MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01i 189 Inference associated with ...
pm2.01d 190 Deduction based on reducti...
pm2.6 191 Theorem *2.6 of [Whitehead...
pm2.61 192 Theorem *2.61 of [Whitehea...
pm2.65 193 Theorem *2.65 of [Whitehea...
pm2.65i 194 Inference for proof by con...
pm2.21dd 195 A contradiction implies an...
pm2.65d 196 Deduction for proof by con...
mto 197 The rule of modus tollens....
mtod 198 Modus tollens deduction. ...
mtoi 199 Modus tollens inference. ...
mt2 200 A rule similar to modus to...
mt3 201 A rule similar to modus to...
peirce 202 Peirce's axiom. A non-int...
looinv 203 The Inversion Axiom of the...
bijust0 204 A self-implication (see ~ ...
bijust 205 Theorem used to justify th...
impbi 208 Property of the biconditio...
impbii 209 Infer an equivalence from ...
impbidd 210 Deduce an equivalence from...
impbid21d 211 Deduce an equivalence from...
impbid 212 Deduce an equivalence from...
dfbi1 213 Relate the biconditional c...
dfbi1ALT 214 Alternate proof of ~ dfbi1...
biimp 215 Property of the biconditio...
biimpi 216 Infer an implication from ...
sylbi 217 A mixed syllogism inferenc...
sylib 218 A mixed syllogism inferenc...
sylbb 219 A mixed syllogism inferenc...
biimpr 220 Property of the biconditio...
bicom1 221 Commutative law for the bi...
bicom 222 Commutative law for the bi...
bicomd 223 Commute two sides of a bic...
bicomi 224 Inference from commutative...
impbid1 225 Infer an equivalence from ...
impbid2 226 Infer an equivalence from ...
impcon4bid 227 A variation on ~ impbid wi...
biimpri 228 Infer a converse implicati...
biimpd 229 Deduce an implication from...
mpbi 230 An inference from a bicond...
mpbir 231 An inference from a bicond...
mpbid 232 A deduction from a bicondi...
mpbii 233 An inference from a nested...
sylibr 234 A mixed syllogism inferenc...
sylbir 235 A mixed syllogism inferenc...
sylbbr 236 A mixed syllogism inferenc...
sylbb1 237 A mixed syllogism inferenc...
sylbb2 238 A mixed syllogism inferenc...
sylibd 239 A syllogism deduction. (C...
sylbid 240 A syllogism deduction. (C...
mpbidi 241 A deduction from a bicondi...
biimtrid 242 A mixed syllogism inferenc...
biimtrrid 243 A mixed syllogism inferenc...
imbitrid 244 A mixed syllogism inferenc...
syl5ibcom 245 A mixed syllogism inferenc...
imbitrrid 246 A mixed syllogism inferenc...
syl5ibrcom 247 A mixed syllogism inferenc...
biimprd 248 Deduce a converse implicat...
biimpcd 249 Deduce a commuted implicat...
biimprcd 250 Deduce a converse commuted...
imbitrdi 251 A mixed syllogism inferenc...
imbitrrdi 252 A mixed syllogism inferenc...
biimtrdi 253 A mixed syllogism inferenc...
biimtrrdi 254 A mixed syllogism inferenc...
syl7bi 255 A mixed syllogism inferenc...
syl8ib 256 A syllogism rule of infere...
mpbird 257 A deduction from a bicondi...
mpbiri 258 An inference from a nested...
sylibrd 259 A syllogism deduction. (C...
sylbird 260 A syllogism deduction. (C...
biid 261 Principle of identity for ...
biidd 262 Principle of identity with...
pm5.1im 263 Two propositions are equiv...
2th 264 Two truths are equivalent....
2thd 265 Two truths are equivalent....
monothetic 266 Two self-implications (see...
ibi 267 Inference that converts a ...
ibir 268 Inference that converts a ...
ibd 269 Deduction that converts a ...
pm5.74 270 Distribution of implicatio...
pm5.74i 271 Distribution of implicatio...
pm5.74ri 272 Distribution of implicatio...
pm5.74d 273 Distribution of implicatio...
pm5.74rd 274 Distribution of implicatio...
bitri 275 An inference from transiti...
bitr2i 276 An inference from transiti...
bitr3i 277 An inference from transiti...
bitr4i 278 An inference from transiti...
bitrd 279 Deduction form of ~ bitri ...
bitr2d 280 Deduction form of ~ bitr2i...
bitr3d 281 Deduction form of ~ bitr3i...
bitr4d 282 Deduction form of ~ bitr4i...
bitrid 283 A syllogism inference from...
bitr2id 284 A syllogism inference from...
bitr3id 285 A syllogism inference from...
bitr3di 286 A syllogism inference from...
bitrdi 287 A syllogism inference from...
bitr2di 288 A syllogism inference from...
bitr4di 289 A syllogism inference from...
bitr4id 290 A syllogism inference from...
3imtr3i 291 A mixed syllogism inferenc...
3imtr4i 292 A mixed syllogism inferenc...
3imtr3d 293 More general version of ~ ...
3imtr4d 294 More general version of ~ ...
3imtr3g 295 More general version of ~ ...
3imtr4g 296 More general version of ~ ...
3bitri 297 A chained inference from t...
3bitrri 298 A chained inference from t...
3bitr2i 299 A chained inference from t...
3bitr2ri 300 A chained inference from t...
3bitr3i 301 A chained inference from t...
3bitr3ri 302 A chained inference from t...
3bitr4i 303 A chained inference from t...
3bitr4ri 304 A chained inference from t...
3bitrd 305 Deduction from transitivit...
3bitrrd 306 Deduction from transitivit...
3bitr2d 307 Deduction from transitivit...
3bitr2rd 308 Deduction from transitivit...
3bitr3d 309 Deduction from transitivit...
3bitr3rd 310 Deduction from transitivit...
3bitr4d 311 Deduction from transitivit...
3bitr4rd 312 Deduction from transitivit...
3bitr3g 313 More general version of ~ ...
3bitr4g 314 More general version of ~ ...
notnotb 315 Double negation. Theorem ...
con34b 316 A biconditional form of co...
con4bid 317 A contraposition deduction...
notbid 318 Deduction negating both si...
notbi 319 Contraposition. Theorem *...
notbii 320 Negate both sides of a log...
con4bii 321 A contraposition inference...
mtbi 322 An inference from a bicond...
mtbir 323 An inference from a bicond...
mtbid 324 A deduction from a bicondi...
mtbird 325 A deduction from a bicondi...
mtbii 326 An inference from a bicond...
mtbiri 327 An inference from a bicond...
sylnib 328 A mixed syllogism inferenc...
sylnibr 329 A mixed syllogism inferenc...
sylnbi 330 A mixed syllogism inferenc...
sylnbir 331 A mixed syllogism inferenc...
xchnxbi 332 Replacement of a subexpres...
xchnxbir 333 Replacement of a subexpres...
xchbinx 334 Replacement of a subexpres...
xchbinxr 335 Replacement of a subexpres...
imbi2i 336 Introduce an antecedent to...
bibi2i 337 Inference adding a bicondi...
bibi1i 338 Inference adding a bicondi...
bibi12i 339 The equivalence of two equ...
imbi2d 340 Deduction adding an antece...
imbi1d 341 Deduction adding a consequ...
bibi2d 342 Deduction adding a bicondi...
bibi1d 343 Deduction adding a bicondi...
imbi12d 344 Deduction joining two equi...
bibi12d 345 Deduction joining two equi...
imbi12 346 Closed form of ~ imbi12i ....
imbi1 347 Theorem *4.84 of [Whitehea...
imbi2 348 Theorem *4.85 of [Whitehea...
imbi1i 349 Introduce a consequent to ...
imbi12i 350 Join two logical equivalen...
bibi1 351 Theorem *4.86 of [Whitehea...
bitr3 352 Closed nested implication ...
con2bi 353 Contraposition. Theorem *...
con2bid 354 A contraposition deduction...
con1bid 355 A contraposition deduction...
con1bii 356 A contraposition inference...
con2bii 357 A contraposition inference...
con1b 358 Contraposition. Bidirecti...
con2b 359 Contraposition. Bidirecti...
biimt 360 A wff is equivalent to its...
pm5.5 361 Theorem *5.5 of [Whitehead...
a1bi 362 Inference introducing a th...
mt2bi 363 A false consequent falsifi...
mtt 364 Modus-tollens-like theorem...
imnot 365 If a proposition is false,...
pm5.501 366 Theorem *5.501 of [Whitehe...
ibib 367 Implication in terms of im...
ibibr 368 Implication in terms of im...
tbt 369 A wff is equivalent to its...
nbn2 370 The negation of a wff is e...
bibif 371 Transfer negation via an e...
nbn 372 The negation of a wff is e...
nbn3 373 Transfer falsehood via equ...
pm5.21im 374 Two propositions are equiv...
2false 375 Two falsehoods are equival...
2falsed 376 Two falsehoods are equival...
pm5.21ni 377 Two propositions implying ...
pm5.21nii 378 Eliminate an antecedent im...
pm5.21ndd 379 Eliminate an antecedent im...
bija 380 Combine antecedents into a...
pm5.18 381 Theorem *5.18 of [Whitehea...
xor3 382 Two ways to express "exclu...
nbbn 383 Move negation outside of b...
biass 384 Associative law for the bi...
biluk 385 Lukasiewicz's shortest axi...
pm5.19 386 Theorem *5.19 of [Whitehea...
bi2.04 387 Logical equivalence of com...
pm5.4 388 Antecedent absorption impl...
imdi 389 Distributive law for impli...
pm5.41 390 Theorem *5.41 of [Whitehea...
imbibi 391 The antecedent of one side...
pm4.8 392 Theorem *4.8 of [Whitehead...
pm4.81 393 A formula is equivalent to...
imim21b 394 Simplify an implication be...
pm4.63 397 Theorem *4.63 of [Whitehea...
pm4.67 398 Theorem *4.67 of [Whitehea...
imnan 399 Express an implication in ...
imnani 400 Infer an implication from ...
iman 401 Implication in terms of co...
pm3.24 402 Law of noncontradiction. ...
annim 403 Express a conjunction in t...
pm4.61 404 Theorem *4.61 of [Whitehea...
pm4.65 405 Theorem *4.65 of [Whitehea...
imp 406 Importation inference. (C...
impcom 407 Importation inference with...
con3dimp 408 Variant of ~ con3d with im...
mpnanrd 409 Eliminate the right side o...
impd 410 Importation deduction. (C...
impcomd 411 Importation deduction with...
ex 412 Exportation inference. (T...
expcom 413 Exportation inference with...
expdcom 414 Commuted form of ~ expd . ...
expd 415 Exportation deduction. (C...
expcomd 416 Deduction form of ~ expcom...
imp31 417 An importation inference. ...
imp32 418 An importation inference. ...
exp31 419 An exportation inference. ...
exp32 420 An exportation inference. ...
imp4b 421 An importation inference. ...
imp4a 422 An importation inference. ...
imp4c 423 An importation inference. ...
imp4d 424 An importation inference. ...
imp41 425 An importation inference. ...
imp42 426 An importation inference. ...
imp43 427 An importation inference. ...
imp44 428 An importation inference. ...
imp45 429 An importation inference. ...
exp4b 430 An exportation inference. ...
exp4a 431 An exportation inference. ...
exp4c 432 An exportation inference. ...
exp4d 433 An exportation inference. ...
exp41 434 An exportation inference. ...
exp42 435 An exportation inference. ...
exp43 436 An exportation inference. ...
exp44 437 An exportation inference. ...
exp45 438 An exportation inference. ...
imp5d 439 An importation inference. ...
imp5a 440 An importation inference. ...
imp5g 441 An importation inference. ...
imp55 442 An importation inference. ...
imp511 443 An importation inference. ...
exp5c 444 An exportation inference. ...
exp5j 445 An exportation inference. ...
exp5l 446 An exportation inference. ...
exp53 447 An exportation inference. ...
pm3.3 448 Theorem *3.3 (Exp) of [Whi...
pm3.31 449 Theorem *3.31 (Imp) of [Wh...
impexp 450 Import-export theorem. Pa...
impancom 451 Mixed importation/commutat...
expdimp 452 A deduction version of exp...
expimpd 453 Exportation followed by a ...
impr 454 Import a wff into a right ...
impl 455 Export a wff from a left c...
expr 456 Export a wff from a right ...
expl 457 Export a wff from a left c...
ancoms 458 Inference commuting conjun...
pm3.22 459 Theorem *3.22 of [Whitehea...
ancom 460 Commutative law for conjun...
ancomd 461 Commutation of conjuncts i...
biancomi 462 Commuting conjunction in a...
biancomd 463 Commuting conjunction in a...
ancomst 464 Closed form of ~ ancoms . ...
ancomsd 465 Deduction commuting conjun...
anasss 466 Associative law for conjun...
anassrs 467 Associative law for conjun...
anass 468 Associative law for conjun...
pm3.2 469 Join antecedents with conj...
pm3.2i 470 Infer conjunction of premi...
pm3.21 471 Join antecedents with conj...
pm3.43i 472 Nested conjunction of ante...
pm3.43 473 Theorem *3.43 (Comp) of [W...
dfbi2 474 A theorem similar to the s...
dfbi 475 Definition ~ df-bi rewritt...
biimpa 476 Importation inference from...
biimpar 477 Importation inference from...
biimpac 478 Importation inference from...
biimparc 479 Importation inference from...
adantr 480 Inference adding a conjunc...
adantl 481 Inference adding a conjunc...
simpl 482 Elimination of a conjunct....
simpli 483 Inference eliminating a co...
simpr 484 Elimination of a conjunct....
simpri 485 Inference eliminating a co...
intnan 486 Introduction of conjunct i...
intnanr 487 Introduction of conjunct i...
intnand 488 Introduction of conjunct i...
intnanrd 489 Introduction of conjunct i...
adantld 490 Deduction adding a conjunc...
adantrd 491 Deduction adding a conjunc...
pm3.41 492 Theorem *3.41 of [Whitehea...
pm3.42 493 Theorem *3.42 of [Whitehea...
simpld 494 Deduction eliminating a co...
simprd 495 Deduction eliminating a co...
simprbi 496 Deduction eliminating a co...
simplbi 497 Deduction eliminating a co...
simprbda 498 Deduction eliminating a co...
simplbda 499 Deduction eliminating a co...
simplbi2 500 Deduction eliminating a co...
simplbi2comt 501 Closed form of ~ simplbi2c...
simplbi2com 502 A deduction eliminating a ...
simpl2im 503 Implication from an elimin...
simplbiim 504 Implication from an elimin...
impel 505 An inference for implicati...
mpan9 506 Modus ponens conjoining di...
sylan9 507 Nested syllogism inference...
sylan9r 508 Nested syllogism inference...
sylan9bb 509 Nested syllogism inference...
sylan9bbr 510 Nested syllogism inference...
jca 511 Deduce conjunction of the ...
jcad 512 Deduction conjoining the c...
jca2 513 Inference conjoining the c...
jca31 514 Join three consequents. (...
jca32 515 Join three consequents. (...
jcai 516 Deduction replacing implic...
jcab 517 Distributive law for impli...
pm4.76 518 Theorem *4.76 of [Whitehea...
jctil 519 Inference conjoining a the...
jctir 520 Inference conjoining a the...
jccir 521 Inference conjoining a con...
jccil 522 Inference conjoining a con...
jctl 523 Inference conjoining a the...
jctr 524 Inference conjoining a the...
jctild 525 Deduction conjoining a the...
jctird 526 Deduction conjoining a the...
iba 527 Introduction of antecedent...
ibar 528 Introduction of antecedent...
biantru 529 A wff is equivalent to its...
biantrur 530 A wff is equivalent to its...
biantrud 531 A wff is equivalent to its...
biantrurd 532 A wff is equivalent to its...
bianfi 533 A wff conjoined with false...
bianfd 534 A wff conjoined with false...
baib 535 Move conjunction outside o...
baibr 536 Move conjunction outside o...
rbaibr 537 Move conjunction outside o...
rbaib 538 Move conjunction outside o...
baibd 539 Move conjunction outside o...
rbaibd 540 Move conjunction outside o...
bianabs 541 Absorb a hypothesis into t...
pm5.44 542 Theorem *5.44 of [Whitehea...
pm5.42 543 Theorem *5.42 of [Whitehea...
ancl 544 Conjoin antecedent to left...
anclb 545 Conjoin antecedent to left...
ancr 546 Conjoin antecedent to righ...
ancrb 547 Conjoin antecedent to righ...
ancli 548 Deduction conjoining antec...
ancri 549 Deduction conjoining antec...
ancld 550 Deduction conjoining antec...
ancrd 551 Deduction conjoining antec...
impac 552 Importation with conjuncti...
anc2l 553 Conjoin antecedent to left...
anc2r 554 Conjoin antecedent to righ...
anc2li 555 Deduction conjoining antec...
anc2ri 556 Deduction conjoining antec...
pm4.71 557 Implication in terms of bi...
pm4.71r 558 Implication in terms of bi...
pm4.71i 559 Inference converting an im...
pm4.71ri 560 Inference converting an im...
pm4.71d 561 Deduction converting an im...
pm4.71rd 562 Deduction converting an im...
pm4.24 563 Theorem *4.24 of [Whitehea...
anidm 564 Idempotent law for conjunc...
anidmdbi 565 Conjunction idempotence wi...
anidms 566 Inference from idempotent ...
imdistan 567 Distribution of implicatio...
imdistani 568 Distribution of implicatio...
imdistanri 569 Distribution of implicatio...
imdistand 570 Distribution of implicatio...
imdistanda 571 Distribution of implicatio...
pm5.3 572 Theorem *5.3 of [Whitehead...
pm5.32 573 Distribution of implicatio...
pm5.32i 574 Distribution of implicatio...
pm5.32ri 575 Distribution of implicatio...
bianim 576 Exchanging conjunction in ...
pm5.32d 577 Distribution of implicatio...
pm5.32rd 578 Distribution of implicatio...
pm5.32da 579 Distribution of implicatio...
sylan 580 A syllogism inference. (C...
sylanb 581 A syllogism inference. (C...
sylanbr 582 A syllogism inference. (C...
sylanbrc 583 Syllogism inference. (Con...
syl2anc 584 Syllogism inference combin...
syl2anc2 585 Double syllogism inference...
sylancl 586 Syllogism inference combin...
sylancr 587 Syllogism inference combin...
sylancom 588 Syllogism inference with c...
sylanblc 589 Syllogism inference combin...
sylanblrc 590 Syllogism inference combin...
syldan 591 A syllogism deduction with...
sylbida 592 A syllogism deduction. (C...
sylan2 593 A syllogism inference. (C...
sylan2b 594 A syllogism inference. (C...
sylan2br 595 A syllogism inference. (C...
syl2an 596 A double syllogism inferen...
syl2anr 597 A double syllogism inferen...
syl2anb 598 A double syllogism inferen...
syl2anbr 599 A double syllogism inferen...
sylancb 600 A syllogism inference comb...
sylancbr 601 A syllogism inference comb...
syldanl 602 A syllogism deduction with...
syland 603 A syllogism deduction. (C...
sylani 604 A syllogism inference. (C...
sylan2d 605 A syllogism deduction. (C...
sylan2i 606 A syllogism inference. (C...
syl2ani 607 A syllogism inference. (C...
syl2and 608 A syllogism deduction. (C...
anim12d 609 Conjoin antecedents and co...
anim12d1 610 Variant of ~ anim12d where...
anim1d 611 Add a conjunct to right of...
anim2d 612 Add a conjunct to left of ...
anim12i 613 Conjoin antecedents and co...
anim12ci 614 Variant of ~ anim12i with ...
anim1i 615 Introduce conjunct to both...
anim1ci 616 Introduce conjunct to both...
anim2i 617 Introduce conjunct to both...
anim12ii 618 Conjoin antecedents and co...
anim12dan 619 Conjoin antecedents and co...
im2anan9 620 Deduction joining nested i...
im2anan9r 621 Deduction joining nested i...
pm3.45 622 Theorem *3.45 (Fact) of [W...
anbi2i 623 Introduce a left conjunct ...
anbi1i 624 Introduce a right conjunct...
anbi2ci 625 Variant of ~ anbi2i with c...
anbi1ci 626 Variant of ~ anbi1i with c...
bianbi 627 Exchanging conjunction in ...
anbi12i 628 Conjoin both sides of two ...
anbi12ci 629 Variant of ~ anbi12i with ...
anbi2d 630 Deduction adding a left co...
anbi1d 631 Deduction adding a right c...
anbi12d 632 Deduction joining two equi...
anbi1 633 Introduce a right conjunct...
anbi2 634 Introduce a left conjunct ...
anbi1cd 635 Introduce a proposition as...
an2anr 636 Double commutation in conj...
pm4.38 637 Theorem *4.38 of [Whitehea...
bi2anan9 638 Deduction joining two equi...
bi2anan9r 639 Deduction joining two equi...
bi2bian9 640 Deduction joining two bico...
anbiim 641 Adding biconditional when ...
bianass 642 An inference to merge two ...
bianassc 643 An inference to merge two ...
an21 644 Swap two conjuncts. (Cont...
an12 645 Swap two conjuncts. Note ...
an32 646 A rearrangement of conjunc...
an13 647 A rearrangement of conjunc...
an31 648 A rearrangement of conjunc...
an12s 649 Swap two conjuncts in ante...
ancom2s 650 Inference commuting a nest...
an13s 651 Swap two conjuncts in ante...
an32s 652 Swap two conjuncts in ante...
ancom1s 653 Inference commuting a nest...
an31s 654 Swap two conjuncts in ante...
anass1rs 655 Commutative-associative la...
an4 656 Rearrangement of 4 conjunc...
an42 657 Rearrangement of 4 conjunc...
an43 658 Rearrangement of 4 conjunc...
an3 659 A rearrangement of conjunc...
an4s 660 Inference rearranging 4 co...
an42s 661 Inference rearranging 4 co...
anabs1 662 Absorption into embedded c...
anabs5 663 Absorption into embedded c...
anabs7 664 Absorption into embedded c...
anabsan 665 Absorption of antecedent w...
anabss1 666 Absorption of antecedent i...
anabss4 667 Absorption of antecedent i...
anabss5 668 Absorption of antecedent i...
anabsi5 669 Absorption of antecedent i...
anabsi6 670 Absorption of antecedent i...
anabsi7 671 Absorption of antecedent i...
anabsi8 672 Absorption of antecedent i...
anabss7 673 Absorption of antecedent i...
anabsan2 674 Absorption of antecedent w...
anabss3 675 Absorption of antecedent i...
anandi 676 Distribution of conjunctio...
anandir 677 Distribution of conjunctio...
anandis 678 Inference that undistribut...
anandirs 679 Inference that undistribut...
sylanl1 680 A syllogism inference. (C...
sylanl2 681 A syllogism inference. (C...
sylanr1 682 A syllogism inference. (C...
sylanr2 683 A syllogism inference. (C...
syl6an 684 A syllogism deduction comb...
syl2an2r 685 ~ syl2anr with antecedents...
syl2an2 686 ~ syl2an with antecedents ...
mpdan 687 An inference based on modu...
mpancom 688 An inference based on modu...
mpidan 689 A deduction which "stacks"...
mpan 690 An inference based on modu...
mpan2 691 An inference based on modu...
mp2an 692 An inference based on modu...
mp4an 693 An inference based on modu...
mpan2d 694 A deduction based on modus...
mpand 695 A deduction based on modus...
mpani 696 An inference based on modu...
mpan2i 697 An inference based on modu...
mp2ani 698 An inference based on modu...
mp2and 699 A deduction based on modus...
mpanl1 700 An inference based on modu...
mpanl2 701 An inference based on modu...
mpanl12 702 An inference based on modu...
mpanr1 703 An inference based on modu...
mpanr2 704 An inference based on modu...
mpanr12 705 An inference based on modu...
mpanlr1 706 An inference based on modu...
mpbirand 707 Detach truth from conjunct...
mpbiran2d 708 Detach truth from conjunct...
mpbiran 709 Detach truth from conjunct...
mpbiran2 710 Detach truth from conjunct...
mpbir2an 711 Detach a conjunction of tr...
mpbi2and 712 Detach a conjunction of tr...
mpbir2and 713 Detach a conjunction of tr...
adantll 714 Deduction adding a conjunc...
adantlr 715 Deduction adding a conjunc...
adantrl 716 Deduction adding a conjunc...
adantrr 717 Deduction adding a conjunc...
adantlll 718 Deduction adding a conjunc...
adantllr 719 Deduction adding a conjunc...
adantlrl 720 Deduction adding a conjunc...
adantlrr 721 Deduction adding a conjunc...
adantrll 722 Deduction adding a conjunc...
adantrlr 723 Deduction adding a conjunc...
adantrrl 724 Deduction adding a conjunc...
adantrrr 725 Deduction adding a conjunc...
ad2antrr 726 Deduction adding two conju...
ad2antlr 727 Deduction adding two conju...
ad2antrl 728 Deduction adding two conju...
ad2antll 729 Deduction adding conjuncts...
ad3antrrr 730 Deduction adding three con...
ad3antlr 731 Deduction adding three con...
ad4antr 732 Deduction adding 4 conjunc...
ad4antlr 733 Deduction adding 4 conjunc...
ad5antr 734 Deduction adding 5 conjunc...
ad5antlr 735 Deduction adding 5 conjunc...
ad6antr 736 Deduction adding 6 conjunc...
ad6antlr 737 Deduction adding 6 conjunc...
ad7antr 738 Deduction adding 7 conjunc...
ad7antlr 739 Deduction adding 7 conjunc...
ad8antr 740 Deduction adding 8 conjunc...
ad8antlr 741 Deduction adding 8 conjunc...
ad9antr 742 Deduction adding 9 conjunc...
ad9antlr 743 Deduction adding 9 conjunc...
ad10antr 744 Deduction adding 10 conjun...
ad10antlr 745 Deduction adding 10 conjun...
ad2ant2l 746 Deduction adding two conju...
ad2ant2r 747 Deduction adding two conju...
ad2ant2lr 748 Deduction adding two conju...
ad2ant2rl 749 Deduction adding two conju...
adantl3r 750 Deduction adding 1 conjunc...
ad4ant13 751 Deduction adding conjuncts...
ad4ant14 752 Deduction adding conjuncts...
ad4ant23 753 Deduction adding conjuncts...
ad4ant24 754 Deduction adding conjuncts...
adantl4r 755 Deduction adding 1 conjunc...
ad5ant13 756 Deduction adding conjuncts...
ad5ant14 757 Deduction adding conjuncts...
ad5ant15 758 Deduction adding conjuncts...
ad5ant23 759 Deduction adding conjuncts...
ad5ant24 760 Deduction adding conjuncts...
ad5ant25 761 Deduction adding conjuncts...
adantl5r 762 Deduction adding 1 conjunc...
adantl6r 763 Deduction adding 1 conjunc...
pm3.33 764 Theorem *3.33 (Syll) of [W...
pm3.34 765 Theorem *3.34 (Syll) of [W...
simpll 766 Simplification of a conjun...
simplld 767 Deduction form of ~ simpll...
simplr 768 Simplification of a conjun...
simplrd 769 Deduction eliminating a do...
simprl 770 Simplification of a conjun...
simprld 771 Deduction eliminating a do...
simprr 772 Simplification of a conjun...
simprrd 773 Deduction form of ~ simprr...
simplll 774 Simplification of a conjun...
simpllr 775 Simplification of a conjun...
simplrl 776 Simplification of a conjun...
simplrr 777 Simplification of a conjun...
simprll 778 Simplification of a conjun...
simprlr 779 Simplification of a conjun...
simprrl 780 Simplification of a conjun...
simprrr 781 Simplification of a conjun...
simp-4l 782 Simplification of a conjun...
simp-4r 783 Simplification of a conjun...
simp-5l 784 Simplification of a conjun...
simp-5r 785 Simplification of a conjun...
simp-6l 786 Simplification of a conjun...
simp-6r 787 Simplification of a conjun...
simp-7l 788 Simplification of a conjun...
simp-7r 789 Simplification of a conjun...
simp-8l 790 Simplification of a conjun...
simp-8r 791 Simplification of a conjun...
simp-9l 792 Simplification of a conjun...
simp-9r 793 Simplification of a conjun...
simp-10l 794 Simplification of a conjun...
simp-10r 795 Simplification of a conjun...
simp-11l 796 Simplification of a conjun...
simp-11r 797 Simplification of a conjun...
pm2.01da 798 Deduction based on reducti...
pm2.18da 799 Deduction based on reducti...
impbida 800 Deduce an equivalence from...
pm5.21nd 801 Eliminate an antecedent im...
pm3.35 802 Conjunctive detachment. T...
pm5.74da 803 Distribution of implicatio...
bitr 804 Theorem *4.22 of [Whitehea...
biantr 805 A transitive law of equiva...
pm4.14 806 Theorem *4.14 of [Whitehea...
pm3.37 807 Theorem *3.37 (Transp) of ...
anim12 808 Conjoin antecedents and co...
pm3.4 809 Conjunction implies implic...
exbiri 810 Inference form of ~ exbir ...
pm2.61ian 811 Elimination of an antecede...
pm2.61dan 812 Elimination of an antecede...
pm2.61ddan 813 Elimination of two anteced...
pm2.61dda 814 Elimination of two anteced...
mtand 815 A modus tollens deduction....
pm2.65da 816 Deduction for proof by con...
condan 817 Proof by contradiction. (...
biadan 818 An implication is equivale...
biadani 819 Inference associated with ...
biadaniALT 820 Alternate proof of ~ biada...
biadanii 821 Inference associated with ...
biadanid 822 Deduction associated with ...
pm5.1 823 Two propositions are equiv...
pm5.21 824 Two propositions are equiv...
pm5.35 825 Theorem *5.35 of [Whitehea...
abai 826 Introduce one conjunct as ...
pm4.45im 827 Conjunction with implicati...
impimprbi 828 An implication and its rev...
nan 829 Theorem to move a conjunct...
pm5.31 830 Theorem *5.31 of [Whitehea...
pm5.31r 831 Variant of ~ pm5.31 . (Co...
pm4.15 832 Theorem *4.15 of [Whitehea...
pm5.36 833 Theorem *5.36 of [Whitehea...
annotanannot 834 A conjunction with a negat...
pm5.33 835 Theorem *5.33 of [Whitehea...
syl12anc 836 Syllogism combined with co...
syl21anc 837 Syllogism combined with co...
syl22anc 838 Syllogism combined with co...
bibiad 839 Eliminate an hypothesis ` ...
syl1111anc 840 Four-hypothesis eliminatio...
syldbl2 841 Stacked hypotheseis implie...
mpsyl4anc 842 An elimination deduction. ...
pm4.87 843 Theorem *4.87 of [Whitehea...
bimsc1 844 Removal of conjunct from o...
a2and 845 Deduction distributing a c...
animpimp2impd 846 Deduction deriving nested ...
pm4.64 849 Theorem *4.64 of [Whitehea...
pm4.66 850 Theorem *4.66 of [Whitehea...
pm2.53 851 Theorem *2.53 of [Whitehea...
pm2.54 852 Theorem *2.54 of [Whitehea...
imor 853 Implication in terms of di...
imori 854 Infer disjunction from imp...
imorri 855 Infer implication from dis...
pm4.62 856 Theorem *4.62 of [Whitehea...
jaoi 857 Inference disjoining the a...
jao1i 858 Add a disjunct in the ante...
jaod 859 Deduction disjoining the a...
mpjaod 860 Eliminate a disjunction in...
ori 861 Infer implication from dis...
orri 862 Infer disjunction from imp...
orrd 863 Deduce disjunction from im...
ord 864 Deduce implication from di...
orci 865 Deduction introducing a di...
olci 866 Deduction introducing a di...
orc 867 Introduction of a disjunct...
olc 868 Introduction of a disjunct...
pm1.4 869 Axiom *1.4 of [WhiteheadRu...
orcom 870 Commutative law for disjun...
orcomd 871 Commutation of disjuncts i...
orcoms 872 Commutation of disjuncts i...
orcd 873 Deduction introducing a di...
olcd 874 Deduction introducing a di...
orcs 875 Deduction eliminating disj...
olcs 876 Deduction eliminating disj...
olcnd 877 A lemma for Conjunctive No...
orcnd 878 A lemma for Conjunctive No...
mtord 879 A modus tollens deduction ...
pm3.2ni 880 Infer negated disjunction ...
pm2.45 881 Theorem *2.45 of [Whitehea...
pm2.46 882 Theorem *2.46 of [Whitehea...
pm2.47 883 Theorem *2.47 of [Whitehea...
pm2.48 884 Theorem *2.48 of [Whitehea...
pm2.49 885 Theorem *2.49 of [Whitehea...
norbi 886 If neither of two proposit...
nbior 887 If two propositions are no...
orel1 888 Elimination of disjunction...
pm2.25 889 Theorem *2.25 of [Whitehea...
orel2 890 Elimination of disjunction...
pm2.67-2 891 Slight generalization of T...
pm2.67 892 Theorem *2.67 of [Whitehea...
curryax 893 A non-intuitionistic posit...
exmid 894 Law of excluded middle, al...
exmidd 895 Law of excluded middle in ...
pm2.1 896 Theorem *2.1 of [Whitehead...
pm2.13 897 Theorem *2.13 of [Whitehea...
pm2.621 898 Theorem *2.621 of [Whitehe...
pm2.62 899 Theorem *2.62 of [Whitehea...
pm2.68 900 Theorem *2.68 of [Whitehea...
dfor2 901 Logical 'or' expressed in ...
pm2.07 902 Theorem *2.07 of [Whitehea...
pm1.2 903 Axiom *1.2 of [WhiteheadRu...
oridm 904 Idempotent law for disjunc...
pm4.25 905 Theorem *4.25 of [Whitehea...
pm2.4 906 Theorem *2.4 of [Whitehead...
pm2.41 907 Theorem *2.41 of [Whitehea...
orim12i 908 Disjoin antecedents and co...
orim1i 909 Introduce disjunct to both...
orim2i 910 Introduce disjunct to both...
orim12dALT 911 Alternate proof of ~ orim1...
orbi2i 912 Inference adding a left di...
orbi1i 913 Inference adding a right d...
orbi12i 914 Infer the disjunction of t...
orbi2d 915 Deduction adding a left di...
orbi1d 916 Deduction adding a right d...
orbi1 917 Theorem *4.37 of [Whitehea...
orbi12d 918 Deduction joining two equi...
pm1.5 919 Axiom *1.5 (Assoc) of [Whi...
or12 920 Swap two disjuncts. (Cont...
orass 921 Associative law for disjun...
pm2.31 922 Theorem *2.31 of [Whitehea...
pm2.32 923 Theorem *2.32 of [Whitehea...
pm2.3 924 Theorem *2.3 of [Whitehead...
or32 925 A rearrangement of disjunc...
or4 926 Rearrangement of 4 disjunc...
or42 927 Rearrangement of 4 disjunc...
orordi 928 Distribution of disjunctio...
orordir 929 Distribution of disjunctio...
orimdi 930 Disjunction distributes ov...
pm2.76 931 Theorem *2.76 of [Whitehea...
pm2.85 932 Theorem *2.85 of [Whitehea...
pm2.75 933 Theorem *2.75 of [Whitehea...
pm4.78 934 Implication distributes ov...
biort 935 A disjunction with a true ...
biorf 936 A wff is equivalent to its...
biortn 937 A wff is equivalent to its...
biorfi 938 The dual of ~ biorf is not...
biorfri 939 A wff is equivalent to its...
biorfriOLD 940 Obsolete version of ~ bior...
pm2.26 941 Theorem *2.26 of [Whitehea...
pm2.63 942 Theorem *2.63 of [Whitehea...
pm2.64 943 Theorem *2.64 of [Whitehea...
pm2.42 944 Theorem *2.42 of [Whitehea...
pm5.11g 945 A general instance of Theo...
pm5.11 946 Theorem *5.11 of [Whitehea...
pm5.12 947 Theorem *5.12 of [Whitehea...
pm5.14 948 Theorem *5.14 of [Whitehea...
pm5.13 949 Theorem *5.13 of [Whitehea...
pm5.55 950 Theorem *5.55 of [Whitehea...
pm4.72 951 Implication in terms of bi...
imimorb 952 Simplify an implication be...
oibabs 953 Absorption of disjunction ...
orbidi 954 Disjunction distributes ov...
pm5.7 955 Disjunction distributes ov...
jaao 956 Inference conjoining and d...
jaoa 957 Inference disjoining and c...
jaoian 958 Inference disjoining the a...
jaodan 959 Deduction disjoining the a...
mpjaodan 960 Eliminate a disjunction in...
pm3.44 961 Theorem *3.44 of [Whitehea...
jao 962 Disjunction of antecedents...
jaob 963 Disjunction of antecedents...
pm4.77 964 Theorem *4.77 of [Whitehea...
pm3.48 965 Theorem *3.48 of [Whitehea...
orim12d 966 Disjoin antecedents and co...
orim1d 967 Disjoin antecedents and co...
orim2d 968 Disjoin antecedents and co...
orim2 969 Axiom *1.6 (Sum) of [White...
pm2.38 970 Theorem *2.38 of [Whitehea...
pm2.36 971 Theorem *2.36 of [Whitehea...
pm2.37 972 Theorem *2.37 of [Whitehea...
pm2.81 973 Theorem *2.81 of [Whitehea...
pm2.8 974 Theorem *2.8 of [Whitehead...
pm2.73 975 Theorem *2.73 of [Whitehea...
pm2.74 976 Theorem *2.74 of [Whitehea...
pm2.82 977 Theorem *2.82 of [Whitehea...
pm4.39 978 Theorem *4.39 of [Whitehea...
animorl 979 Conjunction implies disjun...
animorr 980 Conjunction implies disjun...
animorlr 981 Conjunction implies disjun...
animorrl 982 Conjunction implies disjun...
ianor 983 Negated conjunction in ter...
anor 984 Conjunction in terms of di...
ioran 985 Negated disjunction in ter...
pm4.52 986 Theorem *4.52 of [Whitehea...
pm4.53 987 Theorem *4.53 of [Whitehea...
pm4.54 988 Theorem *4.54 of [Whitehea...
pm4.55 989 Theorem *4.55 of [Whitehea...
pm4.56 990 Theorem *4.56 of [Whitehea...
oran 991 Disjunction in terms of co...
pm4.57 992 Theorem *4.57 of [Whitehea...
pm3.1 993 Theorem *3.1 of [Whitehead...
pm3.11 994 Theorem *3.11 of [Whitehea...
pm3.12 995 Theorem *3.12 of [Whitehea...
pm3.13 996 Theorem *3.13 of [Whitehea...
pm3.14 997 Theorem *3.14 of [Whitehea...
pm4.44 998 Theorem *4.44 of [Whitehea...
pm4.45 999 Theorem *4.45 of [Whitehea...
orabs 1000 Absorption of redundant in...
oranabs 1001 Absorb a disjunct into a c...
pm5.61 1002 Theorem *5.61 of [Whitehea...
pm5.6 1003 Conjunction in antecedent ...
orcanai 1004 Change disjunction in cons...
pm4.79 1005 Theorem *4.79 of [Whitehea...
pm5.53 1006 Theorem *5.53 of [Whitehea...
ordi 1007 Distributive law for disju...
ordir 1008 Distributive law for disju...
andi 1009 Distributive law for conju...
andir 1010 Distributive law for conju...
orddi 1011 Double distributive law fo...
anddi 1012 Double distributive law fo...
pm5.17 1013 Theorem *5.17 of [Whitehea...
pm5.15 1014 Theorem *5.15 of [Whitehea...
pm5.16 1015 Theorem *5.16 of [Whitehea...
xor 1016 Two ways to express exclus...
nbi2 1017 Two ways to express "exclu...
xordi 1018 Conjunction distributes ov...
pm5.54 1019 Theorem *5.54 of [Whitehea...
pm5.62 1020 Theorem *5.62 of [Whitehea...
pm5.63 1021 Theorem *5.63 of [Whitehea...
niabn 1022 Miscellaneous inference re...
ninba 1023 Miscellaneous inference re...
pm4.43 1024 Theorem *4.43 of [Whitehea...
pm4.82 1025 Theorem *4.82 of [Whitehea...
pm4.83 1026 Theorem *4.83 of [Whitehea...
pclem6 1027 Negation inferred from emb...
bigolden 1028 Dijkstra-Scholten's Golden...
pm5.71 1029 Theorem *5.71 of [Whitehea...
pm5.75 1030 Theorem *5.75 of [Whitehea...
ecase2d 1031 Deduction for elimination ...
ecase3 1032 Inference for elimination ...
ecase 1033 Inference for elimination ...
ecase3d 1034 Deduction for elimination ...
ecased 1035 Deduction for elimination ...
ecase3ad 1036 Deduction for elimination ...
ccase 1037 Inference for combining ca...
ccased 1038 Deduction for combining ca...
ccase2 1039 Inference for combining ca...
4cases 1040 Inference eliminating two ...
4casesdan 1041 Deduction eliminating two ...
cases 1042 Case disjunction according...
dedlem0a 1043 Lemma for an alternate ver...
dedlem0b 1044 Lemma for an alternate ver...
dedlema 1045 Lemma for weak deduction t...
dedlemb 1046 Lemma for weak deduction t...
cases2 1047 Case disjunction according...
cases2ALT 1048 Alternate proof of ~ cases...
dfbi3 1049 An alternate definition of...
pm5.24 1050 Theorem *5.24 of [Whitehea...
4exmid 1051 The disjunction of the fou...
consensus 1052 The consensus theorem. Th...
pm4.42 1053 Theorem *4.42 of [Whitehea...
prlem1 1054 A specialized lemma for se...
prlem2 1055 A specialized lemma for se...
oplem1 1056 A specialized lemma for se...
dn1 1057 A single axiom for Boolean...
bianir 1058 A closed form of ~ mpbir ,...
jaoi2 1059 Inference removing a negat...
jaoi3 1060 Inference separating a dis...
ornld 1061 Selecting one statement fr...
dfifp2 1064 Alternate definition of th...
dfifp3 1065 Alternate definition of th...
dfifp4 1066 Alternate definition of th...
dfifp5 1067 Alternate definition of th...
dfifp6 1068 Alternate definition of th...
dfifp7 1069 Alternate definition of th...
ifpdfbi 1070 Define the biconditional a...
anifp 1071 The conditional operator i...
ifpor 1072 The conditional operator i...
ifpn 1073 Conditional operator for t...
ifptru 1074 Value of the conditional o...
ifpfal 1075 Value of the conditional o...
ifpid 1076 Value of the conditional o...
casesifp 1077 Version of ~ cases express...
ifpbi123d 1078 Equivalence deduction for ...
ifpbi23d 1079 Equivalence deduction for ...
ifpimpda 1080 Separation of the values o...
1fpid3 1081 The value of the condition...
elimh 1082 Hypothesis builder for the...
dedt 1083 The weak deduction theorem...
con3ALT 1084 Proof of ~ con3 from its a...
3orass 1089 Associative law for triple...
3orel1 1090 Partial elimination of a t...
3orrot 1091 Rotation law for triple di...
3orcoma 1092 Commutation law for triple...
3orcomb 1093 Commutation law for triple...
3anass 1094 Associative law for triple...
3anan12 1095 Convert triple conjunction...
3anan32 1096 Convert triple conjunction...
3ancoma 1097 Commutation law for triple...
3ancomb 1098 Commutation law for triple...
3anrot 1099 Rotation law for triple co...
3anrev 1100 Reversal law for triple co...
anandi3 1101 Distribution of triple con...
anandi3r 1102 Distribution of triple con...
3anidm 1103 Idempotent law for conjunc...
3an4anass 1104 Associative law for four c...
3ioran 1105 Negated triple disjunction...
3ianor 1106 Negated triple conjunction...
3anor 1107 Triple conjunction express...
3oran 1108 Triple disjunction in term...
3impa 1109 Importation from double to...
3imp 1110 Importation inference. (C...
3imp31 1111 The importation inference ...
3imp231 1112 Importation inference. (C...
3imp21 1113 The importation inference ...
3impb 1114 Importation from double to...
bi23imp13 1115 ~ 3imp with middle implica...
3impib 1116 Importation to triple conj...
3impia 1117 Importation to triple conj...
3expa 1118 Exportation from triple to...
3exp 1119 Exportation inference. (C...
3expb 1120 Exportation from triple to...
3expia 1121 Exportation from triple co...
3expib 1122 Exportation from triple co...
3com12 1123 Commutation in antecedent....
3com13 1124 Commutation in antecedent....
3comr 1125 Commutation in antecedent....
3com23 1126 Commutation in antecedent....
3coml 1127 Commutation in antecedent....
3jca 1128 Join consequents with conj...
3jcad 1129 Deduction conjoining the c...
3adant1 1130 Deduction adding a conjunc...
3adant2 1131 Deduction adding a conjunc...
3adant3 1132 Deduction adding a conjunc...
3ad2ant1 1133 Deduction adding conjuncts...
3ad2ant2 1134 Deduction adding conjuncts...
3ad2ant3 1135 Deduction adding conjuncts...
simp1 1136 Simplification of triple c...
simp2 1137 Simplification of triple c...
simp3 1138 Simplification of triple c...
simp1i 1139 Infer a conjunct from a tr...
simp2i 1140 Infer a conjunct from a tr...
simp3i 1141 Infer a conjunct from a tr...
simp1d 1142 Deduce a conjunct from a t...
simp2d 1143 Deduce a conjunct from a t...
simp3d 1144 Deduce a conjunct from a t...
simp1bi 1145 Deduce a conjunct from a t...
simp2bi 1146 Deduce a conjunct from a t...
simp3bi 1147 Deduce a conjunct from a t...
3simpa 1148 Simplification of triple c...
3simpb 1149 Simplification of triple c...
3simpc 1150 Simplification of triple c...
3anim123i 1151 Join antecedents and conse...
3anim1i 1152 Add two conjuncts to antec...
3anim2i 1153 Add two conjuncts to antec...
3anim3i 1154 Add two conjuncts to antec...
3anbi123i 1155 Join 3 biconditionals with...
3orbi123i 1156 Join 3 biconditionals with...
3anbi1i 1157 Inference adding two conju...
3anbi2i 1158 Inference adding two conju...
3anbi3i 1159 Inference adding two conju...
syl3an 1160 A triple syllogism inferen...
syl3anb 1161 A triple syllogism inferen...
syl3anbr 1162 A triple syllogism inferen...
syl3an1 1163 A syllogism inference. (C...
syl3an2 1164 A syllogism inference. (C...
syl3an3 1165 A syllogism inference. (C...
syl3an132 1166 ~ syl2an with antecedents ...
3adantl1 1167 Deduction adding a conjunc...
3adantl2 1168 Deduction adding a conjunc...
3adantl3 1169 Deduction adding a conjunc...
3adantr1 1170 Deduction adding a conjunc...
3adantr2 1171 Deduction adding a conjunc...
3adantr3 1172 Deduction adding a conjunc...
ad4ant123 1173 Deduction adding conjuncts...
ad4ant124 1174 Deduction adding conjuncts...
ad4ant134 1175 Deduction adding conjuncts...
ad4ant234 1176 Deduction adding conjuncts...
3adant1l 1177 Deduction adding a conjunc...
3adant1r 1178 Deduction adding a conjunc...
3adant2l 1179 Deduction adding a conjunc...
3adant2r 1180 Deduction adding a conjunc...
3adant3l 1181 Deduction adding a conjunc...
3adant3r 1182 Deduction adding a conjunc...
3adant3r1 1183 Deduction adding a conjunc...
3adant3r2 1184 Deduction adding a conjunc...
3adant3r3 1185 Deduction adding a conjunc...
3ad2antl1 1186 Deduction adding conjuncts...
3ad2antl2 1187 Deduction adding conjuncts...
3ad2antl3 1188 Deduction adding conjuncts...
3ad2antr1 1189 Deduction adding conjuncts...
3ad2antr2 1190 Deduction adding conjuncts...
3ad2antr3 1191 Deduction adding conjuncts...
simpl1 1192 Simplification of conjunct...
simpl2 1193 Simplification of conjunct...
simpl3 1194 Simplification of conjunct...
simpr1 1195 Simplification of conjunct...
simpr2 1196 Simplification of conjunct...
simpr3 1197 Simplification of conjunct...
simp1l 1198 Simplification of triple c...
simp1r 1199 Simplification of triple c...
simp2l 1200 Simplification of triple c...
simp2r 1201 Simplification of triple c...
simp3l 1202 Simplification of triple c...
simp3r 1203 Simplification of triple c...
simp11 1204 Simplification of doubly t...
simp12 1205 Simplification of doubly t...
simp13 1206 Simplification of doubly t...
simp21 1207 Simplification of doubly t...
simp22 1208 Simplification of doubly t...
simp23 1209 Simplification of doubly t...
simp31 1210 Simplification of doubly t...
simp32 1211 Simplification of doubly t...
simp33 1212 Simplification of doubly t...
simpll1 1213 Simplification of conjunct...
simpll2 1214 Simplification of conjunct...
simpll3 1215 Simplification of conjunct...
simplr1 1216 Simplification of conjunct...
simplr2 1217 Simplification of conjunct...
simplr3 1218 Simplification of conjunct...
simprl1 1219 Simplification of conjunct...
simprl2 1220 Simplification of conjunct...
simprl3 1221 Simplification of conjunct...
simprr1 1222 Simplification of conjunct...
simprr2 1223 Simplification of conjunct...
simprr3 1224 Simplification of conjunct...
simpl1l 1225 Simplification of conjunct...
simpl1r 1226 Simplification of conjunct...
simpl2l 1227 Simplification of conjunct...
simpl2r 1228 Simplification of conjunct...
simpl3l 1229 Simplification of conjunct...
simpl3r 1230 Simplification of conjunct...
simpr1l 1231 Simplification of conjunct...
simpr1r 1232 Simplification of conjunct...
simpr2l 1233 Simplification of conjunct...
simpr2r 1234 Simplification of conjunct...
simpr3l 1235 Simplification of conjunct...
simpr3r 1236 Simplification of conjunct...
simp1ll 1237 Simplification of conjunct...
simp1lr 1238 Simplification of conjunct...
simp1rl 1239 Simplification of conjunct...
simp1rr 1240 Simplification of conjunct...
simp2ll 1241 Simplification of conjunct...
simp2lr 1242 Simplification of conjunct...
simp2rl 1243 Simplification of conjunct...
simp2rr 1244 Simplification of conjunct...
simp3ll 1245 Simplification of conjunct...
simp3lr 1246 Simplification of conjunct...
simp3rl 1247 Simplification of conjunct...
simp3rr 1248 Simplification of conjunct...
simpl11 1249 Simplification of conjunct...
simpl12 1250 Simplification of conjunct...
simpl13 1251 Simplification of conjunct...
simpl21 1252 Simplification of conjunct...
simpl22 1253 Simplification of conjunct...
simpl23 1254 Simplification of conjunct...
simpl31 1255 Simplification of conjunct...
simpl32 1256 Simplification of conjunct...
simpl33 1257 Simplification of conjunct...
simpr11 1258 Simplification of conjunct...
simpr12 1259 Simplification of conjunct...
simpr13 1260 Simplification of conjunct...
simpr21 1261 Simplification of conjunct...
simpr22 1262 Simplification of conjunct...
simpr23 1263 Simplification of conjunct...
simpr31 1264 Simplification of conjunct...
simpr32 1265 Simplification of conjunct...
simpr33 1266 Simplification of conjunct...
simp1l1 1267 Simplification of conjunct...
simp1l2 1268 Simplification of conjunct...
simp1l3 1269 Simplification of conjunct...
simp1r1 1270 Simplification of conjunct...
simp1r2 1271 Simplification of conjunct...
simp1r3 1272 Simplification of conjunct...
simp2l1 1273 Simplification of conjunct...
simp2l2 1274 Simplification of conjunct...
simp2l3 1275 Simplification of conjunct...
simp2r1 1276 Simplification of conjunct...
simp2r2 1277 Simplification of conjunct...
simp2r3 1278 Simplification of conjunct...
simp3l1 1279 Simplification of conjunct...
simp3l2 1280 Simplification of conjunct...
simp3l3 1281 Simplification of conjunct...
simp3r1 1282 Simplification of conjunct...
simp3r2 1283 Simplification of conjunct...
simp3r3 1284 Simplification of conjunct...
simp11l 1285 Simplification of conjunct...
simp11r 1286 Simplification of conjunct...
simp12l 1287 Simplification of conjunct...
simp12r 1288 Simplification of conjunct...
simp13l 1289 Simplification of conjunct...
simp13r 1290 Simplification of conjunct...
simp21l 1291 Simplification of conjunct...
simp21r 1292 Simplification of conjunct...
simp22l 1293 Simplification of conjunct...
simp22r 1294 Simplification of conjunct...
simp23l 1295 Simplification of conjunct...
simp23r 1296 Simplification of conjunct...
simp31l 1297 Simplification of conjunct...
simp31r 1298 Simplification of conjunct...
simp32l 1299 Simplification of conjunct...
simp32r 1300 Simplification of conjunct...
simp33l 1301 Simplification of conjunct...
simp33r 1302 Simplification of conjunct...
simp111 1303 Simplification of conjunct...
simp112 1304 Simplification of conjunct...
simp113 1305 Simplification of conjunct...
simp121 1306 Simplification of conjunct...
simp122 1307 Simplification of conjunct...
simp123 1308 Simplification of conjunct...
simp131 1309 Simplification of conjunct...
simp132 1310 Simplification of conjunct...
simp133 1311 Simplification of conjunct...
simp211 1312 Simplification of conjunct...
simp212 1313 Simplification of conjunct...
simp213 1314 Simplification of conjunct...
simp221 1315 Simplification of conjunct...
simp222 1316 Simplification of conjunct...
simp223 1317 Simplification of conjunct...
simp231 1318 Simplification of conjunct...
simp232 1319 Simplification of conjunct...
simp233 1320 Simplification of conjunct...
simp311 1321 Simplification of conjunct...
simp312 1322 Simplification of conjunct...
simp313 1323 Simplification of conjunct...
simp321 1324 Simplification of conjunct...
simp322 1325 Simplification of conjunct...
simp323 1326 Simplification of conjunct...
simp331 1327 Simplification of conjunct...
simp332 1328 Simplification of conjunct...
simp333 1329 Simplification of conjunct...
3anibar 1330 Remove a hypothesis from t...
3mix1 1331 Introduction in triple dis...
3mix2 1332 Introduction in triple dis...
3mix3 1333 Introduction in triple dis...
3mix1i 1334 Introduction in triple dis...
3mix2i 1335 Introduction in triple dis...
3mix3i 1336 Introduction in triple dis...
3mix1d 1337 Deduction introducing trip...
3mix2d 1338 Deduction introducing trip...
3mix3d 1339 Deduction introducing trip...
3pm3.2i 1340 Infer conjunction of premi...
pm3.2an3 1341 Version of ~ pm3.2 for a t...
mpbir3an 1342 Detach a conjunction of tr...
mpbir3and 1343 Detach a conjunction of tr...
syl3anbrc 1344 Syllogism inference. (Con...
syl21anbrc 1345 Syllogism inference. (Con...
3imp3i2an 1346 An elimination deduction. ...
ex3 1347 Apply ~ ex to a hypothesis...
3imp1 1348 Importation to left triple...
3impd 1349 Importation deduction for ...
3imp2 1350 Importation to right tripl...
3impdi 1351 Importation inference (und...
3impdir 1352 Importation inference (und...
3exp1 1353 Exportation from left trip...
3expd 1354 Exportation deduction for ...
3exp2 1355 Exportation from right tri...
exp5o 1356 A triple exportation infer...
exp516 1357 A triple exportation infer...
exp520 1358 A triple exportation infer...
3impexp 1359 Version of ~ impexp for a ...
3an1rs 1360 Swap conjuncts. (Contribu...
3anassrs 1361 Associative law for conjun...
4anpull2 1362 An equivalence of two four...
ad5ant245 1363 Deduction adding conjuncts...
ad5ant234 1364 Deduction adding conjuncts...
ad5ant235 1365 Deduction adding conjuncts...
ad5ant123 1366 Deduction adding conjuncts...
ad5ant124 1367 Deduction adding conjuncts...
ad5ant125 1368 Deduction adding conjuncts...
ad5ant134 1369 Deduction adding conjuncts...
ad5ant135 1370 Deduction adding conjuncts...
ad5ant145 1371 Deduction adding conjuncts...
ad5ant2345 1372 Deduction adding conjuncts...
syl3anc 1373 Syllogism combined with co...
syl13anc 1374 Syllogism combined with co...
syl31anc 1375 Syllogism combined with co...
syl112anc 1376 Syllogism combined with co...
syl121anc 1377 Syllogism combined with co...
syl211anc 1378 Syllogism combined with co...
syl23anc 1379 Syllogism combined with co...
syl32anc 1380 Syllogism combined with co...
syl122anc 1381 Syllogism combined with co...
syl212anc 1382 Syllogism combined with co...
syl221anc 1383 Syllogism combined with co...
syl113anc 1384 Syllogism combined with co...
syl131anc 1385 Syllogism combined with co...
syl311anc 1386 Syllogism combined with co...
syl33anc 1387 Syllogism combined with co...
syl222anc 1388 Syllogism combined with co...
syl123anc 1389 Syllogism combined with co...
syl132anc 1390 Syllogism combined with co...
syl213anc 1391 Syllogism combined with co...
syl231anc 1392 Syllogism combined with co...
syl312anc 1393 Syllogism combined with co...
syl321anc 1394 Syllogism combined with co...
syl133anc 1395 Syllogism combined with co...
syl313anc 1396 Syllogism combined with co...
syl331anc 1397 Syllogism combined with co...
syl223anc 1398 Syllogism combined with co...
syl232anc 1399 Syllogism combined with co...
syl322anc 1400 Syllogism combined with co...
syl233anc 1401 Syllogism combined with co...
syl323anc 1402 Syllogism combined with co...
syl332anc 1403 Syllogism combined with co...
syl333anc 1404 A syllogism inference comb...
syl3an1b 1405 A syllogism inference. (C...
syl3an2b 1406 A syllogism inference. (C...
syl3an3b 1407 A syllogism inference. (C...
syl3an1br 1408 A syllogism inference. (C...
syl3an2br 1409 A syllogism inference. (C...
syl3an3br 1410 A syllogism inference. (C...
syld3an3 1411 A syllogism inference. (C...
syld3an1 1412 A syllogism inference. (C...
syld3an2 1413 A syllogism inference. (C...
syl3anl1 1414 A syllogism inference. (C...
syl3anl2 1415 A syllogism inference. (C...
syl3anl3 1416 A syllogism inference. (C...
syl3anl 1417 A triple syllogism inferen...
syl3anr1 1418 A syllogism inference. (C...
syl3anr2 1419 A syllogism inference. (C...
syl3anr3 1420 A syllogism inference. (C...
3anidm12 1421 Inference from idempotent ...
3anidm13 1422 Inference from idempotent ...
3anidm23 1423 Inference from idempotent ...
syl2an3an 1424 ~ syl3an with antecedents ...
syl2an23an 1425 Deduction related to ~ syl...
3ori 1426 Infer implication from tri...
3jao 1427 Disjunction of three antec...
3jaob 1428 Disjunction of three antec...
3jaobOLD 1429 Obsolete version of ~ 3jao...
3jaoi 1430 Disjunction of three antec...
3jaod 1431 Disjunction of three antec...
3jaoian 1432 Disjunction of three antec...
3jaodan 1433 Disjunction of three antec...
mpjao3dan 1434 Eliminate a three-way disj...
3jaao 1435 Inference conjoining and d...
syl3an9b 1436 Nested syllogism inference...
3orbi123d 1437 Deduction joining 3 equiva...
3anbi123d 1438 Deduction joining 3 equiva...
3anbi12d 1439 Deduction conjoining and a...
3anbi13d 1440 Deduction conjoining and a...
3anbi23d 1441 Deduction conjoining and a...
3anbi1d 1442 Deduction adding conjuncts...
3anbi2d 1443 Deduction adding conjuncts...
3anbi3d 1444 Deduction adding conjuncts...
3anim123d 1445 Deduction joining 3 implic...
3orim123d 1446 Deduction joining 3 implic...
an6 1447 Rearrangement of 6 conjunc...
3an6 1448 Analogue of ~ an4 for trip...
3or6 1449 Analogue of ~ or4 for trip...
mp3an1 1450 An inference based on modu...
mp3an2 1451 An inference based on modu...
mp3an3 1452 An inference based on modu...
mp3an12 1453 An inference based on modu...
mp3an13 1454 An inference based on modu...
mp3an23 1455 An inference based on modu...
mp3an1i 1456 An inference based on modu...
mp3anl1 1457 An inference based on modu...
mp3anl2 1458 An inference based on modu...
mp3anl3 1459 An inference based on modu...
mp3anr1 1460 An inference based on modu...
mp3anr2 1461 An inference based on modu...
mp3anr3 1462 An inference based on modu...
mp3an 1463 An inference based on modu...
mpd3an3 1464 An inference based on modu...
mpd3an23 1465 An inference based on modu...
mp3and 1466 A deduction based on modus...
mp3an12i 1467 ~ mp3an with antecedents i...
mp3an2i 1468 ~ mp3an with antecedents i...
mp3an3an 1469 ~ mp3an with antecedents i...
mp3an2ani 1470 An elimination deduction. ...
biimp3a 1471 Infer implication from a l...
biimp3ar 1472 Infer implication from a l...
3anandis 1473 Inference that undistribut...
3anandirs 1474 Inference that undistribut...
ecase23d 1475 Deduction for elimination ...
3ecase 1476 Inference for elimination ...
3bior1fd 1477 A disjunction is equivalen...
3bior1fand 1478 A disjunction is equivalen...
3bior2fd 1479 A wff is equivalent to its...
3biant1d 1480 A conjunction is equivalen...
intn3an1d 1481 Introduction of a triple c...
intn3an2d 1482 Introduction of a triple c...
intn3an3d 1483 Introduction of a triple c...
an3andi 1484 Distribution of conjunctio...
an33rean 1485 Rearrange a 9-fold conjunc...
3orel2 1486 Partial elimination of a t...
3orel2OLD 1487 Obsolete version of ~ 3ore...
3orel3 1488 Partial elimination of a t...
3orel13 1489 Elimination of two disjunc...
3pm3.2ni 1490 Triple negated disjunction...
an42ds 1491 Inference exchanging the l...
nanan 1494 Conjunction in terms of al...
dfnan2 1495 Alternative denial in term...
nanor 1496 Alternative denial in term...
nancom 1497 Alternative denial is comm...
nannan 1498 Nested alternative denials...
nanim 1499 Implication in terms of al...
nannot 1500 Negation in terms of alter...
nanbi 1501 Biconditional in terms of ...
nanbi1 1502 Introduce a right anti-con...
nanbi2 1503 Introduce a left anti-conj...
nanbi12 1504 Join two logical equivalen...
nanbi1i 1505 Introduce a right anti-con...
nanbi2i 1506 Introduce a left anti-conj...
nanbi12i 1507 Join two logical equivalen...
nanbi1d 1508 Introduce a right anti-con...
nanbi2d 1509 Introduce a left anti-conj...
nanbi12d 1510 Join two logical equivalen...
nanass 1511 A characterization of when...
xnor 1514 Two ways to write XNOR (ex...
xorcom 1515 The connector ` \/_ ` is c...
xorass 1516 The connector ` \/_ ` is a...
excxor 1517 This tautology shows that ...
xor2 1518 Two ways to express "exclu...
xoror 1519 Exclusive disjunction impl...
xornan 1520 Exclusive disjunction impl...
xornan2 1521 XOR implies NAND (written ...
xorneg2 1522 The connector ` \/_ ` is n...
xorneg1 1523 The connector ` \/_ ` is n...
xorneg 1524 The connector ` \/_ ` is u...
xorbi12i 1525 Equality property for excl...
xorbi12d 1526 Equality property for excl...
anxordi 1527 Conjunction distributes ov...
xorexmid 1528 Exclusive-or variant of th...
norcom 1531 The connector ` -\/ ` is c...
nornot 1532 ` -. ` is expressible via ...
noran 1533 ` /\ ` is expressible via ...
noror 1534 ` \/ ` is expressible via ...
norasslem1 1535 This lemma shows the equiv...
norasslem2 1536 This lemma specializes ~ b...
norasslem3 1537 This lemma specializes ~ b...
norass 1538 A characterization of when...
trujust 1543 Soundness justification th...
tru 1545 The truth value ` T. ` is ...
dftru2 1546 An alternate definition of...
trut 1547 A proposition is equivalen...
mptru 1548 Eliminate ` T. ` as an ant...
tbtru 1549 A proposition is equivalen...
bitru 1550 A theorem is equivalent to...
trud 1551 Anything implies ` T. ` . ...
truan 1552 True can be removed from a...
fal 1555 The truth value ` F. ` is ...
nbfal 1556 The negation of a proposit...
bifal 1557 A contradiction is equival...
falim 1558 The truth value ` F. ` imp...
falimd 1559 The truth value ` F. ` imp...
dfnot 1560 Given falsum ` F. ` , we c...
inegd 1561 Negation introduction rule...
efald 1562 Deduction based on reducti...
pm2.21fal 1563 If a wff and its negation ...
truimtru 1564 A ` -> ` identity. (Contr...
truimfal 1565 A ` -> ` identity. (Contr...
falimtru 1566 A ` -> ` identity. (Contr...
falimfal 1567 A ` -> ` identity. (Contr...
nottru 1568 A ` -. ` identity. (Contr...
notfal 1569 A ` -. ` identity. (Contr...
trubitru 1570 A ` <-> ` identity. (Cont...
falbitru 1571 A ` <-> ` identity. (Cont...
trubifal 1572 A ` <-> ` identity. (Cont...
falbifal 1573 A ` <-> ` identity. (Cont...
truantru 1574 A ` /\ ` identity. (Contr...
truanfal 1575 A ` /\ ` identity. (Contr...
falantru 1576 A ` /\ ` identity. (Contr...
falanfal 1577 A ` /\ ` identity. (Contr...
truortru 1578 A ` \/ ` identity. (Contr...
truorfal 1579 A ` \/ ` identity. (Contr...
falortru 1580 A ` \/ ` identity. (Contr...
falorfal 1581 A ` \/ ` identity. (Contr...
trunantru 1582 A ` -/\ ` identity. (Cont...
trunanfal 1583 A ` -/\ ` identity. (Cont...
falnantru 1584 A ` -/\ ` identity. (Cont...
falnanfal 1585 A ` -/\ ` identity. (Cont...
truxortru 1586 A ` \/_ ` identity. (Cont...
truxorfal 1587 A ` \/_ ` identity. (Cont...
falxortru 1588 A ` \/_ ` identity. (Cont...
falxorfal 1589 A ` \/_ ` identity. (Cont...
trunortru 1590 A ` -\/ ` identity. (Cont...
trunorfal 1591 A ` -\/ ` identity. (Cont...
falnortru 1592 A ` -\/ ` identity. (Cont...
falnorfal 1593 A ` -\/ ` identity. (Cont...
hadbi123d 1596 Equality theorem for the a...
hadbi123i 1597 Equality theorem for the a...
hadass 1598 Associative law for the ad...
hadbi 1599 The adder sum is the same ...
hadcoma 1600 Commutative law for the ad...
hadcomb 1601 Commutative law for the ad...
hadrot 1602 Rotation law for the adder...
hadnot 1603 The adder sum distributes ...
had1 1604 If the first input is true...
had0 1605 If the first input is fals...
hadifp 1606 The value of the adder sum...
cador 1609 The adder carry in disjunc...
cadan 1610 The adder carry in conjunc...
cadbi123d 1611 Equality theorem for the a...
cadbi123i 1612 Equality theorem for the a...
cadcoma 1613 Commutative law for the ad...
cadcomb 1614 Commutative law for the ad...
cadrot 1615 Rotation law for the adder...
cadnot 1616 The adder carry distribute...
cad11 1617 If (at least) two inputs a...
cad1 1618 If one input is true, then...
cad0 1619 If one input is false, the...
cadifp 1620 The value of the carry is,...
cadtru 1621 The adder carry is true as...
minimp 1622 A single axiom for minimal...
minimp-syllsimp 1623 Derivation of Syll-Simp ( ...
minimp-ax1 1624 Derivation of ~ ax-1 from ...
minimp-ax2c 1625 Derivation of a commuted f...
minimp-ax2 1626 Derivation of ~ ax-2 from ...
minimp-pm2.43 1627 Derivation of ~ pm2.43 (al...
impsingle 1628 The shortest single axiom ...
impsingle-step4 1629 Derivation of impsingle-st...
impsingle-step8 1630 Derivation of impsingle-st...
impsingle-ax1 1631 Derivation of impsingle-ax...
impsingle-step15 1632 Derivation of impsingle-st...
impsingle-step18 1633 Derivation of impsingle-st...
impsingle-step19 1634 Derivation of impsingle-st...
impsingle-step20 1635 Derivation of impsingle-st...
impsingle-step21 1636 Derivation of impsingle-st...
impsingle-step22 1637 Derivation of impsingle-st...
impsingle-step25 1638 Derivation of impsingle-st...
impsingle-imim1 1639 Derivation of impsingle-im...
impsingle-peirce 1640 Derivation of impsingle-pe...
tarski-bernays-ax2 1641 Derivation of ~ ax-2 from ...
meredith 1642 Carew Meredith's sole axio...
merlem1 1643 Step 3 of Meredith's proof...
merlem2 1644 Step 4 of Meredith's proof...
merlem3 1645 Step 7 of Meredith's proof...
merlem4 1646 Step 8 of Meredith's proof...
merlem5 1647 Step 11 of Meredith's proo...
merlem6 1648 Step 12 of Meredith's proo...
merlem7 1649 Between steps 14 and 15 of...
merlem8 1650 Step 15 of Meredith's proo...
merlem9 1651 Step 18 of Meredith's proo...
merlem10 1652 Step 19 of Meredith's proo...
merlem11 1653 Step 20 of Meredith's proo...
merlem12 1654 Step 28 of Meredith's proo...
merlem13 1655 Step 35 of Meredith's proo...
luk-1 1656 1 of 3 axioms for proposit...
luk-2 1657 2 of 3 axioms for proposit...
luk-3 1658 3 of 3 axioms for proposit...
luklem1 1659 Used to rederive standard ...
luklem2 1660 Used to rederive standard ...
luklem3 1661 Used to rederive standard ...
luklem4 1662 Used to rederive standard ...
luklem5 1663 Used to rederive standard ...
luklem6 1664 Used to rederive standard ...
luklem7 1665 Used to rederive standard ...
luklem8 1666 Used to rederive standard ...
ax1 1667 Standard propositional axi...
ax2 1668 Standard propositional axi...
ax3 1669 Standard propositional axi...
nic-dfim 1670 This theorem "defines" imp...
nic-dfneg 1671 This theorem "defines" neg...
nic-mp 1672 Derive Nicod's rule of mod...
nic-mpALT 1673 A direct proof of ~ nic-mp...
nic-ax 1674 Nicod's axiom derived from...
nic-axALT 1675 A direct proof of ~ nic-ax...
nic-imp 1676 Inference for ~ nic-mp usi...
nic-idlem1 1677 Lemma for ~ nic-id . (Con...
nic-idlem2 1678 Lemma for ~ nic-id . Infe...
nic-id 1679 Theorem ~ id expressed wit...
nic-swap 1680 The connector ` -/\ ` is s...
nic-isw1 1681 Inference version of ~ nic...
nic-isw2 1682 Inference for swapping nes...
nic-iimp1 1683 Inference version of ~ nic...
nic-iimp2 1684 Inference version of ~ nic...
nic-idel 1685 Inference to remove the tr...
nic-ich 1686 Chained inference. (Contr...
nic-idbl 1687 Double the terms. Since d...
nic-bijust 1688 Biconditional justificatio...
nic-bi1 1689 Inference to extract one s...
nic-bi2 1690 Inference to extract the o...
nic-stdmp 1691 Derive the standard modus ...
nic-luk1 1692 Proof of ~ luk-1 from ~ ni...
nic-luk2 1693 Proof of ~ luk-2 from ~ ni...
nic-luk3 1694 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1695 This alternative axiom for...
lukshefth1 1696 Lemma for ~ renicax . (Co...
lukshefth2 1697 Lemma for ~ renicax . (Co...
renicax 1698 A rederivation of ~ nic-ax...
tbw-bijust 1699 Justification for ~ tbw-ne...
tbw-negdf 1700 The definition of negation...
tbw-ax1 1701 The first of four axioms i...
tbw-ax2 1702 The second of four axioms ...
tbw-ax3 1703 The third of four axioms i...
tbw-ax4 1704 The fourth of four axioms ...
tbwsyl 1705 Used to rederive the Lukas...
tbwlem1 1706 Used to rederive the Lukas...
tbwlem2 1707 Used to rederive the Lukas...
tbwlem3 1708 Used to rederive the Lukas...
tbwlem4 1709 Used to rederive the Lukas...
tbwlem5 1710 Used to rederive the Lukas...
re1luk1 1711 ~ luk-1 derived from the T...
re1luk2 1712 ~ luk-2 derived from the T...
re1luk3 1713 ~ luk-3 derived from the T...
merco1 1714 A single axiom for proposi...
merco1lem1 1715 Used to rederive the Tarsk...
retbwax4 1716 ~ tbw-ax4 rederived from ~...
retbwax2 1717 ~ tbw-ax2 rederived from ~...
merco1lem2 1718 Used to rederive the Tarsk...
merco1lem3 1719 Used to rederive the Tarsk...
merco1lem4 1720 Used to rederive the Tarsk...
merco1lem5 1721 Used to rederive the Tarsk...
merco1lem6 1722 Used to rederive the Tarsk...
merco1lem7 1723 Used to rederive the Tarsk...
retbwax3 1724 ~ tbw-ax3 rederived from ~...
merco1lem8 1725 Used to rederive the Tarsk...
merco1lem9 1726 Used to rederive the Tarsk...
merco1lem10 1727 Used to rederive the Tarsk...
merco1lem11 1728 Used to rederive the Tarsk...
merco1lem12 1729 Used to rederive the Tarsk...
merco1lem13 1730 Used to rederive the Tarsk...
merco1lem14 1731 Used to rederive the Tarsk...
merco1lem15 1732 Used to rederive the Tarsk...
merco1lem16 1733 Used to rederive the Tarsk...
merco1lem17 1734 Used to rederive the Tarsk...
merco1lem18 1735 Used to rederive the Tarsk...
retbwax1 1736 ~ tbw-ax1 rederived from ~...
merco2 1737 A single axiom for proposi...
mercolem1 1738 Used to rederive the Tarsk...
mercolem2 1739 Used to rederive the Tarsk...
mercolem3 1740 Used to rederive the Tarsk...
mercolem4 1741 Used to rederive the Tarsk...
mercolem5 1742 Used to rederive the Tarsk...
mercolem6 1743 Used to rederive the Tarsk...
mercolem7 1744 Used to rederive the Tarsk...
mercolem8 1745 Used to rederive the Tarsk...
re1tbw1 1746 ~ tbw-ax1 rederived from ~...
re1tbw2 1747 ~ tbw-ax2 rederived from ~...
re1tbw3 1748 ~ tbw-ax3 rederived from ~...
re1tbw4 1749 ~ tbw-ax4 rederived from ~...
rb-bijust 1750 Justification for ~ rb-imd...
rb-imdf 1751 The definition of implicat...
anmp 1752 Modus ponens for ` { \/ , ...
rb-ax1 1753 The first of four axioms i...
rb-ax2 1754 The second of four axioms ...
rb-ax3 1755 The third of four axioms i...
rb-ax4 1756 The fourth of four axioms ...
rbsyl 1757 Used to rederive the Lukas...
rblem1 1758 Used to rederive the Lukas...
rblem2 1759 Used to rederive the Lukas...
rblem3 1760 Used to rederive the Lukas...
rblem4 1761 Used to rederive the Lukas...
rblem5 1762 Used to rederive the Lukas...
rblem6 1763 Used to rederive the Lukas...
rblem7 1764 Used to rederive the Lukas...
re1axmp 1765 ~ ax-mp derived from Russe...
re2luk1 1766 ~ luk-1 derived from Russe...
re2luk2 1767 ~ luk-2 derived from Russe...
re2luk3 1768 ~ luk-3 derived from Russe...
mptnan 1769 Modus ponendo tollens 1, o...
mptxor 1770 Modus ponendo tollens 2, o...
mtpor 1771 Modus tollendo ponens (inc...
mtpxor 1772 Modus tollendo ponens (ori...
stoic1a 1773 Stoic logic Thema 1 (part ...
stoic1b 1774 Stoic logic Thema 1 (part ...
stoic2a 1775 Stoic logic Thema 2 versio...
stoic2b 1776 Stoic logic Thema 2 versio...
stoic3 1777 Stoic logic Thema 3. Stat...
stoic4a 1778 Stoic logic Thema 4 versio...
stoic4b 1779 Stoic logic Thema 4 versio...
alnex 1782 Universal quantification o...
eximal 1783 An equivalence between an ...
nf2 1786 Alternate definition of no...
nf3 1787 Alternate definition of no...
nf4 1788 Alternate definition of no...
nfi 1789 Deduce that ` x ` is not f...
nfri 1790 Consequence of the definit...
nfd 1791 Deduce that ` x ` is not f...
nfrd 1792 Consequence of the definit...
nftht 1793 Closed form of ~ nfth . (...
nfntht 1794 Closed form of ~ nfnth . ...
nfntht2 1795 Closed form of ~ nfnth . ...
gen2 1797 Generalization applied twi...
mpg 1798 Modus ponens combined with...
mpgbi 1799 Modus ponens on biconditio...
mpgbir 1800 Modus ponens on biconditio...
nex 1801 Generalization rule for ne...
nfth 1802 No variable is (effectivel...
nfnth 1803 No variable is (effectivel...
hbth 1804 No variable is (effectivel...
nftru 1805 The true constant has no f...
nffal 1806 The false constant has no ...
sptruw 1807 Version of ~ sp when ` ph ...
altru 1808 For all sets, ` T. ` is tr...
alfal 1809 For all sets, ` -. F. ` is...
alim 1811 Restatement of Axiom ~ ax-...
alimi 1812 Inference quantifying both...
2alimi 1813 Inference doubly quantifyi...
ala1 1814 Add an antecedent in a uni...
al2im 1815 Closed form of ~ al2imi . ...
al2imi 1816 Inference quantifying ante...
alanimi 1817 Variant of ~ al2imi with c...
alimdh 1818 Deduction form of Theorem ...
albi 1819 Theorem 19.15 of [Margaris...
albii 1820 Inference adding universal...
2albii 1821 Inference adding two unive...
3albii 1822 Inference adding three uni...
sylgt 1823 Closed form of ~ sylg . (...
sylg 1824 A syllogism combined with ...
alrimih 1825 Inference form of Theorem ...
hbxfrbi 1826 A utility lemma to transfe...
alex 1827 Universal quantifier in te...
exnal 1828 Existential quantification...
2nalexn 1829 Part of theorem *11.5 in [...
2exnaln 1830 Theorem *11.22 in [Whitehe...
2nexaln 1831 Theorem *11.25 in [Whitehe...
alimex 1832 An equivalence between an ...
aleximi 1833 A variant of ~ al2imi : in...
alexbii 1834 Biconditional form of ~ al...
exim 1835 Theorem 19.22 of [Margaris...
eximi 1836 Inference adding existenti...
2eximi 1837 Inference adding two exist...
eximii 1838 Inference associated with ...
exa1 1839 Add an antecedent in an ex...
19.38 1840 Theorem 19.38 of [Margaris...
19.38a 1841 Under a nonfreeness hypoth...
19.38b 1842 Under a nonfreeness hypoth...
imnang 1843 Quantified implication in ...
alinexa 1844 A transformation of quanti...
exnalimn 1845 Existential quantification...
alexn 1846 A relationship between two...
2exnexn 1847 Theorem *11.51 in [Whitehe...
exbi 1848 Theorem 19.18 of [Margaris...
exbii 1849 Inference adding existenti...
2exbii 1850 Inference adding two exist...
3exbii 1851 Inference adding three exi...
nfbiit 1852 Equivalence theorem for th...
nfbii 1853 Equality theorem for the n...
nfxfr 1854 A utility lemma to transfe...
nfxfrd 1855 A utility lemma to transfe...
nfnbi 1856 A variable is nonfree in a...
nfnt 1857 If a variable is nonfree i...
nfn 1858 Inference associated with ...
nfnd 1859 Deduction associated with ...
exanali 1860 A transformation of quanti...
2exanali 1861 Theorem *11.521 in [Whiteh...
exancom 1862 Commutation of conjunction...
exan 1863 Place a conjunct in the sc...
alrimdh 1864 Deduction form of Theorem ...
eximdh 1865 Deduction from Theorem 19....
nexdh 1866 Deduction for generalizati...
albidh 1867 Formula-building rule for ...
exbidh 1868 Formula-building rule for ...
exsimpl 1869 Simplification of an exist...
exsimpr 1870 Simplification of an exist...
19.26 1871 Theorem 19.26 of [Margaris...
19.26-2 1872 Theorem ~ 19.26 with two q...
19.26-3an 1873 Theorem ~ 19.26 with tripl...
19.29 1874 Theorem 19.29 of [Margaris...
19.29r 1875 Variation of ~ 19.29 . (C...
19.29r2 1876 Variation of ~ 19.29r with...
19.29x 1877 Variation of ~ 19.29 with ...
19.35 1878 Theorem 19.35 of [Margaris...
19.35i 1879 Inference associated with ...
19.35ri 1880 Inference associated with ...
19.25 1881 Theorem 19.25 of [Margaris...
19.30 1882 Theorem 19.30 of [Margaris...
19.43 1883 Theorem 19.43 of [Margaris...
19.43OLD 1884 Obsolete proof of ~ 19.43 ...
19.33 1885 Theorem 19.33 of [Margaris...
19.33b 1886 The antecedent provides a ...
19.40 1887 Theorem 19.40 of [Margaris...
19.40-2 1888 Theorem *11.42 in [Whitehe...
19.40b 1889 The antecedent provides a ...
albiim 1890 Split a biconditional and ...
2albiim 1891 Split a biconditional and ...
exintrbi 1892 Add/remove a conjunct in t...
exintr 1893 Introduce a conjunct in th...
alsyl 1894 Universally quantified and...
nfimd 1895 If in a context ` x ` is n...
nfimt 1896 Closed form of ~ nfim and ...
nfim 1897 If ` x ` is not free in ` ...
nfand 1898 If in a context ` x ` is n...
nf3and 1899 Deduction form of bound-va...
nfan 1900 If ` x ` is not free in ` ...
nfnan 1901 If ` x ` is not free in ` ...
nf3an 1902 If ` x ` is not free in ` ...
nfbid 1903 If in a context ` x ` is n...
nfbi 1904 If ` x ` is not free in ` ...
nfor 1905 If ` x ` is not free in ` ...
nf3or 1906 If ` x ` is not free in ` ...
empty 1907 Two characterizations of t...
emptyex 1908 On the empty domain, any e...
emptyal 1909 On the empty domain, any u...
emptynf 1910 On the empty domain, any v...
ax5d 1912 Version of ~ ax-5 with ant...
ax5e 1913 A rephrasing of ~ ax-5 usi...
ax5ea 1914 If a formula holds for som...
nfv 1915 If ` x ` is not present in...
nfvd 1916 ~ nfv with antecedent. Us...
alimdv 1917 Deduction form of Theorem ...
eximdv 1918 Deduction form of Theorem ...
2alimdv 1919 Deduction form of Theorem ...
2eximdv 1920 Deduction form of Theorem ...
albidv 1921 Formula-building rule for ...
exbidv 1922 Formula-building rule for ...
nfbidv 1923 An equality theorem for no...
2albidv 1924 Formula-building rule for ...
2exbidv 1925 Formula-building rule for ...
3exbidv 1926 Formula-building rule for ...
4exbidv 1927 Formula-building rule for ...
alrimiv 1928 Inference form of Theorem ...
alrimivv 1929 Inference form of Theorem ...
alrimdv 1930 Deduction form of Theorem ...
exlimiv 1931 Inference form of Theorem ...
exlimiiv 1932 Inference (Rule C) associa...
exlimivv 1933 Inference form of Theorem ...
exlimdv 1934 Deduction form of Theorem ...
exlimdvv 1935 Deduction form of Theorem ...
exlimddv 1936 Existential elimination ru...
nexdv 1937 Deduction for generalizati...
2ax5 1938 Quantification of two vari...
stdpc5v 1939 Version of ~ stdpc5 with a...
19.21v 1940 Version of ~ 19.21 with a ...
19.32v 1941 Version of ~ 19.32 with a ...
19.31v 1942 Version of ~ 19.31 with a ...
19.23v 1943 Version of ~ 19.23 with a ...
19.23vv 1944 Theorem ~ 19.23v extended ...
pm11.53v 1945 Version of ~ pm11.53 with ...
19.36imv 1946 One direction of ~ 19.36v ...
19.36iv 1947 Inference associated with ...
19.37imv 1948 One direction of ~ 19.37v ...
19.37iv 1949 Inference associated with ...
19.41v 1950 Version of ~ 19.41 with a ...
19.41vv 1951 Version of ~ 19.41 with tw...
19.41vvv 1952 Version of ~ 19.41 with th...
19.41vvvv 1953 Version of ~ 19.41 with fo...
19.42v 1954 Version of ~ 19.42 with a ...
exdistr 1955 Distribution of existentia...
exdistrv 1956 Distribute a pair of exist...
4exdistrv 1957 Distribute two pairs of ex...
19.42vv 1958 Version of ~ 19.42 with tw...
exdistr2 1959 Distribution of existentia...
19.42vvv 1960 Version of ~ 19.42 with th...
3exdistr 1961 Distribution of existentia...
4exdistr 1962 Distribution of existentia...
weq 1963 Extend wff definition to i...
speimfw 1964 Specialization, with addit...
speimfwALT 1965 Alternate proof of ~ speim...
spimfw 1966 Specialization, with addit...
ax12i 1967 Inference that has ~ ax-12...
ax6v 1969 Axiom B7 of [Tarski] p. 75...
ax6ev 1970 At least one individual ex...
spimw 1971 Specialization. Lemma 8 o...
spimew 1972 Existential introduction, ...
speiv 1973 Inference from existential...
speivw 1974 Version of ~ spei with a d...
exgen 1975 Rule of existential genera...
extru 1976 There exists a variable su...
19.2 1977 Theorem 19.2 of [Margaris]...
19.2d 1978 Deduction associated with ...
19.8w 1979 Weak version of ~ 19.8a an...
spnfw 1980 Weak version of ~ sp . Us...
spfalw 1981 Version of ~ sp when ` ph ...
spvw 1982 Version of ~ sp when ` x `...
19.3v 1983 Version of ~ 19.3 with a d...
19.8v 1984 Version of ~ 19.8a with a ...
19.9v 1985 Version of ~ 19.9 with a d...
spimevw 1986 Existential introduction, ...
spimvw 1987 A weak form of specializat...
spsv 1988 Generalization of antecede...
spvv 1989 Specialization, using impl...
chvarvv 1990 Implicit substitution of `...
19.39 1991 Theorem 19.39 of [Margaris...
19.24 1992 Theorem 19.24 of [Margaris...
19.34 1993 Theorem 19.34 of [Margaris...
19.36v 1994 Version of ~ 19.36 with a ...
19.12vvv 1995 Version of ~ 19.12vv with ...
19.27v 1996 Version of ~ 19.27 with a ...
19.28v 1997 Version of ~ 19.28 with a ...
19.37v 1998 Version of ~ 19.37 with a ...
19.44v 1999 Version of ~ 19.44 with a ...
19.45v 2000 Version of ~ 19.45 with a ...
equs4v 2001 Version of ~ equs4 with a ...
alequexv 2002 Version of ~ equs4v with i...
exsbim 2003 One direction of the equiv...
equsv 2004 If a formula does not cont...
equsalvw 2005 Version of ~ equsalv with ...
equsexvw 2006 Version of ~ equsexv with ...
cbvaliw 2007 Change bound variable. Us...
cbvalivw 2008 Change bound variable. Us...
ax7v 2010 Weakened version of ~ ax-7...
ax7v1 2011 First of two weakened vers...
ax7v2 2012 Second of two weakened ver...
equid 2013 Identity law for equality....
nfequid 2014 Bound-variable hypothesis ...
equcomiv 2015 Weaker form of ~ equcomi w...
ax6evr 2016 A commuted form of ~ ax6ev...
ax7 2017 Proof of ~ ax-7 from ~ ax7...
equcomi 2018 Commutative law for equali...
equcom 2019 Commutative law for equali...
equcomd 2020 Deduction form of ~ equcom...
equcoms 2021 An inference commuting equ...
equtr 2022 A transitive law for equal...
equtrr 2023 A transitive law for equal...
equeuclr 2024 Commuted version of ~ eque...
equeucl 2025 Equality is a left-Euclide...
equequ1 2026 An equivalence law for equ...
equequ2 2027 An equivalence law for equ...
equtr2 2028 Equality is a left-Euclide...
stdpc6 2029 One of the two equality ax...
equvinv 2030 A variable introduction la...
equvinva 2031 A modified version of the ...
equvelv 2032 A biconditional form of ~ ...
ax13b 2033 An equivalence between two...
spfw 2034 Weak version of ~ sp . Us...
spw 2035 Weak version of the specia...
cbvalw 2036 Change bound variable. Us...
cbvalvw 2037 Change bound variable. Us...
cbvexvw 2038 Change bound variable. Us...
cbvaldvaw 2039 Rule used to change the bo...
cbvexdvaw 2040 Rule used to change the bo...
cbval2vw 2041 Rule used to change bound ...
cbvex2vw 2042 Rule used to change bound ...
cbvex4vw 2043 Rule used to change bound ...
alcomimw 2044 Weak version of ~ ax-11 . ...
excomimw 2045 Weak version of ~ excomim ...
alcomw 2046 Weak version of ~ alcom an...
excomw 2047 Weak version of ~ excom an...
hbn1fw 2048 Weak version of ~ ax-10 fr...
hbn1w 2049 Weak version of ~ hbn1 . ...
hba1w 2050 Weak version of ~ hba1 . ...
hbe1w 2051 Weak version of ~ hbe1 . ...
hbalw 2052 Weak version of ~ hbal . ...
19.8aw 2053 If a formula is true, then...
exexw 2054 Existential quantification...
spaev 2055 A special instance of ~ sp...
cbvaev 2056 Change bound variable in a...
aevlem0 2057 Lemma for ~ aevlem . Inst...
aevlem 2058 Lemma for ~ aev and ~ axc1...
aeveq 2059 The antecedent ` A. x x = ...
aev 2060 A "distinctor elimination"...
aev2 2061 A version of ~ aev with tw...
hbaev 2062 All variables are effectiv...
naev 2063 If some set variables can ...
naev2 2064 Generalization of ~ hbnaev...
hbnaev 2065 Any variable is free in ` ...
sbjust 2066 Justification theorem for ...
sbt 2069 A substitution into a theo...
sbtru 2070 The result of substituting...
stdpc4 2071 The specialization axiom o...
sbtALT 2072 Alternate proof of ~ sbt ,...
2stdpc4 2073 A double specialization us...
sbi1 2074 Distribute substitution ov...
spsbim 2075 Distribute substitution ov...
spsbbi 2076 Biconditional property for...
sbimi 2077 Distribute substitution ov...
sb2imi 2078 Distribute substitution ov...
sbbii 2079 Infer substitution into bo...
2sbbii 2080 Infer double substitution ...
sbimdv 2081 Deduction substituting bot...
sbbidv 2082 Deduction substituting bot...
sban 2083 Conjunction inside and out...
sb3an 2084 Threefold conjunction insi...
spsbe 2085 Existential generalization...
sbequ 2086 Equality property for subs...
sbequi 2087 An equality theorem for su...
sb6 2088 Alternate definition of su...
2sb6 2089 Equivalence for double sub...
sb1v 2090 One direction of ~ sb5 , p...
sbv 2091 Substitution for a variabl...
sbcom4 2092 Commutativity law for subs...
pm11.07 2093 Axiom *11.07 in [Whitehead...
sbrimvw 2094 Substitution in an implica...
sbbiiev 2095 An equivalence of substitu...
sbievw 2096 Conversion of implicit sub...
sbievwOLD 2097 Obsolete version of ~ sbie...
sbiedvw 2098 Conversion of implicit sub...
2sbievw 2099 Conversion of double impli...
sbcom3vv 2100 Substituting ` y ` for ` x...
sbievw2 2101 ~ sbievw applied twice, av...
sbco2vv 2102 A composition law for subs...
cbvsbv 2103 Change the bound variable ...
sbco4lem 2104 Lemma for ~ sbco4 . It re...
sbco4 2105 Two ways of exchanging two...
equsb3 2106 Substitution in an equalit...
equsb3r 2107 Substitution applied to th...
equsb1v 2108 Substitution applied to an...
nsb 2109 Any substitution in an alw...
sbn1 2110 One direction of ~ sbn , u...
wel 2112 Extend wff definition to i...
ax8v 2114 Weakened version of ~ ax-8...
ax8v1 2115 First of two weakened vers...
ax8v2 2116 Second of two weakened ver...
ax8 2117 Proof of ~ ax-8 from ~ ax8...
elequ1 2118 An identity law for the no...
elsb1 2119 Substitution for the first...
cleljust 2120 When the class variables i...
ax9v 2122 Weakened version of ~ ax-9...
ax9v1 2123 First of two weakened vers...
ax9v2 2124 Second of two weakened ver...
ax9 2125 Proof of ~ ax-9 from ~ ax9...
elequ2 2126 An identity law for the no...
elequ2g 2127 A form of ~ elequ2 with a ...
elsb2 2128 Substitution for the secon...
elequ12 2129 An identity law for the no...
ru0 2130 The FOL statement used in ...
ax6dgen 2131 Tarski's system uses the w...
ax10w 2132 Weak version of ~ ax-10 fr...
ax11w 2133 Weak version of ~ ax-11 fr...
ax11dgen 2134 Degenerate instance of ~ a...
ax12wlem 2135 Lemma for weak version of ...
ax12w 2136 Weak version of ~ ax-12 fr...
ax12dgen 2137 Degenerate instance of ~ a...
ax12wdemo 2138 Example of an application ...
ax13w 2139 Weak version (principal in...
ax13dgen1 2140 Degenerate instance of ~ a...
ax13dgen2 2141 Degenerate instance of ~ a...
ax13dgen3 2142 Degenerate instance of ~ a...
ax13dgen4 2143 Degenerate instance of ~ a...
hbn1 2145 Alias for ~ ax-10 to be us...
hbe1 2146 The setvar ` x ` is not fr...
hbe1a 2147 Dual statement of ~ hbe1 ....
nf5-1 2148 One direction of ~ nf5 can...
nf5i 2149 Deduce that ` x ` is not f...
nf5dh 2150 Deduce that ` x ` is not f...
nf5dv 2151 Apply the definition of no...
nfnaew 2152 All variables are effectiv...
nfe1 2153 The setvar ` x ` is not fr...
nfa1 2154 The setvar ` x ` is not fr...
nfna1 2155 A convenience theorem part...
nfia1 2156 Lemma 23 of [Monk2] p. 114...
nfnf1 2157 The setvar ` x ` is not fr...
modal5 2158 The analogue in our predic...
nfs1v 2159 The setvar ` x ` is not fr...
alcoms 2161 Swap quantifiers in an ant...
alcom 2162 Theorem 19.5 of [Margaris]...
alrot3 2163 Theorem *11.21 in [Whitehe...
alrot4 2164 Rotate four universal quan...
excom 2165 Theorem 19.11 of [Margaris...
excomim 2166 One direction of Theorem 1...
excom13 2167 Swap 1st and 3rd existenti...
exrot3 2168 Rotate existential quantif...
exrot4 2169 Rotate existential quantif...
hbal 2170 If ` x ` is not free in ` ...
hbald 2171 Deduction form of bound-va...
sbal 2172 Move universal quantifier ...
sbalv 2173 Quantify with new variable...
hbsbw 2174 If ` z ` is not free in ` ...
hbsbwOLD 2175 Obsolete version of ~ hbsb...
sbcom2 2176 Commutativity law for subs...
sbco4lemOLD 2177 Obsolete version of ~ sbco...
sbco4OLD 2178 Obsolete version of ~ sbco...
nfa2 2179 Lemma 24 of [Monk2] p. 114...
ax12v 2181 This is essentially Axiom ...
ax12v2 2182 It is possible to remove a...
ax12ev2 2183 Version of ~ ax12v2 rewrit...
19.8a 2184 If a wff is true, it is tr...
19.8ad 2185 If a wff is true, it is tr...
sp 2186 Specialization. A univers...
spi 2187 Inference rule of universa...
sps 2188 Generalization of antecede...
2sp 2189 A double specialization (s...
spsd 2190 Deduction generalizing ant...
19.2g 2191 Theorem 19.2 of [Margaris]...
19.21bi 2192 Inference form of ~ 19.21 ...
19.21bbi 2193 Inference removing two uni...
19.23bi 2194 Inference form of Theorem ...
nexr 2195 Inference associated with ...
qexmid 2196 Quantified excluded middle...
nf5r 2197 Consequence of the definit...
nf5ri 2198 Consequence of the definit...
nf5rd 2199 Consequence of the definit...
spimedv 2200 Deduction version of ~ spi...
spimefv 2201 Version of ~ spime with a ...
nfim1 2202 A closed form of ~ nfim . ...
nfan1 2203 A closed form of ~ nfan . ...
19.3t 2204 Closed form of ~ 19.3 and ...
19.3 2205 A wff may be quantified wi...
19.9d 2206 A deduction version of one...
19.9t 2207 Closed form of ~ 19.9 and ...
19.9 2208 A wff may be existentially...
19.21t 2209 Closed form of Theorem 19....
19.21 2210 Theorem 19.21 of [Margaris...
stdpc5 2211 An axiom scheme of standar...
19.21-2 2212 Version of ~ 19.21 with tw...
19.23t 2213 Closed form of Theorem 19....
19.23 2214 Theorem 19.23 of [Margaris...
alimd 2215 Deduction form of Theorem ...
alrimi 2216 Inference form of Theorem ...
alrimdd 2217 Deduction form of Theorem ...
alrimd 2218 Deduction form of Theorem ...
eximd 2219 Deduction form of Theorem ...
exlimi 2220 Inference associated with ...
exlimd 2221 Deduction form of Theorem ...
exlimimdd 2222 Existential elimination ru...
exlimdd 2223 Existential elimination ru...
nexd 2224 Deduction for generalizati...
albid 2225 Formula-building rule for ...
exbid 2226 Formula-building rule for ...
nfbidf 2227 An equality theorem for ef...
19.16 2228 Theorem 19.16 of [Margaris...
19.17 2229 Theorem 19.17 of [Margaris...
19.27 2230 Theorem 19.27 of [Margaris...
19.28 2231 Theorem 19.28 of [Margaris...
19.19 2232 Theorem 19.19 of [Margaris...
19.36 2233 Theorem 19.36 of [Margaris...
19.36i 2234 Inference associated with ...
19.37 2235 Theorem 19.37 of [Margaris...
19.32 2236 Theorem 19.32 of [Margaris...
19.31 2237 Theorem 19.31 of [Margaris...
19.41 2238 Theorem 19.41 of [Margaris...
19.42 2239 Theorem 19.42 of [Margaris...
19.44 2240 Theorem 19.44 of [Margaris...
19.45 2241 Theorem 19.45 of [Margaris...
spimfv 2242 Specialization, using impl...
chvarfv 2243 Implicit substitution of `...
cbv3v2 2244 Version of ~ cbv3 with two...
sbalex 2245 Equivalence of two ways to...
sbalexOLD 2246 Obsolete version of ~ sbal...
sb4av 2247 Version of ~ sb4a with a d...
sbimd 2248 Deduction substituting bot...
sbbid 2249 Deduction substituting bot...
2sbbid 2250 Deduction doubly substitut...
sbequ1 2251 An equality theorem for su...
sbequ2 2252 An equality theorem for su...
stdpc7 2253 One of the two equality ax...
sbequ12 2254 An equality theorem for su...
sbequ12r 2255 An equality theorem for su...
sbelx 2256 Elimination of substitutio...
sbequ12a 2257 An equality theorem for su...
sbid 2258 An identity theorem for su...
sbcov 2259 A composition law for subs...
sbcovOLD 2260 Obsolete version of ~ sbco...
sb6a 2261 Equivalence for substituti...
sbid2vw 2262 Reverting substitution yie...
axc16g 2263 Generalization of ~ axc16 ...
axc16 2264 Proof of older axiom ~ ax-...
axc16gb 2265 Biconditional strengthenin...
axc16nf 2266 If ~ dtru is false, then t...
axc11v 2267 Version of ~ axc11 with a ...
axc11rv 2268 Version of ~ axc11r with a...
drsb2 2269 Formula-building lemma for...
equsalv 2270 An equivalence related to ...
equsexv 2271 An equivalence related to ...
sbft 2272 Substitution has no effect...
sbf 2273 Substitution for a variabl...
sbf2 2274 Substitution has no effect...
sbh 2275 Substitution for a variabl...
hbs1 2276 The setvar ` x ` is not fr...
nfs1f 2277 If ` x ` is not free in ` ...
sb5 2278 Alternate definition of su...
equs5av 2279 A property related to subs...
2sb5 2280 Equivalence for double sub...
dfsb7 2281 An alternate definition of...
sbn 2282 Negation inside and outsid...
sbex 2283 Move existential quantifie...
nf5 2284 Alternate definition of ~ ...
nf6 2285 An alternate definition of...
nf5d 2286 Deduce that ` x ` is not f...
nf5di 2287 Since the converse holds b...
19.9h 2288 A wff may be existentially...
19.21h 2289 Theorem 19.21 of [Margaris...
19.23h 2290 Theorem 19.23 of [Margaris...
exlimih 2291 Inference associated with ...
exlimdh 2292 Deduction form of Theorem ...
equsalhw 2293 Version of ~ equsalh with ...
equsexhv 2294 An equivalence related to ...
hba1 2295 The setvar ` x ` is not fr...
hbnt 2296 Closed theorem version of ...
hbn 2297 If ` x ` is not free in ` ...
hbnd 2298 Deduction form of bound-va...
hbim1 2299 A closed form of ~ hbim . ...
hbimd 2300 Deduction form of bound-va...
hbim 2301 If ` x ` is not free in ` ...
hban 2302 If ` x ` is not free in ` ...
hb3an 2303 If ` x ` is not free in ` ...
sbi2 2304 Introduction of implicatio...
sbim 2305 Implication inside and out...
sbrim 2306 Substitution in an implica...
sblim 2307 Substitution in an implica...
sbor 2308 Disjunction inside and out...
sbbi 2309 Equivalence inside and out...
sblbis 2310 Introduce left bicondition...
sbrbis 2311 Introduce right biconditio...
sbrbif 2312 Introduce right biconditio...
sbnf 2313 Move nonfree predicate in ...
sbnfOLD 2314 Obsolete version of ~ sbnf...
sbiev 2315 Conversion of implicit sub...
sbievOLD 2316 Obsolete version of ~ sbie...
sbiedw 2317 Conversion of implicit sub...
axc7 2318 Show that the original axi...
axc7e 2319 Abbreviated version of ~ a...
modal-b 2320 The analogue in our predic...
19.9ht 2321 A closed version of ~ 19.9...
axc4 2322 Show that the original axi...
axc4i 2323 Inference version of ~ axc...
nfal 2324 If ` x ` is not free in ` ...
nfex 2325 If ` x ` is not free in ` ...
hbex 2326 If ` x ` is not free in ` ...
nfnf 2327 If ` x ` is not free in ` ...
19.12 2328 Theorem 19.12 of [Margaris...
nfald 2329 Deduction form of ~ nfal ....
nfexd 2330 If ` x ` is not free in ` ...
nfsbv 2331 If ` z ` is not free in ` ...
sbco2v 2332 A composition law for subs...
aaan 2333 Distribute universal quant...
eeor 2334 Distribute existential qua...
cbv3v 2335 Rule used to change bound ...
cbv1v 2336 Rule used to change bound ...
cbv2w 2337 Rule used to change bound ...
cbvaldw 2338 Deduction used to change b...
cbvexdw 2339 Deduction used to change b...
cbv3hv 2340 Rule used to change bound ...
cbvalv1 2341 Rule used to change bound ...
cbvexv1 2342 Rule used to change bound ...
cbval2v 2343 Rule used to change bound ...
cbvex2v 2344 Rule used to change bound ...
dvelimhw 2345 Proof of ~ dvelimh without...
pm11.53 2346 Theorem *11.53 in [Whitehe...
19.12vv 2347 Special case of ~ 19.12 wh...
eean 2348 Distribute existential qua...
eeanv 2349 Distribute a pair of exist...
eeeanv 2350 Distribute three existenti...
ee4anv 2351 Distribute two pairs of ex...
ee4anvOLD 2352 Obsolete version of ~ ee4a...
sb8v 2353 Substitution of variable i...
sb8f 2354 Substitution of variable i...
sb8ef 2355 Substitution of variable i...
2sb8ef 2356 An equivalent expression f...
sb6rfv 2357 Reversed substitution. Ve...
sbnf2 2358 Two ways of expressing " `...
exsb 2359 An equivalent expression f...
2exsb 2360 An equivalent expression f...
sbbib 2361 Reversal of substitution. ...
sbbibvv 2362 Reversal of substitution. ...
cbvsbvf 2363 Change the bound variable ...
cleljustALT 2364 Alternate proof of ~ clelj...
cleljustALT2 2365 Alternate proof of ~ clelj...
equs5aALT 2366 Alternate proof of ~ equs5...
equs5eALT 2367 Alternate proof of ~ equs5...
axc11r 2368 Same as ~ axc11 but with r...
dral1v 2369 Formula-building lemma for...
drex1v 2370 Formula-building lemma for...
drnf1v 2371 Formula-building lemma for...
ax13v 2373 A weaker version of ~ ax-1...
ax13lem1 2374 A version of ~ ax13v with ...
ax13 2375 Derive ~ ax-13 from ~ ax13...
ax13lem2 2376 Lemma for ~ nfeqf2 . This...
nfeqf2 2377 An equation between setvar...
dveeq2 2378 Quantifier introduction wh...
nfeqf1 2379 An equation between setvar...
dveeq1 2380 Quantifier introduction wh...
nfeqf 2381 A variable is effectively ...
axc9 2382 Derive set.mm's original ~...
ax6e 2383 At least one individual ex...
ax6 2384 Theorem showing that ~ ax-...
axc10 2385 Show that the original axi...
spimt 2386 Closed theorem form of ~ s...
spim 2387 Specialization, using impl...
spimed 2388 Deduction version of ~ spi...
spime 2389 Existential introduction, ...
spimv 2390 A version of ~ spim with a...
spimvALT 2391 Alternate proof of ~ spimv...
spimev 2392 Distinct-variable version ...
spv 2393 Specialization, using impl...
spei 2394 Inference from existential...
chvar 2395 Implicit substitution of `...
chvarv 2396 Implicit substitution of `...
cbv3 2397 Rule used to change bound ...
cbval 2398 Rule used to change bound ...
cbvex 2399 Rule used to change bound ...
cbvalv 2400 Rule used to change bound ...
cbvexv 2401 Rule used to change bound ...
cbv1 2402 Rule used to change bound ...
cbv2 2403 Rule used to change bound ...
cbv3h 2404 Rule used to change bound ...
cbv1h 2405 Rule used to change bound ...
cbv2h 2406 Rule used to change bound ...
cbvald 2407 Deduction used to change b...
cbvexd 2408 Deduction used to change b...
cbvaldva 2409 Rule used to change the bo...
cbvexdva 2410 Rule used to change the bo...
cbval2 2411 Rule used to change bound ...
cbvex2 2412 Rule used to change bound ...
cbval2vv 2413 Rule used to change bound ...
cbvex2vv 2414 Rule used to change bound ...
cbvex4v 2415 Rule used to change bound ...
equs4 2416 Lemma used in proofs of im...
equsal 2417 An equivalence related to ...
equsex 2418 An equivalence related to ...
equsexALT 2419 Alternate proof of ~ equse...
equsalh 2420 An equivalence related to ...
equsexh 2421 An equivalence related to ...
axc15 2422 Derivation of set.mm's ori...
ax12 2423 Rederivation of Axiom ~ ax...
ax12b 2424 A bidirectional version of...
ax13ALT 2425 Alternate proof of ~ ax13 ...
axc11n 2426 Derive set.mm's original ~...
aecom 2427 Commutation law for identi...
aecoms 2428 A commutation rule for ide...
naecoms 2429 A commutation rule for dis...
axc11 2430 Show that ~ ax-c11 can be ...
hbae 2431 All variables are effectiv...
hbnae 2432 All variables are effectiv...
nfae 2433 All variables are effectiv...
nfnae 2434 All variables are effectiv...
hbnaes 2435 Rule that applies ~ hbnae ...
axc16i 2436 Inference with ~ axc16 as ...
axc16nfALT 2437 Alternate proof of ~ axc16...
dral2 2438 Formula-building lemma for...
dral1 2439 Formula-building lemma for...
dral1ALT 2440 Alternate proof of ~ dral1...
drex1 2441 Formula-building lemma for...
drex2 2442 Formula-building lemma for...
drnf1 2443 Formula-building lemma for...
drnf2 2444 Formula-building lemma for...
nfald2 2445 Variation on ~ nfald which...
nfexd2 2446 Variation on ~ nfexd which...
exdistrf 2447 Distribution of existentia...
dvelimf 2448 Version of ~ dvelimv witho...
dvelimdf 2449 Deduction form of ~ dvelim...
dvelimh 2450 Version of ~ dvelim withou...
dvelim 2451 This theorem can be used t...
dvelimv 2452 Similar to ~ dvelim with f...
dvelimnf 2453 Version of ~ dvelim using ...
dveeq2ALT 2454 Alternate proof of ~ dveeq...
equvini 2455 A variable introduction la...
equvel 2456 A variable elimination law...
equs5a 2457 A property related to subs...
equs5e 2458 A property related to subs...
equs45f 2459 Two ways of expressing sub...
equs5 2460 Lemma used in proofs of su...
dveel1 2461 Quantifier introduction wh...
dveel2 2462 Quantifier introduction wh...
axc14 2463 Axiom ~ ax-c14 is redundan...
sb6x 2464 Equivalence involving subs...
sbequ5 2465 Substitution does not chan...
sbequ6 2466 Substitution does not chan...
sb5rf 2467 Reversed substitution. Us...
sb6rf 2468 Reversed substitution. Fo...
ax12vALT 2469 Alternate proof of ~ ax12v...
2ax6elem 2470 We can always find values ...
2ax6e 2471 We can always find values ...
2sb5rf 2472 Reversed double substituti...
2sb6rf 2473 Reversed double substituti...
sbel2x 2474 Elimination of double subs...
sb4b 2475 Simplified definition of s...
sb3b 2476 Simplified definition of s...
sb3 2477 One direction of a simplif...
sb1 2478 One direction of a simplif...
sb2 2479 One direction of a simplif...
sb4a 2480 A version of one implicati...
dfsb1 2481 Alternate definition of su...
hbsb2 2482 Bound-variable hypothesis ...
nfsb2 2483 Bound-variable hypothesis ...
hbsb2a 2484 Special case of a bound-va...
sb4e 2485 One direction of a simplif...
hbsb2e 2486 Special case of a bound-va...
hbsb3 2487 If ` y ` is not free in ` ...
nfs1 2488 If ` y ` is not free in ` ...
axc16ALT 2489 Alternate proof of ~ axc16...
axc16gALT 2490 Alternate proof of ~ axc16...
equsb1 2491 Substitution applied to an...
equsb2 2492 Substitution applied to an...
dfsb2 2493 An alternate definition of...
dfsb3 2494 An alternate definition of...
drsb1 2495 Formula-building lemma for...
sb2ae 2496 In the case of two success...
sb6f 2497 Equivalence for substituti...
sb5f 2498 Equivalence for substituti...
nfsb4t 2499 A variable not free in a p...
nfsb4 2500 A variable not free in a p...
sbequ8 2501 Elimination of equality fr...
sbie 2502 Conversion of implicit sub...
sbied 2503 Conversion of implicit sub...
sbiedv 2504 Conversion of implicit sub...
2sbiev 2505 Conversion of double impli...
sbcom3 2506 Substituting ` y ` for ` x...
sbco 2507 A composition law for subs...
sbid2 2508 An identity law for substi...
sbid2v 2509 An identity law for substi...
sbidm 2510 An idempotent law for subs...
sbco2 2511 A composition law for subs...
sbco2d 2512 A composition law for subs...
sbco3 2513 A composition law for subs...
sbcom 2514 A commutativity law for su...
sbtrt 2515 Partially closed form of ~...
sbtr 2516 A partial converse to ~ sb...
sb8 2517 Substitution of variable i...
sb8e 2518 Substitution of variable i...
sb9 2519 Commutation of quantificat...
sb9i 2520 Commutation of quantificat...
sbhb 2521 Two ways of expressing " `...
nfsbd 2522 Deduction version of ~ nfs...
nfsb 2523 If ` z ` is not free in ` ...
hbsb 2524 If ` z ` is not free in ` ...
sb7f 2525 This version of ~ dfsb7 do...
sb7h 2526 This version of ~ dfsb7 do...
sb10f 2527 Hao Wang's identity axiom ...
sbal1 2528 Check out ~ sbal for a ver...
sbal2 2529 Move quantifier in and out...
2sb8e 2530 An equivalent expression f...
dfmoeu 2531 An elementary proof of ~ m...
dfeumo 2532 An elementary proof showin...
mojust 2534 Soundness justification th...
nexmo 2536 Nonexistence implies uniqu...
exmo 2537 Any proposition holds for ...
moabs 2538 Absorption of existence co...
moim 2539 The at-most-one quantifier...
moimi 2540 The at-most-one quantifier...
moimdv 2541 The at-most-one quantifier...
mobi 2542 Equivalence theorem for th...
mobii 2543 Formula-building rule for ...
mobidv 2544 Formula-building rule for ...
mobid 2545 Formula-building rule for ...
moa1 2546 If an implication holds fo...
moan 2547 "At most one" is still the...
moani 2548 "At most one" is still tru...
moor 2549 "At most one" is still the...
mooran1 2550 "At most one" imports disj...
mooran2 2551 "At most one" exports disj...
nfmo1 2552 Bound-variable hypothesis ...
nfmod2 2553 Bound-variable hypothesis ...
nfmodv 2554 Bound-variable hypothesis ...
nfmov 2555 Bound-variable hypothesis ...
nfmod 2556 Bound-variable hypothesis ...
nfmo 2557 Bound-variable hypothesis ...
mof 2558 Version of ~ df-mo with di...
mo3 2559 Alternate definition of th...
mo 2560 Equivalent definitions of ...
mo4 2561 At-most-one quantifier exp...
mo4f 2562 At-most-one quantifier exp...
eu3v 2565 An alternate way to expres...
eujust 2566 Soundness justification th...
eujustALT 2567 Alternate proof of ~ eujus...
eu6lem 2568 Lemma of ~ eu6im . A diss...
eu6 2569 Alternate definition of th...
eu6im 2570 One direction of ~ eu6 nee...
euf 2571 Version of ~ eu6 with disj...
euex 2572 Existential uniqueness imp...
eumo 2573 Existential uniqueness imp...
eumoi 2574 Uniqueness inferred from e...
exmoeub 2575 Existence implies that uni...
exmoeu 2576 Existence is equivalent to...
moeuex 2577 Uniqueness implies that ex...
moeu 2578 Uniqueness is equivalent t...
eubi 2579 Equivalence theorem for th...
eubii 2580 Introduce unique existenti...
eubidv 2581 Formula-building rule for ...
eubid 2582 Formula-building rule for ...
nfeu1 2583 Bound-variable hypothesis ...
nfeu1ALT 2584 Alternate proof of ~ nfeu1...
nfeud2 2585 Bound-variable hypothesis ...
nfeudw 2586 Bound-variable hypothesis ...
nfeud 2587 Bound-variable hypothesis ...
nfeuw 2588 Bound-variable hypothesis ...
nfeu 2589 Bound-variable hypothesis ...
dfeu 2590 Rederive ~ df-eu from the ...
dfmo 2591 Rederive ~ df-mo from the ...
euequ 2592 There exists a unique set ...
sb8eulem 2593 Lemma. Factor out the com...
sb8euv 2594 Variable substitution in u...
sb8eu 2595 Variable substitution in u...
sb8mo 2596 Variable substitution for ...
cbvmovw 2597 Change bound variable. Us...
cbvmow 2598 Rule used to change bound ...
cbvmo 2599 Rule used to change bound ...
cbveuvw 2600 Change bound variable. Us...
cbveuw 2601 Version of ~ cbveu with a ...
cbveu 2602 Rule used to change bound ...
cbveuALT 2603 Alternative proof of ~ cbv...
eu2 2604 An alternate way of defini...
eu1 2605 An alternate way to expres...
euor 2606 Introduce a disjunct into ...
euorv 2607 Introduce a disjunct into ...
euor2 2608 Introduce or eliminate a d...
sbmo 2609 Substitution into an at-mo...
eu4 2610 Uniqueness using implicit ...
euimmo 2611 Existential uniqueness imp...
euim 2612 Add unique existential qua...
moanimlem 2613 Factor out the common proo...
moanimv 2614 Introduction of a conjunct...
moanim 2615 Introduction of a conjunct...
euan 2616 Introduction of a conjunct...
moanmo 2617 Nested at-most-one quantif...
moaneu 2618 Nested at-most-one and uni...
euanv 2619 Introduction of a conjunct...
mopick 2620 "At most one" picks a vari...
moexexlem 2621 Factor out the proof skele...
2moexv 2622 Double quantification with...
moexexvw 2623 "At most one" double quant...
2moswapv 2624 A condition allowing to sw...
2euswapv 2625 A condition allowing to sw...
2euexv 2626 Double quantification with...
2exeuv 2627 Double existential uniquen...
eupick 2628 Existential uniqueness "pi...
eupicka 2629 Version of ~ eupick with c...
eupickb 2630 Existential uniqueness "pi...
eupickbi 2631 Theorem *14.26 in [Whitehe...
mopick2 2632 "At most one" can show the...
moexex 2633 "At most one" double quant...
moexexv 2634 "At most one" double quant...
2moex 2635 Double quantification with...
2euex 2636 Double quantification with...
2eumo 2637 Nested unique existential ...
2eu2ex 2638 Double existential uniquen...
2moswap 2639 A condition allowing to sw...
2euswap 2640 A condition allowing to sw...
2exeu 2641 Double existential uniquen...
2mo2 2642 Two ways of expressing "th...
2mo 2643 Two ways of expressing "th...
2mos 2644 Double "there exists at mo...
2mosOLD 2645 Obsolete version of ~ 2mos...
2eu1 2646 Double existential uniquen...
2eu1v 2647 Double existential uniquen...
2eu2 2648 Double existential uniquen...
2eu3 2649 Double existential uniquen...
2eu4 2650 This theorem provides us w...
2eu5 2651 An alternate definition of...
2eu6 2652 Two equivalent expressions...
2eu7 2653 Two equivalent expressions...
2eu8 2654 Two equivalent expressions...
euae 2655 Two ways to express "exact...
exists1 2656 Two ways to express "exact...
exists2 2657 A condition implying that ...
barbara 2658 "Barbara", one of the fund...
celarent 2659 "Celarent", one of the syl...
darii 2660 "Darii", one of the syllog...
dariiALT 2661 Alternate proof of ~ darii...
ferio 2662 "Ferio" ("Ferioque"), one ...
barbarilem 2663 Lemma for ~ barbari and th...
barbari 2664 "Barbari", one of the syll...
barbariALT 2665 Alternate proof of ~ barba...
celaront 2666 "Celaront", one of the syl...
cesare 2667 "Cesare", one of the syllo...
camestres 2668 "Camestres", one of the sy...
festino 2669 "Festino", one of the syll...
festinoALT 2670 Alternate proof of ~ festi...
baroco 2671 "Baroco", one of the syllo...
barocoALT 2672 Alternate proof of ~ festi...
cesaro 2673 "Cesaro", one of the syllo...
camestros 2674 "Camestros", one of the sy...
datisi 2675 "Datisi", one of the syllo...
disamis 2676 "Disamis", one of the syll...
ferison 2677 "Ferison", one of the syll...
bocardo 2678 "Bocardo", one of the syll...
darapti 2679 "Darapti", one of the syll...
daraptiALT 2680 Alternate proof of ~ darap...
felapton 2681 "Felapton", one of the syl...
calemes 2682 "Calemes", one of the syll...
dimatis 2683 "Dimatis", one of the syll...
fresison 2684 "Fresison", one of the syl...
calemos 2685 "Calemos", one of the syll...
fesapo 2686 "Fesapo", one of the syllo...
bamalip 2687 "Bamalip", one of the syll...
axia1 2688 Left 'and' elimination (in...
axia2 2689 Right 'and' elimination (i...
axia3 2690 'And' introduction (intuit...
axin1 2691 'Not' introduction (intuit...
axin2 2692 'Not' elimination (intuiti...
axio 2693 Definition of 'or' (intuit...
axi4 2694 Specialization (intuitioni...
axi5r 2695 Converse of ~ axc4 (intuit...
axial 2696 The setvar ` x ` is not fr...
axie1 2697 The setvar ` x ` is not fr...
axie2 2698 A key property of existent...
axi9 2699 Axiom of existence (intuit...
axi10 2700 Axiom of Quantifier Substi...
axi12 2701 Axiom of Quantifier Introd...
axbnd 2702 Axiom of Bundling (intuiti...
axexte 2704 The axiom of extensionalit...
axextg 2705 A generalization of the ax...
axextb 2706 A bidirectional version of...
axextmo 2707 There exists at most one s...
nulmo 2708 There exists at most one e...
eleq1ab 2711 Extension (in the sense of...
cleljustab 2712 Extension of ~ cleljust fr...
abid 2713 Simplification of class ab...
vexwt 2714 A standard theorem of pred...
vexw 2715 If ` ph ` is a theorem, th...
vextru 2716 Every setvar is a member o...
nfsab1 2717 Bound-variable hypothesis ...
hbab1 2718 Bound-variable hypothesis ...
hbab 2719 Bound-variable hypothesis ...
hbabg 2720 Bound-variable hypothesis ...
nfsab 2721 Bound-variable hypothesis ...
nfsabg 2722 Bound-variable hypothesis ...
dfcleq 2724 The defining characterizat...
cvjust 2725 Every set is a class. Pro...
ax9ALT 2726 Proof of ~ ax-9 from Tarsk...
eleq2w2 2727 A weaker version of ~ eleq...
eqriv 2728 Infer equality of classes ...
eqrdv 2729 Deduce equality of classes...
eqrdav 2730 Deduce equality of classes...
eqid 2731 Law of identity (reflexivi...
eqidd 2732 Class identity law with an...
eqeq1d 2733 Deduction from equality to...
eqeq1dALT 2734 Alternate proof of ~ eqeq1...
eqeq1 2735 Equality implies equivalen...
eqeq1i 2736 Inference from equality to...
eqcomd 2737 Deduction from commutative...
eqcom 2738 Commutative law for class ...
eqcoms 2739 Inference applying commuta...
eqcomi 2740 Inference from commutative...
neqcomd 2741 Commute an inequality. (C...
eqeq2d 2742 Deduction from equality to...
eqeq2 2743 Equality implies equivalen...
eqeq2i 2744 Inference from equality to...
eqeqan12d 2745 A useful inference for sub...
eqeqan12rd 2746 A useful inference for sub...
eqeq12d 2747 A useful inference for sub...
eqeq12 2748 Equality relationship amon...
eqeq12i 2749 A useful inference for sub...
eqeqan12dALT 2750 Alternate proof of ~ eqeqa...
eqtr 2751 Transitive law for class e...
eqtr2 2752 A transitive law for class...
eqtr3 2753 A transitive law for class...
eqtri 2754 An equality transitivity i...
eqtr2i 2755 An equality transitivity i...
eqtr3i 2756 An equality transitivity i...
eqtr4i 2757 An equality transitivity i...
3eqtri 2758 An inference from three ch...
3eqtrri 2759 An inference from three ch...
3eqtr2i 2760 An inference from three ch...
3eqtr2ri 2761 An inference from three ch...
3eqtr3i 2762 An inference from three ch...
3eqtr3ri 2763 An inference from three ch...
3eqtr4i 2764 An inference from three ch...
3eqtr4ri 2765 An inference from three ch...
eqtrd 2766 An equality transitivity d...
eqtr2d 2767 An equality transitivity d...
eqtr3d 2768 An equality transitivity e...
eqtr4d 2769 An equality transitivity e...
3eqtrd 2770 A deduction from three cha...
3eqtrrd 2771 A deduction from three cha...
3eqtr2d 2772 A deduction from three cha...
3eqtr2rd 2773 A deduction from three cha...
3eqtr3d 2774 A deduction from three cha...
3eqtr3rd 2775 A deduction from three cha...
3eqtr4d 2776 A deduction from three cha...
3eqtr4rd 2777 A deduction from three cha...
eqtrid 2778 An equality transitivity d...
eqtr2id 2779 An equality transitivity d...
eqtr3id 2780 An equality transitivity d...
eqtr3di 2781 An equality transitivity d...
eqtrdi 2782 An equality transitivity d...
eqtr2di 2783 An equality transitivity d...
eqtr4di 2784 An equality transitivity d...
eqtr4id 2785 An equality transitivity d...
sylan9eq 2786 An equality transitivity d...
sylan9req 2787 An equality transitivity d...
sylan9eqr 2788 An equality transitivity d...
3eqtr3g 2789 A chained equality inferen...
3eqtr3a 2790 A chained equality inferen...
3eqtr4g 2791 A chained equality inferen...
3eqtr4a 2792 A chained equality inferen...
eq2tri 2793 A compound transitive infe...
iseqsetvlem 2794 Lemma for ~ iseqsetv-cleq ...
iseqsetv-cleq 2795 Alternate proof of ~ iseqs...
abbi 2796 Equivalent formulas yield ...
abbidv 2797 Equivalent wff's yield equ...
abbii 2798 Equivalent wff's yield equ...
abbid 2799 Equivalent wff's yield equ...
abbib 2800 Equal class abstractions r...
cbvabv 2801 Rule used to change bound ...
cbvabw 2802 Rule used to change bound ...
cbvab 2803 Rule used to change bound ...
eqabbw 2804 Version of ~ eqabb using i...
eqabcbw 2805 Version of ~ eqabcb using ...
dfclel 2807 Characterization of the el...
elex2 2808 If a class contains anothe...
issettru 2809 Weak version of ~ isset . ...
iseqsetv-clel 2810 Alternate proof of ~ iseqs...
issetlem 2811 Lemma for ~ elisset and ~ ...
elissetv 2812 An element of a class exis...
elisset 2813 An element of a class exis...
eleq1w 2814 Weaker version of ~ eleq1 ...
eleq2w 2815 Weaker version of ~ eleq2 ...
eleq1d 2816 Deduction from equality to...
eleq2d 2817 Deduction from equality to...
eleq2dALT 2818 Alternate proof of ~ eleq2...
eleq1 2819 Equality implies equivalen...
eleq2 2820 Equality implies equivalen...
eleq12 2821 Equality implies equivalen...
eleq1i 2822 Inference from equality to...
eleq2i 2823 Inference from equality to...
eleq12i 2824 Inference from equality to...
eleq12d 2825 Deduction from equality to...
eleq1a 2826 A transitive-type law rela...
eqeltri 2827 Substitution of equal clas...
eqeltrri 2828 Substitution of equal clas...
eleqtri 2829 Substitution of equal clas...
eleqtrri 2830 Substitution of equal clas...
eqeltrd 2831 Substitution of equal clas...
eqeltrrd 2832 Deduction that substitutes...
eleqtrd 2833 Deduction that substitutes...
eleqtrrd 2834 Deduction that substitutes...
eqeltrid 2835 A membership and equality ...
eqeltrrid 2836 A membership and equality ...
eleqtrid 2837 A membership and equality ...
eleqtrrid 2838 A membership and equality ...
eqeltrdi 2839 A membership and equality ...
eqeltrrdi 2840 A membership and equality ...
eleqtrdi 2841 A membership and equality ...
eleqtrrdi 2842 A membership and equality ...
3eltr3i 2843 Substitution of equal clas...
3eltr4i 2844 Substitution of equal clas...
3eltr3d 2845 Substitution of equal clas...
3eltr4d 2846 Substitution of equal clas...
3eltr3g 2847 Substitution of equal clas...
3eltr4g 2848 Substitution of equal clas...
eleq2s 2849 Substitution of equal clas...
eqneltri 2850 If a class is not an eleme...
eqneltrd 2851 If a class is not an eleme...
eqneltrrd 2852 If a class is not an eleme...
neleqtrd 2853 If a class is not an eleme...
neleqtrrd 2854 If a class is not an eleme...
nelneq 2855 A way of showing two class...
nelneq2 2856 A way of showing two class...
eqsb1 2857 Substitution for the left-...
clelsb1 2858 Substitution for the first...
clelsb2 2859 Substitution for the secon...
cleqh 2860 Establish equality between...
hbxfreq 2861 A utility lemma to transfe...
hblem 2862 Change the free variable o...
hblemg 2863 Change the free variable o...
eqabdv 2864 Deduction from a wff to a ...
eqabcdv 2865 Deduction from a wff to a ...
eqabi 2866 Equality of a class variab...
abid1 2867 Every class is equal to a ...
abid2 2868 A simplification of class ...
eqab 2869 One direction of ~ eqabb i...
eqabb 2870 Equality of a class variab...
eqabbOLD 2871 Obsolete version of ~ eqab...
eqabcb 2872 Equality of a class variab...
eqabrd 2873 Equality of a class variab...
eqabri 2874 Equality of a class variab...
eqabcri 2875 Equality of a class variab...
clelab 2876 Membership of a class vari...
clabel 2877 Membership of a class abst...
sbab 2878 The right-hand side of the...
nfcjust 2880 Justification theorem for ...
nfci 2882 Deduce that a class ` A ` ...
nfcii 2883 Deduce that a class ` A ` ...
nfcr 2884 Consequence of the not-fre...
nfcrALT 2885 Alternate version of ~ nfc...
nfcri 2886 Consequence of the not-fre...
nfcd 2887 Deduce that a class ` A ` ...
nfcrd 2888 Consequence of the not-fre...
nfcrii 2889 Consequence of the not-fre...
nfceqdf 2890 An equality theorem for ef...
nfceqi 2891 Equality theorem for class...
nfcxfr 2892 A utility lemma to transfe...
nfcxfrd 2893 A utility lemma to transfe...
nfcv 2894 If ` x ` is disjoint from ...
nfcvd 2895 If ` x ` is disjoint from ...
nfab1 2896 Bound-variable hypothesis ...
nfnfc1 2897 The setvar ` x ` is bound ...
clelsb1fw 2898 Substitution for the first...
clelsb1f 2899 Substitution for the first...
nfab 2900 Bound-variable hypothesis ...
nfabg 2901 Bound-variable hypothesis ...
nfaba1 2902 Bound-variable hypothesis ...
nfaba1OLD 2903 Obsolete version of ~ nfab...
nfaba1g 2904 Bound-variable hypothesis ...
nfeqd 2905 Hypothesis builder for equ...
nfeld 2906 Hypothesis builder for ele...
nfnfc 2907 Hypothesis builder for ` F...
nfeq 2908 Hypothesis builder for equ...
nfel 2909 Hypothesis builder for ele...
nfeq1 2910 Hypothesis builder for equ...
nfel1 2911 Hypothesis builder for ele...
nfeq2 2912 Hypothesis builder for equ...
nfel2 2913 Hypothesis builder for ele...
drnfc1 2914 Formula-building lemma for...
drnfc2 2915 Formula-building lemma for...
nfabdw 2916 Bound-variable hypothesis ...
nfabd 2917 Bound-variable hypothesis ...
nfabd2 2918 Bound-variable hypothesis ...
dvelimdc 2919 Deduction form of ~ dvelim...
dvelimc 2920 Version of ~ dvelim for cl...
nfcvf 2921 If ` x ` and ` y ` are dis...
nfcvf2 2922 If ` x ` and ` y ` are dis...
cleqf 2923 Establish equality between...
eqabf 2924 Equality of a class variab...
abid2f 2925 A simplification of class ...
abid2fOLD 2926 Obsolete version of ~ abid...
sbabel 2927 Theorem to move a substitu...
neii 2930 Inference associated with ...
neir 2931 Inference associated with ...
nne 2932 Negation of inequality. (...
neneqd 2933 Deduction eliminating ineq...
neneq 2934 From inequality to non-equ...
neqned 2935 If it is not the case that...
neqne 2936 From non-equality to inequ...
neirr 2937 No class is unequal to its...
exmidne 2938 Excluded middle with equal...
eqneqall 2939 A contradiction concerning...
nonconne 2940 Law of noncontradiction wi...
necon3ad 2941 Contrapositive law deducti...
necon3bd 2942 Contrapositive law deducti...
necon2ad 2943 Contrapositive inference f...
necon2bd 2944 Contrapositive inference f...
necon1ad 2945 Contrapositive deduction f...
necon1bd 2946 Contrapositive deduction f...
necon4ad 2947 Contrapositive inference f...
necon4bd 2948 Contrapositive inference f...
necon3d 2949 Contrapositive law deducti...
necon1d 2950 Contrapositive law deducti...
necon2d 2951 Contrapositive inference f...
necon4d 2952 Contrapositive inference f...
necon3ai 2953 Contrapositive inference f...
necon3bi 2954 Contrapositive inference f...
necon1ai 2955 Contrapositive inference f...
necon1bi 2956 Contrapositive inference f...
necon2ai 2957 Contrapositive inference f...
necon2bi 2958 Contrapositive inference f...
necon4ai 2959 Contrapositive inference f...
necon3i 2960 Contrapositive inference f...
necon1i 2961 Contrapositive inference f...
necon2i 2962 Contrapositive inference f...
necon4i 2963 Contrapositive inference f...
necon3abid 2964 Deduction from equality to...
necon3bbid 2965 Deduction from equality to...
necon1abid 2966 Contrapositive deduction f...
necon1bbid 2967 Contrapositive inference f...
necon4abid 2968 Contrapositive law deducti...
necon4bbid 2969 Contrapositive law deducti...
necon2abid 2970 Contrapositive deduction f...
necon2bbid 2971 Contrapositive deduction f...
necon3bid 2972 Deduction from equality to...
necon4bid 2973 Contrapositive law deducti...
necon3abii 2974 Deduction from equality to...
necon3bbii 2975 Deduction from equality to...
necon1abii 2976 Contrapositive inference f...
necon1bbii 2977 Contrapositive inference f...
necon2abii 2978 Contrapositive inference f...
necon2bbii 2979 Contrapositive inference f...
necon3bii 2980 Inference from equality to...
necom 2981 Commutation of inequality....
necomi 2982 Inference from commutative...
necomd 2983 Deduction from commutative...
nesym 2984 Characterization of inequa...
nesymi 2985 Inference associated with ...
nesymir 2986 Inference associated with ...
neeq1d 2987 Deduction for inequality. ...
neeq2d 2988 Deduction for inequality. ...
neeq12d 2989 Deduction for inequality. ...
neeq1 2990 Equality theorem for inequ...
neeq2 2991 Equality theorem for inequ...
neeq1i 2992 Inference for inequality. ...
neeq2i 2993 Inference for inequality. ...
neeq12i 2994 Inference for inequality. ...
eqnetrd 2995 Substitution of equal clas...
eqnetrrd 2996 Substitution of equal clas...
neeqtrd 2997 Substitution of equal clas...
eqnetri 2998 Substitution of equal clas...
eqnetrri 2999 Substitution of equal clas...
neeqtri 3000 Substitution of equal clas...
neeqtrri 3001 Substitution of equal clas...
neeqtrrd 3002 Substitution of equal clas...
eqnetrrid 3003 A chained equality inferen...
3netr3d 3004 Substitution of equality i...
3netr4d 3005 Substitution of equality i...
3netr3g 3006 Substitution of equality i...
3netr4g 3007 Substitution of equality i...
nebi 3008 Contraposition law for ine...
pm13.18 3009 Theorem *13.18 in [Whitehe...
pm13.181 3010 Theorem *13.181 in [Whiteh...
pm2.61ine 3011 Inference eliminating an i...
pm2.21ddne 3012 A contradiction implies an...
pm2.61ne 3013 Deduction eliminating an i...
pm2.61dne 3014 Deduction eliminating an i...
pm2.61dane 3015 Deduction eliminating an i...
pm2.61da2ne 3016 Deduction eliminating two ...
pm2.61da3ne 3017 Deduction eliminating thre...
pm2.61iine 3018 Equality version of ~ pm2....
mteqand 3019 A modus tollens deduction ...
neor 3020 Logical OR with an equalit...
neanior 3021 A De Morgan's law for ineq...
ne3anior 3022 A De Morgan's law for ineq...
neorian 3023 A De Morgan's law for ineq...
nemtbir 3024 An inference from an inequ...
nelne1 3025 Two classes are different ...
nelne2 3026 Two classes are different ...
nelelne 3027 Two classes are different ...
neneor 3028 If two classes are differe...
nfne 3029 Bound-variable hypothesis ...
nfned 3030 Bound-variable hypothesis ...
nabbib 3031 Not equivalent wff's corre...
neli 3034 Inference associated with ...
nelir 3035 Inference associated with ...
nelcon3d 3036 Contrapositive law deducti...
neleq12d 3037 Equality theorem for negat...
neleq1 3038 Equality theorem for negat...
neleq2 3039 Equality theorem for negat...
nfnel 3040 Bound-variable hypothesis ...
nfneld 3041 Bound-variable hypothesis ...
nnel 3042 Negation of negated member...
elnelne1 3043 Two classes are different ...
elnelne2 3044 Two classes are different ...
pm2.24nel 3045 A contradiction concerning...
pm2.61danel 3046 Deduction eliminating an e...
rgen 3049 Generalization rule for re...
ralel 3050 All elements of a class ar...
rgenw 3051 Generalization rule for re...
rgen2w 3052 Generalization rule for re...
mprg 3053 Modus ponens combined with...
mprgbir 3054 Modus ponens on biconditio...
raln 3055 Restricted universally qua...
ralnex 3058 Relationship between restr...
dfrex2 3059 Relationship between restr...
nrex 3060 Inference adding restricte...
alral 3061 Universal quantification i...
rexex 3062 Restricted existence impli...
rextru 3063 Two ways of expressing tha...
ralimi2 3064 Inference quantifying both...
reximi2 3065 Inference quantifying both...
ralimia 3066 Inference quantifying both...
reximia 3067 Inference quantifying both...
ralimiaa 3068 Inference quantifying both...
ralimi 3069 Inference quantifying both...
reximi 3070 Inference quantifying both...
ral2imi 3071 Inference quantifying ante...
ralim 3072 Distribution of restricted...
rexim 3073 Theorem 19.22 of [Margaris...
ralbii2 3074 Inference adding different...
rexbii2 3075 Inference adding different...
ralbiia 3076 Inference adding restricte...
rexbiia 3077 Inference adding restricte...
ralbii 3078 Inference adding restricte...
rexbii 3079 Inference adding restricte...
ralanid 3080 Cancellation law for restr...
rexanid 3081 Cancellation law for restr...
ralcom3 3082 A commutation law for rest...
dfral2 3083 Relationship between restr...
rexnal 3084 Relationship between restr...
ralinexa 3085 A transformation of restri...
rexanali 3086 A transformation of restri...
ralbi 3087 Distribute a restricted un...
rexbi 3088 Distribute restricted quan...
ralrexbid 3089 Formula-building rule for ...
r19.35 3090 Restricted quantifier vers...
r19.26m 3091 Version of ~ 19.26 and ~ r...
r19.26 3092 Restricted quantifier vers...
r19.26-3 3093 Version of ~ r19.26 with t...
ralbiim 3094 Split a biconditional and ...
r19.29 3095 Restricted quantifier vers...
r19.29r 3096 Restricted quantifier vers...
r19.29imd 3097 Theorem 19.29 of [Margaris...
r19.40 3098 Restricted quantifier vers...
r19.30 3099 Restricted quantifier vers...
r19.43 3100 Restricted quantifier vers...
3r19.43 3101 Restricted quantifier vers...
2ralimi 3102 Inference quantifying both...
3ralimi 3103 Inference quantifying both...
4ralimi 3104 Inference quantifying both...
5ralimi 3105 Inference quantifying both...
6ralimi 3106 Inference quantifying both...
2ralbii 3107 Inference adding two restr...
2rexbii 3108 Inference adding two restr...
3ralbii 3109 Inference adding three res...
4ralbii 3110 Inference adding four rest...
2ralbiim 3111 Split a biconditional and ...
ralnex2 3112 Relationship between two r...
ralnex3 3113 Relationship between three...
rexnal2 3114 Relationship between two r...
rexnal3 3115 Relationship between three...
nrexralim 3116 Negation of a complex pred...
r19.26-2 3117 Restricted quantifier vers...
2r19.29 3118 Theorem ~ r19.29 with two ...
r19.29d2r 3119 Theorem 19.29 of [Margaris...
r2allem 3120 Lemma factoring out common...
r2exlem 3121 Lemma factoring out common...
hbralrimi 3122 Inference from Theorem 19....
ralrimiv 3123 Inference from Theorem 19....
ralrimiva 3124 Inference from Theorem 19....
rexlimiva 3125 Inference from Theorem 19....
rexlimiv 3126 Inference from Theorem 19....
nrexdv 3127 Deduction adding restricte...
ralrimivw 3128 Inference from Theorem 19....
rexlimivw 3129 Weaker version of ~ rexlim...
ralrimdv 3130 Inference from Theorem 19....
rexlimdv 3131 Inference from Theorem 19....
ralrimdva 3132 Inference from Theorem 19....
rexlimdva 3133 Inference from Theorem 19....
rexlimdvaa 3134 Inference from Theorem 19....
rexlimdva2 3135 Inference from Theorem 19....
r19.29an 3136 A commonly used pattern in...
rexlimdv3a 3137 Inference from Theorem 19....
rexlimdvw 3138 Inference from Theorem 19....
rexlimddv 3139 Restricted existential eli...
r19.29a 3140 A commonly used pattern in...
ralimdv2 3141 Inference quantifying both...
reximdv2 3142 Deduction quantifying both...
reximdvai 3143 Deduction quantifying both...
ralimdva 3144 Deduction quantifying both...
reximdva 3145 Deduction quantifying both...
ralimdv 3146 Deduction quantifying both...
reximdv 3147 Deduction from Theorem 19....
reximddv 3148 Deduction from Theorem 19....
reximddv3 3149 Deduction from Theorem 19....
reximssdv 3150 Derivation of a restricted...
ralbidv2 3151 Formula-building rule for ...
rexbidv2 3152 Formula-building rule for ...
ralbidva 3153 Formula-building rule for ...
rexbidva 3154 Formula-building rule for ...
ralbidv 3155 Formula-building rule for ...
rexbidv 3156 Formula-building rule for ...
r19.21v 3157 Restricted quantifier vers...
r19.37v 3158 Restricted quantifier vers...
r19.23v 3159 Restricted quantifier vers...
r19.36v 3160 Restricted quantifier vers...
r19.27v 3161 Restricted quantitifer ver...
r19.41v 3162 Restricted quantifier vers...
r19.28v 3163 Restricted quantifier vers...
r19.42v 3164 Restricted quantifier vers...
r19.32v 3165 Restricted quantifier vers...
r19.45v 3166 Restricted quantifier vers...
r19.44v 3167 One direction of a restric...
r2al 3168 Double restricted universa...
r2ex 3169 Double restricted existent...
r3al 3170 Triple restricted universa...
r3ex 3171 Triple existential quantif...
rgen2 3172 Generalization rule for re...
ralrimivv 3173 Inference from Theorem 19....
rexlimivv 3174 Inference from Theorem 19....
ralrimivva 3175 Inference from Theorem 19....
ralrimdvv 3176 Inference from Theorem 19....
rgen3 3177 Generalization rule for re...
ralrimivvva 3178 Inference from Theorem 19....
ralimdvva 3179 Deduction doubly quantifyi...
reximdvva 3180 Deduction doubly quantifyi...
ralimdvv 3181 Deduction doubly quantifyi...
ralimdvvOLD 3182 Obsolete version of ~ rali...
ralimd4v 3183 Deduction quadrupally quan...
ralimd4vOLD 3184 Obsolete version of ~ rali...
ralimd6v 3185 Deduction sextupally quant...
ralimd6vOLD 3186 Obsolete version of ~ rali...
ralrimdvva 3187 Inference from Theorem 19....
rexlimdvv 3188 Inference from Theorem 19....
rexlimdvva 3189 Inference from Theorem 19....
rexlimdvvva 3190 Inference from Theorem 19....
reximddv2 3191 Double deduction from Theo...
r19.29vva 3192 A commonly used pattern ba...
2rexbiia 3193 Inference adding two restr...
2ralbidva 3194 Formula-building rule for ...
2rexbidva 3195 Formula-building rule for ...
2ralbidv 3196 Formula-building rule for ...
2rexbidv 3197 Formula-building rule for ...
rexralbidv 3198 Formula-building rule for ...
3ralbidv 3199 Formula-building rule for ...
4ralbidv 3200 Formula-building rule for ...
6ralbidv 3201 Formula-building rule for ...
r19.41vv 3202 Version of ~ r19.41v with ...
reeanlem 3203 Lemma factoring out common...
reeanv 3204 Rearrange restricted exist...
3reeanv 3205 Rearrange three restricted...
2ralor 3206 Distribute restricted univ...
risset 3207 Two ways to say " ` A ` be...
nelb 3208 A definition of ` -. A e. ...
rspw 3209 Restricted specialization....
cbvralvw 3210 Change the bound variable ...
cbvrexvw 3211 Change the bound variable ...
cbvraldva 3212 Rule used to change the bo...
cbvrexdva 3213 Rule used to change the bo...
cbvral2vw 3214 Change bound variables of ...
cbvrex2vw 3215 Change bound variables of ...
cbvral3vw 3216 Change bound variables of ...
cbvral4vw 3217 Change bound variables of ...
cbvral6vw 3218 Change bound variables of ...
cbvral8vw 3219 Change bound variables of ...
rsp 3220 Restricted specialization....
rspa 3221 Restricted specialization....
rspe 3222 Restricted specialization....
rspec 3223 Specialization rule for re...
r19.21bi 3224 Inference from Theorem 19....
r19.21be 3225 Inference from Theorem 19....
r19.21t 3226 Restricted quantifier vers...
r19.21 3227 Restricted quantifier vers...
r19.23t 3228 Closed theorem form of ~ r...
r19.23 3229 Restricted quantifier vers...
ralrimi 3230 Inference from Theorem 19....
ralrimia 3231 Inference from Theorem 19....
rexlimi 3232 Restricted quantifier vers...
ralimdaa 3233 Deduction quantifying both...
reximdai 3234 Deduction from Theorem 19....
r19.37 3235 Restricted quantifier vers...
r19.41 3236 Restricted quantifier vers...
ralrimd 3237 Inference from Theorem 19....
rexlimd2 3238 Version of ~ rexlimd with ...
rexlimd 3239 Deduction form of ~ rexlim...
r19.29af2 3240 A commonly used pattern ba...
r19.29af 3241 A commonly used pattern ba...
reximd2a 3242 Deduction quantifying both...
ralbida 3243 Formula-building rule for ...
rexbida 3244 Formula-building rule for ...
ralbid 3245 Formula-building rule for ...
rexbid 3246 Formula-building rule for ...
rexbidvALT 3247 Alternate proof of ~ rexbi...
rexbidvaALT 3248 Alternate proof of ~ rexbi...
rsp2 3249 Restricted specialization,...
rsp2e 3250 Restricted specialization....
rspec2 3251 Specialization rule for re...
rspec3 3252 Specialization rule for re...
r2alf 3253 Double restricted universa...
r2exf 3254 Double restricted existent...
2ralbida 3255 Formula-building rule for ...
nfra1 3256 The setvar ` x ` is not fr...
nfre1 3257 The setvar ` x ` is not fr...
ralcom4 3258 Commutation of restricted ...
rexcom4 3259 Commutation of restricted ...
ralcom 3260 Commutation of restricted ...
rexcom 3261 Commutation of restricted ...
rexcom4a 3262 Specialized existential co...
ralrot3 3263 Rotate three restricted un...
ralcom13 3264 Swap first and third restr...
rexcom13 3265 Swap first and third restr...
rexrot4 3266 Rotate four restricted exi...
2ex2rexrot 3267 Rotate two existential qua...
nfra2w 3268 Similar to Lemma 24 of [Mo...
hbra1 3269 The setvar ` x ` is not fr...
ralcomf 3270 Commutation of restricted ...
rexcomf 3271 Commutation of restricted ...
cbvralfw 3272 Rule used to change bound ...
cbvrexfw 3273 Rule used to change bound ...
cbvralw 3274 Rule used to change bound ...
cbvrexw 3275 Rule used to change bound ...
hbral 3276 Bound-variable hypothesis ...
nfraldw 3277 Deduction version of ~ nfr...
nfrexdw 3278 Deduction version of ~ nfr...
nfralw 3279 Bound-variable hypothesis ...
nfrexw 3280 Bound-variable hypothesis ...
r19.12 3281 Restricted quantifier vers...
reean 3282 Rearrange restricted exist...
cbvralsvw 3283 Change bound variable by u...
cbvrexsvw 3284 Change bound variable by u...
cbvralsvwOLD 3285 Obsolete version of ~ cbvr...
cbvralsvwOLDOLD 3286 Obsolete version of ~ cbvr...
cbvrexsvwOLD 3287 Obsolete version of ~ cbvr...
rexeq 3288 Equality theorem for restr...
raleq 3289 Equality theorem for restr...
raleqi 3290 Equality inference for res...
rexeqi 3291 Equality inference for res...
raleqdv 3292 Equality deduction for res...
rexeqdv 3293 Equality deduction for res...
raleqtrdv 3294 Substitution of equal clas...
rexeqtrdv 3295 Substitution of equal clas...
raleqtrrdv 3296 Substitution of equal clas...
rexeqtrrdv 3297 Substitution of equal clas...
raleqbidva 3298 Equality deduction for res...
rexeqbidva 3299 Equality deduction for res...
raleqbidvv 3300 Version of ~ raleqbidv wit...
raleqbidvvOLD 3301 Obsolete version of ~ rale...
rexeqbidvv 3302 Version of ~ rexeqbidv wit...
rexeqbidvvOLD 3303 Obsolete version of ~ rexe...
raleqbi1dv 3304 Equality deduction for res...
rexeqbi1dv 3305 Equality deduction for res...
raleqOLD 3306 Obsolete version of ~ rale...
rexeqOLD 3307 Obsolete version of ~ rale...
raleleq 3308 All elements of a class ar...
raleleqOLD 3309 Obsolete version of ~ rale...
raleqbii 3310 Equality deduction for res...
rexeqbii 3311 Equality deduction for res...
raleqbidv 3312 Equality deduction for res...
rexeqbidv 3313 Equality deduction for res...
cbvraldva2 3314 Rule used to change the bo...
cbvrexdva2 3315 Rule used to change the bo...
cbvraldvaOLD 3316 Obsolete version of ~ cbvr...
cbvrexdvaOLD 3317 Obsolete version of ~ cbvr...
sbralie 3318 Implicit to explicit subst...
sbralieALT 3319 Alternative shorter proof ...
sbralieOLD 3320 Obsolete version of ~ sbra...
raleqf 3321 Equality theorem for restr...
rexeqf 3322 Equality theorem for restr...
rexeqfOLD 3323 Obsolete version of ~ rexe...
raleqbid 3324 Equality deduction for res...
rexeqbid 3325 Equality deduction for res...
cbvralf 3326 Rule used to change bound ...
cbvrexf 3327 Rule used to change bound ...
cbvral 3328 Rule used to change bound ...
cbvrex 3329 Rule used to change bound ...
cbvralv 3330 Change the bound variable ...
cbvrexv 3331 Change the bound variable ...
cbvralsv 3332 Change bound variable by u...
cbvrexsv 3333 Change bound variable by u...
cbvral2v 3334 Change bound variables of ...
cbvrex2v 3335 Change bound variables of ...
cbvral3v 3336 Change bound variables of ...
rgen2a 3337 Generalization rule for re...
nfrald 3338 Deduction version of ~ nfr...
nfrexd 3339 Deduction version of ~ nfr...
nfral 3340 Bound-variable hypothesis ...
nfrex 3341 Bound-variable hypothesis ...
nfra2 3342 Similar to Lemma 24 of [Mo...
ralcom2 3343 Commutation of restricted ...
reu5 3348 Restricted uniqueness in t...
reurmo 3349 Restricted existential uni...
reurex 3350 Restricted unique existenc...
mormo 3351 Unrestricted "at most one"...
rmobiia 3352 Formula-building rule for ...
reubiia 3353 Formula-building rule for ...
rmobii 3354 Formula-building rule for ...
reubii 3355 Formula-building rule for ...
rmoanid 3356 Cancellation law for restr...
reuanid 3357 Cancellation law for restr...
2reu2rex 3358 Double restricted existent...
rmobidva 3359 Formula-building rule for ...
reubidva 3360 Formula-building rule for ...
rmobidv 3361 Formula-building rule for ...
reubidv 3362 Formula-building rule for ...
reueubd 3363 Restricted existential uni...
rmo5 3364 Restricted "at most one" i...
nrexrmo 3365 Nonexistence implies restr...
moel 3366 "At most one" element in a...
cbvrmovw 3367 Change the bound variable ...
cbvreuvw 3368 Change the bound variable ...
rmobida 3369 Formula-building rule for ...
reubida 3370 Formula-building rule for ...
cbvrmow 3371 Change the bound variable ...
cbvreuw 3372 Change the bound variable ...
nfrmo1 3373 The setvar ` x ` is not fr...
nfreu1 3374 The setvar ` x ` is not fr...
nfrmow 3375 Bound-variable hypothesis ...
nfreuw 3376 Bound-variable hypothesis ...
rmoeq1 3377 Equality theorem for restr...
reueq1 3378 Equality theorem for restr...
rmoeq1OLD 3379 Obsolete version of ~ rmoe...
reueq1OLD 3380 Obsolete version of ~ reue...
rmoeqd 3381 Equality deduction for res...
reueqd 3382 Equality deduction for res...
reueqdv 3383 Formula-building rule for ...
reueqbidv 3384 Formula-building rule for ...
rmoeq1f 3385 Equality theorem for restr...
reueq1f 3386 Equality theorem for restr...
cbvreu 3387 Change the bound variable ...
cbvrmo 3388 Change the bound variable ...
cbvrmov 3389 Change the bound variable ...
cbvreuv 3390 Change the bound variable ...
nfrmod 3391 Deduction version of ~ nfr...
nfreud 3392 Deduction version of ~ nfr...
nfrmo 3393 Bound-variable hypothesis ...
nfreu 3394 Bound-variable hypothesis ...
rabbidva2 3397 Equivalent wff's yield equ...
rabbia2 3398 Equivalent wff's yield equ...
rabbiia 3399 Equivalent formulas yield ...
rabbii 3400 Equivalent wff's correspon...
rabbidva 3401 Equivalent wff's yield equ...
rabbidv 3402 Equivalent wff's yield equ...
rabbieq 3403 Equivalent wff's correspon...
rabswap 3404 Swap with a membership rel...
cbvrabv 3405 Rule to change the bound v...
rabeqcda 3406 When ` ps ` is always true...
rabeqc 3407 A restricted class abstrac...
rabeqi 3408 Equality theorem for restr...
rabeq 3409 Equality theorem for restr...
rabeqdv 3410 Equality of restricted cla...
rabeqbidva 3411 Equality of restricted cla...
rabeqbidvaOLD 3412 Obsolete version of ~ rabe...
rabeqbidv 3413 Equality of restricted cla...
rabrabi 3414 Abstract builder restricte...
nfrab1 3415 The abstraction variable i...
rabid 3416 An "identity" law of concr...
rabidim1 3417 Membership in a restricted...
reqabi 3418 Inference from equality of...
rabrab 3419 Abstract builder restricte...
rabbida4 3420 Version of ~ rabbidva2 wit...
rabbida 3421 Equivalent wff's yield equ...
rabbid 3422 Version of ~ rabbidv with ...
rabeqd 3423 Deduction form of ~ rabeq ...
rabeqbida 3424 Version of ~ rabeqbidva wi...
rabbi 3425 Equivalent wff's correspon...
rabid2f 3426 An "identity" law for rest...
rabid2im 3427 One direction of ~ rabid2 ...
rabid2 3428 An "identity" law for rest...
rabeqf 3429 Equality theorem for restr...
cbvrabw 3430 Rule to change the bound v...
cbvrabwOLD 3431 Obsolete version of ~ cbvr...
nfrabw 3432 A variable not free in a w...
rabbidaOLD 3433 Obsolete version of ~ rabb...
nfrab 3434 A variable not free in a w...
cbvrab 3435 Rule to change the bound v...
vjust 3437 Justification theorem for ...
dfv2 3439 Alternate definition of th...
vex 3440 All setvar variables are s...
elv 3441 If a proposition is implie...
elvd 3442 If a proposition is implie...
el2v 3443 If a proposition is implie...
el3v 3444 If a proposition is implie...
el3v3 3445 If a proposition is implie...
eqv 3446 The universe contains ever...
eqvf 3447 The universe contains ever...
abv 3448 The class of sets verifyin...
abvALT 3449 Alternate proof of ~ abv ,...
isset 3450 Two ways to express that "...
cbvexeqsetf 3451 The expression ` E. x x = ...
issetft 3452 Closed theorem form of ~ i...
issetf 3453 A version of ~ isset that ...
isseti 3454 A way to say " ` A ` is a ...
issetri 3455 A way to say " ` A ` is a ...
eqvisset 3456 A class equal to a variabl...
elex 3457 If a class is a member of ...
elexOLD 3458 Obsolete version of ~ elex...
elexi 3459 If a class is a member of ...
elexd 3460 If a class is a member of ...
elex22 3461 If two classes each contai...
prcnel 3462 A proper class doesn't bel...
ralv 3463 A universal quantifier res...
rexv 3464 An existential quantifier ...
reuv 3465 A unique existential quant...
rmov 3466 An at-most-one quantifier ...
rabab 3467 A class abstraction restri...
rexcom4b 3468 Specialized existential co...
ceqsal1t 3469 One direction of ~ ceqsalt...
ceqsalt 3470 Closed theorem version of ...
ceqsralt 3471 Restricted quantifier vers...
ceqsalg 3472 A representation of explic...
ceqsalgALT 3473 Alternate proof of ~ ceqsa...
ceqsal 3474 A representation of explic...
ceqsalALT 3475 A representation of explic...
ceqsalv 3476 A representation of explic...
ceqsralv 3477 Restricted quantifier vers...
gencl 3478 Implicit substitution for ...
2gencl 3479 Implicit substitution for ...
3gencl 3480 Implicit substitution for ...
cgsexg 3481 Implicit substitution infe...
cgsex2g 3482 Implicit substitution infe...
cgsex4g 3483 An implicit substitution i...
cgsex4gOLD 3484 Obsolete version of ~ cgse...
ceqsex 3485 Elimination of an existent...
ceqsexv 3486 Elimination of an existent...
ceqsexv2d 3487 Elimination of an existent...
ceqsexv2dOLD 3488 Obsolete version of ~ ceqs...
ceqsex2 3489 Elimination of two existen...
ceqsex2v 3490 Elimination of two existen...
ceqsex3v 3491 Elimination of three exist...
ceqsex4v 3492 Elimination of four existe...
ceqsex6v 3493 Elimination of six existen...
ceqsex8v 3494 Elimination of eight exist...
gencbvex 3495 Change of bound variable u...
gencbvex2 3496 Restatement of ~ gencbvex ...
gencbval 3497 Change of bound variable u...
sbhypf 3498 Introduce an explicit subs...
spcimgft 3499 Closed theorem form of ~ s...
spcimgfi1 3500 A closed version of ~ spci...
spcimgfi1OLD 3501 Obsolete version of ~ spci...
spcgft 3502 A closed version of ~ spcg...
spcimgf 3503 Rule of specialization, us...
spcimegf 3504 Existential specialization...
vtoclgft 3505 Closed theorem form of ~ v...
vtocleg 3506 Implicit substitution of a...
vtoclg 3507 Implicit substitution of a...
vtocle 3508 Implicit substitution of a...
vtocleOLD 3509 Obsolete version of ~ vtoc...
vtoclbg 3510 Implicit substitution of a...
vtocl 3511 Implicit substitution of a...
vtoclOLD 3512 Obsolete version of ~ vtoc...
vtocldf 3513 Implicit substitution of a...
vtocld 3514 Implicit substitution of a...
vtocl2d 3515 Implicit substitution of t...
vtoclef 3516 Implicit substitution of a...
vtoclf 3517 Implicit substitution of a...
vtocl2 3518 Implicit substitution of c...
vtocl3 3519 Implicit substitution of c...
vtoclb 3520 Implicit substitution of a...
vtoclgf 3521 Implicit substitution of a...
vtoclg1f 3522 Version of ~ vtoclgf with ...
vtocl2gf 3523 Implicit substitution of a...
vtocl3gf 3524 Implicit substitution of a...
vtocl2g 3525 Implicit substitution of 2...
vtocl3g 3526 Implicit substitution of a...
vtoclgaf 3527 Implicit substitution of a...
vtoclga 3528 Implicit substitution of a...
vtocl2ga 3529 Implicit substitution of 2...
vtocl2gaf 3530 Implicit substitution of 2...
vtocl2gafOLD 3531 Obsolete version of ~ vtoc...
vtocl3gaf 3532 Implicit substitution of 3...
vtocl3gafOLD 3533 Obsolete version of ~ vtoc...
vtocl3ga 3534 Implicit substitution of 3...
vtocl3gaOLD 3535 Obsolete version of ~ vtoc...
vtocl4g 3536 Implicit substitution of 4...
vtocl4ga 3537 Implicit substitution of 4...
vtocl4gaOLD 3538 Obsolete version of ~ vtoc...
vtoclegft 3539 Implicit substitution of a...
vtoclri 3540 Implicit substitution of a...
spcgf 3541 Rule of specialization, us...
spcegf 3542 Existential specialization...
spcimdv 3543 Restricted specialization,...
spcdv 3544 Rule of specialization, us...
spcimedv 3545 Restricted existential spe...
spcgv 3546 Rule of specialization, us...
spcegv 3547 Existential specialization...
spcedv 3548 Existential specialization...
spc2egv 3549 Existential specialization...
spc2gv 3550 Specialization with two qu...
spc2ed 3551 Existential specialization...
spc2d 3552 Specialization with 2 quan...
spc3egv 3553 Existential specialization...
spc3gv 3554 Specialization with three ...
spcv 3555 Rule of specialization, us...
spcev 3556 Existential specialization...
spc2ev 3557 Existential specialization...
rspct 3558 A closed version of ~ rspc...
rspcdf 3559 Restricted specialization,...
rspc 3560 Restricted specialization,...
rspce 3561 Restricted existential spe...
rspcimdv 3562 Restricted specialization,...
rspcimedv 3563 Restricted existential spe...
rspcdv 3564 Restricted specialization,...
rspcedv 3565 Restricted existential spe...
rspcebdv 3566 Restricted existential spe...
rspcdv2 3567 Restricted specialization,...
rspcv 3568 Restricted specialization,...
rspccv 3569 Restricted specialization,...
rspcva 3570 Restricted specialization,...
rspccva 3571 Restricted specialization,...
rspcev 3572 Restricted existential spe...
rspcdva 3573 Restricted specialization,...
rspcedvd 3574 Restricted existential spe...
rspcedvdw 3575 Version of ~ rspcedvd wher...
rspceb2dv 3576 Restricted existential spe...
rspcime 3577 Prove a restricted existen...
rspceaimv 3578 Restricted existential spe...
rspcedeq1vd 3579 Restricted existential spe...
rspcedeq2vd 3580 Restricted existential spe...
rspc2 3581 Restricted specialization ...
rspc2gv 3582 Restricted specialization ...
rspc2v 3583 2-variable restricted spec...
rspc2va 3584 2-variable restricted spec...
rspc2ev 3585 2-variable restricted exis...
2rspcedvdw 3586 Double application of ~ rs...
rspc2dv 3587 2-variable restricted spec...
rspc3v 3588 3-variable restricted spec...
rspc3ev 3589 3-variable restricted exis...
3rspcedvdw 3590 Triple application of ~ rs...
rspc3dv 3591 3-variable restricted spec...
rspc4v 3592 4-variable restricted spec...
rspc6v 3593 6-variable restricted spec...
rspc8v 3594 8-variable restricted spec...
rspceeqv 3595 Restricted existential spe...
ralxpxfr2d 3596 Transfer a universal quant...
rexraleqim 3597 Statement following from e...
eqvincg 3598 A variable introduction la...
eqvinc 3599 A variable introduction la...
eqvincf 3600 A variable introduction la...
alexeqg 3601 Two ways to express substi...
ceqex 3602 Equality implies equivalen...
ceqsexg 3603 A representation of explic...
ceqsexgv 3604 Elimination of an existent...
ceqsrexv 3605 Elimination of a restricte...
ceqsrexbv 3606 Elimination of a restricte...
ceqsralbv 3607 Elimination of a restricte...
ceqsrex2v 3608 Elimination of a restricte...
clel2g 3609 Alternate definition of me...
clel2 3610 Alternate definition of me...
clel3g 3611 Alternate definition of me...
clel3 3612 Alternate definition of me...
clel4g 3613 Alternate definition of me...
clel4 3614 Alternate definition of me...
clel5 3615 Alternate definition of cl...
pm13.183 3616 Compare theorem *13.183 in...
rr19.3v 3617 Restricted quantifier vers...
rr19.28v 3618 Restricted quantifier vers...
elab6g 3619 Membership in a class abst...
elabd2 3620 Membership in a class abst...
elabd3 3621 Membership in a class abst...
elabgt 3622 Membership in a class abst...
elabgtOLD 3623 Obsolete version of ~ elab...
elabgtOLDOLD 3624 Obsolete version of ~ elab...
elabgf 3625 Membership in a class abst...
elabf 3626 Membership in a class abst...
elabg 3627 Membership in a class abst...
elabgw 3628 Membership in a class abst...
elab2gw 3629 Membership in a class abst...
elab 3630 Membership in a class abst...
elab2g 3631 Membership in a class abst...
elabd 3632 Explicit demonstration the...
elab2 3633 Membership in a class abst...
elab4g 3634 Membership in a class abst...
elab3gf 3635 Membership in a class abst...
elab3g 3636 Membership in a class abst...
elab3 3637 Membership in a class abst...
elrabi 3638 Implication for the member...
elrabf 3639 Membership in a restricted...
rabtru 3640 Abstract builder using the...
elrab3t 3641 Membership in a restricted...
elrab 3642 Membership in a restricted...
elrab3 3643 Membership in a restricted...
elrabd 3644 Membership in a restricted...
elrab2 3645 Membership in a restricted...
elrab2w 3646 Membership in a restricted...
ralab 3647 Universal quantification o...
ralrab 3648 Universal quantification o...
rexab 3649 Existential quantification...
rexrab 3650 Existential quantification...
ralab2 3651 Universal quantification o...
ralrab2 3652 Universal quantification o...
rexab2 3653 Existential quantification...
rexrab2 3654 Existential quantification...
reurab 3655 Restricted existential uni...
abidnf 3656 Identity used to create cl...
dedhb 3657 A deduction theorem for co...
class2seteq 3658 Writing a set as a class a...
nelrdva 3659 Deduce negative membership...
eqeu 3660 A condition which implies ...
moeq 3661 There exists at most one s...
eueq 3662 A class is a set if and on...
eueqi 3663 There exists a unique set ...
eueq2 3664 Equality has existential u...
eueq3 3665 Equality has existential u...
moeq3 3666 "At most one" property of ...
mosub 3667 "At most one" remains true...
mo2icl 3668 Theorem for inferring "at ...
mob2 3669 Consequence of "at most on...
moi2 3670 Consequence of "at most on...
mob 3671 Equality implied by "at mo...
moi 3672 Equality implied by "at mo...
morex 3673 Derive membership from uni...
euxfr2w 3674 Transfer existential uniqu...
euxfrw 3675 Transfer existential uniqu...
euxfr2 3676 Transfer existential uniqu...
euxfr 3677 Transfer existential uniqu...
euind 3678 Existential uniqueness via...
reu2 3679 A way to express restricte...
reu6 3680 A way to express restricte...
reu3 3681 A way to express restricte...
reu6i 3682 A condition which implies ...
eqreu 3683 A condition which implies ...
rmo4 3684 Restricted "at most one" u...
reu4 3685 Restricted uniqueness usin...
reu7 3686 Restricted uniqueness usin...
reu8 3687 Restricted uniqueness usin...
rmo3f 3688 Restricted "at most one" u...
rmo4f 3689 Restricted "at most one" u...
reu2eqd 3690 Deduce equality from restr...
reueq 3691 Equality has existential u...
rmoeq 3692 Equality's restricted exis...
rmoan 3693 Restricted "at most one" s...
rmoim 3694 Restricted "at most one" i...
rmoimia 3695 Restricted "at most one" i...
rmoimi 3696 Restricted "at most one" i...
rmoimi2 3697 Restricted "at most one" i...
2reu5a 3698 Double restricted existent...
reuimrmo 3699 Restricted uniqueness impl...
2reuswap 3700 A condition allowing swap ...
2reuswap2 3701 A condition allowing swap ...
reuxfrd 3702 Transfer existential uniqu...
reuxfr 3703 Transfer existential uniqu...
reuxfr1d 3704 Transfer existential uniqu...
reuxfr1ds 3705 Transfer existential uniqu...
reuxfr1 3706 Transfer existential uniqu...
reuind 3707 Existential uniqueness via...
2rmorex 3708 Double restricted quantifi...
2reu5lem1 3709 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3710 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3711 Lemma for ~ 2reu5 . This ...
2reu5 3712 Double restricted existent...
2reurmo 3713 Double restricted quantifi...
2reurex 3714 Double restricted quantifi...
2rmoswap 3715 A condition allowing to sw...
2rexreu 3716 Double restricted existent...
cdeqi 3719 Deduce conditional equalit...
cdeqri 3720 Property of conditional eq...
cdeqth 3721 Deduce conditional equalit...
cdeqnot 3722 Distribute conditional equ...
cdeqal 3723 Distribute conditional equ...
cdeqab 3724 Distribute conditional equ...
cdeqal1 3725 Distribute conditional equ...
cdeqab1 3726 Distribute conditional equ...
cdeqim 3727 Distribute conditional equ...
cdeqcv 3728 Conditional equality for s...
cdeqeq 3729 Distribute conditional equ...
cdeqel 3730 Distribute conditional equ...
nfcdeq 3731 If we have a conditional e...
nfccdeq 3732 Variation of ~ nfcdeq for ...
rru 3733 Relative version of Russel...
ru 3734 Russell's Paradox. Propos...
ruOLD 3735 Obsolete version of ~ ru a...
dfsbcq 3738 Proper substitution of a c...
dfsbcq2 3739 This theorem, which is sim...
sbsbc 3740 Show that ~ df-sb and ~ df...
sbceq1d 3741 Equality theorem for class...
sbceq1dd 3742 Equality theorem for class...
sbceqbid 3743 Equality theorem for class...
sbc8g 3744 This is the closest we can...
sbc2or 3745 The disjunction of two equ...
sbcex 3746 By our definition of prope...
sbceq1a 3747 Equality theorem for class...
sbceq2a 3748 Equality theorem for class...
spsbc 3749 Specialization: if a formu...
spsbcd 3750 Specialization: if a formu...
sbcth 3751 A substitution into a theo...
sbcthdv 3752 Deduction version of ~ sbc...
sbcid 3753 An identity theorem for su...
nfsbc1d 3754 Deduction version of ~ nfs...
nfsbc1 3755 Bound-variable hypothesis ...
nfsbc1v 3756 Bound-variable hypothesis ...
nfsbcdw 3757 Deduction version of ~ nfs...
nfsbcw 3758 Bound-variable hypothesis ...
sbccow 3759 A composition law for clas...
nfsbcd 3760 Deduction version of ~ nfs...
nfsbc 3761 Bound-variable hypothesis ...
sbcco 3762 A composition law for clas...
sbcco2 3763 A composition law for clas...
sbc5 3764 An equivalence for class s...
sbc5ALT 3765 Alternate proof of ~ sbc5 ...
sbc6g 3766 An equivalence for class s...
sbc6 3767 An equivalence for class s...
sbc7 3768 An equivalence for class s...
cbvsbcw 3769 Change bound variables in ...
cbvsbcvw 3770 Change the bound variable ...
cbvsbc 3771 Change bound variables in ...
cbvsbcv 3772 Change the bound variable ...
sbciegft 3773 Conversion of implicit sub...
sbciegftOLD 3774 Obsolete version of ~ sbci...
sbciegf 3775 Conversion of implicit sub...
sbcieg 3776 Conversion of implicit sub...
sbcie2g 3777 Conversion of implicit sub...
sbcie 3778 Conversion of implicit sub...
sbciedf 3779 Conversion of implicit sub...
sbcied 3780 Conversion of implicit sub...
sbcied2 3781 Conversion of implicit sub...
elrabsf 3782 Membership in a restricted...
eqsbc1 3783 Substitution for the left-...
sbcng 3784 Move negation in and out o...
sbcimg 3785 Distribution of class subs...
sbcan 3786 Distribution of class subs...
sbcor 3787 Distribution of class subs...
sbcbig 3788 Distribution of class subs...
sbcn1 3789 Move negation in and out o...
sbcim1 3790 Distribution of class subs...
sbcbid 3791 Formula-building deduction...
sbcbidv 3792 Formula-building deduction...
sbcbii 3793 Formula-building inference...
sbcbi1 3794 Distribution of class subs...
sbcbi2 3795 Substituting into equivale...
sbcal 3796 Move universal quantifier ...
sbcex2 3797 Move existential quantifie...
sbceqal 3798 Class version of one impli...
sbeqalb 3799 Theorem *14.121 in [Whiteh...
eqsbc2 3800 Substitution for the right...
sbc3an 3801 Distribution of class subs...
sbcel1v 3802 Class substitution into a ...
sbcel2gv 3803 Class substitution into a ...
sbcel21v 3804 Class substitution into a ...
sbcimdv 3805 Substitution analogue of T...
sbctt 3806 Substitution for a variabl...
sbcgf 3807 Substitution for a variabl...
sbc19.21g 3808 Substitution for a variabl...
sbcg 3809 Substitution for a variabl...
sbcgfi 3810 Substitution for a variabl...
sbc2iegf 3811 Conversion of implicit sub...
sbc2ie 3812 Conversion of implicit sub...
sbc2iedv 3813 Conversion of implicit sub...
sbc3ie 3814 Conversion of implicit sub...
sbccomlem 3815 Lemma for ~ sbccom . (Con...
sbccomlemOLD 3816 Obsolete version of ~ sbcc...
sbccom 3817 Commutative law for double...
sbcralt 3818 Interchange class substitu...
sbcrext 3819 Interchange class substitu...
sbcralg 3820 Interchange class substitu...
sbcrex 3821 Interchange class substitu...
sbcreu 3822 Interchange class substitu...
reu8nf 3823 Restricted uniqueness usin...
sbcabel 3824 Interchange class substitu...
rspsbc 3825 Restricted quantifier vers...
rspsbca 3826 Restricted quantifier vers...
rspesbca 3827 Existence form of ~ rspsbc...
spesbc 3828 Existence form of ~ spsbc ...
spesbcd 3829 form of ~ spsbc . (Contri...
sbcth2 3830 A substitution into a theo...
ra4v 3831 Version of ~ ra4 with a di...
ra4 3832 Restricted quantifier vers...
rmo2 3833 Alternate definition of re...
rmo2i 3834 Condition implying restric...
rmo3 3835 Restricted "at most one" u...
rmob 3836 Consequence of "at most on...
rmoi 3837 Consequence of "at most on...
rmob2 3838 Consequence of "restricted...
rmoi2 3839 Consequence of "restricted...
rmoanim 3840 Introduction of a conjunct...
rmoanimALT 3841 Alternate proof of ~ rmoan...
reuan 3842 Introduction of a conjunct...
2reu1 3843 Double restricted existent...
2reu2 3844 Double restricted existent...
csb2 3847 Alternate expression for t...
csbeq1 3848 Analogue of ~ dfsbcq for p...
csbeq1d 3849 Equality deduction for pro...
csbeq2 3850 Substituting into equivale...
csbeq2d 3851 Formula-building deduction...
csbeq2dv 3852 Formula-building deduction...
csbeq2i 3853 Formula-building inference...
csbeq12dv 3854 Formula-building inference...
cbvcsbw 3855 Change bound variables in ...
cbvcsb 3856 Change bound variables in ...
cbvcsbv 3857 Change the bound variable ...
csbid 3858 Analogue of ~ sbid for pro...
csbeq1a 3859 Equality theorem for prope...
csbcow 3860 Composition law for chaine...
csbco 3861 Composition law for chaine...
csbtt 3862 Substitution doesn't affec...
csbconstgf 3863 Substitution doesn't affec...
csbconstg 3864 Substitution doesn't affec...
csbgfi 3865 Substitution for a variabl...
csbconstgi 3866 The proper substitution of...
nfcsb1d 3867 Bound-variable hypothesis ...
nfcsb1 3868 Bound-variable hypothesis ...
nfcsb1v 3869 Bound-variable hypothesis ...
nfcsbd 3870 Deduction version of ~ nfc...
nfcsbw 3871 Bound-variable hypothesis ...
nfcsb 3872 Bound-variable hypothesis ...
csbhypf 3873 Introduce an explicit subs...
csbiebt 3874 Conversion of implicit sub...
csbiedf 3875 Conversion of implicit sub...
csbieb 3876 Bidirectional conversion b...
csbiebg 3877 Bidirectional conversion b...
csbiegf 3878 Conversion of implicit sub...
csbief 3879 Conversion of implicit sub...
csbie 3880 Conversion of implicit sub...
csbied 3881 Conversion of implicit sub...
csbied2 3882 Conversion of implicit sub...
csbie2t 3883 Conversion of implicit sub...
csbie2 3884 Conversion of implicit sub...
csbie2g 3885 Conversion of implicit sub...
cbvrabcsfw 3886 Version of ~ cbvrabcsf wit...
cbvralcsf 3887 A more general version of ...
cbvrexcsf 3888 A more general version of ...
cbvreucsf 3889 A more general version of ...
cbvrabcsf 3890 A more general version of ...
cbvralv2 3891 Rule used to change the bo...
cbvrexv2 3892 Rule used to change the bo...
rspc2vd 3893 Deduction version of 2-var...
difjust 3899 Soundness justification th...
unjust 3901 Soundness justification th...
injust 3903 Soundness justification th...
dfin5 3905 Alternate definition for t...
dfdif2 3906 Alternate definition of cl...
eldif 3907 Expansion of membership in...
eldifd 3908 If a class is in one class...
eldifad 3909 If a class is in the diffe...
eldifbd 3910 If a class is in the diffe...
elneeldif 3911 The elements of a set diff...
velcomp 3912 Characterization of setvar...
elin 3913 Expansion of membership in...
dfss2 3915 Alternate definition of th...
dfss 3916 Variant of subclass defini...
dfss3 3918 Alternate definition of su...
dfss6 3919 Alternate definition of su...
dfssf 3920 Equivalence for subclass r...
dfss3f 3921 Equivalence for subclass r...
nfss 3922 If ` x ` is not free in ` ...
ssel 3923 Membership relationships f...
ssel2 3924 Membership relationships f...
sseli 3925 Membership implication fro...
sselii 3926 Membership inference from ...
sselid 3927 Membership inference from ...
sseld 3928 Membership deduction from ...
sselda 3929 Membership deduction from ...
sseldd 3930 Membership inference from ...
ssneld 3931 If a class is not in anoth...
ssneldd 3932 If an element is not in a ...
ssriv 3933 Inference based on subclas...
ssrd 3934 Deduction based on subclas...
ssrdv 3935 Deduction based on subclas...
sstr2 3936 Transitivity of subclass r...
sstr2OLD 3937 Obsolete version of ~ sstr...
sstr 3938 Transitivity of subclass r...
sstri 3939 Subclass transitivity infe...
sstrd 3940 Subclass transitivity dedu...
sstrid 3941 Subclass transitivity dedu...
sstrdi 3942 Subclass transitivity dedu...
sylan9ss 3943 A subclass transitivity de...
sylan9ssr 3944 A subclass transitivity de...
eqss 3945 The subclass relationship ...
eqssi 3946 Infer equality from two su...
eqssd 3947 Equality deduction from tw...
sssseq 3948 If a class is a subclass o...
eqrd 3949 Deduce equality of classes...
eqri 3950 Infer equality of classes ...
eqelssd 3951 Equality deduction from su...
ssid 3952 Any class is a subclass of...
ssidd 3953 Weakening of ~ ssid . (Co...
ssv 3954 Any class is a subclass of...
sseq1 3955 Equality theorem for subcl...
sseq2 3956 Equality theorem for the s...
sseq12 3957 Equality theorem for the s...
sseq1i 3958 An equality inference for ...
sseq2i 3959 An equality inference for ...
sseq12i 3960 An equality inference for ...
sseq1d 3961 An equality deduction for ...
sseq2d 3962 An equality deduction for ...
sseq12d 3963 An equality deduction for ...
eqsstrd 3964 Substitution of equality i...
eqsstrrd 3965 Substitution of equality i...
sseqtrd 3966 Substitution of equality i...
sseqtrrd 3967 Substitution of equality i...
eqsstrid 3968 A chained subclass and equ...
eqsstrrid 3969 A chained subclass and equ...
sseqtrdi 3970 A chained subclass and equ...
sseqtrrdi 3971 A chained subclass and equ...
sseqtrid 3972 Subclass transitivity dedu...
sseqtrrid 3973 Subclass transitivity dedu...
eqsstrdi 3974 A chained subclass and equ...
eqsstrrdi 3975 A chained subclass and equ...
eqsstri 3976 Substitution of equality i...
eqsstrri 3977 Substitution of equality i...
sseqtri 3978 Substitution of equality i...
sseqtrri 3979 Substitution of equality i...
3sstr3i 3980 Substitution of equality i...
3sstr4i 3981 Substitution of equality i...
3sstr3g 3982 Substitution of equality i...
3sstr4g 3983 Substitution of equality i...
3sstr3d 3984 Substitution of equality i...
3sstr4d 3985 Substitution of equality i...
eqimssd 3986 Equality implies inclusion...
eqimsscd 3987 Equality implies inclusion...
eqimss 3988 Equality implies inclusion...
eqimss2 3989 Equality implies inclusion...
eqimssi 3990 Infer subclass relationshi...
eqimss2i 3991 Infer subclass relationshi...
nssne1 3992 Two classes are different ...
nssne2 3993 Two classes are different ...
nss 3994 Negation of subclass relat...
nelss 3995 Demonstrate by witnesses t...
ssrexf 3996 Restricted existential qua...
ssrmof 3997 "At most one" existential ...
ssralv 3998 Quantification restricted ...
ssrexv 3999 Existential quantification...
ss2ralv 4000 Two quantifications restri...
ss2rexv 4001 Two existential quantifica...
ssralvOLD 4002 Obsolete version of ~ ssra...
ssrexvOLD 4003 Obsolete version of ~ ssre...
ralss 4004 Restricted universal quant...
rexss 4005 Restricted existential qua...
ralssOLD 4006 Obsolete version of ~ rals...
rexssOLD 4007 Obsolete version of ~ rexs...
ss2ab 4008 Class abstractions in a su...
abss 4009 Class abstraction in a sub...
ssab 4010 Subclass of a class abstra...
ssabral 4011 The relation for a subclas...
ss2abdv 4012 Deduction of abstraction s...
ss2abi 4013 Inference of abstraction s...
abssdv 4014 Deduction of abstraction s...
abssi 4015 Inference of abstraction s...
ss2rab 4016 Restricted abstraction cla...
rabss 4017 Restricted class abstracti...
ssrab 4018 Subclass of a restricted c...
ssrabdv 4019 Subclass of a restricted c...
rabssdv 4020 Subclass of a restricted c...
ss2rabdv 4021 Deduction of restricted ab...
ss2rabdvOLD 4022 Obsolete version of ~ ss2r...
ss2rabi 4023 Inference of restricted ab...
rabss2 4024 Subclass law for restricte...
rabss2OLD 4025 Obsolete version of ~ ss2r...
ssab2 4026 Subclass relation for the ...
ssrab2 4027 Subclass relation for a re...
rabss3d 4028 Subclass law for restricte...
ssrab3 4029 Subclass relation for a re...
rabssrabd 4030 Subclass of a restricted c...
ssrabeq 4031 If the restricting class o...
rabssab 4032 A restricted class is a su...
eqrrabd 4033 Deduce equality with a res...
uniiunlem 4034 A subset relationship usef...
dfpss2 4035 Alternate definition of pr...
dfpss3 4036 Alternate definition of pr...
psseq1 4037 Equality theorem for prope...
psseq2 4038 Equality theorem for prope...
psseq1i 4039 An equality inference for ...
psseq2i 4040 An equality inference for ...
psseq12i 4041 An equality inference for ...
psseq1d 4042 An equality deduction for ...
psseq2d 4043 An equality deduction for ...
psseq12d 4044 An equality deduction for ...
pssss 4045 A proper subclass is a sub...
pssne 4046 Two classes in a proper su...
pssssd 4047 Deduce subclass from prope...
pssned 4048 Proper subclasses are uneq...
sspss 4049 Subclass in terms of prope...
pssirr 4050 Proper subclass is irrefle...
pssn2lp 4051 Proper subclass has no 2-c...
sspsstri 4052 Two ways of stating tricho...
ssnpss 4053 Partial trichotomy law for...
psstr 4054 Transitive law for proper ...
sspsstr 4055 Transitive law for subclas...
psssstr 4056 Transitive law for subclas...
psstrd 4057 Proper subclass inclusion ...
sspsstrd 4058 Transitivity involving sub...
psssstrd 4059 Transitivity involving sub...
npss 4060 A class is not a proper su...
ssnelpss 4061 A subclass missing a membe...
ssnelpssd 4062 Subclass inclusion with on...
ssexnelpss 4063 If there is an element of ...
dfdif3 4064 Alternate definition of cl...
dfdif3OLD 4065 Obsolete version of ~ dfdi...
difeq1 4066 Equality theorem for class...
difeq2 4067 Equality theorem for class...
difeq12 4068 Equality theorem for class...
difeq1i 4069 Inference adding differenc...
difeq2i 4070 Inference adding differenc...
difeq12i 4071 Equality inference for cla...
difeq1d 4072 Deduction adding differenc...
difeq2d 4073 Deduction adding differenc...
difeq12d 4074 Equality deduction for cla...
difeqri 4075 Inference from membership ...
nfdif 4076 Bound-variable hypothesis ...
nfdifOLD 4077 Obsolete version of ~ nfdi...
eldifi 4078 Implication of membership ...
eldifn 4079 Implication of membership ...
elndif 4080 A set does not belong to a...
neldif 4081 Implication of membership ...
difdif 4082 Double class difference. ...
difss 4083 Subclass relationship for ...
difssd 4084 A difference of two classe...
difss2 4085 If a class is contained in...
difss2d 4086 If a class is contained in...
ssdifss 4087 Preservation of a subclass...
ddif 4088 Double complement under un...
ssconb 4089 Contraposition law for sub...
sscon 4090 Contraposition law for sub...
ssdif 4091 Difference law for subsets...
ssdifd 4092 If ` A ` is contained in `...
sscond 4093 If ` A ` is contained in `...
ssdifssd 4094 If ` A ` is contained in `...
ssdif2d 4095 If ` A ` is contained in `...
raldifb 4096 Restricted universal quant...
rexdifi 4097 Restricted existential qua...
complss 4098 Complementation reverses i...
compleq 4099 Two classes are equal if a...
elun 4100 Expansion of membership in...
elunnel1 4101 A member of a union that i...
elunnel2 4102 A member of a union that i...
uneqri 4103 Inference from membership ...
unidm 4104 Idempotent law for union o...
uncom 4105 Commutative law for union ...
equncom 4106 If a class equals the unio...
equncomi 4107 Inference form of ~ equnco...
uneq1 4108 Equality theorem for the u...
uneq2 4109 Equality theorem for the u...
uneq12 4110 Equality theorem for the u...
uneq1i 4111 Inference adding union to ...
uneq2i 4112 Inference adding union to ...
uneq12i 4113 Equality inference for the...
uneq1d 4114 Deduction adding union to ...
uneq2d 4115 Deduction adding union to ...
uneq12d 4116 Equality deduction for the...
nfun 4117 Bound-variable hypothesis ...
nfunOLD 4118 Obsolete version of ~ nfun...
unass 4119 Associative law for union ...
un12 4120 A rearrangement of union. ...
un23 4121 A rearrangement of union. ...
un4 4122 A rearrangement of the uni...
unundi 4123 Union distributes over its...
unundir 4124 Union distributes over its...
ssun1 4125 Subclass relationship for ...
ssun2 4126 Subclass relationship for ...
ssun3 4127 Subclass law for union of ...
ssun4 4128 Subclass law for union of ...
elun1 4129 Membership law for union o...
elun2 4130 Membership law for union o...
elunant 4131 A statement is true for ev...
unss1 4132 Subclass law for union of ...
ssequn1 4133 A relationship between sub...
unss2 4134 Subclass law for union of ...
unss12 4135 Subclass law for union of ...
ssequn2 4136 A relationship between sub...
unss 4137 The union of two subclasse...
unssi 4138 An inference showing the u...
unssd 4139 A deduction showing the un...
unssad 4140 If ` ( A u. B ) ` is conta...
unssbd 4141 If ` ( A u. B ) ` is conta...
ssun 4142 A condition that implies i...
rexun 4143 Restricted existential qua...
ralunb 4144 Restricted quantification ...
ralun 4145 Restricted quantification ...
elini 4146 Membership in an intersect...
elind 4147 Deduce membership in an in...
elinel1 4148 Membership in an intersect...
elinel2 4149 Membership in an intersect...
elin2 4150 Membership in a class defi...
elin1d 4151 Elementhood in the first s...
elin2d 4152 Elementhood in the first s...
elin3 4153 Membership in a class defi...
nel1nelin 4154 Membership in an intersect...
nel2nelin 4155 Membership in an intersect...
incom 4156 Commutative law for inters...
ineqcom 4157 Two ways of expressing tha...
ineqcomi 4158 Two ways of expressing tha...
ineqri 4159 Inference from membership ...
ineq1 4160 Equality theorem for inter...
ineq2 4161 Equality theorem for inter...
ineq12 4162 Equality theorem for inter...
ineq1i 4163 Equality inference for int...
ineq2i 4164 Equality inference for int...
ineq12i 4165 Equality inference for int...
ineq1d 4166 Equality deduction for int...
ineq2d 4167 Equality deduction for int...
ineq12d 4168 Equality deduction for int...
ineqan12d 4169 Equality deduction for int...
sseqin2 4170 A relationship between sub...
nfin 4171 Bound-variable hypothesis ...
nfinOLD 4172 Obsolete version of ~ nfin...
rabbi2dva 4173 Deduction from a wff to a ...
inidm 4174 Idempotent law for interse...
inass 4175 Associative law for inters...
in12 4176 A rearrangement of interse...
in32 4177 A rearrangement of interse...
in13 4178 A rearrangement of interse...
in31 4179 A rearrangement of interse...
inrot 4180 Rotate the intersection of...
in4 4181 Rearrangement of intersect...
inindi 4182 Intersection distributes o...
inindir 4183 Intersection distributes o...
inss1 4184 The intersection of two cl...
inss2 4185 The intersection of two cl...
ssin 4186 Subclass of intersection. ...
ssini 4187 An inference showing that ...
ssind 4188 A deduction showing that a...
ssrin 4189 Add right intersection to ...
sslin 4190 Add left intersection to s...
ssrind 4191 Add right intersection to ...
ss2in 4192 Intersection of subclasses...
ssinss1 4193 Intersection preserves sub...
ssinss1d 4194 Intersection preserves sub...
inss 4195 Inclusion of an intersecti...
ralin 4196 Restricted universal quant...
rexin 4197 Restricted existential qua...
dfss7 4198 Alternate definition of su...
symdifcom 4201 Symmetric difference commu...
symdifeq1 4202 Equality theorem for symme...
symdifeq2 4203 Equality theorem for symme...
nfsymdif 4204 Hypothesis builder for sym...
elsymdif 4205 Membership in a symmetric ...
dfsymdif4 4206 Alternate definition of th...
elsymdifxor 4207 Membership in a symmetric ...
dfsymdif2 4208 Alternate definition of th...
symdifass 4209 Symmetric difference is as...
difsssymdif 4210 The symmetric difference c...
difsymssdifssd 4211 If the symmetric differenc...
unabs 4212 Absorption law for union. ...
inabs 4213 Absorption law for interse...
nssinpss 4214 Negation of subclass expre...
nsspssun 4215 Negation of subclass expre...
dfss4 4216 Subclass defined in terms ...
dfun2 4217 An alternate definition of...
dfin2 4218 An alternate definition of...
difin 4219 Difference with intersecti...
ssdifim 4220 Implication of a class dif...
ssdifsym 4221 Symmetric class difference...
dfss5 4222 Alternate definition of su...
dfun3 4223 Union defined in terms of ...
dfin3 4224 Intersection defined in te...
dfin4 4225 Alternate definition of th...
invdif 4226 Intersection with universa...
indif 4227 Intersection with class di...
indif2 4228 Bring an intersection in a...
indif1 4229 Bring an intersection in a...
indifcom 4230 Commutation law for inters...
indi 4231 Distributive law for inter...
undi 4232 Distributive law for union...
indir 4233 Distributive law for inter...
undir 4234 Distributive law for union...
unineq 4235 Infer equality from equali...
uneqin 4236 Equality of union and inte...
difundi 4237 Distributive law for class...
difundir 4238 Distributive law for class...
difindi 4239 Distributive law for class...
difindir 4240 Distributive law for class...
indifdi 4241 Distribute intersection ov...
indifdir 4242 Distribute intersection ov...
difdif2 4243 Class difference by a clas...
undm 4244 De Morgan's law for union....
indm 4245 De Morgan's law for inters...
difun1 4246 A relationship involving d...
undif3 4247 An equality involving clas...
difin2 4248 Represent a class differen...
dif32 4249 Swap second and third argu...
difabs 4250 Absorption-like law for cl...
sscon34b 4251 Relative complementation r...
rcompleq 4252 Two subclasses are equal i...
dfsymdif3 4253 Alternate definition of th...
unabw 4254 Union of two class abstrac...
unab 4255 Union of two class abstrac...
inab 4256 Intersection of two class ...
difab 4257 Difference of two class ab...
abanssl 4258 A class abstraction with a...
abanssr 4259 A class abstraction with a...
notabw 4260 A class abstraction define...
notab 4261 A class abstraction define...
unrab 4262 Union of two restricted cl...
inrab 4263 Intersection of two restri...
inrab2 4264 Intersection with a restri...
difrab 4265 Difference of two restrict...
dfrab3 4266 Alternate definition of re...
dfrab2 4267 Alternate definition of re...
rabdif 4268 Move difference in and out...
notrab 4269 Complementation of restric...
dfrab3ss 4270 Restricted class abstracti...
rabun2 4271 Abstraction restricted to ...
reuun2 4272 Transfer uniqueness to a s...
reuss2 4273 Transfer uniqueness to a s...
reuss 4274 Transfer uniqueness to a s...
reuun1 4275 Transfer uniqueness to a s...
reupick 4276 Restricted uniqueness "pic...
reupick3 4277 Restricted uniqueness "pic...
reupick2 4278 Restricted uniqueness "pic...
euelss 4279 Transfer uniqueness of an ...
dfnul4 4282 Alternate definition of th...
dfnul2 4283 Alternate definition of th...
dfnul3 4284 Alternate definition of th...
noel 4285 The empty set has no eleme...
nel02 4286 The empty set has no eleme...
n0i 4287 If a class has elements, t...
ne0i 4288 If a class has elements, t...
ne0d 4289 Deduction form of ~ ne0i ....
n0ii 4290 If a class has elements, t...
ne0ii 4291 If a class has elements, t...
vn0 4292 The universal class is not...
vn0ALT 4293 Alternate proof of ~ vn0 ....
eq0f 4294 A class is equal to the em...
neq0f 4295 A class is not empty if an...
n0f 4296 A class is nonempty if and...
eq0 4297 A class is equal to the em...
eq0ALT 4298 Alternate proof of ~ eq0 ....
neq0 4299 A class is not empty if an...
n0 4300 A class is nonempty if and...
nel0 4301 From the general negation ...
reximdva0 4302 Restricted existence deduc...
rspn0 4303 Specialization for restric...
n0rex 4304 There is an element in a n...
ssn0rex 4305 There is an element in a c...
n0moeu 4306 A case of equivalence of "...
rex0 4307 Vacuous restricted existen...
reu0 4308 Vacuous restricted uniquen...
rmo0 4309 Vacuous restricted at-most...
0el 4310 Membership of the empty se...
n0el 4311 Negated membership of the ...
eqeuel 4312 A condition which implies ...
ssdif0 4313 Subclass expressed in term...
difn0 4314 If the difference of two s...
pssdifn0 4315 A proper subclass has a no...
pssdif 4316 A proper subclass has a no...
ndisj 4317 Express that an intersecti...
inn0f 4318 A nonempty intersection. ...
inn0 4319 A nonempty intersection. ...
difin0ss 4320 Difference, intersection, ...
inssdif0 4321 Intersection, subclass, an...
inindif 4322 The intersection and class...
difid 4323 The difference between a c...
difidALT 4324 Alternate proof of ~ difid...
dif0 4325 The difference between a c...
ab0w 4326 The class of sets verifyin...
ab0 4327 The class of sets verifyin...
ab0ALT 4328 Alternate proof of ~ ab0 ,...
dfnf5 4329 Characterization of nonfre...
ab0orv 4330 The class abstraction defi...
ab0orvALT 4331 Alternate proof of ~ ab0or...
abn0 4332 Nonempty class abstraction...
rab0 4333 Any restricted class abstr...
rabeq0w 4334 Condition for a restricted...
rabeq0 4335 Condition for a restricted...
rabn0 4336 Nonempty restricted class ...
rabxm 4337 Law of excluded middle, in...
rabnc 4338 Law of noncontradiction, i...
elneldisj 4339 The set of elements ` s ` ...
elnelun 4340 The union of the set of el...
un0 4341 The union of a class with ...
in0 4342 The intersection of a clas...
0un 4343 The union of the empty set...
0in 4344 The intersection of the em...
inv1 4345 The intersection of a clas...
unv 4346 The union of a class with ...
0ss 4347 The null set is a subset o...
ss0b 4348 Any subset of the empty se...
ss0 4349 Any subset of the empty se...
sseq0 4350 A subclass of an empty cla...
ssn0 4351 A class with a nonempty su...
0dif 4352 The difference between the...
abf 4353 A class abstraction determ...
eq0rdv 4354 Deduction for equality to ...
eq0rdvALT 4355 Alternate proof of ~ eq0rd...
csbprc 4356 The proper substitution of...
csb0 4357 The proper substitution of...
sbcel12 4358 Distribute proper substitu...
sbceqg 4359 Distribute proper substitu...
sbceqi 4360 Distribution of class subs...
sbcnel12g 4361 Distribute proper substitu...
sbcne12 4362 Distribute proper substitu...
sbcel1g 4363 Move proper substitution i...
sbceq1g 4364 Move proper substitution t...
sbcel2 4365 Move proper substitution i...
sbceq2g 4366 Move proper substitution t...
csbcom 4367 Commutative law for double...
sbcnestgfw 4368 Nest the composition of tw...
csbnestgfw 4369 Nest the composition of tw...
sbcnestgw 4370 Nest the composition of tw...
csbnestgw 4371 Nest the composition of tw...
sbcco3gw 4372 Composition of two substit...
sbcnestgf 4373 Nest the composition of tw...
csbnestgf 4374 Nest the composition of tw...
sbcnestg 4375 Nest the composition of tw...
csbnestg 4376 Nest the composition of tw...
sbcco3g 4377 Composition of two substit...
csbco3g 4378 Composition of two class s...
csbnest1g 4379 Nest the composition of tw...
csbidm 4380 Idempotent law for class s...
csbvarg 4381 The proper substitution of...
csbvargi 4382 The proper substitution of...
sbccsb 4383 Substitution into a wff ex...
sbccsb2 4384 Substitution into a wff ex...
rspcsbela 4385 Special case related to ~ ...
sbnfc2 4386 Two ways of expressing " `...
csbab 4387 Move substitution into a c...
csbun 4388 Distribution of class subs...
csbin 4389 Distribute proper substitu...
csbie2df 4390 Conversion of implicit sub...
2nreu 4391 If there are two different...
un00 4392 Two classes are empty iff ...
vss 4393 Only the universal class h...
0pss 4394 The null set is a proper s...
npss0 4395 No set is a proper subset ...
pssv 4396 Any non-universal class is...
disj 4397 Two ways of saying that tw...
disjr 4398 Two ways of saying that tw...
disj1 4399 Two ways of saying that tw...
reldisj 4400 Two ways of saying that tw...
disj3 4401 Two ways of saying that tw...
disjne 4402 Members of disjoint sets a...
disjeq0 4403 Two disjoint sets are equa...
disjel 4404 A set can't belong to both...
disj2 4405 Two ways of saying that tw...
disj4 4406 Two ways of saying that tw...
ssdisj 4407 Intersection with a subcla...
disjpss 4408 A class is a proper subset...
undisj1 4409 The union of disjoint clas...
undisj2 4410 The union of disjoint clas...
ssindif0 4411 Subclass expressed in term...
inelcm 4412 The intersection of classe...
minel 4413 A minimum element of a cla...
undif4 4414 Distribute union over diff...
disjssun 4415 Subset relation for disjoi...
vdif0 4416 Universal class equality i...
difrab0eq 4417 If the difference between ...
pssnel 4418 A proper subclass has a me...
disjdif 4419 A class and its relative c...
disjdifr 4420 A class and its relative c...
difin0 4421 The difference of a class ...
unvdif 4422 The union of a class and i...
undif1 4423 Absorption of difference b...
undif2 4424 Absorption of difference b...
undifabs 4425 Absorption of difference b...
inundif 4426 The intersection and class...
disjdif2 4427 The difference of a class ...
difun2 4428 Absorption of union by dif...
undif 4429 Union of complementary par...
undifr 4430 Union of complementary par...
undifrOLD 4431 Obsolete version of ~ undi...
undif5 4432 An equality involving clas...
ssdifin0 4433 A subset of a difference d...
ssdifeq0 4434 A class is a subclass of i...
ssundif 4435 A condition equivalent to ...
difcom 4436 Swap the arguments of a cl...
pssdifcom1 4437 Two ways to express overla...
pssdifcom2 4438 Two ways to express non-co...
difdifdir 4439 Distributive law for class...
uneqdifeq 4440 Two ways to say that ` A `...
raldifeq 4441 Equality theorem for restr...
r19.2z 4442 Theorem 19.2 of [Margaris]...
r19.2zb 4443 A response to the notion t...
r19.3rz 4444 Restricted quantification ...
r19.28z 4445 Restricted quantifier vers...
r19.3rzv 4446 Restricted quantification ...
r19.9rzv 4447 Restricted quantification ...
r19.28zv 4448 Restricted quantifier vers...
r19.37zv 4449 Restricted quantifier vers...
r19.45zv 4450 Restricted version of Theo...
r19.44zv 4451 Restricted version of Theo...
r19.27z 4452 Restricted quantifier vers...
r19.27zv 4453 Restricted quantifier vers...
r19.36zv 4454 Restricted quantifier vers...
ralidmw 4455 Idempotent law for restric...
rzal 4456 Vacuous quantification is ...
rzalALT 4457 Alternate proof of ~ rzal ...
rexn0 4458 Restricted existential qua...
ralidm 4459 Idempotent law for restric...
ral0 4460 Vacuous universal quantifi...
ralf0 4461 The quantification of a fa...
ralnralall 4462 A contradiction concerning...
falseral0 4463 A false statement can only...
raaan 4464 Rearrange restricted quant...
raaanv 4465 Rearrange restricted quant...
sbss 4466 Set substitution into the ...
sbcssg 4467 Distribute proper substitu...
raaan2 4468 Rearrange restricted quant...
2reu4lem 4469 Lemma for ~ 2reu4 . (Cont...
2reu4 4470 Definition of double restr...
csbdif 4471 Distribution of class subs...
dfif2 4474 An alternate definition of...
dfif6 4475 An alternate definition of...
ifeq1 4476 Equality theorem for condi...
ifeq2 4477 Equality theorem for condi...
iftrue 4478 Value of the conditional o...
iftruei 4479 Inference associated with ...
iftrued 4480 Value of the conditional o...
iffalse 4481 Value of the conditional o...
iffalsei 4482 Inference associated with ...
iffalsed 4483 Value of the conditional o...
ifnefalse 4484 When values are unequal, b...
iftrueb 4485 When the branches are not ...
ifsb 4486 Distribute a function over...
dfif3 4487 Alternate definition of th...
dfif4 4488 Alternate definition of th...
dfif5 4489 Alternate definition of th...
ifssun 4490 A conditional class is inc...
ifeq12 4491 Equality theorem for condi...
ifeq1d 4492 Equality deduction for con...
ifeq2d 4493 Equality deduction for con...
ifeq12d 4494 Equality deduction for con...
ifbi 4495 Equivalence theorem for co...
ifbid 4496 Equivalence deduction for ...
ifbieq1d 4497 Equivalence/equality deduc...
ifbieq2i 4498 Equivalence/equality infer...
ifbieq2d 4499 Equivalence/equality deduc...
ifbieq12i 4500 Equivalence deduction for ...
ifbieq12d 4501 Equivalence deduction for ...
nfifd 4502 Deduction form of ~ nfif ....
nfif 4503 Bound-variable hypothesis ...
ifeq1da 4504 Conditional equality. (Co...
ifeq2da 4505 Conditional equality. (Co...
ifeq12da 4506 Equivalence deduction for ...
ifbieq12d2 4507 Equivalence deduction for ...
ifclda 4508 Conditional closure. (Con...
ifeqda 4509 Separation of the values o...
elimif 4510 Elimination of a condition...
ifbothda 4511 A wff ` th ` containing a ...
ifboth 4512 A wff ` th ` containing a ...
ifid 4513 Identical true and false a...
eqif 4514 Expansion of an equality w...
ifval 4515 Another expression of the ...
elif 4516 Membership in a conditiona...
ifel 4517 Membership of a conditiona...
ifcl 4518 Membership (closure) of a ...
ifcld 4519 Membership (closure) of a ...
ifcli 4520 Inference associated with ...
ifexd 4521 Existence of the condition...
ifexg 4522 Existence of the condition...
ifex 4523 Existence of the condition...
ifeqor 4524 The possible values of a c...
ifnot 4525 Negating the first argumen...
ifan 4526 Rewrite a conjunction in a...
ifor 4527 Rewrite a disjunction in a...
2if2 4528 Resolve two nested conditi...
ifcomnan 4529 Commute the conditions in ...
csbif 4530 Distribute proper substitu...
dedth 4531 Weak deduction theorem tha...
dedth2h 4532 Weak deduction theorem eli...
dedth3h 4533 Weak deduction theorem eli...
dedth4h 4534 Weak deduction theorem eli...
dedth2v 4535 Weak deduction theorem for...
dedth3v 4536 Weak deduction theorem for...
dedth4v 4537 Weak deduction theorem for...
elimhyp 4538 Eliminate a hypothesis con...
elimhyp2v 4539 Eliminate a hypothesis con...
elimhyp3v 4540 Eliminate a hypothesis con...
elimhyp4v 4541 Eliminate a hypothesis con...
elimel 4542 Eliminate a membership hyp...
elimdhyp 4543 Version of ~ elimhyp where...
keephyp 4544 Transform a hypothesis ` p...
keephyp2v 4545 Keep a hypothesis containi...
keephyp3v 4546 Keep a hypothesis containi...
pwjust 4548 Soundness justification th...
elpwg 4550 Membership in a power clas...
elpw 4551 Membership in a power clas...
velpw 4552 Setvar variable membership...
elpwd 4553 Membership in a power clas...
elpwi 4554 Subset relation implied by...
elpwb 4555 Characterization of the el...
elpwid 4556 An element of a power clas...
elelpwi 4557 If ` A ` belongs to a part...
sspw 4558 The powerclass preserves i...
sspwi 4559 The powerclass preserves i...
sspwd 4560 The powerclass preserves i...
pweq 4561 Equality theorem for power...
pweqALT 4562 Alternate proof of ~ pweq ...
pweqi 4563 Equality inference for pow...
pweqd 4564 Equality deduction for pow...
pwunss 4565 The power class of the uni...
nfpw 4566 Bound-variable hypothesis ...
pwidg 4567 A set is an element of its...
pwidb 4568 A class is an element of i...
pwid 4569 A set is a member of its p...
pwss 4570 Subclass relationship for ...
pwundif 4571 Break up the power class o...
snjust 4572 Soundness justification th...
sneq 4583 Equality theorem for singl...
sneqi 4584 Equality inference for sin...
sneqd 4585 Equality deduction for sin...
dfsn2 4586 Alternate definition of si...
elsng 4587 There is exactly one eleme...
elsn 4588 There is exactly one eleme...
velsn 4589 There is only one element ...
elsni 4590 There is at most one eleme...
elsnd 4591 There is at most one eleme...
rabsneq 4592 Equality of class abstract...
absn 4593 Condition for a class abst...
dfpr2 4594 Alternate definition of a ...
dfsn2ALT 4595 Alternate definition of si...
elprg 4596 A member of a pair of clas...
elpri 4597 If a class is an element o...
elpr 4598 A member of a pair of clas...
elpr2g 4599 A member of a pair of sets...
elpr2 4600 A member of a pair of sets...
elprn1 4601 A member of an unordered p...
elprn2 4602 A member of an unordered p...
nelpr2 4603 If a class is not an eleme...
nelpr1 4604 If a class is not an eleme...
nelpri 4605 If an element doesn't matc...
prneli 4606 If an element doesn't matc...
nelprd 4607 If an element doesn't matc...
eldifpr 4608 Membership in a set with t...
rexdifpr 4609 Restricted existential qua...
snidg 4610 A set is a member of its s...
snidb 4611 A class is a set iff it is...
snid 4612 A set is a member of its s...
vsnid 4613 A setvar variable is a mem...
elsn2g 4614 There is exactly one eleme...
elsn2 4615 There is exactly one eleme...
nelsn 4616 If a class is not equal to...
rabeqsn 4617 Conditions for a restricte...
rabsssn 4618 Conditions for a restricte...
rabeqsnd 4619 Conditions for a restricte...
ralsnsg 4620 Substitution expressed in ...
rexsns 4621 Restricted existential qua...
rexsngf 4622 Restricted existential qua...
ralsngf 4623 Restricted universal quant...
reusngf 4624 Restricted existential uni...
ralsng 4625 Substitution expressed in ...
rexsng 4626 Restricted existential qua...
reusng 4627 Restricted existential uni...
2ralsng 4628 Substitution expressed in ...
rexreusng 4629 Restricted existential uni...
exsnrex 4630 There is a set being the e...
ralsn 4631 Convert a universal quanti...
rexsn 4632 Convert an existential qua...
elunsn 4633 Elementhood in a union wit...
elpwunsn 4634 Membership in an extension...
eqoreldif 4635 An element of a set is eit...
eltpg 4636 Members of an unordered tr...
eldiftp 4637 Membership in a set with t...
eltpi 4638 A member of an unordered t...
eltp 4639 A member of an unordered t...
el7g 4640 Members of a set with seve...
dftp2 4641 Alternate definition of un...
nfpr 4642 Bound-variable hypothesis ...
ifpr 4643 Membership of a conditiona...
ralprgf 4644 Convert a restricted unive...
rexprgf 4645 Convert a restricted exist...
ralprg 4646 Convert a restricted unive...
rexprg 4647 Convert a restricted exist...
raltpg 4648 Convert a restricted unive...
rextpg 4649 Convert a restricted exist...
ralpr 4650 Convert a restricted unive...
rexpr 4651 Convert a restricted exist...
reuprg0 4652 Convert a restricted exist...
reuprg 4653 Convert a restricted exist...
reurexprg 4654 Convert a restricted exist...
raltp 4655 Convert a universal quanti...
rextp 4656 Convert an existential qua...
nfsn 4657 Bound-variable hypothesis ...
csbsng 4658 Distribute proper substitu...
csbprg 4659 Distribute proper substitu...
elinsn 4660 If the intersection of two...
disjsn 4661 Intersection with the sing...
disjsn2 4662 Two distinct singletons ar...
disjpr2 4663 Two completely distinct un...
disjprsn 4664 The disjoint intersection ...
disjtpsn 4665 The disjoint intersection ...
disjtp2 4666 Two completely distinct un...
snprc 4667 The singleton of a proper ...
snnzb 4668 A singleton is nonempty if...
rmosn 4669 A restricted at-most-one q...
r19.12sn 4670 Special case of ~ r19.12 w...
rabsn 4671 Condition where a restrict...
rabsnifsb 4672 A restricted class abstrac...
rabsnif 4673 A restricted class abstrac...
rabrsn 4674 A restricted class abstrac...
euabsn2 4675 Another way to express exi...
euabsn 4676 Another way to express exi...
reusn 4677 A way to express restricte...
absneu 4678 Restricted existential uni...
rabsneu 4679 Restricted existential uni...
eusn 4680 Two ways to express " ` A ...
rabsnt 4681 Truth implied by equality ...
prcom 4682 Commutative law for unorde...
preq1 4683 Equality theorem for unord...
preq2 4684 Equality theorem for unord...
preq12 4685 Equality theorem for unord...
preq1i 4686 Equality inference for uno...
preq2i 4687 Equality inference for uno...
preq12i 4688 Equality inference for uno...
preq1d 4689 Equality deduction for uno...
preq2d 4690 Equality deduction for uno...
preq12d 4691 Equality deduction for uno...
tpeq1 4692 Equality theorem for unord...
tpeq2 4693 Equality theorem for unord...
tpeq3 4694 Equality theorem for unord...
tpeq1d 4695 Equality theorem for unord...
tpeq2d 4696 Equality theorem for unord...
tpeq3d 4697 Equality theorem for unord...
tpeq123d 4698 Equality theorem for unord...
tprot 4699 Rotation of the elements o...
tpcoma 4700 Swap 1st and 2nd members o...
tpcomb 4701 Swap 2nd and 3rd members o...
tpass 4702 Split off the first elemen...
qdass 4703 Two ways to write an unord...
qdassr 4704 Two ways to write an unord...
tpidm12 4705 Unordered triple ` { A , A...
tpidm13 4706 Unordered triple ` { A , B...
tpidm23 4707 Unordered triple ` { A , B...
tpidm 4708 Unordered triple ` { A , A...
tppreq3 4709 An unordered triple is an ...
prid1g 4710 An unordered pair contains...
prid2g 4711 An unordered pair contains...
prid1 4712 An unordered pair contains...
prid2 4713 An unordered pair contains...
ifpprsnss 4714 An unordered pair is a sin...
prprc1 4715 A proper class vanishes in...
prprc2 4716 A proper class vanishes in...
prprc 4717 An unordered pair containi...
tpid1 4718 One of the three elements ...
tpid1g 4719 Closed theorem form of ~ t...
tpid2 4720 One of the three elements ...
tpid2g 4721 Closed theorem form of ~ t...
tpid3g 4722 Closed theorem form of ~ t...
tpid3 4723 One of the three elements ...
snnzg 4724 The singleton of a set is ...
snn0d 4725 The singleton of a set is ...
snnz 4726 The singleton of a set is ...
prnz 4727 A pair containing a set is...
prnzg 4728 A pair containing a set is...
tpnz 4729 An unordered triple contai...
tpnzd 4730 An unordered triple contai...
raltpd 4731 Convert a universal quanti...
snssb 4732 Characterization of the in...
snssg 4733 The singleton formed on a ...
snss 4734 The singleton of an elemen...
eldifsn 4735 Membership in a set with a...
eldifsnd 4736 Membership in a set with a...
ssdifsn 4737 Subset of a set with an el...
elpwdifsn 4738 A subset of a set is an el...
eldifsni 4739 Membership in a set with a...
eldifsnneq 4740 An element of a difference...
neldifsn 4741 The class ` A ` is not in ...
neldifsnd 4742 The class ` A ` is not in ...
rexdifsn 4743 Restricted existential qua...
raldifsni 4744 Rearrangement of a propert...
raldifsnb 4745 Restricted universal quant...
eldifvsn 4746 A set is an element of the...
difsn 4747 An element not in a set ca...
difprsnss 4748 Removal of a singleton fro...
difprsn1 4749 Removal of a singleton fro...
difprsn2 4750 Removal of a singleton fro...
diftpsn3 4751 Removal of a singleton fro...
difpr 4752 Removing two elements as p...
tpprceq3 4753 An unordered triple is an ...
tppreqb 4754 An unordered triple is an ...
difsnb 4755 ` ( B \ { A } ) ` equals `...
difsnpss 4756 ` ( B \ { A } ) ` is a pro...
snssi 4757 The singleton of an elemen...
snssd 4758 The singleton of an elemen...
difsnid 4759 If we remove a single elem...
eldifeldifsn 4760 An element of a difference...
pw0 4761 Compute the power set of t...
pwpw0 4762 Compute the power set of t...
snsspr1 4763 A singleton is a subset of...
snsspr2 4764 A singleton is a subset of...
snsstp1 4765 A singleton is a subset of...
snsstp2 4766 A singleton is a subset of...
snsstp3 4767 A singleton is a subset of...
prssg 4768 A pair of elements of a cl...
prss 4769 A pair of elements of a cl...
prssi 4770 A pair of elements of a cl...
prssd 4771 Deduction version of ~ prs...
prsspwg 4772 An unordered pair belongs ...
ssprss 4773 A pair as subset of a pair...
ssprsseq 4774 A proper pair is a subset ...
sssn 4775 The subsets of a singleton...
ssunsn2 4776 The property of being sand...
ssunsn 4777 Possible values for a set ...
eqsn 4778 Two ways to express that a...
eqsnd 4779 Deduce that a set is a sin...
eqsndOLD 4780 Obsolete version of ~ eqsn...
issn 4781 A sufficient condition for...
n0snor2el 4782 A nonempty set is either a...
ssunpr 4783 Possible values for a set ...
sspr 4784 The subsets of a pair. (C...
sstp 4785 The subsets of an unordere...
tpss 4786 An unordered triple of ele...
tpssi 4787 An unordered triple of ele...
sneqrg 4788 Closed form of ~ sneqr . ...
sneqr 4789 If the singletons of two s...
snsssn 4790 If a singleton is a subset...
mosneq 4791 There exists at most one s...
sneqbg 4792 Two singletons of sets are...
snsspw 4793 The singleton of a class i...
prsspw 4794 An unordered pair belongs ...
preq1b 4795 Biconditional equality lem...
preq2b 4796 Biconditional equality lem...
preqr1 4797 Reverse equality lemma for...
preqr2 4798 Reverse equality lemma for...
preq12b 4799 Equality relationship for ...
opthpr 4800 An unordered pair has the ...
preqr1g 4801 Reverse equality lemma for...
preq12bg 4802 Closed form of ~ preq12b ....
prneimg 4803 Two pairs are not equal if...
prneimg2 4804 Two pairs are not equal if...
prnebg 4805 A (proper) pair is not equ...
pr1eqbg 4806 A (proper) pair is equal t...
pr1nebg 4807 A (proper) pair is not equ...
preqsnd 4808 Equivalence for a pair equ...
prnesn 4809 A proper unordered pair is...
prneprprc 4810 A proper unordered pair is...
preqsn 4811 Equivalence for a pair equ...
preq12nebg 4812 Equality relationship for ...
prel12g 4813 Equality of two unordered ...
opthprneg 4814 An unordered pair has the ...
elpreqprlem 4815 Lemma for ~ elpreqpr . (C...
elpreqpr 4816 Equality and membership ru...
elpreqprb 4817 A set is an element of an ...
elpr2elpr 4818 For an element ` A ` of an...
dfopif 4819 Rewrite ~ df-op using ` if...
dfopg 4820 Value of the ordered pair ...
dfop 4821 Value of an ordered pair w...
opeq1 4822 Equality theorem for order...
opeq2 4823 Equality theorem for order...
opeq12 4824 Equality theorem for order...
opeq1i 4825 Equality inference for ord...
opeq2i 4826 Equality inference for ord...
opeq12i 4827 Equality inference for ord...
opeq1d 4828 Equality deduction for ord...
opeq2d 4829 Equality deduction for ord...
opeq12d 4830 Equality deduction for ord...
oteq1 4831 Equality theorem for order...
oteq2 4832 Equality theorem for order...
oteq3 4833 Equality theorem for order...
oteq1d 4834 Equality deduction for ord...
oteq2d 4835 Equality deduction for ord...
oteq3d 4836 Equality deduction for ord...
oteq123d 4837 Equality deduction for ord...
nfop 4838 Bound-variable hypothesis ...
nfopd 4839 Deduction version of bound...
csbopg 4840 Distribution of class subs...
opidg 4841 The ordered pair ` <. A , ...
opid 4842 The ordered pair ` <. A , ...
ralunsn 4843 Restricted quantification ...
2ralunsn 4844 Double restricted quantifi...
opprc 4845 Expansion of an ordered pa...
opprc1 4846 Expansion of an ordered pa...
opprc2 4847 Expansion of an ordered pa...
oprcl 4848 If an ordered pair has an ...
pwsn 4849 The power set of a singlet...
pwpr 4850 The power set of an unorde...
pwtp 4851 The power set of an unorde...
pwpwpw0 4852 Compute the power set of t...
pwv 4853 The power class of the uni...
prproe 4854 For an element of a proper...
3elpr2eq 4855 If there are three element...
dfuni2 4858 Alternate definition of cl...
eluni 4859 Membership in class union....
eluni2 4860 Membership in class union....
elunii 4861 Membership in class union....
nfunid 4862 Deduction version of ~ nfu...
nfuni 4863 Bound-variable hypothesis ...
uniss 4864 Subclass relationship for ...
unissi 4865 Subclass relationship for ...
unissd 4866 Subclass relationship for ...
unieq 4867 Equality theorem for class...
unieqi 4868 Inference of equality of t...
unieqd 4869 Deduction of equality of t...
eluniab 4870 Membership in union of a c...
elunirab 4871 Membership in union of a c...
uniprg 4872 The union of a pair is the...
unipr 4873 The union of a pair is the...
unisng 4874 A set equals the union of ...
unisn 4875 A set equals the union of ...
unisnv 4876 A set equals the union of ...
unisn3 4877 Union of a singleton in th...
dfnfc2 4878 An alternative statement o...
uniun 4879 The class union of the uni...
uniin 4880 The class union of the int...
ssuni 4881 Subclass relationship for ...
uni0b 4882 The union of a set is empt...
uni0c 4883 The union of a set is empt...
uni0 4884 The union of the empty set...
uni0OLD 4885 Obsolete version of ~ uni0...
csbuni 4886 Distribute proper substitu...
elssuni 4887 An element of a class is a...
unissel 4888 Condition turning a subcla...
unissb 4889 Relationship involving mem...
uniss2 4890 A subclass condition on th...
unidif 4891 If the difference ` A \ B ...
ssunieq 4892 Relationship implying unio...
unimax 4893 Any member of a class is t...
pwuni 4894 A class is a subclass of t...
dfint2 4897 Alternate definition of cl...
inteq 4898 Equality law for intersect...
inteqi 4899 Equality inference for cla...
inteqd 4900 Equality deduction for cla...
elint 4901 Membership in class inters...
elint2 4902 Membership in class inters...
elintg 4903 Membership in class inters...
elinti 4904 Membership in class inters...
nfint 4905 Bound-variable hypothesis ...
elintabg 4906 Two ways of saying a set i...
elintab 4907 Membership in the intersec...
elintrab 4908 Membership in the intersec...
elintrabg 4909 Membership in the intersec...
int0 4910 The intersection of the em...
intss1 4911 An element of a class incl...
ssint 4912 Subclass of a class inters...
ssintab 4913 Subclass of the intersecti...
ssintub 4914 Subclass of the least uppe...
ssmin 4915 Subclass of the minimum va...
intmin 4916 Any member of a class is t...
intss 4917 Intersection of subclasses...
intssuni 4918 The intersection of a none...
ssintrab 4919 Subclass of the intersecti...
unissint 4920 If the union of a class is...
intssuni2 4921 Subclass relationship for ...
intminss 4922 Under subset ordering, the...
intmin2 4923 Any set is the smallest of...
intmin3 4924 Under subset ordering, the...
intmin4 4925 Elimination of a conjunct ...
intab 4926 The intersection of a spec...
int0el 4927 The intersection of a clas...
intun 4928 The class intersection of ...
intprg 4929 The intersection of a pair...
intpr 4930 The intersection of a pair...
intsng 4931 Intersection of a singleto...
intsn 4932 The intersection of a sing...
uniintsn 4933 Two ways to express " ` A ...
uniintab 4934 The union and the intersec...
intunsn 4935 Theorem joining a singleto...
rint0 4936 Relative intersection of a...
elrint 4937 Membership in a restricted...
elrint2 4938 Membership in a restricted...
eliun 4943 Membership in indexed unio...
eliin 4944 Membership in indexed inte...
eliuni 4945 Membership in an indexed u...
eliund 4946 Membership in indexed unio...
iuncom 4947 Commutation of indexed uni...
iuncom4 4948 Commutation of union with ...
iunconst 4949 Indexed union of a constan...
iinconst 4950 Indexed intersection of a ...
iuneqconst 4951 Indexed union of identical...
iuniin 4952 Law combining indexed unio...
iinssiun 4953 An indexed intersection is...
iunss1 4954 Subclass theorem for index...
iinss1 4955 Subclass theorem for index...
iuneq1 4956 Equality theorem for index...
iineq1 4957 Equality theorem for index...
ss2iun 4958 Subclass theorem for index...
iuneq2 4959 Equality theorem for index...
iineq2 4960 Equality theorem for index...
iuneq2i 4961 Equality inference for ind...
iineq2i 4962 Equality inference for ind...
iineq2d 4963 Equality deduction for ind...
iuneq2dv 4964 Equality deduction for ind...
iineq2dv 4965 Equality deduction for ind...
iuneq12df 4966 Equality deduction for ind...
iuneq1d 4967 Equality theorem for index...
iuneq12dOLD 4968 Obsolete version of ~ iune...
iuneq12d 4969 Equality deduction for ind...
iuneq2d 4970 Equality deduction for ind...
nfiun 4971 Bound-variable hypothesis ...
nfiin 4972 Bound-variable hypothesis ...
nfiung 4973 Bound-variable hypothesis ...
nfiing 4974 Bound-variable hypothesis ...
nfiu1 4975 Bound-variable hypothesis ...
nfiu1OLD 4976 Obsolete version of ~ nfiu...
nfii1 4977 Bound-variable hypothesis ...
dfiun2g 4978 Alternate definition of in...
dfiin2g 4979 Alternate definition of in...
dfiun2 4980 Alternate definition of in...
dfiin2 4981 Alternate definition of in...
dfiunv2 4982 Define double indexed unio...
cbviun 4983 Rule used to change the bo...
cbviin 4984 Change bound variables in ...
cbviung 4985 Rule used to change the bo...
cbviing 4986 Change bound variables in ...
cbviunv 4987 Rule used to change the bo...
cbviinv 4988 Change bound variables in ...
cbviunvg 4989 Rule used to change the bo...
cbviinvg 4990 Change bound variables in ...
iunssf 4991 Subset theorem for an inde...
iunss 4992 Subset theorem for an inde...
ssiun 4993 Subset implication for an ...
ssiun2 4994 Identity law for subset of...
ssiun2s 4995 Subset relationship for an...
iunss2 4996 A subclass condition on th...
iunssd 4997 Subset theorem for an inde...
iunab 4998 The indexed union of a cla...
iunrab 4999 The indexed union of a res...
iunxdif2 5000 Indexed union with a class...
ssiinf 5001 Subset theorem for an inde...
ssiin 5002 Subset theorem for an inde...
iinss 5003 Subset implication for an ...
iinss2 5004 An indexed intersection is...
uniiun 5005 Class union in terms of in...
intiin 5006 Class intersection in term...
iunid 5007 An indexed union of single...
iun0 5008 An indexed union of the em...
0iun 5009 An empty indexed union is ...
0iin 5010 An empty indexed intersect...
viin 5011 Indexed intersection with ...
iunsn 5012 Indexed union of a singlet...
iunn0 5013 There is a nonempty class ...
iinab 5014 Indexed intersection of a ...
iinrab 5015 Indexed intersection of a ...
iinrab2 5016 Indexed intersection of a ...
iunin2 5017 Indexed union of intersect...
iunin1 5018 Indexed union of intersect...
iinun2 5019 Indexed intersection of un...
iundif2 5020 Indexed union of class dif...
iindif1 5021 Indexed intersection of cl...
2iunin 5022 Rearrange indexed unions o...
iindif2 5023 Indexed intersection of cl...
iinin2 5024 Indexed intersection of in...
iinin1 5025 Indexed intersection of in...
iinvdif 5026 The indexed intersection o...
elriin 5027 Elementhood in a relative ...
riin0 5028 Relative intersection of a...
riinn0 5029 Relative intersection of a...
riinrab 5030 Relative intersection of a...
symdif0 5031 Symmetric difference with ...
symdifv 5032 The symmetric difference w...
symdifid 5033 The symmetric difference o...
iinxsng 5034 A singleton index picks ou...
iinxprg 5035 Indexed intersection with ...
iunxsng 5036 A singleton index picks ou...
iunxsn 5037 A singleton index picks ou...
iunxsngf 5038 A singleton index picks ou...
iunun 5039 Separate a union in an ind...
iunxun 5040 Separate a union in the in...
iunxdif3 5041 An indexed union where som...
iunxprg 5042 A pair index picks out two...
iunxiun 5043 Separate an indexed union ...
iinuni 5044 A relationship involving u...
iununi 5045 A relationship involving u...
sspwuni 5046 Subclass relationship for ...
pwssb 5047 Two ways to express a coll...
elpwpw 5048 Characterization of the el...
pwpwab 5049 The double power class wri...
pwpwssunieq 5050 The class of sets whose un...
elpwuni 5051 Relationship for power cla...
iinpw 5052 The power class of an inte...
iunpwss 5053 Inclusion of an indexed un...
intss2 5054 A nonempty intersection of...
rintn0 5055 Relative intersection of a...
dfdisj2 5058 Alternate definition for d...
disjss2 5059 If each element of a colle...
disjeq2 5060 Equality theorem for disjo...
disjeq2dv 5061 Equality deduction for dis...
disjss1 5062 A subset of a disjoint col...
disjeq1 5063 Equality theorem for disjo...
disjeq1d 5064 Equality theorem for disjo...
disjeq12d 5065 Equality theorem for disjo...
cbvdisj 5066 Change bound variables in ...
cbvdisjv 5067 Change bound variables in ...
nfdisjw 5068 Bound-variable hypothesis ...
nfdisj 5069 Bound-variable hypothesis ...
nfdisj1 5070 Bound-variable hypothesis ...
disjor 5071 Two ways to say that a col...
disjors 5072 Two ways to say that a col...
disji2 5073 Property of a disjoint col...
disji 5074 Property of a disjoint col...
invdisj 5075 If there is a function ` C...
invdisjrab 5076 The restricted class abstr...
disjiun 5077 A disjoint collection yiel...
disjord 5078 Conditions for a collectio...
disjiunb 5079 Two ways to say that a col...
disjiund 5080 Conditions for a collectio...
sndisj 5081 Any collection of singleto...
0disj 5082 Any collection of empty se...
disjxsn 5083 A singleton collection is ...
disjx0 5084 An empty collection is dis...
disjprg 5085 A pair collection is disjo...
disjxiun 5086 An indexed union of a disj...
disjxun 5087 The union of two disjoint ...
disjss3 5088 Expand a disjoint collecti...
breq 5091 Equality theorem for binar...
breq1 5092 Equality theorem for a bin...
breq2 5093 Equality theorem for a bin...
breq12 5094 Equality theorem for a bin...
breqi 5095 Equality inference for bin...
breq1i 5096 Equality inference for a b...
breq2i 5097 Equality inference for a b...
breq12i 5098 Equality inference for a b...
breq1d 5099 Equality deduction for a b...
breqd 5100 Equality deduction for a b...
breq2d 5101 Equality deduction for a b...
breq12d 5102 Equality deduction for a b...
breq123d 5103 Equality deduction for a b...
breqdi 5104 Equality deduction for a b...
breqan12d 5105 Equality deduction for a b...
breqan12rd 5106 Equality deduction for a b...
eqnbrtrd 5107 Substitution of equal clas...
nbrne1 5108 Two classes are different ...
nbrne2 5109 Two classes are different ...
eqbrtri 5110 Substitution of equal clas...
eqbrtrd 5111 Substitution of equal clas...
eqbrtrri 5112 Substitution of equal clas...
eqbrtrrd 5113 Substitution of equal clas...
breqtri 5114 Substitution of equal clas...
breqtrd 5115 Substitution of equal clas...
breqtrri 5116 Substitution of equal clas...
breqtrrd 5117 Substitution of equal clas...
3brtr3i 5118 Substitution of equality i...
3brtr4i 5119 Substitution of equality i...
3brtr3d 5120 Substitution of equality i...
3brtr4d 5121 Substitution of equality i...
3brtr3g 5122 Substitution of equality i...
3brtr4g 5123 Substitution of equality i...
eqbrtrid 5124 A chained equality inferen...
eqbrtrrid 5125 A chained equality inferen...
breqtrid 5126 A chained equality inferen...
breqtrrid 5127 A chained equality inferen...
eqbrtrdi 5128 A chained equality inferen...
eqbrtrrdi 5129 A chained equality inferen...
breqtrdi 5130 A chained equality inferen...
breqtrrdi 5131 A chained equality inferen...
ssbrd 5132 Deduction from a subclass ...
ssbr 5133 Implication from a subclas...
ssbri 5134 Inference from a subclass ...
nfbrd 5135 Deduction version of bound...
nfbr 5136 Bound-variable hypothesis ...
brab1 5137 Relationship between a bin...
br0 5138 The empty binary relation ...
brne0 5139 If two sets are in a binar...
brun 5140 The union of two binary re...
brin 5141 The intersection of two re...
brdif 5142 The difference of two bina...
sbcbr123 5143 Move substitution in and o...
sbcbr 5144 Move substitution in and o...
sbcbr12g 5145 Move substitution in and o...
sbcbr1g 5146 Move substitution in and o...
sbcbr2g 5147 Move substitution in and o...
brsymdif 5148 Characterization of the sy...
brralrspcev 5149 Restricted existential spe...
brimralrspcev 5150 Restricted existential spe...
opabss 5153 The collection of ordered ...
opabbid 5154 Equivalent wff's yield equ...
opabbidv 5155 Equivalent wff's yield equ...
opabbii 5156 Equivalent wff's yield equ...
nfopabd 5157 Bound-variable hypothesis ...
nfopab 5158 Bound-variable hypothesis ...
nfopab1 5159 The first abstraction vari...
nfopab2 5160 The second abstraction var...
cbvopab 5161 Rule used to change bound ...
cbvopabv 5162 Rule used to change bound ...
cbvopab1 5163 Change first bound variabl...
cbvopab1g 5164 Change first bound variabl...
cbvopab2 5165 Change second bound variab...
cbvopab1s 5166 Change first bound variabl...
cbvopab1v 5167 Rule used to change the fi...
cbvopab2v 5168 Rule used to change the se...
unopab 5169 Union of two ordered pair ...
mpteq12da 5172 An equality inference for ...
mpteq12df 5173 An equality inference for ...
mpteq12f 5174 An equality theorem for th...
mpteq12dva 5175 An equality inference for ...
mpteq12dv 5176 An equality inference for ...
mpteq12 5177 An equality theorem for th...
mpteq1 5178 An equality theorem for th...
mpteq1d 5179 An equality theorem for th...
mpteq1i 5180 An equality theorem for th...
mpteq2da 5181 Slightly more general equa...
mpteq2dva 5182 Slightly more general equa...
mpteq2dv 5183 An equality inference for ...
mpteq2ia 5184 An equality inference for ...
mpteq2i 5185 An equality inference for ...
mpteq12i 5186 An equality inference for ...
nfmpt 5187 Bound-variable hypothesis ...
nfmpt1 5188 Bound-variable hypothesis ...
cbvmptf 5189 Rule to change the bound v...
cbvmptfg 5190 Rule to change the bound v...
cbvmpt 5191 Rule to change the bound v...
cbvmptg 5192 Rule to change the bound v...
cbvmptv 5193 Rule to change the bound v...
cbvmptvg 5194 Rule to change the bound v...
mptv 5195 Function with universal do...
dftr2 5198 An alternate way of defini...
dftr2c 5199 Variant of ~ dftr2 with co...
dftr5 5200 An alternate way of defini...
dftr3 5201 An alternate way of defini...
dftr4 5202 An alternate way of defini...
treq 5203 Equality theorem for the t...
trel 5204 In a transitive class, the...
trel3 5205 In a transitive class, the...
trss 5206 An element of a transitive...
trin 5207 The intersection of transi...
tr0 5208 The empty set is transitiv...
trv 5209 The universe is transitive...
triun 5210 An indexed union of a clas...
truni 5211 The union of a class of tr...
triin 5212 An indexed intersection of...
trint 5213 The intersection of a clas...
trintss 5214 Any nonempty transitive cl...
axrep1 5216 The version of the Axiom o...
axreplem 5217 Lemma for ~ axrep2 and ~ a...
axrep2 5218 Axiom of Replacement expre...
axrep3 5219 Axiom of Replacement sligh...
axrep4v 5220 Version of ~ axrep4 with a...
axrep4 5221 A more traditional version...
axrep4OLD 5222 Obsolete version of ~ axre...
axrep5 5223 Axiom of Replacement (simi...
axrep6 5224 A condensed form of ~ ax-r...
axrep6OLD 5225 Obsolete version of ~ axre...
axrep6g 5226 ~ axrep6 in class notation...
zfrepclf 5227 An inference based on the ...
zfrep3cl 5228 An inference based on the ...
zfrep4 5229 A version of Replacement u...
axsepgfromrep 5230 A more general version ~ a...
axsep 5231 Axiom scheme of separation...
axsepg 5233 A more general version of ...
zfauscl 5234 Separation Scheme (Aussond...
sepexlem 5235 Lemma for ~ sepex . Use ~...
sepex 5236 Convert implication to equ...
sepexi 5237 Convert implication to equ...
bm1.3iiOLD 5238 Obsolete version of ~ sepe...
ax6vsep 5239 Derive ~ ax6v (a weakened ...
axnulALT 5240 Alternate proof of ~ axnul...
axnul 5241 The Null Set Axiom of ZF s...
0ex 5243 The Null Set Axiom of ZF s...
al0ssb 5244 The empty set is the uniqu...
sseliALT 5245 Alternate proof of ~ sseli...
csbexg 5246 The existence of proper su...
csbex 5247 The existence of proper su...
unisn2 5248 A version of ~ unisn witho...
nalset 5249 No set contains all sets. ...
vnex 5250 The universal class does n...
vprc 5251 The universal class is not...
nvel 5252 The universal class does n...
inex1 5253 Separation Scheme (Aussond...
inex2 5254 Separation Scheme (Aussond...
inex1g 5255 Closed-form, generalized S...
inex2g 5256 Sufficient condition for a...
ssex 5257 The subset of a set is als...
ssexi 5258 The subset of a set is als...
ssexg 5259 The subset of a set is als...
ssexd 5260 A subclass of a set is a s...
abexd 5261 Conditions for a class abs...
abex 5262 Conditions for a class abs...
prcssprc 5263 The superclass of a proper...
sselpwd 5264 Elementhood to a power set...
difexg 5265 Existence of a difference....
difexi 5266 Existence of a difference,...
difexd 5267 Existence of a difference....
zfausab 5268 Separation Scheme (Aussond...
elpw2g 5269 Membership in a power clas...
elpw2 5270 Membership in a power clas...
elpwi2 5271 Membership in a power clas...
rabelpw 5272 A restricted class abstrac...
rabexg 5273 Separation Scheme in terms...
rabexgOLD 5274 Obsolete version of ~ rabe...
rabex 5275 Separation Scheme in terms...
rabexd 5276 Separation Scheme in terms...
rabex2 5277 Separation Scheme in terms...
rab2ex 5278 A class abstraction based ...
elssabg 5279 Membership in a class abst...
intex 5280 The intersection of a none...
intnex 5281 If a class intersection is...
intexab 5282 The intersection of a none...
intexrab 5283 The intersection of a none...
iinexg 5284 The existence of a class i...
intabs 5285 Absorption of a redundant ...
inuni 5286 The intersection of a unio...
axpweq 5287 Two equivalent ways to exp...
pwnss 5288 The power set of a set is ...
pwne 5289 No set equals its power se...
difelpw 5290 A difference is an element...
class2set 5291 The class of elements of `...
0elpw 5292 Every power class contains...
pwne0 5293 A power class is never emp...
0nep0 5294 The empty set and its powe...
0inp0 5295 Something cannot be equal ...
unidif0 5296 The removal of the empty s...
eqsnuniex 5297 If a class is equal to the...
iin0 5298 An indexed intersection of...
notzfaus 5299 In the Separation Scheme ~...
intv 5300 The intersection of the un...
zfpow 5302 Axiom of Power Sets expres...
axpow2 5303 A variant of the Axiom of ...
axpow3 5304 A variant of the Axiom of ...
elALT2 5305 Alternate proof of ~ el us...
dtruALT2 5306 Alternate proof of ~ dtru ...
dtrucor 5307 Corollary of ~ dtru . Thi...
dtrucor2 5308 The theorem form of the de...
dvdemo1 5309 Demonstration of a theorem...
dvdemo2 5310 Demonstration of a theorem...
nfnid 5311 A setvar variable is not f...
nfcvb 5312 The "distinctor" expressio...
vpwex 5313 Power set axiom: the power...
pwexg 5314 Power set axiom expressed ...
pwexd 5315 Deduction version of the p...
pwex 5316 Power set axiom expressed ...
pwel 5317 Quantitative version of ~ ...
abssexg 5318 Existence of a class of su...
snexALT 5319 Alternate proof of ~ snex ...
p0ex 5320 The power set of the empty...
p0exALT 5321 Alternate proof of ~ p0ex ...
pp0ex 5322 The power set of the power...
ord3ex 5323 The ordinal number 3 is a ...
dtruALT 5324 Alternate proof of ~ dtru ...
axc16b 5325 This theorem shows that Ax...
eunex 5326 Existential uniqueness imp...
eusv1 5327 Two ways to express single...
eusvnf 5328 Even if ` x ` is free in `...
eusvnfb 5329 Two ways to say that ` A (...
eusv2i 5330 Two ways to express single...
eusv2nf 5331 Two ways to express single...
eusv2 5332 Two ways to express single...
reusv1 5333 Two ways to express single...
reusv2lem1 5334 Lemma for ~ reusv2 . (Con...
reusv2lem2 5335 Lemma for ~ reusv2 . (Con...
reusv2lem3 5336 Lemma for ~ reusv2 . (Con...
reusv2lem4 5337 Lemma for ~ reusv2 . (Con...
reusv2lem5 5338 Lemma for ~ reusv2 . (Con...
reusv2 5339 Two ways to express single...
reusv3i 5340 Two ways of expressing exi...
reusv3 5341 Two ways to express single...
eusv4 5342 Two ways to express single...
alxfr 5343 Transfer universal quantif...
ralxfrd 5344 Transfer universal quantif...
rexxfrd 5345 Transfer existential quant...
ralxfr2d 5346 Transfer universal quantif...
rexxfr2d 5347 Transfer existential quant...
ralxfrd2 5348 Transfer universal quantif...
rexxfrd2 5349 Transfer existence from a ...
ralxfr 5350 Transfer universal quantif...
ralxfrALT 5351 Alternate proof of ~ ralxf...
rexxfr 5352 Transfer existence from a ...
rabxfrd 5353 Membership in a restricted...
rabxfr 5354 Membership in a restricted...
reuhypd 5355 A theorem useful for elimi...
reuhyp 5356 A theorem useful for elimi...
zfpair 5357 The Axiom of Pairing of Ze...
axprALT 5358 Alternate proof of ~ axpr ...
axprlem1 5359 Lemma for ~ axpr . There ...
axprlem2 5360 Lemma for ~ axpr . There ...
axprlem3 5361 Lemma for ~ axpr . Elimin...
axprlem4 5362 Lemma for ~ axpr . If an ...
axpr 5363 Unabbreviated version of t...
axprlem3OLD 5364 Obsolete version of ~ axpr...
axprlem4OLD 5365 Obsolete version of ~ axpr...
axprlem5OLD 5366 Obsolete version of ~ axpr...
axprOLD 5367 Obsolete version of ~ axpr...
zfpair2 5369 Derive the abbreviated ver...
vsnex 5370 A singleton built on a set...
snexg 5371 A singleton built on a set...
snex 5372 A singleton is a set. The...
prex 5373 The Axiom of Pairing using...
exel 5374 There exist two sets, one ...
exexneq 5375 There exist two different ...
exneq 5376 Given any set (the " ` y `...
dtru 5377 Given any set (the " ` y `...
el 5378 Any set is an element of s...
sels 5379 If a class is a set, then ...
selsALT 5380 Alternate proof of ~ sels ...
elALT 5381 Alternate proof of ~ el , ...
snelpwg 5382 A singleton of a set is a ...
snelpwi 5383 If a set is a member of a ...
snelpw 5384 A singleton of a set is a ...
prelpw 5385 An unordered pair of two s...
prelpwi 5386 If two sets are members of...
rext 5387 A theorem similar to exten...
sspwb 5388 The powerclass constructio...
unipw 5389 A class equals the union o...
univ 5390 The union of the universe ...
pwtr 5391 A class is transitive iff ...
ssextss 5392 An extensionality-like pri...
ssext 5393 An extensionality-like pri...
nssss 5394 Negation of subclass relat...
pweqb 5395 Classes are equal if and o...
intidg 5396 The intersection of all se...
moabex 5397 "At most one" existence im...
rmorabex 5398 Restricted "at most one" e...
euabex 5399 The abstraction of a wff w...
nnullss 5400 A nonempty class (even if ...
exss 5401 Restricted existence in a ...
opex 5402 An ordered pair of classes...
otex 5403 An ordered triple of class...
elopg 5404 Characterization of the el...
elop 5405 Characterization of the el...
opi1 5406 One of the two elements in...
opi2 5407 One of the two elements of...
opeluu 5408 Each member of an ordered ...
op1stb 5409 Extract the first member o...
brv 5410 Two classes are always in ...
opnz 5411 An ordered pair is nonempt...
opnzi 5412 An ordered pair is nonempt...
opth1 5413 Equality of the first memb...
opth 5414 The ordered pair theorem. ...
opthg 5415 Ordered pair theorem. ` C ...
opth1g 5416 Equality of the first memb...
opthg2 5417 Ordered pair theorem. (Co...
opth2 5418 Ordered pair theorem. (Co...
opthneg 5419 Two ordered pairs are not ...
opthne 5420 Two ordered pairs are not ...
otth2 5421 Ordered triple theorem, wi...
otth 5422 Ordered triple theorem. (...
otthg 5423 Ordered triple theorem, cl...
otthne 5424 Contrapositive of the orde...
eqvinop 5425 A variable introduction la...
sbcop1 5426 The proper substitution of...
sbcop 5427 The proper substitution of...
copsexgw 5428 Version of ~ copsexg with ...
copsexg 5429 Substitution of class ` A ...
copsex2t 5430 Closed theorem form of ~ c...
copsex2g 5431 Implicit substitution infe...
copsex2dv 5432 Implicit substitution dedu...
copsex4g 5433 An implicit substitution i...
0nelop 5434 A property of ordered pair...
opwo0id 5435 An ordered pair is equal t...
opeqex 5436 Equivalence of existence i...
oteqex2 5437 Equivalence of existence i...
oteqex 5438 Equivalence of existence i...
opcom 5439 An ordered pair commutes i...
moop2 5440 "At most one" property of ...
opeqsng 5441 Equivalence for an ordered...
opeqsn 5442 Equivalence for an ordered...
opeqpr 5443 Equivalence for an ordered...
snopeqop 5444 Equivalence for an ordered...
propeqop 5445 Equivalence for an ordered...
propssopi 5446 If a pair of ordered pairs...
snopeqopsnid 5447 Equivalence for an ordered...
mosubopt 5448 "At most one" remains true...
mosubop 5449 "At most one" remains true...
euop2 5450 Transfer existential uniqu...
euotd 5451 Prove existential uniquene...
opthwiener 5452 Justification theorem for ...
uniop 5453 The union of an ordered pa...
uniopel 5454 Ordered pair membership is...
opthhausdorff 5455 Justification theorem for ...
opthhausdorff0 5456 Justification theorem for ...
otsndisj 5457 The singletons consisting ...
otiunsndisj 5458 The union of singletons co...
iunopeqop 5459 Implication of an ordered ...
brsnop 5460 Binary relation for an ord...
brtp 5461 A necessary and sufficient...
opabidw 5462 The law of concretion. Sp...
opabid 5463 The law of concretion. Sp...
elopabw 5464 Membership in a class abst...
elopab 5465 Membership in a class abst...
rexopabb 5466 Restricted existential qua...
vopelopabsb 5467 The law of concretion in t...
opelopabsb 5468 The law of concretion in t...
brabsb 5469 The law of concretion in t...
opelopabt 5470 Closed theorem form of ~ o...
opelopabga 5471 The law of concretion. Th...
brabga 5472 The law of concretion for ...
opelopab2a 5473 Ordered pair membership in...
opelopaba 5474 The law of concretion. Th...
braba 5475 The law of concretion for ...
opelopabg 5476 The law of concretion. Th...
brabg 5477 The law of concretion for ...
opelopabgf 5478 The law of concretion. Th...
opelopab2 5479 Ordered pair membership in...
opelopab 5480 The law of concretion. Th...
brab 5481 The law of concretion for ...
opelopabaf 5482 The law of concretion. Th...
opelopabf 5483 The law of concretion. Th...
ssopab2 5484 Equivalence of ordered pai...
ssopab2bw 5485 Equivalence of ordered pai...
eqopab2bw 5486 Equivalence of ordered pai...
ssopab2b 5487 Equivalence of ordered pai...
ssopab2i 5488 Inference of ordered pair ...
ssopab2dv 5489 Inference of ordered pair ...
eqopab2b 5490 Equivalence of ordered pai...
opabn0 5491 Nonempty ordered pair clas...
opab0 5492 Empty ordered pair class a...
csbopab 5493 Move substitution into a c...
csbopabgALT 5494 Move substitution into a c...
csbmpt12 5495 Move substitution into a m...
csbmpt2 5496 Move substitution into the...
iunopab 5497 Move indexed union inside ...
elopabr 5498 Membership in an ordered-p...
elopabran 5499 Membership in an ordered-p...
rbropapd 5500 Properties of a pair in an...
rbropap 5501 Properties of a pair in a ...
2rbropap 5502 Properties of a pair in a ...
0nelopab 5503 The empty set is never an ...
brabv 5504 If two classes are in a re...
pwin 5505 The power class of the int...
pwssun 5506 The power class of the uni...
pwun 5507 The power class of the uni...
dfid4 5510 The identity function expr...
dfid2 5511 Alternate definition of th...
dfid3 5512 A stronger version of ~ df...
epelg 5515 The membership relation an...
epeli 5516 The membership relation an...
epel 5517 The membership relation an...
0sn0ep 5518 An example for the members...
epn0 5519 The membership relation is...
poss 5524 Subset theorem for the par...
poeq1 5525 Equality theorem for parti...
poeq2 5526 Equality theorem for parti...
poeq12d 5527 Equality deduction for par...
nfpo 5528 Bound-variable hypothesis ...
nfso 5529 Bound-variable hypothesis ...
pocl 5530 Characteristic properties ...
ispod 5531 Sufficient conditions for ...
swopolem 5532 Perform the substitutions ...
swopo 5533 A strict weak order is a p...
poirr 5534 A partial order is irrefle...
potr 5535 A partial order is a trans...
po2nr 5536 A partial order has no 2-c...
po3nr 5537 A partial order has no 3-c...
po2ne 5538 Two sets related by a part...
po0 5539 Any relation is a partial ...
pofun 5540 The inverse image of a par...
sopo 5541 A strict linear order is a...
soss 5542 Subset theorem for the str...
soeq1 5543 Equality theorem for the s...
soeq2 5544 Equality theorem for the s...
soeq12d 5545 Equality deduction for tot...
sonr 5546 A strict order relation is...
sotr 5547 A strict order relation is...
sotrd 5548 Transitivity law for stric...
solin 5549 A strict order relation is...
so2nr 5550 A strict order relation ha...
so3nr 5551 A strict order relation ha...
sotric 5552 A strict order relation sa...
sotrieq 5553 Trichotomy law for strict ...
sotrieq2 5554 Trichotomy law for strict ...
soasym 5555 Asymmetry law for strict o...
sotr2 5556 A transitivity relation. ...
issod 5557 An irreflexive, transitive...
issoi 5558 An irreflexive, transitive...
isso2i 5559 Deduce strict ordering fro...
so0 5560 Any relation is a strict o...
somo 5561 A totally ordered set has ...
sotrine 5562 Trichotomy law for strict ...
sotr3 5563 Transitivity law for stric...
dffr6 5570 Alternate definition of ~ ...
frd 5571 A nonempty subset of an ` ...
fri 5572 A nonempty subset of an ` ...
seex 5573 The ` R ` -preimage of an ...
exse 5574 Any relation on a set is s...
dffr2 5575 Alternate definition of we...
dffr2ALT 5576 Alternate proof of ~ dffr2...
frc 5577 Property of well-founded r...
frss 5578 Subset theorem for the wel...
sess1 5579 Subset theorem for the set...
sess2 5580 Subset theorem for the set...
freq1 5581 Equality theorem for the w...
freq2 5582 Equality theorem for the w...
freq12d 5583 Equality deduction for wel...
seeq1 5584 Equality theorem for the s...
seeq2 5585 Equality theorem for the s...
seeq12d 5586 Equality deduction for the...
nffr 5587 Bound-variable hypothesis ...
nfse 5588 Bound-variable hypothesis ...
nfwe 5589 Bound-variable hypothesis ...
frirr 5590 A well-founded relation is...
fr2nr 5591 A well-founded relation ha...
fr0 5592 Any relation is well-found...
frminex 5593 If an element of a well-fo...
efrirr 5594 A well-founded class does ...
efrn2lp 5595 A well-founded class conta...
epse 5596 The membership relation is...
tz7.2 5597 Similar to Theorem 7.2 of ...
dfepfr 5598 An alternate way of saying...
epfrc 5599 A subset of a well-founded...
wess 5600 Subset theorem for the wel...
weeq1 5601 Equality theorem for the w...
weeq2 5602 Equality theorem for the w...
weeq12d 5603 Equality deduction for wel...
wefr 5604 A well-ordering is well-fo...
weso 5605 A well-ordering is a stric...
wecmpep 5606 The elements of a class we...
wetrep 5607 On a class well-ordered by...
wefrc 5608 A nonempty subclass of a c...
we0 5609 Any relation is a well-ord...
wereu 5610 A nonempty subset of an ` ...
wereu2 5611 A nonempty subclass of an ...
xpeq1 5628 Equality theorem for Carte...
xpss12 5629 Subset theorem for Cartesi...
xpss 5630 A Cartesian product is inc...
inxpssres 5631 Intersection with a Cartes...
relxp 5632 A Cartesian product is a r...
xpss1 5633 Subset relation for Cartes...
xpss2 5634 Subset relation for Cartes...
xpeq2 5635 Equality theorem for Carte...
elxpi 5636 Membership in a Cartesian ...
elxp 5637 Membership in a Cartesian ...
elxp2 5638 Membership in a Cartesian ...
xpeq12 5639 Equality theorem for Carte...
xpeq1i 5640 Equality inference for Car...
xpeq2i 5641 Equality inference for Car...
xpeq12i 5642 Equality inference for Car...
xpeq1d 5643 Equality deduction for Car...
xpeq2d 5644 Equality deduction for Car...
xpeq12d 5645 Equality deduction for Car...
sqxpeqd 5646 Equality deduction for a C...
nfxp 5647 Bound-variable hypothesis ...
0nelxp 5648 The empty set is not a mem...
0nelelxp 5649 A member of a Cartesian pr...
opelxp 5650 Ordered pair membership in...
opelxpi 5651 Ordered pair membership in...
opelxpii 5652 Ordered pair membership in...
opelxpd 5653 Ordered pair membership in...
opelvv 5654 Ordered pair membership in...
opelvvg 5655 Ordered pair membership in...
opelxp1 5656 The first member of an ord...
opelxp2 5657 The second member of an or...
otelxp 5658 Ordered triple membership ...
otelxp1 5659 The first member of an ord...
otel3xp 5660 An ordered triple is an el...
opabssxpd 5661 An ordered-pair class abst...
rabxp 5662 Class abstraction restrict...
brxp 5663 Binary relation on a Carte...
pwvrel 5664 A set is a binary relation...
pwvabrel 5665 The powerclass of the cart...
brrelex12 5666 Two classes related by a b...
brrelex1 5667 If two classes are related...
brrelex2 5668 If two classes are related...
brrelex12i 5669 Two classes that are relat...
brrelex1i 5670 The first argument of a bi...
brrelex2i 5671 The second argument of a b...
nprrel12 5672 Proper classes are not rel...
nprrel 5673 No proper class is related...
0nelrel0 5674 A binary relation does not...
0nelrel 5675 A binary relation does not...
fconstmpt 5676 Representation of a consta...
vtoclr 5677 Variable to class conversi...
opthprc 5678 Justification theorem for ...
brel 5679 Two things in a binary rel...
elxp3 5680 Membership in a Cartesian ...
opeliunxp 5681 Membership in a union of C...
opeliun2xp 5682 Membership of an ordered p...
xpundi 5683 Distributive law for Carte...
xpundir 5684 Distributive law for Carte...
xpiundi 5685 Distributive law for Carte...
xpiundir 5686 Distributive law for Carte...
iunxpconst 5687 Membership in a union of C...
xpun 5688 The Cartesian product of t...
elvv 5689 Membership in universal cl...
elvvv 5690 Membership in universal cl...
elvvuni 5691 An ordered pair contains i...
brinxp2 5692 Intersection of binary rel...
brinxp 5693 Intersection of binary rel...
opelinxp 5694 Ordered pair element in an...
poinxp 5695 Intersection of partial or...
soinxp 5696 Intersection of total orde...
frinxp 5697 Intersection of well-found...
seinxp 5698 Intersection of set-like r...
weinxp 5699 Intersection of well-order...
posn 5700 Partial ordering of a sing...
sosn 5701 Strict ordering on a singl...
frsn 5702 Founded relation on a sing...
wesn 5703 Well-ordering of a singlet...
elopaelxp 5704 Membership in an ordered-p...
bropaex12 5705 Two classes related by an ...
opabssxp 5706 An abstraction relation is...
brab2a 5707 The law of concretion for ...
optocl 5708 Implicit substitution of c...
optoclOLD 5709 Obsolete version of ~ opto...
2optocl 5710 Implicit substitution of c...
3optocl 5711 Implicit substitution of c...
opbrop 5712 Ordered pair membership in...
0xp 5713 The Cartesian product with...
xp0 5714 The Cartesian product with...
csbxp 5715 Distribute proper substitu...
releq 5716 Equality theorem for the r...
releqi 5717 Equality inference for the...
releqd 5718 Equality deduction for the...
nfrel 5719 Bound-variable hypothesis ...
sbcrel 5720 Distribute proper substitu...
relss 5721 Subclass theorem for relat...
ssrel 5722 A subclass relationship de...
eqrel 5723 Extensionality principle f...
ssrel2 5724 A subclass relationship de...
ssrel3 5725 Subclass relation in anoth...
relssi 5726 Inference from subclass pr...
relssdv 5727 Deduction from subclass pr...
eqrelriv 5728 Inference from extensional...
eqrelriiv 5729 Inference from extensional...
eqbrriv 5730 Inference from extensional...
eqrelrdv 5731 Deduce equality of relatio...
eqbrrdv 5732 Deduction from extensional...
eqbrrdiv 5733 Deduction from extensional...
eqrelrdv2 5734 A version of ~ eqrelrdv . ...
ssrelrel 5735 A subclass relationship de...
eqrelrel 5736 Extensionality principle f...
elrel 5737 A member of a relation is ...
rel0 5738 The empty set is a relatio...
nrelv 5739 The universal class is not...
relsng 5740 A singleton is a relation ...
relsnb 5741 An at-most-singleton is a ...
relsnopg 5742 A singleton of an ordered ...
relsn 5743 A singleton is a relation ...
relsnop 5744 A singleton of an ordered ...
copsex2gb 5745 Implicit substitution infe...
copsex2ga 5746 Implicit substitution infe...
elopaba 5747 Membership in an ordered-p...
xpsspw 5748 A Cartesian product is inc...
unixpss 5749 The double class union of ...
relun 5750 The union of two relations...
relin1 5751 The intersection with a re...
relin2 5752 The intersection with a re...
relinxp 5753 Intersection with a Cartes...
reldif 5754 A difference cutting down ...
reliun 5755 An indexed union is a rela...
reliin 5756 An indexed intersection is...
reluni 5757 The union of a class is a ...
relint 5758 The intersection of a clas...
relopabiv 5759 A class of ordered pairs i...
relopabv 5760 A class of ordered pairs i...
relopabi 5761 A class of ordered pairs i...
relopabiALT 5762 Alternate proof of ~ relop...
relopab 5763 A class of ordered pairs i...
mptrel 5764 The maps-to notation alway...
reli 5765 The identity relation is a...
rele 5766 The membership relation is...
opabid2 5767 A relation expressed as an...
inopab 5768 Intersection of two ordere...
difopab 5769 Difference of two ordered-...
inxp 5770 Intersection of two Cartes...
inxpOLD 5771 Obsolete version of ~ inxp...
xpindi 5772 Distributive law for Carte...
xpindir 5773 Distributive law for Carte...
xpiindi 5774 Distributive law for Carte...
xpriindi 5775 Distributive law for Carte...
eliunxp 5776 Membership in a union of C...
opeliunxp2 5777 Membership in a union of C...
raliunxp 5778 Write a double restricted ...
rexiunxp 5779 Write a double restricted ...
ralxp 5780 Universal quantification r...
rexxp 5781 Existential quantification...
exopxfr 5782 Transfer ordered-pair exis...
exopxfr2 5783 Transfer ordered-pair exis...
djussxp 5784 Disjoint union is a subset...
ralxpf 5785 Version of ~ ralxp with bo...
rexxpf 5786 Version of ~ rexxp with bo...
iunxpf 5787 Indexed union on a Cartesi...
opabbi2dv 5788 Deduce equality of a relat...
relop 5789 A necessary and sufficient...
ideqg 5790 For sets, the identity rel...
ideq 5791 For sets, the identity rel...
ididg 5792 A set is identical to itse...
issetid 5793 Two ways of expressing set...
coss1 5794 Subclass theorem for compo...
coss2 5795 Subclass theorem for compo...
coeq1 5796 Equality theorem for compo...
coeq2 5797 Equality theorem for compo...
coeq1i 5798 Equality inference for com...
coeq2i 5799 Equality inference for com...
coeq1d 5800 Equality deduction for com...
coeq2d 5801 Equality deduction for com...
coeq12i 5802 Equality inference for com...
coeq12d 5803 Equality deduction for com...
nfco 5804 Bound-variable hypothesis ...
brcog 5805 Ordered pair membership in...
opelco2g 5806 Ordered pair membership in...
brcogw 5807 Ordered pair membership in...
eqbrrdva 5808 Deduction from extensional...
brco 5809 Binary relation on a compo...
opelco 5810 Ordered pair membership in...
cnvss 5811 Subset theorem for convers...
cnveq 5812 Equality theorem for conve...
cnveqi 5813 Equality inference for con...
cnveqd 5814 Equality deduction for con...
elcnv 5815 Membership in a converse r...
elcnv2 5816 Membership in a converse r...
nfcnv 5817 Bound-variable hypothesis ...
brcnvg 5818 The converse of a binary r...
opelcnvg 5819 Ordered-pair membership in...
opelcnv 5820 Ordered-pair membership in...
brcnv 5821 The converse of a binary r...
csbcnv 5822 Move class substitution in...
csbcnvgALT 5823 Move class substitution in...
cnvco 5824 Distributive law of conver...
cnvuni 5825 The converse of a class un...
dfdm3 5826 Alternate definition of do...
dfrn2 5827 Alternate definition of ra...
dfrn3 5828 Alternate definition of ra...
elrn2g 5829 Membership in a range. (C...
elrng 5830 Membership in a range. (C...
elrn2 5831 Membership in a range. (C...
elrn 5832 Membership in a range. (C...
ssrelrn 5833 If a relation is a subset ...
dfdm4 5834 Alternate definition of do...
dfdmf 5835 Definition of domain, usin...
csbdm 5836 Distribute proper substitu...
eldmg 5837 Domain membership. Theore...
eldm2g 5838 Domain membership. Theore...
eldm 5839 Membership in a domain. T...
eldm2 5840 Membership in a domain. T...
dmss 5841 Subset theorem for domain....
dmeq 5842 Equality theorem for domai...
dmeqi 5843 Equality inference for dom...
dmeqd 5844 Equality deduction for dom...
opeldmd 5845 Membership of first of an ...
opeldm 5846 Membership of first of an ...
breldm 5847 Membership of first of a b...
breldmg 5848 Membership of first of a b...
dmun 5849 The domain of a union is t...
dmin 5850 The domain of an intersect...
breldmd 5851 Membership of first of a b...
dmiun 5852 The domain of an indexed u...
dmuni 5853 The domain of a union. Pa...
dmopab 5854 The domain of a class of o...
dmopabelb 5855 A set is an element of the...
dmopab2rex 5856 The domain of an ordered p...
dmopabss 5857 Upper bound for the domain...
dmopab3 5858 The domain of a restricted...
dm0 5859 The domain of the empty se...
dmi 5860 The domain of the identity...
dmv 5861 The domain of the universe...
dmep 5862 The domain of the membersh...
dm0rn0 5863 An empty domain is equival...
dm0rn0OLD 5864 Obsolete version of ~ dm0r...
rn0 5865 The range of the empty set...
rnep 5866 The range of the membershi...
reldm0 5867 A relation is empty iff it...
dmxp 5868 The domain of a Cartesian ...
dmxpid 5869 The domain of a Cartesian ...
dmxpin 5870 The domain of the intersec...
xpid11 5871 The Cartesian square is a ...
dmcnvcnv 5872 The domain of the double c...
rncnvcnv 5873 The range of the double co...
elreldm 5874 The first member of an ord...
rneq 5875 Equality theorem for range...
rneqi 5876 Equality inference for ran...
rneqd 5877 Equality deduction for ran...
rnss 5878 Subset theorem for range. ...
rnssi 5879 Subclass inference for ran...
brelrng 5880 The second argument of a b...
brelrn 5881 The second argument of a b...
opelrn 5882 Membership of second membe...
releldm 5883 The first argument of a bi...
relelrn 5884 The second argument of a b...
releldmb 5885 Membership in a domain. (...
relelrnb 5886 Membership in a range. (C...
releldmi 5887 The first argument of a bi...
relelrni 5888 The second argument of a b...
dfrnf 5889 Definition of range, using...
nfdm 5890 Bound-variable hypothesis ...
nfrn 5891 Bound-variable hypothesis ...
dmiin 5892 Domain of an intersection....
rnopab 5893 The range of a class of or...
rnopabss 5894 Upper bound for the range ...
rnopab3 5895 The range of a restricted ...
rnmpt 5896 The range of a function in...
elrnmpt 5897 The range of a function in...
elrnmpt1s 5898 Elementhood in an image se...
elrnmpt1 5899 Elementhood in an image se...
elrnmptg 5900 Membership in the range of...
elrnmpti 5901 Membership in the range of...
elrnmptd 5902 The range of a function in...
elrnmpt1d 5903 Elementhood in an image se...
elrnmptdv 5904 Elementhood in the range o...
elrnmpt2d 5905 Elementhood in the range o...
dfiun3g 5906 Alternate definition of in...
dfiin3g 5907 Alternate definition of in...
dfiun3 5908 Alternate definition of in...
dfiin3 5909 Alternate definition of in...
riinint 5910 Express a relative indexed...
relrn0 5911 A relation is empty iff it...
dmrnssfld 5912 The domain and range of a ...
dmcoss 5913 Domain of a composition. ...
dmcossOLD 5914 Obsolete version of ~ dmco...
rncoss 5915 Range of a composition. (...
dmcosseq 5916 Domain of a composition. ...
dmcosseqOLD 5917 Obsolete version of ~ dmco...
dmcosseqOLDOLD 5918 Obsolete version of ~ dmco...
dmcoeq 5919 Domain of a composition. ...
rncoeq 5920 Range of a composition. (...
reseq1 5921 Equality theorem for restr...
reseq2 5922 Equality theorem for restr...
reseq1i 5923 Equality inference for res...
reseq2i 5924 Equality inference for res...
reseq12i 5925 Equality inference for res...
reseq1d 5926 Equality deduction for res...
reseq2d 5927 Equality deduction for res...
reseq12d 5928 Equality deduction for res...
nfres 5929 Bound-variable hypothesis ...
csbres 5930 Distribute proper substitu...
res0 5931 A restriction to the empty...
dfres3 5932 Alternate definition of re...
opelres 5933 Ordered pair elementhood i...
brres 5934 Binary relation on a restr...
opelresi 5935 Ordered pair membership in...
brresi 5936 Binary relation on a restr...
opres 5937 Ordered pair membership in...
resieq 5938 A restricted identity rela...
opelidres 5939 ` <. A , A >. ` belongs to...
resres 5940 The restriction of a restr...
resundi 5941 Distributive law for restr...
resundir 5942 Distributive law for restr...
resindi 5943 Class restriction distribu...
resindir 5944 Class restriction distribu...
inres 5945 Move intersection into cla...
resdifcom 5946 Commutative law for restri...
resiun1 5947 Distribution of restrictio...
resiun2 5948 Distribution of restrictio...
resss 5949 A class includes its restr...
rescom 5950 Commutative law for restri...
ssres 5951 Subclass theorem for restr...
ssres2 5952 Subclass theorem for restr...
relres 5953 A restriction is a relatio...
resabs1 5954 Absorption law for restric...
resabs1i 5955 Absorption law for restric...
resabs1d 5956 Absorption law for restric...
resabs2 5957 Absorption law for restric...
residm 5958 Idempotent law for restric...
dmresss 5959 The domain of a restrictio...
dmres 5960 The domain of a restrictio...
ssdmres 5961 A domain restricted to a s...
dmresexg 5962 The domain of a restrictio...
resima 5963 A restriction to an image....
resima2 5964 Image under a restricted c...
rnresss 5965 The range of a restriction...
xpssres 5966 Restriction of a constant ...
elinxp 5967 Membership in an intersect...
elres 5968 Membership in a restrictio...
elsnres 5969 Membership in restriction ...
relssres 5970 Simplification law for res...
dmressnsn 5971 The domain of a restrictio...
eldmressnsn 5972 The element of the domain ...
eldmeldmressn 5973 An element of the domain (...
resdm 5974 A relation restricted to i...
resexg 5975 The restriction of a set i...
resexd 5976 The restriction of a set i...
resex 5977 The restriction of a set i...
resindm 5978 When restricting a relatio...
resdmdfsn 5979 Restricting a relation to ...
reldisjun 5980 Split a relation into two ...
relresdm1 5981 Restriction of a disjoint ...
resopab 5982 Restriction of a class abs...
iss 5983 A subclass of the identity...
resopab2 5984 Restriction of a class abs...
resmpt 5985 Restriction of the mapping...
resmpt3 5986 Unconditional restriction ...
resmptf 5987 Restriction of the mapping...
resmptd 5988 Restriction of the mapping...
dfres2 5989 Alternate definition of th...
mptss 5990 Sufficient condition for i...
elimampt 5991 Membership in the image of...
elidinxp 5992 Characterization of the el...
elidinxpid 5993 Characterization of the el...
elrid 5994 Characterization of the el...
idinxpres 5995 The intersection of the id...
idinxpresid 5996 The intersection of the id...
idssxp 5997 A diagonal set as a subset...
opabresid 5998 The restricted identity re...
mptresid 5999 The restricted identity re...
dmresi 6000 The domain of a restricted...
restidsing 6001 Restriction of the identit...
iresn0n0 6002 The identity function rest...
imaeq1 6003 Equality theorem for image...
imaeq2 6004 Equality theorem for image...
imaeq1i 6005 Equality theorem for image...
imaeq2i 6006 Equality theorem for image...
imaeq1d 6007 Equality theorem for image...
imaeq2d 6008 Equality theorem for image...
imaeq12d 6009 Equality theorem for image...
dfima2 6010 Alternate definition of im...
dfima3 6011 Alternate definition of im...
elimag 6012 Membership in an image. T...
elima 6013 Membership in an image. T...
elima2 6014 Membership in an image. T...
elima3 6015 Membership in an image. T...
nfima 6016 Bound-variable hypothesis ...
nfimad 6017 Deduction version of bound...
imadmrn 6018 The image of the domain of...
imassrn 6019 The image of a class is a ...
mptima 6020 Image of a function in map...
mptimass 6021 Image of a function in map...
imai 6022 Image under the identity r...
rnresi 6023 The range of the restricte...
resiima 6024 The image of a restriction...
ima0 6025 Image of the empty set. T...
0ima 6026 Image under the empty rela...
csbima12 6027 Move class substitution in...
imadisj 6028 A class whose image under ...
imadisjlnd 6029 Deduction form of one nega...
cnvimass 6030 A preimage under any class...
cnvimarndm 6031 The preimage of the range ...
imasng 6032 The image of a singleton. ...
relimasn 6033 The image of a singleton. ...
elrelimasn 6034 Elementhood in the image o...
elimasng1 6035 Membership in an image of ...
elimasn1 6036 Membership in an image of ...
elimasng 6037 Membership in an image of ...
elimasn 6038 Membership in an image of ...
elimasni 6039 Membership in an image of ...
args 6040 Two ways to express the cl...
elinisegg 6041 Membership in the inverse ...
eliniseg 6042 Membership in the inverse ...
epin 6043 Any set is equal to its pr...
epini 6044 Any set is equal to its pr...
iniseg 6045 An idiom that signifies an...
inisegn0 6046 Nonemptiness of an initial...
dffr3 6047 Alternate definition of we...
dfse2 6048 Alternate definition of se...
imass1 6049 Subset theorem for image. ...
imass2 6050 Subset theorem for image. ...
ndmima 6051 The image of a singleton o...
relcnv 6052 A converse is a relation. ...
relbrcnvg 6053 When ` R ` is a relation, ...
eliniseg2 6054 Eliminate the class existe...
relbrcnv 6055 When ` R ` is a relation, ...
relco 6056 A composition is a relatio...
cotrg 6057 Two ways of saying that th...
cotr 6058 Two ways of saying a relat...
idrefALT 6059 Alternate proof of ~ idref...
cnvsym 6060 Two ways of saying a relat...
intasym 6061 Two ways of saying a relat...
asymref 6062 Two ways of saying a relat...
asymref2 6063 Two ways of saying a relat...
intirr 6064 Two ways of saying a relat...
brcodir 6065 Two ways of saying that tw...
codir 6066 Two ways of saying a relat...
qfto 6067 A quantifier-free way of e...
xpidtr 6068 A Cartesian square is a tr...
trin2 6069 The intersection of two tr...
poirr2 6070 A partial order is irrefle...
trinxp 6071 The relation induced by a ...
soirri 6072 A strict order relation is...
sotri 6073 A strict order relation is...
son2lpi 6074 A strict order relation ha...
sotri2 6075 A transitivity relation. ...
sotri3 6076 A transitivity relation. ...
poleloe 6077 Express "less than or equa...
poltletr 6078 Transitive law for general...
somin1 6079 Property of a minimum in a...
somincom 6080 Commutativity of minimum i...
somin2 6081 Property of a minimum in a...
soltmin 6082 Being less than a minimum,...
cnvopab 6083 The converse of a class ab...
cnvopabOLD 6084 Obsolete version of ~ cnvo...
mptcnv 6085 The converse of a mapping ...
cnv0 6086 The converse of the empty ...
cnv0OLD 6087 Obsolete version of ~ cnv0...
cnvi 6088 The converse of the identi...
cnvun 6089 The converse of a union is...
cnvdif 6090 Distributive law for conve...
cnvin 6091 Distributive law for conve...
rnun 6092 Distributive law for range...
rnin 6093 The range of an intersecti...
rniun 6094 The range of an indexed un...
rnuni 6095 The range of a union. Par...
imaundi 6096 Distributive law for image...
imaundir 6097 The image of a union. (Co...
imadifssran 6098 Condition for the range of...
cnvimassrndm 6099 The preimage of a superset...
dminss 6100 An upper bound for interse...
imainss 6101 An upper bound for interse...
inimass 6102 The image of an intersecti...
inimasn 6103 The intersection of the im...
cnvxp 6104 The converse of a Cartesia...
xp0OLD 6105 Obsolete version of ~ xp0 ...
xpnz 6106 The Cartesian product of n...
xpeq0 6107 At least one member of an ...
xpdisj1 6108 Cartesian products with di...
xpdisj2 6109 Cartesian products with di...
xpsndisj 6110 Cartesian products with tw...
difxp 6111 Difference of Cartesian pr...
difxp1 6112 Difference law for Cartesi...
difxp2 6113 Difference law for Cartesi...
djudisj 6114 Disjoint unions with disjo...
xpdifid 6115 The set of distinct couple...
resdisj 6116 A double restriction to di...
rnxp 6117 The range of a Cartesian p...
dmxpss 6118 The domain of a Cartesian ...
rnxpss 6119 The range of a Cartesian p...
rnxpid 6120 The range of a Cartesian s...
ssxpb 6121 A Cartesian product subcla...
xp11 6122 The Cartesian product of n...
xpcan 6123 Cancellation law for Carte...
xpcan2 6124 Cancellation law for Carte...
ssrnres 6125 Two ways to express surjec...
rninxp 6126 Two ways to express surjec...
dminxp 6127 Two ways to express totali...
imainrect 6128 Image by a restricted and ...
xpima 6129 Direct image by a Cartesia...
xpima1 6130 Direct image by a Cartesia...
xpima2 6131 Direct image by a Cartesia...
xpimasn 6132 Direct image of a singleto...
sossfld 6133 The base set of a strict o...
sofld 6134 The base set of a nonempty...
cnvcnv3 6135 The set of all ordered pai...
dfrel2 6136 Alternate definition of re...
dfrel4v 6137 A relation can be expresse...
dfrel4 6138 A relation can be expresse...
cnvcnv 6139 The double converse of a c...
cnvcnv2 6140 The double converse of a c...
cnvcnvss 6141 The double converse of a c...
cnvrescnv 6142 Two ways to express the co...
cnveqb 6143 Equality theorem for conve...
cnveq0 6144 A relation empty iff its c...
dfrel3 6145 Alternate definition of re...
elid 6146 Characterization of the el...
dmresv 6147 The domain of a universal ...
rnresv 6148 The range of a universal r...
dfrn4 6149 Range defined in terms of ...
csbrn 6150 Distribute proper substitu...
rescnvcnv 6151 The restriction of the dou...
cnvcnvres 6152 The double converse of the...
imacnvcnv 6153 The image of the double co...
dmsnn0 6154 The domain of a singleton ...
rnsnn0 6155 The range of a singleton i...
dmsn0 6156 The domain of the singleto...
cnvsn0 6157 The converse of the single...
dmsn0el 6158 The domain of a singleton ...
relsn2 6159 A singleton is a relation ...
dmsnopg 6160 The domain of a singleton ...
dmsnopss 6161 The domain of a singleton ...
dmpropg 6162 The domain of an unordered...
dmsnop 6163 The domain of a singleton ...
dmprop 6164 The domain of an unordered...
dmtpop 6165 The domain of an unordered...
cnvcnvsn 6166 Double converse of a singl...
dmsnsnsn 6167 The domain of the singleto...
rnsnopg 6168 The range of a singleton o...
rnpropg 6169 The range of a pair of ord...
cnvsng 6170 Converse of a singleton of...
rnsnop 6171 The range of a singleton o...
op1sta 6172 Extract the first member o...
cnvsn 6173 Converse of a singleton of...
op2ndb 6174 Extract the second member ...
op2nda 6175 Extract the second member ...
opswap 6176 Swap the members of an ord...
cnvresima 6177 An image under the convers...
resdm2 6178 A class restricted to its ...
resdmres 6179 Restriction to the domain ...
resresdm 6180 A restriction by an arbitr...
imadmres 6181 The image of the domain of...
resdmss 6182 Subset relationship for th...
resdifdi 6183 Distributive law for restr...
resdifdir 6184 Distributive law for restr...
mptpreima 6185 The preimage of a function...
mptiniseg 6186 Converse singleton image o...
dmmpt 6187 The domain of the mapping ...
dmmptss 6188 The domain of a mapping is...
dmmptg 6189 The domain of the mapping ...
rnmpt0f 6190 The range of a function in...
rnmptn0 6191 The range of a function in...
dfco2 6192 Alternate definition of a ...
dfco2a 6193 Generalization of ~ dfco2 ...
coundi 6194 Class composition distribu...
coundir 6195 Class composition distribu...
cores 6196 Restricted first member of...
resco 6197 Associative law for the re...
imaco 6198 Image of the composition o...
rnco 6199 The range of the compositi...
rncoOLD 6200 Obsolete version of ~ rnco...
rnco2 6201 The range of the compositi...
dmco 6202 The domain of a compositio...
coeq0 6203 A composition of two relat...
coiun 6204 Composition with an indexe...
cocnvcnv1 6205 A composition is not affec...
cocnvcnv2 6206 A composition is not affec...
cores2 6207 Absorption of a reverse (p...
co02 6208 Composition with the empty...
co01 6209 Composition with the empty...
coi1 6210 Composition with the ident...
coi2 6211 Composition with the ident...
coires1 6212 Composition with a restric...
coass 6213 Associative law for class ...
relcnvtrg 6214 General form of ~ relcnvtr...
relcnvtr 6215 A relation is transitive i...
relssdmrn 6216 A relation is included in ...
resssxp 6217 If the ` R ` -image of a c...
cnvssrndm 6218 The converse is a subset o...
cossxp 6219 Composition as a subset of...
relrelss 6220 Two ways to describe the s...
unielrel 6221 The membership relation fo...
relfld 6222 The double union of a rela...
relresfld 6223 Restriction of a relation ...
relcoi2 6224 Composition with the ident...
relcoi1 6225 Composition with the ident...
unidmrn 6226 The double union of the co...
relcnvfld 6227 if ` R ` is a relation, it...
dfdm2 6228 Alternate definition of do...
unixp 6229 The double class union of ...
unixp0 6230 A Cartesian product is emp...
unixpid 6231 Field of a Cartesian squar...
ressn 6232 Restriction of a class to ...
cnviin 6233 The converse of an interse...
cnvpo 6234 The converse of a partial ...
cnvso 6235 The converse of a strict o...
xpco 6236 Composition of two Cartesi...
xpcoid 6237 Composition of two Cartesi...
elsnxp 6238 Membership in a Cartesian ...
reu3op 6239 There is a unique ordered ...
reuop 6240 There is a unique ordered ...
opreu2reurex 6241 There is a unique ordered ...
opreu2reu 6242 If there is a unique order...
dfpo2 6243 Quantifier-free definition...
csbcog 6244 Distribute proper substitu...
snres0 6245 Condition for restriction ...
imaindm 6246 The image is unaffected by...
predeq123 6249 Equality theorem for the p...
predeq1 6250 Equality theorem for the p...
predeq2 6251 Equality theorem for the p...
predeq3 6252 Equality theorem for the p...
nfpred 6253 Bound-variable hypothesis ...
csbpredg 6254 Move class substitution in...
predpredss 6255 If ` A ` is a subset of ` ...
predss 6256 The predecessor class of `...
sspred 6257 Another subset/predecessor...
dfpred2 6258 An alternate definition of...
dfpred3 6259 An alternate definition of...
dfpred3g 6260 An alternate definition of...
elpredgg 6261 Membership in a predecesso...
elpredg 6262 Membership in a predecesso...
elpredimg 6263 Membership in a predecesso...
elpredim 6264 Membership in a predecesso...
elpred 6265 Membership in a predecesso...
predexg 6266 The predecessor class exis...
dffr4 6267 Alternate definition of we...
predel 6268 Membership in the predeces...
predtrss 6269 If ` R ` is transitive ove...
predpo 6270 Property of the predecesso...
predso 6271 Property of the predecesso...
setlikespec 6272 If ` R ` is set-like in ` ...
predidm 6273 Idempotent law for the pre...
predin 6274 Intersection law for prede...
predun 6275 Union law for predecessor ...
preddif 6276 Difference law for predece...
predep 6277 The predecessor under the ...
trpred 6278 The class of predecessors ...
preddowncl 6279 A property of classes that...
predpoirr 6280 Given a partial ordering, ...
predfrirr 6281 Given a well-founded relat...
pred0 6282 The predecessor class over...
dfse3 6283 Alternate definition of se...
predrelss 6284 Subset carries from relati...
predprc 6285 The predecessor of a prope...
predres 6286 Predecessor class is unaff...
frpomin 6287 Every nonempty (possibly p...
frpomin2 6288 Every nonempty (possibly p...
frpoind 6289 The principle of well-foun...
frpoinsg 6290 Well-Founded Induction Sch...
frpoins2fg 6291 Well-Founded Induction sch...
frpoins2g 6292 Well-Founded Induction sch...
frpoins3g 6293 Well-Founded Induction sch...
tz6.26 6294 All nonempty subclasses of...
tz6.26i 6295 All nonempty subclasses of...
wfi 6296 The Principle of Well-Orde...
wfii 6297 The Principle of Well-Orde...
wfisg 6298 Well-Ordered Induction Sch...
wfis 6299 Well-Ordered Induction Sch...
wfis2fg 6300 Well-Ordered Induction Sch...
wfis2f 6301 Well-Ordered Induction sch...
wfis2g 6302 Well-Ordered Induction Sch...
wfis2 6303 Well-Ordered Induction sch...
wfis3 6304 Well-Ordered Induction sch...
ordeq 6313 Equality theorem for the o...
elong 6314 An ordinal number is an or...
elon 6315 An ordinal number is an or...
eloni 6316 An ordinal number has the ...
elon2 6317 An ordinal number is an or...
limeq 6318 Equality theorem for the l...
ordwe 6319 Membership well-orders eve...
ordtr 6320 An ordinal class is transi...
ordfr 6321 Membership is well-founded...
ordelss 6322 An element of an ordinal c...
trssord 6323 A transitive subclass of a...
ordirr 6324 No ordinal class is a memb...
nordeq 6325 A member of an ordinal cla...
ordn2lp 6326 An ordinal class cannot be...
tz7.5 6327 A nonempty subclass of an ...
ordelord 6328 An element of an ordinal c...
tron 6329 The class of all ordinal n...
ordelon 6330 An element of an ordinal c...
onelon 6331 An element of an ordinal n...
tz7.7 6332 A transitive class belongs...
ordelssne 6333 For ordinal classes, membe...
ordelpss 6334 For ordinal classes, membe...
ordsseleq 6335 For ordinal classes, inclu...
ordin 6336 The intersection of two or...
onin 6337 The intersection of two or...
ordtri3or 6338 A trichotomy law for ordin...
ordtri1 6339 A trichotomy law for ordin...
ontri1 6340 A trichotomy law for ordin...
ordtri2 6341 A trichotomy law for ordin...
ordtri3 6342 A trichotomy law for ordin...
ordtri4 6343 A trichotomy law for ordin...
orddisj 6344 An ordinal class and its s...
onfr 6345 The ordinal class is well-...
onelpss 6346 Relationship between membe...
onsseleq 6347 Relationship between subse...
onelss 6348 An element of an ordinal n...
oneltri 6349 The elementhood relation o...
ordtr1 6350 Transitive law for ordinal...
ordtr2 6351 Transitive law for ordinal...
ordtr3 6352 Transitive law for ordinal...
ontr1 6353 Transitive law for ordinal...
ontr2 6354 Transitive law for ordinal...
onelssex 6355 Ordinal less than is equiv...
ordunidif 6356 The union of an ordinal st...
ordintdif 6357 If ` B ` is smaller than `...
onintss 6358 If a property is true for ...
oneqmini 6359 A way to show that an ordi...
ord0 6360 The empty set is an ordina...
0elon 6361 The empty set is an ordina...
ord0eln0 6362 A nonempty ordinal contain...
on0eln0 6363 An ordinal number contains...
dflim2 6364 An alternate definition of...
inton 6365 The intersection of the cl...
nlim0 6366 The empty set is not a lim...
limord 6367 A limit ordinal is ordinal...
limuni 6368 A limit ordinal is its own...
limuni2 6369 The union of a limit ordin...
0ellim 6370 A limit ordinal contains t...
limelon 6371 A limit ordinal class that...
onn0 6372 The class of all ordinal n...
suceqd 6373 Deduction associated with ...
suceq 6374 Equality of successors. (...
elsuci 6375 Membership in a successor....
elsucg 6376 Membership in a successor....
elsuc2g 6377 Variant of membership in a...
elsuc 6378 Membership in a successor....
elsuc2 6379 Membership in a successor....
nfsuc 6380 Bound-variable hypothesis ...
elelsuc 6381 Membership in a successor....
sucel 6382 Membership of a successor ...
suc0 6383 The successor of the empty...
sucprc 6384 A proper class is its own ...
unisucs 6385 The union of the successor...
unisucg 6386 A transitive class is equa...
unisuc 6387 A transitive class is equa...
sssucid 6388 A class is included in its...
sucidg 6389 Part of Proposition 7.23 o...
sucid 6390 A set belongs to its succe...
nsuceq0 6391 No successor is empty. (C...
eqelsuc 6392 A set belongs to the succe...
iunsuc 6393 Inductive definition for t...
suctr 6394 The successor of a transit...
trsuc 6395 A set whose successor belo...
trsucss 6396 A member of the successor ...
ordsssuc 6397 An ordinal is a subset of ...
onsssuc 6398 A subset of an ordinal num...
ordsssuc2 6399 An ordinal subset of an or...
onmindif 6400 When its successor is subt...
ordnbtwn 6401 There is no set between an...
onnbtwn 6402 There is no set between an...
sucssel 6403 A set whose successor is a...
orddif 6404 Ordinal derived from its s...
orduniss 6405 An ordinal class includes ...
ordtri2or 6406 A trichotomy law for ordin...
ordtri2or2 6407 A trichotomy law for ordin...
ordtri2or3 6408 A consequence of total ord...
ordelinel 6409 The intersection of two or...
ordssun 6410 Property of a subclass of ...
ordequn 6411 The maximum (i.e. union) o...
ordun 6412 The maximum (i.e., union) ...
onunel 6413 The union of two ordinals ...
ordunisssuc 6414 A subclass relationship fo...
suc11 6415 The successor operation be...
onun2 6416 The union of two ordinals ...
ontr 6417 An ordinal number is a tra...
onunisuc 6418 An ordinal number is equal...
onordi 6419 An ordinal number is an or...
onirri 6420 An ordinal number is not a...
oneli 6421 A member of an ordinal num...
onelssi 6422 A member of an ordinal num...
onssneli 6423 An ordering law for ordina...
onssnel2i 6424 An ordering law for ordina...
onelini 6425 An element of an ordinal n...
oneluni 6426 An ordinal number equals i...
onunisuci 6427 An ordinal number is equal...
onsseli 6428 Subset is equivalent to me...
onun2i 6429 The union of two ordinal n...
unizlim 6430 An ordinal equal to its ow...
on0eqel 6431 An ordinal number either e...
snsn0non 6432 The singleton of the singl...
onxpdisj 6433 Ordinal numbers and ordere...
onnev 6434 The class of ordinal numbe...
iotajust 6436 Soundness justification th...
dfiota2 6438 Alternate definition for d...
nfiota1 6439 Bound-variable hypothesis ...
nfiotadw 6440 Deduction version of ~ nfi...
nfiotaw 6441 Bound-variable hypothesis ...
nfiotad 6442 Deduction version of ~ nfi...
nfiota 6443 Bound-variable hypothesis ...
cbviotaw 6444 Change bound variables in ...
cbviotavw 6445 Change bound variables in ...
cbviota 6446 Change bound variables in ...
cbviotav 6447 Change bound variables in ...
sb8iota 6448 Variable substitution in d...
iotaeq 6449 Equality theorem for descr...
iotabi 6450 Equivalence theorem for de...
uniabio 6451 Part of Theorem 8.17 in [Q...
iotaval2 6452 Version of ~ iotaval using...
iotauni2 6453 Version of ~ iotauni using...
iotanul2 6454 Version of ~ iotanul using...
iotaval 6455 Theorem 8.19 in [Quine] p....
iotassuni 6456 The ` iota ` class is a su...
iotaex 6457 Theorem 8.23 in [Quine] p....
iotauni 6458 Equivalence between two di...
iotaint 6459 Equivalence between two di...
iota1 6460 Property of iota. (Contri...
iotanul 6461 Theorem 8.22 in [Quine] p....
iota4 6462 Theorem *14.22 in [Whitehe...
iota4an 6463 Theorem *14.23 in [Whitehe...
iota5 6464 A method for computing iot...
iotabidv 6465 Formula-building deduction...
iotabii 6466 Formula-building deduction...
iotacl 6467 Membership law for descrip...
iota2df 6468 A condition that allows to...
iota2d 6469 A condition that allows to...
iota2 6470 The unique element such th...
iotan0 6471 Representation of "the uni...
sniota 6472 A class abstraction with a...
dfiota4 6473 The ` iota ` operation usi...
csbiota 6474 Class substitution within ...
dffun2 6491 Alternate definition of a ...
dffun6 6492 Alternate definition of a ...
dffun3 6493 Alternate definition of fu...
dffun4 6494 Alternate definition of a ...
dffun5 6495 Alternate definition of fu...
dffun6f 6496 Definition of function, us...
funmo 6497 A function has at most one...
funrel 6498 A function is a relation. ...
