~ resvpl... |
resvvsca 31438 | ` .s ` is unaffected by sc... |
resvvscaOLD 31439 | Obsolete proof of ~ resvvs... |
resvmulr 31440 | ` .r ` is unaffected by sc... |
resvmulrOLD 31441 | Obsolete proof of ~ resvmu... |
resv0g 31442 | ` 0g ` is unaffected by sc... |
resv1r 31443 | ` 1r ` is unaffected by sc... |
resvcmn 31444 | Scalar restriction preserv... |
gzcrng 31445 | The gaussian integers form... |
reofld 31446 | The real numbers form an o... |
nn0omnd 31447 | The nonnegative integers f... |
rearchi 31448 | The field of the real numb... |
nn0archi 31449 | The monoid of the nonnegat... |
xrge0slmod 31450 | The extended nonnegative r... |
qusker 31451 | The kernel of a quotient m... |
eqgvscpbl 31452 | The left coset equivalence... |
qusvscpbl 31453 | The quotient map distribut... |
qusscaval 31454 | Value of the scalar multip... |
imaslmod 31455 | The image structure of a l... |
quslmod 31456 | If ` G ` is a submodule in... |
quslmhm 31457 | If ` G ` is a submodule of... |
ecxpid 31458 | The equivalence class of a... |
eqg0el 31459 | Equivalence class of a quo... |
qsxpid 31460 | The quotient set of a cart... |
qusxpid 31461 | The Group quotient equival... |
qustriv 31462 | The quotient of a group ` ... |
qustrivr 31463 | Converse of ~ qustriv . (... |
znfermltl 31464 | Fermat's little theorem in... |
islinds5 31465 | A set is linearly independ... |
ellspds 31466 | Variation on ~ ellspd . (... |
0ellsp 31467 | Zero is in all spans. (Co... |
0nellinds 31468 | The group identity cannot ... |
rspsnel 31469 | Membership in a principal ... |
rspsnid 31470 | A principal ideal contains... |
elrsp 31471 | Write the elements of a ri... |
rspidlid 31472 | The ideal span of an ideal... |
pidlnz 31473 | A principal ideal generate... |
lbslsp 31474 | Any element of a left modu... |
lindssn 31475 | Any singleton of a nonzero... |
lindflbs 31476 | Conditions for an independ... |
linds2eq 31477 | Deduce equality of element... |
lindfpropd 31478 | Property deduction for lin... |
lindspropd 31479 | Property deduction for lin... |
elgrplsmsn 31480 | Membership in a sumset wit... |
lsmsnorb 31481 | The sumset of a group with... |
lsmsnorb2 31482 | The sumset of a single ele... |
elringlsm 31483 | Membership in a product of... |
elringlsmd 31484 | Membership in a product of... |
ringlsmss 31485 | Closure of the product of ... |
ringlsmss1 31486 | The product of an ideal ` ... |
ringlsmss2 31487 | The product with an ideal ... |
lsmsnpridl 31488 | The product of the ring wi... |
lsmsnidl 31489 | The product of the ring wi... |
lsmidllsp 31490 | The sum of two ideals is t... |
lsmidl 31491 | The sum of two ideals is a... |
lsmssass 31492 | Group sum is associative, ... |
grplsm0l 31493 | Sumset with the identity s... |
grplsmid 31494 | The direct sum of an eleme... |
quslsm 31495 | Express the image by the q... |
qusima 31496 | The image of a subgroup by... |
nsgqus0 31497 | A normal subgroup ` N ` is... |
nsgmgclem 31498 | Lemma for ~ nsgmgc . (Con... |
nsgmgc 31499 | There is a monotone Galois... |
nsgqusf1olem1 31500 | Lemma for ~ nsgqusf1o . (... |
nsgqusf1olem2 31501 | Lemma for ~ nsgqusf1o . (... |
nsgqusf1olem3 31502 | Lemma for ~ nsgqusf1o . (... |
nsgqusf1o 31503 | The canonical projection h... |
intlidl 31504 | The intersection of a none... |
rhmpreimaidl 31505 | The preimage of an ideal b... |
kerlidl 31506 | The kernel of a ring homom... |
0ringidl 31507 | The zero ideal is the only... |
elrspunidl 31508 | Elementhood to the span of... |
lidlincl 31509 | Ideals are closed under in... |
idlinsubrg 31510 | The intersection between a... |
rhmimaidl 31511 | The image of an ideal ` I ... |
prmidlval 31514 | The class of prime ideals ... |
isprmidl 31515 | The predicate "is a prime ... |
prmidlnr 31516 | A prime ideal is a proper ... |
prmidl 31517 | The main property of a pri... |
prmidl2 31518 | A condition that shows an ... |
idlmulssprm 31519 | Let ` P ` be a prime ideal... |
pridln1 31520 | A proper ideal cannot cont... |
prmidlidl 31521 | A prime ideal is an ideal.... |
prmidlssidl 31522 | Prime ideals as a subset o... |
lidlnsg 31523 | An ideal is a normal subgr... |
cringm4 31524 | Commutative/associative la... |
isprmidlc 31525 | The predicate "is prime id... |
prmidlc 31526 | Property of a prime ideal ... |
0ringprmidl 31527 | The trivial ring does not ... |
prmidl0 31528 | The zero ideal of a commut... |
rhmpreimaprmidl 31529 | The preimage of a prime id... |
qsidomlem1 31530 | If the quotient ring of a ... |
qsidomlem2 31531 | A quotient by a prime idea... |
qsidom 31532 | An ideal ` I ` in the comm... |
mxidlval 31535 | The set of maximal ideals ... |
ismxidl 31536 | The predicate "is a maxima... |
mxidlidl 31537 | A maximal ideal is an idea... |
mxidlnr 31538 | A maximal ideal is proper.... |
mxidlmax 31539 | A maximal ideal is a maxim... |
mxidln1 31540 | One is not contained in an... |
mxidlnzr 31541 | A ring with a maximal idea... |
mxidlprm 31542 | Every maximal ideal is pri... |
ssmxidllem 31543 | The set ` P ` used in the ... |
ssmxidl 31544 | Let ` R ` be a ring, and l... |
krull 31545 | Krull's theorem: Any nonz... |
mxidlnzrb 31546 | A ring is nonzero if and o... |
idlsrgstr 31549 | A constructed semiring of ... |
idlsrgval 31550 | Lemma for ~ idlsrgbas thro... |
idlsrgbas 31551 | Baae of the ideals of a ri... |
idlsrgplusg 31552 | Additive operation of the ... |
idlsrg0g 31553 | The zero ideal is the addi... |
idlsrgmulr 31554 | Multiplicative operation o... |
idlsrgtset 31555 | Topology component of the ... |
idlsrgmulrval 31556 | Value of the ring multipli... |
idlsrgmulrcl 31557 | Ideals of a ring ` R ` are... |
idlsrgmulrss1 31558 | In a commutative ring, the... |
idlsrgmulrss2 31559 | The product of two ideals ... |
idlsrgmulrssin 31560 | In a commutative ring, the... |
idlsrgmnd 31561 | The ideals of a ring form ... |
idlsrgcmnd 31562 | The ideals of a ring form ... |
isufd 31565 | The property of being a Un... |
rprmval 31566 | The prime elements of a ri... |
isrprm 31567 | Property for ` P ` to be a... |
asclmulg 31568 | Apply group multiplication... |
fply1 31569 | Conditions for a function ... |
ply1scleq 31570 | Equality of a constant pol... |
ply1chr 31571 | The characteristic of a po... |
ply1fermltl 31572 | Fermat's little theorem fo... |
sra1r 31573 | The multiplicative neutral... |
sraring 31574 | Condition for a subring al... |
sradrng 31575 | Condition for a subring al... |
srasubrg 31576 | A subring of the original ... |
sralvec 31577 | Given a sub division ring ... |
srafldlvec 31578 | Given a subfield ` F ` of ... |
drgext0g 31579 | The additive neutral eleme... |
drgextvsca 31580 | The scalar multiplication ... |
drgext0gsca 31581 | The additive neutral eleme... |
drgextsubrg 31582 | The scalar field is a subr... |
drgextlsp 31583 | The scalar field is a subs... |
drgextgsum 31584 | Group sum in a division ri... |
lvecdimfi 31585 | Finite version of ~ lvecdi... |
dimval 31588 | The dimension of a vector ... |
dimvalfi 31589 | The dimension of a vector ... |
dimcl 31590 | Closure of the vector spac... |
lvecdim0i 31591 | A vector space of dimensio... |
lvecdim0 31592 | A vector space of dimensio... |
lssdimle 31593 | The dimension of a linear ... |
dimpropd 31594 | If two structures have the... |
rgmoddim 31595 | The left vector space indu... |
frlmdim 31596 | Dimension of a free left m... |
tnglvec 31597 | Augmenting a structure wit... |
tngdim 31598 | Dimension of a left vector... |
rrxdim 31599 | Dimension of the generaliz... |
matdim 31600 | Dimension of the space of ... |
lbslsat 31601 | A nonzero vector ` X ` is ... |
lsatdim 31602 | A line, spanned by a nonze... |
drngdimgt0 31603 | The dimension of a vector ... |
lmhmlvec2 31604 | A homomorphism of left vec... |
kerlmhm 31605 | The kernel of a vector spa... |
imlmhm 31606 | The image of a vector spac... |
lindsunlem 31607 | Lemma for ~ lindsun . (Co... |
lindsun 31608 | Condition for the union of... |
lbsdiflsp0 31609 | The linear spans of two di... |
dimkerim 31610 | Given a linear map ` F ` b... |
qusdimsum 31611 | Let ` W ` be a vector spac... |
fedgmullem1 31612 | Lemma for ~ fedgmul . (Co... |
fedgmullem2 31613 | Lemma for ~ fedgmul . (Co... |
fedgmul 31614 | The multiplicativity formu... |
relfldext 31623 | The field extension is a r... |
brfldext 31624 | The field extension relati... |
ccfldextrr 31625 | The field of the complex n... |
fldextfld1 31626 | A field extension is only ... |
fldextfld2 31627 | A field extension is only ... |
fldextsubrg 31628 | Field extension implies a ... |
fldextress 31629 | Field extension implies a ... |
brfinext 31630 | The finite field extension... |
extdgval 31631 | Value of the field extensi... |
fldextsralvec 31632 | The subring algebra associ... |
extdgcl 31633 | Closure of the field exten... |
extdggt0 31634 | Degrees of field extension... |
fldexttr 31635 | Field extension is a trans... |
fldextid 31636 | The field extension relati... |
extdgid 31637 | A trivial field extension ... |
extdgmul 31638 | The multiplicativity formu... |
finexttrb 31639 | The extension ` E ` of ` K... |
extdg1id 31640 | If the degree of the exten... |
extdg1b 31641 | The degree of the extensio... |
fldextchr 31642 | The characteristic of a su... |
ccfldsrarelvec 31643 | The subring algebra of the... |
ccfldextdgrr 31644 | The degree of the field ex... |
smatfval 31647 | Value of the submatrix. (... |
smatrcl 31648 | Closure of the rectangular... |
smatlem 31649 | Lemma for the next theorem... |
smattl 31650 | Entries of a submatrix, to... |
smattr 31651 | Entries of a submatrix, to... |
smatbl 31652 | Entries of a submatrix, bo... |
smatbr 31653 | Entries of a submatrix, bo... |
smatcl 31654 | Closure of the square subm... |
matmpo 31655 | Write a square matrix as a... |
1smat1 31656 | The submatrix of the ident... |
submat1n 31657 | One case where the submatr... |
submatres 31658 | Special case where the sub... |
submateqlem1 31659 | Lemma for ~ submateq . (C... |
submateqlem2 31660 | Lemma for ~ submateq . (C... |
submateq 31661 | Sufficient condition for t... |
submatminr1 31662 | If we take a submatrix by ... |
lmatval 31665 | Value of the literal matri... |
lmatfval 31666 | Entries of a literal matri... |
lmatfvlem 31667 | Useful lemma to extract li... |
lmatcl 31668 | Closure of the literal mat... |
lmat22lem 31669 | Lemma for ~ lmat22e11 and ... |
lmat22e11 31670 | Entry of a 2x2 literal mat... |
lmat22e12 31671 | Entry of a 2x2 literal mat... |
lmat22e21 31672 | Entry of a 2x2 literal mat... |
lmat22e22 31673 | Entry of a 2x2 literal mat... |
lmat22det 31674 | The determinant of a liter... |
mdetpmtr1 31675 | The determinant of a matri... |
mdetpmtr2 31676 | The determinant of a matri... |
mdetpmtr12 31677 | The determinant of a matri... |
mdetlap1 31678 | A Laplace expansion of the... |
madjusmdetlem1 31679 | Lemma for ~ madjusmdet . ... |
madjusmdetlem2 31680 | Lemma for ~ madjusmdet . ... |
madjusmdetlem3 31681 | Lemma for ~ madjusmdet . ... |
madjusmdetlem4 31682 | Lemma for ~ madjusmdet . ... |
madjusmdet 31683 | Express the cofactor of th... |
mdetlap 31684 | Laplace expansion of the d... |
ist0cld 31685 | The predicate "is a T_0 sp... |
txomap 31686 | Given two open maps ` F ` ... |
qtopt1 31687 | If every equivalence class... |
qtophaus 31688 | If an open map's graph in ... |
circtopn 31689 | The topology of the unit c... |
circcn 31690 | The function gluing the re... |
reff 31691 | For any cover refinement, ... |
locfinreflem 31692 | A locally finite refinemen... |
locfinref 31693 | A locally finite refinemen... |
iscref 31696 | The property that every op... |
crefeq 31697 | Equality theorem for the "... |
creftop 31698 | A space where every open c... |
crefi 31699 | The property that every op... |
crefdf 31700 | A formulation of ~ crefi e... |
crefss 31701 | The "every open cover has ... |
cmpcref 31702 | Equivalent definition of c... |
cmpfiref 31703 | Every open cover of a Comp... |
ldlfcntref 31706 | Every open cover of a Lind... |
ispcmp 31709 | The predicate "is a paraco... |
cmppcmp 31710 | Every compact space is par... |
dispcmp 31711 | Every discrete space is pa... |
pcmplfin 31712 | Given a paracompact topolo... |
pcmplfinf 31713 | Given a paracompact topolo... |
rspecval 31716 | Value of the spectrum of t... |
rspecbas 31717 | The prime ideals form the ... |
rspectset 31718 | Topology component of the ... |
rspectopn 31719 | The topology component of ... |
zarcls0 31720 | The closure of the identit... |
zarcls1 31721 | The unit ideal ` B ` is th... |
zarclsun 31722 | The union of two closed se... |
zarclsiin 31723 | In a Zariski topology, the... |
zarclsint 31724 | The intersection of a fami... |
zarclssn 31725 | The closed points of Zaris... |
zarcls 31726 | The open sets of the Zaris... |
zartopn 31727 | The Zariski topology is a ... |
zartop 31728 | The Zariski topology is a ... |
zartopon 31729 | The points of the Zariski ... |
zar0ring 31730 | The Zariski Topology of th... |
zart0 31731 | The Zariski topology is T_... |
zarmxt1 31732 | The Zariski topology restr... |
zarcmplem 31733 | Lemma for ~ zarcmp . (Con... |
zarcmp 31734 | The Zariski topology is co... |
rspectps 31735 | The spectrum of a ring ` R... |
rhmpreimacnlem 31736 | Lemma for ~ rhmpreimacn . ... |
rhmpreimacn 31737 | The function mapping a pri... |
metidval 31742 | Value of the metric identi... |
metidss 31743 | As a relation, the metric ... |
metidv 31744 | ` A ` and ` B ` identify b... |
metideq 31745 | Basic property of the metr... |
metider 31746 | The metric identification ... |
pstmval 31747 | Value of the metric induce... |
pstmfval 31748 | Function value of the metr... |
pstmxmet 31749 | The metric induced by a ps... |
hauseqcn 31750 | In a Hausdorff topology, t... |
elunitge0 31751 | An element of the closed u... |
unitssxrge0 31752 | The closed unit interval i... |
unitdivcld 31753 | Necessary conditions for a... |
iistmd 31754 | The closed unit interval f... |
unicls 31755 | The union of the closed se... |
tpr2tp 31756 | The usual topology on ` ( ... |
tpr2uni 31757 | The usual topology on ` ( ... |
xpinpreima 31758 | Rewrite the cartesian prod... |
xpinpreima2 31759 | Rewrite the cartesian prod... |
sqsscirc1 31760 | The complex square of side... |
sqsscirc2 31761 | The complex square of side... |
cnre2csqlem 31762 | Lemma for ~ cnre2csqima . ... |
cnre2csqima 31763 | Image of a centered square... |
tpr2rico 31764 | For any point of an open s... |
cnvordtrestixx 31765 | The restriction of the 'gr... |
prsdm 31766 | Domain of the relation of ... |
prsrn 31767 | Range of the relation of a... |
prsss 31768 | Relation of a subproset. ... |
prsssdm 31769 | Domain of a subproset rela... |
ordtprsval 31770 | Value of the order topolog... |
ordtprsuni 31771 | Value of the order topolog... |
ordtcnvNEW 31772 | The order dual generates t... |
ordtrestNEW 31773 | The subspace topology of a... |
ordtrest2NEWlem 31774 | Lemma for ~ ordtrest2NEW .... |
ordtrest2NEW 31775 | An interval-closed set ` A... |
ordtconnlem1 31776 | Connectedness in the order... |
ordtconn 31777 | Connectedness in the order... |
mndpluscn 31778 | A mapping that is both a h... |
mhmhmeotmd 31779 | Deduce a Topological Monoi... |
rmulccn 31780 | Multiplication by a real c... |
raddcn 31781 | Addition in the real numbe... |
xrmulc1cn 31782 | The operation multiplying ... |
fmcncfil 31783 | The image of a Cauchy filt... |
xrge0hmph 31784 | The extended nonnegative r... |
xrge0iifcnv 31785 | Define a bijection from ` ... |
xrge0iifcv 31786 | The defined function's val... |
xrge0iifiso 31787 | The defined bijection from... |
xrge0iifhmeo 31788 | Expose a homeomorphism fro... |
xrge0iifhom 31789 | The defined function from ... |
xrge0iif1 31790 | Condition for the defined ... |
xrge0iifmhm 31791 | The defined function from ... |
xrge0pluscn 31792 | The addition operation of ... |
xrge0mulc1cn 31793 | The operation multiplying ... |
xrge0tps 31794 | The extended nonnegative r... |
xrge0topn 31795 | The topology of the extend... |
xrge0haus 31796 | The topology of the extend... |
xrge0tmd 31797 | The extended nonnegative r... |
xrge0tmdALT 31798 | Alternate proof of ~ xrge0... |
lmlim 31799 | Relate a limit in a given ... |
lmlimxrge0 31800 | Relate a limit in the nonn... |
rge0scvg 31801 | Implication of convergence... |
fsumcvg4 31802 | A serie with finite suppor... |
pnfneige0 31803 | A neighborhood of ` +oo ` ... |
lmxrge0 31804 | Express "sequence ` F ` co... |
lmdvg 31805 | If a monotonic sequence of... |
lmdvglim 31806 | If a monotonic real number... |
pl1cn 31807 | A univariate polynomial is... |
zringnm 31810 | The norm (function) for a ... |
zzsnm 31811 | The norm of the ring of th... |
zlm0 31812 | Zero of a ` ZZ ` -module. ... |
zlm1 31813 | Unit of a ` ZZ ` -module (... |
zlmds 31814 | Distance in a ` ZZ ` -modu... |
zlmtset 31815 | Topology in a ` ZZ ` -modu... |
zlmnm 31816 | Norm of a ` ZZ ` -module (... |
zhmnrg 31817 | The ` ZZ ` -module built f... |
nmmulg 31818 | The norm of a group produc... |
zrhnm 31819 | The norm of the image by `... |
cnzh 31820 | The ` ZZ ` -module of ` CC... |
rezh 31821 | The ` ZZ ` -module of ` RR... |
qqhval 31824 | Value of the canonical hom... |
zrhf1ker 31825 | The kernel of the homomorp... |
zrhchr 31826 | The kernel of the homomorp... |
zrhker 31827 | The kernel of the homomorp... |
zrhunitpreima 31828 | The preimage by ` ZRHom ` ... |
elzrhunit 31829 | Condition for the image by... |
elzdif0 31830 | Lemma for ~ qqhval2 . (Co... |
qqhval2lem 31831 | Lemma for ~ qqhval2 . (Co... |
qqhval2 31832 | Value of the canonical hom... |
qqhvval 31833 | Value of the canonical hom... |
qqh0 31834 | The image of ` 0 ` by the ... |
qqh1 31835 | The image of ` 1 ` by the ... |
qqhf 31836 | ` QQHom ` as a function. ... |
qqhvq 31837 | The image of a quotient by... |
qqhghm 31838 | The ` QQHom ` homomorphism... |
qqhrhm 31839 | The ` QQHom ` homomorphism... |
qqhnm 31840 | The norm of the image by `... |
qqhcn 31841 | The ` QQHom ` homomorphism... |
qqhucn 31842 | The ` QQHom ` homomorphism... |
rrhval 31846 | Value of the canonical hom... |
rrhcn 31847 | If the topology of ` R ` i... |
rrhf 31848 | If the topology of ` R ` i... |
isrrext 31850 | Express the property " ` R... |
rrextnrg 31851 | An extension of ` RR ` is ... |
rrextdrg 31852 | An extension of ` RR ` is ... |
rrextnlm 31853 | The norm of an extension o... |
rrextchr 31854 | The ring characteristic of... |
rrextcusp 31855 | An extension of ` RR ` is ... |
rrexttps 31856 | An extension of ` RR ` is ... |
rrexthaus 31857 | The topology of an extensi... |
rrextust 31858 | The uniformity of an exten... |
rerrext 31859 | The field of the real numb... |
cnrrext 31860 | The field of the complex n... |
qqtopn 31861 | The topology of the field ... |
rrhfe 31862 | If ` R ` is an extension o... |
rrhcne 31863 | If ` R ` is an extension o... |
rrhqima 31864 | The ` RRHom ` homomorphism... |
rrh0 31865 | The image of ` 0 ` by the ... |
xrhval 31868 | The value of the embedding... |
zrhre 31869 | The ` ZRHom ` homomorphism... |
qqhre 31870 | The ` QQHom ` homomorphism... |
rrhre 31871 | The ` RRHom ` homomorphism... |
relmntop 31874 | Manifold is a relation. (... |
ismntoplly 31875 | Property of being a manifo... |
ismntop 31876 | Property of being a manifo... |
nexple 31877 | A lower bound for an expon... |
indv 31880 | Value of the indicator fun... |
indval 31881 | Value of the indicator fun... |
indval2 31882 | Alternate value of the ind... |
indf 31883 | An indicator function as a... |
indfval 31884 | Value of the indicator fun... |
ind1 31885 | Value of the indicator fun... |
ind0 31886 | Value of the indicator fun... |
ind1a 31887 | Value of the indicator fun... |
indpi1 31888 | Preimage of the singleton ... |
indsum 31889 | Finite sum of a product wi... |
indsumin 31890 | Finite sum of a product wi... |
prodindf 31891 | The product of indicators ... |
indf1o 31892 | The bijection between a po... |
indpreima 31893 | A function with range ` { ... |
indf1ofs 31894 | The bijection between fini... |
esumex 31897 | An extended sum is a set b... |
esumcl 31898 | Closure for extended sum i... |
esumeq12dvaf 31899 | Equality deduction for ext... |
esumeq12dva 31900 | Equality deduction for ext... |
esumeq12d 31901 | Equality deduction for ext... |
esumeq1 31902 | Equality theorem for an ex... |
esumeq1d 31903 | Equality theorem for an ex... |
esumeq2 31904 | Equality theorem for exten... |
esumeq2d 31905 | Equality deduction for ext... |
esumeq2dv 31906 | Equality deduction for ext... |
esumeq2sdv 31907 | Equality deduction for ext... |
nfesum1 31908 | Bound-variable hypothesis ... |
nfesum2 31909 | Bound-variable hypothesis ... |
cbvesum 31910 | Change bound variable in a... |
cbvesumv 31911 | Change bound variable in a... |
esumid 31912 | Identify the extended sum ... |
esumgsum 31913 | A finite extended sum is t... |
esumval 31914 | Develop the value of the e... |
esumel 31915 | The extended sum is a limi... |
esumnul 31916 | Extended sum over the empt... |
esum0 31917 | Extended sum of zero. (Co... |
esumf1o 31918 | Re-index an extended sum u... |
esumc 31919 | Convert from the collectio... |
esumrnmpt 31920 | Rewrite an extended sum in... |
esumsplit 31921 | Split an extended sum into... |
esummono 31922 | Extended sum is monotonic.... |
esumpad 31923 | Extend an extended sum by ... |
esumpad2 31924 | Remove zeroes from an exte... |
esumadd 31925 | Addition of infinite sums.... |
esumle 31926 | If all of the terms of an ... |
gsumesum 31927 | Relate a group sum on ` ( ... |
esumlub 31928 | The extended sum is the lo... |
esumaddf 31929 | Addition of infinite sums.... |
esumlef 31930 | If all of the terms of an ... |
esumcst 31931 | The extended sum of a cons... |
esumsnf 31932 | The extended sum of a sing... |
esumsn 31933 | The extended sum of a sing... |
esumpr 31934 | Extended sum over a pair. ... |
esumpr2 31935 | Extended sum over a pair, ... |
esumrnmpt2 31936 | Rewrite an extended sum in... |
esumfzf 31937 | Formulating a partial exte... |
esumfsup 31938 | Formulating an extended su... |
esumfsupre 31939 | Formulating an extended su... |
esumss 31940 | Change the index set to a ... |
esumpinfval 31941 | The value of the extended ... |
esumpfinvallem 31942 | Lemma for ~ esumpfinval . ... |
esumpfinval 31943 | The value of the extended ... |
esumpfinvalf 31944 | Same as ~ esumpfinval , mi... |
esumpinfsum 31945 | The value of the extended ... |
esumpcvgval 31946 | The value of the extended ... |
esumpmono 31947 | The partial sums in an ext... |
esumcocn 31948 | Lemma for ~ esummulc2 and ... |
esummulc1 31949 | An extended sum multiplied... |
esummulc2 31950 | An extended sum multiplied... |
esumdivc 31951 | An extended sum divided by... |
hashf2 31952 | Lemma for ~ hasheuni . (C... |
hasheuni 31953 | The cardinality of a disjo... |
esumcvg 31954 | The sequence of partial su... |
esumcvg2 31955 | Simpler version of ~ esumc... |
esumcvgsum 31956 | The value of the extended ... |
esumsup 31957 | Express an extended sum as... |
esumgect 31958 | "Send ` n ` to ` +oo ` " i... |
esumcvgre 31959 | All terms of a converging ... |
esum2dlem 31960 | Lemma for ~ esum2d (finite... |
esum2d 31961 | Write a double extended su... |
esumiun 31962 | Sum over a nonnecessarily ... |
ofceq 31965 | Equality theorem for funct... |
ofcfval 31966 | Value of an operation appl... |
ofcval 31967 | Evaluate a function/consta... |
ofcfn 31968 | The function operation pro... |
ofcfeqd2 31969 | Equality theorem for funct... |
ofcfval3 31970 | General value of ` ( F oFC... |
ofcf 31971 | The function/constant oper... |
ofcfval2 31972 | The function operation exp... |
ofcfval4 31973 | The function/constant oper... |
ofcc 31974 | Left operation by a consta... |
ofcof 31975 | Relate function operation ... |
sigaex 31978 | Lemma for ~ issiga and ~ i... |
sigaval 31979 | The set of sigma-algebra w... |
issiga 31980 | An alternative definition ... |
isrnsiga 31981 | The property of being a si... |
0elsiga 31982 | A sigma-algebra contains t... |
baselsiga 31983 | A sigma-algebra contains i... |
sigasspw 31984 | A sigma-algebra is a set o... |
sigaclcu 31985 | A sigma-algebra is closed ... |
sigaclcuni 31986 | A sigma-algebra is closed ... |
sigaclfu 31987 | A sigma-algebra is closed ... |
sigaclcu2 31988 | A sigma-algebra is closed ... |
sigaclfu2 31989 | A sigma-algebra is closed ... |
sigaclcu3 31990 | A sigma-algebra is closed ... |
issgon 31991 | Property of being a sigma-... |
sgon 31992 | A sigma-algebra is a sigma... |
elsigass 31993 | An element of a sigma-alge... |
elrnsiga 31994 | Dropping the base informat... |
isrnsigau 31995 | The property of being a si... |
unielsiga 31996 | A sigma-algebra contains i... |
dmvlsiga 31997 | Lebesgue-measurable subset... |
pwsiga 31998 | Any power set forms a sigm... |
prsiga 31999 | The smallest possible sigm... |
sigaclci 32000 | A sigma-algebra is closed ... |
difelsiga 32001 | A sigma-algebra is closed ... |
unelsiga 32002 | A sigma-algebra is closed ... |
inelsiga 32003 | A sigma-algebra is closed ... |
sigainb 32004 | Building a sigma-algebra f... |
insiga 32005 | The intersection of a coll... |
sigagenval 32008 | Value of the generated sig... |
sigagensiga 32009 | A generated sigma-algebra ... |
sgsiga 32010 | A generated sigma-algebra ... |
unisg 32011 | The sigma-algebra generate... |
dmsigagen 32012 | A sigma-algebra can be gen... |
sssigagen 32013 | A set is a subset of the s... |
sssigagen2 32014 | A subset of the generating... |
elsigagen 32015 | Any element of a set is al... |
elsigagen2 32016 | Any countable union of ele... |
sigagenss 32017 | The generated sigma-algebr... |
sigagenss2 32018 | Sufficient condition for i... |
sigagenid 32019 | The sigma-algebra generate... |
ispisys 32020 | The property of being a pi... |
ispisys2 32021 | The property of being a pi... |
inelpisys 32022 | Pi-systems are closed unde... |
sigapisys 32023 | All sigma-algebras are pi-... |
isldsys 32024 | The property of being a la... |
pwldsys 32025 | The power set of the unive... |
unelldsys 32026 | Lambda-systems are closed ... |
sigaldsys 32027 | All sigma-algebras are lam... |
ldsysgenld 32028 | The intersection of all la... |
sigapildsyslem 32029 | Lemma for ~ sigapildsys . ... |
sigapildsys 32030 | Sigma-algebra are exactly ... |
ldgenpisyslem1 32031 | Lemma for ~ ldgenpisys . ... |
ldgenpisyslem2 32032 | Lemma for ~ ldgenpisys . ... |
ldgenpisyslem3 32033 | Lemma for ~ ldgenpisys . ... |
ldgenpisys 32034 | The lambda system ` E ` ge... |
dynkin 32035 | Dynkin's lambda-pi theorem... |
isros 32036 | The property of being a ri... |
rossspw 32037 | A ring of sets is a collec... |
0elros 32038 | A ring of sets contains th... |
unelros 32039 | A ring of sets is closed u... |
difelros 32040 | A ring of sets is closed u... |
inelros 32041 | A ring of sets is closed u... |
fiunelros 32042 | A ring of sets is closed u... |
issros 32043 | The property of being a se... |
srossspw 32044 | A semiring of sets is a co... |
0elsros 32045 | A semiring of sets contain... |
inelsros 32046 | A semiring of sets is clos... |
diffiunisros 32047 | In semiring of sets, compl... |
rossros 32048 | Rings of sets are semiring... |
brsiga 32051 | The Borel Algebra on real ... |
brsigarn 32052 | The Borel Algebra is a sig... |
brsigasspwrn 32053 | The Borel Algebra is a set... |
unibrsiga 32054 | The union of the Borel Alg... |
cldssbrsiga 32055 | A Borel Algebra contains a... |
sxval 32058 | Value of the product sigma... |
sxsiga 32059 | A product sigma-algebra is... |
sxsigon 32060 | A product sigma-algebra is... |
sxuni 32061 | The base set of a product ... |
elsx 32062 | The cartesian product of t... |
measbase 32065 | The base set of a measure ... |
measval 32066 | The value of the ` measure... |
ismeas 32067 | The property of being a me... |
isrnmeas 32068 | The property of being a me... |
dmmeas 32069 | The domain of a measure is... |
measbasedom 32070 | The base set of a measure ... |
measfrge0 32071 | A measure is a function ov... |
measfn 32072 | A measure is a function on... |
measvxrge0 32073 | The values of a measure ar... |
measvnul 32074 | The measure of the empty s... |
measge0 32075 | A measure is nonnegative. ... |
measle0 32076 | If the measure of a given ... |
measvun 32077 | The measure of a countable... |
measxun2 32078 | The measure the union of t... |
measun 32079 | The measure the union of t... |
measvunilem 32080 | Lemma for ~ measvuni . (C... |
measvunilem0 32081 | Lemma for ~ measvuni . (C... |
measvuni 32082 | The measure of a countable... |
measssd 32083 | A measure is monotone with... |
measunl 32084 | A measure is sub-additive ... |
measiuns 32085 | The measure of the union o... |
measiun 32086 | A measure is sub-additive.... |
meascnbl 32087 | A measure is continuous fr... |
measinblem 32088 | Lemma for ~ measinb . (Co... |
measinb 32089 | Building a measure restric... |
measres 32090 | Building a measure restric... |
measinb2 32091 | Building a measure restric... |
measdivcst 32092 | Division of a measure by a... |
measdivcstALTV 32093 | Alternate version of ~ mea... |
cntmeas 32094 | The Counting measure is a ... |
pwcntmeas 32095 | The counting measure is a ... |
cntnevol 32096 | Counting and Lebesgue meas... |
voliune 32097 | The Lebesgue measure funct... |
volfiniune 32098 | The Lebesgue measure funct... |
volmeas 32099 | The Lebesgue measure is a ... |
ddeval1 32102 | Value of the delta measure... |
ddeval0 32103 | Value of the delta measure... |
ddemeas 32104 | The Dirac delta measure is... |
relae 32108 | 'almost everywhere' is a r... |
brae 32109 | 'almost everywhere' relati... |
braew 32110 | 'almost everywhere' relati... |
truae 32111 | A truth holds almost every... |
aean 32112 | A conjunction holds almost... |
faeval 32114 | Value of the 'almost every... |
relfae 32115 | The 'almost everywhere' bu... |
brfae 32116 | 'almost everywhere' relati... |
ismbfm 32119 | The predicate " ` F ` is a... |
elunirnmbfm 32120 | The property of being a me... |
mbfmfun 32121 | A measurable function is a... |
mbfmf 32122 | A measurable function as a... |
isanmbfm 32123 | The predicate to be a meas... |
mbfmcnvima 32124 | The preimage by a measurab... |
mbfmbfm 32125 | A measurable function to a... |
mbfmcst 32126 | A constant function is mea... |
1stmbfm 32127 | The first projection map i... |
2ndmbfm 32128 | The second projection map ... |
imambfm 32129 | If the sigma-algebra in th... |
cnmbfm 32130 | A continuous function is m... |
mbfmco 32131 | The composition of two mea... |
mbfmco2 32132 | The pair building of two m... |
mbfmvolf 32133 | Measurable functions with ... |
elmbfmvol2 32134 | Measurable functions with ... |
mbfmcnt 32135 | All functions are measurab... |
br2base 32136 | The base set for the gener... |
dya2ub 32137 | An upper bound for a dyadi... |
sxbrsigalem0 32138 | The closed half-spaces of ... |
sxbrsigalem3 32139 | The sigma-algebra generate... |
dya2iocival 32140 | The function ` I ` returns... |
dya2iocress 32141 | Dyadic intervals are subse... |
dya2iocbrsiga 32142 | Dyadic intervals are Borel... |
dya2icobrsiga 32143 | Dyadic intervals are Borel... |
dya2icoseg 32144 | For any point and any clos... |
dya2icoseg2 32145 | For any point and any open... |
dya2iocrfn 32146 | The function returning dya... |
dya2iocct 32147 | The dyadic rectangle set i... |
dya2iocnrect 32148 | For any point of an open r... |
dya2iocnei 32149 | For any point of an open s... |
dya2iocuni 32150 | Every open set of ` ( RR X... |
dya2iocucvr 32151 | The dyadic rectangular set... |
sxbrsigalem1 32152 | The Borel algebra on ` ( R... |
sxbrsigalem2 32153 | The sigma-algebra generate... |
sxbrsigalem4 32154 | The Borel algebra on ` ( R... |
sxbrsigalem5 32155 | First direction for ~ sxbr... |
sxbrsigalem6 32156 | First direction for ~ sxbr... |
sxbrsiga 32157 | The product sigma-algebra ... |
omsval 32160 | Value of the function mapp... |
omsfval 32161 | Value of the outer measure... |
omscl 32162 | A closure lemma for the co... |
omsf 32163 | A constructed outer measur... |
oms0 32164 | A constructed outer measur... |
omsmon 32165 | A constructed outer measur... |
omssubaddlem 32166 | For any small margin ` E `... |
omssubadd 32167 | A constructed outer measur... |
carsgval 32170 | Value of the Caratheodory ... |
carsgcl 32171 | Closure of the Caratheodor... |
elcarsg 32172 | Property of being a Carath... |
baselcarsg 32173 | The universe set, ` O ` , ... |
0elcarsg 32174 | The empty set is Caratheod... |
carsguni 32175 | The union of all Caratheod... |
elcarsgss 32176 | Caratheodory measurable se... |
difelcarsg 32177 | The Caratheodory measurabl... |
inelcarsg 32178 | The Caratheodory measurabl... |
unelcarsg 32179 | The Caratheodory-measurabl... |
difelcarsg2 32180 | The Caratheodory-measurabl... |
carsgmon 32181 | Utility lemma: Apply mono... |
carsgsigalem 32182 | Lemma for the following th... |
fiunelcarsg 32183 | The Caratheodory measurabl... |
carsgclctunlem1 32184 | Lemma for ~ carsgclctun . ... |
carsggect 32185 | The outer measure is count... |
carsgclctunlem2 32186 | Lemma for ~ carsgclctun . ... |
carsgclctunlem3 32187 | Lemma for ~ carsgclctun . ... |
carsgclctun 32188 | The Caratheodory measurabl... |
carsgsiga 32189 | The Caratheodory measurabl... |
omsmeas 32190 | The restriction of a const... |
pmeasmono 32191 | This theorem's hypotheses ... |
pmeasadd 32192 | A premeasure on a ring of ... |
itgeq12dv 32193 | Equality theorem for an in... |
sitgval 32199 | Value of the simple functi... |
issibf 32200 | The predicate " ` F ` is a... |
sibf0 32201 | The constant zero function... |
sibfmbl 32202 | A simple function is measu... |
sibff 32203 | A simple function is a fun... |
sibfrn 32204 | A simple function has fini... |
sibfima 32205 | Any preimage of a singleto... |
sibfinima 32206 | The measure of the interse... |
sibfof 32207 | Applying function operatio... |
sitgfval 32208 | Value of the Bochner integ... |
sitgclg 32209 | Closure of the Bochner int... |
sitgclbn 32210 | Closure of the Bochner int... |
sitgclcn 32211 | Closure of the Bochner int... |
sitgclre 32212 | Closure of the Bochner int... |
sitg0 32213 | The integral of the consta... |
sitgf 32214 | The integral for simple fu... |
sitgaddlemb 32215 | Lemma for * sitgadd . (Co... |
sitmval 32216 | Value of the simple functi... |
sitmfval 32217 | Value of the integral dist... |
sitmcl 32218 | Closure of the integral di... |
sitmf 32219 | The integral metric as a f... |
oddpwdc 32221 | Lemma for ~ eulerpart . T... |
oddpwdcv 32222 | Lemma for ~ eulerpart : va... |
eulerpartlemsv1 32223 | Lemma for ~ eulerpart . V... |
eulerpartlemelr 32224 | Lemma for ~ eulerpart . (... |
eulerpartlemsv2 32225 | Lemma for ~ eulerpart . V... |
eulerpartlemsf 32226 | Lemma for ~ eulerpart . (... |
eulerpartlems 32227 | Lemma for ~ eulerpart . (... |
eulerpartlemsv3 32228 | Lemma for ~ eulerpart . V... |
eulerpartlemgc 32229 | Lemma for ~ eulerpart . (... |
eulerpartleme 32230 | Lemma for ~ eulerpart . (... |
eulerpartlemv 32231 | Lemma for ~ eulerpart . (... |
eulerpartlemo 32232 | Lemma for ~ eulerpart : ` ... |
eulerpartlemd 32233 | Lemma for ~ eulerpart : ` ... |
eulerpartlem1 32234 | Lemma for ~ eulerpart . (... |
eulerpartlemb 32235 | Lemma for ~ eulerpart . T... |
eulerpartlemt0 32236 | Lemma for ~ eulerpart . (... |
eulerpartlemf 32237 | Lemma for ~ eulerpart : O... |
eulerpartlemt 32238 | Lemma for ~ eulerpart . (... |
eulerpartgbij 32239 | Lemma for ~ eulerpart : T... |
eulerpartlemgv 32240 | Lemma for ~ eulerpart : va... |
eulerpartlemr 32241 | Lemma for ~ eulerpart . (... |
eulerpartlemmf 32242 | Lemma for ~ eulerpart . (... |
eulerpartlemgvv 32243 | Lemma for ~ eulerpart : va... |
eulerpartlemgu 32244 | Lemma for ~ eulerpart : R... |
eulerpartlemgh 32245 | Lemma for ~ eulerpart : T... |
eulerpartlemgf 32246 | Lemma for ~ eulerpart : I... |
eulerpartlemgs2 32247 | Lemma for ~ eulerpart : T... |
eulerpartlemn 32248 | Lemma for ~ eulerpart . (... |
eulerpart 32249 | Euler's theorem on partiti... |
subiwrd 32252 | Lemma for ~ sseqp1 . (Con... |
subiwrdlen 32253 | Length of a subword of an ... |
iwrdsplit 32254 | Lemma for ~ sseqp1 . (Con... |
sseqval 32255 | Value of the strong sequen... |
sseqfv1 32256 | Value of the strong sequen... |
sseqfn 32257 | A strong recursive sequenc... |
sseqmw 32258 | Lemma for ~ sseqf amd ~ ss... |
sseqf 32259 | A strong recursive sequenc... |
sseqfres 32260 | The first elements in the ... |
sseqfv2 32261 | Value of the strong sequen... |
sseqp1 32262 | Value of the strong sequen... |
fiblem 32265 | Lemma for ~ fib0 , ~ fib1 ... |
fib0 32266 | Value of the Fibonacci seq... |
fib1 32267 | Value of the Fibonacci seq... |
fibp1 32268 | Value of the Fibonacci seq... |
fib2 32269 | Value of the Fibonacci seq... |
fib3 32270 | Value of the Fibonacci seq... |
fib4 32271 | Value of the Fibonacci seq... |
fib5 32272 | Value of the Fibonacci seq... |
fib6 32273 | Value of the Fibonacci seq... |
elprob 32276 | The property of being a pr... |
domprobmeas 32277 | A probability measure is a... |
domprobsiga 32278 | The domain of a probabilit... |
probtot 32279 | The probability of the uni... |
prob01 32280 | A probability is an elemen... |
probnul 32281 | The probability of the emp... |
unveldomd 32282 | The universe is an element... |
unveldom 32283 | The universe is an element... |
nuleldmp 32284 | The empty set is an elemen... |
probcun 32285 | The probability of the uni... |
probun 32286 | The probability of the uni... |
probdif 32287 | The probability of the dif... |
probinc 32288 | A probability law is incre... |
probdsb 32289 | The probability of the com... |
probmeasd 32290 | A probability measure is a... |
probvalrnd 32291 | The value of a probability... |
probtotrnd 32292 | The probability of the uni... |
totprobd 32293 | Law of total probability, ... |
totprob 32294 | Law of total probability. ... |
probfinmeasb 32295 | Build a probability measur... |
probfinmeasbALTV 32296 | Alternate version of ~ pro... |
probmeasb 32297 | Build a probability from a... |
cndprobval 32300 | The value of the condition... |
cndprobin 32301 | An identity linking condit... |
cndprob01 32302 | The conditional probabilit... |
cndprobtot 32303 | The conditional probabilit... |
cndprobnul 32304 | The conditional probabilit... |
cndprobprob 32305 | The conditional probabilit... |
bayesth 32306 | Bayes Theorem. (Contribut... |
rrvmbfm 32309 | A real-valued random varia... |
isrrvv 32310 | Elementhood to the set of ... |
rrvvf 32311 | A real-valued random varia... |
rrvfn 32312 | A real-valued random varia... |
rrvdm 32313 | The domain of a random var... |
rrvrnss 32314 | The range of a random vari... |
rrvf2 32315 | A real-valued random varia... |
rrvdmss 32316 | The domain of a random var... |
rrvfinvima 32317 | For a real-value random va... |
0rrv 32318 | The constant function equa... |
rrvadd 32319 | The sum of two random vari... |
rrvmulc 32320 | A random variable multipli... |
rrvsum 32321 | An indexed sum of random v... |
orvcval 32324 | Value of the preimage mapp... |
orvcval2 32325 | Another way to express the... |
elorvc 32326 | Elementhood of a preimage.... |
orvcval4 32327 | The value of the preimage ... |
orvcoel 32328 | If the relation produces o... |
orvccel 32329 | If the relation produces c... |
elorrvc 32330 | Elementhood of a preimage ... |
orrvcval4 32331 | The value of the preimage ... |
orrvcoel 32332 | If the relation produces o... |
orrvccel 32333 | If the relation produces c... |
orvcgteel 32334 | Preimage maps produced by ... |
orvcelval 32335 | Preimage maps produced by ... |
orvcelel 32336 | Preimage maps produced by ... |
dstrvval 32337 | The value of the distribut... |
dstrvprob 32338 | The distribution of a rand... |
orvclteel 32339 | Preimage maps produced by ... |
dstfrvel 32340 | Elementhood of preimage ma... |
dstfrvunirn 32341 | The limit of all preimage ... |
orvclteinc 32342 | Preimage maps produced by ... |
dstfrvinc 32343 | A cumulative distribution ... |
dstfrvclim1 32344 | The limit of the cumulativ... |
coinfliplem 32345 | Division in the extended r... |
coinflipprob 32346 | The ` P ` we defined for c... |
coinflipspace 32347 | The space of our coin-flip... |
coinflipuniv 32348 | The universe of our coin-f... |
coinfliprv 32349 | The ` X ` we defined for c... |
coinflippv 32350 | The probability of heads i... |
coinflippvt 32351 | The probability of tails i... |
ballotlemoex 32352 | ` O ` is a set. (Contribu... |
ballotlem1 32353 | The size of the universe i... |
ballotlemelo 32354 | Elementhood in ` O ` . (C... |
ballotlem2 32355 | The probability that the f... |
ballotlemfval 32356 | The value of ` F ` . (Con... |
ballotlemfelz 32357 | ` ( F `` C ) ` has values ... |
ballotlemfp1 32358 | If the ` J ` th ballot is ... |
ballotlemfc0 32359 | ` F ` takes value 0 betwee... |
ballotlemfcc 32360 | ` F ` takes value 0 betwee... |
ballotlemfmpn 32361 | ` ( F `` C ) ` finishes co... |
ballotlemfval0 32362 | ` ( F `` C ) ` always star... |
ballotleme 32363 | Elements of ` E ` . (Cont... |
ballotlemodife 32364 | Elements of ` ( O \ E ) ` ... |
ballotlem4 32365 | If the first pick is a vot... |
ballotlem5 32366 | If A is not ahead througho... |
ballotlemi 32367 | Value of ` I ` for a given... |
ballotlemiex 32368 | Properties of ` ( I `` C )... |
ballotlemi1 32369 | The first tie cannot be re... |
ballotlemii 32370 | The first tie cannot be re... |
ballotlemsup 32371 | The set of zeroes of ` F `... |
ballotlemimin 32372 | ` ( I `` C ) ` is the firs... |
ballotlemic 32373 | If the first vote is for B... |
ballotlem1c 32374 | If the first vote is for A... |
ballotlemsval 32375 | Value of ` S ` . (Contrib... |
ballotlemsv 32376 | Value of ` S ` evaluated a... |
ballotlemsgt1 32377 | ` S ` maps values less tha... |
ballotlemsdom 32378 | Domain of ` S ` for a give... |
ballotlemsel1i 32379 | The range ` ( 1 ... ( I ``... |
ballotlemsf1o 32380 | The defined ` S ` is a bij... |
ballotlemsi 32381 | The image by ` S ` of the ... |
ballotlemsima 32382 | The image by ` S ` of an i... |
ballotlemieq 32383 | If two countings share the... |
ballotlemrval 32384 | Value of ` R ` . (Contrib... |
ballotlemscr 32385 | The image of ` ( R `` C ) ... |
ballotlemrv 32386 | Value of ` R ` evaluated a... |
ballotlemrv1 32387 | Value of ` R ` before the ... |
ballotlemrv2 32388 | Value of ` R ` after the t... |
ballotlemro 32389 | Range of ` R ` is included... |
ballotlemgval 32390 | Expand the value of ` .^ `... |
ballotlemgun 32391 | A property of the defined ... |
ballotlemfg 32392 | Express the value of ` ( F... |
ballotlemfrc 32393 | Express the value of ` ( F... |
ballotlemfrci 32394 | Reverse counting preserves... |
ballotlemfrceq 32395 | Value of ` F ` for a rever... |
ballotlemfrcn0 32396 | Value of ` F ` for a rever... |
ballotlemrc 32397 | Range of ` R ` . (Contrib... |
ballotlemirc 32398 | Applying ` R ` does not ch... |
ballotlemrinv0 32399 | Lemma for ~ ballotlemrinv ... |
ballotlemrinv 32400 | ` R ` is its own inverse :... |
ballotlem1ri 32401 | When the vote on the first... |
ballotlem7 32402 | ` R ` is a bijection betwe... |
ballotlem8 32403 | There are as many counting... |
ballotth 32404 | Bertrand's ballot problem ... |
sgncl 32405 | Closure of the signum. (C... |
sgnclre 32406 | Closure of the signum. (C... |
sgnneg 32407 | Negation of the signum. (... |
sgn3da 32408 | A conditional containing a... |
sgnmul 32409 | Signum of a product. (Con... |
sgnmulrp2 32410 | Multiplication by a positi... |
sgnsub 32411 | Subtraction of a number of... |
sgnnbi 32412 | Negative signum. (Contrib... |
sgnpbi 32413 | Positive signum. (Contrib... |
sgn0bi 32414 | Zero signum. (Contributed... |
sgnsgn 32415 | Signum is idempotent. (Co... |
sgnmulsgn 32416 | If two real numbers are of... |
sgnmulsgp 32417 | If two real numbers are of... |
fzssfzo 32418 | Condition for an integer i... |
gsumncl 32419 | Closure of a group sum in ... |
gsumnunsn 32420 | Closure of a group sum in ... |
ccatmulgnn0dir 32421 | Concatenation of words fol... |
ofcccat 32422 | Letterwise operations on w... |
ofcs1 32423 | Letterwise operations on a... |
ofcs2 32424 | Letterwise operations on a... |
plymul02 32425 | Product of a polynomial wi... |
plymulx0 32426 | Coefficients of a polynomi... |
plymulx 32427 | Coefficients of a polynomi... |
plyrecld 32428 | Closure of a polynomial wi... |
signsplypnf 32429 | The quotient of a polynomi... |
signsply0 32430 | Lemma for the rule of sign... |
signspval 32431 | The value of the skipping ... |
signsw0glem 32432 | Neutral element property o... |
signswbase 32433 | The base of ` W ` is the u... |
signswplusg 32434 | The operation of ` W ` . ... |
signsw0g 32435 | The neutral element of ` W... |
signswmnd 32436 | ` W ` is a monoid structur... |
signswrid 32437 | The zero-skipping operatio... |
signswlid 32438 | The zero-skipping operatio... |
signswn0 32439 | The zero-skipping operatio... |
signswch 32440 | The zero-skipping operatio... |
signslema 32441 | Computational part of ~~? ... |
signstfv 32442 | Value of the zero-skipping... |
signstfval 32443 | Value of the zero-skipping... |
signstcl 32444 | Closure of the zero skippi... |
signstf 32445 | The zero skipping sign wor... |
signstlen 32446 | Length of the zero skippin... |
signstf0 32447 | Sign of a single letter wo... |
signstfvn 32448 | Zero-skipping sign in a wo... |
signsvtn0 32449 | If the last letter is nonz... |
signstfvp 32450 | Zero-skipping sign in a wo... |
signstfvneq0 32451 | In case the first letter i... |
signstfvcl 32452 | Closure of the zero skippi... |
signstfvc 32453 | Zero-skipping sign in a wo... |
signstres 32454 | Restriction of a zero skip... |
signstfveq0a 32455 | Lemma for ~ signstfveq0 . ... |
signstfveq0 32456 | In case the last letter is... |
signsvvfval 32457 | The value of ` V ` , which... |
signsvvf 32458 | ` V ` is a function. (Con... |
signsvf0 32459 | There is no change of sign... |
signsvf1 32460 | In a single-letter word, w... |
signsvfn 32461 | Number of changes in a wor... |
signsvtp 32462 | Adding a letter of the sam... |
signsvtn 32463 | Adding a letter of a diffe... |
signsvfpn 32464 | Adding a letter of the sam... |
signsvfnn 32465 | Adding a letter of a diffe... |
signlem0 32466 | Adding a zero as the highe... |
signshf 32467 | ` H ` , corresponding to t... |
signshwrd 32468 | ` H ` , corresponding to t... |
signshlen 32469 | Length of ` H ` , correspo... |
signshnz 32470 | ` H ` is not the empty wor... |
efcld 32471 | Closure law for the expone... |
iblidicc 32472 | The identity function is i... |
rpsqrtcn 32473 | Continuity of the real pos... |
divsqrtid 32474 | A real number divided by i... |
cxpcncf1 32475 | The power function on comp... |
efmul2picn 32476 | Multiplying by ` ( _i x. (... |
fct2relem 32477 | Lemma for ~ ftc2re . (Con... |
ftc2re 32478 | The Fundamental Theorem of... |
fdvposlt 32479 | Functions with a positive ... |
fdvneggt 32480 | Functions with a negative ... |
fdvposle 32481 | Functions with a nonnegati... |
fdvnegge 32482 | Functions with a nonpositi... |
prodfzo03 32483 | A product of three factors... |
actfunsnf1o 32484 | The action ` F ` of extend... |
actfunsnrndisj 32485 | The action ` F ` of extend... |
itgexpif 32486 | The basis for the circle m... |
fsum2dsub 32487 | Lemma for ~ breprexp - Re-... |
reprval 32490 | Value of the representatio... |
repr0 32491 | There is exactly one repre... |
reprf 32492 | Members of the representat... |
reprsum 32493 | Sums of values of the memb... |
reprle 32494 | Upper bound to the terms i... |
reprsuc 32495 | Express the representation... |
reprfi 32496 | Bounded representations ar... |
reprss 32497 | Representations with terms... |
reprinrn 32498 | Representations with term ... |
reprlt 32499 | There are no representatio... |
hashreprin 32500 | Express a sum of represent... |
reprgt 32501 | There are no representatio... |
reprinfz1 32502 | For the representation of ... |
reprfi2 32503 | Corollary of ~ reprinfz1 .... |
reprfz1 32504 | Corollary of ~ reprinfz1 .... |
hashrepr 32505 | Develop the number of repr... |
reprpmtf1o 32506 | Transposing ` 0 ` and ` X ... |
reprdifc 32507 | Express the representation... |
chpvalz 32508 | Value of the second Chebys... |
chtvalz 32509 | Value of the Chebyshev fun... |
breprexplema 32510 | Lemma for ~ breprexp (indu... |
breprexplemb 32511 | Lemma for ~ breprexp (clos... |
breprexplemc 32512 | Lemma for ~ breprexp (indu... |
breprexp 32513 | Express the ` S ` th power... |
breprexpnat 32514 | Express the ` S ` th power... |
vtsval 32517 | Value of the Vinogradov tr... |
vtscl 32518 | Closure of the Vinogradov ... |
vtsprod 32519 | Express the Vinogradov tri... |
circlemeth 32520 | The Hardy, Littlewood and ... |
circlemethnat 32521 | The Hardy, Littlewood and ... |
circlevma 32522 | The Circle Method, where t... |
circlemethhgt 32523 | The circle method, where t... |
hgt750lemc 32527 | An upper bound to the summ... |
hgt750lemd 32528 | An upper bound to the summ... |
hgt749d 32529 | A deduction version of ~ a... |
logdivsqrle 32530 | Conditions for ` ( ( log `... |
hgt750lem 32531 | Lemma for ~ tgoldbachgtd .... |
hgt750lem2 32532 | Decimal multiplication gal... |
hgt750lemf 32533 | Lemma for the statement 7.... |
hgt750lemg 32534 | Lemma for the statement 7.... |
oddprm2 32535 | Two ways to write the set ... |
hgt750lemb 32536 | An upper bound on the cont... |
hgt750lema 32537 | An upper bound on the cont... |
hgt750leme 32538 | An upper bound on the cont... |
tgoldbachgnn 32539 | Lemma for ~ tgoldbachgtd .... |
tgoldbachgtde 32540 | Lemma for ~ tgoldbachgtd .... |
tgoldbachgtda 32541 | Lemma for ~ tgoldbachgtd .... |
tgoldbachgtd 32542 | Odd integers greater than ... |
tgoldbachgt 32543 | Odd integers greater than ... |
istrkg2d 32546 | Property of fulfilling dim... |
axtglowdim2ALTV 32547 | Alternate version of ~ axt... |
axtgupdim2ALTV 32548 | Alternate version of ~ axt... |
afsval 32551 | Value of the AFS relation ... |
brafs 32552 | Binary relation form of th... |
tg5segofs 32553 | Rephrase ~ axtg5seg using ... |
lpadval 32556 | Value of the ` leftpad ` f... |
lpadlem1 32557 | Lemma for the ` leftpad ` ... |
lpadlem3 32558 | Lemma for ~ lpadlen1 . (C... |
lpadlen1 32559 | Length of a left-padded wo... |
lpadlem2 32560 | Lemma for the ` leftpad ` ... |
lpadlen2 32561 | Length of a left-padded wo... |
lpadmax 32562 | Length of a left-padded wo... |
lpadleft 32563 | The contents of prefix of ... |
lpadright 32564 | The suffix of a left-padde... |
bnj170 32577 | ` /\ ` -manipulation. (Co... |
bnj240 32578 | ` /\ ` -manipulation. (Co... |
bnj248 32579 | ` /\ ` -manipulation. (Co... |
bnj250 32580 | ` /\ ` -manipulation. (Co... |
bnj251 32581 | ` /\ ` -manipulation. (Co... |
bnj252 32582 | ` /\ ` -manipulation. (Co... |
bnj253 32583 | ` /\ ` -manipulation. (Co... |
bnj255 32584 | ` /\ ` -manipulation. (Co... |
bnj256 32585 | ` /\ ` -manipulation. (Co... |
bnj257 32586 | ` /\ ` -manipulation. (Co... |
bnj258 32587 | ` /\ ` -manipulation. (Co... |
bnj268 32588 | ` /\ ` -manipulation. (Co... |
bnj290 32589 | ` /\ ` -manipulation. (Co... |
bnj291 32590 | ` /\ ` -manipulation. (Co... |
bnj312 32591 | ` /\ ` -manipulation. (Co... |
bnj334 32592 | ` /\ ` -manipulation. (Co... |
bnj345 32593 | ` /\ ` -manipulation. (Co... |
bnj422 32594 | ` /\ ` -manipulation. (Co... |
bnj432 32595 | ` /\ ` -manipulation. (Co... |
bnj446 32596 | ` /\ ` -manipulation. (Co... |
bnj23 32597 | First-order logic and set ... |
bnj31 32598 | First-order logic and set ... |
bnj62 32599 | First-order logic and set ... |
bnj89 32600 | First-order logic and set ... |
bnj90 32601 | First-order logic and set ... |
bnj101 32602 | First-order logic and set ... |
bnj105 32603 | First-order logic and set ... |
bnj115 32604 | First-order logic and set ... |
bnj132 32605 | First-order logic and set ... |
bnj133 32606 | First-order logic and set ... |
bnj156 32607 | First-order logic and set ... |
bnj158 32608 | First-order logic and set ... |
bnj168 32609 | First-order logic and set ... |
bnj206 32610 | First-order logic and set ... |
bnj216 32611 | First-order logic and set ... |
bnj219 32612 | First-order logic and set ... |
bnj226 32613 | First-order logic and set ... |
bnj228 32614 | First-order logic and set ... |
bnj519 32615 | First-order logic and set ... |
bnj521 32616 | First-order logic and set ... |
bnj524 32617 | First-order logic and set ... |
bnj525 32618 | First-order logic and set ... |
bnj534 32619 | First-order logic and set ... |
bnj538 32620 | First-order logic and set ... |
bnj529 32621 | First-order logic and set ... |
bnj551 32622 | First-order logic and set ... |
bnj563 32623 | First-order logic and set ... |
bnj564 32624 | First-order logic and set ... |
bnj593 32625 | First-order logic and set ... |
bnj596 32626 | First-order logic and set ... |
bnj610 32627 | Pass from equality ( ` x =... |
bnj642 32628 | ` /\ ` -manipulation. (Co... |
bnj643 32629 | ` /\ ` -manipulation. (Co... |
bnj645 32630 | ` /\ ` -manipulation. (Co... |
bnj658 32631 | ` /\ ` -manipulation. (Co... |
bnj667 32632 | ` /\ ` -manipulation. (Co... |
bnj705 32633 | ` /\ ` -manipulation. (Co... |
bnj706 32634 | ` /\ ` -manipulation. (Co... |
bnj707 32635 | ` /\ ` -manipulation. (Co... |
bnj708 32636 | ` /\ ` -manipulation. (Co... |
bnj721 32637 | ` /\ ` -manipulation. (Co... |
bnj832 32638 | ` /\ ` -manipulation. (Co... |
bnj835 32639 | ` /\ ` -manipulation. (Co... |
bnj836 32640 | ` /\ ` -manipulation. (Co... |
bnj837 32641 | ` /\ ` -manipulation. (Co... |
bnj769 32642 | ` /\ ` -manipulation. (Co... |
bnj770 32643 | ` /\ ` -manipulation. (Co... |
bnj771 32644 | ` /\ ` -manipulation. (Co... |
bnj887 32645 | ` /\ ` -manipulation. (Co... |
bnj918 32646 | First-order logic and set ... |
bnj919 32647 | First-order logic and set ... |
bnj923 32648 | First-order logic and set ... |
bnj927 32649 | First-order logic and set ... |
bnj931 32650 | First-order logic and set ... |
bnj937 32651 | First-order logic and set ... |
bnj941 32652 | First-order logic and set ... |
bnj945 32653 | Technical lemma for ~ bnj6... |
bnj946 32654 | First-order logic and set ... |
bnj951 32655 | ` /\ ` -manipulation. (Co... |
bnj956 32656 | First-order logic and set ... |
bnj976 32657 | First-order logic and set ... |
bnj982 32658 | First-order logic and set ... |
bnj1019 32659 | First-order logic and set ... |
bnj1023 32660 | First-order logic and set ... |
bnj1095 32661 | First-order logic and set ... |
bnj1096 32662 | First-order logic and set ... |
bnj1098 32663 | First-order logic and set ... |
bnj1101 32664 | First-order logic and set ... |
bnj1113 32665 | First-order logic and set ... |
bnj1109 32666 | First-order logic and set ... |
bnj1131 32667 | First-order logic and set ... |
bnj1138 32668 | First-order logic and set ... |
bnj1142 32669 | First-order logic and set ... |
bnj1143 32670 | First-order logic and set ... |
bnj1146 32671 | First-order logic and set ... |
bnj1149 32672 | First-order logic and set ... |
bnj1185 32673 | First-order logic and set ... |
bnj1196 32674 | First-order logic and set ... |
bnj1198 32675 | First-order logic and set ... |
bnj1209 32676 | First-order logic and set ... |
bnj1211 32677 | First-order logic and set ... |
bnj1213 32678 | First-order logic and set ... |
bnj1212 32679 | First-order logic and set ... |
bnj1219 32680 | First-order logic and set ... |
bnj1224 32681 | First-order logic and set ... |
bnj1230 32682 | First-order logic and set ... |
bnj1232 32683 | First-order logic and set ... |
bnj1235 32684 | First-order logic and set ... |
bnj1239 32685 | First-order logic and set ... |
bnj1238 32686 | First-order logic and set ... |
bnj1241 32687 | First-order logic and set ... |
bnj1247 32688 | First-order logic and set ... |
bnj1254 32689 | First-order logic and set ... |
bnj1262 32690 | First-order logic and set ... |
bnj1266 32691 | First-order logic and set ... |
bnj1265 32692 | First-order logic and set ... |
bnj1275 32693 | First-order logic and set ... |
bnj1276 32694 | First-order logic and set ... |
bnj1292 32695 | First-order logic and set ... |
bnj1293 32696 | First-order logic and set ... |
bnj1294 32697 | First-order logic and set ... |
bnj1299 32698 | First-order logic and set ... |
bnj1304 32699 | First-order logic and set ... |
bnj1316 32700 | First-order logic and set ... |
bnj1317 32701 | First-order logic and set ... |
bnj1322 32702 | First-order logic and set ... |
bnj1340 32703 | First-order logic and set ... |
bnj1345 32704 | First-order logic and set ... |
bnj1350 32705 | First-order logic and set ... |
bnj1351 32706 | First-order logic and set ... |
bnj1352 32707 | First-order logic and set ... |
bnj1361 32708 | First-order logic and set ... |
bnj1366 32709 | First-order logic and set ... |
bnj1379 32710 | First-order logic and set ... |
bnj1383 32711 | First-order logic and set ... |
bnj1385 32712 | First-order logic and set ... |
bnj1386 32713 | First-order logic and set ... |
bnj1397 32714 | First-order logic and set ... |
bnj1400 32715 | First-order logic and set ... |
bnj1405 32716 | First-order logic and set ... |
bnj1422 32717 | First-order logic and set ... |
bnj1424 32718 | First-order logic and set ... |
bnj1436 32719 | First-order logic and set ... |
bnj1441 32720 | First-order logic and set ... |
bnj1441g 32721 | First-order logic and set ... |
bnj1454 32722 | First-order logic and set ... |
bnj1459 32723 | First-order logic and set ... |
bnj1464 32724 | Conversion of implicit sub... |
bnj1465 32725 | First-order logic and set ... |
bnj1468 32726 | Conversion of implicit sub... |
bnj1476 32727 | First-order logic and set ... |
bnj1502 32728 | First-order logic and set ... |
bnj1503 32729 | First-order logic and set ... |
bnj1517 32730 | First-order logic and set ... |
bnj1521 32731 | First-order logic and set ... |
bnj1533 32732 | First-order logic and set ... |
bnj1534 32733 | First-order logic and set ... |
bnj1536 32734 | First-order logic and set ... |
bnj1538 32735 | First-order logic and set ... |
bnj1541 32736 | First-order logic and set ... |
bnj1542 32737 | First-order logic and set ... |
bnj110 32738 | Well-founded induction res... |
bnj157 32739 | Well-founded induction res... |
bnj66 32740 | Technical lemma for ~ bnj6... |
bnj91 32741 | First-order logic and set ... |
bnj92 32742 | First-order logic and set ... |
bnj93 32743 | Technical lemma for ~ bnj9... |
bnj95 32744 | Technical lemma for ~ bnj1... |
bnj96 32745 | Technical lemma for ~ bnj1... |
bnj97 32746 | Technical lemma for ~ bnj1... |
bnj98 32747 | Technical lemma for ~ bnj1... |
bnj106 32748 | First-order logic and set ... |
bnj118 32749 | First-order logic and set ... |
bnj121 32750 | First-order logic and set ... |
bnj124 32751 | Technical lemma for ~ bnj1... |
bnj125 32752 | Technical lemma for ~ bnj1... |
bnj126 32753 | Technical lemma for ~ bnj1... |
bnj130 32754 | Technical lemma for ~ bnj1... |
bnj149 32755 | Technical lemma for ~ bnj1... |
bnj150 32756 | Technical lemma for ~ bnj1... |
bnj151 32757 | Technical lemma for ~ bnj1... |
bnj154 32758 | Technical lemma for ~ bnj1... |
bnj155 32759 | Technical lemma for ~ bnj1... |
bnj153 32760 | Technical lemma for ~ bnj8... |
bnj207 32761 | Technical lemma for ~ bnj8... |
bnj213 32762 | First-order logic and set ... |
bnj222 32763 | Technical lemma for ~ bnj2... |
bnj229 32764 | Technical lemma for ~ bnj5... |
bnj517 32765 | Technical lemma for ~ bnj5... |
bnj518 32766 | Technical lemma for ~ bnj8... |
bnj523 32767 | Technical lemma for ~ bnj8... |
bnj526 32768 | Technical lemma for ~ bnj8... |
bnj528 32769 | Technical lemma for ~ bnj8... |
bnj535 32770 | Technical lemma for ~ bnj8... |
bnj539 32771 | Technical lemma for ~ bnj8... |
bnj540 32772 | Technical lemma for ~ bnj8... |
bnj543 32773 | Technical lemma for ~ bnj8... |
bnj544 32774 | Technical lemma for ~ bnj8... |
bnj545 32775 | Technical lemma for ~ bnj8... |
bnj546 32776 | Technical lemma for ~ bnj8... |
bnj548 32777 | Technical lemma for ~ bnj8... |
bnj553 32778 | Technical lemma for ~ bnj8... |
bnj554 32779 | Technical lemma for ~ bnj8... |
bnj556 32780 | Technical lemma for ~ bnj8... |
bnj557 32781 | Technical lemma for ~ bnj8... |
bnj558 32782 | Technical lemma for ~ bnj8... |
bnj561 32783 | Technical lemma for ~ bnj8... |
bnj562 32784 | Technical lemma for ~ bnj8... |
bnj570 32785 | Technical lemma for ~ bnj8... |
bnj571 32786 | Technical lemma for ~ bnj8... |
bnj605 32787 | Technical lemma. This lem... |
bnj581 32788 | Technical lemma for ~ bnj5... |
bnj589 32789 | Technical lemma for ~ bnj8... |
bnj590 32790 | Technical lemma for ~ bnj8... |
bnj591 32791 | Technical lemma for ~ bnj8... |
bnj594 32792 | Technical lemma for ~ bnj8... |
bnj580 32793 | Technical lemma for ~ bnj5... |
bnj579 32794 | Technical lemma for ~ bnj8... |
bnj602 32795 | Equality theorem for the `... |
bnj607 32796 | Technical lemma for ~ bnj8... |
bnj609 32797 | Technical lemma for ~ bnj8... |
bnj611 32798 | Technical lemma for ~ bnj8... |
bnj600 32799 | Technical lemma for ~ bnj8... |
bnj601 32800 | Technical lemma for ~ bnj8... |
bnj852 32801 | Technical lemma for ~ bnj6... |
bnj864 32802 | Technical lemma for ~ bnj6... |
bnj865 32803 | Technical lemma for ~ bnj6... |
bnj873 32804 | Technical lemma for ~ bnj6... |
bnj849 32805 | Technical lemma for ~ bnj6... |
bnj882 32806 | Definition (using hypothes... |
bnj18eq1 32807 | Equality theorem for trans... |
bnj893 32808 | Property of ` _trCl ` . U... |
bnj900 32809 | Technical lemma for ~ bnj6... |
bnj906 32810 | Property of ` _trCl ` . (... |
bnj908 32811 | Technical lemma for ~ bnj6... |
bnj911 32812 | Technical lemma for ~ bnj6... |
bnj916 32813 | Technical lemma for ~ bnj6... |
bnj917 32814 | Technical lemma for ~ bnj6... |
bnj934 32815 | Technical lemma for ~ bnj6... |
bnj929 32816 | Technical lemma for ~ bnj6... |
bnj938 32817 | Technical lemma for ~ bnj6... |
bnj944 32818 | Technical lemma for ~ bnj6... |
bnj953 32819 | Technical lemma for ~ bnj6... |
bnj958 32820 | Technical lemma for ~ bnj6... |
bnj1000 32821 | Technical lemma for ~ bnj8... |
bnj965 32822 | Technical lemma for ~ bnj8... |
bnj964 32823 | Technical lemma for ~ bnj6... |
bnj966 32824 | Technical lemma for ~ bnj6... |
bnj967 32825 | Technical lemma for ~ bnj6... |
bnj969 32826 | Technical lemma for ~ bnj6... |
bnj970 32827 | Technical lemma for ~ bnj6... |
bnj910 32828 | Technical lemma for ~ bnj6... |
bnj978 32829 | Technical lemma for ~ bnj6... |
bnj981 32830 | Technical lemma for ~ bnj6... |
bnj983 32831 | Technical lemma for ~ bnj6... |
bnj984 32832 | Technical lemma for ~ bnj6... |
bnj985v 32833 | Version of ~ bnj985 with a... |
bnj985 32834 | Technical lemma for ~ bnj6... |
bnj986 32835 | Technical lemma for ~ bnj6... |
bnj996 32836 | Technical lemma for ~ bnj6... |
bnj998 32837 | Technical lemma for ~ bnj6... |
bnj999 32838 | Technical lemma for ~ bnj6... |
bnj1001 32839 | Technical lemma for ~ bnj6... |
bnj1006 32840 | Technical lemma for ~ bnj6... |
bnj1014 32841 | Technical lemma for ~ bnj6... |
bnj1015 32842 | Technical lemma for ~ bnj6... |
bnj1018g 32843 | Version of ~ bnj1018 with ... |
bnj1018 32844 | Technical lemma for ~ bnj6... |
bnj1020 32845 | Technical lemma for ~ bnj6... |
bnj1021 32846 | Technical lemma for ~ bnj6... |
bnj907 32847 | Technical lemma for ~ bnj6... |
bnj1029 32848 | Property of ` _trCl ` . (... |
bnj1033 32849 | Technical lemma for ~ bnj6... |
bnj1034 32850 | Technical lemma for ~ bnj6... |
bnj1039 32851 | Technical lemma for ~ bnj6... |
bnj1040 32852 | Technical lemma for ~ bnj6... |
bnj1047 32853 | Technical lemma for ~ bnj6... |
bnj1049 32854 | Technical lemma for ~ bnj6... |
bnj1052 32855 | Technical lemma for ~ bnj6... |
bnj1053 32856 | Technical lemma for ~ bnj6... |
bnj1071 32857 | Technical lemma for ~ bnj6... |
bnj1083 32858 | Technical lemma for ~ bnj6... |
bnj1090 32859 | Technical lemma for ~ bnj6... |
bnj1093 32860 | Technical lemma for ~ bnj6... |
bnj1097 32861 | Technical lemma for ~ bnj6... |
bnj1110 32862 | Technical lemma for ~ bnj6... |
bnj1112 32863 | Technical lemma for ~ bnj6... |
bnj1118 32864 | Technical lemma for ~ bnj6... |
bnj1121 32865 | Technical lemma for ~ bnj6... |
bnj1123 32866 | Technical lemma for ~ bnj6... |
bnj1030 32867 | Technical lemma for ~ bnj6... |
bnj1124 32868 | Property of ` _trCl ` . (... |
bnj1133 32869 | Technical lemma for ~ bnj6... |
bnj1128 32870 | Technical lemma for ~ bnj6... |
bnj1127 32871 | Property of ` _trCl ` . (... |
bnj1125 32872 | Property of ` _trCl ` . (... |
bnj1145 32873 | Technical lemma for ~ bnj6... |
bnj1147 32874 | Property of ` _trCl ` . (... |
bnj1137 32875 | Property of ` _trCl ` . (... |
bnj1148 32876 | Property of ` _pred ` . (... |
bnj1136 32877 | Technical lemma for ~ bnj6... |
bnj1152 32878 | Technical lemma for ~ bnj6... |
bnj1154 32879 | Property of ` Fr ` . (Con... |
bnj1171 32880 | Technical lemma for ~ bnj6... |
bnj1172 32881 | Technical lemma for ~ bnj6... |
bnj1173 32882 | Technical lemma for ~ bnj6... |
bnj1174 32883 | Technical lemma for ~ bnj6... |
bnj1175 32884 | Technical lemma for ~ bnj6... |
bnj1176 32885 | Technical lemma for ~ bnj6... |
bnj1177 32886 | Technical lemma for ~ bnj6... |
bnj1186 32887 | Technical lemma for ~ bnj6... |
bnj1190 32888 | Technical lemma for ~ bnj6... |
bnj1189 32889 | Technical lemma for ~ bnj6... |
bnj69 32890 | Existence of a minimal ele... |
bnj1228 32891 | Existence of a minimal ele... |
bnj1204 32892 | Well-founded induction. T... |
bnj1234 32893 | Technical lemma for ~ bnj6... |
bnj1245 32894 | Technical lemma for ~ bnj6... |
bnj1256 32895 | Technical lemma for ~ bnj6... |
bnj1259 32896 | Technical lemma for ~ bnj6... |
bnj1253 32897 | Technical lemma for ~ bnj6... |
bnj1279 32898 | Technical lemma for ~ bnj6... |
bnj1286 32899 | Technical lemma for ~ bnj6... |
bnj1280 32900 | Technical lemma for ~ bnj6... |
bnj1296 32901 | Technical lemma for ~ bnj6... |
bnj1309 32902 | Technical lemma for ~ bnj6... |
bnj1307 32903 | Technical lemma for ~ bnj6... |
bnj1311 32904 | Technical lemma for ~ bnj6... |
bnj1318 32905 | Technical lemma for ~ bnj6... |
bnj1326 32906 | Technical lemma for ~ bnj6... |
bnj1321 32907 | Technical lemma for ~ bnj6... |
bnj1364 32908 | Property of ` _FrSe ` . (... |
bnj1371 32909 | Technical lemma for ~ bnj6... |
bnj1373 32910 | Technical lemma for ~ bnj6... |
bnj1374 32911 | Technical lemma for ~ bnj6... |
bnj1384 32912 | Technical lemma for ~ bnj6... |
bnj1388 32913 | Technical lemma for ~ bnj6... |
bnj1398 32914 | Technical lemma for ~ bnj6... |
bnj1413 32915 | Property of ` _trCl ` . (... |
bnj1408 32916 | Technical lemma for ~ bnj1... |
bnj1414 32917 | Property of ` _trCl ` . (... |
bnj1415 32918 | Technical lemma for ~ bnj6... |
bnj1416 32919 | Technical lemma for ~ bnj6... |
bnj1418 32920 | Property of ` _pred ` . (... |
bnj1417 32921 | Technical lemma for ~ bnj6... |
bnj1421 32922 | Technical lemma for ~ bnj6... |
bnj1444 32923 | Technical lemma for ~ bnj6... |
bnj1445 32924 | Technical lemma for ~ bnj6... |
bnj1446 32925 | Technical lemma for ~ bnj6... |
bnj1447 32926 | Technical lemma for ~ bnj6... |
bnj1448 32927 | Technical lemma for ~ bnj6... |
bnj1449 32928 | Technical lemma for ~ bnj6... |
bnj1442 32929 | Technical lemma for ~ bnj6... |
bnj1450 32930 | Technical lemma for ~ bnj6... |
bnj1423 32931 | Technical lemma for ~ bnj6... |
bnj1452 32932 | Technical lemma for ~ bnj6... |
bnj1466 32933 | Technical lemma for ~ bnj6... |
bnj1467 32934 | Technical lemma for ~ bnj6... |
bnj1463 32935 | Technical lemma for ~ bnj6... |
bnj1489 32936 | Technical lemma for ~ bnj6... |
bnj1491 32937 | Technical lemma for ~ bnj6... |
bnj1312 32938 | Technical lemma for ~ bnj6... |
bnj1493 32939 | Technical lemma for ~ bnj6... |
bnj1497 32940 | Technical lemma for ~ bnj6... |
bnj1498 32941 | Technical lemma for ~ bnj6... |
bnj60 32942 | Well-founded recursion, pa... |
bnj1514 32943 | Technical lemma for ~ bnj1... |
bnj1518 32944 | Technical lemma for ~ bnj1... |
bnj1519 32945 | Technical lemma for ~ bnj1... |
bnj1520 32946 | Technical lemma for ~ bnj1... |
bnj1501 32947 | Technical lemma for ~ bnj1... |
bnj1500 32948 | Well-founded recursion, pa... |
bnj1525 32949 | Technical lemma for ~ bnj1... |
bnj1529 32950 | Technical lemma for ~ bnj1... |
bnj1523 32951 | Technical lemma for ~ bnj1... |
bnj1522 32952 | Well-founded recursion, pa... |
exdifsn 32953 | There exists an element in... |
srcmpltd 32954 | If a statement is true for... |
prsrcmpltd 32955 | If a statement is true for... |
dff15 32956 | A one-to-one function in t... |
f1resveqaeq 32957 | If a function restricted t... |
f1resrcmplf1dlem 32958 | Lemma for ~ f1resrcmplf1d ... |
f1resrcmplf1d 32959 | If a function's restrictio... |
funen1cnv 32960 | If a function is equinumer... |
fnrelpredd 32961 | A function that preserves ... |
cardpred 32962 | The cardinality function p... |
nummin 32963 | Every nonempty class of nu... |
fineqvrep 32964 | If the Axiom of Infinity i... |
fineqvpow 32965 | If the Axiom of Infinity i... |
fineqvac 32966 | If the Axiom of Infinity i... |
fineqvacALT 32967 | Shorter proof of ~ fineqva... |
zltp1ne 32968 | Integer ordering relation.... |
nnltp1ne 32969 | Positive integer ordering ... |
nn0ltp1ne 32970 | Nonnegative integer orderi... |
0nn0m1nnn0 32971 | A number is zero if and on... |
f1resfz0f1d 32972 | If a function with a seque... |
fisshasheq 32973 | A finite set is equal to i... |
hashfundm 32974 | The size of a set function... |
hashf1dmrn 32975 | The size of the domain of ... |
hashf1dmcdm 32976 | The size of the domain of ... |
revpfxsfxrev 32977 | The reverse of a prefix of... |
swrdrevpfx 32978 | A subword expressed in ter... |
lfuhgr 32979 | A hypergraph is loop-free ... |
lfuhgr2 32980 | A hypergraph is loop-free ... |
lfuhgr3 32981 | A hypergraph is loop-free ... |
cplgredgex 32982 | Any two (distinct) vertice... |
cusgredgex 32983 | Any two (distinct) vertice... |
cusgredgex2 32984 | Any two distinct vertices ... |
pfxwlk 32985 | A prefix of a walk is a wa... |
revwlk 32986 | The reverse of a walk is a... |
revwlkb 32987 | Two words represent a walk... |
swrdwlk 32988 | Two matching subwords of a... |
pthhashvtx 32989 | A graph containing a path ... |
pthisspthorcycl 32990 | A path is either a simple ... |
spthcycl 32991 | A walk is a trivial path i... |
usgrgt2cycl 32992 | A non-trivial cycle in a s... |
usgrcyclgt2v 32993 | A simple graph with a non-... |
subgrwlk 32994 | If a walk exists in a subg... |
subgrtrl 32995 | If a trail exists in a sub... |
subgrpth 32996 | If a path exists in a subg... |
subgrcycl 32997 | If a cycle exists in a sub... |
cusgr3cyclex 32998 | Every complete simple grap... |
loop1cycl 32999 | A hypergraph has a cycle o... |
2cycld 33000 | Construction of a 2-cycle ... |
2cycl2d 33001 | Construction of a 2-cycle ... |
umgr2cycllem 33002 | Lemma for ~ umgr2cycl . (... |
umgr2cycl 33003 | A multigraph with two dist... |
dfacycgr1 33006 | An alternate definition of... |
isacycgr 33007 | The property of being an a... |
isacycgr1 33008 | The property of being an a... |
acycgrcycl 33009 | Any cycle in an acyclic gr... |
acycgr0v 33010 | A null graph (with no vert... |
acycgr1v 33011 | A multigraph with one vert... |
acycgr2v 33012 | A simple graph with two ve... |
prclisacycgr 33013 | A proper class (representi... |
acycgrislfgr 33014 | An acyclic hypergraph is a... |
upgracycumgr 33015 | An acyclic pseudograph is ... |
umgracycusgr 33016 | An acyclic multigraph is a... |
upgracycusgr 33017 | An acyclic pseudograph is ... |
cusgracyclt3v 33018 | A complete simple graph is... |
pthacycspth 33019 | A path in an acyclic graph... |
acycgrsubgr 33020 | The subgraph of an acyclic... |
quartfull 33027 | The quartic equation, writ... |
deranglem 33028 | Lemma for derangements. (... |
derangval 33029 | Define the derangement fun... |
derangf 33030 | The derangement number is ... |
derang0 33031 | The derangement number of ... |
derangsn 33032 | The derangement number of ... |
derangenlem 33033 | One half of ~ derangen . ... |
derangen 33034 | The derangement number is ... |
subfacval 33035 | The subfactorial is define... |
derangen2 33036 | Write the derangement numb... |
subfacf 33037 | The subfactorial is a func... |
subfaclefac 33038 | The subfactorial is less t... |
subfac0 33039 | The subfactorial at zero. ... |
subfac1 33040 | The subfactorial at one. ... |
subfacp1lem1 33041 | Lemma for ~ subfacp1 . Th... |
subfacp1lem2a 33042 | Lemma for ~ subfacp1 . Pr... |
subfacp1lem2b 33043 | Lemma for ~ subfacp1 . Pr... |
subfacp1lem3 33044 | Lemma for ~ subfacp1 . In... |
subfacp1lem4 33045 | Lemma for ~ subfacp1 . Th... |
subfacp1lem5 33046 | Lemma for ~ subfacp1 . In... |
subfacp1lem6 33047 | Lemma for ~ subfacp1 . By... |
subfacp1 33048 | A two-term recurrence for ... |
subfacval2 33049 | A closed-form expression f... |
subfaclim 33050 | The subfactorial converges... |
subfacval3 33051 | Another closed form expres... |
derangfmla 33052 | The derangements formula, ... |
erdszelem1 33053 | Lemma for ~ erdsze . (Con... |
erdszelem2 33054 | Lemma for ~ erdsze . (Con... |
erdszelem3 33055 | Lemma for ~ erdsze . (Con... |
erdszelem4 33056 | Lemma for ~ erdsze . (Con... |
erdszelem5 33057 | Lemma for ~ erdsze . (Con... |
erdszelem6 33058 | Lemma for ~ erdsze . (Con... |
erdszelem7 33059 | Lemma for ~ erdsze . (Con... |
erdszelem8 33060 | Lemma for ~ erdsze . (Con... |
erdszelem9 33061 | Lemma for ~ erdsze . (Con... |
erdszelem10 33062 | Lemma for ~ erdsze . (Con... |
erdszelem11 33063 | Lemma for ~ erdsze . (Con... |
erdsze 33064 | The Erdős-Szekeres th... |
erdsze2lem1 33065 | Lemma for ~ erdsze2 . (Co... |
erdsze2lem2 33066 | Lemma for ~ erdsze2 . (Co... |
erdsze2 33067 | Generalize the statement o... |
kur14lem1 33068 | Lemma for ~ kur14 . (Cont... |
kur14lem2 33069 | Lemma for ~ kur14 . Write... |
kur14lem3 33070 | Lemma for ~ kur14 . A clo... |
kur14lem4 33071 | Lemma for ~ kur14 . Compl... |
kur14lem5 33072 | Lemma for ~ kur14 . Closu... |
kur14lem6 33073 | Lemma for ~ kur14 . If ` ... |
kur14lem7 33074 | Lemma for ~ kur14 : main p... |
kur14lem8 33075 | Lemma for ~ kur14 . Show ... |
kur14lem9 33076 | Lemma for ~ kur14 . Since... |
kur14lem10 33077 | Lemma for ~ kur14 . Disch... |
kur14 33078 | Kuratowski's closure-compl... |
ispconn 33085 | The property of being a pa... |
pconncn 33086 | The property of being a pa... |
pconntop 33087 | A simply connected space i... |
issconn 33088 | The property of being a si... |
sconnpconn 33089 | A simply connected space i... |
sconntop 33090 | A simply connected space i... |
sconnpht 33091 | A closed path in a simply ... |
cnpconn 33092 | An image of a path-connect... |
pconnconn 33093 | A path-connected space is ... |
txpconn 33094 | The topological product of... |
ptpconn 33095 | The topological product of... |
indispconn 33096 | The indiscrete topology (o... |
connpconn 33097 | A connected and locally pa... |
qtoppconn 33098 | A quotient of a path-conne... |
pconnpi1 33099 | All fundamental groups in ... |
sconnpht2 33100 | Any two paths in a simply ... |
sconnpi1 33101 | A path-connected topologic... |
txsconnlem 33102 | Lemma for ~ txsconn . (Co... |
txsconn 33103 | The topological product of... |
cvxpconn 33104 | A convex subset of the com... |
cvxsconn 33105 | A convex subset of the com... |
blsconn 33106 | An open ball in the comple... |
cnllysconn 33107 | The topology of the comple... |
resconn 33108 | A subset of ` RR ` is simp... |
ioosconn 33109 | An open interval is simply... |
iccsconn 33110 | A closed interval is simpl... |
retopsconn 33111 | The real numbers are simpl... |
iccllysconn 33112 | A closed interval is local... |
rellysconn 33113 | The real numbers are local... |
iisconn 33114 | The unit interval is simpl... |
iillysconn 33115 | The unit interval is local... |
iinllyconn 33116 | The unit interval is local... |
fncvm 33119 | Lemma for covering maps. ... |
cvmscbv 33120 | Change bound variables in ... |
iscvm 33121 | The property of being a co... |
cvmtop1 33122 | Reverse closure for a cove... |
cvmtop2 33123 | Reverse closure for a cove... |
cvmcn 33124 | A covering map is a contin... |
cvmcov 33125 | Property of a covering map... |
cvmsrcl 33126 | Reverse closure for an eve... |
cvmsi 33127 | One direction of ~ cvmsval... |
cvmsval 33128 | Elementhood in the set ` S... |
cvmsss 33129 | An even covering is a subs... |
cvmsn0 33130 | An even covering is nonemp... |
cvmsuni 33131 | An even covering of ` U ` ... |
cvmsdisj 33132 | An even covering of ` U ` ... |
cvmshmeo 33133 | Every element of an even c... |
cvmsf1o 33134 | ` F ` , localized to an el... |
cvmscld 33135 | The sets of an even coveri... |
cvmsss2 33136 | An open subset of an evenl... |
cvmcov2 33137 | The covering map property ... |
cvmseu 33138 | Every element in ` U. T ` ... |
cvmsiota 33139 | Identify the unique elemen... |
cvmopnlem 33140 | Lemma for ~ cvmopn . (Con... |
cvmfolem 33141 | Lemma for ~ cvmfo . (Cont... |
cvmopn 33142 | A covering map is an open ... |
cvmliftmolem1 33143 | Lemma for ~ cvmliftmo . (... |
cvmliftmolem2 33144 | Lemma for ~ cvmliftmo . (... |
cvmliftmoi 33145 | A lift of a continuous fun... |
cvmliftmo 33146 | A lift of a continuous fun... |
cvmliftlem1 33147 | Lemma for ~ cvmlift . In ... |
cvmliftlem2 33148 | Lemma for ~ cvmlift . ` W ... |
cvmliftlem3 33149 | Lemma for ~ cvmlift . Sin... |
cvmliftlem4 33150 | Lemma for ~ cvmlift . The... |
cvmliftlem5 33151 | Lemma for ~ cvmlift . Def... |
cvmliftlem6 33152 | Lemma for ~ cvmlift . Ind... |
cvmliftlem7 33153 | Lemma for ~ cvmlift . Pro... |
cvmliftlem8 33154 | Lemma for ~ cvmlift . The... |
cvmliftlem9 33155 | Lemma for ~ cvmlift . The... |
cvmliftlem10 33156 | Lemma for ~ cvmlift . The... |
cvmliftlem11 33157 | Lemma for ~ cvmlift . (Co... |
cvmliftlem13 33158 | Lemma for ~ cvmlift . The... |
cvmliftlem14 33159 | Lemma for ~ cvmlift . Put... |
cvmliftlem15 33160 | Lemma for ~ cvmlift . Dis... |
cvmlift 33161 | One of the important prope... |
cvmfo 33162 | A covering map is an onto ... |
cvmliftiota 33163 | Write out a function ` H `... |
cvmlift2lem1 33164 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem9a 33165 | Lemma for ~ cvmlift2 and ~... |
cvmlift2lem2 33166 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem3 33167 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem4 33168 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem5 33169 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem6 33170 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem7 33171 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem8 33172 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem9 33173 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem10 33174 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem11 33175 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem12 33176 | Lemma for ~ cvmlift2 . (C... |
cvmlift2lem13 33177 | Lemma for ~ cvmlift2 . (C... |
cvmlift2 33178 | A two-dimensional version ... |
cvmliftphtlem 33179 | Lemma for ~ cvmliftpht . ... |
cvmliftpht 33180 | If ` G ` and ` H ` are pat... |
cvmlift3lem1 33181 | Lemma for ~ cvmlift3 . (C... |
cvmlift3lem2 33182 | Lemma for ~ cvmlift2 . (C... |
cvmlift3lem3 33183 | Lemma for ~ cvmlift2 . (C... |
cvmlift3lem4 33184 | Lemma for ~ cvmlift2 . (C... |
cvmlift3lem5 33185 | Lemma for ~ cvmlift2 . (C... |
cvmlift3lem6 33186 | Lemma for ~ cvmlift3 . (C... |
cvmlift3lem7 33187 | Lemma for ~ cvmlift3 . (C... |
cvmlift3lem8 33188 | Lemma for ~ cvmlift2 . (C... |
cvmlift3lem9 33189 | Lemma for ~ cvmlift2 . (C... |
cvmlift3 33190 | A general version of ~ cvm... |
snmlff 33191 | The function ` F ` from ~ ... |
snmlfval 33192 | The function ` F ` from ~ ... |
snmlval 33193 | The property " ` A ` is si... |
snmlflim 33194 | If ` A ` is simply normal,... |
goel 33209 | A "Godel-set of membership... |
goelel3xp 33210 | A "Godel-set of membership... |
goeleq12bg 33211 | Two "Godel-set of membersh... |
gonafv 33212 | The "Godel-set for the She... |
goaleq12d 33213 | Equality of the "Godel-set... |
gonanegoal 33214 | The Godel-set for the Shef... |
satf 33215 | The satisfaction predicate... |
satfsucom 33216 | The satisfaction predicate... |
satfn 33217 | The satisfaction predicate... |
satom 33218 | The satisfaction predicate... |
satfvsucom 33219 | The satisfaction predicate... |
satfv0 33220 | The value of the satisfact... |
satfvsuclem1 33221 | Lemma 1 for ~ satfvsuc . ... |
satfvsuclem2 33222 | Lemma 2 for ~ satfvsuc . ... |
satfvsuc 33223 | The value of the satisfact... |
satfv1lem 33224 | Lemma for ~ satfv1 . (Con... |
satfv1 33225 | The value of the satisfact... |
satfsschain 33226 | The binary relation of a s... |
satfvsucsuc 33227 | The satisfaction predicate... |
satfbrsuc 33228 | The binary relation of a s... |
satfrel 33229 | The value of the satisfact... |
satfdmlem 33230 | Lemma for ~ satfdm . (Con... |
satfdm 33231 | The domain of the satisfac... |
satfrnmapom 33232 | The range of the satisfact... |
satfv0fun 33233 | The value of the satisfact... |
satf0 33234 | The satisfaction predicate... |
satf0sucom 33235 | The satisfaction predicate... |
satf00 33236 | The value of the satisfact... |
satf0suclem 33237 | Lemma for ~ satf0suc , ~ s... |
satf0suc 33238 | The value of the satisfact... |
satf0op 33239 | An element of a value of t... |
satf0n0 33240 | The value of the satisfact... |
sat1el2xp 33241 | The first component of an ... |
fmlafv 33242 | The valid Godel formulas o... |
fmla 33243 | The set of all valid Godel... |
fmla0 33244 | The valid Godel formulas o... |
fmla0xp 33245 | The valid Godel formulas o... |
fmlasuc0 33246 | The valid Godel formulas o... |
fmlafvel 33247 | A class is a valid Godel f... |
fmlasuc 33248 | The valid Godel formulas o... |
fmla1 33249 | The valid Godel formulas o... |
isfmlasuc 33250 | The characterization of a ... |
fmlasssuc 33251 | The Godel formulas of heig... |
fmlaomn0 33252 | The empty set is not a God... |
fmlan0 33253 | The empty set is not a God... |
gonan0 33254 | The "Godel-set of NAND" is... |
goaln0 33255 | The "Godel-set of universa... |
gonarlem 33256 | Lemma for ~ gonar (inducti... |
gonar 33257 | If the "Godel-set of NAND"... |
goalrlem 33258 | Lemma for ~ goalr (inducti... |
goalr 33259 | If the "Godel-set of unive... |
fmla0disjsuc 33260 | The set of valid Godel for... |
fmlasucdisj 33261 | The valid Godel formulas o... |
satfdmfmla 33262 | The domain of the satisfac... |
satffunlem 33263 | Lemma for ~ satffunlem1lem... |
satffunlem1lem1 33264 | Lemma for ~ satffunlem1 . ... |
satffunlem1lem2 33265 | Lemma 2 for ~ satffunlem1 ... |
satffunlem2lem1 33266 | Lemma 1 for ~ satffunlem2 ... |
dmopab3rexdif 33267 | The domain of an ordered p... |
satffunlem2lem2 33268 | Lemma 2 for ~ satffunlem2 ... |
satffunlem1 33269 | Lemma 1 for ~ satffun : in... |
satffunlem2 33270 | Lemma 2 for ~ satffun : in... |
satffun 33271 | The value of the satisfact... |
satff 33272 | The satisfaction predicate... |
satfun 33273 | The satisfaction predicate... |
satfvel 33274 | An element of the value of... |
satfv0fvfmla0 33275 | The value of the satisfact... |
satefv 33276 | The simplified satisfactio... |
sate0 33277 | The simplified satisfactio... |
satef 33278 | The simplified satisfactio... |
sate0fv0 33279 | A simplified satisfaction ... |
satefvfmla0 33280 | The simplified satisfactio... |
sategoelfvb 33281 | Characterization of a valu... |
sategoelfv 33282 | Condition of a valuation `... |
ex-sategoelel 33283 | Example of a valuation of ... |
ex-sategoel 33284 | Instance of ~ sategoelfv f... |
satfv1fvfmla1 33285 | The value of the satisfact... |
2goelgoanfmla1 33286 | Two Godel-sets of membersh... |
satefvfmla1 33287 | The simplified satisfactio... |
ex-sategoelelomsuc 33288 | Example of a valuation of ... |
ex-sategoelel12 33289 | Example of a valuation of ... |
prv 33290 | The "proves" relation on a... |
elnanelprv 33291 | The wff ` ( A e. B -/\ B e... |
prv0 33292 | Every wff encoded as ` U `... |
prv1n 33293 | No wff encoded as a Godel-... |
mvtval 33362 | The set of variable typeco... |
mrexval 33363 | The set of "raw expression... |
mexval 33364 | The set of expressions, wh... |
mexval2 33365 | The set of expressions, wh... |
mdvval 33366 | The set of disjoint variab... |
mvrsval 33367 | The set of variables in an... |
mvrsfpw 33368 | The set of variables in an... |
mrsubffval 33369 | The substitution of some v... |
mrsubfval 33370 | The substitution of some v... |
mrsubval 33371 | The substitution of some v... |
mrsubcv 33372 | The value of a substituted... |
mrsubvr 33373 | The value of a substituted... |
mrsubff 33374 | A substitution is a functi... |
mrsubrn 33375 | Although it is defined for... |
mrsubff1 33376 | When restricted to complet... |
mrsubff1o 33377 | When restricted to complet... |
mrsub0 33378 | The value of the substitut... |
mrsubf 33379 | A substitution is a functi... |
mrsubccat 33380 | Substitution distributes o... |
mrsubcn 33381 | A substitution does not ch... |
elmrsubrn 33382 | Characterization of the su... |
mrsubco 33383 | The composition of two sub... |
mrsubvrs 33384 | The set of variables in a ... |
msubffval 33385 | A substitution applied to ... |
msubfval 33386 | A substitution applied to ... |
msubval 33387 | A substitution applied to ... |
msubrsub 33388 | A substitution applied to ... |
msubty 33389 | The type of a substituted ... |
elmsubrn 33390 | Characterization of substi... |
msubrn 33391 | Although it is defined for... |
msubff 33392 | A substitution is a functi... |
msubco 33393 | The composition of two sub... |
msubf 33394 | A substitution is a functi... |
mvhfval 33395 | Value of the function mapp... |
mvhval 33396 | Value of the function mapp... |
mpstval 33397 | A pre-statement is an orde... |
elmpst 33398 | Property of being a pre-st... |
msrfval 33399 | Value of the reduct of a p... |
msrval 33400 | Value of the reduct of a p... |
mpstssv 33401 | A pre-statement is an orde... |
mpst123 33402 | Decompose a pre-statement ... |
mpstrcl 33403 | The elements of a pre-stat... |
msrf 33404 | The reduct of a pre-statem... |
msrrcl 33405 | If ` X ` and ` Y ` have th... |
mstaval 33406 | Value of the set of statem... |
msrid 33407 | The reduct of a statement ... |
msrfo 33408 | The reduct of a pre-statem... |
mstapst 33409 | A statement is a pre-state... |