0nelfun 6499 A function does not contai...
funss 6500 Subclass theorem for funct...
funeq 6501 Equality theorem for funct...
funeqi 6502 Equality inference for the...
funeqd 6503 Equality deduction for the...
nffun 6504 Bound-variable hypothesis ...
sbcfung 6505 Distribute proper substitu...
funeu 6506 There is exactly one value...
funeu2 6507 There is exactly one value...
dffun7 6508 Alternate definition of a ...
dffun8 6509 Alternate definition of a ...
dffun9 6510 Alternate definition of a ...
funfn 6511 A class is a function if a...
funfnd 6512 A function is a function o...
funi 6513 The identity relation is a...
nfunv 6514 The universal class is not...
funopg 6515 A Kuratowski ordered pair ...
funopab 6516 A class of ordered pairs i...
funopabeq 6517 A class of ordered pairs o...
funopab4 6518 A class of ordered pairs o...
funmpt 6519 A function in maps-to nota...
funmpt2 6520 Functionality of a class g...
funco 6521 The composition of two fun...
funresfunco 6522 Composition of two functio...
funres 6523 A restriction of a functio...
funresd 6524 A restriction of a functio...
funssres 6525 The restriction of a funct...
fun2ssres 6526 Equality of restrictions o...
funun 6527 The union of functions wit...
fununmo 6528 If the union of classes is...
fununfun 6529 If the union of classes is...
fundif 6530 A function with removed el...
funcnvsn 6531 The converse singleton of ...
funsng 6532 A singleton of an ordered ...
fnsng 6533 Functionality and domain o...
funsn 6534 A singleton of an ordered ...
funprg 6535 A set of two pairs is a fu...
funtpg 6536 A set of three pairs is a ...
funpr 6537 A function with a domain o...
funtp 6538 A function with a domain o...
fnsn 6539 Functionality and domain o...
fnprg 6540 Function with a domain of ...
fntpg 6541 Function with a domain of ...
fntp 6542 A function with a domain o...
funcnvpr 6543 The converse pair of order...
funcnvtp 6544 The converse triple of ord...
funcnvqp 6545 The converse quadruple of ...
fun0 6546 The empty set is a functio...
funcnv0 6547 The converse of the empty ...
funcnvcnv 6548 The double converse of a f...
funcnv2 6549 A simpler equivalence for ...
funcnv 6550 The converse of a class is...
funcnv3 6551 A condition showing a clas...
fun2cnv 6552 The double converse of a c...
svrelfun 6553 A single-valued relation i...
fncnv 6554 Single-rootedness (see ~ f...
fun11 6555 Two ways of stating that `...
fununi 6556 The union of a chain (with...
funin 6557 The intersection with a fu...
funres11 6558 The restriction of a one-t...
funcnvres 6559 The converse of a restrict...
cnvresid 6560 Converse of a restricted i...
funcnvres2 6561 The converse of a restrict...
funimacnv 6562 The image of the preimage ...
funimass1 6563 A kind of contraposition l...
funimass2 6564 A kind of contraposition l...
imadif 6565 The image of a difference ...
imain 6566 The image of an intersecti...
f1imadifssran 6567 Condition for the range of...
funimaexg 6568 Axiom of Replacement using...
funimaex 6569 The image of a set under a...
isarep1 6570 Part of a study of the Axi...
isarep2 6571 Part of a study of the Axi...
fneq1 6572 Equality theorem for funct...
fneq2 6573 Equality theorem for funct...
fneq1d 6574 Equality deduction for fun...
fneq2d 6575 Equality deduction for fun...
fneq12d 6576 Equality deduction for fun...
fneq12 6577 Equality theorem for funct...
fneq1i 6578 Equality inference for fun...
fneq2i 6579 Equality inference for fun...
nffn 6580 Bound-variable hypothesis ...
fnfun 6581 A function with domain is ...
fnfund 6582 A function with domain is ...
fnrel 6583 A function with domain is ...
fndm 6584 The domain of a function. ...
fndmi 6585 The domain of a function. ...
fndmd 6586 The domain of a function. ...
funfni 6587 Inference to convert a fun...
fndmu 6588 A function has a unique do...
fnbr 6589 The first argument of bina...
fnop 6590 The first argument of an o...
fneu 6591 There is exactly one value...
fneu2 6592 There is exactly one value...
fnunres1 6593 Restriction of a disjoint ...
fnunres2 6594 Restriction of a disjoint ...
fnun 6595 The union of two functions...
fnund 6596 The union of two functions...
fnunop 6597 Extension of a function wi...
fncofn 6598 Composition of a function ...
fnco 6599 Composition of two functio...
fnresdm 6600 A function does not change...
fnresdisj 6601 A function restricted to a...
2elresin 6602 Membership in two function...
fnssresb 6603 Restriction of a function ...
fnssres 6604 Restriction of a function ...
fnssresd 6605 Restriction of a function ...
fnresin1 6606 Restriction of a function'...
fnresin2 6607 Restriction of a function'...
fnres 6608 An equivalence for functio...
idfn 6609 The identity relation is a...
fnresi 6610 The restricted identity re...
fnima 6611 The image of a function's ...
fn0 6612 A function with empty doma...
fnimadisj 6613 A class that is disjoint w...
fnimaeq0 6614 Images under a function ne...
dfmpt3 6615 Alternate definition for t...
mptfnf 6616 The maps-to notation defin...
fnmptf 6617 The maps-to notation defin...
fnopabg 6618 Functionality and domain o...
fnopab 6619 Functionality and domain o...
mptfng 6620 The maps-to notation defin...
fnmpt 6621 The maps-to notation defin...
fnmptd 6622 The maps-to notation defin...
mpt0 6623 A mapping operation with e...
fnmpti 6624 Functionality and domain o...
dmmpti 6625 Domain of the mapping oper...
dmmptd 6626 The domain of the mapping ...
mptun 6627 Union of mappings which ar...
partfun 6628 Rewrite a function defined...
feq1 6629 Equality theorem for funct...
feq2 6630 Equality theorem for funct...
feq3 6631 Equality theorem for funct...
feq23 6632 Equality theorem for funct...
feq1d 6633 Equality deduction for fun...
feq1dd 6634 Equality deduction for fun...
feq2d 6635 Equality deduction for fun...
feq3d 6636 Equality deduction for fun...
feq2dd 6637 Equality deduction for fun...
feq3dd 6638 Equality deduction for fun...
feq12d 6639 Equality deduction for fun...
feq123d 6640 Equality deduction for fun...
feq123 6641 Equality theorem for funct...
feq1i 6642 Equality inference for fun...
feq2i 6643 Equality inference for fun...
feq12i 6644 Equality inference for fun...
feq23i 6645 Equality inference for fun...
feq23d 6646 Equality deduction for fun...
nff 6647 Bound-variable hypothesis ...
sbcfng 6648 Distribute proper substitu...
sbcfg 6649 Distribute proper substitu...
elimf 6650 Eliminate a mapping hypoth...
ffn 6651 A mapping is a function wi...
ffnd 6652 A mapping is a function wi...
dffn2 6653 Any function is a mapping ...
ffun 6654 A mapping is a function. ...
ffund 6655 A mapping is a function, d...
frel 6656 A mapping is a relation. ...
freld 6657 A mapping is a relation. ...
frn 6658 The range of a mapping. (...
frnd 6659 Deduction form of ~ frn . ...
fdm 6660 The domain of a mapping. ...
fdmd 6661 Deduction form of ~ fdm . ...
fdmi 6662 Inference associated with ...
dffn3 6663 A function maps to its ran...
ffrn 6664 A function maps to its ran...
ffrnb 6665 Characterization of a func...
ffrnbd 6666 A function maps to its ran...
fss 6667 Expanding the codomain of ...
fssd 6668 Expanding the codomain of ...
fssdmd 6669 Expressing that a class is...
fssdm 6670 Expressing that a class is...
fimass 6671 The image of a class under...
fimassd 6672 The image of a class is a ...
fimacnv 6673 The preimage of the codoma...
fcof 6674 Composition of a function ...
fco 6675 Composition of two functio...
fcod 6676 Composition of two mapping...
fco2 6677 Functionality of a composi...
fssxp 6678 A mapping is a class of or...
funssxp 6679 Two ways of specifying a p...
ffdm 6680 A mapping is a partial fun...
ffdmd 6681 The domain of a function. ...
fdmrn 6682 A different way to write `...
funcofd 6683 Composition of two functio...
opelf 6684 The members of an ordered ...
fun 6685 The union of two functions...
fun2 6686 The union of two functions...
fun2d 6687 The union of functions wit...
fnfco 6688 Composition of two functio...
fssres 6689 Restriction of a function ...
fssresd 6690 Restriction of a function ...
fssres2 6691 Restriction of a restricte...
fresin 6692 An identity for the mappin...
resasplit 6693 If two functions agree on ...
fresaun 6694 The union of two functions...
fresaunres2 6695 From the union of two func...
fresaunres1 6696 From the union of two func...
fcoi1 6697 Composition of a mapping a...
fcoi2 6698 Composition of restricted ...
feu 6699 There is exactly one value...
fcnvres 6700 The converse of a restrict...
fimacnvdisj 6701 The preimage of a class di...
fint 6702 Function into an intersect...
fin 6703 Mapping into an intersecti...
f0 6704 The empty function. (Cont...
f00 6705 A class is a function with...
f0bi 6706 A function with empty doma...
f0dom0 6707 A function is empty iff it...
f0rn0 6708 If there is no element in ...
fconst 6709 A Cartesian product with a...
fconstg 6710 A Cartesian product with a...
fnconstg 6711 A Cartesian product with a...
fconst6g 6712 Constant function with loo...
fconst6 6713 A constant function as a m...
f1eq1 6714 Equality theorem for one-t...
f1eq2 6715 Equality theorem for one-t...
f1eq3 6716 Equality theorem for one-t...
nff1 6717 Bound-variable hypothesis ...
dff12 6718 Alternate definition of a ...
f1f 6719 A one-to-one mapping is a ...
f1fn 6720 A one-to-one mapping is a ...
f1fun 6721 A one-to-one mapping is a ...
f1rel 6722 A one-to-one onto mapping ...
f1dm 6723 The domain of a one-to-one...
f1ss 6724 A function that is one-to-...
f1ssr 6725 A function that is one-to-...
f1ssres 6726 A function that is one-to-...
f1resf1 6727 The restriction of an inje...
f1cnvcnv 6728 Two ways to express that a...
f1cof1 6729 Composition of two one-to-...
f1co 6730 Composition of one-to-one ...
foeq1 6731 Equality theorem for onto ...
foeq2 6732 Equality theorem for onto ...
foeq3 6733 Equality theorem for onto ...
nffo 6734 Bound-variable hypothesis ...
fof 6735 An onto mapping is a mappi...
fofun 6736 An onto mapping is a funct...
fofn 6737 An onto mapping is a funct...
forn 6738 The codomain of an onto fu...
dffo2 6739 Alternate definition of an...
foima 6740 The image of the domain of...
dffn4 6741 A function maps onto its r...
funforn 6742 A function maps its domain...
fodmrnu 6743 An onto function has uniqu...
fimadmfo 6744 A function is a function o...
fores 6745 Restriction of an onto fun...
fimadmfoALT 6746 Alternate proof of ~ fimad...
focnvimacdmdm 6747 The preimage of the codoma...
focofo 6748 Composition of onto functi...
foco 6749 Composition of onto functi...
foconst 6750 A nonzero constant functio...
f1oeq1 6751 Equality theorem for one-t...
f1oeq2 6752 Equality theorem for one-t...
f1oeq3 6753 Equality theorem for one-t...
f1oeq23 6754 Equality theorem for one-t...
f1eq123d 6755 Equality deduction for one...
foeq123d 6756 Equality deduction for ont...
f1oeq123d 6757 Equality deduction for one...
f1oeq1d 6758 Equality deduction for one...
f1oeq2d 6759 Equality deduction for one...
f1oeq3d 6760 Equality deduction for one...
nff1o 6761 Bound-variable hypothesis ...
f1of1 6762 A one-to-one onto mapping ...
f1of 6763 A one-to-one onto mapping ...
f1ofn 6764 A one-to-one onto mapping ...
f1ofun 6765 A one-to-one onto mapping ...
f1orel 6766 A one-to-one onto mapping ...
f1odm 6767 The domain of a one-to-one...
dff1o2 6768 Alternate definition of on...
dff1o3 6769 Alternate definition of on...
f1ofo 6770 A one-to-one onto function...
dff1o4 6771 Alternate definition of on...
dff1o5 6772 Alternate definition of on...
f1orn 6773 A one-to-one function maps...
f1f1orn 6774 A one-to-one function maps...
f1ocnv 6775 The converse of a one-to-o...
f1ocnvb 6776 A relation is a one-to-one...
f1ores 6777 The restriction of a one-t...
f1orescnv 6778 The converse of a one-to-o...
f1imacnv 6779 Preimage of an image. (Co...
foimacnv 6780 A reverse version of ~ f1i...
foun 6781 The union of two onto func...
f1oun 6782 The union of two one-to-on...
f1un 6783 The union of two one-to-on...
resdif 6784 The restriction of a one-t...
resin 6785 The restriction of a one-t...
f1oco 6786 Composition of one-to-one ...
f1cnv 6787 The converse of an injecti...
funcocnv2 6788 Composition with the conve...
fococnv2 6789 The composition of an onto...
f1ococnv2 6790 The composition of a one-t...
f1cocnv2 6791 Composition of an injectiv...
f1ococnv1 6792 The composition of a one-t...
f1cocnv1 6793 Composition of an injectiv...
funcoeqres 6794 Express a constraint on a ...
f1ssf1 6795 A subset of an injective f...
f10 6796 The empty set maps one-to-...
f10d 6797 The empty set maps one-to-...
f1o00 6798 One-to-one onto mapping of...
fo00 6799 Onto mapping of the empty ...
f1o0 6800 One-to-one onto mapping of...
f1oi 6801 A restriction of the ident...
f1ovi 6802 The identity relation is a...
f1osn 6803 A singleton of an ordered ...
f1osng 6804 A singleton of an ordered ...
f1sng 6805 A singleton of an ordered ...
fsnd 6806 A singleton of an ordered ...
f1oprswap 6807 A two-element swap is a bi...
f1oprg 6808 An unordered pair of order...
tz6.12-2 6809 Function value when ` F ` ...
tz6.12-2OLD 6810 Obsolete version of ~ tz6....
fveu 6811 The value of a function at...
brprcneu 6812 If ` A ` is a proper class...
brprcneuALT 6813 Alternate proof of ~ brprc...
fvprc 6814 A function's value at a pr...
fvprcALT 6815 Alternate proof of ~ fvprc...
rnfvprc 6816 The range of a function va...
fv2 6817 Alternate definition of fu...
dffv3 6818 A definition of function v...
dffv4 6819 The previous definition of...
elfv 6820 Membership in a function v...
fveq1 6821 Equality theorem for funct...
fveq2 6822 Equality theorem for funct...
fveq1i 6823 Equality inference for fun...
fveq1d 6824 Equality deduction for fun...
fveq2i 6825 Equality inference for fun...
fveq2d 6826 Equality deduction for fun...
2fveq3 6827 Equality theorem for neste...
fveq12i 6828 Equality deduction for fun...
fveq12d 6829 Equality deduction for fun...
fveqeq2d 6830 Equality deduction for fun...
fveqeq2 6831 Equality deduction for fun...
nffv 6832 Bound-variable hypothesis ...
nffvmpt1 6833 Bound-variable hypothesis ...
nffvd 6834 Deduction version of bound...
fvex 6835 The value of a class exist...
fvexi 6836 The value of a class exist...
fvexd 6837 The value of a class exist...
fvif 6838 Move a conditional outside...
iffv 6839 Move a conditional outside...
fv3 6840 Alternate definition of th...
fvres 6841 The value of a restricted ...
fvresd 6842 The value of a restricted ...
funssfv 6843 The value of a member of t...
tz6.12c 6844 Corollary of Theorem 6.12(...
tz6.12-1 6845 Function value. Theorem 6...
tz6.12 6846 Function value. Theorem 6...
tz6.12f 6847 Function value, using boun...
tz6.12i 6848 Corollary of Theorem 6.12(...
fvbr0 6849 Two possibilities for the ...
fvrn0 6850 A function value is a memb...
fvn0fvelrn 6851 If the value of a function...
elfvunirn 6852 A function value is a subs...
fvssunirn 6853 The result of a function v...
ndmfv 6854 The value of a class outsi...
ndmfvrcl 6855 Reverse closure law for fu...
elfvdm 6856 If a function value has a ...
elfvex 6857 If a function value has a ...
elfvexd 6858 If a function value has a ...
eliman0 6859 A nonempty function value ...
nfvres 6860 The value of a non-member ...
nfunsn 6861 If the restriction of a cl...
fvfundmfvn0 6862 If the "value of a class" ...
0fv 6863 Function value of the empt...
fv2prc 6864 A function value of a func...
elfv2ex 6865 If a function value of a f...
fveqres 6866 Equal values imply equal v...
csbfv12 6867 Move class substitution in...
csbfv2g 6868 Move class substitution in...
csbfv 6869 Substitution for a functio...
funbrfv 6870 The second argument of a b...
funopfv 6871 The second element in an o...
fnbrfvb 6872 Equivalence of function va...
fnopfvb 6873 Equivalence of function va...
fvelima2 6874 Function value in an image...
funbrfvb 6875 Equivalence of function va...
funopfvb 6876 Equivalence of function va...
fnbrfvb2 6877 Version of ~ fnbrfvb for f...
fdmeu 6878 There is exactly one codom...
funbrfv2b 6879 Function value in terms of...
dffn5 6880 Representation of a functi...
fnrnfv 6881 The range of a function ex...
fvelrnb 6882 A member of a function's r...
foelcdmi 6883 A member of a surjective f...
dfimafn 6884 Alternate definition of th...
dfimafn2 6885 Alternate definition of th...
funimass4 6886 Membership relation for th...
fvelima 6887 Function value in an image...
funimassd 6888 Sufficient condition for t...
fvelimad 6889 Function value in an image...
feqmptd 6890 Deduction form of ~ dffn5 ...
feqresmpt 6891 Express a restricted funct...
feqmptdf 6892 Deduction form of ~ dffn5f...
dffn5f 6893 Representation of a functi...
fvelimab 6894 Function value in an image...
fvelimabd 6895 Deduction form of ~ fvelim...
fimarab 6896 Expressing the image of a ...
unima 6897 Image of a union. (Contri...
fvi 6898 The value of the identity ...
fviss 6899 The value of the identity ...
fniinfv 6900 The indexed intersection o...
fnsnfv 6901 Singleton of function valu...
opabiotafun 6902 Define a function whose va...
opabiotadm 6903 Define a function whose va...
opabiota 6904 Define a function whose va...
fnimapr 6905 The image of a pair under ...
fnimatpd 6906 The image of an unordered ...
ssimaex 6907 The existence of a subimag...
ssimaexg 6908 The existence of a subimag...
funfv 6909 A simplified expression fo...
funfv2 6910 The value of a function. ...
funfv2f 6911 The value of a function. ...
fvun 6912 Value of the union of two ...
fvun1 6913 The value of a union when ...
fvun2 6914 The value of a union when ...
fvun1d 6915 The value of a union when ...
fvun2d 6916 The value of a union when ...
dffv2 6917 Alternate definition of fu...
dmfco 6918 Domains of a function comp...
fvco2 6919 Value of a function compos...
fvco 6920 Value of a function compos...
fvco3 6921 Value of a function compos...
fvco3d 6922 Value of a function compos...
fvco4i 6923 Conditions for a compositi...
fvopab3g 6924 Value of a function given ...
fvopab3ig 6925 Value of a function given ...
brfvopabrbr 6926 The binary relation of a f...
fvmptg 6927 Value of a function given ...
fvmpti 6928 Value of a function given ...
fvmpt 6929 Value of a function given ...
fvmpt2f 6930 Value of a function given ...
fvtresfn 6931 Functionality of a tuple-r...
fvmpts 6932 Value of a function given ...
fvmpt3 6933 Value of a function given ...
fvmpt3i 6934 Value of a function given ...
fvmptdf 6935 Deduction version of ~ fvm...
fvmptd 6936 Deduction version of ~ fvm...
fvmptd2 6937 Deduction version of ~ fvm...
mptrcl 6938 Reverse closure for a mapp...
fvmpt2i 6939 Value of a function given ...
fvmpt2 6940 Value of a function given ...
fvmptss 6941 If all the values of the m...
fvmpt2d 6942 Deduction version of ~ fvm...
fvmptex 6943 Express a function ` F ` w...
fvmptd3f 6944 Alternate deduction versio...
fvmptd2f 6945 Alternate deduction versio...
fvmptdv 6946 Alternate deduction versio...
fvmptdv2 6947 Alternate deduction versio...
mpteqb 6948 Bidirectional equality the...
fvmptt 6949 Closed theorem form of ~ f...
fvmptf 6950 Value of a function given ...
fvmptnf 6951 The value of a function gi...
fvmptd3 6952 Deduction version of ~ fvm...
fvmptd4 6953 Deduction version of ~ fvm...
fvmptn 6954 This somewhat non-intuitiv...
fvmptss2 6955 A mapping always evaluates...
elfvmptrab1w 6956 Implications for the value...
elfvmptrab1 6957 Implications for the value...
elfvmptrab 6958 Implications for the value...
fvopab4ndm 6959 Value of a function given ...
fvmptndm 6960 Value of a function given ...
fvmptrabfv 6961 Value of a function mappin...
fvopab5 6962 The value of a function th...
fvopab6 6963 Value of a function given ...
eqfnfv 6964 Equality of functions is d...
eqfnfv2 6965 Equality of functions is d...
eqfnfv3 6966 Derive equality of functio...
eqfnfvd 6967 Deduction for equality of ...
eqfnfv2f 6968 Equality of functions is d...
eqfunfv 6969 Equality of functions is d...
eqfnun 6970 Two functions on ` A u. B ...
fvreseq0 6971 Equality of restricted fun...
fvreseq1 6972 Equality of a function res...
fvreseq 6973 Equality of restricted fun...
fnmptfvd 6974 A function with a given do...
fndmdif 6975 Two ways to express the lo...
fndmdifcom 6976 The difference set between...
fndmdifeq0 6977 The difference set of two ...
fndmin 6978 Two ways to express the lo...
fneqeql 6979 Two functions are equal if...
fneqeql2 6980 Two functions are equal if...
fnreseql 6981 Two functions are equal on...
chfnrn 6982 The range of a choice func...
funfvop 6983 Ordered pair with function...
funfvbrb 6984 Two ways to say that ` A `...
fvimacnvi 6985 A member of a preimage is ...
fvimacnv 6986 The argument of a function...
funimass3 6987 A kind of contraposition l...
funimass5 6988 A subclass of a preimage i...
funconstss 6989 Two ways of specifying tha...
fvimacnvALT 6990 Alternate proof of ~ fvima...
elpreima 6991 Membership in the preimage...
elpreimad 6992 Membership in the preimage...
fniniseg 6993 Membership in the preimage...
fncnvima2 6994 Inverse images under funct...
fniniseg2 6995 Inverse point images under...
unpreima 6996 Preimage of a union. (Con...
inpreima 6997 Preimage of an intersectio...
difpreima 6998 Preimage of a difference. ...
respreima 6999 The preimage of a restrict...
cnvimainrn 7000 The preimage of the inters...
sspreima 7001 The preimage of a subset i...
iinpreima 7002 Preimage of an intersectio...
intpreima 7003 Preimage of an intersectio...
fimacnvinrn 7004 Taking the converse image ...
fimacnvinrn2 7005 Taking the converse image ...
rescnvimafod 7006 The restriction of a funct...
fvn0ssdmfun 7007 If a class' function value...
fnopfv 7008 Ordered pair with function...
fvelrn 7009 A function's value belongs...
nelrnfvne 7010 A function value cannot be...
fveqdmss 7011 If the empty set is not co...
fveqressseq 7012 If the empty set is not co...
fnfvelrn 7013 A function's value belongs...
ffvelcdm 7014 A function's value belongs...
fnfvelrnd 7015 A function's value belongs...
ffvelcdmi 7016 A function's value belongs...
ffvelcdmda 7017 A function's value belongs...
ffvelcdmd 7018 A function's value belongs...
feldmfvelcdm 7019 A class is an element of t...
rexrn 7020 Restricted existential qua...
ralrn 7021 Restricted universal quant...
elrnrexdm 7022 For any element in the ran...
elrnrexdmb 7023 For any element in the ran...
eldmrexrn 7024 For any element in the dom...
eldmrexrnb 7025 For any element in the dom...
fvcofneq 7026 The values of two function...
ralrnmptw 7027 A restricted quantifier ov...
rexrnmptw 7028 A restricted quantifier ov...
ralrnmpt 7029 A restricted quantifier ov...
rexrnmpt 7030 A restricted quantifier ov...
f0cli 7031 Unconditional closure of a...
dff2 7032 Alternate definition of a ...
dff3 7033 Alternate definition of a ...
dff4 7034 Alternate definition of a ...
dffo3 7035 An onto mapping expressed ...
dffo4 7036 Alternate definition of an...
dffo5 7037 Alternate definition of an...
exfo 7038 A relation equivalent to t...
dffo3f 7039 An onto mapping expressed ...
foelrn 7040 Property of a surjective f...
foelrnf 7041 Property of a surjective f...
foco2 7042 If a composition of two fu...
fmpt 7043 Functionality of the mappi...
f1ompt 7044 Express bijection for a ma...
fmpti 7045 Functionality of the mappi...
fvmptelcdm 7046 The value of a function at...
fmptd 7047 Domain and codomain of the...
fmpttd 7048 Version of ~ fmptd with in...
fmpt3d 7049 Domain and codomain of the...
fmptdf 7050 A version of ~ fmptd using...
fompt 7051 Express being onto for a m...
ffnfv 7052 A function maps to a class...
ffnfvf 7053 A function maps to a class...
fnfvrnss 7054 An upper bound for range d...
fcdmssb 7055 A function is a function i...
rnmptss 7056 The range of an operation ...
fmpt2d 7057 Domain and codomain of the...
ffvresb 7058 A necessary and sufficient...
fssrescdmd 7059 Restriction of a function ...
f1oresrab 7060 Build a bijection between ...
f1ossf1o 7061 Restricting a bijection, w...
fmptco 7062 Composition of two functio...
fmptcof 7063 Version of ~ fmptco where ...
fmptcos 7064 Composition of two functio...
cofmpt 7065 Express composition of a m...
fcompt 7066 Express composition of two...
fcoconst 7067 Composition with a constan...
fsn 7068 A function maps a singleto...
fsn2 7069 A function that maps a sin...
fsng 7070 A function maps a singleto...
fsn2g 7071 A function that maps a sin...
xpsng 7072 The Cartesian product of t...
xpprsng 7073 The Cartesian product of a...
xpsn 7074 The Cartesian product of t...
f1o2sn 7075 A singleton consisting in ...
residpr 7076 Restriction of the identit...
dfmpt 7077 Alternate definition for t...
fnasrn 7078 A function expressed as th...
idref 7079 Two ways to state that a r...
funiun 7080 A function is a union of s...
funopsn 7081 If a function is an ordere...
funop 7082 An ordered pair is a funct...
funopdmsn 7083 The domain of a function w...
funsndifnop 7084 A singleton of an ordered ...
funsneqopb 7085 A singleton of an ordered ...
ressnop0 7086 If ` A ` is not in ` C ` ,...
fpr 7087 A function with a domain o...
fprg 7088 A function with a domain o...
ftpg 7089 A function with a domain o...
ftp 7090 A function with a domain o...
fnressn 7091 A function restricted to a...
funressn 7092 A function restricted to a...
fressnfv 7093 The value of a function re...
fvrnressn 7094 If the value of a function...
fvressn 7095 The value of a function re...
fvconst 7096 The value of a constant fu...
fnsnr 7097 If a class belongs to a fu...
fnsnbg 7098 A function's domain is a s...
fnsnb 7099 A function whose domain is...
fnsnbOLD 7100 Obsolete version of ~ fnsn...
fmptsn 7101 Express a singleton functi...
fmptsng 7102 Express a singleton functi...
fmptsnd 7103 Express a singleton functi...
fmptap 7104 Append an additional value...
fmptapd 7105 Append an additional value...
fmptpr 7106 Express a pair function in...
fvresi 7107 The value of a restricted ...
fninfp 7108 Express the class of fixed...
fnelfp 7109 Property of a fixed point ...
fndifnfp 7110 Express the class of non-f...
fnelnfp 7111 Property of a non-fixed po...
fnnfpeq0 7112 A function is the identity...
fvunsn 7113 Remove an ordered pair not...
fvsng 7114 The value of a singleton o...
fvsn 7115 The value of a singleton o...
fvsnun1 7116 The value of a function wi...
fvsnun2 7117 The value of a function wi...
fnsnsplit 7118 Split a function into a si...
fsnunf 7119 Adjoining a point to a fun...
fsnunf2 7120 Adjoining a point to a pun...
fsnunfv 7121 Recover the added point fr...
fsnunres 7122 Recover the original funct...
funresdfunsn 7123 Restricting a function to ...
fvpr1g 7124 The value of a function wi...
fvpr2g 7125 The value of a function wi...
fvpr1 7126 The value of a function wi...
fvpr2 7127 The value of a function wi...
fprb 7128 A condition for functionho...
fvtp1 7129 The first value of a funct...
fvtp2 7130 The second value of a func...
fvtp3 7131 The third value of a funct...
fvtp1g 7132 The value of a function wi...
fvtp2g 7133 The value of a function wi...
fvtp3g 7134 The value of a function wi...
tpres 7135 An unordered triple of ord...
fvconst2g 7136 The value of a constant fu...
fconst2g 7137 A constant function expres...
fvconst2 7138 The value of a constant fu...
fconst2 7139 A constant function expres...
fconst5 7140 Two ways to express that a...
rnmptc 7141 Range of a constant functi...
fnprb 7142 A function whose domain ha...
fntpb 7143 A function whose domain ha...
fnpr2g 7144 A function whose domain ha...
fpr2g 7145 A function that maps a pai...
fconstfv 7146 A constant function expres...
fconst3 7147 Two ways to express a cons...
fconst4 7148 Two ways to express a cons...
resfunexg 7149 The restriction of a funct...
resiexd 7150 The restriction of the ide...
fnex 7151 If the domain of a functio...
fnexd 7152 If the domain of a functio...
funex 7153 If the domain of a functio...
opabex 7154 Existence of a function ex...
mptexg 7155 If the domain of a functio...
mptexgf 7156 If the domain of a functio...
mptex 7157 If the domain of a functio...
mptexd 7158 If the domain of a functio...
mptrabex 7159 If the domain of a functio...
fex 7160 If the domain of a mapping...
fexd 7161 If the domain of a mapping...
mptfvmpt 7162 A function in maps-to nota...
eufnfv 7163 A function is uniquely det...
funfvima 7164 A function's value in a pr...
funfvima2 7165 A function's value in an i...
funfvima2d 7166 A function's value in a pr...
fnfvima 7167 The function value of an o...
fnfvimad 7168 A function's value belongs...
resfvresima 7169 The value of the function ...
funfvima3 7170 A class including a functi...
ralima 7171 Universal quantification u...
rexima 7172 Existential quantification...
reximaOLD 7173 Obsolete version of ~ rexi...
ralimaOLD 7174 Obsolete version of ~ rali...
fvclss 7175 Upper bound for the class ...
elabrex 7176 Elementhood in an image se...
elabrexg 7177 Elementhood in an image se...
abrexco 7178 Composition of two image m...
imaiun 7179 The image of an indexed un...
imauni 7180 The image of a union is th...
fniunfv 7181 The indexed union of a fun...
funiunfv 7182 The indexed union of a fun...
funiunfvf 7183 The indexed union of a fun...
eluniima 7184 Membership in the union of...
elunirn 7185 Membership in the union of...
elunirnALT 7186 Alternate proof of ~ eluni...
fnunirn 7187 Membership in a union of s...
dff13 7188 A one-to-one function in t...
dff13f 7189 A one-to-one function in t...
f1veqaeq 7190 If the values of a one-to-...
f1cofveqaeq 7191 If the values of a composi...
f1cofveqaeqALT 7192 Alternate proof of ~ f1cof...
dff14i 7193 A one-to-one function maps...
2f1fvneq 7194 If two one-to-one function...
f1mpt 7195 Express injection for a ma...
f1fveq 7196 Equality of function value...
f1elima 7197 Membership in the image of...
f1imass 7198 Taking images under a one-...
f1imaeq 7199 Taking images under a one-...
f1imapss 7200 Taking images under a one-...
fpropnf1 7201 A function, given by an un...
f1dom3fv3dif 7202 The function values for a ...
f1dom3el3dif 7203 The codomain of a 1-1 func...
dff14a 7204 A one-to-one function in t...
dff14b 7205 A one-to-one function in t...
f1ounsn 7206 Extension of a bijection b...
f12dfv 7207 A one-to-one function with...
f13dfv 7208 A one-to-one function with...
dff1o6 7209 A one-to-one onto function...
f1ocnvfv1 7210 The converse value of the ...
f1ocnvfv2 7211 The value of the converse ...
f1ocnvfv 7212 Relationship between the v...
f1ocnvfvb 7213 Relationship between the v...
nvof1o 7214 An involution is a bijecti...
nvocnv 7215 The converse of an involut...
f1cdmsn 7216 If a one-to-one function w...
fsnex 7217 Relate a function with a s...
f1prex 7218 Relate a one-to-one functi...
f1ocnvdm 7219 The value of the converse ...
f1ocnvfvrneq 7220 If the values of a one-to-...
fcof1 7221 An application is injectiv...
fcofo 7222 An application is surjecti...
cbvfo 7223 Change bound variable betw...
cbvexfo 7224 Change bound variable betw...
cocan1 7225 An injection is left-cance...
cocan2 7226 A surjection is right-canc...
fcof1oinvd 7227 Show that a function is th...
fcof1od 7228 A function is bijective if...
2fcoidinvd 7229 Show that a function is th...
fcof1o 7230 Show that two functions ar...
2fvcoidd 7231 Show that the composition ...
2fvidf1od 7232 A function is bijective if...
2fvidinvd 7233 Show that two functions ar...
foeqcnvco 7234 Condition for function equ...
f1eqcocnv 7235 Condition for function equ...
fveqf1o 7236 Given a bijection ` F ` , ...
f1ocoima 7237 The composition of two bij...
nf1const 7238 A constant function from a...
nf1oconst 7239 A constant function from a...
f1ofvswap 7240 Swapping two values in a b...
fvf1pr 7241 Values of a one-to-one fun...
fliftrel 7242 ` F ` , a function lift, i...
fliftel 7243 Elementhood in the relatio...
fliftel1 7244 Elementhood in the relatio...
fliftcnv 7245 Converse of the relation `...
fliftfun 7246 The function ` F ` is the ...
fliftfund 7247 The function ` F ` is the ...
fliftfuns 7248 The function ` F ` is the ...
fliftf 7249 The domain and range of th...
fliftval 7250 The value of the function ...
isoeq1 7251 Equality theorem for isomo...
isoeq2 7252 Equality theorem for isomo...
isoeq3 7253 Equality theorem for isomo...
isoeq4 7254 Equality theorem for isomo...
isoeq5 7255 Equality theorem for isomo...
nfiso 7256 Bound-variable hypothesis ...
isof1o 7257 An isomorphism is a one-to...
isof1oidb 7258 A function is a bijection ...
isof1oopb 7259 A function is a bijection ...
isorel 7260 An isomorphism connects bi...
soisores 7261 Express the condition of i...
soisoi 7262 Infer isomorphism from one...
isoid 7263 Identity law for isomorphi...
isocnv 7264 Converse law for isomorphi...
isocnv2 7265 Converse law for isomorphi...
isocnv3 7266 Complementation law for is...
isores2 7267 An isomorphism from one we...
isores1 7268 An isomorphism from one we...
isores3 7269 Induced isomorphism on a s...
isotr 7270 Composition (transitive) l...
isomin 7271 Isomorphisms preserve mini...
isoini 7272 Isomorphisms preserve init...
isoini2 7273 Isomorphisms are isomorphi...
isofrlem 7274 Lemma for ~ isofr . (Cont...
isoselem 7275 Lemma for ~ isose . (Cont...
isofr 7276 An isomorphism preserves w...
isose 7277 An isomorphism preserves s...
isofr2 7278 A weak form of ~ isofr tha...
isopolem 7279 Lemma for ~ isopo . (Cont...
isopo 7280 An isomorphism preserves t...
isosolem 7281 Lemma for ~ isoso . (Cont...
isoso 7282 An isomorphism preserves t...
isowe 7283 An isomorphism preserves t...
isowe2 7284 A weak form of ~ isowe tha...
f1oiso 7285 Any one-to-one onto functi...
f1oiso2 7286 Any one-to-one onto functi...
f1owe 7287 Well-ordering of isomorphi...
weniso 7288 A set-like well-ordering h...
weisoeq 7289 Thus, there is at most one...
weisoeq2 7290 Thus, there is at most one...
knatar 7291 The Knaster-Tarski theorem...
fvresval 7292 The value of a restricted ...
funeldmb 7293 If ` (/) ` is not part of ...
eqfunresadj 7294 Law for adjoining an eleme...
eqfunressuc 7295 Law for equality of restri...
fnssintima 7296 Condition for subset of an...
imaeqsexvOLD 7297 Obsolete version of ~ rexi...
imaeqsalvOLD 7298 Obsolete version of ~ rali...
fnimasnd 7299 The image of a function by...
canth 7300 No set ` A ` is equinumero...
ncanth 7301 Cantor's theorem fails for...
riotaeqdv 7304 Formula-building deduction...
riotabidv 7305 Formula-building deduction...
riotaeqbidv 7306 Equality deduction for res...
riotaex 7307 Restricted iota is a set. ...
riotav 7308 An iota restricted to the ...
riotauni 7309 Restricted iota in terms o...
nfriota1 7310 The abstraction variable i...
nfriotadw 7311 Deduction version of ~ nfr...
cbvriotaw 7312 Change bound variable in a...
cbvriotavw 7313 Change bound variable in a...
nfriotad 7314 Deduction version of ~ nfr...
nfriota 7315 A variable not free in a w...
cbvriota 7316 Change bound variable in a...
cbvriotav 7317 Change bound variable in a...
csbriota 7318 Interchange class substitu...
riotacl2 7319 Membership law for "the un...
riotacl 7320 Closure of restricted iota...
riotasbc 7321 Substitution law for descr...
riotabidva 7322 Equivalent wff's yield equ...
riotabiia 7323 Equivalent wff's yield equ...
riota1 7324 Property of restricted iot...
riota1a 7325 Property of iota. (Contri...
riota2df 7326 A deduction version of ~ r...
riota2f 7327 This theorem shows a condi...
riota2 7328 This theorem shows a condi...
riotaeqimp 7329 If two restricted iota des...
riotaprop 7330 Properties of a restricted...
riota5f 7331 A method for computing res...
riota5 7332 A method for computing res...
riotass2 7333 Restriction of a unique el...
riotass 7334 Restriction of a unique el...
moriotass 7335 Restriction of a unique el...
snriota 7336 A restricted class abstrac...
riotaxfrd 7337 Change the variable ` x ` ...
eusvobj2 7338 Specify the same property ...
eusvobj1 7339 Specify the same object in...
f1ofveu 7340 There is one domain elemen...
f1ocnvfv3 7341 Value of the converse of a...
riotaund 7342 Restricted iota equals the...
riotassuni 7343 The restricted iota class ...
riotaclb 7344 Bidirectional closure of r...
riotarab 7345 Restricted iota of a restr...
oveq 7352 Equality theorem for opera...
oveq1 7353 Equality theorem for opera...
oveq2 7354 Equality theorem for opera...
oveq12 7355 Equality theorem for opera...
oveq1i 7356 Equality inference for ope...
oveq2i 7357 Equality inference for ope...
oveq12i 7358 Equality inference for ope...
oveqi 7359 Equality inference for ope...
oveq123i 7360 Equality inference for ope...
oveq1d 7361 Equality deduction for ope...
oveq2d 7362 Equality deduction for ope...
oveqd 7363 Equality deduction for ope...
oveq12d 7364 Equality deduction for ope...
oveqan12d 7365 Equality deduction for ope...
oveqan12rd 7366 Equality deduction for ope...
oveq123d 7367 Equality deduction for ope...
fvoveq1d 7368 Equality deduction for nes...
fvoveq1 7369 Equality theorem for neste...
ovanraleqv 7370 Equality theorem for a con...
imbrov2fvoveq 7371 Equality theorem for neste...
ovrspc2v 7372 If an operation value is a...
oveqrspc2v 7373 Restricted specialization ...
oveqdr 7374 Equality of two operations...
nfovd 7375 Deduction version of bound...
nfov 7376 Bound-variable hypothesis ...
oprabidw 7377 The law of concretion. Sp...
oprabid 7378 The law of concretion. Sp...
ovex 7379 The result of an operation...
ovexi 7380 The result of an operation...
ovexd 7381 The result of an operation...
ovssunirn 7382 The result of an operation...
0ov 7383 Operation value of the emp...
ovprc 7384 The value of an operation ...
ovprc1 7385 The value of an operation ...
ovprc2 7386 The value of an operation ...
ovrcl 7387 Reverse closure for an ope...
elfvov1 7388 Utility theorem: reverse c...
elfvov2 7389 Utility theorem: reverse c...
csbov123 7390 Move class substitution in...
csbov 7391 Move class substitution in...
csbov12g 7392 Move class substitution in...
csbov1g 7393 Move class substitution in...
csbov2g 7394 Move class substitution in...
rspceov 7395 A frequently used special ...
elovimad 7396 Elementhood of the image s...
fnbrovb 7397 Value of a binary operatio...
fnotovb 7398 Equivalence of operation v...
opabbrex 7399 A collection of ordered pa...
opabresex2 7400 Restrictions of a collecti...
fvmptopab 7401 The function value of a ma...
f1opr 7402 Condition for an operation...
brfvopab 7403 The classes involved in a ...
dfoprab2 7404 Class abstraction for oper...
reloprab 7405 An operation class abstrac...
oprabv 7406 If a pair and a class are ...
nfoprab1 7407 The abstraction variables ...
nfoprab2 7408 The abstraction variables ...
nfoprab3 7409 The abstraction variables ...
nfoprab 7410 Bound-variable hypothesis ...
oprabbid 7411 Equivalent wff's yield equ...
oprabbidv 7412 Equivalent wff's yield equ...
oprabbii 7413 Equivalent wff's yield equ...
ssoprab2 7414 Equivalence of ordered pai...
ssoprab2b 7415 Equivalence of ordered pai...
eqoprab2bw 7416 Equivalence of ordered pai...
eqoprab2b 7417 Equivalence of ordered pai...
mpoeq123 7418 An equality theorem for th...
mpoeq12 7419 An equality theorem for th...
mpoeq123dva 7420 An equality deduction for ...
mpoeq123dv 7421 An equality deduction for ...
mpoeq123i 7422 An equality inference for ...
mpoeq3dva 7423 Slightly more general equa...
mpoeq3ia 7424 An equality inference for ...
mpoeq3dv 7425 An equality deduction for ...
nfmpo1 7426 Bound-variable hypothesis ...
nfmpo2 7427 Bound-variable hypothesis ...
nfmpo 7428 Bound-variable hypothesis ...
0mpo0 7429 A mapping operation with e...
mpo0v 7430 A mapping operation with e...
mpo0 7431 A mapping operation with e...
oprab4 7432 Two ways to state the doma...
cbvoprab1 7433 Rule used to change first ...
cbvoprab2 7434 Change the second bound va...
cbvoprab12 7435 Rule used to change first ...
cbvoprab12v 7436 Rule used to change first ...
cbvoprab3 7437 Rule used to change the th...
cbvoprab3v 7438 Rule used to change the th...
cbvmpox 7439 Rule to change the bound v...
cbvmpo 7440 Rule to change the bound v...
cbvmpov 7441 Rule to change the bound v...
elimdelov 7442 Eliminate a hypothesis whi...
brif1 7443 Move a relation inside and...
ovif 7444 Move a conditional outside...
ovif2 7445 Move a conditional outside...
ovif12 7446 Move a conditional outside...
ifov 7447 Move a conditional outside...
ifmpt2v 7448 Move a conditional inside ...
dmoprab 7449 The domain of an operation...
dmoprabss 7450 The domain of an operation...
rnoprab 7451 The range of an operation ...
rnoprab2 7452 The range of a restricted ...
reldmoprab 7453 The domain of an operation...
oprabss 7454 Structure of an operation ...
eloprabga 7455 The law of concretion for ...
eloprabg 7456 The law of concretion for ...
ssoprab2i 7457 Inference of operation cla...
mpov 7458 Operation with universal d...
mpomptx 7459 Express a two-argument fun...
mpompt 7460 Express a two-argument fun...
mpodifsnif 7461 A mapping with two argumen...
mposnif 7462 A mapping with two argumen...
fconstmpo 7463 Representation of a consta...
resoprab 7464 Restriction of an operatio...
resoprab2 7465 Restriction of an operator...
resmpo 7466 Restriction of the mapping...
funoprabg 7467 "At most one" is a suffici...
funoprab 7468 "At most one" is a suffici...
fnoprabg 7469 Functionality and domain o...
mpofun 7470 The maps-to notation for a...
fnoprab 7471 Functionality and domain o...
ffnov 7472 An operation maps to a cla...
fovcld 7473 Closure law for an operati...
fovcl 7474 Closure law for an operati...
eqfnov 7475 Equality of two operations...
eqfnov2 7476 Two operators with the sam...
fnov 7477 Representation of a functi...
mpo2eqb 7478 Bidirectional equality the...
rnmpo 7479 The range of an operation ...
reldmmpo 7480 The domain of an operation...
elrnmpog 7481 Membership in the range of...
elrnmpo 7482 Membership in the range of...
elimampo 7483 Membership in the image of...
elrnmpores 7484 Membership in the range of...
ralrnmpo 7485 A restricted quantifier ov...
rexrnmpo 7486 A restricted quantifier ov...
ovid 7487 The value of an operation ...
ovidig 7488 The value of an operation ...
ovidi 7489 The value of an operation ...
ov 7490 The value of an operation ...
ovigg 7491 The value of an operation ...
ovig 7492 The value of an operation ...
ovmpt4g 7493 Value of a function given ...
ovmpos 7494 Value of a function given ...
ov2gf 7495 The value of an operation ...
ovmpodxf 7496 Value of an operation give...
ovmpodx 7497 Value of an operation give...
ovmpod 7498 Value of an operation give...
ovmpox 7499 The value of an operation ...
ovmpoga 7500 Value of an operation give...
ovmpoa 7501 Value of an operation give...
ovmpodf 7502 Alternate deduction versio...
ovmpodv 7503 Alternate deduction versio...
ovmpodv2 7504 Alternate deduction versio...
ovmpog 7505 Value of an operation give...
ovmpo 7506 Value of an operation give...
ovmpot 7507 The value of an operation ...
fvmpopr2d 7508 Value of an operation give...
ov3 7509 The value of an operation ...
ov6g 7510 The value of an operation ...
ovg 7511 The value of an operation ...
ovres 7512 The value of a restricted ...
ovresd 7513 Lemma for converting metri...
oprres 7514 The restriction of an oper...
oprssov 7515 The value of a member of t...
fovcdm 7516 An operation's value belon...
fovcdmda 7517 An operation's value belon...
fovcdmd 7518 An operation's value belon...
fnrnov 7519 The range of an operation ...
foov 7520 An onto mapping of an oper...
fnovrn 7521 An operation's value belon...
ovelrn 7522 A member of an operation's...
funimassov 7523 Membership relation for th...
ovelimab 7524 Operation value in an imag...
ovima0 7525 An operation value is a me...
ovconst2 7526 The value of a constant op...
oprssdm 7527 Domain of closure of an op...
nssdmovg 7528 The value of an operation ...
ndmovg 7529 The value of an operation ...
ndmov 7530 The value of an operation ...
ndmovcl 7531 The closure of an operatio...
ndmovrcl 7532 Reverse closure law, when ...
ndmovcom 7533 Any operation is commutati...
ndmovass 7534 Any operation is associati...
ndmovdistr 7535 Any operation is distribut...
ndmovord 7536 Elimination of redundant a...
ndmovordi 7537 Elimination of redundant a...
caovclg 7538 Convert an operation closu...
caovcld 7539 Convert an operation closu...
caovcl 7540 Convert an operation closu...
caovcomg 7541 Convert an operation commu...
caovcomd 7542 Convert an operation commu...
caovcom 7543 Convert an operation commu...
caovassg 7544 Convert an operation assoc...
caovassd 7545 Convert an operation assoc...
caovass 7546 Convert an operation assoc...
caovcang 7547 Convert an operation cance...
caovcand 7548 Convert an operation cance...
caovcanrd 7549 Commute the arguments of a...
caovcan 7550 Convert an operation cance...
caovordig 7551 Convert an operation order...
caovordid 7552 Convert an operation order...
caovordg 7553 Convert an operation order...
caovordd 7554 Convert an operation order...
caovord2d 7555 Operation ordering law wit...
caovord3d 7556 Ordering law. (Contribute...
caovord 7557 Convert an operation order...
caovord2 7558 Operation ordering law wit...
caovord3 7559 Ordering law. (Contribute...
caovdig 7560 Convert an operation distr...
caovdid 7561 Convert an operation distr...
caovdir2d 7562 Convert an operation distr...
caovdirg 7563 Convert an operation rever...
caovdird 7564 Convert an operation distr...
caovdi 7565 Convert an operation distr...
caov32d 7566 Rearrange arguments in a c...
caov12d 7567 Rearrange arguments in a c...
caov31d 7568 Rearrange arguments in a c...
caov13d 7569 Rearrange arguments in a c...
caov4d 7570 Rearrange arguments in a c...
caov411d 7571 Rearrange arguments in a c...
caov42d 7572 Rearrange arguments in a c...
caov32 7573 Rearrange arguments in a c...
caov12 7574 Rearrange arguments in a c...
caov31 7575 Rearrange arguments in a c...
caov13 7576 Rearrange arguments in a c...
caov4 7577 Rearrange arguments in a c...
caov411 7578 Rearrange arguments in a c...
caov42 7579 Rearrange arguments in a c...
caovdir 7580 Reverse distributive law. ...
caovdilem 7581 Lemma used by real number ...
caovlem2 7582 Lemma used in real number ...
caovmo 7583 Uniqueness of inverse elem...
imaeqexov 7584 Substitute an operation va...
imaeqalov 7585 Substitute an operation va...
mpondm0 7586 The value of an operation ...
elmpocl 7587 If a two-parameter class i...
elmpocl1 7588 If a two-parameter class i...
elmpocl2 7589 If a two-parameter class i...
elovmpod 7590 Utility lemma for two-para...
elovmpo 7591 Utility lemma for two-para...
elovmporab 7592 Implications for the value...
elovmporab1w 7593 Implications for the value...
elovmporab1 7594 Implications for the value...
2mpo0 7595 If the operation value of ...
relmptopab 7596 Any function to sets of or...
f1ocnvd 7597 Describe an implicit one-t...
f1od 7598 Describe an implicit one-t...
f1ocnv2d 7599 Describe an implicit one-t...
f1o2d 7600 Describe an implicit one-t...
f1opw2 7601 A one-to-one mapping induc...
f1opw 7602 A one-to-one mapping induc...
elovmpt3imp 7603 If the value of a function...
ovmpt3rab1 7604 The value of an operation ...
ovmpt3rabdm 7605 If the value of a function...
elovmpt3rab1 7606 Implications for the value...
elovmpt3rab 7607 Implications for the value...
ofeqd 7612 Equality theorem for funct...
ofeq 7613 Equality theorem for funct...
ofreq 7614 Equality theorem for funct...
ofexg 7615 A function operation restr...
nfof 7616 Hypothesis builder for fun...
nfofr 7617 Hypothesis builder for fun...
ofrfvalg 7618 Value of a relation applie...
offval 7619 Value of an operation appl...
ofrfval 7620 Value of a relation applie...
ofval 7621 Evaluate a function operat...
ofrval 7622 Exhibit a function relatio...
offn 7623 The function operation pro...
offun 7624 The function operation pro...
offval2f 7625 The function operation exp...
ofmresval 7626 Value of a restriction of ...
fnfvof 7627 Function value of a pointw...
off 7628 The function operation pro...
ofres 7629 Restrict the operands of a...
offval2 7630 The function operation exp...
ofrfval2 7631 The function relation acti...
offvalfv 7632 The function operation exp...
ofmpteq 7633 Value of a pointwise opera...
coof 7634 The composition of a _homo...
ofco 7635 The composition of a funct...
offveq 7636 Convert an identity of the...
offveqb 7637 Equivalent expressions for...
ofc1 7638 Left operation by a consta...
ofc2 7639 Right operation by a const...
ofc12 7640 Function operation on two ...
caofref 7641 Transfer a reflexive law t...
caofinvl 7642 Transfer a left inverse la...
caofid0l 7643 Transfer a left identity l...
caofid0r 7644 Transfer a right identity ...
caofid1 7645 Transfer a right absorptio...
caofid2 7646 Transfer a right absorptio...
caofcom 7647 Transfer a commutative law...
caofidlcan 7648 Transfer a cancellation/id...
caofrss 7649 Transfer a relation subset...
caofass 7650 Transfer an associative la...
caoftrn 7651 Transfer a transitivity la...
caofdi 7652 Transfer a distributive la...
caofdir 7653 Transfer a reverse distrib...
caonncan 7654 Transfer ~ nncan -shaped l...
relrpss 7657 The proper subset relation...
brrpssg 7658 The proper subset relation...
brrpss 7659 The proper subset relation...
porpss 7660 Every class is partially o...
sorpss 7661 Express strict ordering un...
sorpssi 7662 Property of a chain of set...
sorpssun 7663 A chain of sets is closed ...
sorpssin 7664 A chain of sets is closed ...
sorpssuni 7665 In a chain of sets, a maxi...
sorpssint 7666 In a chain of sets, a mini...
sorpsscmpl 7667 The componentwise compleme...
zfun 7669 Axiom of Union expressed w...
axun2 7670 A variant of the Axiom of ...
uniex2 7671 The Axiom of Union using t...
vuniex 7672 The union of a setvar is a...
uniexg 7673 The ZF Axiom of Union in c...
uniex 7674 The Axiom of Union in clas...
uniexd 7675 Deduction version of the Z...
unexg 7676 The union of two sets is a...
unex 7677 The union of two sets is a...
unexOLD 7678 Obsolete version of ~ unex...
tpex 7679 An unordered triple of cla...
unexb 7680 Existence of union is equi...
unexbOLD 7681 Obsolete version of ~ unex...
unexgOLD 7682 Obsolete version of ~ unex...
xpexg 7683 The Cartesian product of t...
xpexd 7684 The Cartesian product of t...
3xpexg 7685 The Cartesian product of t...
xpex 7686 The Cartesian product of t...
unexd 7687 The union of two sets is a...
sqxpexg 7688 The Cartesian square of a ...
abnexg 7689 Sufficient condition for a...
abnex 7690 Sufficient condition for a...
snnex 7691 The class of all singleton...
pwnex 7692 The class of all power set...
difex2 7693 If the subtrahend of a cla...
difsnexi 7694 If the difference of a cla...
uniuni 7695 Expression for double unio...
uniexr 7696 Converse of the Axiom of U...
uniexb 7697 The Axiom of Union and its...
pwexr 7698 Converse of the Axiom of P...
pwexb 7699 The Axiom of Power Sets an...
elpwpwel 7700 A class belongs to a doubl...
eldifpw 7701 Membership in a power clas...
elpwun 7702 Membership in the power cl...
pwuncl 7703 Power classes are closed u...
iunpw 7704 An indexed union of a powe...
fr3nr 7705 A well-founded relation ha...
epne3 7706 A well-founded class conta...
dfwe2 7707 Alternate definition of we...
epweon 7708 The membership relation we...
epweonALT 7709 Alternate proof of ~ epweo...
ordon 7710 The class of all ordinal n...
onprc 7711 No set contains all ordina...
ssorduni 7712 The union of a class of or...
ssonuni 7713 The union of a set of ordi...
ssonunii 7714 The union of a set of ordi...
ordeleqon 7715 A way to express the ordin...
ordsson 7716 Any ordinal class is a sub...
dford5 7717 A class is ordinal iff it ...
onss 7718 An ordinal number is a sub...
predon 7719 The predecessor of an ordi...
ssonprc 7720 Two ways of saying a class...
onuni 7721 The union of an ordinal nu...
orduni 7722 The union of an ordinal cl...
onint 7723 The intersection (infimum)...
onint0 7724 The intersection of a clas...
onssmin 7725 A nonempty class of ordina...
onminesb 7726 If a property is true for ...
onminsb 7727 If a property is true for ...
oninton 7728 The intersection of a none...
onintrab 7729 The intersection of a clas...
onintrab2 7730 An existence condition equ...
onnmin 7731 No member of a set of ordi...
onnminsb 7732 An ordinal number smaller ...
oneqmin 7733 A way to show that an ordi...
uniordint 7734 The union of a set of ordi...
onminex 7735 If a wff is true for an or...
sucon 7736 The class of all ordinal n...
sucexb 7737 A successor exists iff its...
sucexg 7738 The successor of a set is ...
sucex 7739 The successor of a set is ...
onmindif2 7740 The minimum of a class of ...
ordsuci 7741 The successor of an ordina...
sucexeloni 7742 If the successor of an ord...
onsuc 7743 The successor of an ordina...
ordsuc 7744 A class is ordinal if and ...
ordpwsuc 7745 The collection of ordinals...
onpwsuc 7746 The collection of ordinal ...
onsucb 7747 A class is an ordinal numb...
ordsucss 7748 The successor of an elemen...
onpsssuc 7749 An ordinal number is a pro...
ordelsuc 7750 A set belongs to an ordina...
onsucmin 7751 The successor of an ordina...
ordsucelsuc 7752 Membership is inherited by...
ordsucsssuc 7753 The subclass relationship ...
ordsucuniel 7754 Given an element ` A ` of ...
ordsucun 7755 The successor of the maxim...
ordunpr 7756 The maximum of two ordinal...
ordunel 7757 The maximum of two ordinal...
onsucuni 7758 A class of ordinal numbers...
ordsucuni 7759 An ordinal class is a subc...
orduniorsuc 7760 An ordinal class is either...
unon 7761 The class of all ordinal n...
ordunisuc 7762 An ordinal class is equal ...
orduniss2 7763 The union of the ordinal s...
onsucuni2 7764 A successor ordinal is the...
0elsuc 7765 The successor of an ordina...
limon 7766 The class of ordinal numbe...
onuniorsuc 7767 An ordinal number is eithe...
onssi 7768 An ordinal number is a sub...
onsuci 7769 The successor of an ordina...
onuninsuci 7770 An ordinal is equal to its...
onsucssi 7771 A set belongs to an ordina...
nlimsucg 7772 A successor is not a limit...
orduninsuc 7773 An ordinal class is equal ...
ordunisuc2 7774 An ordinal equal to its un...
ordzsl 7775 An ordinal is zero, a succ...
onzsl 7776 An ordinal number is zero,...
dflim3 7777 An alternate definition of...
dflim4 7778 An alternate definition of...
limsuc 7779 The successor of a member ...
limsssuc 7780 A class includes a limit o...
nlimon 7781 Two ways to express the cl...
limuni3 7782 The union of a nonempty cl...
tfi 7783 The Principle of Transfini...
tfisg 7784 A closed form of ~ tfis . ...
tfis 7785 Transfinite Induction Sche...
tfis2f 7786 Transfinite Induction Sche...
tfis2 7787 Transfinite Induction Sche...
tfis3 7788 Transfinite Induction Sche...
tfisi 7789 A transfinite induction sc...
tfinds 7790 Principle of Transfinite I...
tfindsg 7791 Transfinite Induction (inf...
tfindsg2 7792 Transfinite Induction (inf...
tfindes 7793 Transfinite Induction with...
tfinds2 7794 Transfinite Induction (inf...
tfinds3 7795 Principle of Transfinite I...
dfom2 7798 An alternate definition of...
elom 7799 Membership in omega. The ...
omsson 7800 Omega is a subset of ` On ...
limomss 7801 The class of natural numbe...
nnon 7802 A natural number is an ord...
nnoni 7803 A natural number is an ord...
nnord 7804 A natural number is ordina...
trom 7805 The class of finite ordina...
ordom 7806 The class of finite ordina...
elnn 7807 A member of a natural numb...
omon 7808 The class of natural numbe...
omelon2 7809 Omega is an ordinal number...
nnlim 7810 A natural number is not a ...
omssnlim 7811 The class of natural numbe...
limom 7812 Omega is a limit ordinal. ...
peano2b 7813 A class belongs to omega i...
nnsuc 7814 A nonzero natural number i...
omsucne 7815 A natural number is not th...
ssnlim 7816 An ordinal subclass of non...
omsinds 7817 Strong (or "total") induct...
omun 7818 The union of two finite or...
peano1 7819 Zero is a natural number. ...
peano2 7820 The successor of any natur...
peano3 7821 The successor of any natur...
peano4 7822 Two natural numbers are eq...
peano5 7823 The induction postulate: a...
nn0suc 7824 A natural number is either...
find 7825 The Principle of Finite In...
finds 7826 Principle of Finite Induct...
findsg 7827 Principle of Finite Induct...
finds2 7828 Principle of Finite Induct...
finds1 7829 Principle of Finite Induct...
findes 7830 Finite induction with expl...
dmexg 7831 The domain of a set is a s...
rnexg 7832 The range of a set is a se...
dmexd 7833 The domain of a set is a s...
fndmexd 7834 If a function is a set, it...
dmfex 7835 If a mapping is a set, its...
fndmexb 7836 The domain of a function i...
fdmexb 7837 The domain of a function i...
dmfexALT 7838 Alternate proof of ~ dmfex...
dmex 7839 The domain of a set is a s...
rnex 7840 The range of a set is a se...
iprc 7841 The identity function is a...
resiexg 7842 The existence of a restric...
imaexg 7843 The image of a set is a se...
imaex 7844 The image of a set is a se...
rnexd 7845 The range of a set is a se...
imaexd 7846 The image of a set is a se...
exse2 7847 Any set relation is set-li...
xpexr 7848 If a Cartesian product is ...
xpexr2 7849 If a nonempty Cartesian pr...
xpexcnv 7850 A condition where the conv...
soex 7851 If the relation in a stric...
elxp4 7852 Membership in a Cartesian ...
elxp5 7853 Membership in a Cartesian ...
cnvexg 7854 The converse of a set is a...
cnvex 7855 The converse of a set is a...
relcnvexb 7856 A relation is a set iff it...
f1oexrnex 7857 If the range of a 1-1 onto...
f1oexbi 7858 There is a one-to-one onto...
coexg 7859 The composition of two set...
coex 7860 The composition of two set...
coexd 7861 The composition of two set...
funcnvuni 7862 The union of a chain (with...
fun11uni 7863 The union of a chain (with...
resf1extb 7864 Extension of an injection ...
resf1ext2b 7865 Extension of an injection ...
fex2 7866 A function with bounded do...
fabexd 7867 Existence of a set of func...
fabexg 7868 Existence of a set of func...
fabexgOLD 7869 Obsolete version of ~ fabe...
fabex 7870 Existence of a set of func...
mapex 7871 The class of all functions...
f1oabexg 7872 The class of all 1-1-onto ...
f1oabexgOLD 7873 Obsolete version of ~ f1oa...
fiunlem 7874 Lemma for ~ fiun and ~ f1i...
fiun 7875 The union of a chain (with...
f1iun 7876 The union of a chain (with...
fviunfun 7877 The function value of an i...
ffoss 7878 Relationship between a map...
f11o 7879 Relationship between one-t...
resfunexgALT 7880 Alternate proof of ~ resfu...
cofunexg 7881 Existence of a composition...
cofunex2g 7882 Existence of a composition...
fnexALT 7883 Alternate proof of ~ fnex ...
funexw 7884 Weak version of ~ funex th...
mptexw 7885 Weak version of ~ mptex th...
funrnex 7886 If the domain of a functio...
zfrep6 7887 A version of the Axiom of ...
focdmex 7888 If the domain of an onto f...
f1dmex 7889 If the codomain of a one-t...
f1ovv 7890 The codomain/range of a 1-...
fvclex 7891 Existence of the class of ...
fvresex 7892 Existence of the class of ...
abrexexg 7893 Existence of a class abstr...
abrexex 7894 Existence of a class abstr...
iunexg 7895 The existence of an indexe...
abrexex2g 7896 Existence of an existentia...
opabex3d 7897 Existence of an ordered pa...
opabex3rd 7898 Existence of an ordered pa...
opabex3 7899 Existence of an ordered pa...
iunex 7900 The existence of an indexe...
abrexex2 7901 Existence of an existentia...
abexssex 7902 Existence of a class abstr...
abexex 7903 A condition where a class ...
f1oweALT 7904 Alternate proof of ~ f1owe...
wemoiso 7905 Thus, there is at most one...
wemoiso2 7906 Thus, there is at most one...
oprabexd 7907 Existence of an operator a...
oprabex 7908 Existence of an operation ...
oprabex3 7909 Existence of an operation ...
oprabrexex2 7910 Existence of an existentia...
ab2rexex 7911 Existence of a class abstr...
ab2rexex2 7912 Existence of an existentia...
xpexgALT 7913 Alternate proof of ~ xpexg...
offval3 7914 General value of ` ( F oF ...
offres 7915 Pointwise combination comm...
ofmres 7916 Equivalent expressions for...
ofmresex 7917 Existence of a restriction...
mptcnfimad 7918 The converse of a mapping ...
1stval 7923 The value of the function ...
2ndval 7924 The value of the function ...
1stnpr 7925 Value of the first-member ...
2ndnpr 7926 Value of the second-member...
1st0 7927 The value of the first-mem...
2nd0 7928 The value of the second-me...
op1st 7929 Extract the first member o...
op2nd 7930 Extract the second member ...
op1std 7931 Extract the first member o...
op2ndd 7932 Extract the second member ...
op1stg 7933 Extract the first member o...
op2ndg 7934 Extract the second member ...
ot1stg 7935 Extract the first member o...
ot2ndg 7936 Extract the second member ...
ot3rdg 7937 Extract the third member o...
1stval2 7938 Alternate value of the fun...
2ndval2 7939 Alternate value of the fun...
oteqimp 7940 The components of an order...
fo1st 7941 The ` 1st ` function maps ...
fo2nd 7942 The ` 2nd ` function maps ...
br1steqg 7943 Uniqueness condition for t...
br2ndeqg 7944 Uniqueness condition for t...
f1stres 7945 Mapping of a restriction o...
f2ndres 7946 Mapping of a restriction o...
fo1stres 7947 Onto mapping of a restrict...
fo2ndres 7948 Onto mapping of a restrict...
1st2val 7949 Value of an alternate defi...
2nd2val 7950 Value of an alternate defi...
1stcof 7951 Composition of the first m...
2ndcof 7952 Composition of the second ...
xp1st 7953 Location of the first elem...
xp2nd 7954 Location of the second ele...
elxp6 7955 Membership in a Cartesian ...
elxp7 7956 Membership in a Cartesian ...
eqopi 7957 Equality with an ordered p...
xp2 7958 Representation of Cartesia...
unielxp 7959 The membership relation fo...
1st2nd2 7960 Reconstruction of a member...
1st2ndb 7961 Reconstruction of an order...
xpopth 7962 An ordered pair theorem fo...
eqop 7963 Two ways to express equali...
eqop2 7964 Two ways to express equali...
op1steq 7965 Two ways of expressing tha...
opreuopreu 7966 There is a unique ordered ...
el2xptp 7967 A member of a nested Carte...
el2xptp0 7968 A member of a nested Carte...
el2xpss 7969 Version of ~ elrel for tri...
2nd1st 7970 Swap the members of an ord...
1st2nd 7971 Reconstruction of a member...
1stdm 7972 The first ordered pair com...
2ndrn 7973 The second ordered pair co...
1st2ndbr 7974 Express an element of a re...
releldm2 7975 Two ways of expressing mem...
reldm 7976 An expression for the doma...
releldmdifi 7977 One way of expressing memb...
funfv1st2nd 7978 The function value for the...
funelss 7979 If the first component of ...
funeldmdif 7980 Two ways of expressing mem...
sbcopeq1a 7981 Equality theorem for subst...
csbopeq1a 7982 Equality theorem for subst...
sbcoteq1a 7983 Equality theorem for subst...
dfopab2 7984 A way to define an ordered...
dfoprab3s 7985 A way to define an operati...
dfoprab3 7986 Operation class abstractio...
dfoprab4 7987 Operation class abstractio...
dfoprab4f 7988 Operation class abstractio...
opabex2 7989 Condition for an operation...
opabn1stprc 7990 An ordered-pair class abst...
opiota 7991 The property of a uniquely...
cnvoprab 7992 The converse of a class ab...
dfxp3 7993 Define the Cartesian produ...
elopabi 7994 A consequence of membershi...
eloprabi 7995 A consequence of membershi...
mpomptsx 7996 Express a two-argument fun...
mpompts 7997 Express a two-argument fun...
dmmpossx 7998 The domain of a mapping is...
fmpox 7999 Functionality, domain and ...
fmpo 8000 Functionality, domain and ...
fnmpo 8001 Functionality and domain o...
fnmpoi 8002 Functionality and domain o...
dmmpo 8003 Domain of a class given by...
ovmpoelrn 8004 An operation's value belon...
dmmpoga 8005 Domain of an operation giv...
dmmpog 8006 Domain of an operation giv...
mpoexxg 8007 Existence of an operation ...
mpoexg 8008 Existence of an operation ...
mpoexga 8009 If the domain of an operat...
mpoexw 8010 Weak version of ~ mpoex th...
mpoex 8011 If the domain of an operat...
mptmpoopabbrd 8012 The operation value of a f...
mptmpoopabbrdOLD 8013 Obsolete version of ~ mptm...
mptmpoopabovd 8014 The operation value of a f...
el2mpocsbcl 8015 If the operation value of ...
el2mpocl 8016 If the operation value of ...
fnmpoovd 8017 A function with a Cartesia...
offval22 8018 The function operation exp...
brovpreldm 8019 If a binary relation holds...
bropopvvv 8020 If a binary relation holds...
bropfvvvvlem 8021 Lemma for ~ bropfvvvv . (...
bropfvvvv 8022 If a binary relation holds...
ovmptss 8023 If all the values of the m...
relmpoopab 8024 Any function to sets of or...
fmpoco 8025 Composition of two functio...
oprabco 8026 Composition of a function ...
oprab2co 8027 Composition of operator ab...
df1st2 8028 An alternate possible defi...
df2nd2 8029 An alternate possible defi...
1stconst 8030 The mapping of a restricti...
2ndconst 8031 The mapping of a restricti...
dfmpo 8032 Alternate definition for t...
mposn 8033 An operation (in maps-to n...
curry1 8034 Composition with ` ``' ( 2...
curry1val 8035 The value of a curried fun...
curry1f 8036 Functionality of a curried...
curry2 8037 Composition with ` ``' ( 1...
curry2f 8038 Functionality of a curried...
curry2val 8039 The value of a curried fun...
cnvf1olem 8040 Lemma for ~ cnvf1o . (Con...
cnvf1o 8041 Describe a function that m...
fparlem1 8042 Lemma for ~ fpar . (Contr...
fparlem2 8043 Lemma for ~ fpar . (Contr...
fparlem3 8044 Lemma for ~ fpar . (Contr...
fparlem4 8045 Lemma for ~ fpar . (Contr...
fpar 8046 Merge two functions in par...
fsplit 8047 A function that can be use...
fsplitfpar 8048 Merge two functions with a...
offsplitfpar 8049 Express the function opera...
f2ndf 8050 The ` 2nd ` (second compon...
fo2ndf 8051 The ` 2nd ` (second compon...
f1o2ndf1 8052 The ` 2nd ` (second compon...
opco1 8053 Value of an operation prec...
opco2 8054 Value of an operation prec...
opco1i 8055 Inference form of ~ opco1 ...
frxp 8056 A lexicographical ordering...
xporderlem 8057 Lemma for lexicographical ...
poxp 8058 A lexicographical ordering...
soxp 8059 A lexicographical ordering...
wexp 8060 A lexicographical ordering...
fnwelem 8061 Lemma for ~ fnwe . (Contr...
fnwe 8062 A variant on lexicographic...
fnse 8063 Condition for the well-ord...
fvproj 8064 Value of a function on ord...
fimaproj 8065 Image of a cartesian produ...
ralxpes 8066 A version of ~ ralxp with ...
ralxp3f 8067 Restricted for all over a ...
ralxp3 8068 Restricted for all over a ...
ralxp3es 8069 Restricted for-all over a ...
frpoins3xpg 8070 Special case of founded pa...
frpoins3xp3g 8071 Special case of founded pa...
xpord2lem 8072 Lemma for Cartesian produc...
poxp2 8073 Another way of partially o...
frxp2 8074 Another way of giving a we...
xpord2pred 8075 Calculate the predecessor ...
sexp2 8076 Condition for the relation...
xpord2indlem 8077 Induction over the Cartesi...
xpord2ind 8078 Induction over the Cartesi...
xpord3lem 8079 Lemma for triple ordering....
poxp3 8080 Triple Cartesian product p...
frxp3 8081 Give well-foundedness over...
xpord3pred 8082 Calculate the predecsessor...
sexp3 8083 Show that the triple order...
xpord3inddlem 8084 Induction over the triple ...
xpord3indd 8085 Induction over the triple ...
xpord3ind 8086 Induction over the triple ...
orderseqlem 8087 Lemma for ~ poseq and ~ so...
poseq 8088 A partial ordering of ordi...
soseq 8089 A linear ordering of ordin...
suppval 8092 The value of the operation...
supp0prc 8093 The support of a class is ...
suppvalbr 8094 The value of the operation...
supp0 8095 The support of the empty s...
suppval1 8096 The value of the operation...
suppvalfng 8097 The value of the operation...
suppvalfn 8098 The value of the operation...
elsuppfng 8099 An element of the support ...
elsuppfn 8100 An element of the support ...
fvdifsupp 8101 Function value is zero out...
cnvimadfsn 8102 The support of functions "...
suppimacnvss 8103 The support of functions "...
suppimacnv 8104 Support sets of functions ...
fsuppeq 8105 Two ways of writing the su...
fsuppeqg 8106 Version of ~ fsuppeq avoid...
suppssdm 8107 The support of a function ...
suppsnop 8108 The support of a singleton...
snopsuppss 8109 The support of a singleton...
fvn0elsupp 8110 If the function value for ...
fvn0elsuppb 8111 The function value for a g...
rexsupp 8112 Existential quantification...
ressuppss 8113 The support of the restric...
suppun 8114 The support of a class/fun...
ressuppssdif 8115 The support of the restric...
mptsuppdifd 8116 The support of a function ...
mptsuppd 8117 The support of a function ...
extmptsuppeq 8118 The support of an extended...
suppfnss 8119 The support of a function ...
funsssuppss 8120 The support of a function ...
fnsuppres 8121 Two ways to express restri...
fnsuppeq0 8122 The support of a function ...
fczsupp0 8123 The support of a constant ...
suppss 8124 Show that the support of a...
suppssr 8125 A function is zero outside...
suppssrg 8126 A function is zero outside...
suppssov1 8127 Formula building theorem f...
suppssov2 8128 Formula building theorem f...
suppssof1 8129 Formula building theorem f...
suppss2 8130 Show that the support of a...
suppsssn 8131 Show that the support of a...
suppssfv 8132 Formula building theorem f...
suppofssd 8133 Condition for the support ...
suppofss1d 8134 Condition for the support ...
suppofss2d 8135 Condition for the support ...
suppco 8136 The support of the composi...
suppcoss 8137 The support of the composi...
supp0cosupp0 8138 The support of the composi...
imacosupp 8139 The image of the support o...
opeliunxp2f 8140 Membership in a union of C...
mpoxeldm 8141 If there is an element of ...
mpoxneldm 8142 If the first argument of a...
mpoxopn0yelv 8143 If there is an element of ...
mpoxopynvov0g 8144 If the second argument of ...
mpoxopxnop0 8145 If the first argument of a...
mpoxopx0ov0 8146 If the first argument of a...
mpoxopxprcov0 8147 If the components of the f...
mpoxopynvov0 8148 If the second argument of ...
mpoxopoveq 8149 Value of an operation give...
mpoxopovel 8150 Element of the value of an...
mpoxopoveqd 8151 Value of an operation give...
brovex 8152 A binary relation of the v...
brovmpoex 8153 A binary relation of the v...
sprmpod 8154 The extension of a binary ...
tposss 8157 Subset theorem for transpo...
tposeq 8158 Equality theorem for trans...
tposeqd 8159 Equality theorem for trans...
tposssxp 8160 The transposition is a sub...
reltpos 8161 The transposition is a rel...
brtpos2 8162 Value of the transposition...
brtpos0 8163 The behavior of ` tpos ` w...
reldmtpos 8164 Necessary and sufficient c...
brtpos 8165 The transposition swaps ar...
ottpos 8166 The transposition swaps th...
relbrtpos 8167 The transposition swaps ar...
dmtpos 8168 The domain of ` tpos F ` w...
rntpos 8169 The range of ` tpos F ` wh...
tposexg 8170 The transposition of a set...
ovtpos 8171 The transposition swaps th...
tposfun 8172 The transposition of a fun...
dftpos2 8173 Alternate definition of ` ...
dftpos3 8174 Alternate definition of ` ...
dftpos4 8175 Alternate definition of ` ...
tpostpos 8176 Value of the double transp...
tpostpos2 8177 Value of the double transp...
tposfn2 8178 The domain of a transposit...
tposfo2 8179 Condition for a surjective...
tposf2 8180 The domain and codomain of...
tposf12 8181 Condition for an injective...
tposf1o2 8182 Condition of a bijective t...
tposfo 8183 The domain and codomain/ra...
tposf 8184 The domain and codomain of...
tposfn 8185 Functionality of a transpo...
tpos0 8186 Transposition of the empty...
tposco 8187 Transposition of a composi...
tpossym 8188 Two ways to say a function...
tposeqi 8189 Equality theorem for trans...
tposex 8190 A transposition is a set. ...
nftpos 8191 Hypothesis builder for tra...
tposoprab 8192 Transposition of a class o...
tposmpo 8193 Transposition of a two-arg...
tposconst 8194 The transposition of a con...
mpocurryd 8199 The currying of an operati...
mpocurryvald 8200 The value of a curried ope...
fvmpocurryd 8201 The value of the value of ...
pwuninel2 8204 Proof of ~ pwuninel under ...
pwuninel 8205 The powerclass of the unio...
undefval 8206 Value of the undefined val...
undefnel2 8207 The undefined value genera...
undefnel 8208 The undefined value genera...
undefne0 8209 The undefined value genera...
frecseq123 8212 Equality theorem for the w...
nffrecs 8213 Bound-variable hypothesis ...
csbfrecsg 8214 Move class substitution in...
fpr3g 8215 Functions defined by well-...
frrlem1 8216 Lemma for well-founded rec...
frrlem2 8217 Lemma for well-founded rec...
frrlem3 8218 Lemma for well-founded rec...
frrlem4 8219 Lemma for well-founded rec...
frrlem5 8220 Lemma for well-founded rec...
frrlem6 8221 Lemma for well-founded rec...
frrlem7 8222 Lemma for well-founded rec...
frrlem8 8223 Lemma for well-founded rec...
frrlem9 8224 Lemma for well-founded rec...
frrlem10 8225 Lemma for well-founded rec...
frrlem11 8226 Lemma for well-founded rec...
frrlem12 8227 Lemma for well-founded rec...
frrlem13 8228 Lemma for well-founded rec...
frrlem14 8229 Lemma for well-founded rec...
fprlem1 8230 Lemma for well-founded rec...
fprlem2 8231 Lemma for well-founded rec...
fpr2a 8232 Weak version of ~ fpr2 whi...
fpr1 8233 Law of well-founded recurs...
fpr2 8234 Law of well-founded recurs...
fpr3 8235 Law of well-founded recurs...
frrrel 8236 Show without using the axi...
frrdmss 8237 Show without using the axi...
frrdmcl 8238 Show without using the axi...
fprfung 8239 A "function" defined by we...
fprresex 8240 The restriction of a funct...
wrecseq123 8243 General equality theorem f...
nfwrecs 8244 Bound-variable hypothesis ...
wrecseq1 8245 Equality theorem for the w...
wrecseq2 8246 Equality theorem for the w...
wrecseq3 8247 Equality theorem for the w...
csbwrecsg 8248 Move class substitution in...
wfr3g 8249 Functions defined by well-...
wfrrel 8250 The well-ordered recursion...
wfrdmss 8251 The domain of the well-ord...
wfrdmcl 8252 The predecessor class of a...
wfrfun 8253 The "function" generated b...
wfrresex 8254 Show without using the axi...
wfr2a 8255 A weak version of ~ wfr2 w...
wfr1 8256 The Principle of Well-Orde...
wfr2 8257 The Principle of Well-Orde...
wfr3 8258 The principle of Well-Orde...
iunon 8259 The indexed union of a set...
iinon 8260 The nonempty indexed inter...
onfununi 8261 A property of functions on...
onovuni 8262 A variant of ~ onfununi fo...
onoviun 8263 A variant of ~ onovuni wit...
onnseq 8264 There are no length ` _om ...
dfsmo2 8267 Alternate definition of a ...
issmo 8268 Conditions for which ` A `...
issmo2 8269 Alternate definition of a ...
smoeq 8270 Equality theorem for stric...
smodm 8271 The domain of a strictly m...
smores 8272 A strictly monotone functi...
smores3 8273 A strictly monotone functi...
smores2 8274 A strictly monotone ordina...
smodm2 8275 The domain of a strictly m...
smofvon2 8276 The function values of a s...
iordsmo 8277 The identity relation rest...
smo0 8278 The null set is a strictly...
smofvon 8279 If ` B ` is a strictly mon...
smoel 8280 If ` x ` is less than ` y ...
smoiun 8281 The value of a strictly mo...
smoiso 8282 If ` F ` is an isomorphism...
smoel2 8283 A strictly monotone ordina...
smo11 8284 A strictly monotone ordina...
smoord 8285 A strictly monotone ordina...
smoword 8286 A strictly monotone ordina...
smogt 8287 A strictly monotone ordina...
smocdmdom 8288 The codomain of a strictly...
smoiso2 8289 The strictly monotone ordi...
dfrecs3 8292 The old definition of tran...
recseq 8293 Equality theorem for ` rec...
nfrecs 8294 Bound-variable hypothesis ...
tfrlem1 8295 A technical lemma for tran...
tfrlem3a 8296 Lemma for transfinite recu...
tfrlem3 8297 Lemma for transfinite recu...
tfrlem4 8298 Lemma for transfinite recu...
tfrlem5 8299 Lemma for transfinite recu...
recsfval 8300 Lemma for transfinite recu...
tfrlem6 8301 Lemma for transfinite recu...
tfrlem7 8302 Lemma for transfinite recu...
tfrlem8 8303 Lemma for transfinite recu...
tfrlem9 8304 Lemma for transfinite recu...
tfrlem9a 8305 Lemma for transfinite recu...
tfrlem10 8306 Lemma for transfinite recu...
tfrlem11 8307 Lemma for transfinite recu...
tfrlem12 8308 Lemma for transfinite recu...
tfrlem13 8309 Lemma for transfinite recu...
tfrlem14 8310 Lemma for transfinite recu...
tfrlem15 8311 Lemma for transfinite recu...
tfrlem16 8312 Lemma for finite recursion...
tfr1a 8313 A weak version of ~ tfr1 w...
tfr2a 8314 A weak version of ~ tfr2 w...
tfr2b 8315 Without assuming ~ ax-rep ...
tfr1 8316 Principle of Transfinite R...
tfr2 8317 Principle of Transfinite R...
tfr3 8318 Principle of Transfinite R...
tfr1ALT 8319 Alternate proof of ~ tfr1 ...
tfr2ALT 8320 Alternate proof of ~ tfr2 ...
tfr3ALT 8321 Alternate proof of ~ tfr3 ...
recsfnon 8322 Strong transfinite recursi...
recsval 8323 Strong transfinite recursi...
tz7.44lem1 8324 The ordered pair abstracti...
tz7.44-1 8325 The value of ` F ` at ` (/...
tz7.44-2 8326 The value of ` F ` at a su...
tz7.44-3 8327 The value of ` F ` at a li...
rdgeq1 8330 Equality theorem for the r...
rdgeq2 8331 Equality theorem for the r...
rdgeq12 8332 Equality theorem for the r...
nfrdg 8333 Bound-variable hypothesis ...
rdglem1 8334 Lemma used with the recurs...
rdgfun 8335 The recursive definition g...
rdgdmlim 8336 The domain of the recursiv...
rdgfnon 8337 The recursive definition g...
rdgvalg 8338 Value of the recursive def...
rdgval 8339 Value of the recursive def...
rdg0 8340 The initial value of the r...
rdgseg 8341 The initial segments of th...
rdgsucg 8342 The value of the recursive...
rdgsuc 8343 The value of the recursive...
rdglimg 8344 The value of the recursive...
rdglim 8345 The value of the recursive...
rdg0g 8346 The initial value of the r...
rdgsucmptf 8347 The value of the recursive...
rdgsucmptnf 8348 The value of the recursive...
rdgsucmpt2 8349 This version of ~ rdgsucmp...
rdgsucmpt 8350 The value of the recursive...
rdglim2 8351 The value of the recursive...
rdglim2a 8352 The value of the recursive...
rdg0n 8353 If ` A ` is a proper class...
frfnom 8354 The function generated by ...
fr0g 8355 The initial value resultin...
frsuc 8356 The successor value result...
frsucmpt 8357 The successor value result...
frsucmptn 8358 The value of the finite re...
frsucmpt2 8359 The successor value result...
tz7.48lem 8360 A way of showing an ordina...
tz7.48-2 8361 Proposition 7.48(2) of [Ta...
tz7.48-1 8362 Proposition 7.48(1) of [Ta...
tz7.48-3 8363 Proposition 7.48(3) of [Ta...
tz7.49 8364 Proposition 7.49 of [Takeu...
tz7.49c 8365 Corollary of Proposition 7...
seqomlem0 8368 Lemma for ` seqom ` . Cha...
seqomlem1 8369 Lemma for ` seqom ` . The...
seqomlem2 8370 Lemma for ` seqom ` . (Co...
seqomlem3 8371 Lemma for ` seqom ` . (Co...
seqomlem4 8372 Lemma for ` seqom ` . (Co...
seqomeq12 8373 Equality theorem for ` seq...
fnseqom 8374 An index-aware recursive d...
seqom0g 8375 Value of an index-aware re...
seqomsuc 8376 Value of an index-aware re...
omsucelsucb 8377 Membership is inherited by...
df1o2 8392 Expanded value of the ordi...
df2o3 8393 Expanded value of the ordi...
df2o2 8394 Expanded value of the ordi...
1oex 8395 Ordinal 1 is a set. (Cont...
2oex 8396 ` 2o ` is a set. (Contrib...
1on 8397 Ordinal 1 is an ordinal nu...
2on 8398 Ordinal 2 is an ordinal nu...
2on0 8399 Ordinal two is not zero. ...
ord3 8400 Ordinal 3 is an ordinal cl...
3on 8401 Ordinal 3 is an ordinal nu...
4on 8402 Ordinal 4 is an ordinal nu...
1n0 8403 Ordinal one is not equal t...
nlim1 8404 1 is not a limit ordinal. ...
nlim2 8405 2 is not a limit ordinal. ...
xp01disj 8406 Cartesian products with th...
xp01disjl 8407 Cartesian products with th...
ordgt0ge1 8408 Two ways to express that a...
ordge1n0 8409 An ordinal greater than or...
el1o 8410 Membership in ordinal one....
ord1eln01 8411 An ordinal that is not 0 o...
ord2eln012 8412 An ordinal that is not 0, ...
1ellim 8413 A limit ordinal contains 1...
2ellim 8414 A limit ordinal contains 2...
dif1o 8415 Two ways to say that ` A `...
ondif1 8416 Two ways to say that ` A `...
ondif2 8417 Two ways to say that ` A `...
2oconcl 8418 Closure of the pair swappi...
0lt1o 8419 Ordinal zero is less than ...
dif20el 8420 An ordinal greater than on...
0we1 8421 The empty set is a well-or...
brwitnlem 8422 Lemma for relations which ...
fnoa 8423 Functionality and domain o...
fnom 8424 Functionality and domain o...
fnoe 8425 Functionality and domain o...
oav 8426 Value of ordinal addition....
omv 8427 Value of ordinal multiplic...
oe0lem 8428 A helper lemma for ~ oe0 a...
oev 8429 Value of ordinal exponenti...
oevn0 8430 Value of ordinal exponenti...
oa0 8431 Addition with zero. Propo...
om0 8432 Ordinal multiplication wit...
oe0m 8433 Value of zero raised to an...
om0x 8434 Ordinal multiplication wit...
oe0m0 8435 Ordinal exponentiation wit...
oe0m1 8436 Ordinal exponentiation wit...
oe0 8437 Ordinal exponentiation wit...
oev2 8438 Alternate value of ordinal...
oasuc 8439 Addition with successor. ...
oesuclem 8440 Lemma for ~ oesuc . (Cont...
omsuc 8441 Multiplication with succes...
oesuc 8442 Ordinal exponentiation wit...
onasuc 8443 Addition with successor. ...
onmsuc 8444 Multiplication with succes...
onesuc 8445 Exponentiation with a succ...
oa1suc 8446 Addition with 1 is same as...
oalim 8447 Ordinal addition with a li...
omlim 8448 Ordinal multiplication wit...
oelim 8449 Ordinal exponentiation wit...
oacl 8450 Closure law for ordinal ad...
omcl 8451 Closure law for ordinal mu...
oecl 8452 Closure law for ordinal ex...
oa0r 8453 Ordinal addition with zero...
om0r 8454 Ordinal multiplication wit...
o1p1e2 8455 1 + 1 = 2 for ordinal numb...
o2p2e4 8456 2 + 2 = 4 for ordinal numb...
om1 8457 Ordinal multiplication wit...
om1r 8458 Ordinal multiplication wit...
oe1 8459 Ordinal exponentiation wit...
oe1m 8460 Ordinal exponentiation wit...
oaordi 8461 Ordering property of ordin...
oaord 8462 Ordering property of ordin...
oacan 8463 Left cancellation law for ...
oaword 8464 Weak ordering property of ...
oawordri 8465 Weak ordering property of ...
oaord1 8466 An ordinal is less than it...
oaword1 8467 An ordinal is less than or...
oaword2 8468 An ordinal is less than or...
oawordeulem 8469 Lemma for ~ oawordex . (C...
oawordeu 8470 Existence theorem for weak...
oawordexr 8471 Existence theorem for weak...
oawordex 8472 Existence theorem for weak...
oaordex 8473 Existence theorem for orde...
oa00 8474 An ordinal sum is zero iff...
oalimcl 8475 The ordinal sum with a lim...
oaass 8476 Ordinal addition is associ...
oarec 8477 Recursive definition of or...
oaf1o 8478 Left addition by a constan...
oacomf1olem 8479 Lemma for ~ oacomf1o . (C...
oacomf1o 8480 Define a bijection from ` ...
omordi 8481 Ordering property of ordin...
omord2 8482 Ordering property of ordin...
omord 8483 Ordering property of ordin...
omcan 8484 Left cancellation law for ...
omword 8485 Weak ordering property of ...
omwordi 8486 Weak ordering property of ...
omwordri 8487 Weak ordering property of ...
omword1 8488 An ordinal is less than or...
omword2 8489 An ordinal is less than or...
om00 8490 The product of two ordinal...
om00el 8491 The product of two nonzero...
omordlim 8492 Ordering involving the pro...
omlimcl 8493 The product of any nonzero...
odi 8494 Distributive law for ordin...
omass 8495 Multiplication of ordinal ...
oneo 8496 If an ordinal number is ev...
omeulem1 8497 Lemma for ~ omeu : existen...
omeulem2 8498 Lemma for ~ omeu : uniquen...
omopth2 8499 An ordered pair-like theor...
omeu 8500 The division algorithm for...
oen0 8501 Ordinal exponentiation wit...
oeordi 8502 Ordering law for ordinal e...
oeord 8503 Ordering property of ordin...
oecan 8504 Left cancellation law for ...
oeword 8505 Weak ordering property of ...
oewordi 8506 Weak ordering property of ...
oewordri 8507 Weak ordering property of ...
oeworde 8508 Ordinal exponentiation com...
oeordsuc 8509 Ordering property of ordin...
oelim2 8510 Ordinal exponentiation wit...
oeoalem 8511 Lemma for ~ oeoa . (Contr...
oeoa 8512 Sum of exponents law for o...
oeoelem 8513 Lemma for ~ oeoe . (Contr...
oeoe 8514 Product of exponents law f...
oelimcl 8515 The ordinal exponential wi...
oeeulem 8516 Lemma for ~ oeeu . (Contr...
oeeui 8517 The division algorithm for...
oeeu 8518 The division algorithm for...
nna0 8519 Addition with zero. Theor...
nnm0 8520 Multiplication with zero. ...
nnasuc 8521 Addition with successor. ...
nnmsuc 8522 Multiplication with succes...
nnesuc 8523 Exponentiation with a succ...
nna0r 8524 Addition to zero. Remark ...
nnm0r 8525 Multiplication with zero. ...
nnacl 8526 Closure of addition of nat...
nnmcl 8527 Closure of multiplication ...
nnecl 8528 Closure of exponentiation ...
nnacli 8529 ` _om ` is closed under ad...
nnmcli 8530 ` _om ` is closed under mu...
nnarcl 8531 Reverse closure law for ad...
nnacom 8532 Addition of natural number...
nnaordi 8533 Ordering property of addit...
nnaord 8534 Ordering property of addit...
nnaordr 8535 Ordering property of addit...
nnawordi 8536 Adding to both sides of an...
nnaass 8537 Addition of natural number...
nndi 8538 Distributive law for natur...
nnmass 8539 Multiplication of natural ...
nnmsucr 8540 Multiplication with succes...
nnmcom 8541 Multiplication of natural ...
nnaword 8542 Weak ordering property of ...
nnacan 8543 Cancellation law for addit...
nnaword1 8544 Weak ordering property of ...
nnaword2 8545 Weak ordering property of ...
nnmordi 8546 Ordering property of multi...
nnmord 8547 Ordering property of multi...
nnmword 8548 Weak ordering property of ...
nnmcan 8549 Cancellation law for multi...
nnmwordi 8550 Weak ordering property of ...
nnmwordri 8551 Weak ordering property of ...
nnawordex 8552 Equivalence for weak order...
nnaordex 8553 Equivalence for ordering. ...
nnaordex2 8554 Equivalence for ordering. ...
1onn 8555 The ordinal 1 is a natural...
1onnALT 8556 Shorter proof of ~ 1onn us...
2onn 8557 The ordinal 2 is a natural...
2onnALT 8558 Shorter proof of ~ 2onn us...
3onn 8559 The ordinal 3 is a natural...
4onn 8560 The ordinal 4 is a natural...
1one2o 8561 Ordinal one is not ordinal...
oaabslem 8562 Lemma for ~ oaabs . (Cont...
oaabs 8563 Ordinal addition absorbs a...
oaabs2 8564 The absorption law ~ oaabs...
omabslem 8565 Lemma for ~ omabs . (Cont...
omabs 8566 Ordinal multiplication is ...
nnm1 8567 Multiply an element of ` _...
nnm2 8568 Multiply an element of ` _...
nn2m 8569 Multiply an element of ` _...
nnneo 8570 If a natural number is eve...
nneob 8571 A natural number is even i...
omsmolem 8572 Lemma for ~ omsmo . (Cont...
omsmo 8573 A strictly monotonic ordin...
omopthlem1 8574 Lemma for ~ omopthi . (Co...
omopthlem2 8575 Lemma for ~ omopthi . (Co...
omopthi 8576 An ordered pair theorem fo...
omopth 8577 An ordered pair theorem fo...
nnasmo 8578 There is at most one left ...
eldifsucnn 8579 Condition for membership i...
on2recsfn 8582 Show that double recursion...
on2recsov 8583 Calculate the value of the...
on2ind 8584 Double induction over ordi...
on3ind 8585 Triple induction over ordi...
coflton 8586 Cofinality theorem for ord...
cofon1 8587 Cofinality theorem for ord...
cofon2 8588 Cofinality theorem for ord...
cofonr 8589 Inverse cofinality law for...
naddfn 8590 Natural addition is a func...
naddcllem 8591 Lemma for ordinal addition...
naddcl 8592 Closure law for natural ad...
naddov 8593 The value of natural addit...
naddov2 8594 Alternate expression for n...
naddov3 8595 Alternate expression for n...
naddf 8596 Function statement for nat...
naddcom 8597 Natural addition commutes....
naddrid 8598 Ordinal zero is the additi...
naddlid 8599 Ordinal zero is the additi...
naddssim 8600 Ordinal less-than-or-equal...
naddelim 8601 Ordinal less-than is prese...
naddel1 8602 Ordinal less-than is not a...
naddel2 8603 Ordinal less-than is not a...
naddss1 8604 Ordinal less-than-or-equal...
naddss2 8605 Ordinal less-than-or-equal...
naddword1 8606 Weak-ordering principle fo...
naddword2 8607 Weak-ordering principle fo...
naddunif 8608 Uniformity theorem for nat...
naddasslem1 8609 Lemma for ~ naddass . Exp...
naddasslem2 8610 Lemma for ~ naddass . Exp...
naddass 8611 Natural ordinal addition i...
nadd32 8612 Commutative/associative la...
nadd4 8613 Rearragement of terms in a...
nadd42 8614 Rearragement of terms in a...
naddel12 8615 Natural addition to both s...
naddsuc2 8616 Natural addition with succ...
naddoa 8617 Natural addition of a natu...
omnaddcl 8618 The naturals are closed un...
dfer2 8623 Alternate definition of eq...
dfec2 8625 Alternate definition of ` ...
ecexg 8626 An equivalence class modul...
ecexr 8627 A nonempty equivalence cla...
ereq1 8629 Equality theorem for equiv...
ereq2 8630 Equality theorem for equiv...
errel 8631 An equivalence relation is...
erdm 8632 The domain of an equivalen...
ercl 8633 Elementhood in the field o...
ersym 8634 An equivalence relation is...
ercl2 8635 Elementhood in the field o...
ersymb 8636 An equivalence relation is...
ertr 8637 An equivalence relation is...
ertrd 8638 A transitivity relation fo...
ertr2d 8639 A transitivity relation fo...
ertr3d 8640 A transitivity relation fo...
ertr4d 8641 A transitivity relation fo...
erref 8642 An equivalence relation is...
ercnv 8643 The converse of an equival...
errn 8644 The range and domain of an...
erssxp 8645 An equivalence relation is...
erex 8646 An equivalence relation is...
erexb 8647 An equivalence relation is...
iserd 8648 A reflexive, symmetric, tr...
iseri 8649 A reflexive, symmetric, tr...
iseriALT 8650 Alternate proof of ~ iseri...
brinxper 8651 Conditions for a reflexive...
brdifun 8652 Evaluate the incomparabili...
swoer 8653 Incomparability under a st...
swoord1 8654 The incomparability equiva...
swoord2 8655 The incomparability equiva...
swoso 8656 If the incomparability rel...
eqerlem 8657 Lemma for ~ eqer . (Contr...
eqer 8658 Equivalence relation invol...
ider 8659 The identity relation is a...
0er 8660 The empty set is an equiva...
eceq1 8661 Equality theorem for equiv...
eceq1d 8662 Equality theorem for equiv...
eceq2 8663 Equality theorem for equiv...
eceq2i 8664 Equality theorem for the `...
eceq2d 8665 Equality theorem for the `...
elecg 8666 Membership in an equivalen...
ecref 8667 All elements are in their ...
elec 8668 Membership in an equivalen...
relelec 8669 Membership in an equivalen...
elecres 8670 Elementhood in the restric...
elecreseq 8671 The restricted coset of ` ...
elecex 8672 Condition for a coset to b...
ecss 8673 An equivalence class is a ...
ecdmn0 8674 A representative of a none...
ereldm 8675 Equality of equivalence cl...
erth 8676 Basic property of equivale...
erth2 8677 Basic property of equivale...
erthi 8678 Basic property of equivale...
erdisj 8679 Equivalence classes do not...
ecidsn 8680 An equivalence class modul...
qseq1 8681 Equality theorem for quoti...
qseq2 8682 Equality theorem for quoti...
qseq2i 8683 Equality theorem for quoti...
qseq1d 8684 Equality theorem for quoti...
qseq2d 8685 Equality theorem for quoti...
qseq12 8686 Equality theorem for quoti...
0qs 8687 Quotient set with the empt...
elqsg 8688 Closed form of ~ elqs . (...
elqs 8689 Membership in a quotient s...
elqsi 8690 Membership in a quotient s...
elqsecl 8691 Membership in a quotient s...
ecelqs 8692 Membership of an equivalen...
ecelqsw 8693 Membership of an equivalen...
ecelqsi 8694 Membership of an equivalen...
ecopqsi 8695 "Closure" law for equivale...
qsexg 8696 A quotient set exists. (C...
qsex 8697 A quotient set exists. (C...
uniqs 8698 The union of a quotient se...
uniqsw 8699 The union of a quotient se...
qsss 8700 A quotient set is a set of...
uniqs2 8701 The union of a quotient se...
snec 8702 The singleton of an equiva...
ecqs 8703 Equivalence class in terms...
ecid 8704 A set is equal to its cose...
qsid 8705 A set is equal to its quot...
ectocld 8706 Implicit substitution of c...
ectocl 8707 Implicit substitution of c...
elqsn0 8708 A quotient set does not co...
ecelqsdm 8709 Membership of an equivalen...
ecelqsdmb 8710 ` R ` -coset of ` B ` in a...
eceldmqs 8711 ` R ` -coset in its domain...
xpider 8712 A Cartesian square is an e...
iiner 8713 The intersection of a none...
riiner 8714 The relative intersection ...
erinxp 8715 A restricted equivalence r...
ecinxp 8716 Restrict the relation in a...
qsinxp 8717 Restrict the equivalence r...
qsdisj 8718 Members of a quotient set ...
qsdisj2 8719 A quotient set is a disjoi...
qsel 8720 If an element of a quotien...
uniinqs 8721 Class union distributes ov...
qliftlem 8722 Lemma for theorems about a...
qliftrel 8723 ` F ` , a function lift, i...
qliftel 8724 Elementhood in the relatio...
qliftel1 8725 Elementhood in the relatio...
qliftfun 8726 The function ` F ` is the ...
qliftfund 8727 The function ` F ` is the ...
qliftfuns 8728 The function ` F ` is the ...
qliftf 8729 The domain and codomain of...
qliftval 8730 The value of the function ...
ecoptocl 8731 Implicit substitution of c...
2ecoptocl 8732 Implicit substitution of c...
3ecoptocl 8733 Implicit substitution of c...
brecop 8734 Binary relation on a quoti...
brecop2 8735 Binary relation on a quoti...
eroveu 8736 Lemma for ~ erov and ~ ero...
erovlem 8737 Lemma for ~ erov and ~ ero...
erov 8738 The value of an operation ...
eroprf 8739 Functionality of an operat...
erov2 8740 The value of an operation ...
eroprf2 8741 Functionality of an operat...
ecopoveq 8742 This is the first of sever...
ecopovsym 8743 Assuming the operation ` F...
ecopovtrn 8744 Assuming that operation ` ...
ecopover 8745 Assuming that operation ` ...
eceqoveq 8746 Equality of equivalence re...
ecovcom 8747 Lemma used to transfer a c...
ecovass 8748 Lemma used to transfer an ...
ecovdi 8749 Lemma used to transfer a d...
mapprc 8754 When ` A ` is a proper cla...
pmex 8755 The class of all partial f...
mapexOLD 8756 Obsolete version of ~ mape...
fnmap 8757 Set exponentiation has a u...
fnpm 8758 Partial function exponenti...
reldmmap 8759 Set exponentiation is a we...
mapvalg 8760 The value of set exponenti...
pmvalg 8761 The value of the partial m...
mapval 8762 The value of set exponenti...
elmapg 8763 Membership relation for se...
elmapd 8764 Deduction form of ~ elmapg...
elmapdd 8765 Deduction associated with ...
mapdm0 8766 The empty set is the only ...
elpmg 8767 The predicate "is a partia...
elpm2g 8768 The predicate "is a partia...
elpm2r 8769 Sufficient condition for b...
elpmi 8770 A partial function is a fu...
pmfun 8771 A partial function is a fu...
elmapex 8772 Eliminate antecedent for m...
elmapi 8773 A mapping is a function, f...
mapfset 8774 If ` B ` is a set, the val...
mapssfset 8775 The value of the set expon...
mapfoss 8776 The value of the set expon...
fsetsspwxp 8777 The class of all functions...
fset0 8778 The set of functions from ...
fsetdmprc0 8779 The set of functions with ...
fsetex 8780 The set of functions betwe...
f1setex 8781 The set of injections betw...
fosetex 8782 The set of surjections bet...
f1osetex 8783 The set of bijections betw...
fsetfcdm 8784 The class of functions wit...
fsetfocdm 8785 The class of functions wit...
fsetprcnex 8786 The class of all functions...
fsetcdmex 8787 The class of all functions...
fsetexb 8788 The class of all functions...
elmapfn 8789 A mapping is a function wi...
elmapfun 8790 A mapping is always a func...
elmapssres 8791 A restricted mapping is a ...
fpmg 8792 A total function is a part...
pmss12g 8793 Subset relation for the se...
pmresg 8794 Elementhood of a restricte...
elmap 8795 Membership relation for se...
mapval2 8796 Alternate expression for t...
elpm 8797 The predicate "is a partia...
elpm2 8798 The predicate "is a partia...
fpm 8799 A total function is a part...
mapsspm 8800 Set exponentiation is a su...
pmsspw 8801 Partial maps are a subset ...
mapsspw 8802 Set exponentiation is a su...
mapfvd 8803 The value of a function th...
elmapresaun 8804 ~ fresaun transposed to ma...
fvmptmap 8805 Special case of ~ fvmpt fo...
map0e 8806 Set exponentiation with an...
map0b 8807 Set exponentiation with an...
map0g 8808 Set exponentiation is empt...
0map0sn0 8809 The set of mappings of the...
mapsnd 8810 The value of set exponenti...
map0 8811 Set exponentiation is empt...
mapsn 8812 The value of set exponenti...
mapss 8813 Subset inheritance for set...
fdiagfn 8814 Functionality of the diago...
fvdiagfn 8815 Functionality of the diago...
mapsnconst 8816 Every singleton map is a c...
mapsncnv 8817 Expression for the inverse...
mapsnf1o2 8818 Explicit bijection between...
mapsnf1o3 8819 Explicit bijection in the ...
ralxpmap 8820 Quantification over functi...
dfixp 8823 Eliminate the expression `...
ixpsnval 8824 The value of an infinite C...
elixp2 8825 Membership in an infinite ...
fvixp 8826 Projection of a factor of ...
ixpfn 8827 A nuple is a function. (C...
elixp 8828 Membership in an infinite ...
elixpconst 8829 Membership in an infinite ...
ixpconstg 8830 Infinite Cartesian product...
ixpconst 8831 Infinite Cartesian product...
ixpeq1 8832 Equality theorem for infin...
ixpeq1d 8833 Equality theorem for infin...
ss2ixp 8834 Subclass theorem for infin...
ixpeq2 8835 Equality theorem for infin...
ixpeq2dva 8836 Equality theorem for infin...
ixpeq2dv 8837 Equality theorem for infin...
cbvixp 8838 Change bound variable in a...
cbvixpv 8839 Change bound variable in a...
nfixpw 8840 Bound-variable hypothesis ...
nfixp 8841 Bound-variable hypothesis ...
nfixp1 8842 The index variable in an i...
ixpprc 8843 A cartesian product of pro...
ixpf 8844 A member of an infinite Ca...
uniixp 8845 The union of an infinite C...
ixpexg 8846 The existence of an infini...
ixpin 8847 The intersection of two in...
ixpiin 8848 The indexed intersection o...
ixpint 8849 The intersection of a coll...
ixp0x 8850 An infinite Cartesian prod...
ixpssmap2g 8851 An infinite Cartesian prod...
ixpssmapg 8852 An infinite Cartesian prod...
0elixp 8853 Membership of the empty se...
ixpn0 8854 The infinite Cartesian pro...
ixp0 8855 The infinite Cartesian pro...
ixpssmap 8856 An infinite Cartesian prod...
resixp 8857 Restriction of an element ...
undifixp 8858 Union of two projections o...
mptelixpg 8859 Condition for an explicit ...
resixpfo 8860 Restriction of elements of...
elixpsn 8861 Membership in a class of s...
ixpsnf1o 8862 A bijection between a clas...
mapsnf1o 8863 A bijection between a set ...
boxriin 8864 A rectangular subset of a ...
boxcutc 8865 The relative complement of...
relen 8874 Equinumerosity is a relati...
reldom 8875 Dominance is a relation. ...
relsdom 8876 Strict dominance is a rela...
encv 8877 If two classes are equinum...
breng 8878 Equinumerosity relation. ...
bren 8879 Equinumerosity relation. ...
brdom2g 8880 Dominance relation. This ...
brdomg 8881 Dominance relation. (Cont...
brdomi 8882 Dominance relation. (Cont...
brdom 8883 Dominance relation. (Cont...
domen 8884 Dominance in terms of equi...
domeng 8885 Dominance in terms of equi...
ctex 8886 A countable set is a set. ...
f1oen4g 8887 The domain and range of a ...
f1dom4g 8888 The domain of a one-to-one...
f1oen3g 8889 The domain and range of a ...
f1dom3g 8890 The domain of a one-to-one...
f1oen2g 8891 The domain and range of a ...
f1dom2g 8892 The domain of a one-to-one...
f1oeng 8893 The domain and range of a ...
f1domg 8894 The domain of a one-to-one...
f1oen 8895 The domain and range of a ...
f1dom 8896 The domain of a one-to-one...
brsdom 8897 Strict dominance relation,...
isfi 8898 Express " ` A ` is finite"...
enssdom 8899 Equinumerosity implies dom...
dfdom2 8900 Alternate definition of do...
endom 8901 Equinumerosity implies dom...
sdomdom 8902 Strict dominance implies d...
sdomnen 8903 Strict dominance implies n...
brdom2 8904 Dominance in terms of stri...
bren2 8905 Equinumerosity expressed i...
enrefg 8906 Equinumerosity is reflexiv...
enref 8907 Equinumerosity is reflexiv...
eqeng 8908 Equality implies equinumer...
domrefg 8909 Dominance is reflexive. (...
en2d 8910 Equinumerosity inference f...
en3d 8911 Equinumerosity inference f...
en2i 8912 Equinumerosity inference f...
en3i 8913 Equinumerosity inference f...
dom2lem 8914 A mapping (first hypothesi...
dom2d 8915 A mapping (first hypothesi...
dom3d 8916 A mapping (first hypothesi...
dom2 8917 A mapping (first hypothesi...
dom3 8918 A mapping (first hypothesi...
idssen 8919 Equality implies equinumer...
domssl 8920 If ` A ` is a subset of ` ...
domssr 8921 If ` C ` is a superset of ...
ssdomg 8922 A set dominates its subset...
ener 8923 Equinumerosity is an equiv...
ensymb 8924 Symmetry of equinumerosity...
ensym 8925 Symmetry of equinumerosity...
ensymi 8926 Symmetry of equinumerosity...
ensymd 8927 Symmetry of equinumerosity...
entr 8928 Transitivity of equinumero...
domtr 8929 Transitivity of dominance ...
entri 8930 A chained equinumerosity i...
entr2i 8931 A chained equinumerosity i...
entr3i 8932 A chained equinumerosity i...
entr4i 8933 A chained equinumerosity i...
endomtr 8934 Transitivity of equinumero...
domentr 8935 Transitivity of dominance ...
f1imaeng 8936 If a function is one-to-on...
f1imaen2g 8937 If a function is one-to-on...
f1imaen3g 8938 If a set function is one-t...
f1imaen 8939 If a function is one-to-on...
en0 8940 The empty set is equinumer...
en0ALT 8941 Shorter proof of ~ en0 , d...
en0r 8942 The empty set is equinumer...
ensn1 8943 A singleton is equinumerou...
ensn1g 8944 A singleton is equinumerou...
enpr1g 8945 ` { A , A } ` has only one...
en1 8946 A set is equinumerous to o...
en1b 8947 A set is equinumerous to o...
reuen1 8948 Two ways to express "exact...
euen1 8949 Two ways to express "exact...
euen1b 8950 Two ways to express " ` A ...
en1uniel 8951 A singleton contains its s...
2dom 8952 A set that dominates ordin...
fundmen 8953 A function is equinumerous...
fundmeng 8954 A function is equinumerous...
cnven 8955 A relational set is equinu...
cnvct 8956 If a set is countable, so ...
fndmeng 8957 A function is equinumerate...
mapsnend 8958 Set exponentiation to a si...
mapsnen 8959 Set exponentiation to a si...
snmapen 8960 Set exponentiation: a sing...
snmapen1 8961 Set exponentiation: a sing...
map1 8962 Set exponentiation: ordina...
en2sn 8963 Two singletons are equinum...
0fi 8964 The empty set is finite. ...
snfi 8965 A singleton is finite. (C...
fiprc 8966 The class of finite sets i...
unen 8967 Equinumerosity of union of...
enrefnn 8968 Equinumerosity is reflexiv...
en2prd 8969 Two proper unordered pairs...
enpr2d 8970 A pair with distinct eleme...
ssct 8971 Any subset of a countable ...
difsnen 8972 All decrements of a set ar...
domdifsn 8973 Dominance over a set with ...
xpsnen 8974 A set is equinumerous to i...
xpsneng 8975 A set is equinumerous to i...
xp1en 8976 One times a cardinal numbe...
endisj 8977 Any two sets are equinumer...
undom 8978 Dominance law for union. ...
xpcomf1o 8979 The canonical bijection fr...
xpcomco 8980 Composition with the bijec...
xpcomen 8981 Commutative law for equinu...
xpcomeng 8982 Commutative law for equinu...
xpsnen2g 8983 A set is equinumerous to i...
xpassen 8984 Associative law for equinu...
xpdom2 8985 Dominance law for Cartesia...
xpdom2g 8986 Dominance law for Cartesia...
xpdom1g 8987 Dominance law for Cartesia...
xpdom3 8988 A set is dominated by its ...
xpdom1 8989 Dominance law for Cartesia...
domunsncan 8990 A singleton cancellation l...
omxpenlem 8991 Lemma for ~ omxpen . (Con...
omxpen 8992 The cardinal and ordinal p...
omf1o 8993 Construct an explicit bije...
pw2f1olem 8994 Lemma for ~ pw2f1o . (Con...
pw2f1o 8995 The power set of a set is ...
pw2eng 8996 The power set of a set is ...
pw2en 8997 The power set of a set is ...
fopwdom 8998 Covering implies injection...
enfixsn 8999 Given two equipollent sets...
sbthlem1 9000 Lemma for ~ sbth . (Contr...
sbthlem2 9001 Lemma for ~ sbth . (Contr...
sbthlem3 9002 Lemma for ~ sbth . (Contr...
sbthlem4 9003 Lemma for ~ sbth . (Contr...
sbthlem5 9004 Lemma for ~ sbth . (Contr...
sbthlem6 9005 Lemma for ~ sbth . (Contr...
sbthlem7 9006 Lemma for ~ sbth . (Contr...
sbthlem8 9007 Lemma for ~ sbth . (Contr...
sbthlem9 9008 Lemma for ~ sbth . (Contr...
sbthlem10 9009 Lemma for ~ sbth . (Contr...
sbth 9010 Schroeder-Bernstein Theore...
sbthb 9011 Schroeder-Bernstein Theore...
sbthcl 9012 Schroeder-Bernstein Theore...
dfsdom2 9013 Alternate definition of st...
brsdom2 9014 Alternate definition of st...
sdomnsym 9015 Strict dominance is asymme...
domnsym 9016 Theorem 22(i) of [Suppes] ...
0domg 9017 Any set dominates the empt...
dom0 9018 A set dominated by the emp...
0sdomg 9019 A set strictly dominates t...
0dom 9020 Any set dominates the empt...
0sdom 9021 A set strictly dominates t...
sdom0 9022 The empty set does not str...
sdomdomtr 9023 Transitivity of strict dom...
sdomentr 9024 Transitivity of strict dom...
domsdomtr 9025 Transitivity of dominance ...
ensdomtr 9026 Transitivity of equinumero...
sdomirr 9027 Strict dominance is irrefl...
sdomtr 9028 Strict dominance is transi...
sdomn2lp 9029 Strict dominance has no 2-...
enen1 9030 Equality-like theorem for ...
enen2 9031 Equality-like theorem for ...
domen1 9032 Equality-like theorem for ...
domen2 9033 Equality-like theorem for ...
sdomen1 9034 Equality-like theorem for ...
sdomen2 9035 Equality-like theorem for ...
domtriord 9036 Dominance is trichotomous ...
sdomel 9037 For ordinals, strict domin...
sdomdif 9038 The difference of a set fr...
onsdominel 9039 An ordinal with more eleme...
domunsn 9040 Dominance over a set with ...
fodomr 9041 There exists a mapping fro...
pwdom 9042 Injection of sets implies ...
canth2 9043 Cantor's Theorem. No set ...
canth2g 9044 Cantor's theorem with the ...
2pwuninel 9045 The power set of the power...
2pwne 9046 No set equals the power se...
disjen 9047 A stronger form of ~ pwuni...
disjenex 9048 Existence version of ~ dis...
domss2 9049 A corollary of ~ disjenex ...
domssex2 9050 A corollary of ~ disjenex ...
domssex 9051 Weakening of ~ domssex2 to...
xpf1o 9052 Construct a bijection on a...
xpen 9053 Equinumerosity law for Car...
mapen 9054 Two set exponentiations ar...
mapdom1 9055 Order-preserving property ...
mapxpen 9056 Equinumerosity law for dou...
xpmapenlem 9057 Lemma for ~ xpmapen . (Co...
xpmapen 9058 Equinumerosity law for set...
mapunen 9059 Equinumerosity law for set...
map2xp 9060 A cardinal power with expo...
mapdom2 9061 Order-preserving property ...
mapdom3 9062 Set exponentiation dominat...
pwen 9063 If two sets are equinumero...
ssenen 9064 Equinumerosity of equinume...
limenpsi 9065 A limit ordinal is equinum...
limensuci 9066 A limit ordinal is equinum...
limensuc 9067 A limit ordinal is equinum...
infensuc 9068 Any infinite ordinal is eq...
dif1enlem 9069 Lemma for ~ rexdif1en and ...
rexdif1en 9070 If a set is equinumerous t...
dif1en 9071 If a set ` A ` is equinume...
dif1ennn 9072 If a set ` A ` is equinume...
findcard 9073 Schema for induction on th...
findcard2 9074 Schema for induction on th...
findcard2s 9075 Variation of ~ findcard2 r...
findcard2d 9076 Deduction version of ~ fin...
nnfi 9077 Natural numbers are finite...
pssnn 9078 A proper subset of a natur...
ssnnfi 9079 A subset of a natural numb...
unfi 9080 The union of two finite se...
unfid 9081 The union of two finite se...
ssfi 9082 A subset of a finite set i...
ssfiALT 9083 Shorter proof of ~ ssfi us...
diffi 9084 If ` A ` is finite, ` ( A ...
cnvfi 9085 If a set is finite, its co...
pwssfi 9086 Every element of the power...
fnfi 9087 A version of ~ fnex for fi...
f1oenfi 9088 If the domain of a one-to-...
f1oenfirn 9089 If the range of a one-to-o...
f1domfi 9090 If the codomain of a one-t...
f1domfi2 9091 If the domain of a one-to-...
enreffi 9092 Equinumerosity is reflexiv...
ensymfib 9093 Symmetry of equinumerosity...
entrfil 9094 Transitivity of equinumero...
enfii 9095 A set equinumerous to a fi...
enfi 9096 Equinumerous sets have the...
enfiALT 9097 Shorter proof of ~ enfi us...
domfi 9098 A set dominated by a finit...
entrfi 9099 Transitivity of equinumero...
entrfir 9100 Transitivity of equinumero...
domtrfil 9101 Transitivity of dominance ...
domtrfi 9102 Transitivity of dominance ...
domtrfir 9103 Transitivity of dominance ...
f1imaenfi 9104 If a function is one-to-on...
ssdomfi 9105 A finite set dominates its...
ssdomfi2 9106 A set dominates its finite...
sbthfilem 9107 Lemma for ~ sbthfi . (Con...
sbthfi 9108 Schroeder-Bernstein Theore...
domnsymfi 9109 If a set dominates a finit...
sdomdomtrfi 9110 Transitivity of strict dom...
domsdomtrfi 9111 Transitivity of dominance ...
sucdom2 9112 Strict dominance of a set ...
phplem1 9113 Lemma for Pigeonhole Princ...
phplem2 9114 Lemma for Pigeonhole Princ...
nneneq 9115 Two equinumerous natural n...
php 9116 Pigeonhole Principle. A n...
php2 9117 Corollary of Pigeonhole Pr...
php3 9118 Corollary of Pigeonhole Pr...
php4 9119 Corollary of the Pigeonhol...
php5 9120 Corollary of the Pigeonhol...
phpeqd 9121 Corollary of the Pigeonhol...
nndomog 9122 Cardinal ordering agrees w...
onomeneq 9123 An ordinal number equinume...
onfin 9124 An ordinal number is finit...
onfin2 9125 A set is a natural number ...
nndomo 9126 Cardinal ordering agrees w...
nnsdomo 9127 Cardinal ordering agrees w...
sucdom 9128 Strict dominance of a set ...
snnen2o 9129 A singleton ` { A } ` is n...
0sdom1dom 9130 Strict dominance over 0 is...
0sdom1domALT 9131 Alternate proof of ~ 0sdom...
1sdom2 9132 Ordinal 1 is strictly domi...
1sdom2ALT 9133 Alternate proof of ~ 1sdom...
sdom1 9134 A set has less than one me...
modom 9135 Two ways to express "at mo...
modom2 9136 Two ways to express "at mo...
rex2dom 9137 A set that has at least 2 ...
1sdom2dom 9138 Strict dominance over 1 is...
1sdom 9139 A set that strictly domina...
unxpdomlem1 9140 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 9141 Lemma for ~ unxpdom . (Co...
unxpdomlem3 9142 Lemma for ~ unxpdom . (Co...
unxpdom 9143 Cartesian product dominate...
unxpdom2 9144 Corollary of ~ unxpdom . ...
sucxpdom 9145 Cartesian product dominate...
pssinf 9146 A set equinumerous to a pr...
fisseneq 9147 A finite set is equal to i...
ominf 9148 The set of natural numbers...
isinf 9149 Any set that is not finite...
fineqvlem 9150 Lemma for ~ fineqv . (Con...
fineqv 9151 If the Axiom of Infinity i...
xpfir 9152 The components of a nonemp...
ssfid 9153 A subset of a finite set i...
infi 9154 The intersection of two se...
rabfi 9155 A restricted class built f...
finresfin 9156 The restriction of a finit...
f1finf1o 9157 Any injection from one fin...
nfielex 9158 If a class is not finite, ...
en1eqsn 9159 A set with one element is ...
en1eqsnbi 9160 A set containing an elemen...
dif1ennnALT 9161 Alternate proof of ~ dif1e...
enp1ilem 9162 Lemma for uses of ~ enp1i ...
enp1i 9163 Proof induction for ~ en2 ...
en2 9164 A set equinumerous to ordi...
en3 9165 A set equinumerous to ordi...
en4 9166 A set equinumerous to ordi...
findcard3 9167 Schema for strong inductio...
ac6sfi 9168 A version of ~ ac6s for fi...
frfi 9169 A partial order is well-fo...
fimax2g 9170 A finite set has a maximum...
fimaxg 9171 A finite set has a maximum...
fisupg 9172 Lemma showing existence an...
wofi 9173 A total order on a finite ...
ordunifi 9174 The maximum of a finite co...
nnunifi 9175 The union (supremum) of a ...
unblem1 9176 Lemma for ~ unbnn . After...
unblem2 9177 Lemma for ~ unbnn . The v...
unblem3 9178 Lemma for ~ unbnn . The v...
unblem4 9179 Lemma for ~ unbnn . The f...
unbnn 9180 Any unbounded subset of na...
unbnn2 9181 Version of ~ unbnn that do...
isfinite2 9182 Any set strictly dominated...
nnsdomg 9183 Omega strictly dominates a...
isfiniteg 9184 A set is finite iff it is ...
infsdomnn 9185 An infinite set strictly d...
infn0 9186 An infinite set is not emp...
infn0ALT 9187 Shorter proof of ~ infn0 u...
fin2inf 9188 This (useless) theorem, wh...
unfilem1 9189 Lemma for proving that the...
unfilem2 9190 Lemma for proving that the...
unfilem3 9191 Lemma for proving that the...
unfir 9192 If a union is finite, the ...
unfib 9193 A union is finite if and o...
unfi2 9194 The union of two finite se...
difinf 9195 An infinite set ` A ` minu...
fodomfi 9196 An onto function implies d...
fofi 9197 If an onto function has a ...
f1fi 9198 If a 1-to-1 function has a...
imafi 9199 Images of finite sets are ...
imafiOLD 9200 Obsolete version of ~ imaf...
pwfir 9201 If the power set of a set ...
pwfilem 9202 Lemma for ~ pwfi . (Contr...
pwfi 9203 The power set of a finite ...
xpfi 9204 The Cartesian product of t...
3xpfi 9205 The Cartesian product of t...
domunfican 9206 A finite set union cancell...
infcntss 9207 Every infinite set has a d...
prfi 9208 An unordered pair is finit...
prfiALT 9209 Shorter proof of ~ prfi us...
tpfi 9210 An unordered triple is fin...
fiint 9211 Equivalent ways of stating...
fodomfir 9212 There exists a mapping fro...
fodomfib 9213 Equivalence of an onto map...
fodomfiOLD 9214 Obsolete version of ~ fodo...
fodomfibOLD 9215 Obsolete version of ~ fodo...
fofinf1o 9216 Any surjection from one fi...
rneqdmfinf1o 9217 Any function from a finite...
fidomdm 9218 Any finite set dominates i...
dmfi 9219 The domain of a finite set...
fundmfibi 9220 A function is finite if an...
resfnfinfin 9221 The restriction of a funct...
residfi 9222 A restricted identity func...
cnvfiALT 9223 Shorter proof of ~ cnvfi u...
rnfi 9224 The range of a finite set ...
f1dmvrnfibi 9225 A one-to-one function whos...
f1vrnfibi 9226 A one-to-one function whic...
iunfi 9227 The finite union of finite...
unifi 9228 The finite union of finite...
unifi2 9229 The finite union of finite...
infssuni 9230 If an infinite set ` A ` i...
unirnffid 9231 The union of the range of ...
mapfi 9232 Set exponentiation of fini...
ixpfi 9233 A Cartesian product of fin...
ixpfi2 9234 A Cartesian product of fin...
mptfi 9235 A finite mapping set is fi...
abrexfi 9236 An image set from a finite...
cnvimamptfin 9237 A preimage of a mapping wi...
elfpw 9238 Membership in a class of f...
unifpw 9239 A set is the union of its ...
f1opwfi 9240 A one-to-one mapping induc...
fissuni 9241 A finite subset of a union...
fipreima 9242 Given a finite subset ` A ...
finsschain 9243 A finite subset of the uni...
indexfi 9244 If for every element of a ...
relfsupp 9247 The property of a function...
relprcnfsupp 9248 A proper class is never fi...
isfsupp 9249 The property of a class to...
isfsuppd 9250 Deduction form of ~ isfsup...
funisfsupp 9251 The property of a function...
fsuppimp 9252 Implications of a class be...
fsuppimpd 9253 A finitely supported funct...
fsuppfund 9254 A finitely supported funct...
fisuppfi 9255 A function on a finite set...
fidmfisupp 9256 A function with a finite d...
finnzfsuppd 9257 If a function is zero outs...
fdmfisuppfi 9258 The support of a function ...
fdmfifsupp 9259 A function with a finite d...
fsuppmptdm 9260 A mapping with a finite do...
fndmfisuppfi 9261 The support of a function ...
fndmfifsupp 9262 A function with a finite d...
suppeqfsuppbi 9263 If two functions have the ...
suppssfifsupp 9264 If the support of a functi...
fsuppsssupp 9265 If the support of a functi...
fsuppsssuppgd 9266 If the support of a functi...
fsuppss 9267 A subset of a finitely sup...
fsuppssov1 9268 Formula building theorem f...
fsuppxpfi 9269 The cartesian product of t...
fczfsuppd 9270 A constant function with v...
fsuppun 9271 The union of two finitely ...
fsuppunfi 9272 The union of the support o...
fsuppunbi 9273 If the union of two classe...
0fsupp 9274 The empty set is a finitel...
snopfsupp 9275 A singleton containing an ...
funsnfsupp 9276 Finite support for a funct...
fsuppres 9277 The restriction of a finit...
fmptssfisupp 9278 The restriction of a mappi...
ressuppfi 9279 If the support of the rest...
resfsupp 9280 If the restriction of a fu...
resfifsupp 9281 The restriction of a funct...
ffsuppbi 9282 Two ways of saying that a ...
fsuppmptif 9283 A function mapping an argu...
sniffsupp 9284 A function mapping all but...
fsuppcolem 9285 Lemma for ~ fsuppco . For...
fsuppco 9286 The composition of a 1-1 f...
fsuppco2 9287 The composition of a funct...
fsuppcor 9288 The composition of a funct...
mapfienlem1 9289 Lemma 1 for ~ mapfien . (...
mapfienlem2 9290 Lemma 2 for ~ mapfien . (...
mapfienlem3 9291 Lemma 3 for ~ mapfien . (...
mapfien 9292 A bijection of the base se...
mapfien2 9293 Equinumerousity relation f...
fival 9296 The set of all the finite ...
elfi 9297 Specific properties of an ...
elfi2 9298 The empty intersection nee...
elfir 9299 Sufficient condition for a...
intrnfi 9300 Sufficient condition for t...
iinfi 9301 An indexed intersection of...
inelfi 9302 The intersection of two se...
ssfii 9303 Any element of a set ` A `...
fi0 9304 The set of finite intersec...
fieq0 9305 A set is empty iff the cla...
fiin 9306 The elements of ` ( fi `` ...
dffi2 9307 The set of finite intersec...
fiss 9308 Subset relationship for fu...
inficl 9309 A set which is closed unde...
fipwuni 9310 The set of finite intersec...
fisn 9311 A singleton is closed unde...
fiuni 9312 The union of the finite in...
fipwss 9313 If a set is a family of su...
elfiun 9314 A finite intersection of e...
dffi3 9315 The set of finite intersec...
fifo 9316 Describe a surjection from...
marypha1lem 9317 Core induction for Philip ...
marypha1 9318 (Philip) Hall's marriage t...
marypha2lem1 9319 Lemma for ~ marypha2 . Pr...
marypha2lem2 9320 Lemma for ~ marypha2 . Pr...
marypha2lem3 9321 Lemma for ~ marypha2 . Pr...
marypha2lem4 9322 Lemma for ~ marypha2 . Pr...
marypha2 9323 Version of ~ marypha1 usin...
dfsup2 9328 Quantifier-free definition...
supeq1 9329 Equality theorem for supre...
supeq1d 9330 Equality deduction for sup...
supeq1i 9331 Equality inference for sup...
supeq2 9332 Equality theorem for supre...
supeq3 9333 Equality theorem for supre...
supeq123d 9334 Equality deduction for sup...
nfsup 9335 Hypothesis builder for sup...
supmo 9336 Any class ` B ` has at mos...
supexd 9337 A supremum is a set. (Con...
supeu 9338 A supremum is unique. Sim...
supval2 9339 Alternate expression for t...
eqsup 9340 Sufficient condition for a...
eqsupd 9341 Sufficient condition for a...
supcl 9342 A supremum belongs to its ...
supub 9343 A supremum is an upper bou...
suplub 9344 A supremum is the least up...
suplub2 9345 Bidirectional form of ~ su...
supnub 9346 An upper bound is not less...
supssd 9347 Inequality deduction for s...
supex 9348 A supremum is a set. (Con...
sup00 9349 The supremum under an empt...
sup0riota 9350 The supremum of an empty s...
sup0 9351 The supremum of an empty s...
supmax 9352 The greatest element of a ...
fisup2g 9353 A finite set satisfies the...
fisupcl 9354 A nonempty finite set cont...
supgtoreq 9355 The supremum of a finite s...
suppr 9356 The supremum of a pair. (...
supsn 9357 The supremum of a singleto...
supisolem 9358 Lemma for ~ supiso . (Con...
supisoex 9359 Lemma for ~ supiso . (Con...
supiso 9360 Image of a supremum under ...
infeq1 9361 Equality theorem for infim...
infeq1d 9362 Equality deduction for inf...
infeq1i 9363 Equality inference for inf...
infeq2 9364 Equality theorem for infim...
infeq3 9365 Equality theorem for infim...
infeq123d 9366 Equality deduction for inf...
nfinf 9367 Hypothesis builder for inf...
infexd 9368 An infimum is a set. (Con...
eqinf 9369 Sufficient condition for a...
eqinfd 9370 Sufficient condition for a...
infval 9371 Alternate expression for t...
infcllem 9372 Lemma for ~ infcl , ~ infl...
infcl 9373 An infimum belongs to its ...
inflb 9374 An infimum is a lower boun...
infglb 9375 An infimum is the greatest...
infglbb 9376 Bidirectional form of ~ in...
infnlb 9377 A lower bound is not great...
infssd 9378 Inequality deduction for i...
infex 9379 An infimum is a set. (Con...
infmin 9380 The smallest element of a ...
infmo 9381 Any class ` B ` has at mos...
infeu 9382 An infimum is unique. (Co...
fimin2g 9383 A finite set has a minimum...
fiming 9384 A finite set has a minimum...
fiinfg 9385 Lemma showing existence an...
fiinf2g 9386 A finite set satisfies the...
fiinfcl 9387 A nonempty finite set cont...
infltoreq 9388 The infimum of a finite se...
infpr 9389 The infimum of a pair. (C...
infsupprpr 9390 The infimum of a proper pa...
infsn 9391 The infimum of a singleton...
inf00 9392 The infimum regarding an e...
infempty 9393 The infimum of an empty se...
infiso 9394 Image of an infimum under ...
dfoi 9397 Rewrite ~ df-oi with abbre...
oieq1 9398 Equality theorem for ordin...
oieq2 9399 Equality theorem for ordin...
nfoi 9400 Hypothesis builder for ord...
ordiso2 9401 Generalize ~ ordiso to pro...
ordiso 9402 Order-isomorphic ordinal n...
ordtypecbv 9403 Lemma for ~ ordtype . (Co...
ordtypelem1 9404 Lemma for ~ ordtype . (Co...
ordtypelem2 9405 Lemma for ~ ordtype . (Co...
ordtypelem3 9406 Lemma for ~ ordtype . (Co...
ordtypelem4 9407 Lemma for ~ ordtype . (Co...
ordtypelem5 9408 Lemma for ~ ordtype . (Co...
ordtypelem6 9409 Lemma for ~ ordtype . (Co...
ordtypelem7 9410 Lemma for ~ ordtype . ` ra...
ordtypelem8 9411 Lemma for ~ ordtype . (Co...
ordtypelem9 9412 Lemma for ~ ordtype . Eit...
ordtypelem10 9413 Lemma for ~ ordtype . Usi...
oi0 9414 Definition of the ordinal ...
oicl 9415 The order type of the well...
oif 9416 The order isomorphism of t...
oiiso2 9417 The order isomorphism of t...
ordtype 9418 For any set-like well-orde...
oiiniseg 9419 ` ran F ` is an initial se...
ordtype2 9420 For any set-like well-orde...
oiexg 9421 The order isomorphism on a...
oion 9422 The order type of the well...
oiiso 9423 The order isomorphism of t...
oien 9424 The order type of a well-o...
oieu 9425 Uniqueness of the unique o...
oismo 9426 When ` A ` is a subclass o...
oiid 9427 The order type of an ordin...
hartogslem1 9428 Lemma for ~ hartogs . (Co...
hartogslem2 9429 Lemma for ~ hartogs . (Co...
hartogs 9430 The class of ordinals domi...
wofib 9431 The only sets which are we...
wemaplem1 9432 Value of the lexicographic...
wemaplem2 9433 Lemma for ~ wemapso . Tra...
wemaplem3 9434 Lemma for ~ wemapso . Tra...
wemappo 9435 Construct lexicographic or...
wemapsolem 9436 Lemma for ~ wemapso . (Co...
wemapso 9437 Construct lexicographic or...
wemapso2lem 9438 Lemma for ~ wemapso2 . (C...
wemapso2 9439 An alternative to having a...
card2on 9440 The alternate definition o...
card2inf 9441 The alternate definition o...
harf 9444 Functionality of the Harto...
harcl 9445 Values of the Hartogs func...
harval 9446 Function value of the Hart...
elharval 9447 The Hartogs number of a se...
harndom 9448 The Hartogs number of a se...
harword 9449 Weak ordering property of ...
relwdom 9452 Weak dominance is a relati...
brwdom 9453 Property of weak dominance...
brwdomi 9454 Property of weak dominance...
brwdomn0 9455 Weak dominance over nonemp...
0wdom 9456 Any set weakly dominates t...
fowdom 9457 An onto function implies w...
wdomref 9458 Reflexivity of weak domina...
brwdom2 9459 Alternate characterization...
domwdom 9460 Weak dominance is implied ...
wdomtr 9461 Transitivity of weak domin...
wdomen1 9462 Equality-like theorem for ...
wdomen2 9463 Equality-like theorem for ...
wdompwdom 9464 Weak dominance strengthens...
canthwdom 9465 Cantor's Theorem, stated u...
wdom2d 9466 Deduce weak dominance from...
wdomd 9467 Deduce weak dominance from...
brwdom3 9468 Condition for weak dominan...
brwdom3i 9469 Weak dominance implies exi...
unwdomg 9470 Weak dominance of a (disjo...
xpwdomg 9471 Weak dominance of a Cartes...
wdomima2g 9472 A set is weakly dominant o...
wdomimag 9473 A set is weakly dominant o...
unxpwdom2 9474 Lemma for ~ unxpwdom . (C...
unxpwdom 9475 If a Cartesian product is ...
ixpiunwdom 9476 Describe an onto function ...
harwdom 9477 The value of the Hartogs f...
axreg2 9479 Axiom of Regularity expres...
zfregcl 9480 The Axiom of Regularity wi...
zfregclOLD 9481 Obsolete version of ~ zfre...
zfreg 9482 The Axiom of Regularity us...
elirrv 9483 The membership relation is...
elirrvOLD 9484 Obsolete version of ~ elir...
elirr 9485 No class is a member of it...
elneq 9486 A class is not equal to an...
nelaneq 9487 A class is not an element ...
nelaneqOLD 9488 Obsolete version of ~ nela...
epinid0 9489 The membership relation an...
sucprcreg 9490 A class is equal to its su...
ruv 9491 The Russell class is equal...
ruALT 9492 Alternate proof of ~ ru , ...
disjcsn 9493 A class is disjoint from i...
zfregfr 9494 The membership relation is...
elirrvALT 9495 Alternate proof of ~ elirr...
en2lp 9496 No class has 2-cycle membe...
elnanel 9497 Two classes are not elemen...
cnvepnep 9498 The membership (epsilon) r...
epnsym 9499 The membership (epsilon) r...
elnotel 9500 A class cannot be an eleme...
elnel 9501 A class cannot be an eleme...
en3lplem1 9502 Lemma for ~ en3lp . (Cont...
en3lplem2 9503 Lemma for ~ en3lp . (Cont...
en3lp 9504 No class has 3-cycle membe...
preleqg 9505 Equality of two unordered ...
preleq 9506 Equality of two unordered ...
preleqALT 9507 Alternate proof of ~ prele...
opthreg 9508 Theorem for alternate repr...
suc11reg 9509 The successor operation be...
dford2 9510 Assuming ~ ax-reg , an ord...
inf0 9511 Existence of ` _om ` impli...
inf1 9512 Variation of Axiom of Infi...
inf2 9513 Variation of Axiom of Infi...
inf3lema 9514 Lemma for our Axiom of Inf...
inf3lemb 9515 Lemma for our Axiom of Inf...
inf3lemc 9516 Lemma for our Axiom of Inf...
inf3lemd 9517 Lemma for our Axiom of Inf...
inf3lem1 9518 Lemma for our Axiom of Inf...
inf3lem2 9519 Lemma for our Axiom of Inf...
inf3lem3 9520 Lemma for our Axiom of Inf...
inf3lem4 9521 Lemma for our Axiom of Inf...
inf3lem5 9522 Lemma for our Axiom of Inf...
inf3lem6 9523 Lemma for our Axiom of Inf...
inf3lem7 9524 Lemma for our Axiom of Inf...
inf3 9525 Our Axiom of Infinity ~ ax...
infeq5i 9526 Half of ~ infeq5 . (Contr...
infeq5 9527 The statement "there exist...
zfinf 9529 Axiom of Infinity expresse...
axinf2 9530 A standard version of Axio...
zfinf2 9532 A standard version of the ...
omex 9533 The existence of omega (th...
axinf 9534 The first version of the A...
inf5 9535 The statement "there exist...
omelon 9536 Omega is an ordinal number...
dfom3 9537 The class of natural numbe...
elom3 9538 A simplification of ~ elom...
dfom4 9539 A simplification of ~ df-o...
dfom5 9540 ` _om ` is the smallest li...
oancom 9541 Ordinal addition is not co...
isfinite 9542 A set is finite iff it is ...
fict 9543 A finite set is countable ...
nnsdom 9544 A natural number is strict...
omenps 9545 Omega is equinumerous to a...
omensuc 9546 The set of natural numbers...
infdifsn 9547 Removing a singleton from ...
infdiffi 9548 Removing a finite set from...
unbnn3 9549 Any unbounded subset of na...
noinfep 9550 Using the Axiom of Regular...
cantnffval 9553 The value of the Cantor no...
cantnfdm 9554 The domain of the Cantor n...
cantnfvalf 9555 Lemma for ~ cantnf . The ...
cantnfs 9556 Elementhood in the set of ...
cantnfcl 9557 Basic properties of the or...
cantnfval 9558 The value of the Cantor no...
cantnfval2 9559 Alternate expression for t...
cantnfsuc 9560 The value of the recursive...
cantnfle 9561 A lower bound on the ` CNF...
cantnflt 9562 An upper bound on the part...
cantnflt2 9563 An upper bound on the ` CN...
cantnff 9564 The ` CNF ` function is a ...
cantnf0 9565 The value of the zero func...
cantnfrescl 9566 A function is finitely sup...
cantnfres 9567 The ` CNF ` function respe...
cantnfp1lem1 9568 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9569 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9570 Lemma for ~ cantnfp1 . (C...
cantnfp1 9571 If ` F ` is created by add...
oemapso 9572 The relation ` T ` is a st...
oemapval 9573 Value of the relation ` T ...
oemapvali 9574 If ` F < G ` , then there ...
cantnflem1a 9575 Lemma for ~ cantnf . (Con...
cantnflem1b 9576 Lemma for ~ cantnf . (Con...
cantnflem1c 9577 Lemma for ~ cantnf . (Con...
cantnflem1d 9578 Lemma for ~ cantnf . (Con...
cantnflem1 9579 Lemma for ~ cantnf . This...
cantnflem2 9580 Lemma for ~ cantnf . (Con...
cantnflem3 9581 Lemma for ~ cantnf . Here...
cantnflem4 9582 Lemma for ~ cantnf . Comp...
cantnf 9583 The Cantor Normal Form the...
oemapwe 9584 The lexicographic order on...
cantnffval2 9585 An alternate definition of...
cantnff1o 9586 Simplify the isomorphism o...
wemapwe 9587 Construct lexicographic or...
oef1o 9588 A bijection of the base se...
cnfcomlem 9589 Lemma for ~ cnfcom . (Con...
cnfcom 9590 Any ordinal ` B ` is equin...
cnfcom2lem 9591 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9592 Any nonzero ordinal ` B ` ...
cnfcom3lem 9593 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9594 Any infinite ordinal ` B `...
cnfcom3clem 9595 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9596 Wrap the construction of ~...
ttrcleq 9599 Equality theorem for trans...
nfttrcld 9600 Bound variable hypothesis ...
nfttrcl 9601 Bound variable hypothesis ...
relttrcl 9602 The transitive closure of ...
brttrcl 9603 Characterization of elemen...
brttrcl2 9604 Characterization of elemen...
ssttrcl 9605 If ` R ` is a relation, th...
ttrcltr 9606 The transitive closure of ...
ttrclresv 9607 The transitive closure of ...
ttrclco 9608 Composition law for the tr...
cottrcl 9609 Composition law for the tr...
ttrclss 9610 If ` R ` is a subclass of ...
dmttrcl 9611 The domain of a transitive...
rnttrcl 9612 The range of a transitive ...
ttrclexg 9613 If ` R ` is a set, then so...
dfttrcl2 9614 When ` R ` is a set and a ...
ttrclselem1 9615 Lemma for ~ ttrclse . Sho...
ttrclselem2 9616 Lemma for ~ ttrclse . Sho...
ttrclse 9617 If ` R ` is set-like over ...
trcl 9618 For any set ` A ` , show t...
tz9.1 9619 Every set has a transitive...
tz9.1c 9620 Alternate expression for t...
epfrs 9621 The strong form of the Axi...
zfregs 9622 The strong form of the Axi...
zfregs2 9623 Alternate strong form of t...
tcvalg 9626 Value of the transitive cl...
tcid 9627 Defining property of the t...
tctr 9628 Defining property of the t...
tcmin 9629 Defining property of the t...
tc2 9630 A variant of the definitio...
tcsni 9631 The transitive closure of ...
tcss 9632 The transitive closure fun...
tcel 9633 The transitive closure fun...
tcidm 9634 The transitive closure fun...
tc0 9635 The transitive closure of ...
tc00 9636 The transitive closure is ...
setind 9637 Set (epsilon) induction. ...
setind2 9638 Set (epsilon) induction, s...
setinds 9639 Principle of set induction...
setinds2f 9640 ` _E ` induction schema, u...
setinds2 9641 ` _E ` induction schema, u...
frmin 9642 Every (possibly proper) su...
frind 9643 A subclass of a well-found...
frinsg 9644 Well-Founded Induction Sch...
frins 9645 Well-Founded Induction Sch...
frins2f 9646 Well-Founded Induction sch...
frins2 9647 Well-Founded Induction sch...
frins3 9648 Well-Founded Induction sch...
frr3g 9649 Functions defined by well-...
frrlem15 9650 Lemma for general well-fou...
frrlem16 9651 Lemma for general well-fou...
frr1 9652 Law of general well-founde...
frr2 9653 Law of general well-founde...
frr3 9654 Law of general well-founde...
r1funlim 9659 The cumulative hierarchy o...
r1fnon 9660 The cumulative hierarchy o...
r10 9661 Value of the cumulative hi...
r1sucg 9662 Value of the cumulative hi...
r1suc 9663 Value of the cumulative hi...
r1limg 9664 Value of the cumulative hi...
r1lim 9665 Value of the cumulative hi...
r1fin 9666 The first ` _om ` levels o...
r1sdom 9667 Each stage in the cumulati...
r111 9668 The cumulative hierarchy i...
r1tr 9669 The cumulative hierarchy o...
r1tr2 9670 The union of a cumulative ...
r1ordg 9671 Ordering relation for the ...
r1ord3g 9672 Ordering relation for the ...
r1ord 9673 Ordering relation for the ...
r1ord2 9674 Ordering relation for the ...
r1ord3 9675 Ordering relation for the ...
r1sssuc 9676 The value of the cumulativ...
r1pwss 9677 Each set of the cumulative...
r1sscl 9678 Each set of the cumulative...
r1val1 9679 The value of the cumulativ...
tz9.12lem1 9680 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9681 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9682 Lemma for ~ tz9.12 . (Con...
tz9.12 9683 A set is well-founded if a...
tz9.13 9684 Every set is well-founded,...
tz9.13g 9685 Every set is well-founded,...
rankwflemb 9686 Two ways of saying a set i...
rankf 9687 The domain and codomain of...
rankon 9688 The rank of a set is an or...
r1elwf 9689 Any member of the cumulati...
rankvalb 9690 Value of the rank function...
rankr1ai 9691 One direction of ~ rankr1a...
rankvaln 9692 Value of the rank function...
rankidb 9693 Identity law for the rank ...
rankdmr1 9694 A rank is a member of the ...
rankr1ag 9695 A version of ~ rankr1a tha...
rankr1bg 9696 A relationship between ran...
r1rankidb 9697 Any set is a subset of the...
r1elssi 9698 The range of the ` R1 ` fu...
r1elss 9699 The range of the ` R1 ` fu...
pwwf 9700 A power set is well-founde...
sswf 9701 A subset of a well-founded...
snwf 9702 A singleton is well-founde...
unwf 9703 A binary union is well-fou...
prwf 9704 An unordered pair is well-...
opwf 9705 An ordered pair is well-fo...
unir1 9706 The cumulative hierarchy o...
jech9.3 9707 Every set belongs to some ...
rankwflem 9708 Every set is well-founded,...
rankval 9709 Value of the rank function...
rankvalg 9710 Value of the rank function...
rankval2 9711 Value of an alternate defi...
uniwf 9712 A union is well-founded if...
rankr1clem 9713 Lemma for ~ rankr1c . (Co...
rankr1c 9714 A relationship between the...
rankidn 9715 A relationship between the...
rankpwi 9716 The rank of a power set. ...
rankelb 9717 The membership relation is...
wfelirr 9718 A well-founded set is not ...
rankval3b 9719 The value of the rank func...
ranksnb 9720 The rank of a singleton. ...
rankonidlem 9721 Lemma for ~ rankonid . (C...
rankonid 9722 The rank of an ordinal num...
onwf 9723 The ordinals are all well-...
onssr1 9724 Initial segments of the or...
rankr1g 9725 A relationship between the...
rankid 9726 Identity law for the rank ...
rankr1 9727 A relationship between the...
ssrankr1 9728 A relationship between an ...
rankr1a 9729 A relationship between ran...
r1val2 9730 The value of the cumulativ...
r1val3 9731 The value of the cumulativ...
rankel 9732 The membership relation is...
rankval3 9733 The value of the rank func...
bndrank 9734 Any class whose elements h...
unbndrank 9735 The elements of a proper c...
rankpw 9736 The rank of a power set. ...
ranklim 9737 The rank of a set belongs ...
r1pw 9738 A stronger property of ` R...
r1pwALT 9739 Alternate shorter proof of...
r1pwcl 9740 The cumulative hierarchy o...
rankssb 9741 The subset relation is inh...
rankss 9742 The subset relation is inh...
rankunb 9743 The rank of the union of t...
rankprb 9744 The rank of an unordered p...
rankopb 9745 The rank of an ordered pai...
rankuni2b 9746 The value of the rank func...
ranksn 9747 The rank of a singleton. ...
rankuni2 9748 The rank of a union. Part...
rankun 9749 The rank of the union of t...
rankpr 9750 The rank of an unordered p...
rankop 9751 The rank of an ordered pai...
r1rankid 9752 Any set is a subset of the...
rankeq0b 9753 A set is empty iff its ran...
rankeq0 9754 A set is empty iff its ran...
rankr1id 9755 The rank of the hierarchy ...
rankuni 9756 The rank of a union. Part...
rankr1b 9757 A relationship between ran...
ranksuc 9758 The rank of a successor. ...
rankuniss 9759 Upper bound of the rank of...
rankval4 9760 The rank of a set is the s...
rankbnd 9761 The rank of a set is bound...
rankbnd2 9762 The rank of a set is bound...
rankc1 9763 A relationship that can be...
rankc2 9764 A relationship that can be...
rankelun 9765 Rank membership is inherit...
rankelpr 9766 Rank membership is inherit...
rankelop 9767 Rank membership is inherit...
rankxpl 9768 A lower bound on the rank ...
rankxpu 9769 An upper bound on the rank...
rankfu 9770 An upper bound on the rank...
rankmapu 9771 An upper bound on the rank...
rankxplim 9772 The rank of a Cartesian pr...
rankxplim2 9773 If the rank of a Cartesian...
rankxplim3 9774 The rank of a Cartesian pr...
rankxpsuc 9775 The rank of a Cartesian pr...
tcwf 9776 The transitive closure fun...
tcrank 9777 This theorem expresses two...
scottex 9778 Scott's trick collects all...
scott0 9779 Scott's trick collects all...
scottexs 9780 Theorem scheme version of ...
scott0s 9781 Theorem scheme version of ...
cplem1 9782 Lemma for the Collection P...
cplem2 9783 Lemma for the Collection P...
cp 9784 Collection Principle. Thi...
bnd 9785 A very strong generalizati...
bnd2 9786 A variant of the Boundedne...
kardex 9787 The collection of all sets...
karden 9788 If we allow the Axiom of R...
htalem 9789 Lemma for defining an emul...
hta 9790 A ZFC emulation of Hilbert...
djueq12 9797 Equality theorem for disjo...
djueq1 9798 Equality theorem for disjo...
djueq2 9799 Equality theorem for disjo...
nfdju 9800 Bound-variable hypothesis ...
djuex 9801 The disjoint union of sets...
djuexb 9802 The disjoint union of two ...
djulcl 9803 Left closure of disjoint u...
djurcl 9804 Right closure of disjoint ...
djulf1o 9805 The left injection functio...
djurf1o 9806 The right injection functi...
inlresf 9807 The left injection restric...
inlresf1 9808 The left injection restric...
inrresf 9809 The right injection restri...
inrresf1 9810 The right injection restri...
djuin 9811 The images of any classes ...
djur 9812 A member of a disjoint uni...
djuss 9813 A disjoint union is a subc...
djuunxp 9814 The union of a disjoint un...
djuexALT 9815 Alternate proof of ~ djuex...
eldju1st 9816 The first component of an ...
eldju2ndl 9817 The second component of an...
eldju2ndr 9818 The second component of an...
djuun 9819 The disjoint union of two ...
1stinl 9820 The first component of the...
2ndinl 9821 The second component of th...
1stinr 9822 The first component of the...
2ndinr 9823 The second component of th...
updjudhf 9824 The mapping of an element ...
updjudhcoinlf 9825 The composition of the map...
updjudhcoinrg 9826 The composition of the map...
updjud 9827 Universal property of the ...
cardf2 9836 The cardinality function i...
cardon 9837 The cardinal number of a s...
isnum2 9838 A way to express well-orde...
isnumi 9839 A set equinumerous to an o...
ennum 9840 Equinumerous sets are equi...
finnum 9841 Every finite set is numera...
onenon 9842 Every ordinal number is nu...
tskwe 9843 A Tarski set is well-order...
xpnum 9844 The cartesian product of n...
cardval3 9845 An alternate definition of...
cardid2 9846 Any numerable set is equin...
isnum3 9847 A set is numerable iff it ...
oncardval 9848 The value of the cardinal ...
oncardid 9849 Any ordinal number is equi...
cardonle 9850 The cardinal of an ordinal...
card0 9851 The cardinality of the emp...
cardidm 9852 The cardinality function i...
oncard 9853 A set is a cardinal number...
ficardom 9854 The cardinal number of a f...
ficardid 9855 A finite set is equinumero...
cardnn 9856 The cardinality of a natur...
cardnueq0 9857 The empty set is the only ...
cardne 9858 No member of a cardinal nu...
carden2a 9859 If two sets have equal non...
carden2b 9860 If two sets are equinumero...
card1 9861 A set has cardinality one ...
cardsn 9862 A singleton has cardinalit...
carddomi2 9863 Two sets have the dominanc...
sdomsdomcardi 9864 A set strictly dominates i...
cardlim 9865 An infinite cardinal is a ...
cardsdomelir 9866 A cardinal strictly domina...
cardsdomel 9867 A cardinal strictly domina...
iscard 9868 Two ways to express the pr...
iscard2 9869 Two ways to express the pr...
carddom2 9870 Two numerable sets have th...
harcard 9871 The class of ordinal numbe...
cardprclem 9872 Lemma for ~ cardprc . (Co...
cardprc 9873 The class of all cardinal ...
carduni 9874 The union of a set of card...
cardiun 9875 The indexed union of a set...
cardennn 9876 If ` A ` is equinumerous t...
cardsucinf 9877 The cardinality of the suc...
cardsucnn 9878 The cardinality of the suc...
cardom 9879 The set of natural numbers...
carden2 9880 Two numerable sets are equ...
cardsdom2 9881 A numerable set is strictl...
domtri2 9882 Trichotomy of dominance fo...
nnsdomel 9883 Strict dominance and eleme...
cardval2 9884 An alternate version of th...
isinffi 9885 An infinite set contains s...
fidomtri 9886 Trichotomy of dominance wi...
fidomtri2 9887 Trichotomy of dominance wi...
harsdom 9888 The Hartogs number of a we...
onsdom 9889 Any well-orderable set is ...
harval2 9890 An alternate expression fo...
harsucnn 9891 The next cardinal after a ...
cardmin2 9892 The smallest ordinal that ...
pm54.43lem 9893 In Theorem *54.43 of [Whit...
pm54.43 9894 Theorem *54.43 of [Whitehe...
enpr2 9895 An unordered pair with dis...
pr2ne 9896 If an unordered pair has t...
prdom2 9897 An unordered pair has at m...
en2eqpr 9898 Building a set with two el...
en2eleq 9899 Express a set of pair card...
en2other2 9900 Taking the other element t...
dif1card 9901 The cardinality of a nonem...
leweon 9902 Lexicographical order is a...
r0weon 9903 A set-like well-ordering o...
infxpenlem 9904 Lemma for ~ infxpen . (Co...
infxpen 9905 Every infinite ordinal is ...
xpomen 9906 The Cartesian product of o...
xpct 9907 The cartesian product of t...
infxpidm2 9908 Every infinite well-ordera...
infxpenc 9909 A canonical version of ~ i...
infxpenc2lem1 9910 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 9911 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 9912 Lemma for ~ infxpenc2 . (...
infxpenc2 9913 Existence form of ~ infxpe...
iunmapdisj 9914 The union ` U_ n e. C ( A ...
fseqenlem1 9915 Lemma for ~ fseqen . (Con...
fseqenlem2 9916 Lemma for ~ fseqen . (Con...
fseqdom 9917 One half of ~ fseqen . (C...
fseqen 9918 A set that is equinumerous...
infpwfidom 9919 The collection of finite s...
dfac8alem 9920 Lemma for ~ dfac8a . If t...
dfac8a 9921 Numeration theorem: every ...
dfac8b 9922 The well-ordering theorem:...
dfac8clem 9923 Lemma for ~ dfac8c . (Con...
dfac8c 9924 If the union of a set is w...
ac10ct 9925 A proof of the well-orderi...
ween 9926 A set is numerable iff it ...
ac5num 9927 A version of ~ ac5b with t...
ondomen 9928 If a set is dominated by a...
numdom 9929 A set dominated by a numer...
ssnum 9930 A subset of a numerable se...
onssnum 9931 All subsets of the ordinal...
indcardi 9932 Indirect strong induction ...
acnrcl 9933 Reverse closure for the ch...
acneq 9934 Equality theorem for the c...
isacn 9935 The property of being a ch...
acni 9936 The property of being a ch...
acni2 9937 The property of being a ch...
acni3 9938 The property of being a ch...
acnlem 9939 Construct a mapping satisf...
numacn 9940 A well-orderable set has c...
finacn 9941 Every set has finite choic...
acndom 9942 A set with long choice seq...
acnnum 9943 A set ` X ` which has choi...
acnen 9944 The class of choice sets o...
acndom2 9945 A set smaller than one wit...
acnen2 9946 The class of sets with cho...
fodomacn 9947 A version of ~ fodom that ...
fodomnum 9948 A version of ~ fodom that ...
fonum 9949 A surjection maps numerabl...
numwdom 9950 A surjection maps numerabl...
fodomfi2 9951 Onto functions define domi...
wdomfil 9952 Weak dominance agrees with...
infpwfien 9953 Any infinite well-orderabl...
inffien 9954 The set of finite intersec...
wdomnumr 9955 Weak dominance agrees with...
alephfnon 9956 The aleph function is a fu...
aleph0 9957 The first infinite cardina...
alephlim 9958 Value of the aleph functio...
alephsuc 9959 Value of the aleph functio...
alephon 9960 An aleph is an ordinal num...
alephcard 9961 Every aleph is a cardinal ...
alephnbtwn 9962 No cardinal can be sandwic...
alephnbtwn2 9963 No set has equinumerosity ...
alephordilem1 9964 Lemma for ~ alephordi . (...
alephordi 9965 Strict ordering property o...
alephord 9966 Ordering property of the a...
alephord2 9967 Ordering property of the a...
alephord2i 9968 Ordering property of the a...
alephord3 9969 Ordering property of the a...
alephsucdom 9970 A set dominated by an alep...
alephsuc2 9971 An alternate representatio...
alephdom 9972 Relationship between inclu...
alephgeom 9973 Every aleph is greater tha...
alephislim 9974 Every aleph is a limit ord...
aleph11 9975 The aleph function is one-...
alephf1 9976 The aleph function is a on...
alephsdom 9977 If an ordinal is smaller t...
alephdom2 9978 A dominated initial ordina...
alephle 9979 The argument of the aleph ...
cardaleph 9980 Given any transfinite card...
cardalephex 9981 Every transfinite cardinal...
infenaleph 9982 An infinite numerable set ...
isinfcard 9983 Two ways to express the pr...
iscard3 9984 Two ways to express the pr...
cardnum 9985 Two ways to express the cl...
alephinit 9986 An infinite initial ordina...
carduniima 9987 The union of the image of ...
cardinfima 9988 If a mapping to cardinals ...
alephiso 9989 Aleph is an order isomorph...
alephprc 9990 The class of all transfini...
alephsson 9991 The class of transfinite c...
unialeph 9992 The union of the class of ...
alephsmo 9993 The aleph function is stri...
alephf1ALT 9994 Alternate proof of ~ aleph...
alephfplem1 9995 Lemma for ~ alephfp . (Co...
alephfplem2 9996 Lemma for ~ alephfp . (Co...
alephfplem3 9997 Lemma for ~ alephfp . (Co...
alephfplem4 9998 Lemma for ~ alephfp . (Co...
alephfp 9999 The aleph function has a f...
alephfp2 10000 The aleph function has at ...
alephval3 10001 An alternate way to expres...
alephsucpw2 10002 The power set of an aleph ...
mappwen 10003 Power rule for cardinal ar...
finnisoeu 10004 A finite totally ordered s...
iunfictbso 10005 Countability of a countabl...
aceq1 10008 Equivalence of two version...
aceq0 10009 Equivalence of two version...
aceq2 10010 Equivalence of two version...
aceq3lem 10011 Lemma for ~ dfac3 . (Cont...
dfac3 10012 Equivalence of two version...
dfac4 10013 Equivalence of two version...
dfac5lem1 10014 Lemma for ~ dfac5 . (Cont...
dfac5lem2 10015 Lemma for ~ dfac5 . (Cont...
dfac5lem3 10016 Lemma for ~ dfac5 . (Cont...
dfac5lem4 10017 Lemma for ~ dfac5 . (Cont...
dfac5lem5 10018 Lemma for ~ dfac5 . (Cont...
dfac5lem4OLD 10019 Obsolete version of ~ dfac...
dfac5 10020 Equivalence of two version...
dfac2a 10021 Our Axiom of Choice (in th...
dfac2b 10022 Axiom of Choice (first for...
dfac2 10023 Axiom of Choice (first for...
dfac7 10024 Equivalence of the Axiom o...
dfac0 10025 Equivalence of two version...
dfac1 10026 Equivalence of two version...
dfac8 10027 A proof of the equivalency...
dfac9 10028 Equivalence of the axiom o...
dfac10 10029 Axiom of Choice equivalent...
dfac10c 10030 Axiom of Choice equivalent...
dfac10b 10031 Axiom of Choice equivalent...
acacni 10032 A choice equivalent: every...
dfacacn 10033 A choice equivalent: every...
dfac13 10034 The axiom of choice holds ...
dfac12lem1 10035 Lemma for ~ dfac12 . (Con...
dfac12lem2 10036 Lemma for ~ dfac12 . (Con...
dfac12lem3 10037 Lemma for ~ dfac12 . (Con...
dfac12r 10038 The axiom of choice holds ...
dfac12k 10039 Equivalence of ~ dfac12 an...
dfac12a 10040 The axiom of choice holds ...
dfac12 10041 The axiom of choice holds ...
kmlem1 10042 Lemma for 5-quantifier AC ...
kmlem2 10043 Lemma for 5-quantifier AC ...
kmlem3 10044 Lemma for 5-quantifier AC ...
kmlem4 10045 Lemma for 5-quantifier AC ...
kmlem5 10046 Lemma for 5-quantifier AC ...
kmlem6 10047 Lemma for 5-quantifier AC ...
kmlem7 10048 Lemma for 5-quantifier AC ...
kmlem8 10049 Lemma for 5-quantifier AC ...
kmlem9 10050 Lemma for 5-quantifier AC ...
kmlem10 10051 Lemma for 5-quantifier AC ...
kmlem11 10052 Lemma for 5-quantifier AC ...
kmlem12 10053 Lemma for 5-quantifier AC ...
kmlem13 10054 Lemma for 5-quantifier AC ...
kmlem14 10055 Lemma for 5-quantifier AC ...
kmlem15 10056 Lemma for 5-quantifier AC ...
kmlem16 10057 Lemma for 5-quantifier AC ...
dfackm 10058 Equivalence of the Axiom o...
undjudom 10059 Cardinal addition dominate...
endjudisj 10060 Equinumerosity of a disjoi...
djuen 10061 Disjoint unions of equinum...
djuenun 10062 Disjoint union is equinume...
dju1en 10063 Cardinal addition with car...
dju1dif 10064 Adding and subtracting one...
dju1p1e2 10065 1+1=2 for cardinal number ...
dju1p1e2ALT 10066 Alternate proof of ~ dju1p...
dju0en 10067 Cardinal addition with car...
xp2dju 10068 Two times a cardinal numbe...
djucomen 10069 Commutative law for cardin...
djuassen 10070 Associative law for cardin...
xpdjuen 10071 Cardinal multiplication di...
mapdjuen 10072 Sum of exponents law for c...
pwdjuen 10073 Sum of exponents law for c...
djudom1 10074 Ordering law for cardinal ...
djudom2 10075 Ordering law for cardinal ...
djudoml 10076 A set is dominated by its ...
djuxpdom 10077 Cartesian product dominate...
djufi 10078 The disjoint union of two ...
cdainflem 10079 Any partition of omega int...
djuinf 10080 A set is infinite iff the ...
infdju1 10081 An infinite set is equinum...
pwdju1 10082 The sum of a powerset with...
pwdjuidm 10083 If the natural numbers inj...
djulepw 10084 If ` A ` is idempotent und...
onadju 10085 The cardinal and ordinal s...
cardadju 10086 The cardinal sum is equinu...
djunum 10087 The disjoint union of two ...
unnum 10088 The union of two numerable...
nnadju 10089 The cardinal and ordinal s...
nnadjuALT 10090 Shorter proof of ~ nnadju ...
ficardadju 10091 The disjoint union of fini...
ficardun 10092 The cardinality of the uni...
ficardun2 10093 The cardinality of the uni...
pwsdompw 10094 Lemma for ~ domtriom . Th...
unctb 10095 The union of two countable...
infdjuabs 10096 Absorption law for additio...
infunabs 10097 An infinite set is equinum...
infdju 10098 The sum of two cardinal nu...
infdif 10099 The cardinality of an infi...
infdif2 10100 Cardinality ordering for a...
infxpdom 10101 Dominance law for multipli...
infxpabs 10102 Absorption law for multipl...
infunsdom1 10103 The union of two sets that...
infunsdom 10104 The union of two sets that...
infxp 10105 Absorption law for multipl...
pwdjudom 10106 A property of dominance ov...
infpss 10107 Every infinite set has an ...
infmap2 10108 An exponentiation law for ...
ackbij2lem1 10109 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 10110 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 10111 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 10112 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 10113 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 10114 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 10115 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 10116 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 10117 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 10118 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 10119 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 10120 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 10121 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 10122 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 10123 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 10124 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 10125 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 10126 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 10127 Lemma for ~ ackbij1 . (Co...
ackbij1 10128 The Ackermann bijection, p...
ackbij1b 10129 The Ackermann bijection, p...
ackbij2lem2 10130 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 10131 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 10132 Lemma for ~ ackbij2 . (Co...
ackbij2 10133 The Ackermann bijection, p...
r1om 10134 The set of hereditarily fi...
fictb 10135 A set is countable iff its...
cflem 10136 A lemma used to simplify c...
cflemOLD 10137 Obsolete version of ~ cfle...
cfval 10138 Value of the cofinality fu...
cff 10139 Cofinality is a function o...
cfub 10140 An upper bound on cofinali...
cflm 10141 Value of the cofinality fu...
cf0 10142 Value of the cofinality fu...
cardcf 10143 Cofinality is a cardinal n...
cflecard 10144 Cofinality is bounded by t...
cfle 10145 Cofinality is bounded by i...
cfon 10146 The cofinality of any set ...
cfeq0 10147 Only the ordinal zero has ...
cfsuc 10148 Value of the cofinality fu...
cff1 10149 There is always a map from...
cfflb 10150 If there is a cofinal map ...
cfval2 10151 Another expression for the...
coflim 10152 A simpler expression for t...
cflim3 10153 Another expression for the...
cflim2 10154 The cofinality function is...
cfom 10155 Value of the cofinality fu...
cfss 10156 There is a cofinal subset ...
cfslb 10157 Any cofinal subset of ` A ...
cfslbn 10158 Any subset of ` A ` smalle...
cfslb2n 10159 Any small collection of sm...
cofsmo 10160 Any cofinal map implies th...
cfsmolem 10161 Lemma for ~ cfsmo . (Cont...
cfsmo 10162 The map in ~ cff1 can be a...
cfcoflem 10163 Lemma for ~ cfcof , showin...
coftr 10164 If there is a cofinal map ...
cfcof 10165 If there is a cofinal map ...
cfidm 10166 The cofinality function is...
alephsing 10167 The cofinality of a limit ...
sornom 10168 The range of a single-step...
isfin1a 10183 Definition of a Ia-finite ...
fin1ai 10184 Property of a Ia-finite se...
isfin2 10185 Definition of a II-finite ...
fin2i 10186 Property of a II-finite se...
isfin3 10187 Definition of a III-finite...
isfin4 10188 Definition of a IV-finite ...
fin4i 10189 Infer that a set is IV-inf...
isfin5 10190 Definition of a V-finite s...
isfin6 10191 Definition of a VI-finite ...
isfin7 10192 Definition of a VII-finite...
sdom2en01 10193 A set with less than two e...
infpssrlem1 10194 Lemma for ~ infpssr . (Co...
infpssrlem2 10195 Lemma for ~ infpssr . (Co...
infpssrlem3 10196 Lemma for ~ infpssr . (Co...
infpssrlem4 10197 Lemma for ~ infpssr . (Co...
infpssrlem5 10198 Lemma for ~ infpssr . (Co...
infpssr 10199 Dedekind infinity implies ...
fin4en1 10200 Dedekind finite is a cardi...
ssfin4 10201 Dedekind finite sets have ...
domfin4 10202 A set dominated by a Dedek...
ominf4 10203 ` _om ` is Dedekind infini...
infpssALT 10204 Alternate proof of ~ infps...
isfin4-2 10205 Alternate definition of IV...
isfin4p1 10206 Alternate definition of IV...
fin23lem7 10207 Lemma for ~ isfin2-2 . Th...
fin23lem11 10208 Lemma for ~ isfin2-2 . (C...
fin2i2 10209 A II-finite set contains m...
isfin2-2 10210 ` Fin2 ` expressed in term...
ssfin2 10211 A subset of a II-finite se...
enfin2i 10212 II-finiteness is a cardina...
fin23lem24 10213 Lemma for ~ fin23 . In a ...
fincssdom 10214 In a chain of finite sets,...
fin23lem25 10215 Lemma for ~ fin23 . In a ...
fin23lem26 10216 Lemma for ~ fin23lem22 . ...
fin23lem23 10217 Lemma for ~ fin23lem22 . ...
fin23lem22 10218 Lemma for ~ fin23 but coul...
fin23lem27 10219 The mapping constructed in...
isfin3ds 10220 Property of a III-finite s...
ssfin3ds 10221 A subset of a III-finite s...
fin23lem12 10222 The beginning of the proof...
fin23lem13 10223 Lemma for ~ fin23 . Each ...
fin23lem14 10224 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10225 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10226 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10227 Lemma for ~ fin23 . The f...
fin23lem20 10228 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10229 Lemma for ~ fin23 . By ? ...
fin23lem21 10230 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10231 Lemma for ~ fin23 . The r...
fin23lem29 10232 Lemma for ~ fin23 . The r...
fin23lem30 10233 Lemma for ~ fin23 . The r...
fin23lem31 10234 Lemma for ~ fin23 . The r...
fin23lem32 10235 Lemma for ~ fin23 . Wrap ...
fin23lem33 10236 Lemma for ~ fin23 . Disch...
fin23lem34 10237 Lemma for ~ fin23 . Estab...
fin23lem35 10238 Lemma for ~ fin23 . Stric...
fin23lem36 10239 Lemma for ~ fin23 . Weak ...
fin23lem38 10240 Lemma for ~ fin23 . The c...
fin23lem39 10241 Lemma for ~ fin23 . Thus,...
fin23lem40 10242 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10243 Lemma for ~ fin23 . A set...
isf32lem1 10244 Lemma for ~ isfin3-2 . De...
isf32lem2 10245 Lemma for ~ isfin3-2 . No...
isf32lem3 10246 Lemma for ~ isfin3-2 . Be...
isf32lem4 10247 Lemma for ~ isfin3-2 . Be...
isf32lem5 10248 Lemma for ~ isfin3-2 . Th...
isf32lem6 10249 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10250 Lemma for ~ isfin3-2 . Di...
isf32lem8 10251 Lemma for ~ isfin3-2 . K ...
isf32lem9 10252 Lemma for ~ isfin3-2 . Co...
isf32lem10 10253 Lemma for isfin3-2 . Writ...
isf32lem11 10254 Lemma for ~ isfin3-2 . Re...
isf32lem12 10255 Lemma for ~ isfin3-2 . (C...
isfin32i 10256 One half of ~ isfin3-2 . ...
isf33lem 10257 Lemma for ~ isfin3-3 . (C...
isfin3-2 10258 Weakly Dedekind-infinite s...
isfin3-3 10259 Weakly Dedekind-infinite s...
fin33i 10260 Inference from ~ isfin3-3 ...
compsscnvlem 10261 Lemma for ~ compsscnv . (...
compsscnv 10262 Complementation on a power...
isf34lem1 10263 Lemma for ~ isfin3-4 . (C...
isf34lem2 10264 Lemma for ~ isfin3-4 . (C...
compssiso 10265 Complementation is an anti...
isf34lem3 10266 Lemma for ~ isfin3-4 . (C...
compss 10267 Express image under of the...
isf34lem4 10268 Lemma for ~ isfin3-4 . (C...
isf34lem5 10269 Lemma for ~ isfin3-4 . (C...
isf34lem7 10270 Lemma for ~ isfin3-4 . (C...
isf34lem6 10271 Lemma for ~ isfin3-4 . (C...
fin34i 10272 Inference from ~ isfin3-4 ...
isfin3-4 10273 Weakly Dedekind-infinite s...
fin11a 10274 Every I-finite set is Ia-f...
enfin1ai 10275 Ia-finiteness is a cardina...
isfin1-2 10276 A set is finite in the usu...
isfin1-3 10277 A set is I-finite iff ever...
isfin1-4 10278 A set is I-finite iff ever...
dffin1-5 10279 Compact quantifier-free ve...
fin23 10280 Every II-finite set (every...
fin34 10281 Every III-finite set is IV...
isfin5-2 10282 Alternate definition of V-...
fin45 10283 Every IV-finite set is V-f...
fin56 10284 Every V-finite set is VI-f...
fin17 10285 Every I-finite set is VII-...
fin67 10286 Every VI-finite set is VII...
isfin7-2 10287 A set is VII-finite iff it...
fin71num 10288 A well-orderable set is VI...
dffin7-2 10289 Class form of ~ isfin7-2 ....
dfacfin7 10290 Axiom of Choice equivalent...
fin1a2lem1 10291 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10292 Lemma for ~ fin1a2 . The ...
fin1a2lem3 10293 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10294 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10295 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10296 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10297 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10298 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10299 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10300 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10301 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10302 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10303 Lemma for ~ fin1a2 . (Con...
fin12 10304 Weak theorem which skips I...
fin1a2s 10305 An II-infinite set can hav...
fin1a2 10306 Every Ia-finite set is II-...
itunifval 10307 Function value of iterated...
itunifn 10308 Functionality of the itera...
ituni0 10309 A zero-fold iterated union...
itunisuc 10310 Successor iterated union. ...
itunitc1 10311 Each union iterate is a me...
itunitc 10312 The union of all union ite...
ituniiun 10313 Unwrap an iterated union f...
hsmexlem7 10314 Lemma for ~ hsmex . Prope...
hsmexlem8 10315 Lemma for ~ hsmex . Prope...
hsmexlem9 10316 Lemma for ~ hsmex . Prope...
hsmexlem1 10317 Lemma for ~ hsmex . Bound...
hsmexlem2 10318 Lemma for ~ hsmex . Bound...
hsmexlem3 10319 Lemma for ~ hsmex . Clear...
hsmexlem4 10320 Lemma for ~ hsmex . The c...
hsmexlem5 10321 Lemma for ~ hsmex . Combi...
hsmexlem6 10322 Lemma for ~ hsmex . (Cont...
hsmex 10323 The collection of heredita...
hsmex2 10324 The set of hereditary size...
hsmex3 10325 The set of hereditary size...
axcc2lem 10327 Lemma for ~ axcc2 . (Cont...
axcc2 10328 A possibly more useful ver...
axcc3 10329 A possibly more useful ver...
axcc4 10330 A version of ~ axcc3 that ...
acncc 10331 An ~ ax-cc equivalent: eve...
axcc4dom 10332 Relax the constraint on ~ ...
domtriomlem 10333 Lemma for ~ domtriom . (C...
domtriom 10334 Trichotomy of equinumerosi...
fin41 10335 Under countable choice, th...
dominf 10336 A nonempty set that is a s...
dcomex 10338 The Axiom of Dependent Cho...
axdc2lem 10339 Lemma for ~ axdc2 . We co...
axdc2 10340 An apparent strengthening ...
axdc3lem 10341 The class ` S ` of finite ...
axdc3lem2 10342 Lemma for ~ axdc3 . We ha...
axdc3lem3 10343 Simple substitution lemma ...
axdc3lem4 10344 Lemma for ~ axdc3 . We ha...
axdc3 10345 Dependent Choice. Axiom D...
axdc4lem 10346 Lemma for ~ axdc4 . (Cont...
axdc4 10347 A more general version of ...
axcclem 10348 Lemma for ~ axcc . (Contr...
axcc 10349 Although CC can be proven ...
zfac 10351 Axiom of Choice expressed ...
ac2 10352 Axiom of Choice equivalent...
ac3 10353 Axiom of Choice using abbr...
axac3 10355 This theorem asserts that ...
ackm 10356 A remarkable equivalent to...
axac2 10357 Derive ~ ax-ac2 from ~ ax-...
axac 10358 Derive ~ ax-ac from ~ ax-a...
axaci 10359 Apply a choice equivalent....
cardeqv 10360 All sets are well-orderabl...
numth3 10361 All sets are well-orderabl...
numth2 10362 Numeration theorem: any se...
numth 10363 Numeration theorem: every ...
ac7 10364 An Axiom of Choice equival...
ac7g 10365 An Axiom of Choice equival...
ac4 10366 Equivalent of Axiom of Cho...
ac4c 10367 Equivalent of Axiom of Cho...
ac5 10368 An Axiom of Choice equival...
ac5b 10369 Equivalent of Axiom of Cho...
ac6num 10370 A version of ~ ac6 which t...
ac6 10371 Equivalent of Axiom of Cho...
ac6c4 10372 Equivalent of Axiom of Cho...
ac6c5 10373 Equivalent of Axiom of Cho...
ac9 10374 An Axiom of Choice equival...
ac6s 10375 Equivalent of Axiom of Cho...
ac6n 10376 Equivalent of Axiom of Cho...
ac6s2 10377 Generalization of the Axio...
ac6s3 10378 Generalization of the Axio...
ac6sg 10379 ~ ac6s with sethood as ant...
ac6sf 10380 Version of ~ ac6 with boun...
ac6s4 10381 Generalization of the Axio...
ac6s5 10382 Generalization of the Axio...
ac8 10383 An Axiom of Choice equival...
ac9s 10384 An Axiom of Choice equival...
numthcor 10385 Any set is strictly domina...
weth 10386 Well-ordering theorem: any...
zorn2lem1 10387 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10388 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10389 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10390 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10391 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10392 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10393 Lemma for ~ zorn2 . (Cont...
zorn2g 10394 Zorn's Lemma of [Monk1] p....
zorng 10395 Zorn's Lemma. If the unio...
zornn0g 10396 Variant of Zorn's lemma ~ ...
zorn2 10397 Zorn's Lemma of [Monk1] p....
zorn 10398 Zorn's Lemma. If the unio...
zornn0 10399 Variant of Zorn's lemma ~ ...
ttukeylem1 10400 Lemma for ~ ttukey . Expa...
ttukeylem2 10401 Lemma for ~ ttukey . A pr...
ttukeylem3 10402 Lemma for ~ ttukey . (Con...
ttukeylem4 10403 Lemma for ~ ttukey . (Con...
ttukeylem5 10404 Lemma for ~ ttukey . The ...
ttukeylem6 10405 Lemma for ~ ttukey . (Con...
ttukeylem7 10406 Lemma for ~ ttukey . (Con...
ttukey2g 10407 The Teichmüller-Tukey...
ttukeyg 10408 The Teichmüller-Tukey...
ttukey 10409 The Teichmüller-Tukey...
axdclem 10410 Lemma for ~ axdc . (Contr...
axdclem2 10411 Lemma for ~ axdc . Using ...
axdc 10412 This theorem derives ~ ax-...
fodomg 10413 An onto function implies d...
fodom 10414 An onto function implies d...
dmct 10415 The domain of a countable ...
rnct 10416 The range of a countable s...
fodomb 10417 Equivalence of an onto map...
wdomac 10418 When assuming AC, weak and...
brdom3 10419 Equivalence to a dominance...
brdom5 10420 An equivalence to a domina...
brdom4 10421 An equivalence to a domina...
brdom7disj 10422 An equivalence to a domina...
brdom6disj 10423 An equivalence to a domina...
fin71ac 10424 Once we allow AC, the "str...
imadomg 10425 An image of a function und...
fimact 10426 The image by a function of...
fnrndomg 10427 The range of a function is...
fnct 10428 If the domain of a functio...
mptct 10429 A countable mapping set is...
iunfo 10430 Existence of an onto funct...
iundom2g 10431 An upper bound for the car...
iundomg 10432 An upper bound for the car...
iundom 10433 An upper bound for the car...
unidom 10434 An upper bound for the car...
uniimadom 10435 An upper bound for the car...
uniimadomf 10436 An upper bound for the car...
cardval 10437 The value of the cardinal ...
cardid 10438 Any set is equinumerous to...
cardidg 10439 Any set is equinumerous to...
cardidd 10440 Any set is equinumerous to...
cardf 10441 The cardinality function i...
carden 10442 Two sets are equinumerous ...
cardeq0 10443 Only the empty set has car...
unsnen 10444 Equinumerosity of a set wi...
carddom 10445 Two sets have the dominanc...
cardsdom 10446 Two sets have the strict d...
domtri 10447 Trichotomy law for dominan...
entric 10448 Trichotomy of equinumerosi...
entri2 10449 Trichotomy of dominance an...
entri3 10450 Trichotomy of dominance. ...
sdomsdomcard 10451 A set strictly dominates i...
canth3 10452 Cantor's theorem in terms ...
infxpidm 10453 Every infinite class is eq...
ondomon 10454 The class of ordinals domi...
cardmin 10455 The smallest ordinal that ...
ficard 10456 A set is finite iff its ca...
infinf 10457 Equivalence between two in...
unirnfdomd 10458 The union of the range of ...
konigthlem 10459 Lemma for ~ konigth . (Co...
konigth 10460 Konig's Theorem. If ` m (...
alephsucpw 10461 The power set of an aleph ...
aleph1 10462 The set exponentiation of ...
alephval2 10463 An alternate way to expres...
dominfac 10464 A nonempty set that is a s...
iunctb 10465 The countable union of cou...
unictb 10466 The countable union of cou...
infmap 10467 An exponentiation law for ...
alephadd 10468 The sum of two alephs is t...
alephmul 10469 The product of two alephs ...
alephexp1 10470 An exponentiation law for ...
alephsuc3 10471 An alternate representatio...
alephexp2 10472 An expression equinumerous...
alephreg 10473 A successor aleph is regul...
pwcfsdom 10474 A corollary of Konig's The...
cfpwsdom 10475 A corollary of Konig's The...
alephom 10476 From ~ canth2 , we know th...
smobeth 10477 The beth function is stric...
nd1 10478 A lemma for proving condit...
nd2 10479 A lemma for proving condit...
nd3 10480 A lemma for proving condit...
nd4 10481 A lemma for proving condit...
axextnd 10482 A version of the Axiom of ...
axrepndlem1 10483 Lemma for the Axiom of Rep...
axrepndlem2 10484 Lemma for the Axiom of Rep...
axrepnd 10485 A version of the Axiom of ...
axunndlem1 10486 Lemma for the Axiom of Uni...
axunnd 10487 A version of the Axiom of ...
axpowndlem1 10488 Lemma for the Axiom of Pow...
axpowndlem2 10489 Lemma for the Axiom of Pow...
axpowndlem3 10490 Lemma for the Axiom of Pow...
axpowndlem4 10491 Lemma for the Axiom of Pow...
axpownd 10492 A version of the Axiom of ...
axregndlem1 10493 Lemma for the Axiom of Reg...
axregndlem2 10494 Lemma for the Axiom of Reg...
axregnd 10495 A version of the Axiom of ...
axinfndlem1 10496 Lemma for the Axiom of Inf...
axinfnd 10497 A version of the Axiom of ...
axacndlem1 10498 Lemma for the Axiom of Cho...
axacndlem2 10499 Lemma for the Axiom of Cho...
axacndlem3 10500 Lemma for the Axiom of Cho...
axacndlem4 10501 Lemma for the Axiom of Cho...
axacndlem5 10502 Lemma for the Axiom of Cho...
axacnd 10503 A version of the Axiom of ...
zfcndext 10504 Axiom of Extensionality ~ ...
zfcndrep 10505 Axiom of Replacement ~ ax-...
zfcndun 10506 Axiom of Union ~ ax-un , r...
zfcndpow 10507 Axiom of Power Sets ~ ax-p...
zfcndreg 10508 Axiom of Regularity ~ ax-r...
zfcndinf 10509 Axiom of Infinity ~ ax-inf...
zfcndac 10510 Axiom of Choice ~ ax-ac , ...
elgch 10513 Elementhood in the collect...
fingch 10514 A finite set is a GCH-set....
gchi 10515 The only GCH-sets which ha...
gchen1 10516 If ` A <_ B < ~P A ` , and...
gchen2 10517 If ` A < B <_ ~P A ` , and...
gchor 10518 If ` A <_ B <_ ~P A ` , an...
engch 10519 The property of being a GC...
gchdomtri 10520 Under certain conditions, ...
fpwwe2cbv 10521 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10522 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10523 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10524 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10525 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10526 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10527 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10528 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10529 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10530 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10531 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10532 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10533 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10534 Given any function ` F ` f...
fpwwecbv 10535 Lemma for ~ fpwwe . (Cont...
fpwwelem 10536 Lemma for ~ fpwwe . (Cont...
fpwwe 10537 Given any function ` F ` f...
canth4 10538 An "effective" form of Can...
canthnumlem 10539 Lemma for ~ canthnum . (C...
canthnum 10540 The set of well-orderable ...
canthwelem 10541 Lemma for ~ canthwe . (Co...
canthwe 10542 The set of well-orders of ...
canthp1lem1 10543 Lemma for ~ canthp1 . (Co...
canthp1lem2 10544 Lemma for ~ canthp1 . (Co...
canthp1 10545 A slightly stronger form o...
finngch 10546 The exclusion of finite se...
gchdju1 10547 An infinite GCH-set is ide...
gchinf 10548 An infinite GCH-set is Ded...
pwfseqlem1 10549 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10550 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10551 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10552 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10553 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10554 Lemma for ~ pwfseq . Alth...
pwfseq 10555 The powerset of a Dedekind...
pwxpndom2 10556 The powerset of a Dedekind...
pwxpndom 10557 The powerset of a Dedekind...
pwdjundom 10558 The powerset of a Dedekind...
gchdjuidm 10559 An infinite GCH-set is ide...
gchxpidm 10560 An infinite GCH-set is ide...
gchpwdom 10561 A relationship between dom...
gchaleph 10562 If ` ( aleph `` A ) ` is a...
gchaleph2 10563 If ` ( aleph `` A ) ` and ...
hargch 10564 If ` A + ~~ ~P A ` , then ...
alephgch 10565 If ` ( aleph `` suc A ) ` ...
gch2 10566 It is sufficient to requir...
gch3 10567 An equivalent formulation ...
gch-kn 10568 The equivalence of two ver...
gchaclem 10569 Lemma for ~ gchac (obsolet...
gchhar 10570 A "local" form of ~ gchac ...
gchacg 10571 A "local" form of ~ gchac ...
gchac 10572 The Generalized Continuum ...
elwina 10577 Conditions of weak inacces...
elina 10578 Conditions of strong inacc...
winaon 10579 A weakly inaccessible card...
inawinalem 10580 Lemma for ~ inawina . (Co...
inawina 10581 Every strongly inaccessibl...
omina 10582 ` _om ` is a strongly inac...
winacard 10583 A weakly inaccessible card...
winainflem 10584 A weakly inaccessible card...
winainf 10585 A weakly inaccessible card...
winalim 10586 A weakly inaccessible card...
winalim2 10587 A nontrivial weakly inacce...
winafp 10588 A nontrivial weakly inacce...
winafpi 10589 This theorem, which states...
gchina 10590 Assuming the GCH, weakly a...
iswun 10595 Properties of a weak unive...
wuntr 10596 A weak universe is transit...
wununi 10597 A weak universe is closed ...
wunpw 10598 A weak universe is closed ...
wunelss 10599 The elements of a weak uni...
wunpr 10600 A weak universe is closed ...
wunun 10601 A weak universe is closed ...
wuntp 10602 A weak universe is closed ...
wunss 10603 A weak universe is closed ...
wunin 10604 A weak universe is closed ...
wundif 10605 A weak universe is closed ...
wunint 10606 A weak universe is closed ...
wunsn 10607 A weak universe is closed ...
wunsuc 10608 A weak universe is closed ...
wun0 10609 A weak universe contains t...
wunr1om 10610 A weak universe is infinit...
wunom 10611 A weak universe contains a...
wunfi 10612 A weak universe contains a...
wunop 10613 A weak universe is closed ...
wunot 10614 A weak universe is closed ...
wunxp 10615 A weak universe is closed ...
wunpm 10616 A weak universe is closed ...
wunmap 10617 A weak universe is closed ...
wunf 10618 A weak universe is closed ...
wundm 10619 A weak universe is closed ...
wunrn 10620 A weak universe is closed ...
wuncnv 10621 A weak universe is closed ...
wunres 10622 A weak universe is closed ...
wunfv 10623 A weak universe is closed ...
wunco 10624 A weak universe is closed ...
wuntpos 10625 A weak universe is closed ...
intwun 10626 The intersection of a coll...
r1limwun 10627 Each limit stage in the cu...
r1wunlim 10628 The weak universes in the ...
wunex2 10629 Construct a weak universe ...
wunex 10630 Construct a weak universe ...
uniwun 10631 Every set is contained in ...
wunex3 10632 Construct a weak universe ...
wuncval 10633 Value of the weak universe...
wuncid 10634 The weak universe closure ...
wunccl 10635 The weak universe closure ...
wuncss 10636 The weak universe closure ...
wuncidm 10637 The weak universe closure ...
wuncval2 10638 Our earlier expression for...
eltskg 10641 Properties of a Tarski cla...
eltsk2g 10642 Properties of a Tarski cla...
tskpwss 10643 First axiom of a Tarski cl...
tskpw 10644 Second axiom of a Tarski c...
tsken 10645 Third axiom of a Tarski cl...
0tsk 10646 The empty set is a (transi...
tsksdom 10647 An element of a Tarski cla...
tskssel 10648 A part of a Tarski class s...
tskss 10649 The subsets of an element ...
tskin 10650 The intersection of two el...
tsksn 10651 A singleton of an element ...
tsktrss 10652 A transitive element of a ...
tsksuc 10653 If an element of a Tarski ...
tsk0 10654 A nonempty Tarski class co...
tsk1 10655 One is an element of a non...
tsk2 10656 Two is an element of a non...
2domtsk 10657 If a Tarski class is not e...
tskr1om 10658 A nonempty Tarski class is...
tskr1om2 10659 A nonempty Tarski class co...
tskinf 10660 A nonempty Tarski class is...
tskpr 10661 If ` A ` and ` B ` are mem...
tskop 10662 If ` A ` and ` B ` are mem...
tskxpss 10663 A Cartesian product of two...
tskwe2 10664 A Tarski class is well-ord...
inttsk 10665 The intersection of a coll...
inar1 10666 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10667 Alternate proof of ~ r1om ...
rankcf 10668 Any set must be at least a...
inatsk 10669 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10670 The set of hereditarily fi...
tskord 10671 A Tarski class contains al...
tskcard 10672 An even more direct relati...
r1tskina 10673 There is a direct relation...
tskuni 10674 The union of an element of...
tskwun 10675 A nonempty transitive Tars...
tskint 10676 The intersection of an ele...
tskun 10677 The union of two elements ...
tskxp 10678 The Cartesian product of t...
tskmap 10679 Set exponentiation is an e...
tskurn 10680 A transitive Tarski class ...
elgrug 10683 Properties of a Grothendie...
grutr 10684 A Grothendieck universe is...
gruelss 10685 A Grothendieck universe is...
grupw 10686 A Grothendieck universe co...
gruss 10687 Any subset of an element o...
grupr 10688 A Grothendieck universe co...
gruurn 10689 A Grothendieck universe co...
gruiun 10690 If ` B ( x ) ` is a family...
gruuni 10691 A Grothendieck universe co...
grurn 10692 A Grothendieck universe co...
gruima 10693 A Grothendieck universe co...
gruel 10694 Any element of an element ...
grusn 10695 A Grothendieck universe co...
gruop 10696 A Grothendieck universe co...
gruun 10697 A Grothendieck universe co...
gruxp 10698 A Grothendieck universe co...
grumap 10699 A Grothendieck universe co...
gruixp 10700 A Grothendieck universe co...
gruiin 10701 A Grothendieck universe co...
gruf 10702 A Grothendieck universe co...
gruen 10703 A Grothendieck universe co...
gruwun 10704 A nonempty Grothendieck un...
intgru 10705 The intersection of a fami...
ingru 10706 The intersection of a univ...
wfgru 10707 The wellfounded part of a ...
grudomon 10708 Each ordinal that is compa...
gruina 10709 If a Grothendieck universe...
grur1a 10710 A characterization of Grot...
grur1 10711 A characterization of Grot...
grutsk1 10712 Grothendieck universes are...
grutsk 10713 Grothendieck universes are...
axgroth5 10715 The Tarski-Grothendieck ax...
axgroth2 10716 Alternate version of the T...
grothpw 10717 Derive the Axiom of Power ...
grothpwex 10718 Derive the Axiom of Power ...
axgroth6 10719 The Tarski-Grothendieck ax...
grothomex 10720 The Tarski-Grothendieck Ax...
grothac 10721 The Tarski-Grothendieck Ax...
axgroth3 10722 Alternate version of the T...
axgroth4 10723 Alternate version of the T...
grothprimlem 10724 Lemma for ~ grothprim . E...
grothprim 10725 The Tarski-Grothendieck Ax...
grothtsk 10726 The Tarski-Grothendieck Ax...
inaprc 10727 An equivalent to the Tarsk...
tskmval 10730 Value of our tarski map. ...
tskmid 10731 The set ` A ` is an elemen...
tskmcl 10732 A Tarski class that contai...
sstskm 10733 Being a part of ` ( tarski...
eltskm 10734 Belonging to ` ( tarskiMap...
elni 10767 Membership in the class of...
elni2 10768 Membership in the class of...
pinn 10769 A positive integer is a na...
pion 10770 A positive integer is an o...
piord 10771 A positive integer is ordi...
niex 10772 The class of positive inte...
0npi 10773 The empty set is not a pos...
1pi 10774 Ordinal 'one' is a positiv...
addpiord 10775 Positive integer addition ...
mulpiord 10776 Positive integer multiplic...
mulidpi 10777 1 is an identity element f...
ltpiord 10778 Positive integer 'less tha...
ltsopi 10779 Positive integer 'less tha...
ltrelpi 10780 Positive integer 'less tha...
dmaddpi 10781 Domain of addition on posi...
dmmulpi 10782 Domain of multiplication o...
addclpi 10783 Closure of addition of pos...
mulclpi 10784 Closure of multiplication ...
addcompi 10785 Addition of positive integ...
addasspi 10786 Addition of positive integ...
mulcompi 10787 Multiplication of positive...
mulasspi 10788 Multiplication of positive...
distrpi 10789 Multiplication of positive...
addcanpi 10790 Addition cancellation law ...
mulcanpi 10791 Multiplication cancellatio...
addnidpi 10792 There is no identity eleme...
ltexpi 10793 Ordering on positive integ...
ltapi 10794 Ordering property of addit...
ltmpi 10795 Ordering property of multi...
1lt2pi 10796 One is less than two (one ...
nlt1pi 10797 No positive integer is les...
indpi 10798 Principle of Finite Induct...
enqbreq 10810 Equivalence relation for p...
enqbreq2 10811 Equivalence relation for p...
enqer 10812 The equivalence relation f...
enqex 10813 The equivalence relation f...
nqex 10814 The class of positive frac...
0nnq 10815 The empty set is not a pos...
elpqn 10816 Each positive fraction is ...
ltrelnq 10817 Positive fraction 'less th...
pinq 10818 The representatives of pos...
1nq 10819 The positive fraction 'one...
nqereu 10820 There is a unique element ...
nqerf 10821 Corollary of ~ nqereu : th...
nqercl 10822 Corollary of ~ nqereu : cl...
nqerrel 10823 Any member of ` ( N. X. N....
nqerid 10824 Corollary of ~ nqereu : th...
enqeq 10825 Corollary of ~ nqereu : if...
nqereq 10826 The function ` /Q ` acts a...
addpipq2 10827 Addition of positive fract...
addpipq 10828 Addition of positive fract...
addpqnq 10829 Addition of positive fract...
mulpipq2 10830 Multiplication of positive...
mulpipq 10831 Multiplication of positive...
mulpqnq 10832 Multiplication of positive...
ordpipq 10833 Ordering of positive fract...
ordpinq 10834 Ordering of positive fract...
addpqf 10835 Closure of addition on pos...
addclnq 10836 Closure of addition on pos...
mulpqf 10837 Closure of multiplication ...
mulclnq 10838 Closure of multiplication ...
addnqf 10839 Domain of addition on posi...
mulnqf 10840 Domain of multiplication o...
addcompq 10841 Addition of positive fract...
addcomnq 10842 Addition of positive fract...
mulcompq 10843 Multiplication of positive...
mulcomnq 10844 Multiplication of positive...
adderpqlem 10845 Lemma for ~ adderpq . (Co...
mulerpqlem 10846 Lemma for ~ mulerpq . (Co...
adderpq 10847 Addition is compatible wit...
mulerpq 10848 Multiplication is compatib...
addassnq 10849 Addition of positive fract...
mulassnq 10850 Multiplication of positive...
mulcanenq 10851 Lemma for distributive law...
distrnq 10852 Multiplication of positive...
1nqenq 10853 The equivalence class of r...
mulidnq 10854 Multiplication identity el...
recmulnq 10855 Relationship between recip...
recidnq 10856 A positive fraction times ...
recclnq 10857 Closure law for positive f...
recrecnq 10858 Reciprocal of reciprocal o...
dmrecnq 10859 Domain of reciprocal on po...
ltsonq 10860 'Less than' is a strict or...
lterpq 10861 Compatibility of ordering ...
ltanq 10862 Ordering property of addit...
ltmnq 10863 Ordering property of multi...
1lt2nq 10864 One is less than two (one ...
ltaddnq 10865 The sum of two fractions i...
ltexnq 10866 Ordering on positive fract...
halfnq 10867 One-half of any positive f...
nsmallnq 10868 The is no smallest positiv...
ltbtwnnq 10869 There exists a number betw...
ltrnq 10870 Ordering property of recip...
archnq 10871 For any fraction, there is...
npex 10877 The class of positive real...
elnp 10878 Membership in positive rea...
elnpi 10879 Membership in positive rea...
prn0 10880 A positive real is not emp...
prpssnq 10881 A positive real is a subse...
elprnq 10882 A positive real is a set o...
0npr 10883 The empty set is not a pos...
prcdnq 10884 A positive real is closed ...
prub 10885 A positive fraction not in...
prnmax 10886 A positive real has no lar...
npomex 10887 A simplifying observation,...
prnmadd 10888 A positive real has no lar...
ltrelpr 10889 Positive real 'less than' ...
genpv 10890 Value of general operation...
genpelv 10891 Membership in value of gen...
genpprecl 10892 Pre-closure law for genera...
genpdm 10893 Domain of general operatio...
genpn0 10894 The result of an operation...
genpss 10895 The result of an operation...
genpnnp 10896 The result of an operation...
genpcd 10897 Downward closure of an ope...
genpnmax 10898 An operation on positive r...
genpcl 10899 Closure of an operation on...
genpass 10900 Associativity of an operat...
plpv 10901 Value of addition on posit...
mpv 10902 Value of multiplication on...
dmplp 10903 Domain of addition on posi...
dmmp 10904 Domain of multiplication o...
nqpr 10905 The canonical embedding of...
1pr 10906 The positive real number '...
addclprlem1 10907 Lemma to prove downward cl...
addclprlem2 10908 Lemma to prove downward cl...
addclpr 10909 Closure of addition on pos...
mulclprlem 10910 Lemma to prove downward cl...
mulclpr 10911 Closure of multiplication ...
addcompr 10912 Addition of positive reals...
addasspr 10913 Addition of positive reals...
mulcompr 10914 Multiplication of positive...
mulasspr 10915 Multiplication of positive...
distrlem1pr 10916 Lemma for distributive law...
distrlem4pr 10917 Lemma for distributive law...
distrlem5pr 10918 Lemma for distributive law...
distrpr 10919 Multiplication of positive...
1idpr 10920 1 is an identity element f...
ltprord 10921 Positive real 'less than' ...
psslinpr 10922 Proper subset is a linear ...
ltsopr 10923 Positive real 'less than' ...
prlem934 10924 Lemma 9-3.4 of [Gleason] p...
ltaddpr 10925 The sum of two positive re...
ltaddpr2 10926 The sum of two positive re...
ltexprlem1 10927 Lemma for Proposition 9-3....
ltexprlem2 10928 Lemma for Proposition 9-3....
ltexprlem3 10929 Lemma for Proposition 9-3....
ltexprlem4 10930 Lemma for Proposition 9-3....
ltexprlem5 10931 Lemma for Proposition 9-3....
ltexprlem6 10932 Lemma for Proposition 9-3....
ltexprlem7 10933 Lemma for Proposition 9-3....
ltexpri 10934 Proposition 9-3.5(iv) of [...
ltaprlem 10935 Lemma for Proposition 9-3....
ltapr 10936 Ordering property of addit...
addcanpr 10937 Addition cancellation law ...
prlem936 10938 Lemma 9-3.6 of [Gleason] p...
reclem2pr 10939 Lemma for Proposition 9-3....
reclem3pr 10940 Lemma for Proposition 9-3....
reclem4pr 10941 Lemma for Proposition 9-3....
recexpr 10942 The reciprocal of a positi...
suplem1pr 10943 The union of a nonempty, b...
suplem2pr 10944 The union of a set of posi...
supexpr 10945 The union of a nonempty, b...
enrer 10954 The equivalence relation f...
nrex1 10955 The class of signed reals ...
enrbreq 10956 Equivalence relation for s...
enreceq 10957 Equivalence class equality...
enrex 10958 The equivalence relation f...
ltrelsr 10959 Signed real 'less than' is...
addcmpblnr 10960 Lemma showing compatibilit...
mulcmpblnrlem 10961 Lemma used in lemma showin...
mulcmpblnr 10962 Lemma showing compatibilit...
prsrlem1 10963 Decomposing signed reals i...
addsrmo 10964 There is at most one resul...
mulsrmo 10965 There is at most one resul...
addsrpr 10966 Addition of signed reals i...
mulsrpr 10967 Multiplication of signed r...
ltsrpr 10968 Ordering of signed reals i...
gt0srpr 10969 Greater than zero in terms...
0nsr 10970 The empty set is not a sig...
0r 10971 The constant ` 0R ` is a s...
1sr 10972 The constant ` 1R ` is a s...
m1r 10973 The constant ` -1R ` is a ...
addclsr 10974 Closure of addition on sig...
mulclsr 10975 Closure of multiplication ...
dmaddsr 10976 Domain of addition on sign...
dmmulsr 10977 Domain of multiplication o...
addcomsr 10978 Addition of signed reals i...
addasssr 10979 Addition of signed reals i...
mulcomsr 10980 Multiplication of signed r...
mulasssr 10981 Multiplication of signed r...
distrsr 10982 Multiplication of signed r...
m1p1sr 10983 Minus one plus one is zero...
m1m1sr 10984 Minus one times minus one ...
ltsosr 10985 Signed real 'less than' is...
0lt1sr 10986 0 is less than 1 for signe...
1ne0sr 10987 1 and 0 are distinct for s...
0idsr 10988 The signed real number 0 i...
1idsr 10989 1 is an identity element f...
00sr 10990 A signed real times 0 is 0...
ltasr 10991 Ordering property of addit...
pn0sr 10992 A signed real plus its neg...
negexsr 10993 Existence of negative sign...
recexsrlem 10994 The reciprocal of a positi...
addgt0sr 10995 The sum of two positive si...
mulgt0sr 10996 The product of two positiv...
sqgt0sr 10997 The square of a nonzero si...
recexsr 10998 The reciprocal of a nonzer...
mappsrpr 10999 Mapping from positive sign...
ltpsrpr 11000 Mapping of order from posi...
map2psrpr 11001 Equivalence for positive s...
supsrlem 11002 Lemma for supremum theorem...
supsr 11003 A nonempty, bounded set of...
opelcn 11020 Ordered pair membership in...
opelreal 11021 Ordered pair membership in...
elreal 11022 Membership in class of rea...
elreal2 11023 Ordered pair membership in...
0ncn 11024 The empty set is not a com...
ltrelre 11025 'Less than' is a relation ...
addcnsr 11026 Addition of complex number...
mulcnsr 11027 Multiplication of complex ...
eqresr 11028 Equality of real numbers i...
addresr 11029 Addition of real numbers i...
mulresr 11030 Multiplication of real num...
ltresr 11031 Ordering of real subset of...
ltresr2 11032 Ordering of real subset of...
dfcnqs 11033 Technical trick to permit ...
addcnsrec 11034 Technical trick to permit ...
mulcnsrec 11035 Technical trick to permit ...
axaddf 11036 Addition is an operation o...
axmulf 11037 Multiplication is an opera...
axcnex 11038 The complex numbers form a...
axresscn 11039 The real numbers are a sub...
ax1cn 11040 1 is a complex number. Ax...
axicn 11041 ` _i ` is a complex number...
axaddcl 11042 Closure law for addition o...
axaddrcl 11043 Closure law for addition i...
axmulcl 11044 Closure law for multiplica...
axmulrcl 11045 Closure law for multiplica...
axmulcom 11046 Multiplication of complex ...
axaddass 11047 Addition of complex number...
axmulass 11048 Multiplication of complex ...
axdistr 11049 Distributive law for compl...
axi2m1 11050 i-squared equals -1 (expre...
ax1ne0 11051 1 and 0 are distinct. Axi...
ax1rid 11052 ` 1 ` is an identity eleme...
axrnegex 11053 Existence of negative of r...
axrrecex 11054 Existence of reciprocal of...
axcnre 11055 A complex number can be ex...
axpre-lttri 11056 Ordering on reals satisfie...
axpre-lttrn 11057 Ordering on reals is trans...
axpre-ltadd 11058 Ordering property of addit...
axpre-mulgt0 11059 The product of two positiv...
axpre-sup 11060 A nonempty, bounded-above ...
wuncn 11061 A weak universe containing...
cnex 11087 Alias for ~ ax-cnex . See...
addcl 11088 Alias for ~ ax-addcl , for...
readdcl 11089 Alias for ~ ax-addrcl , fo...
mulcl 11090 Alias for ~ ax-mulcl , for...
remulcl 11091 Alias for ~ ax-mulrcl , fo...
mulcom 11092 Alias for ~ ax-mulcom , fo...
addass 11093 Alias for ~ ax-addass , fo...
mulass 11094 Alias for ~ ax-mulass , fo...
adddi 11095 Alias for ~ ax-distr , for...
recn 11096 A real number is a complex...
reex 11097 The real numbers form a se...
reelprrecn 11098 Reals are a subset of the ...
cnelprrecn 11099 Complex numbers are a subs...
mpoaddf 11100 Addition is an operation o...
mpomulf 11101 Multiplication is an opera...
elimne0 11102 Hypothesis for weak deduct...
adddir 11103 Distributive law for compl...
0cn 11104 Zero is a complex number. ...
0cnd 11105 Zero is a complex number, ...
c0ex 11106 Zero is a set. (Contribut...
1cnd 11107 One is a complex number, d...
1ex 11108 One is a set. (Contribute...
cnre 11109 Alias for ~ ax-cnre , for ...
mulrid 11110 The number 1 is an identit...
mullid 11111 Identity law for multiplic...
1re 11112 The number 1 is real. Thi...
1red 11113 The number 1 is real, dedu...
0re 11114 The number 0 is real. Rem...
0red 11115 The number 0 is real, dedu...
mulridi 11116 Identity law for multiplic...
mullidi 11117 Identity law for multiplic...
addcli 11118 Closure law for addition. ...
mulcli 11119 Closure law for multiplica...
mulcomi 11120 Commutative law for multip...
mulcomli 11121 Commutative law for multip...
addassi 11122 Associative law for additi...
mulassi 11123 Associative law for multip...
adddii 11124 Distributive law (left-dis...
adddiri 11125 Distributive law (right-di...
recni 11126 A real number is a complex...
readdcli 11127 Closure law for addition o...
remulcli 11128 Closure law for multiplica...
mulridd 11129 Identity law for multiplic...
mullidd 11130 Identity law for multiplic...
addcld 11131 Closure law for addition. ...
mulcld 11132 Closure law for multiplica...
mulcomd 11133 Commutative law for multip...
addassd 11134 Associative law for additi...
mulassd 11135 Associative law for multip...
adddid 11136 Distributive law (left-dis...
adddird 11137 Distributive law (right-di...
adddirp1d 11138 Distributive law, plus 1 v...
joinlmuladdmuld 11139 Join AB+CB into (A+C) on L...
recnd 11140 Deduction from real number...
readdcld 11141 Closure law for addition o...
remulcld 11142 Closure law for multiplica...
pnfnre 11153 Plus infinity is not a rea...
pnfnre2 11154 Plus infinity is not a rea...
mnfnre 11155 Minus infinity is not a re...
ressxr 11156 The standard reals are a s...
rexpssxrxp 11157 The Cartesian product of s...
rexr 11158 A standard real is an exte...
0xr 11159 Zero is an extended real. ...
renepnf 11160 No (finite) real equals pl...
renemnf 11161 No real equals minus infin...
rexrd 11162 A standard real is an exte...
renepnfd 11163 No (finite) real equals pl...
renemnfd 11164 No real equals minus infin...
pnfex 11165 Plus infinity exists. (Co...
pnfxr 11166 Plus infinity belongs to t...
pnfnemnf 11167 Plus and minus infinity ar...
mnfnepnf 11168 Minus and plus infinity ar...
mnfxr 11169 Minus infinity belongs to ...
rexri 11170 A standard real is an exte...
1xr 11171 ` 1 ` is an extended real ...
renfdisj 11172 The reals and the infiniti...
ltrelxr 11173 "Less than" is a relation ...
ltrel 11174 "Less than" is a relation....
lerelxr 11175 "Less than or equal to" is...
lerel 11176 "Less than or equal to" is...
xrlenlt 11177 "Less than or equal to" ex...
xrlenltd 11178 "Less than or equal to" ex...
xrltnle 11179 "Less than" expressed in t...
xrltnled 11180 'Less than' in terms of 'l...
xrnltled 11181 "Not less than" implies "l...
ssxr 11182 The three (non-exclusive) ...
ltxrlt 11183 The standard less-than ` <...
axlttri 11184 Ordering on reals satisfie...
axlttrn 11185 Ordering on reals is trans...
axltadd 11186 Ordering property of addit...
axmulgt0 11187 The product of two positiv...
axsup 11188 A nonempty, bounded-above ...
lttr 11189 Alias for ~ axlttrn , for ...
mulgt0 11190 The product of two positiv...
lenlt 11191 'Less than or equal to' ex...
ltnle 11192 'Less than' expressed in t...
ltso 11193 'Less than' is a strict or...
gtso 11194 'Greater than' is a strict...
lttri2 11195 Consequence of trichotomy....
lttri3 11196 Trichotomy law for 'less t...
lttri4 11197 Trichotomy law for 'less t...
letri3 11198 Trichotomy law. (Contribu...
leloe 11199 'Less than or equal to' ex...
eqlelt 11200 Equality in terms of 'less...
ltle 11201 'Less than' implies 'less ...
leltne 11202 'Less than or equal to' im...
lelttr 11203 Transitive law. (Contribu...
leltletr 11204 Transitive law, weaker for...
ltletr 11205 Transitive law. (Contribu...
ltleletr 11206 Transitive law, weaker for...
letr 11207 Transitive law. (Contribu...
ltnr 11208 'Less than' is irreflexive...
leid 11209 'Less than or equal to' is...
ltne 11210 'Less than' implies not eq...
ltnsym 11211 'Less than' is not symmetr...
ltnsym2 11212 'Less than' is antisymmetr...
letric 11213 Trichotomy law. (Contribu...
ltlen 11214 'Less than' expressed in t...
eqle 11215 Equality implies 'less tha...
eqled 11216 Equality implies 'less tha...
ltadd2 11217 Addition to both sides of ...
ne0gt0 11218 A nonzero nonnegative numb...
lecasei 11219 Ordering elimination by ca...
lelttric 11220 Trichotomy law. (Contribu...
ltlecasei 11221 Ordering elimination by ca...
ltnri 11222 'Less than' is irreflexive...
eqlei 11223 Equality implies 'less tha...
eqlei2 11224 Equality implies 'less tha...
gtneii 11225 'Less than' implies not eq...
ltneii 11226 'Greater than' implies not...
lttri2i 11227 Consequence of trichotomy....
lttri3i 11228 Consequence of trichotomy....
letri3i 11229 Consequence of trichotomy....
leloei 11230 'Less than or equal to' in...
ltleni 11231 'Less than' expressed in t...
ltnsymi 11232 'Less than' is not symmetr...
lenlti 11233 'Less than or equal to' in...
ltnlei 11234 'Less than' in terms of 'l...
ltlei 11235 'Less than' implies 'less ...
ltleii 11236 'Less than' implies 'less ...
ltnei 11237 'Less than' implies not eq...
letrii 11238 Trichotomy law for 'less t...
lttri 11239 'Less than' is transitive....
lelttri 11240 'Less than or equal to', '...
ltletri 11241 'Less than', 'less than or...
letri 11242 'Less than or equal to' is...
le2tri3i 11243 Extended trichotomy law fo...
ltadd2i 11244 Addition to both sides of ...
mulgt0i 11245 The product of two positiv...
mulgt0ii 11246 The product of two positiv...
ltnrd 11247 'Less than' is irreflexive...
gtned 11248 'Less than' implies not eq...
ltned 11249 'Greater than' implies not...
ne0gt0d 11250 A nonzero nonnegative numb...
lttrid 11251 Ordering on reals satisfie...
lttri2d 11252 Consequence of trichotomy....
lttri3d 11253 Consequence of trichotomy....
lttri4d 11254 Trichotomy law for 'less t...
letri3d 11255 Consequence of trichotomy....
leloed 11256 'Less than or equal to' in...
eqleltd 11257 Equality in terms of 'less...
ltlend 11258 'Less than' expressed in t...
lenltd 11259 'Less than or equal to' in...
ltnled 11260 'Less than' in terms of 'l...
ltled 11261 'Less than' implies 'less ...
ltnsymd 11262 'Less than' implies 'less ...
nltled 11263 'Not less than ' implies '...
lensymd 11264 'Less than or equal to' im...
letrid 11265 Trichotomy law for 'less t...
leltned 11266 'Less than or equal to' im...
leneltd 11267 'Less than or equal to' an...
mulgt0d 11268 The product of two positiv...
ltadd2d 11269 Addition to both sides of ...
letrd 11270 Transitive law deduction f...
lelttrd 11271 Transitive law deduction f...
ltadd2dd 11272 Addition to both sides of ...
ltletrd 11273 Transitive law deduction f...
lttrd 11274 Transitive law deduction f...
lelttrdi 11275 If a number is less than a...
dedekind 11276 The Dedekind cut theorem. ...
dedekindle 11277 The Dedekind cut theorem, ...
mul12 11278 Commutative/associative la...
mul32 11279 Commutative/associative la...
mul31 11280 Commutative/associative la...
mul4 11281 Rearrangement of 4 factors...
mul4r 11282 Rearrangement of 4 factors...
muladd11 11283 A simple product of sums e...
1p1times 11284 Two times a number. (Cont...
peano2cn 11285 A theorem for complex numb...
peano2re 11286 A theorem for reals analog...
readdcan 11287 Cancellation law for addit...
00id 11288 ` 0 ` is its own additive ...
mul02lem1 11289 Lemma for ~ mul02 . If an...
mul02lem2 11290 Lemma for ~ mul02 . Zero ...
mul02 11291 Multiplication by ` 0 ` . ...
mul01 11292 Multiplication by ` 0 ` . ...
addrid 11293 ` 0 ` is an additive ident...
cnegex 11294 Existence of the negative ...
cnegex2 11295 Existence of a left invers...
addlid 11296 ` 0 ` is a left identity f...
addcan 11297 Cancellation law for addit...
addcan2 11298 Cancellation law for addit...
addcom 11299 Addition commutes. This u...
addridi 11300 ` 0 ` is an additive ident...
addlidi 11301 ` 0 ` is a left identity f...
mul02i 11302 Multiplication by 0. Theo...
mul01i 11303 Multiplication by ` 0 ` . ...
addcomi 11304 Addition commutes. Based ...
addcomli 11305 Addition commutes. (Contr...
addcani 11306 Cancellation law for addit...
addcan2i 11307 Cancellation law for addit...
mul12i 11308 Commutative/associative la...
mul32i 11309 Commutative/associative la...
mul4i 11310 Rearrangement of 4 factors...
mul02d 11311 Multiplication by 0. Theo...
mul01d 11312 Multiplication by ` 0 ` . ...
addridd 11313 ` 0 ` is an additive ident...
addlidd 11314 ` 0 ` is a left identity f...
addcomd 11315 Addition commutes. Based ...
addcand 11316 Cancellation law for addit...
addcan2d 11317 Cancellation law for addit...
addcanad 11318 Cancelling a term on the l...
addcan2ad 11319 Cancelling a term on the r...
addneintrd 11320 Introducing a term on the ...
addneintr2d 11321 Introducing a term on the ...
mul12d 11322 Commutative/associative la...
mul32d 11323 Commutative/associative la...
mul31d 11324 Commutative/associative la...
mul4d 11325 Rearrangement of 4 factors...
muladd11r 11326 A simple product of sums e...
comraddd 11327 Commute RHS addition, in d...
comraddi 11328 Commute RHS addition. See...
ltaddneg 11329 Adding a negative number t...
ltaddnegr 11330 Adding a negative number t...
add12 11331 Commutative/associative la...
add32 11332 Commutative/associative la...
add32r 11333 Commutative/associative la...
add4 11334 Rearrangement of 4 terms i...
add42 11335 Rearrangement of 4 terms i...
add12i 11336 Commutative/associative la...
add32i 11337 Commutative/associative la...
add4i 11338 Rearrangement of 4 terms i...
add42i 11339 Rearrangement of 4 terms i...
add12d 11340 Commutative/associative la...
add32d 11341 Commutative/associative la...
add4d 11342 Rearrangement of 4 terms i...
add42d 11343 Rearrangement of 4 terms i...
0cnALT 11348 Alternate proof of ~ 0cn w...
0cnALT2 11349 Alternate proof of ~ 0cnAL...
negeu 11350 Existential uniqueness of ...
subval 11351 Value of subtraction, whic...
negeq 11352 Equality theorem for negat...
negeqi 11353 Equality inference for neg...
negeqd 11354 Equality deduction for neg...
nfnegd 11355 Deduction version of ~ nfn...
nfneg 11356 Bound-variable hypothesis ...
csbnegg 11357 Move class substitution in...
negex 11358 A negative is a set. (Con...
subcl 11359 Closure law for subtractio...
negcl 11360 Closure law for negative. ...
negicn 11361 ` -u _i ` is a complex num...
subf 11362 Subtraction is an operatio...
subadd 11363 Relationship between subtr...
subadd2 11364 Relationship between subtr...
subsub23 11365 Swap subtrahend and result...
pncan 11366 Cancellation law for subtr...
pncan2 11367 Cancellation law for subtr...
pncan3 11368 Subtraction and addition o...
npcan 11369 Cancellation law for subtr...
addsubass 11370 Associative-type law for a...
addsub 11371 Law for addition and subtr...
subadd23 11372 Commutative/associative la...
addsub12 11373 Commutative/associative la...
2addsub 11374 Law for subtraction and ad...
addsubeq4 11375 Relation between sums and ...
pncan3oi 11376 Subtraction and addition o...
mvrraddi 11377 Move the right term in a s...
mvrladdi 11378 Move the left term in a su...
mvlladdi 11379 Move the left term in a su...
subid 11380 Subtraction of a number fr...
subid1 11381 Identity law for subtracti...
npncan 11382 Cancellation law for subtr...
nppcan 11383 Cancellation law for subtr...
nnpcan 11384 Cancellation law for subtr...
nppcan3 11385 Cancellation law for subtr...
subcan2 11386 Cancellation law for subtr...
subeq0 11387 If the difference between ...
npncan2 11388 Cancellation law for subtr...
subsub2 11389 Law for double subtraction...
nncan 11390 Cancellation law for subtr...
subsub 11391 Law for double subtraction...
nppcan2 11392 Cancellation law for subtr...
subsub3 11393 Law for double subtraction...
subsub4 11394 Law for double subtraction...
sub32 11395 Swap the second and third ...
nnncan 11396 Cancellation law for subtr...
nnncan1 11397 Cancellation law for subtr...
nnncan2 11398 Cancellation law for subtr...
npncan3 11399 Cancellation law for subtr...
pnpcan 11400 Cancellation law for mixed...
pnpcan2 11401 Cancellation law for mixed...
pnncan 11402 Cancellation law for mixed...
ppncan 11403 Cancellation law for mixed...
addsub4 11404 Rearrangement of 4 terms i...
subadd4 11405 Rearrangement of 4 terms i...
sub4 11406 Rearrangement of 4 terms i...
neg0 11407 Minus 0 equals 0. (Contri...
negid 11408 Addition of a number and i...
negsub 11409 Relationship between subtr...
subneg 11410 Relationship between subtr...
negneg 11411 A number is equal to the n...
neg11 11412 Negative is one-to-one. (...
negcon1 11413 Negative contraposition la...
negcon2 11414 Negative contraposition la...
negeq0 11415 A number is zero iff its n...
subcan 11416 Cancellation law for subtr...
negsubdi 11417 Distribution of negative o...
negdi 11418 Distribution of negative o...
negdi2 11419 Distribution of negative o...
negsubdi2 11420 Distribution of negative o...
neg2sub 11421 Relationship between subtr...
renegcli 11422 Closure law for negative o...
resubcli 11423 Closure law for subtractio...
renegcl 11424 Closure law for negative o...
resubcl 11425 Closure law for subtractio...
negreb 11426 The negative of a real is ...
peano2cnm 11427 "Reverse" second Peano pos...
peano2rem 11428 "Reverse" second Peano pos...
negcli 11429 Closure law for negative. ...
negidi 11430 Addition of a number and i...
negnegi 11431 A number is equal to the n...
subidi 11432 Subtraction of a number fr...
subid1i 11433 Identity law for subtracti...
negne0bi 11434 A number is nonzero iff it...
negrebi 11435 The negative of a real is ...
negne0i 11436 The negative of a nonzero ...
subcli 11437 Closure law for subtractio...
pncan3i 11438 Subtraction and addition o...
negsubi 11439 Relationship between subtr...
subnegi 11440 Relationship between subtr...
subeq0i 11441 If the difference between ...
neg11i 11442 Negative is one-to-one. (...
negcon1i 11443 Negative contraposition la...
negcon2i 11444 Negative contraposition la...
negdii 11445 Distribution of negative o...
negsubdii 11446 Distribution of negative o...
negsubdi2i 11447 Distribution of negative o...
subaddi 11448 Relationship between subtr...
subadd2i 11449 Relationship between subtr...
subaddrii 11450 Relationship between subtr...
subsub23i 11451 Swap subtrahend and result...
addsubassi 11452 Associative-type law for s...
addsubi 11453 Law for subtraction and ad...
subcani 11454 Cancellation law for subtr...
subcan2i 11455 Cancellation law for subtr...
pnncani 11456 Cancellation law for mixed...
addsub4i 11457 Rearrangement of 4 terms i...
0reALT 11458 Alternate proof of ~ 0re ....
negcld 11459 Closure law for negative. ...
subidd 11460 Subtraction of a number fr...
subid1d 11461 Identity law for subtracti...
negidd 11462 Addition of a number and i...
negnegd 11463 A number is equal to the n...
negeq0d 11464 A number is zero iff its n...
negne0bd 11465 A number is nonzero iff it...
negcon1d 11466 Contraposition law for una...
negcon1ad 11467 Contraposition law for una...
neg11ad 11468 The negatives of two compl...
negned 11469 If two complex numbers are...
negne0d 11470 The negative of a nonzero ...
negrebd 11471 The negative of a real is ...
subcld 11472 Closure law for subtractio...
pncand 11473 Cancellation law for subtr...
pncan2d 11474 Cancellation law for subtr...
pncan3d 11475 Subtraction and addition o...
npcand 11476 Cancellation law for subtr...
nncand 11477 Cancellation law for subtr...
negsubd 11478 Relationship between subtr...
subnegd 11479 Relationship between subtr...
subeq0d 11480 If the difference between ...
subne0d 11481 Two unequal numbers have n...
subeq0ad 11482 The difference of two comp...
subne0ad 11483 If the difference of two c...
neg11d 11484 If the difference between ...
negdid 11485 Distribution of negative o...
negdi2d 11486 Distribution of negative o...
negsubdid 11487 Distribution of negative o...
negsubdi2d 11488 Distribution of negative o...
neg2subd 11489 Relationship between subtr...
subaddd 11490 Relationship between subtr...
subadd2d 11491 Relationship between subtr...
addsubassd 11492 Associative-type law for s...
addsubd 11493 Law for subtraction and ad...
subadd23d 11494 Commutative/associative la...
addsub12d 11495 Commutative/associative la...
npncand 11496 Cancellation law for subtr...
nppcand 11497 Cancellation law for subtr...
nppcan2d 11498 Cancellation law for subtr...
nppcan3d 11499 Cancellation law for subtr...
subsubd 11500 Law for double subtraction...
subsub2d 11501 Law for double subtraction...
subsub3d 11502 Law for double subtraction...
subsub4d 11503 Law for double subtraction...
sub32d 11504 Swap the second and third ...
nnncand 11505 Cancellation law for subtr...
nnncan1d 11506 Cancellation law for subtr...
nnncan2d 11507 Cancellation law for subtr...
npncan3d 11508 Cancellation law for subtr...
pnpcand 11509 Cancellation law for mixed...
pnpcan2d 11510 Cancellation law for mixed...
pnncand 11511 Cancellation law for mixed...
ppncand 11512 Cancellation law for mixed...
subcand 11513 Cancellation law for subtr...
subcan2d 11514 Cancellation law for subtr...
subcanad 11515 Cancellation law for subtr...
subneintrd 11516 Introducing subtraction on...
subcan2ad 11517 Cancellation law for subtr...
subneintr2d 11518 Introducing subtraction on...
addsub4d 11519 Rearrangement of 4 terms i...
subadd4d 11520 Rearrangement of 4 terms i...
sub4d 11521 Rearrangement of 4 terms i...
2addsubd 11522 Law for subtraction and ad...
addsubeq4d 11523 Relation between sums and ...
subsubadd23 11524 Swap the second and the th...
addsubsub23 11525 Swap the second and the th...
subeqxfrd 11526 Transfer two terms of a su...
mvlraddd 11527 Move the right term in a s...
mvlladdd 11528 Move the left term in a su...
mvrraddd 11529 Move the right term in a s...
mvrladdd 11530 Move the left term in a su...
assraddsubd 11531 Associate RHS addition-sub...
subaddeqd 11532 Transfer two terms of a su...
addlsub 11533 Left-subtraction: Subtrac...
addrsub 11534 Right-subtraction: Subtra...
subexsub 11535 A subtraction law: Exchan...
addid0 11536 If adding a number to a an...
addn0nid 11537 Adding a nonzero number to...
pnpncand 11538 Addition/subtraction cance...
subeqrev 11539 Reverse the order of subtr...
addeq0 11540 Two complex numbers add up...
pncan1 11541 Cancellation law for addit...
npcan1 11542 Cancellation law for subtr...
subeq0bd 11543 If two complex numbers are...
renegcld 11544 Closure law for negative o...
resubcld 11545 Closure law for subtractio...
negn0 11546 The image under negation o...
negf1o 11547 Negation is an isomorphism...
kcnktkm1cn 11548 k times k minus 1 is a com...
muladd 11549 Product of two sums. (Con...
subdi 11550 Distribution of multiplica...
subdir 11551 Distribution of multiplica...
ine0 11552 The imaginary unit ` _i ` ...
mulneg1 11553 Product with negative is n...
mulneg2 11554 The product with a negativ...
mulneg12 11555 Swap the negative sign in ...
mul2neg 11556 Product of two negatives. ...
submul2 11557 Convert a subtraction to a...
mulm1 11558 Product with minus one is ...
addneg1mul 11559 Addition with product with...
mulsub 11560 Product of two differences...
mulsub2 11561 Swap the order of subtract...
mulm1i 11562 Product with minus one is ...
mulneg1i 11563 Product with negative is n...
mulneg2i 11564 Product with negative is n...
mul2negi 11565 Product of two negatives. ...
subdii 11566 Distribution of multiplica...
subdiri 11567 Distribution of multiplica...
muladdi 11568 Product of two sums. (Con...
mulm1d 11569 Product with minus one is ...
mulneg1d 11570 Product with negative is n...
mulneg2d 11571 Product with negative is n...
mul2negd 11572 Product of two negatives. ...
subdid 11573 Distribution of multiplica...
subdird 11574 Distribution of multiplica...
muladdd 11575 Product of two sums. (Con...
mulsubd 11576 Product of two differences...
muls1d 11577 Multiplication by one minu...
mulsubfacd 11578 Multiplication followed by...
addmulsub 11579 The product of a sum and a...
subaddmulsub 11580 The difference with a prod...
mulsubaddmulsub 11581 A special difference of a ...
gt0ne0 11582 Positive implies nonzero. ...
lt0ne0 11583 A number which is less tha...
ltadd1 11584 Addition to both sides of ...
leadd1 11585 Addition to both sides of ...
leadd2 11586 Addition to both sides of ...
ltsubadd 11587 'Less than' relationship b...
ltsubadd2 11588 'Less than' relationship b...
lesubadd 11589 'Less than or equal to' re...
lesubadd2 11590 'Less than or equal to' re...
ltaddsub 11591 'Less than' relationship b...
ltaddsub2 11592 'Less than' relationship b...
leaddsub 11593 'Less than or equal to' re...
leaddsub2 11594 'Less than or equal to' re...
suble 11595 Swap subtrahends in an ine...
lesub 11596 Swap subtrahends in an ine...
ltsub23 11597 'Less than' relationship b...
ltsub13 11598 'Less than' relationship b...
le2add 11599 Adding both sides of two '...
ltleadd 11600 Adding both sides of two o...
leltadd 11601 Adding both sides of two o...
lt2add 11602 Adding both sides of two '...
addgt0 11603 The sum of 2 positive numb...
addgegt0 11604 The sum of nonnegative and...
addgtge0 11605 The sum of nonnegative and...
addge0 11606 The sum of 2 nonnegative n...
ltaddpos 11607 Adding a positive number t...
ltaddpos2 11608 Adding a positive number t...
ltsubpos 11609 Subtracting a positive num...
posdif 11610 Comparison of two numbers ...
lesub1 11611 Subtraction from both side...
lesub2 11612 Subtraction of both sides ...
ltsub1 11613 Subtraction from both side...
ltsub2 11614 Subtraction of both sides ...
lt2sub 11615 Subtracting both sides of ...
le2sub 11616 Subtracting both sides of ...
ltneg 11617 Negative of both sides of ...
ltnegcon1 11618 Contraposition of negative...
ltnegcon2 11619 Contraposition of negative...
leneg 11620 Negative of both sides of ...
lenegcon1 11621 Contraposition of negative...
lenegcon2 11622 Contraposition of negative...
lt0neg1 11623 Comparison of a number and...
lt0neg2 11624 Comparison of a number and...
le0neg1 11625 Comparison of a number and...
le0neg2 11626 Comparison of a number and...
addge01 11627 A number is less than or e...
addge02 11628 A number is less than or e...
add20 11629 Two nonnegative numbers ar...
subge0 11630 Nonnegative subtraction. ...
suble0 11631 Nonpositive subtraction. ...
leaddle0 11632 The sum of a real number a...
subge02 11633 Nonnegative subtraction. ...
lesub0 11634 Lemma to show a nonnegativ...
mulge0 11635 The product of two nonnega...
mullt0 11636 The product of two negativ...
msqgt0 11637 A nonzero square is positi...
msqge0 11638 A square is nonnegative. ...
0lt1 11639 0 is less than 1. Theorem...
0le1 11640 0 is less than or equal to...
relin01 11641 An interval law for less t...
ltordlem 11642 Lemma for ~ ltord1 . (Con...
ltord1 11643 Infer an ordering relation...
leord1 11644 Infer an ordering relation...
eqord1 11645 A strictly increasing real...
ltord2 11646 Infer an ordering relation...
leord2 11647 Infer an ordering relation...
eqord2 11648 A strictly decreasing real...
wloglei 11649 Form of ~ wlogle where bot...
wlogle 11650 If the predicate ` ch ( x ...
leidi 11651 'Less than or equal to' is...
gt0ne0i 11652 Positive means nonzero (us...
gt0ne0ii 11653 Positive implies nonzero. ...
msqgt0i 11654 A nonzero square is positi...
msqge0i 11655 A square is nonnegative. ...
addgt0i 11656 Addition of 2 positive num...
addge0i 11657 Addition of 2 nonnegative ...
addgegt0i 11658 Addition of nonnegative an...
addgt0ii 11659 Addition of 2 positive num...
add20i 11660 Two nonnegative numbers ar...
ltnegi 11661 Negative of both sides of ...
lenegi 11662 Negative of both sides of ...
ltnegcon2i 11663 Contraposition of negative...
mulge0i 11664 The product of two nonnega...
lesub0i 11665 Lemma to show a nonnegativ...
ltaddposi 11666 Adding a positive number t...
posdifi 11667 Comparison of two numbers ...
ltnegcon1i 11668 Contraposition of negative...
lenegcon1i 11669 Contraposition of negative...
subge0i 11670 Nonnegative subtraction. ...
ltadd1i 11671 Addition to both sides of ...
leadd1i 11672 Addition to both sides of ...
leadd2i 11673 Addition to both sides of ...
ltsubaddi 11674 'Less than' relationship b...
lesubaddi 11675 'Less than or equal to' re...
ltsubadd2i 11676 'Less than' relationship b...
lesubadd2i 11677 'Less than or equal to' re...
ltaddsubi 11678 'Less than' relationship b...
lt2addi 11679 Adding both side of two in...
le2addi 11680 Adding both side of two in...
gt0ne0d 11681 Positive implies nonzero. ...
lt0ne0d 11682 Something less than zero i...
leidd 11683 'Less than or equal to' is...
msqgt0d 11684 A nonzero square is positi...
msqge0d 11685 A square is nonnegative. ...
lt0neg1d 11686 Comparison of a number and...
lt0neg2d 11687 Comparison of a number and...
le0neg1d 11688 Comparison of a number and...
le0neg2d 11689 Comparison of a number and...
addgegt0d 11690 Addition of nonnegative an...
addgtge0d 11691 Addition of positive and n...
addgt0d 11692 Addition of 2 positive num...
addge0d 11693 Addition of 2 nonnegative ...
mulge0d 11694 The product of two nonnega...
ltnegd 11695 Negative of both sides of ...
lenegd 11696 Negative of both sides of ...
ltnegcon1d 11697 Contraposition of negative...
ltnegcon2d 11698 Contraposition of negative...
lenegcon1d 11699 Contraposition of negative...
lenegcon2d 11700 Contraposition of negative...
ltaddposd 11701 Adding a positive number t...
ltaddpos2d 11702 Adding a positive number t...
ltsubposd 11703 Subtracting a positive num...
posdifd 11704 Comparison of two numbers ...
addge01d 11705 A number is less than or e...
addge02d 11706 A number is less than or e...
subge0d 11707 Nonnegative subtraction. ...
suble0d 11708 Nonpositive subtraction. ...
subge02d 11709 Nonnegative subtraction. ...
ltadd1d 11710 Addition to both sides of ...
leadd1d 11711 Addition to both sides of ...
leadd2d 11712 Addition to both sides of ...
ltsubaddd 11713 'Less than' relationship b...
lesubaddd 11714 'Less than or equal to' re...
ltsubadd2d 11715 'Less than' relationship b...
lesubadd2d 11716 'Less than or equal to' re...
ltaddsubd 11717 'Less than' relationship b...
ltaddsub2d 11718 'Less than' relationship b...
leaddsub2d 11719 'Less than or equal to' re...
subled 11720 Swap subtrahends in an ine...
lesubd 11721 Swap subtrahends in an ine...
ltsub23d 11722 'Less than' relationship b...
ltsub13d 11723 'Less than' relationship b...
lesub1d 11724 Subtraction from both side...
lesub2d 11725 Subtraction of both sides ...
ltsub1d 11726 Subtraction from both side...
ltsub2d 11727 Subtraction of both sides ...
ltadd1dd 11728 Addition to both sides of ...
ltsub1dd 11729 Subtraction from both side...
ltsub2dd 11730 Subtraction of both sides ...
leadd1dd 11731 Addition to both sides of ...
leadd2dd 11732 Addition to both sides of ...
lesub1dd 11733 Subtraction from both side...
lesub2dd 11734 Subtraction of both sides ...
lesub3d 11735 The result of subtracting ...
le2addd 11736 Adding both side of two in...
le2subd 11737 Subtracting both sides of ...
ltleaddd 11738 Adding both sides of two o...
leltaddd 11739 Adding both sides of two o...
lt2addd 11740 Adding both side of two in...
lt2subd 11741 Subtracting both sides of ...
possumd 11742 Condition for a positive s...
sublt0d 11743 When a subtraction gives a...
ltaddsublt 11744 Addition and subtraction o...
1le1 11745 One is less than or equal ...
ixi 11746 ` _i ` times itself is min...
recextlem1 11747 Lemma for ~ recex . (Cont...
recextlem2 11748 Lemma for ~ recex . (Cont...
recex 11749 Existence of reciprocal of...
mulcand 11750 Cancellation law for multi...
mulcan2d 11751 Cancellation law for multi...
mulcanad 11752 Cancellation of a nonzero ...
mulcan2ad 11753 Cancellation of a nonzero ...
mulcan 11754 Cancellation law for multi...
mulcan2 11755 Cancellation law for multi...
mulcani 11756 Cancellation law for multi...
mul0or 11757 If a product is zero, one ...
mulne0b 11758 The product of two nonzero...
mulne0 11759 The product of two nonzero...
mulne0i 11760 The product of two nonzero...
muleqadd 11761 Property of numbers whose ...
receu 11762 Existential uniqueness of ...
mulnzcnf 11763 Multiplication maps nonzer...
mul0ori 11764 If a product is zero, one ...
mul0ord 11765 If a product is zero, one ...
msq0i 11766 A number is zero iff its s...
msq0d 11767 A number is zero iff its s...
mulne0bd 11768 The product of two nonzero...
mulne0d 11769 The product of two nonzero...
mulcan1g 11770 A generalized form of the ...
mulcan2g 11771 A generalized form of the ...
mulne0bad 11772 A factor of a nonzero comp...
mulne0bbd 11773 A factor of a nonzero comp...
1div0 11776 You can't divide by zero, ...
1div0OLD 11777 Obsolete version of ~ 1div...
divval 11778 Value of division: if ` A ...
divmul 11779 Relationship between divis...
divmul2 11780 Relationship between divis...
divmul3 11781 Relationship between divis...
divcl 11782 Closure law for division. ...
reccl 11783 Closure law for reciprocal...
divcan2 11784 A cancellation law for div...
divcan1 11785 A cancellation law for div...
diveq0 11786 A ratio is zero iff the nu...
divne0b 11787 The ratio of nonzero numbe...
divne0 11788 The ratio of nonzero numbe...
recne0 11789 The reciprocal of a nonzer...
recid 11790 Multiplication of a number...
recid2 11791 Multiplication of a number...
divrec 11792 Relationship between divis...
divrec2 11793 Relationship between divis...
divass 11794 An associative law for div...
div23 11795 A commutative/associative ...
div32 11796 A commutative/associative ...
div13 11797 A commutative/associative ...
div12 11798 A commutative/associative ...
divmulass 11799 An associative law for div...
divmulasscom 11800 An associative/commutative...
divdir 11801 Distribution of division o...
divcan3 11802 A cancellation law for div...
divcan4 11803 A cancellation law for div...
div11 11804 One-to-one relationship fo...
div11OLD 11805 Obsolete version of ~ div1...
diveq1 11806 Equality in terms of unit ...
divid 11807 A number divided by itself...
dividOLD 11808 Obsolete version of ~ divi...
div0 11809 Division into zero is zero...
div0OLD 11810 Obsolete version of ~ div0...
div1 11811 A number divided by 1 is i...
1div1e1 11812 1 divided by 1 is 1. (Con...
divneg 11813 Move negative sign inside ...
muldivdir 11814 Distribution of division o...
divsubdir 11815 Distribution of division o...
subdivcomb1 11816 Bring a term in a subtract...
subdivcomb2 11817 Bring a term in a subtract...
recrec 11818 A number is equal to the r...
rec11 11819 Reciprocal is one-to-one. ...
rec11r 11820 Mutual reciprocals. (Cont...
divmuldiv 11821 Multiplication of two rati...
divdivdiv 11822 Division of two ratios. T...
divcan5 11823 Cancellation of common fac...
divmul13 11824 Swap the denominators in t...
divmul24 11825 Swap the numerators in the...
divmuleq 11826 Cross-multiply in an equal...
recdiv 11827 The reciprocal of a ratio....
divcan6 11828 Cancellation of inverted f...
divdiv32 11829 Swap denominators in a div...
divcan7 11830 Cancel equal divisors in a...
dmdcan 11831 Cancellation law for divis...
divdiv1 11832 Division into a fraction. ...
divdiv2 11833 Division by a fraction. (...
recdiv2 11834 Division into a reciprocal...
ddcan 11835 Cancellation in a double d...
divadddiv 11836 Addition of two ratios. T...
divsubdiv 11837 Subtraction of two ratios....
conjmul 11838 Two numbers whose reciproc...
rereccl 11839 Closure law for reciprocal...
redivcl 11840 Closure law for division o...
eqneg 11841 A number equal to its nega...
eqnegd 11842 A complex number equals it...
eqnegad 11843 If a complex number equals...
div2neg 11844 Quotient of two negatives....
divneg2 11845 Move negative sign inside ...
recclzi 11846 Closure law for reciprocal...
recne0zi 11847 The reciprocal of a nonzer...
recidzi 11848 Multiplication of a number...
div1i 11849 A number divided by 1 is i...
eqnegi 11850 A number equal to its nega...
reccli 11851 Closure law for reciprocal...
recidi 11852 Multiplication of a number...
recreci 11853 A number is equal to the r...
dividi 11854 A number divided by itself...
div0i 11855 Division into zero is zero...
divclzi 11856 Closure law for division. ...
divcan1zi 11857 A cancellation law for div...
divcan2zi 11858 A cancellation law for div...
divreczi 11859 Relationship between divis...
divcan3zi 11860 A cancellation law for div...
divcan4zi 11861 A cancellation law for div...
rec11i 11862 Reciprocal is one-to-one. ...
divcli 11863 Closure law for division. ...
divcan2i 11864 A cancellation law for div...
divcan1i 11865 A cancellation law for div...
divreci 11866 Relationship between divis...
divcan3i 11867 A cancellation law for div...
divcan4i 11868 A cancellation law for div...
divne0i 11869 The ratio of nonzero numbe...
rec11ii 11870 Reciprocal is one-to-one. ...
divasszi 11871 An associative law for div...
divmulzi 11872 Relationship between divis...
divdirzi 11873 Distribution of division o...
divdiv23zi 11874 Swap denominators in a div...
divmuli 11875 Relationship between divis...
divdiv32i 11876 Swap denominators in a div...
divassi 11877 An associative law for div...
divdiri 11878 Distribution of division o...
div23i 11879 A commutative/associative ...
div11i 11880 One-to-one relationship fo...
divmuldivi 11881 Multiplication of two rati...
divmul13i 11882 Swap denominators of two r...
divadddivi 11883 Addition of two ratios. T...
divdivdivi 11884 Division of two ratios. T...
rerecclzi 11885 Closure law for reciprocal...
rereccli 11886 Closure law for reciprocal...
redivclzi 11887 Closure law for division o...
redivcli 11888 Closure law for division o...
div1d 11889 A number divided by 1 is i...
reccld 11890 Closure law for reciprocal...
recne0d 11891 The reciprocal of a nonzer...
recidd 11892 Multiplication of a number...
recid2d 11893 Multiplication of a number...
recrecd 11894 A number is equal to the r...
dividd 11895 A number divided by itself...
div0d 11896 Division into zero is zero...
divcld 11897 Closure law for division. ...
divcan1d 11898 A cancellation law for div...
divcan2d 11899 A cancellation law for div...
divrecd 11900 Relationship between divis...
divrec2d 11901 Relationship between divis...
divcan3d 11902 A cancellation law for div...
divcan4d 11903 A cancellation law for div...
diveq0d 11904 A ratio is zero iff the nu...
diveq1d 11905 Equality in terms of unit ...
diveq1ad 11906 The quotient of two comple...
diveq0ad 11907 A fraction of complex numb...
divne1d 11908 If two complex numbers are...
divne0bd 11909 A ratio is zero iff the nu...
divnegd 11910 Move negative sign inside ...
divneg2d 11911 Move negative sign inside ...
div2negd 11912 Quotient of two negatives....
divne0d 11913 The ratio of nonzero numbe...
recdivd 11914 The reciprocal of a ratio....
recdiv2d 11915 Division into a reciprocal...
divcan6d 11916 Cancellation of inverted f...
ddcand 11917 Cancellation in a double d...
rec11d 11918 Reciprocal is one-to-one. ...
divmuld 11919 Relationship between divis...
div32d 11920 A commutative/associative ...
div13d 11921 A commutative/associative ...
divdiv32d 11922 Swap denominators in a div...
divcan5d 11923 Cancellation of common fac...
divcan5rd 11924 Cancellation of common fac...
divcan7d 11925 Cancel equal divisors in a...
dmdcand 11926 Cancellation law for divis...
dmdcan2d 11927 Cancellation law for divis...
divdiv1d 11928 Division into a fraction. ...
divdiv2d 11929 Division by a fraction. (...
divmul2d 11930 Relationship between divis...
divmul3d 11931 Relationship between divis...
divassd 11932 An associative law for div...
div12d 11933 A commutative/associative ...
div23d 11934 A commutative/associative ...
divdird 11935 Distribution of division o...
divsubdird 11936 Distribution of division o...
div11d 11937 One-to-one relationship fo...
divmuldivd 11938 Multiplication of two rati...
divmul13d 11939 Swap denominators of two r...
divmul24d 11940 Swap the numerators in the...
divadddivd 11941 Addition of two ratios. T...
divsubdivd 11942 Subtraction of two ratios....
divmuleqd 11943 Cross-multiply in an equal...
divdivdivd 11944 Division of two ratios. T...
diveq1bd 11945 If two complex numbers are...
div2sub 11946 Swap the order of subtract...
div2subd 11947 Swap subtrahend and minuen...
rereccld 11948 Closure law for reciprocal...
redivcld 11949 Closure law for division o...
subrecd 11950 Subtraction of reciprocals...
subrec 11951 Subtraction of reciprocals...
subreci 11952 Subtraction of reciprocals...
mvllmuld 11953 Move the left term in a pr...
mvllmuli 11954 Move the left term in a pr...
ldiv 11955 Left-division. (Contribut...
rdiv 11956 Right-division. (Contribu...
mdiv 11957 A division law. (Contribu...
lineq 11958 Solution of a (scalar) lin...
elimgt0 11959 Hypothesis for weak deduct...
elimge0 11960 Hypothesis for weak deduct...
ltp1 11961 A number is less than itse...
lep1 11962 A number is less than or e...
ltm1 11963 A number minus 1 is less t...
lem1 11964 A number minus 1 is less t...
letrp1 11965 A transitive property of '...
p1le 11966 A transitive property of p...
recgt0 11967 The reciprocal of a positi...
prodgt0 11968 Infer that a multiplicand ...
prodgt02 11969 Infer that a multiplier is...
ltmul1a 11970 Lemma for ~ ltmul1 . Mult...
ltmul1 11971 Multiplication of both sid...
ltmul2 11972 Multiplication of both sid...
lemul1 11973 Multiplication of both sid...
lemul2 11974 Multiplication of both sid...
lemul1a 11975 Multiplication of both sid...
lemul2a 11976 Multiplication of both sid...
ltmul12a 11977 Comparison of product of t...
lemul12b 11978 Comparison of product of t...
lemul12a 11979 Comparison of product of t...
mulgt1OLD 11980 Obsolete version of ~ mulg...
ltmulgt11 11981 Multiplication by a number...
ltmulgt12 11982 Multiplication by a number...
mulgt1 11983 The product of two numbers...
lemulge11 11984 Multiplication by a number...
lemulge12 11985 Multiplication by a number...
ltdiv1 11986 Division of both sides of ...
lediv1 11987 Division of both sides of ...
gt0div 11988 Division of a positive num...
ge0div 11989 Division of a nonnegative ...
divgt0 11990 The ratio of two positive ...
divge0 11991 The ratio of nonnegative a...
mulge0b 11992 A condition for multiplica...
mulle0b 11993 A condition for multiplica...
mulsuble0b 11994 A condition for multiplica...
ltmuldiv 11995 'Less than' relationship b...
ltmuldiv2 11996 'Less than' relationship b...
ltdivmul 11997 'Less than' relationship b...
ledivmul 11998 'Less than or equal to' re...
ltdivmul2 11999 'Less than' relationship b...
lt2mul2div 12000 'Less than' relationship b...
ledivmul2 12001 'Less than or equal to' re...
lemuldiv 12002 'Less than or equal' relat...
lemuldiv2 12003 'Less than or equal' relat...
ltrec 12004 The reciprocal of both sid...
lerec 12005 The reciprocal of both sid...
lt2msq1 12006 Lemma for ~ lt2msq . (Con...
lt2msq 12007 Two nonnegative numbers co...
ltdiv2 12008 Division of a positive num...
ltrec1 12009 Reciprocal swap in a 'less...
lerec2 12010 Reciprocal swap in a 'less...
ledivdiv 12011 Invert ratios of positive ...
lediv2 12012 Division of a positive num...
ltdiv23 12013 Swap denominator with othe...
lediv23 12014 Swap denominator with othe...
lediv12a 12015 Comparison of ratio of two...
lediv2a 12016 Division of both sides of ...
reclt1 12017 The reciprocal of a positi...
recgt1 12018 The reciprocal of a positi...
recgt1i 12019 The reciprocal of a number...
recp1lt1 12020 Construct a number less th...
recreclt 12021 Given a positive number ` ...
le2msq 12022 The square function on non...
msq11 12023 The square of a nonnegativ...
ledivp1 12024 "Less than or equal to" an...
squeeze0 12025 If a nonnegative number is...
ltp1i 12026 A number is less than itse...
recgt0i 12027 The reciprocal of a positi...
recgt0ii 12028 The reciprocal of a positi...
prodgt0i 12029 Infer that a multiplicand ...
divgt0i 12030 The ratio of two positive ...
divge0i 12031 The ratio of nonnegative a...
ltreci 12032 The reciprocal of both sid...
lereci 12033 The reciprocal of both sid...
lt2msqi 12034 The square function on non...
le2msqi 12035 The square function on non...
msq11i 12036 The square of a nonnegativ...
divgt0i2i 12037 The ratio of two positive ...
ltrecii 12038 The reciprocal of both sid...
divgt0ii 12039 The ratio of two positive ...
ltmul1i 12040 Multiplication of both sid...
ltdiv1i 12041 Division of both sides of ...
ltmuldivi 12042 'Less than' relationship b...
ltmul2i 12043 Multiplication of both sid...
lemul1i 12044 Multiplication of both sid...
lemul2i 12045 Multiplication of both sid...
ltdiv23i 12046 Swap denominator with othe...
ledivp1i 12047 "Less than or equal to" an...
ltdivp1i 12048 Less-than and division rel...
ltdiv23ii 12049 Swap denominator with othe...
ltmul1ii 12050 Multiplication of both sid...
ltdiv1ii 12051 Division of both sides of ...
ltp1d 12052 A number is less than itse...
lep1d 12053 A number is less than or e...
ltm1d 12054 A number minus 1 is less t...
lem1d 12055 A number minus 1 is less t...
recgt0d 12056 The reciprocal of a positi...
divgt0d 12057 The ratio of two positive ...
mulgt1d 12058 The product of two numbers...
lemulge11d 12059 Multiplication by a number...
lemulge12d 12060 Multiplication by a number...
lemul1ad 12061 Multiplication of both sid...
lemul2ad 12062 Multiplication of both sid...
ltmul12ad 12063 Comparison of product of t...
lemul12ad 12064 Comparison of product of t...
lemul12bd 12065 Comparison of product of t...
fimaxre 12066 A finite set of real numbe...
fimaxre2 12067 A nonempty finite set of r...
fimaxre3 12068 A nonempty finite set of r...
fiminre 12069 A nonempty finite set of r...
fiminre2 12070 A nonempty finite set of r...
negfi 12071 The negation of a finite s...
lbreu 12072 If a set of reals contains...
lbcl 12073 If a set of reals contains...
lble 12074 If a set of reals contains...
lbinf 12075 If a set of reals contains...
lbinfcl 12076 If a set of reals contains...
lbinfle 12077 If a set of reals contains...
sup2 12078 A nonempty, bounded-above ...
sup3 12079 A version of the completen...
infm3lem 12080 Lemma for ~ infm3 . (Cont...
infm3 12081 The completeness axiom for...
suprcl 12082 Closure of supremum of a n...
suprub 12083 A member of a nonempty bou...
suprubd 12084 Natural deduction form of ...
suprcld 12085 Natural deduction form of ...
suprlub 12086 The supremum of a nonempty...
suprnub 12087 An upper bound is not less...
suprleub 12088 The supremum of a nonempty...
supaddc 12089 The supremum function dist...
supadd 12090 The supremum function dist...
supmul1 12091 The supremum function dist...
supmullem1 12092 Lemma for ~ supmul . (Con...
supmullem2 12093 Lemma for ~ supmul . (Con...
supmul 12094 The supremum function dist...
sup3ii 12095 A version of the completen...
suprclii 12096 Closure of supremum of a n...
suprubii 12097 A member of a nonempty bou...
suprlubii 12098 The supremum of a nonempty...
suprnubii 12099 An upper bound is not less...
suprleubii 12100 The supremum of a nonempty...
riotaneg 12101 The negative of the unique...
negiso 12102 Negation is an order anti-...
dfinfre 12103 The infimum of a set of re...
infrecl 12104 Closure of infimum of a no...
infrenegsup 12105 The infimum of a set of re...
infregelb 12106 Any lower bound of a nonem...
infrelb 12107 If a nonempty set of real ...
infrefilb 12108 The infimum of a finite se...
supfirege 12109 The supremum of a finite s...
neg1cn 12110 -1 is a complex number. (...
neg1rr 12111 -1 is a real number. (Con...
neg1ne0 12112 -1 is nonzero. (Contribut...
neg1lt0 12113 -1 is less than 0. (Contr...
negneg1e1 12114 ` -u -u 1 ` is 1. (Contri...
inelr 12115 The imaginary unit ` _i ` ...
rimul 12116 A real number times the im...
cru 12117 The representation of comp...
crne0 12118 The real representation of...
creur 12119 The real part of a complex...
creui 12120 The imaginary part of a co...
cju 12121 The complex conjugate of a...
ofsubeq0 12122 Function analogue of ~ sub...
ofnegsub 12123 Function analogue of ~ neg...
ofsubge0 12124 Function analogue of ~ sub...
nnexALT 12127 Alternate proof of ~ nnex ...
peano5nni 12128 Peano's inductive postulat...
nnssre 12129 The positive integers are ...
nnsscn 12130 The positive integers are ...
nnex 12131 The set of positive intege...
nnre 12132 A positive integer is a re...
nncn 12133 A positive integer is a co...
nnrei 12134 A positive integer is a re...
nncni 12135 A positive integer is a co...
1nn 12136 Peano postulate: 1 is a po...
peano2nn 12137 Peano postulate: a success...
dfnn2 12138 Alternate definition of th...
dfnn3 12139 Alternate definition of th...
nnred 12140 A positive integer is a re...
nncnd 12141 A positive integer is a co...
peano2nnd 12142 Peano postulate: a success...
nnind 12143 Principle of Mathematical ...
nnindALT 12144 Principle of Mathematical ...
nnindd 12145 Principle of Mathematical ...
nn1m1nn 12146 Every positive integer is ...
nn1suc 12147 If a statement holds for 1...
nnaddcl 12148 Closure of addition of pos...
nnmulcl 12149 Closure of multiplication ...
nnmulcli 12150 Closure of multiplication ...
nnmtmip 12151 "Minus times minus is plus...
nn2ge 12152 There exists a positive in...
nnge1 12153 A positive integer is one ...
nngt1ne1 12154 A positive integer is grea...
nnle1eq1 12155 A positive integer is less...
nngt0 12156 A positive integer is posi...
nnnlt1 12157 A positive integer is not ...
nnnle0 12158 A positive integer is not ...
nnne0 12159 A positive integer is nonz...
nnneneg 12160 No positive integer is equ...
0nnn 12161 Zero is not a positive int...
0nnnALT 12162 Alternate proof of ~ 0nnn ...
nnne0ALT 12163 Alternate version of ~ nnn...
nngt0i 12164 A positive integer is posi...
nnne0i 12165 A positive integer is nonz...
nndivre 12166 The quotient of a real and...
nnrecre 12167 The reciprocal of a positi...
nnrecgt0 12168 The reciprocal of a positi...
nnsub 12169 Subtraction of positive in...
nnsubi 12170 Subtraction of positive in...
nndiv 12171 Two ways to express " ` A ...
nndivtr 12172 Transitive property of div...
nnge1d 12173 A positive integer is one ...
nngt0d 12174 A positive integer is posi...
nnne0d 12175 A positive integer is nonz...
nnrecred 12176 The reciprocal of a positi...
nnaddcld 12177 Closure of addition of pos...
nnmulcld 12178 Closure of multiplication ...
nndivred 12179 A positive integer is one ...
0ne1 12196 Zero is different from one...
1m1e0 12197 One minus one equals zero....
2nn 12198 2 is a positive integer. ...
2re 12199 The number 2 is real. (Co...
2cn 12200 The number 2 is a complex ...
2cnALT 12201 Alternate proof of ~ 2cn ....
2ex 12202 The number 2 is a set. (C...
2cnd 12203 The number 2 is a complex ...
3nn 12204 3 is a positive integer. ...
3re 12205 The number 3 is real. (Co...
3cn 12206 The number 3 is a complex ...
3ex 12207 The number 3 is a set. (C...
4nn 12208 4 is a positive integer. ...
4re 12209 The number 4 is real. (Co...
4cn 12210 The number 4 is a complex ...
5nn 12211 5 is a positive integer. ...
5re 12212 The number 5 is real. (Co...
5cn 12213 The number 5 is a complex ...
6nn 12214 6 is a positive integer. ...
6re 12215 The number 6 is real. (Co...
6cn 12216 The number 6 is a complex ...
7nn 12217 7 is a positive integer. ...
7re 12218 The number 7 is real. (Co...
7cn 12219 The number 7 is a complex ...
8nn 12220 8 is a positive integer. ...
8re 12221 The number 8 is real. (Co...
8cn 12222 The number 8 is a complex ...
9nn 12223 9 is a positive integer. ...
9re 12224 The number 9 is real. (Co...
9cn 12225 The number 9 is a complex ...
0le0 12226 Zero is nonnegative. (Con...
0le2 12227 The number 0 is less than ...
2pos 12228 The number 2 is positive. ...
2ne0 12229 The number 2 is nonzero. ...
3pos 12230 The number 3 is positive. ...
3ne0 12231 The number 3 is nonzero. ...
4pos 12232 The number 4 is positive. ...
4ne0 12233 The number 4 is nonzero. ...
5pos 12234 The number 5 is positive. ...
6pos 12235 The number 6 is positive. ...
7pos 12236 The number 7 is positive. ...
8pos 12237 The number 8 is positive. ...
9pos 12238 The number 9 is positive. ...
1pneg1e0 12239 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12240 0 minus 0 equals 0. (Cont...
1m0e1 12241 1 - 0 = 1. (Contributed b...
0p1e1 12242 0 + 1 = 1. (Contributed b...
fv0p1e1 12243 Function value at ` N + 1 ...
1p0e1 12244 1 + 0 = 1. (Contributed b...
1p1e2 12245 1 + 1 = 2. (Contributed b...
2m1e1 12246 2 - 1 = 1. The result is ...
1e2m1 12247 1 = 2 - 1. (Contributed b...
3m1e2 12248 3 - 1 = 2. (Contributed b...
4m1e3 12249 4 - 1 = 3. (Contributed b...
5m1e4 12250 5 - 1 = 4. (Contributed b...
6m1e5 12251 6 - 1 = 5. (Contributed b...
7m1e6 12252 7 - 1 = 6. (Contributed b...
8m1e7 12253 8 - 1 = 7. (Contributed b...
9m1e8 12254 9 - 1 = 8. (Contributed b...
2p2e4 12255 Two plus two equals four. ...
2times 12256 Two times a number. (Cont...
times2 12257 A number times 2. (Contri...
2timesi 12258 Two times a number. (Cont...
times2i 12259 A number times 2. (Contri...
2txmxeqx 12260 Two times a complex number...
2div2e1 12261 2 divided by 2 is 1. (Con...
2p1e3 12262 2 + 1 = 3. (Contributed b...
1p2e3 12263 1 + 2 = 3. For a shorter ...
1p2e3ALT 12264 Alternate proof of ~ 1p2e3...
3p1e4 12265 3 + 1 = 4. (Contributed b...
4p1e5 12266 4 + 1 = 5. (Contributed b...
5p1e6 12267 5 + 1 = 6. (Contributed b...
6p1e7 12268 6 + 1 = 7. (Contributed b...
7p1e8 12269 7 + 1 = 8. (Contributed b...
8p1e9 12270 8 + 1 = 9. (Contributed b...
3p2e5 12271 3 + 2 = 5. (Contributed b...
3p3e6 12272 3 + 3 = 6. (Contributed b...
4p2e6 12273 4 + 2 = 6. (Contributed b...
4p3e7 12274 4 + 3 = 7. (Contributed b...
4p4e8 12275 4 + 4 = 8. (Contributed b...
5p2e7 12276 5 + 2 = 7. (Contributed b...
5p3e8 12277 5 + 3 = 8. (Contributed b...
5p4e9 12278 5 + 4 = 9. (Contributed b...
6p2e8 12279 6 + 2 = 8. (Contributed b...
6p3e9 12280 6 + 3 = 9. (Contributed b...
7p2e9 12281 7 + 2 = 9. (Contributed b...
1t1e1 12282 1 times 1 equals 1. (Cont...
2t1e2 12283 2 times 1 equals 2. (Cont...
2t2e4 12284 2 times 2 equals 4. (Cont...
3t1e3 12285 3 times 1 equals 3. (Cont...
3t2e6 12286 3 times 2 equals 6. (Cont...
3t3e9 12287 3 times 3 equals 9. (Cont...
4t2e8 12288 4 times 2 equals 8. (Cont...
2t0e0 12289 2 times 0 equals 0. (Cont...
4d2e2 12290 One half of four is two. ...
1lt2 12291 1 is less than 2. (Contri...
2lt3 12292 2 is less than 3. (Contri...
1lt3 12293 1 is less than 3. (Contri...
3lt4 12294 3 is less than 4. (Contri...
2lt4 12295 2 is less than 4. (Contri...
1lt4 12296 1 is less than 4. (Contri...
4lt5 12297 4 is less than 5. (Contri...
3lt5 12298 3 is less than 5. (Contri...
2lt5 12299 2 is less than 5. (Contri...
1lt5 12300 1 is less than 5. (Contri...
5lt6 12301 5 is less than 6. (Contri...
4lt6 12302 4 is less than 6. (Contri...
3lt6 12303 3 is less than 6. (Contri...
2lt6 12304 2 is less than 6. (Contri...
1lt6 12305 1 is less than 6. (Contri...
6lt7 12306 6 is less than 7. (Contri...
5lt7 12307 5 is less than 7. (Contri...
4lt7 12308 4 is less than 7. (Contri...
3lt7 12309 3 is less than 7. (Contri...
2lt7 12310 2 is less than 7. (Contri...
1lt7 12311 1 is less than 7. (Contri...
7lt8 12312 7 is less than 8. (Contri...
6lt8 12313 6 is less than 8. (Contri...
5lt8 12314 5 is less than 8. (Contri...
4lt8 12315 4 is less than 8. (Contri...
3lt8 12316 3 is less than 8. (Contri...
2lt8 12317 2 is less than 8. (Contri...
1lt8 12318 1 is less than 8. (Contri...
8lt9 12319 8 is less than 9. (Contri...
7lt9 12320 7 is less than 9. (Contri...
6lt9 12321 6 is less than 9. (Contri...
5lt9 12322 5 is less than 9. (Contri...
4lt9 12323 4 is less than 9. (Contri...
3lt9 12324 3 is less than 9. (Contri...
2lt9 12325 2 is less than 9. (Contri...
1lt9 12326 1 is less than 9. (Contri...
0ne2 12327 0 is not equal to 2. (Con...
1ne2 12328 1 is not equal to 2. (Con...
1le2 12329 1 is less than or equal to...
2cnne0 12330 2 is a nonzero complex num...
2rene0 12331 2 is a nonzero real number...
1le3 12332 1 is less than or equal to...
neg1mulneg1e1 12333 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12334 One-half is real. (Contri...
halfcn 12335 One-half is a complex numb...
halfgt0 12336 One-half is greater than z...
halfge0 12337 One-half is not negative. ...
halflt1 12338 One-half is less than one....
2halves 12339 Two halves make a whole. ...
1mhlfehlf 12340 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12341 An eighth of four thirds i...
halfthird 12342 Half minus a third. (Cont...
halfpm6th 12343 One half plus or minus one...
it0e0 12344 i times 0 equals 0. (Cont...
2mulicn 12345 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12346 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12347 Closure of half of a numbe...
rehalfcl 12348 Real closure of half. (Co...
half0 12349 Half of a number is zero i...
halfpos2 12350 A number is positive iff i...
halfpos 12351 A positive number is great...
halfnneg2 12352 A number is nonnegative if...
halfaddsubcl 12353 Closure of half-sum and ha...
halfaddsub 12354 Sum and difference of half...
subhalfhalf 12355 Subtracting the half of a ...
lt2halves 12356 A sum is less than the who...
addltmul 12357 Sum is less than product f...
nominpos 12358 There is no smallest posit...
avglt1 12359 Ordering property for aver...
avglt2 12360 Ordering property for aver...
avgle1 12361 Ordering property for aver...
avgle2 12362 Ordering property for aver...
avgle 12363 The average of two numbers...
2timesd 12364 Two times a number. (Cont...
times2d 12365 A number times 2. (Contri...
halfcld 12366 Closure of half of a numbe...
2halvesd 12367 Two halves make a whole. ...
rehalfcld 12368 Real closure of half. (Co...
lt2halvesd 12369 A sum is less than the who...
rehalfcli 12370 Half a real number is real...
lt2addmuld 12371 If two real numbers are le...
add1p1 12372 Adding two times 1 to a nu...
sub1m1 12373 Subtracting two times 1 fr...
cnm2m1cnm3 12374 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12375 A complex number increased...
div4p1lem1div2 12376 An integer greater than 5,...
nnunb 12377 The set of positive intege...
arch 12378 Archimedean property of re...
nnrecl 12379 There exists a positive in...
bndndx 12380 A bounded real sequence ` ...
elnn0 12383 Nonnegative integers expre...
nnssnn0 12384 Positive naturals are a su...
nn0ssre 12385 Nonnegative integers are a...
nn0sscn 12386 Nonnegative integers are a...
nn0ex 12387 The set of nonnegative int...
nnnn0 12388 A positive integer is a no...
nnnn0i 12389 A positive integer is a no...
nn0re 12390 A nonnegative integer is a...
nn0cn 12391 A nonnegative integer is a...
nn0rei 12392 A nonnegative integer is a...
nn0cni 12393 A nonnegative integer is a...
dfn2 12394 The set of positive intege...
elnnne0 12395 The positive integer prope...
0nn0 12396 0 is a nonnegative integer...
1nn0 12397 1 is a nonnegative integer...
2nn0 12398 2 is a nonnegative integer...
3nn0 12399 3 is a nonnegative integer...
4nn0 12400 4 is a nonnegative integer...
5nn0 12401 5 is a nonnegative integer...
6nn0 12402 6 is a nonnegative integer...
7nn0 12403 7 is a nonnegative integer...
8nn0 12404 8 is a nonnegative integer...
9nn0 12405 9 is a nonnegative integer...
nn0ge0 12406 A nonnegative integer is g...
nn0nlt0 12407 A nonnegative integer is n...
nn0ge0i 12408 Nonnegative integers are n...
nn0le0eq0 12409 A nonnegative integer is l...
nn0p1gt0 12410 A nonnegative integer incr...
nnnn0addcl 12411 A positive integer plus a ...
nn0nnaddcl 12412 A nonnegative integer plus...
0mnnnnn0 12413 The result of subtracting ...
un0addcl 12414 If ` S ` is closed under a...
un0mulcl 12415 If ` S ` is closed under m...
nn0addcl 12416 Closure of addition of non...
nn0mulcl 12417 Closure of multiplication ...
nn0addcli 12418 Closure of addition of non...
nn0mulcli 12419 Closure of multiplication ...
nn0p1nn 12420 A nonnegative integer plus...
peano2nn0 12421 Second Peano postulate for...
nnm1nn0 12422 A positive integer minus 1...
elnn0nn 12423 The nonnegative integer pr...
elnnnn0 12424 The positive integer prope...
elnnnn0b 12425 The positive integer prope...
elnnnn0c 12426 The positive integer prope...
nn0addge1 12427 A number is less than or e...
nn0addge2 12428 A number is less than or e...
nn0addge1i 12429 A number is less than or e...
nn0addge2i 12430 A number is less than or e...
nn0sub 12431 Subtraction of nonnegative...
ltsubnn0 12432 Subtracting a nonnegative ...
nn0negleid 12433 A nonnegative integer is g...
difgtsumgt 12434 If the difference of a rea...
nn0le2x 12435 A nonnegative integer is l...
nn0le2xi 12436 A nonnegative integer is l...
nn0lele2xi 12437 'Less than or equal to' im...
fcdmnn0supp 12438 Two ways to write the supp...
fcdmnn0fsupp 12439 A function into ` NN0 ` is...
fcdmnn0suppg 12440 Version of ~ fcdmnn0supp a...
fcdmnn0fsuppg 12441 Version of ~ fcdmnn0fsupp ...
nnnn0d 12442 A positive integer is a no...
nn0red 12443 A nonnegative integer is a...
nn0cnd 12444 A nonnegative integer is a...
nn0ge0d 12445 A nonnegative integer is g...
nn0addcld 12446 Closure of addition of non...
nn0mulcld 12447 Closure of multiplication ...
nn0readdcl 12448 Closure law for addition o...
nn0n0n1ge2 12449 A nonnegative integer whic...
nn0n0n1ge2b 12450 A nonnegative integer is n...
nn0ge2m1nn 12451 If a nonnegative integer i...
nn0ge2m1nn0 12452 If a nonnegative integer i...
nn0nndivcl 12453 Closure law for dividing o...
elxnn0 12456 An extended nonnegative in...
nn0ssxnn0 12457 The standard nonnegative i...
nn0xnn0 12458 A standard nonnegative int...
xnn0xr 12459 An extended nonnegative in...
0xnn0 12460 Zero is an extended nonneg...
pnf0xnn0 12461 Positive infinity is an ex...
nn0nepnf 12462 No standard nonnegative in...
nn0xnn0d 12463 A standard nonnegative int...
nn0nepnfd 12464 No standard nonnegative in...
xnn0nemnf 12465 No extended nonnegative in...
xnn0xrnemnf 12466 The extended nonnegative i...
xnn0nnn0pnf 12467 An extended nonnegative in...
elz 12470 Membership in the set of i...
nnnegz 12471 The negative of a positive...
zre 12472 An integer is a real. (Co...
zcn 12473 An integer is a complex nu...
zrei 12474 An integer is a real numbe...
zssre 12475 The integers are a subset ...
zsscn 12476 The integers are a subset ...
zex 12477 The set of integers exists...
elnnz 12478 Positive integer property ...
0z 12479 Zero is an integer. (Cont...
0zd 12480 Zero is an integer, deduct...
elnn0z 12481 Nonnegative integer proper...
elznn0nn 12482 Integer property expressed...
elznn0 12483 Integer property expressed...
elznn 12484 Integer property expressed...
zle0orge1 12485 There is no integer in the...
elz2 12486 Membership in the set of i...
dfz2 12487 Alternative definition of ...
zexALT 12488 Alternate proof of ~ zex ....
nnz 12489 A positive integer is an i...
nnssz 12490 Positive integers are a su...
nn0ssz 12491 Nonnegative integers are a...
nnzOLD 12492 Obsolete version of ~ nnz ...
nn0z 12493 A nonnegative integer is a...
nn0zd 12494 A nonnegative integer is a...
nnzd 12495 A positive integer is an i...
nnzi 12496 A positive integer is an i...
nn0zi 12497 A nonnegative integer is a...
elnnz1 12498 Positive integer property ...
znnnlt1 12499 An integer is not a positi...
nnzrab 12500 Positive integers expresse...
nn0zrab 12501 Nonnegative integers expre...
1z 12502 One is an integer. (Contr...
1zzd 12503 One is an integer, deducti...
2z 12504 2 is an integer. (Contrib...
3z 12505 3 is an integer. (Contrib...
4z 12506 4 is an integer. (Contrib...
znegcl 12507 Closure law for negative i...
neg1z 12508 -1 is an integer. (Contri...
znegclb 12509 A complex number is an int...
nn0negz 12510 The negative of a nonnegat...
nn0negzi 12511 The negative of a nonnegat...
zaddcl 12512 Closure of addition of int...
peano2z 12513 Second Peano postulate gen...
zsubcl 12514 Closure of subtraction of ...
peano2zm 12515 "Reverse" second Peano pos...
zletr 12516 Transitive law of ordering...
zrevaddcl 12517 Reverse closure law for ad...
znnsub 12518 The positive difference of...
znn0sub 12519 The nonnegative difference...
nzadd 12520 The sum of a real number n...
zmulcl 12521 Closure of multiplication ...
zltp1le 12522 Integer ordering relation....
zleltp1 12523 Integer ordering relation....
zlem1lt 12524 Integer ordering relation....
zltlem1 12525 Integer ordering relation....
zltlem1d 12526 Integer ordering relation,...
zgt0ge1 12527 An integer greater than ` ...
nnleltp1 12528 Positive integer ordering ...
nnltp1le 12529 Positive integer ordering ...
nnaddm1cl 12530 Closure of addition of pos...
nn0ltp1le 12531 Nonnegative integer orderi...
nn0leltp1 12532 Nonnegative integer orderi...
nn0ltlem1 12533 Nonnegative integer orderi...
nn0sub2 12534 Subtraction of nonnegative...
nn0lt10b 12535 A nonnegative integer less...
nn0lt2 12536 A nonnegative integer less...
nn0le2is012 12537 A nonnegative integer whic...
nn0lem1lt 12538 Nonnegative integer orderi...
nnlem1lt 12539 Positive integer ordering ...
nnltlem1 12540 Positive integer ordering ...
nnm1ge0 12541 A positive integer decreas...
nn0ge0div 12542 Division of a nonnegative ...
zdiv 12543 Two ways to express " ` M ...
zdivadd 12544 Property of divisibility: ...
zdivmul 12545 Property of divisibility: ...
zextle 12546 An extensionality-like pro...
zextlt 12547 An extensionality-like pro...
recnz 12548 The reciprocal of a number...
btwnnz 12549 A number between an intege...
gtndiv 12550 A larger number does not d...
halfnz 12551 One-half is not an integer...
3halfnz 12552 Three halves is not an int...
suprzcl 12553 The supremum of a bounded-...
prime 12554 Two ways to express " ` A ...
msqznn 12555 The square of a nonzero in...
zneo 12556 No even integer equals an ...
nneo 12557 A positive integer is even...
nneoi 12558 A positive integer is even...
zeo 12559 An integer is even or odd....
zeo2 12560 An integer is even or odd ...
peano2uz2 12561 Second Peano postulate for...
peano5uzi 12562 Peano's inductive postulat...
peano5uzti 12563 Peano's inductive postulat...
dfuzi 12564 An expression for the uppe...
uzind 12565 Induction on the upper int...
uzind2 12566 Induction on the upper int...
uzind3 12567 Induction on the upper int...
nn0ind 12568 Principle of Mathematical ...
nn0indALT 12569 Principle of Mathematical ...
nn0indd 12570 Principle of Mathematical ...
fzind 12571 Induction on the integers ...
fnn0ind 12572 Induction on the integers ...
nn0ind-raph 12573 Principle of Mathematical ...
zindd 12574 Principle of Mathematical ...
fzindd 12575 Induction on the integers ...
btwnz 12576 Any real number can be san...
zred 12577 An integer is a real numbe...
zcnd 12578 An integer is a complex nu...
znegcld 12579 Closure law for negative i...
peano2zd 12580 Deduction from second Pean...
zaddcld 12581 Closure of addition of int...
zsubcld 12582 Closure of subtraction of ...
zmulcld 12583 Closure of multiplication ...
znnn0nn 12584 The negative of a negative...
zadd2cl 12585 Increasing an integer by 2...
zriotaneg 12586 The negative of the unique...
suprfinzcl 12587 The supremum of a nonempty...
9p1e10 12590 9 + 1 = 10. (Contributed ...
dfdec10 12591 Version of the definition ...
decex 12592 A decimal number is a set....
deceq1 12593 Equality theorem for the d...
deceq2 12594 Equality theorem for the d...
deceq1i 12595 Equality theorem for the d...
deceq2i 12596 Equality theorem for the d...
deceq12i 12597 Equality theorem for the d...
numnncl 12598 Closure for a numeral (wit...
num0u 12599 Add a zero in the units pl...
num0h 12600 Add a zero in the higher p...
numcl 12601 Closure for a decimal inte...
numsuc 12602 The successor of a decimal...
deccl 12603 Closure for a numeral. (C...
10nn 12604 10 is a positive integer. ...
10pos 12605 The number 10 is positive....
10nn0 12606 10 is a nonnegative intege...
10re 12607 The number 10 is real. (C...
decnncl 12608 Closure for a numeral. (C...
dec0u 12609 Add a zero in the units pl...
dec0h 12610 Add a zero in the higher p...
numnncl2 12611 Closure for a decimal inte...
decnncl2 12612 Closure for a decimal inte...
numlt 12613 Comparing two decimal inte...
numltc 12614 Comparing two decimal inte...
le9lt10 12615 A "decimal digit" (i.e. a ...
declt 12616 Comparing two decimal inte...
decltc 12617 Comparing two decimal inte...
declth 12618 Comparing two decimal inte...
decsuc 12619 The successor of a decimal...
3declth 12620 Comparing two decimal inte...
3decltc 12621 Comparing two decimal inte...
decle 12622 Comparing two decimal inte...
decleh 12623 Comparing two decimal inte...
declei 12624 Comparing a digit to a dec...
numlti 12625 Comparing a digit to a dec...
declti 12626 Comparing a digit to a dec...
decltdi 12627 Comparing a digit to a dec...
numsucc 12628 The successor of a decimal...
decsucc 12629 The successor of a decimal...
1e0p1 12630 The successor of zero. (C...
dec10p 12631 Ten plus an integer. (Con...
numma 12632 Perform a multiply-add of ...
nummac 12633 Perform a multiply-add of ...
numma2c 12634 Perform a multiply-add of ...
numadd 12635 Add two decimal integers `...
numaddc 12636 Add two decimal integers `...
nummul1c 12637 The product of a decimal i...
nummul2c 12638 The product of a decimal i...
decma 12639 Perform a multiply-add of ...
decmac 12640 Perform a multiply-add of ...
decma2c 12641 Perform a multiply-add of ...
decadd 12642 Add two numerals ` M ` and...
decaddc 12643 Add two numerals ` M ` and...
decaddc2 12644 Add two numerals ` M ` and...
decrmanc 12645 Perform a multiply-add of ...
decrmac 12646 Perform a multiply-add of ...
decaddm10 12647 The sum of two multiples o...
decaddi 12648 Add two numerals ` M ` and...
decaddci 12649 Add two numerals ` M ` and...
decaddci2 12650 Add two numerals ` M ` and...
decsubi 12651 Difference between a numer...
decmul1 12652 The product of a numeral w...
decmul1c 12653 The product of a numeral w...
decmul2c 12654 The product of a numeral w...
decmulnc 12655 The product of a numeral w...
11multnc 12656 The product of 11 (as nume...
decmul10add 12657 A multiplication of a numb...
6p5lem 12658 Lemma for ~ 6p5e11 and rel...
5p5e10 12659 5 + 5 = 10. (Contributed ...
6p4e10 12660 6 + 4 = 10. (Contributed ...
6p5e11 12661 6 + 5 = 11. (Contributed ...
6p6e12 12662 6 + 6 = 12. (Contributed ...
7p3e10 12663 7 + 3 = 10. (Contributed ...
7p4e11 12664 7 + 4 = 11. (Contributed ...
7p5e12 12665 7 + 5 = 12. (Contributed ...
7p6e13 12666 7 + 6 = 13. (Contributed ...
7p7e14 12667 7 + 7 = 14. (Contributed ...
8p2e10 12668 8 + 2 = 10. (Contributed ...
8p3e11 12669 8 + 3 = 11. (Contributed ...
8p4e12 12670 8 + 4 = 12. (Contributed ...
8p5e13 12671 8 + 5 = 13. (Contributed ...
8p6e14 12672 8 + 6 = 14. (Contributed ...
8p7e15 12673 8 + 7 = 15. (Contributed ...
8p8e16 12674 8 + 8 = 16. (Contributed ...
9p2e11 12675 9 + 2 = 11. (Contributed ...
9p3e12 12676 9 + 3 = 12. (Contributed ...
9p4e13 12677 9 + 4 = 13. (Contributed ...
9p5e14 12678 9 + 5 = 14. (Contributed ...
9p6e15 12679 9 + 6 = 15. (Contributed ...
9p7e16 12680 9 + 7 = 16. (Contributed ...
9p8e17 12681 9 + 8 = 17. (Contributed ...
9p9e18 12682 9 + 9 = 18. (Contributed ...
10p10e20 12683 10 + 10 = 20. (Contribute...
10m1e9 12684 10 - 1 = 9. (Contributed ...
4t3lem 12685 Lemma for ~ 4t3e12 and rel...
4t3e12 12686 4 times 3 equals 12. (Con...
4t4e16 12687 4 times 4 equals 16. (Con...
5t2e10 12688 5 times 2 equals 10. (Con...
5t3e15 12689 5 times 3 equals 15. (Con...
5t4e20 12690 5 times 4 equals 20. (Con...
5t5e25 12691 5 times 5 equals 25. (Con...
6t2e12 12692 6 times 2 equals 12. (Con...
6t3e18 12693 6 times 3 equals 18. (Con...
6t4e24 12694 6 times 4 equals 24. (Con...
6t5e30 12695 6 times 5 equals 30. (Con...
6t6e36 12696 6 times 6 equals 36. (Con...
7t2e14 12697 7 times 2 equals 14. (Con...
7t3e21 12698 7 times 3 equals 21. (Con...
7t4e28 12699 7 times 4 equals 28. (Con...
7t5e35 12700 7 times 5 equals 35. (Con...
7t6e42 12701 7 times 6 equals 42. (Con...
7t7e49 12702 7 times 7 equals 49. (Con...
8t2e16 12703 8 times 2 equals 16. (Con...
8t3e24 12704 8 times 3 equals 24. (Con...
8t4e32 12705 8 times 4 equals 32. (Con...
8t5e40 12706 8 times 5 equals 40. (Con...
8t6e48 12707 8 times 6 equals 48. (Con...
8t7e56 12708 8 times 7 equals 56. (Con...
8t8e64 12709 8 times 8 equals 64. (Con...
9t2e18 12710 9 times 2 equals 18. (Con...
9t3e27 12711 9 times 3 equals 27. (Con...
9t4e36 12712 9 times 4 equals 36. (Con...
9t5e45 12713 9 times 5 equals 45. (Con...
9t6e54 12714 9 times 6 equals 54. (Con...
9t7e63 12715 9 times 7 equals 63. (Con...
9t8e72 12716 9 times 8 equals 72. (Con...
9t9e81 12717 9 times 9 equals 81. (Con...
9t11e99 12718 9 times 11 equals 99. (Co...
9lt10 12719 9 is less than 10. (Contr...
8lt10 12720 8 is less than 10. (Contr...
7lt10 12721 7 is less than 10. (Contr...
6lt10 12722 6 is less than 10. (Contr...
5lt10 12723 5 is less than 10. (Contr...
4lt10 12724 4 is less than 10. (Contr...
3lt10 12725 3 is less than 10. (Contr...
2lt10 12726 2 is less than 10. (Contr...
1lt10 12727 1 is less than 10. (Contr...
decbin0 12728 Decompose base 4 into base...
decbin2 12729 Decompose base 4 into base...
decbin3 12730 Decompose base 4 into base...
5recm6rec 12731 One fifth minus one sixth....
uzval 12734 The value of the upper int...
uzf 12735 The domain and codomain of...
eluz1 12736 Membership in the upper se...
eluzel2 12737 Implication of membership ...
eluz2 12738 Membership in an upper set...
eluzmn 12739 Membership in an earlier u...
eluz1i 12740 Membership in an upper set...
eluzuzle 12741 An integer in an upper set...
eluzelz 12742 A member of an upper set o...
eluzelre 12743 A member of an upper set o...
eluzelcn 12744 A member of an upper set o...
eluzle 12745 Implication of membership ...
eluz 12746 Membership in an upper set...
uzid 12747 Membership of the least me...
uzidd 12748 Membership of the least me...
uzn0 12749 The upper integers are all...
uztrn 12750 Transitive law for sets of...
uztrn2 12751 Transitive law for sets of...
uzneg 12752 Contraposition law for upp...
uzssz 12753 An upper set of integers i...
uzssre 12754 An upper set of integers i...
uzss 12755 Subset relationship for tw...
uztric 12756 Totality of the ordering r...
uz11 12757 The upper integers functio...
eluzp1m1 12758 Membership in the next upp...
eluzp1l 12759 Strict ordering implied by...
eluzp1p1 12760 Membership in the next upp...
eluzadd 12761 Membership in a later uppe...
eluzsub 12762 Membership in an earlier u...
eluzaddi 12763 Membership in a later uppe...
eluzaddiOLD 12764 Obsolete version of ~ eluz...
eluzsubi 12765 Membership in an earlier u...
eluzsubiOLD 12766 Obsolete version of ~ eluz...
eluzaddOLD 12767 Obsolete version of ~ eluz...
eluzsubOLD 12768 Obsolete version of ~ eluz...
subeluzsub 12769 Membership of a difference...
uzm1 12770 Choices for an element of ...
uznn0sub 12771 The nonnegative difference...
uzin 12772 Intersection of two upper ...
uzp1 12773 Choices for an element of ...
nn0uz 12774 Nonnegative integers expre...
nnuz 12775 Positive integers expresse...
elnnuz 12776 A positive integer express...
elnn0uz 12777 A nonnegative integer expr...
1eluzge0 12778 1 is an integer greater th...
2eluzge0 12779 2 is an integer greater th...
2eluzge1 12780 2 is an integer greater th...
5eluz3 12781 5 is an integer greater th...
uzuzle23 12782 An integer greater than or...
uzuzle24 12783 An integer greater than or...
uzuzle34 12784 An integer greater than or...
uzuzle35 12785 An integer greater than or...
eluz2nn 12786 An integer greater than or...
eluz3nn 12787 An integer greater than or...
eluz4nn 12788 An integer greater than or...
eluz5nn 12789 An integer greater than or...
eluzge2nn0 12790 If an integer is greater t...
eluz2n0 12791 An integer greater than or...
uz3m2nn 12792 An integer greater than or...
uznnssnn 12793 The upper integers startin...
raluz 12794 Restricted universal quant...
raluz2 12795 Restricted universal quant...
rexuz 12796 Restricted existential qua...
rexuz2 12797 Restricted existential qua...
2rexuz 12798 Double existential quantif...
peano2uz 12799 Second Peano postulate for...
peano2uzs 12800 Second Peano postulate for...
peano2uzr 12801 Reversed second Peano axio...
uzaddcl 12802 Addition closure law for a...
nn0pzuz 12803 The sum of a nonnegative i...
uzind4 12804 Induction on the upper set...
uzind4ALT 12805 Induction on the upper set...
uzind4s 12806 Induction on the upper set...
uzind4s2 12807 Induction on the upper set...
uzind4i 12808 Induction on the upper int...
uzwo 12809 Well-ordering principle: a...
uzwo2 12810 Well-ordering principle: a...
nnwo 12811 Well-ordering principle: a...
nnwof 12812 Well-ordering principle: a...
nnwos 12813 Well-ordering principle: a...
indstr 12814 Strong Mathematical Induct...
eluznn0 12815 Membership in a nonnegativ...
eluznn 12816 Membership in a positive u...
eluz2b1 12817 Two ways to say "an intege...
eluz2gt1 12818 An integer greater than or...
eluz2b2 12819 Two ways to say "an intege...
eluz2b3 12820 Two ways to say "an intege...
uz2m1nn 12821 One less than an integer g...
1nuz2 12822 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12823 A positive integer is eith...
uz2mulcl 12824 Closure of multiplication ...
indstr2 12825 Strong Mathematical Induct...
uzinfi 12826 Extract the lower bound of...
nninf 12827 The infimum of the set of ...
nn0inf 12828 The infimum of the set of ...
infssuzle 12829 The infimum of a subset of...
infssuzcl 12830 The infimum of a subset of...
ublbneg 12831 The image under negation o...
eqreznegel 12832 Two ways to express the im...
supminf 12833 The supremum of a bounded-...
lbzbi 12834 If a set of reals is bound...
zsupss 12835 Any nonempty bounded subse...
suprzcl2 12836 The supremum of a bounded-...
suprzub 12837 The supremum of a bounded-...
uzsupss 12838 Any bounded subset of an u...
nn01to3 12839 A (nonnegative) integer be...
nn0ge2m1nnALT 12840 Alternate proof of ~ nn0ge...
uzwo3 12841 Well-ordering principle: a...
zmin 12842 There is a unique smallest...
zmax 12843 There is a unique largest ...
zbtwnre 12844 There is a unique integer ...
rebtwnz 12845 There is a unique greatest...
elq 12848 Membership in the set of r...
qmulz 12849 If ` A ` is rational, then...
znq 12850 The ratio of an integer an...
qre 12851 A rational number is a rea...
zq 12852 An integer is a rational n...
qred 12853 A rational number is a rea...
zssq 12854 The integers are a subset ...
nn0ssq 12855 The nonnegative integers a...
nnssq 12856 The positive integers are ...
qssre 12857 The rationals are a subset...
qsscn 12858 The rationals are a subset...
qex 12859 The set of rational number...
nnq 12860 A positive integer is rati...
qcn 12861 A rational number is a com...
qexALT 12862 Alternate proof of ~ qex ....
qaddcl 12863 Closure of addition of rat...
qnegcl 12864 Closure law for the negati...
qmulcl 12865 Closure of multiplication ...
qsubcl 12866 Closure of subtraction of ...
qreccl 12867 Closure of reciprocal of r...
qdivcl 12868 Closure of division of rat...
qrevaddcl 12869 Reverse closure law for ad...
nnrecq 12870 The reciprocal of a positi...
irradd 12871 The sum of an irrational n...
irrmul 12872 The product of an irration...
elpq 12873 A positive rational is the...
elpqb 12874 A class is a positive rati...
rpnnen1lem2 12875 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12876 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12877 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12878 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12879 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12880 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12881 One half of ~ rpnnen , whe...
reexALT 12882 Alternate proof of ~ reex ...
cnref1o 12883 There is a natural one-to-...
cnexALT 12884 The set of complex numbers...
xrex 12885 The set of extended reals ...
mpoaddex 12886 The addition operation is ...
addex 12887 The addition operation is ...
mpomulex 12888 The multiplication operati...
mulex 12889 The multiplication operati...
elrp 12892 Membership in the set of p...
elrpii 12893 Membership in the set of p...
1rp 12894 1 is a positive real. (Co...
2rp 12895 2 is a positive real. (Co...
3rp 12896 3 is a positive real. (Co...
5rp 12897 5 is a positive real. (Co...
rpssre 12898 The positive reals are a s...
rpre 12899 A positive real is a real....
rpxr 12900 A positive real is an exte...
rpcn 12901 A positive real is a compl...
nnrp 12902 A positive integer is a po...
rpgt0 12903 A positive real is greater...
rpge0 12904 A positive real is greater...
rpregt0 12905 A positive real is a posit...
rprege0 12906 A positive real is a nonne...
rpne0 12907 A positive real is nonzero...
rprene0 12908 A positive real is a nonze...
rpcnne0 12909 A positive real is a nonze...
neglt 12910 The negative of a positive...
rpcndif0 12911 A positive real number is ...
ralrp 12912 Quantification over positi...
rexrp 12913 Quantification over positi...
rpaddcl 12914 Closure law for addition o...
rpmulcl 12915 Closure law for multiplica...
rpmtmip 12916 "Minus times minus is plus...
rpdivcl 12917 Closure law for division o...
rpreccl 12918 Closure law for reciprocat...
rphalfcl 12919 Closure law for half of a ...
rpgecl 12920 A number greater than or e...
rphalflt 12921 Half of a positive real is...
rerpdivcl 12922 Closure law for division o...
ge0p1rp 12923 A nonnegative number plus ...
rpneg 12924 Either a nonzero real or i...
negelrp 12925 Elementhood of a negation ...
negelrpd 12926 The negation of a negative...
0nrp 12927 Zero is not a positive rea...
ltsubrp 12928 Subtracting a positive rea...
ltaddrp 12929 Adding a positive number t...
difrp 12930 Two ways to say one number...
elrpd 12931 Membership in the set of p...
nnrpd 12932 A positive integer is a po...
zgt1rpn0n1 12933 An integer greater than 1 ...
rpred 12934 A positive real is a real....
rpxrd 12935 A positive real is an exte...
rpcnd 12936 A positive real is a compl...
rpgt0d 12937 A positive real is greater...
rpge0d 12938 A positive real is greater...
rpne0d 12939 A positive real is nonzero...
rpregt0d 12940 A positive real is real an...
rprege0d 12941 A positive real is real an...
rprene0d 12942 A positive real is a nonze...
rpcnne0d 12943 A positive real is a nonze...
rpreccld 12944 Closure law for reciprocat...
rprecred 12945 Closure law for reciprocat...
rphalfcld 12946 Closure law for half of a ...
reclt1d 12947 The reciprocal of a positi...
recgt1d 12948 The reciprocal of a positi...
rpaddcld 12949 Closure law for addition o...
rpmulcld 12950 Closure law for multiplica...
rpdivcld 12951 Closure law for division o...
ltrecd 12952 The reciprocal of both sid...
lerecd 12953 The reciprocal of both sid...
ltrec1d 12954 Reciprocal swap in a 'less...
lerec2d 12955 Reciprocal swap in a 'less...
lediv2ad 12956 Division of both sides of ...
ltdiv2d 12957 Division of a positive num...
lediv2d 12958 Division of a positive num...
ledivdivd 12959 Invert ratios of positive ...
divge1 12960 The ratio of a number over...
divlt1lt 12961 A real number divided by a...
divle1le 12962 A real number divided by a...
ledivge1le 12963 If a number is less than o...
ge0p1rpd 12964 A nonnegative number plus ...
rerpdivcld 12965 Closure law for division o...
ltsubrpd 12966 Subtracting a positive rea...
ltaddrpd 12967 Adding a positive number t...
ltaddrp2d 12968 Adding a positive number t...
ltmulgt11d 12969 Multiplication by a number...
ltmulgt12d 12970 Multiplication by a number...
gt0divd 12971 Division of a positive num...
ge0divd 12972 Division of a nonnegative ...
rpgecld 12973 A number greater than or e...
divge0d 12974 The ratio of nonnegative a...
ltmul1d 12975 The ratio of nonnegative a...
ltmul2d 12976 Multiplication of both sid...
lemul1d 12977 Multiplication of both sid...
lemul2d 12978 Multiplication of both sid...
ltdiv1d 12979 Division of both sides of ...
lediv1d 12980 Division of both sides of ...
ltmuldivd 12981 'Less than' relationship b...
ltmuldiv2d 12982 'Less than' relationship b...
lemuldivd 12983 'Less than or equal to' re...
lemuldiv2d 12984 'Less than or equal to' re...
ltdivmuld 12985 'Less than' relationship b...
ltdivmul2d 12986 'Less than' relationship b...
ledivmuld 12987 'Less than or equal to' re...
ledivmul2d 12988 'Less than or equal to' re...
ltmul1dd 12989 The ratio of nonnegative a...
ltmul2dd 12990 Multiplication of both sid...
ltdiv1dd 12991 Division of both sides of ...
lediv1dd 12992 Division of both sides of ...
lediv12ad 12993 Comparison of ratio of two...
mul2lt0rlt0 12994 If the result of a multipl...
mul2lt0rgt0 12995 If the result of a multipl...
mul2lt0llt0 12996 If the result of a multipl...
mul2lt0lgt0 12997 If the result of a multipl...
mul2lt0bi 12998 If the result of a multipl...
prodge0rd 12999 Infer that a multiplicand ...
prodge0ld 13000 Infer that a multiplier is...
ltdiv23d 13001 Swap denominator with othe...
lediv23d 13002 Swap denominator with othe...
lt2mul2divd 13003 The ratio of nonnegative a...
nnledivrp 13004 Division of a positive int...
nn0ledivnn 13005 Division of a nonnegative ...
addlelt 13006 If the sum of a real numbe...
ge2halflem1 13007 Half of an integer greater...
ltxr 13014 The 'less than' binary rel...
elxr 13015 Membership in the set of e...
xrnemnf 13016 An extended real other tha...
xrnepnf 13017 An extended real other tha...
xrltnr 13018 The extended real 'less th...
ltpnf 13019 Any (finite) real is less ...
ltpnfd 13020 Any (finite) real is less ...
0ltpnf 13021 Zero is less than plus inf...
mnflt 13022 Minus infinity is less tha...
mnfltd 13023 Minus infinity is less tha...
mnflt0 13024 Minus infinity is less tha...
mnfltpnf 13025 Minus infinity is less tha...
mnfltxr 13026 Minus infinity is less tha...
pnfnlt 13027 No extended real is greate...
nltmnf 13028 No extended real is less t...
pnfge 13029 Plus infinity is an upper ...
pnfged 13030 Plus infinity is an upper ...
xnn0n0n1ge2b 13031 An extended nonnegative in...
0lepnf 13032 0 less than or equal to po...
xnn0ge0 13033 An extended nonnegative in...
mnfle 13034 Minus infinity is less tha...
mnfled 13035 Minus infinity is less tha...
xrltnsym 13036 Ordering on the extended r...
xrltnsym2 13037 'Less than' is antisymmetr...
xrlttri 13038 Ordering on the extended r...
xrlttr 13039 Ordering on the extended r...
xrltso 13040 'Less than' is a strict or...
xrlttri2 13041 Trichotomy law for 'less t...
xrlttri3 13042 Trichotomy law for 'less t...
xrleloe 13043 'Less than or equal' expre...
xrleltne 13044 'Less than or equal to' im...
xrltlen 13045 'Less than' expressed in t...
dfle2 13046 Alternative definition of ...
dflt2 13047 Alternative definition of ...
xrltle 13048 'Less than' implies 'less ...
xrltled 13049 'Less than' implies 'less ...
xrleid 13050 'Less than or equal to' is...
xrleidd 13051 'Less than or equal to' is...
xrletri 13052 Trichotomy law for extende...
xrletri3 13053 Trichotomy law for extende...
xrletrid 13054 Trichotomy law for extende...
xrlelttr 13055 Transitive law for orderin...
xrltletr 13056 Transitive law for orderin...
xrletr 13057 Transitive law for orderin...
xrlttrd 13058 Transitive law for orderin...
xrlelttrd 13059 Transitive law for orderin...
xrltletrd 13060 Transitive law for orderin...
xrletrd 13061 Transitive law for orderin...
xrltne 13062 'Less than' implies not eq...
nltpnft 13063 An extended real is not le...
xgepnf 13064 An extended real which is ...
ngtmnft 13065 An extended real is not gr...
xlemnf 13066 An extended real which is ...
xrrebnd 13067 An extended real is real i...
xrre 13068 A way of proving that an e...
xrre2 13069 An extended real between t...
xrre3 13070 A way of proving that an e...
ge0gtmnf 13071 A nonnegative extended rea...
ge0nemnf 13072 A nonnegative extended rea...
xrrege0 13073 A nonnegative extended rea...
xrmax1 13074 An extended real is less t...
xrmax2 13075 An extended real is less t...
xrmin1 13076 The minimum of two extende...
xrmin2 13077 The minimum of two extende...
xrmaxeq 13078 The maximum of two extende...
xrmineq 13079 The minimum of two extende...
xrmaxlt 13080 Two ways of saying the max...
xrltmin 13081 Two ways of saying an exte...
xrmaxle 13082 Two ways of saying the max...
xrlemin 13083 Two ways of saying a numbe...
max1 13084 A number is less than or e...
max1ALT 13085 A number is less than or e...
max2 13086 A number is less than or e...
2resupmax 13087 The supremum of two real n...
min1 13088 The minimum of two numbers...
min2 13089 The minimum of two numbers...
maxle 13090 Two ways of saying the max...
lemin 13091 Two ways of saying a numbe...
maxlt 13092 Two ways of saying the max...
ltmin 13093 Two ways of saying a numbe...
lemaxle 13094 A real number which is les...
max0sub 13095 Decompose a real number in...
ifle 13096 An if statement transforms...
z2ge 13097 There exists an integer gr...
qbtwnre 13098 The rational numbers are d...
qbtwnxr 13099 The rational numbers are d...
qsqueeze 13100 If a nonnegative real is l...
qextltlem 13101 Lemma for ~ qextlt and qex...
qextlt 13102 An extensionality-like pro...
qextle 13103 An extensionality-like pro...
xralrple 13104 Show that ` A ` is less th...
alrple 13105 Show that ` A ` is less th...
xnegeq 13106 Equality of two extended n...
xnegex 13107 A negative extended real e...
xnegpnf 13108 Minus ` +oo ` . Remark of...
xnegmnf 13109 Minus ` -oo ` . Remark of...
rexneg 13110 Minus a real number. Rema...
xneg0 13111 The negative of zero. (Co...
xnegcl 13112 Closure of extended real n...
xnegneg 13113 Extended real version of ~...
xneg11 13114 Extended real version of ~...
xltnegi 13115 Forward direction of ~ xlt...
xltneg 13116 Extended real version of ~...
xleneg 13117 Extended real version of ~...
xlt0neg1 13118 Extended real version of ~...
xlt0neg2 13119 Extended real version of ~...
xle0neg1 13120 Extended real version of ~...
xle0neg2 13121 Extended real version of ~...
xaddval 13122 Value of the extended real...
xaddf 13123 The extended real addition...
xmulval 13124 Value of the extended real...
xaddpnf1 13125 Addition of positive infin...
xaddpnf2 13126 Addition of positive infin...
xaddmnf1 13127 Addition of negative infin...
xaddmnf2 13128 Addition of negative infin...
pnfaddmnf 13129 Addition of positive and n...
mnfaddpnf 13130 Addition of negative and p...
rexadd 13131 The extended real addition...
rexsub 13132 Extended real subtraction ...
rexaddd 13133 The extended real addition...
xnn0xaddcl 13134 The extended nonnegative i...
xaddnemnf 13135 Closure of extended real a...
xaddnepnf 13136 Closure of extended real a...
xnegid 13137 Extended real version of ~...
xaddcl 13138 The extended real addition...
xaddcom 13139 The extended real addition...
xaddrid 13140 Extended real version of ~...
xaddlid 13141 Extended real version of ~...
xaddridd 13142 ` 0 ` is a right identity ...
xnn0lem1lt 13143 Extended nonnegative integ...
xnn0lenn0nn0 13144 An extended nonnegative in...
xnn0le2is012 13145 An extended nonnegative in...
xnn0xadd0 13146 The sum of two extended no...
xnegdi 13147 Extended real version of ~...
xaddass 13148 Associativity of extended ...
xaddass2 13149 Associativity of extended ...
xpncan 13150 Extended real version of ~...
xnpcan 13151 Extended real version of ~...
xleadd1a 13152 Extended real version of ~...
xleadd2a 13153 Commuted form of ~ xleadd1...
xleadd1 13154 Weakened version of ~ xlea...
xltadd1 13155 Extended real version of ~...
xltadd2 13156 Extended real version of ~...
xaddge0 13157 The sum of nonnegative ext...
xle2add 13158 Extended real version of ~...
xlt2add 13159 Extended real version of ~...
xsubge0 13160 Extended real version of ~...
xposdif 13161 Extended real version of ~...
xlesubadd 13162 Under certain conditions, ...
xmullem 13163 Lemma for ~ rexmul . (Con...
xmullem2 13164 Lemma for ~ xmulneg1 . (C...
xmulcom 13165 Extended real multiplicati...
xmul01 13166 Extended real version of ~...
xmul02 13167 Extended real version of ~...
xmulneg1 13168 Extended real version of ~...
xmulneg2 13169 Extended real version of ~...
rexmul 13170 The extended real multipli...
xmulf 13171 The extended real multipli...
xmulcl 13172 Closure of extended real m...
xmulpnf1 13173 Multiplication by plus inf...
xmulpnf2 13174 Multiplication by plus inf...
xmulmnf1 13175 Multiplication by minus in...
xmulmnf2 13176 Multiplication by minus in...
xmulpnf1n 13177 Multiplication by plus inf...
xmulrid 13178 Extended real version of ~...
xmullid 13179 Extended real version of ~...
xmulm1 13180 Extended real version of ~...
xmulasslem2 13181 Lemma for ~ xmulass . (Co...
xmulgt0 13182 Extended real version of ~...
xmulge0 13183 Extended real version of ~...
xmulasslem 13184 Lemma for ~ xmulass . (Co...
xmulasslem3 13185 Lemma for ~ xmulass . (Co...
xmulass 13186 Associativity of the exten...
xlemul1a 13187 Extended real version of ~...
xlemul2a 13188 Extended real version of ~...
xlemul1 13189 Extended real version of ~...
xlemul2 13190 Extended real version of ~...
xltmul1 13191 Extended real version of ~...
xltmul2 13192 Extended real version of ~...
xadddilem 13193 Lemma for ~ xadddi . (Con...
xadddi 13194 Distributive property for ...
xadddir 13195 Commuted version of ~ xadd...
xadddi2 13196 The assumption that the mu...
xadddi2r 13197 Commuted version of ~ xadd...
x2times 13198 Extended real version of ~...
xnegcld 13199 Closure of extended real n...
xaddcld 13200 The extended real addition...
xmulcld 13201 Closure of extended real m...
xadd4d 13202 Rearrangement of 4 terms i...
xnn0add4d 13203 Rearrangement of 4 terms i...
xrsupexmnf 13204 Adding minus infinity to a...
xrinfmexpnf 13205 Adding plus infinity to a ...
xrsupsslem 13206 Lemma for ~ xrsupss . (Co...
xrinfmsslem 13207 Lemma for ~ xrinfmss . (C...
xrsupss 13208 Any subset of extended rea...
xrinfmss 13209 Any subset of extended rea...
xrinfmss2 13210 Any subset of extended rea...
xrub 13211 By quantifying only over r...
supxr 13212 The supremum of a set of e...
supxr2 13213 The supremum of a set of e...
supxrcl 13214 The supremum of an arbitra...
supxrun 13215 The supremum of the union ...
supxrmnf 13216 Adding minus infinity to a...
supxrpnf 13217 The supremum of a set of e...
supxrunb1 13218 The supremum of an unbound...
supxrunb2 13219 The supremum of an unbound...
supxrbnd1 13220 The supremum of a bounded-...
supxrbnd2 13221 The supremum of a bounded-...
xrsup0 13222 The supremum of an empty s...
supxrub 13223 A member of a set of exten...
supxrlub 13224 The supremum of a set of e...
supxrleub 13225 The supremum of a set of e...
supxrre 13226 The real and extended real...
supxrbnd 13227 The supremum of a bounded-...
supxrgtmnf 13228 The supremum of a nonempty...
supxrre1 13229 The supremum of a nonempty...
supxrre2 13230 The supremum of a nonempty...
supxrss 13231 Smaller sets of extended r...
xrsupssd 13232 Inequality deduction for s...
infxrcl 13233 The infimum of an arbitrar...
infxrlb 13234 A member of a set of exten...
infxrgelb 13235 The infimum of a set of ex...
infxrre 13236 The real and extended real...
infxrmnf 13237 The infinimum of a set of ...
xrinf0 13238 The infimum of the empty s...
infxrss 13239 Larger sets of extended re...
reltre 13240 For all real numbers there...
rpltrp 13241 For all positive real numb...
reltxrnmnf 13242 For all extended real numb...
infmremnf 13243 The infimum of the reals i...
infmrp1 13244 The infimum of the positiv...
ixxval 13253 Value of the interval func...
elixx1 13254 Membership in an interval ...
ixxf 13255 The set of intervals of ex...
ixxex 13256 The set of intervals of ex...
ixxssxr 13257 The set of intervals of ex...
elixx3g 13258 Membership in a set of ope...
ixxssixx 13259 An interval is a subset of...
ixxdisj 13260 Split an interval into dis...
ixxun 13261 Split an interval into two...
ixxin 13262 Intersection of two interv...
ixxss1 13263 Subset relationship for in...
ixxss2 13264 Subset relationship for in...
ixxss12 13265 Subset relationship for in...
ixxub 13266 Extract the upper bound of...
ixxlb 13267 Extract the lower bound of...
iooex 13268 The set of open intervals ...
iooval 13269 Value of the open interval...
ioo0 13270 An empty open interval of ...
ioon0 13271 An open interval of extend...
ndmioo 13272 The open interval function...
iooid 13273 An open interval with iden...
elioo3g 13274 Membership in a set of ope...
elioore 13275 A member of an open interv...
lbioo 13276 An open interval does not ...
ubioo 13277 An open interval does not ...
iooval2 13278 Value of the open interval...
iooin 13279 Intersection of two open i...
iooss1 13280 Subset relationship for op...
iooss2 13281 Subset relationship for op...
iocval 13282 Value of the open-below, c...
icoval 13283 Value of the closed-below,...
iccval 13284 Value of the closed interv...
elioo1 13285 Membership in an open inte...
elioo2 13286 Membership in an open inte...
elioc1 13287 Membership in an open-belo...
elico1 13288 Membership in a closed-bel...
elicc1 13289 Membership in a closed int...
iccid 13290 A closed interval with ide...
ico0 13291 An empty open interval of ...
ioc0 13292 An empty open interval of ...
icc0 13293 An empty closed interval o...
dfrp2 13294 Alternate definition of th...
elicod 13295 Membership in a left-close...
icogelb 13296 An element of a left-close...
icogelbd 13297 An element of a left-close...
elicore 13298 A member of a left-closed ...
ubioc1 13299 The upper bound belongs to...
lbico1 13300 The lower bound belongs to...
iccleub 13301 An element of a closed int...
iccgelb 13302 An element of a closed int...
elioo5 13303 Membership in an open inte...
eliooxr 13304 A nonempty open interval s...
eliooord 13305 Ordering implied by a memb...
elioo4g 13306 Membership in an open inte...
ioossre 13307 An open interval is a set ...
ioosscn 13308 An open interval is a set ...
elioc2 13309 Membership in an open-belo...
elico2 13310 Membership in a closed-bel...
elicc2 13311 Membership in a closed rea...
elicc2i 13312 Inference for membership i...
elicc4 13313 Membership in a closed rea...
iccss 13314 Condition for a closed int...
iccssioo 13315 Condition for a closed int...
icossico 13316 Condition for a closed-bel...
iccss2 13317 Condition for a closed int...
iccssico 13318 Condition for a closed int...
iccssioo2 13319 Condition for a closed int...
iccssico2 13320 Condition for a closed int...
icossico2d 13321 Condition for a closed-bel...
ioomax 13322 The open interval from min...
iccmax 13323 The closed interval from m...
ioopos 13324 The set of positive reals ...
ioorp 13325 The set of positive reals ...
iooshf 13326 Shift the arguments of the...
iocssre 13327 A closed-above interval wi...
icossre 13328 A closed-below interval wi...
iccssre 13329 A closed real interval is ...
iccssxr 13330 A closed interval is a set...
iocssxr 13331 An open-below, closed-abov...
icossxr 13332 A closed-below, open-above...
ioossicc 13333 An open interval is a subs...
iccssred 13334 A closed real interval is ...
eliccxr 13335 A member of a closed inter...
icossicc 13336 A closed-below, open-above...
iocssicc 13337 A closed-above, open-below...
ioossico 13338 An open interval is a subs...
iocssioo 13339 Condition for a closed int...
icossioo 13340 Condition for a closed int...
ioossioo 13341 Condition for an open inte...
iccsupr 13342 A nonempty subset of a clo...
elioopnf 13343 Membership in an unbounded...
elioomnf 13344 Membership in an unbounded...
elicopnf 13345 Membership in a closed unb...
repos 13346 Two ways of saying that a ...
ioof 13347 The set of open intervals ...
iccf 13348 The set of closed interval...
unirnioo 13349 The union of the range of ...
dfioo2 13350 Alternate definition of th...
ioorebas 13351 Open intervals are element...
xrge0neqmnf 13352 A nonnegative extended rea...
xrge0nre 13353 An extended real which is ...
elrege0 13354 The predicate "is a nonneg...
nn0rp0 13355 A nonnegative integer is a...
rge0ssre 13356 Nonnegative real numbers a...
elxrge0 13357 Elementhood in the set of ...
0e0icopnf 13358 0 is a member of ` ( 0 [,)...
0e0iccpnf 13359 0 is a member of ` ( 0 [,]...
ge0addcl 13360 The nonnegative reals are ...
ge0mulcl 13361 The nonnegative reals are ...
ge0xaddcl 13362 The nonnegative reals are ...
ge0xmulcl 13363 The nonnegative extended r...
lbicc2 13364 The lower bound of a close...
ubicc2 13365 The upper bound of a close...
elicc01 13366 Membership in the closed r...
elunitrn 13367 The closed unit interval i...
elunitcn 13368 The closed unit interval i...
0elunit 13369 Zero is an element of the ...
1elunit 13370 One is an element of the c...
iooneg 13371 Membership in a negated op...
iccneg 13372 Membership in a negated cl...
icoshft 13373 A shifted real is a member...
icoshftf1o 13374 Shifting a closed-below, o...
icoun 13375 The union of two adjacent ...
icodisj 13376 Adjacent left-closed right...
ioounsn 13377 The union of an open inter...
snunioo 13378 The closure of one end of ...
snunico 13379 The closure of the open en...
snunioc 13380 The closure of the open en...
prunioo 13381 The closure of an open rea...
ioodisj 13382 If the upper bound of one ...
ioojoin 13383 Join two open intervals to...
difreicc 13384 The class difference of ` ...
iccsplit 13385 Split a closed interval in...
iccshftr 13386 Membership in a shifted in...
iccshftri 13387 Membership in a shifted in...
iccshftl 13388 Membership in a shifted in...
iccshftli 13389 Membership in a shifted in...
iccdil 13390 Membership in a dilated in...
iccdili 13391 Membership in a dilated in...
icccntr 13392 Membership in a contracted...
icccntri 13393 Membership in a contracted...
divelunit 13394 A condition for a ratio to...
lincmb01cmp 13395 A linear combination of tw...
iccf1o 13396 Describe a bijection from ...
iccen 13397 Any nontrivial closed inte...
xov1plusxeqvd 13398 A complex number ` X ` is ...
unitssre 13399 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13400 The closed unit interval i...
supicc 13401 Supremum of a bounded set ...
supiccub 13402 The supremum of a bounded ...
supicclub 13403 The supremum of a bounded ...
supicclub2 13404 The supremum of a bounded ...
zltaddlt1le 13405 The sum of an integer and ...
xnn0xrge0 13406 An extended nonnegative in...
fzval 13409 The value of a finite set ...
fzval2 13410 An alternative way of expr...
fzf 13411 Establish the domain and c...
elfz1 13412 Membership in a finite set...
elfz 13413 Membership in a finite set...
elfz2 13414 Membership in a finite set...
elfzd 13415 Membership in a finite set...
elfz5 13416 Membership in a finite set...
elfz4 13417 Membership in a finite set...
elfzuzb 13418 Membership in a finite set...
eluzfz 13419 Membership in a finite set...
elfzuz 13420 A member of a finite set o...
elfzuz3 13421 Membership in a finite set...
elfzel2 13422 Membership in a finite set...
elfzel1 13423 Membership in a finite set...
elfzelz 13424 A member of a finite set o...
elfzelzd 13425 A member of a finite set o...
fzssz 13426 A finite sequence of integ...
elfzle1 13427 A member of a finite set o...
elfzle2 13428 A member of a finite set o...
elfzuz2 13429 Implication of membership ...
elfzle3 13430 Membership in a finite set...
eluzfz1 13431 Membership in a finite set...
eluzfz2 13432 Membership in a finite set...
eluzfz2b 13433 Membership in a finite set...
elfz3 13434 Membership in a finite set...
elfz1eq 13435 Membership in a finite set...
elfzubelfz 13436 If there is a member in a ...
peano2fzr 13437 A Peano-postulate-like the...
fzn0 13438 Properties of a finite int...
fz0 13439 A finite set of sequential...
fzn 13440 A finite set of sequential...
fzen 13441 A shifted finite set of se...
fz1n 13442 A 1-based finite set of se...
0nelfz1 13443 0 is not an element of a f...
0fz1 13444 Two ways to say a finite 1...
fz10 13445 There are no integers betw...
uzsubsubfz 13446 Membership of an integer g...
uzsubsubfz1 13447 Membership of an integer g...
ige3m2fz 13448 Membership of an integer g...
fzsplit2 13449 Split a finite interval of...
fzsplit 13450 Split a finite interval of...
fzdisj 13451 Condition for two finite i...
fz01en 13452 0-based and 1-based finite...
elfznn 13453 A member of a finite set o...
elfz1end 13454 A nonempty finite range of...
fz1ssnn 13455 A finite set of positive i...
fznn0sub 13456 Subtraction closure for a ...
fzmmmeqm 13457 Subtracting the difference...
fzaddel 13458 Membership of a sum in a f...
fzadd2 13459 Membership of a sum in a f...
fzsubel 13460 Membership of a difference...
fzopth 13461 A finite set of sequential...
fzass4 13462 Two ways to express a nond...
fzss1 13463 Subset relationship for fi...
fzss2 13464 Subset relationship for fi...
fzssuz 13465 A finite set of sequential...
fzsn 13466 A finite interval of integ...
fzssp1 13467 Subset relationship for fi...
fzssnn 13468 Finite sets of sequential ...
ssfzunsnext 13469 A subset of a finite seque...
ssfzunsn 13470 A subset of a finite seque...
fzsuc 13471 Join a successor to the en...
fzpred 13472 Join a predecessor to the ...
fzpreddisj 13473 A finite set of sequential...
elfzp1 13474 Append an element to a fin...
fzp1ss 13475 Subset relationship for fi...
fzelp1 13476 Membership in a set of seq...
fzp1elp1 13477 Add one to an element of a...
fznatpl1 13478 Shift membership in a fini...
fzpr 13479 A finite interval of integ...
fztp 13480 A finite interval of integ...
fz12pr 13481 An integer range between 1...
fzsuc2 13482 Join a successor to the en...
fzp1disj 13483 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13484 Remove a successor from th...
fzprval 13485 Two ways of defining the f...
fztpval 13486 Two ways of defining the f...
fzrev 13487 Reversal of start and end ...
fzrev2 13488 Reversal of start and end ...
fzrev2i 13489 Reversal of start and end ...
fzrev3 13490 The "complement" of a memb...
fzrev3i 13491 The "complement" of a memb...
fznn 13492 Finite set of sequential i...
elfz1b 13493 Membership in a 1-based fi...
elfz1uz 13494 Membership in a 1-based fi...
elfzm11 13495 Membership in a finite set...
uzsplit 13496 Express an upper integer s...
uzdisj 13497 The first ` N ` elements o...
fseq1p1m1 13498 Add/remove an item to/from...
fseq1m1p1 13499 Add/remove an item to/from...
fz1sbc 13500 Quantification over a one-...
elfzp1b 13501 An integer is a member of ...
elfzm1b 13502 An integer is a member of ...
elfzp12 13503 Options for membership in ...
fzne1 13504 Elementhood in a finite se...
fzdif1 13505 Split the first element of...
fz0dif1 13506 Split the first element of...
fzm1 13507 Choices for an element of ...
fzneuz 13508 No finite set of sequentia...
fznuz 13509 Disjointness of the upper ...
uznfz 13510 Disjointness of the upper ...
fzp1nel 13511 One plus the upper bound o...
fzrevral 13512 Reversal of scanning order...
fzrevral2 13513 Reversal of scanning order...
fzrevral3 13514 Reversal of scanning order...
fzshftral 13515 Shift the scanning order i...
ige2m1fz1 13516 Membership of an integer g...
ige2m1fz 13517 Membership in a 0-based fi...
elfz2nn0 13518 Membership in a finite set...
fznn0 13519 Characterization of a fini...
elfznn0 13520 A member of a finite set o...
elfz3nn0 13521 The upper bound of a nonem...
fz0ssnn0 13522 Finite sets of sequential ...
fz1ssfz0 13523 Subset relationship for fi...
0elfz 13524 0 is an element of a finit...
nn0fz0 13525 A nonnegative integer is a...
elfz0add 13526 An element of a finite set...
fz0sn 13527 An integer range from 0 to...
fz0tp 13528 An integer range from 0 to...
fz0to3un2pr 13529 An integer range from 0 to...
fz0to4untppr 13530 An integer range from 0 to...
fz0to5un2tp 13531 An integer range from 0 to...
elfz0ubfz0 13532 An element of a finite set...
elfz0fzfz0 13533 A member of a finite set o...
fz0fzelfz0 13534 If a member of a finite se...
fznn0sub2 13535 Subtraction closure for a ...
uzsubfz0 13536 Membership of an integer g...
fz0fzdiffz0 13537 The difference of an integ...
elfzmlbm 13538 Subtracting the lower boun...
elfzmlbp 13539 Subtracting the lower boun...
fzctr 13540 Lemma for theorems about t...
difelfzle 13541 The difference of two inte...
difelfznle 13542 The difference of two inte...
nn0split 13543 Express the set of nonnega...
nn0disj 13544 The first ` N + 1 ` elemen...
fz0sn0fz1 13545 A finite set of sequential...
fvffz0 13546 The function value of a fu...
1fv 13547 A function on a singleton....
4fvwrd4 13548 The first four function va...
2ffzeq 13549 Two functions over 0-based...
preduz 13550 The value of the predecess...
prednn 13551 The value of the predecess...
prednn0 13552 The value of the predecess...
predfz 13553 Calculate the predecessor ...
fzof 13556 Functionality of the half-...
elfzoel1 13557 Reverse closure for half-o...
elfzoel2 13558 Reverse closure for half-o...
elfzoelz 13559 Reverse closure for half-o...
fzoval 13560 Value of the half-open int...
elfzo 13561 Membership in a half-open ...
elfzo2 13562 Membership in a half-open ...
elfzouz 13563 Membership in a half-open ...
nelfzo 13564 An integer not being a mem...
fzolb 13565 The left endpoint of a hal...
fzolb2 13566 The left endpoint of a hal...
elfzole1 13567 A member in a half-open in...
elfzolt2 13568 A member in a half-open in...
elfzolt3 13569 Membership in a half-open ...
elfzolt2b 13570 A member in a half-open in...
elfzolt3b 13571 Membership in a half-open ...
elfzop1le2 13572 A member in a half-open in...
fzonel 13573 A half-open range does not...
elfzouz2 13574 The upper bound of a half-...
elfzofz 13575 A half-open range is conta...
elfzo3 13576 Express membership in a ha...
fzon0 13577 A half-open integer interv...
fzossfz 13578 A half-open range is conta...
fzossz 13579 A half-open integer interv...
fzon 13580 A half-open set of sequent...
fzo0n 13581 A half-open range of nonne...
fzonlt0 13582 A half-open integer range ...
fzo0 13583 Half-open sets with equal ...
fzonnsub 13584 If ` K < N ` then ` N - K ...
fzonnsub2 13585 If ` M < N ` then ` N - M ...
fzoss1 13586 Subset relationship for ha...
fzoss2 13587 Subset relationship for ha...
fzossrbm1 13588 Subset of a half-open rang...
fzo0ss1 13589 Subset relationship for ha...
fzossnn0 13590 A half-open integer range ...
fzospliti 13591 One direction of splitting...
fzosplit 13592 Split a half-open integer ...
fzodisj 13593 Abutting half-open integer...
fzouzsplit 13594 Split an upper integer set...
fzouzdisj 13595 A half-open integer range ...
fzoun 13596 A half-open integer range ...
fzodisjsn 13597 A half-open integer range ...
prinfzo0 13598 The intersection of a half...
lbfzo0 13599 An integer is strictly gre...
elfzo0 13600 Membership in a half-open ...
elfzo0z 13601 Membership in a half-open ...
nn0p1elfzo 13602 A nonnegative integer incr...
elfzo0le 13603 A member in a half-open ra...
elfzolem1 13604 A member in a half-open in...
elfzo0subge1 13605 The difference of the uppe...
elfzo0suble 13606 The difference of the uppe...
elfzonn0 13607 A member of a half-open ra...
fzonmapblen 13608 The result of subtracting ...
fzofzim 13609 If a nonnegative integer i...
fz1fzo0m1 13610 Translation of one between...
fzossnn 13611 Half-open integer ranges s...
elfzo1 13612 Membership in a half-open ...
fzo1lb 13613 1 is the left endpoint of ...
1elfzo1 13614 1 is in a half-open range ...
fzo1fzo0n0 13615 An integer between 1 and a...
fzo0n0 13616 A half-open integer range ...
fzoaddel 13617 Translate membership in a ...
fzo0addel 13618 Translate membership in a ...
fzo0addelr 13619 Translate membership in a ...
fzoaddel2 13620 Translate membership in a ...
elfzoextl 13621 Membership of an integer i...
elfzoext 13622 Membership of an integer i...
elincfzoext 13623 Membership of an increased...
fzosubel 13624 Translate membership in a ...
fzosubel2 13625 Membership in a translated...
fzosubel3 13626 Membership in a translated...
eluzgtdifelfzo 13627 Membership of the differen...
ige2m2fzo 13628 Membership of an integer g...
fzocatel 13629 Translate membership in a ...
ubmelfzo 13630 If an integer in a 1-based...
elfzodifsumelfzo 13631 If an integer is in a half...
elfzom1elp1fzo 13632 Membership of an integer i...
elfzom1elfzo 13633 Membership in a half-open ...
fzval3 13634 Expressing a closed intege...
fz0add1fz1 13635 Translate membership in a ...
fzosn 13636 Expressing a singleton as ...
elfzomin 13637 Membership of an integer i...
zpnn0elfzo 13638 Membership of an integer i...
zpnn0elfzo1 13639 Membership of an integer i...
fzosplitsnm1 13640 Removing a singleton from ...
elfzonlteqm1 13641 If an element of a half-op...
fzonn0p1 13642 A nonnegative integer is a...
fzossfzop1 13643 A half-open range of nonne...
fzonn0p1p1 13644 If a nonnegative integer i...
elfzom1p1elfzo 13645 Increasing an element of a...
fzo0ssnn0 13646 Half-open integer ranges s...
fzo01 13647 Expressing the singleton o...
fzo12sn 13648 A 1-based half-open intege...
fzo13pr 13649 A 1-based half-open intege...
fzo0to2pr 13650 A half-open integer range ...
fz01pr 13651 An integer range between 0...
fzo0to3tp 13652 A half-open integer range ...
fzo0to42pr 13653 A half-open integer range ...
fzo1to4tp 13654 A half-open integer range ...
fzo0sn0fzo1 13655 A half-open range of nonne...
elfzo0l 13656 A member of a half-open ra...
fzoend 13657 The endpoint of a half-ope...
fzo0end 13658 The endpoint of a zero-bas...
ssfzo12 13659 Subset relationship for ha...
ssfzoulel 13660 If a half-open integer ran...
ssfzo12bi 13661 Subset relationship for ha...
fzoopth 13662 A half-open integer range ...
ubmelm1fzo 13663 The result of subtracting ...
fzofzp1 13664 If a point is in a half-op...
fzofzp1b 13665 If a point is in a half-op...
elfzom1b 13666 An integer is a member of ...
elfzom1elp1fzo1 13667 Membership of a nonnegativ...
elfzo1elm1fzo0 13668 Membership of a positive i...
elfzonelfzo 13669 If an element of a half-op...
elfzodif0 13670 If an integer ` M ` is in ...
fzonfzoufzol 13671 If an element of a half-op...
elfzomelpfzo 13672 An integer increased by an...
elfznelfzo 13673 A value in a finite set of...
elfznelfzob 13674 A value in a finite set of...
peano2fzor 13675 A Peano-postulate-like the...
fzosplitsn 13676 Extending a half-open rang...
fzosplitpr 13677 Extending a half-open inte...
fzosplitprm1 13678 Extending a half-open inte...
fzosplitsni 13679 Membership in a half-open ...
fzisfzounsn 13680 A finite interval of integ...
elfzr 13681 A member of a finite inter...
elfzlmr 13682 A member of a finite inter...
elfz0lmr 13683 A member of a finite inter...
fzone1 13684 Elementhood in a half-open...
fzom1ne1 13685 Elementhood in a half-open...
fzostep1 13686 Two possibilities for a nu...
fzoshftral 13687 Shift the scanning order i...
fzind2 13688 Induction on the integers ...
fvinim0ffz 13689 The function values for th...
injresinjlem 13690 Lemma for ~ injresinj . (...
injresinj 13691 A function whose restricti...
subfzo0 13692 The difference between two...
fvf1tp 13693 Values of a one-to-one fun...
flval 13698 Value of the floor (greate...
flcl 13699 The floor (greatest intege...
reflcl 13700 The floor (greatest intege...
fllelt 13701 A basic property of the fl...
flcld 13702 The floor (greatest intege...
flle 13703 A basic property of the fl...
flltp1 13704 A basic property of the fl...
fllep1 13705 A basic property of the fl...
fraclt1 13706 The fractional part of a r...
fracle1 13707 The fractional part of a r...
fracge0 13708 The fractional part of a r...
flge 13709 The floor function value i...
fllt 13710 The floor function value i...
flflp1 13711 Move floor function betwee...
flid 13712 An integer is its own floo...
flidm 13713 The floor function is idem...
flidz 13714 A real number equals its f...
flltnz 13715 The floor of a non-integer...
flwordi 13716 Ordering relation for the ...
flword2 13717 Ordering relation for the ...
flval2 13718 An alternate way to define...
flval3 13719 An alternate way to define...
flbi 13720 A condition equivalent to ...
flbi2 13721 A condition equivalent to ...
adddivflid 13722 The floor of a sum of an i...
ico01fl0 13723 The floor of a real number...
flge0nn0 13724 The floor of a number grea...
flge1nn 13725 The floor of a number grea...
fldivnn0 13726 The floor function of a di...
refldivcl 13727 The floor function of a di...
divfl0 13728 The floor of a fraction is...
fladdz 13729 An integer can be moved in...
flzadd 13730 An integer can be moved in...
flmulnn0 13731 Move a nonnegative integer...
btwnzge0 13732 A real bounded between an ...
2tnp1ge0ge0 13733 Two times an integer plus ...
flhalf 13734 Ordering relation for the ...
fldivle 13735 The floor function of a di...
fldivnn0le 13736 The floor function of a di...
flltdivnn0lt 13737 The floor function of a di...
ltdifltdiv 13738 If the dividend of a divis...
fldiv4p1lem1div2 13739 The floor of an integer eq...
fldiv4lem1div2uz2 13740 The floor of an integer gr...
fldiv4lem1div2 13741 The floor of a positive in...
ceilval 13742 The value of the ceiling f...
dfceil2 13743 Alternative definition of ...
ceilval2 13744 The value of the ceiling f...
ceicl 13745 The ceiling function retur...
ceilcl 13746 Closure of the ceiling fun...
ceilcld 13747 Closure of the ceiling fun...
ceige 13748 The ceiling of a real numb...
ceilge 13749 The ceiling of a real numb...
ceilged 13750 The ceiling of a real numb...
ceim1l 13751 One less than the ceiling ...
ceilm1lt 13752 One less than the ceiling ...
ceile 13753 The ceiling of a real numb...
ceille 13754 The ceiling of a real numb...
ceilid 13755 An integer is its own ceil...
ceilidz 13756 A real number equals its c...
flleceil 13757 The floor of a real number...
fleqceilz 13758 A real number is an intege...
quoremz 13759 Quotient and remainder of ...
quoremnn0 13760 Quotient and remainder of ...
quoremnn0ALT 13761 Alternate proof of ~ quore...
intfrac2 13762 Decompose a real into inte...
intfracq 13763 Decompose a rational numbe...
fldiv 13764 Cancellation of the embedd...
fldiv2 13765 Cancellation of an embedde...
fznnfl 13766 Finite set of sequential i...
uzsup 13767 An upper set of integers i...
ioopnfsup 13768 An upper set of reals is u...
icopnfsup 13769 An upper set of reals is u...
rpsup 13770 The positive reals are unb...
resup 13771 The real numbers are unbou...
xrsup 13772 The extended real numbers ...
modval 13775 The value of the modulo op...
modvalr 13776 The value of the modulo op...
modcl 13777 Closure law for the modulo...
flpmodeq 13778 Partition of a division in...
modcld 13779 Closure law for the modulo...
mod0 13780 ` A mod B ` is zero iff ` ...
mulmod0 13781 The product of an integer ...
negmod0 13782 ` A ` is divisible by ` B ...
modge0 13783 The modulo operation is no...
modlt 13784 The modulo operation is le...
modelico 13785 Modular reduction produces...
moddiffl 13786 Value of the modulo operat...
moddifz 13787 The modulo operation diffe...
modfrac 13788 The fractional part of a n...
flmod 13789 The floor function express...
intfrac 13790 Break a number into its in...
zmod10 13791 An integer modulo 1 is 0. ...
zmod1congr 13792 Two arbitrary integers are...
modmulnn 13793 Move a positive integer in...
modvalp1 13794 The value of the modulo op...
zmodcl 13795 Closure law for the modulo...
zmodcld 13796 Closure law for the modulo...
zmodfz 13797 An integer mod ` B ` lies ...
zmodfzo 13798 An integer mod ` B ` lies ...
zmodfzp1 13799 An integer mod ` B ` lies ...
modid 13800 Identity law for modulo. ...
modid0 13801 A positive real number mod...
modid2 13802 Identity law for modulo. ...
zmodid2 13803 Identity law for modulo re...
zmodidfzo 13804 Identity law for modulo re...
zmodidfzoimp 13805 Identity law for modulo re...
0mod 13806 Special case: 0 modulo a p...
1mod 13807 Special case: 1 modulo a r...
modabs 13808 Absorption law for modulo....
modabs2 13809 Absorption law for modulo....
modcyc 13810 The modulo operation is pe...
modcyc2 13811 The modulo operation is pe...
modadd1 13812 Addition property of the m...
modaddb 13813 Addition property of the m...
modaddid 13814 The sums of two nonnegativ...
modaddabs 13815 Absorption law for modulo....
modaddmod 13816 The sum of a real number m...
muladdmodid 13817 The sum of a positive real...
mulp1mod1 13818 The product of an integer ...
muladdmod 13819 A real number is the sum o...
modmuladd 13820 Decomposition of an intege...
modmuladdim 13821 Implication of a decomposi...
modmuladdnn0 13822 Implication of a decomposi...
negmod 13823 The negation of a number m...
m1modnnsub1 13824 Minus one modulo a positiv...
m1modge3gt1 13825 Minus one modulo an intege...
addmodid 13826 The sum of a positive inte...
addmodidr 13827 The sum of a positive inte...
modadd2mod 13828 The sum of a real number m...
modm1p1mod0 13829 If a real number modulo a ...
modltm1p1mod 13830 If a real number modulo a ...
modmul1 13831 Multiplication property of...
modmul12d 13832 Multiplication property of...
modnegd 13833 Negation property of the m...
modadd12d 13834 Additive property of the m...
modsub12d 13835 Subtraction property of th...
modsubmod 13836 The difference of a real n...
modsubmodmod 13837 The difference of a real n...
2txmodxeq0 13838 Two times a positive real ...
2submod 13839 If a real number is betwee...
modifeq2int 13840 If a nonnegative integer i...
modaddmodup 13841 The sum of an integer modu...
modaddmodlo 13842 The sum of an integer modu...
modmulmod 13843 The product of a real numb...
modmulmodr 13844 The product of an integer ...
modaddmulmod 13845 The sum of a real number a...
moddi 13846 Distribute multiplication ...
modsubdir 13847 Distribute the modulo oper...
modeqmodmin 13848 A real number equals the d...
modirr 13849 A number modulo an irratio...
modfzo0difsn 13850 For a number within a half...
modsumfzodifsn 13851 The sum of a number within...
modlteq 13852 Two nonnegative integers l...
addmodlteq 13853 Two nonnegative integers l...
om2uz0i 13854 The mapping ` G ` is a one...
om2uzsuci 13855 The value of ` G ` (see ~ ...
om2uzuzi 13856 The value ` G ` (see ~ om2...
om2uzlti 13857 Less-than relation for ` G...
om2uzlt2i 13858 The mapping ` G ` (see ~ o...
om2uzrani 13859 Range of ` G ` (see ~ om2u...
om2uzf1oi 13860 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13861 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13862 An alternative definition ...
om2uzrdg 13863 A helper lemma for the val...
uzrdglem 13864 A helper lemma for the val...
uzrdgfni 13865 The recursive definition g...
uzrdg0i 13866 Initial value of a recursi...
uzrdgsuci 13867 Successor value of a recur...
ltweuz 13868 ` < ` is a well-founded re...
ltwenn 13869 Less than well-orders the ...
ltwefz 13870 Less than well-orders a se...
uzenom 13871 An upper integer set is de...
uzinf 13872 An upper integer set is in...
nnnfi 13873 The set of positive intege...
uzrdgxfr 13874 Transfer the value of the ...
fzennn 13875 The cardinality of a finit...
fzen2 13876 The cardinality of a finit...
cardfz 13877 The cardinality of a finit...
hashgf1o 13878 ` G ` maps ` _om ` one-to-...
fzfi 13879 A finite interval of integ...
fzfid 13880 Commonly used special case...
fzofi 13881 Half-open integer sets are...
fsequb 13882 The values of a finite rea...
fsequb2 13883 The values of a finite rea...
fseqsupcl 13884 The values of a finite rea...
fseqsupubi 13885 The values of a finite rea...
nn0ennn 13886 The nonnegative integers a...
nnenom 13887 The set of positive intege...
nnct 13888 ` NN ` is countable. (Con...
uzindi 13889 Indirect strong induction ...
axdc4uzlem 13890 Lemma for ~ axdc4uz . (Co...
axdc4uz 13891 A version of ~ axdc4 that ...
ssnn0fi 13892 A subset of the nonnegativ...
rabssnn0fi 13893 A subset of the nonnegativ...
uzsinds 13894 Strong (or "total") induct...
nnsinds 13895 Strong (or "total") induct...
nn0sinds 13896 Strong (or "total") induct...
fsuppmapnn0fiublem 13897 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13898 If all functions of a fini...
fsuppmapnn0fiubex 13899 If all functions of a fini...
fsuppmapnn0fiub0 13900 If all functions of a fini...
suppssfz 13901 Condition for a function o...
fsuppmapnn0ub 13902 If a function over the non...
fsuppmapnn0fz 13903 If a function over the non...
mptnn0fsupp 13904 A mapping from the nonnega...
mptnn0fsuppd 13905 A mapping from the nonnega...
mptnn0fsuppr 13906 A finitely supported mappi...
f13idfv 13907 A one-to-one function with...
seqex 13910 Existence of the sequence ...
seqeq1 13911 Equality theorem for the s...
seqeq2 13912 Equality theorem for the s...
seqeq3 13913 Equality theorem for the s...
seqeq1d 13914 Equality deduction for the...
seqeq2d 13915 Equality deduction for the...
seqeq3d 13916 Equality deduction for the...
seqeq123d 13917 Equality deduction for the...
nfseq 13918 Hypothesis builder for the...
seqval 13919 Value of the sequence buil...
seqfn 13920 The sequence builder funct...
seq1 13921 Value of the sequence buil...
seq1i 13922 Value of the sequence buil...
seqp1 13923 Value of the sequence buil...
seqexw 13924 Weak version of ~ seqex th...
seqp1d 13925 Value of the sequence buil...
seqm1 13926 Value of the sequence buil...
seqcl2 13927 Closure properties of the ...
seqf2 13928 Range of the recursive seq...
seqcl 13929 Closure properties of the ...
seqf 13930 Range of the recursive seq...
seqfveq2 13931 Equality of sequences. (C...
seqfeq2 13932 Equality of sequences. (C...
seqfveq 13933 Equality of sequences. (C...
seqfeq 13934 Equality of sequences. (C...
seqshft2 13935 Shifting the index set of ...
seqres 13936 Restricting its characteri...
serf 13937 An infinite series of comp...
serfre 13938 An infinite series of real...
monoord 13939 Ordering relation for a mo...
monoord2 13940 Ordering relation for a mo...
sermono 13941 The partial sums in an inf...
seqsplit 13942 Split a sequence into two ...
seq1p 13943 Removing the first term fr...
seqcaopr3 13944 Lemma for ~ seqcaopr2 . (...
seqcaopr2 13945 The sum of two infinite se...
seqcaopr 13946 The sum of two infinite se...
seqf1olem2a 13947 Lemma for ~ seqf1o . (Con...
seqf1olem1 13948 Lemma for ~ seqf1o . (Con...
seqf1olem2 13949 Lemma for ~ seqf1o . (Con...
seqf1o 13950 Rearrange a sum via an arb...
seradd 13951 The sum of two infinite se...
sersub 13952 The difference of two infi...
seqid3 13953 A sequence that consists e...
seqid 13954 Discarding the first few t...
seqid2 13955 The last few partial sums ...
seqhomo 13956 Apply a homomorphism to a ...
seqz 13957 If the operation ` .+ ` ha...
seqfeq4 13958 Equality of series under d...
seqfeq3 13959 Equality of series under d...
seqdistr 13960 The distributive property ...
ser0 13961 The value of the partial s...
ser0f 13962 A zero-valued infinite ser...
serge0 13963 A finite sum of nonnegativ...
serle 13964 Comparison of partial sums...
ser1const 13965 Value of the partial serie...
seqof 13966 Distribute function operat...
seqof2 13967 Distribute function operat...
expval 13970 Value of exponentiation to...
expnnval 13971 Value of exponentiation to...
exp0 13972 Value of a complex number ...
0exp0e1 13973 The zeroth power of zero e...
exp1 13974 Value of a complex number ...
expp1 13975 Value of a complex number ...
expneg 13976 Value of a complex number ...
expneg2 13977 Value of a complex number ...
expn1 13978 A complex number raised to...
expcllem 13979 Lemma for proving nonnegat...
expcl2lem 13980 Lemma for proving integer ...
nnexpcl 13981 Closure of exponentiation ...
nn0expcl 13982 Closure of exponentiation ...
zexpcl 13983 Closure of exponentiation ...
qexpcl 13984 Closure of exponentiation ...
reexpcl 13985 Closure of exponentiation ...
expcl 13986 Closure law for nonnegativ...
rpexpcl 13987 Closure law for integer ex...
qexpclz 13988 Closure of integer exponen...
reexpclz 13989 Closure of integer exponen...
expclzlem 13990 Lemma for ~ expclz . (Con...
expclz 13991 Closure law for integer ex...
m1expcl2 13992 Closure of integer exponen...
m1expcl 13993 Closure of exponentiation ...
zexpcld 13994 Closure of exponentiation ...
nn0expcli 13995 Closure of exponentiation ...
nn0sqcl 13996 The square of a nonnegativ...
expm1t 13997 Exponentiation in terms of...
1exp 13998 Value of 1 raised to an in...
expeq0 13999 A positive integer power i...
expne0 14000 A positive integer power i...
expne0i 14001 An integer power is nonzer...
expgt0 14002 A positive real raised to ...
expnegz 14003 Value of a nonzero complex...
0exp 14004 Value of zero raised to a ...
expge0 14005 A nonnegative real raised ...
expge1 14006 A real greater than or equ...
expgt1 14007 A real greater than 1 rais...
mulexp 14008 Nonnegative integer expone...
mulexpz 14009 Integer exponentiation of ...
exprec 14010 Integer exponentiation of ...
expadd 14011 Sum of exponents law for n...
expaddzlem 14012 Lemma for ~ expaddz . (Co...
expaddz 14013 Sum of exponents law for i...
expmul 14014 Product of exponents law f...
expmulz 14015 Product of exponents law f...
m1expeven 14016 Exponentiation of negative...
expsub 14017 Exponent subtraction law f...
expp1z 14018 Value of a nonzero complex...
expm1 14019 Value of a nonzero complex...
expdiv 14020 Nonnegative integer expone...
sqval 14021 Value of the square of a c...
sqneg 14022 The square of the negative...
sqnegd 14023 The square of the negative...
sqsubswap 14024 Swap the order of subtract...
sqcl 14025 Closure of square. (Contr...
sqmul 14026 Distribution of squaring o...
sqeq0 14027 A complex number is zero i...
sqdiv 14028 Distribution of squaring o...
sqdivid 14029 The square of a nonzero co...
sqne0 14030 A complex number is nonzer...
resqcl 14031 Closure of squaring in rea...
resqcld 14032 Closure of squaring in rea...
sqgt0 14033 The square of a nonzero re...
sqn0rp 14034 The square of a nonzero re...
nnsqcl 14035 The positive naturals are ...
zsqcl 14036 Integers are closed under ...
qsqcl 14037 The square of a rational i...
sq11 14038 The square function is one...
nn0sq11 14039 The square function is one...
lt2sq 14040 The square function is inc...
le2sq 14041 The square function is non...
le2sq2 14042 The square function is non...
sqge0 14043 The square of a real is no...
sqge0d 14044 The square of a real is no...
zsqcl2 14045 The square of an integer i...
0expd 14046 Value of zero raised to a ...
exp0d 14047 Value of a complex number ...
exp1d 14048 Value of a complex number ...
expeq0d 14049 If a positive integer powe...
sqvald 14050 Value of square. Inferenc...
sqcld 14051 Closure of square. (Contr...
sqeq0d 14052 A number is zero iff its s...
expcld 14053 Closure law for nonnegativ...
expp1d 14054 Value of a complex number ...
expaddd 14055 Sum of exponents law for n...
expmuld 14056 Product of exponents law f...
sqrecd 14057 Square of reciprocal is re...
expclzd 14058 Closure law for integer ex...
expne0d 14059 A nonnegative integer powe...
expnegd 14060 Value of a nonzero complex...
exprecd 14061 An integer power of a reci...
expp1zd 14062 Value of a nonzero complex...
expm1d 14063 Value of a nonzero complex...
expsubd 14064 Exponent subtraction law f...
sqmuld 14065 Distribution of squaring o...
sqdivd 14066 Distribution of squaring o...
expdivd 14067 Nonnegative integer expone...
mulexpd 14068 Nonnegative integer expone...
znsqcld 14069 The square of a nonzero in...
reexpcld 14070 Closure of exponentiation ...
expge0d 14071 A nonnegative real raised ...
expge1d 14072 A real greater than or equ...
ltexp2a 14073 Exponent ordering relation...
expmordi 14074 Base ordering relationship...
rpexpmord 14075 Base ordering relationship...
expcan 14076 Cancellation law for integ...
ltexp2 14077 Strict ordering law for ex...
leexp2 14078 Ordering law for exponenti...
leexp2a 14079 Weak ordering relationship...
ltexp2r 14080 The integer powers of a fi...
leexp2r 14081 Weak ordering relationship...
leexp1a 14082 Weak base ordering relatio...
leexp1ad 14083 Weak base ordering relatio...
exple1 14084 A real between 0 and 1 inc...
expubnd 14085 An upper bound on ` A ^ N ...
sumsqeq0 14086 The sum of two squres of r...
sqvali 14087 Value of square. Inferenc...
sqcli 14088 Closure of square. (Contr...
sqeq0i 14089 A complex number is zero i...
sqrecii 14090 The square of a reciprocal...
sqmuli 14091 Distribution of squaring o...
sqdivi 14092 Distribution of squaring o...
resqcli 14093 Closure of square in reals...
sqgt0i 14094 The square of a nonzero re...
sqge0i 14095 The square of a real is no...
lt2sqi 14096 The square function on non...
le2sqi 14097 The square function on non...
sq11i 14098 The square function is one...
sq0 14099 The square of 0 is 0. (Co...
sq0i 14100 If a number is zero, then ...
sq0id 14101 If a number is zero, then ...
sq1 14102 The square of 1 is 1. (Co...
neg1sqe1 14103 The square of ` -u 1 ` is ...
sq2 14104 The square of 2 is 4. (Co...
sq3 14105 The square of 3 is 9. (Co...
sq4e2t8 14106 The square of 4 is 2 times...
cu2 14107 The cube of 2 is 8. (Cont...
irec 14108 The reciprocal of ` _i ` ....
i2 14109 ` _i ` squared. (Contribu...
i3 14110 ` _i ` cubed. (Contribute...
i4 14111 ` _i ` to the fourth power...
nnlesq 14112 A positive integer is less...
zzlesq 14113 An integer is less than or...
iexpcyc 14114 Taking ` _i ` to the ` K `...
expnass 14115 A counterexample showing t...
sqlecan 14116 Cancel one factor of a squ...
subsq 14117 Factor the difference of t...
subsq2 14118 Express the difference of ...
binom2i 14119 The square of a binomial. ...
subsqi 14120 Factor the difference of t...
sqeqori 14121 The squares of two complex...
subsq0i 14122 The two solutions to the d...
sqeqor 14123 The squares of two complex...
binom2 14124 The square of a binomial. ...
binom2d 14125 Deduction form of ~ binom2...
binom21 14126 Special case of ~ binom2 w...
binom2sub 14127 Expand the square of a sub...
binom2sub1 14128 Special case of ~ binom2su...
binom2subi 14129 Expand the square of a sub...
mulbinom2 14130 The square of a binomial w...
binom3 14131 The cube of a binomial. (...
sq01 14132 If a complex number equals...
zesq 14133 An integer is even iff its...
nnesq 14134 A positive integer is even...
crreczi 14135 Reciprocal of a complex nu...
bernneq 14136 Bernoulli's inequality, du...
bernneq2 14137 Variation of Bernoulli's i...
bernneq3 14138 A corollary of ~ bernneq ....
expnbnd 14139 Exponentiation with a base...
expnlbnd 14140 The reciprocal of exponent...
expnlbnd2 14141 The reciprocal of exponent...
expmulnbnd 14142 Exponentiation with a base...
digit2 14143 Two ways to express the ` ...
digit1 14144 Two ways to express the ` ...
modexp 14145 Exponentiation property of...
discr1 14146 A nonnegative quadratic fo...
discr 14147 If a quadratic polynomial ...
expnngt1 14148 If an integer power with a...
expnngt1b 14149 An integer power with an i...
sqoddm1div8 14150 A squared odd number minus...
nnsqcld 14151 The naturals are closed un...
nnexpcld 14152 Closure of exponentiation ...
nn0expcld 14153 Closure of exponentiation ...
rpexpcld 14154 Closure law for exponentia...
ltexp2rd 14155 The power of a positive nu...
reexpclzd 14156 Closure of exponentiation ...
sqgt0d 14157 The square of a nonzero re...
ltexp2d 14158 Ordering relationship for ...
leexp2d 14159 Ordering law for exponenti...
expcand 14160 Ordering relationship for ...
leexp2ad 14161 Ordering relationship for ...
leexp2rd 14162 Ordering relationship for ...
lt2sqd 14163 The square function on non...
le2sqd 14164 The square function on non...
sq11d 14165 The square function is one...
ltexp1d 14166 Elevating to a positive po...
ltexp1dd 14167 Raising both sides of 'les...
exp11nnd 14168 The function elevating non...
mulsubdivbinom2 14169 The square of a binomial w...
muldivbinom2 14170 The square of a binomial w...
sq10 14171 The square of 10 is 100. ...
sq10e99m1 14172 The square of 10 is 99 plu...
3dec 14173 A "decimal constructor" wh...
nn0le2msqi 14174 The square function on non...
nn0opthlem1 14175 A rather pretty lemma for ...
nn0opthlem2 14176 Lemma for ~ nn0opthi . (C...
nn0opthi 14177 An ordered pair theorem fo...
nn0opth2i 14178 An ordered pair theorem fo...
nn0opth2 14179 An ordered pair theorem fo...
facnn 14182 Value of the factorial fun...
fac0 14183 The factorial of 0. (Cont...
fac1 14184 The factorial of 1. (Cont...
facp1 14185 The factorial of a success...
fac2 14186 The factorial of 2. (Cont...
fac3 14187 The factorial of 3. (Cont...
fac4 14188 The factorial of 4. (Cont...
facnn2 14189 Value of the factorial fun...
faccl 14190 Closure of the factorial f...
faccld 14191 Closure of the factorial f...
facmapnn 14192 The factorial function res...
facne0 14193 The factorial function is ...
facdiv 14194 A positive integer divides...
facndiv 14195 No positive integer (great...
facwordi 14196 Ordering property of facto...
faclbnd 14197 A lower bound for the fact...
faclbnd2 14198 A lower bound for the fact...
faclbnd3 14199 A lower bound for the fact...
faclbnd4lem1 14200 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 14201 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 14202 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 14203 Lemma for ~ faclbnd4 . Pr...
faclbnd4 14204 Variant of ~ faclbnd5 prov...
faclbnd5 14205 The factorial function gro...
faclbnd6 14206 Geometric lower bound for ...
facubnd 14207 An upper bound for the fac...
facavg 14208 The product of two factori...
bcval 14211 Value of the binomial coef...
bcval2 14212 Value of the binomial coef...
bcval3 14213 Value of the binomial coef...
bcval4 14214 Value of the binomial coef...
bcrpcl 14215 Closure of the binomial co...
bccmpl 14216 "Complementing" its second...
bcn0 14217 ` N ` choose 0 is 1. Rema...
bc0k 14218 The binomial coefficient "...
bcnn 14219 ` N ` choose ` N ` is 1. ...
bcn1 14220 Binomial coefficient: ` N ...
bcnp1n 14221 Binomial coefficient: ` N ...
bcm1k 14222 The proportion of one bino...
bcp1n 14223 The proportion of one bino...
bcp1nk 14224 The proportion of one bino...
bcval5 14225 Write out the top and bott...
bcn2 14226 Binomial coefficient: ` N ...
bcp1m1 14227 Compute the binomial coeff...
bcpasc 14228 Pascal's rule for the bino...
bccl 14229 A binomial coefficient, in...
bccl2 14230 A binomial coefficient, in...
bcn2m1 14231 Compute the binomial coeff...
bcn2p1 14232 Compute the binomial coeff...
permnn 14233 The number of permutations...
bcnm1 14234 The binomial coefficient o...
4bc3eq4 14235 The value of four choose t...
4bc2eq6 14236 The value of four choose t...
hashkf 14239 The finite part of the siz...
hashgval 14240 The value of the ` # ` fun...
hashginv 14241 The converse of ` G ` maps...
hashinf 14242 The value of the ` # ` fun...
hashbnd 14243 If ` A ` has size bounded ...
hashfxnn0 14244 The size function is a fun...
hashf 14245 The size function maps all...
hashxnn0 14246 The value of the hash func...
hashresfn 14247 Restriction of the domain ...
dmhashres 14248 Restriction of the domain ...
hashnn0pnf 14249 The value of the hash func...
hashnnn0genn0 14250 If the size of a set is no...
hashnemnf 14251 The size of a set is never...
hashv01gt1 14252 The size of a set is eithe...
hashfz1 14253 The set ` ( 1 ... N ) ` ha...
hashen 14254 Two finite sets have the s...
hasheni 14255 Equinumerous sets have the...
hasheqf1o 14256 The size of two finite set...
fiinfnf1o 14257 There is no bijection betw...
hasheqf1oi 14258 The size of two sets is eq...
hashf1rn 14259 The size of a finite set w...
hasheqf1od 14260 The size of two sets is eq...
fz1eqb 14261 Two possibly-empty 1-based...
hashcard 14262 The size function of the c...
hashcl 14263 Closure of the ` # ` funct...
hashxrcl 14264 Extended real closure of t...
hashclb 14265 Reverse closure of the ` #...
nfile 14266 The size of any infinite s...
hashvnfin 14267 A set of finite size is a ...
hashnfinnn0 14268 The size of an infinite se...
isfinite4 14269 A finite set is equinumero...
hasheq0 14270 Two ways of saying a set i...
hashneq0 14271 Two ways of saying a set i...
hashgt0n0 14272 If the size of a set is gr...
hashnncl 14273 Positive natural closure o...
hash0 14274 The empty set has size zer...
hashelne0d 14275 A set with an element has ...
hashsng 14276 The size of a singleton. ...
hashen1 14277 A set has size 1 if and on...
hash1elsn 14278 A set of size 1 with a kno...
hashrabrsn 14279 The size of a restricted c...
hashrabsn01 14280 The size of a restricted c...
hashrabsn1 14281 If the size of a restricte...
hashfn 14282 A function is equinumerous...
fseq1hash 14283 The value of the size func...
hashgadd 14284 ` G ` maps ordinal additio...
hashgval2 14285 A short expression for the...
hashdom 14286 Dominance relation for the...
hashdomi 14287 Non-strict order relation ...
hashsdom 14288 Strict dominance relation ...
hashun 14289 The size of the union of d...
hashun2 14290 The size of the union of f...
hashun3 14291 The size of the union of f...
hashinfxadd 14292 The extended real addition...
hashunx 14293 The size of the union of d...
hashge0 14294 The cardinality of a set i...
hashgt0 14295 The cardinality of a nonem...
hashge1 14296 The cardinality of a nonem...
1elfz0hash 14297 1 is an element of the fin...
hashnn0n0nn 14298 If a nonnegative integer i...
hashunsng 14299 The size of the union of a...
hashunsngx 14300 The size of the union of a...
hashunsnggt 14301 The size of a set is great...
hashprg 14302 The size of an unordered p...
elprchashprn2 14303 If one element of an unord...
hashprb 14304 The size of an unordered p...
hashprdifel 14305 The elements of an unorder...
prhash2ex 14306 There is (at least) one se...
hashle00 14307 If the size of a set is le...
hashgt0elex 14308 If the size of a set is gr...
hashgt0elexb 14309 The size of a set is great...
hashp1i 14310 Size of a finite ordinal. ...
hash1 14311 Size of a finite ordinal. ...
hash2 14312 Size of a finite ordinal. ...
hash3 14313 Size of a finite ordinal. ...
hash4 14314 Size of a finite ordinal. ...
pr0hash2ex 14315 There is (at least) one se...
hashss 14316 The size of a subset is le...
prsshashgt1 14317 The size of a superset of ...
hashin 14318 The size of the intersecti...
hashssdif 14319 The size of the difference...
hashdif 14320 The size of the difference...
hashdifsn 14321 The size of the difference...
hashdifpr 14322 The size of the difference...
hashsn01 14323 The size of a singleton is...
hashsnle1 14324 The size of a singleton is...
hashsnlei 14325 Get an upper bound on a co...
hash1snb 14326 The size of a set is 1 if ...
euhash1 14327 The size of a set is 1 in ...
hash1n0 14328 If the size of a set is 1 ...
hashgt12el 14329 In a set with more than on...
hashgt12el2 14330 In a set with more than on...
hashgt23el 14331 A set with more than two e...
hashunlei 14332 Get an upper bound on a co...
hashsslei 14333 Get an upper bound on a co...
hashfz 14334 Value of the numeric cardi...
fzsdom2 14335 Condition for finite range...
hashfzo 14336 Cardinality of a half-open...
hashfzo0 14337 Cardinality of a half-open...
hashfzp1 14338 Value of the numeric cardi...
hashfz0 14339 Value of the numeric cardi...
hashxplem 14340 Lemma for ~ hashxp . (Con...
hashxp 14341 The size of the Cartesian ...
hashmap 14342 The size of the set expone...
hashpw 14343 The size of the power set ...
hashfun 14344 A finite set is a function...
hashres 14345 The number of elements of ...
hashreshashfun 14346 The number of elements of ...
hashimarn 14347 The size of the image of a...
hashimarni 14348 If the size of the image o...
hashfundm 14349 The size of a set function...
hashf1dmrn 14350 The size of the domain of ...
hashf1dmcdm 14351 The size of the domain of ...
resunimafz0 14352 TODO-AV: Revise using ` F...
fnfz0hash 14353 The size of a function on ...
ffz0hash 14354 The size of a function on ...
fnfz0hashnn0 14355 The size of a function on ...
ffzo0hash 14356 The size of a function on ...
fnfzo0hash 14357 The size of a function on ...
fnfzo0hashnn0 14358 The value of the size func...
hashbclem 14359 Lemma for ~ hashbc : induc...
hashbc 14360 The binomial coefficient c...
hashfacen 14361 The number of bijections b...
hashf1lem1 14362 Lemma for ~ hashf1 . (Con...
hashf1lem2 14363 Lemma for ~ hashf1 . (Con...
hashf1 14364 The permutation number ` |...
hashfac 14365 A factorial counts the num...
leiso 14366 Two ways to write a strict...
leisorel 14367 Version of ~ isorel for st...
fz1isolem 14368 Lemma for ~ fz1iso . (Con...
fz1iso 14369 Any finite ordered set has...
ishashinf 14370 Any set that is not finite...
seqcoll 14371 The function ` F ` contain...
seqcoll2 14372 The function ` F ` contain...
phphashd 14373 Corollary of the Pigeonhol...
phphashrd 14374 Corollary of the Pigeonhol...
hashprlei 14375 An unordered pair has at m...
hash2pr 14376 A set of size two is an un...
hash2prde 14377 A set of size two is an un...
hash2exprb 14378 A set of size two is an un...
hash2prb 14379 A set of size two is a pro...
prprrab 14380 The set of proper pairs of...
nehash2 14381 The cardinality of a set w...
hash2prd 14382 A set of size two is an un...
hash2pwpr 14383 If the size of a subset of...
hashle2pr 14384 A nonempty set of size les...
hashle2prv 14385 A nonempty subset of a pow...
pr2pwpr 14386 The set of subsets of a pa...
hashge2el2dif 14387 A set with size at least 2...
hashge2el2difr 14388 A set with at least 2 diff...
hashge2el2difb 14389 A set has size at least 2 ...
hashdmpropge2 14390 The size of the domain of ...
hashtplei 14391 An unordered triple has at...
hashtpg 14392 The size of an unordered t...
hash7g 14393 The size of an unordered s...
hashge3el3dif 14394 A set with size at least 3...
elss2prb 14395 An element of the set of s...
hash2sspr 14396 A subset of size two is an...
exprelprel 14397 If there is an element of ...
hash3tr 14398 A set of size three is an ...
hash1to3 14399 If the size of a set is be...
hash3tpde 14400 A set of size three is an ...
hash3tpexb 14401 A set of size three is an ...
hash3tpb 14402 A set of size three is a p...
tpf1ofv0 14403 The value of a one-to-one ...
tpf1ofv1 14404 The value of a one-to-one ...
tpf1ofv2 14405 The value of a one-to-one ...
tpf 14406 A function into a (proper)...
tpfo 14407 A function onto a (proper)...
tpf1o 14408 A bijection onto a (proper...
fundmge2nop0 14409 A function with a domain c...
fundmge2nop 14410 A function with a domain c...
fun2dmnop0 14411 A function with a domain c...
fun2dmnop 14412 A function with a domain c...
hashdifsnp1 14413 If the size of a set is a ...
fi1uzind 14414 Properties of an ordered p...
brfi1uzind 14415 Properties of a binary rel...
brfi1ind 14416 Properties of a binary rel...
brfi1indALT 14417 Alternate proof of ~ brfi1...
opfi1uzind 14418 Properties of an ordered p...
opfi1ind 14419 Properties of an ordered p...
iswrd 14422 Property of being a word o...
wrdval 14423 Value of the set of words ...
iswrdi 14424 A zero-based sequence is a...
wrdf 14425 A word is a zero-based seq...
wrdfd 14426 A word is a zero-based seq...
iswrdb 14427 A word over an alphabet is...
wrddm 14428 The indices of a word (i.e...
sswrd 14429 The set of words respects ...
snopiswrd 14430 A singleton of an ordered ...
wrdexg 14431 The set of words over a se...
wrdexb 14432 The set of words over a se...
wrdexi 14433 The set of words over a se...
wrdsymbcl 14434 A symbol within a word ove...
wrdfn 14435 A word is a function with ...
wrdv 14436 A word over an alphabet is...
wrdlndm 14437 The length of a word is no...
iswrdsymb 14438 An arbitrary word is a wor...
wrdfin 14439 A word is a finite set. (...
lencl 14440 The length of a word is a ...
lennncl 14441 The length of a nonempty w...
wrdffz 14442 A word is a function from ...
wrdeq 14443 Equality theorem for the s...
wrdeqi 14444 Equality theorem for the s...
iswrddm0 14445 A function with empty doma...
wrd0 14446 The empty set is a word (t...
0wrd0 14447 The empty word is the only...
ffz0iswrd 14448 A sequence with zero-based...
wrdsymb 14449 A word is a word over the ...
nfwrd 14450 Hypothesis builder for ` W...
csbwrdg 14451 Class substitution for the...
wrdnval 14452 Words of a fixed length ar...
wrdmap 14453 Words as a mapping. (Cont...
hashwrdn 14454 If there is only a finite ...
wrdnfi 14455 If there is only a finite ...
wrdsymb0 14456 A symbol at a position "ou...
wrdlenge1n0 14457 A word with length at leas...
len0nnbi 14458 The length of a word is a ...
wrdlenge2n0 14459 A word with length at leas...
wrdsymb1 14460 The first symbol of a none...
wrdlen1 14461 A word of length 1 starts ...
fstwrdne 14462 The first symbol of a none...
fstwrdne0 14463 The first symbol of a none...
eqwrd 14464 Two words are equal iff th...
elovmpowrd 14465 Implications for the value...
elovmptnn0wrd 14466 Implications for the value...
wrdred1 14467 A word truncated by a symb...
wrdred1hash 14468 The length of a word trunc...
lsw 14471 Extract the last symbol of...
lsw0 14472 The last symbol of an empt...
lsw0g 14473 The last symbol of an empt...
lsw1 14474 The last symbol of a word ...
lswcl 14475 Closure of the last symbol...
lswlgt0cl 14476 The last symbol of a nonem...
ccatfn 14479 The concatenation operator...
ccatfval 14480 Value of the concatenation...
ccatcl 14481 The concatenation of two w...
ccatlen 14482 The length of a concatenat...
ccat0 14483 The concatenation of two w...
ccatval1 14484 Value of a symbol in the l...
ccatval2 14485 Value of a symbol in the r...
ccatval3 14486 Value of a symbol in the r...
elfzelfzccat 14487 An element of a finite set...
ccatvalfn 14488 The concatenation of two w...
ccatdmss 14489 The domain of a concatenat...
ccatsymb 14490 The symbol at a given posi...
ccatfv0 14491 The first symbol of a conc...
ccatval1lsw 14492 The last symbol of the lef...
ccatval21sw 14493 The first symbol of the ri...
ccatlid 14494 Concatenation of a word by...
ccatrid 14495 Concatenation of a word by...
ccatass 14496 Associative law for concat...
ccatrn 14497 The range of a concatenate...
ccatidid 14498 Concatenation of the empty...
lswccatn0lsw 14499 The last symbol of a word ...
lswccat0lsw 14500 The last symbol of a word ...
ccatalpha 14501 A concatenation of two arb...
ccatrcl1 14502 Reverse closure of a conca...
ids1 14505 Identity function protecti...
s1val 14506 Value of a singleton word....
s1rn 14507 The range of a singleton w...
s1eq 14508 Equality theorem for a sin...
s1eqd 14509 Equality theorem for a sin...
s1cl 14510 A singleton word is a word...
s1cld 14511 A singleton word is a word...
s1prc 14512 Value of a singleton word ...
s1cli 14513 A singleton word is a word...
s1len 14514 Length of a singleton word...
s1nz 14515 A singleton word is not th...
s1dm 14516 The domain of a singleton ...
s1dmALT 14517 Alternate version of ~ s1d...
s1fv 14518 Sole symbol of a singleton...
lsws1 14519 The last symbol of a singl...
eqs1 14520 A word of length 1 is a si...
wrdl1exs1 14521 A word of length 1 is a si...
wrdl1s1 14522 A word of length 1 is a si...
s111 14523 The singleton word functio...
ccatws1cl 14524 The concatenation of a wor...
ccatws1clv 14525 The concatenation of a wor...
ccat2s1cl 14526 The concatenation of two s...
ccats1alpha 14527 A concatenation of a word ...
ccatws1len 14528 The length of the concaten...
ccatws1lenp1b 14529 The length of a word is ` ...
wrdlenccats1lenm1 14530 The length of a word is th...
ccat2s1len 14531 The length of the concaten...
ccatw2s1cl 14532 The concatenation of a wor...
ccatw2s1len 14533 The length of the concaten...
ccats1val1 14534 Value of a symbol in the l...
ccats1val2 14535 Value of the symbol concat...
ccat1st1st 14536 The first symbol of a word...
ccat2s1p1 14537 Extract the first of two c...
ccat2s1p2 14538 Extract the second of two ...
ccatw2s1ass 14539 Associative law for a conc...
ccatws1n0 14540 The concatenation of a wor...
ccatws1ls 14541 The last symbol of the con...
lswccats1 14542 The last symbol of a word ...
lswccats1fst 14543 The last symbol of a nonem...
ccatw2s1p1 14544 Extract the symbol of the ...
ccatw2s1p2 14545 Extract the second of two ...
ccat2s1fvw 14546 Extract a symbol of a word...
ccat2s1fst 14547 The first symbol of the co...
swrdnznd 14550 The value of a subword ope...
swrdval 14551 Value of a subword. (Cont...
swrd00 14552 A zero length substring. ...
swrdcl 14553 Closure of the subword ext...
swrdval2 14554 Value of the subword extra...
swrdlen 14555 Length of an extracted sub...
swrdfv 14556 A symbol in an extracted s...
swrdfv0 14557 The first symbol in an ext...
swrdf 14558 A subword of a word is a f...
swrdvalfn 14559 Value of the subword extra...
swrdrn 14560 The range of a subword of ...
swrdlend 14561 The value of the subword e...
swrdnd 14562 The value of the subword e...
swrdnd2 14563 Value of the subword extra...
swrdnnn0nd 14564 The value of a subword ope...
swrdnd0 14565 The value of a subword ope...
swrd0 14566 A subword of an empty set ...
swrdrlen 14567 Length of a right-anchored...
swrdlen2 14568 Length of an extracted sub...
swrdfv2 14569 A symbol in an extracted s...
swrdwrdsymb 14570 A subword is a word over t...
swrdsb0eq 14571 Two subwords with the same...
swrdsbslen 14572 Two subwords with the same...
swrdspsleq 14573 Two words have a common su...
swrds1 14574 Extract a single symbol fr...
swrdlsw 14575 Extract the last single sy...
ccatswrd 14576 Joining two adjacent subwo...
swrdccat2 14577 Recover the right half of ...
pfxnndmnd 14580 The value of a prefix oper...
pfxval 14581 Value of a prefix operatio...
pfx00 14582 The zero length prefix is ...
pfx0 14583 A prefix of an empty set i...
pfxval0 14584 Value of a prefix operatio...
pfxcl 14585 Closure of the prefix extr...
pfxmpt 14586 Value of the prefix extrac...
pfxres 14587 Value of the prefix extrac...
pfxf 14588 A prefix of a word is a fu...
pfxfn 14589 Value of the prefix extrac...
pfxfv 14590 A symbol in a prefix of a ...
pfxlen 14591 Length of a prefix. (Cont...
pfxid 14592 A word is a prefix of itse...
pfxrn 14593 The range of a prefix of a...
pfxn0 14594 A prefix consisting of at ...
pfxnd 14595 The value of a prefix oper...
pfxnd0 14596 The value of a prefix oper...
pfxwrdsymb 14597 A prefix of a word is a wo...
addlenpfx 14598 The sum of the lengths of ...
pfxfv0 14599 The first symbol of a pref...
pfxtrcfv 14600 A symbol in a word truncat...
pfxtrcfv0 14601 The first symbol in a word...
pfxfvlsw 14602 The last symbol in a nonem...
pfxeq 14603 The prefixes of two words ...
pfxtrcfvl 14604 The last symbol in a word ...
pfxsuffeqwrdeq 14605 Two words are equal if and...
pfxsuff1eqwrdeq 14606 Two (nonempty) words are e...
disjwrdpfx 14607 Sets of words are disjoint...
ccatpfx 14608 Concatenating a prefix wit...
pfxccat1 14609 Recover the left half of a...
pfx1 14610 The prefix of length one o...
swrdswrdlem 14611 Lemma for ~ swrdswrd . (C...
swrdswrd 14612 A subword of a subword is ...
pfxswrd 14613 A prefix of a subword is a...
swrdpfx 14614 A subword of a prefix is a...
pfxpfx 14615 A prefix of a prefix is a ...
pfxpfxid 14616 A prefix of a prefix with ...
pfxcctswrd 14617 The concatenation of the p...
lenpfxcctswrd 14618 The length of the concaten...
lenrevpfxcctswrd 14619 The length of the concaten...
pfxlswccat 14620 Reconstruct a nonempty wor...
ccats1pfxeq 14621 The last symbol of a word ...
ccats1pfxeqrex 14622 There exists a symbol such...
ccatopth 14623 An ~ opth -like theorem fo...
ccatopth2 14624 An ~ opth -like theorem fo...
ccatlcan 14625 Concatenation of words is ...
ccatrcan 14626 Concatenation of words is ...
wrdeqs1cat 14627 Decompose a nonempty word ...
cats1un 14628 Express a word with an ext...
wrdind 14629 Perform induction over the...
wrd2ind 14630 Perform induction over the...
swrdccatfn 14631 The subword of a concatena...
swrdccatin1 14632 The subword of a concatena...
pfxccatin12lem4 14633 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14634 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14635 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14636 The subword of a concatena...
pfxccatin12lem2c 14637 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14638 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14639 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14640 The subword of a concatena...
pfxccat3 14641 The subword of a concatena...
swrdccat 14642 The subword of a concatena...
pfxccatpfx1 14643 A prefix of a concatenatio...
pfxccatpfx2 14644 A prefix of a concatenatio...
pfxccat3a 14645 A prefix of a concatenatio...
swrdccat3blem 14646 Lemma for ~ swrdccat3b . ...
swrdccat3b 14647 A suffix of a concatenatio...
pfxccatid 14648 A prefix of a concatenatio...
ccats1pfxeqbi 14649 A word is a prefix of a wo...
swrdccatin1d 14650 The subword of a concatena...
swrdccatin2d 14651 The subword of a concatena...
pfxccatin12d 14652 The subword of a concatena...
reuccatpfxs1lem 14653 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14654 There is a unique word hav...
reuccatpfxs1v 14655 There is a unique word hav...
splval 14658 Value of the substring rep...
splcl 14659 Closure of the substring r...
splid 14660 Splicing a subword for the...
spllen 14661 The length of a splice. (...
splfv1 14662 Symbols to the left of a s...
splfv2a 14663 Symbols within the replace...
splval2 14664 Value of a splice, assumin...
revval 14667 Value of the word reversin...
revcl 14668 The reverse of a word is a...
revlen 14669 The reverse of a word has ...
revfv 14670 Reverse of a word at a poi...
rev0 14671 The empty word is its own ...
revs1 14672 Singleton words are their ...
revccat 14673 Antiautomorphic property o...
revrev 14674 Reversal is an involution ...
reps 14677 Construct a function mappi...
repsundef 14678 A function mapping a half-...
repsconst 14679 Construct a function mappi...
repsf 14680 The constructed function m...
repswsymb 14681 The symbols of a "repeated...
repsw 14682 A function mapping a half-...
repswlen 14683 The length of a "repeated ...
repsw0 14684 The "repeated symbol word"...
repsdf2 14685 Alternative definition of ...
repswsymball 14686 All the symbols of a "repe...
repswsymballbi 14687 A word is a "repeated symb...
repswfsts 14688 The first symbol of a none...
repswlsw 14689 The last symbol of a nonem...
repsw1 14690 The "repeated symbol word"...
repswswrd 14691 A subword of a "repeated s...
repswpfx 14692 A prefix of a repeated sym...
repswccat 14693 The concatenation of two "...
repswrevw 14694 The reverse of a "repeated...
cshfn 14697 Perform a cyclical shift f...
cshword 14698 Perform a cyclical shift f...
cshnz 14699 A cyclical shift is the em...
0csh0 14700 Cyclically shifting an emp...
cshw0 14701 A word cyclically shifted ...
cshwmodn 14702 Cyclically shifting a word...
cshwsublen 14703 Cyclically shifting a word...
cshwn 14704 A word cyclically shifted ...
cshwcl 14705 A cyclically shifted word ...
cshwlen 14706 The length of a cyclically...
cshwf 14707 A cyclically shifted word ...
cshwfn 14708 A cyclically shifted word ...
cshwrn 14709 The range of a cyclically ...
cshwidxmod 14710 The symbol at a given inde...
cshwidxmodr 14711 The symbol at a given inde...
cshwidx0mod 14712 The symbol at index 0 of a...
cshwidx0 14713 The symbol at index 0 of a...
cshwidxm1 14714 The symbol at index ((n-N)...
cshwidxm 14715 The symbol at index (n-N) ...
cshwidxn 14716 The symbol at index (n-1) ...
cshf1 14717 Cyclically shifting a word...
cshinj 14718 If a word is injectiv (reg...
repswcshw 14719 A cyclically shifted "repe...
2cshw 14720 Cyclically shifting a word...
2cshwid 14721 Cyclically shifting a word...
lswcshw 14722 The last symbol of a word ...
2cshwcom 14723 Cyclically shifting a word...
cshwleneq 14724 If the results of cyclical...
3cshw 14725 Cyclically shifting a word...
cshweqdif2 14726 If cyclically shifting two...
cshweqdifid 14727 If cyclically shifting a w...
cshweqrep 14728 If cyclically shifting a w...
cshw1 14729 If cyclically shifting a w...
cshw1repsw 14730 If cyclically shifting a w...
cshwsexa 14731 The class of (different!) ...
2cshwcshw 14732 If a word is a cyclically ...
scshwfzeqfzo 14733 For a nonempty word the se...
cshwcshid 14734 A cyclically shifted word ...
cshwcsh2id 14735 A cyclically shifted word ...
cshimadifsn 14736 The image of a cyclically ...
cshimadifsn0 14737 The image of a cyclically ...
wrdco 14738 Mapping a word by a functi...
lenco 14739 Length of a mapped word is...
s1co 14740 Mapping of a singleton wor...
revco 14741 Mapping of words (i.e., a ...
ccatco 14742 Mapping of words commutes ...
cshco 14743 Mapping of words commutes ...
swrdco 14744 Mapping of words commutes ...
pfxco 14745 Mapping of words commutes ...
lswco 14746 Mapping of (nonempty) word...
repsco 14747 Mapping of words commutes ...
cats1cld 14762 Closure of concatenation w...
cats1co 14763 Closure of concatenation w...
cats1cli 14764 Closure of concatenation w...
cats1fvn 14765 The last symbol of a conca...
cats1fv 14766 A symbol other than the la...
cats1len 14767 The length of concatenatio...
cats1cat 14768 Closure of concatenation w...
cats2cat 14769 Closure of concatenation o...
s2eqd 14770 Equality theorem for a dou...
s3eqd 14771 Equality theorem for a len...
s4eqd 14772 Equality theorem for a len...
s5eqd 14773 Equality theorem for a len...
s6eqd 14774 Equality theorem for a len...
s7eqd 14775 Equality theorem for a len...
s8eqd 14776 Equality theorem for a len...
s3eq2 14777 Equality theorem for a len...
s2cld 14778 A doubleton word is a word...
s3cld 14779 A length 3 string is a wor...
s4cld 14780 A length 4 string is a wor...
s5cld 14781 A length 5 string is a wor...
s6cld 14782 A length 6 string is a wor...
s7cld 14783 A length 7 string is a wor...
s8cld 14784 A length 8 string is a wor...
s2cl 14785 A doubleton word is a word...
s3cl 14786 A length 3 string is a wor...
s2cli 14787 A doubleton word is a word...
s3cli 14788 A length 3 string is a wor...
s4cli 14789 A length 4 string is a wor...
s5cli 14790 A length 5 string is a wor...
s6cli 14791 A length 6 string is a wor...
s7cli 14792 A length 7 string is a wor...
s8cli 14793 A length 8 string is a wor...
s2fv0 14794 Extract the first symbol f...
s2fv1 14795 Extract the second symbol ...
s2len 14796 The length of a doubleton ...
s2dm 14797 The domain of a doubleton ...
s3fv0 14798 Extract the first symbol f...
s3fv1 14799 Extract the second symbol ...
s3fv2 14800 Extract the third symbol f...
s3len 14801 The length of a length 3 s...
s4fv0 14802 Extract the first symbol f...
s4fv1 14803 Extract the second symbol ...
s4fv2 14804 Extract the third symbol f...
s4fv3 14805 Extract the fourth symbol ...
s4len 14806 The length of a length 4 s...
s5len 14807 The length of a length 5 s...
s6len 14808 The length of a length 6 s...
s7len 14809 The length of a length 7 s...
s8len 14810 The length of a length 8 s...
lsws2 14811 The last symbol of a doubl...
lsws3 14812 The last symbol of a 3 let...
lsws4 14813 The last symbol of a 4 let...
s2prop 14814 A length 2 word is an unor...
s2dmALT 14815 Alternate version of ~ s2d...
s3tpop 14816 A length 3 word is an unor...
s4prop 14817 A length 4 word is a union...
s3fn 14818 A length 3 word is a funct...
funcnvs1 14819 The converse of a singleto...
funcnvs2 14820 The converse of a length 2...
funcnvs3 14821 The converse of a length 3...
funcnvs4 14822 The converse of a length 4...
s2f1o 14823 A length 2 word with mutua...
f1oun2prg 14824 A union of unordered pairs...
s4f1o 14825 A length 4 word with mutua...
s4dom 14826 The domain of a length 4 w...
s2co 14827 Mapping a doubleton word b...
s3co 14828 Mapping a length 3 string ...
s0s1 14829 Concatenation of fixed len...
s1s2 14830 Concatenation of fixed len...
s1s3 14831 Concatenation of fixed len...
s1s4 14832 Concatenation of fixed len...
s1s5 14833 Concatenation of fixed len...
s1s6 14834 Concatenation of fixed len...
s1s7 14835 Concatenation of fixed len...
s2s2 14836 Concatenation of fixed len...
s4s2 14837 Concatenation of fixed len...
s4s3 14838 Concatenation of fixed len...
s4s4 14839 Concatenation of fixed len...
s3s4 14840 Concatenation of fixed len...
s2s5 14841 Concatenation of fixed len...
s5s2 14842 Concatenation of fixed len...
s2eq2s1eq 14843 Two length 2 words are equ...
s2eq2seq 14844 Two length 2 words are equ...
s3eqs2s1eq 14845 Two length 3 words are equ...
s3eq3seq 14846 Two length 3 words are equ...
swrds2 14847 Extract two adjacent symbo...
swrds2m 14848 Extract two adjacent symbo...
wrdlen2i 14849 Implications of a word of ...
wrd2pr2op 14850 A word of length two repre...
wrdlen2 14851 A word of length two. (Co...
wrdlen2s2 14852 A word of length two as do...
wrdl2exs2 14853 A word of length two is a ...
pfx2 14854 A prefix of length two. (...
wrd3tpop 14855 A word of length three rep...
wrdlen3s3 14856 A word of length three as ...
repsw2 14857 The "repeated symbol word"...
repsw3 14858 The "repeated symbol word"...
swrd2lsw 14859 Extract the last two symbo...
2swrd2eqwrdeq 14860 Two words of length at lea...
ccatw2s1ccatws2 14861 The concatenation of a wor...
ccat2s1fvwALT 14862 Alternate proof of ~ ccat2...
wwlktovf 14863 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14864 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14865 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14866 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14867 There is a bijection betwe...
eqwrds3 14868 A word is equal with a len...
wrdl3s3 14869 A word of length 3 is a le...
s2rn 14870 Range of a length 2 string...
s3rn 14871 Range of a length 3 string...
s7rn 14872 Range of a length 7 string...
s7f1o 14873 A length 7 word with mutua...
s3sndisj 14874 The singletons consisting ...
s3iunsndisj 14875 The union of singletons co...
ofccat 14876 Letterwise operations on w...
ofs1 14877 Letterwise operations on a...
ofs2 14878 Letterwise operations on a...
coss12d 14879 Subset deduction for compo...
trrelssd 14880 The composition of subclas...
xpcogend 14881 The most interesting case ...
xpcoidgend 14882 If two classes are not dis...
cotr2g 14883 Two ways of saying that th...
cotr2 14884 Two ways of saying a relat...
cotr3 14885 Two ways of saying a relat...
coemptyd 14886 Deduction about compositio...
xptrrel 14887 The cross product is alway...
0trrel 14888 The empty class is a trans...
cleq1lem 14889 Equality implies bijection...
cleq1 14890 Equality of relations impl...
clsslem 14891 The closure of a subclass ...
trcleq1 14896 Equality of relations impl...
trclsslem 14897 The transitive closure (as...
trcleq2lem 14898 Equality implies bijection...
cvbtrcl 14899 Change of bound variable i...
trcleq12lem 14900 Equality implies bijection...
trclexlem 14901 Existence of relation impl...
trclublem 14902 If a relation exists then ...
trclubi 14903 The Cartesian product of t...
trclubgi 14904 The union with the Cartesi...
trclub 14905 The Cartesian product of t...
trclubg 14906 The union with the Cartesi...
trclfv 14907 The transitive closure of ...
brintclab 14908 Two ways to express a bina...
brtrclfv 14909 Two ways of expressing the...
brcnvtrclfv 14910 Two ways of expressing the...
brtrclfvcnv 14911 Two ways of expressing the...
brcnvtrclfvcnv 14912 Two ways of expressing the...
trclfvss 14913 The transitive closure (as...
trclfvub 14914 The transitive closure of ...
trclfvlb 14915 The transitive closure of ...
trclfvcotr 14916 The transitive closure of ...
trclfvlb2 14917 The transitive closure of ...
trclfvlb3 14918 The transitive closure of ...
cotrtrclfv 14919 The transitive closure of ...
trclidm 14920 The transitive closure of ...
trclun 14921 Transitive closure of a un...
trclfvg 14922 The value of the transitiv...
trclfvcotrg 14923 The value of the transitiv...
reltrclfv 14924 The transitive closure of ...
dmtrclfv 14925 The domain of the transiti...
reldmrelexp 14928 The domain of the repeated...
relexp0g 14929 A relation composed zero t...
relexp0 14930 A relation composed zero t...
relexp0d 14931 A relation composed zero t...
relexpsucnnr 14932 A reduction for relation e...
relexp1g 14933 A relation composed once i...
dfid5 14934 Identity relation is equal...
dfid6 14935 Identity relation expresse...
relexp1d 14936 A relation composed once i...
relexpsucnnl 14937 A reduction for relation e...
relexpsucl 14938 A reduction for relation e...
relexpsucr 14939 A reduction for relation e...
relexpsucrd 14940 A reduction for relation e...
relexpsucld 14941 A reduction for relation e...
relexpcnv 14942 Commutation of converse an...
relexpcnvd 14943 Commutation of converse an...
relexp0rel 14944 The exponentiation of a cl...
relexprelg 14945 The exponentiation of a cl...
relexprel 14946 The exponentiation of a re...
relexpreld 14947 The exponentiation of a re...
relexpnndm 14948 The domain of an exponenti...
relexpdmg 14949 The domain of an exponenti...
relexpdm 14950 The domain of an exponenti...
relexpdmd 14951 The domain of an exponenti...
relexpnnrn 14952 The range of an exponentia...
relexprng 14953 The range of an exponentia...
relexprn 14954 The range of an exponentia...
relexprnd 14955 The range of an exponentia...
relexpfld 14956 The field of an exponentia...
relexpfldd 14957 The field of an exponentia...
relexpaddnn 14958 Relation composition becom...
relexpuzrel 14959 The exponentiation of a cl...
relexpaddg 14960 Relation composition becom...
relexpaddd 14961 Relation composition becom...
rtrclreclem1 14964 The reflexive, transitive ...
dfrtrclrec2 14965 If two elements are connec...
rtrclreclem2 14966 The reflexive, transitive ...
rtrclreclem3 14967 The reflexive, transitive ...
rtrclreclem4 14968 The reflexive, transitive ...
dfrtrcl2 14969 The two definitions ` t* `...
relexpindlem 14970 Principle of transitive in...
relexpind 14971 Principle of transitive in...
rtrclind 14972 Principle of transitive in...
shftlem 14975 Two ways to write a shifte...
shftuz 14976 A shift of the upper integ...
shftfval 14977 The value of the sequence ...
shftdm 14978 Domain of a relation shift...
shftfib 14979 Value of a fiber of the re...
shftfn 14980 Functionality and domain o...
shftval 14981 Value of a sequence shifte...
shftval2 14982 Value of a sequence shifte...
shftval3 14983 Value of a sequence shifte...
shftval4 14984 Value of a sequence shifte...
shftval5 14985 Value of a shifted sequenc...
shftf 14986 Functionality of a shifted...
2shfti 14987 Composite shift operations...
shftidt2 14988 Identity law for the shift...
shftidt 14989 Identity law for the shift...
shftcan1 14990 Cancellation law for the s...
shftcan2 14991 Cancellation law for the s...
seqshft 14992 Shifting the index set of ...
sgnval 14995 Value of the signum functi...
sgn0 14996 The signum of 0 is 0. (Co...
sgnp 14997 The signum of a positive e...
sgnrrp 14998 The signum of a positive r...
sgn1 14999 The signum of 1 is 1. (Co...
sgnpnf 15000 The signum of ` +oo ` is 1...
sgnn 15001 The signum of a negative e...
sgnmnf 15002 The signum of ` -oo ` is -...
cjval 15009 The value of the conjugate...
cjth 15010 The defining property of t...
cjf 15011 Domain and codomain of the...
cjcl 15012 The conjugate of a complex...
reval 15013 The value of the real part...
imval 15014 The value of the imaginary...
imre 15015 The imaginary part of a co...
reim 15016 The real part of a complex...
recl 15017 The real part of a complex...
imcl 15018 The imaginary part of a co...
ref 15019 Domain and codomain of the...
imf 15020 Domain and codomain of the...
crre 15021 The real part of a complex...
crim 15022 The real part of a complex...
replim 15023 Reconstruct a complex numb...
remim 15024 Value of the conjugate of ...
reim0 15025 The imaginary part of a re...
reim0b 15026 A number is real iff its i...
rereb 15027 A number is real iff it eq...
mulre 15028 A product with a nonzero r...
rere 15029 A real number equals its r...
cjreb 15030 A number is real iff it eq...
recj 15031 Real part of a complex con...
reneg 15032 Real part of negative. (C...
readd 15033 Real part distributes over...
resub 15034 Real part distributes over...
remullem 15035 Lemma for ~ remul , ~ immu...
remul 15036 Real part of a product. (...
remul2 15037 Real part of a product. (...
rediv 15038 Real part of a division. ...
imcj 15039 Imaginary part of a comple...
imneg 15040 The imaginary part of a ne...
imadd 15041 Imaginary part distributes...
imsub 15042 Imaginary part distributes...
immul 15043 Imaginary part of a produc...
immul2 15044 Imaginary part of a produc...
imdiv 15045 Imaginary part of a divisi...
cjre 15046 A real number equals its c...
cjcj 15047 The conjugate of the conju...
cjadd 15048 Complex conjugate distribu...
cjmul 15049 Complex conjugate distribu...
ipcnval 15050 Standard inner product on ...
cjmulrcl 15051 A complex number times its...
cjmulval 15052 A complex number times its...
cjmulge0 15053 A complex number times its...
cjneg 15054 Complex conjugate of negat...
addcj 15055 A number plus its conjugat...
cjsub 15056 Complex conjugate distribu...
cjexp 15057 Complex conjugate of posit...
imval2 15058 The imaginary part of a nu...
re0 15059 The real part of zero. (C...
im0 15060 The imaginary part of zero...
re1 15061 The real part of one. (Co...
im1 15062 The imaginary part of one....
rei 15063 The real part of ` _i ` . ...
imi 15064 The imaginary part of ` _i...
cj0 15065 The conjugate of zero. (C...
cji 15066 The complex conjugate of t...
cjreim 15067 The conjugate of a represe...
cjreim2 15068 The conjugate of the repre...
cj11 15069 Complex conjugate is a one...
cjne0 15070 A number is nonzero iff it...
cjdiv 15071 Complex conjugate distribu...
cnrecnv 15072 The inverse to the canonic...
sqeqd 15073 A deduction for showing tw...
recli 15074 The real part of a complex...
imcli 15075 The imaginary part of a co...
cjcli 15076 Closure law for complex co...
replimi 15077 Construct a complex number...
cjcji 15078 The conjugate of the conju...
reim0bi 15079 A number is real iff its i...
rerebi 15080 A real number equals its r...
cjrebi 15081 A number is real iff it eq...
recji 15082 Real part of a complex con...
imcji 15083 Imaginary part of a comple...
cjmulrcli 15084 A complex number times its...
cjmulvali 15085 A complex number times its...
cjmulge0i 15086 A complex number times its...
renegi 15087 Real part of negative. (C...
imnegi 15088 Imaginary part of negative...
cjnegi 15089 Complex conjugate of negat...
addcji 15090 A number plus its conjugat...
readdi 15091 Real part distributes over...
imaddi 15092 Imaginary part distributes...
remuli 15093 Real part of a product. (...
immuli 15094 Imaginary part of a produc...
cjaddi 15095 Complex conjugate distribu...
cjmuli 15096 Complex conjugate distribu...
ipcni 15097 Standard inner product on ...
cjdivi 15098 Complex conjugate distribu...
crrei 15099 The real part of a complex...
crimi 15100 The imaginary part of a co...
recld 15101 The real part of a complex...
imcld 15102 The imaginary part of a co...
cjcld 15103 Closure law for complex co...
replimd 15104 Construct a complex number...
remimd 15105 Value of the conjugate of ...
cjcjd 15106 The conjugate of the conju...
reim0bd 15107 A number is real iff its i...
rerebd 15108 A real number equals its r...
cjrebd 15109 A number is real iff it eq...
cjne0d 15110 A number is nonzero iff it...
recjd 15111 Real part of a complex con...
imcjd 15112 Imaginary part of a comple...
cjmulrcld 15113 A complex number times its...
cjmulvald 15114 A complex number times its...
cjmulge0d 15115 A complex number times its...
renegd 15116 Real part of negative. (C...
imnegd 15117 Imaginary part of negative...
cjnegd 15118 Complex conjugate of negat...
addcjd 15119 A number plus its conjugat...
cjexpd 15120 Complex conjugate of posit...
readdd 15121 Real part distributes over...
imaddd 15122 Imaginary part distributes...
resubd 15123 Real part distributes over...
imsubd 15124 Imaginary part distributes...
remuld 15125 Real part of a product. (...
immuld 15126 Imaginary part of a produc...
cjaddd 15127 Complex conjugate distribu...
cjmuld 15128 Complex conjugate distribu...
ipcnd 15129 Standard inner product on ...
cjdivd 15130 Complex conjugate distribu...
rered 15131 A real number equals its r...
reim0d 15132 The imaginary part of a re...
cjred 15133 A real number equals its c...
remul2d 15134 Real part of a product. (...
immul2d 15135 Imaginary part of a produc...
redivd 15136 Real part of a division. ...
imdivd 15137 Imaginary part of a divisi...
crred 15138 The real part of a complex...
crimd 15139 The imaginary part of a co...
sqrtval 15144 Value of square root funct...
absval 15145 The absolute value (modulu...
rennim 15146 A real number does not lie...
cnpart 15147 The specification of restr...
sqrt0 15148 The square root of zero is...
01sqrexlem1 15149 Lemma for ~ 01sqrex . (Co...
01sqrexlem2 15150 Lemma for ~ 01sqrex . (Co...
01sqrexlem3 15151 Lemma for ~ 01sqrex . (Co...
01sqrexlem4 15152 Lemma for ~ 01sqrex . (Co...
01sqrexlem5 15153 Lemma for ~ 01sqrex . (Co...
01sqrexlem6 15154 Lemma for ~ 01sqrex . (Co...
01sqrexlem7 15155 Lemma for ~ 01sqrex . (Co...
01sqrex 15156 Existence of a square root...
resqrex 15157 Existence of a square root...
sqrmo 15158 Uniqueness for the square ...
resqreu 15159 Existence and uniqueness f...
resqrtcl 15160 Closure of the square root...
resqrtthlem 15161 Lemma for ~ resqrtth . (C...
resqrtth 15162 Square root theorem over t...
remsqsqrt 15163 Square of square root. (C...
sqrtge0 15164 The square root function i...
sqrtgt0 15165 The square root function i...
sqrtmul 15166 Square root distributes ov...
sqrtle 15167 Square root is monotonic. ...
sqrtlt 15168 Square root is strictly mo...
sqrt11 15169 The square root function i...
sqrt00 15170 A square root is zero iff ...
rpsqrtcl 15171 The square root of a posit...
sqrtdiv 15172 Square root distributes ov...
sqrtneglem 15173 The square root of a negat...
sqrtneg 15174 The square root of a negat...
sqrtsq2 15175 Relationship between squar...
sqrtsq 15176 Square root of square. (C...
sqrtmsq 15177 Square root of square. (C...
sqrt1 15178 The square root of 1 is 1....
sqrt4 15179 The square root of 4 is 2....
sqrt9 15180 The square root of 9 is 3....
sqrt2gt1lt2 15181 The square root of 2 is bo...
sqrtm1 15182 The imaginary unit is the ...
nn0sqeq1 15183 A natural number with squa...
absneg 15184 Absolute value of the nega...
abscl 15185 Real closure of absolute v...
abscj 15186 The absolute value of a nu...
absvalsq 15187 Square of value of absolut...
absvalsq2 15188 Square of value of absolut...
sqabsadd 15189 Square of absolute value o...
sqabssub 15190 Square of absolute value o...
absval2 15191 Value of absolute value fu...
abs0 15192 The absolute value of 0. ...
absi 15193 The absolute value of the ...
absge0 15194 Absolute value is nonnegat...
absrpcl 15195 The absolute value of a no...
abs00 15196 The absolute value of a nu...
abs00ad 15197 A complex number is zero i...
abs00bd 15198 If a complex number is zer...
absreimsq 15199 Square of the absolute val...
absreim 15200 Absolute value of a number...
absmul 15201 Absolute value distributes...
absdiv 15202 Absolute value distributes...
absid 15203 A nonnegative number is it...
abs1 15204 The absolute value of one ...
absnid 15205 For a negative number, its...
leabs 15206 A real number is less than...
absor 15207 The absolute value of a re...
absre 15208 Absolute value of a real n...
absresq 15209 Square of the absolute val...
absmod0 15210 ` A ` is divisible by ` B ...
absexp 15211 Absolute value of positive...
absexpz 15212 Absolute value of integer ...
abssq 15213 Square can be moved in and...
sqabs 15214 The squares of two reals a...
absrele 15215 The absolute value of a co...
absimle 15216 The absolute value of a co...
max0add 15217 The sum of the positive an...
absz 15218 A real number is an intege...
nn0abscl 15219 The absolute value of an i...
zabscl 15220 The absolute value of an i...
zabs0b 15221 An integer has an absolute...
abslt 15222 Absolute value and 'less t...
absle 15223 Absolute value and 'less t...
abssubne0 15224 If the absolute value of a...
absdiflt 15225 The absolute value of a di...
absdifle 15226 The absolute value of a di...
elicc4abs 15227 Membership in a symmetric ...
lenegsq 15228 Comparison to a nonnegativ...
releabs 15229 The real part of a number ...
recval 15230 Reciprocal expressed with ...
absidm 15231 The absolute value functio...
absgt0 15232 The absolute value of a no...
nnabscl 15233 The absolute value of a no...
abssub 15234 Swapping order of subtract...
abssubge0 15235 Absolute value of a nonneg...
abssuble0 15236 Absolute value of a nonpos...
absmax 15237 The maximum of two numbers...
abstri 15238 Triangle inequality for ab...
abs3dif 15239 Absolute value of differen...
abs2dif 15240 Difference of absolute val...
abs2dif2 15241 Difference of absolute val...
abs2difabs 15242 Absolute value of differen...
abs1m 15243 For any complex number, th...
recan 15244 Cancellation law involving...
absf 15245 Mapping domain and codomai...
abs3lem 15246 Lemma involving absolute v...
abslem2 15247 Lemma involving absolute v...
rddif 15248 The difference between a r...
absrdbnd 15249 Bound on the absolute valu...
fzomaxdiflem 15250 Lemma for ~ fzomaxdif . (...
fzomaxdif 15251 A bound on the separation ...
uzin2 15252 The upper integers are clo...
rexanuz 15253 Combine two different uppe...
rexanre 15254 Combine two different uppe...
rexfiuz 15255 Combine finitely many diff...
rexuz3 15256 Restrict the base of the u...
rexanuz2 15257 Combine two different uppe...
r19.29uz 15258 A version of ~ 19.29 for u...
r19.2uz 15259 A version of ~ r19.2z for ...
rexuzre 15260 Convert an upper real quan...
rexico 15261 Restrict the base of an up...
cau3lem 15262 Lemma for ~ cau3 . (Contr...
cau3 15263 Convert between three-quan...
cau4 15264 Change the base of a Cauch...
caubnd2 15265 A Cauchy sequence of compl...
caubnd 15266 A Cauchy sequence of compl...
sqreulem 15267 Lemma for ~ sqreu : write ...
sqreu 15268 Existence and uniqueness f...
sqrtcl 15269 Closure of the square root...
sqrtthlem 15270 Lemma for ~ sqrtth . (Con...
sqrtf 15271 Mapping domain and codomai...
sqrtth 15272 Square root theorem over t...
sqrtrege0 15273 The square root function m...
eqsqrtor 15274 Solve an equation containi...
eqsqrtd 15275 A deduction for showing th...
eqsqrt2d 15276 A deduction for showing th...
amgm2 15277 Arithmetic-geometric mean ...
sqrtthi 15278 Square root theorem. Theo...
sqrtcli 15279 The square root of a nonne...
sqrtgt0i 15280 The square root of a posit...
sqrtmsqi 15281 Square root of square. (C...
sqrtsqi 15282 Square root of square. (C...
sqsqrti 15283 Square of square root. (C...
sqrtge0i 15284 The square root of a nonne...
absidi 15285 A nonnegative number is it...
absnidi 15286 A negative number is the n...
leabsi 15287 A real number is less than...
absori 15288 The absolute value of a re...
absrei 15289 Absolute value of a real n...
sqrtpclii 15290 The square root of a posit...
sqrtgt0ii 15291 The square root of a posit...
sqrt11i 15292 The square root function i...
sqrtmuli 15293 Square root distributes ov...
sqrtmulii 15294 Square root distributes ov...
sqrtmsq2i 15295 Relationship between squar...
sqrtlei 15296 Square root is monotonic. ...
sqrtlti 15297 Square root is strictly mo...
abslti 15298 Absolute value and 'less t...
abslei 15299 Absolute value and 'less t...
cnsqrt00 15300 A square root of a complex...
absvalsqi 15301 Square of value of absolut...
absvalsq2i 15302 Square of value of absolut...
abscli 15303 Real closure of absolute v...
absge0i 15304 Absolute value is nonnegat...
absval2i 15305 Value of absolute value fu...
abs00i 15306 The absolute value of a nu...
absgt0i 15307 The absolute value of a no...
absnegi 15308 Absolute value of negative...
abscji 15309 The absolute value of a nu...
releabsi 15310 The real part of a number ...
abssubi 15311 Swapping order of subtract...
absmuli 15312 Absolute value distributes...
sqabsaddi 15313 Square of absolute value o...
sqabssubi 15314 Square of absolute value o...
absdivzi 15315 Absolute value distributes...
abstrii 15316 Triangle inequality for ab...
abs3difi 15317 Absolute value of differen...
abs3lemi 15318 Lemma involving absolute v...
rpsqrtcld 15319 The square root of a posit...
sqrtgt0d 15320 The square root of a posit...
absnidd 15321 A negative number is the n...
leabsd 15322 A real number is less than...
absord 15323 The absolute value of a re...
absred 15324 Absolute value of a real n...
resqrtcld 15325 The square root of a nonne...
sqrtmsqd 15326 Square root of square. (C...
sqrtsqd 15327 Square root of square. (C...
sqrtge0d 15328 The square root of a nonne...
sqrtnegd 15329 The square root of a negat...
absidd 15330 A nonnegative number is it...
sqrtdivd 15331 Square root distributes ov...
sqrtmuld 15332 Square root distributes ov...
sqrtsq2d 15333 Relationship between squar...
sqrtled 15334 Square root is monotonic. ...
sqrtltd 15335 Square root is strictly mo...
sqr11d 15336 The square root function i...
nn0absid 15337 A nonnegative integer is i...
nn0absidi 15338 A nonnegative integer is i...
absltd 15339 Absolute value and 'less t...
absled 15340 Absolute value and 'less t...
abssubge0d 15341 Absolute value of a nonneg...
abssuble0d 15342 Absolute value of a nonpos...
absdifltd 15343 The absolute value of a di...
absdifled 15344 The absolute value of a di...
icodiamlt 15345 Two elements in a half-ope...
abscld 15346 Real closure of absolute v...
sqrtcld 15347 Closure of the square root...
sqrtrege0d 15348 The real part of the squar...
sqsqrtd 15349 Square root theorem. Theo...
msqsqrtd 15350 Square root theorem. Theo...
sqr00d 15351 A square root is zero iff ...
absvalsqd 15352 Square of value of absolut...
absvalsq2d 15353 Square of value of absolut...
absge0d 15354 Absolute value is nonnegat...
absval2d 15355 Value of absolute value fu...
abs00d 15356 The absolute value of a nu...
absne0d 15357 The absolute value of a nu...
absrpcld 15358 The absolute value of a no...
absnegd 15359 Absolute value of negative...
abscjd 15360 The absolute value of a nu...
releabsd 15361 The real part of a number ...
absexpd 15362 Absolute value of positive...
abssubd 15363 Swapping order of subtract...
absmuld 15364 Absolute value distributes...
absdivd 15365 Absolute value distributes...
abstrid 15366 Triangle inequality for ab...
abs2difd 15367 Difference of absolute val...
abs2dif2d 15368 Difference of absolute val...
abs2difabsd 15369 Absolute value of differen...
abs3difd 15370 Absolute value of differen...
abs3lemd 15371 Lemma involving absolute v...
reusq0 15372 A complex number is the sq...
bhmafibid1cn 15373 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15374 The Brahmagupta-Fibonacci ...
bhmafibid1 15375 The Brahmagupta-Fibonacci ...
bhmafibid2 15376 The Brahmagupta-Fibonacci ...
limsupgord 15379 Ordering property of the s...
limsupcl 15380 Closure of the superior li...
limsupval 15381 The superior limit of an i...
limsupgf 15382 Closure of the superior li...
limsupgval 15383 Value of the superior limi...
limsupgle 15384 The defining property of t...
limsuple 15385 The defining property of t...
limsuplt 15386 The defining property of t...
limsupval2 15387 The superior limit, relati...
limsupgre 15388 If a sequence of real numb...
limsupbnd1 15389 If a sequence is eventuall...
limsupbnd2 15390 If a sequence is eventuall...
climrel 15399 The limit relation is a re...
rlimrel 15400 The limit relation is a re...
clim 15401 Express the predicate: Th...
rlim 15402 Express the predicate: Th...
rlim2 15403 Rewrite ~ rlim for a mappi...
rlim2lt 15404 Use strictly less-than in ...
rlim3 15405 Restrict the range of the ...
climcl 15406 Closure of the limit of a ...
rlimpm 15407 Closure of a function with...
rlimf 15408 Closure of a function with...
rlimss 15409 Domain closure of a functi...
rlimcl 15410 Closure of the limit of a ...
clim2 15411 Express the predicate: Th...
clim2c 15412 Express the predicate ` F ...
clim0 15413 Express the predicate ` F ...
clim0c 15414 Express the predicate ` F ...
rlim0 15415 Express the predicate ` B ...
rlim0lt 15416 Use strictly less-than in ...
climi 15417 Convergence of a sequence ...
climi2 15418 Convergence of a sequence ...
climi0 15419 Convergence of a sequence ...
rlimi 15420 Convergence at infinity of...
rlimi2 15421 Convergence at infinity of...
ello1 15422 Elementhood in the set of ...
ello12 15423 Elementhood in the set of ...
ello12r 15424 Sufficient condition for e...
lo1f 15425 An eventually upper bounde...
lo1dm 15426 An eventually upper bounde...
lo1bdd 15427 The defining property of a...
ello1mpt 15428 Elementhood in the set of ...
ello1mpt2 15429 Elementhood in the set of ...
ello1d 15430 Sufficient condition for e...
lo1bdd2 15431 If an eventually bounded f...
lo1bddrp 15432 Refine ~ o1bdd2 to give a ...
elo1 15433 Elementhood in the set of ...
elo12 15434 Elementhood in the set of ...
elo12r 15435 Sufficient condition for e...
o1f 15436 An eventually bounded func...
o1dm 15437 An eventually bounded func...
o1bdd 15438 The defining property of a...
lo1o1 15439 A function is eventually b...
lo1o12 15440 A function is eventually b...
elo1mpt 15441 Elementhood in the set of ...
elo1mpt2 15442 Elementhood in the set of ...
elo1d 15443 Sufficient condition for e...
o1lo1 15444 A real function is eventua...
o1lo12 15445 A lower bounded real funct...
o1lo1d 15446 A real eventually bounded ...
icco1 15447 Derive eventual boundednes...
o1bdd2 15448 If an eventually bounded f...
o1bddrp 15449 Refine ~ o1bdd2 to give a ...
climconst 15450 An (eventually) constant s...
rlimconst 15451 A constant sequence conver...
rlimclim1 15452 Forward direction of ~ rli...
rlimclim 15453 A sequence on an upper int...
climrlim2 15454 Produce a real limit from ...
climconst2 15455 A constant sequence conver...
climz 15456 The zero sequence converge...
rlimuni 15457 A real function whose doma...
rlimdm 15458 Two ways to express that a...
climuni 15459 An infinite sequence of co...
fclim 15460 The limit relation is func...
climdm 15461 Two ways to express that a...
climeu 15462 An infinite sequence of co...
climreu 15463 An infinite sequence of co...
climmo 15464 An infinite sequence of co...
rlimres 15465 The restriction of a funct...
lo1res 15466 The restriction of an even...
o1res 15467 The restriction of an even...
rlimres2 15468 The restriction of a funct...
lo1res2 15469 The restriction of a funct...
o1res2 15470 The restriction of a funct...
lo1resb 15471 The restriction of a funct...
rlimresb 15472 The restriction of a funct...
o1resb 15473 The restriction of a funct...
climeq 15474 Two functions that are eve...
lo1eq 15475 Two functions that are eve...
rlimeq 15476 Two functions that are eve...
o1eq 15477 Two functions that are eve...
climmpt 15478 Exhibit a function ` G ` w...
2clim 15479 If two sequences converge ...
climmpt2 15480 Relate an integer limit on...
climshftlem 15481 A shifted function converg...
climres 15482 A function restricted to u...
climshft 15483 A shifted function converg...
serclim0 15484 The zero series converges ...
rlimcld2 15485 If ` D ` is a closed set i...
rlimrege0 15486 The limit of a sequence of...
rlimrecl 15487 The limit of a real sequen...
rlimge0 15488 The limit of a sequence of...
climshft2 15489 A shifted function converg...
climrecl 15490 The limit of a convergent ...
climge0 15491 A nonnegative sequence con...
climabs0 15492 Convergence to zero of the...
o1co 15493 Sufficient condition for t...
o1compt 15494 Sufficient condition for t...
rlimcn1 15495 Image of a limit under a c...
rlimcn1b 15496 Image of a limit under a c...
rlimcn3 15497 Image of a limit under a c...
rlimcn2 15498 Image of a limit under a c...
climcn1 15499 Image of a limit under a c...
climcn2 15500 Image of a limit under a c...
addcn2 15501 Complex number addition is...
subcn2 15502 Complex number subtraction...
mulcn2 15503 Complex number multiplicat...
reccn2 15504 The reciprocal function is...
cn1lem 15505 A sufficient condition for...
abscn2 15506 The absolute value functio...
cjcn2 15507 The complex conjugate func...
recn2 15508 The real part function is ...
imcn2 15509 The imaginary part functio...
climcn1lem 15510 The limit of a continuous ...
climabs 15511 Limit of the absolute valu...
climcj 15512 Limit of the complex conju...
climre 15513 Limit of the real part of ...
climim 15514 Limit of the imaginary par...
rlimmptrcl 15515 Reverse closure for a real...
rlimabs 15516 Limit of the absolute valu...
rlimcj 15517 Limit of the complex conju...
rlimre 15518 Limit of the real part of ...
rlimim 15519 Limit of the imaginary par...
o1of2 15520 Show that a binary operati...
o1add 15521 The sum of two eventually ...
o1mul 15522 The product of two eventua...
o1sub 15523 The difference of two even...
rlimo1 15524 Any function with a finite...
rlimdmo1 15525 A convergent function is e...
o1rlimmul 15526 The product of an eventual...
o1const 15527 A constant function is eve...
lo1const 15528 A constant function is eve...
lo1mptrcl 15529 Reverse closure for an eve...
o1mptrcl 15530 Reverse closure for an eve...
o1add2 15531 The sum of two eventually ...
o1mul2 15532 The product of two eventua...
o1sub2 15533 The product of two eventua...
lo1add 15534 The sum of two eventually ...
lo1mul 15535 The product of an eventual...
lo1mul2 15536 The product of an eventual...
o1dif 15537 If the difference of two f...
lo1sub 15538 The difference of an event...
climadd 15539 Limit of the sum of two co...
climmul 15540 Limit of the product of tw...
climsub 15541 Limit of the difference of...
climaddc1 15542 Limit of a constant ` C ` ...
climaddc2 15543 Limit of a constant ` C ` ...
climmulc2 15544 Limit of a sequence multip...
climsubc1 15545 Limit of a constant ` C ` ...
climsubc2 15546 Limit of a constant ` C ` ...
climle 15547 Comparison of the limits o...
climsqz 15548 Convergence of a sequence ...
climsqz2 15549 Convergence of a sequence ...
rlimadd 15550 Limit of the sum of two co...
rlimsub 15551 Limit of the difference of...
rlimmul 15552 Limit of the product of tw...
rlimdiv 15553 Limit of the quotient of t...
rlimneg 15554 Limit of the negative of a...
rlimle 15555 Comparison of the limits o...
rlimsqzlem 15556 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15557 Convergence of a sequence ...
rlimsqz2 15558 Convergence of a sequence ...
lo1le 15559 Transfer eventual upper bo...
o1le 15560 Transfer eventual boundedn...
rlimno1 15561 A function whose inverse c...
clim2ser 15562 The limit of an infinite s...
clim2ser2 15563 The limit of an infinite s...
iserex 15564 An infinite series converg...
isermulc2 15565 Multiplication of an infin...
climlec2 15566 Comparison of a constant t...
iserle 15567 Comparison of the limits o...
iserge0 15568 The limit of an infinite s...
climub 15569 The limit of a monotonic s...
climserle 15570 The partial sums of a conv...
isershft 15571 Index shift of the limit o...
isercolllem1 15572 Lemma for ~ isercoll . (C...
isercolllem2 15573 Lemma for ~ isercoll . (C...
isercolllem3 15574 Lemma for ~ isercoll . (C...
isercoll 15575 Rearrange an infinite seri...
isercoll2 15576 Generalize ~ isercoll so t...
climsup 15577 A bounded monotonic sequen...
climcau 15578 A converging sequence of c...
climbdd 15579 A converging sequence of c...
caucvgrlem 15580 Lemma for ~ caurcvgr . (C...
caurcvgr 15581 A Cauchy sequence of real ...
caucvgrlem2 15582 Lemma for ~ caucvgr . (Co...
caucvgr 15583 A Cauchy sequence of compl...
caurcvg 15584 A Cauchy sequence of real ...
caurcvg2 15585 A Cauchy sequence of real ...
caucvg 15586 A Cauchy sequence of compl...
caucvgb 15587 A function is convergent i...
serf0 15588 If an infinite series conv...
iseraltlem1 15589 Lemma for ~ iseralt . A d...
iseraltlem2 15590 Lemma for ~ iseralt . The...
iseraltlem3 15591 Lemma for ~ iseralt . Fro...
iseralt 15592 The alternating series tes...
sumex 15595 A sum is a set. (Contribu...
sumeq1 15596 Equality theorem for a sum...
nfsum1 15597 Bound-variable hypothesis ...
nfsum 15598 Bound-variable hypothesis ...
sumeq2w 15599 Equality theorem for sum, ...
sumeq2ii 15600 Equality theorem for sum, ...
sumeq2 15601 Equality theorem for sum. ...
cbvsum 15602 Change bound variable in a...
cbvsumv 15603 Change bound variable in a...
sumeq1i 15604 Equality inference for sum...
sumeq2i 15605 Equality inference for sum...
sumeq12i 15606 Equality inference for sum...
sumeq1d 15607 Equality deduction for sum...
sumeq2d 15608 Equality deduction for sum...
sumeq2dv 15609 Equality deduction for sum...
sumeq2sdv 15610 Equality deduction for sum...
sumeq2sdvOLD 15611 Obsolete version of ~ sume...
2sumeq2dv 15612 Equality deduction for dou...
sumeq12dv 15613 Equality deduction for sum...
sumeq12rdv 15614 Equality deduction for sum...
sum2id 15615 The second class argument ...
sumfc 15616 A lemma to facilitate conv...
fz1f1o 15617 A lemma for working with f...
sumrblem 15618 Lemma for ~ sumrb . (Cont...
fsumcvg 15619 The sequence of partial su...
sumrb 15620 Rebase the starting point ...
summolem3 15621 Lemma for ~ summo . (Cont...
summolem2a 15622 Lemma for ~ summo . (Cont...
summolem2 15623 Lemma for ~ summo . (Cont...
summo 15624 A sum has at most one limi...
zsum 15625 Series sum with index set ...
isum 15626 Series sum with an upper i...
fsum 15627 The value of a sum over a ...
sum0 15628 Any sum over the empty set...
sumz 15629 Any sum of zero over a sum...
fsumf1o 15630 Re-index a finite sum usin...
sumss 15631 Change the index set to a ...
fsumss 15632 Change the index set to a ...
sumss2 15633 Change the index set of a ...
fsumcvg2 15634 The sequence of partial su...
fsumsers 15635 Special case of series sum...
fsumcvg3 15636 A finite sum is convergent...
fsumser 15637 A finite sum expressed in ...
fsumcl2lem 15638 - Lemma for finite sum clo...
fsumcllem 15639 - Lemma for finite sum clo...
fsumcl 15640 Closure of a finite sum of...
fsumrecl 15641 Closure of a finite sum of...
fsumzcl 15642 Closure of a finite sum of...
fsumnn0cl 15643 Closure of a finite sum of...
fsumrpcl 15644 Closure of a finite sum of...
fsumclf 15645 Closure of a finite sum of...
fsumzcl2 15646 A finite sum with integer ...
fsumadd 15647 The sum of two finite sums...
fsumsplit 15648 Split a sum into two parts...
fsumsplitf 15649 Split a sum into two parts...
sumsnf 15650 A sum of a singleton is th...
fsumsplitsn 15651 Separate out a term in a f...
fsumsplit1 15652 Separate out a term in a f...
sumsn 15653 A sum of a singleton is th...
fsum1 15654 The finite sum of ` A ( k ...
sumpr 15655 A sum over a pair is the s...
sumtp 15656 A sum over a triple is the...
sumsns 15657 A sum of a singleton is th...
fsumm1 15658 Separate out the last term...
fzosump1 15659 Separate out the last term...
fsum1p 15660 Separate out the first ter...
fsummsnunz 15661 A finite sum all of whose ...
fsumsplitsnun 15662 Separate out a term in a f...
fsump1 15663 The addition of the next t...
isumclim 15664 An infinite sum equals the...
isumclim2 15665 A converging series conver...
isumclim3 15666 The sequence of partial fi...
sumnul 15667 The sum of a non-convergen...
isumcl 15668 The sum of a converging in...
isummulc2 15669 An infinite sum multiplied...
isummulc1 15670 An infinite sum multiplied...
isumdivc 15671 An infinite sum divided by...
isumrecl 15672 The sum of a converging in...
isumge0 15673 An infinite sum of nonnega...
isumadd 15674 Addition of infinite sums....
sumsplit 15675 Split a sum into two parts...
fsump1i 15676 Optimized version of ~ fsu...
fsum2dlem 15677 Lemma for ~ fsum2d - induc...
fsum2d 15678 Write a double sum as a su...
fsumxp 15679 Combine two sums into a si...
fsumcnv 15680 Transform a region of summ...
fsumcom2 15681 Interchange order of summa...
fsumcom 15682 Interchange order of summa...
fsum0diaglem 15683 Lemma for ~ fsum0diag . (...
fsum0diag 15684 Two ways to express "the s...
mptfzshft 15685 1-1 onto function in maps-...
fsumrev 15686 Reversal of a finite sum. ...
fsumshft 15687 Index shift of a finite su...
fsumshftm 15688 Negative index shift of a ...
fsumrev2 15689 Reversal of a finite sum. ...
fsum0diag2 15690 Two ways to express "the s...
fsummulc2 15691 A finite sum multiplied by...
fsummulc1 15692 A finite sum multiplied by...
fsumdivc 15693 A finite sum divided by a ...
fsumneg 15694 Negation of a finite sum. ...
fsumsub 15695 Split a finite sum over a ...
fsum2mul 15696 Separate the nested sum of...
fsumconst 15697 The sum of constant terms ...
fsumdifsnconst 15698 The sum of constant terms ...
modfsummodslem1 15699 Lemma 1 for ~ modfsummods ...
modfsummods 15700 Induction step for ~ modfs...
modfsummod 15701 A finite sum modulo a posi...
fsumge0 15702 If all of the terms of a f...
fsumless 15703 A shorter sum of nonnegati...
fsumge1 15704 A sum of nonnegative numbe...
fsum00 15705 A sum of nonnegative numbe...
fsumle 15706 If all of the terms of fin...
fsumlt 15707 If every term in one finit...
fsumabs 15708 Generalized triangle inequ...
telfsumo 15709 Sum of a telescoping serie...
telfsumo2 15710 Sum of a telescoping serie...
telfsum 15711 Sum of a telescoping serie...
telfsum2 15712 Sum of a telescoping serie...
fsumparts 15713 Summation by parts. (Cont...
fsumrelem 15714 Lemma for ~ fsumre , ~ fsu...
fsumre 15715 The real part of a sum. (...
fsumim 15716 The imaginary part of a su...
fsumcj 15717 The complex conjugate of a...
fsumrlim 15718 Limit of a finite sum of c...
fsumo1 15719 The finite sum of eventual...
o1fsum 15720 If ` A ( k ) ` is O(1), th...
seqabs 15721 Generalized triangle inequ...
iserabs 15722 Generalized triangle inequ...
cvgcmp 15723 A comparison test for conv...
cvgcmpub 15724 An upper bound for the lim...
cvgcmpce 15725 A comparison test for conv...
abscvgcvg 15726 An absolutely convergent s...
climfsum 15727 Limit of a finite sum of c...
fsumiun 15728 Sum over a disjoint indexe...
hashiun 15729 The cardinality of a disjo...
hash2iun 15730 The cardinality of a neste...
hash2iun1dif1 15731 The cardinality of a neste...
hashrabrex 15732 The number of elements in ...
hashuni 15733 The cardinality of a disjo...
qshash 15734 The cardinality of a set w...
ackbijnn 15735 Translate the Ackermann bi...
binomlem 15736 Lemma for ~ binom (binomia...
binom 15737 The binomial theorem: ` ( ...
binom1p 15738 Special case of the binomi...
binom11 15739 Special case of the binomi...
binom1dif 15740 A summation for the differ...
bcxmaslem1 15741 Lemma for ~ bcxmas . (Con...
bcxmas 15742 Parallel summation (Christ...
incexclem 15743 Lemma for ~ incexc . (Con...
incexc 15744 The inclusion/exclusion pr...
incexc2 15745 The inclusion/exclusion pr...
isumshft 15746 Index shift of an infinite...
isumsplit 15747 Split off the first ` N ` ...
isum1p 15748 The infinite sum of a conv...
isumnn0nn 15749 Sum from 0 to infinity in ...
isumrpcl 15750 The infinite sum of positi...
isumle 15751 Comparison of two infinite...
isumless 15752 A finite sum of nonnegativ...
isumsup2 15753 An infinite sum of nonnega...
isumsup 15754 An infinite sum of nonnega...
isumltss 15755 A partial sum of a series ...
climcndslem1 15756 Lemma for ~ climcnds : bou...
climcndslem2 15757 Lemma for ~ climcnds : bou...
climcnds 15758 The Cauchy condensation te...
divrcnv 15759 The sequence of reciprocal...
divcnv 15760 The sequence of reciprocal...
flo1 15761 The floor function satisfi...
divcnvshft 15762 Limit of a ratio function....
supcvg 15763 Extract a sequence ` f ` i...
infcvgaux1i 15764 Auxiliary theorem for appl...
infcvgaux2i 15765 Auxiliary theorem for appl...
harmonic 15766 The harmonic series ` H ` ...
arisum 15767 Arithmetic series sum of t...
arisum2 15768 Arithmetic series sum of t...
trireciplem 15769 Lemma for ~ trirecip . Sh...
trirecip 15770 The sum of the reciprocals...
expcnv 15771 A sequence of powers of a ...
explecnv 15772 A sequence of terms conver...
geoserg 15773 The value of the finite ge...
geoser 15774 The value of the finite ge...
pwdif 15775 The difference of two numb...
pwm1geoser 15776 The n-th power of a number...
geolim 15777 The partial sums in the in...
geolim2 15778 The partial sums in the ge...
georeclim 15779 The limit of a geometric s...
geo2sum 15780 The value of the finite ge...
geo2sum2 15781 The value of the finite ge...
geo2lim 15782 The value of the infinite ...
geomulcvg 15783 The geometric series conve...
geoisum 15784 The infinite sum of ` 1 + ...
geoisumr 15785 The infinite sum of recipr...
geoisum1 15786 The infinite sum of ` A ^ ...
geoisum1c 15787 The infinite sum of ` A x....
0.999... 15788 The recurring decimal 0.99...
geoihalfsum 15789 Prove that the infinite ge...
cvgrat 15790 Ratio test for convergence...
mertenslem1 15791 Lemma for ~ mertens . (Co...
mertenslem2 15792 Lemma for ~ mertens . (Co...
mertens 15793 Mertens' theorem. If ` A ...
prodf 15794 An infinite product of com...
clim2prod 15795 The limit of an infinite p...
clim2div 15796 The limit of an infinite p...
prodfmul 15797 The product of two infinit...
prodf1 15798 The value of the partial p...
prodf1f 15799 A one-valued infinite prod...
prodfclim1 15800 The constant one product c...
prodfn0 15801 No term of a nonzero infin...
prodfrec 15802 The reciprocal of an infin...
prodfdiv 15803 The quotient of two infini...
ntrivcvg 15804 A non-trivially converging...
ntrivcvgn0 15805 A product that converges t...
ntrivcvgfvn0 15806 Any value of a product seq...
ntrivcvgtail 15807 A tail of a non-trivially ...
ntrivcvgmullem 15808 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15809 The product of two non-tri...
prodex 15812 A product is a set. (Cont...
prodeq1f 15813 Equality theorem for a pro...
prodeq1 15814 Equality theorem for a pro...
nfcprod1 15815 Bound-variable hypothesis ...
nfcprod 15816 Bound-variable hypothesis ...
prodeq2w 15817 Equality theorem for produ...
prodeq2ii 15818 Equality theorem for produ...
prodeq2 15819 Equality theorem for produ...
cbvprod 15820 Change bound variable in a...
cbvprodv 15821 Change bound variable in a...
cbvprodi 15822 Change bound variable in a...
prodeq1i 15823 Equality inference for pro...
prodeq1iOLD 15824 Obsolete version of ~ prod...
prodeq2i 15825 Equality inference for pro...
prodeq12i 15826 Equality inference for pro...
prodeq1d 15827 Equality deduction for pro...
prodeq2d 15828 Equality deduction for pro...
prodeq2dv 15829 Equality deduction for pro...
prodeq2sdv 15830 Equality deduction for pro...
prodeq2sdvOLD 15831 Obsolete version of ~ prod...
2cprodeq2dv 15832 Equality deduction for dou...
prodeq12dv 15833 Equality deduction for pro...
prodeq12rdv 15834 Equality deduction for pro...
prod2id 15835 The second class argument ...
prodrblem 15836 Lemma for ~ prodrb . (Con...
fprodcvg 15837 The sequence of partial pr...
prodrblem2 15838 Lemma for ~ prodrb . (Con...
prodrb 15839 Rebase the starting point ...
prodmolem3 15840 Lemma for ~ prodmo . (Con...
prodmolem2a 15841 Lemma for ~ prodmo . (Con...
prodmolem2 15842 Lemma for ~ prodmo . (Con...
prodmo 15843 A product has at most one ...
zprod 15844 Series product with index ...
iprod 15845 Series product with an upp...
zprodn0 15846 Nonzero series product wit...
iprodn0 15847 Nonzero series product wit...
fprod 15848 The value of a product ove...
fprodntriv 15849 A non-triviality lemma for...
prod0 15850 A product over the empty s...
prod1 15851 Any product of one over a ...
prodfc 15852 A lemma to facilitate conv...
fprodf1o 15853 Re-index a finite product ...
prodss 15854 Change the index set to a ...
fprodss 15855 Change the index set to a ...
fprodser 15856 A finite product expressed...
fprodcl2lem 15857 Finite product closure lem...
fprodcllem 15858 Finite product closure lem...
fprodcl 15859 Closure of a finite produc...
fprodrecl 15860 Closure of a finite produc...
fprodzcl 15861 Closure of a finite produc...
fprodnncl 15862 Closure of a finite produc...
fprodrpcl 15863 Closure of a finite produc...
fprodnn0cl 15864 Closure of a finite produc...
fprodcllemf 15865 Finite product closure lem...
fprodreclf 15866 Closure of a finite produc...
fprodmul 15867 The product of two finite ...
fproddiv 15868 The quotient of two finite...
prodsn 15869 A product of a singleton i...
fprod1 15870 A finite product of only o...
prodsnf 15871 A product of a singleton i...
climprod1 15872 The limit of a product ove...
fprodsplit 15873 Split a finite product int...
fprodm1 15874 Separate out the last term...
fprod1p 15875 Separate out the first ter...
fprodp1 15876 Multiply in the last term ...
fprodm1s 15877 Separate out the last term...
fprodp1s 15878 Multiply in the last term ...
prodsns 15879 A product of the singleton...
fprodfac 15880 Factorial using product no...
fprodabs 15881 The absolute value of a fi...
fprodeq0 15882 Any finite product contain...
fprodshft 15883 Shift the index of a finit...
fprodrev 15884 Reversal of a finite produ...
fprodconst 15885 The product of constant te...
fprodn0 15886 A finite product of nonzer...
fprod2dlem 15887 Lemma for ~ fprod2d - indu...
fprod2d 15888 Write a double product as ...
fprodxp 15889 Combine two products into ...
fprodcnv 15890 Transform a product region...
fprodcom2 15891 Interchange order of multi...
fprodcom 15892 Interchange product order....
fprod0diag 15893 Two ways to express "the p...
fproddivf 15894 The quotient of two finite...
fprodsplitf 15895 Split a finite product int...
fprodsplitsn 15896 Separate out a term in a f...
fprodsplit1f 15897 Separate out a term in a f...
fprodn0f 15898 A finite product of nonzer...
fprodclf 15899 Closure of a finite produc...
fprodge0 15900 If all the terms of a fini...
fprodeq0g 15901 Any finite product contain...
fprodge1 15902 If all of the terms of a f...
fprodle 15903 If all the terms of two fi...
fprodmodd 15904 If all factors of two fini...
iprodclim 15905 An infinite product equals...
iprodclim2 15906 A converging product conve...
iprodclim3 15907 The sequence of partial fi...
iprodcl 15908 The product of a non-trivi...
iprodrecl 15909 The product of a non-trivi...
iprodmul 15910 Multiplication of infinite...
risefacval 15915 The value of the rising fa...
fallfacval 15916 The value of the falling f...
risefacval2 15917 One-based value of rising ...
fallfacval2 15918 One-based value of falling...
fallfacval3 15919 A product representation o...
risefaccllem 15920 Lemma for rising factorial...
fallfaccllem 15921 Lemma for falling factoria...
risefaccl 15922 Closure law for rising fac...
fallfaccl 15923 Closure law for falling fa...
rerisefaccl 15924 Closure law for rising fac...
refallfaccl 15925 Closure law for falling fa...
nnrisefaccl 15926 Closure law for rising fac...
zrisefaccl 15927 Closure law for rising fac...
zfallfaccl 15928 Closure law for falling fa...
nn0risefaccl 15929 Closure law for rising fac...
rprisefaccl 15930 Closure law for rising fac...
risefallfac 15931 A relationship between ris...
fallrisefac 15932 A relationship between fal...
risefall0lem 15933 Lemma for ~ risefac0 and ~...
risefac0 15934 The value of the rising fa...
fallfac0 15935 The value of the falling f...
risefacp1 15936 The value of the rising fa...
fallfacp1 15937 The value of the falling f...
risefacp1d 15938 The value of the rising fa...
fallfacp1d 15939 The value of the falling f...
risefac1 15940 The value of rising factor...
fallfac1 15941 The value of falling facto...
risefacfac 15942 Relate rising factorial to...
fallfacfwd 15943 The forward difference of ...
0fallfac 15944 The value of the zero fall...
0risefac 15945 The value of the zero risi...
binomfallfaclem1 15946 Lemma for ~ binomfallfac ....
binomfallfaclem2 15947 Lemma for ~ binomfallfac ....
binomfallfac 15948 A version of the binomial ...
binomrisefac 15949 A version of the binomial ...
fallfacval4 15950 Represent the falling fact...
bcfallfac 15951 Binomial coefficient in te...
fallfacfac 15952 Relate falling factorial t...
bpolylem 15955 Lemma for ~ bpolyval . (C...
bpolyval 15956 The value of the Bernoulli...
bpoly0 15957 The value of the Bernoulli...
bpoly1 15958 The value of the Bernoulli...
bpolycl 15959 Closure law for Bernoulli ...
bpolysum 15960 A sum for Bernoulli polyno...
bpolydiflem 15961 Lemma for ~ bpolydif . (C...
bpolydif 15962 Calculate the difference b...
fsumkthpow 15963 A closed-form expression f...
bpoly2 15964 The Bernoulli polynomials ...
bpoly3 15965 The Bernoulli polynomials ...
bpoly4 15966 The Bernoulli polynomials ...
fsumcube 15967 Express the sum of cubes i...
eftcl 15980 Closure of a term in the s...
reeftcl 15981 The terms of the series ex...
eftabs 15982 The absolute value of a te...
eftval 15983 The value of a term in the...
efcllem 15984 Lemma for ~ efcl . The se...
ef0lem 15985 The series defining the ex...
efval 15986 Value of the exponential f...
esum 15987 Value of Euler's constant ...
eff 15988 Domain and codomain of the...
efcl 15989 Closure law for the expone...
efcld 15990 Closure law for the expone...
efval2 15991 Value of the exponential f...
efcvg 15992 The series that defines th...
efcvgfsum 15993 Exponential function conve...
reefcl 15994 The exponential function i...
reefcld 15995 The exponential function i...
ere 15996 Euler's constant ` _e ` = ...
ege2le3 15997 Lemma for ~ egt2lt3 . (Co...
ef0 15998 Value of the exponential f...
efcj 15999 The exponential of a compl...
efaddlem 16000 Lemma for ~ efadd (exponen...
efadd 16001 Sum of exponents law for e...
fprodefsum 16002 Move the exponential funct...
efcan 16003 Cancellation law for expon...
efne0d 16004 The exponential of a compl...
efne0 16005 The exponential of a compl...
efne0OLD 16006 Obsolete version of ~ efne...
efneg 16007 The exponential of the opp...
eff2 16008 The exponential function m...
efsub 16009 Difference of exponents la...
efexp 16010 The exponential of an inte...
efzval 16011 Value of the exponential f...
efgt0 16012 The exponential of a real ...
rpefcl 16013 The exponential of a real ...
rpefcld 16014 The exponential of a real ...
eftlcvg 16015 The tail series of the exp...
eftlcl 16016 Closure of the sum of an i...
reeftlcl 16017 Closure of the sum of an i...
eftlub 16018 An upper bound on the abso...
efsep 16019 Separate out the next term...
effsumlt 16020 The partial sums of the se...
eft0val 16021 The value of the first ter...
ef4p 16022 Separate out the first fou...
efgt1p2 16023 The exponential of a posit...
efgt1p 16024 The exponential of a posit...
efgt1 16025 The exponential of a posit...
eflt 16026 The exponential function o...
efle 16027 The exponential function o...
reef11 16028 The exponential function o...
reeff1 16029 The exponential function m...
eflegeo 16030 The exponential function o...
sinval 16031 Value of the sine function...
cosval 16032 Value of the cosine functi...
sinf 16033 Domain and codomain of the...
cosf 16034 Domain and codomain of the...
sincl 16035 Closure of the sine functi...
coscl 16036 Closure of the cosine func...
tanval 16037 Value of the tangent funct...
tancl 16038 The closure of the tangent...
sincld 16039 Closure of the sine functi...
coscld 16040 Closure of the cosine func...
tancld 16041 Closure of the tangent fun...
tanval2 16042 Express the tangent functi...
tanval3 16043 Express the tangent functi...
resinval 16044 The sine of a real number ...
recosval 16045 The cosine of a real numbe...
efi4p 16046 Separate out the first fou...
resin4p 16047 Separate out the first fou...
recos4p 16048 Separate out the first fou...
resincl 16049 The sine of a real number ...
recoscl 16050 The cosine of a real numbe...
retancl 16051 The closure of the tangent...
resincld 16052 Closure of the sine functi...
recoscld 16053 Closure of the cosine func...
retancld 16054 Closure of the tangent fun...
sinneg 16055 The sine of a negative is ...
cosneg 16056 The cosines of a number an...
tanneg 16057 The tangent of a negative ...
sin0 16058 Value of the sine function...
cos0 16059 Value of the cosine functi...
tan0 16060 The value of the tangent f...
efival 16061 The exponential function i...
efmival 16062 The exponential function i...
sinhval 16063 Value of the hyperbolic si...
coshval 16064 Value of the hyperbolic co...
resinhcl 16065 The hyperbolic sine of a r...
rpcoshcl 16066 The hyperbolic cosine of a...
recoshcl 16067 The hyperbolic cosine of a...
retanhcl 16068 The hyperbolic tangent of ...
tanhlt1 16069 The hyperbolic tangent of ...
tanhbnd 16070 The hyperbolic tangent of ...
efeul 16071 Eulerian representation of...
efieq 16072 The exponentials of two im...
sinadd 16073 Addition formula for sine....
cosadd 16074 Addition formula for cosin...
tanaddlem 16075 A useful intermediate step...
tanadd 16076 Addition formula for tange...
sinsub 16077 Sine of difference. (Cont...
cossub 16078 Cosine of difference. (Co...
addsin 16079 Sum of sines. (Contribute...
subsin 16080 Difference of sines. (Con...
sinmul 16081 Product of sines can be re...
cosmul 16082 Product of cosines can be ...
addcos 16083 Sum of cosines. (Contribu...
subcos 16084 Difference of cosines. (C...
sincossq 16085 Sine squared plus cosine s...
sin2t 16086 Double-angle formula for s...
cos2t 16087 Double-angle formula for c...
cos2tsin 16088 Double-angle formula for c...
sinbnd 16089 The sine of a real number ...
cosbnd 16090 The cosine of a real numbe...
sinbnd2 16091 The sine of a real number ...
cosbnd2 16092 The cosine of a real numbe...
ef01bndlem 16093 Lemma for ~ sin01bnd and ~...
sin01bnd 16094 Bounds on the sine of a po...
cos01bnd 16095 Bounds on the cosine of a ...
cos1bnd 16096 Bounds on the cosine of 1....
cos2bnd 16097 Bounds on the cosine of 2....
sinltx 16098 The sine of a positive rea...
sin01gt0 16099 The sine of a positive rea...
cos01gt0 16100 The cosine of a positive r...
sin02gt0 16101 The sine of a positive rea...
sincos1sgn 16102 The signs of the sine and ...
sincos2sgn 16103 The signs of the sine and ...
sin4lt0 16104 The sine of 4 is negative....
absefi 16105 The absolute value of the ...
absef 16106 The absolute value of the ...
absefib 16107 A complex number is real i...
efieq1re 16108 A number whose imaginary e...
demoivre 16109 De Moivre's Formula. Proo...
demoivreALT 16110 Alternate proof of ~ demoi...
eirrlem 16113 Lemma for ~ eirr . (Contr...
eirr 16114 ` _e ` is irrational. (Co...
egt2lt3 16115 Euler's constant ` _e ` = ...
epos 16116 Euler's constant ` _e ` is...
epr 16117 Euler's constant ` _e ` is...
ene0 16118 ` _e ` is not 0. (Contrib...
ene1 16119 ` _e ` is not 1. (Contrib...
xpnnen 16120 The Cartesian product of t...
znnen 16121 The set of integers and th...
qnnen 16122 The rational numbers are c...
rpnnen2lem1 16123 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 16124 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 16125 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 16126 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 16127 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 16128 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 16129 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 16130 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 16131 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 16132 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 16133 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 16134 Lemma for ~ rpnnen2 . (Co...
rpnnen2 16135 The other half of ~ rpnnen...
rpnnen 16136 The cardinality of the con...
rexpen 16137 The real numbers are equin...
cpnnen 16138 The complex numbers are eq...
rucALT 16139 Alternate proof of ~ ruc ....
ruclem1 16140 Lemma for ~ ruc (the reals...
ruclem2 16141 Lemma for ~ ruc . Orderin...
ruclem3 16142 Lemma for ~ ruc . The con...
ruclem4 16143 Lemma for ~ ruc . Initial...
ruclem6 16144 Lemma for ~ ruc . Domain ...
ruclem7 16145 Lemma for ~ ruc . Success...
ruclem8 16146 Lemma for ~ ruc . The int...
ruclem9 16147 Lemma for ~ ruc . The fir...
ruclem10 16148 Lemma for ~ ruc . Every f...
ruclem11 16149 Lemma for ~ ruc . Closure...
ruclem12 16150 Lemma for ~ ruc . The sup...
ruclem13 16151 Lemma for ~ ruc . There i...
ruc 16152 The set of positive intege...
resdomq 16153 The set of rationals is st...
aleph1re 16154 There are at least aleph-o...
aleph1irr 16155 There are at least aleph-o...
cnso 16156 The complex numbers can be...
sqrt2irrlem 16157 Lemma for ~ sqrt2irr . Th...
sqrt2irr 16158 The square root of 2 is ir...
sqrt2re 16159 The square root of 2 exist...
sqrt2irr0 16160 The square root of 2 is an...
nthruc 16161 The sequence ` NN ` , ` ZZ...
nthruz 16162 The sequence ` NN ` , ` NN...
divides 16165 Define the divides relatio...
dvdsval2 16166 One nonzero integer divide...
dvdsval3 16167 One nonzero integer divide...
dvdszrcl 16168 Reverse closure for the di...
dvdsmod0 16169 If a positive integer divi...
p1modz1 16170 If a number greater than 1...
dvdsmodexp 16171 If a positive integer divi...
nndivdvds 16172 Strong form of ~ dvdsval2 ...
nndivides 16173 Definition of the divides ...
moddvds 16174 Two ways to say ` A == B `...
modm1div 16175 An integer greater than on...
addmulmodb 16176 An integer plus a product ...
dvds0lem 16177 A lemma to assist theorems...
dvds1lem 16178 A lemma to assist theorems...
dvds2lem 16179 A lemma to assist theorems...
iddvds 16180 An integer divides itself....
1dvds 16181 1 divides any integer. Th...
dvds0 16182 Any integer divides 0. Th...
negdvdsb 16183 An integer divides another...
dvdsnegb 16184 An integer divides another...
absdvdsb 16185 An integer divides another...
dvdsabsb 16186 An integer divides another...
0dvds 16187 Only 0 is divisible by 0. ...
dvdsmul1 16188 An integer divides a multi...
dvdsmul2 16189 An integer divides a multi...
iddvdsexp 16190 An integer divides a posit...
muldvds1 16191 If a product divides an in...
muldvds2 16192 If a product divides an in...
dvdscmul 16193 Multiplication by a consta...
dvdsmulc 16194 Multiplication by a consta...
dvdscmulr 16195 Cancellation law for the d...
dvdsmulcr 16196 Cancellation law for the d...
summodnegmod 16197 The sum of two integers mo...
difmod0 16198 The difference of two inte...
modmulconst 16199 Constant multiplication in...
dvds2ln 16200 If an integer divides each...
dvds2add 16201 If an integer divides each...
dvds2sub 16202 If an integer divides each...
dvds2addd 16203 Deduction form of ~ dvds2a...
dvds2subd 16204 Deduction form of ~ dvds2s...
dvdstr 16205 The divides relation is tr...
dvdstrd 16206 The divides relation is tr...
dvdsmultr1 16207 If an integer divides anot...
dvdsmultr1d 16208 Deduction form of ~ dvdsmu...
dvdsmultr2 16209 If an integer divides anot...
dvdsmultr2d 16210 Deduction form of ~ dvdsmu...
ordvdsmul 16211 If an integer divides eith...
dvdssub2 16212 If an integer divides a di...
dvdsadd 16213 An integer divides another...
dvdsaddr 16214 An integer divides another...
dvdssub 16215 An integer divides another...
dvdssubr 16216 An integer divides another...
dvdsadd2b 16217 Adding a multiple of the b...
dvdsaddre2b 16218 Adding a multiple of the b...
fsumdvds 16219 If every term in a sum is ...
dvdslelem 16220 Lemma for ~ dvdsle . (Con...
dvdsle 16221 The divisors of a positive...
dvdsleabs 16222 The divisors of a nonzero ...
dvdsleabs2 16223 Transfer divisibility to a...
dvdsabseq 16224 If two integers divide eac...
dvdseq 16225 If two nonnegative integer...
divconjdvds 16226 If a nonzero integer ` M `...
dvdsdivcl 16227 The complement of a diviso...
dvdsflip 16228 An involution of the divis...
dvdsssfz1 16229 The set of divisors of a n...
dvds1 16230 The only nonnegative integ...
alzdvds 16231 Only 0 is divisible by all...
dvdsext 16232 Poset extensionality for d...
fzm1ndvds 16233 No number between ` 1 ` an...
fzo0dvdseq 16234 Zero is the only one of th...
fzocongeq 16235 Two different elements of ...
addmodlteqALT 16236 Two nonnegative integers l...
dvdsfac 16237 A positive integer divides...
dvdsexp2im 16238 If an integer divides anot...
dvdsexp 16239 A power divides a power wi...
dvdsmod 16240 Any number ` K ` whose mod...
mulmoddvds 16241 If an integer is divisible...
3dvds 16242 A rule for divisibility by...
3dvdsdec 16243 A decimal number is divisi...
3dvds2dec 16244 A decimal number is divisi...
fprodfvdvdsd 16245 A finite product of intege...
fproddvdsd 16246 A finite product of intege...
evenelz 16247 An even number is an integ...
zeo3 16248 An integer is even or odd....
zeo4 16249 An integer is even or odd ...
zeneo 16250 No even integer equals an ...
odd2np1lem 16251 Lemma for ~ odd2np1 . (Co...
odd2np1 16252 An integer is odd iff it i...
even2n 16253 An integer is even iff it ...
oddm1even 16254 An integer is odd iff its ...
oddp1even 16255 An integer is odd iff its ...
oexpneg 16256 The exponential of the neg...
mod2eq0even 16257 An integer is 0 modulo 2 i...
mod2eq1n2dvds 16258 An integer is 1 modulo 2 i...
oddnn02np1 16259 A nonnegative integer is o...
oddge22np1 16260 An integer greater than on...
evennn02n 16261 A nonnegative integer is e...
evennn2n 16262 A positive integer is even...
2tp1odd 16263 A number which is twice an...
mulsucdiv2z 16264 An integer multiplied with...
sqoddm1div8z 16265 A squared odd number minus...
2teven 16266 A number which is twice an...
zeo5 16267 An integer is either even ...
evend2 16268 An integer is even iff its...
oddp1d2 16269 An integer is odd iff its ...
zob 16270 Alternate characterization...
oddm1d2 16271 An integer is odd iff its ...
ltoddhalfle 16272 An integer is less than ha...
halfleoddlt 16273 An integer is greater than...
opoe 16274 The sum of two odds is eve...
omoe 16275 The difference of two odds...
opeo 16276 The sum of an odd and an e...
omeo 16277 The difference of an odd a...
z0even 16278 2 divides 0. That means 0...
n2dvds1 16279 2 does not divide 1. That...
n2dvdsm1 16280 2 does not divide -1. Tha...
z2even 16281 2 divides 2. That means 2...
n2dvds3 16282 2 does not divide 3. That...
z4even 16283 2 divides 4. That means 4...
4dvdseven 16284 An integer which is divisi...
m1expe 16285 Exponentiation of -1 by an...
m1expo 16286 Exponentiation of -1 by an...
m1exp1 16287 Exponentiation of negative...
nn0enne 16288 A positive integer is an e...
nn0ehalf 16289 The half of an even nonneg...
nnehalf 16290 The half of an even positi...
nn0onn 16291 An odd nonnegative integer...
nn0o1gt2 16292 An odd nonnegative integer...
nno 16293 An alternate characterizat...
nn0o 16294 An alternate characterizat...
nn0ob 16295 Alternate characterization...
nn0oddm1d2 16296 A positive integer is odd ...
nnoddm1d2 16297 A positive integer is odd ...
sumeven 16298 If every term in a sum is ...
sumodd 16299 If every term in a sum is ...
evensumodd 16300 If every term in a sum wit...
oddsumodd 16301 If every term in a sum wit...
pwp1fsum 16302 The n-th power of a number...
oddpwp1fsum 16303 An odd power of a number i...
divalglem0 16304 Lemma for ~ divalg . (Con...
divalglem1 16305 Lemma for ~ divalg . (Con...
divalglem2 16306 Lemma for ~ divalg . (Con...
divalglem4 16307 Lemma for ~ divalg . (Con...
divalglem5 16308 Lemma for ~ divalg . (Con...
divalglem6 16309 Lemma for ~ divalg . (Con...
divalglem7 16310 Lemma for ~ divalg . (Con...
divalglem8 16311 Lemma for ~ divalg . (Con...
divalglem9 16312 Lemma for ~ divalg . (Con...
divalglem10 16313 Lemma for ~ divalg . (Con...
divalg 16314 The division algorithm (th...
divalgb 16315 Express the division algor...
divalg2 16316 The division algorithm (th...
divalgmod 16317 The result of the ` mod ` ...
divalgmodcl 16318 The result of the ` mod ` ...
modremain 16319 The result of the modulo o...
ndvdssub 16320 Corollary of the division ...
ndvdsadd 16321 Corollary of the division ...
ndvdsp1 16322 Special case of ~ ndvdsadd...
ndvdsi 16323 A quick test for non-divis...
5ndvds3 16324 5 does not divide 3. (Con...
5ndvds6 16325 5 does not divide 6. (Con...
flodddiv4 16326 The floor of an odd intege...
fldivndvdslt 16327 The floor of an integer di...
flodddiv4lt 16328 The floor of an odd number...
flodddiv4t2lthalf 16329 The floor of an odd number...
bitsfval 16334 Expand the definition of t...
bitsval 16335 Expand the definition of t...
bitsval2 16336 Expand the definition of t...
bitsss 16337 The set of bits of an inte...
bitsf 16338 The ` bits ` function is a...
bits0 16339 Value of the zeroth bit. ...
bits0e 16340 The zeroth bit of an even ...
bits0o 16341 The zeroth bit of an odd n...
bitsp1 16342 The ` M + 1 ` -th bit of `...
bitsp1e 16343 The ` M + 1 ` -th bit of `...
bitsp1o 16344 The ` M + 1 ` -th bit of `...
bitsfzolem 16345 Lemma for ~ bitsfzo . (Co...
bitsfzo 16346 The bits of a number are a...
bitsmod 16347 Truncating the bit sequenc...
bitsfi 16348 Every number is associated...
bitscmp 16349 The bit complement of ` N ...
0bits 16350 The bits of zero. (Contri...
m1bits 16351 The bits of negative one. ...
bitsinv1lem 16352 Lemma for ~ bitsinv1 . (C...
bitsinv1 16353 There is an explicit inver...
bitsinv2 16354 There is an explicit inver...
bitsf1ocnv 16355 The ` bits ` function rest...
bitsf1o 16356 The ` bits ` function rest...
bitsf1 16357 The ` bits ` function is a...
2ebits 16358 The bits of a power of two...
bitsinv 16359 The inverse of the ` bits ...
bitsinvp1 16360 Recursive definition of th...
sadadd2lem2 16361 The core of the proof of ~...
sadfval 16363 Define the addition of two...
sadcf 16364 The carry sequence is a se...
sadc0 16365 The initial element of the...
sadcp1 16366 The carry sequence (which ...
sadval 16367 The full adder sequence is...
sadcaddlem 16368 Lemma for ~ sadcadd . (Co...
sadcadd 16369 Non-recursive definition o...
sadadd2lem 16370 Lemma for ~ sadadd2 . (Co...
sadadd2 16371 Sum of initial segments of...
sadadd3 16372 Sum of initial segments of...
sadcl 16373 The sum of two sequences i...
sadcom 16374 The adder sequence functio...
saddisjlem 16375 Lemma for ~ sadadd . (Con...
saddisj 16376 The sum of disjoint sequen...
sadaddlem 16377 Lemma for ~ sadadd . (Con...
sadadd 16378 For sequences that corresp...
sadid1 16379 The adder sequence functio...
sadid2 16380 The adder sequence functio...
sadasslem 16381 Lemma for ~ sadass . (Con...
sadass 16382 Sequence addition is assoc...
sadeq 16383 Any element of a sequence ...
bitsres 16384 Restrict the bits of a num...
bitsuz 16385 The bits of a number are a...
bitsshft 16386 Shifting a bit sequence to...
smufval 16388 The multiplication of two ...
smupf 16389 The sequence of partial su...
smup0 16390 The initial element of the...
smupp1 16391 The initial element of the...
smuval 16392 Define the addition of two...
smuval2 16393 The partial sum sequence s...
smupvallem 16394 If ` A ` only has elements...
smucl 16395 The product of two sequenc...
smu01lem 16396 Lemma for ~ smu01 and ~ sm...
smu01 16397 Multiplication of a sequen...
smu02 16398 Multiplication of a sequen...
smupval 16399 Rewrite the elements of th...
smup1 16400 Rewrite ~ smupp1 using onl...
smueqlem 16401 Any element of a sequence ...
smueq 16402 Any element of a sequence ...
smumullem 16403 Lemma for ~ smumul . (Con...
smumul 16404 For sequences that corresp...
gcdval 16407 The value of the ` gcd ` o...
gcd0val 16408 The value, by convention, ...
gcdn0val 16409 The value of the ` gcd ` o...
gcdcllem1 16410 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16411 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16412 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16413 Closure of the ` gcd ` ope...
gcddvds 16414 The gcd of two integers di...
dvdslegcd 16415 An integer which divides b...
nndvdslegcd 16416 A positive integer which d...
gcdcl 16417 Closure of the ` gcd ` ope...
gcdnncl 16418 Closure of the ` gcd ` ope...
gcdcld 16419 Closure of the ` gcd ` ope...
gcd2n0cl 16420 Closure of the ` gcd ` ope...
zeqzmulgcd 16421 An integer is the product ...
divgcdz 16422 An integer divided by the ...
gcdf 16423 Domain and codomain of the...
gcdcom 16424 The ` gcd ` operator is co...
gcdcomd 16425 The ` gcd ` operator is co...
divgcdnn 16426 A positive integer divided...
divgcdnnr 16427 A positive integer divided...
gcdeq0 16428 The gcd of two integers is...
gcdn0gt0 16429 The gcd of two integers is...
gcd0id 16430 The gcd of 0 and an intege...
gcdid0 16431 The gcd of an integer and ...
nn0gcdid0 16432 The gcd of a nonnegative i...
gcdneg 16433 Negating one operand of th...
neggcd 16434 Negating one operand of th...
gcdaddmlem 16435 Lemma for ~ gcdaddm . (Co...
gcdaddm 16436 Adding a multiple of one o...
gcdadd 16437 The GCD of two numbers is ...
gcdid 16438 The gcd of a number and it...
gcd1 16439 The gcd of a number with 1...
gcdabs1 16440 ` gcd ` of the absolute va...
gcdabs2 16441 ` gcd ` of the absolute va...
gcdabs 16442 The gcd of two integers is...
modgcd 16443 The gcd remains unchanged ...
1gcd 16444 The GCD of one and an inte...
gcdmultipled 16445 The greatest common diviso...
gcdmultiplez 16446 The GCD of a multiple of a...
gcdmultiple 16447 The GCD of a multiple of a...
dvdsgcdidd 16448 The greatest common diviso...
6gcd4e2 16449 The greatest common diviso...
bezoutlem1 16450 Lemma for ~ bezout . (Con...
bezoutlem2 16451 Lemma for ~ bezout . (Con...
bezoutlem3 16452 Lemma for ~ bezout . (Con...
bezoutlem4 16453 Lemma for ~ bezout . (Con...
bezout 16454 Bézout's identity: ...
dvdsgcd 16455 An integer which divides e...
dvdsgcdb 16456 Biconditional form of ~ dv...
dfgcd2 16457 Alternate definition of th...
gcdass 16458 Associative law for ` gcd ...
mulgcd 16459 Distribute multiplication ...
absmulgcd 16460 Distribute absolute value ...
mulgcdr 16461 Reverse distribution law f...
gcddiv 16462 Division law for GCD. (Con...
gcdzeq 16463 A positive integer ` A ` i...
gcdeq 16464 ` A ` is equal to its gcd ...
dvdssqim 16465 Unidirectional form of ~ d...
dvdsexpim 16466 If two numbers are divisib...
dvdsmulgcd 16467 A divisibility equivalent ...
rpmulgcd 16468 If ` K ` and ` M ` are rel...
rplpwr 16469 If ` A ` and ` B ` are rel...
rprpwr 16470 If ` A ` and ` B ` are rel...
rppwr 16471 If ` A ` and ` B ` are rel...
nn0rppwr 16472 If ` A ` and ` B ` are rel...
sqgcd 16473 Square distributes over gc...
expgcd 16474 Exponentiation distributes...
nn0expgcd 16475 Exponentiation distributes...
zexpgcd 16476 Exponentiation distributes...
dvdssqlem 16477 Lemma for ~ dvdssq . (Con...
dvdssq 16478 Two numbers are divisible ...
bezoutr 16479 Partial converse to ~ bezo...
bezoutr1 16480 Converse of ~ bezout for w...
nn0seqcvgd 16481 A strictly-decreasing nonn...
seq1st 16482 A sequence whose iteration...
algr0 16483 The value of the algorithm...
algrf 16484 An algorithm is a step fun...
algrp1 16485 The value of the algorithm...
alginv 16486 If ` I ` is an invariant o...
algcvg 16487 One way to prove that an a...
algcvgblem 16488 Lemma for ~ algcvgb . (Co...
algcvgb 16489 Two ways of expressing tha...
algcvga 16490 The countdown function ` C...
algfx 16491 If ` F ` reaches a fixed p...
eucalgval2 16492 The value of the step func...
eucalgval 16493 Euclid's Algorithm ~ eucal...
eucalgf 16494 Domain and codomain of the...
eucalginv 16495 The invariant of the step ...
eucalglt 16496 The second member of the s...
eucalgcvga 16497 Once Euclid's Algorithm ha...
eucalg 16498 Euclid's Algorithm compute...
lcmval 16503 Value of the ` lcm ` opera...
lcmcom 16504 The ` lcm ` operator is co...
lcm0val 16505 The value, by convention, ...
lcmn0val 16506 The value of the ` lcm ` o...
lcmcllem 16507 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16508 Closure of the ` lcm ` ope...
dvdslcm 16509 The lcm of two integers is...
lcmledvds 16510 A positive integer which b...
lcmeq0 16511 The lcm of two integers is...
lcmcl 16512 Closure of the ` lcm ` ope...
gcddvdslcm 16513 The greatest common diviso...
lcmneg 16514 Negating one operand of th...
neglcm 16515 Negating one operand of th...
lcmabs 16516 The lcm of two integers is...
lcmgcdlem 16517 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16518 The product of two numbers...
lcmdvds 16519 The lcm of two integers di...
lcmid 16520 The lcm of an integer and ...
lcm1 16521 The lcm of an integer and ...
lcmgcdnn 16522 The product of two positiv...
lcmgcdeq 16523 Two integers' absolute val...
lcmdvdsb 16524 Biconditional form of ~ lc...
lcmass 16525 Associative law for ` lcm ...
3lcm2e6woprm 16526 The least common multiple ...
6lcm4e12 16527 The least common multiple ...
absproddvds 16528 The absolute value of the ...
absprodnn 16529 The absolute value of the ...
fissn0dvds 16530 For each finite subset of ...
fissn0dvdsn0 16531 For each finite subset of ...
lcmfval 16532 Value of the ` _lcm ` func...
lcmf0val 16533 The value, by convention, ...
lcmfn0val 16534 The value of the ` _lcm ` ...
lcmfnnval 16535 The value of the ` _lcm ` ...
lcmfcllem 16536 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16537 Closure of the ` _lcm ` fu...
lcmfpr 16538 The value of the ` _lcm ` ...
lcmfcl 16539 Closure of the ` _lcm ` fu...
lcmfnncl 16540 Closure of the ` _lcm ` fu...
lcmfeq0b 16541 The least common multiple ...
dvdslcmf 16542 The least common multiple ...
lcmfledvds 16543 A positive integer which i...
lcmf 16544 Characterization of the le...
lcmf0 16545 The least common multiple ...
lcmfsn 16546 The least common multiple ...
lcmftp 16547 The least common multiple ...
lcmfunsnlem1 16548 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16549 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16550 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16551 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16552 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16553 The least common multiple ...
lcmfdvdsb 16554 Biconditional form of ~ lc...
lcmfunsn 16555 The ` _lcm ` function for ...
lcmfun 16556 The ` _lcm ` function for ...
lcmfass 16557 Associative law for the ` ...
lcmf2a3a4e12 16558 The least common multiple ...
lcmflefac 16559 The least common multiple ...
coprmgcdb 16560 Two positive integers are ...
ncoprmgcdne1b 16561 Two positive integers are ...
ncoprmgcdgt1b 16562 Two positive integers are ...
coprmdvds1 16563 If two positive integers a...
coprmdvds 16564 Euclid's Lemma (see ProofW...
coprmdvds2 16565 If an integer is divisible...
mulgcddvds 16566 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16567 If ` M ` is relatively pri...
qredeq 16568 Two equal reduced fraction...
qredeu 16569 Every rational number has ...
rpmul 16570 If ` K ` is relatively pri...
rpdvds 16571 If ` K ` is relatively pri...
coprmprod 16572 The product of the element...
coprmproddvdslem 16573 Lemma for ~ coprmproddvds ...
coprmproddvds 16574 If a positive integer is d...
congr 16575 Definition of congruence b...
divgcdcoprm0 16576 Integers divided by gcd ar...
divgcdcoprmex 16577 Integers divided by gcd ar...
cncongr1 16578 One direction of the bicon...
cncongr2 16579 The other direction of the...
cncongr 16580 Cancellability of Congruen...
cncongrcoprm 16581 Corollary 1 of Cancellabil...
isprm 16584 The predicate "is a prime ...
prmnn 16585 A prime number is a positi...
prmz 16586 A prime number is an integ...
prmssnn 16587 The prime numbers are a su...
prmex 16588 The set of prime numbers e...
0nprm 16589 0 is not a prime number. ...
1nprm 16590 1 is not a prime number. ...
1idssfct 16591 The positive divisors of a...
isprm2lem 16592 Lemma for ~ isprm2 . (Con...
isprm2 16593 The predicate "is a prime ...
isprm3 16594 The predicate "is a prime ...
isprm4 16595 The predicate "is a prime ...
prmind2 16596 A variation on ~ prmind as...
prmind 16597 Perform induction over the...
dvdsprime 16598 If ` M ` divides a prime, ...
nprm 16599 A product of two integers ...
nprmi 16600 An inference for composite...
dvdsnprmd 16601 If a number is divisible b...
prm2orodd 16602 A prime number is either 2...
2prm 16603 2 is a prime number. (Con...
2mulprm 16604 A multiple of two is prime...
3prm 16605 3 is a prime number. (Con...
4nprm 16606 4 is not a prime number. ...
prmuz2 16607 A prime number is an integ...
prmgt1 16608 A prime number is an integ...
prmm2nn0 16609 Subtracting 2 from a prime...
oddprmgt2 16610 An odd prime is greater th...
oddprmge3 16611 An odd prime is greater th...
ge2nprmge4 16612 A composite integer greate...
sqnprm 16613 A square is never prime. ...
dvdsprm 16614 An integer greater than or...
exprmfct 16615 Every integer greater than...
prmdvdsfz 16616 Each integer greater than ...
nprmdvds1 16617 No prime number divides 1....
isprm5 16618 One need only check prime ...
isprm7 16619 One need only check prime ...
maxprmfct 16620 The set of prime factors o...
divgcdodd 16621 Either ` A / ( A gcd B ) `...
coprm 16622 A prime number either divi...
prmrp 16623 Unequal prime numbers are ...
euclemma 16624 Euclid's lemma. A prime n...
isprm6 16625 A number is prime iff it s...
prmdvdsexp 16626 A prime divides a positive...
prmdvdsexpb 16627 A prime divides a positive...
prmdvdsexpr 16628 If a prime divides a nonne...
prmdvdssq 16629 Condition for a prime divi...
prmexpb 16630 Two positive prime powers ...
prmfac1 16631 The factorial of a number ...
dvdszzq 16632 Divisibility for an intege...
rpexp 16633 If two numbers ` A ` and `...
rpexp1i 16634 Relative primality passes ...
rpexp12i 16635 Relative primality passes ...
prmndvdsfaclt 16636 A prime number does not di...
prmdvdsbc 16637 Condition for a prime numb...
prmdvdsncoprmbd 16638 Two positive integers are ...
ncoprmlnprm 16639 If two positive integers a...
cncongrprm 16640 Corollary 2 of Cancellabil...
isevengcd2 16641 The predicate "is an even ...
isoddgcd1 16642 The predicate "is an odd n...
3lcm2e6 16643 The least common multiple ...
qnumval 16648 Value of the canonical num...
qdenval 16649 Value of the canonical den...
qnumdencl 16650 Lemma for ~ qnumcl and ~ q...
qnumcl 16651 The canonical numerator of...
qdencl 16652 The canonical denominator ...
fnum 16653 Canonical numerator define...
fden 16654 Canonical denominator defi...
qnumdenbi 16655 Two numbers are the canoni...
qnumdencoprm 16656 The canonical representati...
qeqnumdivden 16657 Recover a rational number ...
qmuldeneqnum 16658 Multiplying a rational by ...
divnumden 16659 Calculate the reduced form...
divdenle 16660 Reducing a quotient never ...
qnumgt0 16661 A rational is positive iff...
qgt0numnn 16662 A rational is positive iff...
nn0gcdsq 16663 Squaring commutes with GCD...
zgcdsq 16664 ~ nn0gcdsq extended to int...
numdensq 16665 Squaring a rational square...
numsq 16666 Square commutes with canon...
densq 16667 Square commutes with canon...
qden1elz 16668 A rational is an integer i...
zsqrtelqelz 16669 If an integer has a ration...
nonsq 16670 Any integer strictly betwe...
numdenexp 16671 Elevating a rational numbe...
numexp 16672 Elevating to a nonnegative...
denexp 16673 Elevating to a nonnegative...
phival 16678 Value of the Euler ` phi `...
phicl2 16679 Bounds and closure for the...
phicl 16680 Closure for the value of t...
phibndlem 16681 Lemma for ~ phibnd . (Con...
phibnd 16682 A slightly tighter bound o...
phicld 16683 Closure for the value of t...
phi1 16684 Value of the Euler ` phi `...
dfphi2 16685 Alternate definition of th...
hashdvds 16686 The number of numbers in a...
phiprmpw 16687 Value of the Euler ` phi `...
phiprm 16688 Value of the Euler ` phi `...
crth 16689 The Chinese Remainder Theo...
phimullem 16690 Lemma for ~ phimul . (Con...
phimul 16691 The Euler ` phi ` function...
eulerthlem1 16692 Lemma for ~ eulerth . (Co...
eulerthlem2 16693 Lemma for ~ eulerth . (Co...
eulerth 16694 Euler's theorem, a general...
fermltl 16695 Fermat's little theorem. ...
prmdiv 16696 Show an explicit expressio...
prmdiveq 16697 The modular inverse of ` A...
prmdivdiv 16698 The (modular) inverse of t...
hashgcdlem 16699 A correspondence between e...
dvdsfi 16700 A natural number has finit...
hashgcdeq 16701 Number of initial positive...
phisum 16702 The divisor sum identity o...
odzval 16703 Value of the order functio...
odzcllem 16704 - Lemma for ~ odzcl , show...
odzcl 16705 The order of a group eleme...
odzid 16706 Any element raised to the ...
odzdvds 16707 The only powers of ` A ` t...
odzphi 16708 The order of any group ele...
modprm1div 16709 A prime number divides an ...
m1dvdsndvds 16710 If an integer minus 1 is d...
modprminv 16711 Show an explicit expressio...
modprminveq 16712 The modular inverse of ` A...
vfermltl 16713 Variant of Fermat's little...
vfermltlALT 16714 Alternate proof of ~ vferm...
powm2modprm 16715 If an integer minus 1 is d...
reumodprminv 16716 For any prime number and f...
modprm0 16717 For two positive integers ...
nnnn0modprm0 16718 For a positive integer and...
modprmn0modprm0 16719 For an integer not being 0...
coprimeprodsq 16720 If three numbers are copri...
coprimeprodsq2 16721 If three numbers are copri...
oddprm 16722 A prime not equal to ` 2 `...
nnoddn2prm 16723 A prime not equal to ` 2 `...
oddn2prm 16724 A prime not equal to ` 2 `...
nnoddn2prmb 16725 A number is a prime number...
prm23lt5 16726 A prime less than 5 is eit...
prm23ge5 16727 A prime is either 2 or 3 o...
pythagtriplem1 16728 Lemma for ~ pythagtrip . ...
pythagtriplem2 16729 Lemma for ~ pythagtrip . ...
pythagtriplem3 16730 Lemma for ~ pythagtrip . ...
pythagtriplem4 16731 Lemma for ~ pythagtrip . ...
pythagtriplem10 16732 Lemma for ~ pythagtrip . ...
pythagtriplem6 16733 Lemma for ~ pythagtrip . ...
pythagtriplem7 16734 Lemma for ~ pythagtrip . ...
pythagtriplem8 16735 Lemma for ~ pythagtrip . ...
pythagtriplem9 16736 Lemma for ~ pythagtrip . ...
pythagtriplem11 16737 Lemma for ~ pythagtrip . ...
pythagtriplem12 16738 Lemma for ~ pythagtrip . ...
pythagtriplem13 16739 Lemma for ~ pythagtrip . ...
pythagtriplem14 16740 Lemma for ~ pythagtrip . ...
pythagtriplem15 16741 Lemma for ~ pythagtrip . ...
pythagtriplem16 16742 Lemma for ~ pythagtrip . ...
pythagtriplem17 16743 Lemma for ~ pythagtrip . ...
pythagtriplem18 16744 Lemma for ~ pythagtrip . ...
pythagtriplem19 16745 Lemma for ~ pythagtrip . ...
pythagtrip 16746 Parameterize the Pythagore...
iserodd 16747 Collect the odd terms in a...
pclem 16750 - Lemma for the prime powe...
pcprecl 16751 Closure of the prime power...
pcprendvds 16752 Non-divisibility property ...
pcprendvds2 16753 Non-divisibility property ...
pcpre1 16754 Value of the prime power p...
pcpremul 16755 Multiplicative property of...
pcval 16756 The value of the prime pow...
pceulem 16757 Lemma for ~ pceu . (Contr...
pceu 16758 Uniqueness for the prime p...
pczpre 16759 Connect the prime count pr...
pczcl 16760 Closure of the prime power...
pccl 16761 Closure of the prime power...
pccld 16762 Closure of the prime power...
pcmul 16763 Multiplication property of...
pcdiv 16764 Division property of the p...
pcqmul 16765 Multiplication property of...
pc0 16766 The value of the prime pow...
pc1 16767 Value of the prime count f...
pcqcl 16768 Closure of the general pri...
pcqdiv 16769 Division property of the p...
pcrec 16770 Prime power of a reciproca...
pcexp 16771 Prime power of an exponent...
pcxnn0cl 16772 Extended nonnegative integ...
pcxcl 16773 Extended real closure of t...
pcge0 16774 The prime count of an inte...
pczdvds 16775 Defining property of the p...
pcdvds 16776 Defining property of the p...
pczndvds 16777 Defining property of the p...
pcndvds 16778 Defining property of the p...
pczndvds2 16779 The remainder after dividi...
pcndvds2 16780 The remainder after dividi...
pcdvdsb 16781 ` P ^ A ` divides ` N ` if...
pcelnn 16782 There are a positive numbe...
pceq0 16783 There are zero powers of a...
pcidlem 16784 The prime count of a prime...
pcid 16785 The prime count of a prime...
pcneg 16786 The prime count of a negat...
pcabs 16787 The prime count of an abso...
pcdvdstr 16788 The prime count increases ...
pcgcd1 16789 The prime count of a GCD i...
pcgcd 16790 The prime count of a GCD i...
pc2dvds 16791 A characterization of divi...
pc11 16792 The prime count function, ...
pcz 16793 The prime count function c...
pcprmpw2 16794 Self-referential expressio...
pcprmpw 16795 Self-referential expressio...
dvdsprmpweq 16796 If a positive integer divi...
dvdsprmpweqnn 16797 If an integer greater than...
dvdsprmpweqle 16798 If a positive integer divi...
difsqpwdvds 16799 If the difference of two s...
pcaddlem 16800 Lemma for ~ pcadd . The o...
pcadd 16801 An inequality for the prim...
pcadd2 16802 The inequality of ~ pcadd ...
pcmptcl 16803 Closure for the prime powe...
pcmpt 16804 Construct a function with ...
pcmpt2 16805 Dividing two prime count m...
pcmptdvds 16806 The partial products of th...
pcprod 16807 The product of the primes ...
sumhash 16808 The sum of 1 over a set is...
fldivp1 16809 The difference between the...
pcfaclem 16810 Lemma for ~ pcfac . (Cont...
pcfac 16811 Calculate the prime count ...
pcbc 16812 Calculate the prime count ...
qexpz 16813 If a power of a rational n...
expnprm 16814 A second or higher power o...
oddprmdvds 16815 Every positive integer whi...
prmpwdvds 16816 A relation involving divis...
pockthlem 16817 Lemma for ~ pockthg . (Co...
pockthg 16818 The generalized Pocklingto...
pockthi 16819 Pocklington's theorem, whi...
unbenlem 16820 Lemma for ~ unben . (Cont...
unben 16821 An unbounded set of positi...
infpnlem1 16822 Lemma for ~ infpn . The s...
infpnlem2 16823 Lemma for ~ infpn . For a...
infpn 16824 There exist infinitely man...
infpn2 16825 There exist infinitely man...
prmunb 16826 The primes are unbounded. ...
prminf 16827 There are an infinite numb...
prmreclem1 16828 Lemma for ~ prmrec . Prop...
prmreclem2 16829 Lemma for ~ prmrec . Ther...
prmreclem3 16830 Lemma for ~ prmrec . The ...
prmreclem4 16831 Lemma for ~ prmrec . Show...
prmreclem5 16832 Lemma for ~ prmrec . Here...
prmreclem6 16833 Lemma for ~ prmrec . If t...
prmrec 16834 The sum of the reciprocals...
1arithlem1 16835 Lemma for ~ 1arith . (Con...
1arithlem2 16836 Lemma for ~ 1arith . (Con...
1arithlem3 16837 Lemma for ~ 1arith . (Con...
1arithlem4 16838 Lemma for ~ 1arith . (Con...
1arith 16839 Fundamental theorem of ari...
1arith2 16840 Fundamental theorem of ari...
elgz 16843 Elementhood in the gaussia...
gzcn 16844 A gaussian integer is a co...
zgz 16845 An integer is a gaussian i...
igz 16846 ` _i ` is a gaussian integ...
gznegcl 16847 The gaussian integers are ...
gzcjcl 16848 The gaussian integers are ...
gzaddcl 16849 The gaussian integers are ...
gzmulcl 16850 The gaussian integers are ...
gzreim 16851 Construct a gaussian integ...
gzsubcl 16852 The gaussian integers are ...
gzabssqcl 16853 The squared norm of a gaus...
4sqlem5 16854 Lemma for ~ 4sq . (Contri...
4sqlem6 16855 Lemma for ~ 4sq . (Contri...
4sqlem7 16856 Lemma for ~ 4sq . (Contri...
4sqlem8 16857 Lemma for ~ 4sq . (Contri...
4sqlem9 16858 Lemma for ~ 4sq . (Contri...
4sqlem10 16859 Lemma for ~ 4sq . (Contri...
4sqlem1 16860 Lemma for ~ 4sq . The set...
4sqlem2 16861 Lemma for ~ 4sq . Change ...
4sqlem3 16862 Lemma for ~ 4sq . Suffici...
4sqlem4a 16863 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16864 Lemma for ~ 4sq . We can ...
mul4sqlem 16865 Lemma for ~ mul4sq : algeb...
mul4sq 16866 Euler's four-square identi...
4sqlem11 16867 Lemma for ~ 4sq . Use the...
4sqlem12 16868 Lemma for ~ 4sq . For any...
4sqlem13 16869 Lemma for ~ 4sq . (Contri...
4sqlem14 16870 Lemma for ~ 4sq . (Contri...
4sqlem15 16871 Lemma for ~ 4sq . (Contri...
4sqlem16 16872 Lemma for ~ 4sq . (Contri...
4sqlem17 16873 Lemma for ~ 4sq . (Contri...
4sqlem18 16874 Lemma for ~ 4sq . Inducti...
4sqlem19 16875 Lemma for ~ 4sq . The pro...
4sq 16876 Lagrange's four-square the...
vdwapfval 16883 Define the arithmetic prog...
vdwapf 16884 The arithmetic progression...
vdwapval 16885 Value of the arithmetic pr...
vdwapun 16886 Remove the first element o...
vdwapid1 16887 The first element of an ar...
vdwap0 16888 Value of a length-1 arithm...
vdwap1 16889 Value of a length-1 arithm...
vdwmc 16890 The predicate " The ` <. R...
vdwmc2 16891 Expand out the definition ...
vdwpc 16892 The predicate " The colori...
vdwlem1 16893 Lemma for ~ vdw . (Contri...
vdwlem2 16894 Lemma for ~ vdw . (Contri...
vdwlem3 16895 Lemma for ~ vdw . (Contri...
vdwlem4 16896 Lemma for ~ vdw . (Contri...
vdwlem5 16897 Lemma for ~ vdw . (Contri...
vdwlem6 16898 Lemma for ~ vdw . (Contri...
vdwlem7 16899 Lemma for ~ vdw . (Contri...
vdwlem8 16900 Lemma for ~ vdw . (Contri...
vdwlem9 16901 Lemma for ~ vdw . (Contri...
vdwlem10 16902 Lemma for ~ vdw . Set up ...
vdwlem11 16903 Lemma for ~ vdw . (Contri...
vdwlem12 16904 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16905 Lemma for ~ vdw . Main in...
vdw 16906 Van der Waerden's theorem....
vdwnnlem1 16907 Corollary of ~ vdw , and l...
vdwnnlem2 16908 Lemma for ~ vdwnn . The s...
vdwnnlem3 16909 Lemma for ~ vdwnn . (Cont...
vdwnn 16910 Van der Waerden's theorem,...
ramtlecl 16912 The set ` T ` of numbers w...
hashbcval 16914 Value of the "binomial set...
hashbccl 16915 The binomial set is a fini...
hashbcss 16916 Subset relation for the bi...
hashbc0 16917 The set of subsets of size...
hashbc2 16918 The size of the binomial s...
0hashbc 16919 There are no subsets of th...
ramval 16920 The value of the Ramsey nu...
ramcl2lem 16921 Lemma for extended real cl...
ramtcl 16922 The Ramsey number has the ...
ramtcl2 16923 The Ramsey number is an in...
ramtub 16924 The Ramsey number is a low...
ramub 16925 The Ramsey number is a low...
ramub2 16926 It is sufficient to check ...
rami 16927 The defining property of a...
ramcl2 16928 The Ramsey number is eithe...
ramxrcl 16929 The Ramsey number is an ex...
ramubcl 16930 If the Ramsey number is up...
ramlb 16931 Establish a lower bound on...
0ram 16932 The Ramsey number when ` M...
0ram2 16933 The Ramsey number when ` M...
ram0 16934 The Ramsey number when ` R...
0ramcl 16935 Lemma for ~ ramcl : Exist...
ramz2 16936 The Ramsey number when ` F...
ramz 16937 The Ramsey number when ` F...
ramub1lem1 16938 Lemma for ~ ramub1 . (Con...
ramub1lem2 16939 Lemma for ~ ramub1 . (Con...
ramub1 16940 Inductive step for Ramsey'...
ramcl 16941 Ramsey's theorem: the Rams...
ramsey 16942 Ramsey's theorem with the ...
prmoval 16945 Value of the primorial fun...
prmocl 16946 Closure of the primorial f...
prmone0 16947 The primorial function is ...
prmo0 16948 The primorial of 0. (Cont...
prmo1 16949 The primorial of 1. (Cont...
prmop1 16950 The primorial of a success...
prmonn2 16951 Value of the primorial fun...
prmo2 16952 The primorial of 2. (Cont...
prmo3 16953 The primorial of 3. (Cont...
prmdvdsprmo 16954 The primorial of a number ...
prmdvdsprmop 16955 The primorial of a number ...
fvprmselelfz 16956 The value of the prime sel...
fvprmselgcd1 16957 The greatest common diviso...
prmolefac 16958 The primorial of a positiv...
prmodvdslcmf 16959 The primorial of a nonnega...
prmolelcmf 16960 The primorial of a positiv...
prmgaplem1 16961 Lemma for ~ prmgap : The ...
prmgaplem2 16962 Lemma for ~ prmgap : The ...
prmgaplcmlem1 16963 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 16964 Lemma for ~ prmgaplcm : T...
prmgaplem3 16965 Lemma for ~ prmgap . (Con...
prmgaplem4 16966 Lemma for ~ prmgap . (Con...
prmgaplem5 16967 Lemma for ~ prmgap : for e...
prmgaplem6 16968 Lemma for ~ prmgap : for e...
prmgaplem7 16969 Lemma for ~ prmgap . (Con...
prmgaplem8 16970 Lemma for ~ prmgap . (Con...
prmgap 16971 The prime gap theorem: for...
prmgaplcm 16972 Alternate proof of ~ prmga...
prmgapprmolem 16973 Lemma for ~ prmgapprmo : ...
prmgapprmo 16974 Alternate proof of ~ prmga...
dec2dvds 16975 Divisibility by two is obv...
dec5dvds 16976 Divisibility by five is ob...
dec5dvds2 16977 Divisibility by five is ob...
dec5nprm 16978 A decimal number greater t...
dec2nprm 16979 A decimal number greater t...
modxai 16980 Add exponents in a power m...
mod2xi 16981 Double exponents in a powe...
modxp1i 16982 Add one to an exponent in ...
mod2xnegi 16983 Version of ~ mod2xi with a...
modsubi 16984 Subtract from within a mod...
gcdi 16985 Calculate a GCD via Euclid...
gcdmodi 16986 Calculate a GCD via Euclid...
numexp0 16987 Calculate an integer power...
numexp1 16988 Calculate an integer power...
numexpp1 16989 Calculate an integer power...
numexp2x 16990 Double an integer power. ...
decsplit0b 16991 Split a decimal number int...
decsplit0 16992 Split a decimal number int...
decsplit1 16993 Split a decimal number int...
decsplit 16994 Split a decimal number int...
karatsuba 16995 The Karatsuba multiplicati...
2exp4 16996 Two to the fourth power is...
2exp5 16997 Two to the fifth power is ...
2exp6 16998 Two to the sixth power is ...
2exp7 16999 Two to the seventh power i...
2exp8 17000 Two to the eighth power is...
2exp11 17001 Two to the eleventh power ...
2exp16 17002 Two to the sixteenth power...
3exp3 17003 Three to the third power i...
2expltfac 17004 The factorial grows faster...
cshwsidrepsw 17005 If cyclically shifting a w...
cshwsidrepswmod0 17006 If cyclically shifting a w...
cshwshashlem1 17007 If cyclically shifting a w...
cshwshashlem2 17008 If cyclically shifting a w...
cshwshashlem3 17009 If cyclically shifting a w...
cshwsdisj 17010 The singletons resulting b...
cshwsiun 17011 The set of (different!) wo...
cshwsex 17012 The class of (different!) ...
cshws0 17013 The size of the set of (di...
cshwrepswhash1 17014 The size of the set of (di...
cshwshashnsame 17015 If a word (not consisting ...
cshwshash 17016 If a word has a length bei...
prmlem0 17017 Lemma for ~ prmlem1 and ~ ...
prmlem1a 17018 A quick proof skeleton to ...
prmlem1 17019 A quick proof skeleton to ...
5prm 17020 5 is a prime number. (Con...
6nprm 17021 6 is not a prime number. ...
7prm 17022 7 is a prime number. (Con...
8nprm 17023 8 is not a prime number. ...
9nprm 17024 9 is not a prime number. ...
10nprm 17025 10 is not a prime number. ...
11prm 17026 11 is a prime number. (Co...
13prm 17027 13 is a prime number. (Co...
17prm 17028 17 is a prime number. (Co...
19prm 17029 19 is a prime number. (Co...
23prm 17030 23 is a prime number. (Co...
prmlem2 17031 Our last proving session g...
37prm 17032 37 is a prime number. (Co...
43prm 17033 43 is a prime number. (Co...
83prm 17034 83 is a prime number. (Co...
139prm 17035 139 is a prime number. (C...
163prm 17036 163 is a prime number. (C...
317prm 17037 317 is a prime number. (C...
631prm 17038 631 is a prime number. (C...
prmo4 17039 The primorial of 4. (Cont...
prmo5 17040 The primorial of 5. (Cont...
prmo6 17041 The primorial of 6. (Cont...
1259lem1 17042 Lemma for ~ 1259prm . Cal...
1259lem2 17043 Lemma for ~ 1259prm . Cal...
1259lem3 17044 Lemma for ~ 1259prm . Cal...
1259lem4 17045 Lemma for ~ 1259prm . Cal...
1259lem5 17046 Lemma for ~ 1259prm . Cal...
1259prm 17047 1259 is a prime number. (...
2503lem1 17048 Lemma for ~ 2503prm . Cal...
2503lem2 17049 Lemma for ~ 2503prm . Cal...
2503lem3 17050 Lemma for ~ 2503prm . Cal...
2503prm 17051 2503 is a prime number. (...
4001lem1 17052 Lemma for ~ 4001prm . Cal...
4001lem2 17053 Lemma for ~ 4001prm . Cal...
4001lem3 17054 Lemma for ~ 4001prm . Cal...
4001lem4 17055 Lemma for ~ 4001prm . Cal...
4001prm 17056 4001 is a prime number. (...
brstruct 17059 The structure relation is ...
isstruct2 17060 The property of being a st...
structex 17061 A structure is a set. (Co...
structn0fun 17062 A structure without the em...
isstruct 17063 The property of being a st...
structcnvcnv 17064 Two ways to express the re...
structfung 17065 The converse of the conver...
structfun 17066 Convert between two kinds ...
structfn 17067 Convert between two kinds ...
strleun 17068 Combine two structures int...
strle1 17069 Make a structure from a si...
strle2 17070 Make a structure from a pa...
strle3 17071 Make a structure from a tr...
sbcie2s 17072 A special version of class...
sbcie3s 17073 A special version of class...
reldmsets 17076 The structure override ope...
setsvalg 17077 Value of the structure rep...
setsval 17078 Value of the structure rep...
fvsetsid 17079 The value of the structure...
fsets 17080 The structure replacement ...
setsdm 17081 The domain of a structure ...
setsfun 17082 A structure with replaceme...
setsfun0 17083 A structure with replaceme...
setsn0fun 17084 The value of the structure...
setsstruct2 17085 An extensible structure wi...
setsexstruct2 17086 An extensible structure wi...
setsstruct 17087 An extensible structure wi...
wunsets 17088 Closure of structure repla...
setsres 17089 The structure replacement ...
setsabs 17090 Replacing the same compone...
setscom 17091 Different components can b...
sloteq 17094 Equality theorem for the `...
slotfn 17095 A slot is a function on se...
strfvnd 17096 Deduction version of ~ str...
strfvn 17097 Value of a structure compo...
strfvss 17098 A structure component extr...
wunstr 17099 Closure of a structure ind...
str0 17100 All components of the empt...
strfvi 17101 Structure slot extractors ...
fveqprc 17102 Lemma for showing the equa...
oveqprc 17103 Lemma for showing the equa...
wunndx 17106 Closure of the index extra...
ndxarg 17107 Get the numeric argument f...
ndxid 17108 A structure component extr...
strndxid 17109 The value of a structure c...
setsidvald 17110 Value of the structure rep...
strfvd 17111 Deduction version of ~ str...
strfv2d 17112 Deduction version of ~ str...
strfv2 17113 A variation on ~ strfv to ...
strfv 17114 Extract a structure compon...
strfv3 17115 Variant on ~ strfv for lar...
strssd 17116 Deduction version of ~ str...
strss 17117 Propagate component extrac...
setsid 17118 Value of the structure rep...
setsnid 17119 Value of the structure rep...
baseval 17122 Value of the base set extr...
baseid 17123 Utility theorem: index-ind...
basfn 17124 The base set extractor is ...
base0 17125 The base set of the empty ...
elbasfv 17126 Utility theorem: reverse c...
elbasov 17127 Utility theorem: reverse c...
strov2rcl 17128 Partial reverse closure fo...
basendx 17129 Index value of the base se...
basendxnn 17130 The index value of the bas...
basndxelwund 17131 The index of the base set ...
basprssdmsets 17132 The pair of the base index...
opelstrbas 17133 The base set of a structur...
1strstr 17134 A constructed one-slot str...
1strbas 17135 The base set of a construc...
1strwunbndx 17136 A constructed one-slot str...
1strwun 17137 A constructed one-slot str...
2strstr 17138 A constructed two-slot str...
2strbas 17139 The base set of a construc...
2strop 17140 The other slot of a constr...
reldmress 17143 The structure restriction ...
ressval 17144 Value of structure restric...
ressid2 17145 General behavior of trivia...
ressval2 17146 Value of nontrivial struct...
ressbas 17147 Base set of a structure re...
ressbasssg 17148 The base set of a restrict...
ressbas2 17149 Base set of a structure re...
ressbasss 17150 The base set of a restrict...
ressbasssOLD 17151 Obsolete version of ~ ress...
ressbasss2 17152 The base set of a restrict...
resseqnbas 17153 The components of an exten...
ress0 17154 All restrictions of the nu...
ressid 17155 Behavior of trivial restri...
ressinbas 17156 Restriction only cares abo...
ressval3d 17157 Value of structure restric...
ressress 17158 Restriction composition la...
ressabs 17159 Restriction absorption law...
wunress 17160 Closure of structure restr...
plusgndx 17187 Index value of the ~ df-pl...
plusgid 17188 Utility theorem: index-ind...
plusgndxnn 17189 The index of the slot for ...
basendxltplusgndx 17190 The index of the slot for ...
basendxnplusgndx 17191 The slot for the base set ...
grpstr 17192 A constructed group is a s...
grpbase 17193 The base set of a construc...
grpplusg 17194 The operation of a constru...
ressplusg 17195 ` +g ` is unaffected by re...
grpbasex 17196 The base of an explicitly ...
grpplusgx 17197 The operation of an explic...
mulrndx 17198 Index value of the ~ df-mu...
mulridx 17199 Utility theorem: index-ind...
basendxnmulrndx 17200 The slot for the base set ...
plusgndxnmulrndx 17201 The slot for the group (ad...
rngstr 17202 A constructed ring is a st...
rngbase 17203 The base set of a construc...
rngplusg 17204 The additive operation of ...
rngmulr 17205 The multiplicative operati...
starvndx 17206 Index value of the ~ df-st...
starvid 17207 Utility theorem: index-ind...
starvndxnbasendx 17208 The slot for the involutio...
starvndxnplusgndx 17209 The slot for the involutio...
starvndxnmulrndx 17210 The slot for the involutio...
ressmulr 17211 ` .r ` is unaffected by re...
ressstarv 17212 ` *r ` is unaffected by re...
srngstr 17213 A constructed star ring is...
srngbase 17214 The base set of a construc...
srngplusg 17215 The addition operation of ...
srngmulr 17216 The multiplication operati...
srnginvl 17217 The involution function of...
scandx 17218 Index value of the ~ df-sc...
scaid 17219 Utility theorem: index-ind...
scandxnbasendx 17220 The slot for the scalar is...
scandxnplusgndx 17221 The slot for the scalar fi...
scandxnmulrndx 17222 The slot for the scalar fi...
vscandx 17223 Index value of the ~ df-vs...
vscaid 17224 Utility theorem: index-ind...
vscandxnbasendx 17225 The slot for the scalar pr...
vscandxnplusgndx 17226 The slot for the scalar pr...
vscandxnmulrndx 17227 The slot for the scalar pr...
vscandxnscandx 17228 The slot for the scalar pr...
lmodstr 17229 A constructed left module ...
lmodbase 17230 The base set of a construc...
lmodplusg 17231 The additive operation of ...
lmodsca 17232 The set of scalars of a co...
lmodvsca 17233 The scalar product operati...
ipndx 17234 Index value of the ~ df-ip...
ipid 17235 Utility theorem: index-ind...
ipndxnbasendx 17236 The slot for the inner pro...
ipndxnplusgndx 17237 The slot for the inner pro...
ipndxnmulrndx 17238 The slot for the inner pro...
slotsdifipndx 17239 The slot for the scalar is...
ipsstr 17240 Lemma to shorten proofs of...
ipsbase 17241 The base set of a construc...
ipsaddg 17242 The additive operation of ...
ipsmulr 17243 The multiplicative operati...
ipssca 17244 The set of scalars of a co...
ipsvsca 17245 The scalar product operati...
ipsip 17246 The multiplicative operati...
resssca 17247 ` Scalar ` is unaffected b...
ressvsca 17248 ` .s ` is unaffected by re...
ressip 17249 The inner product is unaff...
phlstr 17250 A constructed pre-Hilbert ...
phlbase 17251 The base set of a construc...
phlplusg 17252 The additive operation of ...
phlsca 17253 The ring of scalars of a c...
phlvsca 17254 The scalar product operati...
phlip 17255 The inner product (Hermiti...
tsetndx 17256 Index value of the ~ df-ts...
tsetid 17257 Utility theorem: index-ind...
tsetndxnn 17258 The index of the slot for ...
basendxlttsetndx 17259 The index of the slot for ...
tsetndxnbasendx 17260 The slot for the topology ...
tsetndxnplusgndx 17261 The slot for the topology ...
tsetndxnmulrndx 17262 The slot for the topology ...
tsetndxnstarvndx 17263 The slot for the topology ...
slotstnscsi 17264 The slots ` Scalar ` , ` ....
topgrpstr 17265 A constructed topological ...
topgrpbas 17266 The base set of a construc...
topgrpplusg 17267 The additive operation of ...
topgrptset 17268 The topology of a construc...
resstset 17269 ` TopSet ` is unaffected b...
plendx 17270 Index value of the ~ df-pl...
pleid 17271 Utility theorem: self-refe...
plendxnn 17272 The index value of the ord...
basendxltplendx 17273 The index value of the ` B...
plendxnbasendx 17274 The slot for the order is ...
plendxnplusgndx 17275 The slot for the "less tha...
plendxnmulrndx 17276 The slot for the "less tha...
plendxnscandx 17277 The slot for the "less tha...
plendxnvscandx 17278 The slot for the "less tha...
slotsdifplendx 17279 The index of the slot for ...
otpsstr 17280 Functionality of a topolog...
otpsbas 17281 The base set of a topologi...
otpstset 17282 The open sets of a topolog...
otpsle 17283 The order of a topological...
ressle 17284 ` le ` is unaffected by re...
ocndx 17285 Index value of the ~ df-oc...
ocid 17286 Utility theorem: index-ind...
basendxnocndx 17287 The slot for the orthocomp...
plendxnocndx 17288 The slot for the orthocomp...
dsndx 17289 Index value of the ~ df-ds...
dsid 17290 Utility theorem: index-ind...
dsndxnn 17291 The index of the slot for ...
basendxltdsndx 17292 The index of the slot for ...
dsndxnbasendx 17293 The slot for the distance ...
dsndxnplusgndx 17294 The slot for the distance ...
dsndxnmulrndx 17295 The slot for the distance ...
slotsdnscsi 17296 The slots ` Scalar ` , ` ....
dsndxntsetndx 17297 The slot for the distance ...
slotsdifdsndx 17298 The index of the slot for ...
unifndx 17299 Index value of the ~ df-un...
unifid 17300 Utility theorem: index-ind...
unifndxnn 17301 The index of the slot for ...
basendxltunifndx 17302 The index of the slot for ...
unifndxnbasendx 17303 The slot for the uniform s...
unifndxntsetndx 17304 The slot for the uniform s...
slotsdifunifndx 17305 The index of the slot for ...
ressunif 17306 ` UnifSet ` is unaffected ...
odrngstr 17307 Functionality of an ordere...
odrngbas 17308 The base set of an ordered...
odrngplusg 17309 The addition operation of ...
odrngmulr 17310 The multiplication operati...
odrngtset 17311 The open sets of an ordere...
odrngle 17312 The order of an ordered me...
odrngds 17313 The metric of an ordered m...
ressds 17314 ` dist ` is unaffected by ...
homndx 17315 Index value of the ~ df-ho...
homid 17316 Utility theorem: index-ind...
ccondx 17317 Index value of the ~ df-cc...
ccoid 17318 Utility theorem: index-ind...
slotsbhcdif 17319 The slots ` Base ` , ` Hom...
slotsdifplendx2 17320 The index of the slot for ...
slotsdifocndx 17321 The index of the slot for ...
resshom 17322 ` Hom ` is unaffected by r...
ressco 17323 ` comp ` is unaffected by ...
restfn 17328 The subspace topology oper...
topnfn 17329 The topology extractor fun...
restval 17330 The subspace topology indu...
elrest 17331 The predicate "is an open ...
elrestr 17332 Sufficient condition for b...
0rest 17333 Value of the structure res...
restid2 17334 The subspace topology over...
restsspw 17335 The subspace topology is a...
firest 17336 The finite intersections o...
restid 17337 The subspace topology of t...
topnval 17338 Value of the topology extr...
topnid 17339 Value of the topology extr...
topnpropd 17340 The topology extractor fun...
reldmprds 17352 The structure product is a...
prdsbasex 17354 Lemma for structure produc...
imasvalstr 17355 An image structure value i...
prdsvalstr 17356 Structure product value is...
prdsbaslem 17357 Lemma for ~ prdsbas and si...
prdsvallem 17358 Lemma for ~ prdsval . (Co...
prdsval 17359 Value of the structure pro...
prdssca 17360 Scalar ring of a structure...
prdsbas 17361 Base set of a structure pr...
prdsplusg 17362 Addition in a structure pr...
prdsmulr 17363 Multiplication in a struct...
prdsvsca 17364 Scalar multiplication in a...
prdsip 17365 Inner product in a structu...
prdsle 17366 Structure product weak ord...
prdsless 17367 Closure of the order relat...
prdsds 17368 Structure product distance...
prdsdsfn 17369 Structure product distance...
prdstset 17370 Structure product topology...
prdshom 17371 Structure product hom-sets...
prdsco 17372 Structure product composit...
prdsbas2 17373 The base set of a structur...
prdsbasmpt 17374 A constructed tuple is a p...
prdsbasfn 17375 Points in the structure pr...
prdsbasprj 17376 Each point in a structure ...
prdsplusgval 17377 Value of a componentwise s...
prdsplusgfval 17378 Value of a structure produ...
prdsmulrval 17379 Value of a componentwise r...
prdsmulrfval 17380 Value of a structure produ...
prdsleval 17381 Value of the product order...
prdsdsval 17382 Value of the metric in a s...
prdsvscaval 17383 Scalar multiplication in a...
prdsvscafval 17384 Scalar multiplication of a...
prdsbas3 17385 The base set of an indexed...
prdsbasmpt2 17386 A constructed tuple is a p...
prdsbascl 17387 An element of the base has...
prdsdsval2 17388 Value of the metric in a s...
prdsdsval3 17389 Value of the metric in a s...
pwsval 17390 Value of a structure power...
pwsbas 17391 Base set of a structure po...
pwselbasb 17392 Membership in the base set...
pwselbas 17393 An element of a structure ...
pwsplusgval 17394 Value of addition in a str...
pwsmulrval 17395 Value of multiplication in...
pwsle 17396 Ordering in a structure po...
pwsleval 17397 Ordering in a structure po...
pwsvscafval 17398 Scalar multiplication in a...
pwsvscaval 17399 Scalar multiplication of a...
pwssca 17400 The ring of scalars of a s...
pwsdiagel 17401 Membership of diagonal ele...
pwssnf1o 17402 Triviality of singleton po...
imasval 17415 Value of an image structur...
imasbas 17416 The base set of an image s...
imasds 17417 The distance function of a...
imasdsfn 17418 The distance function is a...
imasdsval 17419 The distance function of a...
imasdsval2 17420 The distance function of a...
imasplusg 17421 The group operation in an ...
imasmulr 17422 The ring multiplication in...
imassca 17423 The scalar field of an ima...
imasvsca 17424 The scalar multiplication ...
imasip 17425 The inner product of an im...
imastset 17426 The topology of an image s...
imasle 17427 The ordering of an image s...
f1ocpbllem 17428 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17429 An injection is compatible...
f1ovscpbl 17430 An injection is compatible...
f1olecpbl 17431 An injection is compatible...
imasaddfnlem 17432 The image structure operat...
imasaddvallem 17433 The operation of an image ...
imasaddflem 17434 The image set operations a...
imasaddfn 17435 The image structure's grou...
imasaddval 17436 The value of an image stru...
imasaddf 17437 The image structure's grou...
imasmulfn 17438 The image structure's ring...
imasmulval 17439 The value of an image stru...
imasmulf 17440 The image structure's ring...
imasvscafn 17441 The image structure's scal...
imasvscaval 17442 The value of an image stru...
imasvscaf 17443 The image structure's scal...
imasless 17444 The order relation defined...
imasleval 17445 The value of the image str...
qusval 17446 Value of a quotient struct...
quslem 17447 The function in ~ qusval i...
qusin 17448 Restrict the equivalence r...
qusbas 17449 Base set of a quotient str...
quss 17450 The scalar field of a quot...
divsfval 17451 Value of the function in ~...
ercpbllem 17452 Lemma for ~ ercpbl . (Con...
ercpbl 17453 Translate the function com...
erlecpbl 17454 Translate the relation com...
qusaddvallem 17455 Value of an operation defi...
qusaddflem 17456 The operation of a quotien...
qusaddval 17457 The addition in a quotient...
qusaddf 17458 The addition in a quotient...
qusmulval 17459 The multiplication in a qu...
qusmulf 17460 The multiplication in a qu...
fnpr2o 17461 Function with a domain of ...
fnpr2ob 17462 Biconditional version of ~...
fvpr0o 17463 The value of a function wi...
fvpr1o 17464 The value of a function wi...
fvprif 17465 The value of the pair func...
xpsfrnel 17466 Elementhood in the target ...
xpsfeq 17467 A function on ` 2o ` is de...
xpsfrnel2 17468 Elementhood in the target ...
xpscf 17469 Equivalent condition for t...
xpsfval 17470 The value of the function ...
xpsff1o 17471 The function appearing in ...
xpsfrn 17472 A short expression for the...
xpsff1o2 17473 The function appearing in ...
xpsval 17474 Value of the binary struct...
xpsrnbas 17475 The indexed structure prod...
xpsbas 17476 The base set of the binary...
xpsaddlem 17477 Lemma for ~ xpsadd and ~ x...
xpsadd 17478 Value of the addition oper...
xpsmul 17479 Value of the multiplicatio...
xpssca 17480 Value of the scalar field ...
xpsvsca 17481 Value of the scalar multip...
xpsless 17482 Closure of the ordering in...
xpsle 17483 Value of the ordering in a...
ismre 17492 Property of being a Moore ...
fnmre 17493 The Moore collection gener...
mresspw 17494 A Moore collection is a su...
mress 17495 A Moore-closed subset is a...
mre1cl 17496 In any Moore collection th...
mreintcl 17497 A nonempty collection of c...
mreiincl 17498 A nonempty indexed interse...
mrerintcl 17499 The relative intersection ...
mreriincl 17500 The relative intersection ...
mreincl 17501 Two closed sets have a clo...
mreuni 17502 Since the entire base set ...
mreunirn 17503 Two ways to express the no...
ismred 17504 Properties that determine ...
ismred2 17505 Properties that determine ...
mremre 17506 The Moore collections of s...
submre 17507 The subcollection of a clo...
xrsle 17508 The ordering of the extend...
xrge0le 17509 The "less than or equal to...
xrsbas 17510 The base set of the extend...
xrge0base 17511 The base of the extended n...
mrcflem 17512 The domain and codomain of...
fnmrc 17513 Moore-closure is a well-be...
mrcfval 17514 Value of the function expr...
mrcf 17515 The Moore closure is a fun...
mrcval 17516 Evaluation of the Moore cl...
mrccl 17517 The Moore closure of a set...
mrcsncl 17518 The Moore closure of a sin...
mrcid 17519 The closure of a closed se...
mrcssv 17520 The closure of a set is a ...
mrcidb 17521 A set is closed iff it is ...
mrcss 17522 Closure preserves subset o...
mrcssid 17523 The closure of a set is a ...
mrcidb2 17524 A set is closed iff it con...
mrcidm 17525 The closure operation is i...
mrcsscl 17526 The closure is the minimal...
mrcuni 17527 Idempotence of closure und...
mrcun 17528 Idempotence of closure und...
mrcssvd 17529 The Moore closure of a set...
mrcssd 17530 Moore closure preserves su...
mrcssidd 17531 A set is contained in its ...
mrcidmd 17532 Moore closure is idempoten...
mressmrcd 17533 In a Moore system, if a se...
submrc 17534 In a closure system which ...
mrieqvlemd 17535 In a Moore system, if ` Y ...
mrisval 17536 Value of the set of indepe...
ismri 17537 Criterion for a set to be ...
ismri2 17538 Criterion for a subset of ...
ismri2d 17539 Criterion for a subset of ...
ismri2dd 17540 Definition of independence...
mriss 17541 An independent set of a Mo...
mrissd 17542 An independent set of a Mo...
ismri2dad 17543 Consequence of a set in a ...
mrieqvd 17544 In a Moore system, a set i...
mrieqv2d 17545 In a Moore system, a set i...
mrissmrcd 17546 In a Moore system, if an i...
mrissmrid 17547 In a Moore system, subsets...
mreexd 17548 In a Moore system, the clo...
mreexmrid 17549 In a Moore system whose cl...
mreexexlemd 17550 This lemma is used to gene...
mreexexlem2d 17551 Used in ~ mreexexlem4d to ...
mreexexlem3d 17552 Base case of the induction...
mreexexlem4d 17553 Induction step of the indu...
mreexexd 17554 Exchange-type theorem. In...
mreexdomd 17555 In a Moore system whose cl...
mreexfidimd 17556 In a Moore system whose cl...
isacs 17557 A set is an algebraic clos...
acsmre 17558 Algebraic closure systems ...
isacs2 17559 In the definition of an al...
acsfiel 17560 A set is closed in an alge...
acsfiel2 17561 A set is closed in an alge...
acsmred 17562 An algebraic closure syste...
isacs1i 17563 A closure system determine...
mreacs 17564 Algebraicity is a composab...
acsfn 17565 Algebraicity of a conditio...
acsfn0 17566 Algebraicity of a point cl...
acsfn1 17567 Algebraicity of a one-argu...
acsfn1c 17568 Algebraicity of a one-argu...
acsfn2 17569 Algebraicity of a two-argu...
iscat 17578 The predicate "is a catego...
iscatd 17579 Properties that determine ...
catidex 17580 Each object in a category ...
catideu 17581 Each object in a category ...
cidfval 17582 Each object in a category ...
cidval 17583 Each object in a category ...
cidffn 17584 The identity arrow constru...
cidfn 17585 The identity arrow operato...
catidd 17586 Deduce the identity arrow ...
iscatd2 17587 Version of ~ iscatd with a...
catidcl 17588 Each object in a category ...
catlid 17589 Left identity property of ...
catrid 17590 Right identity property of...
catcocl 17591 Closure of a composition a...
catass 17592 Associativity of compositi...
catcone0 17593 Composition of non-empty h...
0catg 17594 Any structure with an empt...
0cat 17595 The empty set is a categor...
homffval 17596 Value of the functionalize...
fnhomeqhomf 17597 If the Hom-set operation i...
homfval 17598 Value of the functionalize...
homffn 17599 The functionalized Hom-set...
homfeq 17600 Condition for two categori...
homfeqd 17601 If two structures have the...
homfeqbas 17602 Deduce equality of base se...
homfeqval 17603 Value of the functionalize...
comfffval 17604 Value of the functionalize...
comffval 17605 Value of the functionalize...
comfval 17606 Value of the functionalize...
comfffval2 17607 Value of the functionalize...
comffval2 17608 Value of the functionalize...
comfval2 17609 Value of the functionalize...
comfffn 17610 The functionalized composi...
comffn 17611 The functionalized composi...
comfeq 17612 Condition for two categori...
comfeqd 17613 Condition for two categori...
comfeqval 17614 Equality of two compositio...
catpropd 17615 Two structures with the sa...
cidpropd 17616 Two structures with the sa...
oppcval 17619 Value of the opposite cate...
oppchomfval 17620 Hom-sets of the opposite c...
oppchom 17621 Hom-sets of the opposite c...
oppccofval 17622 Composition in the opposit...
oppcco 17623 Composition in the opposit...
oppcbas 17624 Base set of an opposite ca...
oppccatid 17625 Lemma for ~ oppccat . (Co...
oppchomf 17626 Hom-sets of the opposite c...
oppcid 17627 Identity function of an op...
oppccat 17628 An opposite category is a ...
2oppcbas 17629 The double opposite catego...
2oppchomf 17630 The double opposite catego...
2oppccomf 17631 The double opposite catego...
oppchomfpropd 17632 If two categories have the...
oppccomfpropd 17633 If two categories have the...
oppccatf 17634 ` oppCat ` restricted to `...
monfval 17639 Definition of a monomorphi...
ismon 17640 Definition of a monomorphi...
ismon2 17641 Write out the monomorphism...
monhom 17642 A monomorphism is a morphi...
moni 17643 Property of a monomorphism...
monpropd 17644 If two categories have the...
oppcmon 17645 A monomorphism in the oppo...
oppcepi 17646 An epimorphism in the oppo...
isepi 17647 Definition of an epimorphi...
isepi2 17648 Write out the epimorphism ...
epihom 17649 An epimorphism is a morphi...
epii 17650 Property of an epimorphism...
sectffval 17657 Value of the section opera...
sectfval 17658 Value of the section relat...
sectss 17659 The section relation is a ...
issect 17660 The property " ` F ` is a ...
issect2 17661 Property of being a sectio...
sectcan 17662 If ` G ` is a section of `...
sectco 17663 Composition of two section...
isofval 17664 Function value of the func...
invffval 17665 Value of the inverse relat...
invfval 17666 Value of the inverse relat...
isinv 17667 Value of the inverse relat...
invss 17668 The inverse relation is a ...
invsym 17669 The inverse relation is sy...
invsym2 17670 The inverse relation is sy...
invfun 17671 The inverse relation is a ...
isoval 17672 The isomorphisms are the d...
inviso1 17673 If ` G ` is an inverse to ...
inviso2 17674 If ` G ` is an inverse to ...
invf 17675 The inverse relation is a ...
invf1o 17676 The inverse relation is a ...
invinv 17677 The inverse of the inverse...
invco 17678 The composition of two iso...
dfiso2 17679 Alternate definition of an...
dfiso3 17680 Alternate definition of an...
inveq 17681 If there are two inverses ...
isofn 17682 The function value of the ...
isohom 17683 An isomorphism is a homomo...
isoco 17684 The composition of two iso...
oppcsect 17685 A section in the opposite ...
oppcsect2 17686 A section in the opposite ...
oppcinv 17687 An inverse in the opposite...
oppciso 17688 An isomorphism in the oppo...
sectmon 17689 If ` F ` is a section of `...
monsect 17690 If ` F ` is a monomorphism...
sectepi 17691 If ` F ` is a section of `...
episect 17692 If ` F ` is an epimorphism...
sectid 17693 The identity is a section ...
invid 17694 The inverse of the identit...
idiso 17695 The identity is an isomorp...
idinv 17696 The inverse of the identit...
invisoinvl 17697 The inverse of an isomorph...
invisoinvr 17698 The inverse of an isomorph...
invcoisoid 17699 The inverse of an isomorph...
isocoinvid 17700 The inverse of an isomorph...
rcaninv 17701 Right cancellation of an i...
cicfval 17704 The set of isomorphic obje...
brcic 17705 The relation "is isomorphi...
cic 17706 Objects ` X ` and ` Y ` in...
brcici 17707 Prove that two objects are...
cicref 17708 Isomorphism is reflexive. ...
ciclcl 17709 Isomorphism implies the le...
cicrcl 17710 Isomorphism implies the ri...
cicsym 17711 Isomorphism is symmetric. ...
cictr 17712 Isomorphism is transitive....
cicer 17713 Isomorphism is an equivale...
sscrel 17720 The subcategory subset rel...
brssc 17721 The subcategory subset rel...
sscpwex 17722 An analogue of ~ pwex for ...
subcrcl 17723 Reverse closure for the su...
sscfn1 17724 The subcategory subset rel...
sscfn2 17725 The subcategory subset rel...
ssclem 17726 Lemma for ~ ssc1 and simil...
isssc 17727 Value of the subcategory s...
ssc1 17728 Infer subset relation on o...
ssc2 17729 Infer subset relation on m...
sscres 17730 Any function restricted to...
sscid 17731 The subcategory subset rel...
ssctr 17732 The subcategory subset rel...
ssceq 17733 The subcategory subset rel...
rescval 17734 Value of the category rest...
rescval2 17735 Value of the category rest...
rescbas 17736 Base set of the category r...
reschom 17737 Hom-sets of the category r...
reschomf 17738 Hom-sets of the category r...
rescco 17739 Composition in the categor...
rescabs 17740 Restriction absorption law...
rescabs2 17741 Restriction absorption law...
issubc 17742 Elementhood in the set of ...
issubc2 17743 Elementhood in the set of ...
0ssc 17744 For any category ` C ` , t...
0subcat 17745 For any category ` C ` , t...
catsubcat 17746 For any category ` C ` , `...
subcssc 17747 An element in the set of s...
subcfn 17748 An element in the set of s...
subcss1 17749 The objects of a subcatego...
subcss2 17750 The morphisms of a subcate...
subcidcl 17751 The identity of the origin...
subccocl 17752 A subcategory is closed un...
subccatid 17753 A subcategory is a categor...
subcid 17754 The identity in a subcateg...
subccat 17755 A subcategory is a categor...
issubc3 17756 Alternate definition of a ...
fullsubc 17757 The full subcategory gener...
fullresc 17758 The category formed by str...
resscat 17759 A category restricted to a...
subsubc 17760 A subcategory of a subcate...
relfunc 17769 The set of functors is a r...
funcrcl 17770 Reverse closure for a func...
isfunc 17771 Value of the set of functo...
isfuncd 17772 Deduce that an operation i...
funcf1 17773 The object part of a funct...
funcixp 17774 The morphism part of a fun...
funcf2 17775 The morphism part of a fun...
funcfn2 17776 The morphism part of a fun...
funcid 17777 A functor maps each identi...
funcco 17778 A functor maps composition...
funcsect 17779 The image of a section und...
funcinv 17780 The image of an inverse un...
funciso 17781 The image of an isomorphis...
funcoppc 17782 A functor on categories yi...
idfuval 17783 Value of the identity func...
idfu2nd 17784 Value of the morphism part...
idfu2 17785 Value of the morphism part...
idfu1st 17786 Value of the object part o...
idfu1 17787 Value of the object part o...
idfucl 17788 The identity functor is a ...
cofuval 17789 Value of the composition o...
cofu1st 17790 Value of the object part o...
cofu1 17791 Value of the object part o...
cofu2nd 17792 Value of the morphism part...
cofu2 17793 Value of the morphism part...
cofuval2 17794 Value of the composition o...
cofucl 17795 The composition of two fun...
cofuass 17796 Functor composition is ass...
cofulid 17797 The identity functor is a ...
cofurid 17798 The identity functor is a ...
resfval 17799 Value of the functor restr...
resfval2 17800 Value of the functor restr...
resf1st 17801 Value of the functor restr...
resf2nd 17802 Value of the functor restr...
funcres 17803 A functor restricted to a ...
funcres2b 17804 Condition for a functor to...
funcres2 17805 A functor into a restricte...
idfusubc0 17806 The identity functor for a...
idfusubc 17807 The identity functor for a...
wunfunc 17808 A weak universe is closed ...
funcpropd 17809 If two categories have the...
funcres2c 17810 Condition for a functor to...
fullfunc 17815 A full functor is a functo...
fthfunc 17816 A faithful functor is a fu...
relfull 17817 The set of full functors i...
relfth 17818 The set of faithful functo...
isfull 17819 Value of the set of full f...
isfull2 17820 Equivalent condition for a...
fullfo 17821 The morphism map of a full...
fulli 17822 The morphism map of a full...
isfth 17823 Value of the set of faithf...
isfth2 17824 Equivalent condition for a...
isffth2 17825 A fully faithful functor i...
fthf1 17826 The morphism map of a fait...
fthi 17827 The morphism map of a fait...
ffthf1o 17828 The morphism map of a full...
fullpropd 17829 If two categories have the...
fthpropd 17830 If two categories have the...
fulloppc 17831 The opposite functor of a ...
fthoppc 17832 The opposite functor of a ...
ffthoppc 17833 The opposite functor of a ...
fthsect 17834 A faithful functor reflect...
fthinv 17835 A faithful functor reflect...
fthmon 17836 A faithful functor reflect...
fthepi 17837 A faithful functor reflect...
ffthiso 17838 A fully faithful functor r...
fthres2b 17839 Condition for a faithful f...
fthres2c 17840 Condition for a faithful f...
fthres2 17841 A faithful functor into a ...
idffth 17842 The identity functor is a ...
cofull 17843 The composition of two ful...
cofth 17844 The composition of two fai...
coffth 17845 The composition of two ful...
rescfth 17846 The inclusion functor from...
ressffth 17847 The inclusion functor from...
fullres2c 17848 Condition for a full funct...
ffthres2c 17849 Condition for a fully fait...
inclfusubc 17850 The "inclusion functor" fr...
fnfuc 17855 The ` FuncCat ` operation ...
natfval 17856 Value of the function givi...
isnat 17857 Property of being a natura...
isnat2 17858 Property of being a natura...
natffn 17859 The natural transformation...
natrcl 17860 Reverse closure for a natu...
nat1st2nd 17861 Rewrite the natural transf...
natixp 17862 A natural transformation i...
natcl 17863 A component of a natural t...
natfn 17864 A natural transformation i...
nati 17865 Naturality property of a n...
wunnat 17866 A weak universe is closed ...
catstr 17867 A category structure is a ...
fucval 17868 Value of the functor categ...
fuccofval 17869 Value of the functor categ...
fucbas 17870 The objects of the functor...
fuchom 17871 The morphisms in the funct...
fucco 17872 Value of the composition o...
fuccoval 17873 Value of the functor categ...
fuccocl 17874 The composition of two nat...
fucidcl 17875 The identity natural trans...
fuclid 17876 Left identity of natural t...
fucrid 17877 Right identity of natural ...
fucass 17878 Associativity of natural t...
fuccatid 17879 The functor category is a ...
fuccat 17880 The functor category is a ...
fucid 17881 The identity morphism in t...
fucsect 17882 Two natural transformation...
fucinv 17883 Two natural transformation...
invfuc 17884 If ` V ( x ) ` is an inver...
fuciso 17885 A natural transformation i...
natpropd 17886 If two categories have the...
fucpropd 17887 If two categories have the...
initofn 17894 ` InitO ` is a function on...
termofn 17895 ` TermO ` is a function on...
zeroofn 17896 ` ZeroO ` is a function on...
initorcl 17897 Reverse closure for an ini...
termorcl 17898 Reverse closure for a term...
zeroorcl 17899 Reverse closure for a zero...
initoval 17900 The value of the initial o...
termoval 17901 The value of the terminal ...
zerooval 17902 The value of the zero obje...
isinito 17903 The predicate "is an initi...
istermo 17904 The predicate "is a termin...
iszeroo 17905 The predicate "is a zero o...
isinitoi 17906 Implication of a class bei...
istermoi 17907 Implication of a class bei...
initoid 17908 For an initial object, the...
termoid 17909 For a terminal object, the...
dfinito2 17910 An initial object is a ter...
dftermo2 17911 A terminal object is an in...
dfinito3 17912 An alternate definition of...
dftermo3 17913 An alternate definition of...
initoo 17914 An initial object is an ob...
termoo 17915 A terminal object is an ob...
iszeroi 17916 Implication of a class bei...
2initoinv 17917 Morphisms between two init...
initoeu1 17918 Initial objects are essent...
initoeu1w 17919 Initial objects are essent...
initoeu2lem0 17920 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 17921 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 17922 Lemma 2 for ~ initoeu2 . ...
initoeu2 17923 Initial objects are essent...
2termoinv 17924 Morphisms between two term...
termoeu1 17925 Terminal objects are essen...
termoeu1w 17926 Terminal objects are essen...
homarcl 17935 Reverse closure for an arr...
homafval 17936 Value of the disjointified...
homaf 17937 Functionality of the disjo...
homaval 17938 Value of the disjointified...
elhoma 17939 Value of the disjointified...
elhomai 17940 Produce an arrow from a mo...
elhomai2 17941 Produce an arrow from a mo...
homarcl2 17942 Reverse closure for the do...
homarel 17943 An arrow is an ordered pai...
homa1 17944 The first component of an ...
homahom2 17945 The second component of an...
homahom 17946 The second component of an...
homadm 17947 The domain of an arrow wit...
homacd 17948 The codomain of an arrow w...
homadmcd 17949 Decompose an arrow into do...
arwval 17950 The set of arrows is the u...
arwrcl 17951 The first component of an ...
arwhoma 17952 An arrow is contained in t...
homarw 17953 A hom-set is a subset of t...
arwdm 17954 The domain of an arrow is ...
arwcd 17955 The codomain of an arrow i...
dmaf 17956 The domain function is a f...
cdaf 17957 The codomain function is a...
arwhom 17958 The second component of an...
arwdmcd 17959 Decompose an arrow into do...
idafval 17964 Value of the identity arro...
idaval 17965 Value of the identity arro...
ida2 17966 Morphism part of the ident...
idahom 17967 Domain and codomain of the...
idadm 17968 Domain of the identity arr...
idacd 17969 Codomain of the identity a...
idaf 17970 The identity arrow functio...
coafval 17971 The value of the compositi...
eldmcoa 17972 A pair ` <. G , F >. ` is ...
dmcoass 17973 The domain of composition ...
homdmcoa 17974 If ` F : X --> Y ` and ` G...
coaval 17975 Value of composition for c...
coa2 17976 The morphism part of arrow...
coahom 17977 The composition of two com...
coapm 17978 Composition of arrows is a...
arwlid 17979 Left identity of a categor...
arwrid 17980 Right identity of a catego...
arwass 17981 Associativity of compositi...
setcval 17984 Value of the category of s...
setcbas 17985 Set of objects of the cate...
setchomfval 17986 Set of arrows of the categ...
setchom 17987 Set of arrows of the categ...
elsetchom 17988 A morphism of sets is a fu...
setccofval 17989 Composition in the categor...
setcco 17990 Composition in the categor...
setccatid 17991 Lemma for ~ setccat . (Co...
setccat 17992 The category of sets is a ...
setcid 17993 The identity arrow in the ...
setcmon 17994 A monomorphism of sets is ...
setcepi 17995 An epimorphism of sets is ...
setcsect 17996 A section in the category ...
setcinv 17997 An inverse in the category...
setciso 17998 An isomorphism in the cate...
resssetc 17999 The restriction of the cat...
funcsetcres2 18000 A functor into a smaller c...
setc2obas 18001 ` (/) ` and ` 1o ` are dis...
setc2ohom 18002 ` ( SetCat `` 2o ) ` is a ...
cat1lem 18003 The category of sets in a ...
cat1 18004 The definition of category...
catcval 18007 Value of the category of c...
catcbas 18008 Set of objects of the cate...
catchomfval 18009 Set of arrows of the categ...
catchom 18010 Set of arrows of the categ...
catccofval 18011 Composition in the categor...
catcco 18012 Composition in the categor...
catccatid 18013 Lemma for ~ catccat . (Co...
catcid 18014 The identity arrow in the ...
catccat 18015 The category of categories...
resscatc 18016 The restriction of the cat...
catcisolem 18017 Lemma for ~ catciso . (Co...
catciso 18018 A functor is an isomorphis...
catcbascl 18019 An element of the base set...
catcslotelcl 18020 A slot entry of an element...
catcbaselcl 18021 The base set of an element...
catchomcl 18022 The Hom-set of an element ...
catcccocl 18023 The composition operation ...
catcoppccl 18024 The category of categories...
catcfuccl 18025 The category of categories...
fncnvimaeqv 18026 The inverse images of the ...
bascnvimaeqv 18027 The inverse image of the u...
estrcval 18030 Value of the category of e...
estrcbas 18031 Set of objects of the cate...
estrchomfval 18032 Set of morphisms ("arrows"...
estrchom 18033 The morphisms between exte...
elestrchom 18034 A morphism between extensi...
estrccofval 18035 Composition in the categor...
estrcco 18036 Composition in the categor...
estrcbasbas 18037 An element of the base set...
estrccatid 18038 Lemma for ~ estrccat . (C...
estrccat 18039 The category of extensible...
estrcid 18040 The identity arrow in the ...
estrchomfn 18041 The Hom-set operation in t...
estrchomfeqhom 18042 The functionalized Hom-set...
estrreslem1 18043 Lemma 1 for ~ estrres . (...
estrreslem2 18044 Lemma 2 for ~ estrres . (...
estrres 18045 Any restriction of a categ...
funcestrcsetclem1 18046 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 18047 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 18048 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 18049 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 18050 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 18051 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 18052 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 18053 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 18054 Lemma 9 for ~ funcestrcset...
funcestrcsetc 18055 The "natural forgetful fun...
fthestrcsetc 18056 The "natural forgetful fun...
fullestrcsetc 18057 The "natural forgetful fun...
equivestrcsetc 18058 The "natural forgetful fun...
setc1strwun 18059 A constructed one-slot str...
funcsetcestrclem1 18060 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 18061 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 18062 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 18063 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 18064 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 18065 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 18066 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 18067 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 18068 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 18069 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 18070 The "embedding functor" fr...
fthsetcestrc 18071 The "embedding functor" fr...
fullsetcestrc 18072 The "embedding functor" fr...
embedsetcestrc 18073 The "embedding functor" fr...
fnxpc 18082 The binary product of cate...
xpcval 18083 Value of the binary produc...
xpcbas 18084 Set of objects of the bina...
xpchomfval 18085 Set of morphisms of the bi...
xpchom 18086 Set of morphisms of the bi...
relxpchom 18087 A hom-set in the binary pr...
xpccofval 18088 Value of composition in th...
xpcco 18089 Value of composition in th...
xpcco1st 18090 Value of composition in th...
xpcco2nd 18091 Value of composition in th...
xpchom2 18092 Value of the set of morphi...
xpcco2 18093 Value of composition in th...
xpccatid 18094 The product of two categor...
xpcid 18095 The identity morphism in t...
xpccat 18096 The product of two categor...
1stfval 18097 Value of the first project...
1stf1 18098 Value of the first project...
1stf2 18099 Value of the first project...
2ndfval 18100 Value of the first project...
2ndf1 18101 Value of the first project...
2ndf2 18102 Value of the first project...
1stfcl 18103 The first projection funct...
2ndfcl 18104 The second projection func...
prfval 18105 Value of the pairing funct...
prf1 18106 Value of the pairing funct...
prf2fval 18107 Value of the pairing funct...
prf2 18108 Value of the pairing funct...
prfcl 18109 The pairing of functors ` ...
prf1st 18110 Cancellation of pairing wi...
prf2nd 18111 Cancellation of pairing wi...
1st2ndprf 18112 Break a functor into a pro...
catcxpccl 18113 The category of categories...
xpcpropd 18114 If two categories have the...
evlfval 18123 Value of the evaluation fu...
evlf2 18124 Value of the evaluation fu...
evlf2val 18125 Value of the evaluation na...
evlf1 18126 Value of the evaluation fu...
evlfcllem 18127 Lemma for ~ evlfcl . (Con...
evlfcl 18128 The evaluation functor is ...
curfval 18129 Value of the curry functor...
curf1fval 18130 Value of the object part o...
curf1 18131 Value of the object part o...
curf11 18132 Value of the double evalua...
curf12 18133 The partially evaluated cu...
curf1cl 18134 The partially evaluated cu...
curf2 18135 Value of the curry functor...
curf2val 18136 Value of a component of th...
curf2cl 18137 The curry functor at a mor...
curfcl 18138 The curry functor of a fun...
curfpropd 18139 If two categories have the...
uncfval 18140 Value of the uncurry funct...
uncfcl 18141 The uncurry operation take...
uncf1 18142 Value of the uncurry funct...
uncf2 18143 Value of the uncurry funct...
curfuncf 18144 Cancellation of curry with...
uncfcurf 18145 Cancellation of uncurry wi...
diagval 18146 Define the diagonal functo...
diagcl 18147 The diagonal functor is a ...
diag1cl 18148 The constant functor of ` ...
diag11 18149 Value of the constant func...
diag12 18150 Value of the constant func...
diag2 18151 Value of the diagonal func...
diag2cl 18152 The diagonal functor at a ...
curf2ndf 18153 As shown in ~ diagval , th...
hofval 18158 Value of the Hom functor, ...
hof1fval 18159 The object part of the Hom...
hof1 18160 The object part of the Hom...
hof2fval 18161 The morphism part of the H...
hof2val 18162 The morphism part of the H...
hof2 18163 The morphism part of the H...
hofcllem 18164 Lemma for ~ hofcl . (Cont...
hofcl 18165 Closure of the Hom functor...
oppchofcl 18166 Closure of the opposite Ho...
yonval 18167 Value of the Yoneda embedd...
yoncl 18168 The Yoneda embedding is a ...
yon1cl 18169 The Yoneda embedding at an...
yon11 18170 Value of the Yoneda embedd...
yon12 18171 Value of the Yoneda embedd...
yon2 18172 Value of the Yoneda embedd...
hofpropd 18173 If two categories have the...
yonpropd 18174 If two categories have the...
oppcyon 18175 Value of the opposite Yone...
oyoncl 18176 The opposite Yoneda embedd...
oyon1cl 18177 The opposite Yoneda embedd...
yonedalem1 18178 Lemma for ~ yoneda . (Con...
yonedalem21 18179 Lemma for ~ yoneda . (Con...
yonedalem3a 18180 Lemma for ~ yoneda . (Con...
yonedalem4a 18181 Lemma for ~ yoneda . (Con...
yonedalem4b 18182 Lemma for ~ yoneda . (Con...
yonedalem4c 18183 Lemma for ~ yoneda . (Con...
yonedalem22 18184 Lemma for ~ yoneda . (Con...
yonedalem3b 18185 Lemma for ~ yoneda . (Con...
yonedalem3 18186 Lemma for ~ yoneda . (Con...
yonedainv 18187 The Yoneda Lemma with expl...
yonffthlem 18188 Lemma for ~ yonffth . (Co...
yoneda 18189 The Yoneda Lemma. There i...
yonffth 18190 The Yoneda Lemma. The Yon...
yoniso 18191 If the codomain is recover...
oduval 18194 Value of an order dual str...
oduleval 18195 Value of the less-equal re...
oduleg 18196 Truth of the less-equal re...
odubas 18197 Base set of an order dual ...
isprs 18202 Property of being a preord...
prslem 18203 Lemma for ~ prsref and ~ p...
prsref 18204 "Less than or equal to" is...
prstr 18205 "Less than or equal to" is...
oduprs 18206 Being a proset is a self-d...
isdrs 18207 Property of being a direct...
drsdir 18208 Direction of a directed se...
drsprs 18209 A directed set is a proset...
drsbn0 18210 The base of a directed set...
drsdirfi 18211 Any _finite_ number of ele...
isdrs2 18212 Directed sets may be defin...
ispos 18220 The predicate "is a poset"...
ispos2 18221 A poset is an antisymmetri...
posprs 18222 A poset is a proset. (Con...
posi 18223 Lemma for poset properties...
posref 18224 A poset ordering is reflex...
posasymb 18225 A poset ordering is asymme...
postr 18226 A poset ordering is transi...
0pos 18227 Technical lemma to simplif...
isposd 18228 Properties that determine ...
isposi 18229 Properties that determine ...
isposix 18230 Properties that determine ...
pospropd 18231 Posethood is determined on...
odupos 18232 Being a poset is a self-du...
oduposb 18233 Being a poset is a self-du...
pltfval 18235 Value of the less-than rel...
pltval 18236 Less-than relation. ( ~ d...
pltle 18237 "Less than" implies "less ...
pltne 18238 The "less than" relation i...
pltirr 18239 The "less than" relation i...
pleval2i 18240 One direction of ~ pleval2...
pleval2 18241 "Less than or equal to" in...
pltnle 18242 "Less than" implies not co...
pltval3 18243 Alternate expression for t...
pltnlt 18244 The less-than relation imp...
pltn2lp 18245 The less-than relation has...
plttr 18246 The less-than relation is ...
pltletr 18247 Transitive law for chained...
plelttr 18248 Transitive law for chained...
pospo 18249 Write a poset structure in...
lubfval 18254 Value of the least upper b...
lubdm 18255 Domain of the least upper ...
lubfun 18256 The LUB is a function. (C...
lubeldm 18257 Member of the domain of th...
lubelss 18258 A member of the domain of ...
lubeu 18259 Unique existence proper of...
lubval 18260 Value of the least upper b...
lubcl 18261 The least upper bound func...
lubprop 18262 Properties of greatest low...
luble 18263 The greatest lower bound i...
lublecllem 18264 Lemma for ~ lublecl and ~ ...
lublecl 18265 The set of all elements le...
lubid 18266 The LUB of elements less t...
glbfval 18267 Value of the greatest lowe...
glbdm 18268 Domain of the greatest low...
glbfun 18269 The GLB is a function. (C...
glbeldm 18270 Member of the domain of th...
glbelss 18271 A member of the domain of ...
glbeu 18272 Unique existence proper of...
glbval 18273 Value of the greatest lowe...
glbcl 18274 The least upper bound func...
glbprop 18275 Properties of greatest low...
glble 18276 The greatest lower bound i...
joinfval 18277 Value of join function for...
joinfval2 18278 Value of join function for...
joindm 18279 Domain of join function fo...
joindef 18280 Two ways to say that a joi...
joinval 18281 Join value. Since both si...
joincl 18282 Closure of join of element...
joindmss 18283 Subset property of domain ...
joinval2lem 18284 Lemma for ~ joinval2 and ~...
joinval2 18285 Value of join for a poset ...
joineu 18286 Uniqueness of join of elem...
joinlem 18287 Lemma for join properties....
lejoin1 18288 A join's first argument is...
lejoin2 18289 A join's second argument i...
joinle 18290 A join is less than or equ...
meetfval 18291 Value of meet function for...
meetfval2 18292 Value of meet function for...
meetdm 18293 Domain of meet function fo...
meetdef 18294 Two ways to say that a mee...
meetval 18295 Meet value. Since both si...
meetcl 18296 Closure of meet of element...
meetdmss 18297 Subset property of domain ...
meetval2lem 18298 Lemma for ~ meetval2 and ~...
meetval2 18299 Value of meet for a poset ...
meeteu 18300 Uniqueness of meet of elem...
meetlem 18301 Lemma for meet properties....
lemeet1 18302 A meet's first argument is...
lemeet2 18303 A meet's second argument i...
meetle 18304 A meet is less than or equ...
joincomALT 18305 The join of a poset is com...
joincom 18306 The join of a poset is com...
meetcomALT 18307 The meet of a poset is com...
meetcom 18308 The meet of a poset is com...
join0 18309 Lemma for ~ odumeet . (Co...
meet0 18310 Lemma for ~ odujoin . (Co...
odulub 18311 Least upper bounds in a du...
odujoin 18312 Joins in a dual order are ...
oduglb 18313 Greatest lower bounds in a...
odumeet 18314 Meets in a dual order are ...
poslubmo 18315 Least upper bounds in a po...
posglbmo 18316 Greatest lower bounds in a...
poslubd 18317 Properties which determine...
poslubdg 18318 Properties which determine...
posglbdg 18319 Properties which determine...
istos 18322 The predicate "is a toset"...
tosso 18323 Write the totally ordered ...
tospos 18324 A Toset is a Poset. (Cont...
tleile 18325 In a Toset, any two elemen...
tltnle 18326 In a Toset, "less than" is...
p0val 18331 Value of poset zero. (Con...
p1val 18332 Value of poset zero. (Con...
p0le 18333 Any element is less than o...
ple1 18334 Any element is less than o...
resspos 18335 The restriction of a Poset...
resstos 18336 The restriction of a Toset...
islat 18339 The predicate "is a lattic...
odulatb 18340 Being a lattice is self-du...
odulat 18341 Being a lattice is self-du...
latcl2 18342 The join and meet of any t...
latlem 18343 Lemma for lattice properti...
latpos 18344 A lattice is a poset. (Co...
latjcl 18345 Closure of join operation ...
latmcl 18346 Closure of meet operation ...
latref 18347 A lattice ordering is refl...
latasymb 18348 A lattice ordering is asym...
latasym 18349 A lattice ordering is asym...
lattr 18350 A lattice ordering is tran...
latasymd 18351 Deduce equality from latti...
lattrd 18352 A lattice ordering is tran...
latjcom 18353 The join of a lattice comm...
latlej1 18354 A join's first argument is...
latlej2 18355 A join's second argument i...
latjle12 18356 A join is less than or equ...
latleeqj1 18357 "Less than or equal to" in...
latleeqj2 18358 "Less than or equal to" in...
latjlej1 18359 Add join to both sides of ...
latjlej2 18360 Add join to both sides of ...
latjlej12 18361 Add join to both sides of ...
latnlej 18362 An idiom to express that a...
latnlej1l 18363 An idiom to express that a...
latnlej1r 18364 An idiom to express that a...
latnlej2 18365 An idiom to express that a...
latnlej2l 18366 An idiom to express that a...
latnlej2r 18367 An idiom to express that a...
latjidm 18368 Lattice join is idempotent...
latmcom 18369 The join of a lattice comm...
latmle1 18370 A meet is less than or equ...
latmle2 18371 A meet is less than or equ...
latlem12 18372 An element is less than or...
latleeqm1 18373 "Less than or equal to" in...
latleeqm2 18374 "Less than or equal to" in...
latmlem1 18375 Add meet to both sides of ...
latmlem2 18376 Add meet to both sides of ...
latmlem12 18377 Add join to both sides of ...
latnlemlt 18378 Negation of "less than or ...
latnle 18379 Equivalent expressions for...
latmidm 18380 Lattice meet is idempotent...
latabs1 18381 Lattice absorption law. F...
latabs2 18382 Lattice absorption law. F...
latledi 18383 An ortholattice is distrib...
latmlej11 18384 Ordering of a meet and joi...
latmlej12 18385 Ordering of a meet and joi...
latmlej21 18386 Ordering of a meet and joi...
latmlej22 18387 Ordering of a meet and joi...
lubsn 18388 The least upper bound of a...
latjass 18389 Lattice join is associativ...
latj12 18390 Swap 1st and 2nd members o...
latj32 18391 Swap 2nd and 3rd members o...
latj13 18392 Swap 1st and 3rd members o...
latj31 18393 Swap 2nd and 3rd members o...
latjrot 18394 Rotate lattice join of 3 c...
latj4 18395 Rearrangement of lattice j...
latj4rot 18396 Rotate lattice join of 4 c...
latjjdi 18397 Lattice join distributes o...
latjjdir 18398 Lattice join distributes o...
mod1ile 18399 The weak direction of the ...
mod2ile 18400 The weak direction of the ...
latmass 18401 Lattice meet is associativ...
latdisdlem 18402 Lemma for ~ latdisd . (Co...
latdisd 18403 In a lattice, joins distri...
isclat 18406 The predicate "is a comple...
clatpos 18407 A complete lattice is a po...
clatlem 18408 Lemma for properties of a ...
clatlubcl 18409 Any subset of the base set...
clatlubcl2 18410 Any subset of the base set...
clatglbcl 18411 Any subset of the base set...
clatglbcl2 18412 Any subset of the base set...
oduclatb 18413 Being a complete lattice i...
clatl 18414 A complete lattice is a la...
isglbd 18415 Properties that determine ...
lublem 18416 Lemma for the least upper ...
lubub 18417 The LUB of a complete latt...
lubl 18418 The LUB of a complete latt...
lubss 18419 Subset law for least upper...
lubel 18420 An element of a set is les...
lubun 18421 The LUB of a union. (Cont...
clatglb 18422 Properties of greatest low...
clatglble 18423 The greatest lower bound i...
clatleglb 18424 Two ways of expressing "le...
clatglbss 18425 Subset law for greatest lo...
isdlat 18428 Property of being a distri...
dlatmjdi 18429 In a distributive lattice,...
dlatl 18430 A distributive lattice is ...
odudlatb 18431 The dual of a distributive...
dlatjmdi 18432 In a distributive lattice,...
ipostr 18435 The structure of ~ df-ipo ...
ipoval 18436 Value of the inclusion pos...
ipobas 18437 Base set of the inclusion ...
ipolerval 18438 Relation of the inclusion ...
ipotset 18439 Topology of the inclusion ...
ipole 18440 Weak order condition of th...
ipolt 18441 Strict order condition of ...
ipopos 18442 The inclusion poset on a f...
isipodrs 18443 Condition for a family of ...
ipodrscl 18444 Direction by inclusion as ...
ipodrsfi 18445 Finite upper bound propert...
fpwipodrs 18446 The finite subsets of any ...
ipodrsima 18447 The monotone image of a di...
isacs3lem 18448 An algebraic closure syste...
acsdrsel 18449 An algebraic closure syste...
isacs4lem 18450 In a closure system in whi...
isacs5lem 18451 If closure commutes with d...
acsdrscl 18452 In an algebraic closure sy...
acsficl 18453 A closure in an algebraic ...
isacs5 18454 A closure system is algebr...
isacs4 18455 A closure system is algebr...
isacs3 18456 A closure system is algebr...
acsficld 18457 In an algebraic closure sy...
acsficl2d 18458 In an algebraic closure sy...
acsfiindd 18459 In an algebraic closure sy...
acsmapd 18460 In an algebraic closure sy...
acsmap2d 18461 In an algebraic closure sy...
acsinfd 18462 In an algebraic closure sy...
acsdomd 18463 In an algebraic closure sy...
acsinfdimd 18464 In an algebraic closure sy...
acsexdimd 18465 In an algebraic closure sy...
mrelatglb 18466 Greatest lower bounds in a...
mrelatglb0 18467 The empty intersection in ...
mrelatlub 18468 Least upper bounds in a Mo...
mreclatBAD 18469 A Moore space is a complet...
isps 18474 The predicate "is a poset"...
psrel 18475 A poset is a relation. (C...
psref2 18476 A poset is antisymmetric a...
pstr2 18477 A poset is transitive. (C...
pslem 18478 Lemma for ~ psref and othe...
psdmrn 18479 The domain and range of a ...
psref 18480 A poset is reflexive. (Co...
psrn 18481 The range of a poset equal...
psasym 18482 A poset is antisymmetric. ...
pstr 18483 A poset is transitive. (C...
cnvps 18484 The converse of a poset is...
cnvpsb 18485 The converse of a poset is...
psss 18486 Any subset of a partially ...
psssdm2 18487 Field of a subposet. (Con...
psssdm 18488 Field of a subposet. (Con...
istsr 18489 The predicate is a toset. ...
istsr2 18490 The predicate is a toset. ...
tsrlin 18491 A toset is a linear order....
tsrlemax 18492 Two ways of saying a numbe...
tsrps 18493 A toset is a poset. (Cont...
cnvtsr 18494 The converse of a toset is...
tsrss 18495 Any subset of a totally or...
ledm 18496 The domain of ` <_ ` is ` ...
lern 18497 The range of ` <_ ` is ` R...
lefld 18498 The field of the 'less or ...
letsr 18499 The "less than or equal to...
isdir 18504 A condition for a relation...
reldir 18505 A direction is a relation....
dirdm 18506 A direction's domain is eq...
dirref 18507 A direction is reflexive. ...
dirtr 18508 A direction is transitive....
dirge 18509 For any two elements of a ...
tsrdir 18510 A totally ordered set is a...
ischn 18513 Property of being a chain....
chnwrd 18514 A chain is an ordered sequ...
chnltm1 18515 Basic property of a chain....
pfxchn 18516 A prefix of a chain is sti...
nfchnd 18517 Bound-variable hypothesis ...
chneq1 18518 Equality theorem for chain...
chneq2 18519 Equality theorem for chain...
chneq12 18520 Equality theorem for chain...
chnrss 18521 Chains under a relation ar...
chndss 18522 Chains with an alphabet ar...
chnrdss 18523 Subset theorem for chains....
chnexg 18524 Chains with a set given fo...
nulchn 18525 Empty set is an increasing...
s1chn 18526 A singleton word is always...
chnind 18527 Induction over a chain. S...
chnub 18528 In a chain, the last eleme...
chnlt 18529 Compare any two elements i...
chnso 18530 A chain induces a total or...
chnccats1 18531 Extend a chain with a sing...
chnccat 18532 Concatenate two chains. (...
chnrev 18533 Reverse of a chain is chai...
chnflenfi 18534 There is a finite number o...
chnf 18535 A chain is a zero-based fi...
chnpof1 18536 A chain under relation whi...
chnpoadomd 18537 A chain under relation whi...
chnpolleha 18538 A chain under relation whi...
chnpolfz 18539 Provided that chain's rela...
chnfi 18540 There is a finite number o...
chninf 18541 There is an infinite numbe...
chnfibg 18542 Given a partial order, the...
ex-chn1 18543 Example: a doubleton of tw...
ex-chn2 18544 Example: sequence <" ZZ NN...
ismgm 18549 The predicate "is a magma"...
ismgmn0 18550 The predicate "is a magma"...
mgmcl 18551 Closure of the operation o...
isnmgm 18552 A condition for a structur...
mgmsscl 18553 If the base set of a magma...
plusffval 18554 The group addition operati...
plusfval 18555 The group addition operati...
plusfeq 18556 If the addition operation ...
plusffn 18557 The group addition operati...
mgmplusf 18558 The group addition functio...
mgmpropd 18559 If two structures have the...
ismgmd 18560 Deduce a magma from its pr...
issstrmgm 18561 Characterize a substructur...
intopsn 18562 The internal operation for...
mgmb1mgm1 18563 The only magma with a base...
mgm0 18564 Any set with an empty base...
mgm0b 18565 The structure with an empt...
mgm1 18566 The structure with one ele...
opifismgm 18567 A structure with a group a...
mgmidmo 18568 A two-sided identity eleme...
grpidval 18569 The value of the identity ...
grpidpropd 18570 If two structures have the...
fn0g 18571 The group zero extractor i...
0g0 18572 The identity element funct...
ismgmid 18573 The identity element of a ...
mgmidcl 18574 The identity element of a ...
mgmlrid 18575 The identity element of a ...
ismgmid2 18576 Show that a given element ...
lidrideqd 18577 If there is a left and rig...
lidrididd 18578 If there is a left and rig...
grpidd 18579 Deduce the identity elemen...
mgmidsssn0 18580 Property of the set of ide...
grpinvalem 18581 Lemma for ~ grpinva . (Co...
grpinva 18582 Deduce right inverse from ...
grprida 18583 Deduce right identity from...
gsumvalx 18584 Expand out the substitutio...
gsumval 18585 Expand out the substitutio...
gsumpropd 18586 The group sum depends only...
gsumpropd2lem 18587 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18588 A stronger version of ~ gs...
gsummgmpropd 18589 A stronger version of ~ gs...
gsumress 18590 The group sum in a substru...
gsumval1 18591 Value of the group sum ope...
gsum0 18592 Value of the empty group s...
gsumval2a 18593 Value of the group sum ope...
gsumval2 18594 Value of the group sum ope...
gsumsplit1r 18595 Splitting off the rightmos...
gsumprval 18596 Value of the group sum ope...
gsumpr12val 18597 Value of the group sum ope...
mgmhmrcl 18602 Reverse closure of a magma...
submgmrcl 18603 Reverse closure for submag...
ismgmhm 18604 Property of a magma homomo...
mgmhmf 18605 A magma homomorphism is a ...
mgmhmpropd 18606 Magma homomorphism depends...
mgmhmlin 18607 A magma homomorphism prese...
mgmhmf1o 18608 A magma homomorphism is bi...
idmgmhm 18609 The identity homomorphism ...
issubmgm 18610 Expand definition of a sub...
issubmgm2 18611 Submagmas are subsets that...
rabsubmgmd 18612 Deduction for proving that...
submgmss 18613 Submagmas are subsets of t...
submgmid 18614 Every magma is trivially a...
submgmcl 18615 Submagmas are closed under...
submgmmgm 18616 Submagmas are themselves m...
submgmbas 18617 The base set of a submagma...
subsubmgm 18618 A submagma of a submagma i...
resmgmhm 18619 Restriction of a magma hom...
resmgmhm2 18620 One direction of ~ resmgmh...
resmgmhm2b 18621 Restriction of the codomai...
mgmhmco 18622 The composition of magma h...
mgmhmima 18623 The homomorphic image of a...
mgmhmeql 18624 The equalizer of two magma...
submgmacs 18625 Submagmas are an algebraic...
issgrp 18628 The predicate "is a semigr...
issgrpv 18629 The predicate "is a semigr...
issgrpn0 18630 The predicate "is a semigr...
isnsgrp 18631 A condition for a structur...
sgrpmgm 18632 A semigroup is a magma. (...
sgrpass 18633 A semigroup operation is a...
sgrpcl 18634 Closure of the operation o...
sgrp0 18635 Any set with an empty base...
sgrp0b 18636 The structure with an empt...
sgrp1 18637 The structure with one ele...
issgrpd 18638 Deduce a semigroup from it...
sgrppropd 18639 If two structures are sets...
prdsplusgsgrpcl 18640 Structure product pointwis...
prdssgrpd 18641 The product of a family of...
ismnddef 18644 The predicate "is a monoid...
ismnd 18645 The predicate "is a monoid...
isnmnd 18646 A condition for a structur...
sgrpidmnd 18647 A semigroup with an identi...
mndsgrp 18648 A monoid is a semigroup. ...
mndmgm 18649 A monoid is a magma. (Con...
mndcl 18650 Closure of the operation o...
mndass 18651 A monoid operation is asso...
mndid 18652 A monoid has a two-sided i...
mndideu 18653 The two-sided identity ele...
mnd32g 18654 Commutative/associative la...
mnd12g 18655 Commutative/associative la...
mnd4g 18656 Commutative/associative la...
mndidcl 18657 The identity element of a ...
mndbn0 18658 The base set of a monoid i...
hashfinmndnn 18659 A finite monoid has positi...
mndplusf 18660 The group addition operati...
mndlrid 18661 A monoid's identity elemen...
mndlid 18662 The identity element of a ...
mndrid 18663 The identity element of a ...
ismndd 18664 Deduce a monoid from its p...
mndpfo 18665 The addition operation of ...
mndfo 18666 The addition operation of ...
mndpropd 18667 If two structures have the...
mndprop 18668 If two structures have the...
issubmnd 18669 Characterize a submonoid b...
ress0g 18670 ` 0g ` is unaffected by re...
submnd0 18671 The zero of a submonoid is...
mndinvmod 18672 Uniqueness of an inverse e...
mndpsuppss 18673 The support of a mapping o...
mndpsuppfi 18674 The support of a mapping o...
mndpfsupp 18675 A mapping of a scalar mult...
prdsplusgcl 18676 Structure product pointwis...
prdsidlem 18677 Characterization of identi...
prdsmndd 18678 The product of a family of...
prds0g 18679 The identity in a product ...
pwsmnd 18680 The structure power of a m...
pws0g 18681 The identity in a structur...
imasmnd2 18682 The image structure of a m...
imasmnd 18683 The image structure of a m...
imasmndf1 18684 The image of a monoid unde...
xpsmnd 18685 The binary product of mono...
xpsmnd0 18686 The identity element of a ...
mnd1 18687 The (smallest) structure r...
mnd1id 18688 The singleton element of a...
ismhm 18693 Property of a monoid homom...
ismhmd 18694 Deduction version of ~ ism...
mhmrcl1 18695 Reverse closure of a monoi...
mhmrcl2 18696 Reverse closure of a monoi...
mhmf 18697 A monoid homomorphism is a...
ismhm0 18698 Property of a monoid homom...
mhmismgmhm 18699 Each monoid homomorphism i...
mhmpropd 18700 Monoid homomorphism depend...
mhmlin 18701 A monoid homomorphism comm...
mhm0 18702 A monoid homomorphism pres...
idmhm 18703 The identity homomorphism ...
mhmf1o 18704 A monoid homomorphism is b...
mndvcl 18705 Tuple-wise additive closur...
mndvass 18706 Tuple-wise associativity i...
mndvlid 18707 Tuple-wise left identity i...
mndvrid 18708 Tuple-wise right identity ...
mhmvlin 18709 Tuple extension of monoid ...
submrcl 18710 Reverse closure for submon...
issubm 18711 Expand definition of a sub...
issubm2 18712 Submonoids are subsets tha...
issubmndb 18713 The submonoid predicate. ...
issubmd 18714 Deduction for proving a su...
mndissubm 18715 If the base set of a monoi...
resmndismnd 18716 If the base set of a monoi...
submss 18717 Submonoids are subsets of ...
submid 18718 Every monoid is trivially ...
subm0cl 18719 Submonoids contain zero. ...
submcl 18720 Submonoids are closed unde...
submmnd 18721 Submonoids are themselves ...
submbas 18722 The base set of a submonoi...
subm0 18723 Submonoids have the same i...
subsubm 18724 A submonoid of a submonoid...
0subm 18725 The zero submonoid of an a...
insubm 18726 The intersection of two su...
0mhm 18727 The constant zero linear f...
resmhm 18728 Restriction of a monoid ho...
resmhm2 18729 One direction of ~ resmhm2...
resmhm2b 18730 Restriction of the codomai...
mhmco 18731 The composition of monoid ...
mhmimalem 18732 Lemma for ~ mhmima and sim...
mhmima 18733 The homomorphic image of a...
mhmeql 18734 The equalizer of two monoi...
submacs 18735 Submonoids are an algebrai...
mndind 18736 Induction in a monoid. In...
prdspjmhm 18737 A projection from a produc...
pwspjmhm 18738 A projection from a struct...
pwsdiagmhm 18739 Diagonal monoid homomorphi...
pwsco1mhm 18740 Right composition with a f...
pwsco2mhm 18741 Left composition with a mo...
gsumvallem2 18742 Lemma for properties of th...
gsumsubm 18743 Evaluate a group sum in a ...
gsumz 18744 Value of a group sum over ...
gsumwsubmcl 18745 Closure of the composite i...
gsumws1 18746 A singleton composite reco...
gsumwcl 18747 Closure of the composite o...
gsumsgrpccat 18748 Homomorphic property of no...
gsumccat 18749 Homomorphic property of co...
gsumws2 18750 Valuation of a pair in a m...
gsumccatsn 18751 Homomorphic property of co...
gsumspl 18752 The primary purpose of the...
gsumwmhm 18753 Behavior of homomorphisms ...
gsumwspan 18754 The submonoid generated by...
frmdval 18759 Value of the free monoid c...
frmdbas 18760 The base set of a free mon...
frmdelbas 18761 An element of the base set...
frmdplusg 18762 The monoid operation of a ...
frmdadd 18763 Value of the monoid operat...
vrmdfval 18764 The canonical injection fr...
vrmdval 18765 The value of the generatin...
vrmdf 18766 The mapping from the index...
frmdmnd 18767 A free monoid is a monoid....
frmd0 18768 The identity of the free m...
frmdsssubm 18769 The set of words taking va...
frmdgsum 18770 Any word in a free monoid ...
frmdss2 18771 A subset of generators is ...
frmdup1 18772 Any assignment of the gene...
frmdup2 18773 The evaluation map has the...
frmdup3lem 18774 Lemma for ~ frmdup3 . (Co...
frmdup3 18775 Universal property of the ...
efmnd 18778 The monoid of endofunction...
efmndbas 18779 The base set of the monoid...
efmndbasabf 18780 The base set of the monoid...
elefmndbas 18781 Two ways of saying a funct...
elefmndbas2 18782 Two ways of saying a funct...
efmndbasf 18783 Elements in the monoid of ...
efmndhash 18784 The monoid of endofunction...
efmndbasfi 18785 The monoid of endofunction...
efmndfv 18786 The function value of an e...
efmndtset 18787 The topology of the monoid...
efmndplusg 18788 The group operation of a m...
efmndov 18789 The value of the group ope...
efmndcl 18790 The group operation of the...
efmndtopn 18791 The topology of the monoid...
symggrplem 18792 Lemma for ~ symggrp and ~ ...
efmndmgm 18793 The monoid of endofunction...
efmndsgrp 18794 The monoid of endofunction...
ielefmnd 18795 The identity function rest...
efmndid 18796 The identity function rest...
efmndmnd 18797 The monoid of endofunction...
efmnd0nmnd 18798 Even the monoid of endofun...
efmndbas0 18799 The base set of the monoid...
efmnd1hash 18800 The monoid of endofunction...
efmnd1bas 18801 The monoid of endofunction...
efmnd2hash 18802 The monoid of endofunction...
submefmnd 18803 If the base set of a monoi...
sursubmefmnd 18804 The set of surjective endo...
injsubmefmnd 18805 The set of injective endof...
idressubmefmnd 18806 The singleton containing o...
idresefmnd 18807 The structure with the sin...
smndex1ibas 18808 The modulo function ` I ` ...
smndex1iidm 18809 The modulo function ` I ` ...
smndex1gbas 18810 The constant functions ` (...
smndex1gid 18811 The composition of a const...
smndex1igid 18812 The composition of the mod...
smndex1basss 18813 The modulo function ` I ` ...
smndex1bas 18814 The base set of the monoid...
smndex1mgm 18815 The monoid of endofunction...
smndex1sgrp 18816 The monoid of endofunction...
smndex1mndlem 18817 Lemma for ~ smndex1mnd and...
smndex1mnd 18818 The monoid of endofunction...
smndex1id 18819 The modulo function ` I ` ...
smndex1n0mnd 18820 The identity of the monoid...
nsmndex1 18821 The base set ` B ` of the ...
smndex2dbas 18822 The doubling function ` D ...
smndex2dnrinv 18823 The doubling function ` D ...
smndex2hbas 18824 The halving functions ` H ...
smndex2dlinvh 18825 The halving functions ` H ...
mgm2nsgrplem1 18826 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18827 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18828 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18829 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18830 A small magma (with two el...
sgrp2nmndlem1 18831 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18832 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18833 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18834 A small semigroup (with tw...
sgrp2rid2ex 18835 A small semigroup (with tw...
sgrp2nmndlem4 18836 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18837 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18838 A small semigroup (with tw...
mgmnsgrpex 18839 There is a magma which is ...
sgrpnmndex 18840 There is a semigroup which...
sgrpssmgm 18841 The class of all semigroup...
mndsssgrp 18842 The class of all monoids i...
pwmndgplus 18843 The operation of the monoi...
pwmndid 18844 The identity of the monoid...
pwmnd 18845 The power set of a class `...
isgrp 18852 The predicate "is a group"...
grpmnd 18853 A group is a monoid. (Con...
grpcl 18854 Closure of the operation o...
grpass 18855 A group operation is assoc...
grpinvex 18856 Every member of a group ha...
grpideu 18857 The two-sided identity ele...
grpassd 18858 A group operation is assoc...
grpmndd 18859 A group is a monoid. (Con...
grpcld 18860 Closure of the operation o...
grpplusf 18861 The group addition operati...
grpplusfo 18862 The group addition operati...
resgrpplusfrn 18863 The underlying set of a gr...
grppropd 18864 If two structures have the...
grpprop 18865 If two structures have the...
grppropstr 18866 Generalize a specific 2-el...
grpss 18867 Show that a structure exte...
isgrpd2e 18868 Deduce a group from its pr...
isgrpd2 18869 Deduce a group from its pr...
isgrpde 18870 Deduce a group from its pr...
isgrpd 18871 Deduce a group from its pr...
isgrpi 18872 Properties that determine ...
grpsgrp 18873 A group is a semigroup. (...
grpmgmd 18874 A group is a magma, deduct...
dfgrp2 18875 Alternate definition of a ...
dfgrp2e 18876 Alternate definition of a ...
isgrpix 18877 Properties that determine ...
grpidcl 18878 The identity element of a ...
grpbn0 18879 The base set of a group is...
grplid 18880 The identity element of a ...
grprid 18881 The identity element of a ...
grplidd 18882 The identity element of a ...
grpridd 18883 The identity element of a ...
grpn0 18884 A group is not empty. (Co...
hashfingrpnn 18885 A finite group has positiv...
grprcan 18886 Right cancellation law for...
grpinveu 18887 The left inverse element o...
grpid 18888 Two ways of saying that an...
isgrpid2 18889 Properties showing that an...
grpidd2 18890 Deduce the identity elemen...
grpinvfval 18891 The inverse function of a ...
grpinvfvalALT 18892 Shorter proof of ~ grpinvf...
grpinvval 18893 The inverse of a group ele...
grpinvfn 18894 Functionality of the group...
grpinvfvi 18895 The group inverse function...
grpsubfval 18896 Group subtraction (divisio...
grpsubfvalALT 18897 Shorter proof of ~ grpsubf...
grpsubval 18898 Group subtraction (divisio...
grpinvf 18899 The group inversion operat...
grpinvcl 18900 A group element's inverse ...
grpinvcld 18901 A group element's inverse ...
grplinv 18902 The left inverse of a grou...
grprinv 18903 The right inverse of a gro...
grpinvid1 18904 The inverse of a group ele...
grpinvid2 18905 The inverse of a group ele...
isgrpinv 18906 Properties showing that a ...
grplinvd 18907 The left inverse of a grou...
grprinvd 18908 The right inverse of a gro...
grplrinv 18909 In a group, every member h...
grpidinv2 18910 A group's properties using...
grpidinv 18911 A group has a left and rig...
grpinvid 18912 The inverse of the identit...
grplcan 18913 Left cancellation law for ...
grpasscan1 18914 An associative cancellatio...
grpasscan2 18915 An associative cancellatio...
grpidrcan 18916 If right adding an element...
grpidlcan 18917 If left adding an element ...
grpinvinv 18918 Double inverse law for gro...
grpinvcnv 18919 The group inverse is its o...
grpinv11 18920 The group inverse is one-t...
grpinv11OLD 18921 Obsolete version of ~ grpi...
grpinvf1o 18922 The group inverse is a one...
grpinvnz 18923 The inverse of a nonzero g...
grpinvnzcl 18924 The inverse of a nonzero g...
grpsubinv 18925 Subtraction of an inverse....
grplmulf1o 18926 Left multiplication by a g...
grpraddf1o 18927 Right addition by a group ...
grpinvpropd 18928 If two structures have the...
grpidssd 18929 If the base set of a group...
grpinvssd 18930 If the base set of a group...
grpinvadd 18931 The inverse of the group o...
grpsubf 18932 Functionality of group sub...
grpsubcl 18933 Closure of group subtracti...
grpsubrcan 18934 Right cancellation law for...
grpinvsub 18935 Inverse of a group subtrac...
grpinvval2 18936 A ~ df-neg -like equation ...
grpsubid 18937 Subtraction of a group ele...
grpsubid1 18938 Subtraction of the identit...
grpsubeq0 18939 If the difference between ...
grpsubadd0sub 18940 Subtraction expressed as a...
grpsubadd 18941 Relationship between group...
grpsubsub 18942 Double group subtraction. ...
grpaddsubass 18943 Associative-type law for g...
grppncan 18944 Cancellation law for subtr...
grpnpcan 18945 Cancellation law for subtr...
grpsubsub4 18946 Double group subtraction (...
grppnpcan2 18947 Cancellation law for mixed...
grpnpncan 18948 Cancellation law for group...
grpnpncan0 18949 Cancellation law for group...
grpnnncan2 18950 Cancellation law for group...
dfgrp3lem 18951 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18952 Alternate definition of a ...
dfgrp3e 18953 Alternate definition of a ...
grplactfval 18954 The left group action of e...
grplactval 18955 The value of the left grou...
grplactcnv 18956 The left group action of e...
grplactf1o 18957 The left group action of e...
grpsubpropd 18958 Weak property deduction fo...
grpsubpropd2 18959 Strong property deduction ...
grp1 18960 The (smallest) structure r...
grp1inv 18961 The inverse function of th...
prdsinvlem 18962 Characterization of invers...
prdsgrpd 18963 The product of a family of...
prdsinvgd 18964 Negation in a product of g...
pwsgrp 18965 A structure power of a gro...
pwsinvg 18966 Negation in a group power....
pwssub 18967 Subtraction in a group pow...
imasgrp2 18968 The image structure of a g...
imasgrp 18969 The image structure of a g...
imasgrpf1 18970 The image of a group under...
qusgrp2 18971 Prove that a quotient stru...
xpsgrp 18972 The binary product of grou...
xpsinv 18973 Value of the negation oper...
xpsgrpsub 18974 Value of the subtraction o...
mhmlem 18975 Lemma for ~ mhmmnd and ~ g...
mhmid 18976 A surjective monoid morphi...
mhmmnd 18977 The image of a monoid ` G ...
mhmfmhm 18978 The function fulfilling th...
ghmgrp 18979 The image of a group ` G `...
mulgfval 18982 Group multiple (exponentia...
mulgfvalALT 18983 Shorter proof of ~ mulgfva...
mulgval 18984 Value of the group multipl...
mulgfn 18985 Functionality of the group...
mulgfvi 18986 The group multiple operati...
mulg0 18987 Group multiple (exponentia...
mulgnn 18988 Group multiple (exponentia...
ressmulgnn 18989 Values for the group multi...
ressmulgnn0 18990 Values for the group multi...
ressmulgnnd 18991 Values for the group multi...
mulgnngsum 18992 Group multiple (exponentia...
mulgnn0gsum 18993 Group multiple (exponentia...
mulg1 18994 Group multiple (exponentia...
mulgnnp1 18995 Group multiple (exponentia...
mulg2 18996 Group multiple (exponentia...
mulgnegnn 18997 Group multiple (exponentia...
mulgnn0p1 18998 Group multiple (exponentia...
mulgnnsubcl 18999 Closure of the group multi...
mulgnn0subcl 19000 Closure of the group multi...
mulgsubcl 19001 Closure of the group multi...
mulgnncl 19002 Closure of the group multi...
mulgnn0cl 19003 Closure of the group multi...
mulgcl 19004 Closure of the group multi...
mulgneg 19005 Group multiple (exponentia...
mulgnegneg 19006 The inverse of a negative ...
mulgm1 19007 Group multiple (exponentia...
mulgnn0cld 19008 Closure of the group multi...
mulgcld 19009 Deduction associated with ...
mulgaddcomlem 19010 Lemma for ~ mulgaddcom . ...
mulgaddcom 19011 The group multiple operato...
mulginvcom 19012 The group multiple operato...
mulginvinv 19013 The group multiple operato...
mulgnn0z 19014 A group multiple of the id...
mulgz 19015 A group multiple of the id...
mulgnndir 19016 Sum of group multiples, fo...
mulgnn0dir 19017 Sum of group multiples, ge...
mulgdirlem 19018 Lemma for ~ mulgdir . (Co...
mulgdir 19019 Sum of group multiples, ge...
mulgp1 19020 Group multiple (exponentia...
mulgneg2 19021 Group multiple (exponentia...
mulgnnass 19022 Product of group multiples...
mulgnn0ass 19023 Product of group multiples...
mulgass 19024 Product of group multiples...
mulgassr 19025 Reversed product of group ...
mulgmodid 19026 Casting out multiples of t...
mulgsubdir 19027 Distribution of group mult...
mhmmulg 19028 A homomorphism of monoids ...
mulgpropd 19029 Two structures with the sa...
submmulgcl 19030 Closure of the group multi...
submmulg 19031 A group multiple is the sa...
pwsmulg 19032 Value of a group multiple ...
issubg 19039 The subgroup predicate. (...
subgss 19040 A subgroup is a subset. (...
subgid 19041 A group is a subgroup of i...
subggrp 19042 A subgroup is a group. (C...
subgbas 19043 The base of the restricted...
subgrcl 19044 Reverse closure for the su...
subg0 19045 A subgroup of a group must...
subginv 19046 The inverse of an element ...
subg0cl 19047 The group identity is an e...
subginvcl 19048 The inverse of an element ...
subgcl 19049 A subgroup is closed under...
subgsubcl 19050 A subgroup is closed under...
subgsub 19051 The subtraction of element...
subgmulgcl 19052 Closure of the group multi...
subgmulg 19053 A group multiple is the sa...
issubg2 19054 Characterize the subgroups...
issubgrpd2 19055 Prove a subgroup by closur...
issubgrpd 19056 Prove a subgroup by closur...
issubg3 19057 A subgroup is a symmetric ...
issubg4 19058 A subgroup is a nonempty s...
grpissubg 19059 If the base set of a group...
resgrpisgrp 19060 If the base set of a group...
subgsubm 19061 A subgroup is a submonoid....
subsubg 19062 A subgroup of a subgroup i...
subgint 19063 The intersection of a none...
0subg 19064 The zero subgroup of an ar...
trivsubgd 19065 The only subgroup of a tri...
trivsubgsnd 19066 The only subgroup of a tri...
isnsg 19067 Property of being a normal...
isnsg2 19068 Weaken the condition of ~ ...
nsgbi 19069 Defining property of a nor...
nsgsubg 19070 A normal subgroup is a sub...
nsgconj 19071 The conjugation of an elem...
isnsg3 19072 A subgroup is normal iff t...
subgacs 19073 Subgroups are an algebraic...
nsgacs 19074 Normal subgroups form an a...
elnmz 19075 Elementhood in the normali...
nmzbi 19076 Defining property of the n...
nmzsubg 19077 The normalizer N_G(S) of a...
ssnmz 19078 A subgroup is a subset of ...
isnsg4 19079 A subgroup is normal iff i...
nmznsg 19080 Any subgroup is a normal s...
0nsg 19081 The zero subgroup is norma...
nsgid 19082 The whole group is a norma...
0idnsgd 19083 The whole group and the ze...
trivnsgd 19084 The only normal subgroup o...
triv1nsgd 19085 A trivial group has exactl...
1nsgtrivd 19086 A group with exactly one n...
releqg 19087 The left coset equivalence...
eqgfval 19088 Value of the subgroup left...
eqgval 19089 Value of the subgroup left...
eqger 19090 The subgroup coset equival...
eqglact 19091 A left coset can be expres...
eqgid 19092 The left coset containing ...
eqgen 19093 Each coset is equipotent t...
eqgcpbl 19094 The subgroup coset equival...
eqg0el 19095 Equivalence class of a quo...
quselbas 19096 Membership in the base set...
quseccl0 19097 Closure of the quotient ma...
qusgrp 19098 If ` Y ` is a normal subgr...
quseccl 19099 Closure of the quotient ma...
qusadd 19100 Value of the group operati...
qus0 19101 Value of the group identit...
qusinv 19102 Value of the group inverse...
qussub 19103 Value of the group subtrac...
ecqusaddd 19104 Addition of equivalence cl...
ecqusaddcl 19105 Closure of the addition in...
lagsubg2 19106 Lagrange's theorem for fin...
lagsubg 19107 Lagrange's theorem for Gro...
eqg0subg 19108 The coset equivalence rela...
eqg0subgecsn 19109 The equivalence classes mo...
qus0subgbas 19110 The base set of a quotient...
qus0subgadd 19111 The addition in a quotient...
cycsubmel 19112 Characterization of an ele...
cycsubmcl 19113 The set of nonnegative int...
cycsubm 19114 The set of nonnegative int...
cyccom 19115 Condition for an operation...
cycsubmcom 19116 The operation of a monoid ...
cycsubggend 19117 The cyclic subgroup genera...
cycsubgcl 19118 The set of integer powers ...
cycsubgss 19119 The cyclic subgroup genera...
cycsubg 19120 The cyclic group generated...
cycsubgcld 19121 The cyclic subgroup genera...
cycsubg2 19122 The subgroup generated by ...
cycsubg2cl 19123 Any multiple of an element...
reldmghm 19126 Lemma for group homomorphi...
isghm 19127 Property of being a homomo...
isghmOLD 19128 Obsolete version of ~ isgh...
isghm3 19129 Property of a group homomo...
ghmgrp1 19130 A group homomorphism is on...
ghmgrp2 19131 A group homomorphism is on...
ghmf 19132 A group homomorphism is a ...
ghmlin 19133 A homomorphism of groups i...
ghmid 19134 A homomorphism of groups p...
ghminv 19135 A homomorphism of groups p...
ghmsub 19136 Linearity of subtraction t...
isghmd 19137 Deduction for a group homo...
ghmmhm 19138 A group homomorphism is a ...
ghmmhmb 19139 Group homomorphisms and mo...
ghmmulg 19140 A group homomorphism prese...
ghmrn 19141 The range of a homomorphis...