elmsta 33410 | Property of being a statem... |
ismfs 33411 | A formal system is a tuple... |
mfsdisj 33412 | The constants and variable... |
mtyf2 33413 | The type function maps var... |
mtyf 33414 | The type function maps var... |
mvtss 33415 | The set of variable typeco... |
maxsta 33416 | An axiom is a statement. ... |
mvtinf 33417 | Each variable typecode has... |
msubff1 33418 | When restricted to complet... |
msubff1o 33419 | When restricted to complet... |
mvhf 33420 | The function mapping varia... |
mvhf1 33421 | The function mapping varia... |
msubvrs 33422 | The set of variables in a ... |
mclsrcl 33423 | Reverse closure for the cl... |
mclsssvlem 33424 | Lemma for ~ mclsssv . (Co... |
mclsval 33425 | The function mapping varia... |
mclsssv 33426 | The closure of a set of ex... |
ssmclslem 33427 | Lemma for ~ ssmcls . (Con... |
vhmcls 33428 | All variable hypotheses ar... |
ssmcls 33429 | The original expressions a... |
ss2mcls 33430 | The closure is monotonic u... |
mclsax 33431 | The closure is closed unde... |
mclsind 33432 | Induction theorem for clos... |
mppspstlem 33433 | Lemma for ~ mppspst . (Co... |
mppsval 33434 | Definition of a provable p... |
elmpps 33435 | Definition of a provable p... |
mppspst 33436 | A provable pre-statement i... |
mthmval 33437 | A theorem is a pre-stateme... |
elmthm 33438 | A theorem is a pre-stateme... |
mthmi 33439 | A statement whose reduct i... |
mthmsta 33440 | A theorem is a pre-stateme... |
mppsthm 33441 | A provable pre-statement i... |
mthmblem 33442 | Lemma for ~ mthmb . (Cont... |
mthmb 33443 | If two statements have the... |
mthmpps 33444 | Given a theorem, there is ... |
mclsppslem 33445 | The closure is closed unde... |
mclspps 33446 | The closure is closed unde... |
problem1 33523 | Practice problem 1. Clues... |
problem2 33524 | Practice problem 2. Clues... |
problem3 33525 | Practice problem 3. Clues... |
problem4 33526 | Practice problem 4. Clues... |
problem5 33527 | Practice problem 5. Clues... |
quad3 33528 | Variant of quadratic equat... |
climuzcnv 33529 | Utility lemma to convert b... |
sinccvglem 33530 | ` ( ( sin `` x ) / x ) ~~>... |
sinccvg 33531 | ` ( ( sin `` x ) / x ) ~~>... |
circum 33532 | The circumference of a cir... |
elfzm12 33533 | Membership in a curtailed ... |
nn0seqcvg 33534 | A strictly-decreasing nonn... |
lediv2aALT 33535 | Division of both sides of ... |
abs2sqlei 33536 | The absolute values of two... |
abs2sqlti 33537 | The absolute values of two... |
abs2sqle 33538 | The absolute values of two... |
abs2sqlt 33539 | The absolute values of two... |
abs2difi 33540 | Difference of absolute val... |
abs2difabsi 33541 | Absolute value of differen... |
axextprim 33542 | ~ ax-ext without distinct ... |
axrepprim 33543 | ~ ax-rep without distinct ... |
axunprim 33544 | ~ ax-un without distinct v... |
axpowprim 33545 | ~ ax-pow without distinct ... |
axregprim 33546 | ~ ax-reg without distinct ... |
axinfprim 33547 | ~ ax-inf without distinct ... |
axacprim 33548 | ~ ax-ac without distinct v... |
untelirr 33549 | We call a class "untanged"... |
untuni 33550 | The union of a class is un... |
untsucf 33551 | If a class is untangled, t... |
unt0 33552 | The null set is untangled.... |
untint 33553 | If there is an untangled e... |
efrunt 33554 | If ` A ` is well-founded b... |
untangtr 33555 | A transitive class is unta... |
3orel2 33556 | Partial elimination of a t... |
3orel3 33557 | Partial elimination of a t... |
3pm3.2ni 33558 | Triple negated disjunction... |
3jaodd 33559 | Double deduction form of ~... |
3orit 33560 | Closed form of ~ 3ori . (... |
biimpexp 33561 | A biconditional in the ant... |
3orel13 33562 | Elimination of two disjunc... |
onelssex 33563 | Ordinal less than is equiv... |
nepss 33564 | Two classes are unequal if... |
3ccased 33565 | Triple disjunction form of... |
dfso3 33566 | Expansion of the definitio... |
brtpid1 33567 | A binary relation involvin... |
brtpid2 33568 | A binary relation involvin... |
brtpid3 33569 | A binary relation involvin... |
ceqsrexv2 33570 | Alternate elimitation of a... |
iota5f 33571 | A method for computing iot... |
ceqsralv2 33572 | Alternate elimination of a... |
dford5 33573 | A class is ordinal iff it ... |
jath 33574 | Closed form of ~ ja . Pro... |
riotarab 33575 | Restricted iota of a restr... |
reurab 33576 | Restricted existential uni... |
snres0 33577 | Condition for restriction ... |
fnssintima 33578 | Condition for subset of an... |
xpab 33579 | Cross product of two class... |
dfse3 33580 | Alternate definition of se... |
ralxpes 33581 | A version of ~ ralxp with ... |
ot2elxp 33582 | Ordered triple membership ... |
ot21std 33583 | Extract the first member o... |
ot22ndd 33584 | Extract the second member ... |
otthne 33585 | Contrapositive of the orde... |
elxpxp 33586 | Membership in a triple cro... |
elxpxpss 33587 | Version of ~ elrel for tri... |
ralxp3f 33588 | Restricted for all over a ... |
ralxp3 33589 | Restricted for-all over a ... |
sbcoteq1a 33590 | Equality theorem for subst... |
ralxp3es 33591 | Restricted for-all over a ... |
onunel 33592 | The union of two ordinals ... |
imaeqsexv 33593 | Substitute a function valu... |
imaeqsalv 33594 | Substitute a function valu... |
nnuni 33595 | The union of a finite ordi... |
nnasmo 33596 | Finite ordinal subtraction... |
eldifsucnn 33597 | Condition for membership i... |
rdg0n 33598 | If ` A ` is a proper class... |
sqdivzi 33599 | Distribution of square ove... |
supfz 33600 | The supremum of a finite s... |
inffz 33601 | The infimum of a finite se... |
fz0n 33602 | The sequence ` ( 0 ... ( N... |
shftvalg 33603 | Value of a sequence shifte... |
divcnvlin 33604 | Limit of the ratio of two ... |
climlec3 33605 | Comparison of a constant t... |
logi 33606 | Calculate the logarithm of... |
iexpire 33607 | ` _i ` raised to itself is... |
bcneg1 33608 | The binomial coefficent ov... |
bcm1nt 33609 | The proportion of one bion... |
bcprod 33610 | A product identity for bin... |
bccolsum 33611 | A column-sum rule for bino... |
iprodefisumlem 33612 | Lemma for ~ iprodefisum . ... |
iprodefisum 33613 | Applying the exponential f... |
iprodgam 33614 | An infinite product versio... |
faclimlem1 33615 | Lemma for ~ faclim . Clos... |
faclimlem2 33616 | Lemma for ~ faclim . Show... |
faclimlem3 33617 | Lemma for ~ faclim . Alge... |
faclim 33618 | An infinite product expres... |
iprodfac 33619 | An infinite product expres... |
faclim2 33620 | Another factorial limit du... |
gcd32 33621 | Swap the second and third ... |
gcdabsorb 33622 | Absorption law for gcd. (... |
brtp 33623 | A condition for a binary r... |
dftr6 33624 | A potential definition of ... |
coep 33625 | Composition with the membe... |
coepr 33626 | Composition with the conve... |
dffr5 33627 | A quantifier-free definiti... |
dfso2 33628 | Quantifier-free definition... |
br8 33629 | Substitution for an eight-... |
br6 33630 | Substitution for a six-pla... |
br4 33631 | Substitution for a four-pl... |
cnvco1 33632 | Another distributive law o... |
cnvco2 33633 | Another distributive law o... |
eldm3 33634 | Quantifier-free definition... |
elrn3 33635 | Quantifier-free definition... |
pocnv 33636 | The converse of a partial ... |
socnv 33637 | The converse of a strict o... |
sotrd 33638 | Transitivity law for stric... |
sotr3 33639 | Transitivity law for stric... |
sotrine 33640 | Trichotomy law for strict ... |
eqfunresadj 33641 | Law for adjoining an eleme... |
eqfunressuc 33642 | Law for equality of restri... |
funeldmb 33643 | If ` (/) ` is not part of ... |
elintfv 33644 | Membership in an intersect... |
funpsstri 33645 | A condition for subset tri... |
fundmpss 33646 | If a class ` F ` is a prop... |
fvresval 33647 | The value of a function at... |
funsseq 33648 | Given two functions with e... |
fununiq 33649 | The uniqueness condition o... |
funbreq 33650 | An equality condition for ... |
br1steq 33651 | Uniqueness condition for t... |
br2ndeq 33652 | Uniqueness condition for t... |
dfdm5 33653 | Definition of domain in te... |
dfrn5 33654 | Definition of range in ter... |
opelco3 33655 | Alternate way of saying th... |
elima4 33656 | Quantifier-free expression... |
fv1stcnv 33657 | The value of the converse ... |
fv2ndcnv 33658 | The value of the converse ... |
imaindm 33659 | The image is unaffected by... |
setinds 33660 | Principle of set induction... |
setinds2f 33661 | ` _E ` induction schema, u... |
setinds2 33662 | ` _E ` induction schema, u... |
elpotr 33663 | A class of transitive sets... |
dford5reg 33664 | Given ~ ax-reg , an ordina... |
dfon2lem1 33665 | Lemma for ~ dfon2 . (Cont... |
dfon2lem2 33666 | Lemma for ~ dfon2 . (Cont... |
dfon2lem3 33667 | Lemma for ~ dfon2 . All s... |
dfon2lem4 33668 | Lemma for ~ dfon2 . If tw... |
dfon2lem5 33669 | Lemma for ~ dfon2 . Two s... |
dfon2lem6 33670 | Lemma for ~ dfon2 . A tra... |
dfon2lem7 33671 | Lemma for ~ dfon2 . All e... |
dfon2lem8 33672 | Lemma for ~ dfon2 . The i... |
dfon2lem9 33673 | Lemma for ~ dfon2 . A cla... |
dfon2 33674 | ` On ` consists of all set... |
rdgprc0 33675 | The value of the recursive... |
rdgprc 33676 | The value of the recursive... |
dfrdg2 33677 | Alternate definition of th... |
dfrdg3 33678 | Generalization of ~ dfrdg2... |
axextdfeq 33679 | A version of ~ ax-ext for ... |
ax8dfeq 33680 | A version of ~ ax-8 for us... |
axextdist 33681 | ~ ax-ext with distinctors ... |
axextbdist 33682 | ~ axextb with distinctors ... |
19.12b 33683 | Version of ~ 19.12vv with ... |
exnel 33684 | There is always a set not ... |
distel 33685 | Distinctors in terms of me... |
axextndbi 33686 | ~ axextnd as a bicondition... |
hbntg 33687 | A more general form of ~ h... |
hbimtg 33688 | A more general and closed ... |
hbaltg 33689 | A more general and closed ... |
hbng 33690 | A more general form of ~ h... |
hbimg 33691 | A more general form of ~ h... |
tfisg 33692 | A closed form of ~ tfis . ... |
ttrcleq 33695 | Equality theorem for trans... |
nfttrcld 33696 | Bound variable hypothesis ... |
nfttrcl 33697 | Bound variable hypothesis ... |
relttrcl 33698 | The transitive closure of ... |
brttrcl 33699 | Characterization of elemen... |
brttrcl2 33700 | Characterization of elemen... |
ssttrcl 33701 | If ` R ` is a relation, th... |
ttrcltr 33702 | The transitive closure of ... |
ttrclresv 33703 | The transitive closure of ... |
ttrclco 33704 | Composition law for the tr... |
cottrcl 33705 | Composition law for the tr... |
ttrclss 33706 | If ` R ` is a subclass of ... |
dmttrcl 33707 | The domain of a transitive... |
rnttrcl 33708 | The range of a transitive ... |
ttrclexg 33709 | If ` R ` is a set, then so... |
dfttrcl2 33710 | When ` R ` is a set and a ... |
ttrclselem1 33711 | Lemma for ~ ttrclse . Sho... |
ttrclselem2 33712 | Lemma for ~ ttrclse . Sho... |
ttrclse 33713 | If ` R ` is set-like over ... |
frpoins3xpg 33714 | Special case of founded pa... |
frpoins3xp3g 33715 | Special case of founded pa... |
xpord2lem 33716 | Lemma for cross product or... |
poxp2 33717 | Another way of partially o... |
frxp2 33718 | Another way of giving a fo... |
xpord2pred 33719 | Calculate the predecessor ... |
sexp2 33720 | Condition for the relation... |
xpord2ind 33721 | Induction over the cross p... |
xpord3lem 33722 | Lemma for triple ordering.... |
poxp3 33723 | Triple cross product parti... |
frxp3 33724 | Give foundedness over a tr... |
xpord3pred 33725 | Calculate the predecsessor... |
sexp3 33726 | Show that the triple order... |
xpord3ind 33727 | Induction over the triple ... |
orderseqlem 33728 | Lemma for ~ poseq and ~ so... |
poseq 33729 | A partial ordering of sequ... |
soseq 33730 | A linear ordering of seque... |
wsuceq123 33735 | Equality theorem for well-... |
wsuceq1 33736 | Equality theorem for well-... |
wsuceq2 33737 | Equality theorem for well-... |
wsuceq3 33738 | Equality theorem for well-... |
nfwsuc 33739 | Bound-variable hypothesis ... |
wlimeq12 33740 | Equality theorem for the l... |
wlimeq1 33741 | Equality theorem for the l... |
wlimeq2 33742 | Equality theorem for the l... |
nfwlim 33743 | Bound-variable hypothesis ... |
elwlim 33744 | Membership in the limit cl... |
wzel 33745 | The zero of a well-founded... |
wsuclem 33746 | Lemma for the supremum pro... |
wsucex 33747 | Existence theorem for well... |
wsuccl 33748 | If ` X ` is a set with an ... |
wsuclb 33749 | A well-founded successor i... |
wlimss 33750 | The class of limit points ... |
on2recsfn 33753 | Show that double recursion... |
on2recsov 33754 | Calculate the value of the... |
on2ind 33755 | Double induction over ordi... |
on3ind 33756 | Triple induction over ordi... |
naddfn 33757 | Natural addition is a func... |
naddcllem 33758 | Lemma for ordinal addition... |
naddcl 33759 | Closure law for natural ad... |
naddov 33760 | The value of natural addit... |
naddov2 33761 | Alternate expression for n... |
naddcom 33762 | Natural addition commutes.... |
naddid1 33763 | Ordinal zero is the additi... |
naddssim 33764 | Ordinal less-than-or-equal... |
naddelim 33765 | Ordinal less-than is prese... |
naddel1 33766 | Ordinal less-than is not a... |
naddel2 33767 | Ordinal less-than is not a... |
naddss1 33768 | Ordinal less-than-or-equal... |
naddss2 33769 | Ordinal less-than-or-equal... |
elno 33776 | Membership in the surreals... |
sltval 33777 | The value of the surreal l... |
bdayval 33778 | The value of the birthday ... |
nofun 33779 | A surreal is a function. ... |
nodmon 33780 | The domain of a surreal is... |
norn 33781 | The range of a surreal is ... |
nofnbday 33782 | A surreal is a function ov... |
nodmord 33783 | The domain of a surreal ha... |
elno2 33784 | An alternative condition f... |
elno3 33785 | Another condition for memb... |
sltval2 33786 | Alternate expression for s... |
nofv 33787 | The function value of a su... |
nosgnn0 33788 | ` (/) ` is not a surreal s... |
nosgnn0i 33789 | If ` X ` is a surreal sign... |
noreson 33790 | The restriction of a surre... |
sltintdifex 33791 |
If ` A |
sltres 33792 | If the restrictions of two... |
noxp1o 33793 | The Cartesian product of a... |
noseponlem 33794 | Lemma for ~ nosepon . Con... |
nosepon 33795 | Given two unequal surreals... |
noextend 33796 | Extending a surreal by one... |
noextendseq 33797 | Extend a surreal by a sequ... |
noextenddif 33798 | Calculate the place where ... |
noextendlt 33799 | Extending a surreal with a... |
noextendgt 33800 | Extending a surreal with a... |
nolesgn2o 33801 | Given ` A ` less than or e... |
nolesgn2ores 33802 | Given ` A ` less than or e... |
nogesgn1o 33803 | Given ` A ` greater than o... |
nogesgn1ores 33804 | Given ` A ` greater than o... |
sltsolem1 33805 | Lemma for ~ sltso . The s... |
sltso 33806 | Surreal less than totally ... |
bdayfo 33807 | The birthday function maps... |
fvnobday 33808 | The value of a surreal at ... |
nosepnelem 33809 | Lemma for ~ nosepne . (Co... |
nosepne 33810 | The value of two non-equal... |
nosep1o 33811 | If the value of a surreal ... |
nosep2o 33812 | If the value of a surreal ... |
nosepdmlem 33813 | Lemma for ~ nosepdm . (Co... |
nosepdm 33814 | The first place two surrea... |
nosepeq 33815 | The values of two surreals... |
nosepssdm 33816 | Given two non-equal surrea... |
nodenselem4 33817 | Lemma for ~ nodense . Sho... |
nodenselem5 33818 | Lemma for ~ nodense . If ... |
nodenselem6 33819 | The restriction of a surre... |
nodenselem7 33820 | Lemma for ~ nodense . ` A ... |
nodenselem8 33821 | Lemma for ~ nodense . Giv... |
nodense 33822 | Given two distinct surreal... |
bdayimaon 33823 | Lemma for full-eta propert... |
nolt02olem 33824 | Lemma for ~ nolt02o . If ... |
nolt02o 33825 | Given ` A ` less than ` B ... |
nogt01o 33826 | Given ` A ` greater than `... |
noresle 33827 | Restriction law for surrea... |
nomaxmo 33828 | A class of surreals has at... |
nominmo 33829 | A class of surreals has at... |
nosupprefixmo 33830 | In any class of surreals, ... |
noinfprefixmo 33831 | In any class of surreals, ... |
nosupcbv 33832 | Lemma to change bound vari... |
nosupno 33833 | The next several theorems ... |
nosupdm 33834 | The domain of the surreal ... |
nosupbday 33835 | Birthday bounding law for ... |
nosupfv 33836 | The value of surreal supre... |
nosupres 33837 | A restriction law for surr... |
nosupbnd1lem1 33838 | Lemma for ~ nosupbnd1 . E... |
nosupbnd1lem2 33839 | Lemma for ~ nosupbnd1 . W... |
nosupbnd1lem3 33840 | Lemma for ~ nosupbnd1 . I... |
nosupbnd1lem4 33841 | Lemma for ~ nosupbnd1 . I... |
nosupbnd1lem5 33842 | Lemma for ~ nosupbnd1 . I... |
nosupbnd1lem6 33843 | Lemma for ~ nosupbnd1 . E... |
nosupbnd1 33844 | Bounding law from below fo... |
nosupbnd2lem1 33845 | Bounding law from above wh... |
nosupbnd2 33846 | Bounding law from above fo... |
noinfcbv 33847 | Change bound variables for... |
noinfno 33848 | The next several theorems ... |
noinfdm 33849 | Next, we calculate the dom... |
noinfbday 33850 | Birthday bounding law for ... |
noinffv 33851 | The value of surreal infim... |
noinfres 33852 | The restriction of surreal... |
noinfbnd1lem1 33853 | Lemma for ~ noinfbnd1 . E... |
noinfbnd1lem2 33854 | Lemma for ~ noinfbnd1 . W... |
noinfbnd1lem3 33855 | Lemma for ~ noinfbnd1 . I... |
noinfbnd1lem4 33856 | Lemma for ~ noinfbnd1 . I... |
noinfbnd1lem5 33857 | Lemma for ~ noinfbnd1 . I... |
noinfbnd1lem6 33858 | Lemma for ~ noinfbnd1 . E... |
noinfbnd1 33859 | Bounding law from above fo... |
noinfbnd2lem1 33860 | Bounding law from below wh... |
noinfbnd2 33861 | Bounding law from below fo... |
nosupinfsep 33862 | Given two sets of surreals... |
noetasuplem1 33863 | Lemma for ~ noeta . Estab... |
noetasuplem2 33864 | Lemma for ~ noeta . The r... |
noetasuplem3 33865 | Lemma for ~ noeta . ` Z ` ... |
noetasuplem4 33866 | Lemma for ~ noeta . When ... |
noetainflem1 33867 | Lemma for ~ noeta . Estab... |
noetainflem2 33868 | Lemma for ~ noeta . The r... |
noetainflem3 33869 | Lemma for ~ noeta . ` W ` ... |
noetainflem4 33870 | Lemma for ~ noeta . If ` ... |
noetalem1 33871 | Lemma for ~ noeta . Eithe... |
noetalem2 33872 | Lemma for ~ noeta . The f... |
noeta 33873 | The full-eta axiom for the... |
sltirr 33876 | Surreal less than is irref... |
slttr 33877 | Surreal less than is trans... |
sltasym 33878 | Surreal less than is asymm... |
sltlin 33879 | Surreal less than obeys tr... |
slttrieq2 33880 | Trichotomy law for surreal... |
slttrine 33881 | Trichotomy law for surreal... |
slenlt 33882 | Surreal less than or equal... |
sltnle 33883 | Surreal less than in terms... |
sleloe 33884 | Surreal less than or equal... |
sletri3 33885 | Trichotomy law for surreal... |
sltletr 33886 | Surreal transitive law. (... |
slelttr 33887 | Surreal transitive law. (... |
sletr 33888 | Surreal transitive law. (... |
slttrd 33889 | Surreal less than is trans... |
sltletrd 33890 | Surreal less than is trans... |
slelttrd 33891 | Surreal less than is trans... |
sletrd 33892 | Surreal less than or equal... |
slerflex 33893 | Surreal less than or equal... |
bdayfun 33894 | The birthday function is a... |
bdayfn 33895 | The birthday function is a... |
bdaydm 33896 | The birthday function's do... |
bdayrn 33897 | The birthday function's ra... |
bdayelon 33898 | The value of the birthday ... |
nocvxminlem 33899 | Lemma for ~ nocvxmin . Gi... |
nocvxmin 33900 | Given a nonempty convex cl... |
noprc 33901 | The surreal numbers are a ... |
noeta2 33906 | A version of ~ noeta with ... |
brsslt 33907 | Binary relation form of th... |
ssltex1 33908 | The first argument of surr... |
ssltex2 33909 | The second argument of sur... |
ssltss1 33910 | The first argument of surr... |
ssltss2 33911 | The second argument of sur... |
ssltsep 33912 | The separation property of... |
ssltd 33913 | Deduce surreal set less th... |
ssltsepc 33914 | Two elements of separated ... |
ssltsepcd 33915 | Two elements of separated ... |
sssslt1 33916 | Relationship between surre... |
sssslt2 33917 | Relationship between surre... |
nulsslt 33918 | The empty set is less than... |
nulssgt 33919 | The empty set is greater t... |
conway 33920 | Conway's Simplicity Theore... |
scutval 33921 | The value of the surreal c... |
scutcut 33922 | Cut properties of the surr... |
scutcl 33923 | Closure law for surreal cu... |
scutcld 33924 | Closure law for surreal cu... |
scutbday 33925 | The birthday of the surrea... |
eqscut 33926 | Condition for equality to ... |
eqscut2 33927 | Condition for equality to ... |
sslttr 33928 | Transitive law for surreal... |
ssltun1 33929 | Union law for surreal set ... |
ssltun2 33930 | Union law for surreal set ... |
scutun12 33931 | Union law for surreal cuts... |
dmscut 33932 | The domain of the surreal ... |
scutf 33933 | Functionality statement fo... |
etasslt 33934 | A restatement of ~ noeta u... |
etasslt2 33935 | A version of ~ etasslt wit... |
scutbdaybnd 33936 | An upper bound on the birt... |
scutbdaybnd2 33937 | An upper bound on the birt... |
scutbdaybnd2lim 33938 | An upper bound on the birt... |
scutbdaylt 33939 | If a surreal lies in a gap... |
slerec 33940 | A comparison law for surre... |
sltrec 33941 | A comparison law for surre... |
ssltdisj 33942 | If ` A ` preceeds ` B ` , ... |
0sno 33947 | Surreal zero is a surreal.... |
1sno 33948 | Surreal one is a surreal. ... |
bday0s 33949 | Calculate the birthday of ... |
0slt1s 33950 | Surreal zero is less than ... |
bday0b 33951 | The only surreal with birt... |
bday1s 33952 | The birthday of surreal on... |
madeval 33963 | The value of the made by f... |
madeval2 33964 | Alternative characterizati... |
oldval 33965 | The value of the old optio... |
newval 33966 | The value of the new optio... |
madef 33967 | The made function is a fun... |
oldf 33968 | The older function is a fu... |
newf 33969 | The new function is a func... |
old0 33970 | No surreal is older than `... |
madessno 33971 | Made sets are surreals. (... |
oldssno 33972 | Old sets are surreals. (C... |
newssno 33973 | New sets are surreals. (C... |
leftval 33974 | The value of the left opti... |
rightval 33975 | The value of the right opt... |
leftf 33976 | The functionality of the l... |
rightf 33977 | The functionality of the r... |
elmade 33978 | Membership in the made fun... |
elmade2 33979 | Membership in the made fun... |
elold 33980 | Membership in an old set. ... |
ssltleft 33981 | A surreal is greater than ... |
ssltright 33982 | A surreal is less than its... |
lltropt 33983 | The left options of a surr... |
made0 33984 | The only surreal made on d... |
new0 33985 | The only surreal new on da... |
madess 33986 | If ` A ` is less than or e... |
oldssmade 33987 | The older-than set is a su... |
leftssold 33988 | The left options are a sub... |
rightssold 33989 | The right options are a su... |
leftssno 33990 | The left set of a surreal ... |
rightssno 33991 | The right set of a surreal... |
madecut 33992 | Given a section that is a ... |
madeun 33993 | The made set is the union ... |
madeoldsuc 33994 | The made set is the old se... |
oldsuc 33995 | The value of the old set a... |
oldlim 33996 | The value of the old set a... |
madebdayim 33997 | If a surreal is a member o... |
oldbdayim 33998 | If ` X ` is in the old set... |
oldirr 33999 | No surreal is a member of ... |
leftirr 34000 | No surreal is a member of ... |
rightirr 34001 | No surreal is a member of ... |
left0s 34002 | The left set of ` 0s ` is ... |
right0s 34003 | The right set of ` 0s ` is... |
lrold 34004 | The union of the left and ... |
madebdaylemold 34005 | Lemma for ~ madebday . If... |
madebdaylemlrcut 34006 | Lemma for ~ madebday . If... |
madebday 34007 | A surreal is part of the s... |
oldbday 34008 | A surreal is part of the s... |
newbday 34009 | A surreal is an element of... |
lrcut 34010 | A surreal is equal to the ... |
scutfo 34011 | The surreal cut function i... |
sltn0 34012 | If ` X ` is less than ` Y ... |
lruneq 34013 | If two surreals share a bi... |
sltlpss 34014 | If two surreals share a bi... |
cofsslt 34015 | If every element of ` A ` ... |
coinitsslt 34016 | If ` B ` is coinitial with... |
cofcut1 34017 | If ` C ` is cofinal with `... |
cofcut2 34018 | If ` A ` and ` C ` are mut... |
cofcutr 34019 | If ` X ` is the cut of ` A... |
cofcutrtime 34020 | If ` X ` is the cut of ` A... |
lrrecval 34023 | The next step in the devel... |
lrrecval2 34024 | Next, we establish an alte... |
lrrecpo 34025 | Now, we establish that ` R... |
lrrecse 34026 | Next, we show that ` R ` i... |
lrrecfr 34027 | Now we show that ` R ` is ... |
lrrecpred 34028 | Finally, we calculate the ... |
noinds 34029 | Induction principle for a ... |
norecfn 34030 | Surreal recursion over one... |
norecov 34031 | Calculate the value of the... |
noxpordpo 34034 | To get through most of the... |
noxpordfr 34035 | Next we establish the foun... |
noxpordse 34036 | Next we establish the set-... |
noxpordpred 34037 | Next we calculate the pred... |
no2indslem 34038 | Double induction on surrea... |
no2inds 34039 | Double induction on surrea... |
norec2fn 34040 | The double-recursion opera... |
norec2ov 34041 | The value of the double-re... |
no3inds 34042 | Triple induction over surr... |
negsfn 34049 | Surreal negation is a func... |
negsval 34050 | The value of the surreal n... |
negs0s 34051 | Negative surreal zero is s... |
addsfn 34052 | Surreal addition is a func... |
addsval 34053 | The value of surreal addit... |
addsid1 34054 | Surreal addition to zero i... |
addsid1d 34055 | Surreal addition to zero i... |
addscom 34056 | Surreal addition commutes.... |
addscomd 34057 | Surreal addition commutes.... |
addscllem1 34058 | Lemma for addscl (future) ... |
txpss3v 34107 | A tail Cartesian product i... |
txprel 34108 | A tail Cartesian product i... |
brtxp 34109 | Characterize a ternary rel... |
brtxp2 34110 | The binary relation over a... |
dfpprod2 34111 | Expanded definition of par... |
pprodcnveq 34112 | A converse law for paralle... |
pprodss4v 34113 | The parallel product is a ... |
brpprod 34114 | Characterize a quaternary ... |
brpprod3a 34115 | Condition for parallel pro... |
brpprod3b 34116 | Condition for parallel pro... |
relsset 34117 | The subset class is a bina... |
brsset 34118 | For sets, the ` SSet ` bin... |
idsset 34119 | ` _I ` is equal to the int... |
eltrans 34120 | Membership in the class of... |
dfon3 34121 | A quantifier-free definiti... |
dfon4 34122 | Another quantifier-free de... |
brtxpsd 34123 | Expansion of a common form... |
brtxpsd2 34124 | Another common abbreviatio... |
brtxpsd3 34125 | A third common abbreviatio... |
relbigcup 34126 | The ` Bigcup ` relationshi... |
brbigcup 34127 | Binary relation over ` Big... |
dfbigcup2 34128 | ` Bigcup ` using maps-to n... |
fobigcup 34129 | ` Bigcup ` maps the univer... |
fnbigcup 34130 | ` Bigcup ` is a function o... |
fvbigcup 34131 | For sets, ` Bigcup ` yield... |
elfix 34132 | Membership in the fixpoint... |
elfix2 34133 | Alternative membership in ... |
dffix2 34134 | The fixpoints of a class i... |
fixssdm 34135 | The fixpoints of a class a... |
fixssrn 34136 | The fixpoints of a class a... |
fixcnv 34137 | The fixpoints of a class a... |
fixun 34138 | The fixpoint operator dist... |
ellimits 34139 | Membership in the class of... |
limitssson 34140 | The class of all limit ord... |
dfom5b 34141 | A quantifier-free definiti... |
sscoid 34142 | A condition for subset and... |
dffun10 34143 | Another potential definiti... |
elfuns 34144 | Membership in the class of... |
elfunsg 34145 | Closed form of ~ elfuns . ... |
brsingle 34146 | The binary relation form o... |
elsingles 34147 | Membership in the class of... |
fnsingle 34148 | The singleton relationship... |
fvsingle 34149 | The value of the singleton... |
dfsingles2 34150 | Alternate definition of th... |
snelsingles 34151 | A singleton is a member of... |
dfiota3 34152 | A definition of iota using... |
dffv5 34153 | Another quantifier-free de... |
unisnif 34154 | Express union of singleton... |
brimage 34155 | Binary relation form of th... |
brimageg 34156 | Closed form of ~ brimage .... |
funimage 34157 | ` Image A ` is a function.... |
fnimage 34158 | ` Image R ` is a function ... |
imageval 34159 | The image functor in maps-... |
fvimage 34160 | Value of the image functor... |
brcart 34161 | Binary relation form of th... |
brdomain 34162 | Binary relation form of th... |
brrange 34163 | Binary relation form of th... |
brdomaing 34164 | Closed form of ~ brdomain ... |
brrangeg 34165 | Closed form of ~ brrange .... |
brimg 34166 | Binary relation form of th... |
brapply 34167 | Binary relation form of th... |
brcup 34168 | Binary relation form of th... |
brcap 34169 | Binary relation form of th... |
brsuccf 34170 | Binary relation form of th... |
funpartlem 34171 | Lemma for ~ funpartfun . ... |
funpartfun 34172 | The functional part of ` F... |
funpartss 34173 | The functional part of ` F... |
funpartfv 34174 | The function value of the ... |
fullfunfnv 34175 | The full functional part o... |
fullfunfv 34176 | The function value of the ... |
brfullfun 34177 | A binary relation form con... |
brrestrict 34178 | Binary relation form of th... |
dfrecs2 34179 | A quantifier-free definiti... |
dfrdg4 34180 | A quantifier-free definiti... |
dfint3 34181 | Quantifier-free definition... |
imagesset 34182 | The Image functor applied ... |
brub 34183 | Binary relation form of th... |
brlb 34184 | Binary relation form of th... |
altopex 34189 | Alternative ordered pairs ... |
altopthsn 34190 | Two alternate ordered pair... |
altopeq12 34191 | Equality for alternate ord... |
altopeq1 34192 | Equality for alternate ord... |
altopeq2 34193 | Equality for alternate ord... |
altopth1 34194 | Equality of the first memb... |
altopth2 34195 | Equality of the second mem... |
altopthg 34196 | Alternate ordered pair the... |
altopthbg 34197 | Alternate ordered pair the... |
altopth 34198 | The alternate ordered pair... |
altopthb 34199 | Alternate ordered pair the... |
altopthc 34200 | Alternate ordered pair the... |
altopthd 34201 | Alternate ordered pair the... |
altxpeq1 34202 | Equality for alternate Car... |
altxpeq2 34203 | Equality for alternate Car... |
elaltxp 34204 | Membership in alternate Ca... |
altopelaltxp 34205 | Alternate ordered pair mem... |
altxpsspw 34206 | An inclusion rule for alte... |
altxpexg 34207 | The alternate Cartesian pr... |
rankaltopb 34208 | Compute the rank of an alt... |
nfaltop 34209 | Bound-variable hypothesis ... |
sbcaltop 34210 | Distribution of class subs... |
cgrrflx2d 34213 | Deduction form of ~ axcgrr... |
cgrtr4d 34214 | Deduction form of ~ axcgrt... |
cgrtr4and 34215 | Deduction form of ~ axcgrt... |
cgrrflx 34216 | Reflexivity law for congru... |
cgrrflxd 34217 | Deduction form of ~ cgrrfl... |
cgrcomim 34218 | Congruence commutes on the... |
cgrcom 34219 | Congruence commutes betwee... |
cgrcomand 34220 | Deduction form of ~ cgrcom... |
cgrtr 34221 | Transitivity law for congr... |
cgrtrand 34222 | Deduction form of ~ cgrtr ... |
cgrtr3 34223 | Transitivity law for congr... |
cgrtr3and 34224 | Deduction form of ~ cgrtr3... |
cgrcoml 34225 | Congruence commutes on the... |
cgrcomr 34226 | Congruence commutes on the... |
cgrcomlr 34227 | Congruence commutes on bot... |
cgrcomland 34228 | Deduction form of ~ cgrcom... |
cgrcomrand 34229 | Deduction form of ~ cgrcom... |
cgrcomlrand 34230 | Deduction form of ~ cgrcom... |
cgrtriv 34231 | Degenerate segments are co... |
cgrid2 34232 | Identity law for congruenc... |
cgrdegen 34233 | Two congruent segments are... |
brofs 34234 | Binary relation form of th... |
5segofs 34235 | Rephrase ~ ax5seg using th... |
ofscom 34236 | The outer five segment pre... |
cgrextend 34237 | Link congruence over a pai... |
cgrextendand 34238 | Deduction form of ~ cgrext... |
segconeq 34239 | Two points that satisfy th... |
segconeu 34240 | Existential uniqueness ver... |
btwntriv2 34241 | Betweenness always holds f... |
btwncomim 34242 | Betweenness commutes. Imp... |
btwncom 34243 | Betweenness commutes. (Co... |
btwncomand 34244 | Deduction form of ~ btwnco... |
btwntriv1 34245 | Betweenness always holds f... |
btwnswapid 34246 | If you can swap the first ... |
btwnswapid2 34247 | If you can swap arguments ... |
btwnintr 34248 | Inner transitivity law for... |
btwnexch3 34249 | Exchange the first endpoin... |
btwnexch3and 34250 | Deduction form of ~ btwnex... |
btwnouttr2 34251 | Outer transitivity law for... |
btwnexch2 34252 | Exchange the outer point o... |
btwnouttr 34253 | Outer transitivity law for... |
btwnexch 34254 | Outer transitivity law for... |
btwnexchand 34255 | Deduction form of ~ btwnex... |
btwndiff 34256 | There is always a ` c ` di... |
trisegint 34257 | A line segment between two... |
funtransport 34260 | The ` TransportTo ` relati... |
fvtransport 34261 | Calculate the value of the... |
transportcl 34262 | Closure law for segment tr... |
transportprops 34263 | Calculate the defining pro... |
brifs 34272 | Binary relation form of th... |
ifscgr 34273 | Inner five segment congrue... |
cgrsub 34274 | Removing identical parts f... |
brcgr3 34275 | Binary relation form of th... |
cgr3permute3 34276 | Permutation law for three-... |
cgr3permute1 34277 | Permutation law for three-... |
cgr3permute2 34278 | Permutation law for three-... |
cgr3permute4 34279 | Permutation law for three-... |
cgr3permute5 34280 | Permutation law for three-... |
cgr3tr4 34281 | Transitivity law for three... |
cgr3com 34282 | Commutativity law for thre... |
cgr3rflx 34283 | Identity law for three-pla... |
cgrxfr 34284 | A line segment can be divi... |
btwnxfr 34285 | A condition for extending ... |
colinrel 34286 | Colinearity is a relations... |
brcolinear2 34287 | Alternate colinearity bina... |
brcolinear 34288 | The binary relation form o... |
colinearex 34289 | The colinear predicate exi... |
colineardim1 34290 | If ` A ` is colinear with ... |
colinearperm1 34291 | Permutation law for coline... |
colinearperm3 34292 | Permutation law for coline... |
colinearperm2 34293 | Permutation law for coline... |
colinearperm4 34294 | Permutation law for coline... |
colinearperm5 34295 | Permutation law for coline... |
colineartriv1 34296 | Trivial case of colinearit... |
colineartriv2 34297 | Trivial case of colinearit... |
btwncolinear1 34298 | Betweenness implies coline... |
btwncolinear2 34299 | Betweenness implies coline... |
btwncolinear3 34300 | Betweenness implies coline... |
btwncolinear4 34301 | Betweenness implies coline... |
btwncolinear5 34302 | Betweenness implies coline... |
btwncolinear6 34303 | Betweenness implies coline... |
colinearxfr 34304 | Transfer law for colineari... |
lineext 34305 | Extend a line with a missi... |
brofs2 34306 | Change some conditions for... |
brifs2 34307 | Change some conditions for... |
brfs 34308 | Binary relation form of th... |
fscgr 34309 | Congruence law for the gen... |
linecgr 34310 | Congruence rule for lines.... |
linecgrand 34311 | Deduction form of ~ linecg... |
lineid 34312 | Identity law for points on... |
idinside 34313 | Law for finding a point in... |
endofsegid 34314 | If ` A ` , ` B ` , and ` C... |
endofsegidand 34315 | Deduction form of ~ endofs... |
btwnconn1lem1 34316 | Lemma for ~ btwnconn1 . T... |
btwnconn1lem2 34317 | Lemma for ~ btwnconn1 . N... |
btwnconn1lem3 34318 | Lemma for ~ btwnconn1 . E... |
btwnconn1lem4 34319 | Lemma for ~ btwnconn1 . A... |
btwnconn1lem5 34320 | Lemma for ~ btwnconn1 . N... |
btwnconn1lem6 34321 | Lemma for ~ btwnconn1 . N... |
btwnconn1lem7 34322 | Lemma for ~ btwnconn1 . U... |
btwnconn1lem8 34323 | Lemma for ~ btwnconn1 . N... |
btwnconn1lem9 34324 | Lemma for ~ btwnconn1 . N... |
btwnconn1lem10 34325 | Lemma for ~ btwnconn1 . N... |
btwnconn1lem11 34326 | Lemma for ~ btwnconn1 . N... |
btwnconn1lem12 34327 | Lemma for ~ btwnconn1 . U... |
btwnconn1lem13 34328 | Lemma for ~ btwnconn1 . B... |
btwnconn1lem14 34329 | Lemma for ~ btwnconn1 . F... |
btwnconn1 34330 | Connectitivy law for betwe... |
btwnconn2 34331 | Another connectivity law f... |
btwnconn3 34332 | Inner connectivity law for... |
midofsegid 34333 | If two points fall in the ... |
segcon2 34334 | Generalization of ~ axsegc... |
brsegle 34337 | Binary relation form of th... |
brsegle2 34338 | Alternate characterization... |
seglecgr12im 34339 | Substitution law for segme... |
seglecgr12 34340 | Substitution law for segme... |
seglerflx 34341 | Segment comparison is refl... |
seglemin 34342 | Any segment is at least as... |
segletr 34343 | Segment less than is trans... |
segleantisym 34344 | Antisymmetry law for segme... |
seglelin 34345 | Linearity law for segment ... |
btwnsegle 34346 | If ` B ` falls between ` A... |
colinbtwnle 34347 | Given three colinear point... |
broutsideof 34350 | Binary relation form of ` ... |
broutsideof2 34351 | Alternate form of ` Outsid... |
outsidene1 34352 | Outsideness implies inequa... |
outsidene2 34353 | Outsideness implies inequa... |
btwnoutside 34354 | A principle linking outsid... |
broutsideof3 34355 | Characterization of outsid... |
outsideofrflx 34356 | Reflexivity of outsideness... |
outsideofcom 34357 | Commutativity law for outs... |
outsideoftr 34358 | Transitivity law for outsi... |
outsideofeq 34359 | Uniqueness law for ` Outsi... |
outsideofeu 34360 | Given a nondegenerate ray,... |
outsidele 34361 | Relate ` OutsideOf ` to ` ... |
outsideofcol 34362 | Outside of implies colinea... |
funray 34369 | Show that the ` Ray ` rela... |
fvray 34370 | Calculate the value of the... |
funline 34371 | Show that the ` Line ` rel... |
linedegen 34372 | When ` Line ` is applied w... |
fvline 34373 | Calculate the value of the... |
liness 34374 | A line is a subset of the ... |
fvline2 34375 | Alternate definition of a ... |
lineunray 34376 | A line is composed of a po... |
lineelsb2 34377 | If ` S ` lies on ` P Q ` ,... |
linerflx1 34378 | Reflexivity law for line m... |
linecom 34379 | Commutativity law for line... |
linerflx2 34380 | Reflexivity law for line m... |
ellines 34381 | Membership in the set of a... |
linethru 34382 | If ` A ` is a line contain... |
hilbert1.1 34383 | There is a line through an... |
hilbert1.2 34384 | There is at most one line ... |
linethrueu 34385 | There is a unique line goi... |
lineintmo 34386 | Two distinct lines interse... |
fwddifval 34391 | Calculate the value of the... |
fwddifnval 34392 | The value of the forward d... |
fwddifn0 34393 | The value of the n-iterate... |
fwddifnp1 34394 | The value of the n-iterate... |
rankung 34395 | The rank of the union of t... |
ranksng 34396 | The rank of a singleton. ... |
rankelg 34397 | The membership relation is... |
rankpwg 34398 | The rank of a power set. ... |
rank0 34399 | The rank of the empty set ... |
rankeq1o 34400 | The only set with rank ` 1... |
elhf 34403 | Membership in the heredita... |
elhf2 34404 | Alternate form of membersh... |
elhf2g 34405 | Hereditarily finiteness vi... |
0hf 34406 | The empty set is a heredit... |
hfun 34407 | The union of two HF sets i... |
hfsn 34408 | The singleton of an HF set... |
hfadj 34409 | Adjoining one HF element t... |
hfelhf 34410 | Any member of an HF set is... |
hftr 34411 | The class of all hereditar... |
hfext 34412 | Extensionality for HF sets... |
hfuni 34413 | The union of an HF set is ... |
hfpw 34414 | The power class of an HF s... |
hfninf 34415 | ` _om ` is not hereditaril... |
a1i14 34416 | Add two antecedents to a w... |
a1i24 34417 | Add two antecedents to a w... |
exp5d 34418 | An exportation inference. ... |
exp5g 34419 | An exportation inference. ... |
exp5k 34420 | An exportation inference. ... |
exp56 34421 | An exportation inference. ... |
exp58 34422 | An exportation inference. ... |
exp510 34423 | An exportation inference. ... |
exp511 34424 | An exportation inference. ... |
exp512 34425 | An exportation inference. ... |
3com12d 34426 | Commutation in consequent.... |
imp5p 34427 | A triple importation infer... |
imp5q 34428 | A triple importation infer... |
ecase13d 34429 | Deduction for elimination ... |
subtr 34430 | Transitivity of implicit s... |
subtr2 34431 | Transitivity of implicit s... |
trer 34432 | A relation intersected wit... |
elicc3 34433 | An equivalent membership c... |
finminlem 34434 | A useful lemma about finit... |
gtinf 34435 | Any number greater than an... |
opnrebl 34436 | A set is open in the stand... |
opnrebl2 34437 | A set is open in the stand... |
nn0prpwlem 34438 | Lemma for ~ nn0prpw . Use... |
nn0prpw 34439 | Two nonnegative integers a... |
topbnd 34440 | Two equivalent expressions... |
opnbnd 34441 | A set is open iff it is di... |
cldbnd 34442 | A set is closed iff it con... |
ntruni 34443 | A union of interiors is a ... |
clsun 34444 | A pairwise union of closur... |
clsint2 34445 | The closure of an intersec... |
opnregcld 34446 | A set is regularly closed ... |
cldregopn 34447 | A set if regularly open if... |
neiin 34448 | Two neighborhoods intersec... |
hmeoclda 34449 | Homeomorphisms preserve cl... |
hmeocldb 34450 | Homeomorphisms preserve cl... |
ivthALT 34451 | An alternate proof of the ... |
fnerel 34454 | Fineness is a relation. (... |
isfne 34455 | The predicate " ` B ` is f... |
isfne4 34456 | The predicate " ` B ` is f... |
isfne4b 34457 | A condition for a topology... |
isfne2 34458 | The predicate " ` B ` is f... |
isfne3 34459 | The predicate " ` B ` is f... |
fnebas 34460 | A finer cover covers the s... |
fnetg 34461 | A finer cover generates a ... |
fnessex 34462 | If ` B ` is finer than ` A... |
fneuni 34463 | If ` B ` is finer than ` A... |
fneint 34464 | If a cover is finer than a... |
fness 34465 | A cover is finer than its ... |
fneref 34466 | Reflexivity of the finenes... |
fnetr 34467 | Transitivity of the finene... |
fneval 34468 | Two covers are finer than ... |
fneer 34469 | Fineness intersected with ... |
topfne 34470 | Fineness for covers corres... |
topfneec 34471 | A cover is equivalent to a... |
topfneec2 34472 | A topology is precisely id... |
fnessref 34473 | A cover is finer iff it ha... |
refssfne 34474 | A cover is a refinement if... |
neibastop1 34475 | A collection of neighborho... |
neibastop2lem 34476 | Lemma for ~ neibastop2 . ... |
neibastop2 34477 | In the topology generated ... |
neibastop3 34478 | The topology generated by ... |
topmtcl 34479 | The meet of a collection o... |
topmeet 34480 | Two equivalent formulation... |
topjoin 34481 | Two equivalent formulation... |
fnemeet1 34482 | The meet of a collection o... |
fnemeet2 34483 | The meet of equivalence cl... |
fnejoin1 34484 | Join of equivalence classe... |
fnejoin2 34485 | Join of equivalence classe... |
fgmin 34486 | Minimality property of a g... |
neifg 34487 | The neighborhood filter of... |
tailfval 34488 | The tail function for a di... |
tailval 34489 | The tail of an element in ... |
eltail 34490 | An element of a tail. (Co... |
tailf 34491 | The tail function of a dir... |
tailini 34492 | A tail contains its initia... |
tailfb 34493 | The collection of tails of... |
filnetlem1 34494 | Lemma for ~ filnet . Chan... |
filnetlem2 34495 | Lemma for ~ filnet . The ... |
filnetlem3 34496 | Lemma for ~ filnet . (Con... |
filnetlem4 34497 | Lemma for ~ filnet . (Con... |
filnet 34498 | A filter has the same conv... |
tb-ax1 34499 | The first of three axioms ... |
tb-ax2 34500 | The second of three axioms... |
tb-ax3 34501 | The third of three axioms ... |
tbsyl 34502 | The weak syllogism from Ta... |
re1ax2lem 34503 | Lemma for ~ re1ax2 . (Con... |
re1ax2 34504 | ~ ax-2 rederived from the ... |
naim1 34505 | Constructor theorem for ` ... |
naim2 34506 | Constructor theorem for ` ... |
naim1i 34507 | Constructor rule for ` -/\... |
naim2i 34508 | Constructor rule for ` -/\... |
naim12i 34509 | Constructor rule for ` -/\... |
nabi1i 34510 | Constructor rule for ` -/\... |
nabi2i 34511 | Constructor rule for ` -/\... |
nabi12i 34512 | Constructor rule for ` -/\... |
df3nandALT1 34515 | The double nand expressed ... |
df3nandALT2 34516 | The double nand expressed ... |
andnand1 34517 | Double and in terms of dou... |
imnand2 34518 | An ` -> ` nand relation. ... |
nalfal 34519 | Not all sets hold ` F. ` a... |
nexntru 34520 | There does not exist a set... |
nexfal 34521 | There does not exist a set... |
neufal 34522 | There does not exist exact... |
neutru 34523 | There does not exist exact... |
nmotru 34524 | There does not exist at mo... |
mofal 34525 | There exist at most one se... |
nrmo 34526 | "At most one" restricted e... |
meran1 34527 | A single axiom for proposi... |
meran2 34528 | A single axiom for proposi... |
meran3 34529 | A single axiom for proposi... |
waj-ax 34530 | A single axiom for proposi... |
lukshef-ax2 34531 | A single axiom for proposi... |
arg-ax 34532 | A single axiom for proposi... |
negsym1 34533 | In the paper "On Variable ... |
imsym1 34534 | A symmetry with ` -> ` . ... |
bisym1 34535 | A symmetry with ` <-> ` . ... |
consym1 34536 | A symmetry with ` /\ ` . ... |
dissym1 34537 | A symmetry with ` \/ ` . ... |
nandsym1 34538 | A symmetry with ` -/\ ` . ... |
unisym1 34539 | A symmetry with ` A. ` . ... |
exisym1 34540 | A symmetry with ` E. ` . ... |
unqsym1 34541 | A symmetry with ` E! ` . ... |
amosym1 34542 | A symmetry with ` E* ` . ... |
subsym1 34543 | A symmetry with ` [ x / y ... |
ontopbas 34544 | An ordinal number is a top... |
onsstopbas 34545 | The class of ordinal numbe... |
onpsstopbas 34546 | The class of ordinal numbe... |
ontgval 34547 | The topology generated fro... |
ontgsucval 34548 | The topology generated fro... |
onsuctop 34549 | A successor ordinal number... |
onsuctopon 34550 | One of the topologies on a... |
ordtoplem 34551 | Membership of the class of... |
ordtop 34552 | An ordinal is a topology i... |
onsucconni 34553 | A successor ordinal number... |
onsucconn 34554 | A successor ordinal number... |
ordtopconn 34555 | An ordinal topology is con... |
onintopssconn 34556 | An ordinal topology is con... |
onsuct0 34557 | A successor ordinal number... |
ordtopt0 34558 | An ordinal topology is T_0... |
onsucsuccmpi 34559 | The successor of a success... |
onsucsuccmp 34560 | The successor of a success... |
limsucncmpi 34561 | The successor of a limit o... |
limsucncmp 34562 | The successor of a limit o... |
ordcmp 34563 | An ordinal topology is com... |
ssoninhaus 34564 | The ordinal topologies ` 1... |
onint1 34565 | The ordinal T_1 spaces are... |
oninhaus 34566 | The ordinal Hausdorff spac... |
fveleq 34567 | Please add description her... |
findfvcl 34568 | Please add description her... |
findreccl 34569 | Please add description her... |
findabrcl 34570 | Please add description her... |
nnssi2 34571 | Convert a theorem for real... |
nnssi3 34572 | Convert a theorem for real... |
nndivsub 34573 | Please add description her... |
nndivlub 34574 | A factor of a positive int... |
ee7.2aOLD 34577 | Lemma for Euclid's Element... |
dnival 34578 | Value of the "distance to ... |
dnicld1 34579 | Closure theorem for the "d... |
dnicld2 34580 | Closure theorem for the "d... |
dnif 34581 | The "distance to nearest i... |
dnizeq0 34582 | The distance to nearest in... |
dnizphlfeqhlf 34583 | The distance to nearest in... |
rddif2 34584 | Variant of ~ rddif . (Con... |
dnibndlem1 34585 | Lemma for ~ dnibnd . (Con... |
dnibndlem2 34586 | Lemma for ~ dnibnd . (Con... |
dnibndlem3 34587 | Lemma for ~ dnibnd . (Con... |
dnibndlem4 34588 | Lemma for ~ dnibnd . (Con... |
dnibndlem5 34589 | Lemma for ~ dnibnd . (Con... |
dnibndlem6 34590 | Lemma for ~ dnibnd . (Con... |
dnibndlem7 34591 | Lemma for ~ dnibnd . (Con... |
dnibndlem8 34592 | Lemma for ~ dnibnd . (Con... |
dnibndlem9 34593 | Lemma for ~ dnibnd . (Con... |
dnibndlem10 34594 | Lemma for ~ dnibnd . (Con... |
dnibndlem11 34595 | Lemma for ~ dnibnd . (Con... |
dnibndlem12 34596 | Lemma for ~ dnibnd . (Con... |
dnibndlem13 34597 | Lemma for ~ dnibnd . (Con... |
dnibnd 34598 | The "distance to nearest i... |
dnicn 34599 | The "distance to nearest i... |
knoppcnlem1 34600 | Lemma for ~ knoppcn . (Co... |
knoppcnlem2 34601 | Lemma for ~ knoppcn . (Co... |
knoppcnlem3 34602 | Lemma for ~ knoppcn . (Co... |
knoppcnlem4 34603 | Lemma for ~ knoppcn . (Co... |
knoppcnlem5 34604 | Lemma for ~ knoppcn . (Co... |
knoppcnlem6 34605 | Lemma for ~ knoppcn . (Co... |
knoppcnlem7 34606 | Lemma for ~ knoppcn . (Co... |
knoppcnlem8 34607 | Lemma for ~ knoppcn . (Co... |
knoppcnlem9 34608 | Lemma for ~ knoppcn . (Co... |
knoppcnlem10 34609 | Lemma for ~ knoppcn . (Co... |
knoppcnlem11 34610 | Lemma for ~ knoppcn . (Co... |
knoppcn 34611 | The continuous nowhere dif... |
knoppcld 34612 | Closure theorem for Knopp'... |
unblimceq0lem 34613 | Lemma for ~ unblimceq0 . ... |
unblimceq0 34614 | If ` F ` is unbounded near... |
unbdqndv1 34615 | If the difference quotient... |
unbdqndv2lem1 34616 | Lemma for ~ unbdqndv2 . (... |
unbdqndv2lem2 34617 | Lemma for ~ unbdqndv2 . (... |
unbdqndv2 34618 | Variant of ~ unbdqndv1 wit... |
knoppndvlem1 34619 | Lemma for ~ knoppndv . (C... |
knoppndvlem2 34620 | Lemma for ~ knoppndv . (C... |
knoppndvlem3 34621 | Lemma for ~ knoppndv . (C... |
knoppndvlem4 34622 | Lemma for ~ knoppndv . (C... |
knoppndvlem5 34623 | Lemma for ~ knoppndv . (C... |
knoppndvlem6 34624 | Lemma for ~ knoppndv . (C... |
knoppndvlem7 34625 | Lemma for ~ knoppndv . (C... |
knoppndvlem8 34626 | Lemma for ~ knoppndv . (C... |
knoppndvlem9 34627 | Lemma for ~ knoppndv . (C... |
knoppndvlem10 34628 | Lemma for ~ knoppndv . (C... |
knoppndvlem11 34629 | Lemma for ~ knoppndv . (C... |
knoppndvlem12 34630 | Lemma for ~ knoppndv . (C... |
knoppndvlem13 34631 | Lemma for ~ knoppndv . (C... |
knoppndvlem14 34632 | Lemma for ~ knoppndv . (C... |
knoppndvlem15 34633 | Lemma for ~ knoppndv . (C... |
knoppndvlem16 34634 | Lemma for ~ knoppndv . (C... |
knoppndvlem17 34635 | Lemma for ~ knoppndv . (C... |
knoppndvlem18 34636 | Lemma for ~ knoppndv . (C... |
knoppndvlem19 34637 | Lemma for ~ knoppndv . (C... |
knoppndvlem20 34638 | Lemma for ~ knoppndv . (C... |
knoppndvlem21 34639 | Lemma for ~ knoppndv . (C... |
knoppndvlem22 34640 | Lemma for ~ knoppndv . (C... |
knoppndv 34641 | The continuous nowhere dif... |
knoppf 34642 | Knopp's function is a func... |
knoppcn2 34643 | Variant of ~ knoppcn with ... |
cnndvlem1 34644 | Lemma for ~ cnndv . (Cont... |
cnndvlem2 34645 | Lemma for ~ cnndv . (Cont... |
cnndv 34646 | There exists a continuous ... |
bj-mp2c 34647 | A double modus ponens infe... |
bj-mp2d 34648 | A double modus ponens infe... |
bj-0 34649 | A syntactic theorem. See ... |
bj-1 34650 | In this proof, the use of ... |
bj-a1k 34651 | Weakening of ~ ax-1 . As ... |
bj-poni 34652 | Inference associated with ... |
bj-nnclav 34653 | When ` F. ` is substituted... |
bj-nnclavi 34654 | Inference associated with ... |
bj-nnclavc 34655 | Commuted form of ~ bj-nncl... |
bj-nnclavci 34656 | Inference associated with ... |
bj-jarrii 34657 | Inference associated with ... |
bj-imim21 34658 | The propositional function... |
bj-imim21i 34659 | Inference associated with ... |
bj-peircestab 34660 | Over minimal implicational... |
bj-stabpeirce 34661 | This minimal implicational... |
bj-syl66ib 34662 | A mixed syllogism inferenc... |
bj-orim2 34663 | Proof of ~ orim2 from the ... |
bj-currypeirce 34664 | Curry's axiom ~ curryax (a... |
bj-peircecurry 34665 | Peirce's axiom ~ peirce im... |
bj-animbi 34666 | Conjunction in terms of im... |
bj-currypara 34667 | Curry's paradox. Note tha... |
bj-con2com 34668 | A commuted form of the con... |
bj-con2comi 34669 | Inference associated with ... |
bj-pm2.01i 34670 | Inference associated with ... |
bj-nimn 34671 | If a formula is true, then... |
bj-nimni 34672 | Inference associated with ... |
bj-peircei 34673 | Inference associated with ... |
bj-looinvi 34674 | Inference associated with ... |
bj-looinvii 34675 | Inference associated with ... |
bj-mt2bi 34676 | Version of ~ mt2 where the... |
bj-ntrufal 34677 | The negation of a theorem ... |
bj-fal 34678 | Shortening of ~ fal using ... |
bj-jaoi1 34679 | Shortens ~ orfa2 (58>53), ... |
bj-jaoi2 34680 | Shortens ~ consensus (110>... |
bj-dfbi4 34681 | Alternate definition of th... |
bj-dfbi5 34682 | Alternate definition of th... |
bj-dfbi6 34683 | Alternate definition of th... |
bj-bijust0ALT 34684 | Alternate proof of ~ bijus... |
bj-bijust00 34685 | A self-implication does no... |
bj-consensus 34686 | Version of ~ consensus exp... |
bj-consensusALT 34687 | Alternate proof of ~ bj-co... |
bj-df-ifc 34688 | Candidate definition for t... |
bj-dfif 34689 | Alternate definition of th... |
bj-ififc 34690 | A biconditional connecting... |
bj-imbi12 34691 | Uncurried (imported) form ... |
bj-biorfi 34692 | This should be labeled "bi... |
bj-falor 34693 | Dual of ~ truan (which has... |
bj-falor2 34694 | Dual of ~ truan . (Contri... |
bj-bibibi 34695 | A property of the bicondit... |
bj-imn3ani 34696 | Duplication of ~ bnj1224 .... |
bj-andnotim 34697 | Two ways of expressing a c... |
bj-bi3ant 34698 | This used to be in the mai... |
bj-bisym 34699 | This used to be in the mai... |
bj-bixor 34700 | Equivalence of two ternary... |
bj-axdd2 34701 | This implication, proved u... |
bj-axd2d 34702 | This implication, proved u... |
bj-axtd 34703 | This implication, proved f... |
bj-gl4 34704 | In a normal modal logic, t... |
bj-axc4 34705 | Over minimal calculus, the... |
prvlem1 34710 | An elementary property of ... |
prvlem2 34711 | An elementary property of ... |
bj-babygodel 34712 | See the section header com... |
bj-babylob 34713 | See the section header com... |
bj-godellob 34714 | Proof of Gödel's theo... |
bj-genr 34715 | Generalization rule on the... |
bj-genl 34716 | Generalization rule on the... |
bj-genan 34717 | Generalization rule on a c... |
bj-mpgs 34718 | From a closed form theorem... |
bj-2alim 34719 | Closed form of ~ 2alimi . ... |
bj-2exim 34720 | Closed form of ~ 2eximi . ... |
bj-alanim 34721 | Closed form of ~ alanimi .... |
bj-2albi 34722 | Closed form of ~ 2albii . ... |
bj-notalbii 34723 | Equivalence of universal q... |
bj-2exbi 34724 | Closed form of ~ 2exbii . ... |
bj-3exbi 34725 | Closed form of ~ 3exbii . ... |
bj-sylgt2 34726 | Uncurried (imported) form ... |
bj-alrimg 34727 | The general form of the *a... |
bj-alrimd 34728 | A slightly more general ~ ... |
bj-sylget 34729 | Dual statement of ~ sylgt ... |
bj-sylget2 34730 | Uncurried (imported) form ... |
bj-exlimg 34731 | The general form of the *e... |
bj-sylge 34732 | Dual statement of ~ sylg (... |
bj-exlimd 34733 | A slightly more general ~ ... |
bj-nfimexal 34734 | A weak from of nonfreeness... |
bj-alexim 34735 | Closed form of ~ aleximi .... |
bj-nexdh 34736 | Closed form of ~ nexdh (ac... |
bj-nexdh2 34737 | Uncurried (imported) form ... |
bj-hbxfrbi 34738 | Closed form of ~ hbxfrbi .... |
bj-hbyfrbi 34739 | Version of ~ bj-hbxfrbi wi... |
bj-exalim 34740 | Distribute quantifiers ove... |
bj-exalimi 34741 | An inference for distribut... |
bj-exalims 34742 | Distributing quantifiers o... |
bj-exalimsi 34743 | An inference for distribut... |
bj-ax12ig 34744 | A lemma used to prove a we... |
bj-ax12i 34745 | A weakening of ~ bj-ax12ig... |
bj-nfimt 34746 | Closed form of ~ nfim and ... |
bj-cbvalimt 34747 | A lemma in closed form use... |
bj-cbveximt 34748 | A lemma in closed form use... |
bj-eximALT 34749 | Alternate proof of ~ exim ... |
bj-aleximiALT 34750 | Alternate proof of ~ alexi... |
bj-eximcom 34751 | A commuted form of ~ exim ... |
bj-ax12wlem 34752 | A lemma used to prove a we... |
bj-cbvalim 34753 | A lemma used to prove ~ bj... |
bj-cbvexim 34754 | A lemma used to prove ~ bj... |
bj-cbvalimi 34755 | An equality-free general i... |
bj-cbveximi 34756 | An equality-free general i... |
bj-cbval 34757 | Changing a bound variable ... |
bj-cbvex 34758 | Changing a bound variable ... |
bj-ssbeq 34761 | Substitution in an equalit... |
bj-ssblem1 34762 | A lemma for the definiens ... |
bj-ssblem2 34763 | An instance of ~ ax-11 pro... |
bj-ax12v 34764 | A weaker form of ~ ax-12 a... |
bj-ax12 34765 | Remove a DV condition from... |
bj-ax12ssb 34766 | Axiom ~ bj-ax12 expressed ... |
bj-19.41al 34767 | Special case of ~ 19.41 pr... |
bj-equsexval 34768 | Special case of ~ equsexv ... |
bj-subst 34769 | Proof of ~ sbalex from cor... |
bj-ssbid2 34770 | A special case of ~ sbequ2... |
bj-ssbid2ALT 34771 | Alternate proof of ~ bj-ss... |
bj-ssbid1 34772 | A special case of ~ sbequ1... |
bj-ssbid1ALT 34773 | Alternate proof of ~ bj-ss... |
bj-ax6elem1 34774 | Lemma for ~ bj-ax6e . (Co... |
bj-ax6elem2 34775 | Lemma for ~ bj-ax6e . (Co... |
bj-ax6e 34776 | Proof of ~ ax6e (hence ~ a... |
bj-spimvwt 34777 | Closed form of ~ spimvw . ... |
bj-spnfw 34778 | Theorem close to a closed ... |
bj-cbvexiw 34779 | Change bound variable. Th... |
bj-cbvexivw 34780 | Change bound variable. Th... |
bj-modald 34781 | A short form of the axiom ... |
bj-denot 34782 | A weakening of ~ ax-6 and ... |
bj-eqs 34783 | A lemma for substitutions,... |
bj-cbvexw 34784 | Change bound variable. Th... |
bj-ax12w 34785 | The general statement that... |
bj-ax89 34786 | A theorem which could be u... |
bj-elequ12 34787 | An identity law for the no... |
bj-cleljusti 34788 | One direction of ~ cleljus... |
bj-alcomexcom 34789 | Commutation of universal q... |
bj-hbalt 34790 | Closed form of ~ hbal . W... |
axc11n11 34791 | Proof of ~ axc11n from { ~... |
axc11n11r 34792 | Proof of ~ axc11n from { ~... |
bj-axc16g16 34793 | Proof of ~ axc16g from { ~... |
bj-ax12v3 34794 | A weak version of ~ ax-12 ... |
bj-ax12v3ALT 34795 | Alternate proof of ~ bj-ax... |
bj-sb 34796 | A weak variant of ~ sbid2 ... |
bj-modalbe 34797 | The predicate-calculus ver... |
bj-spst 34798 | Closed form of ~ sps . On... |
bj-19.21bit 34799 | Closed form of ~ 19.21bi .... |
bj-19.23bit 34800 | Closed form of ~ 19.23bi .... |
bj-nexrt 34801 | Closed form of ~ nexr . C... |
bj-alrim 34802 | Closed form of ~ alrimi . ... |
bj-alrim2 34803 | Uncurried (imported) form ... |
bj-nfdt0 34804 | A theorem close to a close... |
bj-nfdt 34805 | Closed form of ~ nf5d and ... |
bj-nexdt 34806 | Closed form of ~ nexd . (... |
bj-nexdvt 34807 | Closed form of ~ nexdv . ... |
bj-alexbiex 34808 | Adding a second quantifier... |
bj-exexbiex 34809 | Adding a second quantifier... |
bj-alalbial 34810 | Adding a second quantifier... |
bj-exalbial 34811 | Adding a second quantifier... |
bj-19.9htbi 34812 | Strengthening ~ 19.9ht by ... |
bj-hbntbi 34813 | Strengthening ~ hbnt by re... |
bj-biexal1 34814 | A general FOL biconditiona... |
bj-biexal2 34815 | When ` ph ` is substituted... |
bj-biexal3 34816 | When ` ph ` is substituted... |
bj-bialal 34817 | When ` ph ` is substituted... |
bj-biexex 34818 | When ` ph ` is substituted... |
bj-hbext 34819 | Closed form of ~ hbex . (... |
bj-nfalt 34820 | Closed form of ~ nfal . (... |
bj-nfext 34821 | Closed form of ~ nfex . (... |
bj-eeanvw 34822 | Version of ~ exdistrv with... |
bj-modal4 34823 | First-order logic form of ... |
bj-modal4e 34824 | First-order logic form of ... |
bj-modalb 34825 | A short form of the axiom ... |
bj-wnf1 34826 | When ` ph ` is substituted... |
bj-wnf2 34827 | When ` ph ` is substituted... |
bj-wnfanf 34828 | When ` ph ` is substituted... |
bj-wnfenf 34829 | When ` ph ` is substituted... |
bj-substax12 34830 | Equivalent form of the axi... |
bj-substw 34831 | Weak form of the LHS of ~ ... |
bj-nnfbi 34834 | If two formulas are equiva... |
bj-nnfbd 34835 | If two formulas are equiva... |
bj-nnfbii 34836 | If two formulas are equiva... |
bj-nnfa 34837 | Nonfreeness implies the eq... |
bj-nnfad 34838 | Nonfreeness implies the eq... |
bj-nnfai 34839 | Nonfreeness implies the eq... |
bj-nnfe 34840 | Nonfreeness implies the eq... |
bj-nnfed 34841 | Nonfreeness implies the eq... |
bj-nnfei 34842 | Nonfreeness implies the eq... |
bj-nnfea 34843 | Nonfreeness implies the eq... |
bj-nnfead 34844 | Nonfreeness implies the eq... |
bj-nnfeai 34845 | Nonfreeness implies the eq... |
bj-dfnnf2 34846 | Alternate definition of ~ ... |
bj-nnfnfTEMP 34847 | New nonfreeness implies ol... |
bj-wnfnf 34848 | When ` ph ` is substituted... |
bj-nnfnt 34849 | A variable is nonfree in a... |
bj-nnftht 34850 | A variable is nonfree in a... |
bj-nnfth 34851 | A variable is nonfree in a... |
bj-nnfnth 34852 | A variable is nonfree in t... |
bj-nnfim1 34853 | A consequence of nonfreene... |
bj-nnfim2 34854 | A consequence of nonfreene... |
bj-nnfim 34855 | Nonfreeness in the anteced... |
bj-nnfimd 34856 | Nonfreeness in the anteced... |
bj-nnfan 34857 | Nonfreeness in both conjun... |
bj-nnfand 34858 | Nonfreeness in both conjun... |
bj-nnfor 34859 | Nonfreeness in both disjun... |
bj-nnford 34860 | Nonfreeness in both disjun... |
bj-nnfbit 34861 | Nonfreeness in both sides ... |
bj-nnfbid 34862 | Nonfreeness in both sides ... |
bj-nnfv 34863 | A non-occurring variable i... |
bj-nnf-alrim 34864 | Proof of the closed form o... |
bj-nnf-exlim 34865 | Proof of the closed form o... |
bj-dfnnf3 34866 | Alternate definition of no... |
bj-nfnnfTEMP 34867 | New nonfreeness is equival... |
bj-nnfa1 34868 | See ~ nfa1 . (Contributed... |
bj-nnfe1 34869 | See ~ nfe1 . (Contributed... |
bj-19.12 34870 | See ~ 19.12 . Could be la... |
bj-nnflemaa 34871 | One of four lemmas for non... |
bj-nnflemee 34872 | One of four lemmas for non... |
bj-nnflemae 34873 | One of four lemmas for non... |
bj-nnflemea 34874 | One of four lemmas for non... |
bj-nnfalt 34875 | See ~ nfal and ~ bj-nfalt ... |
bj-nnfext 34876 | See ~ nfex and ~ bj-nfext ... |
bj-stdpc5t 34877 | Alias of ~ bj-nnf-alrim fo... |
bj-19.21t 34878 | Statement ~ 19.21t proved ... |
bj-19.23t 34879 | Statement ~ 19.23t proved ... |
bj-19.36im 34880 | One direction of ~ 19.36 f... |
bj-19.37im 34881 | One direction of ~ 19.37 f... |
bj-19.42t 34882 | Closed form of ~ 19.42 fro... |
bj-19.41t 34883 | Closed form of ~ 19.41 fro... |
bj-sbft 34884 | Version of ~ sbft using ` ... |
bj-pm11.53vw 34885 | Version of ~ pm11.53v with... |
bj-pm11.53v 34886 | Version of ~ pm11.53v with... |
bj-pm11.53a 34887 | A variant of ~ pm11.53v . ... |
bj-equsvt 34888 | A variant of ~ equsv . (C... |
bj-equsalvwd 34889 | Variant of ~ equsalvw . (... |
bj-equsexvwd 34890 | Variant of ~ equsexvw . (... |
bj-sbievwd 34891 | Variant of ~ sbievw . (Co... |
bj-axc10 34892 | Alternate proof of ~ axc10... |
bj-alequex 34893 | A fol lemma. See ~ aleque... |
bj-spimt2 34894 | A step in the proof of ~ s... |
bj-cbv3ta 34895 | Closed form of ~ cbv3 . (... |
bj-cbv3tb 34896 | Closed form of ~ cbv3 . (... |
bj-hbsb3t 34897 | A theorem close to a close... |
bj-hbsb3 34898 | Shorter proof of ~ hbsb3 .... |
bj-nfs1t 34899 | A theorem close to a close... |
bj-nfs1t2 34900 | A theorem close to a close... |
bj-nfs1 34901 | Shorter proof of ~ nfs1 (t... |
bj-axc10v 34902 | Version of ~ axc10 with a ... |
bj-spimtv 34903 | Version of ~ spimt with a ... |
bj-cbv3hv2 34904 | Version of ~ cbv3h with tw... |
bj-cbv1hv 34905 | Version of ~ cbv1h with a ... |
bj-cbv2hv 34906 | Version of ~ cbv2h with a ... |
bj-cbv2v 34907 | Version of ~ cbv2 with a d... |
bj-cbvaldv 34908 | Version of ~ cbvald with a... |
bj-cbvexdv 34909 | Version of ~ cbvexd with a... |
bj-cbval2vv 34910 | Version of ~ cbval2vv with... |
bj-cbvex2vv 34911 | Version of ~ cbvex2vv with... |
bj-cbvaldvav 34912 | Version of ~ cbvaldva with... |
bj-cbvexdvav 34913 | Version of ~ cbvexdva with... |
bj-cbvex4vv 34914 | Version of ~ cbvex4v with ... |
bj-equsalhv 34915 | Version of ~ equsalh with ... |
bj-axc11nv 34916 | Version of ~ axc11n with a... |
bj-aecomsv 34917 | Version of ~ aecoms with a... |
bj-axc11v 34918 | Version of ~ axc11 with a ... |
bj-drnf2v 34919 | Version of ~ drnf2 with a ... |
bj-equs45fv 34920 | Version of ~ equs45f with ... |
bj-hbs1 34921 | Version of ~ hbsb2 with a ... |
bj-nfs1v 34922 | Version of ~ nfsb2 with a ... |
bj-hbsb2av 34923 | Version of ~ hbsb2a with a... |
bj-hbsb3v 34924 | Version of ~ hbsb3 with a ... |
bj-nfsab1 34925 | Remove dependency on ~ ax-... |
bj-dtru 34926 | Remove dependency on ~ ax-... |
bj-dtrucor2v 34927 | Version of ~ dtrucor2 with... |
bj-hbaeb2 34928 | Biconditional version of a... |
bj-hbaeb 34929 | Biconditional version of ~... |
bj-hbnaeb 34930 | Biconditional version of ~... |
bj-dvv 34931 | A special instance of ~ bj... |
bj-equsal1t 34932 | Duplication of ~ wl-equsal... |
bj-equsal1ti 34933 | Inference associated with ... |
bj-equsal1 34934 | One direction of ~ equsal ... |
bj-equsal2 34935 | One direction of ~ equsal ... |
bj-equsal 34936 | Shorter proof of ~ equsal ... |
stdpc5t 34937 | Closed form of ~ stdpc5 . ... |
bj-stdpc5 34938 | More direct proof of ~ std... |
2stdpc5 34939 | A double ~ stdpc5 (one dir... |
bj-19.21t0 34940 | Proof of ~ 19.21t from ~ s... |
exlimii 34941 | Inference associated with ... |
ax11-pm 34942 | Proof of ~ ax-11 similar t... |
ax6er 34943 | Commuted form of ~ ax6e . ... |
exlimiieq1 34944 | Inferring a theorem when i... |
exlimiieq2 34945 | Inferring a theorem when i... |
ax11-pm2 34946 | Proof of ~ ax-11 from the ... |
bj-sbsb 34947 | Biconditional showing two ... |
bj-dfsb2 34948 | Alternate (dual) definitio... |
bj-sbf3 34949 | Substitution has no effect... |
bj-sbf4 34950 | Substitution has no effect... |
bj-sbnf 34951 | Move nonfree predicate in ... |
bj-eu3f 34952 | Version of ~ eu3v where th... |
bj-sblem1 34953 | Lemma for substitution. (... |
bj-sblem2 34954 | Lemma for substitution. (... |
bj-sblem 34955 | Lemma for substitution. (... |
bj-sbievw1 34956 | Lemma for substitution. (... |
bj-sbievw2 34957 | Lemma for substitution. (... |
bj-sbievw 34958 | Lemma for substitution. C... |
bj-sbievv 34959 | Version of ~ sbie with a s... |
bj-moeub 34960 | Uniqueness is equivalent t... |
bj-sbidmOLD 34961 | Obsolete proof of ~ sbidm ... |
bj-dvelimdv 34962 | Deduction form of ~ dvelim... |
bj-dvelimdv1 34963 | Curried (exported) form of... |
bj-dvelimv 34964 | A version of ~ dvelim usin... |
bj-nfeel2 34965 | Nonfreeness in a membershi... |
bj-axc14nf 34966 | Proof of a version of ~ ax... |
bj-axc14 34967 | Alternate proof of ~ axc14... |
mobidvALT 34968 | Alternate proof of ~ mobid... |
sbn1ALT 34969 | Alternate proof of ~ sbn1 ... |
eliminable1 34970 | A theorem used to prove th... |
eliminable2a 34971 | A theorem used to prove th... |
eliminable2b 34972 | A theorem used to prove th... |
eliminable2c 34973 | A theorem used to prove th... |
eliminable3a 34974 | A theorem used to prove th... |
eliminable3b 34975 | A theorem used to prove th... |
eliminable-velab 34976 | A theorem used to prove th... |
eliminable-veqab 34977 | A theorem used to prove th... |
eliminable-abeqv 34978 | A theorem used to prove th... |
eliminable-abeqab 34979 | A theorem used to prove th... |
eliminable-abelv 34980 | A theorem used to prove th... |
eliminable-abelab 34981 | A theorem used to prove th... |
bj-denoteslem 34982 | Lemma for ~ bj-denotes . ... |
bj-denotes 34983 | This would be the justific... |
bj-issettru 34984 | Weak version of ~ isset wi... |
bj-elabtru 34985 | This is as close as we can... |
bj-issetwt 34986 | Closed form of ~ bj-issetw... |
bj-issetw 34987 | The closest one can get to... |
bj-elissetALT 34988 | Alternate proof of ~ eliss... |
bj-issetiv 34989 | Version of ~ bj-isseti wit... |
bj-isseti 34990 | Version of ~ isseti with a... |
bj-ralvw 34991 | A weak version of ~ ralv n... |
bj-rexvw 34992 | A weak version of ~ rexv n... |
bj-rababw 34993 | A weak version of ~ rabab ... |
bj-rexcom4bv 34994 | Version of ~ rexcom4b and ... |
bj-rexcom4b 34995 | Remove from ~ rexcom4b dep... |
bj-ceqsalt0 34996 | The FOL content of ~ ceqsa... |
bj-ceqsalt1 34997 | The FOL content of ~ ceqsa... |
bj-ceqsalt 34998 | Remove from ~ ceqsalt depe... |
bj-ceqsaltv 34999 | Version of ~ bj-ceqsalt wi... |
bj-ceqsalg0 35000 | The FOL content of ~ ceqsa... |
bj-ceqsalg 35001 | Remove from ~ ceqsalg depe... |
bj-ceqsalgALT 35002 | Alternate proof of ~ bj-ce... |
bj-ceqsalgv 35003 | Version of ~ bj-ceqsalg wi... |
bj-ceqsalgvALT 35004 | Alternate proof of ~ bj-ce... |
bj-ceqsal 35005 | Remove from ~ ceqsal depen... |
bj-ceqsalv 35006 | Remove from ~ ceqsalv depe... |
bj-spcimdv 35007 | Remove from ~ spcimdv depe... |
bj-spcimdvv 35008 | Remove from ~ spcimdv depe... |
elelb 35009 | Equivalence between two co... |
bj-pwvrelb 35010 | Characterization of the el... |
bj-nfcsym 35011 | The nonfreeness quantifier... |
bj-sbeqALT 35012 | Substitution in an equalit... |
bj-sbeq 35013 | Distribute proper substitu... |
bj-sbceqgALT 35014 | Distribute proper substitu... |
bj-csbsnlem 35015 | Lemma for ~ bj-csbsn (in t... |
bj-csbsn 35016 | Substitution in a singleto... |
bj-sbel1 35017 | Version of ~ sbcel1g when ... |
bj-abv 35018 | The class of sets verifyin... |
bj-abvALT 35019 | Alternate version of ~ bj-... |
bj-ab0 35020 | The class of sets verifyin... |
bj-abf 35021 | Shorter proof of ~ abf (wh... |
bj-csbprc 35022 | More direct proof of ~ csb... |
bj-exlimvmpi 35023 | A Fol lemma ( ~ exlimiv fo... |
bj-exlimmpi 35024 | Lemma for ~ bj-vtoclg1f1 (... |
bj-exlimmpbi 35025 | Lemma for theorems of the ... |
bj-exlimmpbir 35026 | Lemma for theorems of the ... |
bj-vtoclf 35027 | Remove dependency on ~ ax-... |
bj-vtocl 35028 | Remove dependency on ~ ax-... |
bj-vtoclg1f1 35029 | The FOL content of ~ vtocl... |
bj-vtoclg1f 35030 | Reprove ~ vtoclg1f from ~ ... |
bj-vtoclg1fv 35031 | Version of ~ bj-vtoclg1f w... |
bj-vtoclg 35032 | A version of ~ vtoclg with... |
bj-rabbida2 35033 | Version of ~ rabbidva2 wit... |
bj-rabeqd 35034 | Deduction form of ~ rabeq ... |
bj-rabeqbid 35035 | Version of ~ rabeqbidv wit... |
bj-rabeqbida 35036 | Version of ~ rabeqbidva wi... |
bj-seex 35037 | Version of ~ seex with a d... |
bj-nfcf 35038 | Version of ~ df-nfc with a... |
bj-zfauscl 35039 | General version of ~ zfaus... |
bj-elabd2ALT 35040 | Alternate proof of ~ elabd... |
bj-unrab 35041 | Generalization of ~ unrab ... |
bj-inrab 35042 | Generalization of ~ inrab ... |
bj-inrab2 35043 | Shorter proof of ~ inrab .... |
bj-inrab3 35044 | Generalization of ~ dfrab3... |
bj-rabtr 35045 | Restricted class abstracti... |
bj-rabtrALT 35046 | Alternate proof of ~ bj-ra... |
bj-rabtrAUTO 35047 | Proof of ~ bj-rabtr found ... |
bj-gabss 35050 | Inclusion of generalized c... |
bj-gabssd 35051 | Inclusion of generalized c... |
bj-gabeqd 35052 | Equality of generalized cl... |
bj-gabeqis 35053 | Equality of generalized cl... |
bj-elgab 35054 | Elements of a generalized ... |
bj-gabima 35055 | Generalized class abstract... |
bj-ru0 35058 | The FOL part of Russell's ... |
bj-ru1 35059 | A version of Russell's par... |
bj-ru 35060 | Remove dependency on ~ ax-... |
currysetlem 35061 | Lemma for ~ currysetlem , ... |
curryset 35062 | Curry's paradox in set the... |
currysetlem1 35063 | Lemma for ~ currysetALT . ... |
currysetlem2 35064 | Lemma for ~ currysetALT . ... |
currysetlem3 35065 | Lemma for ~ currysetALT . ... |
currysetALT 35066 | Alternate proof of ~ curry... |
bj-n0i 35067 | Inference associated with ... |
bj-disjcsn 35068 | A class is disjoint from i... |
bj-disjsn01 35069 | Disjointness of the single... |
bj-0nel1 35070 | The empty set does not bel... |
bj-1nel0 35071 | ` 1o ` does not belong to ... |
bj-xpimasn 35072 | The image of a singleton, ... |
bj-xpima1sn 35073 | The image of a singleton b... |
bj-xpima1snALT 35074 | Alternate proof of ~ bj-xp... |
bj-xpima2sn 35075 | The image of a singleton b... |
bj-xpnzex 35076 | If the first factor of a p... |
bj-xpexg2 35077 | Curried (exported) form of... |
bj-xpnzexb 35078 | If the first factor of a p... |
bj-cleq 35079 | Substitution property for ... |
bj-snsetex 35080 | The class of sets "whose s... |
bj-clex 35081 | Sethood of certain classes... |
bj-sngleq 35084 | Substitution property for ... |
bj-elsngl 35085 | Characterization of the el... |
bj-snglc 35086 | Characterization of the el... |
bj-snglss 35087 | The singletonization of a ... |
bj-0nelsngl 35088 | The empty set is not a mem... |
bj-snglinv 35089 | Inverse of singletonizatio... |
bj-snglex 35090 | A class is a set if and on... |
bj-tageq 35093 | Substitution property for ... |
bj-eltag 35094 | Characterization of the el... |
bj-0eltag 35095 | The empty set belongs to t... |
bj-tagn0 35096 | The tagging of a class is ... |
bj-tagss 35097 | The tagging of a class is ... |
bj-snglsstag 35098 | The singletonization is in... |
bj-sngltagi 35099 | The singletonization is in... |
bj-sngltag 35100 | The singletonization and t... |
bj-tagci 35101 | Characterization of the el... |
bj-tagcg 35102 | Characterization of the el... |
bj-taginv 35103 | Inverse of tagging. (Cont... |
bj-tagex 35104 | A class is a set if and on... |
bj-xtageq 35105 | The products of a given cl... |
bj-xtagex 35106 | The product of a set and t... |
bj-projeq 35109 | Substitution property for ... |
bj-projeq2 35110 | Substitution property for ... |
bj-projun 35111 | The class projection on a ... |
bj-projex 35112 | Sethood of the class proje... |
bj-projval 35113 | Value of the class project... |
bj-1upleq 35116 | Substitution property for ... |
bj-pr1eq 35119 | Substitution property for ... |
bj-pr1un 35120 | The first projection prese... |
bj-pr1val 35121 | Value of the first project... |
bj-pr11val 35122 | Value of the first project... |
bj-pr1ex 35123 | Sethood of the first proje... |
bj-1uplth 35124 | The characteristic propert... |
bj-1uplex 35125 | A monuple is a set if and ... |
bj-1upln0 35126 | A monuple is nonempty. (C... |
bj-2upleq 35129 | Substitution property for ... |
bj-pr21val 35130 | Value of the first project... |
bj-pr2eq 35133 | Substitution property for ... |
bj-pr2un 35134 | The second projection pres... |
bj-pr2val 35135 | Value of the second projec... |
bj-pr22val 35136 | Value of the second projec... |
bj-pr2ex 35137 | Sethood of the second proj... |
bj-2uplth 35138 | The characteristic propert... |
bj-2uplex 35139 | A couple is a set if and o... |
bj-2upln0 35140 | A couple is nonempty. (Co... |
bj-2upln1upl 35141 | A couple is never equal to... |
bj-rcleqf 35142 | Relative version of ~ cleq... |
bj-rcleq 35143 | Relative version of ~ dfcl... |
bj-reabeq 35144 | Relative form of ~ abeq2 .... |
bj-disj2r 35145 | Relative version of ~ ssdi... |
bj-sscon 35146 | Contraposition law for rel... |
eleq2w2ALT 35147 | Alternate proof of ~ eleq2... |
bj-clel3gALT 35148 | Alternate proof of ~ clel3... |
bj-pw0ALT 35149 | Alternate proof of ~ pw0 .... |
bj-sselpwuni 35150 | Quantitative version of ~ ... |
bj-unirel 35151 | Quantitative version of ~ ... |
bj-elpwg 35152 | If the intersection of two... |
bj-vjust 35153 | Justification theorem for ... |
bj-nul 35154 | Two formulations of the ax... |
bj-nuliota 35155 | Definition of the empty se... |
bj-nuliotaALT 35156 | Alternate proof of ~ bj-nu... |
bj-vtoclgfALT 35157 | Alternate proof of ~ vtocl... |
bj-elsn12g 35158 | Join of ~ elsng and ~ elsn... |
bj-elsnb 35159 | Biconditional version of ~... |
bj-pwcfsdom 35160 | Remove hypothesis from ~ p... |
bj-grur1 35161 | Remove hypothesis from ~ g... |
bj-bm1.3ii 35162 | The extension of a predica... |
bj-dfid2ALT 35163 | Alternate version of ~ dfi... |
bj-0nelopab 35164 | The empty set is never an ... |
bj-brrelex12ALT 35165 | Two classes related by a b... |
bj-epelg 35166 | The membership relation an... |
bj-epelb 35167 | Two classes are related by... |
bj-nsnid 35168 | A set does not contain the... |
bj-rdg0gALT 35169 | Alternate proof of ~ rdg0g... |
bj-evaleq 35170 | Equality theorem for the `... |
bj-evalfun 35171 | The evaluation at a class ... |
bj-evalfn 35172 | The evaluation at a class ... |
bj-evalval 35173 | Value of the evaluation at... |
bj-evalid 35174 | The evaluation at a set of... |
bj-ndxarg 35175 | Proof of ~ ndxarg from ~ b... |
bj-evalidval 35176 | Closed general form of ~ s... |
bj-rest00 35179 | An elementwise intersectio... |
bj-restsn 35180 | An elementwise intersectio... |
bj-restsnss 35181 | Special case of ~ bj-rests... |
bj-restsnss2 35182 | Special case of ~ bj-rests... |
bj-restsn0 35183 | An elementwise intersectio... |
bj-restsn10 35184 | Special case of ~ bj-rests... |
bj-restsnid 35185 | The elementwise intersecti... |
bj-rest10 35186 | An elementwise intersectio... |
bj-rest10b 35187 | Alternate version of ~ bj-... |
bj-restn0 35188 | An elementwise intersectio... |
bj-restn0b 35189 | Alternate version of ~ bj-... |
bj-restpw 35190 | The elementwise intersecti... |
bj-rest0 35191 | An elementwise intersectio... |
bj-restb 35192 | An elementwise intersectio... |
bj-restv 35193 | An elementwise intersectio... |
bj-resta 35194 | An elementwise intersectio... |
bj-restuni 35195 | The union of an elementwis... |
bj-restuni2 35196 | The union of an elementwis... |
bj-restreg 35197 | A reformulation of the axi... |
bj-raldifsn 35198 | All elements in a set sati... |
bj-0int 35199 | If ` A ` is a collection o... |
bj-mooreset 35200 | A Moore collection is a se... |
bj-ismoore 35203 | Characterization of Moore ... |
bj-ismoored0 35204 | Necessary condition to be ... |
bj-ismoored 35205 | Necessary condition to be ... |
bj-ismoored2 35206 | Necessary condition to be ... |
bj-ismooredr 35207 | Sufficient condition to be... |
bj-ismooredr2 35208 | Sufficient condition to be... |
bj-discrmoore 35209 | The powerclass ` ~P A ` is... |
bj-0nmoore 35210 | The empty set is not a Moo... |
bj-snmoore 35211 | A singleton is a Moore col... |
bj-snmooreb 35212 | A singleton is a Moore col... |
bj-prmoore 35213 | A pair formed of two neste... |
bj-0nelmpt 35214 | The empty set is not an el... |
bj-mptval 35215 | Value of a function given ... |
bj-dfmpoa 35216 | An equivalent definition o... |
bj-mpomptALT 35217 | Alternate proof of ~ mpomp... |
setsstrset 35234 | Relation between ~ df-sets... |
bj-nfald 35235 | Variant of ~ nfald . (Con... |
bj-nfexd 35236 | Variant of ~ nfexd . (Con... |
copsex2d 35237 | Implicit substitution dedu... |
copsex2b 35238 | Biconditional form of ~ co... |
opelopabd 35239 | Membership of an ordere pa... |
opelopabb 35240 | Membership of an ordered p... |
opelopabbv 35241 | Membership of an ordered p... |
bj-opelrelex 35242 | The coordinates of an orde... |
bj-opelresdm 35243 | If an ordered pair is in a... |
bj-brresdm 35244 | If two classes are related... |
brabd0 35245 | Expressing that two sets a... |
brabd 35246 | Expressing that two sets a... |
bj-brab2a1 35247 | "Unbounded" version of ~ b... |
bj-opabssvv 35248 | A variant of ~ relopabiv (... |
bj-funidres 35249 | The restricted identity re... |
bj-opelidb 35250 | Characterization of the or... |
bj-opelidb1 35251 | Characterization of the or... |
bj-inexeqex 35252 | Lemma for ~ bj-opelid (but... |
bj-elsn0 35253 | If the intersection of two... |
bj-opelid 35254 | Characterization of the or... |
bj-ideqg 35255 | Characterization of the cl... |
bj-ideqgALT 35256 | Alternate proof of ~ bj-id... |
bj-ideqb 35257 | Characterization of classe... |
bj-idres 35258 | Alternate expression for t... |
bj-opelidres 35259 | Characterization of the or... |
bj-idreseq 35260 | Sufficient condition for t... |
bj-idreseqb 35261 | Characterization for two c... |
bj-ideqg1 35262 | For sets, the identity rel... |
bj-ideqg1ALT 35263 | Alternate proof of bj-ideq... |
bj-opelidb1ALT 35264 | Characterization of the co... |
bj-elid3 35265 | Characterization of the co... |
bj-elid4 35266 | Characterization of the el... |
bj-elid5 35267 | Characterization of the el... |
bj-elid6 35268 | Characterization of the el... |
bj-elid7 35269 | Characterization of the el... |
bj-diagval 35272 | Value of the functionalize... |
bj-diagval2 35273 | Value of the functionalize... |
bj-eldiag 35274 | Characterization of the el... |
bj-eldiag2 35275 | Characterization of the el... |
bj-imdirvallem 35278 | Lemma for ~ bj-imdirval an... |
bj-imdirval 35279 | Value of the functionalize... |
bj-imdirval2lem 35280 | Lemma for ~ bj-imdirval2 a... |
bj-imdirval2 35281 | Value of the functionalize... |
bj-imdirval3 35282 | Value of the functionalize... |
bj-imdiridlem 35283 | Lemma for ~ bj-imdirid and... |
bj-imdirid 35284 | Functorial property of the... |
bj-opelopabid 35285 | Membership in an ordered-p... |
bj-opabco 35286 | Composition of ordered-pai... |
bj-xpcossxp 35287 | The composition of two Car... |
bj-imdirco 35288 | Functorial property of the... |
bj-iminvval 35291 | Value of the functionalize... |
bj-iminvval2 35292 | Value of the functionalize... |
bj-iminvid 35293 | Functorial property of the... |
bj-inftyexpitaufo 35300 | The function ` inftyexpita... |
bj-inftyexpitaudisj 35303 | An element of the circle a... |
bj-inftyexpiinv 35306 | Utility theorem for the in... |
bj-inftyexpiinj 35307 | Injectivity of the paramet... |
bj-inftyexpidisj 35308 | An element of the circle a... |
bj-ccinftydisj 35311 | The circle at infinity is ... |
bj-elccinfty 35312 | A lemma for infinite exten... |
bj-ccssccbar 35315 | Complex numbers are extend... |
bj-ccinftyssccbar 35316 | Infinite extended complex ... |
bj-pinftyccb 35319 | The class ` pinfty ` is an... |
bj-pinftynrr 35320 | The extended complex numbe... |
bj-minftyccb 35323 | The class ` minfty ` is an... |
bj-minftynrr 35324 | The extended complex numbe... |
bj-pinftynminfty 35325 | The extended complex numbe... |
bj-rrhatsscchat 35334 | The real projective line i... |
bj-imafv 35349 | If the direct image of a s... |
bj-funun 35350 | Value of a function expres... |
bj-fununsn1 35351 | Value of a function expres... |
bj-fununsn2 35352 | Value of a function expres... |
bj-fvsnun1 35353 | The value of a function wi... |
bj-fvsnun2 35354 | The value of a function wi... |
bj-fvmptunsn1 35355 | Value of a function expres... |
bj-fvmptunsn2 35356 | Value of a function expres... |
bj-iomnnom 35357 | The canonical bijection fr... |
bj-smgrpssmgm 35366 | Semigroups are magmas. (C... |
bj-smgrpssmgmel 35367 | Semigroups are magmas (ele... |
bj-mndsssmgrp 35368 | Monoids are semigroups. (... |
bj-mndsssmgrpel 35369 | Monoids are semigroups (el... |
bj-cmnssmnd 35370 | Commutative monoids are mo... |
bj-cmnssmndel 35371 | Commutative monoids are mo... |
bj-grpssmnd 35372 | Groups are monoids. (Cont... |
bj-grpssmndel 35373 | Groups are monoids (elemen... |
bj-ablssgrp 35374 | Abelian groups are groups.... |
bj-ablssgrpel 35375 | Abelian groups are groups ... |
bj-ablsscmn 35376 | Abelian groups are commuta... |
bj-ablsscmnel 35377 | Abelian groups are commuta... |
bj-modssabl 35378 | (The additive groups of) m... |
bj-vecssmod 35379 | Vector spaces are modules.... |
bj-vecssmodel 35380 | Vector spaces are modules ... |
bj-finsumval0 35383 | Value of a finite sum. (C... |
bj-fvimacnv0 35384 | Variant of ~ fvimacnv wher... |
bj-isvec 35385 | The predicate "is a vector... |
bj-fldssdrng 35386 | Fields are division rings.... |
bj-flddrng 35387 | Fields are division rings ... |
bj-rrdrg 35388 | The field of real numbers ... |
bj-isclm 35389 | The predicate "is a subcom... |
bj-isrvec 35392 | The predicate "is a real v... |
bj-rvecmod 35393 | Real vector spaces are mod... |
bj-rvecssmod 35394 | Real vector spaces are mod... |
bj-rvecrr 35395 | The field of scalars of a ... |
bj-isrvecd 35396 | The predicate "is a real v... |
bj-rvecvec 35397 | Real vector spaces are vec... |
bj-isrvec2 35398 | The predicate "is a real v... |
bj-rvecssvec 35399 | Real vector spaces are vec... |
bj-rveccmod 35400 | Real vector spaces are sub... |
bj-rvecsscmod 35401 | Real vector spaces are sub... |
bj-rvecsscvec 35402 | Real vector spaces are sub... |
bj-rveccvec 35403 | Real vector spaces are sub... |
bj-rvecssabl 35404 | (The additive groups of) r... |
bj-rvecabl 35405 | (The additive groups of) r... |
bj-subcom 35406 | A consequence of commutati... |
bj-lineqi 35407 | Solution of a (scalar) lin... |
bj-bary1lem 35408 | Lemma for ~ bj-bary1 : exp... |
bj-bary1lem1 35409 | Lemma for bj-bary1: comput... |
bj-bary1 35410 | Barycentric coordinates in... |
bj-endval 35413 | Value of the monoid of end... |
bj-endbase 35414 | Base set of the monoid of ... |
bj-endcomp 35415 | Composition law of the mon... |
bj-endmnd 35416 | The monoid of endomorphism... |
taupilem3 35417 | Lemma for tau-related theo... |
taupilemrplb 35418 | A set of positive reals ha... |
taupilem1 35419 | Lemma for ~ taupi . A pos... |
taupilem2 35420 | Lemma for ~ taupi . The s... |
taupi 35421 | Relationship between ` _ta... |
dfgcd3 35422 | Alternate definition of th... |
irrdifflemf 35423 | Lemma for ~ irrdiff . The... |
irrdiff 35424 | The irrationals are exactl... |
iccioo01 35425 | The closed unit interval i... |
csbrecsg 35426 | Move class substitution in... |
csbrdgg 35427 | Move class substitution in... |
csboprabg 35428 | Move class substitution in... |
csbmpo123 35429 | Move class substitution in... |
con1bii2 35430 | A contraposition inference... |
con2bii2 35431 | A contraposition inference... |
vtoclefex 35432 | Implicit substitution of a... |
rnmptsn 35433 | The range of a function ma... |
f1omptsnlem 35434 | This is the core of the pr... |
f1omptsn 35435 | A function mapping to sing... |
mptsnunlem 35436 | This is the core of the pr... |
mptsnun 35437 | A class ` B ` is equal to ... |
dissneqlem 35438 | This is the core of the pr... |
dissneq 35439 | Any topology that contains... |
exlimim 35440 | Closed form of ~ exlimimd ... |
exlimimd 35441 | Existential elimination ru... |
exellim 35442 | Closed form of ~ exellimdd... |
exellimddv 35443 | Eliminate an antecedent wh... |
topdifinfindis 35444 | Part of Exercise 3 of [Mun... |
topdifinffinlem 35445 | This is the core of the pr... |
topdifinffin 35446 | Part of Exercise 3 of [Mun... |
topdifinf 35447 | Part of Exercise 3 of [Mun... |
topdifinfeq 35448 | Two different ways of defi... |
icorempo 35449 | Closed-below, open-above i... |
icoreresf 35450 | Closed-below, open-above i... |
icoreval 35451 | Value of the closed-below,... |
icoreelrnab 35452 | Elementhood in the set of ... |
isbasisrelowllem1 35453 | Lemma for ~ isbasisrelowl ... |
isbasisrelowllem2 35454 | Lemma for ~ isbasisrelowl ... |
icoreclin 35455 | The set of closed-below, o... |
isbasisrelowl 35456 | The set of all closed-belo... |
icoreunrn 35457 | The union of all closed-be... |
istoprelowl 35458 | The set of all closed-belo... |
icoreelrn 35459 | A class abstraction which ... |
iooelexlt 35460 | An element of an open inte... |
relowlssretop 35461 | The lower limit topology o... |
relowlpssretop 35462 | The lower limit topology o... |