0ghm 19142 The constant zero linear f...
idghm 19143 The identity homomorphism ...
resghm 19144 Restriction of a homomorph...
resghm2 19145 One direction of ~ resghm2...
resghm2b 19146 Restriction of the codomai...
ghmghmrn 19147 A group homomorphism from ...
ghmco 19148 The composition of group h...
ghmima 19149 The image of a subgroup un...
ghmpreima 19150 The inverse image of a sub...
ghmeql 19151 The equalizer of two group...
ghmnsgima 19152 The image of a normal subg...
ghmnsgpreima 19153 The inverse image of a nor...
ghmker 19154 The kernel of a homomorphi...
ghmeqker 19155 Two source points map to t...
pwsdiagghm 19156 Diagonal homomorphism into...
f1ghm0to0 19157 If a group homomorphism ` ...
ghmf1 19158 Two ways of saying a group...
kerf1ghm 19159 A group homomorphism ` F `...
ghmf1o 19160 A bijective group homomorp...
conjghm 19161 Conjugation is an automorp...
conjsubg 19162 A conjugated subgroup is a...
conjsubgen 19163 A conjugated subgroup is e...
conjnmz 19164 A subgroup is unchanged un...
conjnmzb 19165 Alternative condition for ...
conjnsg 19166 A normal subgroup is uncha...
qusghm 19167 If ` Y ` is a normal subgr...
ghmpropd 19168 Group homomorphism depends...
gimfn 19173 The group isomorphism func...
isgim 19174 An isomorphism of groups i...
gimf1o 19175 An isomorphism of groups i...
gimghm 19176 An isomorphism of groups i...
isgim2 19177 A group isomorphism is a h...
subggim 19178 Behavior of subgroups unde...
gimcnv 19179 The converse of a group is...
gimco 19180 The composition of group i...
gim0to0 19181 A group isomorphism maps t...
brgic 19182 The relation "is isomorphi...
brgici 19183 Prove isomorphic by an exp...
gicref 19184 Isomorphism is reflexive. ...
giclcl 19185 Isomorphism implies the le...
gicrcl 19186 Isomorphism implies the ri...
gicsym 19187 Isomorphism is symmetric. ...
gictr 19188 Isomorphism is transitive....
gicer 19189 Isomorphism is an equivale...
gicen 19190 Isomorphic groups have equ...
gicsubgen 19191 A less trivial example of ...
ghmqusnsglem1 19192 Lemma for ~ ghmqusnsg . (...
ghmqusnsglem2 19193 Lemma for ~ ghmqusnsg . (...
ghmqusnsg 19194 The mapping ` H ` induced ...
ghmquskerlem1 19195 Lemma for ~ ghmqusker . (...
ghmquskerco 19196 In the case of theorem ~ g...
ghmquskerlem2 19197 Lemma for ~ ghmqusker . (...
ghmquskerlem3 19198 The mapping ` H ` induced ...
ghmqusker 19199 A surjective group homomor...
gicqusker 19200 The image ` H ` of a group...
isga 19203 The predicate "is a (left)...
gagrp 19204 The left argument of a gro...
gaset 19205 The right argument of a gr...
gagrpid 19206 The identity of the group ...
gaf 19207 The mapping of the group a...
gafo 19208 A group action is onto its...
gaass 19209 An "associative" property ...
ga0 19210 The action of a group on t...
gaid 19211 The trivial action of a gr...
subgga 19212 A subgroup acts on its par...
gass 19213 A subset of a group action...
gasubg 19214 The restriction of a group...
gaid2 19215 A group operation is a lef...
galcan 19216 The action of a particular...
gacan 19217 Group inverses cancel in a...
gapm 19218 The action of a particular...
gaorb 19219 The orbit equivalence rela...
gaorber 19220 The orbit equivalence rela...
gastacl 19221 The stabilizer subgroup in...
gastacos 19222 Write the coset relation f...
orbstafun 19223 Existence and uniqueness f...
orbstaval 19224 Value of the function at a...
orbsta 19225 The Orbit-Stabilizer theor...
orbsta2 19226 Relation between the size ...
cntrval 19231 Substitute definition of t...
cntzfval 19232 First level substitution f...
cntzval 19233 Definition substitution fo...
elcntz 19234 Elementhood in the central...
cntzel 19235 Membership in a centralize...
cntzsnval 19236 Special substitution for t...
elcntzsn 19237 Value of the centralizer o...
sscntz 19238 A centralizer expression f...
cntzrcl 19239 Reverse closure for elemen...
cntzssv 19240 The centralizer is uncondi...
cntzi 19241 Membership in a centralize...
elcntr 19242 Elementhood in the center ...
cntrss 19243 The center is a subset of ...
cntri 19244 Defining property of the c...
resscntz 19245 Centralizer in a substruct...
cntzsgrpcl 19246 Centralizers are closed un...
cntz2ss 19247 Centralizers reverse the s...
cntzrec 19248 Reciprocity relationship f...
cntziinsn 19249 Express any centralizer as...
cntzsubm 19250 Centralizers in a monoid a...
cntzsubg 19251 Centralizers in a group ar...
cntzidss 19252 If the elements of ` S ` c...
cntzmhm 19253 Centralizers in a monoid a...
cntzmhm2 19254 Centralizers in a monoid a...
cntrsubgnsg 19255 A central subgroup is norm...
cntrnsg 19256 The center of a group is a...
oppgval 19259 Value of the opposite grou...
oppgplusfval 19260 Value of the addition oper...
oppgplus 19261 Value of the addition oper...
setsplusg 19262 The other components of an...
oppgbas 19263 Base set of an opposite gr...
oppgtset 19264 Topology of an opposite gr...
oppgtopn 19265 Topology of an opposite gr...
oppgmnd 19266 The opposite of a monoid i...
oppgmndb 19267 Bidirectional form of ~ op...
oppgid 19268 Zero in a monoid is a symm...
oppggrp 19269 The opposite of a group is...
oppggrpb 19270 Bidirectional form of ~ op...
oppginv 19271 Inverses in a group are a ...
invoppggim 19272 The inverse is an antiauto...
oppggic 19273 Every group is (naturally)...
oppgsubm 19274 Being a submonoid is a sym...
oppgsubg 19275 Being a subgroup is a symm...
oppgcntz 19276 A centralizer in a group i...
oppgcntr 19277 The center of a group is t...
gsumwrev 19278 A sum in an opposite monoi...
oppgle 19279 less-than relation of an o...
oppglt 19280 less-than relation of an o...
symgval 19283 The value of the symmetric...
symgbas 19284 The base set of the symmet...
elsymgbas2 19285 Two ways of saying a funct...
elsymgbas 19286 Two ways of saying a funct...
symgbasf1o 19287 Elements in the symmetric ...
symgbasf 19288 A permutation (element of ...
symgbasmap 19289 A permutation (element of ...
symghash 19290 The symmetric group on ` n...
symgbasfi 19291 The symmetric group on a f...
symgfv 19292 The function value of a pe...
symgfvne 19293 The function values of a p...
symgressbas 19294 The symmetric group on ` A...
symgplusg 19295 The group operation of a s...
symgov 19296 The value of the group ope...
symgcl 19297 The group operation of the...
idresperm 19298 The identity function rest...
symgmov1 19299 For a permutation of a set...
symgmov2 19300 For a permutation of a set...
symgbas0 19301 The base set of the symmet...
symg1hash 19302 The symmetric group on a s...
symg1bas 19303 The symmetric group on a s...
symg2hash 19304 The symmetric group on a (...
symg2bas 19305 The symmetric group on a p...
0symgefmndeq 19306 The symmetric group on the...
snsymgefmndeq 19307 The symmetric group on a s...
symgpssefmnd 19308 For a set ` A ` with more ...
symgvalstruct 19309 The value of the symmetric...
symgsubmefmnd 19310 The symmetric group on a s...
symgtset 19311 The topology of the symmet...
symggrp 19312 The symmetric group on a s...
symgid 19313 The group identity element...
symginv 19314 The group inverse in the s...
symgsubmefmndALT 19315 The symmetric group on a s...
galactghm 19316 The currying of a group ac...
lactghmga 19317 The converse of ~ galactgh...
symgtopn 19318 The topology of the symmet...
symgga 19319 The symmetric group induce...
pgrpsubgsymgbi 19320 Every permutation group is...
pgrpsubgsymg 19321 Every permutation group is...
idressubgsymg 19322 The singleton containing o...
idrespermg 19323 The structure with the sin...
cayleylem1 19324 Lemma for ~ cayley . (Con...
cayleylem2 19325 Lemma for ~ cayley . (Con...
cayley 19326 Cayley's Theorem (construc...
cayleyth 19327 Cayley's Theorem (existenc...
symgfix2 19328 If a permutation does not ...
symgextf 19329 The extension of a permuta...
symgextfv 19330 The function value of the ...
symgextfve 19331 The function value of the ...
symgextf1lem 19332 Lemma for ~ symgextf1 . (...
symgextf1 19333 The extension of a permuta...
symgextfo 19334 The extension of a permuta...
symgextf1o 19335 The extension of a permuta...
symgextsymg 19336 The extension of a permuta...
symgextres 19337 The restriction of the ext...
gsumccatsymgsn 19338 Homomorphic property of co...
gsmsymgrfixlem1 19339 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 19340 The composition of permuta...
fvcosymgeq 19341 The values of two composit...
gsmsymgreqlem1 19342 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 19343 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 19344 Two combination of permuta...
symgfixelq 19345 A permutation of a set fix...
symgfixels 19346 The restriction of a permu...
symgfixelsi 19347 The restriction of a permu...
symgfixf 19348 The mapping of a permutati...
symgfixf1 19349 The mapping of a permutati...
symgfixfolem1 19350 Lemma 1 for ~ symgfixfo . ...
symgfixfo 19351 The mapping of a permutati...
symgfixf1o 19352 The mapping of a permutati...
f1omvdmvd 19355 A permutation of any class...
f1omvdcnv 19356 A permutation and its inve...
mvdco 19357 Composing two permutations...
f1omvdconj 19358 Conjugation of a permutati...
f1otrspeq 19359 A transposition is charact...
f1omvdco2 19360 If exactly one of two perm...
f1omvdco3 19361 If a point is moved by exa...
pmtrfval 19362 The function generating tr...
pmtrval 19363 A generated transposition,...
pmtrfv 19364 General value of mapping a...
pmtrprfv 19365 In a transposition of two ...
pmtrprfv3 19366 In a transposition of two ...
pmtrf 19367 Functionality of a transpo...
pmtrmvd 19368 A transposition moves prec...
pmtrrn 19369 Transposing two points giv...
pmtrfrn 19370 A transposition (as a kind...
pmtrffv 19371 Mapping of a point under a...
pmtrrn2 19372 For any transposition ther...
pmtrfinv 19373 A transposition function i...
pmtrfmvdn0 19374 A transposition moves at l...
pmtrff1o 19375 A transposition function i...
pmtrfcnv 19376 A transposition function i...
pmtrfb 19377 An intrinsic characterizat...
pmtrfconj 19378 Any conjugate of a transpo...
symgsssg 19379 The symmetric group has su...
symgfisg 19380 The symmetric group has a ...
symgtrf 19381 Transpositions are element...
symggen 19382 The span of the transposit...
symggen2 19383 A finite permutation group...
symgtrinv 19384 To invert a permutation re...
pmtr3ncomlem1 19385 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 19386 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 19387 Transpositions over sets w...
pmtrdifellem1 19388 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19389 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19390 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19391 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19392 A transposition of element...
pmtrdifwrdellem1 19393 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19394 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19395 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19396 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19397 A sequence of transpositio...
pmtrdifwrdel2 19398 A sequence of transpositio...
pmtrprfval 19399 The transpositions on a pa...
pmtrprfvalrn 19400 The range of the transposi...
psgnunilem1 19405 Lemma for ~ psgnuni . Giv...
psgnunilem5 19406 Lemma for ~ psgnuni . It ...
psgnunilem2 19407 Lemma for ~ psgnuni . Ind...
psgnunilem3 19408 Lemma for ~ psgnuni . Any...
psgnunilem4 19409 Lemma for ~ psgnuni . An ...
m1expaddsub 19410 Addition and subtraction o...
psgnuni 19411 If the same permutation ca...
psgnfval 19412 Function definition of the...
psgnfn 19413 Functionality and domain o...
psgndmsubg 19414 The finitary permutations ...
psgneldm 19415 Property of being a finita...
psgneldm2 19416 The finitary permutations ...
psgneldm2i 19417 A sequence of transpositio...
psgneu 19418 A finitary permutation has...
psgnval 19419 Value of the permutation s...
psgnvali 19420 A finitary permutation has...
psgnvalii 19421 Any representation of a pe...
psgnpmtr 19422 All transpositions are odd...
psgn0fv0 19423 The permutation sign funct...
sygbasnfpfi 19424 The class of non-fixed poi...
psgnfvalfi 19425 Function definition of the...
psgnvalfi 19426 Value of the permutation s...
psgnran 19427 The range of the permutati...
gsmtrcl 19428 The group sum of transposi...
psgnfitr 19429 A permutation of a finite ...
psgnfieu 19430 A permutation of a finite ...
pmtrsn 19431 The value of the transposi...
psgnsn 19432 The permutation sign funct...
psgnprfval 19433 The permutation sign funct...
psgnprfval1 19434 The permutation sign of th...
psgnprfval2 19435 The permutation sign of th...
odfval 19444 Value of the order functio...
odfvalALT 19445 Shorter proof of ~ odfval ...
odval 19446 Second substitution for th...
odlem1 19447 The group element order is...
odcl 19448 The order of a group eleme...
odf 19449 Functionality of the group...
odid 19450 Any element to the power o...
odlem2 19451 Any positive annihilator o...
odmodnn0 19452 Reduce the argument of a g...
mndodconglem 19453 Lemma for ~ mndodcong . (...
mndodcong 19454 If two multipliers are con...
mndodcongi 19455 If two multipliers are con...
oddvdsnn0 19456 The only multiples of ` A ...
odnncl 19457 If a nonzero multiple of a...
odmod 19458 Reduce the argument of a g...
oddvds 19459 The only multiples of ` A ...
oddvdsi 19460 Any group element is annih...
odcong 19461 If two multipliers are con...
odeq 19462 The ~ oddvds property uniq...
odval2 19463 A non-conditional definiti...
odcld 19464 The order of a group eleme...
odm1inv 19465 The (order-1)th multiple o...
odmulgid 19466 A relationship between the...
odmulg2 19467 The order of a multiple di...
odmulg 19468 Relationship between the o...
odmulgeq 19469 A multiple of a point of f...
odbezout 19470 If ` N ` is coprime to the...
od1 19471 The order of the group ide...
odeq1 19472 The group identity is the ...
odinv 19473 The order of the inverse o...
odf1 19474 The multiples of an elemen...
odinf 19475 The multiples of an elemen...
dfod2 19476 An alternative definition ...
odcl2 19477 The order of an element of...
oddvds2 19478 The order of an element of...
finodsubmsubg 19479 A submonoid whose elements...
0subgALT 19480 A shorter proof of ~ 0subg...
submod 19481 The order of an element is...
subgod 19482 The order of an element is...
odsubdvds 19483 The order of an element of...
odf1o1 19484 An element with zero order...
odf1o2 19485 An element with nonzero or...
odhash 19486 An element of zero order g...
odhash2 19487 If an element has nonzero ...
odhash3 19488 An element which generates...
odngen 19489 A cyclic subgroup of size ...
gexval 19490 Value of the exponent of a...
gexlem1 19491 The group element order is...
gexcl 19492 The exponent of a group is...
gexid 19493 Any element to the power o...
gexlem2 19494 Any positive annihilator o...
gexdvdsi 19495 Any group element is annih...
gexdvds 19496 The only ` N ` that annihi...
gexdvds2 19497 An integer divides the gro...
gexod 19498 Any group element is annih...
gexcl3 19499 If the order of every grou...
gexnnod 19500 Every group element has fi...
gexcl2 19501 The exponent of a finite g...
gexdvds3 19502 The exponent of a finite g...
gex1 19503 A group or monoid has expo...
ispgp 19504 A group is a ` P ` -group ...
pgpprm 19505 Reverse closure for the fi...
pgpgrp 19506 Reverse closure for the se...
pgpfi1 19507 A finite group with order ...
pgp0 19508 The identity subgroup is a...
subgpgp 19509 A subgroup of a p-group is...
sylow1lem1 19510 Lemma for ~ sylow1 . The ...
sylow1lem2 19511 Lemma for ~ sylow1 . The ...
sylow1lem3 19512 Lemma for ~ sylow1 . One ...
sylow1lem4 19513 Lemma for ~ sylow1 . The ...
sylow1lem5 19514 Lemma for ~ sylow1 . Usin...
sylow1 19515 Sylow's first theorem. If...
odcau 19516 Cauchy's theorem for the o...
pgpfi 19517 The converse to ~ pgpfi1 ....
pgpfi2 19518 Alternate version of ~ pgp...
pgphash 19519 The order of a p-group. (...
isslw 19520 The property of being a Sy...
slwprm 19521 Reverse closure for the fi...
slwsubg 19522 A Sylow ` P ` -subgroup is...
slwispgp 19523 Defining property of a Syl...
slwpss 19524 A proper superset of a Syl...
slwpgp 19525 A Sylow ` P ` -subgroup is...
pgpssslw 19526 Every ` P ` -subgroup is c...
slwn0 19527 Every finite group contain...
subgslw 19528 A Sylow subgroup that is c...
sylow2alem1 19529 Lemma for ~ sylow2a . An ...
sylow2alem2 19530 Lemma for ~ sylow2a . All...
sylow2a 19531 A named lemma of Sylow's s...
sylow2blem1 19532 Lemma for ~ sylow2b . Eva...
sylow2blem2 19533 Lemma for ~ sylow2b . Lef...
sylow2blem3 19534 Sylow's second theorem. P...
sylow2b 19535 Sylow's second theorem. A...
slwhash 19536 A sylow subgroup has cardi...
fislw 19537 The sylow subgroups of a f...
sylow2 19538 Sylow's second theorem. S...
sylow3lem1 19539 Lemma for ~ sylow3 , first...
sylow3lem2 19540 Lemma for ~ sylow3 , first...
sylow3lem3 19541 Lemma for ~ sylow3 , first...
sylow3lem4 19542 Lemma for ~ sylow3 , first...
sylow3lem5 19543 Lemma for ~ sylow3 , secon...
sylow3lem6 19544 Lemma for ~ sylow3 , secon...
sylow3 19545 Sylow's third theorem. Th...
lsmfval 19550 The subgroup sum function ...
lsmvalx 19551 Subspace sum value (for a ...
lsmelvalx 19552 Subspace sum membership (f...
lsmelvalix 19553 Subspace sum membership (f...
oppglsm 19554 The subspace sum operation...
lsmssv 19555 Subgroup sum is a subset o...
lsmless1x 19556 Subset implies subgroup su...
lsmless2x 19557 Subset implies subgroup su...
lsmub1x 19558 Subgroup sum is an upper b...
lsmub2x 19559 Subgroup sum is an upper b...
lsmval 19560 Subgroup sum value (for a ...
lsmelval 19561 Subgroup sum membership (f...
lsmelvali 19562 Subgroup sum membership (f...
lsmelvalm 19563 Subgroup sum membership an...
lsmelvalmi 19564 Membership of vector subtr...
lsmsubm 19565 The sum of two commuting s...
lsmsubg 19566 The sum of two commuting s...
lsmcom2 19567 Subgroup sum commutes. (C...
smndlsmidm 19568 The direct product is idem...
lsmub1 19569 Subgroup sum is an upper b...
lsmub2 19570 Subgroup sum is an upper b...
lsmunss 19571 Union of subgroups is a su...
lsmless1 19572 Subset implies subgroup su...
lsmless2 19573 Subset implies subgroup su...
lsmless12 19574 Subset implies subgroup su...
lsmidm 19575 Subgroup sum is idempotent...
lsmlub 19576 The least upper bound prop...
lsmss1 19577 Subgroup sum with a subset...
lsmss1b 19578 Subgroup sum with a subset...
lsmss2 19579 Subgroup sum with a subset...
lsmss2b 19580 Subgroup sum with a subset...
lsmass 19581 Subgroup sum is associativ...
mndlsmidm 19582 Subgroup sum is idempotent...
lsm01 19583 Subgroup sum with the zero...
lsm02 19584 Subgroup sum with the zero...
subglsm 19585 The subgroup sum evaluated...
lssnle 19586 Equivalent expressions for...
lsmmod 19587 The modular law holds for ...
lsmmod2 19588 Modular law dual for subgr...
lsmpropd 19589 If two structures have the...
cntzrecd 19590 Commute the "subgroups com...
lsmcntz 19591 The "subgroups commute" pr...
lsmcntzr 19592 The "subgroups commute" pr...
lsmdisj 19593 Disjointness from a subgro...
lsmdisj2 19594 Association of the disjoin...
lsmdisj3 19595 Association of the disjoin...
lsmdisjr 19596 Disjointness from a subgro...
lsmdisj2r 19597 Association of the disjoin...
lsmdisj3r 19598 Association of the disjoin...
lsmdisj2a 19599 Association of the disjoin...
lsmdisj2b 19600 Association of the disjoin...
lsmdisj3a 19601 Association of the disjoin...
lsmdisj3b 19602 Association of the disjoin...
subgdisj1 19603 Vectors belonging to disjo...
subgdisj2 19604 Vectors belonging to disjo...
subgdisjb 19605 Vectors belonging to disjo...
pj1fval 19606 The left projection functi...
pj1val 19607 The left projection functi...
pj1eu 19608 Uniqueness of a left proje...
pj1f 19609 The left projection functi...
pj2f 19610 The right projection funct...
pj1id 19611 Any element of a direct su...
pj1eq 19612 Any element of a direct su...
pj1lid 19613 The left projection functi...
pj1rid 19614 The left projection functi...
pj1ghm 19615 The left projection functi...
pj1ghm2 19616 The left projection functi...
lsmhash 19617 The order of the direct pr...
efgmval 19624 Value of the formal invers...
efgmf 19625 The formal inverse operati...
efgmnvl 19626 The inversion function on ...
efgrcl 19627 Lemma for ~ efgval . (Con...
efglem 19628 Lemma for ~ efgval . (Con...
efgval 19629 Value of the free group co...
efger 19630 Value of the free group co...
efgi 19631 Value of the free group co...
efgi0 19632 Value of the free group co...
efgi1 19633 Value of the free group co...
efgtf 19634 Value of the free group co...
efgtval 19635 Value of the extension fun...
efgval2 19636 Value of the free group co...
efgi2 19637 Value of the free group co...
efgtlen 19638 Value of the free group co...
efginvrel2 19639 The inverse of the reverse...
efginvrel1 19640 The inverse of the reverse...
efgsf 19641 Value of the auxiliary fun...
efgsdm 19642 Elementhood in the domain ...
efgsval 19643 Value of the auxiliary fun...
efgsdmi 19644 Property of the last link ...
efgsval2 19645 Value of the auxiliary fun...
efgsrel 19646 The start and end of any e...
efgs1 19647 A singleton of an irreduci...
efgs1b 19648 Every extension sequence e...
efgsp1 19649 If ` F ` is an extension s...
efgsres 19650 An initial segment of an e...
efgsfo 19651 For any word, there is a s...
efgredlema 19652 The reduced word that form...
efgredlemf 19653 Lemma for ~ efgredleme . ...
efgredlemg 19654 Lemma for ~ efgred . (Con...
efgredleme 19655 Lemma for ~ efgred . (Con...
efgredlemd 19656 The reduced word that form...
efgredlemc 19657 The reduced word that form...
efgredlemb 19658 The reduced word that form...
efgredlem 19659 The reduced word that form...
efgred 19660 The reduced word that form...
efgrelexlema 19661 If two words ` A , B ` are...
efgrelexlemb 19662 If two words ` A , B ` are...
efgrelex 19663 If two words ` A , B ` are...
efgredeu 19664 There is a unique reduced ...
efgred2 19665 Two extension sequences ha...
efgcpbllema 19666 Lemma for ~ efgrelex . De...
efgcpbllemb 19667 Lemma for ~ efgrelex . Sh...
efgcpbl 19668 Two extension sequences ha...
efgcpbl2 19669 Two extension sequences ha...
frgpval 19670 Value of the free group co...
frgpcpbl 19671 Compatibility of the group...
frgp0 19672 The free group is a group....
frgpeccl 19673 Closure of the quotient ma...
frgpgrp 19674 The free group is a group....
frgpadd 19675 Addition in the free group...
frgpinv 19676 The inverse of an element ...
frgpmhm 19677 The "natural map" from wor...
vrgpfval 19678 The canonical injection fr...
vrgpval 19679 The value of the generatin...
vrgpf 19680 The mapping from the index...
vrgpinv 19681 The inverse of a generatin...
frgpuptf 19682 Any assignment of the gene...
frgpuptinv 19683 Any assignment of the gene...
frgpuplem 19684 Any assignment of the gene...
frgpupf 19685 Any assignment of the gene...
frgpupval 19686 Any assignment of the gene...
frgpup1 19687 Any assignment of the gene...
frgpup2 19688 The evaluation map has the...
frgpup3lem 19689 The evaluation map has the...
frgpup3 19690 Universal property of the ...
0frgp 19691 The free group on zero gen...
isabl 19696 The predicate "is an Abeli...
ablgrp 19697 An Abelian group is a grou...
ablgrpd 19698 An Abelian group is a grou...
ablcmn 19699 An Abelian group is a comm...
ablcmnd 19700 An Abelian group is a comm...
iscmn 19701 The predicate "is a commut...
isabl2 19702 The predicate "is an Abeli...
cmnpropd 19703 If two structures have the...
ablpropd 19704 If two structures have the...
ablprop 19705 If two structures have the...
iscmnd 19706 Properties that determine ...
isabld 19707 Properties that determine ...
isabli 19708 Properties that determine ...
cmnmnd 19709 A commutative monoid is a ...
cmncom 19710 A commutative monoid is co...
ablcom 19711 An Abelian group operation...
cmn32 19712 Commutative/associative la...
cmn4 19713 Commutative/associative la...
cmn12 19714 Commutative/associative la...
abl32 19715 Commutative/associative la...
cmnmndd 19716 A commutative monoid is a ...
cmnbascntr 19717 The base set of a commutat...
rinvmod 19718 Uniqueness of a right inve...
ablinvadd 19719 The inverse of an Abelian ...
ablsub2inv 19720 Abelian group subtraction ...
ablsubadd 19721 Relationship between Abeli...
ablsub4 19722 Commutative/associative su...
abladdsub4 19723 Abelian group addition/sub...
abladdsub 19724 Associative-type law for g...
ablsubadd23 19725 Commutative/associative la...
ablsubaddsub 19726 Double subtraction and add...
ablpncan2 19727 Cancellation law for subtr...
ablpncan3 19728 A cancellation law for Abe...
ablsubsub 19729 Law for double subtraction...
ablsubsub4 19730 Law for double subtraction...
ablpnpcan 19731 Cancellation law for mixed...
ablnncan 19732 Cancellation law for group...
ablsub32 19733 Swap the second and third ...
ablnnncan 19734 Cancellation law for group...
ablnnncan1 19735 Cancellation law for group...
ablsubsub23 19736 Swap subtrahend and result...
mulgnn0di 19737 Group multiple of a sum, f...
mulgdi 19738 Group multiple of a sum. ...
mulgmhm 19739 The map from ` x ` to ` n ...
mulgghm 19740 The map from ` x ` to ` n ...
mulgsubdi 19741 Group multiple of a differ...
ghmfghm 19742 The function fulfilling th...
ghmcmn 19743 The image of a commutative...
ghmabl 19744 The image of an abelian gr...
invghm 19745 The inversion map is a gro...
eqgabl 19746 Value of the subgroup cose...
qusecsub 19747 Two subgroup cosets are eq...
subgabl 19748 A subgroup of an abelian g...
subcmn 19749 A submonoid of a commutati...
submcmn 19750 A submonoid of a commutati...
submcmn2 19751 A submonoid is commutative...
cntzcmn 19752 The centralizer of any sub...
cntzcmnss 19753 Any subset in a commutativ...
cntrcmnd 19754 The center of a monoid is ...
cntrabl 19755 The center of a group is a...
cntzspan 19756 If the generators commute,...
cntzcmnf 19757 Discharge the centralizer ...
ghmplusg 19758 The pointwise sum of two l...
ablnsg 19759 Every subgroup of an abeli...
odadd1 19760 The order of a product in ...
odadd2 19761 The order of a product in ...
odadd 19762 The order of a product is ...
gex2abl 19763 A group with exponent 2 (o...
gexexlem 19764 Lemma for ~ gexex . (Cont...
gexex 19765 In an abelian group with f...
torsubg 19766 The set of all elements of...
oddvdssubg 19767 The set of all elements wh...
lsmcomx 19768 Subgroup sum commutes (ext...
ablcntzd 19769 All subgroups in an abelia...
lsmcom 19770 Subgroup sum commutes. (C...
lsmsubg2 19771 The sum of two subgroups i...
lsm4 19772 Commutative/associative la...
prdscmnd 19773 The product of a family of...
prdsabld 19774 The product of a family of...
pwscmn 19775 The structure power on a c...
pwsabl 19776 The structure power on an ...
qusabl 19777 If ` Y ` is a subgroup of ...
abl1 19778 The (smallest) structure r...
abln0 19779 Abelian groups (and theref...
cnaddablx 19780 The complex numbers are an...
cnaddabl 19781 The complex numbers are an...
cnaddid 19782 The group identity element...
cnaddinv 19783 Value of the group inverse...
zaddablx 19784 The integers are an Abelia...
frgpnabllem1 19785 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19786 Lemma for ~ frgpnabl . (C...
frgpnabl 19787 The free group on two or m...
imasabl 19788 The image structure of an ...
iscyg 19791 Definition of a cyclic gro...
iscyggen 19792 The property of being a cy...
iscyggen2 19793 The property of being a cy...
iscyg2 19794 A cyclic group is a group ...
cyggeninv 19795 The inverse of a cyclic ge...
cyggenod 19796 An element is the generato...
cyggenod2 19797 In an infinite cyclic grou...
iscyg3 19798 Definition of a cyclic gro...
iscygd 19799 Definition of a cyclic gro...
iscygodd 19800 Show that a group with an ...
cycsubmcmn 19801 The set of nonnegative int...
cyggrp 19802 A cyclic group is a group....
cygabl 19803 A cyclic group is abelian....
cygctb 19804 A cyclic group is countabl...
0cyg 19805 The trivial group is cycli...
prmcyg 19806 A group with prime order i...
lt6abl 19807 A group with fewer than ` ...
ghmcyg 19808 The image of a cyclic grou...
cyggex2 19809 The exponent of a cyclic g...
cyggex 19810 The exponent of a finite c...
cyggexb 19811 A finite abelian group is ...
giccyg 19812 Cyclicity is a group prope...
cycsubgcyg 19813 The cyclic subgroup genera...
cycsubgcyg2 19814 The cyclic subgroup genera...
gsumval3a 19815 Value of the group sum ope...
gsumval3eu 19816 The group sum as defined i...
gsumval3lem1 19817 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19818 Lemma 2 for ~ gsumval3 . ...
gsumval3 19819 Value of the group sum ope...
gsumcllem 19820 Lemma for ~ gsumcl and rel...
gsumzres 19821 Extend a finite group sum ...
gsumzcl2 19822 Closure of a finite group ...
gsumzcl 19823 Closure of a finite group ...
gsumzf1o 19824 Re-index a finite group su...
gsumres 19825 Extend a finite group sum ...
gsumcl2 19826 Closure of a finite group ...
gsumcl 19827 Closure of a finite group ...
gsumf1o 19828 Re-index a finite group su...
gsumreidx 19829 Re-index a finite group su...
gsumzsubmcl 19830 Closure of a group sum in ...
gsumsubmcl 19831 Closure of a group sum in ...
gsumsubgcl 19832 Closure of a group sum in ...
gsumzaddlem 19833 The sum of two group sums....
gsumzadd 19834 The sum of two group sums....
gsumadd 19835 The sum of two group sums....
gsummptfsadd 19836 The sum of two group sums ...
gsummptfidmadd 19837 The sum of two group sums ...
gsummptfidmadd2 19838 The sum of two group sums ...
gsumzsplit 19839 Split a group sum into two...
gsumsplit 19840 Split a group sum into two...
gsumsplit2 19841 Split a group sum into two...
gsummptfidmsplit 19842 Split a group sum expresse...
gsummptfidmsplitres 19843 Split a group sum expresse...
gsummptfzsplit 19844 Split a group sum expresse...
gsummptfzsplitl 19845 Split a group sum expresse...
gsumconst 19846 Sum of a constant series. ...
gsumconstf 19847 Sum of a constant series. ...
gsummptshft 19848 Index shift of a finite gr...
gsumzmhm 19849 Apply a group homomorphism...
gsummhm 19850 Apply a group homomorphism...
gsummhm2 19851 Apply a group homomorphism...
gsummptmhm 19852 Apply a group homomorphism...
gsummulglem 19853 Lemma for ~ gsummulg and ~...
gsummulg 19854 Nonnegative multiple of a ...
gsummulgz 19855 Integer multiple of a grou...
gsumzoppg 19856 The opposite of a group su...
gsumzinv 19857 Inverse of a group sum. (...
gsuminv 19858 Inverse of a group sum. (...
gsummptfidminv 19859 Inverse of a group sum exp...
gsumsub 19860 The difference of two grou...
gsummptfssub 19861 The difference of two grou...
gsummptfidmsub 19862 The difference of two grou...
gsumsnfd 19863 Group sum of a singleton, ...
gsumsnd 19864 Group sum of a singleton, ...
gsumsnf 19865 Group sum of a singleton, ...
gsumsn 19866 Group sum of a singleton. ...
gsumpr 19867 Group sum of a pair. (Con...
gsumzunsnd 19868 Append an element to a fin...
gsumunsnfd 19869 Append an element to a fin...
gsumunsnd 19870 Append an element to a fin...
gsumunsnf 19871 Append an element to a fin...
gsumunsn 19872 Append an element to a fin...
gsumdifsnd 19873 Extract a summand from a f...
gsumpt 19874 Sum of a family that is no...
gsummptf1o 19875 Re-index a finite group su...
gsummptun 19876 Group sum of a disjoint un...
gsummpt1n0 19877 If only one summand in a f...
gsummptif1n0 19878 If only one summand in a f...
gsummptcl 19879 Closure of a finite group ...
gsummptfif1o 19880 Re-index a finite group su...
gsummptfzcl 19881 Closure of a finite group ...
gsum2dlem1 19882 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19883 Lemma for ~ gsum2d . (Con...
gsum2d 19884 Write a sum over a two-dim...
gsum2d2lem 19885 Lemma for ~ gsum2d2 : show...
gsum2d2 19886 Write a group sum over a t...
gsumcom2 19887 Two-dimensional commutatio...
gsumxp 19888 Write a group sum over a c...
gsumcom 19889 Commute the arguments of a...
gsumcom3 19890 A commutative law for fini...
gsumcom3fi 19891 A commutative law for fini...
gsumxp2 19892 Write a group sum over a c...
prdsgsum 19893 Finite commutative sums in...
pwsgsum 19894 Finite commutative sums in...
fsfnn0gsumfsffz 19895 Replacing a finitely suppo...
nn0gsumfz 19896 Replacing a finitely suppo...
nn0gsumfz0 19897 Replacing a finitely suppo...
gsummptnn0fz 19898 A final group sum over a f...
gsummptnn0fzfv 19899 A final group sum over a f...
telgsumfzslem 19900 Lemma for ~ telgsumfzs (in...
telgsumfzs 19901 Telescoping group sum rang...
telgsumfz 19902 Telescoping group sum rang...
telgsumfz0s 19903 Telescoping finite group s...
telgsumfz0 19904 Telescoping finite group s...
telgsums 19905 Telescoping finitely suppo...
telgsum 19906 Telescoping finitely suppo...
reldmdprd 19911 The domain of the internal...
dmdprd 19912 The domain of definition o...
dmdprdd 19913 Show that a given family i...
dprddomprc 19914 A family of subgroups inde...
dprddomcld 19915 If a family of subgroups i...
dprdval0prc 19916 The internal direct produc...
dprdval 19917 The value of the internal ...
eldprd 19918 A class ` A ` is an intern...
dprdgrp 19919 Reverse closure for the in...
dprdf 19920 The function ` S ` is a fa...
dprdf2 19921 The function ` S ` is a fa...
dprdcntz 19922 The function ` S ` is a fa...
dprddisj 19923 The function ` S ` is a fa...
dprdw 19924 The property of being a fi...
dprdwd 19925 A mapping being a finitely...
dprdff 19926 A finitely supported funct...
dprdfcl 19927 A finitely supported funct...
dprdffsupp 19928 A finitely supported funct...
dprdfcntz 19929 A function on the elements...
dprdssv 19930 The internal direct produc...
dprdfid 19931 A function mapping all but...
eldprdi 19932 The domain of definition o...
dprdfinv 19933 Take the inverse of a grou...
dprdfadd 19934 Take the sum of group sums...
dprdfsub 19935 Take the difference of gro...
dprdfeq0 19936 The zero function is the o...
dprdf11 19937 Two group sums over a dire...
dprdsubg 19938 The internal direct produc...
dprdub 19939 Each factor is a subset of...
dprdlub 19940 The direct product is smal...
dprdspan 19941 The direct product is the ...
dprdres 19942 Restriction of a direct pr...
dprdss 19943 Create a direct product by...
dprdz 19944 A family consisting entire...
dprd0 19945 The empty family is an int...
dprdf1o 19946 Rearrange the index set of...
dprdf1 19947 Rearrange the index set of...
subgdmdprd 19948 A direct product in a subg...
subgdprd 19949 A direct product in a subg...
dprdsn 19950 A singleton family is an i...
dmdprdsplitlem 19951 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19952 The function ` S ` is a fa...
dprddisj2 19953 The function ` S ` is a fa...
dprd2dlem2 19954 The direct product of a co...
dprd2dlem1 19955 The direct product of a co...
dprd2da 19956 The direct product of a co...
dprd2db 19957 The direct product of a co...
dprd2d2 19958 The direct product of a co...
dmdprdsplit2lem 19959 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 19960 The direct product splits ...
dmdprdsplit 19961 The direct product splits ...
dprdsplit 19962 The direct product is the ...
dmdprdpr 19963 A singleton family is an i...
dprdpr 19964 A singleton family is an i...
dpjlem 19965 Lemma for theorems about d...
dpjcntz 19966 The two subgroups that app...
dpjdisj 19967 The two subgroups that app...
dpjlsm 19968 The two subgroups that app...
dpjfval 19969 Value of the direct produc...
dpjval 19970 Value of the direct produc...
dpjf 19971 The ` X ` -th index projec...
dpjidcl 19972 The key property of projec...
dpjeq 19973 Decompose a group sum into...
dpjid 19974 The key property of projec...
dpjlid 19975 The ` X ` -th index projec...
dpjrid 19976 The ` Y ` -th index projec...
dpjghm 19977 The direct product is the ...
dpjghm2 19978 The direct product is the ...
ablfacrplem 19979 Lemma for ~ ablfacrp2 . (...
ablfacrp 19980 A finite abelian group who...
ablfacrp2 19981 The factors ` K , L ` of ~...
ablfac1lem 19982 Lemma for ~ ablfac1b . Sa...
ablfac1a 19983 The factors of ~ ablfac1b ...
ablfac1b 19984 Any abelian group is the d...
ablfac1c 19985 The factors of ~ ablfac1b ...
ablfac1eulem 19986 Lemma for ~ ablfac1eu . (...
ablfac1eu 19987 The factorization of ~ abl...
pgpfac1lem1 19988 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 19989 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 19990 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 19991 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 19992 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 19993 Lemma for ~ pgpfac1 . (Co...
pgpfac1 19994 Factorization of a finite ...
pgpfaclem1 19995 Lemma for ~ pgpfac . (Con...
pgpfaclem2 19996 Lemma for ~ pgpfac . (Con...
pgpfaclem3 19997 Lemma for ~ pgpfac . (Con...
pgpfac 19998 Full factorization of a fi...
ablfaclem1 19999 Lemma for ~ ablfac . (Con...
ablfaclem2 20000 Lemma for ~ ablfac . (Con...
ablfaclem3 20001 Lemma for ~ ablfac . (Con...
ablfac 20002 The Fundamental Theorem of...
ablfac2 20003 Choose generators for each...
issimpg 20006 The predicate "is a simple...
issimpgd 20007 Deduce a simple group from...
simpggrp 20008 A simple group is a group....
simpggrpd 20009 A simple group is a group....
simpg2nsg 20010 A simple group has two nor...
trivnsimpgd 20011 Trivial groups are not sim...
simpgntrivd 20012 Simple groups are nontrivi...
simpgnideld 20013 A simple group contains a ...
simpgnsgd 20014 The only normal subgroups ...
simpgnsgeqd 20015 A normal subgroup of a sim...
2nsgsimpgd 20016 If any normal subgroup of ...
simpgnsgbid 20017 A nontrivial group is simp...
ablsimpnosubgd 20018 A subgroup of an abelian s...
ablsimpg1gend 20019 An abelian simple group is...
ablsimpgcygd 20020 An abelian simple group is...
ablsimpgfindlem1 20021 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 20022 Lemma for ~ ablsimpgfind ....
cycsubggenodd 20023 Relationship between the o...
ablsimpgfind 20024 An abelian simple group is...
fincygsubgd 20025 The subgroup referenced in...
fincygsubgodd 20026 Calculate the order of a s...
fincygsubgodexd 20027 A finite cyclic group has ...
prmgrpsimpgd 20028 A group of prime order is ...
ablsimpgprmd 20029 An abelian simple group ha...
ablsimpgd 20030 An abelian group is simple...
isomnd 20035 A (left) ordered monoid is...
isogrp 20036 A (left-)ordered group is ...
ogrpgrp 20037 A left-ordered group is a ...
omndmnd 20038 A left-ordered monoid is a...
omndtos 20039 A left-ordered monoid is a...
omndadd 20040 In an ordered monoid, the ...
omndaddr 20041 In a right ordered monoid,...
omndadd2d 20042 In a commutative left orde...
omndadd2rd 20043 In a left- and right- orde...
submomnd 20044 A submonoid of an ordered ...
omndmul2 20045 In an ordered monoid, the ...
omndmul3 20046 In an ordered monoid, the ...
omndmul 20047 In a commutative ordered m...
ogrpinv0le 20048 In an ordered group, the o...
ogrpsub 20049 In an ordered group, the o...
ogrpaddlt 20050 In an ordered group, stric...
ogrpaddltbi 20051 In a right ordered group, ...
ogrpaddltrd 20052 In a right ordered group, ...
ogrpaddltrbid 20053 In a right ordered group, ...
ogrpsublt 20054 In an ordered group, stric...
ogrpinv0lt 20055 In an ordered group, the o...
ogrpinvlt 20056 In an ordered group, the o...
gsumle 20057 A finite sum in an ordered...
fnmgp 20060 The multiplicative group o...
mgpval 20061 Value of the multiplicatio...
mgpplusg 20062 Value of the group operati...
mgpbas 20063 Base set of the multiplica...
mgpsca 20064 The multiplication monoid ...
mgptset 20065 Topology component of the ...
mgptopn 20066 Topology of the multiplica...
mgpds 20067 Distance function of the m...
mgpress 20068 Subgroup commutes with the...
prdsmgp 20069 The multiplicative monoid ...
isrng 20072 The predicate "is a non-un...
rngabl 20073 A non-unital ring is an (a...
rngmgp 20074 A non-unital ring is a sem...
rngmgpf 20075 Restricted functionality o...
rnggrp 20076 A non-unital ring is a (ad...
rngass 20077 Associative law for the mu...
rngdi 20078 Distributive law for the m...
rngdir 20079 Distributive law for the m...
rngacl 20080 Closure of the addition op...
rng0cl 20081 The zero element of a non-...
rngcl 20082 Closure of the multiplicat...
rnglz 20083 The zero of a non-unital r...
rngrz 20084 The zero of a non-unital r...
rngmneg1 20085 Negation of a product in a...
rngmneg2 20086 Negation of a product in a...
rngm2neg 20087 Double negation of a produ...
rngansg 20088 Every additive subgroup of...
rngsubdi 20089 Ring multiplication distri...
rngsubdir 20090 Ring multiplication distri...
isrngd 20091 Properties that determine ...
rngpropd 20092 If two structures have the...
prdsmulrngcl 20093 Closure of the multiplicat...
prdsrngd 20094 A product of non-unital ri...
imasrng 20095 The image structure of a n...
imasrngf1 20096 The image of a non-unital ...
xpsrngd 20097 A product of two non-unita...
qusrng 20098 The quotient structure of ...
ringidval 20101 The value of the unity ele...
dfur2 20102 The multiplicative identit...
ringurd 20103 Deduce the unity element o...
issrg 20106 The predicate "is a semiri...
srgcmn 20107 A semiring is a commutativ...
srgmnd 20108 A semiring is a monoid. (...
srgmgp 20109 A semiring is a monoid und...
srgdilem 20110 Lemma for ~ srgdi and ~ sr...
srgcl 20111 Closure of the multiplicat...
srgass 20112 Associative law for the mu...
srgideu 20113 The unity element of a sem...
srgfcl 20114 Functionality of the multi...
srgdi 20115 Distributive law for the m...
srgdir 20116 Distributive law for the m...
srgidcl 20117 The unity element of a sem...
srg0cl 20118 The zero element of a semi...
srgidmlem 20119 Lemma for ~ srglidm and ~ ...
srglidm 20120 The unity element of a sem...
srgridm 20121 The unity element of a sem...
issrgid 20122 Properties showing that an...
srgacl 20123 Closure of the addition op...
srgcom 20124 Commutativity of the addit...
srgrz 20125 The zero of a semiring is ...
srglz 20126 The zero of a semiring is ...
srgisid 20127 In a semiring, the only le...
o2timesd 20128 An element of a ring-like ...
rglcom4d 20129 Restricted commutativity o...
srgo2times 20130 A semiring element plus it...
srgcom4lem 20131 Lemma for ~ srgcom4 . Thi...
srgcom4 20132 Restricted commutativity o...
srg1zr 20133 The only semiring with a b...
srgen1zr 20134 The only semiring with one...
srgmulgass 20135 An associative property be...
srgpcomp 20136 If two elements of a semir...
srgpcompp 20137 If two elements of a semir...
srgpcomppsc 20138 If two elements of a semir...
srglmhm 20139 Left-multiplication in a s...
srgrmhm 20140 Right-multiplication in a ...
srgsummulcr 20141 A finite semiring sum mult...
sgsummulcl 20142 A finite semiring sum mult...
srg1expzeq1 20143 The exponentiation (by a n...
srgbinomlem1 20144 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 20145 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 20146 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 20147 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 20148 Lemma for ~ srgbinom . In...
srgbinom 20149 The binomial theorem for c...
csrgbinom 20150 The binomial theorem for c...
isring 20155 The predicate "is a (unita...
ringgrp 20156 A ring is a group. (Contr...
ringmgp 20157 A ring is a monoid under m...
iscrng 20158 A commutative ring is a ri...
crngmgp 20159 A commutative ring's multi...
ringgrpd 20160 A ring is a group. (Contr...
ringmnd 20161 A ring is a monoid under a...
ringmgm 20162 A ring is a magma. (Contr...
crngring 20163 A commutative ring is a ri...
crngringd 20164 A commutative ring is a ri...
crnggrpd 20165 A commutative ring is a gr...
mgpf 20166 Restricted functionality o...
ringdilem 20167 Properties of a unital rin...
ringcl 20168 Closure of the multiplicat...
crngcom 20169 A commutative ring's multi...
iscrng2 20170 A commutative ring is a ri...
ringass 20171 Associative law for multip...
ringideu 20172 The unity element of a rin...
crngcomd 20173 Multiplication is commutat...
crngbascntr 20174 The base set of a commutat...
ringassd 20175 Associative law for multip...
crng12d 20176 Commutative/associative la...
crng32d 20177 Commutative/associative la...
ringcld 20178 Closure of the multiplicat...
ringdi 20179 Distributive law for the m...
ringdir 20180 Distributive law for the m...
ringdid 20181 Distributive law for the m...
ringdird 20182 Distributive law for the m...
ringidcl 20183 The unity element of a rin...
ringidcld 20184 The unity element of a rin...
ring0cl 20185 The zero element of a ring...
ringidmlem 20186 Lemma for ~ ringlidm and ~...
ringlidm 20187 The unity element of a rin...
ringridm 20188 The unity element of a rin...
isringid 20189 Properties showing that an...
ringlidmd 20190 The unity element of a rin...
ringridmd 20191 The unity element of a rin...
ringid 20192 The multiplication operati...
ringo2times 20193 A ring element plus itself...
ringadd2 20194 A ring element plus itself...
ringidss 20195 A subset of the multiplica...
ringacl 20196 Closure of the addition op...
ringcomlem 20197 Lemma for ~ ringcom . Thi...
ringcom 20198 Commutativity of the addit...
ringabl 20199 A ring is an Abelian group...
ringcmn 20200 A ring is a commutative mo...
ringabld 20201 A ring is an Abelian group...
ringcmnd 20202 A ring is a commutative mo...
ringrng 20203 A unital ring is a non-uni...
ringssrng 20204 The unital rings are non-u...
isringrng 20205 The predicate "is a unital...
ringpropd 20206 If two structures have the...
crngpropd 20207 If two structures have the...
ringprop 20208 If two structures have the...
isringd 20209 Properties that determine ...
iscrngd 20210 Properties that determine ...
ringlz 20211 The zero of a unital ring ...
ringrz 20212 The zero of a unital ring ...
ringlzd 20213 The zero of a unital ring ...
ringrzd 20214 The zero of a unital ring ...
ringsrg 20215 Any ring is also a semirin...
ring1eq0 20216 If one and zero are equal,...
ring1ne0 20217 If a ring has at least two...
ringinvnz1ne0 20218 In a unital ring, a left i...
ringinvnzdiv 20219 In a unital ring, a left i...
ringnegl 20220 Negation in a ring is the ...
ringnegr 20221 Negation in a ring is the ...
ringmneg1 20222 Negation of a product in a...
ringmneg2 20223 Negation of a product in a...
ringm2neg 20224 Double negation of a produ...
ringsubdi 20225 Ring multiplication distri...
ringsubdir 20226 Ring multiplication distri...
mulgass2 20227 An associative property be...
ring1 20228 The (smallest) structure r...
ringn0 20229 Rings exist. (Contributed...
ringlghm 20230 Left-multiplication in a r...
ringrghm 20231 Right-multiplication in a ...
gsummulc1OLD 20232 Obsolete version of ~ gsum...
gsummulc2OLD 20233 Obsolete version of ~ gsum...
gsummulc1 20234 A finite ring sum multipli...
gsummulc2 20235 A finite ring sum multipli...
gsummgp0 20236 If one factor in a finite ...
gsumdixp 20237 Distribute a binary produc...
prdsmulrcl 20238 A structure product of rin...
prdsringd 20239 A product of rings is a ri...
prdscrngd 20240 A product of commutative r...
prds1 20241 Value of the ring unity in...
pwsring 20242 A structure power of a rin...
pws1 20243 Value of the ring unity in...
pwscrng 20244 A structure power of a com...
pwsmgp 20245 The multiplicative group o...
pwspjmhmmgpd 20246 The projection given by ~ ...
pwsexpg 20247 Value of a group exponenti...
imasring 20248 The image structure of a r...
imasringf1 20249 The image of a ring under ...
xpsringd 20250 A product of two rings is ...
xpsring1d 20251 The multiplicative identit...
qusring2 20252 The quotient structure of ...
crngbinom 20253 The binomial theorem for c...
opprval 20256 Value of the opposite ring...
opprmulfval 20257 Value of the multiplicatio...
opprmul 20258 Value of the multiplicatio...
crngoppr 20259 In a commutative ring, the...
opprlem 20260 Lemma for ~ opprbas and ~ ...
opprbas 20261 Base set of an opposite ri...
oppradd 20262 Addition operation of an o...
opprrng 20263 An opposite non-unital rin...
opprrngb 20264 A class is a non-unital ri...
opprring 20265 An opposite ring is a ring...
opprringb 20266 Bidirectional form of ~ op...
oppr0 20267 Additive identity of an op...
oppr1 20268 Multiplicative identity of...
opprneg 20269 The negative function in a...
opprsubg 20270 Being a subgroup is a symm...
mulgass3 20271 An associative property be...
reldvdsr 20278 The divides relation is a ...
dvdsrval 20279 Value of the divides relat...
dvdsr 20280 Value of the divides relat...
dvdsr2 20281 Value of the divides relat...
dvdsrmul 20282 A left-multiple of ` X ` i...
dvdsrcl 20283 Closure of a dividing elem...
dvdsrcl2 20284 Closure of a dividing elem...
dvdsrid 20285 An element in a (unital) r...
dvdsrtr 20286 Divisibility is transitive...
dvdsrmul1 20287 The divisibility relation ...
dvdsrneg 20288 An element divides its neg...
dvdsr01 20289 In a ring, zero is divisib...
dvdsr02 20290 Only zero is divisible by ...
isunit 20291 Property of being a unit o...
1unit 20292 The multiplicative identit...
unitcl 20293 A unit is an element of th...
unitss 20294 The set of units is contai...
opprunit 20295 Being a unit is a symmetri...
crngunit 20296 Property of being a unit i...
dvdsunit 20297 A divisor of a unit is a u...
unitmulcl 20298 The product of units is a ...
unitmulclb 20299 Reversal of ~ unitmulcl in...
unitgrpbas 20300 The base set of the group ...
unitgrp 20301 The group of units is a gr...
unitabl 20302 The group of units of a co...
unitgrpid 20303 The identity of the group ...
unitsubm 20304 The group of units is a su...
invrfval 20307 Multiplicative inverse fun...
unitinvcl 20308 The inverse of a unit exis...
unitinvinv 20309 The inverse of the inverse...
ringinvcl 20310 The inverse of a unit is a...
unitlinv 20311 A unit times its inverse i...
unitrinv 20312 A unit times its inverse i...
1rinv 20313 The inverse of the ring un...
0unit 20314 The additive identity is a...
unitnegcl 20315 The negative of a unit is ...
ringunitnzdiv 20316 In a unitary ring, a unit ...
ring1nzdiv 20317 In a unitary ring, the rin...
dvrfval 20320 Division operation in a ri...
dvrval 20321 Division operation in a ri...
dvrcl 20322 Closure of division operat...
unitdvcl 20323 The units are closed under...
dvrid 20324 A ring element divided by ...
dvr1 20325 A ring element divided by ...
dvrass 20326 An associative law for div...
dvrcan1 20327 A cancellation law for div...
dvrcan3 20328 A cancellation law for div...
dvreq1 20329 Equality in terms of ratio...
dvrdir 20330 Distributive law for the d...
rdivmuldivd 20331 Multiplication of two rati...
ringinvdv 20332 Write the inverse function...
rngidpropd 20333 The ring unity depends onl...
dvdsrpropd 20334 The divisibility relation ...
unitpropd 20335 The set of units depends o...
invrpropd 20336 The ring inverse function ...
isirred 20337 An irreducible element of ...
isnirred 20338 The property of being a no...
isirred2 20339 Expand out the class diffe...
opprirred 20340 Irreducibility is symmetri...
irredn0 20341 The additive identity is n...
irredcl 20342 An irreducible element is ...
irrednu 20343 An irreducible element is ...
irredn1 20344 The multiplicative identit...
irredrmul 20345 The product of an irreduci...
irredlmul 20346 The product of a unit and ...
irredmul 20347 If product of two elements...
irredneg 20348 The negative of an irreduc...
irrednegb 20349 An element is irreducible ...
rnghmrcl 20356 Reverse closure of a non-u...
rnghmfn 20357 The mapping of two non-uni...
rnghmval 20358 The set of the non-unital ...
isrnghm 20359 A function is a non-unital...
isrnghmmul 20360 A function is a non-unital...
rnghmmgmhm 20361 A non-unital ring homomorp...
rnghmval2 20362 The non-unital ring homomo...
isrngim 20363 An isomorphism of non-unit...
rngimrcl 20364 Reverse closure for an iso...
rnghmghm 20365 A non-unital ring homomorp...
rnghmf 20366 A ring homomorphism is a f...
rnghmmul 20367 A homomorphism of non-unit...
isrnghm2d 20368 Demonstration of non-unita...
isrnghmd 20369 Demonstration of non-unita...
rnghmf1o 20370 A non-unital ring homomorp...
isrngim2 20371 An isomorphism of non-unit...
rngimf1o 20372 An isomorphism of non-unit...
rngimrnghm 20373 An isomorphism of non-unit...
rngimcnv 20374 The converse of an isomorp...
rnghmco 20375 The composition of non-uni...
idrnghm 20376 The identity homomorphism ...
c0mgm 20377 The constant mapping to ze...
c0mhm 20378 The constant mapping to ze...
c0ghm 20379 The constant mapping to ze...
c0snmgmhm 20380 The constant mapping to ze...
c0snmhm 20381 The constant mapping to ze...
c0snghm 20382 The constant mapping to ze...
rngisomfv1 20383 If there is a non-unital r...
rngisom1 20384 If there is a non-unital r...
rngisomring 20385 If there is a non-unital r...
rngisomring1 20386 If there is a non-unital r...
dfrhm2 20392 The property of a ring hom...
rhmrcl1 20394 Reverse closure of a ring ...
rhmrcl2 20395 Reverse closure of a ring ...
isrhm 20396 A function is a ring homom...
rhmmhm 20397 A ring homomorphism is a h...
rhmisrnghm 20398 Each unital ring homomorph...
rimrcl 20399 Reverse closure for an iso...
isrim0 20400 A ring isomorphism is a ho...
rhmghm 20401 A ring homomorphism is an ...
rhmf 20402 A ring homomorphism is a f...
rhmmul 20403 A homomorphism of rings pr...
isrhm2d 20404 Demonstration of ring homo...
isrhmd 20405 Demonstration of ring homo...
rhm1 20406 Ring homomorphisms are req...
idrhm 20407 The identity homomorphism ...
rhmf1o 20408 A ring homomorphism is bij...
isrim 20409 An isomorphism of rings is...
rimf1o 20410 An isomorphism of rings is...
rimrhm 20411 A ring isomorphism is a ho...
rimgim 20412 An isomorphism of rings is...
rimisrngim 20413 Each unital ring isomorphi...
rhmfn 20414 The mapping of two rings t...
rhmval 20415 The ring homomorphisms bet...
rhmco 20416 The composition of ring ho...
pwsco1rhm 20417 Right composition with a f...
pwsco2rhm 20418 Left composition with a ri...
brric 20419 The relation "is isomorphi...
brrici 20420 Prove isomorphic by an exp...
brric2 20421 The relation "is isomorphi...
ricgic 20422 If two rings are (ring) is...
rhmdvdsr 20423 A ring homomorphism preser...
rhmopp 20424 A ring homomorphism is als...
elrhmunit 20425 Ring homomorphisms preserv...
rhmunitinv 20426 Ring homomorphisms preserv...
isnzr 20429 Property of a nonzero ring...
nzrnz 20430 One and zero are different...
nzrring 20431 A nonzero ring is a ring. ...
nzrringOLD 20432 Obsolete version of ~ nzrr...
isnzr2 20433 Equivalent characterizatio...
isnzr2hash 20434 Equivalent characterizatio...
nzrpropd 20435 If two structures have the...
opprnzrb 20436 The opposite of a nonzero ...
opprnzr 20437 The opposite of a nonzero ...
ringelnzr 20438 A ring is nonzero if it ha...
nzrunit 20439 A unit is nonzero in any n...
0ringnnzr 20440 A ring is a zero ring iff ...
0ring 20441 If a ring has only one ele...
0ringdif 20442 A zero ring is a ring whic...
0ringbas 20443 The base set of a zero rin...
0ring01eq 20444 In a ring with only one el...
01eq0ring 20445 If the zero and the identi...
01eq0ringOLD 20446 Obsolete version of ~ 01eq...
0ring01eqbi 20447 In a unital ring the zero ...
0ring1eq0 20448 In a zero ring, a ring whi...
c0rhm 20449 The constant mapping to ze...
c0rnghm 20450 The constant mapping to ze...
zrrnghm 20451 The constant mapping to ze...
nrhmzr 20452 There is no ring homomorph...
islring 20455 The predicate "is a local ...
lringnzr 20456 A local ring is a nonzero ...
lringring 20457 A local ring is a ring. (...
lringnz 20458 A local ring is a nonzero ...
lringuplu 20459 If the sum of two elements...
issubrng 20462 The subring of non-unital ...
subrngss 20463 A subring is a subset. (C...
subrngid 20464 Every non-unital ring is a...
subrngrng 20465 A subring is a non-unital ...
subrngrcl 20466 Reverse closure for a subr...
subrngsubg 20467 A subring is a subgroup. ...
subrngringnsg 20468 A subring is a normal subg...
subrngbas 20469 Base set of a subring stru...
subrng0 20470 A subring always has the s...
subrngacl 20471 A subring is closed under ...
subrngmcl 20472 A subring is closed under ...
issubrng2 20473 Characterize the subrings ...
opprsubrng 20474 Being a subring is a symme...
subrngint 20475 The intersection of a none...
subrngin 20476 The intersection of two su...
subrngmre 20477 The subrings of a non-unit...
subsubrng 20478 A subring of a subring is ...
subsubrng2 20479 The set of subrings of a s...
rhmimasubrnglem 20480 Lemma for ~ rhmimasubrng :...
rhmimasubrng 20481 The homomorphic image of a...
cntzsubrng 20482 Centralizers in a non-unit...
subrngpropd 20483 If two structures have the...
issubrg 20486 The subring predicate. (C...
subrgss 20487 A subring is a subset. (C...
subrgid 20488 Every ring is a subring of...
subrgring 20489 A subring is a ring. (Con...
subrgcrng 20490 A subring of a commutative...
subrgrcl 20491 Reverse closure for a subr...
subrgsubg 20492 A subring is a subgroup. ...
subrgsubrng 20493 A subring of a unital ring...
subrg0 20494 A subring always has the s...
subrg1cl 20495 A subring contains the mul...
subrgbas 20496 Base set of a subring stru...
subrg1 20497 A subring always has the s...
subrgacl 20498 A subring is closed under ...
subrgmcl 20499 A subring is closed under ...
subrgsubm 20500 A subring is a submonoid o...
subrgdvds 20501 If an element divides anot...
subrguss 20502 A unit of a subring is a u...
subrginv 20503 A subring always has the s...
subrgdv 20504 A subring always has the s...
subrgunit 20505 An element of a ring is a ...
subrgugrp 20506 The units of a subring for...
issubrg2 20507 Characterize the subrings ...
opprsubrg 20508 Being a subring is a symme...
subrgnzr 20509 A subring of a nonzero rin...
subrgint 20510 The intersection of a none...
subrgin 20511 The intersection of two su...
subrgmre 20512 The subrings of a ring are...
subsubrg 20513 A subring of a subring is ...
subsubrg2 20514 The set of subrings of a s...
issubrg3 20515 A subring is an additive s...
resrhm 20516 Restriction of a ring homo...
resrhm2b 20517 Restriction of the codomai...
rhmeql 20518 The equalizer of two ring ...
rhmima 20519 The homomorphic image of a...
rnrhmsubrg 20520 The range of a ring homomo...
cntzsubr 20521 Centralizers in a ring are...
pwsdiagrhm 20522 Diagonal homomorphism into...
subrgpropd 20523 If two structures have the...
rhmpropd 20524 Ring homomorphism depends ...
rgspnval 20527 Value of the ring-span of ...
rgspncl 20528 The ring-span of a set is ...
rgspnssid 20529 The ring-span of a set con...
rgspnmin 20530 The ring-span is contained...
rngcval 20533 Value of the category of n...
rnghmresfn 20534 The class of non-unital ri...
rnghmresel 20535 An element of the non-unit...
rngcbas 20536 Set of objects of the cate...
rngchomfval 20537 Set of arrows of the categ...
rngchom 20538 Set of arrows of the categ...
elrngchom 20539 A morphism of non-unital r...
rngchomfeqhom 20540 The functionalized Hom-set...
rngccofval 20541 Composition in the categor...
rngcco 20542 Composition in the categor...
dfrngc2 20543 Alternate definition of th...
rnghmsscmap2 20544 The non-unital ring homomo...
rnghmsscmap 20545 The non-unital ring homomo...
rnghmsubcsetclem1 20546 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 20547 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 20548 The non-unital ring homomo...
rngccat 20549 The category of non-unital...
rngcid 20550 The identity arrow in the ...
rngcsect 20551 A section in the category ...
rngcinv 20552 An inverse in the category...
rngciso 20553 An isomorphism in the cate...
rngcifuestrc 20554 The "inclusion functor" fr...
funcrngcsetc 20555 The "natural forgetful fun...
funcrngcsetcALT 20556 Alternate proof of ~ funcr...
zrinitorngc 20557 The zero ring is an initia...
zrtermorngc 20558 The zero ring is a termina...
zrzeroorngc 20559 The zero ring is a zero ob...
ringcval 20562 Value of the category of u...
rhmresfn 20563 The class of unital ring h...
rhmresel 20564 An element of the unital r...
ringcbas 20565 Set of objects of the cate...
ringchomfval 20566 Set of arrows of the categ...
ringchom 20567 Set of arrows of the categ...
elringchom 20568 A morphism of unital rings...
ringchomfeqhom 20569 The functionalized Hom-set...
ringccofval 20570 Composition in the categor...
ringcco 20571 Composition in the categor...
dfringc2 20572 Alternate definition of th...
rhmsscmap2 20573 The unital ring homomorphi...
rhmsscmap 20574 The unital ring homomorphi...
rhmsubcsetclem1 20575 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 20576 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 20577 The unital ring homomorphi...
ringccat 20578 The category of unital rin...
ringcid 20579 The identity arrow in the ...
rhmsscrnghm 20580 The unital ring homomorphi...
rhmsubcrngclem1 20581 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 20582 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 20583 The unital ring homomorphi...
rngcresringcat 20584 The restriction of the cat...
ringcsect 20585 A section in the category ...
ringcinv 20586 An inverse in the category...
ringciso 20587 An isomorphism in the cate...
ringcbasbas 20588 An element of the base set...
funcringcsetc 20589 The "natural forgetful fun...
zrtermoringc 20590 The zero ring is a termina...
zrninitoringc 20591 The zero ring is not an in...
srhmsubclem1 20592 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 20593 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 20594 Lemma 3 for ~ srhmsubc . ...
srhmsubc 20595 According to ~ df-subc , t...
sringcat 20596 The restriction of the cat...
crhmsubc 20597 According to ~ df-subc , t...
cringcat 20598 The restriction of the cat...
rngcrescrhm 20599 The category of non-unital...
rhmsubclem1 20600 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 20601 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 20602 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 20603 Lemma 4 for ~ rhmsubc . (...
rhmsubc 20604 According to ~ df-subc , t...
rhmsubccat 20605 The restriction of the cat...
rrgval 20612 Value of the set or left-r...
isrrg 20613 Membership in the set of l...
rrgeq0i 20614 Property of a left-regular...
rrgeq0 20615 Left-multiplication by a l...
rrgsupp 20616 Left multiplication by a l...
rrgss 20617 Left-regular elements are ...
unitrrg 20618 Units are regular elements...
rrgnz 20619 In a nonzero ring, the zer...
isdomn 20620 Expand definition of a dom...
domnnzr 20621 A domain is a nonzero ring...
domnring 20622 A domain is a ring. (Cont...
domneq0 20623 In a domain, a product is ...
domnmuln0 20624 In a domain, a product of ...
isdomn5 20625 The equivalence between th...
isdomn2 20626 A ring is a domain iff all...
isdomn2OLD 20627 Obsolete version of ~ isdo...
domnrrg 20628 In a domain, a nonzero ele...
isdomn6 20629 A ring is a domain iff the...
isdomn3 20630 Nonzero elements form a mu...
isdomn4 20631 A ring is a domain iff it ...
opprdomnb 20632 A class is a domain if and...
opprdomn 20633 The opposite of a domain i...
isdomn4r 20634 A ring is a domain iff it ...
domnlcanb 20635 Left-cancellation law for ...
domnlcan 20636 Left-cancellation law for ...
domnrcanb 20637 Right-cancellation law for...
domnrcan 20638 Right-cancellation law for...
domneq0r 20639 Right multiplication by a ...
isidom 20640 An integral domain is a co...
idomdomd 20641 An integral domain is a do...
idomcringd 20642 An integral domain is a co...
idomringd 20643 An integral domain is a ri...
isdrng 20648 The predicate "is a divisi...
drngunit 20649 Elementhood in the set of ...
drngui 20650 The set of units of a divi...
drngring 20651 A division ring is a ring....
drngringd 20652 A division ring is a ring....
drnggrpd 20653 A division ring is a group...
drnggrp 20654 A division ring is a group...
isfld 20655 A field is a commutative d...
flddrngd 20656 A field is a division ring...
fldcrngd 20657 A field is a commutative r...
isdrng2 20658 A division ring can equiva...
drngprop 20659 If two structures have the...
drngmgp 20660 A division ring contains a...
drngid 20661 A division ring's unity is...
drngunz 20662 A division ring's unity is...
drngnzr 20663 A division ring is a nonze...
drngdomn 20664 A division ring is a domai...
drngmcl 20665 The product of two nonzero...
drngmclOLD 20666 Obsolete version of ~ drng...
drngid2 20667 Properties showing that an...
drnginvrcl 20668 Closure of the multiplicat...
drnginvrn0 20669 The multiplicative inverse...
drnginvrcld 20670 Closure of the multiplicat...
drnginvrl 20671 Property of the multiplica...
drnginvrr 20672 Property of the multiplica...
drnginvrld 20673 Property of the multiplica...
drnginvrrd 20674 Property of the multiplica...
drngmul0or 20675 A product is zero iff one ...
drngmul0orOLD 20676 Obsolete version of ~ drng...
drngmulne0 20677 A product is nonzero iff b...
drngmuleq0 20678 An element is zero iff its...
opprdrng 20679 The opposite of a division...
isdrngd 20680 Properties that characteri...
isdrngrd 20681 Properties that characteri...
isdrngdOLD 20682 Obsolete version of ~ isdr...
isdrngrdOLD 20683 Obsolete version of ~ isdr...
drngpropd 20684 If two structures have the...
fldpropd 20685 If two structures have the...
fldidom 20686 A field is an integral dom...
fidomndrnglem 20687 Lemma for ~ fidomndrng . ...
fidomndrng 20688 A finite domain is a divis...
fiidomfld 20689 A finite integral domain i...
rng1nnzr 20690 The (smallest) structure r...
ring1zr 20691 The only (unital) ring wit...
rngen1zr 20692 The only (unital) ring wit...
ringen1zr 20693 The only unital ring with ...
rng1nfld 20694 The zero ring is not a fie...
issubdrg 20695 Characterize the subfields...
drhmsubc 20696 According to ~ df-subc , t...
drngcat 20697 The restriction of the cat...
fldcat 20698 The restriction of the cat...
fldc 20699 The restriction of the cat...
fldhmsubc 20700 According to ~ df-subc , t...
issdrg 20703 Property of a division sub...
sdrgrcl 20704 Reverse closure for a sub-...
sdrgdrng 20705 A sub-division-ring is a d...
sdrgsubrg 20706 A sub-division-ring is a s...
sdrgid 20707 Every division ring is a d...
sdrgss 20708 A division subring is a su...
sdrgbas 20709 Base set of a sub-division...
issdrg2 20710 Property of a division sub...
sdrgunit 20711 A unit of a sub-division-r...
imadrhmcl 20712 The image of a (nontrivial...
fldsdrgfld 20713 A sub-division-ring of a f...
acsfn1p 20714 Construction of a closure ...
subrgacs 20715 Closure property of subrin...
sdrgacs 20716 Closure property of divisi...
cntzsdrg 20717 Centralizers in division r...
subdrgint 20718 The intersection of a none...
sdrgint 20719 The intersection of a none...
primefld 20720 The smallest sub division ...
primefld0cl 20721 The prime field contains t...
primefld1cl 20722 The prime field contains t...
abvfval 20725 Value of the set of absolu...
isabv 20726 Elementhood in the set of ...
isabvd 20727 Properties that determine ...
abvrcl 20728 Reverse closure for the ab...
abvfge0 20729 An absolute value is a fun...
abvf 20730 An absolute value is a fun...
abvcl 20731 An absolute value is a fun...
abvge0 20732 The absolute value of a nu...
abveq0 20733 The value of an absolute v...
abvne0 20734 The absolute value of a no...
abvgt0 20735 The absolute value of a no...
abvmul 20736 An absolute value distribu...
abvtri 20737 An absolute value satisfie...
abv0 20738 The absolute value of zero...
abv1z 20739 The absolute value of one ...
abv1 20740 The absolute value of one ...
abvneg 20741 The absolute value of a ne...
abvsubtri 20742 An absolute value satisfie...
abvrec 20743 The absolute value distrib...
abvdiv 20744 The absolute value distrib...
abvdom 20745 Any ring with an absolute ...
abvres 20746 The restriction of an abso...
abvtrivd 20747 The trivial absolute value...
abvtrivg 20748 The trivial absolute value...
abvtriv 20749 The trivial absolute value...
abvpropd 20750 If two structures have the...
abvn0b 20751 Another characterization o...
staffval 20756 The functionalization of t...
stafval 20757 The functionalization of t...
staffn 20758 The functionalization is e...
issrng 20759 The predicate "is a star r...
srngrhm 20760 The involution function in...
srngring 20761 A star ring is a ring. (C...
srngcnv 20762 The involution function in...
srngf1o 20763 The involution function in...
srngcl 20764 The involution function in...
srngnvl 20765 The involution function in...
srngadd 20766 The involution function in...
srngmul 20767 The involution function in...
srng1 20768 The conjugate of the ring ...
srng0 20769 The conjugate of the ring ...
issrngd 20770 Properties that determine ...
idsrngd 20771 A commutative ring is a st...
isorng 20776 An ordered ring is a ring ...
orngring 20777 An ordered ring is a ring....
orngogrp 20778 An ordered ring is an orde...
isofld 20779 An ordered field is a fiel...
orngmul 20780 In an ordered ring, the or...
orngsqr 20781 In an ordered ring, all sq...
ornglmulle 20782 In an ordered ring, multip...
orngrmulle 20783 In an ordered ring, multip...
ornglmullt 20784 In an ordered ring, multip...
orngrmullt 20785 In an ordered ring, multip...
orngmullt 20786 In an ordered ring, the st...
ofldfld 20787 An ordered field is a fiel...
ofldtos 20788 An ordered field is a tota...
orng0le1 20789 In an ordered ring, the ri...
ofldlt1 20790 In an ordered field, the r...
suborng 20791 Every subring of an ordere...
subofld 20792 Every subfield of an order...
islmod 20797 The predicate "is a left m...
lmodlema 20798 Lemma for properties of a ...
islmodd 20799 Properties that determine ...
lmodgrp 20800 A left module is a group. ...
lmodring 20801 The scalar component of a ...
lmodfgrp 20802 The scalar component of a ...
lmodgrpd 20803 A left module is a group. ...
lmodbn0 20804 The base set of a left mod...
lmodacl 20805 Closure of ring addition f...
lmodmcl 20806 Closure of ring multiplica...
lmodsn0 20807 The set of scalars in a le...
lmodvacl 20808 Closure of vector addition...
lmodass 20809 Left module vector sum is ...
lmodlcan 20810 Left cancellation law for ...
lmodvscl 20811 Closure of scalar product ...
lmodvscld 20812 Closure of scalar product ...
scaffval 20813 The scalar multiplication ...
scafval 20814 The scalar multiplication ...
scafeq 20815 If the scalar multiplicati...
scaffn 20816 The scalar multiplication ...
lmodscaf 20817 The scalar multiplication ...
lmodvsdi 20818 Distributive law for scala...
lmodvsdir 20819 Distributive law for scala...
lmodvsass 20820 Associative law for scalar...
lmod0cl 20821 The ring zero in a left mo...
lmod1cl 20822 The ring unity in a left m...
lmodvs1 20823 Scalar product with the ri...
lmod0vcl 20824 The zero vector is a vecto...
lmod0vlid 20825 Left identity law for the ...
lmod0vrid 20826 Right identity law for the...
lmod0vid 20827 Identity equivalent to the...
lmod0vs 20828 Zero times a vector is the...
lmodvs0 20829 Anything times the zero ve...
lmodvsmmulgdi 20830 Distributive law for a gro...
lmodfopnelem1 20831 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20832 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20833 The (functionalized) opera...
lcomf 20834 A linear-combination sum i...
lcomfsupp 20835 A linear-combination sum i...
lmodvnegcl 20836 Closure of vector negative...
lmodvnegid 20837 Addition of a vector with ...
lmodvneg1 20838 Minus 1 times a vector is ...
lmodvsneg 20839 Multiplication of a vector...
lmodvsubcl 20840 Closure of vector subtract...
lmodcom 20841 Left module vector sum is ...
lmodabl 20842 A left module is an abelia...
lmodcmn 20843 A left module is a commuta...
lmodnegadd 20844 Distribute negation throug...
lmod4 20845 Commutative/associative la...
lmodvsubadd 20846 Relationship between vecto...
lmodvaddsub4 20847 Vector addition/subtractio...
lmodvpncan 20848 Addition/subtraction cance...
lmodvnpcan 20849 Cancellation law for vecto...
lmodvsubval2 20850 Value of vector subtractio...
lmodsubvs 20851 Subtraction of a scalar pr...
lmodsubdi 20852 Scalar multiplication dist...
lmodsubdir 20853 Scalar multiplication dist...
lmodsubeq0 20854 If the difference between ...
lmodsubid 20855 Subtraction of a vector fr...
lmodvsghm 20856 Scalar multiplication of t...
lmodprop2d 20857 If two structures have the...
lmodpropd 20858 If two structures have the...
gsumvsmul 20859 Pull a scalar multiplicati...
mptscmfsupp0 20860 A mapping to a scalar prod...
mptscmfsuppd 20861 A function mapping to a sc...
rmodislmodlem 20862 Lemma for ~ rmodislmod . ...
rmodislmod 20863 The right module ` R ` ind...
lssset 20866 The set of all (not necess...
islss 20867 The predicate "is a subspa...
islssd 20868 Properties that determine ...
lssss 20869 A subspace is a set of vec...
lssel 20870 A subspace member is a vec...
lss1 20871 The set of vectors in a le...
lssuni 20872 The union of all subspaces...
lssn0 20873 A subspace is not empty. ...
00lss 20874 The empty structure has no...
lsscl 20875 Closure property of a subs...
lssvacl 20876 Closure of vector addition...
lssvsubcl 20877 Closure of vector subtract...
lssvancl1 20878 Non-closure: if one vector...
lssvancl2 20879 Non-closure: if one vector...
lss0cl 20880 The zero vector belongs to...
lsssn0 20881 The singleton of the zero ...
lss0ss 20882 The zero subspace is inclu...
lssle0 20883 No subspace is smaller tha...
lssne0 20884 A nonzero subspace has a n...
lssvneln0 20885 A vector ` X ` which doesn...
lssneln0 20886 A vector ` X ` which doesn...
lssssr 20887 Conclude subspace ordering...
lssvscl 20888 Closure of scalar product ...
lssvnegcl 20889 Closure of negative vector...
lsssubg 20890 All subspaces are subgroup...
lsssssubg 20891 All subspaces are subgroup...
islss3 20892 A linear subspace of a mod...
lsslmod 20893 A submodule is a module. ...
lsslss 20894 The subspaces of a subspac...
islss4 20895 A linear subspace is a sub...
lss1d 20896 One-dimensional subspace (...
lssintcl 20897 The intersection of a none...
lssincl 20898 The intersection of two su...
lssmre 20899 The subspaces of a module ...
lssacs 20900 Submodules are an algebrai...
prdsvscacl 20901 Pointwise scalar multiplic...
prdslmodd 20902 The product of a family of...
pwslmod 20903 A structure power of a lef...
lspfval 20906 The span function for a le...
lspf 20907 The span function on a lef...
lspval 20908 The span of a set of vecto...
lspcl 20909 The span of a set of vecto...
lspsncl 20910 The span of a singleton is...
lspprcl 20911 The span of a pair is a su...
lsptpcl 20912 The span of an unordered t...
lspsnsubg 20913 The span of a singleton is...
00lsp 20914 ~ fvco4i lemma for linear ...
lspid 20915 The span of a subspace is ...
lspssv 20916 A span is a set of vectors...
lspss 20917 Span preserves subset orde...
lspssid 20918 A set of vectors is a subs...
lspidm 20919 The span of a set of vecto...
lspun 20920 The span of union is the s...
lspssp 20921 If a set of vectors is a s...
mrclsp 20922 Moore closure generalizes ...
lspsnss 20923 The span of the singleton ...
ellspsn3 20924 A member of the span of th...
lspprss 20925 The span of a pair of vect...
lspsnid 20926 A vector belongs to the sp...
ellspsn6 20927 Relationship between a vec...
ellspsn5b 20928 Relationship between a vec...
ellspsn5 20929 Relationship between a vec...
lspprid1 20930 A member of a pair of vect...
lspprid2 20931 A member of a pair of vect...
lspprvacl 20932 The sum of two vectors bel...
lssats2 20933 A way to express atomistic...
ellspsni 20934 A scalar product with a ve...
lspsn 20935 Span of the singleton of a...
ellspsn 20936 Member of span of the sing...
lspsnvsi 20937 Span of a scalar product o...
lspsnss2 20938 Comparable spans of single...
lspsnneg 20939 Negation does not change t...
lspsnsub 20940 Swapping subtraction order...
lspsn0 20941 Span of the singleton of t...
lsp0 20942 Span of the empty set. (C...
lspuni0 20943 Union of the span of the e...
lspun0 20944 The span of a union with t...
lspsneq0 20945 Span of the singleton is t...
lspsneq0b 20946 Equal singleton spans impl...
lmodindp1 20947 Two independent (non-colin...
lsslsp 20948 Spans in submodules corres...
lsslspOLD 20949 Obsolete version of ~ lssl...
lss0v 20950 The zero vector in a submo...
lsspropd 20951 If two structures have the...
lsppropd 20952 If two structures have the...
reldmlmhm 20959 Lemma for module homomorph...
lmimfn 20960 Lemma for module isomorphi...
islmhm 20961 Property of being a homomo...
islmhm3 20962 Property of a module homom...
lmhmlem 20963 Non-quantified consequence...
lmhmsca 20964 A homomorphism of left mod...
lmghm 20965 A homomorphism of left mod...
lmhmlmod2 20966 A homomorphism of left mod...
lmhmlmod1 20967 A homomorphism of left mod...
lmhmf 20968 A homomorphism of left mod...
lmhmlin 20969 A homomorphism of left mod...
lmodvsinv 20970 Multiplication of a vector...
lmodvsinv2 20971 Multiplying a negated vect...
islmhm2 20972 A one-equation proof of li...
islmhmd 20973 Deduction for a module hom...
0lmhm 20974 The constant zero linear f...
idlmhm 20975 The identity function on a...
invlmhm 20976 The negative function on a...
lmhmco 20977 The composition of two mod...
lmhmplusg 20978 The pointwise sum of two l...
lmhmvsca 20979 The pointwise scalar produ...
lmhmf1o 20980 A bijective module homomor...
lmhmima 20981 The image of a subspace un...
lmhmpreima 20982 The inverse image of a sub...
lmhmlsp 20983 Homomorphisms preserve spa...
lmhmrnlss 20984 The range of a homomorphis...
lmhmkerlss 20985 The kernel of a homomorphi...
reslmhm 20986 Restriction of a homomorph...
reslmhm2 20987 Expansion of the codomain ...
reslmhm2b 20988 Expansion of the codomain ...
lmhmeql 20989 The equalizer of two modul...
lspextmo 20990 A linear function is compl...
pwsdiaglmhm 20991 Diagonal homomorphism into...
pwssplit0 20992 Splitting for structure po...
pwssplit1 20993 Splitting for structure po...
pwssplit2 20994 Splitting for structure po...
pwssplit3 20995 Splitting for structure po...
islmim 20996 An isomorphism of left mod...
lmimf1o 20997 An isomorphism of left mod...
lmimlmhm 20998 An isomorphism of modules ...
lmimgim 20999 An isomorphism of modules ...
islmim2 21000 An isomorphism of left mod...
lmimcnv 21001 The converse of a bijectiv...
brlmic 21002 The relation "is isomorphi...
brlmici 21003 Prove isomorphic by an exp...
lmiclcl 21004 Isomorphism implies the le...
lmicrcl 21005 Isomorphism implies the ri...
lmicsym 21006 Module isomorphism is symm...
lmhmpropd 21007 Module homomorphism depend...
islbs 21010 The predicate " ` B ` is a...
lbsss 21011 A basis is a set of vector...
lbsel 21012 An element of a basis is a...
lbssp 21013 The span of a basis is the...
lbsind 21014 A basis is linearly indepe...
lbsind2 21015 A basis is linearly indepe...
lbspss 21016 No proper subset of a basi...
lsmcl 21017 The sum of two subspaces i...
lsmspsn 21018 Member of subspace sum of ...
lsmelval2 21019 Subspace sum membership in...
lsmsp 21020 Subspace sum in terms of s...
lsmsp2 21021 Subspace sum of spans of s...
lsmssspx 21022 Subspace sum (in its exten...
lsmpr 21023 The span of a pair of vect...
lsppreli 21024 A vector expressed as a su...
lsmelpr 21025 Two ways to say that a vec...
lsppr0 21026 The span of a vector paire...
lsppr 21027 Span of a pair of vectors....
lspprel 21028 Member of the span of a pa...
lspprabs 21029 Absorption of vector sum i...
lspvadd 21030 The span of a vector sum i...
lspsntri 21031 Triangle-type inequality f...
lspsntrim 21032 Triangle-type inequality f...
lbspropd 21033 If two structures have the...
pj1lmhm 21034 The left projection functi...
pj1lmhm2 21035 The left projection functi...
islvec 21038 The predicate "is a left v...
lvecdrng 21039 The set of scalars of a le...
lveclmod 21040 A left vector space is a l...
lveclmodd 21041 A vector space is a left m...
lvecgrpd 21042 A vector space is a group....
lsslvec 21043 A vector subspace is a vec...
lmhmlvec 21044 The property for modules t...
lvecvs0or 21045 If a scalar product is zer...
lvecvsn0 21046 A scalar product is nonzer...
lssvs0or 21047 If a scalar product belong...
lvecvscan 21048 Cancellation law for scala...
lvecvscan2 21049 Cancellation law for scala...
lvecinv 21050 Invert coefficient of scal...
lspsnvs 21051 A nonzero scalar product d...
lspsneleq 21052 Membership relation that i...
lspsncmp 21053 Comparable spans of nonzer...
lspsnne1 21054 Two ways to express that v...
lspsnne2 21055 Two ways to express that v...
lspsnnecom 21056 Swap two vectors with diff...
lspabs2 21057 Absorption law for span of...
lspabs3 21058 Absorption law for span of...
lspsneq 21059 Equal spans of singletons ...
lspsneu 21060 Nonzero vectors with equal...
ellspsn4 21061 A member of the span of th...
lspdisj 21062 The span of a vector not i...
lspdisjb 21063 A nonzero vector is not in...
lspdisj2 21064 Unequal spans are disjoint...
lspfixed 21065 Show membership in the spa...
lspexch 21066 Exchange property for span...
lspexchn1 21067 Exchange property for span...
lspexchn2 21068 Exchange property for span...
lspindpi 21069 Partial independence prope...
lspindp1 21070 Alternate way to say 3 vec...
lspindp2l 21071 Alternate way to say 3 vec...
lspindp2 21072 Alternate way to say 3 vec...
lspindp3 21073 Independence of 2 vectors ...
lspindp4 21074 (Partial) independence of ...
lvecindp 21075 Compute the ` X ` coeffici...
lvecindp2 21076 Sums of independent vector...
lspsnsubn0 21077 Unequal singleton spans im...
lsmcv 21078 Subspace sum has the cover...
lspsolvlem 21079 Lemma for ~ lspsolv . (Co...
lspsolv 21080 If ` X ` is in the span of...
lssacsex 21081 In a vector space, subspac...
lspsnat 21082 There is no subspace stric...
lspsncv0 21083 The span of a singleton co...
lsppratlem1 21084 Lemma for ~ lspprat . Let...
lsppratlem2 21085 Lemma for ~ lspprat . Sho...
lsppratlem3 21086 Lemma for ~ lspprat . In ...
lsppratlem4 21087 Lemma for ~ lspprat . In ...
lsppratlem5 21088 Lemma for ~ lspprat . Com...
lsppratlem6 21089 Lemma for ~ lspprat . Neg...
lspprat 21090 A proper subspace of the s...
islbs2 21091 An equivalent formulation ...
islbs3 21092 An equivalent formulation ...
lbsacsbs 21093 Being a basis in a vector ...
lvecdim 21094 The dimension theorem for ...
lbsextlem1 21095 Lemma for ~ lbsext . The ...
lbsextlem2 21096 Lemma for ~ lbsext . Sinc...
lbsextlem3 21097 Lemma for ~ lbsext . A ch...
lbsextlem4 21098 Lemma for ~ lbsext . ~ lbs...
lbsextg 21099 For any linearly independe...
lbsext 21100 For any linearly independe...
lbsexg 21101 Every vector space has a b...
lbsex 21102 Every vector space has a b...
lvecprop2d 21103 If two structures have the...
lvecpropd 21104 If two structures have the...
sraval 21109 Lemma for ~ srabase throug...
sralem 21110 Lemma for ~ srabase and si...
srabase 21111 Base set of a subring alge...
sraaddg 21112 Additive operation of a su...
sramulr 21113 Multiplicative operation o...
srasca 21114 The set of scalars of a su...
sravsca 21115 The scalar product operati...
sraip 21116 The inner product operatio...
sratset 21117 Topology component of a su...
sratopn 21118 Topology component of a su...
srads 21119 Distance function of a sub...
sraring 21120 Condition for a subring al...
sralmod 21121 The subring algebra is a l...
sralmod0 21122 The subring module inherit...
issubrgd 21123 Prove a subring by closure...
rlmfn 21124 ` ringLMod ` is a function...
rlmval 21125 Value of the ring module. ...
rlmval2 21126 Value of the ring module e...
rlmbas 21127 Base set of the ring modul...
rlmplusg 21128 Vector addition in the rin...
rlm0 21129 Zero vector in the ring mo...
rlmsub 21130 Subtraction in the ring mo...
rlmmulr 21131 Ring multiplication in the...
rlmsca 21132 Scalars in the ring module...
rlmsca2 21133 Scalars in the ring module...
rlmvsca 21134 Scalar multiplication in t...
rlmtopn 21135 Topology component of the ...
rlmds 21136 Metric component of the ri...
rlmlmod 21137 The ring module is a modul...
rlmlvec 21138 The ring module over a div...
rlmlsm 21139 Subgroup sum of the ring m...
rlmvneg 21140 Vector negation in the rin...
rlmscaf 21141 Functionalized scalar mult...
ixpsnbasval 21142 The value of an infinite C...
lidlval 21147 Value of the set of ring i...
rspval 21148 Value of the ring span fun...
lidlss 21149 An ideal is a subset of th...
lidlssbas 21150 The base set of the restri...
lidlbas 21151 A (left) ideal of a ring i...
islidl 21152 Predicate of being a (left...
rnglidlmcl 21153 A (left) ideal containing ...
rngridlmcl 21154 A right ideal (which is a ...
dflidl2rng 21155 Alternate (the usual textb...
isridlrng 21156 A right ideal is a left id...
lidl0cl 21157 An ideal contains 0. (Con...
lidlacl 21158 An ideal is closed under a...
lidlnegcl 21159 An ideal contains negative...
lidlsubg 21160 An ideal is a subgroup of ...
lidlsubcl 21161 An ideal is closed under s...
lidlmcl 21162 An ideal is closed under l...
lidl1el 21163 An ideal contains 1 iff it...
dflidl2 21164 Alternate (the usual textb...
lidl0ALT 21165 Alternate proof for ~ lidl...
rnglidl0 21166 Every non-unital ring cont...
lidl0 21167 Every ring contains a zero...
lidl1ALT 21168 Alternate proof for ~ lidl...
rnglidl1 21169 The base set of every non-...
lidl1 21170 Every ring contains a unit...
lidlacs 21171 The ideal system is an alg...
rspcl 21172 The span of a set of ring ...
rspssid 21173 The span of a set of ring ...
rsp1 21174 The span of the identity e...
rsp0 21175 The span of the zero eleme...
rspssp 21176 The ideal span of a set of...
elrspsn 21177 Membership in a principal ...
mrcrsp 21178 Moore closure generalizes ...
lidlnz 21179 A nonzero ideal contains a...
drngnidl 21180 A division ring has only t...
lidlrsppropd 21181 The left ideals and ring s...
rnglidlmmgm 21182 The multiplicative group o...
rnglidlmsgrp 21183 The multiplicative group o...
rnglidlrng 21184 A (left) ideal of a non-un...
lidlnsg 21185 An ideal is a normal subgr...
2idlval 21188 Definition of a two-sided ...
isridl 21189 A right ideal is a left id...
2idlelb 21190 Membership in a two-sided ...
2idllidld 21191 A two-sided ideal is a lef...
2idlridld 21192 A two-sided ideal is a rig...
df2idl2rng 21193 Alternate (the usual textb...
df2idl2 21194 Alternate (the usual textb...
ridl0 21195 Every ring contains a zero...
ridl1 21196 Every ring contains a unit...
2idl0 21197 Every ring contains a zero...
2idl1 21198 Every ring contains a unit...
2idlss 21199 A two-sided ideal is a sub...
2idlbas 21200 The base set of a two-side...
2idlelbas 21201 The base set of a two-side...
rng2idlsubrng 21202 A two-sided ideal of a non...
rng2idlnsg 21203 A two-sided ideal of a non...
rng2idl0 21204 The zero (additive identit...
rng2idlsubgsubrng 21205 A two-sided ideal of a non...
rng2idlsubgnsg 21206 A two-sided ideal of a non...
rng2idlsubg0 21207 The zero (additive identit...
2idlcpblrng 21208 The coset equivalence rela...
2idlcpbl 21209 The coset equivalence rela...
qus2idrng 21210 The quotient of a non-unit...
qus1 21211 The multiplicative identit...
qusring 21212 If ` S ` is a two-sided id...
qusrhm 21213 If ` S ` is a two-sided id...
rhmpreimaidl 21214 The preimage of an ideal b...
kerlidl 21215 The kernel of a ring homom...
qusmul2idl 21216 Value of the ring operatio...
crngridl 21217 In a commutative ring, the...
crng2idl 21218 In a commutative ring, a t...
qusmulrng 21219 Value of the multiplicatio...
quscrng 21220 The quotient of a commutat...
qusmulcrng 21221 Value of the ring operatio...
rhmqusnsg 21222 The mapping ` J ` induced ...
rngqiprng1elbas 21223 The ring unity of a two-si...
rngqiprngghmlem1 21224 Lemma 1 for ~ rngqiprngghm...
rngqiprngghmlem2 21225 Lemma 2 for ~ rngqiprngghm...
rngqiprngghmlem3 21226 Lemma 3 for ~ rngqiprngghm...
rngqiprngimfolem 21227 Lemma for ~ rngqiprngimfo ...
rngqiprnglinlem1 21228 Lemma 1 for ~ rngqiprnglin...
rngqiprnglinlem2 21229 Lemma 2 for ~ rngqiprnglin...
rngqiprnglinlem3 21230 Lemma 3 for ~ rngqiprnglin...
rngqiprngimf1lem 21231 Lemma for ~ rngqiprngimf1 ...
rngqipbas 21232 The base set of the produc...
rngqiprng 21233 The product of the quotien...
rngqiprngimf 21234 ` F ` is a function from (...
rngqiprngimfv 21235 The value of the function ...
rngqiprngghm 21236 ` F ` is a homomorphism of...
rngqiprngimf1 21237 ` F ` is a one-to-one func...
rngqiprngimfo 21238 ` F ` is a function from (...
rngqiprnglin 21239 ` F ` is linear with respe...
rngqiprngho 21240 ` F ` is a homomorphism of...
rngqiprngim 21241 ` F ` is an isomorphism of...
rng2idl1cntr 21242 The unity of a two-sided i...
rngringbdlem1 21243 In a unital ring, the quot...
rngringbdlem2 21244 A non-unital ring is unita...
rngringbd 21245 A non-unital ring is unita...
ring2idlqus 21246 For every unital ring ther...
ring2idlqusb 21247 A non-unital ring is unita...
rngqiprngfulem1 21248 Lemma 1 for ~ rngqiprngfu ...
rngqiprngfulem2 21249 Lemma 2 for ~ rngqiprngfu ...
rngqiprngfulem3 21250 Lemma 3 for ~ rngqiprngfu ...
rngqiprngfulem4 21251 Lemma 4 for ~ rngqiprngfu ...
rngqiprngfulem5 21252 Lemma 5 for ~ rngqiprngfu ...
rngqipring1 21253 The ring unity of the prod...
rngqiprngfu 21254 The function value of ` F ...
rngqiprngu 21255 If a non-unital ring has a...
ring2idlqus1 21256 If a non-unital ring has a...
lpival 21261 Value of the set of princi...
islpidl 21262 Property of being a princi...
lpi0 21263 The zero ideal is always p...
lpi1 21264 The unit ideal is always p...
islpir 21265 Principal ideal rings are ...
lpiss 21266 Principal ideals are a sub...
islpir2 21267 Principal ideal rings are ...
lpirring 21268 Principal ideal rings are ...
drnglpir 21269 Division rings are princip...
rspsn 21270 Membership in principal id...
lidldvgen 21271 An element generates an id...
lpigen 21272 An ideal is principal iff ...
cnfldstr 21293 The field of complex numbe...
cnfldex 21294 The field of complex numbe...
cnfldbas 21295 The base set of the field ...
mpocnfldadd 21296 The addition operation of ...
cnfldadd 21297 The addition operation of ...
mpocnfldmul 21298 The multiplication operati...
cnfldmul 21299 The multiplication operati...
cnfldcj 21300 The conjugation operation ...
cnfldtset 21301 The topology component of ...
cnfldle 21302 The ordering of the field ...
cnfldds 21303 The metric of the field of...
cnfldunif 21304 The uniform structure comp...
cnfldfun 21305 The field of complex numbe...
cnfldfunALT 21306 The field of complex numbe...
dfcnfldOLD 21307 Obsolete version of ~ df-c...
cnfldstrOLD 21308 Obsolete version of ~ cnfl...
cnfldexOLD 21309 Obsolete version of ~ cnfl...
cnfldbasOLD 21310 Obsolete version of ~ cnfl...
cnfldaddOLD 21311 Obsolete version of ~ cnfl...
cnfldmulOLD 21312 Obsolete version of ~ cnfl...
cnfldcjOLD 21313 Obsolete version of ~ cnfl...
cnfldtsetOLD 21314 Obsolete version of ~ cnfl...
cnfldleOLD 21315 Obsolete version of ~ cnfl...
cnflddsOLD 21316 Obsolete version of ~ cnfl...
cnfldunifOLD 21317 Obsolete version of ~ cnfl...
cnfldfunOLD 21318 Obsolete version of ~ cnfl...
cnfldfunALTOLD 21319 Obsolete version of ~ cnfl...
xrsstr 21320 The extended real structur...
xrsex 21321 The extended real structur...
xrsadd 21322 The addition operation of ...
xrsmul 21323 The multiplication operati...
xrstset 21324 The topology component of ...
cncrng 21325 The complex numbers form a...
cncrngOLD 21326 Obsolete version of ~ cncr...
cnring 21327 The complex numbers form a...
xrsmcmn 21328 The "multiplicative group"...
cnfld0 21329 Zero is the zero element o...
cnfld1 21330 One is the unity element o...
cnfld1OLD 21331 Obsolete version of ~ cnfl...
cnfldneg 21332 The additive inverse in th...
cnfldplusf 21333 The functionalized additio...
cnfldsub 21334 The subtraction operator i...
cndrng 21335 The complex numbers form a...
cndrngOLD 21336 Obsolete version of ~ cndr...
cnflddiv 21337 The division operation in ...
cnflddivOLD 21338 Obsolete version of ~ cnfl...
cnfldinv 21339 The multiplicative inverse...
cnfldmulg 21340 The group multiple functio...
cnfldexp 21341 The exponentiation operato...
cnsrng 21342 The complex numbers form a...
xrsmgm 21343 The "additive group" of th...
xrsnsgrp 21344 The "additive group" of th...
xrsmgmdifsgrp 21345 The "additive group" of th...
xrsds 21346 The metric of the extended...
xrsdsval 21347 The metric of the extended...
xrsdsreval 21348 The metric of the extended...
xrsdsreclblem 21349 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 21350 The metric of the extended...
cnsubmlem 21351 Lemma for ~ nn0subm and fr...
cnsubglem 21352 Lemma for ~ resubdrg and f...
cnsubrglem 21353 Lemma for ~ resubdrg and f...
cnsubrglemOLD 21354 Obsolete version of ~ cnsu...
cnsubdrglem 21355 Lemma for ~ resubdrg and f...
qsubdrg 21356 The rational numbers form ...
zsubrg 21357 The integers form a subrin...
gzsubrg 21358 The gaussian integers form...
nn0subm 21359 The nonnegative integers f...
rege0subm 21360 The nonnegative reals form...
absabv 21361 The regular absolute value...
zsssubrg 21362 The integers are a subset ...
qsssubdrg 21363 The rational numbers are a...
cnsubrg 21364 There are no subrings of t...
cnmgpabl 21365 The unit group of the comp...
cnmgpid 21366 The group identity element...
cnmsubglem 21367 Lemma for ~ rpmsubg and fr...
rpmsubg 21368 The positive reals form a ...
gzrngunitlem 21369 Lemma for ~ gzrngunit . (...
gzrngunit 21370 The units on ` ZZ [ _i ] `...
gsumfsum 21371 Relate a group sum on ` CC...
regsumfsum 21372 Relate a group sum on ` ( ...
expmhm 21373 Exponentiation is a monoid...
nn0srg 21374 The nonnegative integers f...
rge0srg 21375 The nonnegative real numbe...
xrge0plusg 21376 The additive law of the ex...
xrs1mnd 21377 The extended real numbers,...
xrs10 21378 The zero of the extended r...
xrs1cmn 21379 The extended real numbers ...
xrge0subm 21380 The nonnegative extended r...
xrge0cmn 21381 The nonnegative extended r...
xrge0omnd 21382 The nonnegative extended r...
zringcrng 21385 The ring of integers is a ...
zringring 21386 The ring of integers is a ...
zringrng 21387 The ring of integers is a ...
zringabl 21388 The ring of integers is an...
zringgrp 21389 The ring of integers is an...
zringbas 21390 The integers are the base ...
zringplusg 21391 The addition operation of ...
zringsub 21392 The subtraction of element...
zringmulg 21393 The multiplication (group ...
zringmulr 21394 The multiplication operati...
zring0 21395 The zero element of the ri...
zring1 21396 The unity element of the r...
zringnzr 21397 The ring of integers is a ...
dvdsrzring 21398 Ring divisibility in the r...
zringlpirlem1 21399 Lemma for ~ zringlpir . A...
zringlpirlem2 21400 Lemma for ~ zringlpir . A...
zringlpirlem3 21401 Lemma for ~ zringlpir . A...
zringinvg 21402 The additive inverse of an...
zringunit 21403 The units of ` ZZ ` are th...
zringlpir 21404 The integers are a princip...
zringndrg 21405 The integers are not a div...
zringcyg 21406 The integers are a cyclic ...
zringsubgval 21407 Subtraction in the ring of...
zringmpg 21408 The multiplicative group o...
prmirredlem 21409 A positive integer is irre...
dfprm2 21410 The positive irreducible e...
prmirred 21411 The irreducible elements o...
expghm 21412 Exponentiation is a group ...
mulgghm2 21413 The powers of a group elem...
mulgrhm 21414 The powers of the element ...
mulgrhm2 21415 The powers of the element ...
irinitoringc 21416 The ring of integers is an...
nzerooringczr 21417 There is no zero object in...
pzriprnglem1 21418 Lemma 1 for ~ pzriprng : `...
pzriprnglem2 21419 Lemma 2 for ~ pzriprng : ...
pzriprnglem3 21420 Lemma 3 for ~ pzriprng : ...
pzriprnglem4 21421 Lemma 4 for ~ pzriprng : `...
pzriprnglem5 21422 Lemma 5 for ~ pzriprng : `...
pzriprnglem6 21423 Lemma 6 for ~ pzriprng : `...
pzriprnglem7 21424 Lemma 7 for ~ pzriprng : `...
pzriprnglem8 21425 Lemma 8 for ~ pzriprng : `...
pzriprnglem9 21426 Lemma 9 for ~ pzriprng : ...
pzriprnglem10 21427 Lemma 10 for ~ pzriprng : ...
pzriprnglem11 21428 Lemma 11 for ~ pzriprng : ...
pzriprnglem12 21429 Lemma 12 for ~ pzriprng : ...
pzriprnglem13 21430 Lemma 13 for ~ pzriprng : ...
pzriprnglem14 21431 Lemma 14 for ~ pzriprng : ...
pzriprngALT 21432 The non-unital ring ` ( ZZ...
pzriprng1ALT 21433 The ring unity of the ring...
pzriprng 21434 The non-unital ring ` ( ZZ...
pzriprng1 21435 The ring unity of the ring...
zrhval 21444 Define the unique homomorp...
zrhval2 21445 Alternate value of the ` Z...
zrhmulg 21446 Value of the ` ZRHom ` hom...
zrhrhmb 21447 The ` ZRHom ` homomorphism...
zrhrhm 21448 The ` ZRHom ` homomorphism...
zrh1 21449 Interpretation of 1 in a r...
zrh0 21450 Interpretation of 0 in a r...
zrhpropd 21451 The ` ZZ ` ring homomorphi...
zlmval 21452 Augment an abelian group w...
zlmlem 21453 Lemma for ~ zlmbas and ~ z...
zlmbas 21454 Base set of a ` ZZ ` -modu...
zlmplusg 21455 Group operation of a ` ZZ ...
zlmmulr 21456 Ring operation of a ` ZZ `...
zlmsca 21457 Scalar ring of a ` ZZ ` -m...
zlmvsca 21458 Scalar multiplication oper...
zlmlmod 21459 The ` ZZ ` -module operati...
chrval 21460 Definition substitution of...
chrcl 21461 Closure of the characteris...
chrid 21462 The canonical ` ZZ ` ring ...
chrdvds 21463 The ` ZZ ` ring homomorphi...
chrcong 21464 If two integers are congru...
dvdschrmulg 21465 In a ring, any multiple of...
fermltlchr 21466 A generalization of Fermat...
chrnzr 21467 Nonzero rings are precisel...
chrrhm 21468 The characteristic restric...
domnchr 21469 The characteristic of a do...
znlidl 21470 The set ` n ZZ ` is an ide...
zncrng2 21471 Making a commutative ring ...
znval 21472 The value of the ` Z/nZ ` ...
znle 21473 The value of the ` Z/nZ ` ...
znval2 21474 Self-referential expressio...
znbaslem 21475 Lemma for ~ znbas . (Cont...
znbas2 21476 The base set of ` Z/nZ ` i...
znadd 21477 The additive structure of ...
znmul 21478 The multiplicative structu...
znzrh 21479 The ` ZZ ` ring homomorphi...
znbas 21480 The base set of ` Z/nZ ` s...
zncrng 21481 ` Z/nZ ` is a commutative ...
znzrh2 21482 The ` ZZ ` ring homomorphi...
znzrhval 21483 The ` ZZ ` ring homomorphi...
znzrhfo 21484 The ` ZZ ` ring homomorphi...
zncyg 21485 The group ` ZZ / n ZZ ` is...
zndvds 21486 Express equality of equiva...
zndvds0 21487 Special case of ~ zndvds w...
znf1o 21488 The function ` F ` enumera...
zzngim 21489 The ` ZZ ` ring homomorphi...
znle2 21490 The ordering of the ` Z/nZ...
znleval 21491 The ordering of the ` Z/nZ...
znleval2 21492 The ordering of the ` Z/nZ...
zntoslem 21493 Lemma for ~ zntos . (Cont...
zntos 21494 The ` Z/nZ ` structure is ...
znhash 21495 The ` Z/nZ ` structure has...
znfi 21496 The ` Z/nZ ` structure is ...
znfld 21497 The ` Z/nZ ` structure is ...
znidomb 21498 The ` Z/nZ ` structure is ...
znchr 21499 Cyclic rings are defined b...
znunit 21500 The units of ` Z/nZ ` are ...
znunithash 21501 The size of the unit group...
znrrg 21502 The regular elements of ` ...
cygznlem1 21503 Lemma for ~ cygzn . (Cont...
cygznlem2a 21504 Lemma for ~ cygzn . (Cont...
cygznlem2 21505 Lemma for ~ cygzn . (Cont...
cygznlem3 21506 A cyclic group with ` n ` ...
cygzn 21507 A cyclic group with ` n ` ...
cygth 21508 The "fundamental theorem o...
cyggic 21509 Cyclic groups are isomorph...
frgpcyg 21510 A free group is cyclic iff...
freshmansdream 21511 For a prime number ` P ` ,...
frobrhm 21512 In a commutative ring with...
ofldchr 21513 The characteristic of an o...
cnmsgnsubg 21514 The signs form a multiplic...
cnmsgnbas 21515 The base set of the sign s...
cnmsgngrp 21516 The group of signs under m...
psgnghm 21517 The sign is a homomorphism...
psgnghm2 21518 The sign is a homomorphism...
psgninv 21519 The sign of a permutation ...
psgnco 21520 Multiplicativity of the pe...
zrhpsgnmhm 21521 Embedding of permutation s...
zrhpsgninv 21522 The embedded sign of a per...
evpmss 21523 Even permutations are perm...
psgnevpmb 21524 A class is an even permuta...
psgnodpm 21525 A permutation which is odd...
psgnevpm 21526 A permutation which is eve...
psgnodpmr 21527 If a permutation has sign ...
zrhpsgnevpm 21528 The sign of an even permut...
zrhpsgnodpm 21529 The sign of an odd permuta...
cofipsgn 21530 Composition of any class `...
zrhpsgnelbas 21531 Embedding of permutation s...
zrhcopsgnelbas 21532 Embedding of permutation s...
evpmodpmf1o 21533 The function for performin...
pmtrodpm 21534 A transposition is an odd ...
psgnfix1 21535 A permutation of a finite ...
psgnfix2 21536 A permutation of a finite ...
psgndiflemB 21537 Lemma 1 for ~ psgndif . (...
psgndiflemA 21538 Lemma 2 for ~ psgndif . (...
psgndif 21539 Embedding of permutation s...
copsgndif 21540 Embedding of permutation s...
rebase 21543 The base of the field of r...
remulg 21544 The multiplication (group ...
resubdrg 21545 The real numbers form a di...
resubgval 21546 Subtraction in the field o...
replusg 21547 The addition operation of ...
remulr 21548 The multiplication operati...
re0g 21549 The zero element of the fi...
re1r 21550 The unity element of the f...
rele2 21551 The ordering relation of t...
relt 21552 The ordering relation of t...
reds 21553 The distance of the field ...
redvr 21554 The division operation of ...
retos 21555 The real numbers are a tot...
refld 21556 The real numbers form a fi...
refldcj 21557 The conjugation operation ...
resrng 21558 The real numbers form a st...
regsumsupp 21559 The group sum over the rea...
rzgrp 21560 The quotient group ` RR / ...
isphl 21565 The predicate "is a genera...
phllvec 21566 A pre-Hilbert space is a l...
phllmod 21567 A pre-Hilbert space is a l...
phlsrng 21568 The scalar ring of a pre-H...
phllmhm 21569 The inner product of a pre...
ipcl 21570 Closure of the inner produ...
ipcj 21571 Conjugate of an inner prod...
iporthcom 21572 Orthogonality (meaning inn...
ip0l 21573 Inner product with a zero ...
ip0r 21574 Inner product with a zero ...
ipeq0 21575 The inner product of a vec...
ipdir 21576 Distributive law for inner...
ipdi 21577 Distributive law for inner...
ip2di 21578 Distributive law for inner...
ipsubdir 21579 Distributive law for inner...
ipsubdi 21580 Distributive law for inner...
ip2subdi 21581 Distributive law for inner...
ipass 21582 Associative law for inner ...
ipassr 21583 "Associative" law for seco...
ipassr2 21584 "Associative" law for inne...
ipffval 21585 The inner product operatio...
ipfval 21586 The inner product operatio...
ipfeq 21587 If the inner product opera...
ipffn 21588 The inner product operatio...
phlipf 21589 The inner product operatio...
ip2eq 21590 Two vectors are equal iff ...
isphld 21591 Properties that determine ...
phlpropd 21592 If two structures have the...
ssipeq 21593 The inner product on a sub...
phssipval 21594 The inner product on a sub...
phssip 21595 The inner product (as a fu...
phlssphl 21596 A subspace of an inner pro...
ocvfval 21603 The orthocomplement operat...
ocvval 21604 Value of the orthocompleme...
elocv 21605 Elementhood in the orthoco...
ocvi 21606 Property of a member of th...
ocvss 21607 The orthocomplement of a s...
ocvocv 21608 A set is contained in its ...
ocvlss 21609 The orthocomplement of a s...
ocv2ss 21610 Orthocomplements reverse s...
ocvin 21611 An orthocomplement has tri...
ocvsscon 21612 Two ways to say that ` S `...
ocvlsp 21613 The orthocomplement of a l...
ocv0 21614 The orthocomplement of the...
ocvz 21615 The orthocomplement of the...
ocv1 21616 The orthocomplement of the...
unocv 21617 The orthocomplement of a u...
iunocv 21618 The orthocomplement of an ...
cssval 21619 The set of closed subspace...
iscss 21620 The predicate "is a closed...
cssi 21621 Property of a closed subsp...
cssss 21622 A closed subspace is a sub...
iscss2 21623 It is sufficient to prove ...
ocvcss 21624 The orthocomplement of any...
cssincl 21625 The zero subspace is a clo...
css0 21626 The zero subspace is a clo...
css1 21627 The whole space is a close...
csslss 21628 A closed subspace of a pre...
lsmcss 21629 A subset of a pre-Hilbert ...
cssmre 21630 The closed subspaces of a ...
mrccss 21631 The Moore closure correspo...
thlval 21632 Value of the Hilbert latti...
thlbas 21633 Base set of the Hilbert la...
thlle 21634 Ordering on the Hilbert la...
thlleval 21635 Ordering on the Hilbert la...
thloc 21636 Orthocomplement on the Hil...
pjfval 21643 The value of the projectio...
pjdm 21644 A subspace is in the domai...
pjpm 21645 The projection map is a pa...
pjfval2 21646 Value of the projection ma...
pjval 21647 Value of the projection ma...
pjdm2 21648 A subspace is in the domai...
pjff 21649 A projection is a linear o...
pjf 21650 A projection is a function...
pjf2 21651 A projection is a function...
pjfo 21652 A projection is a surjecti...
pjcss 21653 A projection subspace is a...
ocvpj 21654 The orthocomplement of a p...
ishil 21655 The predicate "is a Hilber...
ishil2 21656 The predicate "is a Hilber...
isobs 21657 The predicate "is an ortho...
obsip 21658 The inner product of two e...
obsipid 21659 A basis element has length...
obsrcl 21660 Reverse closure for an ort...
obsss 21661 An orthonormal basis is a ...
obsne0 21662 A basis element is nonzero...
obsocv 21663 An orthonormal basis has t...
obs2ocv 21664 The double orthocomplement...
obselocv 21665 A basis element is in the ...
obs2ss 21666 A basis has no proper subs...
obslbs 21667 An orthogonal basis is a l...
reldmdsmm 21670 The direct sum is a well-b...
dsmmval 21671 Value of the module direct...
dsmmbase 21672 Base set of the module dir...
dsmmval2 21673 Self-referential definitio...
dsmmbas2 21674 Base set of the direct sum...
dsmmfi 21675 For finite products, the d...
dsmmelbas 21676 Membership in the finitely...
dsmm0cl 21677 The all-zero vector is con...
dsmmacl 21678 The finite hull is closed ...
prdsinvgd2 21679 Negation of a single coord...
dsmmsubg 21680 The finite hull of a produ...
dsmmlss 21681 The finite hull of a produ...
dsmmlmod 21682 The direct sum of a family...
frlmval 21685 Value of the "free module"...
frlmlmod 21686 The free module is a modul...
frlmpws 21687 The free module as a restr...
frlmlss 21688 The base set of the free m...
frlmpwsfi 21689 The finite free module is ...
frlmsca 21690 The ring of scalars of a f...
frlm0 21691 Zero in a free module (rin...
frlmbas 21692 Base set of the free modul...
frlmelbas 21693 Membership in the base set...
frlmrcl 21694 If a free module is inhabi...
frlmbasfsupp 21695 Elements of the free modul...
frlmbasmap 21696 Elements of the free modul...
frlmbasf 21697 Elements of the free modul...
frlmlvec 21698 The free module over a div...
frlmfibas 21699 The base set of the finite...
elfrlmbasn0 21700 If the dimension of a free...
frlmplusgval 21701 Addition in a free module....
frlmsubgval 21702 Subtraction in a free modu...
frlmvscafval 21703 Scalar multiplication in a...
frlmvplusgvalc 21704 Coordinates of a sum with ...
frlmvscaval 21705 Coordinates of a scalar mu...
frlmplusgvalb 21706 Addition in a free module ...
frlmvscavalb 21707 Scalar multiplication in a...
frlmvplusgscavalb 21708 Addition combined with sca...
frlmgsum 21709 Finite commutative sums in...
frlmsplit2 21710 Restriction is homomorphic...
frlmsslss 21711 A subset of a free module ...
frlmsslss2 21712 A subset of a free module ...
frlmbas3 21713 An element of the base set...
mpofrlmd 21714 Elements of the free modul...
frlmip 21715 The inner product of a fre...
frlmipval 21716 The inner product of a fre...
frlmphllem 21717 Lemma for ~ frlmphl . (Co...
frlmphl 21718 Conditions for a free modu...
uvcfval 21721 Value of the unit-vector g...
uvcval 21722 Value of a single unit vec...
uvcvval 21723 Value of a unit vector coo...
uvcvvcl 21724 A coordinate of a unit vec...
uvcvvcl2 21725 A unit vector coordinate i...
uvcvv1 21726 The unit vector is one at ...
uvcvv0 21727 The unit vector is zero at...
uvcff 21728 Domain and codomain of the...
uvcf1 21729 In a nonzero ring, each un...
uvcresum 21730 Any element of a free modu...
frlmssuvc1 21731 A scalar multiple of a uni...
frlmssuvc2 21732 A nonzero scalar multiple ...
frlmsslsp 21733 A subset of a free module ...
frlmlbs 21734 The unit vectors comprise ...
frlmup1 21735 Any assignment of unit vec...
frlmup2 21736 The evaluation map has the...
frlmup3 21737 The range of such an evalu...
frlmup4 21738 Universal property of the ...
ellspd 21739 The elements of the span o...
elfilspd 21740 Simplified version of ~ el...
rellindf 21745 The independent-family pre...
islinds 21746 Property of an independent...
linds1 21747 An independent set of vect...
linds2 21748 An independent set of vect...
islindf 21749 Property of an independent...
islinds2 21750 Expanded property of an in...
islindf2 21751 Property of an independent...
lindff 21752 Functional property of a l...
lindfind 21753 A linearly independent fam...
lindsind 21754 A linearly independent set...
lindfind2 21755 In a linearly independent ...
lindsind2 21756 In a linearly independent ...
lindff1 21757 A linearly independent fam...
lindfrn 21758 The range of an independen...
f1lindf 21759 Rearranging and deleting e...
lindfres 21760 Any restriction of an inde...
lindsss 21761 Any subset of an independe...
f1linds 21762 A family constructed from ...
islindf3 21763 In a nonzero ring, indepen...
lindfmm 21764 Linear independence of a f...
lindsmm 21765 Linear independence of a s...
lindsmm2 21766 The monomorphic image of a...
lsslindf 21767 Linear independence is unc...
lsslinds 21768 Linear independence is unc...
islbs4 21769 A basis is an independent ...
lbslinds 21770 A basis is independent. (...
islinds3 21771 A subset is linearly indep...
islinds4 21772 A set is independent in a ...
lmimlbs 21773 The isomorphic image of a ...
lmiclbs 21774 Having a basis is an isomo...
islindf4 21775 A family is independent if...
islindf5 21776 A family is independent if...
indlcim 21777 An independent, spanning f...
lbslcic 21778 A module with a basis is i...
lmisfree 21779 A module has a basis iff i...
lvecisfrlm 21780 Every vector space is isom...
lmimco 21781 The composition of two iso...
lmictra 21782 Module isomorphism is tran...
uvcf1o 21783 In a nonzero ring, the map...
uvcendim 21784 In a nonzero ring, the num...
frlmisfrlm 21785 A free module is isomorphi...
frlmiscvec 21786 Every free module is isomo...
isassa 21793 The properties of an assoc...
assalem 21794 The properties of an assoc...
assaass 21795 Left-associative property ...
assaassr 21796 Right-associative property...
assalmod 21797 An associative algebra is ...
assaring 21798 An associative algebra is ...
assasca 21799 The scalars of an associat...
assa2ass 21800 Left- and right-associativ...
assa2ass2 21801 Left- and right-associativ...
isassad 21802 Sufficient condition for b...
issubassa3 21803 A subring that is also a s...
issubassa 21804 The subalgebras of an asso...
sraassab 21805 A subring algebra is an as...
sraassa 21806 The subring algebra over a...
sraassaOLD 21807 Obsolete version of ~ sraa...
rlmassa 21808 The ring module over a com...
assapropd 21809 If two structures have the...
aspval 21810 Value of the algebraic clo...
asplss 21811 The algebraic span of a se...
aspid 21812 The algebraic span of a su...
aspsubrg 21813 The algebraic span of a se...
aspss 21814 Span preserves subset orde...
aspssid 21815 A set of vectors is a subs...
asclfval 21816 Function value of the alge...
asclval 21817 Value of a mapped algebra ...
asclfn 21818 Unconditional functionalit...
asclf 21819 The algebra scalar lifting...
asclghm 21820 The algebra scalar lifting...
ascl0 21821 The scalar 0 embedded into...
ascl1 21822 The scalar 1 embedded into...
asclmul1 21823 Left multiplication by a l...
asclmul2 21824 Right multiplication by a ...
ascldimul 21825 The algebra scalar lifting...
asclinvg 21826 The group inverse (negatio...
asclrhm 21827 The algebra scalar lifting...
rnascl 21828 The set of lifted scalars ...
issubassa2 21829 A subring of a unital alge...
rnasclsubrg 21830 The scalar multiples of th...
rnasclmulcl 21831 (Vector) multiplication is...
rnasclassa 21832 The scalar multiples of th...
ressascl 21833 The lifting of scalars is ...
asclpropd 21834 If two structures have the...
aspval2 21835 The algebraic closure is t...
assamulgscmlem1 21836 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21837 Lemma for ~ assamulgscm (i...
assamulgscm 21838 Exponentiation of a scalar...
asclmulg 21839 Apply group multiplication...
zlmassa 21840 The ` ZZ ` -module operati...
reldmpsr 21851 The multivariate power ser...
psrval 21852 Value of the multivariate ...
psrvalstr 21853 The multivariate power ser...
psrbag 21854 Elementhood in the set of ...
psrbagf 21855 A finite bag is a function...
psrbagfsupp 21856 Finite bags have finite su...
snifpsrbag 21857 A bag containing one eleme...
fczpsrbag 21858 The constant function equa...
psrbaglesupp 21859 The support of a dominated...
psrbaglecl 21860 The set of finite bags is ...
psrbagaddcl 21861 The sum of two finite bags...
psrbagcon 21862 The analogue of the statem...
psrbaglefi 21863 There are finitely many ba...
psrbagconcl 21864 The complement of a bag is...
psrbagleadd1 21865 The analogue of " ` X <_ F...
psrbagconf1o 21866 Bag complementation is a b...
gsumbagdiaglem 21867 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21868 Two-dimensional commutatio...
psrass1lem 21869 A group sum commutation us...
psrbas 21870 The base set of the multiv...
psrelbas 21871 An element of the set of p...
psrelbasfun 21872 An element of the set of p...
psrplusg 21873 The addition operation of ...
psradd 21874 The addition operation of ...
psraddcl 21875 Closure of the power serie...
psraddclOLD 21876 Obsolete version of ~ psra...
rhmpsrlem1 21877 Lemma for ~ rhmpsr et al. ...
rhmpsrlem2 21878 Lemma for ~ rhmpsr et al. ...
psrmulr 21879 The multiplication operati...
psrmulfval 21880 The multiplication operati...
psrmulval 21881 The multiplication operati...
psrmulcllem 21882 Closure of the power serie...
psrmulcl 21883 Closure of the power serie...
psrsca 21884 The scalar field of the mu...
psrvscafval 21885 The scalar multiplication ...
psrvsca 21886 The scalar multiplication ...
psrvscaval 21887 The scalar multiplication ...
psrvscacl 21888 Closure of the power serie...
psr0cl 21889 The zero element of the ri...
psr0lid 21890 The zero element of the ri...
psrnegcl 21891 The negative function in t...
psrlinv 21892 The negative function in t...
psrgrp 21893 The ring of power series i...
psrgrpOLD 21894 Obsolete version of ~ psrg...
psr0 21895 The zero element of the ri...
psrneg 21896 The negative function of t...
psrlmod 21897 The ring of power series i...
psr1cl 21898 The identity element of th...
psrlidm 21899 The identity element of th...
psrridm 21900 The identity element of th...
psrass1 21901 Associative identity for t...
psrdi 21902 Distributive law for the r...
psrdir 21903 Distributive law for the r...
psrass23l 21904 Associative identity for t...
psrcom 21905 Commutative law for the ri...
psrass23 21906 Associative identities for...
psrring 21907 The ring of power series i...
psr1 21908 The identity element of th...
psrcrng 21909 The ring of power series i...
psrassa 21910 The ring of power series i...
resspsrbas 21911 A restricted power series ...
resspsradd 21912 A restricted power series ...
resspsrmul 21913 A restricted power series ...
resspsrvsca 21914 A restricted power series ...
subrgpsr 21915 A subring of the base ring...
psrascl 21916 Value of the scalar inject...
psrasclcl 21917 A scalar is lifted into a ...
mvrfval 21918 Value of the generating el...
mvrval 21919 Value of the generating el...
mvrval2 21920 Value of the generating el...
mvrid 21921 The ` X i ` -th coefficien...
mvrf 21922 The power series variable ...
mvrf1 21923 The power series variable ...
mvrcl2 21924 A power series variable is...
reldmmpl 21925 The multivariate polynomia...
mplval 21926 Value of the set of multiv...
mplbas 21927 Base set of the set of mul...
mplelbas 21928 Property of being a polyno...
mvrcl 21929 A power series variable is...
mvrf2 21930 The power series/polynomia...
mplrcl 21931 Reverse closure for the po...
mplelsfi 21932 A polynomial treated as a ...
mplval2 21933 Self-referential expressio...
mplbasss 21934 The set of polynomials is ...
mplelf 21935 A polynomial is defined as...
mplsubglem 21936 If ` A ` is an ideal of se...
mpllsslem 21937 If ` A ` is an ideal of su...
mplsubglem2 21938 Lemma for ~ mplsubg and ~ ...
mplsubg 21939 The set of polynomials is ...
mpllss 21940 The set of polynomials is ...
mplsubrglem 21941 Lemma for ~ mplsubrg . (C...
mplsubrg 21942 The set of polynomials is ...
mpl0 21943 The zero polynomial. (Con...
mplplusg 21944 Value of addition in a pol...
mplmulr 21945 Value of multiplication in...
mpladd 21946 The addition operation on ...
mplneg 21947 The negative function on m...
mplmul 21948 The multiplication operati...
mpl1 21949 The identity element of th...
mplsca 21950 The scalar field of a mult...
mplvsca2 21951 The scalar multiplication ...
mplvsca 21952 The scalar multiplication ...
mplvscaval 21953 The scalar multiplication ...
mplgrp 21954 The polynomial ring is a g...
mpllmod 21955 The polynomial ring is a l...
mplring 21956 The polynomial ring is a r...
mpllvec 21957 The polynomial ring is a v...
mplcrng 21958 The polynomial ring is a c...
mplassa 21959 The polynomial ring is an ...
mplringd 21960 The polynomial ring is a r...
mpllmodd 21961 The polynomial ring is a l...
ressmplbas2 21962 The base set of a restrict...
ressmplbas 21963 A restricted polynomial al...
ressmpladd 21964 A restricted polynomial al...
ressmplmul 21965 A restricted polynomial al...
ressmplvsca 21966 A restricted power series ...
subrgmpl 21967 A subring of the base ring...
subrgmvr 21968 The variables in a subring...
subrgmvrf 21969 The variables in a polynom...
mplmon 21970 A monomial is a polynomial...
mplmonmul 21971 The product of two monomia...
mplcoe1 21972 Decompose a polynomial int...
mplcoe3 21973 Decompose a monomial in on...
mplcoe5lem 21974 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21975 Decompose a monomial into ...
mplcoe2 21976 Decompose a monomial into ...
mplbas2 21977 An alternative expression ...
ltbval 21978 Value of the well-order on...
ltbwe 21979 The finite bag order is a ...
reldmopsr 21980 Lemma for ordered power se...
opsrval 21981 The value of the "ordered ...
opsrle 21982 An alternative expression ...
opsrval2 21983 Self-referential expressio...
opsrbaslem 21984 Get a component of the ord...
opsrbas 21985 The base set of the ordere...
opsrplusg 21986 The addition operation of ...
opsrmulr 21987 The multiplication operati...
opsrvsca 21988 The scalar product operati...
opsrsca 21989 The scalar ring of the ord...
opsrtoslem1 21990 Lemma for ~ opsrtos . (Co...
opsrtoslem2 21991 Lemma for ~ opsrtos . (Co...
opsrtos 21992 The ordered power series s...
opsrso 21993 The ordered power series s...
opsrcrng 21994 The ring of ordered power ...
opsrassa 21995 The ring of ordered power ...
mplmon2 21996 Express a scaled monomial....
psrbag0 21997 The empty bag is a bag. (...
psrbagsn 21998 A singleton bag is a bag. ...
mplascl 21999 Value of the scalar inject...
mplasclf 22000 The scalar injection is a ...
subrgascl 22001 The scalar injection funct...
subrgasclcl 22002 The scalars in a polynomia...
mplmon2cl 22003 A scaled monomial is a pol...
mplmon2mul 22004 Product of scaled monomial...
mplind 22005 Prove a property of polyno...
mplcoe4 22006 Decompose a polynomial int...
evlslem4 22011 The support of a tensor pr...
psrbagev1 22012 A bag of multipliers provi...
psrbagev2 22013 Closure of a sum using a b...
evlslem2 22014 A linear function on the p...
evlslem3 22015 Lemma for ~ evlseu . Poly...
evlslem6 22016 Lemma for ~ evlseu . Fini...
evlslem1 22017 Lemma for ~ evlseu , give ...
evlseu 22018 For a given interpretation...
reldmevls 22019 Well-behaved binary operat...
mpfrcl 22020 Reverse closure for the se...
evlsval 22021 Value of the polynomial ev...
evlsval2 22022 Characterizing properties ...
evlsrhm 22023 Polynomial evaluation is a...
evlssca 22024 Polynomial evaluation maps...
evlsvar 22025 Polynomial evaluation maps...
evlsgsumadd 22026 Polynomial evaluation maps...
evlsgsummul 22027 Polynomial evaluation maps...
evlspw 22028 Polynomial evaluation for ...
evlsvarpw 22029 Polynomial evaluation for ...
evlval 22030 Value of the simple/same r...
evlrhm 22031 The simple evaluation map ...
evlsscasrng 22032 The evaluation of a scalar...
evlsca 22033 Simple polynomial evaluati...
evlsvarsrng 22034 The evaluation of the vari...
evlvar 22035 Simple polynomial evaluati...
mpfconst 22036 Constants are multivariate...
mpfproj 22037 Projections are multivaria...
mpfsubrg 22038 Polynomial functions are a...
mpff 22039 Polynomial functions are f...
mpfaddcl 22040 The sum of multivariate po...
mpfmulcl 22041 The product of multivariat...
mpfind 22042 Prove a property of polyno...
selvffval 22048 Value of the "variable sel...
selvfval 22049 Value of the "variable sel...
selvval 22050 Value of the "variable sel...
reldmmhp 22052 The domain of the homogene...
mhpfval 22053 Value of the "homogeneous ...
mhpval 22054 Value of the "homogeneous ...
ismhp 22055 Property of being a homoge...
ismhp2 22056 Deduce a homogeneous polyn...
ismhp3 22057 A polynomial is homogeneou...
mhprcl 22058 Reverse closure for homoge...
mhpmpl 22059 A homogeneous polynomial i...
mhpdeg 22060 All nonzero terms of a hom...
mhp0cl 22061 The zero polynomial is hom...
mhpsclcl 22062 A scalar (or constant) pol...
mhpvarcl 22063 A power series variable is...
mhpmulcl 22064 A product of homogeneous p...
mhppwdeg 22065 Degree of a homogeneous po...
mhpaddcl 22066 Homogeneous polynomials ar...
mhpinvcl 22067 Homogeneous polynomials ar...
mhpsubg 22068 Homogeneous polynomials fo...
mhpvscacl 22069 Homogeneous polynomials ar...
mhplss 22070 Homogeneous polynomials fo...
psdffval 22072 Value of the power series ...
psdfval 22073 Give a map between power s...
psdval 22074 Evaluate the partial deriv...
psdcoef 22075 Coefficient of a term of t...
psdcl 22076 The derivative of a power ...
psdmplcl 22077 The derivative of a polyno...
psdadd 22078 The derivative of a sum is...
psdvsca 22079 The derivative of a scaled...
psdmullem 22080 Lemma for ~ psdmul . Tran...
psdmul 22081 Product rule for power ser...
psd1 22082 The derivative of one is z...
psdascl 22083 The derivative of a consta...
psdmvr 22084 The partial derivative of ...
psdpw 22085 Power rule for partial der...
psr1baslem 22097 The set of finite bags on ...
psr1val 22098 Value of the ring of univa...
psr1crng 22099 The ring of univariate pow...
psr1assa 22100 The ring of univariate pow...
psr1tos 22101 The ordered power series s...
psr1bas2 22102 The base set of the ring o...
psr1bas 22103 The base set of the ring o...
vr1val 22104 The value of the generator...
vr1cl2 22105 The variable ` X ` is a me...
ply1val 22106 The value of the set of un...
ply1bas 22107 The value of the base set ...
ply1basOLD 22108 Obsolete version of ~ ply1...
ply1lss 22109 Univariate polynomials for...
ply1subrg 22110 Univariate polynomials for...
ply1crng 22111 The ring of univariate pol...
ply1assa 22112 The ring of univariate pol...
psr1bascl 22113 A univariate power series ...
psr1basf 22114 Univariate power series ba...
ply1basf 22115 Univariate polynomial base...
ply1bascl 22116 A univariate polynomial is...
ply1bascl2 22117 A univariate polynomial is...
coe1fval 22118 Value of the univariate po...
coe1fv 22119 Value of an evaluated coef...
fvcoe1 22120 Value of a multivariate co...
coe1fval3 22121 Univariate power series co...
coe1f2 22122 Functionality of univariat...
coe1fval2 22123 Univariate polynomial coef...
coe1f 22124 Functionality of univariat...
coe1fvalcl 22125 A coefficient of a univari...
coe1sfi 22126 Finite support of univaria...
coe1fsupp 22127 The coefficient vector of ...
mptcoe1fsupp 22128 A mapping involving coeffi...
coe1ae0 22129 The coefficient vector of ...
vr1cl 22130 The generator of a univari...
opsr0 22131 Zero in the ordered power ...
opsr1 22132 One in the ordered power s...
psr1plusg 22133 Value of addition in a uni...
psr1vsca 22134 Value of scalar multiplica...
psr1mulr 22135 Value of multiplication in...
ply1plusg 22136 Value of addition in a uni...
ply1vsca 22137 Value of scalar multiplica...
ply1mulr 22138 Value of multiplication in...
ply1ass23l 22139 Associative identity with ...
ressply1bas2 22140 The base set of a restrict...
ressply1bas 22141 A restricted polynomial al...
ressply1add 22142 A restricted polynomial al...
ressply1mul 22143 A restricted polynomial al...
ressply1vsca 22144 A restricted power series ...
subrgply1 22145 A subring of the base ring...
gsumply1subr 22146 Evaluate a group sum in a ...
psrbaspropd 22147 Property deduction for pow...
psrplusgpropd 22148 Property deduction for pow...
mplbaspropd 22149 Property deduction for pol...
psropprmul 22150 Reversing multiplication i...
ply1opprmul 22151 Reversing multiplication i...
00ply1bas 22152 Lemma for ~ ply1basfvi and...
ply1basfvi 22153 Protection compatibility o...
ply1plusgfvi 22154 Protection compatibility o...
ply1baspropd 22155 Property deduction for uni...
ply1plusgpropd 22156 Property deduction for uni...
opsrring 22157 Ordered power series form ...
opsrlmod 22158 Ordered power series form ...
psr1ring 22159 Univariate power series fo...
ply1ring 22160 Univariate polynomials for...
psr1lmod 22161 Univariate power series fo...
psr1sca 22162 Scalars of a univariate po...
psr1sca2 22163 Scalars of a univariate po...
ply1lmod 22164 Univariate polynomials for...
ply1sca 22165 Scalars of a univariate po...
ply1sca2 22166 Scalars of a univariate po...
ply1ascl0 22167 The zero scalar as a polyn...
ply1ascl1 22168 The multiplicative identit...
ply1mpl0 22169 The univariate polynomial ...
ply10s0 22170 Zero times a univariate po...
ply1mpl1 22171 The univariate polynomial ...
ply1ascl 22172 The univariate polynomial ...
subrg1ascl 22173 The scalar injection funct...
subrg1asclcl 22174 The scalars in a polynomia...
subrgvr1 22175 The variables in a subring...
subrgvr1cl 22176 The variables in a polynom...
coe1z 22177 The coefficient vector of ...
coe1add 22178 The coefficient vector of ...
coe1addfv 22179 A particular coefficient o...
coe1subfv 22180 A particular coefficient o...
coe1mul2lem1 22181 An equivalence for ~ coe1m...
coe1mul2lem2 22182 An equivalence for ~ coe1m...
coe1mul2 22183 The coefficient vector of ...
coe1mul 22184 The coefficient vector of ...
ply1moncl 22185 Closure of the expression ...
ply1tmcl 22186 Closure of the expression ...
coe1tm 22187 Coefficient vector of a po...
coe1tmfv1 22188 Nonzero coefficient of a p...
coe1tmfv2 22189 Zero coefficient of a poly...
coe1tmmul2 22190 Coefficient vector of a po...
coe1tmmul 22191 Coefficient vector of a po...
coe1tmmul2fv 22192 Function value of a right-...
coe1pwmul 22193 Coefficient vector of a po...
coe1pwmulfv 22194 Function value of a right-...
ply1scltm 22195 A scalar is a term with ze...
coe1sclmul 22196 Coefficient vector of a po...
coe1sclmulfv 22197 A single coefficient of a ...
coe1sclmul2 22198 Coefficient vector of a po...
ply1sclf 22199 A scalar polynomial is a p...
ply1sclcl 22200 The value of the algebra s...
coe1scl 22201 Coefficient vector of a sc...
ply1sclid 22202 Recover the base scalar fr...
ply1sclf1 22203 The polynomial scalar func...
ply1scl0 22204 The zero scalar is zero. ...
ply1scl0OLD 22205 Obsolete version of ~ ply1...
ply1scln0 22206 Nonzero scalars create non...
ply1scl1 22207 The one scalar is the unit...
ply1scl1OLD 22208 Obsolete version of ~ ply1...
ply1idvr1 22209 The identity of a polynomi...
ply1idvr1OLD 22210 Obsolete version of ~ ply1...
cply1mul 22211 The product of two constan...
ply1coefsupp 22212 The decomposition of a uni...
ply1coe 22213 Decompose a univariate pol...
eqcoe1ply1eq 22214 Two polynomials over the s...
ply1coe1eq 22215 Two polynomials over the s...
cply1coe0 22216 All but the first coeffici...
cply1coe0bi 22217 A polynomial is constant (...
coe1fzgsumdlem 22218 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 22219 Value of an evaluated coef...
ply1scleq 22220 Equality of a constant pol...
ply1chr 22221 The characteristic of a po...
gsumsmonply1 22222 A finite group sum of scal...
gsummoncoe1 22223 A coefficient of the polyn...
gsumply1eq 22224 Two univariate polynomials...
lply1binom 22225 The binomial theorem for l...
lply1binomsc 22226 The binomial theorem for l...
ply1fermltlchr 22227 Fermat's little theorem fo...
reldmevls1 22232 Well-behaved binary operat...
ply1frcl 22233 Reverse closure for the se...
evls1fval 22234 Value of the univariate po...
evls1val 22235 Value of the univariate po...
evls1rhmlem 22236 Lemma for ~ evl1rhm and ~ ...
evls1rhm 22237 Polynomial evaluation is a...
evls1sca 22238 Univariate polynomial eval...
evls1gsumadd 22239 Univariate polynomial eval...
evls1gsummul 22240 Univariate polynomial eval...
evls1pw 22241 Univariate polynomial eval...
evls1varpw 22242 Univariate polynomial eval...
evl1fval 22243 Value of the simple/same r...
evl1val 22244 Value of the simple/same r...
evl1fval1lem 22245 Lemma for ~ evl1fval1 . (...
evl1fval1 22246 Value of the simple/same r...
evl1rhm 22247 Polynomial evaluation is a...
fveval1fvcl 22248 The function value of the ...
evl1sca 22249 Polynomial evaluation maps...
evl1scad 22250 Polynomial evaluation buil...
evl1var 22251 Polynomial evaluation maps...
evl1vard 22252 Polynomial evaluation buil...
evls1var 22253 Univariate polynomial eval...
evls1scasrng 22254 The evaluation of a scalar...
evls1varsrng 22255 The evaluation of the vari...
evl1addd 22256 Polynomial evaluation buil...
evl1subd 22257 Polynomial evaluation buil...
evl1muld 22258 Polynomial evaluation buil...
evl1vsd 22259 Polynomial evaluation buil...
evl1expd 22260 Polynomial evaluation buil...
pf1const 22261 Constants are polynomial f...
pf1id 22262 The identity is a polynomi...
pf1subrg 22263 Polynomial functions are a...
pf1rcl 22264 Reverse closure for the se...
pf1f 22265 Polynomial functions are f...
mpfpf1 22266 Convert a multivariate pol...
pf1mpf 22267 Convert a univariate polyn...
pf1addcl 22268 The sum of multivariate po...
pf1mulcl 22269 The product of multivariat...
pf1ind 22270 Prove a property of polyno...
evl1gsumdlem 22271 Lemma for ~ evl1gsumd (ind...
evl1gsumd 22272 Polynomial evaluation buil...
evl1gsumadd 22273 Univariate polynomial eval...
evl1gsumaddval 22274 Value of a univariate poly...
evl1gsummul 22275 Univariate polynomial eval...
evl1varpw 22276 Univariate polynomial eval...
evl1varpwval 22277 Value of a univariate poly...
evl1scvarpw 22278 Univariate polynomial eval...
evl1scvarpwval 22279 Value of a univariate poly...
evl1gsummon 22280 Value of a univariate poly...
evls1scafv 22281 Value of the univariate po...
evls1expd 22282 Univariate polynomial eval...
evls1varpwval 22283 Univariate polynomial eval...
evls1fpws 22284 Evaluation of a univariate...
ressply1evl 22285 Evaluation of a univariate...
evls1addd 22286 Univariate polynomial eval...
evls1muld 22287 Univariate polynomial eval...
evls1vsca 22288 Univariate polynomial eval...
asclply1subcl 22289 Closure of the algebra sca...
evls1fvcl 22290 Variant of ~ fveval1fvcl f...
evls1maprhm 22291 The function ` F ` mapping...
evls1maplmhm 22292 The function ` F ` mapping...
evls1maprnss 22293 The function ` F ` mapping...
evl1maprhm 22294 The function ` F ` mapping...
mhmcompl 22295 The composition of a monoi...
mhmcoaddmpl 22296 Show that the ring homomor...
rhmcomulmpl 22297 Show that the ring homomor...
rhmmpl 22298 Provide a ring homomorphis...
ply1vscl 22299 Closure of scalar multipli...
mhmcoply1 22300 The composition of a monoi...
rhmply1 22301 Provide a ring homomorphis...
rhmply1vr1 22302 A ring homomorphism betwee...
rhmply1vsca 22303 Apply a ring homomorphism ...
rhmply1mon 22304 Apply a ring homomorphism ...
mamufval 22307 Functional value of the ma...
mamuval 22308 Multiplication of two matr...
mamufv 22309 A cell in the multiplicati...
mamudm 22310 The domain of the matrix m...
mamufacex 22311 Every solution of the equa...
mamures 22312 Rows in a matrix product a...
grpvlinv 22313 Tuple-wise left inverse in...
grpvrinv 22314 Tuple-wise right inverse i...
ringvcl 22315 Tuple-wise multiplication ...
mamucl 22316 Operation closure of matri...
mamuass 22317 Matrix multiplication is a...
mamudi 22318 Matrix multiplication dist...
mamudir 22319 Matrix multiplication dist...
mamuvs1 22320 Matrix multiplication dist...
mamuvs2 22321 Matrix multiplication dist...
matbas0pc 22324 There is no matrix with a ...
matbas0 22325 There is no matrix for a n...
matval 22326 Value of the matrix algebr...
matrcl 22327 Reverse closure for the ma...
matbas 22328 The matrix ring has the sa...
matplusg 22329 The matrix ring has the sa...
matsca 22330 The matrix ring has the sa...
matvsca 22331 The matrix ring has the sa...
mat0 22332 The matrix ring has the sa...
matinvg 22333 The matrix ring has the sa...
mat0op 22334 Value of a zero matrix as ...
matsca2 22335 The scalars of the matrix ...
matbas2 22336 The base set of the matrix...
matbas2i 22337 A matrix is a function. (...
matbas2d 22338 The base set of the matrix...
eqmat 22339 Two square matrices of the...
matecl 22340 Each entry (according to W...
matecld 22341 Each entry (according to W...
matplusg2 22342 Addition in the matrix rin...
matvsca2 22343 Scalar multiplication in t...
matlmod 22344 The matrix ring is a linea...
matgrp 22345 The matrix ring is a group...
matvscl 22346 Closure of the scalar mult...
matsubg 22347 The matrix ring has the sa...
matplusgcell 22348 Addition in the matrix rin...
matsubgcell 22349 Subtraction in the matrix ...
matinvgcell 22350 Additive inversion in the ...
matvscacell 22351 Scalar multiplication in t...
matgsum 22352 Finite commutative sums in...
matmulr 22353 Multiplication in the matr...
mamumat1cl 22354 The identity matrix (as op...
mat1comp 22355 The components of the iden...
mamulid 22356 The identity matrix (as op...
mamurid 22357 The identity matrix (as op...
matring 22358 Existence of the matrix ri...
matassa 22359 Existence of the matrix al...
matmulcell 22360 Multiplication in the matr...
mpomatmul 22361 Multiplication of two N x ...
mat1 22362 Value of an identity matri...
mat1ov 22363 Entries of an identity mat...
mat1bas 22364 The identity matrix is a m...
matsc 22365 The identity matrix multip...
ofco2 22366 Distribution law for the f...
oftpos 22367 The transposition of the v...
mattposcl 22368 The transpose of a square ...
mattpostpos 22369 The transpose of the trans...
mattposvs 22370 The transposition of a mat...
mattpos1 22371 The transposition of the i...
tposmap 22372 The transposition of an I ...
mamutpos 22373 Behavior of transposes in ...
mattposm 22374 Multiplying two transposed...
matgsumcl 22375 Closure of a group sum ove...
madetsumid 22376 The identity summand in th...
matepmcl 22377 Each entry of a matrix wit...
matepm2cl 22378 Each entry of a matrix wit...
madetsmelbas 22379 A summand of the determina...
madetsmelbas2 22380 A summand of the determina...
mat0dimbas0 22381 The empty set is the one a...
mat0dim0 22382 The zero of the algebra of...
mat0dimid 22383 The identity of the algebr...
mat0dimscm 22384 The scalar multiplication ...
mat0dimcrng 22385 The algebra of matrices wi...
mat1dimelbas 22386 A matrix with dimension 1 ...
mat1dimbas 22387 A matrix with dimension 1 ...
mat1dim0 22388 The zero of the algebra of...
mat1dimid 22389 The identity of the algebr...
mat1dimscm 22390 The scalar multiplication ...
mat1dimmul 22391 The ring multiplication in...
mat1dimcrng 22392 The algebra of matrices wi...
mat1f1o 22393 There is a 1-1 function fr...
mat1rhmval 22394 The value of the ring homo...
mat1rhmelval 22395 The value of the ring homo...
mat1rhmcl 22396 The value of the ring homo...
mat1f 22397 There is a function from a...
mat1ghm 22398 There is a group homomorph...
mat1mhm 22399 There is a monoid homomorp...
mat1rhm 22400 There is a ring homomorphi...
mat1rngiso 22401 There is a ring isomorphis...
mat1ric 22402 A ring is isomorphic to th...
dmatval 22407 The set of ` N ` x ` N ` d...
dmatel 22408 A ` N ` x ` N ` diagonal m...
dmatmat 22409 An ` N ` x ` N ` diagonal ...
dmatid 22410 The identity matrix is a d...
dmatelnd 22411 An extradiagonal entry of ...
dmatmul 22412 The product of two diagona...
dmatsubcl 22413 The difference of two diag...
dmatsgrp 22414 The set of diagonal matric...
dmatmulcl 22415 The product of two diagona...
dmatsrng 22416 The set of diagonal matric...
dmatcrng 22417 The subring of diagonal ma...
dmatscmcl 22418 The multiplication of a di...
scmatval 22419 The set of ` N ` x ` N ` s...
scmatel 22420 An ` N ` x ` N ` scalar ma...
scmatscmid 22421 A scalar matrix can be exp...
scmatscmide 22422 An entry of a scalar matri...
scmatscmiddistr 22423 Distributive law for scala...
scmatmat 22424 An ` N ` x ` N ` scalar ma...
scmate 22425 An entry of an ` N ` x ` N...
scmatmats 22426 The set of an ` N ` x ` N ...
scmateALT 22427 Alternate proof of ~ scmat...
scmatscm 22428 The multiplication of a ma...
scmatid 22429 The identity matrix is a s...
scmatdmat 22430 A scalar matrix is a diago...
scmataddcl 22431 The sum of two scalar matr...
scmatsubcl 22432 The difference of two scal...
scmatmulcl 22433 The product of two scalar ...
scmatsgrp 22434 The set of scalar matrices...
scmatsrng 22435 The set of scalar matrices...
scmatcrng 22436 The subring of scalar matr...
scmatsgrp1 22437 The set of scalar matrices...
scmatsrng1 22438 The set of scalar matrices...
smatvscl 22439 Closure of the scalar mult...
scmatlss 22440 The set of scalar matrices...
scmatstrbas 22441 The set of scalar matrices...
scmatrhmval 22442 The value of the ring homo...
scmatrhmcl 22443 The value of the ring homo...
scmatf 22444 There is a function from a...
scmatfo 22445 There is a function from a...
scmatf1 22446 There is a 1-1 function fr...
scmatf1o 22447 There is a bijection betwe...
scmatghm 22448 There is a group homomorph...
scmatmhm 22449 There is a monoid homomorp...
scmatrhm 22450 There is a ring homomorphi...
scmatrngiso 22451 There is a ring isomorphis...
scmatric 22452 A ring is isomorphic to ev...
mat0scmat 22453 The empty matrix over a ri...
mat1scmat 22454 A 1-dimensional matrix ove...
mvmulfval 22457 Functional value of the ma...
mvmulval 22458 Multiplication of a vector...
mvmulfv 22459 A cell/element in the vect...
mavmulval 22460 Multiplication of a vector...
mavmulfv 22461 A cell/element in the vect...
mavmulcl 22462 Multiplication of an NxN m...
1mavmul 22463 Multiplication of the iden...
mavmulass 22464 Associativity of the multi...
mavmuldm 22465 The domain of the matrix v...
mavmulsolcl 22466 Every solution of the equa...
mavmul0 22467 Multiplication of a 0-dime...
mavmul0g 22468 The result of the 0-dimens...
mvmumamul1 22469 The multiplication of an M...
mavmumamul1 22470 The multiplication of an N...
marrepfval 22475 First substitution for the...
marrepval0 22476 Second substitution for th...
marrepval 22477 Third substitution for the...
marrepeval 22478 An entry of a matrix with ...
marrepcl 22479 Closure of the row replace...
marepvfval 22480 First substitution for the...
marepvval0 22481 Second substitution for th...
marepvval 22482 Third substitution for the...
marepveval 22483 An entry of a matrix with ...
marepvcl 22484 Closure of the column repl...
ma1repvcl 22485 Closure of the column repl...
ma1repveval 22486 An entry of an identity ma...
mulmarep1el 22487 Element by element multipl...
mulmarep1gsum1 22488 The sum of element by elem...
mulmarep1gsum2 22489 The sum of element by elem...
1marepvmarrepid 22490 Replacing the ith row by 0...
submabas 22493 Any subset of the index se...
submafval 22494 First substitution for a s...
submaval0 22495 Second substitution for a ...
submaval 22496 Third substitution for a s...
submaeval 22497 An entry of a submatrix of...
1marepvsma1 22498 The submatrix of the ident...
mdetfval 22501 First substitution for the...
mdetleib 22502 Full substitution of our d...
mdetleib2 22503 Leibniz' formula can also ...
nfimdetndef 22504 The determinant is not def...
mdetfval1 22505 First substitution of an a...
mdetleib1 22506 Full substitution of an al...
mdet0pr 22507 The determinant function f...
mdet0f1o 22508 The determinant function f...
mdet0fv0 22509 The determinant of the emp...
mdetf 22510 Functionality of the deter...
mdetcl 22511 The determinant evaluates ...
m1detdiag 22512 The determinant of a 1-dim...
mdetdiaglem 22513 Lemma for ~ mdetdiag . Pr...
mdetdiag 22514 The determinant of a diago...
mdetdiagid 22515 The determinant of a diago...
mdet1 22516 The determinant of the ide...
mdetrlin 22517 The determinant function i...
mdetrsca 22518 The determinant function i...
mdetrsca2 22519 The determinant function i...
mdetr0 22520 The determinant of a matri...
mdet0 22521 The determinant of the zer...
mdetrlin2 22522 The determinant function i...
mdetralt 22523 The determinant function i...
mdetralt2 22524 The determinant function i...
mdetero 22525 The determinant function i...
mdettpos 22526 Determinant is invariant u...
mdetunilem1 22527 Lemma for ~ mdetuni . (Co...
mdetunilem2 22528 Lemma for ~ mdetuni . (Co...
mdetunilem3 22529 Lemma for ~ mdetuni . (Co...
mdetunilem4 22530 Lemma for ~ mdetuni . (Co...
mdetunilem5 22531 Lemma for ~ mdetuni . (Co...
mdetunilem6 22532 Lemma for ~ mdetuni . (Co...
mdetunilem7 22533 Lemma for ~ mdetuni . (Co...
mdetunilem8 22534 Lemma for ~ mdetuni . (Co...
mdetunilem9 22535 Lemma for ~ mdetuni . (Co...
mdetuni0 22536 Lemma for ~ mdetuni . (Co...
mdetuni 22537 According to the definitio...
mdetmul 22538 Multiplicativity of the de...
m2detleiblem1 22539 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 22540 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 22541 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 22542 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 22543 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 22544 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 22545 Lemma 4 for ~ m2detleib . ...
m2detleib 22546 Leibniz' Formula for 2x2-m...
mndifsplit 22551 Lemma for ~ maducoeval2 . ...
madufval 22552 First substitution for the...
maduval 22553 Second substitution for th...
maducoeval 22554 An entry of the adjunct (c...
maducoeval2 22555 An entry of the adjunct (c...
maduf 22556 Creating the adjunct of ma...
madutpos 22557 The adjuct of a transposed...
madugsum 22558 The determinant of a matri...
madurid 22559 Multiplying a matrix with ...
madulid 22560 Multiplying the adjunct of...
minmar1fval 22561 First substitution for the...
minmar1val0 22562 Second substitution for th...
minmar1val 22563 Third substitution for the...
minmar1eval 22564 An entry of a matrix for a...
minmar1marrep 22565 The minor matrix is a spec...
minmar1cl 22566 Closure of the row replace...
maducoevalmin1 22567 The coefficients of an adj...
symgmatr01lem 22568 Lemma for ~ symgmatr01 . ...
symgmatr01 22569 Applying a permutation tha...
gsummatr01lem1 22570 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 22571 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 22572 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 22573 Lemma 2 for ~ gsummatr01 ....
gsummatr01 22574 Lemma 1 for ~ smadiadetlem...
marep01ma 22575 Replacing a row of a squar...
smadiadetlem0 22576 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 22577 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 22578 Lemma 1a for ~ smadiadet :...
smadiadetlem2 22579 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 22580 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 22581 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 22582 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 22583 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 22584 Lemma 4 for ~ smadiadet . ...
smadiadet 22585 The determinant of a subma...
smadiadetglem1 22586 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 22587 Lemma 2 for ~ smadiadetg ....
smadiadetg 22588 The determinant of a squar...
smadiadetg0 22589 Lemma for ~ smadiadetr : v...
smadiadetr 22590 The determinant of a squar...
invrvald 22591 If a matrix multiplied wit...
matinv 22592 The inverse of a matrix is...
matunit 22593 A matrix is a unit in the ...
slesolvec 22594 Every solution of a system...
slesolinv 22595 The solution of a system o...
slesolinvbi 22596 The solution of a system o...
slesolex 22597 Every system of linear equ...
cramerimplem1 22598 Lemma 1 for ~ cramerimp : ...
cramerimplem2 22599 Lemma 2 for ~ cramerimp : ...
cramerimplem3 22600 Lemma 3 for ~ cramerimp : ...
cramerimp 22601 One direction of Cramer's ...
cramerlem1 22602 Lemma 1 for ~ cramer . (C...
cramerlem2 22603 Lemma 2 for ~ cramer . (C...
cramerlem3 22604 Lemma 3 for ~ cramer . (C...
cramer0 22605 Special case of Cramer's r...
cramer 22606 Cramer's rule. According ...
pmatring 22607 The set of polynomial matr...
pmatlmod 22608 The set of polynomial matr...
pmatassa 22609 The set of polynomial matr...
pmat0op 22610 The zero polynomial matrix...
pmat1op 22611 The identity polynomial ma...
pmat1ovd 22612 Entries of the identity po...
pmat0opsc 22613 The zero polynomial matrix...
pmat1opsc 22614 The identity polynomial ma...
pmat1ovscd 22615 Entries of the identity po...
pmatcoe1fsupp 22616 For a polynomial matrix th...
1pmatscmul 22617 The scalar product of the ...
cpmat 22624 Value of the constructor o...
cpmatpmat 22625 A constant polynomial matr...
cpmatel 22626 Property of a constant pol...
cpmatelimp 22627 Implication of a set being...
cpmatel2 22628 Another property of a cons...
cpmatelimp2 22629 Another implication of a s...
1elcpmat 22630 The identity of the ring o...
cpmatacl 22631 The set of all constant po...
cpmatinvcl 22632 The set of all constant po...
cpmatmcllem 22633 Lemma for ~ cpmatmcl . (C...
cpmatmcl 22634 The set of all constant po...
cpmatsubgpmat 22635 The set of all constant po...
cpmatsrgpmat 22636 The set of all constant po...
0elcpmat 22637 The zero of the ring of al...
mat2pmatfval 22638 Value of the matrix transf...
mat2pmatval 22639 The result of a matrix tra...
mat2pmatvalel 22640 A (matrix) element of the ...
mat2pmatbas 22641 The result of a matrix tra...
mat2pmatbas0 22642 The result of a matrix tra...
mat2pmatf 22643 The matrix transformation ...
mat2pmatf1 22644 The matrix transformation ...
mat2pmatghm 22645 The transformation of matr...
mat2pmatmul 22646 The transformation of matr...
mat2pmat1 22647 The transformation of the ...
mat2pmatmhm 22648 The transformation of matr...
mat2pmatrhm 22649 The transformation of matr...
mat2pmatlin 22650 The transformation of matr...
0mat2pmat 22651 The transformed zero matri...
idmatidpmat 22652 The transformed identity m...
d0mat2pmat 22653 The transformed empty set ...
d1mat2pmat 22654 The transformation of a ma...
mat2pmatscmxcl 22655 A transformed matrix multi...
m2cpm 22656 The result of a matrix tra...
m2cpmf 22657 The matrix transformation ...
m2cpmf1 22658 The matrix transformation ...
m2cpmghm 22659 The transformation of matr...
m2cpmmhm 22660 The transformation of matr...
m2cpmrhm 22661 The transformation of matr...
m2pmfzmap 22662 The transformed values of ...
m2pmfzgsumcl 22663 Closure of the sum of scal...
cpm2mfval 22664 Value of the inverse matri...
cpm2mval 22665 The result of an inverse m...
cpm2mvalel 22666 A (matrix) element of the ...
cpm2mf 22667 The inverse matrix transfo...
m2cpminvid 22668 The inverse transformation...
m2cpminvid2lem 22669 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 22670 The transformation applied...
m2cpmfo 22671 The matrix transformation ...
m2cpmf1o 22672 The matrix transformation ...
m2cpmrngiso 22673 The transformation of matr...
matcpmric 22674 The ring of matrices over ...
m2cpminv 22675 The inverse matrix transfo...
m2cpminv0 22676 The inverse matrix transfo...
decpmatval0 22679 The matrix consisting of t...
decpmatval 22680 The matrix consisting of t...
decpmate 22681 An entry of the matrix con...
decpmatcl 22682 Closure of the decompositi...
decpmataa0 22683 The matrix consisting of t...
decpmatfsupp 22684 The mapping to the matrice...
decpmatid 22685 The matrix consisting of t...
decpmatmullem 22686 Lemma for ~ decpmatmul . ...
decpmatmul 22687 The matrix consisting of t...
decpmatmulsumfsupp 22688 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 22689 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 22690 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 22691 Write a polynomial matrix ...
pmatcollpw2lem 22692 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 22693 Write a polynomial matrix ...
monmatcollpw 22694 The matrix consisting of t...
pmatcollpwlem 22695 Lemma for ~ pmatcollpw . ...
pmatcollpw 22696 Write a polynomial matrix ...
pmatcollpwfi 22697 Write a polynomial matrix ...
pmatcollpw3lem 22698 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 22699 Write a polynomial matrix ...
pmatcollpw3fi 22700 Write a polynomial matrix ...
pmatcollpw3fi1lem1 22701 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 22702 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 22703 Write a polynomial matrix ...
pmatcollpwscmatlem1 22704 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 22705 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 22706 Write a scalar matrix over...
pm2mpf1lem 22709 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 22710 Value of the transformatio...
pm2mpfval 22711 A polynomial matrix transf...
pm2mpcl 22712 The transformation of poly...
pm2mpf 22713 The transformation of poly...
pm2mpf1 22714 The transformation of poly...
pm2mpcoe1 22715 A coefficient of the polyn...
idpm2idmp 22716 The transformation of the ...
mptcoe1matfsupp 22717 The mapping extracting the...
mply1topmatcllem 22718 Lemma for ~ mply1topmatcl ...
mply1topmatval 22719 A polynomial over matrices...
mply1topmatcl 22720 A polynomial over matrices...
mp2pm2mplem1 22721 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 22722 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 22723 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 22724 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 22725 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 22726 A polynomial over matrices...
pm2mpghmlem2 22727 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 22728 Lemma 1 for pm2mpghm . (C...
pm2mpfo 22729 The transformation of poly...
pm2mpf1o 22730 The transformation of poly...
pm2mpghm 22731 The transformation of poly...
pm2mpgrpiso 22732 The transformation of poly...
pm2mpmhmlem1 22733 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 22734 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 22735 The transformation of poly...
pm2mprhm 22736 The transformation of poly...
pm2mprngiso 22737 The transformation of poly...
pmmpric 22738 The ring of polynomial mat...
monmat2matmon 22739 The transformation of a po...
pm2mp 22740 The transformation of a su...
chmatcl 22743 Closure of the characteris...
chmatval 22744 The entries of the charact...
chpmatfval 22745 Value of the characteristi...
chpmatval 22746 The characteristic polynom...
chpmatply1 22747 The characteristic polynom...
chpmatval2 22748 The characteristic polynom...
chpmat0d 22749 The characteristic polynom...
chpmat1dlem 22750 Lemma for ~ chpmat1d . (C...
chpmat1d 22751 The characteristic polynom...
chpdmatlem0 22752 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 22753 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 22754 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 22755 Lemma 3 for ~ chpdmat . (...
chpdmat 22756 The characteristic polynom...
chpscmat 22757 The characteristic polynom...
chpscmat0 22758 The characteristic polynom...
chpscmatgsumbin 22759 The characteristic polynom...
chpscmatgsummon 22760 The characteristic polynom...
chp0mat 22761 The characteristic polynom...
chpidmat 22762 The characteristic polynom...
chmaidscmat 22763 The characteristic polynom...
fvmptnn04if 22764 The function values of a m...
fvmptnn04ifa 22765 The function value of a ma...
fvmptnn04ifb 22766 The function value of a ma...
fvmptnn04ifc 22767 The function value of a ma...
fvmptnn04ifd 22768 The function value of a ma...
chfacfisf 22769 The "characteristic factor...
chfacfisfcpmat 22770 The "characteristic factor...
chfacffsupp 22771 The "characteristic factor...
chfacfscmulcl 22772 Closure of a scaled value ...
chfacfscmul0 22773 A scaled value of the "cha...
chfacfscmulfsupp 22774 A mapping of scaled values...
chfacfscmulgsum 22775 Breaking up a sum of value...
chfacfpmmulcl 22776 Closure of the value of th...
chfacfpmmul0 22777 The value of the "characte...
chfacfpmmulfsupp 22778 A mapping of values of the...
chfacfpmmulgsum 22779 Breaking up a sum of value...
chfacfpmmulgsum2 22780 Breaking up a sum of value...
cayhamlem1 22781 Lemma 1 for ~ cayleyhamilt...
cpmadurid 22782 The right-hand fundamental...
cpmidgsum 22783 Representation of the iden...
cpmidgsumm2pm 22784 Representation of the iden...
cpmidpmatlem1 22785 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 22786 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 22787 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 22788 Representation of the iden...
cpmadugsumlemB 22789 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 22790 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 22791 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 22792 The product of the charact...
cpmadugsum 22793 The product of the charact...
cpmidgsum2 22794 Representation of the iden...
cpmidg2sum 22795 Equality of two sums repre...
cpmadumatpolylem1 22796 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 22797 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 22798 The product of the charact...
cayhamlem2 22799 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 22800 Lemma for ~ chcoeffeq . (...
chcoeffeq 22801 The coefficients of the ch...
cayhamlem3 22802 Lemma for ~ cayhamlem4 . ...
cayhamlem4 22803 Lemma for ~ cayleyhamilton...
cayleyhamilton0 22804 The Cayley-Hamilton theore...
cayleyhamilton 22805 The Cayley-Hamilton theore...
cayleyhamiltonALT 22806 Alternate proof of ~ cayle...
cayleyhamilton1 22807 The Cayley-Hamilton theore...
istopg 22810 Express the predicate " ` ...
istop2g 22811 Express the predicate " ` ...
uniopn 22812 The union of a subset of a...
iunopn 22813 The indexed union of a sub...
inopn 22814 The intersection of two op...
fitop 22815 A topology is closed under...
fiinopn 22816 The intersection of a none...
iinopn 22817 The intersection of a none...
unopn 22818 The union of two open sets...
0opn 22819 The empty set is an open s...
0ntop 22820 The empty set is not a top...
topopn 22821 The underlying set of a to...
eltopss 22822 A member of a topology is ...
riinopn 22823 A finite indexed relative ...
rintopn 22824 A finite relative intersec...
istopon 22827 Property of being a topolo...
topontop 22828 A topology on a given base...
toponuni 22829 The base set of a topology...
topontopi 22830 A topology on a given base...
toponunii 22831 The base set of a topology...
toptopon 22832 Alternative definition of ...
toptopon2 22833 A topology is the same thi...
topontopon 22834 A topology on a set is a t...
funtopon 22835 The class ` TopOn ` is a f...
toponrestid 22836 Given a topology on a set,...
toponsspwpw 22837 The set of topologies on a...
dmtopon 22838 The domain of ` TopOn ` is...
fntopon 22839 The class ` TopOn ` is a f...
toprntopon 22840 A topology is the same thi...
toponmax 22841 The base set of a topology...
toponss 22842 A member of a topology is ...
toponcom 22843 If ` K ` is a topology on ...
toponcomb 22844 Biconditional form of ~ to...
topgele 22845 The topologies over the sa...
topsn 22846 The only topology on a sin...
istps 22849 Express the predicate "is ...
istps2 22850 Express the predicate "is ...
tpsuni 22851 The base set of a topologi...
tpstop 22852 The topology extractor on ...
tpspropd 22853 A topological space depend...
tpsprop2d 22854 A topological space depend...
topontopn 22855 Express the predicate "is ...
tsettps 22856 If the topology component ...
istpsi 22857 Properties that determine ...
eltpsg 22858 Properties that determine ...
eltpsi 22859 Properties that determine ...
isbasisg 22862 Express the predicate "the...
isbasis2g 22863 Express the predicate "the...
isbasis3g 22864 Express the predicate "the...
basis1 22865 Property of a basis. (Con...
basis2 22866 Property of a basis. (Con...
fiinbas 22867 If a set is closed under f...
basdif0 22868 A basis is not affected by...
baspartn 22869 A disjoint system of sets ...
tgval 22870 The topology generated by ...
tgval2 22871 Definition of a topology g...
eltg 22872 Membership in a topology g...
eltg2 22873 Membership in a topology g...
eltg2b 22874 Membership in a topology g...
eltg4i 22875 An open set in a topology ...
eltg3i 22876 The union of a set of basi...
eltg3 22877 Membership in a topology g...
tgval3 22878 Alternate expression for t...
tg1 22879 Property of a member of a ...
tg2 22880 Property of a member of a ...
bastg 22881 A member of a basis is a s...
unitg 22882 The topology generated by ...
tgss 22883 Subset relation for genera...
tgcl 22884 Show that a basis generate...
tgclb 22885 The property ~ tgcl can be...
tgtopon 22886 A basis generates a topolo...
topbas 22887 A topology is its own basi...
tgtop 22888 A topology is its own basi...
eltop 22889 Membership in a topology, ...
eltop2 22890 Membership in a topology. ...
eltop3 22891 Membership in a topology. ...
fibas 22892 A collection of finite int...
tgdom 22893 A space has no more open s...
tgiun 22894 The indexed union of a set...
tgidm 22895 The topology generator fun...
bastop 22896 Two ways to express that a...
tgtop11 22897 The topology generation fu...
0top 22898 The singleton of the empty...
en1top 22899 ` { (/) } ` is the only to...
en2top 22900 If a topology has two elem...
tgss3 22901 A criterion for determinin...
tgss2 22902 A criterion for determinin...
basgen 22903 Given a topology ` J ` , s...
basgen2 22904 Given a topology ` J ` , s...
2basgen 22905 Conditions that determine ...
tgfiss 22906 If a subbase is included i...
tgdif0 22907 A generated topology is no...
bastop1 22908 A subset of a topology is ...
bastop2 22909 A version of ~ bastop1 tha...
distop 22910 The discrete topology on a...
topnex 22911 The class of all topologie...
distopon 22912 The discrete topology on a...
sn0topon 22913 The singleton of the empty...
sn0top 22914 The singleton of the empty...
indislem 22915 A lemma to eliminate some ...
indistopon 22916 The indiscrete topology on...
indistop 22917 The indiscrete topology on...
indisuni 22918 The base set of the indisc...
fctop 22919 The finite complement topo...
fctop2 22920 The finite complement topo...
cctop 22921 The countable complement t...
ppttop 22922 The particular point topol...
pptbas 22923 The particular point topol...
epttop 22924 The excluded point topolog...
indistpsx 22925 The indiscrete topology on...
indistps 22926 The indiscrete topology on...
indistps2 22927 The indiscrete topology on...
indistpsALT 22928 The indiscrete topology on...
indistps2ALT 22929 The indiscrete topology on...
distps 22930 The discrete topology on a...
fncld 22937 The closed-set generator i...
cldval 22938 The set of closed sets of ...
ntrfval 22939 The interior function on t...
clsfval 22940 The closure function on th...
cldrcl 22941 Reverse closure of the clo...
iscld 22942 The predicate "the class `...
iscld2 22943 A subset of the underlying...
cldss 22944 A closed set is a subset o...
cldss2 22945 The set of closed sets is ...
cldopn 22946 The complement of a closed...
isopn2 22947 A subset of the underlying...
opncld 22948 The complement of an open ...
difopn 22949 The difference of a closed...
topcld 22950 The underlying set of a to...
ntrval 22951 The interior of a subset o...
clsval 22952 The closure of a subset of...
0cld 22953 The empty set is closed. ...
iincld 22954 The indexed intersection o...
intcld 22955 The intersection of a set ...
uncld 22956 The union of two closed se...
cldcls 22957 A closed subset equals its...
incld 22958 The intersection of two cl...
riincld 22959 An indexed relative inters...
iuncld 22960 A finite indexed union of ...
unicld 22961 A finite union of closed s...
clscld 22962 The closure of a subset of...
clsf 22963 The closure function is a ...
ntropn 22964 The interior of a subset o...
clsval2 22965 Express closure in terms o...
ntrval2 22966 Interior expressed in term...
ntrdif 22967 An interior of a complemen...
clsdif 22968 A closure of a complement ...
clsss 22969 Subset relationship for cl...
ntrss 22970 Subset relationship for in...
sscls 22971 A subset of a topology's u...
ntrss2 22972 A subset includes its inte...
ssntr 22973 An open subset of a set is...
clsss3 22974 The closure of a subset of...
ntrss3 22975 The interior of a subset o...
ntrin 22976 A pairwise intersection of...
cmclsopn 22977 The complement of a closur...
cmntrcld 22978 The complement of an inter...
iscld3 22979 A subset is closed iff it ...
iscld4 22980 A subset is closed iff it ...
isopn3 22981 A subset is open iff it eq...
clsidm 22982 The closure operation is i...
ntridm 22983 The interior operation is ...
clstop 22984 The closure of a topology'...
ntrtop 22985 The interior of a topology...
0ntr 22986 A subset with an empty int...
clsss2 22987 If a subset is included in...
elcls 22988 Membership in a closure. ...
elcls2 22989 Membership in a closure. ...
clsndisj 22990 Any open set containing a ...
ntrcls0 22991 A subset whose closure has...
ntreq0 22992 Two ways to say that a sub...
cldmre 22993 The closed sets of a topol...
mrccls 22994 Moore closure generalizes ...
cls0 22995 The closure of the empty s...
ntr0 22996 The interior of the empty ...
isopn3i 22997 An open subset equals its ...
elcls3 22998 Membership in a closure in...
opncldf1 22999 A bijection useful for con...
opncldf2 23000 The values of the open-clo...
opncldf3 23001 The values of the converse...
isclo 23002 A set ` A ` is clopen iff ...
isclo2 23003 A set ` A ` is clopen iff ...
discld 23004 The open sets of a discret...
sn0cld 23005 The closed sets of the top...
indiscld 23006 The closed sets of an indi...
mretopd 23007 A Moore collection which i...
toponmre 23008 The topologies over a give...
cldmreon 23009 The closed sets of a topol...
iscldtop 23010 A family is the closed set...
mreclatdemoBAD 23011 The closed subspaces of a ...
neifval 23014 Value of the neighborhood ...
neif 23015 The neighborhood function ...
neiss2 23016 A set with a neighborhood ...
neival 23017 Value of the set of neighb...
isnei 23018 The predicate "the class `...
neiint 23019 An intuitive definition of...
isneip 23020 The predicate "the class `...
neii1 23021 A neighborhood is included...
neisspw 23022 The neighborhoods of any s...
neii2 23023 Property of a neighborhood...
neiss 23024 Any neighborhood of a set ...
ssnei 23025 A set is included in any o...
elnei 23026 A point belongs to any of ...
0nnei 23027 The empty set is not a nei...
neips 23028 A neighborhood of a set is...
opnneissb 23029 An open set is a neighborh...
opnssneib 23030 Any superset of an open se...
ssnei2 23031 Any subset ` M ` of ` X ` ...
neindisj 23032 Any neighborhood of an ele...
opnneiss 23033 An open set is a neighborh...
opnneip 23034 An open set is a neighborh...
opnnei 23035 A set is open iff it is a ...
tpnei 23036 The underlying set of a to...
neiuni 23037 The union of the neighborh...
neindisj2 23038 A point ` P ` belongs to t...
topssnei 23039 A finer topology has more ...
innei 23040 The intersection of two ne...
opnneiid 23041 Only an open set is a neig...
neissex 23042 For any neighborhood ` N `...
0nei 23043 The empty set is a neighbo...
neipeltop 23044 Lemma for ~ neiptopreu . ...
neiptopuni 23045 Lemma for ~ neiptopreu . ...
neiptoptop 23046 Lemma for ~ neiptopreu . ...
neiptopnei 23047 Lemma for ~ neiptopreu . ...
neiptopreu 23048 If, to each element ` P ` ...
lpfval 23053 The limit point function o...
lpval 23054 The set of limit points of...
islp 23055 The predicate "the class `...
lpsscls 23056 The limit points of a subs...
lpss 23057 The limit points of a subs...
lpdifsn 23058 ` P ` is a limit point of ...
lpss3 23059 Subset relationship for li...
islp2 23060 The predicate " ` P ` is a...
islp3 23061 The predicate " ` P ` is a...
maxlp 23062 A point is a limit point o...
clslp 23063 The closure of a subset of...
islpi 23064 A point belonging to a set...
cldlp 23065 A subset of a topological ...
isperf 23066 Definition of a perfect sp...
isperf2 23067 Definition of a perfect sp...
isperf3 23068 A perfect space is a topol...
perflp 23069 The limit points of a perf...
perfi 23070 Property of a perfect spac...
perftop 23071 A perfect space is a topol...
restrcl 23072 Reverse closure for the su...
restbas 23073 A subspace topology basis ...
tgrest 23074 A subspace can be generate...
resttop 23075 A subspace topology is a t...
resttopon 23076 A subspace topology is a t...
restuni 23077 The underlying set of a su...
stoig 23078 The topological space buil...
restco 23079 Composition of subspaces. ...
restabs 23080 Equivalence of being a sub...
restin 23081 When the subspace region i...
restuni2 23082 The underlying set of a su...
resttopon2 23083 The underlying set of a su...
rest0 23084 The subspace topology indu...
restsn 23085 The only subspace topology...
restsn2 23086 The subspace topology indu...
restcld 23087 A closed set of a subspace...
restcldi 23088 A closed set is closed in ...
restcldr 23089 A set which is closed in t...
restopnb 23090 If ` B ` is an open subset...
ssrest 23091 If ` K ` is a finer topolo...
restopn2 23092 If ` A ` is open, then ` B...
restdis 23093 A subspace of a discrete t...
restfpw 23094 The restriction of the set...
neitr 23095 The neighborhood of a trac...
restcls 23096 A closure in a subspace to...
restntr 23097 An interior in a subspace ...
restlp 23098 The limit points of a subs...
restperf 23099 Perfection of a subspace. ...
perfopn 23100 An open subset of a perfec...
resstopn 23101 The topology of a restrict...
resstps 23102 A restricted topological s...
ordtbaslem 23103 Lemma for ~ ordtbas . In ...
ordtval 23104 Value of the order topolog...
ordtuni 23105 Value of the order topolog...
ordtbas2 23106 Lemma for ~ ordtbas . (Co...
ordtbas 23107 In a total order, the fini...
ordttopon 23108 Value of the order topolog...
ordtopn1 23109 An upward ray ` ( P , +oo ...
ordtopn2 23110 A downward ray ` ( -oo , P...
ordtopn3 23111 An open interval ` ( A , B...
ordtcld1 23112 A downward ray ` ( -oo , P...
ordtcld2 23113 An upward ray ` [ P , +oo ...
ordtcld3 23114 A closed interval ` [ A , ...
ordttop 23115 The order topology is a to...
ordtcnv 23116 The order dual generates t...
ordtrest 23117 The subspace topology of a...
ordtrest2lem 23118 Lemma for ~ ordtrest2 . (...
ordtrest2 23119 An interval-closed set ` A...
letopon 23120 The topology of the extend...
letop 23121 The topology of the extend...
letopuni 23122 The topology of the extend...
xrstopn 23123 The topology component of ...
xrstps 23124 The extended real number s...
leordtvallem1 23125 Lemma for ~ leordtval . (...
leordtvallem2 23126 Lemma for ~ leordtval . (...
leordtval2 23127 The topology of the extend...
leordtval 23128 The topology of the extend...
iccordt 23129 A closed interval is close...
iocpnfordt 23130 An unbounded above open in...
icomnfordt 23131 An unbounded above open in...
iooordt 23132 An open interval is open i...
reordt 23133 The real numbers are an op...
lecldbas 23134 The set of closed interval...
pnfnei 23135 A neighborhood of ` +oo ` ...
mnfnei 23136 A neighborhood of ` -oo ` ...
ordtrestixx 23137 The restriction of the les...
ordtresticc 23138 The restriction of the les...
lmrel 23145 The topological space conv...
lmrcl 23146 Reverse closure for the co...
lmfval 23147 The relation "sequence ` f...
cnfval 23148 The set of all continuous ...
cnpfval 23149 The function mapping the p...
iscn 23150 The predicate "the class `...
cnpval 23151 The set of all functions f...
iscnp 23152 The predicate "the class `...
iscn2 23153 The predicate "the class `...
iscnp2 23154 The predicate "the class `...
cntop1 23155 Reverse closure for a cont...
cntop2 23156 Reverse closure for a cont...
cnptop1 23157 Reverse closure for a func...
cnptop2 23158 Reverse closure for a func...
iscnp3 23159 The predicate "the class `...
cnprcl 23160 Reverse closure for a func...
cnf 23161 A continuous function is a...
cnpf 23162 A continuous function at p...
cnpcl 23163 The value of a continuous ...
cnf2 23164 A continuous function is a...
cnpf2 23165 A continuous function at p...
cnprcl2 23166 Reverse closure for a func...
tgcn 23167 The continuity predicate w...
tgcnp 23168 The "continuous at a point...
subbascn 23169 The continuity predicate w...
ssidcn 23170 The identity function is a...
cnpimaex 23171 Property of a function con...
idcn 23172 A restricted identity func...
lmbr 23173 Express the binary relatio...
lmbr2 23174 Express the binary relatio...
lmbrf 23175 Express the binary relatio...
lmconst 23176 A constant sequence conver...
lmcvg 23177 Convergence property of a ...
iscnp4 23178 The predicate "the class `...
cnpnei 23179 A condition for continuity...
cnima 23180 An open subset of the codo...
cnco 23181 The composition of two con...
cnpco 23182 The composition of a funct...
cnclima 23183 A closed subset of the cod...
iscncl 23184 A characterization of a co...
cncls2i 23185 Property of the preimage o...
cnntri 23186 Property of the preimage o...
cnclsi 23187 Property of the image of a...
cncls2 23188 Continuity in terms of clo...
cncls 23189 Continuity in terms of clo...
cnntr 23190 Continuity in terms of int...
cnss1 23191 If the topology ` K ` is f...
cnss2 23192 If the topology ` K ` is f...
cncnpi 23193 A continuous function is c...
cnsscnp 23194 The set of continuous func...
cncnp 23195 A continuous function is c...
cncnp2 23196 A continuous function is c...
cnnei 23197 Continuity in terms of nei...
cnconst2 23198 A constant function is con...
cnconst 23199 A constant function is con...
cnrest 23200 Continuity of a restrictio...
cnrest2 23201 Equivalence of continuity ...
cnrest2r 23202 Equivalence of continuity ...
cnpresti 23203 One direction of ~ cnprest...
cnprest 23204 Equivalence of continuity ...
cnprest2 23205 Equivalence of point-conti...
cndis 23206 Every function is continuo...
cnindis 23207 Every function is continuo...
cnpdis 23208 If ` A ` is an isolated po...
paste 23209 Pasting lemma. If ` A ` a...
lmfpm 23210 If ` F ` converges, then `...
lmfss 23211 Inclusion of a function ha...
lmcl 23212 Closure of a limit. (Cont...
lmss 23213 Limit on a subspace. (Con...
sslm 23214 A finer topology has fewer...
lmres 23215 A function converges iff i...
lmff 23216 If ` F ` converges, there ...
lmcls 23217 Any convergent sequence of...
lmcld 23218 Any convergent sequence of...
lmcnp 23219 The image of a convergent ...
lmcn 23220 The image of a convergent ...
ist0 23235 The predicate "is a T_0 sp...
ist1 23236 The predicate "is a T_1 sp...
ishaus 23237 The predicate "is a Hausdo...
iscnrm 23238 The property of being comp...
t0sep 23239 Any two topologically indi...
t0dist 23240 Any two distinct points in...
t1sncld 23241 In a T_1 space, singletons...
t1ficld 23242 In a T_1 space, finite set...
hausnei 23243 Neighborhood property of a...
t0top 23244 A T_0 space is a topologic...
t1top 23245 A T_1 space is a topologic...
haustop 23246 A Hausdorff space is a top...
isreg 23247 The predicate "is a regula...
regtop 23248 A regular space is a topol...
regsep 23249 In a regular space, every ...
isnrm 23250 The predicate "is a normal...
nrmtop 23251 A normal space is a topolo...
cnrmtop 23252 A completely normal space ...
iscnrm2 23253 The property of being comp...
ispnrm 23254 The property of being perf...
pnrmnrm 23255 A perfectly normal space i...
pnrmtop 23256 A perfectly normal space i...
pnrmcld 23257 A closed set in a perfectl...
pnrmopn 23258 An open set in a perfectly...
ist0-2 23259 The predicate "is a T_0 sp...
ist0-3 23260 The predicate "is a T_0 sp...
cnt0 23261 The preimage of a T_0 topo...
ist1-2 23262 An alternate characterizat...
t1t0 23263 A T_1 space is a T_0 space...
ist1-3 23264 A space is T_1 iff every p...
cnt1 23265 The preimage of a T_1 topo...
ishaus2 23266 Express the predicate " ` ...
haust1 23267 A Hausdorff space is a T_1...
hausnei2 23268 The Hausdorff condition st...
cnhaus 23269 The preimage of a Hausdorf...
nrmsep3 23270 In a normal space, given a...
nrmsep2 23271 In a normal space, any two...
nrmsep 23272 In a normal space, disjoin...
isnrm2 23273 An alternate characterizat...
isnrm3 23274 A topological space is nor...
cnrmi 23275 A subspace of a completely...
cnrmnrm 23276 A completely normal space ...
restcnrm 23277 A subspace of a completely...
resthauslem 23278 Lemma for ~ resthaus and s...
lpcls 23279 The limit points of the cl...
perfcls 23280 A subset of a perfect spac...
restt0 23281 A subspace of a T_0 topolo...
restt1 23282 A subspace of a T_1 topolo...
resthaus 23283 A subspace of a Hausdorff ...
t1sep2 23284 Any two points in a T_1 sp...
t1sep 23285 Any two distinct points in...
sncld 23286 A singleton is closed in a...
sshauslem 23287 Lemma for ~ sshaus and sim...
sst0 23288 A topology finer than a T_...
sst1 23289 A topology finer than a T_...
sshaus 23290 A topology finer than a Ha...
regsep2 23291 In a regular space, a clos...
isreg2 23292 A topological space is reg...
dnsconst 23293 If a continuous mapping to...
ordtt1 23294 The order topology is T_1 ...
lmmo 23295 A sequence in a Hausdorff ...
lmfun 23296 The convergence relation i...
dishaus 23297 A discrete topology is Hau...
ordthauslem 23298 Lemma for ~ ordthaus . (C...
ordthaus 23299 The order topology of a to...
xrhaus 23300 The topology of the extend...
iscmp 23303 The predicate "is a compac...
cmpcov 23304 An open cover of a compact...
cmpcov2 23305 Rewrite ~ cmpcov for the c...
cmpcovf 23306 Combine ~ cmpcov with ~ ac...
cncmp 23307 Compactness is respected b...
fincmp 23308 A finite topology is compa...
0cmp 23309 The singleton of the empty...
cmptop 23310 A compact topology is a to...
rncmp 23311 The image of a compact set...
imacmp 23312 The image of a compact set...
discmp 23313 A discrete topology is com...
cmpsublem 23314 Lemma for ~ cmpsub . (Con...
cmpsub 23315 Two equivalent ways of des...
tgcmp 23316 A topology generated by a ...
cmpcld 23317 A closed subset of a compa...
uncmp 23318 The union of two compact s...
fiuncmp 23319 A finite union of compact ...
sscmp 23320 A subset of a compact topo...
hauscmplem 23321 Lemma for ~ hauscmp . (Co...
hauscmp 23322 A compact subspace of a T2...
cmpfi 23323 If a topology is compact a...
cmpfii 23324 In a compact topology, a s...
bwth 23325 The glorious Bolzano-Weier...
isconn 23328 The predicate ` J ` is a c...
isconn2 23329 The predicate ` J ` is a c...
connclo 23330 The only nonempty clopen s...
conndisj 23331 If a topology is connected...
conntop 23332 A connected topology is a ...
indisconn 23333 The indiscrete topology (o...
dfconn2 23334 An alternate definition of...
connsuba 23335 Connectedness for a subspa...
connsub 23336 Two equivalent ways of say...
cnconn 23337 Connectedness is respected...
nconnsubb 23338 Disconnectedness for a sub...
connsubclo 23339 If a clopen set meets a co...
connima 23340 The image of a connected s...
conncn 23341 A continuous function from...
iunconnlem 23342 Lemma for ~ iunconn . (Co...
iunconn 23343 The indexed union of conne...
unconn 23344 The union of two connected...
clsconn 23345 The closure of a connected...
conncompid 23346 The connected component co...
conncompconn 23347 The connected component co...
conncompss 23348 The connected component co...
conncompcld 23349 The connected component co...
conncompclo 23350 The connected component co...
t1connperf 23351 A connected T_1 space is p...
is1stc 23356 The predicate "is a first-...
is1stc2 23357 An equivalent way of sayin...
1stctop 23358 A first-countable topology...
1stcclb 23359 A property of points in a ...
1stcfb 23360 For any point ` A ` in a f...
is2ndc 23361 The property of being seco...
2ndctop 23362 A second-countable topolog...
2ndci 23363 A countable basis generate...
2ndcsb 23364 Having a countable subbase...
2ndcredom 23365 A second-countable space h...
2ndc1stc 23366 A second-countable space i...
1stcrestlem 23367 Lemma for ~ 1stcrest . (C...
1stcrest 23368 A subspace of a first-coun...
2ndcrest 23369 A subspace of a second-cou...
2ndcctbss 23370 If a topology is second-co...
2ndcdisj 23371 Any disjoint family of ope...
2ndcdisj2 23372 Any disjoint collection of...
2ndcomap 23373 A surjective continuous op...
2ndcsep 23374 A second-countable topolog...
dis2ndc 23375 A discrete space is second...
1stcelcls 23376 A point belongs to the clo...
1stccnp 23377 A mapping is continuous at...
1stccn 23378 A mapping ` X --> Y ` , wh...
islly 23383 The property of being a lo...
isnlly 23384 The property of being an n...
llyeq 23385 Equality theorem for the `...
nllyeq 23386 Equality theorem for the `...
llytop 23387 A locally ` A ` space is a...
nllytop 23388 A locally ` A ` space is a...
llyi 23389 The property of a locally ...
nllyi 23390 The property of an n-local...
nlly2i 23391 Eliminate the neighborhood...
llynlly 23392 A locally ` A ` space is n...
llyssnlly 23393 A locally ` A ` space is n...
llyss 23394 The "locally" predicate re...
nllyss 23395 The "n-locally" predicate ...
subislly 23396 The property of a subspace...
restnlly 23397 If the property ` A ` pass...
restlly 23398 If the property ` A ` pass...
islly2 23399 An alternative expression ...
llyrest 23400 An open subspace of a loca...
nllyrest 23401 An open subspace of an n-l...
loclly 23402 If ` A ` is a local proper...
llyidm 23403 Idempotence of the "locall...
nllyidm 23404 Idempotence of the "n-loca...
toplly 23405 A topology is locally a to...
topnlly 23406 A topology is n-locally a ...
hauslly 23407 A Hausdorff space is local...
hausnlly 23408 A Hausdorff space is n-loc...
hausllycmp 23409 A compact Hausdorff space ...
cldllycmp 23410 A closed subspace of a loc...
lly1stc 23411 First-countability is a lo...
dislly 23412 The discrete space ` ~P X ...
disllycmp 23413 A discrete space is locall...
dis1stc 23414 A discrete space is first-...
hausmapdom 23415 If ` X ` is a first-counta...
hauspwdom 23416 Simplify the cardinal ` A ...
refrel 23423 Refinement is a relation. ...
isref 23424 The property of being a re...
refbas 23425 A refinement covers the sa...
refssex 23426 Every set in a refinement ...
ssref 23427 A subcover is a refinement...
refref 23428 Reflexivity of refinement....
reftr 23429 Refinement is transitive. ...
refun0 23430 Adding the empty set prese...
isptfin 23431 The statement "is a point-...
islocfin 23432 The statement "is a locall...
finptfin 23433 A finite cover is a point-...
ptfinfin 23434 A point covered by a point...
finlocfin 23435 A finite cover of a topolo...
locfintop 23436 A locally finite cover cov...
locfinbas 23437 A locally finite cover mus...
locfinnei 23438 A point covered by a local...
lfinpfin 23439 A locally finite cover is ...
lfinun 23440 Adding a finite set preser...
locfincmp 23441 For a compact space, the l...
unisngl 23442 Taking the union of the se...
dissnref 23443 The set of singletons is a...
dissnlocfin 23444 The set of singletons is l...
locfindis 23445 The locally finite covers ...
locfincf 23446 A locally finite cover in ...
comppfsc 23447 A space where every open c...
kgenval 23450 Value of the compact gener...
elkgen 23451 Value of the compact gener...
kgeni 23452 Property of the open sets ...
kgentopon 23453 The compact generator gene...
kgenuni 23454 The base set of the compac...
kgenftop 23455 The compact generator gene...
kgenf 23456 The compact generator is a...
kgentop 23457 A compactly generated spac...
kgenss 23458 The compact generator gene...
kgenhaus 23459 The compact generator gene...
kgencmp 23460 The compact generator topo...
kgencmp2 23461 The compact generator topo...
kgenidm 23462 The compact generator is i...
iskgen2 23463 A space is compactly gener...
iskgen3 23464 Derive the usual definitio...
llycmpkgen2 23465 A locally compact space is...
cmpkgen 23466 A compact space is compact...
llycmpkgen 23467 A locally compact space is...
1stckgenlem 23468 The one-point compactifica...
1stckgen 23469 A first-countable space is...
kgen2ss 23470 The compact generator pres...
kgencn 23471 A function from a compactl...
kgencn2 23472 A function ` F : J --> K `...
kgencn3 23473 The set of continuous func...
kgen2cn 23474 A continuous function is a...
txval 23479 Value of the binary topolo...
txuni2 23480 The underlying set of the ...
txbasex 23481 The basis for the product ...
txbas 23482 The set of Cartesian produ...
eltx 23483 A set in a product is open...
txtop 23484 The product of two topolog...
ptval 23485 The value of the product t...
ptpjpre1 23486 The preimage of a projecti...
elpt 23487 Elementhood in the bases o...
elptr 23488 A basic open set in the pr...
elptr2 23489 A basic open set in the pr...
ptbasid 23490 The base set of the produc...
ptuni2 23491 The base set for the produ...
ptbasin 23492 The basis for a product to...
ptbasin2 23493 The basis for a product to...
ptbas 23494 The basis for a product to...
ptpjpre2 23495 The basis for a product to...
ptbasfi 23496 The basis for the product ...
pttop 23497 The product topology is a ...
ptopn 23498 A basic open set in the pr...
ptopn2 23499 A sub-basic open set in th...
xkotf 23500 Functionality of function ...
xkobval 23501 Alternative expression for...
xkoval 23502 Value of the compact-open ...
xkotop 23503 The compact-open topology ...
xkoopn 23504 A basic open set of the co...
txtopi 23505 The product of two topolog...
txtopon 23506 The underlying set of the ...
txuni 23507 The underlying set of the ...
txunii 23508 The underlying set of the ...
ptuni 23509 The base set for the produ...
ptunimpt 23510 Base set of a product topo...
pttopon 23511 The base set for the produ...
pttoponconst 23512 The base set for a product...
ptuniconst 23513 The base set for a product...
xkouni 23514 The base set of the compac...
xkotopon 23515 The base set of the compac...
ptval2 23516 The value of the product t...
txopn 23517 The product of two open se...
txcld 23518 The product of two closed ...
txcls 23519 Closure of a rectangle in ...
txss12 23520 Subset property of the top...
txbasval 23521 It is sufficient to consid...
neitx 23522 The Cartesian product of t...
txcnpi 23523 Continuity of a two-argume...
tx1cn 23524 Continuity of the first pr...
tx2cn 23525 Continuity of the second p...
ptpjcn 23526 Continuity of a projection...
ptpjopn 23527 The projection map is an o...
ptcld 23528 A closed box in the produc...
ptcldmpt 23529 A closed box in the produc...
ptclsg 23530 The closure of a box in th...
ptcls 23531 The closure of a box in th...
dfac14lem 23532 Lemma for ~ dfac14 . By e...
dfac14 23533 Theorem ~ ptcls is an equi...
xkoccn 23534 The "constant function" fu...
txcnp 23535 If two functions are conti...
ptcnplem 23536 Lemma for ~ ptcnp . (Cont...
ptcnp 23537 If every projection of a f...
upxp 23538 Universal property of the ...
txcnmpt 23539 A map into the product of ...
uptx 23540 Universal property of the ...
txcn 23541 A map into the product of ...
ptcn 23542 If every projection of a f...
prdstopn 23543 Topology of a structure pr...
prdstps 23544 A structure product of top...
pwstps 23545 A structure power of a top...
txrest 23546 The subspace of a topologi...
txdis 23547 The topological product of...
txindislem 23548 Lemma for ~ txindis . (Co...
txindis 23549 The topological product of...
txdis1cn 23550 A function is jointly cont...
txlly 23551 If the property ` A ` is p...
txnlly 23552 If the property ` A ` is p...
pthaus 23553 The product of a collectio...
ptrescn 23554 Restriction is a continuou...
txtube 23555 The "tube lemma". If ` X ...
txcmplem1 23556 Lemma for ~ txcmp . (Cont...
txcmplem2 23557 Lemma for ~ txcmp . (Cont...
txcmp 23558 The topological product of...
txcmpb 23559 The topological product of...
hausdiag 23560 A topology is Hausdorff if...
hauseqlcld 23561 In a Hausdorff topology, t...
txhaus 23562 The topological product of...
txlm 23563 Two sequences converge iff...
lmcn2 23564 The image of a convergent ...
tx1stc 23565 The topological product of...
tx2ndc 23566 The topological product of...
txkgen 23567 The topological product of...
xkohaus 23568 If the codomain space is H...
xkoptsub 23569 The compact-open topology ...
xkopt 23570 The compact-open topology ...
xkopjcn 23571 Continuity of a projection...
xkoco1cn 23572 If ` F ` is a continuous f...
xkoco2cn 23573 If ` F ` is a continuous f...
xkococnlem 23574 Continuity of the composit...
xkococn 23575 Continuity of the composit...
cnmptid 23576 The identity function is c...
cnmptc 23577 A constant function is con...
cnmpt11 23578 The composition of continu...
cnmpt11f 23579 The composition of continu...
cnmpt1t 23580 The composition of continu...
cnmpt12f 23581 The composition of continu...
cnmpt12 23582 The composition of continu...
cnmpt1st 23583 The projection onto the fi...
cnmpt2nd 23584 The projection onto the se...
cnmpt2c 23585 A constant function is con...
cnmpt21 23586 The composition of continu...
cnmpt21f 23587 The composition of continu...
cnmpt2t 23588 The composition of continu...
cnmpt22 23589 The composition of continu...
cnmpt22f 23590 The composition of continu...
cnmpt1res 23591 The restriction of a conti...
cnmpt2res 23592 The restriction of a conti...
cnmptcom 23593 The argument converse of a...
cnmptkc 23594 The curried first projecti...
cnmptkp 23595 The evaluation of the inne...
cnmptk1 23596 The composition of a curri...
cnmpt1k 23597 The composition of a one-a...
cnmptkk 23598 The composition of two cur...
xkofvcn 23599 Joint continuity of the fu...
cnmptk1p 23600 The evaluation of a currie...
cnmptk2 23601 The uncurrying of a currie...
xkoinjcn 23602 Continuity of "injection",...
cnmpt2k 23603 The currying of a two-argu...
txconn 23604 The topological product of...
imasnopn 23605 If a relation graph is ope...
imasncld 23606 If a relation graph is clo...
imasncls 23607 If a relation graph is clo...
qtopval 23610 Value of the quotient topo...
qtopval2 23611 Value of the quotient topo...
elqtop 23612 Value of the quotient topo...
qtopres 23613 The quotient topology is u...
qtoptop2 23614 The quotient topology is a...
qtoptop 23615 The quotient topology is a...
elqtop2 23616 Value of the quotient topo...
qtopuni 23617 The base set of the quotie...
elqtop3 23618 Value of the quotient topo...
qtoptopon 23619 The base set of the quotie...
qtopid 23620 A quotient map is a contin...
idqtop 23621 The quotient topology indu...
qtopcmplem 23622 Lemma for ~ qtopcmp and ~ ...
qtopcmp 23623 A quotient of a compact sp...
qtopconn 23624 A quotient of a connected ...
qtopkgen 23625 A quotient of a compactly ...
basqtop 23626 An injection maps bases to...
tgqtop 23627 An injection maps generate...
qtopcld 23628 The property of being a cl...
qtopcn 23629 Universal property of a qu...
qtopss 23630 A surjective continuous fu...
qtopeu 23631 Universal property of the ...
qtoprest 23632 If ` A ` is a saturated op...
qtopomap 23633 If ` F ` is a surjective c...
qtopcmap 23634 If ` F ` is a surjective c...
imastopn 23635 The topology of an image s...
imastps 23636 The image of a topological...
qustps 23637 A quotient structure is a ...
kqfval 23638 Value of the function appe...
kqfeq 23639 Two points in the Kolmogor...
kqffn 23640 The topological indistingu...
kqval 23641 Value of the quotient topo...
kqtopon 23642 The Kolmogorov quotient is...
kqid 23643 The topological indistingu...
ist0-4 23644 The topological indistingu...
kqfvima 23645 When the image set is open...
kqsat 23646 Any open set is saturated ...
kqdisj 23647 A version of ~ imain for t...
kqcldsat 23648 Any closed set is saturate...
kqopn 23649 The topological indistingu...
kqcld 23650 The topological indistingu...
kqt0lem 23651 Lemma for ~ kqt0 . (Contr...
isr0 23652 The property " ` J ` is an...
r0cld 23653 The analogue of the T_1 ax...
regr1lem 23654 Lemma for ~ regr1 . (Cont...
regr1lem2 23655 A Kolmogorov quotient of a...
kqreglem1 23656 A Kolmogorov quotient of a...
kqreglem2 23657 If the Kolmogorov quotient...
kqnrmlem1 23658 A Kolmogorov quotient of a...
kqnrmlem2 23659 If the Kolmogorov quotient...
kqtop 23660 The Kolmogorov quotient is...
kqt0 23661 The Kolmogorov quotient is...
kqf 23662 The Kolmogorov quotient is...
r0sep 23663 The separation property of...
nrmr0reg 23664 A normal R_0 space is also...
regr1 23665 A regular space is R_1, wh...
kqreg 23666 The Kolmogorov quotient of...
kqnrm 23667 The Kolmogorov quotient of...
hmeofn 23672 The set of homeomorphisms ...
hmeofval 23673 The set of all the homeomo...
ishmeo 23674 The predicate F is a homeo...
hmeocn 23675 A homeomorphism is continu...
hmeocnvcn 23676 The converse of a homeomor...
hmeocnv 23677 The converse of a homeomor...
hmeof1o2 23678 A homeomorphism is a 1-1-o...
hmeof1o 23679 A homeomorphism is a 1-1-o...
hmeoima 23680 The image of an open set b...
hmeoopn 23681 Homeomorphisms preserve op...
hmeocld 23682 Homeomorphisms preserve cl...
hmeocls 23683 Homeomorphisms preserve cl...
hmeontr 23684 Homeomorphisms preserve in...
hmeoimaf1o 23685 The function mapping open ...
hmeores 23686 The restriction of a homeo...
hmeoco 23687 The composite of two homeo...
idhmeo 23688 The identity function is a...
hmeocnvb 23689 The converse of a homeomor...
hmeoqtop 23690 A homeomorphism is a quoti...
hmph 23691 Express the predicate ` J ...
hmphi 23692 If there is a homeomorphis...
hmphtop 23693 Reverse closure for the ho...
hmphtop1 23694 The relation "being homeom...
hmphtop2 23695 The relation "being homeom...
hmphref 23696 "Is homeomorphic to" is re...
hmphsym 23697 "Is homeomorphic to" is sy...
hmphtr 23698 "Is homeomorphic to" is tr...
hmpher 23699 "Is homeomorphic to" is an...
hmphen 23700 Homeomorphisms preserve th...
hmphsymb 23701 "Is homeomorphic to" is sy...
haushmphlem 23702 Lemma for ~ haushmph and s...
cmphmph 23703 Compactness is a topologic...
connhmph 23704 Connectedness is a topolog...
t0hmph 23705 T_0 is a topological prope...
t1hmph 23706 T_1 is a topological prope...
haushmph 23707 Hausdorff-ness is a topolo...
reghmph 23708 Regularity is a topologica...
nrmhmph 23709 Normality is a topological...
hmph0 23710 A topology homeomorphic to...
hmphdis 23711 Homeomorphisms preserve to...
hmphindis 23712 Homeomorphisms preserve to...
indishmph 23713 Equinumerous sets equipped...
hmphen2 23714 Homeomorphisms preserve th...
cmphaushmeo 23715 A continuous bijection fro...
ordthmeolem 23716 Lemma for ~ ordthmeo . (C...
ordthmeo 23717 An order isomorphism is a ...
txhmeo 23718 Lift a pair of homeomorphi...
txswaphmeolem 23719 Show inverse for the "swap...
txswaphmeo 23720 There is a homeomorphism f...
pt1hmeo 23721 The canonical homeomorphis...
ptuncnv 23722 Exhibit the converse funct...
ptunhmeo 23723 Define a homeomorphism fro...
xpstopnlem1 23724 The function ` F ` used in...
xpstps 23725 A binary product of topolo...
xpstopnlem2 23726 Lemma for ~ xpstopn . (Co...
xpstopn 23727 The topology on a binary p...
ptcmpfi 23728 A topological product of f...
xkocnv 23729 The inverse of the "curryi...
xkohmeo 23730 The Exponential Law for to...
qtopf1 23731 If a quotient map is injec...
qtophmeo 23732 If two functions on a base...
t0kq 23733 A topological space is T_0...
kqhmph 23734 A topological space is T_0...
ist1-5lem 23735 Lemma for ~ ist1-5 and sim...
t1r0 23736 A T_1 space is R_0. That ...
ist1-5 23737 A topological space is T_1...
ishaus3 23738 A topological space is Hau...
nrmreg 23739 A normal T_1 space is regu...
reghaus 23740 A regular T_0 space is Hau...
nrmhaus 23741 A T_1 normal space is Haus...
elmptrab 23742 Membership in a one-parame...
elmptrab2 23743 Membership in a one-parame...
isfbas 23744 The predicate " ` F ` is a...
fbasne0 23745 There are no empty filter ...
0nelfb 23746 No filter base contains th...
fbsspw 23747 A filter base on a set is ...
fbelss 23748 An element of the filter b...
fbdmn0 23749 The domain of a filter bas...
isfbas2 23750 The predicate " ` F ` is a...
fbasssin 23751 A filter base contains sub...
fbssfi 23752 A filter base contains sub...
fbssint 23753 A filter base contains sub...
fbncp 23754 A filter base does not con...
fbun 23755 A necessary and sufficient...
fbfinnfr 23756 No filter base containing ...
opnfbas 23757 The collection of open sup...
trfbas2 23758 Conditions for the trace o...
trfbas 23759 Conditions for the trace o...
isfil 23762 The predicate "is a filter...
filfbas 23763 A filter is a filter base....
0nelfil 23764 The empty set doesn't belo...
fileln0 23765 An element of a filter is ...
filsspw 23766 A filter is a subset of th...
filelss 23767 An element of a filter is ...
filss 23768 A filter is closed under t...
filin 23769 A filter is closed under t...
filtop 23770 The underlying set belongs...
isfil2 23771 Derive the standard axioms...
isfildlem 23772 Lemma for ~ isfild . (Con...
isfild 23773 Sufficient condition for a...
filfi 23774 A filter is closed under t...
filinn0 23775 The intersection of two el...
filintn0 23776 A filter has the finite in...
filn0 23777 The empty set is not a fil...
infil 23778 The intersection of two fi...
snfil 23779 A singleton is a filter. ...
fbasweak 23780 A filter base on any set i...
snfbas 23781 Condition for a singleton ...
fsubbas 23782 A condition for a set to g...
fbasfip 23783 A filter base has the fini...
fbunfip 23784 A helpful lemma for showin...
fgval 23785 The filter generating clas...
elfg 23786 A condition for elements o...
ssfg 23787 A filter base is a subset ...
fgss 23788 A bigger base generates a ...
fgss2 23789 A condition for a filter t...
fgfil 23790 A filter generates itself....
elfilss 23791 An element belongs to a fi...
filfinnfr 23792 No filter containing a fin...
fgcl 23793 A generated filter is a fi...
fgabs 23794 Absorption law for filter ...
neifil 23795 The neighborhoods of a non...
filunibas 23796 Recover the base set from ...
filunirn 23797 Two ways to express a filt...
filconn 23798 A filter gives rise to a c...
fbasrn 23799 Given a filter on a domain...
filuni 23800 The union of a nonempty se...
trfil1 23801 Conditions for the trace o...
trfil2 23802 Conditions for the trace o...
trfil3 23803 Conditions for the trace o...
trfilss 23804 If ` A ` is a member of th...
fgtr 23805 If ` A ` is a member of th...
trfg 23806 The trace operation and th...
trnei 23807 The trace, over a set ` A ...
cfinfil 23808 Relative complements of th...
csdfil 23809 The set of all elements wh...
supfil 23810 The supersets of a nonempt...
zfbas 23811 The set of upper sets of i...
uzrest 23812 The restriction of the set...
uzfbas 23813 The set of upper sets of i...
isufil 23818 The property of being an u...
ufilfil 23819 An ultrafilter is a filter...
ufilss 23820 For any subset of the base...
ufilb 23821 The complement is in an ul...
ufilmax 23822 Any filter finer than an u...
isufil2 23823 The maximal property of an...
ufprim 23824 An ultrafilter is a prime ...
trufil 23825 Conditions for the trace o...
filssufilg 23826 A filter is contained in s...
filssufil 23827 A filter is contained in s...
isufl 23828 Define the (strong) ultraf...
ufli 23829 Property of a set that sat...
numufl 23830 Consequence of ~ filssufil...
fiufl 23831 A finite set satisfies the...
acufl 23832 The axiom of choice implie...
ssufl 23833 If ` Y ` is a subset of ` ...
ufileu 23834 If the ultrafilter contain...
filufint 23835 A filter is equal to the i...
uffix 23836 Lemma for ~ fixufil and ~ ...
fixufil 23837 The condition describing a...
uffixfr 23838 An ultrafilter is either f...
uffix2 23839 A classification of fixed ...
uffixsn 23840 The singleton of the gener...
ufildom1 23841 An ultrafilter is generate...
uffinfix 23842 An ultrafilter containing ...
cfinufil 23843 An ultrafilter is free iff...
ufinffr 23844 An infinite subset is cont...
ufilen 23845 Any infinite set has an ul...
ufildr 23846 An ultrafilter gives rise ...
fin1aufil 23847 There are no definable fre...
fmval 23858 Introduce a function that ...
fmfil 23859 A mapping filter is a filt...
fmf 23860 Pushing-forward via a func...
fmss 23861 A finer filter produces a ...
elfm 23862 An element of a mapping fi...
elfm2 23863 An element of a mapping fi...
fmfg 23864 The image filter of a filt...
elfm3 23865 An alternate formulation o...
imaelfm 23866 An image of a filter eleme...
rnelfmlem 23867 Lemma for ~ rnelfm . (Con...
rnelfm 23868 A condition for a filter t...
fmfnfmlem1 23869 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23870 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23871 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23872 Lemma for ~ fmfnfm . (Con...
fmfnfm 23873 A filter finer than an ima...
fmufil 23874 An image filter of an ultr...
fmid 23875 The filter map applied to ...
fmco 23876 Composition of image filte...
ufldom 23877 The ultrafilter lemma prop...
flimval 23878 The set of limit points of...
elflim2 23879 The predicate "is a limit ...
flimtop 23880 Reverse closure for the li...
flimneiss 23881 A filter contains the neig...
flimnei 23882 A filter contains all of t...
flimelbas 23883 A limit point of a filter ...
flimfil 23884 Reverse closure for the li...
flimtopon 23885 Reverse closure for the li...
elflim 23886 The predicate "is a limit ...
flimss2 23887 A limit point of a filter ...
flimss1 23888 A limit point of a filter ...
neiflim 23889 A point is a limit point o...
flimopn 23890 The condition for being a ...
fbflim 23891 A condition for a filter t...
fbflim2 23892 A condition for a filter b...
flimclsi 23893 The convergent points of a...
hausflimlem 23894 If ` A ` and ` B ` are bot...
hausflimi 23895 One direction of ~ hausfli...
hausflim 23896 A condition for a topology...
flimcf 23897 Fineness is properly chara...
flimrest 23898 The set of limit points in...
flimclslem 23899 Lemma for ~ flimcls . (Co...
flimcls 23900 Closure in terms of filter...
flimsncls 23901 If ` A ` is a limit point ...
hauspwpwf1 23902 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23903 If ` X ` is a Hausdorff sp...
flffval 23904 Given a topology and a fil...
flfval 23905 Given a function from a fi...
flfnei 23906 The property of being a li...
flfneii 23907 A neighborhood of a limit ...
isflf 23908 The property of being a li...
flfelbas 23909 A limit point of a functio...
flffbas 23910 Limit points of a function...
flftg 23911 Limit points of a function...
hausflf 23912 If a function has its valu...
hausflf2 23913 If a convergent function h...
cnpflfi 23914 Forward direction of ~ cnp...
cnpflf2 23915 ` F ` is continuous at poi...
cnpflf 23916 Continuity of a function a...
cnflf 23917 A function is continuous i...
cnflf2 23918 A function is continuous i...
flfcnp 23919 A continuous function pres...
lmflf 23920 The topological limit rela...
txflf 23921 Two sequences converge in ...
flfcnp2 23922 The image of a convergent ...
fclsval 23923 The set of all cluster poi...
isfcls 23924 A cluster point of a filte...
fclsfil 23925 Reverse closure for the cl...
fclstop 23926 Reverse closure for the cl...
fclstopon 23927 Reverse closure for the cl...
isfcls2 23928 A cluster point of a filte...
fclsopn 23929 Write the cluster point co...
fclsopni 23930 An open neighborhood of a ...
fclselbas 23931 A cluster point is in the ...
fclsneii 23932 A neighborhood of a cluste...
fclssscls 23933 The set of cluster points ...
fclsnei 23934 Cluster points in terms of...
supnfcls 23935 The filter of supersets of...
fclsbas 23936 Cluster points in terms of...
fclsss1 23937 A finer topology has fewer...
fclsss2 23938 A finer filter has fewer c...
fclsrest 23939 The set of cluster points ...
fclscf 23940 Characterization of finene...
flimfcls 23941 A limit point is a cluster...
fclsfnflim 23942 A filter clusters at a poi...
flimfnfcls 23943 A filter converges to a po...
fclscmpi 23944 Forward direction of ~ fcl...
fclscmp 23945 A space is compact iff eve...
uffclsflim 23946 The cluster points of an u...
ufilcmp 23947 A space is compact iff eve...
fcfval 23948 The set of cluster points ...
isfcf 23949 The property of being a cl...
fcfnei 23950 The property of being a cl...
fcfelbas 23951 A cluster point of a funct...
fcfneii 23952 A neighborhood of a cluste...
flfssfcf 23953 A limit point of a functio...
uffcfflf 23954 If the domain filter is an...
cnpfcfi 23955 Lemma for ~ cnpfcf . If a...
cnpfcf 23956 A function ` F ` is contin...
cnfcf 23957 Continuity of a function i...
flfcntr 23958 A continuous function's va...
alexsublem 23959 Lemma for ~ alexsub . (Co...
alexsub 23960 The Alexander Subbase Theo...
alexsubb 23961 Biconditional form of the ...
alexsubALTlem1 23962 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23963 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23964 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23965 Lemma for ~ alexsubALT . ...
alexsubALT 23966 The Alexander Subbase Theo...
ptcmplem1 23967 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23968 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23969 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23970 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23971 Lemma for ~ ptcmp . (Cont...
ptcmpg 23972 Tychonoff's theorem: The ...
ptcmp 23973 Tychonoff's theorem: The ...
cnextval 23976 The function applying cont...
cnextfval 23977 The continuous extension o...
cnextrel 23978 In the general case, a con...
cnextfun 23979 If the target space is Hau...
cnextfvval 23980 The value of the continuou...
cnextf 23981 Extension by continuity. ...
cnextcn 23982 Extension by continuity. ...
cnextfres1 23983 ` F ` and its extension by...
cnextfres 23984 ` F ` and its extension by...
istmd 23989 The predicate "is a topolo...
tmdmnd 23990 A topological monoid is a ...
tmdtps 23991 A topological monoid is a ...
istgp 23992 The predicate "is a topolo...
tgpgrp 23993 A topological group is a g...
tgptmd 23994 A topological group is a t...
tgptps 23995 A topological group is a t...
tmdtopon 23996 The topology of a topologi...
tgptopon 23997 The topology of a topologi...
tmdcn 23998 In a topological monoid, t...
tgpcn 23999 In a topological group, th...
tgpinv 24000 In a topological group, th...
grpinvhmeo 24001 The inverse function in a ...
cnmpt1plusg 24002 Continuity of the group su...
cnmpt2plusg 24003 Continuity of the group su...
tmdcn2 24004 Write out the definition o...
tgpsubcn 24005 In a topological group, th...
istgp2 24006 A group with a topology is...
tmdmulg 24007 In a topological monoid, t...
tgpmulg 24008 In a topological group, th...
tgpmulg2 24009 In a topological monoid, t...
tmdgsum 24010 In a topological monoid, t...
tmdgsum2 24011 For any neighborhood ` U `...
oppgtmd 24012 The opposite of a topologi...
oppgtgp 24013 The opposite of a topologi...
distgp 24014 Any group equipped with th...
indistgp 24015 Any group equipped with th...
efmndtmd 24016 The monoid of endofunction...
tmdlactcn 24017 The left group action of e...
tgplacthmeo 24018 The left group action of e...
submtmd 24019 A submonoid of a topologic...
subgtgp 24020 A subgroup of a topologica...
symgtgp 24021 The symmetric group is a t...
subgntr 24022 A subgroup of a topologica...
opnsubg 24023 An open subgroup of a topo...
clssubg 24024 The closure of a subgroup ...
clsnsg 24025 The closure of a normal su...
cldsubg 24026 A subgroup of finite index...
tgpconncompeqg 24027 The connected component co...
tgpconncomp 24028 The identity component, th...
tgpconncompss 24029 The identity component is ...
ghmcnp 24030 A group homomorphism on to...
snclseqg 24031 The coset of the closure o...
tgphaus 24032 A topological group is Hau...
tgpt1 24033 Hausdorff and T1 are equiv...
tgpt0 24034 Hausdorff and T0 are equiv...
qustgpopn 24035 A quotient map in a topolo...
qustgplem 24036 Lemma for ~ qustgp . (Con...
qustgp 24037 The quotient of a topologi...
qustgphaus 24038 The quotient of a topologi...
prdstmdd 24039 The product of a family of...
prdstgpd 24040 The product of a family of...
tsmsfbas 24043 The collection of all sets...
tsmslem1 24044 The finite partial sums of...
tsmsval2 24045 Definition of the topologi...
tsmsval 24046 Definition of the topologi...
tsmspropd 24047 The group sum depends only...
eltsms 24048 The property of being a su...
tsmsi 24049 The property of being a su...
tsmscl 24050 A sum in a topological gro...
haustsms 24051 In a Hausdorff topological...
haustsms2 24052 In a Hausdorff topological...
tsmscls 24053 One half of ~ tgptsmscls ,...
tsmsgsum 24054 The convergent points of a...
tsmsid 24055 If a sum is finite, the us...
haustsmsid 24056 In a Hausdorff topological...
tsms0 24057 The sum of zero is zero. ...
tsmssubm 24058 Evaluate an infinite group...
tsmsres 24059 Extend an infinite group s...
tsmsf1o 24060 Re-index an infinite group...
tsmsmhm 24061 Apply a continuous group h...
tsmsadd 24062 The sum of two infinite gr...
tsmsinv 24063 Inverse of an infinite gro...
tsmssub 24064 The difference of two infi...
tgptsmscls 24065 A sum in a topological gro...
tgptsmscld 24066 The set of limit points to...
tsmssplit 24067 Split a topological group ...
tsmsxplem1 24068 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 24069 Lemma for ~ tsmsxp . (Con...
tsmsxp 24070 Write a sum over a two-dim...
istrg 24079 Express the predicate " ` ...
trgtmd 24080 The multiplicative monoid ...
istdrg 24081 Express the predicate " ` ...
tdrgunit 24082 The unit group of a topolo...
trgtgp 24083 A topological ring is a to...
trgtmd2 24084 A topological ring is a to...
trgtps 24085 A topological ring is a to...
trgring 24086 A topological ring is a ri...
trggrp 24087 A topological ring is a gr...
tdrgtrg 24088 A topological division rin...
tdrgdrng 24089 A topological division rin...
tdrgring 24090 A topological division rin...
tdrgtmd 24091 A topological division rin...
tdrgtps 24092 A topological division rin...
istdrg2 24093 A topological-ring divisio...
mulrcn 24094 The functionalization of t...
invrcn2 24095 The multiplicative inverse...
invrcn 24096 The multiplicative inverse...
cnmpt1mulr 24097 Continuity of ring multipl...
cnmpt2mulr 24098 Continuity of ring multipl...
dvrcn 24099 The division function is c...
istlm 24100 The predicate " ` W ` is a...
vscacn 24101 The scalar multiplication ...
tlmtmd 24102 A topological module is a ...
tlmtps 24103 A topological module is a ...
tlmlmod 24104 A topological module is a ...
tlmtrg 24105 The scalar ring of a topol...
tlmscatps 24106 The scalar ring of a topol...
istvc 24107 A topological vector space...
tvctdrg 24108 The scalar field of a topo...
cnmpt1vsca 24109 Continuity of scalar multi...
cnmpt2vsca 24110 Continuity of scalar multi...
tlmtgp 24111 A topological vector space...
tvctlm 24112 A topological vector space...
tvclmod 24113 A topological vector space...
tvclvec 24114 A topological vector space...
ustfn 24117 The defined uniform struct...
ustval 24118 The class of all uniform s...
isust 24119 The predicate " ` U ` is a...
ustssxp 24120 Entourages are subsets of ...
ustssel 24121 A uniform structure is upw...
ustbasel 24122 The full set is always an ...
ustincl 24123 A uniform structure is clo...
ustdiag 24124 The diagonal set is includ...
ustinvel 24125 If ` V ` is an entourage, ...
ustexhalf 24126 For each entourage ` V ` t...
ustrel 24127 The elements of uniform st...
ustfilxp 24128 A uniform structure on a n...
ustne0 24129 A uniform structure cannot...
ustssco 24130 In an uniform structure, a...
ustexsym 24131 In an uniform structure, f...
ustex2sym 24132 In an uniform structure, f...
ustex3sym 24133 In an uniform structure, f...
ustref 24134 Any element of the base se...
ust0 24135 The unique uniform structu...
ustn0 24136 The empty set is not an un...
ustund 24137 If two intersecting sets `...
ustelimasn 24138 Any point ` A ` is near en...
ustneism 24139 For a point ` A ` in ` X `...
ustbas2 24140 Second direction for ~ ust...
ustuni 24141 The set union of a uniform...
ustbas 24142 Recover the base of an uni...
ustimasn 24143 Lemma for ~ ustuqtop . (C...
trust 24144 The trace of a uniform str...
utopval 24147 The topology induced by a ...
elutop 24148 Open sets in the topology ...
utoptop 24149 The topology induced by a ...
utopbas 24150 The base of the topology i...
utoptopon 24151 Topology induced by a unif...
restutop 24152 Restriction of a topology ...
restutopopn 24153 The restriction of the top...
ustuqtoplem 24154 Lemma for ~ ustuqtop . (C...
ustuqtop0 24155 Lemma for ~ ustuqtop . (C...
ustuqtop1 24156 Lemma for ~ ustuqtop , sim...
ustuqtop2 24157 Lemma for ~ ustuqtop . (C...
ustuqtop3 24158 Lemma for ~ ustuqtop , sim...
ustuqtop4 24159 Lemma for ~ ustuqtop . (C...
ustuqtop5 24160 Lemma for ~ ustuqtop . (C...
ustuqtop 24161 For a given uniform struct...
utopsnneiplem 24162 The neighborhoods of a poi...
utopsnneip 24163 The neighborhoods of a poi...
utopsnnei 24164 Images of singletons by en...
utop2nei 24165 For any symmetrical entour...
utop3cls 24166 Relation between a topolog...
utopreg 24167 All Hausdorff uniform spac...
ussval 24174 The uniform structure on u...
ussid 24175 In case the base of the ` ...
isusp 24176 The predicate ` W ` is a u...
ressuss 24177 Value of the uniform struc...
ressust 24178 The uniform structure of a...
ressusp 24179 The restriction of a unifo...
tusval 24180 The value of the uniform s...
tuslem 24181 Lemma for ~ tusbas , ~ tus...
tusbas 24182 The base set of a construc...
tusunif 24183 The uniform structure of a...
tususs 24184 The uniform structure of a...
tustopn 24185 The topology induced by a ...
tususp 24186 A constructed uniform spac...
tustps 24187 A constructed uniform spac...
uspreg 24188 If a uniform space is Haus...
ucnval 24191 The set of all uniformly c...
isucn 24192 The predicate " ` F ` is a...
isucn2 24193 The predicate " ` F ` is a...
ucnimalem 24194 Reformulate the ` G ` func...
ucnima 24195 An equivalent statement of...
ucnprima 24196 The preimage by a uniforml...
iducn 24197 The identity is uniformly ...
cstucnd 24198 A constant function is uni...
ucncn 24199 Uniform continuity implies...
iscfilu 24202 The predicate " ` F ` is a...
cfilufbas 24203 A Cauchy filter base is a ...
cfiluexsm 24204 For a Cauchy filter base a...
fmucndlem 24205 Lemma for ~ fmucnd . (Con...
fmucnd 24206 The image of a Cauchy filt...
cfilufg 24207 The filter generated by a ...
trcfilu 24208 Condition for the trace of...
cfiluweak 24209 A Cauchy filter base is al...
neipcfilu 24210 In an uniform space, a nei...
iscusp 24213 The predicate " ` W ` is a...
cuspusp 24214 A complete uniform space i...
cuspcvg 24215 In a complete uniform spac...
iscusp2 24216 The predicate " ` W ` is a...
cnextucn 24217 Extension by continuity. ...
ucnextcn 24218 Extension by continuity. ...
ispsmet 24219 Express the predicate " ` ...
psmetdmdm 24220 Recover the base set from ...
psmetf 24221 The distance function of a...
psmetcl 24222 Closure of the distance fu...
psmet0 24223 The distance function of a...
psmettri2 24224 Triangle inequality for th...
psmetsym 24225 The distance function of a...
psmettri 24226 Triangle inequality for th...
psmetge0 24227 The distance function of a...
psmetxrge0 24228 The distance function of a...
psmetres2 24229 Restriction of a pseudomet...
psmetlecl 24230 Real closure of an extende...
distspace 24231 A set ` X ` together with ...
ismet 24238 Express the predicate " ` ...
isxmet 24239 Express the predicate " ` ...
ismeti 24240 Properties that determine ...
isxmetd 24241 Properties that determine ...
isxmet2d 24242 It is safe to only require...
metflem 24243 Lemma for ~ metf and other...
xmetf 24244 Mapping of the distance fu...
metf 24245 Mapping of the distance fu...
xmetcl 24246 Closure of the distance fu...
metcl 24247 Closure of the distance fu...
ismet2 24248 An extended metric is a me...
metxmet 24249 A metric is an extended me...
xmetdmdm 24250 Recover the base set from ...
metdmdm 24251 Recover the base set from ...
xmetunirn 24252 Two ways to express an ext...
xmeteq0 24253 The value of an extended m...
meteq0 24254 The value of a metric is z...
xmettri2 24255 Triangle inequality for th...
mettri2 24256 Triangle inequality for th...
xmet0 24257 The distance function of a...
met0 24258 The distance function of a...
xmetge0 24259 The distance function of a...
metge0 24260 The distance function of a...
xmetlecl 24261 Real closure of an extende...
xmetsym 24262 The distance function of a...
xmetpsmet 24263 An extended metric is a ps...
xmettpos 24264 The distance function of a...
metsym 24265 The distance function of a...
xmettri 24266 Triangle inequality for th...
mettri 24267 Triangle inequality for th...
xmettri3 24268 Triangle inequality for th...
mettri3 24269 Triangle inequality for th...
xmetrtri 24270 One half of the reverse tr...
xmetrtri2 24271 The reverse triangle inequ...
metrtri 24272 Reverse triangle inequalit...
xmetgt0 24273 The distance function of a...
metgt0 24274 The distance function of a...
metn0 24275 A metric space is nonempty...
xmetres2 24276 Restriction of an extended...
metreslem 24277 Lemma for ~ metres . (Con...
metres2 24278 Lemma for ~ metres . (Con...
xmetres 24279 A restriction of an extend...
metres 24280 A restriction of a metric ...
0met 24281 The empty metric. (Contri...
prdsdsf 24282 The product metric is a fu...
prdsxmetlem 24283 The product metric is an e...
prdsxmet 24284 The product metric is an e...
prdsmet 24285 The product metric is a me...
ressprdsds 24286 Restriction of a product m...
resspwsds 24287 Restriction of a power met...
imasdsf1olem 24288 Lemma for ~ imasdsf1o . (...
imasdsf1o 24289 The distance function is t...
imasf1oxmet 24290 The image of an extended m...
imasf1omet 24291 The image of a metric is a...
xpsdsfn 24292 Closure of the metric in a...
xpsdsfn2 24293 Closure of the metric in a...
xpsxmetlem 24294 Lemma for ~ xpsxmet . (Co...
xpsxmet 24295 A product metric of extend...
xpsdsval 24296 Value of the metric in a b...
xpsmet 24297 The direct product of two ...
blfvalps 24298 The value of the ball func...
blfval 24299 The value of the ball func...
blvalps 24300 The ball around a point ` ...
blval 24301 The ball around a point ` ...
elblps 24302 Membership in a ball. (Co...
elbl 24303 Membership in a ball. (Co...
elbl2ps 24304 Membership in a ball. (Co...
elbl2 24305 Membership in a ball. (Co...
elbl3ps 24306 Membership in a ball, with...
elbl3 24307 Membership in a ball, with...
blcomps 24308 Commute the arguments to t...
blcom 24309 Commute the arguments to t...
xblpnfps 24310 The infinity ball in an ex...
xblpnf 24311 The infinity ball in an ex...
blpnf 24312 The infinity ball in a sta...
bldisj 24313 Two balls are disjoint if ...
blgt0 24314 A nonempty ball implies th...
bl2in 24315 Two balls are disjoint if ...
xblss2ps 24316 One ball is contained in a...
xblss2 24317 One ball is contained in a...
blss2ps 24318 One ball is contained in a...
blss2 24319 One ball is contained in a...
blhalf 24320 A ball of radius ` R / 2 `...
blfps 24321 Mapping of a ball. (Contr...
blf 24322 Mapping of a ball. (Contr...
blrnps 24323 Membership in the range of...
blrn 24324 Membership in the range of...
xblcntrps 24325 A ball contains its center...
xblcntr 24326 A ball contains its center...
blcntrps 24327 A ball contains its center...
blcntr 24328 A ball contains its center...
xbln0 24329 A ball is nonempty iff the...
bln0 24330 A ball is not empty. (Con...
blelrnps 24331 A ball belongs to the set ...
blelrn 24332 A ball belongs to the set ...
blssm 24333 A ball is a subset of the ...
unirnblps 24334 The union of the set of ba...
unirnbl 24335 The union of the set of ba...
blin 24336 The intersection of two ba...
ssblps 24337 The size of a ball increas...
ssbl 24338 The size of a ball increas...
blssps 24339 Any point ` P ` in a ball ...
blss 24340 Any point ` P ` in a ball ...
blssexps 24341 Two ways to express the ex...
blssex 24342 Two ways to express the ex...
ssblex 24343 A nested ball exists whose...
blin2 24344 Given any two balls and a ...
blbas 24345 The balls of a metric spac...
blres 24346 A ball in a restricted met...
xmeterval 24347 Value of the "finitely sep...
xmeter 24348 The "finitely separated" r...
xmetec 24349 The equivalence classes un...
blssec 24350 A ball centered at ` P ` i...
blpnfctr 24351 The infinity ball in an ex...
xmetresbl 24352 An extended metric restric...
mopnval 24353 An open set is a subset of...
mopntopon 24354 The set of open sets of a ...
mopntop 24355 The set of open sets of a ...
mopnuni 24356 The union of all open sets...
elmopn 24357 The defining property of a...
mopnfss 24358 The family of open sets of...
mopnm 24359 The base set of a metric s...
elmopn2 24360 A defining property of an ...
mopnss 24361 An open set of a metric sp...
isxms 24362 Express the predicate " ` ...
isxms2 24363 Express the predicate " ` ...
isms 24364 Express the predicate " ` ...
isms2 24365 Express the predicate " ` ...
xmstopn 24366 The topology component of ...
mstopn 24367 The topology component of ...
xmstps 24368 An extended metric space i...
msxms 24369 A metric space is an exten...
mstps 24370 A metric space is a topolo...
xmsxmet 24371 The distance function, sui...
msmet 24372 The distance function, sui...
msf 24373 The distance function of a...
xmsxmet2 24374 The distance function, sui...
msmet2 24375 The distance function, sui...
mscl 24376 Closure of the distance fu...
xmscl 24377 Closure of the distance fu...
xmsge0 24378 The distance function in a...
xmseq0 24379 The distance between two p...
xmssym 24380 The distance function in a...
xmstri2 24381 Triangle inequality for th...
mstri2 24382 Triangle inequality for th...
xmstri 24383 Triangle inequality for th...
mstri 24384 Triangle inequality for th...
xmstri3 24385 Triangle inequality for th...
mstri3 24386 Triangle inequality for th...
msrtri 24387 Reverse triangle inequalit...
xmspropd 24388 Property deduction for an ...
mspropd 24389 Property deduction for a m...
setsmsbas 24390 The base set of a construc...
setsmsds 24391 The distance function of a...
setsmstset 24392 The topology of a construc...
setsmstopn 24393 The topology of a construc...
setsxms 24394 The constructed metric spa...
setsms 24395 The constructed metric spa...
tmsval 24396 For any metric there is an...
tmslem 24397 Lemma for ~ tmsbas , ~ tms...
tmsbas 24398 The base set of a construc...
tmsds 24399 The metric of a constructe...
tmstopn 24400 The topology of a construc...
tmsxms 24401 The constructed metric spa...
tmsms 24402 The constructed metric spa...
imasf1obl 24403 The image of a metric spac...
imasf1oxms 24404 The image of a metric spac...
imasf1oms 24405 The image of a metric spac...
prdsbl 24406 A ball in the product metr...
mopni 24407 An open set of a metric sp...
mopni2 24408 An open set of a metric sp...
mopni3 24409 An open set of a metric sp...
blssopn 24410 The balls of a metric spac...
unimopn 24411 The union of a collection ...
mopnin 24412 The intersection of two op...
mopn0 24413 The empty set is an open s...
rnblopn 24414 A ball of a metric space i...
blopn 24415 A ball of a metric space i...
neibl 24416 The neighborhoods around a...
blnei 24417 A ball around a point is a...
lpbl 24418 Every ball around a limit ...
blsscls2 24419 A smaller closed ball is c...
blcld 24420 A "closed ball" in a metri...
blcls 24421 The closure of an open bal...
blsscls 24422 If two concentric balls ha...
metss 24423 Two ways of saying that me...
metequiv 24424 Two ways of saying that tw...
metequiv2 24425 If there is a sequence of ...
metss2lem 24426 Lemma for ~ metss2 . (Con...
metss2 24427 If the metric ` D ` is "st...
comet 24428 The composition of an exte...
stdbdmetval 24429 Value of the standard boun...
stdbdxmet 24430 The standard bounded metri...
stdbdmet 24431 The standard bounded metri...
stdbdbl 24432 The standard bounded metri...
stdbdmopn 24433 The standard bounded metri...
mopnex 24434 The topology generated by ...
methaus 24435 The topology generated by ...
met1stc 24436 The topology generated by ...
met2ndci 24437 A separable metric space (...
met2ndc 24438 A metric space is second-c...
metrest 24439 Two alternate formulations...
ressxms 24440 The restriction of a metri...
ressms 24441 The restriction of a metri...
prdsmslem1 24442 Lemma for ~ prdsms . The ...
prdsxmslem1 24443 Lemma for ~ prdsms . The ...
prdsxmslem2 24444 Lemma for ~ prdsxms . The...
prdsxms 24445 The indexed product struct...
prdsms 24446 The indexed product struct...
pwsxms 24447 A power of an extended met...
pwsms 24448 A power of a metric space ...
xpsxms 24449 A binary product of metric...
xpsms 24450 A binary product of metric...
tmsxps 24451 Express the product of two...
tmsxpsmopn 24452 Express the product of two...
tmsxpsval 24453 Value of the product of tw...
tmsxpsval2 24454 Value of the product of tw...
metcnp3 24455 Two ways to express that `...
metcnp 24456 Two ways to say a mapping ...
metcnp2 24457 Two ways to say a mapping ...
metcn 24458 Two ways to say a mapping ...
metcnpi 24459 Epsilon-delta property of ...
metcnpi2 24460 Epsilon-delta property of ...
metcnpi3 24461 Epsilon-delta property of ...
txmetcnp 24462 Continuity of a binary ope...
txmetcn 24463 Continuity of a binary ope...
metuval 24464 Value of the uniform struc...
metustel 24465 Define a filter base ` F `...
metustss 24466 Range of the elements of t...
metustrel 24467 Elements of the filter bas...
metustto 24468 Any two elements of the fi...
metustid 24469 The identity diagonal is i...
metustsym 24470 Elements of the filter bas...
metustexhalf 24471 For any element ` A ` of t...
metustfbas 24472 The filter base generated ...
metust 24473 The uniform structure gene...
cfilucfil 24474 Given a metric ` D ` and a...
metuust 24475 The uniform structure gene...
cfilucfil2 24476 Given a metric ` D ` and a...
blval2 24477 The ball around a point ` ...
elbl4 24478 Membership in a ball, alte...
metuel 24479 Elementhood in the uniform...
metuel2 24480 Elementhood in the uniform...
metustbl 24481 The "section" image of an ...
psmetutop 24482 The topology induced by a ...
xmetutop 24483 The topology induced by a ...
xmsusp 24484 If the uniform set of a me...
restmetu 24485 The uniform structure gene...
metucn 24486 Uniform continuity in metr...
dscmet 24487 The discrete metric on any...
dscopn 24488 The discrete metric genera...
nrmmetd 24489 Show that a group norm gen...
abvmet 24490 An absolute value ` F ` ge...
nmfval 24503 The value of the norm func...
nmval 24504 The value of the norm as t...
nmfval0 24505 The value of the norm func...
nmfval2 24506 The value of the norm func...
nmval2 24507 The value of the norm on a...
nmf2 24508 The norm on a metric group...
nmpropd 24509 Weak property deduction fo...
nmpropd2 24510 Strong property deduction ...
isngp 24511 The property of being a no...
isngp2 24512 The property of being a no...
isngp3 24513 The property of being a no...
ngpgrp 24514 A normed group is a group....
ngpms 24515 A normed group is a metric...
ngpxms 24516 A normed group is an exten...
ngptps 24517 A normed group is a topolo...
ngpmet 24518 The (induced) metric of a ...
ngpds 24519 Value of the distance func...
ngpdsr 24520 Value of the distance func...
ngpds2 24521 Write the distance between...
ngpds2r 24522 Write the distance between...
ngpds3 24523 Write the distance between...
ngpds3r 24524 Write the distance between...
ngprcan 24525 Cancel right addition insi...
ngplcan 24526 Cancel left addition insid...
isngp4 24527 Express the property of be...
ngpinvds 24528 Two elements are the same ...
ngpsubcan 24529 Cancel right subtraction i...
nmf 24530 The norm on a normed group...
nmcl 24531 The norm of a normed group...
nmge0 24532 The norm of a normed group...
nmeq0 24533 The identity is the only e...
nmne0 24534 The norm of a nonzero elem...
nmrpcl 24535 The norm of a nonzero elem...
nminv 24536 The norm of a negated elem...
nmmtri 24537 The triangle inequality fo...
nmsub 24538 The norm of the difference...
nmrtri 24539 Reverse triangle inequalit...
nm2dif 24540 Inequality for the differe...
nmtri 24541 The triangle inequality fo...
nmtri2 24542 Triangle inequality for th...
ngpi 24543 The properties of a normed...
nm0 24544 Norm of the identity eleme...
nmgt0 24545 The norm of a nonzero elem...
sgrim 24546 The induced metric on a su...
sgrimval 24547 The induced metric on a su...
subgnm 24548 The norm in a subgroup. (...
subgnm2 24549 A substructure assigns the...
subgngp 24550 A normed group restricted ...
ngptgp 24551 A normed abelian group is ...
ngppropd 24552 Property deduction for a n...
reldmtng 24553 The function ` toNrmGrp ` ...
tngval 24554 Value of the function whic...
tnglem 24555 Lemma for ~ tngbas and sim...
tngbas 24556 The base set of a structur...
tngplusg 24557 The group addition of a st...
tng0 24558 The group identity of a st...
tngmulr 24559 The ring multiplication of...
tngsca 24560 The scalar ring of a struc...
tngvsca 24561 The scalar multiplication ...
tngip 24562 The inner product operatio...
tngds 24563 The metric function of a s...
tngtset 24564 The topology generated by ...
tngtopn 24565 The topology generated by ...
tngnm 24566 The topology generated by ...
tngngp2 24567 A norm turns a group into ...
tngngpd 24568 Derive the axioms for a no...
tngngp 24569 Derive the axioms for a no...
tnggrpr 24570 If a structure equipped wi...
tngngp3 24571 Alternate definition of a ...
nrmtngdist 24572 The augmentation of a norm...
nrmtngnrm 24573 The augmentation of a norm...
tngngpim 24574 The induced metric of a no...
isnrg 24575 A normed ring is a ring wi...
nrgabv 24576 The norm of a normed ring ...
nrgngp 24577 A normed ring is a normed ...
nrgring 24578 A normed ring is a ring. ...
nmmul 24579 The norm of a product in a...
nrgdsdi 24580 Distribute a distance calc...
nrgdsdir 24581 Distribute a distance calc...
nm1 24582 The norm of one in a nonze...
unitnmn0 24583 The norm of a unit is nonz...
nminvr 24584 The norm of an inverse in ...
nmdvr 24585 The norm of a division in ...
nrgdomn 24586 A nonzero normed ring is a...
nrgtgp 24587 A normed ring is a topolog...
subrgnrg 24588 A normed ring restricted t...
tngnrg 24589 Given any absolute value o...
isnlm 24590 A normed (left) module is ...
nmvs 24591 Defining property of a nor...
nlmngp 24592 A normed module is a norme...
nlmlmod 24593 A normed module is a left ...
nlmnrg 24594 The scalar component of a ...
nlmngp2 24595 The scalar component of a ...
nlmdsdi 24596 Distribute a distance calc...
nlmdsdir 24597 Distribute a distance calc...
nlmmul0or 24598 If a scalar product is zer...
sranlm 24599 The subring algebra over a...
nlmvscnlem2 24600 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 24601 Lemma for ~ nlmvscn . (Co...
nlmvscn 24602 The scalar multiplication ...
rlmnlm 24603 The ring module over a nor...
rlmnm 24604 The norm function in the r...
nrgtrg 24605 A normed ring is a topolog...
nrginvrcnlem 24606 Lemma for ~ nrginvrcn . C...
nrginvrcn 24607 The ring inverse function ...
nrgtdrg 24608 A normed division ring is ...
nlmtlm 24609 A normed module is a topol...
isnvc 24610 A normed vector space is j...
nvcnlm 24611 A normed vector space is a...
nvclvec 24612 A normed vector space is a...
nvclmod 24613 A normed vector space is a...
isnvc2 24614 A normed vector space is j...
nvctvc 24615 A normed vector space is a...
lssnlm 24616 A subspace of a normed mod...
lssnvc 24617 A subspace of a normed vec...
rlmnvc 24618 The ring module over a nor...
ngpocelbl 24619 Membership of an off-cente...
nmoffn 24626 The function producing ope...
reldmnghm 24627 Lemma for normed group hom...
reldmnmhm 24628 Lemma for module homomorph...
nmofval 24629 Value of the operator norm...
nmoval 24630 Value of the operator norm...
nmogelb 24631 Property of the operator n...
nmolb 24632 Any upper bound on the val...
nmolb2d 24633 Any upper bound on the val...
nmof 24634 The operator norm is a fun...
nmocl 24635 The operator norm of an op...
nmoge0 24636 The operator norm of an op...
nghmfval 24637 A normed group homomorphis...
isnghm 24638 A normed group homomorphis...
isnghm2 24639 A normed group homomorphis...
isnghm3 24640 A normed group homomorphis...
bddnghm 24641 A bounded group homomorphi...
nghmcl 24642 A normed group homomorphis...
nmoi 24643 The operator norm achieves...
nmoix 24644 The operator norm is a bou...
nmoi2 24645 The operator norm is a bou...
nmoleub 24646 The operator norm, defined...
nghmrcl1 24647 Reverse closure for a norm...
nghmrcl2 24648 Reverse closure for a norm...
nghmghm 24649 A normed group homomorphis...
nmo0 24650 The operator norm of the z...
nmoeq0 24651 The operator norm is zero ...
nmoco 24652 An upper bound on the oper...
nghmco 24653 The composition of normed ...
nmotri 24654 Triangle inequality for th...
nghmplusg 24655 The sum of two bounded lin...
0nghm 24656 The zero operator is a nor...
nmoid 24657 The operator norm of the i...
idnghm 24658 The identity operator is a...
nmods 24659 Upper bound for the distan...
nghmcn 24660 A normed group homomorphis...
isnmhm 24661 A normed module homomorphi...
nmhmrcl1 24662 Reverse closure for a norm...
nmhmrcl2 24663 Reverse closure for a norm...
nmhmlmhm 24664 A normed module homomorphi...
nmhmnghm 24665 A normed module homomorphi...
nmhmghm 24666 A normed module homomorphi...
isnmhm2 24667 A normed module homomorphi...
nmhmcl 24668 A normed module homomorphi...
idnmhm 24669 The identity operator is a...
0nmhm 24670 The zero operator is a bou...
nmhmco 24671 The composition of bounded...
nmhmplusg 24672 The sum of two bounded lin...
qtopbaslem 24673 The set of open intervals ...
qtopbas 24674 The set of open intervals ...
retopbas 24675 A basis for the standard t...
retop 24676 The standard topology on t...
uniretop 24677 The underlying set of the ...
retopon 24678 The standard topology on t...
retps 24679 The standard topological s...
iooretop 24680 Open intervals are open se...
icccld 24681 Closed intervals are close...
icopnfcld 24682 Right-unbounded closed int...
iocmnfcld 24683 Left-unbounded closed inte...
qdensere 24684 ` QQ ` is dense in the sta...
cnmetdval 24685 Value of the distance func...
cnmet 24686 The absolute value metric ...
cnxmet 24687 The absolute value metric ...
cnbl0 24688 Two ways to write the open...
cnblcld 24689 Two ways to write the clos...
cnfldms 24690 The complex number field i...
cnfldxms 24691 The complex number field i...
cnfldtps 24692 The complex number field i...
cnfldnm 24693 The norm of the field of c...
cnngp 24694 The complex numbers form a...
cnnrg 24695 The complex numbers form a...
cnfldtopn 24696 The topology of the comple...
cnfldtopon 24697 The topology of the comple...
cnfldtop 24698 The topology of the comple...
cnfldhaus 24699 The topology of the comple...
unicntop 24700 The underlying set of the ...
cnopn 24701 The set of complex numbers...
cnn0opn 24702 The set of nonzero complex...
zringnrg 24703 The ring of integers is a ...
remetdval 24704 Value of the distance func...
remet 24705 The absolute value metric ...
rexmet 24706 The absolute value metric ...
bl2ioo 24707 A ball in terms of an open...
ioo2bl 24708 An open interval of reals ...
ioo2blex 24709 An open interval of reals ...
blssioo 24710 The balls of the standard ...
tgioo 24711 The topology generated by ...
qdensere2 24712 ` QQ ` is dense in ` RR ` ...
blcvx 24713 An open ball in the comple...
rehaus 24714 The standard topology on t...
tgqioo 24715 The topology generated by ...
re2ndc 24716 The standard topology on t...
resubmet 24717 The subspace topology indu...
tgioo2 24718 The standard topology on t...
rerest 24719 The subspace topology indu...
tgioo4 24720 The standard topology on t...
tgioo3 24721 The standard topology on t...
xrtgioo 24722 The topology on the extend...
xrrest 24723 The subspace topology indu...
xrrest2 24724 The subspace topology indu...
xrsxmet 24725 The metric on the extended...
xrsdsre 24726 The metric on the extended...
xrsblre 24727 Any ball of the metric of ...
xrsmopn 24728 The metric on the extended...
zcld 24729 The integers are a closed ...
recld2 24730 The real numbers are a clo...
zcld2 24731 The integers are a closed ...
zdis 24732 The integers are a discret...
sszcld 24733 Every subset of the intege...
reperflem 24734 A subset of the real numbe...
reperf 24735 The real numbers are a per...
cnperf 24736 The complex numbers are a ...
iccntr 24737 The interior of a closed i...
icccmplem1 24738 Lemma for ~ icccmp . (Con...
icccmplem2 24739 Lemma for ~ icccmp . (Con...
icccmplem3 24740 Lemma for ~ icccmp . (Con...
icccmp 24741 A closed interval in ` RR ...
reconnlem1 24742 Lemma for ~ reconn . Conn...
reconnlem2 24743 Lemma for ~ reconn . (Con...
reconn 24744 A subset of the reals is c...
retopconn 24745 Corollary of ~ reconn . T...
iccconn 24746 A closed interval is conne...
opnreen 24747 Every nonempty open set is...
rectbntr0 24748 A countable subset of the ...
xrge0gsumle 24749 A finite sum in the nonneg...
xrge0tsms 24750 Any finite or infinite sum...
xrge0tsms2 24751 Any finite or infinite sum...
metdcnlem 24752 The metric function of a m...
xmetdcn2 24753 The metric function of an ...
xmetdcn 24754 The metric function of an ...
metdcn2 24755 The metric function of a m...
metdcn 24756 The metric function of a m...
msdcn 24757 The metric function of a m...
cnmpt1ds 24758 Continuity of the metric f...
cnmpt2ds 24759 Continuity of the metric f...
nmcn 24760 The norm of a normed group...
ngnmcncn 24761 The norm of a normed group...
abscn 24762 The absolute value functio...
metdsval 24763 Value of the "distance to ...
metdsf 24764 The distance from a point ...
metdsge 24765 The distance from the poin...
metds0 24766 If a point is in a set, it...
metdstri 24767 A generalization of the tr...
metdsle 24768 The distance from a point ...
metdsre 24769 The distance from a point ...
metdseq0 24770 The distance from a point ...
metdscnlem 24771 Lemma for ~ metdscn . (Co...
metdscn 24772 The function ` F ` which g...
metdscn2 24773 The function ` F ` which g...
metnrmlem1a 24774 Lemma for ~ metnrm . (Con...
metnrmlem1 24775 Lemma for ~ metnrm . (Con...
metnrmlem2 24776 Lemma for ~ metnrm . (Con...
metnrmlem3 24777 Lemma for ~ metnrm . (Con...
metnrm 24778 A metric space is normal. ...
metreg 24779 A metric space is regular....
addcnlem 24780 Lemma for ~ addcn , ~ subc...
addcn 24781 Complex number addition is...
subcn 24782 Complex number subtraction...
mulcn 24783 Complex number multiplicat...
divcnOLD 24784 Obsolete version of ~ divc...
mpomulcn 24785 Complex number multiplicat...
divcn 24786 Complex number division is...
cnfldtgp 24787 The complex numbers form a...
fsumcn 24788 A finite sum of functions ...
fsum2cn 24789 Version of ~ fsumcn for tw...
expcn 24790 The power function on comp...
divccn 24791 Division by a nonzero cons...
expcnOLD 24792 Obsolete version of ~ expc...
divccnOLD 24793 Obsolete version of ~ divc...
sqcn 24794 The square function on com...
iitopon 24799 The unit interval is a top...
iitop 24800 The unit interval is a top...
iiuni 24801 The base set of the unit i...
dfii2 24802 Alternate definition of th...
dfii3 24803 Alternate definition of th...
dfii4 24804 Alternate definition of th...
dfii5 24805 The unit interval expresse...
iicmp 24806 The unit interval is compa...
iiconn 24807 The unit interval is conne...
cncfval 24808 The value of the continuou...
elcncf 24809 Membership in the set of c...
elcncf2 24810 Version of ~ elcncf with a...
cncfrss 24811 Reverse closure of the con...
cncfrss2 24812 Reverse closure of the con...
cncff 24813 A continuous complex funct...
cncfi 24814 Defining property of a con...
elcncf1di 24815 Membership in the set of c...
elcncf1ii 24816 Membership in the set of c...
rescncf 24817 A continuous complex funct...
cncfcdm 24818 Change the codomain of a c...
cncfss 24819 The set of continuous func...
climcncf 24820 Image of a limit under a c...
abscncf 24821 Absolute value is continuo...
recncf 24822 Real part is continuous. ...
imcncf 24823 Imaginary part is continuo...
cjcncf 24824 Complex conjugate is conti...
mulc1cncf 24825 Multiplication by a consta...
divccncf 24826 Division by a constant is ...
cncfco 24827 The composition of two con...
cncfcompt2 24828 Composition of continuous ...
cncfmet 24829 Relate complex function co...
cncfcn 24830 Relate complex function co...
cncfcn1 24831 Relate complex function co...
cncfmptc 24832 A constant function is a c...
cncfmptid 24833 The identity function is a...
cncfmpt1f 24834 Composition of continuous ...
cncfmpt2f 24835 Composition of continuous ...
cncfmpt2ss 24836 Composition of continuous ...
addccncf 24837 Adding a constant is a con...
idcncf 24838 The identity function is a...
sub1cncf 24839 Subtracting a constant is ...
sub2cncf 24840 Subtraction from a constan...
cdivcncf 24841 Division with a constant n...
negcncf 24842 The negative function is c...
negcncfOLD 24843 Obsolete version of ~ negc...
negfcncf 24844 The negative of a continuo...
abscncfALT 24845 Absolute value is continuo...
cncfcnvcn 24846 Rewrite ~ cmphaushmeo for ...
expcncf 24847 The power function on comp...
cnmptre 24848 Lemma for ~ iirevcn and re...
cnmpopc 24849 Piecewise definition of a ...
iirev 24850 Reverse the unit interval....
iirevcn 24851 The reversion function is ...
iihalf1 24852 Map the first half of ` II...
iihalf1cn 24853 The first half function is...
iihalf1cnOLD 24854 Obsolete version of ~ iiha...
iihalf2 24855 Map the second half of ` I...
iihalf2cn 24856 The second half function i...
iihalf2cnOLD 24857 Obsolete version of ~ iiha...
elii1 24858 Divide the unit interval i...
elii2 24859 Divide the unit interval i...
iimulcl 24860 The unit interval is close...
iimulcn 24861 Multiplication is a contin...
iimulcnOLD 24862 Obsolete version of ~ iimu...
icoopnst 24863 A half-open interval start...
iocopnst 24864 A half-open interval endin...
icchmeo 24865 The natural bijection from...
icchmeoOLD 24866 Obsolete version of ~ icch...
icopnfcnv 24867 Define a bijection from ` ...
icopnfhmeo 24868 The defined bijection from...
iccpnfcnv 24869 Define a bijection from ` ...
iccpnfhmeo 24870 The defined bijection from...
xrhmeo 24871 The bijection from ` [ -u ...
xrhmph 24872 The extended reals are hom...
xrcmp 24873 The topology of the extend...
xrconn 24874 The topology of the extend...
icccvx 24875 A linear combination of tw...
oprpiece1res1 24876 Restriction to the first p...
oprpiece1res2 24877 Restriction to the second ...
cnrehmeo 24878 The canonical bijection fr...
cnrehmeoOLD 24879 Obsolete version of ~ cnre...
cnheiborlem 24880 Lemma for ~ cnheibor . (C...
cnheibor 24881 Heine-Borel theorem for co...
cnllycmp 24882 The topology on the comple...
rellycmp 24883 The topology on the reals ...
bndth 24884 The Boundedness Theorem. ...
evth 24885 The Extreme Value Theorem....
evth2 24886 The Extreme Value Theorem,...
lebnumlem1 24887 Lemma for ~ lebnum . The ...
lebnumlem2 24888 Lemma for ~ lebnum . As a...
lebnumlem3 24889 Lemma for ~ lebnum . By t...
lebnum 24890 The Lebesgue number lemma,...
xlebnum 24891 Generalize ~ lebnum to ext...
lebnumii 24892 Specialize the Lebesgue nu...
ishtpy 24898 Membership in the class of...
htpycn 24899 A homotopy is a continuous...
htpyi 24900 A homotopy evaluated at it...
ishtpyd 24901 Deduction for membership i...
htpycom 24902 Given a homotopy from ` F ...
htpyid 24903 A homotopy from a function...
htpyco1 24904 Compose a homotopy with a ...
htpyco2 24905 Compose a homotopy with a ...
htpycc 24906 Concatenate two homotopies...
isphtpy 24907 Membership in the class of...
phtpyhtpy 24908 A path homotopy is a homot...
phtpycn 24909 A path homotopy is a conti...
phtpyi 24910 Membership in the class of...
phtpy01 24911 Two path-homotopic paths h...
isphtpyd 24912 Deduction for membership i...
isphtpy2d 24913 Deduction for membership i...
phtpycom 24914 Given a homotopy from ` F ...
phtpyid 24915 A homotopy from a path to ...
phtpyco2 24916 Compose a path homotopy wi...
phtpycc 24917 Concatenate two path homot...
phtpcrel 24919 The path homotopy relation...
isphtpc 24920 The relation "is path homo...
phtpcer 24921 Path homotopy is an equiva...
phtpc01 24922 Path homotopic paths have ...
reparphti 24923 Lemma for ~ reparpht . (C...
reparphtiOLD 24924 Obsolete version of ~ repa...
reparpht 24925 Reparametrization lemma. ...
phtpcco2 24926 Compose a path homotopy wi...
pcofval 24937 The value of the path conc...
pcoval 24938 The concatenation of two p...
pcovalg 24939 Evaluate the concatenation...
pcoval1 24940 Evaluate the concatenation...
pco0 24941 The starting point of a pa...
pco1 24942 The ending point of a path...
pcoval2 24943 Evaluate the concatenation...
pcocn 24944 The concatenation of two p...
copco 24945 The composition of a conca...
pcohtpylem 24946 Lemma for ~ pcohtpy . (Co...
pcohtpy 24947 Homotopy invariance of pat...
pcoptcl 24948 A constant function is a p...
pcopt 24949 Concatenation with a point...
pcopt2 24950 Concatenation with a point...
pcoass 24951 Order of concatenation doe...
pcorevcl 24952 Closure for a reversed pat...
pcorevlem 24953 Lemma for ~ pcorev . Prov...
pcorev 24954 Concatenation with the rev...
pcorev2 24955 Concatenation with the rev...
pcophtb 24956 The path homotopy equivale...
om1val 24957 The definition of the loop...
om1bas 24958 The base set of the loop s...
om1elbas 24959 Elementhood in the base se...
om1addcl 24960 Closure of the group opera...
om1plusg 24961 The group operation (which...
om1tset 24962 The topology of the loop s...
om1opn 24963 The topology of the loop s...
pi1val 24964 The definition of the fund...
pi1bas 24965 The base set of the fundam...
pi1blem 24966 Lemma for ~ pi1buni . (Co...
pi1buni 24967 Another way to write the l...
pi1bas2 24968 The base set of the fundam...
pi1eluni 24969 Elementhood in the base se...
pi1bas3 24970 The base set of the fundam...
pi1cpbl 24971 The group operation, loop ...
elpi1 24972 The elements of the fundam...
elpi1i 24973 The elements of the fundam...
pi1addf 24974 The group operation of ` p...
pi1addval 24975 The concatenation of two p...
pi1grplem 24976 Lemma for ~ pi1grp . (Con...
pi1grp 24977 The fundamental group is a...
pi1id 24978 The identity element of th...
pi1inv 24979 An inverse in the fundamen...
pi1xfrf 24980 Functionality of the loop ...
pi1xfrval 24981 The value of the loop tran...
pi1xfr 24982 Given a path ` F ` and its...
pi1xfrcnvlem 24983 Given a path ` F ` between...
pi1xfrcnv 24984 Given a path ` F ` between...
pi1xfrgim 24985 The mapping ` G ` between ...
pi1cof 24986 Functionality of the loop ...
pi1coval 24987 The value of the loop tran...
pi1coghm 24988 The mapping ` G ` between ...
isclm 24991 A subcomplex module is a l...
clmsca 24992 The ring of scalars ` F ` ...
clmsubrg 24993 The base set of the ring o...
clmlmod 24994 A subcomplex module is a l...
clmgrp 24995 A subcomplex module is an ...
clmabl 24996 A subcomplex module is an ...
clmring 24997 The scalar ring of a subco...
clmfgrp 24998 The scalar ring of a subco...
clm0 24999 The zero of the scalar rin...
clm1 25000 The identity of the scalar...
clmadd 25001 The addition of the scalar...
clmmul 25002 The multiplication of the ...
clmcj 25003 The conjugation of the sca...
isclmi 25004 Reverse direction of ~ isc...
clmzss 25005 The scalar ring of a subco...
clmsscn 25006 The scalar ring of a subco...
clmsub 25007 Subtraction in the scalar ...
clmneg 25008 Negation in the scalar rin...
clmneg1 25009 Minus one is in the scalar...
clmabs 25010 Norm in the scalar ring of...
clmacl 25011 Closure of ring addition f...
clmmcl 25012 Closure of ring multiplica...
clmsubcl 25013 Closure of ring subtractio...
lmhmclm 25014 The domain of a linear ope...
clmvscl 25015 Closure of scalar product ...
clmvsass 25016 Associative law for scalar...
clmvscom 25017 Commutative law for the sc...
clmvsdir 25018 Distributive law for scala...
clmvsdi 25019 Distributive law for scala...
clmvs1 25020 Scalar product with ring u...
clmvs2 25021 A vector plus itself is tw...
clm0vs 25022 Zero times a vector is the...
clmopfne 25023 The (functionalized) opera...
isclmp 25024 The predicate "is a subcom...
isclmi0 25025 Properties that determine ...
clmvneg1 25026 Minus 1 times a vector is ...
clmvsneg 25027 Multiplication of a vector...
clmmulg 25028 The group multiple functio...
clmsubdir 25029 Scalar multiplication dist...
clmpm1dir 25030 Subtractive distributive l...
clmnegneg 25031 Double negative of a vecto...
clmnegsubdi2 25032 Distribution of negative o...
clmsub4 25033 Rearrangement of 4 terms i...
clmvsrinv 25034 A vector minus itself. (C...
clmvslinv 25035 Minus a vector plus itself...
clmvsubval 25036 Value of vector subtractio...
clmvsubval2 25037 Value of vector subtractio...
clmvz 25038 Two ways to express the ne...
zlmclm 25039 The ` ZZ ` -module operati...
clmzlmvsca 25040 The scalar product of a su...
nmoleub2lem 25041 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 25042 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 25043 Lemma for ~ nmoleub2a and ...
nmoleub2a 25044 The operator norm is the s...
nmoleub2b 25045 The operator norm is the s...
nmoleub3 25046 The operator norm is the s...
nmhmcn 25047 A linear operator over a n...
cmodscexp 25048 The powers of ` _i ` belon...
cmodscmulexp 25049 The scalar product of a ve...
cvslvec 25052 A subcomplex vector space ...
cvsclm 25053 A subcomplex vector space ...
iscvs 25054 A subcomplex vector space ...
iscvsp 25055 The predicate "is a subcom...
iscvsi 25056 Properties that determine ...
cvsi 25057 The properties of a subcom...
cvsunit 25058 Unit group of the scalar r...
cvsdiv 25059 Division of the scalar rin...
cvsdivcl 25060 The scalar field of a subc...
cvsmuleqdivd 25061 An equality involving rati...
cvsdiveqd 25062 An equality involving rati...
cnlmodlem1 25063 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 25064 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 25065 Lemma 3 for ~ cnlmod . (C...
cnlmod4 25066 Lemma 4 for ~ cnlmod . (C...
cnlmod 25067 The set of complex numbers...
cnstrcvs 25068 The set of complex numbers...
cnrbas 25069 The set of complex numbers...
cnrlmod 25070 The complex left module of...
cnrlvec 25071 The complex left module of...
cncvs 25072 The complex left module of...
recvs 25073 The field of the real numb...
qcvs 25074 The field of rational numb...
zclmncvs 25075 The ring of integers as le...
isncvsngp 25076 A normed subcomplex vector...
isncvsngpd 25077 Properties that determine ...
ncvsi 25078 The properties of a normed...
ncvsprp 25079 Proportionality property o...
ncvsge0 25080 The norm of a scalar produ...
ncvsm1 25081 The norm of the opposite o...
ncvsdif 25082 The norm of the difference...
ncvspi 25083 The norm of a vector plus ...
ncvs1 25084 From any nonzero vector of...
cnrnvc 25085 The module of complex numb...
cnncvs 25086 The module of complex numb...
cnnm 25087 The norm of the normed sub...
ncvspds 25088 Value of the distance func...
cnindmet 25089 The metric induced on the ...
cnncvsaddassdemo 25090 Derive the associative law...
cnncvsmulassdemo 25091 Derive the associative law...
cnncvsabsnegdemo 25092 Derive the absolute value ...
iscph 25097 A subcomplex pre-Hilbert s...
cphphl 25098 A subcomplex pre-Hilbert s...
cphnlm 25099 A subcomplex pre-Hilbert s...
cphngp 25100 A subcomplex pre-Hilbert s...
cphlmod 25101 A subcomplex pre-Hilbert s...
cphlvec 25102 A subcomplex pre-Hilbert s...
cphnvc 25103 A subcomplex pre-Hilbert s...
cphsubrglem 25104 Lemma for ~ cphsubrg . (C...
cphreccllem 25105 Lemma for ~ cphreccl . (C...
cphsca 25106 A subcomplex pre-Hilbert s...
cphsubrg 25107 The scalar field of a subc...
cphreccl 25108 The scalar field of a subc...
cphdivcl 25109 The scalar field of a subc...
cphcjcl 25110 The scalar field of a subc...
cphsqrtcl 25111 The scalar field of a subc...
cphabscl 25112 The scalar field of a subc...
cphsqrtcl2 25113 The scalar field of a subc...
cphsqrtcl3 25114 If the scalar field of a s...
cphqss 25115 The scalar field of a subc...
cphclm 25116 A subcomplex pre-Hilbert s...
cphnmvs 25117 Norm of a scalar product. ...
cphipcl 25118 An inner product is a memb...
cphnmfval 25119 The value of the norm in a...
cphnm 25120 The square of the norm is ...
nmsq 25121 The square of the norm is ...
cphnmf 25122 The norm of a vector is a ...
cphnmcl 25123 The norm of a vector is a ...
reipcl 25124 An inner product of an ele...
ipge0 25125 The inner product in a sub...
cphipcj 25126 Conjugate of an inner prod...
cphipipcj 25127 An inner product times its...
cphorthcom 25128 Orthogonality (meaning inn...
cphip0l 25129 Inner product with a zero ...
cphip0r 25130 Inner product with a zero ...
cphipeq0 25131 The inner product of a vec...
cphdir 25132 Distributive law for inner...
cphdi 25133 Distributive law for inner...
cph2di 25134 Distributive law for inner...
cphsubdir 25135 Distributive law for inner...
cphsubdi 25136 Distributive law for inner...
cph2subdi 25137 Distributive law for inner...
cphass 25138 Associative law for inner ...
cphassr 25139 "Associative" law for seco...
cph2ass 25140 Move scalar multiplication...
cphassi 25141 Associative law for the fi...
cphassir 25142 "Associative" law for the ...
cphpyth 25143 The pythagorean theorem fo...
tcphex 25144 Lemma for ~ tcphbas and si...
tcphval 25145 Define a function to augme...
tcphbas 25146 The base set of a subcompl...
tchplusg 25147 The addition operation of ...
tcphsub 25148 The subtraction operation ...
tcphmulr 25149 The ring operation of a su...
tcphsca 25150 The scalar field of a subc...
tcphvsca 25151 The scalar multiplication ...
tcphip 25152 The inner product of a sub...
tcphtopn 25153 The topology of a subcompl...
tcphphl 25154 Augmentation of a subcompl...
tchnmfval 25155 The norm of a subcomplex p...
tcphnmval 25156 The norm of a subcomplex p...
cphtcphnm 25157 The norm of a norm-augment...
tcphds 25158 The distance of a pre-Hilb...
phclm 25159 A pre-Hilbert space whose ...
tcphcphlem3 25160 Lemma for ~ tcphcph : real...
ipcau2 25161 The Cauchy-Schwarz inequal...
tcphcphlem1 25162 Lemma for ~ tcphcph : the ...
tcphcphlem2 25163 Lemma for ~ tcphcph : homo...
tcphcph 25164 The standard definition of...
ipcau 25165 The Cauchy-Schwarz inequal...
nmparlem 25166 Lemma for ~ nmpar . (Cont...
nmpar 25167 A subcomplex pre-Hilbert s...
cphipval2 25168 Value of the inner product...
4cphipval2 25169 Four times the inner produ...
cphipval 25170 Value of the inner product...
ipcnlem2 25171 The inner product operatio...
ipcnlem1 25172 The inner product operatio...
ipcn 25173 The inner product operatio...
cnmpt1ip 25174 Continuity of inner produc...
cnmpt2ip 25175 Continuity of inner produc...
csscld 25176 A "closed subspace" in a s...
clsocv 25177 The orthogonal complement ...
cphsscph 25178 A subspace of a subcomplex...
lmmbr 25185 Express the binary relatio...
lmmbr2 25186 Express the binary relatio...
lmmbr3 25187 Express the binary relatio...
lmmcvg 25188 Convergence property of a ...
lmmbrf 25189 Express the binary relatio...
lmnn 25190 A condition that implies c...
cfilfval 25191 The set of Cauchy filters ...
iscfil 25192 The property of being a Ca...
iscfil2 25193 The property of being a Ca...
cfilfil 25194 A Cauchy filter is a filte...
cfili 25195 Property of a Cauchy filte...
cfil3i 25196 A Cauchy filter contains b...
cfilss 25197 A filter finer than a Cauc...
fgcfil 25198 The Cauchy filter conditio...
fmcfil 25199 The Cauchy filter conditio...
iscfil3 25200 A filter is Cauchy iff it ...
cfilfcls 25201 Similar to ultrafilters ( ...
caufval 25202 The set of Cauchy sequence...
iscau 25203 Express the property " ` F...
iscau2 25204 Express the property " ` F...
iscau3 25205 Express the Cauchy sequenc...
iscau4 25206 Express the property " ` F...
iscauf 25207 Express the property " ` F...
caun0 25208 A metric with a Cauchy seq...
caufpm 25209 Inclusion of a Cauchy sequ...
caucfil 25210 A Cauchy sequence predicat...
iscmet 25211 The property " ` D ` is a ...
cmetcvg 25212 The convergence of a Cauch...
cmetmet 25213 A complete metric space is...
cmetmeti 25214 A complete metric space is...
cmetcaulem 25215 Lemma for ~ cmetcau . (Co...
cmetcau 25216 The convergence of a Cauch...
iscmet3lem3 25217 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 25218 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 25219 Lemma for ~ iscmet3 . (Co...
iscmet3 25220 The property " ` D ` is a ...
iscmet2 25221 A metric ` D ` is complete...
cfilresi 25222 A Cauchy filter on a metri...
cfilres 25223 Cauchy filter on a metric ...
caussi 25224 Cauchy sequence on a metri...
causs 25225 Cauchy sequence on a metri...
equivcfil 25226 If the metric ` D ` is "st...
equivcau 25227 If the metric ` D ` is "st...
lmle 25228 If the distance from each ...
nglmle 25229 If the norm of each member...
lmclim 25230 Relate a limit on the metr...
lmclimf 25231 Relate a limit on the metr...
metelcls 25232 A point belongs to the clo...
metcld 25233 A subset of a metric space...
metcld2 25234 A subset of a metric space...
caubl 25235 Sufficient condition to en...
caublcls 25236 The convergent point of a ...
metcnp4 25237 Two ways to say a mapping ...
metcn4 25238 Two ways to say a mapping ...
iscmet3i 25239 Properties that determine ...
lmcau 25240 Every convergent sequence ...
flimcfil 25241 Every convergent filter in...
metsscmetcld 25242 A complete subspace of a m...
cmetss 25243 A subspace of a complete m...
equivcmet 25244 If two metrics are strongl...
relcmpcmet 25245 If ` D ` is a metric space...
cmpcmet 25246 A compact metric space is ...
cfilucfil3 25247 Given a metric ` D ` and a...
cfilucfil4 25248 Given a metric ` D ` and a...
cncmet 25249 The set of complex numbers...
recmet 25250 The real numbers are a com...
bcthlem1 25251 Lemma for ~ bcth . Substi...
bcthlem2 25252 Lemma for ~ bcth . The ba...
bcthlem3 25253 Lemma for ~ bcth . The li...
bcthlem4 25254 Lemma for ~ bcth . Given ...
bcthlem5 25255 Lemma for ~ bcth . The pr...
bcth 25256 Baire's Category Theorem. ...
bcth2 25257 Baire's Category Theorem, ...
bcth3 25258 Baire's Category Theorem, ...
isbn 25265 A Banach space is a normed...
bnsca 25266 The scalar field of a Bana...
bnnvc 25267 A Banach space is a normed...
bnnlm 25268 A Banach space is a normed...
bnngp 25269 A Banach space is a normed...
bnlmod 25270 A Banach space is a left m...
bncms 25271 A Banach space is a comple...
iscms 25272 A complete metric space is...
cmscmet 25273 The induced metric on a co...
bncmet 25274 The induced metric on Bana...
cmsms 25275 A complete metric space is...
cmspropd 25276 Property deduction for a c...
cmssmscld 25277 The restriction of a metri...
cmsss 25278 The restriction of a compl...
lssbn 25279 A subspace of a Banach spa...
cmetcusp1 25280 If the uniform set of a co...
cmetcusp 25281 The uniform space generate...
cncms 25282 The field of complex numbe...
cnflduss 25283 The uniform structure of t...
cnfldcusp 25284 The field of complex numbe...
resscdrg 25285 The real numbers are a sub...
cncdrg 25286 The only complete subfield...
srabn 25287 The subring algebra over a...
rlmbn 25288 The ring module over a com...
ishl 25289 The predicate "is a subcom...
hlbn 25290 Every subcomplex Hilbert s...
hlcph 25291 Every subcomplex Hilbert s...
hlphl 25292 Every subcomplex Hilbert s...
hlcms 25293 Every subcomplex Hilbert s...
hlprlem 25294 Lemma for ~ hlpr . (Contr...
hlress 25295 The scalar field of a subc...
hlpr 25296 The scalar field of a subc...
ishl2 25297 A Hilbert space is a compl...
cphssphl 25298 A Banach subspace of a sub...
cmslssbn 25299 A complete linear subspace...
cmscsscms 25300 A closed subspace of a com...
bncssbn 25301 A closed subspace of a Ban...
cssbn 25302 A complete subspace of a n...
csschl 25303 A complete subspace of a c...
cmslsschl 25304 A complete linear subspace...
chlcsschl 25305 A closed subspace of a sub...
retopn 25306 The topology of the real n...
recms 25307 The real numbers form a co...
reust 25308 The Uniform structure of t...
recusp 25309 The real numbers form a co...
rrxval 25314 Value of the generalized E...
rrxbase 25315 The base of the generalize...
rrxprds 25316 Expand the definition of t...
rrxip 25317 The inner product of the g...
rrxnm 25318 The norm of the generalize...
rrxcph 25319 Generalized Euclidean real...
rrxds 25320 The distance over generali...
rrxvsca 25321 The scalar product over ge...
rrxplusgvscavalb 25322 The result of the addition...
rrxsca 25323 The field of real numbers ...
rrx0 25324 The zero ("origin") in a g...
rrx0el 25325 The zero ("origin") in a g...
csbren 25326 Cauchy-Schwarz-Bunjakovsky...
trirn 25327 Triangle inequality in R^n...
rrxf 25328 Euclidean vectors as funct...
rrxfsupp 25329 Euclidean vectors are of f...
rrxsuppss 25330 Support of Euclidean vecto...
rrxmvallem 25331 Support of the function us...
rrxmval 25332 The value of the Euclidean...
rrxmfval 25333 The value of the Euclidean...
rrxmetlem 25334 Lemma for ~ rrxmet . (Con...
rrxmet 25335 Euclidean space is a metri...
rrxdstprj1 25336 The distance between two p...
rrxbasefi 25337 The base of the generalize...
rrxdsfi 25338 The distance over generali...
rrxmetfi 25339 Euclidean space is a metri...
rrxdsfival 25340 The value of the Euclidean...
ehlval 25341 Value of the Euclidean spa...
ehlbase 25342 The base of the Euclidean ...
ehl0base 25343 The base of the Euclidean ...
ehl0 25344 The Euclidean space of dim...
ehleudis 25345 The Euclidean distance fun...
ehleudisval 25346 The value of the Euclidean...
ehl1eudis 25347 The Euclidean distance fun...
ehl1eudisval 25348 The value of the Euclidean...
ehl2eudis 25349 The Euclidean distance fun...
ehl2eudisval 25350 The value of the Euclidean...
minveclem1 25351 Lemma for ~ minvec . The ...
minveclem4c 25352 Lemma for ~ minvec . The ...
minveclem2 25353 Lemma for ~ minvec . Any ...
minveclem3a 25354 Lemma for ~ minvec . ` D `...
minveclem3b 25355 Lemma for ~ minvec . The ...
minveclem3 25356 Lemma for ~ minvec . The ...
minveclem4a 25357 Lemma for ~ minvec . ` F `...
minveclem4b 25358 Lemma for ~ minvec . The ...
minveclem4 25359 Lemma for ~ minvec . The ...
minveclem5 25360 Lemma for ~ minvec . Disc...
minveclem6 25361 Lemma for ~ minvec . Any ...
minveclem7 25362 Lemma for ~ minvec . Sinc...
minvec 25363 Minimizing vector theorem,...
pjthlem1 25364 Lemma for ~ pjth . (Contr...
pjthlem2 25365 Lemma for ~ pjth . (Contr...
pjth 25366 Projection Theorem: Any H...
pjth2 25367 Projection Theorem with ab...
cldcss 25368 Corollary of the Projectio...
cldcss2 25369 Corollary of the Projectio...
hlhil 25370 Corollary of the Projectio...
addcncf 25371 The addition of two contin...
subcncf 25372 The subtraction of two con...
mulcncf 25373 The multiplication of two ...
mulcncfOLD 25374 Obsolete version of ~ mulc...
divcncf 25375 The quotient of two contin...
pmltpclem1 25376 Lemma for ~ pmltpc . (Con...
pmltpclem2 25377 Lemma for ~ pmltpc . (Con...
pmltpc 25378 Any function on the reals ...
ivthlem1 25379 Lemma for ~ ivth . The se...
ivthlem2 25380 Lemma for ~ ivth . Show t...
ivthlem3 25381 Lemma for ~ ivth , the int...
ivth 25382 The intermediate value the...
ivth2 25383 The intermediate value the...
ivthle 25384 The intermediate value the...
ivthle2 25385 The intermediate value the...
ivthicc 25386 The interval between any t...
evthicc 25387 Specialization of the Extr...
evthicc2 25388 Combine ~ ivthicc with ~ e...
cniccbdd 25389 A continuous function on a...
ovolfcl 25394 Closure for the interval e...
ovolfioo 25395 Unpack the interval coveri...
ovolficc 25396 Unpack the interval coveri...
ovolficcss 25397 Any (closed) interval cove...
ovolfsval 25398 The value of the interval ...
ovolfsf 25399 Closure for the interval l...
ovolsf 25400 Closure for the partial su...
ovolval 25401 The value of the outer mea...
elovolmlem 25402 Lemma for ~ elovolm and re...
elovolm 25403 Elementhood in the set ` M...
elovolmr 25404 Sufficient condition for e...
ovolmge0 25405 The set ` M ` is composed ...
ovolcl 25406 The volume of a set is an ...
ovollb 25407 The outer volume is a lowe...
ovolgelb 25408 The outer volume is the gr...
ovolge0 25409 The volume of a set is alw...
ovolf 25410 The domain and codomain of...
ovollecl 25411 If an outer volume is boun...
ovolsslem 25412 Lemma for ~ ovolss . (Con...
ovolss 25413 The volume of a set is mon...
ovolsscl 25414 If a set is contained in a...
ovolssnul 25415 A subset of a nullset is n...
ovollb2lem 25416 Lemma for ~ ovollb2 . (Co...
ovollb2 25417 It is often more convenien...
ovolctb 25418 The volume of a denumerabl...
ovolq 25419 The rational numbers have ...
ovolctb2 25420 The volume of a countable ...
ovol0 25421 The empty set has 0 outer ...
ovolfi 25422 A finite set has 0 outer L...
ovolsn 25423 A singleton has 0 outer Le...
ovolunlem1a 25424 Lemma for ~ ovolun . (Con...
ovolunlem1 25425 Lemma for ~ ovolun . (Con...
ovolunlem2 25426 Lemma for ~ ovolun . (Con...
ovolun 25427 The Lebesgue outer measure...
ovolunnul 25428 Adding a nullset does not ...
ovolfiniun 25429 The Lebesgue outer measure...
ovoliunlem1 25430 Lemma for ~ ovoliun . (Co...
ovoliunlem2 25431 Lemma for ~ ovoliun . (Co...
ovoliunlem3 25432 Lemma for ~ ovoliun . (Co...
ovoliun 25433 The Lebesgue outer measure...
ovoliun2 25434 The Lebesgue outer measure...
ovoliunnul 25435 A countable union of nulls...
shft2rab 25436 If ` B ` is a shift of ` A...
ovolshftlem1 25437 Lemma for ~ ovolshft . (C...
ovolshftlem2 25438 Lemma for ~ ovolshft . (C...
ovolshft 25439 The Lebesgue outer measure...
sca2rab 25440 If ` B ` is a scale of ` A...
ovolscalem1 25441 Lemma for ~ ovolsca . (Co...
ovolscalem2 25442 Lemma for ~ ovolshft . (C...
ovolsca 25443 The Lebesgue outer measure...
ovolicc1 25444 The measure of a closed in...
ovolicc2lem1 25445 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 25446 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 25447 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 25448 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 25449 Lemma for ~ ovolicc2 . (C...
ovolicc2 25450 The measure of a closed in...
ovolicc 25451 The measure of a closed in...
ovolicopnf 25452 The measure of a right-unb...
ovolre 25453 The measure of the real nu...
ismbl 25454 The predicate " ` A ` is L...
ismbl2 25455 From ~ ovolun , it suffice...
volres 25456 A self-referencing abbrevi...
volf 25457 The domain and codomain of...
mblvol 25458 The volume of a measurable...
mblss 25459 A measurable set is a subs...
mblsplit 25460 The defining property of m...
volss 25461 The Lebesgue measure is mo...
cmmbl 25462 The complement of a measur...
nulmbl 25463 A nullset is measurable. ...
nulmbl2 25464 A set of outer measure zer...
unmbl 25465 A union of measurable sets...
shftmbl 25466 A shift of a measurable se...
0mbl 25467 The empty set is measurabl...
rembl 25468 The set of all real number...
unidmvol 25469 The union of the Lebesgue ...
inmbl 25470 An intersection of measura...
difmbl 25471 A difference of measurable...
finiunmbl 25472 A finite union of measurab...
volun 25473 The Lebesgue measure funct...
volinun 25474 Addition of non-disjoint s...
volfiniun 25475 The volume of a disjoint f...
iundisj 25476 Rewrite a countable union ...
iundisj2 25477 A disjoint union is disjoi...
voliunlem1 25478 Lemma for ~ voliun . (Con...
voliunlem2 25479 Lemma for ~ voliun . (Con...
voliunlem3 25480 Lemma for ~ voliun . (Con...
iunmbl 25481 The measurable sets are cl...
voliun 25482 The Lebesgue measure funct...
volsuplem 25483 Lemma for ~ volsup . (Con...
volsup 25484 The volume of the limit of...
iunmbl2 25485 The measurable sets are cl...
ioombl1lem1 25486 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 25487 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 25488 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 25489 Lemma for ~ ioombl1 . (Co...
ioombl1 25490 An open right-unbounded in...
icombl1 25491 A closed unbounded-above i...
icombl 25492 A closed-below, open-above...
ioombl 25493 An open real interval is m...
iccmbl 25494 A closed real interval is ...
iccvolcl 25495 A closed real interval has...
ovolioo 25496 The measure of an open int...
volioo 25497 The measure of an open int...
ioovolcl 25498 An open real interval has ...
ovolfs2 25499 Alternative expression for...
ioorcl2 25500 An open interval with fini...
ioorf 25501 Define a function from ope...
ioorval 25502 Define a function from ope...
ioorinv2 25503 The function ` F ` is an "...
ioorinv 25504 The function ` F ` is an "...
ioorcl 25505 The function ` F ` does no...
uniiccdif 25506 A union of closed interval...
uniioovol 25507 A disjoint union of open i...
uniiccvol 25508 An almost-disjoint union o...
uniioombllem1 25509 Lemma for ~ uniioombl . (...
uniioombllem2a 25510 Lemma for ~ uniioombl . (...
uniioombllem2 25511 Lemma for ~ uniioombl . (...
uniioombllem3a 25512 Lemma for ~ uniioombl . (...
uniioombllem3 25513 Lemma for ~ uniioombl . (...
uniioombllem4 25514 Lemma for ~ uniioombl . (...
uniioombllem5 25515 Lemma for ~ uniioombl . (...
uniioombllem6 25516 Lemma for ~ uniioombl . (...
uniioombl 25517 A disjoint union of open i...
uniiccmbl 25518 An almost-disjoint union o...
dyadf 25519 The function ` F ` returns...
dyadval 25520 Value of the dyadic ration...
dyadovol 25521 Volume of a dyadic rationa...
dyadss 25522 Two closed dyadic rational...
dyaddisjlem 25523 Lemma for ~ dyaddisj . (C...
dyaddisj 25524 Two closed dyadic rational...
dyadmaxlem 25525 Lemma for ~ dyadmax . (Co...
dyadmax 25526 Any nonempty set of dyadic...
dyadmbllem 25527 Lemma for ~ dyadmbl . (Co...
dyadmbl 25528 Any union of dyadic ration...
opnmbllem 25529 Lemma for ~ opnmbl . (Con...
opnmbl 25530 All open sets are measurab...
opnmblALT 25531 All open sets are measurab...
subopnmbl 25532 Sets which are open in a m...
volsup2 25533 The volume of ` A ` is the...
volcn 25534 The function formed by res...
volivth 25535 The Intermediate Value The...
vitalilem1 25536 Lemma for ~ vitali . (Con...
vitalilem2 25537 Lemma for ~ vitali . (Con...
vitalilem3 25538 Lemma for ~ vitali . (Con...
vitalilem4 25539 Lemma for ~ vitali . (Con...
vitalilem5 25540 Lemma for ~ vitali . (Con...
vitali 25541 If the reals can be well-o...
ismbf1 25552 The predicate " ` F ` is a...
mbff 25553 A measurable function is a...
mbfdm 25554 The domain of a measurable...
mbfconstlem 25555 Lemma for ~ mbfconst and r...
ismbf 25556 The predicate " ` F ` is a...
ismbfcn 25557 A complex function is meas...
mbfima 25558 Definitional property of a...
mbfimaicc 25559 The preimage of any closed...
mbfimasn 25560 The preimage of a point un...
mbfconst 25561 A constant function is mea...
mbf0 25562 The empty function is meas...
mbfid 25563 The identity function is m...
mbfmptcl 25564 Lemma for the ` MblFn ` pr...
mbfdm2 25565 The domain of a measurable...
ismbfcn2 25566 A complex function is meas...
ismbfd 25567 Deduction to prove measura...
ismbf2d 25568 Deduction to prove measura...
mbfeqalem1 25569 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 25570 Lemma for ~ mbfeqa . (Con...
mbfeqa 25571 If two functions are equal...
mbfres 25572 The restriction of a measu...
mbfres2 25573 Measurability of a piecewi...
mbfss 25574 Change the domain of a mea...
mbfmulc2lem 25575 Multiplication by a consta...
mbfmulc2re 25576 Multiplication by a consta...
mbfmax 25577 The maximum of two functio...
mbfneg 25578 The negative of a measurab...
mbfpos 25579 The positive part of a mea...
mbfposr 25580 Converse to ~ mbfpos . (C...
mbfposb 25581 A function is measurable i...
ismbf3d 25582 Simplified form of ~ ismbf...
mbfimaopnlem 25583 Lemma for ~ mbfimaopn . (...
mbfimaopn 25584 The preimage of any open s...
mbfimaopn2 25585 The preimage of any set op...
cncombf 25586 The composition of a conti...
cnmbf 25587 A continuous function is m...
mbfaddlem 25588 The sum of two measurable ...
mbfadd 25589 The sum of two measurable ...
mbfsub 25590 The difference of two meas...
mbfmulc2 25591 A complex constant times a...
mbfsup 25592 The supremum of a sequence...
mbfinf 25593 The infimum of a sequence ...
mbflimsup 25594 The limit supremum of a se...
mbflimlem 25595 The pointwise limit of a s...
mbflim 25596 The pointwise limit of a s...
0pval 25599 The zero function evaluate...
0plef 25600 Two ways to say that the f...
0pledm 25601 Adjust the domain of the l...
isi1f 25602 The predicate " ` F ` is a...
i1fmbf 25603 Simple functions are measu...
i1ff 25604 A simple function is a fun...
i1frn 25605 A simple function has fini...
i1fima 25606 Any preimage of a simple f...
i1fima2 25607 Any preimage of a simple f...
i1fima2sn 25608 Preimage of a singleton. ...
i1fd 25609 A simplified set of assump...
i1f0rn 25610 Any simple function takes ...
itg1val 25611 The value of the integral ...
itg1val2 25612 The value of the integral ...
itg1cl 25613 Closure of the integral on...
itg1ge0 25614 Closure of the integral on...
i1f0 25615 The zero function is simpl...
itg10 25616 The zero function has zero...
i1f1lem 25617 Lemma for ~ i1f1 and ~ itg...
i1f1 25618 Base case simple functions...
itg11 25619 The integral of an indicat...
itg1addlem1 25620 Decompose a preimage, whic...
i1faddlem 25621 Decompose the preimage of ...
i1fmullem 25622 Decompose the preimage of ...
i1fadd 25623 The sum of two simple func...
i1fmul 25624 The pointwise product of t...
itg1addlem2 25625 Lemma for ~ itg1add . The...
itg1addlem3 25626 Lemma for ~ itg1add . (Co...
itg1addlem4 25627 Lemma for ~ itg1add . (Co...
itg1addlem5 25628 Lemma for ~ itg1add . (Co...
itg1add 25629 The integral of a sum of s...
i1fmulclem 25630 Decompose the preimage of ...
i1fmulc 25631 A nonnegative constant tim...
itg1mulc 25632 The integral of a constant...
i1fres 25633 The "restriction" of a sim...
i1fpos 25634 The positive part of a sim...
i1fposd 25635 Deduction form of ~ i1fpos...
i1fsub 25636 The difference of two simp...
itg1sub 25637 The integral of a differen...
itg10a 25638 The integral of a simple f...
itg1ge0a 25639 The integral of an almost ...
itg1lea 25640 Approximate version of ~ i...
itg1le 25641 If one simple function dom...
itg1climres 25642 Restricting the simple fun...
mbfi1fseqlem1 25643 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 25644 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 25645 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 25646 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 25647 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 25648 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 25649 A characterization of meas...
mbfi1flimlem 25650 Lemma for ~ mbfi1flim . (...
mbfi1flim 25651 Any real measurable functi...
mbfmullem2 25652 Lemma for ~ mbfmul . (Con...
mbfmullem 25653 Lemma for ~ mbfmul . (Con...
mbfmul 25654 The product of two measura...
itg2lcl 25655 The set of lower sums is a...
itg2val 25656 Value of the integral on n...
itg2l 25657 Elementhood in the set ` L...
itg2lr 25658 Sufficient condition for e...
xrge0f 25659 A real function is a nonne...
itg2cl 25660 The integral of a nonnegat...
itg2ub 25661 The integral of a nonnegat...
itg2leub 25662 Any upper bound on the int...
itg2ge0 25663 The integral of a nonnegat...
itg2itg1 25664 The integral of a nonnegat...
itg20 25665 The integral of the zero f...
itg2lecl 25666 If an ` S.2 ` integral is ...
itg2le 25667 If one function dominates ...
itg2const 25668 Integral of a constant fun...
itg2const2 25669 When the base set of a con...
itg2seq 25670 Definitional property of t...
itg2uba 25671 Approximate version of ~ i...
itg2lea 25672 Approximate version of ~ i...
itg2eqa 25673 Approximate equality of in...
itg2mulclem 25674 Lemma for ~ itg2mulc . (C...
itg2mulc 25675 The integral of a nonnegat...
itg2splitlem 25676 Lemma for ~ itg2split . (...
itg2split 25677 The ` S.2 ` integral split...
itg2monolem1 25678 Lemma for ~ itg2mono . We...
itg2monolem2 25679 Lemma for ~ itg2mono . (C...
itg2monolem3 25680 Lemma for ~ itg2mono . (C...
itg2mono 25681 The Monotone Convergence T...
itg2i1fseqle 25682 Subject to the conditions ...
itg2i1fseq 25683 Subject to the conditions ...
itg2i1fseq2 25684 In an extension to the res...
itg2i1fseq3 25685 Special case of ~ itg2i1fs...
itg2addlem 25686 Lemma for ~ itg2add . (Co...
itg2add 25687 The ` S.2 ` integral is li...
itg2gt0 25688 If the function ` F ` is s...
itg2cnlem1 25689 Lemma for ~ itgcn . (Cont...
itg2cnlem2 25690 Lemma for ~ itgcn . (Cont...
itg2cn 25691 A sort of absolute continu...
ibllem 25692 Conditioned equality theor...
isibl 25693 The predicate " ` F ` is i...
isibl2 25694 The predicate " ` F ` is i...
iblmbf 25695 An integrable function is ...
iblitg 25696 If a function is integrabl...
dfitg 25697 Evaluate the class substit...
itgex 25698 An integral is a set. (Co...
itgeq1f 25699 Equality theorem for an in...
itgeq1fOLD 25700 Obsolete version of ~ itge...
itgeq1 25701 Equality theorem for an in...
nfitg1 25702 Bound-variable hypothesis ...
nfitg 25703 Bound-variable hypothesis ...
cbvitg 25704 Change bound variable in a...
cbvitgv 25705 Change bound variable in a...
itgeq2 25706 Equality theorem for an in...
itgresr 25707 The domain of an integral ...
itg0 25708 The integral of anything o...
itgz 25709 The integral of zero on an...
itgeq2dv 25710 Equality theorem for an in...
itgmpt 25711 Change bound variable in a...
itgcl 25712 The integral of an integra...
itgvallem 25713 Substitution lemma. (Cont...
itgvallem3 25714 Lemma for ~ itgposval and ...
ibl0 25715 The zero function is integ...
iblcnlem1 25716 Lemma for ~ iblcnlem . (C...
iblcnlem 25717 Expand out the universal q...
itgcnlem 25718 Expand out the sum in ~ df...
iblrelem 25719 Integrability of a real fu...
iblposlem 25720 Lemma for ~ iblpos . (Con...
iblpos 25721 Integrability of a nonnega...
iblre 25722 Integrability of a real fu...
itgrevallem1 25723 Lemma for ~ itgposval and ...
itgposval 25724 The integral of a nonnegat...
itgreval 25725 Decompose the integral of ...
itgrecl 25726 Real closure of an integra...
iblcn 25727 Integrability of a complex...
itgcnval 25728 Decompose the integral of ...
itgre 25729 Real part of an integral. ...
itgim 25730 Imaginary part of an integ...
iblneg 25731 The negative of an integra...
itgneg 25732 Negation of an integral. ...
iblss 25733 A subset of an integrable ...
iblss2 25734 Change the domain of an in...
itgitg2 25735 Transfer an integral using...
i1fibl 25736 A simple function is integ...
itgitg1 25737 Transfer an integral using...
itgle 25738 Monotonicity of an integra...
itgge0 25739 The integral of a positive...
itgss 25740 Expand the set of an integ...
itgss2 25741 Expand the set of an integ...
itgeqa 25742 Approximate equality of in...
itgss3 25743 Expand the set of an integ...
itgioo 25744 Equality of integrals on o...
itgless 25745 Expand the integral of a n...
iblconst 25746 A constant function is int...
itgconst 25747 Integral of a constant fun...
ibladdlem 25748 Lemma for ~ ibladd . (Con...
ibladd 25749 Add two integrals over the...
iblsub 25750 Subtract two integrals ove...
itgaddlem1 25751 Lemma for ~ itgadd . (Con...
itgaddlem2 25752 Lemma for ~ itgadd . (Con...
itgadd 25753 Add two integrals over the...
itgsub 25754 Subtract two integrals ove...
itgfsum 25755 Take a finite sum of integ...
iblabslem 25756 Lemma for ~ iblabs . (Con...
iblabs 25757 The absolute value of an i...
iblabsr 25758 A measurable function is i...
iblmulc2 25759 Multiply an integral by a ...
itgmulc2lem1 25760 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 25761 Lemma for ~ itgmulc2 : rea...
itgmulc2 25762 Multiply an integral by a ...
itgabs 25763 The triangle inequality fo...
itgsplit 25764 The ` S. ` integral splits...
itgspliticc 25765 The ` S. ` integral splits...
itgsplitioo 25766 The ` S. ` integral splits...
bddmulibl 25767 A bounded function times a...
bddibl 25768 A bounded function is inte...
cniccibl 25769 A continuous function on a...
bddiblnc 25770 Choice-free proof of ~ bdd...
cnicciblnc 25771 Choice-free proof of ~ cni...
itggt0 25772 The integral of a strictly...
itgcn 25773 Transfer ~ itg2cn to the f...
ditgeq1 25776 Equality theorem for the d...
ditgeq2 25777 Equality theorem for the d...
ditgeq3 25778 Equality theorem for the d...
ditgeq3dv 25779 Equality theorem for the d...
ditgex 25780 A directed integral is a s...
ditg0 25781 Value of the directed inte...
cbvditg 25782 Change bound variable in a...
cbvditgv 25783 Change bound variable in a...
ditgpos 25784 Value of the directed inte...
ditgneg 25785 Value of the directed inte...
ditgcl 25786 Closure of a directed inte...
ditgswap 25787 Reverse a directed integra...
ditgsplitlem 25788 Lemma for ~ ditgsplit . (...
ditgsplit 25789 This theorem is the raison...
reldv 25798 The derivative function is...
limcvallem 25799 Lemma for ~ ellimc . (Con...
limcfval 25800 Value and set bounds on th...
ellimc 25801 Value of the limit predica...
limcrcl 25802 Reverse closure for the li...
limccl 25803 Closure of the limit opera...
limcdif 25804 It suffices to consider fu...
ellimc2 25805 Write the definition of a ...
limcnlp 25806 If ` B ` is not a limit po...
ellimc3 25807 Write the epsilon-delta de...
limcflflem 25808 Lemma for ~ limcflf . (Co...
limcflf 25809 The limit operator can be ...
limcmo 25810 If ` B ` is a limit point ...
limcmpt 25811 Express the limit operator...
limcmpt2 25812 Express the limit operator...
limcresi 25813 Any limit of ` F ` is also...
limcres 25814 If ` B ` is an interior po...
cnplimc 25815 A function is continuous a...
cnlimc 25816 ` F ` is a continuous func...
cnlimci 25817 If ` F ` is a continuous f...
cnmptlimc 25818 If ` F ` is a continuous f...
limccnp 25819 If the limit of ` F ` at `...
limccnp2 25820 The image of a convergent ...
limcco 25821 Composition of two limits....
limciun 25822 A point is a limit of ` F ...
limcun 25823 A point is a limit of ` F ...
dvlem 25824 Closure for a difference q...
dvfval 25825 Value and set bounds on th...
eldv 25826 The differentiable predica...
dvcl 25827 The derivative function ta...
dvbssntr 25828 The set of differentiable ...
dvbss 25829 The set of differentiable ...
dvbsss 25830 The set of differentiable ...
perfdvf 25831 The derivative is a functi...
recnprss 25832 Both ` RR ` and ` CC ` are...
recnperf 25833 Both ` RR ` and ` CC ` are...
dvfg 25834 Explicitly write out the f...
dvf 25835 The derivative is a functi...
dvfcn 25836 The derivative is a functi...
dvreslem 25837 Lemma for ~ dvres . (Cont...
dvres2lem 25838 Lemma for ~ dvres2 . (Con...
dvres 25839 Restriction of a derivativ...
dvres2 25840 Restriction of the base se...
dvres3 25841 Restriction of a complex d...
dvres3a 25842 Restriction of a complex d...
dvidlem 25843 Lemma for ~ dvid and ~ dvc...
dvmptresicc 25844 Derivative of a function r...
dvconst 25845 Derivative of a constant f...
dvid 25846 Derivative of the identity...
dvcnp 25847 The difference quotient is...
dvcnp2 25848 A function is continuous a...
dvcnp2OLD 25849 Obsolete version of ~ dvcn...
dvcn 25850 A differentiable function ...
dvnfval 25851 Value of the iterated deri...
dvnff 25852 The iterated derivative is...
dvn0 25853 Zero times iterated deriva...
dvnp1 25854 Successor iterated derivat...
dvn1 25855 One times iterated derivat...
dvnf 25856 The N-times derivative is ...
dvnbss 25857 The set of N-times differe...
dvnadd 25858 The ` N ` -th derivative o...
dvn2bss 25859 An N-times differentiable ...
dvnres 25860 Multiple derivative versio...
cpnfval 25861 Condition for n-times cont...
fncpn 25862 The ` C^n ` object is a fu...
elcpn 25863 Condition for n-times cont...
cpnord 25864 ` C^n ` conditions are ord...
cpncn 25865 A ` C^n ` function is cont...
cpnres 25866 The restriction of a ` C^n...
dvaddbr 25867 The sum rule for derivativ...
dvmulbr 25868 The product rule for deriv...
dvmulbrOLD 25869 Obsolete version of ~ dvmu...
dvadd 25870 The sum rule for derivativ...
dvmul 25871 The product rule for deriv...
dvaddf 25872 The sum rule for everywher...
dvmulf 25873 The product rule for every...
dvcmul 25874 The product rule when one ...
dvcmulf 25875 The product rule when one ...
dvcobr 25876 The chain rule for derivat...
dvcobrOLD 25877 Obsolete version of ~ dvco...
dvco 25878 The chain rule for derivat...
dvcof 25879 The chain rule for everywh...
dvcjbr 25880 The derivative of the conj...
dvcj 25881 The derivative of the conj...
dvfre 25882 The derivative of a real f...
dvnfre 25883 The ` N ` -th derivative o...
dvexp 25884 Derivative of a power func...
dvexp2 25885 Derivative of an exponenti...
dvrec 25886 Derivative of the reciproc...
dvmptres3 25887 Function-builder for deriv...
dvmptid 25888 Function-builder for deriv...
dvmptc 25889 Function-builder for deriv...
dvmptcl 25890 Closure lemma for ~ dvmptc...
dvmptadd 25891 Function-builder for deriv...
dvmptmul 25892 Function-builder for deriv...
dvmptres2 25893 Function-builder for deriv...
dvmptres 25894 Function-builder for deriv...
dvmptcmul 25895 Function-builder for deriv...
dvmptdivc 25896 Function-builder for deriv...
dvmptneg 25897 Function-builder for deriv...
dvmptsub 25898 Function-builder for deriv...
dvmptcj 25899 Function-builder for deriv...
dvmptre 25900 Function-builder for deriv...
dvmptim 25901 Function-builder for deriv...
dvmptntr 25902 Function-builder for deriv...
dvmptco 25903 Function-builder for deriv...
dvrecg 25904 Derivative of the reciproc...
dvmptdiv 25905 Function-builder for deriv...
dvmptfsum 25906 Function-builder for deriv...
dvcnvlem 25907 Lemma for ~ dvcnvre . (Co...
dvcnv 25908 A weak version of ~ dvcnvr...
dvexp3 25909 Derivative of an exponenti...
dveflem 25910 Derivative of the exponent...
dvef 25911 Derivative of the exponent...
dvsincos 25912 Derivative of the sine and...
dvsin 25913 Derivative of the sine fun...
dvcos 25914 Derivative of the cosine f...
dvferm1lem 25915 Lemma for ~ dvferm . (Con...
dvferm1 25916 One-sided version of ~ dvf...
dvferm2lem 25917 Lemma for ~ dvferm . (Con...
dvferm2 25918 One-sided version of ~ dvf...
dvferm 25919 Fermat's theorem on statio...
rollelem 25920 Lemma for ~ rolle . (Cont...
rolle 25921 Rolle's theorem. If ` F `...
cmvth 25922 Cauchy's Mean Value Theore...
cmvthOLD 25923 Obsolete version of ~ cmvt...
mvth 25924 The Mean Value Theorem. I...
dvlip 25925 A function with derivative...
dvlipcn 25926 A complex function with de...
dvlip2 25927 Combine the results of ~ d...
c1liplem1 25928 Lemma for ~ c1lip1 . (Con...
c1lip1 25929 C^1 functions are Lipschit...
c1lip2 25930 C^1 functions are Lipschit...
c1lip3 25931 C^1 functions are Lipschit...
dveq0 25932 If a continuous function h...
dv11cn 25933 Two functions defined on a...
dvgt0lem1 25934 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25935 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25936 A function on a closed int...
dvlt0 25937 A function on a closed int...
dvge0 25938 A function on a closed int...
dvle 25939 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25940 Lemma for ~ dvivth . (Con...
dvivthlem2 25941 Lemma for ~ dvivth . (Con...
dvivth 25942 Darboux' theorem, or the i...
dvne0 25943 A function on a closed int...
dvne0f1 25944 A function on a closed int...
lhop1lem 25945 Lemma for ~ lhop1 . (Cont...
lhop1 25946 L'Hôpital's Rule for...
lhop2 25947 L'Hôpital's Rule for...
lhop 25948 L'Hôpital's Rule. I...
dvcnvrelem1 25949 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25950 Lemma for ~ dvcnvre . (Co...
dvcnvre 25951 The derivative rule for in...
dvcvx 25952 A real function with stric...
dvfsumle 25953 Compare a finite sum to an...
dvfsumleOLD 25954 Obsolete version of ~ dvfs...
dvfsumge 25955 Compare a finite sum to an...
dvfsumabs 25956 Compare a finite sum to an...
dvmptrecl 25957 Real closure of a derivati...
dvfsumrlimf 25958 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25959 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25960 Lemma for ~ dvfsumrlim . ...
dvfsumlem2OLD 25961 Obsolete version of ~ dvfs...
dvfsumlem3 25962 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25963 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25964 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25965 Compare a finite sum to an...
dvfsumrlim2 25966 Compare a finite sum to an...
dvfsumrlim3 25967 Conjoin the statements of ...
dvfsum2 25968 The reverse of ~ dvfsumrli...
ftc1lem1 25969 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 25970 Lemma for ~ ftc1 . (Contr...
ftc1a 25971 The Fundamental Theorem of...
ftc1lem3 25972 Lemma for ~ ftc1 . (Contr...
ftc1lem4 25973 Lemma for ~ ftc1 . (Contr...
ftc1lem5 25974 Lemma for ~ ftc1 . (Contr...
ftc1lem6 25975 Lemma for ~ ftc1 . (Contr...
ftc1 25976 The Fundamental Theorem of...
ftc1cn 25977 Strengthen the assumptions...
ftc2 25978 The Fundamental Theorem of...
ftc2ditglem 25979 Lemma for ~ ftc2ditg . (C...
ftc2ditg 25980 Directed integral analogue...
itgparts 25981 Integration by parts. If ...
itgsubstlem 25982 Lemma for ~ itgsubst . (C...
itgsubst 25983 Integration by ` u ` -subs...
itgpowd 25984 The integral of a monomial...
reldmmdeg 25989 Multivariate degree is a b...
tdeglem1 25990 Functionality of the total...
tdeglem3 25991 Additivity of the total de...
tdeglem4 25992 There is only one multi-in...
tdeglem2 25993 Simplification of total de...
mdegfval 25994 Value of the multivariate ...
mdegval 25995 Value of the multivariate ...
mdegleb 25996 Property of being of limit...
mdeglt 25997 If there is an upper limit...
mdegldg 25998 A nonzero polynomial has s...
mdegxrcl 25999 Closure of polynomial degr...
mdegxrf 26000 Functionality of polynomia...
mdegcl 26001 Sharp closure for multivar...
mdeg0 26002 Degree of the zero polynom...
mdegnn0cl 26003 Degree of a nonzero polyno...
degltlem1 26004 Theorem on arithmetic of e...
degltp1le 26005 Theorem on arithmetic of e...
mdegaddle 26006 The degree of a sum is at ...
mdegvscale 26007 The degree of a scalar mul...
mdegvsca 26008 The degree of a scalar mul...
mdegle0 26009 A polynomial has nonpositi...
mdegmullem 26010 Lemma for ~ mdegmulle2 . ...
mdegmulle2 26011 The multivariate degree of...
deg1fval 26012 Relate univariate polynomi...
deg1xrf 26013 Functionality of univariat...
deg1xrcl 26014 Closure of univariate poly...
deg1cl 26015 Sharp closure of univariat...
mdegpropd 26016 Property deduction for pol...
deg1fvi 26017 Univariate polynomial degr...
deg1propd 26018 Property deduction for pol...
deg1z 26019 Degree of the zero univari...
deg1nn0cl 26020 Degree of a nonzero univar...
deg1n0ima 26021 Degree image of a set of p...
deg1nn0clb 26022 A polynomial is nonzero if...
deg1lt0 26023 A polynomial is zero iff i...
deg1ldg 26024 A nonzero univariate polyn...
deg1ldgn 26025 An index at which a polyno...
deg1ldgdomn 26026 A nonzero univariate polyn...
deg1leb 26027 Property of being of limit...
deg1val 26028 Value of the univariate de...
deg1lt 26029 If the degree of a univari...
deg1ge 26030 Conversely, a nonzero coef...
coe1mul3 26031 The coefficient vector of ...
coe1mul4 26032 Value of the "leading" coe...
deg1addle 26033 The degree of a sum is at ...
deg1addle2 26034 If both factors have degre...
deg1add 26035 Exact degree of a sum of t...
deg1vscale 26036 The degree of a scalar tim...
deg1vsca 26037 The degree of a scalar tim...
deg1invg 26038 The degree of the negated ...
deg1suble 26039 The degree of a difference...
deg1sub 26040 Exact degree of a differen...
deg1mulle2 26041 Produce a bound on the pro...
deg1sublt 26042 Subtraction of two polynom...
deg1le0 26043 A polynomial has nonpositi...
deg1sclle 26044 A scalar polynomial has no...
deg1scl 26045 A nonzero scalar polynomia...
deg1mul2 26046 Degree of multiplication o...
deg1mul 26047 Degree of multiplication o...
deg1mul3 26048 Degree of multiplication o...
deg1mul3le 26049 Degree of multiplication o...
deg1tmle 26050 Limiting degree of a polyn...
deg1tm 26051 Exact degree of a polynomi...
deg1pwle 26052 Limiting degree of a varia...
deg1pw 26053 Exact degree of a variable...
ply1nz 26054 Univariate polynomials ove...
ply1nzb 26055 Univariate polynomials are...
ply1domn 26056 Corollary of ~ deg1mul2 : ...
ply1idom 26057 The ring of univariate pol...
ply1divmo 26068 Uniqueness of a quotient i...
ply1divex 26069 Lemma for ~ ply1divalg : e...
ply1divalg 26070 The division algorithm for...
ply1divalg2 26071 Reverse the order of multi...
uc1pval 26072 Value of the set of unitic...
isuc1p 26073 Being a unitic polynomial....
mon1pval 26074 Value of the set of monic ...
ismon1p 26075 Being a monic polynomial. ...
uc1pcl 26076 Unitic polynomials are pol...
mon1pcl 26077 Monic polynomials are poly...
uc1pn0 26078 Unitic polynomials are not...
mon1pn0 26079 Monic polynomials are not ...
uc1pdeg 26080 Unitic polynomials have no...
uc1pldg 26081 Unitic polynomials have un...
mon1pldg 26082 Unitic polynomials have on...
mon1puc1p 26083 Monic polynomials are unit...
uc1pmon1p 26084 Make a unitic polynomial m...
deg1submon1p 26085 The difference of two moni...
mon1pid 26086 Monicity and degree of the...
q1pval 26087 Value of the univariate po...
q1peqb 26088 Characterizing property of...
q1pcl 26089 Closure of the quotient by...
r1pval 26090 Value of the polynomial re...
r1pcl 26091 Closure of remainder follo...
r1pdeglt 26092 The remainder has a degree...
r1pid 26093 Express the original polyn...
r1pid2 26094 Identity law for polynomia...
dvdsq1p 26095 Divisibility in a polynomi...
dvdsr1p 26096 Divisibility in a polynomi...
ply1remlem 26097 A term of the form ` x - N...
ply1rem 26098 The polynomial remainder t...
facth1 26099 The factor theorem and its...
fta1glem1 26100 Lemma for ~ fta1g . (Cont...
fta1glem2 26101 Lemma for ~ fta1g . (Cont...
fta1g 26102 The one-sided fundamental ...
fta1blem 26103 Lemma for ~ fta1b . (Cont...
fta1b 26104 The assumption that ` R ` ...
idomrootle 26105 No element of an integral ...
drnguc1p 26106 Over a division ring, all ...
ig1peu 26107 There is a unique monic po...
ig1pval 26108 Substitutions for the poly...
ig1pval2 26109 Generator of the zero idea...
ig1pval3 26110 Characterizing properties ...
ig1pcl 26111 The monic generator of an ...
ig1pdvds 26112 The monic generator of an ...
ig1prsp 26113 Any ideal of polynomials o...
ply1lpir 26114 The ring of polynomials ov...
ply1pid 26115 The polynomials over a fie...
plyco0 26124 Two ways to say that a fun...
plyval 26125 Value of the polynomial se...
plybss 26126 Reverse closure of the par...
elply 26127 Definition of a polynomial...
elply2 26128 The coefficient function c...
plyun0 26129 The set of polynomials is ...
plyf 26130 A polynomial is a function...
plyss 26131 The polynomial set functio...
plyssc 26132 Every polynomial ring is c...
elplyr 26133 Sufficient condition for e...
elplyd 26134 Sufficient condition for e...
ply1termlem 26135 Lemma for ~ ply1term . (C...
ply1term 26136 A one-term polynomial. (C...
plypow 26137 A power is a polynomial. ...
plyconst 26138 A constant function is a p...
ne0p 26139 A test to show that a poly...
ply0 26140 The zero function is a pol...
plyid 26141 The identity function is a...
plyeq0lem 26142 Lemma for ~ plyeq0 . If `...
plyeq0 26143 If a polynomial is zero at...
plypf1 26144 Write the set of complex p...
plyaddlem1 26145 Derive the coefficient fun...
plymullem1 26146 Derive the coefficient fun...
plyaddlem 26147 Lemma for ~ plyadd . (Con...
plymullem 26148 Lemma for ~ plymul . (Con...
plyadd 26149 The sum of two polynomials...
plymul 26150 The product of two polynom...
plysub 26151 The difference of two poly...
plyaddcl 26152 The sum of two polynomials...
plymulcl 26153 The product of two polynom...
plysubcl 26154 The difference of two poly...
coeval 26155 Value of the coefficient f...
coeeulem 26156 Lemma for ~ coeeu . (Cont...
coeeu 26157 Uniqueness of the coeffici...
coelem 26158 Lemma for properties of th...
coeeq 26159 If ` A ` satisfies the pro...
dgrval 26160 Value of the degree functi...
dgrlem 26161 Lemma for ~ dgrcl and simi...
coef 26162 The domain and codomain of...
coef2 26163 The domain and codomain of...
coef3 26164 The domain and codomain of...
dgrcl 26165 The degree of any polynomi...
dgrub 26166 If the ` M ` -th coefficie...
dgrub2 26167 All the coefficients above...
dgrlb 26168 If all the coefficients ab...
coeidlem 26169 Lemma for ~ coeid . (Cont...
coeid 26170 Reconstruct a polynomial a...
coeid2 26171 Reconstruct a polynomial a...
coeid3 26172 Reconstruct a polynomial a...
plyco 26173 The composition of two pol...
coeeq2 26174 Compute the coefficient fu...
dgrle 26175 Given an explicit expressi...
dgreq 26176 If the highest term in a p...
0dgr 26177 A constant function has de...
0dgrb 26178 A function has degree zero...
dgrnznn 26179 A nonzero polynomial with ...
coefv0 26180 The result of evaluating a...
coeaddlem 26181 Lemma for ~ coeadd and ~ d...
coemullem 26182 Lemma for ~ coemul and ~ d...
coeadd 26183 The coefficient function o...
coemul 26184 A coefficient of a product...
coe11 26185 The coefficient function i...
coemulhi 26186 The leading coefficient of...
coemulc 26187 The coefficient function i...
coe0 26188 The coefficients of the ze...
coesub 26189 The coefficient function o...
coe1termlem 26190 The coefficient function o...
coe1term 26191 The coefficient function o...
dgr1term 26192 The degree of a monomial. ...
plycn 26193 A polynomial is a continuo...
plycnOLD 26194 Obsolete version of ~ plyc...
dgr0 26195 The degree of the zero pol...
coeidp 26196 The coefficients of the id...
dgrid 26197 The degree of the identity...
dgreq0 26198 The leading coefficient of...
dgrlt 26199 Two ways to say that the d...
dgradd 26200 The degree of a sum of pol...
dgradd2 26201 The degree of a sum of pol...
dgrmul2 26202 The degree of a product of...
dgrmul 26203 The degree of a product of...
dgrmulc 26204 Scalar multiplication by a...
dgrsub 26205 The degree of a difference...
dgrcolem1 26206 The degree of a compositio...
dgrcolem2 26207 Lemma for ~ dgrco . (Cont...
dgrco 26208 The degree of a compositio...
plycjlem 26209 Lemma for ~ plycj and ~ co...
plycj 26210 The double conjugation of ...
coecj 26211 Double conjugation of a po...
plycjOLD 26212 Obsolete version of ~ plyc...
coecjOLD 26213 Obsolete version of ~ coec...
plyrecj 26214 A polynomial with real coe...
plymul0or 26215 Polynomial multiplication ...
ofmulrt 26216 The set of roots of a prod...
plyreres 26217 Real-coefficient polynomia...
dvply1 26218 Derivative of a polynomial...
dvply2g 26219 The derivative of a polyno...
dvply2gOLD 26220 Obsolete version of ~ dvpl...
dvply2 26221 The derivative of a polyno...
dvnply2 26222 Polynomials have polynomia...
dvnply 26223 Polynomials have polynomia...
plycpn 26224 Polynomials are smooth. (...
quotval 26227 Value of the quotient func...
plydivlem1 26228 Lemma for ~ plydivalg . (...
plydivlem2 26229 Lemma for ~ plydivalg . (...
plydivlem3 26230 Lemma for ~ plydivex . Ba...
plydivlem4 26231 Lemma for ~ plydivex . In...
plydivex 26232 Lemma for ~ plydivalg . (...
plydiveu 26233 Lemma for ~ plydivalg . (...
plydivalg 26234 The division algorithm on ...
quotlem 26235 Lemma for properties of th...
quotcl 26236 The quotient of two polyno...
quotcl2 26237 Closure of the quotient fu...
quotdgr 26238 Remainder property of the ...
plyremlem 26239 Closure of a linear factor...
plyrem 26240 The polynomial remainder t...
facth 26241 The factor theorem. If a ...
fta1lem 26242 Lemma for ~ fta1 . (Contr...
fta1 26243 The easy direction of the ...
quotcan 26244 Exact division with a mult...
vieta1lem1 26245 Lemma for ~ vieta1 . (Con...
vieta1lem2 26246 Lemma for ~ vieta1 : induc...
vieta1 26247 The first-order Vieta's fo...
plyexmo 26248 An infinite set of values ...
elaa 26251 Elementhood in the set of ...
aacn 26252 An algebraic number is a c...
aasscn 26253 The algebraic numbers are ...
elqaalem1 26254 Lemma for ~ elqaa . The f...
elqaalem2 26255 Lemma for ~ elqaa . (Cont...
elqaalem3 26256 Lemma for ~ elqaa . (Cont...
elqaa 26257 The set of numbers generat...
qaa 26258 Every rational number is a...
qssaa 26259 The rational numbers are c...
iaa 26260 The imaginary unit is alge...
aareccl 26261 The reciprocal of an algeb...
aacjcl 26262 The conjugate of an algebr...
aannenlem1 26263 Lemma for ~ aannen . (Con...
aannenlem2 26264 Lemma for ~ aannen . (Con...
aannenlem3 26265 The algebraic numbers are ...
aannen 26266 The algebraic numbers are ...
aalioulem1 26267 Lemma for ~ aaliou . An i...
aalioulem2 26268 Lemma for ~ aaliou . (Con...
aalioulem3 26269 Lemma for ~ aaliou . (Con...
aalioulem4 26270 Lemma for ~ aaliou . (Con...
aalioulem5 26271 Lemma for ~ aaliou . (Con...
aalioulem6 26272 Lemma for ~ aaliou . (Con...
aaliou 26273 Liouville's theorem on dio...
geolim3 26274 Geometric series convergen...
aaliou2 26275 Liouville's approximation ...
aaliou2b 26276 Liouville's approximation ...
aaliou3lem1 26277 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 26278 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 26279 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 26280 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 26281 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 26282 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 26283 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 26284 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 26285 Example of a "Liouville nu...
aaliou3 26286 Example of a "Liouville nu...
taylfvallem1 26291 Lemma for ~ taylfval . (C...
taylfvallem 26292 Lemma for ~ taylfval . (C...
taylfval 26293 Define the Taylor polynomi...
eltayl 26294 Value of the Taylor series...
taylf 26295 The Taylor series defines ...
tayl0 26296 The Taylor series is alway...
taylplem1 26297 Lemma for ~ taylpfval and ...
taylplem2 26298 Lemma for ~ taylpfval and ...
taylpfval 26299 Define the Taylor polynomi...
taylpf 26300 The Taylor polynomial is a...
taylpval 26301 Value of the Taylor polyno...
taylply2 26302 The Taylor polynomial is a...
taylply2OLD 26303 Obsolete version of ~ tayl...
taylply 26304 The Taylor polynomial is a...
dvtaylp 26305 The derivative of the Tayl...
dvntaylp 26306 The ` M ` -th derivative o...
dvntaylp0 26307 The first ` N ` derivative...
taylthlem1 26308 Lemma for ~ taylth . This...
taylthlem2 26309 Lemma for ~ taylth . (Con...
taylthlem2OLD 26310 Obsolete version of ~ tayl...
taylth 26311 Taylor's theorem. The Tay...
ulmrel 26314 The uniform limit relation...
ulmscl 26315 Closure of the base set in...
ulmval 26316 Express the predicate: Th...
ulmcl 26317 Closure of a uniform limit...
ulmf 26318 Closure of a uniform limit...
ulmpm 26319 Closure of a uniform limit...
ulmf2 26320 Closure of a uniform limit...
ulm2 26321 Simplify ~ ulmval when ` F...
ulmi 26322 The uniform limit property...
ulmclm 26323 A uniform limit of functio...
ulmres 26324 A sequence of functions co...
ulmshftlem 26325 Lemma for ~ ulmshft . (Co...
ulmshft 26326 A sequence of functions co...
ulm0 26327 Every function converges u...
ulmuni 26328 A sequence of functions un...
ulmdm 26329 Two ways to express that a...
ulmcaulem 26330 Lemma for ~ ulmcau and ~ u...
ulmcau 26331 A sequence of functions co...
ulmcau2 26332 A sequence of functions co...
ulmss 26333 A uniform limit of functio...
ulmbdd 26334 A uniform limit of bounded...
ulmcn 26335 A uniform limit of continu...
ulmdvlem1 26336 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 26337 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 26338 Lemma for ~ ulmdv . (Cont...
ulmdv 26339 If ` F ` is a sequence of ...
mtest 26340 The Weierstrass M-test. I...
mtestbdd 26341 Given the hypotheses of th...
mbfulm 26342 A uniform limit of measura...
iblulm 26343 A uniform limit of integra...
itgulm 26344 A uniform limit of integra...
itgulm2 26345 A uniform limit of integra...
pserval 26346 Value of the function ` G ...
pserval2 26347 Value of the function ` G ...
psergf 26348 The sequence of terms in t...
radcnvlem1 26349 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 26350 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 26351 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 26352 Zero is always a convergen...
radcnvcl 26353 The radius of convergence ...
radcnvlt1 26354 If ` X ` is within the ope...
radcnvlt2 26355 If ` X ` is within the ope...
radcnvle 26356 If ` X ` is a convergent p...
dvradcnv 26357 The radius of convergence ...
pserulm 26358 If ` S ` is a region conta...
psercn2 26359 Since by ~ pserulm the ser...
psercn2OLD 26360 Obsolete version of ~ pser...
psercnlem2 26361 Lemma for ~ psercn . (Con...
psercnlem1 26362 Lemma for ~ psercn . (Con...
psercn 26363 An infinite series converg...
pserdvlem1 26364 Lemma for ~ pserdv . (Con...
pserdvlem2 26365 Lemma for ~ pserdv . (Con...
pserdv 26366 The derivative of a power ...
pserdv2 26367 The derivative of a power ...
abelthlem1 26368 Lemma for ~ abelth . (Con...
abelthlem2 26369 Lemma for ~ abelth . The ...
abelthlem3 26370 Lemma for ~ abelth . (Con...
abelthlem4 26371 Lemma for ~ abelth . (Con...
abelthlem5 26372 Lemma for ~ abelth . (Con...
abelthlem6 26373 Lemma for ~ abelth . (Con...
abelthlem7a 26374 Lemma for ~ abelth . (Con...
abelthlem7 26375 Lemma for ~ abelth . (Con...
abelthlem8 26376 Lemma for ~ abelth . (Con...
abelthlem9 26377 Lemma for ~ abelth . By a...
abelth 26378 Abel's theorem. If the po...
abelth2 26379 Abel's theorem, restricted...
efcn 26380 The exponential function i...
sincn 26381 Sine is continuous. (Cont...
coscn 26382 Cosine is continuous. (Co...
reeff1olem 26383 Lemma for ~ reeff1o . (Co...
reeff1o 26384 The real exponential funct...
reefiso 26385 The exponential function o...
efcvx 26386 The exponential function o...
reefgim 26387 The exponential function i...
pilem1 26388 Lemma for ~ pire , ~ pigt2...
pilem2 26389 Lemma for ~ pire , ~ pigt2...
pilem3 26390 Lemma for ~ pire , ~ pigt2...
pigt2lt4 26391 ` _pi ` is between 2 and 4...
sinpi 26392 The sine of ` _pi ` is 0. ...
pire 26393 ` _pi ` is a real number. ...
picn 26394 ` _pi ` is a complex numbe...
pipos 26395 ` _pi ` is positive. (Con...
pine0 26396 ` _pi ` is nonzero. (Cont...
pirp 26397 ` _pi ` is a positive real...
negpicn 26398 ` -u _pi ` is a real numbe...
sinhalfpilem 26399 Lemma for ~ sinhalfpi and ...
halfpire 26400 ` _pi / 2 ` is real. (Con...
neghalfpire 26401 ` -u _pi / 2 ` is real. (...
neghalfpirx 26402 ` -u _pi / 2 ` is an exten...
pidiv2halves 26403 Adding ` _pi / 2 ` to itse...
sinhalfpi 26404 The sine of ` _pi / 2 ` is...
coshalfpi 26405 The cosine of ` _pi / 2 ` ...
cosneghalfpi 26406 The cosine of ` -u _pi / 2...
efhalfpi 26407 The exponential of ` _i _p...
cospi 26408 The cosine of ` _pi ` is `...
efipi 26409 The exponential of ` _i x....
eulerid 26410 Euler's identity. (Contri...
sin2pi 26411 The sine of ` 2 _pi ` is 0...
cos2pi 26412 The cosine of ` 2 _pi ` is...
ef2pi 26413 The exponential of ` 2 _pi...
ef2kpi 26414 If ` K ` is an integer, th...
efper 26415 The exponential function i...
sinperlem 26416 Lemma for ~ sinper and ~ c...
sinper 26417 The sine function is perio...
cosper 26418 The cosine function is per...
sin2kpi 26419 If ` K ` is an integer, th...
cos2kpi 26420 If ` K ` is an integer, th...
sin2pim 26421 Sine of a number subtracte...
cos2pim 26422 Cosine of a number subtrac...
sinmpi 26423 Sine of a number less ` _p...
cosmpi 26424 Cosine of a number less ` ...
sinppi 26425 Sine of a number plus ` _p...
cosppi 26426 Cosine of a number plus ` ...
efimpi 26427 The exponential function a...
sinhalfpip 26428 The sine of ` _pi / 2 ` pl...
sinhalfpim 26429 The sine of ` _pi / 2 ` mi...
coshalfpip 26430 The cosine of ` _pi / 2 ` ...
coshalfpim 26431 The cosine of ` _pi / 2 ` ...
ptolemy 26432 Ptolemy's Theorem. This t...
sincosq1lem 26433 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 26434 The signs of the sine and ...
sincosq2sgn 26435 The signs of the sine and ...
sincosq3sgn 26436 The signs of the sine and ...
sincosq4sgn 26437 The signs of the sine and ...
coseq00topi 26438 Location of the zeroes of ...
coseq0negpitopi 26439 Location of the zeroes of ...
tanrpcl 26440 Positive real closure of t...
tangtx 26441 The tangent function is gr...
tanabsge 26442 The tangent function is gr...
sinq12gt0 26443 The sine of a number stric...
sinq12ge0 26444 The sine of a number betwe...
sinq34lt0t 26445 The sine of a number stric...
cosq14gt0 26446 The cosine of a number str...
cosq14ge0 26447 The cosine of a number bet...
sincosq1eq 26448 Complementarity of the sin...
sincos4thpi 26449 The sine and cosine of ` _...
tan4thpi 26450 The tangent of ` _pi / 4 `...
tan4thpiOLD 26451 Obsolete version of ~ tan4...
sincos6thpi 26452 The sine and cosine of ` _...
sincos3rdpi 26453 The sine and cosine of ` _...
pigt3 26454 ` _pi ` is greater than 3....
pige3 26455 ` _pi ` is greater than or...
pige3ALT 26456 Alternate proof of ~ pige3...
abssinper 26457 The absolute value of sine...
sinkpi 26458 The sine of an integer mul...
coskpi 26459 The absolute value of the ...
sineq0 26460 A complex number whose sin...
coseq1 26461 A complex number whose cos...
cos02pilt1 26462 Cosine is less than one be...
cosq34lt1 26463 Cosine is less than one in...
efeq1 26464 A complex number whose exp...
cosne0 26465 The cosine function has no...
cosordlem 26466 Lemma for ~ cosord . (Con...
cosord 26467 Cosine is decreasing over ...
cos0pilt1 26468 Cosine is between minus on...
cos11 26469 Cosine is one-to-one over ...
sinord 26470 Sine is increasing over th...
recosf1o 26471 The cosine function is a b...
resinf1o 26472 The sine function is a bij...
tanord1 26473 The tangent function is st...
tanord 26474 The tangent function is st...
tanregt0 26475 The real part of the tange...
negpitopissre 26476 The interval ` ( -u _pi (,...
efgh 26477 The exponential function o...
efif1olem1 26478 Lemma for ~ efif1o . (Con...
efif1olem2 26479 Lemma for ~ efif1o . (Con...
efif1olem3 26480 Lemma for ~ efif1o . (Con...
efif1olem4 26481 The exponential function o...
efif1o 26482 The exponential function o...
efifo 26483 The exponential function o...
eff1olem 26484 The exponential function m...
eff1o 26485 The exponential function m...
efabl 26486 The image of a subgroup of...
efsubm 26487 The image of a subgroup of...
circgrp 26488 The circle group ` T ` is ...
circsubm 26489 The circle group ` T ` is ...
logrn 26494 The range of the natural l...
ellogrn 26495 Write out the property ` A...
dflog2 26496 The natural logarithm func...
relogrn 26497 The range of the natural l...
logrncn 26498 The range of the natural l...
eff1o2 26499 The exponential function r...
logf1o 26500 The natural logarithm func...
dfrelog 26501 The natural logarithm func...
relogf1o 26502 The natural logarithm func...
logrncl 26503 Closure of the natural log...
logcl 26504 Closure of the natural log...
logimcl 26505 Closure of the imaginary p...
logcld 26506 The logarithm of a nonzero...
logimcld 26507 The imaginary part of the ...
logimclad 26508 The imaginary part of the ...
abslogimle 26509 The imaginary part of the ...
logrnaddcl 26510 The range of the natural l...
relogcl 26511 Closure of the natural log...
eflog 26512 Relationship between the n...
logeq0im1 26513 If the logarithm of a numb...
logccne0 26514 The logarithm isn't 0 if i...
logne0 26515 Logarithm of a non-1 posit...
reeflog 26516 Relationship between the n...
logef 26517 Relationship between the n...
relogef 26518 Relationship between the n...
logeftb 26519 Relationship between the n...
relogeftb 26520 Relationship between the n...
log1 26521 The natural logarithm of `...
loge 26522 The natural logarithm of `...
logi 26523 The natural logarithm of `...
logneg 26524 The natural logarithm of a...
logm1 26525 The natural logarithm of n...
lognegb 26526 If a number has imaginary ...
relogoprlem 26527 Lemma for ~ relogmul and ~...
relogmul 26528 The natural logarithm of t...
relogdiv 26529 The natural logarithm of t...
explog 26530 Exponentiation of a nonzer...
reexplog 26531 Exponentiation of a positi...
relogexp 26532 The natural logarithm of p...
relog 26533 Real part of a logarithm. ...
relogiso 26534 The natural logarithm func...
reloggim 26535 The natural logarithm is a...
logltb 26536 The natural logarithm func...
logfac 26537 The logarithm of a factori...
eflogeq 26538 Solve an equation involvin...
logleb 26539 Natural logarithm preserve...
rplogcl 26540 Closure of the logarithm f...
logge0 26541 The logarithm of a number ...
logcj 26542 The natural logarithm dist...
efiarg 26543 The exponential of the "ar...
cosargd 26544 The cosine of the argument...
cosarg0d 26545 The cosine of the argument...
argregt0 26546 Closure of the argument of...
argrege0 26547 Closure of the argument of...
argimgt0 26548 Closure of the argument of...
argimlt0 26549 Closure of the argument of...
logimul 26550 Multiplying a number by ` ...
logneg2 26551 The logarithm of the negat...
logmul2 26552 Generalization of ~ relogm...
logdiv2 26553 Generalization of ~ relogd...
abslogle 26554 Bound on the magnitude of ...
tanarg 26555 The basic relation between...
logdivlti 26556 The ` log x / x ` function...
logdivlt 26557 The ` log x / x ` function...
logdivle 26558 The ` log x / x ` function...
relogcld 26559 Closure of the natural log...
reeflogd 26560 Relationship between the n...
relogmuld 26561 The natural logarithm of t...
relogdivd 26562 The natural logarithm of t...
logled 26563 Natural logarithm preserve...
relogefd 26564 Relationship between the n...
rplogcld 26565 Closure of the logarithm f...
logge0d 26566 The logarithm of a number ...
logge0b 26567 The logarithm of a number ...
loggt0b 26568 The logarithm of a number ...
logle1b 26569 The logarithm of a number ...
loglt1b 26570 The logarithm of a number ...
divlogrlim 26571 The inverse logarithm func...
logno1 26572 The logarithm function is ...
dvrelog 26573 The derivative of the real...
relogcn 26574 The real logarithm functio...
ellogdm 26575 Elementhood in the "contin...
logdmn0 26576 A number in the continuous...
logdmnrp 26577 A number in the continuous...
logdmss 26578 The continuity domain of `...
logcnlem2 26579 Lemma for ~ logcn . (Cont...
logcnlem3 26580 Lemma for ~ logcn . (Cont...
logcnlem4 26581 Lemma for ~ logcn . (Cont...
logcnlem5 26582 Lemma for ~ logcn . (Cont...
logcn 26583 The logarithm function is ...
dvloglem 26584 Lemma for ~ dvlog . (Cont...
logdmopn 26585 The "continuous domain" of...
logf1o2 26586 The logarithm maps its con...
dvlog 26587 The derivative of the comp...
dvlog2lem 26588 Lemma for ~ dvlog2 . (Con...
dvlog2 26589 The derivative of the comp...
advlog 26590 The antiderivative of the ...
advlogexp 26591 The antiderivative of a po...
efopnlem1 26592 Lemma for ~ efopn . (Cont...
efopnlem2 26593 Lemma for ~ efopn . (Cont...
efopn 26594 The exponential map is an ...
logtayllem 26595 Lemma for ~ logtayl . (Co...
logtayl 26596 The Taylor series for ` -u...
logtaylsum 26597 The Taylor series for ` -u...
logtayl2 26598 Power series expression fo...
logccv 26599 The natural logarithm func...
cxpval 26600 Value of the complex power...
cxpef 26601 Value of the complex power...
0cxp 26602 Value of the complex power...
cxpexpz 26603 Relate the complex power f...
cxpexp 26604 Relate the complex power f...
logcxp 26605 Logarithm of a complex pow...
cxp0 26606 Value of the complex power...
cxp1 26607 Value of the complex power...
1cxp 26608 Value of the complex power...
ecxp 26609 Write the exponential func...
cxpcl 26610 Closure of the complex pow...
recxpcl 26611 Real closure of the comple...
rpcxpcl 26612 Positive real closure of t...
cxpne0 26613 Complex exponentiation is ...
cxpeq0 26614 Complex exponentiation is ...
cxpadd 26615 Sum of exponents law for c...
cxpp1 26616 Value of a nonzero complex...
cxpneg 26617 Value of a complex number ...
cxpsub 26618 Exponent subtraction law f...
cxpge0 26619 Nonnegative exponentiation...
mulcxplem 26620 Lemma for ~ mulcxp . (Con...
mulcxp 26621 Complex exponentiation of ...
cxprec 26622 Complex exponentiation of ...
divcxp 26623 Complex exponentiation of ...
cxpmul 26624 Product of exponents law f...
cxpmul2 26625 Product of exponents law f...
cxproot 26626 The complex power function...
cxpmul2z 26627 Generalize ~ cxpmul2 to ne...
abscxp 26628 Absolute value of a power,...
abscxp2 26629 Absolute value of a power,...
cxplt 26630 Ordering property for comp...
cxple 26631 Ordering property for comp...
cxplea 26632 Ordering property for comp...
cxple2 26633 Ordering property for comp...
cxplt2 26634 Ordering property for comp...
cxple2a 26635 Ordering property for comp...
cxplt3 26636 Ordering property for comp...
cxple3 26637 Ordering property for comp...
cxpsqrtlem 26638 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 26639 The complex exponential fu...
logsqrt 26640 Logarithm of a square root...
cxp0d 26641 Value of the complex power...
cxp1d 26642 Value of the complex power...
1cxpd 26643 Value of the complex power...
cxpcld 26644 Closure of the complex pow...
cxpmul2d 26645 Product of exponents law f...
0cxpd 26646 Value of the complex power...
cxpexpzd 26647 Relate the complex power f...
cxpefd 26648 Value of the complex power...
cxpne0d 26649 Complex exponentiation is ...
cxpp1d 26650 Value of a nonzero complex...
cxpnegd 26651 Value of a complex number ...
cxpmul2zd 26652 Generalize ~ cxpmul2 to ne...
cxpaddd 26653 Sum of exponents law for c...
cxpsubd 26654 Exponent subtraction law f...
cxpltd 26655 Ordering property for comp...
cxpled 26656 Ordering property for comp...
cxplead 26657 Ordering property for comp...
divcxpd 26658 Complex exponentiation of ...
recxpcld 26659 Positive real closure of t...
cxpge0d 26660 Nonnegative exponentiation...
cxple2ad 26661 Ordering property for comp...
cxplt2d 26662 Ordering property for comp...
cxple2d 26663 Ordering property for comp...
mulcxpd 26664 Complex exponentiation of ...
recxpf1lem 26665 Complex exponentiation on ...
cxpsqrtth 26666 Square root theorem over t...
2irrexpq 26667 There exist irrational num...
cxprecd 26668 Complex exponentiation of ...
rpcxpcld 26669 Positive real closure of t...
logcxpd 26670 Logarithm of a complex pow...
cxplt3d 26671 Ordering property for comp...
cxple3d 26672 Ordering property for comp...
cxpmuld 26673 Product of exponents law f...
cxpgt0d 26674 A positive real raised to ...
cxpcom 26675 Commutative law for real e...
dvcxp1 26676 The derivative of a comple...
dvcxp2 26677 The derivative of a comple...
dvsqrt 26678 The derivative of the real...
dvcncxp1 26679 Derivative of complex powe...
dvcnsqrt 26680 Derivative of square root ...
cxpcn 26681 Domain of continuity of th...
cxpcnOLD 26682 Obsolete version of ~ cxpc...
cxpcn2 26683 Continuity of the complex ...
cxpcn3lem 26684 Lemma for ~ cxpcn3 . (Con...
cxpcn3 26685 Extend continuity of the c...
resqrtcn 26686 Continuity of the real squ...
sqrtcn 26687 Continuity of the square r...
cxpaddlelem 26688 Lemma for ~ cxpaddle . (C...
cxpaddle 26689 Ordering property for comp...
abscxpbnd 26690 Bound on the absolute valu...
root1id 26691 Property of an ` N ` -th r...
root1eq1 26692 The only powers of an ` N ...
root1cj 26693 Within the ` N ` -th roots...
cxpeq 26694 Solve an equation involvin...
zrtelqelz 26695 If the ` N ` -th root of a...
zrtdvds 26696 A positive integer root di...
rtprmirr 26697 The root of a prime number...
loglesqrt 26698 An upper bound on the loga...
logreclem 26699 Symmetry of the natural lo...
logrec 26700 Logarithm of a reciprocal ...
logbval 26703 Define the value of the ` ...
logbcl 26704 General logarithm closure....
logbid1 26705 General logarithm is 1 whe...
logb1 26706 The logarithm of ` 1 ` to ...
elogb 26707 The general logarithm of a...
logbchbase 26708 Change of base for logarit...
relogbval 26709 Value of the general logar...
relogbcl 26710 Closure of the general log...
relogbzcl 26711 Closure of the general log...
relogbreexp 26712 Power law for the general ...
relogbzexp 26713 Power law for the general ...
relogbmul 26714 The logarithm of the produ...
relogbmulexp 26715 The logarithm of the produ...
relogbdiv 26716 The logarithm of the quoti...
relogbexp 26717 Identity law for general l...
nnlogbexp 26718 Identity law for general l...
logbrec 26719 Logarithm of a reciprocal ...
logbleb 26720 The general logarithm func...
logblt 26721 The general logarithm func...
relogbcxp 26722 Identity law for the gener...
cxplogb 26723 Identity law for the gener...
relogbcxpb 26724 The logarithm is the inver...
logbmpt 26725 The general logarithm to a...
logbf 26726 The general logarithm to a...
logbfval 26727 The general logarithm of a...
relogbf 26728 The general logarithm to a...
logblog 26729 The general logarithm to t...
logbgt0b 26730 The logarithm of a positiv...
logbgcd1irr 26731 The logarithm of an intege...
2logb9irr 26732 Example for ~ logbgcd1irr ...
logbprmirr 26733 The logarithm of a prime t...
2logb3irr 26734 Example for ~ logbprmirr ....
2logb9irrALT 26735 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 26736 The square root of two to ...
2irrexpqALT 26737 Alternate proof of ~ 2irre...
angval 26738 Define the angle function,...
angcan 26739 Cancel a constant multipli...
angneg 26740 Cancel a negative sign in ...
angvald 26741 The (signed) angle between...
angcld 26742 The (signed) angle between...
angrteqvd 26743 Two vectors are at a right...
cosangneg2d 26744 The cosine of the angle be...
angrtmuld 26745 Perpendicularity of two ve...
ang180lem1 26746 Lemma for ~ ang180 . Show...
ang180lem2 26747 Lemma for ~ ang180 . Show...
ang180lem3 26748 Lemma for ~ ang180 . Sinc...
ang180lem4 26749 Lemma for ~ ang180 . Redu...
ang180lem5 26750 Lemma for ~ ang180 : Redu...
ang180 26751 The sum of angles ` m A B ...
lawcoslem1 26752 Lemma for ~ lawcos . Here...
lawcos 26753 Law of cosines (also known...
pythag 26754 Pythagorean theorem. Give...
isosctrlem1 26755 Lemma for ~ isosctr . (Co...
isosctrlem2 26756 Lemma for ~ isosctr . Cor...
isosctrlem3 26757 Lemma for ~ isosctr . Cor...
isosctr 26758 Isosceles triangle theorem...
ssscongptld 26759 If two triangles have equa...
affineequiv 26760 Equivalence between two wa...
affineequiv2 26761 Equivalence between two wa...
affineequiv3 26762 Equivalence between two wa...
affineequiv4 26763 Equivalence between two wa...
affineequivne 26764 Equivalence between two wa...
angpieqvdlem 26765 Equivalence used in the pr...
angpieqvdlem2 26766 Equivalence used in ~ angp...
angpined 26767 If the angle at ABC is ` _...
angpieqvd 26768 The angle ABC is ` _pi ` i...
chordthmlem 26769 If ` M ` is the midpoint o...
chordthmlem2 26770 If M is the midpoint of AB...
chordthmlem3 26771 If M is the midpoint of AB...
chordthmlem4 26772 If P is on the segment AB ...
chordthmlem5 26773 If P is on the segment AB ...
chordthm 26774 The intersecting chords th...
heron 26775 Heron's formula gives the ...
quad2 26776 The quadratic equation, wi...
quad 26777 The quadratic equation. (...
1cubrlem 26778 The cube roots of unity. ...
1cubr 26779 The cube roots of unity. ...
dcubic1lem 26780 Lemma for ~ dcubic1 and ~ ...
dcubic2 26781 Reverse direction of ~ dcu...
dcubic1 26782 Forward direction of ~ dcu...
dcubic 26783 Solutions to the depressed...
mcubic 26784 Solutions to a monic cubic...
cubic2 26785 The solution to the genera...
cubic 26786 The cubic equation, which ...
binom4 26787 Work out a quartic binomia...
dquartlem1 26788 Lemma for ~ dquart . (Con...
dquartlem2 26789 Lemma for ~ dquart . (Con...
dquart 26790 Solve a depressed quartic ...
quart1cl 26791 Closure lemmas for ~ quart...
quart1lem 26792 Lemma for ~ quart1 . (Con...
quart1 26793 Depress a quartic equation...
quartlem1 26794 Lemma for ~ quart . (Cont...
quartlem2 26795 Closure lemmas for ~ quart...
quartlem3 26796 Closure lemmas for ~ quart...
quartlem4 26797 Closure lemmas for ~ quart...
quart 26798 The quartic equation, writ...
asinlem 26805 The argument to the logari...
asinlem2 26806 The argument to the logari...
asinlem3a 26807 Lemma for ~ asinlem3 . (C...
asinlem3 26808 The argument to the logari...
asinf 26809 Domain and codomain of the...
asincl 26810 Closure for the arcsin fun...
acosf 26811 Domain and codoamin of the...
acoscl 26812 Closure for the arccos fun...
atandm 26813 Since the property is a li...
atandm2 26814 This form of ~ atandm is a...
atandm3 26815 A compact form of ~ atandm...
atandm4 26816 A compact form of ~ atandm...
atanf 26817 Domain and codoamin of the...
atancl 26818 Closure for the arctan fun...
asinval 26819 Value of the arcsin functi...
acosval 26820 Value of the arccos functi...
atanval 26821 Value of the arctan functi...
atanre 26822 A real number is in the do...
asinneg 26823 The arcsine function is od...
acosneg 26824 The negative symmetry rela...
efiasin 26825 The exponential of the arc...
sinasin 26826 The arcsine function is an...
cosacos 26827 The arccosine function is ...
asinsinlem 26828 Lemma for ~ asinsin . (Co...
asinsin 26829 The arcsine function compo...
acoscos 26830 The arccosine function is ...
asin1 26831 The arcsine of ` 1 ` is ` ...
acos1 26832 The arccosine of ` 1 ` is ...
reasinsin 26833 The arcsine function compo...
asinsinb 26834 Relationship between sine ...
acoscosb 26835 Relationship between cosin...
asinbnd 26836 The arcsine function has r...
acosbnd 26837 The arccosine function has...
asinrebnd 26838 Bounds on the arcsine func...
asinrecl 26839 The arcsine function is re...
acosrecl 26840 The arccosine function is ...
cosasin 26841 The cosine of the arcsine ...
sinacos 26842 The sine of the arccosine ...
atandmneg 26843 The domain of the arctange...
atanneg 26844 The arctangent function is...
atan0 26845 The arctangent of zero is ...
atandmcj 26846 The arctangent function di...
atancj 26847 The arctangent function di...
atanrecl 26848 The arctangent function is...
efiatan 26849 Value of the exponential o...
atanlogaddlem 26850 Lemma for ~ atanlogadd . ...
atanlogadd 26851 The rule ` sqrt ( z w ) = ...
atanlogsublem 26852 Lemma for ~ atanlogsub . ...
atanlogsub 26853 A variation on ~ atanlogad...
efiatan2 26854 Value of the exponential o...
2efiatan 26855 Value of the exponential o...
tanatan 26856 The arctangent function is...
atandmtan 26857 The tangent function has r...
cosatan 26858 The cosine of an arctangen...
cosatanne0 26859 The arctangent function ha...
atantan 26860 The arctangent function is...
atantanb 26861 Relationship between tange...
atanbndlem 26862 Lemma for ~ atanbnd . (Co...
atanbnd 26863 The arctangent function is...
atanord 26864 The arctangent function is...
atan1 26865 The arctangent of ` 1 ` is...
bndatandm 26866 A point in the open unit d...
atans 26867 The "domain of continuity"...
atans2 26868 It suffices to show that `...
atansopn 26869 The domain of continuity o...
atansssdm 26870 The domain of continuity o...
ressatans 26871 The real number line is a ...
dvatan 26872 The derivative of the arct...
atancn 26873 The arctangent is a contin...
atantayl 26874 The Taylor series for ` ar...
atantayl2 26875 The Taylor series for ` ar...
atantayl3 26876 The Taylor series for ` ar...
leibpilem1 26877 Lemma for ~ leibpi . (Con...
leibpilem2 26878 The Leibniz formula for ` ...
leibpi 26879 The Leibniz formula for ` ...
leibpisum 26880 The Leibniz formula for ` ...
log2cnv 26881 Using the Taylor series fo...
log2tlbnd 26882 Bound the error term in th...
log2ublem1 26883 Lemma for ~ log2ub . The ...
log2ublem2 26884 Lemma for ~ log2ub . (Con...
log2ublem3 26885 Lemma for ~ log2ub . In d...
log2ub 26886 ` log 2 ` is less than ` 2...
log2le1 26887 ` log 2 ` is less than ` 1...
birthdaylem1 26888 Lemma for ~ birthday . (C...
birthdaylem2 26889 For general ` N ` and ` K ...
birthdaylem3 26890 For general ` N ` and ` K ...
birthday 26891 The Birthday Problem. The...
dmarea 26894 The domain of the area fun...
areambl 26895 The fibers of a measurable...
areass 26896 A measurable region is a s...
dfarea 26897 Rewrite ~ df-area self-ref...
areaf 26898 Area measurement is a func...
areacl 26899 The area of a measurable r...
areage0 26900 The area of a measurable r...
areaval 26901 The area of a measurable r...
rlimcnp 26902 Relate a limit of a real-v...
rlimcnp2 26903 Relate a limit of a real-v...
rlimcnp3 26904 Relate a limit of a real-v...
xrlimcnp 26905 Relate a limit of a real-v...
efrlim 26906 The limit of the sequence ...
efrlimOLD 26907 Obsolete version of ~ efrl...
dfef2 26908 The limit of the sequence ...
cxplim 26909 A power to a negative expo...
sqrtlim 26910 The inverse square root fu...
rlimcxp 26911 Any power to a positive ex...
o1cxp 26912 An eventually bounded func...
cxp2limlem 26913 A linear factor grows slow...
cxp2lim 26914 Any power grows slower tha...
cxploglim 26915 The logarithm grows slower...
cxploglim2 26916 Every power of the logarit...
divsqrtsumlem 26917 Lemma for ~ divsqrsum and ...
divsqrsumf 26918 The function ` F ` used in...
divsqrsum 26919 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26920 A bound on the distance of...
divsqrtsumo1 26921 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26922 Closure of a 0-1 linear co...
scvxcvx 26923 A strictly convex function...
jensenlem1 26924 Lemma for ~ jensen . (Con...
jensenlem2 26925 Lemma for ~ jensen . (Con...
jensen 26926 Jensen's inequality, a fin...
amgmlem 26927 Lemma for ~ amgm . (Contr...
amgm 26928 Inequality of arithmetic a...
logdifbnd 26931 Bound on the difference of...
logdiflbnd 26932 Lower bound on the differe...
emcllem1 26933 Lemma for ~ emcl . The se...
emcllem2 26934 Lemma for ~ emcl . ` F ` i...
emcllem3 26935 Lemma for ~ emcl . The fu...
emcllem4 26936 Lemma for ~ emcl . The di...
emcllem5 26937 Lemma for ~ emcl . The pa...
emcllem6 26938 Lemma for ~ emcl . By the...
emcllem7 26939 Lemma for ~ emcl and ~ har...
emcl 26940 Closure and bounds for the...
harmonicbnd 26941 A bound on the harmonic se...
harmonicbnd2 26942 A bound on the harmonic se...
emre 26943 The Euler-Mascheroni const...
emgt0 26944 The Euler-Mascheroni const...
harmonicbnd3 26945 A bound on the harmonic se...
harmoniclbnd 26946 A bound on the harmonic se...
harmonicubnd 26947 A bound on the harmonic se...
harmonicbnd4 26948 The asymptotic behavior of...
fsumharmonic 26949 Bound a finite sum based o...
zetacvg 26952 The zeta series is converg...
eldmgm 26959 Elementhood in the set of ...
dmgmaddn0 26960 If ` A ` is not a nonposit...
dmlogdmgm 26961 If ` A ` is in the continu...
rpdmgm 26962 A positive real number is ...
dmgmn0 26963 If ` A ` is not a nonposit...
dmgmaddnn0 26964 If ` A ` is not a nonposit...
dmgmdivn0 26965 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26966 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26967 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26968 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26969 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26970 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26971 The series ` G ` is unifor...
lgamgulm 26972 The series ` G ` is unifor...
lgamgulm2 26973 Rewrite the limit of the s...
lgambdd 26974 The log-Gamma function is ...
lgamucov 26975 The ` U ` regions used in ...
lgamucov2 26976 The ` U ` regions used in ...
lgamcvglem 26977 Lemma for ~ lgamf and ~ lg...
lgamcl 26978 The log-Gamma function is ...
lgamf 26979 The log-Gamma function is ...
gamf 26980 The Gamma function is a co...
gamcl 26981 The exponential of the log...
eflgam 26982 The exponential of the log...
gamne0 26983 The Gamma function is neve...
igamval 26984 Value of the inverse Gamma...
igamz 26985 Value of the inverse Gamma...
igamgam 26986 Value of the inverse Gamma...
igamlgam 26987 Value of the inverse Gamma...
igamf 26988 Closure of the inverse Gam...
igamcl 26989 Closure of the inverse Gam...
gamigam 26990 The Gamma function is the ...
lgamcvg 26991 The series ` G ` converges...
lgamcvg2 26992 The series ` G ` converges...
gamcvg 26993 The pointwise exponential ...
lgamp1 26994 The functional equation of...
gamp1 26995 The functional equation of...
gamcvg2lem 26996 Lemma for ~ gamcvg2 . (Co...
gamcvg2 26997 An infinite product expres...
regamcl 26998 The Gamma function is real...
relgamcl 26999 The log-Gamma function is ...
rpgamcl 27000 The log-Gamma function is ...
lgam1 27001 The log-Gamma function at ...
gam1 27002 The log-Gamma function at ...
facgam 27003 The Gamma function general...
gamfac 27004 The Gamma function general...
wilthlem1 27005 The only elements that are...
wilthlem2 27006 Lemma for ~ wilth : induct...
wilthlem3 27007 Lemma for ~ wilth . Here ...
wilth 27008 Wilson's theorem. A numbe...
wilthimp 27009 The forward implication of...
ftalem1 27010 Lemma for ~ fta : "growth...
ftalem2 27011 Lemma for ~ fta . There e...
ftalem3 27012 Lemma for ~ fta . There e...
ftalem4 27013 Lemma for ~ fta : Closure...
ftalem5 27014 Lemma for ~ fta : Main pr...
ftalem6 27015 Lemma for ~ fta : Dischar...
ftalem7 27016 Lemma for ~ fta . Shift t...
fta 27017 The Fundamental Theorem of...
basellem1 27018 Lemma for ~ basel . Closu...
basellem2 27019 Lemma for ~ basel . Show ...
basellem3 27020 Lemma for ~ basel . Using...
basellem4 27021 Lemma for ~ basel . By ~ ...
basellem5 27022 Lemma for ~ basel . Using...
basellem6 27023 Lemma for ~ basel . The f...
basellem7 27024 Lemma for ~ basel . The f...
basellem8 27025 Lemma for ~ basel . The f...
basellem9 27026 Lemma for ~ basel . Since...
basel 27027 The sum of the inverse squ...
efnnfsumcl 27040 Finite sum closure in the ...
ppisval 27041 The set of primes less tha...
ppisval2 27042 The set of primes less tha...
ppifi 27043 The set of primes less tha...
prmdvdsfi 27044 The set of prime divisors ...
chtf 27045 Domain and codoamin of the...
chtcl 27046 Real closure of the Chebys...
chtval 27047 Value of the Chebyshev fun...
efchtcl 27048 The Chebyshev function is ...
chtge0 27049 The Chebyshev function is ...
vmaval 27050 Value of the von Mangoldt ...
isppw 27051 Two ways to say that ` A `...
isppw2 27052 Two ways to say that ` A `...
vmappw 27053 Value of the von Mangoldt ...
vmaprm 27054 Value of the von Mangoldt ...
vmacl 27055 Closure for the von Mangol...
vmaf 27056 Functionality of the von M...
efvmacl 27057 The von Mangoldt is closed...
vmage0 27058 The von Mangoldt function ...
chpval 27059 Value of the second Chebys...
chpf 27060 Functionality of the secon...
chpcl 27061 Closure for the second Che...
efchpcl 27062 The second Chebyshev funct...
chpge0 27063 The second Chebyshev funct...
ppival 27064 Value of the prime-countin...
ppival2 27065 Value of the prime-countin...
ppival2g 27066 Value of the prime-countin...
ppif 27067 Domain and codomain of the...
ppicl 27068 Real closure of the prime-...
muval 27069 The value of the Möbi...
muval1 27070 The value of the Möbi...
muval2 27071 The value of the Möbi...
isnsqf 27072 Two ways to say that a num...
issqf 27073 Two ways to say that a num...
sqfpc 27074 The prime count of a squar...
dvdssqf 27075 A divisor of a squarefree ...
sqf11 27076 A squarefree number is com...
muf 27077 The Möbius function i...
mucl 27078 Closure of the Möbius...
sgmval 27079 The value of the divisor f...
sgmval2 27080 The value of the divisor f...
0sgm 27081 The value of the sum-of-di...
sgmf 27082 The divisor function is a ...
sgmcl 27083 Closure of the divisor fun...
sgmnncl 27084 Closure of the divisor fun...
mule1 27085 The Möbius function t...
chtfl 27086 The Chebyshev function doe...
chpfl 27087 The second Chebyshev funct...
ppiprm 27088 The prime-counting functio...
ppinprm 27089 The prime-counting functio...
chtprm 27090 The Chebyshev function at ...
chtnprm 27091 The Chebyshev function at ...
chpp1 27092 The second Chebyshev funct...
chtwordi 27093 The Chebyshev function is ...
chpwordi 27094 The second Chebyshev funct...
chtdif 27095 The difference of the Cheb...
efchtdvds 27096 The exponentiated Chebyshe...
ppifl 27097 The prime-counting functio...
ppip1le 27098 The prime-counting functio...
ppiwordi 27099 The prime-counting functio...
ppidif 27100 The difference of the prim...
ppi1 27101 The prime-counting functio...
cht1 27102 The Chebyshev function at ...
vma1 27103 The von Mangoldt function ...
chp1 27104 The second Chebyshev funct...
ppi1i 27105 Inference form of ~ ppiprm...
ppi2i 27106 Inference form of ~ ppinpr...
ppi2 27107 The prime-counting functio...
ppi3 27108 The prime-counting functio...
cht2 27109 The Chebyshev function at ...
cht3 27110 The Chebyshev function at ...
ppinncl 27111 Closure of the prime-count...
chtrpcl 27112 Closure of the Chebyshev f...
ppieq0 27113 The prime-counting functio...
ppiltx 27114 The prime-counting functio...
prmorcht 27115 Relate the primorial (prod...
mumullem1 27116 Lemma for ~ mumul . A mul...
mumullem2 27117 Lemma for ~ mumul . The p...
mumul 27118 The Möbius function i...
sqff1o 27119 There is a bijection from ...
fsumdvdsdiaglem 27120 A "diagonal commutation" o...
fsumdvdsdiag 27121 A "diagonal commutation" o...
fsumdvdscom 27122 A double commutation of di...
dvdsppwf1o 27123 A bijection between the di...
dvdsflf1o 27124 A bijection from the numbe...
dvdsflsumcom 27125 A sum commutation from ` s...
fsumfldivdiaglem 27126 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 27127 The right-hand side of ~ d...
musum 27128 The sum of the Möbius...
musumsum 27129 Evaluate a collapsing sum ...
muinv 27130 The Möbius inversion ...
mpodvdsmulf1o 27131 If ` M ` and ` N ` are two...
fsumdvdsmul 27132 Product of two divisor sum...
dvdsmulf1o 27133 If ` M ` and ` N ` are two...
fsumdvdsmulOLD 27134 Obsolete version of ~ fsum...
sgmppw 27135 The value of the divisor f...
0sgmppw 27136 A prime power ` P ^ K ` ha...
1sgmprm 27137 The sum of divisors for a ...
1sgm2ppw 27138 The sum of the divisors of...
sgmmul 27139 The divisor function for f...
ppiublem1 27140 Lemma for ~ ppiub . (Cont...
ppiublem2 27141 A prime greater than ` 3 `...
ppiub 27142 An upper bound on the prim...
vmalelog 27143 The von Mangoldt function ...
chtlepsi 27144 The first Chebyshev functi...
chprpcl 27145 Closure of the second Cheb...
chpeq0 27146 The second Chebyshev funct...
chteq0 27147 The first Chebyshev functi...
chtleppi 27148 Upper bound on the ` theta...
chtublem 27149 Lemma for ~ chtub . (Cont...
chtub 27150 An upper bound on the Cheb...
fsumvma 27151 Rewrite a sum over the von...
fsumvma2 27152 Apply ~ fsumvma for the co...
pclogsum 27153 The logarithmic analogue o...
vmasum 27154 The sum of the von Mangold...
logfac2 27155 Another expression for the...
chpval2 27156 Express the second Chebysh...
chpchtsum 27157 The second Chebyshev funct...
chpub 27158 An upper bound on the seco...
logfacubnd 27159 A simple upper bound on th...
logfaclbnd 27160 A lower bound on the logar...
logfacbnd3 27161 Show the stronger statemen...
logfacrlim 27162 Combine the estimates ~ lo...
logexprlim 27163 The sum ` sum_ n <_ x , lo...
logfacrlim2 27164 Write out ~ logfacrlim as ...
mersenne 27165 A Mersenne prime is a prim...
perfect1 27166 Euclid's contribution to t...
perfectlem1 27167 Lemma for ~ perfect . (Co...
perfectlem2 27168 Lemma for ~ perfect . (Co...
perfect 27169 The Euclid-Euler theorem, ...
dchrval 27172 Value of the group of Diri...
dchrbas 27173 Base set of the group of D...
dchrelbas 27174 A Dirichlet character is a...
dchrelbas2 27175 A Dirichlet character is a...
dchrelbas3 27176 A Dirichlet character is a...
dchrelbasd 27177 A Dirichlet character is a...
dchrrcl 27178 Reverse closure for a Diri...
dchrmhm 27179 A Dirichlet character is a...
dchrf 27180 A Dirichlet character is a...
dchrelbas4 27181 A Dirichlet character is a...
dchrzrh1 27182 Value of a Dirichlet chara...
dchrzrhcl 27183 A Dirichlet character take...
dchrzrhmul 27184 A Dirichlet character is c...
dchrplusg 27185 Group operation on the gro...
dchrmul 27186 Group operation on the gro...
dchrmulcl 27187 Closure of the group opera...
dchrn0 27188 A Dirichlet character is n...
dchr1cl 27189 Closure of the principal D...
dchrmullid 27190 Left identity for the prin...
dchrinvcl 27191 Closure of the group inver...
dchrabl 27192 The set of Dirichlet chara...
dchrfi 27193 The group of Dirichlet cha...
dchrghm 27194 A Dirichlet character rest...
dchr1 27195 Value of the principal Dir...
dchreq 27196 A Dirichlet character is d...
dchrresb 27197 A Dirichlet character is d...
dchrabs 27198 A Dirichlet character take...
dchrinv 27199 The inverse of a Dirichlet...
dchrabs2 27200 A Dirichlet character take...
dchr1re 27201 The principal Dirichlet ch...
dchrptlem1 27202 Lemma for ~ dchrpt . (Con...
dchrptlem2 27203 Lemma for ~ dchrpt . (Con...
dchrptlem3 27204 Lemma for ~ dchrpt . (Con...
dchrpt 27205 For any element other than...
dchrsum2 27206 An orthogonality relation ...
dchrsum 27207 An orthogonality relation ...
sumdchr2 27208 Lemma for ~ sumdchr . (Co...
dchrhash 27209 There are exactly ` phi ( ...
sumdchr 27210 An orthogonality relation ...
dchr2sum 27211 An orthogonality relation ...
sum2dchr 27212 An orthogonality relation ...
bcctr 27213 Value of the central binom...
pcbcctr 27214 Prime count of a central b...
bcmono 27215 The binomial coefficient i...
bcmax 27216 The binomial coefficient t...
bcp1ctr 27217 Ratio of two central binom...
bclbnd 27218 A bound on the binomial co...
efexple 27219 Convert a bound on a power...
bpos1lem 27220 Lemma for ~ bpos1 . (Cont...
bpos1 27221 Bertrand's postulate, chec...
bposlem1 27222 An upper bound on the prim...
bposlem2 27223 There are no odd primes in...
bposlem3 27224 Lemma for ~ bpos . Since ...
bposlem4 27225 Lemma for ~ bpos . (Contr...
bposlem5 27226 Lemma for ~ bpos . Bound ...
bposlem6 27227 Lemma for ~ bpos . By usi...
bposlem7 27228 Lemma for ~ bpos . The fu...
bposlem8 27229 Lemma for ~ bpos . Evalua...
bposlem9 27230 Lemma for ~ bpos . Derive...
bpos 27231 Bertrand's postulate: ther...
zabsle1 27234 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 27235 When ` a ` is coprime to t...
lgslem2 27236 The set ` Z ` of all integ...
lgslem3 27237 The set ` Z ` of all integ...
lgslem4 27238 Lemma for ~ lgsfcl2 . (Co...
lgsval 27239 Value of the Legendre symb...
lgsfval 27240 Value of the function ` F ...
lgsfcl2 27241 The function ` F ` is clos...
lgscllem 27242 The Legendre symbol is an ...
lgsfcl 27243 Closure of the function ` ...
lgsfle1 27244 The function ` F ` has mag...
lgsval2lem 27245 Lemma for ~ lgsval2 . (Co...
lgsval4lem 27246 Lemma for ~ lgsval4 . (Co...
lgscl2 27247 The Legendre symbol is an ...
lgs0 27248 The Legendre symbol when t...
lgscl 27249 The Legendre symbol is an ...
lgsle1 27250 The Legendre symbol has ab...
lgsval2 27251 The Legendre symbol at a p...
lgs2 27252 The Legendre symbol at ` 2...
lgsval3 27253 The Legendre symbol at an ...
lgsvalmod 27254 The Legendre symbol is equ...
lgsval4 27255 Restate ~ lgsval for nonze...
lgsfcl3 27256 Closure of the function ` ...
lgsval4a 27257 Same as ~ lgsval4 for posi...
lgscl1 27258 The value of the Legendre ...
lgsneg 27259 The Legendre symbol is eit...
lgsneg1 27260 The Legendre symbol for no...
lgsmod 27261 The Legendre (Jacobi) symb...
lgsdilem 27262 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 27263 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 27264 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 27265 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 27266 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 27267 Lemma for ~ lgsdir2 . (Co...
lgsdir2 27268 The Legendre symbol is com...
lgsdirprm 27269 The Legendre symbol is com...
lgsdir 27270 The Legendre symbol is com...
lgsdilem2 27271 Lemma for ~ lgsdi . (Cont...
lgsdi 27272 The Legendre symbol is com...
lgsne0 27273 The Legendre symbol is non...
lgsabs1 27274 The Legendre symbol is non...
lgssq 27275 The Legendre symbol at a s...
lgssq2 27276 The Legendre symbol at a s...
lgsprme0 27277 The Legendre symbol at any...
1lgs 27278 The Legendre symbol at ` 1...
lgs1 27279 The Legendre symbol at ` 1...
lgsmodeq 27280 The Legendre (Jacobi) symb...
lgsmulsqcoprm 27281 The Legendre (Jacobi) symb...
lgsdirnn0 27282 Variation on ~ lgsdir vali...
lgsdinn0 27283 Variation on ~ lgsdi valid...
lgsqrlem1 27284 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 27285 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 27286 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 27287 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 27288 Lemma for ~ lgsqr . (Cont...
lgsqr 27289 The Legendre symbol for od...
lgsqrmod 27290 If the Legendre symbol of ...
lgsqrmodndvds 27291 If the Legendre symbol of ...
lgsdchrval 27292 The Legendre symbol functi...
lgsdchr 27293 The Legendre symbol functi...
gausslemma2dlem0a 27294 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 27295 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 27296 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 27297 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 27298 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 27299 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 27300 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 27301 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 27302 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 27303 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 27304 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 27305 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 27306 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 27307 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 27308 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 27309 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 27310 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 27311 Lemma 7 for ~ gausslemma2d...
gausslemma2d 27312 Gauss' Lemma (see also the...
lgseisenlem1 27313 Lemma for ~ lgseisen . If...
lgseisenlem2 27314 Lemma for ~ lgseisen . Th...
lgseisenlem3 27315 Lemma for ~ lgseisen . (C...
lgseisenlem4 27316 Lemma for ~ lgseisen . (C...
lgseisen 27317 Eisenstein's lemma, an exp...
lgsquadlem1 27318 Lemma for ~ lgsquad . Cou...
lgsquadlem2 27319 Lemma for ~ lgsquad . Cou...
lgsquadlem3 27320 Lemma for ~ lgsquad . (Co...
lgsquad 27321 The Law of Quadratic Recip...
lgsquad2lem1 27322 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 27323 Lemma for ~ lgsquad2 . (C...
lgsquad2 27324 Extend ~ lgsquad to coprim...
lgsquad3 27325 Extend ~ lgsquad2 to integ...
m1lgs 27326 The first supplement to th...
2lgslem1a1 27327 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 27328 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 27329 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 27330 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 27331 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 27332 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 27333 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 27334 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 27335 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 27336 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 27337 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 27338 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 27339 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 27340 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 27341 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 27342 Lemma 3 for ~ 2lgs . (Con...
2lgs2 27343 The Legendre symbol for ` ...
2lgslem4 27344 Lemma 4 for ~ 2lgs : speci...
2lgs 27345 The second supplement to t...
2lgsoddprmlem1 27346 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 27347 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 27348 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 27349 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 27350 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 27351 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 27352 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 27353 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 27354 The second supplement to t...
2sqlem1 27355 Lemma for ~ 2sq . (Contri...
2sqlem2 27356 Lemma for ~ 2sq . (Contri...
mul2sq 27357 Fibonacci's identity (actu...
2sqlem3 27358 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 27359 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 27360 Lemma for ~ 2sq . If a nu...
2sqlem6 27361 Lemma for ~ 2sq . If a nu...
2sqlem7 27362 Lemma for ~ 2sq . (Contri...
2sqlem8a 27363 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 27364 Lemma for ~ 2sq . (Contri...
2sqlem9 27365 Lemma for ~ 2sq . (Contri...
2sqlem10 27366 Lemma for ~ 2sq . Every f...
2sqlem11 27367 Lemma for ~ 2sq . (Contri...
2sq 27368 All primes of the form ` 4...
2sqblem 27369 Lemma for ~ 2sqb . (Contr...
2sqb 27370 The converse to ~ 2sq . (...
2sq2 27371 ` 2 ` is the sum of square...
2sqn0 27372 If the sum of two squares ...
2sqcoprm 27373 If the sum of two squares ...
2sqmod 27374 Given two decompositions o...
2sqmo 27375 There exists at most one d...
2sqnn0 27376 All primes of the form ` 4...
2sqnn 27377 All primes of the form ` 4...
addsq2reu 27378 For each complex number ` ...
addsqn2reu 27379 For each complex number ` ...
addsqrexnreu 27380 For each complex number, t...
addsqnreup 27381 There is no unique decompo...
addsq2nreurex 27382 For each complex number ` ...
addsqn2reurex2 27383 For each complex number ` ...
2sqreulem1 27384 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 27385 Lemma for ~ 2sqreult . (C...
2sqreultblem 27386 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 27387 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 27388 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 27389 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 27390 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 27391 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 27392 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 27393 Lemma 2 for ~ 2sqreunn . ...
2sqreu 27394 There exists a unique deco...
2sqreunn 27395 There exists a unique deco...
2sqreult 27396 There exists a unique deco...
2sqreultb 27397 There exists a unique deco...
2sqreunnlt 27398 There exists a unique deco...
2sqreunnltb 27399 There exists a unique deco...
2sqreuop 27400 There exists a unique deco...
2sqreuopnn 27401 There exists a unique deco...
2sqreuoplt 27402 There exists a unique deco...
2sqreuopltb 27403 There exists a unique deco...
2sqreuopnnlt 27404 There exists a unique deco...
2sqreuopnnltb 27405 There exists a unique deco...
2sqreuopb 27406 There exists a unique deco...
chebbnd1lem1 27407 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 27408 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 27409 Lemma for ~ chebbnd1 : get...
chebbnd1 27410 The Chebyshev bound: The ...
chtppilimlem1 27411 Lemma for ~ chtppilim . (...
chtppilimlem2 27412 Lemma for ~ chtppilim . (...
chtppilim 27413 The ` theta ` function is ...
chto1ub 27414 The ` theta ` function is ...
chebbnd2 27415 The Chebyshev bound, part ...
chto1lb 27416 The ` theta ` function is ...
chpchtlim 27417 The ` psi ` and ` theta ` ...
chpo1ub 27418 The ` psi ` function is up...
chpo1ubb 27419 The ` psi ` function is up...
vmadivsum 27420 The sum of the von Mangold...
vmadivsumb 27421 Give a total bound on the ...
rplogsumlem1 27422 Lemma for ~ rplogsum . (C...
rplogsumlem2 27423 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 27424 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 27425 Lemma for ~ rpvmasum . Ca...
dchrisumlema 27426 Lemma for ~ dchrisum . Le...
dchrisumlem1 27427 Lemma for ~ dchrisum . Le...
dchrisumlem2 27428 Lemma for ~ dchrisum . Le...
dchrisumlem3 27429 Lemma for ~ dchrisum . Le...
dchrisum 27430 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 27431 Lemma for ~ dchrmusum and ...
dchrmusum2 27432 The sum of the Möbius...
dchrvmasumlem1 27433 An alternative expression ...
dchrvmasum2lem 27434 Give an expression for ` l...
dchrvmasum2if 27435 Combine the results of ~ d...
dchrvmasumlem2 27436 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 27437 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 27438 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 27439 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 27440 Lemma for ~ dchrvmasum . ...
dchrvmasumif 27441 An asymptotic approximatio...
dchrvmaeq0 27442 The set ` W ` is the colle...
dchrisum0fval 27443 Value of the function ` F ...
dchrisum0fmul 27444 The function ` F ` , the d...
dchrisum0ff 27445 The function ` F ` is a re...
dchrisum0flblem1 27446 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 27447 Lemma for ~ dchrisum0flb ....
dchrisum0flb 27448 The divisor sum of a real ...
dchrisum0fno1 27449 The sum ` sum_ k <_ x , F ...
rpvmasum2 27450 A partial result along the...
dchrisum0re 27451 Suppose ` X ` is a non-pri...
dchrisum0lema 27452 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 27453 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 27454 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 27455 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 27456 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 27457 Lemma for ~ dchrisum0 . (...
dchrisum0 27458 The sum ` sum_ n e. NN , X...
dchrisumn0 27459 The sum ` sum_ n e. NN , X...
dchrmusumlem 27460 The sum of the Möbius...
dchrvmasumlem 27461 The sum of the Möbius...
dchrmusum 27462 The sum of the Möbius...
dchrvmasum 27463 The sum of the von Mangold...
rpvmasum 27464 The sum of the von Mangold...
rplogsum 27465 The sum of ` log p / p ` o...
dirith2 27466 Dirichlet's theorem: there...
dirith 27467 Dirichlet's theorem: there...
mudivsum 27468 Asymptotic formula for ` s...
mulogsumlem 27469 Lemma for ~ mulogsum . (C...
mulogsum 27470 Asymptotic formula for ...
logdivsum 27471 Asymptotic analysis of ...
mulog2sumlem1 27472 Asymptotic formula for ...
mulog2sumlem2 27473 Lemma for ~ mulog2sum . (...
mulog2sumlem3 27474 Lemma for ~ mulog2sum . (...
mulog2sum 27475 Asymptotic formula for ...
vmalogdivsum2 27476 The sum ` sum_ n <_ x , La...
vmalogdivsum 27477 The sum ` sum_ n <_ x , La...
2vmadivsumlem 27478 Lemma for ~ 2vmadivsum . ...
2vmadivsum 27479 The sum ` sum_ m n <_ x , ...
logsqvma 27480 A formula for ` log ^ 2 ( ...
logsqvma2 27481 The Möbius inverse of...
log2sumbnd 27482 Bound on the difference be...
selberglem1 27483 Lemma for ~ selberg . Est...
selberglem2 27484 Lemma for ~ selberg . (Co...
selberglem3 27485 Lemma for ~ selberg . Est...
selberg 27486 Selberg's symmetry formula...
selbergb 27487 Convert eventual boundedne...
selberg2lem 27488 Lemma for ~ selberg2 . Eq...
selberg2 27489 Selberg's symmetry formula...
selberg2b 27490 Convert eventual boundedne...
chpdifbndlem1 27491 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 27492 Lemma for ~ chpdifbnd . (...
chpdifbnd 27493 A bound on the difference ...
logdivbnd 27494 A bound on a sum of logs, ...
selberg3lem1 27495 Introduce a log weighting ...
selberg3lem2 27496 Lemma for ~ selberg3 . Eq...
selberg3 27497 Introduce a log weighting ...
selberg4lem1 27498 Lemma for ~ selberg4 . Eq...
selberg4 27499 The Selberg symmetry formu...
pntrval 27500 Define the residual of the...
pntrf 27501 Functionality of the resid...
pntrmax 27502 There is a bound on the re...
pntrsumo1 27503 A bound on a sum over ` R ...
pntrsumbnd 27504 A bound on a sum over ` R ...
pntrsumbnd2 27505 A bound on a sum over ` R ...
selbergr 27506 Selberg's symmetry formula...
selberg3r 27507 Selberg's symmetry formula...
selberg4r 27508 Selberg's symmetry formula...
selberg34r 27509 The sum of ~ selberg3r and...
pntsval 27510 Define the "Selberg functi...
pntsf 27511 Functionality of the Selbe...
selbergs 27512 Selberg's symmetry formula...
selbergsb 27513 Selberg's symmetry formula...
pntsval2 27514 The Selberg function can b...
pntrlog2bndlem1 27515 The sum of ~ selberg3r and...
pntrlog2bndlem2 27516 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 27517 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 27518 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 27519 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 27520 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 27521 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 27522 A bound on ` R ( x ) log ^...
pntpbnd1a 27523 Lemma for ~ pntpbnd . (Co...
pntpbnd1 27524 Lemma for ~ pntpbnd . (Co...
pntpbnd2 27525 Lemma for ~ pntpbnd . (Co...
pntpbnd 27526 Lemma for ~ pnt . Establi...
pntibndlem1 27527 Lemma for ~ pntibnd . (Co...
pntibndlem2a 27528 Lemma for ~ pntibndlem2 . ...
pntibndlem2 27529 Lemma for ~ pntibnd . The...
pntibndlem3 27530 Lemma for ~ pntibnd . Pac...
pntibnd 27531 Lemma for ~ pnt . Establi...
pntlemd 27532 Lemma for ~ pnt . Closure...
pntlemc 27533 Lemma for ~ pnt . Closure...
pntlema 27534 Lemma for ~ pnt . Closure...
pntlemb 27535 Lemma for ~ pnt . Unpack ...
pntlemg 27536 Lemma for ~ pnt . Closure...
pntlemh 27537 Lemma for ~ pnt . Bounds ...
pntlemn 27538 Lemma for ~ pnt . The "na...
pntlemq 27539 Lemma for ~ pntlemj . (Co...
pntlemr 27540 Lemma for ~ pntlemj . (Co...
pntlemj 27541 Lemma for ~ pnt . The ind...
pntlemi 27542 Lemma for ~ pnt . Elimina...
pntlemf 27543 Lemma for ~ pnt . Add up ...
pntlemk 27544 Lemma for ~ pnt . Evaluat...
pntlemo 27545 Lemma for ~ pnt . Combine...
pntleme 27546 Lemma for ~ pnt . Package...
pntlem3 27547 Lemma for ~ pnt . Equatio...
pntlemp 27548 Lemma for ~ pnt . Wrappin...
pntleml 27549 Lemma for ~ pnt . Equatio...
pnt3 27550 The Prime Number Theorem, ...
pnt2 27551 The Prime Number Theorem, ...
pnt 27552 The Prime Number Theorem: ...
abvcxp 27553 Raising an absolute value ...
padicfval 27554 Value of the p-adic absolu...
padicval 27555 Value of the p-adic absolu...
ostth2lem1 27556 Lemma for ~ ostth2 , altho...
qrngbas 27557 The base set of the field ...
qdrng 27558 The rationals form a divis...
qrng0 27559 The zero element of the fi...
qrng1 27560 The unity element of the f...
qrngneg 27561 The additive inverse in th...
qrngdiv 27562 The division operation in ...
qabvle 27563 By using induction on ` N ...
qabvexp 27564 Induct the product rule ~ ...
ostthlem1 27565 Lemma for ~ ostth . If tw...
ostthlem2 27566 Lemma for ~ ostth . Refin...
qabsabv 27567 The regular absolute value...
padicabv 27568 The p-adic absolute value ...
padicabvf 27569 The p-adic absolute value ...
padicabvcxp 27570 All positive powers of the...
ostth1 27571 - Lemma for ~ ostth : triv...
ostth2lem2 27572 Lemma for ~ ostth2 . (Con...
ostth2lem3 27573 Lemma for ~ ostth2 . (Con...
ostth2lem4 27574 Lemma for ~ ostth2 . (Con...
ostth2 27575 - Lemma for ~ ostth : regu...
ostth3 27576 - Lemma for ~ ostth : p-ad...
ostth 27577 Ostrowski's theorem, which...
elno 27584 Membership in the surreals...
elnoOLD 27585 Obsolete version of ~ elno...
sltval 27586 The value of the surreal l...
bdayval 27587 The value of the birthday ...
nofun 27588 A surreal is a function. ...
nodmon 27589 The domain of a surreal is...
norn 27590 The range of a surreal is ...
nofnbday 27591 A surreal is a function ov...
nodmord 27592 The domain of a surreal ha...
elno2 27593 An alternative condition f...
elno3 27594 Another condition for memb...
sltval2 27595 Alternate expression for s...
nofv 27596 The function value of a su...
nosgnn0 27597 ` (/) ` is not a surreal s...
nosgnn0i 27598 If ` X ` is a surreal sign...
noreson 27599 The restriction of a surre...
sltintdifex 27600 If ` A
sltres 27601 If the restrictions of two...
noxp1o 27602 The Cartesian product of a...
noseponlem 27603 Lemma for ~ nosepon . Con...
nosepon 27604 Given two unequal surreals...
noextend 27605 Extending a surreal by one...
noextendseq 27606 Extend a surreal by a sequ...
noextenddif 27607 Calculate the place where ...
noextendlt 27608 Extending a surreal with a...
noextendgt 27609 Extending a surreal with a...
nolesgn2o 27610 Given ` A ` less-than or e...
nolesgn2ores 27611 Given ` A ` less-than or e...
nogesgn1o 27612 Given ` A ` greater than o...
nogesgn1ores 27613 Given ` A ` greater than o...
sltsolem1 27614 Lemma for ~ sltso . The "...
sltso 27615 Less-than totally orders t...
bdayfo 27616 The birthday function maps...
fvnobday 27617 The value of a surreal at ...
nosepnelem 27618 Lemma for ~ nosepne . (Co...
nosepne 27619 The value of two non-equal...
nosep1o 27620 If the value of a surreal ...
nosep2o 27621 If the value of a surreal ...
nosepdmlem 27622 Lemma for ~ nosepdm . (Co...
nosepdm 27623 The first place two surrea...
nosepeq 27624 The values of two surreals...
nosepssdm 27625 Given two non-equal surrea...
nodenselem4 27626 Lemma for ~ nodense . Sho...
nodenselem5 27627 Lemma for ~ nodense . If ...
nodenselem6 27628 The restriction of a surre...
nodenselem7 27629 Lemma for ~ nodense . ` A ...
nodenselem8 27630 Lemma for ~ nodense . Giv...
nodense 27631 Given two distinct surreal...
bdayimaon 27632 Lemma for full-eta propert...
nolt02olem 27633 Lemma for ~ nolt02o . If ...
nolt02o 27634 Given ` A ` less-than ` B ...
nogt01o 27635 Given ` A ` greater than `...
noresle 27636 Restriction law for surrea...
nomaxmo 27637 A class of surreals has at...
nominmo 27638 A class of surreals has at...
nosupprefixmo 27639 In any class of surreals, ...
noinfprefixmo 27640 In any class of surreals, ...
nosupcbv 27641 Lemma to change bound vari...
nosupno 27642 The next several theorems ...
nosupdm 27643 The domain of the surreal ...
nosupbday 27644 Birthday bounding law for ...
nosupfv 27645 The value of surreal supre...
nosupres 27646 A restriction law for surr...
nosupbnd1lem1 27647 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 27648 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 27649 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 27650 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 27651 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 27652 Lemma for ~ nosupbnd1 . E...
nosupbnd1 27653 Bounding law from below fo...
nosupbnd2lem1 27654 Bounding law from above wh...
nosupbnd2 27655 Bounding law from above fo...
noinfcbv 27656 Change bound variables for...
noinfno 27657 The next several theorems ...
noinfdm 27658 Next, we calculate the dom...
noinfbday 27659 Birthday bounding law for ...
noinffv 27660 The value of surreal infim...
noinfres 27661 The restriction of surreal...
noinfbnd1lem1 27662 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 27663 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 27664 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 27665 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 27666 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 27667 Lemma for ~ noinfbnd1 . E...
noinfbnd1 27668 Bounding law from above fo...
noinfbnd2lem1 27669 Bounding law from below wh...
noinfbnd2 27670 Bounding law from below fo...
nosupinfsep 27671 Given two sets of surreals...
noetasuplem1 27672 Lemma for ~ noeta . Estab...
noetasuplem2 27673 Lemma for ~ noeta . The r...
noetasuplem3 27674 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 27675 Lemma for ~ noeta . When ...
noetainflem1 27676 Lemma for ~ noeta . Estab...
noetainflem2 27677 Lemma for ~ noeta . The r...
noetainflem3 27678 Lemma for ~ noeta . ` W ` ...
noetainflem4 27679 Lemma for ~ noeta . If ` ...
noetalem1 27680 Lemma for ~ noeta . Eithe...
noetalem2 27681 Lemma for ~ noeta . The f...
noeta 27682 The full-eta axiom for the...
sltirr 27685 Surreal less-than is irref...
slttr 27686 Surreal less-than is trans...
sltasym 27687 Surreal less-than is asymm...
sltlin 27688 Surreal less-than obeys tr...
slttrieq2 27689 Trichotomy law for surreal...
slttrine 27690 Trichotomy law for surreal...
slenlt 27691 Surreal less-than or equal...
sltnle 27692 Surreal less-than in terms...
sleloe 27693 Surreal less-than or equal...
sletri3 27694 Trichotomy law for surreal...
sltletr 27695 Surreal transitive law. (...
slelttr 27696 Surreal transitive law. (...
sletr 27697 Surreal transitive law. (...
slttrd 27698 Surreal less-than is trans...
sltletrd 27699 Surreal less-than is trans...
slelttrd 27700 Surreal less-than is trans...
sletrd 27701 Surreal less-than or equal...
slerflex 27702 Surreal less-than or equal...
sletric 27703 Surreal trichotomy law. (...
maxs1 27704 A surreal is less than or ...
maxs2 27705 A surreal is less than or ...
mins1 27706 The minimum of two surreal...
mins2 27707 The minimum of two surreal...
sltled 27708 Surreal less-than implies ...
sltne 27709 Surreal less-than implies ...
sltlend 27710 Surreal less-than in terms...
bdayfun 27711 The birthday function is a...
bdayfn 27712 The birthday function is a...
bdaydm 27713 The birthday function's do...
bdayrn 27714 The birthday function's ra...
bdayelon 27715 The value of the birthday ...
nobdaymin 27716 Any non-empty class of sur...
nocvxminlem 27717 Lemma for ~ nocvxmin . Gi...
nocvxmin 27718 Given a nonempty convex cl...
noprc 27719 The surreal numbers are a ...
noeta2 27724 A version of ~ noeta with ...
brsslt 27725 Binary relation form of th...
ssltex1 27726 The first argument of surr...
ssltex2 27727 The second argument of sur...
ssltss1 27728 The first argument of surr...
ssltss2 27729 The second argument of sur...
ssltsep 27730 The separation property of...
ssltd 27731 Deduce surreal set less-th...
ssltsnb 27732 Surreal set less-than of t...
ssltsn 27733 Surreal set less-than of t...
ssltsepc 27734 Two elements of separated ...
ssltsepcd 27735 Two elements of separated ...
sssslt1 27736 Relation between surreal s...
sssslt2 27737 Relation between surreal s...
nulsslt 27738 The empty set is less-than...
nulssgt 27739 The empty set is greater t...
conway 27740 Conway's Simplicity Theore...
scutval 27741 The value of the surreal c...
scutcut 27742 Cut properties of the surr...
scutcl 27743 Closure law for surreal cu...
scutcld 27744 Closure law for surreal cu...
scutbday 27745 The birthday of the surrea...
eqscut 27746 Condition for equality to ...
eqscut2 27747 Condition for equality to ...
sslttr 27748 Transitive law for surreal...
ssltun1 27749 Union law for surreal set ...
ssltun2 27750 Union law for surreal set ...
scutun12 27751 Union law for surreal cuts...
dmscut 27752 The domain of the surreal ...
scutf 27753 Functionality statement fo...
etasslt 27754 A restatement of ~ noeta u...
etasslt2 27755 A version of ~ etasslt wit...
scutbdaybnd 27756 An upper bound on the birt...
scutbdaybnd2 27757 An upper bound on the birt...
scutbdaybnd2lim 27758 An upper bound on the birt...
scutbdaylt 27759 If a surreal lies in a gap...
slerec 27760 A comparison law for surre...
slerecd 27761 A comparison law for surre...
sltrec 27762 A comparison law for surre...
sltrecd 27763 A comparison law for surre...
ssltdisj 27764 If ` A ` preceeds ` B ` , ...
eqscut3 27765 A variant of the simplicit...
0sno 27770 Surreal zero is a surreal....
1sno 27771 Surreal one is a surreal. ...
bday0s 27772 Calculate the birthday of ...
0slt1s 27773 Surreal zero is less than ...
bday0b 27774 The only surreal with birt...
bday1s 27775 The birthday of surreal on...
cuteq0 27776 Condition for a surreal cu...
cutneg 27777 The simplest number greate...
cuteq1 27778 Condition for a surreal cu...
sgt0ne0 27779 A positive surreal is not ...
sgt0ne0d 27780 A positive surreal is not ...
1sne0s 27781 Surreal zero does not equa...
rightpos 27782 A surreal is non-negative ...
madeval 27793 The value of the made by f...
madeval2 27794 Alternative characterizati...
oldval 27795 The value of the old optio...
newval 27796 The value of the new optio...
madef 27797 The made function is a fun...
oldf 27798 The older function is a fu...
newf 27799 The new function is a func...
old0 27800 No surreal is older than `...
madessno 27801 Made sets are surreals. (...
oldssno 27802 Old sets are surreals. (C...
newssno 27803 New sets are surreals. (C...
leftval 27804 The value of the left opti...
rightval 27805 The value of the right opt...
elleft 27806 Membership in the left set...
elright 27807 Membership in the right se...
leftlt 27808 A member of a surreal's le...
rightgt 27809 A member of a surreal's ri...
leftf 27810 The functionality of the l...
rightf 27811 The functionality of the r...
elmade 27812 Membership in the made fun...
elmade2 27813 Membership in the made fun...
elold 27814 Membership in an old set. ...
ssltleft 27815 A surreal is greater than ...
ssltright 27816 A surreal is less than its...
lltropt 27817 The left options of a surr...
made0 27818 The only surreal made on d...
new0 27819 The only surreal new on da...
old1 27820 The only surreal older tha...
madess 27821 If ` A ` is less than or e...
oldssmade 27822 The older-than set is a su...
oldss 27823 If ` A ` is less than or e...
leftssold 27824 The left options are a sub...
rightssold 27825 The right options are a su...
leftssno 27826 The left set of a surreal ...
rightssno 27827 The right set of a surreal...
madecut 27828 Given a section that is a ...
madeun 27829 The made set is the union ...
madeoldsuc 27830 The made set is the old se...
oldsuc 27831 The value of the old set a...
oldlim 27832 The value of the old set a...
madebdayim 27833 If a surreal is a member o...
oldbdayim 27834 If ` X ` is in the old set...
oldirr 27835 No surreal is a member of ...
leftirr 27836 No surreal is a member of ...
rightirr 27837 No surreal is a member of ...
left0s 27838 The left set of ` 0s ` is ...
right0s 27839 The right set of ` 0s ` is...
left1s 27840 The left set of ` 1s ` is ...
right1s 27841 The right set of ` 1s ` is...
lrold 27842 The union of the left and ...
madebdaylemold 27843 Lemma for ~ madebday . If...
madebdaylemlrcut 27844 Lemma for ~ madebday . If...
madebday 27845 A surreal is part of the s...
oldbday 27846 A surreal is part of the s...
newbday 27847 A surreal is an element of...
newbdayim 27848 One direction of the bicon...
lrcut 27849 A surreal is equal to the ...
scutfo 27850 The surreal cut function i...
sltn0 27851 If ` X ` is less than ` Y ...
lruneq 27852 If two surreals share a bi...
sltlpss 27853 If two surreals share a bi...
slelss 27854 If two surreals ` A ` and ...
0elold 27855 Zero is in the old set of ...
0elleft 27856 Zero is in the left set of...
0elright 27857 Zero is in the right set o...
madefi 27858 The made set of an ordinal...
oldfi 27859 The old set of an ordinal ...
bdayiun 27860 The birthday of a surreal ...
bdayle 27861 A condition for bounding a...
cofsslt 27862 If every element of ` A ` ...
coinitsslt 27863 If ` B ` is coinitial with...
cofcut1 27864 If ` C ` is cofinal with `...
cofcut1d 27865 If ` C ` is cofinal with `...
cofcut2 27866 If ` A ` and ` C ` are mut...
cofcut2d 27867 If ` A ` and ` C ` are mut...
cofcutr 27868 If ` X ` is the cut of ` A...
cofcutr1d 27869 If ` X ` is the cut of ` A...
cofcutr2d 27870 If ` X ` is the cut of ` A...
cofcutrtime 27871 If ` X ` is the cut of ` A...
cofcutrtime1d 27872 If ` X ` is a timely cut o...
cofcutrtime2d 27873 If ` X ` is a timely cut o...
cofss 27874 Cofinality for a subset. ...
coiniss 27875 Coinitiality for a subset....
cutlt 27876 Eliminating all elements b...
cutpos 27877 Reduce the elements of a c...
cutmax 27878 If ` A ` has a maximum, th...
cutmin 27879 If ` B ` has a minimum, th...
lrrecval 27882 The next step in the devel...
lrrecval2 27883 Next, we establish an alte...
lrrecpo 27884 Now, we establish that ` R...
lrrecse 27885 Next, we show that ` R ` i...
lrrecfr 27886 Now we show that ` R ` is ...
lrrecpred 27887 Finally, we calculate the ...
noinds 27888 Induction principle for a ...
norecfn 27889 Surreal recursion over one...
norecov 27890 Calculate the value of the...
noxpordpo 27893 To get through most of the...
noxpordfr 27894 Next we establish the foun...
noxpordse 27895 Next we establish the set-...
noxpordpred 27896 Next we calculate the pred...
no2indslem 27897 Double induction on surrea...
no2inds 27898 Double induction on surrea...
norec2fn 27899 The double-recursion opera...
norec2ov 27900 The value of the double-re...
no3inds 27901 Triple induction over surr...
addsfn 27904 Surreal addition is a func...
addsval 27905 The value of surreal addit...
addsval2 27906 The value of surreal addit...
addsrid 27907 Surreal addition to zero i...
addsridd 27908 Surreal addition to zero i...
addscom 27909 Surreal addition commutes....
addscomd 27910 Surreal addition commutes....
addslid 27911 Surreal addition to zero i...
addsproplem1 27912 Lemma for surreal addition...
addsproplem2 27913 Lemma for surreal addition...
addsproplem3 27914 Lemma for surreal addition...
addsproplem4 27915 Lemma for surreal addition...
addsproplem5 27916 Lemma for surreal addition...
addsproplem6 27917 Lemma for surreal addition...
addsproplem7 27918 Lemma for surreal addition...
addsprop 27919 Inductively show that surr...
addscutlem 27920 Lemma for ~ addscut . Sho...
addscut 27921 Demonstrate the cut proper...
addscut2 27922 Show that the cut involved...
addscld 27923 Surreal numbers are closed...
addscl 27924 Surreal numbers are closed...
addsf 27925 Function statement for sur...
addsfo 27926 Surreal addition is onto. ...
peano2no 27927 A theorem for surreals tha...
sltadd1im 27928 Surreal less-than is prese...
sltadd2im 27929 Surreal less-than is prese...
sleadd1im 27930 Surreal less-than or equal...
sleadd2im 27931 Surreal less-than or equal...
sleadd1 27932 Addition to both sides of ...
sleadd2 27933 Addition to both sides of ...
sltadd2 27934 Addition to both sides of ...
sltadd1 27935 Addition to both sides of ...
addscan2 27936 Cancellation law for surre...
addscan1 27937 Cancellation law for surre...
sleadd1d 27938 Addition to both sides of ...
sleadd2d 27939 Addition to both sides of ...
sltadd2d 27940 Addition to both sides of ...
sltadd1d 27941 Addition to both sides of ...
addscan2d 27942 Cancellation law for surre...
addscan1d 27943 Cancellation law for surre...
addsuniflem 27944 Lemma for ~ addsunif . St...
addsunif 27945 Uniformity theorem for sur...
addsasslem1 27946 Lemma for addition associa...
addsasslem2 27947 Lemma for addition associa...
addsass 27948 Surreal addition is associ...
addsassd 27949 Surreal addition is associ...
adds32d 27950 Commutative/associative la...
adds12d 27951 Commutative/associative la...
adds4d 27952 Rearrangement of four term...
adds42d 27953 Rearrangement of four term...
sltaddpos1d 27954 Addition of a positive num...
sltaddpos2d 27955 Addition of a positive num...
slt2addd 27956 Adding both sides of two s...
addsgt0d 27957 The sum of two positive su...
sltp1d 27958 A surreal is less than its...
addsbdaylem 27959 Lemma for ~ addsbday . (C...
addsbday 27960 The birthday of the sum of...
negsfn 27965 Surreal negation is a func...
subsfn 27966 Surreal subtraction is a f...
negsval 27967 The value of the surreal n...
negs0s 27968 Negative surreal zero is s...
negs1s 27969 An expression for negative...
negsproplem1 27970 Lemma for surreal negation...
negsproplem2 27971 Lemma for surreal negation...
negsproplem3 27972 Lemma for surreal negation...
negsproplem4 27973 Lemma for surreal negation...
negsproplem5 27974 Lemma for surreal negation...
negsproplem6 27975 Lemma for surreal negation...
negsproplem7 27976 Lemma for surreal negation...
negsprop 27977 Show closure and ordering ...
negscl 27978 The surreals are closed un...
negscld 27979 The surreals are closed un...
sltnegim 27980 The forward direction of t...
negscut 27981 The cut properties of surr...
negscut2 27982 The cut that defines surre...
negsid 27983 Surreal addition of a numb...
negsidd 27984 Surreal addition of a numb...
negsex 27985 Every surreal has a negati...
negnegs 27986 A surreal is equal to the ...
sltneg 27987 Negative of both sides of ...
sleneg 27988 Negative of both sides of ...
sltnegd 27989 Negative of both sides of ...
slenegd 27990 Negative of both sides of ...
negs11 27991 Surreal negation is one-to...
negsdi 27992 Distribution of surreal ne...
slt0neg2d 27993 Comparison of a surreal an...
negsf 27994 Function statement for sur...
negsfo 27995 Function statement for sur...
negsf1o 27996 Surreal negation is a bije...
negsunif 27997 Uniformity property for su...
negsbdaylem 27998 Lemma for ~ negsbday . Bo...
negsbday 27999 Negation of a surreal numb...
subsval 28000 The value of surreal subtr...
subsvald 28001 The value of surreal subtr...
subscl 28002 Closure law for surreal su...
subscld 28003 Closure law for surreal su...
subsf 28004 Function statement for sur...
subsfo 28005 Surreal subtraction is an ...
negsval2 28006 Surreal negation in terms ...
negsval2d 28007 Surreal negation in terms ...
subsid1 28008 Identity law for subtracti...
subsid 28009 Subtraction of a surreal f...
subadds 28010 Relationship between addit...
subaddsd 28011 Relationship between addit...
pncans 28012 Cancellation law for surre...
pncan3s 28013 Subtraction and addition o...
pncan2s 28014 Cancellation law for surre...
npcans 28015 Cancellation law for surre...
sltsub1 28016 Subtraction from both side...
sltsub2 28017 Subtraction from both side...
sltsub1d 28018 Subtraction from both side...
sltsub2d 28019 Subtraction from both side...
negsubsdi2d 28020 Distribution of negative o...
addsubsassd 28021 Associative-type law for s...
addsubsd 28022 Law for surreal addition a...
sltsubsubbd 28023 Equivalence for the surrea...
sltsubsub2bd 28024 Equivalence for the surrea...
sltsubsub3bd 28025 Equivalence for the surrea...
slesubsubbd 28026 Equivalence for the surrea...
slesubsub2bd 28027 Equivalence for the surrea...
slesubsub3bd 28028 Equivalence for the surrea...
sltsubaddd 28029 Surreal less-than relation...
sltsubadd2d 28030 Surreal less-than relation...
sltaddsubd 28031 Surreal less-than relation...
sltaddsub2d 28032 Surreal less-than relation...
slesubaddd 28033 Surreal less-than or equal...
subsubs4d 28034 Law for double surreal sub...
subsubs2d 28035 Law for double surreal sub...
nncansd 28036 Cancellation law for surre...
posdifsd 28037 Comparison of two surreals...
sltsubposd 28038 Subtraction of a positive ...
subsge0d 28039 Non-negative subtraction. ...
addsubs4d 28040 Rearrangement of four term...
sltm1d 28041 A surreal is greater than ...
subscan1d 28042 Cancellation law for surre...
subscan2d 28043 Cancellation law for surre...
subseq0d 28044 The difference between two...
mulsfn 28047 Surreal multiplication is ...
mulsval 28048 The value of surreal multi...
mulsval2lem 28049 Lemma for ~ mulsval2 . Ch...
mulsval2 28050 The value of surreal multi...
muls01 28051 Surreal multiplication by ...
mulsrid 28052 Surreal one is a right ide...
mulsridd 28053 Surreal one is a right ide...
mulsproplemcbv 28054 Lemma for surreal multipli...
mulsproplem1 28055 Lemma for surreal multipli...
mulsproplem2 28056 Lemma for surreal multipli...
mulsproplem3 28057 Lemma for surreal multipli...
mulsproplem4 28058 Lemma for surreal multipli...
mulsproplem5 28059 Lemma for surreal multipli...
mulsproplem6 28060 Lemma for surreal multipli...
mulsproplem7 28061 Lemma for surreal multipli...
mulsproplem8 28062 Lemma for surreal multipli...
mulsproplem9 28063 Lemma for surreal multipli...
mulsproplem10 28064 Lemma for surreal multipli...
mulsproplem11 28065 Lemma for surreal multipli...
mulsproplem12 28066 Lemma for surreal multipli...
mulsproplem13 28067 Lemma for surreal multipli...
mulsproplem14 28068 Lemma for surreal multipli...
mulsprop 28069 Surreals are closed under ...
mulscutlem 28070 Lemma for ~ mulscut . Sta...
mulscut 28071 Show the cut properties of...
mulscut2 28072 Show that the cut involved...
mulscl 28073 The surreals are closed un...
mulscld 28074 The surreals are closed un...
sltmul 28075 An ordering relationship f...
sltmuld 28076 An ordering relationship f...
slemuld 28077 An ordering relationship f...
mulscom 28078 Surreal multiplication com...
mulscomd 28079 Surreal multiplication com...
muls02 28080 Surreal multiplication by ...
mulslid 28081 Surreal one is a left iden...
mulslidd 28082 Surreal one is a left iden...
mulsgt0 28083 The product of two positiv...
mulsgt0d 28084 The product of two positiv...
mulsge0d 28085 The product of two non-neg...
ssltmul1 28086 One surreal set less-than ...
ssltmul2 28087 One surreal set less-than ...
mulsuniflem 28088 Lemma for ~ mulsunif . St...
mulsunif 28089 Surreal multiplication has...
addsdilem1 28090 Lemma for surreal distribu...
addsdilem2 28091 Lemma for surreal distribu...
addsdilem3 28092 Lemma for ~ addsdi . Show...
addsdilem4 28093 Lemma for ~ addsdi . Show...
addsdi 28094 Distributive law for surre...
addsdid 28095 Distributive law for surre...
addsdird 28096 Distributive law for surre...
subsdid 28097 Distribution of surreal mu...
subsdird 28098 Distribution of surreal mu...
mulnegs1d 28099 Product with negative is n...
mulnegs2d 28100 Product with negative is n...
mul2negsd 28101 Surreal product of two neg...
mulsasslem1 28102 Lemma for ~ mulsass . Exp...
mulsasslem2 28103 Lemma for ~ mulsass . Exp...
mulsasslem3 28104 Lemma for ~ mulsass . Dem...
mulsass 28105 Associative law for surrea...
mulsassd 28106 Associative law for surrea...
muls4d 28107 Rearrangement of four surr...
mulsunif2lem 28108 Lemma for ~ mulsunif2 . S...
mulsunif2 28109 Alternate expression for s...
sltmul2 28110 Multiplication of both sid...
sltmul2d 28111 Multiplication of both sid...
sltmul1d 28112 Multiplication of both sid...
slemul2d 28113 Multiplication of both sid...
slemul1d 28114 Multiplication of both sid...
sltmulneg1d 28115 Multiplication of both sid...
sltmulneg2d 28116 Multiplication of both sid...
mulscan2dlem 28117 Lemma for ~ mulscan2d . C...
mulscan2d 28118 Cancellation of surreal mu...
mulscan1d 28119 Cancellation of surreal mu...
muls12d 28120 Commutative/associative la...
slemul1ad 28121 Multiplication of both sid...
sltmul12ad 28122 Comparison of the product ...
divsmo 28123 Uniqueness of surreal inve...
muls0ord 28124 If a surreal product is ze...
mulsne0bd 28125 The product of two non-zer...
divsval 28128 The value of surreal divis...
norecdiv 28129 If a surreal has a recipro...
noreceuw 28130 If a surreal has a recipro...
recsne0 28131 If a surreal has a recipro...
divsmulw 28132 Relationship between surre...
divsmulwd 28133 Relationship between surre...
divsclw 28134 Weak division closure law....
divsclwd 28135 Weak division closure law....
divscan2wd 28136 A weak cancellation law fo...
divscan1wd 28137 A weak cancellation law fo...
sltdivmulwd 28138 Surreal less-than relation...
sltdivmul2wd 28139 Surreal less-than relation...
sltmuldivwd 28140 Surreal less-than relation...
sltmuldiv2wd 28141 Surreal less-than relation...
divsasswd 28142 An associative law for sur...
divs1 28143 A surreal divided by one i...
precsexlemcbv 28144 Lemma for surreal reciproc...
precsexlem1 28145 Lemma for surreal reciproc...
precsexlem2 28146 Lemma for surreal reciproc...
precsexlem3 28147 Lemma for surreal reciproc...
precsexlem4 28148 Lemma for surreal reciproc...
precsexlem5 28149 Lemma for surreal reciproc...
precsexlem6 28150 Lemma for surreal reciproc...
precsexlem7 28151 Lemma for surreal reciproc...
precsexlem8 28152 Lemma for surreal reciproc...
precsexlem9 28153 Lemma for surreal reciproc...
precsexlem10 28154 Lemma for surreal reciproc...
precsexlem11 28155 Lemma for surreal reciproc...
precsex 28156 Every positive surreal has...
recsex 28157 A non-zero surreal has a r...
recsexd 28158 A non-zero surreal has a r...
divsmul 28159 Relationship between surre...
divsmuld 28160 Relationship between surre...
divscl 28161 Surreal division closure l...
divscld 28162 Surreal division closure l...
divscan2d 28163 A cancellation law for sur...
divscan1d 28164 A cancellation law for sur...
sltdivmuld 28165 Surreal less-than relation...
sltdivmul2d 28166 Surreal less-than relation...
sltmuldivd 28167 Surreal less-than relation...
sltmuldiv2d 28168 Surreal less-than relation...
divsassd 28169 An associative law for sur...
divmuldivsd 28170 Multiplication of two surr...
divdivs1d 28171 Surreal division into a fr...
divsrecd 28172 Relationship between surre...
divsdird 28173 Distribution of surreal di...
divscan3d 28174 A cancellation law for sur...
abssval 28177 The value of surreal absol...
absscl 28178 Closure law for surreal ab...
abssid 28179 The absolute value of a no...
abs0s 28180 The absolute value of surr...
abssnid 28181 For a negative surreal, it...
absmuls 28182 Surreal absolute value dis...
abssge0 28183 The absolute value of a su...
abssor 28184 The absolute value of a su...
abssneg 28185 Surreal absolute value of ...
sleabs 28186 A surreal is less than or ...
absslt 28187 Surreal absolute value and...
elons 28190 Membership in the class of...
onssno 28191 The surreal ordinals are a...
onsno 28192 A surreal ordinal is a sur...
0ons 28193 Surreal zero is a surreal ...
1ons 28194 Surreal one is a surreal o...
elons2 28195 A surreal is ordinal iff i...
elons2d 28196 The cut of any set of surr...
onsleft 28197 The left set of a surreal ...
sltonold 28198 The class of ordinals less...
sltonex 28199 The class of ordinals less...
onscutleft 28200 A surreal ordinal is equal...
onscutlt 28201 A surreal ordinal is the s...
bday11on 28202 The birthday function is o...
onnolt 28203 If a surreal ordinal is le...
onslt 28204 Less-than is the same as b...
onsiso 28205 The birthday function rest...
onswe 28206 Surreal less-than well-ord...
onsse 28207 Surreal less-than is set-l...
onsis 28208 Transfinite induction sche...
bdayon 28209 The birthday of a surreal ...
onaddscl 28210 The surreal ordinals are c...
onmulscl 28211 The surreal ordinals are c...
peano2ons 28212 The successor of a surreal...
seqsex 28215 Existence of the surreal s...
seqseq123d 28216 Equality deduction for the...
nfseqs 28217 Hypothesis builder for the...
seqsval 28218 The value of the surreal s...
noseqex 28219 The next several theorems ...
noseq0 28220 The surreal ` A ` is a mem...
noseqp1 28221 One plus an element of ` Z...
noseqind 28222 Peano's inductive postulat...
noseqinds 28223 Induction schema for surre...
noseqssno 28224 A surreal sequence is a su...
noseqno 28225 An element of a surreal se...
om2noseq0 28226 The mapping ` G ` is a one...
om2noseqsuc 28227 The value of ` G ` at a su...
om2noseqfo 28228 Function statement for ` G...
om2noseqlt 28229 Surreal less-than relation...
om2noseqlt2 28230 The mapping ` G ` preserve...
om2noseqf1o 28231 ` G ` is a bijection. (Co...
om2noseqiso 28232 ` G ` is an isomorphism fr...
om2noseqoi 28233 An alternative definition ...
om2noseqrdg 28234 A helper lemma for the val...
noseqrdglem 28235 A helper lemma for the val...
noseqrdgfn 28236 The recursive definition g...
noseqrdg0 28237 Initial value of a recursi...
noseqrdgsuc 28238 Successor value of a recur...
seqsfn 28239 The surreal sequence build...
seqs1 28240 The value of the surreal s...
seqsp1 28241 The value of the surreal s...
n0sex 28246 The set of all non-negativ...
nnsex 28247 The set of all positive su...
peano5n0s 28248 Peano's inductive postulat...
n0ssno 28249 The non-negative surreal i...
nnssn0s 28250 The positive surreal integ...
nnssno 28251 The positive surreal integ...
n0sno 28252 A non-negative surreal int...
nnsno 28253 A positive surreal integer...
n0snod 28254 A non-negative surreal int...
nnsnod 28255 A positive surreal integer...
nnn0s 28256 A positive surreal integer...
nnn0sd 28257 A positive surreal integer...
0n0s 28258 Peano postulate: ` 0s ` is...
peano2n0s 28259 Peano postulate: the succe...
dfn0s2 28260 Alternate definition of th...
n0sind 28261 Principle of Mathematical ...
n0scut 28262 A cut form for non-negativ...
n0scut2 28263 A cut form for the success...
n0ons 28264 A surreal natural is a sur...
nnne0s 28265 A surreal positive integer...
n0sge0 28266 A non-negative integer is ...
nnsgt0 28267 A positive integer is grea...
elnns 28268 Membership in the positive...
elnns2 28269 A positive surreal integer...
n0s0suc 28270 A non-negative surreal int...
nnsge1 28271 A positive surreal integer...
n0addscl 28272 The non-negative surreal i...
n0mulscl 28273 The non-negative surreal i...
nnaddscl 28274 The positive surreal integ...
nnmulscl 28275 The positive surreal integ...
1n0s 28276 Surreal one is a non-negat...
1nns 28277 Surreal one is a positive ...
peano2nns 28278 Peano postulate for positi...
nnsrecgt0d 28279 The reciprocal of a positi...
n0sbday 28280 A non-negative surreal int...
n0ssold 28281 The non-negative surreal i...
n0sfincut 28282 The simplest number greate...
onsfi 28283 A surreal ordinal with a f...
onltn0s 28284 A surreal ordinal that is ...
n0cutlt 28285 A non-negative surreal int...
seqn0sfn 28286 The surreal sequence build...
eln0s 28287 A non-negative surreal int...
n0s0m1 28288 Every non-negative surreal...
n0subs 28289 Subtraction of non-negativ...
n0subs2 28290 Subtraction of non-negativ...
n0sltp1le 28291 Non-negative surreal order...
n0sleltp1 28292 Non-negative surreal order...
n0slem1lt 28293 Non-negative surreal order...
bdayn0p1 28294 The birthday of ` A +s 1s ...
bdayn0sf1o 28295 The birthday function rest...
n0p1nns 28296 One plus a non-negative su...
dfnns2 28297 Alternate definition of th...
nnsind 28298 Principle of Mathematical ...
nn1m1nns 28299 Every positive surreal int...
nnm1n0s 28300 A positive surreal integer...
eucliddivs 28301 Euclid's division lemma fo...
zsex 28304 The surreal integers form ...
zssno 28305 The surreal integers are a...
zno 28306 A surreal integer is a sur...
znod 28307 A surreal integer is a sur...
elzs 28308 Membership in the set of s...
nnzsubs 28309 The difference of two surr...
nnzs 28310 A positive surreal integer...
nnzsd 28311 A positive surreal integer...
0zs 28312 Zero is a surreal integer....
n0zs 28313 A non-negative surreal int...
n0zsd 28314 A non-negative surreal int...
1zs 28315 One is a surreal integer. ...
znegscl 28316 The surreal integers are c...
znegscld 28317 The surreal integers are c...
zaddscl 28318 The surreal integers are c...
zaddscld 28319 The surreal integers are c...
zsubscld 28320 The surreal integers are c...
zmulscld 28321 The surreal integers are c...
elzn0s 28322 A surreal integer is a sur...
elzs2 28323 A surreal integer is eithe...
eln0zs 28324 Non-negative surreal integ...
elnnzs 28325 Positive surreal integer p...
elznns 28326 Surreal integer property e...
zn0subs 28327 The non-negative differenc...
peano5uzs 28328 Peano's inductive postulat...
uzsind 28329 Induction on the upper sur...
zsbday 28330 A surreal integer has a fi...
zscut 28331 A cut expression for surre...
zsoring 28332 The surreal integers form ...
1p1e2s 28339 One plus one is two. Surr...
no2times 28340 Version of ~ 2times for su...
2nns 28341 Surreal two is a surreal n...
2sno 28342 Surreal two is a surreal n...
2ne0s 28343 Surreal two is non-zero. ...
n0seo 28344 A non-negative surreal int...
zseo 28345 A surreal integer is eithe...
twocut 28346 Two times the cut of zero ...
nohalf 28347 An explicit expression for...
expsval 28348 The value of surreal expon...
expsnnval 28349 Value of surreal exponenti...
exps0 28350 Surreal exponentiation to ...
exps1 28351 Surreal exponentiation to ...
expsp1 28352 Value of a surreal number ...
expscllem 28353 Lemma for proving non-nega...
expscl 28354 Closure law for surreal ex...
n0expscl 28355 Closure law for non-negati...
nnexpscl 28356 Closure law for positive s...
zexpscl 28357 Closure law for surreal in...
expadds 28358 Sum of exponents law for s...
expsne0 28359 A non-negative surreal int...
expsgt0 28360 A non-negative surreal int...
pw2recs 28361 Any power of two has a mul...
pw2divscld 28362 Division closure for power...
pw2divsmuld 28363 Relationship between surre...
pw2divscan3d 28364 Cancellation law for surre...
pw2divscan2d 28365 A cancellation law for sur...
pw2divsassd 28366 An associative law for div...
pw2divscan4d 28367 Cancellation law for divis...
pw2gt0divsd 28368 Division of a positive sur...
pw2ge0divsd 28369 Divison of a non-negative ...
pw2divsrecd 28370 Relationship between surre...
pw2divsdird 28371 Distribution of surreal di...
pw2divsnegd 28372 Move negative sign inside ...
pw2sltdivmuld 28373 Surreal less-than relation...
pw2sltmuldiv2d 28374 Surreal less-than relation...
pw2sltdiv1d 28375 Surreal less-than relation...
avgslt1d 28376 Ordering property for aver...
avgslt2d 28377 Ordering property for aver...
halfcut 28378 Relate the cut of twice of...
addhalfcut 28379 The cut of a surreal non-n...
pw2cut 28380 Extend ~ halfcut to arbitr...
pw2cutp1 28381 Simplify ~ pw2cut in the c...
pw2cut2 28382 Cut expression for powers ...
elzs12 28383 Membership in the dyadic f...
zs12ex 28384 The class of dyadic fracti...
zzs12 28385 A surreal integer is a dya...
zs12no 28386 A dyadic is a surreal. (C...
zs12addscl 28387 The dyadics are closed und...
zs12negscl 28388 The dyadics are closed und...
zs12subscl 28389 The dyadics are closed und...
zs12half 28390 Half of a dyadic is a dyad...
zs12negsclb 28391 A surreal is a dyadic frac...
zs12zodd 28392 A dyadic fraction is eithe...
zs12ge0 28393 An expression for non-nega...
zs12bday 28394 A dyadic fraction has a fi...
elreno 28397 Membership in the set of s...
recut 28398 The cut involved in defini...
0reno 28399 Surreal zero is a surreal ...
renegscl 28400 The surreal reals are clos...
readdscl 28401 The surreal reals are clos...
remulscllem1 28402 Lemma for ~ remulscl . Sp...
remulscllem2 28403 Lemma for ~ remulscl . Bo...
remulscl 28404 The surreal reals are clos...
itvndx 28415 Index value of the Interva...
lngndx 28416 Index value of the "line" ...
itvid 28417 Utility theorem: index-ind...
lngid 28418 Utility theorem: index-ind...
slotsinbpsd 28419 The slots ` Base ` , ` +g ...
slotslnbpsd 28420 The slots ` Base ` , ` +g ...
lngndxnitvndx 28421 The slot for the line is n...
trkgstr 28422 Functionality of a Tarski ...
trkgbas 28423 The base set of a Tarski g...
trkgdist 28424 The measure of a distance ...
trkgitv 28425 The congruence relation in...
istrkgc 28432 Property of being a Tarski...
istrkgb 28433 Property of being a Tarski...
istrkgcb 28434 Property of being a Tarski...
istrkge 28435 Property of fulfilling Euc...
istrkgl 28436 Building lines from the se...
istrkgld 28437 Property of fulfilling the...
istrkg2ld 28438 Property of fulfilling the...
istrkg3ld 28439 Property of fulfilling the...
axtgcgrrflx 28440 Axiom of reflexivity of co...
axtgcgrid 28441 Axiom of identity of congr...
axtgsegcon 28442 Axiom of segment construct...
axtg5seg 28443 Five segments axiom, Axiom...
axtgbtwnid 28444 Identity of Betweenness. ...
axtgpasch 28445 Axiom of (Inner) Pasch, Ax...
axtgcont1 28446 Axiom of Continuity. Axio...
axtgcont 28447 Axiom of Continuity. Axio...
axtglowdim2 28448 Lower dimension axiom for ...
axtgupdim2 28449 Upper dimension axiom for ...
axtgeucl 28450 Euclid's Axiom. Axiom A10...
tgjustf 28451 Given any function ` F ` ,...
tgjustr 28452 Given any equivalence rela...
tgjustc1 28453 A justification for using ...
tgjustc2 28454 A justification for using ...
tgcgrcomimp 28455 Congruence commutes on the...
tgcgrcomr 28456 Congruence commutes on the...
tgcgrcoml 28457 Congruence commutes on the...
tgcgrcomlr 28458 Congruence commutes on bot...
tgcgreqb 28459 Congruence and equality. ...
tgcgreq 28460 Congruence and equality. ...
tgcgrneq 28461 Congruence and equality. ...
tgcgrtriv 28462 Degenerate segments are co...
tgcgrextend 28463 Link congruence over a pai...
tgsegconeq 28464 Two points that satisfy th...
tgbtwntriv2 28465 Betweenness always holds f...
tgbtwncom 28466 Betweenness commutes. The...
tgbtwncomb 28467 Betweenness commutes, bico...
tgbtwnne 28468 Betweenness and inequality...
tgbtwntriv1 28469 Betweenness always holds f...
tgbtwnswapid 28470 If you can swap the first ...
tgbtwnintr 28471 Inner transitivity law for...
tgbtwnexch3 28472 Exchange the first endpoin...
tgbtwnouttr2 28473 Outer transitivity law for...
tgbtwnexch2 28474 Exchange the outer point o...
tgbtwnouttr 28475 Outer transitivity law for...
tgbtwnexch 28476 Outer transitivity law for...
tgtrisegint 28477 A line segment between two...
tglowdim1 28478 Lower dimension axiom for ...
tglowdim1i 28479 Lower dimension axiom for ...
tgldimor 28480 Excluded-middle like state...
tgldim0eq 28481 In dimension zero, any two...
tgldim0itv 28482 In dimension zero, any two...
tgldim0cgr 28483 In dimension zero, any two...
tgbtwndiff 28484 There is always a ` c ` di...
tgdim01 28485 In geometries of dimension...
tgifscgr 28486 Inner five segment congrue...
tgcgrsub 28487 Removing identical parts f...
iscgrg 28490 The congruence property fo...
iscgrgd 28491 The property for two seque...
iscgrglt 28492 The property for two seque...
trgcgrg 28493 The property for two trian...
trgcgr 28494 Triangle congruence. (Con...
ercgrg 28495 The shape congruence relat...
tgcgrxfr 28496 A line segment can be divi...
cgr3id 28497 Reflexivity law for three-...
cgr3simp1 28498 Deduce segment congruence ...
cgr3simp2 28499 Deduce segment congruence ...
cgr3simp3 28500 Deduce segment congruence ...
cgr3swap12 28501 Permutation law for three-...
cgr3swap23 28502 Permutation law for three-...
cgr3swap13 28503 Permutation law for three-...
cgr3rotr 28504 Permutation law for three-...
cgr3rotl 28505 Permutation law for three-...
trgcgrcom 28506 Commutative law for three-...
cgr3tr 28507 Transitivity law for three...
tgbtwnxfr 28508 A condition for extending ...
tgcgr4 28509 Two quadrilaterals to be c...
isismt 28512 Property of being an isome...
ismot 28513 Property of being an isome...
motcgr 28514 Property of a motion: dist...
idmot 28515 The identity is a motion. ...
motf1o 28516 Motions are bijections. (...
motcl 28517 Closure of motions. (Cont...
motco 28518 The composition of two mot...
cnvmot 28519 The converse of a motion i...
motplusg 28520 The operation for motions ...
motgrp 28521 The motions of a geometry ...
motcgrg 28522 Property of a motion: dist...
motcgr3 28523 Property of a motion: dist...
tglng 28524 Lines of a Tarski Geometry...
tglnfn 28525 Lines as functions. (Cont...
tglnunirn 28526 Lines are sets of points. ...
tglnpt 28527 Lines are sets of points. ...
tglngne 28528 It takes two different poi...
tglngval 28529 The line going through poi...
tglnssp 28530 Lines are subset of the ge...
tgellng 28531 Property of lying on the l...
tgcolg 28532 We choose the notation ` (...
btwncolg1 28533 Betweenness implies coline...
btwncolg2 28534 Betweenness implies coline...
btwncolg3 28535 Betweenness implies coline...
colcom 28536 Swapping the points defini...
colrot1 28537 Rotating the points defini...
colrot2 28538 Rotating the points defini...
ncolcom 28539 Swapping non-colinear poin...
ncolrot1 28540 Rotating non-colinear poin...
ncolrot2 28541 Rotating non-colinear poin...
tgdim01ln 28542 In geometries of dimension...
ncoltgdim2 28543 If there are three non-col...
lnxfr 28544 Transfer law for colineari...
lnext 28545 Extend a line with a missi...
tgfscgr 28546 Congruence law for the gen...
lncgr 28547 Congruence rule for lines....
lnid 28548 Identity law for points on...
tgidinside 28549 Law for finding a point in...
tgbtwnconn1lem1 28550 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 28551 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 28552 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 28553 Connectivity law for betwe...
tgbtwnconn2 28554 Another connectivity law f...
tgbtwnconn3 28555 Inner connectivity law for...
tgbtwnconnln3 28556 Derive colinearity from be...
tgbtwnconn22 28557 Double connectivity law fo...
tgbtwnconnln1 28558 Derive colinearity from be...
tgbtwnconnln2 28559 Derive colinearity from be...
legval 28562 Value of the less-than rel...
legov 28563 Value of the less-than rel...
legov2 28564 An equivalent definition o...
legid 28565 Reflexivity of the less-th...
btwnleg 28566 Betweenness implies less-t...
legtrd 28567 Transitivity of the less-t...
legtri3 28568 Equality from the less-tha...
legtrid 28569 Trichotomy law for the les...
leg0 28570 Degenerated (zero-length) ...
legeq 28571 Deduce equality from "less...
legbtwn 28572 Deduce betweenness from "l...
tgcgrsub2 28573 Removing identical parts f...
ltgseg 28574 The set ` E ` denotes the ...
ltgov 28575 Strict "shorter than" geom...
legov3 28576 An equivalent definition o...
legso 28577 The "shorter than" relatio...
ishlg 28580 Rays : Definition 6.1 of ...
hlcomb 28581 The half-line relation com...
hlcomd 28582 The half-line relation com...
hlne1 28583 The half-line relation imp...
hlne2 28584 The half-line relation imp...
hlln 28585 The half-line relation imp...
hleqnid 28586 The endpoint does not belo...
hlid 28587 The half-line relation is ...
hltr 28588 The half-line relation is ...
hlbtwn 28589 Betweenness is a sufficien...
btwnhl1 28590 Deduce half-line from betw...
btwnhl2 28591 Deduce half-line from betw...
btwnhl 28592 Swap betweenness for a hal...
lnhl 28593 Either a point ` C ` on th...
hlcgrex 28594 Construct a point on a hal...
hlcgreulem 28595 Lemma for ~ hlcgreu . (Co...
hlcgreu 28596 The point constructed in ~...
btwnlng1 28597 Betweenness implies coline...
btwnlng2 28598 Betweenness implies coline...
btwnlng3 28599 Betweenness implies coline...
lncom 28600 Swapping the points defini...
lnrot1 28601 Rotating the points defini...
lnrot2 28602 Rotating the points defini...
ncolne1 28603 Non-colinear points are di...
ncolne2 28604 Non-colinear points are di...
tgisline 28605 The property of being a pr...
tglnne 28606 It takes two different poi...
tglndim0 28607 There are no lines in dime...
tgelrnln 28608 The property of being a pr...
tglineeltr 28609 Transitivity law for lines...
tglineelsb2 28610 If ` S ` lies on PQ , then...
tglinerflx1 28611 Reflexivity law for line m...
tglinerflx2 28612 Reflexivity law for line m...
tglinecom 28613 Commutativity law for line...
tglinethru 28614 If ` A ` is a line contain...
tghilberti1 28615 There is a line through an...
tghilberti2 28616 There is at most one line ...
tglinethrueu 28617 There is a unique line goi...
tglnne0 28618 A line ` A ` has at least ...
tglnpt2 28619 Find a second point on a l...
tglineintmo 28620 Two distinct lines interse...
tglineineq 28621 Two distinct lines interse...
tglineneq 28622 Given three non-colinear p...
tglineinteq 28623 Two distinct lines interse...
ncolncol 28624 Deduce non-colinearity fro...
coltr 28625 A transitivity law for col...
coltr3 28626 A transitivity law for col...
colline 28627 Three points are colinear ...
tglowdim2l 28628 Reformulation of the lower...
tglowdim2ln 28629 There is always one point ...
mirreu3 28632 Existential uniqueness of ...
mirval 28633 Value of the point inversi...
mirfv 28634 Value of the point inversi...
mircgr 28635 Property of the image by t...
mirbtwn 28636 Property of the image by t...
ismir 28637 Property of the image by t...
mirf 28638 Point inversion as functio...
mircl 28639 Closure of the point inver...
mirmir 28640 The point inversion functi...
mircom 28641 Variation on ~ mirmir . (...
mirreu 28642 Any point has a unique ant...
mireq 28643 Equality deduction for poi...
mirinv 28644 The only invariant point o...
mirne 28645 Mirror of non-center point...
mircinv 28646 The center point is invari...
mirf1o 28647 The point inversion functi...
miriso 28648 The point inversion functi...
mirbtwni 28649 Point inversion preserves ...
mirbtwnb 28650 Point inversion preserves ...
mircgrs 28651 Point inversion preserves ...
mirmir2 28652 Point inversion of a point...
mirmot 28653 Point investion is a motio...
mirln 28654 If two points are on the s...
mirln2 28655 If a point and its mirror ...
mirconn 28656 Point inversion of connect...
mirhl 28657 If two points ` X ` and ` ...
mirbtwnhl 28658 If the center of the point...
mirhl2 28659 Deduce half-line relation ...
mircgrextend 28660 Link congruence over a pai...
mirtrcgr 28661 Point inversion of one poi...
mirauto 28662 Point inversion preserves ...
miduniq 28663 Uniqueness of the middle p...
miduniq1 28664 Uniqueness of the middle p...
miduniq2 28665 If two point inversions co...
colmid 28666 Colinearity and equidistan...
symquadlem 28667 Lemma of the symetrial qua...
krippenlem 28668 Lemma for ~ krippen . We ...
krippen 28669 Krippenlemma (German for c...
midexlem 28670 Lemma for the existence of...
israg 28675 Property for 3 points A, B...
ragcom 28676 Commutative rule for right...
ragcol 28677 The right angle property i...
ragmir 28678 Right angle property is pr...
mirrag 28679 Right angle is conserved b...
ragtrivb 28680 Trivial right angle. Theo...
ragflat2 28681 Deduce equality from two r...
ragflat 28682 Deduce equality from two r...
ragtriva 28683 Trivial right angle. Theo...
ragflat3 28684 Right angle and colinearit...
ragcgr 28685 Right angle and colinearit...
motrag 28686 Right angles are preserved...
ragncol 28687 Right angle implies non-co...
perpln1 28688 Derive a line from perpend...
perpln2 28689 Derive a line from perpend...
isperp 28690 Property for 2 lines A, B ...
perpcom 28691 The "perpendicular" relati...
perpneq 28692 Two perpendicular lines ar...
isperp2 28693 Property for 2 lines A, B,...
isperp2d 28694 One direction of ~ isperp2...
ragperp 28695 Deduce that two lines are ...
footexALT 28696 Alternative version of ~ f...
footexlem1 28697 Lemma for ~ footex . (Con...
footexlem2 28698 Lemma for ~ footex . (Con...
footex 28699 From a point ` C ` outside...
foot 28700 From a point ` C ` outside...
footne 28701 Uniqueness of the foot poi...
footeq 28702 Uniqueness of the foot poi...
hlperpnel 28703 A point on a half-line whi...
perprag 28704 Deduce a right angle from ...
perpdragALT 28705 Deduce a right angle from ...
perpdrag 28706 Deduce a right angle from ...
colperp 28707 Deduce a perpendicularity ...
colperpexlem1 28708 Lemma for ~ colperp . Fir...
colperpexlem2 28709 Lemma for ~ colperpex . S...
colperpexlem3 28710 Lemma for ~ colperpex . C...
colperpex 28711 In dimension 2 and above, ...
mideulem2 28712 Lemma for ~ opphllem , whi...
opphllem 28713 Lemma 8.24 of [Schwabhause...
mideulem 28714 Lemma for ~ mideu . We ca...
midex 28715 Existence of the midpoint,...
mideu 28716 Existence and uniqueness o...
islnopp 28717 The property for two point...
islnoppd 28718 Deduce that ` A ` and ` B ...
oppne1 28719 Points lying on opposite s...
oppne2 28720 Points lying on opposite s...
oppne3 28721 Points lying on opposite s...
oppcom 28722 Commutativity rule for "op...
opptgdim2 28723 If two points opposite to ...
oppnid 28724 The "opposite to a line" r...
opphllem1 28725 Lemma for ~ opphl . (Cont...
opphllem2 28726 Lemma for ~ opphl . Lemma...
opphllem3 28727 Lemma for ~ opphl : We as...
opphllem4 28728 Lemma for ~ opphl . (Cont...
opphllem5 28729 Second part of Lemma 9.4 o...
opphllem6 28730 First part of Lemma 9.4 of...
oppperpex 28731 Restating ~ colperpex usin...
opphl 28732 If two points ` A ` and ` ...
outpasch 28733 Axiom of Pasch, outer form...
hlpasch 28734 An application of the axio...
ishpg 28737 Value of the half-plane re...
hpgbr 28738 Half-planes : property for...
hpgne1 28739 Points on the open half pl...
hpgne2 28740 Points on the open half pl...
lnopp2hpgb 28741 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 28742 If two points lie on the o...
hpgerlem 28743 Lemma for the proof that t...
hpgid 28744 The half-plane relation is...
hpgcom 28745 The half-plane relation co...
hpgtr 28746 The half-plane relation is...
colopp 28747 Opposite sides of a line f...
colhp 28748 Half-plane relation for co...
hphl 28749 If two points are on the s...
midf 28754 Midpoint as a function. (...
midcl 28755 Closure of the midpoint. ...
ismidb 28756 Property of the midpoint. ...
midbtwn 28757 Betweenness of midpoint. ...
midcgr 28758 Congruence of midpoint. (...
midid 28759 Midpoint of a null segment...
midcom 28760 Commutativity rule for the...
mirmid 28761 Point inversion preserves ...
lmieu 28762 Uniqueness of the line mir...
lmif 28763 Line mirror as a function....
lmicl 28764 Closure of the line mirror...
islmib 28765 Property of the line mirro...
lmicom 28766 The line mirroring functio...
lmilmi 28767 Line mirroring is an invol...
lmireu 28768 Any point has a unique ant...
lmieq 28769 Equality deduction for lin...
lmiinv 28770 The invariants of the line...
lmicinv 28771 The mirroring line is an i...
lmimid 28772 If we have a right angle, ...
lmif1o 28773 The line mirroring functio...
lmiisolem 28774 Lemma for ~ lmiiso . (Con...
lmiiso 28775 The line mirroring functio...
lmimot 28776 Line mirroring is a motion...
hypcgrlem1 28777 Lemma for ~ hypcgr , case ...
hypcgrlem2 28778 Lemma for ~ hypcgr , case ...
hypcgr 28779 If the catheti of two righ...
lmiopp 28780 Line mirroring produces po...
lnperpex 28781 Existence of a perpendicul...
trgcopy 28782 Triangle construction: a c...
trgcopyeulem 28783 Lemma for ~ trgcopyeu . (...
trgcopyeu 28784 Triangle construction: a c...
iscgra 28787 Property for two angles AB...
iscgra1 28788 A special version of ~ isc...
iscgrad 28789 Sufficient conditions for ...
cgrane1 28790 Angles imply inequality. ...
cgrane2 28791 Angles imply inequality. ...
cgrane3 28792 Angles imply inequality. ...
cgrane4 28793 Angles imply inequality. ...
cgrahl1 28794 Angle congruence is indepe...
cgrahl2 28795 Angle congruence is indepe...
cgracgr 28796 First direction of proposi...
cgraid 28797 Angle congruence is reflex...
cgraswap 28798 Swap rays in a congruence ...
cgrcgra 28799 Triangle congruence implie...
cgracom 28800 Angle congruence commutes....
cgratr 28801 Angle congruence is transi...
flatcgra 28802 Flat angles are congruent....
cgraswaplr 28803 Swap both side of angle co...
cgrabtwn 28804 Angle congruence preserves...
cgrahl 28805 Angle congruence preserves...
cgracol 28806 Angle congruence preserves...
cgrancol 28807 Angle congruence preserves...
dfcgra2 28808 This is the full statement...
sacgr 28809 Supplementary angles of co...
oacgr 28810 Vertical angle theorem. V...
acopy 28811 Angle construction. Theor...
acopyeu 28812 Angle construction. Theor...
isinag 28816 Property for point ` X ` t...
isinagd 28817 Sufficient conditions for ...
inagflat 28818 Any point lies in a flat a...
inagswap 28819 Swap the order of the half...
inagne1 28820 Deduce inequality from the...
inagne2 28821 Deduce inequality from the...
inagne3 28822 Deduce inequality from the...
inaghl 28823 The "point lie in angle" r...
isleag 28825 Geometrical "less than" pr...
isleagd 28826 Sufficient condition for "...
leagne1 28827 Deduce inequality from the...
leagne2 28828 Deduce inequality from the...
leagne3 28829 Deduce inequality from the...
leagne4 28830 Deduce inequality from the...
cgrg3col4 28831 Lemma 11.28 of [Schwabhaus...
tgsas1 28832 First congruence theorem: ...
tgsas 28833 First congruence theorem: ...
tgsas2 28834 First congruence theorem: ...
tgsas3 28835 First congruence theorem: ...
tgasa1 28836 Second congruence theorem:...
tgasa 28837 Second congruence theorem:...
tgsss1 28838 Third congruence theorem: ...
tgsss2 28839 Third congruence theorem: ...
tgsss3 28840 Third congruence theorem: ...
dfcgrg2 28841 Congruence for two triangl...
isoas 28842 Congruence theorem for iso...
iseqlg 28845 Property of a triangle bei...
iseqlgd 28846 Condition for a triangle t...
f1otrgds 28847 Convenient lemma for ~ f1o...
f1otrgitv 28848 Convenient lemma for ~ f1o...
f1otrg 28849 A bijection between bases ...
f1otrge 28850 A bijection between bases ...
ttgval 28853 Define a function to augme...
ttglem 28854 Lemma for ~ ttgbas , ~ ttg...
ttgbas 28855 The base set of a subcompl...
ttgplusg 28856 The addition operation of ...
ttgsub 28857 The subtraction operation ...
ttgvsca 28858 The scalar product of a su...
ttgds 28859 The metric of a subcomplex...
ttgitvval 28860 Betweenness for a subcompl...
ttgelitv 28861 Betweenness for a subcompl...
ttgbtwnid 28862 Any subcomplex module equi...
ttgcontlem1 28863 Lemma for % ttgcont . (Co...
xmstrkgc 28864 Any metric space fulfills ...
cchhllem 28865 Lemma for chlbas and chlvs...
elee 28872 Membership in a Euclidean ...
mptelee 28873 A condition for a mapping ...
eleenn 28874 If ` A ` is in ` ( EE `` N...
eleei 28875 The forward direction of ~...
eedimeq 28876 A point belongs to at most...
brbtwn 28877 The binary relation form o...
brcgr 28878 The binary relation form o...
fveere 28879 The function value of a po...
fveecn 28880 The function value of a po...
eqeefv 28881 Two points are equal iff t...
eqeelen 28882 Two points are equal iff t...
brbtwn2 28883 Alternate characterization...
colinearalglem1 28884 Lemma for ~ colinearalg . ...
colinearalglem2 28885 Lemma for ~ colinearalg . ...
colinearalglem3 28886 Lemma for ~ colinearalg . ...
colinearalglem4 28887 Lemma for ~ colinearalg . ...
colinearalg 28888 An algebraic characterizat...
eleesub 28889 Membership of a subtractio...
eleesubd 28890 Membership of a subtractio...
axdimuniq 28891 The unique dimension axiom...
axcgrrflx 28892 ` A ` is as far from ` B `...
axcgrtr 28893 Congruence is transitive. ...
axcgrid 28894 If there is no distance be...
axsegconlem1 28895 Lemma for ~ axsegcon . Ha...
axsegconlem2 28896 Lemma for ~ axsegcon . Sh...
axsegconlem3 28897 Lemma for ~ axsegcon . Sh...
axsegconlem4 28898 Lemma for ~ axsegcon . Sh...
axsegconlem5 28899 Lemma for ~ axsegcon . Sh...
axsegconlem6 28900 Lemma for ~ axsegcon . Sh...
axsegconlem7 28901 Lemma for ~ axsegcon . Sh...
axsegconlem8 28902 Lemma for ~ axsegcon . Sh...
axsegconlem9 28903 Lemma for ~ axsegcon . Sh...
axsegconlem10 28904 Lemma for ~ axsegcon . Sh...
axsegcon 28905 Any segment ` A B ` can be...
ax5seglem1 28906 Lemma for ~ ax5seg . Rexp...
ax5seglem2 28907 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 28908 Lemma for ~ ax5seg . (Con...
ax5seglem3 28909 Lemma for ~ ax5seg . Comb...
ax5seglem4 28910 Lemma for ~ ax5seg . Give...
ax5seglem5 28911 Lemma for ~ ax5seg . If `...
ax5seglem6 28912 Lemma for ~ ax5seg . Give...
ax5seglem7 28913 Lemma for ~ ax5seg . An a...
ax5seglem8 28914 Lemma for ~ ax5seg . Use ...
ax5seglem9 28915 Lemma for ~ ax5seg . Take...
ax5seg 28916 The five segment axiom. T...
axbtwnid 28917 Points are indivisible. T...
axpaschlem 28918 Lemma for ~ axpasch . Set...
axpasch 28919 The inner Pasch axiom. Ta...
axlowdimlem1 28920 Lemma for ~ axlowdim . Es...
axlowdimlem2 28921 Lemma for ~ axlowdim . Sh...
axlowdimlem3 28922 Lemma for ~ axlowdim . Se...
axlowdimlem4 28923 Lemma for ~ axlowdim . Se...
axlowdimlem5 28924 Lemma for ~ axlowdim . Sh...
axlowdimlem6 28925 Lemma for ~ axlowdim . Sh...
axlowdimlem7 28926 Lemma for ~ axlowdim . Se...
axlowdimlem8 28927 Lemma for ~ axlowdim . Ca...
axlowdimlem9 28928 Lemma for ~ axlowdim . Ca...
axlowdimlem10 28929 Lemma for ~ axlowdim . Se...
axlowdimlem11 28930 Lemma for ~ axlowdim . Ca...
axlowdimlem12 28931 Lemma for ~ axlowdim . Ca...
axlowdimlem13 28932 Lemma for ~ axlowdim . Es...
axlowdimlem14 28933 Lemma for ~ axlowdim . Ta...
axlowdimlem15 28934 Lemma for ~ axlowdim . Se...
axlowdimlem16 28935 Lemma for ~ axlowdim . Se...
axlowdimlem17 28936 Lemma for ~ axlowdim . Es...
axlowdim1 28937 The lower dimension axiom ...
axlowdim2 28938 The lower two-dimensional ...
axlowdim 28939 The general lower dimensio...
axeuclidlem 28940 Lemma for ~ axeuclid . Ha...
axeuclid 28941 Euclid's axiom. Take an a...
axcontlem1 28942 Lemma for ~ axcont . Chan...
axcontlem2 28943 Lemma for ~ axcont . The ...
axcontlem3 28944 Lemma for ~ axcont . Give...
axcontlem4 28945 Lemma for ~ axcont . Give...
axcontlem5 28946 Lemma for ~ axcont . Comp...
axcontlem6 28947 Lemma for ~ axcont . Stat...
axcontlem7 28948 Lemma for ~ axcont . Give...
axcontlem8 28949 Lemma for ~ axcont . A po...
axcontlem9 28950 Lemma for ~ axcont . Give...
axcontlem10 28951 Lemma for ~ axcont . Give...
axcontlem11 28952 Lemma for ~ axcont . Elim...
axcontlem12 28953 Lemma for ~ axcont . Elim...
axcont 28954 The axiom of continuity. ...
eengv 28957 The value of the Euclidean...
eengstr 28958 The Euclidean geometry as ...
eengbas 28959 The Base of the Euclidean ...
ebtwntg 28960 The betweenness relation u...
ecgrtg 28961 The congruence relation us...
elntg 28962 The line definition in the...
elntg2 28963 The line definition in the...
eengtrkg 28964 The geometry structure for...
eengtrkge 28965 The geometry structure for...
edgfid 28968 Utility theorem: index-ind...
edgfndx 28969 Index value of the ~ df-ed...
edgfndxnn 28970 The index value of the edg...
edgfndxid 28971 The value of the edge func...
basendxltedgfndx 28972 The index value of the ` B...
basendxnedgfndx 28973 The slots ` Base ` and ` ....
vtxval 28978 The set of vertices of a g...
iedgval 28979 The set of indexed edges o...
1vgrex 28980 A graph with at least one ...
opvtxval 28981 The set of vertices of a g...
opvtxfv 28982 The set of vertices of a g...
opvtxov 28983 The set of vertices of a g...
opiedgval 28984 The set of indexed edges o...
opiedgfv 28985 The set of indexed edges o...
opiedgov 28986 The set of indexed edges o...
opvtxfvi 28987 The set of vertices of a g...
opiedgfvi 28988 The set of indexed edges o...
funvtxdmge2val 28989 The set of vertices of an ...
funiedgdmge2val 28990 The set of indexed edges o...
funvtxdm2val 28991 The set of vertices of an ...
funiedgdm2val 28992 The set of indexed edges o...
funvtxval0 28993 The set of vertices of an ...
basvtxval 28994 The set of vertices of a g...
edgfiedgval 28995 The set of indexed edges o...
funvtxval 28996 The set of vertices of a g...
funiedgval 28997 The set of indexed edges o...
structvtxvallem 28998 Lemma for ~ structvtxval a...
structvtxval 28999 The set of vertices of an ...
structiedg0val 29000 The set of indexed edges o...
structgrssvtxlem 29001 Lemma for ~ structgrssvtx ...
structgrssvtx 29002 The set of vertices of a g...
structgrssiedg 29003 The set of indexed edges o...
struct2grstr 29004 A graph represented as an ...
struct2grvtx 29005 The set of vertices of a g...
struct2griedg 29006 The set of indexed edges o...
graop 29007 Any representation of a gr...
grastruct 29008 Any representation of a gr...
gropd 29009 If any representation of a...
grstructd 29010 If any representation of a...
gropeld 29011 If any representation of a...
grstructeld 29012 If any representation of a...
setsvtx 29013 The vertices of a structur...
setsiedg 29014 The (indexed) edges of a s...
snstrvtxval 29015 The set of vertices of a g...
snstriedgval 29016 The set of indexed edges o...
vtxval0 29017 Degenerated case 1 for ver...
iedgval0 29018 Degenerated case 1 for edg...
vtxvalsnop 29019 Degenerated case 2 for ver...
iedgvalsnop 29020 Degenerated case 2 for edg...
vtxval3sn 29021 Degenerated case 3 for ver...
iedgval3sn 29022 Degenerated case 3 for edg...
vtxvalprc 29023 Degenerated case 4 for ver...
iedgvalprc 29024 Degenerated case 4 for edg...
edgval 29027 The edges of a graph. (Co...
iedgedg 29028 An indexed edge is an edge...
edgopval 29029 The edges of a graph repre...
edgov 29030 The edges of a graph repre...
edgstruct 29031 The edges of a graph repre...
edgiedgb 29032 A set is an edge iff it is...
edg0iedg0 29033 There is no edge in a grap...
isuhgr 29038 The predicate "is an undir...
isushgr 29039 The predicate "is an undir...
uhgrf 29040 The edge function of an un...
ushgrf 29041 The edge function of an un...
uhgrss 29042 An edge is a subset of ver...
uhgreq12g 29043 If two sets have the same ...
uhgrfun 29044 The edge function of an un...
uhgrn0 29045 An edge is a nonempty subs...
lpvtx 29046 The endpoints of a loop (w...
ushgruhgr 29047 An undirected simple hyper...
isuhgrop 29048 The property of being an u...
uhgr0e 29049 The empty graph, with vert...
uhgr0vb 29050 The null graph, with no ve...
uhgr0 29051 The null graph represented...
uhgrun 29052 The union ` U ` of two (un...
uhgrunop 29053 The union of two (undirect...
ushgrun 29054 The union ` U ` of two (un...
ushgrunop 29055 The union of two (undirect...
uhgrstrrepe 29056 Replacing (or adding) the ...
incistruhgr 29057 An _incidence structure_ `...
isupgr 29062 The property of being an u...
wrdupgr 29063 The property of being an u...
upgrf 29064 The edge function of an un...
upgrfn 29065 The edge function of an un...
upgrss 29066 An edge is a subset of ver...
upgrn0 29067 An edge is a nonempty subs...
upgrle 29068 An edge of an undirected p...
upgrfi 29069 An edge is a finite subset...
upgrex 29070 An edge is an unordered pa...
upgrbi 29071 Show that an unordered pai...
upgrop 29072 A pseudograph represented ...
isumgr 29073 The property of being an u...
isumgrs 29074 The simplified property of...
wrdumgr 29075 The property of being an u...
umgrf 29076 The edge function of an un...
umgrfn 29077 The edge function of an un...
umgredg2 29078 An edge of a multigraph ha...
umgrbi 29079 Show that an unordered pai...
upgruhgr 29080 An undirected pseudograph ...
umgrupgr 29081 An undirected multigraph i...
umgruhgr 29082 An undirected multigraph i...
upgrle2 29083 An edge of an undirected p...
umgrnloopv 29084 In a multigraph, there is ...
umgredgprv 29085 In a multigraph, an edge i...
umgrnloop 29086 In a multigraph, there is ...
umgrnloop0 29087 A multigraph has no loops....
umgr0e 29088 The empty graph, with vert...
upgr0e 29089 The empty graph, with vert...
upgr1elem 29090 Lemma for ~ upgr1e and ~ u...
upgr1e 29091 A pseudograph with one edg...
upgr0eop 29092 The empty graph, with vert...
upgr1eop 29093 A pseudograph with one edg...
upgr0eopALT 29094 Alternate proof of ~ upgr0...
upgr1eopALT 29095 Alternate proof of ~ upgr1...
upgrun 29096 The union ` U ` of two pse...
upgrunop 29097 The union of two pseudogra...
umgrun 29098 The union ` U ` of two mul...
umgrunop 29099 The union of two multigrap...
umgrislfupgrlem 29100 Lemma for ~ umgrislfupgr a...
umgrislfupgr 29101 A multigraph is a loop-fre...
lfgredgge2 29102 An edge of a loop-free gra...
lfgrnloop 29103 A loop-free graph has no l...
uhgredgiedgb 29104 In a hypergraph, a set is ...
uhgriedg0edg0 29105 A hypergraph has no edges ...
uhgredgn0 29106 An edge of a hypergraph is...
edguhgr 29107 An edge of a hypergraph is...
uhgredgrnv 29108 An edge of a hypergraph co...
uhgredgss 29109 The set of edges of a hype...
upgredgss 29110 The set of edges of a pseu...
umgredgss 29111 The set of edges of a mult...
edgupgr 29112 Properties of an edge of a...
edgumgr 29113 Properties of an edge of a...
uhgrvtxedgiedgb 29114 In a hypergraph, a vertex ...
upgredg 29115 For each edge in a pseudog...
umgredg 29116 For each edge in a multigr...
upgrpredgv 29117 An edge of a pseudograph a...
umgrpredgv 29118 An edge of a multigraph al...
upgredg2vtx 29119 For a vertex incident to a...
upgredgpr 29120 If a proper pair (of verti...
edglnl 29121 The edges incident with a ...
numedglnl 29122 The number of edges incide...
umgredgne 29123 An edge of a multigraph al...
umgrnloop2 29124 A multigraph has no loops....
umgredgnlp 29125 An edge of a multigraph is...
isuspgr 29130 The property of being a si...
isusgr 29131 The property of being a si...
uspgrf 29132 The edge function of a sim...
usgrf 29133 The edge function of a sim...
isusgrs 29134 The property of being a si...
usgrfs 29135 The edge function of a sim...
usgrfun 29136 The edge function of a sim...
usgredgss 29137 The set of edges of a simp...
edgusgr 29138 An edge of a simple graph ...
isuspgrop 29139 The property of being an u...
isusgrop 29140 The property of being an u...
usgrop 29141 A simple graph represented...
isausgr 29142 The property of an ordered...
ausgrusgrb 29143 The equivalence of the def...
usgrausgri 29144 A simple graph represented...
ausgrumgri 29145 If an alternatively define...
ausgrusgri 29146 The equivalence of the def...
usgrausgrb 29147 The equivalence of the def...
usgredgop 29148 An edge of a simple graph ...
usgrf1o 29149 The edge function of a sim...
usgrf1 29150 The edge function of a sim...
uspgrf1oedg 29151 The edge function of a sim...
usgrss 29152 An edge is a subset of ver...
uspgredgiedg 29153 In a simple pseudograph, f...
uspgriedgedg 29154 In a simple pseudograph, f...
uspgrushgr 29155 A simple pseudograph is an...
uspgrupgr 29156 A simple pseudograph is an...
uspgrupgrushgr 29157 A graph is a simple pseudo...
usgruspgr 29158 A simple graph is a simple...
usgrumgr 29159 A simple graph is an undir...
usgrumgruspgr 29160 A graph is a simple graph ...
usgruspgrb 29161 A class is a simple graph ...
uspgruhgr 29162 An undirected simple pseud...
usgrupgr 29163 A simple graph is an undir...
usgruhgr 29164 A simple graph is an undir...
usgrislfuspgr 29165 A simple graph is a loop-f...
uspgrun 29166 The union ` U ` of two sim...
uspgrunop 29167 The union of two simple ps...
usgrun 29168 The union ` U ` of two sim...
usgrunop 29169 The union of two simple gr...
usgredg2 29170 The value of the "edge fun...
usgredg2ALT 29171 Alternate proof of ~ usgre...
usgredgprv 29172 In a simple graph, an edge...
usgredgprvALT 29173 Alternate proof of ~ usgre...
usgredgppr 29174 An edge of a simple graph ...
usgrpredgv 29175 An edge of a simple graph ...
edgssv2 29176 An edge of a simple graph ...
usgredg 29177 For each edge in a simple ...
usgrnloopv 29178 In a simple graph, there i...
usgrnloopvALT 29179 Alternate proof of ~ usgrn...
usgrnloop 29180 In a simple graph, there i...
usgrnloopALT 29181 Alternate proof of ~ usgrn...
usgrnloop0 29182 A simple graph has no loop...
usgrnloop0ALT 29183 Alternate proof of ~ usgrn...
usgredgne 29184 An edge of a simple graph ...
usgrf1oedg 29185 The edge function of a sim...
uhgr2edg 29186 If a vertex is adjacent to...
umgr2edg 29187 If a vertex is adjacent to...
usgr2edg 29188 If a vertex is adjacent to...
umgr2edg1 29189 If a vertex is adjacent to...
usgr2edg1 29190 If a vertex is adjacent to...
umgrvad2edg 29191 If a vertex is adjacent to...
umgr2edgneu 29192 If a vertex is adjacent to...
usgrsizedg 29193 In a simple graph, the siz...
usgredg3 29194 The value of the "edge fun...
usgredg4 29195 For a vertex incident to a...
usgredgreu 29196 For a vertex incident to a...
usgredg2vtx 29197 For a vertex incident to a...
uspgredg2vtxeu 29198 For a vertex incident to a...
usgredg2vtxeu 29199 For a vertex incident to a...
usgredg2vtxeuALT 29200 Alternate proof of ~ usgre...
uspgredg2vlem 29201 Lemma for ~ uspgredg2v . ...
uspgredg2v 29202 In a simple pseudograph, t...
usgredg2vlem1 29203 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 29204 Lemma 2 for ~ usgredg2v . ...
usgredg2v 29205 In a simple graph, the map...
usgriedgleord 29206 Alternate version of ~ usg...
ushgredgedg 29207 In a simple hypergraph the...
usgredgedg 29208 In a simple graph there is...
ushgredgedgloop 29209 In a simple hypergraph the...
uspgredgleord 29210 In a simple pseudograph th...
usgredgleord 29211 In a simple graph the numb...
usgredgleordALT 29212 Alternate proof for ~ usgr...
usgrstrrepe 29213 Replacing (or adding) the ...
usgr0e 29214 The empty graph, with vert...
usgr0vb 29215 The null graph, with no ve...
uhgr0v0e 29216 The null graph, with no ve...
uhgr0vsize0 29217 The size of a hypergraph w...
uhgr0edgfi 29218 A graph of order 0 (i.e. w...
usgr0v 29219 The null graph, with no ve...
uhgr0vusgr 29220 The null graph, with no ve...
usgr0 29221 The null graph represented...
uspgr1e 29222 A simple pseudograph with ...
usgr1e 29223 A simple graph with one ed...
usgr0eop 29224 The empty graph, with vert...
uspgr1eop 29225 A simple pseudograph with ...
uspgr1ewop 29226 A simple pseudograph with ...
uspgr1v1eop 29227 A simple pseudograph with ...
usgr1eop 29228 A simple graph with (at le...
uspgr2v1e2w 29229 A simple pseudograph with ...
usgr2v1e2w 29230 A simple graph with two ve...
edg0usgr 29231 A class without edges is a...
lfuhgr1v0e 29232 A loop-free hypergraph wit...
usgr1vr 29233 A simple graph with one ve...
usgr1v 29234 A class with one (or no) v...
usgr1v0edg 29235 A class with one (or no) v...
usgrexmpldifpr 29236 Lemma for ~ usgrexmpledg :...
usgrexmplef 29237 Lemma for ~ usgrexmpl . (...
usgrexmpllem 29238 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 29239 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 29240 The edges ` { 0 , 1 } , { ...
usgrexmpl 29241 ` G ` is a simple graph of...
griedg0prc 29242 The class of empty graphs ...
griedg0ssusgr 29243 The class of all simple gr...
usgrprc 29244 The class of simple graphs...
relsubgr 29247 The class of the subgraph ...
subgrv 29248 If a class is a subgraph o...
issubgr 29249 The property of a set to b...
issubgr2 29250 The property of a set to b...
subgrprop 29251 The properties of a subgra...
subgrprop2 29252 The properties of a subgra...
uhgrissubgr 29253 The property of a hypergra...
subgrprop3 29254 The properties of a subgra...
egrsubgr 29255 An empty graph consisting ...
0grsubgr 29256 The null graph (represente...
0uhgrsubgr 29257 The null graph (as hypergr...
uhgrsubgrself 29258 A hypergraph is a subgraph...
subgrfun 29259 The edge function of a sub...
subgruhgrfun 29260 The edge function of a sub...
subgreldmiedg 29261 An element of the domain o...
subgruhgredgd 29262 An edge of a subgraph of a...
subumgredg2 29263 An edge of a subgraph of a...
subuhgr 29264 A subgraph of a hypergraph...
subupgr 29265 A subgraph of a pseudograp...
subumgr 29266 A subgraph of a multigraph...
subusgr 29267 A subgraph of a simple gra...
uhgrspansubgrlem 29268 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 29269 A spanning subgraph ` S ` ...
uhgrspan 29270 A spanning subgraph ` S ` ...
upgrspan 29271 A spanning subgraph ` S ` ...
umgrspan 29272 A spanning subgraph ` S ` ...
usgrspan 29273 A spanning subgraph ` S ` ...
uhgrspanop 29274 A spanning subgraph of a h...
upgrspanop 29275 A spanning subgraph of a p...
umgrspanop 29276 A spanning subgraph of a m...
usgrspanop 29277 A spanning subgraph of a s...
uhgrspan1lem1 29278 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 29279 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 29280 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 29281 The induced subgraph ` S `...
upgrreslem 29282 Lemma for ~ upgrres . (Co...
umgrreslem 29283 Lemma for ~ umgrres and ~ ...
upgrres 29284 A subgraph obtained by rem...
umgrres 29285 A subgraph obtained by rem...
usgrres 29286 A subgraph obtained by rem...
upgrres1lem1 29287 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 29288 Lemma for ~ umgrres1 . (C...
upgrres1lem2 29289 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 29290 Lemma 3 for ~ upgrres1 . ...
upgrres1 29291 A pseudograph obtained by ...
umgrres1 29292 A multigraph obtained by r...
usgrres1 29293 Restricting a simple graph...
isfusgr 29296 The property of being a fi...
fusgrvtxfi 29297 A finite simple graph has ...
isfusgrf1 29298 The property of being a fi...
isfusgrcl 29299 The property of being a fi...
fusgrusgr 29300 A finite simple graph is a...
opfusgr 29301 A finite simple graph repr...
usgredgffibi 29302 The number of edges in a s...
fusgredgfi 29303 In a finite simple graph t...
usgr1v0e 29304 The size of a (finite) sim...
usgrfilem 29305 In a finite simple graph, ...
fusgrfisbase 29306 Induction base for ~ fusgr...
fusgrfisstep 29307 Induction step in ~ fusgrf...
fusgrfis 29308 A finite simple graph is o...
fusgrfupgrfs 29309 A finite simple graph is a...
nbgrprc0 29312 The set of neighbors is em...
nbgrcl 29313 If a class ` X ` has at le...
nbgrval 29314 The set of neighbors of a ...
dfnbgr2 29315 Alternate definition of th...
dfnbgr3 29316 Alternate definition of th...
nbgrnvtx0 29317 If a class ` X ` is not a ...
nbgrel 29318 Characterization of a neig...
nbgrisvtx 29319 Every neighbor ` N ` of a ...
nbgrssvtx 29320 The neighbors of a vertex ...
nbuhgr 29321 The set of neighbors of a ...
nbupgr 29322 The set of neighbors of a ...
nbupgrel 29323 A neighbor of a vertex in ...
nbumgrvtx 29324 The set of neighbors of a ...
nbumgr 29325 The set of neighbors of an...
nbusgrvtx 29326 The set of neighbors of a ...
nbusgr 29327 The set of neighbors of an...
nbgr2vtx1edg 29328 If a graph has two vertice...
nbuhgr2vtx1edgblem 29329 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 29330 If a hypergraph has two ve...
nbusgreledg 29331 A class/vertex is a neighb...
uhgrnbgr0nb 29332 A vertex which is not endp...
nbgr0vtx 29333 In a null graph (with no v...
nbgr0edglem 29334 Lemma for ~ nbgr0edg and ~...
nbgr0edg 29335 In an empty graph (with no...
nbgr1vtx 29336 In a graph with one vertex...
nbgrnself 29337 A vertex in a graph is not...
nbgrnself2 29338 A class ` X ` is not a nei...
nbgrssovtx 29339 The neighbors of a vertex ...
nbgrssvwo2 29340 The neighbors of a vertex ...
nbgrsym 29341 In a graph, the neighborho...
nbupgrres 29342 The neighborhood of a vert...
usgrnbcnvfv 29343 Applying the edge function...
nbusgredgeu 29344 For each neighbor of a ver...
edgnbusgreu 29345 For each edge incident to ...
nbusgredgeu0 29346 For each neighbor of a ver...
nbusgrf1o0 29347 The mapping of neighbors o...
nbusgrf1o1 29348 The set of neighbors of a ...
nbusgrf1o 29349 The set of neighbors of a ...
nbedgusgr 29350 The number of neighbors of...
edgusgrnbfin 29351 The number of neighbors of...
nbusgrfi 29352 The class of neighbors of ...
nbfiusgrfi 29353 The class of neighbors of ...
hashnbusgrnn0 29354 The number of neighbors of...
nbfusgrlevtxm1 29355 The number of neighbors of...
nbfusgrlevtxm2 29356 If there is a vertex which...
nbusgrvtxm1 29357 If the number of neighbors...
nb3grprlem1 29358 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 29359 Lemma 2 for ~ nb3grpr . (...
nb3grpr 29360 The neighbors of a vertex ...
nb3grpr2 29361 The neighbors of a vertex ...
nb3gr2nb 29362 If the neighbors of two ve...
uvtxval 29365 The set of all universal v...
uvtxel 29366 A universal vertex, i.e. a...
uvtxisvtx 29367 A universal vertex is a ve...
uvtxssvtx 29368 The set of the universal v...
vtxnbuvtx 29369 A universal vertex has all...
uvtxnbgrss 29370 A universal vertex has all...
uvtxnbgrvtx 29371 A universal vertex is neig...
uvtx0 29372 There is no universal vert...
isuvtx 29373 The set of all universal v...
uvtxel1 29374 Characterization of a univ...
uvtx01vtx 29375 If a graph/class has no ed...
uvtx2vtx1edg 29376 If a graph has two vertice...
uvtx2vtx1edgb 29377 If a hypergraph has two ve...
uvtxnbgr 29378 A universal vertex has all...
uvtxnbgrb 29379 A vertex is universal iff ...
uvtxusgr 29380 The set of all universal v...
uvtxusgrel 29381 A universal vertex, i.e. a...
uvtxnm1nbgr 29382 A universal vertex has ` n...
nbusgrvtxm1uvtx 29383 If the number of neighbors...
uvtxnbvtxm1 29384 A universal vertex has ` n...
nbupgruvtxres 29385 The neighborhood of a univ...
uvtxupgrres 29386 A universal vertex is univ...
cplgruvtxb 29391 A graph ` G ` is complete ...
prcliscplgr 29392 A proper class (representi...
iscplgr 29393 The property of being a co...
iscplgrnb 29394 A graph is complete iff al...
iscplgredg 29395 A graph ` G ` is complete ...
iscusgr 29396 The property of being a co...
cusgrusgr 29397 A complete simple graph is...
cusgrcplgr 29398 A complete simple graph is...
iscusgrvtx 29399 A simple graph is complete...
cusgruvtxb 29400 A simple graph is complete...
iscusgredg 29401 A simple graph is complete...
cusgredg 29402 In a complete simple graph...
cplgr0 29403 The null graph (with no ve...
cusgr0 29404 The null graph (with no ve...
cplgr0v 29405 A null graph (with no vert...
cusgr0v 29406 A graph with no vertices a...
cplgr1vlem 29407 Lemma for ~ cplgr1v and ~ ...
cplgr1v 29408 A graph with one vertex is...
cusgr1v 29409 A graph with one vertex an...
cplgr2v 29410 An undirected hypergraph w...
cplgr2vpr 29411 An undirected hypergraph w...
nbcplgr 29412 In a complete graph, each ...
cplgr3v 29413 A pseudograph with three (...
cusgr3vnbpr 29414 The neighbors of a vertex ...
cplgrop 29415 A complete graph represent...
cusgrop 29416 A complete simple graph re...
cusgrexilem1 29417 Lemma 1 for ~ cusgrexi . ...
usgrexilem 29418 Lemma for ~ usgrexi . (Co...
usgrexi 29419 An arbitrary set regarded ...
cusgrexilem2 29420 Lemma 2 for ~ cusgrexi . ...
cusgrexi 29421 An arbitrary set ` V ` reg...
cusgrexg 29422 For each set there is a se...
structtousgr 29423 Any (extensible) structure...
structtocusgr 29424 Any (extensible) structure...
cffldtocusgr 29425 The field of complex numbe...
cffldtocusgrOLD 29426 Obsolete version of ~ cffl...
cusgrres 29427 Restricting a complete sim...
cusgrsizeindb0 29428 Base case of the induction...
cusgrsizeindb1 29429 Base case of the induction...
cusgrsizeindslem 29430 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 29431 Part 1 of induction step i...
cusgrsize2inds 29432 Induction step in ~ cusgrs...
cusgrsize 29433 The size of a finite compl...
cusgrfilem1 29434 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 29435 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 29436 Lemma 3 for ~ cusgrfi . (...
cusgrfi 29437 If the size of a complete ...
usgredgsscusgredg 29438 A simple graph is a subgra...
usgrsscusgr 29439 A simple graph is a subgra...
sizusglecusglem1 29440 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 29441 Lemma 2 for ~ sizusglecusg...
sizusglecusg 29442 The size of a simple graph...
fusgrmaxsize 29443 The maximum size of a fini...
vtxdgfval 29446 The value of the vertex de...
vtxdgval 29447 The degree of a vertex. (...
vtxdgfival 29448 The degree of a vertex for...
vtxdgop 29449 The vertex degree expresse...
vtxdgf 29450 The vertex degree function...
vtxdgelxnn0 29451 The degree of a vertex is ...
vtxdg0v 29452 The degree of a vertex in ...
vtxdg0e 29453 The degree of a vertex in ...
vtxdgfisnn0 29454 The degree of a vertex in ...
vtxdgfisf 29455 The vertex degree function...
vtxdeqd 29456 Equality theorem for the v...
vtxduhgr0e 29457 The degree of a vertex in ...
vtxdlfuhgr1v 29458 The degree of the vertex i...
vdumgr0 29459 A vertex in a multigraph h...
vtxdun 29460 The degree of a vertex in ...
vtxdfiun 29461 The degree of a vertex in ...
vtxduhgrun 29462 The degree of a vertex in ...
vtxduhgrfiun 29463 The degree of a vertex in ...
vtxdlfgrval 29464 The value of the vertex de...
vtxdumgrval 29465 The value of the vertex de...
vtxdusgrval 29466 The value of the vertex de...
vtxd0nedgb 29467 A vertex has degree 0 iff ...
vtxdushgrfvedglem 29468 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 29469 The value of the vertex de...
vtxdusgrfvedg 29470 The value of the vertex de...
vtxduhgr0nedg 29471 If a vertex in a hypergrap...
vtxdumgr0nedg 29472 If a vertex in a multigrap...
vtxduhgr0edgnel 29473 A vertex in a hypergraph h...
vtxdusgr0edgnel 29474 A vertex in a simple graph...
vtxdusgr0edgnelALT 29475 Alternate proof of ~ vtxdu...
vtxdgfusgrf 29476 The vertex degree function...
vtxdgfusgr 29477 In a finite simple graph, ...
fusgrn0degnn0 29478 In a nonempty, finite grap...
1loopgruspgr 29479 A graph with one edge whic...
1loopgredg 29480 The set of edges in a grap...
1loopgrnb0 29481 In a graph (simple pseudog...
1loopgrvd2 29482 The vertex degree of a one...
1loopgrvd0 29483 The vertex degree of a one...
1hevtxdg0 29484 The vertex degree of verte...
1hevtxdg1 29485 The vertex degree of verte...
1hegrvtxdg1 29486 The vertex degree of a gra...
1hegrvtxdg1r 29487 The vertex degree of a gra...
1egrvtxdg1 29488 The vertex degree of a one...
1egrvtxdg1r 29489 The vertex degree of a one...
1egrvtxdg0 29490 The vertex degree of a one...
p1evtxdeqlem 29491 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 29492 If an edge ` E ` which doe...
p1evtxdp1 29493 If an edge ` E ` (not bein...
uspgrloopvtx 29494 The set of vertices in a g...
uspgrloopvtxel 29495 A vertex in a graph (simpl...
uspgrloopiedg 29496 The set of edges in a grap...
uspgrloopedg 29497 The set of edges in a grap...
uspgrloopnb0 29498 In a graph (simple pseudog...
uspgrloopvd2 29499 The vertex degree of a one...
umgr2v2evtx 29500 The set of vertices in a m...
umgr2v2evtxel 29501 A vertex in a multigraph w...
umgr2v2eiedg 29502 The edge function in a mul...
umgr2v2eedg 29503 The set of edges in a mult...
umgr2v2e 29504 A multigraph with two edge...
umgr2v2enb1 29505 In a multigraph with two e...
umgr2v2evd2 29506 In a multigraph with two e...
hashnbusgrvd 29507 In a simple graph, the num...
usgruvtxvdb 29508 In a finite simple graph w...
vdiscusgrb 29509 A finite simple graph with...
vdiscusgr 29510 In a finite complete simpl...
vtxdusgradjvtx 29511 The degree of a vertex in ...
usgrvd0nedg 29512 If a vertex in a simple gr...
uhgrvd00 29513 If every vertex in a hyper...
usgrvd00 29514 If every vertex in a simpl...
vdegp1ai 29515 The induction step for a v...
vdegp1bi 29516 The induction step for a v...
vdegp1ci 29517 The induction step for a v...
vtxdginducedm1lem1 29518 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 29519 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 29520 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 29521 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 29522 The degree of a vertex ` v...
vtxdginducedm1fi 29523 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 29524 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 29525 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 29526 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 29527 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 29528 Induction step of ~ finsum...
finsumvtxdg2size 29529 The sum of the degrees of ...
fusgr1th 29530 The sum of the degrees of ...
finsumvtxdgeven 29531 The sum of the degrees of ...
vtxdgoddnumeven 29532 The number of vertices of ...
fusgrvtxdgonume 29533 The number of vertices of ...
isrgr 29538 The property of a class be...
rgrprop 29539 The properties of a k-regu...
isrusgr 29540 The property of being a k-...
rusgrprop 29541 The properties of a k-regu...
rusgrrgr 29542 A k-regular simple graph i...
rusgrusgr 29543 A k-regular simple graph i...
finrusgrfusgr 29544 A finite regular simple gr...
isrusgr0 29545 The property of being a k-...
rusgrprop0 29546 The properties of a k-regu...
usgreqdrusgr 29547 If all vertices in a simpl...
fusgrregdegfi 29548 In a nonempty finite simpl...
fusgrn0eqdrusgr 29549 If all vertices in a nonem...
frusgrnn0 29550 In a nonempty finite k-reg...
0edg0rgr 29551 A graph is 0-regular if it...
uhgr0edg0rgr 29552 A hypergraph is 0-regular ...
uhgr0edg0rgrb 29553 A hypergraph is 0-regular ...
usgr0edg0rusgr 29554 A simple graph is 0-regula...
0vtxrgr 29555 A null graph (with no vert...
0vtxrusgr 29556 A graph with no vertices a...
0uhgrrusgr 29557 The null graph as hypergra...
0grrusgr 29558 The null graph represented...
0grrgr 29559 The null graph represented...
cusgrrusgr 29560 A complete simple graph wi...
cusgrm1rusgr 29561 A finite simple graph with...
rusgrpropnb 29562 The properties of a k-regu...
rusgrpropedg 29563 The properties of a k-regu...
rusgrpropadjvtx 29564 The properties of a k-regu...
rusgrnumwrdl2 29565 In a k-regular simple grap...
rusgr1vtxlem 29566 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 29567 If a k-regular simple grap...
rgrusgrprc 29568 The class of 0-regular sim...
rusgrprc 29569 The class of 0-regular sim...
rgrprc 29570 The class of 0-regular gra...
rgrprcx 29571 The class of 0-regular gra...
rgrx0ndm 29572 0 is not in the domain of ...
rgrx0nd 29573 The potentially alternativ...
ewlksfval 29580 The set of s-walks of edge...
isewlk 29581 Conditions for a function ...
ewlkprop 29582 Properties of an s-walk of...
ewlkinedg 29583 The intersection (common v...
ewlkle 29584 An s-walk of edges is also...
upgrewlkle2 29585 In a pseudograph, there is...
wkslem1 29586 Lemma 1 for walks to subst...
wkslem2 29587 Lemma 2 for walks to subst...
wksfval 29588 The set of walks (in an un...
iswlk 29589 Properties of a pair of fu...
wlkprop 29590 Properties of a walk. (Co...
wlkv 29591 The classes involved in a ...
iswlkg 29592 Generalization of ~ iswlk ...
wlkf 29593 The mapping enumerating th...
wlkcl 29594 A walk has length ` # ( F ...
wlkp 29595 The mapping enumerating th...
wlkpwrd 29596 The sequence of vertices o...
wlklenvp1 29597 The number of vertices of ...
wksv 29598 The class of walks is a se...
wlkn0 29599 The sequence of vertices o...
wlklenvm1 29600 The number of edges of a w...
ifpsnprss 29601 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 29602 Each pair of adjacent vert...
wlkvtxiedg 29603 The vertices of a walk are...
relwlk 29604 The set ` ( Walks `` G ) `...
wlkvv 29605 If there is at least one w...
wlkop 29606 A walk is an ordered pair....
wlkcpr 29607 A walk as class with two c...
wlk2f 29608 If there is a walk ` W ` t...
wlkcomp 29609 A walk expressed by proper...
wlkcompim 29610 Implications for the prope...
wlkelwrd 29611 The components of a walk a...
wlkeq 29612 Conditions for two walks (...
edginwlk 29613 The value of the edge func...
upgredginwlk 29614 The value of the edge func...
iedginwlk 29615 The value of the edge func...
wlkl1loop 29616 A walk of length 1 from a ...
wlk1walk 29617 A walk is a 1-walk "on the...
wlk1ewlk 29618 A walk is an s-walk "on th...
upgriswlk 29619 Properties of a pair of fu...
upgrwlkedg 29620 The edges of a walk in a p...
upgrwlkcompim 29621 Implications for the prope...
wlkvtxedg 29622 The vertices of a walk are...
upgrwlkvtxedg 29623 The pairs of connected ver...
uspgr2wlkeq 29624 Conditions for two walks w...
uspgr2wlkeq2 29625 Conditions for two walks w...
uspgr2wlkeqi 29626 Conditions for two walks w...
umgrwlknloop 29627 In a multigraph, each walk...
wlkv0 29628 If there is a walk in the ...
g0wlk0 29629 There is no walk in a null...
0wlk0 29630 There is no walk for the e...
wlk0prc 29631 There is no walk in a null...
wlklenvclwlk 29632 The number of vertices in ...
wlkson 29633 The set of walks between t...
iswlkon 29634 Properties of a pair of fu...
wlkonprop 29635 Properties of a walk betwe...
wlkpvtx 29636 A walk connects vertices. ...
wlkepvtx 29637 The endpoints of a walk ar...
wlkoniswlk 29638 A walk between two vertice...
wlkonwlk 29639 A walk is a walk between i...
wlkonwlk1l 29640 A walk is a walk from its ...
wlksoneq1eq2 29641 Two walks with identical s...
wlkonl1iedg 29642 If there is a walk between...
wlkon2n0 29643 The length of a walk betwe...
2wlklem 29644 Lemma for theorems for wal...
upgr2wlk 29645 Properties of a pair of fu...
wlkreslem 29646 Lemma for ~ wlkres . (Con...
wlkres 29647 The restriction ` <. H , Q...
redwlklem 29648 Lemma for ~ redwlk . (Con...
redwlk 29649 A walk ending at the last ...
wlkp1lem1 29650 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 29651 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 29652 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 29653 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 29654 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 29655 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 29656 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 29657 Lemma for ~ wlkp1 . (Cont...
wlkp1 29658 Append one path segment (e...
wlkdlem1 29659 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 29660 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 29661 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 29662 Lemma 4 for ~ wlkd . (Con...
wlkd 29663 Two words representing a w...
lfgrwlkprop 29664 Two adjacent vertices in a...
lfgriswlk 29665 Conditions for a pair of f...
lfgrwlknloop 29666 In a loop-free graph, each...
reltrls 29671 The set ` ( Trails `` G ) ...
trlsfval 29672 The set of trails (in an u...
istrl 29673 Conditions for a pair of c...
trliswlk 29674 A trail is a walk. (Contr...
trlf1 29675 The enumeration ` F ` of a...
trlreslem 29676 Lemma for ~ trlres . Form...
trlres 29677 The restriction ` <. H , Q...
upgrtrls 29678 The set of trails in a pse...
upgristrl 29679 Properties of a pair of fu...
upgrf1istrl 29680 Properties of a pair of a ...
wksonproplem 29681 Lemma for theorems for pro...
trlsonfval 29682 The set of trails between ...
istrlson 29683 Properties of a pair of fu...
trlsonprop 29684 Properties of a trail betw...
trlsonistrl 29685 A trail between two vertic...
trlsonwlkon 29686 A trail between two vertic...
trlontrl 29687 A trail is a trail between...
relpths 29696 The set ` ( Paths `` G ) `...
pthsfval 29697 The set of paths (in an un...
spthsfval 29698 The set of simple paths (i...
ispth 29699 Conditions for a pair of c...
isspth 29700 Conditions for a pair of c...
pthistrl 29701 A path is a trail (in an u...
spthispth 29702 A simple path is a path (i...
pthiswlk 29703 A path is a walk (in an un...
spthiswlk 29704 A simple path is a walk (i...
pthdivtx 29705 The inner vertices of a pa...
pthdadjvtx 29706 The adjacent vertices of a...
dfpth2 29707 Alternate definition for a...
pthdifv 29708 The vertices of a path are...
2pthnloop 29709 A path of length at least ...
upgr2pthnlp 29710 A path of length at least ...
spthdifv 29711 The vertices of a simple p...
spthdep 29712 A simple path (at least of...
pthdepisspth 29713 A path with different star...
upgrwlkdvdelem 29714 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 29715 In a pseudograph, all edge...
upgrspthswlk 29716 The set of simple paths in...
upgrwlkdvspth 29717 A walk consisting of diffe...
pthsonfval 29718 The set of paths between t...
spthson 29719 The set of simple paths be...
ispthson 29720 Properties of a pair of fu...
isspthson 29721 Properties of a pair of fu...
pthsonprop 29722 Properties of a path betwe...
spthonprop 29723 Properties of a simple pat...
pthonispth 29724 A path between two vertice...
pthontrlon 29725 A path between two vertice...
pthonpth 29726 A path is a path between i...
isspthonpth 29727 A pair of functions is a s...
spthonisspth 29728 A simple path between to v...
spthonpthon 29729 A simple path between two ...
spthonepeq 29730 The endpoints of a simple ...
uhgrwkspthlem1 29731 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 29732 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 29733 Any walk of length 1 betwe...
usgr2wlkneq 29734 The vertices and edges are...
usgr2wlkspthlem1 29735 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 29736 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 29737 In a simple graph, any wal...
usgr2trlncl 29738 In a simple graph, any tra...
usgr2trlspth 29739 In a simple graph, any tra...
usgr2pthspth 29740 In a simple graph, any pat...
usgr2pthlem 29741 Lemma for ~ usgr2pth . (C...
usgr2pth 29742 In a simple graph, there i...
usgr2pth0 29743 In a simply graph, there i...
pthdlem1 29744 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 29745 Lemma for ~ pthdlem2 . (C...
pthdlem2 29746 Lemma 2 for ~ pthd . (Con...
pthd 29747 Two words representing a t...
clwlks 29750 The set of closed walks (i...
isclwlk 29751 A pair of functions repres...
clwlkiswlk 29752 A closed walk is a walk (i...
clwlkwlk 29753 Closed walks are walks (in...
clwlkswks 29754 Closed walks are walks (in...
isclwlke 29755 Properties of a pair of fu...
isclwlkupgr 29756 Properties of a pair of fu...
clwlkcomp 29757 A closed walk expressed by...
clwlkcompim 29758 Implications for the prope...
upgrclwlkcompim 29759 Implications for the prope...
clwlkcompbp 29760 Basic properties of the co...
clwlkl1loop 29761 A closed walk of length 1 ...
crcts 29766 The set of circuits (in an...
cycls 29767 The set of cycles (in an u...
iscrct 29768 Sufficient and necessary c...
iscycl 29769 Sufficient and necessary c...
crctprop 29770 The properties of a circui...
cyclprop 29771 The properties of a cycle:...
crctisclwlk 29772 A circuit is a closed walk...
crctistrl 29773 A circuit is a trail. (Co...
crctiswlk 29774 A circuit is a walk. (Con...
cyclispth 29775 A cycle is a path. (Contr...
cycliswlk 29776 A cycle is a walk. (Contr...
cycliscrct 29777 A cycle is a circuit. (Co...
cyclnumvtx 29778 The number of vertices of ...
cyclnspth 29779 A (non-trivial) cycle is n...
pthisspthorcycl 29780 A path is either a simple ...
pthspthcyc 29781 A pair ` <. F , P >. ` rep...
cyclispthon 29782 A cycle is a path starting...
lfgrn1cycl 29783 In a loop-free graph there...
usgr2trlncrct 29784 In a simple graph, any tra...
umgrn1cycl 29785 In a multigraph graph (wit...
uspgrn2crct 29786 In a simple pseudograph th...
usgrn2cycl 29787 In a simple graph there ar...
crctcshwlkn0lem1 29788 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 29789 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 29790 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 29791 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 29792 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 29793 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 29794 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 29795 Lemma for ~ crctcsh . (Co...
crctcshlem2 29796 Lemma for ~ crctcsh . (Co...
crctcshlem3 29797 Lemma for ~ crctcsh . (Co...
crctcshlem4 29798 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 29799 Cyclically shifting the in...
crctcshwlk 29800 Cyclically shifting the in...
crctcshtrl 29801 Cyclically shifting the in...
crctcsh 29802 Cyclically shifting the in...
wwlks 29813 The set of walks (in an un...
iswwlks 29814 A word over the set of ver...
wwlksn 29815 The set of walks (in an un...
iswwlksn 29816 A word over the set of ver...
wwlksnprcl 29817 Derivation of the length o...
iswwlksnx 29818 Properties of a word to re...
wwlkbp 29819 Basic properties of a walk...
wwlknbp 29820 Basic properties of a walk...
wwlknp 29821 Properties of a set being ...
wwlknbp1 29822 Other basic properties of ...
wwlknvtx 29823 The symbols of a word ` W ...
wwlknllvtx 29824 If a word ` W ` represents...
wwlknlsw 29825 If a word represents a wal...
wspthsn 29826 The set of simple paths of...
iswspthn 29827 An element of the set of s...
wspthnp 29828 Properties of a set being ...
wwlksnon 29829 The set of walks of a fixe...
wspthsnon 29830 The set of simple paths of...
iswwlksnon 29831 The set of walks of a fixe...
wwlksnon0 29832 Sufficient conditions for ...
wwlksonvtx 29833 If a word ` W ` represents...
iswspthsnon 29834 The set of simple paths of...
wwlknon 29835 An element of the set of w...
wspthnon 29836 An element of the set of s...
wspthnonp 29837 Properties of a set being ...
wspthneq1eq2 29838 Two simple paths with iden...
wwlksn0s 29839 The set of all walks as wo...
wwlkssswrd 29840 Walks (represented by word...
wwlksn0 29841 A walk of length 0 is repr...
0enwwlksnge1 29842 In graphs without edges, t...
wwlkswwlksn 29843 A walk of a fixed length a...
wwlkssswwlksn 29844 The walks of a fixed lengt...
wlkiswwlks1 29845 The sequence of vertices i...
wlklnwwlkln1 29846 The sequence of vertices i...
wlkiswwlks2lem1 29847 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 29848 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 29849 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 29850 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 29851 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 29852 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 29853 A walk as word corresponds...
wlkiswwlks 29854 A walk as word corresponds...
wlkiswwlksupgr2 29855 A walk as word corresponds...
wlkiswwlkupgr 29856 A walk as word corresponds...
wlkswwlksf1o 29857 The mapping of (ordinary) ...
wlkswwlksen 29858 The set of walks as words ...
wwlksm1edg 29859 Removing the trailing edge...
wlklnwwlkln2lem 29860 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 29861 A walk of length ` N ` as ...
wlklnwwlkn 29862 A walk of length ` N ` as ...
wlklnwwlklnupgr2 29863 A walk of length ` N ` as ...
wlklnwwlknupgr 29864 A walk of length ` N ` as ...
wlknewwlksn 29865 If a walk in a pseudograph...
wlknwwlksnbij 29866 The mapping ` ( t e. T |->...
wlknwwlksnen 29867 In a simple pseudograph, t...
wlknwwlksneqs 29868 The set of walks of a fixe...
wwlkseq 29869 Equality of two walks (as ...
wwlksnred 29870 Reduction of a walk (as wo...
wwlksnext 29871 Extension of a walk (as wo...
wwlksnextbi 29872 Extension of a walk (as wo...
wwlksnredwwlkn 29873 For each walk (as word) of...
wwlksnredwwlkn0 29874 For each walk (as word) of...
wwlksnextwrd 29875 Lemma for ~ wwlksnextbij ....
wwlksnextfun 29876 Lemma for ~ wwlksnextbij ....
wwlksnextinj 29877 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 29878 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 29879 Lemma for ~ wwlksnextbij ....
wwlksnextbij 29880 There is a bijection betwe...
wwlksnexthasheq 29881 The number of the extensio...
disjxwwlksn 29882 Sets of walks (as words) e...
wwlksnndef 29883 Conditions for ` WWalksN `...
wwlksnfi 29884 The number of walks repres...
wlksnfi 29885 The number of walks of fix...
wlksnwwlknvbij 29886 There is a bijection betwe...
wwlksnextproplem1 29887 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 29888 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 29889 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 29890 Adding additional properti...
disjxwwlkn 29891 Sets of walks (as words) e...
hashwwlksnext 29892 Number of walks (as words)...
wwlksnwwlksnon 29893 A walk of fixed length is ...
wspthsnwspthsnon 29894 A simple path of fixed len...
wspthsnonn0vne 29895 If the set of simple paths...
wspthsswwlkn 29896 The set of simple paths of...
wspthnfi 29897 In a finite graph, the set...
wwlksnonfi 29898 In a finite graph, the set...
wspthsswwlknon 29899 The set of simple paths of...
wspthnonfi 29900 In a finite graph, the set...
wspniunwspnon 29901 The set of nonempty simple...
wspn0 29902 If there are no vertices, ...
2wlkdlem1 29903 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 29904 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 29905 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 29906 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 29907 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 29908 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 29909 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 29910 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 29911 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 29912 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 29913 Lemma 10 for ~ 3wlkd . (C...
2wlkd 29914 Construction of a walk fro...
2wlkond 29915 A walk of length 2 from on...
2trld 29916 Construction of a trail fr...
2trlond 29917 A trail of length 2 from o...
2pthd 29918 A path of length 2 from on...
2spthd 29919 A simple path of length 2 ...
2pthond 29920 A simple path of length 2 ...
2pthon3v 29921 For a vertex adjacent to t...
umgr2adedgwlklem 29922 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 29923 In a multigraph, two adjac...
umgr2adedgwlkon 29924 In a multigraph, two adjac...
umgr2adedgwlkonALT 29925 Alternate proof for ~ umgr...
umgr2adedgspth 29926 In a multigraph, two adjac...
umgr2wlk 29927 In a multigraph, there is ...
umgr2wlkon 29928 For each pair of adjacent ...
elwwlks2s3 29929 A walk of length 2 as word...
midwwlks2s3 29930 There is a vertex between ...
wwlks2onv 29931 If a length 3 string repre...
elwwlks2ons3im 29932 A walk as word of length 2...
elwwlks2ons3 29933 For each walk of length 2 ...
s3wwlks2on 29934 A length 3 string which re...
sps3wwlks2on 29935 A length 3 string which re...
usgrwwlks2on 29936 A walk of length 2 between...
umgrwwlks2on 29937 A walk of length 2 between...
wwlks2onsym 29938 There is a walk of length ...
elwwlks2on 29939 A walk of length 2 between...
elwspths2on 29940 A simple path of length 2 ...
elwspths2onw 29941 A simple path of length 2 ...
wpthswwlks2on 29942 For two different vertices...
2wspdisj 29943 All simple paths of length...
2wspiundisj 29944 All simple paths of length...
usgr2wspthons3 29945 A simple path of length 2 ...
usgr2wspthon 29946 A simple path of length 2 ...
elwwlks2 29947 A walk of length 2 between...
elwspths2spth 29948 A simple path of length 2 ...
rusgrnumwwlkl1 29949 In a k-regular graph, ther...
rusgrnumwwlkslem 29950 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 29951 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 29952 Induction base 0 for ~ rus...
rusgrnumwwlkb1 29953 Induction base 1 for ~ rus...
rusgr0edg 29954 Special case for graphs wi...
rusgrnumwwlks 29955 Induction step for ~ rusgr...
rusgrnumwwlk 29956 In a ` K `-regular graph, ...
rusgrnumwwlkg 29957 In a ` K `-regular graph, ...
rusgrnumwlkg 29958 In a k-regular graph, the ...
clwwlknclwwlkdif 29959 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 29960 In a ` K `-regular graph, ...
clwwlk 29963 The set of closed walks (i...
isclwwlk 29964 Properties of a word to re...
clwwlkbp 29965 Basic properties of a clos...
clwwlkgt0 29966 There is no empty closed w...
clwwlksswrd 29967 Closed walks (represented ...
clwwlk1loop 29968 A closed walk of length 1 ...
clwwlkccatlem 29969 Lemma for ~ clwwlkccat : i...
clwwlkccat 29970 The concatenation of two w...
umgrclwwlkge2 29971 A closed walk in a multigr...
clwlkclwwlklem2a1 29972 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 29973 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 29974 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 29975 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 29976 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 29977 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 29978 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 29979 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 29980 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 29981 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 29982 A closed walk as word of l...
clwlkclwwlk2 29983 A closed walk corresponds ...
clwlkclwwlkflem 29984 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 29985 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 29986 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 29987 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 29988 ` F ` is a function from t...
clwlkclwwlkfo 29989 ` F ` is a function from t...
clwlkclwwlkf1 29990 ` F ` is a one-to-one func...
clwlkclwwlkf1o 29991 ` F ` is a bijection betwe...
clwlkclwwlken 29992 The set of the nonempty cl...
clwwisshclwwslemlem 29993 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 29994 Lemma for ~ clwwisshclwws ...
clwwisshclwws 29995 Cyclically shifting a clos...
clwwisshclwwsn 29996 Cyclically shifting a clos...
erclwwlkrel 29997 ` .~ ` is a relation. (Co...
erclwwlkeq 29998 Two classes are equivalent...
erclwwlkeqlen 29999 If two classes are equival...
erclwwlkref 30000 ` .~ ` is a reflexive rela...
erclwwlksym 30001 ` .~ ` is a symmetric rela...
erclwwlktr 30002 ` .~ ` is a transitive rel...
erclwwlk 30003 ` .~ ` is an equivalence r...
clwwlkn 30006 The set of closed walks of...
isclwwlkn 30007 A word over the set of ver...
clwwlkn0 30008 There is no closed walk of...
clwwlkneq0 30009 Sufficient conditions for ...
clwwlkclwwlkn 30010 A closed walk of a fixed l...
clwwlksclwwlkn 30011 The closed walks of a fixe...
clwwlknlen 30012 The length of a word repre...
clwwlknnn 30013 The length of a closed wal...
clwwlknwrd 30014 A closed walk of a fixed l...
clwwlknbp 30015 Basic properties of a clos...
isclwwlknx 30016 Characterization of a word...
clwwlknp 30017 Properties of a set being ...
clwwlknwwlksn 30018 A word representing a clos...
clwwlknlbonbgr1 30019 The last but one vertex in...
clwwlkinwwlk 30020 If the initial vertex of a...
clwwlkn1 30021 A closed walk of length 1 ...
loopclwwlkn1b 30022 The singleton word consist...
clwwlkn1loopb 30023 A word represents a closed...
clwwlkn2 30024 A closed walk of length 2 ...
clwwlknfi 30025 If there is only a finite ...
clwwlkel 30026 Obtaining a closed walk (a...
clwwlkf 30027 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 30028 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 30029 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 30030 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 30031 F is a 1-1 onto function, ...
clwwlken 30032 The set of closed walks of...
clwwlknwwlkncl 30033 Obtaining a closed walk (a...
clwwlkwwlksb 30034 A nonempty word over verti...
clwwlknwwlksnb 30035 A word over vertices repre...
clwwlkext2edg 30036 If a word concatenated wit...
wwlksext2clwwlk 30037 If a word represents a wal...
wwlksubclwwlk 30038 Any prefix of a word repre...
clwwnisshclwwsn 30039 Cyclically shifting a clos...
eleclclwwlknlem1 30040 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 30041 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 30042 The set of cyclical shifts...
clwwlknccat 30043 The concatenation of two w...
umgr2cwwk2dif 30044 If a word represents a clo...
umgr2cwwkdifex 30045 If a word represents a clo...
erclwwlknrel 30046 ` .~ ` is a relation. (Co...
erclwwlkneq 30047 Two classes are equivalent...
erclwwlkneqlen 30048 If two classes are equival...
erclwwlknref 30049 ` .~ ` is a reflexive rela...
erclwwlknsym 30050 ` .~ ` is a symmetric rela...
erclwwlkntr 30051 ` .~ ` is a transitive rel...
erclwwlkn 30052 ` .~ ` is an equivalence r...
qerclwwlknfi 30053 The quotient set of the se...
hashclwwlkn0 30054 The number of closed walks...
eclclwwlkn1 30055 An equivalence class accor...
eleclclwwlkn 30056 A member of an equivalence...
hashecclwwlkn1 30057 The size of every equivale...
umgrhashecclwwlk 30058 The size of every equivale...
fusgrhashclwwlkn 30059 The size of the set of clo...
clwwlkndivn 30060 The size of the set of clo...
clwlknf1oclwwlknlem1 30061 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 30062 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 30063 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 30064 There is a one-to-one onto...
clwlkssizeeq 30065 The size of the set of clo...
clwlksndivn 30066 The size of the set of clo...
clwwlknonmpo 30069 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 30070 The set of closed walks on...
isclwwlknon 30071 A word over the set of ver...
clwwlk0on0 30072 There is no word over the ...
clwwlknon0 30073 Sufficient conditions for ...
clwwlknonfin 30074 In a finite graph ` G ` , ...
clwwlknonel 30075 Characterization of a word...
clwwlknonccat 30076 The concatenation of two w...
clwwlknon1 30077 The set of closed walks on...
clwwlknon1loop 30078 If there is a loop at vert...
clwwlknon1nloop 30079 If there is no loop at ver...
clwwlknon1sn 30080 The set of (closed) walks ...
clwwlknon1le1 30081 There is at most one (clos...
clwwlknon2 30082 The set of closed walks on...
clwwlknon2x 30083 The set of closed walks on...
s2elclwwlknon2 30084 Sufficient conditions of a...
clwwlknon2num 30085 In a ` K `-regular graph `...
clwwlknonwwlknonb 30086 A word over vertices repre...
clwwlknonex2lem1 30087 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 30088 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 30089 Extending a closed walk ` ...
clwwlknonex2e 30090 Extending a closed walk ` ...
clwwlknondisj 30091 The sets of closed walks o...
clwwlknun 30092 The set of closed walks of...
clwwlkvbij 30093 There is a bijection betwe...
0ewlk 30094 The empty set (empty seque...
1ewlk 30095 A sequence of 1 edge is an...
0wlk 30096 A pair of an empty set (of...
is0wlk 30097 A pair of an empty set (of...
0wlkonlem1 30098 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 30099 Lemma 2 for ~ 0wlkon and ~...
0wlkon 30100 A walk of length 0 from a ...
0wlkons1 30101 A walk of length 0 from a ...
0trl 30102 A pair of an empty set (of...
is0trl 30103 A pair of an empty set (of...
0trlon 30104 A trail of length 0 from a...
0pth 30105 A pair of an empty set (of...
0spth 30106 A pair of an empty set (of...
0pthon 30107 A path of length 0 from a ...
0pthon1 30108 A path of length 0 from a ...
0pthonv 30109 For each vertex there is a...
0clwlk 30110 A pair of an empty set (of...
0clwlkv 30111 Any vertex (more precisely...
0clwlk0 30112 There is no closed walk in...
0crct 30113 A pair of an empty set (of...
0cycl 30114 A pair of an empty set (of...
1pthdlem1 30115 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 30116 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 30117 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 30118 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 30119 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 30120 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 30121 In a graph with two vertic...
1trld 30122 In a graph with two vertic...
1pthd 30123 In a graph with two vertic...
1pthond 30124 In a graph with two vertic...
upgr1wlkdlem1 30125 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 30126 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 30127 In a pseudograph with two ...
upgr1trld 30128 In a pseudograph with two ...
upgr1pthd 30129 In a pseudograph with two ...
upgr1pthond 30130 In a pseudograph with two ...
lppthon 30131 A loop (which is an edge a...
lp1cycl 30132 A loop (which is an edge a...
1pthon2v 30133 For each pair of adjacent ...
1pthon2ve 30134 For each pair of adjacent ...
wlk2v2elem1 30135 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 30136 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 30137 In a graph with two vertic...
ntrl2v2e 30138 A walk which is not a trai...
3wlkdlem1 30139 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 30140 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 30141 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 30142 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 30143 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 30144 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 30145 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 30146 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 30147 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 30148 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 30149 Lemma 10 for ~ 3wlkd . (C...
3wlkd 30150 Construction of a walk fro...
3wlkond 30151 A walk of length 3 from on...
3trld 30152 Construction of a trail fr...
3trlond 30153 A trail of length 3 from o...
3pthd 30154 A path of length 3 from on...
3pthond 30155 A path of length 3 from on...
3spthd 30156 A simple path of length 3 ...
3spthond 30157 A simple path of length 3 ...
3cycld 30158 Construction of a 3-cycle ...
3cyclpd 30159 Construction of a 3-cycle ...
upgr3v3e3cycl 30160 If there is a cycle of len...
uhgr3cyclexlem 30161 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 30162 If there are three differe...
umgr3cyclex 30163 If there are three (differ...
umgr3v3e3cycl 30164 If and only if there is a ...
upgr4cycl4dv4e 30165 If there is a cycle of len...
dfconngr1 30168 Alternative definition of ...
isconngr 30169 The property of being a co...
isconngr1 30170 The property of being a co...
cusconngr 30171 A complete hypergraph is c...
0conngr 30172 A graph without vertices i...
0vconngr 30173 A graph without vertices i...
1conngr 30174 A graph with (at most) one...
conngrv2edg 30175 A vertex in a connected gr...
vdn0conngrumgrv2 30176 A vertex in a connected mu...
releupth 30179 The set ` ( EulerPaths `` ...
eupths 30180 The Eulerian paths on the ...
iseupth 30181 The property " ` <. F , P ...
iseupthf1o 30182 The property " ` <. F , P ...
eupthi 30183 Properties of an Eulerian ...
eupthf1o 30184 The ` F ` function in an E...
eupthfi 30185 Any graph with an Eulerian...
eupthseg 30186 The ` N ` -th edge in an e...
upgriseupth 30187 The property " ` <. F , P ...
upgreupthi 30188 Properties of an Eulerian ...
upgreupthseg 30189 The ` N ` -th edge in an e...
eupthcl 30190 An Eulerian path has lengt...
eupthistrl 30191 An Eulerian path is a trai...
eupthiswlk 30192 An Eulerian path is a walk...
eupthpf 30193 The ` P ` function in an E...
eupth0 30194 There is an Eulerian path ...
eupthres 30195 The restriction ` <. H , Q...
eupthp1 30196 Append one path segment to...
eupth2eucrct 30197 Append one path segment to...
eupth2lem1 30198 Lemma for ~ eupth2 . (Con...
eupth2lem2 30199 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 30200 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 30201 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 30202 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 30203 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 30204 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 30205 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 30206 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 30207 Formerly part of proof of ...
eupth2lem3lem1 30208 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 30209 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 30210 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 30211 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 30212 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 30213 Formerly part of proof of ...
eupth2lem3lem7 30214 Lemma for ~ eupth2lem3 : ...
eupthvdres 30215 Formerly part of proof of ...
eupth2lem3 30216 Lemma for ~ eupth2 . (Con...
eupth2lemb 30217 Lemma for ~ eupth2 (induct...
eupth2lems 30218 Lemma for ~ eupth2 (induct...
eupth2 30219 The only vertices of odd d...
eulerpathpr 30220 A graph with an Eulerian p...
eulerpath 30221 A pseudograph with an Eule...
eulercrct 30222 A pseudograph with an Eule...
eucrctshift 30223 Cyclically shifting the in...
eucrct2eupth1 30224 Removing one edge ` ( I ``...
eucrct2eupth 30225 Removing one edge ` ( I ``...
konigsbergvtx 30226 The set of vertices of the...
konigsbergiedg 30227 The indexed edges of the K...
konigsbergiedgw 30228 The indexed edges of the K...
konigsbergssiedgwpr 30229 Each subset of the indexed...
konigsbergssiedgw 30230 Each subset of the indexed...
konigsbergumgr 30231 The Königsberg graph ...
konigsberglem1 30232 Lemma 1 for ~ konigsberg :...
konigsberglem2 30233 Lemma 2 for ~ konigsberg :...
konigsberglem3 30234 Lemma 3 for ~ konigsberg :...
konigsberglem4 30235 Lemma 4 for ~ konigsberg :...
konigsberglem5 30236 Lemma 5 for ~ konigsberg :...
konigsberg 30237 The Königsberg Bridge...
isfrgr 30240 The property of being a fr...
frgrusgr 30241 A friendship graph is a si...
frgr0v 30242 Any null graph (set with n...
frgr0vb 30243 Any null graph (without ve...
frgruhgr0v 30244 Any null graph (without ve...
frgr0 30245 The null graph (graph with...
frcond1 30246 The friendship condition: ...
frcond2 30247 The friendship condition: ...
frgreu 30248 Variant of ~ frcond2 : An...
frcond3 30249 The friendship condition, ...
frcond4 30250 The friendship condition, ...
frgr1v 30251 Any graph with (at most) o...
nfrgr2v 30252 Any graph with two (differ...
frgr3vlem1 30253 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 30254 Lemma 2 for ~ frgr3v . (C...
frgr3v 30255 Any graph with three verti...
1vwmgr 30256 Every graph with one verte...
3vfriswmgrlem 30257 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 30258 Every friendship graph wit...
1to2vfriswmgr 30259 Every friendship graph wit...
1to3vfriswmgr 30260 Every friendship graph wit...
1to3vfriendship 30261 The friendship theorem for...
2pthfrgrrn 30262 Between any two (different...
2pthfrgrrn2 30263 Between any two (different...
2pthfrgr 30264 Between any two (different...
3cyclfrgrrn1 30265 Every vertex in a friendsh...
3cyclfrgrrn 30266 Every vertex in a friendsh...
3cyclfrgrrn2 30267 Every vertex in a friendsh...
3cyclfrgr 30268 Every vertex in a friendsh...
4cycl2v2nb 30269 In a (maybe degenerate) 4-...
4cycl2vnunb 30270 In a 4-cycle, two distinct...
n4cyclfrgr 30271 There is no 4-cycle in a f...
4cyclusnfrgr 30272 A graph with a 4-cycle is ...
frgrnbnb 30273 If two neighbors ` U ` and...
frgrconngr 30274 A friendship graph is conn...
vdgn0frgrv2 30275 A vertex in a friendship g...
vdgn1frgrv2 30276 Any vertex in a friendship...
vdgn1frgrv3 30277 Any vertex in a friendship...
vdgfrgrgt2 30278 Any vertex in a friendship...
frgrncvvdeqlem1 30279 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 30280 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 30281 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 30282 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 30283 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 30284 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 30285 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 30286 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 30287 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 30288 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 30289 In a friendship graph, two...
frgrwopreglem4a 30290 In a friendship graph any ...
frgrwopreglem5a 30291 If a friendship graph has ...
frgrwopreglem1 30292 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 30293 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 30294 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 30295 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 30296 According to statement 5 i...
frgrwopregbsn 30297 According to statement 5 i...
frgrwopreg1 30298 According to statement 5 i...
frgrwopreg2 30299 According to statement 5 i...
frgrwopreglem5lem 30300 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 30301 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 30302 Alternate direct proof of ...
frgrwopreg 30303 In a friendship graph ther...
frgrregorufr0 30304 In a friendship graph ther...
frgrregorufr 30305 If there is a vertex havin...
frgrregorufrg 30306 If there is a vertex havin...
frgr2wwlkeu 30307 For two different vertices...
frgr2wwlkn0 30308 In a friendship graph, the...
frgr2wwlk1 30309 In a friendship graph, the...
frgr2wsp1 30310 In a friendship graph, the...
frgr2wwlkeqm 30311 If there is a (simple) pat...
frgrhash2wsp 30312 The number of simple paths...
fusgreg2wsplem 30313 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 30314 The set of paths of length...
fusgreghash2wspv 30315 According to statement 7 i...
fusgreg2wsp 30316 In a finite simple graph, ...
2wspmdisj 30317 The sets of paths of lengt...
fusgreghash2wsp 30318 In a finite k-regular grap...
frrusgrord0lem 30319 Lemma for ~ frrusgrord0 . ...
frrusgrord0 30320 If a nonempty finite frien...
frrusgrord 30321 If a nonempty finite frien...
numclwwlk2lem1lem 30322 Lemma for ~ numclwwlk2lem1...
2clwwlklem 30323 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 30324 If the initial vertex of a...
clwwnonrepclwwnon 30325 If the initial vertex of a...
2clwwlk2clwwlklem 30326 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 30327 Value of operation ` C ` ,...
2clwwlk2 30328 The set ` ( X C 2 ) ` of d...
2clwwlkel 30329 Characterization of an ele...
2clwwlk2clwwlk 30330 An element of the value of...
numclwwlk1lem2foalem 30331 Lemma for ~ numclwwlk1lem2...
extwwlkfab 30332 The set ` ( X C N ) ` of d...
extwwlkfabel 30333 Characterization of an ele...
numclwwlk1lem2foa 30334 Going forth and back from ...
numclwwlk1lem2f 30335 ` T ` is a function, mappi...
numclwwlk1lem2fv 30336 Value of the function ` T ...
numclwwlk1lem2f1 30337 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 30338 ` T ` is an onto function....
numclwwlk1lem2f1o 30339 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 30340 The set of double loops of...
numclwwlk1 30341 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 30342 ` F ` is a bijection betwe...
clwwlknonclwlknonen 30343 The sets of the two repres...
dlwwlknondlwlknonf1olem1 30344 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 30345 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 30346 The sets of the two repres...
wlkl0 30347 There is exactly one walk ...
clwlknon2num 30348 There are k walks of lengt...
numclwlk1lem1 30349 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 30350 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 30351 Statement 9 in [Huneke] p....
numclwwlkovh0 30352 Value of operation ` H ` ,...
numclwwlkovh 30353 Value of operation ` H ` ,...
numclwwlkovq 30354 Value of operation ` Q ` ,...
numclwwlkqhash 30355 In a ` K `-regular graph, ...
numclwwlk2lem1 30356 In a friendship graph, for...
numclwlk2lem2f 30357 ` R ` is a function mappin...
numclwlk2lem2fv 30358 Value of the function ` R ...
numclwlk2lem2f1o 30359 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 30360 In a friendship graph, the...
numclwwlk2 30361 Statement 10 in [Huneke] p...
numclwwlk3lem1 30362 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 30363 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 30364 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 30365 Statement 12 in [Huneke] p...
numclwwlk4 30366 The total number of closed...
numclwwlk5lem 30367 Lemma for ~ numclwwlk5 . ...
numclwwlk5 30368 Statement 13 in [Huneke] p...
numclwwlk7lem 30369 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 30370 For a prime divisor ` P ` ...
numclwwlk7 30371 Statement 14 in [Huneke] p...
numclwwlk8 30372 The size of the set of clo...
frgrreggt1 30373 If a finite nonempty frien...
frgrreg 30374 If a finite nonempty frien...
frgrregord013 30375 If a finite friendship gra...
frgrregord13 30376 If a nonempty finite frien...
frgrogt3nreg 30377 If a finite friendship gra...
friendshipgt3 30378 The friendship theorem for...
friendship 30379 The friendship theorem: I...
conventions 30380

H...

conventions-labels 30381

...

conventions-comments 30382

...

natded 30383 Here are typical n...
ex-natded5.2 30384 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 30385 A more efficient proof of ...
ex-natded5.2i 30386 The same as ~ ex-natded5.2...
ex-natded5.3 30387 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 30388 A more efficient proof of ...
ex-natded5.3i 30389 The same as ~ ex-natded5.3...
ex-natded5.5 30390 Theorem 5.5 of [Clemente] ...
ex-natded5.7 30391 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 30392 A more efficient proof of ...
ex-natded5.8 30393 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 30394 A more efficient proof of ...
ex-natded5.13 30395 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 30396 A more efficient proof of ...
ex-natded9.20 30397 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 30398 A more efficient proof of ...
ex-natded9.26 30399 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 30400 A more efficient proof of ...
ex-or 30401 Example for ~ df-or . Exa...
ex-an 30402 Example for ~ df-an . Exa...
ex-dif 30403 Example for ~ df-dif . Ex...
ex-un 30404 Example for ~ df-un . Exa...
ex-in 30405 Example for ~ df-in . Exa...
ex-uni 30406 Example for ~ df-uni . Ex...
ex-ss 30407 Example for ~ df-ss . Exa...
ex-pss 30408 Example for ~ df-pss . Ex...
ex-pw 30409 Example for ~ df-pw . Exa...
ex-pr 30410 Example for ~ df-pr . (Co...
ex-br 30411 Example for ~ df-br . Exa...
ex-opab 30412 Example for ~ df-opab . E...
ex-eprel 30413 Example for ~ df-eprel . ...
ex-id 30414 Example for ~ df-id . Exa...
ex-po 30415 Example for ~ df-po . Exa...
ex-xp 30416 Example for ~ df-xp . Exa...
ex-cnv 30417 Example for ~ df-cnv . Ex...
ex-co 30418 Example for ~ df-co . Exa...
ex-dm 30419 Example for ~ df-dm . Exa...
ex-rn 30420 Example for ~ df-rn . Exa...
ex-res 30421 Example for ~ df-res . Ex...
ex-ima 30422 Example for ~ df-ima . Ex...
ex-fv 30423 Example for ~ df-fv . Exa...
ex-1st 30424 Example for ~ df-1st . Ex...
ex-2nd 30425 Example for ~ df-2nd . Ex...
1kp2ke3k 30426 Example for ~ df-dec , 100...
ex-fl 30427 Example for ~ df-fl . Exa...
ex-ceil 30428 Example for ~ df-ceil . (...
ex-mod 30429 Example for ~ df-mod . (C...
ex-exp 30430 Example for ~ df-exp . (C...
ex-fac 30431 Example for ~ df-fac . (C...
ex-bc 30432 Example for ~ df-bc . (Co...
ex-hash 30433 Example for ~ df-hash . (...
ex-sqrt 30434 Example for ~ df-sqrt . (...
ex-abs 30435 Example for ~ df-abs . (C...
ex-dvds 30436 Example for ~ df-dvds : 3 ...
ex-gcd 30437 Example for ~ df-gcd . (C...
ex-lcm 30438 Example for ~ df-lcm . (C...
ex-prmo 30439 Example for ~ df-prmo : ` ...
aevdemo 30440 Proof illustrating the com...
ex-ind-dvds 30441 Example of a proof by indu...
ex-fpar 30442 Formalized example provide...
avril1 30443 Poisson d'Avril's Theorem....
2bornot2b 30444 The law of excluded middle...
helloworld 30445 The classic "Hello world" ...
1p1e2apr1 30446 One plus one equals two. ...
eqid1 30447 Law of identity (reflexivi...
1div0apr 30448 Division by zero is forbid...
topnfbey 30449 Nothing seems to be imposs...
9p10ne21 30450 9 + 10 is not equal to 21....
9p10ne21fool 30451 9 + 10 equals 21. This as...
nrt2irr 30453 The ` N ` -th root of 2 is...
isplig 30456 The predicate "is a planar...
ispligb 30457 The predicate "is a planar...
tncp 30458 In any planar incidence ge...
l2p 30459 For any line in a planar i...
lpni 30460 For any line in a planar i...
nsnlplig 30461 There is no "one-point lin...
nsnlpligALT 30462 Alternate version of ~ nsn...
n0lplig 30463 There is no "empty line" i...
n0lpligALT 30464 Alternate version of ~ n0l...
eulplig 30465 Through two distinct point...
pliguhgr 30466 Any planar incidence geome...
dummylink 30467 Alias for ~ a1ii that may ...
id1 30468 Alias for ~ idALT that may...
isgrpo 30477 The predicate "is a group ...
isgrpoi 30478 Properties that determine ...
grpofo 30479 A group operation maps ont...
grpocl 30480 Closure law for a group op...
grpolidinv 30481 A group has a left identit...
grpon0 30482 The base set of a group is...
grpoass 30483 A group operation is assoc...
grpoidinvlem1 30484 Lemma for ~ grpoidinv . (...
grpoidinvlem2 30485 Lemma for ~ grpoidinv . (...
grpoidinvlem3 30486 Lemma for ~ grpoidinv . (...
grpoidinvlem4 30487 Lemma for ~ grpoidinv . (...
grpoidinv 30488 A group has a left and rig...
grpoideu 30489 The left identity element ...
grporndm 30490 A group's range in terms o...
0ngrp 30491 The empty set is not a gro...
gidval 30492 The value of the identity ...
grpoidval 30493 Lemma for ~ grpoidcl and o...
grpoidcl 30494 The identity element of a ...
grpoidinv2 30495 A group's properties using...
grpolid 30496 The identity element of a ...
grporid 30497 The identity element of a ...
grporcan 30498 Right cancellation law for...
grpoinveu 30499 The left inverse element o...
grpoid 30500 Two ways of saying that an...
grporn 30501 The range of a group opera...
grpoinvfval 30502 The inverse function of a ...
grpoinvval 30503 The inverse of a group ele...
grpoinvcl 30504 A group element's inverse ...
grpoinv 30505 The properties of a group ...
grpolinv 30506 The left inverse of a grou...
grporinv 30507 The right inverse of a gro...
grpoinvid1 30508 The inverse of a group ele...
grpoinvid2 30509 The inverse of a group ele...
grpolcan 30510 Left cancellation law for ...
grpo2inv 30511 Double inverse law for gro...
grpoinvf 30512 Mapping of the inverse fun...
grpoinvop 30513 The inverse of the group o...
grpodivfval 30514 Group division (or subtrac...
grpodivval 30515 Group division (or subtrac...
grpodivinv 30516 Group division by an inver...
grpoinvdiv 30517 Inverse of a group divisio...
grpodivf 30518 Mapping for group division...
grpodivcl 30519 Closure of group division ...
grpodivdiv 30520 Double group division. (C...
grpomuldivass 30521 Associative-type law for m...
grpodivid 30522 Division of a group member...
grponpcan 30523 Cancellation law for group...
isablo 30526 The predicate "is an Abeli...
ablogrpo 30527 An Abelian group operation...
ablocom 30528 An Abelian group operation...
ablo32 30529 Commutative/associative la...
ablo4 30530 Commutative/associative la...
isabloi 30531 Properties that determine ...
ablomuldiv 30532 Law for group multiplicati...
ablodivdiv 30533 Law for double group divis...
ablodivdiv4 30534 Law for double group divis...
ablodiv32 30535 Swap the second and third ...
ablonncan 30536 Cancellation law for group...
ablonnncan1 30537 Cancellation law for group...
vcrel 30540 The class of all complex v...
vciOLD 30541 Obsolete version of ~ cvsi...
vcsm 30542 Functionality of th scalar...
vccl 30543 Closure of the scalar prod...
vcidOLD 30544 Identity element for the s...
vcdi 30545 Distributive law for the s...
vcdir 30546 Distributive law for the s...
vcass 30547 Associative law for the sc...
vc2OLD 30548 A vector plus itself is tw...
vcablo 30549 Vector addition is an Abel...
vcgrp 30550 Vector addition is a group...
vclcan 30551 Left cancellation law for ...
vczcl 30552 The zero vector is a vecto...
vc0rid 30553 The zero vector is a right...
vc0 30554 Zero times a vector is the...
vcz 30555 Anything times the zero ve...
vcm 30556 Minus 1 times a vector is ...
isvclem 30557 Lemma for ~ isvcOLD . (Co...
vcex 30558 The components of a comple...
isvcOLD 30559 The predicate "is a comple...
isvciOLD 30560 Properties that determine ...
cnaddabloOLD 30561 Obsolete version of ~ cnad...
cnidOLD 30562 Obsolete version of ~ cnad...
cncvcOLD 30563 Obsolete version of ~ cncv...
nvss 30573 Structure of the class of ...
nvvcop 30574 A normed complex vector sp...
nvrel 30582 The class of all normed co...
vafval 30583 Value of the function for ...
bafval 30584 Value of the function for ...
smfval 30585 Value of the function for ...
0vfval 30586 Value of the function for ...
nmcvfval 30587 Value of the norm function...
nvop2 30588 A normed complex vector sp...
nvvop 30589 The vector space component...
isnvlem 30590 Lemma for ~ isnv . (Contr...
nvex 30591 The components of a normed...
isnv 30592 The predicate "is a normed...
isnvi 30593 Properties that determine ...
nvi 30594 The properties of a normed...
nvvc 30595 The vector space component...
nvablo 30596 The vector addition operat...
nvgrp 30597 The vector addition operat...
nvgf 30598 Mapping for the vector add...
nvsf 30599 Mapping for the scalar mul...
nvgcl 30600 Closure law for the vector...
nvcom 30601 The vector addition (group...
nvass 30602 The vector addition (group...
nvadd32 30603 Commutative/associative la...
nvrcan 30604 Right cancellation law for...
nvadd4 30605 Rearrangement of 4 terms i...
nvscl 30606 Closure law for the scalar...
nvsid 30607 Identity element for the s...
nvsass 30608 Associative law for the sc...
nvscom 30609 Commutative law for the sc...
nvdi 30610 Distributive law for the s...
nvdir 30611 Distributive law for the s...
nv2 30612 A vector plus itself is tw...
vsfval 30613 Value of the function for ...
nvzcl 30614 Closure law for the zero v...
nv0rid 30615 The zero vector is a right...
nv0lid 30616 The zero vector is a left ...
nv0 30617 Zero times a vector is the...
nvsz 30618 Anything times the zero ve...
nvinv 30619 Minus 1 times a vector is ...
nvinvfval 30620 Function for the negative ...
nvm 30621 Vector subtraction in term...
nvmval 30622 Value of vector subtractio...
nvmval2 30623 Value of vector subtractio...
nvmfval 30624 Value of the function for ...
nvmf 30625 Mapping for the vector sub...
nvmcl 30626 Closure law for the vector...
nvnnncan1 30627 Cancellation law for vecto...
nvmdi 30628 Distributive law for scala...
nvnegneg 30629 Double negative of a vecto...
nvmul0or 30630 If a scalar product is zer...
nvrinv 30631 A vector minus itself. (C...
nvlinv 30632 Minus a vector plus itself...
nvpncan2 30633 Cancellation law for vecto...
nvpncan 30634 Cancellation law for vecto...
nvaddsub 30635 Commutative/associative la...
nvnpcan 30636 Cancellation law for a nor...
nvaddsub4 30637 Rearrangement of 4 terms i...
nvmeq0 30638 The difference between two...
nvmid 30639 A vector minus itself is t...
nvf 30640 Mapping for the norm funct...
nvcl 30641 The norm of a normed compl...
nvcli 30642 The norm of a normed compl...
nvs 30643 Proportionality property o...
nvsge0 30644 The norm of a scalar produ...
nvm1 30645 The norm of the negative o...
nvdif 30646 The norm of the difference...
nvpi 30647 The norm of a vector plus ...
nvz0 30648 The norm of a zero vector ...
nvz 30649 The norm of a vector is ze...
nvtri 30650 Triangle inequality for th...
nvmtri 30651 Triangle inequality for th...
nvabs 30652 Norm difference property o...
nvge0 30653 The norm of a normed compl...
nvgt0 30654 A nonzero norm is positive...
nv1 30655 From any nonzero vector, c...
nvop 30656 A complex inner product sp...
cnnv 30657 The set of complex numbers...
cnnvg 30658 The vector addition (group...
cnnvba 30659 The base set of the normed...
cnnvs 30660 The scalar product operati...
cnnvnm 30661 The norm operation of the ...
cnnvm 30662 The vector subtraction ope...
elimnv 30663 Hypothesis elimination lem...
elimnvu 30664 Hypothesis elimination lem...
imsval 30665 Value of the induced metri...
imsdval 30666 Value of the induced metri...
imsdval2 30667 Value of the distance func...
nvnd 30668 The norm of a normed compl...
imsdf 30669 Mapping for the induced me...
imsmetlem 30670 Lemma for ~ imsmet . (Con...
imsmet 30671 The induced metric of a no...
imsxmet 30672 The induced metric of a no...
cnims 30673 The metric induced on the ...
vacn 30674 Vector addition is jointly...
nmcvcn 30675 The norm of a normed compl...
nmcnc 30676 The norm of a normed compl...
smcnlem 30677 Lemma for ~ smcn . (Contr...
smcn 30678 Scalar multiplication is j...
vmcn 30679 Vector subtraction is join...
dipfval 30682 The inner product function...
ipval 30683 Value of the inner product...
ipval2lem2 30684 Lemma for ~ ipval3 . (Con...
ipval2lem3 30685 Lemma for ~ ipval3 . (Con...
ipval2lem4 30686 Lemma for ~ ipval3 . (Con...
ipval2 30687 Expansion of the inner pro...
4ipval2 30688 Four times the inner produ...
ipval3 30689 Expansion of the inner pro...
ipidsq 30690 The inner product of a vec...
ipnm 30691 Norm expressed in terms of...
dipcl 30692 An inner product is a comp...
ipf 30693 Mapping for the inner prod...
dipcj 30694 The complex conjugate of a...
ipipcj 30695 An inner product times its...
diporthcom 30696 Orthogonality (meaning inn...
dip0r 30697 Inner product with a zero ...
dip0l 30698 Inner product with a zero ...
ipz 30699 The inner product of a vec...
dipcn 30700 Inner product is jointly c...
sspval 30703 The set of all subspaces o...
isssp 30704 The predicate "is a subspa...
sspid 30705 A normed complex vector sp...
sspnv 30706 A subspace is a normed com...
sspba 30707 The base set of a subspace...
sspg 30708 Vector addition on a subsp...
sspgval 30709 Vector addition on a subsp...
ssps 30710 Scalar multiplication on a...
sspsval 30711 Scalar multiplication on a...
sspmlem 30712 Lemma for ~ sspm and other...
sspmval 30713 Vector addition on a subsp...
sspm 30714 Vector subtraction on a su...
sspz 30715 The zero vector of a subsp...
sspn 30716 The norm on a subspace is ...
sspnval 30717 The norm on a subspace in ...
sspimsval 30718 The induced metric on a su...
sspims 30719 The induced metric on a su...
lnoval 30732 The set of linear operator...
islno 30733 The predicate "is a linear...
lnolin 30734 Basic linearity property o...
lnof 30735 A linear operator is a map...
lno0 30736 The value of a linear oper...
lnocoi 30737 The composition of two lin...
lnoadd 30738 Addition property of a lin...
lnosub 30739 Subtraction property of a ...
lnomul 30740 Scalar multiplication prop...
nvo00 30741 Two ways to express a zero...
nmoofval 30742 The operator norm function...
nmooval 30743 The operator norm function...
nmosetre 30744 The set in the supremum of...
nmosetn0 30745 The set in the supremum of...
nmoxr 30746 The norm of an operator is...
nmooge0 30747 The norm of an operator is...
nmorepnf 30748 The norm of an operator is...
nmoreltpnf 30749 The norm of any operator i...
nmogtmnf 30750 The norm of an operator is...
nmoolb 30751 A lower bound for an opera...
nmoubi 30752 An upper bound for an oper...
nmoub3i 30753 An upper bound for an oper...
nmoub2i 30754 An upper bound for an oper...
nmobndi 30755 Two ways to express that a...
nmounbi 30756 Two ways two express that ...
nmounbseqi 30757 An unbounded operator dete...
nmounbseqiALT 30758 Alternate shorter proof of...
nmobndseqi 30759 A bounded sequence determi...
nmobndseqiALT 30760 Alternate shorter proof of...
bloval 30761 The class of bounded linea...
isblo 30762 The predicate "is a bounde...
isblo2 30763 The predicate "is a bounde...
bloln 30764 A bounded operator is a li...
blof 30765 A bounded operator is an o...
nmblore 30766 The norm of a bounded oper...
0ofval 30767 The zero operator between ...
0oval 30768 Value of the zero operator...
0oo 30769 The zero operator is an op...
0lno 30770 The zero operator is linea...
nmoo0 30771 The operator norm of the z...
0blo 30772 The zero operator is a bou...
nmlno0lem 30773 Lemma for ~ nmlno0i . (Co...
nmlno0i 30774 The norm of a linear opera...
nmlno0 30775 The norm of a linear opera...
nmlnoubi 30776 An upper bound for the ope...
nmlnogt0 30777 The norm of a nonzero line...
lnon0 30778 The domain of a nonzero li...
nmblolbii 30779 A lower bound for the norm...
nmblolbi 30780 A lower bound for the norm...
isblo3i 30781 The predicate "is a bounde...
blo3i 30782 Properties that determine ...
blometi 30783 Upper bound for the distan...
blocnilem 30784 Lemma for ~ blocni and ~ l...
blocni 30785 A linear operator is conti...
lnocni 30786 If a linear operator is co...
blocn 30787 A linear operator is conti...
blocn2 30788 A bounded linear operator ...
ajfval 30789 The adjoint function. (Co...
hmoval 30790 The set of Hermitian (self...
ishmo 30791 The predicate "is a hermit...
phnv 30794 Every complex inner produc...
phrel 30795 The class of all complex i...
phnvi 30796 Every complex inner produc...
isphg 30797 The predicate "is a comple...
phop 30798 A complex inner product sp...
cncph 30799 The set of complex numbers...
elimph 30800 Hypothesis elimination lem...
elimphu 30801 Hypothesis elimination lem...
isph 30802 The predicate "is an inner...
phpar2 30803 The parallelogram law for ...
phpar 30804 The parallelogram law for ...
ip0i 30805 A slight variant of Equati...
ip1ilem 30806 Lemma for ~ ip1i . (Contr...
ip1i 30807 Equation 6.47 of [Ponnusam...
ip2i 30808 Equation 6.48 of [Ponnusam...
ipdirilem 30809 Lemma for ~ ipdiri . (Con...
ipdiri 30810 Distributive law for inner...
ipasslem1 30811 Lemma for ~ ipassi . Show...
ipasslem2 30812 Lemma for ~ ipassi . Show...
ipasslem3 30813 Lemma for ~ ipassi . Show...
ipasslem4 30814 Lemma for ~ ipassi . Show...
ipasslem5 30815 Lemma for ~ ipassi . Show...
ipasslem7 30816 Lemma for ~ ipassi . Show...
ipasslem8 30817 Lemma for ~ ipassi . By ~...
ipasslem9 30818 Lemma for ~ ipassi . Conc...
ipasslem10 30819 Lemma for ~ ipassi . Show...
ipasslem11 30820 Lemma for ~ ipassi . Show...
ipassi 30821 Associative law for inner ...
dipdir 30822 Distributive law for inner...
dipdi 30823 Distributive law for inner...
ip2dii 30824 Inner product of two sums....
dipass 30825 Associative law for inner ...
dipassr 30826 "Associative" law for seco...
dipassr2 30827 "Associative" law for inne...
dipsubdir 30828 Distributive law for inner...
dipsubdi 30829 Distributive law for inner...
pythi 30830 The Pythagorean theorem fo...
siilem1 30831 Lemma for ~ sii . (Contri...
siilem2 30832 Lemma for ~ sii . (Contri...
siii 30833 Inference from ~ sii . (C...
sii 30834 Obsolete version of ~ ipca...
ipblnfi 30835 A function ` F ` generated...
ip2eqi 30836 Two vectors are equal iff ...
phoeqi 30837 A condition implying that ...
ajmoi 30838 Every operator has at most...
ajfuni 30839 The adjoint function is a ...
ajfun 30840 The adjoint function is a ...
ajval 30841 Value of the adjoint funct...
iscbn 30844 A complex Banach space is ...
cbncms 30845 The induced metric on comp...
bnnv 30846 Every complex Banach space...
bnrel 30847 The class of all complex B...
bnsscmcl 30848 A subspace of a Banach spa...
cnbn 30849 The set of complex numbers...
ubthlem1 30850 Lemma for ~ ubth . The fu...
ubthlem2 30851 Lemma for ~ ubth . Given ...
ubthlem3 30852 Lemma for ~ ubth . Prove ...
ubth 30853 Uniform Boundedness Theore...
minvecolem1 30854 Lemma for ~ minveco . The...
minvecolem2 30855 Lemma for ~ minveco . Any...
minvecolem3 30856 Lemma for ~ minveco . The...
minvecolem4a 30857 Lemma for ~ minveco . ` F ...
minvecolem4b 30858 Lemma for ~ minveco . The...
minvecolem4c 30859 Lemma for ~ minveco . The...
minvecolem4 30860 Lemma for ~ minveco . The...
minvecolem5 30861 Lemma for ~ minveco . Dis...
minvecolem6 30862 Lemma for ~ minveco . Any...
minvecolem7 30863 Lemma for ~ minveco . Sin...
minveco 30864 Minimizing vector theorem,...
ishlo 30867 The predicate "is a comple...
hlobn 30868 Every complex Hilbert spac...
hlph 30869 Every complex Hilbert spac...
hlrel 30870 The class of all complex H...
hlnv 30871 Every complex Hilbert spac...
hlnvi 30872 Every complex Hilbert spac...
hlvc 30873 Every complex Hilbert spac...
hlcmet 30874 The induced metric on a co...
hlmet 30875 The induced metric on a co...
hlpar2 30876 The parallelogram law sati...
hlpar 30877 The parallelogram law sati...
hlex 30878 The base set of a Hilbert ...
hladdf 30879 Mapping for Hilbert space ...
hlcom 30880 Hilbert space vector addit...
hlass 30881 Hilbert space vector addit...
hl0cl 30882 The Hilbert space zero vec...
hladdid 30883 Hilbert space addition wit...
hlmulf 30884 Mapping for Hilbert space ...
hlmulid 30885 Hilbert space scalar multi...
hlmulass 30886 Hilbert space scalar multi...
hldi 30887 Hilbert space scalar multi...
hldir 30888 Hilbert space scalar multi...
hlmul0 30889 Hilbert space scalar multi...
hlipf 30890 Mapping for Hilbert space ...
hlipcj 30891 Conjugate law for Hilbert ...
hlipdir 30892 Distributive law for Hilbe...
hlipass 30893 Associative law for Hilber...
hlipgt0 30894 The inner product of a Hil...
hlcompl 30895 Completeness of a Hilbert ...
cnchl 30896 The set of complex numbers...
htthlem 30897 Lemma for ~ htth . The co...
htth 30898 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 30954 The group (addition) opera...
h2hsm 30955 The scalar product operati...
h2hnm 30956 The norm function of Hilbe...
h2hvs 30957 The vector subtraction ope...
h2hmetdval 30958 Value of the distance func...
h2hcau 30959 The Cauchy sequences of Hi...
h2hlm 30960 The limit sequences of Hil...
axhilex-zf 30961 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 30962 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 30963 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 30964 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 30965 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 30966 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 30967 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 30968 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 30969 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 30970 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 30971 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 30972 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 30973 Derive Axiom ~ ax-hfi from...
axhis1-zf 30974 Derive Axiom ~ ax-his1 fro...
axhis2-zf 30975 Derive Axiom ~ ax-his2 fro...
axhis3-zf 30976 Derive Axiom ~ ax-his3 fro...
axhis4-zf 30977 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 30978 Derive Axiom ~ ax-hcompl f...
hvmulex 30991 The Hilbert space scalar p...
hvaddcl 30992 Closure of vector addition...
hvmulcl 30993 Closure of scalar multipli...
hvmulcli 30994 Closure inference for scal...
hvsubf 30995 Mapping domain and codomai...
hvsubval 30996 Value of vector subtractio...
hvsubcl 30997 Closure of vector subtract...
hvaddcli 30998 Closure of vector addition...
hvcomi 30999 Commutation of vector addi...
hvsubvali 31000 Value of vector subtractio...
hvsubcli 31001 Closure of vector subtract...
ifhvhv0 31002 Prove ` if ( A e. ~H , A ,...
hvaddlid 31003 Addition with the zero vec...
hvmul0 31004 Scalar multiplication with...
hvmul0or 31005 If a scalar product is zer...
hvsubid 31006 Subtraction of a vector fr...
hvnegid 31007 Addition of negative of a ...
hv2neg 31008 Two ways to express the ne...
hvaddlidi 31009 Addition with the zero vec...
hvnegidi 31010 Addition of negative of a ...
hv2negi 31011 Two ways to express the ne...
hvm1neg 31012 Convert minus one times a ...
hvaddsubval 31013 Value of vector addition i...
hvadd32 31014 Commutative/associative la...
hvadd12 31015 Commutative/associative la...
hvadd4 31016 Hilbert vector space addit...
hvsub4 31017 Hilbert vector space addit...
hvaddsub12 31018 Commutative/associative la...
hvpncan 31019 Addition/subtraction cance...
hvpncan2 31020 Addition/subtraction cance...
hvaddsubass 31021 Associativity of sum and d...
hvpncan3 31022 Subtraction and addition o...
hvmulcom 31023 Scalar multiplication comm...
hvsubass 31024 Hilbert vector space assoc...
hvsub32 31025 Hilbert vector space commu...
hvmulassi 31026 Scalar multiplication asso...
hvmulcomi 31027 Scalar multiplication comm...
hvmul2negi 31028 Double negative in scalar ...
hvsubdistr1 31029 Scalar multiplication dist...
hvsubdistr2 31030 Scalar multiplication dist...
hvdistr1i 31031 Scalar multiplication dist...
hvsubdistr1i 31032 Scalar multiplication dist...
hvassi 31033 Hilbert vector space assoc...
hvadd32i 31034 Hilbert vector space commu...
hvsubassi 31035 Hilbert vector space assoc...
hvsub32i 31036 Hilbert vector space commu...
hvadd12i 31037 Hilbert vector space commu...
hvadd4i 31038 Hilbert vector space addit...
hvsubsub4i 31039 Hilbert vector space addit...
hvsubsub4 31040 Hilbert vector space addit...
hv2times 31041 Two times a vector. (Cont...
hvnegdii 31042 Distribution of negative o...
hvsubeq0i 31043 If the difference between ...
hvsubcan2i 31044 Vector cancellation law. ...
hvaddcani 31045 Cancellation law for vecto...
hvsubaddi 31046 Relationship between vecto...
hvnegdi 31047 Distribution of negative o...
hvsubeq0 31048 If the difference between ...
hvaddeq0 31049 If the sum of two vectors ...
hvaddcan 31050 Cancellation law for vecto...
hvaddcan2 31051 Cancellation law for vecto...
hvmulcan 31052 Cancellation law for scala...
hvmulcan2 31053 Cancellation law for scala...
hvsubcan 31054 Cancellation law for vecto...
hvsubcan2 31055 Cancellation law for vecto...
hvsub0 31056 Subtraction of a zero vect...
hvsubadd 31057 Relationship between vecto...
hvaddsub4 31058 Hilbert vector space addit...
hicl 31060 Closure of inner product. ...
hicli 31061 Closure inference for inne...
his5 31066 Associative law for inner ...
his52 31067 Associative law for inner ...
his35 31068 Move scalar multiplication...
his35i 31069 Move scalar multiplication...
his7 31070 Distributive law for inner...
hiassdi 31071 Distributive/associative l...
his2sub 31072 Distributive law for inner...
his2sub2 31073 Distributive law for inner...
hire 31074 A necessary and sufficient...
hiidrcl 31075 Real closure of inner prod...
hi01 31076 Inner product with the 0 v...
hi02 31077 Inner product with the 0 v...
hiidge0 31078 Inner product with self is...
his6 31079 Zero inner product with se...
his1i 31080 Conjugate law for inner pr...
abshicom 31081 Commuted inner products ha...
hial0 31082 A vector whose inner produ...
hial02 31083 A vector whose inner produ...
hisubcomi 31084 Two vector subtractions si...
hi2eq 31085 Lemma used to prove equali...
hial2eq 31086 Two vectors whose inner pr...
hial2eq2 31087 Two vectors whose inner pr...
orthcom 31088 Orthogonality commutes. (...
normlem0 31089 Lemma used to derive prope...
normlem1 31090 Lemma used to derive prope...
normlem2 31091 Lemma used to derive prope...
normlem3 31092 Lemma used to derive prope...
normlem4 31093 Lemma used to derive prope...
normlem5 31094 Lemma used to derive prope...
normlem6 31095 Lemma used to derive prope...
normlem7 31096 Lemma used to derive prope...
normlem8 31097 Lemma used to derive prope...
normlem9 31098 Lemma used to derive prope...
normlem7tALT 31099 Lemma used to derive prope...
bcseqi 31100 Equality case of Bunjakova...
normlem9at 31101 Lemma used to derive prope...
dfhnorm2 31102 Alternate definition of th...
normf 31103 The norm function maps fro...
normval 31104 The value of the norm of a...
normcl 31105 Real closure of the norm o...
normge0 31106 The norm of a vector is no...
normgt0 31107 The norm of nonzero vector...
norm0 31108 The norm of a zero vector....
norm-i 31109 Theorem 3.3(i) of [Beran] ...
normne0 31110 A norm is nonzero iff its ...
normcli 31111 Real closure of the norm o...
normsqi 31112 The square of a norm. (Co...
norm-i-i 31113 Theorem 3.3(i) of [Beran] ...
normsq 31114 The square of a norm. (Co...
normsub0i 31115 Two vectors are equal iff ...
normsub0 31116 Two vectors are equal iff ...
norm-ii-i 31117 Triangle inequality for no...
norm-ii 31118 Triangle inequality for no...
norm-iii-i 31119 Theorem 3.3(iii) of [Beran...
norm-iii 31120 Theorem 3.3(iii) of [Beran...
normsubi 31121 Negative doesn't change th...
normpythi 31122 Analogy to Pythagorean the...
normsub 31123 Swapping order of subtract...
normneg 31124 The norm of a vector equal...
normpyth 31125 Analogy to Pythagorean the...
normpyc 31126 Corollary to Pythagorean t...
norm3difi 31127 Norm of differences around...
norm3adifii 31128 Norm of differences around...
norm3lem 31129 Lemma involving norm of di...
norm3dif 31130 Norm of differences around...
norm3dif2 31131 Norm of differences around...
norm3lemt 31132 Lemma involving norm of di...
norm3adifi 31133 Norm of differences around...
normpari 31134 Parallelogram law for norm...
normpar 31135 Parallelogram law for norm...
normpar2i 31136 Corollary of parallelogram...
polid2i 31137 Generalized polarization i...
polidi 31138 Polarization identity. Re...
polid 31139 Polarization identity. Re...
hilablo 31140 Hilbert space vector addit...
hilid 31141 The group identity element...
hilvc 31142 Hilbert space is a complex...
hilnormi 31143 Hilbert space norm in term...
hilhhi 31144 Deduce the structure of Hi...
hhnv 31145 Hilbert space is a normed ...
hhva 31146 The group (addition) opera...
hhba 31147 The base set of Hilbert sp...
hh0v 31148 The zero vector of Hilbert...
hhsm 31149 The scalar product operati...
hhvs 31150 The vector subtraction ope...
hhnm 31151 The norm function of Hilbe...
hhims 31152 The induced metric of Hilb...
hhims2 31153 Hilbert space distance met...
hhmet 31154 The induced metric of Hilb...
hhxmet 31155 The induced metric of Hilb...
hhmetdval 31156 Value of the distance func...
hhip 31157 The inner product operatio...
hhph 31158 The Hilbert space of the H...
bcsiALT 31159 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 31160 Bunjakovaskij-Cauchy-Schwa...
bcs 31161 Bunjakovaskij-Cauchy-Schwa...
bcs2 31162 Corollary of the Bunjakova...
bcs3 31163 Corollary of the Bunjakova...
hcau 31164 Member of the set of Cauch...
hcauseq 31165 A Cauchy sequences on a Hi...
hcaucvg 31166 A Cauchy sequence on a Hil...
seq1hcau 31167 A sequence on a Hilbert sp...
hlimi 31168 Express the predicate: Th...
hlimseqi 31169 A sequence with a limit on...
hlimveci 31170 Closure of the limit of a ...
hlimconvi 31171 Convergence of a sequence ...
hlim2 31172 The limit of a sequence on...
hlimadd 31173 Limit of the sum of two se...
hilmet 31174 The Hilbert space norm det...
hilxmet 31175 The Hilbert space norm det...
hilmetdval 31176 Value of the distance func...
hilims 31177 Hilbert space distance met...
hhcau 31178 The Cauchy sequences of Hi...
hhlm 31179 The limit sequences of Hil...
hhcmpl 31180 Lemma used for derivation ...
hilcompl 31181 Lemma used for derivation ...
hhcms 31183 The Hilbert space induced ...
hhhl 31184 The Hilbert space structur...
hilcms 31185 The Hilbert space norm det...
hilhl 31186 The Hilbert space of the H...
issh 31188 Subspace ` H ` of a Hilber...
issh2 31189 Subspace ` H ` of a Hilber...
shss 31190 A subspace is a subset of ...
shel 31191 A member of a subspace of ...
shex 31192 The set of subspaces of a ...
shssii 31193 A closed subspace of a Hil...
sheli 31194 A member of a subspace of ...
shelii 31195 A member of a subspace of ...
sh0 31196 The zero vector belongs to...
shaddcl 31197 Closure of vector addition...
shmulcl 31198 Closure of vector scalar m...
issh3 31199 Subspace ` H ` of a Hilber...
shsubcl 31200 Closure of vector subtract...
isch 31202 Closed subspace ` H ` of a...
isch2 31203 Closed subspace ` H ` of a...
chsh 31204 A closed subspace is a sub...
chsssh 31205 Closed subspaces are subsp...
chex 31206 The set of closed subspace...
chshii 31207 A closed subspace is a sub...
ch0 31208 The zero vector belongs to...
chss 31209 A closed subspace of a Hil...
chel 31210 A member of a closed subsp...
chssii 31211 A closed subspace of a Hil...
cheli 31212 A member of a closed subsp...
chelii 31213 A member of a closed subsp...
chlimi 31214 The limit property of a cl...
hlim0 31215 The zero sequence in Hilbe...
hlimcaui 31216 If a sequence in Hilbert s...
hlimf 31217 Function-like behavior of ...
hlimuni 31218 A Hilbert space sequence c...
hlimreui 31219 The limit of a Hilbert spa...
hlimeui 31220 The limit of a Hilbert spa...
isch3 31221 A Hilbert subspace is clos...
chcompl 31222 Completeness of a closed s...
helch 31223 The Hilbert lattice one (w...
ifchhv 31224 Prove ` if ( A e. CH , A ,...
helsh 31225 Hilbert space is a subspac...
shsspwh 31226 Subspaces are subsets of H...
chsspwh 31227 Closed subspaces are subse...
hsn0elch 31228 The zero subspace belongs ...
norm1 31229 From any nonzero Hilbert s...
norm1exi 31230 A normalized vector exists...
norm1hex 31231 A normalized vector can ex...
elch0 31234 Membership in zero for clo...
h0elch 31235 The zero subspace is a clo...
h0elsh 31236 The zero subspace is a sub...
hhssva 31237 The vector addition operat...
hhsssm 31238 The scalar multiplication ...
hhssnm 31239 The norm operation on a su...
issubgoilem 31240 Lemma for ~ hhssabloilem ....
hhssabloilem 31241 Lemma for ~ hhssabloi . F...
hhssabloi 31242 Abelian group property of ...
hhssablo 31243 Abelian group property of ...
hhssnv 31244 Normed complex vector spac...
hhssnvt 31245 Normed complex vector spac...
hhsst 31246 A member of ` SH ` is a su...
hhshsslem1 31247 Lemma for ~ hhsssh . (Con...
hhshsslem2 31248 Lemma for ~ hhsssh . (Con...
hhsssh 31249 The predicate " ` H ` is a...
hhsssh2 31250 The predicate " ` H ` is a...
hhssba 31251 The base set of a subspace...
hhssvs 31252 The vector subtraction ope...
hhssvsf 31253 Mapping of the vector subt...
hhssims 31254 Induced metric of a subspa...
hhssims2 31255 Induced metric of a subspa...
hhssmet 31256 Induced metric of a subspa...
hhssmetdval 31257 Value of the distance func...
hhsscms 31258 The induced metric of a cl...
hhssbnOLD 31259 Obsolete version of ~ cssb...
ocval 31260 Value of orthogonal comple...
ocel 31261 Membership in orthogonal c...
shocel 31262 Membership in orthogonal c...
ocsh 31263 The orthogonal complement ...
shocsh 31264 The orthogonal complement ...
ocss 31265 An orthogonal complement i...
shocss 31266 An orthogonal complement i...
occon 31267 Contraposition law for ort...
occon2 31268 Double contraposition for ...
occon2i 31269 Double contraposition for ...
oc0 31270 The zero vector belongs to...
ocorth 31271 Members of a subset and it...
shocorth 31272 Members of a subspace and ...
ococss 31273 Inclusion in complement of...
shococss 31274 Inclusion in complement of...
shorth 31275 Members of orthogonal subs...
ocin 31276 Intersection of a Hilbert ...
occon3 31277 Hilbert lattice contraposi...
ocnel 31278 A nonzero vector in the co...
chocvali 31279 Value of the orthogonal co...
shuni 31280 Two subspaces with trivial...
chocunii 31281 Lemma for uniqueness part ...
pjhthmo 31282 Projection Theorem, unique...
occllem 31283 Lemma for ~ occl . (Contr...
occl 31284 Closure of complement of H...
shoccl 31285 Closure of complement of H...
choccl 31286 Closure of complement of H...
choccli 31287 Closure of ` CH ` orthocom...
shsval 31292 Value of subspace sum of t...
shsss 31293 The subspace sum is a subs...
shsel 31294 Membership in the subspace...
shsel3 31295 Membership in the subspace...
shseli 31296 Membership in subspace sum...
shscli 31297 Closure of subspace sum. ...
shscl 31298 Closure of subspace sum. ...
shscom 31299 Commutative law for subspa...
shsva 31300 Vector sum belongs to subs...
shsel1 31301 A subspace sum contains a ...
shsel2 31302 A subspace sum contains a ...
shsvs 31303 Vector subtraction belongs...
shsub1 31304 Subspace sum is an upper b...
shsub2 31305 Subspace sum is an upper b...
choc0 31306 The orthocomplement of the...
choc1 31307 The orthocomplement of the...
chocnul 31308 Orthogonal complement of t...
shintcli 31309 Closure of intersection of...
shintcl 31310 The intersection of a none...
chintcli 31311 The intersection of a none...
chintcl 31312 The intersection (infimum)...
spanval 31313 Value of the linear span o...
hsupval 31314 Value of supremum of set o...
chsupval 31315 The value of the supremum ...
spancl 31316 The span of a subset of Hi...
elspancl 31317 A member of a span is a ve...
shsupcl 31318 Closure of the subspace su...
hsupcl 31319 Closure of supremum of set...
chsupcl 31320 Closure of supremum of sub...
hsupss 31321 Subset relation for suprem...
chsupss 31322 Subset relation for suprem...
hsupunss 31323 The union of a set of Hilb...
chsupunss 31324 The union of a set of clos...
spanss2 31325 A subset of Hilbert space ...
shsupunss 31326 The union of a set of subs...
spanid 31327 A subspace of Hilbert spac...
spanss 31328 Ordering relationship for ...
spanssoc 31329 The span of a subset of Hi...
sshjval 31330 Value of join for subsets ...
shjval 31331 Value of join in ` SH ` . ...
chjval 31332 Value of join in ` CH ` . ...
chjvali 31333 Value of join in ` CH ` . ...
sshjval3 31334 Value of join for subsets ...
sshjcl 31335 Closure of join for subset...
shjcl 31336 Closure of join in ` SH ` ...
chjcl 31337 Closure of join in ` CH ` ...
shjcom 31338 Commutative law for Hilber...
shless 31339 Subset implies subset of s...
shlej1 31340 Add disjunct to both sides...
shlej2 31341 Add disjunct to both sides...
shincli 31342 Closure of intersection of...
shscomi 31343 Commutative law for subspa...
shsvai 31344 Vector sum belongs to subs...
shsel1i 31345 A subspace sum contains a ...
shsel2i 31346 A subspace sum contains a ...
shsvsi 31347 Vector subtraction belongs...
shunssi 31348 Union is smaller than subs...
shunssji 31349 Union is smaller than Hilb...
shsleji 31350 Subspace sum is smaller th...
shjcomi 31351 Commutative law for join i...
shsub1i 31352 Subspace sum is an upper b...
shsub2i 31353 Subspace sum is an upper b...
shub1i 31354 Hilbert lattice join is an...
shjcli 31355 Closure of ` CH ` join. (...
shjshcli 31356 ` SH ` closure of join. (...
shlessi 31357 Subset implies subset of s...
shlej1i 31358 Add disjunct to both sides...
shlej2i 31359 Add disjunct to both sides...
shslej 31360 Subspace sum is smaller th...
shincl 31361 Closure of intersection of...
shub1 31362 Hilbert lattice join is an...
shub2 31363 A subspace is a subset of ...
shsidmi 31364 Idempotent law for Hilbert...
shslubi 31365 The least upper bound law ...
shlesb1i 31366 Hilbert lattice ordering i...
shsval2i 31367 An alternate way to expres...
shsval3i 31368 An alternate way to expres...
shmodsi 31369 The modular law holds for ...
shmodi 31370 The modular law is implied...
pjhthlem1 31371 Lemma for ~ pjhth . (Cont...
pjhthlem2 31372 Lemma for ~ pjhth . (Cont...
pjhth 31373 Projection Theorem: Any H...
pjhtheu 31374 Projection Theorem: Any H...
pjhfval 31376 The value of the projectio...
pjhval 31377 Value of a projection. (C...
pjpreeq 31378 Equality with a projection...
pjeq 31379 Equality with a projection...
axpjcl 31380 Closure of a projection in...
pjhcl 31381 Closure of a projection in...
omlsilem 31382 Lemma for orthomodular law...
omlsii 31383 Subspace inference form of...
omlsi 31384 Subspace form of orthomodu...
ococi 31385 Complement of complement o...
ococ 31386 Complement of complement o...
dfch2 31387 Alternate definition of th...
ococin 31388 The double complement is t...
hsupval2 31389 Alternate definition of su...
chsupval2 31390 The value of the supremum ...
sshjval2 31391 Value of join in the set o...
chsupid 31392 A subspace is the supremum...
chsupsn 31393 Value of supremum of subse...
shlub 31394 Hilbert lattice join is th...
shlubi 31395 Hilbert lattice join is th...
pjhtheu2 31396 Uniqueness of ` y ` for th...
pjcli 31397 Closure of a projection in...
pjhcli 31398 Closure of a projection in...
pjpjpre 31399 Decomposition of a vector ...
axpjpj 31400 Decomposition of a vector ...
pjclii 31401 Closure of a projection in...
pjhclii 31402 Closure of a projection in...
pjpj0i 31403 Decomposition of a vector ...
pjpji 31404 Decomposition of a vector ...
pjpjhth 31405 Projection Theorem: Any H...
pjpjhthi 31406 Projection Theorem: Any H...
pjop 31407 Orthocomplement projection...
pjpo 31408 Projection in terms of ort...
pjopi 31409 Orthocomplement projection...
pjpoi 31410 Projection in terms of ort...
pjoc1i 31411 Projection of a vector in ...
pjchi 31412 Projection of a vector in ...
pjoccl 31413 The part of a vector that ...
pjoc1 31414 Projection of a vector in ...
pjomli 31415 Subspace form of orthomodu...
pjoml 31416 Subspace form of orthomodu...
pjococi 31417 Proof of orthocomplement t...
pjoc2i 31418 Projection of a vector in ...
pjoc2 31419 Projection of a vector in ...
sh0le 31420 The zero subspace is the s...
ch0le 31421 The zero subspace is the s...
shle0 31422 No subspace is smaller tha...
chle0 31423 No Hilbert lattice element...
chnlen0 31424 A Hilbert lattice element ...
ch0pss 31425 The zero subspace is a pro...
orthin 31426 The intersection of orthog...
ssjo 31427 The lattice join of a subs...
shne0i 31428 A nonzero subspace has a n...
shs0i 31429 Hilbert subspace sum with ...
shs00i 31430 Two subspaces are zero iff...
ch0lei 31431 The closed subspace zero i...
chle0i 31432 No Hilbert closed subspace...
chne0i 31433 A nonzero closed subspace ...
chocini 31434 Intersection of a closed s...
chj0i 31435 Join with lattice zero in ...
chm1i 31436 Meet with lattice one in `...
chjcli 31437 Closure of ` CH ` join. (...
chsleji 31438 Subspace sum is smaller th...
chseli 31439 Membership in subspace sum...
chincli 31440 Closure of Hilbert lattice...
chsscon3i 31441 Hilbert lattice contraposi...
chsscon1i 31442 Hilbert lattice contraposi...
chsscon2i 31443 Hilbert lattice contraposi...
chcon2i 31444 Hilbert lattice contraposi...
chcon1i 31445 Hilbert lattice contraposi...
chcon3i 31446 Hilbert lattice contraposi...
chunssji 31447 Union is smaller than ` CH...
chjcomi 31448 Commutative law for join i...
chub1i 31449 ` CH ` join is an upper bo...
chub2i 31450 ` CH ` join is an upper bo...
chlubi 31451 Hilbert lattice join is th...
chlubii 31452 Hilbert lattice join is th...
chlej1i 31453 Add join to both sides of ...
chlej2i 31454 Add join to both sides of ...
chlej12i 31455 Add join to both sides of ...
chlejb1i 31456 Hilbert lattice ordering i...
chdmm1i 31457 De Morgan's law for meet i...
chdmm2i 31458 De Morgan's law for meet i...
chdmm3i 31459 De Morgan's law for meet i...
chdmm4i 31460 De Morgan's law for meet i...
chdmj1i 31461 De Morgan's law for join i...
chdmj2i 31462 De Morgan's law for join i...
chdmj3i 31463 De Morgan's law for join i...
chdmj4i 31464 De Morgan's law for join i...
chnlei 31465 Equivalent expressions for...
chjassi 31466 Associative law for Hilber...
chj00i 31467 Two Hilbert lattice elemen...
chjoi 31468 The join of a closed subsp...
chj1i 31469 Join with Hilbert lattice ...
chm0i 31470 Meet with Hilbert lattice ...
chm0 31471 Meet with Hilbert lattice ...
shjshsi 31472 Hilbert lattice join equal...
shjshseli 31473 A closed subspace sum equa...
chne0 31474 A nonzero closed subspace ...
chocin 31475 Intersection of a closed s...
chssoc 31476 A closed subspace less tha...
chj0 31477 Join with Hilbert lattice ...
chslej 31478 Subspace sum is smaller th...
chincl 31479 Closure of Hilbert lattice...
chsscon3 31480 Hilbert lattice contraposi...
chsscon1 31481 Hilbert lattice contraposi...
chsscon2 31482 Hilbert lattice contraposi...
chpsscon3 31483 Hilbert lattice contraposi...
chpsscon1 31484 Hilbert lattice contraposi...
chpsscon2 31485 Hilbert lattice contraposi...
chjcom 31486 Commutative law for Hilber...
chub1 31487 Hilbert lattice join is gr...
chub2 31488 Hilbert lattice join is gr...
chlub 31489 Hilbert lattice join is th...
chlej1 31490 Add join to both sides of ...
chlej2 31491 Add join to both sides of ...
chlejb1 31492 Hilbert lattice ordering i...
chlejb2 31493 Hilbert lattice ordering i...
chnle 31494 Equivalent expressions for...
chjo 31495 The join of a closed subsp...
chabs1 31496 Hilbert lattice absorption...
chabs2 31497 Hilbert lattice absorption...
chabs1i 31498 Hilbert lattice absorption...
chabs2i 31499 Hilbert lattice absorption...
chjidm 31500 Idempotent law for Hilbert...
chjidmi 31501 Idempotent law for Hilbert...
chj12i 31502 A rearrangement of Hilbert...
chj4i 31503 Rearrangement of the join ...
chjjdiri 31504 Hilbert lattice join distr...
chdmm1 31505 De Morgan's law for meet i...
chdmm2 31506 De Morgan's law for meet i...
chdmm3 31507 De Morgan's law for meet i...
chdmm4 31508 De Morgan's law for meet i...
chdmj1 31509 De Morgan's law for join i...
chdmj2 31510 De Morgan's law for join i...
chdmj3 31511 De Morgan's law for join i...
chdmj4 31512 De Morgan's law for join i...
chjass 31513 Associative law for Hilber...
chj12 31514 A rearrangement of Hilbert...
chj4 31515 Rearrangement of the join ...
ledii 31516 An ortholattice is distrib...
lediri 31517 An ortholattice is distrib...
lejdii 31518 An ortholattice is distrib...
lejdiri 31519 An ortholattice is distrib...
ledi 31520 An ortholattice is distrib...
spansn0 31521 The span of the singleton ...
span0 31522 The span of the empty set ...
elspani 31523 Membership in the span of ...
spanuni 31524 The span of a union is the...
spanun 31525 The span of a union is the...
sshhococi 31526 The join of two Hilbert sp...
hne0 31527 Hilbert space has a nonzer...
chsup0 31528 The supremum of the empty ...
h1deoi 31529 Membership in orthocomplem...
h1dei 31530 Membership in 1-dimensiona...
h1did 31531 A generating vector belong...
h1dn0 31532 A nonzero vector generates...
h1de2i 31533 Membership in 1-dimensiona...
h1de2bi 31534 Membership in 1-dimensiona...
h1de2ctlem 31535 Lemma for ~ h1de2ci . (Co...
h1de2ci 31536 Membership in 1-dimensiona...
spansni 31537 The span of a singleton in...
elspansni 31538 Membership in the span of ...
spansn 31539 The span of a singleton in...
spansnch 31540 The span of a Hilbert spac...
spansnsh 31541 The span of a Hilbert spac...
spansnchi 31542 The span of a singleton in...
spansnid 31543 A vector belongs to the sp...
spansnmul 31544 A scalar product with a ve...
elspansncl 31545 A member of a span of a si...
elspansn 31546 Membership in the span of ...
elspansn2 31547 Membership in the span of ...
spansncol 31548 The singletons of collinea...
spansneleqi 31549 Membership relation implie...
spansneleq 31550 Membership relation that i...
spansnss 31551 The span of the singleton ...
elspansn3 31552 A member of the span of th...
elspansn4 31553 A span membership conditio...
elspansn5 31554 A vector belonging to both...
spansnss2 31555 The span of the singleton ...
normcan 31556 Cancellation-type law that...
pjspansn 31557 A projection on the span o...
spansnpji 31558 A subset of Hilbert space ...
spanunsni 31559 The span of the union of a...
spanpr 31560 The span of a pair of vect...
h1datomi 31561 A 1-dimensional subspace i...
h1datom 31562 A 1-dimensional subspace i...
cmbr 31564 Binary relation expressing...
pjoml2i 31565 Variation of orthomodular ...
pjoml3i 31566 Variation of orthomodular ...
pjoml4i 31567 Variation of orthomodular ...
pjoml5i 31568 The orthomodular law. Rem...
pjoml6i 31569 An equivalent of the ortho...
cmbri 31570 Binary relation expressing...
cmcmlem 31571 Commutation is symmetric. ...
cmcmi 31572 Commutation is symmetric. ...
cmcm2i 31573 Commutation with orthocomp...
cmcm3i 31574 Commutation with orthocomp...
cmcm4i 31575 Commutation with orthocomp...
cmbr2i 31576 Alternate definition of th...
cmcmii 31577 Commutation is symmetric. ...
cmcm2ii 31578 Commutation with orthocomp...
cmcm3ii 31579 Commutation with orthocomp...
cmbr3i 31580 Alternate definition for t...
cmbr4i 31581 Alternate definition for t...
lecmi 31582 Comparable Hilbert lattice...
lecmii 31583 Comparable Hilbert lattice...
cmj1i 31584 A Hilbert lattice element ...
cmj2i 31585 A Hilbert lattice element ...
cmm1i 31586 A Hilbert lattice element ...
cmm2i 31587 A Hilbert lattice element ...
cmbr3 31588 Alternate definition for t...
cm0 31589 The zero Hilbert lattice e...
cmidi 31590 The commutes relation is r...
pjoml2 31591 Variation of orthomodular ...
pjoml3 31592 Variation of orthomodular ...
pjoml5 31593 The orthomodular law. Rem...
cmcm 31594 Commutation is symmetric. ...
cmcm3 31595 Commutation with orthocomp...
cmcm2 31596 Commutation with orthocomp...
lecm 31597 Comparable Hilbert lattice...
fh1 31598 Foulis-Holland Theorem. I...
fh2 31599 Foulis-Holland Theorem. I...
cm2j 31600 A lattice element that com...
fh1i 31601 Foulis-Holland Theorem. I...
fh2i 31602 Foulis-Holland Theorem. I...
fh3i 31603 Variation of the Foulis-Ho...
fh4i 31604 Variation of the Foulis-Ho...
cm2ji 31605 A lattice element that com...
cm2mi 31606 A lattice element that com...
qlax1i 31607 One of the equations showi...
qlax2i 31608 One of the equations showi...
qlax3i 31609 One of the equations showi...
qlax4i 31610 One of the equations showi...
qlax5i 31611 One of the equations showi...
qlaxr1i 31612 One of the conditions show...
qlaxr2i 31613 One of the conditions show...
qlaxr4i 31614 One of the conditions show...
qlaxr5i 31615 One of the conditions show...
qlaxr3i 31616 A variation of the orthomo...
chscllem1 31617 Lemma for ~ chscl . (Cont...
chscllem2 31618 Lemma for ~ chscl . (Cont...
chscllem3 31619 Lemma for ~ chscl . (Cont...
chscllem4 31620 Lemma for ~ chscl . (Cont...
chscl 31621 The subspace sum of two cl...
osumi 31622 If two closed subspaces of...
osumcori 31623 Corollary of ~ osumi . (C...
osumcor2i 31624 Corollary of ~ osumi , sho...
osum 31625 If two closed subspaces of...
spansnji 31626 The subspace sum of a clos...
spansnj 31627 The subspace sum of a clos...
spansnscl 31628 The subspace sum of a clos...
sumspansn 31629 The sum of two vectors bel...
spansnm0i 31630 The meet of different one-...
nonbooli 31631 A Hilbert lattice with two...
spansncvi 31632 Hilbert space has the cove...
spansncv 31633 Hilbert space has the cove...
5oalem1 31634 Lemma for orthoarguesian l...
5oalem2 31635 Lemma for orthoarguesian l...
5oalem3 31636 Lemma for orthoarguesian l...
5oalem4 31637 Lemma for orthoarguesian l...
5oalem5 31638 Lemma for orthoarguesian l...
5oalem6 31639 Lemma for orthoarguesian l...
5oalem7 31640 Lemma for orthoarguesian l...
5oai 31641 Orthoarguesian law 5OA. Th...
3oalem1 31642 Lemma for 3OA (weak) ortho...
3oalem2 31643 Lemma for 3OA (weak) ortho...
3oalem3 31644 Lemma for 3OA (weak) ortho...
3oalem4 31645 Lemma for 3OA (weak) ortho...
3oalem5 31646 Lemma for 3OA (weak) ortho...
3oalem6 31647 Lemma for 3OA (weak) ortho...
3oai 31648 3OA (weak) orthoarguesian ...
pjorthi 31649 Projection components on o...
pjch1 31650 Property of identity proje...
pjo 31651 The orthogonal projection....
pjcompi 31652 Component of a projection....
pjidmi 31653 A projection is idempotent...
pjadjii 31654 A projection is self-adjoi...
pjaddii 31655 Projection of vector sum i...
pjinormii 31656 The inner product of a pro...
pjmulii 31657 Projection of (scalar) pro...
pjsubii 31658 Projection of vector diffe...
pjsslem 31659 Lemma for subset relations...
pjss2i 31660 Subset relationship for pr...
pjssmii 31661 Projection meet property. ...
pjssge0ii 31662 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 31663 Theorem 4.5(v)<->(vi) of [...
pjcji 31664 The projection on a subspa...
pjadji 31665 A projection is self-adjoi...
pjaddi 31666 Projection of vector sum i...
pjinormi 31667 The inner product of a pro...
pjsubi 31668 Projection of vector diffe...
pjmuli 31669 Projection of scalar produ...
pjige0i 31670 The inner product of a pro...
pjige0 31671 The inner product of a pro...
pjcjt2 31672 The projection on a subspa...
pj0i 31673 The projection of the zero...
pjch 31674 Projection of a vector in ...
pjid 31675 The projection of a vector...
pjvec 31676 The set of vectors belongi...
pjocvec 31677 The set of vectors belongi...
pjocini 31678 Membership of projection i...
pjini 31679 Membership of projection i...
pjjsi 31680 A sufficient condition for...
pjfni 31681 Functionality of a project...
pjrni 31682 The range of a projection....
pjfoi 31683 A projection maps onto its...
pjfi 31684 The mapping of a projectio...
pjvi 31685 The value of a projection ...
pjhfo 31686 A projection maps onto its...
pjrn 31687 The range of a projection....
pjhf 31688 The mapping of a projectio...
pjfn 31689 Functionality of a project...
pjsumi 31690 The projection on a subspa...
pj11i 31691 One-to-one correspondence ...
pjdsi 31692 Vector decomposition into ...
pjds3i 31693 Vector decomposition into ...
pj11 31694 One-to-one correspondence ...
pjmfn 31695 Functionality of the proje...
pjmf1 31696 The projector function map...
pjoi0 31697 The inner product of proje...
pjoi0i 31698 The inner product of proje...
pjopythi 31699 Pythagorean theorem for pr...
pjopyth 31700 Pythagorean theorem for pr...
pjnormi 31701 The norm of the projection...
pjpythi 31702 Pythagorean theorem for pr...
pjneli 31703 If a vector does not belon...
pjnorm 31704 The norm of the projection...
pjpyth 31705 Pythagorean theorem for pr...
pjnel 31706 If a vector does not belon...
pjnorm2 31707 A vector belongs to the su...
mayete3i 31708 Mayet's equation E_3. Par...
mayetes3i 31709 Mayet's equation E^*_3, de...
hosmval 31715 Value of the sum of two Hi...
hommval 31716 Value of the scalar produc...
hodmval 31717 Value of the difference of...
hfsmval 31718 Value of the sum of two Hi...
hfmmval 31719 Value of the scalar produc...
hosval 31720 Value of the sum of two Hi...
homval 31721 Value of the scalar produc...
hodval 31722 Value of the difference of...
hfsval 31723 Value of the sum of two Hi...
hfmval 31724 Value of the scalar produc...
hoscl 31725 Closure of the sum of two ...
homcl 31726 Closure of the scalar prod...
hodcl 31727 Closure of the difference ...
ho0val 31730 Value of the zero Hilbert ...
ho0f 31731 Functionality of the zero ...
df0op2 31732 Alternate definition of Hi...
dfiop2 31733 Alternate definition of Hi...
hoif 31734 Functionality of the Hilbe...
hoival 31735 The value of the Hilbert s...
hoico1 31736 Composition with the Hilbe...
hoico2 31737 Composition with the Hilbe...
hoaddcl 31738 The sum of Hilbert space o...
homulcl 31739 The scalar product of a Hi...
hoeq 31740 Equality of Hilbert space ...
hoeqi 31741 Equality of Hilbert space ...
hoscli 31742 Closure of Hilbert space o...
hodcli 31743 Closure of Hilbert space o...
hocoi 31744 Composition of Hilbert spa...
hococli 31745 Closure of composition of ...
hocofi 31746 Mapping of composition of ...
hocofni 31747 Functionality of compositi...
hoaddcli 31748 Mapping of sum of Hilbert ...
hosubcli 31749 Mapping of difference of H...
hoaddfni 31750 Functionality of sum of Hi...
hosubfni 31751 Functionality of differenc...
hoaddcomi 31752 Commutativity of sum of Hi...
hosubcl 31753 Mapping of difference of H...
hoaddcom 31754 Commutativity of sum of Hi...
hodsi 31755 Relationship between Hilbe...
hoaddassi 31756 Associativity of sum of Hi...
hoadd12i 31757 Commutative/associative la...
hoadd32i 31758 Commutative/associative la...
hocadddiri 31759 Distributive law for Hilbe...
hocsubdiri 31760 Distributive law for Hilbe...
ho2coi 31761 Double composition of Hilb...
hoaddass 31762 Associativity of sum of Hi...
hoadd32 31763 Commutative/associative la...
hoadd4 31764 Rearrangement of 4 terms i...
hocsubdir 31765 Distributive law for Hilbe...
hoaddridi 31766 Sum of a Hilbert space ope...
hodidi 31767 Difference of a Hilbert sp...
ho0coi 31768 Composition of the zero op...
hoid1i 31769 Composition of Hilbert spa...
hoid1ri 31770 Composition of Hilbert spa...
hoaddrid 31771 Sum of a Hilbert space ope...
hodid 31772 Difference of a Hilbert sp...
hon0 31773 A Hilbert space operator i...
hodseqi 31774 Subtraction and addition o...
ho0subi 31775 Subtraction of Hilbert spa...
honegsubi 31776 Relationship between Hilbe...
ho0sub 31777 Subtraction of Hilbert spa...
hosubid1 31778 The zero operator subtract...
honegsub 31779 Relationship between Hilbe...
homullid 31780 An operator equals its sca...
homco1 31781 Associative law for scalar...
homulass 31782 Scalar product associative...
hoadddi 31783 Scalar product distributiv...
hoadddir 31784 Scalar product reverse dis...
homul12 31785 Swap first and second fact...
honegneg 31786 Double negative of a Hilbe...
hosubneg 31787 Relationship between opera...
hosubdi 31788 Scalar product distributiv...
honegdi 31789 Distribution of negative o...
honegsubdi 31790 Distribution of negative o...
honegsubdi2 31791 Distribution of negative o...
hosubsub2 31792 Law for double subtraction...
hosub4 31793 Rearrangement of 4 terms i...
hosubadd4 31794 Rearrangement of 4 terms i...
hoaddsubass 31795 Associative-type law for a...
hoaddsub 31796 Law for operator addition ...
hosubsub 31797 Law for double subtraction...
hosubsub4 31798 Law for double subtraction...
ho2times 31799 Two times a Hilbert space ...
hoaddsubassi 31800 Associativity of sum and d...
hoaddsubi 31801 Law for sum and difference...
hosd1i 31802 Hilbert space operator sum...
hosd2i 31803 Hilbert space operator sum...
hopncani 31804 Hilbert space operator can...
honpcani 31805 Hilbert space operator can...
hosubeq0i 31806 If the difference between ...
honpncani 31807 Hilbert space operator can...
ho01i 31808 A condition implying that ...
ho02i 31809 A condition implying that ...
hoeq1 31810 A condition implying that ...
hoeq2 31811 A condition implying that ...
adjmo 31812 Every Hilbert space operat...
adjsym 31813 Symmetry property of an ad...
eigrei 31814 A necessary and sufficient...
eigre 31815 A necessary and sufficient...
eigposi 31816 A sufficient condition (fi...
eigorthi 31817 A necessary and sufficient...
eigorth 31818 A necessary and sufficient...
nmopval 31836 Value of the norm of a Hil...
elcnop 31837 Property defining a contin...
ellnop 31838 Property defining a linear...
lnopf 31839 A linear Hilbert space ope...
elbdop 31840 Property defining a bounde...
bdopln 31841 A bounded linear Hilbert s...
bdopf 31842 A bounded linear Hilbert s...
nmopsetretALT 31843 The set in the supremum of...
nmopsetretHIL 31844 The set in the supremum of...
nmopsetn0 31845 The set in the supremum of...
nmopxr 31846 The norm of a Hilbert spac...
nmoprepnf 31847 The norm of a Hilbert spac...
nmopgtmnf 31848 The norm of a Hilbert spac...
nmopreltpnf 31849 The norm of a Hilbert spac...
nmopre 31850 The norm of a bounded oper...
elbdop2 31851 Property defining a bounde...
elunop 31852 Property defining a unitar...
elhmop 31853 Property defining a Hermit...
hmopf 31854 A Hermitian operator is a ...
hmopex 31855 The class of Hermitian ope...
nmfnval 31856 Value of the norm of a Hil...
nmfnsetre 31857 The set in the supremum of...
nmfnsetn0 31858 The set in the supremum of...
nmfnxr 31859 The norm of any Hilbert sp...
nmfnrepnf 31860 The norm of a Hilbert spac...
nlfnval 31861 Value of the null space of...
elcnfn 31862 Property defining a contin...
ellnfn 31863 Property defining a linear...
lnfnf 31864 A linear Hilbert space fun...
dfadj2 31865 Alternate definition of th...
funadj 31866 Functionality of the adjoi...
dmadjss 31867 The domain of the adjoint ...
dmadjop 31868 A member of the domain of ...
adjeu 31869 Elementhood in the domain ...
adjval 31870 Value of the adjoint funct...
adjval2 31871 Value of the adjoint funct...
cnvadj 31872 The adjoint function equal...
funcnvadj 31873 The converse of the adjoin...
adj1o 31874 The adjoint function maps ...
dmadjrn 31875 The adjoint of an operator...
eigvecval 31876 The set of eigenvectors of...
eigvalfval 31877 The eigenvalues of eigenve...
specval 31878 The value of the spectrum ...
speccl 31879 The spectrum of an operato...
hhlnoi 31880 The linear operators of Hi...
hhnmoi 31881 The norm of an operator in...
hhbloi 31882 A bounded linear operator ...
hh0oi 31883 The zero operator in Hilbe...
hhcno 31884 The continuous operators o...
hhcnf 31885 The continuous functionals...
dmadjrnb 31886 The adjoint of an operator...
nmoplb 31887 A lower bound for an opera...
nmopub 31888 An upper bound for an oper...
nmopub2tALT 31889 An upper bound for an oper...
nmopub2tHIL 31890 An upper bound for an oper...
nmopge0 31891 The norm of any Hilbert sp...
nmopgt0 31892 A linear Hilbert space ope...
cnopc 31893 Basic continuity property ...
lnopl 31894 Basic linearity property o...
unop 31895 Basic inner product proper...
unopf1o 31896 A unitary operator in Hilb...
unopnorm 31897 A unitary operator is idem...
cnvunop 31898 The inverse (converse) of ...
unopadj 31899 The inverse (converse) of ...
unoplin 31900 A unitary operator is line...
counop 31901 The composition of two uni...
hmop 31902 Basic inner product proper...
hmopre 31903 The inner product of the v...
nmfnlb 31904 A lower bound for a functi...
nmfnleub 31905 An upper bound for the nor...
nmfnleub2 31906 An upper bound for the nor...
nmfnge0 31907 The norm of any Hilbert sp...
elnlfn 31908 Membership in the null spa...
elnlfn2 31909 Membership in the null spa...
cnfnc 31910 Basic continuity property ...
lnfnl 31911 Basic linearity property o...
adjcl 31912 Closure of the adjoint of ...
adj1 31913 Property of an adjoint Hil...
adj2 31914 Property of an adjoint Hil...
adjeq 31915 A property that determines...
adjadj 31916 Double adjoint. Theorem 3...
adjvalval 31917 Value of the value of the ...
unopadj2 31918 The adjoint of a unitary o...
hmopadj 31919 A Hermitian operator is se...
hmdmadj 31920 Every Hermitian operator h...
hmopadj2 31921 An operator is Hermitian i...
hmoplin 31922 A Hermitian operator is li...
brafval 31923 The bra of a vector, expre...
braval 31924 A bra-ket juxtaposition, e...
braadd 31925 Linearity property of bra ...
bramul 31926 Linearity property of bra ...
brafn 31927 The bra function is a func...
bralnfn 31928 The Dirac bra function is ...
bracl 31929 Closure of the bra functio...
bra0 31930 The Dirac bra of the zero ...
brafnmul 31931 Anti-linearity property of...
kbfval 31932 The outer product of two v...
kbop 31933 The outer product of two v...
kbval 31934 The value of the operator ...
kbmul 31935 Multiplication property of...
kbpj 31936 If a vector ` A ` has norm...
eleigvec 31937 Membership in the set of e...
eleigvec2 31938 Membership in the set of e...
eleigveccl 31939 Closure of an eigenvector ...
eigvalval 31940 The eigenvalue of an eigen...
eigvalcl 31941 An eigenvalue is a complex...
eigvec1 31942 Property of an eigenvector...
eighmre 31943 The eigenvalues of a Hermi...
eighmorth 31944 Eigenvectors of a Hermitia...
nmopnegi 31945 Value of the norm of the n...
lnop0 31946 The value of a linear Hilb...
lnopmul 31947 Multiplicative property of...
lnopli 31948 Basic scalar product prope...
lnopfi 31949 A linear Hilbert space ope...
lnop0i 31950 The value of a linear Hilb...
lnopaddi 31951 Additive property of a lin...
lnopmuli 31952 Multiplicative property of...
lnopaddmuli 31953 Sum/product property of a ...
lnopsubi 31954 Subtraction property for a...
lnopsubmuli 31955 Subtraction/product proper...
lnopmulsubi 31956 Product/subtraction proper...
homco2 31957 Move a scalar product out ...
idunop 31958 The identity function (res...
0cnop 31959 The identically zero funct...
0cnfn 31960 The identically zero funct...
idcnop 31961 The identity function (res...
idhmop 31962 The Hilbert space identity...
0hmop 31963 The identically zero funct...
0lnop 31964 The identically zero funct...
0lnfn 31965 The identically zero funct...
nmop0 31966 The norm of the zero opera...
nmfn0 31967 The norm of the identicall...
hmopbdoptHIL 31968 A Hermitian operator is a ...
hoddii 31969 Distributive law for Hilbe...
hoddi 31970 Distributive law for Hilbe...
nmop0h 31971 The norm of any operator o...
idlnop 31972 The identity function (res...