sucneqond 35463 | Inequality of an ordinal s... |
sucneqoni 35464 | Inequality of an ordinal s... |
onsucuni3 35465 | If an ordinal number has a... |
1oequni2o 35466 | The ordinal number ` 1o ` ... |
rdgsucuni 35467 | If an ordinal number has a... |
rdgeqoa 35468 | If a recursive function wi... |
elxp8 35469 | Membership in a Cartesian ... |
cbveud 35470 | Deduction used to change b... |
cbvreud 35471 | Deduction used to change b... |
difunieq 35472 | The difference of unions i... |
inunissunidif 35473 | Theorem about subsets of t... |
rdgellim 35474 | Elementhood in a recursive... |
rdglimss 35475 | A recursive definition at ... |
rdgssun 35476 | In a recursive definition ... |
exrecfnlem 35477 | Lemma for ~ exrecfn . (Co... |
exrecfn 35478 | Theorem about the existenc... |
exrecfnpw 35479 | For any base set, a set wh... |
finorwe 35480 | If the Axiom of Infinity i... |
dffinxpf 35483 | This theorem is the same a... |
finxpeq1 35484 | Equality theorem for Carte... |
finxpeq2 35485 | Equality theorem for Carte... |
csbfinxpg 35486 | Distribute proper substitu... |
finxpreclem1 35487 | Lemma for ` ^^ ` recursion... |
finxpreclem2 35488 | Lemma for ` ^^ ` recursion... |
finxp0 35489 | The value of Cartesian exp... |
finxp1o 35490 | The value of Cartesian exp... |
finxpreclem3 35491 | Lemma for ` ^^ ` recursion... |
finxpreclem4 35492 | Lemma for ` ^^ ` recursion... |
finxpreclem5 35493 | Lemma for ` ^^ ` recursion... |
finxpreclem6 35494 | Lemma for ` ^^ ` recursion... |
finxpsuclem 35495 | Lemma for ~ finxpsuc . (C... |
finxpsuc 35496 | The value of Cartesian exp... |
finxp2o 35497 | The value of Cartesian exp... |
finxp3o 35498 | The value of Cartesian exp... |
finxpnom 35499 | Cartesian exponentiation w... |
finxp00 35500 | Cartesian exponentiation o... |
iunctb2 35501 | Using the axiom of countab... |
domalom 35502 | A class which dominates ev... |
isinf2 35503 | The converse of ~ isinf . ... |
ctbssinf 35504 | Using the axiom of choice,... |
ralssiun 35505 | The index set of an indexe... |
nlpineqsn 35506 | For every point ` p ` of a... |
nlpfvineqsn 35507 | Given a subset ` A ` of ` ... |
fvineqsnf1 35508 | A theorem about functions ... |
fvineqsneu 35509 | A theorem about functions ... |
fvineqsneq 35510 | A theorem about functions ... |
pibp16 35511 | Property P000016 of pi-bas... |
pibp19 35512 | Property P000019 of pi-bas... |
pibp21 35513 | Property P000021 of pi-bas... |
pibt1 35514 | Theorem T000001 of pi-base... |
pibt2 35515 | Theorem T000002 of pi-base... |
wl-section-prop 35516 | Intuitionistic logic is no... |
wl-section-boot 35520 | In this section, I provide... |
wl-luk-imim1i 35521 | Inference adding common co... |
wl-luk-syl 35522 | An inference version of th... |
wl-luk-imtrid 35523 | A syllogism rule of infere... |
wl-luk-pm2.18d 35524 | Deduction based on reducti... |
wl-luk-con4i 35525 | Inference rule. Copy of ~... |
wl-luk-pm2.24i 35526 | Inference rule. Copy of ~... |
wl-luk-a1i 35527 | Inference rule. Copy of ~... |
wl-luk-mpi 35528 | A nested modus ponens infe... |
wl-luk-imim2i 35529 | Inference adding common an... |
wl-luk-imtrdi 35530 | A syllogism rule of infere... |
wl-luk-ax3 35531 | ~ ax-3 proved from Lukasie... |
wl-luk-ax1 35532 | ~ ax-1 proved from Lukasie... |
wl-luk-pm2.27 35533 | This theorem, called "Asse... |
wl-luk-com12 35534 | Inference that swaps (comm... |
wl-luk-pm2.21 35535 | From a wff and its negatio... |
wl-luk-con1i 35536 | A contraposition inference... |
wl-luk-ja 35537 | Inference joining the ante... |
wl-luk-imim2 35538 | A closed form of syllogism... |
wl-luk-a1d 35539 | Deduction introducing an e... |
wl-luk-ax2 35540 | ~ ax-2 proved from Lukasie... |
wl-luk-id 35541 | Principle of identity. Th... |
wl-luk-notnotr 35542 | Converse of double negatio... |
wl-luk-pm2.04 35543 | Swap antecedents. Theorem... |
wl-section-impchain 35544 | An implication like ` ( ps... |
wl-impchain-mp-x 35545 | This series of theorems pr... |
wl-impchain-mp-0 35546 | This theorem is the start ... |
wl-impchain-mp-1 35547 | This theorem is in fact a ... |
wl-impchain-mp-2 35548 | This theorem is in fact a ... |
wl-impchain-com-1.x 35549 | It is often convenient to ... |
wl-impchain-com-1.1 35550 | A degenerate form of antec... |
wl-impchain-com-1.2 35551 | This theorem is in fact a ... |
wl-impchain-com-1.3 35552 | This theorem is in fact a ... |
wl-impchain-com-1.4 35553 | This theorem is in fact a ... |
wl-impchain-com-n.m 35554 | This series of theorems al... |
wl-impchain-com-2.3 35555 | This theorem is in fact a ... |
wl-impchain-com-2.4 35556 | This theorem is in fact a ... |
wl-impchain-com-3.2.1 35557 | This theorem is in fact a ... |
wl-impchain-a1-x 35558 | If an implication chain is... |
wl-impchain-a1-1 35559 | Inference rule, a copy of ... |
wl-impchain-a1-2 35560 | Inference rule, a copy of ... |
wl-impchain-a1-3 35561 | Inference rule, a copy of ... |
wl-ifp-ncond1 35562 | If one case of an ` if- ` ... |
wl-ifp-ncond2 35563 | If one case of an ` if- ` ... |
wl-ifpimpr 35564 | If one case of an ` if- ` ... |
wl-ifp4impr 35565 | If one case of an ` if- ` ... |
wl-df-3xor 35566 | Alternative definition of ... |
wl-df3xor2 35567 | Alternative definition of ... |
wl-df3xor3 35568 | Alternative form of ~ wl-d... |
wl-3xortru 35569 | If the first input is true... |
wl-3xorfal 35570 | If the first input is fals... |
wl-3xorbi 35571 | Triple xor can be replaced... |
wl-3xorbi2 35572 | Alternative form of ~ wl-3... |
wl-3xorbi123d 35573 | Equivalence theorem for tr... |
wl-3xorbi123i 35574 | Equivalence theorem for tr... |
wl-3xorrot 35575 | Rotation law for triple xo... |
wl-3xorcoma 35576 | Commutative law for triple... |
wl-3xorcomb 35577 | Commutative law for triple... |
wl-3xornot1 35578 | Flipping the first input f... |
wl-3xornot 35579 | Triple xor distributes ove... |
wl-1xor 35580 | In the recursive scheme ... |
wl-2xor 35581 | In the recursive scheme ... |
wl-df-3mintru2 35582 | Alternative definition of ... |
wl-df2-3mintru2 35583 | The adder carry in disjunc... |
wl-df3-3mintru2 35584 | The adder carry in conjunc... |
wl-df4-3mintru2 35585 | An alternative definition ... |
wl-1mintru1 35586 | Using the recursion formul... |
wl-1mintru2 35587 | Using the recursion formul... |
wl-2mintru1 35588 | Using the recursion formul... |
wl-2mintru2 35589 | Using the recursion formul... |
wl-df3maxtru1 35590 | Assuming "(n+1)-maxtru1" `... |
wl-ax13lem1 35592 | A version of ~ ax-wl-13v w... |
wl-mps 35593 | Replacing a nested consequ... |
wl-syls1 35594 | Replacing a nested consequ... |
wl-syls2 35595 | Replacing a nested anteced... |
wl-embant 35596 | A true wff can always be a... |
wl-orel12 35597 | In a conjunctive normal fo... |
wl-cases2-dnf 35598 | A particular instance of ~... |
wl-cbvmotv 35599 | Change bound variable. Us... |
wl-moteq 35600 | Change bound variable. Us... |
wl-motae 35601 | Change bound variable. Us... |
wl-moae 35602 | Two ways to express "at mo... |
wl-euae 35603 | Two ways to express "exact... |
wl-nax6im 35604 | The following series of th... |
wl-hbae1 35605 | This specialization of ~ h... |
wl-naevhba1v 35606 | An instance of ~ hbn1w app... |
wl-spae 35607 | Prove an instance of ~ sp ... |
wl-speqv 35608 | Under the assumption ` -. ... |
wl-19.8eqv 35609 | Under the assumption ` -. ... |
wl-19.2reqv 35610 | Under the assumption ` -. ... |
wl-nfalv 35611 | If ` x ` is not present in... |
wl-nfimf1 35612 | An antecedent is irrelevan... |
wl-nfae1 35613 | Unlike ~ nfae , this speci... |
wl-nfnae1 35614 | Unlike ~ nfnae , this spec... |
wl-aetr 35615 | A transitive law for varia... |
wl-axc11r 35616 | Same as ~ axc11r , but usi... |
wl-dral1d 35617 | A version of ~ dral1 with ... |
wl-cbvalnaed 35618 | ~ wl-cbvalnae with a conte... |
wl-cbvalnae 35619 | A more general version of ... |
wl-exeq 35620 | The semantics of ` E. x y ... |
wl-aleq 35621 | The semantics of ` A. x y ... |
wl-nfeqfb 35622 | Extend ~ nfeqf to an equiv... |
wl-nfs1t 35623 | If ` y ` is not free in ` ... |
wl-equsalvw 35624 | Version of ~ equsalv with ... |
wl-equsald 35625 | Deduction version of ~ equ... |
wl-equsal 35626 | A useful equivalence relat... |
wl-equsal1t 35627 | The expression ` x = y ` i... |
wl-equsalcom 35628 | This simple equivalence ea... |
wl-equsal1i 35629 | The antecedent ` x = y ` i... |
wl-sb6rft 35630 | A specialization of ~ wl-e... |
wl-cbvalsbi 35631 | Change bounded variables i... |
wl-sbrimt 35632 | Substitution with a variab... |
wl-sblimt 35633 | Substitution with a variab... |
wl-sb8t 35634 | Substitution of variable i... |
wl-sb8et 35635 | Substitution of variable i... |
wl-sbhbt 35636 | Closed form of ~ sbhb . C... |
wl-sbnf1 35637 | Two ways expressing that `... |
wl-equsb3 35638 | ~ equsb3 with a distinctor... |
wl-equsb4 35639 | Substitution applied to an... |
wl-2sb6d 35640 | Version of ~ 2sb6 with a c... |
wl-sbcom2d-lem1 35641 | Lemma used to prove ~ wl-s... |
wl-sbcom2d-lem2 35642 | Lemma used to prove ~ wl-s... |
wl-sbcom2d 35643 | Version of ~ sbcom2 with a... |
wl-sbalnae 35644 | A theorem used in eliminat... |
wl-sbal1 35645 | A theorem used in eliminat... |
wl-sbal2 35646 | Move quantifier in and out... |
wl-2spsbbi 35647 | ~ spsbbi applied twice. (... |
wl-lem-exsb 35648 | This theorem provides a ba... |
wl-lem-nexmo 35649 | This theorem provides a ba... |
wl-lem-moexsb 35650 | The antecedent ` A. x ( ph... |
wl-alanbii 35651 | This theorem extends ~ ala... |
wl-mo2df 35652 | Version of ~ mof with a co... |
wl-mo2tf 35653 | Closed form of ~ mof with ... |
wl-eudf 35654 | Version of ~ eu6 with a co... |
wl-eutf 35655 | Closed form of ~ eu6 with ... |
wl-euequf 35656 | ~ euequ proved with a dist... |
wl-mo2t 35657 | Closed form of ~ mof . (C... |
wl-mo3t 35658 | Closed form of ~ mo3 . (C... |
wl-sb8eut 35659 | Substitution of variable i... |
wl-sb8mot 35660 | Substitution of variable i... |
wl-axc11rc11 35661 | Proving ~ axc11r from ~ ax... |
wl-ax11-lem1 35663 | A transitive law for varia... |
wl-ax11-lem2 35664 | Lemma. (Contributed by Wo... |
wl-ax11-lem3 35665 | Lemma. (Contributed by Wo... |
wl-ax11-lem4 35666 | Lemma. (Contributed by Wo... |
wl-ax11-lem5 35667 | Lemma. (Contributed by Wo... |
wl-ax11-lem6 35668 | Lemma. (Contributed by Wo... |
wl-ax11-lem7 35669 | Lemma. (Contributed by Wo... |
wl-ax11-lem8 35670 | Lemma. (Contributed by Wo... |
wl-ax11-lem9 35671 | The easy part when ` x ` c... |
wl-ax11-lem10 35672 | We now have prepared every... |
wl-clabv 35673 | Variant of ~ df-clab , whe... |
wl-dfclab 35674 | Rederive ~ df-clab from ~ ... |
wl-clabtv 35675 | Using class abstraction in... |
wl-clabt 35676 | Using class abstraction in... |
rabiun 35677 | Abstraction restricted to ... |
iundif1 35678 | Indexed union of class dif... |
imadifss 35679 | The difference of images i... |
cureq 35680 | Equality theorem for curry... |
unceq 35681 | Equality theorem for uncur... |
curf 35682 | Functional property of cur... |
uncf 35683 | Functional property of unc... |
curfv 35684 | Value of currying. (Contr... |
uncov 35685 | Value of uncurrying. (Con... |
curunc 35686 | Currying of uncurrying. (... |
unccur 35687 | Uncurrying of currying. (... |
phpreu 35688 | Theorem related to pigeonh... |
finixpnum 35689 | A finite Cartesian product... |
fin2solem 35690 | Lemma for ~ fin2so . (Con... |
fin2so 35691 | Any totally ordered Tarski... |
ltflcei 35692 | Theorem to move the floor ... |
leceifl 35693 | Theorem to move the floor ... |
sin2h 35694 | Half-angle rule for sine. ... |
cos2h 35695 | Half-angle rule for cosine... |
tan2h 35696 | Half-angle rule for tangen... |
lindsadd 35697 | In a vector space, the uni... |
lindsdom 35698 | A linearly independent set... |
lindsenlbs 35699 | A maximal linearly indepen... |
matunitlindflem1 35700 | One direction of ~ matunit... |
matunitlindflem2 35701 | One direction of ~ matunit... |
matunitlindf 35702 | A matrix over a field is i... |
ptrest 35703 | Expressing a restriction o... |
ptrecube 35704 | Any point in an open set o... |
poimirlem1 35705 | Lemma for ~ poimir - the v... |
poimirlem2 35706 | Lemma for ~ poimir - conse... |
poimirlem3 35707 | Lemma for ~ poimir to add ... |
poimirlem4 35708 | Lemma for ~ poimir connect... |
poimirlem5 35709 | Lemma for ~ poimir to esta... |
poimirlem6 35710 | Lemma for ~ poimir establi... |
poimirlem7 35711 | Lemma for ~ poimir , simil... |
poimirlem8 35712 | Lemma for ~ poimir , estab... |
poimirlem9 35713 | Lemma for ~ poimir , estab... |
poimirlem10 35714 | Lemma for ~ poimir establi... |
poimirlem11 35715 | Lemma for ~ poimir connect... |
poimirlem12 35716 | Lemma for ~ poimir connect... |
poimirlem13 35717 | Lemma for ~ poimir - for a... |
poimirlem14 35718 | Lemma for ~ poimir - for a... |
poimirlem15 35719 | Lemma for ~ poimir , that ... |
poimirlem16 35720 | Lemma for ~ poimir establi... |
poimirlem17 35721 | Lemma for ~ poimir establi... |
poimirlem18 35722 | Lemma for ~ poimir stating... |
poimirlem19 35723 | Lemma for ~ poimir establi... |
poimirlem20 35724 | Lemma for ~ poimir establi... |
poimirlem21 35725 | Lemma for ~ poimir stating... |
poimirlem22 35726 | Lemma for ~ poimir , that ... |
poimirlem23 35727 | Lemma for ~ poimir , two w... |
poimirlem24 35728 | Lemma for ~ poimir , two w... |
poimirlem25 35729 | Lemma for ~ poimir stating... |
poimirlem26 35730 | Lemma for ~ poimir showing... |
poimirlem27 35731 | Lemma for ~ poimir showing... |
poimirlem28 35732 | Lemma for ~ poimir , a var... |
poimirlem29 35733 | Lemma for ~ poimir connect... |
poimirlem30 35734 | Lemma for ~ poimir combini... |
poimirlem31 35735 | Lemma for ~ poimir , assig... |
poimirlem32 35736 | Lemma for ~ poimir , combi... |
poimir 35737 | Poincare-Miranda theorem. ... |
broucube 35738 | Brouwer - or as Kulpa call... |
heicant 35739 | Heine-Cantor theorem: a co... |
opnmbllem0 35740 | Lemma for ~ ismblfin ; cou... |
mblfinlem1 35741 | Lemma for ~ ismblfin , ord... |
mblfinlem2 35742 | Lemma for ~ ismblfin , eff... |
mblfinlem3 35743 | The difference between two... |
mblfinlem4 35744 | Backward direction of ~ is... |
ismblfin 35745 | Measurability in terms of ... |
ovoliunnfl 35746 | ~ ovoliun is incompatible ... |
ex-ovoliunnfl 35747 | Demonstration of ~ ovoliun... |
voliunnfl 35748 | ~ voliun is incompatible w... |
volsupnfl 35749 | ~ volsup is incompatible w... |
mbfresfi 35750 | Measurability of a piecewi... |
mbfposadd 35751 | If the sum of two measurab... |
cnambfre 35752 | A real-valued, a.e. contin... |
dvtanlem 35753 | Lemma for ~ dvtan - the do... |
dvtan 35754 | Derivative of tangent. (C... |
itg2addnclem 35755 | An alternate expression fo... |
itg2addnclem2 35756 | Lemma for ~ itg2addnc . T... |
itg2addnclem3 35757 | Lemma incomprehensible in ... |
itg2addnc 35758 | Alternate proof of ~ itg2a... |
itg2gt0cn 35759 | ~ itg2gt0 holds on functio... |
ibladdnclem 35760 | Lemma for ~ ibladdnc ; cf ... |
ibladdnc 35761 | Choice-free analogue of ~ ... |
itgaddnclem1 35762 | Lemma for ~ itgaddnc ; cf.... |
itgaddnclem2 35763 | Lemma for ~ itgaddnc ; cf.... |
itgaddnc 35764 | Choice-free analogue of ~ ... |
iblsubnc 35765 | Choice-free analogue of ~ ... |
itgsubnc 35766 | Choice-free analogue of ~ ... |
iblabsnclem 35767 | Lemma for ~ iblabsnc ; cf.... |
iblabsnc 35768 | Choice-free analogue of ~ ... |
iblmulc2nc 35769 | Choice-free analogue of ~ ... |
itgmulc2nclem1 35770 | Lemma for ~ itgmulc2nc ; c... |
itgmulc2nclem2 35771 | Lemma for ~ itgmulc2nc ; c... |
itgmulc2nc 35772 | Choice-free analogue of ~ ... |
itgabsnc 35773 | Choice-free analogue of ~ ... |
itggt0cn 35774 | ~ itggt0 holds for continu... |
ftc1cnnclem 35775 | Lemma for ~ ftc1cnnc ; cf.... |
ftc1cnnc 35776 | Choice-free proof of ~ ftc... |
ftc1anclem1 35777 | Lemma for ~ ftc1anc - the ... |
ftc1anclem2 35778 | Lemma for ~ ftc1anc - rest... |
ftc1anclem3 35779 | Lemma for ~ ftc1anc - the ... |
ftc1anclem4 35780 | Lemma for ~ ftc1anc . (Co... |
ftc1anclem5 35781 | Lemma for ~ ftc1anc , the ... |
ftc1anclem6 35782 | Lemma for ~ ftc1anc - cons... |
ftc1anclem7 35783 | Lemma for ~ ftc1anc . (Co... |
ftc1anclem8 35784 | Lemma for ~ ftc1anc . (Co... |
ftc1anc 35785 | ~ ftc1a holds for function... |
ftc2nc 35786 | Choice-free proof of ~ ftc... |
asindmre 35787 | Real part of domain of dif... |
dvasin 35788 | Derivative of arcsine. (C... |
dvacos 35789 | Derivative of arccosine. ... |
dvreasin 35790 | Real derivative of arcsine... |
dvreacos 35791 | Real derivative of arccosi... |
areacirclem1 35792 | Antiderivative of cross-se... |
areacirclem2 35793 | Endpoint-inclusive continu... |
areacirclem3 35794 | Integrability of cross-sec... |
areacirclem4 35795 | Endpoint-inclusive continu... |
areacirclem5 35796 | Finding the cross-section ... |
areacirc 35797 | The area of a circle of ra... |
unirep 35798 | Define a quantity whose de... |
cover2 35799 | Two ways of expressing the... |
cover2g 35800 | Two ways of expressing the... |
brabg2 35801 | Relation by a binary relat... |
opelopab3 35802 | Ordered pair membership in... |
cocanfo 35803 | Cancellation of a surjecti... |
brresi2 35804 | Restriction of a binary re... |
fnopabeqd 35805 | Equality deduction for fun... |
fvopabf4g 35806 | Function value of an opera... |
eqfnun 35807 | Two functions on ` A u. B ... |
fnopabco 35808 | Composition of a function ... |
opropabco 35809 | Composition of an operator... |
cocnv 35810 | Composition with a functio... |
f1ocan1fv 35811 | Cancel a composition by a ... |
f1ocan2fv 35812 | Cancel a composition by th... |
inixp 35813 | Intersection of Cartesian ... |
upixp 35814 | Universal property of the ... |
abrexdom 35815 | An indexed set is dominate... |
abrexdom2 35816 | An indexed set is dominate... |
ac6gf 35817 | Axiom of Choice. (Contrib... |
indexa 35818 | If for every element of an... |
indexdom 35819 | If for every element of an... |
frinfm 35820 | A subset of a well-founded... |
welb 35821 | A nonempty subset of a wel... |
supex2g 35822 | Existence of supremum. (C... |
supclt 35823 | Closure of supremum. (Con... |
supubt 35824 | Upper bound property of su... |
filbcmb 35825 | Combine a finite set of lo... |
fzmul 35826 | Membership of a product in... |
sdclem2 35827 | Lemma for ~ sdc . (Contri... |
sdclem1 35828 | Lemma for ~ sdc . (Contri... |
sdc 35829 | Strong dependent choice. ... |
fdc 35830 | Finite version of dependen... |
fdc1 35831 | Variant of ~ fdc with no s... |
seqpo 35832 | Two ways to say that a seq... |
incsequz 35833 | An increasing sequence of ... |
incsequz2 35834 | An increasing sequence of ... |
nnubfi 35835 | A bounded above set of pos... |
nninfnub 35836 | An infinite set of positiv... |
subspopn 35837 | An open set is open in the... |
neificl 35838 | Neighborhoods are closed u... |
lpss2 35839 | Limit points of a subset a... |
metf1o 35840 | Use a bijection with a met... |
blssp 35841 | A ball in the subspace met... |
mettrifi 35842 | Generalized triangle inequ... |
lmclim2 35843 | A sequence in a metric spa... |
geomcau 35844 | If the distance between co... |
caures 35845 | The restriction of a Cauch... |
caushft 35846 | A shifted Cauchy sequence ... |
constcncf 35847 | A constant function is a c... |
cnres2 35848 | The restriction of a conti... |
cnresima 35849 | A continuous function is c... |
cncfres 35850 | A continuous function on c... |
istotbnd 35854 | The predicate "is a totall... |
istotbnd2 35855 | The predicate "is a totall... |
istotbnd3 35856 | A metric space is totally ... |
totbndmet 35857 | The predicate "totally bou... |
0totbnd 35858 | The metric (there is only ... |
sstotbnd2 35859 | Condition for a subset of ... |
sstotbnd 35860 | Condition for a subset of ... |
sstotbnd3 35861 | Use a net that is not nece... |
totbndss 35862 | A subset of a totally boun... |
equivtotbnd 35863 | If the metric ` M ` is "st... |
isbnd 35865 | The predicate "is a bounde... |
bndmet 35866 | A bounded metric space is ... |
isbndx 35867 | A "bounded extended metric... |
isbnd2 35868 | The predicate "is a bounde... |
isbnd3 35869 | A metric space is bounded ... |
isbnd3b 35870 | A metric space is bounded ... |
bndss 35871 | A subset of a bounded metr... |
blbnd 35872 | A ball is bounded. (Contr... |
ssbnd 35873 | A subset of a metric space... |
totbndbnd 35874 | A totally bounded metric s... |
equivbnd 35875 | If the metric ` M ` is "st... |
bnd2lem 35876 | Lemma for ~ equivbnd2 and ... |
equivbnd2 35877 | If balls are totally bound... |
prdsbnd 35878 | The product metric over fi... |
prdstotbnd 35879 | The product metric over fi... |
prdsbnd2 35880 | If balls are totally bound... |
cntotbnd 35881 | A subset of the complex nu... |
cnpwstotbnd 35882 | A subset of ` A ^ I ` , wh... |
ismtyval 35885 | The set of isometries betw... |
isismty 35886 | The condition "is an isome... |
ismtycnv 35887 | The inverse of an isometry... |
ismtyima 35888 | The image of a ball under ... |
ismtyhmeolem 35889 | Lemma for ~ ismtyhmeo . (... |
ismtyhmeo 35890 | An isometry is a homeomorp... |
ismtybndlem 35891 | Lemma for ~ ismtybnd . (C... |
ismtybnd 35892 | Isometries preserve bounde... |
ismtyres 35893 | A restriction of an isomet... |
heibor1lem 35894 | Lemma for ~ heibor1 . A c... |
heibor1 35895 | One half of ~ heibor , tha... |
heiborlem1 35896 | Lemma for ~ heibor . We w... |
heiborlem2 35897 | Lemma for ~ heibor . Subs... |
heiborlem3 35898 | Lemma for ~ heibor . Usin... |
heiborlem4 35899 | Lemma for ~ heibor . Usin... |
heiborlem5 35900 | Lemma for ~ heibor . The ... |
heiborlem6 35901 | Lemma for ~ heibor . Sinc... |
heiborlem7 35902 | Lemma for ~ heibor . Sinc... |
heiborlem8 35903 | Lemma for ~ heibor . The ... |
heiborlem9 35904 | Lemma for ~ heibor . Disc... |
heiborlem10 35905 | Lemma for ~ heibor . The ... |
heibor 35906 | Generalized Heine-Borel Th... |
bfplem1 35907 | Lemma for ~ bfp . The seq... |
bfplem2 35908 | Lemma for ~ bfp . Using t... |
bfp 35909 | Banach fixed point theorem... |
rrnval 35912 | The n-dimensional Euclidea... |
rrnmval 35913 | The value of the Euclidean... |
rrnmet 35914 | Euclidean space is a metri... |
rrndstprj1 35915 | The distance between two p... |
rrndstprj2 35916 | Bound on the distance betw... |
rrncmslem 35917 | Lemma for ~ rrncms . (Con... |
rrncms 35918 | Euclidean space is complet... |
repwsmet 35919 | The supremum metric on ` R... |
rrnequiv 35920 | The supremum metric on ` R... |
rrntotbnd 35921 | A set in Euclidean space i... |
rrnheibor 35922 | Heine-Borel theorem for Eu... |
ismrer1 35923 | An isometry between ` RR `... |
reheibor 35924 | Heine-Borel theorem for re... |
iccbnd 35925 | A closed interval in ` RR ... |
icccmpALT 35926 | A closed interval in ` RR ... |
isass 35931 | The predicate "is an assoc... |
isexid 35932 | The predicate ` G ` has a ... |
ismgmOLD 35935 | Obsolete version of ~ ismg... |
clmgmOLD 35936 | Obsolete version of ~ mgmc... |
opidonOLD 35937 | Obsolete version of ~ mndp... |
rngopidOLD 35938 | Obsolete version of ~ mndp... |
opidon2OLD 35939 | Obsolete version of ~ mndp... |
isexid2 35940 | If ` G e. ( Magma i^i ExId... |
exidu1 35941 | Uniqueness of the left and... |
idrval 35942 | The value of the identity ... |
iorlid 35943 | A magma right and left ide... |
cmpidelt 35944 | A magma right and left ide... |
smgrpismgmOLD 35947 | Obsolete version of ~ sgrp... |
issmgrpOLD 35948 | Obsolete version of ~ issg... |
smgrpmgm 35949 | A semigroup is a magma. (... |
smgrpassOLD 35950 | Obsolete version of ~ sgrp... |
mndoissmgrpOLD 35953 | Obsolete version of ~ mnds... |
mndoisexid 35954 | A monoid has an identity e... |
mndoismgmOLD 35955 | Obsolete version of ~ mndm... |
mndomgmid 35956 | A monoid is a magma with a... |
ismndo 35957 | The predicate "is a monoid... |
ismndo1 35958 | The predicate "is a monoid... |
ismndo2 35959 | The predicate "is a monoid... |
grpomndo 35960 | A group is a monoid. (Con... |
exidcl 35961 | Closure of the binary oper... |
exidreslem 35962 | Lemma for ~ exidres and ~ ... |
exidres 35963 | The restriction of a binar... |
exidresid 35964 | The restriction of a binar... |
ablo4pnp 35965 | A commutative/associative ... |
grpoeqdivid 35966 | Two group elements are equ... |
grposnOLD 35967 | The group operation for th... |
elghomlem1OLD 35970 | Obsolete as of 15-Mar-2020... |
elghomlem2OLD 35971 | Obsolete as of 15-Mar-2020... |
elghomOLD 35972 | Obsolete version of ~ isgh... |
ghomlinOLD 35973 | Obsolete version of ~ ghml... |
ghomidOLD 35974 | Obsolete version of ~ ghmi... |
ghomf 35975 | Mapping property of a grou... |
ghomco 35976 | The composition of two gro... |
ghomdiv 35977 | Group homomorphisms preser... |
grpokerinj 35978 | A group homomorphism is in... |
relrngo 35981 | The class of all unital ri... |
isrngo 35982 | The predicate "is a (unita... |
isrngod 35983 | Conditions that determine ... |
rngoi 35984 | The properties of a unital... |
rngosm 35985 | Functionality of the multi... |
rngocl 35986 | Closure of the multiplicat... |
rngoid 35987 | The multiplication operati... |
rngoideu 35988 | The unit element of a ring... |
rngodi 35989 | Distributive law for the m... |
rngodir 35990 | Distributive law for the m... |
rngoass 35991 | Associative law for the mu... |
rngo2 35992 | A ring element plus itself... |
rngoablo 35993 | A ring's addition operatio... |
rngoablo2 35994 | In a unital ring the addit... |
rngogrpo 35995 | A ring's addition operatio... |
rngone0 35996 | The base set of a ring is ... |
rngogcl 35997 | Closure law for the additi... |
rngocom 35998 | The addition operation of ... |
rngoaass 35999 | The addition operation of ... |
rngoa32 36000 | The addition operation of ... |
rngoa4 36001 | Rearrangement of 4 terms i... |
rngorcan 36002 | Right cancellation law for... |
rngolcan 36003 | Left cancellation law for ... |
rngo0cl 36004 | A ring has an additive ide... |
rngo0rid 36005 | The additive identity of a... |
rngo0lid 36006 | The additive identity of a... |
rngolz 36007 | The zero of a unital ring ... |
rngorz 36008 | The zero of a unital ring ... |
rngosn3 36009 | Obsolete as of 25-Jan-2020... |
rngosn4 36010 | Obsolete as of 25-Jan-2020... |
rngosn6 36011 | Obsolete as of 25-Jan-2020... |
rngonegcl 36012 | A ring is closed under neg... |
rngoaddneg1 36013 | Adding the negative in a r... |
rngoaddneg2 36014 | Adding the negative in a r... |
rngosub 36015 | Subtraction in a ring, in ... |
rngmgmbs4 36016 | The range of an internal o... |
rngodm1dm2 36017 | In a unital ring the domai... |
rngorn1 36018 | In a unital ring the range... |
rngorn1eq 36019 | In a unital ring the range... |
rngomndo 36020 | In a unital ring the multi... |
rngoidmlem 36021 | The unit of a ring is an i... |
rngolidm 36022 | The unit of a ring is an i... |
rngoridm 36023 | The unit of a ring is an i... |
rngo1cl 36024 | The unit of a ring belongs... |
rngoueqz 36025 | Obsolete as of 23-Jan-2020... |
rngonegmn1l 36026 | Negation in a ring is the ... |
rngonegmn1r 36027 | Negation in a ring is the ... |
rngoneglmul 36028 | Negation of a product in a... |
rngonegrmul 36029 | Negation of a product in a... |
rngosubdi 36030 | Ring multiplication distri... |
rngosubdir 36031 | Ring multiplication distri... |
zerdivemp1x 36032 | In a unitary ring a left i... |
isdivrngo 36035 | The predicate "is a divisi... |
drngoi 36036 | The properties of a divisi... |
gidsn 36037 | Obsolete as of 23-Jan-2020... |
zrdivrng 36038 | The zero ring is not a div... |
dvrunz 36039 | In a division ring the uni... |
isgrpda 36040 | Properties that determine ... |
isdrngo1 36041 | The predicate "is a divisi... |
divrngcl 36042 | The product of two nonzero... |
isdrngo2 36043 | A division ring is a ring ... |
isdrngo3 36044 | A division ring is a ring ... |
rngohomval 36049 | The set of ring homomorphi... |
isrngohom 36050 | The predicate "is a ring h... |
rngohomf 36051 | A ring homomorphism is a f... |
rngohomcl 36052 | Closure law for a ring hom... |
rngohom1 36053 | A ring homomorphism preser... |
rngohomadd 36054 | Ring homomorphisms preserv... |
rngohommul 36055 | Ring homomorphisms preserv... |
rngogrphom 36056 | A ring homomorphism is a g... |
rngohom0 36057 | A ring homomorphism preser... |
rngohomsub 36058 | Ring homomorphisms preserv... |
rngohomco 36059 | The composition of two rin... |
rngokerinj 36060 | A ring homomorphism is inj... |
rngoisoval 36062 | The set of ring isomorphis... |
isrngoiso 36063 | The predicate "is a ring i... |
rngoiso1o 36064 | A ring isomorphism is a bi... |
rngoisohom 36065 | A ring isomorphism is a ri... |
rngoisocnv 36066 | The inverse of a ring isom... |
rngoisoco 36067 | The composition of two rin... |
isriscg 36069 | The ring isomorphism relat... |
isrisc 36070 | The ring isomorphism relat... |
risc 36071 | The ring isomorphism relat... |
risci 36072 | Determine that two rings a... |
riscer 36073 | Ring isomorphism is an equ... |
iscom2 36080 | A device to add commutativ... |
iscrngo 36081 | The predicate "is a commut... |
iscrngo2 36082 | The predicate "is a commut... |
iscringd 36083 | Conditions that determine ... |
flddivrng 36084 | A field is a division ring... |
crngorngo 36085 | A commutative ring is a ri... |
crngocom 36086 | The multiplication operati... |
crngm23 36087 | Commutative/associative la... |
crngm4 36088 | Commutative/associative la... |
fldcrng 36089 | A field is a commutative r... |
isfld2 36090 | The predicate "is a field"... |
crngohomfo 36091 | The image of a homomorphis... |
idlval 36098 | The class of ideals of a r... |
isidl 36099 | The predicate "is an ideal... |
isidlc 36100 | The predicate "is an ideal... |
idlss 36101 | An ideal of ` R ` is a sub... |
idlcl 36102 | An element of an ideal is ... |
idl0cl 36103 | An ideal contains ` 0 ` . ... |
idladdcl 36104 | An ideal is closed under a... |
idllmulcl 36105 | An ideal is closed under m... |
idlrmulcl 36106 | An ideal is closed under m... |
idlnegcl 36107 | An ideal is closed under n... |
idlsubcl 36108 | An ideal is closed under s... |
rngoidl 36109 | A ring ` R ` is an ` R ` i... |
0idl 36110 | The set containing only ` ... |
1idl 36111 | Two ways of expressing the... |
0rngo 36112 | In a ring, ` 0 = 1 ` iff t... |
divrngidl 36113 | The only ideals in a divis... |
intidl 36114 | The intersection of a none... |
inidl 36115 | The intersection of two id... |
unichnidl 36116 | The union of a nonempty ch... |
keridl 36117 | The kernel of a ring homom... |
pridlval 36118 | The class of prime ideals ... |
ispridl 36119 | The predicate "is a prime ... |
pridlidl 36120 | A prime ideal is an ideal.... |
pridlnr 36121 | A prime ideal is a proper ... |
pridl 36122 | The main property of a pri... |
ispridl2 36123 | A condition that shows an ... |
maxidlval 36124 | The set of maximal ideals ... |
ismaxidl 36125 | The predicate "is a maxima... |
maxidlidl 36126 | A maximal ideal is an idea... |
maxidlnr 36127 | A maximal ideal is proper.... |
maxidlmax 36128 | A maximal ideal is a maxim... |
maxidln1 36129 | One is not contained in an... |
maxidln0 36130 | A ring with a maximal idea... |
isprrngo 36135 | The predicate "is a prime ... |
prrngorngo 36136 | A prime ring is a ring. (... |
smprngopr 36137 | A simple ring (one whose o... |
divrngpr 36138 | A division ring is a prime... |
isdmn 36139 | The predicate "is a domain... |
isdmn2 36140 | The predicate "is a domain... |
dmncrng 36141 | A domain is a commutative ... |
dmnrngo 36142 | A domain is a ring. (Cont... |
flddmn 36143 | A field is a domain. (Con... |
igenval 36146 | The ideal generated by a s... |
igenss 36147 | A set is a subset of the i... |
igenidl 36148 | The ideal generated by a s... |
igenmin 36149 | The ideal generated by a s... |
igenidl2 36150 | The ideal generated by an ... |
igenval2 36151 | The ideal generated by a s... |
prnc 36152 | A principal ideal (an idea... |
isfldidl 36153 | Determine if a ring is a f... |
isfldidl2 36154 | Determine if a ring is a f... |
ispridlc 36155 | The predicate "is a prime ... |
pridlc 36156 | Property of a prime ideal ... |
pridlc2 36157 | Property of a prime ideal ... |
pridlc3 36158 | Property of a prime ideal ... |
isdmn3 36159 | The predicate "is a domain... |
dmnnzd 36160 | A domain has no zero-divis... |
dmncan1 36161 | Cancellation law for domai... |
dmncan2 36162 | Cancellation law for domai... |
efald2 36163 | A proof by contradiction. ... |
notbinot1 36164 | Simplification rule of neg... |
bicontr 36165 | Biconditional of its own n... |
impor 36166 | An equivalent formula for ... |
orfa 36167 | The falsum ` F. ` can be r... |
notbinot2 36168 | Commutation rule between n... |
biimpor 36169 | A rewriting rule for bicon... |
orfa1 36170 | Add a contradicting disjun... |
orfa2 36171 | Remove a contradicting dis... |
bifald 36172 | Infer the equivalence to a... |
orsild 36173 | A lemma for not-or-not eli... |
orsird 36174 | A lemma for not-or-not eli... |
cnf1dd 36175 | A lemma for Conjunctive No... |
cnf2dd 36176 | A lemma for Conjunctive No... |
cnfn1dd 36177 | A lemma for Conjunctive No... |
cnfn2dd 36178 | A lemma for Conjunctive No... |
or32dd 36179 | A rearrangement of disjunc... |
notornotel1 36180 | A lemma for not-or-not eli... |
notornotel2 36181 | A lemma for not-or-not eli... |
contrd 36182 | A proof by contradiction, ... |
an12i 36183 | An inference from commutin... |
exmid2 36184 | An excluded middle law. (... |
selconj 36185 | An inference for selecting... |
truconj 36186 | Add true as a conjunct. (... |
orel 36187 | An inference for disjuncti... |
negel 36188 | An inference for negation ... |
botel 36189 | An inference for bottom el... |
tradd 36190 | Add top ad a conjunct. (C... |
gm-sbtru 36191 | Substitution does not chan... |
sbfal 36192 | Substitution does not chan... |
sbcani 36193 | Distribution of class subs... |
sbcori 36194 | Distribution of class subs... |
sbcimi 36195 | Distribution of class subs... |
sbcni 36196 | Move class substitution in... |
sbali 36197 | Discard class substitution... |
sbexi 36198 | Discard class substitution... |
sbcalf 36199 | Move universal quantifier ... |
sbcexf 36200 | Move existential quantifie... |
sbcalfi 36201 | Move universal quantifier ... |
sbcexfi 36202 | Move existential quantifie... |
spsbcdi 36203 | A lemma for eliminating a ... |
alrimii 36204 | A lemma for introducing a ... |
spesbcdi 36205 | A lemma for introducing an... |
exlimddvf 36206 | A lemma for eliminating an... |
exlimddvfi 36207 | A lemma for eliminating an... |
sbceq1ddi 36208 | A lemma for eliminating in... |
sbccom2lem 36209 | Lemma for ~ sbccom2 . (Co... |
sbccom2 36210 | Commutative law for double... |
sbccom2f 36211 | Commutative law for double... |
sbccom2fi 36212 | Commutative law for double... |
csbcom2fi 36213 | Commutative law for double... |
fald 36214 | Refutation of falsity, in ... |
tsim1 36215 | A Tseitin axiom for logica... |
tsim2 36216 | A Tseitin axiom for logica... |
tsim3 36217 | A Tseitin axiom for logica... |
tsbi1 36218 | A Tseitin axiom for logica... |
tsbi2 36219 | A Tseitin axiom for logica... |
tsbi3 36220 | A Tseitin axiom for logica... |
tsbi4 36221 | A Tseitin axiom for logica... |
tsxo1 36222 | A Tseitin axiom for logica... |
tsxo2 36223 | A Tseitin axiom for logica... |
tsxo3 36224 | A Tseitin axiom for logica... |
tsxo4 36225 | A Tseitin axiom for logica... |
tsan1 36226 | A Tseitin axiom for logica... |
tsan2 36227 | A Tseitin axiom for logica... |
tsan3 36228 | A Tseitin axiom for logica... |
tsna1 36229 | A Tseitin axiom for logica... |
tsna2 36230 | A Tseitin axiom for logica... |
tsna3 36231 | A Tseitin axiom for logica... |
tsor1 36232 | A Tseitin axiom for logica... |
tsor2 36233 | A Tseitin axiom for logica... |
tsor3 36234 | A Tseitin axiom for logica... |
ts3an1 36235 | A Tseitin axiom for triple... |
ts3an2 36236 | A Tseitin axiom for triple... |
ts3an3 36237 | A Tseitin axiom for triple... |
ts3or1 36238 | A Tseitin axiom for triple... |
ts3or2 36239 | A Tseitin axiom for triple... |
ts3or3 36240 | A Tseitin axiom for triple... |
iuneq2f 36241 | Equality deduction for ind... |
rabeq12f 36242 | Equality deduction for res... |
csbeq12 36243 | Equality deduction for sub... |
sbeqi 36244 | Equality deduction for sub... |
ralbi12f 36245 | Equality deduction for res... |
oprabbi 36246 | Equality deduction for cla... |
mpobi123f 36247 | Equality deduction for map... |
iuneq12f 36248 | Equality deduction for ind... |
iineq12f 36249 | Equality deduction for ind... |
opabbi 36250 | Equality deduction for cla... |
mptbi12f 36251 | Equality deduction for map... |
orcomdd 36252 | Commutativity of logic dis... |
scottexf 36253 | A version of ~ scottex wit... |
scott0f 36254 | A version of ~ scott0 with... |
scottn0f 36255 | A version of ~ scott0f wit... |
ac6s3f 36256 | Generalization of the Axio... |
ac6s6 36257 | Generalization of the Axio... |
ac6s6f 36258 | Generalization of the Axio... |
el2v1 36297 | New way ( ~ elv , and the ... |
el3v 36298 | New way ( ~ elv , and the ... |
el3v1 36299 | New way ( ~ elv , and the ... |
el3v2 36300 | New way ( ~ elv , and the ... |
el3v3 36301 | New way ( ~ elv , and the ... |
el3v12 36302 | New way ( ~ elv , and the ... |
el3v13 36303 | New way ( ~ elv , and the ... |
el3v23 36304 | New way ( ~ elv , and the ... |
an2anr 36305 | Double commutation in conj... |
anan 36306 | Multiple commutations in c... |
triantru3 36307 | A wff is equivalent to its... |
eqeltr 36308 | Substitution of equal clas... |
eqelb 36309 | Substitution of equal clas... |
eqeqan2d 36310 | Implication of introducing... |
inres2 36311 | Two ways of expressing the... |
coideq 36312 | Equality theorem for compo... |
nexmo1 36313 | If there is no case where ... |
3albii 36314 | Inference adding three uni... |
3ralbii 36315 | Inference adding three res... |
ssrabi 36316 | Inference of restricted ab... |
rabbieq 36317 | Equivalent wff's correspon... |
rabimbieq 36318 | Restricted equivalent wff'... |
abeqin 36319 | Intersection with class ab... |
abeqinbi 36320 | Intersection with class ab... |
rabeqel 36321 | Class element of a restric... |
eqrelf 36322 | The equality connective be... |
releleccnv 36323 | Elementhood in a converse ... |
releccnveq 36324 | Equality of converse ` R `... |
opelvvdif 36325 | Negated elementhood of ord... |
vvdifopab 36326 | Ordered-pair class abstrac... |
brvdif 36327 | Binary relation with unive... |
brvdif2 36328 | Binary relation with unive... |
brvvdif 36329 | Binary relation with the c... |
brvbrvvdif 36330 | Binary relation with the c... |
brcnvep 36331 | The converse of the binary... |
elecALTV 36332 | Elementhood in the ` R ` -... |
brcnvepres 36333 | Restricted converse epsilo... |
brres2 36334 | Binary relation on a restr... |
eldmres 36335 | Elementhood in the domain ... |
eldm4 36336 | Elementhood in a domain. ... |
eldmres2 36337 | Elementhood in the domain ... |
eceq1i 36338 | Equality theorem for ` C `... |
elecres 36339 | Elementhood in the restric... |
ecres 36340 | Restricted coset of ` B ` ... |
ecres2 36341 | The restricted coset of ` ... |
eccnvepres 36342 | Restricted converse epsilo... |
eleccnvep 36343 | Elementhood in the convers... |
eccnvep 36344 | The converse epsilon coset... |
extep 36345 | Property of epsilon relati... |
eccnvepres2 36346 | The restricted converse ep... |
eccnvepres3 36347 | Condition for a restricted... |
eldmqsres 36348 | Elementhood in a restricte... |
eldmqsres2 36349 | Elementhood in a restricte... |
qsss1 36350 | Subclass theorem for quoti... |
qseq1i 36351 | Equality theorem for quoti... |
qseq1d 36352 | Equality theorem for quoti... |
brinxprnres 36353 | Binary relation on a restr... |
inxprnres 36354 | Restriction of a class as ... |
dfres4 36355 | Alternate definition of th... |
exan3 36356 | Equivalent expressions wit... |
exanres 36357 | Equivalent expressions wit... |
exanres3 36358 | Equivalent expressions wit... |
exanres2 36359 | Equivalent expressions wit... |
cnvepres 36360 | Restricted converse epsilo... |
ssrel3 36361 | Subclass relation in anoth... |
eqrel2 36362 | Equality of relations. (C... |
rncnv 36363 | Range of converse is the d... |
dfdm6 36364 | Alternate definition of do... |
dfrn6 36365 | Alternate definition of ra... |
rncnvepres 36366 | The range of the restricte... |
dmecd 36367 | Equality of the coset of `... |
dmec2d 36368 | Equality of the coset of `... |
brid 36369 | Property of the identity b... |
ideq2 36370 | For sets, the identity bin... |
idresssidinxp 36371 | Condition for the identity... |
idreseqidinxp 36372 | Condition for the identity... |
extid 36373 | Property of identity relat... |
inxpss 36374 | Two ways to say that an in... |
idinxpss 36375 | Two ways to say that an in... |
inxpss3 36376 | Two ways to say that an in... |
inxpss2 36377 | Two ways to say that inter... |
inxpssidinxp 36378 | Two ways to say that inter... |
idinxpssinxp 36379 | Two ways to say that inter... |
idinxpssinxp2 36380 | Identity intersection with... |
idinxpssinxp3 36381 | Identity intersection with... |
idinxpssinxp4 36382 | Identity intersection with... |
relcnveq3 36383 | Two ways of saying a relat... |
relcnveq 36384 | Two ways of saying a relat... |
relcnveq2 36385 | Two ways of saying a relat... |
relcnveq4 36386 | Two ways of saying a relat... |
qsresid 36387 | Simplification of a specia... |
n0elqs 36388 | Two ways of expressing tha... |
n0elqs2 36389 | Two ways of expressing tha... |
ecex2 36390 | Condition for a coset to b... |
uniqsALTV 36391 | The union of a quotient se... |
imaexALTV 36392 | Existence of an image of a... |
ecexALTV 36393 | Existence of a coset, like... |
rnresequniqs 36394 | The range of a restriction... |
n0el2 36395 | Two ways of expressing tha... |
cnvepresex 36396 | Sethood condition for the ... |
eccnvepex 36397 | The converse epsilon coset... |
cnvepimaex 36398 | The image of converse epsi... |
cnvepima 36399 | The image of converse epsi... |
inex3 36400 | Sufficient condition for t... |
inxpex 36401 | Sufficient condition for a... |
eqres 36402 | Converting a class constan... |
brrabga 36403 | The law of concretion for ... |
brcnvrabga 36404 | The law of concretion for ... |
opideq 36405 | Equality conditions for or... |
iss2 36406 | A subclass of the identity... |
eldmcnv 36407 | Elementhood in a domain of... |
dfrel5 36408 | Alternate definition of th... |
dfrel6 36409 | Alternate definition of th... |
cnvresrn 36410 | Converse restricted to ran... |
ecin0 36411 | Two ways of saying that th... |
ecinn0 36412 | Two ways of saying that th... |
ineleq 36413 | Equivalence of restricted ... |
inecmo 36414 | Equivalence of a double re... |
inecmo2 36415 | Equivalence of a double re... |
ineccnvmo 36416 | Equivalence of a double re... |
alrmomorn 36417 | Equivalence of an "at most... |
alrmomodm 36418 | Equivalence of an "at most... |
ineccnvmo2 36419 | Equivalence of a double un... |
inecmo3 36420 | Equivalence of a double un... |
moantr 36421 | Sufficient condition for t... |
brabidgaw 36422 | The law of concretion for ... |
brabidga 36423 | The law of concretion for ... |
inxp2 36424 | Intersection with a Cartes... |
opabf 36425 | A class abstraction of a c... |
ec0 36426 | The empty-coset of a class... |
0qs 36427 | Quotient set with the empt... |
xrnss3v 36429 | A range Cartesian product ... |
xrnrel 36430 | A range Cartesian product ... |
brxrn 36431 | Characterize a ternary rel... |
brxrn2 36432 | A characterization of the ... |
dfxrn2 36433 | Alternate definition of th... |
xrneq1 36434 | Equality theorem for the r... |
xrneq1i 36435 | Equality theorem for the r... |
xrneq1d 36436 | Equality theorem for the r... |
xrneq2 36437 | Equality theorem for the r... |
xrneq2i 36438 | Equality theorem for the r... |
xrneq2d 36439 | Equality theorem for the r... |
xrneq12 36440 | Equality theorem for the r... |
xrneq12i 36441 | Equality theorem for the r... |
xrneq12d 36442 | Equality theorem for the r... |
elecxrn 36443 | Elementhood in the ` ( R |... |
ecxrn 36444 | The ` ( R |X. S ) ` -coset... |
xrninxp 36445 | Intersection of a range Ca... |
xrninxp2 36446 | Intersection of a range Ca... |
xrninxpex 36447 | Sufficient condition for t... |
inxpxrn 36448 | Two ways to express the in... |
br1cnvxrn2 36449 | The converse of a binary r... |
elec1cnvxrn2 36450 | Elementhood in the convers... |
rnxrn 36451 | Range of the range Cartesi... |
rnxrnres 36452 | Range of a range Cartesian... |
rnxrncnvepres 36453 | Range of a range Cartesian... |
rnxrnidres 36454 | Range of a range Cartesian... |
xrnres 36455 | Two ways to express restri... |
xrnres2 36456 | Two ways to express restri... |
xrnres3 36457 | Two ways to express restri... |
xrnres4 36458 | Two ways to express restri... |
xrnresex 36459 | Sufficient condition for a... |
xrnidresex 36460 | Sufficient condition for a... |
xrncnvepresex 36461 | Sufficient condition for a... |
brin2 36462 | Binary relation on an inte... |
brin3 36463 | Binary relation on an inte... |
dfcoss2 36466 | Alternate definition of th... |
dfcoss3 36467 | Alternate definition of th... |
dfcoss4 36468 | Alternate definition of th... |
cossex 36469 | If ` A ` is a set then the... |
cosscnvex 36470 | If ` A ` is a set then the... |
1cosscnvepresex 36471 | Sufficient condition for a... |
1cossxrncnvepresex 36472 | Sufficient condition for a... |
relcoss 36473 | Cosets by ` R ` is a relat... |
relcoels 36474 | Coelements on ` A ` is a r... |
cossss 36475 | Subclass theorem for the c... |
cosseq 36476 | Equality theorem for the c... |
cosseqi 36477 | Equality theorem for the c... |
cosseqd 36478 | Equality theorem for the c... |
1cossres 36479 | The class of cosets by a r... |
dfcoels 36480 | Alternate definition of th... |
brcoss 36481 | ` A ` and ` B ` are cosets... |
brcoss2 36482 | Alternate form of the ` A ... |
brcoss3 36483 | Alternate form of the ` A ... |
brcosscnvcoss 36484 | For sets, the ` A ` and ` ... |
brcoels 36485 | ` B ` and ` C ` are coelem... |
cocossss 36486 | Two ways of saying that co... |
cnvcosseq 36487 | The converse of cosets by ... |
br2coss 36488 | Cosets by ` ,~ R ` binary ... |
br1cossres 36489 | ` B ` and ` C ` are cosets... |
br1cossres2 36490 | ` B ` and ` C ` are cosets... |
relbrcoss 36491 | ` A ` and ` B ` are cosets... |
br1cossinres 36492 | ` B ` and ` C ` are cosets... |
br1cossxrnres 36493 | ` <. B , C >. ` and ` <. D... |
br1cossinidres 36494 | ` B ` and ` C ` are cosets... |
br1cossincnvepres 36495 | ` B ` and ` C ` are cosets... |
br1cossxrnidres 36496 | ` <. B , C >. ` and ` <. D... |
br1cossxrncnvepres 36497 | ` <. B , C >. ` and ` <. D... |
dmcoss3 36498 | The domain of cosets is th... |
dmcoss2 36499 | The domain of cosets is th... |
rncossdmcoss 36500 | The range of cosets is the... |
dm1cosscnvepres 36501 | The domain of cosets of th... |
dmcoels 36502 | The domain of coelements i... |
eldmcoss 36503 | Elementhood in the domain ... |
eldmcoss2 36504 | Elementhood in the domain ... |
eldm1cossres 36505 | Elementhood in the domain ... |
eldm1cossres2 36506 | Elementhood in the domain ... |
refrelcosslem 36507 | Lemma for the left side of... |
refrelcoss3 36508 | The class of cosets by ` R... |
refrelcoss2 36509 | The class of cosets by ` R... |
symrelcoss3 36510 | The class of cosets by ` R... |
symrelcoss2 36511 | The class of cosets by ` R... |
cossssid 36512 | Equivalent expressions for... |
cossssid2 36513 | Equivalent expressions for... |
cossssid3 36514 | Equivalent expressions for... |
cossssid4 36515 | Equivalent expressions for... |
cossssid5 36516 | Equivalent expressions for... |
brcosscnv 36517 | ` A ` and ` B ` are cosets... |
brcosscnv2 36518 | ` A ` and ` B ` are cosets... |
br1cosscnvxrn 36519 | ` A ` and ` B ` are cosets... |
1cosscnvxrn 36520 | Cosets by the converse ran... |
cosscnvssid3 36521 | Equivalent expressions for... |
cosscnvssid4 36522 | Equivalent expressions for... |
cosscnvssid5 36523 | Equivalent expressions for... |
coss0 36524 | Cosets by the empty set ar... |
cossid 36525 | Cosets by the identity rel... |
cosscnvid 36526 | Cosets by the converse ide... |
trcoss 36527 | Sufficient condition for t... |
eleccossin 36528 | Two ways of saying that th... |
trcoss2 36529 | Equivalent expressions for... |
elrels2 36531 | The element of the relatio... |
elrelsrel 36532 | The element of the relatio... |
elrelsrelim 36533 | The element of the relatio... |
elrels5 36534 | Equivalent expressions for... |
elrels6 36535 | Equivalent expressions for... |
elrelscnveq3 36536 | Two ways of saying a relat... |
elrelscnveq 36537 | Two ways of saying a relat... |
elrelscnveq2 36538 | Two ways of saying a relat... |
elrelscnveq4 36539 | Two ways of saying a relat... |
cnvelrels 36540 | The converse of a set is a... |
cosselrels 36541 | Cosets of sets are element... |
cosscnvelrels 36542 | Cosets of converse sets ar... |
dfssr2 36544 | Alternate definition of th... |
relssr 36545 | The subset relation is a r... |
brssr 36546 | The subset relation and su... |
brssrid 36547 | Any set is a subset of its... |
issetssr 36548 | Two ways of expressing set... |
brssrres 36549 | Restricted subset binary r... |
br1cnvssrres 36550 | Restricted converse subset... |
brcnvssr 36551 | The converse of a subset r... |
brcnvssrid 36552 | Any set is a converse subs... |
br1cossxrncnvssrres 36553 | ` <. B , C >. ` and ` <. D... |
extssr 36554 | Property of subset relatio... |
dfrefrels2 36558 | Alternate definition of th... |
dfrefrels3 36559 | Alternate definition of th... |
dfrefrel2 36560 | Alternate definition of th... |
dfrefrel3 36561 | Alternate definition of th... |
elrefrels2 36562 | Element of the class of re... |
elrefrels3 36563 | Element of the class of re... |
elrefrelsrel 36564 | For sets, being an element... |
refreleq 36565 | Equality theorem for refle... |
refrelid 36566 | Identity relation is refle... |
refrelcoss 36567 | The class of cosets by ` R... |
dfcnvrefrels2 36571 | Alternate definition of th... |
dfcnvrefrels3 36572 | Alternate definition of th... |
dfcnvrefrel2 36573 | Alternate definition of th... |
dfcnvrefrel3 36574 | Alternate definition of th... |
elcnvrefrels2 36575 | Element of the class of co... |
elcnvrefrels3 36576 | Element of the class of co... |
elcnvrefrelsrel 36577 | For sets, being an element... |
cnvrefrelcoss2 36578 | Necessary and sufficient c... |
cosselcnvrefrels2 36579 | Necessary and sufficient c... |
cosselcnvrefrels3 36580 | Necessary and sufficient c... |
cosselcnvrefrels4 36581 | Necessary and sufficient c... |
cosselcnvrefrels5 36582 | Necessary and sufficient c... |
dfsymrels2 36586 | Alternate definition of th... |
dfsymrels3 36587 | Alternate definition of th... |
dfsymrels4 36588 | Alternate definition of th... |
dfsymrels5 36589 | Alternate definition of th... |
dfsymrel2 36590 | Alternate definition of th... |
dfsymrel3 36591 | Alternate definition of th... |
dfsymrel4 36592 | Alternate definition of th... |
dfsymrel5 36593 | Alternate definition of th... |
elsymrels2 36594 | Element of the class of sy... |
elsymrels3 36595 | Element of the class of sy... |
elsymrels4 36596 | Element of the class of sy... |
elsymrels5 36597 | Element of the class of sy... |
elsymrelsrel 36598 | For sets, being an element... |
symreleq 36599 | Equality theorem for symme... |
symrelim 36600 | Symmetric relation implies... |
symrelcoss 36601 | The class of cosets by ` R... |
idsymrel 36602 | The identity relation is s... |
epnsymrel 36603 | The membership (epsilon) r... |
symrefref2 36604 | Symmetry is a sufficient c... |
symrefref3 36605 | Symmetry is a sufficient c... |
refsymrels2 36606 | Elements of the class of r... |
refsymrels3 36607 | Elements of the class of r... |
refsymrel2 36608 | A relation which is reflex... |
refsymrel3 36609 | A relation which is reflex... |
elrefsymrels2 36610 | Elements of the class of r... |
elrefsymrels3 36611 | Elements of the class of r... |
elrefsymrelsrel 36612 | For sets, being an element... |
dftrrels2 36616 | Alternate definition of th... |
dftrrels3 36617 | Alternate definition of th... |
dftrrel2 36618 | Alternate definition of th... |
dftrrel3 36619 | Alternate definition of th... |
eltrrels2 36620 | Element of the class of tr... |
eltrrels3 36621 | Element of the class of tr... |
eltrrelsrel 36622 | For sets, being an element... |
trreleq 36623 | Equality theorem for the t... |
dfeqvrels2 36628 | Alternate definition of th... |
dfeqvrels3 36629 | Alternate definition of th... |
dfeqvrel2 36630 | Alternate definition of th... |
dfeqvrel3 36631 | Alternate definition of th... |
eleqvrels2 36632 | Element of the class of eq... |
eleqvrels3 36633 | Element of the class of eq... |
eleqvrelsrel 36634 | For sets, being an element... |
elcoeleqvrels 36635 | Elementhood in the coeleme... |
elcoeleqvrelsrel 36636 | For sets, being an element... |
eqvrelrel 36637 | An equivalence relation is... |
eqvrelrefrel 36638 | An equivalence relation is... |
eqvrelsymrel 36639 | An equivalence relation is... |
eqvreltrrel 36640 | An equivalence relation is... |
eqvrelim 36641 | Equivalence relation impli... |
eqvreleq 36642 | Equality theorem for equiv... |
eqvreleqi 36643 | Equality theorem for equiv... |
eqvreleqd 36644 | Equality theorem for equiv... |
eqvrelsym 36645 | An equivalence relation is... |
eqvrelsymb 36646 | An equivalence relation is... |
eqvreltr 36647 | An equivalence relation is... |
eqvreltrd 36648 | A transitivity relation fo... |
eqvreltr4d 36649 | A transitivity relation fo... |
eqvrelref 36650 | An equivalence relation is... |
eqvrelth 36651 | Basic property of equivale... |
eqvrelcl 36652 | Elementhood in the field o... |
eqvrelthi 36653 | Basic property of equivale... |
eqvreldisj 36654 | Equivalence classes do not... |
qsdisjALTV 36655 | Elements of a quotient set... |
eqvrelqsel 36656 | If an element of a quotien... |
eqvrelcoss 36657 | Two ways to express equiva... |
eqvrelcoss3 36658 | Two ways to express equiva... |
eqvrelcoss2 36659 | Two ways to express equiva... |
eqvrelcoss4 36660 | Two ways to express equiva... |
dfcoeleqvrels 36661 | Alternate definition of th... |
dfcoeleqvrel 36662 | Alternate definition of th... |
brredunds 36666 | Binary relation on the cla... |
brredundsredund 36667 | For sets, binary relation ... |
redundss3 36668 | Implication of redundancy ... |
redundeq1 36669 | Equivalence of redundancy ... |
redundpim3 36670 | Implication of redundancy ... |
redundpbi1 36671 | Equivalence of redundancy ... |
refrelsredund4 36672 | The naive version of the c... |
refrelsredund2 36673 | The naive version of the c... |
refrelsredund3 36674 | The naive version of the c... |
refrelredund4 36675 | The naive version of the d... |
refrelredund2 36676 | The naive version of the d... |
refrelredund3 36677 | The naive version of the d... |
dmqseq 36680 | Equality theorem for domai... |
dmqseqi 36681 | Equality theorem for domai... |
dmqseqd 36682 | Equality theorem for domai... |
dmqseqeq1 36683 | Equality theorem for domai... |
dmqseqeq1i 36684 | Equality theorem for domai... |
dmqseqeq1d 36685 | Equality theorem for domai... |
brdmqss 36686 | The domain quotient binary... |
brdmqssqs 36687 | If ` A ` and ` R ` are set... |
n0eldmqs 36688 | The empty set is not an el... |
n0eldmqseq 36689 | The empty set is not an el... |
n0el3 36690 | Two ways of expressing tha... |
cnvepresdmqss 36691 | The domain quotient binary... |
cnvepresdmqs 36692 | The domain quotient predic... |
unidmqs 36693 | The range of a relation is... |
unidmqseq 36694 | The union of the domain qu... |
dmqseqim 36695 | If the domain quotient of ... |
dmqseqim2 36696 | Lemma for ~ erim2 . (Cont... |
releldmqs 36697 | Elementhood in the domain ... |
eldmqs1cossres 36698 | Elementhood in the domain ... |
releldmqscoss 36699 | Elementhood in the domain ... |
dmqscoelseq 36700 | Two ways to express the eq... |
dmqs1cosscnvepreseq 36701 | Two ways to express the eq... |
brers 36706 | Binary equivalence relatio... |
dferALTV2 36707 | Equivalence relation with ... |
erALTVeq1 36708 | Equality theorem for equiv... |
erALTVeq1i 36709 | Equality theorem for equiv... |
erALTVeq1d 36710 | Equality theorem for equiv... |
dfmember 36711 | Alternate definition of th... |
dfmember2 36712 | Alternate definition of th... |
dfmember3 36713 | Alternate definition of th... |
eqvreldmqs 36714 | Two ways to express member... |
brerser 36715 | Binary equivalence relatio... |
erim2 36716 | Equivalence relation on it... |
erim 36717 | Equivalence relation on it... |
dffunsALTV 36721 | Alternate definition of th... |
dffunsALTV2 36722 | Alternate definition of th... |
dffunsALTV3 36723 | Alternate definition of th... |
dffunsALTV4 36724 | Alternate definition of th... |
dffunsALTV5 36725 | Alternate definition of th... |
dffunALTV2 36726 | Alternate definition of th... |
dffunALTV3 36727 | Alternate definition of th... |
dffunALTV4 36728 | Alternate definition of th... |
dffunALTV5 36729 | Alternate definition of th... |
elfunsALTV 36730 | Elementhood in the class o... |
elfunsALTV2 36731 | Elementhood in the class o... |
elfunsALTV3 36732 | Elementhood in the class o... |
elfunsALTV4 36733 | Elementhood in the class o... |
elfunsALTV5 36734 | Elementhood in the class o... |
elfunsALTVfunALTV 36735 | The element of the class o... |
funALTVfun 36736 | Our definition of the func... |
funALTVss 36737 | Subclass theorem for funct... |
funALTVeq 36738 | Equality theorem for funct... |
funALTVeqi 36739 | Equality inference for the... |
funALTVeqd 36740 | Equality deduction for the... |
dfdisjs 36746 | Alternate definition of th... |
dfdisjs2 36747 | Alternate definition of th... |
dfdisjs3 36748 | Alternate definition of th... |
dfdisjs4 36749 | Alternate definition of th... |
dfdisjs5 36750 | Alternate definition of th... |
dfdisjALTV 36751 | Alternate definition of th... |
dfdisjALTV2 36752 | Alternate definition of th... |
dfdisjALTV3 36753 | Alternate definition of th... |
dfdisjALTV4 36754 | Alternate definition of th... |
dfdisjALTV5 36755 | Alternate definition of th... |
dfeldisj2 36756 | Alternate definition of th... |
dfeldisj3 36757 | Alternate definition of th... |
dfeldisj4 36758 | Alternate definition of th... |
dfeldisj5 36759 | Alternate definition of th... |
eldisjs 36760 | Elementhood in the class o... |
eldisjs2 36761 | Elementhood in the class o... |
eldisjs3 36762 | Elementhood in the class o... |
eldisjs4 36763 | Elementhood in the class o... |
eldisjs5 36764 | Elementhood in the class o... |
eldisjsdisj 36765 | The element of the class o... |
eleldisjs 36766 | Elementhood in the disjoin... |
eleldisjseldisj 36767 | The element of the disjoin... |
disjrel 36768 | Disjoint relation is a rel... |
disjss 36769 | Subclass theorem for disjo... |
disjssi 36770 | Subclass theorem for disjo... |
disjssd 36771 | Subclass theorem for disjo... |
disjeq 36772 | Equality theorem for disjo... |
disjeqi 36773 | Equality theorem for disjo... |
disjeqd 36774 | Equality theorem for disjo... |
disjdmqseqeq1 36775 | Lemma for the equality the... |
eldisjss 36776 | Subclass theorem for disjo... |
eldisjssi 36777 | Subclass theorem for disjo... |
eldisjssd 36778 | Subclass theorem for disjo... |
eldisjeq 36779 | Equality theorem for disjo... |
eldisjeqi 36780 | Equality theorem for disjo... |
eldisjeqd 36781 | Equality theorem for disjo... |
disjxrn 36782 | Two ways of saying that a ... |
disjorimxrn 36783 | Disjointness condition for... |
disjimxrn 36784 | Disjointness condition for... |
disjimres 36785 | Disjointness condition for... |
disjimin 36786 | Disjointness condition for... |
disjiminres 36787 | Disjointness condition for... |
disjimxrnres 36788 | Disjointness condition for... |
disjALTV0 36789 | The null class is disjoint... |
disjALTVid 36790 | The class of identity rela... |
disjALTVidres 36791 | The class of identity rela... |
disjALTVinidres 36792 | The intersection with rest... |
disjALTVxrnidres 36793 | The class of range Cartesi... |
prtlem60 36794 | Lemma for ~ prter3 . (Con... |
bicomdd 36795 | Commute two sides of a bic... |
jca2r 36796 | Inference conjoining the c... |
jca3 36797 | Inference conjoining the c... |
prtlem70 36798 | Lemma for ~ prter3 : a rea... |
ibdr 36799 | Reverse of ~ ibd . (Contr... |
prtlem100 36800 | Lemma for ~ prter3 . (Con... |
prtlem5 36801 | Lemma for ~ prter1 , ~ prt... |
prtlem80 36802 | Lemma for ~ prter2 . (Con... |
brabsb2 36803 | A closed form of ~ brabsb ... |
eqbrrdv2 36804 | Other version of ~ eqbrrdi... |
prtlem9 36805 | Lemma for ~ prter3 . (Con... |
prtlem10 36806 | Lemma for ~ prter3 . (Con... |
prtlem11 36807 | Lemma for ~ prter2 . (Con... |
prtlem12 36808 | Lemma for ~ prtex and ~ pr... |
prtlem13 36809 | Lemma for ~ prter1 , ~ prt... |
prtlem16 36810 | Lemma for ~ prtex , ~ prte... |
prtlem400 36811 | Lemma for ~ prter2 and als... |
erprt 36814 | The quotient set of an equ... |
prtlem14 36815 | Lemma for ~ prter1 , ~ prt... |
prtlem15 36816 | Lemma for ~ prter1 and ~ p... |
prtlem17 36817 | Lemma for ~ prter2 . (Con... |
prtlem18 36818 | Lemma for ~ prter2 . (Con... |
prtlem19 36819 | Lemma for ~ prter2 . (Con... |
prter1 36820 | Every partition generates ... |
prtex 36821 | The equivalence relation g... |
prter2 36822 | The quotient set of the eq... |
prter3 36823 | For every partition there ... |
axc5 36834 | This theorem repeats ~ sp ... |
ax4fromc4 36835 | Rederivation of Axiom ~ ax... |
ax10fromc7 36836 | Rederivation of Axiom ~ ax... |
ax6fromc10 36837 | Rederivation of Axiom ~ ax... |
hba1-o 36838 | The setvar ` x ` is not fr... |
axc4i-o 36839 | Inference version of ~ ax-... |
equid1 36840 | Proof of ~ equid from our ... |
equcomi1 36841 | Proof of ~ equcomi from ~ ... |
aecom-o 36842 | Commutation law for identi... |
aecoms-o 36843 | A commutation rule for ide... |
hbae-o 36844 | All variables are effectiv... |
dral1-o 36845 | Formula-building lemma for... |
ax12fromc15 36846 | Rederivation of Axiom ~ ax... |
ax13fromc9 36847 | Derive ~ ax-13 from ~ ax-c... |
ax5ALT 36848 | Axiom to quantify a variab... |
sps-o 36849 | Generalization of antecede... |
hbequid 36850 | Bound-variable hypothesis ... |
nfequid-o 36851 | Bound-variable hypothesis ... |
axc5c7 36852 | Proof of a single axiom th... |
axc5c7toc5 36853 | Rederivation of ~ ax-c5 fr... |
axc5c7toc7 36854 | Rederivation of ~ ax-c7 fr... |
axc711 36855 | Proof of a single axiom th... |
nfa1-o 36856 | ` x ` is not free in ` A. ... |
axc711toc7 36857 | Rederivation of ~ ax-c7 fr... |
axc711to11 36858 | Rederivation of ~ ax-11 fr... |
axc5c711 36859 | Proof of a single axiom th... |
axc5c711toc5 36860 | Rederivation of ~ ax-c5 fr... |
axc5c711toc7 36861 | Rederivation of ~ ax-c7 fr... |
axc5c711to11 36862 | Rederivation of ~ ax-11 fr... |
equidqe 36863 | ~ equid with existential q... |
axc5sp1 36864 | A special case of ~ ax-c5 ... |
equidq 36865 | ~ equid with universal qua... |
equid1ALT 36866 | Alternate proof of ~ equid... |
axc11nfromc11 36867 | Rederivation of ~ ax-c11n ... |
naecoms-o 36868 | A commutation rule for dis... |
hbnae-o 36869 | All variables are effectiv... |
dvelimf-o 36870 | Proof of ~ dvelimh that us... |
dral2-o 36871 | Formula-building lemma for... |
aev-o 36872 | A "distinctor elimination"... |
ax5eq 36873 | Theorem to add distinct qu... |
dveeq2-o 36874 | Quantifier introduction wh... |
axc16g-o 36875 | A generalization of Axiom ... |
dveeq1-o 36876 | Quantifier introduction wh... |
dveeq1-o16 36877 | Version of ~ dveeq1 using ... |
ax5el 36878 | Theorem to add distinct qu... |
axc11n-16 36879 | This theorem shows that, g... |
dveel2ALT 36880 | Alternate proof of ~ dveel... |
ax12f 36881 | Basis step for constructin... |
ax12eq 36882 | Basis step for constructin... |
ax12el 36883 | Basis step for constructin... |
ax12indn 36884 | Induction step for constru... |
ax12indi 36885 | Induction step for constru... |
ax12indalem 36886 | Lemma for ~ ax12inda2 and ... |
ax12inda2ALT 36887 | Alternate proof of ~ ax12i... |
ax12inda2 36888 | Induction step for constru... |
ax12inda 36889 | Induction step for constru... |
ax12v2-o 36890 | Rederivation of ~ ax-c15 f... |
ax12a2-o 36891 | Derive ~ ax-c15 from a hyp... |
axc11-o 36892 | Show that ~ ax-c11 can be ... |
fsumshftd 36893 | Index shift of a finite su... |
riotaclbgBAD 36895 | Closure of restricted iota... |
riotaclbBAD 36896 | Closure of restricted iota... |
riotasvd 36897 | Deduction version of ~ rio... |
riotasv2d 36898 | Value of description binde... |
riotasv2s 36899 | The value of description b... |
riotasv 36900 | Value of description binde... |
riotasv3d 36901 | A property ` ch ` holding ... |
elimhyps 36902 | A version of ~ elimhyp usi... |
dedths 36903 | A version of weak deductio... |
renegclALT 36904 | Closure law for negative o... |
elimhyps2 36905 | Generalization of ~ elimhy... |
dedths2 36906 | Generalization of ~ dedths... |
nfcxfrdf 36907 | A utility lemma to transfe... |
nfded 36908 | A deduction theorem that c... |
nfded2 36909 | A deduction theorem that c... |
nfunidALT2 36910 | Deduction version of ~ nfu... |
nfunidALT 36911 | Deduction version of ~ nfu... |
nfopdALT 36912 | Deduction version of bound... |
cnaddcom 36913 | Recover the commutative la... |
toycom 36914 | Show the commutative law f... |
lshpset 36919 | The set of all hyperplanes... |
islshp 36920 | The predicate "is a hyperp... |
islshpsm 36921 | Hyperplane properties expr... |
lshplss 36922 | A hyperplane is a subspace... |
lshpne 36923 | A hyperplane is not equal ... |
lshpnel 36924 | A hyperplane's generating ... |
lshpnelb 36925 | The subspace sum of a hype... |
lshpnel2N 36926 | Condition that determines ... |
lshpne0 36927 | The member of the span in ... |
lshpdisj 36928 | A hyperplane and the span ... |
lshpcmp 36929 | If two hyperplanes are com... |
lshpinN 36930 | The intersection of two di... |
lsatset 36931 | The set of all 1-dim subsp... |
islsat 36932 | The predicate "is a 1-dim ... |
lsatlspsn2 36933 | The span of a nonzero sing... |
lsatlspsn 36934 | The span of a nonzero sing... |
islsati 36935 | A 1-dim subspace (atom) (o... |
lsateln0 36936 | A 1-dim subspace (atom) (o... |
lsatlss 36937 | The set of 1-dim subspaces... |
lsatlssel 36938 | An atom is a subspace. (C... |
lsatssv 36939 | An atom is a set of vector... |
lsatn0 36940 | A 1-dim subspace (atom) of... |
lsatspn0 36941 | The span of a vector is an... |
lsator0sp 36942 | The span of a vector is ei... |
lsatssn0 36943 | A subspace (or any class) ... |
lsatcmp 36944 | If two atoms are comparabl... |
lsatcmp2 36945 | If an atom is included in ... |
lsatel 36946 | A nonzero vector in an ato... |
lsatelbN 36947 | A nonzero vector in an ato... |
lsat2el 36948 | Two atoms sharing a nonzer... |
lsmsat 36949 | Convert comparison of atom... |
lsatfixedN 36950 | Show equality with the spa... |
lsmsatcv 36951 | Subspace sum has the cover... |
lssatomic 36952 | The lattice of subspaces i... |
lssats 36953 | The lattice of subspaces i... |
lpssat 36954 | Two subspaces in a proper ... |
lrelat 36955 | Subspaces are relatively a... |
lssatle 36956 | The ordering of two subspa... |
lssat 36957 | Two subspaces in a proper ... |
islshpat 36958 | Hyperplane properties expr... |
lcvfbr 36961 | The covers relation for a ... |
lcvbr 36962 | The covers relation for a ... |
lcvbr2 36963 | The covers relation for a ... |
lcvbr3 36964 | The covers relation for a ... |
lcvpss 36965 | The covers relation implie... |
lcvnbtwn 36966 | The covers relation implie... |
lcvntr 36967 | The covers relation is not... |
lcvnbtwn2 36968 | The covers relation implie... |
lcvnbtwn3 36969 | The covers relation implie... |
lsmcv2 36970 | Subspace sum has the cover... |
lcvat 36971 | If a subspace covers anoth... |
lsatcv0 36972 | An atom covers the zero su... |
lsatcveq0 36973 | A subspace covered by an a... |
lsat0cv 36974 | A subspace is an atom iff ... |
lcvexchlem1 36975 | Lemma for ~ lcvexch . (Co... |
lcvexchlem2 36976 | Lemma for ~ lcvexch . (Co... |
lcvexchlem3 36977 | Lemma for ~ lcvexch . (Co... |
lcvexchlem4 36978 | Lemma for ~ lcvexch . (Co... |
lcvexchlem5 36979 | Lemma for ~ lcvexch . (Co... |
lcvexch 36980 | Subspaces satisfy the exch... |
lcvp 36981 | Covering property of Defin... |
lcv1 36982 | Covering property of a sub... |
lcv2 36983 | Covering property of a sub... |
lsatexch 36984 | The atom exchange property... |
lsatnle 36985 | The meet of a subspace and... |
lsatnem0 36986 | The meet of distinct atoms... |
lsatexch1 36987 | The atom exch1ange propert... |
lsatcv0eq 36988 | If the sum of two atoms co... |
lsatcv1 36989 | Two atoms covering the zer... |
lsatcvatlem 36990 | Lemma for ~ lsatcvat . (C... |
lsatcvat 36991 | A nonzero subspace less th... |
lsatcvat2 36992 | A subspace covered by the ... |
lsatcvat3 36993 | A condition implying that ... |
islshpcv 36994 | Hyperplane properties expr... |
l1cvpat 36995 | A subspace covered by the ... |
l1cvat 36996 | Create an atom under an el... |
lshpat 36997 | Create an atom under a hyp... |
lflset 37000 | The set of linear function... |
islfl 37001 | The predicate "is a linear... |
lfli 37002 | Property of a linear funct... |
islfld 37003 | Properties that determine ... |
lflf 37004 | A linear functional is a f... |
lflcl 37005 | A linear functional value ... |
lfl0 37006 | A linear functional is zer... |
lfladd 37007 | Property of a linear funct... |
lflsub 37008 | Property of a linear funct... |
lflmul 37009 | Property of a linear funct... |
lfl0f 37010 | The zero function is a fun... |
lfl1 37011 | A nonzero functional has a... |
lfladdcl 37012 | Closure of addition of two... |
lfladdcom 37013 | Commutativity of functiona... |
lfladdass 37014 | Associativity of functiona... |
lfladd0l 37015 | Functional addition with t... |
lflnegcl 37016 | Closure of the negative of... |
lflnegl 37017 | A functional plus its nega... |
lflvscl 37018 | Closure of a scalar produc... |
lflvsdi1 37019 | Distributive law for (righ... |
lflvsdi2 37020 | Reverse distributive law f... |
lflvsdi2a 37021 | Reverse distributive law f... |
lflvsass 37022 | Associative law for (right... |
lfl0sc 37023 | The (right vector space) s... |
lflsc0N 37024 | The scalar product with th... |
lfl1sc 37025 | The (right vector space) s... |
lkrfval 37028 | The kernel of a functional... |
lkrval 37029 | Value of the kernel of a f... |
ellkr 37030 | Membership in the kernel o... |
lkrval2 37031 | Value of the kernel of a f... |
ellkr2 37032 | Membership in the kernel o... |
lkrcl 37033 | A member of the kernel of ... |
lkrf0 37034 | The value of a functional ... |
lkr0f 37035 | The kernel of the zero fun... |
lkrlss 37036 | The kernel of a linear fun... |
lkrssv 37037 | The kernel of a linear fun... |
lkrsc 37038 | The kernel of a nonzero sc... |
lkrscss 37039 | The kernel of a scalar pro... |
eqlkr 37040 | Two functionals with the s... |
eqlkr2 37041 | Two functionals with the s... |
eqlkr3 37042 | Two functionals with the s... |
lkrlsp 37043 | The subspace sum of a kern... |
lkrlsp2 37044 | The subspace sum of a kern... |
lkrlsp3 37045 | The subspace sum of a kern... |
lkrshp 37046 | The kernel of a nonzero fu... |
lkrshp3 37047 | The kernels of nonzero fun... |
lkrshpor 37048 | The kernel of a functional... |
lkrshp4 37049 | A kernel is a hyperplane i... |
lshpsmreu 37050 | Lemma for ~ lshpkrex . Sh... |
lshpkrlem1 37051 | Lemma for ~ lshpkrex . Th... |
lshpkrlem2 37052 | Lemma for ~ lshpkrex . Th... |
lshpkrlem3 37053 | Lemma for ~ lshpkrex . De... |
lshpkrlem4 37054 | Lemma for ~ lshpkrex . Pa... |
lshpkrlem5 37055 | Lemma for ~ lshpkrex . Pa... |
lshpkrlem6 37056 | Lemma for ~ lshpkrex . Sh... |
lshpkrcl 37057 | The set ` G ` defined by h... |
lshpkr 37058 | The kernel of functional `... |
lshpkrex 37059 | There exists a functional ... |
lshpset2N 37060 | The set of all hyperplanes... |
islshpkrN 37061 | The predicate "is a hyperp... |
lfl1dim 37062 | Equivalent expressions for... |
lfl1dim2N 37063 | Equivalent expressions for... |
ldualset 37066 | Define the (left) dual of ... |
ldualvbase 37067 | The vectors of a dual spac... |
ldualelvbase 37068 | Utility theorem for conver... |
ldualfvadd 37069 | Vector addition in the dua... |
ldualvadd 37070 | Vector addition in the dua... |
ldualvaddcl 37071 | The value of vector additi... |
ldualvaddval 37072 | The value of the value of ... |
ldualsca 37073 | The ring of scalars of the... |
ldualsbase 37074 | Base set of scalar ring fo... |
ldualsaddN 37075 | Scalar addition for the du... |
ldualsmul 37076 | Scalar multiplication for ... |
ldualfvs 37077 | Scalar product operation f... |
ldualvs 37078 | Scalar product operation v... |
ldualvsval 37079 | Value of scalar product op... |
ldualvscl 37080 | The scalar product operati... |
ldualvaddcom 37081 | Commutative law for vector... |
ldualvsass 37082 | Associative law for scalar... |
ldualvsass2 37083 | Associative law for scalar... |
ldualvsdi1 37084 | Distributive law for scala... |
ldualvsdi2 37085 | Reverse distributive law f... |
ldualgrplem 37086 | Lemma for ~ ldualgrp . (C... |
ldualgrp 37087 | The dual of a vector space... |
ldual0 37088 | The zero scalar of the dua... |
ldual1 37089 | The unit scalar of the dua... |
ldualneg 37090 | The negative of a scalar o... |
ldual0v 37091 | The zero vector of the dua... |
ldual0vcl 37092 | The dual zero vector is a ... |
lduallmodlem 37093 | Lemma for ~ lduallmod . (... |
lduallmod 37094 | The dual of a left module ... |
lduallvec 37095 | The dual of a left vector ... |
ldualvsub 37096 | The value of vector subtra... |
ldualvsubcl 37097 | Closure of vector subtract... |
ldualvsubval 37098 | The value of the value of ... |
ldualssvscl 37099 | Closure of scalar product ... |
ldualssvsubcl 37100 | Closure of vector subtract... |
ldual0vs 37101 | Scalar zero times a functi... |
lkr0f2 37102 | The kernel of the zero fun... |
lduallkr3 37103 | The kernels of nonzero fun... |
lkrpssN 37104 | Proper subset relation bet... |
lkrin 37105 | Intersection of the kernel... |
eqlkr4 37106 | Two functionals with the s... |
ldual1dim 37107 | Equivalent expressions for... |
ldualkrsc 37108 | The kernel of a nonzero sc... |
lkrss 37109 | The kernel of a scalar pro... |
lkrss2N 37110 | Two functionals with kerne... |
lkreqN 37111 | Proportional functionals h... |
lkrlspeqN 37112 | Condition for colinear fun... |
isopos 37121 | The predicate "is an ortho... |
opposet 37122 | Every orthoposet is a pose... |
oposlem 37123 | Lemma for orthoposet prope... |
op01dm 37124 | Conditions necessary for z... |
op0cl 37125 | An orthoposet has a zero e... |
op1cl 37126 | An orthoposet has a unit e... |
op0le 37127 | Orthoposet zero is less th... |
ople0 37128 | An element less than or eq... |
opnlen0 37129 | An element not less than a... |
lub0N 37130 | The least upper bound of t... |
opltn0 37131 | A lattice element greater ... |
ople1 37132 | Any element is less than t... |
op1le 37133 | If the orthoposet unit is ... |
glb0N 37134 | The greatest lower bound o... |
opoccl 37135 | Closure of orthocomplement... |
opococ 37136 | Double negative law for or... |
opcon3b 37137 | Contraposition law for ort... |
opcon2b 37138 | Orthocomplement contraposi... |
opcon1b 37139 | Orthocomplement contraposi... |
oplecon3 37140 | Contraposition law for ort... |
oplecon3b 37141 | Contraposition law for ort... |
oplecon1b 37142 | Contraposition law for str... |
opoc1 37143 | Orthocomplement of orthopo... |
opoc0 37144 | Orthocomplement of orthopo... |
opltcon3b 37145 | Contraposition law for str... |
opltcon1b 37146 | Contraposition law for str... |
opltcon2b 37147 | Contraposition law for str... |
opexmid 37148 | Law of excluded middle for... |
opnoncon 37149 | Law of contradiction for o... |
riotaocN 37150 | The orthocomplement of the... |
cmtfvalN 37151 | Value of commutes relation... |
cmtvalN 37152 | Equivalence for commutes r... |
isolat 37153 | The predicate "is an ortho... |
ollat 37154 | An ortholattice is a latti... |
olop 37155 | An ortholattice is an orth... |
olposN 37156 | An ortholattice is a poset... |
isolatiN 37157 | Properties that determine ... |
oldmm1 37158 | De Morgan's law for meet i... |
oldmm2 37159 | De Morgan's law for meet i... |
oldmm3N 37160 | De Morgan's law for meet i... |
oldmm4 37161 | De Morgan's law for meet i... |
oldmj1 37162 | De Morgan's law for join i... |
oldmj2 37163 | De Morgan's law for join i... |
oldmj3 37164 | De Morgan's law for join i... |
oldmj4 37165 | De Morgan's law for join i... |
olj01 37166 | An ortholattice element jo... |
olj02 37167 | An ortholattice element jo... |
olm11 37168 | The meet of an ortholattic... |
olm12 37169 | The meet of an ortholattic... |
latmassOLD 37170 | Ortholattice meet is assoc... |
latm12 37171 | A rearrangement of lattice... |
latm32 37172 | A rearrangement of lattice... |
latmrot 37173 | Rotate lattice meet of 3 c... |
latm4 37174 | Rearrangement of lattice m... |
latmmdiN 37175 | Lattice meet distributes o... |
latmmdir 37176 | Lattice meet distributes o... |
olm01 37177 | Meet with lattice zero is ... |
olm02 37178 | Meet with lattice zero is ... |
isoml 37179 | The predicate "is an ortho... |
isomliN 37180 | Properties that determine ... |
omlol 37181 | An orthomodular lattice is... |
omlop 37182 | An orthomodular lattice is... |
omllat 37183 | An orthomodular lattice is... |
omllaw 37184 | The orthomodular law. (Co... |
omllaw2N 37185 | Variation of orthomodular ... |
omllaw3 37186 | Orthomodular law equivalen... |
omllaw4 37187 | Orthomodular law equivalen... |
omllaw5N 37188 | The orthomodular law. Rem... |
cmtcomlemN 37189 | Lemma for ~ cmtcomN . ( ~... |
cmtcomN 37190 | Commutation is symmetric. ... |
cmt2N 37191 | Commutation with orthocomp... |
cmt3N 37192 | Commutation with orthocomp... |
cmt4N 37193 | Commutation with orthocomp... |
cmtbr2N 37194 | Alternate definition of th... |
cmtbr3N 37195 | Alternate definition for t... |
cmtbr4N 37196 | Alternate definition for t... |
lecmtN 37197 | Ordered elements commute. ... |
cmtidN 37198 | Any element commutes with ... |
omlfh1N 37199 | Foulis-Holland Theorem, pa... |
omlfh3N 37200 | Foulis-Holland Theorem, pa... |
omlmod1i2N 37201 | Analogue of modular law ~ ... |
omlspjN 37202 | Contraction of a Sasaki pr... |
cvrfval 37209 | Value of covers relation "... |
cvrval 37210 | Binary relation expressing... |
cvrlt 37211 | The covers relation implie... |
cvrnbtwn 37212 | There is no element betwee... |
ncvr1 37213 | No element covers the latt... |
cvrletrN 37214 | Property of an element abo... |
cvrval2 37215 | Binary relation expressing... |
cvrnbtwn2 37216 | The covers relation implie... |
cvrnbtwn3 37217 | The covers relation implie... |
cvrcon3b 37218 | Contraposition law for the... |
cvrle 37219 | The covers relation implie... |
cvrnbtwn4 37220 | The covers relation implie... |
cvrnle 37221 | The covers relation implie... |
cvrne 37222 | The covers relation implie... |
cvrnrefN 37223 | The covers relation is not... |
cvrcmp 37224 | If two lattice elements th... |
cvrcmp2 37225 | If two lattice elements co... |
pats 37226 | The set of atoms in a pose... |
isat 37227 | The predicate "is an atom"... |
isat2 37228 | The predicate "is an atom"... |
atcvr0 37229 | An atom covers zero. ( ~ ... |
atbase 37230 | An atom is a member of the... |
atssbase 37231 | The set of atoms is a subs... |
0ltat 37232 | An atom is greater than ze... |
leatb 37233 | A poset element less than ... |
leat 37234 | A poset element less than ... |
leat2 37235 | A nonzero poset element le... |
leat3 37236 | A poset element less than ... |
meetat 37237 | The meet of any element wi... |
meetat2 37238 | The meet of any element wi... |
isatl 37240 | The predicate "is an atomi... |
atllat 37241 | An atomic lattice is a lat... |
atlpos 37242 | An atomic lattice is a pos... |
atl0dm 37243 | Condition necessary for ze... |
atl0cl 37244 | An atomic lattice has a ze... |
atl0le 37245 | Orthoposet zero is less th... |
atlle0 37246 | An element less than or eq... |
atlltn0 37247 | A lattice element greater ... |
isat3 37248 | The predicate "is an atom"... |
atn0 37249 | An atom is not zero. ( ~ ... |
atnle0 37250 | An atom is not less than o... |
atlen0 37251 | A lattice element is nonze... |
atcmp 37252 | If two atoms are comparabl... |
atncmp 37253 | Frequently-used variation ... |
atnlt 37254 | Two atoms cannot satisfy t... |
atcvreq0 37255 | An element covered by an a... |
atncvrN 37256 | Two atoms cannot satisfy t... |
atlex 37257 | Every nonzero element of a... |
atnle 37258 | Two ways of expressing "an... |
atnem0 37259 | The meet of distinct atoms... |
atlatmstc 37260 | An atomic, complete, ortho... |
atlatle 37261 | The ordering of two Hilber... |
atlrelat1 37262 | An atomistic lattice with ... |
iscvlat 37264 | The predicate "is an atomi... |
iscvlat2N 37265 | The predicate "is an atomi... |
cvlatl 37266 | An atomic lattice with the... |
cvllat 37267 | An atomic lattice with the... |
cvlposN 37268 | An atomic lattice with the... |
cvlexch1 37269 | An atomic covering lattice... |
cvlexch2 37270 | An atomic covering lattice... |
cvlexchb1 37271 | An atomic covering lattice... |
cvlexchb2 37272 | An atomic covering lattice... |
cvlexch3 37273 | An atomic covering lattice... |
cvlexch4N 37274 | An atomic covering lattice... |
cvlatexchb1 37275 | A version of ~ cvlexchb1 f... |
cvlatexchb2 37276 | A version of ~ cvlexchb2 f... |
cvlatexch1 37277 | Atom exchange property. (... |
cvlatexch2 37278 | Atom exchange property. (... |
cvlatexch3 37279 | Atom exchange property. (... |
cvlcvr1 37280 | The covering property. Pr... |
cvlcvrp 37281 | A Hilbert lattice satisfie... |
cvlatcvr1 37282 | An atom is covered by its ... |
cvlatcvr2 37283 | An atom is covered by its ... |
cvlsupr2 37284 | Two equivalent ways of exp... |
cvlsupr3 37285 | Two equivalent ways of exp... |
cvlsupr4 37286 | Consequence of superpositi... |
cvlsupr5 37287 | Consequence of superpositi... |
cvlsupr6 37288 | Consequence of superpositi... |
cvlsupr7 37289 | Consequence of superpositi... |
cvlsupr8 37290 | Consequence of superpositi... |
ishlat1 37293 | The predicate "is a Hilber... |
ishlat2 37294 | The predicate "is a Hilber... |
ishlat3N 37295 | The predicate "is a Hilber... |
ishlatiN 37296 | Properties that determine ... |
hlomcmcv 37297 | A Hilbert lattice is ortho... |
hloml 37298 | A Hilbert lattice is ortho... |
hlclat 37299 | A Hilbert lattice is compl... |
hlcvl 37300 | A Hilbert lattice is an at... |
hlatl 37301 | A Hilbert lattice is atomi... |
hlol 37302 | A Hilbert lattice is an or... |
hlop 37303 | A Hilbert lattice is an or... |
hllat 37304 | A Hilbert lattice is a lat... |
hllatd 37305 | Deduction form of ~ hllat ... |
hlomcmat 37306 | A Hilbert lattice is ortho... |
hlpos 37307 | A Hilbert lattice is a pos... |
hlatjcl 37308 | Closure of join operation.... |
hlatjcom 37309 | Commutatitivity of join op... |
hlatjidm 37310 | Idempotence of join operat... |
hlatjass 37311 | Lattice join is associativ... |
hlatj12 37312 | Swap 1st and 2nd members o... |
hlatj32 37313 | Swap 2nd and 3rd members o... |
hlatjrot 37314 | Rotate lattice join of 3 c... |
hlatj4 37315 | Rearrangement of lattice j... |
hlatlej1 37316 | A join's first argument is... |
hlatlej2 37317 | A join's second argument i... |
glbconN 37318 | De Morgan's law for GLB an... |
glbconxN 37319 | De Morgan's law for GLB an... |
atnlej1 37320 | If an atom is not less tha... |
atnlej2 37321 | If an atom is not less tha... |
hlsuprexch 37322 | A Hilbert lattice has the ... |
hlexch1 37323 | A Hilbert lattice has the ... |
hlexch2 37324 | A Hilbert lattice has the ... |
hlexchb1 37325 | A Hilbert lattice has the ... |
hlexchb2 37326 | A Hilbert lattice has the ... |
hlsupr 37327 | A Hilbert lattice has the ... |
hlsupr2 37328 | A Hilbert lattice has the ... |
hlhgt4 37329 | A Hilbert lattice has a he... |
hlhgt2 37330 | A Hilbert lattice has a he... |
hl0lt1N 37331 | Lattice 0 is less than lat... |
hlexch3 37332 | A Hilbert lattice has the ... |
hlexch4N 37333 | A Hilbert lattice has the ... |
hlatexchb1 37334 | A version of ~ hlexchb1 fo... |
hlatexchb2 37335 | A version of ~ hlexchb2 fo... |
hlatexch1 37336 | Atom exchange property. (... |
hlatexch2 37337 | Atom exchange property. (... |
hlatmstcOLDN 37338 | An atomic, complete, ortho... |
hlatle 37339 | The ordering of two Hilber... |
hlateq 37340 | The equality of two Hilber... |
hlrelat1 37341 | An atomistic lattice with ... |
hlrelat5N 37342 | An atomistic lattice with ... |
hlrelat 37343 | A Hilbert lattice is relat... |
hlrelat2 37344 | A consequence of relative ... |
exatleN 37345 | A condition for an atom to... |
hl2at 37346 | A Hilbert lattice has at l... |
atex 37347 | At least one atom exists. ... |
intnatN 37348 | If the intersection with a... |
2llnne2N 37349 | Condition implying that tw... |
2llnneN 37350 | Condition implying that tw... |
cvr1 37351 | A Hilbert lattice has the ... |
cvr2N 37352 | Less-than and covers equiv... |
hlrelat3 37353 | The Hilbert lattice is rel... |
cvrval3 37354 | Binary relation expressing... |
cvrval4N 37355 | Binary relation expressing... |
cvrval5 37356 | Binary relation expressing... |
cvrp 37357 | A Hilbert lattice satisfie... |
atcvr1 37358 | An atom is covered by its ... |
atcvr2 37359 | An atom is covered by its ... |
cvrexchlem 37360 | Lemma for ~ cvrexch . ( ~... |
cvrexch 37361 | A Hilbert lattice satisfie... |
cvratlem 37362 | Lemma for ~ cvrat . ( ~ a... |
cvrat 37363 | A nonzero Hilbert lattice ... |
ltltncvr 37364 | A chained strong ordering ... |
ltcvrntr 37365 | Non-transitive condition f... |
cvrntr 37366 | The covers relation is not... |
atcvr0eq 37367 | The covers relation is not... |
lnnat 37368 | A line (the join of two di... |
atcvrj0 37369 | Two atoms covering the zer... |
cvrat2 37370 | A Hilbert lattice element ... |
atcvrneN 37371 | Inequality derived from at... |
atcvrj1 37372 | Condition for an atom to b... |
atcvrj2b 37373 | Condition for an atom to b... |
atcvrj2 37374 | Condition for an atom to b... |
atleneN 37375 | Inequality derived from at... |
atltcvr 37376 | An equivalence of less-tha... |
atle 37377 | Any nonzero element has an... |
atlt 37378 | Two atoms are unequal iff ... |
atlelt 37379 | Transfer less-than relatio... |
2atlt 37380 | Given an atom less than an... |
atexchcvrN 37381 | Atom exchange property. V... |
atexchltN 37382 | Atom exchange property. V... |
cvrat3 37383 | A condition implying that ... |
cvrat4 37384 | A condition implying exist... |
cvrat42 37385 | Commuted version of ~ cvra... |
2atjm 37386 | The meet of a line (expres... |
atbtwn 37387 | Property of a 3rd atom ` R... |
atbtwnexOLDN 37388 | There exists a 3rd atom ` ... |
atbtwnex 37389 | Given atoms ` P ` in ` X `... |