0bdop 31973 The identically zero opera...
adj0 31974 Adjoint of the zero operat...
nmlnop0iALT 31975 A linear operator with a z...
nmlnop0iHIL 31976 A linear operator with a z...
nmlnopgt0i 31977 A linear Hilbert space ope...
nmlnop0 31978 A linear operator with a z...
nmlnopne0 31979 A linear operator with a n...
lnopmi 31980 The scalar product of a li...
lnophsi 31981 The sum of two linear oper...
lnophdi 31982 The difference of two line...
lnopcoi 31983 The composition of two lin...
lnopco0i 31984 The composition of a linea...
lnopeq0lem1 31985 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 31986 Lemma for ~ lnopeq0i . (C...
lnopeq0i 31987 A condition implying that ...
lnopeqi 31988 Two linear Hilbert space o...
lnopeq 31989 Two linear Hilbert space o...
lnopunilem1 31990 Lemma for ~ lnopunii . (C...
lnopunilem2 31991 Lemma for ~ lnopunii . (C...
lnopunii 31992 If a linear operator (whos...
elunop2 31993 An operator is unitary iff...
nmopun 31994 Norm of a unitary Hilbert ...
unopbd 31995 A unitary operator is a bo...
lnophmlem1 31996 Lemma for ~ lnophmi . (Co...
lnophmlem2 31997 Lemma for ~ lnophmi . (Co...
lnophmi 31998 A linear operator is Hermi...
lnophm 31999 A linear operator is Hermi...
hmops 32000 The sum of two Hermitian o...
hmopm 32001 The scalar product of a He...
hmopd 32002 The difference of two Herm...
hmopco 32003 The composition of two com...
nmbdoplbi 32004 A lower bound for the norm...
nmbdoplb 32005 A lower bound for the norm...
nmcexi 32006 Lemma for ~ nmcopexi and ~...
nmcopexi 32007 The norm of a continuous l...
nmcoplbi 32008 A lower bound for the norm...
nmcopex 32009 The norm of a continuous l...
nmcoplb 32010 A lower bound for the norm...
nmophmi 32011 The norm of the scalar pro...
bdophmi 32012 The scalar product of a bo...
lnconi 32013 Lemma for ~ lnopconi and ~...
lnopconi 32014 A condition equivalent to ...
lnopcon 32015 A condition equivalent to ...
lnopcnbd 32016 A linear operator is conti...
lncnopbd 32017 A continuous linear operat...
lncnbd 32018 A continuous linear operat...
lnopcnre 32019 A linear operator is conti...
lnfnli 32020 Basic property of a linear...
lnfnfi 32021 A linear Hilbert space fun...
lnfn0i 32022 The value of a linear Hilb...
lnfnaddi 32023 Additive property of a lin...
lnfnmuli 32024 Multiplicative property of...
lnfnaddmuli 32025 Sum/product property of a ...
lnfnsubi 32026 Subtraction property for a...
lnfn0 32027 The value of a linear Hilb...
lnfnmul 32028 Multiplicative property of...
nmbdfnlbi 32029 A lower bound for the norm...
nmbdfnlb 32030 A lower bound for the norm...
nmcfnexi 32031 The norm of a continuous l...
nmcfnlbi 32032 A lower bound for the norm...
nmcfnex 32033 The norm of a continuous l...
nmcfnlb 32034 A lower bound of the norm ...
lnfnconi 32035 A condition equivalent to ...
lnfncon 32036 A condition equivalent to ...
lnfncnbd 32037 A linear functional is con...
imaelshi 32038 The image of a subspace un...
rnelshi 32039 The range of a linear oper...
nlelshi 32040 The null space of a linear...
nlelchi 32041 The null space of a contin...
riesz3i 32042 A continuous linear functi...
riesz4i 32043 A continuous linear functi...
riesz4 32044 A continuous linear functi...
riesz1 32045 Part 1 of the Riesz repres...
riesz2 32046 Part 2 of the Riesz repres...
cnlnadjlem1 32047 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 32048 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 32049 Lemma for ~ cnlnadji . By...
cnlnadjlem4 32050 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 32051 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 32052 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 32053 Lemma for ~ cnlnadji . He...
cnlnadjlem8 32054 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 32055 Lemma for ~ cnlnadji . ` F...
cnlnadji 32056 Every continuous linear op...
cnlnadjeui 32057 Every continuous linear op...
cnlnadjeu 32058 Every continuous linear op...
cnlnadj 32059 Every continuous linear op...
cnlnssadj 32060 Every continuous linear Hi...
bdopssadj 32061 Every bounded linear Hilbe...
bdopadj 32062 Every bounded linear Hilbe...
adjbdln 32063 The adjoint of a bounded l...
adjbdlnb 32064 An operator is bounded and...
adjbd1o 32065 The mapping of adjoints of...
adjlnop 32066 The adjoint of an operator...
adjsslnop 32067 Every operator with an adj...
nmopadjlei 32068 Property of the norm of an...
nmopadjlem 32069 Lemma for ~ nmopadji . (C...
nmopadji 32070 Property of the norm of an...
adjeq0 32071 An operator is zero iff it...
adjmul 32072 The adjoint of the scalar ...
adjadd 32073 The adjoint of the sum of ...
nmoptrii 32074 Triangle inequality for th...
nmopcoi 32075 Upper bound for the norm o...
bdophsi 32076 The sum of two bounded lin...
bdophdi 32077 The difference between two...
bdopcoi 32078 The composition of two bou...
nmoptri2i 32079 Triangle-type inequality f...
adjcoi 32080 The adjoint of a compositi...
nmopcoadji 32081 The norm of an operator co...
nmopcoadj2i 32082 The norm of an operator co...
nmopcoadj0i 32083 An operator composed with ...
unierri 32084 If we approximate a chain ...
branmfn 32085 The norm of the bra functi...
brabn 32086 The bra of a vector is a b...
rnbra 32087 The set of bras equals the...
bra11 32088 The bra function maps vect...
bracnln 32089 A bra is a continuous line...
cnvbraval 32090 Value of the converse of t...
cnvbracl 32091 Closure of the converse of...
cnvbrabra 32092 The converse bra of the br...
bracnvbra 32093 The bra of the converse br...
bracnlnval 32094 The vector that a continuo...
cnvbramul 32095 Multiplication property of...
kbass1 32096 Dirac bra-ket associative ...
kbass2 32097 Dirac bra-ket associative ...
kbass3 32098 Dirac bra-ket associative ...
kbass4 32099 Dirac bra-ket associative ...
kbass5 32100 Dirac bra-ket associative ...
kbass6 32101 Dirac bra-ket associative ...
leopg 32102 Ordering relation for posi...
leop 32103 Ordering relation for oper...
leop2 32104 Ordering relation for oper...
leop3 32105 Operator ordering in terms...
leoppos 32106 Binary relation defining a...
leoprf2 32107 The ordering relation for ...
leoprf 32108 The ordering relation for ...
leopsq 32109 The square of a Hermitian ...
0leop 32110 The zero operator is a pos...
idleop 32111 The identity operator is a...
leopadd 32112 The sum of two positive op...
leopmuli 32113 The scalar product of a no...
leopmul 32114 The scalar product of a po...
leopmul2i 32115 Scalar product applied to ...
leoptri 32116 The positive operator orde...
leoptr 32117 The positive operator orde...
leopnmid 32118 A bounded Hermitian operat...
nmopleid 32119 A nonzero, bounded Hermiti...
opsqrlem1 32120 Lemma for opsqri . (Contr...
opsqrlem2 32121 Lemma for opsqri . ` F `` ...
opsqrlem3 32122 Lemma for opsqri . (Contr...
opsqrlem4 32123 Lemma for opsqri . (Contr...
opsqrlem5 32124 Lemma for opsqri . (Contr...
opsqrlem6 32125 Lemma for opsqri . (Contr...
pjhmopi 32126 A projector is a Hermitian...
pjlnopi 32127 A projector is a linear op...
pjnmopi 32128 The operator norm of a pro...
pjbdlni 32129 A projector is a bounded l...
pjhmop 32130 A projection is a Hermitia...
hmopidmchi 32131 An idempotent Hermitian op...
hmopidmpji 32132 An idempotent Hermitian op...
hmopidmch 32133 An idempotent Hermitian op...
hmopidmpj 32134 An idempotent Hermitian op...
pjsdii 32135 Distributive law for Hilbe...
pjddii 32136 Distributive law for Hilbe...
pjsdi2i 32137 Chained distributive law f...
pjcoi 32138 Composition of projections...
pjcocli 32139 Closure of composition of ...
pjcohcli 32140 Closure of composition of ...
pjadjcoi 32141 Adjoint of composition of ...
pjcofni 32142 Functionality of compositi...
pjss1coi 32143 Subset relationship for pr...
pjss2coi 32144 Subset relationship for pr...
pjssmi 32145 Projection meet property. ...
pjssge0i 32146 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 32147 Theorem 4.5(v)<->(vi) of [...
pjnormssi 32148 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 32149 Composition of projections...
pjscji 32150 The projection of orthogon...
pjssumi 32151 The projection on a subspa...
pjssposi 32152 Projector ordering can be ...
pjordi 32153 The definition of projecto...
pjssdif2i 32154 The projection subspace of...
pjssdif1i 32155 A necessary and sufficient...
pjimai 32156 The image of a projection....
pjidmcoi 32157 A projection is idempotent...
pjoccoi 32158 Composition of projections...
pjtoi 32159 Subspace sum of projection...
pjoci 32160 Projection of orthocomplem...
pjidmco 32161 A projection operator is i...
dfpjop 32162 Definition of projection o...
pjhmopidm 32163 Two ways to express the se...
elpjidm 32164 A projection operator is i...
elpjhmop 32165 A projection operator is H...
0leopj 32166 A projector is a positive ...
pjadj2 32167 A projector is self-adjoin...
pjadj3 32168 A projector is self-adjoin...
elpjch 32169 Reconstruction of the subs...
elpjrn 32170 Reconstruction of the subs...
pjinvari 32171 A closed subspace ` H ` wi...
pjin1i 32172 Lemma for Theorem 1.22 of ...
pjin2i 32173 Lemma for Theorem 1.22 of ...
pjin3i 32174 Lemma for Theorem 1.22 of ...
pjclem1 32175 Lemma for projection commu...
pjclem2 32176 Lemma for projection commu...
pjclem3 32177 Lemma for projection commu...
pjclem4a 32178 Lemma for projection commu...
pjclem4 32179 Lemma for projection commu...
pjci 32180 Two subspaces commute iff ...
pjcmul1i 32181 A necessary and sufficient...
pjcmul2i 32182 The projection subspace of...
pjcohocli 32183 Closure of composition of ...
pjadj2coi 32184 Adjoint of double composit...
pj2cocli 32185 Closure of double composit...
pj3lem1 32186 Lemma for projection tripl...
pj3si 32187 Stronger projection triple...
pj3i 32188 Projection triplet theorem...
pj3cor1i 32189 Projection triplet corolla...
pjs14i 32190 Theorem S-14 of Watanabe, ...
isst 32193 Property of a state. (Con...
ishst 32194 Property of a complex Hilb...
sticl 32195 ` [ 0 , 1 ] ` closure of t...
stcl 32196 Real closure of the value ...
hstcl 32197 Closure of the value of a ...
hst1a 32198 Unit value of a Hilbert-sp...
hstel2 32199 Properties of a Hilbert-sp...
hstorth 32200 Orthogonality property of ...
hstosum 32201 Orthogonal sum property of...
hstoc 32202 Sum of a Hilbert-space-val...
hstnmoc 32203 Sum of norms of a Hilbert-...
stge0 32204 The value of a state is no...
stle1 32205 The value of a state is le...
hstle1 32206 The norm of the value of a...
hst1h 32207 The norm of a Hilbert-spac...
hst0h 32208 The norm of a Hilbert-spac...
hstpyth 32209 Pythagorean property of a ...
hstle 32210 Ordering property of a Hil...
hstles 32211 Ordering property of a Hil...
hstoh 32212 A Hilbert-space-valued sta...
hst0 32213 A Hilbert-space-valued sta...
sthil 32214 The value of a state at th...
stj 32215 The value of a state on a ...
sto1i 32216 The state of a subspace pl...
sto2i 32217 The state of the orthocomp...
stge1i 32218 If a state is greater than...
stle0i 32219 If a state is less than or...
stlei 32220 Ordering law for states. ...
stlesi 32221 Ordering law for states. ...
stji1i 32222 Join of components of Sasa...
stm1i 32223 State of component of unit...
stm1ri 32224 State of component of unit...
stm1addi 32225 Sum of states whose meet i...
staddi 32226 If the sum of 2 states is ...
stm1add3i 32227 Sum of states whose meet i...
stadd3i 32228 If the sum of 3 states is ...
st0 32229 The state of the zero subs...
strlem1 32230 Lemma for strong state the...
strlem2 32231 Lemma for strong state the...
strlem3a 32232 Lemma for strong state the...
strlem3 32233 Lemma for strong state the...
strlem4 32234 Lemma for strong state the...
strlem5 32235 Lemma for strong state the...
strlem6 32236 Lemma for strong state the...
stri 32237 Strong state theorem. The...
strb 32238 Strong state theorem (bidi...
hstrlem2 32239 Lemma for strong set of CH...
hstrlem3a 32240 Lemma for strong set of CH...
hstrlem3 32241 Lemma for strong set of CH...
hstrlem4 32242 Lemma for strong set of CH...
hstrlem5 32243 Lemma for strong set of CH...
hstrlem6 32244 Lemma for strong set of CH...
hstri 32245 Hilbert space admits a str...
hstrbi 32246 Strong CH-state theorem (b...
largei 32247 A Hilbert lattice admits a...
jplem1 32248 Lemma for Jauch-Piron theo...
jplem2 32249 Lemma for Jauch-Piron theo...
jpi 32250 The function ` S ` , that ...
golem1 32251 Lemma for Godowski's equat...
golem2 32252 Lemma for Godowski's equat...
goeqi 32253 Godowski's equation, shown...
stcltr1i 32254 Property of a strong class...
stcltr2i 32255 Property of a strong class...
stcltrlem1 32256 Lemma for strong classical...
stcltrlem2 32257 Lemma for strong classical...
stcltrthi 32258 Theorem for classically st...
cvbr 32262 Binary relation expressing...
cvbr2 32263 Binary relation expressing...
cvcon3 32264 Contraposition law for the...
cvpss 32265 The covers relation implie...
cvnbtwn 32266 The covers relation implie...
cvnbtwn2 32267 The covers relation implie...
cvnbtwn3 32268 The covers relation implie...
cvnbtwn4 32269 The covers relation implie...
cvnsym 32270 The covers relation is not...
cvnref 32271 The covers relation is not...
cvntr 32272 The covers relation is not...
spansncv2 32273 Hilbert space has the cove...
mdbr 32274 Binary relation expressing...
mdi 32275 Consequence of the modular...
mdbr2 32276 Binary relation expressing...
mdbr3 32277 Binary relation expressing...
mdbr4 32278 Binary relation expressing...
dmdbr 32279 Binary relation expressing...
dmdmd 32280 The dual modular pair prop...
mddmd 32281 The modular pair property ...
dmdi 32282 Consequence of the dual mo...
dmdbr2 32283 Binary relation expressing...
dmdi2 32284 Consequence of the dual mo...
dmdbr3 32285 Binary relation expressing...
dmdbr4 32286 Binary relation expressing...
dmdi4 32287 Consequence of the dual mo...
dmdbr5 32288 Binary relation expressing...
mddmd2 32289 Relationship between modul...
mdsl0 32290 A sublattice condition tha...
ssmd1 32291 Ordering implies the modul...
ssmd2 32292 Ordering implies the modul...
ssdmd1 32293 Ordering implies the dual ...
ssdmd2 32294 Ordering implies the dual ...
dmdsl3 32295 Sublattice mapping for a d...
mdsl3 32296 Sublattice mapping for a m...
mdslle1i 32297 Order preservation of the ...
mdslle2i 32298 Order preservation of the ...
mdslj1i 32299 Join preservation of the o...
mdslj2i 32300 Meet preservation of the r...
mdsl1i 32301 If the modular pair proper...
mdsl2i 32302 If the modular pair proper...
mdsl2bi 32303 If the modular pair proper...
cvmdi 32304 The covering property impl...
mdslmd1lem1 32305 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 32306 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 32307 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 32308 Lemma for ~ mdslmd1i . (C...
mdslmd1i 32309 Preservation of the modula...
mdslmd2i 32310 Preservation of the modula...
mdsldmd1i 32311 Preservation of the dual m...
mdslmd3i 32312 Modular pair conditions th...
mdslmd4i 32313 Modular pair condition tha...
csmdsymi 32314 Cross-symmetry implies M-s...
mdexchi 32315 An exchange lemma for modu...
cvmd 32316 The covering property impl...
cvdmd 32317 The covering property impl...
ela 32319 Atoms in a Hilbert lattice...
elat2 32320 Expanded membership relati...
elatcv0 32321 A Hilbert lattice element ...
atcv0 32322 An atom covers the zero su...
atssch 32323 Atoms are a subset of the ...
atelch 32324 An atom is a Hilbert latti...
atne0 32325 An atom is not the Hilbert...
atss 32326 A lattice element smaller ...
atsseq 32327 Two atoms in a subset rela...
atcveq0 32328 A Hilbert lattice element ...
h1da 32329 A 1-dimensional subspace i...
spansna 32330 The span of the singleton ...
sh1dle 32331 A 1-dimensional subspace i...
ch1dle 32332 A 1-dimensional subspace i...
atom1d 32333 The 1-dimensional subspace...
superpos 32334 Superposition Principle. ...
chcv1 32335 The Hilbert lattice has th...
chcv2 32336 The Hilbert lattice has th...
chjatom 32337 The join of a closed subsp...
shatomici 32338 The lattice of Hilbert sub...
hatomici 32339 The Hilbert lattice is ato...
hatomic 32340 A Hilbert lattice is atomi...
shatomistici 32341 The lattice of Hilbert sub...
hatomistici 32342 ` CH ` is atomistic, i.e. ...
chpssati 32343 Two Hilbert lattice elemen...
chrelati 32344 The Hilbert lattice is rel...
chrelat2i 32345 A consequence of relative ...
cvati 32346 If a Hilbert lattice eleme...
cvbr4i 32347 An alternate way to expres...
cvexchlem 32348 Lemma for ~ cvexchi . (Co...
cvexchi 32349 The Hilbert lattice satisf...
chrelat2 32350 A consequence of relative ...
chrelat3 32351 A consequence of relative ...
chrelat3i 32352 A consequence of the relat...
chrelat4i 32353 A consequence of relative ...
cvexch 32354 The Hilbert lattice satisf...
cvp 32355 The Hilbert lattice satisf...
atnssm0 32356 The meet of a Hilbert latt...
atnemeq0 32357 The meet of distinct atoms...
atssma 32358 The meet with an atom's su...
atcv0eq 32359 Two atoms covering the zer...
atcv1 32360 Two atoms covering the zer...
atexch 32361 The Hilbert lattice satisf...
atomli 32362 An assertion holding in at...
atoml2i 32363 An assertion holding in at...
atordi 32364 An ordering law for a Hilb...
atcvatlem 32365 Lemma for ~ atcvati . (Co...
atcvati 32366 A nonzero Hilbert lattice ...
atcvat2i 32367 A Hilbert lattice element ...
atord 32368 An ordering law for a Hilb...
atcvat2 32369 A Hilbert lattice element ...
chirredlem1 32370 Lemma for ~ chirredi . (C...
chirredlem2 32371 Lemma for ~ chirredi . (C...
chirredlem3 32372 Lemma for ~ chirredi . (C...
chirredlem4 32373 Lemma for ~ chirredi . (C...
chirredi 32374 The Hilbert lattice is irr...
chirred 32375 The Hilbert lattice is irr...
atcvat3i 32376 A condition implying that ...
atcvat4i 32377 A condition implying exist...
atdmd 32378 Two Hilbert lattice elemen...
atmd 32379 Two Hilbert lattice elemen...
atmd2 32380 Two Hilbert lattice elemen...
atabsi 32381 Absorption of an incompara...
atabs2i 32382 Absorption of an incompara...
mdsymlem1 32383 Lemma for ~ mdsymi . (Con...
mdsymlem2 32384 Lemma for ~ mdsymi . (Con...
mdsymlem3 32385 Lemma for ~ mdsymi . (Con...
mdsymlem4 32386 Lemma for ~ mdsymi . This...
mdsymlem5 32387 Lemma for ~ mdsymi . (Con...
mdsymlem6 32388 Lemma for ~ mdsymi . This...
mdsymlem7 32389 Lemma for ~ mdsymi . Lemm...
mdsymlem8 32390 Lemma for ~ mdsymi . Lemm...
mdsymi 32391 M-symmetry of the Hilbert ...
mdsym 32392 M-symmetry of the Hilbert ...
dmdsym 32393 Dual M-symmetry of the Hil...
atdmd2 32394 Two Hilbert lattice elemen...
sumdmdii 32395 If the subspace sum of two...
cmmdi 32396 Commuting subspaces form a...
cmdmdi 32397 Commuting subspaces form a...
sumdmdlem 32398 Lemma for ~ sumdmdi . The...
sumdmdlem2 32399 Lemma for ~ sumdmdi . (Co...
sumdmdi 32400 The subspace sum of two Hi...
dmdbr4ati 32401 Dual modular pair property...
dmdbr5ati 32402 Dual modular pair property...
dmdbr6ati 32403 Dual modular pair property...
dmdbr7ati 32404 Dual modular pair property...
mdoc1i 32405 Orthocomplements form a mo...
mdoc2i 32406 Orthocomplements form a mo...
dmdoc1i 32407 Orthocomplements form a du...
dmdoc2i 32408 Orthocomplements form a du...
mdcompli 32409 A condition equivalent to ...
dmdcompli 32410 A condition equivalent to ...
mddmdin0i 32411 If dual modular implies mo...
cdjreui 32412 A member of the sum of dis...
cdj1i 32413 Two ways to express " ` A ...
cdj3lem1 32414 A property of " ` A ` and ...
cdj3lem2 32415 Lemma for ~ cdj3i . Value...
cdj3lem2a 32416 Lemma for ~ cdj3i . Closu...
cdj3lem2b 32417 Lemma for ~ cdj3i . The f...
cdj3lem3 32418 Lemma for ~ cdj3i . Value...
cdj3lem3a 32419 Lemma for ~ cdj3i . Closu...
cdj3lem3b 32420 Lemma for ~ cdj3i . The s...
cdj3i 32421 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 32422 (_This theorem is a dummy ...
sa-abvi 32423 A theorem about the univer...
xfree 32424 A partial converse to ~ 19...
xfree2 32425 A partial converse to ~ 19...
addltmulALT 32426 A proof readability experi...
ad11antr 32427 Deduction adding 11 conjun...
simp-12l 32428 Simplification of a conjun...
simp-12r 32429 Simplification of a conjun...
an52ds 32430 Inference exchanging the l...
an62ds 32431 Inference exchanging the l...
an72ds 32432 Inference exchanging the l...
an82ds 32433 Inference exchanging the l...
syl22anbrc 32434 Syllogism inference. (Con...
bian1d 32435 Adding a superfluous conju...
bian1dOLD 32436 Obsolete version of ~ bian...
orim12da 32437 Deduce a disjunction from ...
or3di 32438 Distributive law for disju...
or3dir 32439 Distributive law for disju...
3o1cs 32440 Deduction eliminating disj...
3o2cs 32441 Deduction eliminating disj...
3o3cs 32442 Deduction eliminating disj...
13an22anass 32443 Associative law for four c...
sbc2iedf 32444 Conversion of implicit sub...
rspc2daf 32445 Double restricted speciali...
ralcom4f 32446 Commutation of restricted ...
rexcom4f 32447 Commutation of restricted ...
19.9d2rf 32448 A deduction version of one...
19.9d2r 32449 A deduction version of one...
r19.29ffa 32450 A commonly used pattern ba...
n0limd 32451 Deduction rule for nonempt...
reu6dv 32452 A condition which implies ...
eqtrb 32453 A transposition of equalit...
eqelbid 32454 A variable elimination law...
opsbc2ie 32455 Conversion of implicit sub...
opreu2reuALT 32456 Correspondence between uni...
2reucom 32459 Double restricted existent...
2reu2rex1 32460 Double restricted existent...
2reureurex 32461 Double restricted existent...
2reu2reu2 32462 Double restricted existent...
opreu2reu1 32463 Equivalent definition of t...
sq2reunnltb 32464 There exists a unique deco...
addsqnot2reu 32465 For each complex number ` ...
sbceqbidf 32466 Equality theorem for class...
sbcies 32467 A special version of class...
mo5f 32468 Alternate definition of "a...
nmo 32469 Negation of "at most one"....
reuxfrdf 32470 Transfer existential uniqu...
rexunirn 32471 Restricted existential qua...
rmoxfrd 32472 Transfer "at most one" res...
rmoun 32473 "At most one" restricted e...
rmounid 32474 A case where an "at most o...
riotaeqbidva 32475 Equivalent wff's yield equ...
dmrab 32476 Domain of a restricted cla...
difrab2 32477 Difference of two restrict...
elrabrd 32478 Deduction version of ~ elr...
rabexgfGS 32479 Separation Scheme in terms...
rabsnel 32480 Truth implied by equality ...
rabsspr 32481 Conditions for a restricte...
rabsstp 32482 Conditions for a restricte...
3unrab 32483 Union of three restricted ...
foresf1o 32484 From a surjective function...
rabfodom 32485 Domination relation for re...
rabrexfi 32486 Conditions for a class abs...
abrexdomjm 32487 An indexed set is dominate...
abrexdom2jm 32488 An indexed set is dominate...
abrexexd 32489 Existence of a class abstr...
elabreximd 32490 Class substitution in an i...
elabreximdv 32491 Class substitution in an i...
abrexss 32492 A necessary condition for ...
nelun 32493 Negated membership for a u...
snsssng 32494 If a singleton is a subset...
n0nsnel 32495 If a class with one elemen...
inin 32496 Intersection with an inter...
difininv 32497 Condition for the intersec...
difeq 32498 Rewriting an equation with...
eqdif 32499 If both set differences of...
indifbi 32500 Two ways to express equali...
diffib 32501 Case where ~ diffi is a bi...
difxp1ss 32502 Difference law for Cartesi...
difxp2ss 32503 Difference law for Cartesi...
indifundif 32504 A remarkable equation with...
elpwincl1 32505 Closure of intersection wi...
elpwdifcl 32506 Closure of class differenc...
elpwiuncl 32507 Closure of indexed union w...
elpreq 32508 Equality wihin a pair. (C...
prssad 32509 If a pair is a subset of a...
prssbd 32510 If a pair is a subset of a...
nelpr 32511 A set ` A ` not in a pair ...
inpr0 32512 Rewrite an empty intersect...
neldifpr1 32513 The first element of a pai...
neldifpr2 32514 The second element of a pa...
unidifsnel 32515 The other element of a pai...
unidifsnne 32516 The other element of a pai...
tpssg 32517 An unordered triple of ele...
tpssd 32518 Deduction version of tpssi...
tpssad 32519 If an ordered triple is a ...
tpssbd 32520 If an ordered triple is a ...
tpsscd 32521 If an ordered triple is a ...
ifeqeqx 32522 An equality theorem tailor...
elimifd 32523 Elimination of a condition...
elim2if 32524 Elimination of two conditi...
elim2ifim 32525 Elimination of two conditi...
ifeq3da 32526 Given an expression ` C ` ...
ifnetrue 32527 Deduce truth from a condit...
ifnefals 32528 Deduce falsehood from a co...
ifnebib 32529 The converse of ~ ifbi hol...
uniinn0 32530 Sufficient and necessary c...
uniin1 32531 Union of intersection. Ge...
uniin2 32532 Union of intersection. Ge...
difuncomp 32533 Express a class difference...
elpwunicl 32534 Closure of a set union wit...
cbviunf 32535 Rule used to change the bo...
iuneq12daf 32536 Equality deduction for ind...
iunin1f 32537 Indexed union of intersect...
ssiun3 32538 Subset equivalence for an ...
ssiun2sf 32539 Subset relationship for an...
iuninc 32540 The union of an increasing...
iundifdifd 32541 The intersection of a set ...
iundifdif 32542 The intersection of a set ...
iunrdx 32543 Re-index an indexed union....
iunpreima 32544 Preimage of an indexed uni...
iunrnmptss 32545 A subset relation for an i...
iunxunsn 32546 Appending a set to an inde...
iunxunpr 32547 Appending two sets to an i...
iunxpssiun1 32548 Provide an upper bound for...
iinabrex 32549 Rewriting an indexed inter...
disjnf 32550 In case ` x ` is not free ...
cbvdisjf 32551 Change bound variables in ...
disjss1f 32552 A subset of a disjoint col...
disjeq1f 32553 Equality theorem for disjo...
disjxun0 32554 Simplify a disjoint union....
disjdifprg 32555 A trivial partition into a...
disjdifprg2 32556 A trivial partition of a s...
disji2f 32557 Property of a disjoint col...
disjif 32558 Property of a disjoint col...
disjorf 32559 Two ways to say that a col...
disjorsf 32560 Two ways to say that a col...
disjif2 32561 Property of a disjoint col...
disjabrex 32562 Rewriting a disjoint colle...
disjabrexf 32563 Rewriting a disjoint colle...
disjpreima 32564 A preimage of a disjoint s...
disjrnmpt 32565 Rewriting a disjoint colle...
disjin 32566 If a collection is disjoin...
disjin2 32567 If a collection is disjoin...
disjxpin 32568 Derive a disjunction over ...
iundisjf 32569 Rewrite a countable union ...
iundisj2f 32570 A disjoint union is disjoi...
disjrdx 32571 Re-index a disjunct collec...
disjex 32572 Two ways to say that two c...
disjexc 32573 A variant of ~ disjex , ap...
disjunsn 32574 Append an element to a dis...
disjun0 32575 Adding the empty element p...
disjiunel 32576 A set of elements B of a d...
disjuniel 32577 A set of elements B of a d...
xpdisjres 32578 Restriction of a constant ...
opeldifid 32579 Ordered pair elementhood o...
difres 32580 Case when class difference...
imadifxp 32581 Image of the difference wi...
relfi 32582 A relation (set) is finite...
0res 32583 Restriction of the empty f...
fcoinver 32584 Build an equivalence relat...
fcoinvbr 32585 Binary relation for the eq...
breq1dd 32586 Equality deduction for a b...
breq2dd 32587 Equality deduction for a b...
brab2d 32588 Expressing that two sets a...
brabgaf 32589 The law of concretion for ...
brelg 32590 Two things in a binary rel...
br8d 32591 Substitution for an eight-...
fnfvor 32592 Relation between two funct...
ofrco 32593 Function relation between ...
opabdm 32594 Domain of an ordered-pair ...
opabrn 32595 Range of an ordered-pair c...
opabssi 32596 Sufficient condition for a...
opabid2ss 32597 One direction of ~ opabid2...
ssrelf 32598 A subclass relationship de...
eqrelrd2 32599 A version of ~ eqrelrdv2 w...
erbr3b 32600 Biconditional for equivale...
iunsnima 32601 Image of a singleton by an...
iunsnima2 32602 Version of ~ iunsnima with...
fconst7v 32603 An alternative way to expr...
constcof 32604 Composition with a constan...
ac6sf2 32605 Alternate version of ~ ac6...
ac6mapd 32606 Axiom of choice equivalent...
fnresin 32607 Restriction of a function ...
f1o3d 32608 Describe an implicit one-t...
eldmne0 32609 A function of nonempty dom...
f1rnen 32610 Equinumerosity of the rang...
f1oeq3dd 32611 Equality deduction for one...
rinvf1o 32612 Sufficient conditions for ...
fresf1o 32613 Conditions for a restricti...
nfpconfp 32614 The set of fixed points of...
fmptco1f1o 32615 The action of composing (t...
cofmpt2 32616 Express composition of a m...
f1mptrn 32617 Express injection for a ma...
dfimafnf 32618 Alternate definition of th...
funimass4f 32619 Membership relation for th...
suppss2f 32620 Show that the support of a...
ofrn 32621 The range of the function ...
ofrn2 32622 The range of the function ...
off2 32623 The function operation pro...
ofresid 32624 Applying an operation rest...
unipreima 32625 Preimage of a class union....
opfv 32626 Value of a function produc...
xppreima 32627 The preimage of a Cartesia...
2ndimaxp 32628 Image of a cartesian produ...
dmdju 32629 Domain of a disjoint union...
djussxp2 32630 Stronger version of ~ djus...
2ndresdju 32631 The ` 2nd ` function restr...
2ndresdjuf1o 32632 The ` 2nd ` function restr...
xppreima2 32633 The preimage of a Cartesia...
abfmpunirn 32634 Membership in a union of a...
rabfmpunirn 32635 Membership in a union of a...
abfmpeld 32636 Membership in an element o...
abfmpel 32637 Membership in an element o...
fmptdF 32638 Domain and codomain of the...
fmptcof2 32639 Composition of two functio...
fcomptf 32640 Express composition of two...
acunirnmpt 32641 Axiom of choice for the un...
acunirnmpt2 32642 Axiom of choice for the un...
acunirnmpt2f 32643 Axiom of choice for the un...
aciunf1lem 32644 Choice in an index union. ...
aciunf1 32645 Choice in an index union. ...
ofoprabco 32646 Function operation as a co...
ofpreima 32647 Express the preimage of a ...
ofpreima2 32648 Express the preimage of a ...
funcnvmpt 32649 Condition for a function i...
funcnv5mpt 32650 Two ways to say that a fun...
funcnv4mpt 32651 Two ways to say that a fun...
preimane 32652 Different elements have di...
fnpreimac 32653 Choose a set ` x ` contain...
fgreu 32654 Exactly one point of a fun...
fcnvgreu 32655 If the converse of a relat...
rnmposs 32656 The range of an operation ...
mptssALT 32657 Deduce subset relation of ...
dfcnv2 32658 Alternative definition of ...
mpomptxf 32659 Express a two-argument fun...
of0r 32660 Function operation with th...
elmaprd 32661 Deduction associated with ...
suppovss 32662 A bound for the support of...
elsuppfnd 32663 Deduce membership in the s...
fisuppov1 32664 Formula building theorem f...
suppun2 32665 The support of a union is ...
fdifsupp 32666 Express the support of a f...
suppiniseg 32667 Relation between the suppo...
fsuppinisegfi 32668 The initial segment ` ( ``...
fressupp 32669 The restriction of a funct...
fdifsuppconst 32670 A function is a zero const...
ressupprn 32671 The range of a function re...
supppreima 32672 Express the support of a f...
fsupprnfi 32673 Finite support implies fin...
mptiffisupp 32674 Conditions for a mapping f...
cosnopne 32675 Composition of two ordered...
cosnop 32676 Composition of two ordered...
cnvprop 32677 Converse of a pair of orde...
brprop 32678 Binary relation for a pair...
mptprop 32679 Rewrite pairs of ordered p...
coprprop 32680 Composition of two pairs o...
fmptunsnop 32681 Two ways to express a func...
gtiso 32682 Two ways to write a strict...
isoun 32683 Infer an isomorphism from ...
disjdsct 32684 A disjoint collection is d...
df1stres 32685 Definition for a restricti...
df2ndres 32686 Definition for a restricti...
1stpreimas 32687 The preimage of a singleto...
1stpreima 32688 The preimage by ` 1st ` is...
2ndpreima 32689 The preimage by ` 2nd ` is...
curry2ima 32690 The image of a curried fun...
preiman0 32691 The preimage of a nonempty...
intimafv 32692 The intersection of an ima...
imafi2 32693 The image by a finite set ...
unifi3 32694 If a union is finite, then...
snct 32695 A singleton is countable. ...
prct 32696 An unordered pair is count...
mpocti 32697 An operation is countable ...
abrexct 32698 An image set of a countabl...
mptctf 32699 A countable mapping set is...
abrexctf 32700 An image set of a countabl...
padct 32701 Index a countable set with...
f1od2 32702 Sufficient condition for a...
fcobij 32703 Composing functions with a...
fcobijfs 32704 Composing finitely support...
fcobijfs2 32705 Composing finitely support...
suppss3 32706 Deduce a function's suppor...
fsuppcurry1 32707 Finite support of a currie...
fsuppcurry2 32708 Finite support of a currie...
offinsupp1 32709 Finite support for a funct...
ffs2 32710 Rewrite a function's suppo...
ffsrn 32711 The range of a finitely su...
cocnvf1o 32712 Composing with the inverse...
resf1o 32713 Restriction of functions t...
maprnin 32714 Restricting the range of t...
fpwrelmapffslem 32715 Lemma for ~ fpwrelmapffs ....
fpwrelmap 32716 Define a canonical mapping...
fpwrelmapffs 32717 Define a canonical mapping...
sgnval2 32718 Value of the signum of a r...
creq0 32719 The real representation of...
1nei 32720 The imaginary unit ` _i ` ...
1neg1t1neg1 32721 An integer unit times itse...
nnmulge 32722 Multiplying by a positive ...
submuladdd 32723 The product of a differenc...
muldivdid 32724 Distribution of division o...
binom2subadd 32725 The difference of the squa...
cjsubd 32726 Complex conjugate distribu...
re0cj 32727 The conjugate of a pure im...
receqid 32728 Real numbers equal to thei...
pythagreim 32729 A simplified version of th...
efiargd 32730 The exponential of the "ar...
arginv 32731 The argument of the invers...
argcj 32732 The argument of the conjug...
quad3d 32733 Variant of quadratic equat...
lt2addrd 32734 If the right-hand side of ...
xrlelttric 32735 Trichotomy law for extende...
xaddeq0 32736 Two extended reals which a...
rexmul2 32737 If the result ` A ` of an ...
xrinfm 32738 The extended real numbers ...
le2halvesd 32739 A sum is less than the who...
xraddge02 32740 A number is less than or e...
xrge0addge 32741 A number is less than or e...
xlt2addrd 32742 If the right-hand side of ...
xrge0infss 32743 Any subset of nonnegative ...
xrge0infssd 32744 Inequality deduction for i...
xrge0addcld 32745 Nonnegative extended reals...
xrge0subcld 32746 Condition for closure of n...
infxrge0lb 32747 A member of a set of nonne...
infxrge0glb 32748 The infimum of a set of no...
infxrge0gelb 32749 The infimum of a set of no...
xrofsup 32750 The supremum is preserved ...
supxrnemnf 32751 The supremum of a nonempty...
xnn0gt0 32752 Nonzero extended nonnegati...
xnn01gt 32753 An extended nonnegative in...
nn0xmulclb 32754 Finite multiplication in t...
xnn0nn0d 32755 Conditions for an extended...
xnn0nnd 32756 Conditions for an extended...
joiniooico 32757 Disjoint joining an open i...
ubico 32758 A right-open interval does...
xeqlelt 32759 Equality in terms of 'less...
eliccelico 32760 Relate elementhood to a cl...
elicoelioo 32761 Relate elementhood to a cl...
iocinioc2 32762 Intersection between two o...
xrdifh 32763 Class difference of a half...
iocinif 32764 Relate intersection of two...
difioo 32765 The difference between two...
difico 32766 The difference between two...
uzssico 32767 Upper integer sets are a s...
fz2ssnn0 32768 A finite set of sequential...
nndiffz1 32769 Upper set of the positive ...
ssnnssfz 32770 For any finite subset of `...
fzm1ne1 32771 Elementhood of an integer ...
fzspl 32772 Split the last element of ...
fzdif2 32773 Split the last element of ...
fzodif2 32774 Split the last element of ...
fzodif1 32775 Set difference of two half...
fzsplit3 32776 Split a finite interval of...
bcm1n 32777 The proportion of one bino...
iundisjfi 32778 Rewrite a countable union ...
iundisj2fi 32779 A disjoint union is disjoi...
iundisjcnt 32780 Rewrite a countable union ...
iundisj2cnt 32781 A countable disjoint union...
f1ocnt 32782 Given a countable set ` A ...
fz1nnct 32783 NN and integer ranges star...
fz1nntr 32784 NN and integer ranges star...
fzo0opth 32785 Equality for a half open i...
nn0difffzod 32786 A nonnegative integer that...
suppssnn0 32787 Show that the support of a...
hashunif 32788 The cardinality of a disjo...
hashxpe 32789 The size of the Cartesian ...
hashgt1 32790 Restate "set contains at l...
hashpss 32791 The size of a proper subse...
hashne0 32792 Deduce that the size of a ...
hashimaf1 32793 Taking the image of a set ...
elq2 32794 Elementhood in the rationa...
znumd 32795 Numerator of an integer. ...
zdend 32796 Denominator of an integer....
numdenneg 32797 Numerator and denominator ...
divnumden2 32798 Calculate the reduced form...
expgt0b 32799 A real number ` A ` raised...
nn0split01 32800 Split 0 and 1 from the non...
nn0disj01 32801 The pair ` { 0 , 1 } ` doe...
nnindf 32802 Principle of Mathematical ...
nn0min 32803 Extracting the minimum pos...
subne0nn 32804 A nonnegative difference i...
ltesubnnd 32805 Subtracting an integer num...
fprodeq02 32806 If one of the factors is z...
pr01ssre 32807 The range of the indicator...
fprodex01 32808 A product of factors equal...
prodpr 32809 A product over a pair is t...
prodtp 32810 A product over a triple is...
fsumub 32811 An upper bound for a term ...
fsumiunle 32812 Upper bound for a sum of n...
dfdec100 32813 Split the hundreds from a ...
sgncl 32814 Closure of the signum. (C...
sgnclre 32815 Closure of the signum. (C...
sgnneg 32816 Negation of the signum. (...
sgn3da 32817 A conditional containing a...
sgnmul 32818 Signum of a product. (Con...
sgnmulrp2 32819 Multiplication by a positi...
sgnsub 32820 Subtraction of a number of...
sgnnbi 32821 Negative signum. (Contrib...
sgnpbi 32822 Positive signum. (Contrib...
sgn0bi 32823 Zero signum. (Contributed...
sgnsgn 32824 Signum is idempotent. (Co...
sgnmulsgn 32825 If two real numbers are of...
sgnmulsgp 32826 If two real numbers are of...
nexple 32827 A lower bound for an expon...
2exple2exp 32828 If a nonnegative integer `...
expevenpos 32829 Even powers are positive. ...
oexpled 32830 Odd power monomials are mo...
indv 32833 Value of the indicator fun...
indval 32834 Value of the indicator fun...
indval2 32835 Alternate value of the ind...
indf 32836 An indicator function as a...
indfval 32837 Value of the indicator fun...
ind1 32838 Value of the indicator fun...
ind0 32839 Value of the indicator fun...
ind1a 32840 Value of the indicator fun...
indpi1 32841 Preimage of the singleton ...
indsum 32842 Finite sum of a product wi...
indsumin 32843 Finite sum of a product wi...
prodindf 32844 The product of indicators ...
indf1o 32845 The bijection between a po...
indpreima 32846 A function with range ` { ...
indf1ofs 32847 The bijection between fini...
indsupp 32848 The support of the indicat...
indfsd 32849 The indicator function of ...
indfsid 32850 Conditions for a function ...
dp2eq1 32853 Equality theorem for the d...
dp2eq2 32854 Equality theorem for the d...
dp2eq1i 32855 Equality theorem for the d...
dp2eq2i 32856 Equality theorem for the d...
dp2eq12i 32857 Equality theorem for the d...
dp20u 32858 Add a zero in the tenths (...
dp20h 32859 Add a zero in the unit pla...
dp2cl 32860 Closure for the decimal fr...
dp2clq 32861 Closure for a decimal frac...
rpdp2cl 32862 Closure for a decimal frac...
rpdp2cl2 32863 Closure for a decimal frac...
dp2lt10 32864 Decimal fraction builds re...
dp2lt 32865 Comparing two decimal frac...
dp2ltsuc 32866 Comparing a decimal fracti...
dp2ltc 32867 Comparing two decimal expa...
dpval 32870 Define the value of the de...
dpcl 32871 Prove that the closure of ...
dpfrac1 32872 Prove a simple equivalence...
dpval2 32873 Value of the decimal point...
dpval3 32874 Value of the decimal point...
dpmul10 32875 Multiply by 10 a decimal e...
decdiv10 32876 Divide a decimal number by...
dpmul100 32877 Multiply by 100 a decimal ...
dp3mul10 32878 Multiply by 10 a decimal e...
dpmul1000 32879 Multiply by 1000 a decimal...
dpval3rp 32880 Value of the decimal point...
dp0u 32881 Add a zero in the tenths p...
dp0h 32882 Remove a zero in the units...
rpdpcl 32883 Closure of the decimal poi...
dplt 32884 Comparing two decimal expa...
dplti 32885 Comparing a decimal expans...
dpgti 32886 Comparing a decimal expans...
dpltc 32887 Comparing two decimal inte...
dpexpp1 32888 Add one zero to the mantis...
0dp2dp 32889 Multiply by 10 a decimal e...
dpadd2 32890 Addition with one decimal,...
dpadd 32891 Addition with one decimal....
dpadd3 32892 Addition with two decimals...
dpmul 32893 Multiplication with one de...
dpmul4 32894 An upper bound to multipli...
threehalves 32895 Example theorem demonstrat...
1mhdrd 32896 Example theorem demonstrat...
xdivval 32899 Value of division: the (un...
xrecex 32900 Existence of reciprocal of...
xmulcand 32901 Cancellation law for exten...
xreceu 32902 Existential uniqueness of ...
xdivcld 32903 Closure law for the extend...
xdivcl 32904 Closure law for the extend...
xdivmul 32905 Relationship between divis...
rexdiv 32906 The extended real division...
xdivrec 32907 Relationship between divis...
xdivid 32908 A number divided by itself...
xdiv0 32909 Division into zero is zero...
xdiv0rp 32910 Division into zero is zero...
eliccioo 32911 Membership in a closed int...
elxrge02 32912 Elementhood in the set of ...
xdivpnfrp 32913 Plus infinity divided by a...
rpxdivcld 32914 Closure law for extended d...
xrpxdivcld 32915 Closure law for extended d...
wrdres 32916 Condition for the restrict...
wrdsplex 32917 Existence of a split of a ...
wrdfsupp 32918 A word has finite support....
wrdpmcl 32919 Closure of a word with per...
pfx1s2 32920 The prefix of length 1 of ...
pfxrn2 32921 The range of a prefix of a...
pfxrn3 32922 Express the range of a pre...
pfxf1 32923 Condition for a prefix to ...
s1f1 32924 Conditions for a length 1 ...
s2rnOLD 32925 Obsolete version of ~ s2rn...
s2f1 32926 Conditions for a length 2 ...
s3rnOLD 32927 Obsolete version of ~ s2rn...
s3f1 32928 Conditions for a length 3 ...
s3clhash 32929 Closure of the words of le...
ccatf1 32930 Conditions for a concatena...
pfxlsw2ccat 32931 Reconstruct a word from it...
ccatws1f1o 32932 Conditions for the concate...
ccatws1f1olast 32933 Two ways to reorder symbol...
wrdt2ind 32934 Perform an induction over ...
swrdrn2 32935 The range of a subword is ...
swrdrn3 32936 Express the range of a sub...
swrdf1 32937 Condition for a subword to...
swrdrndisj 32938 Condition for the range of...
splfv3 32939 Symbols to the right of a ...
1cshid 32940 Cyclically shifting a sing...
cshw1s2 32941 Cyclically shifting a leng...
cshwrnid 32942 Cyclically shifting a word...
cshf1o 32943 Condition for the cyclic s...
ressplusf 32944 The group operation functi...
ressnm 32945 The norm in a restricted s...
abvpropd2 32946 Weaker version of ~ abvpro...
ressprs 32947 The restriction of a prose...
posrasymb 32948 A poset ordering is asymet...
odutos 32949 Being a toset is a self-du...
tlt2 32950 In a Toset, two elements m...
tlt3 32951 In a Toset, two elements m...
trleile 32952 In a Toset, two elements m...
toslublem 32953 Lemma for ~ toslub and ~ x...
toslub 32954 In a toset, the lowest upp...
tosglblem 32955 Lemma for ~ tosglb and ~ x...
tosglb 32956 Same theorem as ~ toslub ,...
clatp0cl 32957 The poset zero of a comple...
clatp1cl 32958 The poset one of a complet...
mntoval 32963 Operation value of the mon...
ismnt 32964 Express the statement " ` ...
ismntd 32965 Property of being a monoto...
mntf 32966 A monotone function is a f...
mgcoval 32967 Operation value of the mon...
mgcval 32968 Monotone Galois connection...
mgcf1 32969 The lower adjoint ` F ` of...
mgcf2 32970 The upper adjoint ` G ` of...
mgccole1 32971 An inequality for the kern...
mgccole2 32972 Inequality for the closure...
mgcmnt1 32973 The lower adjoint ` F ` of...
mgcmnt2 32974 The upper adjoint ` G ` of...
mgcmntco 32975 A Galois connection like s...
dfmgc2lem 32976 Lemma for dfmgc2, backward...
dfmgc2 32977 Alternate definition of th...
mgcmnt1d 32978 Galois connection implies ...
mgcmnt2d 32979 Galois connection implies ...
mgccnv 32980 The inverse Galois connect...
pwrssmgc 32981 Given a function ` F ` , e...
mgcf1olem1 32982 Property of a Galois conne...
mgcf1olem2 32983 Property of a Galois conne...
mgcf1o 32984 Given a Galois connection,...
xrs0 32987 The zero of the extended r...
xrslt 32988 The "strictly less than" r...
xrsinvgval 32989 The inversion operation in...
xrsmulgzz 32990 The "multiple" function in...
xrstos 32991 The extended real numbers ...
xrsclat 32992 The extended real numbers ...
xrsp0 32993 The poset 0 of the extende...
xrsp1 32994 The poset 1 of the extende...
xrge00 32995 The zero of the extended n...
xrge0mulgnn0 32996 The group multiple functio...
xrge0addass 32997 Associativity of extended ...
xrge0addgt0 32998 The sum of nonnegative and...
xrge0adddir 32999 Right-distributivity of ex...
xrge0adddi 33000 Left-distributivity of ext...
xrge0npcan 33001 Extended nonnegative real ...
fsumrp0cl 33002 Closure of a finite sum of...
mndcld 33003 Closure of the operation o...
mndassd 33004 A monoid operation is asso...
mndlrinv 33005 In a monoid, if an element...
mndlrinvb 33006 In a monoid, if an element...
mndlactf1 33007 If an element ` X ` of a m...
mndlactfo 33008 An element ` X ` of a mono...
mndractf1 33009 If an element ` X ` of a m...
mndractfo 33010 An element ` X ` of a mono...
mndlactf1o 33011 An element ` X ` of a mono...
mndractf1o 33012 An element ` X ` of a mono...
cmn4d 33013 Commutative/associative la...
cmn246135 33014 Rearrange terms in a commu...
cmn145236 33015 Rearrange terms in a commu...
submcld 33016 Submonoids are closed unde...
abliso 33017 The image of an Abelian gr...
lmhmghmd 33018 A module homomorphism is a...
mhmimasplusg 33019 Value of the operation of ...
lmhmimasvsca 33020 Value of the scalar produc...
grpsubcld 33021 Closure of group subtracti...
subgcld 33022 A subgroup is closed under...
subgsubcld 33023 A subgroup is closed under...
subgmulgcld 33024 Closure of the group multi...
ressmulgnn0d 33025 Values for the group multi...
gsumsubg 33026 The group sum in a subgrou...
gsumsra 33027 The group sum in a subring...
gsummpt2co 33028 Split a finite sum into a ...
gsummpt2d 33029 Express a finite sum over ...
lmodvslmhm 33030 Scalar multiplication in a...
gsumvsmul1 33031 Pull a scalar multiplicati...
gsummptres 33032 Extend a finite group sum ...
gsummptres2 33033 Extend a finite group sum ...
gsummptfsf1o 33034 Re-index a finite group su...
gsumfs2d 33035 Express a finite sum over ...
gsumzresunsn 33036 Append an element to a fin...
gsumpart 33037 Express a group sum as a d...
gsumtp 33038 Group sum of an unordered ...
gsumzrsum 33039 Relate a group sum on ` ZZ...
gsummulgc2 33040 A finite group sum multipl...
gsumhashmul 33041 Express a group sum by gro...
xrge0tsmsd 33042 Any finite or infinite sum...
xrge0tsmsbi 33043 Any limit of a finite or i...
xrge0tsmseq 33044 Any limit of a finite or i...
gsumwun 33045 In a commutative ring, a g...
gsumwrd2dccatlem 33046 Lemma for ~ gsumwrd2dccat ...
gsumwrd2dccat 33047 Rewrite a sum ranging over...
cntzun 33048 The centralizer of a union...
cntzsnid 33049 The centralizer of the ide...
cntrcrng 33050 The center of a ring is a ...
symgfcoeu 33051 Uniqueness property of per...
symgcom 33052 Two permutations ` X ` and...
symgcom2 33053 Two permutations ` X ` and...
symgcntz 33054 All elements of a (finite)...
odpmco 33055 The composition of two odd...
symgsubg 33056 The value of the group sub...
pmtrprfv2 33057 In a transposition of two ...
pmtrcnel 33058 Composing a permutation ` ...
pmtrcnel2 33059 Variation on ~ pmtrcnel . ...
pmtrcnelor 33060 Composing a permutation ` ...
fzo0pmtrlast 33061 Reorder a half-open intege...
wrdpmtrlast 33062 Reorder a word, so that th...
pmtridf1o 33063 Transpositions of ` X ` an...
pmtridfv1 33064 Value at X of the transpos...
pmtridfv2 33065 Value at Y of the transpos...
psgnid 33066 Permutation sign of the id...
psgndmfi 33067 For a finite base set, the...
pmtrto1cl 33068 Useful lemma for the follo...
psgnfzto1stlem 33069 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 33070 Value of our permutation `...
fzto1st1 33071 Special case where the per...
fzto1st 33072 The function moving one el...
fzto1stinvn 33073 Value of the inverse of ou...
psgnfzto1st 33074 The permutation sign for m...
tocycval 33077 Value of the cycle builder...
tocycfv 33078 Function value of a permut...
tocycfvres1 33079 A cyclic permutation is a ...
tocycfvres2 33080 A cyclic permutation is th...
cycpmfvlem 33081 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 33082 Value of a cycle function ...
cycpmfv2 33083 Value of a cycle function ...
cycpmfv3 33084 Values outside of the orbi...
cycpmcl 33085 Cyclic permutations are pe...
tocycf 33086 The permutation cycle buil...
tocyc01 33087 Permutation cycles built f...
cycpm2tr 33088 A cyclic permutation of 2 ...
cycpm2cl 33089 Closure for the 2-cycles. ...
cyc2fv1 33090 Function value of a 2-cycl...
cyc2fv2 33091 Function value of a 2-cycl...
trsp2cyc 33092 Exhibit the word a transpo...
cycpmco2f1 33093 The word U used in ~ cycpm...
cycpmco2rn 33094 The orbit of the compositi...
cycpmco2lem1 33095 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 33096 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 33097 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 33098 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 33099 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 33100 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 33101 Lemma for ~ cycpmco2 . (C...
cycpmco2 33102 The composition of a cycli...
cyc2fvx 33103 Function value of a 2-cycl...
cycpm3cl 33104 Closure of the 3-cycles in...
cycpm3cl2 33105 Closure of the 3-cycles in...
cyc3fv1 33106 Function value of a 3-cycl...
cyc3fv2 33107 Function value of a 3-cycl...
cyc3fv3 33108 Function value of a 3-cycl...
cyc3co2 33109 Represent a 3-cycle as a c...
cycpmconjvlem 33110 Lemma for ~ cycpmconjv . ...
cycpmconjv 33111 A formula for computing co...
cycpmrn 33112 The range of the word used...
tocyccntz 33113 All elements of a (finite)...
evpmval 33114 Value of the set of even p...
cnmsgn0g 33115 The neutral element of the...
evpmsubg 33116 The alternating group is a...
evpmid 33117 The identity is an even pe...
altgnsg 33118 The alternating group ` ( ...
cyc3evpm 33119 3-Cycles are even permutat...
cyc3genpmlem 33120 Lemma for ~ cyc3genpm . (...
cyc3genpm 33121 The alternating group ` A ...
cycpmgcl 33122 Cyclic permutations are pe...
cycpmconjslem1 33123 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 33124 Lemma for ~ cycpmconjs . ...
cycpmconjs 33125 All cycles of the same len...
cyc3conja 33126 All 3-cycles are conjugate...
sgnsv 33129 The sign mapping. (Contri...
sgnsval 33130 The sign value. (Contribu...
sgnsf 33131 The sign function. (Contr...
fxpval 33134 Value of the set of fixed ...
fxpss 33135 The set of fixed points is...
fxpgaval 33136 Value of the set of fixed ...
isfxp 33137 Property of being a fixed ...
fxpgaeq 33138 A fixed point ` X ` is inv...
conjga 33139 Group conjugation induces ...
cntrval2 33140 Express the center ` Z ` o...
fxpsubm 33141 Provided the group action ...
fxpsubg 33142 The fixed points of a grou...
fxpsubrg 33143 The fixed points of a grou...
fxpsdrg 33144 The fixed points of a grou...
inftmrel 33149 The infinitesimal relation...
isinftm 33150 Express ` x ` is infinites...
isarchi 33151 Express the predicate " ` ...
pnfinf 33152 Plus infinity is an infini...
xrnarchi 33153 The completed real line is...
isarchi2 33154 Alternative way to express...
submarchi 33155 A submonoid is archimedean...
isarchi3 33156 This is the usual definiti...
archirng 33157 Property of Archimedean or...
archirngz 33158 Property of Archimedean le...
archiexdiv 33159 In an Archimedean group, g...
archiabllem1a 33160 Lemma for ~ archiabl : In...
archiabllem1b 33161 Lemma for ~ archiabl . (C...
archiabllem1 33162 Archimedean ordered groups...
archiabllem2a 33163 Lemma for ~ archiabl , whi...
archiabllem2c 33164 Lemma for ~ archiabl . (C...
archiabllem2b 33165 Lemma for ~ archiabl . (C...
archiabllem2 33166 Archimedean ordered groups...
archiabl 33167 Archimedean left- and righ...
isarchiofld 33168 Axiom of Archimedes : a ch...
isslmd 33171 The predicate "is a semimo...
slmdlema 33172 Lemma for properties of a ...
lmodslmd 33173 Left semimodules generaliz...
slmdcmn 33174 A semimodule is a commutat...
slmdmnd 33175 A semimodule is a monoid. ...
slmdsrg 33176 The scalar component of a ...
slmdbn0 33177 The base set of a semimodu...
slmdacl 33178 Closure of ring addition f...
slmdmcl 33179 Closure of ring multiplica...
slmdsn0 33180 The set of scalars in a se...
slmdvacl 33181 Closure of vector addition...
slmdass 33182 Semiring left module vecto...
slmdvscl 33183 Closure of scalar product ...
slmdvsdi 33184 Distributive law for scala...
slmdvsdir 33185 Distributive law for scala...
slmdvsass 33186 Associative law for scalar...
slmd0cl 33187 The ring zero in a semimod...
slmd1cl 33188 The ring unity in a semiri...
slmdvs1 33189 Scalar product with ring u...
slmd0vcl 33190 The zero vector is a vecto...
slmd0vlid 33191 Left identity law for the ...
slmd0vrid 33192 Right identity law for the...
slmd0vs 33193 Zero times a vector is the...
slmdvs0 33194 Anything times the zero ve...
gsumvsca1 33195 Scalar product of a finite...
gsumvsca2 33196 Scalar product of a finite...
prmsimpcyc 33197 A group of prime order is ...
ringdi22 33198 Expand the product of two ...
urpropd 33199 Sufficient condition for r...
subrgmcld 33200 A subring is closed under ...
ress1r 33201 ` 1r ` is unaffected by re...
ringinvval 33202 The ring inverse expressed...
dvrcan5 33203 Cancellation law for commo...
subrgchr 33204 If ` A ` is a subring of `...
rmfsupp2 33205 A mapping of a multiplicat...
unitnz 33206 In a nonzero ring, a unit ...
isunit2 33207 Alternate definition of be...
isunit3 33208 Alternate definition of be...
elrgspnlem1 33209 Lemma for ~ elrgspn . (Co...
elrgspnlem2 33210 Lemma for ~ elrgspn . (Co...
elrgspnlem3 33211 Lemma for ~ elrgspn . (Co...
elrgspnlem4 33212 Lemma for ~ elrgspn . (Co...
elrgspn 33213 Membership in the subring ...
elrgspnsubrunlem1 33214 Lemma for ~ elrgspnsubrun ...
elrgspnsubrunlem2 33215 Lemma for ~ elrgspnsubrun ...
elrgspnsubrun 33216 Membership in the ring spa...
irrednzr 33217 A ring with an irreducible...
0ringsubrg 33218 A subring of a zero ring i...
0ringcring 33219 The zero ring is commutati...
reldmrloc 33224 Ring localization is a pro...
erlval 33225 Value of the ring localiza...
rlocval 33226 Expand the value of the ri...
erlcl1 33227 Closure for the ring local...
erlcl2 33228 Closure for the ring local...
erldi 33229 Main property of the ring ...
erlbrd 33230 Deduce the ring localizati...
erlbr2d 33231 Deduce the ring localizati...
erler 33232 The relation used to build...
elrlocbasi 33233 Membership in the basis of...
rlocbas 33234 The base set of a ring loc...
rlocaddval 33235 Value of the addition in t...
rlocmulval 33236 Value of the addition in t...
rloccring 33237 The ring localization ` L ...
rloc0g 33238 The zero of a ring localiz...
rloc1r 33239 The multiplicative identit...
rlocf1 33240 The embedding ` F ` of a r...
domnmuln0rd 33241 In a domain, factors of a ...
domnprodn0 33242 In a domain, a finite prod...
domnpropd 33243 If two structures have the...
idompropd 33244 If two structures have the...
idomrcan 33245 Right-cancellation law for...
domnlcanOLD 33246 Obsolete version of ~ domn...
domnlcanbOLD 33247 Obsolete version of ~ domn...
idomrcanOLD 33248 Obsolete version of ~ idom...
1rrg 33249 The multiplicative identit...
rrgsubm 33250 The left regular elements ...
subrdom 33251 A subring of a domain is a...
subridom 33252 A subring of an integral d...
subrfld 33253 A subring of a field is an...
eufndx 33256 Index value of the Euclide...
eufid 33257 Utility theorem: index-ind...
ringinveu 33260 If a ring unit element ` X...
isdrng4 33261 A division ring is a ring ...
rndrhmcl 33262 The image of a division ri...
qfld 33263 The field of rational numb...
subsdrg 33264 A subring of a sub-divisio...
sdrgdvcl 33265 A sub-division-ring is clo...
sdrginvcl 33266 A sub-division-ring is clo...
primefldchr 33267 The characteristic of a pr...
fracval 33270 Value of the field of frac...
fracbas 33271 The base of the field of f...
fracerl 33272 Rewrite the ring localizat...
fracf1 33273 The embedding of a commuta...
fracfld 33274 The field of fractions of ...
idomsubr 33275 Every integral domain is i...
fldgenval 33278 Value of the field generat...
fldgenssid 33279 The field generated by a s...
fldgensdrg 33280 A generated subfield is a ...
fldgenssv 33281 A generated subfield is a ...
fldgenss 33282 Generated subfields preser...
fldgenidfld 33283 The subfield generated by ...
fldgenssp 33284 The field generated by a s...
fldgenid 33285 The subfield of a field ` ...
fldgenfld 33286 A generated subfield is a ...
primefldgen1 33287 The prime field of a divis...
1fldgenq 33288 The field of rational numb...
rhmdvd 33289 A ring homomorphism preser...
kerunit 33290 If a unit element lies in ...
reldmresv 33293 The scalar restriction is ...
resvval 33294 Value of structure restric...
resvid2 33295 General behavior of trivia...
resvval2 33296 Value of nontrivial struct...
resvsca 33297 Base set of a structure re...
resvlem 33298 Other elements of a scalar...
resvbas 33299 ` Base ` is unaffected by ...
resvplusg 33300 ` +g ` is unaffected by sc...
resvvsca 33301 ` .s ` is unaffected by sc...
resvmulr 33302 ` .r ` is unaffected by sc...
resv0g 33303 ` 0g ` is unaffected by sc...
resv1r 33304 ` 1r ` is unaffected by sc...
resvcmn 33305 Scalar restriction preserv...
gzcrng 33306 The gaussian integers form...
cnfldfld 33307 The complex numbers form a...
reofld 33308 The real numbers form an o...
nn0omnd 33309 The nonnegative integers f...
gsumind 33310 The group sum of an indica...
rearchi 33311 The field of the real numb...
nn0archi 33312 The monoid of the nonnegat...
xrge0slmod 33313 The extended nonnegative r...
qusker 33314 The kernel of a quotient m...
eqgvscpbl 33315 The left coset equivalence...
qusvscpbl 33316 The quotient map distribut...
qusvsval 33317 Value of the scalar multip...
imaslmod 33318 The image structure of a l...
imasmhm 33319 Given a function ` F ` wit...
imasghm 33320 Given a function ` F ` wit...
imasrhm 33321 Given a function ` F ` wit...
imaslmhm 33322 Given a function ` F ` wit...
quslmod 33323 If ` G ` is a submodule in...
quslmhm 33324 If ` G ` is a submodule of...
quslvec 33325 If ` S ` is a vector subsp...
ecxpid 33326 The equivalence class of a...
qsxpid 33327 The quotient set of a cart...
qusxpid 33328 The Group quotient equival...
qustriv 33329 The quotient of a group ` ...
qustrivr 33330 Converse of ~ qustriv . (...
znfermltl 33331 Fermat's little theorem in...
islinds5 33332 A set is linearly independ...
ellspds 33333 Variation on ~ ellspd . (...
0ellsp 33334 Zero is in all spans. (Co...
0nellinds 33335 The group identity cannot ...
rspsnid 33336 A principal ideal contains...
elrsp 33337 Write the elements of a ri...
ellpi 33338 Elementhood in a left prin...
lpirlidllpi 33339 In a principal ideal ring,...
rspidlid 33340 The ideal span of an ideal...
pidlnz 33341 A principal ideal generate...
lbslsp 33342 Any element of a left modu...
lindssn 33343 Any singleton of a nonzero...
lindflbs 33344 Conditions for an independ...
islbs5 33345 An equivalent formulation ...
linds2eq 33346 Deduce equality of element...
lindfpropd 33347 Property deduction for lin...
lindspropd 33348 Property deduction for lin...
dvdsruassoi 33349 If two elements ` X ` and ...
dvdsruasso 33350 Two elements ` X ` and ` Y...
dvdsruasso2 33351 A reformulation of ~ dvdsr...
dvdsrspss 33352 In a ring, an element ` X ...
rspsnasso 33353 Two elements ` X ` and ` Y...
unitprodclb 33354 A finite product is a unit...
elgrplsmsn 33355 Membership in a sumset wit...
lsmsnorb 33356 The sumset of a group with...
lsmsnorb2 33357 The sumset of a single ele...
elringlsm 33358 Membership in a product of...
elringlsmd 33359 Membership in a product of...
ringlsmss 33360 Closure of the product of ...
ringlsmss1 33361 The product of an ideal ` ...
ringlsmss2 33362 The product with an ideal ...
lsmsnpridl 33363 The product of the ring wi...
lsmsnidl 33364 The product of the ring wi...
lsmidllsp 33365 The sum of two ideals is t...
lsmidl 33366 The sum of two ideals is a...
lsmssass 33367 Group sum is associative, ...
grplsm0l 33368 Sumset with the identity s...
grplsmid 33369 The direct sum of an eleme...
quslsm 33370 Express the image by the q...
qusbas2 33371 Alternate definition of th...
qus0g 33372 The identity element of a ...
qusima 33373 The image of a subgroup by...
qusrn 33374 The natural map from eleme...
nsgqus0 33375 A normal subgroup ` N ` is...
nsgmgclem 33376 Lemma for ~ nsgmgc . (Con...
nsgmgc 33377 There is a monotone Galois...
nsgqusf1olem1 33378 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 33379 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 33380 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 33381 The canonical projection h...
lmhmqusker 33382 A surjective module homomo...
lmicqusker 33383 The image ` H ` of a modul...
lidlmcld 33384 An ideal is closed under l...
intlidl 33385 The intersection of a none...
0ringidl 33386 The zero ideal is the only...
pidlnzb 33387 A principal ideal is nonze...
lidlunitel 33388 If an ideal ` I ` contains...
unitpidl1 33389 The ideal ` I ` generated ...
rhmquskerlem 33390 The mapping ` J ` induced ...
rhmqusker 33391 A surjective ring homomorp...
ricqusker 33392 The image ` H ` of a ring ...
elrspunidl 33393 Elementhood in the span of...
elrspunsn 33394 Membership to the span of ...
lidlincl 33395 Ideals are closed under in...
idlinsubrg 33396 The intersection between a...
rhmimaidl 33397 The image of an ideal ` I ...
drngidl 33398 A nonzero ring is a divisi...
drngidlhash 33399 A ring is a division ring ...
prmidlval 33402 The class of prime ideals ...
isprmidl 33403 The predicate "is a prime ...
prmidlnr 33404 A prime ideal is a proper ...
prmidl 33405 The main property of a pri...
prmidl2 33406 A condition that shows an ...
idlmulssprm 33407 Let ` P ` be a prime ideal...
pridln1 33408 A proper ideal cannot cont...
prmidlidl 33409 A prime ideal is an ideal....
prmidlssidl 33410 Prime ideals as a subset o...
cringm4 33411 Commutative/associative la...
isprmidlc 33412 The predicate "is prime id...
prmidlc 33413 Property of a prime ideal ...
0ringprmidl 33414 The trivial ring does not ...
prmidl0 33415 The zero ideal of a commut...
rhmpreimaprmidl 33416 The preimage of a prime id...
qsidomlem1 33417 If the quotient ring of a ...
qsidomlem2 33418 A quotient by a prime idea...
qsidom 33419 An ideal ` I ` in the comm...
qsnzr 33420 A quotient of a non-zero r...
ssdifidllem 33421 Lemma for ~ ssdifidl : Th...
ssdifidl 33422 Let ` R ` be a ring, and l...
ssdifidlprm 33423 If the set ` S ` of ~ ssdi...
mxidlval 33426 The set of maximal ideals ...
ismxidl 33427 The predicate "is a maxima...
mxidlidl 33428 A maximal ideal is an idea...
mxidlnr 33429 A maximal ideal is proper....
mxidlmax 33430 A maximal ideal is a maxim...
mxidln1 33431 One is not contained in an...
mxidlnzr 33432 A ring with a maximal idea...
mxidlmaxv 33433 An ideal ` I ` strictly co...
crngmxidl 33434 In a commutative ring, max...
mxidlprm 33435 Every maximal ideal is pri...
mxidlirredi 33436 In an integral domain, the...
mxidlirred 33437 In a principal ideal domai...
ssmxidllem 33438 The set ` P ` used in the ...
ssmxidl 33439 Let ` R ` be a ring, and l...
drnglidl1ne0 33440 In a nonzero ring, the zer...
drng0mxidl 33441 In a division ring, the ze...
drngmxidl 33442 The zero ideal is the only...
drngmxidlr 33443 If a ring's only maximal i...
krull 33444 Krull's theorem: Any nonz...
mxidlnzrb 33445 A ring is nonzero if and o...
krullndrng 33446 Krull's theorem for non-di...
opprabs 33447 The opposite ring of the o...
oppreqg 33448 Group coset equivalence re...
opprnsg 33449 Normal subgroups of the op...
opprlidlabs 33450 The ideals of the opposite...
oppr2idl 33451 Two sided ideal of the opp...
opprmxidlabs 33452 The maximal ideal of the o...
opprqusbas 33453 The base of the quotient o...
opprqusplusg 33454 The group operation of the...
opprqus0g 33455 The group identity element...
opprqusmulr 33456 The multiplication operati...
opprqus1r 33457 The ring unity of the quot...
opprqusdrng 33458 The quotient of the opposi...
qsdrngilem 33459 Lemma for ~ qsdrngi . (Co...
qsdrngi 33460 A quotient by a maximal le...
qsdrnglem2 33461 Lemma for ~ qsdrng . (Con...
qsdrng 33462 An ideal ` M ` is both lef...
qsfld 33463 An ideal ` M ` in the comm...
mxidlprmALT 33464 Every maximal ideal is pri...
idlsrgstr 33467 A constructed semiring of ...
idlsrgval 33468 Lemma for ~ idlsrgbas thro...
idlsrgbas 33469 Base of the ideals of a ri...
idlsrgplusg 33470 Additive operation of the ...
idlsrg0g 33471 The zero ideal is the addi...
idlsrgmulr 33472 Multiplicative operation o...
idlsrgtset 33473 Topology component of the ...
idlsrgmulrval 33474 Value of the ring multipli...
idlsrgmulrcl 33475 Ideals of a ring ` R ` are...
idlsrgmulrss1 33476 In a commutative ring, the...
idlsrgmulrss2 33477 The product of two ideals ...
idlsrgmulrssin 33478 In a commutative ring, the...
idlsrgmnd 33479 The ideals of a ring form ...
idlsrgcmnd 33480 The ideals of a ring form ...
rprmval 33481 The prime elements of a ri...
isrprm 33482 Property for ` P ` to be a...
rprmcl 33483 A ring prime is an element...
rprmdvds 33484 If a ring prime ` Q ` divi...
rprmnz 33485 A ring prime is nonzero. ...
rprmnunit 33486 A ring prime is not a unit...
rsprprmprmidl 33487 In a commutative ring, ide...
rsprprmprmidlb 33488 In an integral domain, an ...
rprmndvdsr1 33489 A ring prime element does ...
rprmasso 33490 In an integral domain, the...
rprmasso2 33491 In an integral domain, if ...
rprmasso3 33492 In an integral domain, if ...
unitmulrprm 33493 A ring unit multiplied by ...
rprmndvdsru 33494 A ring prime element does ...
rprmirredlem 33495 Lemma for ~ rprmirred . (...
rprmirred 33496 In an integral domain, rin...
rprmirredb 33497 In a principal ideal domai...
rprmdvdspow 33498 If a prime element divides...
rprmdvdsprod 33499 If a prime element ` Q ` d...
1arithidomlem1 33500 Lemma for ~ 1arithidom . ...
1arithidomlem2 33501 Lemma for ~ 1arithidom : i...
1arithidom 33502 Uniqueness of prime factor...
isufd 33505 The property of being a Un...
ufdprmidl 33506 In a unique factorization ...
ufdidom 33507 A nonzero unique factoriza...
pidufd 33508 Every principal ideal doma...
1arithufdlem1 33509 Lemma for ~ 1arithufd . T...
1arithufdlem2 33510 Lemma for ~ 1arithufd . T...
1arithufdlem3 33511 Lemma for ~ 1arithufd . I...
1arithufdlem4 33512 Lemma for ~ 1arithufd . N...
1arithufd 33513 Existence of a factorizati...
dfufd2lem 33514 Lemma for ~ dfufd2 . (Con...
dfufd2 33515 Alternative definition of ...
zringidom 33516 The ring of integers is an...
zringpid 33517 The ring of integers is a ...
dfprm3 33518 The (positive) prime eleme...
zringfrac 33519 The field of fractions of ...
0ringmon1p 33520 There are no monic polynom...
fply1 33521 Conditions for a function ...
ply1lvec 33522 In a division ring, the un...
evls1fn 33523 Functionality of the subri...
evls1dm 33524 The domain of the subring ...
evls1fvf 33525 The subring evaluation fun...
evl1fvf 33526 The univariate polynomial ...
evl1fpws 33527 Evaluation of a univariate...
ressply1evls1 33528 Subring evaluation of a un...
ressdeg1 33529 The degree of a univariate...
ressply10g 33530 A restricted polynomial al...
ressply1mon1p 33531 The monic polynomials of a...
ressply1invg 33532 An element of a restricted...
ressply1sub 33533 A restricted polynomial al...
ressasclcl 33534 Closure of the univariate ...
evls1subd 33535 Univariate polynomial eval...
deg1le0eq0 33536 A polynomial with nonposit...
ply1asclunit 33537 A non-zero scalar polynomi...
ply1unit 33538 In a field ` F ` , a polyn...
evl1deg1 33539 Evaluation of a univariate...
evl1deg2 33540 Evaluation of a univariate...
evl1deg3 33541 Evaluation of a univariate...
evls1monply1 33542 Subring evaluation of a sc...
ply1dg1rt 33543 Express the root ` - B / A...
ply1dg1rtn0 33544 Polynomials of degree 1 ov...
ply1mulrtss 33545 The roots of a factor ` F ...
ply1dg3rt0irred 33546 If a cubic polynomial over...
m1pmeq 33547 If two monic polynomials `...
ply1fermltl 33548 Fermat's little theorem fo...
coe1mon 33549 Coefficient vector of a mo...
ply1moneq 33550 Two monomials are equal if...
coe1zfv 33551 The coefficients of the ze...
coe1vr1 33552 Polynomial coefficient of ...
deg1vr 33553 The degree of the variable...
vr1nz 33554 A univariate polynomial va...
ply1degltel 33555 Characterize elementhood i...
ply1degleel 33556 Characterize elementhood i...
ply1degltlss 33557 The space ` S ` of the uni...
gsummoncoe1fzo 33558 A coefficient of the polyn...
ply1gsumz 33559 If a polynomial given as a...
deg1addlt 33560 If both factors have degre...
ig1pnunit 33561 The polynomial ideal gener...
ig1pmindeg 33562 The polynomial ideal gener...
q1pdir 33563 Distribution of univariate...
q1pvsca 33564 Scalar multiplication prop...
r1pvsca 33565 Scalar multiplication prop...
r1p0 33566 Polynomial remainder opera...
r1pcyc 33567 The polynomial remainder o...
r1padd1 33568 Addition property of the p...
r1pid2OLD 33569 Obsolete version of ~ r1pi...
r1plmhm 33570 The univariate polynomial ...
r1pquslmic 33571 The univariate polynomial ...
psrbasfsupp 33572 Rewrite a finite support f...
mplvrpmlem 33573 Lemma for ~ mplvrpmga and ...
mplvrpmfgalem 33574 Permuting variables in a m...
mplvrpmga 33575 The action of permuting va...
mplvrpmmhm 33576 The action of permuting va...
mplvrpmrhm 33577 The action of permuting va...
splyval 33582 The symmetric polynomials ...
splysubrg 33583 The symmetric polynomials ...
issply 33584 Conditions for being a sym...
esplyval 33585 The elementary polynomials...
esplyfval 33586 The ` K ` -th elementary p...
esplylem 33587 Lemma for ~ esplyfv and ot...
esplympl 33588 Elementary symmetric polyn...
esplymhp 33589 The ` K ` -th elementary s...
esplyfv1 33590 Coefficient for the ` K ` ...
esplyfv 33591 Coefficient for the ` K ` ...
esplysply 33592 The ` K ` -th elementary s...
sra1r 33593 The unity element of a sub...
sradrng 33594 Condition for a subring al...
sraidom 33595 Condition for a subring al...
srasubrg 33596 A subring of the original ...
sralvec 33597 Given a sub division ring ...
srafldlvec 33598 Given a subfield ` F ` of ...
resssra 33599 The subring algebra of a r...
lsssra 33600 A subring is a subspace of...
srapwov 33601 The "power" operation on a...
drgext0g 33602 The additive neutral eleme...
drgextvsca 33603 The scalar multiplication ...
drgext0gsca 33604 The additive neutral eleme...
drgextsubrg 33605 The scalar field is a subr...
drgextlsp 33606 The scalar field is a subs...
drgextgsum 33607 Group sum in a division ri...
lvecdimfi 33608 Finite version of ~ lvecdi...
exsslsb 33609 Any finite generating set ...
lbslelsp 33610 The size of a basis ` X ` ...
dimval 33613 The dimension of a vector ...
dimvalfi 33614 The dimension of a vector ...
dimcl 33615 Closure of the vector spac...
lmimdim 33616 Module isomorphisms preser...
lmicdim 33617 Module isomorphisms preser...
lvecdim0i 33618 A vector space of dimensio...
lvecdim0 33619 A vector space of dimensio...
lssdimle 33620 The dimension of a linear ...
dimpropd 33621 If two structures have the...
rlmdim 33622 The left vector space indu...
rgmoddimOLD 33623 Obsolete version of ~ rlmd...
frlmdim 33624 Dimension of a free left m...
tnglvec 33625 Augmenting a structure wit...
tngdim 33626 Dimension of a left vector...
rrxdim 33627 Dimension of the generaliz...
matdim 33628 Dimension of the space of ...
lbslsat 33629 A nonzero vector ` X ` is ...
lsatdim 33630 A line, spanned by a nonze...
drngdimgt0 33631 The dimension of a vector ...
lmhmlvec2 33632 A homomorphism of left vec...
kerlmhm 33633 The kernel of a vector spa...
imlmhm 33634 The image of a vector spac...
ply1degltdimlem 33635 Lemma for ~ ply1degltdim ....
ply1degltdim 33636 The space ` S ` of the uni...
lindsunlem 33637 Lemma for ~ lindsun . (Co...
lindsun 33638 Condition for the union of...
lbsdiflsp0 33639 The linear spans of two di...
dimkerim 33640 Given a linear map ` F ` b...
qusdimsum 33641 Let ` W ` be a vector spac...
fedgmullem1 33642 Lemma for ~ fedgmul . (Co...
fedgmullem2 33643 Lemma for ~ fedgmul . (Co...
fedgmul 33644 The multiplicativity formu...
dimlssid 33645 If the dimension of a line...
lvecendof1f1o 33646 If an endomorphism ` U ` o...
lactlmhm 33647 In an associative algebra ...
assalactf1o 33648 In an associative algebra ...
assarrginv 33649 If an element ` X ` of an ...
assafld 33650 If an algebra ` A ` of fin...
relfldext 33657 The field extension is a r...
brfldext 33658 The field extension relati...
ccfldextrr 33659 The field of the complex n...
fldextfld1 33660 A field extension is only ...
fldextfld2 33661 A field extension is only ...
fldextsubrg 33662 Field extension implies a ...
sdrgfldext 33663 A field ` E ` and any sub-...
fldextress 33664 Field extension implies a ...
brfinext 33665 The finite field extension...
extdgval 33666 Value of the field extensi...
fldextsdrg 33667 Deduce sub-division-ring f...
fldextsralvec 33668 The subring algebra associ...
extdgcl 33669 Closure of the field exten...
extdggt0 33670 Degrees of field extension...
fldexttr 33671 Field extension is a trans...
fldextid 33672 The field extension relati...
extdgid 33673 A trivial field extension ...
fldsdrgfldext 33674 A sub-division-ring of a f...
fldsdrgfldext2 33675 A sub-sub-division-ring of...
extdgmul 33676 The multiplicativity formu...
finextfldext 33677 A finite field extension i...
finexttrb 33678 The extension ` E ` of ` K...
extdg1id 33679 If the degree of the exten...
extdg1b 33680 The degree of the extensio...
fldgenfldext 33681 A subfield ` F ` extended ...
fldextchr 33682 The characteristic of a su...
evls1fldgencl 33683 Closure of the subring pol...
ccfldsrarelvec 33684 The subring algebra of the...
ccfldextdgrr 33685 The degree of the field ex...
fldextrspunlsplem 33686 Lemma for ~ fldextrspunlsp...
fldextrspunlsp 33687 Lemma for ~ fldextrspunfld...
fldextrspunlem1 33688 Lemma for ~ fldextrspunfld...
fldextrspunfld 33689 The ring generated by the ...
fldextrspunlem2 33690 Part of the proof of Propo...
fldextrspundgle 33691 Inequality involving the d...
fldextrspundglemul 33692 Given two field extensions...
fldextrspundgdvdslem 33693 Lemma for ~ fldextrspundgd...
fldextrspundgdvds 33694 Given two finite extension...
fldext2rspun 33695 Given two field extensions...
irngval 33698 The elements of a field ` ...
elirng 33699 Property for an element ` ...
irngss 33700 All elements of a subring ...
irngssv 33701 An integral element is an ...
0ringirng 33702 A zero ring ` R ` has no i...
irngnzply1lem 33703 In the case of a field ` E...
irngnzply1 33704 In the case of a field ` E...
extdgfialglem1 33705 Lemma for ~ extdgfialg . ...
extdgfialglem2 33706 Lemma for ~ extdgfialg . ...
extdgfialg 33707 A finite field extension `...
bralgext 33710 Express the fact that a fi...
finextalg 33711 A finite field extension i...
ply1annidllem 33714 Write the set ` Q ` of pol...
ply1annidl 33715 The set ` Q ` of polynomia...
ply1annnr 33716 The set ` Q ` of polynomia...
ply1annig1p 33717 The ideal ` Q ` of polynom...
minplyval 33718 Expand the value of the mi...
minplycl 33719 The minimal polynomial is ...
ply1annprmidl 33720 The set ` Q ` of polynomia...
minplymindeg 33721 The minimal polynomial of ...
minplyann 33722 The minimal polynomial for...
minplyirredlem 33723 Lemma for ~ minplyirred . ...
minplyirred 33724 A nonzero minimal polynomi...
irngnminplynz 33725 Integral elements have non...
minplym1p 33726 A minimal polynomial is mo...
minplynzm1p 33727 If a minimal polynomial is...
minplyelirng 33728 If the minimial polynomial...
irredminply 33729 An irreducible, monic, ann...
algextdeglem1 33730 Lemma for ~ algextdeg . (...
algextdeglem2 33731 Lemma for ~ algextdeg . B...
algextdeglem3 33732 Lemma for ~ algextdeg . T...
algextdeglem4 33733 Lemma for ~ algextdeg . B...
algextdeglem5 33734 Lemma for ~ algextdeg . T...
algextdeglem6 33735 Lemma for ~ algextdeg . B...
algextdeglem7 33736 Lemma for ~ algextdeg . T...
algextdeglem8 33737 Lemma for ~ algextdeg . T...
algextdeg 33738 The degree of an algebraic...
rtelextdg2lem 33739 Lemma for ~ rtelextdg2 : ...
rtelextdg2 33740 If an element ` X ` is a s...
fldext2chn 33741 In a non-empty chain ` T `...
constrrtll 33744 In the construction of con...
constrrtlc1 33745 In the construction of con...
constrrtlc2 33746 In the construction of con...
constrrtcclem 33747 In the construction of con...
constrrtcc 33748 In the construction of con...
isconstr 33749 Property of being a constr...
constr0 33750 The first step of the cons...
constrsuc 33751 Membership in the successo...
constrlim 33752 Limit step of the construc...
constrsscn 33753 Closure of the constructib...
constrsslem 33754 Lemma for ~ constrss . Th...
constr01 33755 ` 0 ` and ` 1 ` are in all...
constrss 33756 Constructed points are in ...
constrmon 33757 The construction of constr...
constrconj 33758 If a point ` X ` of the co...
constrfin 33759 Each step of the construct...
constrelextdg2 33760 If the ` N ` -th step ` ( ...
constrextdg2lem 33761 Lemma for ~ constrextdg2 (...
constrextdg2 33762 Any step ` ( C `` N ) ` of...
constrext2chnlem 33763 Lemma for ~ constrext2chn ...
constrfiss 33764 For any finite set ` A ` o...
constrllcllem 33765 Constructible numbers are ...
constrlccllem 33766 Constructible numbers are ...
constrcccllem 33767 Constructible numbers are ...
constrcbvlem 33768 Technical lemma for elimin...
constrllcl 33769 Constructible numbers are ...
constrlccl 33770 Constructible numbers are ...
constrcccl 33771 Constructible numbers are ...
constrext2chn 33772 If a constructible number ...
constrcn 33773 Constructible numbers are ...
nn0constr 33774 Nonnegative integers are c...
constraddcl 33775 Constructive numbers are c...
constrnegcl 33776 Constructible numbers are ...
zconstr 33777 Integers are constructible...
constrdircl 33778 Constructible numbers are ...
iconstr 33779 The imaginary unit ` _i ` ...
constrremulcl 33780 If two real numbers ` X ` ...
constrcjcl 33781 Constructible numbers are ...
constrrecl 33782 Constructible numbers are ...
constrimcl 33783 Constructible numbers are ...
constrmulcl 33784 Constructible numbers are ...
constrreinvcl 33785 If a real number ` X ` is ...
constrinvcl 33786 Constructible numbers are ...
constrcon 33787 Contradiction of construct...
constrsdrg 33788 Constructible numbers form...
constrfld 33789 The constructible numbers ...
constrresqrtcl 33790 If a positive real number ...
constrabscl 33791 Constructible numbers are ...
constrsqrtcl 33792 Constructible numbers are ...
2sqr3minply 33793 The polynomial ` ( ( X ^ 3...
2sqr3nconstr 33794 Doubling the cube is an im...
cos9thpiminplylem1 33795 The polynomial ` ( ( X ^ 3...
cos9thpiminplylem2 33796 The polynomial ` ( ( X ^ 3...
cos9thpiminplylem3 33797 Lemma for ~ cos9thpiminply...
cos9thpiminplylem4 33798 Lemma for ~ cos9thpiminply...
cos9thpiminplylem5 33799 The constructed complex nu...
cos9thpiminplylem6 33800 Evaluation of the polynomi...
cos9thpiminply 33801 The polynomial ` ( ( X ^ 3...
cos9thpinconstrlem1 33802 The complex number ` O ` ,...
cos9thpinconstrlem2 33803 The complex number ` A ` i...
cos9thpinconstr 33804 Trisecting an angle is an ...
trisecnconstr 33805 Not all angles can be tris...
smatfval 33808 Value of the submatrix. (...
smatrcl 33809 Closure of the rectangular...
smatlem 33810 Lemma for the next theorem...
smattl 33811 Entries of a submatrix, to...
smattr 33812 Entries of a submatrix, to...
smatbl 33813 Entries of a submatrix, bo...
smatbr 33814 Entries of a submatrix, bo...
smatcl 33815 Closure of the square subm...
matmpo 33816 Write a square matrix as a...
1smat1 33817 The submatrix of the ident...
submat1n 33818 One case where the submatr...
submatres 33819 Special case where the sub...
submateqlem1 33820 Lemma for ~ submateq . (C...
submateqlem2 33821 Lemma for ~ submateq . (C...
submateq 33822 Sufficient condition for t...
submatminr1 33823 If we take a submatrix by ...
lmatval 33826 Value of the literal matri...
lmatfval 33827 Entries of a literal matri...
lmatfvlem 33828 Useful lemma to extract li...
lmatcl 33829 Closure of the literal mat...
lmat22lem 33830 Lemma for ~ lmat22e11 and ...
lmat22e11 33831 Entry of a 2x2 literal mat...
lmat22e12 33832 Entry of a 2x2 literal mat...
lmat22e21 33833 Entry of a 2x2 literal mat...
lmat22e22 33834 Entry of a 2x2 literal mat...
lmat22det 33835 The determinant of a liter...
mdetpmtr1 33836 The determinant of a matri...
mdetpmtr2 33837 The determinant of a matri...
mdetpmtr12 33838 The determinant of a matri...
mdetlap1 33839 A Laplace expansion of the...
madjusmdetlem1 33840 Lemma for ~ madjusmdet . ...
madjusmdetlem2 33841 Lemma for ~ madjusmdet . ...
madjusmdetlem3 33842 Lemma for ~ madjusmdet . ...
madjusmdetlem4 33843 Lemma for ~ madjusmdet . ...
madjusmdet 33844 Express the cofactor of th...
mdetlap 33845 Laplace expansion of the d...
ist0cld 33846 The predicate "is a T_0 sp...
txomap 33847 Given two open maps ` F ` ...
qtopt1 33848 If every equivalence class...
qtophaus 33849 If an open map's graph in ...
circtopn 33850 The topology of the unit c...
circcn 33851 The function gluing the re...
reff 33852 For any cover refinement, ...
locfinreflem 33853 A locally finite refinemen...
locfinref 33854 A locally finite refinemen...
iscref 33857 The property that every op...
crefeq 33858 Equality theorem for the "...
creftop 33859 A space where every open c...
crefi 33860 The property that every op...
crefdf 33861 A formulation of ~ crefi e...
crefss 33862 The "every open cover has ...
cmpcref 33863 Equivalent definition of c...
cmpfiref 33864 Every open cover of a Comp...
ldlfcntref 33867 Every open cover of a Lind...
ispcmp 33870 The predicate "is a paraco...
cmppcmp 33871 Every compact space is par...
dispcmp 33872 Every discrete space is pa...
pcmplfin 33873 Given a paracompact topolo...
pcmplfinf 33874 Given a paracompact topolo...
rspecval 33877 Value of the spectrum of t...
rspecbas 33878 The prime ideals form the ...
rspectset 33879 Topology component of the ...
rspectopn 33880 The topology component of ...
zarcls0 33881 The closure of the identit...
zarcls1 33882 The unit ideal ` B ` is th...
zarclsun 33883 The union of two closed se...
zarclsiin 33884 In a Zariski topology, the...
zarclsint 33885 The intersection of a fami...
zarclssn 33886 The closed points of Zaris...
zarcls 33887 The open sets of the Zaris...
zartopn 33888 The Zariski topology is a ...
zartop 33889 The Zariski topology is a ...
zartopon 33890 The points of the Zariski ...
zar0ring 33891 The Zariski Topology of th...
zart0 33892 The Zariski topology is T_...
zarmxt1 33893 The Zariski topology restr...
zarcmplem 33894 Lemma for ~ zarcmp . (Con...
zarcmp 33895 The Zariski topology is co...
rspectps 33896 The spectrum of a ring ` R...
rhmpreimacnlem 33897 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 33898 The function mapping a pri...
metidval 33903 Value of the metric identi...
metidss 33904 As a relation, the metric ...
metidv 33905 ` A ` and ` B ` identify b...
metideq 33906 Basic property of the metr...
metider 33907 The metric identification ...
pstmval 33908 Value of the metric induce...
pstmfval 33909 Function value of the metr...
pstmxmet 33910 The metric induced by a ps...
hauseqcn 33911 In a Hausdorff topology, t...
elunitge0 33912 An element of the closed u...
unitssxrge0 33913 The closed unit interval i...
unitdivcld 33914 Necessary conditions for a...
iistmd 33915 The closed unit interval f...
unicls 33916 The union of the closed se...
tpr2tp 33917 The usual topology on ` ( ...
tpr2uni 33918 The usual topology on ` ( ...
xpinpreima 33919 Rewrite the cartesian prod...
xpinpreima2 33920 Rewrite the cartesian prod...
sqsscirc1 33921 The complex square of side...
sqsscirc2 33922 The complex square of side...
cnre2csqlem 33923 Lemma for ~ cnre2csqima . ...
cnre2csqima 33924 Image of a centered square...
tpr2rico 33925 For any point of an open s...
cnvordtrestixx 33926 The restriction of the 'gr...
prsdm 33927 Domain of the relation of ...
prsrn 33928 Range of the relation of a...
prsss 33929 Relation of a subproset. ...
prsssdm 33930 Domain of a subproset rela...
ordtprsval 33931 Value of the order topolog...
ordtprsuni 33932 Value of the order topolog...
ordtcnvNEW 33933 The order dual generates t...
ordtrestNEW 33934 The subspace topology of a...
ordtrest2NEWlem 33935 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 33936 An interval-closed set ` A...
ordtconnlem1 33937 Connectedness in the order...
ordtconn 33938 Connectedness in the order...
mndpluscn 33939 A mapping that is both a h...
mhmhmeotmd 33940 Deduce a Topological Monoi...
rmulccn 33941 Multiplication by a real c...
raddcn 33942 Addition in the real numbe...
xrmulc1cn 33943 The operation multiplying ...
fmcncfil 33944 The image of a Cauchy filt...
xrge0hmph 33945 The extended nonnegative r...
xrge0iifcnv 33946 Define a bijection from ` ...
xrge0iifcv 33947 The defined function's val...
xrge0iifiso 33948 The defined bijection from...
xrge0iifhmeo 33949 Expose a homeomorphism fro...
xrge0iifhom 33950 The defined function from ...
xrge0iif1 33951 Condition for the defined ...
xrge0iifmhm 33952 The defined function from ...
xrge0pluscn 33953 The addition operation of ...
xrge0mulc1cn 33954 The operation multiplying ...
xrge0tps 33955 The extended nonnegative r...
xrge0topn 33956 The topology of the extend...
xrge0haus 33957 The topology of the extend...
xrge0tmd 33958 The extended nonnegative r...
xrge0tmdALT 33959 Alternate proof of ~ xrge0...
lmlim 33960 Relate a limit in a given ...
lmlimxrge0 33961 Relate a limit in the nonn...
rge0scvg 33962 Implication of convergence...
fsumcvg4 33963 A serie with finite suppor...
pnfneige0 33964 A neighborhood of ` +oo ` ...
lmxrge0 33965 Express "sequence ` F ` co...
lmdvg 33966 If a monotonic sequence of...
lmdvglim 33967 If a monotonic real number...
pl1cn 33968 A univariate polynomial is...
zringnm 33971 The norm (function) for a ...
zzsnm 33972 The norm of the ring of th...
zlm0 33973 Zero of a ` ZZ ` -module. ...
zlm1 33974 Unity element of a ` ZZ ` ...
zlmds 33975 Distance in a ` ZZ ` -modu...
zlmtset 33976 Topology in a ` ZZ ` -modu...
zlmnm 33977 Norm of a ` ZZ ` -module (...
zhmnrg 33978 The ` ZZ ` -module built f...
nmmulg 33979 The norm of a group produc...
zrhnm 33980 The norm of the image by `...
cnzh 33981 The ` ZZ ` -module of ` CC...
rezh 33982 The ` ZZ ` -module of ` RR...
qqhval 33985 Value of the canonical hom...
zrhf1ker 33986 The kernel of the homomorp...
zrhchr 33987 The kernel of the homomorp...
zrhker 33988 The kernel of the homomorp...
zrhunitpreima 33989 The preimage by ` ZRHom ` ...
elzrhunit 33990 Condition for the image by...
zrhneg 33991 The canonical homomorphism...
zrhcntr 33992 The canonical representati...
elzdif0 33993 Lemma for ~ qqhval2 . (Co...
qqhval2lem 33994 Lemma for ~ qqhval2 . (Co...
qqhval2 33995 Value of the canonical hom...
qqhvval 33996 Value of the canonical hom...
qqh0 33997 The image of ` 0 ` by the ...
qqh1 33998 The image of ` 1 ` by the ...
qqhf 33999 ` QQHom ` as a function. ...
qqhvq 34000 The image of a quotient by...
qqhghm 34001 The ` QQHom ` homomorphism...
qqhrhm 34002 The ` QQHom ` homomorphism...
qqhnm 34003 The norm of the image by `...
qqhcn 34004 The ` QQHom ` homomorphism...
qqhucn 34005 The ` QQHom ` homomorphism...
rrhval 34009 Value of the canonical hom...
rrhcn 34010 If the topology of ` R ` i...
rrhf 34011 If the topology of ` R ` i...
isrrext 34013 Express the property " ` R...
rrextnrg 34014 An extension of ` RR ` is ...
rrextdrg 34015 An extension of ` RR ` is ...
rrextnlm 34016 The norm of an extension o...
rrextchr 34017 The ring characteristic of...
rrextcusp 34018 An extension of ` RR ` is ...
rrexttps 34019 An extension of ` RR ` is ...
rrexthaus 34020 The topology of an extensi...
rrextust 34021 The uniformity of an exten...
rerrext 34022 The field of the real numb...
cnrrext 34023 The field of the complex n...
qqtopn 34024 The topology of the field ...
rrhfe 34025 If ` R ` is an extension o...
rrhcne 34026 If ` R ` is an extension o...
rrhqima 34027 The ` RRHom ` homomorphism...
rrh0 34028 The image of ` 0 ` by the ...
xrhval 34031 The value of the embedding...
zrhre 34032 The ` ZRHom ` homomorphism...
qqhre 34033 The ` QQHom ` homomorphism...
rrhre 34034 The ` RRHom ` homomorphism...
relmntop 34037 Manifold is a relation. (...
ismntoplly 34038 Property of being a manifo...
ismntop 34039 Property of being a manifo...
esumex 34042 An extended sum is a set b...
esumcl 34043 Closure for extended sum i...
esumeq12dvaf 34044 Equality deduction for ext...
esumeq12dva 34045 Equality deduction for ext...
esumeq12d 34046 Equality deduction for ext...
esumeq1 34047 Equality theorem for an ex...
esumeq1d 34048 Equality theorem for an ex...
esumeq2 34049 Equality theorem for exten...
esumeq2d 34050 Equality deduction for ext...
esumeq2dv 34051 Equality deduction for ext...
esumeq2sdv 34052 Equality deduction for ext...
nfesum1 34053 Bound-variable hypothesis ...
nfesum2 34054 Bound-variable hypothesis ...
cbvesum 34055 Change bound variable in a...
cbvesumv 34056 Change bound variable in a...
esumid 34057 Identify the extended sum ...
esumgsum 34058 A finite extended sum is t...
esumval 34059 Develop the value of the e...
esumel 34060 The extended sum is a limi...
esumnul 34061 Extended sum over the empt...
esum0 34062 Extended sum of zero. (Co...
esumf1o 34063 Re-index an extended sum u...
esumc 34064 Convert from the collectio...
esumrnmpt 34065 Rewrite an extended sum in...
esumsplit 34066 Split an extended sum into...
esummono 34067 Extended sum is monotonic....
esumpad 34068 Extend an extended sum by ...
esumpad2 34069 Remove zeroes from an exte...
esumadd 34070 Addition of infinite sums....
esumle 34071 If all of the terms of an ...
gsumesum 34072 Relate a group sum on ` ( ...
esumlub 34073 The extended sum is the lo...
esumaddf 34074 Addition of infinite sums....
esumlef 34075 If all of the terms of an ...
esumcst 34076 The extended sum of a cons...
esumsnf 34077 The extended sum of a sing...
esumsn 34078 The extended sum of a sing...
esumpr 34079 Extended sum over a pair. ...
esumpr2 34080 Extended sum over a pair, ...
esumrnmpt2 34081 Rewrite an extended sum in...
esumfzf 34082 Formulating a partial exte...
esumfsup 34083 Formulating an extended su...
esumfsupre 34084 Formulating an extended su...
esumss 34085 Change the index set to a ...
esumpinfval 34086 The value of the extended ...
esumpfinvallem 34087 Lemma for ~ esumpfinval . ...
esumpfinval 34088 The value of the extended ...
esumpfinvalf 34089 Same as ~ esumpfinval , mi...
esumpinfsum 34090 The value of the extended ...
esumpcvgval 34091 The value of the extended ...
esumpmono 34092 The partial sums in an ext...
esumcocn 34093 Lemma for ~ esummulc2 and ...
esummulc1 34094 An extended sum multiplied...
esummulc2 34095 An extended sum multiplied...
esumdivc 34096 An extended sum divided by...
hashf2 34097 Lemma for ~ hasheuni . (C...
hasheuni 34098 The cardinality of a disjo...
esumcvg 34099 The sequence of partial su...
esumcvg2 34100 Simpler version of ~ esumc...
esumcvgsum 34101 The value of the extended ...
esumsup 34102 Express an extended sum as...
esumgect 34103 "Send ` n ` to ` +oo ` " i...
esumcvgre 34104 All terms of a converging ...
esum2dlem 34105 Lemma for ~ esum2d (finite...
esum2d 34106 Write a double extended su...
esumiun 34107 Sum over a nonnecessarily ...
ofceq 34110 Equality theorem for funct...
ofcfval 34111 Value of an operation appl...
ofcval 34112 Evaluate a function/consta...
ofcfn 34113 The function operation pro...
ofcfeqd2 34114 Equality theorem for funct...
ofcfval3 34115 General value of ` ( F oFC...
ofcf 34116 The function/constant oper...
ofcfval2 34117 The function operation exp...
ofcfval4 34118 The function/constant oper...
ofcc 34119 Left operation by a consta...
ofcof 34120 Relate function operation ...
sigaex 34123 Lemma for ~ issiga and ~ i...
sigaval 34124 The set of sigma-algebra w...
issiga 34125 An alternative definition ...
isrnsiga 34126 The property of being a si...
0elsiga 34127 A sigma-algebra contains t...
baselsiga 34128 A sigma-algebra contains i...
sigasspw 34129 A sigma-algebra is a set o...
sigaclcu 34130 A sigma-algebra is closed ...
sigaclcuni 34131 A sigma-algebra is closed ...
sigaclfu 34132 A sigma-algebra is closed ...
sigaclcu2 34133 A sigma-algebra is closed ...
sigaclfu2 34134 A sigma-algebra is closed ...
sigaclcu3 34135 A sigma-algebra is closed ...
issgon 34136 Property of being a sigma-...
sgon 34137 A sigma-algebra is a sigma...
elsigass 34138 An element of a sigma-alge...
elrnsiga 34139 Dropping the base informat...
isrnsigau 34140 The property of being a si...
unielsiga 34141 A sigma-algebra contains i...
dmvlsiga 34142 Lebesgue-measurable subset...
pwsiga 34143 Any power set forms a sigm...
prsiga 34144 The smallest possible sigm...
sigaclci 34145 A sigma-algebra is closed ...
difelsiga 34146 A sigma-algebra is closed ...
unelsiga 34147 A sigma-algebra is closed ...
inelsiga 34148 A sigma-algebra is closed ...
sigainb 34149 Building a sigma-algebra f...
insiga 34150 The intersection of a coll...
sigagenval 34153 Value of the generated sig...
sigagensiga 34154 A generated sigma-algebra ...
sgsiga 34155 A generated sigma-algebra ...
unisg 34156 The sigma-algebra generate...
dmsigagen 34157 A sigma-algebra can be gen...
sssigagen 34158 A set is a subset of the s...
sssigagen2 34159 A subset of the generating...
elsigagen 34160 Any element of a set is al...
elsigagen2 34161 Any countable union of ele...
sigagenss 34162 The generated sigma-algebr...
sigagenss2 34163 Sufficient condition for i...
sigagenid 34164 The sigma-algebra generate...
ispisys 34165 The property of being a pi...
ispisys2 34166 The property of being a pi...
inelpisys 34167 Pi-systems are closed unde...
sigapisys 34168 All sigma-algebras are pi-...
isldsys 34169 The property of being a la...
pwldsys 34170 The power set of the unive...
unelldsys 34171 Lambda-systems are closed ...
sigaldsys 34172 All sigma-algebras are lam...
ldsysgenld 34173 The intersection of all la...
sigapildsyslem 34174 Lemma for ~ sigapildsys . ...
sigapildsys 34175 Sigma-algebra are exactly ...
ldgenpisyslem1 34176 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 34177 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 34178 Lemma for ~ ldgenpisys . ...
ldgenpisys 34179 The lambda system ` E ` ge...
dynkin 34180 Dynkin's lambda-pi theorem...
isros 34181 The property of being a ri...
rossspw 34182 A ring of sets is a collec...
0elros 34183 A ring of sets contains th...
unelros 34184 A ring of sets is closed u...
difelros 34185 A ring of sets is closed u...
inelros 34186 A ring of sets is closed u...
fiunelros 34187 A ring of sets is closed u...
issros 34188 The property of being a se...
srossspw 34189 A semiring of sets is a co...
0elsros 34190 A semiring of sets contain...
inelsros 34191 A semiring of sets is clos...
diffiunisros 34192 In semiring of sets, compl...
rossros 34193 Rings of sets are semiring...
brsiga 34196 The Borel Algebra on real ...
brsigarn 34197 The Borel Algebra is a sig...
brsigasspwrn 34198 The Borel Algebra is a set...
unibrsiga 34199 The union of the Borel Alg...
cldssbrsiga 34200 A Borel Algebra contains a...
sxval 34203 Value of the product sigma...
sxsiga 34204 A product sigma-algebra is...
sxsigon 34205 A product sigma-algebra is...
sxuni 34206 The base set of a product ...
elsx 34207 The cartesian product of t...
measbase 34210 The base set of a measure ...
measval 34211 The value of the ` measure...
ismeas 34212 The property of being a me...
isrnmeas 34213 The property of being a me...
dmmeas 34214 The domain of a measure is...
measbasedom 34215 The base set of a measure ...
measfrge0 34216 A measure is a function ov...
measfn 34217 A measure is a function on...
measvxrge0 34218 The values of a measure ar...
measvnul 34219 The measure of the empty s...
measge0 34220 A measure is nonnegative. ...
measle0 34221 If the measure of a given ...
measvun 34222 The measure of a countable...
measxun2 34223 The measure the union of t...
measun 34224 The measure the union of t...
measvunilem 34225 Lemma for ~ measvuni . (C...
measvunilem0 34226 Lemma for ~ measvuni . (C...
measvuni 34227 The measure of a countable...
measssd 34228 A measure is monotone with...
measunl 34229 A measure is sub-additive ...
measiuns 34230 The measure of the union o...
measiun 34231 A measure is sub-additive....
meascnbl 34232 A measure is continuous fr...
measinblem 34233 Lemma for ~ measinb . (Co...
measinb 34234 Building a measure restric...
measres 34235 Building a measure restric...
measinb2 34236 Building a measure restric...
measdivcst 34237 Division of a measure by a...
measdivcstALTV 34238 Alternate version of ~ mea...
cntmeas 34239 The Counting measure is a ...
pwcntmeas 34240 The counting measure is a ...
cntnevol 34241 Counting and Lebesgue meas...
voliune 34242 The Lebesgue measure funct...
volfiniune 34243 The Lebesgue measure funct...
volmeas 34244 The Lebesgue measure is a ...
ddeval1 34247 Value of the delta measure...
ddeval0 34248 Value of the delta measure...
ddemeas 34249 The Dirac delta measure is...
relae 34253 'almost everywhere' is a r...
brae 34254 'almost everywhere' relati...
braew 34255 'almost everywhere' relati...
truae 34256 A truth holds almost every...
aean 34257 A conjunction holds almost...
faeval 34259 Value of the 'almost every...
relfae 34260 The 'almost everywhere' bu...
brfae 34261 'almost everywhere' relati...
ismbfm 34264 The predicate " ` F ` is a...
elunirnmbfm 34265 The property of being a me...
mbfmfun 34266 A measurable function is a...
mbfmf 34267 A measurable function as a...
mbfmcnvima 34268 The preimage by a measurab...
isanmbfm 34269 The predicate to be a meas...
mbfmbfmOLD 34270 A measurable function to a...
mbfmbfm 34271 A measurable function to a...
mbfmcst 34272 A constant function is mea...
1stmbfm 34273 The first projection map i...
2ndmbfm 34274 The second projection map ...
imambfm 34275 If the sigma-algebra in th...
cnmbfm 34276 A continuous function is m...
mbfmco 34277 The composition of two mea...
mbfmco2 34278 The pair building of two m...
mbfmvolf 34279 Measurable functions with ...
elmbfmvol2 34280 Measurable functions with ...
mbfmcnt 34281 All functions are measurab...
br2base 34282 The base set for the gener...
dya2ub 34283 An upper bound for a dyadi...
sxbrsigalem0 34284 The closed half-spaces of ...
sxbrsigalem3 34285 The sigma-algebra generate...
dya2iocival 34286 The function ` I ` returns...
dya2iocress 34287 Dyadic intervals are subse...
dya2iocbrsiga 34288 Dyadic intervals are Borel...
dya2icobrsiga 34289 Dyadic intervals are Borel...
dya2icoseg 34290 For any point and any clos...
dya2icoseg2 34291 For any point and any open...
dya2iocrfn 34292 The function returning dya...
dya2iocct 34293 The dyadic rectangle set i...
dya2iocnrect 34294 For any point of an open r...
dya2iocnei 34295 For any point of an open s...
dya2iocuni 34296 Every open set of ` ( RR X...
dya2iocucvr 34297 The dyadic rectangular set...
sxbrsigalem1 34298 The Borel algebra on ` ( R...
sxbrsigalem2 34299 The sigma-algebra generate...
sxbrsigalem4 34300 The Borel algebra on ` ( R...
sxbrsigalem5 34301 First direction for ~ sxbr...
sxbrsigalem6 34302 First direction for ~ sxbr...
sxbrsiga 34303 The product sigma-algebra ...
omsval 34306 Value of the function mapp...
omsfval 34307 Value of the outer measure...
omscl 34308 A closure lemma for the co...
omsf 34309 A constructed outer measur...
oms0 34310 A constructed outer measur...
omsmon 34311 A constructed outer measur...
omssubaddlem 34312 For any small margin ` E `...
omssubadd 34313 A constructed outer measur...
carsgval 34316 Value of the Caratheodory ...
carsgcl 34317 Closure of the Caratheodor...
elcarsg 34318 Property of being a Carath...
baselcarsg 34319 The universe set, ` O ` , ...
0elcarsg 34320 The empty set is Caratheod...
carsguni 34321 The union of all Caratheod...
elcarsgss 34322 Caratheodory measurable se...
difelcarsg 34323 The Caratheodory measurabl...
inelcarsg 34324 The Caratheodory measurabl...
unelcarsg 34325 The Caratheodory-measurabl...
difelcarsg2 34326 The Caratheodory-measurabl...
carsgmon 34327 Utility lemma: Apply mono...
carsgsigalem 34328 Lemma for the following th...
fiunelcarsg 34329 The Caratheodory measurabl...
carsgclctunlem1 34330 Lemma for ~ carsgclctun . ...
carsggect 34331 The outer measure is count...
carsgclctunlem2 34332 Lemma for ~ carsgclctun . ...
carsgclctunlem3 34333 Lemma for ~ carsgclctun . ...
carsgclctun 34334 The Caratheodory measurabl...
carsgsiga 34335 The Caratheodory measurabl...
omsmeas 34336 The restriction of a const...
pmeasmono 34337 This theorem's hypotheses ...
pmeasadd 34338 A premeasure on a ring of ...
itgeq12dv 34339 Equality theorem for an in...
sitgval 34345 Value of the simple functi...
issibf 34346 The predicate " ` F ` is a...
sibf0 34347 The constant zero function...
sibfmbl 34348 A simple function is measu...
sibff 34349 A simple function is a fun...
sibfrn 34350 A simple function has fini...
sibfima 34351 Any preimage of a singleto...
sibfinima 34352 The measure of the interse...
sibfof 34353 Applying function operatio...
sitgfval 34354 Value of the Bochner integ...
sitgclg 34355 Closure of the Bochner int...
sitgclbn 34356 Closure of the Bochner int...
sitgclcn 34357 Closure of the Bochner int...
sitgclre 34358 Closure of the Bochner int...
sitg0 34359 The integral of the consta...
sitgf 34360 The integral for simple fu...
sitgaddlemb 34361 Lemma for * sitgadd . (Co...
sitmval 34362 Value of the simple functi...
sitmfval 34363 Value of the integral dist...
sitmcl 34364 Closure of the integral di...
sitmf 34365 The integral metric as a f...
oddpwdc 34367 Lemma for ~ eulerpart . T...
oddpwdcv 34368 Lemma for ~ eulerpart : va...
eulerpartlemsv1 34369 Lemma for ~ eulerpart . V...
eulerpartlemelr 34370 Lemma for ~ eulerpart . (...
eulerpartlemsv2 34371 Lemma for ~ eulerpart . V...
eulerpartlemsf 34372 Lemma for ~ eulerpart . (...
eulerpartlems 34373 Lemma for ~ eulerpart . (...
eulerpartlemsv3 34374 Lemma for ~ eulerpart . V...
eulerpartlemgc 34375 Lemma for ~ eulerpart . (...
eulerpartleme 34376 Lemma for ~ eulerpart . (...
eulerpartlemv 34377 Lemma for ~ eulerpart . (...
eulerpartlemo 34378 Lemma for ~ eulerpart : ` ...
eulerpartlemd 34379 Lemma for ~ eulerpart : ` ...
eulerpartlem1 34380 Lemma for ~ eulerpart . (...
eulerpartlemb 34381 Lemma for ~ eulerpart . T...
eulerpartlemt0 34382 Lemma for ~ eulerpart . (...
eulerpartlemf 34383 Lemma for ~ eulerpart : O...
eulerpartlemt 34384 Lemma for ~ eulerpart . (...
eulerpartgbij 34385 Lemma for ~ eulerpart : T...
eulerpartlemgv 34386 Lemma for ~ eulerpart : va...
eulerpartlemr 34387 Lemma for ~ eulerpart . (...
eulerpartlemmf 34388 Lemma for ~ eulerpart . (...
eulerpartlemgvv 34389 Lemma for ~ eulerpart : va...
eulerpartlemgu 34390 Lemma for ~ eulerpart : R...
eulerpartlemgh 34391 Lemma for ~ eulerpart : T...
eulerpartlemgf 34392 Lemma for ~ eulerpart : I...
eulerpartlemgs2 34393 Lemma for ~ eulerpart : T...
eulerpartlemn 34394 Lemma for ~ eulerpart . (...
eulerpart 34395 Euler's theorem on partiti...
subiwrd 34398 Lemma for ~ sseqp1 . (Con...
subiwrdlen 34399 Length of a subword of an ...
iwrdsplit 34400 Lemma for ~ sseqp1 . (Con...
sseqval 34401 Value of the strong sequen...
sseqfv1 34402 Value of the strong sequen...
sseqfn 34403 A strong recursive sequenc...
sseqmw 34404 Lemma for ~ sseqf amd ~ ss...
sseqf 34405 A strong recursive sequenc...
sseqfres 34406 The first elements in the ...
sseqfv2 34407 Value of the strong sequen...
sseqp1 34408 Value of the strong sequen...
fiblem 34411 Lemma for ~ fib0 , ~ fib1 ...
fib0 34412 Value of the Fibonacci seq...
fib1 34413 Value of the Fibonacci seq...
fibp1 34414 Value of the Fibonacci seq...
fib2 34415 Value of the Fibonacci seq...
fib3 34416 Value of the Fibonacci seq...
fib4 34417 Value of the Fibonacci seq...
fib5 34418 Value of the Fibonacci seq...
fib6 34419 Value of the Fibonacci seq...
elprob 34422 The property of being a pr...
domprobmeas 34423 A probability measure is a...
domprobsiga 34424 The domain of a probabilit...
probtot 34425 The probability of the uni...
prob01 34426 A probability is an elemen...
probnul 34427 The probability of the emp...
unveldomd 34428 The universe is an element...
unveldom 34429 The universe is an element...
nuleldmp 34430 The empty set is an elemen...
probcun 34431 The probability of the uni...
probun 34432 The probability of the uni...
probdif 34433 The probability of the dif...
probinc 34434 A probability law is incre...
probdsb 34435 The probability of the com...
probmeasd 34436 A probability measure is a...
probvalrnd 34437 The value of a probability...
probtotrnd 34438 The probability of the uni...
totprobd 34439 Law of total probability, ...
totprob 34440 Law of total probability. ...
probfinmeasb 34441 Build a probability measur...
probfinmeasbALTV 34442 Alternate version of ~ pro...
probmeasb 34443 Build a probability from a...
cndprobval 34446 The value of the condition...
cndprobin 34447 An identity linking condit...
cndprob01 34448 The conditional probabilit...
cndprobtot 34449 The conditional probabilit...
cndprobnul 34450 The conditional probabilit...
cndprobprob 34451 The conditional probabilit...
bayesth 34452 Bayes Theorem. (Contribut...
rrvmbfm 34455 A real-valued random varia...
isrrvv 34456 Elementhood to the set of ...
rrvvf 34457 A real-valued random varia...
rrvfn 34458 A real-valued random varia...
rrvdm 34459 The domain of a random var...
rrvrnss 34460 The range of a random vari...
rrvf2 34461 A real-valued random varia...
rrvdmss 34462 The domain of a random var...
rrvfinvima 34463 For a real-value random va...
0rrv 34464 The constant function equa...
rrvadd 34465 The sum of two random vari...
rrvmulc 34466 A random variable multipli...
rrvsum 34467 An indexed sum of random v...
boolesineq 34468 Boole's inequality (union ...
orvcval 34471 Value of the preimage mapp...
orvcval2 34472 Another way to express the...
elorvc 34473 Elementhood of a preimage....
orvcval4 34474 The value of the preimage ...
orvcoel 34475 If the relation produces o...
orvccel 34476 If the relation produces c...
elorrvc 34477 Elementhood of a preimage ...
orrvcval4 34478 The value of the preimage ...
orrvcoel 34479 If the relation produces o...
orrvccel 34480 If the relation produces c...
orvcgteel 34481 Preimage maps produced by ...
orvcelval 34482 Preimage maps produced by ...
orvcelel 34483 Preimage maps produced by ...
dstrvval 34484 The value of the distribut...
dstrvprob 34485 The distribution of a rand...
orvclteel 34486 Preimage maps produced by ...
dstfrvel 34487 Elementhood of preimage ma...
dstfrvunirn 34488 The limit of all preimage ...
orvclteinc 34489 Preimage maps produced by ...
dstfrvinc 34490 A cumulative distribution ...
dstfrvclim1 34491 The limit of the cumulativ...
coinfliplem 34492 Division in the extended r...
coinflipprob 34493 The ` P ` we defined for c...
coinflipspace 34494 The space of our coin-flip...
coinflipuniv 34495 The universe of our coin-f...
coinfliprv 34496 The ` X ` we defined for c...
coinflippv 34497 The probability of heads i...
coinflippvt 34498 The probability of tails i...
ballotlemoex 34499 ` O ` is a set. (Contribu...
ballotlem1 34500 The size of the universe i...
ballotlemelo 34501 Elementhood in ` O ` . (C...
ballotlem2 34502 The probability that the f...
ballotlemfval 34503 The value of ` F ` . (Con...
ballotlemfelz 34504 ` ( F `` C ) ` has values ...
ballotlemfp1 34505 If the ` J ` th ballot is ...
ballotlemfc0 34506 ` F ` takes value 0 betwee...
ballotlemfcc 34507 ` F ` takes value 0 betwee...
ballotlemfmpn 34508 ` ( F `` C ) ` finishes co...
ballotlemfval0 34509 ` ( F `` C ) ` always star...
ballotleme 34510 Elements of ` E ` . (Cont...
ballotlemodife 34511 Elements of ` ( O \ E ) ` ...
ballotlem4 34512 If the first pick is a vot...
ballotlem5 34513 If A is not ahead througho...
ballotlemi 34514 Value of ` I ` for a given...
ballotlemiex 34515 Properties of ` ( I `` C )...
ballotlemi1 34516 The first tie cannot be re...
ballotlemii 34517 The first tie cannot be re...
ballotlemsup 34518 The set of zeroes of ` F `...
ballotlemimin 34519 ` ( I `` C ) ` is the firs...
ballotlemic 34520 If the first vote is for B...
ballotlem1c 34521 If the first vote is for A...
ballotlemsval 34522 Value of ` S ` . (Contrib...
ballotlemsv 34523 Value of ` S ` evaluated a...
ballotlemsgt1 34524 ` S ` maps values less tha...
ballotlemsdom 34525 Domain of ` S ` for a give...
ballotlemsel1i 34526 The range ` ( 1 ... ( I ``...
ballotlemsf1o 34527 The defined ` S ` is a bij...
ballotlemsi 34528 The image by ` S ` of the ...
ballotlemsima 34529 The image by ` S ` of an i...
ballotlemieq 34530 If two countings share the...
ballotlemrval 34531 Value of ` R ` . (Contrib...
ballotlemscr 34532 The image of ` ( R `` C ) ...
ballotlemrv 34533 Value of ` R ` evaluated a...
ballotlemrv1 34534 Value of ` R ` before the ...
ballotlemrv2 34535 Value of ` R ` after the t...
ballotlemro 34536 Range of ` R ` is included...
ballotlemgval 34537 Expand the value of ` .^ `...
ballotlemgun 34538 A property of the defined ...
ballotlemfg 34539 Express the value of ` ( F...
ballotlemfrc 34540 Express the value of ` ( F...
ballotlemfrci 34541 Reverse counting preserves...
ballotlemfrceq 34542 Value of ` F ` for a rever...
ballotlemfrcn0 34543 Value of ` F ` for a rever...
ballotlemrc 34544 Range of ` R ` . (Contrib...
ballotlemirc 34545 Applying ` R ` does not ch...
ballotlemrinv0 34546 Lemma for ~ ballotlemrinv ...
ballotlemrinv 34547 ` R ` is its own inverse :...
ballotlem1ri 34548 When the vote on the first...
ballotlem7 34549 ` R ` is a bijection betwe...
ballotlem8 34550 There are as many counting...
ballotth 34551 Bertrand's ballot problem ...
fzssfzo 34552 Condition for an integer i...
gsumncl 34553 Closure of a group sum in ...
gsumnunsn 34554 Closure of a group sum in ...
ccatmulgnn0dir 34555 Concatenation of words fol...
ofcccat 34556 Letterwise operations on w...
ofcs1 34557 Letterwise operations on a...
ofcs2 34558 Letterwise operations on a...
plymul02 34559 Product of a polynomial wi...
plymulx0 34560 Coefficients of a polynomi...
plymulx 34561 Coefficients of a polynomi...
plyrecld 34562 Closure of a polynomial wi...
signsplypnf 34563 The quotient of a polynomi...
signsply0 34564 Lemma for the rule of sign...
signspval 34565 The value of the skipping ...
signsw0glem 34566 Neutral element property o...
signswbase 34567 The base of ` W ` is the u...
signswplusg 34568 The operation of ` W ` . ...
signsw0g 34569 The neutral element of ` W...
signswmnd 34570 ` W ` is a monoid structur...
signswrid 34571 The zero-skipping operatio...
signswlid 34572 The zero-skipping operatio...
signswn0 34573 The zero-skipping operatio...
signswch 34574 The zero-skipping operatio...
signslema 34575 Computational part of ~~? ...
signstfv 34576 Value of the zero-skipping...
signstfval 34577 Value of the zero-skipping...
signstcl 34578 Closure of the zero skippi...
signstf 34579 The zero skipping sign wor...
signstlen 34580 Length of the zero skippin...
signstf0 34581 Sign of a single letter wo...
signstfvn 34582 Zero-skipping sign in a wo...
signsvtn0 34583 If the last letter is nonz...
signstfvp 34584 Zero-skipping sign in a wo...
signstfvneq0 34585 In case the first letter i...
signstfvcl 34586 Closure of the zero skippi...
signstfvc 34587 Zero-skipping sign in a wo...
signstres 34588 Restriction of a zero skip...
signstfveq0a 34589 Lemma for ~ signstfveq0 . ...
signstfveq0 34590 In case the last letter is...
signsvvfval 34591 The value of ` V ` , which...
signsvvf 34592 ` V ` is a function. (Con...
signsvf0 34593 There is no change of sign...
signsvf1 34594 In a single-letter word, w...
signsvfn 34595 Number of changes in a wor...
signsvtp 34596 Adding a letter of the sam...
signsvtn 34597 Adding a letter of a diffe...
signsvfpn 34598 Adding a letter of the sam...
signsvfnn 34599 Adding a letter of a diffe...
signlem0 34600 Adding a zero as the highe...
signshf 34601 ` H ` , corresponding to t...
signshwrd 34602 ` H ` , corresponding to t...
signshlen 34603 Length of ` H ` , correspo...
signshnz 34604 ` H ` is not the empty wor...
iblidicc 34605 The identity function is i...
rpsqrtcn 34606 Continuity of the real pos...
divsqrtid 34607 A real number divided by i...
cxpcncf1 34608 The power function on comp...
efmul2picn 34609 Multiplying by ` ( _i x. (...
fct2relem 34610 Lemma for ~ ftc2re . (Con...
ftc2re 34611 The Fundamental Theorem of...
fdvposlt 34612 Functions with a positive ...
fdvneggt 34613 Functions with a negative ...
fdvposle 34614 Functions with a nonnegati...
fdvnegge 34615 Functions with a nonpositi...
prodfzo03 34616 A product of three factors...
actfunsnf1o 34617 The action ` F ` of extend...
actfunsnrndisj 34618 The action ` F ` of extend...
itgexpif 34619 The basis for the circle m...
fsum2dsub 34620 Lemma for ~ breprexp - Re-...
reprval 34623 Value of the representatio...
repr0 34624 There is exactly one repre...
reprf 34625 Members of the representat...
reprsum 34626 Sums of values of the memb...
reprle 34627 Upper bound to the terms i...
reprsuc 34628 Express the representation...
reprfi 34629 Bounded representations ar...
reprss 34630 Representations with terms...
reprinrn 34631 Representations with term ...
reprlt 34632 There are no representatio...
hashreprin 34633 Express a sum of represent...
reprgt 34634 There are no representatio...
reprinfz1 34635 For the representation of ...
reprfi2 34636 Corollary of ~ reprinfz1 ....
reprfz1 34637 Corollary of ~ reprinfz1 ....
hashrepr 34638 Develop the number of repr...
reprpmtf1o 34639 Transposing ` 0 ` and ` X ...
reprdifc 34640 Express the representation...
chpvalz 34641 Value of the second Chebys...
chtvalz 34642 Value of the Chebyshev fun...
breprexplema 34643 Lemma for ~ breprexp (indu...
breprexplemb 34644 Lemma for ~ breprexp (clos...
breprexplemc 34645 Lemma for ~ breprexp (indu...
breprexp 34646 Express the ` S ` th power...
breprexpnat 34647 Express the ` S ` th power...
vtsval 34650 Value of the Vinogradov tr...
vtscl 34651 Closure of the Vinogradov ...
vtsprod 34652 Express the Vinogradov tri...
circlemeth 34653 The Hardy, Littlewood and ...
circlemethnat 34654 The Hardy, Littlewood and ...
circlevma 34655 The Circle Method, where t...
circlemethhgt 34656 The circle method, where t...
hgt750lemc 34660 An upper bound to the summ...
hgt750lemd 34661 An upper bound to the summ...
hgt749d 34662 A deduction version of ~ a...
logdivsqrle 34663 Conditions for ` ( ( log `...
hgt750lem 34664 Lemma for ~ tgoldbachgtd ....
hgt750lem2 34665 Decimal multiplication gal...
hgt750lemf 34666 Lemma for the statement 7....
hgt750lemg 34667 Lemma for the statement 7....
oddprm2 34668 Two ways to write the set ...
hgt750lemb 34669 An upper bound on the cont...
hgt750lema 34670 An upper bound on the cont...
hgt750leme 34671 An upper bound on the cont...
tgoldbachgnn 34672 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 34673 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 34674 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 34675 Odd integers greater than ...
tgoldbachgt 34676 Odd integers greater than ...
istrkg2d 34679 Property of fulfilling dim...
axtglowdim2ALTV 34680 Alternate version of ~ axt...
axtgupdim2ALTV 34681 Alternate version of ~ axt...
afsval 34684 Value of the AFS relation ...
brafs 34685 Binary relation form of th...
tg5segofs 34686 Rephrase ~ axtg5seg using ...
lpadval 34689 Value of the ` leftpad ` f...
lpadlem1 34690 Lemma for the ` leftpad ` ...
lpadlem3 34691 Lemma for ~ lpadlen1 . (C...
lpadlen1 34692 Length of a left-padded wo...
lpadlem2 34693 Lemma for the ` leftpad ` ...
lpadlen2 34694 Length of a left-padded wo...
lpadmax 34695 Length of a left-padded wo...
lpadleft 34696 The contents of prefix of ...
lpadright 34697 The suffix of a left-padde...
bnj170 34710 ` /\ ` -manipulation. (Co...
bnj240 34711 ` /\ ` -manipulation. (Co...
bnj248 34712 ` /\ ` -manipulation. (Co...
bnj250 34713 ` /\ ` -manipulation. (Co...
bnj251 34714 ` /\ ` -manipulation. (Co...
bnj252 34715 ` /\ ` -manipulation. (Co...
bnj253 34716 ` /\ ` -manipulation. (Co...
bnj255 34717 ` /\ ` -manipulation. (Co...
bnj256 34718 ` /\ ` -manipulation. (Co...
bnj257 34719 ` /\ ` -manipulation. (Co...
bnj258 34720 ` /\ ` -manipulation. (Co...
bnj268 34721 ` /\ ` -manipulation. (Co...
bnj290 34722 ` /\ ` -manipulation. (Co...
bnj291 34723 ` /\ ` -manipulation. (Co...
bnj312 34724 ` /\ ` -manipulation. (Co...
bnj334 34725 ` /\ ` -manipulation. (Co...
bnj345 34726 ` /\ ` -manipulation. (Co...
bnj422 34727 ` /\ ` -manipulation. (Co...
bnj432 34728 ` /\ ` -manipulation. (Co...
bnj446 34729 ` /\ ` -manipulation. (Co...
bnj23 34730 First-order logic and set ...
bnj31 34731 First-order logic and set ...
bnj62 34732 First-order logic and set ...
bnj89 34733 First-order logic and set ...
bnj90 34734 First-order logic and set ...
bnj101 34735 First-order logic and set ...
bnj105 34736 First-order logic and set ...
bnj115 34737 First-order logic and set ...
bnj132 34738 First-order logic and set ...
bnj133 34739 First-order logic and set ...
bnj156 34740 First-order logic and set ...
bnj158 34741 First-order logic and set ...
bnj168 34742 First-order logic and set ...
bnj206 34743 First-order logic and set ...
bnj216 34744 First-order logic and set ...
bnj219 34745 First-order logic and set ...
bnj226 34746 First-order logic and set ...
bnj228 34747 First-order logic and set ...
bnj519 34748 First-order logic and set ...
bnj524 34749 First-order logic and set ...
bnj525 34750 First-order logic and set ...
bnj534 34751 First-order logic and set ...
bnj538 34752 First-order logic and set ...
bnj529 34753 First-order logic and set ...
bnj551 34754 First-order logic and set ...
bnj563 34755 First-order logic and set ...
bnj564 34756 First-order logic and set ...
bnj593 34757 First-order logic and set ...
bnj596 34758 First-order logic and set ...
bnj610 34759 Pass from equality ( ` x =...
bnj642 34760 ` /\ ` -manipulation. (Co...
bnj643 34761 ` /\ ` -manipulation. (Co...
bnj645 34762 ` /\ ` -manipulation. (Co...
bnj658 34763 ` /\ ` -manipulation. (Co...
bnj667 34764 ` /\ ` -manipulation. (Co...
bnj705 34765 ` /\ ` -manipulation. (Co...
bnj706 34766 ` /\ ` -manipulation. (Co...
bnj707 34767 ` /\ ` -manipulation. (Co...
bnj708 34768 ` /\ ` -manipulation. (Co...
bnj721 34769 ` /\ ` -manipulation. (Co...
bnj832 34770 ` /\ ` -manipulation. (Co...
bnj835 34771 ` /\ ` -manipulation. (Co...
bnj836 34772 ` /\ ` -manipulation. (Co...
bnj837 34773 ` /\ ` -manipulation. (Co...
bnj769 34774 ` /\ ` -manipulation. (Co...
bnj770 34775 ` /\ ` -manipulation. (Co...
bnj771 34776 ` /\ ` -manipulation. (Co...
bnj887 34777 ` /\ ` -manipulation. (Co...
bnj918 34778 First-order logic and set ...
bnj919 34779 First-order logic and set ...
bnj923 34780 First-order logic and set ...
bnj927 34781 First-order logic and set ...
bnj931 34782 First-order logic and set ...
bnj937 34783 First-order logic and set ...
bnj941 34784 First-order logic and set ...
bnj945 34785 Technical lemma for ~ bnj6...
bnj946 34786 First-order logic and set ...
bnj951 34787 ` /\ ` -manipulation. (Co...
bnj956 34788 First-order logic and set ...
bnj976 34789 First-order logic and set ...
bnj982 34790 First-order logic and set ...
bnj1019 34791 First-order logic and set ...
bnj1023 34792 First-order logic and set ...
bnj1095 34793 First-order logic and set ...
bnj1096 34794 First-order logic and set ...
bnj1098 34795 First-order logic and set ...
bnj1101 34796 First-order logic and set ...
bnj1113 34797 First-order logic and set ...
bnj1109 34798 First-order logic and set ...
bnj1131 34799 First-order logic and set ...
bnj1138 34800 First-order logic and set ...
bnj1142 34801 First-order logic and set ...
bnj1143 34802 First-order logic and set ...
bnj1146 34803 First-order logic and set ...
bnj1149 34804 First-order logic and set ...
bnj1185 34805 First-order logic and set ...
bnj1196 34806 First-order logic and set ...
bnj1198 34807 First-order logic and set ...
bnj1209 34808 First-order logic and set ...
bnj1211 34809 First-order logic and set ...
bnj1213 34810 First-order logic and set ...
bnj1212 34811 First-order logic and set ...
bnj1219 34812 First-order logic and set ...
bnj1224 34813 First-order logic and set ...
bnj1230 34814 First-order logic and set ...
bnj1232 34815 First-order logic and set ...
bnj1235 34816 First-order logic and set ...
bnj1239 34817 First-order logic and set ...
bnj1238 34818 First-order logic and set ...
bnj1241 34819 First-order logic and set ...
bnj1247 34820 First-order logic and set ...
bnj1254 34821 First-order logic and set ...
bnj1262 34822 First-order logic and set ...
bnj1266 34823 First-order logic and set ...
bnj1265 34824 First-order logic and set ...
bnj1275 34825 First-order logic and set ...
bnj1276 34826 First-order logic and set ...
bnj1292 34827 First-order logic and set ...
bnj1293 34828 First-order logic and set ...
bnj1294 34829 First-order logic and set ...
bnj1299 34830 First-order logic and set ...
bnj1304 34831 First-order logic and set ...
bnj1316 34832 First-order logic and set ...
bnj1317 34833 First-order logic and set ...
bnj1322 34834 First-order logic and set ...
bnj1340 34835 First-order logic and set ...
bnj1345 34836 First-order logic and set ...
bnj1350 34837 First-order logic and set ...
bnj1351 34838 First-order logic and set ...
bnj1352 34839 First-order logic and set ...
bnj1361 34840 First-order logic and set ...
bnj1366 34841 First-order logic and set ...
bnj1379 34842 First-order logic and set ...
bnj1383 34843 First-order logic and set ...
bnj1385 34844 First-order logic and set ...
bnj1386 34845 First-order logic and set ...
bnj1397 34846 First-order logic and set ...
bnj1400 34847 First-order logic and set ...
bnj1405 34848 First-order logic and set ...
bnj1422 34849 First-order logic and set ...
bnj1424 34850 First-order logic and set ...
bnj1436 34851 First-order logic and set ...
bnj1441 34852 First-order logic and set ...
bnj1441g 34853 First-order logic and set ...
bnj1454 34854 First-order logic and set ...
bnj1459 34855 First-order logic and set ...
bnj1464 34856 Conversion of implicit sub...
bnj1465 34857 First-order logic and set ...
bnj1468 34858 Conversion of implicit sub...
bnj1476 34859 First-order logic and set ...
bnj1502 34860 First-order logic and set ...
bnj1503 34861 First-order logic and set ...
bnj1517 34862 First-order logic and set ...
bnj1521 34863 First-order logic and set ...
bnj1533 34864 First-order logic and set ...
bnj1534 34865 First-order logic and set ...
bnj1536 34866 First-order logic and set ...
bnj1538 34867 First-order logic and set ...
bnj1541 34868 First-order logic and set ...
bnj1542 34869 First-order logic and set ...
bnj110 34870 Well-founded induction res...
bnj157 34871 Well-founded induction res...
bnj66 34872 Technical lemma for ~ bnj6...
bnj91 34873 First-order logic and set ...
bnj92 34874 First-order logic and set ...
bnj93 34875 Technical lemma for ~ bnj9...
bnj95 34876 Technical lemma for ~ bnj1...
bnj96 34877 Technical lemma for ~ bnj1...
bnj97 34878 Technical lemma for ~ bnj1...
bnj98 34879 Technical lemma for ~ bnj1...
bnj106 34880 First-order logic and set ...
bnj118 34881 First-order logic and set ...
bnj121 34882 First-order logic and set ...
bnj124 34883 Technical lemma for ~ bnj1...
bnj125 34884 Technical lemma for ~ bnj1...
bnj126 34885 Technical lemma for ~ bnj1...
bnj130 34886 Technical lemma for ~ bnj1...
bnj149 34887 Technical lemma for ~ bnj1...
bnj150 34888 Technical lemma for ~ bnj1...
bnj151 34889 Technical lemma for ~ bnj1...
bnj154 34890 Technical lemma for ~ bnj1...
bnj155 34891 Technical lemma for ~ bnj1...
bnj153 34892 Technical lemma for ~ bnj8...
bnj207 34893 Technical lemma for ~ bnj8...
bnj213 34894 First-order logic and set ...
bnj222 34895 Technical lemma for ~ bnj2...
bnj229 34896 Technical lemma for ~ bnj5...
bnj517 34897 Technical lemma for ~ bnj5...
bnj518 34898 Technical lemma for ~ bnj8...
bnj523 34899 Technical lemma for ~ bnj8...
bnj526 34900 Technical lemma for ~ bnj8...
bnj528 34901 Technical lemma for ~ bnj8...
bnj535 34902 Technical lemma for ~ bnj8...
bnj539 34903 Technical lemma for ~ bnj8...
bnj540 34904 Technical lemma for ~ bnj8...
bnj543 34905 Technical lemma for ~ bnj8...
bnj544 34906 Technical lemma for ~ bnj8...
bnj545 34907 Technical lemma for ~ bnj8...
bnj546 34908 Technical lemma for ~ bnj8...
bnj548 34909 Technical lemma for ~ bnj8...
bnj553 34910 Technical lemma for ~ bnj8...
bnj554 34911 Technical lemma for ~ bnj8...
bnj556 34912 Technical lemma for ~ bnj8...
bnj557 34913 Technical lemma for ~ bnj8...
bnj558 34914 Technical lemma for ~ bnj8...
bnj561 34915 Technical lemma for ~ bnj8...
bnj562 34916 Technical lemma for ~ bnj8...
bnj570 34917 Technical lemma for ~ bnj8...
bnj571 34918 Technical lemma for ~ bnj8...
bnj605 34919 Technical lemma. This lem...
bnj581 34920 Technical lemma for ~ bnj5...
bnj589 34921 Technical lemma for ~ bnj8...
bnj590 34922 Technical lemma for ~ bnj8...
bnj591 34923 Technical lemma for ~ bnj8...
bnj594 34924 Technical lemma for ~ bnj8...
bnj580 34925 Technical lemma for ~ bnj5...
bnj579 34926 Technical lemma for ~ bnj8...
bnj602 34927 Equality theorem for the `...
bnj607 34928 Technical lemma for ~ bnj8...
bnj609 34929 Technical lemma for ~ bnj8...
bnj611 34930 Technical lemma for ~ bnj8...
bnj600 34931 Technical lemma for ~ bnj8...
bnj601 34932 Technical lemma for ~ bnj8...
bnj852 34933 Technical lemma for ~ bnj6...
bnj864 34934 Technical lemma for ~ bnj6...
bnj865 34935 Technical lemma for ~ bnj6...
bnj873 34936 Technical lemma for ~ bnj6...
bnj849 34937 Technical lemma for ~ bnj6...
bnj882 34938 Definition (using hypothes...
bnj18eq1 34939 Equality theorem for trans...
bnj893 34940 Property of ` _trCl ` . U...
bnj900 34941 Technical lemma for ~ bnj6...
bnj906 34942 Property of ` _trCl ` . (...
bnj908 34943 Technical lemma for ~ bnj6...
bnj911 34944 Technical lemma for ~ bnj6...
bnj916 34945 Technical lemma for ~ bnj6...
bnj917 34946 Technical lemma for ~ bnj6...
bnj934 34947 Technical lemma for ~ bnj6...
bnj929 34948 Technical lemma for ~ bnj6...
bnj938 34949 Technical lemma for ~ bnj6...
bnj944 34950 Technical lemma for ~ bnj6...
bnj953 34951 Technical lemma for ~ bnj6...
bnj958 34952 Technical lemma for ~ bnj6...
bnj1000 34953 Technical lemma for ~ bnj8...
bnj965 34954 Technical lemma for ~ bnj8...
bnj964 34955 Technical lemma for ~ bnj6...
bnj966 34956 Technical lemma for ~ bnj6...
bnj967 34957 Technical lemma for ~ bnj6...
bnj969 34958 Technical lemma for ~ bnj6...
bnj970 34959 Technical lemma for ~ bnj6...
bnj910 34960 Technical lemma for ~ bnj6...
bnj978 34961 Technical lemma for ~ bnj6...
bnj981 34962 Technical lemma for ~ bnj6...
bnj983 34963 Technical lemma for ~ bnj6...
bnj984 34964 Technical lemma for ~ bnj6...
bnj985v 34965 Version of ~ bnj985 with a...
bnj985 34966 Technical lemma for ~ bnj6...
bnj986 34967 Technical lemma for ~ bnj6...
bnj996 34968 Technical lemma for ~ bnj6...
bnj998 34969 Technical lemma for ~ bnj6...
bnj999 34970 Technical lemma for ~ bnj6...
bnj1001 34971 Technical lemma for ~ bnj6...
bnj1006 34972 Technical lemma for ~ bnj6...
bnj1014 34973 Technical lemma for ~ bnj6...
bnj1015 34974 Technical lemma for ~ bnj6...
bnj1018g 34975 Version of ~ bnj1018 with ...
bnj1018 34976 Technical lemma for ~ bnj6...
bnj1020 34977 Technical lemma for ~ bnj6...
bnj1021 34978 Technical lemma for ~ bnj6...
bnj907 34979 Technical lemma for ~ bnj6...
bnj1029 34980 Property of ` _trCl ` . (...
bnj1033 34981 Technical lemma for ~ bnj6...
bnj1034 34982 Technical lemma for ~ bnj6...
bnj1039 34983 Technical lemma for ~ bnj6...
bnj1040 34984 Technical lemma for ~ bnj6...
bnj1047 34985 Technical lemma for ~ bnj6...
bnj1049 34986 Technical lemma for ~ bnj6...
bnj1052 34987 Technical lemma for ~ bnj6...
bnj1053 34988 Technical lemma for ~ bnj6...
bnj1071 34989 Technical lemma for ~ bnj6...
bnj1083 34990 Technical lemma for ~ bnj6...
bnj1090 34991 Technical lemma for ~ bnj6...
bnj1093 34992 Technical lemma for ~ bnj6...
bnj1097 34993 Technical lemma for ~ bnj6...
bnj1110 34994 Technical lemma for ~ bnj6...
bnj1112 34995 Technical lemma for ~ bnj6...
bnj1118 34996 Technical lemma for ~ bnj6...
bnj1121 34997 Technical lemma for ~ bnj6...
bnj1123 34998 Technical lemma for ~ bnj6...
bnj1030 34999 Technical lemma for ~ bnj6...
bnj1124 35000 Property of ` _trCl ` . (...
bnj1133 35001 Technical lemma for ~ bnj6...
bnj1128 35002 Technical lemma for ~ bnj6...
bnj1127 35003 Property of ` _trCl ` . (...
bnj1125 35004 Property of ` _trCl ` . (...
bnj1145 35005 Technical lemma for ~ bnj6...
bnj1147 35006 Property of ` _trCl ` . (...
bnj1137 35007 Property of ` _trCl ` . (...
bnj1148 35008 Property of ` _pred ` . (...
bnj1136 35009 Technical lemma for ~ bnj6...
bnj1152 35010 Technical lemma for ~ bnj6...
bnj1154 35011 Property of ` Fr ` . (Con...
bnj1171 35012 Technical lemma for ~ bnj6...
bnj1172 35013 Technical lemma for ~ bnj6...
bnj1173 35014 Technical lemma for ~ bnj6...
bnj1174 35015 Technical lemma for ~ bnj6...
bnj1175 35016 Technical lemma for ~ bnj6...
bnj1176 35017 Technical lemma for ~ bnj6...
bnj1177 35018 Technical lemma for ~ bnj6...
bnj1186 35019 Technical lemma for ~ bnj6...
bnj1190 35020 Technical lemma for ~ bnj6...
bnj1189 35021 Technical lemma for ~ bnj6...
bnj69 35022 Existence of a minimal ele...
bnj1228 35023 Existence of a minimal ele...
bnj1204 35024 Well-founded induction. T...
bnj1234 35025 Technical lemma for ~ bnj6...
bnj1245 35026 Technical lemma for ~ bnj6...
bnj1256 35027 Technical lemma for ~ bnj6...
bnj1259 35028 Technical lemma for ~ bnj6...
bnj1253 35029 Technical lemma for ~ bnj6...
bnj1279 35030 Technical lemma for ~ bnj6...
bnj1286 35031 Technical lemma for ~ bnj6...
bnj1280 35032 Technical lemma for ~ bnj6...
bnj1296 35033 Technical lemma for ~ bnj6...
bnj1309 35034 Technical lemma for ~ bnj6...
bnj1307 35035 Technical lemma for ~ bnj6...
bnj1311 35036 Technical lemma for ~ bnj6...
bnj1318 35037 Technical lemma for ~ bnj6...
bnj1326 35038 Technical lemma for ~ bnj6...
bnj1321 35039 Technical lemma for ~ bnj6...
bnj1364 35040 Property of ` _FrSe ` . (...
bnj1371 35041 Technical lemma for ~ bnj6...
bnj1373 35042 Technical lemma for ~ bnj6...
bnj1374 35043 Technical lemma for ~ bnj6...
bnj1384 35044 Technical lemma for ~ bnj6...
bnj1388 35045 Technical lemma for ~ bnj6...
bnj1398 35046 Technical lemma for ~ bnj6...
bnj1413 35047 Property of ` _trCl ` . (...
bnj1408 35048 Technical lemma for ~ bnj1...
bnj1414 35049 Property of ` _trCl ` . (...
bnj1415 35050 Technical lemma for ~ bnj6...
bnj1416 35051 Technical lemma for ~ bnj6...
bnj1418 35052 Property of ` _pred ` . (...
bnj1417 35053 Technical lemma for ~ bnj6...
bnj1421 35054 Technical lemma for ~ bnj6...
bnj1444 35055 Technical lemma for ~ bnj6...
bnj1445 35056 Technical lemma for ~ bnj6...
bnj1446 35057 Technical lemma for ~ bnj6...
bnj1447 35058 Technical lemma for ~ bnj6...
bnj1448 35059 Technical lemma for ~ bnj6...
bnj1449 35060 Technical lemma for ~ bnj6...
bnj1442 35061 Technical lemma for ~ bnj6...
bnj1450 35062 Technical lemma for ~ bnj6...
bnj1423 35063 Technical lemma for ~ bnj6...
bnj1452 35064 Technical lemma for ~ bnj6...
bnj1466 35065 Technical lemma for ~ bnj6...
bnj1467 35066 Technical lemma for ~ bnj6...
bnj1463 35067 Technical lemma for ~ bnj6...
bnj1489 35068 Technical lemma for ~ bnj6...
bnj1491 35069 Technical lemma for ~ bnj6...
bnj1312 35070 Technical lemma for ~ bnj6...
bnj1493 35071 Technical lemma for ~ bnj6...
bnj1497 35072 Technical lemma for ~ bnj6...
bnj1498 35073 Technical lemma for ~ bnj6...
bnj60 35074 Well-founded recursion, pa...
bnj1514 35075 Technical lemma for ~ bnj1...
bnj1518 35076 Technical lemma for ~ bnj1...
bnj1519 35077 Technical lemma for ~ bnj1...
bnj1520 35078 Technical lemma for ~ bnj1...
bnj1501 35079 Technical lemma for ~ bnj1...
bnj1500 35080 Well-founded recursion, pa...
bnj1525 35081 Technical lemma for ~ bnj1...
bnj1529 35082 Technical lemma for ~ bnj1...
bnj1523 35083 Technical lemma for ~ bnj1...
bnj1522 35084 Well-founded recursion, pa...
nfan1c 35085 Variant of ~ nfan and comm...
cbvex1v 35086 Rule used to change bound ...
dvelimalcased 35087 Eliminate a disjoint varia...
dvelimalcasei 35088 Eliminate a disjoint varia...
dvelimexcased 35089 Eliminate a disjoint varia...
dvelimexcasei 35090 Eliminate a disjoint varia...
exdifsn 35091 There exists an element in...
srcmpltd 35092 If a statement is true for...
prsrcmpltd 35093 If a statement is true for...
axsepg2 35094 A generalization of ~ ax-s...
axsepg2ALT 35095 Alternate proof of ~ axsep...
dff15 35096 A one-to-one function in t...
f1resveqaeq 35097 If a function restricted t...
f1resrcmplf1dlem 35098 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 35099 If a function's restrictio...
funen1cnv 35100 If a function is equinumer...
fissorduni 35101 The union (supremum) of a ...
fnrelpredd 35102 A function that preserves ...
cardpred 35103 The cardinality function p...
nummin 35104 Every nonempty class of nu...
r11 35105 Value of the cumulative hi...
r12 35106 Value of the cumulative hi...
r1wf 35107 Each stage in the cumulati...
elwf 35108 An element of a well-found...
r1elcl 35109 Each set of the cumulative...
rankval2b 35110 Value of an alternate defi...
rankval4b 35111 The rank of a set is the s...
rankfilimbi 35112 If all elements in a finit...
rankfilimb 35113 The rank of a finite well-...
r1filimi 35114 If all elements in a finit...
r1filim 35115 A finite set appears in th...
r1omfi 35116 Hereditarily finite sets a...
r1omhf 35117 A set is hereditarily fini...
r1ssel 35118 A set is a subset of the v...
axnulg 35119 A generalization of ~ ax-n...
axnulALT2 35120 Alternate proof of ~ axnul...
r1omfv 35121 Value of the cumulative hi...
trssfir1om 35122 If every element in a tran...
r1omhfb 35123 The class of all hereditar...
axreg 35125 Derivation of ~ ax-reg fro...
axregscl 35126 A version of ~ ax-regs wit...
axregszf 35127 Derivation of ~ zfregs usi...
setindregs 35128 Set (epsilon) induction. ...
setinds2regs 35129 Principle of set induction...
tz9.1regs 35130 Every set has a transitive...
unir1regs 35131 The cumulative hierarchy o...
trssfir1omregs 35132 If every element in a tran...
r1omhfbregs 35133 The class of all hereditar...
fineqvomon 35134 If the Axiom of Infinity i...
fineqvr1ombregs 35135 All sets are finite iff al...
prcinf 35136 Any proper class is litera...
fineqvrep 35137 If the Axiom of Infinity i...
fineqvpow 35138 If the Axiom of Infinity i...
fineqvac 35139 If the Axiom of Infinity i...
fineqvacALT 35140 Shorter proof of ~ fineqva...
fineqvnttrclselem1 35141 Lemma for ~ fineqvnttrclse...
fineqvnttrclselem2 35142 Lemma for ~ fineqvnttrclse...
fineqvnttrclselem3 35143 Lemma for ~ fineqvnttrclse...
fineqvnttrclse 35144 A counterexample demonstra...
axregs 35145 Derivation of ~ ax-regs fr...
gblacfnacd 35146 If ` G ` is a global choic...
onvf1odlem1 35147 Lemma for ~ onvf1od . (Co...
onvf1odlem2 35148 Lemma for ~ onvf1od . (Co...
onvf1odlem3 35149 Lemma for ~ onvf1od . The...
onvf1odlem4 35150 Lemma for ~ onvf1od . If ...
onvf1od 35151 If ` G ` is a global choic...
vonf1owev 35152 If ` F ` is a bijection fr...
wevgblacfn 35153 If ` R ` is a well-orderin...
zltp1ne 35154 Integer ordering relation....
nnltp1ne 35155 Positive integer ordering ...
nn0ltp1ne 35156 Nonnegative integer orderi...
0nn0m1nnn0 35157 A number is zero if and on...
f1resfz0f1d 35158 If a function with a seque...
fisshasheq 35159 A finite set is equal to i...
revpfxsfxrev 35160 The reverse of a prefix of...
swrdrevpfx 35161 A subword expressed in ter...
lfuhgr 35162 A hypergraph is loop-free ...
lfuhgr2 35163 A hypergraph is loop-free ...
lfuhgr3 35164 A hypergraph is loop-free ...
cplgredgex 35165 Any two (distinct) vertice...
cusgredgex 35166 Any two (distinct) vertice...
cusgredgex2 35167 Any two distinct vertices ...
pfxwlk 35168 A prefix of a walk is a wa...
revwlk 35169 The reverse of a walk is a...
revwlkb 35170 Two words represent a walk...
swrdwlk 35171 Two matching subwords of a...
pthhashvtx 35172 A graph containing a path ...
spthcycl 35173 A walk is a trivial path i...
usgrgt2cycl 35174 A non-trivial cycle in a s...
usgrcyclgt2v 35175 A simple graph with a non-...
subgrwlk 35176 If a walk exists in a subg...
subgrtrl 35177 If a trail exists in a sub...
subgrpth 35178 If a path exists in a subg...
subgrcycl 35179 If a cycle exists in a sub...
cusgr3cyclex 35180 Every complete simple grap...
loop1cycl 35181 A hypergraph has a cycle o...
2cycld 35182 Construction of a 2-cycle ...
2cycl2d 35183 Construction of a 2-cycle ...
umgr2cycllem 35184 Lemma for ~ umgr2cycl . (...
umgr2cycl 35185 A multigraph with two dist...
dfacycgr1 35188 An alternate definition of...
isacycgr 35189 The property of being an a...
isacycgr1 35190 The property of being an a...
acycgrcycl 35191 Any cycle in an acyclic gr...
acycgr0v 35192 A null graph (with no vert...
acycgr1v 35193 A multigraph with one vert...
acycgr2v 35194 A simple graph with two ve...
prclisacycgr 35195 A proper class (representi...
acycgrislfgr 35196 An acyclic hypergraph is a...
upgracycumgr 35197 An acyclic pseudograph is ...
umgracycusgr 35198 An acyclic multigraph is a...
upgracycusgr 35199 An acyclic pseudograph is ...
cusgracyclt3v 35200 A complete simple graph is...
pthacycspth 35201 A path in an acyclic graph...
acycgrsubgr 35202 The subgraph of an acyclic...
quartfull 35209 The quartic equation, writ...
deranglem 35210 Lemma for derangements. (...
derangval 35211 Define the derangement fun...
derangf 35212 The derangement number is ...
derang0 35213 The derangement number of ...
derangsn 35214 The derangement number of ...
derangenlem 35215 One half of ~ derangen . ...
derangen 35216 The derangement number is ...
subfacval 35217 The subfactorial is define...
derangen2 35218 Write the derangement numb...
subfacf 35219 The subfactorial is a func...
subfaclefac 35220 The subfactorial is less t...
subfac0 35221 The subfactorial at zero. ...
subfac1 35222 The subfactorial at one. ...
subfacp1lem1 35223 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 35224 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 35225 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 35226 Lemma for ~ subfacp1 . In...
subfacp1lem4 35227 Lemma for ~ subfacp1 . Th...
subfacp1lem5 35228 Lemma for ~ subfacp1 . In...
subfacp1lem6 35229 Lemma for ~ subfacp1 . By...
subfacp1 35230 A two-term recurrence for ...
subfacval2 35231 A closed-form expression f...
subfaclim 35232 The subfactorial converges...
subfacval3 35233 Another closed form expres...
derangfmla 35234 The derangements formula, ...
erdszelem1 35235 Lemma for ~ erdsze . (Con...
erdszelem2 35236 Lemma for ~ erdsze . (Con...
erdszelem3 35237 Lemma for ~ erdsze . (Con...
erdszelem4 35238 Lemma for ~ erdsze . (Con...
erdszelem5 35239 Lemma for ~ erdsze . (Con...
erdszelem6 35240 Lemma for ~ erdsze . (Con...
erdszelem7 35241 Lemma for ~ erdsze . (Con...
erdszelem8 35242 Lemma for ~ erdsze . (Con...
erdszelem9 35243 Lemma for ~ erdsze . (Con...
erdszelem10 35244 Lemma for ~ erdsze . (Con...
erdszelem11 35245 Lemma for ~ erdsze . (Con...
erdsze 35246 The Erdős-Szekeres th...
erdsze2lem1 35247 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 35248 Lemma for ~ erdsze2 . (Co...
erdsze2 35249 Generalize the statement o...
kur14lem1 35250 Lemma for ~ kur14 . (Cont...
kur14lem2 35251 Lemma for ~ kur14 . Write...
kur14lem3 35252 Lemma for ~ kur14 . A clo...
kur14lem4 35253 Lemma for ~ kur14 . Compl...
kur14lem5 35254 Lemma for ~ kur14 . Closu...
kur14lem6 35255 Lemma for ~ kur14 . If ` ...
kur14lem7 35256 Lemma for ~ kur14 : main p...
kur14lem8 35257 Lemma for ~ kur14 . Show ...
kur14lem9 35258 Lemma for ~ kur14 . Since...
kur14lem10 35259 Lemma for ~ kur14 . Disch...
kur14 35260 Kuratowski's closure-compl...
ispconn 35267 The property of being a pa...
pconncn 35268 The property of being a pa...
pconntop 35269 A simply connected space i...
issconn 35270 The property of being a si...
sconnpconn 35271 A simply connected space i...
sconntop 35272 A simply connected space i...
sconnpht 35273 A closed path in a simply ...
cnpconn 35274 An image of a path-connect...
pconnconn 35275 A path-connected space is ...
txpconn 35276 The topological product of...
ptpconn 35277 The topological product of...
indispconn 35278 The indiscrete topology (o...
connpconn 35279 A connected and locally pa...
qtoppconn 35280 A quotient of a path-conne...
pconnpi1 35281 All fundamental groups in ...
sconnpht2 35282 Any two paths in a simply ...
sconnpi1 35283 A path-connected topologic...
txsconnlem 35284 Lemma for ~ txsconn . (Co...
txsconn 35285 The topological product of...
cvxpconn 35286 A convex subset of the com...
cvxsconn 35287 A convex subset of the com...
blsconn 35288 An open ball in the comple...
cnllysconn 35289 The topology of the comple...
resconn 35290 A subset of ` RR ` is simp...
ioosconn 35291 An open interval is simply...
iccsconn 35292 A closed interval is simpl...
retopsconn 35293 The real numbers are simpl...
iccllysconn 35294 A closed interval is local...
rellysconn 35295 The real numbers are local...
iisconn 35296 The unit interval is simpl...
iillysconn 35297 The unit interval is local...
iinllyconn 35298 The unit interval is local...
fncvm 35301 Lemma for covering maps. ...
cvmscbv 35302 Change bound variables in ...
iscvm 35303 The property of being a co...
cvmtop1 35304 Reverse closure for a cove...
cvmtop2 35305 Reverse closure for a cove...
cvmcn 35306 A covering map is a contin...
cvmcov 35307 Property of a covering map...
cvmsrcl 35308 Reverse closure for an eve...
cvmsi 35309 One direction of ~ cvmsval...
cvmsval 35310 Elementhood in the set ` S...
cvmsss 35311 An even covering is a subs...
cvmsn0 35312 An even covering is nonemp...
cvmsuni 35313 An even covering of ` U ` ...
cvmsdisj 35314 An even covering of ` U ` ...
cvmshmeo 35315 Every element of an even c...
cvmsf1o 35316 ` F ` , localized to an el...
cvmscld 35317 The sets of an even coveri...
cvmsss2 35318 An open subset of an evenl...
cvmcov2 35319 The covering map property ...
cvmseu 35320 Every element in ` U. T ` ...
cvmsiota 35321 Identify the unique elemen...
cvmopnlem 35322 Lemma for ~ cvmopn . (Con...
cvmfolem 35323 Lemma for ~ cvmfo . (Cont...
cvmopn 35324 A covering map is an open ...
cvmliftmolem1 35325 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 35326 Lemma for ~ cvmliftmo . (...
cvmliftmoi 35327 A lift of a continuous fun...
cvmliftmo 35328 A lift of a continuous fun...
cvmliftlem1 35329 Lemma for ~ cvmlift . In ...
cvmliftlem2 35330 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 35331 Lemma for ~ cvmlift . Sin...
cvmliftlem4 35332 Lemma for ~ cvmlift . The...
cvmliftlem5 35333 Lemma for ~ cvmlift . Def...
cvmliftlem6 35334 Lemma for ~ cvmlift . Ind...
cvmliftlem7 35335 Lemma for ~ cvmlift . Pro...
cvmliftlem8 35336 Lemma for ~ cvmlift . The...
cvmliftlem9 35337 Lemma for ~ cvmlift . The...
cvmliftlem10 35338 Lemma for ~ cvmlift . The...
cvmliftlem11 35339 Lemma for ~ cvmlift . (Co...
cvmliftlem13 35340 Lemma for ~ cvmlift . The...
cvmliftlem14 35341 Lemma for ~ cvmlift . Put...
cvmliftlem15 35342 Lemma for ~ cvmlift . Dis...
cvmlift 35343 One of the important prope...
cvmfo 35344 A covering map is an onto ...
cvmliftiota 35345 Write out a function ` H `...
cvmlift2lem1 35346 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 35347 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 35348 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 35349 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 35350 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 35351 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 35352 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 35353 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 35354 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 35355 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 35356 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 35357 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 35358 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 35359 Lemma for ~ cvmlift2 . (C...
cvmlift2 35360 A two-dimensional version ...
cvmliftphtlem 35361 Lemma for ~ cvmliftpht . ...
cvmliftpht 35362 If ` G ` and ` H ` are pat...
cvmlift3lem1 35363 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 35364 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 35365 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 35366 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 35367 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 35368 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 35369 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 35370 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 35371 Lemma for ~ cvmlift2 . (C...
cvmlift3 35372 A general version of ~ cvm...
snmlff 35373 The function ` F ` from ~ ...
snmlfval 35374 The function ` F ` from ~ ...
snmlval 35375 The property " ` A ` is si...
snmlflim 35376 If ` A ` is simply normal,...
goel 35391 A "Godel-set of membership...
goelel3xp 35392 A "Godel-set of membership...
goeleq12bg 35393 Two "Godel-set of membersh...
gonafv 35394 The "Godel-set for the She...
goaleq12d 35395 Equality of the "Godel-set...
gonanegoal 35396 The Godel-set for the Shef...
satf 35397 The satisfaction predicate...
satfsucom 35398 The satisfaction predicate...
satfn 35399 The satisfaction predicate...
satom 35400 The satisfaction predicate...
satfvsucom 35401 The satisfaction predicate...
satfv0 35402 The value of the satisfact...
satfvsuclem1 35403 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 35404 Lemma 2 for ~ satfvsuc . ...
satfvsuc 35405 The value of the satisfact...
satfv1lem 35406 Lemma for ~ satfv1 . (Con...
satfv1 35407 The value of the satisfact...
satfsschain 35408 The binary relation of a s...
satfvsucsuc 35409 The satisfaction predicate...
satfbrsuc 35410 The binary relation of a s...
satfrel 35411 The value of the satisfact...
satfdmlem 35412 Lemma for ~ satfdm . (Con...
satfdm 35413 The domain of the satisfac...
satfrnmapom 35414 The range of the satisfact...
satfv0fun 35415 The value of the satisfact...
satf0 35416 The satisfaction predicate...
satf0sucom 35417 The satisfaction predicate...
satf00 35418 The value of the satisfact...
satf0suclem 35419 Lemma for ~ satf0suc , ~ s...
satf0suc 35420 The value of the satisfact...
satf0op 35421 An element of a value of t...
satf0n0 35422 The value of the satisfact...
sat1el2xp 35423 The first component of an ...
fmlafv 35424 The valid Godel formulas o...
fmla 35425 The set of all valid Godel...
fmla0 35426 The valid Godel formulas o...
fmla0xp 35427 The valid Godel formulas o...
fmlasuc0 35428 The valid Godel formulas o...
fmlafvel 35429 A class is a valid Godel f...
fmlasuc 35430 The valid Godel formulas o...
fmla1 35431 The valid Godel formulas o...
isfmlasuc 35432 The characterization of a ...
fmlasssuc 35433 The Godel formulas of heig...
fmlaomn0 35434 The empty set is not a God...
fmlan0 35435 The empty set is not a God...
gonan0 35436 The "Godel-set of NAND" is...
goaln0 35437 The "Godel-set of universa...
gonarlem 35438 Lemma for ~ gonar (inducti...
gonar 35439 If the "Godel-set of NAND"...
goalrlem 35440 Lemma for ~ goalr (inducti...
goalr 35441 If the "Godel-set of unive...
fmla0disjsuc 35442 The set of valid Godel for...
fmlasucdisj 35443 The valid Godel formulas o...
satfdmfmla 35444 The domain of the satisfac...
satffunlem 35445 Lemma for ~ satffunlem1lem...
satffunlem1lem1 35446 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 35447 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 35448 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 35449 The domain of an ordered p...
satffunlem2lem2 35450 Lemma 2 for ~ satffunlem2 ...
satffunlem1 35451 Lemma 1 for ~ satffun : in...
satffunlem2 35452 Lemma 2 for ~ satffun : in...
satffun 35453 The value of the satisfact...
satff 35454 The satisfaction predicate...
satfun 35455 The satisfaction predicate...
satfvel 35456 An element of the value of...
satfv0fvfmla0 35457 The value of the satisfact...
satefv 35458 The simplified satisfactio...
sate0 35459 The simplified satisfactio...
satef 35460 The simplified satisfactio...
sate0fv0 35461 A simplified satisfaction ...
satefvfmla0 35462 The simplified satisfactio...
sategoelfvb 35463 Characterization of a valu...
sategoelfv 35464 Condition of a valuation `...
ex-sategoelel 35465 Example of a valuation of ...
ex-sategoel 35466 Instance of ~ sategoelfv f...
satfv1fvfmla1 35467 The value of the satisfact...
2goelgoanfmla1 35468 Two Godel-sets of membersh...
satefvfmla1 35469 The simplified satisfactio...
ex-sategoelelomsuc 35470 Example of a valuation of ...
ex-sategoelel12 35471 Example of a valuation of ...
prv 35472 The "proves" relation on a...
elnanelprv 35473 The wff ` ( A e. B -/\ B e...
prv0 35474 Every wff encoded as ` U `...
prv1n 35475 No wff encoded as a Godel-...
mvtval 35544 The set of variable typeco...
mrexval 35545 The set of "raw expression...
mexval 35546 The set of expressions, wh...
mexval2 35547 The set of expressions, wh...
mdvval 35548 The set of disjoint variab...
mvrsval 35549 The set of variables in an...
mvrsfpw 35550 The set of variables in an...
mrsubffval 35551 The substitution of some v...
mrsubfval 35552 The substitution of some v...
mrsubval 35553 The substitution of some v...
mrsubcv 35554 The value of a substituted...
mrsubvr 35555 The value of a substituted...
mrsubff 35556 A substitution is a functi...
mrsubrn 35557 Although it is defined for...
mrsubff1 35558 When restricted to complet...
mrsubff1o 35559 When restricted to complet...
mrsub0 35560 The value of the substitut...
mrsubf 35561 A substitution is a functi...
mrsubccat 35562 Substitution distributes o...
mrsubcn 35563 A substitution does not ch...
elmrsubrn 35564 Characterization of the su...
mrsubco 35565 The composition of two sub...
mrsubvrs 35566 The set of variables in a ...
msubffval 35567 A substitution applied to ...
msubfval 35568 A substitution applied to ...
msubval 35569 A substitution applied to ...
msubrsub 35570 A substitution applied to ...
msubty 35571 The type of a substituted ...
elmsubrn 35572 Characterization of substi...
msubrn 35573 Although it is defined for...
msubff 35574 A substitution is a functi...
msubco 35575 The composition of two sub...
msubf 35576 A substitution is a functi...
mvhfval 35577 Value of the function mapp...
mvhval 35578 Value of the function mapp...
mpstval 35579 A pre-statement is an orde...
elmpst 35580 Property of being a pre-st...
msrfval 35581 Value of the reduct of a p...
msrval 35582 Value of the reduct of a p...
mpstssv 35583 A pre-statement is an orde...
mpst123 35584 Decompose a pre-statement ...
mpstrcl 35585 The elements of a pre-stat...
msrf 35586 The reduct of a pre-statem...
msrrcl 35587 If ` X ` and ` Y ` have th...
mstaval 35588 Value of the set of statem...
msrid 35589 The reduct of a statement ...
msrfo 35590 The reduct of a pre-statem...
mstapst 35591 A statement is a pre-state...
elmsta 35592 Property of being a statem...
ismfs 35593 A formal system is a tuple...
mfsdisj 35594 The constants and variable...
mtyf2 35595 The type function maps var...
mtyf 35596 The type function maps var...
mvtss 35597 The set of variable typeco...
maxsta 35598 An axiom is a statement. ...
mvtinf 35599 Each variable typecode has...
msubff1 35600 When restricted to complet...
msubff1o 35601 When restricted to complet...
mvhf 35602 The function mapping varia...
mvhf1 35603 The function mapping varia...
msubvrs 35604 The set of variables in a ...
mclsrcl 35605 Reverse closure for the cl...
mclsssvlem 35606 Lemma for ~ mclsssv . (Co...
mclsval 35607 The function mapping varia...
mclsssv 35608 The closure of a set of ex...
ssmclslem 35609 Lemma for ~ ssmcls . (Con...
vhmcls 35610 All variable hypotheses ar...
ssmcls 35611 The original expressions a...
ss2mcls 35612 The closure is monotonic u...
mclsax 35613 The closure is closed unde...
mclsind 35614 Induction theorem for clos...
mppspstlem 35615 Lemma for ~ mppspst . (Co...
mppsval 35616 Definition of a provable p...
elmpps 35617 Definition of a provable p...
mppspst 35618 A provable pre-statement i...
mthmval 35619 A theorem is a pre-stateme...
elmthm 35620 A theorem is a pre-stateme...
mthmi 35621 A statement whose reduct i...
mthmsta 35622 A theorem is a pre-stateme...
mppsthm 35623 A provable pre-statement i...
mthmblem 35624 Lemma for ~ mthmb . (Cont...
mthmb 35625 If two statements have the...
mthmpps 35626 Given a theorem, there is ...
mclsppslem 35627 The closure is closed unde...
mclspps 35628 The closure is closed unde...
rexxfr3d 35682 Transfer existential quant...
rexxfr3dALT 35683 Longer proof of ~ rexxfr3d...
rspssbasd 35684 The span of a set of ring ...
ellcsrspsn 35685 Membership in a left coset...
ply1divalg3 35686 Uniqueness of polynomial r...
r1peuqusdeg1 35687 Uniqueness of polynomial r...
problem1 35709 Practice problem 1. Clues...
problem2 35710 Practice problem 2. Clues...
problem3 35711 Practice problem 3. Clues...
problem4 35712 Practice problem 4. Clues...
problem5 35713 Practice problem 5. Clues...
quad3 35714 Variant of quadratic equat...
climuzcnv 35715 Utility lemma to convert b...
sinccvglem 35716 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 35717 ` ( ( sin `` x ) / x ) ~~>...
circum 35718 The circumference of a cir...
elfzm12 35719 Membership in a curtailed ...
nn0seqcvg 35720 A strictly-decreasing nonn...
lediv2aALT 35721 Division of both sides of ...
abs2sqlei 35722 The absolute values of two...
abs2sqlti 35723 The absolute values of two...
abs2sqle 35724 The absolute values of two...
abs2sqlt 35725 The absolute values of two...
abs2difi 35726 Difference of absolute val...
abs2difabsi 35727 Absolute value of differen...
2thALT 35728 Alternate proof of ~ 2th ....
orbi2iALT 35729 Alternate proof of ~ orbi2...
pm3.48ALT 35730 Alternate proof of ~ pm3.4...
3jcadALT 35731 Alternate proof of ~ 3jcad...
currybi 35732 Biconditional version of C...
antnest 35733 Suppose ` ph ` , ` ps ` ar...
antnestlaw3lem 35734 Lemma for ~ antnestlaw3 . ...
antnestlaw1 35735 A law of nested antecedent...
antnestlaw2 35736 A law of nested antecedent...
antnestlaw3 35737 A law of nested antecedent...
antnestALT 35738 Alternative proof of ~ ant...
axextprim 35745 ~ ax-ext without distinct ...
axrepprim 35746 ~ ax-rep without distinct ...
axunprim 35747 ~ ax-un without distinct v...
axpowprim 35748 ~ ax-pow without distinct ...
axregprim 35749 ~ ax-reg without distinct ...
axinfprim 35750 ~ ax-inf without distinct ...
axacprim 35751 ~ ax-ac without distinct v...
untelirr 35752 We call a class "untanged"...
untuni 35753 The union of a class is un...
untsucf 35754 If a class is untangled, t...
unt0 35755 The null set is untangled....
untint 35756 If there is an untangled e...
efrunt 35757 If ` A ` is well-founded b...
untangtr 35758 A transitive class is unta...
3jaodd 35759 Double deduction form of ~...
3orit 35760 Closed form of ~ 3ori . (...
biimpexp 35761 A biconditional in the ant...
nepss 35762 Two classes are unequal if...
3ccased 35763 Triple disjunction form of...
dfso3 35764 Expansion of the definitio...
brtpid1 35765 A binary relation involvin...
brtpid2 35766 A binary relation involvin...
brtpid3 35767 A binary relation involvin...
iota5f 35768 A method for computing iot...
jath 35769 Closed form of ~ ja . Pro...
xpab 35770 Cartesian product of two c...
nnuni 35771 The union of a finite ordi...
sqdivzi 35772 Distribution of square ove...
supfz 35773 The supremum of a finite s...
inffz 35774 The infimum of a finite se...
fz0n 35775 The sequence ` ( 0 ... ( N...
shftvalg 35776 Value of a sequence shifte...
divcnvlin 35777 Limit of the ratio of two ...
climlec3 35778 Comparison of a constant t...
iexpire 35779 ` _i ` raised to itself is...
bcneg1 35780 The binomial coefficient o...
bcm1nt 35781 The proportion of one bino...
bcprod 35782 A product identity for bin...
bccolsum 35783 A column-sum rule for bino...
iprodefisumlem 35784 Lemma for ~ iprodefisum . ...
iprodefisum 35785 Applying the exponential f...
iprodgam 35786 An infinite product versio...
faclimlem1 35787 Lemma for ~ faclim . Clos...
faclimlem2 35788 Lemma for ~ faclim . Show...
faclimlem3 35789 Lemma for ~ faclim . Alge...
faclim 35790 An infinite product expres...
iprodfac 35791 An infinite product expres...
faclim2 35792 Another factorial limit du...
gcd32 35793 Swap the second and third ...
gcdabsorb 35794 Absorption law for gcd. (...
dftr6 35795 A potential definition of ...
coep 35796 Composition with the membe...
coepr 35797 Composition with the conve...
dffr5 35798 A quantifier-free definiti...
dfso2 35799 Quantifier-free definition...
br8 35800 Substitution for an eight-...
br6 35801 Substitution for a six-pla...
br4 35802 Substitution for a four-pl...
cnvco1 35803 Another distributive law o...
cnvco2 35804 Another distributive law o...
eldm3 35805 Quantifier-free definition...
elrn3 35806 Quantifier-free definition...
pocnv 35807 The converse of a partial ...
socnv 35808 The converse of a strict o...
elintfv 35809 Membership in an intersect...
funpsstri 35810 A condition for subset tri...
fundmpss 35811 If a class ` F ` is a prop...
funsseq 35812 Given two functions with e...
fununiq 35813 The uniqueness condition o...
funbreq 35814 An equality condition for ...
br1steq 35815 Uniqueness condition for t...
br2ndeq 35816 Uniqueness condition for t...
dfdm5 35817 Definition of domain in te...
dfrn5 35818 Definition of range in ter...
opelco3 35819 Alternate way of saying th...
elima4 35820 Quantifier-free expression...
fv1stcnv 35821 The value of the converse ...
fv2ndcnv 35822 The value of the converse ...
elpotr 35823 A class of transitive sets...
dford5reg 35824 Given ~ ax-reg , an ordina...
dfon2lem1 35825 Lemma for ~ dfon2 . (Cont...
dfon2lem2 35826 Lemma for ~ dfon2 . (Cont...
dfon2lem3 35827 Lemma for ~ dfon2 . All s...
dfon2lem4 35828 Lemma for ~ dfon2 . If tw...
dfon2lem5 35829 Lemma for ~ dfon2 . Two s...
dfon2lem6 35830 Lemma for ~ dfon2 . A tra...
dfon2lem7 35831 Lemma for ~ dfon2 . All e...
dfon2lem8 35832 Lemma for ~ dfon2 . The i...
dfon2lem9 35833 Lemma for ~ dfon2 . A cla...
dfon2 35834 ` On ` consists of all set...
rdgprc0 35835 The value of the recursive...
rdgprc 35836 The value of the recursive...
dfrdg2 35837 Alternate definition of th...
dfrdg3 35838 Generalization of ~ dfrdg2...
axextdfeq 35839 A version of ~ ax-ext for ...
ax8dfeq 35840 A version of ~ ax-8 for us...
axextdist 35841 ~ ax-ext with distinctors ...
axextbdist 35842 ~ axextb with distinctors ...
19.12b 35843 Version of ~ 19.12vv with ...
exnel 35844 There is always a set not ...
distel 35845 Distinctors in terms of me...
axextndbi 35846 ~ axextnd as a bicondition...
hbntg 35847 A more general form of ~ h...
hbimtg 35848 A more general and closed ...
hbaltg 35849 A more general and closed ...
hbng 35850 A more general form of ~ h...
hbimg 35851 A more general form of ~ h...
wsuceq123 35856 Equality theorem for well-...
wsuceq1 35857 Equality theorem for well-...
wsuceq2 35858 Equality theorem for well-...
wsuceq3 35859 Equality theorem for well-...
nfwsuc 35860 Bound-variable hypothesis ...
wlimeq12 35861 Equality theorem for the l...
wlimeq1 35862 Equality theorem for the l...
wlimeq2 35863 Equality theorem for the l...
nfwlim 35864 Bound-variable hypothesis ...
elwlim 35865 Membership in the limit cl...
wzel 35866 The zero of a well-founded...
wsuclem 35867 Lemma for the supremum pro...
wsucex 35868 Existence theorem for well...
wsuccl 35869 If ` X ` is a set with an ...
wsuclb 35870 A well-founded successor i...
wlimss 35871 The class of limit points ...
txpss3v 35920 A tail Cartesian product i...
txprel 35921 A tail Cartesian product i...
brtxp 35922 Characterize a ternary rel...
brtxp2 35923 The binary relation over a...
dfpprod2 35924 Expanded definition of par...
pprodcnveq 35925 A converse law for paralle...
pprodss4v 35926 The parallel product is a ...
brpprod 35927 Characterize a quaternary ...
brpprod3a 35928 Condition for parallel pro...
brpprod3b 35929 Condition for parallel pro...
relsset 35930 The subset class is a bina...
brsset 35931 For sets, the ` SSet ` bin...
idsset 35932 ` _I ` is equal to the int...
eltrans 35933 Membership in the class of...
dfon3 35934 A quantifier-free definiti...
dfon4 35935 Another quantifier-free de...
brtxpsd 35936 Expansion of a common form...
brtxpsd2 35937 Another common abbreviatio...
brtxpsd3 35938 A third common abbreviatio...
relbigcup 35939 The ` Bigcup ` relationshi...
brbigcup 35940 Binary relation over ` Big...
dfbigcup2 35941 ` Bigcup ` using maps-to n...
fobigcup 35942 ` Bigcup ` maps the univer...
fnbigcup 35943 ` Bigcup ` is a function o...
fvbigcup 35944 For sets, ` Bigcup ` yield...
elfix 35945 Membership in the fixpoint...
elfix2 35946 Alternative membership in ...
dffix2 35947 The fixpoints of a class i...
fixssdm 35948 The fixpoints of a class a...
fixssrn 35949 The fixpoints of a class a...
fixcnv 35950 The fixpoints of a class a...
fixun 35951 The fixpoint operator dist...
ellimits 35952 Membership in the class of...
limitssson 35953 The class of all limit ord...
dfom5b 35954 A quantifier-free definiti...
sscoid 35955 A condition for subset and...
dffun10 35956 Another potential definiti...
elfuns 35957 Membership in the class of...
elfunsg 35958 Closed form of ~ elfuns . ...
brsingle 35959 The binary relation form o...
elsingles 35960 Membership in the class of...
fnsingle 35961 The singleton relationship...
fvsingle 35962 The value of the singleton...
dfsingles2 35963 Alternate definition of th...
snelsingles 35964 A singleton is a member of...
dfiota3 35965 A definition of iota using...
dffv5 35966 Another quantifier-free de...
unisnif 35967 Express union of singleton...
brimage 35968 Binary relation form of th...
brimageg 35969 Closed form of ~ brimage ....
funimage 35970 ` Image A ` is a function....
fnimage 35971 ` Image R ` is a function ...
imageval 35972 The image functor in maps-...
fvimage 35973 Value of the image functor...
brcart 35974 Binary relation form of th...
brdomain 35975 Binary relation form of th...
brrange 35976 Binary relation form of th...
brdomaing 35977 Closed form of ~ brdomain ...
brrangeg 35978 Closed form of ~ brrange ....
brimg 35979 Binary relation form of th...
brapply 35980 Binary relation form of th...
brcup 35981 Binary relation form of th...
brcap 35982 Binary relation form of th...
lemsuccf 35983 Lemma for unfolding differ...
brsuccf 35984 Binary relation form of th...
dfsuccf2 35985 Alternate definition of Sc...
funpartlem 35986 Lemma for ~ funpartfun . ...
funpartfun 35987 The functional part of ` F...
funpartss 35988 The functional part of ` F...
funpartfv 35989 The function value of the ...
fullfunfnv 35990 The full functional part o...
fullfunfv 35991 The function value of the ...
brfullfun 35992 A binary relation form con...
brrestrict 35993 Binary relation form of th...
dfrecs2 35994 A quantifier-free definiti...
dfrdg4 35995 A quantifier-free definiti...
dfint3 35996 Quantifier-free definition...
imagesset 35997 The Image functor applied ...
brub 35998 Binary relation form of th...
brlb 35999 Binary relation form of th...
altopex 36004 Alternative ordered pairs ...
altopthsn 36005 Two alternate ordered pair...
altopeq12 36006 Equality for alternate ord...
altopeq1 36007 Equality for alternate ord...
altopeq2 36008 Equality for alternate ord...
altopth1 36009 Equality of the first memb...
altopth2 36010 Equality of the second mem...
altopthg 36011 Alternate ordered pair the...
altopthbg 36012 Alternate ordered pair the...
altopth 36013 The alternate ordered pair...
altopthb 36014 Alternate ordered pair the...
altopthc 36015 Alternate ordered pair the...
altopthd 36016 Alternate ordered pair the...
altxpeq1 36017 Equality for alternate Car...
altxpeq2 36018 Equality for alternate Car...
elaltxp 36019 Membership in alternate Ca...
altopelaltxp 36020 Alternate ordered pair mem...
altxpsspw 36021 An inclusion rule for alte...
altxpexg 36022 The alternate Cartesian pr...
rankaltopb 36023 Compute the rank of an alt...
nfaltop 36024 Bound-variable hypothesis ...
sbcaltop 36025 Distribution of class subs...
cgrrflx2d 36028 Deduction form of ~ axcgrr...
cgrtr4d 36029 Deduction form of ~ axcgrt...
cgrtr4and 36030 Deduction form of ~ axcgrt...
cgrrflx 36031 Reflexivity law for congru...
cgrrflxd 36032 Deduction form of ~ cgrrfl...
cgrcomim 36033 Congruence commutes on the...
cgrcom 36034 Congruence commutes betwee...
cgrcomand 36035 Deduction form of ~ cgrcom...
cgrtr 36036 Transitivity law for congr...
cgrtrand 36037 Deduction form of ~ cgrtr ...
cgrtr3 36038 Transitivity law for congr...
cgrtr3and 36039 Deduction form of ~ cgrtr3...
cgrcoml 36040 Congruence commutes on the...
cgrcomr 36041 Congruence commutes on the...
cgrcomlr 36042 Congruence commutes on bot...
cgrcomland 36043 Deduction form of ~ cgrcom...
cgrcomrand 36044 Deduction form of ~ cgrcom...
cgrcomlrand 36045 Deduction form of ~ cgrcom...
cgrtriv 36046 Degenerate segments are co...
cgrid2 36047 Identity law for congruenc...
cgrdegen 36048 Two congruent segments are...
brofs 36049 Binary relation form of th...
5segofs 36050 Rephrase ~ ax5seg using th...
ofscom 36051 The outer five segment pre...
cgrextend 36052 Link congruence over a pai...
cgrextendand 36053 Deduction form of ~ cgrext...
segconeq 36054 Two points that satisfy th...
segconeu 36055 Existential uniqueness ver...
btwntriv2 36056 Betweenness always holds f...
btwncomim 36057 Betweenness commutes. Imp...
btwncom 36058 Betweenness commutes. (Co...
btwncomand 36059 Deduction form of ~ btwnco...
btwntriv1 36060 Betweenness always holds f...
btwnswapid 36061 If you can swap the first ...
btwnswapid2 36062 If you can swap arguments ...
btwnintr 36063 Inner transitivity law for...
btwnexch3 36064 Exchange the first endpoin...
btwnexch3and 36065 Deduction form of ~ btwnex...
btwnouttr2 36066 Outer transitivity law for...
btwnexch2 36067 Exchange the outer point o...
btwnouttr 36068 Outer transitivity law for...
btwnexch 36069 Outer transitivity law for...
btwnexchand 36070 Deduction form of ~ btwnex...
btwndiff 36071 There is always a ` c ` di...
trisegint 36072 A line segment between two...
funtransport 36075 The ` TransportTo ` relati...
fvtransport 36076 Calculate the value of the...
transportcl 36077 Closure law for segment tr...
transportprops 36078 Calculate the defining pro...
brifs 36087 Binary relation form of th...
ifscgr 36088 Inner five segment congrue...
cgrsub 36089 Removing identical parts f...
brcgr3 36090 Binary relation form of th...
cgr3permute3 36091 Permutation law for three-...
cgr3permute1 36092 Permutation law for three-...
cgr3permute2 36093 Permutation law for three-...
cgr3permute4 36094 Permutation law for three-...
cgr3permute5 36095 Permutation law for three-...
cgr3tr4 36096 Transitivity law for three...
cgr3com 36097 Commutativity law for thre...
cgr3rflx 36098 Identity law for three-pla...
cgrxfr 36099 A line segment can be divi...
btwnxfr 36100 A condition for extending ...
colinrel 36101 Colinearity is a relations...
brcolinear2 36102 Alternate colinearity bina...
brcolinear 36103 The binary relation form o...
colinearex 36104 The colinear predicate exi...
colineardim1 36105 If ` A ` is colinear with ...
colinearperm1 36106 Permutation law for coline...
colinearperm3 36107 Permutation law for coline...
colinearperm2 36108 Permutation law for coline...
colinearperm4 36109 Permutation law for coline...
colinearperm5 36110 Permutation law for coline...
colineartriv1 36111 Trivial case of colinearit...
colineartriv2 36112 Trivial case of colinearit...
btwncolinear1 36113 Betweenness implies coline...
btwncolinear2 36114 Betweenness implies coline...
btwncolinear3 36115 Betweenness implies coline...
btwncolinear4 36116 Betweenness implies coline...
btwncolinear5 36117 Betweenness implies coline...
btwncolinear6 36118 Betweenness implies coline...
colinearxfr 36119 Transfer law for colineari...
lineext 36120 Extend a line with a missi...
brofs2 36121 Change some conditions for...
brifs2 36122 Change some conditions for...
brfs 36123 Binary relation form of th...
fscgr 36124 Congruence law for the gen...
linecgr 36125 Congruence rule for lines....
linecgrand 36126 Deduction form of ~ linecg...
lineid 36127 Identity law for points on...
idinside 36128 Law for finding a point in...
endofsegid 36129 If ` A ` , ` B ` , and ` C...
endofsegidand 36130 Deduction form of ~ endofs...
btwnconn1lem1 36131 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 36132 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 36133 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 36134 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 36135 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 36136 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 36137 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 36138 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 36139 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 36140 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 36141 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 36142 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 36143 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 36144 Lemma for ~ btwnconn1 . F...
btwnconn1 36145 Connectitivy law for betwe...
btwnconn2 36146 Another connectivity law f...
btwnconn3 36147 Inner connectivity law for...
midofsegid 36148 If two points fall in the ...
segcon2 36149 Generalization of ~ axsegc...
brsegle 36152 Binary relation form of th...
brsegle2 36153 Alternate characterization...
seglecgr12im 36154 Substitution law for segme...
seglecgr12 36155 Substitution law for segme...
seglerflx 36156 Segment comparison is refl...
seglemin 36157 Any segment is at least as...
segletr 36158 Segment less than is trans...
segleantisym 36159 Antisymmetry law for segme...
seglelin 36160 Linearity law for segment ...
btwnsegle 36161 If ` B ` falls between ` A...
colinbtwnle 36162 Given three colinear point...
broutsideof 36165 Binary relation form of ` ...
broutsideof2 36166 Alternate form of ` Outsid...
outsidene1 36167 Outsideness implies inequa...
outsidene2 36168 Outsideness implies inequa...
btwnoutside 36169 A principle linking outsid...
broutsideof3 36170 Characterization of outsid...
outsideofrflx 36171 Reflexivity of outsideness...
outsideofcom 36172 Commutativity law for outs...
outsideoftr 36173 Transitivity law for outsi...
outsideofeq 36174 Uniqueness law for ` Outsi...
outsideofeu 36175 Given a nondegenerate ray,...
outsidele 36176 Relate ` OutsideOf ` to ` ...
outsideofcol 36177 Outside of implies colinea...
funray 36184 Show that the ` Ray ` rela...
fvray 36185 Calculate the value of the...
funline 36186 Show that the ` Line ` rel...
linedegen 36187 When ` Line ` is applied w...
fvline 36188 Calculate the value of the...
liness 36189 A line is a subset of the ...
fvline2 36190 Alternate definition of a ...
lineunray 36191 A line is composed of a po...
lineelsb2 36192 If ` S ` lies on ` P Q ` ,...
linerflx1 36193 Reflexivity law for line m...
linecom 36194 Commutativity law for line...
linerflx2 36195 Reflexivity law for line m...
ellines 36196 Membership in the set of a...
linethru 36197 If ` A ` is a line contain...
hilbert1.1 36198 There is a line through an...
hilbert1.2 36199 There is at most one line ...
linethrueu 36200 There is a unique line goi...
lineintmo 36201 Two distinct lines interse...
fwddifval 36206 Calculate the value of the...
fwddifnval 36207 The value of the forward d...
fwddifn0 36208 The value of the n-iterate...
fwddifnp1 36209 The value of the n-iterate...
rankung 36210 The rank of the union of t...
ranksng 36211 The rank of a singleton. ...
rankelg 36212 The membership relation is...
rankpwg 36213 The rank of a power set. ...
rank0 36214 The rank of the empty set ...
rankeq1o 36215 The only set with rank ` 1...
elhf 36218 Membership in the heredita...
elhf2 36219 Alternate form of membersh...
elhf2g 36220 Hereditarily finiteness vi...
0hf 36221 The empty set is a heredit...
hfun 36222 The union of two HF sets i...
hfsn 36223 The singleton of an HF set...
hfadj 36224 Adjoining one HF element t...
hfelhf 36225 Any member of an HF set is...
hftr 36226 The class of all hereditar...
hfext 36227 Extensionality for HF sets...
hfuni 36228 The union of an HF set is ...
hfpw 36229 The power class of an HF s...
hfninf 36230 ` _om ` is not hereditaril...
rmoeqi 36231 Equality inference for res...
rmoeqbii 36232 Equality inference for res...
reueqi 36233 Equality inference for res...
reueqbii 36234 Equality inference for res...
sbceqbii 36235 Formula-building inference...
disjeq1i 36236 Equality theorem for disjo...
disjeq12i 36237 Equality theorem for disjo...
rabeqbii 36238 Equality theorem for restr...
iuneq12i 36239 Equality theorem for index...
iineq1i 36240 Equality theorem for index...
iineq12i 36241 Equality theorem for index...
riotaeqbii 36242 Equivalent wff's and equal...
riotaeqi 36243 Equal domains yield equal ...
ixpeq1i 36244 Equality inference for inf...
ixpeq12i 36245 Equality inference for inf...
sumeq2si 36246 Equality inference for sum...
sumeq12si 36247 Equality inference for sum...
prodeq2si 36248 Equality inference for pro...
prodeq12si 36249 Equality inference for pro...
itgeq12i 36250 Equality inference for an ...
itgeq1i 36251 Equality inference for an ...
itgeq2i 36252 Equality inference for an ...
ditgeq123i 36253 Equality inference for the...
ditgeq12i 36254 Equality inference for the...
ditgeq3i 36255 Equality inference for the...
rmoeqdv 36256 Formula-building rule for ...
rmoeqbidv 36257 Formula-building rule for ...
sbequbidv 36258 Deduction substituting bot...
disjeq12dv 36259 Equality theorem for disjo...
ixpeq12dv 36260 Equality theorem for infin...
sumeq12sdv 36261 Equality deduction for sum...
prodeq12sdv 36262 Equality deduction for pro...
itgeq12sdv 36263 Equality theorem for an in...
itgeq2sdv 36264 Equality theorem for an in...
ditgeq123dv 36265 Equality theorem for the d...
ditgeq12d 36266 Equality theorem for the d...
ditgeq3sdv 36267 Equality theorem for the d...
in-ax8 36268 A proof of ~ ax-8 that doe...
ss-ax8 36269 A proof of ~ ax-8 that doe...
cbvralvw2 36270 Change bound variable and ...
cbvrexvw2 36271 Change bound variable and ...
cbvrmovw2 36272 Change bound variable and ...
cbvreuvw2 36273 Change bound variable and ...
cbvsbcvw2 36274 Change bound variable of a...
cbvcsbvw2 36275 Change bound variable of a...
cbviunvw2 36276 Change bound variable and ...
cbviinvw2 36277 Change bound variable and ...
cbvmptvw2 36278 Change bound variable and ...
cbvdisjvw2 36279 Change bound variable and ...
cbvriotavw2 36280 Change bound variable and ...
cbvoprab1vw 36281 Change the first bound var...
cbvoprab2vw 36282 Change the second bound va...
cbvoprab123vw 36283 Change all bound variables...
cbvoprab23vw 36284 Change the second and thir...
cbvoprab13vw 36285 Change the first and third...
cbvmpovw2 36286 Change bound variables and...
cbvmpo1vw2 36287 Change domains and the fir...
cbvmpo2vw2 36288 Change domains and the sec...
cbvixpvw2 36289 Change bound variable and ...
cbvsumvw2 36290 Change bound variable and ...
cbvprodvw2 36291 Change bound variable and ...
cbvitgvw2 36292 Change bound variable and ...
cbvditgvw2 36293 Change bound variable and ...
cbvmodavw 36294 Change bound variable in t...
cbveudavw 36295 Change bound variable in t...
cbvrmodavw 36296 Change bound variable in t...
cbvreudavw 36297 Change bound variable in t...
cbvsbdavw 36298 Change bound variable in p...
cbvsbdavw2 36299 Change bound variable in p...
cbvabdavw 36300 Change bound variable in c...
cbvsbcdavw 36301 Change bound variable of a...
cbvsbcdavw2 36302 Change bound variable of a...
cbvcsbdavw 36303 Change bound variable of a...
cbvcsbdavw2 36304 Change bound variable of a...
cbvrabdavw 36305 Change bound variable in r...
cbviundavw 36306 Change bound variable in i...
cbviindavw 36307 Change bound variable in i...
cbvopab1davw 36308 Change the first bound var...
cbvopab2davw 36309 Change the second bound va...
cbvopabdavw 36310 Change bound variables in ...
cbvmptdavw 36311 Change bound variable in a...
cbvdisjdavw 36312 Change bound variable in a...
cbviotadavw 36313 Change bound variable in a...
cbvriotadavw 36314 Change bound variable in a...
cbvoprab1davw 36315 Change the first bound var...
cbvoprab2davw 36316 Change the second bound va...
cbvoprab3davw 36317 Change the third bound var...
cbvoprab123davw 36318 Change all bound variables...
cbvoprab12davw 36319 Change the first and secon...
cbvoprab23davw 36320 Change the second and thir...
cbvoprab13davw 36321 Change the first and third...
cbvixpdavw 36322 Change bound variable in a...
cbvsumdavw 36323 Change bound variable in a...
cbvproddavw 36324 Change bound variable in a...
cbvitgdavw 36325 Change bound variable in a...
cbvditgdavw 36326 Change bound variable in a...
cbvrmodavw2 36327 Change bound variable and ...
cbvreudavw2 36328 Change bound variable and ...
cbvrabdavw2 36329 Change bound variable and ...
cbviundavw2 36330 Change bound variable and ...
cbviindavw2 36331 Change bound variable and ...
cbvmptdavw2 36332 Change bound variable and ...
cbvdisjdavw2 36333 Change bound variable and ...
cbvriotadavw2 36334 Change bound variable and ...
cbvmpodavw2 36335 Change bound variable and ...
cbvmpo1davw2 36336 Change first bound variabl...
cbvmpo2davw2 36337 Change second bound variab...
cbvixpdavw2 36338 Change bound variable and ...
cbvsumdavw2 36339 Change bound variable and ...
cbvproddavw2 36340 Change bound variable and ...
cbvitgdavw2 36341 Change bound variable and ...
cbvditgdavw2 36342 Change bound variable and ...
mpomulnzcnf 36343 Multiplication maps nonzer...
a1i14 36344 Add two antecedents to a w...
a1i24 36345 Add two antecedents to a w...
exp5d 36346 An exportation inference. ...
exp5g 36347 An exportation inference. ...
exp5k 36348 An exportation inference. ...
exp56 36349 An exportation inference. ...
exp58 36350 An exportation inference. ...
exp510 36351 An exportation inference. ...
exp511 36352 An exportation inference. ...
exp512 36353 An exportation inference. ...
3com12d 36354 Commutation in consequent....
imp5p 36355 A triple importation infer...
imp5q 36356 A triple importation infer...
ecase13d 36357 Deduction for elimination ...
subtr 36358 Transitivity of implicit s...
subtr2 36359 Transitivity of implicit s...
trer 36360 A relation intersected wit...
elicc3 36361 An equivalent membership c...
finminlem 36362 A useful lemma about finit...
gtinf 36363 Any number greater than an...
opnrebl 36364 A set is open in the stand...
opnrebl2 36365 A set is open in the stand...
nn0prpwlem 36366 Lemma for ~ nn0prpw . Use...
nn0prpw 36367 Two nonnegative integers a...
topbnd 36368 Two equivalent expressions...
opnbnd 36369 A set is open iff it is di...
cldbnd 36370 A set is closed iff it con...
ntruni 36371 A union of interiors is a ...
clsun 36372 A pairwise union of closur...
clsint2 36373 The closure of an intersec...
opnregcld 36374 A set is regularly closed ...
cldregopn 36375 A set if regularly open if...
neiin 36376 Two neighborhoods intersec...
hmeoclda 36377 Homeomorphisms preserve cl...
hmeocldb 36378 Homeomorphisms preserve cl...
ivthALT 36379 An alternate proof of the ...
fnerel 36382 Fineness is a relation. (...
isfne 36383 The predicate " ` B ` is f...
isfne4 36384 The predicate " ` B ` is f...
isfne4b 36385 A condition for a topology...
isfne2 36386 The predicate " ` B ` is f...
isfne3 36387 The predicate " ` B ` is f...
fnebas 36388 A finer cover covers the s...
fnetg 36389 A finer cover generates a ...
fnessex 36390 If ` B ` is finer than ` A...
fneuni 36391 If ` B ` is finer than ` A...
fneint 36392 If a cover is finer than a...
fness 36393 A cover is finer than its ...
fneref 36394 Reflexivity of the finenes...
fnetr 36395 Transitivity of the finene...
fneval 36396 Two covers are finer than ...
fneer 36397 Fineness intersected with ...
topfne 36398 Fineness for covers corres...
topfneec 36399 A cover is equivalent to a...
topfneec2 36400 A topology is precisely id...
fnessref 36401 A cover is finer iff it ha...
refssfne 36402 A cover is a refinement if...
neibastop1 36403 A collection of neighborho...
neibastop2lem 36404 Lemma for ~ neibastop2 . ...
neibastop2 36405 In the topology generated ...
neibastop3 36406 The topology generated by ...
topmtcl 36407 The meet of a collection o...
topmeet 36408 Two equivalent formulation...
topjoin 36409 Two equivalent formulation...
fnemeet1 36410 The meet of a collection o...
fnemeet2 36411 The meet of equivalence cl...
fnejoin1 36412 Join of equivalence classe...
fnejoin2 36413 Join of equivalence classe...
fgmin 36414 Minimality property of a g...
neifg 36415 The neighborhood filter of...
tailfval 36416 The tail function for a di...
tailval 36417 The tail of an element in ...
eltail 36418 An element of a tail. (Co...
tailf 36419 The tail function of a dir...
tailini 36420 A tail contains its initia...
tailfb 36421 The collection of tails of...
filnetlem1 36422 Lemma for ~ filnet . Chan...
filnetlem2 36423 Lemma for ~ filnet . The ...
filnetlem3 36424 Lemma for ~ filnet . (Con...
filnetlem4 36425 Lemma for ~ filnet . (Con...
filnet 36426 A filter has the same conv...
tb-ax1 36427 The first of three axioms ...
tb-ax2 36428 The second of three axioms...
tb-ax3 36429 The third of three axioms ...
tbsyl 36430 The weak syllogism from Ta...
re1ax2lem 36431 Lemma for ~ re1ax2 . (Con...
re1ax2 36432 ~ ax-2 rederived from the ...
naim1 36433 Constructor theorem for ` ...
naim2 36434 Constructor theorem for ` ...
naim1i 36435 Constructor rule for ` -/\...
naim2i 36436 Constructor rule for ` -/\...
naim12i 36437 Constructor rule for ` -/\...
nabi1i 36438 Constructor rule for ` -/\...
nabi2i 36439 Constructor rule for ` -/\...
nabi12i 36440 Constructor rule for ` -/\...
df3nandALT1 36443 The double nand expressed ...
df3nandALT2 36444 The double nand expressed ...
andnand1 36445 Double and in terms of dou...
imnand2 36446 An ` -> ` nand relation. ...
nalfal 36447 Not all sets hold ` F. ` a...
nexntru 36448 There does not exist a set...
nexfal 36449 There does not exist a set...
neufal 36450 There does not exist exact...
neutru 36451 There does not exist exact...
nmotru 36452 There does not exist at mo...
mofal 36453 There exist at most one se...
nrmo 36454 "At most one" restricted e...
meran1 36455 A single axiom for proposi...
meran2 36456 A single axiom for proposi...
meran3 36457 A single axiom for proposi...
waj-ax 36458 A single axiom for proposi...
lukshef-ax2 36459 A single axiom for proposi...
arg-ax 36460 A single axiom for proposi...
negsym1 36461 In the paper "On Variable ...
imsym1 36462 A symmetry with ` -> ` . ...
bisym1 36463 A symmetry with ` <-> ` . ...
consym1 36464 A symmetry with ` /\ ` . ...
dissym1 36465 A symmetry with ` \/ ` . ...
nandsym1 36466 A symmetry with ` -/\ ` . ...
unisym1 36467 A symmetry with ` A. ` . ...
exisym1 36468 A symmetry with ` E. ` . ...
unqsym1 36469 A symmetry with ` E! ` . ...
amosym1 36470 A symmetry with ` E* ` . ...
subsym1 36471 A symmetry with ` [ x / y ...
ontopbas 36472 An ordinal number is a top...
onsstopbas 36473 The class of ordinal numbe...
onpsstopbas 36474 The class of ordinal numbe...
ontgval 36475 The topology generated fro...
ontgsucval 36476 The topology generated fro...
onsuctop 36477 A successor ordinal number...
onsuctopon 36478 One of the topologies on a...
ordtoplem 36479 Membership of the class of...
ordtop 36480 An ordinal is a topology i...
onsucconni 36481 A successor ordinal number...
onsucconn 36482 A successor ordinal number...
ordtopconn 36483 An ordinal topology is con...
onintopssconn 36484 An ordinal topology is con...
onsuct0 36485 A successor ordinal number...
ordtopt0 36486 An ordinal topology is T_0...
onsucsuccmpi 36487 The successor of a success...
onsucsuccmp 36488 The successor of a success...
limsucncmpi 36489 The successor of a limit o...
limsucncmp 36490 The successor of a limit o...
ordcmp 36491 An ordinal topology is com...
ssoninhaus 36492 The ordinal topologies ` 1...
onint1 36493 The ordinal T_1 spaces are...
oninhaus 36494 The ordinal Hausdorff spac...
fveleq 36495 Please add description her...
findfvcl 36496 Please add description her...
findreccl 36497 Please add description her...
findabrcl 36498 Please add description her...
nnssi2 36499 Convert a theorem for real...
nnssi3 36500 Convert a theorem for real...
nndivsub 36501 Please add description her...
nndivlub 36502 A factor of a positive int...
ee7.2aOLD 36505 Lemma for Euclid's Element...
weiunlem1 36506 Lemma for ~ weiunpo , ~ we...
weiunlem2 36507 Lemma for ~ weiunpo , ~ we...
weiunfrlem 36508 Lemma for ~ weiunfr . (Co...
weiunpo 36509 A partial ordering on an i...
weiunso 36510 A strict ordering on an in...
weiunfr 36511 A well-founded relation on...
weiunse 36512 The relation constructed i...
weiunwe 36513 A well-ordering on an inde...
numiunnum 36514 An indexed union of sets i...
dnival 36515 Value of the "distance to ...
dnicld1 36516 Closure theorem for the "d...
dnicld2 36517 Closure theorem for the "d...
dnif 36518 The "distance to nearest i...
dnizeq0 36519 The distance to nearest in...
dnizphlfeqhlf 36520 The distance to nearest in...
rddif2 36521 Variant of ~ rddif . (Con...
dnibndlem1 36522 Lemma for ~ dnibnd . (Con...
dnibndlem2 36523 Lemma for ~ dnibnd . (Con...
dnibndlem3 36524 Lemma for ~ dnibnd . (Con...
dnibndlem4 36525 Lemma for ~ dnibnd . (Con...
dnibndlem5 36526 Lemma for ~ dnibnd . (Con...
dnibndlem6 36527 Lemma for ~ dnibnd . (Con...
dnibndlem7 36528 Lemma for ~ dnibnd . (Con...
dnibndlem8 36529 Lemma for ~ dnibnd . (Con...
dnibndlem9 36530 Lemma for ~ dnibnd . (Con...
dnibndlem10 36531 Lemma for ~ dnibnd . (Con...
dnibndlem11 36532 Lemma for ~ dnibnd . (Con...
dnibndlem12 36533 Lemma for ~ dnibnd . (Con...
dnibndlem13 36534 Lemma for ~ dnibnd . (Con...
dnibnd 36535 The "distance to nearest i...
dnicn 36536 The "distance to nearest i...
knoppcnlem1 36537 Lemma for ~ knoppcn . (Co...
knoppcnlem2 36538 Lemma for ~ knoppcn . (Co...
knoppcnlem3 36539 Lemma for ~ knoppcn . (Co...
knoppcnlem4 36540 Lemma for ~ knoppcn . (Co...
knoppcnlem5 36541 Lemma for ~ knoppcn . (Co...
knoppcnlem6 36542 Lemma for ~ knoppcn . (Co...
knoppcnlem7 36543 Lemma for ~ knoppcn . (Co...
knoppcnlem8 36544 Lemma for ~ knoppcn . (Co...
knoppcnlem9 36545 Lemma for ~ knoppcn . (Co...
knoppcnlem10 36546 Lemma for ~ knoppcn . (Co...
knoppcnlem11 36547 Lemma for ~ knoppcn . (Co...
knoppcn 36548 The continuous nowhere dif...
knoppcld 36549 Closure theorem for Knopp'...
unblimceq0lem 36550 Lemma for ~ unblimceq0 . ...
unblimceq0 36551 If ` F ` is unbounded near...
unbdqndv1 36552 If the difference quotient...
unbdqndv2lem1 36553 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 36554 Lemma for ~ unbdqndv2 . (...
unbdqndv2 36555 Variant of ~ unbdqndv1 wit...
knoppndvlem1 36556 Lemma for ~ knoppndv . (C...
knoppndvlem2 36557 Lemma for ~ knoppndv . (C...
knoppndvlem3 36558 Lemma for ~ knoppndv . (C...
knoppndvlem4 36559 Lemma for ~ knoppndv . (C...
knoppndvlem5 36560 Lemma for ~ knoppndv . (C...
knoppndvlem6 36561 Lemma for ~ knoppndv . (C...
knoppndvlem7 36562 Lemma for ~ knoppndv . (C...
knoppndvlem8 36563 Lemma for ~ knoppndv . (C...
knoppndvlem9 36564 Lemma for ~ knoppndv . (C...
knoppndvlem10 36565 Lemma for ~ knoppndv . (C...
knoppndvlem11 36566 Lemma for ~ knoppndv . (C...
knoppndvlem12 36567 Lemma for ~ knoppndv . (C...
knoppndvlem13 36568 Lemma for ~ knoppndv . (C...
knoppndvlem14 36569 Lemma for ~ knoppndv . (C...
knoppndvlem15 36570 Lemma for ~ knoppndv . (C...
knoppndvlem16 36571 Lemma for ~ knoppndv . (C...
knoppndvlem17 36572 Lemma for ~ knoppndv . (C...
knoppndvlem18 36573 Lemma for ~ knoppndv . (C...
knoppndvlem19 36574 Lemma for ~ knoppndv . (C...
knoppndvlem20 36575 Lemma for ~ knoppndv . (C...
knoppndvlem21 36576 Lemma for ~ knoppndv . (C...
knoppndvlem22 36577 Lemma for ~ knoppndv . (C...
knoppndv 36578 The continuous nowhere dif...
knoppf 36579 Knopp's function is a func...
knoppcn2 36580 Variant of ~ knoppcn with ...
cnndvlem1 36581 Lemma for ~ cnndv . (Cont...
cnndvlem2 36582 Lemma for ~ cnndv . (Cont...
cnndv 36583 There exists a continuous ...
bj-mp2c 36584 A double _modus ponens_ in...
bj-mp2d 36585 A double _modus ponens_ in...
bj-0 36586 A syntactic theorem. See ...
bj-1 36587 In this proof, the use of ...
bj-a1k 36588 Weakening of ~ ax-1 . As ...
bj-poni 36589 Inference associated with ...
bj-nnclav 36590 When ` F. ` is substituted...
bj-nnclavi 36591 Inference associated with ...
bj-nnclavc 36592 Commuted form of ~ bj-nncl...
bj-nnclavci 36593 Inference associated with ...
bj-jarrii 36594 Inference associated with ...
bj-imim21 36595 The propositional function...
bj-imim21i 36596 Inference associated with ...
bj-peircestab 36597 Over minimal implicational...
bj-stabpeirce 36598 This minimal implicational...
bj-syl66ib 36599 A mixed syllogism inferenc...
bj-orim2 36600 Proof of ~ orim2 from the ...
bj-currypeirce 36601 Curry's axiom ~ curryax (a...
bj-peircecurry 36602 Peirce's axiom ~ peirce im...
bj-animbi 36603 Conjunction in terms of im...
bj-currypara 36604 Curry's paradox. Note tha...
bj-con2com 36605 A commuted form of the con...
bj-con2comi 36606 Inference associated with ...
bj-nimn 36607 If a formula is true, then...
bj-nimni 36608 Inference associated with ...
bj-peircei 36609 Inference associated with ...
bj-looinvi 36610 Inference associated with ...
bj-looinvii 36611 Inference associated with ...
bj-mt2bi 36612 Version of ~ mt2 where the...
bj-ntrufal 36613 The negation of a theorem ...
bj-fal 36614 Shortening of ~ fal using ...
bj-jaoi1 36615 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 36616 Shortens ~ consensus (110>...
bj-dfbi4 36617 Alternate definition of th...
bj-dfbi5 36618 Alternate definition of th...
bj-dfbi6 36619 Alternate definition of th...
bj-bijust0ALT 36620 Alternate proof of ~ bijus...
bj-bijust00 36621 A self-implication does no...
bj-consensus 36622 Version of ~ consensus exp...
bj-consensusALT 36623 Alternate proof of ~ bj-co...
bj-df-ifc 36624 Candidate definition for t...
bj-dfif 36625 Alternate definition of th...
bj-ififc 36626 A biconditional connecting...
bj-imbi12 36627 Uncurried (imported) form ...
bj-falor 36628 Dual of ~ truan (which has...
bj-falor2 36629 Dual of ~ truan . (Contri...
bj-bibibi 36630 A property of the bicondit...
bj-imn3ani 36631 Duplication of ~ bnj1224 ....
bj-andnotim 36632 Two ways of expressing a c...
bj-bi3ant 36633 This used to be in the mai...
bj-bisym 36634 This used to be in the mai...
bj-bixor 36635 Equivalence of two ternary...
bj-axdd2 36636 This implication, proved u...
bj-axd2d 36637 This implication, proved u...
bj-axtd 36638 This implication, proved f...
bj-gl4 36639 In a normal modal logic, t...
bj-axc4 36640 Over minimal calculus, the...
prvlem1 36645 An elementary property of ...
prvlem2 36646 An elementary property of ...
bj-babygodel 36647 See the section header com...
bj-babylob 36648 See the section header com...
bj-godellob 36649 Proof of Gödel's theo...
bj-genr 36650 Generalization rule on the...
bj-genl 36651 Generalization rule on the...
bj-genan 36652 Generalization rule on a c...
bj-mpgs 36653 From a closed form theorem...
bj-2alim 36654 Closed form of ~ 2alimi . ...
bj-2exim 36655 Closed form of ~ 2eximi . ...
bj-alanim 36656 Closed form of ~ alanimi ....
bj-2albi 36657 Closed form of ~ 2albii . ...
bj-notalbii 36658 Equivalence of universal q...
bj-2exbi 36659 Closed form of ~ 2exbii . ...
bj-3exbi 36660 Closed form of ~ 3exbii . ...
bj-sylggt 36661 Stronger form of ~ sylgt ,...
bj-sylgt2 36662 Uncurried (imported) form ...
bj-alrimg 36663 The general form of the *a...
bj-alrimd 36664 A slightly more general ~ ...
bj-sylget 36665 Dual statement of ~ sylgt ...
bj-sylget2 36666 Uncurried (imported) form ...
bj-exlimg 36667 The general form of the *e...
bj-sylge 36668 Dual statement of ~ sylg (...
bj-exlimd 36669 A slightly more general ~ ...
bj-nfimexal 36670 A weak from of nonfreeness...
bj-alexim 36671 Closed form of ~ aleximi ....
bj-nexdh 36672 Closed form of ~ nexdh (ac...
bj-nexdh2 36673 Uncurried (imported) form ...
bj-hbxfrbi 36674 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 36675 Version of ~ bj-hbxfrbi wi...
bj-exalim 36676 Distribute quantifiers ove...
bj-exalimi 36677 An inference for distribut...
bj-exalims 36678 Distributing quantifiers o...
bj-exalimsi 36679 An inference for distribut...
bj-ax12ig 36680 A lemma used to prove a we...
bj-ax12i 36681 A weakening of ~ bj-ax12ig...
bj-nfimt 36682 Closed form of ~ nfim and ...
bj-cbvalimt 36683 A lemma in closed form use...
bj-cbveximt 36684 A lemma in closed form use...
bj-eximALT 36685 Alternate proof of ~ exim ...
bj-aleximiALT 36686 Alternate proof of ~ alexi...
bj-eximcom 36687 A commuted form of ~ exim ...
bj-ax12wlem 36688 A lemma used to prove a we...
bj-cbvalim 36689 A lemma used to prove ~ bj...
bj-cbvexim 36690 A lemma used to prove ~ bj...
bj-cbvalimi 36691 An equality-free general i...
bj-cbveximi 36692 An equality-free general i...
bj-cbval 36693 Changing a bound variable ...
bj-cbvex 36694 Changing a bound variable ...
bj-ssbeq 36697 Substitution in an equalit...
bj-ssblem1 36698 A lemma for the definiens ...
bj-ssblem2 36699 An instance of ~ ax-11 pro...
bj-ax12v 36700 A weaker form of ~ ax-12 a...
bj-ax12 36701 Remove a DV condition from...
bj-ax12ssb 36702 Axiom ~ bj-ax12 expressed ...
bj-19.41al 36703 Special case of ~ 19.41 pr...
bj-equsexval 36704 Special case of ~ equsexv ...
bj-subst 36705 Proof of ~ sbalex from cor...
bj-ssbid2 36706 A special case of ~ sbequ2...
bj-ssbid2ALT 36707 Alternate proof of ~ bj-ss...
bj-ssbid1 36708 A special case of ~ sbequ1...
bj-ssbid1ALT 36709 Alternate proof of ~ bj-ss...
bj-ax6elem1 36710 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 36711 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 36712 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 36713 Closed form of ~ spimvw . ...
bj-spnfw 36714 Theorem close to a closed ...
bj-cbvexiw 36715 Change bound variable. Th...
bj-cbvexivw 36716 Change bound variable. Th...
bj-modald 36717 A short form of the axiom ...
bj-denot 36718 A weakening of ~ ax-6 and ...
bj-eqs 36719 A lemma for substitutions,...
bj-cbvexw 36720 Change bound variable. Th...
bj-ax12w 36721 The general statement that...
bj-ax89 36722 A theorem which could be u...
bj-cleljusti 36723 One direction of ~ cleljus...
bj-alcomexcom 36724 Commutation of two existen...
bj-hbalt 36725 Closed form of ~ hbal . W...
axc11n11 36726 Proof of ~ axc11n from { ~...
axc11n11r 36727 Proof of ~ axc11n from { ~...
bj-axc16g16 36728 Proof of ~ axc16g from { ~...
bj-ax12v3 36729 A weak version of ~ ax-12 ...
bj-ax12v3ALT 36730 Alternate proof of ~ bj-ax...
bj-sb 36731 A weak variant of ~ sbid2 ...
bj-modalbe 36732 The predicate-calculus ver...
bj-spst 36733 Closed form of ~ sps . On...
bj-19.21bit 36734 Closed form of ~ 19.21bi ....
bj-19.23bit 36735 Closed form of ~ 19.23bi ....
bj-nexrt 36736 Closed form of ~ nexr . C...
bj-alrim 36737 Closed form of ~ alrimi . ...
bj-alrim2 36738 Uncurried (imported) form ...
bj-nfdt0 36739 A theorem close to a close...
bj-nfdt 36740 Closed form of ~ nf5d and ...
bj-nexdt 36741 Closed form of ~ nexd . (...
bj-nexdvt 36742 Closed form of ~ nexdv . ...
bj-alexbiex 36743 Adding a second quantifier...
bj-exexbiex 36744 Adding a second quantifier...
bj-alalbial 36745 Adding a second quantifier...
bj-exalbial 36746 Adding a second quantifier...
bj-19.9htbi 36747 Strengthening ~ 19.9ht by ...
bj-hbntbi 36748 Strengthening ~ hbnt by re...
bj-biexal1 36749 A general FOL biconditiona...
bj-biexal2 36750 When ` ph ` is substituted...
bj-biexal3 36751 When ` ph ` is substituted...
bj-bialal 36752 When ` ph ` is substituted...
bj-biexex 36753 When ` ph ` is substituted...
bj-hbext 36754 Closed form of ~ hbex . (...
bj-nfalt 36755 Closed form of ~ nfal . (...
bj-nfext 36756 Closed form of ~ nfex . (...
bj-eeanvw 36757 Version of ~ exdistrv with...
bj-modal4 36758 First-order logic form of ...
bj-modal4e 36759 First-order logic form of ...
bj-modalb 36760 A short form of the axiom ...
bj-wnf1 36761 When ` ph ` is substituted...
bj-wnf2 36762 When ` ph ` is substituted...
bj-wnfanf 36763 When ` ph ` is substituted...
bj-wnfenf 36764 When ` ph ` is substituted...
bj-substax12 36765 Equivalent form of the axi...
bj-substw 36766 Weak form of the LHS of ~ ...
bj-nnfbi 36769 If two formulas are equiva...
bj-nnfbd 36770 If two formulas are equiva...
bj-nnfbii 36771 If two formulas are equiva...
bj-nnfa 36772 Nonfreeness implies the eq...
bj-nnfad 36773 Nonfreeness implies the eq...
bj-nnfai 36774 Nonfreeness implies the eq...
bj-nnfe 36775 Nonfreeness implies the eq...
bj-nnfed 36776 Nonfreeness implies the eq...
bj-nnfei 36777 Nonfreeness implies the eq...
bj-nnfea 36778 Nonfreeness implies the eq...
bj-nnfead 36779 Nonfreeness implies the eq...
bj-nnfeai 36780 Nonfreeness implies the eq...
bj-dfnnf2 36781 Alternate definition of ~ ...
bj-nnfnfTEMP 36782 New nonfreeness implies ol...
bj-wnfnf 36783 When ` ph ` is substituted...
bj-nnfnt 36784 A variable is nonfree in a...
bj-nnftht 36785 A variable is nonfree in a...
bj-nnfth 36786 A variable is nonfree in a...
bj-nnfnth 36787 A variable is nonfree in t...
bj-nnfim1 36788 A consequence of nonfreene...
bj-nnfim2 36789 A consequence of nonfreene...
bj-nnfim 36790 Nonfreeness in the anteced...
bj-nnfimd 36791 Nonfreeness in the anteced...
bj-nnfan 36792 Nonfreeness in both conjun...
bj-nnfand 36793 Nonfreeness in both conjun...
bj-nnfor 36794 Nonfreeness in both disjun...
bj-nnford 36795 Nonfreeness in both disjun...
bj-nnfbit 36796 Nonfreeness in both sides ...
bj-nnfbid 36797 Nonfreeness in both sides ...
bj-nnfv 36798 A non-occurring variable i...
bj-nnf-alrim 36799 Proof of the closed form o...
bj-nnf-exlim 36800 Proof of the closed form o...
bj-dfnnf3 36801 Alternate definition of no...
bj-nfnnfTEMP 36802 New nonfreeness is equival...
bj-nnfa1 36803 See ~ nfa1 . (Contributed...
bj-nnfe1 36804 See ~ nfe1 . (Contributed...
bj-19.12 36805 See ~ 19.12 . Could be la...
bj-nnflemaa 36806 One of four lemmas for non...
bj-nnflemee 36807 One of four lemmas for non...
bj-nnflemae 36808 One of four lemmas for non...
bj-nnflemea 36809 One of four lemmas for non...
bj-nnfalt 36810 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 36811 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 36812 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 36813 Statement ~ 19.21t proved ...
bj-19.23t 36814 Statement ~ 19.23t proved ...
bj-19.36im 36815 One direction of ~ 19.36 f...
bj-19.37im 36816 One direction of ~ 19.37 f...
bj-19.42t 36817 Closed form of ~ 19.42 fro...
bj-19.41t 36818 Closed form of ~ 19.41 fro...
bj-sbft 36819 Version of ~ sbft using ` ...
bj-pm11.53vw 36820 Version of ~ pm11.53v with...
bj-pm11.53v 36821 Version of ~ pm11.53v with...
bj-pm11.53a 36822 A variant of ~ pm11.53v . ...
bj-equsvt 36823 A variant of ~ equsv . (C...
bj-equsalvwd 36824 Variant of ~ equsalvw . (...
bj-equsexvwd 36825 Variant of ~ equsexvw . (...
bj-sbievwd 36826 Variant of ~ sbievw . (Co...
bj-axc10 36827 Alternate proof of ~ axc10...
bj-alequex 36828 A fol lemma. See ~ aleque...
bj-spimt2 36829 A step in the proof of ~ s...
bj-cbv3ta 36830 Closed form of ~ cbv3 . (...
bj-cbv3tb 36831 Closed form of ~ cbv3 . (...
bj-hbsb3t 36832 A theorem close to a close...
bj-hbsb3 36833 Shorter proof of ~ hbsb3 ....
bj-nfs1t 36834 A theorem close to a close...
bj-nfs1t2 36835 A theorem close to a close...
bj-nfs1 36836 Shorter proof of ~ nfs1 (t...
bj-axc10v 36837 Version of ~ axc10 with a ...
bj-spimtv 36838 Version of ~ spimt with a ...
bj-cbv3hv2 36839 Version of ~ cbv3h with tw...
bj-cbv1hv 36840 Version of ~ cbv1h with a ...
bj-cbv2hv 36841 Version of ~ cbv2h with a ...
bj-cbv2v 36842 Version of ~ cbv2 with a d...
bj-cbvaldv 36843 Version of ~ cbvald with a...
bj-cbvexdv 36844 Version of ~ cbvexd with a...
bj-cbval2vv 36845 Version of ~ cbval2vv with...
bj-cbvex2vv 36846 Version of ~ cbvex2vv with...
bj-cbvaldvav 36847 Version of ~ cbvaldva with...
bj-cbvexdvav 36848 Version of ~ cbvexdva with...
bj-cbvex4vv 36849 Version of ~ cbvex4v with ...
bj-equsalhv 36850 Version of ~ equsalh with ...
bj-axc11nv 36851 Version of ~ axc11n with a...
bj-aecomsv 36852 Version of ~ aecoms with a...
bj-axc11v 36853 Version of ~ axc11 with a ...
bj-drnf2v 36854 Version of ~ drnf2 with a ...
bj-equs45fv 36855 Version of ~ equs45f with ...
bj-hbs1 36856 Version of ~ hbsb2 with a ...
bj-nfs1v 36857 Version of ~ nfsb2 with a ...
bj-hbsb2av 36858 Version of ~ hbsb2a with a...
bj-hbsb3v 36859 Version of ~ hbsb3 with a ...
bj-nfsab1 36860 Remove dependency on ~ ax-...
bj-dtrucor2v 36861 Version of ~ dtrucor2 with...
bj-hbaeb2 36862 Biconditional version of a...
bj-hbaeb 36863 Biconditional version of ~...
bj-hbnaeb 36864 Biconditional version of ~...
bj-dvv 36865 A special instance of ~ bj...
bj-equsal1t 36866 Duplication of ~ wl-equsal...
bj-equsal1ti 36867 Inference associated with ...
bj-equsal1 36868 One direction of ~ equsal ...
bj-equsal2 36869 One direction of ~ equsal ...
bj-equsal 36870 Shorter proof of ~ equsal ...
stdpc5t 36871 Closed form of ~ stdpc5 . ...
bj-stdpc5 36872 More direct proof of ~ std...
2stdpc5 36873 A double ~ stdpc5 (one dir...
bj-19.21t0 36874 Proof of ~ 19.21t from ~ s...
exlimii 36875 Inference associated with ...
ax11-pm 36876 Proof of ~ ax-11 similar t...
ax6er 36877 Commuted form of ~ ax6e . ...
exlimiieq1 36878 Inferring a theorem when i...
exlimiieq2 36879 Inferring a theorem when i...
ax11-pm2 36880 Proof of ~ ax-11 from the ...
bj-sbsb 36881 Biconditional showing two ...
bj-dfsb2 36882 Alternate (dual) definitio...
bj-sbf3 36883 Substitution has no effect...
bj-sbf4 36884 Substitution has no effect...
bj-eu3f 36885 Version of ~ eu3v where th...
bj-sblem1 36886 Lemma for substitution. (...
bj-sblem2 36887 Lemma for substitution. (...
bj-sblem 36888 Lemma for substitution. (...
bj-sbievw1 36889 Lemma for substitution. (...
bj-sbievw2 36890 Lemma for substitution. (...
bj-sbievw 36891 Lemma for substitution. C...
bj-sbievv 36892 Version of ~ sbie with a s...
bj-moeub 36893 Uniqueness is equivalent t...
bj-sbidmOLD 36894 Obsolete proof of ~ sbidm ...
bj-dvelimdv 36895 Deduction form of ~ dvelim...
bj-dvelimdv1 36896 Curried (exported) form of...
bj-dvelimv 36897 A version of ~ dvelim usin...
bj-nfeel2 36898 Nonfreeness in a membershi...
bj-axc14nf 36899 Proof of a version of ~ ax...
bj-axc14 36900 Alternate proof of ~ axc14...
mobidvALT 36901 Alternate proof of ~ mobid...
sbn1ALT 36902 Alternate proof of ~ sbn1 ...
eliminable1 36903 A theorem used to prove th...
eliminable2a 36904 A theorem used to prove th...
eliminable2b 36905 A theorem used to prove th...
eliminable2c 36906 A theorem used to prove th...
eliminable3a 36907 A theorem used to prove th...
eliminable3b 36908 A theorem used to prove th...
eliminable-velab 36909 A theorem used to prove th...
eliminable-veqab 36910 A theorem used to prove th...
eliminable-abeqv 36911 A theorem used to prove th...
eliminable-abeqab 36912 A theorem used to prove th...
eliminable-abelv 36913 A theorem used to prove th...
eliminable-abelab 36914 A theorem used to prove th...
bj-denoteslem 36915 Duplicate of ~ issettru an...
bj-denotesALTV 36916 Moved to main as ~ iseqset...
bj-issettruALTV 36917 Moved to main as ~ issettr...
bj-elabtru 36918 This is as close as we can...
bj-issetwt 36919 Closed form of ~ bj-issetw...
bj-issetw 36920 The closest one can get to...
bj-issetiv 36921 Version of ~ bj-isseti wit...
bj-isseti 36922 Version of ~ isseti with a...
bj-ralvw 36923 A weak version of ~ ralv n...
bj-rexvw 36924 A weak version of ~ rexv n...
bj-rababw 36925 A weak version of ~ rabab ...
bj-rexcom4bv 36926 Version of ~ rexcom4b and ...
bj-rexcom4b 36927 Remove from ~ rexcom4b dep...
bj-ceqsalt0 36928 The FOL content of ~ ceqsa...
bj-ceqsalt1 36929 The FOL content of ~ ceqsa...
bj-ceqsalt 36930 Remove from ~ ceqsalt depe...
bj-ceqsaltv 36931 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 36932 The FOL content of ~ ceqsa...
bj-ceqsalg 36933 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 36934 Alternate proof of ~ bj-ce...
bj-ceqsalgv 36935 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 36936 Alternate proof of ~ bj-ce...
bj-ceqsal 36937 Remove from ~ ceqsal depen...
bj-ceqsalv 36938 Remove from ~ ceqsalv depe...
bj-spcimdv 36939 Remove from ~ spcimdv depe...
bj-spcimdvv 36940 Remove from ~ spcimdv depe...
elelb 36941 Equivalence between two co...
bj-pwvrelb 36942 Characterization of the el...
bj-nfcsym 36943 The nonfreeness quantifier...
bj-sbeqALT 36944 Substitution in an equalit...
bj-sbeq 36945 Distribute proper substitu...
bj-sbceqgALT 36946 Distribute proper substitu...
bj-csbsnlem 36947 Lemma for ~ bj-csbsn (in t...
bj-csbsn 36948 Substitution in a singleto...
bj-sbel1 36949 Version of ~ sbcel1g when ...
bj-abv 36950 The class of sets verifyin...
bj-abvALT 36951 Alternate version of ~ bj-...
bj-ab0 36952 The class of sets verifyin...
bj-abf 36953 Shorter proof of ~ abf (wh...
bj-csbprc 36954 More direct proof of ~ csb...
bj-exlimvmpi 36955 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 36956 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 36957 Lemma for theorems of the ...
bj-exlimmpbir 36958 Lemma for theorems of the ...
bj-vtoclf 36959 Remove dependency on ~ ax-...
bj-vtocl 36960 Remove dependency on ~ ax-...
bj-vtoclg1f1 36961 The FOL content of ~ vtocl...
bj-vtoclg1f 36962 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 36963 Version of ~ bj-vtoclg1f w...
bj-vtoclg 36964 A version of ~ vtoclg with...
bj-rabeqbid 36965 Version of ~ rabeqbidv wit...
bj-seex 36966 Version of ~ seex with a d...
bj-nfcf 36967 Version of ~ df-nfc with a...
bj-zfauscl 36968 General version of ~ zfaus...
bj-elabd2ALT 36969 Alternate proof of ~ elabd...
bj-unrab 36970 Generalization of ~ unrab ...
bj-inrab 36971 Generalization of ~ inrab ...
bj-inrab2 36972 Shorter proof of ~ inrab ....
bj-inrab3 36973 Generalization of ~ dfrab3...
bj-rabtr 36974 Restricted class abstracti...
bj-rabtrALT 36975 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 36976 Proof of ~ bj-rabtr found ...
bj-gabss 36979 Inclusion of generalized c...
bj-gabssd 36980 Inclusion of generalized c...
bj-gabeqd 36981 Equality of generalized cl...
bj-gabeqis 36982 Equality of generalized cl...
bj-elgab 36983 Elements of a generalized ...
bj-gabima 36984 Generalized class abstract...
bj-ru1 36987 A version of Russell's par...
bj-ru 36988 Remove dependency on ~ ax-...
currysetlem 36989 Lemma for ~ currysetlem , ...
curryset 36990 Curry's paradox in set the...
currysetlem1 36991 Lemma for ~ currysetALT . ...
currysetlem2 36992 Lemma for ~ currysetALT . ...
currysetlem3 36993 Lemma for ~ currysetALT . ...
currysetALT 36994 Alternate proof of ~ curry...
bj-n0i 36995 Inference associated with ...
bj-disjsn01 36996 Disjointness of the single...
bj-0nel1 36997 The empty set does not bel...
bj-1nel0 36998 ` 1o ` does not belong to ...
bj-xpimasn 36999 The image of a singleton, ...
bj-xpima1sn 37000 The image of a singleton b...
bj-xpima1snALT 37001 Alternate proof of ~ bj-xp...
bj-xpima2sn 37002 The image of a singleton b...
bj-xpnzex 37003 If the first factor of a p...
bj-xpexg2 37004 Curried (exported) form of...
bj-xpnzexb 37005 If the first factor of a p...
bj-cleq 37006 Substitution property for ...
bj-snsetex 37007 The class of sets "whose s...
bj-clexab 37008 Sethood of certain classes...
bj-sngleq 37011 Substitution property for ...
bj-elsngl 37012 Characterization of the el...
bj-snglc 37013 Characterization of the el...
bj-snglss 37014 The singletonization of a ...
bj-0nelsngl 37015 The empty set is not a mem...
bj-snglinv 37016 Inverse of singletonizatio...
bj-snglex 37017 A class is a set if and on...
bj-tageq 37020 Substitution property for ...
bj-eltag 37021 Characterization of the el...
bj-0eltag 37022 The empty set belongs to t...
bj-tagn0 37023 The tagging of a class is ...
bj-tagss 37024 The tagging of a class is ...
bj-snglsstag 37025 The singletonization is in...
bj-sngltagi 37026 The singletonization is in...
bj-sngltag 37027 The singletonization and t...
bj-tagci 37028 Characterization of the el...
bj-tagcg 37029 Characterization of the el...
bj-taginv 37030 Inverse of tagging. (Cont...
bj-tagex 37031 A class is a set if and on...
bj-xtageq 37032 The products of a given cl...
bj-xtagex 37033 The product of a set and t...
bj-projeq 37036 Substitution property for ...
bj-projeq2 37037 Substitution property for ...
bj-projun 37038 The class projection on a ...
bj-projex 37039 Sethood of the class proje...
bj-projval 37040 Value of the class project...
bj-1upleq 37043 Substitution property for ...
bj-pr1eq 37046 Substitution property for ...
bj-pr1un 37047 The first projection prese...
bj-pr1val 37048 Value of the first project...
bj-pr11val 37049 Value of the first project...
bj-pr1ex 37050 Sethood of the first proje...
bj-1uplth 37051 The characteristic propert...
bj-1uplex 37052 A monuple is a set if and ...
bj-1upln0 37053 A monuple is nonempty. (C...
bj-2upleq 37056 Substitution property for ...
bj-pr21val 37057 Value of the first project...
bj-pr2eq 37060 Substitution property for ...
bj-pr2un 37061 The second projection pres...
bj-pr2val 37062 Value of the second projec...
bj-pr22val 37063 Value of the second projec...
bj-pr2ex 37064 Sethood of the second proj...
bj-2uplth 37065 The characteristic propert...
bj-2uplex 37066 A couple is a set if and o...
bj-2upln0 37067 A couple is nonempty. (Co...
bj-2upln1upl 37068 A couple is never equal to...
bj-rcleqf 37069 Relative version of ~ cleq...
bj-rcleq 37070 Relative version of ~ dfcl...
bj-reabeq 37071 Relative form of ~ eqabb ....
bj-disj2r 37072 Relative version of ~ ssdi...
bj-sscon 37073 Contraposition law for rel...
bj-abex 37074 Two ways of stating that t...
bj-clex 37075 Two ways of stating that a...
bj-axsn 37076 Two ways of stating the ax...
bj-snexg 37078 A singleton built on a set...
bj-snex 37079 A singleton is a set. See...
bj-axbun 37080 Two ways of stating the ax...
bj-unexg 37082 Existence of binary unions...
bj-prexg 37083 Existence of unordered pai...
bj-prex 37084 Existence of unordered pai...
bj-axadj 37085 Two ways of stating the ax...
bj-adjg1 37087 Existence of the result of...
bj-snfromadj 37088 Singleton from adjunction ...
bj-prfromadj 37089 Unordered pair from adjunc...
bj-adjfrombun 37090 Adjunction from singleton ...
eleq2w2ALT 37091 Alternate proof of ~ eleq2...
bj-clel3gALT 37092 Alternate proof of ~ clel3...
bj-pw0ALT 37093 Alternate proof of ~ pw0 ....
bj-sselpwuni 37094 Quantitative version of ~ ...
bj-unirel 37095 Quantitative version of ~ ...
bj-elpwg 37096 If the intersection of two...
bj-velpwALT 37097 This theorem ~ bj-velpwALT...
bj-elpwgALT 37098 Alternate proof of ~ elpwg...
bj-vjust 37099 Justification theorem for ...
bj-nul 37100 Two formulations of the ax...
bj-nuliota 37101 Definition of the empty se...
bj-nuliotaALT 37102 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 37103 Alternate proof of ~ vtocl...
bj-elsn12g 37104 Join of ~ elsng and ~ elsn...
bj-elsnb 37105 Biconditional version of ~...
bj-pwcfsdom 37106 Remove hypothesis from ~ p...
bj-grur1 37107 Remove hypothesis from ~ g...
bj-bm1.3ii 37108 The extension of a predica...
bj-dfid2ALT 37109 Alternate version of ~ dfi...
bj-0nelopab 37110 The empty set is never an ...
bj-brrelex12ALT 37111 Two classes related by a b...
bj-epelg 37112 The membership relation an...
bj-epelb 37113 Two classes are related by...
bj-nsnid 37114 A set does not contain the...
bj-rdg0gALT 37115 Alternate proof of ~ rdg0g...
bj-evaleq 37116 Equality theorem for the `...
bj-evalfun 37117 The evaluation at a class ...
bj-evalfn 37118 The evaluation at a class ...
bj-evalval 37119 Value of the evaluation at...
bj-evalid 37120 The evaluation at a set of...
bj-ndxarg 37121 Proof of ~ ndxarg from ~ b...
bj-evalidval 37122 Closed general form of ~ s...
bj-rest00 37125 An elementwise intersectio...
bj-restsn 37126 An elementwise intersectio...
bj-restsnss 37127 Special case of ~ bj-rests...
bj-restsnss2 37128 Special case of ~ bj-rests...
bj-restsn0 37129 An elementwise intersectio...
bj-restsn10 37130 Special case of ~ bj-rests...
bj-restsnid 37131 The elementwise intersecti...
bj-rest10 37132 An elementwise intersectio...
bj-rest10b 37133 Alternate version of ~ bj-...
bj-restn0 37134 An elementwise intersectio...
bj-restn0b 37135 Alternate version of ~ bj-...
bj-restpw 37136 The elementwise intersecti...
bj-rest0 37137 An elementwise intersectio...
bj-restb 37138 An elementwise intersectio...
bj-restv 37139 An elementwise intersectio...
bj-resta 37140 An elementwise intersectio...
bj-restuni 37141 The union of an elementwis...
bj-restuni2 37142 The union of an elementwis...
bj-restreg 37143 A reformulation of the axi...
bj-raldifsn 37144 All elements in a set sati...
bj-0int 37145 If ` A ` is a collection o...
bj-mooreset 37146 A Moore collection is a se...
bj-ismoore 37149 Characterization of Moore ...
bj-ismoored0 37150 Necessary condition to be ...
bj-ismoored 37151 Necessary condition to be ...
bj-ismoored2 37152 Necessary condition to be ...
bj-ismooredr 37153 Sufficient condition to be...
bj-ismooredr2 37154 Sufficient condition to be...
bj-discrmoore 37155 The powerclass ` ~P A ` is...
bj-0nmoore 37156 The empty set is not a Moo...
bj-snmoore 37157 A singleton is a Moore col...
bj-snmooreb 37158 A singleton is a Moore col...
bj-prmoore 37159 A pair formed of two neste...
bj-0nelmpt 37160 The empty set is not an el...
bj-mptval 37161 Value of a function given ...
bj-dfmpoa 37162 An equivalent definition o...
bj-mpomptALT 37163 Alternate proof of ~ mpomp...
setsstrset 37180 Relation between ~ df-sets...
bj-nfald 37181 Variant of ~ nfald . (Con...
bj-nfexd 37182 Variant of ~ nfexd . (Con...
copsex2d 37183 Implicit substitution dedu...
copsex2b 37184 Biconditional form of ~ co...
opelopabd 37185 Membership of an ordere pa...
opelopabb 37186 Membership of an ordered p...
opelopabbv 37187 Membership of an ordered p...
bj-opelrelex 37188 The coordinates of an orde...
bj-opelresdm 37189 If an ordered pair is in a...
bj-brresdm 37190 If two classes are related...
brabd0 37191 Expressing that two sets a...
brabd 37192 Expressing that two sets a...
bj-brab2a1 37193 "Unbounded" version of ~ b...
bj-opabssvv 37194 A variant of ~ relopabiv (...
bj-funidres 37195 The restricted identity re...
bj-opelidb 37196 Characterization of the or...
bj-opelidb1 37197 Characterization of the or...
bj-inexeqex 37198 Lemma for ~ bj-opelid (but...
bj-elsn0 37199 If the intersection of two...
bj-opelid 37200 Characterization of the or...
bj-ideqg 37201 Characterization of the cl...
bj-ideqgALT 37202 Alternate proof of ~ bj-id...
bj-ideqb 37203 Characterization of classe...
bj-idres 37204 Alternate expression for t...
bj-opelidres 37205 Characterization of the or...
bj-idreseq 37206 Sufficient condition for t...
bj-idreseqb 37207 Characterization for two c...
bj-ideqg1 37208 For sets, the identity rel...
bj-ideqg1ALT 37209 Alternate proof of bj-ideq...
bj-opelidb1ALT 37210 Characterization of the co...
bj-elid3 37211 Characterization of the co...
bj-elid4 37212 Characterization of the el...
bj-elid5 37213 Characterization of the el...
bj-elid6 37214 Characterization of the el...
bj-elid7 37215 Characterization of the el...
bj-diagval 37218 Value of the functionalize...
bj-diagval2 37219 Value of the functionalize...
bj-eldiag 37220 Characterization of the el...
bj-eldiag2 37221 Characterization of the el...
bj-imdirvallem 37224 Lemma for ~ bj-imdirval an...
bj-imdirval 37225 Value of the functionalize...
bj-imdirval2lem 37226 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 37227 Value of the functionalize...
bj-imdirval3 37228 Value of the functionalize...
bj-imdiridlem 37229 Lemma for ~ bj-imdirid and...
bj-imdirid 37230 Functorial property of the...
bj-opelopabid 37231 Membership in an ordered-p...
bj-opabco 37232 Composition of ordered-pai...
bj-xpcossxp 37233 The composition of two Car...
bj-imdirco 37234 Functorial property of the...
bj-iminvval 37237 Value of the functionalize...
bj-iminvval2 37238 Value of the functionalize...
bj-iminvid 37239 Functorial property of the...
bj-inftyexpitaufo 37246 The function ` inftyexpita...
bj-inftyexpitaudisj 37249 An element of the circle a...
bj-inftyexpiinv 37252 Utility theorem for the in...
bj-inftyexpiinj 37253 Injectivity of the paramet...
bj-inftyexpidisj 37254 An element of the circle a...
bj-ccinftydisj 37257 The circle at infinity is ...
bj-elccinfty 37258 A lemma for infinite exten...
bj-ccssccbar 37261 Complex numbers are extend...
bj-ccinftyssccbar 37262 Infinite extended complex ...
bj-pinftyccb 37265 The class ` pinfty ` is an...
bj-pinftynrr 37266 The extended complex numbe...
bj-minftyccb 37269 The class ` minfty ` is an...
bj-minftynrr 37270 The extended complex numbe...
bj-pinftynminfty 37271 The extended complex numbe...
bj-rrhatsscchat 37280 The real projective line i...
bj-imafv 37295 If the direct image of a s...
bj-funun 37296 Value of a function expres...
bj-fununsn1 37297 Value of a function expres...
bj-fununsn2 37298 Value of a function expres...
bj-fvsnun1 37299 The value of a function wi...
bj-fvsnun2 37300 The value of a function wi...
bj-fvmptunsn1 37301 Value of a function expres...
bj-fvmptunsn2 37302 Value of a function expres...
bj-iomnnom 37303 The canonical bijection fr...
bj-smgrpssmgm 37312 Semigroups are magmas. (C...
bj-smgrpssmgmel 37313 Semigroups are magmas (ele...
bj-mndsssmgrp 37314 Monoids are semigroups. (...
bj-mndsssmgrpel 37315 Monoids are semigroups (el...
bj-cmnssmnd 37316 Commutative monoids are mo...
bj-cmnssmndel 37317 Commutative monoids are mo...
bj-grpssmnd 37318 Groups are monoids. (Cont...
bj-grpssmndel 37319 Groups are monoids (elemen...
bj-ablssgrp 37320 Abelian groups are groups....
bj-ablssgrpel 37321 Abelian groups are groups ...
bj-ablsscmn 37322 Abelian groups are commuta...
bj-ablsscmnel 37323 Abelian groups are commuta...
bj-modssabl 37324 (The additive groups of) m...
bj-vecssmod 37325 Vector spaces are modules....
bj-vecssmodel 37326 Vector spaces are modules ...
bj-finsumval0 37329 Value of a finite sum. (C...
bj-fvimacnv0 37330 Variant of ~ fvimacnv wher...
bj-isvec 37331 The predicate "is a vector...
bj-fldssdrng 37332 Fields are division rings....
bj-flddrng 37333 Fields are division rings ...
bj-rrdrg 37334 The field of real numbers ...
bj-isclm 37335 The predicate "is a subcom...
bj-isrvec 37338 The predicate "is a real v...
bj-rvecmod 37339 Real vector spaces are mod...
bj-rvecssmod 37340 Real vector spaces are mod...
bj-rvecrr 37341 The field of scalars of a ...
bj-isrvecd 37342 The predicate "is a real v...
bj-rvecvec 37343 Real vector spaces are vec...
bj-isrvec2 37344 The predicate "is a real v...
bj-rvecssvec 37345 Real vector spaces are vec...
bj-rveccmod 37346 Real vector spaces are sub...
bj-rvecsscmod 37347 Real vector spaces are sub...
bj-rvecsscvec 37348 Real vector spaces are sub...
bj-rveccvec 37349 Real vector spaces are sub...
bj-rvecssabl 37350 (The additive groups of) r...
bj-rvecabl 37351 (The additive groups of) r...
bj-subcom 37352 A consequence of commutati...
bj-lineqi 37353 Solution of a (scalar) lin...
bj-bary1lem 37354 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 37355 Lemma for ~ bj-bary1 : com...
bj-bary1 37356 Barycentric coordinates in...
bj-endval 37359 Value of the monoid of end...
bj-endbase 37360 Base set of the monoid of ...
bj-endcomp 37361 Composition law of the mon...
bj-endmnd 37362 The monoid of endomorphism...
taupilem3 37363 Lemma for tau-related theo...
taupilemrplb 37364 A set of positive reals ha...
taupilem1 37365 Lemma for ~ taupi . A pos...
taupilem2 37366 Lemma for ~ taupi . The s...
taupi 37367 Relationship between ` _ta...
dfgcd3 37368 Alternate definition of th...
irrdifflemf 37369 Lemma for ~ irrdiff . The...
irrdiff 37370 The irrationals are exactl...
iccioo01 37371 The closed unit interval i...
csbrecsg 37372 Move class substitution in...
csbrdgg 37373 Move class substitution in...
csboprabg 37374 Move class substitution in...
csbmpo123 37375 Move class substitution in...
con1bii2 37376 A contraposition inference...
con2bii2 37377 A contraposition inference...
vtoclefex 37378 Implicit substitution of a...
rnmptsn 37379 The range of a function ma...
f1omptsnlem 37380 This is the core of the pr...
f1omptsn 37381 A function mapping to sing...
mptsnunlem 37382 This is the core of the pr...
mptsnun 37383 A class ` B ` is equal to ...
dissneqlem 37384 This is the core of the pr...
dissneq 37385 Any topology that contains...
exlimim 37386 Closed form of ~ exlimimd ...
exlimimd 37387 Existential elimination ru...
exellim 37388 Closed form of ~ exellimdd...
exellimddv 37389 Eliminate an antecedent wh...
topdifinfindis 37390 Part of Exercise 3 of [Mun...
topdifinffinlem 37391 This is the core of the pr...
topdifinffin 37392 Part of Exercise 3 of [Mun...
topdifinf 37393 Part of Exercise 3 of [Mun...
topdifinfeq 37394 Two different ways of defi...
icorempo 37395 Closed-below, open-above i...
icoreresf 37396 Closed-below, open-above i...
icoreval 37397 Value of the closed-below,...
icoreelrnab 37398 Elementhood in the set of ...
isbasisrelowllem1 37399 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 37400 Lemma for ~ isbasisrelowl ...
icoreclin 37401 The set of closed-below, o...
isbasisrelowl 37402 The set of all closed-belo...
icoreunrn 37403 The union of all closed-be...
istoprelowl 37404 The set of all closed-belo...
icoreelrn 37405 A class abstraction which ...
iooelexlt 37406 An element of an open inte...
relowlssretop 37407 The lower limit topology o...
relowlpssretop 37408 The lower limit topology o...
sucneqond 37409 Inequality of an ordinal s...
sucneqoni 37410 Inequality of an ordinal s...
onsucuni3 37411 If an ordinal number has a...
1oequni2o 37412 The ordinal number ` 1o ` ...
rdgsucuni 37413 If an ordinal number has a...
rdgeqoa 37414 If a recursive function wi...
elxp8 37415 Membership in a Cartesian ...
cbveud 37416 Deduction used to change b...
cbvreud 37417 Deduction used to change b...
difunieq 37418 The difference of unions i...
inunissunidif 37419 Theorem about subsets of t...
rdgellim 37420 Elementhood in a recursive...
rdglimss 37421 A recursive definition at ...
rdgssun 37422 In a recursive definition ...
exrecfnlem 37423 Lemma for ~ exrecfn . (Co...
exrecfn 37424 Theorem about the existenc...
exrecfnpw 37425 For any base set, a set wh...
finorwe 37426 If the Axiom of Infinity i...
dffinxpf 37429 This theorem is the same a...
finxpeq1 37430 Equality theorem for Carte...
finxpeq2 37431 Equality theorem for Carte...
csbfinxpg 37432 Distribute proper substitu...
finxpreclem1 37433 Lemma for ` ^^ ` recursion...
finxpreclem2 37434 Lemma for ` ^^ ` recursion...
finxp0 37435 The value of Cartesian exp...
finxp1o 37436 The value of Cartesian exp...
finxpreclem3 37437 Lemma for ` ^^ ` recursion...
finxpreclem4 37438 Lemma for ` ^^ ` recursion...
finxpreclem5 37439 Lemma for ` ^^ ` recursion...
finxpreclem6 37440 Lemma for ` ^^ ` recursion...
finxpsuclem 37441 Lemma for ~ finxpsuc . (C...
finxpsuc 37442 The value of Cartesian exp...
finxp2o 37443 The value of Cartesian exp...
finxp3o 37444 The value of Cartesian exp...
finxpnom 37445 Cartesian exponentiation w...
finxp00 37446 Cartesian exponentiation o...
iunctb2 37447 Using the axiom of countab...
domalom 37448 A class which dominates ev...
isinf2 37449 The converse of ~ isinf . ...
ctbssinf 37450 Using the axiom of choice,...
ralssiun 37451 The index set of an indexe...
nlpineqsn 37452 For every point ` p ` of a...
nlpfvineqsn 37453 Given a subset ` A ` of ` ...
fvineqsnf1 37454 A theorem about functions ...
fvineqsneu 37455 A theorem about functions ...
fvineqsneq 37456 A theorem about functions ...
pibp16 37457 Property P000016 of pi-bas...
pibp19 37458 Property P000019 of pi-bas...
pibp21 37459 Property P000021 of pi-bas...
pibt1 37460 Theorem T000001 of pi-base...
pibt2 37461 Theorem T000002 of pi-base...
wl-section-prop 37462 Intuitionistic logic is no...
wl-section-boot 37466 In this section, I provide...
wl-luk-imim1i 37467 Inference adding common co...
wl-luk-syl 37468 An inference version of th...
wl-luk-imtrid 37469 A syllogism rule of infere...
wl-luk-pm2.18d 37470 Deduction based on reducti...
wl-luk-con4i 37471 Inference rule. Copy of ~...
wl-luk-pm2.24i 37472 Inference rule. Copy of ~...
wl-luk-a1i 37473 Inference rule. Copy of ~...
wl-luk-mpi 37474 A nested _modus ponens_ in...
wl-luk-imim2i 37475 Inference adding common an...
wl-luk-imtrdi 37476 A syllogism rule of infere...
wl-luk-ax3 37477 ~ ax-3 proved from Lukasie...
wl-luk-ax1 37478 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 37479 This theorem, called "Asse...
wl-luk-com12 37480 Inference that swaps (comm...
wl-luk-pm2.21 37481 From a wff and its negatio...
wl-luk-con1i 37482 A contraposition inference...
wl-luk-ja 37483 Inference joining the ante...
wl-luk-imim2 37484 A closed form of syllogism...
wl-luk-a1d 37485 Deduction introducing an e...
wl-luk-ax2 37486 ~ ax-2 proved from Lukasie...
wl-luk-id 37487 Principle of identity. Th...
wl-luk-notnotr 37488 Converse of double negatio...
wl-luk-pm2.04 37489 Swap antecedents. Theorem...
wl-section-impchain 37490 An implication like ` ( ps...
wl-impchain-mp-x 37491 This series of theorems pr...
wl-impchain-mp-0 37492 This theorem is the start ...
wl-impchain-mp-1 37493 This theorem is in fact a ...
wl-impchain-mp-2 37494 This theorem is in fact a ...
wl-impchain-com-1.x 37495 It is often convenient to ...
wl-impchain-com-1.1 37496 A degenerate form of antec...
wl-impchain-com-1.2 37497 This theorem is in fact a ...
wl-impchain-com-1.3 37498 This theorem is in fact a ...
wl-impchain-com-1.4 37499 This theorem is in fact a ...
wl-impchain-com-n.m 37500 This series of theorems al...
wl-impchain-com-2.3 37501 This theorem is in fact a ...
wl-impchain-com-2.4 37502 This theorem is in fact a ...
wl-impchain-com-3.2.1 37503 This theorem is in fact a ...
wl-impchain-a1-x 37504 If an implication chain is...
wl-impchain-a1-1 37505 Inference rule, a copy of ...
wl-impchain-a1-2 37506 Inference rule, a copy of ...
wl-impchain-a1-3 37507 Inference rule, a copy of ...
wl-ifp-ncond1 37508 If one case of an ` if- ` ...
wl-ifp-ncond2 37509 If one case of an ` if- ` ...
wl-ifpimpr 37510 If one case of an ` if- ` ...
wl-ifp4impr 37511 If one case of an ` if- ` ...
wl-df-3xor 37512 Alternative definition of ...
wl-df3xor2 37513 Alternative definition of ...
wl-df3xor3 37514 Alternative form of ~ wl-d...
wl-3xortru 37515 If the first input is true...
wl-3xorfal 37516 If the first input is fals...
wl-3xorbi 37517 Triple xor can be replaced...
wl-3xorbi2 37518 Alternative form of ~ wl-3...
wl-3xorbi123d 37519 Equivalence theorem for tr...
wl-3xorbi123i 37520 Equivalence theorem for tr...
wl-3xorrot 37521 Rotation law for triple xo...
wl-3xorcoma 37522 Commutative law for triple...
wl-3xorcomb 37523 Commutative law for triple...
wl-3xornot1 37524 Flipping the first input f...
wl-3xornot 37525 Triple xor distributes ove...
wl-1xor 37526 In the recursive scheme ...
wl-2xor 37527 In the recursive scheme ...
wl-df-3mintru2 37528 Alternative definition of ...
wl-df2-3mintru2 37529 The adder carry in disjunc...
wl-df3-3mintru2 37530 The adder carry in conjunc...
wl-df4-3mintru2 37531 An alternative definition ...
wl-1mintru1 37532 Using the recursion formul...
wl-1mintru2 37533 Using the recursion formul...
wl-2mintru1 37534 Using the recursion formul...
wl-2mintru2 37535 Using the recursion formul...
wl-df3maxtru1 37536 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 37538 A version of ~ ax-wl-13v w...
wl-cleq-0 37539
Disclaimer:
wl-cleq-1 37540
Disclaimer:
wl-cleq-2 37541
Disclaimer:
wl-cleq-3 37542
Disclaimer:
wl-cleq-4 37543
Disclaimer:
wl-cleq-5 37544
Disclaimer:
wl-cleq-6 37545
Disclaimer:
wl-df-clab 37548 Disclaimer: The material ...
wl-isseteq 37549 A class equal to a set var...
wl-ax12v2cl 37550 The class version of ~ ax1...
wl-mps 37551 Replacing a nested consequ...
wl-syls1 37552 Replacing a nested consequ...
wl-syls2 37553 Replacing a nested anteced...
wl-embant 37554 A true wff can always be a...
wl-orel12 37555 In a conjunctive normal fo...
wl-cases2-dnf 37556 A particular instance of ~...
wl-cbvmotv 37557 Change bound variable. Us...
wl-moteq 37558 Change bound variable. Us...
wl-motae 37559 Change bound variable. Us...
wl-moae 37560 Two ways to express "at mo...
wl-euae 37561 Two ways to express "exact...
wl-nax6im 37562 The following series of th...
wl-hbae1 37563 This specialization of ~ h...
wl-naevhba1v 37564 An instance of ~ hbn1w app...
wl-spae 37565 Prove an instance of ~ sp ...
wl-speqv 37566 Under the assumption ` -. ...
wl-19.8eqv 37567 Under the assumption ` -. ...
wl-19.2reqv 37568 Under the assumption ` -. ...
wl-nfalv 37569 If ` x ` is not present in...
wl-nfimf1 37570 An antecedent is irrelevan...
wl-nfae1 37571 Unlike ~ nfae , this speci...
wl-nfnae1 37572 Unlike ~ nfnae , this spec...
wl-aetr 37573 A transitive law for varia...
wl-axc11r 37574 Same as ~ axc11r , but usi...
wl-dral1d 37575 A version of ~ dral1 with ...
wl-cbvalnaed 37576 ~ wl-cbvalnae with a conte...
wl-cbvalnae 37577 A more general version of ...
wl-exeq 37578 The semantics of ` E. x y ...
wl-aleq 37579 The semantics of ` A. x y ...
wl-nfeqfb 37580 Extend ~ nfeqf to an equiv...
wl-nfs1t 37581 If ` y ` is not free in ` ...
wl-equsalvw 37582 Version of ~ equsalv with ...
wl-equsald 37583 Deduction version of ~ equ...
wl-equsaldv 37584 Deduction version of ~ equ...
wl-equsal 37585 A useful equivalence relat...
wl-equsal1t 37586 The expression ` x = y ` i...
wl-equsalcom 37587 This simple equivalence ea...
wl-equsal1i 37588 The antecedent ` x = y ` i...
wl-sbid2ft 37589 A more general version of ...
wl-cbvalsbi 37590 Change bounded variables i...
wl-sbrimt 37591 Substitution with a variab...
wl-sblimt 37592 Substitution with a variab...
wl-sb9v 37593 Commutation of quantificat...
wl-sb8ft 37594 Substitution of variable i...
wl-sb8eft 37595 Substitution of variable i...
wl-sb8t 37596 Substitution of variable i...
wl-sb8et 37597 Substitution of variable i...
wl-sbhbt 37598 Closed form of ~ sbhb . C...
wl-sbnf1 37599 Two ways expressing that `...
wl-equsb3 37600 ~ equsb3 with a distinctor...
wl-equsb4 37601 Substitution applied to an...
wl-2sb6d 37602 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 37603 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 37604 Lemma used to prove ~ wl-s...
wl-sbcom2d 37605 Version of ~ sbcom2 with a...
wl-sbalnae 37606 A theorem used in eliminat...
wl-sbal1 37607 A theorem used in eliminat...
wl-sbal2 37608 Move quantifier in and out...
wl-2spsbbi 37609 ~ spsbbi applied twice. (...
wl-lem-exsb 37610 This theorem provides a ba...
wl-lem-nexmo 37611 This theorem provides a ba...
wl-lem-moexsb 37612 The antecedent ` A. x ( ph...
wl-alanbii 37613 This theorem extends ~ ala...
wl-mo2df 37614 Version of ~ mof with a co...
wl-mo2tf 37615 Closed form of ~ mof with ...
wl-eudf 37616 Version of ~ eu6 with a co...
wl-eutf 37617 Closed form of ~ eu6 with ...
wl-euequf 37618 ~ euequ proved with a dist...
wl-mo2t 37619 Closed form of ~ mof . (C...
wl-mo3t 37620 Closed form of ~ mo3 . (C...
wl-nfsbtv 37621 Closed form of ~ nfsbv . ...
wl-sb8eut 37622 Substitution of variable i...
wl-sb8eutv 37623 Substitution of variable i...
wl-sb8mot 37624 Substitution of variable i...
wl-sb8motv 37625 Substitution of variable i...
wl-issetft 37626 A closed form of ~ issetf ...
wl-axc11rc11 37627 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 37629 A transitive law for varia...
wl-ax11-lem2 37630 Lemma. (Contributed by Wo...
wl-ax11-lem3 37631 Lemma. (Contributed by Wo...
wl-ax11-lem4 37632 Lemma. (Contributed by Wo...
wl-ax11-lem5 37633 Lemma. (Contributed by Wo...
wl-ax11-lem6 37634 Lemma. (Contributed by Wo...
wl-ax11-lem7 37635 Lemma. (Contributed by Wo...
wl-ax11-lem8 37636 Lemma. (Contributed by Wo...
wl-ax11-lem9 37637 The easy part when ` x ` c...
wl-ax11-lem10 37638 We now have prepared every...
wl-clabv 37639 Variant of ~ df-clab , whe...
wl-dfclab 37640 Rederive ~ df-clab from ~ ...
wl-clabtv 37641 Using class abstraction in...
wl-clabt 37642 Using class abstraction in...
rabiun 37643 Abstraction restricted to ...
iundif1 37644 Indexed union of class dif...
imadifss 37645 The difference of images i...
cureq 37646 Equality theorem for curry...
unceq 37647 Equality theorem for uncur...
curf 37648 Functional property of cur...
uncf 37649 Functional property of unc...
curfv 37650 Value of currying. (Contr...
uncov 37651 Value of uncurrying. (Con...
curunc 37652 Currying of uncurrying. (...
unccur 37653 Uncurrying of currying. (...
phpreu 37654 Theorem related to pigeonh...
finixpnum 37655 A finite Cartesian product...
fin2solem 37656 Lemma for ~ fin2so . (Con...
fin2so 37657 Any totally ordered Tarski...
ltflcei 37658 Theorem to move the floor ...
leceifl 37659 Theorem to move the floor ...
sin2h 37660 Half-angle rule for sine. ...
cos2h 37661 Half-angle rule for cosine...
tan2h 37662 Half-angle rule for tangen...
lindsadd 37663 In a vector space, the uni...
lindsdom 37664 A linearly independent set...
lindsenlbs 37665 A maximal linearly indepen...
matunitlindflem1 37666 One direction of ~ matunit...
matunitlindflem2 37667 One direction of ~ matunit...
matunitlindf 37668 A matrix over a field is i...
ptrest 37669 Expressing a restriction o...
ptrecube 37670 Any point in an open set o...
poimirlem1 37671 Lemma for ~ poimir - the v...
poimirlem2 37672 Lemma for ~ poimir - conse...
poimirlem3 37673 Lemma for ~ poimir to add ...
poimirlem4 37674 Lemma for ~ poimir connect...
poimirlem5 37675 Lemma for ~ poimir to esta...
poimirlem6 37676 Lemma for ~ poimir establi...
poimirlem7 37677 Lemma for ~ poimir , simil...
poimirlem8 37678 Lemma for ~ poimir , estab...
poimirlem9 37679 Lemma for ~ poimir , estab...
poimirlem10 37680 Lemma for ~ poimir establi...
poimirlem11 37681 Lemma for ~ poimir connect...
poimirlem12 37682 Lemma for ~ poimir connect...
poimirlem13 37683 Lemma for ~ poimir - for a...
poimirlem14 37684 Lemma for ~ poimir - for a...
poimirlem15 37685 Lemma for ~ poimir , that ...
poimirlem16 37686 Lemma for ~ poimir establi...
poimirlem17 37687 Lemma for ~ poimir establi...
poimirlem18 37688 Lemma for ~ poimir stating...
poimirlem19 37689 Lemma for ~ poimir establi...
poimirlem20 37690 Lemma for ~ poimir establi...
poimirlem21 37691 Lemma for ~ poimir stating...
poimirlem22 37692 Lemma for ~ poimir , that ...
poimirlem23 37693 Lemma for ~ poimir , two w...
poimirlem24 37694 Lemma for ~ poimir , two w...
poimirlem25 37695 Lemma for ~ poimir stating...
poimirlem26 37696 Lemma for ~ poimir showing...
poimirlem27 37697 Lemma for ~ poimir showing...
poimirlem28 37698 Lemma for ~ poimir , a var...
poimirlem29 37699 Lemma for ~ poimir connect...
poimirlem30 37700 Lemma for ~ poimir combini...
poimirlem31 37701 Lemma for ~ poimir , assig...
poimirlem32 37702 Lemma for ~ poimir , combi...
poimir 37703 Poincare-Miranda theorem. ...
broucube 37704 Brouwer - or as Kulpa call...
heicant 37705 Heine-Cantor theorem: a co...
opnmbllem0 37706 Lemma for ~ ismblfin ; cou...
mblfinlem1 37707 Lemma for ~ ismblfin , ord...
mblfinlem2 37708 Lemma for ~ ismblfin , eff...
mblfinlem3 37709 The difference between two...
mblfinlem4 37710 Backward direction of ~ is...
ismblfin 37711 Measurability in terms of ...
ovoliunnfl 37712 ~ ovoliun is incompatible ...
ex-ovoliunnfl 37713 Demonstration of ~ ovoliun...
voliunnfl 37714 ~ voliun is incompatible w...
volsupnfl 37715 ~ volsup is incompatible w...
mbfresfi 37716 Measurability of a piecewi...
mbfposadd 37717 If the sum of two measurab...
cnambfre 37718 A real-valued, a.e. contin...
dvtanlem 37719 Lemma for ~ dvtan - the do...
dvtan 37720 Derivative of tangent. (C...
itg2addnclem 37721 An alternate expression fo...
itg2addnclem2 37722 Lemma for ~ itg2addnc . T...
itg2addnclem3 37723 Lemma incomprehensible in ...
itg2addnc 37724 Alternate proof of ~ itg2a...
itg2gt0cn 37725 ~ itg2gt0 holds on functio...
ibladdnclem 37726 Lemma for ~ ibladdnc ; cf ...
ibladdnc 37727 Choice-free analogue of ~ ...
itgaddnclem1 37728 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 37729 Lemma for ~ itgaddnc ; cf....
itgaddnc 37730 Choice-free analogue of ~ ...
iblsubnc 37731 Choice-free analogue of ~ ...
itgsubnc 37732 Choice-free analogue of ~ ...
iblabsnclem 37733 Lemma for ~ iblabsnc ; cf....
iblabsnc 37734 Choice-free analogue of ~ ...
iblmulc2nc 37735 Choice-free analogue of ~ ...
itgmulc2nclem1 37736 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 37737 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 37738 Choice-free analogue of ~ ...
itgabsnc 37739 Choice-free analogue of ~ ...
itggt0cn 37740 ~ itggt0 holds for continu...
ftc1cnnclem 37741 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 37742 Choice-free proof of ~ ftc...
ftc1anclem1 37743 Lemma for ~ ftc1anc - the ...
ftc1anclem2 37744 Lemma for ~ ftc1anc - rest...
ftc1anclem3 37745 Lemma for ~ ftc1anc - the ...
ftc1anclem4 37746 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 37747 Lemma for ~ ftc1anc , the ...
ftc1anclem6 37748 Lemma for ~ ftc1anc - cons...
ftc1anclem7 37749 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 37750 Lemma for ~ ftc1anc . (Co...
ftc1anc 37751 ~ ftc1a holds for function...
ftc2nc 37752 Choice-free proof of ~ ftc...
asindmre 37753 Real part of domain of dif...
dvasin 37754 Derivative of arcsine. (C...
dvacos 37755 Derivative of arccosine. ...
dvreasin 37756 Real derivative of arcsine...
dvreacos 37757 Real derivative of arccosi...
areacirclem1 37758 Antiderivative of cross-se...
areacirclem2 37759 Endpoint-inclusive continu...
areacirclem3 37760 Integrability of cross-sec...
areacirclem4 37761 Endpoint-inclusive continu...
areacirclem5 37762 Finding the cross-section ...
areacirc 37763 The area of a circle of ra...
unirep 37764 Define a quantity whose de...
cover2 37765 Two ways of expressing the...
cover2g 37766 Two ways of expressing the...
brabg2 37767 Relation by a binary relat...
opelopab3 37768 Ordered pair membership in...
cocanfo 37769 Cancellation of a surjecti...
brresi2 37770 Restriction of a binary re...
fnopabeqd 37771 Equality deduction for fun...
fvopabf4g 37772 Function value of an opera...
fnopabco 37773 Composition of a function ...
opropabco 37774 Composition of an operator...
cocnv 37775 Composition with a functio...
f1ocan1fv 37776 Cancel a composition by a ...
f1ocan2fv 37777 Cancel a composition by th...
inixp 37778 Intersection of Cartesian ...
upixp 37779 Universal property of the ...
abrexdom 37780 An indexed set is dominate...
abrexdom2 37781 An indexed set is dominate...
ac6gf 37782 Axiom of Choice. (Contrib...
indexa 37783 If for every element of an...
indexdom 37784 If for every element of an...
frinfm 37785 A subset of a well-founded...
welb 37786 A nonempty subset of a wel...
supex2g 37787 Existence of supremum. (C...
supclt 37788 Closure of supremum. (Con...
supubt 37789 Upper bound property of su...
filbcmb 37790 Combine a finite set of lo...
fzmul 37791 Membership of a product in...
sdclem2 37792 Lemma for ~ sdc . (Contri...
sdclem1 37793 Lemma for ~ sdc . (Contri...
sdc 37794 Strong dependent choice. ...
fdc 37795 Finite version of dependen...
fdc1 37796 Variant of ~ fdc with no s...
seqpo 37797 Two ways to say that a seq...
incsequz 37798 An increasing sequence of ...
incsequz2 37799 An increasing sequence of ...
nnubfi 37800 A bounded above set of pos...
nninfnub 37801 An infinite set of positiv...
subspopn 37802 An open set is open in the...
neificl 37803 Neighborhoods are closed u...
lpss2 37804 Limit points of a subset a...
metf1o 37805 Use a bijection with a met...
blssp 37806 A ball in the subspace met...
mettrifi 37807 Generalized triangle inequ...
lmclim2 37808 A sequence in a metric spa...
geomcau 37809 If the distance between co...
caures 37810 The restriction of a Cauch...
caushft 37811 A shifted Cauchy sequence ...
constcncf 37812 A constant function is a c...
cnres2 37813 The restriction of a conti...
cnresima 37814 A continuous function is c...
cncfres 37815 A continuous function on c...
istotbnd 37819 The predicate "is a totall...
istotbnd2 37820 The predicate "is a totall...
istotbnd3 37821 A metric space is totally ...
totbndmet 37822 The predicate "totally bou...
0totbnd 37823 The metric (there is only ...
sstotbnd2 37824 Condition for a subset of ...
sstotbnd 37825 Condition for a subset of ...
sstotbnd3 37826 Use a net that is not nece...
totbndss 37827 A subset of a totally boun...
equivtotbnd 37828 If the metric ` M ` is "st...
isbnd 37830 The predicate "is a bounde...
bndmet 37831 A bounded metric space is ...
isbndx 37832 A "bounded extended metric...
isbnd2 37833 The predicate "is a bounde...
isbnd3 37834 A metric space is bounded ...
isbnd3b 37835 A metric space is bounded ...
bndss 37836 A subset of a bounded metr...
blbnd 37837 A ball is bounded. (Contr...
ssbnd 37838 A subset of a metric space...
totbndbnd 37839 A totally bounded metric s...
equivbnd 37840 If the metric ` M ` is "st...
bnd2lem 37841 Lemma for ~ equivbnd2 and ...
equivbnd2 37842 If balls are totally bound...
prdsbnd 37843 The product metric over fi...
prdstotbnd 37844 The product metric over fi...
prdsbnd2 37845 If balls are totally bound...
cntotbnd 37846 A subset of the complex nu...
cnpwstotbnd 37847 A subset of ` A ^ I ` , wh...
ismtyval 37850 The set of isometries betw...
isismty 37851 The condition "is an isome...
ismtycnv 37852 The inverse of an isometry...
ismtyima 37853 The image of a ball under ...
ismtyhmeolem 37854 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 37855 An isometry is a homeomorp...
ismtybndlem 37856 Lemma for ~ ismtybnd . (C...
ismtybnd 37857 Isometries preserve bounde...
ismtyres 37858 A restriction of an isomet...
heibor1lem 37859 Lemma for ~ heibor1 . A c...
heibor1 37860 One half of ~ heibor , tha...
heiborlem1 37861 Lemma for ~ heibor . We w...
heiborlem2 37862 Lemma for ~ heibor . Subs...
heiborlem3 37863 Lemma for ~ heibor . Usin...
heiborlem4 37864 Lemma for ~ heibor . Usin...
heiborlem5 37865 Lemma for ~ heibor . The ...
heiborlem6 37866 Lemma for ~ heibor . Sinc...
heiborlem7 37867 Lemma for ~ heibor . Sinc...
heiborlem8 37868 Lemma for ~ heibor . The ...
heiborlem9 37869 Lemma for ~ heibor . Disc...
heiborlem10 37870 Lemma for ~ heibor . The ...
heibor 37871 Generalized Heine-Borel Th...
bfplem1 37872 Lemma for ~ bfp . The seq...
bfplem2 37873 Lemma for ~ bfp . Using t...
bfp 37874 Banach fixed point theorem...
rrnval 37877 The n-dimensional Euclidea...
rrnmval 37878 The value of the Euclidean...
rrnmet 37879 Euclidean space is a metri...
rrndstprj1 37880 The distance between two p...
rrndstprj2 37881 Bound on the distance betw...
rrncmslem 37882 Lemma for ~ rrncms . (Con...
rrncms 37883 Euclidean space is complet...
repwsmet 37884 The supremum metric on ` R...
rrnequiv 37885 The supremum metric on ` R...
rrntotbnd 37886 A set in Euclidean space i...
rrnheibor 37887 Heine-Borel theorem for Eu...
ismrer1 37888 An isometry between ` RR `...
reheibor 37889 Heine-Borel theorem for re...
iccbnd 37890 A closed interval in ` RR ...
icccmpALT 37891 A closed interval in ` RR ...
isass 37896 The predicate "is an assoc...
isexid 37897 The predicate ` G ` has a ...
ismgmOLD 37900 Obsolete version of ~ ismg...
clmgmOLD 37901 Obsolete version of ~ mgmc...
opidonOLD 37902 Obsolete version of ~ mndp...
rngopidOLD 37903 Obsolete version of ~ mndp...
opidon2OLD 37904 Obsolete version of ~ mndp...
isexid2 37905 If ` G e. ( Magma i^i ExId...
exidu1 37906 Uniqueness of the left and...
idrval 37907 The value of the identity ...
iorlid 37908 A magma right and left ide...
cmpidelt 37909 A magma right and left ide...
smgrpismgmOLD 37912 Obsolete version of ~ sgrp...
issmgrpOLD 37913 Obsolete version of ~ issg...
smgrpmgm 37914 A semigroup is a magma. (...
smgrpassOLD 37915 Obsolete version of ~ sgrp...
mndoissmgrpOLD 37918 Obsolete version of ~ mnds...
mndoisexid 37919 A monoid has an identity e...
mndoismgmOLD 37920 Obsolete version of ~ mndm...
mndomgmid 37921 A monoid is a magma with a...
ismndo 37922 The predicate "is a monoid...
ismndo1 37923 The predicate "is a monoid...
ismndo2 37924 The predicate "is a monoid...
grpomndo 37925 A group is a monoid. (Con...
exidcl 37926 Closure of the binary oper...
exidreslem 37927 Lemma for ~ exidres and ~ ...
exidres 37928 The restriction of a binar...
exidresid 37929 The restriction of a binar...
ablo4pnp 37930 A commutative/associative ...
grpoeqdivid 37931 Two group elements are equ...
grposnOLD 37932 The group operation for th...
elghomlem1OLD 37935 Obsolete as of 15-Mar-2020...
elghomlem2OLD 37936 Obsolete as of 15-Mar-2020...
elghomOLD 37937 Obsolete version of ~ isgh...
ghomlinOLD 37938 Obsolete version of ~ ghml...
ghomidOLD 37939 Obsolete version of ~ ghmi...
ghomf 37940 Mapping property of a grou...
ghomco 37941 The composition of two gro...
ghomdiv 37942 Group homomorphisms preser...
grpokerinj 37943 A group homomorphism is in...
relrngo 37946 The class of all unital ri...
isrngo 37947 The predicate "is a (unita...
isrngod 37948 Conditions that determine ...
rngoi 37949 The properties of a unital...
rngosm 37950 Functionality of the multi...
rngocl 37951 Closure of the multiplicat...
rngoid 37952 The multiplication operati...
rngoideu 37953 The unity element of a rin...
rngodi 37954 Distributive law for the m...
rngodir 37955 Distributive law for the m...
rngoass 37956 Associative law for the mu...
rngo2 37957 A ring element plus itself...
rngoablo 37958 A ring's addition operatio...
rngoablo2 37959 In a unital ring the addit...
rngogrpo 37960 A ring's addition operatio...
rngone0 37961 The base set of a ring is ...
rngogcl 37962 Closure law for the additi...
rngocom 37963 The addition operation of ...
rngoaass 37964 The addition operation of ...
rngoa32 37965 The addition operation of ...
rngoa4 37966 Rearrangement of 4 terms i...
rngorcan 37967 Right cancellation law for...
rngolcan 37968 Left cancellation law for ...
rngo0cl 37969 A ring has an additive ide...
rngo0rid 37970 The additive identity of a...
rngo0lid 37971 The additive identity of a...
rngolz 37972 The zero of a unital ring ...
rngorz 37973 The zero of a unital ring ...
rngosn3 37974 Obsolete as of 25-Jan-2020...
rngosn4 37975 Obsolete as of 25-Jan-2020...
rngosn6 37976 Obsolete as of 25-Jan-2020...
rngonegcl 37977 A ring is closed under neg...
rngoaddneg1 37978 Adding the negative in a r...
rngoaddneg2 37979 Adding the negative in a r...
rngosub 37980 Subtraction in a ring, in ...
rngmgmbs4 37981 The range of an internal o...
rngodm1dm2 37982 In a unital ring the domai...
rngorn1 37983 In a unital ring the range...
rngorn1eq 37984 In a unital ring the range...
rngomndo 37985 In a unital ring the multi...
rngoidmlem 37986 The unity element of a rin...
rngolidm 37987 The unity element of a rin...
rngoridm 37988 The unity element of a rin...
rngo1cl 37989 The unity element of a rin...
rngoueqz 37990 Obsolete as of 23-Jan-2020...
rngonegmn1l 37991 Negation in a ring is the ...
rngonegmn1r 37992 Negation in a ring is the ...
rngoneglmul 37993 Negation of a product in a...
rngonegrmul 37994 Negation of a product in a...
rngosubdi 37995 Ring multiplication distri...
rngosubdir 37996 Ring multiplication distri...
zerdivemp1x 37997 In a unital ring a left in...
isdivrngo 38000 The predicate "is a divisi...
drngoi 38001 The properties of a divisi...
gidsn 38002 Obsolete as of 23-Jan-2020...
zrdivrng 38003 The zero ring is not a div...
dvrunz 38004 In a division ring the rin...
isgrpda 38005 Properties that determine ...
isdrngo1 38006 The predicate "is a divisi...
divrngcl 38007 The product of two nonzero...
isdrngo2 38008 A division ring is a ring ...
isdrngo3 38009 A division ring is a ring ...
rngohomval 38014 The set of ring homomorphi...
isrngohom 38015 The predicate "is a ring h...
rngohomf 38016 A ring homomorphism is a f...
rngohomcl 38017 Closure law for a ring hom...
rngohom1 38018 A ring homomorphism preser...
rngohomadd 38019 Ring homomorphisms preserv...
rngohommul 38020 Ring homomorphisms preserv...
rngogrphom 38021 A ring homomorphism is a g...
rngohom0 38022 A ring homomorphism preser...
rngohomsub 38023 Ring homomorphisms preserv...
rngohomco 38024 The composition of two rin...
rngokerinj 38025 A ring homomorphism is inj...
rngoisoval 38027 The set of ring isomorphis...
isrngoiso 38028 The predicate "is a ring i...
rngoiso1o 38029 A ring isomorphism is a bi...
rngoisohom 38030 A ring isomorphism is a ri...
rngoisocnv 38031 The inverse of a ring isom...
rngoisoco 38032 The composition of two rin...
isriscg 38034 The ring isomorphism relat...
isrisc 38035 The ring isomorphism relat...
risc 38036 The ring isomorphism relat...
risci 38037 Determine that two rings a...
riscer 38038 Ring isomorphism is an equ...
iscom2 38045 A device to add commutativ...
iscrngo 38046 The predicate "is a commut...
iscrngo2 38047 The predicate "is a commut...
iscringd 38048 Conditions that determine ...
flddivrng 38049 A field is a division ring...
crngorngo 38050 A commutative ring is a ri...
crngocom 38051 The multiplication operati...
crngm23 38052 Commutative/associative la...
crngm4 38053 Commutative/associative la...
fldcrngo 38054 A field is a commutative r...
isfld2 38055 The predicate "is a field"...
crngohomfo 38056 The image of a homomorphis...
idlval 38063 The class of ideals of a r...
isidl 38064 The predicate "is an ideal...
isidlc 38065 The predicate "is an ideal...
idlss 38066 An ideal of ` R ` is a sub...
idlcl 38067 An element of an ideal is ...
idl0cl 38068 An ideal contains ` 0 ` . ...
idladdcl 38069 An ideal is closed under a...
idllmulcl 38070 An ideal is closed under m...
idlrmulcl 38071 An ideal is closed under m...
idlnegcl 38072 An ideal is closed under n...
idlsubcl 38073 An ideal is closed under s...
rngoidl 38074 A ring ` R ` is an ` R ` i...
0idl 38075 The set containing only ` ...
1idl 38076 Two ways of expressing the...
0rngo 38077 In a ring, ` 0 = 1 ` iff t...
divrngidl 38078 The only ideals in a divis...
intidl 38079 The intersection of a none...
inidl 38080 The intersection of two id...
unichnidl 38081 The union of a nonempty ch...
keridl 38082 The kernel of a ring homom...
pridlval 38083 The class of prime ideals ...
ispridl 38084 The predicate "is a prime ...
pridlidl 38085 A prime ideal is an ideal....
pridlnr 38086 A prime ideal is a proper ...
pridl 38087 The main property of a pri...
ispridl2 38088 A condition that shows an ...
maxidlval 38089 The set of maximal ideals ...
ismaxidl 38090 The predicate "is a maxima...
maxidlidl 38091 A maximal ideal is an idea...
maxidlnr 38092 A maximal ideal is proper....
maxidlmax 38093 A maximal ideal is a maxim...
maxidln1 38094 One is not contained in an...
maxidln0 38095 A ring with a maximal idea...
isprrngo 38100 The predicate "is a prime ...
prrngorngo 38101 A prime ring is a ring. (...
smprngopr 38102 A simple ring (one whose o...
divrngpr 38103 A division ring is a prime...
isdmn 38104 The predicate "is a domain...
isdmn2 38105 The predicate "is a domain...
dmncrng 38106 A domain is a commutative ...
dmnrngo 38107 A domain is a ring. (Cont...
flddmn 38108 A field is a domain. (Con...
igenval 38111 The ideal generated by a s...
igenss 38112 A set is a subset of the i...
igenidl 38113 The ideal generated by a s...
igenmin 38114 The ideal generated by a s...
igenidl2 38115 The ideal generated by an ...
igenval2 38116 The ideal generated by a s...
prnc 38117 A principal ideal (an idea...
isfldidl 38118 Determine if a ring is a f...
isfldidl2 38119 Determine if a ring is a f...
ispridlc 38120 The predicate "is a prime ...
pridlc 38121 Property of a prime ideal ...
pridlc2 38122 Property of a prime ideal ...
pridlc3 38123 Property of a prime ideal ...
isdmn3 38124 The predicate "is a domain...
dmnnzd 38125 A domain has no zero-divis...
dmncan1 38126 Cancellation law for domai...
dmncan2 38127 Cancellation law for domai...
efald2 38128 A proof by contradiction. ...
notbinot1 38129 Simplification rule of neg...
bicontr 38130 Biconditional of its own n...
impor 38131 An equivalent formula for ...
orfa 38132 The falsum ` F. ` can be r...
notbinot2 38133 Commutation rule between n...
biimpor 38134 A rewriting rule for bicon...
orfa1 38135 Add a contradicting disjun...
orfa2 38136 Remove a contradicting dis...
bifald 38137 Infer the equivalence to a...
orsild 38138 A lemma for not-or-not eli...
orsird 38139 A lemma for not-or-not eli...
cnf1dd 38140 A lemma for Conjunctive No...
cnf2dd 38141 A lemma for Conjunctive No...
cnfn1dd 38142 A lemma for Conjunctive No...
cnfn2dd 38143 A lemma for Conjunctive No...
or32dd 38144 A rearrangement of disjunc...
notornotel1 38145 A lemma for not-or-not eli...
notornotel2 38146 A lemma for not-or-not eli...
contrd 38147 A proof by contradiction, ...
an12i 38148 An inference from commutin...
exmid2 38149 An excluded middle law. (...
selconj 38150 An inference for selecting...
truconj 38151 Add true as a conjunct. (...
orel 38152 An inference for disjuncti...
negel 38153 An inference for negation ...
botel 38154 An inference for bottom el...
tradd 38155 Add top ad a conjunct. (C...
gm-sbtru 38156 Substitution does not chan...
sbfal 38157 Substitution does not chan...
sbcani 38158 Distribution of class subs...
sbcori 38159 Distribution of class subs...
sbcimi 38160 Distribution of class subs...
sbcni 38161 Move class substitution in...
sbali 38162 Discard class substitution...
sbexi 38163 Discard class substitution...
sbcalf 38164 Move universal quantifier ...
sbcexf 38165 Move existential quantifie...
sbcalfi 38166 Move universal quantifier ...
sbcexfi 38167 Move existential quantifie...
spsbcdi 38168 A lemma for eliminating a ...
alrimii 38169 A lemma for introducing a ...
spesbcdi 38170 A lemma for introducing an...
exlimddvf 38171 A lemma for eliminating an...
exlimddvfi 38172 A lemma for eliminating an...
sbceq1ddi 38173 A lemma for eliminating in...
sbccom2lem 38174 Lemma for ~ sbccom2 . (Co...
sbccom2 38175 Commutative law for double...
sbccom2f 38176 Commutative law for double...
sbccom2fi 38177 Commutative law for double...
csbcom2fi 38178 Commutative law for double...
fald 38179 Refutation of falsity, in ...
tsim1 38180 A Tseitin axiom for logica...
tsim2 38181 A Tseitin axiom for logica...
tsim3 38182 A Tseitin axiom for logica...
tsbi1 38183 A Tseitin axiom for logica...
tsbi2 38184 A Tseitin axiom for logica...
tsbi3 38185 A Tseitin axiom for logica...
tsbi4 38186 A Tseitin axiom for logica...
tsxo1 38187 A Tseitin axiom for logica...
tsxo2 38188 A Tseitin axiom for logica...
tsxo3 38189 A Tseitin axiom for logica...
tsxo4 38190 A Tseitin axiom for logica...
tsan1 38191 A Tseitin axiom for logica...
tsan2 38192 A Tseitin axiom for logica...
tsan3 38193 A Tseitin axiom for logica...
tsna1 38194 A Tseitin axiom for logica...
tsna2 38195 A Tseitin axiom for logica...
tsna3 38196 A Tseitin axiom for logica...
tsor1 38197 A Tseitin axiom for logica...
tsor2 38198 A Tseitin axiom for logica...
tsor3 38199 A Tseitin axiom for logica...
ts3an1 38200 A Tseitin axiom for triple...
ts3an2 38201 A Tseitin axiom for triple...
ts3an3 38202 A Tseitin axiom for triple...
ts3or1 38203 A Tseitin axiom for triple...
ts3or2 38204 A Tseitin axiom for triple...
ts3or3 38205 A Tseitin axiom for triple...
iuneq2f 38206 Equality deduction for ind...
rabeq12f 38207 Equality deduction for res...
csbeq12 38208 Equality deduction for sub...
sbeqi 38209 Equality deduction for sub...
ralbi12f 38210 Equality deduction for res...
oprabbi 38211 Equality deduction for cla...
mpobi123f 38212 Equality deduction for map...
iuneq12f 38213 Equality deduction for ind...
iineq12f 38214 Equality deduction for ind...
opabbi 38215 Equality deduction for cla...
mptbi12f 38216 Equality deduction for map...
orcomdd 38217 Commutativity of logic dis...
scottexf 38218 A version of ~ scottex wit...
scott0f 38219 A version of ~ scott0 with...
scottn0f 38220 A version of ~ scott0f wit...
ac6s3f 38221 Generalization of the Axio...
ac6s6 38222 Generalization of the Axio...
ac6s6f 38223 Generalization of the Axio...
el2v1 38274 New way ( ~ elv , and the ...
el3v1 38275 New way ( ~ elv , and the ...
el3v2 38276 New way ( ~ elv , and the ...
el3v12 38277 New way ( ~ elv , and the ...
el3v13 38278 New way ( ~ elv , and the ...
el3v23 38279 New way ( ~ elv , and the ...
anan 38280 Multiple commutations in c...
triantru3 38281 A wff is equivalent to its...
biorfd 38282 A wff is equivalent to its...
eqbrtr 38283 Substitution of equal clas...
eqbrb 38284 Substitution of equal clas...
eqeltr 38285 Substitution of equal clas...
eqelb 38286 Substitution of equal clas...
eqeqan2d 38287 Implication of introducing...
disjresin 38288 The restriction to a disjo...
disjresdisj 38289 The intersection of restri...
disjresdif 38290 The difference between res...
disjresundif 38291 Lemma for ~ ressucdifsn2 ....
inres2 38292 Two ways of expressing the...
coideq 38293 Equality theorem for compo...
nexmo1 38294 If there is no case where ...
eqab2 38295 Implication of a class abs...
r2alan 38296 Double restricted universa...
ssrabi 38297 Inference of restricted ab...
rabimbieq 38298 Restricted equivalent wff'...
abeqin 38299 Intersection with class ab...
abeqinbi 38300 Intersection with class ab...
rabeqel 38301 Class element of a restric...
eqrelf 38302 The equality connective be...
br1cnvinxp 38303 Binary relation on the con...
releleccnv 38304 Elementhood in a converse ...
releccnveq 38305 Equality of converse ` R `...
opelvvdif 38306 Negated elementhood of ord...
vvdifopab 38307 Ordered-pair class abstrac...
brvdif 38308 Binary relation with unive...
brvdif2 38309 Binary relation with unive...
brvvdif 38310 Binary relation with the c...
brvbrvvdif 38311 Binary relation with the c...
brcnvep 38312 The converse of the binary...
elecALTV 38313 Elementhood in the ` R ` -...
brcnvepres 38314 Restricted converse epsilo...
brres2 38315 Binary relation on a restr...
br1cnvres 38316 Binary relation on the con...
elec1cnvres 38317 Elementhood in the convers...
ec1cnvres 38318 Converse restricted coset ...
eldmres 38319 Elementhood in the domain ...
elrnres 38320 Element of the range of a ...
eldmressnALTV 38321 Element of the domain of a...
elrnressn 38322 Element of the range of a ...
eldm4 38323 Elementhood in a domain. ...
eldmres2 38324 Elementhood in the domain ...
eldmres3 38325 Elementhood in the domain ...
eceq1i 38326 Equality theorem for ` C `...
ecres 38327 Restricted coset of ` B ` ...
eccnvepres 38328 Restricted converse epsilo...
eleccnvep 38329 Elementhood in the convers...
eccnvep 38330 The converse epsilon coset...
extep 38331 Property of epsilon relati...
disjeccnvep 38332 Property of the epsilon re...
eccnvepres2 38333 The restricted converse ep...
eccnvepres3 38334 Condition for a restricted...
eldmqsres 38335 Elementhood in a restricte...
eldmqsres2 38336 Elementhood in a restricte...
qsss1 38337 Subclass theorem for quoti...
qseq1i 38338 Equality theorem for quoti...
brinxprnres 38339 Binary relation on a restr...
inxprnres 38340 Restriction of a class as ...
dfres4 38341 Alternate definition of th...
exan3 38342 Equivalent expressions wit...
exanres 38343 Equivalent expressions wit...
exanres3 38344 Equivalent expressions wit...
exanres2 38345 Equivalent expressions wit...
cnvepres 38346 Restricted converse epsilo...
eqrel2 38347 Equality of relations. (C...
rncnv 38348 Range of converse is the d...
dfdm6 38349 Alternate definition of do...
dfrn6 38350 Alternate definition of ra...
rncnvepres 38351 The range of the restricte...
dmecd 38352 Equality of the coset of `...
dmec2d 38353 Equality of the coset of `...
brid 38354 Property of the identity b...
ideq2 38355 For sets, the identity bin...
idresssidinxp 38356 Condition for the identity...
idreseqidinxp 38357 Condition for the identity...
extid 38358 Property of identity relat...
inxpss 38359 Two ways to say that an in...
idinxpss 38360 Two ways to say that an in...
ref5 38361 Two ways to say that an in...
inxpss3 38362 Two ways to say that an in...
inxpss2 38363 Two ways to say that inter...
inxpssidinxp 38364 Two ways to say that inter...
idinxpssinxp 38365 Two ways to say that inter...
idinxpssinxp2 38366 Identity intersection with...
idinxpssinxp3 38367 Identity intersection with...
idinxpssinxp4 38368 Identity intersection with...
relcnveq3 38369 Two ways of saying a relat...
relcnveq 38370 Two ways of saying a relat...
relcnveq2 38371 Two ways of saying a relat...
relcnveq4 38372 Two ways of saying a relat...
qsresid 38373 Simplification of a specia...
n0elqs 38374 Two ways of expressing tha...
n0elqs2 38375 Two ways of expressing tha...
rnresequniqs 38376 The range of a restriction...
n0el2 38377 Two ways of expressing tha...
cnvepresex 38378 Sethood condition for the ...
cnvepima 38379 The image of converse epsi...
inex3 38380 Sufficient condition for t...
inxpex 38381 Sufficient condition for a...
eqres 38382 Converting a class constan...
brrabga 38383 The law of concretion for ...
brcnvrabga 38384 The law of concretion for ...
opideq 38385 Equality conditions for or...
iss2 38386 A subclass of the identity...
eldmcnv 38387 Elementhood in a domain of...
dfrel5 38388 Alternate definition of th...
dfrel6 38389 Alternate definition of th...
cnvresrn 38390 Converse restricted to ran...
relssinxpdmrn 38391 Subset of restriction, spe...
cnvref4 38392 Two ways to say that a rel...
cnvref5 38393 Two ways to say that a rel...
ecin0 38394 Two ways of saying that th...
ecinn0 38395 Two ways of saying that th...
ineleq 38396 Equivalence of restricted ...
inecmo 38397 Equivalence of a double re...
inecmo2 38398 Equivalence of a double re...
ineccnvmo 38399 Equivalence of a double re...
alrmomorn 38400 Equivalence of an "at most...
alrmomodm 38401 Equivalence of an "at most...
ineccnvmo2 38402 Equivalence of a double un...
inecmo3 38403 Equivalence of a double un...
moeu2 38404 Uniqueness is equivalent t...
mopickr 38405 "At most one" picks a vari...
moantr 38406 Sufficient condition for t...
brabidgaw 38407 The law of concretion for ...
brabidga 38408 The law of concretion for ...
inxp2 38409 Intersection with a Cartes...
opabf 38410 A class abstraction of a c...
ec0 38411 The empty-coset of a class...
brcnvin 38412 Intersection with a conver...
ssdmral 38413 Subclass of a domain. (Co...
xrnss3v 38415 A range Cartesian product ...
xrnrel 38416 A range Cartesian product ...
brxrn 38417 Characterize a ternary rel...
brxrn2 38418 A characterization of the ...
dfxrn2 38419 Alternate definition of th...
brxrncnvep 38420 The range product with con...
dmxrn 38421 Domain of the range produc...
dmcnvep 38422 Domain of converse epsilon...
dmxrncnvep 38423 Domain of the range produc...
dmcnvepres 38424 Domain of the restricted c...
dmuncnvepres 38425 Domain of the union with t...
dmxrnuncnvepres 38426 Domain of the range Cartes...
ecun 38427 The union coset of ` A ` ....
ecunres 38428 The restricted union coset...
ecuncnvepres 38429 The restricted union with ...
xrneq1 38430 Equality theorem for the r...
xrneq1i 38431 Equality theorem for the r...
xrneq1d 38432 Equality theorem for the r...
xrneq2 38433 Equality theorem for the r...
xrneq2i 38434 Equality theorem for the r...
xrneq2d 38435 Equality theorem for the r...
xrneq12 38436 Equality theorem for the r...
xrneq12i 38437 Equality theorem for the r...
xrneq12d 38438 Equality theorem for the r...
elecxrn 38439 Elementhood in the ` ( R |...
ecxrn 38440 The ` ( R |X. S ) ` -coset...
relecxrn 38441 The ` ( R |X. S ) ` -coset...
ecxrn2 38442 The ` ( R |X. S ) ` -coset...
ecxrncnvep 38443 The ` ( R |X. ``' _E ) ` -...
ecxrncnvep2 38444 The ` ( R |X. ``' _E ) ` -...
disjressuc2 38445 Double restricted quantifi...
disjecxrn 38446 Two ways of saying that ` ...
disjecxrncnvep 38447 Two ways of saying that co...
disjsuc2 38448 Double restricted quantifi...
xrninxp 38449 Intersection of a range Ca...
xrninxp2 38450 Intersection of a range Ca...
xrninxpex 38451 Sufficient condition for t...
inxpxrn 38452 Two ways to express the in...
br1cnvxrn2 38453 The converse of a binary r...
elec1cnvxrn2 38454 Elementhood in the convers...
rnxrn 38455 Range of the range Cartesi...
rnxrnres 38456 Range of a range Cartesian...
rnxrncnvepres 38457 Range of a range Cartesian...
rnxrnidres 38458 Range of a range Cartesian...
xrnres 38459 Two ways to express restri...
xrnres2 38460 Two ways to express restri...
xrnres3 38461 Two ways to express restri...
xrnres4 38462 Two ways to express restri...
xrnresex 38463 Sufficient condition for a...
xrnidresex 38464 Sufficient condition for a...
xrncnvepresex 38465 Sufficient condition for a...
dmxrncnvepres 38466 Domain of the range produc...
dmxrncnvepres2 38467 Domain of the range produc...
eldmxrncnvepres 38468 Element of the domain of t...
eldmxrncnvepres2 38469 Element of the domain of t...
eceldmqsxrncnvepres 38470 An ` ( R |X. ( ``' _E |`` ...
eceldmqsxrncnvepres2 38471 An ` ( R |X. ( ``' _E |`` ...
brin2 38472 Binary relation on an inte...
brin3 38473 Binary relation on an inte...
elrels2 38475 The element of the relatio...
elrelsrel 38476 The element of the relatio...
elrelsrelim 38477 The element of the relatio...
elrels5 38478 Equivalent expressions for...
elrels6 38479 Equivalent expressions for...
dfadjliftmap2 38481 Alternate definition of th...
blockadjliftmap 38482 A "two-stage" construction...
dfblockliftmap2 38484 Alternate definition of th...
dfsucmap3 38486 Alternate definition of th...
dfsucmap2 38487 Alternate definition of th...
dfsucmap4 38488 Alternate definition of th...
brsucmap 38489 Binary relation form of th...
relsucmap 38490 The successor map is a rel...
dmsucmap 38491 The domain of the successo...
dfsuccl2 38493 Alternate definition of th...
mopre 38494 There is at most one prede...
exeupre2 38495 Whenever a predecessor exi...
dfsuccl3 38496 Alternate definition of th...
dfsuccl4 38497 Alternate definition that ...
dfpre 38499 Alternate definition of th...
dfpre2 38500 Alternate definition of th...
dfpre3 38501 Alternate definition of th...
dfpred4 38502 Alternate definition of th...
dfpre4 38503 Alternate definition of th...
suceqsneq 38506 One-to-one relationship be...
sucdifsn2 38507 Absorption of union with a...
sucdifsn 38508 The difference between the...
ressucdifsn2 38509 The difference between res...
ressucdifsn 38510 The difference between res...
sucmapsuc 38511 A set is succeeded by its ...
sucmapleftuniq 38512 Left uniqueness of the suc...
exeupre 38513 Whenever a predecessor exi...
preex 38514 The successor-predecessor ...
eupre2 38515 Unique predecessor exists ...
eupre 38516 Unique predecessor exists ...
presucmap 38517 ` pre ` is really a predec...
preuniqval 38518 Uniqueness/canonicity of `...
sucpre 38519 ` suc ` is a right-inverse...
presuc 38520 ` pre ` is a left-inverse ...
press 38521 Predecessor is a subset of...
preel 38522 Predecessor is a subset of...
dfcoss2 38525 Alternate definition of th...
dfcoss3 38526 Alternate definition of th...
dfcoss4 38527 Alternate definition of th...
cosscnv 38528 Class of cosets by the con...
coss1cnvres 38529 Class of cosets by the con...
coss2cnvepres 38530 Special case of ~ coss1cnv...
cossex 38531 If ` A ` is a set then the...
cosscnvex 38532 If ` A ` is a set then the...
1cosscnvepresex 38533 Sufficient condition for a...
1cossxrncnvepresex 38534 Sufficient condition for a...
relcoss 38535 Cosets by ` R ` is a relat...
relcoels 38536 Coelements on ` A ` is a r...
cossss 38537 Subclass theorem for the c...
cosseq 38538 Equality theorem for the c...
cosseqi 38539 Equality theorem for the c...
cosseqd 38540 Equality theorem for the c...
1cossres 38541 The class of cosets by a r...
dfcoels 38542 Alternate definition of th...
brcoss 38543 ` A ` and ` B ` are cosets...
brcoss2 38544 Alternate form of the ` A ...
brcoss3 38545 Alternate form of the ` A ...
brcosscnvcoss 38546 For sets, the ` A ` and ` ...
brcoels 38547 ` B ` and ` C ` are coelem...
cocossss 38548 Two ways of saying that co...
cnvcosseq 38549 The converse of cosets by ...
br2coss 38550 Cosets by ` ,~ R ` binary ...
br1cossres 38551 ` B ` and ` C ` are cosets...
br1cossres2 38552 ` B ` and ` C ` are cosets...
brressn 38553 Binary relation on a restr...
ressn2 38554 A class ' R ' restricted t...
refressn 38555 Any class ' R ' restricted...
antisymressn 38556 Every class ' R ' restrict...
trressn 38557 Any class ' R ' restricted...
relbrcoss 38558 ` A ` and ` B ` are cosets...
br1cossinres 38559 ` B ` and ` C ` are cosets...
br1cossxrnres 38560 ` <. B , C >. ` and ` <. D...
br1cossinidres 38561 ` B ` and ` C ` are cosets...
br1cossincnvepres 38562 ` B ` and ` C ` are cosets...
br1cossxrnidres 38563 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 38564 ` <. B , C >. ` and ` <. D...
dmcoss3 38565 The domain of cosets is th...
dmcoss2 38566 The domain of cosets is th...
rncossdmcoss 38567 The range of cosets is the...
dm1cosscnvepres 38568 The domain of cosets of th...
dmcoels 38569 The domain of coelements i...
eldmcoss 38570 Elementhood in the domain ...
eldmcoss2 38571 Elementhood in the domain ...
eldm1cossres 38572 Elementhood in the domain ...
eldm1cossres2 38573 Elementhood in the domain ...
refrelcosslem 38574 Lemma for the left side of...
refrelcoss3 38575 The class of cosets by ` R...
refrelcoss2 38576 The class of cosets by ` R...
symrelcoss3 38577 The class of cosets by ` R...
symrelcoss2 38578 The class of cosets by ` R...
cossssid 38579 Equivalent expressions for...
cossssid2 38580 Equivalent expressions for...
cossssid3 38581 Equivalent expressions for...
cossssid4 38582 Equivalent expressions for...
cossssid5 38583 Equivalent expressions for...
brcosscnv 38584 ` A ` and ` B ` are cosets...
brcosscnv2 38585 ` A ` and ` B ` are cosets...
br1cosscnvxrn 38586 ` A ` and ` B ` are cosets...
1cosscnvxrn 38587 Cosets by the converse ran...
cosscnvssid3 38588 Equivalent expressions for...
cosscnvssid4 38589 Equivalent expressions for...
cosscnvssid5 38590 Equivalent expressions for...
coss0 38591 Cosets by the empty set ar...
cossid 38592 Cosets by the identity rel...
cosscnvid 38593 Cosets by the converse ide...
trcoss 38594 Sufficient condition for t...
eleccossin 38595 Two ways of saying that th...
trcoss2 38596 Equivalent expressions for...
cosselrels 38597 Cosets of sets are element...
cnvelrels 38598 The converse of a set is a...
cosscnvelrels 38599 Cosets of converse sets ar...
dfssr2 38601 Alternate definition of th...
relssr 38602 The subset relation is a r...
brssr 38603 The subset relation and su...
brssrid 38604 Any set is a subset of its...
issetssr 38605 Two ways of expressing set...
brssrres 38606 Restricted subset binary r...
br1cnvssrres 38607 Restricted converse subset...
brcnvssr 38608 The converse of a subset r...
brcnvssrid 38609 Any set is a converse subs...
br1cossxrncnvssrres 38610 ` <. B , C >. ` and ` <. D...
extssr 38611 Property of subset relatio...
dfrefrels2 38615 Alternate definition of th...
dfrefrels3 38616 Alternate definition of th...
dfrefrel2 38617 Alternate definition of th...
dfrefrel3 38618 Alternate definition of th...
dfrefrel5 38619 Alternate definition of th...
elrefrels2 38620 Element of the class of re...
elrefrels3 38621 Element of the class of re...
elrefrelsrel 38622 For sets, being an element...
refreleq 38623 Equality theorem for refle...
refrelid 38624 Identity relation is refle...
refrelcoss 38625 The class of cosets by ` R...
refrelressn 38626 Any class ' R ' restricted...
dfcnvrefrels2 38630 Alternate definition of th...
dfcnvrefrels3 38631 Alternate definition of th...
dfcnvrefrel2 38632 Alternate definition of th...
dfcnvrefrel3 38633 Alternate definition of th...
dfcnvrefrel4 38634 Alternate definition of th...
dfcnvrefrel5 38635 Alternate definition of th...
elcnvrefrels2 38636 Element of the class of co...
elcnvrefrels3 38637 Element of the class of co...
elcnvrefrelsrel 38638 For sets, being an element...
cnvrefrelcoss2 38639 Necessary and sufficient c...
cosselcnvrefrels2 38640 Necessary and sufficient c...
cosselcnvrefrels3 38641 Necessary and sufficient c...
cosselcnvrefrels4 38642 Necessary and sufficient c...
cosselcnvrefrels5 38643 Necessary and sufficient c...
dfsymrels2 38647 Alternate definition of th...
dfsymrels3 38648 Alternate definition of th...
elrelscnveq3 38649 Two ways of saying a relat...
elrelscnveq 38650 Two ways of saying a relat...
elrelscnveq2 38651 Two ways of saying a relat...
elrelscnveq4 38652 Two ways of saying a relat...
dfsymrels4 38653 Alternate definition of th...
dfsymrels5 38654 Alternate definition of th...
dfsymrel2 38655 Alternate definition of th...
dfsymrel3 38656 Alternate definition of th...
dfsymrel4 38657 Alternate definition of th...
dfsymrel5 38658 Alternate definition of th...
elsymrels2 38659 Element of the class of sy...
elsymrels3 38660 Element of the class of sy...
elsymrels4 38661 Element of the class of sy...
elsymrels5 38662 Element of the class of sy...
elsymrelsrel 38663 For sets, being an element...
symreleq 38664 Equality theorem for symme...
symrelim 38665 Symmetric relation implies...
symrelcoss 38666 The class of cosets by ` R...
idsymrel 38667 The identity relation is s...
epnsymrel 38668 The membership (epsilon) r...
symrefref2 38669 Symmetry is a sufficient c...
symrefref3 38670 Symmetry is a sufficient c...
refsymrels2 38671 Elements of the class of r...
refsymrels3 38672 Elements of the class of r...
refsymrel2 38673 A relation which is reflex...
refsymrel3 38674 A relation which is reflex...
elrefsymrels2 38675 Elements of the class of r...
elrefsymrels3 38676 Elements of the class of r...
elrefsymrelsrel 38677 For sets, being an element...
dftrrels2 38681 Alternate definition of th...
dftrrels3 38682 Alternate definition of th...
dftrrel2 38683 Alternate definition of th...
dftrrel3 38684 Alternate definition of th...
eltrrels2 38685 Element of the class of tr...
eltrrels3 38686 Element of the class of tr...
eltrrelsrel 38687 For sets, being an element...
trreleq 38688 Equality theorem for the t...
trrelressn 38689 Any class ' R ' restricted...
dfeqvrels2 38694 Alternate definition of th...
dfeqvrels3 38695 Alternate definition of th...
dfeqvrel2 38696 Alternate definition of th...
dfeqvrel3 38697 Alternate definition of th...
eleqvrels2 38698 Element of the class of eq...
eleqvrels3 38699 Element of the class of eq...
eleqvrelsrel 38700 For sets, being an element...
elcoeleqvrels 38701 Elementhood in the coeleme...
elcoeleqvrelsrel 38702 For sets, being an element...
eqvrelrel 38703 An equivalence relation is...
eqvrelrefrel 38704 An equivalence relation is...
eqvrelsymrel 38705 An equivalence relation is...
eqvreltrrel 38706 An equivalence relation is...
eqvrelim 38707 Equivalence relation impli...
eqvreleq 38708 Equality theorem for equiv...
eqvreleqi 38709 Equality theorem for equiv...
eqvreleqd 38710 Equality theorem for equiv...
eqvrelsym 38711 An equivalence relation is...
eqvrelsymb 38712 An equivalence relation is...
eqvreltr 38713 An equivalence relation is...
eqvreltrd 38714 A transitivity relation fo...
eqvreltr4d 38715 A transitivity relation fo...
eqvrelref 38716 An equivalence relation is...
eqvrelth 38717 Basic property of equivale...
eqvrelcl 38718 Elementhood in the field o...
eqvrelthi 38719 Basic property of equivale...
eqvreldisj 38720 Equivalence classes do not...
qsdisjALTV 38721 Elements of a quotient set...
eqvrelqsel 38722 If an element of a quotien...
eqvrelcoss 38723 Two ways to express equiva...
eqvrelcoss3 38724 Two ways to express equiva...
eqvrelcoss2 38725 Two ways to express equiva...
eqvrelcoss4 38726 Two ways to express equiva...
dfcoeleqvrels 38727 Alternate definition of th...
dfcoeleqvrel 38728 Alternate definition of th...
brredunds 38732 Binary relation on the cla...
brredundsredund 38733 For sets, binary relation ...
redundss3 38734 Implication of redundancy ...
redundeq1 38735 Equivalence of redundancy ...
redundpim3 38736 Implication of redundancy ...
redundpbi1 38737 Equivalence of redundancy ...
refrelsredund4 38738 The naive version of the c...
refrelsredund2 38739 The naive version of the c...
refrelsredund3 38740 The naive version of the c...
refrelredund4 38741 The naive version of the d...
refrelredund2 38742 The naive version of the d...
refrelredund3 38743 The naive version of the d...
dfblockliftfix2 38746 Alternate definition of th...
dmqseq 38747 Equality theorem for domai...
dmqseqi 38748 Equality theorem for domai...
dmqseqd 38749 Equality theorem for domai...
dmqseqeq1 38750 Equality theorem for domai...
dmqseqeq1i 38751 Equality theorem for domai...
dmqseqeq1d 38752 Equality theorem for domai...
brdmqss 38753 The domain quotient binary...
brdmqssqs 38754 If ` A ` and ` R ` are set...
n0eldmqs 38755 The empty set is not an el...
qseq 38756 The quotient set equal to ...
n0eldmqseq 38757 The empty set is not an el...
n0elim 38758 Implication of that the em...
n0el3 38759 Two ways of expressing tha...
cnvepresdmqss 38760 The domain quotient binary...
cnvepresdmqs 38761 The domain quotient predic...
unidmqs 38762 The range of a relation is...
unidmqseq 38763 The union of the domain qu...
dmqseqim 38764 If the domain quotient of ...
dmqseqim2 38765 Lemma for ~ erimeq2 . (Co...
releldmqs 38766 Elementhood in the domain ...
eldmqs1cossres 38767 Elementhood in the domain ...
releldmqscoss 38768 Elementhood in the domain ...
dmqscoelseq 38769 Two ways to express the eq...
dmqs1cosscnvepreseq 38770 Two ways to express the eq...
brers 38775 Binary equivalence relatio...
dferALTV2 38776 Equivalence relation with ...
erALTVeq1 38777 Equality theorem for equiv...
erALTVeq1i 38778 Equality theorem for equiv...
erALTVeq1d 38779 Equality theorem for equiv...
dfcomember 38780 Alternate definition of th...
dfcomember2 38781 Alternate definition of th...
dfcomember3 38782 Alternate definition of th...
eqvreldmqs 38783 Two ways to express comemb...
eqvreldmqs2 38784 Two ways to express comemb...
brerser 38785 Binary equivalence relatio...
erimeq2 38786 Equivalence relation on it...
erimeq 38787 Equivalence relation on it...
dffunsALTV 38791 Alternate definition of th...
dffunsALTV2 38792 Alternate definition of th...
dffunsALTV3 38793 Alternate definition of th...
dffunsALTV4 38794 Alternate definition of th...
dffunsALTV5 38795 Alternate definition of th...
dffunALTV2 38796 Alternate definition of th...
dffunALTV3 38797 Alternate definition of th...
dffunALTV4 38798 Alternate definition of th...
dffunALTV5 38799 Alternate definition of th...
elfunsALTV 38800 Elementhood in the class o...
elfunsALTV2 38801 Elementhood in the class o...
elfunsALTV3 38802 Elementhood in the class o...
elfunsALTV4 38803 Elementhood in the class o...
elfunsALTV5 38804 Elementhood in the class o...
elfunsALTVfunALTV 38805 The element of the class o...
funALTVfun 38806 Our definition of the func...
funALTVss 38807 Subclass theorem for funct...
funALTVeq 38808 Equality theorem for funct...
funALTVeqi 38809 Equality inference for the...
funALTVeqd 38810 Equality deduction for the...
dfdisjs 38816 Alternate definition of th...
dfdisjs2 38817 Alternate definition of th...
dfdisjs3 38818 Alternate definition of th...
dfdisjs4 38819 Alternate definition of th...
dfdisjs5 38820 Alternate definition of th...
dfdisjALTV 38821 Alternate definition of th...
dfdisjALTV2 38822 Alternate definition of th...
dfdisjALTV3 38823 Alternate definition of th...
dfdisjALTV4 38824 Alternate definition of th...
dfdisjALTV5 38825 Alternate definition of th...
dfeldisj2 38826 Alternate definition of th...
dfeldisj3 38827 Alternate definition of th...
dfeldisj4 38828 Alternate definition of th...
dfeldisj5 38829 Alternate definition of th...
eldisjs 38830 Elementhood in the class o...
eldisjs2 38831 Elementhood in the class o...
eldisjs3 38832 Elementhood in the class o...
eldisjs4 38833 Elementhood in the class o...
eldisjs5 38834 Elementhood in the class o...
eldisjsdisj 38835 The element of the class o...
eleldisjs 38836 Elementhood in the disjoin...
eleldisjseldisj 38837 The element of the disjoin...
disjrel 38838 Disjoint relation is a rel...
disjss 38839 Subclass theorem for disjo...
disjssi 38840 Subclass theorem for disjo...
disjssd 38841 Subclass theorem for disjo...
disjeq 38842 Equality theorem for disjo...
disjeqi 38843 Equality theorem for disjo...
disjeqd 38844 Equality theorem for disjo...
disjdmqseqeq1 38845 Lemma for the equality the...
eldisjss 38846 Subclass theorem for disjo...
eldisjssi 38847 Subclass theorem for disjo...
eldisjssd 38848 Subclass theorem for disjo...
eldisjeq 38849 Equality theorem for disjo...
eldisjeqi 38850 Equality theorem for disjo...
eldisjeqd 38851 Equality theorem for disjo...
disjres 38852 Disjoint restriction. (Co...
eldisjn0elb 38853 Two forms of disjoint elem...
disjxrn 38854 Two ways of saying that a ...
disjxrnres5 38855 Disjoint range Cartesian p...
disjorimxrn 38856 Disjointness condition for...
disjimxrn 38857 Disjointness condition for...
disjimres 38858 Disjointness condition for...
disjimin 38859 Disjointness condition for...
disjiminres 38860 Disjointness condition for...
disjimxrnres 38861 Disjointness condition for...
disjALTV0 38862 The null class is disjoint...
disjALTVid 38863 The class of identity rela...
disjALTVidres 38864 The class of identity rela...
disjALTVinidres 38865 The intersection with rest...
disjALTVxrnidres 38866 The class of range Cartesi...
disjsuc 38867 Disjoint range Cartesian p...
dfantisymrel4 38869 Alternate definition of th...
dfantisymrel5 38870 Alternate definition of th...
antisymrelres 38871 (Contributed by Peter Mazs...
antisymrelressn 38872 (Contributed by Peter Mazs...
dfpart2 38877 Alternate definition of th...
dfmembpart2 38878 Alternate definition of th...
brparts 38879 Binary partitions relation...
brparts2 38880 Binary partitions relation...
brpartspart 38881 Binary partition and the p...
parteq1 38882 Equality theorem for parti...
parteq2 38883 Equality theorem for parti...
parteq12 38884 Equality theorem for parti...
parteq1i 38885 Equality theorem for parti...
parteq1d 38886 Equality theorem for parti...
partsuc2 38887 Property of the partition....
partsuc 38888 Property of the partition....
disjim 38889 The "Divide et Aequivalere...
disjimi 38890 Every disjoint relation ge...
detlem 38891 If a relation is disjoint,...
eldisjim 38892 If the elements of ` A ` a...
eldisjim2 38893 Alternate form of ~ eldisj...
eqvrel0 38894 The null class is an equiv...
det0 38895 The cosets by the null cla...
eqvrelcoss0 38896 The cosets by the null cla...
eqvrelid 38897 The identity relation is a...
eqvrel1cossidres 38898 The cosets by a restricted...
eqvrel1cossinidres 38899 The cosets by an intersect...
eqvrel1cossxrnidres 38900 The cosets by a range Cart...
detid 38901 The cosets by the identity...
eqvrelcossid 38902 The cosets by the identity...
detidres 38903 The cosets by the restrict...
detinidres 38904 The cosets by the intersec...
detxrnidres 38905 The cosets by the range Ca...
disjlem14 38906 Lemma for ~ disjdmqseq , ~...
disjlem17 38907 Lemma for ~ disjdmqseq , ~...
disjlem18 38908 Lemma for ~ disjdmqseq , ~...
disjlem19 38909 Lemma for ~ disjdmqseq , ~...
disjdmqsss 38910 Lemma for ~ disjdmqseq via...
disjdmqscossss 38911 Lemma for ~ disjdmqseq via...
disjdmqs 38912 If a relation is disjoint,...
disjdmqseq 38913 If a relation is disjoint,...
eldisjn0el 38914 Special case of ~ disjdmqs...
partim2 38915 Disjoint relation on its n...
partim 38916 Partition implies equivale...
partimeq 38917 Partition implies that the...
eldisjlem19 38918 Special case of ~ disjlem1...
membpartlem19 38919 Together with ~ disjlem19 ...
petlem 38920 If you can prove that the ...
petlemi 38921 If you can prove disjointn...
pet02 38922 Class ` A ` is a partition...
pet0 38923 Class ` A ` is a partition...
petid2 38924 Class ` A ` is a partition...
petid 38925 A class is a partition by ...
petidres2 38926 Class ` A ` is a partition...
petidres 38927 A class is a partition by ...
petinidres2 38928 Class ` A ` is a partition...
petinidres 38929 A class is a partition by ...
petxrnidres2 38930 Class ` A ` is a partition...
petxrnidres 38931 A class is a partition by ...
eqvreldisj1 38932 The elements of the quotie...
eqvreldisj2 38933 The elements of the quotie...
eqvreldisj3 38934 The elements of the quotie...
eqvreldisj4 38935 Intersection with the conv...
eqvreldisj5 38936 Range Cartesian product wi...
eqvrelqseqdisj2 38937 Implication of ~ eqvreldis...
fences3 38938 Implication of ~ eqvrelqse...
eqvrelqseqdisj3 38939 Implication of ~ eqvreldis...
eqvrelqseqdisj4 38940 Lemma for ~ petincnvepres2...
eqvrelqseqdisj5 38941 Lemma for the Partition-Eq...
mainer 38942 The Main Theorem of Equiva...
partimcomember 38943 Partition with general ` R...
mpet3 38944 Member Partition-Equivalen...
cpet2 38945 The conventional form of t...
cpet 38946 The conventional form of M...
mpet 38947 Member Partition-Equivalen...
mpet2 38948 Member Partition-Equivalen...
mpets2 38949 Member Partition-Equivalen...
mpets 38950 Member Partition-Equivalen...
mainpart 38951 Partition with general ` R...
fences 38952 The Theorem of Fences by E...
fences2 38953 The Theorem of Fences by E...
mainer2 38954 The Main Theorem of Equiva...
mainerim 38955 Every equivalence relation...
petincnvepres2 38956 A partition-equivalence th...
petincnvepres 38957 The shortest form of a par...
pet2 38958 Partition-Equivalence Theo...
pet 38959 Partition-Equivalence Theo...
pets 38960 Partition-Equivalence Theo...
dmqsblocks 38961 If the ~ pet span ` ( R |X...
prtlem60 38962 Lemma for ~ prter3 . (Con...
bicomdd 38963 Commute two sides of a bic...
jca2r 38964 Inference conjoining the c...
jca3 38965 Inference conjoining the c...
prtlem70 38966 Lemma for ~ prter3 : a rea...
ibdr 38967 Reverse of ~ ibd . (Contr...
prtlem100 38968 Lemma for ~ prter3 . (Con...
prtlem5 38969 Lemma for ~ prter1 , ~ prt...
prtlem80 38970 Lemma for ~ prter2 . (Con...
brabsb2 38971 A closed form of ~ brabsb ...
eqbrrdv2 38972 Other version of ~ eqbrrdi...
prtlem9 38973 Lemma for ~ prter3 . (Con...
prtlem10 38974 Lemma for ~ prter3 . (Con...
prtlem11 38975 Lemma for ~ prter2 . (Con...
prtlem12 38976 Lemma for ~ prtex and ~ pr...
prtlem13 38977 Lemma for ~ prter1 , ~ prt...
prtlem16 38978 Lemma for ~ prtex , ~ prte...
prtlem400 38979 Lemma for ~ prter2 and als...
erprt 38982 The quotient set of an equ...
prtlem14 38983 Lemma for ~ prter1 , ~ prt...
prtlem15 38984 Lemma for ~ prter1 and ~ p...
prtlem17 38985 Lemma for ~ prter2 . (Con...
prtlem18 38986 Lemma for ~ prter2 . (Con...
prtlem19 38987 Lemma for ~ prter2 . (Con...
prter1 38988 Every partition generates ...
prtex 38989 The equivalence relation g...
prter2 38990 The quotient set of the eq...
prter3 38991 For every partition there ...
axc5 39002 This theorem repeats ~ sp ...
ax4fromc4 39003 Rederivation of Axiom ~ ax...
ax10fromc7 39004 Rederivation of Axiom ~ ax...
ax6fromc10 39005 Rederivation of Axiom ~ ax...
hba1-o 39006 The setvar ` x ` is not fr...
axc4i-o 39007 Inference version of ~ ax-...
equid1 39008 Proof of ~ equid from our ...
equcomi1 39009 Proof of ~ equcomi from ~ ...
aecom-o 39010 Commutation law for identi...
aecoms-o 39011 A commutation rule for ide...
hbae-o 39012 All variables are effectiv...
dral1-o 39013 Formula-building lemma for...
ax12fromc15 39014 Rederivation of Axiom ~ ax...
ax13fromc9 39015 Derive ~ ax-13 from ~ ax-c...
ax5ALT 39016 Axiom to quantify a variab...
sps-o 39017 Generalization of antecede...
hbequid 39018 Bound-variable hypothesis ...
nfequid-o 39019 Bound-variable hypothesis ...
axc5c7 39020 Proof of a single axiom th...
axc5c7toc5 39021 Rederivation of ~ ax-c5 fr...
axc5c7toc7 39022 Rederivation of ~ ax-c7 fr...
axc711 39023 Proof of a single axiom th...
nfa1-o 39024 ` x ` is not free in ` A. ...
axc711toc7 39025 Rederivation of ~ ax-c7 fr...
axc711to11 39026 Rederivation of ~ ax-11 fr...
axc5c711 39027 Proof of a single axiom th...
axc5c711toc5 39028 Rederivation of ~ ax-c5 fr...
axc5c711toc7 39029 Rederivation of ~ ax-c7 fr...
axc5c711to11 39030 Rederivation of ~ ax-11 fr...
equidqe 39031 ~ equid with existential q...
axc5sp1 39032 A special case of ~ ax-c5 ...
equidq 39033 ~ equid with universal qua...
equid1ALT 39034 Alternate proof of ~ equid...
axc11nfromc11 39035 Rederivation of ~ ax-c11n ...
naecoms-o 39036 A commutation rule for dis...
hbnae-o 39037 All variables are effectiv...
dvelimf-o 39038 Proof of ~ dvelimh that us...
dral2-o 39039 Formula-building lemma for...
aev-o 39040 A "distinctor elimination"...
ax5eq 39041 Theorem to add distinct qu...
dveeq2-o 39042 Quantifier introduction wh...
axc16g-o 39043 A generalization of Axiom ...
dveeq1-o 39044 Quantifier introduction wh...
dveeq1-o16 39045 Version of ~ dveeq1 using ...
ax5el 39046 Theorem to add distinct qu...
axc11n-16 39047 This theorem shows that, g...
dveel2ALT 39048 Alternate proof of ~ dveel...
ax12f 39049 Basis step for constructin...
ax12eq 39050 Basis step for constructin...
ax12el 39051 Basis step for constructin...
ax12indn 39052 Induction step for constru...
ax12indi 39053 Induction step for constru...
ax12indalem 39054 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 39055 Alternate proof of ~ ax12i...
ax12inda2 39056 Induction step for constru...
ax12inda 39057 Induction step for constru...
ax12v2-o 39058 Rederivation of ~ ax-c15 f...
ax12a2-o 39059 Derive ~ ax-c15 from a hyp...
axc11-o 39060 Show that ~ ax-c11 can be ...
fsumshftd 39061 Index shift of a finite su...
riotaclbgBAD 39063 Closure of restricted iota...
riotaclbBAD 39064 Closure of restricted iota...
riotasvd 39065 Deduction version of ~ rio...
riotasv2d 39066 Value of description binde...
riotasv2s 39067 The value of description b...
riotasv 39068 Value of description binde...
riotasv3d 39069 A property ` ch ` holding ...
elimhyps 39070 A version of ~ elimhyp usi...
dedths 39071 A version of weak deductio...
renegclALT 39072 Closure law for negative o...
elimhyps2 39073 Generalization of ~ elimhy...
dedths2 39074 Generalization of ~ dedths...
nfcxfrdf 39075 A utility lemma to transfe...
nfded 39076 A deduction theorem that c...
nfded2 39077 A deduction theorem that c...
nfunidALT2 39078 Deduction version of ~ nfu...
nfunidALT 39079 Deduction version of ~ nfu...
nfopdALT 39080 Deduction version of bound...
cnaddcom 39081 Recover the commutative la...
toycom 39082 Show the commutative law f...
lshpset 39087 The set of all hyperplanes...
islshp 39088 The predicate "is a hyperp...
islshpsm 39089 Hyperplane properties expr...
lshplss 39090 A hyperplane is a subspace...
lshpne 39091 A hyperplane is not equal ...
lshpnel 39092 A hyperplane's generating ...
lshpnelb 39093 The subspace sum of a hype...
lshpnel2N 39094 Condition that determines ...
lshpne0 39095 The member of the span in ...
lshpdisj 39096 A hyperplane and the span ...
lshpcmp 39097 If two hyperplanes are com...
lshpinN 39098 The intersection of two di...
lsatset 39099 The set of all 1-dim subsp...
islsat 39100 The predicate "is a 1-dim ...
lsatlspsn2 39101 The span of a nonzero sing...
lsatlspsn 39102 The span of a nonzero sing...
islsati 39103 A 1-dim subspace (atom) (o...
lsateln0 39104 A 1-dim subspace (atom) (o...
lsatlss 39105 The set of 1-dim subspaces...
lsatlssel 39106 An atom is a subspace. (C...
lsatssv 39107 An atom is a set of vector...
lsatn0 39108 A 1-dim subspace (atom) of...
lsatspn0 39109 The span of a vector is an...
lsator0sp 39110 The span of a vector is ei...
lsatssn0 39111 A subspace (or any class) ...
lsatcmp 39112 If two atoms are comparabl...
lsatcmp2 39113 If an atom is included in ...
lsatel 39114 A nonzero vector in an ato...
lsatelbN 39115 A nonzero vector in an ato...
lsat2el 39116 Two atoms sharing a nonzer...
lsmsat 39117 Convert comparison of atom...
lsatfixedN 39118 Show equality with the spa...
lsmsatcv 39119 Subspace sum has the cover...
lssatomic 39120 The lattice of subspaces i...
lssats 39121 The lattice of subspaces i...
lpssat 39122 Two subspaces in a proper ...
lrelat 39123 Subspaces are relatively a...
lssatle 39124 The ordering of two subspa...
lssat 39125 Two subspaces in a proper ...
islshpat 39126 Hyperplane properties expr...
lcvfbr 39129 The covers relation for a ...
lcvbr 39130 The covers relation for a ...
lcvbr2 39131 The covers relation for a ...
lcvbr3 39132 The covers relation for a ...
lcvpss 39133 The covers relation implie...
lcvnbtwn 39134 The covers relation implie...
lcvntr 39135 The covers relation is not...
lcvnbtwn2 39136 The covers relation implie...
lcvnbtwn3 39137 The covers relation implie...
lsmcv2 39138 Subspace sum has the cover...
lcvat 39139 If a subspace covers anoth...
lsatcv0 39140 An atom covers the zero su...
lsatcveq0 39141 A subspace covered by an a...
lsat0cv 39142 A subspace is an atom iff ...
lcvexchlem1 39143 Lemma for ~ lcvexch . (Co...
lcvexchlem2 39144 Lemma for ~ lcvexch . (Co...
lcvexchlem3 39145 Lemma for ~ lcvexch . (Co...
lcvexchlem4 39146 Lemma for ~ lcvexch . (Co...
lcvexchlem5 39147 Lemma for ~ lcvexch . (Co...
lcvexch 39148 Subspaces satisfy the exch...
lcvp 39149 Covering property of Defin...
lcv1 39150 Covering property of a sub...
lcv2 39151 Covering property of a sub...
lsatexch 39152 The atom exchange property...
lsatnle 39153 The meet of a subspace and...
lsatnem0 39154 The meet of distinct atoms...
lsatexch1 39155 The atom exch1ange propert...
lsatcv0eq 39156 If the sum of two atoms co...
lsatcv1 39157 Two atoms covering the zer...
lsatcvatlem 39158 Lemma for ~ lsatcvat . (C...
lsatcvat 39159 A nonzero subspace less th...
lsatcvat2 39160 A subspace covered by the ...
lsatcvat3 39161 A condition implying that ...
islshpcv 39162 Hyperplane properties expr...
l1cvpat 39163 A subspace covered by the ...
l1cvat 39164 Create an atom under an el...
lshpat 39165 Create an atom under a hyp...
lflset 39168 The set of linear function...
islfl 39169 The predicate "is a linear...
lfli 39170 Property of a linear funct...
islfld 39171 Properties that determine ...
lflf 39172 A linear functional is a f...
lflcl 39173 A linear functional value ...
lfl0 39174 A linear functional is zer...
lfladd 39175 Property of a linear funct...
lflsub 39176 Property of a linear funct...
lflmul 39177 Property of a linear funct...
lfl0f 39178 The zero function is a fun...
lfl1 39179 A nonzero functional has a...
lfladdcl 39180 Closure of addition of two...
lfladdcom 39181 Commutativity of functiona...
lfladdass 39182 Associativity of functiona...
lfladd0l 39183 Functional addition with t...
lflnegcl 39184 Closure of the negative of...
lflnegl 39185 A functional plus its nega...
lflvscl 39186 Closure of a scalar produc...
lflvsdi1 39187 Distributive law for (righ...
lflvsdi2 39188 Reverse distributive law f...
lflvsdi2a 39189 Reverse distributive law f...
lflvsass 39190 Associative law for (right...
lfl0sc 39191 The (right vector space) s...
lflsc0N 39192 The scalar product with th...
lfl1sc 39193 The (right vector space) s...
lkrfval 39196 The kernel of a functional...
lkrval 39197 Value of the kernel of a f...
ellkr 39198 Membership in the kernel o...
lkrval2 39199 Value of the kernel of a f...
ellkr2 39200 Membership in the kernel o...
lkrcl 39201 A member of the kernel of ...
lkrf0 39202 The value of a functional ...
lkr0f 39203 The kernel of the zero fun...
lkrlss 39204 The kernel of a linear fun...
lkrssv 39205 The kernel of a linear fun...
lkrsc 39206 The kernel of a nonzero sc...
lkrscss 39207 The kernel of a scalar pro...
eqlkr 39208 Two functionals with the s...
eqlkr2 39209 Two functionals with the s...
eqlkr3 39210 Two functionals with the s...
lkrlsp 39211 The subspace sum of a kern...
lkrlsp2 39212 The subspace sum of a kern...
lkrlsp3 39213 The subspace sum of a kern...
lkrshp 39214 The kernel of a nonzero fu...
lkrshp3 39215 The kernels of nonzero fun...
lkrshpor 39216 The kernel of a functional...
lkrshp4 39217 A kernel is a hyperplane i...
lshpsmreu 39218 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 39219 Lemma for ~ lshpkrex . Th...
lshpkrlem2 39220 Lemma for ~ lshpkrex . Th...
lshpkrlem3 39221 Lemma for ~ lshpkrex . De...
lshpkrlem4 39222 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 39223 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 39224 Lemma for ~ lshpkrex . Sh...
lshpkrcl 39225 The set ` G ` defined by h...
lshpkr 39226 The kernel of functional `...
lshpkrex 39227 There exists a functional ...
lshpset2N 39228 The set of all hyperplanes...
islshpkrN 39229 The predicate "is a hyperp...
lfl1dim 39230 Equivalent expressions for...
lfl1dim2N 39231 Equivalent expressions for...
ldualset 39234 Define the (left) dual of ...
ldualvbase 39235 The vectors of a dual spac...
ldualelvbase 39236 Utility theorem for conver...
ldualfvadd 39237 Vector addition in the dua...
ldualvadd 39238 Vector addition in the dua...
ldualvaddcl 39239 The value of vector additi...
ldualvaddval 39240 The value of the value of ...
ldualsca 39241 The ring of scalars of the...
ldualsbase 39242 Base set of scalar ring fo...
ldualsaddN 39243 Scalar addition for the du...
ldualsmul 39244 Scalar multiplication for ...
ldualfvs 39245 Scalar product operation f...
ldualvs 39246 Scalar product operation v...
ldualvsval 39247 Value of scalar product op...
ldualvscl 39248 The scalar product operati...
ldualvaddcom 39249 Commutative law for vector...
ldualvsass 39250 Associative law for scalar...
ldualvsass2 39251 Associative law for scalar...
ldualvsdi1 39252 Distributive law for scala...
ldualvsdi2 39253 Reverse distributive law f...
ldualgrplem 39254 Lemma for ~ ldualgrp . (C...
ldualgrp 39255 The dual of a vector space...
ldual0 39256 The zero scalar of the dua...
ldual1 39257 The unit scalar of the dua...
ldualneg 39258 The negative of a scalar o...
ldual0v 39259 The zero vector of the dua...
ldual0vcl 39260 The dual zero vector is a ...
lduallmodlem 39261 Lemma for ~ lduallmod . (...
lduallmod 39262 The dual of a left module ...
lduallvec 39263 The dual of a left vector ...
ldualvsub 39264 The value of vector subtra...
ldualvsubcl 39265 Closure of vector subtract...
ldualvsubval 39266 The value of the value of ...
ldualssvscl 39267 Closure of scalar product ...
ldualssvsubcl 39268 Closure of vector subtract...
ldual0vs 39269 Scalar zero times a functi...
lkr0f2 39270 The kernel of the zero fun...
lduallkr3 39271 The kernels of nonzero fun...
lkrpssN 39272 Proper subset relation bet...
lkrin 39273 Intersection of the kernel...
eqlkr4 39274 Two functionals with the s...
ldual1dim 39275 Equivalent expressions for...
ldualkrsc 39276 The kernel of a nonzero sc...
lkrss 39277 The kernel of a scalar pro...
lkrss2N 39278 Two functionals with kerne...
lkreqN 39279 Proportional functionals h...
lkrlspeqN 39280 Condition for colinear fun...
isopos 39289 The predicate "is an ortho...
opposet 39290 Every orthoposet is a pose...
oposlem 39291 Lemma for orthoposet prope...
op01dm 39292 Conditions necessary for z...
op0cl 39293 An orthoposet has a zero e...
op1cl 39294 An orthoposet has a unity ...
op0le 39295 Orthoposet zero is less th...
ople0 39296 An element less than or eq...
opnlen0 39297 An element not less than a...
lub0N 39298 The least upper bound of t...
opltn0 39299 A lattice element greater ...
ople1 39300 Any element is less than t...
op1le 39301 If the orthoposet unity is...
glb0N 39302 The greatest lower bound o...
opoccl 39303 Closure of orthocomplement...
opococ 39304 Double negative law for or...
opcon3b 39305 Contraposition law for ort...
opcon2b 39306 Orthocomplement contraposi...
opcon1b 39307 Orthocomplement contraposi...
oplecon3 39308 Contraposition law for ort...
oplecon3b 39309 Contraposition law for ort...
oplecon1b 39310 Contraposition law for str...
opoc1 39311 Orthocomplement of orthopo...
opoc0 39312 Orthocomplement of orthopo...
opltcon3b 39313 Contraposition law for str...
opltcon1b 39314 Contraposition law for str...
opltcon2b 39315 Contraposition law for str...
opexmid 39316 Law of excluded middle for...
opnoncon 39317 Law of contradiction for o...
riotaocN 39318 The orthocomplement of the...
cmtfvalN 39319 Value of commutes relation...
cmtvalN 39320 Equivalence for commutes r...
isolat 39321 The predicate "is an ortho...
ollat 39322 An ortholattice is a latti...
olop 39323 An ortholattice is an orth...
olposN 39324 An ortholattice is a poset...
isolatiN 39325 Properties that determine ...
oldmm1 39326 De Morgan's law for meet i...
oldmm2 39327 De Morgan's law for meet i...
oldmm3N 39328 De Morgan's law for meet i...
oldmm4 39329 De Morgan's law for meet i...
oldmj1 39330 De Morgan's law for join i...
oldmj2 39331 De Morgan's law for join i...
oldmj3 39332 De Morgan's law for join i...
oldmj4 39333 De Morgan's law for join i...
olj01 39334 An ortholattice element jo...
olj02 39335 An ortholattice element jo...
olm11 39336 The meet of an ortholattic...
olm12 39337 The meet of an ortholattic...
latmassOLD 39338 Ortholattice meet is assoc...
latm12 39339 A rearrangement of lattice...
latm32 39340 A rearrangement of lattice...
latmrot 39341 Rotate lattice meet of 3 c...
latm4 39342 Rearrangement of lattice m...
latmmdiN 39343 Lattice meet distributes o...
latmmdir 39344 Lattice meet distributes o...
olm01 39345 Meet with lattice zero is ...
olm02 39346 Meet with lattice zero is ...
isoml 39347 The predicate "is an ortho...
isomliN 39348 Properties that determine ...
omlol 39349 An orthomodular lattice is...
omlop 39350 An orthomodular lattice is...
omllat 39351 An orthomodular lattice is...
omllaw 39352 The orthomodular law. (Co...
omllaw2N 39353 Variation of orthomodular ...
omllaw3 39354 Orthomodular law equivalen...
omllaw4 39355 Orthomodular law equivalen...
omllaw5N 39356 The orthomodular law. Rem...
cmtcomlemN 39357 Lemma for ~ cmtcomN . ( ~...
cmtcomN 39358 Commutation is symmetric. ...
cmt2N 39359 Commutation with orthocomp...
cmt3N 39360 Commutation with orthocomp...
cmt4N 39361 Commutation with orthocomp...
cmtbr2N 39362 Alternate definition of th...
cmtbr3N 39363 Alternate definition for t...
cmtbr4N 39364 Alternate definition for t...
lecmtN 39365 Ordered elements commute. ...
cmtidN 39366 Any element commutes with ...
omlfh1N 39367 Foulis-Holland Theorem, pa...
omlfh3N 39368 Foulis-Holland Theorem, pa...
omlmod1i2N 39369 Analogue of modular law ~ ...
omlspjN 39370 Contraction of a Sasaki pr...
cvrfval 39377 Value of covers relation "...
cvrval 39378 Binary relation expressing...
cvrlt 39379 The covers relation implie...
cvrnbtwn 39380 There is no element betwee...
ncvr1 39381 No element covers the latt...
cvrletrN 39382 Property of an element abo...
cvrval2 39383 Binary relation expressing...
cvrnbtwn2 39384 The covers relation implie...
cvrnbtwn3 39385 The covers relation implie...
cvrcon3b 39386 Contraposition law for the...
cvrle 39387 The covers relation implie...
cvrnbtwn4 39388 The covers relation implie...
cvrnle 39389 The covers relation implie...
cvrne 39390 The covers relation implie...
cvrnrefN 39391 The covers relation is not...
cvrcmp 39392 If two lattice elements th...
cvrcmp2 39393 If two lattice elements co...
pats 39394 The set of atoms in a pose...
isat 39395 The predicate "is an atom"...
isat2 39396 The predicate "is an atom"...
atcvr0 39397 An atom covers zero. ( ~ ...
atbase 39398 An atom is a member of the...
atssbase 39399 The set of atoms is a subs...
0ltat 39400 An atom is greater than ze...
leatb 39401 A poset element less than ...
leat 39402 A poset element less than ...
leat2 39403 A nonzero poset element le...
leat3 39404 A poset element less than ...
meetat 39405 The meet of any element wi...
meetat2 39406 The meet of any element wi...
isatl 39408 The predicate "is an atomi...
atllat 39409 An atomic lattice is a lat...
atlpos 39410 An atomic lattice is a pos...
atl0dm 39411 Condition necessary for ze...
atl0cl 39412 An atomic lattice has a ze...
atl0le 39413 Orthoposet zero is less th...
atlle0 39414 An element less than or eq...
atlltn0 39415 A lattice element greater ...
isat3 39416 The predicate "is an atom"...
atn0 39417 An atom is not zero. ( ~ ...
atnle0 39418 An atom is not less than o...
atlen0 39419 A lattice element is nonze...
atcmp 39420 If two atoms are comparabl...
atncmp 39421 Frequently-used variation ...
atnlt 39422 Two atoms cannot satisfy t...
atcvreq0 39423 An element covered by an a...
atncvrN 39424 Two atoms cannot satisfy t...
atlex 39425 Every nonzero element of a...
atnle 39426 Two ways of expressing "an...
atnem0 39427 The meet of distinct atoms...
atlatmstc 39428 An atomic, complete, ortho...
atlatle 39429 The ordering of two Hilber...
atlrelat1 39430 An atomistic lattice with ...
iscvlat 39432 The predicate "is an atomi...
iscvlat2N 39433 The predicate "is an atomi...
cvlatl 39434 An atomic lattice with the...
cvllat 39435 An atomic lattice with the...
cvlposN 39436 An atomic lattice with the...
cvlexch1 39437 An atomic covering lattice...
cvlexch2 39438 An atomic covering lattice...
cvlexchb1 39439 An atomic covering lattice...
cvlexchb2 39440 An atomic covering lattice...
cvlexch3 39441 An atomic covering lattice...
cvlexch4N 39442 An atomic covering lattice...
cvlatexchb1 39443 A version of ~ cvlexchb1 f...
cvlatexchb2 39444 A version of ~ cvlexchb2 f...
cvlatexch1 39445 Atom exchange property. (...
cvlatexch2 39446 Atom exchange property. (...
cvlatexch3 39447 Atom exchange property. (...
cvlcvr1 39448 The covering property. Pr...
cvlcvrp 39449 A Hilbert lattice satisfie...
cvlatcvr1 39450 An atom is covered by its ...
cvlatcvr2 39451 An atom is covered by its ...
cvlsupr2 39452 Two equivalent ways of exp...
cvlsupr3 39453 Two equivalent ways of exp...
cvlsupr4 39454 Consequence of superpositi...
cvlsupr5 39455 Consequence of superpositi...
cvlsupr6 39456 Consequence of superpositi...
cvlsupr7 39457 Consequence of superpositi...
cvlsupr8 39458 Consequence of superpositi...
ishlat1 39461 The predicate "is a Hilber...
ishlat2 39462 The predicate "is a Hilber...
ishlat3N 39463 The predicate "is a Hilber...
ishlatiN 39464 Properties that determine ...
hlomcmcv 39465 A Hilbert lattice is ortho...
hloml 39466 A Hilbert lattice is ortho...
hlclat 39467 A Hilbert lattice is compl...
hlcvl 39468 A Hilbert lattice is an at...
hlatl 39469 A Hilbert lattice is atomi...
hlol 39470 A Hilbert lattice is an or...
hlop 39471 A Hilbert lattice is an or...
hllat 39472 A Hilbert lattice is a lat...
hllatd 39473 Deduction form of ~ hllat ...
hlomcmat 39474 A Hilbert lattice is ortho...
hlpos 39475 A Hilbert lattice is a pos...
hlatjcl 39476 Closure of join operation....
hlatjcom 39477 Commutatitivity of join op...
hlatjidm 39478 Idempotence of join operat...
hlatjass 39479 Lattice join is associativ...
hlatj12 39480 Swap 1st and 2nd members o...
hlatj32 39481 Swap 2nd and 3rd members o...
hlatjrot 39482 Rotate lattice join of 3 c...
hlatj4 39483 Rearrangement of lattice j...
hlatlej1 39484 A join's first argument is...
hlatlej2 39485 A join's second argument i...
glbconN 39486 De Morgan's law for GLB an...
glbconxN 39487 De Morgan's law for GLB an...
atnlej1 39488 If an atom is not less tha...
atnlej2 39489 If an atom is not less tha...
hlsuprexch 39490 A Hilbert lattice has the ...
hlexch1 39491 A Hilbert lattice has the ...
hlexch2 39492 A Hilbert lattice has the ...
hlexchb1 39493 A Hilbert lattice has the ...
hlexchb2 39494 A Hilbert lattice has the ...
hlsupr 39495 A Hilbert lattice has the ...
hlsupr2 39496 A Hilbert lattice has the ...
hlhgt4 39497 A Hilbert lattice has a he...
hlhgt2 39498 A Hilbert lattice has a he...
hl0lt1N 39499 Lattice 0 is less than lat...
hlexch3 39500 A Hilbert lattice has the ...
hlexch4N 39501 A Hilbert lattice has the ...
hlatexchb1 39502 A version of ~ hlexchb1 fo...
hlatexchb2 39503 A version of ~ hlexchb2 fo...
hlatexch1 39504 Atom exchange property. (...
hlatexch2 39505 Atom exchange property. (...
hlatmstcOLDN 39506 An atomic, complete, ortho...
hlatle 39507 The ordering of two Hilber...
hlateq 39508 The equality of two Hilber...
hlrelat1 39509 An atomistic lattice with ...
hlrelat5N 39510 An atomistic lattice with ...
hlrelat 39511 A Hilbert lattice is relat...
hlrelat2 39512 A consequence of relative ...
exatleN 39513 A condition for an atom to...
hl2at 39514 A Hilbert lattice has at l...
atex 39515 At least one atom exists. ...
intnatN 39516 If the intersection with a...
2llnne2N 39517 Condition implying that tw...
2llnneN 39518 Condition implying that tw...
cvr1 39519 A Hilbert lattice has the ...
cvr2N 39520 Less-than and covers equiv...
hlrelat3 39521 The Hilbert lattice is rel...
cvrval3 39522 Binary relation expressing...
cvrval4N 39523 Binary relation expressing...
cvrval5 39524 Binary relation expressing...
cvrp 39525 A Hilbert lattice satisfie...
atcvr1 39526 An atom is covered by its ...
atcvr2 39527 An atom is covered by its ...
cvrexchlem 39528 Lemma for ~ cvrexch . ( ~...
cvrexch 39529 A Hilbert lattice satisfie...
cvratlem 39530 Lemma for ~ cvrat . ( ~ a...
cvrat 39531 A nonzero Hilbert lattice ...
ltltncvr 39532 A chained strong ordering ...
ltcvrntr 39533 Non-transitive condition f...
cvrntr 39534 The covers relation is not...
atcvr0eq 39535 The covers relation is not...
lnnat 39536 A line (the join of two di...
atcvrj0 39537 Two atoms covering the zer...
cvrat2 39538 A Hilbert lattice element ...
atcvrneN 39539 Inequality derived from at...
atcvrj1 39540 Condition for an atom to b...
atcvrj2b 39541 Condition for an atom to b...
atcvrj2 39542 Condition for an atom to b...
atleneN 39543 Inequality derived from at...
atltcvr 39544 An equivalence of less-tha...
atle 39545 Any nonzero element has an...
atlt 39546 Two atoms are unequal iff ...
atlelt 39547 Transfer less-than relatio...
2atlt 39548 Given an atom less than an...
atexchcvrN 39549 Atom exchange property. V...
atexchltN 39550 Atom exchange property. V...
cvrat3 39551 A condition implying that ...
cvrat4 39552 A condition implying exist...
cvrat42 39553 Commuted version of ~ cvra...
2atjm 39554 The meet of a line (expres...
atbtwn 39555 Property of a 3rd atom ` R...
atbtwnexOLDN 39556 There exists a 3rd atom ` ...
atbtwnex 39557 Given atoms ` P ` in ` X `...
3noncolr2 39558 Two ways to express 3 non-...
3noncolr1N 39559 Two ways to express 3 non-...
hlatcon3 39560 Atom exchange combined wit...
hlatcon2 39561 Atom exchange combined wit...
4noncolr3 39562 A way to express 4 non-col...
4noncolr2 39563 A way to express 4 non-col...
4noncolr1 39564 A way to express 4 non-col...
athgt 39565 A Hilbert lattice, whose h...
3dim0 39566 There exists a 3-dimension...
3dimlem1 39567 Lemma for ~ 3dim1 . (Cont...
3dimlem2 39568 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 39569 Lemma for ~ 3dim3 . (Cont...
3dimlem3 39570 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 39571 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 39572 Lemma for ~ 3dim3 . (Cont...
3dimlem4 39573 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 39574 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 39575 Lemma for ~ 3dim1 . (Cont...
3dim1 39576 Construct a 3-dimensional ...
3dim2 39577 Construct 2 new layers on ...
3dim3 39578 Construct a new layer on t...
2dim 39579 Generate a height-3 elemen...
1dimN 39580 An atom is covered by a he...
1cvrco 39581 The orthocomplement of an ...
1cvratex 39582 There exists an atom less ...
1cvratlt 39583 An atom less than or equal...
1cvrjat 39584 An element covered by the ...
1cvrat 39585 Create an atom under an el...
ps-1 39586 The join of two atoms ` R ...
ps-2 39587 Lattice analogue for the p...
2atjlej 39588 Two atoms are different if...
hlatexch3N 39589 Rearrange join of atoms in...
hlatexch4 39590 Exchange 2 atoms. (Contri...
ps-2b 39591 Variation of projective ge...
3atlem1 39592 Lemma for ~ 3at . (Contri...
3atlem2 39593 Lemma for ~ 3at . (Contri...
3atlem3 39594 Lemma for ~ 3at . (Contri...
3atlem4 39595 Lemma for ~ 3at . (Contri...
3atlem5 39596 Lemma for ~ 3at . (Contri...
3atlem6 39597 Lemma for ~ 3at . (Contri...
3atlem7 39598 Lemma for ~ 3at . (Contri...
3at 39599 Any three non-colinear ato...
llnset 39614 The set of lattice lines i...
islln 39615 The predicate "is a lattic...
islln4 39616 The predicate "is a lattic...
llni 39617 Condition implying a latti...
llnbase 39618 A lattice line is a lattic...
islln3 39619 The predicate "is a lattic...
islln2 39620 The predicate "is a lattic...
llni2 39621 The join of two different ...
llnnleat 39622 An atom cannot majorize a ...
llnneat 39623 A lattice line is not an a...
2atneat 39624 The join of two distinct a...
llnn0 39625 A lattice line is nonzero....
islln2a 39626 The predicate "is a lattic...
llnle 39627 Any element greater than 0...
atcvrlln2 39628 An atom under a line is co...
atcvrlln 39629 An element covering an ato...
llnexatN 39630 Given an atom on a line, t...
llncmp 39631 If two lattice lines are c...
llnnlt 39632 Two lattice lines cannot s...
2llnmat 39633 Two intersecting lines int...
2at0mat0 39634 Special case of ~ 2atmat0 ...
2atmat0 39635 The meet of two unequal li...
2atm 39636 An atom majorized by two d...
ps-2c 39637 Variation of projective ge...
lplnset 39638 The set of lattice planes ...
islpln 39639 The predicate "is a lattic...
islpln4 39640 The predicate "is a lattic...
lplni 39641 Condition implying a latti...
islpln3 39642 The predicate "is a lattic...
lplnbase 39643 A lattice plane is a latti...
islpln5 39644 The predicate "is a lattic...
islpln2 39645 The predicate "is a lattic...
lplni2 39646 The join of 3 different at...
lvolex3N 39647 There is an atom outside o...
llnmlplnN 39648 The intersection of a line...
lplnle 39649 Any element greater than 0...
lplnnle2at 39650 A lattice line (or atom) c...
lplnnleat 39651 A lattice plane cannot maj...
lplnnlelln 39652 A lattice plane is not les...
2atnelpln 39653 The join of two atoms is n...
lplnneat 39654 No lattice plane is an ato...
lplnnelln 39655 No lattice plane is a latt...
lplnn0N 39656 A lattice plane is nonzero...
islpln2a 39657 The predicate "is a lattic...
islpln2ah 39658 The predicate "is a lattic...
lplnriaN 39659 Property of a lattice plan...
lplnribN 39660 Property of a lattice plan...
lplnric 39661 Property of a lattice plan...
lplnri1 39662 Property of a lattice plan...
lplnri2N 39663 Property of a lattice plan...
lplnri3N 39664 Property of a lattice plan...
lplnllnneN 39665 Two lattice lines defined ...
llncvrlpln2 39666 A lattice line under a lat...
llncvrlpln 39667 An element covering a latt...
2lplnmN 39668 If the join of two lattice...
2llnmj 39669 The meet of two lattice li...
2atmat 39670 The meet of two intersecti...
lplncmp 39671 If two lattice planes are ...
lplnexatN 39672 Given a lattice line on a ...
lplnexllnN 39673 Given an atom on a lattice...
lplnnlt 39674 Two lattice planes cannot ...
2llnjaN 39675 The join of two different ...
2llnjN 39676 The join of two different ...
2llnm2N 39677 The meet of two different ...
2llnm3N 39678 Two lattice lines in a lat...
2llnm4 39679 Two lattice lines that maj...
2llnmeqat 39680 An atom equals the interse...
lvolset 39681 The set of 3-dim lattice v...
islvol 39682 The predicate "is a 3-dim ...
islvol4 39683 The predicate "is a 3-dim ...
lvoli 39684 Condition implying a 3-dim...
islvol3 39685 The predicate "is a 3-dim ...
lvoli3 39686 Condition implying a 3-dim...
lvolbase 39687 A 3-dim lattice volume is ...
islvol5 39688 The predicate "is a 3-dim ...
islvol2 39689 The predicate "is a 3-dim ...
lvoli2 39690 The join of 4 different at...
lvolnle3at 39691 A lattice plane (or lattic...
lvolnleat 39692 An atom cannot majorize a ...
lvolnlelln 39693 A lattice line cannot majo...
lvolnlelpln 39694 A lattice plane cannot maj...
3atnelvolN 39695 The join of 3 atoms is not...
2atnelvolN 39696 The join of two atoms is n...
lvolneatN 39697 No lattice volume is an at...
lvolnelln 39698 No lattice volume is a lat...
lvolnelpln 39699 No lattice volume is a lat...
lvoln0N 39700 A lattice volume is nonzer...
islvol2aN 39701 The predicate "is a lattic...
4atlem0a 39702 Lemma for ~ 4at . (Contri...
4atlem0ae 39703 Lemma for ~ 4at . (Contri...
4atlem0be 39704 Lemma for ~ 4at . (Contri...
4atlem3 39705 Lemma for ~ 4at . Break i...
4atlem3a 39706 Lemma for ~ 4at . Break i...
4atlem3b 39707 Lemma for ~ 4at . Break i...
4atlem4a 39708 Lemma for ~ 4at . Frequen...
4atlem4b 39709 Lemma for ~ 4at . Frequen...
4atlem4c 39710 Lemma for ~ 4at . Frequen...
4atlem4d 39711 Lemma for ~ 4at . Frequen...
4atlem9 39712 Lemma for ~ 4at . Substit...
4atlem10a 39713 Lemma for ~ 4at . Substit...
4atlem10b 39714 Lemma for ~ 4at . Substit...
4atlem10 39715 Lemma for ~ 4at . Combine...
4atlem11a 39716 Lemma for ~ 4at . Substit...
4atlem11b 39717 Lemma for ~ 4at . Substit...
4atlem11 39718 Lemma for ~ 4at . Combine...
4atlem12a 39719 Lemma for ~ 4at . Substit...
4atlem12b 39720 Lemma for ~ 4at . Substit...
4atlem12 39721 Lemma for ~ 4at . Combine...
4at 39722 Four atoms determine a lat...
4at2 39723 Four atoms determine a lat...
lplncvrlvol2 39724 A lattice line under a lat...
lplncvrlvol 39725 An element covering a latt...
lvolcmp 39726 If two lattice planes are ...
lvolnltN 39727 Two lattice volumes cannot...
2lplnja 39728 The join of two different ...
2lplnj 39729 The join of two different ...
2lplnm2N 39730 The meet of two different ...
2lplnmj 39731 The meet of two lattice pl...
dalemkehl 39732 Lemma for ~ dath . Freque...
dalemkelat 39733 Lemma for ~ dath . Freque...
dalemkeop 39734 Lemma for ~ dath . Freque...
dalempea 39735 Lemma for ~ dath . Freque...
dalemqea 39736 Lemma for ~ dath . Freque...
dalemrea 39737 Lemma for ~ dath . Freque...
dalemsea 39738 Lemma for ~ dath . Freque...
dalemtea 39739 Lemma for ~ dath . Freque...
dalemuea 39740 Lemma for ~ dath . Freque...
dalemyeo 39741 Lemma for ~ dath . Freque...
dalemzeo 39742 Lemma for ~ dath . Freque...
dalemclpjs 39743 Lemma for ~ dath . Freque...
dalemclqjt 39744 Lemma for ~ dath . Freque...
dalemclrju 39745 Lemma for ~ dath . Freque...
dalem-clpjq 39746 Lemma for ~ dath . Freque...
dalemceb 39747 Lemma for ~ dath . Freque...
dalempeb 39748 Lemma for ~ dath . Freque...
dalemqeb 39749 Lemma for ~ dath . Freque...
dalemreb 39750 Lemma for ~ dath . Freque...
dalemseb 39751 Lemma for ~ dath . Freque...
dalemteb 39752 Lemma for ~ dath . Freque...
dalemueb 39753 Lemma for ~ dath . Freque...
dalempjqeb 39754 Lemma for ~ dath . Freque...
dalemsjteb 39755 Lemma for ~ dath . Freque...
dalemtjueb 39756 Lemma for ~ dath . Freque...
dalemqrprot 39757 Lemma for ~ dath . Freque...
dalemyeb 39758 Lemma for ~ dath . Freque...
dalemcnes 39759 Lemma for ~ dath . Freque...
dalempnes 39760 Lemma for ~ dath . Freque...
dalemqnet 39761 Lemma for ~ dath . Freque...
dalempjsen 39762 Lemma for ~ dath . Freque...
dalemply 39763 Lemma for ~ dath . Freque...
dalemsly 39764 Lemma for ~ dath . Freque...
dalemswapyz 39765 Lemma for ~ dath . Swap t...
dalemrot 39766 Lemma for ~ dath . Rotate...
dalemrotyz 39767 Lemma for ~ dath . Rotate...
dalem1 39768 Lemma for ~ dath . Show t...
dalemcea 39769 Lemma for ~ dath . Freque...
dalem2 39770 Lemma for ~ dath . Show t...
dalemdea 39771 Lemma for ~ dath . Freque...
dalemeea 39772 Lemma for ~ dath . Freque...
dalem3 39773 Lemma for ~ dalemdnee . (...
dalem4 39774 Lemma for ~ dalemdnee . (...
dalemdnee 39775 Lemma for ~ dath . Axis o...
dalem5 39776 Lemma for ~ dath . Atom `...
dalem6 39777 Lemma for ~ dath . Analog...
dalem7 39778 Lemma for ~ dath . Analog...
dalem8 39779 Lemma for ~ dath . Plane ...
dalem-cly 39780 Lemma for ~ dalem9 . Cent...
dalem9 39781 Lemma for ~ dath . Since ...
dalem10 39782 Lemma for ~ dath . Atom `...
dalem11 39783 Lemma for ~ dath . Analog...
dalem12 39784 Lemma for ~ dath . Analog...
dalem13 39785 Lemma for ~ dalem14 . (Co...
dalem14 39786 Lemma for ~ dath . Planes...
dalem15 39787 Lemma for ~ dath . The ax...
dalem16 39788 Lemma for ~ dath . The at...
dalem17 39789 Lemma for ~ dath . When p...
dalem18 39790 Lemma for ~ dath . Show t...
dalem19 39791 Lemma for ~ dath . Show t...
dalemccea 39792 Lemma for ~ dath . Freque...
dalemddea 39793 Lemma for ~ dath . Freque...
dalem-ccly 39794 Lemma for ~ dath . Freque...
dalem-ddly 39795 Lemma for ~ dath . Freque...
dalemccnedd 39796 Lemma for ~ dath . Freque...
dalemclccjdd 39797 Lemma for ~ dath . Freque...
dalemcceb 39798 Lemma for ~ dath . Freque...
dalemswapyzps 39799 Lemma for ~ dath . Swap t...
dalemrotps 39800 Lemma for ~ dath . Rotate...
dalemcjden 39801 Lemma for ~ dath . Show t...
dalem20 39802 Lemma for ~ dath . Show t...
dalem21 39803 Lemma for ~ dath . Show t...
dalem22 39804 Lemma for ~ dath . Show t...
dalem23 39805 Lemma for ~ dath . Show t...
dalem24 39806 Lemma for ~ dath . Show t...
dalem25 39807 Lemma for ~ dath . Show t...
dalem27 39808 Lemma for ~ dath . Show t...
dalem28 39809 Lemma for ~ dath . Lemma ...
dalem29 39810 Lemma for ~ dath . Analog...
dalem30 39811 Lemma for ~ dath . Analog...
dalem31N 39812 Lemma for ~ dath . Analog...
dalem32 39813 Lemma for ~ dath . Analog...
dalem33 39814 Lemma for ~ dath . Analog...
dalem34 39815 Lemma for ~ dath . Analog...
dalem35 39816 Lemma for ~ dath . Analog...
dalem36 39817 Lemma for ~ dath . Analog...
dalem37 39818 Lemma for ~ dath . Analog...
dalem38 39819 Lemma for ~ dath . Plane ...
dalem39 39820 Lemma for ~ dath . Auxili...
dalem40 39821 Lemma for ~ dath . Analog...
dalem41 39822 Lemma for ~ dath . (Contr...
dalem42 39823 Lemma for ~ dath . Auxili...
dalem43 39824 Lemma for ~ dath . Planes...
dalem44 39825 Lemma for ~ dath . Dummy ...
dalem45 39826 Lemma for ~ dath . Dummy ...
dalem46 39827 Lemma for ~ dath . Analog...
dalem47 39828 Lemma for ~ dath . Analog...
dalem48 39829 Lemma for ~ dath . Analog...
dalem49 39830 Lemma for ~ dath . Analog...
dalem50 39831 Lemma for ~ dath . Analog...
dalem51 39832 Lemma for ~ dath . Constr...
dalem52 39833 Lemma for ~ dath . Lines ...
dalem53 39834 Lemma for ~ dath . The au...
dalem54 39835 Lemma for ~ dath . Line `...
dalem55 39836 Lemma for ~ dath . Lines ...
dalem56 39837 Lemma for ~ dath . Analog...
dalem57 39838 Lemma for ~ dath . Axis o...
dalem58 39839 Lemma for ~ dath . Analog...
dalem59 39840 Lemma for ~ dath . Analog...
dalem60 39841 Lemma for ~ dath . ` B ` i...
dalem61 39842 Lemma for ~ dath . Show t...
dalem62 39843 Lemma for ~ dath . Elimin...
dalem63 39844 Lemma for ~ dath . Combin...
dath 39845 Desargues's theorem of pro...
dath2 39846 Version of Desargues's the...
lineset 39847 The set of lines in a Hilb...
isline 39848 The predicate "is a line"....
islinei 39849 Condition implying "is a l...
pointsetN 39850 The set of points in a Hil...
ispointN 39851 The predicate "is a point"...
atpointN 39852 The singleton of an atom i...
psubspset 39853 The set of projective subs...
ispsubsp 39854 The predicate "is a projec...
ispsubsp2 39855 The predicate "is a projec...
psubspi 39856 Property of a projective s...
psubspi2N 39857 Property of a projective s...
0psubN 39858 The empty set is a project...
snatpsubN 39859 The singleton of an atom i...
pointpsubN 39860 A point (singleton of an a...
linepsubN 39861 A line is a projective sub...
atpsubN 39862 The set of all atoms is a ...
psubssat 39863 A projective subspace cons...
psubatN 39864 A member of a projective s...
pmapfval 39865 The projective map of a Hi...
pmapval 39866 Value of the projective ma...
elpmap 39867 Member of a projective map...
pmapssat 39868 The projective map of a Hi...
pmapssbaN 39869 A weakening of ~ pmapssat ...
pmaple 39870 The projective map of a Hi...
pmap11 39871 The projective map of a Hi...
pmapat 39872 The projective map of an a...
elpmapat 39873 Member of the projective m...
pmap0 39874 Value of the projective ma...
pmapeq0 39875 A projective map value is ...
pmap1N 39876 Value of the projective ma...
pmapsub 39877 The projective map of a Hi...
pmapglbx 39878 The projective map of the ...
pmapglb 39879 The projective map of the ...
pmapglb2N 39880 The projective map of the ...
pmapglb2xN 39881 The projective map of the ...
pmapmeet 39882 The projective map of a me...
isline2 39883 Definition of line in term...
linepmap 39884 A line described with a pr...
isline3 39885 Definition of line in term...
isline4N 39886 Definition of line in term...
lneq2at 39887 A line equals the join of ...
lnatexN 39888 There is an atom in a line...
lnjatN 39889 Given an atom in a line, t...
lncvrelatN 39890 A lattice element covered ...
lncvrat 39891 A line covers the atoms it...
lncmp 39892 If two lines are comparabl...
2lnat 39893 Two intersecting lines int...
2atm2atN 39894 Two joins with a common at...
2llnma1b 39895 Generalization of ~ 2llnma...
2llnma1 39896 Two different intersecting...
2llnma3r 39897 Two different intersecting...
2llnma2 39898 Two different intersecting...
2llnma2rN 39899 Two different intersecting...
cdlema1N 39900 A condition for required f...
cdlema2N 39901 A condition for required f...
cdlemblem 39902 Lemma for ~ cdlemb . (Con...
cdlemb 39903 Given two atoms not less t...
paddfval 39906 Projective subspace sum op...
paddval 39907 Projective subspace sum op...
elpadd 39908 Member of a projective sub...
elpaddn0 39909 Member of projective subsp...
paddvaln0N 39910 Projective subspace sum op...
elpaddri 39911 Condition implying members...
elpaddatriN 39912 Condition implying members...
elpaddat 39913 Membership in a projective...
elpaddatiN 39914 Consequence of membership ...
elpadd2at 39915 Membership in a projective...
elpadd2at2 39916 Membership in a projective...
paddunssN 39917 Projective subspace sum in...
elpadd0 39918 Member of projective subsp...
paddval0 39919 Projective subspace sum wi...
padd01 39920 Projective subspace sum wi...
padd02 39921 Projective subspace sum wi...
paddcom 39922 Projective subspace sum co...
paddssat 39923 A projective subspace sum ...
sspadd1 39924 A projective subspace sum ...
sspadd2 39925 A projective subspace sum ...
paddss1 39926 Subset law for projective ...
paddss2 39927 Subset law for projective ...
paddss12 39928 Subset law for projective ...
paddasslem1 39929 Lemma for ~ paddass . (Co...
paddasslem2 39930 Lemma for ~ paddass . (Co...
paddasslem3 39931 Lemma for ~ paddass . Res...
paddasslem4 39932 Lemma for ~ paddass . Com...
paddasslem5 39933 Lemma for ~ paddass . Sho...
paddasslem6 39934 Lemma for ~ paddass . (Co...
paddasslem7 39935 Lemma for ~ paddass . Com...
paddasslem8 39936 Lemma for ~ paddass . (Co...
paddasslem9 39937 Lemma for ~ paddass . Com...
paddasslem10 39938 Lemma for ~ paddass . Use...
paddasslem11 39939 Lemma for ~ paddass . The...
paddasslem12 39940 Lemma for ~ paddass . The...
paddasslem13 39941 Lemma for ~ paddass . The...
paddasslem14 39942 Lemma for ~ paddass . Rem...
paddasslem15 39943 Lemma for ~ paddass . Use...
paddasslem16 39944 Lemma for ~ paddass . Use...
paddasslem17 39945 Lemma for ~ paddass . The...
paddasslem18 39946 Lemma for ~ paddass . Com...
paddass 39947 Projective subspace sum is...
padd12N 39948 Commutative/associative la...
padd4N 39949 Rearrangement of 4 terms i...
paddidm 39950 Projective subspace sum is...
paddclN 39951 The projective sum of two ...
paddssw1 39952 Subset law for projective ...
paddssw2 39953 Subset law for projective ...
paddss 39954 Subset law for projective ...
pmodlem1 39955 Lemma for ~ pmod1i . (Con...
pmodlem2 39956 Lemma for ~ pmod1i . (Con...
pmod1i 39957 The modular law holds in a...
pmod2iN 39958 Dual of the modular law. ...
pmodN 39959 The modular law for projec...
pmodl42N 39960 Lemma derived from modular...
pmapjoin 39961 The projective map of the ...
pmapjat1 39962 The projective map of the ...
pmapjat2 39963 The projective map of the ...
pmapjlln1 39964 The projective map of the ...
hlmod1i 39965 A version of the modular l...
atmod1i1 39966 Version of modular law ~ p...
atmod1i1m 39967 Version of modular law ~ p...
atmod1i2 39968 Version of modular law ~ p...
llnmod1i2 39969 Version of modular law ~ p...
atmod2i1 39970 Version of modular law ~ p...
atmod2i2 39971 Version of modular law ~ p...
llnmod2i2 39972 Version of modular law ~ p...
atmod3i1 39973 Version of modular law tha...
atmod3i2 39974 Version of modular law tha...
atmod4i1 39975 Version of modular law tha...
atmod4i2 39976 Version of modular law tha...
llnexchb2lem 39977 Lemma for ~ llnexchb2 . (...
llnexchb2 39978 Line exchange property (co...
llnexch2N 39979 Line exchange property (co...
dalawlem1 39980 Lemma for ~ dalaw . Speci...
dalawlem2 39981 Lemma for ~ dalaw . Utili...
dalawlem3 39982 Lemma for ~ dalaw . First...
dalawlem4 39983 Lemma for ~ dalaw . Secon...
dalawlem5 39984 Lemma for ~ dalaw . Speci...
dalawlem6 39985 Lemma for ~ dalaw . First...
dalawlem7 39986 Lemma for ~ dalaw . Secon...
dalawlem8 39987 Lemma for ~ dalaw . Speci...
dalawlem9 39988 Lemma for ~ dalaw . Speci...
dalawlem10 39989 Lemma for ~ dalaw . Combi...
dalawlem11 39990 Lemma for ~ dalaw . First...
dalawlem12 39991 Lemma for ~ dalaw . Secon...
dalawlem13 39992 Lemma for ~ dalaw . Speci...
dalawlem14 39993 Lemma for ~ dalaw . Combi...
dalawlem15 39994 Lemma for ~ dalaw . Swap ...
dalaw 39995 Desargues's law, derived f...
pclfvalN 39998 The projective subspace cl...
pclvalN 39999 Value of the projective su...
pclclN 40000 Closure of the projective ...
elpclN 40001 Membership in the projecti...
elpcliN 40002 Implication of membership ...
pclssN 40003 Ordering is preserved by s...
pclssidN 40004 A set of atoms is included...
pclidN 40005 The projective subspace cl...
pclbtwnN 40006 A projective subspace sand...
pclunN 40007 The projective subspace cl...
pclun2N 40008 The projective subspace cl...
pclfinN 40009 The projective subspace cl...
pclcmpatN 40010 The set of projective subs...
polfvalN 40013 The projective subspace po...
polvalN 40014 Value of the projective su...
polval2N 40015 Alternate expression for v...
polsubN 40016 The polarity of a set of a...
polssatN 40017 The polarity of a set of a...
pol0N 40018 The polarity of the empty ...
pol1N 40019 The polarity of the whole ...
2pol0N 40020 The closed subspace closur...
polpmapN 40021 The polarity of a projecti...
2polpmapN 40022 Double polarity of a proje...
2polvalN 40023 Value of double polarity. ...
2polssN 40024 A set of atoms is a subset...
3polN 40025 Triple polarity cancels to...
polcon3N 40026 Contraposition law for pol...
2polcon4bN 40027 Contraposition law for pol...
polcon2N 40028 Contraposition law for pol...
polcon2bN 40029 Contraposition law for pol...
pclss2polN 40030 The projective subspace cl...
pcl0N 40031 The projective subspace cl...
pcl0bN 40032 The projective subspace cl...
pmaplubN 40033 The LUB of a projective ma...
sspmaplubN 40034 A set of atoms is a subset...
2pmaplubN 40035 Double projective map of a...
paddunN 40036 The closure of the project...
poldmj1N 40037 De Morgan's law for polari...
pmapj2N 40038 The projective map of the ...
pmapocjN 40039 The projective map of the ...
polatN 40040 The polarity of the single...
2polatN 40041 Double polarity of the sin...
pnonsingN 40042 The intersection of a set ...
psubclsetN 40045 The set of closed projecti...
ispsubclN 40046 The predicate "is a closed...
psubcliN 40047 Property of a closed proje...
psubcli2N 40048 Property of a closed proje...
psubclsubN 40049 A closed projective subspa...
psubclssatN 40050 A closed projective subspa...
pmapidclN 40051 Projective map of the LUB ...
0psubclN 40052 The empty set is a closed ...
1psubclN 40053 The set of all atoms is a ...
atpsubclN 40054 A point (singleton of an a...
pmapsubclN 40055 A projective map value is ...
ispsubcl2N 40056 Alternate predicate for "i...
psubclinN 40057 The intersection of two cl...
paddatclN 40058 The projective sum of a cl...
pclfinclN 40059 The projective subspace cl...
linepsubclN 40060 A line is a closed project...
polsubclN 40061 A polarity is a closed pro...
poml4N 40062 Orthomodular law for proje...
poml5N 40063 Orthomodular law for proje...
poml6N 40064 Orthomodular law for proje...
osumcllem1N 40065 Lemma for ~ osumclN . (Co...
osumcllem2N 40066 Lemma for ~ osumclN . (Co...
osumcllem3N 40067 Lemma for ~ osumclN . (Co...
osumcllem4N 40068 Lemma for ~ osumclN . (Co...
osumcllem5N 40069 Lemma for ~ osumclN . (Co...
osumcllem6N 40070 Lemma for ~ osumclN . Use...
osumcllem7N 40071 Lemma for ~ osumclN . (Co...
osumcllem8N 40072 Lemma for ~ osumclN . (Co...
osumcllem9N 40073 Lemma for ~ osumclN . (Co...
osumcllem10N 40074 Lemma for ~ osumclN . Con...
osumcllem11N 40075 Lemma for ~ osumclN . (Co...
osumclN 40076 Closure of orthogonal sum....
pmapojoinN 40077 For orthogonal elements, p...
pexmidN 40078 Excluded middle law for cl...
pexmidlem1N 40079 Lemma for ~ pexmidN . Hol...
pexmidlem2N 40080 Lemma for ~ pexmidN . (Co...
pexmidlem3N 40081 Lemma for ~ pexmidN . Use...
pexmidlem4N 40082 Lemma for ~ pexmidN . (Co...
pexmidlem5N 40083 Lemma for ~ pexmidN . (Co...
pexmidlem6N 40084 Lemma for ~ pexmidN . (Co...
pexmidlem7N 40085 Lemma for ~ pexmidN . Con...
pexmidlem8N 40086 Lemma for ~ pexmidN . The...
pexmidALTN 40087 Excluded middle law for cl...
pl42lem1N 40088 Lemma for ~ pl42N . (Cont...
pl42lem2N 40089 Lemma for ~ pl42N . (Cont...
pl42lem3N 40090 Lemma for ~ pl42N . (Cont...
pl42lem4N 40091 Lemma for ~ pl42N . (Cont...
pl42N 40092 Law holding in a Hilbert l...
watfvalN 40101 The W atoms function. (Co...
watvalN 40102 Value of the W atoms funct...
iswatN 40103 The predicate "is a W atom...
lhpset 40104 The set of co-atoms (latti...
islhp 40105 The predicate "is a co-ato...
islhp2 40106 The predicate "is a co-ato...
lhpbase 40107 A co-atom is a member of t...
lhp1cvr 40108 The lattice unity covers a...
lhplt 40109 An atom under a co-atom is...
lhp2lt 40110 The join of two atoms unde...
lhpexlt 40111 There exists an atom less ...
lhp0lt 40112 A co-atom is greater than ...
lhpn0 40113 A co-atom is nonzero. TOD...
lhpexle 40114 There exists an atom under...
lhpexnle 40115 There exists an atom not u...
lhpexle1lem 40116 Lemma for ~ lhpexle1 and o...
lhpexle1 40117 There exists an atom under...
lhpexle2lem 40118 Lemma for ~ lhpexle2 . (C...
lhpexle2 40119 There exists atom under a ...
lhpexle3lem 40120 There exists atom under a ...
lhpexle3 40121 There exists atom under a ...
lhpex2leN 40122 There exist at least two d...
lhpoc 40123 The orthocomplement of a c...
lhpoc2N 40124 The orthocomplement of an ...
lhpocnle 40125 The orthocomplement of a c...
lhpocat 40126 The orthocomplement of a c...
lhpocnel 40127 The orthocomplement of a c...
lhpocnel2 40128 The orthocomplement of a c...
lhpjat1 40129 The join of a co-atom (hyp...
lhpjat2 40130 The join of a co-atom (hyp...
lhpj1 40131 The join of a co-atom (hyp...
lhpmcvr 40132 The meet of a lattice hype...
lhpmcvr2 40133 Alternate way to express t...
lhpmcvr3 40134 Specialization of ~ lhpmcv...
lhpmcvr4N 40135 Specialization of ~ lhpmcv...
lhpmcvr5N 40136 Specialization of ~ lhpmcv...
lhpmcvr6N 40137 Specialization of ~ lhpmcv...
lhpm0atN 40138 If the meet of a lattice h...
lhpmat 40139 An element covered by the ...
lhpmatb 40140 An element covered by the ...
lhp2at0 40141 Join and meet with differe...
lhp2atnle 40142 Inequality for 2 different...
lhp2atne 40143 Inequality for joins with ...
lhp2at0nle 40144 Inequality for 2 different...
lhp2at0ne 40145 Inequality for joins with ...
lhpelim 40146 Eliminate an atom not unde...
lhpmod2i2 40147 Modular law for hyperplane...
lhpmod6i1 40148 Modular law for hyperplane...
lhprelat3N 40149 The Hilbert lattice is rel...
cdlemb2 40150 Given two atoms not under ...
lhple 40151 Property of a lattice elem...
lhpat 40152 Create an atom under a co-...
lhpat4N 40153 Property of an atom under ...
lhpat2 40154 Create an atom under a co-...
lhpat3 40155 There is only one atom und...
4atexlemk 40156 Lemma for ~ 4atexlem7 . (...
4atexlemw 40157 Lemma for ~ 4atexlem7 . (...
4atexlempw 40158 Lemma for ~ 4atexlem7 . (...
4atexlemp 40159 Lemma for ~ 4atexlem7 . (...
4atexlemq 40160 Lemma for ~ 4atexlem7 . (...
4atexlems 40161 Lemma for ~ 4atexlem7 . (...
4atexlemt 40162 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 40163 Lemma for ~ 4atexlem7 . (...
4atexlempnq 40164 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 40165 Lemma for ~ 4atexlem7 . (...
4atexlemkl 40166 Lemma for ~ 4atexlem7 . (...
4atexlemkc 40167 Lemma for ~ 4atexlem7 . (...
4atexlemwb 40168 Lemma for ~ 4atexlem7 . (...
4atexlempsb 40169 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 40170 Lemma for ~ 4atexlem7 . (...
4atexlempns 40171 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 40172 Lemma for ~ 4atexlem7 . S...
4atexlemu 40173 Lemma for ~ 4atexlem7 . (...
4atexlemv 40174 Lemma for ~ 4atexlem7 . (...
4atexlemunv 40175 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 40176 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 40177 Lemma for ~ 4atexlem7 . (...
4atexlemc 40178 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 40179 Lemma for ~ 4atexlem7 . (...
4atexlemex2 40180 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 40181 Lemma for ~ 4atexlem7 . (...
4atexlemex4 40182 Lemma for ~ 4atexlem7 . S...
4atexlemex6 40183 Lemma for ~ 4atexlem7 . (...
4atexlem7 40184 Whenever there are at leas...
4atex 40185 Whenever there are at leas...
4atex2 40186 More general version of ~ ...
4atex2-0aOLDN 40187 Same as ~ 4atex2 except th...
4atex2-0bOLDN 40188 Same as ~ 4atex2 except th...
4atex2-0cOLDN 40189 Same as ~ 4atex2 except th...
4atex3 40190 More general version of ~ ...
lautset 40191 The set of lattice automor...
islaut 40192 The predicate "is a lattic...
lautle 40193 Less-than or equal propert...
laut1o 40194 A lattice automorphism is ...
laut11 40195 One-to-one property of a l...
lautcl 40196 A lattice automorphism val...
lautcnvclN 40197 Reverse closure of a latti...
lautcnvle 40198 Less-than or equal propert...
lautcnv 40199 The converse of a lattice ...
lautlt 40200 Less-than property of a la...
lautcvr 40201 Covering property of a lat...
lautj 40202 Meet property of a lattice...
lautm 40203 Meet property of a lattice...
lauteq 40204 A lattice automorphism arg...
idlaut 40205 The identity function is a...
lautco 40206 The composition of two lat...
pautsetN 40207 The set of projective auto...
ispautN 40208 The predicate "is a projec...
ldilfset 40217 The mapping from fiducial ...
ldilset 40218 The set of lattice dilatio...
isldil 40219 The predicate "is a lattic...
ldillaut 40220 A lattice dilation is an a...
ldil1o 40221 A lattice dilation is a on...
ldilval 40222 Value of a lattice dilatio...
idldil 40223 The identity function is a...
ldilcnv 40224 The converse of a lattice ...
ldilco 40225 The composition of two lat...
ltrnfset 40226 The set of all lattice tra...
ltrnset 40227 The set of lattice transla...
isltrn 40228 The predicate "is a lattic...
isltrn2N 40229 The predicate "is a lattic...
ltrnu 40230 Uniqueness property of a l...
ltrnldil 40231 A lattice translation is a...
ltrnlaut 40232 A lattice translation is a...
ltrn1o 40233 A lattice translation is a...
ltrncl 40234 Closure of a lattice trans...
ltrn11 40235 One-to-one property of a l...
ltrncnvnid 40236 If a translation is differ...
ltrncoidN 40237 Two translations are equal...
ltrnle 40238 Less-than or equal propert...
ltrncnvleN 40239 Less-than or equal propert...
ltrnm 40240 Lattice translation of a m...
ltrnj 40241 Lattice translation of a m...
ltrncvr 40242 Covering property of a lat...
ltrnval1 40243 Value of a lattice transla...
ltrnid 40244 A lattice translation is t...
ltrnnid 40245 If a lattice translation i...
ltrnatb 40246 The lattice translation of...
ltrncnvatb 40247 The converse of the lattic...
ltrnel 40248 The lattice translation of...
ltrnat 40249 The lattice translation of...
ltrncnvat 40250 The converse of the lattic...
ltrncnvel 40251 The converse of the lattic...
ltrncoelN 40252 Composition of lattice tra...
ltrncoat 40253 Composition of lattice tra...
ltrncoval 40254 Two ways to express value ...
ltrncnv 40255 The converse of a lattice ...
ltrn11at 40256 Frequently used one-to-one...
ltrneq2 40257 The equality of two transl...
ltrneq 40258 The equality of two transl...
idltrn 40259 The identity function is a...
ltrnmw 40260 Property of lattice transl...
dilfsetN 40261 The mapping from fiducial ...
dilsetN 40262 The set of dilations for a...
isdilN 40263 The predicate "is a dilati...
trnfsetN 40264 The mapping from fiducial ...
trnsetN 40265 The set of translations fo...
istrnN 40266 The predicate "is a transl...
trlfset 40269 The set of all traces of l...
trlset 40270 The set of traces of latti...
trlval 40271 The value of the trace of ...
trlval2 40272 The value of the trace of ...
trlcl 40273 Closure of the trace of a ...
trlcnv 40274 The trace of the converse ...
trljat1 40275 The value of a translation...
trljat2 40276 The value of a translation...
trljat3 40277 The value of a translation...
trlat 40278 If an atom differs from it...
trl0 40279 If an atom not under the f...
trlator0 40280 The trace of a lattice tra...
trlatn0 40281 The trace of a lattice tra...
trlnidat 40282 The trace of a lattice tra...
ltrnnidn 40283 If a lattice translation i...
ltrnideq 40284 Property of the identity l...
trlid0 40285 The trace of the identity ...
trlnidatb 40286 A lattice translation is n...
trlid0b 40287 A lattice translation is t...
trlnid 40288 Different translations wit...
ltrn2ateq 40289 Property of the equality o...
ltrnateq 40290 If any atom (under ` W ` )...
ltrnatneq 40291 If any atom (under ` W ` )...
ltrnatlw 40292 If the value of an atom eq...
trlle 40293 The trace of a lattice tra...
trlne 40294 The trace of a lattice tra...
trlnle 40295 The atom not under the fid...
trlval3 40296 The value of the trace of ...
trlval4 40297 The value of the trace of ...
trlval5 40298 The value of the trace of ...
arglem1N 40299 Lemma for Desargues's law....
cdlemc1 40300 Part of proof of Lemma C i...
cdlemc2 40301 Part of proof of Lemma C i...
cdlemc3 40302 Part of proof of Lemma C i...
cdlemc4 40303 Part of proof of Lemma C i...
cdlemc5 40304 Lemma for ~ cdlemc . (Con...
cdlemc6 40305 Lemma for ~ cdlemc . (Con...
cdlemc 40306 Lemma C in [Crawley] p. 11...
cdlemd1 40307 Part of proof of Lemma D i...
cdlemd2 40308 Part of proof of Lemma D i...
cdlemd3 40309 Part of proof of Lemma D i...
cdlemd4 40310 Part of proof of Lemma D i...
cdlemd5 40311 Part of proof of Lemma D i...
cdlemd6 40312 Part of proof of Lemma D i...
cdlemd7 40313 Part of proof of Lemma D i...
cdlemd8 40314 Part of proof of Lemma D i...
cdlemd9 40315 Part of proof of Lemma D i...
cdlemd 40316 If two translations agree ...
ltrneq3 40317 Two translations agree at ...
cdleme00a 40318 Part of proof of Lemma E i...
cdleme0aa 40319 Part of proof of Lemma E i...
cdleme0a 40320 Part of proof of Lemma E i...
cdleme0b 40321 Part of proof of Lemma E i...
cdleme0c 40322 Part of proof of Lemma E i...
cdleme0cp 40323 Part of proof of Lemma E i...
cdleme0cq 40324 Part of proof of Lemma E i...
cdleme0dN 40325 Part of proof of Lemma E i...
cdleme0e 40326 Part of proof of Lemma E i...
cdleme0fN 40327 Part of proof of Lemma E i...
cdleme0gN 40328 Part of proof of Lemma E i...
cdlemeulpq 40329 Part of proof of Lemma E i...
cdleme01N 40330 Part of proof of Lemma E i...
cdleme02N 40331 Part of proof of Lemma E i...
cdleme0ex1N 40332 Part of proof of Lemma E i...
cdleme0ex2N 40333 Part of proof of Lemma E i...
cdleme0moN 40334 Part of proof of Lemma E i...
cdleme1b 40335 Part of proof of Lemma E i...
cdleme1 40336 Part of proof of Lemma E i...
cdleme2 40337 Part of proof of Lemma E i...
cdleme3b 40338 Part of proof of Lemma E i...
cdleme3c 40339 Part of proof of Lemma E i...
cdleme3d 40340 Part of proof of Lemma E i...
cdleme3e 40341 Part of proof of Lemma E i...
cdleme3fN 40342 Part of proof of Lemma E i...
cdleme3g 40343 Part of proof of Lemma E i...
cdleme3h 40344 Part of proof of Lemma E i...
cdleme3fa 40345 Part of proof of Lemma E i...
cdleme3 40346 Part of proof of Lemma E i...
cdleme4 40347 Part of proof of Lemma E i...
cdleme4a 40348 Part of proof of Lemma E i...
cdleme5 40349 Part of proof of Lemma E i...
cdleme6 40350 Part of proof of Lemma E i...
cdleme7aa 40351 Part of proof of Lemma E i...
cdleme7a 40352 Part of proof of Lemma E i...
cdleme7b 40353 Part of proof of Lemma E i...
cdleme7c 40354 Part of proof of Lemma E i...
cdleme7d 40355 Part of proof of Lemma E i...
cdleme7e 40356 Part of proof of Lemma E i...
cdleme7ga 40357 Part of proof of Lemma E i...
cdleme7 40358 Part of proof of Lemma E i...
cdleme8 40359 Part of proof of Lemma E i...
cdleme9a 40360 Part of proof of Lemma E i...
cdleme9b 40361 Utility lemma for Lemma E ...
cdleme9 40362 Part of proof of Lemma E i...
cdleme10 40363 Part of proof of Lemma E i...
cdleme8tN 40364 Part of proof of Lemma E i...
cdleme9taN 40365 Part of proof of Lemma E i...
cdleme9tN 40366 Part of proof of Lemma E i...
cdleme10tN 40367 Part of proof of Lemma E i...
cdleme16aN 40368 Part of proof of Lemma E i...
cdleme11a 40369 Part of proof of Lemma E i...
cdleme11c 40370 Part of proof of Lemma E i...
cdleme11dN 40371 Part of proof of Lemma E i...
cdleme11e 40372 Part of proof of Lemma E i...
cdleme11fN 40373 Part of proof of Lemma E i...
cdleme11g 40374 Part of proof of Lemma E i...
cdleme11h 40375 Part of proof of Lemma E i...
cdleme11j 40376 Part of proof of Lemma E i...
cdleme11k 40377 Part of proof of Lemma E i...
cdleme11l 40378 Part of proof of Lemma E i...
cdleme11 40379 Part of proof of Lemma E i...
cdleme12 40380 Part of proof of Lemma E i...
cdleme13 40381 Part of proof of Lemma E i...
cdleme14 40382 Part of proof of Lemma E i...
cdleme15a 40383 Part of proof of Lemma E i...
cdleme15b 40384 Part of proof of Lemma E i...
cdleme15c 40385 Part of proof of Lemma E i...
cdleme15d 40386 Part of proof of Lemma E i...
cdleme15 40387 Part of proof of Lemma E i...
cdleme16b 40388 Part of proof of Lemma E i...
cdleme16c 40389 Part of proof of Lemma E i...
cdleme16d 40390 Part of proof of Lemma E i...
cdleme16e 40391 Part of proof of Lemma E i...
cdleme16f 40392 Part of proof of Lemma E i...
cdleme16g 40393 Part of proof of Lemma E i...
cdleme16 40394 Part of proof of Lemma E i...
cdleme17a 40395 Part of proof of Lemma E i...
cdleme17b 40396 Lemma leading to ~ cdleme1...
cdleme17c 40397 Part of proof of Lemma E i...
cdleme17d1 40398 Part of proof of Lemma E i...
cdleme0nex 40399 Part of proof of Lemma E i...
cdleme18a 40400 Part of proof of Lemma E i...
cdleme18b 40401 Part of proof of Lemma E i...
cdleme18c 40402 Part of proof of Lemma E i...
cdleme22gb 40403 Utility lemma for Lemma E ...
cdleme18d 40404 Part of proof of Lemma E i...
cdlemesner 40405 Part of proof of Lemma E i...
cdlemedb 40406 Part of proof of Lemma E i...
cdlemeda 40407 Part of proof of Lemma E i...
cdlemednpq 40408 Part of proof of Lemma E i...
cdlemednuN 40409 Part of proof of Lemma E i...
cdleme20zN 40410 Part of proof of Lemma E i...
cdleme20y 40411 Part of proof of Lemma E i...
cdleme19a 40412 Part of proof of Lemma E i...
cdleme19b 40413 Part of proof of Lemma E i...
cdleme19c 40414 Part of proof of Lemma E i...
cdleme19d 40415 Part of proof of Lemma E i...
cdleme19e 40416 Part of proof of Lemma E i...
cdleme19f 40417 Part of proof of Lemma E i...
cdleme20aN 40418 Part of proof of Lemma E i...
cdleme20bN 40419 Part of proof of Lemma E i...
cdleme20c 40420 Part of proof of Lemma E i...
cdleme20d 40421 Part of proof of Lemma E i...
cdleme20e 40422 Part of proof of Lemma E i...
cdleme20f 40423 Part of proof of Lemma E i...
cdleme20g 40424 Part of proof of Lemma E i...
cdleme20h 40425 Part of proof of Lemma E i...
cdleme20i 40426 Part of proof of Lemma E i...
cdleme20j 40427 Part of proof of Lemma E i...
cdleme20k 40428 Part of proof of Lemma E i...
cdleme20l1 40429 Part of proof of Lemma E i...
cdleme20l2 40430 Part of proof of Lemma E i...
cdleme20l 40431 Part of proof of Lemma E i...
cdleme20m 40432 Part of proof of Lemma E i...
cdleme20 40433 Combine ~ cdleme19f and ~ ...
cdleme21a 40434 Part of proof of Lemma E i...
cdleme21b 40435 Part of proof of Lemma E i...
cdleme21c 40436 Part of proof of Lemma E i...
cdleme21at 40437 Part of proof of Lemma E i...
cdleme21ct 40438 Part of proof of Lemma E i...
cdleme21d 40439 Part of proof of Lemma E i...
cdleme21e 40440 Part of proof of Lemma E i...
cdleme21f 40441 Part of proof of Lemma E i...
cdleme21g 40442 Part of proof of Lemma E i...
cdleme21h 40443 Part of proof of Lemma E i...
cdleme21i 40444 Part of proof of Lemma E i...
cdleme21j 40445 Combine ~ cdleme20 and ~ c...
cdleme21 40446 Part of proof of Lemma E i...
cdleme21k 40447 Eliminate ` S =/= T ` cond...
cdleme22aa 40448 Part of proof of Lemma E i...
cdleme22a 40449 Part of proof of Lemma E i...
cdleme22b 40450 Part of proof of Lemma E i...
cdleme22cN 40451 Part of proof of Lemma E i...
cdleme22d 40452 Part of proof of Lemma E i...
cdleme22e 40453 Part of proof of Lemma E i...
cdleme22eALTN 40454 Part of proof of Lemma E i...
cdleme22f 40455 Part of proof of Lemma E i...
cdleme22f2 40456 Part of proof of Lemma E i...
cdleme22g 40457 Part of proof of Lemma E i...
cdleme23a 40458 Part of proof of Lemma E i...
cdleme23b 40459 Part of proof of Lemma E i...
cdleme23c 40460 Part of proof of Lemma E i...
cdleme24 40461 Quantified version of ~ cd...
cdleme25a 40462 Lemma for ~ cdleme25b . (...
cdleme25b 40463 Transform ~ cdleme24 . TO...
cdleme25c 40464 Transform ~ cdleme25b . (...
cdleme25dN 40465 Transform ~ cdleme25c . (...
cdleme25cl 40466 Show closure of the unique...
cdleme25cv 40467 Change bound variables in ...
cdleme26e 40468 Part of proof of Lemma E i...
cdleme26ee 40469 Part of proof of Lemma E i...
cdleme26eALTN 40470 Part of proof of Lemma E i...
cdleme26fALTN 40471 Part of proof of Lemma E i...
cdleme26f 40472 Part of proof of Lemma E i...
cdleme26f2ALTN 40473 Part of proof of Lemma E i...
cdleme26f2 40474 Part of proof of Lemma E i...
cdleme27cl 40475 Part of proof of Lemma E i...
cdleme27a 40476 Part of proof of Lemma E i...
cdleme27b 40477 Lemma for ~ cdleme27N . (...
cdleme27N 40478 Part of proof of Lemma E i...
cdleme28a 40479 Lemma for ~ cdleme25b . T...
cdleme28b 40480 Lemma for ~ cdleme25b . T...
cdleme28c 40481 Part of proof of Lemma E i...
cdleme28 40482 Quantified version of ~ cd...
cdleme29ex 40483 Lemma for ~ cdleme29b . (...
cdleme29b 40484 Transform ~ cdleme28 . (C...
cdleme29c 40485 Transform ~ cdleme28b . (...
cdleme29cl 40486 Show closure of the unique...
cdleme30a 40487 Part of proof of Lemma E i...
cdleme31so 40488 Part of proof of Lemma E i...
cdleme31sn 40489 Part of proof of Lemma E i...
cdleme31sn1 40490 Part of proof of Lemma E i...
cdleme31se 40491 Part of proof of Lemma D i...
cdleme31se2 40492 Part of proof of Lemma D i...
cdleme31sc 40493 Part of proof of Lemma E i...
cdleme31sde 40494 Part of proof of Lemma D i...
cdleme31snd 40495 Part of proof of Lemma D i...
cdleme31sdnN 40496 Part of proof of Lemma E i...
cdleme31sn1c 40497 Part of proof of Lemma E i...
cdleme31sn2 40498 Part of proof of Lemma E i...
cdleme31fv 40499 Part of proof of Lemma E i...
cdleme31fv1 40500 Part of proof of Lemma E i...
cdleme31fv1s 40501 Part of proof of Lemma E i...
cdleme31fv2 40502 Part of proof of Lemma E i...
cdleme31id 40503 Part of proof of Lemma E i...
cdlemefrs29pre00 40504 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 40505 TODO fix comment. (Contri...
cdlemefrs29bpre1 40506 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 40507 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 40508 TODO: NOT USED? Show clo...
cdlemefrs32fva 40509 Part of proof of Lemma E i...
cdlemefrs32fva1 40510 Part of proof of Lemma E i...
cdlemefr29exN 40511 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 40512 Part of proof of Lemma E i...
cdlemefr32sn2aw 40513 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 40514 Show closure of ` [_ R / s...
cdlemefr29bpre0N 40515 TODO fix comment. (Contri...
cdlemefr29clN 40516 Show closure of the unique...
cdleme43frv1snN 40517 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 40518 Part of proof of Lemma E i...
cdlemefr32fva1 40519 Part of proof of Lemma E i...
cdlemefr31fv1 40520 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 40521 FIX COMMENT. TODO: see if ...
cdlemefs27cl 40522 Part of proof of Lemma E i...
cdlemefs32sn1aw 40523 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 40524 Show closure of ` [_ R / s...
cdlemefs29bpre0N 40525 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 40526 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 40527 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 40528 Show closure of the unique...
cdleme43fsv1snlem 40529 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 40530 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 40531 Part of proof of Lemma E i...
cdlemefs32fva1 40532 Part of proof of Lemma E i...
cdlemefs31fv1 40533 Value of ` ( F `` R ) ` wh...
cdlemefr44 40534 Value of f(r) when r is an...
cdlemefs44 40535 Value of f_s(r) when r is ...
cdlemefr45 40536 Value of f(r) when r is an...
cdlemefr45e 40537 Explicit expansion of ~ cd...
cdlemefs45 40538 Value of f_s(r) when r is ...
cdlemefs45ee 40539 Explicit expansion of ~ cd...
cdlemefs45eN 40540 Explicit expansion of ~ cd...
cdleme32sn1awN 40541 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 40542 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 40543 Show that ` [_ R / s ]_ N ...
cdleme32snaw 40544 Show that ` [_ R / s ]_ N ...
cdleme32snb 40545 Show closure of ` [_ R / s...
cdleme32fva 40546 Part of proof of Lemma D i...
cdleme32fva1 40547 Part of proof of Lemma D i...
cdleme32fvaw 40548 Show that ` ( F `` R ) ` i...
cdleme32fvcl 40549 Part of proof of Lemma D i...
cdleme32a 40550 Part of proof of Lemma D i...
cdleme32b 40551 Part of proof of Lemma D i...
cdleme32c 40552 Part of proof of Lemma D i...
cdleme32d 40553 Part of proof of Lemma D i...
cdleme32e 40554 Part of proof of Lemma D i...
cdleme32f 40555 Part of proof of Lemma D i...
cdleme32le 40556 Part of proof of Lemma D i...
cdleme35a 40557 Part of proof of Lemma E i...
cdleme35fnpq 40558 Part of proof of Lemma E i...
cdleme35b 40559 Part of proof of Lemma E i...
cdleme35c 40560 Part of proof of Lemma E i...
cdleme35d 40561 Part of proof of Lemma E i...
cdleme35e 40562 Part of proof of Lemma E i...
cdleme35f 40563 Part of proof of Lemma E i...
cdleme35g 40564 Part of proof of Lemma E i...
cdleme35h 40565 Part of proof of Lemma E i...
cdleme35h2 40566 Part of proof of Lemma E i...
cdleme35sn2aw 40567 Part of proof of Lemma E i...
cdleme35sn3a 40568 Part of proof of Lemma E i...
cdleme36a 40569 Part of proof of Lemma E i...
cdleme36m 40570 Part of proof of Lemma E i...
cdleme37m 40571 Part of proof of Lemma E i...
cdleme38m 40572 Part of proof of Lemma E i...
cdleme38n 40573 Part of proof of Lemma E i...
cdleme39a 40574 Part of proof of Lemma E i...
cdleme39n 40575 Part of proof of Lemma E i...
cdleme40m 40576 Part of proof of Lemma E i...
cdleme40n 40577 Part of proof of Lemma E i...
cdleme40v 40578 Part of proof of Lemma E i...
cdleme40w 40579 Part of proof of Lemma E i...
cdleme42a 40580 Part of proof of Lemma E i...
cdleme42c 40581 Part of proof of Lemma E i...
cdleme42d 40582 Part of proof of Lemma E i...
cdleme41sn3aw 40583 Part of proof of Lemma E i...
cdleme41sn4aw 40584 Part of proof of Lemma E i...
cdleme41snaw 40585 Part of proof of Lemma E i...
cdleme41fva11 40586 Part of proof of Lemma E i...
cdleme42b 40587 Part of proof of Lemma E i...
cdleme42e 40588 Part of proof of Lemma E i...
cdleme42f 40589 Part of proof of Lemma E i...
cdleme42g 40590 Part of proof of Lemma E i...
cdleme42h 40591 Part of proof of Lemma E i...
cdleme42i 40592 Part of proof of Lemma E i...
cdleme42k 40593 Part of proof of Lemma E i...
cdleme42ke 40594 Part of proof of Lemma E i...
cdleme42keg 40595 Part of proof of Lemma E i...
cdleme42mN 40596 Part of proof of Lemma E i...
cdleme42mgN 40597 Part of proof of Lemma E i...
cdleme43aN 40598 Part of proof of Lemma E i...
cdleme43bN 40599 Lemma for Lemma E in [Craw...
cdleme43cN 40600 Part of proof of Lemma E i...
cdleme43dN 40601 Part of proof of Lemma E i...
cdleme46f2g2 40602 Conversion for ` G ` to re...
cdleme46f2g1 40603 Conversion for ` G ` to re...
cdleme17d2 40604 Part of proof of Lemma E i...
cdleme17d3 40605 TODO: FIX COMMENT. (Contr...
cdleme17d4 40606 TODO: FIX COMMENT. (Contr...
cdleme17d 40607 Part of proof of Lemma E i...
cdleme48fv 40608 Part of proof of Lemma D i...
cdleme48fvg 40609 Remove ` P =/= Q ` conditi...
cdleme46fvaw 40610 Show that ` ( F `` R ) ` i...
cdleme48bw 40611 TODO: fix comment. TODO: ...
cdleme48b 40612 TODO: fix comment. (Contr...
cdleme46frvlpq 40613 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 40614 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 40615 TODO: fix comment. (Contr...
cdleme4gfv 40616 Part of proof of Lemma D i...
cdlemeg47b 40617 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 40618 Value of g_s(r) when r is ...
cdlemeg47rv2 40619 Value of g_s(r) when r is ...
cdlemeg49le 40620 Part of proof of Lemma D i...
cdlemeg46bOLDN 40621 TODO FIX COMMENT. (Contrib...
cdlemeg46c 40622 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 40623 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 40624 Value of g_s(r) when r is ...
cdlemeg46fvaw 40625 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 40626 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 40627 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 40628 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 40629 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 40630 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 40631 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 40632 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 40633 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 40634 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 40635 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 40636 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 40637 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 40638 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 40639 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 40640 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 40641 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 40642 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 40643 TODO FIX COMMENT p. 116 pe...
cdleme48d 40644 TODO: fix comment. (Contr...
cdleme48gfv1 40645 TODO: fix comment. (Contr...
cdleme48gfv 40646 TODO: fix comment. (Contr...
cdleme48fgv 40647 TODO: fix comment. (Contr...
cdlemeg49lebilem 40648 Part of proof of Lemma D i...
cdleme50lebi 40649 Part of proof of Lemma D i...
cdleme50eq 40650 Part of proof of Lemma D i...
cdleme50f 40651 Part of proof of Lemma D i...
cdleme50f1 40652 Part of proof of Lemma D i...
cdleme50rnlem 40653 Part of proof of Lemma D i...
cdleme50rn 40654 Part of proof of Lemma D i...
cdleme50f1o 40655 Part of proof of Lemma D i...
cdleme50laut 40656 Part of proof of Lemma D i...
cdleme50ldil 40657 Part of proof of Lemma D i...
cdleme50trn1 40658 Part of proof that ` F ` i...
cdleme50trn2a 40659 Part of proof that ` F ` i...
cdleme50trn2 40660 Part of proof that ` F ` i...
cdleme50trn12 40661 Part of proof that ` F ` i...
cdleme50trn3 40662 Part of proof that ` F ` i...
cdleme50trn123 40663 Part of proof that ` F ` i...
cdleme51finvfvN 40664 Part of proof of Lemma E i...
cdleme51finvN 40665 Part of proof of Lemma E i...
cdleme50ltrn 40666 Part of proof of Lemma E i...
cdleme51finvtrN 40667 Part of proof of Lemma E i...
cdleme50ex 40668 Part of Lemma E in [Crawle...
cdleme 40669 Lemma E in [Crawley] p. 11...
cdlemf1 40670 Part of Lemma F in [Crawle...
cdlemf2 40671 Part of Lemma F in [Crawle...
cdlemf 40672 Lemma F in [Crawley] p. 11...
cdlemfnid 40673 ~ cdlemf with additional c...
cdlemftr3 40674 Special case of ~ cdlemf s...
cdlemftr2 40675 Special case of ~ cdlemf s...
cdlemftr1 40676 Part of proof of Lemma G o...
cdlemftr0 40677 Special case of ~ cdlemf s...
trlord 40678 The ordering of two Hilber...
cdlemg1a 40679 Shorter expression for ` G...
cdlemg1b2 40680 This theorem can be used t...
cdlemg1idlemN 40681 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 40682 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 40683 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 40684 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 40685 This theorem can be used t...
cdlemg1idN 40686 Version of ~ cdleme31id wi...
ltrniotafvawN 40687 Version of ~ cdleme46fvaw ...
ltrniotacl 40688 Version of ~ cdleme50ltrn ...
ltrniotacnvN 40689 Version of ~ cdleme51finvt...
ltrniotaval 40690 Value of the unique transl...
ltrniotacnvval 40691 Converse value of the uniq...
ltrniotaidvalN 40692 Value of the unique transl...
ltrniotavalbN 40693 Value of the unique transl...
cdlemeiota 40694 A translation is uniquely ...
cdlemg1ci2 40695 Any function of the form o...
cdlemg1cN 40696 Any translation belongs to...
cdlemg1cex 40697 Any translation is one of ...
cdlemg2cN 40698 Any translation belongs to...
cdlemg2dN 40699 This theorem can be used t...
cdlemg2cex 40700 Any translation is one of ...
cdlemg2ce 40701 Utility theorem to elimina...
cdlemg2jlemOLDN 40702 Part of proof of Lemma E i...
cdlemg2fvlem 40703 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 40704 ~ cdleme42keg with simpler...
cdlemg2idN 40705 Version of ~ cdleme31id wi...
cdlemg3a 40706 Part of proof of Lemma G i...
cdlemg2jOLDN 40707 TODO: Replace this with ~...
cdlemg2fv 40708 Value of a translation in ...
cdlemg2fv2 40709 Value of a translation in ...
cdlemg2k 40710 ~ cdleme42keg with simpler...
cdlemg2kq 40711 ~ cdlemg2k with ` P ` and ...
cdlemg2l 40712 TODO: FIX COMMENT. (Contr...
cdlemg2m 40713 TODO: FIX COMMENT. (Contr...
cdlemg5 40714 TODO: Is there a simpler ...
cdlemb3 40715 Given two atoms not under ...
cdlemg7fvbwN 40716 Properties of a translatio...
cdlemg4a 40717 TODO: FIX COMMENT If fg(p...
cdlemg4b1 40718 TODO: FIX COMMENT. (Contr...
cdlemg4b2 40719 TODO: FIX COMMENT. (Contr...
cdlemg4b12 40720 TODO: FIX COMMENT. (Contr...
cdlemg4c 40721 TODO: FIX COMMENT. (Contr...
cdlemg4d 40722 TODO: FIX COMMENT. (Contr...
cdlemg4e 40723 TODO: FIX COMMENT. (Contr...
cdlemg4f 40724 TODO: FIX COMMENT. (Contr...
cdlemg4g 40725 TODO: FIX COMMENT. (Contr...
cdlemg4 40726 TODO: FIX COMMENT. (Contr...
cdlemg6a 40727 TODO: FIX COMMENT. TODO: ...
cdlemg6b 40728 TODO: FIX COMMENT. TODO: ...
cdlemg6c 40729 TODO: FIX COMMENT. (Contr...
cdlemg6d 40730 TODO: FIX COMMENT. (Contr...
cdlemg6e 40731 TODO: FIX COMMENT. (Contr...
cdlemg6 40732 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 40733 Value of a translation com...
cdlemg7aN 40734 TODO: FIX COMMENT. (Contr...
cdlemg7N 40735 TODO: FIX COMMENT. (Contr...
cdlemg8a 40736 TODO: FIX COMMENT. (Contr...
cdlemg8b 40737 TODO: FIX COMMENT. (Contr...
cdlemg8c 40738 TODO: FIX COMMENT. (Contr...
cdlemg8d 40739 TODO: FIX COMMENT. (Contr...
cdlemg8 40740 TODO: FIX COMMENT. (Contr...
cdlemg9a 40741 TODO: FIX COMMENT. (Contr...
cdlemg9b 40742 The triples ` <. P , ( F `...
cdlemg9 40743 The triples ` <. P , ( F `...
cdlemg10b 40744 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 40745 TODO: FIX COMMENT. TODO: ...
cdlemg11a 40746 TODO: FIX COMMENT. (Contr...
cdlemg11aq 40747 TODO: FIX COMMENT. TODO: ...
cdlemg10c 40748 TODO: FIX COMMENT. TODO: ...
cdlemg10a 40749 TODO: FIX COMMENT. (Contr...
cdlemg10 40750 TODO: FIX COMMENT. (Contr...
cdlemg11b 40751 TODO: FIX COMMENT. (Contr...
cdlemg12a 40752 TODO: FIX COMMENT. (Contr...
cdlemg12b 40753 The triples ` <. P , ( F `...
cdlemg12c 40754 The triples ` <. P , ( F `...
cdlemg12d 40755 TODO: FIX COMMENT. (Contr...
cdlemg12e 40756 TODO: FIX COMMENT. (Contr...
cdlemg12f 40757 TODO: FIX COMMENT. (Contr...
cdlemg12g 40758 TODO: FIX COMMENT. TODO: ...
cdlemg12 40759 TODO: FIX COMMENT. (Contr...
cdlemg13a 40760 TODO: FIX COMMENT. (Contr...
cdlemg13 40761 TODO: FIX COMMENT. (Contr...
cdlemg14f 40762 TODO: FIX COMMENT. (Contr...
cdlemg14g 40763 TODO: FIX COMMENT. (Contr...
cdlemg15a 40764 Eliminate the ` ( F `` P )...
cdlemg15 40765 Eliminate the ` ( (...
cdlemg16 40766 Part of proof of Lemma G o...
cdlemg16ALTN 40767 This version of ~ cdlemg16...
cdlemg16z 40768 Eliminate ` ( ( F `...
cdlemg16zz 40769 Eliminate ` P =/= Q ` from...
cdlemg17a 40770 TODO: FIX COMMENT. (Contr...
cdlemg17b 40771 Part of proof of Lemma G i...
cdlemg17dN 40772 TODO: fix comment. (Contr...
cdlemg17dALTN 40773 Same as ~ cdlemg17dN with ...
cdlemg17e 40774 TODO: fix comment. (Contr...
cdlemg17f 40775 TODO: fix comment. (Contr...
cdlemg17g 40776 TODO: fix comment. (Contr...
cdlemg17h 40777 TODO: fix comment. (Contr...
cdlemg17i 40778 TODO: fix comment. (Contr...
cdlemg17ir 40779 TODO: fix comment. (Contr...
cdlemg17j 40780 TODO: fix comment. (Contr...
cdlemg17pq 40781 Utility theorem for swappi...
cdlemg17bq 40782 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 40783 ~ cdlemg17i with ` P ` and...
cdlemg17irq 40784 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 40785 ~ cdlemg17j with ` P ` and...
cdlemg17 40786 Part of Lemma G of [Crawle...
cdlemg18a 40787 Show two lines are differe...
cdlemg18b 40788 Lemma for ~ cdlemg18c . T...
cdlemg18c 40789 Show two lines intersect a...
cdlemg18d 40790 Show two lines intersect a...
cdlemg18 40791 Show two lines intersect a...
cdlemg19a 40792 Show two lines intersect a...
cdlemg19 40793 Show two lines intersect a...
cdlemg20 40794 Show two lines intersect a...
cdlemg21 40795 Version of cdlemg19 with `...
cdlemg22 40796 ~ cdlemg21 with ` ( F `` P...
cdlemg24 40797 Combine ~ cdlemg16z and ~ ...
cdlemg37 40798 Use ~ cdlemg8 to eliminate...
cdlemg25zz 40799 ~ cdlemg16zz restated for ...
cdlemg26zz 40800 ~ cdlemg16zz restated for ...
cdlemg27a 40801 For use with case when ` (...
cdlemg28a 40802 Part of proof of Lemma G o...
cdlemg31b0N 40803 TODO: Fix comment. (Cont...
cdlemg31b0a 40804 TODO: Fix comment. (Cont...
cdlemg27b 40805 TODO: Fix comment. (Cont...
cdlemg31a 40806 TODO: fix comment. (Contr...
cdlemg31b 40807 TODO: fix comment. (Contr...
cdlemg31c 40808 Show that when ` N ` is an...
cdlemg31d 40809 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 40810 TODO: Fix comment. (Cont...
cdlemg33c0 40811 TODO: Fix comment. (Cont...
cdlemg28b 40812 Part of proof of Lemma G o...
cdlemg28 40813 Part of proof of Lemma G o...
cdlemg29 40814 Eliminate ` ( F `` P ) =/=...
cdlemg33a 40815 TODO: Fix comment. (Cont...
cdlemg33b 40816 TODO: Fix comment. (Cont...
cdlemg33c 40817 TODO: Fix comment. (Cont...
cdlemg33d 40818 TODO: Fix comment. (Cont...
cdlemg33e 40819 TODO: Fix comment. (Cont...
cdlemg33 40820 Combine ~ cdlemg33b , ~ cd...
cdlemg34 40821 Use cdlemg33 to eliminate ...
cdlemg35 40822 TODO: Fix comment. TODO:...
cdlemg36 40823 Use cdlemg35 to eliminate ...
cdlemg38 40824 Use ~ cdlemg37 to eliminat...
cdlemg39 40825 Eliminate ` =/= ` conditio...
cdlemg40 40826 Eliminate ` P =/= Q ` cond...
cdlemg41 40827 Convert ~ cdlemg40 to func...
ltrnco 40828 The composition of two tra...
trlcocnv 40829 Swap the arguments of the ...
trlcoabs 40830 Absorption into a composit...
trlcoabs2N 40831 Absorption of the trace of...
trlcoat 40832 The trace of a composition...
trlcocnvat 40833 Commonly used special case...
trlconid 40834 The composition of two dif...
trlcolem 40835 Lemma for ~ trlco . (Cont...
trlco 40836 The trace of a composition...
trlcone 40837 If two translations have d...
cdlemg42 40838 Part of proof of Lemma G o...
cdlemg43 40839 Part of proof of Lemma G o...
cdlemg44a 40840 Part of proof of Lemma G o...
cdlemg44b 40841 Eliminate ` ( F `` P ) =/=...
cdlemg44 40842 Part of proof of Lemma G o...
cdlemg47a 40843 TODO: fix comment. TODO: ...
cdlemg46 40844 Part of proof of Lemma G o...
cdlemg47 40845 Part of proof of Lemma G o...
cdlemg48 40846 Eliminate ` h ` from ~ cdl...
ltrncom 40847 Composition is commutative...
ltrnco4 40848 Rearrange a composition of...
trljco 40849 Trace joined with trace of...
trljco2 40850 Trace joined with trace of...
tgrpfset 40853 The translation group maps...
tgrpset 40854 The translation group for ...
tgrpbase 40855 The base set of the transl...
tgrpopr 40856 The group operation of the...
tgrpov 40857 The group operation value ...
tgrpgrplem 40858 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 40859 The translation group is a...
tgrpabl 40860 The translation group is a...
tendofset 40867 The set of all trace-prese...
tendoset 40868 The set of trace-preservin...
istendo 40869 The predicate "is a trace-...
tendotp 40870 Trace-preserving property ...
istendod 40871 Deduce the predicate "is a...
tendof 40872 Functionality of a trace-p...
tendoeq1 40873 Condition determining equa...
tendovalco 40874 Value of composition of tr...
tendocoval 40875 Value of composition of en...
tendocl 40876 Closure of a trace-preserv...
tendoco2 40877 Distribution of compositio...
tendoidcl 40878 The identity is a trace-pr...
tendo1mul 40879 Multiplicative identity mu...
tendo1mulr 40880 Multiplicative identity mu...
tendococl 40881 The composition of two tra...
tendoid 40882 The identity value of a tr...
tendoeq2 40883 Condition determining equa...
tendoplcbv 40884 Define sum operation for t...
tendopl 40885 Value of endomorphism sum ...
tendopl2 40886 Value of result of endomor...
tendoplcl2 40887 Value of result of endomor...
tendoplco2 40888 Value of result of endomor...
tendopltp 40889 Trace-preserving property ...
tendoplcl 40890 Endomorphism sum is a trac...
tendoplcom 40891 The endomorphism sum opera...
tendoplass 40892 The endomorphism sum opera...
tendodi1 40893 Endomorphism composition d...
tendodi2 40894 Endomorphism composition d...
tendo0cbv 40895 Define additive identity f...
tendo02 40896 Value of additive identity...
tendo0co2 40897 The additive identity trac...
tendo0tp 40898 Trace-preserving property ...
tendo0cl 40899 The additive identity is a...
tendo0pl 40900 Property of the additive i...
tendo0plr 40901 Property of the additive i...
tendoicbv 40902 Define inverse function fo...
tendoi 40903 Value of inverse endomorph...
tendoi2 40904 Value of additive inverse ...
tendoicl 40905 Closure of the additive in...
tendoipl 40906 Property of the additive i...
tendoipl2 40907 Property of the additive i...
erngfset 40908 The division rings on trac...
erngset 40909 The division ring on trace...
erngbase 40910 The base set of the divisi...
erngfplus 40911 Ring addition operation. ...
erngplus 40912 Ring addition operation. ...
erngplus2 40913 Ring addition operation. ...
erngfmul 40914 Ring multiplication operat...
erngmul 40915 Ring addition operation. ...
erngfset-rN 40916 The division rings on trac...
erngset-rN 40917 The division ring on trace...
erngbase-rN 40918 The base set of the divisi...
erngfplus-rN 40919 Ring addition operation. ...
erngplus-rN 40920 Ring addition operation. ...
erngplus2-rN 40921 Ring addition operation. ...
erngfmul-rN 40922 Ring multiplication operat...
erngmul-rN 40923 Ring addition operation. ...
cdlemh1 40924 Part of proof of Lemma H o...
cdlemh2 40925 Part of proof of Lemma H o...
cdlemh 40926 Lemma H of [Crawley] p. 11...
cdlemi1 40927 Part of proof of Lemma I o...
cdlemi2 40928 Part of proof of Lemma I o...
cdlemi 40929 Lemma I of [Crawley] p. 11...
cdlemj1 40930 Part of proof of Lemma J o...
cdlemj2 40931 Part of proof of Lemma J o...
cdlemj3 40932 Part of proof of Lemma J o...
tendocan 40933 Cancellation law: if the v...
tendoid0 40934 A trace-preserving endomor...
tendo0mul 40935 Additive identity multipli...
tendo0mulr 40936 Additive identity multipli...
tendo1ne0 40937 The identity (unity) is no...
tendoconid 40938 The composition (product) ...
tendotr 40939 The trace of the value of ...
cdlemk1 40940 Part of proof of Lemma K o...
cdlemk2 40941 Part of proof of Lemma K o...
cdlemk3 40942 Part of proof of Lemma K o...
cdlemk4 40943 Part of proof of Lemma K o...
cdlemk5a 40944 Part of proof of Lemma K o...
cdlemk5 40945 Part of proof of Lemma K o...
cdlemk6 40946 Part of proof of Lemma K o...
cdlemk8 40947 Part of proof of Lemma K o...
cdlemk9 40948 Part of proof of Lemma K o...
cdlemk9bN 40949 Part of proof of Lemma K o...
cdlemki 40950 Part of proof of Lemma K o...
cdlemkvcl 40951 Part of proof of Lemma K o...
cdlemk10 40952 Part of proof of Lemma K o...
cdlemksv 40953 Part of proof of Lemma K o...
cdlemksel 40954 Part of proof of Lemma K o...
cdlemksat 40955 Part of proof of Lemma K o...
cdlemksv2 40956 Part of proof of Lemma K o...
cdlemk7 40957 Part of proof of Lemma K o...
cdlemk11 40958 Part of proof of Lemma K o...
cdlemk12 40959 Part of proof of Lemma K o...
cdlemkoatnle 40960 Utility lemma. (Contribut...
cdlemk13 40961 Part of proof of Lemma K o...
cdlemkole 40962 Utility lemma. (Contribut...
cdlemk14 40963 Part of proof of Lemma K o...
cdlemk15 40964 Part of proof of Lemma K o...
cdlemk16a 40965 Part of proof of Lemma K o...
cdlemk16 40966 Part of proof of Lemma K o...
cdlemk17 40967 Part of proof of Lemma K o...
cdlemk1u 40968 Part of proof of Lemma K o...
cdlemk5auN 40969 Part of proof of Lemma K o...
cdlemk5u 40970 Part of proof of Lemma K o...
cdlemk6u 40971 Part of proof of Lemma K o...
cdlemkj 40972 Part of proof of Lemma K o...
cdlemkuvN 40973 Part of proof of Lemma K o...
cdlemkuel 40974 Part of proof of Lemma K o...
cdlemkuat 40975 Part of proof of Lemma K o...
cdlemkuv2 40976 Part of proof of Lemma K o...
cdlemk18 40977 Part of proof of Lemma K o...
cdlemk19 40978 Part of proof of Lemma K o...
cdlemk7u 40979 Part of proof of Lemma K o...
cdlemk11u 40980 Part of proof of Lemma K o...
cdlemk12u 40981 Part of proof of Lemma K o...
cdlemk21N 40982 Part of proof of Lemma K o...
cdlemk20 40983 Part of proof of Lemma K o...
cdlemkoatnle-2N 40984 Utility lemma. (Contribut...
cdlemk13-2N 40985 Part of proof of Lemma K o...
cdlemkole-2N 40986 Utility lemma. (Contribut...
cdlemk14-2N 40987 Part of proof of Lemma K o...
cdlemk15-2N 40988 Part of proof of Lemma K o...
cdlemk16-2N 40989 Part of proof of Lemma K o...
cdlemk17-2N 40990 Part of proof of Lemma K o...
cdlemkj-2N 40991 Part of proof of Lemma K o...
cdlemkuv-2N 40992 Part of proof of Lemma K o...
cdlemkuel-2N 40993 Part of proof of Lemma K o...
cdlemkuv2-2 40994 Part of proof of Lemma K o...
cdlemk18-2N 40995 Part of proof of Lemma K o...
cdlemk19-2N 40996 Part of proof of Lemma K o...
cdlemk7u-2N 40997 Part of proof of Lemma K o...
cdlemk11u-2N 40998 Part of proof of Lemma K o...
cdlemk12u-2N 40999 Part of proof of Lemma K o...
cdlemk21-2N 41000 Part of proof of Lemma K o...
cdlemk20-2N 41001 Part of proof of Lemma K o...
cdlemk22 41002 Part of proof of Lemma K o...
cdlemk30 41003 Part of proof of Lemma K o...
cdlemkuu 41004 Convert between function a...
cdlemk31 41005 Part of proof of Lemma K o...
cdlemk32 41006 Part of proof of Lemma K o...
cdlemkuel-3 41007 Part of proof of Lemma K o...
cdlemkuv2-3N 41008 Part of proof of Lemma K o...
cdlemk18-3N 41009 Part of proof of Lemma K o...
cdlemk22-3 41010 Part of proof of Lemma K o...
cdlemk23-3 41011 Part of proof of Lemma K o...
cdlemk24-3 41012 Part of proof of Lemma K o...
cdlemk25-3 41013 Part of proof of Lemma K o...
cdlemk26b-3 41014 Part of proof of Lemma K o...
cdlemk26-3 41015 Part of proof of Lemma K o...
cdlemk27-3 41016 Part of proof of Lemma K o...
cdlemk28-3 41017 Part of proof of Lemma K o...
cdlemk33N 41018 Part of proof of Lemma K o...
cdlemk34 41019 Part of proof of Lemma K o...
cdlemk29-3 41020 Part of proof of Lemma K o...
cdlemk35 41021 Part of proof of Lemma K o...
cdlemk36 41022 Part of proof of Lemma K o...
cdlemk37 41023 Part of proof of Lemma K o...
cdlemk38 41024 Part of proof of Lemma K o...
cdlemk39 41025 Part of proof of Lemma K o...
cdlemk40 41026 TODO: fix comment. (Contr...
cdlemk40t 41027 TODO: fix comment. (Contr...
cdlemk40f 41028 TODO: fix comment. (Contr...
cdlemk41 41029 Part of proof of Lemma K o...
cdlemkfid1N 41030 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 41031 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 41032 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 41033 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 41034 TODO: is this useful or sh...
cdlemky 41035 Part of proof of Lemma K o...
cdlemkyu 41036 Convert between function a...
cdlemkyuu 41037 ~ cdlemkyu with some hypot...
cdlemk11ta 41038 Part of proof of Lemma K o...
cdlemk19ylem 41039 Lemma for ~ cdlemk19y . (...
cdlemk11tb 41040 Part of proof of Lemma K o...
cdlemk19y 41041 ~ cdlemk19 with simpler hy...
cdlemkid3N 41042 Lemma for ~ cdlemkid . (C...
cdlemkid4 41043 Lemma for ~ cdlemkid . (C...
cdlemkid5 41044 Lemma for ~ cdlemkid . (C...
cdlemkid 41045 The value of the tau funct...
cdlemk35s 41046 Substitution version of ~ ...
cdlemk35s-id 41047 Substitution version of ~ ...
cdlemk39s 41048 Substitution version of ~ ...
cdlemk39s-id 41049 Substitution version of ~ ...
cdlemk42 41050 Part of proof of Lemma K o...
cdlemk19xlem 41051 Lemma for ~ cdlemk19x . (...
cdlemk19x 41052 ~ cdlemk19 with simpler hy...
cdlemk42yN 41053 Part of proof of Lemma K o...
cdlemk11tc 41054 Part of proof of Lemma K o...
cdlemk11t 41055 Part of proof of Lemma K o...
cdlemk45 41056 Part of proof of Lemma K o...
cdlemk46 41057 Part of proof of Lemma K o...
cdlemk47 41058 Part of proof of Lemma K o...
cdlemk48 41059 Part of proof of Lemma K o...
cdlemk49 41060 Part of proof of Lemma K o...
cdlemk50 41061 Part of proof of Lemma K o...
cdlemk51 41062 Part of proof of Lemma K o...
cdlemk52 41063 Part of proof of Lemma K o...
cdlemk53a 41064 Lemma for ~ cdlemk53 . (C...
cdlemk53b 41065 Lemma for ~ cdlemk53 . (C...
cdlemk53 41066 Part of proof of Lemma K o...
cdlemk54 41067 Part of proof of Lemma K o...
cdlemk55a 41068 Lemma for ~ cdlemk55 . (C...
cdlemk55b 41069 Lemma for ~ cdlemk55 . (C...
cdlemk55 41070 Part of proof of Lemma K o...
cdlemkyyN 41071 Part of proof of Lemma K o...
cdlemk43N 41072 Part of proof of Lemma K o...
cdlemk35u 41073 Substitution version of ~ ...
cdlemk55u1 41074 Lemma for ~ cdlemk55u . (...
cdlemk55u 41075 Part of proof of Lemma K o...
cdlemk39u1 41076 Lemma for ~ cdlemk39u . (...
cdlemk39u 41077 Part of proof of Lemma K o...
cdlemk19u1 41078 ~ cdlemk19 with simpler hy...
cdlemk19u 41079 Part of Lemma K of [Crawle...
cdlemk56 41080 Part of Lemma K of [Crawle...
cdlemk19w 41081 Use a fixed element to eli...
cdlemk56w 41082 Use a fixed element to eli...
cdlemk 41083 Lemma K of [Crawley] p. 11...
tendoex 41084 Generalization of Lemma K ...
cdleml1N 41085 Part of proof of Lemma L o...
cdleml2N 41086 Part of proof of Lemma L o...
cdleml3N 41087 Part of proof of Lemma L o...
cdleml4N 41088 Part of proof of Lemma L o...
cdleml5N 41089 Part of proof of Lemma L o...
cdleml6 41090 Part of proof of Lemma L o...
cdleml7 41091 Part of proof of Lemma L o...
cdleml8 41092 Part of proof of Lemma L o...
cdleml9 41093 Part of proof of Lemma L o...
dva1dim 41094 Two expressions for the 1-...
dvhb1dimN 41095 Two expressions for the 1-...
erng1lem 41096 Value of the endomorphism ...
erngdvlem1 41097 Lemma for ~ eringring . (...
erngdvlem2N 41098 Lemma for ~ eringring . (...
erngdvlem3 41099 Lemma for ~ eringring . (...
erngdvlem4 41100 Lemma for ~ erngdv . (Con...
eringring 41101 An endomorphism ring is a ...
erngdv 41102 An endomorphism ring is a ...
erng0g 41103 The division ring zero of ...
erng1r 41104 The division ring unity of...
erngdvlem1-rN 41105 Lemma for ~ eringring . (...
erngdvlem2-rN 41106 Lemma for ~ eringring . (...
erngdvlem3-rN 41107 Lemma for ~ eringring . (...
erngdvlem4-rN 41108 Lemma for ~ erngdv . (Con...
erngring-rN 41109 An endomorphism ring is a ...
erngdv-rN 41110 An endomorphism ring is a ...
dvafset 41113 The constructed partial ve...
dvaset 41114 The constructed partial ve...
dvasca 41115 The ring base set of the c...
dvabase 41116 The ring base set of the c...
dvafplusg 41117 Ring addition operation fo...
dvaplusg 41118 Ring addition operation fo...
dvaplusgv 41119 Ring addition operation fo...
dvafmulr 41120 Ring multiplication operat...
dvamulr 41121 Ring multiplication operat...
dvavbase 41122 The vectors (vector base s...
dvafvadd 41123 The vector sum operation f...
dvavadd 41124 Ring addition operation fo...
dvafvsca 41125 Ring addition operation fo...
dvavsca 41126 Ring addition operation fo...
tendospcl 41127 Closure of endomorphism sc...
tendospass 41128 Associative law for endomo...
tendospdi1 41129 Forward distributive law f...
tendocnv 41130 Converse of a trace-preser...
tendospdi2 41131 Reverse distributive law f...
tendospcanN 41132 Cancellation law for trace...
dvaabl 41133 The constructed partial ve...
dvalveclem 41134 Lemma for ~ dvalvec . (Co...
dvalvec 41135 The constructed partial ve...
dva0g 41136 The zero vector of partial...
diaffval 41139 The partial isomorphism A ...
diafval 41140 The partial isomorphism A ...
diaval 41141 The partial isomorphism A ...
diaelval 41142 Member of the partial isom...
diafn 41143 Functionality and domain o...
diadm 41144 Domain of the partial isom...
diaeldm 41145 Member of domain of the pa...
diadmclN 41146 A member of domain of the ...
diadmleN 41147 A member of domain of the ...
dian0 41148 The value of the partial i...
dia0eldmN 41149 The lattice zero belongs t...
dia1eldmN 41150 The fiducial hyperplane (t...
diass 41151 The value of the partial i...
diael 41152 A member of the value of t...
diatrl 41153 Trace of a member of the p...
diaelrnN 41154 Any value of the partial i...
dialss 41155 The value of partial isomo...
diaord 41156 The partial isomorphism A ...
dia11N 41157 The partial isomorphism A ...
diaf11N 41158 The partial isomorphism A ...
diaclN 41159 Closure of partial isomorp...
diacnvclN 41160 Closure of partial isomorp...
dia0 41161 The value of the partial i...
dia1N 41162 The value of the partial i...
dia1elN 41163 The largest subspace in th...
diaglbN 41164 Partial isomorphism A of a...
diameetN 41165 Partial isomorphism A of a...
diainN 41166 Inverse partial isomorphis...
diaintclN 41167 The intersection of partia...
diasslssN 41168 The partial isomorphism A ...
diassdvaN 41169 The partial isomorphism A ...
dia1dim 41170 Two expressions for the 1-...
dia1dim2 41171 Two expressions for a 1-di...
dia1dimid 41172 A vector (translation) bel...
dia2dimlem1 41173 Lemma for ~ dia2dim . Sho...
dia2dimlem2 41174 Lemma for ~ dia2dim . Def...
dia2dimlem3 41175 Lemma for ~ dia2dim . Def...
dia2dimlem4 41176 Lemma for ~ dia2dim . Sho...
dia2dimlem5 41177 Lemma for ~ dia2dim . The...
dia2dimlem6 41178 Lemma for ~ dia2dim . Eli...
dia2dimlem7 41179 Lemma for ~ dia2dim . Eli...
dia2dimlem8 41180 Lemma for ~ dia2dim . Eli...
dia2dimlem9 41181 Lemma for ~ dia2dim . Eli...
dia2dimlem10 41182 Lemma for ~ dia2dim . Con...
dia2dimlem11 41183 Lemma for ~ dia2dim . Con...
dia2dimlem12 41184 Lemma for ~ dia2dim . Obt...
dia2dimlem13 41185 Lemma for ~ dia2dim . Eli...
dia2dim 41186 A two-dimensional subspace...
dvhfset 41189 The constructed full vecto...
dvhset 41190 The constructed full vecto...
dvhsca 41191 The ring of scalars of the...
dvhbase 41192 The ring base set of the c...
dvhfplusr 41193 Ring addition operation fo...
dvhfmulr 41194 Ring multiplication operat...
dvhmulr 41195 Ring multiplication operat...
dvhvbase 41196 The vectors (vector base s...
dvhelvbasei 41197 Vector membership in the c...
dvhvaddcbv 41198 Change bound variables to ...
dvhvaddval 41199 The vector sum operation f...
dvhfvadd 41200 The vector sum operation f...
dvhvadd 41201 The vector sum operation f...
dvhopvadd 41202 The vector sum operation f...
dvhopvadd2 41203 The vector sum operation f...
dvhvaddcl 41204 Closure of the vector sum ...
dvhvaddcomN 41205 Commutativity of vector su...
dvhvaddass 41206 Associativity of vector su...
dvhvscacbv 41207 Change bound variables to ...
dvhvscaval 41208 The scalar product operati...
dvhfvsca 41209 Scalar product operation f...
dvhvsca 41210 Scalar product operation f...
dvhopvsca 41211 Scalar product operation f...
dvhvscacl 41212 Closure of the scalar prod...
tendoinvcl 41213 Closure of multiplicative ...
tendolinv 41214 Left multiplicative invers...
tendorinv 41215 Right multiplicative inver...
dvhgrp 41216 The full vector space ` U ...
dvhlveclem 41217 Lemma for ~ dvhlvec . TOD...
dvhlvec 41218 The full vector space ` U ...
dvhlmod 41219 The full vector space ` U ...
dvh0g 41220 The zero vector of vector ...
dvheveccl 41221 Properties of a unit vecto...
dvhopclN 41222 Closure of a ` DVecH ` vec...
dvhopaddN 41223 Sum of ` DVecH ` vectors e...
dvhopspN 41224 Scalar product of ` DVecH ...
dvhopN 41225 Decompose a ` DVecH ` vect...
dvhopellsm 41226 Ordered pair membership in...
cdlemm10N 41227 The image of the map ` G `...
docaffvalN 41230 Subspace orthocomplement f...
docafvalN 41231 Subspace orthocomplement f...
docavalN 41232 Subspace orthocomplement f...
docaclN 41233 Closure of subspace orthoc...
diaocN 41234 Value of partial isomorphi...
doca2N 41235 Double orthocomplement of ...
doca3N 41236 Double orthocomplement of ...
dvadiaN 41237 Any closed subspace is a m...
diarnN 41238 Partial isomorphism A maps...
diaf1oN 41239 The partial isomorphism A ...
djaffvalN 41242 Subspace join for ` DVecA ...
djafvalN 41243 Subspace join for ` DVecA ...
djavalN 41244 Subspace join for ` DVecA ...
djaclN 41245 Closure of subspace join f...
djajN 41246 Transfer lattice join to `...
dibffval 41249 The partial isomorphism B ...
dibfval 41250 The partial isomorphism B ...
dibval 41251 The partial isomorphism B ...
dibopelvalN 41252 Member of the partial isom...
dibval2 41253 Value of the partial isomo...
dibopelval2 41254 Member of the partial isom...
dibval3N 41255 Value of the partial isomo...
dibelval3 41256 Member of the partial isom...
dibopelval3 41257 Member of the partial isom...
dibelval1st 41258 Membership in value of the...
dibelval1st1 41259 Membership in value of the...
dibelval1st2N 41260 Membership in value of the...
dibelval2nd 41261 Membership in value of the...
dibn0 41262 The value of the partial i...
dibfna 41263 Functionality and domain o...
dibdiadm 41264 Domain of the partial isom...
dibfnN 41265 Functionality and domain o...
dibdmN 41266 Domain of the partial isom...
dibeldmN 41267 Member of domain of the pa...
dibord 41268 The isomorphism B for a la...
dib11N 41269 The isomorphism B for a la...
dibf11N 41270 The partial isomorphism A ...
dibclN 41271 Closure of partial isomorp...
dibvalrel 41272 The value of partial isomo...
dib0 41273 The value of partial isomo...
dib1dim 41274 Two expressions for the 1-...
dibglbN 41275 Partial isomorphism B of a...
dibintclN 41276 The intersection of partia...
dib1dim2 41277 Two expressions for a 1-di...
dibss 41278 The partial isomorphism B ...
diblss 41279 The value of partial isomo...
diblsmopel 41280 Membership in subspace sum...
dicffval 41283 The partial isomorphism C ...
dicfval 41284 The partial isomorphism C ...
dicval 41285 The partial isomorphism C ...
dicopelval 41286 Membership in value of the...
dicelvalN 41287 Membership in value of the...
dicval2 41288 The partial isomorphism C ...
dicelval3 41289 Member of the partial isom...
dicopelval2 41290 Membership in value of the...
dicelval2N 41291 Membership in value of the...
dicfnN 41292 Functionality and domain o...
dicdmN 41293 Domain of the partial isom...
dicvalrelN 41294 The value of partial isomo...
dicssdvh 41295 The partial isomorphism C ...
dicelval1sta 41296 Membership in value of the...
dicelval1stN 41297 Membership in value of the...
dicelval2nd 41298 Membership in value of the...
dicvaddcl 41299 Membership in value of the...
dicvscacl 41300 Membership in value of the...
dicn0 41301 The value of the partial i...
diclss 41302 The value of partial isomo...
diclspsn 41303 The value of isomorphism C...
cdlemn2 41304 Part of proof of Lemma N o...
cdlemn2a 41305 Part of proof of Lemma N o...
cdlemn3 41306 Part of proof of Lemma N o...
cdlemn4 41307 Part of proof of Lemma N o...
cdlemn4a 41308 Part of proof of Lemma N o...
cdlemn5pre 41309 Part of proof of Lemma N o...
cdlemn5 41310 Part of proof of Lemma N o...
cdlemn6 41311 Part of proof of Lemma N o...
cdlemn7 41312 Part of proof of Lemma N o...
cdlemn8 41313 Part of proof of Lemma N o...
cdlemn9 41314 Part of proof of Lemma N o...
cdlemn10 41315 Part of proof of Lemma N o...
cdlemn11a 41316 Part of proof of Lemma N o...
cdlemn11b 41317 Part of proof of Lemma N o...
cdlemn11c 41318 Part of proof of Lemma N o...
cdlemn11pre 41319 Part of proof of Lemma N o...
cdlemn11 41320 Part of proof of Lemma N o...
cdlemn 41321 Lemma N of [Crawley] p. 12...
dihordlem6 41322 Part of proof of Lemma N o...
dihordlem7 41323 Part of proof of Lemma N o...
dihordlem7b 41324 Part of proof of Lemma N o...
dihjustlem 41325 Part of proof after Lemma ...
dihjust 41326 Part of proof after Lemma ...
dihord1 41327 Part of proof after Lemma ...
dihord2a 41328 Part of proof after Lemma ...
dihord2b 41329 Part of proof after Lemma ...
dihord2cN 41330 Part of proof after Lemma ...
dihord11b 41331 Part of proof after Lemma ...
dihord10 41332 Part of proof after Lemma ...
dihord11c 41333 Part of proof after Lemma ...
dihord2pre 41334 Part of proof after Lemma ...
dihord2pre2 41335 Part of proof after Lemma ...
dihord2 41336 Part of proof after Lemma ...
dihffval 41339 The isomorphism H for a la...
dihfval 41340 Isomorphism H for a lattic...
dihval 41341 Value of isomorphism H for...
dihvalc 41342 Value of isomorphism H for...
dihlsscpre 41343 Closure of isomorphism H f...
dihvalcqpre 41344 Value of isomorphism H for...
dihvalcq 41345 Value of isomorphism H for...
dihvalb 41346 Value of isomorphism H for...
dihopelvalbN 41347 Ordered pair member of the...
dihvalcqat 41348 Value of isomorphism H for...
dih1dimb 41349 Two expressions for a 1-di...
dih1dimb2 41350 Isomorphism H at an atom u...
dih1dimc 41351 Isomorphism H at an atom n...
dib2dim 41352 Extend ~ dia2dim to partia...
dih2dimb 41353 Extend ~ dib2dim to isomor...
dih2dimbALTN 41354 Extend ~ dia2dim to isomor...
dihopelvalcqat 41355 Ordered pair member of the...
dihvalcq2 41356 Value of isomorphism H for...
dihopelvalcpre 41357 Member of value of isomorp...
dihopelvalc 41358 Member of value of isomorp...
dihlss 41359 The value of isomorphism H...
dihss 41360 The value of isomorphism H...
dihssxp 41361 An isomorphism H value is ...
dihopcl 41362 Closure of an ordered pair...
xihopellsmN 41363 Ordered pair membership in...
dihopellsm 41364 Ordered pair membership in...
dihord6apre 41365 Part of proof that isomorp...
dihord3 41366 The isomorphism H for a la...
dihord4 41367 The isomorphism H for a la...
dihord5b 41368 Part of proof that isomorp...
dihord6b 41369 Part of proof that isomorp...
dihord6a 41370 Part of proof that isomorp...
dihord5apre 41371 Part of proof that isomorp...
dihord5a 41372 Part of proof that isomorp...
dihord 41373 The isomorphism H is order...
dih11 41374 The isomorphism H is one-t...
dihf11lem 41375 Functionality of the isomo...
dihf11 41376 The isomorphism H for a la...
dihfn 41377 Functionality and domain o...
dihdm 41378 Domain of isomorphism H. (...
dihcl 41379 Closure of isomorphism H. ...
dihcnvcl 41380 Closure of isomorphism H c...
dihcnvid1 41381 The converse isomorphism o...
dihcnvid2 41382 The isomorphism of a conve...
dihcnvord 41383 Ordering property for conv...
dihcnv11 41384 The converse of isomorphis...
dihsslss 41385 The isomorphism H maps to ...
dihrnlss 41386 The isomorphism H maps to ...
dihrnss 41387 The isomorphism H maps to ...
dihvalrel 41388 The value of isomorphism H...
dih0 41389 The value of isomorphism H...
dih0bN 41390 A lattice element is zero ...
dih0vbN 41391 A vector is zero iff its s...
dih0cnv 41392 The isomorphism H converse...
dih0rn 41393 The zero subspace belongs ...
dih0sb 41394 A subspace is zero iff the...
dih1 41395 The value of isomorphism H...
dih1rn 41396 The full vector space belo...
dih1cnv 41397 The isomorphism H converse...
dihwN 41398 Value of isomorphism H at ...
dihmeetlem1N 41399 Isomorphism H of a conjunc...
dihglblem5apreN 41400 A conjunction property of ...
dihglblem5aN 41401 A conjunction property of ...
dihglblem2aN 41402 Lemma for isomorphism H of...
dihglblem2N 41403 The GLB of a set of lattic...
dihglblem3N 41404 Isomorphism H of a lattice...
dihglblem3aN 41405 Isomorphism H of a lattice...
dihglblem4 41406 Isomorphism H of a lattice...
dihglblem5 41407 Isomorphism H of a lattice...
dihmeetlem2N 41408 Isomorphism H of a conjunc...
dihglbcpreN 41409 Isomorphism H of a lattice...
dihglbcN 41410 Isomorphism H of a lattice...
dihmeetcN 41411 Isomorphism H of a lattice...
dihmeetbN 41412 Isomorphism H of a lattice...
dihmeetbclemN 41413 Lemma for isomorphism H of...
dihmeetlem3N 41414 Lemma for isomorphism H of...
dihmeetlem4preN 41415 Lemma for isomorphism H of...
dihmeetlem4N 41416 Lemma for isomorphism H of...
dihmeetlem5 41417 Part of proof that isomorp...
dihmeetlem6 41418 Lemma for isomorphism H of...
dihmeetlem7N 41419 Lemma for isomorphism H of...
dihjatc1 41420 Lemma for isomorphism H of...
dihjatc2N 41421 Isomorphism H of join with...
dihjatc3 41422 Isomorphism H of join with...
dihmeetlem8N 41423 Lemma for isomorphism H of...
dihmeetlem9N 41424 Lemma for isomorphism H of...
dihmeetlem10N 41425 Lemma for isomorphism H of...
dihmeetlem11N 41426 Lemma for isomorphism H of...
dihmeetlem12N 41427 Lemma for isomorphism H of...
dihmeetlem13N 41428 Lemma for isomorphism H of...
dihmeetlem14N 41429 Lemma for isomorphism H of...
dihmeetlem15N 41430 Lemma for isomorphism H of...
dihmeetlem16N 41431 Lemma for isomorphism H of...
dihmeetlem17N 41432 Lemma for isomorphism H of...
dihmeetlem18N 41433 Lemma for isomorphism H of...
dihmeetlem19N 41434 Lemma for isomorphism H of...
dihmeetlem20N 41435 Lemma for isomorphism H of...
dihmeetALTN 41436 Isomorphism H of a lattice...
dih1dimatlem0 41437 Lemma for ~ dih1dimat . (...
dih1dimatlem 41438 Lemma for ~ dih1dimat . (...
dih1dimat 41439 Any 1-dimensional subspace...
dihlsprn 41440 The span of a vector belon...
dihlspsnssN 41441 A subspace included in a 1...
dihlspsnat 41442 The inverse isomorphism H ...
dihatlat 41443 The isomorphism H of an at...
dihat 41444 There exists at least one ...
dihpN 41445 The value of isomorphism H...
dihlatat 41446 The reverse isomorphism H ...
dihatexv 41447 There is a nonzero vector ...
dihatexv2 41448 There is a nonzero vector ...
dihglblem6 41449 Isomorphism H of a lattice...
dihglb 41450 Isomorphism H of a lattice...
dihglb2 41451 Isomorphism H of a lattice...
dihmeet 41452 Isomorphism H of a lattice...
dihintcl 41453 The intersection of closed...
dihmeetcl 41454 Closure of closed subspace...
dihmeet2 41455 Reverse isomorphism H of a...
dochffval 41458 Subspace orthocomplement f...
dochfval 41459 Subspace orthocomplement f...
dochval 41460 Subspace orthocomplement f...
dochval2 41461 Subspace orthocomplement f...
dochcl 41462 Closure of subspace orthoc...
dochlss 41463 A subspace orthocomplement...
dochssv 41464 A subspace orthocomplement...
dochfN 41465 Domain and codomain of the...
dochvalr 41466 Orthocomplement of a close...
doch0 41467 Orthocomplement of the zer...
doch1 41468 Orthocomplement of the uni...
dochoc0 41469 The zero subspace is close...
dochoc1 41470 The unit subspace (all vec...
dochvalr2 41471 Orthocomplement of a close...
dochvalr3 41472 Orthocomplement of a close...
doch2val2 41473 Double orthocomplement for...
dochss 41474 Subset law for orthocomple...
dochocss 41475 Double negative law for or...
dochoc 41476 Double negative law for or...
dochsscl 41477 If a set of vectors is inc...
dochoccl 41478 A set of vectors is closed...
dochord 41479 Ordering law for orthocomp...
dochord2N 41480 Ordering law for orthocomp...
dochord3 41481 Ordering law for orthocomp...
doch11 41482 Orthocomplement is one-to-...
dochsordN 41483 Strict ordering law for or...
dochn0nv 41484 An orthocomplement is nonz...
dihoml4c 41485 Version of ~ dihoml4 with ...
dihoml4 41486 Orthomodular law for const...
dochspss 41487 The span of a set of vecto...
dochocsp 41488 The span of an orthocomple...
dochspocN 41489 The span of an orthocomple...
dochocsn 41490 The double orthocomplement...
dochsncom 41491 Swap vectors in an orthoco...
dochsat 41492 The double orthocomplement...
dochshpncl 41493 If a hyperplane is not clo...
dochlkr 41494 Equivalent conditions for ...
dochkrshp 41495 The closure of a kernel is...
dochkrshp2 41496 Properties of the closure ...
dochkrshp3 41497 Properties of the closure ...
dochkrshp4 41498 Properties of the closure ...
dochdmj1 41499 De Morgan-like law for sub...
dochnoncon 41500 Law of noncontradiction. ...
dochnel2 41501 A nonzero member of a subs...
dochnel 41502 A nonzero vector doesn't b...
djhffval 41505 Subspace join for ` DVecH ...
djhfval 41506 Subspace join for ` DVecH ...
djhval 41507 Subspace join for ` DVecH ...
djhval2 41508 Value of subspace join for...
djhcl 41509 Closure of subspace join f...
djhlj 41510 Transfer lattice join to `...
djhljjN 41511 Lattice join in terms of `...
djhjlj 41512 ` DVecH ` vector space clo...
djhj 41513 ` DVecH ` vector space clo...
djhcom 41514 Subspace join commutes. (...
djhspss 41515 Subspace span of union is ...
djhsumss 41516 Subspace sum is a subset o...
dihsumssj 41517 The subspace sum of two is...
djhunssN 41518 Subspace union is a subset...
dochdmm1 41519 De Morgan-like law for clo...
djhexmid 41520 Excluded middle property o...
djh01 41521 Closed subspace join with ...
djh02 41522 Closed subspace join with ...
djhlsmcl 41523 A closed subspace sum equa...
djhcvat42 41524 A covering property. ( ~ ...
dihjatb 41525 Isomorphism H of lattice j...
dihjatc 41526 Isomorphism H of lattice j...
dihjatcclem1 41527 Lemma for isomorphism H of...
dihjatcclem2 41528 Lemma for isomorphism H of...
dihjatcclem3 41529 Lemma for ~ dihjatcc . (C...
dihjatcclem4 41530 Lemma for isomorphism H of...
dihjatcc 41531 Isomorphism H of lattice j...
dihjat 41532 Isomorphism H of lattice j...
dihprrnlem1N 41533 Lemma for ~ dihprrn , show...
dihprrnlem2 41534 Lemma for ~ dihprrn . (Co...
dihprrn 41535 The span of a vector pair ...
djhlsmat 41536 The sum of two subspace at...
dihjat1lem 41537 Subspace sum of a closed s...
dihjat1 41538 Subspace sum of a closed s...
dihsmsprn 41539 Subspace sum of a closed s...
dihjat2 41540 The subspace sum of a clos...
dihjat3 41541 Isomorphism H of lattice j...
dihjat4 41542 Transfer the subspace sum ...
dihjat6 41543 Transfer the subspace sum ...
dihsmsnrn 41544 The subspace sum of two si...
dihsmatrn 41545 The subspace sum of a clos...
dihjat5N 41546 Transfer lattice join with...
dvh4dimat 41547 There is an atom that is o...
dvh3dimatN 41548 There is an atom that is o...
dvh2dimatN 41549 Given an atom, there exist...
dvh1dimat 41550 There exists an atom. (Co...
dvh1dim 41551 There exists a nonzero vec...
dvh4dimlem 41552 Lemma for ~ dvh4dimN . (C...
dvhdimlem 41553 Lemma for ~ dvh2dim and ~ ...
dvh2dim 41554 There is a vector that is ...
dvh3dim 41555 There is a vector that is ...
dvh4dimN 41556 There is a vector that is ...
dvh3dim2 41557 There is a vector that is ...
dvh3dim3N 41558 There is a vector that is ...
dochsnnz 41559 The orthocomplement of a s...
dochsatshp 41560 The orthocomplement of a s...
dochsatshpb 41561 The orthocomplement of a s...
dochsnshp 41562 The orthocomplement of a n...
dochshpsat 41563 A hyperplane is closed iff...
dochkrsat 41564 The orthocomplement of a k...
dochkrsat2 41565 The orthocomplement of a k...
dochsat0 41566 The orthocomplement of a k...
dochkrsm 41567 The subspace sum of a clos...
dochexmidat 41568 Special case of excluded m...
dochexmidlem1 41569 Lemma for ~ dochexmid . H...
dochexmidlem2 41570 Lemma for ~ dochexmid . (...
dochexmidlem3 41571 Lemma for ~ dochexmid . U...
dochexmidlem4 41572 Lemma for ~ dochexmid . (...
dochexmidlem5 41573 Lemma for ~ dochexmid . (...
dochexmidlem6 41574 Lemma for ~ dochexmid . (...
dochexmidlem7 41575 Lemma for ~ dochexmid . C...
dochexmidlem8 41576 Lemma for ~ dochexmid . T...
dochexmid 41577 Excluded middle law for cl...
dochsnkrlem1 41578 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 41579 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 41580 Lemma for ~ dochsnkr . (C...
dochsnkr 41581 A (closed) kernel expresse...
dochsnkr2 41582 Kernel of the explicit fun...
dochsnkr2cl 41583 The ` X ` determining func...
dochflcl 41584 Closure of the explicit fu...
dochfl1 41585 The value of the explicit ...
dochfln0 41586 The value of a functional ...
dochkr1 41587 A nonzero functional has a...
dochkr1OLDN 41588 A nonzero functional has a...
lpolsetN 41591 The set of polarities of a...
islpolN 41592 The predicate "is a polari...
islpoldN 41593 Properties that determine ...
lpolfN 41594 Functionality of a polarit...
lpolvN 41595 The polarity of the whole ...
lpolconN 41596 Contraposition property of...
lpolsatN 41597 The polarity of an atomic ...
lpolpolsatN 41598 Property of a polarity. (...
dochpolN 41599 The subspace orthocompleme...
lcfl1lem 41600 Property of a functional w...
lcfl1 41601 Property of a functional w...
lcfl2 41602 Property of a functional w...
lcfl3 41603 Property of a functional w...
lcfl4N 41604 Property of a functional w...
lcfl5 41605 Property of a functional w...
lcfl5a 41606 Property of a functional w...
lcfl6lem 41607 Lemma for ~ lcfl6 . A fun...
lcfl7lem 41608 Lemma for ~ lcfl7N . If t...
lcfl6 41609 Property of a functional w...
lcfl7N 41610 Property of a functional w...
lcfl8 41611 Property of a functional w...
lcfl8a 41612 Property of a functional w...
lcfl8b 41613 Property of a nonzero func...
lcfl9a 41614 Property implying that a f...
lclkrlem1 41615 The set of functionals hav...
lclkrlem2a 41616 Lemma for ~ lclkr . Use ~...
lclkrlem2b 41617 Lemma for ~ lclkr . (Cont...
lclkrlem2c 41618 Lemma for ~ lclkr . (Cont...
lclkrlem2d 41619 Lemma for ~ lclkr . (Cont...
lclkrlem2e 41620 Lemma for ~ lclkr . The k...
lclkrlem2f 41621 Lemma for ~ lclkr . Const...
lclkrlem2g 41622 Lemma for ~ lclkr . Compa...
lclkrlem2h 41623 Lemma for ~ lclkr . Elimi...
lclkrlem2i 41624 Lemma for ~ lclkr . Elimi...
lclkrlem2j 41625 Lemma for ~ lclkr . Kerne...
lclkrlem2k 41626 Lemma for ~ lclkr . Kerne...
lclkrlem2l 41627 Lemma for ~ lclkr . Elimi...
lclkrlem2m 41628 Lemma for ~ lclkr . Const...
lclkrlem2n 41629 Lemma for ~ lclkr . (Cont...
lclkrlem2o 41630 Lemma for ~ lclkr . When ...
lclkrlem2p 41631 Lemma for ~ lclkr . When ...
lclkrlem2q 41632 Lemma for ~ lclkr . The s...
lclkrlem2r 41633 Lemma for ~ lclkr . When ...
lclkrlem2s 41634 Lemma for ~ lclkr . Thus,...
lclkrlem2t 41635 Lemma for ~ lclkr . We el...
lclkrlem2u 41636 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 41637 Lemma for ~ lclkr . When ...
lclkrlem2w 41638 Lemma for ~ lclkr . This ...
lclkrlem2x 41639 Lemma for ~ lclkr . Elimi...
lclkrlem2y 41640 Lemma for ~ lclkr . Resta...
lclkrlem2 41641 The set of functionals hav...
lclkr 41642 The set of functionals wit...
lcfls1lem 41643 Property of a functional w...
lcfls1N 41644 Property of a functional w...
lcfls1c 41645 Property of a functional w...
lclkrslem1 41646 The set of functionals hav...
lclkrslem2 41647 The set of functionals hav...
lclkrs 41648 The set of functionals hav...
lclkrs2 41649 The set of functionals wit...
lcfrvalsnN 41650 Reconstruction from the du...
lcfrlem1 41651 Lemma for ~ lcfr . Note t...
lcfrlem2 41652 Lemma for ~ lcfr . (Contr...
lcfrlem3 41653 Lemma for ~ lcfr . (Contr...
lcfrlem4 41654 Lemma for ~ lcfr . (Contr...
lcfrlem5 41655 Lemma for ~ lcfr . The se...
lcfrlem6 41656 Lemma for ~ lcfr . Closur...
lcfrlem7 41657 Lemma for ~ lcfr . Closur...
lcfrlem8 41658 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 41659 Lemma for ~ lcf1o . (This...
lcf1o 41660 Define a function ` J ` th...
lcfrlem10 41661 Lemma for ~ lcfr . (Contr...
lcfrlem11 41662 Lemma for ~ lcfr . (Contr...
lcfrlem12N 41663 Lemma for ~ lcfr . (Contr...
lcfrlem13 41664 Lemma for ~ lcfr . (Contr...
lcfrlem14 41665 Lemma for ~ lcfr . (Contr...
lcfrlem15 41666 Lemma for ~ lcfr . (Contr...
lcfrlem16 41667 Lemma for ~ lcfr . (Contr...
lcfrlem17 41668 Lemma for ~ lcfr . Condit...
lcfrlem18 41669 Lemma for ~ lcfr . (Contr...
lcfrlem19 41670 Lemma for ~ lcfr . (Contr...
lcfrlem20 41671 Lemma for ~ lcfr . (Contr...
lcfrlem21 41672 Lemma for ~ lcfr . (Contr...
lcfrlem22 41673 Lemma for ~ lcfr . (Contr...
lcfrlem23 41674 Lemma for ~ lcfr . TODO: ...
lcfrlem24 41675 Lemma for ~ lcfr . (Contr...
lcfrlem25 41676 Lemma for ~ lcfr . Specia...
lcfrlem26 41677 Lemma for ~ lcfr . Specia...
lcfrlem27 41678 Lemma for ~ lcfr . Specia...
lcfrlem28 41679 Lemma for ~ lcfr . TODO: ...
lcfrlem29 41680 Lemma for ~ lcfr . (Contr...
lcfrlem30 41681 Lemma for ~ lcfr . (Contr...
lcfrlem31 41682 Lemma for ~ lcfr . (Contr...
lcfrlem32 41683 Lemma for ~ lcfr . (Contr...
lcfrlem33 41684 Lemma for ~ lcfr . (Contr...
lcfrlem34 41685 Lemma for ~ lcfr . (Contr...
lcfrlem35 41686 Lemma for ~ lcfr . (Contr...
lcfrlem36 41687 Lemma for ~ lcfr . (Contr...
lcfrlem37 41688 Lemma for ~ lcfr . (Contr...
lcfrlem38 41689 Lemma for ~ lcfr . Combin...
lcfrlem39 41690 Lemma for ~ lcfr . Elimin...
lcfrlem40 41691 Lemma for ~ lcfr . Elimin...
lcfrlem41 41692 Lemma for ~ lcfr . Elimin...
lcfrlem42 41693 Lemma for ~ lcfr . Elimin...
lcfr 41694 Reconstruction of a subspa...
lcdfval 41697 Dual vector space of funct...
lcdval 41698 Dual vector space of funct...
lcdval2 41699 Dual vector space of funct...
lcdlvec 41700 The dual vector space of f...
lcdlmod 41701 The dual vector space of f...
lcdvbase 41702 Vector base set of a dual ...
lcdvbasess 41703 The vector base set of the...
lcdvbaselfl 41704 A vector in the base set o...
lcdvbasecl 41705 Closure of the value of a ...
lcdvadd 41706 Vector addition for the cl...
lcdvaddval 41707 The value of the value of ...
lcdsca 41708 The ring of scalars of the...
lcdsbase 41709 Base set of scalar ring fo...
lcdsadd 41710 Scalar addition for the cl...
lcdsmul 41711 Scalar multiplication for ...
lcdvs 41712 Scalar product for the clo...
lcdvsval 41713 Value of scalar product op...
lcdvscl 41714 The scalar product operati...
lcdlssvscl 41715 Closure of scalar product ...
lcdvsass 41716 Associative law for scalar...
lcd0 41717 The zero scalar of the clo...
lcd1 41718 The unit scalar of the clo...
lcdneg 41719 The unit scalar of the clo...
lcd0v 41720 The zero functional in the...
lcd0v2 41721 The zero functional in the...
lcd0vvalN 41722 Value of the zero function...
lcd0vcl 41723 Closure of the zero functi...
lcd0vs 41724 A scalar zero times a func...
lcdvs0N 41725 A scalar times the zero fu...
lcdvsub 41726 The value of vector subtra...
lcdvsubval 41727 The value of the value of ...
lcdlss 41728 Subspaces of a dual vector...
lcdlss2N 41729 Subspaces of a dual vector...
lcdlsp 41730 Span in the set of functio...
lcdlkreqN 41731 Colinear functionals have ...
lcdlkreq2N 41732 Colinear functionals have ...
mapdffval 41735 Projectivity from vector s...
mapdfval 41736 Projectivity from vector s...
mapdval 41737 Value of projectivity from...
mapdvalc 41738 Value of projectivity from...
mapdval2N 41739 Value of projectivity from...
mapdval3N 41740 Value of projectivity from...
mapdval4N 41741 Value of projectivity from...
mapdval5N 41742 Value of projectivity from...
mapdordlem1a 41743 Lemma for ~ mapdord . (Co...
mapdordlem1bN 41744 Lemma for ~ mapdord . (Co...
mapdordlem1 41745 Lemma for ~ mapdord . (Co...
mapdordlem2 41746 Lemma for ~ mapdord . Ord...
mapdord 41747 Ordering property of the m...
mapd11 41748 The map defined by ~ df-ma...
mapddlssN 41749 The mapping of a subspace ...
mapdsn 41750 Value of the map defined b...
mapdsn2 41751 Value of the map defined b...
mapdsn3 41752 Value of the map defined b...
mapd1dim2lem1N 41753 Value of the map defined b...
mapdrvallem2 41754 Lemma for ~ mapdrval . TO...
mapdrvallem3 41755 Lemma for ~ mapdrval . (C...
mapdrval 41756 Given a dual subspace ` R ...
mapd1o 41757 The map defined by ~ df-ma...
mapdrn 41758 Range of the map defined b...
mapdunirnN 41759 Union of the range of the ...
mapdrn2 41760 Range of the map defined b...
mapdcnvcl 41761 Closure of the converse of...
mapdcl 41762 Closure the value of the m...
mapdcnvid1N 41763 Converse of the value of t...
mapdsord 41764 Strong ordering property o...
mapdcl2 41765 The mapping of a subspace ...
mapdcnvid2 41766 Value of the converse of t...
mapdcnvordN 41767 Ordering property of the c...
mapdcnv11N 41768 The converse of the map de...
mapdcv 41769 Covering property of the c...
mapdincl 41770 Closure of dual subspace i...
mapdin 41771 Subspace intersection is p...
mapdlsmcl 41772 Closure of dual subspace s...
mapdlsm 41773 Subspace sum is preserved ...
mapd0 41774 Projectivity map of the ze...
mapdcnvatN 41775 Atoms are preserved by the...
mapdat 41776 Atoms are preserved by the...
mapdspex 41777 The map of a span equals t...
mapdn0 41778 Transfer nonzero property ...
mapdncol 41779 Transfer non-colinearity f...
mapdindp 41780 Transfer (part of) vector ...
mapdpglem1 41781 Lemma for ~ mapdpg . Baer...
mapdpglem2 41782 Lemma for ~ mapdpg . Baer...
mapdpglem2a 41783 Lemma for ~ mapdpg . (Con...
mapdpglem3 41784 Lemma for ~ mapdpg . Baer...
mapdpglem4N 41785 Lemma for ~ mapdpg . (Con...
mapdpglem5N 41786 Lemma for ~ mapdpg . (Con...
mapdpglem6 41787 Lemma for ~ mapdpg . Baer...
mapdpglem8 41788 Lemma for ~ mapdpg . Baer...
mapdpglem9 41789 Lemma for ~ mapdpg . Baer...
mapdpglem10 41790 Lemma for ~ mapdpg . Baer...
mapdpglem11 41791 Lemma for ~ mapdpg . (Con...
mapdpglem12 41792 Lemma for ~ mapdpg . TODO...
mapdpglem13 41793 Lemma for ~ mapdpg . (Con...
mapdpglem14 41794 Lemma for ~ mapdpg . (Con...
mapdpglem15 41795 Lemma for ~ mapdpg . (Con...
mapdpglem16 41796 Lemma for ~ mapdpg . Baer...
mapdpglem17N 41797 Lemma for ~ mapdpg . Baer...
mapdpglem18 41798 Lemma for ~ mapdpg . Baer...
mapdpglem19 41799 Lemma for ~ mapdpg . Baer...
mapdpglem20 41800 Lemma for ~ mapdpg . Baer...
mapdpglem21 41801 Lemma for ~ mapdpg . (Con...
mapdpglem22 41802 Lemma for ~ mapdpg . Baer...
mapdpglem23 41803 Lemma for ~ mapdpg . Baer...
mapdpglem30a 41804 Lemma for ~ mapdpg . (Con...
mapdpglem30b 41805 Lemma for ~ mapdpg . (Con...
mapdpglem25 41806 Lemma for ~ mapdpg . Baer...
mapdpglem26 41807 Lemma for ~ mapdpg . Baer...
mapdpglem27 41808 Lemma for ~ mapdpg . Baer...
mapdpglem29 41809 Lemma for ~ mapdpg . Baer...
mapdpglem28 41810 Lemma for ~ mapdpg . Baer...
mapdpglem30 41811 Lemma for ~ mapdpg . Baer...
mapdpglem31 41812 Lemma for ~ mapdpg . Baer...
mapdpglem24 41813 Lemma for ~ mapdpg . Exis...
mapdpglem32 41814 Lemma for ~ mapdpg . Uniq...
mapdpg 41815 Part 1 of proof of the fir...
baerlem3lem1 41816 Lemma for ~ baerlem3 . (C...
baerlem5alem1 41817 Lemma for ~ baerlem5a . (...
baerlem5blem1 41818 Lemma for ~ baerlem5b . (...
baerlem3lem2 41819 Lemma for ~ baerlem3 . (C...
baerlem5alem2 41820 Lemma for ~ baerlem5a . (...
baerlem5blem2 41821 Lemma for ~ baerlem5b . (...
baerlem3 41822 An equality that holds whe...
baerlem5a 41823 An equality that holds whe...
baerlem5b 41824 An equality that holds whe...
baerlem5amN 41825 An equality that holds whe...
baerlem5bmN 41826 An equality that holds whe...
baerlem5abmN 41827 An equality that holds whe...
mapdindp0 41828 Vector independence lemma....
mapdindp1 41829 Vector independence lemma....
mapdindp2 41830 Vector independence lemma....
mapdindp3 41831 Vector independence lemma....
mapdindp4 41832 Vector independence lemma....
mapdhval 41833 Lemmma for ~~? mapdh . (C...
mapdhval0 41834 Lemmma for ~~? mapdh . (C...
mapdhval2 41835 Lemmma for ~~? mapdh . (C...
mapdhcl 41836 Lemmma for ~~? mapdh . (C...
mapdheq 41837 Lemmma for ~~? mapdh . Th...
mapdheq2 41838 Lemmma for ~~? mapdh . On...
mapdheq2biN 41839 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 41840 Lemma for ~ mapdheq4 . Pa...
mapdheq4 41841 Lemma for ~~? mapdh . Par...
mapdh6lem1N 41842 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 41843 Lemma for ~ mapdh6N . Par...
mapdh6aN 41844 Lemma for ~ mapdh6N . Par...
mapdh6b0N 41845 Lemmma for ~ mapdh6N . (C...
mapdh6bN 41846 Lemmma for ~ mapdh6N . (C...
mapdh6cN 41847 Lemmma for ~ mapdh6N . (C...
mapdh6dN 41848 Lemmma for ~ mapdh6N . (C...
mapdh6eN 41849 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 41850 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 41851 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 41852 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 41853 Lemmma for ~ mapdh6N . El...
mapdh6jN 41854 Lemmma for ~ mapdh6N . El...
mapdh6kN 41855 Lemmma for ~ mapdh6N . El...
mapdh6N 41856 Part (6) of [Baer] p. 47 l...
mapdh7eN 41857 Part (7) of [Baer] p. 48 l...
mapdh7cN 41858 Part (7) of [Baer] p. 48 l...
mapdh7dN 41859 Part (7) of [Baer] p. 48 l...
mapdh7fN 41860 Part (7) of [Baer] p. 48 l...
mapdh75e 41861 Part (7) of [Baer] p. 48 l...
mapdh75cN 41862 Part (7) of [Baer] p. 48 l...
mapdh75d 41863 Part (7) of [Baer] p. 48 l...
mapdh75fN 41864 Part (7) of [Baer] p. 48 l...
hvmapffval 41867 Map from nonzero vectors t...
hvmapfval 41868 Map from nonzero vectors t...
hvmapval 41869 Value of map from nonzero ...
hvmapvalvalN 41870 Value of value of map (i.e...
hvmapidN 41871 The value of the vector to...
hvmap1o 41872 The vector to functional m...
hvmapclN 41873 Closure of the vector to f...
hvmap1o2 41874 The vector to functional m...
hvmapcl2 41875 Closure of the vector to f...
hvmaplfl 41876 The vector to functional m...
hvmaplkr 41877 Kernel of the vector to fu...
mapdhvmap 41878 Relationship between ` map...
lspindp5 41879 Obtain an independent vect...
hdmaplem1 41880 Lemma to convert a frequen...
hdmaplem2N 41881 Lemma to convert a frequen...
hdmaplem3 41882 Lemma to convert a frequen...
hdmaplem4 41883 Lemma to convert a frequen...
mapdh8a 41884 Part of Part (8) in [Baer]...
mapdh8aa 41885 Part of Part (8) in [Baer]...
mapdh8ab 41886 Part of Part (8) in [Baer]...
mapdh8ac 41887 Part of Part (8) in [Baer]...
mapdh8ad 41888 Part of Part (8) in [Baer]...
mapdh8b 41889 Part of Part (8) in [Baer]...
mapdh8c 41890 Part of Part (8) in [Baer]...
mapdh8d0N 41891 Part of Part (8) in [Baer]...
mapdh8d 41892 Part of Part (8) in [Baer]...
mapdh8e 41893 Part of Part (8) in [Baer]...
mapdh8g 41894 Part of Part (8) in [Baer]...
mapdh8i 41895 Part of Part (8) in [Baer]...
mapdh8j 41896 Part of Part (8) in [Baer]...
mapdh8 41897 Part (8) in [Baer] p. 48. ...
mapdh9a 41898 Lemma for part (9) in [Bae...
mapdh9aOLDN 41899 Lemma for part (9) in [Bae...
hdmap1ffval 41904 Preliminary map from vecto...
hdmap1fval 41905 Preliminary map from vecto...
hdmap1vallem 41906 Value of preliminary map f...
hdmap1val 41907 Value of preliminary map f...
hdmap1val0 41908 Value of preliminary map f...
hdmap1val2 41909 Value of preliminary map f...
hdmap1eq 41910 The defining equation for ...
hdmap1cbv 41911 Frequently used lemma to c...
hdmap1valc 41912 Connect the value of the p...
hdmap1cl 41913 Convert closure theorem ~ ...
hdmap1eq2 41914 Convert ~ mapdheq2 to use ...
hdmap1eq4N 41915 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 41916 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 41917 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 41918 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 41919 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 41920 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 41921 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 41922 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 41923 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 41924 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 41925 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 41926 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 41927 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 41928 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 41929 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 41930 Part (6) of [Baer] p. 47 l...
hdmap1eulem 41931 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 41932 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 41933 Convert ~ mapdh9a to use t...
hdmap1euOLDN 41934 Convert ~ mapdh9aOLDN to u...
hdmapffval 41935 Map from vectors to functi...
hdmapfval 41936 Map from vectors to functi...
hdmapval 41937 Value of map from vectors ...
hdmapfnN 41938 Functionality of map from ...
hdmapcl 41939 Closure of map from vector...
hdmapval2lem 41940 Lemma for ~ hdmapval2 . (...
hdmapval2 41941 Value of map from vectors ...
hdmapval0 41942 Value of map from vectors ...
hdmapeveclem 41943 Lemma for ~ hdmapevec . T...
hdmapevec 41944 Value of map from vectors ...
hdmapevec2 41945 The inner product of the r...
hdmapval3lemN 41946 Value of map from vectors ...
hdmapval3N 41947 Value of map from vectors ...
hdmap10lem 41948 Lemma for ~ hdmap10 . (Co...
hdmap10 41949 Part 10 in [Baer] p. 48 li...
hdmap11lem1 41950 Lemma for ~ hdmapadd . (C...
hdmap11lem2 41951 Lemma for ~ hdmapadd . (C...
hdmapadd 41952 Part 11 in [Baer] p. 48 li...
hdmapeq0 41953 Part of proof of part 12 i...
hdmapnzcl 41954 Nonzero vector closure of ...
hdmapneg 41955 Part of proof of part 12 i...
hdmapsub 41956 Part of proof of part 12 i...
hdmap11 41957 Part of proof of part 12 i...
hdmaprnlem1N 41958 Part of proof of part 12 i...
hdmaprnlem3N 41959 Part of proof of part 12 i...
hdmaprnlem3uN 41960 Part of proof of part 12 i...
hdmaprnlem4tN 41961 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 41962 Part of proof of part 12 i...
hdmaprnlem6N 41963 Part of proof of part 12 i...
hdmaprnlem7N 41964 Part of proof of part 12 i...
hdmaprnlem8N 41965 Part of proof of part 12 i...
hdmaprnlem9N 41966 Part of proof of part 12 i...
hdmaprnlem3eN 41967 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 41968 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 41969 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 41970 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 41971 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 41972 Lemma for ~ hdmaprnN . In...
hdmaprnN 41973 Part of proof of part 12 i...
hdmapf1oN 41974 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 41975 Prior to part 14 in [Baer]...
hdmap14lem2a 41976 Prior to part 14 in [Baer]...
hdmap14lem1 41977 Prior to part 14 in [Baer]...
hdmap14lem2N 41978 Prior to part 14 in [Baer]...
hdmap14lem3 41979 Prior to part 14 in [Baer]...
hdmap14lem4a 41980 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 41981 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 41982 Case where ` F ` is zero. ...
hdmap14lem7 41983 Combine cases of ` F ` . ...
hdmap14lem8 41984 Part of proof of part 14 i...
hdmap14lem9 41985 Part of proof of part 14 i...
hdmap14lem10 41986 Part of proof of part 14 i...
hdmap14lem11 41987 Part of proof of part 14 i...
hdmap14lem12 41988 Lemma for proof of part 14...
hdmap14lem13 41989 Lemma for proof of part 14...
hdmap14lem14 41990 Part of proof of part 14 i...
hdmap14lem15 41991 Part of proof of part 14 i...
hgmapffval 41994 Map from the scalar divisi...
hgmapfval 41995 Map from the scalar divisi...
hgmapval 41996 Value of map from the scal...
hgmapfnN 41997 Functionality of scalar si...
hgmapcl 41998 Closure of scalar sigma ma...
hgmapdcl 41999 Closure of the vector spac...
hgmapvs 42000 Part 15 of [Baer] p. 50 li...
hgmapval0 42001 Value of the scalar sigma ...
hgmapval1 42002 Value of the scalar sigma ...
hgmapadd 42003 Part 15 of [Baer] p. 50 li...
hgmapmul 42004 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 42005 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 42006 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 42007 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 42008 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 42009 Lemma for ~ hgmaprnN . El...
hgmaprnN 42010 Part of proof of part 16 i...
hgmap11 42011 The scalar sigma map is on...
hgmapf1oN 42012 The scalar sigma map is a ...
hgmapeq0 42013 The scalar sigma map is ze...
hdmapipcl 42014 The inner product (Hermiti...
hdmapln1 42015 Linearity property that wi...
hdmaplna1 42016 Additive property of first...
hdmaplns1 42017 Subtraction property of fi...
hdmaplnm1 42018 Multiplicative property of...
hdmaplna2 42019 Additive property of secon...
hdmapglnm2 42020 g-linear property of secon...
hdmapgln2 42021 g-linear property that wil...
hdmaplkr 42022 Kernel of the vector to du...
hdmapellkr 42023 Membership in the kernel (...
hdmapip0 42024 Zero property that will be...
hdmapip1 42025 Construct a proportional v...
hdmapip0com 42026 Commutation property of Ba...
hdmapinvlem1 42027 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 42028 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 42029 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 42030 Part 1.1 of Proposition 1 ...
hdmapglem5 42031 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 42032 Involution property of sca...
hgmapvvlem2 42033 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 42034 Lemma for ~ hgmapvv . Eli...
hgmapvv 42035 Value of a double involuti...
hdmapglem7a 42036 Lemma for ~ hdmapg . (Con...
hdmapglem7b 42037 Lemma for ~ hdmapg . (Con...
hdmapglem7 42038 Lemma for ~ hdmapg . Line...
hdmapg 42039 Apply the scalar sigma fun...
hdmapoc 42040 Express our constructed or...
hlhilset 42043 The final Hilbert space co...
hlhilsca 42044 The scalar of the final co...
hlhilbase 42045 The base set of the final ...
hlhilplus 42046 The vector addition for th...
hlhilslem 42047 Lemma for ~ hlhilsbase etc...
hlhilsbase 42048 The scalar base set of the...
hlhilsplus 42049 Scalar addition for the fi...
hlhilsmul 42050 Scalar multiplication for ...
hlhilsbase2 42051 The scalar base set of the...
hlhilsplus2 42052 Scalar addition for the fi...
hlhilsmul2 42053 Scalar multiplication for ...
hlhils0 42054 The scalar ring zero for t...
hlhils1N 42055 The scalar ring unity for ...
hlhilvsca 42056 The scalar product for the...
hlhilip 42057 Inner product operation fo...
hlhilipval 42058 Value of inner product ope...
hlhilnvl 42059 The involution operation o...
hlhillvec 42060 The final constructed Hilb...
hlhildrng 42061 The star division ring for...
hlhilsrnglem 42062 Lemma for ~ hlhilsrng . (...
hlhilsrng 42063 The star division ring for...
hlhil0 42064 The zero vector for the fi...
hlhillsm 42065 The vector sum operation f...
hlhilocv 42066 The orthocomplement for th...
hlhillcs 42067 The closed subspaces of th...
hlhilphllem 42068 Lemma for ~ hlhil . (Cont...
hlhilhillem 42069 Lemma for ~ hlhil . (Cont...
hlathil 42070 Construction of a Hilbert ...
iscsrg 42073 A commutative semiring is ...
rhmzrhval 42074 Evaluation of integers acr...
zndvdchrrhm 42075 Construction of a ring hom...
relogbcld 42076 Closure of the general log...
relogbexpd 42077 Identity law for general l...
relogbzexpd 42078 Power law for the general ...
logblebd 42079 The general logarithm is m...
uzindd 42080 Induction on the upper int...
fzadd2d 42081 Membership of a sum in a f...
zltp1led 42082 Integer ordering relation,...
fzne2d 42083 Elementhood in a finite se...
eqfnfv2d2 42084 Equality of functions is d...
fzsplitnd 42085 Split a finite interval of...
fzsplitnr 42086 Split a finite interval of...
addassnni 42087 Associative law for additi...
addcomnni 42088 Commutative law for additi...
mulassnni 42089 Associative law for multip...
mulcomnni 42090 Commutative law for multip...
gcdcomnni 42091 Commutative law for gcd. ...
gcdnegnni 42092 Negation invariance for gc...
neggcdnni 42093 Negation invariance for gc...
bccl2d 42094 Closure of the binomial co...
recbothd 42095 Take reciprocal on both si...
gcdmultiplei 42096 The GCD of a multiple of a...
gcdaddmzz2nni 42097 Adding a multiple of one o...
gcdaddmzz2nncomi 42098 Adding a multiple of one o...
gcdnncli 42099 Closure of the gcd operato...
muldvds1d 42100 If a product divides an in...
muldvds2d 42101 If a product divides an in...
nndivdvdsd 42102 A positive integer divides...
nnproddivdvdsd 42103 A product of natural numbe...
coprmdvds2d 42104 If an integer is divisible...
imadomfi 42105 An image of a function und...
12gcd5e1 42106 The gcd of 12 and 5 is 1. ...
60gcd6e6 42107 The gcd of 60 and 6 is 6. ...
60gcd7e1 42108 The gcd of 60 and 7 is 1. ...
420gcd8e4 42109 The gcd of 420 and 8 is 4....
lcmeprodgcdi 42110 Calculate the least common...
12lcm5e60 42111 The lcm of 12 and 5 is 60....
60lcm6e60 42112 The lcm of 60 and 6 is 60....
60lcm7e420 42113 The lcm of 60 and 7 is 420...
420lcm8e840 42114 The lcm of 420 and 8 is 84...
lcmfunnnd 42115 Useful equation to calcula...
lcm1un 42116 Least common multiple of n...
lcm2un 42117 Least common multiple of n...
lcm3un 42118 Least common multiple of n...
lcm4un 42119 Least common multiple of n...
lcm5un 42120 Least common multiple of n...
lcm6un 42121 Least common multiple of n...
lcm7un 42122 Least common multiple of n...
lcm8un 42123 Least common multiple of n...
3factsumint1 42124 Move constants out of inte...
3factsumint2 42125 Move constants out of inte...
3factsumint3 42126 Move constants out of inte...
3factsumint4 42127 Move constants out of inte...
3factsumint 42128 Helpful equation for lcm i...
resopunitintvd 42129 Restrict continuous functi...
resclunitintvd 42130 Restrict continuous functi...
resdvopclptsd 42131 Restrict derivative on uni...
lcmineqlem1 42132 Part of lcm inequality lem...
lcmineqlem2 42133 Part of lcm inequality lem...
lcmineqlem3 42134 Part of lcm inequality lem...
lcmineqlem4 42135 Part of lcm inequality lem...
lcmineqlem5 42136 Technical lemma for recipr...
lcmineqlem6 42137 Part of lcm inequality lem...
lcmineqlem7 42138 Derivative of 1-x for chai...
lcmineqlem8 42139 Derivative of (1-x)^(N-M)....
lcmineqlem9 42140 (1-x)^(N-M) is continuous....
lcmineqlem10 42141 Induction step of ~ lcmine...
lcmineqlem11 42142 Induction step, continuati...
lcmineqlem12 42143 Base case for induction. ...
lcmineqlem13 42144 Induction proof for lcm in...
lcmineqlem14 42145 Technical lemma for inequa...
lcmineqlem15 42146 F times the least common m...
lcmineqlem16 42147 Technical divisibility lem...
lcmineqlem17 42148 Inequality of 2^{2n}. (Co...
lcmineqlem18 42149 Technical lemma to shift f...
lcmineqlem19 42150 Dividing implies inequalit...
lcmineqlem20 42151 Inequality for lcm lemma. ...
lcmineqlem21 42152 The lcm inequality lemma w...
lcmineqlem22 42153 The lcm inequality lemma w...
lcmineqlem23 42154 Penultimate step to the lc...
lcmineqlem 42155 The least common multiple ...
3exp7 42156 3 to the power of 7 equals...
3lexlogpow5ineq1 42157 First inequality in inequa...
3lexlogpow5ineq2 42158 Second inequality in inequ...
3lexlogpow5ineq4 42159 Sharper logarithm inequali...
3lexlogpow5ineq3 42160 Combined inequality chain ...
3lexlogpow2ineq1 42161 Result for bound in AKS in...
3lexlogpow2ineq2 42162 Result for bound in AKS in...
3lexlogpow5ineq5 42163 Result for bound in AKS in...
intlewftc 42164 Inequality inference by in...
aks4d1lem1 42165 Technical lemma to reduce ...
aks4d1p1p1 42166 Exponential law for finite...
dvrelog2 42167 The derivative of the loga...
dvrelog3 42168 The derivative of the loga...
dvrelog2b 42169 Derivative of the binary l...
0nonelalab 42170 Technical lemma for open i...
dvrelogpow2b 42171 Derivative of the power of...
aks4d1p1p3 42172 Bound of a ceiling of the ...
aks4d1p1p2 42173 Rewrite ` A ` in more suit...
aks4d1p1p4 42174 Technical step for inequal...
dvle2 42175 Collapsed ~ dvle . (Contr...
aks4d1p1p6 42176 Inequality lift to differe...
aks4d1p1p7 42177 Bound of intermediary of i...
aks4d1p1p5 42178 Show inequality for existe...
aks4d1p1 42179 Show inequality for existe...
aks4d1p2 42180 Technical lemma for existe...
aks4d1p3 42181 There exists a small enoug...
aks4d1p4 42182 There exists a small enoug...
aks4d1p5 42183 Show that ` N ` and ` R ` ...
aks4d1p6 42184 The maximal prime power ex...
aks4d1p7d1 42185 Technical step in AKS lemm...
aks4d1p7 42186 Technical step in AKS lemm...
aks4d1p8d1 42187 If a prime divides one num...
aks4d1p8d2 42188 Any prime power dividing a...
aks4d1p8d3 42189 The remainder of a divisio...
aks4d1p8 42190 Show that ` N ` and ` R ` ...
aks4d1p9 42191 Show that the order is bou...
aks4d1 42192 Lemma 4.1 from ~ https://w...
fldhmf1 42193 A field homomorphism is in...
isprimroot 42196 The value of a primitive r...
isprimroot2 42197 Alternative way of creatin...
mndmolinv 42198 An element of a monoid tha...
linvh 42199 If an element has a unique...
primrootsunit1 42200 Primitive roots have left ...
primrootsunit 42201 Primitive roots have left ...
primrootscoprmpow 42202 Coprime powers of primitiv...
posbezout 42203 Bezout's identity restrict...
primrootscoprf 42204 Coprime powers of primitiv...
primrootscoprbij 42205 A bijection between coprim...
primrootscoprbij2 42206 A bijection between coprim...
remexz 42207 Division with rest. (Cont...
primrootlekpowne0 42208 There is no smaller power ...
primrootspoweq0 42209 The power of a ` R ` -th p...
aks6d1c1p1 42210 Definition of the introspe...
aks6d1c1p1rcl 42211 Reverse closure of the int...
aks6d1c1p2 42212 ` P ` and linear factors a...
aks6d1c1p3 42213 In a field with a Frobeniu...
aks6d1c1p4 42214 The product of polynomials...
aks6d1c1p5 42215 The product of exponents i...
aks6d1c1p7 42216 ` X ` is introspective to ...
aks6d1c1p6 42217 If a polynomials ` F ` is ...
aks6d1c1p8 42218 If a number ` E ` is intro...
aks6d1c1 42219 Claim 1 of Theorem 6.1 ~ h...
evl1gprodd 42220 Polynomial evaluation buil...
aks6d1c2p1 42221 In the AKS-theorem the sub...
aks6d1c2p2 42222 Injective condition for co...
hashscontpowcl 42223 Closure of E for ~ https:/...
hashscontpow1 42224 Helper lemma for to prove ...
hashscontpow 42225 If a set contains all ` N ...
aks6d1c3 42226 Claim 3 of Theorem 6.1 of ...
aks6d1c4 42227 Claim 4 of Theorem 6.1 of ...
aks6d1c1rh 42228 Claim 1 of AKS primality p...
aks6d1c2lem3 42229 Lemma for ~ aks6d1c2 to si...
aks6d1c2lem4 42230 Claim 2 of Theorem 6.1 AKS...
hashnexinj 42231 If the number of elements ...
hashnexinjle 42232 If the number of elements ...
aks6d1c2 42233 Claim 2 of Theorem 6.1 of ...
rspcsbnea 42234 Special case related to ~ ...
idomnnzpownz 42235 A non-zero power in an int...
idomnnzgmulnz 42236 A finite product of non-ze...
ringexp0nn 42237 Zero to the power of a pos...
aks6d1c5lem0 42238 Lemma for Claim 5 of Theor...
aks6d1c5lem1 42239 Lemma for claim 5, evaluat...
aks6d1c5lem3 42240 Lemma for Claim 5, polynom...
aks6d1c5lem2 42241 Lemma for Claim 5, contrad...
aks6d1c5 42242 Claim 5 of Theorem 6.1 ~ h...
deg1gprod 42243 Degree multiplication is a...
deg1pow 42244 Exact degree of a power of...
5bc2eq10 42245 The value of 5 choose 2. ...
facp2 42246 The factorial of a success...
2np3bcnp1 42247 Part of induction step for...
2ap1caineq 42248 Inequality for Theorem 6.6...
sticksstones1 42249 Different strictly monoton...
sticksstones2 42250 The range function on stri...
sticksstones3 42251 The range function on stri...
sticksstones4 42252 Equinumerosity lemma for s...
sticksstones5 42253 Count the number of strict...
sticksstones6 42254 Function induces an order ...
sticksstones7 42255 Closure property of sticks...
sticksstones8 42256 Establish mapping between ...
sticksstones9 42257 Establish mapping between ...
sticksstones10 42258 Establish mapping between ...
sticksstones11 42259 Establish bijective mappin...
sticksstones12a 42260 Establish bijective mappin...
sticksstones12 42261 Establish bijective mappin...
sticksstones13 42262 Establish bijective mappin...
sticksstones14 42263 Sticks and stones with def...
sticksstones15 42264 Sticks and stones with alm...
sticksstones16 42265 Sticks and stones with col...
sticksstones17 42266 Extend sticks and stones t...
sticksstones18 42267 Extend sticks and stones t...
sticksstones19 42268 Extend sticks and stones t...
sticksstones20 42269 Lift sticks and stones to ...
sticksstones21 42270 Lift sticks and stones to ...
sticksstones22 42271 Non-exhaustive sticks and ...
sticksstones23 42272 Non-exhaustive sticks and ...
aks6d1c6lem1 42273 Lemma for claim 6, deduce ...
aks6d1c6lem2 42274 Every primitive root is ro...
aks6d1c6lem3 42275 Claim 6 of Theorem 6.1 of ...
aks6d1c6lem4 42276 Claim 6 of Theorem 6.1 of ...
aks6d1c6isolem1 42277 Lemma to construct the map...
aks6d1c6isolem2 42278 Lemma to construct the gro...
aks6d1c6isolem3 42279 The preimage of a map send...
aks6d1c6lem5 42280 Eliminate the size hypothe...
bcled 42281 Inequality for binomial co...
bcle2d 42282 Inequality for binomial co...
aks6d1c7lem1 42283 The last set of inequaliti...
aks6d1c7lem2 42284 Contradiction to Claim 2 a...
aks6d1c7lem3 42285 Remove lots of hypotheses ...
aks6d1c7lem4 42286 In the AKS algorithm there...
aks6d1c7 42287 ` N ` is a prime power if ...
rhmqusspan 42288 Ring homomorphism out of a...
aks5lem1 42289 Section 5 of ~ https://www...
aks5lem2 42290 Lemma for section 5 ~ http...
ply1asclzrhval 42291 Transfer results from alge...
aks5lem3a 42292 Lemma for AKS section 5. ...
aks5lem4a 42293 Lemma for AKS section 5, r...
aks5lem5a 42294 Lemma for AKS, section 5, ...
aks5lem6 42295 Connect results of section...
indstrd 42296 Strong induction, deductio...
grpods 42297 Relate sums of elements of...
unitscyglem1 42298 Lemma for unitscyg. (Cont...
unitscyglem2 42299 Lemma for unitscyg. (Cont...
unitscyglem3 42300 Lemma for unitscyg. (Cont...
unitscyglem4 42301 Lemma for unitscyg (Contri...
unitscyglem5 42302 Lemma for unitscyg (Contri...
aks5lem7 42303 Lemma for aks5. We clean ...
aks5lem8 42304 Lemma for aks5. Clean up ...
exfinfldd 42306 For any prime ` P ` and an...
aks5 42307 The AKS Primality test, gi...
jarrii 42308 Inference associated with ...
intnanrt 42309 Introduction of conjunct i...
ioin9i8 42310 Miscellaneous inference cr...
jaodd 42311 Double deduction form of ~...
syl3an12 42312 A double syllogism inferen...
exbiii 42313 Inference associated with ...
sbtd 42314 A true statement is true u...
sbor2 42315 One direction of ~ sbor , ...
sbalexi 42316 Inference form of ~ sbalex...
19.9dev 42317 ~ 19.9d in the case of an ...
3rspcedvd 42318 Triple application of ~ rs...
sn-axrep5v 42319 A condensed form of ~ axre...
sn-axprlem3 42320 ~ axprlem3 using only Tars...
sn-exelALT 42321 Alternate proof of ~ exel ...
ss2ab1 42322 Class abstractions in a su...
ssabdv 42323 Deduction of abstraction s...
sn-iotalem 42324 An unused lemma showing th...
sn-iotalemcor 42325 Corollary of ~ sn-iotalem ...
abbi1sn 42326 Originally part of ~ uniab...
brif2 42327 Move a relation inside and...
brif12 42328 Move a relation inside and...
pssexg 42329 The proper subset of a set...
pssn0 42330 A proper superset is nonem...
psspwb 42331 Classes are proper subclas...
xppss12 42332 Proper subset theorem for ...
elpwbi 42333 Membership in a power set,...
imaopab 42334 The image of a class of or...
eqresfnbd 42335 Property of being the rest...
f1o2d2 42336 Sufficient condition for a...
fmpocos 42337 Composition of two functio...
ovmpogad 42338 Value of an operation give...
ofun 42339 A function operation of un...
dfqs2 42340 Alternate definition of qu...
dfqs3 42341 Alternate definition of qu...
qseq12d 42342 Equality theorem for quoti...
qsalrel 42343 The quotient set is equal ...
elmapssresd 42344 A restricted mapping is a ...
supinf 42345 The supremum is the infimu...
mapcod 42346 Compose two mappings. (Co...
fisdomnn 42347 A finite set is dominated ...
ltex 42348 The less-than relation is ...
leex 42349 The less-than-or-equal-to ...
subex 42350 The subtraction operation ...
absex 42351 The absolute value functio...
cjex 42352 The conjugate function is ...
fzosumm1 42353 Separate out the last term...
ccatcan2d 42354 Cancellation law for conca...
c0exALT 42355 Alternate proof of ~ c0ex ...
0cnALT3 42356 Alternate proof of ~ 0cn u...
elre0re 42357 Specialized version of ~ 0...
1t1e1ALT 42358 Alternate proof of ~ 1t1e1...
lttrii 42359 'Less than' is transitive....
remulcan2d 42360 ~ mulcan2d for real number...
readdridaddlidd 42361 Given some real number ` B...
1p3e4 42362 1 + 3 = 4. (Contributed b...
5ne0 42363 The number 5 is nonzero. ...
6ne0 42364 The number 6 is nonzero. ...
7ne0 42365 The number 7 is nonzero. ...
8ne0 42366 The number 8 is nonzero. ...
9ne0 42367 The number 9 is nonzero. ...
sn-1ne2 42368 A proof of ~ 1ne2 without ...
nnn1suc 42369 A positive integer that is...
nnadd1com 42370 Addition with 1 is commuta...
nnaddcom 42371 Addition is commutative fo...
nnaddcomli 42372 Version of ~ addcomli for ...
nnadddir 42373 Right-distributivity for n...
nnmul1com 42374 Multiplication with 1 is c...
nnmulcom 42375 Multiplication is commutat...
readdrcl2d 42376 Reverse closure for additi...
mvrrsubd 42377 Move a subtraction in the ...
laddrotrd 42378 Rotate the variables right...
raddswap12d 42379 Swap the first two variabl...
lsubrotld 42380 Rotate the variables left ...
rsubrotld 42381 Rotate the variables left ...
lsubswap23d 42382 Swap the second and third ...
addsubeq4com 42383 Relation between sums and ...
sqsumi 42384 A sum squared. (Contribut...
negn0nposznnd 42385 Lemma for ~ dffltz . (Con...
sqmid3api 42386 Value of the square of the...
decaddcom 42387 Commute ones place in addi...
sqn5i 42388 The square of a number end...
sqn5ii 42389 The square of a number end...
decpmulnc 42390 Partial products algorithm...
decpmul 42391 Partial products algorithm...
sqdeccom12 42392 The square of a number in ...
sq3deccom12 42393 Variant of ~ sqdeccom12 wi...
4t5e20 42394 4 times 5 equals 20. (Con...
3rdpwhole 42395 A third of a number plus t...
sq4 42396 The square of 4 is 16. (C...
sq5 42397 The square of 5 is 25. (C...
sq6 42398 The square of 6 is 36. (C...
sq7 42399 The square of 7 is 49. (C...
sq8 42400 The square of 8 is 64. (C...
sq9 42401 The square of 9 is 81. (C...
rpsscn 42402 The positive reals are a s...
4rp 42403 4 is a positive real. (Co...
6rp 42404 6 is a positive real. (Co...
7rp 42405 7 is a positive real. (Co...
8rp 42406 8 is a positive real. (Co...
9rp 42407 9 is a positive real. (Co...
235t711 42408 Calculate a product by lon...
ex-decpmul 42409 Example usage of ~ decpmul...
eluzp1 42410 Membership in a successor ...
sn-eluzp1l 42411 Shorter proof of ~ eluzp1l...
fz1sumconst 42412 The sum of ` N ` constant ...
fz1sump1 42413 Add one more term to a sum...
oddnumth 42414 The Odd Number Theorem. T...
nicomachus 42415 Nicomachus's Theorem. The...
sumcubes 42416 The sum of the first ` N `...
ine1 42417 ` _i ` is not 1. (Contrib...
0tie0 42418 0 times ` _i ` equals 0. ...
it1ei 42419 ` _i ` times 1 equals ` _i...
1tiei 42420 1 times ` _i ` equals ` _i...
itrere 42421 ` _i ` times a real is rea...
retire 42422 A real times ` _i ` is rea...
iocioodisjd 42423 Adjacent intervals where t...
rpabsid 42424 A positive real is its own...
oexpreposd 42425 Lemma for ~ dffltz . For ...
explt1d 42426 A nonnegative real number ...
expeq1d 42427 A nonnegative real number ...
expeqidd 42428 A nonnegative real number ...
exp11d 42429 ~ exp11nnd for nonzero int...
0dvds0 42430 0 divides 0. (Contributed...
absdvdsabsb 42431 Divisibility is invariant ...
gcdnn0id 42432 The ` gcd ` of a nonnegati...
gcdle1d 42433 The greatest common diviso...
gcdle2d 42434 The greatest common diviso...
dvdsexpad 42435 Deduction associated with ...
dvdsexpnn 42436 ~ dvdssqlem generalized to...
dvdsexpnn0 42437 ~ dvdsexpnn generalized to...
dvdsexpb 42438 ~ dvdssq generalized to po...
posqsqznn 42439 When a positive rational s...
zdivgd 42440 Two ways to express " ` N ...
efsubd 42441 Difference of exponents la...
ef11d 42442 General condition for the ...
logccne0d 42443 The logarithm isn't 0 if i...
cxp112d 42444 General condition for comp...
cxp111d 42445 General condition for comp...
cxpi11d 42446 ` _i ` to the powers of ` ...
logne0d 42447 Deduction form of ~ logne0...
rxp112d 42448 Real exponentiation is one...
log11d 42449 The natural logarithm is o...
rplog11d 42450 The natural logarithm is o...
rxp11d 42451 Real exponentiation is one...
tanhalfpim 42452 The tangent of ` _pi / 2 `...
sinpim 42453 Sine of a number subtracte...
cospim 42454 Cosine of a number subtrac...
tan3rdpi 42455 The tangent of ` _pi / 3 `...
sin2t3rdpi 42456 The sine of ` 2 x. ( _pi /...
cos2t3rdpi 42457 The cosine of ` 2 x. ( _pi...
sin4t3rdpi 42458 The sine of ` 4 x. ( _pi /...
cos4t3rdpi 42459 The cosine of ` 4 x. ( _pi...
asin1half 42460 The arcsine of ` 1 / 2 ` i...
acos1half 42461 The arccosine of ` 1 / 2 `...
dvun 42462 Condition for the union of...
redvmptabs 42463 The derivative of the abso...
readvrec2 42464 The antiderivative of 1/x ...
readvrec 42465 For real numbers, the anti...
resuppsinopn 42466 The support of sin ( ~ df-...
readvcot 42467 Real antiderivative of cot...
resubval 42470 Value of real subtraction,...
renegeulemv 42471 Lemma for ~ renegeu and si...
renegeulem 42472 Lemma for ~ renegeu and si...
renegeu 42473 Existential uniqueness of ...
rernegcl 42474 Closure law for negative r...
renegadd 42475 Relationship between real ...
renegid 42476 Addition of a real number ...
reneg0addlid 42477 Negative zero is a left ad...
resubeulem1 42478 Lemma for ~ resubeu . A v...
resubeulem2 42479 Lemma for ~ resubeu . A v...
resubeu 42480 Existential uniqueness of ...
rersubcl 42481 Closure for real subtracti...
resubadd 42482 Relation between real subt...
resubaddd 42483 Relationship between subtr...
resubf 42484 Real subtraction is an ope...
repncan2 42485 Addition and subtraction o...
repncan3 42486 Addition and subtraction o...
readdsub 42487 Law for addition and subtr...
reladdrsub 42488 Move LHS of a sum into RHS...
reltsub1 42489 Subtraction from both side...
reltsubadd2 42490 'Less than' relationship b...
resubcan2 42491 Cancellation law for real ...
resubsub4 42492 Law for double subtraction...
rennncan2 42493 Cancellation law for real ...
renpncan3 42494 Cancellation law for real ...
repnpcan 42495 Cancellation law for addit...
reppncan 42496 Cancellation law for mixed...
resubidaddlidlem 42497 Lemma for ~ resubidaddlid ...
resubidaddlid 42498 Any real number subtracted...
resubdi 42499 Distribution of multiplica...
re1m1e0m0 42500 Equality of two left-addit...
sn-00idlem1 42501 Lemma for ~ sn-00id . (Co...
sn-00idlem2 42502 Lemma for ~ sn-00id . (Co...
sn-00idlem3 42503 Lemma for ~ sn-00id . (Co...
sn-00id 42504 ~ 00id proven without ~ ax...
re0m0e0 42505 Real number version of ~ 0...
readdlid 42506 Real number version of ~ a...
sn-addlid 42507 ~ addlid without ~ ax-mulc...
remul02 42508 Real number version of ~ m...
sn-0ne2 42509 ~ 0ne2 without ~ ax-mulcom...
remul01 42510 Real number version of ~ m...
sn-remul0ord 42511 A product is zero iff one ...
resubid 42512 Subtraction of a real numb...
readdrid 42513 Real number version of ~ a...
resubid1 42514 Real number version of ~ s...
renegneg 42515 A real number is equal to ...
readdcan2 42516 Commuted version of ~ read...
renegid2 42517 Commuted version of ~ rene...
remulneg2d 42518 Product with negative is n...
sn-it0e0 42519 Proof of ~ it0e0 without ~...
sn-negex12 42520 A combination of ~ cnegex ...
sn-negex 42521 Proof of ~ cnegex without ...
sn-negex2 42522 Proof of ~ cnegex2 without...
sn-addcand 42523 ~ addcand without ~ ax-mul...
sn-addrid 42524 ~ addrid without ~ ax-mulc...
sn-addcan2d 42525 ~ addcan2d without ~ ax-mu...
reixi 42526 ~ ixi without ~ ax-mulcom ...
rei4 42527 ~ i4 without ~ ax-mulcom ....
sn-addid0 42528 A number that sums to itse...
sn-mul01 42529 ~ mul01 without ~ ax-mulco...
sn-subeu 42530 ~ negeu without ~ ax-mulco...
sn-subcl 42531 ~ subcl without ~ ax-mulco...
sn-subf 42532 ~ subf without ~ ax-mulcom...
resubeqsub 42533 Equivalence between real s...
subresre 42534 Subtraction restricted to ...
addinvcom 42535 A number commutes with its...
remulinvcom 42536 A left multiplicative inve...
remullid 42537 Commuted version of ~ ax-1...
sn-1ticom 42538 Lemma for ~ sn-mullid and ...
sn-mullid 42539 ~ mullid without ~ ax-mulc...
sn-it1ei 42540 ~ it1ei without ~ ax-mulco...
ipiiie0 42541 The multiplicative inverse...
remulcand 42542 Commuted version of ~ remu...
redivvald 42545 Value of real division, wh...
rediveud 42546 Existential uniqueness of ...
sn-redivcld 42547 Closure law for real divis...
redivmuld 42548 Relationship between divis...
redivcan2d 42549 A cancellation law for div...
redivcan3d 42550 A cancellation law for div...
sn-rereccld 42551 Closure law for reciprocal...
rerecid 42552 Multiplication of a number...
rerecid2 42553 Multiplication of a number...
sn-0tie0 42554 Lemma for ~ sn-mul02 . Co...
sn-mul02 42555 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 42556 ~ ltaddpos without ~ ax-mu...
sn-ltaddneg 42557 ~ ltaddneg without ~ ax-mu...
reposdif 42558 Comparison of two numbers ...
relt0neg1 42559 Comparison of a real and i...
relt0neg2 42560 Comparison of a real and i...
sn-addlt0d 42561 The sum of negative number...
sn-addgt0d 42562 The sum of positive number...
sn-nnne0 42563 ~ nnne0 without ~ ax-mulco...
reelznn0nn 42564 ~ elznn0nn restated using ...
nn0addcom 42565 Addition is commutative fo...
zaddcomlem 42566 Lemma for ~ zaddcom . (Co...
zaddcom 42567 Addition is commutative fo...
renegmulnnass 42568 Move multiplication by a n...
nn0mulcom 42569 Multiplication is commutat...
zmulcomlem 42570 Lemma for ~ zmulcom . (Co...
zmulcom 42571 Multiplication is commutat...
mulgt0con1dlem 42572 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 42573 Counterpart to ~ mulgt0con...
mulgt0con2d 42574 Lemma for ~ mulgt0b1d and ...
mulgt0b1d 42575 Biconditional, deductive f...
sn-ltmul2d 42576 ~ ltmul2d without ~ ax-mul...
sn-ltmulgt11d 42577 ~ ltmulgt11d without ~ ax-...
sn-0lt1 42578 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 42579 ~ ltp1 without ~ ax-mulcom...
sn-recgt0d 42580 The reciprocal of a positi...
mulgt0b2d 42581 Biconditional, deductive f...
sn-mulgt1d 42582 ~ mulgt1d without ~ ax-mul...
reneg1lt0 42583 Negative one is a negative...
sn-reclt0d 42584 The reciprocal of a negati...
mulltgt0d 42585 Negative times positive is...
mullt0b1d 42586 When the first term is neg...
mullt0b2d 42587 When the second term is ne...
sn-mullt0d 42588 The product of two negativ...
sn-msqgt0d 42589 A nonzero square is positi...
sn-inelr 42590 ~ inelr without ~ ax-mulco...
sn-itrere 42591 ` _i ` times a real is rea...
sn-retire 42592 Commuted version of ~ sn-i...
cnreeu 42593 The reals in the expressio...
sn-sup2 42594 ~ sup2 with exactly the sa...
sn-sup3d 42595 ~ sup3 without ~ ax-mulcom...
sn-suprcld 42596 ~ suprcld without ~ ax-mul...
sn-suprubd 42597 ~ suprubd without ~ ax-mul...
sn-base0 42598 Avoid axioms in ~ base0 by...
nelsubginvcld 42599 The inverse of a non-subgr...
nelsubgcld 42600 A non-subgroup-member plus...
nelsubgsubcld 42601 A non-subgroup-member minu...
rnasclg 42602 The set of injected scalar...
frlmfielbas 42603 The vectors of a finite fr...
frlmfzwrd 42604 A vector of a module with ...
frlmfzowrd 42605 A vector of a module with ...
frlmfzolen 42606 The dimension of a vector ...
frlmfzowrdb 42607 The vectors of a module wi...
frlmfzoccat 42608 The concatenation of two v...
frlmvscadiccat 42609 Scalar multiplication dist...
grpasscan2d 42610 An associative cancellatio...
grpcominv1 42611 If two elements commute, t...
grpcominv2 42612 If two elements commute, t...
finsubmsubg 42613 A submonoid of a finite gr...
opprmndb 42614 A class is a monoid if and...
opprgrpb 42615 A class is a group if and ...
opprablb 42616 A class is an Abelian grou...
imacrhmcl 42617 The image of a commutative...
rimrcl1 42618 Reverse closure of a ring ...
rimrcl2 42619 Reverse closure of a ring ...
rimcnv 42620 The converse of a ring iso...
rimco 42621 The composition of ring is...
ricsym 42622 Ring isomorphism is symmet...
rictr 42623 Ring isomorphism is transi...
riccrng1 42624 Ring isomorphism preserves...
riccrng 42625 A ring is commutative if a...
domnexpgn0cl 42626 In a domain, a (nonnegativ...
drnginvrn0d 42627 A multiplicative inverse i...
drngmullcan 42628 Cancellation of a nonzero ...
drngmulrcan 42629 Cancellation of a nonzero ...
drnginvmuld 42630 Inverse of a nonzero produ...
ricdrng1 42631 A ring isomorphism maps a ...
ricdrng 42632 A ring is a division ring ...
ricfld 42633 A ring is a field if and o...
asclf1 42634 Two ways of saying the sca...
abvexp 42635 Move exponentiation in and...
fimgmcyclem 42636 Lemma for ~ fimgmcyc . (C...
fimgmcyc 42637 Version of ~ odcl2 for fin...
fidomncyc 42638 Version of ~ odcl2 for mul...
fiabv 42639 In a finite domain (a fini...
lvecgrp 42640 A vector space is a group....
lvecring 42641 The scalar component of a ...
frlm0vald 42642 All coordinates of the zer...
frlmsnic 42643 Given a free module with a...
uvccl 42644 A unit vector is a vector....
uvcn0 42645 A unit vector is nonzero. ...
pwselbasr 42646 The reverse direction of ~...
pwsgprod 42647 Finite products in a power...
psrmnd 42648 The ring of power series i...
psrbagres 42649 Restrict a bag of variable...
mplcrngd 42650 The polynomial ring is a c...
mplsubrgcl 42651 An element of a polynomial...
mhmcopsr 42652 The composition of a monoi...
mhmcoaddpsr 42653 Show that the ring homomor...
rhmcomulpsr 42654 Show that the ring homomor...
rhmpsr 42655 Provide a ring homomorphis...
rhmpsr1 42656 Provide a ring homomorphis...
mplascl0 42657 The zero scalar as a polyn...
mplascl1 42658 The one scalar as a polyno...
mplmapghm 42659 The function ` H ` mapping...
evl0 42660 The zero polynomial evalua...
evlscl 42661 A polynomial over the ring...
evlsval3 42662 Give a formula for the pol...
evlsvval 42663 Give a formula for the eva...
evlsvvvallem 42664 Lemma for ~ evlsvvval akin...
evlsvvvallem2 42665 Lemma for theorems using ~...
evlsvvval 42666 Give a formula for the eva...
evlsscaval 42667 Polynomial evaluation buil...
evlsvarval 42668 Polynomial evaluation buil...
evlsbagval 42669 Polynomial evaluation buil...
evlsexpval 42670 Polynomial evaluation buil...
evlsaddval 42671 Polynomial evaluation buil...
evlsmulval 42672 Polynomial evaluation buil...
evlsmaprhm 42673 The function ` F ` mapping...
evlsevl 42674 Evaluation in a subring is...
evlcl 42675 A polynomial over the ring...
evlvvval 42676 Give a formula for the eva...
evlvvvallem 42677 Lemma for theorems using ~...
evladdval 42678 Polynomial evaluation buil...
evlmulval 42679 Polynomial evaluation buil...
selvcllem1 42680 ` T ` is an associative al...
selvcllem2 42681 ` D ` is a ring homomorphi...
selvcllem3 42682 The third argument passed ...
selvcllemh 42683 Apply the third argument (...
selvcllem4 42684 The fourth argument passed...
selvcllem5 42685 The fifth argument passed ...
selvcl 42686 Closure of the "variable s...
selvval2 42687 Value of the "variable sel...
selvvvval 42688 Recover the original polyn...
evlselvlem 42689 Lemma for ~ evlselv . Use...
evlselv 42690 Evaluating a selection of ...
selvadd 42691 The "variable selection" f...
selvmul 42692 The "variable selection" f...
fsuppind 42693 Induction on functions ` F...
fsuppssindlem1 42694 Lemma for ~ fsuppssind . ...
fsuppssindlem2 42695 Lemma for ~ fsuppssind . ...
fsuppssind 42696 Induction on functions ` F...
mhpind 42697 The homogeneous polynomial...
evlsmhpvvval 42698 Give a formula for the eva...
mhphflem 42699 Lemma for ~ mhphf . Add s...
mhphf 42700 A homogeneous polynomial d...
mhphf2 42701 A homogeneous polynomial d...
mhphf3 42702 A homogeneous polynomial d...
mhphf4 42703 A homogeneous polynomial d...
prjspval 42706 Value of the projective sp...
prjsprel 42707 Utility theorem regarding ...
prjspertr 42708 The relation in ` PrjSp ` ...
prjsperref 42709 The relation in ` PrjSp ` ...
prjspersym 42710 The relation in ` PrjSp ` ...
prjsper 42711 The relation used to defin...
prjspreln0 42712 Two nonzero vectors are eq...
prjspvs 42713 A nonzero multiple of a ve...
prjsprellsp 42714 Two vectors are equivalent...
prjspeclsp 42715 The vectors equivalent to ...
prjspval2 42716 Alternate definition of pr...
prjspnval 42719 Value of the n-dimensional...
prjspnerlem 42720 A lemma showing that the e...
prjspnval2 42721 Value of the n-dimensional...
prjspner 42722 The relation used to defin...
prjspnvs 42723 A nonzero multiple of a ve...
prjspnssbas 42724 A projective point spans a...
prjspnn0 42725 A projective point is none...
0prjspnlem 42726 Lemma for ~ 0prjspn . The...
prjspnfv01 42727 Any vector is equivalent t...
prjspner01 42728 Any vector is equivalent t...
prjspner1 42729 Two vectors whose zeroth c...
0prjspnrel 42730 In the zero-dimensional pr...
0prjspn 42731 A zero-dimensional project...
prjcrvfval 42734 Value of the projective cu...
prjcrvval 42735 Value of the projective cu...
prjcrv0 42736 The "curve" (zero set) cor...
dffltz 42737 Fermat's Last Theorem (FLT...
fltmul 42738 A counterexample to FLT st...
fltdiv 42739 A counterexample to FLT st...
flt0 42740 A counterexample for FLT d...
fltdvdsabdvdsc 42741 Any factor of both ` A ` a...
fltabcoprmex 42742 A counterexample to FLT im...
fltaccoprm 42743 A counterexample to FLT wi...
fltbccoprm 42744 A counterexample to FLT wi...
fltabcoprm 42745 A counterexample to FLT wi...
infdesc 42746 Infinite descent. The hyp...
fltne 42747 If a counterexample to FLT...
flt4lem 42748 Raising a number to the fo...
flt4lem1 42749 Satisfy the antecedent use...
flt4lem2 42750 If ` A ` is even, ` B ` is...
flt4lem3 42751 Equivalent to ~ pythagtrip...
flt4lem4 42752 If the product of two copr...
flt4lem5 42753 In the context of the lemm...
flt4lem5elem 42754 Version of ~ fltaccoprm an...
flt4lem5a 42755 Part 1 of Equation 1 of ...
flt4lem5b 42756 Part 2 of Equation 1 of ...
flt4lem5c 42757 Part 2 of Equation 2 of ...
flt4lem5d 42758 Part 3 of Equation 2 of ...
flt4lem5e 42759 Satisfy the hypotheses of ...
flt4lem5f 42760 Final equation of ~...
flt4lem6 42761 Remove shared factors in a...
flt4lem7 42762 Convert ~ flt4lem5f into a...
nna4b4nsq 42763 Strengthening of Fermat's ...
fltltc 42764 ` ( C ^ N ) ` is the large...
fltnltalem 42765 Lemma for ~ fltnlta . A l...
fltnlta 42766 In a Fermat counterexample...
iddii 42767 Version of ~ a1ii with the...
bicomdALT 42768 Alternate proof of ~ bicom...
alan 42769 Alias for ~ 19.26 for easi...
exor 42770 Alias for ~ 19.43 for easi...
rexor 42771 Alias for ~ r19.43 for eas...
ruvALT 42772 Alternate proof of ~ ruv w...
sn-wcdeq 42773 Alternative to ~ wcdeq and...
sq45 42774 45 squared is 2025. (Cont...
sum9cubes 42775 The sum of the first nine ...
sn-isghm 42776 Longer proof of ~ isghm , ...
aprilfools2025 42777 An abuse of notation. (Co...
nfa1w 42778 Replace ~ ax-10 in ~ nfa1 ...
eu6w 42779 Replace ~ ax-10 , ~ ax-12 ...
abbibw 42780 Replace ~ ax-10 , ~ ax-11 ...
absnw 42781 Replace ~ ax-10 , ~ ax-11 ...
euabsn2w 42782 Replace ~ ax-10 , ~ ax-11 ...
sn-tz6.12-2 42783 ~ tz6.12-2 without ~ ax-10...
cu3addd 42784 Cube of sum of three numbe...
negexpidd 42785 The sum of a real number t...
rexlimdv3d 42786 An extended version of ~ r...
3cubeslem1 42787 Lemma for ~ 3cubes . (Con...
3cubeslem2 42788 Lemma for ~ 3cubes . Used...
3cubeslem3l 42789 Lemma for ~ 3cubes . (Con...
3cubeslem3r 42790 Lemma for ~ 3cubes . (Con...
3cubeslem3 42791 Lemma for ~ 3cubes . (Con...
3cubeslem4 42792 Lemma for ~ 3cubes . This...
3cubes 42793 Every rational number is a...
rntrclfvOAI 42794 The range of the transitiv...
moxfr 42795 Transfer at-most-one betwe...
imaiinfv 42796 Indexed intersection of an...
elrfi 42797 Elementhood in a set of re...
elrfirn 42798 Elementhood in a set of re...
elrfirn2 42799 Elementhood in a set of re...
cmpfiiin 42800 In a compact topology, a s...
ismrcd1 42801 Any function from the subs...
ismrcd2 42802 Second half of ~ ismrcd1 ....
istopclsd 42803 A closure function which s...
ismrc 42804 A function is a Moore clos...
isnacs 42807 Expand definition of Noeth...
nacsfg 42808 In a Noetherian-type closu...
isnacs2 42809 Express Noetherian-type cl...
mrefg2 42810 Slight variation on finite...
mrefg3 42811 Slight variation on finite...
nacsacs 42812 A closure system of Noethe...
isnacs3 42813 A choice-free order equiva...
incssnn0 42814 Transitivity induction of ...
nacsfix 42815 An increasing sequence of ...
constmap 42816 A constant (represented wi...
mapco2g 42817 Renaming indices in a tupl...
mapco2 42818 Post-composition (renaming...
mapfzcons 42819 Extending a one-based mapp...
mapfzcons1 42820 Recover prefix mapping fro...
mapfzcons1cl 42821 A nonempty mapping has a p...
mapfzcons2 42822 Recover added element from...
mptfcl 42823 Interpret range of a maps-...
mzpclval 42828 Substitution lemma for ` m...
elmzpcl 42829 Double substitution lemma ...
mzpclall 42830 The set of all functions w...
mzpcln0 42831 Corollary of ~ mzpclall : ...
mzpcl1 42832 Defining property 1 of a p...
mzpcl2 42833 Defining property 2 of a p...
mzpcl34 42834 Defining properties 3 and ...
mzpval 42835 Value of the ` mzPoly ` fu...
dmmzp 42836 ` mzPoly ` is defined for ...
mzpincl 42837 Polynomial closedness is a...
mzpconst 42838 Constant functions are pol...
mzpf 42839 A polynomial function is a...
mzpproj 42840 A projection function is p...
mzpadd 42841 The pointwise sum of two p...
mzpmul 42842 The pointwise product of t...
mzpconstmpt 42843 A constant function expres...
mzpaddmpt 42844 Sum of polynomial function...
mzpmulmpt 42845 Product of polynomial func...
mzpsubmpt 42846 The difference of two poly...
mzpnegmpt 42847 Negation of a polynomial f...
mzpexpmpt 42848 Raise a polynomial functio...
mzpindd 42849 "Structural" induction to ...
mzpmfp 42850 Relationship between multi...
mzpsubst 42851 Substituting polynomials f...
mzprename 42852 Simplified version of ~ mz...
mzpresrename 42853 A polynomial is a polynomi...
mzpcompact2lem 42854 Lemma for ~ mzpcompact2 . ...
mzpcompact2 42855 Polynomials are finitary o...
coeq0i 42856 ~ coeq0 but without explic...
fzsplit1nn0 42857 Split a finite 1-based set...
eldiophb 42860 Initial expression of Diop...
eldioph 42861 Condition for a set to be ...
diophrw 42862 Renaming and adding unused...
eldioph2lem1 42863 Lemma for ~ eldioph2 . Co...
eldioph2lem2 42864 Lemma for ~ eldioph2 . Co...
eldioph2 42865 Construct a Diophantine se...
eldioph2b 42866 While Diophantine sets wer...
eldiophelnn0 42867 Remove antecedent on ` B `...
eldioph3b 42868 Define Diophantine sets in...
eldioph3 42869 Inference version of ~ eld...
ellz1 42870 Membership in a lower set ...
lzunuz 42871 The union of a lower set o...
fz1eqin 42872 Express a one-based finite...
lzenom 42873 Lower integers are countab...
elmapresaunres2 42874 ~ fresaunres2 transposed t...
diophin 42875 If two sets are Diophantin...
diophun 42876 If two sets are Diophantin...
eldiophss 42877 Diophantine sets are sets ...
diophrex 42878 Projecting a Diophantine s...
eq0rabdioph 42879 This is the first of a num...
eqrabdioph 42880 Diophantine set builder fo...
0dioph 42881 The null set is Diophantin...
vdioph 42882 The "universal" set (as la...
anrabdioph 42883 Diophantine set builder fo...
orrabdioph 42884 Diophantine set builder fo...
3anrabdioph 42885 Diophantine set builder fo...
3orrabdioph 42886 Diophantine set builder fo...
2sbcrex 42887 Exchange an existential qu...
sbcrexgOLD 42888 Interchange class substitu...
2sbcrexOLD 42889 Exchange an existential qu...
sbc2rex 42890 Exchange a substitution wi...
sbc2rexgOLD 42891 Exchange a substitution wi...
sbc4rex 42892 Exchange a substitution wi...
sbc4rexgOLD 42893 Exchange a substitution wi...
sbcrot3 42894 Rotate a sequence of three...
sbcrot5 42895 Rotate a sequence of five ...
sbccomieg 42896 Commute two explicit subst...
rexrabdioph 42897 Diophantine set builder fo...
rexfrabdioph 42898 Diophantine set builder fo...
2rexfrabdioph 42899 Diophantine set builder fo...
3rexfrabdioph 42900 Diophantine set builder fo...
4rexfrabdioph 42901 Diophantine set builder fo...
6rexfrabdioph 42902 Diophantine set builder fo...
7rexfrabdioph 42903 Diophantine set builder fo...
rabdiophlem1 42904 Lemma for arithmetic dioph...
rabdiophlem2 42905 Lemma for arithmetic dioph...
elnn0rabdioph 42906 Diophantine set builder fo...
rexzrexnn0 42907 Rewrite an existential qua...
lerabdioph 42908 Diophantine set builder fo...
eluzrabdioph 42909 Diophantine set builder fo...
elnnrabdioph 42910 Diophantine set builder fo...
ltrabdioph 42911 Diophantine set builder fo...
nerabdioph 42912 Diophantine set builder fo...
dvdsrabdioph 42913 Divisibility is a Diophant...
eldioph4b 42914 Membership in ` Dioph ` ex...
eldioph4i 42915 Forward-only version of ~ ...
diophren 42916 Change variables in a Diop...
rabrenfdioph 42917 Change variable numbers in...
rabren3dioph 42918 Change variable numbers in...
fphpd 42919 Pigeonhole principle expre...
fphpdo 42920 Pigeonhole principle for s...
ctbnfien 42921 An infinite subset of a co...
fiphp3d 42922 Infinite pigeonhole princi...
rencldnfilem 42923 Lemma for ~ rencldnfi . (...
rencldnfi 42924 A set of real numbers whic...
irrapxlem1 42925 Lemma for ~ irrapx1 . Div...
irrapxlem2 42926 Lemma for ~ irrapx1 . Two...
irrapxlem3 42927 Lemma for ~ irrapx1 . By ...
irrapxlem4 42928 Lemma for ~ irrapx1 . Eli...
irrapxlem5 42929 Lemma for ~ irrapx1 . Swi...
irrapxlem6 42930 Lemma for ~ irrapx1 . Exp...
irrapx1 42931 Dirichlet's approximation ...
pellexlem1 42932 Lemma for ~ pellex . Arit...
pellexlem2 42933 Lemma for ~ pellex . Arit...
pellexlem3 42934 Lemma for ~ pellex . To e...
pellexlem4 42935 Lemma for ~ pellex . Invo...
pellexlem5 42936 Lemma for ~ pellex . Invo...
pellexlem6 42937 Lemma for ~ pellex . Doin...
pellex 42938 Every Pell equation has a ...
pell1qrval 42949 Value of the set of first-...
elpell1qr 42950 Membership in a first-quad...
pell14qrval 42951 Value of the set of positi...
elpell14qr 42952 Membership in the set of p...
pell1234qrval 42953 Value of the set of genera...
elpell1234qr 42954 Membership in the set of g...
pell1234qrre 42955 General Pell solutions are...
pell1234qrne0 42956 No solution to a Pell equa...
pell1234qrreccl 42957 General solutions of the P...
pell1234qrmulcl 42958 General solutions of the P...
pell14qrss1234 42959 A positive Pell solution i...
pell14qrre 42960 A positive Pell solution i...
pell14qrne0 42961 A positive Pell solution i...
pell14qrgt0 42962 A positive Pell solution i...
pell14qrrp 42963 A positive Pell solution i...
pell1234qrdich 42964 A general Pell solution is...
elpell14qr2 42965 A number is a positive Pel...
pell14qrmulcl 42966 Positive Pell solutions ar...
pell14qrreccl 42967 Positive Pell solutions ar...
pell14qrdivcl 42968 Positive Pell solutions ar...
pell14qrexpclnn0 42969 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 42970 Positive Pell solutions ar...
pell1qrss14 42971 First-quadrant Pell soluti...
pell14qrdich 42972 A positive Pell solution i...
pell1qrge1 42973 A Pell solution in the fir...
pell1qr1 42974 1 is a Pell solution and i...
elpell1qr2 42975 The first quadrant solutio...
pell1qrgaplem 42976 Lemma for ~ pell1qrgap . ...
pell1qrgap 42977 First-quadrant Pell soluti...
pell14qrgap 42978 Positive Pell solutions ar...
pell14qrgapw 42979 Positive Pell solutions ar...
pellqrexplicit 42980 Condition for a calculated...
infmrgelbi 42981 Any lower bound of a nonem...
pellqrex 42982 There is a nontrivial solu...
pellfundval 42983 Value of the fundamental s...
pellfundre 42984 The fundamental solution o...
pellfundge 42985 Lower bound on the fundame...
pellfundgt1 42986 Weak lower bound on the Pe...
pellfundlb 42987 A nontrivial first quadran...
pellfundglb 42988 If a real is larger than t...
pellfundex 42989 The fundamental solution a...
pellfund14gap 42990 There are no solutions bet...
pellfundrp 42991 The fundamental Pell solut...
pellfundne1 42992 The fundamental Pell solut...
reglogcl 42993 General logarithm is a rea...
reglogltb 42994 General logarithm preserve...
reglogleb 42995 General logarithm preserve...
reglogmul 42996 Multiplication law for gen...
reglogexp 42997 Power law for general log....
reglogbas 42998 General log of the base is...
reglog1 42999 General log of 1 is 0. (C...
reglogexpbas 43000 General log of a power of ...
pellfund14 43001 Every positive Pell soluti...
pellfund14b 43002 The positive Pell solution...
rmxfval 43007 Value of the X sequence. ...
rmyfval 43008 Value of the Y sequence. ...
rmspecsqrtnq 43009 The discriminant used to d...
rmspecnonsq 43010 The discriminant used to d...
qirropth 43011 This lemma implements the ...
rmspecfund 43012 The base of exponent used ...
rmxyelqirr 43013 The solutions used to cons...
rmxypairf1o 43014 The function used to extra...
rmxyelxp 43015 Lemma for ~ frmx and ~ frm...
frmx 43016 The X sequence is a nonneg...
frmy 43017 The Y sequence is an integ...
rmxyval 43018 Main definition of the X a...
rmspecpos 43019 The discriminant used to d...
rmxycomplete 43020 The X and Y sequences take...
rmxynorm 43021 The X and Y sequences defi...
rmbaserp 43022 The base of exponentiation...
rmxyneg 43023 Negation law for X and Y s...
rmxyadd 43024 Addition formula for X and...
rmxy1 43025 Value of the X and Y seque...
rmxy0 43026 Value of the X and Y seque...
rmxneg 43027 Negation law (even functio...
rmx0 43028 Value of X sequence at 0. ...
rmx1 43029 Value of X sequence at 1. ...
rmxadd 43030 Addition formula for X seq...
rmyneg 43031 Negation formula for Y seq...
rmy0 43032 Value of Y sequence at 0. ...
rmy1 43033 Value of Y sequence at 1. ...
rmyadd 43034 Addition formula for Y seq...
rmxp1 43035 Special addition-of-1 form...
rmyp1 43036 Special addition of 1 form...
rmxm1 43037 Subtraction of 1 formula f...
rmym1 43038 Subtraction of 1 formula f...
rmxluc 43039 The X sequence is a Lucas ...
rmyluc 43040 The Y sequence is a Lucas ...
rmyluc2 43041 Lucas sequence property of...
rmxdbl 43042 "Double-angle formula" for...
rmydbl 43043 "Double-angle formula" for...
monotuz 43044 A function defined on an u...
monotoddzzfi 43045 A function which is odd an...
monotoddzz 43046 A function (given implicit...
oddcomabszz 43047 An odd function which take...
2nn0ind 43048 Induction on nonnegative i...
zindbi 43049 Inductively transfer a pro...
rmxypos 43050 For all nonnegative indice...
ltrmynn0 43051 The Y-sequence is strictly...
ltrmxnn0 43052 The X-sequence is strictly...
lermxnn0 43053 The X-sequence is monotoni...
rmxnn 43054 The X-sequence is defined ...
ltrmy 43055 The Y-sequence is strictly...
rmyeq0 43056 Y is zero only at zero. (...
rmyeq 43057 Y is one-to-one. (Contrib...
lermy 43058 Y is monotonic (non-strict...
rmynn 43059 ` rmY ` is positive for po...
rmynn0 43060 ` rmY ` is nonnegative for...
rmyabs 43061 ` rmY ` commutes with ` ab...
jm2.24nn 43062 X(n) is strictly greater t...
jm2.17a 43063 First half of lemma 2.17 o...
jm2.17b 43064 Weak form of the second ha...
jm2.17c 43065 Second half of lemma 2.17 ...
jm2.24 43066 Lemma 2.24 of [JonesMatija...
rmygeid 43067 Y(n) increases faster than...
congtr 43068 A wff of the form ` A || (...
congadd 43069 If two pairs of numbers ar...
congmul 43070 If two pairs of numbers ar...
congsym 43071 Congruence mod ` A ` is a ...
congneg 43072 If two integers are congru...
congsub 43073 If two pairs of numbers ar...
congid 43074 Every integer is congruent...
mzpcong 43075 Polynomials commute with c...
congrep 43076 Every integer is congruent...
congabseq 43077 If two integers are congru...
acongid 43078 A wff like that in this th...
acongsym 43079 Symmetry of alternating co...
acongneg2 43080 Negate right side of alter...
acongtr 43081 Transitivity of alternatin...
acongeq12d 43082 Substitution deduction for...
acongrep 43083 Every integer is alternati...
fzmaxdif 43084 Bound on the difference be...
fzneg 43085 Reflection of a finite ran...
acongeq 43086 Two numbers in the fundame...
dvdsacongtr 43087 Alternating congruence pas...
coprmdvdsb 43088 Multiplication by a coprim...
modabsdifz 43089 Divisibility in terms of m...
dvdsabsmod0 43090 Divisibility in terms of m...
jm2.18 43091 Theorem 2.18 of [JonesMati...
jm2.19lem1 43092 Lemma for ~ jm2.19 . X an...
jm2.19lem2 43093 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 43094 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 43095 Lemma for ~ jm2.19 . Exte...
jm2.19 43096 Lemma 2.19 of [JonesMatija...
jm2.21 43097 Lemma for ~ jm2.20nn . Ex...
jm2.22 43098 Lemma for ~ jm2.20nn . Ap...
jm2.23 43099 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 43100 Lemma 2.20 of [JonesMatija...
jm2.25lem1 43101 Lemma for ~ jm2.26 . (Con...
jm2.25 43102 Lemma for ~ jm2.26 . Rema...
jm2.26a 43103 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 43104 Lemma for ~ jm2.26 . Use ...
jm2.26 43105 Lemma 2.26 of [JonesMatija...
jm2.15nn0 43106 Lemma 2.15 of [JonesMatija...
jm2.16nn0 43107 Lemma 2.16 of [JonesMatija...
jm2.27a 43108 Lemma for ~ jm2.27 . Reve...
jm2.27b 43109 Lemma for ~ jm2.27 . Expa...
jm2.27c 43110 Lemma for ~ jm2.27 . Forw...
jm2.27 43111 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 43112 Lemma for ~ rmydioph . Su...
jm2.27dlem2 43113 Lemma for ~ rmydioph . Th...
jm2.27dlem3 43114 Lemma for ~ rmydioph . In...
jm2.27dlem4 43115 Lemma for ~ rmydioph . In...
jm2.27dlem5 43116 Lemma for ~ rmydioph . Us...
rmydioph 43117 ~ jm2.27 restated in terms...
rmxdiophlem 43118 X can be expressed in term...
rmxdioph 43119 X is a Diophantine functio...
jm3.1lem1 43120 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 43121 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 43122 Lemma for ~ jm3.1 . (Cont...
jm3.1 43123 Diophantine expression for...
expdiophlem1 43124 Lemma for ~ expdioph . Fu...
expdiophlem2 43125 Lemma for ~ expdioph . Ex...
expdioph 43126 The exponential function i...
setindtr 43127 Set induction for sets con...
setindtrs 43128 Set induction scheme witho...
dford3lem1 43129 Lemma for ~ dford3 . (Con...
dford3lem2 43130 Lemma for ~ dford3 . (Con...
dford3 43131 Ordinals are precisely the...
dford4 43132 ~ dford3 expressed in prim...
wopprc 43133 Unrelated: Wiener pairs t...
rpnnen3lem 43134 Lemma for ~ rpnnen3 . (Co...
rpnnen3 43135 Dedekind cut injection of ...
axac10 43136 Characterization of choice...
harinf 43137 The Hartogs number of an i...
wdom2d2 43138 Deduction for weak dominan...
ttac 43139 Tarski's theorem about cho...
pw2f1ocnv 43140 Define a bijection between...
pw2f1o2 43141 Define a bijection between...
pw2f1o2val 43142 Function value of the ~ pw...
pw2f1o2val2 43143 Membership in a mapped set...
limsuc2 43144 Limit ordinals in the sens...
wepwsolem 43145 Transfer an ordering on ch...
wepwso 43146 A well-ordering induces a ...
dnnumch1 43147 Define an enumeration of a...
dnnumch2 43148 Define an enumeration (wea...
dnnumch3lem 43149 Value of the ordinal injec...
dnnumch3 43150 Define an injection from a...
dnwech 43151 Define a well-ordering fro...
fnwe2val 43152 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 43153 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 43154 Lemma for ~ fnwe2 . An el...
fnwe2lem3 43155 Lemma for ~ fnwe2 . Trich...
fnwe2 43156 A well-ordering can be con...
aomclem1 43157 Lemma for ~ dfac11 . This...
aomclem2 43158 Lemma for ~ dfac11 . Succ...
aomclem3 43159 Lemma for ~ dfac11 . Succ...
aomclem4 43160 Lemma for ~ dfac11 . Limi...
aomclem5 43161 Lemma for ~ dfac11 . Comb...
aomclem6 43162 Lemma for ~ dfac11 . Tran...
aomclem7 43163 Lemma for ~ dfac11 . ` ( R...
aomclem8 43164 Lemma for ~ dfac11 . Perf...
dfac11 43165 The right-hand side of thi...
kelac1 43166 Kelley's choice, basic for...
kelac2lem 43167 Lemma for ~ kelac2 and ~ d...
kelac2 43168 Kelley's choice, most comm...
dfac21 43169 Tychonoff's theorem is a c...
islmodfg 43172 Property of a finitely gen...
islssfg 43173 Property of a finitely gen...
islssfg2 43174 Property of a finitely gen...
islssfgi 43175 Finitely spanned subspaces...
fglmod 43176 Finitely generated left mo...
lsmfgcl 43177 The sum of two finitely ge...
islnm 43180 Property of being a Noethe...
islnm2 43181 Property of being a Noethe...
lnmlmod 43182 A Noetherian left module i...
lnmlssfg 43183 A submodule of Noetherian ...
lnmlsslnm 43184 All submodules of a Noethe...
lnmfg 43185 A Noetherian left module i...
kercvrlsm 43186 The domain of a linear fun...
lmhmfgima 43187 A homomorphism maps finite...
lnmepi 43188 Epimorphic images of Noeth...
lmhmfgsplit 43189 If the kernel and range of...
lmhmlnmsplit 43190 If the kernel and range of...
lnmlmic 43191 Noetherian is an invariant...
pwssplit4 43192 Splitting for structure po...
filnm 43193 Finite left modules are No...
pwslnmlem0 43194 Zeroeth powers are Noether...
pwslnmlem1 43195 First powers are Noetheria...
pwslnmlem2 43196 A sum of powers is Noether...
pwslnm 43197 Finite powers of Noetheria...
unxpwdom3 43198 Weaker version of ~ unxpwd...
pwfi2f1o 43199 The ~ pw2f1o bijection rel...
pwfi2en 43200 Finitely supported indicat...
frlmpwfi 43201 Formal linear combinations...
gicabl 43202 Being Abelian is a group i...
imasgim 43203 A relabeling of the elemen...
isnumbasgrplem1 43204 A set which is equipollent...
harn0 43205 The Hartogs number of a se...
numinfctb 43206 A numerable infinite set c...
isnumbasgrplem2 43207 If the (to be thought of a...
isnumbasgrplem3 43208 Every nonempty numerable s...
isnumbasabl 43209 A set is numerable iff it ...
isnumbasgrp 43210 A set is numerable iff it ...
dfacbasgrp 43211 A choice equivalent in abs...
islnr 43214 Property of a left-Noether...
lnrring 43215 Left-Noetherian rings are ...
lnrlnm 43216 Left-Noetherian rings have...
islnr2 43217 Property of being a left-N...
islnr3 43218 Relate left-Noetherian rin...
lnr2i 43219 Given an ideal in a left-N...
lpirlnr 43220 Left principal ideal rings...
lnrfrlm 43221 Finite-dimensional free mo...
lnrfg 43222 Finitely-generated modules...
lnrfgtr 43223 A submodule of a finitely ...
hbtlem1 43226 Value of the leading coeff...
hbtlem2 43227 Leading coefficient ideals...
hbtlem7 43228 Functionality of leading c...
hbtlem4 43229 The leading ideal function...
hbtlem3 43230 The leading ideal function...
hbtlem5 43231 The leading ideal function...
hbtlem6 43232 There is a finite set of p...
hbt 43233 The Hilbert Basis Theorem ...
dgrsub2 43238 Subtracting two polynomial...
elmnc 43239 Property of a monic polyno...
mncply 43240 A monic polynomial is a po...
mnccoe 43241 A monic polynomial has lea...
mncn0 43242 A monic polynomial is not ...
dgraaval 43247 Value of the degree functi...
dgraalem 43248 Properties of the degree o...
dgraacl 43249 Closure of the degree func...
dgraaf 43250 Degree function on algebra...
dgraaub 43251 Upper bound on degree of a...
dgraa0p 43252 A rational polynomial of d...
mpaaeu 43253 An algebraic number has ex...
mpaaval 43254 Value of the minimal polyn...
mpaalem 43255 Properties of the minimal ...
mpaacl 43256 Minimal polynomial is a po...
mpaadgr 43257 Minimal polynomial has deg...
mpaaroot 43258 The minimal polynomial of ...
mpaamn 43259 Minimal polynomial is moni...
itgoval 43264 Value of the integral-over...
aaitgo 43265 The standard algebraic num...
itgoss 43266 An integral element is int...
itgocn 43267 All integral elements are ...
cnsrexpcl 43268 Exponentiation is closed i...
fsumcnsrcl 43269 Finite sums are closed in ...
cnsrplycl 43270 Polynomials are closed in ...
rgspnid 43271 The span of a subring is i...
rngunsnply 43272 Adjoining one element to a...
flcidc 43273 Finite linear combinations...
algstr 43276 Lemma to shorten proofs of...
algbase 43277 The base set of a construc...
algaddg 43278 The additive operation of ...
algmulr 43279 The multiplicative operati...
algsca 43280 The set of scalars of a co...
algvsca 43281 The scalar product operati...
mendval 43282 Value of the module endomo...
mendbas 43283 Base set of the module end...
mendplusgfval 43284 Addition in the module end...
mendplusg 43285 A specific addition in the...
mendmulrfval 43286 Multiplication in the modu...
mendmulr 43287 A specific multiplication ...
mendsca 43288 The module endomorphism al...
mendvscafval 43289 Scalar multiplication in t...
mendvsca 43290 A specific scalar multipli...
mendring 43291 The module endomorphism al...
mendlmod 43292 The module endomorphism al...
mendassa 43293 The module endomorphism al...
idomodle 43294 Limit on the number of ` N...
fiuneneq 43295 Two finite sets of equal s...
idomsubgmo 43296 The units of an integral d...
proot1mul 43297 Any primitive ` N ` -th ro...
proot1hash 43298 If an integral domain has ...
proot1ex 43299 The complex field has prim...
mon1psubm 43302 Monic polynomials are a mu...
deg1mhm 43303 Homomorphic property of th...
cytpfn 43304 Functionality of the cyclo...
cytpval 43305 Substitutions for the Nth ...
fgraphopab 43306 Express a function as a su...
fgraphxp 43307 Express a function as a su...
hausgraph 43308 The graph of a continuous ...
r1sssucd 43313 Deductive form of ~ r1sssu...
iocunico 43314 Split an open interval int...
iocinico 43315 The intersection of two se...
iocmbl 43316 An open-below, closed-abov...
cnioobibld 43317 A bounded, continuous func...
arearect 43318 The area of a rectangle wh...
areaquad 43319 The area of a quadrilatera...
uniel 43320 Two ways to say a union is...
unielss 43321 Two ways to say the union ...
unielid 43322 Two ways to say the union ...
ssunib 43323 Two ways to say a class is...
rp-intrabeq 43324 Equality theorem for supre...
rp-unirabeq 43325 Equality theorem for infim...
onmaxnelsup 43326 Two ways to say the maximu...
onsupneqmaxlim0 43327 If the supremum of a class...
onsupcl2 43328 The supremum of a set of o...
onuniintrab 43329 The union of a set of ordi...
onintunirab 43330 The intersection of a non-...
onsupnmax 43331 If the union of a class of...
onsupuni 43332 The supremum of a set of o...
onsupuni2 43333 The supremum of a set of o...
onsupintrab 43334 The supremum of a set of o...
onsupintrab2 43335 The supremum of a set of o...
onsupcl3 43336 The supremum of a set of o...
onsupex3 43337 The supremum of a set of o...
onuniintrab2 43338 The union of a set of ordi...
oninfint 43339 The infimum of a non-empty...
oninfunirab 43340 The infimum of a non-empty...
oninfcl2 43341 The infimum of a non-empty...
onsupmaxb 43342 The union of a class of or...
onexgt 43343 For any ordinal, there is ...
onexomgt 43344 For any ordinal, there is ...
omlimcl2 43345 The product of a limit ord...
onexlimgt 43346 For any ordinal, there is ...
onexoegt 43347 For any ordinal, there is ...
oninfex2 43348 The infimum of a non-empty...
onsupeqmax 43349 Condition when the supremu...
onsupeqnmax 43350 Condition when the supremu...
onsuplub 43351 The supremum of a set of o...
onsupnub 43352 An upper bound of a set of...
onfisupcl 43353 Sufficient condition when ...
onelord 43354 Every element of a ordinal...
onepsuc 43355 Every ordinal is less than...
epsoon 43356 The ordinals are strictly ...
epirron 43357 The strict order on the or...
oneptr 43358 The strict order on the or...
oneltr 43359 The elementhood relation o...
oneptri 43360 The strict, complete (line...
ordeldif 43361 Membership in the differen...
ordeldifsucon 43362 Membership in the differen...
ordeldif1o 43363 Membership in the differen...
ordne0gt0 43364 Ordinal zero is less than ...
ondif1i 43365 Ordinal zero is less than ...
onsucelab 43366 The successor of every ord...
dflim6 43367 A limit ordinal is a non-z...
limnsuc 43368 A limit ordinal is not an ...
onsucss 43369 If one ordinal is less tha...
ordnexbtwnsuc 43370 For any distinct pair of o...
orddif0suc 43371 For any distinct pair of o...
onsucf1lem 43372 For ordinals, the successo...
onsucf1olem 43373 The successor operation is...
onsucrn 43374 The successor operation is...
onsucf1o 43375 The successor operation is...
dflim7 43376 A limit ordinal is a non-z...
onov0suclim 43377 Compactly express rules fo...
oa0suclim 43378 Closed form expression of ...
om0suclim 43379 Closed form expression of ...
oe0suclim 43380 Closed form expression of ...
oaomoecl 43381 The operations of addition...
onsupsucismax 43382 If the union of a set of o...
onsssupeqcond 43383 If for every element of a ...
limexissup 43384 An ordinal which is a limi...
limiun 43385 A limit ordinal is the uni...
limexissupab 43386 An ordinal which is a limi...
om1om1r 43387 Ordinal one is both a left...
oe0rif 43388 Ordinal zero raised to any...
oasubex 43389 While subtraction can't be...
nnamecl 43390 Natural numbers are closed...
onsucwordi 43391 The successor operation pr...
oalim2cl 43392 The ordinal sum of any ord...
oaltublim 43393 Given ` C ` is a limit ord...
oaordi3 43394 Ordinal addition of the sa...
oaord3 43395 When the same ordinal is a...
1oaomeqom 43396 Ordinal one plus omega is ...
oaabsb 43397 The right addend absorbs t...
oaordnrex 43398 When omega is added on the...
oaordnr 43399 When the same ordinal is a...
omge1 43400 Any non-zero ordinal produ...
omge2 43401 Any non-zero ordinal produ...
omlim2 43402 The non-zero product with ...
omord2lim 43403 Given a limit ordinal, the...
omord2i 43404 Ordinal multiplication of ...
omord2com 43405 When the same non-zero ord...
2omomeqom 43406 Ordinal two times omega is...
omnord1ex 43407 When omega is multiplied o...
omnord1 43408 When the same non-zero ord...
oege1 43409 Any non-zero ordinal power...
oege2 43410 Any power of an ordinal at...
rp-oelim2 43411 The power of an ordinal at...
oeord2lim 43412 Given a limit ordinal, the...
oeord2i 43413 Ordinal exponentiation of ...
oeord2com 43414 When the same base at leas...
nnoeomeqom 43415 Any natural number at leas...
df3o2 43416 Ordinal 3 is the unordered...
df3o3 43417 Ordinal 3, fully expanded....
oenord1ex 43418 When ordinals two and thre...
oenord1 43419 When two ordinals (both at...
oaomoencom 43420 Ordinal addition, multipli...
oenassex 43421 Ordinal two raised to two ...
oenass 43422 Ordinal exponentiation is ...
cantnftermord 43423 For terms of the form of a...
cantnfub 43424 Given a finite number of t...
cantnfub2 43425 Given a finite number of t...
bropabg 43426 Equivalence for two classe...
cantnfresb 43427 A Cantor normal form which...
cantnf2 43428 For every ordinal, ` A ` ,...
oawordex2 43429 If ` C ` is between ` A ` ...
nnawordexg 43430 If an ordinal, ` B ` , is ...
succlg 43431 Closure law for ordinal su...
dflim5 43432 A limit ordinal is either ...
oacl2g 43433 Closure law for ordinal ad...
onmcl 43434 If an ordinal is less than...
omabs2 43435 Ordinal multiplication by ...
omcl2 43436 Closure law for ordinal mu...
omcl3g 43437 Closure law for ordinal mu...
ordsssucb 43438 An ordinal number is less ...
tfsconcatlem 43439 Lemma for ~ tfsconcatun . ...
tfsconcatun 43440 The concatenation of two t...
tfsconcatfn 43441 The concatenation of two t...
tfsconcatfv1 43442 An early value of the conc...
tfsconcatfv2 43443 A latter value of the conc...
tfsconcatfv 43444 The value of the concatena...
tfsconcatrn 43445 The range of the concatena...
tfsconcatfo 43446 The concatenation of two t...
tfsconcatb0 43447 The concatentation with th...
tfsconcat0i 43448 The concatentation with th...
tfsconcat0b 43449 The concatentation with th...
tfsconcat00 43450 The concatentation of two ...
tfsconcatrev 43451 If the domain of a transfi...
tfsconcatrnss12 43452 The range of the concatena...
tfsconcatrnss 43453 The concatenation of trans...
tfsconcatrnsson 43454 The concatenation of trans...
tfsnfin 43455 A transfinite sequence is ...
rp-tfslim 43456 The limit of a sequence of...
ofoafg 43457 Addition operator for func...
ofoaf 43458 Addition operator for func...
ofoafo 43459 Addition operator for func...
ofoacl 43460 Closure law for component ...
ofoaid1 43461 Identity law for component...
ofoaid2 43462 Identity law for component...
ofoaass 43463 Component-wise addition of...
ofoacom 43464 Component-wise addition of...
naddcnff 43465 Addition operator for Cant...
naddcnffn 43466 Addition operator for Cant...
naddcnffo 43467 Addition of Cantor normal ...
naddcnfcl 43468 Closure law for component-...
naddcnfcom 43469 Component-wise ordinal add...
naddcnfid1 43470 Identity law for component...
naddcnfid2 43471 Identity law for component...
naddcnfass 43472 Component-wise addition of...
onsucunifi 43473 The successor to the union...
sucunisn 43474 The successor to the union...
onsucunipr 43475 The successor to the union...
onsucunitp 43476 The successor to the union...
oaun3lem1 43477 The class of all ordinal s...
oaun3lem2 43478 The class of all ordinal s...
oaun3lem3 43479 The class of all ordinal s...
oaun3lem4 43480 The class of all ordinal s...
rp-abid 43481 Two ways to express a clas...
oadif1lem 43482 Express the set difference...
oadif1 43483 Express the set difference...
oaun2 43484 Ordinal addition as a unio...
oaun3 43485 Ordinal addition as a unio...
naddov4 43486 Alternate expression for n...
nadd2rabtr 43487 The set of ordinals which ...
nadd2rabord 43488 The set of ordinals which ...
nadd2rabex 43489 The class of ordinals whic...
nadd2rabon 43490 The set of ordinals which ...
nadd1rabtr 43491 The set of ordinals which ...
nadd1rabord 43492 The set of ordinals which ...
nadd1rabex 43493 The class of ordinals whic...
nadd1rabon 43494 The set of ordinals which ...
nadd1suc 43495 Natural addition with 1 is...
naddass1 43496 Natural addition of ordina...
naddgeoa 43497 Natural addition results i...
naddonnn 43498 Natural addition with a na...
naddwordnexlem0 43499 When ` A ` is the sum of a...
naddwordnexlem1 43500 When ` A ` is the sum of a...
naddwordnexlem2 43501 When ` A ` is the sum of a...
naddwordnexlem3 43502 When ` A ` is the sum of a...
oawordex3 43503 When ` A ` is the sum of a...
naddwordnexlem4 43504 When ` A ` is the sum of a...
ordsssucim 43505 If an ordinal is less than...
insucid 43506 The intersection of a clas...
om2 43507 Two ways to double an ordi...
oaltom 43508 Multiplication eventually ...
oe2 43509 Two ways to square an ordi...
omltoe 43510 Exponentiation eventually ...
abeqabi 43511 Generalized condition for ...
abpr 43512 Condition for a class abst...
abtp 43513 Condition for a class abst...
ralopabb 43514 Restricted universal quant...
fpwfvss 43515 Functions into a powerset ...
sdomne0 43516 A class that strictly domi...
sdomne0d 43517 A class that strictly domi...
safesnsupfiss 43518 If ` B ` is a finite subse...
safesnsupfiub 43519 If ` B ` is a finite subse...
safesnsupfidom1o 43520 If ` B ` is a finite subse...
safesnsupfilb 43521 If ` B ` is a finite subse...
isoeq145d 43522 Equality deduction for iso...
resisoeq45d 43523 Equality deduction for equ...
negslem1 43524 An equivalence between ide...
nvocnvb 43525 Equivalence to saying the ...
rp-brsslt 43526 Binary relation form of a ...
nla0002 43527 Extending a linear order t...
nla0003 43528 Extending a linear order t...
nla0001 43529 Extending a linear order t...
faosnf0.11b 43530 ` B ` is called a non-limi...
dfno2 43531 A surreal number, in the f...
onnog 43532 Every ordinal maps to a su...
onnobdayg 43533 Every ordinal maps to a su...
bdaybndex 43534 Bounds formed from the bir...
bdaybndbday 43535 Bounds formed from the bir...
onno 43536 Every ordinal maps to a su...
onnoi 43537 Every ordinal maps to a su...
0no 43538 Ordinal zero maps to a sur...
1no 43539 Ordinal one maps to a surr...
2no 43540 Ordinal two maps to a surr...
3no 43541 Ordinal three maps to a su...
4no 43542 Ordinal four maps to a sur...
fnimafnex 43543 The functional image of a ...
nlimsuc 43544 A successor is not a limit...
nlim1NEW 43545 1 is not a limit ordinal. ...
nlim2NEW 43546 2 is not a limit ordinal. ...
nlim3 43547 3 is not a limit ordinal. ...
nlim4 43548 4 is not a limit ordinal. ...
oa1un 43549 Given ` A e. On ` , let ` ...
oa1cl 43550 ` A +o 1o ` is in ` On ` ....
0finon 43551 0 is a finite ordinal. Se...
1finon 43552 1 is a finite ordinal. Se...
2finon 43553 2 is a finite ordinal. Se...
3finon 43554 3 is a finite ordinal. Se...
4finon 43555 4 is a finite ordinal. Se...
finona1cl 43556 The finite ordinals are cl...
finonex 43557 The finite ordinals are a ...
fzunt 43558 Union of two adjacent fini...
fzuntd 43559 Union of two adjacent fini...
fzunt1d 43560 Union of two overlapping f...
fzuntgd 43561 Union of two adjacent or o...
ifpan123g 43562 Conjunction of conditional...
ifpan23 43563 Conjunction of conditional...
ifpdfor2 43564 Define or in terms of cond...
ifporcor 43565 Corollary of commutation o...
ifpdfan2 43566 Define and with conditiona...
ifpancor 43567 Corollary of commutation o...
ifpdfor 43568 Define or in terms of cond...
ifpdfan 43569 Define and with conditiona...
ifpbi2 43570 Equivalence theorem for co...
ifpbi3 43571 Equivalence theorem for co...
ifpim1 43572 Restate implication as con...
ifpnot 43573 Restate negated wff as con...
ifpid2 43574 Restate wff as conditional...
ifpim2 43575 Restate implication as con...
ifpbi23 43576 Equivalence theorem for co...
ifpbiidcor 43577 Restatement of ~ biid . (...
ifpbicor 43578 Corollary of commutation o...
ifpxorcor 43579 Corollary of commutation o...
ifpbi1 43580 Equivalence theorem for co...
ifpnot23 43581 Negation of conditional lo...
ifpnotnotb 43582 Factor conditional logic o...
ifpnorcor 43583 Corollary of commutation o...
ifpnancor 43584 Corollary of commutation o...
ifpnot23b 43585 Negation of conditional lo...
ifpbiidcor2 43586 Restatement of ~ biid . (...
ifpnot23c 43587 Negation of conditional lo...
ifpnot23d 43588 Negation of conditional lo...
ifpdfnan 43589 Define nand as conditional...
ifpdfxor 43590 Define xor as conditional ...
ifpbi12 43591 Equivalence theorem for co...
ifpbi13 43592 Equivalence theorem for co...
ifpbi123 43593 Equivalence theorem for co...
ifpidg 43594 Restate wff as conditional...
ifpid3g 43595 Restate wff as conditional...
ifpid2g 43596 Restate wff as conditional...
ifpid1g 43597 Restate wff as conditional...
ifpim23g 43598 Restate implication as con...
ifpim3 43599 Restate implication as con...
ifpnim1 43600 Restate negated implicatio...
ifpim4 43601 Restate implication as con...
ifpnim2 43602 Restate negated implicatio...
ifpim123g 43603 Implication of conditional...
ifpim1g 43604 Implication of conditional...
ifp1bi 43605 Substitute the first eleme...
ifpbi1b 43606 When the first variable is...
ifpimimb 43607 Factor conditional logic o...
ifpororb 43608 Factor conditional logic o...
ifpananb 43609 Factor conditional logic o...
ifpnannanb 43610 Factor conditional logic o...
ifpor123g 43611 Disjunction of conditional...
ifpimim 43612 Consequnce of implication....
ifpbibib 43613 Factor conditional logic o...
ifpxorxorb 43614 Factor conditional logic o...
rp-fakeimass 43615 A special case where impli...
rp-fakeanorass 43616 A special case where a mix...
rp-fakeoranass 43617 A special case where a mix...
rp-fakeinunass 43618 A special case where a mix...
rp-fakeuninass 43619 A special case where a mix...
rp-isfinite5 43620 A set is said to be finite...
rp-isfinite6 43621 A set is said to be finite...
intabssd 43622 When for each element ` y ...
eu0 43623 There is only one empty se...
epelon2 43624 Over the ordinal numbers, ...
ontric3g 43625 For all ` x , y e. On ` , ...
dfsucon 43626 ` A ` is called a successo...
snen1g 43627 A singleton is equinumerou...
snen1el 43628 A singleton is equinumerou...
sn1dom 43629 A singleton is dominated b...
pr2dom 43630 An unordered pair is domin...
tr3dom 43631 An unordered triple is dom...
ensucne0 43632 A class equinumerous to a ...
ensucne0OLD 43633 A class equinumerous to a ...
dfom6 43634 Let ` _om ` be defined to ...
infordmin 43635 ` _om ` is the smallest in...
iscard4 43636 Two ways to express the pr...
minregex 43637 Given any cardinal number ...
minregex2 43638 Given any cardinal number ...
iscard5 43639 Two ways to express the pr...
elrncard 43640 Let us define a cardinal n...
harval3 43641 ` ( har `` A ) ` is the le...
harval3on 43642 For any ordinal number ` A...
omssrncard 43643 All natural numbers are ca...
0iscard 43644 0 is a cardinal number. (...
1iscard 43645 1 is a cardinal number. (...
omiscard 43646 ` _om ` is a cardinal numb...
sucomisnotcard 43647 ` _om +o 1o ` is not a car...
nna1iscard 43648 For any natural number, th...
har2o 43649 The least cardinal greater...
en2pr 43650 A class is equinumerous to...
pr2cv 43651 If an unordered pair is eq...
pr2el1 43652 If an unordered pair is eq...
pr2cv1 43653 If an unordered pair is eq...
pr2el2 43654 If an unordered pair is eq...
pr2cv2 43655 If an unordered pair is eq...
pren2 43656 An unordered pair is equin...
pr2eldif1 43657 If an unordered pair is eq...
pr2eldif2 43658 If an unordered pair is eq...
pren2d 43659 A pair of two distinct set...
aleph1min 43660 ` ( aleph `` 1o ) ` is the...
alephiso2 43661 ` aleph ` is a strictly or...
alephiso3 43662 ` aleph ` is a strictly or...
pwelg 43663 The powerclass is an eleme...
pwinfig 43664 The powerclass of an infin...
pwinfi2 43665 The powerclass of an infin...
pwinfi3 43666 The powerclass of an infin...
pwinfi 43667 The powerclass of an infin...
fipjust 43668 A definition of the finite...
cllem0 43669 The class of all sets with...
superficl 43670 The class of all supersets...
superuncl 43671 The class of all supersets...
ssficl 43672 The class of all subsets o...
ssuncl 43673 The class of all subsets o...
ssdifcl 43674 The class of all subsets o...
sssymdifcl 43675 The class of all subsets o...
fiinfi 43676 If two classes have the fi...
rababg 43677 Condition when restricted ...
elinintab 43678 Two ways of saying a set i...
elmapintrab 43679 Two ways to say a set is a...
elinintrab 43680 Two ways of saying a set i...
inintabss 43681 Upper bound on intersectio...
inintabd 43682 Value of the intersection ...
xpinintabd 43683 Value of the intersection ...
relintabex 43684 If the intersection of a c...
elcnvcnvintab 43685 Two ways of saying a set i...
relintab 43686 Value of the intersection ...
nonrel 43687 A non-relation is equal to...
elnonrel 43688 Only an ordered pair where...
cnvssb 43689 Subclass theorem for conve...
relnonrel 43690 The non-relation part of a...
cnvnonrel 43691 The converse of the non-re...
brnonrel 43692 A non-relation cannot rela...
dmnonrel 43693 The domain of the non-rela...
rnnonrel 43694 The range of the non-relat...
resnonrel 43695 A restriction of the non-r...
imanonrel 43696 An image under the non-rel...
cononrel1 43697 Composition with the non-r...
cononrel2 43698 Composition with the non-r...
elmapintab 43699 Two ways to say a set is a...
fvnonrel 43700 The function value of any ...
elinlem 43701 Two ways to say a set is a...
elcnvcnvlem 43702 Two ways to say a set is a...
cnvcnvintabd 43703 Value of the relationship ...
elcnvlem 43704 Two ways to say a set is a...
elcnvintab 43705 Two ways of saying a set i...
cnvintabd 43706 Value of the converse of t...
undmrnresiss 43707 Two ways of saying the ide...
reflexg 43708 Two ways of saying a relat...
cnvssco 43709 A condition weaker than re...
refimssco 43710 Reflexive relations are su...
cleq2lem 43711 Equality implies bijection...
cbvcllem 43712 Change of bound variable i...
clublem 43713 If a superset ` Y ` of ` X...
clss2lem 43714 The closure of a property ...
dfid7 43715 Definition of identity rel...
mptrcllem 43716 Show two versions of a clo...
cotrintab 43717 The intersection of a clas...
rclexi 43718 The reflexive closure of a...
rtrclexlem 43719 Existence of relation impl...
rtrclex 43720 The reflexive-transitive c...
trclubgNEW 43721 If a relation exists then ...
trclubNEW 43722 If a relation exists then ...
trclexi 43723 The transitive closure of ...
rtrclexi 43724 The reflexive-transitive c...
clrellem 43725 When the property ` ps ` h...
clcnvlem 43726 When ` A ` , an upper boun...
cnvtrucl0 43727 The converse of the trivia...
cnvrcl0 43728 The converse of the reflex...
cnvtrcl0 43729 The converse of the transi...
dmtrcl 43730 The domain of the transiti...
rntrcl 43731 The range of the transitiv...
dfrtrcl5 43732 Definition of reflexive-tr...
trcleq2lemRP 43733 Equality implies bijection...
sqrtcvallem1 43734 Two ways of saying a compl...
reabsifneg 43735 Alternate expression for t...
reabsifnpos 43736 Alternate expression for t...
reabsifpos 43737 Alternate expression for t...
reabsifnneg 43738 Alternate expression for t...
reabssgn 43739 Alternate expression for t...
sqrtcvallem2 43740 Equivalent to saying that ...
sqrtcvallem3 43741 Equivalent to saying that ...
sqrtcvallem4 43742 Equivalent to saying that ...
sqrtcvallem5 43743 Equivalent to saying that ...
sqrtcval 43744 Explicit formula for the c...
sqrtcval2 43745 Explicit formula for the c...
resqrtval 43746 Real part of the complex s...
imsqrtval 43747 Imaginary part of the comp...
resqrtvalex 43748 Example for ~ resqrtval . ...
imsqrtvalex 43749 Example for ~ imsqrtval . ...
al3im 43750 Version of ~ ax-4 for a ne...
intima0 43751 Two ways of expressing the...
elimaint 43752 Element of image of inters...
cnviun 43753 Converse of indexed union....
imaiun1 43754 The image of an indexed un...
coiun1 43755 Composition with an indexe...
elintima 43756 Element of intersection of...
intimass 43757 The image under the inters...
intimass2 43758 The image under the inters...
intimag 43759 Requirement for the image ...
intimasn 43760 Two ways to express the im...
intimasn2 43761 Two ways to express the im...
ss2iundf 43762 Subclass theorem for index...
ss2iundv 43763 Subclass theorem for index...
cbviuneq12df 43764 Rule used to change the bo...
cbviuneq12dv 43765 Rule used to change the bo...
conrel1d 43766 Deduction about compositio...
conrel2d 43767 Deduction about compositio...
trrelind 43768 The intersection of transi...
xpintrreld 43769 The intersection of a tran...
restrreld 43770 The restriction of a trans...
trrelsuperreldg 43771 Concrete construction of a...
trficl 43772 The class of all transitiv...
cnvtrrel 43773 The converse of a transiti...
trrelsuperrel2dg 43774 Concrete construction of a...
dfrcl2 43777 Reflexive closure of a rel...
dfrcl3 43778 Reflexive closure of a rel...
dfrcl4 43779 Reflexive closure of a rel...
relexp2 43780 A set operated on by the r...
relexpnul 43781 If the domain and range of...
eliunov2 43782 Membership in the indexed ...
eltrclrec 43783 Membership in the indexed ...
elrtrclrec 43784 Membership in the indexed ...
briunov2 43785 Two classes related by the...
brmptiunrelexpd 43786 If two elements are connec...
fvmptiunrelexplb0d 43787 If the indexed union range...
fvmptiunrelexplb0da 43788 If the indexed union range...
fvmptiunrelexplb1d 43789 If the indexed union range...
brfvid 43790 If two elements are connec...
brfvidRP 43791 If two elements are connec...
fvilbd 43792 A set is a subset of its i...
fvilbdRP 43793 A set is a subset of its i...
brfvrcld 43794 If two elements are connec...
brfvrcld2 43795 If two elements are connec...
fvrcllb0d 43796 A restriction of the ident...
fvrcllb0da 43797 A restriction of the ident...
fvrcllb1d 43798 A set is a subset of its i...
brtrclrec 43799 Two classes related by the...
brrtrclrec 43800 Two classes related by the...
briunov2uz 43801 Two classes related by the...
eliunov2uz 43802 Membership in the indexed ...
ov2ssiunov2 43803 Any particular operator va...
relexp0eq 43804 The zeroth power of relati...
iunrelexp0 43805 Simplification of zeroth p...
relexpxpnnidm 43806 Any positive power of a Ca...
relexpiidm 43807 Any power of any restricti...
relexpss1d 43808 The relational power of a ...
comptiunov2i 43809 The composition two indexe...
corclrcl 43810 The reflexive closure is i...
iunrelexpmin1 43811 The indexed union of relat...
relexpmulnn 43812 With exponents limited to ...
relexpmulg 43813 With ordered exponents, th...
trclrelexplem 43814 The union of relational po...
iunrelexpmin2 43815 The indexed union of relat...
relexp01min 43816 With exponents limited to ...
relexp1idm 43817 Repeated raising a relatio...
relexp0idm 43818 Repeated raising a relatio...
relexp0a 43819 Absorption law for zeroth ...
relexpxpmin 43820 The composition of powers ...
relexpaddss 43821 The composition of two pow...
iunrelexpuztr 43822 The indexed union of relat...
dftrcl3 43823 Transitive closure of a re...
brfvtrcld 43824 If two elements are connec...
fvtrcllb1d 43825 A set is a subset of its i...
trclfvcom 43826 The transitive closure of ...
cnvtrclfv 43827 The converse of the transi...
cotrcltrcl 43828 The transitive closure is ...
trclimalb2 43829 Lower bound for image unde...
brtrclfv2 43830 Two ways to indicate two e...
trclfvdecomr 43831 The transitive closure of ...
trclfvdecoml 43832 The transitive closure of ...
dmtrclfvRP 43833 The domain of the transiti...
rntrclfvRP 43834 The range of the transitiv...
rntrclfv 43835 The range of the transitiv...
dfrtrcl3 43836 Reflexive-transitive closu...
brfvrtrcld 43837 If two elements are connec...
fvrtrcllb0d 43838 A restriction of the ident...
fvrtrcllb0da 43839 A restriction of the ident...
fvrtrcllb1d 43840 A set is a subset of its i...
dfrtrcl4 43841 Reflexive-transitive closu...
corcltrcl 43842 The composition of the ref...
cortrcltrcl 43843 Composition with the refle...
corclrtrcl 43844 Composition with the refle...
cotrclrcl 43845 The composition of the ref...
cortrclrcl 43846 Composition with the refle...
cotrclrtrcl 43847 Composition with the refle...
cortrclrtrcl 43848 The reflexive-transitive c...
frege77d 43849 If the images of both ` { ...
frege81d 43850 If the image of ` U ` is a...
frege83d 43851 If the image of the union ...
frege96d 43852 If ` C ` follows ` A ` in ...
frege87d 43853 If the images of both ` { ...
frege91d 43854 If ` B ` follows ` A ` in ...
frege97d 43855 If ` A ` contains all elem...
frege98d 43856 If ` C ` follows ` A ` and...
frege102d 43857 If either ` A ` and ` C ` ...
frege106d 43858 If ` B ` follows ` A ` in ...
frege108d 43859 If either ` A ` and ` C ` ...
frege109d 43860 If ` A ` contains all elem...
frege114d 43861 If either ` R ` relates ` ...
frege111d 43862 If either ` A ` and ` C ` ...
frege122d 43863 If ` F ` is a function, ` ...
frege124d 43864 If ` F ` is a function, ` ...
frege126d 43865 If ` F ` is a function, ` ...
frege129d 43866 If ` F ` is a function and...
frege131d 43867 If ` F ` is a function and...
frege133d 43868 If ` F ` is a function and...
dfxor4 43869 Express exclusive-or in te...
dfxor5 43870 Express exclusive-or in te...
df3or2 43871 Express triple-or in terms...
df3an2 43872 Express triple-and in term...
nev 43873 Express that not every set...
0pssin 43874 Express that an intersecti...
dfhe2 43877 The property of relation `...
dfhe3 43878 The property of relation `...
heeq12 43879 Equality law for relations...
heeq1 43880 Equality law for relations...
heeq2 43881 Equality law for relations...
sbcheg 43882 Distribute proper substitu...
hess 43883 Subclass law for relations...
xphe 43884 Any Cartesian product is h...
0he 43885 The empty relation is here...