3noncolr2 37390 | Two ways to express 3 non-... |
3noncolr1N 37391 | Two ways to express 3 non-... |
hlatcon3 37392 | Atom exchange combined wit... |
hlatcon2 37393 | Atom exchange combined wit... |
4noncolr3 37394 | A way to express 4 non-col... |
4noncolr2 37395 | A way to express 4 non-col... |
4noncolr1 37396 | A way to express 4 non-col... |
athgt 37397 | A Hilbert lattice, whose h... |
3dim0 37398 | There exists a 3-dimension... |
3dimlem1 37399 | Lemma for ~ 3dim1 . (Cont... |
3dimlem2 37400 | Lemma for ~ 3dim1 . (Cont... |
3dimlem3a 37401 | Lemma for ~ 3dim3 . (Cont... |
3dimlem3 37402 | Lemma for ~ 3dim1 . (Cont... |
3dimlem3OLDN 37403 | Lemma for ~ 3dim1 . (Cont... |
3dimlem4a 37404 | Lemma for ~ 3dim3 . (Cont... |
3dimlem4 37405 | Lemma for ~ 3dim1 . (Cont... |
3dimlem4OLDN 37406 | Lemma for ~ 3dim1 . (Cont... |
3dim1lem5 37407 | Lemma for ~ 3dim1 . (Cont... |
3dim1 37408 | Construct a 3-dimensional ... |
3dim2 37409 | Construct 2 new layers on ... |
3dim3 37410 | Construct a new layer on t... |
2dim 37411 | Generate a height-3 elemen... |
1dimN 37412 | An atom is covered by a he... |
1cvrco 37413 | The orthocomplement of an ... |
1cvratex 37414 | There exists an atom less ... |
1cvratlt 37415 | An atom less than or equal... |
1cvrjat 37416 | An element covered by the ... |
1cvrat 37417 | Create an atom under an el... |
ps-1 37418 | The join of two atoms ` R ... |
ps-2 37419 | Lattice analogue for the p... |
2atjlej 37420 | Two atoms are different if... |
hlatexch3N 37421 | Rearrange join of atoms in... |
hlatexch4 37422 | Exchange 2 atoms. (Contri... |
ps-2b 37423 | Variation of projective ge... |
3atlem1 37424 | Lemma for ~ 3at . (Contri... |
3atlem2 37425 | Lemma for ~ 3at . (Contri... |
3atlem3 37426 | Lemma for ~ 3at . (Contri... |
3atlem4 37427 | Lemma for ~ 3at . (Contri... |
3atlem5 37428 | Lemma for ~ 3at . (Contri... |
3atlem6 37429 | Lemma for ~ 3at . (Contri... |
3atlem7 37430 | Lemma for ~ 3at . (Contri... |
3at 37431 | Any three non-colinear ato... |
llnset 37446 | The set of lattice lines i... |
islln 37447 | The predicate "is a lattic... |
islln4 37448 | The predicate "is a lattic... |
llni 37449 | Condition implying a latti... |
llnbase 37450 | A lattice line is a lattic... |
islln3 37451 | The predicate "is a lattic... |
islln2 37452 | The predicate "is a lattic... |
llni2 37453 | The join of two different ... |
llnnleat 37454 | An atom cannot majorize a ... |
llnneat 37455 | A lattice line is not an a... |
2atneat 37456 | The join of two distinct a... |
llnn0 37457 | A lattice line is nonzero.... |
islln2a 37458 | The predicate "is a lattic... |
llnle 37459 | Any element greater than 0... |
atcvrlln2 37460 | An atom under a line is co... |
atcvrlln 37461 | An element covering an ato... |
llnexatN 37462 | Given an atom on a line, t... |
llncmp 37463 | If two lattice lines are c... |
llnnlt 37464 | Two lattice lines cannot s... |
2llnmat 37465 | Two intersecting lines int... |
2at0mat0 37466 | Special case of ~ 2atmat0 ... |
2atmat0 37467 | The meet of two unequal li... |
2atm 37468 | An atom majorized by two d... |
ps-2c 37469 | Variation of projective ge... |
lplnset 37470 | The set of lattice planes ... |
islpln 37471 | The predicate "is a lattic... |
islpln4 37472 | The predicate "is a lattic... |
lplni 37473 | Condition implying a latti... |
islpln3 37474 | The predicate "is a lattic... |
lplnbase 37475 | A lattice plane is a latti... |
islpln5 37476 | The predicate "is a lattic... |
islpln2 37477 | The predicate "is a lattic... |
lplni2 37478 | The join of 3 different at... |
lvolex3N 37479 | There is an atom outside o... |
llnmlplnN 37480 | The intersection of a line... |
lplnle 37481 | Any element greater than 0... |
lplnnle2at 37482 | A lattice line (or atom) c... |
lplnnleat 37483 | A lattice plane cannot maj... |
lplnnlelln 37484 | A lattice plane is not les... |
2atnelpln 37485 | The join of two atoms is n... |
lplnneat 37486 | No lattice plane is an ato... |
lplnnelln 37487 | No lattice plane is a latt... |
lplnn0N 37488 | A lattice plane is nonzero... |
islpln2a 37489 | The predicate "is a lattic... |
islpln2ah 37490 | The predicate "is a lattic... |
lplnriaN 37491 | Property of a lattice plan... |
lplnribN 37492 | Property of a lattice plan... |
lplnric 37493 | Property of a lattice plan... |
lplnri1 37494 | Property of a lattice plan... |
lplnri2N 37495 | Property of a lattice plan... |
lplnri3N 37496 | Property of a lattice plan... |
lplnllnneN 37497 | Two lattice lines defined ... |
llncvrlpln2 37498 | A lattice line under a lat... |
llncvrlpln 37499 | An element covering a latt... |
2lplnmN 37500 | If the join of two lattice... |
2llnmj 37501 | The meet of two lattice li... |
2atmat 37502 | The meet of two intersecti... |
lplncmp 37503 | If two lattice planes are ... |
lplnexatN 37504 | Given a lattice line on a ... |
lplnexllnN 37505 | Given an atom on a lattice... |
lplnnlt 37506 | Two lattice planes cannot ... |
2llnjaN 37507 | The join of two different ... |
2llnjN 37508 | The join of two different ... |
2llnm2N 37509 | The meet of two different ... |
2llnm3N 37510 | Two lattice lines in a lat... |
2llnm4 37511 | Two lattice lines that maj... |
2llnmeqat 37512 | An atom equals the interse... |
lvolset 37513 | The set of 3-dim lattice v... |
islvol 37514 | The predicate "is a 3-dim ... |
islvol4 37515 | The predicate "is a 3-dim ... |
lvoli 37516 | Condition implying a 3-dim... |
islvol3 37517 | The predicate "is a 3-dim ... |
lvoli3 37518 | Condition implying a 3-dim... |
lvolbase 37519 | A 3-dim lattice volume is ... |
islvol5 37520 | The predicate "is a 3-dim ... |
islvol2 37521 | The predicate "is a 3-dim ... |
lvoli2 37522 | The join of 4 different at... |
lvolnle3at 37523 | A lattice plane (or lattic... |
lvolnleat 37524 | An atom cannot majorize a ... |
lvolnlelln 37525 | A lattice line cannot majo... |
lvolnlelpln 37526 | A lattice plane cannot maj... |
3atnelvolN 37527 | The join of 3 atoms is not... |
2atnelvolN 37528 | The join of two atoms is n... |
lvolneatN 37529 | No lattice volume is an at... |
lvolnelln 37530 | No lattice volume is a lat... |
lvolnelpln 37531 | No lattice volume is a lat... |
lvoln0N 37532 | A lattice volume is nonzer... |
islvol2aN 37533 | The predicate "is a lattic... |
4atlem0a 37534 | Lemma for ~ 4at . (Contri... |
4atlem0ae 37535 | Lemma for ~ 4at . (Contri... |
4atlem0be 37536 | Lemma for ~ 4at . (Contri... |
4atlem3 37537 | Lemma for ~ 4at . Break i... |
4atlem3a 37538 | Lemma for ~ 4at . Break i... |
4atlem3b 37539 | Lemma for ~ 4at . Break i... |
4atlem4a 37540 | Lemma for ~ 4at . Frequen... |
4atlem4b 37541 | Lemma for ~ 4at . Frequen... |
4atlem4c 37542 | Lemma for ~ 4at . Frequen... |
4atlem4d 37543 | Lemma for ~ 4at . Frequen... |
4atlem9 37544 | Lemma for ~ 4at . Substit... |
4atlem10a 37545 | Lemma for ~ 4at . Substit... |
4atlem10b 37546 | Lemma for ~ 4at . Substit... |
4atlem10 37547 | Lemma for ~ 4at . Combine... |
4atlem11a 37548 | Lemma for ~ 4at . Substit... |
4atlem11b 37549 | Lemma for ~ 4at . Substit... |
4atlem11 37550 | Lemma for ~ 4at . Combine... |
4atlem12a 37551 | Lemma for ~ 4at . Substit... |
4atlem12b 37552 | Lemma for ~ 4at . Substit... |
4atlem12 37553 | Lemma for ~ 4at . Combine... |
4at 37554 | Four atoms determine a lat... |
4at2 37555 | Four atoms determine a lat... |
lplncvrlvol2 37556 | A lattice line under a lat... |
lplncvrlvol 37557 | An element covering a latt... |
lvolcmp 37558 | If two lattice planes are ... |
lvolnltN 37559 | Two lattice volumes cannot... |
2lplnja 37560 | The join of two different ... |
2lplnj 37561 | The join of two different ... |
2lplnm2N 37562 | The meet of two different ... |
2lplnmj 37563 | The meet of two lattice pl... |
dalemkehl 37564 | Lemma for ~ dath . Freque... |
dalemkelat 37565 | Lemma for ~ dath . Freque... |
dalemkeop 37566 | Lemma for ~ dath . Freque... |
dalempea 37567 | Lemma for ~ dath . Freque... |
dalemqea 37568 | Lemma for ~ dath . Freque... |
dalemrea 37569 | Lemma for ~ dath . Freque... |
dalemsea 37570 | Lemma for ~ dath . Freque... |
dalemtea 37571 | Lemma for ~ dath . Freque... |
dalemuea 37572 | Lemma for ~ dath . Freque... |
dalemyeo 37573 | Lemma for ~ dath . Freque... |
dalemzeo 37574 | Lemma for ~ dath . Freque... |
dalemclpjs 37575 | Lemma for ~ dath . Freque... |
dalemclqjt 37576 | Lemma for ~ dath . Freque... |
dalemclrju 37577 | Lemma for ~ dath . Freque... |
dalem-clpjq 37578 | Lemma for ~ dath . Freque... |
dalemceb 37579 | Lemma for ~ dath . Freque... |
dalempeb 37580 | Lemma for ~ dath . Freque... |
dalemqeb 37581 | Lemma for ~ dath . Freque... |
dalemreb 37582 | Lemma for ~ dath . Freque... |
dalemseb 37583 | Lemma for ~ dath . Freque... |
dalemteb 37584 | Lemma for ~ dath . Freque... |
dalemueb 37585 | Lemma for ~ dath . Freque... |
dalempjqeb 37586 | Lemma for ~ dath . Freque... |
dalemsjteb 37587 | Lemma for ~ dath . Freque... |
dalemtjueb 37588 | Lemma for ~ dath . Freque... |
dalemqrprot 37589 | Lemma for ~ dath . Freque... |
dalemyeb 37590 | Lemma for ~ dath . Freque... |
dalemcnes 37591 | Lemma for ~ dath . Freque... |
dalempnes 37592 | Lemma for ~ dath . Freque... |
dalemqnet 37593 | Lemma for ~ dath . Freque... |
dalempjsen 37594 | Lemma for ~ dath . Freque... |
dalemply 37595 | Lemma for ~ dath . Freque... |
dalemsly 37596 | Lemma for ~ dath . Freque... |
dalemswapyz 37597 | Lemma for ~ dath . Swap t... |
dalemrot 37598 | Lemma for ~ dath . Rotate... |
dalemrotyz 37599 | Lemma for ~ dath . Rotate... |
dalem1 37600 | Lemma for ~ dath . Show t... |
dalemcea 37601 | Lemma for ~ dath . Freque... |
dalem2 37602 | Lemma for ~ dath . Show t... |
dalemdea 37603 | Lemma for ~ dath . Freque... |
dalemeea 37604 | Lemma for ~ dath . Freque... |
dalem3 37605 | Lemma for ~ dalemdnee . (... |
dalem4 37606 | Lemma for ~ dalemdnee . (... |
dalemdnee 37607 | Lemma for ~ dath . Axis o... |
dalem5 37608 | Lemma for ~ dath . Atom `... |
dalem6 37609 | Lemma for ~ dath . Analog... |
dalem7 37610 | Lemma for ~ dath . Analog... |
dalem8 37611 | Lemma for ~ dath . Plane ... |
dalem-cly 37612 | Lemma for ~ dalem9 . Cent... |
dalem9 37613 | Lemma for ~ dath . Since ... |
dalem10 37614 | Lemma for ~ dath . Atom `... |
dalem11 37615 | Lemma for ~ dath . Analog... |
dalem12 37616 | Lemma for ~ dath . Analog... |
dalem13 37617 | Lemma for ~ dalem14 . (Co... |
dalem14 37618 | Lemma for ~ dath . Planes... |
dalem15 37619 | Lemma for ~ dath . The ax... |
dalem16 37620 | Lemma for ~ dath . The at... |
dalem17 37621 | Lemma for ~ dath . When p... |
dalem18 37622 | Lemma for ~ dath . Show t... |
dalem19 37623 | Lemma for ~ dath . Show t... |
dalemccea 37624 | Lemma for ~ dath . Freque... |
dalemddea 37625 | Lemma for ~ dath . Freque... |
dalem-ccly 37626 | Lemma for ~ dath . Freque... |
dalem-ddly 37627 | Lemma for ~ dath . Freque... |
dalemccnedd 37628 | Lemma for ~ dath . Freque... |
dalemclccjdd 37629 | Lemma for ~ dath . Freque... |
dalemcceb 37630 | Lemma for ~ dath . Freque... |
dalemswapyzps 37631 | Lemma for ~ dath . Swap t... |
dalemrotps 37632 | Lemma for ~ dath . Rotate... |
dalemcjden 37633 | Lemma for ~ dath . Show t... |
dalem20 37634 | Lemma for ~ dath . Show t... |
dalem21 37635 | Lemma for ~ dath . Show t... |
dalem22 37636 | Lemma for ~ dath . Show t... |
dalem23 37637 | Lemma for ~ dath . Show t... |
dalem24 37638 | Lemma for ~ dath . Show t... |
dalem25 37639 | Lemma for ~ dath . Show t... |
dalem27 37640 | Lemma for ~ dath . Show t... |
dalem28 37641 | Lemma for ~ dath . Lemma ... |
dalem29 37642 | Lemma for ~ dath . Analog... |
dalem30 37643 | Lemma for ~ dath . Analog... |
dalem31N 37644 | Lemma for ~ dath . Analog... |
dalem32 37645 | Lemma for ~ dath . Analog... |
dalem33 37646 | Lemma for ~ dath . Analog... |
dalem34 37647 | Lemma for ~ dath . Analog... |
dalem35 37648 | Lemma for ~ dath . Analog... |
dalem36 37649 | Lemma for ~ dath . Analog... |
dalem37 37650 | Lemma for ~ dath . Analog... |
dalem38 37651 | Lemma for ~ dath . Plane ... |
dalem39 37652 | Lemma for ~ dath . Auxili... |
dalem40 37653 | Lemma for ~ dath . Analog... |
dalem41 37654 | Lemma for ~ dath . (Contr... |
dalem42 37655 | Lemma for ~ dath . Auxili... |
dalem43 37656 | Lemma for ~ dath . Planes... |
dalem44 37657 | Lemma for ~ dath . Dummy ... |
dalem45 37658 | Lemma for ~ dath . Dummy ... |
dalem46 37659 | Lemma for ~ dath . Analog... |
dalem47 37660 | Lemma for ~ dath . Analog... |
dalem48 37661 | Lemma for ~ dath . Analog... |
dalem49 37662 | Lemma for ~ dath . Analog... |
dalem50 37663 | Lemma for ~ dath . Analog... |
dalem51 37664 | Lemma for ~ dath . Constr... |
dalem52 37665 | Lemma for ~ dath . Lines ... |
dalem53 37666 | Lemma for ~ dath . The au... |
dalem54 37667 | Lemma for ~ dath . Line `... |
dalem55 37668 | Lemma for ~ dath . Lines ... |
dalem56 37669 | Lemma for ~ dath . Analog... |
dalem57 37670 | Lemma for ~ dath . Axis o... |
dalem58 37671 | Lemma for ~ dath . Analog... |
dalem59 37672 | Lemma for ~ dath . Analog... |
dalem60 37673 | Lemma for ~ dath . ` B ` i... |
dalem61 37674 | Lemma for ~ dath . Show t... |
dalem62 37675 | Lemma for ~ dath . Elimin... |
dalem63 37676 | Lemma for ~ dath . Combin... |
dath 37677 | Desargues's theorem of pro... |
dath2 37678 | Version of Desargues's the... |
lineset 37679 | The set of lines in a Hilb... |
isline 37680 | The predicate "is a line".... |
islinei 37681 | Condition implying "is a l... |
pointsetN 37682 | The set of points in a Hil... |
ispointN 37683 | The predicate "is a point"... |
atpointN 37684 | The singleton of an atom i... |
psubspset 37685 | The set of projective subs... |
ispsubsp 37686 | The predicate "is a projec... |
ispsubsp2 37687 | The predicate "is a projec... |
psubspi 37688 | Property of a projective s... |
psubspi2N 37689 | Property of a projective s... |
0psubN 37690 | The empty set is a project... |
snatpsubN 37691 | The singleton of an atom i... |
pointpsubN 37692 | A point (singleton of an a... |
linepsubN 37693 | A line is a projective sub... |
atpsubN 37694 | The set of all atoms is a ... |
psubssat 37695 | A projective subspace cons... |
psubatN 37696 | A member of a projective s... |
pmapfval 37697 | The projective map of a Hi... |
pmapval 37698 | Value of the projective ma... |
elpmap 37699 | Member of a projective map... |
pmapssat 37700 | The projective map of a Hi... |
pmapssbaN 37701 | A weakening of ~ pmapssat ... |
pmaple 37702 | The projective map of a Hi... |
pmap11 37703 | The projective map of a Hi... |
pmapat 37704 | The projective map of an a... |
elpmapat 37705 | Member of the projective m... |
pmap0 37706 | Value of the projective ma... |
pmapeq0 37707 | A projective map value is ... |
pmap1N 37708 | Value of the projective ma... |
pmapsub 37709 | The projective map of a Hi... |
pmapglbx 37710 | The projective map of the ... |
pmapglb 37711 | The projective map of the ... |
pmapglb2N 37712 | The projective map of the ... |
pmapglb2xN 37713 | The projective map of the ... |
pmapmeet 37714 | The projective map of a me... |
isline2 37715 | Definition of line in term... |
linepmap 37716 | A line described with a pr... |
isline3 37717 | Definition of line in term... |
isline4N 37718 | Definition of line in term... |
lneq2at 37719 | A line equals the join of ... |
lnatexN 37720 | There is an atom in a line... |
lnjatN 37721 | Given an atom in a line, t... |
lncvrelatN 37722 | A lattice element covered ... |
lncvrat 37723 | A line covers the atoms it... |
lncmp 37724 | If two lines are comparabl... |
2lnat 37725 | Two intersecting lines int... |
2atm2atN 37726 | Two joins with a common at... |
2llnma1b 37727 | Generalization of ~ 2llnma... |
2llnma1 37728 | Two different intersecting... |
2llnma3r 37729 | Two different intersecting... |
2llnma2 37730 | Two different intersecting... |
2llnma2rN 37731 | Two different intersecting... |
cdlema1N 37732 | A condition for required f... |
cdlema2N 37733 | A condition for required f... |
cdlemblem 37734 | Lemma for ~ cdlemb . (Con... |
cdlemb 37735 | Given two atoms not less t... |
paddfval 37738 | Projective subspace sum op... |
paddval 37739 | Projective subspace sum op... |
elpadd 37740 | Member of a projective sub... |
elpaddn0 37741 | Member of projective subsp... |
paddvaln0N 37742 | Projective subspace sum op... |
elpaddri 37743 | Condition implying members... |
elpaddatriN 37744 | Condition implying members... |
elpaddat 37745 | Membership in a projective... |
elpaddatiN 37746 | Consequence of membership ... |
elpadd2at 37747 | Membership in a projective... |
elpadd2at2 37748 | Membership in a projective... |
paddunssN 37749 | Projective subspace sum in... |
elpadd0 37750 | Member of projective subsp... |
paddval0 37751 | Projective subspace sum wi... |
padd01 37752 | Projective subspace sum wi... |
padd02 37753 | Projective subspace sum wi... |
paddcom 37754 | Projective subspace sum co... |
paddssat 37755 | A projective subspace sum ... |
sspadd1 37756 | A projective subspace sum ... |
sspadd2 37757 | A projective subspace sum ... |
paddss1 37758 | Subset law for projective ... |
paddss2 37759 | Subset law for projective ... |
paddss12 37760 | Subset law for projective ... |
paddasslem1 37761 | Lemma for ~ paddass . (Co... |
paddasslem2 37762 | Lemma for ~ paddass . (Co... |
paddasslem3 37763 | Lemma for ~ paddass . Res... |
paddasslem4 37764 | Lemma for ~ paddass . Com... |
paddasslem5 37765 | Lemma for ~ paddass . Sho... |
paddasslem6 37766 | Lemma for ~ paddass . (Co... |
paddasslem7 37767 | Lemma for ~ paddass . Com... |
paddasslem8 37768 | Lemma for ~ paddass . (Co... |
paddasslem9 37769 | Lemma for ~ paddass . Com... |
paddasslem10 37770 | Lemma for ~ paddass . Use... |
paddasslem11 37771 | Lemma for ~ paddass . The... |
paddasslem12 37772 | Lemma for ~ paddass . The... |
paddasslem13 37773 | Lemma for ~ paddass . The... |
paddasslem14 37774 | Lemma for ~ paddass . Rem... |
paddasslem15 37775 | Lemma for ~ paddass . Use... |
paddasslem16 37776 | Lemma for ~ paddass . Use... |
paddasslem17 37777 | Lemma for ~ paddass . The... |
paddasslem18 37778 | Lemma for ~ paddass . Com... |
paddass 37779 | Projective subspace sum is... |
padd12N 37780 | Commutative/associative la... |
padd4N 37781 | Rearrangement of 4 terms i... |
paddidm 37782 | Projective subspace sum is... |
paddclN 37783 | The projective sum of two ... |
paddssw1 37784 | Subset law for projective ... |
paddssw2 37785 | Subset law for projective ... |
paddss 37786 | Subset law for projective ... |
pmodlem1 37787 | Lemma for ~ pmod1i . (Con... |
pmodlem2 37788 | Lemma for ~ pmod1i . (Con... |
pmod1i 37789 | The modular law holds in a... |
pmod2iN 37790 | Dual of the modular law. ... |
pmodN 37791 | The modular law for projec... |
pmodl42N 37792 | Lemma derived from modular... |
pmapjoin 37793 | The projective map of the ... |
pmapjat1 37794 | The projective map of the ... |
pmapjat2 37795 | The projective map of the ... |
pmapjlln1 37796 | The projective map of the ... |
hlmod1i 37797 | A version of the modular l... |
atmod1i1 37798 | Version of modular law ~ p... |
atmod1i1m 37799 | Version of modular law ~ p... |
atmod1i2 37800 | Version of modular law ~ p... |
llnmod1i2 37801 | Version of modular law ~ p... |
atmod2i1 37802 | Version of modular law ~ p... |
atmod2i2 37803 | Version of modular law ~ p... |
llnmod2i2 37804 | Version of modular law ~ p... |
atmod3i1 37805 | Version of modular law tha... |
atmod3i2 37806 | Version of modular law tha... |
atmod4i1 37807 | Version of modular law tha... |
atmod4i2 37808 | Version of modular law tha... |
llnexchb2lem 37809 | Lemma for ~ llnexchb2 . (... |
llnexchb2 37810 | Line exchange property (co... |
llnexch2N 37811 | Line exchange property (co... |
dalawlem1 37812 | Lemma for ~ dalaw . Speci... |
dalawlem2 37813 | Lemma for ~ dalaw . Utili... |
dalawlem3 37814 | Lemma for ~ dalaw . First... |
dalawlem4 37815 | Lemma for ~ dalaw . Secon... |
dalawlem5 37816 | Lemma for ~ dalaw . Speci... |
dalawlem6 37817 | Lemma for ~ dalaw . First... |
dalawlem7 37818 | Lemma for ~ dalaw . Secon... |
dalawlem8 37819 | Lemma for ~ dalaw . Speci... |
dalawlem9 37820 | Lemma for ~ dalaw . Speci... |
dalawlem10 37821 | Lemma for ~ dalaw . Combi... |
dalawlem11 37822 | Lemma for ~ dalaw . First... |
dalawlem12 37823 | Lemma for ~ dalaw . Secon... |
dalawlem13 37824 | Lemma for ~ dalaw . Speci... |
dalawlem14 37825 | Lemma for ~ dalaw . Combi... |
dalawlem15 37826 | Lemma for ~ dalaw . Swap ... |
dalaw 37827 | Desargues's law, derived f... |
pclfvalN 37830 | The projective subspace cl... |
pclvalN 37831 | Value of the projective su... |
pclclN 37832 | Closure of the projective ... |
elpclN 37833 | Membership in the projecti... |
elpcliN 37834 | Implication of membership ... |
pclssN 37835 | Ordering is preserved by s... |
pclssidN 37836 | A set of atoms is included... |
pclidN 37837 | The projective subspace cl... |
pclbtwnN 37838 | A projective subspace sand... |
pclunN 37839 | The projective subspace cl... |
pclun2N 37840 | The projective subspace cl... |
pclfinN 37841 | The projective subspace cl... |
pclcmpatN 37842 | The set of projective subs... |
polfvalN 37845 | The projective subspace po... |
polvalN 37846 | Value of the projective su... |
polval2N 37847 | Alternate expression for v... |
polsubN 37848 | The polarity of a set of a... |
polssatN 37849 | The polarity of a set of a... |
pol0N 37850 | The polarity of the empty ... |
pol1N 37851 | The polarity of the whole ... |
2pol0N 37852 | The closed subspace closur... |
polpmapN 37853 | The polarity of a projecti... |
2polpmapN 37854 | Double polarity of a proje... |
2polvalN 37855 | Value of double polarity. ... |
2polssN 37856 | A set of atoms is a subset... |
3polN 37857 | Triple polarity cancels to... |
polcon3N 37858 | Contraposition law for pol... |
2polcon4bN 37859 | Contraposition law for pol... |
polcon2N 37860 | Contraposition law for pol... |
polcon2bN 37861 | Contraposition law for pol... |
pclss2polN 37862 | The projective subspace cl... |
pcl0N 37863 | The projective subspace cl... |
pcl0bN 37864 | The projective subspace cl... |
pmaplubN 37865 | The LUB of a projective ma... |
sspmaplubN 37866 | A set of atoms is a subset... |
2pmaplubN 37867 | Double projective map of a... |
paddunN 37868 | The closure of the project... |
poldmj1N 37869 | De Morgan's law for polari... |
pmapj2N 37870 | The projective map of the ... |
pmapocjN 37871 | The projective map of the ... |
polatN 37872 | The polarity of the single... |
2polatN 37873 | Double polarity of the sin... |
pnonsingN 37874 | The intersection of a set ... |
psubclsetN 37877 | The set of closed projecti... |
ispsubclN 37878 | The predicate "is a closed... |
psubcliN 37879 | Property of a closed proje... |
psubcli2N 37880 | Property of a closed proje... |
psubclsubN 37881 | A closed projective subspa... |
psubclssatN 37882 | A closed projective subspa... |
pmapidclN 37883 | Projective map of the LUB ... |
0psubclN 37884 | The empty set is a closed ... |
1psubclN 37885 | The set of all atoms is a ... |
atpsubclN 37886 | A point (singleton of an a... |
pmapsubclN 37887 | A projective map value is ... |
ispsubcl2N 37888 | Alternate predicate for "i... |
psubclinN 37889 | The intersection of two cl... |
paddatclN 37890 | The projective sum of a cl... |
pclfinclN 37891 | The projective subspace cl... |
linepsubclN 37892 | A line is a closed project... |
polsubclN 37893 | A polarity is a closed pro... |
poml4N 37894 | Orthomodular law for proje... |
poml5N 37895 | Orthomodular law for proje... |
poml6N 37896 | Orthomodular law for proje... |
osumcllem1N 37897 | Lemma for ~ osumclN . (Co... |
osumcllem2N 37898 | Lemma for ~ osumclN . (Co... |
osumcllem3N 37899 | Lemma for ~ osumclN . (Co... |
osumcllem4N 37900 | Lemma for ~ osumclN . (Co... |
osumcllem5N 37901 | Lemma for ~ osumclN . (Co... |
osumcllem6N 37902 | Lemma for ~ osumclN . Use... |
osumcllem7N 37903 | Lemma for ~ osumclN . (Co... |
osumcllem8N 37904 | Lemma for ~ osumclN . (Co... |
osumcllem9N 37905 | Lemma for ~ osumclN . (Co... |
osumcllem10N 37906 | Lemma for ~ osumclN . Con... |
osumcllem11N 37907 | Lemma for ~ osumclN . (Co... |
osumclN 37908 | Closure of orthogonal sum.... |
pmapojoinN 37909 | For orthogonal elements, p... |
pexmidN 37910 | Excluded middle law for cl... |
pexmidlem1N 37911 | Lemma for ~ pexmidN . Hol... |
pexmidlem2N 37912 | Lemma for ~ pexmidN . (Co... |
pexmidlem3N 37913 | Lemma for ~ pexmidN . Use... |
pexmidlem4N 37914 | Lemma for ~ pexmidN . (Co... |
pexmidlem5N 37915 | Lemma for ~ pexmidN . (Co... |
pexmidlem6N 37916 | Lemma for ~ pexmidN . (Co... |
pexmidlem7N 37917 | Lemma for ~ pexmidN . Con... |
pexmidlem8N 37918 | Lemma for ~ pexmidN . The... |
pexmidALTN 37919 | Excluded middle law for cl... |
pl42lem1N 37920 | Lemma for ~ pl42N . (Cont... |
pl42lem2N 37921 | Lemma for ~ pl42N . (Cont... |
pl42lem3N 37922 | Lemma for ~ pl42N . (Cont... |
pl42lem4N 37923 | Lemma for ~ pl42N . (Cont... |
pl42N 37924 | Law holding in a Hilbert l... |
watfvalN 37933 | The W atoms function. (Co... |
watvalN 37934 | Value of the W atoms funct... |
iswatN 37935 | The predicate "is a W atom... |
lhpset 37936 | The set of co-atoms (latti... |
islhp 37937 | The predicate "is a co-ato... |
islhp2 37938 | The predicate "is a co-ato... |
lhpbase 37939 | A co-atom is a member of t... |
lhp1cvr 37940 | The lattice unit covers a ... |
lhplt 37941 | An atom under a co-atom is... |
lhp2lt 37942 | The join of two atoms unde... |
lhpexlt 37943 | There exists an atom less ... |
lhp0lt 37944 | A co-atom is greater than ... |
lhpn0 37945 | A co-atom is nonzero. TOD... |
lhpexle 37946 | There exists an atom under... |
lhpexnle 37947 | There exists an atom not u... |
lhpexle1lem 37948 | Lemma for ~ lhpexle1 and o... |
lhpexle1 37949 | There exists an atom under... |
lhpexle2lem 37950 | Lemma for ~ lhpexle2 . (C... |
lhpexle2 37951 | There exists atom under a ... |
lhpexle3lem 37952 | There exists atom under a ... |
lhpexle3 37953 | There exists atom under a ... |
lhpex2leN 37954 | There exist at least two d... |
lhpoc 37955 | The orthocomplement of a c... |
lhpoc2N 37956 | The orthocomplement of an ... |
lhpocnle 37957 | The orthocomplement of a c... |
lhpocat 37958 | The orthocomplement of a c... |
lhpocnel 37959 | The orthocomplement of a c... |
lhpocnel2 37960 | The orthocomplement of a c... |
lhpjat1 37961 | The join of a co-atom (hyp... |
lhpjat2 37962 | The join of a co-atom (hyp... |
lhpj1 37963 | The join of a co-atom (hyp... |
lhpmcvr 37964 | The meet of a lattice hype... |
lhpmcvr2 37965 | Alternate way to express t... |
lhpmcvr3 37966 | Specialization of ~ lhpmcv... |
lhpmcvr4N 37967 | Specialization of ~ lhpmcv... |
lhpmcvr5N 37968 | Specialization of ~ lhpmcv... |
lhpmcvr6N 37969 | Specialization of ~ lhpmcv... |
lhpm0atN 37970 | If the meet of a lattice h... |
lhpmat 37971 | An element covered by the ... |
lhpmatb 37972 | An element covered by the ... |
lhp2at0 37973 | Join and meet with differe... |
lhp2atnle 37974 | Inequality for 2 different... |
lhp2atne 37975 | Inequality for joins with ... |
lhp2at0nle 37976 | Inequality for 2 different... |
lhp2at0ne 37977 | Inequality for joins with ... |
lhpelim 37978 | Eliminate an atom not unde... |
lhpmod2i2 37979 | Modular law for hyperplane... |
lhpmod6i1 37980 | Modular law for hyperplane... |
lhprelat3N 37981 | The Hilbert lattice is rel... |
cdlemb2 37982 | Given two atoms not under ... |
lhple 37983 | Property of a lattice elem... |
lhpat 37984 | Create an atom under a co-... |
lhpat4N 37985 | Property of an atom under ... |
lhpat2 37986 | Create an atom under a co-... |
lhpat3 37987 | There is only one atom und... |
4atexlemk 37988 | Lemma for ~ 4atexlem7 . (... |
4atexlemw 37989 | Lemma for ~ 4atexlem7 . (... |
4atexlempw 37990 | Lemma for ~ 4atexlem7 . (... |
4atexlemp 37991 | Lemma for ~ 4atexlem7 . (... |
4atexlemq 37992 | Lemma for ~ 4atexlem7 . (... |
4atexlems 37993 | Lemma for ~ 4atexlem7 . (... |
4atexlemt 37994 | Lemma for ~ 4atexlem7 . (... |
4atexlemutvt 37995 | Lemma for ~ 4atexlem7 . (... |
4atexlempnq 37996 | Lemma for ~ 4atexlem7 . (... |
4atexlemnslpq 37997 | Lemma for ~ 4atexlem7 . (... |
4atexlemkl 37998 | Lemma for ~ 4atexlem7 . (... |
4atexlemkc 37999 | Lemma for ~ 4atexlem7 . (... |
4atexlemwb 38000 | Lemma for ~ 4atexlem7 . (... |
4atexlempsb 38001 | Lemma for ~ 4atexlem7 . (... |
4atexlemqtb 38002 | Lemma for ~ 4atexlem7 . (... |
4atexlempns 38003 | Lemma for ~ 4atexlem7 . (... |
4atexlemswapqr 38004 | Lemma for ~ 4atexlem7 . S... |
4atexlemu 38005 | Lemma for ~ 4atexlem7 . (... |
4atexlemv 38006 | Lemma for ~ 4atexlem7 . (... |
4atexlemunv 38007 | Lemma for ~ 4atexlem7 . (... |
4atexlemtlw 38008 | Lemma for ~ 4atexlem7 . (... |
4atexlemntlpq 38009 | Lemma for ~ 4atexlem7 . (... |
4atexlemc 38010 | Lemma for ~ 4atexlem7 . (... |
4atexlemnclw 38011 | Lemma for ~ 4atexlem7 . (... |
4atexlemex2 38012 | Lemma for ~ 4atexlem7 . S... |
4atexlemcnd 38013 | Lemma for ~ 4atexlem7 . (... |
4atexlemex4 38014 | Lemma for ~ 4atexlem7 . S... |
4atexlemex6 38015 | Lemma for ~ 4atexlem7 . (... |
4atexlem7 38016 | Whenever there are at leas... |
4atex 38017 | Whenever there are at leas... |
4atex2 38018 | More general version of ~ ... |
4atex2-0aOLDN 38019 | Same as ~ 4atex2 except th... |
4atex2-0bOLDN 38020 | Same as ~ 4atex2 except th... |
4atex2-0cOLDN 38021 | Same as ~ 4atex2 except th... |
4atex3 38022 | More general version of ~ ... |
lautset 38023 | The set of lattice automor... |
islaut 38024 | The predicate "is a lattic... |
lautle 38025 | Less-than or equal propert... |
laut1o 38026 | A lattice automorphism is ... |
laut11 38027 | One-to-one property of a l... |
lautcl 38028 | A lattice automorphism val... |
lautcnvclN 38029 | Reverse closure of a latti... |
lautcnvle 38030 | Less-than or equal propert... |
lautcnv 38031 | The converse of a lattice ... |
lautlt 38032 | Less-than property of a la... |
lautcvr 38033 | Covering property of a lat... |
lautj 38034 | Meet property of a lattice... |
lautm 38035 | Meet property of a lattice... |
lauteq 38036 | A lattice automorphism arg... |
idlaut 38037 | The identity function is a... |
lautco 38038 | The composition of two lat... |
pautsetN 38039 | The set of projective auto... |
ispautN 38040 | The predicate "is a projec... |
ldilfset 38049 | The mapping from fiducial ... |
ldilset 38050 | The set of lattice dilatio... |
isldil 38051 | The predicate "is a lattic... |
ldillaut 38052 | A lattice dilation is an a... |
ldil1o 38053 | A lattice dilation is a on... |
ldilval 38054 | Value of a lattice dilatio... |
idldil 38055 | The identity function is a... |
ldilcnv 38056 | The converse of a lattice ... |
ldilco 38057 | The composition of two lat... |
ltrnfset 38058 | The set of all lattice tra... |
ltrnset 38059 | The set of lattice transla... |
isltrn 38060 | The predicate "is a lattic... |
isltrn2N 38061 | The predicate "is a lattic... |
ltrnu 38062 | Uniqueness property of a l... |
ltrnldil 38063 | A lattice translation is a... |
ltrnlaut 38064 | A lattice translation is a... |
ltrn1o 38065 | A lattice translation is a... |
ltrncl 38066 | Closure of a lattice trans... |
ltrn11 38067 | One-to-one property of a l... |
ltrncnvnid 38068 | If a translation is differ... |
ltrncoidN 38069 | Two translations are equal... |
ltrnle 38070 | Less-than or equal propert... |
ltrncnvleN 38071 | Less-than or equal propert... |
ltrnm 38072 | Lattice translation of a m... |
ltrnj 38073 | Lattice translation of a m... |
ltrncvr 38074 | Covering property of a lat... |
ltrnval1 38075 | Value of a lattice transla... |
ltrnid 38076 | A lattice translation is t... |
ltrnnid 38077 | If a lattice translation i... |
ltrnatb 38078 | The lattice translation of... |
ltrncnvatb 38079 | The converse of the lattic... |
ltrnel 38080 | The lattice translation of... |
ltrnat 38081 | The lattice translation of... |
ltrncnvat 38082 | The converse of the lattic... |
ltrncnvel 38083 | The converse of the lattic... |
ltrncoelN 38084 | Composition of lattice tra... |
ltrncoat 38085 | Composition of lattice tra... |
ltrncoval 38086 | Two ways to express value ... |
ltrncnv 38087 | The converse of a lattice ... |
ltrn11at 38088 | Frequently used one-to-one... |
ltrneq2 38089 | The equality of two transl... |
ltrneq 38090 | The equality of two transl... |
idltrn 38091 | The identity function is a... |
ltrnmw 38092 | Property of lattice transl... |
dilfsetN 38093 | The mapping from fiducial ... |
dilsetN 38094 | The set of dilations for a... |
isdilN 38095 | The predicate "is a dilati... |
trnfsetN 38096 | The mapping from fiducial ... |
trnsetN 38097 | The set of translations fo... |
istrnN 38098 | The predicate "is a transl... |
trlfset 38101 | The set of all traces of l... |
trlset 38102 | The set of traces of latti... |
trlval 38103 | The value of the trace of ... |
trlval2 38104 | The value of the trace of ... |
trlcl 38105 | Closure of the trace of a ... |
trlcnv 38106 | The trace of the converse ... |
trljat1 38107 | The value of a translation... |
trljat2 38108 | The value of a translation... |
trljat3 38109 | The value of a translation... |
trlat 38110 | If an atom differs from it... |
trl0 38111 | If an atom not under the f... |
trlator0 38112 | The trace of a lattice tra... |
trlatn0 38113 | The trace of a lattice tra... |
trlnidat 38114 | The trace of a lattice tra... |
ltrnnidn 38115 | If a lattice translation i... |
ltrnideq 38116 | Property of the identity l... |
trlid0 38117 | The trace of the identity ... |
trlnidatb 38118 | A lattice translation is n... |
trlid0b 38119 | A lattice translation is t... |
trlnid 38120 | Different translations wit... |
ltrn2ateq 38121 | Property of the equality o... |
ltrnateq 38122 | If any atom (under ` W ` )... |
ltrnatneq 38123 | If any atom (under ` W ` )... |
ltrnatlw 38124 | If the value of an atom eq... |
trlle 38125 | The trace of a lattice tra... |
trlne 38126 | The trace of a lattice tra... |
trlnle 38127 | The atom not under the fid... |
trlval3 38128 | The value of the trace of ... |
trlval4 38129 | The value of the trace of ... |
trlval5 38130 | The value of the trace of ... |
arglem1N 38131 | Lemma for Desargues's law.... |
cdlemc1 38132 | Part of proof of Lemma C i... |
cdlemc2 38133 | Part of proof of Lemma C i... |
cdlemc3 38134 | Part of proof of Lemma C i... |
cdlemc4 38135 | Part of proof of Lemma C i... |
cdlemc5 38136 | Lemma for ~ cdlemc . (Con... |
cdlemc6 38137 | Lemma for ~ cdlemc . (Con... |
cdlemc 38138 | Lemma C in [Crawley] p. 11... |
cdlemd1 38139 | Part of proof of Lemma D i... |
cdlemd2 38140 | Part of proof of Lemma D i... |
cdlemd3 38141 | Part of proof of Lemma D i... |
cdlemd4 38142 | Part of proof of Lemma D i... |
cdlemd5 38143 | Part of proof of Lemma D i... |
cdlemd6 38144 | Part of proof of Lemma D i... |
cdlemd7 38145 | Part of proof of Lemma D i... |
cdlemd8 38146 | Part of proof of Lemma D i... |
cdlemd9 38147 | Part of proof of Lemma D i... |
cdlemd 38148 | If two translations agree ... |
ltrneq3 38149 | Two translations agree at ... |
cdleme00a 38150 | Part of proof of Lemma E i... |
cdleme0aa 38151 | Part of proof of Lemma E i... |
cdleme0a 38152 | Part of proof of Lemma E i... |
cdleme0b 38153 | Part of proof of Lemma E i... |
cdleme0c 38154 | Part of proof of Lemma E i... |
cdleme0cp 38155 | Part of proof of Lemma E i... |
cdleme0cq 38156 | Part of proof of Lemma E i... |
cdleme0dN 38157 | Part of proof of Lemma E i... |
cdleme0e 38158 | Part of proof of Lemma E i... |
cdleme0fN 38159 | Part of proof of Lemma E i... |
cdleme0gN 38160 | Part of proof of Lemma E i... |
cdlemeulpq 38161 | Part of proof of Lemma E i... |
cdleme01N 38162 | Part of proof of Lemma E i... |
cdleme02N 38163 | Part of proof of Lemma E i... |
cdleme0ex1N 38164 | Part of proof of Lemma E i... |
cdleme0ex2N 38165 | Part of proof of Lemma E i... |
cdleme0moN 38166 | Part of proof of Lemma E i... |
cdleme1b 38167 | Part of proof of Lemma E i... |
cdleme1 38168 | Part of proof of Lemma E i... |
cdleme2 38169 | Part of proof of Lemma E i... |
cdleme3b 38170 | Part of proof of Lemma E i... |
cdleme3c 38171 | Part of proof of Lemma E i... |
cdleme3d 38172 | Part of proof of Lemma E i... |
cdleme3e 38173 | Part of proof of Lemma E i... |
cdleme3fN 38174 | Part of proof of Lemma E i... |
cdleme3g 38175 | Part of proof of Lemma E i... |
cdleme3h 38176 | Part of proof of Lemma E i... |
cdleme3fa 38177 | Part of proof of Lemma E i... |
cdleme3 38178 | Part of proof of Lemma E i... |
cdleme4 38179 | Part of proof of Lemma E i... |
cdleme4a 38180 | Part of proof of Lemma E i... |
cdleme5 38181 | Part of proof of Lemma E i... |
cdleme6 38182 | Part of proof of Lemma E i... |
cdleme7aa 38183 | Part of proof of Lemma E i... |
cdleme7a 38184 | Part of proof of Lemma E i... |
cdleme7b 38185 | Part of proof of Lemma E i... |
cdleme7c 38186 | Part of proof of Lemma E i... |
cdleme7d 38187 | Part of proof of Lemma E i... |
cdleme7e 38188 | Part of proof of Lemma E i... |
cdleme7ga 38189 | Part of proof of Lemma E i... |
cdleme7 38190 | Part of proof of Lemma E i... |
cdleme8 38191 | Part of proof of Lemma E i... |
cdleme9a 38192 | Part of proof of Lemma E i... |
cdleme9b 38193 | Utility lemma for Lemma E ... |
cdleme9 38194 | Part of proof of Lemma E i... |
cdleme10 38195 | Part of proof of Lemma E i... |
cdleme8tN 38196 | Part of proof of Lemma E i... |
cdleme9taN 38197 | Part of proof of Lemma E i... |
cdleme9tN 38198 | Part of proof of Lemma E i... |
cdleme10tN 38199 | Part of proof of Lemma E i... |
cdleme16aN 38200 | Part of proof of Lemma E i... |
cdleme11a 38201 | Part of proof of Lemma E i... |
cdleme11c 38202 | Part of proof of Lemma E i... |
cdleme11dN 38203 | Part of proof of Lemma E i... |
cdleme11e 38204 | Part of proof of Lemma E i... |
cdleme11fN 38205 | Part of proof of Lemma E i... |
cdleme11g 38206 | Part of proof of Lemma E i... |
cdleme11h 38207 | Part of proof of Lemma E i... |
cdleme11j 38208 | Part of proof of Lemma E i... |
cdleme11k 38209 | Part of proof of Lemma E i... |
cdleme11l 38210 | Part of proof of Lemma E i... |
cdleme11 38211 | Part of proof of Lemma E i... |
cdleme12 38212 | Part of proof of Lemma E i... |
cdleme13 38213 | Part of proof of Lemma E i... |
cdleme14 38214 | Part of proof of Lemma E i... |
cdleme15a 38215 | Part of proof of Lemma E i... |
cdleme15b 38216 | Part of proof of Lemma E i... |
cdleme15c 38217 | Part of proof of Lemma E i... |
cdleme15d 38218 | Part of proof of Lemma E i... |
cdleme15 38219 | Part of proof of Lemma E i... |
cdleme16b 38220 | Part of proof of Lemma E i... |
cdleme16c 38221 | Part of proof of Lemma E i... |
cdleme16d 38222 | Part of proof of Lemma E i... |
cdleme16e 38223 | Part of proof of Lemma E i... |
cdleme16f 38224 | Part of proof of Lemma E i... |
cdleme16g 38225 | Part of proof of Lemma E i... |
cdleme16 38226 | Part of proof of Lemma E i... |
cdleme17a 38227 | Part of proof of Lemma E i... |
cdleme17b 38228 | Lemma leading to ~ cdleme1... |
cdleme17c 38229 | Part of proof of Lemma E i... |
cdleme17d1 38230 | Part of proof of Lemma E i... |
cdleme0nex 38231 | Part of proof of Lemma E i... |
cdleme18a 38232 | Part of proof of Lemma E i... |
cdleme18b 38233 | Part of proof of Lemma E i... |
cdleme18c 38234 | Part of proof of Lemma E i... |
cdleme22gb 38235 | Utility lemma for Lemma E ... |
cdleme18d 38236 | Part of proof of Lemma E i... |
cdlemesner 38237 | Part of proof of Lemma E i... |
cdlemedb 38238 | Part of proof of Lemma E i... |
cdlemeda 38239 | Part of proof of Lemma E i... |
cdlemednpq 38240 | Part of proof of Lemma E i... |
cdlemednuN 38241 | Part of proof of Lemma E i... |
cdleme20zN 38242 | Part of proof of Lemma E i... |
cdleme20y 38243 | Part of proof of Lemma E i... |
cdleme19a 38244 | Part of proof of Lemma E i... |
cdleme19b 38245 | Part of proof of Lemma E i... |
cdleme19c 38246 | Part of proof of Lemma E i... |
cdleme19d 38247 | Part of proof of Lemma E i... |
cdleme19e 38248 | Part of proof of Lemma E i... |
cdleme19f 38249 | Part of proof of Lemma E i... |
cdleme20aN 38250 | Part of proof of Lemma E i... |
cdleme20bN 38251 | Part of proof of Lemma E i... |
cdleme20c 38252 | Part of proof of Lemma E i... |
cdleme20d 38253 | Part of proof of Lemma E i... |
cdleme20e 38254 | Part of proof of Lemma E i... |
cdleme20f 38255 | Part of proof of Lemma E i... |
cdleme20g 38256 | Part of proof of Lemma E i... |
cdleme20h 38257 | Part of proof of Lemma E i... |
cdleme20i 38258 | Part of proof of Lemma E i... |
cdleme20j 38259 | Part of proof of Lemma E i... |
cdleme20k 38260 | Part of proof of Lemma E i... |
cdleme20l1 38261 | Part of proof of Lemma E i... |
cdleme20l2 38262 | Part of proof of Lemma E i... |
cdleme20l 38263 | Part of proof of Lemma E i... |
cdleme20m 38264 | Part of proof of Lemma E i... |
cdleme20 38265 | Combine ~ cdleme19f and ~ ... |
cdleme21a 38266 | Part of proof of Lemma E i... |
cdleme21b 38267 | Part of proof of Lemma E i... |
cdleme21c 38268 | Part of proof of Lemma E i... |
cdleme21at 38269 | Part of proof of Lemma E i... |
cdleme21ct 38270 | Part of proof of Lemma E i... |
cdleme21d 38271 | Part of proof of Lemma E i... |
cdleme21e 38272 | Part of proof of Lemma E i... |
cdleme21f 38273 | Part of proof of Lemma E i... |
cdleme21g 38274 | Part of proof of Lemma E i... |
cdleme21h 38275 | Part of proof of Lemma E i... |
cdleme21i 38276 | Part of proof of Lemma E i... |
cdleme21j 38277 | Combine ~ cdleme20 and ~ c... |
cdleme21 38278 | Part of proof of Lemma E i... |
cdleme21k 38279 | Eliminate ` S =/= T ` cond... |
cdleme22aa 38280 | Part of proof of Lemma E i... |
cdleme22a 38281 | Part of proof of Lemma E i... |
cdleme22b 38282 | Part of proof of Lemma E i... |
cdleme22cN 38283 | Part of proof of Lemma E i... |
cdleme22d 38284 | Part of proof of Lemma E i... |
cdleme22e 38285 | Part of proof of Lemma E i... |
cdleme22eALTN 38286 | Part of proof of Lemma E i... |
cdleme22f 38287 | Part of proof of Lemma E i... |
cdleme22f2 38288 | Part of proof of Lemma E i... |
cdleme22g 38289 | Part of proof of Lemma E i... |
cdleme23a 38290 | Part of proof of Lemma E i... |
cdleme23b 38291 | Part of proof of Lemma E i... |
cdleme23c 38292 | Part of proof of Lemma E i... |
cdleme24 38293 | Quantified version of ~ cd... |
cdleme25a 38294 | Lemma for ~ cdleme25b . (... |
cdleme25b 38295 | Transform ~ cdleme24 . TO... |
cdleme25c 38296 | Transform ~ cdleme25b . (... |
cdleme25dN 38297 | Transform ~ cdleme25c . (... |
cdleme25cl 38298 | Show closure of the unique... |
cdleme25cv 38299 | Change bound variables in ... |
cdleme26e 38300 | Part of proof of Lemma E i... |
cdleme26ee 38301 | Part of proof of Lemma E i... |
cdleme26eALTN 38302 | Part of proof of Lemma E i... |
cdleme26fALTN 38303 | Part of proof of Lemma E i... |
cdleme26f 38304 | Part of proof of Lemma E i... |
cdleme26f2ALTN 38305 | Part of proof of Lemma E i... |
cdleme26f2 38306 | Part of proof of Lemma E i... |
cdleme27cl 38307 | Part of proof of Lemma E i... |
cdleme27a 38308 | Part of proof of Lemma E i... |
cdleme27b 38309 | Lemma for ~ cdleme27N . (... |
cdleme27N 38310 | Part of proof of Lemma E i... |
cdleme28a 38311 | Lemma for ~ cdleme25b . T... |
cdleme28b 38312 | Lemma for ~ cdleme25b . T... |
cdleme28c 38313 | Part of proof of Lemma E i... |
cdleme28 38314 | Quantified version of ~ cd... |
cdleme29ex 38315 | Lemma for ~ cdleme29b . (... |
cdleme29b 38316 | Transform ~ cdleme28 . (C... |
cdleme29c 38317 | Transform ~ cdleme28b . (... |
cdleme29cl 38318 | Show closure of the unique... |
cdleme30a 38319 | Part of proof of Lemma E i... |
cdleme31so 38320 | Part of proof of Lemma E i... |
cdleme31sn 38321 | Part of proof of Lemma E i... |
cdleme31sn1 38322 | Part of proof of Lemma E i... |
cdleme31se 38323 | Part of proof of Lemma D i... |
cdleme31se2 38324 | Part of proof of Lemma D i... |
cdleme31sc 38325 | Part of proof of Lemma E i... |
cdleme31sde 38326 | Part of proof of Lemma D i... |
cdleme31snd 38327 | Part of proof of Lemma D i... |
cdleme31sdnN 38328 | Part of proof of Lemma E i... |
cdleme31sn1c 38329 | Part of proof of Lemma E i... |
cdleme31sn2 38330 | Part of proof of Lemma E i... |
cdleme31fv 38331 | Part of proof of Lemma E i... |
cdleme31fv1 38332 | Part of proof of Lemma E i... |
cdleme31fv1s 38333 | Part of proof of Lemma E i... |
cdleme31fv2 38334 | Part of proof of Lemma E i... |
cdleme31id 38335 | Part of proof of Lemma E i... |
cdlemefrs29pre00 38336 | ***START OF VALUE AT ATOM ... |
cdlemefrs29bpre0 38337 | TODO fix comment. (Contri... |
cdlemefrs29bpre1 38338 | TODO: FIX COMMENT. (Contr... |
cdlemefrs29cpre1 38339 | TODO: FIX COMMENT. (Contr... |
cdlemefrs29clN 38340 | TODO: NOT USED? Show clo... |
cdlemefrs32fva 38341 | Part of proof of Lemma E i... |
cdlemefrs32fva1 38342 | Part of proof of Lemma E i... |
cdlemefr29exN 38343 | Lemma for ~ cdlemefs29bpre... |
cdlemefr27cl 38344 | Part of proof of Lemma E i... |
cdlemefr32sn2aw 38345 | Show that ` [_ R / s ]_ N ... |
cdlemefr32snb 38346 | Show closure of ` [_ R / s... |
cdlemefr29bpre0N 38347 | TODO fix comment. (Contri... |
cdlemefr29clN 38348 | Show closure of the unique... |
cdleme43frv1snN 38349 | Value of ` [_ R / s ]_ N `... |
cdlemefr32fvaN 38350 | Part of proof of Lemma E i... |
cdlemefr32fva1 38351 | Part of proof of Lemma E i... |
cdlemefr31fv1 38352 | Value of ` ( F `` R ) ` wh... |
cdlemefs29pre00N 38353 | FIX COMMENT. TODO: see if ... |
cdlemefs27cl 38354 | Part of proof of Lemma E i... |
cdlemefs32sn1aw 38355 | Show that ` [_ R / s ]_ N ... |
cdlemefs32snb 38356 | Show closure of ` [_ R / s... |
cdlemefs29bpre0N 38357 | TODO: FIX COMMENT. (Contr... |
cdlemefs29bpre1N 38358 | TODO: FIX COMMENT. (Contr... |
cdlemefs29cpre1N 38359 | TODO: FIX COMMENT. (Contr... |
cdlemefs29clN 38360 | Show closure of the unique... |
cdleme43fsv1snlem 38361 | Value of ` [_ R / s ]_ N `... |
cdleme43fsv1sn 38362 | Value of ` [_ R / s ]_ N `... |
cdlemefs32fvaN 38363 | Part of proof of Lemma E i... |
cdlemefs32fva1 38364 | Part of proof of Lemma E i... |
cdlemefs31fv1 38365 | Value of ` ( F `` R ) ` wh... |
cdlemefr44 38366 | Value of f(r) when r is an... |
cdlemefs44 38367 | Value of f_s(r) when r is ... |
cdlemefr45 38368 | Value of f(r) when r is an... |
cdlemefr45e 38369 | Explicit expansion of ~ cd... |
cdlemefs45 38370 | Value of f_s(r) when r is ... |
cdlemefs45ee 38371 | Explicit expansion of ~ cd... |
cdlemefs45eN 38372 | Explicit expansion of ~ cd... |
cdleme32sn1awN 38373 | Show that ` [_ R / s ]_ N ... |
cdleme41sn3a 38374 | Show that ` [_ R / s ]_ N ... |
cdleme32sn2awN 38375 | Show that ` [_ R / s ]_ N ... |
cdleme32snaw 38376 | Show that ` [_ R / s ]_ N ... |
cdleme32snb 38377 | Show closure of ` [_ R / s... |
cdleme32fva 38378 | Part of proof of Lemma D i... |
cdleme32fva1 38379 | Part of proof of Lemma D i... |
cdleme32fvaw 38380 | Show that ` ( F `` R ) ` i... |
cdleme32fvcl 38381 | Part of proof of Lemma D i... |
cdleme32a 38382 | Part of proof of Lemma D i... |
cdleme32b 38383 | Part of proof of Lemma D i... |
cdleme32c 38384 | Part of proof of Lemma D i... |
cdleme32d 38385 | Part of proof of Lemma D i... |
cdleme32e 38386 | Part of proof of Lemma D i... |
cdleme32f 38387 | Part of proof of Lemma D i... |
cdleme32le 38388 | Part of proof of Lemma D i... |
cdleme35a 38389 | Part of proof of Lemma E i... |
cdleme35fnpq 38390 | Part of proof of Lemma E i... |
cdleme35b 38391 | Part of proof of Lemma E i... |
cdleme35c 38392 | Part of proof of Lemma E i... |
cdleme35d 38393 | Part of proof of Lemma E i... |
cdleme35e 38394 | Part of proof of Lemma E i... |
cdleme35f 38395 | Part of proof of Lemma E i... |
cdleme35g 38396 | Part of proof of Lemma E i... |
cdleme35h 38397 | Part of proof of Lemma E i... |
cdleme35h2 38398 | Part of proof of Lemma E i... |
cdleme35sn2aw 38399 | Part of proof of Lemma E i... |
cdleme35sn3a 38400 | Part of proof of Lemma E i... |
cdleme36a 38401 | Part of proof of Lemma E i... |
cdleme36m 38402 | Part of proof of Lemma E i... |
cdleme37m 38403 | Part of proof of Lemma E i... |
cdleme38m 38404 | Part of proof of Lemma E i... |
cdleme38n 38405 | Part of proof of Lemma E i... |
cdleme39a 38406 | Part of proof of Lemma E i... |
cdleme39n 38407 | Part of proof of Lemma E i... |
cdleme40m 38408 | Part of proof of Lemma E i... |
cdleme40n 38409 | Part of proof of Lemma E i... |
cdleme40v 38410 | Part of proof of Lemma E i... |
cdleme40w 38411 | Part of proof of Lemma E i... |
cdleme42a 38412 | Part of proof of Lemma E i... |
cdleme42c 38413 | Part of proof of Lemma E i... |
cdleme42d 38414 | Part of proof of Lemma E i... |
cdleme41sn3aw 38415 | Part of proof of Lemma E i... |
cdleme41sn4aw 38416 | Part of proof of Lemma E i... |
cdleme41snaw 38417 | Part of proof of Lemma E i... |
cdleme41fva11 38418 | Part of proof of Lemma E i... |
cdleme42b 38419 | Part of proof of Lemma E i... |
cdleme42e 38420 | Part of proof of Lemma E i... |
cdleme42f 38421 | Part of proof of Lemma E i... |
cdleme42g 38422 | Part of proof of Lemma E i... |
cdleme42h 38423 | Part of proof of Lemma E i... |
cdleme42i 38424 | Part of proof of Lemma E i... |
cdleme42k 38425 | Part of proof of Lemma E i... |
cdleme42ke 38426 | Part of proof of Lemma E i... |
cdleme42keg 38427 | Part of proof of Lemma E i... |
cdleme42mN 38428 | Part of proof of Lemma E i... |
cdleme42mgN 38429 | Part of proof of Lemma E i... |
cdleme43aN 38430 | Part of proof of Lemma E i... |
cdleme43bN 38431 | Lemma for Lemma E in [Craw... |
cdleme43cN 38432 | Part of proof of Lemma E i... |
cdleme43dN 38433 | Part of proof of Lemma E i... |
cdleme46f2g2 38434 | Conversion for ` G ` to re... |
cdleme46f2g1 38435 | Conversion for ` G ` to re... |
cdleme17d2 38436 | Part of proof of Lemma E i... |
cdleme17d3 38437 | TODO: FIX COMMENT. (Contr... |
cdleme17d4 38438 | TODO: FIX COMMENT. (Contr... |
cdleme17d 38439 | Part of proof of Lemma E i... |
cdleme48fv 38440 | Part of proof of Lemma D i... |
cdleme48fvg 38441 | Remove ` P =/= Q ` conditi... |
cdleme46fvaw 38442 | Show that ` ( F `` R ) ` i... |
cdleme48bw 38443 | TODO: fix comment. TODO: ... |
cdleme48b 38444 | TODO: fix comment. (Contr... |
cdleme46frvlpq 38445 | Show that ` ( F `` S ) ` i... |
cdleme46fsvlpq 38446 | Show that ` ( F `` R ) ` i... |
cdlemeg46fvcl 38447 | TODO: fix comment. (Contr... |
cdleme4gfv 38448 | Part of proof of Lemma D i... |
cdlemeg47b 38449 | TODO: FIX COMMENT. (Contr... |
cdlemeg47rv 38450 | Value of g_s(r) when r is ... |
cdlemeg47rv2 38451 | Value of g_s(r) when r is ... |
cdlemeg49le 38452 | Part of proof of Lemma D i... |
cdlemeg46bOLDN 38453 | TODO FIX COMMENT. (Contrib... |
cdlemeg46c 38454 | TODO FIX COMMENT. (Contrib... |
cdlemeg46rvOLDN 38455 | Value of g_s(r) when r is ... |
cdlemeg46rv2OLDN 38456 | Value of g_s(r) when r is ... |
cdlemeg46fvaw 38457 | Show that ` ( F `` R ) ` i... |
cdlemeg46nlpq 38458 | Show that ` ( G `` S ) ` i... |
cdlemeg46ngfr 38459 | TODO FIX COMMENT g(f(s))=s... |
cdlemeg46nfgr 38460 | TODO FIX COMMENT f(g(s))=s... |
cdlemeg46sfg 38461 | TODO FIX COMMENT f(r) ` \/... |
cdlemeg46fjgN 38462 | NOT NEEDED? TODO FIX COMM... |
cdlemeg46rjgN 38463 | NOT NEEDED? TODO FIX COMM... |
cdlemeg46fjv 38464 | TODO FIX COMMENT f(r) ` \/... |
cdlemeg46fsfv 38465 | TODO FIX COMMENT f(r) ` \/... |
cdlemeg46frv 38466 | TODO FIX COMMENT. (f(r) ` ... |
cdlemeg46v1v2 38467 | TODO FIX COMMENT v_1 = v_2... |
cdlemeg46vrg 38468 | TODO FIX COMMENT v_1 ` <_ ... |
cdlemeg46rgv 38469 | TODO FIX COMMENT r ` <_ ` ... |
cdlemeg46req 38470 | TODO FIX COMMENT r = (v_1 ... |
cdlemeg46gfv 38471 | TODO FIX COMMENT p. 115 pe... |
cdlemeg46gfr 38472 | TODO FIX COMMENT p. 116 pe... |
cdlemeg46gfre 38473 | TODO FIX COMMENT p. 116 pe... |
cdlemeg46gf 38474 | TODO FIX COMMENT Eliminate... |
cdlemeg46fgN 38475 | TODO FIX COMMENT p. 116 pe... |
cdleme48d 38476 | TODO: fix comment. (Contr... |
cdleme48gfv1 38477 | TODO: fix comment. (Contr... |
cdleme48gfv 38478 | TODO: fix comment. (Contr... |
cdleme48fgv 38479 | TODO: fix comment. (Contr... |
cdlemeg49lebilem 38480 | Part of proof of Lemma D i... |
cdleme50lebi 38481 | Part of proof of Lemma D i... |
cdleme50eq 38482 | Part of proof of Lemma D i... |
cdleme50f 38483 | Part of proof of Lemma D i... |
cdleme50f1 38484 | Part of proof of Lemma D i... |
cdleme50rnlem 38485 | Part of proof of Lemma D i... |
cdleme50rn 38486 | Part of proof of Lemma D i... |
cdleme50f1o 38487 | Part of proof of Lemma D i... |
cdleme50laut 38488 | Part of proof of Lemma D i... |
cdleme50ldil 38489 | Part of proof of Lemma D i... |
cdleme50trn1 38490 | Part of proof that ` F ` i... |
cdleme50trn2a 38491 | Part of proof that ` F ` i... |
cdleme50trn2 38492 | Part of proof that ` F ` i... |
cdleme50trn12 38493 | Part of proof that ` F ` i... |
cdleme50trn3 38494 | Part of proof that ` F ` i... |
cdleme50trn123 38495 | Part of proof that ` F ` i... |
cdleme51finvfvN 38496 | Part of proof of Lemma E i... |
cdleme51finvN 38497 | Part of proof of Lemma E i... |
cdleme50ltrn 38498 | Part of proof of Lemma E i... |
cdleme51finvtrN 38499 | Part of proof of Lemma E i... |
cdleme50ex 38500 | Part of Lemma E in [Crawle... |
cdleme 38501 | Lemma E in [Crawley] p. 11... |
cdlemf1 38502 | Part of Lemma F in [Crawle... |
cdlemf2 38503 | Part of Lemma F in [Crawle... |
cdlemf 38504 | Lemma F in [Crawley] p. 11... |
cdlemfnid 38505 | ~ cdlemf with additional c... |
cdlemftr3 38506 | Special case of ~ cdlemf s... |
cdlemftr2 38507 | Special case of ~ cdlemf s... |
cdlemftr1 38508 | Part of proof of Lemma G o... |
cdlemftr0 38509 | Special case of ~ cdlemf s... |
trlord 38510 | The ordering of two Hilber... |
cdlemg1a 38511 | Shorter expression for ` G... |
cdlemg1b2 38512 | This theorem can be used t... |
cdlemg1idlemN 38513 | Lemma for ~ cdlemg1idN . ... |
cdlemg1fvawlemN 38514 | Lemma for ~ ltrniotafvawN ... |
cdlemg1ltrnlem 38515 | Lemma for ~ ltrniotacl . ... |
cdlemg1finvtrlemN 38516 | Lemma for ~ ltrniotacnvN .... |
cdlemg1bOLDN 38517 | This theorem can be used t... |
cdlemg1idN 38518 | Version of ~ cdleme31id wi... |
ltrniotafvawN 38519 | Version of ~ cdleme46fvaw ... |
ltrniotacl 38520 | Version of ~ cdleme50ltrn ... |
ltrniotacnvN 38521 | Version of ~ cdleme51finvt... |
ltrniotaval 38522 | Value of the unique transl... |
ltrniotacnvval 38523 | Converse value of the uniq... |
ltrniotaidvalN 38524 | Value of the unique transl... |
ltrniotavalbN 38525 | Value of the unique transl... |
cdlemeiota 38526 | A translation is uniquely ... |
cdlemg1ci2 38527 | Any function of the form o... |
cdlemg1cN 38528 | Any translation belongs to... |
cdlemg1cex 38529 | Any translation is one of ... |
cdlemg2cN 38530 | Any translation belongs to... |
cdlemg2dN 38531 | This theorem can be used t... |
cdlemg2cex 38532 | Any translation is one of ... |
cdlemg2ce 38533 | Utility theorem to elimina... |
cdlemg2jlemOLDN 38534 | Part of proof of Lemma E i... |
cdlemg2fvlem 38535 | Lemma for ~ cdlemg2fv . (... |
cdlemg2klem 38536 | ~ cdleme42keg with simpler... |
cdlemg2idN 38537 | Version of ~ cdleme31id wi... |
cdlemg3a 38538 | Part of proof of Lemma G i... |
cdlemg2jOLDN 38539 | TODO: Replace this with ~... |
cdlemg2fv 38540 | Value of a translation in ... |
cdlemg2fv2 38541 | Value of a translation in ... |
cdlemg2k 38542 | ~ cdleme42keg with simpler... |
cdlemg2kq 38543 | ~ cdlemg2k with ` P ` and ... |
cdlemg2l 38544 | TODO: FIX COMMENT. (Contr... |
cdlemg2m 38545 | TODO: FIX COMMENT. (Contr... |
cdlemg5 38546 | TODO: Is there a simpler ... |
cdlemb3 38547 | Given two atoms not under ... |
cdlemg7fvbwN 38548 | Properties of a translatio... |
cdlemg4a 38549 | TODO: FIX COMMENT If fg(p... |
cdlemg4b1 38550 | TODO: FIX COMMENT. (Contr... |
cdlemg4b2 38551 | TODO: FIX COMMENT. (Contr... |
cdlemg4b12 38552 | TODO: FIX COMMENT. (Contr... |
cdlemg4c 38553 | TODO: FIX COMMENT. (Contr... |
cdlemg4d 38554 | TODO: FIX COMMENT. (Contr... |
cdlemg4e 38555 | TODO: FIX COMMENT. (Contr... |
cdlemg4f 38556 | TODO: FIX COMMENT. (Contr... |
cdlemg4g 38557 | TODO: FIX COMMENT. (Contr... |
cdlemg4 38558 | TODO: FIX COMMENT. (Contr... |
cdlemg6a 38559 | TODO: FIX COMMENT. TODO: ... |
cdlemg6b 38560 | TODO: FIX COMMENT. TODO: ... |
cdlemg6c 38561 | TODO: FIX COMMENT. (Contr... |
cdlemg6d 38562 | TODO: FIX COMMENT. (Contr... |
cdlemg6e 38563 | TODO: FIX COMMENT. (Contr... |
cdlemg6 38564 | TODO: FIX COMMENT. (Contr... |
cdlemg7fvN 38565 | Value of a translation com... |
cdlemg7aN 38566 | TODO: FIX COMMENT. (Contr... |
cdlemg7N 38567 | TODO: FIX COMMENT. (Contr... |
cdlemg8a 38568 | TODO: FIX COMMENT. (Contr... |
cdlemg8b 38569 | TODO: FIX COMMENT. (Contr... |
cdlemg8c 38570 | TODO: FIX COMMENT. (Contr... |
cdlemg8d 38571 | TODO: FIX COMMENT. (Contr... |
cdlemg8 38572 | TODO: FIX COMMENT. (Contr... |
cdlemg9a 38573 | TODO: FIX COMMENT. (Contr... |
cdlemg9b 38574 | The triples ` <. P , ( F `... |
cdlemg9 38575 | The triples ` <. P , ( F `... |
cdlemg10b 38576 | TODO: FIX COMMENT. TODO: ... |
cdlemg10bALTN 38577 | TODO: FIX COMMENT. TODO: ... |
cdlemg11a 38578 | TODO: FIX COMMENT. (Contr... |
cdlemg11aq 38579 | TODO: FIX COMMENT. TODO: ... |
cdlemg10c 38580 | TODO: FIX COMMENT. TODO: ... |
cdlemg10a 38581 | TODO: FIX COMMENT. (Contr... |
cdlemg10 38582 | TODO: FIX COMMENT. (Contr... |
cdlemg11b 38583 | TODO: FIX COMMENT. (Contr... |
cdlemg12a 38584 | TODO: FIX COMMENT. (Contr... |
cdlemg12b 38585 | The triples ` <. P , ( F `... |
cdlemg12c 38586 | The triples ` <. P , ( F `... |
cdlemg12d 38587 | TODO: FIX COMMENT. (Contr... |
cdlemg12e 38588 | TODO: FIX COMMENT. (Contr... |
cdlemg12f 38589 | TODO: FIX COMMENT. (Contr... |
cdlemg12g 38590 | TODO: FIX COMMENT. TODO: ... |
cdlemg12 38591 | TODO: FIX COMMENT. (Contr... |
cdlemg13a 38592 | TODO: FIX COMMENT. (Contr... |
cdlemg13 38593 | TODO: FIX COMMENT. (Contr... |
cdlemg14f 38594 | TODO: FIX COMMENT. (Contr... |
cdlemg14g 38595 | TODO: FIX COMMENT. (Contr... |
cdlemg15a 38596 | Eliminate the ` ( F `` P )... |
cdlemg15 38597 | Eliminate the ` ( (... |
cdlemg16 38598 | Part of proof of Lemma G o... |
cdlemg16ALTN 38599 | This version of ~ cdlemg16... |
cdlemg16z 38600 | Eliminate ` ( ( F `... |
cdlemg16zz 38601 | Eliminate ` P =/= Q ` from... |
cdlemg17a 38602 | TODO: FIX COMMENT. (Contr... |
cdlemg17b 38603 | Part of proof of Lemma G i... |
cdlemg17dN 38604 | TODO: fix comment. (Contr... |
cdlemg17dALTN 38605 | Same as ~ cdlemg17dN with ... |
cdlemg17e 38606 | TODO: fix comment. (Contr... |
cdlemg17f 38607 | TODO: fix comment. (Contr... |
cdlemg17g 38608 | TODO: fix comment. (Contr... |
cdlemg17h 38609 | TODO: fix comment. (Contr... |
cdlemg17i 38610 | TODO: fix comment. (Contr... |
cdlemg17ir 38611 | TODO: fix comment. (Contr... |
cdlemg17j 38612 | TODO: fix comment. (Contr... |
cdlemg17pq 38613 | Utility theorem for swappi... |
cdlemg17bq 38614 | ~ cdlemg17b with ` P ` and... |
cdlemg17iqN 38615 | ~ cdlemg17i with ` P ` and... |
cdlemg17irq 38616 | ~ cdlemg17ir with ` P ` an... |
cdlemg17jq 38617 | ~ cdlemg17j with ` P ` and... |
cdlemg17 38618 | Part of Lemma G of [Crawle... |
cdlemg18a 38619 | Show two lines are differe... |
cdlemg18b 38620 | Lemma for ~ cdlemg18c . T... |
cdlemg18c 38621 | Show two lines intersect a... |
cdlemg18d 38622 | Show two lines intersect a... |
cdlemg18 38623 | Show two lines intersect a... |
cdlemg19a 38624 | Show two lines intersect a... |
cdlemg19 38625 | Show two lines intersect a... |
cdlemg20 38626 | Show two lines intersect a... |
cdlemg21 38627 | Version of cdlemg19 with `... |
cdlemg22 38628 | ~ cdlemg21 with ` ( F `` P... |
cdlemg24 38629 | Combine ~ cdlemg16z and ~ ... |
cdlemg37 38630 | Use ~ cdlemg8 to eliminate... |
cdlemg25zz 38631 | ~ cdlemg16zz restated for ... |
cdlemg26zz 38632 | ~ cdlemg16zz restated for ... |
cdlemg27a 38633 | For use with case when ` (... |
cdlemg28a 38634 | Part of proof of Lemma G o... |
cdlemg31b0N 38635 | TODO: Fix comment. (Cont... |
cdlemg31b0a 38636 | TODO: Fix comment. (Cont... |
cdlemg27b 38637 | TODO: Fix comment. (Cont... |
cdlemg31a 38638 | TODO: fix comment. (Contr... |
cdlemg31b 38639 | TODO: fix comment. (Contr... |
cdlemg31c 38640 | Show that when ` N ` is an... |
cdlemg31d 38641 | Eliminate ` ( F `` P ) =/=... |
cdlemg33b0 38642 | TODO: Fix comment. (Cont... |
cdlemg33c0 38643 | TODO: Fix comment. (Cont... |
cdlemg28b 38644 | Part of proof of Lemma G o... |
cdlemg28 38645 | Part of proof of Lemma G o... |
cdlemg29 38646 | Eliminate ` ( F `` P ) =/=... |
cdlemg33a 38647 | TODO: Fix comment. (Cont... |
cdlemg33b 38648 | TODO: Fix comment. (Cont... |
cdlemg33c 38649 | TODO: Fix comment. (Cont... |
cdlemg33d 38650 | TODO: Fix comment. (Cont... |
cdlemg33e 38651 | TODO: Fix comment. (Cont... |
cdlemg33 38652 | Combine ~ cdlemg33b , ~ cd... |
cdlemg34 38653 | Use cdlemg33 to eliminate ... |
cdlemg35 38654 | TODO: Fix comment. TODO:... |
cdlemg36 38655 | Use cdlemg35 to eliminate ... |
cdlemg38 38656 | Use ~ cdlemg37 to eliminat... |
cdlemg39 38657 | Eliminate ` =/= ` conditio... |
cdlemg40 38658 | Eliminate ` P =/= Q ` cond... |
cdlemg41 38659 | Convert ~ cdlemg40 to func... |
ltrnco 38660 | The composition of two tra... |
trlcocnv 38661 | Swap the arguments of the ... |
trlcoabs 38662 | Absorption into a composit... |
trlcoabs2N 38663 | Absorption of the trace of... |
trlcoat 38664 | The trace of a composition... |
trlcocnvat 38665 | Commonly used special case... |
trlconid 38666 | The composition of two dif... |
trlcolem 38667 | Lemma for ~ trlco . (Cont... |
trlco 38668 | The trace of a composition... |
trlcone 38669 | If two translations have d... |
cdlemg42 38670 | Part of proof of Lemma G o... |
cdlemg43 38671 | Part of proof of Lemma G o... |
cdlemg44a 38672 | Part of proof of Lemma G o... |
cdlemg44b 38673 | Eliminate ` ( F `` P ) =/=... |
cdlemg44 38674 | Part of proof of Lemma G o... |
cdlemg47a 38675 | TODO: fix comment. TODO: ... |
cdlemg46 38676 | Part of proof of Lemma G o... |
cdlemg47 38677 | Part of proof of Lemma G o... |
cdlemg48 38678 | Eliminate ` h ` from ~ cdl... |
ltrncom 38679 | Composition is commutative... |
ltrnco4 38680 | Rearrange a composition of... |
trljco 38681 | Trace joined with trace of... |
trljco2 38682 | Trace joined with trace of... |
tgrpfset 38685 | The translation group maps... |
tgrpset 38686 | The translation group for ... |
tgrpbase 38687 | The base set of the transl... |
tgrpopr 38688 | The group operation of the... |
tgrpov 38689 | The group operation value ... |
tgrpgrplem 38690 | Lemma for ~ tgrpgrp . (Co... |
tgrpgrp 38691 | The translation group is a... |
tgrpabl 38692 | The translation group is a... |
tendofset 38699 | The set of all trace-prese... |
tendoset 38700 | The set of trace-preservin... |
istendo 38701 | The predicate "is a trace-... |
tendotp 38702 | Trace-preserving property ... |
istendod 38703 | Deduce the predicate "is a... |
tendof 38704 | Functionality of a trace-p... |
tendoeq1 38705 | Condition determining equa... |
tendovalco 38706 | Value of composition of tr... |
tendocoval 38707 | Value of composition of en... |
tendocl 38708 | Closure of a trace-preserv... |
tendoco2 38709 | Distribution of compositio... |
tendoidcl 38710 | The identity is a trace-pr... |
tendo1mul 38711 | Multiplicative identity mu... |
tendo1mulr 38712 | Multiplicative identity mu... |
tendococl 38713 | The composition of two tra... |
tendoid 38714 | The identity value of a tr... |
tendoeq2 38715 | Condition determining equa... |
tendoplcbv 38716 | Define sum operation for t... |
tendopl 38717 | Value of endomorphism sum ... |
tendopl2 38718 | Value of result of endomor... |
tendoplcl2 38719 | Value of result of endomor... |
tendoplco2 38720 | Value of result of endomor... |
tendopltp 38721 | Trace-preserving property ... |
tendoplcl 38722 | Endomorphism sum is a trac... |
tendoplcom 38723 | The endomorphism sum opera... |
tendoplass 38724 | The endomorphism sum opera... |
tendodi1 38725 | Endomorphism composition d... |
tendodi2 38726 | Endomorphism composition d... |
tendo0cbv 38727 | Define additive identity f... |
tendo02 38728 | Value of additive identity... |
tendo0co2 38729 | The additive identity trac... |
tendo0tp 38730 | Trace-preserving property ... |
tendo0cl 38731 | The additive identity is a... |
tendo0pl 38732 | Property of the additive i... |
tendo0plr 38733 | Property of the additive i... |
tendoicbv 38734 | Define inverse function fo... |
tendoi 38735 | Value of inverse endomorph... |
tendoi2 38736 | Value of additive inverse ... |
tendoicl 38737 | Closure of the additive in... |
tendoipl 38738 | Property of the additive i... |
tendoipl2 38739 | Property of the additive i... |
erngfset 38740 | The division rings on trac... |
erngset 38741 | The division ring on trace... |
erngbase 38742 | The base set of the divisi... |
erngfplus 38743 | Ring addition operation. ... |
erngplus 38744 | Ring addition operation. ... |
erngplus2 38745 | Ring addition operation. ... |
erngfmul 38746 | Ring multiplication operat... |
erngmul 38747 | Ring addition operation. ... |
erngfset-rN 38748 | The division rings on trac... |
erngset-rN 38749 | The division ring on trace... |
erngbase-rN 38750 | The base set of the divisi... |
erngfplus-rN 38751 | Ring addition operation. ... |
erngplus-rN 38752 | Ring addition operation. ... |
erngplus2-rN 38753 | Ring addition operation. ... |
erngfmul-rN 38754 | Ring multiplication operat... |
erngmul-rN 38755 | Ring addition operation. ... |
cdlemh1 38756 | Part of proof of Lemma H o... |
cdlemh2 38757 | Part of proof of Lemma H o... |
cdlemh 38758 | Lemma H of [Crawley] p. 11... |
cdlemi1 38759 | Part of proof of Lemma I o... |
cdlemi2 38760 | Part of proof of Lemma I o... |
cdlemi 38761 | Lemma I of [Crawley] p. 11... |
cdlemj1 38762 | Part of proof of Lemma J o... |
cdlemj2 38763 | Part of proof of Lemma J o... |
cdlemj3 38764 | Part of proof of Lemma J o... |
tendocan 38765 | Cancellation law: if the v... |
tendoid0 38766 | A trace-preserving endomor... |
tendo0mul 38767 | Additive identity multipli... |
tendo0mulr 38768 | Additive identity multipli... |
tendo1ne0 38769 | The identity (unity) is no... |
tendoconid 38770 | The composition (product) ... |
tendotr 38771 | The trace of the value of ... |
cdlemk1 38772 | Part of proof of Lemma K o... |
cdlemk2 38773 | Part of proof of Lemma K o... |
cdlemk3 38774 | Part of proof of Lemma K o... |
cdlemk4 38775 | Part of proof of Lemma K o... |
cdlemk5a 38776 | Part of proof of Lemma K o... |
cdlemk5 38777 | Part of proof of Lemma K o... |
cdlemk6 38778 | Part of proof of Lemma K o... |
cdlemk8 38779 | Part of proof of Lemma K o... |
cdlemk9 38780 | Part of proof of Lemma K o... |
cdlemk9bN 38781 | Part of proof of Lemma K o... |
cdlemki 38782 | Part of proof of Lemma K o... |
cdlemkvcl 38783 | Part of proof of Lemma K o... |
cdlemk10 38784 | Part of proof of Lemma K o... |
cdlemksv 38785 | Part of proof of Lemma K o... |
cdlemksel 38786 | Part of proof of Lemma K o... |
cdlemksat 38787 | Part of proof of Lemma K o... |
cdlemksv2 38788 | Part of proof of Lemma K o... |
cdlemk7 38789 | Part of proof of Lemma K o... |
cdlemk11 38790 | Part of proof of Lemma K o... |
cdlemk12 38791 | Part of proof of Lemma K o... |
cdlemkoatnle 38792 | Utility lemma. (Contribut... |
cdlemk13 38793 | Part of proof of Lemma K o... |
cdlemkole 38794 | Utility lemma. (Contribut... |
cdlemk14 38795 | Part of proof of Lemma K o... |
cdlemk15 38796 | Part of proof of Lemma K o... |
cdlemk16a 38797 | Part of proof of Lemma K o... |
cdlemk16 38798 | Part of proof of Lemma K o... |
cdlemk17 38799 | Part of proof of Lemma K o... |
cdlemk1u 38800 | Part of proof of Lemma K o... |
cdlemk5auN 38801 | Part of proof of Lemma K o... |
cdlemk5u 38802 | Part of proof of Lemma K o... |
cdlemk6u 38803 | Part of proof of Lemma K o... |
cdlemkj 38804 | Part of proof of Lemma K o... |
cdlemkuvN 38805 | Part of proof of Lemma K o... |
cdlemkuel 38806 | Part of proof of Lemma K o... |
cdlemkuat 38807 | Part of proof of Lemma K o... |
cdlemkuv2 38808 | Part of proof of Lemma K o... |
cdlemk18 38809 | Part of proof of Lemma K o... |
cdlemk19 38810 | Part of proof of Lemma K o... |
cdlemk7u 38811 | Part of proof of Lemma K o... |
cdlemk11u 38812 | Part of proof of Lemma K o... |
cdlemk12u 38813 | Part of proof of Lemma K o... |
cdlemk21N 38814 | Part of proof of Lemma K o... |
cdlemk20 38815 | Part of proof of Lemma K o... |
cdlemkoatnle-2N 38816 | Utility lemma. (Contribut... |
cdlemk13-2N 38817 | Part of proof of Lemma K o... |
cdlemkole-2N 38818 | Utility lemma. (Contribut... |
cdlemk14-2N 38819 | Part of proof of Lemma K o... |
cdlemk15-2N 38820 | Part of proof of Lemma K o... |
cdlemk16-2N 38821 | Part of proof of Lemma K o... |
cdlemk17-2N 38822 | Part of proof of Lemma K o... |
cdlemkj-2N 38823 | Part of proof of Lemma K o... |
cdlemkuv-2N 38824 | Part of proof of Lemma K o... |
cdlemkuel-2N 38825 | Part of proof of Lemma K o... |
cdlemkuv2-2 38826 | Part of proof of Lemma K o... |
cdlemk18-2N 38827 | Part of proof of Lemma K o... |
cdlemk19-2N 38828 | Part of proof of Lemma K o... |
cdlemk7u-2N 38829 | Part of proof of Lemma K o... |
cdlemk11u-2N 38830 | Part of proof of Lemma K o... |
cdlemk12u-2N 38831 | Part of proof of Lemma K o... |
cdlemk21-2N 38832 | Part of proof of Lemma K o... |
cdlemk20-2N 38833 | Part of proof of Lemma K o... |
cdlemk22 38834 | Part of proof of Lemma K o... |
cdlemk30 38835 | Part of proof of Lemma K o... |
cdlemkuu 38836 | Convert between function a... |
cdlemk31 38837 | Part of proof of Lemma K o... |
cdlemk32 38838 | Part of proof of Lemma K o... |
cdlemkuel-3 38839 | Part of proof of Lemma K o... |
cdlemkuv2-3N 38840 | Part of proof of Lemma K o... |
cdlemk18-3N 38841 | Part of proof of Lemma K o... |
cdlemk22-3 38842 | Part of proof of Lemma K o... |
cdlemk23-3 38843 | Part of proof of Lemma K o... |
cdlemk24-3 38844 | Part of proof of Lemma K o... |
cdlemk25-3 38845 | Part of proof of Lemma K o... |
cdlemk26b-3 38846 | Part of proof of Lemma K o... |
cdlemk26-3 38847 | Part of proof of Lemma K o... |
cdlemk27-3 38848 | Part of proof of Lemma K o... |
cdlemk28-3 38849 | Part of proof of Lemma K o... |
cdlemk33N 38850 | Part of proof of Lemma K o... |
cdlemk34 38851 | Part of proof of Lemma K o... |
cdlemk29-3 38852 | Part of proof of Lemma K o... |
cdlemk35 38853 | Part of proof of Lemma K o... |
cdlemk36 38854 | Part of proof of Lemma K o... |
cdlemk37 38855 | Part of proof of Lemma K o... |
cdlemk38 38856 | Part of proof of Lemma K o... |
cdlemk39 38857 | Part of proof of Lemma K o... |
cdlemk40 38858 | TODO: fix comment. (Contr... |
cdlemk40t 38859 | TODO: fix comment. (Contr... |
cdlemk40f 38860 | TODO: fix comment. (Contr... |
cdlemk41 38861 | Part of proof of Lemma K o... |
cdlemkfid1N 38862 | Lemma for ~ cdlemkfid3N . ... |
cdlemkid1 38863 | Lemma for ~ cdlemkid . (C... |
cdlemkfid2N 38864 | Lemma for ~ cdlemkfid3N . ... |
cdlemkid2 38865 | Lemma for ~ cdlemkid . (C... |
cdlemkfid3N 38866 | TODO: is this useful or sh... |
cdlemky 38867 | Part of proof of Lemma K o... |
cdlemkyu 38868 | Convert between function a... |
cdlemkyuu 38869 | ~ cdlemkyu with some hypot... |
cdlemk11ta 38870 | Part of proof of Lemma K o... |
cdlemk19ylem 38871 | Lemma for ~ cdlemk19y . (... |
cdlemk11tb 38872 | Part of proof of Lemma K o... |
cdlemk19y 38873 | ~ cdlemk19 with simpler hy... |
cdlemkid3N 38874 | Lemma for ~ cdlemkid . (C... |
cdlemkid4 38875 | Lemma for ~ cdlemkid . (C... |
cdlemkid5 38876 | Lemma for ~ cdlemkid . (C... |
cdlemkid 38877 | The value of the tau funct... |
cdlemk35s 38878 | Substitution version of ~ ... |
cdlemk35s-id 38879 | Substitution version of ~ ... |
cdlemk39s 38880 | Substitution version of ~ ... |
cdlemk39s-id 38881 | Substitution version of ~ ... |
cdlemk42 38882 | Part of proof of Lemma K o... |
cdlemk19xlem 38883 | Lemma for ~ cdlemk19x . (... |
cdlemk19x 38884 | ~ cdlemk19 with simpler hy... |
cdlemk42yN 38885 | Part of proof of Lemma K o... |
cdlemk11tc 38886 | Part of proof of Lemma K o... |
cdlemk11t 38887 | Part of proof of Lemma K o... |
cdlemk45 38888 | Part of proof of Lemma K o... |
cdlemk46 38889 | Part of proof of Lemma K o... |
cdlemk47 38890 | Part of proof of Lemma K o... |
cdlemk48 38891 | Part of proof of Lemma K o... |
cdlemk49 38892 | Part of proof of Lemma K o... |
cdlemk50 38893 | Part of proof of Lemma K o... |
cdlemk51 38894 | Part of proof of Lemma K o... |
cdlemk52 38895 | Part of proof of Lemma K o... |
cdlemk53a 38896 | Lemma for ~ cdlemk53 . (C... |
cdlemk53b 38897 | Lemma for ~ cdlemk53 . (C... |
cdlemk53 38898 | Part of proof of Lemma K o... |
cdlemk54 38899 | Part of proof of Lemma K o... |
cdlemk55a 38900 | Lemma for ~ cdlemk55 . (C... |
cdlemk55b 38901 | Lemma for ~ cdlemk55 . (C... |
cdlemk55 38902 | Part of proof of Lemma K o... |
cdlemkyyN 38903 | Part of proof of Lemma K o... |
cdlemk43N 38904 | Part of proof of Lemma K o... |
cdlemk35u 38905 | Substitution version of ~ ... |
cdlemk55u1 38906 | Lemma for ~ cdlemk55u . (... |
cdlemk55u 38907 | Part of proof of Lemma K o... |
cdlemk39u1 38908 | Lemma for ~ cdlemk39u . (... |
cdlemk39u 38909 | Part of proof of Lemma K o... |
cdlemk19u1 38910 | ~ cdlemk19 with simpler hy... |
cdlemk19u 38911 | Part of Lemma K of [Crawle... |
cdlemk56 38912 | Part of Lemma K of [Crawle... |
cdlemk19w 38913 | Use a fixed element to eli... |
cdlemk56w 38914 | Use a fixed element to eli... |
cdlemk 38915 | Lemma K of [Crawley] p. 11... |
tendoex 38916 | Generalization of Lemma K ... |
cdleml1N 38917 | Part of proof of Lemma L o... |
cdleml2N 38918 | Part of proof of Lemma L o... |
cdleml3N 38919 | Part of proof of Lemma L o... |
cdleml4N 38920 | Part of proof of Lemma L o... |
cdleml5N 38921 | Part of proof of Lemma L o... |
cdleml6 38922 | Part of proof of Lemma L o... |
cdleml7 38923 | Part of proof of Lemma L o... |
cdleml8 38924 | Part of proof of Lemma L o... |
cdleml9 38925 | Part of proof of Lemma L o... |
dva1dim 38926 | Two expressions for the 1-... |
dvhb1dimN 38927 | Two expressions for the 1-... |
erng1lem 38928 | Value of the endomorphism ... |
erngdvlem1 38929 | Lemma for ~ eringring . (... |
erngdvlem2N 38930 | Lemma for ~ eringring . (... |
erngdvlem3 38931 | Lemma for ~ eringring . (... |
erngdvlem4 38932 | Lemma for ~ erngdv . (Con... |
eringring 38933 | An endomorphism ring is a ... |
erngdv 38934 | An endomorphism ring is a ... |
erng0g 38935 | The division ring zero of ... |
erng1r 38936 | The division ring unit of ... |
erngdvlem1-rN 38937 | Lemma for ~ eringring . (... |
erngdvlem2-rN 38938 | Lemma for ~ eringring . (... |
erngdvlem3-rN 38939 | Lemma for ~ eringring . (... |
erngdvlem4-rN 38940 | Lemma for ~ erngdv . (Con... |
erngring-rN 38941 | An endomorphism ring is a ... |
erngdv-rN 38942 | An endomorphism ring is a ... |
dvafset 38945 | The constructed partial ve... |
dvaset 38946 | The constructed partial ve... |
dvasca 38947 | The ring base set of the c... |
dvabase 38948 | The ring base set of the c... |
dvafplusg 38949 | Ring addition operation fo... |
dvaplusg 38950 | Ring addition operation fo... |
dvaplusgv 38951 | Ring addition operation fo... |
dvafmulr 38952 | Ring multiplication operat... |
dvamulr 38953 | Ring multiplication operat... |
dvavbase 38954 | The vectors (vector base s... |
dvafvadd 38955 | The vector sum operation f... |
dvavadd 38956 | Ring addition operation fo... |
dvafvsca 38957 | Ring addition operation fo... |
dvavsca 38958 | Ring addition operation fo... |
tendospcl 38959 | Closure of endomorphism sc... |
tendospass 38960 | Associative law for endomo... |
tendospdi1 38961 | Forward distributive law f... |
tendocnv 38962 | Converse of a trace-preser... |
tendospdi2 38963 | Reverse distributive law f... |
tendospcanN 38964 | Cancellation law for trace... |
dvaabl 38965 | The constructed partial ve... |
dvalveclem 38966 | Lemma for ~ dvalvec . (Co... |
dvalvec 38967 | The constructed partial ve... |
dva0g 38968 | The zero vector of partial... |
diaffval 38971 | The partial isomorphism A ... |
diafval 38972 | The partial isomorphism A ... |
diaval 38973 | The partial isomorphism A ... |
diaelval 38974 | Member of the partial isom... |
diafn 38975 | Functionality and domain o... |
diadm 38976 | Domain of the partial isom... |
diaeldm 38977 | Member of domain of the pa... |
diadmclN 38978 | A member of domain of the ... |
diadmleN 38979 | A member of domain of the ... |
dian0 38980 | The value of the partial i... |
dia0eldmN 38981 | The lattice zero belongs t... |
dia1eldmN 38982 | The fiducial hyperplane (t... |
diass 38983 | The value of the partial i... |
diael 38984 | A member of the value of t... |
diatrl 38985 | Trace of a member of the p... |
diaelrnN 38986 | Any value of the partial i... |
dialss 38987 | The value of partial isomo... |
diaord 38988 | The partial isomorphism A ... |
dia11N 38989 | The partial isomorphism A ... |
diaf11N 38990 | The partial isomorphism A ... |
diaclN 38991 | Closure of partial isomorp... |
diacnvclN 38992 | Closure of partial isomorp... |
dia0 38993 | The value of the partial i... |
dia1N 38994 | The value of the partial i... |
dia1elN 38995 | The largest subspace in th... |
diaglbN 38996 | Partial isomorphism A of a... |
diameetN 38997 | Partial isomorphism A of a... |
diainN 38998 | Inverse partial isomorphis... |
diaintclN 38999 | The intersection of partia... |
diasslssN 39000 | The partial isomorphism A ... |
diassdvaN 39001 | The partial isomorphism A ... |
dia1dim 39002 | Two expressions for the 1-... |
dia1dim2 39003 | Two expressions for a 1-di... |
dia1dimid 39004 | A vector (translation) bel... |
dia2dimlem1 39005 | Lemma for ~ dia2dim . Sho... |
dia2dimlem2 39006 | Lemma for ~ dia2dim . Def... |
dia2dimlem3 39007 | Lemma for ~ dia2dim . Def... |
dia2dimlem4 39008 | Lemma for ~ dia2dim . Sho... |
dia2dimlem5 39009 | Lemma for ~ dia2dim . The... |
dia2dimlem6 39010 | Lemma for ~ dia2dim . Eli... |
dia2dimlem7 39011 | Lemma for ~ dia2dim . Eli... |
dia2dimlem8 39012 | Lemma for ~ dia2dim . Eli... |
dia2dimlem9 39013 | Lemma for ~ dia2dim . Eli... |
dia2dimlem10 39014 | Lemma for ~ dia2dim . Con... |
dia2dimlem11 39015 | Lemma for ~ dia2dim . Con... |
dia2dimlem12 39016 | Lemma for ~ dia2dim . Obt... |
dia2dimlem13 39017 | Lemma for ~ dia2dim . Eli... |
dia2dim 39018 | A two-dimensional subspace... |
dvhfset 39021 | The constructed full vecto... |
dvhset 39022 | The constructed full vecto... |
dvhsca 39023 | The ring of scalars of the... |
dvhbase 39024 | The ring base set of the c... |
dvhfplusr 39025 | Ring addition operation fo... |
dvhfmulr 39026 | Ring multiplication operat... |
dvhmulr 39027 | Ring multiplication operat... |
dvhvbase 39028 | The vectors (vector base s... |
dvhelvbasei 39029 | Vector membership in the c... |
dvhvaddcbv 39030 | Change bound variables to ... |
dvhvaddval 39031 | The vector sum operation f... |
dvhfvadd 39032 | The vector sum operation f... |
dvhvadd 39033 | The vector sum operation f... |
dvhopvadd 39034 | The vector sum operation f... |
dvhopvadd2 39035 | The vector sum operation f... |
dvhvaddcl 39036 | Closure of the vector sum ... |
dvhvaddcomN 39037 | Commutativity of vector su... |
dvhvaddass 39038 | Associativity of vector su... |
dvhvscacbv 39039 | Change bound variables to ... |
dvhvscaval 39040 | The scalar product operati... |
dvhfvsca 39041 | Scalar product operation f... |
dvhvsca 39042 | Scalar product operation f... |
dvhopvsca 39043 | Scalar product operation f... |
dvhvscacl 39044 | Closure of the scalar prod... |
tendoinvcl 39045 | Closure of multiplicative ... |
tendolinv 39046 | Left multiplicative invers... |
tendorinv 39047 | Right multiplicative inver... |
dvhgrp 39048 | The full vector space ` U ... |
dvhlveclem 39049 | Lemma for ~ dvhlvec . TOD... |
dvhlvec 39050 | The full vector space ` U ... |
dvhlmod 39051 | The full vector space ` U ... |
dvh0g 39052 | The zero vector of vector ... |
dvheveccl 39053 | Properties of a unit vecto... |
dvhopclN 39054 | Closure of a ` DVecH ` vec... |
dvhopaddN 39055 | Sum of ` DVecH ` vectors e... |
dvhopspN 39056 | Scalar product of ` DVecH ... |
dvhopN 39057 | Decompose a ` DVecH ` vect... |
dvhopellsm 39058 | Ordered pair membership in... |
cdlemm10N 39059 | The image of the map ` G `... |
docaffvalN 39062 | Subspace orthocomplement f... |
docafvalN 39063 | Subspace orthocomplement f... |
docavalN 39064 | Subspace orthocomplement f... |
docaclN 39065 | Closure of subspace orthoc... |
diaocN 39066 | Value of partial isomorphi... |
doca2N 39067 | Double orthocomplement of ... |
doca3N 39068 | Double orthocomplement of ... |
dvadiaN 39069 | Any closed subspace is a m... |
diarnN 39070 | Partial isomorphism A maps... |
diaf1oN 39071 | The partial isomorphism A ... |
djaffvalN 39074 | Subspace join for ` DVecA ... |
djafvalN 39075 | Subspace join for ` DVecA ... |
djavalN 39076 | Subspace join for ` DVecA ... |
djaclN 39077 | Closure of subspace join f... |
djajN 39078 | Transfer lattice join to `... |
dibffval 39081 | The partial isomorphism B ... |
dibfval 39082 | The partial isomorphism B ... |
dibval 39083 | The partial isomorphism B ... |
dibopelvalN 39084 | Member of the partial isom... |
dibval2 39085 | Value of the partial isomo... |
dibopelval2 39086 | Member of the partial isom... |
dibval3N 39087 | Value of the partial isomo... |
dibelval3 39088 | Member of the partial isom... |
dibopelval3 39089 | Member of the partial isom... |
dibelval1st 39090 | Membership in value of the... |
dibelval1st1 39091 | Membership in value of the... |
dibelval1st2N 39092 | Membership in value of the... |
dibelval2nd 39093 | Membership in value of the... |
dibn0 39094 | The value of the partial i... |
dibfna 39095 | Functionality and domain o... |
dibdiadm 39096 | Domain of the partial isom... |
dibfnN 39097 | Functionality and domain o... |
dibdmN 39098 | Domain of the partial isom... |
dibeldmN 39099 | Member of domain of the pa... |
dibord 39100 | The isomorphism B for a la... |
dib11N 39101 | The isomorphism B for a la... |
dibf11N 39102 | The partial isomorphism A ... |
dibclN 39103 | Closure of partial isomorp... |
dibvalrel 39104 | The value of partial isomo... |
dib0 39105 | The value of partial isomo... |
dib1dim 39106 | Two expressions for the 1-... |
dibglbN 39107 | Partial isomorphism B of a... |
dibintclN 39108 | The intersection of partia... |
dib1dim2 39109 | Two expressions for a 1-di... |
dibss 39110 | The partial isomorphism B ... |
diblss 39111 | The value of partial isomo... |
diblsmopel 39112 | Membership in subspace sum... |
dicffval 39115 | The partial isomorphism C ... |
dicfval 39116 | The partial isomorphism C ... |
dicval 39117 | The partial isomorphism C ... |
dicopelval 39118 | Membership in value of the... |
dicelvalN 39119 | Membership in value of the... |
dicval2 39120 | The partial isomorphism C ... |
dicelval3 39121 | Member of the partial isom... |
dicopelval2 39122 | Membership in value of the... |
dicelval2N 39123 | Membership in value of the... |
dicfnN 39124 | Functionality and domain o... |
dicdmN 39125 | Domain of the partial isom... |
dicvalrelN 39126 | The value of partial isomo... |
dicssdvh 39127 | The partial isomorphism C ... |
dicelval1sta 39128 | Membership in value of the... |
dicelval1stN 39129 | Membership in value of the... |
dicelval2nd 39130 | Membership in value of the... |
dicvaddcl 39131 | Membership in value of the... |
dicvscacl 39132 | Membership in value of the... |
dicn0 39133 | The value of the partial i... |
diclss 39134 | The value of partial isomo... |
diclspsn 39135 | The value of isomorphism C... |
cdlemn2 39136 | Part of proof of Lemma N o... |
cdlemn2a 39137 | Part of proof of Lemma N o... |
cdlemn3 39138 | Part of proof of Lemma N o... |
cdlemn4 39139 | Part of proof of Lemma N o... |
cdlemn4a 39140 | Part of proof of Lemma N o... |
cdlemn5pre 39141 | Part of proof of Lemma N o... |
cdlemn5 39142 | Part of proof of Lemma N o... |
cdlemn6 39143 | Part of proof of Lemma N o... |
cdlemn7 39144 | Part of proof of Lemma N o... |
cdlemn8 39145 | Part of proof of Lemma N o... |
cdlemn9 39146 | Part of proof of Lemma N o... |
cdlemn10 39147 | Part of proof of Lemma N o... |
cdlemn11a 39148 | Part of proof of Lemma N o... |
cdlemn11b 39149 | Part of proof of Lemma N o... |
cdlemn11c 39150 | Part of proof of Lemma N o... |
cdlemn11pre 39151 | Part of proof of Lemma N o... |
cdlemn11 39152 | Part of proof of Lemma N o... |
cdlemn 39153 | Lemma N of [Crawley] p. 12... |
dihordlem6 39154 | Part of proof of Lemma N o... |
dihordlem7 39155 | Part of proof of Lemma N o... |
dihordlem7b 39156 | Part of proof of Lemma N o... |
dihjustlem 39157 | Part of proof after Lemma ... |
dihjust 39158 | Part of proof after Lemma ... |
dihord1 39159 | Part of proof after Lemma ... |
dihord2a 39160 | Part of proof after Lemma ... |
dihord2b 39161 | Part of proof after Lemma ... |
dihord2cN 39162 | Part of proof after Lemma ... |
dihord11b 39163 | Part of proof after Lemma ... |
dihord10 39164 | Part of proof after Lemma ... |
dihord11c 39165 | Part of proof after Lemma ... |
dihord2pre 39166 | Part of proof after Lemma ... |
dihord2pre2 39167 | Part of proof after Lemma ... |
dihord2 39168 | Part of proof after Lemma ... |
dihffval 39171 | The isomorphism H for a la... |
dihfval 39172 | Isomorphism H for a lattic... |
dihval 39173 | Value of isomorphism H for... |
dihvalc 39174 | Value of isomorphism H for... |
dihlsscpre 39175 | Closure of isomorphism H f... |
dihvalcqpre 39176 | Value of isomorphism H for... |
dihvalcq 39177 | Value of isomorphism H for... |
dihvalb 39178 | Value of isomorphism H for... |
dihopelvalbN 39179 | Ordered pair member of the... |
dihvalcqat 39180 | Value of isomorphism H for... |
dih1dimb 39181 | Two expressions for a 1-di... |
dih1dimb2 39182 | Isomorphism H at an atom u... |
dih1dimc 39183 | Isomorphism H at an atom n... |
dib2dim 39184 | Extend ~ dia2dim to partia... |
dih2dimb 39185 | Extend ~ dib2dim to isomor... |
dih2dimbALTN 39186 | Extend ~ dia2dim to isomor... |
dihopelvalcqat 39187 | Ordered pair member of the... |
dihvalcq2 39188 | Value of isomorphism H for... |
dihopelvalcpre 39189 | Member of value of isomorp... |
dihopelvalc 39190 | Member of value of isomorp... |
dihlss 39191 | The value of isomorphism H... |
dihss 39192 | The value of isomorphism H... |
dihssxp 39193 | An isomorphism H value is ... |
dihopcl 39194 | Closure of an ordered pair... |
xihopellsmN 39195 | Ordered pair membership in... |
dihopellsm 39196 | Ordered pair membership in... |
dihord6apre 39197 | Part of proof that isomorp... |
dihord3 39198 | The isomorphism H for a la... |
dihord4 39199 | The isomorphism H for a la... |
dihord5b 39200 | Part of proof that isomorp... |
dihord6b 39201 | Part of proof that isomorp... |
dihord6a 39202 | Part of proof that isomorp... |
dihord5apre 39203 | Part of proof that isomorp... |
dihord5a 39204 | Part of proof that isomorp... |
dihord 39205 | The isomorphism H is order... |
dih11 39206 | The isomorphism H is one-t... |
dihf11lem 39207 | Functionality of the isomo... |
dihf11 39208 | The isomorphism H for a la... |
dihfn 39209 | Functionality and domain o... |
dihdm 39210 | Domain of isomorphism H. (... |
dihcl 39211 | Closure of isomorphism H. ... |
dihcnvcl 39212 | Closure of isomorphism H c... |
dihcnvid1 39213 | The converse isomorphism o... |
dihcnvid2 39214 | The isomorphism of a conve... |
dihcnvord 39215 | Ordering property for conv... |
dihcnv11 39216 | The converse of isomorphis... |
dihsslss 39217 | The isomorphism H maps to ... |
dihrnlss 39218 | The isomorphism H maps to ... |
dihrnss 39219 | The isomorphism H maps to ... |
dihvalrel 39220 | The value of isomorphism H... |
dih0 39221 | The value of isomorphism H... |
dih0bN 39222 | A lattice element is zero ... |
dih0vbN 39223 | A vector is zero iff its s... |
dih0cnv 39224 | The isomorphism H converse... |
dih0rn 39225 | The zero subspace belongs ... |
dih0sb 39226 | A subspace is zero iff the... |
dih1 39227 | The value of isomorphism H... |
dih1rn 39228 | The full vector space belo... |
dih1cnv 39229 | The isomorphism H converse... |
dihwN 39230 | Value of isomorphism H at ... |
dihmeetlem1N 39231 | Isomorphism H of a conjunc... |
dihglblem5apreN 39232 | A conjunction property of ... |
dihglblem5aN 39233 | A conjunction property of ... |
dihglblem2aN 39234 | Lemma for isomorphism H of... |
dihglblem2N 39235 | The GLB of a set of lattic... |
dihglblem3N 39236 | Isomorphism H of a lattice... |
dihglblem3aN 39237 | Isomorphism H of a lattice... |
dihglblem4 39238 | Isomorphism H of a lattice... |
dihglblem5 39239 | Isomorphism H of a lattice... |
dihmeetlem2N 39240 | Isomorphism H of a conjunc... |
dihglbcpreN 39241 | Isomorphism H of a lattice... |
dihglbcN 39242 | Isomorphism H of a lattice... |
dihmeetcN 39243 | Isomorphism H of a lattice... |
dihmeetbN 39244 | Isomorphism H of a lattice... |
dihmeetbclemN 39245 | Lemma for isomorphism H of... |
dihmeetlem3N 39246 | Lemma for isomorphism H of... |
dihmeetlem4preN 39247 | Lemma for isomorphism H of... |
dihmeetlem4N 39248 | Lemma for isomorphism H of... |
dihmeetlem5 39249 | Part of proof that isomorp... |
dihmeetlem6 39250 | Lemma for isomorphism H of... |
dihmeetlem7N 39251 | Lemma for isomorphism H of... |
dihjatc1 39252 | Lemma for isomorphism H of... |
dihjatc2N 39253 | Isomorphism H of join with... |
dihjatc3 39254 | Isomorphism H of join with... |
dihmeetlem8N 39255 | Lemma for isomorphism H of... |
dihmeetlem9N 39256 | Lemma for isomorphism H of... |
dihmeetlem10N 39257 | Lemma for isomorphism H of... |
dihmeetlem11N 39258 | Lemma for isomorphism H of... |
dihmeetlem12N 39259 | Lemma for isomorphism H of... |
dihmeetlem13N 39260 | Lemma for isomorphism H of... |
dihmeetlem14N 39261 | Lemma for isomorphism H of... |
dihmeetlem15N 39262 | Lemma for isomorphism H of... |
dihmeetlem16N 39263 | Lemma for isomorphism H of... |
dihmeetlem17N 39264 | Lemma for isomorphism H of... |
dihmeetlem18N 39265 | Lemma for isomorphism H of... |
dihmeetlem19N 39266 | Lemma for isomorphism H of... |
dihmeetlem20N 39267 | Lemma for isomorphism H of... |
dihmeetALTN 39268 | Isomorphism H of a lattice... |
dih1dimatlem0 39269 | Lemma for ~ dih1dimat . (... |
dih1dimatlem 39270 | Lemma for ~ dih1dimat . (... |
dih1dimat 39271 | Any 1-dimensional subspace... |
dihlsprn 39272 | The span of a vector belon... |
dihlspsnssN 39273 | A subspace included in a 1... |
dihlspsnat 39274 | The inverse isomorphism H ... |
dihatlat 39275 | The isomorphism H of an at... |
dihat 39276 | There exists at least one ... |
dihpN 39277 | The value of isomorphism H... |
dihlatat 39278 | The reverse isomorphism H ... |
dihatexv 39279 | There is a nonzero vector ... |
dihatexv2 39280 | There is a nonzero vector ... |
dihglblem6 39281 | Isomorphism H of a lattice... |
dihglb 39282 | Isomorphism H of a lattice... |
dihglb2 39283 | Isomorphism H of a lattice... |
dihmeet 39284 | Isomorphism H of a lattice... |
dihintcl 39285 | The intersection of closed... |
dihmeetcl 39286 | Closure of closed subspace... |
dihmeet2 39287 | Reverse isomorphism H of a... |
dochffval 39290 | Subspace orthocomplement f... |
dochfval 39291 | Subspace orthocomplement f... |
dochval 39292 | Subspace orthocomplement f... |
dochval2 39293 | Subspace orthocomplement f... |
dochcl 39294 | Closure of subspace orthoc... |
dochlss 39295 | A subspace orthocomplement... |
dochssv 39296 | A subspace orthocomplement... |
dochfN 39297 | Domain and codomain of the... |
dochvalr 39298 | Orthocomplement of a close... |
doch0 39299 | Orthocomplement of the zer... |
doch1 39300 | Orthocomplement of the uni... |
dochoc0 39301 | The zero subspace is close... |
dochoc1 39302 | The unit subspace (all vec... |
dochvalr2 39303 | Orthocomplement of a close... |
dochvalr3 39304 | Orthocomplement of a close... |
doch2val2 39305 | Double orthocomplement for... |
dochss 39306 | Subset law for orthocomple... |
dochocss 39307 | Double negative law for or... |
dochoc 39308 | Double negative law for or... |
dochsscl 39309 | If a set of vectors is inc... |
dochoccl 39310 | A set of vectors is closed... |
dochord 39311 | Ordering law for orthocomp... |
dochord2N 39312 | Ordering law for orthocomp... |
dochord3 39313 | Ordering law for orthocomp... |
doch11 39314 | Orthocomplement is one-to-... |
dochsordN 39315 | Strict ordering law for or... |
dochn0nv 39316 | An orthocomplement is nonz... |
dihoml4c 39317 | Version of ~ dihoml4 with ... |
dihoml4 39318 | Orthomodular law for const... |
dochspss 39319 | The span of a set of vecto... |
dochocsp 39320 | The span of an orthocomple... |
dochspocN 39321 | The span of an orthocomple... |
dochocsn 39322 | The double orthocomplement... |
dochsncom 39323 | Swap vectors in an orthoco... |
dochsat 39324 | The double orthocomplement... |
dochshpncl 39325 | If a hyperplane is not clo... |
dochlkr 39326 | Equivalent conditions for ... |
dochkrshp 39327 | The closure of a kernel is... |
dochkrshp2 39328 | Properties of the closure ... |
dochkrshp3 39329 | Properties of the closure ... |
dochkrshp4 39330 | Properties of the closure ... |
dochdmj1 39331 | De Morgan-like law for sub... |
dochnoncon 39332 | Law of noncontradiction. ... |
dochnel2 39333 | A nonzero member of a subs... |
dochnel 39334 | A nonzero vector doesn't b... |
djhffval 39337 | Subspace join for ` DVecH ... |
djhfval 39338 | Subspace join for ` DVecH ... |
djhval 39339 | Subspace join for ` DVecH ... |
djhval2 39340 | Value of subspace join for... |
djhcl 39341 | Closure of subspace join f... |
djhlj 39342 | Transfer lattice join to `... |
djhljjN 39343 | Lattice join in terms of `... |
djhjlj 39344 | ` DVecH ` vector space clo... |
djhj 39345 | ` DVecH ` vector space clo... |
djhcom 39346 | Subspace join commutes. (... |
djhspss 39347 | Subspace span of union is ... |
djhsumss 39348 | Subspace sum is a subset o... |
dihsumssj 39349 | The subspace sum of two is... |
djhunssN 39350 | Subspace union is a subset... |
dochdmm1 39351 | De Morgan-like law for clo... |
djhexmid 39352 | Excluded middle property o... |
djh01 39353 | Closed subspace join with ... |
djh02 39354 | Closed subspace join with ... |
djhlsmcl 39355 | A closed subspace sum equa... |
djhcvat42 39356 | A covering property. ( ~ ... |
dihjatb 39357 | Isomorphism H of lattice j... |
dihjatc 39358 | Isomorphism H of lattice j... |
dihjatcclem1 39359 | Lemma for isomorphism H of... |
dihjatcclem2 39360 | Lemma for isomorphism H of... |
dihjatcclem3 39361 | Lemma for ~ dihjatcc . (C... |
dihjatcclem4 39362 | Lemma for isomorphism H of... |
dihjatcc 39363 | Isomorphism H of lattice j... |
dihjat 39364 | Isomorphism H of lattice j... |
dihprrnlem1N 39365 | Lemma for ~ dihprrn , show... |
dihprrnlem2 39366 | Lemma for ~ dihprrn . (Co... |
dihprrn 39367 | The span of a vector pair ... |
djhlsmat 39368 | The sum of two subspace at... |
dihjat1lem 39369 | Subspace sum of a closed s... |
dihjat1 39370 | Subspace sum of a closed s... |
dihsmsprn 39371 | Subspace sum of a closed s... |
dihjat2 39372 | The subspace sum of a clos... |
dihjat3 39373 | Isomorphism H of lattice j... |
dihjat4 39374 | Transfer the subspace sum ... |
dihjat6 39375 | Transfer the subspace sum ... |
dihsmsnrn 39376 | The subspace sum of two si... |
dihsmatrn 39377 | The subspace sum of a clos... |
dihjat5N 39378 | Transfer lattice join with... |
dvh4dimat 39379 | There is an atom that is o... |
dvh3dimatN 39380 | There is an atom that is o... |
dvh2dimatN 39381 | Given an atom, there exist... |
dvh1dimat 39382 | There exists an atom. (Co... |
dvh1dim 39383 | There exists a nonzero vec... |
dvh4dimlem 39384 | Lemma for ~ dvh4dimN . (C... |
dvhdimlem 39385 | Lemma for ~ dvh2dim and ~ ... |
dvh2dim 39386 | There is a vector that is ... |
dvh3dim 39387 | There is a vector that is ... |
dvh4dimN 39388 | There is a vector that is ... |
dvh3dim2 39389 | There is a vector that is ... |
dvh3dim3N 39390 | There is a vector that is ... |
dochsnnz 39391 | The orthocomplement of a s... |
dochsatshp 39392 | The orthocomplement of a s... |
dochsatshpb 39393 | The orthocomplement of a s... |
dochsnshp 39394 | The orthocomplement of a n... |
dochshpsat 39395 | A hyperplane is closed iff... |
dochkrsat 39396 | The orthocomplement of a k... |
dochkrsat2 39397 | The orthocomplement of a k... |
dochsat0 39398 | The orthocomplement of a k... |
dochkrsm 39399 | The subspace sum of a clos... |
dochexmidat 39400 | Special case of excluded m... |
dochexmidlem1 39401 | Lemma for ~ dochexmid . H... |
dochexmidlem2 39402 | Lemma for ~ dochexmid . (... |
dochexmidlem3 39403 | Lemma for ~ dochexmid . U... |
dochexmidlem4 39404 | Lemma for ~ dochexmid . (... |
dochexmidlem5 39405 | Lemma for ~ dochexmid . (... |
dochexmidlem6 39406 | Lemma for ~ dochexmid . (... |
dochexmidlem7 39407 | Lemma for ~ dochexmid . C... |
dochexmidlem8 39408 | Lemma for ~ dochexmid . T... |
dochexmid 39409 | Excluded middle law for cl... |
dochsnkrlem1 39410 | Lemma for ~ dochsnkr . (C... |
dochsnkrlem2 39411 | Lemma for ~ dochsnkr . (C... |
dochsnkrlem3 39412 | Lemma for ~ dochsnkr . (C... |
dochsnkr 39413 | A (closed) kernel expresse... |
dochsnkr2 39414 | Kernel of the explicit fun... |
dochsnkr2cl 39415 | The ` X ` determining func... |
dochflcl 39416 | Closure of the explicit fu... |
dochfl1 39417 | The value of the explicit ... |
dochfln0 39418 | The value of a functional ... |
dochkr1 39419 | A nonzero functional has a... |
dochkr1OLDN 39420 | A nonzero functional has a... |
lpolsetN 39423 | The set of polarities of a... |
islpolN 39424 | The predicate "is a polari... |
islpoldN 39425 | Properties that determine ... |
lpolfN 39426 | Functionality of a polarit... |
lpolvN 39427 | The polarity of the whole ... |
lpolconN 39428 | Contraposition property of... |
lpolsatN 39429 | The polarity of an atomic ... |
lpolpolsatN 39430 | Property of a polarity. (... |
dochpolN 39431 | The subspace orthocompleme... |
lcfl1lem 39432 | Property of a functional w... |
lcfl1 39433 | Property of a functional w... |
lcfl2 39434 | Property of a functional w... |
lcfl3 39435 | Property of a functional w... |
lcfl4N 39436 | Property of a functional w... |
lcfl5 39437 | Property of a functional w... |
lcfl5a 39438 | Property of a functional w... |
lcfl6lem 39439 | Lemma for ~ lcfl6 . A fun... |
lcfl7lem 39440 | Lemma for ~ lcfl7N . If t... |
lcfl6 39441 | Property of a functional w... |
lcfl7N 39442 | Property of a functional w... |
lcfl8 39443 | Property of a functional w... |
lcfl8a 39444 | Property of a functional w... |
lcfl8b 39445 | Property of a nonzero func... |
lcfl9a 39446 | Property implying that a f... |
lclkrlem1 39447 | The set of functionals hav... |
lclkrlem2a 39448 | Lemma for ~ lclkr . Use ~... |
lclkrlem2b 39449 | Lemma for ~ lclkr . (Cont... |
lclkrlem2c 39450 | Lemma for ~ lclkr . (Cont... |
lclkrlem2d 39451 | Lemma for ~ lclkr . (Cont... |
lclkrlem2e 39452 | Lemma for ~ lclkr . The k... |
lclkrlem2f 39453 | Lemma for ~ lclkr . Const... |
lclkrlem2g 39454 | Lemma for ~ lclkr . Compa... |
lclkrlem2h 39455 | Lemma for ~ lclkr . Elimi... |
lclkrlem2i 39456 | Lemma for ~ lclkr . Elimi... |
lclkrlem2j 39457 | Lemma for ~ lclkr . Kerne... |
lclkrlem2k 39458 | Lemma for ~ lclkr . Kerne... |
lclkrlem2l 39459 | Lemma for ~ lclkr . Elimi... |
lclkrlem2m 39460 | Lemma for ~ lclkr . Const... |
lclkrlem2n 39461 | Lemma for ~ lclkr . (Cont... |
lclkrlem2o 39462 | Lemma for ~ lclkr . When ... |
lclkrlem2p 39463 | Lemma for ~ lclkr . When ... |
lclkrlem2q 39464 | Lemma for ~ lclkr . The s... |
lclkrlem2r 39465 | Lemma for ~ lclkr . When ... |
lclkrlem2s 39466 | Lemma for ~ lclkr . Thus,... |
lclkrlem2t 39467 | Lemma for ~ lclkr . We el... |
lclkrlem2u 39468 | Lemma for ~ lclkr . ~ lclk... |
lclkrlem2v 39469 | Lemma for ~ lclkr . When ... |
lclkrlem2w 39470 | Lemma for ~ lclkr . This ... |
lclkrlem2x 39471 | Lemma for ~ lclkr . Elimi... |
lclkrlem2y 39472 | Lemma for ~ lclkr . Resta... |
lclkrlem2 39473 | The set of functionals hav... |
lclkr 39474 | The set of functionals wit... |
lcfls1lem 39475 | Property of a functional w... |
lcfls1N 39476 | Property of a functional w... |
lcfls1c 39477 | Property of a functional w... |
lclkrslem1 39478 | The set of functionals hav... |
lclkrslem2 39479 | The set of functionals hav... |
lclkrs 39480 | The set of functionals hav... |
lclkrs2 39481 | The set of functionals wit... |
lcfrvalsnN 39482 | Reconstruction from the du... |
lcfrlem1 39483 | Lemma for ~ lcfr . Note t... |
lcfrlem2 39484 | Lemma for ~ lcfr . (Contr... |
lcfrlem3 39485 | Lemma for ~ lcfr . (Contr... |
lcfrlem4 39486 | Lemma for ~ lcfr . (Contr... |
lcfrlem5 39487 | Lemma for ~ lcfr . The se... |
lcfrlem6 39488 | Lemma for ~ lcfr . Closur... |
lcfrlem7 39489 | Lemma for ~ lcfr . Closur... |
lcfrlem8 39490 | Lemma for ~ lcf1o and ~ lc... |
lcfrlem9 39491 | Lemma for ~ lcf1o . (This... |
lcf1o 39492 | Define a function ` J ` th... |
lcfrlem10 39493 | Lemma for ~ lcfr . (Contr... |
lcfrlem11 39494 | Lemma for ~ lcfr . (Contr... |
lcfrlem12N 39495 | Lemma for ~ lcfr . (Contr... |
lcfrlem13 39496 | Lemma for ~ lcfr . (Contr... |
lcfrlem14 39497 | Lemma for ~ lcfr . (Contr... |
lcfrlem15 39498 | Lemma for ~ lcfr . (Contr... |
lcfrlem16 39499 | Lemma for ~ lcfr . (Contr... |
lcfrlem17 39500 | Lemma for ~ lcfr . Condit... |
lcfrlem18 39501 | Lemma for ~ lcfr . (Contr... |
lcfrlem19 39502 | Lemma for ~ lcfr . (Contr... |
lcfrlem20 39503 | Lemma for ~ lcfr . (Contr... |
lcfrlem21 39504 | Lemma for ~ lcfr . (Contr... |
lcfrlem22 39505 | Lemma for ~ lcfr . (Contr... |
lcfrlem23 39506 | Lemma for ~ lcfr . TODO: ... |
lcfrlem24 39507 | Lemma for ~ lcfr . (Contr... |
lcfrlem25 39508 | Lemma for ~ lcfr . Specia... |
lcfrlem26 39509 | Lemma for ~ lcfr . Specia... |
lcfrlem27 39510 | Lemma for ~ lcfr . Specia... |
lcfrlem28 39511 | Lemma for ~ lcfr . TODO: ... |
lcfrlem29 39512 | Lemma for ~ lcfr . (Contr... |
lcfrlem30 39513 | Lemma for ~ lcfr . (Contr... |
lcfrlem31 39514 | Lemma for ~ lcfr . (Contr... |
lcfrlem32 39515 | Lemma for ~ lcfr . (Contr... |
lcfrlem33 39516 | Lemma for ~ lcfr . (Contr... |
lcfrlem34 39517 | Lemma for ~ lcfr . (Contr... |
lcfrlem35 39518 | Lemma for ~ lcfr . (Contr... |
lcfrlem36 39519 | Lemma for ~ lcfr . (Contr... |
lcfrlem37 39520 | Lemma for ~ lcfr . (Contr... |
lcfrlem38 39521 | Lemma for ~ lcfr . Combin... |
lcfrlem39 39522 | Lemma for ~ lcfr . Elimin... |
lcfrlem40 39523 | Lemma for ~ lcfr . Elimin... |
lcfrlem41 39524 | Lemma for ~ lcfr . Elimin... |
lcfrlem42 39525 | Lemma for ~ lcfr . Elimin... |
lcfr 39526 | Reconstruction of a subspa... |
lcdfval 39529 | Dual vector space of funct... |
lcdval 39530 | Dual vector space of funct... |
lcdval2 39531 | Dual vector space of funct... |
lcdlvec 39532 | The dual vector space of f... |
lcdlmod 39533 | The dual vector space of f... |
lcdvbase 39534 | Vector base set of a dual ... |
lcdvbasess 39535 | The vector base set of the... |
lcdvbaselfl 39536 | A vector in the base set o... |
lcdvbasecl 39537 | Closure of the value of a ... |
lcdvadd 39538 | Vector addition for the cl... |
lcdvaddval 39539 | The value of the value of ... |
lcdsca 39540 | The ring of scalars of the... |
lcdsbase 39541 | Base set of scalar ring fo... |
lcdsadd 39542 | Scalar addition for the cl... |
lcdsmul 39543 | Scalar multiplication for ... |
lcdvs 39544 | Scalar product for the clo... |
lcdvsval 39545 | Value of scalar product op... |
lcdvscl 39546 | The scalar product operati... |
lcdlssvscl 39547 | Closure of scalar product ... |
lcdvsass 39548 | Associative law for scalar... |
lcd0 39549 | The zero scalar of the clo... |
lcd1 39550 | The unit scalar of the clo... |
lcdneg 39551 | The unit scalar of the clo... |
lcd0v 39552 | The zero functional in the... |
lcd0v2 39553 | The zero functional in the... |
lcd0vvalN 39554 | Value of the zero function... |
lcd0vcl 39555 | Closure of the zero functi... |
lcd0vs 39556 | A scalar zero times a func... |
lcdvs0N 39557 | A scalar times the zero fu... |
lcdvsub 39558 | The value of vector subtra... |
lcdvsubval 39559 | The value of the value of ... |
lcdlss 39560 | Subspaces of a dual vector... |
lcdlss2N 39561 | Subspaces of a dual vector... |
lcdlsp 39562 | Span in the set of functio... |
lcdlkreqN 39563 | Colinear functionals have ... |
lcdlkreq2N 39564 | Colinear functionals have ... |
mapdffval 39567 | Projectivity from vector s... |
mapdfval 39568 | Projectivity from vector s... |
mapdval 39569 | Value of projectivity from... |
mapdvalc 39570 | Value of projectivity from... |
mapdval2N 39571 | Value of projectivity from... |
mapdval3N 39572 | Value of projectivity from... |
mapdval4N 39573 | Value of projectivity from... |
mapdval5N 39574 | Value of projectivity from... |
mapdordlem1a 39575 | Lemma for ~ mapdord . (Co... |
mapdordlem1bN 39576 | Lemma for ~ mapdord . (Co... |
mapdordlem1 39577 | Lemma for ~ mapdord . (Co... |
mapdordlem2 39578 | Lemma for ~ mapdord . Ord... |
mapdord 39579 | Ordering property of the m... |
mapd11 39580 | The map defined by ~ df-ma... |
mapddlssN 39581 | The mapping of a subspace ... |
mapdsn 39582 | Value of the map defined b... |
mapdsn2 39583 | Value of the map defined b... |
mapdsn3 39584 | Value of the map defined b... |
mapd1dim2lem1N 39585 | Value of the map defined b... |
mapdrvallem2 39586 | Lemma for ~ mapdrval . TO... |
mapdrvallem3 39587 | Lemma for ~ mapdrval . (C... |
mapdrval 39588 | Given a dual subspace ` R ... |
mapd1o 39589 | The map defined by ~ df-ma... |
mapdrn 39590 | Range of the map defined b... |
mapdunirnN 39591 | Union of the range of the ... |
mapdrn2 39592 | Range of the map defined b... |
mapdcnvcl 39593 | Closure of the converse of... |
mapdcl 39594 | Closure the value of the m... |
mapdcnvid1N 39595 | Converse of the value of t... |
mapdsord 39596 | Strong ordering property o... |
mapdcl2 39597 | The mapping of a subspace ... |
mapdcnvid2 39598 | Value of the converse of t... |
mapdcnvordN 39599 | Ordering property of the c... |
mapdcnv11N 39600 | The converse of the map de... |
mapdcv 39601 | Covering property of the c... |
mapdincl 39602 | Closure of dual subspace i... |
mapdin 39603 | Subspace intersection is p... |
mapdlsmcl 39604 | Closure of dual subspace s... |
mapdlsm 39605 | Subspace sum is preserved ... |
mapd0 39606 | Projectivity map of the ze... |
mapdcnvatN 39607 | Atoms are preserved by the... |
mapdat 39608 | Atoms are preserved by the... |
mapdspex 39609 | The map of a span equals t... |
mapdn0 39610 | Transfer nonzero property ... |
mapdncol 39611 | Transfer non-colinearity f... |
mapdindp 39612 | Transfer (part of) vector ... |
mapdpglem1 39613 | Lemma for ~ mapdpg . Baer... |
mapdpglem2 39614 | Lemma for ~ mapdpg . Baer... |
mapdpglem2a 39615 | Lemma for ~ mapdpg . (Con... |
mapdpglem3 39616 | Lemma for ~ mapdpg . Baer... |
mapdpglem4N 39617 | Lemma for ~ mapdpg . (Con... |
mapdpglem5N 39618 | Lemma for ~ mapdpg . (Con... |
mapdpglem6 39619 | Lemma for ~ mapdpg . Baer... |
mapdpglem8 39620 | Lemma for ~ mapdpg . Baer... |
mapdpglem9 39621 | Lemma for ~ mapdpg . Baer... |
mapdpglem10 39622 | Lemma for ~ mapdpg . Baer... |
mapdpglem11 39623 | Lemma for ~ mapdpg . (Con... |
mapdpglem12 39624 | Lemma for ~ mapdpg . TODO... |
mapdpglem13 39625 | Lemma for ~ mapdpg . (Con... |
mapdpglem14 39626 | Lemma for ~ mapdpg . (Con... |
mapdpglem15 39627 | Lemma for ~ mapdpg . (Con... |
mapdpglem16 39628 | Lemma for ~ mapdpg . Baer... |
mapdpglem17N 39629 | Lemma for ~ mapdpg . Baer... |
mapdpglem18 39630 | Lemma for ~ mapdpg . Baer... |
mapdpglem19 39631 | Lemma for ~ mapdpg . Baer... |
mapdpglem20 39632 | Lemma for ~ mapdpg . Baer... |
mapdpglem21 39633 | Lemma for ~ mapdpg . (Con... |
mapdpglem22 39634 | Lemma for ~ mapdpg . Baer... |
mapdpglem23 39635 | Lemma for ~ mapdpg . Baer... |
mapdpglem30a 39636 | Lemma for ~ mapdpg . (Con... |
mapdpglem30b 39637 | Lemma for ~ mapdpg . (Con... |
mapdpglem25 39638 | Lemma for ~ mapdpg . Baer... |
mapdpglem26 39639 | Lemma for ~ mapdpg . Baer... |
mapdpglem27 39640 | Lemma for ~ mapdpg . Baer... |
mapdpglem29 39641 | Lemma for ~ mapdpg . Baer... |
mapdpglem28 39642 | Lemma for ~ mapdpg . Baer... |
mapdpglem30 39643 | Lemma for ~ mapdpg . Baer... |
mapdpglem31 39644 | Lemma for ~ mapdpg . Baer... |
mapdpglem24 39645 | Lemma for ~ mapdpg . Exis... |
mapdpglem32 39646 | Lemma for ~ mapdpg . Uniq... |
mapdpg 39647 | Part 1 of proof of the fir... |
baerlem3lem1 39648 | Lemma for ~ baerlem3 . (C... |
baerlem5alem1 39649 | Lemma for ~ baerlem5a . (... |
baerlem5blem1 39650 | Lemma for ~ baerlem5b . (... |
baerlem3lem2 39651 | Lemma for ~ baerlem3 . (C... |
baerlem5alem2 39652 | Lemma for ~ baerlem5a . (... |
baerlem5blem2 39653 | Lemma for ~ baerlem5b . (... |
baerlem3 39654 | An equality that holds whe... |
baerlem5a 39655 | An equality that holds whe... |
baerlem5b 39656 | An equality that holds whe... |
baerlem5amN 39657 | An equality that holds whe... |
baerlem5bmN 39658 | An equality that holds whe... |
baerlem5abmN 39659 | An equality that holds whe... |
mapdindp0 39660 | Vector independence lemma.... |
mapdindp1 39661 | Vector independence lemma.... |
mapdindp2 39662 | Vector independence lemma.... |
mapdindp3 39663 | Vector independence lemma.... |
mapdindp4 39664 | Vector independence lemma.... |
mapdhval 39665 | Lemmma for ~~? mapdh . (C... |
mapdhval0 39666 | Lemmma for ~~? mapdh . (C... |
mapdhval2 39667 | Lemmma for ~~? mapdh . (C... |
mapdhcl 39668 | Lemmma for ~~? mapdh . (C... |
mapdheq 39669 | Lemmma for ~~? mapdh . Th... |
mapdheq2 39670 | Lemmma for ~~? mapdh . On... |
mapdheq2biN 39671 | Lemmma for ~~? mapdh . Pa... |
mapdheq4lem 39672 | Lemma for ~ mapdheq4 . Pa... |
mapdheq4 39673 | Lemma for ~~? mapdh . Par... |
mapdh6lem1N 39674 | Lemma for ~ mapdh6N . Par... |
mapdh6lem2N 39675 | Lemma for ~ mapdh6N . Par... |
mapdh6aN 39676 | Lemma for ~ mapdh6N . Par... |
mapdh6b0N 39677 | Lemmma for ~ mapdh6N . (C... |
mapdh6bN 39678 | Lemmma for ~ mapdh6N . (C... |
mapdh6cN 39679 | Lemmma for ~ mapdh6N . (C... |
mapdh6dN 39680 | Lemmma for ~ mapdh6N . (C... |
mapdh6eN 39681 | Lemmma for ~ mapdh6N . Pa... |
mapdh6fN 39682 | Lemmma for ~ mapdh6N . Pa... |
mapdh6gN 39683 | Lemmma for ~ mapdh6N . Pa... |
mapdh6hN 39684 | Lemmma for ~ mapdh6N . Pa... |
mapdh6iN 39685 | Lemmma for ~ mapdh6N . El... |
mapdh6jN 39686 | Lemmma for ~ mapdh6N . El... |
mapdh6kN 39687 | Lemmma for ~ mapdh6N . El... |
mapdh6N 39688 | Part (6) of [Baer] p. 47 l... |
mapdh7eN 39689 | Part (7) of [Baer] p. 48 l... |
mapdh7cN 39690 | Part (7) of [Baer] p. 48 l... |
mapdh7dN 39691 | Part (7) of [Baer] p. 48 l... |
mapdh7fN 39692 | Part (7) of [Baer] p. 48 l... |
mapdh75e 39693 | Part (7) of [Baer] p. 48 l... |
mapdh75cN 39694 | Part (7) of [Baer] p. 48 l... |
mapdh75d 39695 | Part (7) of [Baer] p. 48 l... |
mapdh75fN 39696 | Part (7) of [Baer] p. 48 l... |
hvmapffval 39699 | Map from nonzero vectors t... |
hvmapfval 39700 | Map from nonzero vectors t... |
hvmapval 39701 | Value of map from nonzero ... |
hvmapvalvalN 39702 | Value of value of map (i.e... |
hvmapidN 39703 | The value of the vector to... |
hvmap1o 39704 | The vector to functional m... |
hvmapclN 39705 | Closure of the vector to f... |
hvmap1o2 39706 | The vector to functional m... |
hvmapcl2 39707 | Closure of the vector to f... |
hvmaplfl 39708 | The vector to functional m... |
hvmaplkr 39709 | Kernel of the vector to fu... |
mapdhvmap 39710 | Relationship between ` map... |
lspindp5 39711 | Obtain an independent vect... |
hdmaplem1 39712 | Lemma to convert a frequen... |
hdmaplem2N 39713 | Lemma to convert a frequen... |
hdmaplem3 39714 | Lemma to convert a frequen... |
hdmaplem4 39715 | Lemma to convert a frequen... |
mapdh8a 39716 | Part of Part (8) in [Baer]... |
mapdh8aa 39717 | Part of Part (8) in [Baer]... |
mapdh8ab 39718 | Part of Part (8) in [Baer]... |
mapdh8ac 39719 | Part of Part (8) in [Baer]... |
mapdh8ad 39720 | Part of Part (8) in [Baer]... |
mapdh8b 39721 | Part of Part (8) in [Baer]... |
mapdh8c 39722 | Part of Part (8) in [Baer]... |
mapdh8d0N 39723 | Part of Part (8) in [Baer]... |
mapdh8d 39724 | Part of Part (8) in [Baer]... |
mapdh8e 39725 | Part of Part (8) in [Baer]... |
mapdh8g 39726 | Part of Part (8) in [Baer]... |
mapdh8i 39727 | Part of Part (8) in [Baer]... |
mapdh8j 39728 | Part of Part (8) in [Baer]... |
mapdh8 39729 | Part (8) in [Baer] p. 48. ... |
mapdh9a 39730 | Lemma for part (9) in [Bae... |
mapdh9aOLDN 39731 | Lemma for part (9) in [Bae... |
hdmap1ffval 39736 | Preliminary map from vecto... |
hdmap1fval 39737 | Preliminary map from vecto... |
hdmap1vallem 39738 | Value of preliminary map f... |
hdmap1val 39739 | Value of preliminary map f... |
hdmap1val0 39740 | Value of preliminary map f... |
hdmap1val2 39741 | Value of preliminary map f... |
hdmap1eq 39742 | The defining equation for ... |
hdmap1cbv 39743 | Frequently used lemma to c... |
hdmap1valc 39744 | Connect the value of the p... |
hdmap1cl 39745 | Convert closure theorem ~ ... |
hdmap1eq2 39746 | Convert ~ mapdheq2 to use ... |
hdmap1eq4N 39747 | Convert ~ mapdheq4 to use ... |
hdmap1l6lem1 39748 | Lemma for ~ hdmap1l6 . Pa... |
hdmap1l6lem2 39749 | Lemma for ~ hdmap1l6 . Pa... |
hdmap1l6a 39750 | Lemma for ~ hdmap1l6 . Pa... |
hdmap1l6b0N 39751 | Lemmma for ~ hdmap1l6 . (... |
hdmap1l6b 39752 | Lemmma for ~ hdmap1l6 . (... |
hdmap1l6c 39753 | Lemmma for ~ hdmap1l6 . (... |
hdmap1l6d 39754 | Lemmma for ~ hdmap1l6 . (... |
hdmap1l6e 39755 | Lemmma for ~ hdmap1l6 . P... |
hdmap1l6f 39756 | Lemmma for ~ hdmap1l6 . P... |
hdmap1l6g 39757 | Lemmma for ~ hdmap1l6 . P... |
hdmap1l6h 39758 | Lemmma for ~ hdmap1l6 . P... |
hdmap1l6i 39759 | Lemmma for ~ hdmap1l6 . E... |
hdmap1l6j 39760 | Lemmma for ~ hdmap1l6 . E... |
hdmap1l6k 39761 | Lemmma for ~ hdmap1l6 . E... |
hdmap1l6 39762 | Part (6) of [Baer] p. 47 l... |
hdmap1eulem 39763 | Lemma for ~ hdmap1eu . TO... |
hdmap1eulemOLDN 39764 | Lemma for ~ hdmap1euOLDN .... |
hdmap1eu 39765 | Convert ~ mapdh9a to use t... |
hdmap1euOLDN 39766 | Convert ~ mapdh9aOLDN to u... |
hdmapffval 39767 | Map from vectors to functi... |
hdmapfval 39768 | Map from vectors to functi... |
hdmapval 39769 | Value of map from vectors ... |
hdmapfnN 39770 | Functionality of map from ... |
hdmapcl 39771 | Closure of map from vector... |
hdmapval2lem 39772 | Lemma for ~ hdmapval2 . (... |
hdmapval2 39773 | Value of map from vectors ... |
hdmapval0 39774 | Value of map from vectors ... |
hdmapeveclem 39775 | Lemma for ~ hdmapevec . T... |
hdmapevec 39776 | Value of map from vectors ... |
hdmapevec2 39777 | The inner product of the r... |
hdmapval3lemN 39778 | Value of map from vectors ... |
hdmapval3N 39779 | Value of map from vectors ... |
hdmap10lem 39780 | Lemma for ~ hdmap10 . (Co... |
hdmap10 39781 | Part 10 in [Baer] p. 48 li... |
hdmap11lem1 39782 | Lemma for ~ hdmapadd . (C... |
hdmap11lem2 39783 | Lemma for ~ hdmapadd . (C... |
hdmapadd 39784 | Part 11 in [Baer] p. 48 li... |
hdmapeq0 39785 | Part of proof of part 12 i... |
hdmapnzcl 39786 | Nonzero vector closure of ... |
hdmapneg 39787 | Part of proof of part 12 i... |
hdmapsub 39788 | Part of proof of part 12 i... |
hdmap11 39789 | Part of proof of part 12 i... |
hdmaprnlem1N 39790 | Part of proof of part 12 i... |
hdmaprnlem3N 39791 | Part of proof of part 12 i... |
hdmaprnlem3uN 39792 | Part of proof of part 12 i... |
hdmaprnlem4tN 39793 | Lemma for ~ hdmaprnN . TO... |
hdmaprnlem4N 39794 | Part of proof of part 12 i... |
hdmaprnlem6N 39795 | Part of proof of part 12 i... |
hdmaprnlem7N 39796 | Part of proof of part 12 i... |
hdmaprnlem8N 39797 | Part of proof of part 12 i... |
hdmaprnlem9N 39798 | Part of proof of part 12 i... |
hdmaprnlem3eN 39799 | Lemma for ~ hdmaprnN . (C... |
hdmaprnlem10N 39800 | Lemma for ~ hdmaprnN . Sh... |
hdmaprnlem11N 39801 | Lemma for ~ hdmaprnN . Sh... |
hdmaprnlem15N 39802 | Lemma for ~ hdmaprnN . El... |
hdmaprnlem16N 39803 | Lemma for ~ hdmaprnN . El... |
hdmaprnlem17N 39804 | Lemma for ~ hdmaprnN . In... |
hdmaprnN 39805 | Part of proof of part 12 i... |
hdmapf1oN 39806 | Part 12 in [Baer] p. 49. ... |
hdmap14lem1a 39807 | Prior to part 14 in [Baer]... |
hdmap14lem2a 39808 | Prior to part 14 in [Baer]... |
hdmap14lem1 39809 | Prior to part 14 in [Baer]... |
hdmap14lem2N 39810 | Prior to part 14 in [Baer]... |
hdmap14lem3 39811 | Prior to part 14 in [Baer]... |
hdmap14lem4a 39812 | Simplify ` ( A \ { Q } ) `... |
hdmap14lem4 39813 | Simplify ` ( A \ { Q } ) `... |
hdmap14lem6 39814 | Case where ` F ` is zero. ... |
hdmap14lem7 39815 | Combine cases of ` F ` . ... |
hdmap14lem8 39816 | Part of proof of part 14 i... |
hdmap14lem9 39817 | Part of proof of part 14 i... |
hdmap14lem10 39818 | Part of proof of part 14 i... |
hdmap14lem11 39819 | Part of proof of part 14 i... |
hdmap14lem12 39820 | Lemma for proof of part 14... |
hdmap14lem13 39821 | Lemma for proof of part 14... |
hdmap14lem14 39822 | Part of proof of part 14 i... |
hdmap14lem15 39823 | Part of proof of part 14 i... |
hgmapffval 39826 | Map from the scalar divisi... |
hgmapfval 39827 | Map from the scalar divisi... |
hgmapval 39828 | Value of map from the scal... |
hgmapfnN 39829 | Functionality of scalar si... |
hgmapcl 39830 | Closure of scalar sigma ma... |
hgmapdcl 39831 | Closure of the vector spac... |
hgmapvs 39832 | Part 15 of [Baer] p. 50 li... |
hgmapval0 39833 | Value of the scalar sigma ... |
hgmapval1 39834 | Value of the scalar sigma ... |
hgmapadd 39835 | Part 15 of [Baer] p. 50 li... |
hgmapmul 39836 | Part 15 of [Baer] p. 50 li... |
hgmaprnlem1N 39837 | Lemma for ~ hgmaprnN . (C... |
hgmaprnlem2N 39838 | Lemma for ~ hgmaprnN . Pa... |
hgmaprnlem3N 39839 | Lemma for ~ hgmaprnN . El... |
hgmaprnlem4N 39840 | Lemma for ~ hgmaprnN . El... |
hgmaprnlem5N 39841 | Lemma for ~ hgmaprnN . El... |
hgmaprnN 39842 | Part of proof of part 16 i... |
hgmap11 39843 | The scalar sigma map is on... |
hgmapf1oN 39844 | The scalar sigma map is a ... |
hgmapeq0 39845 | The scalar sigma map is ze... |
hdmapipcl 39846 | The inner product (Hermiti... |
hdmapln1 39847 | Linearity property that wi... |
hdmaplna1 39848 | Additive property of first... |
hdmaplns1 39849 | Subtraction property of fi... |
hdmaplnm1 39850 | Multiplicative property of... |
hdmaplna2 39851 | Additive property of secon... |
hdmapglnm2 39852 | g-linear property of secon... |
hdmapgln2 39853 | g-linear property that wil... |
hdmaplkr 39854 | Kernel of the vector to du... |
hdmapellkr 39855 | Membership in the kernel (... |
hdmapip0 39856 | Zero property that will be... |
hdmapip1 39857 | Construct a proportional v... |
hdmapip0com 39858 | Commutation property of Ba... |
hdmapinvlem1 39859 | Line 27 in [Baer] p. 110. ... |
hdmapinvlem2 39860 | Line 28 in [Baer] p. 110, ... |
hdmapinvlem3 39861 | Line 30 in [Baer] p. 110, ... |
hdmapinvlem4 39862 | Part 1.1 of Proposition 1 ... |
hdmapglem5 39863 | Part 1.2 in [Baer] p. 110 ... |
hgmapvvlem1 39864 | Involution property of sca... |
hgmapvvlem2 39865 | Lemma for ~ hgmapvv . Eli... |
hgmapvvlem3 39866 | Lemma for ~ hgmapvv . Eli... |
hgmapvv 39867 | Value of a double involuti... |
hdmapglem7a 39868 | Lemma for ~ hdmapg . (Con... |
hdmapglem7b 39869 | Lemma for ~ hdmapg . (Con... |
hdmapglem7 39870 | Lemma for ~ hdmapg . Line... |
hdmapg 39871 | Apply the scalar sigma fun... |
hdmapoc 39872 | Express our constructed or... |
hlhilset 39875 | The final Hilbert space co... |
hlhilsca 39876 | The scalar of the final co... |
hlhilbase 39877 | The base set of the final ... |
hlhilplus 39878 | The vector addition for th... |
hlhilslem 39879 | Lemma for ~ hlhilsbase etc... |
hlhilslemOLD 39880 | Obsolete version of ~ hlhi... |
hlhilsbase 39881 | The scalar base set of the... |
hlhilsbaseOLD 39882 | Obsolete version of ~ hlhi... |
hlhilsplus 39883 | Scalar addition for the fi... |
hlhilsplusOLD 39884 | Obsolete version of ~ hlhi... |
hlhilsmul 39885 | Scalar multiplication for ... |
hlhilsmulOLD 39886 | Obsolete version of ~ hlhi... |
hlhilsbase2 39887 | The scalar base set of the... |
hlhilsplus2 39888 | Scalar addition for the fi... |
hlhilsmul2 39889 | Scalar multiplication for ... |
hlhils0 39890 | The scalar ring zero for t... |
hlhils1N 39891 | The scalar ring unity for ... |
hlhilvsca 39892 | The scalar product for the... |
hlhilip 39893 | Inner product operation fo... |
hlhilipval 39894 | Value of inner product ope... |
hlhilnvl 39895 | The involution operation o... |
hlhillvec 39896 | The final constructed Hilb... |
hlhildrng 39897 | The star division ring for... |
hlhilsrnglem 39898 | Lemma for ~ hlhilsrng . (... |
hlhilsrng 39899 | The star division ring for... |
hlhil0 39900 | The zero vector for the fi... |
hlhillsm 39901 | The vector sum operation f... |
hlhilocv 39902 | The orthocomplement for th... |
hlhillcs 39903 | The closed subspaces of th... |
hlhilphllem 39904 | Lemma for ~ hlhil . (Cont... |
hlhilhillem 39905 | Lemma for ~ hlhil . (Cont... |
hlathil 39906 | Construction of a Hilbert ... |
leexp1ad 39907 | Weak base ordering relatio... |
relogbcld 39908 | Closure of the general log... |
relogbexpd 39909 | Identity law for general l... |
relogbzexpd 39910 | Power law for the general ... |
logblebd 39911 | The general logarithm is m... |
fzindd 39912 | Induction on the integers ... |
uzindd 39913 | Induction on the upper int... |
fzadd2d 39914 | Membership of a sum in a f... |
zltlem1d 39915 | Integer ordering relation,... |
zltp1led 39916 | Integer ordering relation,... |
fzne2d 39917 | Elementhood in a finite se... |
eqfnfv2d2 39918 | Equality of functions is d... |
fzsplitnd 39919 | Split a finite interval of... |
fzsplitnr 39920 | Split a finite interval of... |
addassnni 39921 | Associative law for additi... |
addcomnni 39922 | Commutative law for additi... |
mulassnni 39923 | Associative law for multip... |
mulcomnni 39924 | Commutative law for multip... |
gcdcomnni 39925 | Commutative law for gcd. ... |
gcdnegnni 39926 | Negation invariance for gc... |
neggcdnni 39927 | Negation invariance for gc... |
bccl2d 39928 | Closure of the binomial co... |
recbothd 39929 | Take reciprocal on both si... |
gcdmultiplei 39930 | The GCD of a multiple of a... |
gcdaddmzz2nni 39931 | Adding a multiple of one o... |
gcdaddmzz2nncomi 39932 | Adding a multiple of one o... |
gcdnncli 39933 | Closure of the gcd operato... |
muldvds1d 39934 | If a product divides an in... |
muldvds2d 39935 | If a product divides an in... |
nndivdvdsd 39936 | A positive integer divides... |
nnproddivdvdsd 39937 | A product of natural numbe... |
coprmdvds2d 39938 | If an integer is divisible... |
12gcd5e1 39939 | The gcd of 12 and 5 is 1. ... |
60gcd6e6 39940 | The gcd of 60 and 6 is 6. ... |
60gcd7e1 39941 | The gcd of 60 and 7 is 1. ... |
420gcd8e4 39942 | The gcd of 420 and 8 is 4.... |
lcmeprodgcdi 39943 | Calculate the least common... |
12lcm5e60 39944 | The lcm of 12 and 5 is 60.... |
60lcm6e60 39945 | The lcm of 60 and 6 is 60.... |
60lcm7e420 39946 | The lcm of 60 and 7 is 420... |
420lcm8e840 39947 | The lcm of 420 and 8 is 84... |
lcmfunnnd 39948 | Useful equation to calcula... |
lcm1un 39949 | Least common multiple of n... |
lcm2un 39950 | Least common multiple of n... |
lcm3un 39951 | Least common multiple of n... |
lcm4un 39952 | Least common multiple of n... |
lcm5un 39953 | Least common multiple of n... |
lcm6un 39954 | Least common multiple of n... |
lcm7un 39955 | Least common multiple of n... |
lcm8un 39956 | Least common multiple of n... |
3factsumint1 39957 | Move constants out of inte... |
3factsumint2 39958 | Move constants out of inte... |
3factsumint3 39959 | Move constants out of inte... |
3factsumint4 39960 | Move constants out of inte... |
3factsumint 39961 | Helpful equation for lcm i... |
resopunitintvd 39962 | Restrict continuous functi... |
resclunitintvd 39963 | Restrict continuous functi... |
resdvopclptsd 39964 | Restrict derivative on uni... |
lcmineqlem1 39965 | Part of lcm inequality lem... |
lcmineqlem2 39966 | Part of lcm inequality lem... |
lcmineqlem3 39967 | Part of lcm inequality lem... |
lcmineqlem4 39968 | Part of lcm inequality lem... |
lcmineqlem5 39969 | Technical lemma for recipr... |
lcmineqlem6 39970 | Part of lcm inequality lem... |
lcmineqlem7 39971 | Derivative of 1-x for chai... |
lcmineqlem8 39972 | Derivative of (1-x)^(N-M).... |
lcmineqlem9 39973 | (1-x)^(N-M) is continuous.... |
lcmineqlem10 39974 | Induction step of ~ lcmine... |
lcmineqlem11 39975 | Induction step, continuati... |
lcmineqlem12 39976 | Base case for induction. ... |
lcmineqlem13 39977 | Induction proof for lcm in... |
lcmineqlem14 39978 | Technical lemma for inequa... |
lcmineqlem15 39979 | F times the least common m... |
lcmineqlem16 39980 | Technical divisibility lem... |
lcmineqlem17 39981 | Inequality of 2^{2n}. (Co... |
lcmineqlem18 39982 | Technical lemma to shift f... |
lcmineqlem19 39983 | Dividing implies inequalit... |
lcmineqlem20 39984 | Inequality for lcm lemma. ... |
lcmineqlem21 39985 | The lcm inequality lemma w... |
lcmineqlem22 39986 | The lcm inequality lemma w... |
lcmineqlem23 39987 | Penultimate step to the lc... |
lcmineqlem 39988 | The least common multiple ... |
3exp7 39989 | 3 to the power of 7 equals... |
3lexlogpow5ineq1 39990 | First inequality in inequa... |
3lexlogpow5ineq2 39991 | Second inequality in inequ... |
3lexlogpow5ineq4 39992 | Sharper logarithm inequali... |
3lexlogpow5ineq3 39993 | Combined inequality chain ... |
3lexlogpow2ineq1 39994 | Result for bound in AKS in... |
3lexlogpow2ineq2 39995 | Result for bound in AKS in... |
3lexlogpow5ineq5 39996 | Result for bound in AKS in... |
intlewftc 39997 | Inequality inference by in... |
aks4d1lem1 39998 | Technical lemma to reduce ... |
aks4d1p1p1 39999 | Exponential law for finite... |
dvrelog2 40000 | The derivative of the loga... |
dvrelog3 40001 | The derivative of the loga... |
dvrelog2b 40002 | Derivative of the binary l... |
0nonelalab 40003 | Technical lemma for open i... |
dvrelogpow2b 40004 | Derivative of the power of... |
aks4d1p1p3 40005 | Bound of a ceiling of the ... |
aks4d1p1p2 40006 | Rewrite ` A ` in more suit... |
aks4d1p1p4 40007 | Technical step for inequal... |
dvle2 40008 | Collapsed ~ dvle . (Contr... |
aks4d1p1p6 40009 | Inequality lift to differe... |
aks4d1p1p7 40010 | Bound of intermediary of i... |
aks4d1p1p5 40011 | Show inequality for existe... |
aks4d1p1 40012 | Show inequality for existe... |
aks4d1p2 40013 | Technical lemma for existe... |
aks4d1p3 40014 | There exists a small enoug... |
aks4d1p4 40015 | There exists a small enoug... |
aks4d1p5 40016 | Show that ` N ` and ` R ` ... |
aks4d1p6 40017 | The maximal prime power ex... |
aks4d1p7d1 40018 | Technical step in AKS lemm... |
aks4d1p7 40019 | Technical step in AKS lemm... |
aks4d1p8d1 40020 | If a prime divides one num... |
aks4d1p8d2 40021 | Any prime power dividing a... |
aks4d1p8d3 40022 | The remainder of a divisio... |
aks4d1p8 40023 | Show that ` N ` and ` R ` ... |
aks4d1p9 40024 | Show that the order is bou... |
aks4d1 40025 | Lemma 4.1 from ~ https://w... |
5bc2eq10 40026 | The value of 5 choose 2. ... |
facp2 40027 | The factorial of a success... |
2np3bcnp1 40028 | Part of induction step for... |
2ap1caineq 40029 | Inequality for Theorem 6.6... |
sticksstones1 40030 | Different strictly monoton... |
sticksstones2 40031 | The range function on stri... |
sticksstones3 40032 | The range function on stri... |
sticksstones4 40033 | Equinumerosity lemma for s... |
sticksstones5 40034 | Count the number of strict... |
sticksstones6 40035 | Function induces an order ... |
sticksstones7 40036 | Closure property of sticks... |
sticksstones8 40037 | Establish mapping between ... |
sticksstones9 40038 | Establish mapping between ... |
sticksstones10 40039 | Establish mapping between ... |
sticksstones11 40040 | Establish bijective mappin... |
sticksstones12a 40041 | Establish bijective mappin... |
sticksstones12 40042 | Establish bijective mappin... |
sticksstones13 40043 | Establish bijective mappin... |
sticksstones14 40044 | Sticks and stones with def... |
sticksstones15 40045 | Sticks and stones with alm... |
sticksstones16 40046 | Sticks and stones with col... |
sticksstones17 40047 | Extend sticks and stones t... |
sticksstones18 40048 | Extend sticks and stones t... |
sticksstones19 40049 | Extend sticks and stones t... |
sticksstones20 40050 | Lift sticks and stones to ... |
sticksstones21 40051 | Lift sticks and stones to ... |
sticksstones22 40052 | Non-exhaustive sticks and ... |
metakunt1 40053 | A is an endomapping. (Con... |
metakunt2 40054 | A is an endomapping. (Con... |
metakunt3 40055 | Value of A. (Contributed b... |
metakunt4 40056 | Value of A. (Contributed b... |
metakunt5 40057 | C is the left inverse for ... |
metakunt6 40058 | C is the left inverse for ... |
metakunt7 40059 | C is the left inverse for ... |
metakunt8 40060 | C is the left inverse for ... |
metakunt9 40061 | C is the left inverse for ... |
metakunt10 40062 | C is the right inverse for... |
metakunt11 40063 | C is the right inverse for... |
metakunt12 40064 | C is the right inverse for... |
metakunt13 40065 | C is the right inverse for... |
metakunt14 40066 | A is a primitive permutati... |
metakunt15 40067 | Construction of another pe... |
metakunt16 40068 | Construction of another pe... |
metakunt17 40069 | The union of three disjoin... |
metakunt18 40070 | Disjoint domains and codom... |
metakunt19 40071 | Domains on restrictions of... |
metakunt20 40072 | Show that B coincides on t... |
metakunt21 40073 | Show that B coincides on t... |
metakunt22 40074 | Show that B coincides on t... |
metakunt23 40075 | B coincides on the union o... |
metakunt24 40076 | Technical condition such t... |
metakunt25 40077 | B is a permutation. (Cont... |
metakunt26 40078 | Construction of one soluti... |
metakunt27 40079 | Construction of one soluti... |
metakunt28 40080 | Construction of one soluti... |
metakunt29 40081 | Construction of one soluti... |
metakunt30 40082 | Construction of one soluti... |
metakunt31 40083 | Construction of one soluti... |
metakunt32 40084 | Construction of one soluti... |
metakunt33 40085 | Construction of one soluti... |
metakunt34 40086 | ` D ` is a permutation. (... |
andiff 40087 | Adding biconditional when ... |
fac2xp3 40088 | Factorial of 2x+3, sublemm... |
prodsplit 40089 | Product split into two fac... |
2xp3dxp2ge1d 40090 | 2x+3 is greater than or eq... |
factwoffsmonot 40091 | A factorial with offset is... |
bicomdALT 40092 | Alternate proof of ~ bicom... |
elabgw 40093 | Membership in a class abst... |
elab2gw 40094 | Membership in a class abst... |
elrab2w 40095 | Membership in a restricted... |
ruvALT 40096 | Alternate proof of ~ ruv w... |
sn-wcdeq 40097 | Alternative to ~ wcdeq and... |
acos1half 40098 | The arccosine of ` 1 / 2 `... |
isdomn5 40099 | The right conjunct in the ... |
isdomn4 40100 | A ring is a domain iff it ... |
ioin9i8 40101 | Miscellaneous inference cr... |
jaodd 40102 | Double deduction form of ~... |
syl3an12 40103 | A double syllogism inferen... |
sbtd 40104 | A true statement is true u... |
sbor2 40105 | One direction of ~ sbor , ... |
19.9dev 40106 | ~ 19.9d in the case of an ... |
rspcedvdw 40107 | Version of ~ rspcedvd wher... |
2rspcedvdw 40108 | Double application of ~ rs... |
3rspcedvdw 40109 | Triple application of ~ rs... |
3rspcedvd 40110 | Triple application of ~ rs... |
eqimssd 40111 | Equality implies inclusion... |
rabdif 40112 | Move difference in and out... |
sn-axrep5v 40113 | A condensed form of ~ axre... |
sn-axprlem3 40114 | ~ axprlem3 using only Tars... |
sn-el 40115 | A version of ~ el with an ... |
sn-dtru 40116 | ~ dtru without ~ ax-8 or ~... |
sn-iotalem 40117 | An unused lemma showing th... |
sn-iotalemcor 40118 | Corollary of ~ sn-iotalem ... |
sn-iotaval 40119 | Version of ~ iotaval using... |
sn-iotauni 40120 | Version of ~ iotauni using... |
sn-iotanul 40121 | Version of ~ iotanul using... |
sn-iotassuni 40122 | ~ iotassuni without ~ ax-1... |
sn-iotaex 40123 | ~ iotaex without ~ ax-10 ,... |
brif1 40124 | Move a relation inside and... |
brif2 40125 | Move a relation inside and... |
brif12 40126 | Move a relation inside and... |
pssexg 40127 | The proper subset of a set... |
pssn0 40128 | A proper superset is nonem... |
psspwb 40129 | Classes are proper subclas... |
xppss12 40130 | Proper subset theorem for ... |
elpwbi 40131 | Membership in a power set,... |
opelxpii 40132 | Ordered pair membership in... |
imaopab 40133 | The image of a class of or... |
fnsnbt 40134 | A function's domain is a s... |
fnimasnd 40135 | The image of a function by... |
fvmptd4 40136 | Deduction version of ~ fvm... |
ofun 40137 | A function operation of un... |
dfqs2 40138 | Alternate definition of qu... |
dfqs3 40139 | Alternate definition of qu... |
qseq12d 40140 | Equality theorem for quoti... |
qsalrel 40141 | The quotient set is equal ... |
elmapdd 40142 | Deduction associated with ... |
isfsuppd 40143 | Deduction form of ~ isfsup... |
fzosumm1 40144 | Separate out the last term... |
ccatcan2d 40145 | Cancellation law for conca... |
nelsubginvcld 40146 | The inverse of a non-subgr... |
nelsubgcld 40147 | A non-subgroup-member plus... |
nelsubgsubcld 40148 | A non-subgroup-member minu... |
rnasclg 40149 | The set of injected scalar... |
selvval2lem1 40150 | ` T ` is an associative al... |
selvval2lem2 40151 | ` D ` is a ring homomorphi... |
selvval2lem3 40152 | The third argument passed ... |
selvval2lemn 40153 | A lemma to illustrate the ... |
selvval2lem4 40154 | The fourth argument passed... |
selvval2lem5 40155 | The fifth argument passed ... |
selvcl 40156 | Closure of the "variable s... |
frlmfielbas 40157 | The vectors of a finite fr... |
frlmfzwrd 40158 | A vector of a module with ... |
frlmfzowrd 40159 | A vector of a module with ... |
frlmfzolen 40160 | The dimension of a vector ... |
frlmfzowrdb 40161 | The vectors of a module wi... |
frlmfzoccat 40162 | The concatenation of two v... |
frlmvscadiccat 40163 | Scalar multiplication dist... |
ismhmd 40164 | Deduction version of ~ ism... |
ablcmnd 40165 | An Abelian group is a comm... |
ringcld 40166 | Closure of the multiplicat... |
ringassd 40167 | Associative law for multip... |
ringlidmd 40168 | The unit element of a ring... |
ringridmd 40169 | The unit element of a ring... |
ringabld 40170 | A ring is an Abelian group... |
ringcmnd 40171 | A ring is a commutative mo... |
drngringd 40172 | A division ring is a ring.... |
drnggrpd 40173 | A division ring is a group... |
drnginvrcld 40174 | Closure of the multiplicat... |
drnginvrn0d 40175 | A multiplicative inverse i... |
drnginvrld 40176 | Property of the multiplica... |
drnginvrrd 40177 | Property of the multiplica... |
drngmulcanad 40178 | Cancellation of a nonzero ... |
drngmulcan2ad 40179 | Cancellation of a nonzero ... |
drnginvmuld 40180 | Inverse of a nonzero produ... |
lmodgrpd 40181 | A left module is a group. ... |
lvecgrp 40182 | A vector space is a group.... |
lveclmodd 40183 | A vector space is a left m... |
lvecgrpd 40184 | A vector space is a group.... |
lvecring 40185 | The scalar component of a ... |
lmhmlvec 40186 | The property for modules t... |
frlm0vald 40187 | All coordinates of the zer... |
frlmsnic 40188 | Given a free module with a... |
uvccl 40189 | A unit vector is a vector.... |
uvcn0 40190 | A unit vector is nonzero. ... |
pwselbasr 40191 | The reverse direction of ~... |
pwspjmhmmgpd 40192 | The projection given by ~ ... |
pwsexpg 40193 | Value of a group exponenti... |
pwsgprod 40194 | Finite products in a power... |
evlsval3 40195 | Give a formula for the pol... |
evlsscaval 40196 | Polynomial evaluation buil... |
evlsvarval 40197 | Polynomial evaluation buil... |
evlsbagval 40198 | Polynomial evaluation buil... |
evlsexpval 40199 | Polynomial evaluation buil... |
evlsaddval 40200 | Polynomial evaluation buil... |
evlsmulval 40201 | Polynomial evaluation buil... |
fsuppind 40202 | Induction on functions ` F... |
fsuppssindlem1 40203 | Lemma for ~ fsuppssind . ... |
fsuppssindlem2 40204 | Lemma for ~ fsuppssind . ... |
fsuppssind 40205 | Induction on functions ` F... |
mhpind 40206 | The homogeneous polynomial... |
mhphflem 40207 | Lemma for ~ mhphf . Add s... |
mhphf 40208 | A homogeneous polynomial d... |
mhphf2 40209 | A homogeneous polynomial d... |
c0exALT 40210 | Alternate proof of ~ c0ex ... |
0cnALT3 40211 | Alternate proof of ~ 0cn u... |
elre0re 40212 | Specialized version of ~ 0... |
1t1e1ALT 40213 | Alternate proof of ~ 1t1e1... |
remulcan2d 40214 | ~ mulcan2d for real number... |
readdid1addid2d 40215 | Given some real number ` B... |
sn-1ne2 40216 | A proof of ~ 1ne2 without ... |
nnn1suc 40217 | A positive integer that is... |
nnadd1com 40218 | Addition with 1 is commuta... |
nnaddcom 40219 | Addition is commutative fo... |
nnaddcomli 40220 | Version of ~ addcomli for ... |
nnadddir 40221 | Right-distributivity for n... |
nnmul1com 40222 | Multiplication with 1 is c... |
nnmulcom 40223 | Multiplication is commutat... |
mvrrsubd 40224 | Move a subtraction in the ... |
laddrotrd 40225 | Rotate the variables right... |
raddcom12d 40226 | Swap the first two variabl... |
lsubrotld 40227 | Rotate the variables left ... |
lsubcom23d 40228 | Swap the second and third ... |
addsubeq4com 40229 | Relation between sums and ... |
sqsumi 40230 | A sum squared. (Contribut... |
negn0nposznnd 40231 | Lemma for ~ dffltz . (Con... |
sqmid3api 40232 | Value of the square of the... |
decaddcom 40233 | Commute ones place in addi... |
sqn5i 40234 | The square of a number end... |
sqn5ii 40235 | The square of a number end... |
decpmulnc 40236 | Partial products algorithm... |
decpmul 40237 | Partial products algorithm... |
sqdeccom12 40238 | The square of a number in ... |
sq3deccom12 40239 | Variant of ~ sqdeccom12 wi... |
235t711 40240 | Calculate a product by lon... |
ex-decpmul 40241 | Example usage of ~ decpmul... |
oexpreposd 40242 | Lemma for ~ dffltz . TODO... |
ltexp1d 40243 | ~ ltmul1d for exponentiati... |
ltexp1dd 40244 | Raising both sides of 'les... |
exp11nnd 40245 | ~ sq11d for positive real ... |
exp11d 40246 | ~ exp11nnd for nonzero int... |
0dvds0 40247 | 0 divides 0. (Contributed... |
absdvdsabsb 40248 | Divisibility is invariant ... |
dvdsexpim 40249 | ~ dvdssqim generalized to ... |
gcdnn0id 40250 | The ` gcd ` of a nonnegati... |
gcdle1d 40251 | The greatest common diviso... |
gcdle2d 40252 | The greatest common diviso... |
dvdsexpad 40253 | Deduction associated with ... |
nn0rppwr 40254 | If ` A ` and ` B ` are rel... |
expgcd 40255 | Exponentiation distributes... |
nn0expgcd 40256 | Exponentiation distributes... |
zexpgcd 40257 | Exponentiation distributes... |
numdenexp 40258 | ~ numdensq extended to non... |
numexp 40259 | ~ numsq extended to nonneg... |
denexp 40260 | ~ densq extended to nonneg... |
dvdsexpnn 40261 | ~ dvdssqlem generalized to... |
dvdsexpnn0 40262 | ~ dvdsexpnn generalized to... |
dvdsexpb 40263 | ~ dvdssq generalized to po... |
posqsqznn 40264 | When a positive rational s... |
cxpgt0d 40265 | A positive real raised to ... |
zrtelqelz 40266 | ~ zsqrtelqelz generalized ... |
zrtdvds 40267 | A positive integer root di... |
rtprmirr 40268 | The root of a prime number... |
resubval 40271 | Value of real subtraction,... |
renegeulemv 40272 | Lemma for ~ renegeu and si... |
renegeulem 40273 | Lemma for ~ renegeu and si... |
renegeu 40274 | Existential uniqueness of ... |
rernegcl 40275 | Closure law for negative r... |
renegadd 40276 | Relationship between real ... |
renegid 40277 | Addition of a real number ... |
reneg0addid2 40278 | Negative zero is a left ad... |
resubeulem1 40279 | Lemma for ~ resubeu . A v... |
resubeulem2 40280 | Lemma for ~ resubeu . A v... |
resubeu 40281 | Existential uniqueness of ... |
rersubcl 40282 | Closure for real subtracti... |
resubadd 40283 | Relation between real subt... |
resubaddd 40284 | Relationship between subtr... |
resubf 40285 | Real subtraction is an ope... |
repncan2 40286 | Addition and subtraction o... |
repncan3 40287 | Addition and subtraction o... |
readdsub 40288 | Law for addition and subtr... |
reladdrsub 40289 | Move LHS of a sum into RHS... |
reltsub1 40290 | Subtraction from both side... |
reltsubadd2 40291 | 'Less than' relationship b... |
resubcan2 40292 | Cancellation law for real ... |
resubsub4 40293 | Law for double subtraction... |
rennncan2 40294 | Cancellation law for real ... |
renpncan3 40295 | Cancellation law for real ... |
repnpcan 40296 | Cancellation law for addit... |
reppncan 40297 | Cancellation law for mixed... |
resubidaddid1lem 40298 | Lemma for ~ resubidaddid1 ... |
resubidaddid1 40299 | Any real number subtracted... |
resubdi 40300 | Distribution of multiplica... |
re1m1e0m0 40301 | Equality of two left-addit... |
sn-00idlem1 40302 | Lemma for ~ sn-00id . (Co... |
sn-00idlem2 40303 | Lemma for ~ sn-00id . (Co... |
sn-00idlem3 40304 | Lemma for ~ sn-00id . (Co... |
sn-00id 40305 | ~ 00id proven without ~ ax... |
re0m0e0 40306 | Real number version of ~ 0... |
readdid2 40307 | Real number version of ~ a... |
sn-addid2 40308 | ~ addid2 without ~ ax-mulc... |
remul02 40309 | Real number version of ~ m... |
sn-0ne2 40310 | ~ 0ne2 without ~ ax-mulcom... |
remul01 40311 | Real number version of ~ m... |
resubid 40312 | Subtraction of a real numb... |
readdid1 40313 | Real number version of ~ a... |
resubid1 40314 | Real number version of ~ s... |
renegneg 40315 | A real number is equal to ... |
readdcan2 40316 | Commuted version of ~ read... |
renegid2 40317 | Commuted version of ~ rene... |
sn-it0e0 40318 | Proof of ~ it0e0 without ~... |
sn-negex12 40319 | A combination of ~ cnegex ... |
sn-negex 40320 | Proof of ~ cnegex without ... |
sn-negex2 40321 | Proof of ~ cnegex2 without... |
sn-addcand 40322 | ~ addcand without ~ ax-mul... |
sn-addid1 40323 | ~ addid1 without ~ ax-mulc... |
sn-addcan2d 40324 | ~ addcan2d without ~ ax-mu... |
reixi 40325 | ~ ixi without ~ ax-mulcom ... |
rei4 40326 | ~ i4 without ~ ax-mulcom .... |
sn-addid0 40327 | A number that sums to itse... |
sn-mul01 40328 | ~ mul01 without ~ ax-mulco... |
sn-subeu 40329 | ~ negeu without ~ ax-mulco... |
sn-subcl 40330 | ~ subcl without ~ ax-mulco... |
sn-subf 40331 | ~ subf without ~ ax-mulcom... |
resubeqsub 40332 | Equivalence between real s... |
subresre 40333 | Subtraction restricted to ... |
addinvcom 40334 | A number commutes with its... |
remulinvcom 40335 | A left multiplicative inve... |
remulid2 40336 | Commuted version of ~ ax-1... |
sn-1ticom 40337 | Lemma for ~ sn-mulid2 and ... |
sn-mulid2 40338 | ~ mulid2 without ~ ax-mulc... |
it1ei 40339 | ` 1 ` is a multiplicative ... |
ipiiie0 40340 | The multiplicative inverse... |
remulcand 40341 | Commuted version of ~ remu... |
sn-0tie0 40342 | Lemma for ~ sn-mul02 . Co... |
sn-mul02 40343 | ~ mul02 without ~ ax-mulco... |
sn-ltaddpos 40344 | ~ ltaddpos without ~ ax-mu... |
reposdif 40345 | Comparison of two numbers ... |
relt0neg1 40346 | Comparison of a real and i... |
relt0neg2 40347 | Comparison of a real and i... |
mulgt0con1dlem 40348 | Lemma for ~ mulgt0con1d . ... |
mulgt0con1d 40349 | Counterpart to ~ mulgt0con... |
mulgt0con2d 40350 | Lemma for ~ mulgt0b2d and ... |
mulgt0b2d 40351 | Biconditional, deductive f... |
sn-ltmul2d 40352 | ~ ltmul2d without ~ ax-mul... |
sn-0lt1 40353 | ~ 0lt1 without ~ ax-mulcom... |
sn-ltp1 40354 | ~ ltp1 without ~ ax-mulcom... |
reneg1lt0 40355 | Lemma for ~ sn-inelr . (C... |
sn-inelr 40356 | ~ inelr without ~ ax-mulco... |
itrere 40357 | ` _i ` times a real is rea... |
retire 40358 | Commuted version of ~ itre... |
cnreeu 40359 | The reals in the expressio... |
sn-sup2 40360 | ~ sup2 with exactly the sa... |
prjspval 40363 | Value of the projective sp... |
prjsprel 40364 | Utility theorem regarding ... |
prjspertr 40365 | The relation in ` PrjSp ` ... |
prjsperref 40366 | The relation in ` PrjSp ` ... |
prjspersym 40367 | The relation in ` PrjSp ` ... |
prjsper 40368 | The relation used to defin... |
prjspreln0 40369 | Two nonzero vectors are eq... |
prjspvs 40370 | A nonzero multiple of a ve... |
prjsprellsp 40371 | Two vectors are equivalent... |
prjspeclsp 40372 | The vectors equivalent to ... |
prjspval2 40373 | Alternate definition of pr... |
prjspnval 40376 | Value of the n-dimensional... |
prjspnerlem 40377 | A lemma showing that the e... |
prjspnval2 40378 | Value of the n-dimensional... |
prjspner 40379 | The relation used to defin... |
prjspnvs 40380 | A nonzero multiple of a ve... |
0prjspnlem 40381 | Lemma for ~ 0prjspn . The... |
prjspnfv01 40382 | Any vector is equivalent t... |
prjspner01 40383 | Any vector is equivalent t... |
prjspner1 40384 | Two vectors whose zeroth c... |
0prjspnrel 40385 | In the zero-dimensional pr... |
0prjspn 40386 | A zero-dimensional project... |
dffltz 40387 | Fermat's Last Theorem (FLT... |
fltmul 40388 | A counterexample to FLT st... |
fltdiv 40389 | A counterexample to FLT st... |
flt0 40390 | A counterexample for FLT d... |
fltdvdsabdvdsc 40391 | Any factor of both ` A ` a... |
fltabcoprmex 40392 | A counterexample to FLT im... |
fltaccoprm 40393 | A counterexample to FLT wi... |
fltbccoprm 40394 | A counterexample to FLT wi... |
fltabcoprm 40395 | A counterexample to FLT wi... |
infdesc 40396 | Infinite descent. The hyp... |
fltne 40397 | If a counterexample to FLT... |
flt4lem 40398 | Raising a number to the fo... |
flt4lem1 40399 | Satisfy the antecedent use... |
flt4lem2 40400 | If ` A ` is even, ` B ` is... |
flt4lem3 40401 | Equivalent to ~ pythagtrip... |
flt4lem4 40402 | If the product of two copr... |
flt4lem5 40403 | In the context of the lemm... |
flt4lem5elem 40404 | Version of ~ fltaccoprm an... |
flt4lem5a 40405 | Part 1 of Equation 1 of ... |
flt4lem5b 40406 | Part 2 of Equation 1 of ... |
flt4lem5c 40407 | Part 2 of Equation 2 of ... |
flt4lem5d 40408 | Part 3 of Equation 2 of ... |
flt4lem5e 40409 | Satisfy the hypotheses of ... |
flt4lem5f 40410 | Final equation of ~... |
flt4lem6 40411 | Remove shared factors in a... |
flt4lem7 40412 | Convert ~ flt4lem5f into a... |
nna4b4nsq 40413 | Strengthening of Fermat's ... |
fltltc 40414 | ` ( C ^ N ) ` is the large... |
fltnltalem 40415 | Lemma for ~ fltnlta . A l... |
fltnlta 40416 | In a Fermat counterexample... |
binom2d 40417 | Deduction form of binom2. ... |
cu3addd 40418 | Cube of sum of three numbe... |
sqnegd 40419 | The square of the negative... |
negexpidd 40420 | The sum of a real number t... |
rexlimdv3d 40421 | An extended version of ~ r... |
3cubeslem1 40422 | Lemma for ~ 3cubes . (Con... |
3cubeslem2 40423 | Lemma for ~ 3cubes . Used... |
3cubeslem3l 40424 | Lemma for ~ 3cubes . (Con... |
3cubeslem3r 40425 | Lemma for ~ 3cubes . (Con... |
3cubeslem3 40426 | Lemma for ~ 3cubes . (Con... |
3cubeslem4 40427 | Lemma for ~ 3cubes . This... |
3cubes 40428 | Every rational number is a... |
rntrclfvOAI 40429 | The range of the transitiv... |
moxfr 40430 | Transfer at-most-one betwe... |
imaiinfv 40431 | Indexed intersection of an... |
elrfi 40432 | Elementhood in a set of re... |
elrfirn 40433 | Elementhood in a set of re... |
elrfirn2 40434 | Elementhood in a set of re... |
cmpfiiin 40435 | In a compact topology, a s... |
ismrcd1 40436 | Any function from the subs... |
ismrcd2 40437 | Second half of ~ ismrcd1 .... |
istopclsd 40438 | A closure function which s... |
ismrc 40439 | A function is a Moore clos... |
isnacs 40442 | Expand definition of Noeth... |
nacsfg 40443 | In a Noetherian-type closu... |
isnacs2 40444 | Express Noetherian-type cl... |
mrefg2 40445 | Slight variation on finite... |
mrefg3 40446 | Slight variation on finite... |
nacsacs 40447 | A closure system of Noethe... |
isnacs3 40448 | A choice-free order equiva... |
incssnn0 40449 | Transitivity induction of ... |
nacsfix 40450 | An increasing sequence of ... |
constmap 40451 | A constant (represented wi... |
mapco2g 40452 | Renaming indices in a tupl... |
mapco2 40453 | Post-composition (renaming... |
mapfzcons 40454 | Extending a one-based mapp... |
mapfzcons1 40455 | Recover prefix mapping fro... |
mapfzcons1cl 40456 | A nonempty mapping has a p... |
mapfzcons2 40457 | Recover added element from... |
mptfcl 40458 | Interpret range of a maps-... |
mzpclval 40463 | Substitution lemma for ` m... |
elmzpcl 40464 | Double substitution lemma ... |
mzpclall 40465 | The set of all functions w... |
mzpcln0 40466 | Corollary of ~ mzpclall : ... |
mzpcl1 40467 | Defining property 1 of a p... |
mzpcl2 40468 | Defining property 2 of a p... |
mzpcl34 40469 | Defining properties 3 and ... |
mzpval 40470 | Value of the ` mzPoly ` fu... |
dmmzp 40471 | ` mzPoly ` is defined for ... |
mzpincl 40472 | Polynomial closedness is a... |
mzpconst 40473 | Constant functions are pol... |
mzpf 40474 | A polynomial function is a... |
mzpproj 40475 | A projection function is p... |
mzpadd 40476 | The pointwise sum of two p... |
mzpmul 40477 | The pointwise product of t... |
mzpconstmpt 40478 | A constant function expres... |
mzpaddmpt 40479 | Sum of polynomial function... |
mzpmulmpt 40480 | Product of polynomial func... |
mzpsubmpt 40481 | The difference of two poly... |
mzpnegmpt 40482 | Negation of a polynomial f... |
mzpexpmpt 40483 | Raise a polynomial functio... |
mzpindd 40484 | "Structural" induction to ... |
mzpmfp 40485 | Relationship between multi... |
mzpsubst 40486 | Substituting polynomials f... |
mzprename 40487 | Simplified version of ~ mz... |
mzpresrename 40488 | A polynomial is a polynomi... |
mzpcompact2lem 40489 | Lemma for ~ mzpcompact2 . ... |
mzpcompact2 40490 | Polynomials are finitary o... |
coeq0i 40491 | ~ coeq0 but without explic... |
fzsplit1nn0 40492 | Split a finite 1-based set... |
eldiophb 40495 | Initial expression of Diop... |
eldioph 40496 | Condition for a set to be ... |
diophrw 40497 | Renaming and adding unused... |
eldioph2lem1 40498 | Lemma for ~ eldioph2 . Co... |
eldioph2lem2 40499 | Lemma for ~ eldioph2 . Co... |
eldioph2 40500 | Construct a Diophantine se... |
eldioph2b 40501 | While Diophantine sets wer... |
eldiophelnn0 40502 | Remove antecedent on ` B `... |
eldioph3b 40503 | Define Diophantine sets in... |
eldioph3 40504 | Inference version of ~ eld... |
ellz1 40505 | Membership in a lower set ... |
lzunuz 40506 | The union of a lower set o... |
fz1eqin 40507 | Express a one-based finite... |
lzenom 40508 | Lower integers are countab... |
elmapresaunres2 40509 | ~ fresaunres2 transposed t... |
diophin 40510 | If two sets are Diophantin... |
diophun 40511 | If two sets are Diophantin... |
eldiophss 40512 | Diophantine sets are sets ... |
diophrex 40513 | Projecting a Diophantine s... |
eq0rabdioph 40514 | This is the first of a num... |
eqrabdioph 40515 | Diophantine set builder fo... |
0dioph 40516 | The null set is Diophantin... |
vdioph 40517 | The "universal" set (as la... |
anrabdioph 40518 | Diophantine set builder fo... |
orrabdioph 40519 | Diophantine set builder fo... |
3anrabdioph 40520 | Diophantine set builder fo... |
3orrabdioph 40521 | Diophantine set builder fo... |
2sbcrex 40522 | Exchange an existential qu... |
sbcrexgOLD 40523 | Interchange class substitu... |
2sbcrexOLD 40524 | Exchange an existential qu... |
sbc2rex 40525 | Exchange a substitution wi... |
sbc2rexgOLD 40526 | Exchange a substitution wi... |
sbc4rex 40527 | Exchange a substitution wi... |
sbc4rexgOLD 40528 | Exchange a substitution wi... |
sbcrot3 40529 | Rotate a sequence of three... |
sbcrot5 40530 | Rotate a sequence of five ... |
sbccomieg 40531 | Commute two explicit subst... |
rexrabdioph 40532 | Diophantine set builder fo... |
rexfrabdioph 40533 | Diophantine set builder fo... |
2rexfrabdioph 40534 | Diophantine set builder fo... |
3rexfrabdioph 40535 | Diophantine set builder fo... |
4rexfrabdioph 40536 | Diophantine set builder fo... |
6rexfrabdioph 40537 | Diophantine set builder fo... |
7rexfrabdioph 40538 | Diophantine set builder fo... |
rabdiophlem1 40539 | Lemma for arithmetic dioph... |
rabdiophlem2 40540 | Lemma for arithmetic dioph... |
elnn0rabdioph 40541 | Diophantine set builder fo... |
rexzrexnn0 40542 | Rewrite an existential qua... |
lerabdioph 40543 | Diophantine set builder fo... |
eluzrabdioph 40544 | Diophantine set builder fo... |
elnnrabdioph 40545 | Diophantine set builder fo... |
ltrabdioph 40546 | Diophantine set builder fo... |
nerabdioph 40547 | Diophantine set builder fo... |
dvdsrabdioph 40548 | Divisibility is a Diophant... |
eldioph4b 40549 | Membership in ` Dioph ` ex... |
eldioph4i 40550 | Forward-only version of ~ ... |
diophren 40551 | Change variables in a Diop... |
rabrenfdioph 40552 | Change variable numbers in... |
rabren3dioph 40553 | Change variable numbers in... |
fphpd 40554 | Pigeonhole principle expre... |
fphpdo 40555 | Pigeonhole principle for s... |
ctbnfien 40556 | An infinite subset of a co... |
fiphp3d 40557 | Infinite pigeonhole princi... |
rencldnfilem 40558 | Lemma for ~ rencldnfi . (... |
rencldnfi 40559 | A set of real numbers whic... |
irrapxlem1 40560 | Lemma for ~ irrapx1 . Div... |
irrapxlem2 40561 | Lemma for ~ irrapx1 . Two... |
irrapxlem3 40562 | Lemma for ~ irrapx1 . By ... |
irrapxlem4 40563 | Lemma for ~ irrapx1 . Eli... |
irrapxlem5 40564 | Lemma for ~ irrapx1 . Swi... |
irrapxlem6 40565 | Lemma for ~ irrapx1 . Exp... |
irrapx1 40566 | Dirichlet's approximation ... |
pellexlem1 40567 | Lemma for ~ pellex . Arit... |
pellexlem2 40568 | Lemma for ~ pellex . Arit... |
pellexlem3 40569 | Lemma for ~ pellex . To e... |
pellexlem4 40570 | Lemma for ~ pellex . Invo... |
pellexlem5 40571 | Lemma for ~ pellex . Invo... |
pellexlem6 40572 | Lemma for ~ pellex . Doin... |
pellex 40573 | Every Pell equation has a ... |
pell1qrval 40584 | Value of the set of first-... |
elpell1qr 40585 | Membership in a first-quad... |
pell14qrval 40586 | Value of the set of positi... |
elpell14qr 40587 | Membership in the set of p... |
pell1234qrval 40588 | Value of the set of genera... |
elpell1234qr 40589 | Membership in the set of g... |
pell1234qrre 40590 | General Pell solutions are... |
pell1234qrne0 40591 | No solution to a Pell equa... |
pell1234qrreccl 40592 | General solutions of the P... |
pell1234qrmulcl 40593 | General solutions of the P... |
pell14qrss1234 40594 | A positive Pell solution i... |
pell14qrre 40595 | A positive Pell solution i... |
pell14qrne0 40596 | A positive Pell solution i... |
pell14qrgt0 40597 | A positive Pell solution i... |
pell14qrrp 40598 | A positive Pell solution i... |
pell1234qrdich 40599 | A general Pell solution is... |
elpell14qr2 40600 | A number is a positive Pel... |
pell14qrmulcl 40601 | Positive Pell solutions ar... |
pell14qrreccl 40602 | Positive Pell solutions ar... |
pell14qrdivcl 40603 | Positive Pell solutions ar... |
pell14qrexpclnn0 40604 | Lemma for ~ pell14qrexpcl ... |
pell14qrexpcl 40605 | Positive Pell solutions ar... |
pell1qrss14 40606 | First-quadrant Pell soluti... |
pell14qrdich 40607 | A positive Pell solution i... |
pell1qrge1 40608 | A Pell solution in the fir... |
pell1qr1 40609 | 1 is a Pell solution and i... |
elpell1qr2 40610 | The first quadrant solutio... |
pell1qrgaplem 40611 | Lemma for ~ pell1qrgap . ... |
pell1qrgap 40612 | First-quadrant Pell soluti... |
pell14qrgap 40613 | Positive Pell solutions ar... |
pell14qrgapw 40614 | Positive Pell solutions ar... |
pellqrexplicit 40615 | Condition for a calculated... |
infmrgelbi 40616 | Any lower bound of a nonem... |
pellqrex 40617 | There is a nontrivial solu... |
pellfundval 40618 | Value of the fundamental s... |
pellfundre 40619 | The fundamental solution o... |
pellfundge 40620 | Lower bound on the fundame... |
pellfundgt1 40621 | Weak lower bound on the Pe... |
pellfundlb 40622 | A nontrivial first quadran... |
pellfundglb 40623 | If a real is larger than t... |
pellfundex 40624 | The fundamental solution a... |
pellfund14gap 40625 | There are no solutions bet... |
pellfundrp 40626 | The fundamental Pell solut... |
pellfundne1 40627 | The fundamental Pell solut... |
reglogcl 40628 | General logarithm is a rea... |
reglogltb 40629 | General logarithm preserve... |
reglogleb 40630 | General logarithm preserve... |
reglogmul 40631 | Multiplication law for gen... |
reglogexp 40632 | Power law for general log.... |
reglogbas 40633 | General log of the base is... |
reglog1 40634 | General log of 1 is 0. (C... |
reglogexpbas 40635 | General log of a power of ... |
pellfund14 40636 | Every positive Pell soluti... |
pellfund14b 40637 | The positive Pell solution... |
rmxfval 40642 | Value of the X sequence. ... |
rmyfval 40643 | Value of the Y sequence. ... |
rmspecsqrtnq 40644 | The discriminant used to d... |
rmspecnonsq 40645 | The discriminant used to d... |
qirropth 40646 | This lemma implements the ... |
rmspecfund 40647 | The base of exponent used ... |
rmxyelqirr 40648 | The solutions used to cons... |
rmxypairf1o 40649 | The function used to extra... |
rmxyelxp 40650 | Lemma for ~ frmx and ~ frm... |
frmx 40651 | The X sequence is a nonneg... |
frmy 40652 | The Y sequence is an integ... |
rmxyval 40653 | Main definition of the X a... |
rmspecpos 40654 | The discriminant used to d... |
rmxycomplete 40655 | The X and Y sequences take... |
rmxynorm 40656 | The X and Y sequences defi... |
rmbaserp 40657 | The base of exponentiation... |
rmxyneg 40658 | Negation law for X and Y s... |
rmxyadd 40659 | Addition formula for X and... |
rmxy1 40660 | Value of the X and Y seque... |
rmxy0 40661 | Value of the X and Y seque... |
rmxneg 40662 | Negation law (even functio... |
rmx0 40663 | Value of X sequence at 0. ... |
rmx1 40664 | Value of X sequence at 1. ... |
rmxadd 40665 | Addition formula for X seq... |
rmyneg 40666 | Negation formula for Y seq... |
rmy0 40667 | Value of Y sequence at 0. ... |
rmy1 40668 | Value of Y sequence at 1. ... |
rmyadd 40669 | Addition formula for Y seq... |
rmxp1 40670 | Special addition-of-1 form... |
rmyp1 40671 | Special addition of 1 form... |
rmxm1 40672 | Subtraction of 1 formula f... |
rmym1 40673 | Subtraction of 1 formula f... |
rmxluc 40674 | The X sequence is a Lucas ... |
rmyluc 40675 | The Y sequence is a Lucas ... |
rmyluc2 40676 | Lucas sequence property of... |
rmxdbl 40677 | "Double-angle formula" for... |
rmydbl 40678 | "Double-angle formula" for... |
monotuz 40679 | A function defined on an u... |
monotoddzzfi 40680 | A function which is odd an... |
monotoddzz 40681 | A function (given implicit... |
oddcomabszz 40682 | An odd function which take... |
2nn0ind 40683 | Induction on nonnegative i... |
zindbi 40684 | Inductively transfer a pro... |
rmxypos 40685 | For all nonnegative indice... |
ltrmynn0 40686 | The Y-sequence is strictly... |
ltrmxnn0 40687 | The X-sequence is strictly... |
lermxnn0 40688 | The X-sequence is monotoni... |
rmxnn 40689 | The X-sequence is defined ... |
ltrmy 40690 | The Y-sequence is strictly... |
rmyeq0 40691 | Y is zero only at zero. (... |
rmyeq 40692 | Y is one-to-one. (Contrib... |
lermy 40693 | Y is monotonic (non-strict... |
rmynn 40694 | ` rmY ` is positive for po... |
rmynn0 40695 | ` rmY ` is nonnegative for... |
rmyabs 40696 | ` rmY ` commutes with ` ab... |
jm2.24nn 40697 | X(n) is strictly greater t... |
jm2.17a 40698 | First half of lemma 2.17 o... |
jm2.17b 40699 | Weak form of the second ha... |
jm2.17c 40700 | Second half of lemma 2.17 ... |
jm2.24 40701 | Lemma 2.24 of [JonesMatija... |
rmygeid 40702 | Y(n) increases faster than... |
congtr 40703 | A wff of the form ` A || (... |
congadd 40704 | If two pairs of numbers ar... |
congmul 40705 | If two pairs of numbers ar... |
congsym 40706 | Congruence mod ` A ` is a ... |
congneg 40707 | If two integers are congru... |
congsub 40708 | If two pairs of numbers ar... |
congid 40709 | Every integer is congruent... |
mzpcong 40710 | Polynomials commute with c... |
congrep 40711 | Every integer is congruent... |
congabseq 40712 | If two integers are congru... |
acongid 40713 | A wff like that in this th... |
acongsym 40714 | Symmetry of alternating co... |
acongneg2 40715 | Negate right side of alter... |
acongtr 40716 | Transitivity of alternatin... |
acongeq12d 40717 | Substitution deduction for... |
acongrep 40718 | Every integer is alternati... |
fzmaxdif 40719 | Bound on the difference be... |
fzneg 40720 | Reflection of a finite ran... |
acongeq 40721 | Two numbers in the fundame... |
dvdsacongtr 40722 | Alternating congruence pas... |
coprmdvdsb 40723 | Multiplication by a coprim... |
modabsdifz 40724 | Divisibility in terms of m... |
dvdsabsmod0 40725 | Divisibility in terms of m... |
jm2.18 40726 | Theorem 2.18 of [JonesMati... |
jm2.19lem1 40727 | Lemma for ~ jm2.19 . X an... |
jm2.19lem2 40728 | Lemma for ~ jm2.19 . (Con... |
jm2.19lem3 40729 | Lemma for ~ jm2.19 . (Con... |
jm2.19lem4 40730 | Lemma for ~ jm2.19 . Exte... |
jm2.19 40731 | Lemma 2.19 of [JonesMatija... |
jm2.21 40732 | Lemma for ~ jm2.20nn . Ex... |
jm2.22 40733 | Lemma for ~ jm2.20nn . Ap... |
jm2.23 40734 | Lemma for ~ jm2.20nn . Tr... |
jm2.20nn 40735 | Lemma 2.20 of [JonesMatija... |
jm2.25lem1 40736 | Lemma for ~ jm2.26 . (Con... |
jm2.25 40737 | Lemma for ~ jm2.26 . Rema... |
jm2.26a 40738 | Lemma for ~ jm2.26 . Reve... |
jm2.26lem3 40739 | Lemma for ~ jm2.26 . Use ... |
jm2.26 40740 | Lemma 2.26 of [JonesMatija... |
jm2.15nn0 40741 | Lemma 2.15 of [JonesMatija... |
jm2.16nn0 40742 | Lemma 2.16 of [JonesMatija... |
jm2.27a 40743 | Lemma for ~ jm2.27 . Reve... |
jm2.27b 40744 | Lemma for ~ jm2.27 . Expa... |
jm2.27c 40745 | Lemma for ~ jm2.27 . Forw... |
jm2.27 40746 | Lemma 2.27 of [JonesMatija... |
jm2.27dlem1 40747 | Lemma for ~ rmydioph . Su... |
jm2.27dlem2 40748 | Lemma for ~ rmydioph . Th... |
jm2.27dlem3 40749 | Lemma for ~ rmydioph . In... |
jm2.27dlem4 40750 | Lemma for ~ rmydioph . In... |
jm2.27dlem5 40751 | Lemma for ~ rmydioph . Us... |
rmydioph 40752 | ~ jm2.27 restated in terms... |
rmxdiophlem 40753 | X can be expressed in term... |
rmxdioph 40754 | X is a Diophantine functio... |
jm3.1lem1 40755 | Lemma for ~ jm3.1 . (Cont... |
jm3.1lem2 40756 | Lemma for ~ jm3.1 . (Cont... |
jm3.1lem3 40757 | Lemma for ~ jm3.1 . (Cont... |
jm3.1 40758 | Diophantine expression for... |
expdiophlem1 40759 | Lemma for ~ expdioph . Fu... |
expdiophlem2 40760 | Lemma for ~ expdioph . Ex... |
expdioph 40761 | The exponential function i... |
setindtr 40762 | Set induction for sets con... |
setindtrs 40763 | Set induction scheme witho... |
dford3lem1 40764 | Lemma for ~ dford3 . (Con... |
dford3lem2 40765 | Lemma for ~ dford3 . (Con... |
dford3 40766 | Ordinals are precisely the... |
dford4 40767 | ~ dford3 expressed in prim... |
wopprc 40768 | Unrelated: Wiener pairs t... |
rpnnen3lem 40769 | Lemma for ~ rpnnen3 . (Co... |
rpnnen3 40770 | Dedekind cut injection of ... |
axac10 40771 | Characterization of choice... |
harinf 40772 | The Hartogs number of an i... |
wdom2d2 40773 | Deduction for weak dominan... |
ttac 40774 | Tarski's theorem about cho... |
pw2f1ocnv 40775 | Define a bijection between... |
pw2f1o2 40776 | Define a bijection between... |
pw2f1o2val 40777 | Function value of the ~ pw... |
pw2f1o2val2 40778 | Membership in a mapped set... |
soeq12d 40779 | Equality deduction for tot... |
freq12d 40780 | Equality deduction for fou... |
weeq12d 40781 | Equality deduction for wel... |
limsuc2 40782 | Limit ordinals in the sens... |
wepwsolem 40783 | Transfer an ordering on ch... |
wepwso 40784 | A well-ordering induces a ... |
dnnumch1 40785 | Define an enumeration of a... |
dnnumch2 40786 | Define an enumeration (wea... |
dnnumch3lem 40787 | Value of the ordinal injec... |
dnnumch3 40788 | Define an injection from a... |
dnwech 40789 | Define a well-ordering fro... |
fnwe2val 40790 | Lemma for ~ fnwe2 . Subst... |
fnwe2lem1 40791 | Lemma for ~ fnwe2 . Subst... |
fnwe2lem2 40792 | Lemma for ~ fnwe2 . An el... |
fnwe2lem3 40793 | Lemma for ~ fnwe2 . Trich... |
fnwe2 40794 | A well-ordering can be con... |
aomclem1 40795 | Lemma for ~ dfac11 . This... |
aomclem2 40796 | Lemma for ~ dfac11 . Succ... |
aomclem3 40797 | Lemma for ~ dfac11 . Succ... |
aomclem4 40798 | Lemma for ~ dfac11 . Limi... |
aomclem5 40799 | Lemma for ~ dfac11 . Comb... |
aomclem6 40800 | Lemma for ~ dfac11 . Tran... |
aomclem7 40801 | Lemma for ~ dfac11 . ` ( R... |
aomclem8 40802 | Lemma for ~ dfac11 . Perf... |
dfac11 40803 | The right-hand side of thi... |
kelac1 40804 | Kelley's choice, basic for... |
kelac2lem 40805 | Lemma for ~ kelac2 and ~ d... |
kelac2 40806 | Kelley's choice, most comm... |
dfac21 40807 | Tychonoff's theorem is a c... |
islmodfg 40810 | Property of a finitely gen... |
islssfg 40811 | Property of a finitely gen... |
islssfg2 40812 | Property of a finitely gen... |
islssfgi 40813 | Finitely spanned subspaces... |
fglmod 40814 | Finitely generated left mo... |
lsmfgcl 40815 | The sum of two finitely ge... |
islnm 40818 | Property of being a Noethe... |
islnm2 40819 | Property of being a Noethe... |
lnmlmod 40820 | A Noetherian left module i... |
lnmlssfg 40821 | A submodule of Noetherian ... |
lnmlsslnm 40822 | All submodules of a Noethe... |
lnmfg 40823 | A Noetherian left module i... |
kercvrlsm 40824 | The domain of a linear fun... |
lmhmfgima 40825 | A homomorphism maps finite... |
lnmepi 40826 | Epimorphic images of Noeth... |
lmhmfgsplit 40827 | If the kernel and range of... |
lmhmlnmsplit 40828 | If the kernel and range of... |
lnmlmic 40829 | Noetherian is an invariant... |
pwssplit4 40830 | Splitting for structure po... |
filnm 40831 | Finite left modules are No... |
pwslnmlem0 40832 | Zeroeth powers are Noether... |
pwslnmlem1 40833 | First powers are Noetheria... |
pwslnmlem2 40834 | A sum of powers is Noether... |
pwslnm 40835 | Finite powers of Noetheria... |
unxpwdom3 40836 | Weaker version of ~ unxpwd... |
pwfi2f1o 40837 | The ~ pw2f1o bijection rel... |
pwfi2en 40838 | Finitely supported indicat... |
frlmpwfi 40839 | Formal linear combinations... |
gicabl 40840 | Being Abelian is a group i... |
imasgim 40841 | A relabeling of the elemen... |
isnumbasgrplem1 40842 | A set which is equipollent... |
harn0 40843 | The Hartogs number of a se... |
numinfctb 40844 | A numerable infinite set c... |
isnumbasgrplem2 40845 | If the (to be thought of a... |
isnumbasgrplem3 40846 | Every nonempty numerable s... |
isnumbasabl 40847 | A set is numerable iff it ... |
isnumbasgrp 40848 | A set is numerable iff it ... |
dfacbasgrp 40849 | A choice equivalent in abs... |
islnr 40852 | Property of a left-Noether... |
lnrring 40853 | Left-Noetherian rings are ... |
lnrlnm 40854 | Left-Noetherian rings have... |
islnr2 40855 | Property of being a left-N... |
islnr3 40856 | Relate left-Noetherian rin... |
lnr2i 40857 | Given an ideal in a left-N... |
lpirlnr 40858 | Left principal ideal rings... |
lnrfrlm 40859 | Finite-dimensional free mo... |
lnrfg 40860 | Finitely-generated modules... |
lnrfgtr 40861 | A submodule of a finitely ... |
hbtlem1 40864 | Value of the leading coeff... |
hbtlem2 40865 | Leading coefficient ideals... |
hbtlem7 40866 | Functionality of leading c... |
hbtlem4 40867 | The leading ideal function... |
hbtlem3 40868 | The leading ideal function... |
hbtlem5 40869 | The leading ideal function... |
hbtlem6 40870 | There is a finite set of p... |
hbt 40871 | The Hilbert Basis Theorem ... |
dgrsub2 40876 | Subtracting two polynomial... |
elmnc 40877 | Property of a monic polyno... |
mncply 40878 | A monic polynomial is a po... |
mnccoe 40879 | A monic polynomial has lea... |
mncn0 40880 | A monic polynomial is not ... |
dgraaval 40885 | Value of the degree functi... |
dgraalem 40886 | Properties of the degree o... |
dgraacl 40887 | Closure of the degree func... |
dgraaf 40888 | Degree function on algebra... |
dgraaub 40889 | Upper bound on degree of a... |
dgraa0p 40890 | A rational polynomial of d... |
mpaaeu 40891 | An algebraic number has ex... |
mpaaval 40892 | Value of the minimal polyn... |
mpaalem 40893 | Properties of the minimal ... |
mpaacl 40894 | Minimal polynomial is a po... |
mpaadgr 40895 | Minimal polynomial has deg... |
mpaaroot 40896 | The minimal polynomial of ... |
mpaamn 40897 | Minimal polynomial is moni... |
itgoval 40902 | Value of the integral-over... |
aaitgo 40903 | The standard algebraic num... |
itgoss 40904 | An integral element is int... |
itgocn 40905 | All integral elements are ... |
cnsrexpcl 40906 | Exponentiation is closed i... |
fsumcnsrcl 40907 | Finite sums are closed in ... |
cnsrplycl 40908 | Polynomials are closed in ... |
rgspnval 40909 | Value of the ring-span of ... |
rgspncl 40910 | The ring-span of a set is ... |
rgspnssid 40911 | The ring-span of a set con... |
rgspnmin 40912 | The ring-span is contained... |
rgspnid 40913 | The span of a subring is i... |
rngunsnply 40914 | Adjoining one element to a... |
flcidc 40915 | Finite linear combinations... |
algstr 40918 | Lemma to shorten proofs of... |
algbase 40919 | The base set of a construc... |
algaddg 40920 | The additive operation of ... |
algmulr 40921 | The multiplicative operati... |
algsca 40922 | The set of scalars of a co... |
algvsca 40923 | The scalar product operati... |
mendval 40924 | Value of the module endomo... |
mendbas 40925 | Base set of the module end... |
mendplusgfval 40926 | Addition in the module end... |
mendplusg 40927 | A specific addition in the... |
mendmulrfval 40928 | Multiplication in the modu... |
mendmulr 40929 | A specific multiplication ... |
mendsca 40930 | The module endomorphism al... |
mendvscafval 40931 | Scalar multiplication in t... |
mendvsca 40932 | A specific scalar multipli... |
mendring 40933 | The module endomorphism al... |
mendlmod 40934 | The module endomorphism al... |
mendassa 40935 | The module endomorphism al... |
idomrootle 40936 | No element of an integral ... |
idomodle 40937 | Limit on the number of ` N... |
fiuneneq 40938 | Two finite sets of equal s... |
idomsubgmo 40939 | The units of an integral d... |
proot1mul 40940 | Any primitive ` N ` -th ro... |
proot1hash 40941 | If an integral domain has ... |
proot1ex 40942 | The complex field has prim... |
isdomn3 40945 | Nonzero elements form a mu... |
mon1pid 40946 | Monicity and degree of the... |
mon1psubm 40947 | Monic polynomials are a mu... |
deg1mhm 40948 | Homomorphic property of th... |
cytpfn 40949 | Functionality of the cyclo... |
cytpval 40950 | Substitutions for the Nth ... |
fgraphopab 40951 | Express a function as a su... |
fgraphxp 40952 | Express a function as a su... |
hausgraph 40953 | The graph of a continuous ... |
iocunico 40958 | Split an open interval int... |
iocinico 40959 | The intersection of two se... |
iocmbl 40960 | An open-below, closed-abov... |
cnioobibld 40961 | A bounded, continuous func... |
arearect 40962 | The area of a rectangle wh... |
areaquad 40963 | The area of a quadrilatera... |
ifpan123g 40964 | Conjunction of conditional... |
ifpan23 40965 | Conjunction of conditional... |
ifpdfor2 40966 | Define or in terms of cond... |
ifporcor 40967 | Corollary of commutation o... |
ifpdfan2 40968 | Define and with conditiona... |
ifpancor 40969 | Corollary of commutation o... |
ifpdfor 40970 | Define or in terms of cond... |
ifpdfan 40971 | Define and with conditiona... |
ifpbi2 40972 | Equivalence theorem for co... |
ifpbi3 40973 | Equivalence theorem for co... |
ifpim1 40974 | Restate implication as con... |
ifpnot 40975 | Restate negated wff as con... |
ifpid2 40976 | Restate wff as conditional... |
ifpim2 40977 | Restate implication as con... |
ifpbi23 40978 | Equivalence theorem for co... |
ifpbiidcor 40979 | Restatement of ~ biid . (... |
ifpbicor 40980 | Corollary of commutation o... |
ifpxorcor 40981 | Corollary of commutation o... |
ifpbi1 40982 | Equivalence theorem for co... |
ifpnot23 40983 | Negation of conditional lo... |
ifpnotnotb 40984 | Factor conditional logic o... |
ifpnorcor 40985 | Corollary of commutation o... |
ifpnancor 40986 | Corollary of commutation o... |
ifpnot23b 40987 | Negation of conditional lo... |
ifpbiidcor2 40988 | Restatement of ~ biid . (... |
ifpnot23c 40989 | Negation of conditional lo... |
ifpnot23d 40990 | Negation of conditional lo... |
ifpdfnan 40991 | Define nand as conditional... |
ifpdfxor 40992 | Define xor as conditional ... |
ifpbi12 40993 | Equivalence theorem for co... |
ifpbi13 40994 | Equivalence theorem for co... |
ifpbi123 40995 | Equivalence theorem for co... |
ifpidg 40996 | Restate wff as conditional... |
ifpid3g 40997 | Restate wff as conditional... |
ifpid2g 40998 | Restate wff as conditional... |
ifpid1g 40999 | Restate wff as conditional... |
ifpim23g 41000 | Restate implication as con... |
ifpim3 41001 | Restate implication as con... |
ifpnim1 41002 | Restate negated implicatio... |
ifpim4 41003 | Restate implication as con... |
ifpnim2 41004 | Restate negated implicatio... |
ifpim123g 41005 | Implication of conditional... |
ifpim1g 41006 | Implication of conditional... |
ifp1bi 41007 | Substitute the first eleme... |
ifpbi1b 41008 | When the first variable is... |
ifpimimb 41009 | Factor conditional logic o... |
ifpororb 41010 | Factor conditional logic o... |
ifpananb 41011 | Factor conditional logic o... |
ifpnannanb 41012 | Factor conditional logic o... |
ifpor123g 41013 | Disjunction of conditional... |
ifpimim 41014 | Consequnce of implication.... |
ifpbibib 41015 | Factor conditional logic o... |
ifpxorxorb 41016 | Factor conditional logic o... |
rp-fakeimass 41017 | A special case where impli... |
rp-fakeanorass 41018 | A special case where a mix... |
rp-fakeoranass 41019 | A special case where a mix... |
rp-fakeinunass 41020 | A special case where a mix... |
rp-fakeuninass 41021 | A special case where a mix... |
rp-isfinite5 41022 | A set is said to be finite... |
rp-isfinite6 41023 | A set is said to be finite... |
intabssd 41024 | When for each element ` y ... |
eu0 41025 | There is only one empty se... |
epelon2 41026 | Over the ordinal numbers, ... |
ontric3g 41027 | For all ` x , y e. On ` , ... |
dfsucon 41028 | ` A ` is called a successo... |
snen1g 41029 | A singleton is equinumerou... |
snen1el 41030 | A singleton is equinumerou... |
sn1dom 41031 | A singleton is dominated b... |
pr2dom 41032 | An unordered pair is domin... |
tr3dom 41033 | An unordered triple is dom... |
ensucne0 41034 | A class equinumerous to a ... |
ensucne0OLD 41035 | A class equinumerous to a ... |
dfom6 41036 | Let ` _om ` be defined to ... |
infordmin 41037 | ` _om ` is the smallest in... |
iscard4 41038 | Two ways to express the pr... |
iscard5 41039 | Two ways to express the pr... |
elrncard 41040 | Let us define a cardinal n... |
harval3 41041 | ` ( har `` A ) ` is the le... |
harval3on 41042 | For any ordinal number ` A... |
en2pr 41043 | A class is equinumerous to... |
pr2cv 41044 | If an unordered pair is eq... |
pr2el1 41045 | If an unordered pair is eq... |
pr2cv1 41046 | If an unordered pair is eq... |
pr2el2 41047 | If an unordered pair is eq... |
pr2cv2 41048 | If an unordered pair is eq... |
pren2 41049 | An unordered pair is equin... |
pr2eldif1 41050 | If an unordered pair is eq... |
pr2eldif2 41051 | If an unordered pair is eq... |
pren2d 41052 | A pair of two distinct set... |
aleph1min 41053 | ` ( aleph `` 1o ) ` is the... |
alephiso2 41054 | ` aleph ` is a strictly or... |
alephiso3 41055 | ` aleph ` is a strictly or... |
pwelg 41056 | The powerclass is an eleme... |
pwinfig 41057 | The powerclass of an infin... |
pwinfi2 41058 | The powerclass of an infin... |
pwinfi3 41059 | The powerclass of an infin... |
pwinfi 41060 | The powerclass of an infin... |
fipjust 41061 | A definition of the finite... |
cllem0 41062 | The class of all sets with... |
superficl 41063 | The class of all supersets... |
superuncl 41064 | The class of all supersets... |
ssficl 41065 | The class of all subsets o... |
ssuncl 41066 | The class of all subsets o... |
ssdifcl 41067 | The class of all subsets o... |
sssymdifcl 41068 | The class of all subsets o... |
fiinfi 41069 | If two classes have the fi... |
rababg 41070 | Condition when restricted ... |
elintabg 41071 | Two ways of saying a set i... |
elinintab 41072 | Two ways of saying a set i... |
elmapintrab 41073 | Two ways to say a set is a... |
elinintrab 41074 | Two ways of saying a set i... |
inintabss 41075 | Upper bound on intersectio... |
inintabd 41076 | Value of the intersection ... |
xpinintabd 41077 | Value of the intersection ... |
relintabex 41078 | If the intersection of a c... |
elcnvcnvintab 41079 | Two ways of saying a set i... |
relintab 41080 | Value of the intersection ... |
nonrel 41081 | A non-relation is equal to... |
elnonrel 41082 | Only an ordered pair where... |
cnvssb 41083 | Subclass theorem for conve... |
relnonrel 41084 | The non-relation part of a... |
cnvnonrel 41085 | The converse of the non-re... |
brnonrel 41086 | A non-relation cannot rela... |
dmnonrel 41087 | The domain of the non-rela... |
rnnonrel 41088 | The range of the non-relat... |
resnonrel 41089 | A restriction of the non-r... |
imanonrel 41090 | An image under the non-rel... |
cononrel1 41091 | Composition with the non-r... |
cononrel2 41092 | Composition with the non-r... |
elmapintab 41093 | Two ways to say a set is a... |
fvnonrel 41094 | The function value of any ... |
elinlem 41095 | Two ways to say a set is a... |
elcnvcnvlem 41096 | Two ways to say a set is a... |
cnvcnvintabd 41097 | Value of the relationship ... |
elcnvlem 41098 | Two ways to say a set is a... |
elcnvintab 41099 | Two ways of saying a set i... |
cnvintabd 41100 | Value of the converse of t... |
undmrnresiss 41101 | Two ways of saying the ide... |
reflexg 41102 | Two ways of saying a relat... |
cnvssco 41103 | A condition weaker than re... |
refimssco 41104 | Reflexive relations are su... |
cleq2lem 41105 | Equality implies bijection... |
cbvcllem 41106 | Change of bound variable i... |
clublem 41107 | If a superset ` Y ` of ` X... |
clss2lem 41108 | The closure of a property ... |
dfid7 41109 | Definition of identity rel... |
mptrcllem 41110 | Show two versions of a clo... |
cotrintab 41111 | The intersection of a clas... |
rclexi 41112 | The reflexive closure of a... |
rtrclexlem 41113 | Existence of relation impl... |
rtrclex 41114 | The reflexive-transitive c... |
trclubgNEW 41115 | If a relation exists then ... |
trclubNEW 41116 | If a relation exists then ... |
trclexi 41117 | The transitive closure of ... |
rtrclexi 41118 | The reflexive-transitive c... |
clrellem 41119 | When the property ` ps ` h... |
clcnvlem 41120 | When ` A ` , an upper boun... |
cnvtrucl0 41121 | The converse of the trivia... |
cnvrcl0 41122 | The converse of the reflex... |
cnvtrcl0 41123 | The converse of the transi... |
dmtrcl 41124 | The domain of the transiti... |
rntrcl 41125 | The range of the transitiv... |
dfrtrcl5 41126 | Definition of reflexive-tr... |
trcleq2lemRP 41127 | Equality implies bijection... |
sqrtcvallem1 41128 | Two ways of saying a compl... |
reabsifneg 41129 | Alternate expression for t... |
reabsifnpos 41130 | Alternate expression for t... |
reabsifpos 41131 | Alternate expression for t... |
reabsifnneg 41132 | Alternate expression for t... |
reabssgn 41133 | Alternate expression for t... |
sqrtcvallem2 41134 | Equivalent to saying that ... |
sqrtcvallem3 41135 | Equivalent to saying that ... |
sqrtcvallem4 41136 | Equivalent to saying that ... |
sqrtcvallem5 41137 | Equivalent to saying that ... |
sqrtcval 41138 | Explicit formula for the c... |
sqrtcval2 41139 | Explicit formula for the c... |
resqrtval 41140 | Real part of the complex s... |
imsqrtval 41141 | Imaginary part of the comp... |
resqrtvalex 41142 | Example for ~ resqrtval . ... |
imsqrtvalex 41143 | Example for ~ imsqrtval . ... |
al3im 41144 | Version of ~ ax-4 for a ne... |
intima0 41145 | Two ways of expressing the... |
elimaint 41146 | Element of image of inters... |
cnviun 41147 | Converse of indexed union.... |
imaiun1 41148 | The image of an indexed un... |
coiun1 41149 | Composition with an indexe... |
elintima 41150 | Element of intersection of... |
intimass 41151 | The image under the inters... |
intimass2 41152 | The image under the inters... |
intimag 41153 | Requirement for the image ... |
intimasn 41154 | Two ways to express the im... |
intimasn2 41155 | Two ways to express the im... |
ss2iundf 41156 | Subclass theorem for index... |
ss2iundv 41157 | Subclass theorem for index... |
cbviuneq12df 41158 | Rule used to change the bo... |
cbviuneq12dv 41159 | Rule used to change the bo... |
conrel1d 41160 | Deduction about compositio... |
conrel2d 41161 | Deduction about compositio... |
trrelind 41162 | The intersection of transi... |
xpintrreld 41163 | The intersection of a tran... |
restrreld 41164 | The restriction of a trans... |
trrelsuperreldg 41165 | Concrete construction of a... |
trficl 41166 | The class of all transitiv... |
cnvtrrel 41167 | The converse of a transiti... |
trrelsuperrel2dg 41168 | Concrete construction of a... |
dfrcl2 41171 | Reflexive closure of a rel... |
dfrcl3 41172 | Reflexive closure of a rel... |
dfrcl4 41173 | Reflexive closure of a rel... |
relexp2 41174 | A set operated on by the r... |
relexpnul 41175 | If the domain and range of... |
eliunov2 41176 | Membership in the indexed ... |
eltrclrec 41177 | Membership in the indexed ... |
elrtrclrec 41178 | Membership in the indexed ... |
briunov2 41179 | Two classes related by the... |
brmptiunrelexpd 41180 | If two elements are connec... |
fvmptiunrelexplb0d 41181 | If the indexed union range... |
fvmptiunrelexplb0da 41182 | If the indexed union range... |
fvmptiunrelexplb1d 41183 | If the indexed union range... |
brfvid 41184 | If two elements are connec... |
brfvidRP 41185 | If two elements are connec... |
fvilbd 41186 | A set is a subset of its i... |
fvilbdRP 41187 | A set is a subset of its i... |
brfvrcld 41188 | If two elements are connec... |
brfvrcld2 41189 | If two elements are connec... |
fvrcllb0d 41190 | A restriction of the ident... |
fvrcllb0da 41191 | A restriction of the ident... |
fvrcllb1d 41192 | A set is a subset of its i... |
brtrclrec 41193 | Two classes related by the... |
brrtrclrec 41194 | Two classes related by the... |
briunov2uz 41195 | Two classes related by the... |
eliunov2uz 41196 | Membership in the indexed ... |
ov2ssiunov2 41197 | Any particular operator va... |
relexp0eq 41198 | The zeroth power of relati... |
iunrelexp0 41199 | Simplification of zeroth p... |
relexpxpnnidm 41200 | Any positive power of a Ca... |
relexpiidm 41201 | Any power of any restricti... |
relexpss1d 41202 | The relational power of a ... |
comptiunov2i 41203 | The composition two indexe... |
corclrcl 41204 | The reflexive closure is i... |
iunrelexpmin1 41205 | The indexed union of relat... |
relexpmulnn 41206 | With exponents limited to ... |
relexpmulg 41207 | With ordered exponents, th... |
trclrelexplem 41208 | The union of relational po... |
iunrelexpmin2 41209 | The indexed union of relat... |
relexp01min 41210 | With exponents limited to ... |
relexp1idm 41211 | Repeated raising a relatio... |
relexp0idm 41212 | Repeated raising a relatio... |
relexp0a 41213 | Absorbtion law for zeroth ... |
relexpxpmin 41214 | The composition of powers ... |
relexpaddss 41215 | The composition of two pow... |
iunrelexpuztr 41216 | The indexed union of relat... |
dftrcl3 41217 | Transitive closure of a re... |
brfvtrcld 41218 | If two elements are connec... |
fvtrcllb1d 41219 | A set is a subset of its i... |
trclfvcom 41220 | The transitive closure of ... |
cnvtrclfv 41221 | The converse of the transi... |
cotrcltrcl 41222 | The transitive closure is ... |
trclimalb2 41223 | Lower bound for image unde... |
brtrclfv2 41224 | Two ways to indicate two e... |
trclfvdecomr 41225 | The transitive closure of ... |
trclfvdecoml 41226 | The transitive closure of ... |
dmtrclfvRP 41227 | The domain of the transiti... |
rntrclfvRP 41228 | The range of the transitiv... |
rntrclfv 41229 | The range of the transitiv... |
dfrtrcl3 41230 | Reflexive-transitive closu... |
brfvrtrcld 41231 | If two elements are connec... |
fvrtrcllb0d 41232 | A restriction of the ident... |
fvrtrcllb0da 41233 | A restriction of the ident... |
fvrtrcllb1d 41234 | A set is a subset of its i... |
dfrtrcl4 41235 | Reflexive-transitive closu... |
corcltrcl 41236 | The composition of the ref... |
cortrcltrcl 41237 | Composition with the refle... |
corclrtrcl 41238 | Composition with the refle... |
cotrclrcl 41239 | The composition of the ref... |
cortrclrcl 41240 | Composition with the refle... |
cotrclrtrcl 41241 | Composition with the refle... |
cortrclrtrcl 41242 | The reflexive-transitive c... |
frege77d 41243 | If the images of both ` { ... |
frege81d 41244 | If the image of ` U ` is a... |
frege83d 41245 | If the image of the union ... |
frege96d 41246 | If ` C ` follows ` A ` in ... |
frege87d 41247 | If the images of both ` { ... |
frege91d 41248 | If ` B ` follows ` A ` in ... |
frege97d 41249 | If ` A ` contains all elem... |
frege98d 41250 | If ` C ` follows ` A ` and... |
frege102d 41251 | If either ` A ` and ` C ` ... |
frege106d 41252 | If ` B ` follows ` A ` in ... |
frege108d 41253 | If either ` A ` and ` C ` ... |
frege109d 41254 | If ` A ` contains all elem... |
frege114d 41255 | If either ` R ` relates ` ... |
frege111d 41256 | If either ` A ` and ` C ` ... |
frege122d 41257 | If ` F ` is a function, ` ... |
frege124d 41258 | If ` F ` is a function, ` ... |
frege126d 41259 | If ` F ` is a function, ` ... |
frege129d 41260 | If ` F ` is a function and... |
frege131d 41261 | If ` F ` is a function and... |
frege133d 41262 | If ` F ` is a function and... |
dfxor4 41263 | Express exclusive-or in te... |
dfxor5 41264 | Express exclusive-or in te... |
df3or2 41265 | Express triple-or in terms... |
df3an2 41266 | Express triple-and in term... |
nev 41267 | Express that not every set... |
0pssin 41268 | Express that an intersecti... |
dfhe2 41271 | The property of relation `... |
dfhe3 41272 | The property of relation `... |
heeq12 41273 | Equality law for relations... |
heeq1 41274 | Equality law for relations... |
heeq2 41275 | Equality law for relations... |
sbcheg 41276 | Distribute proper substitu... |
hess 41277 | Subclass law for relations... |
xphe 41278 | Any Cartesian product is h... |
0he 41279 | The empty relation is here... |
0heALT 41280 | The empty relation is here... |
he0 41281 | Any relation is hereditary... |
unhe1 41282 | The union of two relations... |
snhesn 41283 | Any singleton is hereditar... |
idhe 41284 | The identity relation is h... |
psshepw 41285 | The relation between sets ... |
sshepw 41286 | The relation between sets ... |
rp-simp2-frege 41289 | Simplification of triple c... |
rp-simp2 41290 | Simplification of triple c... |
rp-frege3g 41291 | Add antecedent to ~ ax-fre... |
frege3 41292 | Add antecedent to ~ ax-fre... |
rp-misc1-frege 41293 | Double-use of ~ ax-frege2 ... |
rp-frege24 41294 | Introducing an embedded an... |
rp-frege4g 41295 | Deduction related to distr... |
frege4 41296 | Special case of closed for... |
frege5 41297 | A closed form of ~ syl . ... |
rp-7frege 41298 | Distribute antecedent and ... |
rp-4frege 41299 | Elimination of a nested an... |
rp-6frege 41300 | Elimination of a nested an... |
rp-8frege 41301 | Eliminate antecedent when ... |
rp-frege25 41302 | Closed form for ~ a1dd . ... |
frege6 41303 | A closed form of ~ imim2d ... |
axfrege8 41304 | Swap antecedents. Identic... |
frege7 41305 | A closed form of ~ syl6 . ... |
frege26 41307 | Identical to ~ idd . Prop... |
frege27 41308 | We cannot (at the same tim... |
frege9 41309 | Closed form of ~ syl with ... |
frege12 41310 | A closed form of ~ com23 .... |
frege11 41311 | Elimination of a nested an... |
frege24 41312 | Closed form for ~ a1d . D... |
frege16 41313 | A closed form of ~ com34 .... |
frege25 41314 | Closed form for ~ a1dd . ... |
frege18 41315 | Closed form of a syllogism... |
frege22 41316 | A closed form of ~ com45 .... |
frege10 41317 | Result commuting anteceden... |
frege17 41318 | A closed form of ~ com3l .... |
frege13 41319 | A closed form of ~ com3r .... |
frege14 41320 | Closed form of a deduction... |
frege19 41321 | A closed form of ~ syl6 . ... |
frege23 41322 | Syllogism followed by rota... |
frege15 41323 | A closed form of ~ com4r .... |
frege21 41324 | Replace antecedent in ante... |
frege20 41325 | A closed form of ~ syl8 . ... |
axfrege28 41326 | Contraposition. Identical... |
frege29 41328 | Closed form of ~ con3d . ... |
frege30 41329 | Commuted, closed form of ~... |
axfrege31 41330 | Identical to ~ notnotr . ... |
frege32 41332 | Deduce ~ con1 from ~ con3 ... |
frege33 41333 | If ` ph ` or ` ps ` takes ... |
frege34 41334 | If as a conseqence of the ... |
frege35 41335 | Commuted, closed form of ~... |
frege36 41336 | The case in which ` ps ` i... |
frege37 41337 | If ` ch ` is a necessary c... |
frege38 41338 | Identical to ~ pm2.21 . P... |
frege39 41339 | Syllogism between ~ pm2.18... |
frege40 41340 | Anything implies ~ pm2.18 ... |
axfrege41 41341 | Identical to ~ notnot . A... |
frege42 41343 | Not not ~ id . Propositio... |
frege43 41344 | If there is a choice only ... |
frege44 41345 | Similar to a commuted ~ pm... |
frege45 41346 | Deduce ~ pm2.6 from ~ con1... |
frege46 41347 | If ` ps ` holds when ` ph ... |
frege47 41348 | Deduce consequence follows... |
frege48 41349 | Closed form of syllogism w... |
frege49 41350 | Closed form of deduction w... |
frege50 41351 | Closed form of ~ jaoi . P... |
frege51 41352 | Compare with ~ jaod . Pro... |
axfrege52a 41353 | Justification for ~ ax-fre... |
frege52aid 41355 | The case when the content ... |
frege53aid 41356 | Specialization of ~ frege5... |
frege53a 41357 | Lemma for ~ frege55a . Pr... |
axfrege54a 41358 | Justification for ~ ax-fre... |
frege54cor0a 41360 | Synonym for logical equiva... |
frege54cor1a 41361 | Reflexive equality. (Cont... |
frege55aid 41362 | Lemma for ~ frege57aid . ... |
frege55lem1a 41363 | Necessary deduction regard... |
frege55lem2a 41364 | Core proof of Proposition ... |
frege55a 41365 | Proposition 55 of [Frege18... |
frege55cor1a 41366 | Proposition 55 of [Frege18... |
frege56aid 41367 | Lemma for ~ frege57aid . ... |
frege56a 41368 | Proposition 56 of [Frege18... |
frege57aid 41369 | This is the all imporant f... |
frege57a 41370 | Analogue of ~ frege57aid .... |
axfrege58a 41371 | Identical to ~ anifp . Ju... |
frege58acor 41373 | Lemma for ~ frege59a . (C... |
frege59a 41374 | A kind of Aristotelian inf... |
frege60a 41375 | Swap antecedents of ~ ax-f... |
frege61a 41376 | Lemma for ~ frege65a . Pr... |
frege62a 41377 | A kind of Aristotelian inf... |
frege63a 41378 | Proposition 63 of [Frege18... |
frege64a 41379 | Lemma for ~ frege65a . Pr... |
frege65a 41380 | A kind of Aristotelian inf... |
frege66a 41381 | Swap antecedents of ~ freg... |
frege67a 41382 | Lemma for ~ frege68a . Pr... |
frege68a 41383 | Combination of applying a ... |
axfrege52c 41384 | Justification for ~ ax-fre... |
frege52b 41386 | The case when the content ... |
frege53b 41387 | Lemma for frege102 (via ~ ... |
axfrege54c 41388 | Reflexive equality of clas... |
frege54b 41390 | Reflexive equality of sets... |
frege54cor1b 41391 | Reflexive equality. (Cont... |
frege55lem1b 41392 | Necessary deduction regard... |
frege55lem2b 41393 | Lemma for ~ frege55b . Co... |
frege55b 41394 | Lemma for ~ frege57b . Pr... |
frege56b 41395 | Lemma for ~ frege57b . Pr... |
frege57b 41396 | Analogue of ~ frege57aid .... |
axfrege58b 41397 | If ` A. x ph ` is affirmed... |
frege58bid 41399 | If ` A. x ph ` is affirmed... |
frege58bcor 41400 | Lemma for ~ frege59b . (C... |
frege59b 41401 | A kind of Aristotelian inf... |
frege60b 41402 | Swap antecedents of ~ ax-f... |
frege61b 41403 | Lemma for ~ frege65b . Pr... |
frege62b 41404 | A kind of Aristotelian inf... |
frege63b 41405 | Lemma for ~ frege91 . Pro... |
frege64b 41406 | Lemma for ~ frege65b . Pr... |
frege65b 41407 | A kind of Aristotelian inf... |
frege66b 41408 | Swap antecedents of ~ freg... |
frege67b 41409 | Lemma for ~ frege68b . Pr... |
frege68b 41410 | Combination of applying a ... |
frege53c 41411 | Proposition 53 of [Frege18... |
frege54cor1c 41412 | Reflexive equality. (Cont... |
frege55lem1c 41413 | Necessary deduction regard... |
frege55lem2c 41414 | Core proof of Proposition ... |
frege55c 41415 | Proposition 55 of [Frege18... |
frege56c 41416 | Lemma for ~ frege57c . Pr... |
frege57c 41417 | Swap order of implication ... |
frege58c 41418 | Principle related to ~ sp ... |
frege59c 41419 | A kind of Aristotelian inf... |
frege60c 41420 | Swap antecedents of ~ freg... |
frege61c 41421 | Lemma for ~ frege65c . Pr... |
frege62c 41422 | A kind of Aristotelian inf... |
frege63c 41423 | Analogue of ~ frege63b . ... |
frege64c 41424 | Lemma for ~ frege65c . Pr... |
frege65c 41425 | A kind of Aristotelian inf... |
frege66c 41426 | Swap antecedents of ~ freg... |
frege67c 41427 | Lemma for ~ frege68c . Pr... |
frege68c 41428 | Combination of applying a ... |
dffrege69 41429 | If from the proposition th... |
frege70 41430 | Lemma for ~ frege72 . Pro... |
frege71 41431 | Lemma for ~ frege72 . Pro... |
frege72 41432 | If property ` A ` is hered... |
frege73 41433 | Lemma for ~ frege87 . Pro... |
frege74 41434 | If ` X ` has a property ` ... |
frege75 41435 | If from the proposition th... |
dffrege76 41436 | If from the two propositio... |
frege77 41437 | If ` Y ` follows ` X ` in ... |
frege78 41438 | Commuted form of of ~ freg... |
frege79 41439 | Distributed form of ~ freg... |
frege80 41440 | Add additional condition t... |
frege81 41441 | If ` X ` has a property ` ... |
frege82 41442 | Closed-form deduction base... |
frege83 41443 | Apply commuted form of ~ f... |
frege84 41444 | Commuted form of ~ frege81... |
frege85 41445 | Commuted form of ~ frege77... |
frege86 41446 | Conclusion about element o... |
frege87 41447 | If ` Z ` is a result of an... |
frege88 41448 | Commuted form of ~ frege87... |
frege89 41449 | One direction of ~ dffrege... |
frege90 41450 | Add antecedent to ~ frege8... |
frege91 41451 | Every result of an applica... |
frege92 41452 | Inference from ~ frege91 .... |
frege93 41453 | Necessary condition for tw... |
frege94 41454 | Looking one past a pair re... |
frege95 41455 | Looking one past a pair re... |
frege96 41456 | Every result of an applica... |
frege97 41457 | The property of following ... |
frege98 41458 | If ` Y ` follows ` X ` and... |
dffrege99 41459 | If ` Z ` is identical with... |
frege100 41460 | One direction of ~ dffrege... |
frege101 41461 | Lemma for ~ frege102 . Pr... |
frege102 41462 | If ` Z ` belongs to the ` ... |
frege103 41463 | Proposition 103 of [Frege1... |
frege104 41464 | Proposition 104 of [Frege1... |
frege105 41465 | Proposition 105 of [Frege1... |
frege106 41466 | Whatever follows ` X ` in ... |
frege107 41467 | Proposition 107 of [Frege1... |
frege108 41468 | If ` Y ` belongs to the ` ... |
frege109 41469 | The property of belonging ... |
frege110 41470 | Proposition 110 of [Frege1... |
frege111 41471 | If ` Y ` belongs to the ` ... |
frege112 41472 | Identity implies belonging... |
frege113 41473 | Proposition 113 of [Frege1... |
frege114 41474 | If ` X ` belongs to the ` ... |
dffrege115 41475 | If from the circumstance t... |
frege116 41476 | One direction of ~ dffrege... |
frege117 41477 | Lemma for ~ frege118 . Pr... |
frege118 41478 | Simplified application of ... |
frege119 41479 | Lemma for ~ frege120 . Pr... |
frege120 41480 | Simplified application of ... |
frege121 41481 | Lemma for ~ frege122 . Pr... |
frege122 41482 | If ` X ` is a result of an... |
frege123 41483 | Lemma for ~ frege124 . Pr... |
frege124 41484 | If ` X ` is a result of an... |
frege125 41485 | Lemma for ~ frege126 . Pr... |
frege126 41486 | If ` M ` follows ` Y ` in ... |
frege127 41487 | Communte antecedents of ~ ... |
frege128 41488 | Lemma for ~ frege129 . Pr... |
frege129 41489 | If the procedure ` R ` is ... |
frege130 41490 | Lemma for ~ frege131 . Pr... |
frege131 41491 | If the procedure ` R ` is ... |
frege132 41492 | Lemma for ~ frege133 . Pr... |
frege133 41493 | If the procedure ` R ` is ... |
enrelmap 41494 | The set of all possible re... |
enrelmapr 41495 | The set of all possible re... |
enmappw 41496 | The set of all mappings fr... |
enmappwid 41497 | The set of all mappings fr... |
rfovd 41498 | Value of the operator, ` (... |
rfovfvd 41499 | Value of the operator, ` (... |
rfovfvfvd 41500 | Value of the operator, ` (... |
rfovcnvf1od 41501 | Properties of the operator... |
rfovcnvd 41502 | Value of the converse of t... |
rfovf1od 41503 | The value of the operator,... |
rfovcnvfvd 41504 | Value of the converse of t... |
fsovd 41505 | Value of the operator, ` (... |
fsovrfovd 41506 | The operator which gives a... |
fsovfvd 41507 | Value of the operator, ` (... |
fsovfvfvd 41508 | Value of the operator, ` (... |
fsovfd 41509 | The operator, ` ( A O B ) ... |
fsovcnvlem 41510 | The ` O ` operator, which ... |
fsovcnvd 41511 | The value of the converse ... |
fsovcnvfvd 41512 | The value of the converse ... |
fsovf1od 41513 | The value of ` ( A O B ) `... |
dssmapfvd 41514 | Value of the duality opera... |
dssmapfv2d 41515 | Value of the duality opera... |
dssmapfv3d 41516 | Value of the duality opera... |
dssmapnvod 41517 | For any base set ` B ` the... |
dssmapf1od 41518 | For any base set ` B ` the... |
dssmap2d 41519 | For any base set ` B ` the... |
or3or 41520 | Decompose disjunction into... |
andi3or 41521 | Distribute over triple dis... |
uneqsn 41522 | If a union of classes is e... |
df3o2 41523 | Ordinal 3 is the unordered... |
df3o3 41524 | Ordinal 3, fully expanded.... |
brfvimex 41525 | If a binary relation holds... |
brovmptimex 41526 | If a binary relation holds... |
brovmptimex1 41527 | If a binary relation holds... |
brovmptimex2 41528 | If a binary relation holds... |
brcoffn 41529 | Conditions allowing the de... |
brcofffn 41530 | Conditions allowing the de... |
brco2f1o 41531 | Conditions allowing the de... |
brco3f1o 41532 | Conditions allowing the de... |
ntrclsbex 41533 | If (pseudo-)interior and (... |
ntrclsrcomplex 41534 | The relative complement of... |
neik0imk0p 41535 | Kuratowski's K0 axiom impl... |
ntrk2imkb 41536 | If an interior function is... |
ntrkbimka 41537 | If the interiors of disjoi... |
ntrk0kbimka 41538 | If the interiors of disjoi... |
clsk3nimkb 41539 | If the base set is not emp... |
clsk1indlem0 41540 | The ansatz closure functio... |
clsk1indlem2 41541 | The ansatz closure functio... |
clsk1indlem3 41542 | The ansatz closure functio... |
clsk1indlem4 41543 | The ansatz closure functio... |
clsk1indlem1 41544 | The ansatz closure functio... |
clsk1independent 41545 | For generalized closure fu... |
neik0pk1imk0 41546 | Kuratowski's K0' and K1 ax... |
isotone1 41547 | Two different ways to say ... |
isotone2 41548 | Two different ways to say ... |
ntrk1k3eqk13 41549 | An interior function is bo... |
ntrclsf1o 41550 | If (pseudo-)interior and (... |
ntrclsnvobr 41551 | If (pseudo-)interior and (... |
ntrclsiex 41552 | If (pseudo-)interior and (... |
ntrclskex 41553 | If (pseudo-)interior and (... |
ntrclsfv1 41554 | If (pseudo-)interior and (... |
ntrclsfv2 41555 | If (pseudo-)interior and (... |
ntrclselnel1 41556 | If (pseudo-)interior and (... |
ntrclselnel2 41557 | If (pseudo-)interior and (... |
ntrclsfv 41558 | The value of the interior ... |
ntrclsfveq1 41559 | If interior and closure fu... |
ntrclsfveq2 41560 | If interior and closure fu... |
ntrclsfveq 41561 | If interior and closure fu... |
ntrclsss 41562 | If interior and closure fu... |
ntrclsneine0lem 41563 | If (pseudo-)interior and (... |
ntrclsneine0 41564 | If (pseudo-)interior and (... |
ntrclscls00 41565 | If (pseudo-)interior and (... |
ntrclsiso 41566 | If (pseudo-)interior and (... |
ntrclsk2 41567 | An interior function is co... |
ntrclskb 41568 | The interiors of disjoint ... |
ntrclsk3 41569 | The intersection of interi... |
ntrclsk13 41570 | The interior of the inters... |
ntrclsk4 41571 | Idempotence of the interio... |
ntrneibex 41572 | If (pseudo-)interior and (... |
ntrneircomplex 41573 | The relative complement of... |
ntrneif1o 41574 | If (pseudo-)interior and (... |
ntrneiiex 41575 | If (pseudo-)interior and (... |
ntrneinex 41576 | If (pseudo-)interior and (... |
ntrneicnv 41577 | If (pseudo-)interior and (... |
ntrneifv1 41578 | If (pseudo-)interior and (... |
ntrneifv2 41579 | If (pseudo-)interior and (... |
ntrneiel 41580 | If (pseudo-)interior and (... |
ntrneifv3 41581 | The value of the neighbors... |
ntrneineine0lem 41582 | If (pseudo-)interior and (... |
ntrneineine1lem 41583 | If (pseudo-)interior and (... |
ntrneifv4 41584 | The value of the interior ... |
ntrneiel2 41585 | Membership in iterated int... |
ntrneineine0 41586 | If (pseudo-)interior and (... |
ntrneineine1 41587 | If (pseudo-)interior and (... |
ntrneicls00 41588 | If (pseudo-)interior and (... |
ntrneicls11 41589 | If (pseudo-)interior and (... |
ntrneiiso 41590 | If (pseudo-)interior and (... |
ntrneik2 41591 | An interior function is co... |
ntrneix2 41592 | An interior (closure) func... |
ntrneikb 41593 | The interiors of disjoint ... |
ntrneixb 41594 | The interiors (closures) o... |
ntrneik3 41595 | The intersection of interi... |
ntrneix3 41596 | The closure of the union o... |
ntrneik13 41597 | The interior of the inters... |
ntrneix13 41598 | The closure of the union o... |
ntrneik4w 41599 | Idempotence of the interio... |
ntrneik4 41600 | Idempotence of the interio... |
clsneibex 41601 | If (pseudo-)closure and (p... |
clsneircomplex 41602 | The relative complement of... |
clsneif1o 41603 | If a (pseudo-)closure func... |
clsneicnv 41604 | If a (pseudo-)closure func... |
clsneikex 41605 | If closure and neighborhoo... |
clsneinex 41606 | If closure and neighborhoo... |
clsneiel1 41607 | If a (pseudo-)closure func... |
clsneiel2 41608 | If a (pseudo-)closure func... |
clsneifv3 41609 | Value of the neighborhoods... |
clsneifv4 41610 | Value of the closure (inte... |
neicvgbex 41611 | If (pseudo-)neighborhood a... |
neicvgrcomplex 41612 | The relative complement of... |
neicvgf1o 41613 | If neighborhood and conver... |
neicvgnvo 41614 | If neighborhood and conver... |
neicvgnvor 41615 | If neighborhood and conver... |
neicvgmex 41616 | If the neighborhoods and c... |
neicvgnex 41617 | If the neighborhoods and c... |
neicvgel1 41618 | A subset being an element ... |
neicvgel2 41619 | The complement of a subset... |
neicvgfv 41620 | The value of the neighborh... |
ntrrn 41621 | The range of the interior ... |
ntrf 41622 | The interior function of a... |
ntrf2 41623 | The interior function is a... |
ntrelmap 41624 | The interior function is a... |
clsf2 41625 | The closure function is a ... |
clselmap 41626 | The closure function is a ... |
dssmapntrcls 41627 | The interior and closure o... |
dssmapclsntr 41628 | The closure and interior o... |
gneispa 41629 | Each point ` p ` of the ne... |
gneispb 41630 | Given a neighborhood ` N `... |
gneispace2 41631 | The predicate that ` F ` i... |
gneispace3 41632 | The predicate that ` F ` i... |
gneispace 41633 | The predicate that ` F ` i... |
gneispacef 41634 | A generic neighborhood spa... |
gneispacef2 41635 | A generic neighborhood spa... |
gneispacefun 41636 | A generic neighborhood spa... |
gneispacern 41637 | A generic neighborhood spa... |
gneispacern2 41638 | A generic neighborhood spa... |
gneispace0nelrn 41639 | A generic neighborhood spa... |
gneispace0nelrn2 41640 | A generic neighborhood spa... |
gneispace0nelrn3 41641 | A generic neighborhood spa... |
gneispaceel 41642 | Every neighborhood of a po... |
gneispaceel2 41643 | Every neighborhood of a po... |
gneispacess 41644 | All supersets of a neighbo... |
gneispacess2 41645 | All supersets of a neighbo... |
k0004lem1 41646 | Application of ~ ssin to r... |
k0004lem2 41647 | A mapping with a particula... |
k0004lem3 41648 | When the value of a mappin... |
k0004val 41649 | The topological simplex of... |
k0004ss1 41650 | The topological simplex of... |
k0004ss2 41651 | The topological simplex of... |
k0004ss3 41652 | The topological simplex of... |
k0004val0 41653 | The topological simplex of... |
inductionexd 41654 | Simple induction example. ... |
wwlemuld 41655 | Natural deduction form of ... |
leeq1d 41656 | Specialization of ~ breq1d... |
leeq2d 41657 | Specialization of ~ breq2d... |
absmulrposd 41658 | Specialization of absmuld ... |
imadisjld 41659 | Natural dduction form of o... |
imadisjlnd 41660 | Natural deduction form of ... |
wnefimgd 41661 | The image of a mapping fro... |
fco2d 41662 | Natural deduction form of ... |
wfximgfd 41663 | The value of a function on... |
extoimad 41664 | If |f(x)| <= C for all x t... |
imo72b2lem0 41665 | Lemma for ~ imo72b2 . (Co... |
suprleubrd 41666 | Natural deduction form of ... |
imo72b2lem2 41667 | Lemma for ~ imo72b2 . (Co... |
suprlubrd 41668 | Natural deduction form of ... |
imo72b2lem1 41669 | Lemma for ~ imo72b2 . (Co... |
lemuldiv3d 41670 | 'Less than or equal to' re... |
lemuldiv4d 41671 | 'Less than or equal to' re... |
imo72b2 41672 | IMO 1972 B2. (14th Intern... |
int-addcomd 41673 | AdditionCommutativity gene... |
int-addassocd 41674 | AdditionAssociativity gene... |
int-addsimpd 41675 | AdditionSimplification gen... |
int-mulcomd 41676 | MultiplicationCommutativit... |
int-mulassocd 41677 | MultiplicationAssociativit... |
int-mulsimpd 41678 | MultiplicationSimplificati... |
int-leftdistd 41679 | AdditionMultiplicationLeft... |
int-rightdistd 41680 | AdditionMultiplicationRigh... |
int-sqdefd 41681 | SquareDefinition generator... |
int-mul11d 41682 | First MultiplicationOne ge... |
int-mul12d 41683 | Second MultiplicationOne g... |
int-add01d 41684 | First AdditionZero generat... |
int-add02d 41685 | Second AdditionZero genera... |
int-sqgeq0d 41686 | SquareGEQZero generator ru... |
int-eqprincd 41687 | PrincipleOfEquality genera... |
int-eqtransd 41688 | EqualityTransitivity gener... |
int-eqmvtd 41689 | EquMoveTerm generator rule... |
int-eqineqd 41690 | EquivalenceImpliesDoubleIn... |
int-ineqmvtd 41691 | IneqMoveTerm generator rul... |
int-ineq1stprincd 41692 | FirstPrincipleOfInequality... |
int-ineq2ndprincd 41693 | SecondPrincipleOfInequalit... |
int-ineqtransd 41694 | InequalityTransitivity gen... |
unitadd 41695 | Theorem used in conjunctio... |
gsumws3 41696 | Valuation of a length 3 wo... |
gsumws4 41697 | Valuation of a length 4 wo... |
amgm2d 41698 | Arithmetic-geometric mean ... |
amgm3d 41699 | Arithmetic-geometric mean ... |
amgm4d 41700 | Arithmetic-geometric mean ... |
spALT 41701 | ~ sp can be proven from th... |
elnelneqd 41702 | Two classes are not equal ... |
elnelneq2d 41703 | Two classes are not equal ... |
rr-spce 41704 | Prove an existential. (Co... |
rexlimdvaacbv 41705 | Unpack a restricted existe... |
rexlimddvcbvw 41706 | Unpack a restricted existe... |
rexlimddvcbv 41707 | Unpack a restricted existe... |
rr-elrnmpt3d 41708 | Elementhood in an image se... |
finnzfsuppd 41709 | If a function is zero outs... |
rr-phpd 41710 | Equivalent of ~ php withou... |
suceqd 41711 | Deduction associated with ... |
tfindsd 41712 | Deduction associated with ... |
mnringvald 41715 | Value of the monoid ring f... |
mnringnmulrd 41716 | Components of a monoid rin... |
mnringnmulrdOLD 41717 | Obsolete version of ~ mnri... |
mnringbased 41718 | The base set of a monoid r... |
mnringbasedOLD 41719 | Obsolete version of ~ mnri... |
mnringbaserd 41720 | The base set of a monoid r... |
mnringelbased 41721 | Membership in the base set... |
mnringbasefd 41722 | Elements of a monoid ring ... |
mnringbasefsuppd 41723 | Elements of a monoid ring ... |
mnringaddgd 41724 | The additive operation of ... |
mnringaddgdOLD 41725 | Obsolete version of ~ mnri... |
mnring0gd 41726 | The additive identity of a... |
mnring0g2d 41727 | The additive identity of a... |
mnringmulrd 41728 | The ring product of a mono... |
mnringscad 41729 | The scalar ring of a monoi... |
mnringscadOLD 41730 | Obsolete version of ~ mnri... |
mnringvscad 41731 | The scalar product of a mo... |
mnringvscadOLD 41732 | Obsolete version of ~ mnri... |
mnringlmodd 41733 | Monoid rings are left modu... |
mnringmulrvald 41734 | Value of multiplication in... |
mnringmulrcld 41735 | Monoid rings are closed un... |
gru0eld 41736 | A nonempty Grothendieck un... |
grusucd 41737 | Grothendieck universes are... |
r1rankcld 41738 | Any rank of the cumulative... |
grur1cld 41739 | Grothendieck universes are... |
grurankcld 41740 | Grothendieck universes are... |
grurankrcld 41741 | If a Grothendieck universe... |
scotteqd 41744 | Equality theorem for the S... |
scotteq 41745 | Closed form of ~ scotteqd ... |
nfscott 41746 | Bound-variable hypothesis ... |
scottabf 41747 | Value of the Scott operati... |
scottab 41748 | Value of the Scott operati... |
scottabes 41749 | Value of the Scott operati... |
scottss 41750 | Scott's trick produces a s... |
elscottab 41751 | An element of the output o... |
scottex2 41752 | ~ scottex expressed using ... |
scotteld 41753 | The Scott operation sends ... |
scottelrankd 41754 | Property of a Scott's tric... |
scottrankd 41755 | Rank of a nonempty Scott's... |
gruscottcld 41756 | If a Grothendieck universe... |
dfcoll2 41759 | Alternate definition of th... |
colleq12d 41760 | Equality theorem for the c... |
colleq1 41761 | Equality theorem for the c... |
colleq2 41762 | Equality theorem for the c... |
nfcoll 41763 | Bound-variable hypothesis ... |
collexd 41764 | The output of the collecti... |
cpcolld 41765 | Property of the collection... |
cpcoll2d 41766 | ~ cpcolld with an extra ex... |
grucollcld 41767 | A Grothendieck universe co... |
ismnu 41768 | The hypothesis of this the... |
mnuop123d 41769 | Operations of a minimal un... |
mnussd 41770 | Minimal universes are clos... |
mnuss2d 41771 | ~ mnussd with arguments pr... |
mnu0eld 41772 | A nonempty minimal univers... |
mnuop23d 41773 | Second and third operation... |
mnupwd 41774 | Minimal universes are clos... |
mnusnd 41775 | Minimal universes are clos... |
mnuprssd 41776 | A minimal universe contain... |
mnuprss2d 41777 | Special case of ~ mnuprssd... |
mnuop3d 41778 | Third operation of a minim... |
mnuprdlem1 41779 | Lemma for ~ mnuprd . (Con... |
mnuprdlem2 41780 | Lemma for ~ mnuprd . (Con... |
mnuprdlem3 41781 | Lemma for ~ mnuprd . (Con... |
mnuprdlem4 41782 | Lemma for ~ mnuprd . Gene... |
mnuprd 41783 | Minimal universes are clos... |
mnuunid 41784 | Minimal universes are clos... |
mnuund 41785 | Minimal universes are clos... |
mnutrcld 41786 | Minimal universes contain ... |
mnutrd 41787 | Minimal universes are tran... |
mnurndlem1 41788 | Lemma for ~ mnurnd . (Con... |
mnurndlem2 41789 | Lemma for ~ mnurnd . Dedu... |
mnurnd 41790 | Minimal universes contain ... |
mnugrud 41791 | Minimal universes are Grot... |
grumnudlem 41792 | Lemma for ~ grumnud . (Co... |
grumnud 41793 | Grothendieck universes are... |
grumnueq 41794 | The class of Grothendieck ... |
expandan 41795 | Expand conjunction to prim... |
expandexn 41796 | Expand an existential quan... |
expandral 41797 | Expand a restricted univer... |
expandrexn 41798 | Expand a restricted existe... |
expandrex 41799 | Expand a restricted existe... |
expanduniss 41800 | Expand ` U. A C_ B ` to pr... |
ismnuprim 41801 | Express the predicate on `... |
rr-grothprimbi 41802 | Express "every set is cont... |
inagrud 41803 | Inaccessible levels of the... |
inaex 41804 | Assuming the Tarski-Grothe... |
gruex 41805 | Assuming the Tarski-Grothe... |
rr-groth 41806 | An equivalent of ~ ax-grot... |
rr-grothprim 41807 | An equivalent of ~ ax-grot... |
ismnushort 41808 | Express the predicate on `... |
dfuniv2 41809 | Alternative definition of ... |
rr-grothshortbi 41810 | Express "every set is cont... |
rr-grothshort 41811 | A shorter equivalent of ~ ... |
nanorxor 41812 | 'nand' is equivalent to th... |
undisjrab 41813 | Union of two disjoint rest... |
iso0 41814 | The empty set is an ` R , ... |
ssrecnpr 41815 | ` RR ` is a subset of both... |
seff 41816 | Let set ` S ` be the real ... |
sblpnf 41817 | The infinity ball in the a... |
prmunb2 41818 | The primes are unbounded. ... |
dvgrat 41819 | Ratio test for divergence ... |
cvgdvgrat 41820 | Ratio test for convergence... |
radcnvrat 41821 | Let ` L ` be the limit, if... |
reldvds 41822 | The divides relation is in... |
nznngen 41823 | All positive integers in t... |
nzss 41824 | The set of multiples of _m... |
nzin 41825 | The intersection of the se... |
nzprmdif 41826 | Subtract one prime's multi... |
hashnzfz 41827 | Special case of ~ hashdvds... |
hashnzfz2 41828 | Special case of ~ hashnzfz... |
hashnzfzclim 41829 | As the upper bound ` K ` o... |
caofcan 41830 | Transfer a cancellation la... |
ofsubid 41831 | Function analogue of ~ sub... |
ofmul12 41832 | Function analogue of ~ mul... |
ofdivrec 41833 | Function analogue of ~ div... |
ofdivcan4 41834 | Function analogue of ~ div... |
ofdivdiv2 41835 | Function analogue of ~ div... |
lhe4.4ex1a 41836 | Example of the Fundamental... |
dvsconst 41837 | Derivative of a constant f... |
dvsid 41838 | Derivative of the identity... |
dvsef 41839 | Derivative of the exponent... |
expgrowthi 41840 | Exponential growth and dec... |
dvconstbi 41841 | The derivative of a functi... |
expgrowth 41842 | Exponential growth and dec... |
bccval 41845 | Value of the generalized b... |
bcccl 41846 | Closure of the generalized... |
bcc0 41847 | The generalized binomial c... |
bccp1k 41848 | Generalized binomial coeff... |
bccm1k 41849 | Generalized binomial coeff... |
bccn0 41850 | Generalized binomial coeff... |
bccn1 41851 | Generalized binomial coeff... |
bccbc 41852 | The binomial coefficient a... |
uzmptshftfval 41853 | When ` F ` is a maps-to fu... |
dvradcnv2 41854 | The radius of convergence ... |
binomcxplemwb 41855 | Lemma for ~ binomcxp . Th... |
binomcxplemnn0 41856 | Lemma for ~ binomcxp . Wh... |
binomcxplemrat 41857 | Lemma for ~ binomcxp . As... |
binomcxplemfrat 41858 | Lemma for ~ binomcxp . ~ b... |
binomcxplemradcnv 41859 | Lemma for ~ binomcxp . By... |
binomcxplemdvbinom 41860 | Lemma for ~ binomcxp . By... |
binomcxplemcvg 41861 | Lemma for ~ binomcxp . Th... |
binomcxplemdvsum 41862 | Lemma for ~ binomcxp . Th... |
binomcxplemnotnn0 41863 | Lemma for ~ binomcxp . Wh... |
binomcxp 41864 | Generalize the binomial th... |
pm10.12 41865 | Theorem *10.12 in [Whitehe... |
pm10.14 41866 | Theorem *10.14 in [Whitehe... |
pm10.251 41867 | Theorem *10.251 in [Whiteh... |
pm10.252 41868 | Theorem *10.252 in [Whiteh... |
pm10.253 41869 | Theorem *10.253 in [Whiteh... |
albitr 41870 | Theorem *10.301 in [Whiteh... |
pm10.42 41871 | Theorem *10.42 in [Whitehe... |
pm10.52 41872 | Theorem *10.52 in [Whitehe... |
pm10.53 41873 | Theorem *10.53 in [Whitehe... |
pm10.541 41874 | Theorem *10.541 in [Whiteh... |
pm10.542 41875 | Theorem *10.542 in [Whiteh... |
pm10.55 41876 | Theorem *10.55 in [Whitehe... |
pm10.56 41877 | Theorem *10.56 in [Whitehe... |
pm10.57 41878 | Theorem *10.57 in [Whitehe... |
2alanimi 41879 | Removes two universal quan... |
2al2imi 41880 | Removes two universal quan... |
pm11.11 41881 | Theorem *11.11 in [Whitehe... |
pm11.12 41882 | Theorem *11.12 in [Whitehe... |
19.21vv 41883 | Compare Theorem *11.3 in [... |
2alim 41884 | Theorem *11.32 in [Whitehe... |
2albi 41885 | Theorem *11.33 in [Whitehe... |
2exim 41886 | Theorem *11.34 in [Whitehe... |
2exbi 41887 | Theorem *11.341 in [Whiteh... |
spsbce-2 41888 | Theorem *11.36 in [Whitehe... |
19.33-2 41889 | Theorem *11.421 in [Whiteh... |
19.36vv 41890 | Theorem *11.43 in [Whitehe... |
19.31vv 41891 | Theorem *11.44 in [Whitehe... |
19.37vv 41892 | Theorem *11.46 in [Whitehe... |
19.28vv 41893 | Theorem *11.47 in [Whitehe... |
pm11.52 41894 | Theorem *11.52 in [Whitehe... |
aaanv 41895 | Theorem *11.56 in [Whitehe... |
pm11.57 41896 | Theorem *11.57 in [Whitehe... |
pm11.58 41897 | Theorem *11.58 in [Whitehe... |
pm11.59 41898 | Theorem *11.59 in [Whitehe... |
pm11.6 41899 | Theorem *11.6 in [Whitehea... |
pm11.61 41900 | Theorem *11.61 in [Whitehe... |
pm11.62 41901 | Theorem *11.62 in [Whitehe... |
pm11.63 41902 | Theorem *11.63 in [Whitehe... |
pm11.7 41903 | Theorem *11.7 in [Whitehea... |
pm11.71 41904 | Theorem *11.71 in [Whitehe... |
sbeqal1 41905 | If ` x = y ` always implie... |
sbeqal1i 41906 | Suppose you know ` x = y `... |
sbeqal2i 41907 | If ` x = y ` implies ` x =... |
axc5c4c711 41908 | Proof of a theorem that ca... |
axc5c4c711toc5 41909 | Rederivation of ~ sp from ... |
axc5c4c711toc4 41910 | Rederivation of ~ axc4 fro... |
axc5c4c711toc7 41911 | Rederivation of ~ axc7 fro... |
axc5c4c711to11 41912 | Rederivation of ~ ax-11 fr... |
axc11next 41913 | This theorem shows that, g... |
pm13.13a 41914 | One result of theorem *13.... |
pm13.13b 41915 | Theorem *13.13 in [Whitehe... |
pm13.14 41916 | Theorem *13.14 in [Whitehe... |
pm13.192 41917 | Theorem *13.192 in [Whiteh... |
pm13.193 41918 | Theorem *13.193 in [Whiteh... |
pm13.194 41919 | Theorem *13.194 in [Whiteh... |
pm13.195 41920 | Theorem *13.195 in [Whiteh... |
pm13.196a 41921 | Theorem *13.196 in [Whiteh... |
2sbc6g 41922 | Theorem *13.21 in [Whitehe... |
2sbc5g 41923 | Theorem *13.22 in [Whitehe... |
iotain 41924 | Equivalence between two di... |
iotaexeu 41925 | The iota class exists. Th... |
iotasbc 41926 | Definition *14.01 in [Whit... |
iotasbc2 41927 | Theorem *14.111 in [Whiteh... |
pm14.12 41928 | Theorem *14.12 in [Whitehe... |
pm14.122a 41929 | Theorem *14.122 in [Whiteh... |
pm14.122b 41930 | Theorem *14.122 in [Whiteh... |
pm14.122c 41931 | Theorem *14.122 in [Whiteh... |
pm14.123a 41932 | Theorem *14.123 in [Whiteh... |
pm14.123b 41933 | Theorem *14.123 in [Whiteh... |
pm14.123c 41934 | Theorem *14.123 in [Whiteh... |
pm14.18 41935 | Theorem *14.18 in [Whitehe... |
iotaequ 41936 | Theorem *14.2 in [Whitehea... |
iotavalb 41937 | Theorem *14.202 in [Whiteh... |
iotasbc5 41938 | Theorem *14.205 in [Whiteh... |
pm14.24 41939 | Theorem *14.24 in [Whitehe... |
iotavalsb 41940 | Theorem *14.242 in [Whiteh... |
sbiota1 41941 | Theorem *14.25 in [Whitehe... |
sbaniota 41942 | Theorem *14.26 in [Whitehe... |
eubiOLD 41943 | Obsolete proof of ~ eubi a... |
iotasbcq 41944 | Theorem *14.272 in [Whiteh... |
elnev 41945 | Any set that contains one ... |
rusbcALT 41946 | A version of Russell's par... |
compeq 41947 | Equality between two ways ... |
compne 41948 | The complement of ` A ` is... |
compab 41949 | Two ways of saying "the co... |
conss2 41950 | Contrapositive law for sub... |
conss1 41951 | Contrapositive law for sub... |
ralbidar 41952 | More general form of ~ ral... |
rexbidar 41953 | More general form of ~ rex... |
dropab1 41954 | Theorem to aid use of the ... |
dropab2 41955 | Theorem to aid use of the ... |
ipo0 41956 | If the identity relation p... |
ifr0 41957 | A class that is founded by... |
ordpss 41958 | ~ ordelpss with an anteced... |
fvsb 41959 | Explicit substitution of a... |
fveqsb 41960 | Implicit substitution of a... |
xpexb 41961 | A Cartesian product exists... |
trelpss 41962 | An element of a transitive... |
addcomgi 41963 | Generalization of commutat... |
addrval 41973 | Value of the operation of ... |
subrval 41974 | Value of the operation of ... |
mulvval 41975 | Value of the operation of ... |
addrfv 41976 | Vector addition at a value... |
subrfv 41977 | Vector subtraction at a va... |
mulvfv 41978 | Scalar multiplication at a... |
addrfn 41979 | Vector addition produces a... |
subrfn 41980 | Vector subtraction produce... |
mulvfn 41981 | Scalar multiplication prod... |
addrcom 41982 | Vector addition is commuta... |
idiALT 41986 | Placeholder for ~ idi . T... |
exbir 41987 | Exportation implication al... |
3impexpbicom 41988 | Version of ~ 3impexp where... |
3impexpbicomi 41989 | Inference associated with ... |
bi1imp 41990 | Importation inference simi... |
bi2imp 41991 | Importation inference simi... |
bi3impb 41992 | Similar to ~ 3impb with im... |
bi3impa 41993 | Similar to ~ 3impa with im... |
bi23impib 41994 | ~ 3impib with the inner im... |
bi13impib 41995 | ~ 3impib with the outer im... |
bi123impib 41996 | ~ 3impib with the implicat... |
bi13impia 41997 | ~ 3impia with the outer im... |
bi123impia 41998 | ~ 3impia with the implicat... |
bi33imp12 41999 | ~ 3imp with innermost impl... |
bi23imp13 42000 | ~ 3imp with middle implica... |
bi13imp23 42001 | ~ 3imp with outermost impl... |
bi13imp2 42002 | Similar to ~ 3imp except t... |
bi12imp3 42003 | Similar to ~ 3imp except a... |
bi23imp1 42004 | Similar to ~ 3imp except a... |
bi123imp0 42005 | Similar to ~ 3imp except a... |
4animp1 42006 | A single hypothesis unific... |
4an31 42007 | A rearrangement of conjunc... |
4an4132 42008 | A rearrangement of conjunc... |
expcomdg 42009 | Biconditional form of ~ ex... |
iidn3 42010 | ~ idn3 without virtual ded... |
ee222 42011 | ~ e222 without virtual ded... |
ee3bir 42012 | Right-biconditional form o... |
ee13 42013 | ~ e13 without virtual dedu... |
ee121 42014 | ~ e121 without virtual ded... |
ee122 42015 | ~ e122 without virtual ded... |
ee333 42016 | ~ e333 without virtual ded... |
ee323 42017 | ~ e323 without virtual ded... |
3ornot23 42018 | If the second and third di... |
orbi1r 42019 | ~ orbi1 with order of disj... |
3orbi123 42020 | ~ pm4.39 with a 3-conjunct... |
syl5imp 42021 | Closed form of ~ syl5 . D... |
impexpd 42022 | The following User's Proof... |
com3rgbi 42023 | The following User's Proof... |
impexpdcom 42024 | The following User's Proof... |
ee1111 42025 | Non-virtual deduction form... |
pm2.43bgbi 42026 | Logical equivalence of a 2... |
pm2.43cbi 42027 | Logical equivalence of a 3... |
ee233 42028 | Non-virtual deduction form... |
imbi13 42029 | Join three logical equival... |
ee33 42030 | Non-virtual deduction form... |
con5 42031 | Biconditional contrapositi... |
con5i 42032 | Inference form of ~ con5 .... |
exlimexi 42033 | Inference similar to Theor... |
sb5ALT 42034 | Equivalence for substituti... |
eexinst01 42035 | ~ exinst01 without virtual... |
eexinst11 42036 | ~ exinst11 without virtual... |
vk15.4j 42037 | Excercise 4j of Unit 15 of... |
notnotrALT 42038 | Converse of double negatio... |
con3ALT2 42039 | Contraposition. Alternate... |
ssralv2 42040 | Quantification restricted ... |
sbc3or 42041 | ~ sbcor with a 3-disjuncts... |
alrim3con13v 42042 | Closed form of ~ alrimi wi... |
rspsbc2 42043 | ~ rspsbc with two quantify... |
sbcoreleleq 42044 | Substitution of a setvar v... |
tratrb 42045 | If a class is transitive a... |
ordelordALT 42046 | An element of an ordinal c... |
sbcim2g 42047 | Distribution of class subs... |
sbcbi 42048 | Implication form of ~ sbcb... |
trsbc 42049 | Formula-building inference... |
truniALT 42050 | The union of a class of tr... |
onfrALTlem5 42051 | Lemma for ~ onfrALT . (Co... |
onfrALTlem4 42052 | Lemma for ~ onfrALT . (Co... |
onfrALTlem3 42053 | Lemma for ~ onfrALT . (Co... |
ggen31 42054 | ~ gen31 without virtual de... |
onfrALTlem2 42055 | Lemma for ~ onfrALT . (Co... |
cbvexsv 42056 | A theorem pertaining to th... |
onfrALTlem1 42057 | Lemma for ~ onfrALT . (Co... |
onfrALT 42058 | The membership relation is... |
19.41rg 42059 | Closed form of right-to-le... |
opelopab4 42060 | Ordered pair membership in... |
2pm13.193 42061 | ~ pm13.193 for two variabl... |
hbntal 42062 | A closed form of ~ hbn . ~... |
hbimpg 42063 | A closed form of ~ hbim . ... |
hbalg 42064 | Closed form of ~ hbal . D... |
hbexg 42065 | Closed form of ~ nfex . D... |
ax6e2eq 42066 | Alternate form of ~ ax6e f... |
ax6e2nd 42067 | If at least two sets exist... |
ax6e2ndeq 42068 | "At least two sets exist" ... |
2sb5nd 42069 | Equivalence for double sub... |
2uasbanh 42070 | Distribute the unabbreviat... |
2uasban 42071 | Distribute the unabbreviat... |
e2ebind 42072 | Absorption of an existenti... |
elpwgded 42073 | ~ elpwgdedVD in convention... |
trelded 42074 | Deduction form of ~ trel .... |
jaoded 42075 | Deduction form of ~ jao . ... |
sbtT 42076 | A substitution into a theo... |
not12an2impnot1 42077 | If a double conjunction is... |
in1 42080 | Inference form of ~ df-vd1... |
iin1 42081 | ~ in1 without virtual dedu... |
dfvd1ir 42082 | Inference form of ~ df-vd1... |
idn1 42083 | Virtual deduction identity... |
dfvd1imp 42084 | Left-to-right part of defi... |
dfvd1impr 42085 | Right-to-left part of defi... |
dfvd2 42088 | Definition of a 2-hypothes... |
dfvd2an 42091 | Definition of a 2-hypothes... |
dfvd2ani 42092 | Inference form of ~ dfvd2a... |
dfvd2anir 42093 | Right-to-left inference fo... |
dfvd2i 42094 | Inference form of ~ dfvd2 ... |
dfvd2ir 42095 | Right-to-left inference fo... |
dfvd3 42100 | Definition of a 3-hypothes... |
dfvd3i 42101 | Inference form of ~ dfvd3 ... |
dfvd3ir 42102 | Right-to-left inference fo... |
dfvd3an 42103 | Definition of a 3-hypothes... |
dfvd3ani 42104 | Inference form of ~ dfvd3a... |
dfvd3anir 42105 | Right-to-left inference fo... |
vd01 42106 | A virtual hypothesis virtu... |
vd02 42107 | Two virtual hypotheses vir... |
vd03 42108 | A theorem is virtually inf... |
vd12 42109 | A virtual deduction with 1... |
vd13 42110 | A virtual deduction with 1... |
vd23 42111 | A virtual deduction with 2... |
dfvd2imp 42112 | The virtual deduction form... |
dfvd2impr 42113 | A 2-antecedent nested impl... |
in2 42114 | The virtual deduction intr... |
int2 42115 | The virtual deduction intr... |
iin2 42116 | ~ in2 without virtual dedu... |
in2an 42117 | The virtual deduction intr... |
in3 42118 | The virtual deduction intr... |
iin3 42119 | ~ in3 without virtual dedu... |
in3an 42120 | The virtual deduction intr... |
int3 42121 | The virtual deduction intr... |
idn2 42122 | Virtual deduction identity... |
iden2 42123 | Virtual deduction identity... |
idn3 42124 | Virtual deduction identity... |
gen11 42125 | Virtual deduction generali... |
gen11nv 42126 | Virtual deduction generali... |
gen12 42127 | Virtual deduction generali... |
gen21 42128 | Virtual deduction generali... |
gen21nv 42129 | Virtual deduction form of ... |
gen31 42130 | Virtual deduction generali... |
gen22 42131 | Virtual deduction generali... |
ggen22 42132 | ~ gen22 without virtual de... |
exinst 42133 | Existential Instantiation.... |
exinst01 42134 | Existential Instantiation.... |
exinst11 42135 | Existential Instantiation.... |
e1a 42136 | A Virtual deduction elimin... |
el1 42137 | A Virtual deduction elimin... |
e1bi 42138 | Biconditional form of ~ e1... |
e1bir 42139 | Right biconditional form o... |
e2 42140 | A virtual deduction elimin... |
e2bi 42141 | Biconditional form of ~ e2... |
e2bir 42142 | Right biconditional form o... |
ee223 42143 | ~ e223 without virtual ded... |
e223 42144 | A virtual deduction elimin... |
e222 42145 | A virtual deduction elimin... |
e220 42146 | A virtual deduction elimin... |
ee220 42147 | ~ e220 without virtual ded... |
e202 42148 | A virtual deduction elimin... |
ee202 42149 | ~ e202 without virtual ded... |
e022 42150 | A virtual deduction elimin... |
ee022 42151 | ~ e022 without virtual ded... |
e002 42152 | A virtual deduction elimin... |
ee002 42153 | ~ e002 without virtual ded... |
e020 42154 | A virtual deduction elimin... |
ee020 42155 | ~ e020 without virtual ded... |
e200 42156 | A virtual deduction elimin... |
ee200 42157 | ~ e200 without virtual ded... |
e221 42158 | A virtual deduction elimin... |
ee221 42159 | ~ e221 without virtual ded... |
e212 42160 | A virtual deduction elimin... |
ee212 42161 | ~ e212 without virtual ded... |
e122 42162 | A virtual deduction elimin... |
e112 42163 | A virtual deduction elimin... |
ee112 42164 | ~ e112 without virtual ded... |
e121 42165 | A virtual deduction elimin... |
e211 42166 | A virtual deduction elimin... |
ee211 42167 | ~ e211 without virtual ded... |
e210 42168 | A virtual deduction elimin... |
ee210 42169 | ~ e210 without virtual ded... |
e201 42170 | A virtual deduction elimin... |
ee201 42171 | ~ e201 without virtual ded... |
e120 42172 | A virtual deduction elimin... |
ee120 42173 | Virtual deduction rule ~ e... |
e021 42174 | A virtual deduction elimin... |
ee021 42175 | ~ e021 without virtual ded... |
e012 42176 | A virtual deduction elimin... |
ee012 42177 | ~ e012 without virtual ded... |
e102 42178 | A virtual deduction elimin... |
ee102 42179 | ~ e102 without virtual ded... |
e22 42180 | A virtual deduction elimin... |
e22an 42181 | Conjunction form of ~ e22 ... |
ee22an 42182 | ~ e22an without virtual de... |
e111 42183 | A virtual deduction elimin... |
e1111 42184 | A virtual deduction elimin... |
e110 42185 | A virtual deduction elimin... |
ee110 42186 | ~ e110 without virtual ded... |
e101 42187 | A virtual deduction elimin... |
ee101 42188 | ~ e101 without virtual ded... |
e011 42189 | A virtual deduction elimin... |
ee011 42190 | ~ e011 without virtual ded... |
e100 42191 | A virtual deduction elimin... |
ee100 42192 | ~ e100 without virtual ded... |
e010 42193 | A virtual deduction elimin... |
ee010 42194 | ~ e010 without virtual ded... |
e001 42195 | A virtual deduction elimin... |
ee001 42196 | ~ e001 without virtual ded... |
e11 42197 | A virtual deduction elimin... |
e11an 42198 | Conjunction form of ~ e11 ... |
ee11an 42199 | ~ e11an without virtual de... |
e01 42200 | A virtual deduction elimin... |
e01an 42201 | Conjunction form of ~ e01 ... |
ee01an 42202 | ~ e01an without virtual de... |
e10 42203 | A virtual deduction elimin... |
e10an 42204 | Conjunction form of ~ e10 ... |
ee10an 42205 | ~ e10an without virtual de... |
e02 42206 | A virtual deduction elimin... |
e02an 42207 | Conjunction form of ~ e02 ... |
ee02an 42208 | ~ e02an without virtual de... |
eel021old 42209 | ~ el021old without virtual... |
el021old 42210 | A virtual deduction elimin... |
eel132 42211 | ~ syl2an with antecedents ... |
eel000cT 42212 | An elimination deduction. ... |
eel0TT 42213 | An elimination deduction. ... |
eelT00 42214 | An elimination deduction. ... |
eelTTT 42215 | An elimination deduction. ... |
eelT11 42216 | An elimination deduction. ... |
eelT1 42217 | Syllogism inference combin... |
eelT12 42218 | An elimination deduction. ... |
eelTT1 42219 | An elimination deduction. ... |
eelT01 42220 | An elimination deduction. ... |
eel0T1 42221 | An elimination deduction. ... |
eel12131 42222 | An elimination deduction. ... |
eel2131 42223 | ~ syl2an with antecedents ... |
eel3132 42224 | ~ syl2an with antecedents ... |
eel0321old 42225 | ~ el0321old without virtua... |
el0321old 42226 | A virtual deduction elimin... |
eel2122old 42227 | ~ el2122old without virtua... |
el2122old 42228 | A virtual deduction elimin... |
eel0000 42229 | Elimination rule similar t... |
eel00001 42230 | An elimination deduction. ... |
eel00000 42231 | Elimination rule similar ~... |
eel11111 42232 | Five-hypothesis eliminatio... |
e12 42233 | A virtual deduction elimin... |
e12an 42234 | Conjunction form of ~ e12 ... |
el12 42235 | Virtual deduction form of ... |
e20 42236 | A virtual deduction elimin... |
e20an 42237 | Conjunction form of ~ e20 ... |
ee20an 42238 | ~ e20an without virtual de... |
e21 42239 | A virtual deduction elimin... |
e21an 42240 | Conjunction form of ~ e21 ... |
ee21an 42241 | ~ e21an without virtual de... |
e333 42242 | A virtual deduction elimin... |
e33 42243 | A virtual deduction elimin... |
e33an 42244 | Conjunction form of ~ e33 ... |
ee33an 42245 | ~ e33an without virtual de... |
e3 42246 | Meta-connective form of ~ ... |
e3bi 42247 | Biconditional form of ~ e3... |
e3bir 42248 | Right biconditional form o... |
e03 42249 | A virtual deduction elimin... |
ee03 42250 | ~ e03 without virtual dedu... |
e03an 42251 | Conjunction form of ~ e03 ... |
ee03an 42252 | Conjunction form of ~ ee03... |
e30 42253 | A virtual deduction elimin... |
ee30 42254 | ~ e30 without virtual dedu... |
e30an 42255 | A virtual deduction elimin... |
ee30an 42256 | Conjunction form of ~ ee30... |
e13 42257 | A virtual deduction elimin... |
e13an 42258 | A virtual deduction elimin... |
ee13an 42259 | ~ e13an without virtual de... |
e31 42260 | A virtual deduction elimin... |
ee31 42261 | ~ e31 without virtual dedu... |
e31an 42262 | A virtual deduction elimin... |
ee31an 42263 | ~ e31an without virtual de... |
e23 42264 | A virtual deduction elimin... |
e23an 42265 | A virtual deduction elimin... |
ee23an 42266 | ~ e23an without virtual de... |
e32 42267 | A virtual deduction elimin... |
ee32 42268 | ~ e32 without virtual dedu... |
e32an 42269 | A virtual deduction elimin... |
ee32an 42270 | ~ e33an without virtual de... |
e123 42271 | A virtual deduction elimin... |
ee123 42272 | ~ e123 without virtual ded... |
el123 42273 | A virtual deduction elimin... |
e233 42274 | A virtual deduction elimin... |
e323 42275 | A virtual deduction elimin... |
e000 42276 | A virtual deduction elimin... |
e00 42277 | Elimination rule identical... |
e00an 42278 | Elimination rule identical... |
eel00cT 42279 | An elimination deduction. ... |
eelTT 42280 | An elimination deduction. ... |
e0a 42281 | Elimination rule identical... |
eelT 42282 | An elimination deduction. ... |
eel0cT 42283 | An elimination deduction. ... |
eelT0 42284 | An elimination deduction. ... |
e0bi 42285 | Elimination rule identical... |
e0bir 42286 | Elimination rule identical... |
uun0.1 42287 | Convention notation form o... |
un0.1 42288 | ` T. ` is the constant tru... |
uunT1 42289 | A deduction unionizing a n... |
uunT1p1 42290 | A deduction unionizing a n... |
uunT21 42291 | A deduction unionizing a n... |
uun121 42292 | A deduction unionizing a n... |
uun121p1 42293 | A deduction unionizing a n... |
uun132 42294 | A deduction unionizing a n... |
uun132p1 42295 | A deduction unionizing a n... |
anabss7p1 42296 | A deduction unionizing a n... |
un10 42297 | A unionizing deduction. (... |
un01 42298 | A unionizing deduction. (... |
un2122 42299 | A deduction unionizing a n... |
uun2131 42300 | A deduction unionizing a n... |
uun2131p1 42301 | A deduction unionizing a n... |
uunTT1 42302 | A deduction unionizing a n... |
uunTT1p1 42303 | A deduction unionizing a n... |
uunTT1p2 42304 | A deduction unionizing a n... |
uunT11 42305 | A deduction unionizing a n... |
uunT11p1 42306 | A deduction unionizing a n... |
uunT11p2 42307 | A deduction unionizing a n... |
uunT12 42308 | A deduction unionizing a n... |
uunT12p1 42309 | A deduction unionizing a n... |
uunT12p2 42310 | A deduction unionizing a n... |
uunT12p3 42311 | A deduction unionizing a n... |
uunT12p4 42312 | A deduction unionizing a n... |
uunT12p5 42313 | A deduction unionizing a n... |
uun111 42314 | A deduction unionizing a n... |
3anidm12p1 42315 | A deduction unionizing a n... |
3anidm12p2 42316 | A deduction unionizing a n... |
uun123 42317 | A deduction unionizing a n... |
uun123p1 42318 | A deduction unionizing a n... |
uun123p2 42319 | A deduction unionizing a n... |
uun123p3 42320 | A deduction unionizing a n... |
uun123p4 42321 | A deduction unionizing a n... |
uun2221 42322 | A deduction unionizing a n... |
uun2221p1 42323 | A deduction unionizing a n... |
uun2221p2 42324 | A deduction unionizing a n... |
3impdirp1 42325 | A deduction unionizing a n... |
3impcombi 42326 | A 1-hypothesis proposition... |
trsspwALT 42327 | Virtual deduction proof of... |
trsspwALT2 42328 | Virtual deduction proof of... |
trsspwALT3 42329 | Short predicate calculus p... |
sspwtr 42330 | Virtual deduction proof of... |
sspwtrALT 42331 | Virtual deduction proof of... |
sspwtrALT2 42332 | Short predicate calculus p... |
pwtrVD 42333 | Virtual deduction proof of... |
pwtrrVD 42334 | Virtual deduction proof of... |
suctrALT 42335 | The successor of a transit... |
snssiALTVD 42336 | Virtual deduction proof of... |
snssiALT 42337 | If a class is an element o... |
snsslVD 42338 | Virtual deduction proof of... |
snssl 42339 | If a singleton is a subcla... |
snelpwrVD 42340 | Virtual deduction proof of... |
unipwrVD 42341 | Virtual deduction proof of... |
unipwr 42342 | A class is a subclass of t... |
sstrALT2VD 42343 | Virtual deduction proof of... |
sstrALT2 42344 | Virtual deduction proof of... |
suctrALT2VD 42345 | Virtual deduction proof of... |
suctrALT2 42346 | Virtual deduction proof of... |
elex2VD 42347 | Virtual deduction proof of... |
elex22VD 42348 | Virtual deduction proof of... |
eqsbc2VD 42349 | Virtual deduction proof of... |
zfregs2VD 42350 | Virtual deduction proof of... |
tpid3gVD 42351 | Virtual deduction proof of... |
en3lplem1VD 42352 | Virtual deduction proof of... |
en3lplem2VD 42353 | Virtual deduction proof of... |
en3lpVD 42354 | Virtual deduction proof of... |
simplbi2VD 42355 | Virtual deduction proof of... |
3ornot23VD 42356 | Virtual deduction proof of... |
orbi1rVD 42357 | Virtual deduction proof of... |
bitr3VD 42358 | Virtual deduction proof of... |
3orbi123VD 42359 | Virtual deduction proof of... |
sbc3orgVD 42360 | Virtual deduction proof of... |
19.21a3con13vVD 42361 | Virtual deduction proof of... |
exbirVD 42362 | Virtual deduction proof of... |
exbiriVD 42363 | Virtual deduction proof of... |
rspsbc2VD 42364 | Virtual deduction proof of... |
3impexpVD 42365 | Virtual deduction proof of... |
3impexpbicomVD 42366 | Virtual deduction proof of... |
3impexpbicomiVD 42367 | Virtual deduction proof of... |
sbcoreleleqVD 42368 | Virtual deduction proof of... |
hbra2VD 42369 | Virtual deduction proof of... |
tratrbVD 42370 | Virtual deduction proof of... |
al2imVD 42371 | Virtual deduction proof of... |
syl5impVD 42372 | Virtual deduction proof of... |
idiVD 42373 | Virtual deduction proof of... |
ancomstVD 42374 | Closed form of ~ ancoms . ... |
ssralv2VD 42375 | Quantification restricted ... |
ordelordALTVD 42376 | An element of an ordinal c... |
equncomVD 42377 | If a class equals the unio... |
equncomiVD 42378 | Inference form of ~ equnco... |
sucidALTVD 42379 | A set belongs to its succe... |
sucidALT 42380 | A set belongs to its succe... |
sucidVD 42381 | A set belongs to its succe... |
imbi12VD 42382 | Implication form of ~ imbi... |
imbi13VD 42383 | Join three logical equival... |
sbcim2gVD 42384 | Distribution of class subs... |
sbcbiVD 42385 | Implication form of ~ sbcb... |
trsbcVD 42386 | Formula-building inference... |
truniALTVD 42387 | The union of a class of tr... |
ee33VD 42388 | Non-virtual deduction form... |
trintALTVD 42389 | The intersection of a clas... |
trintALT 42390 | The intersection of a clas... |
undif3VD 42391 | The first equality of Exer... |
sbcssgVD 42392 | Virtual deduction proof of... |
csbingVD 42393 | Virtual deduction proof of... |
onfrALTlem5VD 42394 | Virtual deduction proof of... |
onfrALTlem4VD 42395 | Virtual deduction proof of... |
onfrALTlem3VD 42396 | Virtual deduction proof of... |
simplbi2comtVD 42397 | Virtual deduction proof of... |
onfrALTlem2VD 42398 | Virtual deduction proof of... |
onfrALTlem1VD 42399 | Virtual deduction proof of... |
onfrALTVD 42400 | Virtual deduction proof of... |
csbeq2gVD 42401 | Virtual deduction proof of... |
csbsngVD 42402 | Virtual deduction proof of... |
csbxpgVD 42403 | Virtual deduction proof of... |
csbresgVD 42404 | Virtual deduction proof of... |
csbrngVD 42405 | Virtual deduction proof of... |
csbima12gALTVD 42406 | Virtual deduction proof of... |
csbunigVD 42407 | Virtual deduction proof of... |
csbfv12gALTVD 42408 | Virtual deduction proof of... |
con5VD 42409 | Virtual deduction proof of... |
relopabVD 42410 | Virtual deduction proof of... |
19.41rgVD 42411 | Virtual deduction proof of... |
2pm13.193VD 42412 | Virtual deduction proof of... |
hbimpgVD 42413 | Virtual deduction proof of... |
hbalgVD 42414 | Virtual deduction proof of... |
hbexgVD 42415 | Virtual deduction proof of... |
ax6e2eqVD 42416 | The following User's Proof... |
ax6e2ndVD 42417 | The following User's Proof... |
ax6e2ndeqVD 42418 | The following User's Proof... |
2sb5ndVD 42419 | The following User's Proof... |
2uasbanhVD 42420 | The following User's Proof... |
e2ebindVD 42421 | The following User's Proof... |
sb5ALTVD 42422 | The following User's Proof... |
vk15.4jVD 42423 | The following User's Proof... |
notnotrALTVD 42424 | The following User's Proof... |
con3ALTVD 42425 | The following User's Proof... |
elpwgdedVD 42426 | Membership in a power clas... |
sspwimp 42427 | If a class is a subclass o... |
sspwimpVD 42428 | The following User's Proof... |
sspwimpcf 42429 | If a class is a subclass o... |
sspwimpcfVD 42430 | The following User's Proof... |
suctrALTcf 42431 | The sucessor of a transiti... |
suctrALTcfVD 42432 | The following User's Proof... |
suctrALT3 42433 | The successor of a transit... |
sspwimpALT 42434 | If a class is a subclass o... |
unisnALT 42435 | A set equals the union of ... |
notnotrALT2 42436 | Converse of double negatio... |
sspwimpALT2 42437 | If a class is a subclass o... |
e2ebindALT 42438 | Absorption of an existenti... |
ax6e2ndALT 42439 | If at least two sets exist... |
ax6e2ndeqALT 42440 | "At least two sets exist" ... |
2sb5ndALT 42441 | Equivalence for double sub... |
chordthmALT 42442 | The intersecting chords th... |
isosctrlem1ALT 42443 | Lemma for ~ isosctr . Thi... |
iunconnlem2 42444 | The indexed union of conne... |
iunconnALT 42445 | The indexed union of conne... |
sineq0ALT 42446 | A complex number whose sin... |
evth2f 42447 | A version of ~ evth2 using... |
elunif 42448 | A version of ~ eluni using... |
rzalf 42449 | A version of ~ rzal using ... |
fvelrnbf 42450 | A version of ~ fvelrnb usi... |
rfcnpre1 42451 | If F is a continuous funct... |
ubelsupr 42452 | If U belongs to A and U is... |
fsumcnf 42453 | A finite sum of functions ... |
mulltgt0 42454 | The product of a negative ... |
rspcegf 42455 | A version of ~ rspcev usin... |
rabexgf 42456 | A version of ~ rabexg usin... |
fcnre 42457 | A function continuous with... |
sumsnd 42458 | A sum of a singleton is th... |
evthf 42459 | A version of ~ evth using ... |
cnfex 42460 | The class of continuous fu... |
fnchoice 42461 | For a finite set, a choice... |
refsumcn 42462 | A finite sum of continuous... |
rfcnpre2 42463 | If ` F ` is a continuous f... |
cncmpmax 42464 | When the hypothesis for th... |
rfcnpre3 42465 | If F is a continuous funct... |
rfcnpre4 42466 | If F is a continuous funct... |
sumpair 42467 | Sum of two distinct comple... |
rfcnnnub 42468 | Given a real continuous fu... |
refsum2cnlem1 42469 | This is the core Lemma for... |
refsum2cn 42470 | The sum of two continuus r... |
elunnel2 42471 | A member of a union that i... |
adantlllr 42472 | Deduction adding a conjunc... |
3adantlr3 42473 | Deduction adding a conjunc... |
nnxrd 42474 | A natural number is an ext... |
3adantll2 42475 | Deduction adding a conjunc... |
3adantll3 42476 | Deduction adding a conjunc... |
ssnel 42477 | If not element of a set, t... |
elabrexg 42478 | Elementhood in an image se... |
sncldre 42479 | A singleton is closed w.r.... |
n0p 42480 | A polynomial with a nonzer... |
pm2.65ni 42481 | Inference rule for proof b... |
pwssfi 42482 | Every element of the power... |
iuneq2df 42483 | Equality deduction for ind... |
nnfoctb 42484 | There exists a mapping fro... |
ssinss1d 42485 | Intersection preserves sub... |
elpwinss 42486 | An element of the powerset... |
unidmex 42487 | If ` F ` is a set, then ` ... |
ndisj2 42488 | A non-disjointness conditi... |
zenom 42489 | The set of integer numbers... |
uzwo4 42490 | Well-ordering principle: a... |
unisn0 42491 | The union of the singleton... |
ssin0 42492 | If two classes are disjoin... |
inabs3 42493 | Absorption law for interse... |
pwpwuni 42494 | Relationship between power... |
disjiun2 42495 | In a disjoint collection, ... |
0pwfi 42496 | The empty set is in any po... |
ssinss2d 42497 | Intersection preserves sub... |
zct 42498 | The set of integer numbers... |
pwfin0 42499 | A finite set always belong... |
uzct 42500 | An upper integer set is co... |
iunxsnf 42501 | A singleton index picks ou... |
fiiuncl 42502 | If a set is closed under t... |
iunp1 42503 | The addition of the next s... |
fiunicl 42504 | If a set is closed under t... |
ixpeq2d 42505 | Equality theorem for infin... |
disjxp1 42506 | The sets of a cartesian pr... |
disjsnxp 42507 | The sets in the cartesian ... |
eliind 42508 | Membership in indexed inte... |
rspcef 42509 | Restricted existential spe... |
inn0f 42510 | A nonempty intersection. ... |
ixpssmapc 42511 | An infinite Cartesian prod... |
inn0 42512 | A nonempty intersection. ... |
elintd 42513 | Membership in class inters... |
ssdf 42514 | A sufficient condition for... |
brneqtrd 42515 | Substitution of equal clas... |
ssnct 42516 | A set containing an uncoun... |
ssuniint 42517 | Sufficient condition for b... |
elintdv 42518 | Membership in class inters... |
ssd 42519 | A sufficient condition for... |
ralimralim 42520 | Introducing any antecedent... |
snelmap 42521 | Membership of the element ... |
xrnmnfpnf 42522 | An extended real that is n... |
nelrnmpt 42523 | Non-membership in the rang... |
iuneq1i 42524 | Equality theorem for index... |
nssrex 42525 | Negation of subclass relat... |
ssinc 42526 | Inclusion relation for a m... |
ssdec 42527 | Inclusion relation for a m... |
elixpconstg 42528 | Membership in an infinite ... |
iineq1d 42529 | Equality theorem for index... |
metpsmet 42530 | A metric is a pseudometric... |
ixpssixp 42531 | Subclass theorem for infin... |
ballss3 42532 | A sufficient condition for... |
iunincfi 42533 | Given a sequence of increa... |
nsstr 42534 | If it's not a subclass, it... |
rexanuz3 42535 | Combine two different uppe... |
cbvmpo2 42536 | Rule to change the second ... |
cbvmpo1 42537 | Rule to change the first b... |
eliuniin 42538 | Indexed union of indexed i... |
ssabf 42539 | Subclass of a class abstra... |
pssnssi 42540 | A proper subclass does not... |
rabidim2 42541 | Membership in a restricted... |
eluni2f 42542 | Membership in class union.... |
eliin2f 42543 | Membership in indexed inte... |
nssd 42544 | Negation of subclass relat... |
iineq12dv 42545 | Equality deduction for ind... |
supxrcld 42546 | The supremum of an arbitra... |
elrestd 42547 | A sufficient condition for... |
eliuniincex 42548 | Counterexample to show tha... |
eliincex 42549 | Counterexample to show tha... |
eliinid 42550 | Membership in an indexed i... |
abssf 42551 | Class abstraction in a sub... |
supxrubd 42552 | A member of a set of exten... |
ssrabf 42553 | Subclass of a restricted c... |
eliin2 42554 | Membership in indexed inte... |
ssrab2f 42555 | Subclass relation for a re... |
restuni3 42556 | The underlying set of a su... |
rabssf 42557 | Restricted class abstracti... |
eliuniin2 42558 | Indexed union of indexed i... |
restuni4 42559 | The underlying set of a su... |
restuni6 42560 | The underlying set of a su... |
restuni5 42561 | The underlying set of a su... |
unirestss 42562 | The union of an elementwis... |
iniin1 42563 | Indexed intersection of in... |
iniin2 42564 | Indexed intersection of in... |
cbvrabv2 42565 | A more general version of ... |
cbvrabv2w 42566 | A more general version of ... |
iinssiin 42567 | Subset implication for an ... |
eliind2 42568 | Membership in indexed inte... |
iinssd 42569 | Subset implication for an ... |
rabbida2 42570 | Equivalent wff's yield equ... |
iinexd 42571 | The existence of an indexe... |
rabexf 42572 | Separation Scheme in terms... |
rabbida3 42573 | Equivalent wff's yield equ... |
r19.36vf 42574 | Restricted quantifier vers... |
raleqd 42575 | Equality deduction for res... |
iinssf 42576 | Subset implication for an ... |
iinssdf 42577 | Subset implication for an ... |
resabs2i 42578 | Absorption law for restric... |
ssdf2 42579 | A sufficient condition for... |
rabssd 42580 | Restricted class abstracti... |
rexnegd 42581 | Minus a real number. (Con... |
rexlimd3 42582 | * Inference from Theorem 1... |
resabs1i 42583 | Absorption law for restric... |
nel1nelin 42584 | Membership in an intersect... |
nel2nelin 42585 | Membership in an intersect... |
nel1nelini 42586 | Membership in an intersect... |
nel2nelini 42587 | Membership in an intersect... |
eliunid 42588 | Membership in indexed unio... |
reximddv3 42589 | Deduction from Theorem 19.... |
reximdd 42590 | Deduction from Theorem 19.... |
unfid 42591 | The union of two finite se... |
feq1dd 42592 | Equality deduction for fun... |
fnresdmss 42593 | A function does not change... |
fmptsnxp 42594 | Maps-to notation and Carte... |
fvmpt2bd 42595 | Value of a function given ... |
rnmptfi 42596 | The range of a function wi... |
fresin2 42597 | Restriction of a function ... |
ffi 42598 | A function with finite dom... |
suprnmpt 42599 | An explicit bound for the ... |
rnffi 42600 | The range of a function wi... |
mptelpm 42601 | A function in maps-to nota... |
rnmptpr 42602 | Range of a function define... |
resmpti 42603 | Restriction of the mapping... |
founiiun 42604 | Union expressed as an inde... |
rnresun 42605 | Distribution law for range... |
dffo3f 42606 | An onto mapping expressed ... |
elrnmptf 42607 | The range of a function in... |
rnmptssrn 42608 | Inclusion relation for two... |
disjf1 42609 | A 1 to 1 mapping built fro... |
rnsnf 42610 | The range of a function wh... |
wessf1ornlem 42611 | Given a function ` F ` on ... |
wessf1orn 42612 | Given a function ` F ` on ... |
foelrnf 42613 | Property of a surjective f... |
nelrnres 42614 | If ` A ` is not in the ran... |
disjrnmpt2 42615 | Disjointness of the range ... |
elrnmpt1sf 42616 | Elementhood in an image se... |
founiiun0 42617 | Union expressed as an inde... |
disjf1o 42618 | A bijection built from dis... |
fompt 42619 | Express being onto for a m... |
disjinfi 42620 | Only a finite number of di... |
fvovco 42621 | Value of the composition o... |
ssnnf1octb 42622 | There exists a bijection b... |
nnf1oxpnn 42623 | There is a bijection betwe... |
rnmptssd 42624 | The range of an operation ... |
projf1o 42625 | A biijection from a set to... |
fvmap 42626 | Function value for a membe... |
fvixp2 42627 | Projection of a factor of ... |
fidmfisupp 42628 | A function with a finite d... |
choicefi 42629 | For a finite set, a choice... |
mpct 42630 | The exponentiation of a co... |
cnmetcoval 42631 | Value of the distance func... |
fcomptss 42632 | Express composition of two... |
elmapsnd 42633 | Membership in a set expone... |
mapss2 42634 | Subset inheritance for set... |
fsneq 42635 | Equality condition for two... |
difmap 42636 | Difference of two sets exp... |
unirnmap 42637 | Given a subset of a set ex... |
inmap 42638 | Intersection of two sets e... |
fcoss 42639 | Composition of two mapping... |
fsneqrn 42640 | Equality condition for two... |
difmapsn 42641 | Difference of two sets exp... |
mapssbi 42642 | Subset inheritance for set... |
unirnmapsn 42643 | Equality theorem for a sub... |
iunmapss 42644 | The indexed union of set e... |
ssmapsn 42645 | A subset ` C ` of a set ex... |
iunmapsn 42646 | The indexed union of set e... |
absfico 42647 | Mapping domain and codomai... |
icof 42648 | The set of left-closed rig... |
elpmrn 42649 | The range of a partial fun... |
imaexi 42650 | The image of a set is a se... |
axccdom 42651 | Relax the constraint on ax... |
dmmptdf 42652 | The domain of the mapping ... |
elpmi2 42653 | The domain of a partial fu... |
dmrelrnrel 42654 | A relation preserving func... |
fvcod 42655 | Value of a function compos... |
elrnmpoid 42656 | Membership in the range of... |
axccd 42657 | An alternative version of ... |
axccd2 42658 | An alternative version of ... |
funimassd 42659 | Sufficient condition for t... |
fimassd 42660 | The image of a class is a ... |
feqresmptf 42661 | Express a restricted funct... |
elrnmpt1d 42662 | Elementhood in an image se... |
dmresss 42663 | The domain of a restrictio... |
dmmptssf 42664 | The domain of a mapping is... |
dmmptdf2 42665 | The domain of the mapping ... |
dmuz 42666 | Domain of the upper intege... |
fmptd2f 42667 | Domain and codomain of the... |
mpteq1df 42668 | An equality theorem for th... |
mpteq1dfOLD 42669 | Obsolete version of ~ mpte... |
mptexf 42670 | If the domain of a functio... |
fvmpt4 42671 | Value of a function given ... |
fmptf 42672 | Functionality of the mappi... |
resimass 42673 | The image of a restriction... |
mptssid 42674 | The mapping operation expr... |
mptfnd 42675 | The maps-to notation defin... |
mpteq12daOLD 42676 | Obsolete version of ~ mpte... |
rnmptlb 42677 | Boundness below of the ran... |
rnmptbddlem 42678 | Boundness of the range of ... |
rnmptbdd 42679 | Boundness of the range of ... |
mptima2 42680 | Image of a function in map... |
funimaeq 42681 | Membership relation for th... |
rnmptssf 42682 | The range of an operation ... |
rnmptbd2lem 42683 | Boundness below of the ran... |
rnmptbd2 42684 | Boundness below of the ran... |
infnsuprnmpt 42685 | The indexed infimum of rea... |
suprclrnmpt 42686 | Closure of the indexed sup... |
suprubrnmpt2 42687 | A member of a nonempty ind... |
suprubrnmpt 42688 | A member of a nonempty ind... |
rnmptssdf 42689 | The range of an operation ... |
rnmptbdlem 42690 | Boundness above of the ran... |
rnmptbd 42691 | Boundness above of the ran... |
rnmptss2 42692 | The range of an operation ... |
elmptima 42693 | The image of a function in... |
ralrnmpt3 42694 | A restricted quantifier ov... |
fvelima2 42695 | Function value in an image... |
rnmptssbi 42696 | The range of an operation ... |
fnfvelrnd 42697 | A function's value belongs... |
imass2d 42698 | Subset theorem for image. ... |
imassmpt 42699 | Membership relation for th... |
fpmd 42700 | A total function is a part... |
fconst7 42701 | An alternative way to expr... |
sub2times 42702 | Subtracting from a number,... |
abssubrp 42703 | The distance of two distin... |
elfzfzo 42704 | Relationship between membe... |
oddfl 42705 | Odd number representation ... |
abscosbd 42706 | Bound for the absolute val... |
mul13d 42707 | Commutative/associative la... |
negpilt0 42708 | Negative ` _pi ` is negati... |
dstregt0 42709 | A complex number ` A ` tha... |
subadd4b 42710 | Rearrangement of 4 terms i... |
xrlttri5d 42711 | Not equal and not larger i... |
neglt 42712 | The negative of a positive... |
zltlesub 42713 | If an integer ` N ` is les... |
divlt0gt0d 42714 | The ratio of a negative nu... |
subsub23d 42715 | Swap subtrahend and result... |
2timesgt 42716 | Double of a positive real ... |
reopn 42717 | The reals are open with re... |
elfzop1le2 42718 | A member in a half-open in... |
sub31 42719 | Swap the first and third t... |
nnne1ge2 42720 | A positive integer which i... |
lefldiveq 42721 | A closed enough, smaller r... |
negsubdi3d 42722 | Distribution of negative o... |
ltdiv2dd 42723 | Division of a positive num... |
abssinbd 42724 | Bound for the absolute val... |
halffl 42725 | Floor of ` ( 1 / 2 ) ` . ... |
monoords 42726 | Ordering relation for a st... |
hashssle 42727 | The size of a subset of a ... |
lttri5d 42728 | Not equal and not larger i... |
fzisoeu 42729 | A finite ordered set has a... |
lt3addmuld 42730 | If three real numbers are ... |
absnpncan2d 42731 | Triangular inequality, com... |
fperiodmullem 42732 | A function with period ` T... |
fperiodmul 42733 | A function with period T i... |
upbdrech 42734 | Choice of an upper bound f... |
lt4addmuld 42735 | If four real numbers are l... |
absnpncan3d 42736 | Triangular inequality, com... |
upbdrech2 42737 | Choice of an upper bound f... |
ssfiunibd 42738 | A finite union of bounded ... |
fzdifsuc2 42739 | Remove a successor from th... |
fzsscn 42740 | A finite sequence of integ... |
divcan8d 42741 | A cancellation law for div... |
dmmcand 42742 | Cancellation law for divis... |
fzssre 42743 | A finite sequence of integ... |
bccld 42744 | A binomial coefficient, in... |
leadd12dd 42745 | Addition to both sides of ... |
fzssnn0 42746 | A finite set of sequential... |
xreqle 42747 | Equality implies 'less tha... |
xaddid2d 42748 | ` 0 ` is a left identity f... |
xadd0ge 42749 | A number is less than or e... |
elfzolem1 42750 | A member in a half-open in... |
xrgtned 42751 | 'Greater than' implies not... |
xrleneltd 42752 | 'Less than or equal to' an... |
xaddcomd 42753 | The extended real addition... |
supxrre3 42754 | The supremum of a nonempty... |
uzfissfz 42755 | For any finite subset of t... |
xleadd2d 42756 | Addition of extended reals... |
suprltrp 42757 | The supremum of a nonempty... |
xleadd1d 42758 | Addition of extended reals... |
xreqled 42759 | Equality implies 'less tha... |
xrgepnfd 42760 | An extended real greater t... |
xrge0nemnfd 42761 | A nonnegative extended rea... |
supxrgere 42762 | If a real number can be ap... |
iuneqfzuzlem 42763 | Lemma for ~ iuneqfzuz : he... |
iuneqfzuz 42764 | If two unions indexed by u... |
xle2addd 42765 | Adding both side of two in... |
supxrgelem 42766 | If an extended real number... |
supxrge 42767 | If an extended real number... |
suplesup 42768 | If any element of ` A ` ca... |
infxrglb 42769 | The infimum of a set of ex... |
xadd0ge2 42770 | A number is less than or e... |
nepnfltpnf 42771 | An extended real that is n... |
ltadd12dd 42772 | Addition to both sides of ... |
nemnftgtmnft 42773 | An extended real that is n... |
xrgtso 42774 | 'Greater than' is a strict... |
rpex 42775 | The positive reals form a ... |
xrge0ge0 42776 | A nonnegative extended rea... |
xrssre 42777 | A subset of extended reals... |
ssuzfz 42778 | A finite subset of the upp... |
absfun 42779 | The absolute value is a fu... |
infrpge 42780 | The infimum of a nonempty,... |
xrlexaddrp 42781 | If an extended real number... |
supsubc 42782 | The supremum function dist... |
xralrple2 42783 | Show that ` A ` is less th... |
nnuzdisj 42784 | The first ` N ` elements o... |
ltdivgt1 42785 | Divsion by a number greate... |
xrltned 42786 | 'Less than' implies not eq... |
nnsplit 42787 | Express the set of positiv... |
divdiv3d 42788 | Division into a fraction. ... |
abslt2sqd 42789 | Comparison of the square o... |
qenom 42790 | The set of rational number... |
qct 42791 | The set of rational number... |
xrltnled 42792 | 'Less than' in terms of 'l... |
lenlteq 42793 | 'less than or equal to' bu... |
xrred 42794 | An extended real that is n... |
rr2sscn2 42795 | The cartesian square of ` ... |
infxr 42796 | The infimum of a set of ex... |
infxrunb2 42797 | The infimum of an unbounde... |
infxrbnd2 42798 | The infimum of a bounded-b... |
infleinflem1 42799 | Lemma for ~ infleinf , cas... |
infleinflem2 42800 | Lemma for ~ infleinf , whe... |
infleinf 42801 | If any element of ` B ` ca... |
xralrple4 42802 | Show that ` A ` is less th... |
xralrple3 42803 | Show that ` A ` is less th... |
eluzelzd 42804 | A member of an upper set o... |
suplesup2 42805 | If any element of ` A ` is... |
recnnltrp 42806 | ` N ` is a natural number ... |
nnn0 42807 | The set of positive intege... |
fzct 42808 | A finite set of sequential... |
rpgtrecnn 42809 | Any positive real number i... |
fzossuz 42810 | A half-open integer interv... |
infxrrefi 42811 | The real and extended real... |
xrralrecnnle 42812 | Show that ` A ` is less th... |
fzoct 42813 | A finite set of sequential... |
frexr 42814 | A function taking real val... |
nnrecrp 42815 | The reciprocal of a positi... |
reclt0d 42816 | The reciprocal of a negati... |
lt0neg1dd 42817 | If a number is negative, i... |
mnfled 42818 | Minus infinity is less tha... |
infxrcld 42819 | The infimum of an arbitrar... |
xrralrecnnge 42820 | Show that ` A ` is less th... |
reclt0 42821 | The reciprocal of a negati... |
ltmulneg 42822 | Multiplying by a negative ... |
allbutfi 42823 | For all but finitely many.... |
ltdiv23neg 42824 | Swap denominator with othe... |
xreqnltd 42825 | A consequence of trichotom... |
mnfnre2 42826 | Minus infinity is not a re... |
zssxr 42827 | The integers are a subset ... |
fisupclrnmpt 42828 | A nonempty finite indexed ... |
supxrunb3 42829 | The supremum of an unbound... |
elfzod 42830 | Membership in a half-open ... |
fimaxre4 42831 | A nonempty finite set of r... |
ren0 42832 | The set of reals is nonemp... |
eluzelz2 42833 | A member of an upper set o... |
resabs2d 42834 | Absorption law for restric... |
uzid2 42835 | Membership of the least me... |
supxrleubrnmpt 42836 | The supremum of a nonempty... |
uzssre2 42837 | An upper set of integers i... |
uzssd 42838 | Subset relationship for tw... |
eluzd 42839 | Membership in an upper set... |
infxrlbrnmpt2 42840 | A member of a nonempty ind... |
xrre4 42841 | An extended real is real i... |
uz0 42842 | The upper integers functio... |
eluzelz2d 42843 | A member of an upper set o... |
infleinf2 42844 | If any element in ` B ` is... |
unb2ltle 42845 | "Unbounded below" expresse... |
uzidd2 42846 | Membership of the least me... |
uzssd2 42847 | Subset relationship for tw... |
rexabslelem 42848 | An indexed set of absolute... |
rexabsle 42849 | An indexed set of absolute... |
allbutfiinf 42850 | Given a "for all but finit... |
supxrrernmpt 42851 | The real and extended real... |
suprleubrnmpt 42852 | The supremum of a nonempty... |
infrnmptle 42853 | An indexed infimum of exte... |
infxrunb3 42854 | The infimum of an unbounde... |
uzn0d 42855 | The upper integers are all... |
uzssd3 42856 | Subset relationship for tw... |
rexabsle2 42857 | An indexed set of absolute... |
infxrunb3rnmpt 42858 | The infimum of an unbounde... |
supxrre3rnmpt 42859 | The indexed supremum of a ... |
uzublem 42860 | A set of reals, indexed by... |
uzub 42861 | A set of reals, indexed by... |
ssrexr 42862 | A subset of the reals is a... |
supxrmnf2 42863 | Removing minus infinity fr... |
supxrcli 42864 | The supremum of an arbitra... |
uzid3 42865 | Membership of the least me... |
infxrlesupxr 42866 | The supremum of a nonempty... |
xnegeqd 42867 | Equality of two extended n... |
xnegrecl 42868 | The extended real negative... |
xnegnegi 42869 | Extended real version of ~... |
xnegeqi 42870 | Equality of two extended n... |
nfxnegd 42871 | Deduction version of ~ nfx... |
xnegnegd 42872 | Extended real version of ~... |
uzred 42873 | An upper integer is a real... |
xnegcli 42874 | Closure of extended real n... |
supminfrnmpt 42875 | The indexed supremum of a ... |
infxrpnf 42876 | Adding plus infinity to a ... |
infxrrnmptcl 42877 | The infimum of an arbitrar... |
leneg2d 42878 | Negative of one side of 'l... |
supxrltinfxr 42879 | The supremum of the empty ... |
max1d 42880 | A number is less than or e... |
supxrleubrnmptf 42881 | The supremum of a nonempty... |
nleltd 42882 | 'Not less than or equal to... |
zxrd 42883 | An integer is an extended ... |
infxrgelbrnmpt 42884 | The infimum of an indexed ... |
rphalfltd 42885 | Half of a positive real is... |
uzssz2 42886 | An upper set of integers i... |
leneg3d 42887 | Negative of one side of 'l... |
max2d 42888 | A number is less than or e... |
uzn0bi 42889 | The upper integers functio... |
xnegrecl2 42890 | If the extended real negat... |
nfxneg 42891 | Bound-variable hypothesis ... |
uzxrd 42892 | An upper integer is an ext... |
infxrpnf2 42893 | Removing plus infinity fro... |
supminfxr 42894 | The extended real suprema ... |
infrpgernmpt 42895 | The infimum of a nonempty,... |
xnegre 42896 | An extended real is real i... |
xnegrecl2d 42897 | If the extended real negat... |
uzxr 42898 | An upper integer is an ext... |
supminfxr2 42899 | The extended real suprema ... |
xnegred 42900 | An extended real is real i... |
supminfxrrnmpt 42901 | The indexed supremum of a ... |
min1d 42902 | The minimum of two numbers... |
min2d 42903 | The minimum of two numbers... |
pnfged 42904 | Plus infinity is an upper ... |
xrnpnfmnf 42905 | An extended real that is n... |
uzsscn 42906 | An upper set of integers i... |
absimnre 42907 | The absolute value of the ... |
uzsscn2 42908 | An upper set of integers i... |
xrtgcntopre 42909 | The standard topologies on... |
absimlere 42910 | The absolute value of the ... |
rpssxr 42911 | The positive reals are a s... |
monoordxrv 42912 | Ordering relation for a mo... |
monoordxr 42913 | Ordering relation for a mo... |
monoord2xrv 42914 | Ordering relation for a mo... |
monoord2xr 42915 | Ordering relation for a mo... |
xrpnf 42916 | An extended real is plus i... |
xlenegcon1 42917 | Extended real version of ~... |
xlenegcon2 42918 | Extended real version of ~... |
gtnelioc 42919 | A real number larger than ... |
ioossioc 42920 | An open interval is a subs... |
ioondisj2 42921 | A condition for two open i... |
ioondisj1 42922 | A condition for two open i... |
ioogtlb 42923 | An element of a closed int... |
evthiccabs 42924 | Extreme Value Theorem on y... |
ltnelicc 42925 | A real number smaller than... |
eliood 42926 | Membership in an open real... |
iooabslt 42927 | An upper bound for the dis... |
gtnelicc 42928 | A real number greater than... |
iooinlbub 42929 | An open interval has empty... |
iocgtlb 42930 | An element of a left-open ... |
iocleub 42931 | An element of a left-open ... |
eliccd 42932 | Membership in a closed rea... |
eliccre 42933 | A member of a closed inter... |
eliooshift 42934 | Element of an open interva... |
eliocd 42935 | Membership in a left-open ... |
icoltub 42936 | An element of a left-close... |
eliocre 42937 | A member of a left-open ri... |
iooltub 42938 | An element of an open inte... |
ioontr 42939 | The interior of an interva... |
snunioo1 42940 | The closure of one end of ... |
lbioc 42941 | A left-open right-closed i... |
ioomidp 42942 | The midpoint is an element... |
iccdifioo 42943 | If the open inverval is re... |
iccdifprioo 42944 | An open interval is the cl... |
ioossioobi 42945 | Biconditional form of ~ io... |
iccshift 42946 | A closed interval shifted ... |
iccsuble 42947 | An upper bound to the dist... |
iocopn 42948 | A left-open right-closed i... |
eliccelioc 42949 | Membership in a closed int... |
iooshift 42950 | An open interval shifted b... |
iccintsng 42951 | Intersection of two adiace... |
icoiccdif 42952 | Left-closed right-open int... |
icoopn 42953 | A left-closed right-open i... |
icoub 42954 | A left-closed, right-open ... |
eliccxrd 42955 | Membership in a closed rea... |
pnfel0pnf 42956 | ` +oo ` is a nonnegative e... |
eliccnelico 42957 | An element of a closed int... |
eliccelicod 42958 | A member of a closed inter... |
ge0xrre 42959 | A nonnegative extended rea... |
ge0lere 42960 | A nonnegative extended Rea... |
elicores 42961 | Membership in a left-close... |
inficc 42962 | The infimum of a nonempty ... |
qinioo 42963 | The rational numbers are d... |
lenelioc 42964 | A real number smaller than... |
ioonct 42965 | A nonempty open interval i... |
xrgtnelicc 42966 | A real number greater than... |
iccdificc 42967 | The difference of two clos... |
iocnct 42968 | A nonempty left-open, righ... |
iccnct 42969 | A closed interval, with mo... |
iooiinicc 42970 | A closed interval expresse... |
iccgelbd 42971 | An element of a closed int... |
iooltubd 42972 | An element of an open inte... |
icoltubd 42973 | An element of a left-close... |
qelioo 42974 | The rational numbers are d... |
tgqioo2 42975 | Every open set of reals is... |
iccleubd 42976 | An element of a closed int... |
elioored 42977 | A member of an open interv... |
ioogtlbd 42978 | An element of a closed int... |
ioofun 42979 | ` (,) ` is a function. (C... |
icomnfinre 42980 | A left-closed, right-open,... |
sqrlearg 42981 | The square compared with i... |
ressiocsup 42982 | If the supremum belongs to... |
ressioosup 42983 | If the supremum does not b... |
iooiinioc 42984 | A left-open, right-closed ... |
ressiooinf 42985 | If the infimum does not be... |
icogelbd 42986 | An element of a left-close... |
iocleubd 42987 | An element of a left-open ... |
uzinico 42988 | An upper interval of integ... |
preimaiocmnf 42989 | Preimage of a right-closed... |
uzinico2 42990 | An upper interval of integ... |
uzinico3 42991 | An upper interval of integ... |
icossico2 42992 | Condition for a closed-bel... |
dmico 42993 | The domain of the closed-b... |
ndmico 42994 | The closed-below, open-abo... |
uzubioo 42995 | The upper integers are unb... |
uzubico 42996 | The upper integers are unb... |
uzubioo2 42997 | The upper integers are unb... |
uzubico2 42998 | The upper integers are unb... |
iocgtlbd 42999 | An element of a left-open ... |
xrtgioo2 43000 | The topology on the extend... |
tgioo4 43001 | The standard topology on t... |
fsummulc1f 43002 | Closure of a finite sum of... |
fsumnncl 43003 | Closure of a nonempty, fin... |
fsumge0cl 43004 | The finite sum of nonnegat... |
fsumf1of 43005 | Re-index a finite sum usin... |
fsumiunss 43006 | Sum over a disjoint indexe... |
fsumreclf 43007 | Closure of a finite sum of... |
fsumlessf 43008 | A shorter sum of nonnegati... |
fsumsupp0 43009 | Finite sum of function val... |
fsumsermpt 43010 | A finite sum expressed in ... |
fmul01 43011 | Multiplying a finite numbe... |
fmulcl 43012 | If ' Y ' is closed under t... |
fmuldfeqlem1 43013 | induction step for the pro... |
fmuldfeq 43014 | X and Z are two equivalent... |
fmul01lt1lem1 43015 | Given a finite multiplicat... |
fmul01lt1lem2 43016 | Given a finite multiplicat... |
fmul01lt1 43017 | Given a finite multiplicat... |
cncfmptss 43018 | A continuous complex funct... |
rrpsscn 43019 | The positive reals are a s... |
mulc1cncfg 43020 | A version of ~ mulc1cncf u... |
infrglb 43021 | The infimum of a nonempty ... |
expcnfg 43022 | If ` F ` is a complex cont... |
prodeq2ad 43023 | Equality deduction for pro... |
fprodsplit1 43024 | Separate out a term in a f... |
fprodexp 43025 | Positive integer exponenti... |
fprodabs2 43026 | The absolute value of a fi... |
fprod0 43027 | A finite product with a ze... |
mccllem 43028 | * Induction step for ~ mcc... |
mccl 43029 | A multinomial coefficient,... |
fprodcnlem 43030 | A finite product of functi... |
fprodcn 43031 | A finite product of functi... |
clim1fr1 43032 | A class of sequences of fr... |
isumneg 43033 | Negation of a converging s... |
climrec 43034 | Limit of the reciprocal of... |
climmulf 43035 | A version of ~ climmul usi... |
climexp 43036 | The limit of natural power... |
climinf 43037 | A bounded monotonic noninc... |
climsuselem1 43038 | The subsequence index ` I ... |
climsuse 43039 | A subsequence ` G ` of a c... |
climrecf 43040 | A version of ~ climrec usi... |
climneg 43041 | Complex limit of the negat... |
climinff 43042 | A version of ~ climinf usi... |
climdivf 43043 | Limit of the ratio of two ... |
climreeq 43044 | If ` F ` is a real functio... |
ellimciota 43045 | An explicit value for the ... |
climaddf 43046 | A version of ~ climadd usi... |
mullimc 43047 | Limit of the product of tw... |
ellimcabssub0 43048 | An equivalent condition fo... |
limcdm0 43049 | If a function has empty do... |
islptre 43050 | An equivalence condition f... |
limccog 43051 | Limit of the composition o... |
limciccioolb 43052 | The limit of a function at... |
climf 43053 | Express the predicate: Th... |
mullimcf 43054 | Limit of the multiplicatio... |
constlimc 43055 | Limit of constant function... |
rexlim2d 43056 | Inference removing two res... |
idlimc 43057 | Limit of the identity func... |
divcnvg 43058 | The sequence of reciprocal... |
limcperiod 43059 | If ` F ` is a periodic fun... |
limcrecl 43060 | If ` F ` is a real-valued ... |
sumnnodd 43061 | A series indexed by ` NN `... |
lptioo2 43062 | The upper bound of an open... |
lptioo1 43063 | The lower bound of an open... |
elprn1 43064 | A member of an unordered p... |
elprn2 43065 | A member of an unordered p... |
limcmptdm 43066 | The domain of a maps-to fu... |
clim2f 43067 | Express the predicate: Th... |
limcicciooub 43068 | The limit of a function at... |
ltmod 43069 | A sufficient condition for... |
islpcn 43070 | A characterization for a l... |
lptre2pt 43071 | If a set in the real line ... |
limsupre 43072 | If a sequence is bounded, ... |
limcresiooub 43073 | The left limit doesn't cha... |
limcresioolb 43074 | The right limit doesn't ch... |
limcleqr 43075 | If the left and the right ... |
lptioo2cn 43076 | The upper bound of an open... |
lptioo1cn 43077 | The lower bound of an open... |
neglimc 43078 | Limit of the negative func... |
addlimc 43079 | Sum of two limits. (Contr... |
0ellimcdiv 43080 | If the numerator converges... |
clim2cf 43081 | Express the predicate ` F ... |
limclner 43082 | For a limit point, both fr... |
sublimc 43083 | Subtraction of two limits.... |
reclimc 43084 | Limit of the reciprocal of... |
clim0cf 43085 | Express the predicate ` F ... |
limclr 43086 | For a limit point, both fr... |
divlimc 43087 | Limit of the quotient of t... |
expfac 43088 | Factorial grows faster tha... |
climconstmpt 43089 | A constant sequence conver... |
climresmpt 43090 | A function restricted to u... |
climsubmpt 43091 | Limit of the difference of... |
climsubc2mpt 43092 | Limit of the difference of... |
climsubc1mpt 43093 | Limit of the difference of... |
fnlimfv 43094 | The value of the limit fun... |
climreclf 43095 | The limit of a convergent ... |
climeldmeq 43096 | Two functions that are eve... |
climf2 43097 | Express the predicate: Th... |
fnlimcnv 43098 | The sequence of function v... |
climeldmeqmpt 43099 | Two functions that are eve... |
climfveq 43100 | Two functions that are eve... |
clim2f2 43101 | Express the predicate: Th... |
climfveqmpt 43102 | Two functions that are eve... |
climd 43103 | Express the predicate: Th... |
clim2d 43104 | The limit of complex numbe... |
fnlimfvre 43105 | The limit function of real... |
allbutfifvre 43106 | Given a sequence of real-v... |
climleltrp 43107 | The limit of complex numbe... |
fnlimfvre2 43108 | The limit function of real... |
fnlimf 43109 | The limit function of real... |
fnlimabslt 43110 | A sequence of function val... |
climfveqf 43111 | Two functions that are eve... |
climmptf 43112 | Exhibit a function ` G ` w... |
climfveqmpt3 43113 | Two functions that are eve... |
climeldmeqf 43114 | Two functions that are eve... |
climreclmpt 43115 | The limit of B convergent ... |
limsupref 43116 | If a sequence is bounded, ... |
limsupbnd1f 43117 | If a sequence is eventuall... |
climbddf 43118 | A converging sequence of c... |
climeqf 43119 | Two functions that are eve... |
climeldmeqmpt3 43120 | Two functions that are eve... |
limsupcld 43121 | Closure of the superior li... |
climfv 43122 | The limit of a convergent ... |
limsupval3 43123 | The superior limit of an i... |
climfveqmpt2 43124 | Two functions that are eve... |
limsup0 43125 | The superior limit of the ... |
climeldmeqmpt2 43126 | Two functions that are eve... |
limsupresre 43127 | The supremum limit of a fu... |
climeqmpt 43128 | Two functions that are eve... |
climfvd 43129 | The limit of a convergent ... |
limsuplesup 43130 | An upper bound for the sup... |
limsupresico 43131 | The superior limit doesn't... |
limsuppnfdlem 43132 | If the restriction of a fu... |
limsuppnfd 43133 | If the restriction of a fu... |
limsupresuz 43134 | If the real part of the do... |
limsupub 43135 | If the limsup is not ` +oo... |
limsupres 43136 | The superior limit of a re... |
climinf2lem 43137 | A convergent, nonincreasin... |
climinf2 43138 | A convergent, nonincreasin... |
limsupvaluz 43139 | The superior limit, when t... |
limsupresuz2 43140 | If the domain of a functio... |
limsuppnflem 43141 | If the restriction of a fu... |
limsuppnf 43142 | If the restriction of a fu... |
limsupubuzlem 43143 | If the limsup is not ` +oo... |
limsupubuz 43144 | For a real-valued function... |
climinf2mpt 43145 | A bounded below, monotonic... |
climinfmpt 43146 | A bounded below, monotonic... |
climinf3 43147 | A convergent, nonincreasin... |
limsupvaluzmpt 43148 | The superior limit, when t... |
limsupequzmpt2 43149 | Two functions that are eve... |
limsupubuzmpt 43150 | If the limsup is not ` +oo... |
limsupmnflem 43151 | The superior limit of a fu... |
limsupmnf 43152 | The superior limit of a fu... |
limsupequzlem 43153 | Two functions that are eve... |
limsupequz 43154 | Two functions that are eve... |
limsupre2lem 43155 | Given a function on the ex... |
limsupre2 43156 | Given a function on the ex... |
limsupmnfuzlem 43157 | The superior limit of a fu... |
limsupmnfuz 43158 | The superior limit of a fu... |
limsupequzmptlem 43159 | Two functions that are eve... |
limsupequzmpt 43160 | Two functions that are eve... |
limsupre2mpt 43161 | Given a function on the ex... |
limsupequzmptf 43162 | Two functions that are eve... |
limsupre3lem 43163 | Given a function on the ex... |
limsupre3 43164 | Given a function on the ex... |
limsupre3mpt 43165 | Given a function on the ex... |
limsupre3uzlem 43166 | Given a function on the ex... |
limsupre3uz 43167 | Given a function on the ex... |
limsupreuz 43168 | Given a function on the re... |
limsupvaluz2 43169 | The superior limit, when t... |
limsupreuzmpt 43170 | Given a function on the re... |
supcnvlimsup 43171 | If a function on a set of ... |
supcnvlimsupmpt 43172 | If a function on a set of ... |
0cnv 43173 | If ` (/) ` is a complex nu... |
climuzlem 43174 | Express the predicate: Th... |
climuz 43175 | Express the predicate: Th... |
lmbr3v 43176 | Express the binary relatio... |
climisp 43177 | If a sequence converges to... |
lmbr3 43178 | Express the binary relatio... |
climrescn 43179 | A sequence converging w.r.... |
climxrrelem 43180 | If a seqence ranging over ... |
climxrre 43181 | If a sequence ranging over... |
limsuplt2 43184 | The defining property of t... |
liminfgord 43185 | Ordering property of the i... |
limsupvald 43186 | The superior limit of a se... |
limsupresicompt 43187 | The superior limit doesn't... |
limsupcli 43188 | Closure of the superior li... |
liminfgf 43189 | Closure of the inferior li... |
liminfval 43190 | The inferior limit of a se... |
climlimsup 43191 | A sequence of real numbers... |
limsupge 43192 | The defining property of t... |
liminfgval 43193 | Value of the inferior limi... |
liminfcl 43194 | Closure of the inferior li... |
liminfvald 43195 | The inferior limit of a se... |
liminfval5 43196 | The inferior limit of an i... |
limsupresxr 43197 | The superior limit of a fu... |
liminfresxr 43198 | The inferior limit of a fu... |
liminfval2 43199 | The superior limit, relati... |
climlimsupcex 43200 | Counterexample for ~ climl... |
liminfcld 43201 | Closure of the inferior li... |
liminfresico 43202 | The inferior limit doesn't... |
limsup10exlem 43203 | The range of the given fun... |
limsup10ex 43204 | The superior limit of a fu... |
liminf10ex 43205 | The inferior limit of a fu... |
liminflelimsuplem 43206 | The superior limit is grea... |
liminflelimsup 43207 | The superior limit is grea... |
limsupgtlem 43208 | For any positive real, the... |
limsupgt 43209 | Given a sequence of real n... |
liminfresre 43210 | The inferior limit of a fu... |
liminfresicompt 43211 | The inferior limit doesn't... |
liminfltlimsupex 43212 | An example where the ` lim... |
liminfgelimsup 43213 | The inferior limit is grea... |
liminfvalxr 43214 | Alternate definition of ` ... |
liminfresuz 43215 | If the real part of the do... |
liminflelimsupuz 43216 | The superior limit is grea... |
liminfvalxrmpt 43217 | Alternate definition of ` ... |
liminfresuz2 43218 | If the domain of a functio... |
liminfgelimsupuz 43219 | The inferior limit is grea... |
liminfval4 43220 | Alternate definition of ` ... |
liminfval3 43221 | Alternate definition of ` ... |
liminfequzmpt2 43222 | Two functions that are eve... |
liminfvaluz 43223 | Alternate definition of ` ... |
liminf0 43224 | The inferior limit of the ... |
limsupval4 43225 | Alternate definition of ` ... |
liminfvaluz2 43226 | Alternate definition of ` ... |
liminfvaluz3 43227 | Alternate definition of ` ... |
liminflelimsupcex 43228 | A counterexample for ~ lim... |
limsupvaluz3 43229 | Alternate definition of ` ... |
liminfvaluz4 43230 | Alternate definition of ` ... |
limsupvaluz4 43231 | Alternate definition of ` ... |
climliminflimsupd 43232 | If a sequence of real numb... |
liminfreuzlem 43233 | Given a function on the re... |
liminfreuz 43234 | Given a function on the re... |
liminfltlem 43235 | Given a sequence of real n... |
liminflt 43236 | Given a sequence of real n... |
climliminf 43237 | A sequence of real numbers... |
liminflimsupclim 43238 | A sequence of real numbers... |
climliminflimsup 43239 | A sequence of real numbers... |
climliminflimsup2 43240 | A sequence of real numbers... |
climliminflimsup3 43241 | A sequence of real numbers... |
climliminflimsup4 43242 | A sequence of real numbers... |
limsupub2 43243 | A extended real valued fun... |
limsupubuz2 43244 | A sequence with values in ... |
xlimpnfxnegmnf 43245 | A sequence converges to ` ... |
liminflbuz2 43246 | A sequence with values in ... |
liminfpnfuz 43247 | The inferior limit of a fu... |
liminflimsupxrre 43248 | A sequence with values in ... |
xlimrel 43251 | The limit on extended real... |
xlimres 43252 | A function converges iff i... |
xlimcl 43253 | The limit of a sequence of... |
rexlimddv2 43254 | Restricted existential eli... |
xlimclim 43255 | Given a sequence of reals,... |
xlimconst 43256 | A constant sequence conver... |
climxlim 43257 | A converging sequence in t... |
xlimbr 43258 | Express the binary relatio... |
fuzxrpmcn 43259 | A function mapping from an... |
cnrefiisplem 43260 | Lemma for ~ cnrefiisp (som... |
cnrefiisp 43261 | A non-real, complex number... |
xlimxrre 43262 | If a sequence ranging over... |
xlimmnfvlem1 43263 | Lemma for ~ xlimmnfv : the... |
xlimmnfvlem2 43264 | Lemma for ~ xlimmnf : the ... |
xlimmnfv 43265 | A function converges to mi... |
xlimconst2 43266 | A sequence that eventually... |
xlimpnfvlem1 43267 | Lemma for ~ xlimpnfv : the... |
xlimpnfvlem2 43268 | Lemma for ~ xlimpnfv : the... |
xlimpnfv 43269 | A function converges to pl... |
xlimclim2lem 43270 | Lemma for ~ xlimclim2 . H... |
xlimclim2 43271 | Given a sequence of extend... |
xlimmnf 43272 | A function converges to mi... |
xlimpnf 43273 | A function converges to pl... |
xlimmnfmpt 43274 | A function converges to pl... |
xlimpnfmpt 43275 | A function converges to pl... |
climxlim2lem 43276 | In this lemma for ~ climxl... |
climxlim2 43277 | A sequence of extended rea... |
dfxlim2v 43278 | An alternative definition ... |
dfxlim2 43279 | An alternative definition ... |
climresd 43280 | A function restricted to u... |
climresdm 43281 | A real function converges ... |
dmclimxlim 43282 | A real valued sequence tha... |
xlimmnflimsup2 43283 | A sequence of extended rea... |
xlimuni 43284 | An infinite sequence conve... |
xlimclimdm 43285 | A sequence of extended rea... |
xlimfun 43286 | The convergence relation o... |
xlimmnflimsup 43287 | If a sequence of extended ... |
xlimdm 43288 | Two ways to express that a... |
xlimpnfxnegmnf2 43289 | A sequence converges to ` ... |
xlimresdm 43290 | A function converges in th... |
xlimpnfliminf 43291 | If a sequence of extended ... |
xlimpnfliminf2 43292 | A sequence of extended rea... |
xlimliminflimsup 43293 | A sequence of extended rea... |
xlimlimsupleliminf 43294 | A sequence of extended rea... |
coseq0 43295 | A complex number whose cos... |
sinmulcos 43296 | Multiplication formula for... |
coskpi2 43297 | The cosine of an integer m... |
cosnegpi 43298 | The cosine of negative ` _... |
sinaover2ne0 43299 | If ` A ` in ` ( 0 , 2 _pi ... |
cosknegpi 43300 | The cosine of an integer m... |
mulcncff 43301 | The multiplication of two ... |
cncfmptssg 43302 | A continuous complex funct... |
constcncfg 43303 | A constant function is a c... |
idcncfg 43304 | The identity function is a... |
cncfshift 43305 | A periodic continuous func... |
resincncf 43306 | ` sin ` restricted to real... |
addccncf2 43307 | Adding a constant is a con... |
0cnf 43308 | The empty set is a continu... |
fsumcncf 43309 | The finite sum of continuo... |
cncfperiod 43310 | A periodic continuous func... |
subcncff 43311 | The subtraction of two con... |
negcncfg 43312 | The opposite of a continuo... |
cnfdmsn 43313 | A function with a singleto... |
cncfcompt 43314 | Composition of continuous ... |
addcncff 43315 | The sum of two continuous ... |
ioccncflimc 43316 | Limit at the upper bound o... |
cncfuni 43317 | A complex function on a su... |
icccncfext 43318 | A continuous function on a... |
cncficcgt0 43319 | A the absolute value of a ... |
icocncflimc 43320 | Limit at the lower bound, ... |
cncfdmsn 43321 | A complex function with a ... |
divcncff 43322 | The quotient of two contin... |
cncfshiftioo 43323 | A periodic continuous func... |
cncfiooicclem1 43324 | A continuous function ` F ... |
cncfiooicc 43325 | A continuous function ` F ... |
cncfiooiccre 43326 | A continuous function ` F ... |
cncfioobdlem 43327 | ` G ` actually extends ` F... |
cncfioobd 43328 | A continuous function ` F ... |
jumpncnp 43329 | Jump discontinuity or disc... |
cxpcncf2 43330 | The complex power function... |
fprodcncf 43331 | The finite product of cont... |
add1cncf 43332 | Addition to a constant is ... |
add2cncf 43333 | Addition to a constant is ... |
sub1cncfd 43334 | Subtracting a constant is ... |
sub2cncfd 43335 | Subtraction from a constan... |
fprodsub2cncf 43336 | ` F ` is continuous. (Con... |
fprodadd2cncf 43337 | ` F ` is continuous. (Con... |
fprodsubrecnncnvlem 43338 | The sequence ` S ` of fini... |
fprodsubrecnncnv 43339 | The sequence ` S ` of fini... |
fprodaddrecnncnvlem 43340 | The sequence ` S ` of fini... |
fprodaddrecnncnv 43341 | The sequence ` S ` of fini... |
dvsinexp 43342 | The derivative of sin^N . ... |
dvcosre 43343 | The real derivative of the... |
dvsinax 43344 | Derivative exercise: the d... |
dvsubf 43345 | The subtraction rule for e... |
dvmptconst 43346 | Function-builder for deriv... |
dvcnre 43347 | From compex differentiatio... |
dvmptidg 43348 | Function-builder for deriv... |
dvresntr 43349 | Function-builder for deriv... |
fperdvper 43350 | The derivative of a period... |
dvasinbx 43351 | Derivative exercise: the d... |
dvresioo 43352 | Restriction of a derivativ... |
dvdivf 43353 | The quotient rule for ever... |
dvdivbd 43354 | A sufficient condition for... |
dvsubcncf 43355 | A sufficient condition for... |
dvmulcncf 43356 | A sufficient condition for... |
dvcosax 43357 | Derivative exercise: the d... |
dvdivcncf 43358 | A sufficient condition for... |
dvbdfbdioolem1 43359 | Given a function with boun... |
dvbdfbdioolem2 43360 | A function on an open inte... |
dvbdfbdioo 43361 | A function on an open inte... |
ioodvbdlimc1lem1 43362 | If ` F ` has bounded deriv... |
ioodvbdlimc1lem2 43363 | Limit at the lower bound o... |
ioodvbdlimc1 43364 | A real function with bound... |
ioodvbdlimc2lem 43365 | Limit at the upper bound o... |
ioodvbdlimc2 43366 | A real function with bound... |
dvdmsscn 43367 | ` X ` is a subset of ` CC ... |
dvmptmulf 43368 | Function-builder for deriv... |
dvnmptdivc 43369 | Function-builder for itera... |
dvdsn1add 43370 | If ` K ` divides ` N ` but... |
dvxpaek 43371 | Derivative of the polynomi... |
dvnmptconst 43372 | The ` N ` -th derivative o... |
dvnxpaek 43373 | The ` n ` -th derivative o... |
dvnmul 43374 | Function-builder for the `... |
dvmptfprodlem 43375 | Induction step for ~ dvmpt... |
dvmptfprod 43376 | Function-builder for deriv... |
dvnprodlem1 43377 | ` D ` is bijective. (Cont... |
dvnprodlem2 43378 | Induction step for ~ dvnpr... |
dvnprodlem3 43379 | The multinomial formula fo... |
dvnprod 43380 | The multinomial formula fo... |
itgsin0pilem1 43381 | Calculation of the integra... |
ibliccsinexp 43382 | sin^n on a closed interval... |
itgsin0pi 43383 | Calculation of the integra... |
iblioosinexp 43384 | sin^n on an open integral ... |
itgsinexplem1 43385 | Integration by parts is ap... |
itgsinexp 43386 | A recursive formula for th... |
iblconstmpt 43387 | A constant function is int... |
itgeq1d 43388 | Equality theorem for an in... |
mbfres2cn 43389 | Measurability of a piecewi... |
vol0 43390 | The measure of the empty s... |
ditgeqiooicc 43391 | A function ` F ` on an ope... |
volge0 43392 | The volume of a set is alw... |
cnbdibl 43393 | A continuous bounded funct... |
snmbl 43394 | A singleton is measurable.... |
ditgeq3d 43395 | Equality theorem for the d... |
iblempty 43396 | The empty function is inte... |
iblsplit 43397 | The union of two integrabl... |
volsn 43398 | A singleton has 0 Lebesgue... |
itgvol0 43399 | If the domani is negligibl... |
itgcoscmulx 43400 | Exercise: the integral of ... |
iblsplitf 43401 | A version of ~ iblsplit us... |
ibliooicc 43402 | If a function is integrabl... |
volioc 43403 | The measure of a left-open... |
iblspltprt 43404 | If a function is integrabl... |
itgsincmulx 43405 | Exercise: the integral of ... |
itgsubsticclem 43406 | lemma for ~ itgsubsticc . ... |
itgsubsticc 43407 | Integration by u-substitut... |
itgioocnicc 43408 | The integral of a piecewis... |
iblcncfioo 43409 | A continuous function ` F ... |
itgspltprt 43410 | The ` S. ` integral splits... |
itgiccshift 43411 | The integral of a function... |
itgperiod 43412 | The integral of a periodic... |
itgsbtaddcnst 43413 | Integral substitution, add... |
volico 43414 | The measure of left-closed... |
sublevolico 43415 | The Lebesgue measure of a ... |
dmvolss 43416 | Lebesgue measurable sets a... |
ismbl3 43417 | The predicate " ` A ` is L... |
volioof 43418 | The function that assigns ... |
ovolsplit 43419 | The Lebesgue outer measure... |
fvvolioof 43420 | The function value of the ... |
volioore 43421 | The measure of an open int... |
fvvolicof 43422 | The function value of the ... |
voliooico 43423 | An open interval and a lef... |
ismbl4 43424 | The predicate " ` A ` is L... |
volioofmpt 43425 | ` ( ( vol o. (,) ) o. F ) ... |
volicoff 43426 | ` ( ( vol o. [,) ) o. F ) ... |
voliooicof 43427 | The Lebesgue measure of op... |
volicofmpt 43428 | ` ( ( vol o. [,) ) o. F ) ... |
volicc 43429 | The Lebesgue measure of a ... |
voliccico 43430 | A closed interval and a le... |
mbfdmssre 43431 | The domain of a measurable... |
stoweidlem1 43432 | Lemma for ~ stoweid . Thi... |
stoweidlem2 43433 | lemma for ~ stoweid : here... |
stoweidlem3 43434 | Lemma for ~ stoweid : if `... |
stoweidlem4 43435 | Lemma for ~ stoweid : a cl... |
stoweidlem5 43436 | There exists a δ as ... |
stoweidlem6 43437 | Lemma for ~ stoweid : two ... |
stoweidlem7 43438 | This lemma is used to prov... |
stoweidlem8 43439 | Lemma for ~ stoweid : two ... |
stoweidlem9 43440 | Lemma for ~ stoweid : here... |
stoweidlem10 43441 | Lemma for ~ stoweid . Thi... |
stoweidlem11 43442 | This lemma is used to prov... |
stoweidlem12 43443 | Lemma for ~ stoweid . Thi... |
stoweidlem13 43444 | Lemma for ~ stoweid . Thi... |
stoweidlem14 43445 | There exists a ` k ` as in... |
stoweidlem15 43446 | This lemma is used to prov... |
stoweidlem16 43447 | Lemma for ~ stoweid . The... |
stoweidlem17 43448 | This lemma proves that the... |
stoweidlem18 43449 | This theorem proves Lemma ... |
stoweidlem19 43450 | If a set of real functions... |
stoweidlem20 43451 | If a set A of real functio... |
stoweidlem21 43452 | Once the Stone Weierstrass... |
stoweidlem22 43453 | If a set of real functions... |
stoweidlem23 43454 | This lemma is used to prov... |
stoweidlem24 43455 | This lemma proves that for... |
stoweidlem25 43456 | This lemma proves that for... |
stoweidlem26 43457 | This lemma is used to prov... |
stoweidlem27 43458 | This lemma is used to prov... |
stoweidlem28 43459 | There exists a δ as ... |
stoweidlem29 43460 | When the hypothesis for th... |
stoweidlem30 43461 | This lemma is used to prov... |
stoweidlem31 43462 | This lemma is used to prov... |
stoweidlem32 43463 | If a set A of real functio... |
stoweidlem33 43464 | If a set of real functions... |
stoweidlem34 43465 | This lemma proves that for... |
stoweidlem35 43466 | This lemma is used to prov... |
stoweidlem36 43467 | This lemma is used to prov... |
stoweidlem37 43468 | This lemma is used to prov... |
stoweidlem38 43469 | This lemma is used to prov... |
stoweidlem39 43470 | This lemma is used to prov... |
stoweidlem40 43471 | This lemma proves that q_n... |
stoweidlem41 43472 | This lemma is used to prov... |
stoweidlem42 43473 | This lemma is used to prov... |
stoweidlem43 43474 | This lemma is used to prov... |
stoweidlem44 43475 | This lemma is used to prov... |
stoweidlem45 43476 | This lemma proves that, gi... |
stoweidlem46 43477 | This lemma proves that set... |
stoweidlem47 43478 | Subtracting a constant fro... |
stoweidlem48 43479 | This lemma is used to prov... |
stoweidlem49 43480 | There exists a function q_... |
stoweidlem50 43481 | This lemma proves that set... |
stoweidlem51 43482 | There exists a function x ... |
stoweidlem52 43483 | There exists a neighborhoo... |
stoweidlem53 43484 | This lemma is used to prov... |
stoweidlem54 43485 | There exists a function ` ... |
stoweidlem55 43486 | This lemma proves the exis... |
stoweidlem56 43487 | This theorem proves Lemma ... |
stoweidlem57 43488 | There exists a function x ... |
stoweidlem58 43489 | This theorem proves Lemma ... |
stoweidlem59 43490 | This lemma proves that the... |
stoweidlem60 43491 | This lemma proves that the... |
stoweidlem61 43492 | This lemma proves that the... |
stoweidlem62 43493 | This theorem proves the St... |
stoweid 43494 | This theorem proves the St... |
stowei 43495 | This theorem proves the St... |
wallispilem1 43496 | ` I ` is monotone: increas... |
wallispilem2 43497 | A first set of properties ... |
wallispilem3 43498 | I maps to real values. (C... |
wallispilem4 43499 | ` F ` maps to explicit exp... |
wallispilem5 43500 | The sequence ` H ` converg... |
wallispi 43501 | Wallis' formula for π :... |
wallispi2lem1 43502 | An intermediate step betwe... |
wallispi2lem2 43503 | Two expressions are proven... |
wallispi2 43504 | An alternative version of ... |
stirlinglem1 43505 | A simple limit of fraction... |
stirlinglem2 43506 | ` A ` maps to positive rea... |
stirlinglem3 43507 | Long but simple algebraic ... |
stirlinglem4 43508 | Algebraic manipulation of ... |
stirlinglem5 43509 | If ` T ` is between ` 0 ` ... |
stirlinglem6 43510 | A series that converges to... |
stirlinglem7 43511 | Algebraic manipulation of ... |
stirlinglem8 43512 | If ` A ` converges to ` C ... |
stirlinglem9 43513 | ` ( ( B `` N ) - ( B `` ( ... |
stirlinglem10 43514 | A bound for any B(N)-B(N +... |
stirlinglem11 43515 | ` B ` is decreasing. (Con... |
stirlinglem12 43516 | The sequence ` B ` is boun... |
stirlinglem13 43517 | ` B ` is decreasing and ha... |
stirlinglem14 43518 | The sequence ` A ` converg... |
stirlinglem15 43519 | The Stirling's formula is ... |
stirling 43520 | Stirling's approximation f... |
stirlingr 43521 | Stirling's approximation f... |
dirkerval 43522 | The N_th Dirichlet Kernel.... |
dirker2re 43523 | The Dirichlet Kernel value... |
dirkerdenne0 43524 | The Dirichlet Kernel denom... |
dirkerval2 43525 | The N_th Dirichlet Kernel ... |
dirkerre 43526 | The Dirichlet Kernel at an... |
dirkerper 43527 | the Dirichlet Kernel has p... |
dirkerf 43528 | For any natural number ` N... |
dirkertrigeqlem1 43529 | Sum of an even number of a... |
dirkertrigeqlem2 43530 | Trigonomic equality lemma ... |
dirkertrigeqlem3 43531 | Trigonometric equality lem... |
dirkertrigeq 43532 | Trigonometric equality for... |
dirkeritg 43533 | The definite integral of t... |
dirkercncflem1 43534 | If ` Y ` is a multiple of ... |
dirkercncflem2 43535 | Lemma used to prove that t... |
dirkercncflem3 43536 | The Dirichlet Kernel is co... |
dirkercncflem4 43537 | The Dirichlet Kernel is co... |
dirkercncf 43538 | For any natural number ` N... |
fourierdlem1 43539 | A partition interval is a ... |
fourierdlem2 43540 | Membership in a partition.... |
fourierdlem3 43541 | Membership in a partition.... |
fourierdlem4 43542 | ` E ` is a function that m... |
fourierdlem5 43543 | ` S ` is a function. (Con... |
fourierdlem6 43544 | ` X ` is in the periodic p... |
fourierdlem7 43545 | The difference between the... |
fourierdlem8 43546 | A partition interval is a ... |
fourierdlem9 43547 | ` H ` is a complex functio... |
fourierdlem10 43548 | Condition on the bounds of... |
fourierdlem11 43549 | If there is a partition, t... |
fourierdlem12 43550 | A point of a partition is ... |
fourierdlem13 43551 | Value of ` V ` in terms of... |
fourierdlem14 43552 | Given the partition ` V ` ... |
fourierdlem15 43553 | The range of the partition... |
fourierdlem16 43554 | The coefficients of the fo... |
fourierdlem17 43555 | The defined ` L ` is actua... |
fourierdlem18 43556 | The function ` S ` is cont... |
fourierdlem19 43557 | If two elements of ` D ` h... |
fourierdlem20 43558 | Every interval in the part... |
fourierdlem21 43559 | The coefficients of the fo... |
fourierdlem22 43560 | The coefficients of the fo... |
fourierdlem23 43561 | If ` F ` is continuous and... |
fourierdlem24 43562 | A sufficient condition for... |
fourierdlem25 43563 | If ` C ` is not in the ran... |
fourierdlem26 43564 | Periodic image of a point ... |
fourierdlem27 43565 | A partition open interval ... |
fourierdlem28 43566 | Derivative of ` ( F `` ( X... |
fourierdlem29 43567 | Explicit function value fo... |
fourierdlem30 43568 | Sum of three small pieces ... |
fourierdlem31 43569 | If ` A ` is finite and for... |
fourierdlem32 43570 | Limit of a continuous func... |
fourierdlem33 43571 | Limit of a continuous func... |
fourierdlem34 43572 | A partition is one to one.... |
fourierdlem35 43573 | There is a single point in... |
fourierdlem36 43574 | ` F ` is an isomorphism. ... |
fourierdlem37 43575 | ` I ` is a function that m... |
fourierdlem38 43576 | The function ` F ` is cont... |
fourierdlem39 43577 | Integration by parts of ... |
fourierdlem40 43578 | ` H ` is a continuous func... |
fourierdlem41 43579 | Lemma used to prove that e... |
fourierdlem42 43580 | The set of points in a mov... |
fourierdlem43 43581 | ` K ` is a real function. ... |
fourierdlem44 43582 | A condition for having ` (... |
fourierdlem46 43583 | The function ` F ` has a l... |
fourierdlem47 43584 | For ` r ` large enough, th... |
fourierdlem48 43585 | The given periodic functio... |
fourierdlem49 43586 | The given periodic functio... |
fourierdlem50 43587 | Continuity of ` O ` and it... |
fourierdlem51 43588 | ` X ` is in the periodic p... |
fourierdlem52 43589 | d16:d17,d18:jca |- ( ph ->... |
fourierdlem53 43590 | The limit of ` F ( s ) ` a... |
fourierdlem54 43591 | Given a partition ` Q ` an... |
fourierdlem55 43592 | ` U ` is a real function. ... |
fourierdlem56 43593 | Derivative of the ` K ` fu... |
fourierdlem57 43594 | The derivative of ` O ` . ... |
fourierdlem58 43595 | The derivative of ` K ` is... |
fourierdlem59 43596 | The derivative of ` H ` is... |
fourierdlem60 43597 | Given a differentiable fun... |
fourierdlem61 43598 | Given a differentiable fun... |
fourierdlem62 43599 | The function ` K ` is cont... |
fourierdlem63 43600 | The upper bound of interva... |
fourierdlem64 43601 | The partition ` V ` is fin... |
fourierdlem65 43602 | The distance of two adjace... |
fourierdlem66 43603 | Value of the ` G ` functio... |
fourierdlem67 43604 | ` G ` is a function. (Con... |
fourierdlem68 43605 | The derivative of ` O ` is... |
fourierdlem69 43606 | A piecewise continuous fun... |
fourierdlem70 43607 | A piecewise continuous fun... |
fourierdlem71 43608 | A periodic piecewise conti... |
fourierdlem72 43609 | The derivative of ` O ` is... |
fourierdlem73 43610 | A version of the Riemann L... |
fourierdlem74 43611 | Given a piecewise smooth f... |
fourierdlem75 43612 | Given a piecewise smooth f... |
fourierdlem76 43613 | Continuity of ` O ` and it... |
fourierdlem77 43614 | If ` H ` is bounded, then ... |
fourierdlem78 43615 | ` G ` is continuous when r... |
fourierdlem79 43616 | ` E ` projects every inter... |
fourierdlem80 43617 | The derivative of ` O ` is... |
fourierdlem81 43618 | The integral of a piecewis... |
fourierdlem82 43619 | Integral by substitution, ... |
fourierdlem83 43620 | The fourier partial sum fo... |
fourierdlem84 43621 | If ` F ` is piecewise coni... |
fourierdlem85 43622 | Limit of the function ` G ... |
fourierdlem86 43623 | Continuity of ` O ` and it... |
fourierdlem87 43624 | The integral of ` G ` goes... |
fourierdlem88 43625 | Given a piecewise continuo... |
fourierdlem89 43626 | Given a piecewise continuo... |
fourierdlem90 43627 | Given a piecewise continuo... |
fourierdlem91 43628 | Given a piecewise continuo... |
fourierdlem92 43629 | The integral of a piecewis... |
fourierdlem93 43630 | Integral by substitution (... |
fourierdlem94 43631 | For a piecewise smooth fun... |
fourierdlem95 43632 | Algebraic manipulation of ... |
fourierdlem96 43633 | limit for ` F ` at the low... |
fourierdlem97 43634 | ` F ` is continuous on the... |
fourierdlem98 43635 | ` F ` is continuous on the... |
fourierdlem99 43636 | limit for ` F ` at the upp... |
fourierdlem100 43637 | A piecewise continuous fun... |
fourierdlem101 43638 | Integral by substitution f... |
fourierdlem102 43639 | For a piecewise smooth fun... |
fourierdlem103 43640 | The half lower part of the... |
fourierdlem104 43641 | The half upper part of the... |
fourierdlem105 43642 | A piecewise continuous fun... |
fourierdlem106 43643 | For a piecewise smooth fun... |
fourierdlem107 43644 | The integral of a piecewis... |
fourierdlem108 43645 | The integral of a piecewis... |
fourierdlem109 43646 | The integral of a piecewis... |
fourierdlem110 43647 | The integral of a piecewis... |
fourierdlem111 43648 | The fourier partial sum fo... |
fourierdlem112 43649 | Here abbreviations (local ... |
fourierdlem113 43650 | Fourier series convergence... |
fourierdlem114 43651 | Fourier series convergence... |
fourierdlem115 43652 | Fourier serier convergence... |
fourierd 43653 | Fourier series convergence... |
fourierclimd 43654 | Fourier series convergence... |
fourierclim 43655 | Fourier series convergence... |
fourier 43656 | Fourier series convergence... |
fouriercnp 43657 | If ` F ` is continuous at ... |
fourier2 43658 | Fourier series convergence... |
sqwvfoura 43659 | Fourier coefficients for t... |
sqwvfourb 43660 | Fourier series ` B ` coeff... |
fourierswlem 43661 | The Fourier series for the... |
fouriersw 43662 | Fourier series convergence... |
fouriercn 43663 | If the derivative of ` F `... |
elaa2lem 43664 | Elementhood in the set of ... |
elaa2 43665 | Elementhood in the set of ... |
etransclem1 43666 | ` H ` is a function. (Con... |
etransclem2 43667 | Derivative of ` G ` . (Co... |
etransclem3 43668 | The given ` if ` term is a... |
etransclem4 43669 | ` F ` expressed as a finit... |
etransclem5 43670 | A change of bound variable... |
etransclem6 43671 | A change of bound variable... |
etransclem7 43672 | The given product is an in... |
etransclem8 43673 | ` F ` is a function. (Con... |
etransclem9 43674 | If ` K ` divides ` N ` but... |
etransclem10 43675 | The given ` if ` term is a... |
etransclem11 43676 | A change of bound variable... |
etransclem12 43677 | ` C ` applied to ` N ` . ... |
etransclem13 43678 | ` F ` applied to ` Y ` . ... |
etransclem14 43679 | Value of the term ` T ` , ... |
etransclem15 43680 | Value of the term ` T ` , ... |
etransclem16 43681 | Every element in the range... |
etransclem17 43682 | The ` N ` -th derivative o... |
etransclem18 43683 | The given function is inte... |
etransclem19 43684 | The ` N ` -th derivative o... |
etransclem20 43685 | ` H ` is smooth. (Contrib... |
etransclem21 43686 | The ` N ` -th derivative o... |
etransclem22 43687 | The ` N ` -th derivative o... |
etransclem23 43688 | This is the claim proof in... |
etransclem24 43689 | ` P ` divides the I -th de... |
etransclem25 43690 | ` P ` factorial divides th... |
etransclem26 43691 | Every term in the sum of t... |
etransclem27 43692 | The ` N ` -th derivative o... |
etransclem28 43693 | ` ( P - 1 ) ` factorial di... |
etransclem29 43694 | The ` N ` -th derivative o... |
etransclem30 43695 | The ` N ` -th derivative o... |
etransclem31 43696 | The ` N ` -th derivative o... |
etransclem32 43697 | This is the proof for the ... |
etransclem33 43698 | ` F ` is smooth. (Contrib... |
etransclem34 43699 | The ` N ` -th derivative o... |
etransclem35 43700 | ` P ` does not divide the ... |
etransclem36 43701 | The ` N ` -th derivative o... |
etransclem37 43702 | ` ( P - 1 ) ` factorial di... |
etransclem38 43703 | ` P ` divides the I -th de... |
etransclem39 43704 | ` G ` is a function. (Con... |
etransclem40 43705 | The ` N ` -th derivative o... |
etransclem41 43706 | ` P ` does not divide the ... |
etransclem42 43707 | The ` N ` -th derivative o... |
etransclem43 43708 | ` G ` is a continuous func... |
etransclem44 43709 | The given finite sum is no... |
etransclem45 43710 | ` K ` is an integer. (Con... |
etransclem46 43711 | This is the proof for equa... |
etransclem47 43712 | ` _e ` is transcendental. ... |
etransclem48 43713 | ` _e ` is transcendental. ... |
etransc 43714 | ` _e ` is transcendental. ... |
rrxtopn 43715 | The topology of the genera... |
rrxngp 43716 | Generalized Euclidean real... |
rrxtps 43717 | Generalized Euclidean real... |
rrxtopnfi 43718 | The topology of the n-dime... |
rrxtopon 43719 | The topology on generalize... |
rrxtop 43720 | The topology on generalize... |
rrndistlt 43721 | Given two points in the sp... |
rrxtoponfi 43722 | The topology on n-dimensio... |
rrxunitopnfi 43723 | The base set of the standa... |
rrxtopn0 43724 | The topology of the zero-d... |
qndenserrnbllem 43725 | n-dimensional rational num... |
qndenserrnbl 43726 | n-dimensional rational num... |
rrxtopn0b 43727 | The topology of the zero-d... |
qndenserrnopnlem 43728 | n-dimensional rational num... |
qndenserrnopn 43729 | n-dimensional rational num... |
qndenserrn 43730 | n-dimensional rational num... |
rrxsnicc 43731 | A multidimensional singlet... |
rrnprjdstle 43732 | The distance between two p... |
rrndsmet 43733 | ` D ` is a metric for the ... |
rrndsxmet 43734 | ` D ` is an extended metri... |
ioorrnopnlem 43735 | The a point in an indexed ... |
ioorrnopn 43736 | The indexed product of ope... |
ioorrnopnxrlem 43737 | Given a point ` F ` that b... |
ioorrnopnxr 43738 | The indexed product of ope... |
issal 43745 | Express the predicate " ` ... |
pwsal 43746 | The power set of a given s... |
salunicl 43747 | SAlg sigma-algebra is clos... |
saluncl 43748 | The union of two sets in a... |
prsal 43749 | The pair of the empty set ... |
saldifcl 43750 | The complement of an eleme... |
0sal 43751 | The empty set belongs to e... |
salgenval 43752 | The sigma-algebra generate... |
saliuncl 43753 | SAlg sigma-algebra is clos... |
salincl 43754 | The intersection of two se... |
saluni 43755 | A set is an element of any... |
saliincl 43756 | SAlg sigma-algebra is clos... |
saldifcl2 43757 | The difference of two elem... |
intsaluni 43758 | The union of an arbitrary ... |
intsal 43759 | The arbitrary intersection... |
salgenn0 43760 | The set used in the defini... |
salgencl 43761 | ` SalGen ` actually genera... |
issald 43762 | Sufficient condition to pr... |
salexct 43763 | An example of nontrivial s... |
sssalgen 43764 | A set is a subset of the s... |
salgenss 43765 | The sigma-algebra generate... |
salgenuni 43766 | The base set of the sigma-... |
issalgend 43767 | One side of ~ dfsalgen2 . ... |
salexct2 43768 | An example of a subset tha... |
unisalgen 43769 | The union of a set belongs... |
dfsalgen2 43770 | Alternate characterization... |
salexct3 43771 | An example of a sigma-alge... |
salgencntex 43772 | This counterexample shows ... |
salgensscntex 43773 | This counterexample shows ... |
issalnnd 43774 | Sufficient condition to pr... |
dmvolsal 43775 | Lebesgue measurable sets f... |
saldifcld 43776 | The complement of an eleme... |
saluncld 43777 | The union of two sets in a... |
salgencld 43778 | ` SalGen ` actually genera... |
0sald 43779 | The empty set belongs to e... |
iooborel 43780 | An open interval is a Bore... |
salincld 43781 | The intersection of two se... |
salunid 43782 | A set is an element of any... |
unisalgen2 43783 | The union of a set belongs... |
bor1sal 43784 | The Borel sigma-algebra on... |
iocborel 43785 | A left-open, right-closed ... |
subsaliuncllem 43786 | A subspace sigma-algebra i... |
subsaliuncl 43787 | A subspace sigma-algebra i... |
subsalsal 43788 | A subspace sigma-algebra i... |
subsaluni 43789 | A set belongs to the subsp... |
sge0rnre 43792 | When ` sum^ ` is applied t... |
fge0icoicc 43793 | If ` F ` maps to nonnegati... |
sge0val 43794 | The value of the sum of no... |
fge0npnf 43795 | If ` F ` maps to nonnegati... |
sge0rnn0 43796 | The range used in the defi... |
sge0vald 43797 | The value of the sum of no... |
fge0iccico 43798 | A range of nonnegative ext... |
gsumge0cl 43799 | Closure of group sum, for ... |
sge0reval 43800 | Value of the sum of nonneg... |
sge0pnfval 43801 | If a term in the sum of no... |
fge0iccre 43802 | A range of nonnegative ext... |
sge0z 43803 | Any nonnegative extended s... |
sge00 43804 | The sum of nonnegative ext... |
fsumlesge0 43805 | Every finite subsum of non... |
sge0revalmpt 43806 | Value of the sum of nonneg... |
sge0sn 43807 | A sum of a nonnegative ext... |
sge0tsms 43808 | ` sum^ ` applied to a nonn... |
sge0cl 43809 | The arbitrary sum of nonne... |
sge0f1o 43810 | Re-index a nonnegative ext... |
sge0snmpt 43811 | A sum of a nonnegative ext... |
sge0ge0 43812 | The sum of nonnegative ext... |
sge0xrcl 43813 | The arbitrary sum of nonne... |
sge0repnf 43814 | The of nonnegative extende... |
sge0fsum 43815 | The arbitrary sum of a fin... |
sge0rern 43816 | If the sum of nonnegative ... |
sge0supre 43817 | If the arbitrary sum of no... |
sge0fsummpt 43818 | The arbitrary sum of a fin... |
sge0sup 43819 | The arbitrary sum of nonne... |
sge0less 43820 | A shorter sum of nonnegati... |
sge0rnbnd 43821 | The range used in the defi... |
sge0pr 43822 | Sum of a pair of nonnegati... |
sge0gerp 43823 | The arbitrary sum of nonne... |
sge0pnffigt 43824 | If the sum of nonnegative ... |
sge0ssre 43825 | If a sum of nonnegative ex... |
sge0lefi 43826 | A sum of nonnegative exten... |
sge0lessmpt 43827 | A shorter sum of nonnegati... |
sge0ltfirp 43828 | If the sum of nonnegative ... |
sge0prle 43829 | The sum of a pair of nonne... |
sge0gerpmpt 43830 | The arbitrary sum of nonne... |
sge0resrnlem 43831 | The sum of nonnegative ext... |
sge0resrn 43832 | The sum of nonnegative ext... |
sge0ssrempt 43833 | If a sum of nonnegative ex... |
sge0resplit 43834 | ` sum^ ` splits into two p... |
sge0le 43835 | If all of the terms of sum... |
sge0ltfirpmpt 43836 | If the extended sum of non... |
sge0split 43837 | Split a sum of nonnegative... |
sge0lempt 43838 | If all of the terms of sum... |
sge0splitmpt 43839 | Split a sum of nonnegative... |
sge0ss 43840 | Change the index set to a ... |
sge0iunmptlemfi 43841 | Sum of nonnegative extende... |
sge0p1 43842 | The addition of the next t... |
sge0iunmptlemre 43843 | Sum of nonnegative extende... |
sge0fodjrnlem 43844 | Re-index a nonnegative ext... |
sge0fodjrn 43845 | Re-index a nonnegative ext... |
sge0iunmpt 43846 | Sum of nonnegative extende... |
sge0iun 43847 | Sum of nonnegative extende... |
sge0nemnf 43848 | The generalized sum of non... |
sge0rpcpnf 43849 | The sum of an infinite num... |
sge0rernmpt 43850 | If the sum of nonnegative ... |
sge0lefimpt 43851 | A sum of nonnegative exten... |
nn0ssge0 43852 | Nonnegative integers are n... |
sge0clmpt 43853 | The generalized sum of non... |
sge0ltfirpmpt2 43854 | If the extended sum of non... |
sge0isum 43855 | If a series of nonnegative... |
sge0xrclmpt 43856 | The generalized sum of non... |
sge0xp 43857 | Combine two generalized su... |
sge0isummpt 43858 | If a series of nonnegative... |
sge0ad2en 43859 | The value of the infinite ... |
sge0isummpt2 43860 | If a series of nonnegative... |
sge0xaddlem1 43861 | The extended addition of t... |
sge0xaddlem2 43862 | The extended addition of t... |
sge0xadd 43863 | The extended addition of t... |
sge0fsummptf 43864 | The generalized sum of a f... |
sge0snmptf 43865 | A sum of a nonnegative ext... |
sge0ge0mpt 43866 | The sum of nonnegative ext... |
sge0repnfmpt 43867 | The of nonnegative extende... |
sge0pnffigtmpt 43868 | If the generalized sum of ... |
sge0splitsn 43869 | Separate out a term in a g... |
sge0pnffsumgt 43870 | If the sum of nonnegative ... |
sge0gtfsumgt 43871 | If the generalized sum of ... |
sge0uzfsumgt 43872 | If a real number is smalle... |
sge0pnfmpt 43873 | If a term in the sum of no... |
sge0seq 43874 | A series of nonnegative re... |
sge0reuz 43875 | Value of the generalized s... |
sge0reuzb 43876 | Value of the generalized s... |
ismea 43879 | Express the predicate " ` ... |
dmmeasal 43880 | The domain of a measure is... |
meaf 43881 | A measure is a function th... |
mea0 43882 | The measure of the empty s... |
nnfoctbdjlem 43883 | There exists a mapping fro... |
nnfoctbdj 43884 | There exists a mapping fro... |
meadjuni 43885 | The measure of the disjoin... |
meacl 43886 | The measure of a set is a ... |
iundjiunlem 43887 | The sets in the sequence `... |
iundjiun 43888 | Given a sequence ` E ` of ... |
meaxrcl 43889 | The measure of a set is an... |
meadjun 43890 | The measure of the union o... |
meassle 43891 | The measure of a set is gr... |
meaunle 43892 | The measure of the union o... |
meadjiunlem 43893 | The sum of nonnegative ext... |
meadjiun 43894 | The measure of the disjoin... |
ismeannd 43895 | Sufficient condition to pr... |
meaiunlelem 43896 | The measure of the union o... |
meaiunle 43897 | The measure of the union o... |
psmeasurelem 43898 | ` M ` applied to a disjoin... |
psmeasure 43899 | Point supported measure, R... |
voliunsge0lem 43900 | The Lebesgue measure funct... |
voliunsge0 43901 | The Lebesgue measure funct... |
volmea 43902 | The Lebeasgue measure on t... |
meage0 43903 | If the measure of a measur... |
meadjunre 43904 | The measure of the union o... |
meassre 43905 | If the measure of a measur... |
meale0eq0 43906 | A measure that is less tha... |
meadif 43907 | The measure of the differe... |
meaiuninclem 43908 | Measures are continuous fr... |
meaiuninc 43909 | Measures are continuous fr... |
meaiuninc2 43910 | Measures are continuous fr... |
meaiunincf 43911 | Measures are continuous fr... |
meaiuninc3v 43912 | Measures are continuous fr... |
meaiuninc3 43913 | Measures are continuous fr... |
meaiininclem 43914 | Measures are continuous fr... |
meaiininc 43915 | Measures are continuous fr... |
meaiininc2 43916 | Measures are continuous fr... |
caragenval 43921 | The sigma-algebra generate... |
isome 43922 | Express the predicate " ` ... |
caragenel 43923 | Membership in the Caratheo... |
omef 43924 | An outer measure is a func... |
ome0 43925 | The outer measure of the e... |
omessle 43926 | The outer measure of a set... |
omedm 43927 | The domain of an outer mea... |
caragensplit 43928 | If ` E ` is in the set gen... |
caragenelss 43929 | An element of the Caratheo... |
carageneld 43930 | Membership in the Caratheo... |
omecl 43931 | The outer measure of a set... |
caragenss 43932 | The sigma-algebra generate... |
omeunile 43933 | The outer measure of the u... |
caragen0 43934 | The empty set belongs to a... |
omexrcl 43935 | The outer measure of a set... |
caragenunidm 43936 | The base set of an outer m... |
caragensspw 43937 | The sigma-algebra generate... |
omessre 43938 | If the outer measure of a ... |
caragenuni 43939 | The base set of the sigma-... |
caragenuncllem 43940 | The Caratheodory's constru... |
caragenuncl 43941 | The Caratheodory's constru... |
caragendifcl 43942 | The Caratheodory's constru... |
caragenfiiuncl 43943 | The Caratheodory's constru... |
omeunle 43944 | The outer measure of the u... |
omeiunle 43945 | The outer measure of the i... |
omelesplit 43946 | The outer measure of a set... |
omeiunltfirp 43947 | If the outer measure of a ... |
omeiunlempt 43948 | The outer measure of the i... |
carageniuncllem1 43949 | The outer measure of ` A i... |
carageniuncllem2 43950 | The Caratheodory's constru... |
carageniuncl 43951 | The Caratheodory's constru... |
caragenunicl 43952 | The Caratheodory's constru... |
caragensal 43953 | Caratheodory's method gene... |
caratheodorylem1 43954 | Lemma used to prove that C... |
caratheodorylem2 43955 | Caratheodory's constructio... |
caratheodory 43956 | Caratheodory's constructio... |
0ome 43957 | The map that assigns 0 to ... |
isomenndlem 43958 | ` O ` is sub-additive w.r.... |
isomennd 43959 | Sufficient condition to pr... |
caragenel2d 43960 | Membership in the Caratheo... |
omege0 43961 | If the outer measure of a ... |
omess0 43962 | If the outer measure of a ... |
caragencmpl 43963 | A measure built with the C... |
vonval 43968 | Value of the Lebesgue meas... |
ovnval 43969 | Value of the Lebesgue oute... |
elhoi 43970 | Membership in a multidimen... |
icoresmbl 43971 | A closed-below, open-above... |
hoissre 43972 | The projection of a half-o... |
ovnval2 43973 | Value of the Lebesgue oute... |
volicorecl 43974 | The Lebesgue measure of a ... |
hoiprodcl 43975 | The pre-measure of half-op... |
hoicvr 43976 | ` I ` is a countable set o... |
hoissrrn 43977 | A half-open interval is a ... |
ovn0val 43978 | The Lebesgue outer measure... |
ovnn0val 43979 | The value of a (multidimen... |
ovnval2b 43980 | Value of the Lebesgue oute... |
volicorescl 43981 | The Lebesgue measure of a ... |
ovnprodcl 43982 | The product used in the de... |
hoiprodcl2 43983 | The pre-measure of half-op... |
hoicvrrex 43984 | Any subset of the multidim... |
ovnsupge0 43985 | The set used in the defini... |
ovnlecvr 43986 | Given a subset of multidim... |
ovnpnfelsup 43987 | ` +oo ` is an element of t... |
ovnsslelem 43988 | The (multidimensional, non... |
ovnssle 43989 | The (multidimensional) Leb... |
ovnlerp 43990 | The Lebesgue outer measure... |
ovnf 43991 | The Lebesgue outer measure... |
ovncvrrp 43992 | The Lebesgue outer measure... |
ovn0lem 43993 | For any finite dimension, ... |
ovn0 43994 | For any finite dimension, ... |
ovncl 43995 | The Lebesgue outer measure... |
ovn02 43996 | For the zero-dimensional s... |
ovnxrcl 43997 | The Lebesgue outer measure... |
ovnsubaddlem1 43998 | The Lebesgue outer measure... |
ovnsubaddlem2 43999 | ` ( voln* `` X ) ` is suba... |
ovnsubadd 44000 | ` ( voln* `` X ) ` is suba... |
ovnome 44001 | ` ( voln* `` X ) ` is an o... |
vonmea 44002 | ` ( voln `` X ) ` is a mea... |
volicon0 44003 | The measure of a nonempty ... |
hsphoif 44004 | ` H ` is a function (that ... |
hoidmvval 44005 | The dimensional volume of ... |
hoissrrn2 44006 | A half-open interval is a ... |
hsphoival 44007 | ` H ` is a function (that ... |
hoiprodcl3 44008 | The pre-measure of half-op... |
volicore 44009 | The Lebesgue measure of a ... |
hoidmvcl 44010 | The dimensional volume of ... |
hoidmv0val 44011 | The dimensional volume of ... |
hoidmvn0val 44012 | The dimensional volume of ... |
hsphoidmvle2 44013 | The dimensional volume of ... |
hsphoidmvle 44014 | The dimensional volume of ... |
hoidmvval0 44015 | The dimensional volume of ... |
hoiprodp1 44016 | The dimensional volume of ... |
sge0hsphoire 44017 | If the generalized sum of ... |
hoidmvval0b 44018 | The dimensional volume of ... |
hoidmv1lelem1 44019 | The supremum of ` U ` belo... |
hoidmv1lelem2 44020 | This is the contradiction ... |
hoidmv1lelem3 44021 | The dimensional volume of ... |
hoidmv1le 44022 | The dimensional volume of ... |
hoidmvlelem1 44023 | The supremum of ` U ` belo... |
hoidmvlelem2 44024 | This is the contradiction ... |
hoidmvlelem3 44025 | This is the contradiction ... |
hoidmvlelem4 44026 | The dimensional volume of ... |
hoidmvlelem5 44027 | The dimensional volume of ... |
hoidmvle 44028 | The dimensional volume of ... |
ovnhoilem1 44029 | The Lebesgue outer measure... |
ovnhoilem2 44030 | The Lebesgue outer measure... |
ovnhoi 44031 | The Lebesgue outer measure... |
dmovn 44032 | The domain of the Lebesgue... |
hoicoto2 44033 | The half-open interval exp... |
dmvon 44034 | Lebesgue measurable n-dime... |
hoi2toco 44035 | The half-open interval exp... |
hoidifhspval 44036 | ` D ` is a function that r... |
hspval 44037 | The value of the half-spac... |
ovnlecvr2 44038 | Given a subset of multidim... |
ovncvr2 44039 | ` B ` and ` T ` are the le... |
dmovnsal 44040 | The domain of the Lebesgue... |
unidmovn 44041 | Base set of the n-dimensio... |
rrnmbl 44042 | The set of n-dimensional R... |
hoidifhspval2 44043 | ` D ` is a function that r... |
hspdifhsp 44044 | A n-dimensional half-open ... |
unidmvon 44045 | Base set of the n-dimensio... |
hoidifhspf 44046 | ` D ` is a function that r... |
hoidifhspval3 44047 | ` D ` is a function that r... |
hoidifhspdmvle 44048 | The dimensional volume of ... |
voncmpl 44049 | The Lebesgue measure is co... |
hoiqssbllem1 44050 | The center of the n-dimens... |
hoiqssbllem2 44051 | The center of the n-dimens... |
hoiqssbllem3 44052 | A n-dimensional ball conta... |
hoiqssbl 44053 | A n-dimensional ball conta... |
hspmbllem1 44054 | Any half-space of the n-di... |
hspmbllem2 44055 | Any half-space of the n-di... |
hspmbllem3 44056 | Any half-space of the n-di... |
hspmbl 44057 | Any half-space of the n-di... |
hoimbllem 44058 | Any n-dimensional half-ope... |
hoimbl 44059 | Any n-dimensional half-ope... |
opnvonmbllem1 44060 | The half-open interval exp... |
opnvonmbllem2 44061 | An open subset of the n-di... |
opnvonmbl 44062 | An open subset of the n-di... |
opnssborel 44063 | Open sets of a generalized... |
borelmbl 44064 | All Borel subsets of the n... |
volicorege0 44065 | The Lebesgue measure of a ... |
isvonmbl 44066 | The predicate " ` A ` is m... |
mblvon 44067 | The n-dimensional Lebesgue... |
vonmblss 44068 | n-dimensional Lebesgue mea... |
volico2 44069 | The measure of left-closed... |
vonmblss2 44070 | n-dimensional Lebesgue mea... |
ovolval2lem 44071 | The value of the Lebesgue ... |
ovolval2 44072 | The value of the Lebesgue ... |
ovnsubadd2lem 44073 | ` ( voln* `` X ) ` is suba... |
ovnsubadd2 44074 | ` ( voln* `` X ) ` is suba... |
ovolval3 44075 | The value of the Lebesgue ... |
ovnsplit 44076 | The n-dimensional Lebesgue... |
ovolval4lem1 44077 | |- ( ( ph /\ n e. A ) -> ... |
ovolval4lem2 44078 | The value of the Lebesgue ... |
ovolval4 44079 | The value of the Lebesgue ... |
ovolval5lem1 44080 | ` |- ( ph -> ( sum^ `` ( n... |
ovolval5lem2 44081 | ` |- ( ( ph /\ n e. NN ) -... |
ovolval5lem3 44082 | The value of the Lebesgue ... |
ovolval5 44083 | The value of the Lebesgue ... |
ovnovollem1 44084 | if ` F ` is a cover of ` B... |
ovnovollem2 44085 | if ` I ` is a cover of ` (... |
ovnovollem3 44086 | The 1-dimensional Lebesgue... |
ovnovol 44087 | The 1-dimensional Lebesgue... |
vonvolmbllem 44088 | If a subset ` B ` of real ... |
vonvolmbl 44089 | A subset of Real numbers i... |
vonvol 44090 | The 1-dimensional Lebesgue... |
vonvolmbl2 44091 | A subset ` X ` of the spac... |
vonvol2 44092 | The 1-dimensional Lebesgue... |
hoimbl2 44093 | Any n-dimensional half-ope... |
voncl 44094 | The Lebesgue measure of a ... |
vonhoi 44095 | The Lebesgue outer measure... |
vonxrcl 44096 | The Lebesgue measure of a ... |
ioosshoi 44097 | A n-dimensional open inter... |
vonn0hoi 44098 | The Lebesgue outer measure... |
von0val 44099 | The Lebesgue measure (for ... |
vonhoire 44100 | The Lebesgue measure of a ... |
iinhoiicclem 44101 | A n-dimensional closed int... |
iinhoiicc 44102 | A n-dimensional closed int... |
iunhoiioolem 44103 | A n-dimensional open inter... |
iunhoiioo 44104 | A n-dimensional open inter... |
ioovonmbl 44105 | Any n-dimensional open int... |
iccvonmbllem 44106 | Any n-dimensional closed i... |
iccvonmbl 44107 | Any n-dimensional closed i... |
vonioolem1 44108 | The sequence of the measur... |
vonioolem2 44109 | The n-dimensional Lebesgue... |
vonioo 44110 | The n-dimensional Lebesgue... |
vonicclem1 44111 | The sequence of the measur... |
vonicclem2 44112 | The n-dimensional Lebesgue... |
vonicc 44113 | The n-dimensional Lebesgue... |
snvonmbl 44114 | A n-dimensional singleton ... |
vonn0ioo 44115 | The n-dimensional Lebesgue... |
vonn0icc 44116 | The n-dimensional Lebesgue... |
ctvonmbl 44117 | Any n-dimensional countabl... |
vonn0ioo2 44118 | The n-dimensional Lebesgue... |
vonsn 44119 | The n-dimensional Lebesgue... |
vonn0icc2 44120 | The n-dimensional Lebesgue... |
vonct 44121 | The n-dimensional Lebesgue... |
vitali2 44122 | There are non-measurable s... |
pimltmnf2 44125 | Given a real-valued functi... |
preimagelt 44126 | The preimage of a right-op... |
preimalegt 44127 | The preimage of a left-ope... |
pimconstlt0 44128 | Given a constant function,... |
pimconstlt1 44129 | Given a constant function,... |
pimltpnf 44130 | Given a real-valued functi... |
pimgtpnf2 44131 | Given a real-valued functi... |
salpreimagelt 44132 | If all the preimages of le... |
pimrecltpos 44133 | The preimage of an unbound... |
salpreimalegt 44134 | If all the preimages of ri... |
pimiooltgt 44135 | The preimage of an open in... |
preimaicomnf 44136 | Preimage of an open interv... |
pimltpnf2 44137 | Given a real-valued functi... |
pimgtmnf2 44138 | Given a real-valued functi... |
pimdecfgtioc 44139 | Given a nonincreasing func... |
pimincfltioc 44140 | Given a nondecreasing func... |
pimdecfgtioo 44141 | Given a nondecreasing func... |
pimincfltioo 44142 | Given a nondecreasing func... |
preimaioomnf 44143 | Preimage of an open interv... |
preimageiingt 44144 | A preimage of a left-close... |
preimaleiinlt 44145 | A preimage of a left-open,... |
pimgtmnf 44146 | Given a real-valued functi... |
pimrecltneg 44147 | The preimage of an unbound... |
salpreimagtge 44148 | If all the preimages of le... |
salpreimaltle 44149 | If all the preimages of ri... |
issmflem 44150 | The predicate " ` F ` is a... |
issmf 44151 | The predicate " ` F ` is a... |
salpreimalelt 44152 | If all the preimages of ri... |
salpreimagtlt 44153 | If all the preimages of le... |
smfpreimalt 44154 | Given a function measurabl... |
smff 44155 | A function measurable w.r.... |
smfdmss 44156 | The domain of a function m... |
issmff 44157 | The predicate " ` F ` is a... |
issmfd 44158 | A sufficient condition for... |
smfpreimaltf 44159 | Given a function measurabl... |
issmfdf 44160 | A sufficient condition for... |
sssmf 44161 | The restriction of a sigma... |
mbfresmf 44162 | A real-valued measurable f... |
cnfsmf 44163 | A continuous function is m... |
incsmflem 44164 | A nondecreasing function i... |
incsmf 44165 | A real-valued, nondecreasi... |
smfsssmf 44166 | If a function is measurabl... |
issmflelem 44167 | The predicate " ` F ` is a... |
issmfle 44168 | The predicate " ` F ` is a... |
smfpimltmpt 44169 | Given a function measurabl... |
smfpimltxr 44170 | Given a function measurabl... |
issmfdmpt 44171 | A sufficient condition for... |
smfconst 44172 | Given a sigma-algebra over... |
sssmfmpt 44173 | The restriction of a sigma... |
cnfrrnsmf 44174 | A function, continuous fro... |
smfid 44175 | The identity function is B... |
bormflebmf 44176 | A Borel measurable functio... |
smfpreimale 44177 | Given a function measurabl... |
issmfgtlem 44178 | The predicate " ` F ` is a... |
issmfgt 44179 | The predicate " ` F ` is a... |
issmfled 44180 | A sufficient condition for... |
smfpimltxrmpt 44181 | Given a function measurabl... |
smfmbfcex 44182 | A constant function, with ... |
issmfgtd 44183 | A sufficient condition for... |
smfpreimagt 44184 | Given a function measurabl... |
smfaddlem1 44185 | Given the sum of two funct... |
smfaddlem2 44186 | The sum of two sigma-measu... |
smfadd 44187 | The sum of two sigma-measu... |
decsmflem 44188 | A nonincreasing function i... |
decsmf 44189 | A real-valued, nonincreasi... |
smfpreimagtf 44190 | Given a function measurabl... |
issmfgelem 44191 | The predicate " ` F ` is a... |
issmfge 44192 | The predicate " ` F ` is a... |
smflimlem1 44193 | Lemma for the proof that t... |
smflimlem2 44194 | Lemma for the proof that t... |
smflimlem3 44195 | The limit of sigma-measura... |
smflimlem4 44196 | Lemma for the proof that t... |
smflimlem5 44197 | Lemma for the proof that t... |
smflimlem6 44198 | Lemma for the proof that t... |
smflim 44199 | The limit of sigma-measura... |
nsssmfmbflem 44200 | The sigma-measurable funct... |
nsssmfmbf 44201 | The sigma-measurable funct... |
smfpimgtxr 44202 | Given a function measurabl... |
smfpimgtmpt 44203 | Given a function measurabl... |
smfpreimage 44204 | Given a function measurabl... |
mbfpsssmf 44205 | Real-valued measurable fun... |
smfpimgtxrmpt 44206 | Given a function measurabl... |
smfpimioompt 44207 | Given a function measurabl... |
smfpimioo 44208 | Given a function measurabl... |
smfresal 44209 | Given a sigma-measurable f... |
smfrec 44210 | The reciprocal of a sigma-... |
smfres 44211 | The restriction of sigma-m... |
smfmullem1 44212 | The multiplication of two ... |
smfmullem2 44213 | The multiplication of two ... |
smfmullem3 44214 | The multiplication of two ... |
smfmullem4 44215 | The multiplication of two ... |
smfmul 44216 | The multiplication of two ... |
smfmulc1 44217 | A sigma-measurable functio... |
smfdiv 44218 | The fraction of two sigma-... |
smfpimbor1lem1 44219 | Every open set belongs to ... |
smfpimbor1lem2 44220 | Given a sigma-measurable f... |
smfpimbor1 44221 | Given a sigma-measurable f... |
smf2id 44222 | Twice the identity functio... |
smfco 44223 | The composition of a Borel... |
smfneg 44224 | The negative of a sigma-me... |
smffmpt 44225 | A function measurable w.r.... |
smflim2 44226 | The limit of a sequence of... |
smfpimcclem 44227 | Lemma for ~ smfpimcc given... |
smfpimcc 44228 | Given a countable set of s... |
issmfle2d 44229 | A sufficient condition for... |
smflimmpt 44230 | The limit of a sequence of... |
smfsuplem1 44231 | The supremum of a countabl... |
smfsuplem2 44232 | The supremum of a countabl... |
smfsuplem3 44233 | The supremum of a countabl... |
smfsup 44234 | The supremum of a countabl... |
smfsupmpt 44235 | The supremum of a countabl... |
smfsupxr 44236 | The supremum of a countabl... |
smfinflem 44237 | The infimum of a countable... |
smfinf 44238 | The infimum of a countable... |
smfinfmpt 44239 | The infimum of a countable... |
smflimsuplem1 44240 | If ` H ` converges, the ` ... |
smflimsuplem2 44241 | The superior limit of a se... |
smflimsuplem3 44242 | The limit of the ` ( H `` ... |
smflimsuplem4 44243 | If ` H ` converges, the ` ... |
smflimsuplem5 44244 | ` H ` converges to the sup... |
smflimsuplem6 44245 | The superior limit of a se... |
smflimsuplem7 44246 | The superior limit of a se... |
smflimsuplem8 44247 | The superior limit of a se... |
smflimsup 44248 | The superior limit of a se... |
smflimsupmpt 44249 | The superior limit of a se... |
smfliminflem 44250 | The inferior limit of a co... |
smfliminf 44251 | The inferior limit of a co... |
smfliminfmpt 44252 | The inferior limit of a co... |
sigarval 44253 | Define the signed area by ... |
sigarim 44254 | Signed area takes value in... |
sigarac 44255 | Signed area is anticommuta... |
sigaraf 44256 | Signed area is additive by... |
sigarmf 44257 | Signed area is additive (w... |
sigaras 44258 | Signed area is additive by... |
sigarms 44259 | Signed area is additive (w... |
sigarls 44260 | Signed area is linear by t... |
sigarid 44261 | Signed area of a flat para... |
sigarexp 44262 | Expand the signed area for... |
sigarperm 44263 | Signed area ` ( A - C ) G ... |
sigardiv 44264 | If signed area between vec... |
sigarimcd 44265 | Signed area takes value in... |
sigariz 44266 | If signed area is zero, th... |
sigarcol 44267 | Given three points ` A ` ,... |
sharhght 44268 | Let ` A B C ` be a triangl... |
sigaradd 44269 | Subtracting (double) area ... |
cevathlem1 44270 | Ceva's theorem first lemma... |
cevathlem2 44271 | Ceva's theorem second lemm... |
cevath 44272 | Ceva's theorem. Let ` A B... |
simpcntrab 44273 | The center of a simple gro... |
hirstL-ax3 44274 | The third axiom of a syste... |
ax3h 44275 | Recover ~ ax-3 from ~ hirs... |
aibandbiaiffaiffb 44276 | A closed form showing (a i... |
aibandbiaiaiffb 44277 | A closed form showing (a i... |
notatnand 44278 | Do not use. Use intnanr i... |
aistia 44279 | Given a is equivalent to `... |
aisfina 44280 | Given a is equivalent to `... |
bothtbothsame 44281 | Given both a, b are equiva... |
bothfbothsame 44282 | Given both a, b are equiva... |
aiffbbtat 44283 | Given a is equivalent to b... |
aisbbisfaisf 44284 | Given a is equivalent to b... |
axorbtnotaiffb 44285 | Given a is exclusive to b,... |
aiffnbandciffatnotciffb 44286 | Given a is equivalent to (... |
axorbciffatcxorb 44287 | Given a is equivalent to (... |
aibnbna 44288 | Given a implies b, (not b)... |
aibnbaif 44289 | Given a implies b, not b, ... |
aiffbtbat 44290 | Given a is equivalent to b... |
astbstanbst 44291 | Given a is equivalent to T... |
aistbistaandb 44292 | Given a is equivalent to T... |
aisbnaxb 44293 | Given a is equivalent to b... |
atbiffatnnb 44294 | If a implies b, then a imp... |
bisaiaisb 44295 | Application of bicom1 with... |
atbiffatnnbalt 44296 | If a implies b, then a imp... |
abnotbtaxb 44297 | Assuming a, not b, there e... |
abnotataxb 44298 | Assuming not a, b, there e... |
conimpf 44299 | Assuming a, not b, and a i... |
conimpfalt 44300 | Assuming a, not b, and a i... |
aistbisfiaxb 44301 | Given a is equivalent to T... |
aisfbistiaxb 44302 | Given a is equivalent to F... |
aifftbifffaibif 44303 | Given a is equivalent to T... |
aifftbifffaibifff 44304 | Given a is equivalent to T... |
atnaiana 44305 | Given a, it is not the cas... |
ainaiaandna 44306 | Given a, a implies it is n... |
abcdta 44307 | Given (((a and b) and c) a... |
abcdtb 44308 | Given (((a and b) and c) a... |
abcdtc 44309 | Given (((a and b) and c) a... |
abcdtd 44310 | Given (((a and b) and c) a... |
abciffcbatnabciffncba 44311 | Operands in a biconditiona... |
abciffcbatnabciffncbai 44312 | Operands in a biconditiona... |
nabctnabc 44313 | not ( a -> ( b /\ c ) ) we... |
jabtaib 44314 | For when pm3.4 lacks a pm3... |
onenotinotbothi 44315 | From one negated implicati... |
twonotinotbothi 44316 | From these two negated imp... |
clifte 44317 | show d is the same as an i... |
cliftet 44318 | show d is the same as an i... |
clifteta 44319 | show d is the same as an i... |
cliftetb 44320 | show d is the same as an i... |
confun 44321 | Given the hypotheses there... |
confun2 44322 | Confun simplified to two p... |
confun3 44323 | Confun's more complex form... |
confun4 44324 | An attempt at derivative. ... |
confun5 44325 | An attempt at derivative. ... |
plcofph 44326 | Given, a,b and a "definiti... |
pldofph 44327 | Given, a,b c, d, "definiti... |
plvcofph 44328 | Given, a,b,d, and "definit... |
plvcofphax 44329 | Given, a,b,d, and "definit... |
plvofpos 44330 | rh is derivable because ON... |
mdandyv0 44331 | Given the equivalences set... |
mdandyv1 44332 | Given the equivalences set... |
mdandyv2 44333 | Given the equivalences set... |
mdandyv3 44334 | Given the equivalences set... |
mdandyv4 44335 | Given the equivalences set... |
mdandyv5 44336 | Given the equivalences set... |
mdandyv6 44337 | Given the equivalences set... |
mdandyv7 44338 | Given the equivalences set... |
mdandyv8 44339 | Given the equivalences set... |
mdandyv9 44340 | Given the equivalences set... |
mdandyv10 44341 | Given the equivalences set... |
mdandyv11 44342 | Given the equivalences set... |
mdandyv12 44343 | Given the equivalences set... |
mdandyv13 44344 | Given the equivalences set... |
mdandyv14 44345 | Given the equivalences set... |
mdandyv15 44346 | Given the equivalences set... |
mdandyvr0 44347 | Given the equivalences set... |
mdandyvr1 44348 | Given the equivalences set... |
mdandyvr2 44349 | Given the equivalences set... |
mdandyvr3 44350 | Given the equivalences set... |
mdandyvr4 44351 | Given the equivalences set... |
mdandyvr5 44352 | Given the equivalences set... |
mdandyvr6 44353 | Given the equivalences set... |
mdandyvr7 44354 | Given the equivalences set... |
mdandyvr8 44355 | Given the equivalences set... |
mdandyvr9 44356 | Given the equivalences set... |
mdandyvr10 44357 | Given the equivalences set... |
mdandyvr11 44358 | Given the equivalences set... |
mdandyvr12 44359 | Given the equivalences set... |
mdandyvr13 44360 | Given the equivalences set... |
mdandyvr14 44361 | Given the equivalences set... |
mdandyvr15 44362 | Given the equivalences set... |
mdandyvrx0 44363 | Given the exclusivities se... |
mdandyvrx1 44364 | Given the exclusivities se... |
mdandyvrx2 44365 | Given the exclusivities se... |
mdandyvrx3 44366 | Given the exclusivities se... |
mdandyvrx4 44367 | Given the exclusivities se... |
mdandyvrx5 44368 | Given the exclusivities se... |
mdandyvrx6 44369 | Given the exclusivities se... |
mdandyvrx7 44370 | Given the exclusivities se... |
mdandyvrx8 44371 | Given the exclusivities se... |
mdandyvrx9 44372 | Given the exclusivities se... |
mdandyvrx10 44373 | Given the exclusivities se... |
mdandyvrx11 44374 | Given the exclusivities se... |
mdandyvrx12 44375 | Given the exclusivities se... |
mdandyvrx13 44376 | Given the exclusivities se... |
mdandyvrx14 44377 | Given the exclusivities se... |
mdandyvrx15 44378 | Given the exclusivities se... |
H15NH16TH15IH16 44379 | Given 15 hypotheses and a ... |
dandysum2p2e4 44380 | CONTRADICTION PROVED AT 1 ... |
mdandysum2p2e4 44381 | CONTRADICTION PROVED AT 1 ... |
adh-jarrsc 44382 | Replacement of a nested an... |
adh-minim 44383 | A single axiom for minimal... |
adh-minim-ax1-ax2-lem1 44384 | First lemma for the deriva... |
adh-minim-ax1-ax2-lem2 44385 | Second lemma for the deriv... |
adh-minim-ax1-ax2-lem3 44386 | Third lemma for the deriva... |
adh-minim-ax1-ax2-lem4 44387 | Fourth lemma for the deriv... |
adh-minim-ax1 44388 | Derivation of ~ ax-1 from ... |
adh-minim-ax2-lem5 44389 | Fifth lemma for the deriva... |
adh-minim-ax2-lem6 44390 | Sixth lemma for the deriva... |
adh-minim-ax2c 44391 | Derivation of a commuted f... |
adh-minim-ax2 44392 | Derivation of ~ ax-2 from ... |
adh-minim-idALT 44393 | Derivation of ~ id (reflex... |
adh-minim-pm2.43 44394 | Derivation of ~ pm2.43 Whi... |
adh-minimp 44395 | Another single axiom for m... |
adh-minimp-jarr-imim1-ax2c-lem1 44396 | First lemma for the deriva... |
adh-minimp-jarr-lem2 44397 | Second lemma for the deriv... |
adh-minimp-jarr-ax2c-lem3 44398 | Third lemma for the deriva... |
adh-minimp-sylsimp 44399 | Derivation of ~ jarr (also... |
adh-minimp-ax1 44400 | Derivation of ~ ax-1 from ... |
adh-minimp-imim1 44401 | Derivation of ~ imim1 ("le... |
adh-minimp-ax2c 44402 | Derivation of a commuted f... |
adh-minimp-ax2-lem4 44403 | Fourth lemma for the deriv... |
adh-minimp-ax2 44404 | Derivation of ~ ax-2 from ... |
adh-minimp-idALT 44405 | Derivation of ~ id (reflex... |
adh-minimp-pm2.43 44406 | Derivation of ~ pm2.43 Whi... |
eusnsn 44407 | There is a unique element ... |
absnsb 44408 | If the class abstraction `... |
euabsneu 44409 | Another way to express exi... |
elprneb 44410 | An element of a proper uno... |
oppr 44411 | Equality for ordered pairs... |
opprb 44412 | Equality for unordered pai... |
or2expropbilem1 44413 | Lemma 1 for ~ or2expropbi ... |
or2expropbilem2 44414 | Lemma 2 for ~ or2expropbi ... |
or2expropbi 44415 | If two classes are strictl... |
eubrv 44416 | If there is a unique set w... |
eubrdm 44417 | If there is a unique set w... |
eldmressn 44418 | Element of the domain of a... |
iota0def 44419 | Example for a defined iota... |
iota0ndef 44420 | Example for an undefined i... |
fveqvfvv 44421 | If a function's value at a... |
fnresfnco 44422 | Composition of two functio... |
funcoressn 44423 | A composition restricted t... |
funressnfv 44424 | A restriction to a singlet... |
funressndmfvrn 44425 | The value of a function ` ... |
funressnvmo 44426 | A function restricted to a... |
funressnmo 44427 | A function restricted to a... |
funressneu 44428 | There is exactly one value... |
fresfo 44429 | Conditions for a restricti... |
fsetsniunop 44430 | The class of all functions... |
fsetabsnop 44431 | The class of all functions... |
fsetsnf 44432 | The mapping of an element ... |
fsetsnf1 44433 | The mapping of an element ... |
fsetsnfo 44434 | The mapping of an element ... |
fsetsnf1o 44435 | The mapping of an element ... |
fsetsnprcnex 44436 | The class of all functions... |
cfsetssfset 44437 | The class of constant func... |
cfsetsnfsetfv 44438 | The function value of the ... |
cfsetsnfsetf 44439 | The mapping of the class o... |
cfsetsnfsetf1 44440 | The mapping of the class o... |
cfsetsnfsetfo 44441 | The mapping of the class o... |
cfsetsnfsetf1o 44442 | The mapping of the class o... |
fsetprcnexALT 44443 | First version of proof for... |
fcoreslem1 44444 | Lemma 1 for ~ fcores . (C... |
fcoreslem2 44445 | Lemma 2 for ~ fcores . (C... |
fcoreslem3 44446 | Lemma 3 for ~ fcores . (C... |
fcoreslem4 44447 | Lemma 4 for ~ fcores . (C... |
fcores 44448 | Every composite function `... |
fcoresf1lem 44449 | Lemma for ~ fcoresf1 . (C... |
fcoresf1 44450 | If a composition is inject... |
fcoresf1b 44451 | A composition is injective... |
fcoresfo 44452 | If a composition is surjec... |
fcoresfob 44453 | A composition is surjectiv... |
fcoresf1ob 44454 | A composition is bijective... |
f1cof1blem 44455 | Lemma for ~ f1cof1b and ~ ... |
f1cof1b 44456 | If the range of ` F ` equa... |
funfocofob 44457 | If the domain of a functio... |
fnfocofob 44458 | If the domain of a functio... |
focofob 44459 | If the domain of a functio... |
f1ocof1ob 44460 | If the range of ` F ` equa... |
f1ocof1ob2 44461 | If the range of ` F ` equa... |
aiotajust 44463 | Soundness justification th... |
dfaiota2 44465 | Alternate definition of th... |
reuabaiotaiota 44466 | The iota and the alternate... |
reuaiotaiota 44467 | The iota and the alternate... |
aiotaexb 44468 | The alternate iota over a ... |
aiotavb 44469 | The alternate iota over a ... |
aiotaint 44470 | This is to ~ df-aiota what... |
dfaiota3 44471 | Alternate definition of ` ... |
iotan0aiotaex 44472 | If the iota over a wff ` p... |
aiotaexaiotaiota 44473 | The alternate iota over a ... |
aiotaval 44474 | Theorem 8.19 in [Quine] p.... |
aiota0def 44475 | Example for a defined alte... |
aiota0ndef 44476 | Example for an undefined a... |
r19.32 44477 | Theorem 19.32 of [Margaris... |
rexsb 44478 | An equivalent expression f... |
rexrsb 44479 | An equivalent expression f... |
2rexsb 44480 | An equivalent expression f... |
2rexrsb 44481 | An equivalent expression f... |
cbvral2 44482 | Change bound variables of ... |
cbvrex2 44483 | Change bound variables of ... |
ralndv1 44484 | Example for a theorem abou... |
ralndv2 44485 | Second example for a theor... |
reuf1odnf 44486 | There is exactly one eleme... |
reuf1od 44487 | There is exactly one eleme... |
euoreqb 44488 | There is a set which is eq... |
2reu3 44489 | Double restricted existent... |
2reu7 44490 | Two equivalent expressions... |
2reu8 44491 | Two equivalent expressions... |
2reu8i 44492 | Implication of a double re... |
2reuimp0 44493 | Implication of a double re... |
2reuimp 44494 | Implication of a double re... |
ralbinrald 44501 | Elemination of a restricte... |
nvelim 44502 | If a class is the universa... |
alneu 44503 | If a statement holds for a... |
eu2ndop1stv 44504 | If there is a unique secon... |
dfateq12d 44505 | Equality deduction for "de... |
nfdfat 44506 | Bound-variable hypothesis ... |
dfdfat2 44507 | Alternate definition of th... |
fundmdfat 44508 | A function is defined at a... |
dfatprc 44509 | A function is not defined ... |
dfatelrn 44510 | The value of a function ` ... |
dfafv2 44511 | Alternative definition of ... |
afveq12d 44512 | Equality deduction for fun... |
afveq1 44513 | Equality theorem for funct... |
afveq2 44514 | Equality theorem for funct... |
nfafv 44515 | Bound-variable hypothesis ... |
csbafv12g 44516 | Move class substitution in... |
afvfundmfveq 44517 | If a class is a function r... |
afvnfundmuv 44518 | If a set is not in the dom... |
ndmafv 44519 | The value of a class outsi... |
afvvdm 44520 | If the function value of a... |
nfunsnafv 44521 | If the restriction of a cl... |
afvvfunressn 44522 | If the function value of a... |
afvprc 44523 | A function's value at a pr... |
afvvv 44524 | If a function's value at a... |
afvpcfv0 44525 | If the value of the altern... |
afvnufveq 44526 | The value of the alternati... |
afvvfveq 44527 | The value of the alternati... |
afv0fv0 44528 | If the value of the altern... |
afvfvn0fveq 44529 | If the function's value at... |
afv0nbfvbi 44530 | The function's value at an... |
afvfv0bi 44531 | The function's value at an... |
afveu 44532 | The value of a function at... |
fnbrafvb 44533 | Equivalence of function va... |
fnopafvb 44534 | Equivalence of function va... |
funbrafvb 44535 | Equivalence of function va... |
funopafvb 44536 | Equivalence of function va... |
funbrafv 44537 | The second argument of a b... |
funbrafv2b 44538 | Function value in terms of... |
dfafn5a 44539 | Representation of a functi... |
dfafn5b 44540 | Representation of a functi... |
fnrnafv 44541 | The range of a function ex... |
afvelrnb 44542 | A member of a function's r... |
afvelrnb0 44543 | A member of a function's r... |
dfaimafn 44544 | Alternate definition of th... |
dfaimafn2 44545 | Alternate definition of th... |
afvelima 44546 | Function value in an image... |
afvelrn 44547 | A function's value belongs... |
fnafvelrn 44548 | A function's value belongs... |
fafvelrn 44549 | A function's value belongs... |
ffnafv 44550 | A function maps to a class... |
afvres 44551 | The value of a restricted ... |
tz6.12-afv 44552 | Function value. Theorem 6... |
tz6.12-1-afv 44553 | Function value (Theorem 6.... |
dmfcoafv 44554 | Domains of a function comp... |
afvco2 44555 | Value of a function compos... |
rlimdmafv 44556 | Two ways to express that a... |
aoveq123d 44557 | Equality deduction for ope... |
nfaov 44558 | Bound-variable hypothesis ... |
csbaovg 44559 | Move class substitution in... |
aovfundmoveq 44560 | If a class is a function r... |
aovnfundmuv 44561 | If an ordered pair is not ... |
ndmaov 44562 | The value of an operation ... |
ndmaovg 44563 | The value of an operation ... |
aovvdm 44564 | If the operation value of ... |
nfunsnaov 44565 | If the restriction of a cl... |
aovvfunressn 44566 | If the operation value of ... |
aovprc 44567 | The value of an operation ... |
aovrcl 44568 | Reverse closure for an ope... |
aovpcov0 44569 | If the alternative value o... |
aovnuoveq 44570 | The alternative value of t... |
aovvoveq 44571 | The alternative value of t... |
aov0ov0 44572 | If the alternative value o... |
aovovn0oveq 44573 | If the operation's value a... |
aov0nbovbi 44574 | The operation's value on a... |
aovov0bi 44575 | The operation's value on a... |
rspceaov 44576 | A frequently used special ... |
fnotaovb 44577 | Equivalence of operation v... |
ffnaov 44578 | An operation maps to a cla... |
faovcl 44579 | Closure law for an operati... |
aovmpt4g 44580 | Value of a function given ... |
aoprssdm 44581 | Domain of closure of an op... |
ndmaovcl 44582 | The "closure" of an operat... |
ndmaovrcl 44583 | Reverse closure law, in co... |
ndmaovcom 44584 | Any operation is commutati... |
ndmaovass 44585 | Any operation is associati... |
ndmaovdistr 44586 | Any operation is distribut... |
dfatafv2iota 44589 | If a function is defined a... |
ndfatafv2 44590 | The alternate function val... |
ndfatafv2undef 44591 | The alternate function val... |
dfatafv2ex 44592 | The alternate function val... |
afv2ex 44593 | The alternate function val... |
afv2eq12d 44594 | Equality deduction for fun... |
afv2eq1 44595 | Equality theorem for funct... |
afv2eq2 44596 | Equality theorem for funct... |
nfafv2 44597 | Bound-variable hypothesis ... |
csbafv212g 44598 | Move class substitution in... |
fexafv2ex 44599 | The alternate function val... |
ndfatafv2nrn 44600 | The alternate function val... |
ndmafv2nrn 44601 | The value of a class outsi... |
funressndmafv2rn 44602 | The alternate function val... |
afv2ndefb 44603 | Two ways to say that an al... |
nfunsnafv2 44604 | If the restriction of a cl... |
afv2prc 44605 | A function's value at a pr... |
dfatafv2rnb 44606 | The alternate function val... |
afv2orxorb 44607 | If a set is in the range o... |
dmafv2rnb 44608 | The alternate function val... |
fundmafv2rnb 44609 | The alternate function val... |
afv2elrn 44610 | An alternate function valu... |
afv20defat 44611 | If the alternate function ... |
fnafv2elrn 44612 | An alternate function valu... |
fafv2elrn 44613 | An alternate function valu... |
fafv2elrnb 44614 | An alternate function valu... |
frnvafv2v 44615 | If the codomain of a funct... |
tz6.12-2-afv2 44616 | Function value when ` F ` ... |
afv2eu 44617 | The value of a function at... |
afv2res 44618 | The value of a restricted ... |
tz6.12-afv2 44619 | Function value (Theorem 6.... |
tz6.12-1-afv2 44620 | Function value (Theorem 6.... |
tz6.12c-afv2 44621 | Corollary of Theorem 6.12(... |
tz6.12i-afv2 44622 | Corollary of Theorem 6.12(... |
funressnbrafv2 44623 | The second argument of a b... |
dfatbrafv2b 44624 | Equivalence of function va... |
dfatopafv2b 44625 | Equivalence of function va... |
funbrafv2 44626 | The second argument of a b... |
fnbrafv2b 44627 | Equivalence of function va... |
fnopafv2b 44628 | Equivalence of function va... |
funbrafv22b 44629 | Equivalence of function va... |
funopafv2b 44630 | Equivalence of function va... |
dfatsnafv2 44631 | Singleton of function valu... |
dfafv23 44632 | A definition of function v... |
dfatdmfcoafv2 44633 | Domain of a function compo... |
dfatcolem 44634 | Lemma for ~ dfatco . (Con... |
dfatco 44635 | The predicate "defined at"... |
afv2co2 44636 | Value of a function compos... |
rlimdmafv2 44637 | Two ways to express that a... |
dfafv22 44638 | Alternate definition of ` ... |
afv2ndeffv0 44639 | If the alternate function ... |
dfatafv2eqfv 44640 | If a function is defined a... |
afv2rnfveq 44641 | If the alternate function ... |
afv20fv0 44642 | If the alternate function ... |
afv2fvn0fveq 44643 | If the function's value at... |
afv2fv0 44644 | If the function's value at... |
afv2fv0b 44645 | The function's value at an... |
afv2fv0xorb 44646 | If a set is in the range o... |
an4com24 44647 | Rearrangement of 4 conjunc... |
3an4ancom24 44648 | Commutative law for a conj... |
4an21 44649 | Rearrangement of 4 conjunc... |
dfnelbr2 44652 | Alternate definition of th... |
nelbr 44653 | The binary relation of a s... |
nelbrim 44654 | If a set is related to ano... |
nelbrnel 44655 | A set is related to anothe... |
nelbrnelim 44656 | If a set is related to ano... |
ralralimp 44657 | Selecting one of two alter... |
otiunsndisjX 44658 | The union of singletons co... |
fvifeq 44659 | Equality of function value... |
rnfdmpr 44660 | The range of a one-to-one ... |
imarnf1pr 44661 | The image of the range of ... |
funop1 44662 | A function is an ordered p... |
fun2dmnopgexmpl 44663 | A function with a domain c... |
opabresex0d 44664 | A collection of ordered pa... |
opabbrfex0d 44665 | A collection of ordered pa... |
opabresexd 44666 | A collection of ordered pa... |
opabbrfexd 44667 | A collection of ordered pa... |
f1oresf1orab 44668 | Build a bijection by restr... |
f1oresf1o 44669 | Build a bijection by restr... |
f1oresf1o2 44670 | Build a bijection by restr... |
fvmptrab 44671 | Value of a function mappin... |
fvmptrabdm 44672 | Value of a function mappin... |
leltletr 44673 | Transitive law, weaker for... |
cnambpcma 44674 | ((a-b)+c)-a = c-a holds fo... |
cnapbmcpd 44675 | ((a+b)-c)+d = ((a+d)+b)-c ... |
addsubeq0 44676 | The sum of two complex num... |
leaddsuble 44677 | Addition and subtraction o... |
2leaddle2 44678 | If two real numbers are le... |
ltnltne 44679 | Variant of trichotomy law ... |
p1lep2 44680 | A real number increasd by ... |
ltsubsubaddltsub 44681 | If the result of subtracti... |
zm1nn 44682 | An integer minus 1 is posi... |
readdcnnred 44683 | The sum of a real number a... |
resubcnnred 44684 | The difference of a real n... |
recnmulnred 44685 | The product of a real numb... |
cndivrenred 44686 | The quotient of an imagina... |
sqrtnegnre 44687 | The square root of a negat... |
nn0resubcl 44688 | Closure law for subtractio... |
zgeltp1eq 44689 | If an integer is between a... |
1t10e1p1e11 44690 | 11 is 1 times 10 to the po... |
deccarry 44691 | Add 1 to a 2 digit number ... |
eluzge0nn0 44692 | If an integer is greater t... |
nltle2tri 44693 | Negated extended trichotom... |
ssfz12 44694 | Subset relationship for fi... |
elfz2z 44695 | Membership of an integer i... |
2elfz3nn0 44696 | If there are two elements ... |
fz0addcom 44697 | The addition of two member... |
2elfz2melfz 44698 | If the sum of two integers... |
fz0addge0 44699 | The sum of two integers in... |
elfzlble 44700 | Membership of an integer i... |
elfzelfzlble 44701 | Membership of an element o... |
fzopred 44702 | Join a predecessor to the ... |
fzopredsuc 44703 | Join a predecessor and a s... |
1fzopredsuc 44704 | Join 0 and a successor to ... |
el1fzopredsuc 44705 | An element of an open inte... |
subsubelfzo0 44706 | Subtracting a difference f... |
fzoopth 44707 | A half-open integer range ... |
2ffzoeq 44708 | Two functions over a half-... |
m1mod0mod1 44709 | An integer decreased by 1 ... |
elmod2 44710 | An integer modulo 2 is eit... |
smonoord 44711 | Ordering relation for a st... |
fsummsndifre 44712 | A finite sum with one of i... |
fsumsplitsndif 44713 | Separate out a term in a f... |
fsummmodsndifre 44714 | A finite sum of summands m... |
fsummmodsnunz 44715 | A finite sum of summands m... |
setsidel 44716 | The injected slot is an el... |
setsnidel 44717 | The injected slot is an el... |
setsv 44718 | The value of the structure... |
preimafvsnel 44719 | The preimage of a function... |
preimafvn0 44720 | The preimage of a function... |
uniimafveqt 44721 | The union of the image of ... |
uniimaprimaeqfv 44722 | The union of the image of ... |
setpreimafvex 44723 | The class ` P ` of all pre... |
elsetpreimafvb 44724 | The characterization of an... |
elsetpreimafv 44725 | An element of the class ` ... |
elsetpreimafvssdm 44726 | An element of the class ` ... |
fvelsetpreimafv 44727 | There is an element in a p... |
preimafvelsetpreimafv 44728 | The preimage of a function... |
preimafvsspwdm 44729 | The class ` P ` of all pre... |
0nelsetpreimafv 44730 | The empty set is not an el... |
elsetpreimafvbi 44731 | An element of the preimage... |
elsetpreimafveqfv 44732 | The elements of the preima... |
eqfvelsetpreimafv 44733 | If an element of the domai... |
elsetpreimafvrab 44734 | An element of the preimage... |
imaelsetpreimafv 44735 | The image of an element of... |
uniimaelsetpreimafv 44736 | The union of the image of ... |
elsetpreimafveq 44737 | If two preimages of functi... |
fundcmpsurinjlem1 44738 | Lemma 1 for ~ fundcmpsurin... |
fundcmpsurinjlem2 44739 | Lemma 2 for ~ fundcmpsurin... |
fundcmpsurinjlem3 44740 | Lemma 3 for ~ fundcmpsurin... |
imasetpreimafvbijlemf 44741 | Lemma for ~ imasetpreimafv... |
imasetpreimafvbijlemfv 44742 | Lemma for ~ imasetpreimafv... |
imasetpreimafvbijlemfv1 44743 | Lemma for ~ imasetpreimafv... |
imasetpreimafvbijlemf1 44744 | Lemma for ~ imasetpreimafv... |
imasetpreimafvbijlemfo 44745 | Lemma for ~ imasetpreimafv... |
imasetpreimafvbij 44746 | The mapping ` H ` is a bij... |
fundcmpsurbijinjpreimafv 44747 | Every function ` F : A -->... |
fundcmpsurinjpreimafv 44748 | Every function ` F : A -->... |
fundcmpsurinj 44749 | Every function ` F : A -->... |
fundcmpsurbijinj 44750 | Every function ` F : A -->... |
fundcmpsurinjimaid 44751 | Every function ` F : A -->... |
fundcmpsurinjALT 44752 | Alternate proof of ~ fundc... |
iccpval 44755 | Partition consisting of a ... |
iccpart 44756 | A special partition. Corr... |
iccpartimp 44757 | Implications for a class b... |
iccpartres 44758 | The restriction of a parti... |
iccpartxr 44759 | If there is a partition, t... |
iccpartgtprec 44760 | If there is a partition, t... |
iccpartipre 44761 | If there is a partition, t... |
iccpartiltu 44762 | If there is a partition, t... |
iccpartigtl 44763 | If there is a partition, t... |
iccpartlt 44764 | If there is a partition, t... |
iccpartltu 44765 | If there is a partition, t... |
iccpartgtl 44766 | If there is a partition, t... |
iccpartgt 44767 | If there is a partition, t... |
iccpartleu 44768 | If there is a partition, t... |
iccpartgel 44769 | If there is a partition, t... |
iccpartrn 44770 | If there is a partition, t... |
iccpartf 44771 | The range of the partition... |
iccpartel 44772 | If there is a partition, t... |
iccelpart 44773 | An element of any partitio... |
iccpartiun 44774 | A half-open interval of ex... |
icceuelpartlem 44775 | Lemma for ~ icceuelpart . ... |
icceuelpart 44776 | An element of a partitione... |
iccpartdisj 44777 | The segments of a partitio... |
iccpartnel 44778 | A point of a partition is ... |
fargshiftfv 44779 | If a class is a function, ... |
fargshiftf 44780 | If a class is a function, ... |
fargshiftf1 44781 | If a function is 1-1, then... |
fargshiftfo 44782 | If a function is onto, the... |
fargshiftfva 44783 | The values of a shifted fu... |
lswn0 44784 | The last symbol of a not e... |
nfich1 44787 | The first interchangeable ... |
nfich2 44788 | The second interchangeable... |
ichv 44789 | Setvar variables are inter... |
ichf 44790 | Setvar variables are inter... |
ichid 44791 | A setvar variable is alway... |
icht 44792 | A theorem is interchangeab... |
ichbidv 44793 | Formula building rule for ... |
ichcircshi 44794 | The setvar variables are i... |
ichan 44795 | If two setvar variables ar... |
ichn 44796 | Negation does not affect i... |
ichim 44797 | Formula building rule for ... |
dfich2 44798 | Alternate definition of th... |
ichcom 44799 | The interchangeability of ... |
ichbi12i 44800 | Equivalence for interchang... |
icheqid 44801 | In an equality for the sam... |
icheq 44802 | In an equality of setvar v... |
ichnfimlem 44803 | Lemma for ~ ichnfim : A s... |
ichnfim 44804 | If in an interchangeabilit... |
ichnfb 44805 | If ` x ` and ` y ` are int... |
ichal 44806 | Move a universal quantifie... |
ich2al 44807 | Two setvar variables are a... |
ich2ex 44808 | Two setvar variables are a... |
ichexmpl1 44809 | Example for interchangeabl... |
ichexmpl2 44810 | Example for interchangeabl... |
ich2exprop 44811 | If the setvar variables ar... |
ichnreuop 44812 | If the setvar variables ar... |
ichreuopeq 44813 | If the setvar variables ar... |
sprid 44814 | Two identical representati... |
elsprel 44815 | An unordered pair is an el... |
spr0nelg 44816 | The empty set is not an el... |
sprval 44819 | The set of all unordered p... |
sprvalpw 44820 | The set of all unordered p... |
sprssspr 44821 | The set of all unordered p... |
spr0el 44822 | The empty set is not an un... |
sprvalpwn0 44823 | The set of all unordered p... |
sprel 44824 | An element of the set of a... |
prssspr 44825 | An element of a subset of ... |
prelspr 44826 | An unordered pair of eleme... |
prsprel 44827 | The elements of a pair fro... |
prsssprel 44828 | The elements of a pair fro... |
sprvalpwle2 44829 | The set of all unordered p... |
sprsymrelfvlem 44830 | Lemma for ~ sprsymrelf and... |
sprsymrelf1lem 44831 | Lemma for ~ sprsymrelf1 . ... |
sprsymrelfolem1 44832 | Lemma 1 for ~ sprsymrelfo ... |
sprsymrelfolem2 44833 | Lemma 2 for ~ sprsymrelfo ... |
sprsymrelfv 44834 | The value of the function ... |
sprsymrelf 44835 | The mapping ` F ` is a fun... |
sprsymrelf1 44836 | The mapping ` F ` is a one... |
sprsymrelfo 44837 | The mapping ` F ` is a fun... |
sprsymrelf1o 44838 | The mapping ` F ` is a bij... |
sprbisymrel 44839 | There is a bijection betwe... |
sprsymrelen 44840 | The class ` P ` of subsets... |
prpair 44841 | Characterization of a prop... |
prproropf1olem0 44842 | Lemma 0 for ~ prproropf1o ... |
prproropf1olem1 44843 | Lemma 1 for ~ prproropf1o ... |
prproropf1olem2 44844 | Lemma 2 for ~ prproropf1o ... |
prproropf1olem3 44845 | Lemma 3 for ~ prproropf1o ... |
prproropf1olem4 44846 | Lemma 4 for ~ prproropf1o ... |
prproropf1o 44847 | There is a bijection betwe... |
prproropen 44848 | The set of proper pairs an... |
prproropreud 44849 | There is exactly one order... |
pairreueq 44850 | Two equivalent representat... |
paireqne 44851 | Two sets are not equal iff... |
prprval 44854 | The set of all proper unor... |
prprvalpw 44855 | The set of all proper unor... |
prprelb 44856 | An element of the set of a... |
prprelprb 44857 | A set is an element of the... |
prprspr2 44858 | The set of all proper unor... |
prprsprreu 44859 | There is a unique proper u... |
prprreueq 44860 | There is a unique proper u... |
sbcpr 44861 | The proper substitution of... |
reupr 44862 | There is a unique unordere... |
reuprpr 44863 | There is a unique proper u... |
poprelb 44864 | Equality for unordered pai... |
2exopprim 44865 | The existence of an ordere... |
reuopreuprim 44866 | There is a unique unordere... |
fmtno 44869 | The ` N ` th Fermat number... |
fmtnoge3 44870 | Each Fermat number is grea... |
fmtnonn 44871 | Each Fermat number is a po... |
fmtnom1nn 44872 | A Fermat number minus one ... |
fmtnoodd 44873 | Each Fermat number is odd.... |
fmtnorn 44874 | A Fermat number is a funct... |
fmtnof1 44875 | The enumeration of the Fer... |
fmtnoinf 44876 | The set of Fermat numbers ... |
fmtnorec1 44877 | The first recurrence relat... |
sqrtpwpw2p 44878 | The floor of the square ro... |
fmtnosqrt 44879 | The floor of the square ro... |
fmtno0 44880 | The ` 0 ` th Fermat number... |
fmtno1 44881 | The ` 1 ` st Fermat number... |
fmtnorec2lem 44882 | Lemma for ~ fmtnorec2 (ind... |
fmtnorec2 44883 | The second recurrence rela... |
fmtnodvds 44884 | Any Fermat number divides ... |
goldbachthlem1 44885 | Lemma 1 for ~ goldbachth .... |
goldbachthlem2 44886 | Lemma 2 for ~ goldbachth .... |
goldbachth 44887 | Goldbach's theorem: Two d... |
fmtnorec3 44888 | The third recurrence relat... |
fmtnorec4 44889 | The fourth recurrence rela... |
fmtno2 44890 | The ` 2 ` nd Fermat number... |
fmtno3 44891 | The ` 3 ` rd Fermat number... |
fmtno4 44892 | The ` 4 ` th Fermat number... |
fmtno5lem1 44893 | Lemma 1 for ~ fmtno5 . (C... |
fmtno5lem2 44894 | Lemma 2 for ~ fmtno5 . (C... |
fmtno5lem3 44895 | Lemma 3 for ~ fmtno5 . (C... |
fmtno5lem4 44896 | Lemma 4 for ~ fmtno5 . (C... |
fmtno5 44897 | The ` 5 ` th Fermat number... |
fmtno0prm 44898 | The ` 0 ` th Fermat number... |
fmtno1prm 44899 | The ` 1 ` st Fermat number... |
fmtno2prm 44900 | The ` 2 ` nd Fermat number... |
257prm 44901 | 257 is a prime number (the... |
fmtno3prm 44902 | The ` 3 ` rd Fermat number... |
odz2prm2pw 44903 | Any power of two is coprim... |
fmtnoprmfac1lem 44904 | Lemma for ~ fmtnoprmfac1 :... |
fmtnoprmfac1 44905 | Divisor of Fermat number (... |
fmtnoprmfac2lem1 44906 | Lemma for ~ fmtnoprmfac2 .... |
fmtnoprmfac2 44907 | Divisor of Fermat number (... |
fmtnofac2lem 44908 | Lemma for ~ fmtnofac2 (Ind... |
fmtnofac2 44909 | Divisor of Fermat number (... |
fmtnofac1 44910 | Divisor of Fermat number (... |
fmtno4sqrt 44911 | The floor of the square ro... |
fmtno4prmfac 44912 | If P was a (prime) factor ... |
fmtno4prmfac193 44913 | If P was a (prime) factor ... |
fmtno4nprmfac193 44914 | 193 is not a (prime) facto... |
fmtno4prm 44915 | The ` 4 `-th Fermat number... |
65537prm 44916 | 65537 is a prime number (t... |
fmtnofz04prm 44917 | The first five Fermat numb... |
fmtnole4prm 44918 | The first five Fermat numb... |
fmtno5faclem1 44919 | Lemma 1 for ~ fmtno5fac . ... |
fmtno5faclem2 44920 | Lemma 2 for ~ fmtno5fac . ... |
fmtno5faclem3 44921 | Lemma 3 for ~ fmtno5fac . ... |
fmtno5fac 44922 | The factorisation of the `... |
fmtno5nprm 44923 | The ` 5 ` th Fermat number... |
prmdvdsfmtnof1lem1 44924 | Lemma 1 for ~ prmdvdsfmtno... |
prmdvdsfmtnof1lem2 44925 | Lemma 2 for ~ prmdvdsfmtno... |
prmdvdsfmtnof 44926 | The mapping of a Fermat nu... |
prmdvdsfmtnof1 44927 | The mapping of a Fermat nu... |
prminf2 44928 | The set of prime numbers i... |
2pwp1prm 44929 | For ` ( ( 2 ^ k ) + 1 ) ` ... |
2pwp1prmfmtno 44930 | Every prime number of the ... |
m2prm 44931 | The second Mersenne number... |
m3prm 44932 | The third Mersenne number ... |
flsqrt 44933 | A condition equivalent to ... |
flsqrt5 44934 | The floor of the square ro... |
3ndvds4 44935 | 3 does not divide 4. (Con... |
139prmALT 44936 | 139 is a prime number. In... |
31prm 44937 | 31 is a prime number. In ... |
m5prm 44938 | The fifth Mersenne number ... |
127prm 44939 | 127 is a prime number. (C... |
m7prm 44940 | The seventh Mersenne numbe... |
m11nprm 44941 | The eleventh Mersenne numb... |
mod42tp1mod8 44942 | If a number is ` 3 ` modul... |
sfprmdvdsmersenne 44943 | If ` Q ` is a safe prime (... |
sgprmdvdsmersenne 44944 | If ` P ` is a Sophie Germa... |
lighneallem1 44945 | Lemma 1 for ~ lighneal . ... |
lighneallem2 44946 | Lemma 2 for ~ lighneal . ... |
lighneallem3 44947 | Lemma 3 for ~ lighneal . ... |
lighneallem4a 44948 | Lemma 1 for ~ lighneallem4... |
lighneallem4b 44949 | Lemma 2 for ~ lighneallem4... |
lighneallem4 44950 | Lemma 3 for ~ lighneal . ... |
lighneal 44951 | If a power of a prime ` P ... |
modexp2m1d 44952 | The square of an integer w... |
proththdlem 44953 | Lemma for ~ proththd . (C... |
proththd 44954 | Proth's theorem (1878). I... |
5tcu2e40 44955 | 5 times the cube of 2 is 4... |
3exp4mod41 44956 | 3 to the fourth power is -... |
41prothprmlem1 44957 | Lemma 1 for ~ 41prothprm .... |
41prothprmlem2 44958 | Lemma 2 for ~ 41prothprm .... |
41prothprm 44959 | 41 is a _Proth prime_. (C... |
quad1 44960 | A condition for a quadrati... |
requad01 44961 | A condition for a quadrati... |
requad1 44962 | A condition for a quadrati... |
requad2 44963 | A condition for a quadrati... |
iseven 44968 | The predicate "is an even ... |
isodd 44969 | The predicate "is an odd n... |
evenz 44970 | An even number is an integ... |
oddz 44971 | An odd number is an intege... |
evendiv2z 44972 | The result of dividing an ... |
oddp1div2z 44973 | The result of dividing an ... |
oddm1div2z 44974 | The result of dividing an ... |
isodd2 44975 | The predicate "is an odd n... |
dfodd2 44976 | Alternate definition for o... |
dfodd6 44977 | Alternate definition for o... |
dfeven4 44978 | Alternate definition for e... |
evenm1odd 44979 | The predecessor of an even... |
evenp1odd 44980 | The successor of an even n... |
oddp1eveni 44981 | The successor of an odd nu... |
oddm1eveni 44982 | The predecessor of an odd ... |
evennodd 44983 | An even number is not an o... |
oddneven 44984 | An odd number is not an ev... |
enege 44985 | The negative of an even nu... |
onego 44986 | The negative of an odd num... |
m1expevenALTV 44987 | Exponentiation of -1 by an... |
m1expoddALTV 44988 | Exponentiation of -1 by an... |
dfeven2 44989 | Alternate definition for e... |
dfodd3 44990 | Alternate definition for o... |
iseven2 44991 | The predicate "is an even ... |
isodd3 44992 | The predicate "is an odd n... |
2dvdseven 44993 | 2 divides an even number. ... |
m2even 44994 | A multiple of 2 is an even... |
2ndvdsodd 44995 | 2 does not divide an odd n... |
2dvdsoddp1 44996 | 2 divides an odd number in... |
2dvdsoddm1 44997 | 2 divides an odd number de... |
dfeven3 44998 | Alternate definition for e... |
dfodd4 44999 | Alternate definition for o... |
dfodd5 45000 | Alternate definition for o... |
zefldiv2ALTV 45001 | The floor of an even numbe... |
zofldiv2ALTV 45002 | The floor of an odd numer ... |
oddflALTV 45003 | Odd number representation ... |
iseven5 45004 | The predicate "is an even ... |
isodd7 45005 | The predicate "is an odd n... |
dfeven5 45006 | Alternate definition for e... |
dfodd7 45007 | Alternate definition for o... |
gcd2odd1 45008 | The greatest common diviso... |
zneoALTV 45009 | No even integer equals an ... |
zeoALTV 45010 | An integer is even or odd.... |
zeo2ALTV 45011 | An integer is even or odd ... |
nneoALTV 45012 | A positive integer is even... |
nneoiALTV 45013 | A positive integer is even... |
odd2np1ALTV 45014 | An integer is odd iff it i... |
oddm1evenALTV 45015 | An integer is odd iff its ... |
oddp1evenALTV 45016 | An integer is odd iff its ... |
oexpnegALTV 45017 | The exponential of the neg... |
oexpnegnz 45018 | The exponential of the neg... |
bits0ALTV 45019 | Value of the zeroth bit. ... |
bits0eALTV 45020 | The zeroth bit of an even ... |
bits0oALTV 45021 | The zeroth bit of an odd n... |
divgcdoddALTV 45022 | Either ` A / ( A gcd B ) `... |
opoeALTV 45023 | The sum of two odds is eve... |
opeoALTV 45024 | The sum of an odd and an e... |
omoeALTV 45025 | The difference of two odds... |
omeoALTV 45026 | The difference of an odd a... |
oddprmALTV 45027 | A prime not equal to ` 2 `... |
0evenALTV 45028 | 0 is an even number. (Con... |
0noddALTV 45029 | 0 is not an odd number. (... |
1oddALTV 45030 | 1 is an odd number. (Cont... |
1nevenALTV 45031 | 1 is not an even number. ... |
2evenALTV 45032 | 2 is an even number. (Con... |
2noddALTV 45033 | 2 is not an odd number. (... |
nn0o1gt2ALTV 45034 | An odd nonnegative integer... |
nnoALTV 45035 | An alternate characterizat... |
nn0oALTV 45036 | An alternate characterizat... |
nn0e 45037 | An alternate characterizat... |
nneven 45038 | An alternate characterizat... |
nn0onn0exALTV 45039 | For each odd nonnegative i... |
nn0enn0exALTV 45040 | For each even nonnegative ... |
nnennexALTV 45041 | For each even positive int... |
nnpw2evenALTV 45042 | 2 to the power of a positi... |
epoo 45043 | The sum of an even and an ... |
emoo 45044 | The difference of an even ... |
epee 45045 | The sum of two even number... |
emee 45046 | The difference of two even... |
evensumeven 45047 | If a summand is even, the ... |
3odd 45048 | 3 is an odd number. (Cont... |
4even 45049 | 4 is an even number. (Con... |
5odd 45050 | 5 is an odd number. (Cont... |
6even 45051 | 6 is an even number. (Con... |
7odd 45052 | 7 is an odd number. (Cont... |
8even 45053 | 8 is an even number. (Con... |
evenprm2 45054 | A prime number is even iff... |
oddprmne2 45055 | Every prime number not bei... |
oddprmuzge3 45056 | A prime number which is od... |
evenltle 45057 | If an even number is great... |
odd2prm2 45058 | If an odd number is the su... |
even3prm2 45059 | If an even number is the s... |
mogoldbblem 45060 | Lemma for ~ mogoldbb . (C... |
perfectALTVlem1 45061 | Lemma for ~ perfectALTV . ... |
perfectALTVlem2 45062 | Lemma for ~ perfectALTV . ... |
perfectALTV 45063 | The Euclid-Euler theorem, ... |
fppr 45066 | The set of Fermat pseudopr... |
fpprmod 45067 | The set of Fermat pseudopr... |
fpprel 45068 | A Fermat pseudoprime to th... |
fpprbasnn 45069 | The base of a Fermat pseud... |
fpprnn 45070 | A Fermat pseudoprime to th... |
fppr2odd 45071 | A Fermat pseudoprime to th... |
11t31e341 45072 | 341 is the product of 11 a... |
2exp340mod341 45073 | Eight to the eighth power ... |
341fppr2 45074 | 341 is the (smallest) _Pou... |
4fppr1 45075 | 4 is the (smallest) Fermat... |
8exp8mod9 45076 | Eight to the eighth power ... |
9fppr8 45077 | 9 is the (smallest) Fermat... |
dfwppr 45078 | Alternate definition of a ... |
fpprwppr 45079 | A Fermat pseudoprime to th... |
fpprwpprb 45080 | An integer ` X ` which is ... |
fpprel2 45081 | An alternate definition fo... |
nfermltl8rev 45082 | Fermat's little theorem wi... |
nfermltl2rev 45083 | Fermat's little theorem wi... |
nfermltlrev 45084 | Fermat's little theorem re... |
isgbe 45091 | The predicate "is an even ... |
isgbow 45092 | The predicate "is a weak o... |
isgbo 45093 | The predicate "is an odd G... |
gbeeven 45094 | An even Goldbach number is... |
gbowodd 45095 | A weak odd Goldbach number... |
gbogbow 45096 | A (strong) odd Goldbach nu... |
gboodd 45097 | An odd Goldbach number is ... |
gbepos 45098 | Any even Goldbach number i... |
gbowpos 45099 | Any weak odd Goldbach numb... |
gbopos 45100 | Any odd Goldbach number is... |
gbegt5 45101 | Any even Goldbach number i... |
gbowgt5 45102 | Any weak odd Goldbach numb... |
gbowge7 45103 | Any weak odd Goldbach numb... |
gboge9 45104 | Any odd Goldbach number is... |
gbege6 45105 | Any even Goldbach number i... |
gbpart6 45106 | The Goldbach partition of ... |
gbpart7 45107 | The (weak) Goldbach partit... |
gbpart8 45108 | The Goldbach partition of ... |
gbpart9 45109 | The (strong) Goldbach part... |
gbpart11 45110 | The (strong) Goldbach part... |
6gbe 45111 | 6 is an even Goldbach numb... |
7gbow 45112 | 7 is a weak odd Goldbach n... |
8gbe 45113 | 8 is an even Goldbach numb... |
9gbo 45114 | 9 is an odd Goldbach numbe... |
11gbo 45115 | 11 is an odd Goldbach numb... |
stgoldbwt 45116 | If the strong ternary Gold... |
sbgoldbwt 45117 | If the strong binary Goldb... |
sbgoldbst 45118 | If the strong binary Goldb... |
sbgoldbaltlem1 45119 | Lemma 1 for ~ sbgoldbalt :... |
sbgoldbaltlem2 45120 | Lemma 2 for ~ sbgoldbalt :... |
sbgoldbalt 45121 | An alternate (related to t... |
sbgoldbb 45122 | If the strong binary Goldb... |
sgoldbeven3prm 45123 | If the binary Goldbach con... |
sbgoldbm 45124 | If the strong binary Goldb... |
mogoldbb 45125 | If the modern version of t... |
sbgoldbmb 45126 | The strong binary Goldbach... |
sbgoldbo 45127 | If the strong binary Goldb... |
nnsum3primes4 45128 | 4 is the sum of at most 3 ... |
nnsum4primes4 45129 | 4 is the sum of at most 4 ... |
nnsum3primesprm 45130 | Every prime is "the sum of... |
nnsum4primesprm 45131 | Every prime is "the sum of... |
nnsum3primesgbe 45132 | Any even Goldbach number i... |
nnsum4primesgbe 45133 | Any even Goldbach number i... |
nnsum3primesle9 45134 | Every integer greater than... |
nnsum4primesle9 45135 | Every integer greater than... |
nnsum4primesodd 45136 | If the (weak) ternary Gold... |
nnsum4primesoddALTV 45137 | If the (strong) ternary Go... |
evengpop3 45138 | If the (weak) ternary Gold... |
evengpoap3 45139 | If the (strong) ternary Go... |
nnsum4primeseven 45140 | If the (weak) ternary Gold... |
nnsum4primesevenALTV 45141 | If the (strong) ternary Go... |
wtgoldbnnsum4prm 45142 | If the (weak) ternary Gold... |
stgoldbnnsum4prm 45143 | If the (strong) ternary Go... |
bgoldbnnsum3prm 45144 | If the binary Goldbach con... |
bgoldbtbndlem1 45145 | Lemma 1 for ~ bgoldbtbnd :... |
bgoldbtbndlem2 45146 | Lemma 2 for ~ bgoldbtbnd .... |
bgoldbtbndlem3 45147 | Lemma 3 for ~ bgoldbtbnd .... |
bgoldbtbndlem4 45148 | Lemma 4 for ~ bgoldbtbnd .... |
bgoldbtbnd 45149 | If the binary Goldbach con... |
tgoldbachgtALTV 45152 | Variant of Thierry Arnoux'... |
bgoldbachlt 45153 | The binary Goldbach conjec... |
tgblthelfgott 45155 | The ternary Goldbach conje... |
tgoldbachlt 45156 | The ternary Goldbach conje... |
tgoldbach 45157 | The ternary Goldbach conje... |
isomgrrel 45162 | The isomorphy relation for... |
isomgr 45163 | The isomorphy relation for... |
isisomgr 45164 | Implications of two graphs... |
isomgreqve 45165 | A set is isomorphic to a h... |
isomushgr 45166 | The isomorphy relation for... |
isomuspgrlem1 45167 | Lemma 1 for ~ isomuspgr . ... |
isomuspgrlem2a 45168 | Lemma 1 for ~ isomuspgrlem... |
isomuspgrlem2b 45169 | Lemma 2 for ~ isomuspgrlem... |
isomuspgrlem2c 45170 | Lemma 3 for ~ isomuspgrlem... |
isomuspgrlem2d 45171 | Lemma 4 for ~ isomuspgrlem... |
isomuspgrlem2e 45172 | Lemma 5 for ~ isomuspgrlem... |
isomuspgrlem2 45173 | Lemma 2 for ~ isomuspgr . ... |
isomuspgr 45174 | The isomorphy relation for... |
isomgrref 45175 | The isomorphy relation is ... |
isomgrsym 45176 | The isomorphy relation is ... |
isomgrsymb 45177 | The isomorphy relation is ... |
isomgrtrlem 45178 | Lemma for ~ isomgrtr . (C... |
isomgrtr 45179 | The isomorphy relation is ... |
strisomgrop 45180 | A graph represented as an ... |
ushrisomgr 45181 | A simple hypergraph (with ... |
1hegrlfgr 45182 | A graph ` G ` with one hyp... |
upwlksfval 45185 | The set of simple walks (i... |
isupwlk 45186 | Properties of a pair of fu... |
isupwlkg 45187 | Generalization of ~ isupwl... |
upwlkbprop 45188 | Basic properties of a simp... |
upwlkwlk 45189 | A simple walk is a walk. ... |
upgrwlkupwlk 45190 | In a pseudograph, a walk i... |
upgrwlkupwlkb 45191 | In a pseudograph, the defi... |
upgrisupwlkALT 45192 | Alternate proof of ~ upgri... |
upgredgssspr 45193 | The set of edges of a pseu... |
uspgropssxp 45194 | The set ` G ` of "simple p... |
uspgrsprfv 45195 | The value of the function ... |
uspgrsprf 45196 | The mapping ` F ` is a fun... |
uspgrsprf1 45197 | The mapping ` F ` is a one... |
uspgrsprfo 45198 | The mapping ` F ` is a fun... |
uspgrsprf1o 45199 | The mapping ` F ` is a bij... |
uspgrex 45200 | The class ` G ` of all "si... |
uspgrbispr 45201 | There is a bijection betwe... |
uspgrspren 45202 | The set ` G ` of the "simp... |
uspgrymrelen 45203 | The set ` G ` of the "simp... |
uspgrbisymrel 45204 | There is a bijection betwe... |
uspgrbisymrelALT 45205 | Alternate proof of ~ uspgr... |
ovn0dmfun 45206 | If a class operation value... |
xpsnopab 45207 | A Cartesian product with a... |
xpiun 45208 | A Cartesian product expres... |
ovn0ssdmfun 45209 | If a class' operation valu... |
fnxpdmdm 45210 | The domain of the domain o... |
cnfldsrngbas 45211 | The base set of a subring ... |
cnfldsrngadd 45212 | The group addition operati... |
cnfldsrngmul 45213 | The ring multiplication op... |
plusfreseq 45214 | If the empty set is not co... |
mgmplusfreseq 45215 | If the empty set is not co... |
0mgm 45216 | A set with an empty base s... |
mgmpropd 45217 | If two structures have the... |
ismgmd 45218 | Deduce a magma from its pr... |
mgmhmrcl 45223 | Reverse closure of a magma... |
submgmrcl 45224 | Reverse closure for submag... |
ismgmhm 45225 | Property of a magma homomo... |
mgmhmf 45226 | A magma homomorphism is a ... |
mgmhmpropd 45227 | Magma homomorphism depends... |
mgmhmlin 45228 | A magma homomorphism prese... |
mgmhmf1o 45229 | A magma homomorphism is bi... |
idmgmhm 45230 | The identity homomorphism ... |
issubmgm 45231 | Expand definition of a sub... |
issubmgm2 45232 | Submagmas are subsets that... |
rabsubmgmd 45233 | Deduction for proving that... |
submgmss 45234 | Submagmas are subsets of t... |
submgmid 45235 | Every magma is trivially a... |
submgmcl 45236 | Submagmas are closed under... |
submgmmgm 45237 | Submagmas are themselves m... |
submgmbas 45238 | The base set of a submagma... |
subsubmgm 45239 | A submagma of a submagma i... |
resmgmhm 45240 | Restriction of a magma hom... |
resmgmhm2 45241 | One direction of ~ resmgmh... |
resmgmhm2b 45242 | Restriction of the codomai... |
mgmhmco 45243 | The composition of magma h... |
mgmhmima 45244 | The homomorphic image of a... |
mgmhmeql 45245 | The equalizer of two magma... |
submgmacs 45246 | Submagmas are an algebraic... |
ismhm0 45247 | Property of a monoid homom... |
mhmismgmhm 45248 | Each monoid homomorphism i... |
opmpoismgm 45249 | A structure with a group a... |
copissgrp 45250 | A structure with a constan... |
copisnmnd 45251 | A structure with a constan... |
0nodd 45252 | 0 is not an odd integer. ... |
1odd 45253 | 1 is an odd integer. (Con... |
2nodd 45254 | 2 is not an odd integer. ... |
oddibas 45255 | Lemma 1 for ~ oddinmgm : ... |
oddiadd 45256 | Lemma 2 for ~ oddinmgm : ... |
oddinmgm 45257 | The structure of all odd i... |
nnsgrpmgm 45258 | The structure of positive ... |
nnsgrp 45259 | The structure of positive ... |
nnsgrpnmnd 45260 | The structure of positive ... |
nn0mnd 45261 | The set of nonnegative int... |
gsumsplit2f 45262 | Split a group sum into two... |
gsumdifsndf 45263 | Extract a summand from a f... |
gsumfsupp 45264 | A group sum of a family ca... |
iscllaw 45271 | The predicate "is a closed... |
iscomlaw 45272 | The predicate "is a commut... |
clcllaw 45273 | Closure of a closed operat... |
isasslaw 45274 | The predicate "is an assoc... |
asslawass 45275 | Associativity of an associ... |
mgmplusgiopALT 45276 | Slot 2 (group operation) o... |
sgrpplusgaopALT 45277 | Slot 2 (group operation) o... |
intopval 45284 | The internal (binary) oper... |
intop 45285 | An internal (binary) opera... |
clintopval 45286 | The closed (internal binar... |
assintopval 45287 | The associative (closed in... |
assintopmap 45288 | The associative (closed in... |
isclintop 45289 | The predicate "is a closed... |
clintop 45290 | A closed (internal binary)... |
assintop 45291 | An associative (closed int... |
isassintop 45292 | The predicate "is an assoc... |
clintopcllaw 45293 | The closure law holds for ... |
assintopcllaw 45294 | The closure low holds for ... |
assintopasslaw 45295 | The associative low holds ... |
assintopass 45296 | An associative (closed int... |
ismgmALT 45305 | The predicate "is a magma"... |
iscmgmALT 45306 | The predicate "is a commut... |
issgrpALT 45307 | The predicate "is a semigr... |
iscsgrpALT 45308 | The predicate "is a commut... |
mgm2mgm 45309 | Equivalence of the two def... |
sgrp2sgrp 45310 | Equivalence of the two def... |
idfusubc0 45311 | The identity functor for a... |
idfusubc 45312 | The identity functor for a... |
inclfusubc 45313 | The "inclusion functor" fr... |
lmod0rng 45314 | If the scalar ring of a mo... |
nzrneg1ne0 45315 | The additive inverse of th... |
0ringdif 45316 | A zero ring is a ring whic... |
0ringbas 45317 | The base set of a zero rin... |
0ring1eq0 45318 | In a zero ring, a ring whi... |
nrhmzr 45319 | There is no ring homomorph... |
isrng 45322 | The predicate "is a non-un... |
rngabl 45323 | A non-unital ring is an (a... |
rngmgp 45324 | A non-unital ring is a sem... |
ringrng 45325 | A unital ring is a (non-un... |
ringssrng 45326 | The unital rings are (non-... |
isringrng 45327 | The predicate "is a unital... |
rngdir 45328 | Distributive law for the m... |
rngcl 45329 | Closure of the multiplicat... |
rnglz 45330 | The zero of a nonunital ri... |
rnghmrcl 45335 | Reverse closure of a non-u... |
rnghmfn 45336 | The mapping of two non-uni... |
rnghmval 45337 | The set of the non-unital ... |
isrnghm 45338 | A function is a non-unital... |
isrnghmmul 45339 | A function is a non-unital... |
rnghmmgmhm 45340 | A non-unital ring homomorp... |
rnghmval2 45341 | The non-unital ring homomo... |
isrngisom 45342 | An isomorphism of non-unit... |
rngimrcl 45343 | Reverse closure for an iso... |
rnghmghm 45344 | A non-unital ring homomorp... |
rnghmf 45345 | A ring homomorphism is a f... |
rnghmmul 45346 | A homomorphism of non-unit... |
isrnghm2d 45347 | Demonstration of non-unita... |
isrnghmd 45348 | Demonstration of non-unita... |
rnghmf1o 45349 | A non-unital ring homomorp... |
isrngim 45350 | An isomorphism of non-unit... |
rngimf1o 45351 | An isomorphism of non-unit... |
rngimrnghm 45352 | An isomorphism of non-unit... |
rnghmco 45353 | The composition of non-uni... |
idrnghm 45354 | The identity homomorphism ... |
c0mgm 45355 | The constant mapping to ze... |
c0mhm 45356 | The constant mapping to ze... |
c0ghm 45357 | The constant mapping to ze... |
c0rhm 45358 | The constant mapping to ze... |
c0rnghm 45359 | The constant mapping to ze... |
c0snmgmhm 45360 | The constant mapping to ze... |
c0snmhm 45361 | The constant mapping to ze... |
c0snghm 45362 | The constant mapping to ze... |
zrrnghm 45363 | The constant mapping to ze... |
rhmfn 45364 | The mapping of two rings t... |
rhmval 45365 | The ring homomorphisms bet... |
rhmisrnghm 45366 | Each unital ring homomorph... |
lidldomn1 45367 | If a (left) ideal (which i... |
lidlssbas 45368 | The base set of the restri... |
lidlbas 45369 | A (left) ideal of a ring i... |
lidlabl 45370 | A (left) ideal of a ring i... |
lidlmmgm 45371 | The multiplicative group o... |
lidlmsgrp 45372 | The multiplicative group o... |
lidlrng 45373 | A (left) ideal of a ring i... |
zlidlring 45374 | The zero (left) ideal of a... |
uzlidlring 45375 | Only the zero (left) ideal... |
lidldomnnring 45376 | A (left) ideal of a domain... |
0even 45377 | 0 is an even integer. (Co... |
1neven 45378 | 1 is not an even integer. ... |
2even 45379 | 2 is an even integer. (Co... |
2zlidl 45380 | The even integers are a (l... |
2zrng 45381 | The ring of integers restr... |
2zrngbas 45382 | The base set of R is the s... |
2zrngadd 45383 | The group addition operati... |
2zrng0 45384 | The additive identity of R... |
2zrngamgm 45385 | R is an (additive) magma. ... |
2zrngasgrp 45386 | R is an (additive) semigro... |
2zrngamnd 45387 | R is an (additive) monoid.... |
2zrngacmnd 45388 | R is a commutative (additi... |
2zrngagrp 45389 | R is an (additive) group. ... |
2zrngaabl 45390 | R is an (additive) abelian... |
2zrngmul 45391 | The ring multiplication op... |
2zrngmmgm 45392 | R is a (multiplicative) ma... |
2zrngmsgrp 45393 | R is a (multiplicative) se... |
2zrngALT 45394 | The ring of integers restr... |
2zrngnmlid 45395 | R has no multiplicative (l... |
2zrngnmrid 45396 | R has no multiplicative (r... |
2zrngnmlid2 45397 | R has no multiplicative (l... |
2zrngnring 45398 | R is not a unital ring. (... |
cznrnglem 45399 | Lemma for ~ cznrng : The ... |
cznabel 45400 | The ring constructed from ... |
cznrng 45401 | The ring constructed from ... |
cznnring 45402 | The ring constructed from ... |
rngcvalALTV 45407 | Value of the category of n... |
rngcval 45408 | Value of the category of n... |
rnghmresfn 45409 | The class of non-unital ri... |
rnghmresel 45410 | An element of the non-unit... |
rngcbas 45411 | Set of objects of the cate... |
rngchomfval 45412 | Set of arrows of the categ... |
rngchom 45413 | Set of arrows of the categ... |
elrngchom 45414 | A morphism of non-unital r... |
rngchomfeqhom 45415 | The functionalized Hom-set... |
rngccofval 45416 | Composition in the categor... |
rngcco 45417 | Composition in the categor... |
dfrngc2 45418 | Alternate definition of th... |
rnghmsscmap2 45419 | The non-unital ring homomo... |
rnghmsscmap 45420 | The non-unital ring homomo... |
rnghmsubcsetclem1 45421 | Lemma 1 for ~ rnghmsubcset... |
rnghmsubcsetclem2 45422 | Lemma 2 for ~ rnghmsubcset... |
rnghmsubcsetc 45423 | The non-unital ring homomo... |
rngccat 45424 | The category of non-unital... |
rngcid 45425 | The identity arrow in the ... |
rngcsect 45426 | A section in the category ... |
rngcinv 45427 | An inverse in the category... |
rngciso 45428 | An isomorphism in the cate... |
rngcbasALTV 45429 | Set of objects of the cate... |
rngchomfvalALTV 45430 | Set of arrows of the categ... |
rngchomALTV 45431 | Set of arrows of the categ... |
elrngchomALTV 45432 | A morphism of non-unital r... |
rngccofvalALTV 45433 | Composition in the categor... |
rngccoALTV 45434 | Composition in the categor... |
rngccatidALTV 45435 | Lemma for ~ rngccatALTV . ... |
rngccatALTV 45436 | The category of non-unital... |
rngcidALTV 45437 | The identity arrow in the ... |
rngcsectALTV 45438 | A section in the category ... |
rngcinvALTV 45439 | An inverse in the category... |
rngcisoALTV 45440 | An isomorphism in the cate... |
rngchomffvalALTV 45441 | The value of the functiona... |
rngchomrnghmresALTV 45442 | The value of the functiona... |
rngcifuestrc 45443 | The "inclusion functor" fr... |
funcrngcsetc 45444 | The "natural forgetful fun... |
funcrngcsetcALT 45445 | Alternate proof of ~ funcr... |
zrinitorngc 45446 | The zero ring is an initia... |
zrtermorngc 45447 | The zero ring is a termina... |
zrzeroorngc 45448 | The zero ring is a zero ob... |
ringcvalALTV 45453 | Value of the category of r... |
ringcval 45454 | Value of the category of u... |
rhmresfn 45455 | The class of unital ring h... |
rhmresel 45456 | An element of the unital r... |
ringcbas 45457 | Set of objects of the cate... |
ringchomfval 45458 | Set of arrows of the categ... |
ringchom 45459 | Set of arrows of the categ... |
elringchom 45460 | A morphism of unital rings... |
ringchomfeqhom 45461 | The functionalized Hom-set... |
ringccofval 45462 | Composition in the categor... |
ringcco 45463 | Composition in the categor... |
dfringc2 45464 | Alternate definition of th... |
rhmsscmap2 45465 | The unital ring homomorphi... |
rhmsscmap 45466 | The unital ring homomorphi... |
rhmsubcsetclem1 45467 | Lemma 1 for ~ rhmsubcsetc ... |
rhmsubcsetclem2 45468 | Lemma 2 for ~ rhmsubcsetc ... |
rhmsubcsetc 45469 | The unital ring homomorphi... |
ringccat 45470 | The category of unital rin... |
ringcid 45471 | The identity arrow in the ... |
rhmsscrnghm 45472 | The unital ring homomorphi... |
rhmsubcrngclem1 45473 | Lemma 1 for ~ rhmsubcrngc ... |
rhmsubcrngclem2 45474 | Lemma 2 for ~ rhmsubcrngc ... |
rhmsubcrngc 45475 | The unital ring homomorphi... |
rngcresringcat 45476 | The restriction of the cat... |
ringcsect 45477 | A section in the category ... |
ringcinv 45478 | An inverse in the category... |
ringciso 45479 | An isomorphism in the cate... |
ringcbasbas 45480 | An element of the base set... |
funcringcsetc 45481 | The "natural forgetful fun... |
funcringcsetcALTV2lem1 45482 | Lemma 1 for ~ funcringcset... |
funcringcsetcALTV2lem2 45483 | Lemma 2 for ~ funcringcset... |
funcringcsetcALTV2lem3 45484 | Lemma 3 for ~ funcringcset... |
funcringcsetcALTV2lem4 45485 | Lemma 4 for ~ funcringcset... |
funcringcsetcALTV2lem5 45486 | Lemma 5 for ~ funcringcset... |
funcringcsetcALTV2lem6 45487 | Lemma 6 for ~ funcringcset... |
funcringcsetcALTV2lem7 45488 | Lemma 7 for ~ funcringcset... |
funcringcsetcALTV2lem8 45489 | Lemma 8 for ~ funcringcset... |
funcringcsetcALTV2lem9 45490 | Lemma 9 for ~ funcringcset... |
funcringcsetcALTV2 45491 | The "natural forgetful fun... |
ringcbasALTV 45492 | Set of objects of the cate... |
ringchomfvalALTV 45493 | Set of arrows of the categ... |
ringchomALTV 45494 | Set of arrows of the categ... |
elringchomALTV 45495 | A morphism of rings is a f... |
ringccofvalALTV 45496 | Composition in the categor... |
ringccoALTV 45497 | Composition in the categor... |
ringccatidALTV 45498 | Lemma for ~ ringccatALTV .... |
ringccatALTV 45499 | The category of rings is a... |
ringcidALTV 45500 | The identity arrow in the ... |
ringcsectALTV 45501 | A section in the category ... |
ringcinvALTV 45502 | An inverse in the category... |
ringcisoALTV 45503 | An isomorphism in the cate... |
ringcbasbasALTV 45504 | An element of the base set... |
funcringcsetclem1ALTV 45505 | Lemma 1 for ~ funcringcset... |
funcringcsetclem2ALTV 45506 | Lemma 2 for ~ funcringcset... |
funcringcsetclem3ALTV 45507 | Lemma 3 for ~ funcringcset... |
funcringcsetclem4ALTV 45508 | Lemma 4 for ~ funcringcset... |
funcringcsetclem5ALTV 45509 | Lemma 5 for ~ funcringcset... |
funcringcsetclem6ALTV 45510 | Lemma 6 for ~ funcringcset... |
funcringcsetclem7ALTV 45511 | Lemma 7 for ~ funcringcset... |
funcringcsetclem8ALTV 45512 | Lemma 8 for ~ funcringcset... |
funcringcsetclem9ALTV 45513 | Lemma 9 for ~ funcringcset... |
funcringcsetcALTV 45514 | The "natural forgetful fun... |
irinitoringc 45515 | The ring of integers is an... |
zrtermoringc 45516 | The zero ring is a termina... |
zrninitoringc 45517 | The zero ring is not an in... |
nzerooringczr 45518 | There is no zero object in... |
srhmsubclem1 45519 | Lemma 1 for ~ srhmsubc . ... |
srhmsubclem2 45520 | Lemma 2 for ~ srhmsubc . ... |
srhmsubclem3 45521 | Lemma 3 for ~ srhmsubc . ... |
srhmsubc 45522 | According to ~ df-subc , t... |
sringcat 45523 | The restriction of the cat... |
crhmsubc 45524 | According to ~ df-subc , t... |
cringcat 45525 | The restriction of the cat... |
drhmsubc 45526 | According to ~ df-subc , t... |
drngcat 45527 | The restriction of the cat... |
fldcat 45528 | The restriction of the cat... |
fldc 45529 | The restriction of the cat... |
fldhmsubc 45530 | According to ~ df-subc , t... |
rngcrescrhm 45531 | The category of non-unital... |
rhmsubclem1 45532 | Lemma 1 for ~ rhmsubc . (... |
rhmsubclem2 45533 | Lemma 2 for ~ rhmsubc . (... |
rhmsubclem3 45534 | Lemma 3 for ~ rhmsubc . (... |
rhmsubclem4 45535 | Lemma 4 for ~ rhmsubc . (... |
rhmsubc 45536 | According to ~ df-subc , t... |
rhmsubccat 45537 | The restriction of the cat... |
srhmsubcALTVlem1 45538 | Lemma 1 for ~ srhmsubcALTV... |
srhmsubcALTVlem2 45539 | Lemma 2 for ~ srhmsubcALTV... |
srhmsubcALTV 45540 | According to ~ df-subc , t... |
sringcatALTV 45541 | The restriction of the cat... |
crhmsubcALTV 45542 | According to ~ df-subc , t... |
cringcatALTV 45543 | The restriction of the cat... |
drhmsubcALTV 45544 | According to ~ df-subc , t... |
drngcatALTV 45545 | The restriction of the cat... |
fldcatALTV 45546 | The restriction of the cat... |
fldcALTV 45547 | The restriction of the cat... |
fldhmsubcALTV 45548 | According to ~ df-subc , t... |
rngcrescrhmALTV 45549 | The category of non-unital... |
rhmsubcALTVlem1 45550 | Lemma 1 for ~ rhmsubcALTV ... |
rhmsubcALTVlem2 45551 | Lemma 2 for ~ rhmsubcALTV ... |
rhmsubcALTVlem3 45552 | Lemma 3 for ~ rhmsubcALTV ... |
rhmsubcALTVlem4 45553 | Lemma 4 for ~ rhmsubcALTV ... |
rhmsubcALTV 45554 | According to ~ df-subc , t... |
rhmsubcALTVcat 45555 | The restriction of the cat... |
opeliun2xp 45556 | Membership of an ordered p... |
eliunxp2 45557 | Membership in a union of C... |
mpomptx2 45558 | Express a two-argument fun... |
cbvmpox2 45559 | Rule to change the bound v... |
dmmpossx2 45560 | The domain of a mapping is... |
mpoexxg2 45561 | Existence of an operation ... |
ovmpordxf 45562 | Value of an operation give... |
ovmpordx 45563 | Value of an operation give... |
ovmpox2 45564 | The value of an operation ... |
fdmdifeqresdif 45565 | The restriction of a condi... |
offvalfv 45566 | The function operation exp... |
ofaddmndmap 45567 | The function operation app... |
mapsnop 45568 | A singleton of an ordered ... |
fprmappr 45569 | A function with a domain o... |
mapprop 45570 | An unordered pair containi... |
ztprmneprm 45571 | A prime is not an integer ... |
2t6m3t4e0 45572 | 2 times 6 minus 3 times 4 ... |
ssnn0ssfz 45573 | For any finite subset of `... |
nn0sumltlt 45574 | If the sum of two nonnegat... |
bcpascm1 45575 | Pascal's rule for the bino... |
altgsumbc 45576 | The sum of binomial coeffi... |
altgsumbcALT 45577 | Alternate proof of ~ altgs... |
zlmodzxzlmod 45578 | The ` ZZ `-module ` ZZ X. ... |
zlmodzxzel 45579 | An element of the (base se... |
zlmodzxz0 45580 | The ` 0 ` of the ` ZZ `-mo... |
zlmodzxzscm 45581 | The scalar multiplication ... |
zlmodzxzadd 45582 | The addition of the ` ZZ `... |
zlmodzxzsubm 45583 | The subtraction of the ` Z... |
zlmodzxzsub 45584 | The subtraction of the ` Z... |
mgpsumunsn 45585 | Extract a summand/factor f... |
mgpsumz 45586 | If the group sum for the m... |
mgpsumn 45587 | If the group sum for the m... |
exple2lt6 45588 | A nonnegative integer to t... |
pgrple2abl 45589 | Every symmetric group on a... |
pgrpgt2nabl 45590 | Every symmetric group on a... |
invginvrid 45591 | Identity for a multiplicat... |
rmsupp0 45592 | The support of a mapping o... |
domnmsuppn0 45593 | The support of a mapping o... |
rmsuppss 45594 | The support of a mapping o... |
mndpsuppss 45595 | The support of a mapping o... |
scmsuppss 45596 | The support of a mapping o... |
rmsuppfi 45597 | The support of a mapping o... |
rmfsupp 45598 | A mapping of a multiplicat... |
mndpsuppfi 45599 | The support of a mapping o... |
mndpfsupp 45600 | A mapping of a scalar mult... |
scmsuppfi 45601 | The support of a mapping o... |
scmfsupp 45602 | A mapping of a scalar mult... |
suppmptcfin 45603 | The support of a mapping w... |
mptcfsupp 45604 | A mapping with value 0 exc... |
fsuppmptdmf 45605 | A mapping with a finite do... |
lmodvsmdi 45606 | Multiple distributive law ... |
gsumlsscl 45607 | Closure of a group sum in ... |
assaascl0 45608 | The scalar 0 embedded into... |
assaascl1 45609 | The scalar 1 embedded into... |
ply1vr1smo 45610 | The variable in a polynomi... |
ply1ass23l 45611 | Associative identity with ... |
ply1sclrmsm 45612 | The ring multiplication of... |
coe1id 45613 | Coefficient vector of the ... |
coe1sclmulval 45614 | The value of the coefficie... |
ply1mulgsumlem1 45615 | Lemma 1 for ~ ply1mulgsum ... |
ply1mulgsumlem2 45616 | Lemma 2 for ~ ply1mulgsum ... |
ply1mulgsumlem3 45617 | Lemma 3 for ~ ply1mulgsum ... |
ply1mulgsumlem4 45618 | Lemma 4 for ~ ply1mulgsum ... |
ply1mulgsum 45619 | The product of two polynom... |
evl1at0 45620 | Polynomial evaluation for ... |
evl1at1 45621 | Polynomial evaluation for ... |
linply1 45622 | A term of the form ` x - C... |
lineval 45623 | A term of the form ` x - C... |
linevalexample 45624 | The polynomial ` x - 3 ` o... |
dmatALTval 45629 | The algebra of ` N ` x ` N... |
dmatALTbas 45630 | The base set of the algebr... |
dmatALTbasel 45631 | An element of the base set... |
dmatbas 45632 | The set of all ` N ` x ` N... |
lincop 45637 | A linear combination as op... |
lincval 45638 | The value of a linear comb... |
dflinc2 45639 | Alternative definition of ... |
lcoop 45640 | A linear combination as op... |
lcoval 45641 | The value of a linear comb... |
lincfsuppcl 45642 | A linear combination of ve... |
linccl 45643 | A linear combination of ve... |
lincval0 45644 | The value of an empty line... |
lincvalsng 45645 | The linear combination ove... |
lincvalsn 45646 | The linear combination ove... |
lincvalpr 45647 | The linear combination ove... |
lincval1 45648 | The linear combination ove... |
lcosn0 45649 | Properties of a linear com... |
lincvalsc0 45650 | The linear combination whe... |
lcoc0 45651 | Properties of a linear com... |
linc0scn0 45652 | If a set contains the zero... |
lincdifsn 45653 | A vector is a linear combi... |
linc1 45654 | A vector is a linear combi... |
lincellss 45655 | A linear combination of a ... |
lco0 45656 | The set of empty linear co... |
lcoel0 45657 | The zero vector is always ... |
lincsum 45658 | The sum of two linear comb... |
lincscm 45659 | A linear combinations mult... |
lincsumcl 45660 | The sum of two linear comb... |
lincscmcl 45661 | The multiplication of a li... |
lincsumscmcl 45662 | The sum of a linear combin... |
lincolss 45663 | According to the statement... |
ellcoellss 45664 | Every linear combination o... |
lcoss 45665 | A set of vectors of a modu... |
lspsslco 45666 | Lemma for ~ lspeqlco . (C... |
lcosslsp 45667 | Lemma for ~ lspeqlco . (C... |
lspeqlco 45668 | Equivalence of a _span_ of... |
rellininds 45672 | The class defining the rel... |
linindsv 45674 | The classes of the module ... |
islininds 45675 | The property of being a li... |
linindsi 45676 | The implications of being ... |
linindslinci 45677 | The implications of being ... |
islinindfis 45678 | The property of being a li... |
islinindfiss 45679 | The property of being a li... |
linindscl 45680 | A linearly independent set... |
lindepsnlininds 45681 | A linearly dependent subse... |
islindeps 45682 | The property of being a li... |
lincext1 45683 | Property 1 of an extension... |
lincext2 45684 | Property 2 of an extension... |
lincext3 45685 | Property 3 of an extension... |
lindslinindsimp1 45686 | Implication 1 for ~ lindsl... |
lindslinindimp2lem1 45687 | Lemma 1 for ~ lindslininds... |
lindslinindimp2lem2 45688 | Lemma 2 for ~ lindslininds... |
lindslinindimp2lem3 45689 | Lemma 3 for ~ lindslininds... |
lindslinindimp2lem4 45690 | Lemma 4 for ~ lindslininds... |
lindslinindsimp2lem5 45691 | Lemma 5 for ~ lindslininds... |
lindslinindsimp2 45692 | Implication 2 for ~ lindsl... |
lindslininds 45693 | Equivalence of definitions... |
linds0 45694 | The empty set is always a ... |
el0ldep 45695 | A set containing the zero ... |
el0ldepsnzr 45696 | A set containing the zero ... |
lindsrng01 45697 | Any subset of a module is ... |
lindszr 45698 | Any subset of a module ove... |
snlindsntorlem 45699 | Lemma for ~ snlindsntor . ... |
snlindsntor 45700 | A singleton is linearly in... |
ldepsprlem 45701 | Lemma for ~ ldepspr . (Co... |
ldepspr 45702 | If a vector is a scalar mu... |
lincresunit3lem3 45703 | Lemma 3 for ~ lincresunit3... |
lincresunitlem1 45704 | Lemma 1 for properties of ... |
lincresunitlem2 45705 | Lemma for properties of a ... |
lincresunit1 45706 | Property 1 of a specially ... |
lincresunit2 45707 | Property 2 of a specially ... |
lincresunit3lem1 45708 | Lemma 1 for ~ lincresunit3... |
lincresunit3lem2 45709 | Lemma 2 for ~ lincresunit3... |
lincresunit3 45710 | Property 3 of a specially ... |
lincreslvec3 45711 | Property 3 of a specially ... |
islindeps2 45712 | Conditions for being a lin... |
islininds2 45713 | Implication of being a lin... |
isldepslvec2 45714 | Alternative definition of ... |
lindssnlvec 45715 | A singleton not containing... |
lmod1lem1 45716 | Lemma 1 for ~ lmod1 . (Co... |
lmod1lem2 45717 | Lemma 2 for ~ lmod1 . (Co... |
lmod1lem3 45718 | Lemma 3 for ~ lmod1 . (Co... |
lmod1lem4 45719 | Lemma 4 for ~ lmod1 . (Co... |
lmod1lem5 45720 | Lemma 5 for ~ lmod1 . (Co... |
lmod1 45721 | The (smallest) structure r... |
lmod1zr 45722 | The (smallest) structure r... |
lmod1zrnlvec 45723 | There is a (left) module (... |
lmodn0 45724 | Left modules exist. (Cont... |
zlmodzxzequa 45725 | Example of an equation wit... |
zlmodzxznm 45726 | Example of a linearly depe... |
zlmodzxzldeplem 45727 | A and B are not equal. (C... |
zlmodzxzequap 45728 | Example of an equation wit... |
zlmodzxzldeplem1 45729 | Lemma 1 for ~ zlmodzxzldep... |
zlmodzxzldeplem2 45730 | Lemma 2 for ~ zlmodzxzldep... |
zlmodzxzldeplem3 45731 | Lemma 3 for ~ zlmodzxzldep... |
zlmodzxzldeplem4 45732 | Lemma 4 for ~ zlmodzxzldep... |
zlmodzxzldep 45733 | { A , B } is a linearly de... |
ldepsnlinclem1 45734 | Lemma 1 for ~ ldepsnlinc .... |
ldepsnlinclem2 45735 | Lemma 2 for ~ ldepsnlinc .... |
lvecpsslmod 45736 | The class of all (left) ve... |
ldepsnlinc 45737 | The reverse implication of... |
ldepslinc 45738 | For (left) vector spaces, ... |
suppdm 45739 | If the range of a function... |
eluz2cnn0n1 45740 | An integer greater than 1 ... |
divge1b 45741 | The ratio of a real number... |
divgt1b 45742 | The ratio of a real number... |
ltsubaddb 45743 | Equivalence for the "less ... |
ltsubsubb 45744 | Equivalence for the "less ... |
ltsubadd2b 45745 | Equivalence for the "less ... |
divsub1dir 45746 | Distribution of division o... |
expnegico01 45747 | An integer greater than 1 ... |
elfzolborelfzop1 45748 | An element of a half-open ... |
pw2m1lepw2m1 45749 | 2 to the power of a positi... |
zgtp1leeq 45750 | If an integer is between a... |
flsubz 45751 | An integer can be moved in... |
fldivmod 45752 | Expressing the floor of a ... |
mod0mul 45753 | If an integer is 0 modulo ... |
modn0mul 45754 | If an integer is not 0 mod... |
m1modmmod 45755 | An integer decreased by 1 ... |
difmodm1lt 45756 | The difference between an ... |
nn0onn0ex 45757 | For each odd nonnegative i... |
nn0enn0ex 45758 | For each even nonnegative ... |
nnennex 45759 | For each even positive int... |
nneop 45760 | A positive integer is even... |
nneom 45761 | A positive integer is even... |
nn0eo 45762 | A nonnegative integer is e... |
nnpw2even 45763 | 2 to the power of a positi... |
zefldiv2 45764 | The floor of an even integ... |
zofldiv2 45765 | The floor of an odd intege... |
nn0ofldiv2 45766 | The floor of an odd nonneg... |
flnn0div2ge 45767 | The floor of a positive in... |
flnn0ohalf 45768 | The floor of the half of a... |
logcxp0 45769 | Logarithm of a complex pow... |
regt1loggt0 45770 | The natural logarithm for ... |
fdivval 45773 | The quotient of two functi... |
fdivmpt 45774 | The quotient of two functi... |
fdivmptf 45775 | The quotient of two functi... |
refdivmptf 45776 | The quotient of two functi... |
fdivpm 45777 | The quotient of two functi... |
refdivpm 45778 | The quotient of two functi... |
fdivmptfv 45779 | The function value of a qu... |
refdivmptfv 45780 | The function value of a qu... |
bigoval 45783 | Set of functions of order ... |
elbigofrcl 45784 | Reverse closure of the "bi... |
elbigo 45785 | Properties of a function o... |
elbigo2 45786 | Properties of a function o... |
elbigo2r 45787 | Sufficient condition for a... |
elbigof 45788 | A function of order G(x) i... |
elbigodm 45789 | The domain of a function o... |
elbigoimp 45790 | The defining property of a... |
elbigolo1 45791 | A function (into the posit... |
rege1logbrege0 45792 | The general logarithm, wit... |
rege1logbzge0 45793 | The general logarithm, wit... |
fllogbd 45794 | A real number is between t... |
relogbmulbexp 45795 | The logarithm of the produ... |
relogbdivb 45796 | The logarithm of the quoti... |
logbge0b 45797 | The logarithm of a number ... |
logblt1b 45798 | The logarithm of a number ... |
fldivexpfllog2 45799 | The floor of a positive re... |
nnlog2ge0lt1 45800 | A positive integer is 1 if... |
logbpw2m1 45801 | The floor of the binary lo... |
fllog2 45802 | The floor of the binary lo... |
blenval 45805 | The binary length of an in... |
blen0 45806 | The binary length of 0. (... |
blenn0 45807 | The binary length of a "nu... |
blenre 45808 | The binary length of a pos... |
blennn 45809 | The binary length of a pos... |
blennnelnn 45810 | The binary length of a pos... |
blennn0elnn 45811 | The binary length of a non... |
blenpw2 45812 | The binary length of a pow... |
blenpw2m1 45813 | The binary length of a pow... |
nnpw2blen 45814 | A positive integer is betw... |
nnpw2blenfzo 45815 | A positive integer is betw... |
nnpw2blenfzo2 45816 | A positive integer is eith... |
nnpw2pmod 45817 | Every positive integer can... |
blen1 45818 | The binary length of 1. (... |
blen2 45819 | The binary length of 2. (... |
nnpw2p 45820 | Every positive integer can... |
nnpw2pb 45821 | A number is a positive int... |
blen1b 45822 | The binary length of a non... |
blennnt2 45823 | The binary length of a pos... |
nnolog2flm1 45824 | The floor of the binary lo... |
blennn0em1 45825 | The binary length of the h... |
blennngt2o2 45826 | The binary length of an od... |
blengt1fldiv2p1 45827 | The binary length of an in... |
blennn0e2 45828 | The binary length of an ev... |
digfval 45831 | Operation to obtain the ` ... |
digval 45832 | The ` K ` th digit of a no... |
digvalnn0 45833 | The ` K ` th digit of a no... |
nn0digval 45834 | The ` K ` th digit of a no... |
dignn0fr 45835 | The digits of the fraction... |
dignn0ldlem 45836 | Lemma for ~ dignnld . (Co... |
dignnld 45837 | The leading digits of a po... |
dig2nn0ld 45838 | The leading digits of a po... |
dig2nn1st 45839 | The first (relevant) digit... |
dig0 45840 | All digits of 0 are 0. (C... |
digexp 45841 | The ` K ` th digit of a po... |
dig1 45842 | All but one digits of 1 ar... |
0dig1 45843 | The ` 0 ` th digit of 1 is... |
0dig2pr01 45844 | The integers 0 and 1 corre... |
dig2nn0 45845 | A digit of a nonnegative i... |
0dig2nn0e 45846 | The last bit of an even in... |
0dig2nn0o 45847 | The last bit of an odd int... |
dig2bits 45848 | The ` K ` th digit of a no... |
dignn0flhalflem1 45849 | Lemma 1 for ~ dignn0flhalf... |
dignn0flhalflem2 45850 | Lemma 2 for ~ dignn0flhalf... |
dignn0ehalf 45851 | The digits of the half of ... |
dignn0flhalf 45852 | The digits of the rounded ... |
nn0sumshdiglemA 45853 | Lemma for ~ nn0sumshdig (i... |
nn0sumshdiglemB 45854 | Lemma for ~ nn0sumshdig (i... |
nn0sumshdiglem1 45855 | Lemma 1 for ~ nn0sumshdig ... |
nn0sumshdiglem2 45856 | Lemma 2 for ~ nn0sumshdig ... |
nn0sumshdig 45857 | A nonnegative integer can ... |
nn0mulfsum 45858 | Trivial algorithm to calcu... |
nn0mullong 45859 | Standard algorithm (also k... |
naryfval 45862 | The set of the n-ary (endo... |
naryfvalixp 45863 | The set of the n-ary (endo... |
naryfvalel 45864 | An n-ary (endo)function on... |
naryrcl 45865 | Reverse closure for n-ary ... |
naryfvalelfv 45866 | The value of an n-ary (end... |
naryfvalelwrdf 45867 | An n-ary (endo)function on... |
0aryfvalel 45868 | A nullary (endo)function o... |
0aryfvalelfv 45869 | The value of a nullary (en... |
1aryfvalel 45870 | A unary (endo)function on ... |
fv1arycl 45871 | Closure of a unary (endo)f... |
1arympt1 45872 | A unary (endo)function in ... |
1arympt1fv 45873 | The value of a unary (endo... |
1arymaptfv 45874 | The value of the mapping o... |
1arymaptf 45875 | The mapping of unary (endo... |
1arymaptf1 45876 | The mapping of unary (endo... |
1arymaptfo 45877 | The mapping of unary (endo... |
1arymaptf1o 45878 | The mapping of unary (endo... |
1aryenef 45879 | The set of unary (endo)fun... |
1aryenefmnd 45880 | The set of unary (endo)fun... |
2aryfvalel 45881 | A binary (endo)function on... |
fv2arycl 45882 | Closure of a binary (endo)... |
2arympt 45883 | A binary (endo)function in... |
2arymptfv 45884 | The value of a binary (end... |
2arymaptfv 45885 | The value of the mapping o... |
2arymaptf 45886 | The mapping of binary (end... |
2arymaptf1 45887 | The mapping of binary (end... |
2arymaptfo 45888 | The mapping of binary (end... |
2arymaptf1o 45889 | The mapping of binary (end... |
2aryenef 45890 | The set of binary (endo)fu... |
itcoval 45895 | The value of the function ... |
itcoval0 45896 | A function iterated zero t... |
itcoval1 45897 | A function iterated once. ... |
itcoval2 45898 | A function iterated twice.... |
itcoval3 45899 | A function iterated three ... |
itcoval0mpt 45900 | A mapping iterated zero ti... |
itcovalsuc 45901 | The value of the function ... |
itcovalsucov 45902 | The value of the function ... |
itcovalendof 45903 | The n-th iterate of an end... |
itcovalpclem1 45904 | Lemma 1 for ~ itcovalpc : ... |
itcovalpclem2 45905 | Lemma 2 for ~ itcovalpc : ... |
itcovalpc 45906 | The value of the function ... |
itcovalt2lem2lem1 45907 | Lemma 1 for ~ itcovalt2lem... |
itcovalt2lem2lem2 45908 | Lemma 2 for ~ itcovalt2lem... |
itcovalt2lem1 45909 | Lemma 1 for ~ itcovalt2 : ... |
itcovalt2lem2 45910 | Lemma 2 for ~ itcovalt2 : ... |
itcovalt2 45911 | The value of the function ... |
ackvalsuc1mpt 45912 | The Ackermann function at ... |
ackvalsuc1 45913 | The Ackermann function at ... |
ackval0 45914 | The Ackermann function at ... |
ackval1 45915 | The Ackermann function at ... |
ackval2 45916 | The Ackermann function at ... |
ackval3 45917 | The Ackermann function at ... |
ackendofnn0 45918 | The Ackermann function at ... |
ackfnnn0 45919 | The Ackermann function at ... |
ackval0val 45920 | The Ackermann function at ... |
ackvalsuc0val 45921 | The Ackermann function at ... |
ackvalsucsucval 45922 | The Ackermann function at ... |
ackval0012 45923 | The Ackermann function at ... |
ackval1012 45924 | The Ackermann function at ... |
ackval2012 45925 | The Ackermann function at ... |
ackval3012 45926 | The Ackermann function at ... |
ackval40 45927 | The Ackermann function at ... |
ackval41a 45928 | The Ackermann function at ... |
ackval41 45929 | The Ackermann function at ... |
ackval42 45930 | The Ackermann function at ... |
ackval42a 45931 | The Ackermann function at ... |
ackval50 45932 | The Ackermann function at ... |
fv1prop 45933 | The function value of unor... |
fv2prop 45934 | The function value of unor... |
submuladdmuld 45935 | Transformation of a sum of... |
affinecomb1 45936 | Combination of two real af... |
affinecomb2 45937 | Combination of two real af... |
affineid 45938 | Identity of an affine comb... |
1subrec1sub 45939 | Subtract the reciprocal of... |
resum2sqcl 45940 | The sum of two squares of ... |
resum2sqgt0 45941 | The sum of the square of a... |
resum2sqrp 45942 | The sum of the square of a... |
resum2sqorgt0 45943 | The sum of the square of t... |
reorelicc 45944 | Membership in and outside ... |
rrx2pxel 45945 | The x-coordinate of a poin... |
rrx2pyel 45946 | The y-coordinate of a poin... |
prelrrx2 45947 | An unordered pair of order... |
prelrrx2b 45948 | An unordered pair of order... |
rrx2pnecoorneor 45949 | If two different points ` ... |
rrx2pnedifcoorneor 45950 | If two different points ` ... |
rrx2pnedifcoorneorr 45951 | If two different points ` ... |
rrx2xpref1o 45952 | There is a bijection betwe... |
rrx2xpreen 45953 | The set of points in the t... |
rrx2plord 45954 | The lexicographical orderi... |
rrx2plord1 45955 | The lexicographical orderi... |
rrx2plord2 45956 | The lexicographical orderi... |
rrx2plordisom 45957 | The set of points in the t... |
rrx2plordso 45958 | The lexicographical orderi... |
ehl2eudisval0 45959 | The Euclidean distance of ... |
ehl2eudis0lt 45960 | An upper bound of the Eucl... |
lines 45965 | The lines passing through ... |
line 45966 | The line passing through t... |
rrxlines 45967 | Definition of lines passin... |
rrxline 45968 | The line passing through t... |
rrxlinesc 45969 | Definition of lines passin... |
rrxlinec 45970 | The line passing through t... |
eenglngeehlnmlem1 45971 | Lemma 1 for ~ eenglngeehln... |
eenglngeehlnmlem2 45972 | Lemma 2 for ~ eenglngeehln... |
eenglngeehlnm 45973 | The line definition in the... |
rrx2line 45974 | The line passing through t... |
rrx2vlinest 45975 | The vertical line passing ... |
rrx2linest 45976 | The line passing through t... |
rrx2linesl 45977 | The line passing through t... |
rrx2linest2 45978 | The line passing through t... |
elrrx2linest2 45979 | The line passing through t... |
spheres 45980 | The spheres for given cent... |
sphere 45981 | A sphere with center ` X `... |
rrxsphere 45982 | The sphere with center ` M... |
2sphere 45983 | The sphere with center ` M... |
2sphere0 45984 | The sphere around the orig... |
line2ylem 45985 | Lemma for ~ line2y . This... |
line2 45986 | Example for a line ` G ` p... |
line2xlem 45987 | Lemma for ~ line2x . This... |
line2x 45988 | Example for a horizontal l... |
line2y 45989 | Example for a vertical lin... |
itsclc0lem1 45990 | Lemma for theorems about i... |
itsclc0lem2 45991 | Lemma for theorems about i... |
itsclc0lem3 45992 | Lemma for theorems about i... |
itscnhlc0yqe 45993 | Lemma for ~ itsclc0 . Qua... |
itschlc0yqe 45994 | Lemma for ~ itsclc0 . Qua... |
itsclc0yqe 45995 | Lemma for ~ itsclc0 . Qua... |
itsclc0yqsollem1 45996 | Lemma 1 for ~ itsclc0yqsol... |
itsclc0yqsollem2 45997 | Lemma 2 for ~ itsclc0yqsol... |
itsclc0yqsol 45998 | Lemma for ~ itsclc0 . Sol... |
itscnhlc0xyqsol 45999 | Lemma for ~ itsclc0 . Sol... |
itschlc0xyqsol1 46000 | Lemma for ~ itsclc0 . Sol... |
itschlc0xyqsol 46001 | Lemma for ~ itsclc0 . Sol... |
itsclc0xyqsol 46002 | Lemma for ~ itsclc0 . Sol... |
itsclc0xyqsolr 46003 | Lemma for ~ itsclc0 . Sol... |
itsclc0xyqsolb 46004 | Lemma for ~ itsclc0 . Sol... |
itsclc0 46005 | The intersection points of... |
itsclc0b 46006 | The intersection points of... |
itsclinecirc0 46007 | The intersection points of... |
itsclinecirc0b 46008 | The intersection points of... |
itsclinecirc0in 46009 | The intersection points of... |
itsclquadb 46010 | Quadratic equation for the... |
itsclquadeu 46011 | Quadratic equation for the... |
2itscplem1 46012 | Lemma 1 for ~ 2itscp . (C... |
2itscplem2 46013 | Lemma 2 for ~ 2itscp . (C... |
2itscplem3 46014 | Lemma D for ~ 2itscp . (C... |
2itscp 46015 | A condition for a quadrati... |
itscnhlinecirc02plem1 46016 | Lemma 1 for ~ itscnhlineci... |
itscnhlinecirc02plem2 46017 | Lemma 2 for ~ itscnhlineci... |
itscnhlinecirc02plem3 46018 | Lemma 3 for ~ itscnhlineci... |
itscnhlinecirc02p 46019 | Intersection of a nonhoriz... |
inlinecirc02plem 46020 | Lemma for ~ inlinecirc02p ... |
inlinecirc02p 46021 | Intersection of a line wit... |
inlinecirc02preu 46022 | Intersection of a line wit... |
pm4.71da 46023 | Deduction converting a bic... |
logic1 46024 | Distribution of implicatio... |
logic1a 46025 | Variant of ~ logic1 . (Co... |
logic2 46026 | Variant of ~ logic1 . (Co... |
pm5.32dav 46027 | Distribution of implicatio... |
pm5.32dra 46028 | Reverse distribution of im... |
exp12bd 46029 | The import-export theorem ... |
mpbiran3d 46030 | Equivalence with a conjunc... |
mpbiran4d 46031 | Equivalence with a conjunc... |
dtrucor3 46032 | An example of how ~ ax-5 w... |
ralbidb 46033 | Formula-building rule for ... |
ralbidc 46034 | Formula-building rule for ... |
r19.41dv 46035 | A complex deduction form o... |
rspceb2dv 46036 | Restricted existential spe... |
rextru 46037 | Two ways of expressing "at... |
rmotru 46038 | Two ways of expressing "at... |
reutru 46039 | Two ways of expressing "ex... |
reutruALT 46040 | Alternate proof for ~ reut... |
ssdisjd 46041 | Subset preserves disjointn... |
ssdisjdr 46042 | Subset preserves disjointn... |
disjdifb 46043 | Relative complement is ant... |
predisj 46044 | Preimages of disjoint sets... |
vsn 46045 | The singleton of the unive... |
mosn 46046 | "At most one" element in a... |
mo0 46047 | "At most one" element in a... |
mosssn 46048 | "At most one" element in a... |
mo0sn 46049 | Two ways of expressing "at... |
mosssn2 46050 | Two ways of expressing "at... |
unilbss 46051 | Superclass of the greatest... |
inpw 46052 | Two ways of expressing a c... |
mof0 46053 | There is at most one funct... |
mof02 46054 | A variant of ~ mof0 . (Co... |
mof0ALT 46055 | Alternate proof for ~ mof0... |
eufsnlem 46056 | There is exactly one funct... |
eufsn 46057 | There is exactly one funct... |
eufsn2 46058 | There is exactly one funct... |
mofsn 46059 | There is at most one funct... |
mofsn2 46060 | There is at most one funct... |
mofsssn 46061 | There is at most one funct... |
mofmo 46062 | There is at most one funct... |
mofeu 46063 | The uniqueness of a functi... |
elfvne0 46064 | If a function value has a ... |
fdomne0 46065 | A function with non-empty ... |
f1sn2g 46066 | A function that maps a sin... |
f102g 46067 | A function that maps the e... |
f1mo 46068 | A function that maps a set... |
f002 46069 | A function with an empty c... |
map0cor 46070 | A function exists iff an e... |
fvconstr 46071 | Two ways of expressing ` A... |
fvconstrn0 46072 | Two ways of expressing ` A... |
fvconstr2 46073 | Two ways of expressing ` A... |
fvconst0ci 46074 | A constant function's valu... |
fvconstdomi 46075 | A constant function's valu... |
f1omo 46076 | There is at most one eleme... |
f1omoALT 46077 | There is at most one eleme... |
iccin 46078 | Intersection of two closed... |
iccdisj2 46079 | If the upper bound of one ... |
iccdisj 46080 | If the upper bound of one ... |
mreuniss 46081 | The union of a collection ... |
clduni 46082 | The union of closed sets i... |
opncldeqv 46083 | Conditions on open sets ar... |
opndisj 46084 | Two ways of saying that tw... |
clddisj 46085 | Two ways of saying that tw... |
neircl 46086 | Reverse closure of the nei... |
opnneilem 46087 | Lemma factoring out common... |
opnneir 46088 | If something is true for a... |
opnneirv 46089 | A variant of ~ opnneir wit... |
opnneilv 46090 | The converse of ~ opnneir ... |
opnneil 46091 | A variant of ~ opnneilv . ... |
opnneieqv 46092 | The equivalence between ne... |
opnneieqvv 46093 | The equivalence between ne... |
restcls2lem 46094 | A closed set in a subspace... |
restcls2 46095 | A closed set in a subspace... |
restclsseplem 46096 | Lemma for ~ restclssep . ... |
restclssep 46097 | Two disjoint closed sets i... |
cnneiima 46098 | Given a continuous functio... |
iooii 46099 | Open intervals are open se... |
icccldii 46100 | Closed intervals are close... |
i0oii 46101 | ` ( 0 [,) A ) ` is open in... |
io1ii 46102 | ` ( A (,] 1 ) ` is open in... |
sepnsepolem1 46103 | Lemma for ~ sepnsepo . (C... |
sepnsepolem2 46104 | Open neighborhood and neig... |
sepnsepo 46105 | Open neighborhood and neig... |
sepdisj 46106 | Separated sets are disjoin... |
seposep 46107 | If two sets are separated ... |
sepcsepo 46108 | If two sets are separated ... |
sepfsepc 46109 | If two sets are separated ... |
seppsepf 46110 | If two sets are precisely ... |
seppcld 46111 | If two sets are precisely ... |
isnrm4 46112 | A topological space is nor... |
dfnrm2 46113 | A topological space is nor... |
dfnrm3 46114 | A topological space is nor... |
iscnrm3lem1 46115 | Lemma for ~ iscnrm3 . Sub... |
iscnrm3lem2 46116 | Lemma for ~ iscnrm3 provin... |
iscnrm3lem3 46117 | Lemma for ~ iscnrm3lem4 . ... |
iscnrm3lem4 46118 | Lemma for ~ iscnrm3lem5 an... |
iscnrm3lem5 46119 | Lemma for ~ iscnrm3l . (C... |
iscnrm3lem6 46120 | Lemma for ~ iscnrm3lem7 . ... |
iscnrm3lem7 46121 | Lemma for ~ iscnrm3rlem8 a... |
iscnrm3rlem1 46122 | Lemma for ~ iscnrm3rlem2 .... |
iscnrm3rlem2 46123 | Lemma for ~ iscnrm3rlem3 .... |
iscnrm3rlem3 46124 | Lemma for ~ iscnrm3r . Th... |
iscnrm3rlem4 46125 | Lemma for ~ iscnrm3rlem8 .... |
iscnrm3rlem5 46126 | Lemma for ~ iscnrm3rlem6 .... |
iscnrm3rlem6 46127 | Lemma for ~ iscnrm3rlem7 .... |
iscnrm3rlem7 46128 | Lemma for ~ iscnrm3rlem8 .... |
iscnrm3rlem8 46129 | Lemma for ~ iscnrm3r . Di... |
iscnrm3r 46130 | Lemma for ~ iscnrm3 . If ... |
iscnrm3llem1 46131 | Lemma for ~ iscnrm3l . Cl... |
iscnrm3llem2 46132 | Lemma for ~ iscnrm3l . If... |
iscnrm3l 46133 | Lemma for ~ iscnrm3 . Giv... |
iscnrm3 46134 | A completely normal topolo... |
iscnrm3v 46135 | A topology is completely n... |
iscnrm4 46136 | A completely normal topolo... |
isprsd 46137 | Property of being a preord... |
lubeldm2 46138 | Member of the domain of th... |
glbeldm2 46139 | Member of the domain of th... |
lubeldm2d 46140 | Member of the domain of th... |
glbeldm2d 46141 | Member of the domain of th... |
lubsscl 46142 | If a subset of ` S ` conta... |
glbsscl 46143 | If a subset of ` S ` conta... |
lubprlem 46144 | Lemma for ~ lubprdm and ~ ... |
lubprdm 46145 | The set of two comparable ... |
lubpr 46146 | The LUB of the set of two ... |
glbprlem 46147 | Lemma for ~ glbprdm and ~ ... |
glbprdm 46148 | The set of two comparable ... |
glbpr 46149 | The GLB of the set of two ... |
joindm2 46150 | The join of any two elemen... |
joindm3 46151 | The join of any two elemen... |
meetdm2 46152 | The meet of any two elemen... |
meetdm3 46153 | The meet of any two elemen... |
posjidm 46154 | Poset join is idempotent. ... |
posmidm 46155 | Poset meet is idempotent. ... |
toslat 46156 | A toset is a lattice. (Co... |
isclatd 46157 | The predicate "is a comple... |
intubeu 46158 | Existential uniqueness of ... |
unilbeu 46159 | Existential uniqueness of ... |
ipolublem 46160 | Lemma for ~ ipolubdm and ~... |
ipolubdm 46161 | The domain of the LUB of t... |
ipolub 46162 | The LUB of the inclusion p... |
ipoglblem 46163 | Lemma for ~ ipoglbdm and ~... |
ipoglbdm 46164 | The domain of the GLB of t... |
ipoglb 46165 | The GLB of the inclusion p... |
ipolub0 46166 | The LUB of the empty set i... |
ipolub00 46167 | The LUB of the empty set i... |
ipoglb0 46168 | The GLB of the empty set i... |
mrelatlubALT 46169 | Least upper bounds in a Mo... |
mrelatglbALT 46170 | Greatest lower bounds in a... |
mreclat 46171 | A Moore space is a complet... |
topclat 46172 | A topology is a complete l... |
toplatglb0 46173 | The empty intersection in ... |
toplatlub 46174 | Least upper bounds in a to... |
toplatglb 46175 | Greatest lower bounds in a... |
toplatjoin 46176 | Joins in a topology are re... |
toplatmeet 46177 | Meets in a topology are re... |
topdlat 46178 | A topology is a distributi... |
catprslem 46179 | Lemma for ~ catprs . (Con... |
catprs 46180 | A preorder can be extracte... |
catprs2 46181 | A category equipped with t... |
catprsc 46182 | A construction of the preo... |
catprsc2 46183 | An alternate construction ... |
endmndlem 46184 | A diagonal hom-set in a ca... |
idmon 46185 | An identity arrow, or an i... |
idepi 46186 | An identity arrow, or an i... |
funcf2lem 46187 | A utility theorem for prov... |
isthinc 46190 | The predicate "is a thin c... |
isthinc2 46191 | A thin category is a categ... |
isthinc3 46192 | A thin category is a categ... |
thincc 46193 | A thin category is a categ... |
thinccd 46194 | A thin category is a categ... |
thincssc 46195 | A thin category is a categ... |
isthincd2lem1 46196 | Lemma for ~ isthincd2 and ... |
thincmo2 46197 | Morphisms in the same hom-... |
thincmo 46198 | There is at most one morph... |
thincmoALT 46199 | Alternate proof for ~ thin... |
thincmod 46200 | At most one morphism in ea... |
thincn0eu 46201 | In a thin category, a hom-... |
thincid 46202 | In a thin category, a morp... |
thincmon 46203 | In a thin category, all mo... |
thincepi 46204 | In a thin category, all mo... |
isthincd2lem2 46205 | Lemma for ~ isthincd2 . (... |
isthincd 46206 | The predicate "is a thin c... |
isthincd2 46207 | The predicate " ` C ` is a... |
oppcthin 46208 | The opposite category of a... |
subthinc 46209 | A subcategory of a thin ca... |
functhinclem1 46210 | Lemma for ~ functhinc . G... |
functhinclem2 46211 | Lemma for ~ functhinc . (... |
functhinclem3 46212 | Lemma for ~ functhinc . T... |
functhinclem4 46213 | Lemma for ~ functhinc . O... |
functhinc 46214 | A functor to a thin catego... |
fullthinc 46215 | A functor to a thin catego... |
fullthinc2 46216 | A full functor to a thin c... |
thincfth 46217 | A functor from a thin cate... |
thincciso 46218 | Two thin categories are is... |
0thincg 46219 | Any structure with an empt... |
0thinc 46220 | The empty category (see ~ ... |
indthinc 46221 | An indiscrete category in ... |
indthincALT 46222 | An alternate proof for ~ i... |
prsthinc 46223 | Preordered sets as categor... |
setcthin 46224 | A category of sets all of ... |
setc2othin 46225 | The category ` ( SetCat ``... |
thincsect 46226 | In a thin category, one mo... |
thincsect2 46227 | In a thin category, ` F ` ... |
thincinv 46228 | In a thin category, ` F ` ... |
thinciso 46229 | In a thin category, ` F : ... |
thinccic 46230 | In a thin category, two ob... |
prstcval 46233 | Lemma for ~ prstcnidlem an... |
prstcnidlem 46234 | Lemma for ~ prstcnid and ~... |
prstcnid 46235 | Components other than ` Ho... |
prstcbas 46236 | The base set is unchanged.... |
prstcleval 46237 | Value of the less-than-or-... |
prstcle 46238 | Value of the less-than-or-... |
prstcocval 46239 | Orthocomplementation is un... |
prstcoc 46240 | Orthocomplementation is un... |
prstchomval 46241 | Hom-sets of the constructe... |
prstcprs 46242 | The category is a preorder... |
prstcthin 46243 | The preordered set is equi... |
prstchom 46244 | Hom-sets of the constructe... |
prstchom2 46245 | Hom-sets of the constructe... |
prstchom2ALT 46246 | Hom-sets of the constructe... |
postcpos 46247 | The converted category is ... |
postcposALT 46248 | Alternate proof for ~ post... |
postc 46249 | The converted category is ... |
mndtcval 46252 | Value of the category buil... |
mndtcbasval 46253 | The base set of the catego... |
mndtcbas 46254 | The category built from a ... |
mndtcob 46255 | Lemma for ~ mndtchom and ~... |
mndtcbas2 46256 | Two objects in a category ... |
mndtchom 46257 | The only hom-set of the ca... |
mndtcco 46258 | The composition of the cat... |
mndtcco2 46259 | The composition of the cat... |
mndtccatid 46260 | Lemma for ~ mndtccat and ~... |
mndtccat 46261 | The function value is a ca... |
mndtcid 46262 | The identity morphism, or ... |
grptcmon 46263 | All morphisms in a categor... |
grptcepi 46264 | All morphisms in a categor... |
nfintd 46265 | Bound-variable hypothesis ... |
nfiund 46266 | Bound-variable hypothesis ... |
nfiundg 46267 | Bound-variable hypothesis ... |
iunord 46268 | The indexed union of a col... |
iunordi 46269 | The indexed union of a col... |
spd 46270 | Specialization deduction, ... |
spcdvw 46271 | A version of ~ spcdv where... |
tfis2d 46272 | Transfinite Induction Sche... |
bnd2d 46273 | Deduction form of ~ bnd2 .... |
dffun3f 46274 | Alternate definition of fu... |
setrecseq 46277 | Equality theorem for set r... |
nfsetrecs 46278 | Bound-variable hypothesis ... |
setrec1lem1 46279 | Lemma for ~ setrec1 . Thi... |
setrec1lem2 46280 | Lemma for ~ setrec1 . If ... |
setrec1lem3 46281 | Lemma for ~ setrec1 . If ... |
setrec1lem4 46282 | Lemma for ~ setrec1 . If ... |
setrec1 46283 | This is the first of two f... |
setrec2fun 46284 | This is the second of two ... |
setrec2lem1 46285 | Lemma for ~ setrec2 . The... |
setrec2lem2 46286 | Lemma for ~ setrec2 . The... |
setrec2 46287 | This is the second of two ... |
setrec2v 46288 | Version of ~ setrec2 with ... |
setis 46289 | Version of ~ setrec2 expre... |
elsetrecslem 46290 | Lemma for ~ elsetrecs . A... |
elsetrecs 46291 | A set ` A ` is an element ... |
setrecsss 46292 | The ` setrecs ` operator r... |
setrecsres 46293 | A recursively generated cl... |
vsetrec 46294 | Construct ` _V ` using set... |
0setrec 46295 | If a function sends the em... |
onsetreclem1 46296 | Lemma for ~ onsetrec . (C... |
onsetreclem2 46297 | Lemma for ~ onsetrec . (C... |
onsetreclem3 46298 | Lemma for ~ onsetrec . (C... |
onsetrec 46299 | Construct ` On ` using set... |
elpglem1 46302 | Lemma for ~ elpg . (Contr... |
elpglem2 46303 | Lemma for ~ elpg . (Contr... |
elpglem3 46304 | Lemma for ~ elpg . (Contr... |
elpg 46305 | Membership in the class of... |
sbidd 46306 | An identity theorem for su... |
sbidd-misc 46307 | An identity theorem for su... |
gte-lte 46312 | Simple relationship betwee... |
gt-lt 46313 | Simple relationship betwee... |
gte-lteh 46314 | Relationship between ` <_ ... |
gt-lth 46315 | Relationship between ` < `... |
ex-gt 46316 | Simple example of ` > ` , ... |
ex-gte 46317 | Simple example of ` >_ ` ,... |
sinhval-named 46324 | Value of the named sinh fu... |
coshval-named 46325 | Value of the named cosh fu... |
tanhval-named 46326 | Value of the named tanh fu... |
sinh-conventional 46327 | Conventional definition of... |
sinhpcosh 46328 | Prove that ` ( sinh `` A )... |
secval 46335 | Value of the secant functi... |
cscval 46336 | Value of the cosecant func... |
cotval 46337 | Value of the cotangent fun... |
seccl 46338 | The closure of the secant ... |
csccl 46339 | The closure of the cosecan... |
cotcl 46340 | The closure of the cotange... |
reseccl 46341 | The closure of the secant ... |
recsccl 46342 | The closure of the cosecan... |
recotcl 46343 | The closure of the cotange... |
recsec 46344 | The reciprocal of secant i... |
reccsc 46345 | The reciprocal of cosecant... |
reccot 46346 | The reciprocal of cotangen... |
rectan 46347 | The reciprocal of tangent ... |
sec0 46348 | The value of the secant fu... |
onetansqsecsq 46349 | Prove the tangent squared ... |
cotsqcscsq 46350 | Prove the tangent squared ... |
ifnmfalse 46351 | If A is not a member of B,... |
logb2aval 46352 | Define the value of the ` ... |
comraddi 46359 | Commute RHS addition. See... |
mvlraddi 46360 | Move the right term in a s... |
mvrladdi 46361 | Move the left term in a su... |
assraddsubi 46362 | Associate RHS addition-sub... |
joinlmuladdmuli 46363 | Join AB+CB into (A+C) on L... |
joinlmulsubmuld 46364 | Join AB-CB into (A-C) on L... |
joinlmulsubmuli 46365 | Join AB-CB into (A-C) on L... |
mvlrmuld 46366 | Move the right term in a p... |
mvlrmuli 46367 | Move the right term in a p... |
i2linesi 46368 | Solve for the intersection... |
i2linesd 46369 | Solve for the intersection... |
alimp-surprise 46370 | Demonstrate that when usin... |
alimp-no-surprise 46371 | There is no "surprise" in ... |
empty-surprise 46372 | Demonstrate that when usin... |
empty-surprise2 46373 | "Prove" that false is true... |
eximp-surprise 46374 | Show what implication insi... |
eximp-surprise2 46375 | Show that "there exists" w... |
alsconv 46380 | There is an equivalence be... |
alsi1d 46381 | Deduction rule: Given "al... |
alsi2d 46382 | Deduction rule: Given "al... |
alsc1d 46383 | Deduction rule: Given "al... |
alsc2d 46384 | Deduction rule: Given "al... |
alscn0d 46385 | Deduction rule: Given "al... |
alsi-no-surprise 46386 | Demonstrate that there is ... |
5m4e1 46387 | Prove that 5 - 4 = 1. (Co... |
2p2ne5 46388 | Prove that ` 2 + 2 =/= 5 `... |
resolution 46389 | Resolution rule. This is ... |
testable 46390 | In classical logic all wff... |
aacllem 46391 | Lemma for other theorems a... |
amgmwlem 46392 | Weighted version of ~ amgm... |
amgmlemALT 46393 | Alternate proof of ~ amgml... |
amgmw2d 46394 | Weighted arithmetic-geomet... |
young2d 46395 | Young's inequality for ` n... |
Copyright terms: Public domain | W3C validator |