0heALT 43886 The empty relation is here...
he0 43887 Any relation is hereditary...
unhe1 43888 The union of two relations...
snhesn 43889 Any singleton is hereditar...
idhe 43890 The identity relation is h...
psshepw 43891 The relation between sets ...
sshepw 43892 The relation between sets ...
rp-simp2-frege 43895 Simplification of triple c...
rp-simp2 43896 Simplification of triple c...
rp-frege3g 43897 Add antecedent to ~ ax-fre...
frege3 43898 Add antecedent to ~ ax-fre...
rp-misc1-frege 43899 Double-use of ~ ax-frege2 ...
rp-frege24 43900 Introducing an embedded an...
rp-frege4g 43901 Deduction related to distr...
frege4 43902 Special case of closed for...
frege5 43903 A closed form of ~ syl . ...
rp-7frege 43904 Distribute antecedent and ...
rp-4frege 43905 Elimination of a nested an...
rp-6frege 43906 Elimination of a nested an...
rp-8frege 43907 Eliminate antecedent when ...
rp-frege25 43908 Closed form for ~ a1dd . ...
frege6 43909 A closed form of ~ imim2d ...
axfrege8 43910 Swap antecedents. Identic...
frege7 43911 A closed form of ~ syl6 . ...
frege26 43913 Identical to ~ idd . Prop...
frege27 43914 We cannot (at the same tim...
frege9 43915 Closed form of ~ syl with ...
frege12 43916 A closed form of ~ com23 ....
frege11 43917 Elimination of a nested an...
frege24 43918 Closed form for ~ a1d . D...
frege16 43919 A closed form of ~ com34 ....
frege25 43920 Closed form for ~ a1dd . ...
frege18 43921 Closed form of a syllogism...
frege22 43922 A closed form of ~ com45 ....
frege10 43923 Result commuting anteceden...
frege17 43924 A closed form of ~ com3l ....
frege13 43925 A closed form of ~ com3r ....
frege14 43926 Closed form of a deduction...
frege19 43927 A closed form of ~ syl6 . ...
frege23 43928 Syllogism followed by rota...
frege15 43929 A closed form of ~ com4r ....
frege21 43930 Replace antecedent in ante...
frege20 43931 A closed form of ~ syl8 . ...
axfrege28 43932 Contraposition. Identical...
frege29 43934 Closed form of ~ con3d . ...
frege30 43935 Commuted, closed form of ~...
axfrege31 43936 Identical to ~ notnotr . ...
frege32 43938 Deduce ~ con1 from ~ con3 ...
frege33 43939 If ` ph ` or ` ps ` takes ...
frege34 43940 If as a consequence of the...
frege35 43941 Commuted, closed form of ~...
frege36 43942 The case in which ` ps ` i...
frege37 43943 If ` ch ` is a necessary c...
frege38 43944 Identical to ~ pm2.21 . P...
frege39 43945 Syllogism between ~ pm2.18...
frege40 43946 Anything implies ~ pm2.18 ...
axfrege41 43947 Identical to ~ notnot . A...
frege42 43949 Not not ~ id . Propositio...
frege43 43950 If there is a choice only ...
frege44 43951 Similar to a commuted ~ pm...
frege45 43952 Deduce ~ pm2.6 from ~ con1...
frege46 43953 If ` ps ` holds when ` ph ...
frege47 43954 Deduce consequence follows...
frege48 43955 Closed form of syllogism w...
frege49 43956 Closed form of deduction w...
frege50 43957 Closed form of ~ jaoi . P...
frege51 43958 Compare with ~ jaod . Pro...
axfrege52a 43959 Justification for ~ ax-fre...
frege52aid 43961 The case when the content ...
frege53aid 43962 Specialization of ~ frege5...
frege53a 43963 Lemma for ~ frege55a . Pr...
axfrege54a 43964 Justification for ~ ax-fre...
frege54cor0a 43966 Synonym for logical equiva...
frege54cor1a 43967 Reflexive equality. (Cont...
frege55aid 43968 Lemma for ~ frege57aid . ...
frege55lem1a 43969 Necessary deduction regard...
frege55lem2a 43970 Core proof of Proposition ...
frege55a 43971 Proposition 55 of [Frege18...
frege55cor1a 43972 Proposition 55 of [Frege18...
frege56aid 43973 Lemma for ~ frege57aid . ...
frege56a 43974 Proposition 56 of [Frege18...
frege57aid 43975 This is the all important ...
frege57a 43976 Analogue of ~ frege57aid ....
axfrege58a 43977 Identical to ~ anifp . Ju...
frege58acor 43979 Lemma for ~ frege59a . (C...
frege59a 43980 A kind of Aristotelian inf...
frege60a 43981 Swap antecedents of ~ ax-f...
frege61a 43982 Lemma for ~ frege65a . Pr...
frege62a 43983 A kind of Aristotelian inf...
frege63a 43984 Proposition 63 of [Frege18...
frege64a 43985 Lemma for ~ frege65a . Pr...
frege65a 43986 A kind of Aristotelian inf...
frege66a 43987 Swap antecedents of ~ freg...
frege67a 43988 Lemma for ~ frege68a . Pr...
frege68a 43989 Combination of applying a ...
axfrege52c 43990 Justification for ~ ax-fre...
frege52b 43992 The case when the content ...
frege53b 43993 Lemma for frege102 (via ~ ...
axfrege54c 43994 Reflexive equality of clas...
frege54b 43996 Reflexive equality of sets...
frege54cor1b 43997 Reflexive equality. (Cont...
frege55lem1b 43998 Necessary deduction regard...
frege55lem2b 43999 Lemma for ~ frege55b . Co...
frege55b 44000 Lemma for ~ frege57b . Pr...
frege56b 44001 Lemma for ~ frege57b . Pr...
frege57b 44002 Analogue of ~ frege57aid ....
axfrege58b 44003 If ` A. x ph ` is affirmed...
frege58bid 44005 If ` A. x ph ` is affirmed...
frege58bcor 44006 Lemma for ~ frege59b . (C...
frege59b 44007 A kind of Aristotelian inf...
frege60b 44008 Swap antecedents of ~ ax-f...
frege61b 44009 Lemma for ~ frege65b . Pr...
frege62b 44010 A kind of Aristotelian inf...
frege63b 44011 Lemma for ~ frege91 . Pro...
frege64b 44012 Lemma for ~ frege65b . Pr...
frege65b 44013 A kind of Aristotelian inf...
frege66b 44014 Swap antecedents of ~ freg...
frege67b 44015 Lemma for ~ frege68b . Pr...
frege68b 44016 Combination of applying a ...
frege53c 44017 Proposition 53 of [Frege18...
frege54cor1c 44018 Reflexive equality. (Cont...
frege55lem1c 44019 Necessary deduction regard...
frege55lem2c 44020 Core proof of Proposition ...
frege55c 44021 Proposition 55 of [Frege18...
frege56c 44022 Lemma for ~ frege57c . Pr...
frege57c 44023 Swap order of implication ...
frege58c 44024 Principle related to ~ sp ...
frege59c 44025 A kind of Aristotelian inf...
frege60c 44026 Swap antecedents of ~ freg...
frege61c 44027 Lemma for ~ frege65c . Pr...
frege62c 44028 A kind of Aristotelian inf...
frege63c 44029 Analogue of ~ frege63b . ...
frege64c 44030 Lemma for ~ frege65c . Pr...
frege65c 44031 A kind of Aristotelian inf...
frege66c 44032 Swap antecedents of ~ freg...
frege67c 44033 Lemma for ~ frege68c . Pr...
frege68c 44034 Combination of applying a ...
dffrege69 44035 If from the proposition th...
frege70 44036 Lemma for ~ frege72 . Pro...
frege71 44037 Lemma for ~ frege72 . Pro...
frege72 44038 If property ` A ` is hered...
frege73 44039 Lemma for ~ frege87 . Pro...
frege74 44040 If ` X ` has a property ` ...
frege75 44041 If from the proposition th...
dffrege76 44042 If from the two propositio...
frege77 44043 If ` Y ` follows ` X ` in ...
frege78 44044 Commuted form of ~ frege77...
frege79 44045 Distributed form of ~ freg...
frege80 44046 Add additional condition t...
frege81 44047 If ` X ` has a property ` ...
frege82 44048 Closed-form deduction base...
frege83 44049 Apply commuted form of ~ f...
frege84 44050 Commuted form of ~ frege81...
frege85 44051 Commuted form of ~ frege77...
frege86 44052 Conclusion about element o...
frege87 44053 If ` Z ` is a result of an...
frege88 44054 Commuted form of ~ frege87...
frege89 44055 One direction of ~ dffrege...
frege90 44056 Add antecedent to ~ frege8...
frege91 44057 Every result of an applica...
frege92 44058 Inference from ~ frege91 ....
frege93 44059 Necessary condition for tw...
frege94 44060 Looking one past a pair re...
frege95 44061 Looking one past a pair re...
frege96 44062 Every result of an applica...
frege97 44063 The property of following ...
frege98 44064 If ` Y ` follows ` X ` and...
dffrege99 44065 If ` Z ` is identical with...
frege100 44066 One direction of ~ dffrege...
frege101 44067 Lemma for ~ frege102 . Pr...
frege102 44068 If ` Z ` belongs to the ` ...
frege103 44069 Proposition 103 of [Frege1...
frege104 44070 Proposition 104 of [Frege1...
frege105 44071 Proposition 105 of [Frege1...
frege106 44072 Whatever follows ` X ` in ...
frege107 44073 Proposition 107 of [Frege1...
frege108 44074 If ` Y ` belongs to the ` ...
frege109 44075 The property of belonging ...
frege110 44076 Proposition 110 of [Frege1...
frege111 44077 If ` Y ` belongs to the ` ...
frege112 44078 Identity implies belonging...
frege113 44079 Proposition 113 of [Frege1...
frege114 44080 If ` X ` belongs to the ` ...
dffrege115 44081 If from the circumstance t...
frege116 44082 One direction of ~ dffrege...
frege117 44083 Lemma for ~ frege118 . Pr...
frege118 44084 Simplified application of ...
frege119 44085 Lemma for ~ frege120 . Pr...
frege120 44086 Simplified application of ...
frege121 44087 Lemma for ~ frege122 . Pr...
frege122 44088 If ` X ` is a result of an...
frege123 44089 Lemma for ~ frege124 . Pr...
frege124 44090 If ` X ` is a result of an...
frege125 44091 Lemma for ~ frege126 . Pr...
frege126 44092 If ` M ` follows ` Y ` in ...
frege127 44093 Communte antecedents of ~ ...
frege128 44094 Lemma for ~ frege129 . Pr...
frege129 44095 If the procedure ` R ` is ...
frege130 44096 Lemma for ~ frege131 . Pr...
frege131 44097 If the procedure ` R ` is ...
frege132 44098 Lemma for ~ frege133 . Pr...
frege133 44099 If the procedure ` R ` is ...
enrelmap 44100 The set of all possible re...
enrelmapr 44101 The set of all possible re...
enmappw 44102 The set of all mappings fr...
enmappwid 44103 The set of all mappings fr...
rfovd 44104 Value of the operator, ` (...
rfovfvd 44105 Value of the operator, ` (...
rfovfvfvd 44106 Value of the operator, ` (...
rfovcnvf1od 44107 Properties of the operator...
rfovcnvd 44108 Value of the converse of t...
rfovf1od 44109 The value of the operator,...
rfovcnvfvd 44110 Value of the converse of t...
fsovd 44111 Value of the operator, ` (...
fsovrfovd 44112 The operator which gives a...
fsovfvd 44113 Value of the operator, ` (...
fsovfvfvd 44114 Value of the operator, ` (...
fsovfd 44115 The operator, ` ( A O B ) ...
fsovcnvlem 44116 The ` O ` operator, which ...
fsovcnvd 44117 The value of the converse ...
fsovcnvfvd 44118 The value of the converse ...
fsovf1od 44119 The value of ` ( A O B ) `...
dssmapfvd 44120 Value of the duality opera...
dssmapfv2d 44121 Value of the duality opera...
dssmapfv3d 44122 Value of the duality opera...
dssmapnvod 44123 For any base set ` B ` the...
dssmapf1od 44124 For any base set ` B ` the...
dssmap2d 44125 For any base set ` B ` the...
or3or 44126 Decompose disjunction into...
andi3or 44127 Distribute over triple dis...
uneqsn 44128 If a union of classes is e...
brfvimex 44129 If a binary relation holds...
brovmptimex 44130 If a binary relation holds...
brovmptimex1 44131 If a binary relation holds...
brovmptimex2 44132 If a binary relation holds...
brcoffn 44133 Conditions allowing the de...
brcofffn 44134 Conditions allowing the de...
brco2f1o 44135 Conditions allowing the de...
brco3f1o 44136 Conditions allowing the de...
ntrclsbex 44137 If (pseudo-)interior and (...
ntrclsrcomplex 44138 The relative complement of...
neik0imk0p 44139 Kuratowski's K0 axiom impl...
ntrk2imkb 44140 If an interior function is...
ntrkbimka 44141 If the interiors of disjoi...
ntrk0kbimka 44142 If the interiors of disjoi...
clsk3nimkb 44143 If the base set is not emp...
clsk1indlem0 44144 The ansatz closure functio...
clsk1indlem2 44145 The ansatz closure functio...
clsk1indlem3 44146 The ansatz closure functio...
clsk1indlem4 44147 The ansatz closure functio...
clsk1indlem1 44148 The ansatz closure functio...
clsk1independent 44149 For generalized closure fu...
neik0pk1imk0 44150 Kuratowski's K0' and K1 ax...
isotone1 44151 Two different ways to say ...
isotone2 44152 Two different ways to say ...
ntrk1k3eqk13 44153 An interior function is bo...
ntrclsf1o 44154 If (pseudo-)interior and (...
ntrclsnvobr 44155 If (pseudo-)interior and (...
ntrclsiex 44156 If (pseudo-)interior and (...
ntrclskex 44157 If (pseudo-)interior and (...
ntrclsfv1 44158 If (pseudo-)interior and (...
ntrclsfv2 44159 If (pseudo-)interior and (...
ntrclselnel1 44160 If (pseudo-)interior and (...
ntrclselnel2 44161 If (pseudo-)interior and (...
ntrclsfv 44162 The value of the interior ...
ntrclsfveq1 44163 If interior and closure fu...
ntrclsfveq2 44164 If interior and closure fu...
ntrclsfveq 44165 If interior and closure fu...
ntrclsss 44166 If interior and closure fu...
ntrclsneine0lem 44167 If (pseudo-)interior and (...
ntrclsneine0 44168 If (pseudo-)interior and (...
ntrclscls00 44169 If (pseudo-)interior and (...
ntrclsiso 44170 If (pseudo-)interior and (...
ntrclsk2 44171 An interior function is co...
ntrclskb 44172 The interiors of disjoint ...
ntrclsk3 44173 The intersection of interi...
ntrclsk13 44174 The interior of the inters...
ntrclsk4 44175 Idempotence of the interio...
ntrneibex 44176 If (pseudo-)interior and (...
ntrneircomplex 44177 The relative complement of...
ntrneif1o 44178 If (pseudo-)interior and (...
ntrneiiex 44179 If (pseudo-)interior and (...
ntrneinex 44180 If (pseudo-)interior and (...
ntrneicnv 44181 If (pseudo-)interior and (...
ntrneifv1 44182 If (pseudo-)interior and (...
ntrneifv2 44183 If (pseudo-)interior and (...
ntrneiel 44184 If (pseudo-)interior and (...
ntrneifv3 44185 The value of the neighbors...
ntrneineine0lem 44186 If (pseudo-)interior and (...
ntrneineine1lem 44187 If (pseudo-)interior and (...
ntrneifv4 44188 The value of the interior ...
ntrneiel2 44189 Membership in iterated int...
ntrneineine0 44190 If (pseudo-)interior and (...
ntrneineine1 44191 If (pseudo-)interior and (...
ntrneicls00 44192 If (pseudo-)interior and (...
ntrneicls11 44193 If (pseudo-)interior and (...
ntrneiiso 44194 If (pseudo-)interior and (...
ntrneik2 44195 An interior function is co...
ntrneix2 44196 An interior (closure) func...
ntrneikb 44197 The interiors of disjoint ...
ntrneixb 44198 The interiors (closures) o...
ntrneik3 44199 The intersection of interi...
ntrneix3 44200 The closure of the union o...
ntrneik13 44201 The interior of the inters...
ntrneix13 44202 The closure of the union o...
ntrneik4w 44203 Idempotence of the interio...
ntrneik4 44204 Idempotence of the interio...
clsneibex 44205 If (pseudo-)closure and (p...
clsneircomplex 44206 The relative complement of...
clsneif1o 44207 If a (pseudo-)closure func...
clsneicnv 44208 If a (pseudo-)closure func...
clsneikex 44209 If closure and neighborhoo...
clsneinex 44210 If closure and neighborhoo...
clsneiel1 44211 If a (pseudo-)closure func...
clsneiel2 44212 If a (pseudo-)closure func...
clsneifv3 44213 Value of the neighborhoods...
clsneifv4 44214 Value of the closure (inte...
neicvgbex 44215 If (pseudo-)neighborhood a...
neicvgrcomplex 44216 The relative complement of...
neicvgf1o 44217 If neighborhood and conver...
neicvgnvo 44218 If neighborhood and conver...
neicvgnvor 44219 If neighborhood and conver...
neicvgmex 44220 If the neighborhoods and c...
neicvgnex 44221 If the neighborhoods and c...
neicvgel1 44222 A subset being an element ...
neicvgel2 44223 The complement of a subset...
neicvgfv 44224 The value of the neighborh...
ntrrn 44225 The range of the interior ...
ntrf 44226 The interior function of a...
ntrf2 44227 The interior function is a...
ntrelmap 44228 The interior function is a...
clsf2 44229 The closure function is a ...
clselmap 44230 The closure function is a ...
dssmapntrcls 44231 The interior and closure o...
dssmapclsntr 44232 The closure and interior o...
gneispa 44233 Each point ` p ` of the ne...
gneispb 44234 Given a neighborhood ` N `...
gneispace2 44235 The predicate that ` F ` i...
gneispace3 44236 The predicate that ` F ` i...
gneispace 44237 The predicate that ` F ` i...
gneispacef 44238 A generic neighborhood spa...
gneispacef2 44239 A generic neighborhood spa...
gneispacefun 44240 A generic neighborhood spa...
gneispacern 44241 A generic neighborhood spa...
gneispacern2 44242 A generic neighborhood spa...
gneispace0nelrn 44243 A generic neighborhood spa...
gneispace0nelrn2 44244 A generic neighborhood spa...
gneispace0nelrn3 44245 A generic neighborhood spa...
gneispaceel 44246 Every neighborhood of a po...
gneispaceel2 44247 Every neighborhood of a po...
gneispacess 44248 All supersets of a neighbo...
gneispacess2 44249 All supersets of a neighbo...
k0004lem1 44250 Application of ~ ssin to r...
k0004lem2 44251 A mapping with a particula...
k0004lem3 44252 When the value of a mappin...
k0004val 44253 The topological simplex of...
k0004ss1 44254 The topological simplex of...
k0004ss2 44255 The topological simplex of...
k0004ss3 44256 The topological simplex of...
k0004val0 44257 The topological simplex of...
inductionexd 44258 Simple induction example. ...
wwlemuld 44259 Natural deduction form of ...
leeq1d 44260 Specialization of ~ breq1d...
leeq2d 44261 Specialization of ~ breq2d...
absmulrposd 44262 Specialization of absmuld ...
imadisjld 44263 Natural dduction form of o...
wnefimgd 44264 The image of a mapping fro...
fco2d 44265 Natural deduction form of ...
wfximgfd 44266 The value of a function on...
extoimad 44267 If |f(x)| <= C for all x t...
imo72b2lem0 44268 Lemma for ~ imo72b2 . (Co...
suprleubrd 44269 Natural deduction form of ...
imo72b2lem2 44270 Lemma for ~ imo72b2 . (Co...
suprlubrd 44271 Natural deduction form of ...
imo72b2lem1 44272 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 44273 'Less than or equal to' re...
lemuldiv4d 44274 'Less than or equal to' re...
imo72b2 44275 IMO 1972 B2. (14th Intern...
int-addcomd 44276 AdditionCommutativity gene...
int-addassocd 44277 AdditionAssociativity gene...
int-addsimpd 44278 AdditionSimplification gen...
int-mulcomd 44279 MultiplicationCommutativit...
int-mulassocd 44280 MultiplicationAssociativit...
int-mulsimpd 44281 MultiplicationSimplificati...
int-leftdistd 44282 AdditionMultiplicationLeft...
int-rightdistd 44283 AdditionMultiplicationRigh...
int-sqdefd 44284 SquareDefinition generator...
int-mul11d 44285 First MultiplicationOne ge...
int-mul12d 44286 Second MultiplicationOne g...
int-add01d 44287 First AdditionZero generat...
int-add02d 44288 Second AdditionZero genera...
int-sqgeq0d 44289 SquareGEQZero generator ru...
int-eqprincd 44290 PrincipleOfEquality genera...
int-eqtransd 44291 EqualityTransitivity gener...
int-eqmvtd 44292 EquMoveTerm generator rule...
int-eqineqd 44293 EquivalenceImpliesDoubleIn...
int-ineqmvtd 44294 IneqMoveTerm generator rul...
int-ineq1stprincd 44295 FirstPrincipleOfInequality...
int-ineq2ndprincd 44296 SecondPrincipleOfInequalit...
int-ineqtransd 44297 InequalityTransitivity gen...
unitadd 44298 Theorem used in conjunctio...
gsumws3 44299 Valuation of a length 3 wo...
gsumws4 44300 Valuation of a length 4 wo...
amgm2d 44301 Arithmetic-geometric mean ...
amgm3d 44302 Arithmetic-geometric mean ...
amgm4d 44303 Arithmetic-geometric mean ...
spALT 44304 ~ sp can be proven from th...
elnelneqd 44305 Two classes are not equal ...
elnelneq2d 44306 Two classes are not equal ...
rr-spce 44307 Prove an existential. (Co...
rexlimdvaacbv 44308 Unpack a restricted existe...
rexlimddvcbvw 44309 Unpack a restricted existe...
rexlimddvcbv 44310 Unpack a restricted existe...
rr-elrnmpt3d 44311 Elementhood in an image se...
rr-phpd 44312 Equivalent of ~ php withou...
tfindsd 44313 Deduction associated with ...
mnringvald 44316 Value of the monoid ring f...
mnringnmulrd 44317 Components of a monoid rin...
mnringbased 44318 The base set of a monoid r...
mnringbaserd 44319 The base set of a monoid r...
mnringelbased 44320 Membership in the base set...
mnringbasefd 44321 Elements of a monoid ring ...
mnringbasefsuppd 44322 Elements of a monoid ring ...
mnringaddgd 44323 The additive operation of ...
mnring0gd 44324 The additive identity of a...
mnring0g2d 44325 The additive identity of a...
mnringmulrd 44326 The ring product of a mono...
mnringscad 44327 The scalar ring of a monoi...
mnringvscad 44328 The scalar product of a mo...
mnringlmodd 44329 Monoid rings are left modu...
mnringmulrvald 44330 Value of multiplication in...
mnringmulrcld 44331 Monoid rings are closed un...
gru0eld 44332 A nonempty Grothendieck un...
grusucd 44333 Grothendieck universes are...
r1rankcld 44334 Any rank of the cumulative...
grur1cld 44335 Grothendieck universes are...
grurankcld 44336 Grothendieck universes are...
grurankrcld 44337 If a Grothendieck universe...
scotteqd 44340 Equality theorem for the S...
scotteq 44341 Closed form of ~ scotteqd ...
nfscott 44342 Bound-variable hypothesis ...
scottabf 44343 Value of the Scott operati...
scottab 44344 Value of the Scott operati...
scottabes 44345 Value of the Scott operati...
scottss 44346 Scott's trick produces a s...
elscottab 44347 An element of the output o...
scottex2 44348 ~ scottex expressed using ...
scotteld 44349 The Scott operation sends ...
scottelrankd 44350 Property of a Scott's tric...
scottrankd 44351 Rank of a nonempty Scott's...
gruscottcld 44352 If a Grothendieck universe...
dfcoll2 44355 Alternate definition of th...
colleq12d 44356 Equality theorem for the c...
colleq1 44357 Equality theorem for the c...
colleq2 44358 Equality theorem for the c...
nfcoll 44359 Bound-variable hypothesis ...
collexd 44360 The output of the collecti...
cpcolld 44361 Property of the collection...
cpcoll2d 44362 ~ cpcolld with an extra ex...
grucollcld 44363 A Grothendieck universe co...
ismnu 44364 The hypothesis of this the...
mnuop123d 44365 Operations of a minimal un...
mnussd 44366 Minimal universes are clos...
mnuss2d 44367 ~ mnussd with arguments pr...
mnu0eld 44368 A nonempty minimal univers...
mnuop23d 44369 Second and third operation...
mnupwd 44370 Minimal universes are clos...
mnusnd 44371 Minimal universes are clos...
mnuprssd 44372 A minimal universe contain...
mnuprss2d 44373 Special case of ~ mnuprssd...
mnuop3d 44374 Third operation of a minim...
mnuprdlem1 44375 Lemma for ~ mnuprd . (Con...
mnuprdlem2 44376 Lemma for ~ mnuprd . (Con...
mnuprdlem3 44377 Lemma for ~ mnuprd . (Con...
mnuprdlem4 44378 Lemma for ~ mnuprd . Gene...
mnuprd 44379 Minimal universes are clos...
mnuunid 44380 Minimal universes are clos...
mnuund 44381 Minimal universes are clos...
mnutrcld 44382 Minimal universes contain ...
mnutrd 44383 Minimal universes are tran...
mnurndlem1 44384 Lemma for ~ mnurnd . (Con...
mnurndlem2 44385 Lemma for ~ mnurnd . Dedu...
mnurnd 44386 Minimal universes contain ...
mnugrud 44387 Minimal universes are Grot...
grumnudlem 44388 Lemma for ~ grumnud . (Co...
grumnud 44389 Grothendieck universes are...
grumnueq 44390 The class of Grothendieck ...
expandan 44391 Expand conjunction to prim...
expandexn 44392 Expand an existential quan...
expandral 44393 Expand a restricted univer...
expandrexn 44394 Expand a restricted existe...
expandrex 44395 Expand a restricted existe...
expanduniss 44396 Expand ` U. A C_ B ` to pr...
ismnuprim 44397 Express the predicate on `...
rr-grothprimbi 44398 Express "every set is cont...
inagrud 44399 Inaccessible levels of the...
inaex 44400 Assuming the Tarski-Grothe...
gruex 44401 Assuming the Tarski-Grothe...
rr-groth 44402 An equivalent of ~ ax-grot...
rr-grothprim 44403 An equivalent of ~ ax-grot...
ismnushort 44404 Express the predicate on `...
dfuniv2 44405 Alternative definition of ...
rr-grothshortbi 44406 Express "every set is cont...
rr-grothshort 44407 A shorter equivalent of ~ ...
nanorxor 44408 'nand' is equivalent to th...
undisjrab 44409 Union of two disjoint rest...
iso0 44410 The empty set is an ` R , ...
ssrecnpr 44411 ` RR ` is a subset of both...
seff 44412 Let set ` S ` be the real ...
sblpnf 44413 The infinity ball in the a...
prmunb2 44414 The primes are unbounded. ...
dvgrat 44415 Ratio test for divergence ...
cvgdvgrat 44416 Ratio test for convergence...
radcnvrat 44417 Let ` L ` be the limit, if...
reldvds 44418 The divides relation is in...
nznngen 44419 All positive integers in t...
nzss 44420 The set of multiples of _m...
nzin 44421 The intersection of the se...
nzprmdif 44422 Subtract one prime's multi...
hashnzfz 44423 Special case of ~ hashdvds...
hashnzfz2 44424 Special case of ~ hashnzfz...
hashnzfzclim 44425 As the upper bound ` K ` o...
caofcan 44426 Transfer a cancellation la...
ofsubid 44427 Function analogue of ~ sub...
ofmul12 44428 Function analogue of ~ mul...
ofdivrec 44429 Function analogue of ~ div...
ofdivcan4 44430 Function analogue of ~ div...
ofdivdiv2 44431 Function analogue of ~ div...
lhe4.4ex1a 44432 Example of the Fundamental...
dvsconst 44433 Derivative of a constant f...
dvsid 44434 Derivative of the identity...
dvsef 44435 Derivative of the exponent...
expgrowthi 44436 Exponential growth and dec...
dvconstbi 44437 The derivative of a functi...
expgrowth 44438 Exponential growth and dec...
bccval 44441 Value of the generalized b...
bcccl 44442 Closure of the generalized...
bcc0 44443 The generalized binomial c...
bccp1k 44444 Generalized binomial coeff...
bccm1k 44445 Generalized binomial coeff...
bccn0 44446 Generalized binomial coeff...
bccn1 44447 Generalized binomial coeff...
bccbc 44448 The binomial coefficient a...
uzmptshftfval 44449 When ` F ` is a maps-to fu...
dvradcnv2 44450 The radius of convergence ...
binomcxplemwb 44451 Lemma for ~ binomcxp . Th...
binomcxplemnn0 44452 Lemma for ~ binomcxp . Wh...
binomcxplemrat 44453 Lemma for ~ binomcxp . As...
binomcxplemfrat 44454 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 44455 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 44456 Lemma for ~ binomcxp . By...
binomcxplemcvg 44457 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 44458 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 44459 Lemma for ~ binomcxp . Wh...
binomcxp 44460 Generalize the binomial th...
pm10.12 44461 Theorem *10.12 in [Whitehe...
pm10.14 44462 Theorem *10.14 in [Whitehe...
pm10.251 44463 Theorem *10.251 in [Whiteh...
pm10.252 44464 Theorem *10.252 in [Whiteh...
pm10.253 44465 Theorem *10.253 in [Whiteh...
albitr 44466 Theorem *10.301 in [Whiteh...
pm10.42 44467 Theorem *10.42 in [Whitehe...
pm10.52 44468 Theorem *10.52 in [Whitehe...
pm10.53 44469 Theorem *10.53 in [Whitehe...
pm10.541 44470 Theorem *10.541 in [Whiteh...
pm10.542 44471 Theorem *10.542 in [Whiteh...
pm10.55 44472 Theorem *10.55 in [Whitehe...
pm10.56 44473 Theorem *10.56 in [Whitehe...
pm10.57 44474 Theorem *10.57 in [Whitehe...
2alanimi 44475 Removes two universal quan...
2al2imi 44476 Removes two universal quan...
pm11.11 44477 Theorem *11.11 in [Whitehe...
pm11.12 44478 Theorem *11.12 in [Whitehe...
19.21vv 44479 Compare Theorem *11.3 in [...
2alim 44480 Theorem *11.32 in [Whitehe...
2albi 44481 Theorem *11.33 in [Whitehe...
2exim 44482 Theorem *11.34 in [Whitehe...
2exbi 44483 Theorem *11.341 in [Whiteh...
spsbce-2 44484 Theorem *11.36 in [Whitehe...
19.33-2 44485 Theorem *11.421 in [Whiteh...
19.36vv 44486 Theorem *11.43 in [Whitehe...
19.31vv 44487 Theorem *11.44 in [Whitehe...
19.37vv 44488 Theorem *11.46 in [Whitehe...
19.28vv 44489 Theorem *11.47 in [Whitehe...
pm11.52 44490 Theorem *11.52 in [Whitehe...
aaanv 44491 Theorem *11.56 in [Whitehe...
pm11.57 44492 Theorem *11.57 in [Whitehe...
pm11.58 44493 Theorem *11.58 in [Whitehe...
pm11.59 44494 Theorem *11.59 in [Whitehe...
pm11.6 44495 Theorem *11.6 in [Whitehea...
pm11.61 44496 Theorem *11.61 in [Whitehe...
pm11.62 44497 Theorem *11.62 in [Whitehe...
pm11.63 44498 Theorem *11.63 in [Whitehe...
pm11.7 44499 Theorem *11.7 in [Whitehea...
pm11.71 44500 Theorem *11.71 in [Whitehe...
sbeqal1 44501 If ` x = y ` always implie...
sbeqal1i 44502 Suppose you know ` x = y `...
sbeqal2i 44503 If ` x = y ` implies ` x =...
axc5c4c711 44504 Proof of a theorem that ca...
axc5c4c711toc5 44505 Rederivation of ~ sp from ...
axc5c4c711toc4 44506 Rederivation of ~ axc4 fro...
axc5c4c711toc7 44507 Rederivation of ~ axc7 fro...
axc5c4c711to11 44508 Rederivation of ~ ax-11 fr...
axc11next 44509 This theorem shows that, g...
pm13.13a 44510 One result of theorem *13....
pm13.13b 44511 Theorem *13.13 in [Whitehe...
pm13.14 44512 Theorem *13.14 in [Whitehe...
pm13.192 44513 Theorem *13.192 in [Whiteh...
pm13.193 44514 Theorem *13.193 in [Whiteh...
pm13.194 44515 Theorem *13.194 in [Whiteh...
pm13.195 44516 Theorem *13.195 in [Whiteh...
pm13.196a 44517 Theorem *13.196 in [Whiteh...
2sbc6g 44518 Theorem *13.21 in [Whitehe...
2sbc5g 44519 Theorem *13.22 in [Whitehe...
iotain 44520 Equivalence between two di...
iotaexeu 44521 The iota class exists. Th...
iotasbc 44522 Definition *14.01 in [Whit...
iotasbc2 44523 Theorem *14.111 in [Whiteh...
pm14.12 44524 Theorem *14.12 in [Whitehe...
pm14.122a 44525 Theorem *14.122 in [Whiteh...
pm14.122b 44526 Theorem *14.122 in [Whiteh...
pm14.122c 44527 Theorem *14.122 in [Whiteh...
pm14.123a 44528 Theorem *14.123 in [Whiteh...
pm14.123b 44529 Theorem *14.123 in [Whiteh...
pm14.123c 44530 Theorem *14.123 in [Whiteh...
pm14.18 44531 Theorem *14.18 in [Whitehe...
iotaequ 44532 Theorem *14.2 in [Whitehea...
iotavalb 44533 Theorem *14.202 in [Whiteh...
iotasbc5 44534 Theorem *14.205 in [Whiteh...
pm14.24 44535 Theorem *14.24 in [Whitehe...
iotavalsb 44536 Theorem *14.242 in [Whiteh...
sbiota1 44537 Theorem *14.25 in [Whitehe...
sbaniota 44538 Theorem *14.26 in [Whitehe...
iotasbcq 44539 Theorem *14.272 in [Whiteh...
elnev 44540 Any set that contains one ...
rusbcALT 44541 A version of Russell's par...
compeq 44542 Equality between two ways ...
compne 44543 The complement of ` A ` is...
compab 44544 Two ways of saying "the co...
conss2 44545 Contrapositive law for sub...
conss1 44546 Contrapositive law for sub...
ralbidar 44547 More general form of ~ ral...
rexbidar 44548 More general form of ~ rex...
dropab1 44549 Theorem to aid use of the ...
dropab2 44550 Theorem to aid use of the ...
ipo0 44551 If the identity relation p...
ifr0 44552 A class that is founded by...
ordpss 44553 ~ ordelpss with an anteced...
fvsb 44554 Explicit substitution of a...
fveqsb 44555 Implicit substitution of a...
xpexb 44556 A Cartesian product exists...
trelpss 44557 An element of a transitive...
addcomgi 44558 Generalization of commutat...
addrval 44568 Value of the operation of ...
subrval 44569 Value of the operation of ...
mulvval 44570 Value of the operation of ...
addrfv 44571 Vector addition at a value...
subrfv 44572 Vector subtraction at a va...
mulvfv 44573 Scalar multiplication at a...
addrfn 44574 Vector addition produces a...
subrfn 44575 Vector subtraction produce...
mulvfn 44576 Scalar multiplication prod...
addrcom 44577 Vector addition is commuta...
idiALT 44581 Placeholder for ~ idi . T...
exbir 44582 Exportation implication al...
3impexpbicom 44583 Version of ~ 3impexp where...
3impexpbicomi 44584 Inference associated with ...
bi1imp 44585 Importation inference simi...
bi2imp 44586 Importation inference simi...
bi3impb 44587 Similar to ~ 3impb with im...
bi3impa 44588 Similar to ~ 3impa with im...
bi23impib 44589 ~ 3impib with the inner im...
bi13impib 44590 ~ 3impib with the outer im...
bi123impib 44591 ~ 3impib with the implicat...
bi13impia 44592 ~ 3impia with the outer im...
bi123impia 44593 ~ 3impia with the implicat...
bi33imp12 44594 ~ 3imp with innermost impl...
bi13imp23 44595 ~ 3imp with outermost impl...
bi13imp2 44596 Similar to ~ 3imp except t...
bi12imp3 44597 Similar to ~ 3imp except a...
bi23imp1 44598 Similar to ~ 3imp except a...
bi123imp0 44599 Similar to ~ 3imp except a...
4animp1 44600 A single hypothesis unific...
4an31 44601 A rearrangement of conjunc...
4an4132 44602 A rearrangement of conjunc...
expcomdg 44603 Biconditional form of ~ ex...
iidn3 44604 ~ idn3 without virtual ded...
ee222 44605 ~ e222 without virtual ded...
ee3bir 44606 Right-biconditional form o...
ee13 44607 ~ e13 without virtual dedu...
ee121 44608 ~ e121 without virtual ded...
ee122 44609 ~ e122 without virtual ded...
ee333 44610 ~ e333 without virtual ded...
ee323 44611 ~ e323 without virtual ded...
3ornot23 44612 If the second and third di...
orbi1r 44613 ~ orbi1 with order of disj...
3orbi123 44614 ~ pm4.39 with a 3-conjunct...
syl5imp 44615 Closed form of ~ syl5 . D...
impexpd 44616 The following User's Proof...
com3rgbi 44617 The following User's Proof...
impexpdcom 44618 The following User's Proof...
ee1111 44619 Non-virtual deduction form...
pm2.43bgbi 44620 Logical equivalence of a 2...
pm2.43cbi 44621 Logical equivalence of a 3...
ee233 44622 Non-virtual deduction form...
imbi13 44623 Join three logical equival...
ee33 44624 Non-virtual deduction form...
con5 44625 Biconditional contrapositi...
con5i 44626 Inference form of ~ con5 ....
exlimexi 44627 Inference similar to Theor...
sb5ALT 44628 Equivalence for substituti...
eexinst01 44629 ~ exinst01 without virtual...
eexinst11 44630 ~ exinst11 without virtual...
vk15.4j 44631 Excercise 4j of Unit 15 of...
notnotrALT 44632 Converse of double negatio...
con3ALT2 44633 Contraposition. Alternate...
ssralv2 44634 Quantification restricted ...
sbc3or 44635 ~ sbcor with a 3-disjuncts...
alrim3con13v 44636 Closed form of ~ alrimi wi...
rspsbc2 44637 ~ rspsbc with two quantify...
sbcoreleleq 44638 Substitution of a setvar v...
tratrb 44639 If a class is transitive a...
ordelordALT 44640 An element of an ordinal c...
sbcim2g 44641 Distribution of class subs...
sbcbi 44642 Implication form of ~ sbcb...
trsbc 44643 Formula-building inference...
truniALT 44644 The union of a class of tr...
onfrALTlem5 44645 Lemma for ~ onfrALT . (Co...
onfrALTlem4 44646 Lemma for ~ onfrALT . (Co...
onfrALTlem3 44647 Lemma for ~ onfrALT . (Co...
ggen31 44648 ~ gen31 without virtual de...
onfrALTlem2 44649 Lemma for ~ onfrALT . (Co...
cbvexsv 44650 A theorem pertaining to th...
onfrALTlem1 44651 Lemma for ~ onfrALT . (Co...
onfrALT 44652 The membership relation is...
19.41rg 44653 Closed form of right-to-le...
opelopab4 44654 Ordered pair membership in...
2pm13.193 44655 ~ pm13.193 for two variabl...
hbntal 44656 A closed form of ~ hbn . ~...
hbimpg 44657 A closed form of ~ hbim . ...
hbalg 44658 Closed form of ~ hbal . D...
hbexg 44659 Closed form of ~ nfex . D...
ax6e2eq 44660 Alternate form of ~ ax6e f...
ax6e2nd 44661 If at least two sets exist...
ax6e2ndeq 44662 "At least two sets exist" ...
2sb5nd 44663 Equivalence for double sub...
2uasbanh 44664 Distribute the unabbreviat...
2uasban 44665 Distribute the unabbreviat...
e2ebind 44666 Absorption of an existenti...
elpwgded 44667 ~ elpwgdedVD in convention...
trelded 44668 Deduction form of ~ trel ....
jaoded 44669 Deduction form of ~ jao . ...
sbtT 44670 A substitution into a theo...
not12an2impnot1 44671 If a double conjunction is...
in1 44674 Inference form of ~ df-vd1...
iin1 44675 ~ in1 without virtual dedu...
dfvd1ir 44676 Inference form of ~ df-vd1...
idn1 44677 Virtual deduction identity...
dfvd1imp 44678 Left-to-right part of defi...
dfvd1impr 44679 Right-to-left part of defi...
dfvd2 44682 Definition of a 2-hypothes...
dfvd2an 44685 Definition of a 2-hypothes...
dfvd2ani 44686 Inference form of ~ dfvd2a...
dfvd2anir 44687 Right-to-left inference fo...
dfvd2i 44688 Inference form of ~ dfvd2 ...
dfvd2ir 44689 Right-to-left inference fo...
dfvd3 44694 Definition of a 3-hypothes...
dfvd3i 44695 Inference form of ~ dfvd3 ...
dfvd3ir 44696 Right-to-left inference fo...
dfvd3an 44697 Definition of a 3-hypothes...
dfvd3ani 44698 Inference form of ~ dfvd3a...
dfvd3anir 44699 Right-to-left inference fo...
vd01 44700 A virtual hypothesis virtu...
vd02 44701 Two virtual hypotheses vir...
vd03 44702 A theorem is virtually inf...
vd12 44703 A virtual deduction with 1...
vd13 44704 A virtual deduction with 1...
vd23 44705 A virtual deduction with 2...
dfvd2imp 44706 The virtual deduction form...
dfvd2impr 44707 A 2-antecedent nested impl...
in2 44708 The virtual deduction intr...
int2 44709 The virtual deduction intr...
iin2 44710 ~ in2 without virtual dedu...
in2an 44711 The virtual deduction intr...
in3 44712 The virtual deduction intr...
iin3 44713 ~ in3 without virtual dedu...
in3an 44714 The virtual deduction intr...
int3 44715 The virtual deduction intr...
idn2 44716 Virtual deduction identity...
iden2 44717 Virtual deduction identity...
idn3 44718 Virtual deduction identity...
gen11 44719 Virtual deduction generali...
gen11nv 44720 Virtual deduction generali...
gen12 44721 Virtual deduction generali...
gen21 44722 Virtual deduction generali...
gen21nv 44723 Virtual deduction form of ...
gen31 44724 Virtual deduction generali...
gen22 44725 Virtual deduction generali...
ggen22 44726 ~ gen22 without virtual de...
exinst 44727 Existential Instantiation....
exinst01 44728 Existential Instantiation....
exinst11 44729 Existential Instantiation....
e1a 44730 A Virtual deduction elimin...
el1 44731 A Virtual deduction elimin...
e1bi 44732 Biconditional form of ~ e1...
e1bir 44733 Right biconditional form o...
e2 44734 A virtual deduction elimin...
e2bi 44735 Biconditional form of ~ e2...
e2bir 44736 Right biconditional form o...
ee223 44737 ~ e223 without virtual ded...
e223 44738 A virtual deduction elimin...
e222 44739 A virtual deduction elimin...
e220 44740 A virtual deduction elimin...
ee220 44741 ~ e220 without virtual ded...
e202 44742 A virtual deduction elimin...
ee202 44743 ~ e202 without virtual ded...
e022 44744 A virtual deduction elimin...
ee022 44745 ~ e022 without virtual ded...
e002 44746 A virtual deduction elimin...
ee002 44747 ~ e002 without virtual ded...
e020 44748 A virtual deduction elimin...
ee020 44749 ~ e020 without virtual ded...
e200 44750 A virtual deduction elimin...
ee200 44751 ~ e200 without virtual ded...
e221 44752 A virtual deduction elimin...
ee221 44753 ~ e221 without virtual ded...
e212 44754 A virtual deduction elimin...
ee212 44755 ~ e212 without virtual ded...
e122 44756 A virtual deduction elimin...
e112 44757 A virtual deduction elimin...
ee112 44758 ~ e112 without virtual ded...
e121 44759 A virtual deduction elimin...
e211 44760 A virtual deduction elimin...
ee211 44761 ~ e211 without virtual ded...
e210 44762 A virtual deduction elimin...
ee210 44763 ~ e210 without virtual ded...
e201 44764 A virtual deduction elimin...
ee201 44765 ~ e201 without virtual ded...
e120 44766 A virtual deduction elimin...
ee120 44767 Virtual deduction rule ~ e...
e021 44768 A virtual deduction elimin...
ee021 44769 ~ e021 without virtual ded...
e012 44770 A virtual deduction elimin...
ee012 44771 ~ e012 without virtual ded...
e102 44772 A virtual deduction elimin...
ee102 44773 ~ e102 without virtual ded...
e22 44774 A virtual deduction elimin...
e22an 44775 Conjunction form of ~ e22 ...
ee22an 44776 ~ e22an without virtual de...
e111 44777 A virtual deduction elimin...
e1111 44778 A virtual deduction elimin...
e110 44779 A virtual deduction elimin...
ee110 44780 ~ e110 without virtual ded...
e101 44781 A virtual deduction elimin...
ee101 44782 ~ e101 without virtual ded...
e011 44783 A virtual deduction elimin...
ee011 44784 ~ e011 without virtual ded...
e100 44785 A virtual deduction elimin...
ee100 44786 ~ e100 without virtual ded...
e010 44787 A virtual deduction elimin...
ee010 44788 ~ e010 without virtual ded...
e001 44789 A virtual deduction elimin...
ee001 44790 ~ e001 without virtual ded...
e11 44791 A virtual deduction elimin...
e11an 44792 Conjunction form of ~ e11 ...
ee11an 44793 ~ e11an without virtual de...
e01 44794 A virtual deduction elimin...
e01an 44795 Conjunction form of ~ e01 ...
ee01an 44796 ~ e01an without virtual de...
e10 44797 A virtual deduction elimin...
e10an 44798 Conjunction form of ~ e10 ...
ee10an 44799 ~ e10an without virtual de...
e02 44800 A virtual deduction elimin...
e02an 44801 Conjunction form of ~ e02 ...
ee02an 44802 ~ e02an without virtual de...
eel021old 44803 ~ el021old without virtual...
el021old 44804 A virtual deduction elimin...
eel000cT 44805 An elimination deduction. ...
eel0TT 44806 An elimination deduction. ...
eelT00 44807 An elimination deduction. ...
eelTTT 44808 An elimination deduction. ...
eelT11 44809 An elimination deduction. ...
eelT1 44810 Syllogism inference combin...
eelT12 44811 An elimination deduction. ...
eelTT1 44812 An elimination deduction. ...
eelT01 44813 An elimination deduction. ...
eel0T1 44814 An elimination deduction. ...
eel12131 44815 An elimination deduction. ...
eel2131 44816 ~ syl2an with antecedents ...
eel3132 44817 ~ syl2an with antecedents ...
eel0321old 44818 ~ el0321old without virtua...
el0321old 44819 A virtual deduction elimin...
eel2122old 44820 ~ el2122old without virtua...
el2122old 44821 A virtual deduction elimin...
eel0000 44822 Elimination rule similar t...
eel00001 44823 An elimination deduction. ...
eel00000 44824 Elimination rule similar ~...
eel11111 44825 Five-hypothesis eliminatio...
e12 44826 A virtual deduction elimin...
e12an 44827 Conjunction form of ~ e12 ...
el12 44828 Virtual deduction form of ...
e20 44829 A virtual deduction elimin...
e20an 44830 Conjunction form of ~ e20 ...
ee20an 44831 ~ e20an without virtual de...
e21 44832 A virtual deduction elimin...
e21an 44833 Conjunction form of ~ e21 ...
ee21an 44834 ~ e21an without virtual de...
e333 44835 A virtual deduction elimin...
e33 44836 A virtual deduction elimin...
e33an 44837 Conjunction form of ~ e33 ...
ee33an 44838 ~ e33an without virtual de...
e3 44839 Meta-connective form of ~ ...
e3bi 44840 Biconditional form of ~ e3...
e3bir 44841 Right biconditional form o...
e03 44842 A virtual deduction elimin...
ee03 44843 ~ e03 without virtual dedu...
e03an 44844 Conjunction form of ~ e03 ...
ee03an 44845 Conjunction form of ~ ee03...
e30 44846 A virtual deduction elimin...
ee30 44847 ~ e30 without virtual dedu...
e30an 44848 A virtual deduction elimin...
ee30an 44849 Conjunction form of ~ ee30...
e13 44850 A virtual deduction elimin...
e13an 44851 A virtual deduction elimin...
ee13an 44852 ~ e13an without virtual de...
e31 44853 A virtual deduction elimin...
ee31 44854 ~ e31 without virtual dedu...
e31an 44855 A virtual deduction elimin...
ee31an 44856 ~ e31an without virtual de...
e23 44857 A virtual deduction elimin...
e23an 44858 A virtual deduction elimin...
ee23an 44859 ~ e23an without virtual de...
e32 44860 A virtual deduction elimin...
ee32 44861 ~ e32 without virtual dedu...
e32an 44862 A virtual deduction elimin...
ee32an 44863 ~ e33an without virtual de...
e123 44864 A virtual deduction elimin...
ee123 44865 ~ e123 without virtual ded...
el123 44866 A virtual deduction elimin...
e233 44867 A virtual deduction elimin...
e323 44868 A virtual deduction elimin...
e000 44869 A virtual deduction elimin...
e00 44870 Elimination rule identical...
e00an 44871 Elimination rule identical...
eel00cT 44872 An elimination deduction. ...
eelTT 44873 An elimination deduction. ...
e0a 44874 Elimination rule identical...
eelT 44875 An elimination deduction. ...
eel0cT 44876 An elimination deduction. ...
eelT0 44877 An elimination deduction. ...
e0bi 44878 Elimination rule identical...
e0bir 44879 Elimination rule identical...
uun0.1 44880 Convention notation form o...
un0.1 44881 ` T. ` is the constant tru...
uunT1 44882 A deduction unionizing a n...
uunT1p1 44883 A deduction unionizing a n...
uunT21 44884 A deduction unionizing a n...
uun121 44885 A deduction unionizing a n...
uun121p1 44886 A deduction unionizing a n...
uun132 44887 A deduction unionizing a n...
uun132p1 44888 A deduction unionizing a n...
anabss7p1 44889 A deduction unionizing a n...
un10 44890 A unionizing deduction. (...
un01 44891 A unionizing deduction. (...
un2122 44892 A deduction unionizing a n...
uun2131 44893 A deduction unionizing a n...
uun2131p1 44894 A deduction unionizing a n...
uunTT1 44895 A deduction unionizing a n...
uunTT1p1 44896 A deduction unionizing a n...
uunTT1p2 44897 A deduction unionizing a n...
uunT11 44898 A deduction unionizing a n...
uunT11p1 44899 A deduction unionizing a n...
uunT11p2 44900 A deduction unionizing a n...
uunT12 44901 A deduction unionizing a n...
uunT12p1 44902 A deduction unionizing a n...
uunT12p2 44903 A deduction unionizing a n...
uunT12p3 44904 A deduction unionizing a n...
uunT12p4 44905 A deduction unionizing a n...
uunT12p5 44906 A deduction unionizing a n...
uun111 44907 A deduction unionizing a n...
3anidm12p1 44908 A deduction unionizing a n...
3anidm12p2 44909 A deduction unionizing a n...
uun123 44910 A deduction unionizing a n...
uun123p1 44911 A deduction unionizing a n...
uun123p2 44912 A deduction unionizing a n...
uun123p3 44913 A deduction unionizing a n...
uun123p4 44914 A deduction unionizing a n...
uun2221 44915 A deduction unionizing a n...
uun2221p1 44916 A deduction unionizing a n...
uun2221p2 44917 A deduction unionizing a n...
3impdirp1 44918 A deduction unionizing a n...
3impcombi 44919 A 1-hypothesis proposition...
trsspwALT 44920 Virtual deduction proof of...
trsspwALT2 44921 Virtual deduction proof of...
trsspwALT3 44922 Short predicate calculus p...
sspwtr 44923 Virtual deduction proof of...
sspwtrALT 44924 Virtual deduction proof of...
sspwtrALT2 44925 Short predicate calculus p...
pwtrVD 44926 Virtual deduction proof of...
pwtrrVD 44927 Virtual deduction proof of...
suctrALT 44928 The successor of a transit...
snssiALTVD 44929 Virtual deduction proof of...
snssiALT 44930 If a class is an element o...
snsslVD 44931 Virtual deduction proof of...
snssl 44932 If a singleton is a subcla...
snelpwrVD 44933 Virtual deduction proof of...
unipwrVD 44934 Virtual deduction proof of...
unipwr 44935 A class is a subclass of t...
sstrALT2VD 44936 Virtual deduction proof of...
sstrALT2 44937 Virtual deduction proof of...
suctrALT2VD 44938 Virtual deduction proof of...
suctrALT2 44939 Virtual deduction proof of...
elex2VD 44940 Virtual deduction proof of...
elex22VD 44941 Virtual deduction proof of...
eqsbc2VD 44942 Virtual deduction proof of...
zfregs2VD 44943 Virtual deduction proof of...
tpid3gVD 44944 Virtual deduction proof of...
en3lplem1VD 44945 Virtual deduction proof of...
en3lplem2VD 44946 Virtual deduction proof of...
en3lpVD 44947 Virtual deduction proof of...
simplbi2VD 44948 Virtual deduction proof of...
3ornot23VD 44949 Virtual deduction proof of...
orbi1rVD 44950 Virtual deduction proof of...
bitr3VD 44951 Virtual deduction proof of...
3orbi123VD 44952 Virtual deduction proof of...
sbc3orgVD 44953 Virtual deduction proof of...
19.21a3con13vVD 44954 Virtual deduction proof of...
exbirVD 44955 Virtual deduction proof of...
exbiriVD 44956 Virtual deduction proof of...
rspsbc2VD 44957 Virtual deduction proof of...
3impexpVD 44958 Virtual deduction proof of...
3impexpbicomVD 44959 Virtual deduction proof of...
3impexpbicomiVD 44960 Virtual deduction proof of...
sbcoreleleqVD 44961 Virtual deduction proof of...
hbra2VD 44962 Virtual deduction proof of...
tratrbVD 44963 Virtual deduction proof of...
al2imVD 44964 Virtual deduction proof of...
syl5impVD 44965 Virtual deduction proof of...
idiVD 44966 Virtual deduction proof of...
ancomstVD 44967 Closed form of ~ ancoms . ...
ssralv2VD 44968 Quantification restricted ...
ordelordALTVD 44969 An element of an ordinal c...
equncomVD 44970 If a class equals the unio...
equncomiVD 44971 Inference form of ~ equnco...
sucidALTVD 44972 A set belongs to its succe...
sucidALT 44973 A set belongs to its succe...
sucidVD 44974 A set belongs to its succe...
imbi12VD 44975 Implication form of ~ imbi...
imbi13VD 44976 Join three logical equival...
sbcim2gVD 44977 Distribution of class subs...
sbcbiVD 44978 Implication form of ~ sbcb...
trsbcVD 44979 Formula-building inference...
truniALTVD 44980 The union of a class of tr...
ee33VD 44981 Non-virtual deduction form...
trintALTVD 44982 The intersection of a clas...
trintALT 44983 The intersection of a clas...
undif3VD 44984 The first equality of Exer...
sbcssgVD 44985 Virtual deduction proof of...
csbingVD 44986 Virtual deduction proof of...
onfrALTlem5VD 44987 Virtual deduction proof of...
onfrALTlem4VD 44988 Virtual deduction proof of...
onfrALTlem3VD 44989 Virtual deduction proof of...
simplbi2comtVD 44990 Virtual deduction proof of...
onfrALTlem2VD 44991 Virtual deduction proof of...
onfrALTlem1VD 44992 Virtual deduction proof of...
onfrALTVD 44993 Virtual deduction proof of...
csbeq2gVD 44994 Virtual deduction proof of...
csbsngVD 44995 Virtual deduction proof of...
csbxpgVD 44996 Virtual deduction proof of...
csbresgVD 44997 Virtual deduction proof of...
csbrngVD 44998 Virtual deduction proof of...
csbima12gALTVD 44999 Virtual deduction proof of...
csbunigVD 45000 Virtual deduction proof of...
csbfv12gALTVD 45001 Virtual deduction proof of...
con5VD 45002 Virtual deduction proof of...
relopabVD 45003 Virtual deduction proof of...
19.41rgVD 45004 Virtual deduction proof of...
2pm13.193VD 45005 Virtual deduction proof of...
hbimpgVD 45006 Virtual deduction proof of...
hbalgVD 45007 Virtual deduction proof of...
hbexgVD 45008 Virtual deduction proof of...
ax6e2eqVD 45009 The following User's Proof...
ax6e2ndVD 45010 The following User's Proof...
ax6e2ndeqVD 45011 The following User's Proof...
2sb5ndVD 45012 The following User's Proof...
2uasbanhVD 45013 The following User's Proof...
e2ebindVD 45014 The following User's Proof...
sb5ALTVD 45015 The following User's Proof...
vk15.4jVD 45016 The following User's Proof...
notnotrALTVD 45017 The following User's Proof...
con3ALTVD 45018 The following User's Proof...
elpwgdedVD 45019 Membership in a power clas...
sspwimp 45020 If a class is a subclass o...
sspwimpVD 45021 The following User's Proof...
sspwimpcf 45022 If a class is a subclass o...
sspwimpcfVD 45023 The following User's Proof...
suctrALTcf 45024 The successor of a transit...
suctrALTcfVD 45025 The following User's Proof...
suctrALT3 45026 The successor of a transit...
sspwimpALT 45027 If a class is a subclass o...
unisnALT 45028 A set equals the union of ...
notnotrALT2 45029 Converse of double negatio...
sspwimpALT2 45030 If a class is a subclass o...
e2ebindALT 45031 Absorption of an existenti...
ax6e2ndALT 45032 If at least two sets exist...
ax6e2ndeqALT 45033 "At least two sets exist" ...
2sb5ndALT 45034 Equivalence for double sub...
chordthmALT 45035 The intersecting chords th...
isosctrlem1ALT 45036 Lemma for ~ isosctr . Thi...
iunconnlem2 45037 The indexed union of conne...
iunconnALT 45038 The indexed union of conne...
sineq0ALT 45039 A complex number whose sin...
rspesbcd 45040 Restricted quantifier vers...
rext0 45041 Nonempty existential quant...
dfbi1ALTa 45042 Version of ~ dfbi1ALT usin...
simprimi 45043 Inference associated with ...
dfbi1ALTb 45044 Further shorten ~ dfbi1ALT...
relpeq1 45047 Equality theorem for relat...
relpeq2 45048 Equality theorem for relat...
relpeq3 45049 Equality theorem for relat...
relpeq4 45050 Equality theorem for relat...
relpeq5 45051 Equality theorem for relat...
nfrelp 45052 Bound-variable hypothesis ...
relpf 45053 A relation-preserving func...
relprel 45054 A relation-preserving func...
relpmin 45055 A preimage of a minimal el...
relpfrlem 45056 Lemma for ~ relpfr . Prov...
relpfr 45057 If the image of a set unde...
orbitex 45058 Orbits exist. Given a set...
orbitinit 45059 A set is contained in its ...
orbitcl 45060 The orbit under a function...
orbitclmpt 45061 Version of ~ orbitcl using...
trwf 45062 The class of well-founded ...
rankrelp 45063 The rank function preserve...
wffr 45064 The class of well-founded ...
trfr 45065 A transitive class well-fo...
tcfr 45066 A set is well-founded if a...
xpwf 45067 The Cartesian product of t...
dmwf 45068 The domain of a well-found...
rnwf 45069 The range of a well-founde...
relwf 45070 A relation is a well-found...
ralabso 45071 Simplification of restrict...
rexabso 45072 Simplification of restrict...
ralabsod 45073 Deduction form of ~ ralabs...
rexabsod 45074 Deduction form of ~ rexabs...
ralabsobidv 45075 Formula-building lemma for...
rexabsobidv 45076 Formula-building lemma for...
ssabso 45077 The notion " ` x ` is a su...
disjabso 45078 Disjointness is absolute f...
n0abso 45079 Nonemptiness is absolute f...
traxext 45080 A transitive class models ...
modelaxreplem1 45081 Lemma for ~ modelaxrep . ...
modelaxreplem2 45082 Lemma for ~ modelaxrep . ...
modelaxreplem3 45083 Lemma for ~ modelaxrep . ...
modelaxrep 45084 Conditions which guarantee...
ssclaxsep 45085 A class that is closed und...
0elaxnul 45086 A class that contains the ...
pwclaxpow 45087 Suppose ` M ` is a transit...
prclaxpr 45088 A class that is closed und...
uniclaxun 45089 A class that is closed und...
sswfaxreg 45090 A subclass of the class of...
omssaxinf2 45091 A class that contains all ...
omelaxinf2 45092 A transitive class that co...
dfac5prim 45093 ~ dfac5 expanded into prim...
ac8prim 45094 ~ ac8 expanded into primit...
modelac8prim 45095 If ` M ` is a transitive c...
wfaxext 45096 The class of well-founded ...
wfaxrep 45097 The class of well-founded ...
wfaxsep 45098 The class of well-founded ...
wfaxnul 45099 The class of well-founded ...
wfaxpow 45100 The class of well-founded ...
wfaxpr 45101 The class of well-founded ...
wfaxun 45102 The class of well-founded ...
wfaxreg 45103 The class of well-founded ...
wfaxinf2 45104 The class of well-founded ...
wfac8prim 45105 The class of well-founded ...
brpermmodel 45106 The membership relation in...
brpermmodelcnv 45107 Ordinary membership expres...
permaxext 45108 The Axiom of Extensionalit...
permaxrep 45109 The Axiom of Replacement ~...
permaxsep 45110 The Axiom of Separation ~ ...
permaxnul 45111 The Null Set Axiom ~ ax-nu...
permaxpow 45112 The Axiom of Power Sets ~ ...
permaxpr 45113 The Axiom of Pairing ~ ax-...
permaxun 45114 The Axiom of Union ~ ax-un...
permaxinf2lem 45115 Lemma for ~ permaxinf2 . ...
permaxinf2 45116 The Axiom of Infinity ~ ax...
permac8prim 45117 The Axiom of Choice ~ ac8p...
nregmodelf1o 45118 Define a permutation ` F `...
nregmodellem 45119 Lemma for ~ nregmodel . (...
nregmodel 45120 The Axiom of Regularity ~ ...
nregmodelaxext 45121 The Axiom of Extensionalit...
evth2f 45122 A version of ~ evth2 using...
elunif 45123 A version of ~ eluni using...
rzalf 45124 A version of ~ rzal using ...
fvelrnbf 45125 A version of ~ fvelrnb usi...
rfcnpre1 45126 If F is a continuous funct...
ubelsupr 45127 If U belongs to A and U is...
fsumcnf 45128 A finite sum of functions ...
mulltgt0 45129 The product of a negative ...
rspcegf 45130 A version of ~ rspcev usin...
rabexgf 45131 A version of ~ rabexg usin...
fcnre 45132 A function continuous with...
sumsnd 45133 A sum of a singleton is th...
evthf 45134 A version of ~ evth using ...
cnfex 45135 The class of continuous fu...
fnchoice 45136 For a finite set, a choice...
refsumcn 45137 A finite sum of continuous...
rfcnpre2 45138 If ` F ` is a continuous f...
cncmpmax 45139 When the hypothesis for th...
rfcnpre3 45140 If F is a continuous funct...
rfcnpre4 45141 If F is a continuous funct...
sumpair 45142 Sum of two distinct comple...
rfcnnnub 45143 Given a real continuous fu...
refsum2cnlem1 45144 This is the core Lemma for...
refsum2cn 45145 The sum of two continuus r...
adantlllr 45146 Deduction adding a conjunc...
3adantlr3 45147 Deduction adding a conjunc...
3adantll2 45148 Deduction adding a conjunc...
3adantll3 45149 Deduction adding a conjunc...
ssnel 45150 If not element of a set, t...
sncldre 45151 A singleton is closed w.r....
n0p 45152 A polynomial with a nonzer...
pm2.65ni 45153 Inference rule for proof b...
iuneq2df 45154 Equality deduction for ind...
nnfoctb 45155 There exists a mapping fro...
elpwinss 45156 An element of the powerset...
unidmex 45157 If ` F ` is a set, then ` ...
ndisj2 45158 A non-disjointness conditi...
zenom 45159 The set of integer numbers...
uzwo4 45160 Well-ordering principle: a...
unisn0 45161 The union of the singleton...
ssin0 45162 If two classes are disjoin...
inabs3 45163 Absorption law for interse...
pwpwuni 45164 Relationship between power...
disjiun2 45165 In a disjoint collection, ...
0pwfi 45166 The empty set is in any po...
ssinss2d 45167 Intersection preserves sub...
zct 45168 The set of integer numbers...
pwfin0 45169 A finite set always belong...
uzct 45170 An upper integer set is co...
iunxsnf 45171 A singleton index picks ou...
fiiuncl 45172 If a set is closed under t...
iunp1 45173 The addition of the next s...
fiunicl 45174 If a set is closed under t...
ixpeq2d 45175 Equality theorem for infin...
disjxp1 45176 The sets of a cartesian pr...
disjsnxp 45177 The sets in the cartesian ...
eliind 45178 Membership in indexed inte...
rspcef 45179 Restricted existential spe...
ixpssmapc 45180 An infinite Cartesian prod...
elintd 45181 Membership in class inters...
ssdf 45182 A sufficient condition for...
brneqtrd 45183 Substitution of equal clas...
ssnct 45184 A set containing an uncoun...
ssuniint 45185 Sufficient condition for b...
elintdv 45186 Membership in class inters...
ssd 45187 A sufficient condition for...
ralimralim 45188 Introducing any antecedent...
snelmap 45189 Membership of the element ...
xrnmnfpnf 45190 An extended real that is n...
nelrnmpt 45191 Non-membership in the rang...
iuneq1i 45192 Equality theorem for index...
nssrex 45193 Negation of subclass relat...
ssinc 45194 Inclusion relation for a m...
ssdec 45195 Inclusion relation for a m...
elixpconstg 45196 Membership in an infinite ...
iineq1d 45197 Equality theorem for index...
metpsmet 45198 A metric is a pseudometric...
ixpssixp 45199 Subclass theorem for infin...
ballss3 45200 A sufficient condition for...
iunincfi 45201 Given a sequence of increa...
nsstr 45202 If it's not a subclass, it...
rexanuz3 45203 Combine two different uppe...
cbvmpo2 45204 Rule to change the second ...
cbvmpo1 45205 Rule to change the first b...
eliuniin 45206 Indexed union of indexed i...
ssabf 45207 Subclass of a class abstra...
pssnssi 45208 A proper subclass does not...
rabidim2 45209 Membership in a restricted...
eluni2f 45210 Membership in class union....
eliin2f 45211 Membership in indexed inte...
nssd 45212 Negation of subclass relat...
iineq12dv 45213 Equality deduction for ind...
supxrcld 45214 The supremum of an arbitra...
elrestd 45215 A sufficient condition for...
eliuniincex 45216 Counterexample to show tha...
eliincex 45217 Counterexample to show tha...
eliinid 45218 Membership in an indexed i...
abssf 45219 Class abstraction in a sub...
supxrubd 45220 A member of a set of exten...
ssrabf 45221 Subclass of a restricted c...
ssrabdf 45222 Subclass of a restricted c...
eliin2 45223 Membership in indexed inte...
ssrab2f 45224 Subclass relation for a re...
restuni3 45225 The underlying set of a su...
rabssf 45226 Restricted class abstracti...
eliuniin2 45227 Indexed union of indexed i...
restuni4 45228 The underlying set of a su...
restuni6 45229 The underlying set of a su...
restuni5 45230 The underlying set of a su...
unirestss 45231 The union of an elementwis...
iniin1 45232 Indexed intersection of in...
iniin2 45233 Indexed intersection of in...
cbvrabv2 45234 A more general version of ...
cbvrabv2w 45235 A more general version of ...
iinssiin 45236 Subset implication for an ...
eliind2 45237 Membership in indexed inte...
iinssd 45238 Subset implication for an ...
rabbida2 45239 Equivalent wff's yield equ...
iinexd 45240 The existence of an indexe...
rabexf 45241 Separation Scheme in terms...
rabbida3 45242 Equivalent wff's yield equ...
r19.36vf 45243 Restricted quantifier vers...
raleqd 45244 Equality deduction for res...
iinssf 45245 Subset implication for an ...
iinssdf 45246 Subset implication for an ...
resabs2i 45247 Absorption law for restric...
ssdf2 45248 A sufficient condition for...
rabssd 45249 Restricted class abstracti...
rexnegd 45250 Minus a real number. (Con...
rexlimd3 45251 * Inference from Theorem 1...
nel1nelini 45252 Membership in an intersect...
nel2nelini 45253 Membership in an intersect...
eliunid 45254 Membership in indexed unio...
reximdd 45255 Deduction from Theorem 19....
inopnd 45256 The intersection of two op...
ss2rabdf 45257 Deduction of restricted ab...
restopn3 45258 If ` A ` is open, then ` A...
restopnssd 45259 A topology restricted to a...
restsubel 45260 A subset belongs in the sp...
toprestsubel 45261 A subset is open in the to...
rabidd 45262 An "identity" law of concr...
iunssdf 45263 Subset theorem for an inde...
iinss2d 45264 Subset implication for an ...
r19.3rzf 45265 Restricted quantification ...
r19.28zf 45266 Restricted quantifier vers...
iindif2f 45267 Indexed intersection of cl...
ralfal 45268 Two ways of expressing emp...
archd 45269 Archimedean property of re...
nimnbi 45270 If an implication is false...
nimnbi2 45271 If an implication is false...
notbicom 45272 Commutative law for the ne...
rexeqif 45273 Equality inference for res...
rspced 45274 Restricted existential spe...
fnresdmss 45275 A function does not change...
fmptsnxp 45276 Maps-to notation and Carte...
fvmpt2bd 45277 Value of a function given ...
rnmptfi 45278 The range of a function wi...
fresin2 45279 Restriction of a function ...
ffi 45280 A function with finite dom...
suprnmpt 45281 An explicit bound for the ...
rnffi 45282 The range of a function wi...
mptelpm 45283 A function in maps-to nota...
rnmptpr 45284 Range of a function define...
resmpti 45285 Restriction of the mapping...
founiiun 45286 Union expressed as an inde...
rnresun 45287 Distribution law for range...
elrnmptf 45288 The range of a function in...
rnmptssrn 45289 Inclusion relation for two...
disjf1 45290 A 1 to 1 mapping built fro...
rnsnf 45291 The range of a function wh...
wessf1ornlem 45292 Given a function ` F ` on ...
wessf1orn 45293 Given a function ` F ` on ...
nelrnres 45294 If ` A ` is not in the ran...
disjrnmpt2 45295 Disjointness of the range ...
elrnmpt1sf 45296 Elementhood in an image se...
founiiun0 45297 Union expressed as an inde...
disjf1o 45298 A bijection built from dis...
disjinfi 45299 Only a finite number of di...
fvovco 45300 Value of the composition o...
ssnnf1octb 45301 There exists a bijection b...
nnf1oxpnn 45302 There is a bijection betwe...
rnmptssd 45303 The range of a function gi...
projf1o 45304 A biijection from a set to...
fvmap 45305 Function value for a membe...
fvixp2 45306 Projection of a factor of ...
choicefi 45307 For a finite set, a choice...
mpct 45308 The exponentiation of a co...
cnmetcoval 45309 Value of the distance func...
fcomptss 45310 Express composition of two...
elmapsnd 45311 Membership in a set expone...
mapss2 45312 Subset inheritance for set...
fsneq 45313 Equality condition for two...
difmap 45314 Difference of two sets exp...
unirnmap 45315 Given a subset of a set ex...
inmap 45316 Intersection of two sets e...
fcoss 45317 Composition of two mapping...
fsneqrn 45318 Equality condition for two...
difmapsn 45319 Difference of two sets exp...
mapssbi 45320 Subset inheritance for set...
unirnmapsn 45321 Equality theorem for a sub...
iunmapss 45322 The indexed union of set e...
ssmapsn 45323 A subset ` C ` of a set ex...
iunmapsn 45324 The indexed union of set e...
absfico 45325 Mapping domain and codomai...
icof 45326 The set of left-closed rig...
elpmrn 45327 The range of a partial fun...
imaexi 45328 The image of a set is a se...
axccdom 45329 Relax the constraint on ax...
dmmptdff 45330 The domain of the mapping ...
dmmptdf 45331 The domain of the mapping ...
elpmi2 45332 The domain of a partial fu...
dmrelrnrel 45333 A relation preserving func...
fvcod 45334 Value of a function compos...
elrnmpoid 45335 Membership in the range of...
axccd 45336 An alternative version of ...
axccd2 45337 An alternative version of ...
feqresmptf 45338 Express a restricted funct...
dmmptssf 45339 The domain of a mapping is...
dmmptdf2 45340 The domain of the mapping ...
dmuz 45341 Domain of the upper intege...
fmptd2f 45342 Domain and codomain of the...
mpteq1df 45343 An equality theorem for th...
mptexf 45344 If the domain of a functio...
fvmpt4 45345 Value of a function given ...
fmptf 45346 Functionality of the mappi...
resimass 45347 The image of a restriction...
mptssid 45348 The mapping operation expr...
mptfnd 45349 The maps-to notation defin...
rnmptlb 45350 Boundness below of the ran...
rnmptbddlem 45351 Boundness of the range of ...
rnmptbdd 45352 Boundness of the range of ...
funimaeq 45353 Membership relation for th...
rnmptssf 45354 The range of a function gi...
rnmptbd2lem 45355 Boundness below of the ran...
rnmptbd2 45356 Boundness below of the ran...
infnsuprnmpt 45357 The indexed infimum of rea...
suprclrnmpt 45358 Closure of the indexed sup...
suprubrnmpt2 45359 A member of a nonempty ind...
suprubrnmpt 45360 A member of a nonempty ind...
rnmptssdf 45361 The range of a function gi...
rnmptbdlem 45362 Boundness above of the ran...
rnmptbd 45363 Boundness above of the ran...
rnmptss2 45364 The range of a function gi...
elmptima 45365 The image of a function in...
ralrnmpt3 45366 A restricted quantifier ov...
rnmptssbi 45367 The range of a function gi...
imass2d 45368 Subset theorem for image. ...
imassmpt 45369 Membership relation for th...
fpmd 45370 A total function is a part...
fconst7 45371 An alternative way to expr...
fnmptif 45372 Functionality and domain o...
dmmptif 45373 Domain of the mapping oper...
mpteq2dfa 45374 Slightly more general equa...
dmmpt1 45375 The domain of the mapping ...
fmptff 45376 Functionality of the mappi...
fvmptelcdmf 45377 The value of a function at...
fmptdff 45378 A version of ~ fmptd using...
fvmpt2df 45379 Deduction version of ~ fvm...
rn1st 45380 The range of a function wi...
rnmptssff 45381 The range of a function gi...
rnmptssdff 45382 The range of a function gi...
fvmpt4d 45383 Value of a function given ...
sub2times 45384 Subtracting from a number,...
nnxrd 45385 A natural number is an ext...
nnxr 45386 A natural number is an ext...
abssubrp 45387 The distance of two distin...
elfzfzo 45388 Relationship between membe...
oddfl 45389 Odd number representation ...
abscosbd 45390 Bound for the absolute val...
mul13d 45391 Commutative/associative la...
negpilt0 45392 Negative ` _pi ` is negati...
dstregt0 45393 A complex number ` A ` tha...
subadd4b 45394 Rearrangement of 4 terms i...
xrlttri5d 45395 Not equal and not larger i...
zltlesub 45396 If an integer ` N ` is les...
divlt0gt0d 45397 The ratio of a negative nu...
subsub23d 45398 Swap subtrahend and result...
2timesgt 45399 Double of a positive real ...
reopn 45400 The reals are open with re...
sub31 45401 Swap the first and third t...
nnne1ge2 45402 A positive integer which i...
lefldiveq 45403 A closed enough, smaller r...
negsubdi3d 45404 Distribution of negative o...
ltdiv2dd 45405 Division of a positive num...
abssinbd 45406 Bound for the absolute val...
halffl 45407 Floor of ` ( 1 / 2 ) ` . ...
monoords 45408 Ordering relation for a st...
hashssle 45409 The size of a subset of a ...
lttri5d 45410 Not equal and not larger i...
fzisoeu 45411 A finite ordered set has a...
lt3addmuld 45412 If three real numbers are ...
absnpncan2d 45413 Triangular inequality, com...
fperiodmullem 45414 A function with period ` T...
fperiodmul 45415 A function with period T i...
upbdrech 45416 Choice of an upper bound f...
lt4addmuld 45417 If four real numbers are l...
absnpncan3d 45418 Triangular inequality, com...
upbdrech2 45419 Choice of an upper bound f...
ssfiunibd 45420 A finite union of bounded ...
fzdifsuc2 45421 Remove a successor from th...
fzsscn 45422 A finite sequence of integ...
divcan8d 45423 A cancellation law for div...
dmmcand 45424 Cancellation law for divis...
fzssre 45425 A finite sequence of integ...
bccld 45426 A binomial coefficient, in...
fzssnn0 45427 A finite set of sequential...
xreqle 45428 Equality implies 'less tha...
xaddlidd 45429 ` 0 ` is a left identity f...
xadd0ge 45430 A number is less than or e...
xrgtned 45431 'Greater than' implies not...
xrleneltd 45432 'Less than or equal to' an...
xaddcomd 45433 The extended real addition...
supxrre3 45434 The supremum of a nonempty...
uzfissfz 45435 For any finite subset of t...
xleadd2d 45436 Addition of extended reals...
suprltrp 45437 The supremum of a nonempty...
xleadd1d 45438 Addition of extended reals...
xreqled 45439 Equality implies 'less tha...
xrgepnfd 45440 An extended real greater t...
xrge0nemnfd 45441 A nonnegative extended rea...
supxrgere 45442 If a real number can be ap...
iuneqfzuzlem 45443 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 45444 If two unions indexed by u...
xle2addd 45445 Adding both side of two in...
supxrgelem 45446 If an extended real number...
supxrge 45447 If an extended real number...
suplesup 45448 If any element of ` A ` ca...
infxrglb 45449 The infimum of a set of ex...
xadd0ge2 45450 A number is less than or e...
nepnfltpnf 45451 An extended real that is n...
ltadd12dd 45452 Addition to both sides of ...
nemnftgtmnft 45453 An extended real that is n...
xrgtso 45454 'Greater than' is a strict...
rpex 45455 The positive reals form a ...
xrge0ge0 45456 A nonnegative extended rea...
xrssre 45457 A subset of extended reals...
ssuzfz 45458 A finite subset of the upp...
absfun 45459 The absolute value is a fu...
infrpge 45460 The infimum of a nonempty,...
xrlexaddrp 45461 If an extended real number...
supsubc 45462 The supremum function dist...
xralrple2 45463 Show that ` A ` is less th...
nnuzdisj 45464 The first ` N ` elements o...
ltdivgt1 45465 Divsion by a number greate...
xrltned 45466 'Less than' implies not eq...
nnsplit 45467 Express the set of positiv...
divdiv3d 45468 Division into a fraction. ...
abslt2sqd 45469 Comparison of the square o...
qenom 45470 The set of rational number...
qct 45471 The set of rational number...
lenlteq 45472 'less than or equal to' bu...
xrred 45473 An extended real that is n...
rr2sscn2 45474 The cartesian square of ` ...
infxr 45475 The infimum of a set of ex...
infxrunb2 45476 The infimum of an unbounde...
infxrbnd2 45477 The infimum of a bounded-b...
infleinflem1 45478 Lemma for ~ infleinf , cas...
infleinflem2 45479 Lemma for ~ infleinf , whe...
infleinf 45480 If any element of ` B ` ca...
xralrple4 45481 Show that ` A ` is less th...
xralrple3 45482 Show that ` A ` is less th...
eluzelzd 45483 A member of an upper set o...
suplesup2 45484 If any element of ` A ` is...
recnnltrp 45485 ` N ` is a natural number ...
nnn0 45486 The set of positive intege...
fzct 45487 A finite set of sequential...
rpgtrecnn 45488 Any positive real number i...
fzossuz 45489 A half-open integer interv...
infxrrefi 45490 The real and extended real...
xrralrecnnle 45491 Show that ` A ` is less th...
fzoct 45492 A finite set of sequential...
frexr 45493 A function taking real val...
nnrecrp 45494 The reciprocal of a positi...
reclt0d 45495 The reciprocal of a negati...
lt0neg1dd 45496 If a number is negative, i...
infxrcld 45497 The infimum of an arbitrar...
xrralrecnnge 45498 Show that ` A ` is less th...
reclt0 45499 The reciprocal of a negati...
ltmulneg 45500 Multiplying by a negative ...
allbutfi 45501 For all but finitely many....
ltdiv23neg 45502 Swap denominator with othe...
xreqnltd 45503 A consequence of trichotom...
mnfnre2 45504 Minus infinity is not a re...
zssxr 45505 The integers are a subset ...
fisupclrnmpt 45506 A nonempty finite indexed ...
supxrunb3 45507 The supremum of an unbound...
elfzod 45508 Membership in a half-open ...
fimaxre4 45509 A nonempty finite set of r...
ren0 45510 The set of reals is nonemp...
eluzelz2 45511 A member of an upper set o...
resabs2d 45512 Absorption law for restric...
uzid2 45513 Membership of the least me...
supxrleubrnmpt 45514 The supremum of a nonempty...
uzssre2 45515 An upper set of integers i...
uzssd 45516 Subset relationship for tw...
eluzd 45517 Membership in an upper set...
infxrlbrnmpt2 45518 A member of a nonempty ind...
xrre4 45519 An extended real is real i...
uz0 45520 The upper integers functio...
eluzelz2d 45521 A member of an upper set o...
infleinf2 45522 If any element in ` B ` is...
unb2ltle 45523 "Unbounded below" expresse...
uzidd2 45524 Membership of the least me...
uzssd2 45525 Subset relationship for tw...
rexabslelem 45526 An indexed set of absolute...
rexabsle 45527 An indexed set of absolute...
allbutfiinf 45528 Given a "for all but finit...
supxrrernmpt 45529 The real and extended real...
suprleubrnmpt 45530 The supremum of a nonempty...
infrnmptle 45531 An indexed infimum of exte...
infxrunb3 45532 The infimum of an unbounde...
uzn0d 45533 The upper integers are all...
uzssd3 45534 Subset relationship for tw...
rexabsle2 45535 An indexed set of absolute...
infxrunb3rnmpt 45536 The infimum of an unbounde...
supxrre3rnmpt 45537 The indexed supremum of a ...
uzublem 45538 A set of reals, indexed by...
uzub 45539 A set of reals, indexed by...
ssrexr 45540 A subset of the reals is a...
supxrmnf2 45541 Removing minus infinity fr...
supxrcli 45542 The supremum of an arbitra...
uzid3 45543 Membership of the least me...
infxrlesupxr 45544 The supremum of a nonempty...
xnegeqd 45545 Equality of two extended n...
xnegrecl 45546 The extended real negative...
xnegnegi 45547 Extended real version of ~...
xnegeqi 45548 Equality of two extended n...
nfxnegd 45549 Deduction version of ~ nfx...
xnegnegd 45550 Extended real version of ~...
uzred 45551 An upper integer is a real...
xnegcli 45552 Closure of extended real n...
supminfrnmpt 45553 The indexed supremum of a ...
infxrpnf 45554 Adding plus infinity to a ...
infxrrnmptcl 45555 The infimum of an arbitrar...
leneg2d 45556 Negative of one side of 'l...
supxrltinfxr 45557 The supremum of the empty ...
max1d 45558 A number is less than or e...
supxrleubrnmptf 45559 The supremum of a nonempty...
nleltd 45560 'Not less than or equal to...
zxrd 45561 An integer is an extended ...
infxrgelbrnmpt 45562 The infimum of an indexed ...
rphalfltd 45563 Half of a positive real is...
uzssz2 45564 An upper set of integers i...
leneg3d 45565 Negative of one side of 'l...
max2d 45566 A number is less than or e...
uzn0bi 45567 The upper integers functio...
xnegrecl2 45568 If the extended real negat...
nfxneg 45569 Bound-variable hypothesis ...
uzxrd 45570 An upper integer is an ext...
infxrpnf2 45571 Removing plus infinity fro...
supminfxr 45572 The extended real suprema ...
infrpgernmpt 45573 The infimum of a nonempty,...
xnegre 45574 An extended real is real i...
xnegrecl2d 45575 If the extended real negat...
uzxr 45576 An upper integer is an ext...
supminfxr2 45577 The extended real suprema ...
xnegred 45578 An extended real is real i...
supminfxrrnmpt 45579 The indexed supremum of a ...
min1d 45580 The minimum of two numbers...
min2d 45581 The minimum of two numbers...
xrnpnfmnf 45582 An extended real that is n...
uzsscn 45583 An upper set of integers i...
absimnre 45584 The absolute value of the ...
uzsscn2 45585 An upper set of integers i...
xrtgcntopre 45586 The standard topologies on...
absimlere 45587 The absolute value of the ...
rpssxr 45588 The positive reals are a s...
monoordxrv 45589 Ordering relation for a mo...
monoordxr 45590 Ordering relation for a mo...
monoord2xrv 45591 Ordering relation for a mo...
monoord2xr 45592 Ordering relation for a mo...
xrpnf 45593 An extended real is plus i...
xlenegcon1 45594 Extended real version of ~...
xlenegcon2 45595 Extended real version of ~...
pimxrneun 45596 The preimage of a set of e...
caucvgbf 45597 A function is convergent i...
cvgcau 45598 A convergent function is C...
cvgcaule 45599 A convergent function is C...
rexanuz2nf 45600 A simple counterexample re...
gtnelioc 45601 A real number larger than ...
ioossioc 45602 An open interval is a subs...
ioondisj2 45603 A condition for two open i...
ioondisj1 45604 A condition for two open i...
ioogtlb 45605 An element of a closed int...
evthiccabs 45606 Extreme Value Theorem on y...
ltnelicc 45607 A real number smaller than...
eliood 45608 Membership in an open real...
iooabslt 45609 An upper bound for the dis...
gtnelicc 45610 A real number greater than...
iooinlbub 45611 An open interval has empty...
iocgtlb 45612 An element of a left-open ...
iocleub 45613 An element of a left-open ...
eliccd 45614 Membership in a closed rea...
eliccre 45615 A member of a closed inter...
eliooshift 45616 Element of an open interva...
eliocd 45617 Membership in a left-open ...
icoltub 45618 An element of a left-close...
eliocre 45619 A member of a left-open ri...
iooltub 45620 An element of an open inte...
ioontr 45621 The interior of an interva...
snunioo1 45622 The closure of one end of ...
lbioc 45623 A left-open right-closed i...
ioomidp 45624 The midpoint is an element...
iccdifioo 45625 If the open inverval is re...
iccdifprioo 45626 An open interval is the cl...
ioossioobi 45627 Biconditional form of ~ io...
iccshift 45628 A closed interval shifted ...
iccsuble 45629 An upper bound to the dist...
iocopn 45630 A left-open right-closed i...
eliccelioc 45631 Membership in a closed int...
iooshift 45632 An open interval shifted b...
iccintsng 45633 Intersection of two adiace...
icoiccdif 45634 Left-closed right-open int...
icoopn 45635 A left-closed right-open i...
icoub 45636 A left-closed, right-open ...
eliccxrd 45637 Membership in a closed rea...
pnfel0pnf 45638 ` +oo ` is a nonnegative e...
eliccnelico 45639 An element of a closed int...
eliccelicod 45640 A member of a closed inter...
ge0xrre 45641 A nonnegative extended rea...
ge0lere 45642 A nonnegative extended Rea...
elicores 45643 Membership in a left-close...
inficc 45644 The infimum of a nonempty ...
qinioo 45645 The rational numbers are d...
lenelioc 45646 A real number smaller than...
ioonct 45647 A nonempty open interval i...
xrgtnelicc 45648 A real number greater than...
iccdificc 45649 The difference of two clos...
iocnct 45650 A nonempty left-open, righ...
iccnct 45651 A closed interval, with mo...
iooiinicc 45652 A closed interval expresse...
iccgelbd 45653 An element of a closed int...
iooltubd 45654 An element of an open inte...
icoltubd 45655 An element of a left-close...
qelioo 45656 The rational numbers are d...
tgqioo2 45657 Every open set of reals is...
iccleubd 45658 An element of a closed int...
elioored 45659 A member of an open interv...
ioogtlbd 45660 An element of a closed int...
ioofun 45661 ` (,) ` is a function. (C...
icomnfinre 45662 A left-closed, right-open,...
sqrlearg 45663 The square compared with i...
ressiocsup 45664 If the supremum belongs to...
ressioosup 45665 If the supremum does not b...
iooiinioc 45666 A left-open, right-closed ...
ressiooinf 45667 If the infimum does not be...
iocleubd 45668 An element of a left-open ...
uzinico 45669 An upper interval of integ...
preimaiocmnf 45670 Preimage of a right-closed...
uzinico2 45671 An upper interval of integ...
uzinico3 45672 An upper interval of integ...
dmico 45673 The domain of the closed-b...
ndmico 45674 The closed-below, open-abo...
uzubioo 45675 The upper integers are unb...
uzubico 45676 The upper integers are unb...
uzubioo2 45677 The upper integers are unb...
uzubico2 45678 The upper integers are unb...
iocgtlbd 45679 An element of a left-open ...
xrtgioo2 45680 The topology on the extend...
fsummulc1f 45681 Closure of a finite sum of...
fsumnncl 45682 Closure of a nonempty, fin...
fsumge0cl 45683 The finite sum of nonnegat...
fsumf1of 45684 Re-index a finite sum usin...
fsumiunss 45685 Sum over a disjoint indexe...
fsumreclf 45686 Closure of a finite sum of...
fsumlessf 45687 A shorter sum of nonnegati...
fsumsupp0 45688 Finite sum of function val...
fsumsermpt 45689 A finite sum expressed in ...
fmul01 45690 Multiplying a finite numbe...
fmulcl 45691 If ' Y ' is closed under t...
fmuldfeqlem1 45692 induction step for the pro...
fmuldfeq 45693 X and Z are two equivalent...
fmul01lt1lem1 45694 Given a finite multiplicat...
fmul01lt1lem2 45695 Given a finite multiplicat...
fmul01lt1 45696 Given a finite multiplicat...
cncfmptss 45697 A continuous complex funct...
rrpsscn 45698 The positive reals are a s...
mulc1cncfg 45699 A version of ~ mulc1cncf u...
infrglb 45700 The infimum of a nonempty ...
expcnfg 45701 If ` F ` is a complex cont...
prodeq2ad 45702 Equality deduction for pro...
fprodsplit1 45703 Separate out a term in a f...
fprodexp 45704 Positive integer exponenti...
fprodabs2 45705 The absolute value of a fi...
fprod0 45706 A finite product with a ze...
mccllem 45707 * Induction step for ~ mcc...
mccl 45708 A multinomial coefficient,...
fprodcnlem 45709 A finite product of functi...
fprodcn 45710 A finite product of functi...
clim1fr1 45711 A class of sequences of fr...
isumneg 45712 Negation of a converging s...
climrec 45713 Limit of the reciprocal of...
climmulf 45714 A version of ~ climmul usi...
climexp 45715 The limit of natural power...
climinf 45716 A bounded monotonic noninc...
climsuselem1 45717 The subsequence index ` I ...
climsuse 45718 A subsequence ` G ` of a c...
climrecf 45719 A version of ~ climrec usi...
climneg 45720 Complex limit of the negat...
climinff 45721 A version of ~ climinf usi...
climdivf 45722 Limit of the ratio of two ...
climreeq 45723 If ` F ` is a real functio...
ellimciota 45724 An explicit value for the ...
climaddf 45725 A version of ~ climadd usi...
mullimc 45726 Limit of the product of tw...
ellimcabssub0 45727 An equivalent condition fo...
limcdm0 45728 If a function has empty do...
islptre 45729 An equivalence condition f...
limccog 45730 Limit of the composition o...
limciccioolb 45731 The limit of a function at...
climf 45732 Express the predicate: Th...
mullimcf 45733 Limit of the multiplicatio...
constlimc 45734 Limit of constant function...
rexlim2d 45735 Inference removing two res...
idlimc 45736 Limit of the identity func...
divcnvg 45737 The sequence of reciprocal...
limcperiod 45738 If ` F ` is a periodic fun...
limcrecl 45739 If ` F ` is a real-valued ...
sumnnodd 45740 A series indexed by ` NN `...
lptioo2 45741 The upper bound of an open...
lptioo1 45742 The lower bound of an open...
limcmptdm 45743 The domain of a maps-to fu...
clim2f 45744 Express the predicate: Th...
limcicciooub 45745 The limit of a function at...
ltmod 45746 A sufficient condition for...
islpcn 45747 A characterization for a l...
lptre2pt 45748 If a set in the real line ...
limsupre 45749 If a sequence is bounded, ...
limcresiooub 45750 The left limit doesn't cha...
limcresioolb 45751 The right limit doesn't ch...
limcleqr 45752 If the left and the right ...
lptioo2cn 45753 The upper bound of an open...
lptioo1cn 45754 The lower bound of an open...
neglimc 45755 Limit of the negative func...
addlimc 45756 Sum of two limits. (Contr...
0ellimcdiv 45757 If the numerator converges...
clim2cf 45758 Express the predicate ` F ...
limclner 45759 For a limit point, both fr...
sublimc 45760 Subtraction of two limits....
reclimc 45761 Limit of the reciprocal of...
clim0cf 45762 Express the predicate ` F ...
limclr 45763 For a limit point, both fr...
divlimc 45764 Limit of the quotient of t...
expfac 45765 Factorial grows faster tha...
climconstmpt 45766 A constant sequence conver...
climresmpt 45767 A function restricted to u...
climsubmpt 45768 Limit of the difference of...
climsubc2mpt 45769 Limit of the difference of...
climsubc1mpt 45770 Limit of the difference of...
fnlimfv 45771 The value of the limit fun...
climreclf 45772 The limit of a convergent ...
climeldmeq 45773 Two functions that are eve...
climf2 45774 Express the predicate: Th...
fnlimcnv 45775 The sequence of function v...
climeldmeqmpt 45776 Two functions that are eve...
climfveq 45777 Two functions that are eve...
clim2f2 45778 Express the predicate: Th...
climfveqmpt 45779 Two functions that are eve...
climd 45780 Express the predicate: Th...
clim2d 45781 The limit of complex numbe...
fnlimfvre 45782 The limit function of real...
allbutfifvre 45783 Given a sequence of real-v...
climleltrp 45784 The limit of complex numbe...
fnlimfvre2 45785 The limit function of real...
fnlimf 45786 The limit function of real...
fnlimabslt 45787 A sequence of function val...
climfveqf 45788 Two functions that are eve...
climmptf 45789 Exhibit a function ` G ` w...
climfveqmpt3 45790 Two functions that are eve...
climeldmeqf 45791 Two functions that are eve...
climreclmpt 45792 The limit of B convergent ...
limsupref 45793 If a sequence is bounded, ...
limsupbnd1f 45794 If a sequence is eventuall...
climbddf 45795 A converging sequence of c...
climeqf 45796 Two functions that are eve...
climeldmeqmpt3 45797 Two functions that are eve...
limsupcld 45798 Closure of the superior li...
climfv 45799 The limit of a convergent ...
limsupval3 45800 The superior limit of an i...
climfveqmpt2 45801 Two functions that are eve...
limsup0 45802 The superior limit of the ...
climeldmeqmpt2 45803 Two functions that are eve...
limsupresre 45804 The supremum limit of a fu...
climeqmpt 45805 Two functions that are eve...
climfvd 45806 The limit of a convergent ...
limsuplesup 45807 An upper bound for the sup...
limsupresico 45808 The superior limit doesn't...
limsuppnfdlem 45809 If the restriction of a fu...
limsuppnfd 45810 If the restriction of a fu...
limsupresuz 45811 If the real part of the do...
limsupub 45812 If the limsup is not ` +oo...
limsupres 45813 The superior limit of a re...
climinf2lem 45814 A convergent, nonincreasin...
climinf2 45815 A convergent, nonincreasin...
limsupvaluz 45816 The superior limit, when t...
limsupresuz2 45817 If the domain of a functio...
limsuppnflem 45818 If the restriction of a fu...
limsuppnf 45819 If the restriction of a fu...
limsupubuzlem 45820 If the limsup is not ` +oo...
limsupubuz 45821 For a real-valued function...
climinf2mpt 45822 A bounded below, monotonic...
climinfmpt 45823 A bounded below, monotonic...
climinf3 45824 A convergent, nonincreasin...
limsupvaluzmpt 45825 The superior limit, when t...
limsupequzmpt2 45826 Two functions that are eve...
limsupubuzmpt 45827 If the limsup is not ` +oo...
limsupmnflem 45828 The superior limit of a fu...
limsupmnf 45829 The superior limit of a fu...
limsupequzlem 45830 Two functions that are eve...
limsupequz 45831 Two functions that are eve...
limsupre2lem 45832 Given a function on the ex...
limsupre2 45833 Given a function on the ex...
limsupmnfuzlem 45834 The superior limit of a fu...
limsupmnfuz 45835 The superior limit of a fu...
limsupequzmptlem 45836 Two functions that are eve...
limsupequzmpt 45837 Two functions that are eve...
limsupre2mpt 45838 Given a function on the ex...
limsupequzmptf 45839 Two functions that are eve...
limsupre3lem 45840 Given a function on the ex...
limsupre3 45841 Given a function on the ex...
limsupre3mpt 45842 Given a function on the ex...
limsupre3uzlem 45843 Given a function on the ex...
limsupre3uz 45844 Given a function on the ex...
limsupreuz 45845 Given a function on the re...
limsupvaluz2 45846 The superior limit, when t...
limsupreuzmpt 45847 Given a function on the re...
supcnvlimsup 45848 If a function on a set of ...
supcnvlimsupmpt 45849 If a function on a set of ...
0cnv 45850 If ` (/) ` is a complex nu...
climuzlem 45851 Express the predicate: Th...
climuz 45852 Express the predicate: Th...
lmbr3v 45853 Express the binary relatio...
climisp 45854 If a sequence converges to...
lmbr3 45855 Express the binary relatio...
climrescn 45856 A sequence converging w.r....
climxrrelem 45857 If a sequence ranging over...
climxrre 45858 If a sequence ranging over...
limsuplt2 45861 The defining property of t...
liminfgord 45862 Ordering property of the i...
limsupvald 45863 The superior limit of a se...
limsupresicompt 45864 The superior limit doesn't...
limsupcli 45865 Closure of the superior li...
liminfgf 45866 Closure of the inferior li...
liminfval 45867 The inferior limit of a se...
climlimsup 45868 A sequence of real numbers...
limsupge 45869 The defining property of t...
liminfgval 45870 Value of the inferior limi...
liminfcl 45871 Closure of the inferior li...
liminfvald 45872 The inferior limit of a se...
liminfval5 45873 The inferior limit of an i...
limsupresxr 45874 The superior limit of a fu...
liminfresxr 45875 The inferior limit of a fu...
liminfval2 45876 The superior limit, relati...
climlimsupcex 45877 Counterexample for ~ climl...
liminfcld 45878 Closure of the inferior li...
liminfresico 45879 The inferior limit doesn't...
limsup10exlem 45880 The range of the given fun...
limsup10ex 45881 The superior limit of a fu...
liminf10ex 45882 The inferior limit of a fu...
liminflelimsuplem 45883 The superior limit is grea...
liminflelimsup 45884 The superior limit is grea...
limsupgtlem 45885 For any positive real, the...
limsupgt 45886 Given a sequence of real n...
liminfresre 45887 The inferior limit of a fu...
liminfresicompt 45888 The inferior limit doesn't...
liminfltlimsupex 45889 An example where the ` lim...
liminfgelimsup 45890 The inferior limit is grea...
liminfvalxr 45891 Alternate definition of ` ...
liminfresuz 45892 If the real part of the do...
liminflelimsupuz 45893 The superior limit is grea...
liminfvalxrmpt 45894 Alternate definition of ` ...
liminfresuz2 45895 If the domain of a functio...
liminfgelimsupuz 45896 The inferior limit is grea...
liminfval4 45897 Alternate definition of ` ...
liminfval3 45898 Alternate definition of ` ...
liminfequzmpt2 45899 Two functions that are eve...
liminfvaluz 45900 Alternate definition of ` ...
liminf0 45901 The inferior limit of the ...
limsupval4 45902 Alternate definition of ` ...
liminfvaluz2 45903 Alternate definition of ` ...
liminfvaluz3 45904 Alternate definition of ` ...
liminflelimsupcex 45905 A counterexample for ~ lim...
limsupvaluz3 45906 Alternate definition of ` ...
liminfvaluz4 45907 Alternate definition of ` ...
limsupvaluz4 45908 Alternate definition of ` ...
climliminflimsupd 45909 If a sequence of real numb...
liminfreuzlem 45910 Given a function on the re...
liminfreuz 45911 Given a function on the re...
liminfltlem 45912 Given a sequence of real n...
liminflt 45913 Given a sequence of real n...
climliminf 45914 A sequence of real numbers...
liminflimsupclim 45915 A sequence of real numbers...
climliminflimsup 45916 A sequence of real numbers...
climliminflimsup2 45917 A sequence of real numbers...
climliminflimsup3 45918 A sequence of real numbers...
climliminflimsup4 45919 A sequence of real numbers...
limsupub2 45920 A extended real valued fun...
limsupubuz2 45921 A sequence with values in ...
xlimpnfxnegmnf 45922 A sequence converges to ` ...
liminflbuz2 45923 A sequence with values in ...
liminfpnfuz 45924 The inferior limit of a fu...
liminflimsupxrre 45925 A sequence with values in ...
xlimrel 45928 The limit on extended real...
xlimres 45929 A function converges iff i...
xlimcl 45930 The limit of a sequence of...
rexlimddv2 45931 Restricted existential eli...
xlimclim 45932 Given a sequence of reals,...
xlimconst 45933 A constant sequence conver...
climxlim 45934 A converging sequence in t...
xlimbr 45935 Express the binary relatio...
fuzxrpmcn 45936 A function mapping from an...
cnrefiisplem 45937 Lemma for ~ cnrefiisp (som...
cnrefiisp 45938 A non-real, complex number...
xlimxrre 45939 If a sequence ranging over...
xlimmnfvlem1 45940 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 45941 Lemma for ~ xlimmnf : the ...
xlimmnfv 45942 A function converges to mi...
xlimconst2 45943 A sequence that eventually...
xlimpnfvlem1 45944 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 45945 Lemma for ~ xlimpnfv : the...
xlimpnfv 45946 A function converges to pl...
xlimclim2lem 45947 Lemma for ~ xlimclim2 . H...
xlimclim2 45948 Given a sequence of extend...
xlimmnf 45949 A function converges to mi...
xlimpnf 45950 A function converges to pl...
xlimmnfmpt 45951 A function converges to pl...
xlimpnfmpt 45952 A function converges to pl...
climxlim2lem 45953 In this lemma for ~ climxl...
climxlim2 45954 A sequence of extended rea...
dfxlim2v 45955 An alternative definition ...
dfxlim2 45956 An alternative definition ...
climresd 45957 A function restricted to u...
climresdm 45958 A real function converges ...
dmclimxlim 45959 A real valued sequence tha...
xlimmnflimsup2 45960 A sequence of extended rea...
xlimuni 45961 An infinite sequence conve...
xlimclimdm 45962 A sequence of extended rea...
xlimfun 45963 The convergence relation o...
xlimmnflimsup 45964 If a sequence of extended ...
xlimdm 45965 Two ways to express that a...
xlimpnfxnegmnf2 45966 A sequence converges to ` ...
xlimresdm 45967 A function converges in th...
xlimpnfliminf 45968 If a sequence of extended ...
xlimpnfliminf2 45969 A sequence of extended rea...
xlimliminflimsup 45970 A sequence of extended rea...
xlimlimsupleliminf 45971 A sequence of extended rea...
coseq0 45972 A complex number whose cos...
sinmulcos 45973 Multiplication formula for...
coskpi2 45974 The cosine of an integer m...
cosnegpi 45975 The cosine of negative ` _...
sinaover2ne0 45976 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 45977 The cosine of an integer m...
mulcncff 45978 The multiplication of two ...
cncfmptssg 45979 A continuous complex funct...
constcncfg 45980 A constant function is a c...
idcncfg 45981 The identity function is a...
cncfshift 45982 A periodic continuous func...
resincncf 45983 ` sin ` restricted to real...
addccncf2 45984 Adding a constant is a con...
0cnf 45985 The empty set is a continu...
fsumcncf 45986 The finite sum of continuo...
cncfperiod 45987 A periodic continuous func...
subcncff 45988 The subtraction of two con...
negcncfg 45989 The opposite of a continuo...
cnfdmsn 45990 A function with a singleto...
cncfcompt 45991 Composition of continuous ...
addcncff 45992 The sum of two continuous ...
ioccncflimc 45993 Limit at the upper bound o...
cncfuni 45994 A complex function on a su...
icccncfext 45995 A continuous function on a...
cncficcgt0 45996 A the absolute value of a ...
icocncflimc 45997 Limit at the lower bound, ...
cncfdmsn 45998 A complex function with a ...
divcncff 45999 The quotient of two contin...
cncfshiftioo 46000 A periodic continuous func...
cncfiooicclem1 46001 A continuous function ` F ...
cncfiooicc 46002 A continuous function ` F ...
cncfiooiccre 46003 A continuous function ` F ...
cncfioobdlem 46004 ` G ` actually extends ` F...
cncfioobd 46005 A continuous function ` F ...
jumpncnp 46006 Jump discontinuity or disc...
cxpcncf2 46007 The complex power function...
fprodcncf 46008 The finite product of cont...
add1cncf 46009 Addition to a constant is ...
add2cncf 46010 Addition to a constant is ...
sub1cncfd 46011 Subtracting a constant is ...
sub2cncfd 46012 Subtraction from a constan...
fprodsub2cncf 46013 ` F ` is continuous. (Con...
fprodadd2cncf 46014 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 46015 The sequence ` S ` of fini...
fprodsubrecnncnv 46016 The sequence ` S ` of fini...
fprodaddrecnncnvlem 46017 The sequence ` S ` of fini...
fprodaddrecnncnv 46018 The sequence ` S ` of fini...
dvsinexp 46019 The derivative of sin^N . ...
dvcosre 46020 The real derivative of the...
dvsinax 46021 Derivative exercise: the d...
dvsubf 46022 The subtraction rule for e...
dvmptconst 46023 Function-builder for deriv...
dvcnre 46024 From complex differentiati...
dvmptidg 46025 Function-builder for deriv...
dvresntr 46026 Function-builder for deriv...
fperdvper 46027 The derivative of a period...
dvasinbx 46028 Derivative exercise: the d...
dvresioo 46029 Restriction of a derivativ...
dvdivf 46030 The quotient rule for ever...
dvdivbd 46031 A sufficient condition for...
dvsubcncf 46032 A sufficient condition for...
dvmulcncf 46033 A sufficient condition for...
dvcosax 46034 Derivative exercise: the d...
dvdivcncf 46035 A sufficient condition for...
dvbdfbdioolem1 46036 Given a function with boun...
dvbdfbdioolem2 46037 A function on an open inte...
dvbdfbdioo 46038 A function on an open inte...
ioodvbdlimc1lem1 46039 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 46040 Limit at the lower bound o...
ioodvbdlimc1 46041 A real function with bound...
ioodvbdlimc2lem 46042 Limit at the upper bound o...
ioodvbdlimc2 46043 A real function with bound...
dvdmsscn 46044 ` X ` is a subset of ` CC ...
dvmptmulf 46045 Function-builder for deriv...
dvnmptdivc 46046 Function-builder for itera...
dvdsn1add 46047 If ` K ` divides ` N ` but...
dvxpaek 46048 Derivative of the polynomi...
dvnmptconst 46049 The ` N ` -th derivative o...
dvnxpaek 46050 The ` n ` -th derivative o...
dvnmul 46051 Function-builder for the `...
dvmptfprodlem 46052 Induction step for ~ dvmpt...
dvmptfprod 46053 Function-builder for deriv...
dvnprodlem1 46054 ` D ` is bijective. (Cont...
dvnprodlem2 46055 Induction step for ~ dvnpr...
dvnprodlem3 46056 The multinomial formula fo...
dvnprod 46057 The multinomial formula fo...
itgsin0pilem1 46058 Calculation of the integra...
ibliccsinexp 46059 sin^n on a closed interval...
itgsin0pi 46060 Calculation of the integra...
iblioosinexp 46061 sin^n on an open integral ...
itgsinexplem1 46062 Integration by parts is ap...
itgsinexp 46063 A recursive formula for th...
iblconstmpt 46064 A constant function is int...
itgeq1d 46065 Equality theorem for an in...
mbfres2cn 46066 Measurability of a piecewi...
vol0 46067 The measure of the empty s...
ditgeqiooicc 46068 A function ` F ` on an ope...
volge0 46069 The volume of a set is alw...
cnbdibl 46070 A continuous bounded funct...
snmbl 46071 A singleton is measurable....
ditgeq3d 46072 Equality theorem for the d...
iblempty 46073 The empty function is inte...
iblsplit 46074 The union of two integrabl...
volsn 46075 A singleton has 0 Lebesgue...
itgvol0 46076 If the domani is negligibl...
itgcoscmulx 46077 Exercise: the integral of ...
iblsplitf 46078 A version of ~ iblsplit us...
ibliooicc 46079 If a function is integrabl...
volioc 46080 The measure of a left-open...
iblspltprt 46081 If a function is integrabl...
itgsincmulx 46082 Exercise: the integral of ...
itgsubsticclem 46083 lemma for ~ itgsubsticc . ...
itgsubsticc 46084 Integration by u-substitut...
itgioocnicc 46085 The integral of a piecewis...
iblcncfioo 46086 A continuous function ` F ...
itgspltprt 46087 The ` S. ` integral splits...
itgiccshift 46088 The integral of a function...
itgperiod 46089 The integral of a periodic...
itgsbtaddcnst 46090 Integral substitution, add...
volico 46091 The measure of left-closed...
sublevolico 46092 The Lebesgue measure of a ...
dmvolss 46093 Lebesgue measurable sets a...
ismbl3 46094 The predicate " ` A ` is L...
volioof 46095 The function that assigns ...
ovolsplit 46096 The Lebesgue outer measure...
fvvolioof 46097 The function value of the ...
volioore 46098 The measure of an open int...
fvvolicof 46099 The function value of the ...
voliooico 46100 An open interval and a lef...
ismbl4 46101 The predicate " ` A ` is L...
volioofmpt 46102 ` ( ( vol o. (,) ) o. F ) ...
volicoff 46103 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 46104 The Lebesgue measure of op...
volicofmpt 46105 ` ( ( vol o. [,) ) o. F ) ...
volicc 46106 The Lebesgue measure of a ...
voliccico 46107 A closed interval and a le...
mbfdmssre 46108 The domain of a measurable...
stoweidlem1 46109 Lemma for ~ stoweid . Thi...
stoweidlem2 46110 lemma for ~ stoweid : here...
stoweidlem3 46111 Lemma for ~ stoweid : if `...
stoweidlem4 46112 Lemma for ~ stoweid : a cl...
stoweidlem5 46113 There exists a δ as ...
stoweidlem6 46114 Lemma for ~ stoweid : two ...
stoweidlem7 46115 This lemma is used to prov...
stoweidlem8 46116 Lemma for ~ stoweid : two ...
stoweidlem9 46117 Lemma for ~ stoweid : here...
stoweidlem10 46118 Lemma for ~ stoweid . Thi...
stoweidlem11 46119 This lemma is used to prov...
stoweidlem12 46120 Lemma for ~ stoweid . Thi...
stoweidlem13 46121 Lemma for ~ stoweid . Thi...
stoweidlem14 46122 There exists a ` k ` as in...
stoweidlem15 46123 This lemma is used to prov...
stoweidlem16 46124 Lemma for ~ stoweid . The...
stoweidlem17 46125 This lemma proves that the...
stoweidlem18 46126 This theorem proves Lemma ...
stoweidlem19 46127 If a set of real functions...
stoweidlem20 46128 If a set A of real functio...
stoweidlem21 46129 Once the Stone Weierstrass...
stoweidlem22 46130 If a set of real functions...
stoweidlem23 46131 This lemma is used to prov...
stoweidlem24 46132 This lemma proves that for...
stoweidlem25 46133 This lemma proves that for...
stoweidlem26 46134 This lemma is used to prov...
stoweidlem27 46135 This lemma is used to prov...
stoweidlem28 46136 There exists a δ as ...
stoweidlem29 46137 When the hypothesis for th...
stoweidlem30 46138 This lemma is used to prov...
stoweidlem31 46139 This lemma is used to prov...
stoweidlem32 46140 If a set A of real functio...
stoweidlem33 46141 If a set of real functions...
stoweidlem34 46142 This lemma proves that for...
stoweidlem35 46143 This lemma is used to prov...
stoweidlem36 46144 This lemma is used to prov...
stoweidlem37 46145 This lemma is used to prov...
stoweidlem38 46146 This lemma is used to prov...
stoweidlem39 46147 This lemma is used to prov...
stoweidlem40 46148 This lemma proves that q_n...
stoweidlem41 46149 This lemma is used to prov...
stoweidlem42 46150 This lemma is used to prov...
stoweidlem43 46151 This lemma is used to prov...
stoweidlem44 46152 This lemma is used to prov...
stoweidlem45 46153 This lemma proves that, gi...
stoweidlem46 46154 This lemma proves that set...
stoweidlem47 46155 Subtracting a constant fro...
stoweidlem48 46156 This lemma is used to prov...
stoweidlem49 46157 There exists a function q_...
stoweidlem50 46158 This lemma proves that set...
stoweidlem51 46159 There exists a function x ...
stoweidlem52 46160 There exists a neighborhoo...
stoweidlem53 46161 This lemma is used to prov...
stoweidlem54 46162 There exists a function ` ...
stoweidlem55 46163 This lemma proves the exis...
stoweidlem56 46164 This theorem proves Lemma ...
stoweidlem57 46165 There exists a function x ...
stoweidlem58 46166 This theorem proves Lemma ...
stoweidlem59 46167 This lemma proves that the...
stoweidlem60 46168 This lemma proves that the...
stoweidlem61 46169 This lemma proves that the...
stoweidlem62 46170 This theorem proves the St...
stoweid 46171 This theorem proves the St...
stowei 46172 This theorem proves the St...
wallispilem1 46173 ` I ` is monotone: increas...
wallispilem2 46174 A first set of properties ...
wallispilem3 46175 I maps to real values. (C...
wallispilem4 46176 ` F ` maps to explicit exp...
wallispilem5 46177 The sequence ` H ` converg...
wallispi 46178 Wallis' formula for π :...
wallispi2lem1 46179 An intermediate step betwe...
wallispi2lem2 46180 Two expressions are proven...
wallispi2 46181 An alternative version of ...
stirlinglem1 46182 A simple limit of fraction...
stirlinglem2 46183 ` A ` maps to positive rea...
stirlinglem3 46184 Long but simple algebraic ...
stirlinglem4 46185 Algebraic manipulation of ...
stirlinglem5 46186 If ` T ` is between ` 0 ` ...
stirlinglem6 46187 A series that converges to...
stirlinglem7 46188 Algebraic manipulation of ...
stirlinglem8 46189 If ` A ` converges to ` C ...
stirlinglem9 46190 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 46191 A bound for any B(N)-B(N +...
stirlinglem11 46192 ` B ` is decreasing. (Con...
stirlinglem12 46193 The sequence ` B ` is boun...
stirlinglem13 46194 ` B ` is decreasing and ha...
stirlinglem14 46195 The sequence ` A ` converg...
stirlinglem15 46196 The Stirling's formula is ...
stirling 46197 Stirling's approximation f...
stirlingr 46198 Stirling's approximation f...
dirkerval 46199 The N_th Dirichlet Kernel....
dirker2re 46200 The Dirichlet Kernel value...
dirkerdenne0 46201 The Dirichlet Kernel denom...
dirkerval2 46202 The N_th Dirichlet Kernel ...
dirkerre 46203 The Dirichlet Kernel at an...
dirkerper 46204 the Dirichlet Kernel has p...
dirkerf 46205 For any natural number ` N...
dirkertrigeqlem1 46206 Sum of an even number of a...
dirkertrigeqlem2 46207 Trigonomic equality lemma ...
dirkertrigeqlem3 46208 Trigonometric equality lem...
dirkertrigeq 46209 Trigonometric equality for...
dirkeritg 46210 The definite integral of t...
dirkercncflem1 46211 If ` Y ` is a multiple of ...
dirkercncflem2 46212 Lemma used to prove that t...
dirkercncflem3 46213 The Dirichlet Kernel is co...
dirkercncflem4 46214 The Dirichlet Kernel is co...
dirkercncf 46215 For any natural number ` N...
fourierdlem1 46216 A partition interval is a ...
fourierdlem2 46217 Membership in a partition....
fourierdlem3 46218 Membership in a partition....
fourierdlem4 46219 ` E ` is a function that m...
fourierdlem5 46220 ` S ` is a function. (Con...
fourierdlem6 46221 ` X ` is in the periodic p...
fourierdlem7 46222 The difference between the...
fourierdlem8 46223 A partition interval is a ...
fourierdlem9 46224 ` H ` is a complex functio...
fourierdlem10 46225 Condition on the bounds of...
fourierdlem11 46226 If there is a partition, t...
fourierdlem12 46227 A point of a partition is ...
fourierdlem13 46228 Value of ` V ` in terms of...
fourierdlem14 46229 Given the partition ` V ` ...
fourierdlem15 46230 The range of the partition...
fourierdlem16 46231 The coefficients of the fo...
fourierdlem17 46232 The defined ` L ` is actua...
fourierdlem18 46233 The function ` S ` is cont...
fourierdlem19 46234 If two elements of ` D ` h...
fourierdlem20 46235 Every interval in the part...
fourierdlem21 46236 The coefficients of the fo...
fourierdlem22 46237 The coefficients of the fo...
fourierdlem23 46238 If ` F ` is continuous and...
fourierdlem24 46239 A sufficient condition for...
fourierdlem25 46240 If ` C ` is not in the ran...
fourierdlem26 46241 Periodic image of a point ...
fourierdlem27 46242 A partition open interval ...
fourierdlem28 46243 Derivative of ` ( F `` ( X...
fourierdlem29 46244 Explicit function value fo...
fourierdlem30 46245 Sum of three small pieces ...
fourierdlem31 46246 If ` A ` is finite and for...
fourierdlem32 46247 Limit of a continuous func...
fourierdlem33 46248 Limit of a continuous func...
fourierdlem34 46249 A partition is one to one....
fourierdlem35 46250 There is a single point in...
fourierdlem36 46251 ` F ` is an isomorphism. ...
fourierdlem37 46252 ` I ` is a function that m...
fourierdlem38 46253 The function ` F ` is cont...
fourierdlem39 46254 Integration by parts of ...
fourierdlem40 46255 ` H ` is a continuous func...
fourierdlem41 46256 Lemma used to prove that e...
fourierdlem42 46257 The set of points in a mov...
fourierdlem43 46258 ` K ` is a real function. ...
fourierdlem44 46259 A condition for having ` (...
fourierdlem46 46260 The function ` F ` has a l...
fourierdlem47 46261 For ` r ` large enough, th...
fourierdlem48 46262 The given periodic functio...
fourierdlem49 46263 The given periodic functio...
fourierdlem50 46264 Continuity of ` O ` and it...
fourierdlem51 46265 ` X ` is in the periodic p...
fourierdlem52 46266 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 46267 The limit of ` F ( s ) ` a...
fourierdlem54 46268 Given a partition ` Q ` an...
fourierdlem55 46269 ` U ` is a real function. ...
fourierdlem56 46270 Derivative of the ` K ` fu...
fourierdlem57 46271 The derivative of ` O ` . ...
fourierdlem58 46272 The derivative of ` K ` is...
fourierdlem59 46273 The derivative of ` H ` is...
fourierdlem60 46274 Given a differentiable fun...
fourierdlem61 46275 Given a differentiable fun...
fourierdlem62 46276 The function ` K ` is cont...
fourierdlem63 46277 The upper bound of interva...
fourierdlem64 46278 The partition ` V ` is fin...
fourierdlem65 46279 The distance of two adjace...
fourierdlem66 46280 Value of the ` G ` functio...
fourierdlem67 46281 ` G ` is a function. (Con...
fourierdlem68 46282 The derivative of ` O ` is...
fourierdlem69 46283 A piecewise continuous fun...
fourierdlem70 46284 A piecewise continuous fun...
fourierdlem71 46285 A periodic piecewise conti...
fourierdlem72 46286 The derivative of ` O ` is...
fourierdlem73 46287 A version of the Riemann L...
fourierdlem74 46288 Given a piecewise smooth f...
fourierdlem75 46289 Given a piecewise smooth f...
fourierdlem76 46290 Continuity of ` O ` and it...
fourierdlem77 46291 If ` H ` is bounded, then ...
fourierdlem78 46292 ` G ` is continuous when r...
fourierdlem79 46293 ` E ` projects every inter...
fourierdlem80 46294 The derivative of ` O ` is...
fourierdlem81 46295 The integral of a piecewis...
fourierdlem82 46296 Integral by substitution, ...
fourierdlem83 46297 The fourier partial sum fo...
fourierdlem84 46298 If ` F ` is piecewise cont...
fourierdlem85 46299 Limit of the function ` G ...
fourierdlem86 46300 Continuity of ` O ` and it...
fourierdlem87 46301 The integral of ` G ` goes...
fourierdlem88 46302 Given a piecewise continuo...
fourierdlem89 46303 Given a piecewise continuo...
fourierdlem90 46304 Given a piecewise continuo...
fourierdlem91 46305 Given a piecewise continuo...
fourierdlem92 46306 The integral of a piecewis...
fourierdlem93 46307 Integral by substitution (...
fourierdlem94 46308 For a piecewise smooth fun...
fourierdlem95 46309 Algebraic manipulation of ...
fourierdlem96 46310 limit for ` F ` at the low...
fourierdlem97 46311 ` F ` is continuous on the...
fourierdlem98 46312 ` F ` is continuous on the...
fourierdlem99 46313 limit for ` F ` at the upp...
fourierdlem100 46314 A piecewise continuous fun...
fourierdlem101 46315 Integral by substitution f...
fourierdlem102 46316 For a piecewise smooth fun...
fourierdlem103 46317 The half lower part of the...
fourierdlem104 46318 The half upper part of the...
fourierdlem105 46319 A piecewise continuous fun...
fourierdlem106 46320 For a piecewise smooth fun...
fourierdlem107 46321 The integral of a piecewis...
fourierdlem108 46322 The integral of a piecewis...
fourierdlem109 46323 The integral of a piecewis...
fourierdlem110 46324 The integral of a piecewis...
fourierdlem111 46325 The fourier partial sum fo...
fourierdlem112 46326 Here abbreviations (local ...
fourierdlem113 46327 Fourier series convergence...
fourierdlem114 46328 Fourier series convergence...
fourierdlem115 46329 Fourier serier convergence...
fourierd 46330 Fourier series convergence...
fourierclimd 46331 Fourier series convergence...
fourierclim 46332 Fourier series convergence...
fourier 46333 Fourier series convergence...
fouriercnp 46334 If ` F ` is continuous at ...
fourier2 46335 Fourier series convergence...
sqwvfoura 46336 Fourier coefficients for t...
sqwvfourb 46337 Fourier series ` B ` coeff...
fourierswlem 46338 The Fourier series for the...
fouriersw 46339 Fourier series convergence...
fouriercn 46340 If the derivative of ` F `...
elaa2lem 46341 Elementhood in the set of ...
elaa2 46342 Elementhood in the set of ...
etransclem1 46343 ` H ` is a function. (Con...
etransclem2 46344 Derivative of ` G ` . (Co...
etransclem3 46345 The given ` if ` term is a...
etransclem4 46346 ` F ` expressed as a finit...
etransclem5 46347 A change of bound variable...
etransclem6 46348 A change of bound variable...
etransclem7 46349 The given product is an in...
etransclem8 46350 ` F ` is a function. (Con...
etransclem9 46351 If ` K ` divides ` N ` but...
etransclem10 46352 The given ` if ` term is a...
etransclem11 46353 A change of bound variable...
etransclem12 46354 ` C ` applied to ` N ` . ...
etransclem13 46355 ` F ` applied to ` Y ` . ...
etransclem14 46356 Value of the term ` T ` , ...
etransclem15 46357 Value of the term ` T ` , ...
etransclem16 46358 Every element in the range...
etransclem17 46359 The ` N ` -th derivative o...
etransclem18 46360 The given function is inte...
etransclem19 46361 The ` N ` -th derivative o...
etransclem20 46362 ` H ` is smooth. (Contrib...
etransclem21 46363 The ` N ` -th derivative o...
etransclem22 46364 The ` N ` -th derivative o...
etransclem23 46365 This is the claim proof in...
etransclem24 46366 ` P ` divides the I -th de...
etransclem25 46367 ` P ` factorial divides th...
etransclem26 46368 Every term in the sum of t...
etransclem27 46369 The ` N ` -th derivative o...
etransclem28 46370 ` ( P - 1 ) ` factorial di...
etransclem29 46371 The ` N ` -th derivative o...
etransclem30 46372 The ` N ` -th derivative o...
etransclem31 46373 The ` N ` -th derivative o...
etransclem32 46374 This is the proof for the ...
etransclem33 46375 ` F ` is smooth. (Contrib...
etransclem34 46376 The ` N ` -th derivative o...
etransclem35 46377 ` P ` does not divide the ...
etransclem36 46378 The ` N ` -th derivative o...
etransclem37 46379 ` ( P - 1 ) ` factorial di...
etransclem38 46380 ` P ` divides the I -th de...
etransclem39 46381 ` G ` is a function. (Con...
etransclem40 46382 The ` N ` -th derivative o...
etransclem41 46383 ` P ` does not divide the ...
etransclem42 46384 The ` N ` -th derivative o...
etransclem43 46385 ` G ` is a continuous func...
etransclem44 46386 The given finite sum is no...
etransclem45 46387 ` K ` is an integer. (Con...
etransclem46 46388 This is the proof for equa...
etransclem47 46389 ` _e ` is transcendental. ...
etransclem48 46390 ` _e ` is transcendental. ...
etransc 46391 ` _e ` is transcendental. ...
rrxtopn 46392 The topology of the genera...
rrxngp 46393 Generalized Euclidean real...
rrxtps 46394 Generalized Euclidean real...
rrxtopnfi 46395 The topology of the n-dime...
rrxtopon 46396 The topology on generalize...
rrxtop 46397 The topology on generalize...
rrndistlt 46398 Given two points in the sp...
rrxtoponfi 46399 The topology on n-dimensio...
rrxunitopnfi 46400 The base set of the standa...
rrxtopn0 46401 The topology of the zero-d...
qndenserrnbllem 46402 n-dimensional rational num...
qndenserrnbl 46403 n-dimensional rational num...
rrxtopn0b 46404 The topology of the zero-d...
qndenserrnopnlem 46405 n-dimensional rational num...
qndenserrnopn 46406 n-dimensional rational num...
qndenserrn 46407 n-dimensional rational num...
rrxsnicc 46408 A multidimensional singlet...
rrnprjdstle 46409 The distance between two p...
rrndsmet 46410 ` D ` is a metric for the ...
rrndsxmet 46411 ` D ` is an extended metri...
ioorrnopnlem 46412 The a point in an indexed ...
ioorrnopn 46413 The indexed product of ope...
ioorrnopnxrlem 46414 Given a point ` F ` that b...
ioorrnopnxr 46415 The indexed product of ope...
issal 46422 Express the predicate " ` ...
pwsal 46423 The power set of a given s...
salunicl 46424 SAlg sigma-algebra is clos...
saluncl 46425 The union of two sets in a...
prsal 46426 The pair of the empty set ...
saldifcl 46427 The complement of an eleme...
0sal 46428 The empty set belongs to e...
salgenval 46429 The sigma-algebra generate...
saliunclf 46430 SAlg sigma-algebra is clos...
saliuncl 46431 SAlg sigma-algebra is clos...
salincl 46432 The intersection of two se...
saluni 46433 A set is an element of any...
saliinclf 46434 SAlg sigma-algebra is clos...
saliincl 46435 SAlg sigma-algebra is clos...
saldifcl2 46436 The difference of two elem...
intsaluni 46437 The union of an arbitrary ...
intsal 46438 The arbitrary intersection...
salgenn0 46439 The set used in the defini...
salgencl 46440 ` SalGen ` actually genera...
issald 46441 Sufficient condition to pr...
salexct 46442 An example of nontrivial s...
sssalgen 46443 A set is a subset of the s...
salgenss 46444 The sigma-algebra generate...
salgenuni 46445 The base set of the sigma-...
issalgend 46446 One side of ~ dfsalgen2 . ...
salexct2 46447 An example of a subset tha...
unisalgen 46448 The union of a set belongs...
dfsalgen2 46449 Alternate characterization...
salexct3 46450 An example of a sigma-alge...
salgencntex 46451 This counterexample shows ...
salgensscntex 46452 This counterexample shows ...
issalnnd 46453 Sufficient condition to pr...
dmvolsal 46454 Lebesgue measurable sets f...
saldifcld 46455 The complement of an eleme...
saluncld 46456 The union of two sets in a...
salgencld 46457 ` SalGen ` actually genera...
0sald 46458 The empty set belongs to e...
iooborel 46459 An open interval is a Bore...
salincld 46460 The intersection of two se...
salunid 46461 A set is an element of any...
unisalgen2 46462 The union of a set belongs...
bor1sal 46463 The Borel sigma-algebra on...
iocborel 46464 A left-open, right-closed ...
subsaliuncllem 46465 A subspace sigma-algebra i...
subsaliuncl 46466 A subspace sigma-algebra i...
subsalsal 46467 A subspace sigma-algebra i...
subsaluni 46468 A set belongs to the subsp...
salrestss 46469 A sigma-algebra restricted...
sge0rnre 46472 When ` sum^ ` is applied t...
fge0icoicc 46473 If ` F ` maps to nonnegati...
sge0val 46474 The value of the sum of no...
fge0npnf 46475 If ` F ` maps to nonnegati...
sge0rnn0 46476 The range used in the defi...
sge0vald 46477 The value of the sum of no...
fge0iccico 46478 A range of nonnegative ext...
gsumge0cl 46479 Closure of group sum, for ...
sge0reval 46480 Value of the sum of nonneg...
sge0pnfval 46481 If a term in the sum of no...
fge0iccre 46482 A range of nonnegative ext...
sge0z 46483 Any nonnegative extended s...
sge00 46484 The sum of nonnegative ext...
fsumlesge0 46485 Every finite subsum of non...
sge0revalmpt 46486 Value of the sum of nonneg...
sge0sn 46487 A sum of a nonnegative ext...
sge0tsms 46488 ` sum^ ` applied to a nonn...
sge0cl 46489 The arbitrary sum of nonne...
sge0f1o 46490 Re-index a nonnegative ext...
sge0snmpt 46491 A sum of a nonnegative ext...
sge0ge0 46492 The sum of nonnegative ext...
sge0xrcl 46493 The arbitrary sum of nonne...
sge0repnf 46494 The of nonnegative extende...
sge0fsum 46495 The arbitrary sum of a fin...
sge0rern 46496 If the sum of nonnegative ...
sge0supre 46497 If the arbitrary sum of no...
sge0fsummpt 46498 The arbitrary sum of a fin...
sge0sup 46499 The arbitrary sum of nonne...
sge0less 46500 A shorter sum of nonnegati...
sge0rnbnd 46501 The range used in the defi...
sge0pr 46502 Sum of a pair of nonnegati...
sge0gerp 46503 The arbitrary sum of nonne...
sge0pnffigt 46504 If the sum of nonnegative ...
sge0ssre 46505 If a sum of nonnegative ex...
sge0lefi 46506 A sum of nonnegative exten...
sge0lessmpt 46507 A shorter sum of nonnegati...
sge0ltfirp 46508 If the sum of nonnegative ...
sge0prle 46509 The sum of a pair of nonne...
sge0gerpmpt 46510 The arbitrary sum of nonne...
sge0resrnlem 46511 The sum of nonnegative ext...
sge0resrn 46512 The sum of nonnegative ext...
sge0ssrempt 46513 If a sum of nonnegative ex...
sge0resplit 46514 ` sum^ ` splits into two p...
sge0le 46515 If all of the terms of sum...
sge0ltfirpmpt 46516 If the extended sum of non...
sge0split 46517 Split a sum of nonnegative...
sge0lempt 46518 If all of the terms of sum...
sge0splitmpt 46519 Split a sum of nonnegative...
sge0ss 46520 Change the index set to a ...
sge0iunmptlemfi 46521 Sum of nonnegative extende...
sge0p1 46522 The addition of the next t...
sge0iunmptlemre 46523 Sum of nonnegative extende...
sge0fodjrnlem 46524 Re-index a nonnegative ext...
sge0fodjrn 46525 Re-index a nonnegative ext...
sge0iunmpt 46526 Sum of nonnegative extende...
sge0iun 46527 Sum of nonnegative extende...
sge0nemnf 46528 The generalized sum of non...
sge0rpcpnf 46529 The sum of an infinite num...
sge0rernmpt 46530 If the sum of nonnegative ...
sge0lefimpt 46531 A sum of nonnegative exten...
nn0ssge0 46532 Nonnegative integers are n...
sge0clmpt 46533 The generalized sum of non...
sge0ltfirpmpt2 46534 If the extended sum of non...
sge0isum 46535 If a series of nonnegative...
sge0xrclmpt 46536 The generalized sum of non...
sge0xp 46537 Combine two generalized su...
sge0isummpt 46538 If a series of nonnegative...
sge0ad2en 46539 The value of the infinite ...
sge0isummpt2 46540 If a series of nonnegative...
sge0xaddlem1 46541 The extended addition of t...
sge0xaddlem2 46542 The extended addition of t...
sge0xadd 46543 The extended addition of t...
sge0fsummptf 46544 The generalized sum of a f...
sge0snmptf 46545 A sum of a nonnegative ext...
sge0ge0mpt 46546 The sum of nonnegative ext...
sge0repnfmpt 46547 The of nonnegative extende...
sge0pnffigtmpt 46548 If the generalized sum of ...
sge0splitsn 46549 Separate out a term in a g...
sge0pnffsumgt 46550 If the sum of nonnegative ...
sge0gtfsumgt 46551 If the generalized sum of ...
sge0uzfsumgt 46552 If a real number is smalle...
sge0pnfmpt 46553 If a term in the sum of no...
sge0seq 46554 A series of nonnegative re...
sge0reuz 46555 Value of the generalized s...
sge0reuzb 46556 Value of the generalized s...
ismea 46559 Express the predicate " ` ...
dmmeasal 46560 The domain of a measure is...
meaf 46561 A measure is a function th...
mea0 46562 The measure of the empty s...
nnfoctbdjlem 46563 There exists a mapping fro...
nnfoctbdj 46564 There exists a mapping fro...
meadjuni 46565 The measure of the disjoin...
meacl 46566 The measure of a set is a ...
iundjiunlem 46567 The sets in the sequence `...
iundjiun 46568 Given a sequence ` E ` of ...
meaxrcl 46569 The measure of a set is an...
meadjun 46570 The measure of the union o...
meassle 46571 The measure of a set is gr...
meaunle 46572 The measure of the union o...
meadjiunlem 46573 The sum of nonnegative ext...
meadjiun 46574 The measure of the disjoin...
ismeannd 46575 Sufficient condition to pr...
meaiunlelem 46576 The measure of the union o...
meaiunle 46577 The measure of the union o...
psmeasurelem 46578 ` M ` applied to a disjoin...
psmeasure 46579 Point supported measure, R...
voliunsge0lem 46580 The Lebesgue measure funct...
voliunsge0 46581 The Lebesgue measure funct...
volmea 46582 The Lebesgue measure on th...
meage0 46583 If the measure of a measur...
meadjunre 46584 The measure of the union o...
meassre 46585 If the measure of a measur...
meale0eq0 46586 A measure that is less tha...
meadif 46587 The measure of the differe...
meaiuninclem 46588 Measures are continuous fr...
meaiuninc 46589 Measures are continuous fr...
meaiuninc2 46590 Measures are continuous fr...
meaiunincf 46591 Measures are continuous fr...
meaiuninc3v 46592 Measures are continuous fr...
meaiuninc3 46593 Measures are continuous fr...
meaiininclem 46594 Measures are continuous fr...
meaiininc 46595 Measures are continuous fr...
meaiininc2 46596 Measures are continuous fr...
caragenval 46601 The sigma-algebra generate...
isome 46602 Express the predicate " ` ...
caragenel 46603 Membership in the Caratheo...
omef 46604 An outer measure is a func...
ome0 46605 The outer measure of the e...
omessle 46606 The outer measure of a set...
omedm 46607 The domain of an outer mea...
caragensplit 46608 If ` E ` is in the set gen...
caragenelss 46609 An element of the Caratheo...
carageneld 46610 Membership in the Caratheo...
omecl 46611 The outer measure of a set...
caragenss 46612 The sigma-algebra generate...
omeunile 46613 The outer measure of the u...
caragen0 46614 The empty set belongs to a...
omexrcl 46615 The outer measure of a set...
caragenunidm 46616 The base set of an outer m...
caragensspw 46617 The sigma-algebra generate...
omessre 46618 If the outer measure of a ...
caragenuni 46619 The base set of the sigma-...
caragenuncllem 46620 The Caratheodory's constru...
caragenuncl 46621 The Caratheodory's constru...
caragendifcl 46622 The Caratheodory's constru...
caragenfiiuncl 46623 The Caratheodory's constru...
omeunle 46624 The outer measure of the u...
omeiunle 46625 The outer measure of the i...
omelesplit 46626 The outer measure of a set...
omeiunltfirp 46627 If the outer measure of a ...
omeiunlempt 46628 The outer measure of the i...
carageniuncllem1 46629 The outer measure of ` A i...
carageniuncllem2 46630 The Caratheodory's constru...
carageniuncl 46631 The Caratheodory's constru...
caragenunicl 46632 The Caratheodory's constru...
caragensal 46633 Caratheodory's method gene...
caratheodorylem1 46634 Lemma used to prove that C...
caratheodorylem2 46635 Caratheodory's constructio...
caratheodory 46636 Caratheodory's constructio...
0ome 46637 The map that assigns 0 to ...
isomenndlem 46638 ` O ` is sub-additive w.r....
isomennd 46639 Sufficient condition to pr...
caragenel2d 46640 Membership in the Caratheo...
omege0 46641 If the outer measure of a ...
omess0 46642 If the outer measure of a ...
caragencmpl 46643 A measure built with the C...
vonval 46648 Value of the Lebesgue meas...
ovnval 46649 Value of the Lebesgue oute...
elhoi 46650 Membership in a multidimen...
icoresmbl 46651 A closed-below, open-above...
hoissre 46652 The projection of a half-o...
ovnval2 46653 Value of the Lebesgue oute...
volicorecl 46654 The Lebesgue measure of a ...
hoiprodcl 46655 The pre-measure of half-op...
hoicvr 46656 ` I ` is a countable set o...
hoissrrn 46657 A half-open interval is a ...
ovn0val 46658 The Lebesgue outer measure...
ovnn0val 46659 The value of a (multidimen...
ovnval2b 46660 Value of the Lebesgue oute...
volicorescl 46661 The Lebesgue measure of a ...
ovnprodcl 46662 The product used in the de...
hoiprodcl2 46663 The pre-measure of half-op...
hoicvrrex 46664 Any subset of the multidim...
ovnsupge0 46665 The set used in the defini...
ovnlecvr 46666 Given a subset of multidim...
ovnpnfelsup 46667 ` +oo ` is an element of t...
ovnsslelem 46668 The (multidimensional, non...
ovnssle 46669 The (multidimensional) Leb...
ovnlerp 46670 The Lebesgue outer measure...
ovnf 46671 The Lebesgue outer measure...
ovncvrrp 46672 The Lebesgue outer measure...
ovn0lem 46673 For any finite dimension, ...
ovn0 46674 For any finite dimension, ...
ovncl 46675 The Lebesgue outer measure...
ovn02 46676 For the zero-dimensional s...
ovnxrcl 46677 The Lebesgue outer measure...
ovnsubaddlem1 46678 The Lebesgue outer measure...
ovnsubaddlem2 46679 ` ( voln* `` X ) ` is suba...
ovnsubadd 46680 ` ( voln* `` X ) ` is suba...
ovnome 46681 ` ( voln* `` X ) ` is an o...
vonmea 46682 ` ( voln `` X ) ` is a mea...
volicon0 46683 The measure of a nonempty ...
hsphoif 46684 ` H ` is a function (that ...
hoidmvval 46685 The dimensional volume of ...
hoissrrn2 46686 A half-open interval is a ...
hsphoival 46687 ` H ` is a function (that ...
hoiprodcl3 46688 The pre-measure of half-op...
volicore 46689 The Lebesgue measure of a ...
hoidmvcl 46690 The dimensional volume of ...
hoidmv0val 46691 The dimensional volume of ...
hoidmvn0val 46692 The dimensional volume of ...
hsphoidmvle2 46693 The dimensional volume of ...
hsphoidmvle 46694 The dimensional volume of ...
hoidmvval0 46695 The dimensional volume of ...
hoiprodp1 46696 The dimensional volume of ...
sge0hsphoire 46697 If the generalized sum of ...
hoidmvval0b 46698 The dimensional volume of ...
hoidmv1lelem1 46699 The supremum of ` U ` belo...
hoidmv1lelem2 46700 This is the contradiction ...
hoidmv1lelem3 46701 The dimensional volume of ...
hoidmv1le 46702 The dimensional volume of ...
hoidmvlelem1 46703 The supremum of ` U ` belo...
hoidmvlelem2 46704 This is the contradiction ...
hoidmvlelem3 46705 This is the contradiction ...
hoidmvlelem4 46706 The dimensional volume of ...
hoidmvlelem5 46707 The dimensional volume of ...
hoidmvle 46708 The dimensional volume of ...
ovnhoilem1 46709 The Lebesgue outer measure...
ovnhoilem2 46710 The Lebesgue outer measure...
ovnhoi 46711 The Lebesgue outer measure...
dmovn 46712 The domain of the Lebesgue...
hoicoto2 46713 The half-open interval exp...
dmvon 46714 Lebesgue measurable n-dime...
hoi2toco 46715 The half-open interval exp...
hoidifhspval 46716 ` D ` is a function that r...
hspval 46717 The value of the half-spac...
ovnlecvr2 46718 Given a subset of multidim...
ovncvr2 46719 ` B ` and ` T ` are the le...
dmovnsal 46720 The domain of the Lebesgue...
unidmovn 46721 Base set of the n-dimensio...
rrnmbl 46722 The set of n-dimensional R...
hoidifhspval2 46723 ` D ` is a function that r...
hspdifhsp 46724 A n-dimensional half-open ...
unidmvon 46725 Base set of the n-dimensio...
hoidifhspf 46726 ` D ` is a function that r...
hoidifhspval3 46727 ` D ` is a function that r...
hoidifhspdmvle 46728 The dimensional volume of ...
voncmpl 46729 The Lebesgue measure is co...
hoiqssbllem1 46730 The center of the n-dimens...
hoiqssbllem2 46731 The center of the n-dimens...
hoiqssbllem3 46732 A n-dimensional ball conta...
hoiqssbl 46733 A n-dimensional ball conta...
hspmbllem1 46734 Any half-space of the n-di...
hspmbllem2 46735 Any half-space of the n-di...
hspmbllem3 46736 Any half-space of the n-di...
hspmbl 46737 Any half-space of the n-di...
hoimbllem 46738 Any n-dimensional half-ope...
hoimbl 46739 Any n-dimensional half-ope...
opnvonmbllem1 46740 The half-open interval exp...
opnvonmbllem2 46741 An open subset of the n-di...
opnvonmbl 46742 An open subset of the n-di...
opnssborel 46743 Open sets of a generalized...
borelmbl 46744 All Borel subsets of the n...
volicorege0 46745 The Lebesgue measure of a ...
isvonmbl 46746 The predicate " ` A ` is m...
mblvon 46747 The n-dimensional Lebesgue...
vonmblss 46748 n-dimensional Lebesgue mea...
volico2 46749 The measure of left-closed...
vonmblss2 46750 n-dimensional Lebesgue mea...
ovolval2lem 46751 The value of the Lebesgue ...
ovolval2 46752 The value of the Lebesgue ...
ovnsubadd2lem 46753 ` ( voln* `` X ) ` is suba...
ovnsubadd2 46754 ` ( voln* `` X ) ` is suba...
ovolval3 46755 The value of the Lebesgue ...
ovnsplit 46756 The n-dimensional Lebesgue...
ovolval4lem1 46757 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 46758 The value of the Lebesgue ...
ovolval4 46759 The value of the Lebesgue ...
ovolval5lem1 46760 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 46761 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 46762 The value of the Lebesgue ...
ovolval5 46763 The value of the Lebesgue ...
ovnovollem1 46764 if ` F ` is a cover of ` B...
ovnovollem2 46765 if ` I ` is a cover of ` (...
ovnovollem3 46766 The 1-dimensional Lebesgue...
ovnovol 46767 The 1-dimensional Lebesgue...
vonvolmbllem 46768 If a subset ` B ` of real ...
vonvolmbl 46769 A subset of Real numbers i...
vonvol 46770 The 1-dimensional Lebesgue...
vonvolmbl2 46771 A subset ` X ` of the spac...
vonvol2 46772 The 1-dimensional Lebesgue...
hoimbl2 46773 Any n-dimensional half-ope...
voncl 46774 The Lebesgue measure of a ...
vonhoi 46775 The Lebesgue outer measure...
vonxrcl 46776 The Lebesgue measure of a ...
ioosshoi 46777 A n-dimensional open inter...
vonn0hoi 46778 The Lebesgue outer measure...
von0val 46779 The Lebesgue measure (for ...
vonhoire 46780 The Lebesgue measure of a ...
iinhoiicclem 46781 A n-dimensional closed int...
iinhoiicc 46782 A n-dimensional closed int...
iunhoiioolem 46783 A n-dimensional open inter...
iunhoiioo 46784 A n-dimensional open inter...
ioovonmbl 46785 Any n-dimensional open int...
iccvonmbllem 46786 Any n-dimensional closed i...
iccvonmbl 46787 Any n-dimensional closed i...
vonioolem1 46788 The sequence of the measur...
vonioolem2 46789 The n-dimensional Lebesgue...
vonioo 46790 The n-dimensional Lebesgue...
vonicclem1 46791 The sequence of the measur...
vonicclem2 46792 The n-dimensional Lebesgue...
vonicc 46793 The n-dimensional Lebesgue...
snvonmbl 46794 A n-dimensional singleton ...
vonn0ioo 46795 The n-dimensional Lebesgue...
vonn0icc 46796 The n-dimensional Lebesgue...
ctvonmbl 46797 Any n-dimensional countabl...
vonn0ioo2 46798 The n-dimensional Lebesgue...
vonsn 46799 The n-dimensional Lebesgue...
vonn0icc2 46800 The n-dimensional Lebesgue...
vonct 46801 The n-dimensional Lebesgue...
vitali2 46802 There are non-measurable s...
pimltmnf2f 46805 Given a real-valued functi...
pimltmnf2 46806 Given a real-valued functi...
preimagelt 46807 The preimage of a right-op...
preimalegt 46808 The preimage of a left-ope...
pimconstlt0 46809 Given a constant function,...
pimconstlt1 46810 Given a constant function,...
pimltpnff 46811 Given a real-valued functi...
pimltpnf 46812 Given a real-valued functi...
pimgtpnf2f 46813 Given a real-valued functi...
pimgtpnf2 46814 Given a real-valued functi...
salpreimagelt 46815 If all the preimages of le...
pimrecltpos 46816 The preimage of an unbound...
salpreimalegt 46817 If all the preimages of ri...
pimiooltgt 46818 The preimage of an open in...
preimaicomnf 46819 Preimage of an open interv...
pimltpnf2f 46820 Given a real-valued functi...
pimltpnf2 46821 Given a real-valued functi...
pimgtmnf2 46822 Given a real-valued functi...
pimdecfgtioc 46823 Given a nonincreasing func...
pimincfltioc 46824 Given a nondecreasing func...
pimdecfgtioo 46825 Given a nondecreasing func...
pimincfltioo 46826 Given a nondecreasing func...
preimaioomnf 46827 Preimage of an open interv...
preimageiingt 46828 A preimage of a left-close...
preimaleiinlt 46829 A preimage of a left-open,...
pimgtmnff 46830 Given a real-valued functi...
pimgtmnf 46831 Given a real-valued functi...
pimrecltneg 46832 The preimage of an unbound...
salpreimagtge 46833 If all the preimages of le...
salpreimaltle 46834 If all the preimages of ri...
issmflem 46835 The predicate " ` F ` is a...
issmf 46836 The predicate " ` F ` is a...
salpreimalelt 46837 If all the preimages of ri...
salpreimagtlt 46838 If all the preimages of le...
smfpreimalt 46839 Given a function measurabl...
smff 46840 A function measurable w.r....
smfdmss 46841 The domain of a function m...
issmff 46842 The predicate " ` F ` is a...
issmfd 46843 A sufficient condition for...
smfpreimaltf 46844 Given a function measurabl...
issmfdf 46845 A sufficient condition for...
sssmf 46846 The restriction of a sigma...
mbfresmf 46847 A real-valued measurable f...
cnfsmf 46848 A continuous function is m...
incsmflem 46849 A nondecreasing function i...
incsmf 46850 A real-valued, nondecreasi...
smfsssmf 46851 If a function is measurabl...
issmflelem 46852 The predicate " ` F ` is a...
issmfle 46853 The predicate " ` F ` is a...
smfpimltmpt 46854 Given a function measurabl...
smfpimltxr 46855 Given a function measurabl...
issmfdmpt 46856 A sufficient condition for...
smfconst 46857 Given a sigma-algebra over...
sssmfmpt 46858 The restriction of a sigma...
cnfrrnsmf 46859 A function, continuous fro...
smfid 46860 The identity function is B...
bormflebmf 46861 A Borel measurable functio...
smfpreimale 46862 Given a function measurabl...
issmfgtlem 46863 The predicate " ` F ` is a...
issmfgt 46864 The predicate " ` F ` is a...
issmfled 46865 A sufficient condition for...
smfpimltxrmptf 46866 Given a function measurabl...
smfpimltxrmpt 46867 Given a function measurabl...
smfmbfcex 46868 A constant function, with ...
issmfgtd 46869 A sufficient condition for...
smfpreimagt 46870 Given a function measurabl...
smfaddlem1 46871 Given the sum of two funct...
smfaddlem2 46872 The sum of two sigma-measu...
smfadd 46873 The sum of two sigma-measu...
decsmflem 46874 A nonincreasing function i...
decsmf 46875 A real-valued, nonincreasi...
smfpreimagtf 46876 Given a function measurabl...
issmfgelem 46877 The predicate " ` F ` is a...
issmfge 46878 The predicate " ` F ` is a...
smflimlem1 46879 Lemma for the proof that t...
smflimlem2 46880 Lemma for the proof that t...
smflimlem3 46881 The limit of sigma-measura...
smflimlem4 46882 Lemma for the proof that t...
smflimlem5 46883 Lemma for the proof that t...
smflimlem6 46884 Lemma for the proof that t...
smflim 46885 The limit of sigma-measura...
nsssmfmbflem 46886 The sigma-measurable funct...
nsssmfmbf 46887 The sigma-measurable funct...
smfpimgtxr 46888 Given a function measurabl...
smfpimgtmpt 46889 Given a function measurabl...
smfpreimage 46890 Given a function measurabl...
mbfpsssmf 46891 Real-valued measurable fun...
smfpimgtxrmptf 46892 Given a function measurabl...
smfpimgtxrmpt 46893 Given a function measurabl...
smfpimioompt 46894 Given a function measurabl...
smfpimioo 46895 Given a function measurabl...
smfresal 46896 Given a sigma-measurable f...
smfrec 46897 The reciprocal of a sigma-...
smfres 46898 The restriction of sigma-m...
smfmullem1 46899 The multiplication of two ...
smfmullem2 46900 The multiplication of two ...
smfmullem3 46901 The multiplication of two ...
smfmullem4 46902 The multiplication of two ...
smfmul 46903 The multiplication of two ...
smfmulc1 46904 A sigma-measurable functio...
smfdiv 46905 The fraction of two sigma-...
smfpimbor1lem1 46906 Every open set belongs to ...
smfpimbor1lem2 46907 Given a sigma-measurable f...
smfpimbor1 46908 Given a sigma-measurable f...
smf2id 46909 Twice the identity functio...
smfco 46910 The composition of a Borel...
smfneg 46911 The negative of a sigma-me...
smffmptf 46912 A function measurable w.r....
smffmpt 46913 A function measurable w.r....
smflim2 46914 The limit of a sequence of...
smfpimcclem 46915 Lemma for ~ smfpimcc given...
smfpimcc 46916 Given a countable set of s...
issmfle2d 46917 A sufficient condition for...
smflimmpt 46918 The limit of a sequence of...
smfsuplem1 46919 The supremum of a countabl...
smfsuplem2 46920 The supremum of a countabl...
smfsuplem3 46921 The supremum of a countabl...
smfsup 46922 The supremum of a countabl...
smfsupmpt 46923 The supremum of a countabl...
smfsupxr 46924 The supremum of a countabl...
smfinflem 46925 The infimum of a countable...
smfinf 46926 The infimum of a countable...
smfinfmpt 46927 The infimum of a countable...
smflimsuplem1 46928 If ` H ` converges, the ` ...
smflimsuplem2 46929 The superior limit of a se...
smflimsuplem3 46930 The limit of the ` ( H `` ...
smflimsuplem4 46931 If ` H ` converges, the ` ...
smflimsuplem5 46932 ` H ` converges to the sup...
smflimsuplem6 46933 The superior limit of a se...
smflimsuplem7 46934 The superior limit of a se...
smflimsuplem8 46935 The superior limit of a se...
smflimsup 46936 The superior limit of a se...
smflimsupmpt 46937 The superior limit of a se...
smfliminflem 46938 The inferior limit of a co...
smfliminf 46939 The inferior limit of a co...
smfliminfmpt 46940 The inferior limit of a co...
adddmmbl 46941 If two functions have doma...
adddmmbl2 46942 If two functions have doma...
muldmmbl 46943 If two functions have doma...
muldmmbl2 46944 If two functions have doma...
smfdmmblpimne 46945 If a measurable function w...
smfdivdmmbl 46946 If a functions and a sigma...
smfpimne 46947 Given a function measurabl...
smfpimne2 46948 Given a function measurabl...
smfdivdmmbl2 46949 If a functions and a sigma...
fsupdm 46950 The domain of the sup func...
fsupdm2 46951 The domain of the sup func...
smfsupdmmbllem 46952 If a countable set of sigm...
smfsupdmmbl 46953 If a countable set of sigm...
finfdm 46954 The domain of the inf func...
finfdm2 46955 The domain of the inf func...
smfinfdmmbllem 46956 If a countable set of sigm...
smfinfdmmbl 46957 If a countable set of sigm...
sigarval 46958 Define the signed area by ...
sigarim 46959 Signed area takes value in...
sigarac 46960 Signed area is anticommuta...
sigaraf 46961 Signed area is additive by...
sigarmf 46962 Signed area is additive (w...
sigaras 46963 Signed area is additive by...
sigarms 46964 Signed area is additive (w...
sigarls 46965 Signed area is linear by t...
sigarid 46966 Signed area of a flat para...
sigarexp 46967 Expand the signed area for...
sigarperm 46968 Signed area ` ( A - C ) G ...
sigardiv 46969 If signed area between vec...
sigarimcd 46970 Signed area takes value in...
sigariz 46971 If signed area is zero, th...
sigarcol 46972 Given three points ` A ` ,...
sharhght 46973 Let ` A B C ` be a triangl...
sigaradd 46974 Subtracting (double) area ...
cevathlem1 46975 Ceva's theorem first lemma...
cevathlem2 46976 Ceva's theorem second lemm...
cevath 46977 Ceva's theorem. Let ` A B...
simpcntrab 46978 The center of a simple gro...
et-ltneverrefl 46979 Less-than class is never r...
et-equeucl 46980 Alternative proof that equ...
et-sqrtnegnre 46981 The square root of a negat...
ormklocald 46982 If elements of a certain s...
ormkglobd 46983 If all adjacent elements o...
natlocalincr 46984 Global monotonicity on hal...
natglobalincr 46985 Local monotonicity on half...
chnsubseqword 46986 A subsequence of a chain i...
chnsubseqwl 46987 A subsequence of a chain h...
chnsubseq 46988 An order-preserving subseq...
chnsuslle 46989 Length of a subsequence is...
chnerlem1 46990 In a chain constructed on ...
chnerlem2 46991 Lemma for ~ chner where th...
chnerlem3 46992 Lemma for ~ chner - tricho...
chner 46993 Any two elements are equiv...
nthrucw 46994 Some number sets form a ch...
evenwodadd 46995 If an integer is multiplie...
squeezedltsq 46996 If a real value is squeeze...
lambert0 46997 A value of Lambert W (prod...
lamberte 46998 A value of Lambert W (prod...
cjnpoly 46999 Complex conjugation operat...
tannpoly 47000 The tangent function is no...
sinnpoly 47001 Sine function is not a pol...
hirstL-ax3 47002 The third axiom of a syste...
ax3h 47003 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 47004 A closed form showing (a i...
aibandbiaiaiffb 47005 A closed form showing (a i...
notatnand 47006 Do not use. Use intnanr i...
aistia 47007 Given a is equivalent to `...
aisfina 47008 Given a is equivalent to `...
bothtbothsame 47009 Given both a, b are equiva...
bothfbothsame 47010 Given both a, b are equiva...
aiffbbtat 47011 Given a is equivalent to b...
aisbbisfaisf 47012 Given a is equivalent to b...
axorbtnotaiffb 47013 Given a is exclusive to b,...
aiffnbandciffatnotciffb 47014 Given a is equivalent to (...
axorbciffatcxorb 47015 Given a is equivalent to (...
aibnbna 47016 Given a implies b, (not b)...
aibnbaif 47017 Given a implies b, not b, ...
aiffbtbat 47018 Given a is equivalent to b...
astbstanbst 47019 Given a is equivalent to T...
aistbistaandb 47020 Given a is equivalent to T...
aisbnaxb 47021 Given a is equivalent to b...
atbiffatnnb 47022 If a implies b, then a imp...
bisaiaisb 47023 Application of bicom1 with...
atbiffatnnbalt 47024 If a implies b, then a imp...
abnotbtaxb 47025 Assuming a, not b, there e...
abnotataxb 47026 Assuming not a, b, there e...
conimpf 47027 Assuming a, not b, and a i...
conimpfalt 47028 Assuming a, not b, and a i...
aistbisfiaxb 47029 Given a is equivalent to T...
aisfbistiaxb 47030 Given a is equivalent to F...
aifftbifffaibif 47031 Given a is equivalent to T...
aifftbifffaibifff 47032 Given a is equivalent to T...
atnaiana 47033 Given a, it is not the cas...
ainaiaandna 47034 Given a, a implies it is n...
abcdta 47035 Given (((a and b) and c) a...
abcdtb 47036 Given (((a and b) and c) a...
abcdtc 47037 Given (((a and b) and c) a...
abcdtd 47038 Given (((a and b) and c) a...
abciffcbatnabciffncba 47039 Operands in a biconditiona...
abciffcbatnabciffncbai 47040 Operands in a biconditiona...
nabctnabc 47041 not ( a -> ( b /\ c ) ) we...
jabtaib 47042 For when pm3.4 lacks a pm3...
onenotinotbothi 47043 From one negated implicati...
twonotinotbothi 47044 From these two negated imp...
clifte 47045 show d is the same as an i...
cliftet 47046 show d is the same as an i...
clifteta 47047 show d is the same as an i...
cliftetb 47048 show d is the same as an i...
confun 47049 Given the hypotheses there...
confun2 47050 Confun simplified to two p...
confun3 47051 Confun's more complex form...
confun4 47052 An attempt at derivative. ...
confun5 47053 An attempt at derivative. ...
plcofph 47054 Given, a,b and a "definiti...
pldofph 47055 Given, a,b c, d, "definiti...
plvcofph 47056 Given, a,b,d, and "definit...
plvcofphax 47057 Given, a,b,d, and "definit...
plvofpos 47058 rh is derivable because ON...
mdandyv0 47059 Given the equivalences set...
mdandyv1 47060 Given the equivalences set...
mdandyv2 47061 Given the equivalences set...
mdandyv3 47062 Given the equivalences set...
mdandyv4 47063 Given the equivalences set...
mdandyv5 47064 Given the equivalences set...
mdandyv6 47065 Given the equivalences set...
mdandyv7 47066 Given the equivalences set...
mdandyv8 47067 Given the equivalences set...
mdandyv9 47068 Given the equivalences set...
mdandyv10 47069 Given the equivalences set...
mdandyv11 47070 Given the equivalences set...
mdandyv12 47071 Given the equivalences set...
mdandyv13 47072 Given the equivalences set...
mdandyv14 47073 Given the equivalences set...
mdandyv15 47074 Given the equivalences set...
mdandyvr0 47075 Given the equivalences set...
mdandyvr1 47076 Given the equivalences set...
mdandyvr2 47077 Given the equivalences set...
mdandyvr3 47078 Given the equivalences set...
mdandyvr4 47079 Given the equivalences set...
mdandyvr5 47080 Given the equivalences set...
mdandyvr6 47081 Given the equivalences set...
mdandyvr7 47082 Given the equivalences set...
mdandyvr8 47083 Given the equivalences set...
mdandyvr9 47084 Given the equivalences set...
mdandyvr10 47085 Given the equivalences set...
mdandyvr11 47086 Given the equivalences set...
mdandyvr12 47087 Given the equivalences set...
mdandyvr13 47088 Given the equivalences set...
mdandyvr14 47089 Given the equivalences set...
mdandyvr15 47090 Given the equivalences set...
mdandyvrx0 47091 Given the exclusivities se...
mdandyvrx1 47092 Given the exclusivities se...
mdandyvrx2 47093 Given the exclusivities se...
mdandyvrx3 47094 Given the exclusivities se...
mdandyvrx4 47095 Given the exclusivities se...
mdandyvrx5 47096 Given the exclusivities se...
mdandyvrx6 47097 Given the exclusivities se...
mdandyvrx7 47098 Given the exclusivities se...
mdandyvrx8 47099 Given the exclusivities se...
mdandyvrx9 47100 Given the exclusivities se...
mdandyvrx10 47101 Given the exclusivities se...
mdandyvrx11 47102 Given the exclusivities se...
mdandyvrx12 47103 Given the exclusivities se...
mdandyvrx13 47104 Given the exclusivities se...
mdandyvrx14 47105 Given the exclusivities se...
mdandyvrx15 47106 Given the exclusivities se...
H15NH16TH15IH16 47107 Given 15 hypotheses and a ...
dandysum2p2e4 47108 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 47109 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 47110 Replacement of a nested an...
adh-minim 47111 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 47112 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 47113 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 47114 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 47115 Fourth lemma for the deriv...
adh-minim-ax1 47116 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 47117 Fifth lemma for the deriva...
adh-minim-ax2-lem6 47118 Sixth lemma for the deriva...
adh-minim-ax2c 47119 Derivation of a commuted f...
adh-minim-ax2 47120 Derivation of ~ ax-2 from ...
adh-minim-idALT 47121 Derivation of ~ id (reflex...
adh-minim-pm2.43 47122 Derivation of ~ pm2.43 Whi...
adh-minimp 47123 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 47124 First lemma for the deriva...
adh-minimp-jarr-lem2 47125 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 47126 Third lemma for the deriva...
adh-minimp-sylsimp 47127 Derivation of ~ jarr (also...
adh-minimp-ax1 47128 Derivation of ~ ax-1 from ...
adh-minimp-imim1 47129 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 47130 Derivation of a commuted f...
adh-minimp-ax2-lem4 47131 Fourth lemma for the deriv...
adh-minimp-ax2 47132 Derivation of ~ ax-2 from ...
adh-minimp-idALT 47133 Derivation of ~ id (reflex...
adh-minimp-pm2.43 47134 Derivation of ~ pm2.43 Whi...
n0nsn2el 47135 If a class with one elemen...
eusnsn 47136 There is a unique element ...
absnsb 47137 If the class abstraction `...
euabsneu 47138 Another way to express exi...
elprneb 47139 An element of a proper uno...
oppr 47140 Equality for ordered pairs...
opprb 47141 Equality for unordered pai...
or2expropbilem1 47142 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 47143 Lemma 2 for ~ or2expropbi ...
or2expropbi 47144 If two classes are strictl...
eubrv 47145 If there is a unique set w...
eubrdm 47146 If there is a unique set w...
eldmressn 47147 Element of the domain of a...
iota0def 47148 Example for a defined iota...
iota0ndef 47149 Example for an undefined i...
fveqvfvv 47150 If a function's value at a...
fnresfnco 47151 Composition of two functio...
funcoressn 47152 A composition restricted t...
funressnfv 47153 A restriction to a singlet...
funressndmfvrn 47154 The value of a function ` ...
funressnvmo 47155 A function restricted to a...
funressnmo 47156 A function restricted to a...
funressneu 47157 There is exactly one value...
fresfo 47158 Conditions for a restricti...
fsetsniunop 47159 The class of all functions...
fsetabsnop 47160 The class of all functions...
fsetsnf 47161 The mapping of an element ...
fsetsnf1 47162 The mapping of an element ...
fsetsnfo 47163 The mapping of an element ...
fsetsnf1o 47164 The mapping of an element ...
fsetsnprcnex 47165 The class of all functions...
cfsetssfset 47166 The class of constant func...
cfsetsnfsetfv 47167 The function value of the ...
cfsetsnfsetf 47168 The mapping of the class o...
cfsetsnfsetf1 47169 The mapping of the class o...
cfsetsnfsetfo 47170 The mapping of the class o...
cfsetsnfsetf1o 47171 The mapping of the class o...
fsetprcnexALT 47172 First version of proof for...
fcoreslem1 47173 Lemma 1 for ~ fcores . (C...
fcoreslem2 47174 Lemma 2 for ~ fcores . (C...
fcoreslem3 47175 Lemma 3 for ~ fcores . (C...
fcoreslem4 47176 Lemma 4 for ~ fcores . (C...
fcores 47177 Every composite function `...
fcoresf1lem 47178 Lemma for ~ fcoresf1 . (C...
fcoresf1 47179 If a composition is inject...
fcoresf1b 47180 A composition is injective...
fcoresfo 47181 If a composition is surjec...
fcoresfob 47182 A composition is surjectiv...
fcoresf1ob 47183 A composition is bijective...
f1cof1blem 47184 Lemma for ~ f1cof1b and ~ ...
3f1oss1 47185 The composition of three b...
3f1oss2 47186 The composition of three b...
f1cof1b 47187 If the range of ` F ` equa...
funfocofob 47188 If the domain of a functio...
fnfocofob 47189 If the domain of a functio...
focofob 47190 If the domain of a functio...
f1ocof1ob 47191 If the range of ` F ` equa...
f1ocof1ob2 47192 If the range of ` F ` equa...
aiotajust 47194 Soundness justification th...
dfaiota2 47196 Alternate definition of th...
reuabaiotaiota 47197 The iota and the alternate...
reuaiotaiota 47198 The iota and the alternate...
aiotaexb 47199 The alternate iota over a ...
aiotavb 47200 The alternate iota over a ...
aiotaint 47201 This is to ~ df-aiota what...
dfaiota3 47202 Alternate definition of ` ...
iotan0aiotaex 47203 If the iota over a wff ` p...
aiotaexaiotaiota 47204 The alternate iota over a ...
aiotaval 47205 Theorem 8.19 in [Quine] p....
aiota0def 47206 Example for a defined alte...
aiota0ndef 47207 Example for an undefined a...
r19.32 47208 Theorem 19.32 of [Margaris...
rexsb 47209 An equivalent expression f...
rexrsb 47210 An equivalent expression f...
2rexsb 47211 An equivalent expression f...
2rexrsb 47212 An equivalent expression f...
cbvral2 47213 Change bound variables of ...
cbvrex2 47214 Change bound variables of ...
ralndv1 47215 Example for a theorem abou...
ralndv2 47216 Second example for a theor...
reuf1odnf 47217 There is exactly one eleme...
reuf1od 47218 There is exactly one eleme...
euoreqb 47219 There is a set which is eq...
2reu3 47220 Double restricted existent...
2reu7 47221 Two equivalent expressions...
2reu8 47222 Two equivalent expressions...
2reu8i 47223 Implication of a double re...
2reuimp0 47224 Implication of a double re...
2reuimp 47225 Implication of a double re...
ralbinrald 47232 Elemination of a restricte...
nvelim 47233 If a class is the universa...
alneu 47234 If a statement holds for a...
eu2ndop1stv 47235 If there is a unique secon...
dfateq12d 47236 Equality deduction for "de...
nfdfat 47237 Bound-variable hypothesis ...
dfdfat2 47238 Alternate definition of th...
fundmdfat 47239 A function is defined at a...
dfatprc 47240 A function is not defined ...
dfatelrn 47241 The value of a function ` ...
dfafv2 47242 Alternative definition of ...
afveq12d 47243 Equality deduction for fun...
afveq1 47244 Equality theorem for funct...
afveq2 47245 Equality theorem for funct...
nfafv 47246 Bound-variable hypothesis ...
csbafv12g 47247 Move class substitution in...
afvfundmfveq 47248 If a class is a function r...
afvnfundmuv 47249 If a set is not in the dom...
ndmafv 47250 The value of a class outsi...
afvvdm 47251 If the function value of a...
nfunsnafv 47252 If the restriction of a cl...
afvvfunressn 47253 If the function value of a...
afvprc 47254 A function's value at a pr...
afvvv 47255 If a function's value at a...
afvpcfv0 47256 If the value of the altern...
afvnufveq 47257 The value of the alternati...
afvvfveq 47258 The value of the alternati...
afv0fv0 47259 If the value of the altern...
afvfvn0fveq 47260 If the function's value at...
afv0nbfvbi 47261 The function's value at an...
afvfv0bi 47262 The function's value at an...
afveu 47263 The value of a function at...
fnbrafvb 47264 Equivalence of function va...
fnopafvb 47265 Equivalence of function va...
funbrafvb 47266 Equivalence of function va...
funopafvb 47267 Equivalence of function va...
funbrafv 47268 The second argument of a b...
funbrafv2b 47269 Function value in terms of...
dfafn5a 47270 Representation of a functi...
dfafn5b 47271 Representation of a functi...
fnrnafv 47272 The range of a function ex...
afvelrnb 47273 A member of a function's r...
afvelrnb0 47274 A member of a function's r...
dfaimafn 47275 Alternate definition of th...
dfaimafn2 47276 Alternate definition of th...
afvelima 47277 Function value in an image...
afvelrn 47278 A function's value belongs...
fnafvelrn 47279 A function's value belongs...
fafvelcdm 47280 A function's value belongs...
ffnafv 47281 A function maps to a class...
afvres 47282 The value of a restricted ...
tz6.12-afv 47283 Function value. Theorem 6...
tz6.12-1-afv 47284 Function value (Theorem 6....
dmfcoafv 47285 Domains of a function comp...
afvco2 47286 Value of a function compos...
rlimdmafv 47287 Two ways to express that a...
aoveq123d 47288 Equality deduction for ope...
nfaov 47289 Bound-variable hypothesis ...
csbaovg 47290 Move class substitution in...
aovfundmoveq 47291 If a class is a function r...
aovnfundmuv 47292 If an ordered pair is not ...
ndmaov 47293 The value of an operation ...
ndmaovg 47294 The value of an operation ...
aovvdm 47295 If the operation value of ...
nfunsnaov 47296 If the restriction of a cl...
aovvfunressn 47297 If the operation value of ...
aovprc 47298 The value of an operation ...
aovrcl 47299 Reverse closure for an ope...
aovpcov0 47300 If the alternative value o...
aovnuoveq 47301 The alternative value of t...
aovvoveq 47302 The alternative value of t...
aov0ov0 47303 If the alternative value o...
aovovn0oveq 47304 If the operation's value a...
aov0nbovbi 47305 The operation's value on a...
aovov0bi 47306 The operation's value on a...
rspceaov 47307 A frequently used special ...
fnotaovb 47308 Equivalence of operation v...
ffnaov 47309 An operation maps to a cla...
faovcl 47310 Closure law for an operati...
aovmpt4g 47311 Value of a function given ...
aoprssdm 47312 Domain of closure of an op...
ndmaovcl 47313 The "closure" of an operat...
ndmaovrcl 47314 Reverse closure law, in co...
ndmaovcom 47315 Any operation is commutati...
ndmaovass 47316 Any operation is associati...
ndmaovdistr 47317 Any operation is distribut...
dfatafv2iota 47320 If a function is defined a...
ndfatafv2 47321 The alternate function val...
ndfatafv2undef 47322 The alternate function val...
dfatafv2ex 47323 The alternate function val...
afv2ex 47324 The alternate function val...
afv2eq12d 47325 Equality deduction for fun...
afv2eq1 47326 Equality theorem for funct...
afv2eq2 47327 Equality theorem for funct...
nfafv2 47328 Bound-variable hypothesis ...
csbafv212g 47329 Move class substitution in...
fexafv2ex 47330 The alternate function val...
ndfatafv2nrn 47331 The alternate function val...
ndmafv2nrn 47332 The value of a class outsi...
funressndmafv2rn 47333 The alternate function val...
afv2ndefb 47334 Two ways to say that an al...
nfunsnafv2 47335 If the restriction of a cl...
afv2prc 47336 A function's value at a pr...
dfatafv2rnb 47337 The alternate function val...
afv2orxorb 47338 If a set is in the range o...
dmafv2rnb 47339 The alternate function val...
fundmafv2rnb 47340 The alternate function val...
afv2elrn 47341 An alternate function valu...
afv20defat 47342 If the alternate function ...
fnafv2elrn 47343 An alternate function valu...
fafv2elcdm 47344 An alternate function valu...
fafv2elrnb 47345 An alternate function valu...
fcdmvafv2v 47346 If the codomain of a funct...
tz6.12-2-afv2 47347 Function value when ` F ` ...
afv2eu 47348 The value of a function at...
afv2res 47349 The value of a restricted ...
tz6.12-afv2 47350 Function value (Theorem 6....
tz6.12-1-afv2 47351 Function value (Theorem 6....
tz6.12c-afv2 47352 Corollary of Theorem 6.12(...
tz6.12i-afv2 47353 Corollary of Theorem 6.12(...
funressnbrafv2 47354 The second argument of a b...
dfatbrafv2b 47355 Equivalence of function va...
dfatopafv2b 47356 Equivalence of function va...
funbrafv2 47357 The second argument of a b...
fnbrafv2b 47358 Equivalence of function va...
fnopafv2b 47359 Equivalence of function va...
funbrafv22b 47360 Equivalence of function va...
funopafv2b 47361 Equivalence of function va...
dfatsnafv2 47362 Singleton of function valu...
dfafv23 47363 A definition of function v...
dfatdmfcoafv2 47364 Domain of a function compo...
dfatcolem 47365 Lemma for ~ dfatco . (Con...
dfatco 47366 The predicate "defined at"...
afv2co2 47367 Value of a function compos...
rlimdmafv2 47368 Two ways to express that a...
dfafv22 47369 Alternate definition of ` ...
afv2ndeffv0 47370 If the alternate function ...
dfatafv2eqfv 47371 If a function is defined a...
afv2rnfveq 47372 If the alternate function ...
afv20fv0 47373 If the alternate function ...
afv2fvn0fveq 47374 If the function's value at...
afv2fv0 47375 If the function's value at...
afv2fv0b 47376 The function's value at an...
afv2fv0xorb 47377 If a set is in the range o...
an4com24 47378 Rearrangement of 4 conjunc...
3an4ancom24 47379 Commutative law for a conj...
4an21 47380 Rearrangement of 4 conjunc...
dfnelbr2 47383 Alternate definition of th...
nelbr 47384 The binary relation of a s...
nelbrim 47385 If a set is related to ano...
nelbrnel 47386 A set is related to anothe...
nelbrnelim 47387 If a set is related to ano...
ralralimp 47388 Selecting one of two alter...
otiunsndisjX 47389 The union of singletons co...
fvifeq 47390 Equality of function value...
rnfdmpr 47391 The range of a one-to-one ...
imarnf1pr 47392 The image of the range of ...
funop1 47393 A function is an ordered p...
fun2dmnopgexmpl 47394 A function with a domain c...
opabresex0d 47395 A collection of ordered pa...
opabbrfex0d 47396 A collection of ordered pa...
opabresexd 47397 A collection of ordered pa...
opabbrfexd 47398 A collection of ordered pa...
f1oresf1orab 47399 Build a bijection by restr...
f1oresf1o 47400 Build a bijection by restr...
f1oresf1o2 47401 Build a bijection by restr...
fvmptrab 47402 Value of a function mappin...
fvmptrabdm 47403 Value of a function mappin...
cnambpcma 47404 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 47405 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 47406 The sum of two complex num...
leaddsuble 47407 Addition and subtraction o...
2leaddle2 47408 If two real numbers are le...
ltnltne 47409 Variant of trichotomy law ...
p1lep2 47410 A real number increasd by ...
ltsubsubaddltsub 47411 If the result of subtracti...
zm1nn 47412 An integer minus 1 is posi...
readdcnnred 47413 The sum of a real number a...
resubcnnred 47414 The difference of a real n...
recnmulnred 47415 The product of a real numb...
cndivrenred 47416 The quotient of an imagina...
sqrtnegnre 47417 The square root of a negat...
nn0resubcl 47418 Closure law for subtractio...
zgeltp1eq 47419 If an integer is between a...
1t10e1p1e11 47420 11 is 1 times 10 to the po...
deccarry 47421 Add 1 to a 2 digit number ...
eluzge0nn0 47422 If an integer is greater t...
nltle2tri 47423 Negated extended trichotom...
ssfz12 47424 Subset relationship for fi...
elfz2z 47425 Membership of an integer i...
2elfz3nn0 47426 If there are two elements ...
fz0addcom 47427 The addition of two member...
2elfz2melfz 47428 If the sum of two integers...
fz0addge0 47429 The sum of two integers in...
elfzlble 47430 Membership of an integer i...
elfzelfzlble 47431 Membership of an element o...
fzopred 47432 Join a predecessor to the ...
fzopredsuc 47433 Join a predecessor and a s...
1fzopredsuc 47434 Join 0 and a successor to ...
el1fzopredsuc 47435 An element of an open inte...
subsubelfzo0 47436 Subtracting a difference f...
2ffzoeq 47437 Two functions over a half-...
2ltceilhalf 47438 The ceiling of half of an ...
ceilhalfgt1 47439 The ceiling of half of an ...
ceilhalfelfzo1 47440 A positive integer less th...
gpgedgvtx1lem 47441 Lemma for ~ gpgedgvtx1 . ...
2tceilhalfelfzo1 47442 Two times a positive integ...
ceilbi 47443 A condition equivalent to ...
ceilhalf1 47444 The ceiling of one half is...
rehalfge1 47445 Half of a real number grea...
ceilhalfnn 47446 The ceiling of half of a p...
1elfzo1ceilhalf1 47447 1 is in the half-open inte...
fldivmod 47448 Expressing the floor of a ...
ceildivmod 47449 Expressing the ceiling of ...
ceil5half3 47450 The ceiling of half of 5 i...
submodaddmod 47451 Subtraction and addition m...
difltmodne 47452 Two nonnegative integers a...
zplusmodne 47453 A nonnegative integer is n...
addmodne 47454 The sum of a nonnegative i...
plusmod5ne 47455 A nonnegative integer is n...
zp1modne 47456 An integer is not itself p...
p1modne 47457 A nonnegative integer is n...
m1modne 47458 A nonnegative integer is n...
minusmod5ne 47459 A nonnegative integer is n...
submodlt 47460 The difference of an eleme...
submodneaddmod 47461 An integer minus ` B ` is ...
m1modnep2mod 47462 A nonnegative integer minu...
minusmodnep2tmod 47463 A nonnegative integer minu...
m1mod0mod1 47464 An integer decreased by 1 ...
elmod2 47465 An integer modulo 2 is eit...
mod0mul 47466 If an integer is 0 modulo ...
modn0mul 47467 If an integer is not 0 mod...
m1modmmod 47468 An integer decreased by 1 ...
difmodm1lt 47469 The difference between an ...
8mod5e3 47470 8 modulo 5 is 3. (Contrib...
modmkpkne 47471 If an integer minus a cons...
modmknepk 47472 A nonnegative integer less...
modlt0b 47473 An integer with an absolut...
mod2addne 47474 The sums of a nonnegative ...
modm1nep1 47475 A nonnegative integer less...
modm2nep1 47476 A nonnegative integer less...
modp2nep1 47477 A nonnegative integer less...
modm1nep2 47478 A nonnegative integer less...
modm1nem2 47479 A nonnegative integer less...
modm1p1ne 47480 If an integer minus one eq...
smonoord 47481 Ordering relation for a st...
fsummsndifre 47482 A finite sum with one of i...
fsumsplitsndif 47483 Separate out a term in a f...
fsummmodsndifre 47484 A finite sum of summands m...
fsummmodsnunz 47485 A finite sum of summands m...
setsidel 47486 The injected slot is an el...
setsnidel 47487 The injected slot is an el...
setsv 47488 The value of the structure...
preimafvsnel 47489 The preimage of a function...
preimafvn0 47490 The preimage of a function...
uniimafveqt 47491 The union of the image of ...
uniimaprimaeqfv 47492 The union of the image of ...
setpreimafvex 47493 The class ` P ` of all pre...
elsetpreimafvb 47494 The characterization of an...
elsetpreimafv 47495 An element of the class ` ...
elsetpreimafvssdm 47496 An element of the class ` ...
fvelsetpreimafv 47497 There is an element in a p...
preimafvelsetpreimafv 47498 The preimage of a function...
preimafvsspwdm 47499 The class ` P ` of all pre...
0nelsetpreimafv 47500 The empty set is not an el...
elsetpreimafvbi 47501 An element of the preimage...
elsetpreimafveqfv 47502 The elements of the preima...
eqfvelsetpreimafv 47503 If an element of the domai...
elsetpreimafvrab 47504 An element of the preimage...
imaelsetpreimafv 47505 The image of an element of...
uniimaelsetpreimafv 47506 The union of the image of ...
elsetpreimafveq 47507 If two preimages of functi...
fundcmpsurinjlem1 47508 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 47509 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 47510 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 47511 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 47512 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 47513 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 47514 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 47515 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 47516 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 47517 Every function ` F : A -->...
fundcmpsurinjpreimafv 47518 Every function ` F : A -->...
fundcmpsurinj 47519 Every function ` F : A -->...
fundcmpsurbijinj 47520 Every function ` F : A -->...
fundcmpsurinjimaid 47521 Every function ` F : A -->...
fundcmpsurinjALT 47522 Alternate proof of ~ fundc...
iccpval 47525 Partition consisting of a ...
iccpart 47526 A special partition. Corr...
iccpartimp 47527 Implications for a class b...
iccpartres 47528 The restriction of a parti...
iccpartxr 47529 If there is a partition, t...
iccpartgtprec 47530 If there is a partition, t...
iccpartipre 47531 If there is a partition, t...
iccpartiltu 47532 If there is a partition, t...
iccpartigtl 47533 If there is a partition, t...
iccpartlt 47534 If there is a partition, t...
iccpartltu 47535 If there is a partition, t...
iccpartgtl 47536 If there is a partition, t...
iccpartgt 47537 If there is a partition, t...
iccpartleu 47538 If there is a partition, t...
iccpartgel 47539 If there is a partition, t...
iccpartrn 47540 If there is a partition, t...
iccpartf 47541 The range of the partition...
iccpartel 47542 If there is a partition, t...
iccelpart 47543 An element of any partitio...
iccpartiun 47544 A half-open interval of ex...
icceuelpartlem 47545 Lemma for ~ icceuelpart . ...
icceuelpart 47546 An element of a partitione...
iccpartdisj 47547 The segments of a partitio...
iccpartnel 47548 A point of a partition is ...
fargshiftfv 47549 If a class is a function, ...
fargshiftf 47550 If a class is a function, ...
fargshiftf1 47551 If a function is 1-1, then...
fargshiftfo 47552 If a function is onto, the...
fargshiftfva 47553 The values of a shifted fu...
lswn0 47554 The last symbol of a nonem...
nfich1 47557 The first interchangeable ...
nfich2 47558 The second interchangeable...
ichv 47559 Setvar variables are inter...
ichf 47560 Setvar variables are inter...
ichid 47561 A setvar variable is alway...
icht 47562 A theorem is interchangeab...
ichbidv 47563 Formula building rule for ...
ichcircshi 47564 The setvar variables are i...
ichan 47565 If two setvar variables ar...
ichn 47566 Negation does not affect i...
ichim 47567 Formula building rule for ...
dfich2 47568 Alternate definition of th...
ichcom 47569 The interchangeability of ...
ichbi12i 47570 Equivalence for interchang...
icheqid 47571 In an equality for the sam...
icheq 47572 In an equality of setvar v...
ichnfimlem 47573 Lemma for ~ ichnfim : A s...
ichnfim 47574 If in an interchangeabilit...
ichnfb 47575 If ` x ` and ` y ` are int...
ichal 47576 Move a universal quantifie...
ich2al 47577 Two setvar variables are a...
ich2ex 47578 Two setvar variables are a...
ichexmpl1 47579 Example for interchangeabl...
ichexmpl2 47580 Example for interchangeabl...
ich2exprop 47581 If the setvar variables ar...
ichnreuop 47582 If the setvar variables ar...
ichreuopeq 47583 If the setvar variables ar...
sprid 47584 Two identical representati...
elsprel 47585 An unordered pair is an el...
spr0nelg 47586 The empty set is not an el...
sprval 47589 The set of all unordered p...
sprvalpw 47590 The set of all unordered p...
sprssspr 47591 The set of all unordered p...
spr0el 47592 The empty set is not an un...
sprvalpwn0 47593 The set of all unordered p...
sprel 47594 An element of the set of a...
prssspr 47595 An element of a subset of ...
prelspr 47596 An unordered pair of eleme...
prsprel 47597 The elements of a pair fro...
prsssprel 47598 The elements of a pair fro...
sprvalpwle2 47599 The set of all unordered p...
sprsymrelfvlem 47600 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 47601 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 47602 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 47603 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 47604 The value of the function ...
sprsymrelf 47605 The mapping ` F ` is a fun...
sprsymrelf1 47606 The mapping ` F ` is a one...
sprsymrelfo 47607 The mapping ` F ` is a fun...
sprsymrelf1o 47608 The mapping ` F ` is a bij...
sprbisymrel 47609 There is a bijection betwe...
sprsymrelen 47610 The class ` P ` of subsets...
prpair 47611 Characterization of a prop...
prproropf1olem0 47612 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 47613 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 47614 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 47615 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 47616 Lemma 4 for ~ prproropf1o ...
prproropf1o 47617 There is a bijection betwe...
prproropen 47618 The set of proper pairs an...
prproropreud 47619 There is exactly one order...
pairreueq 47620 Two equivalent representat...
paireqne 47621 Two sets are not equal iff...
prprval 47624 The set of all proper unor...
prprvalpw 47625 The set of all proper unor...
prprelb 47626 An element of the set of a...
prprelprb 47627 A set is an element of the...
prprspr2 47628 The set of all proper unor...
prprsprreu 47629 There is a unique proper u...
prprreueq 47630 There is a unique proper u...
sbcpr 47631 The proper substitution of...
reupr 47632 There is a unique unordere...
reuprpr 47633 There is a unique proper u...
poprelb 47634 Equality for unordered pai...
2exopprim 47635 The existence of an ordere...
reuopreuprim 47636 There is a unique unordere...
fmtno 47639 The ` N ` th Fermat number...
fmtnoge3 47640 Each Fermat number is grea...
fmtnonn 47641 Each Fermat number is a po...
fmtnom1nn 47642 A Fermat number minus one ...
fmtnoodd 47643 Each Fermat number is odd....
fmtnorn 47644 A Fermat number is a funct...
fmtnof1 47645 The enumeration of the Fer...
fmtnoinf 47646 The set of Fermat numbers ...
fmtnorec1 47647 The first recurrence relat...
sqrtpwpw2p 47648 The floor of the square ro...
fmtnosqrt 47649 The floor of the square ro...
fmtno0 47650 The ` 0 ` th Fermat number...
fmtno1 47651 The ` 1 ` st Fermat number...
fmtnorec2lem 47652 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 47653 The second recurrence rela...
fmtnodvds 47654 Any Fermat number divides ...
goldbachthlem1 47655 Lemma 1 for ~ goldbachth ....
goldbachthlem2 47656 Lemma 2 for ~ goldbachth ....
goldbachth 47657 Goldbach's theorem: Two d...
fmtnorec3 47658 The third recurrence relat...
fmtnorec4 47659 The fourth recurrence rela...
fmtno2 47660 The ` 2 ` nd Fermat number...
fmtno3 47661 The ` 3 ` rd Fermat number...
fmtno4 47662 The ` 4 ` th Fermat number...
fmtno5lem1 47663 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 47664 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 47665 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 47666 Lemma 4 for ~ fmtno5 . (C...
fmtno5 47667 The ` 5 ` th Fermat number...
fmtno0prm 47668 The ` 0 ` th Fermat number...
fmtno1prm 47669 The ` 1 ` st Fermat number...
fmtno2prm 47670 The ` 2 ` nd Fermat number...
257prm 47671 257 is a prime number (the...
fmtno3prm 47672 The ` 3 ` rd Fermat number...
odz2prm2pw 47673 Any power of two is coprim...
fmtnoprmfac1lem 47674 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 47675 Divisor of Fermat number (...
fmtnoprmfac2lem1 47676 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 47677 Divisor of Fermat number (...
fmtnofac2lem 47678 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 47679 Divisor of Fermat number (...
fmtnofac1 47680 Divisor of Fermat number (...
fmtno4sqrt 47681 The floor of the square ro...
fmtno4prmfac 47682 If P was a (prime) factor ...
fmtno4prmfac193 47683 If P was a (prime) factor ...
fmtno4nprmfac193 47684 193 is not a (prime) facto...
fmtno4prm 47685 The ` 4 `-th Fermat number...
65537prm 47686 65537 is a prime number (t...
fmtnofz04prm 47687 The first five Fermat numb...
fmtnole4prm 47688 The first five Fermat numb...
fmtno5faclem1 47689 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 47690 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 47691 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 47692 The factorization of the `...
fmtno5nprm 47693 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 47694 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 47695 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 47696 The mapping of a Fermat nu...
prmdvdsfmtnof1 47697 The mapping of a Fermat nu...
prminf2 47698 The set of prime numbers i...
2pwp1prm 47699 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 47700 Every prime number of the ...
m2prm 47701 The second Mersenne number...
m3prm 47702 The third Mersenne number ...
flsqrt 47703 A condition equivalent to ...
flsqrt5 47704 The floor of the square ro...
3ndvds4 47705 3 does not divide 4. (Con...
139prmALT 47706 139 is a prime number. In...
31prm 47707 31 is a prime number. In ...
m5prm 47708 The fifth Mersenne number ...
127prm 47709 127 is a prime number. (C...
m7prm 47710 The seventh Mersenne numbe...
m11nprm 47711 The eleventh Mersenne numb...
mod42tp1mod8 47712 If a number is ` 3 ` modul...
sfprmdvdsmersenne 47713 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 47714 If ` P ` is a Sophie Germa...
lighneallem1 47715 Lemma 1 for ~ lighneal . ...
lighneallem2 47716 Lemma 2 for ~ lighneal . ...
lighneallem3 47717 Lemma 3 for ~ lighneal . ...
lighneallem4a 47718 Lemma 1 for ~ lighneallem4...
lighneallem4b 47719 Lemma 2 for ~ lighneallem4...
lighneallem4 47720 Lemma 3 for ~ lighneal . ...
lighneal 47721 If a power of a prime ` P ...
modexp2m1d 47722 The square of an integer w...
proththdlem 47723 Lemma for ~ proththd . (C...
proththd 47724 Proth's theorem (1878). I...
5tcu2e40 47725 5 times the cube of 2 is 4...
3exp4mod41 47726 3 to the fourth power is -...
41prothprmlem1 47727 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 47728 Lemma 2 for ~ 41prothprm ....
41prothprm 47729 41 is a _Proth prime_. (C...
quad1 47730 A condition for a quadrati...
requad01 47731 A condition for a quadrati...
requad1 47732 A condition for a quadrati...
requad2 47733 A condition for a quadrati...
iseven 47738 The predicate "is an even ...
isodd 47739 The predicate "is an odd n...
evenz 47740 An even number is an integ...
oddz 47741 An odd number is an intege...
evendiv2z 47742 The result of dividing an ...
oddp1div2z 47743 The result of dividing an ...
oddm1div2z 47744 The result of dividing an ...
isodd2 47745 The predicate "is an odd n...
dfodd2 47746 Alternate definition for o...
dfodd6 47747 Alternate definition for o...
dfeven4 47748 Alternate definition for e...
evenm1odd 47749 The predecessor of an even...
evenp1odd 47750 The successor of an even n...
oddp1eveni 47751 The successor of an odd nu...
oddm1eveni 47752 The predecessor of an odd ...
evennodd 47753 An even number is not an o...
oddneven 47754 An odd number is not an ev...
enege 47755 The negative of an even nu...
onego 47756 The negative of an odd num...
m1expevenALTV 47757 Exponentiation of -1 by an...
m1expoddALTV 47758 Exponentiation of -1 by an...
dfeven2 47759 Alternate definition for e...
dfodd3 47760 Alternate definition for o...
iseven2 47761 The predicate "is an even ...
isodd3 47762 The predicate "is an odd n...
2dvdseven 47763 2 divides an even number. ...
m2even 47764 A multiple of 2 is an even...
2ndvdsodd 47765 2 does not divide an odd n...
2dvdsoddp1 47766 2 divides an odd number in...
2dvdsoddm1 47767 2 divides an odd number de...
dfeven3 47768 Alternate definition for e...
dfodd4 47769 Alternate definition for o...
dfodd5 47770 Alternate definition for o...
zefldiv2ALTV 47771 The floor of an even numbe...
zofldiv2ALTV 47772 The floor of an odd number...
oddflALTV 47773 Odd number representation ...
iseven5 47774 The predicate "is an even ...
isodd7 47775 The predicate "is an odd n...
dfeven5 47776 Alternate definition for e...
dfodd7 47777 Alternate definition for o...
gcd2odd1 47778 The greatest common diviso...
zneoALTV 47779 No even integer equals an ...
zeoALTV 47780 An integer is even or odd....
zeo2ALTV 47781 An integer is even or odd ...
nneoALTV 47782 A positive integer is even...
nneoiALTV 47783 A positive integer is even...
odd2np1ALTV 47784 An integer is odd iff it i...
oddm1evenALTV 47785 An integer is odd iff its ...
oddp1evenALTV 47786 An integer is odd iff its ...
oexpnegALTV 47787 The exponential of the neg...
oexpnegnz 47788 The exponential of the neg...
bits0ALTV 47789 Value of the zeroth bit. ...
bits0eALTV 47790 The zeroth bit of an even ...
bits0oALTV 47791 The zeroth bit of an odd n...
divgcdoddALTV 47792 Either ` A / ( A gcd B ) `...
opoeALTV 47793 The sum of two odds is eve...
opeoALTV 47794 The sum of an odd and an e...
omoeALTV 47795 The difference of two odds...
omeoALTV 47796 The difference of an odd a...
oddprmALTV 47797 A prime not equal to ` 2 `...
0evenALTV 47798 0 is an even number. (Con...
0noddALTV 47799 0 is not an odd number. (...
1oddALTV 47800 1 is an odd number. (Cont...
1nevenALTV 47801 1 is not an even number. ...
2evenALTV 47802 2 is an even number. (Con...
2noddALTV 47803 2 is not an odd number. (...
nn0o1gt2ALTV 47804 An odd nonnegative integer...
nnoALTV 47805 An alternate characterizat...
nn0oALTV 47806 An alternate characterizat...
nn0e 47807 An alternate characterizat...
nneven 47808 An alternate characterizat...
nn0onn0exALTV 47809 For each odd nonnegative i...
nn0enn0exALTV 47810 For each even nonnegative ...
nnennexALTV 47811 For each even positive int...
nnpw2evenALTV 47812 2 to the power of a positi...
epoo 47813 The sum of an even and an ...
emoo 47814 The difference of an even ...
epee 47815 The sum of two even number...
emee 47816 The difference of two even...
evensumeven 47817 If a summand is even, the ...
3odd 47818 3 is an odd number. (Cont...
4even 47819 4 is an even number. (Con...
5odd 47820 5 is an odd number. (Cont...
6even 47821 6 is an even number. (Con...
7odd 47822 7 is an odd number. (Cont...
8even 47823 8 is an even number. (Con...
evenprm2 47824 A prime number is even iff...
oddprmne2 47825 Every prime number not bei...
oddprmuzge3 47826 A prime number which is od...
evenltle 47827 If an even number is great...
odd2prm2 47828 If an odd number is the su...
even3prm2 47829 If an even number is the s...
mogoldbblem 47830 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 47831 Lemma for ~ perfectALTV . ...
perfectALTVlem2 47832 Lemma for ~ perfectALTV . ...
perfectALTV 47833 The Euclid-Euler theorem, ...
fppr 47836 The set of Fermat pseudopr...
fpprmod 47837 The set of Fermat pseudopr...
fpprel 47838 A Fermat pseudoprime to th...
fpprbasnn 47839 The base of a Fermat pseud...
fpprnn 47840 A Fermat pseudoprime to th...
fppr2odd 47841 A Fermat pseudoprime to th...
11t31e341 47842 341 is the product of 11 a...
2exp340mod341 47843 Eight to the eighth power ...
341fppr2 47844 341 is the (smallest) _Pou...
4fppr1 47845 4 is the (smallest) Fermat...
8exp8mod9 47846 Eight to the eighth power ...
9fppr8 47847 9 is the (smallest) Fermat...
dfwppr 47848 Alternate definition of a ...
fpprwppr 47849 A Fermat pseudoprime to th...
fpprwpprb 47850 An integer ` X ` which is ...
fpprel2 47851 An alternate definition fo...
nfermltl8rev 47852 Fermat's little theorem wi...
nfermltl2rev 47853 Fermat's little theorem wi...
nfermltlrev 47854 Fermat's little theorem re...
isgbe 47861 The predicate "is an even ...
isgbow 47862 The predicate "is a weak o...
isgbo 47863 The predicate "is an odd G...
gbeeven 47864 An even Goldbach number is...
gbowodd 47865 A weak odd Goldbach number...
gbogbow 47866 A (strong) odd Goldbach nu...
gboodd 47867 An odd Goldbach number is ...
gbepos 47868 Any even Goldbach number i...
gbowpos 47869 Any weak odd Goldbach numb...
gbopos 47870 Any odd Goldbach number is...
gbegt5 47871 Any even Goldbach number i...
gbowgt5 47872 Any weak odd Goldbach numb...
gbowge7 47873 Any weak odd Goldbach numb...
gboge9 47874 Any odd Goldbach number is...
gbege6 47875 Any even Goldbach number i...
gbpart6 47876 The Goldbach partition of ...
gbpart7 47877 The (weak) Goldbach partit...
gbpart8 47878 The Goldbach partition of ...
gbpart9 47879 The (strong) Goldbach part...
gbpart11 47880 The (strong) Goldbach part...
6gbe 47881 6 is an even Goldbach numb...
7gbow 47882 7 is a weak odd Goldbach n...
8gbe 47883 8 is an even Goldbach numb...
9gbo 47884 9 is an odd Goldbach numbe...
11gbo 47885 11 is an odd Goldbach numb...
stgoldbwt 47886 If the strong ternary Gold...
sbgoldbwt 47887 If the strong binary Goldb...
sbgoldbst 47888 If the strong binary Goldb...
sbgoldbaltlem1 47889 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 47890 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 47891 An alternate (related to t...
sbgoldbb 47892 If the strong binary Goldb...
sgoldbeven3prm 47893 If the binary Goldbach con...
sbgoldbm 47894 If the strong binary Goldb...
mogoldbb 47895 If the modern version of t...
sbgoldbmb 47896 The strong binary Goldbach...
sbgoldbo 47897 If the strong binary Goldb...
nnsum3primes4 47898 4 is the sum of at most 3 ...
nnsum4primes4 47899 4 is the sum of at most 4 ...
nnsum3primesprm 47900 Every prime is "the sum of...
nnsum4primesprm 47901 Every prime is "the sum of...
nnsum3primesgbe 47902 Any even Goldbach number i...
nnsum4primesgbe 47903 Any even Goldbach number i...
nnsum3primesle9 47904 Every integer greater than...
nnsum4primesle9 47905 Every integer greater than...
nnsum4primesodd 47906 If the (weak) ternary Gold...
nnsum4primesoddALTV 47907 If the (strong) ternary Go...
evengpop3 47908 If the (weak) ternary Gold...
evengpoap3 47909 If the (strong) ternary Go...
nnsum4primeseven 47910 If the (weak) ternary Gold...
nnsum4primesevenALTV 47911 If the (strong) ternary Go...
wtgoldbnnsum4prm 47912 If the (weak) ternary Gold...
stgoldbnnsum4prm 47913 If the (strong) ternary Go...
bgoldbnnsum3prm 47914 If the binary Goldbach con...
bgoldbtbndlem1 47915 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 47916 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 47917 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 47918 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 47919 If the binary Goldbach con...
tgoldbachgtALTV 47922 Variant of Thierry Arnoux'...
bgoldbachlt 47923 The binary Goldbach conjec...
tgblthelfgott 47925 The ternary Goldbach conje...
tgoldbachlt 47926 The ternary Goldbach conje...
tgoldbach 47927 The ternary Goldbach conje...
clnbgrprc0 47930 The closed neighborhood is...
clnbgrcl 47931 If a class ` X ` has at le...
clnbgrval 47932 The closed neighborhood of...
dfclnbgr2 47933 Alternate definition of th...
dfclnbgr4 47934 Alternate definition of th...
elclnbgrelnbgr 47935 An element of the closed n...
dfclnbgr3 47936 Alternate definition of th...
clnbgrnvtx0 47937 If a class ` X ` is not a ...
clnbgrel 47938 Characterization of a memb...
clnbgrvtxel 47939 Every vertex ` K ` is a me...
clnbgrisvtx 47940 Every member ` N ` of the ...
clnbgrssvtx 47941 The closed neighborhood of...
clnbgrn0 47942 The closed neighborhood of...
clnbupgr 47943 The closed neighborhood of...
clnbupgrel 47944 A member of the closed nei...
clnbupgreli 47945 A member of the closed nei...
clnbgr0vtx 47946 In a null graph (with no v...
clnbgr0edg 47947 In an empty graph (with no...
clnbgrsym 47948 In a graph, the closed nei...
predgclnbgrel 47949 If a (not necessarily prop...
clnbgredg 47950 A vertex connected by an e...
clnbgrssedg 47951 The vertices connected by ...
edgusgrclnbfin 47952 The size of the closed nei...
clnbusgrfi 47953 The closed neighborhood of...
clnbfiusgrfi 47954 The closed neighborhood of...
clnbgrlevtx 47955 The size of the closed nei...
dfsclnbgr2 47956 Alternate definition of th...
sclnbgrel 47957 Characterization of a memb...
sclnbgrelself 47958 A vertex ` N ` is a member...
sclnbgrisvtx 47959 Every member ` X ` of the ...
dfclnbgr5 47960 Alternate definition of th...
dfnbgr5 47961 Alternate definition of th...
dfnbgrss 47962 Subset chain for different...
dfvopnbgr2 47963 Alternate definition of th...
vopnbgrel 47964 Characterization of a memb...
vopnbgrelself 47965 A vertex ` N ` is a member...
dfclnbgr6 47966 Alternate definition of th...
dfnbgr6 47967 Alternate definition of th...
dfsclnbgr6 47968 Alternate definition of a ...
dfnbgrss2 47969 Subset chain for different...
isisubgr 47972 The subgraph induced by a ...
isubgriedg 47973 The edges of an induced su...
isubgrvtxuhgr 47974 The subgraph induced by th...
isubgredgss 47975 The edges of an induced su...
isubgredg 47976 An edge of an induced subg...
isubgrvtx 47977 The vertices of an induced...
isubgruhgr 47978 An induced subgraph of a h...
isubgrsubgr 47979 An induced subgraph of a h...
isubgrupgr 47980 An induced subgraph of a p...
isubgrumgr 47981 An induced subgraph of a m...
isubgrusgr 47982 An induced subgraph of a s...
isubgr0uhgr 47983 The subgraph induced by an...
grimfn 47989 The graph isomorphism func...
grimdmrel 47990 The domain of the graph is...
isgrim 47992 An isomorphism of graphs i...
grimprop 47993 Properties of an isomorphi...
grimf1o 47994 An isomorphism of graphs i...
grimidvtxedg 47995 The identity relation rest...
grimid 47996 The identity relation rest...
grimuhgr 47997 If there is a graph isomor...
grimcnv 47998 The converse of a graph is...
grimco 47999 The composition of graph i...
uhgrimedgi 48000 An isomorphism between gra...
uhgrimedg 48001 An isomorphism between gra...
uhgrimprop 48002 An isomorphism between hyp...
isuspgrim0lem 48003 An isomorphism of simple p...
isuspgrim0 48004 An isomorphism of simple p...
isuspgrimlem 48005 Lemma for ~ isuspgrim . (...
isuspgrim 48006 A class is an isomorphism ...
upgrimwlklem1 48007 Lemma 1 for ~ upgrimwlk an...
upgrimwlklem2 48008 Lemma 2 for ~ upgrimwlk . ...
upgrimwlklem3 48009 Lemma 3 for ~ upgrimwlk . ...
upgrimwlklem4 48010 Lemma 4 for ~ upgrimwlk . ...
upgrimwlklem5 48011 Lemma 5 for ~ upgrimwlk . ...
upgrimwlk 48012 Graph isomorphisms between...
upgrimwlklen 48013 Graph isomorphisms between...
upgrimtrlslem1 48014 Lemma 1 for ~ upgrimtrls ....
upgrimtrlslem2 48015 Lemma 2 for ~ upgrimtrls ....
upgrimtrls 48016 Graph isomorphisms between...
upgrimpthslem1 48017 Lemma 1 for ~ upgrimpths ....
upgrimpthslem2 48018 Lemma 2 for ~ upgrimpths ....
upgrimpths 48019 Graph isomorphisms between...
upgrimspths 48020 Graph isomorphisms between...
upgrimcycls 48021 Graph isomorphisms between...
brgric 48022 The relation "is isomorphi...
brgrici 48023 Prove that two graphs are ...
gricrcl 48024 Reverse closure of the "is...
dfgric2 48025 Alternate, explicit defini...
gricbri 48026 Implications of two graphs...
gricushgr 48027 The "is isomorphic to" rel...
gricuspgr 48028 The "is isomorphic to" rel...
gricrel 48029 The "is isomorphic to" rel...
gricref 48030 Graph isomorphism is refle...
gricsym 48031 Graph isomorphism is symme...
gricsymb 48032 Graph isomorphism is symme...
grictr 48033 Graph isomorphism is trans...
gricer 48034 Isomorphism is an equivale...
gricen 48035 Isomorphic graphs have equ...
opstrgric 48036 A graph represented as an ...
ushggricedg 48037 A simple hypergraph (with ...
cycldlenngric 48038 Two simple pseudographs ar...
isubgrgrim 48039 Isomorphic subgraphs induc...
uhgrimisgrgriclem 48040 Lemma for ~ uhgrimisgrgric...
uhgrimisgrgric 48041 For isomorphic hypergraphs...
clnbgrisubgrgrim 48042 Isomorphic subgraphs induc...
clnbgrgrimlem 48043 Lemma for ~ clnbgrgrim : ...
clnbgrgrim 48044 Graph isomorphisms between...
grimedg 48045 For two isomorphic graphs,...
grimedgi 48046 Graph isomorphisms map edg...
grtriproplem 48049 Lemma for ~ grtriprop . (...
grtri 48050 The triangles in a graph. ...
grtriprop 48051 The properties of a triang...
grtrif1o 48052 Any bijection onto a trian...
isgrtri 48053 A triangle in a graph. (C...
grtrissvtx 48054 A triangle is a subset of ...
grtriclwlk3 48055 A triangle induces a close...
cycl3grtrilem 48056 Lemma for ~ cycl3grtri . ...
cycl3grtri 48057 The vertices of a cycle of...
grtrimap 48058 Conditions for mapping tri...
grimgrtri 48059 Graph isomorphisms map tri...
usgrgrtrirex 48060 Conditions for a simple gr...
stgrfv 48063 The star graph S_N. (Contr...
stgrvtx 48064 The vertices of the star g...
stgriedg 48065 The indexed edges of the s...
stgredg 48066 The edges of the star grap...
stgredgel 48067 An edge of the star graph ...
stgredgiun 48068 The edges of the star grap...
stgrusgra 48069 The star graph S_N is a si...
stgr0 48070 The star graph S_0 consist...
stgr1 48071 The star graph S_1 consist...
stgrvtx0 48072 The center ("internal node...
stgrorder 48073 The order of a star graph ...
stgrnbgr0 48074 All vertices of a star gra...
stgrclnbgr0 48075 All vertices of a star gra...
isubgr3stgrlem1 48076 Lemma 1 for ~ isubgr3stgr ...
isubgr3stgrlem2 48077 Lemma 2 for ~ isubgr3stgr ...
isubgr3stgrlem3 48078 Lemma 3 for ~ isubgr3stgr ...
isubgr3stgrlem4 48079 Lemma 4 for ~ isubgr3stgr ...
isubgr3stgrlem5 48080 Lemma 5 for ~ isubgr3stgr ...
isubgr3stgrlem6 48081 Lemma 6 for ~ isubgr3stgr ...
isubgr3stgrlem7 48082 Lemma 7 for ~ isubgr3stgr ...
isubgr3stgrlem8 48083 Lemma 8 for ~ isubgr3stgr ...
isubgr3stgrlem9 48084 Lemma 9 for ~ isubgr3stgr ...
isubgr3stgr 48085 If a vertex of a simple gr...
grlimfn 48089 The graph local isomorphis...
grlimdmrel 48090 The domain of the graph lo...
isgrlim 48092 A local isomorphism of gra...
isgrlim2 48093 A local isomorphism of gra...
grlimprop 48094 Properties of a local isom...
grlimf1o 48095 A local isomorphism of gra...
grlimprop2 48096 Properties of a local isom...
uhgrimgrlim 48097 An isomorphism of hypergra...
uspgrlimlem1 48098 Lemma 1 for ~ uspgrlim . ...
uspgrlimlem2 48099 Lemma 2 for ~ uspgrlim . ...
uspgrlimlem3 48100 Lemma 3 for ~ uspgrlim . ...
uspgrlimlem4 48101 Lemma 4 for ~ uspgrlim . ...
uspgrlim 48102 A local isomorphism of sim...
usgrlimprop 48103 Properties of a local isom...
clnbgrvtxedg 48104 An edge ` E ` containing a...
grlimedgclnbgr 48105 For two locally isomorphic...
grlimprclnbgr 48106 For two locally isomorphic...
grlimprclnbgredg 48107 For two locally isomorphic...
grlimpredg 48108 For two locally isomorphic...
grlimprclnbgrvtx 48109 For two locally isomorphic...
grlimgredgex 48110 Local isomorphisms between...
grlimgrtrilem1 48111 Lemma 3 for ~ grlimgrtri ....
grlimgrtrilem2 48112 Lemma 3 for ~ grlimgrtri ....
grlimgrtri 48113 If one of two locally isom...
brgrlic 48114 The relation "is locally i...
brgrilci 48115 Prove that two graphs are ...
grlicrel 48116 The "is locally isomorphic...
grlicrcl 48117 Reverse closure of the "is...
dfgrlic2 48118 Alternate, explicit defini...
grilcbri 48119 Implications of two graphs...
dfgrlic3 48120 Alternate, explicit defini...
grilcbri2 48121 Implications of two graphs...
grlicref 48122 Graph local isomorphism is...
grlicsym 48123 Graph local isomorphism is...
grlicsymb 48124 Graph local isomorphism is...
grlictr 48125 Graph local isomorphism is...
grlicer 48126 Local isomorphism is an eq...
grlicen 48127 Locally isomorphic graphs ...
gricgrlic 48128 Isomorphic hypergraphs are...
clnbgr3stgrgrlim 48129 If all (closed) neighborho...
clnbgr3stgrgrlic 48130 If all (closed) neighborho...
usgrexmpl1lem 48131 Lemma for ~ usgrexmpl1 . ...
usgrexmpl1 48132 ` G ` is a simple graph of...
usgrexmpl1vtx 48133 The vertices ` 0 , 1 , 2 ,...
usgrexmpl1edg 48134 The edges ` { 0 , 1 } , { ...
usgrexmpl1tri 48135 ` G ` contains a triangle ...
usgrexmpl2lem 48136 Lemma for ~ usgrexmpl2 . ...
usgrexmpl2 48137 ` G ` is a simple graph of...
usgrexmpl2vtx 48138 The vertices ` 0 , 1 , 2 ,...
usgrexmpl2edg 48139 The edges ` { 0 , 1 } , { ...
usgrexmpl2nblem 48140 Lemma for ~ usgrexmpl2nb0 ...
usgrexmpl2nb0 48141 The neighborhood of the fi...
usgrexmpl2nb1 48142 The neighborhood of the se...
usgrexmpl2nb2 48143 The neighborhood of the th...
usgrexmpl2nb3 48144 The neighborhood of the fo...
usgrexmpl2nb4 48145 The neighborhood of the fi...
usgrexmpl2nb5 48146 The neighborhood of the si...
usgrexmpl2trifr 48147 ` G ` is triangle-free. (...
usgrexmpl12ngric 48148 The graphs ` H ` and ` G `...
usgrexmpl12ngrlic 48149 The graphs ` H ` and ` G `...
gpgov 48152 The generalized Petersen g...
gpgvtx 48153 The vertices of the genera...
gpgiedg 48154 The indexed edges of the g...
gpgedg 48155 The edges of the generaliz...
gpgiedgdmellem 48156 Lemma for ~ gpgiedgdmel an...
gpgvtxel 48157 A vertex in a generalized ...
gpgvtxel2 48158 The second component of a ...
gpgiedgdmel 48159 An index of edges of the g...
gpgedgel 48160 An edge in a generalized P...
gpgprismgriedgdmel 48161 An index of edges of the g...
gpgprismgriedgdmss 48162 A subset of the index of e...
gpgvtx0 48163 The outside vertices in a ...
gpgvtx1 48164 The inside vertices in a g...
opgpgvtx 48165 A vertex in a generalized ...
gpgusgralem 48166 Lemma for ~ gpgusgra . (C...
gpgusgra 48167 The generalized Petersen g...
gpgprismgrusgra 48168 The generalized Petersen g...
gpgorder 48169 The order of the generaliz...
gpg5order 48170 The order of a generalized...
gpgedgvtx0 48171 The edges starting at an o...
gpgedgvtx1 48172 The edges starting at an i...
gpgvtxedg0 48173 The edges starting at an o...
gpgvtxedg1 48174 The edges starting at an i...
gpgedgiov 48175 The edges of the generaliz...
gpgedg2ov 48176 The edges of the generaliz...
gpgedg2iv 48177 The edges of the generaliz...
gpg5nbgrvtx03starlem1 48178 Lemma 1 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx03starlem2 48179 Lemma 2 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx03starlem3 48180 Lemma 3 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx13starlem1 48181 Lemma 1 for ~ gpg5nbgr3sta...
gpg5nbgrvtx13starlem2 48182 Lemma 2 for ~ gpg5nbgr3sta...
gpg5nbgrvtx13starlem3 48183 Lemma 3 for ~ gpg5nbgr3sta...
gpgnbgrvtx0 48184 The (open) neighborhood of...
gpgnbgrvtx1 48185 The (open) neighborhood of...
gpg3nbgrvtx0 48186 In a generalized Petersen ...
gpg3nbgrvtx0ALT 48187 In a generalized Petersen ...
gpg3nbgrvtx1 48188 In a generalized Petersen ...
gpgcubic 48189 Every generalized Petersen...
gpg5nbgrvtx03star 48190 In a generalized Petersen ...
gpg5nbgr3star 48191 In a generalized Petersen ...
gpgvtxdg3 48192 Every vertex in a generali...
gpg3kgrtriexlem1 48193 Lemma 1 for ~ gpg3kgrtriex...
gpg3kgrtriexlem2 48194 Lemma 2 for ~ gpg3kgrtriex...
gpg3kgrtriexlem3 48195 Lemma 3 for ~ gpg3kgrtriex...
gpg3kgrtriexlem4 48196 Lemma 4 for ~ gpg3kgrtriex...
gpg3kgrtriexlem5 48197 Lemma 5 for ~ gpg3kgrtriex...
gpg3kgrtriexlem6 48198 Lemma 6 for ~ gpg3kgrtriex...
gpg3kgrtriex 48199 All generalized Petersen g...
gpg5gricstgr3 48200 Each closed neighborhood i...
pglem 48201 Lemma for theorems about P...
pgjsgr 48202 A Petersen graph is a simp...
gpg5grlim 48203 A local isomorphism betwee...
gpg5grlic 48204 The two generalized Peters...
gpgprismgr4cycllem1 48205 Lemma 1 for ~ gpgprismgr4c...
gpgprismgr4cycllem2 48206 Lemma 2 for ~ gpgprismgr4c...
gpgprismgr4cycllem3 48207 Lemma 3 for ~ gpgprismgr4c...
gpgprismgr4cycllem4 48208 Lemma 4 for ~ gpgprismgr4c...
gpgprismgr4cycllem5 48209 Lemma 5 for ~ gpgprismgr4c...
gpgprismgr4cycllem6 48210 Lemma 6 for ~ gpgprismgr4c...
gpgprismgr4cycllem7 48211 Lemma 7 for ~ gpgprismgr4c...
gpgprismgr4cycllem8 48212 Lemma 8 for ~ gpgprismgr4c...
gpgprismgr4cycllem9 48213 Lemma 9 for ~ gpgprismgr4c...
gpgprismgr4cycllem10 48214 Lemma 10 for ~ gpgprismgr4...
gpgprismgr4cycllem11 48215 Lemma 11 for ~ gpgprismgr4...
gpgprismgr4cycl0 48216 The generalized Petersen g...
gpgprismgr4cyclex 48217 The generalized Petersen g...
pgnioedg1 48218 An inside and an outside v...
pgnioedg2 48219 An inside and an outside v...
pgnioedg3 48220 An inside and an outside v...
pgnioedg4 48221 An inside and an outside v...
pgnioedg5 48222 An inside and an outside v...
pgnbgreunbgrlem1 48223 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem1 48224 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem2 48225 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem3 48226 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2 48227 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem3 48228 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem4 48229 Lemma 4 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem1 48230 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem2 48231 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem3 48232 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5 48233 Lemma 5 for ~ pgnbgreunbgr...
pgnbgreunbgrlem6 48234 Lemma 6 for ~ pgnbgreunbgr...
pgnbgreunbgr 48235 In a Petersen graph, two d...
pgn4cyclex 48236 A cycle in a Petersen grap...
pg4cyclnex 48237 In the Petersen graph G(5,...
gpg5ngric 48238 The two generalized Peters...
lgricngricex 48239 There are two different lo...
gpg5edgnedg 48240 Two consecutive (according...
grlimedgnedg 48241 In general, the image of a...
1hegrlfgr 48242 A graph ` G ` with one hyp...
upwlksfval 48245 The set of simple walks (i...
isupwlk 48246 Properties of a pair of fu...
isupwlkg 48247 Generalization of ~ isupwl...
upwlkbprop 48248 Basic properties of a simp...
upwlkwlk 48249 A simple walk is a walk. ...
upgrwlkupwlk 48250 In a pseudograph, a walk i...
upgrwlkupwlkb 48251 In a pseudograph, the defi...
upgrisupwlkALT 48252 Alternate proof of ~ upgri...
upgredgssspr 48253 The set of edges of a pseu...
uspgropssxp 48254 The set ` G ` of "simple p...
uspgrsprfv 48255 The value of the function ...
uspgrsprf 48256 The mapping ` F ` is a fun...
uspgrsprf1 48257 The mapping ` F ` is a one...
uspgrsprfo 48258 The mapping ` F ` is a fun...
uspgrsprf1o 48259 The mapping ` F ` is a bij...
uspgrex 48260 The class ` G ` of all "si...
uspgrbispr 48261 There is a bijection betwe...
uspgrspren 48262 The set ` G ` of the "simp...
uspgrymrelen 48263 The set ` G ` of the "simp...
uspgrbisymrel 48264 There is a bijection betwe...
uspgrbisymrelALT 48265 Alternate proof of ~ uspgr...
ovn0dmfun 48266 If a class operation value...
xpsnopab 48267 A Cartesian product with a...
xpiun 48268 A Cartesian product expres...
ovn0ssdmfun 48269 If a class' operation valu...
fnxpdmdm 48270 The domain of the domain o...
cnfldsrngbas 48271 The base set of a subring ...
cnfldsrngadd 48272 The group addition operati...
cnfldsrngmul 48273 The ring multiplication op...
plusfreseq 48274 If the empty set is not co...
mgmplusfreseq 48275 If the empty set is not co...
0mgm 48276 A set with an empty base s...
opmpoismgm 48277 A structure with a group a...
copissgrp 48278 A structure with a constan...
copisnmnd 48279 A structure with a constan...
0nodd 48280 0 is not an odd integer. ...
1odd 48281 1 is an odd integer. (Con...
2nodd 48282 2 is not an odd integer. ...
oddibas 48283 Lemma 1 for ~ oddinmgm : ...
oddiadd 48284 Lemma 2 for ~ oddinmgm : ...
oddinmgm 48285 The structure of all odd i...
nnsgrpmgm 48286 The structure of positive ...
nnsgrp 48287 The structure of positive ...
nnsgrpnmnd 48288 The structure of positive ...
nn0mnd 48289 The set of nonnegative int...
gsumsplit2f 48290 Split a group sum into two...
gsumdifsndf 48291 Extract a summand from a f...
gsumfsupp 48292 A group sum of a family ca...
iscllaw 48299 The predicate "is a closed...
iscomlaw 48300 The predicate "is a commut...
clcllaw 48301 Closure of a closed operat...
isasslaw 48302 The predicate "is an assoc...
asslawass 48303 Associativity of an associ...
mgmplusgiopALT 48304 Slot 2 (group operation) o...
sgrpplusgaopALT 48305 Slot 2 (group operation) o...
intopval 48312 The internal (binary) oper...
intop 48313 An internal (binary) opera...
clintopval 48314 The closed (internal binar...
assintopval 48315 The associative (closed in...
assintopmap 48316 The associative (closed in...
isclintop 48317 The predicate "is a closed...
clintop 48318 A closed (internal binary)...
assintop 48319 An associative (closed int...
isassintop 48320 The predicate "is an assoc...
clintopcllaw 48321 The closure law holds for ...
assintopcllaw 48322 The closure low holds for ...
assintopasslaw 48323 The associative low holds ...
assintopass 48324 An associative (closed int...
ismgmALT 48333 The predicate "is a magma"...
iscmgmALT 48334 The predicate "is a commut...
issgrpALT 48335 The predicate "is a semigr...
iscsgrpALT 48336 The predicate "is a commut...
mgm2mgm 48337 Equivalence of the two def...
sgrp2sgrp 48338 Equivalence of the two def...
lmod0rng 48339 If the scalar ring of a mo...
nzrneg1ne0 48340 The additive inverse of th...
lidldomn1 48341 If a (left) ideal (which i...
lidlabl 48342 A (left) ideal of a ring i...
lidlrng 48343 A (left) ideal of a ring i...
zlidlring 48344 The zero (left) ideal of a...
uzlidlring 48345 Only the zero (left) ideal...
lidldomnnring 48346 A (left) ideal of a domain...
0even 48347 0 is an even integer. (Co...
1neven 48348 1 is not an even integer. ...
2even 48349 2 is an even integer. (Co...
2zlidl 48350 The even integers are a (l...
2zrng 48351 The ring of integers restr...
2zrngbas 48352 The base set of R is the s...
2zrngadd 48353 The group addition operati...
2zrng0 48354 The additive identity of R...
2zrngamgm 48355 R is an (additive) magma. ...
2zrngasgrp 48356 R is an (additive) semigro...
2zrngamnd 48357 R is an (additive) monoid....
2zrngacmnd 48358 R is a commutative (additi...
2zrngagrp 48359 R is an (additive) group. ...
2zrngaabl 48360 R is an (additive) abelian...
2zrngmul 48361 The ring multiplication op...
2zrngmmgm 48362 R is a (multiplicative) ma...
2zrngmsgrp 48363 R is a (multiplicative) se...
2zrngALT 48364 The ring of integers restr...
2zrngnmlid 48365 R has no multiplicative (l...
2zrngnmrid 48366 R has no multiplicative (r...
2zrngnmlid2 48367 R has no multiplicative (l...
2zrngnring 48368 R is not a unital ring. (...
cznrnglem 48369 Lemma for ~ cznrng : The ...
cznabel 48370 The ring constructed from ...
cznrng 48371 The ring constructed from ...
cznnring 48372 The ring constructed from ...
rngcvalALTV 48375 Value of the category of n...
rngcbasALTV 48376 Set of objects of the cate...
rngchomfvalALTV 48377 Set of arrows of the categ...
rngchomALTV 48378 Set of arrows of the categ...
elrngchomALTV 48379 A morphism of non-unital r...
rngccofvalALTV 48380 Composition in the categor...
rngccoALTV 48381 Composition in the categor...
rngccatidALTV 48382 Lemma for ~ rngccatALTV . ...
rngccatALTV 48383 The category of non-unital...
rngcidALTV 48384 The identity arrow in the ...
rngcsectALTV 48385 A section in the category ...
rngcinvALTV 48386 An inverse in the category...
rngcisoALTV 48387 An isomorphism in the cate...
rngchomffvalALTV 48388 The value of the functiona...
rngchomrnghmresALTV 48389 The value of the functiona...
rngcrescrhmALTV 48390 The category of non-unital...
rhmsubcALTVlem1 48391 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 48392 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 48393 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 48394 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 48395 According to ~ df-subc , t...
rhmsubcALTVcat 48396 The restriction of the cat...
ringcvalALTV 48399 Value of the category of r...
funcringcsetcALTV2lem1 48400 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 48401 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 48402 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 48403 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 48404 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 48405 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 48406 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 48407 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 48408 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 48409 The "natural forgetful fun...
ringcbasALTV 48410 Set of objects of the cate...
ringchomfvalALTV 48411 Set of arrows of the categ...
ringchomALTV 48412 Set of arrows of the categ...
elringchomALTV 48413 A morphism of rings is a f...
ringccofvalALTV 48414 Composition in the categor...
ringccoALTV 48415 Composition in the categor...
ringccatidALTV 48416 Lemma for ~ ringccatALTV ....
ringccatALTV 48417 The category of rings is a...
ringcidALTV 48418 The identity arrow in the ...
ringcsectALTV 48419 A section in the category ...
ringcinvALTV 48420 An inverse in the category...
ringcisoALTV 48421 An isomorphism in the cate...
ringcbasbasALTV 48422 An element of the base set...
funcringcsetclem1ALTV 48423 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 48424 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 48425 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 48426 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 48427 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 48428 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 48429 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 48430 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 48431 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 48432 The "natural forgetful fun...
srhmsubcALTVlem1 48433 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 48434 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 48435 According to ~ df-subc , t...
sringcatALTV 48436 The restriction of the cat...
crhmsubcALTV 48437 According to ~ df-subc , t...
cringcatALTV 48438 The restriction of the cat...
drhmsubcALTV 48439 According to ~ df-subc , t...
drngcatALTV 48440 The restriction of the cat...
fldcatALTV 48441 The restriction of the cat...
fldcALTV 48442 The restriction of the cat...
fldhmsubcALTV 48443 According to ~ df-subc , t...
eliunxp2 48444 Membership in a union of C...
mpomptx2 48445 Express a two-argument fun...
cbvmpox2 48446 Rule to change the bound v...
dmmpossx2 48447 The domain of a mapping is...
mpoexxg2 48448 Existence of an operation ...
ovmpordxf 48449 Value of an operation give...
ovmpordx 48450 Value of an operation give...
ovmpox2 48451 The value of an operation ...
fdmdifeqresdif 48452 The restriction of a condi...
ofaddmndmap 48453 The function operation app...
mapsnop 48454 A singleton of an ordered ...
fprmappr 48455 A function with a domain o...
mapprop 48456 An unordered pair containi...
ztprmneprm 48457 A prime is not an integer ...
2t6m3t4e0 48458 2 times 6 minus 3 times 4 ...
ssnn0ssfz 48459 For any finite subset of `...
nn0sumltlt 48460 If the sum of two nonnegat...
bcpascm1 48461 Pascal's rule for the bino...
altgsumbc 48462 The sum of binomial coeffi...
altgsumbcALT 48463 Alternate proof of ~ altgs...
zlmodzxzlmod 48464 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 48465 An element of the (base se...
zlmodzxz0 48466 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 48467 The scalar multiplication ...
zlmodzxzadd 48468 The addition of the ` ZZ `...
zlmodzxzsubm 48469 The subtraction of the ` Z...
zlmodzxzsub 48470 The subtraction of the ` Z...
mgpsumunsn 48471 Extract a summand/factor f...
mgpsumz 48472 If the group sum for the m...
mgpsumn 48473 If the group sum for the m...
exple2lt6 48474 A nonnegative integer to t...
pgrple2abl 48475 Every symmetric group on a...
pgrpgt2nabl 48476 Every symmetric group on a...
invginvrid 48477 Identity for a multiplicat...
rmsupp0 48478 The support of a mapping o...
domnmsuppn0 48479 The support of a mapping o...
rmsuppss 48480 The support of a mapping o...
scmsuppss 48481 The support of a mapping o...
rmsuppfi 48482 The support of a mapping o...
rmfsupp 48483 A mapping of a multiplicat...
scmsuppfi 48484 The support of a mapping o...
scmfsupp 48485 A mapping of a scalar mult...
suppmptcfin 48486 The support of a mapping w...
mptcfsupp 48487 A mapping with value 0 exc...
fsuppmptdmf 48488 A mapping with a finite do...
lmodvsmdi 48489 Multiple distributive law ...
gsumlsscl 48490 Closure of a group sum in ...
assaascl0 48491 The scalar 0 embedded into...
assaascl1 48492 The scalar 1 embedded into...
ply1vr1smo 48493 The variable in a polynomi...
ply1sclrmsm 48494 The ring multiplication of...
coe1id 48495 Coefficient vector of the ...
coe1sclmulval 48496 The value of the coefficie...
ply1mulgsumlem1 48497 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 48498 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 48499 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 48500 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 48501 The product of two polynom...
evl1at0 48502 Polynomial evaluation for ...
evl1at1 48503 Polynomial evaluation for ...
linply1 48504 A term of the form ` x - C...
lineval 48505 A term of the form ` x - C...
linevalexample 48506 The polynomial ` x - 3 ` o...
dmatALTval 48511 The algebra of ` N ` x ` N...
dmatALTbas 48512 The base set of the algebr...
dmatALTbasel 48513 An element of the base set...
dmatbas 48514 The set of all ` N ` x ` N...
lincop 48519 A linear combination as op...
lincval 48520 The value of a linear comb...
dflinc2 48521 Alternative definition of ...
lcoop 48522 A linear combination as op...
lcoval 48523 The value of a linear comb...
lincfsuppcl 48524 A linear combination of ve...
linccl 48525 A linear combination of ve...
lincval0 48526 The value of an empty line...
lincvalsng 48527 The linear combination ove...
lincvalsn 48528 The linear combination ove...
lincvalpr 48529 The linear combination ove...
lincval1 48530 The linear combination ove...
lcosn0 48531 Properties of a linear com...
lincvalsc0 48532 The linear combination whe...
lcoc0 48533 Properties of a linear com...
linc0scn0 48534 If a set contains the zero...
lincdifsn 48535 A vector is a linear combi...
linc1 48536 A vector is a linear combi...
lincellss 48537 A linear combination of a ...
lco0 48538 The set of empty linear co...
lcoel0 48539 The zero vector is always ...
lincsum 48540 The sum of two linear comb...
lincscm 48541 A linear combinations mult...
lincsumcl 48542 The sum of two linear comb...
lincscmcl 48543 The multiplication of a li...
lincsumscmcl 48544 The sum of a linear combin...
lincolss 48545 According to the statement...
ellcoellss 48546 Every linear combination o...
lcoss 48547 A set of vectors of a modu...
lspsslco 48548 Lemma for ~ lspeqlco . (C...
lcosslsp 48549 Lemma for ~ lspeqlco . (C...
lspeqlco 48550 Equivalence of a _span_ of...
rellininds 48554 The class defining the rel...
linindsv 48556 The classes of the module ...
islininds 48557 The property of being a li...
linindsi 48558 The implications of being ...
linindslinci 48559 The implications of being ...
islinindfis 48560 The property of being a li...
islinindfiss 48561 The property of being a li...
linindscl 48562 A linearly independent set...
lindepsnlininds 48563 A linearly dependent subse...
islindeps 48564 The property of being a li...
lincext1 48565 Property 1 of an extension...
lincext2 48566 Property 2 of an extension...
lincext3 48567 Property 3 of an extension...
lindslinindsimp1 48568 Implication 1 for ~ lindsl...
lindslinindimp2lem1 48569 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 48570 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 48571 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 48572 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 48573 Lemma 5 for ~ lindslininds...
lindslinindsimp2 48574 Implication 2 for ~ lindsl...
lindslininds 48575 Equivalence of definitions...
linds0 48576 The empty set is always a ...
el0ldep 48577 A set containing the zero ...
el0ldepsnzr 48578 A set containing the zero ...
lindsrng01 48579 Any subset of a module is ...
lindszr 48580 Any subset of a module ove...
snlindsntorlem 48581 Lemma for ~ snlindsntor . ...
snlindsntor 48582 A singleton is linearly in...
ldepsprlem 48583 Lemma for ~ ldepspr . (Co...
ldepspr 48584 If a vector is a scalar mu...
lincresunit3lem3 48585 Lemma 3 for ~ lincresunit3...
lincresunitlem1 48586 Lemma 1 for properties of ...
lincresunitlem2 48587 Lemma for properties of a ...
lincresunit1 48588 Property 1 of a specially ...
lincresunit2 48589 Property 2 of a specially ...
lincresunit3lem1 48590 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 48591 Lemma 2 for ~ lincresunit3...
lincresunit3 48592 Property 3 of a specially ...
lincreslvec3 48593 Property 3 of a specially ...
islindeps2 48594 Conditions for being a lin...
islininds2 48595 Implication of being a lin...
isldepslvec2 48596 Alternative definition of ...
lindssnlvec 48597 A singleton not containing...
lmod1lem1 48598 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 48599 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 48600 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 48601 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 48602 Lemma 5 for ~ lmod1 . (Co...
lmod1 48603 The (smallest) structure r...
lmod1zr 48604 The (smallest) structure r...
lmod1zrnlvec 48605 There is a (left) module (...
lmodn0 48606 Left modules exist. (Cont...
zlmodzxzequa 48607 Example of an equation wit...
zlmodzxznm 48608 Example of a linearly depe...
zlmodzxzldeplem 48609 A and B are not equal. (C...
zlmodzxzequap 48610 Example of an equation wit...
zlmodzxzldeplem1 48611 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 48612 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 48613 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 48614 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 48615 { A , B } is a linearly de...
ldepsnlinclem1 48616 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 48617 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 48618 The class of all (left) ve...
ldepsnlinc 48619 The reverse implication of...
ldepslinc 48620 For (left) vector spaces, ...
suppdm 48621 If the range of a function...
eluz2cnn0n1 48622 An integer greater than 1 ...
divge1b 48623 The ratio of a real number...
divgt1b 48624 The ratio of a real number...
ltsubaddb 48625 Equivalence for the "less ...
ltsubsubb 48626 Equivalence for the "less ...
ltsubadd2b 48627 Equivalence for the "less ...
divsub1dir 48628 Distribution of division o...
expnegico01 48629 An integer greater than 1 ...
elfzolborelfzop1 48630 An element of a half-open ...
pw2m1lepw2m1 48631 2 to the power of a positi...
zgtp1leeq 48632 If an integer is between a...
flsubz 48633 An integer can be moved in...
nn0onn0ex 48634 For each odd nonnegative i...
nn0enn0ex 48635 For each even nonnegative ...
nnennex 48636 For each even positive int...
nneop 48637 A positive integer is even...
nneom 48638 A positive integer is even...
nn0eo 48639 A nonnegative integer is e...
nnpw2even 48640 2 to the power of a positi...
zefldiv2 48641 The floor of an even integ...
zofldiv2 48642 The floor of an odd intege...
nn0ofldiv2 48643 The floor of an odd nonneg...
flnn0div2ge 48644 The floor of a positive in...
flnn0ohalf 48645 The floor of the half of a...
logcxp0 48646 Logarithm of a complex pow...
regt1loggt0 48647 The natural logarithm for ...
fdivval 48650 The quotient of two functi...
fdivmpt 48651 The quotient of two functi...
fdivmptf 48652 The quotient of two functi...
refdivmptf 48653 The quotient of two functi...
fdivpm 48654 The quotient of two functi...
refdivpm 48655 The quotient of two functi...
fdivmptfv 48656 The function value of a qu...
refdivmptfv 48657 The function value of a qu...
bigoval 48660 Set of functions of order ...
elbigofrcl 48661 Reverse closure of the "bi...
elbigo 48662 Properties of a function o...
elbigo2 48663 Properties of a function o...
elbigo2r 48664 Sufficient condition for a...
elbigof 48665 A function of order G(x) i...
elbigodm 48666 The domain of a function o...
elbigoimp 48667 The defining property of a...
elbigolo1 48668 A function (into the posit...
rege1logbrege0 48669 The general logarithm, wit...
rege1logbzge0 48670 The general logarithm, wit...
fllogbd 48671 A real number is between t...
relogbmulbexp 48672 The logarithm of the produ...
relogbdivb 48673 The logarithm of the quoti...
logbge0b 48674 The logarithm of a number ...
logblt1b 48675 The logarithm of a number ...
fldivexpfllog2 48676 The floor of a positive re...
nnlog2ge0lt1 48677 A positive integer is 1 if...
logbpw2m1 48678 The floor of the binary lo...
fllog2 48679 The floor of the binary lo...
blenval 48682 The binary length of an in...
blen0 48683 The binary length of 0. (...
blenn0 48684 The binary length of a "nu...
blenre 48685 The binary length of a pos...
blennn 48686 The binary length of a pos...
blennnelnn 48687 The binary length of a pos...
blennn0elnn 48688 The binary length of a non...
blenpw2 48689 The binary length of a pow...
blenpw2m1 48690 The binary length of a pow...
nnpw2blen 48691 A positive integer is betw...
nnpw2blenfzo 48692 A positive integer is betw...
nnpw2blenfzo2 48693 A positive integer is eith...
nnpw2pmod 48694 Every positive integer can...
blen1 48695 The binary length of 1. (...
blen2 48696 The binary length of 2. (...
nnpw2p 48697 Every positive integer can...
nnpw2pb 48698 A number is a positive int...
blen1b 48699 The binary length of a non...
blennnt2 48700 The binary length of a pos...
nnolog2flm1 48701 The floor of the binary lo...
blennn0em1 48702 The binary length of the h...
blennngt2o2 48703 The binary length of an od...
blengt1fldiv2p1 48704 The binary length of an in...
blennn0e2 48705 The binary length of an ev...
digfval 48708 Operation to obtain the ` ...
digval 48709 The ` K ` th digit of a no...
digvalnn0 48710 The ` K ` th digit of a no...
nn0digval 48711 The ` K ` th digit of a no...
dignn0fr 48712 The digits of the fraction...
dignn0ldlem 48713 Lemma for ~ dignnld . (Co...
dignnld 48714 The leading digits of a po...
dig2nn0ld 48715 The leading digits of a po...
dig2nn1st 48716 The first (relevant) digit...
dig0 48717 All digits of 0 are 0. (C...
digexp 48718 The ` K ` th digit of a po...
dig1 48719 All but one digits of 1 ar...
0dig1 48720 The ` 0 ` th digit of 1 is...
0dig2pr01 48721 The integers 0 and 1 corre...
dig2nn0 48722 A digit of a nonnegative i...
0dig2nn0e 48723 The last bit of an even in...
0dig2nn0o 48724 The last bit of an odd int...
dig2bits 48725 The ` K ` th digit of a no...
dignn0flhalflem1 48726 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 48727 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 48728 The digits of the half of ...
dignn0flhalf 48729 The digits of the rounded ...
nn0sumshdiglemA 48730 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 48731 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 48732 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 48733 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 48734 A nonnegative integer can ...
nn0mulfsum 48735 Trivial algorithm to calcu...
nn0mullong 48736 Standard algorithm (also k...
naryfval 48739 The set of the n-ary (endo...
naryfvalixp 48740 The set of the n-ary (endo...
naryfvalel 48741 An n-ary (endo)function on...
naryrcl 48742 Reverse closure for n-ary ...
naryfvalelfv 48743 The value of an n-ary (end...
naryfvalelwrdf 48744 An n-ary (endo)function on...
0aryfvalel 48745 A nullary (endo)function o...
0aryfvalelfv 48746 The value of a nullary (en...
1aryfvalel 48747 A unary (endo)function on ...
fv1arycl 48748 Closure of a unary (endo)f...
1arympt1 48749 A unary (endo)function in ...
1arympt1fv 48750 The value of a unary (endo...
1arymaptfv 48751 The value of the mapping o...
1arymaptf 48752 The mapping of unary (endo...
1arymaptf1 48753 The mapping of unary (endo...
1arymaptfo 48754 The mapping of unary (endo...
1arymaptf1o 48755 The mapping of unary (endo...
1aryenef 48756 The set of unary (endo)fun...
1aryenefmnd 48757 The set of unary (endo)fun...
2aryfvalel 48758 A binary (endo)function on...
fv2arycl 48759 Closure of a binary (endo)...
2arympt 48760 A binary (endo)function in...
2arymptfv 48761 The value of a binary (end...
2arymaptfv 48762 The value of the mapping o...
2arymaptf 48763 The mapping of binary (end...
2arymaptf1 48764 The mapping of binary (end...
2arymaptfo 48765 The mapping of binary (end...
2arymaptf1o 48766 The mapping of binary (end...
2aryenef 48767 The set of binary (endo)fu...
itcoval 48772 The value of the function ...
itcoval0 48773 A function iterated zero t...
itcoval1 48774 A function iterated once. ...
itcoval2 48775 A function iterated twice....
itcoval3 48776 A function iterated three ...
itcoval0mpt 48777 A mapping iterated zero ti...
itcovalsuc 48778 The value of the function ...
itcovalsucov 48779 The value of the function ...
itcovalendof 48780 The n-th iterate of an end...
itcovalpclem1 48781 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 48782 Lemma 2 for ~ itcovalpc : ...
itcovalpc 48783 The value of the function ...
itcovalt2lem2lem1 48784 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 48785 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 48786 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 48787 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 48788 The value of the function ...
ackvalsuc1mpt 48789 The Ackermann function at ...
ackvalsuc1 48790 The Ackermann function at ...
ackval0 48791 The Ackermann function at ...
ackval1 48792 The Ackermann function at ...
ackval2 48793 The Ackermann function at ...
ackval3 48794 The Ackermann function at ...
ackendofnn0 48795 The Ackermann function at ...
ackfnnn0 48796 The Ackermann function at ...
ackval0val 48797 The Ackermann function at ...
ackvalsuc0val 48798 The Ackermann function at ...
ackvalsucsucval 48799 The Ackermann function at ...
ackval0012 48800 The Ackermann function at ...
ackval1012 48801 The Ackermann function at ...
ackval2012 48802 The Ackermann function at ...
ackval3012 48803 The Ackermann function at ...
ackval40 48804 The Ackermann function at ...
ackval41a 48805 The Ackermann function at ...
ackval41 48806 The Ackermann function at ...
ackval42 48807 The Ackermann function at ...
ackval42a 48808 The Ackermann function at ...
ackval50 48809 The Ackermann function at ...
fv1prop 48810 The function value of unor...
fv2prop 48811 The function value of unor...
submuladdmuld 48812 Transformation of a sum of...
affinecomb1 48813 Combination of two real af...
affinecomb2 48814 Combination of two real af...
affineid 48815 Identity of an affine comb...
1subrec1sub 48816 Subtract the reciprocal of...
resum2sqcl 48817 The sum of two squares of ...
resum2sqgt0 48818 The sum of the square of a...
resum2sqrp 48819 The sum of the square of a...
resum2sqorgt0 48820 The sum of the square of t...
reorelicc 48821 Membership in and outside ...
rrx2pxel 48822 The x-coordinate of a poin...
rrx2pyel 48823 The y-coordinate of a poin...
prelrrx2 48824 An unordered pair of order...
prelrrx2b 48825 An unordered pair of order...
rrx2pnecoorneor 48826 If two different points ` ...
rrx2pnedifcoorneor 48827 If two different points ` ...
rrx2pnedifcoorneorr 48828 If two different points ` ...
rrx2xpref1o 48829 There is a bijection betwe...
rrx2xpreen 48830 The set of points in the t...
rrx2plord 48831 The lexicographical orderi...
rrx2plord1 48832 The lexicographical orderi...
rrx2plord2 48833 The lexicographical orderi...
rrx2plordisom 48834 The set of points in the t...
rrx2plordso 48835 The lexicographical orderi...
ehl2eudisval0 48836 The Euclidean distance of ...
ehl2eudis0lt 48837 An upper bound of the Eucl...
lines 48842 The lines passing through ...
line 48843 The line passing through t...
rrxlines 48844 Definition of lines passin...
rrxline 48845 The line passing through t...
rrxlinesc 48846 Definition of lines passin...
rrxlinec 48847 The line passing through t...
eenglngeehlnmlem1 48848 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 48849 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 48850 The line definition in the...
rrx2line 48851 The line passing through t...
rrx2vlinest 48852 The vertical line passing ...
rrx2linest 48853 The line passing through t...
rrx2linesl 48854 The line passing through t...
rrx2linest2 48855 The line passing through t...
elrrx2linest2 48856 The line passing through t...
spheres 48857 The spheres for given cent...
sphere 48858 A sphere with center ` X `...
rrxsphere 48859 The sphere with center ` M...
2sphere 48860 The sphere with center ` M...
2sphere0 48861 The sphere around the orig...
line2ylem 48862 Lemma for ~ line2y . This...
line2 48863 Example for a line ` G ` p...
line2xlem 48864 Lemma for ~ line2x . This...
line2x 48865 Example for a horizontal l...
line2y 48866 Example for a vertical lin...
itsclc0lem1 48867 Lemma for theorems about i...
itsclc0lem2 48868 Lemma for theorems about i...
itsclc0lem3 48869 Lemma for theorems about i...
itscnhlc0yqe 48870 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 48871 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 48872 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 48873 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 48874 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 48875 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 48876 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 48877 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 48878 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 48879 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 48880 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 48881 Lemma for ~ itsclc0 . Sol...
itsclc0 48882 The intersection points of...
itsclc0b 48883 The intersection points of...
itsclinecirc0 48884 The intersection points of...
itsclinecirc0b 48885 The intersection points of...
itsclinecirc0in 48886 The intersection points of...
itsclquadb 48887 Quadratic equation for the...
itsclquadeu 48888 Quadratic equation for the...
2itscplem1 48889 Lemma 1 for ~ 2itscp . (C...
2itscplem2 48890 Lemma 2 for ~ 2itscp . (C...
2itscplem3 48891 Lemma D for ~ 2itscp . (C...
2itscp 48892 A condition for a quadrati...
itscnhlinecirc02plem1 48893 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 48894 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 48895 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 48896 Intersection of a nonhoriz...
inlinecirc02plem 48897 Lemma for ~ inlinecirc02p ...
inlinecirc02p 48898 Intersection of a line wit...
inlinecirc02preu 48899 Intersection of a line wit...
pm4.71da 48900 Deduction converting a bic...
logic1 48901 Distribution of implicatio...
logic1a 48902 Variant of ~ logic1 . (Co...
logic2 48903 Variant of ~ logic1 . (Co...
pm5.32dav 48904 Distribution of implicatio...
pm5.32dra 48905 Reverse distribution of im...
exp12bd 48906 The import-export theorem ...
mpbiran3d 48907 Equivalence with a conjunc...
mpbiran4d 48908 Equivalence with a conjunc...
dtrucor3 48909 An example of how ~ ax-5 w...
ralbidb 48910 Formula-building rule for ...
ralbidc 48911 Formula-building rule for ...
r19.41dv 48912 A complex deduction form o...
rmotru 48913 Two ways of expressing "at...
reutru 48914 Two ways of expressing "ex...
reutruALT 48915 Alternate proof of ~ reutr...
reueqbidva 48916 Formula-building rule for ...
reuxfr1dd 48917 Transfer existential uniqu...
ssdisjd 48918 Subset preserves disjointn...
ssdisjdr 48919 Subset preserves disjointn...
disjdifb 48920 Relative complement is ant...
predisj 48921 Preimages of disjoint sets...
vsn 48922 The singleton of the unive...
mosn 48923 "At most one" element in a...
mo0 48924 "At most one" element in a...
mosssn 48925 "At most one" element in a...
mo0sn 48926 Two ways of expressing "at...
mosssn2 48927 Two ways of expressing "at...
unilbss 48928 Superclass of the greatest...
iuneq0 48929 An indexed union is empty ...
iineq0 48930 An indexed intersection is...
iunlub 48931 The indexed union is the t...
iinglb 48932 The indexed intersection i...
iuneqconst2 48933 Indexed union of identical...
iineqconst2 48934 Indexed intersection of id...
inpw 48935 Two ways of expressing a c...
opth1neg 48936 Two ordered pairs are not ...
opth2neg 48937 Two ordered pairs are not ...
brab2dd 48938 Expressing that two sets a...
brab2ddw 48939 Expressing that two sets a...
brab2ddw2 48940 Expressing that two sets a...
iinxp 48941 Indexed intersection of Ca...
intxp 48942 Intersection of Cartesian ...
coxp 48943 Composition with a Cartesi...
cosn 48944 Composition with an ordere...
cosni 48945 Composition with an ordere...
inisegn0a 48946 The inverse image of a sin...
dmrnxp 48947 A Cartesian product is the...
mof0 48948 There is at most one funct...
mof02 48949 A variant of ~ mof0 . (Co...
mof0ALT 48950 Alternate proof of ~ mof0 ...
eufsnlem 48951 There is exactly one funct...
eufsn 48952 There is exactly one funct...
eufsn2 48953 There is exactly one funct...
mofsn 48954 There is at most one funct...
mofsn2 48955 There is at most one funct...
mofsssn 48956 There is at most one funct...
mofmo 48957 There is at most one funct...
mofeu 48958 The uniqueness of a functi...
elfvne0 48959 If a function value has a ...
fdomne0 48960 A function with non-empty ...
f1sn2g 48961 A function that maps a sin...
f102g 48962 A function that maps the e...
f1mo 48963 A function that maps a set...
f002 48964 A function with an empty c...
map0cor 48965 A function exists iff an e...
ffvbr 48966 Relation with function val...
xpco2 48967 Composition of a Cartesian...
ovsng 48968 The operation value of a s...
ovsng2 48969 The operation value of a s...
ovsn 48970 The operation value of a s...
ovsn2 48971 The operation value of a s...
fvconstr 48972 Two ways of expressing ` A...
fvconstrn0 48973 Two ways of expressing ` A...
fvconstr2 48974 Two ways of expressing ` A...
ovmpt4d 48975 Deduction version of ~ ovm...
eqfnovd 48976 Deduction for equality of ...
fonex 48977 The domain of a surjection...
eloprab1st2nd 48978 Reconstruction of a nested...
fmpodg 48979 Domain and codomain of the...
fmpod 48980 Domain and codomain of the...
resinsnlem 48981 Lemma for ~ resinsnALT . ...
resinsn 48982 Restriction to the interse...
resinsnALT 48983 Restriction to the interse...
dftpos5 48984 Alternate definition of ` ...
dftpos6 48985 Alternate definition of ` ...
dmtposss 48986 The domain of ` tpos F ` i...
tposres0 48987 The transposition of a set...
tposresg 48988 The transposition restrict...
tposrescnv 48989 The transposition restrict...
tposres2 48990 The transposition restrict...
tposres3 48991 The transposition restrict...
tposres 48992 The transposition restrict...
tposresxp 48993 The transposition restrict...
tposf1o 48994 Condition of a bijective t...
tposid 48995 Swap an ordered pair. (Co...
tposidres 48996 Swap an ordered pair. (Co...
tposidf1o 48997 The swap function, or the ...
tposideq 48998 Two ways of expressing the...
tposideq2 48999 Two ways of expressing the...
ixpv 49000 Infinite Cartesian product...
fvconst0ci 49001 A constant function's valu...
fvconstdomi 49002 A constant function's valu...
f1omo 49003 There is at most one eleme...
f1omoOLD 49004 Obsolete version of ~ f1om...
f1omoALT 49005 There is at most one eleme...
iccin 49006 Intersection of two closed...
iccdisj2 49007 If the upper bound of one ...
iccdisj 49008 If the upper bound of one ...
slotresfo 49009 The condition of a structu...
mreuniss 49010 The union of a collection ...
clduni 49011 The union of closed sets i...
opncldeqv 49012 Conditions on open sets ar...
opndisj 49013 Two ways of saying that tw...
clddisj 49014 Two ways of saying that tw...
neircl 49015 Reverse closure of the nei...
opnneilem 49016 Lemma factoring out common...
opnneir 49017 If something is true for a...
opnneirv 49018 A variant of ~ opnneir wit...
opnneilv 49019 The converse of ~ opnneir ...
opnneil 49020 A variant of ~ opnneilv . ...
opnneieqv 49021 The equivalence between ne...
opnneieqvv 49022 The equivalence between ne...
restcls2lem 49023 A closed set in a subspace...
restcls2 49024 A closed set in a subspace...
restclsseplem 49025 Lemma for ~ restclssep . ...
restclssep 49026 Two disjoint closed sets i...
cnneiima 49027 Given a continuous functio...
iooii 49028 Open intervals are open se...
icccldii 49029 Closed intervals are close...
i0oii 49030 ` ( 0 [,) A ) ` is open in...
io1ii 49031 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 49032 Lemma for ~ sepnsepo . (C...
sepnsepolem2 49033 Open neighborhood and neig...
sepnsepo 49034 Open neighborhood and neig...
sepdisj 49035 Separated sets are disjoin...
seposep 49036 If two sets are separated ...
sepcsepo 49037 If two sets are separated ...
sepfsepc 49038 If two sets are separated ...
seppsepf 49039 If two sets are precisely ...
seppcld 49040 If two sets are precisely ...
isnrm4 49041 A topological space is nor...
dfnrm2 49042 A topological space is nor...
dfnrm3 49043 A topological space is nor...
iscnrm3lem1 49044 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 49045 Lemma for ~ iscnrm3 provin...
iscnrm3lem4 49046 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 49047 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 49048 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 49049 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 49050 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 49051 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 49052 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 49053 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 49054 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 49055 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 49056 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 49057 Lemma for ~ iscnrm3r . Di...
iscnrm3r 49058 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 49059 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 49060 Lemma for ~ iscnrm3l . If...
iscnrm3l 49061 Lemma for ~ iscnrm3 . Giv...
iscnrm3 49062 A completely normal topolo...
iscnrm3v 49063 A topology is completely n...
iscnrm4 49064 A completely normal topolo...
isprsd 49065 Property of being a preord...
lubeldm2 49066 Member of the domain of th...
glbeldm2 49067 Member of the domain of th...
lubeldm2d 49068 Member of the domain of th...
glbeldm2d 49069 Member of the domain of th...
lubsscl 49070 If a subset of ` S ` conta...
glbsscl 49071 If a subset of ` S ` conta...
lubprlem 49072 Lemma for ~ lubprdm and ~ ...
lubprdm 49073 The set of two comparable ...
lubpr 49074 The LUB of the set of two ...
glbprlem 49075 Lemma for ~ glbprdm and ~ ...
glbprdm 49076 The set of two comparable ...
glbpr 49077 The GLB of the set of two ...
joindm2 49078 The join of any two elemen...
joindm3 49079 The join of any two elemen...
meetdm2 49080 The meet of any two elemen...
meetdm3 49081 The meet of any two elemen...
posjidm 49082 Poset join is idempotent. ...
posmidm 49083 Poset meet is idempotent. ...
resiposbas 49084 Construct a poset ( ~ resi...
resipos 49085 A set equipped with an ord...
exbaspos 49086 There exists a poset for a...
exbasprs 49087 There exists a preordered ...
basresposfo 49088 The base function restrict...
basresprsfo 49089 The base function restrict...
posnex 49090 The class of posets is a p...
prsnex 49091 The class of preordered se...
toslat 49092 A toset is a lattice. (Co...
isclatd 49093 The predicate "is a comple...
intubeu 49094 Existential uniqueness of ...
unilbeu 49095 Existential uniqueness of ...
ipolublem 49096 Lemma for ~ ipolubdm and ~...
ipolubdm 49097 The domain of the LUB of t...
ipolub 49098 The LUB of the inclusion p...
ipoglblem 49099 Lemma for ~ ipoglbdm and ~...
ipoglbdm 49100 The domain of the GLB of t...
ipoglb 49101 The GLB of the inclusion p...
ipolub0 49102 The LUB of the empty set i...
ipolub00 49103 The LUB of the empty set i...
ipoglb0 49104 The GLB of the empty set i...
mrelatlubALT 49105 Least upper bounds in a Mo...
mrelatglbALT 49106 Greatest lower bounds in a...
mreclat 49107 A Moore space is a complet...
topclat 49108 A topology is a complete l...
toplatglb0 49109 The empty intersection in ...
toplatlub 49110 Least upper bounds in a to...
toplatglb 49111 Greatest lower bounds in a...
toplatjoin 49112 Joins in a topology are re...
toplatmeet 49113 Meets in a topology are re...
topdlat 49114 A topology is a distributi...
elmgpcntrd 49115 The center of a ring. (Co...
asclelbas 49116 Lifted scalars are in the ...
asclelbasALT 49117 Alternate proof of ~ ascle...
asclcntr 49118 The algebra scalar lifting...
asclcom 49119 Scalars are commutative af...
homf0 49120 The base is empty iff the ...
catprslem 49121 Lemma for ~ catprs . (Con...
catprs 49122 A preorder can be extracte...
catprs2 49123 A category equipped with t...
catprsc 49124 A construction of the preo...
catprsc2 49125 An alternate construction ...
endmndlem 49126 A diagonal hom-set in a ca...
oppccatb 49127 An opposite category is a ...
oppcmndclem 49128 Lemma for ~ oppcmndc . Ev...
oppcendc 49129 The opposite category of a...
oppcmndc 49130 The opposite category of a...
idmon 49131 An identity arrow, or an i...
idepi 49132 An identity arrow, or an i...
sectrcl 49133 Reverse closure for sectio...
sectrcl2 49134 Reverse closure for sectio...
invrcl 49135 Reverse closure for invers...
invrcl2 49136 Reverse closure for invers...
isinv2 49137 The property " ` F ` is an...
isisod 49138 The predicate "is an isomo...
upeu2lem 49139 Lemma for ~ upeu2 . There...
sectfn 49140 The function value of the ...
invfn 49141 The function value of the ...
isofnALT 49142 The function value of the ...
isofval2 49143 Function value of the func...
isorcl 49144 Reverse closure for isomor...
isorcl2 49145 Reverse closure for isomor...
isoval2 49146 The isomorphisms are the d...
sectpropdlem 49147 Lemma for ~ sectpropd . (...
sectpropd 49148 Two structures with the sa...
invpropdlem 49149 Lemma for ~ invpropd . (C...
invpropd 49150 Two structures with the sa...
isopropdlem 49151 Lemma for ~ isopropd . (C...
isopropd 49152 Two structures with the sa...
cicfn 49153 ` ~=c ` is a function on `...
cicrcl2 49154 Isomorphism implies the st...
oppccic 49155 Isomorphic objects are iso...
relcic 49156 The set of isomorphic obje...
cicerALT 49157 Isomorphism is an equivale...
cic1st2nd 49158 Reconstruction of a pair o...
cic1st2ndbr 49159 Rewrite the predicate of i...
cicpropdlem 49160 Lemma for ~ cicpropd . (C...
cicpropd 49161 Two structures with the sa...
oppccicb 49162 Isomorphic objects are iso...
oppcciceq 49163 The opposite category has ...
dmdm 49164 The double domain of a fun...
iinfssclem1 49165 Lemma for ~ iinfssc . (Co...
iinfssclem2 49166 Lemma for ~ iinfssc . (Co...
iinfssclem3 49167 Lemma for ~ iinfssc . (Co...
iinfssc 49168 Indexed intersection of su...
iinfsubc 49169 Indexed intersection of su...
iinfprg 49170 Indexed intersection of fu...
infsubc 49171 The intersection of two su...
infsubc2 49172 The intersection of two su...
infsubc2d 49173 The intersection of two su...
discsubclem 49174 Lemma for ~ discsubc . (C...
discsubc 49175 A discrete category, whose...
iinfconstbaslem 49176 Lemma for ~ iinfconstbas ....
iinfconstbas 49177 The discrete category is t...
nelsubclem 49178 Lemma for ~ nelsubc . (Co...
nelsubc 49179 An empty "hom-set" for non...
nelsubc2 49180 An empty "hom-set" for non...
nelsubc3lem 49181 Lemma for ~ nelsubc3 . (C...
nelsubc3 49182 Remark 4.2(2) of [Adamek] ...
ssccatid 49183 A category ` C ` restricte...
resccatlem 49184 Lemma for ~ resccat . (Co...
resccat 49185 A class ` C ` restricted b...
reldmfunc 49186 The domain of ` Func ` is ...
func1st2nd 49187 Rewrite the functor predic...
func1st 49188 Extract the first member o...
func2nd 49189 Extract the second member ...
funcrcl2 49190 Reverse closure for a func...
funcrcl3 49191 Reverse closure for a func...
funcf2lem 49192 A utility theorem for prov...
funcf2lem2 49193 A utility theorem for prov...
0funcglem 49194 Lemma for ~ 0funcg . (Con...
0funcg2 49195 The functor from the empty...
0funcg 49196 The functor from the empty...
0funclem 49197 Lemma for ~ 0funcALT . (C...
0func 49198 The functor from the empty...
0funcALT 49199 Alternate proof of ~ 0func...
func0g 49200 The source category of a f...
func0g2 49201 The source category of a f...
initc 49202 Sets with empty base are t...
cofu1st2nd 49203 Rewrite the functor compos...
rescofuf 49204 The restriction of functor...
cofu1a 49205 Value of the object part o...
cofu2a 49206 Value of the morphism part...
cofucla 49207 The composition of two fun...
funchomf 49208 Source categories of a fun...
idfurcl 49209 Reverse closure for an ide...
idfu1stf1o 49210 The identity functor/inclu...
idfu1stalem 49211 Lemma for ~ idfu1sta . (C...
idfu1sta 49212 Value of the object part o...
idfu1a 49213 Value of the object part o...
idfu2nda 49214 Value of the morphism part...
imasubclem1 49215 Lemma for ~ imasubc . (Co...
imasubclem2 49216 Lemma for ~ imasubc . (Co...
imasubclem3 49217 Lemma for ~ imasubc . (Co...
imaf1homlem 49218 Lemma for ~ imaf1hom and o...
imaf1hom 49219 The hom-set of an image of...
imaidfu2lem 49220 Lemma for ~ imaidfu2 . (C...
imaidfu 49221 The image of the identity ...
imaidfu2 49222 The image of the identity ...
cofid1a 49223 Express the object part of...
cofid2a 49224 Express the morphism part ...
cofid1 49225 Express the object part of...
cofid2 49226 Express the morphism part ...
cofidvala 49227 The property " ` F ` is a ...
cofidf2a 49228 If " ` F ` is a section of...
cofidf1a 49229 If " ` F ` is a section of...
cofidval 49230 The property " ` <. F , G ...
cofidf2 49231 If " ` F ` is a section of...
cofidf1 49232 If " ` <. F , G >. ` is a ...
oppffn 49235 ` oppFunc ` is a function ...
reldmoppf 49236 The domain of ` oppFunc ` ...
oppfvalg 49237 Value of the opposite func...
oppfrcllem 49238 Lemma for ~ oppfrcl . (Co...
oppfrcl 49239 If an opposite functor of ...
oppfrcl2 49240 If an opposite functor of ...
oppfrcl3 49241 If an opposite functor of ...
oppf1st2nd 49242 Rewrite the opposite funct...
2oppf 49243 The double opposite functo...
eloppf 49244 The pre-image of a non-emp...
eloppf2 49245 Both components of a pre-i...
oppfvallem 49246 Lemma for ~ oppfval . (Co...
oppfval 49247 Value of the opposite func...
oppfval2 49248 Value of the opposite func...
oppfval3 49249 Value of the opposite func...
oppf1 49250 Value of the object part o...
oppf2 49251 Value of the morphism part...
oppfoppc 49252 The opposite functor is a ...
oppfoppc2 49253 The opposite functor is a ...
funcoppc2 49254 A functor on opposite cate...
funcoppc4 49255 A functor on opposite cate...
funcoppc5 49256 A functor on opposite cate...
2oppffunc 49257 The opposite functor of an...
funcoppc3 49258 A functor on opposite cate...
oppff1 49259 The operation generating o...
oppff1o 49260 The operation generating o...
cofuoppf 49261 Composition of opposite fu...
imasubc 49262 An image of a full functor...
imasubc2 49263 An image of a full functor...
imassc 49264 An image of a functor sati...
imaid 49265 An image of a functor pres...
imaf1co 49266 An image of a functor whos...
imasubc3 49267 An image of a functor inje...
fthcomf 49268 Source categories of a fai...
idfth 49269 The inclusion functor is a...
idemb 49270 The inclusion functor is a...
idsubc 49271 The source category of an ...
idfullsubc 49272 The source category of an ...
cofidfth 49273 If " ` F ` is a section of...
fulloppf 49274 The opposite functor of a ...
fthoppf 49275 The opposite functor of a ...
ffthoppf 49276 The opposite functor of a ...
upciclem1 49277 Lemma for ~ upcic , ~ upeu...
upciclem2 49278 Lemma for ~ upciclem3 and ...
upciclem3 49279 Lemma for ~ upciclem4 . (...
upciclem4 49280 Lemma for ~ upcic and ~ up...
upcic 49281 A universal property defin...
upeu 49282 A universal property defin...
upeu2 49283 Generate new universal mor...
reldmup 49286 The domain of ` UP ` is a ...
upfval 49287 Function value of the clas...
upfval2 49288 Function value of the clas...
upfval3 49289 Function value of the clas...
isuplem 49290 Lemma for ~ isup and other...
isup 49291 The predicate "is a univer...
uppropd 49292 If two categories have the...
reldmup2 49293 The domain of ` ( D UP E )...
relup 49294 The set of universal pairs...
uprcl 49295 Reverse closure for the cl...
up1st2nd 49296 Rewrite the universal prop...
up1st2ndr 49297 Combine separated parts in...
up1st2ndb 49298 Combine/separate parts in ...
up1st2nd2 49299 Rewrite the universal prop...
uprcl2 49300 Reverse closure for the cl...
uprcl3 49301 Reverse closure for the cl...
uprcl4 49302 Reverse closure for the cl...
uprcl5 49303 Reverse closure for the cl...
uobrcl 49304 Reverse closure for univer...
isup2 49305 The universal property of ...
upeu3 49306 The universal pair ` <. X ...
upeu4 49307 Generate a new universal m...
uptposlem 49308 Lemma for ~ uptpos . (Con...
uptpos 49309 Rewrite the predicate of u...
oppcuprcl4 49310 Reverse closure for the cl...
oppcuprcl3 49311 Reverse closure for the cl...
oppcuprcl5 49312 Reverse closure for the cl...
oppcuprcl2 49313 Reverse closure for the cl...
uprcl2a 49314 Reverse closure for the cl...
oppfuprcl 49315 Reverse closure for the cl...
oppfuprcl2 49316 Reverse closure for the cl...
oppcup3lem 49317 Lemma for ~ oppcup3 . (Co...
oppcup 49318 The universal pair ` <. X ...
oppcup2 49319 The universal property for...
oppcup3 49320 The universal property for...
uptrlem1 49321 Lemma for ~ uptr . (Contr...
uptrlem2 49322 Lemma for ~ uptr . (Contr...
uptrlem3 49323 Lemma for ~ uptr . (Contr...
uptr 49324 Universal property and ful...
uptri 49325 Universal property and ful...
uptra 49326 Universal property and ful...
uptrar 49327 Universal property and ful...
uptrai 49328 Universal property and ful...
uobffth 49329 A fully faithful functor g...
uobeqw 49330 If a full functor (in fact...
uobeq 49331 If a full functor (in fact...
uptr2 49332 Universal property and ful...
uptr2a 49333 Universal property and ful...
isnatd 49334 Property of being a natura...
natrcl2 49335 Reverse closure for a natu...
natrcl3 49336 Reverse closure for a natu...
catbas 49337 The base of the category s...
cathomfval 49338 The hom-sets of the catego...
catcofval 49339 Composition of the categor...
natoppf 49340 A natural transformation i...
natoppf2 49341 A natural transformation i...
natoppfb 49342 A natural transformation i...
initoo2 49343 An initial object is an ob...
termoo2 49344 A terminal object is an ob...
zeroo2 49345 A zero object is an object...
oppcinito 49346 Initial objects are termin...
oppctermo 49347 Terminal objects are initi...
oppczeroo 49348 Zero objects are zero in t...
termoeu2 49349 Terminal objects are essen...
initopropdlemlem 49350 Lemma for ~ initopropdlem ...
initopropdlem 49351 Lemma for ~ initopropd . ...
termopropdlem 49352 Lemma for ~ termopropd . ...
zeroopropdlem 49353 Lemma for ~ zeroopropd . ...
initopropd 49354 Two structures with the sa...
termopropd 49355 Two structures with the sa...
zeroopropd 49356 Two structures with the sa...
reldmxpc 49357 The binary product of cate...
reldmxpcALT 49358 Alternate proof of ~ reldm...
elxpcbasex1 49359 A non-empty base set of th...
elxpcbasex1ALT 49360 Alternate proof of ~ elxpc...
elxpcbasex2 49361 A non-empty base set of th...
elxpcbasex2ALT 49362 Alternate proof of ~ elxpc...
xpcfucbas 49363 The base set of the produc...
xpcfuchomfval 49364 Set of morphisms of the bi...
xpcfuchom 49365 Set of morphisms of the bi...
xpcfuchom2 49366 Value of the set of morphi...
xpcfucco2 49367 Value of composition in th...
xpcfuccocl 49368 The composition of two nat...
xpcfucco3 49369 Value of composition in th...
dfswapf2 49372 Alternate definition of ` ...
swapfval 49373 Value of the swap functor....
swapfelvv 49374 A swap functor is an order...
swapf2fvala 49375 The morphism part of the s...
swapf2fval 49376 The morphism part of the s...
swapf1vala 49377 The object part of the swa...
swapf1val 49378 The object part of the swa...
swapf2fn 49379 The morphism part of the s...
swapf1a 49380 The object part of the swa...
swapf2vala 49381 The morphism part of the s...
swapf2a 49382 The morphism part of the s...
swapf1 49383 The object part of the swa...
swapf2val 49384 The morphism part of the s...
swapf2 49385 The morphism part of the s...
swapf1f1o 49386 The object part of the swa...
swapf2f1o 49387 The morphism part of the s...
swapf2f1oa 49388 The morphism part of the s...
swapf2f1oaALT 49389 Alternate proof of ~ swapf...
swapfid 49390 Each identity morphism in ...
swapfida 49391 Each identity morphism in ...
swapfcoa 49392 Composition in the source ...
swapffunc 49393 The swap functor is a func...
swapfffth 49394 The swap functor is a full...
swapffunca 49395 The swap functor is a func...
swapfiso 49396 The swap functor is an iso...
swapciso 49397 The product category is ca...
oppc1stflem 49398 A utility theorem for prov...
oppc1stf 49399 The opposite functor of th...
oppc2ndf 49400 The opposite functor of th...
1stfpropd 49401 If two categories have the...
2ndfpropd 49402 If two categories have the...
diagpropd 49403 If two categories have the...
cofuswapfcl 49404 The bifunctor pre-composed...
cofuswapf1 49405 The object part of a bifun...
cofuswapf2 49406 The morphism part of a bif...
tposcurf1cl 49407 The partially evaluated tr...
tposcurf11 49408 Value of the double evalua...
tposcurf12 49409 The partially evaluated tr...
tposcurf1 49410 Value of the object part o...
tposcurf2 49411 Value of the transposed cu...
tposcurf2val 49412 Value of a component of th...
tposcurf2cl 49413 The transposed curry funct...
tposcurfcl 49414 The transposed curry funct...
diag1 49415 The constant functor of ` ...
diag1a 49416 The constant functor of ` ...
diag1f1lem 49417 The object part of the dia...
diag1f1 49418 The object part of the dia...
diag2f1lem 49419 Lemma for ~ diag2f1 . The...
diag2f1 49420 If ` B ` is non-empty, the...
fucofulem1 49421 Lemma for proving functor ...
fucofulem2 49422 Lemma for proving functor ...
fuco2el 49423 Equivalence of product fun...
fuco2eld 49424 Equivalence of product fun...
fuco2eld2 49425 Equivalence of product fun...
fuco2eld3 49426 Equivalence of product fun...
fucofvalg 49429 Value of the function givi...
fucofval 49430 Value of the function givi...
fucoelvv 49431 A functor composition bifu...
fuco1 49432 The object part of the fun...
fucof1 49433 The object part of the fun...
fuco2 49434 The morphism part of the f...
fucofn2 49435 The morphism part of the f...
fucofvalne 49436 Value of the function givi...
fuco11 49437 The object part of the fun...
fuco11cl 49438 The object part of the fun...
fuco11a 49439 The object part of the fun...
fuco112 49440 The object part of the fun...
fuco111 49441 The object part of the fun...
fuco111x 49442 The object part of the fun...
fuco112x 49443 The object part of the fun...
fuco112xa 49444 The object part of the fun...
fuco11id 49445 The identity morphism of t...
fuco11idx 49446 The identity morphism of t...
fuco21 49447 The morphism part of the f...
fuco11b 49448 The object part of the fun...
fuco11bALT 49449 Alternate proof of ~ fuco1...
fuco22 49450 The morphism part of the f...
fucofn22 49451 The morphism part of the f...
fuco23 49452 The morphism part of the f...
fuco22natlem1 49453 Lemma for ~ fuco22nat . T...
fuco22natlem2 49454 Lemma for ~ fuco22nat . T...
fuco22natlem3 49455 Combine ~ fuco22natlem2 wi...
fuco22natlem 49456 The composed natural trans...
fuco22nat 49457 The composed natural trans...
fucof21 49458 The morphism part of the f...
fucoid 49459 Each identity morphism in ...
fucoid2 49460 Each identity morphism in ...
fuco22a 49461 The morphism part of the f...
fuco23alem 49462 The naturality property ( ...
fuco23a 49463 The morphism part of the f...
fucocolem1 49464 Lemma for ~ fucoco . Asso...
fucocolem2 49465 Lemma for ~ fucoco . The ...
fucocolem3 49466 Lemma for ~ fucoco . The ...
fucocolem4 49467 Lemma for ~ fucoco . The ...
fucoco 49468 Composition in the source ...
fucoco2 49469 Composition in the source ...
fucofunc 49470 The functor composition bi...
fucofunca 49471 The functor composition bi...
fucolid 49472 Post-compose a natural tra...
fucorid 49473 Pre-composing a natural tr...
fucorid2 49474 Pre-composing a natural tr...
postcofval 49475 Value of the post-composit...
postcofcl 49476 The post-composition funct...
precofvallem 49477 Lemma for ~ precofval to e...
precofval 49478 Value of the pre-compositi...
precofvalALT 49479 Alternate proof of ~ preco...
precofval2 49480 Value of the pre-compositi...
precofcl 49481 The pre-composition functo...
precofval3 49482 Value of the pre-compositi...
precoffunc 49483 The pre-composition functo...
reldmprcof 49486 The domain of ` -o.F ` is ...
prcofvalg 49487 Value of the pre-compositi...
prcofvala 49488 Value of the pre-compositi...
prcofval 49489 Value of the pre-compositi...
prcofpropd 49490 If the categories have the...
prcofelvv 49491 The pre-composition functo...
reldmprcof1 49492 The domain of the object p...
reldmprcof2 49493 The domain of the morphism...
prcoftposcurfuco 49494 The pre-composition functo...
prcoftposcurfucoa 49495 The pre-composition functo...
prcoffunc 49496 The pre-composition functo...
prcoffunca 49497 The pre-composition functo...
prcoffunca2 49498 The pre-composition functo...
prcof1 49499 The object part of the pre...
prcof2a 49500 The morphism part of the p...
prcof2 49501 The morphism part of the p...
prcof21a 49502 The morphism part of the p...
prcof22a 49503 The morphism part of the p...
prcofdiag1 49504 A constant functor pre-com...
prcofdiag 49505 A diagonal functor post-co...
catcrcl 49506 Reverse closure for the ca...
catcrcl2 49507 Reverse closure for the ca...
elcatchom 49508 A morphism of the category...
catcsect 49509 The property " ` F ` is a ...
catcinv 49510 The property " ` F ` is an...
catcisoi 49511 A functor is an isomorphis...
uobeq2 49512 If a full functor (in fact...
uobeq3 49513 An isomorphism between cat...
opf11 49514 The object part of the op ...
opf12 49515 The object part of the op ...
opf2fval 49516 The morphism part of the o...
opf2 49517 The morphism part of the o...
fucoppclem 49518 Lemma for ~ fucoppc . (Co...
fucoppcid 49519 The opposite category of f...
fucoppcco 49520 The opposite category of f...
fucoppc 49521 The isomorphism from the o...
fucoppcffth 49522 A fully faithful functor f...
fucoppcfunc 49523 A functor from the opposit...
fucoppccic 49524 The opposite category of f...
oppfdiag1 49525 A constant functor for opp...
oppfdiag1a 49526 A constant functor for opp...
oppfdiag 49527 A diagonal functor for opp...
isthinc 49530 The predicate "is a thin c...
isthinc2 49531 A thin category is a categ...
isthinc3 49532 A thin category is a categ...
thincc 49533 A thin category is a categ...
thinccd 49534 A thin category is a categ...
thincssc 49535 A thin category is a categ...
isthincd2lem1 49536 Lemma for ~ isthincd2 and ...
thincmo2 49537 Morphisms in the same hom-...
thinchom 49538 A non-empty hom-set of a t...
thincmo 49539 There is at most one morph...
thincmoALT 49540 Alternate proof of ~ thinc...
thincmod 49541 At most one morphism in ea...
thincn0eu 49542 In a thin category, a hom-...
thincid 49543 In a thin category, a morp...
thincmon 49544 In a thin category, all mo...
thincepi 49545 In a thin category, all mo...
isthincd2lem2 49546 Lemma for ~ isthincd2 . (...
isthincd 49547 The predicate "is a thin c...
isthincd2 49548 The predicate " ` C ` is a...
oppcthin 49549 The opposite category of a...
oppcthinco 49550 If the opposite category o...
oppcthinendc 49551 The opposite category of a...
oppcthinendcALT 49552 Alternate proof of ~ oppct...
thincpropd 49553 Two structures with the sa...
subthinc 49554 A subcategory of a thin ca...
functhinclem1 49555 Lemma for ~ functhinc . G...
functhinclem2 49556 Lemma for ~ functhinc . (...
functhinclem3 49557 Lemma for ~ functhinc . T...
functhinclem4 49558 Lemma for ~ functhinc . O...
functhinc 49559 A functor to a thin catego...
functhincfun 49560 A functor to a thin catego...
fullthinc 49561 A functor to a thin catego...
fullthinc2 49562 A full functor to a thin c...
thincfth 49563 A functor from a thin cate...
thincciso 49564 Two thin categories are is...
thinccisod 49565 Two thin categories are is...
thincciso2 49566 Categories isomorphic to a...
thincciso3 49567 Categories isomorphic to a...
thincciso4 49568 Two isomorphic categories ...
0thincg 49569 Any structure with an empt...
0thinc 49570 The empty category (see ~ ...
indcthing 49571 An indiscrete category, i....
discthing 49572 A discrete category, i.e.,...
indthinc 49573 An indiscrete category in ...
indthincALT 49574 An alternate proof of ~ in...
prsthinc 49575 Preordered sets as categor...
setcthin 49576 A category of sets all of ...
setc2othin 49577 The category ` ( SetCat ``...
thincsect 49578 In a thin category, one mo...
thincsect2 49579 In a thin category, ` F ` ...
thincinv 49580 In a thin category, ` F ` ...
thinciso 49581 In a thin category, ` F : ...
thinccic 49582 In a thin category, two ob...
istermc 49585 The predicate "is a termin...
istermc2 49586 The predicate "is a termin...
istermc3 49587 The predicate "is a termin...
termcthin 49588 A terminal category is a t...
termcthind 49589 A terminal category is a t...
termccd 49590 A terminal category is a c...
termcbas 49591 The base of a terminal cat...
termco 49592 The object of a terminal c...
termcbas2 49593 The base of a terminal cat...
termcbasmo 49594 Two objects in a terminal ...
termchomn0 49595 All hom-sets of a terminal...
termchommo 49596 All morphisms of a termina...
termcid 49597 The morphism of a terminal...
termcid2 49598 The morphism of a terminal...
termchom 49599 The hom-set of a terminal ...
termchom2 49600 The hom-set of a terminal ...
setcsnterm 49601 The category of one set, e...
setc1oterm 49602 The category ` ( SetCat ``...
setc1obas 49603 The base of the trivial ca...
setc1ohomfval 49604 Set of morphisms of the tr...
setc1ocofval 49605 Composition in the trivial...
setc1oid 49606 The identity morphism of t...
funcsetc1ocl 49607 The functor to the trivial...
funcsetc1o 49608 Value of the functor to th...
isinito2lem 49609 The predicate "is an initi...
isinito2 49610 The predicate "is an initi...
isinito3 49611 The predicate "is an initi...
dfinito4 49612 An alternate definition of...
dftermo4 49613 An alternate definition of...
termcpropd 49614 Two structures with the sa...
oppctermhom 49615 The opposite category of a...
oppctermco 49616 The opposite category of a...
oppcterm 49617 The opposite category of a...
functermclem 49618 Lemma for ~ functermc . (...
functermc 49619 Functor to a terminal cate...
functermc2 49620 Functor to a terminal cate...
functermceu 49621 There exists a unique func...
fulltermc 49622 A functor to a terminal ca...
fulltermc2 49623 Given a full functor to a ...
termcterm 49624 A terminal category is a t...
termcterm2 49625 A terminal object of the c...
termcterm3 49626 In the category of small c...
termcciso 49627 A category is isomorphic t...
termccisoeu 49628 The isomorphism between te...
termc2 49629 If there exists a unique f...
termc 49630 Alternate definition of ` ...
dftermc2 49631 Alternate definition of ` ...
eufunclem 49632 If there exists a unique f...
eufunc 49633 If there exists a unique f...
idfudiag1lem 49634 Lemma for ~ idfudiag1bas a...
idfudiag1bas 49635 If the identity functor of...
idfudiag1 49636 If the identity functor of...
euendfunc 49637 If there exists a unique e...
euendfunc2 49638 If there exists a unique e...
termcarweu 49639 There exists a unique disj...
arweuthinc 49640 If a structure has a uniqu...
arweutermc 49641 If a structure has a uniqu...
dftermc3 49642 Alternate definition of ` ...
termcfuncval 49643 The value of a functor fro...
diag1f1olem 49644 To any functor from a term...
diag1f1o 49645 The object part of the dia...
termcnatval 49646 Value of natural transform...
diag2f1olem 49647 Lemma for ~ diag2f1o . (C...
diag2f1o 49648 If ` D ` is terminal, the ...
diagffth 49649 The diagonal functor is a ...
diagciso 49650 The diagonal functor is an...
diagcic 49651 Any category ` C ` is isom...
funcsn 49652 The category of one functo...
fucterm 49653 The category of functors t...
0fucterm 49654 The category of functors f...
termfucterm 49655 All functors between two t...
cofuterm 49656 Post-compose with a functo...
uobeqterm 49657 Universal objects and term...
isinito4 49658 The predicate "is an initi...
isinito4a 49659 The predicate "is an initi...
prstcval 49662 Lemma for ~ prstcnidlem an...
prstcnidlem 49663 Lemma for ~ prstcnid and ~...
prstcnid 49664 Components other than ` Ho...
prstcbas 49665 The base set is unchanged....
prstcleval 49666 Value of the less-than-or-...
prstcle 49667 Value of the less-than-or-...
prstcocval 49668 Orthocomplementation is un...
prstcoc 49669 Orthocomplementation is un...
prstchomval 49670 Hom-sets of the constructe...
prstcprs 49671 The category is a preorder...
prstcthin 49672 The preordered set is equi...
prstchom 49673 Hom-sets of the constructe...
prstchom2 49674 Hom-sets of the constructe...
prstchom2ALT 49675 Hom-sets of the constructe...
oduoppcbas 49676 The dual of a preordered s...
oduoppcciso 49677 The dual of a preordered s...
postcpos 49678 The converted category is ...
postcposALT 49679 Alternate proof of ~ postc...
postc 49680 The converted category is ...
discsntermlem 49681 A singlegon is an element ...
basrestermcfolem 49682 An element of the class of...
discbas 49683 A discrete category (a cat...
discthin 49684 A discrete category (a cat...
discsnterm 49685 A discrete category (a cat...
basrestermcfo 49686 The base function restrict...
termcnex 49687 The class of all terminal ...
mndtcval 49690 Value of the category buil...
mndtcbasval 49691 The base set of the catego...
mndtcbas 49692 The category built from a ...
mndtcob 49693 Lemma for ~ mndtchom and ~...
mndtcbas2 49694 Two objects in a category ...
mndtchom 49695 The only hom-set of the ca...
mndtcco 49696 The composition of the cat...
mndtcco2 49697 The composition of the cat...
mndtccatid 49698 Lemma for ~ mndtccat and ~...
mndtccat 49699 The function value is a ca...
mndtcid 49700 The identity morphism, or ...
oppgoppchom 49701 The converted opposite mon...
oppgoppcco 49702 The converted opposite mon...
oppgoppcid 49703 The converted opposite mon...
grptcmon 49704 All morphisms in a categor...
grptcepi 49705 All morphisms in a categor...
2arwcatlem1 49706 Lemma for ~ 2arwcat . (Co...
2arwcatlem2 49707 Lemma for ~ 2arwcat . (Co...
2arwcatlem3 49708 Lemma for ~ 2arwcat . (Co...
2arwcatlem4 49709 Lemma for ~ 2arwcat . (Co...
2arwcatlem5 49710 Lemma for ~ 2arwcat . (Co...
2arwcat 49711 The condition for a struct...
incat 49712 Constructing a category wi...
setc1onsubc 49713 Construct a category with ...
cnelsubclem 49714 Lemma for ~ cnelsubc . (C...
cnelsubc 49715 Remark 4.2(2) of [Adamek] ...
lanfn 49720 ` Lan ` is a function on `...
ranfn 49721 ` Ran ` is a function on `...
reldmlan 49722 The domain of ` Lan ` is a...
reldmran 49723 The domain of ` Ran ` is a...
lanfval 49724 Value of the function gene...
ranfval 49725 Value of the function gene...
lanpropd 49726 If the categories have the...
ranpropd 49727 If the categories have the...
reldmlan2 49728 The domain of ` ( P Lan E ...
reldmran2 49729 The domain of ` ( P Ran E ...
lanval 49730 Value of the set of left K...
ranval 49731 Value of the set of right ...
lanrcl 49732 Reverse closure for left K...
ranrcl 49733 Reverse closure for right ...
rellan 49734 The set of left Kan extens...
relran 49735 The set of right Kan exten...
islan 49736 A left Kan extension is a ...
islan2 49737 A left Kan extension is a ...
lanval2 49738 The set of left Kan extens...
isran 49739 A right Kan extension is a...
isran2 49740 A right Kan extension is a...
ranval2 49741 The set of right Kan exten...
ranval3 49742 The set of right Kan exten...
lanrcl2 49743 Reverse closure for left K...
lanrcl3 49744 Reverse closure for left K...
lanrcl4 49745 The first component of a l...
lanrcl5 49746 The second component of a ...
ranrcl2 49747 Reverse closure for right ...
ranrcl3 49748 Reverse closure for right ...
ranrcl4lem 49749 Lemma for ~ ranrcl4 and ~ ...
ranrcl4 49750 The first component of a r...
ranrcl5 49751 The second component of a ...
lanup 49752 The universal property of ...
ranup 49753 The universal property of ...
reldmlmd 49758 The domain of ` Limit ` is...
reldmcmd 49759 The domain of ` Colimit ` ...
lmdfval 49760 Function value of ` Limit ...
cmdfval 49761 Function value of ` Colimi...
lmdrcl 49762 Reverse closure for a limi...
cmdrcl 49763 Reverse closure for a coli...
reldmlmd2 49764 The domain of ` ( C Limit ...
reldmcmd2 49765 The domain of ` ( C Colimi...
lmdfval2 49766 The set of limits of a dia...
cmdfval2 49767 The set of colimits of a d...
lmdpropd 49768 If the categories have the...
cmdpropd 49769 If the categories have the...
rellmd 49770 The set of limits of a dia...
relcmd 49771 The set of colimits of a d...
concl 49772 A natural transformation f...
coccl 49773 A natural transformation t...
concom 49774 A cone to a diagram commut...
coccom 49775 A co-cone to a diagram com...
islmd 49776 The universal property of ...
iscmd 49777 The universal property of ...
lmddu 49778 The duality of limits and ...
cmddu 49779 The duality of limits and ...
initocmd 49780 Initial objects are the ob...
termolmd 49781 Terminal objects are the o...
lmdran 49782 To each limit of a diagram...
cmdlan 49783 To each colimit of a diagr...
nfintd 49784 Bound-variable hypothesis ...
nfiund 49785 Bound-variable hypothesis ...
nfiundg 49786 Bound-variable hypothesis ...
iunord 49787 The indexed union of a col...
iunordi 49788 The indexed union of a col...
spd 49789 Specialization deduction, ...
spcdvw 49790 A version of ~ spcdv where...
tfis2d 49791 Transfinite Induction Sche...
bnd2d 49792 Deduction form of ~ bnd2 ....
dffun3f 49793 Alternate definition of fu...
setrecseq 49796 Equality theorem for set r...
nfsetrecs 49797 Bound-variable hypothesis ...
setrec1lem1 49798 Lemma for ~ setrec1 . Thi...
setrec1lem2 49799 Lemma for ~ setrec1 . If ...
setrec1lem3 49800 Lemma for ~ setrec1 . If ...
setrec1lem4 49801 Lemma for ~ setrec1 . If ...
setrec1 49802 This is the first of two f...
setrec2fun 49803 This is the second of two ...
setrec2lem1 49804 Lemma for ~ setrec2 . The...
setrec2lem2 49805 Lemma for ~ setrec2 . The...
setrec2 49806 This is the second of two ...
setrec2v 49807 Version of ~ setrec2 with ...
setrec2mpt 49808 Version of ~ setrec2 where...
setis 49809 Version of ~ setrec2 expre...
elsetrecslem 49810 Lemma for ~ elsetrecs . A...
elsetrecs 49811 A set ` A ` is an element ...
setrecsss 49812 The ` setrecs ` operator r...
setrecsres 49813 A recursively generated cl...
vsetrec 49814 Construct ` _V ` using set...
0setrec 49815 If a function sends the em...
onsetreclem1 49816 Lemma for ~ onsetrec . (C...
onsetreclem2 49817 Lemma for ~ onsetrec . (C...
onsetreclem3 49818 Lemma for ~ onsetrec . (C...
onsetrec 49819 Construct ` On ` using set...
elpglem1 49822 Lemma for ~ elpg . (Contr...
elpglem2 49823 Lemma for ~ elpg . (Contr...
elpglem3 49824 Lemma for ~ elpg . (Contr...
elpg 49825 Membership in the class of...
pgindlem 49826 Lemma for ~ pgind . (Cont...
pgindnf 49827 Version of ~ pgind with ex...
pgind 49828 Induction on partizan game...
sbidd 49829 An identity theorem for su...
sbidd-misc 49830 An identity theorem for su...
gte-lte 49835 Simple relationship betwee...
gt-lt 49836 Simple relationship betwee...
gte-lteh 49837 Relationship between ` <_ ...
gt-lth 49838 Relationship between ` < `...
ex-gt 49839 Simple example of ` > ` , ...
ex-gte 49840 Simple example of ` >_ ` ,...
sinhval-named 49847 Value of the named sinh fu...
coshval-named 49848 Value of the named cosh fu...
tanhval-named 49849 Value of the named tanh fu...
sinh-conventional 49850 Conventional definition of...
sinhpcosh 49851 Prove that ` ( sinh `` A )...
secval 49858 Value of the secant functi...
cscval 49859 Value of the cosecant func...
cotval 49860 Value of the cotangent fun...
seccl 49861 The closure of the secant ...
csccl 49862 The closure of the cosecan...
cotcl 49863 The closure of the cotange...
reseccl 49864 The closure of the secant ...
recsccl 49865 The closure of the cosecan...
recotcl 49866 The closure of the cotange...
recsec 49867 The reciprocal of secant i...
reccsc 49868 The reciprocal of cosecant...
reccot 49869 The reciprocal of cotangen...
rectan 49870 The reciprocal of tangent ...
sec0 49871 The value of the secant fu...
onetansqsecsq 49872 Prove the tangent squared ...
cotsqcscsq 49873 Prove the tangent squared ...
ifnmfalse 49874 If A is not a member of B,...
logb2aval 49875 Define the value of the ` ...
mvlraddi 49882 Move the right term in a s...
assraddsubi 49883 Associate RHS addition-sub...
joinlmuladdmuli 49884 Join AB+CB into (A+C) on L...
joinlmulsubmuld 49885 Join AB-CB into (A-C) on L...
joinlmulsubmuli 49886 Join AB-CB into (A-C) on L...
mvlrmuld 49887 Move the right term in a p...
mvlrmuli 49888 Move the right term in a p...
i2linesi 49889 Solve for the intersection...
i2linesd 49890 Solve for the intersection...
alimp-surprise 49891 Demonstrate that when usin...
alimp-no-surprise 49892 There is no "surprise" in ...
empty-surprise 49893 Demonstrate that when usin...
empty-surprise2 49894 "Prove" that false is true...
eximp-surprise 49895 Show what implication insi...
eximp-surprise2 49896 Show that "there exists" w...
alsconv 49901 There is an equivalence be...
alsi1d 49902 Deduction rule: Given "al...
alsi2d 49903 Deduction rule: Given "al...
alsc1d 49904 Deduction rule: Given "al...
alsc2d 49905 Deduction rule: Given "al...
alscn0d 49906 Deduction rule: Given "al...
alsi-no-surprise 49907 Demonstrate that there is ...
5m4e1 49908 Prove that 5 - 4 = 1. (Co...
2p2ne5 49909 Prove that ` 2 + 2 =/= 5 `...
resolution 49910 Resolution rule. This is ...
testable 49911 In classical logic all wff...
aacllem 49912 Lemma for other theorems a...
amgmwlem 49913 Weighted version of ~ amgm...
amgmlemALT 49914 Alternate proof of ~ amgml...
amgmw2d 49915 Weighted arithmetic-geomet...
young2d 49916 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator