MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01i 189 Inference associated with ...
pm2.01d 190 Deduction based on reducti...
pm2.6 191 Theorem *2.6 of [Whitehead...
pm2.61 192 Theorem *2.61 of [Whitehea...
pm2.65 193 Theorem *2.65 of [Whitehea...
pm2.65i 194 Inference for proof by con...
pm2.21dd 195 A contradiction implies an...
pm2.65d 196 Deduction for proof by con...
mto 197 The rule of modus tollens....
mtod 198 Modus tollens deduction. ...
mtoi 199 Modus tollens inference. ...
mt2 200 A rule similar to modus to...
mt3 201 A rule similar to modus to...
peirce 202 Peirce's axiom. A non-int...
looinv 203 The Inversion Axiom of the...
bijust0 204 A self-implication (see ~ ...
bijust 205 Theorem used to justify th...
impbi 208 Property of the biconditio...
impbii 209 Infer an equivalence from ...
impbidd 210 Deduce an equivalence from...
impbid21d 211 Deduce an equivalence from...
impbid 212 Deduce an equivalence from...
dfbi1 213 Relate the biconditional c...
dfbi1ALT 214 Alternate proof of ~ dfbi1...
biimp 215 Property of the biconditio...
biimpi 216 Infer an implication from ...
sylbi 217 A mixed syllogism inferenc...
sylib 218 A mixed syllogism inferenc...
sylbb 219 A mixed syllogism inferenc...
biimpr 220 Property of the biconditio...
bicom1 221 Commutative law for the bi...
bicom 222 Commutative law for the bi...
bicomd 223 Commute two sides of a bic...
bicomi 224 Inference from commutative...
impbid1 225 Infer an equivalence from ...
impbid2 226 Infer an equivalence from ...
impcon4bid 227 A variation on ~ impbid wi...
biimpri 228 Infer a converse implicati...
biimpd 229 Deduce an implication from...
mpbi 230 An inference from a bicond...
mpbir 231 An inference from a bicond...
mpbid 232 A deduction from a bicondi...
mpbii 233 An inference from a nested...
sylibr 234 A mixed syllogism inferenc...
sylbir 235 A mixed syllogism inferenc...
sylbbr 236 A mixed syllogism inferenc...
sylbb1 237 A mixed syllogism inferenc...
sylbb2 238 A mixed syllogism inferenc...
sylibd 239 A syllogism deduction. (C...
sylbid 240 A syllogism deduction. (C...
mpbidi 241 A deduction from a bicondi...
biimtrid 242 A mixed syllogism inferenc...
biimtrrid 243 A mixed syllogism inferenc...
imbitrid 244 A mixed syllogism inferenc...
syl5ibcom 245 A mixed syllogism inferenc...
imbitrrid 246 A mixed syllogism inferenc...
syl5ibrcom 247 A mixed syllogism inferenc...
biimprd 248 Deduce a converse implicat...
biimpcd 249 Deduce a commuted implicat...
biimprcd 250 Deduce a converse commuted...
imbitrdi 251 A mixed syllogism inferenc...
imbitrrdi 252 A mixed syllogism inferenc...
biimtrdi 253 A mixed syllogism inferenc...
biimtrrdi 254 A mixed syllogism inferenc...
syl7bi 255 A mixed syllogism inferenc...
syl8ib 256 A syllogism rule of infere...
mpbird 257 A deduction from a bicondi...
mpbiri 258 An inference from a nested...
sylibrd 259 A syllogism deduction. (C...
sylbird 260 A syllogism deduction. (C...
biid 261 Principle of identity for ...
biidd 262 Principle of identity with...
pm5.1im 263 Two propositions are equiv...
2th 264 Two truths are equivalent....
2thd 265 Two truths are equivalent....
monothetic 266 Two self-implications (see...
ibi 267 Inference that converts a ...
ibir 268 Inference that converts a ...
ibd 269 Deduction that converts a ...
pm5.74 270 Distribution of implicatio...
pm5.74i 271 Distribution of implicatio...
pm5.74ri 272 Distribution of implicatio...
pm5.74d 273 Distribution of implicatio...
pm5.74rd 274 Distribution of implicatio...
bitri 275 An inference from transiti...
bitr2i 276 An inference from transiti...
bitr3i 277 An inference from transiti...
bitr4i 278 An inference from transiti...
bitrd 279 Deduction form of ~ bitri ...
bitr2d 280 Deduction form of ~ bitr2i...
bitr3d 281 Deduction form of ~ bitr3i...
bitr4d 282 Deduction form of ~ bitr4i...
bitrid 283 A syllogism inference from...
bitr2id 284 A syllogism inference from...
bitr3id 285 A syllogism inference from...
bitr3di 286 A syllogism inference from...
bitrdi 287 A syllogism inference from...
bitr2di 288 A syllogism inference from...
bitr4di 289 A syllogism inference from...
bitr4id 290 A syllogism inference from...
3imtr3i 291 A mixed syllogism inferenc...
3imtr4i 292 A mixed syllogism inferenc...
3imtr3d 293 More general version of ~ ...
3imtr4d 294 More general version of ~ ...
3imtr3g 295 More general version of ~ ...
3imtr4g 296 More general version of ~ ...
3bitri 297 A chained inference from t...
3bitrri 298 A chained inference from t...
3bitr2i 299 A chained inference from t...
3bitr2ri 300 A chained inference from t...
3bitr3i 301 A chained inference from t...
3bitr3ri 302 A chained inference from t...
3bitr4i 303 A chained inference from t...
3bitr4ri 304 A chained inference from t...
3bitrd 305 Deduction from transitivit...
3bitrrd 306 Deduction from transitivit...
3bitr2d 307 Deduction from transitivit...
3bitr2rd 308 Deduction from transitivit...
3bitr3d 309 Deduction from transitivit...
3bitr3rd 310 Deduction from transitivit...
3bitr4d 311 Deduction from transitivit...
3bitr4rd 312 Deduction from transitivit...
3bitr3g 313 More general version of ~ ...
3bitr4g 314 More general version of ~ ...
notnotb 315 Double negation. Theorem ...
con34b 316 A biconditional form of co...
con4bid 317 A contraposition deduction...
notbid 318 Deduction negating both si...
notbi 319 Contraposition. Theorem *...
notbii 320 Negate both sides of a log...
con4bii 321 A contraposition inference...
mtbi 322 An inference from a bicond...
mtbir 323 An inference from a bicond...
mtbid 324 A deduction from a bicondi...
mtbird 325 A deduction from a bicondi...
mtbii 326 An inference from a bicond...
mtbiri 327 An inference from a bicond...
sylnib 328 A mixed syllogism inferenc...
sylnibr 329 A mixed syllogism inferenc...
sylnbi 330 A mixed syllogism inferenc...
sylnbir 331 A mixed syllogism inferenc...
xchnxbi 332 Replacement of a subexpres...
xchnxbir 333 Replacement of a subexpres...
xchbinx 334 Replacement of a subexpres...
xchbinxr 335 Replacement of a subexpres...
imbi2i 336 Introduce an antecedent to...
bibi2i 337 Inference adding a bicondi...
bibi1i 338 Inference adding a bicondi...
bibi12i 339 The equivalence of two equ...
imbi2d 340 Deduction adding an antece...
imbi1d 341 Deduction adding a consequ...
bibi2d 342 Deduction adding a bicondi...
bibi1d 343 Deduction adding a bicondi...
imbi12d 344 Deduction joining two equi...
bibi12d 345 Deduction joining two equi...
imbi12 346 Closed form of ~ imbi12i ....
imbi1 347 Theorem *4.84 of [Whitehea...
imbi2 348 Theorem *4.85 of [Whitehea...
imbi1i 349 Introduce a consequent to ...
imbi12i 350 Join two logical equivalen...
bibi1 351 Theorem *4.86 of [Whitehea...
bitr3 352 Closed nested implication ...
con2bi 353 Contraposition. Theorem *...
con2bid 354 A contraposition deduction...
con1bid 355 A contraposition deduction...
con1bii 356 A contraposition inference...
con2bii 357 A contraposition inference...
con1b 358 Contraposition. Bidirecti...
con2b 359 Contraposition. Bidirecti...
biimt 360 A wff is equivalent to its...
pm5.5 361 Theorem *5.5 of [Whitehead...
a1bi 362 Inference introducing a th...
mt2bi 363 A false consequent falsifi...
mtt 364 Modus-tollens-like theorem...
imnot 365 If a proposition is false,...
pm5.501 366 Theorem *5.501 of [Whitehe...
ibib 367 Implication in terms of im...
ibibr 368 Implication in terms of im...
tbt 369 A wff is equivalent to its...
nbn2 370 The negation of a wff is e...
bibif 371 Transfer negation via an e...
nbn 372 The negation of a wff is e...
nbn3 373 Transfer falsehood via equ...
pm5.21im 374 Two propositions are equiv...
2false 375 Two falsehoods are equival...
2falsed 376 Two falsehoods are equival...
pm5.21ni 377 Two propositions implying ...
pm5.21nii 378 Eliminate an antecedent im...
pm5.21ndd 379 Eliminate an antecedent im...
bija 380 Combine antecedents into a...
pm5.18 381 Theorem *5.18 of [Whitehea...
xor3 382 Two ways to express "exclu...
nbbn 383 Move negation outside of b...
biass 384 Associative law for the bi...
biluk 385 Lukasiewicz's shortest axi...
pm5.19 386 Theorem *5.19 of [Whitehea...
bi2.04 387 Logical equivalence of com...
pm5.4 388 Antecedent absorption impl...
imdi 389 Distributive law for impli...
pm5.41 390 Theorem *5.41 of [Whitehea...
imbibi 391 The antecedent of one side...
pm4.8 392 Theorem *4.8 of [Whitehead...
pm4.81 393 A formula is equivalent to...
imim21b 394 Simplify an implication be...
pm4.63 397 Theorem *4.63 of [Whitehea...
pm4.67 398 Theorem *4.67 of [Whitehea...
imnan 399 Express an implication in ...
imnani 400 Infer an implication from ...
iman 401 Implication in terms of co...
pm3.24 402 Law of noncontradiction. ...
annim 403 Express a conjunction in t...
pm4.61 404 Theorem *4.61 of [Whitehea...
pm4.65 405 Theorem *4.65 of [Whitehea...
imp 406 Importation inference. (C...
impcom 407 Importation inference with...
con3dimp 408 Variant of ~ con3d with im...
mpnanrd 409 Eliminate the right side o...
impd 410 Importation deduction. (C...
impcomd 411 Importation deduction with...
ex 412 Exportation inference. (T...
expcom 413 Exportation inference with...
expdcom 414 Commuted form of ~ expd . ...
expd 415 Exportation deduction. (C...
expcomd 416 Deduction form of ~ expcom...
imp31 417 An importation inference. ...
imp32 418 An importation inference. ...
exp31 419 An exportation inference. ...
exp32 420 An exportation inference. ...
imp4b 421 An importation inference. ...
imp4a 422 An importation inference. ...
imp4c 423 An importation inference. ...
imp4d 424 An importation inference. ...
imp41 425 An importation inference. ...
imp42 426 An importation inference. ...
imp43 427 An importation inference. ...
imp44 428 An importation inference. ...
imp45 429 An importation inference. ...
exp4b 430 An exportation inference. ...
exp4a 431 An exportation inference. ...
exp4c 432 An exportation inference. ...
exp4d 433 An exportation inference. ...
exp41 434 An exportation inference. ...
exp42 435 An exportation inference. ...
exp43 436 An exportation inference. ...
exp44 437 An exportation inference. ...
exp45 438 An exportation inference. ...
imp5d 439 An importation inference. ...
imp5a 440 An importation inference. ...
imp5g 441 An importation inference. ...
imp55 442 An importation inference. ...
imp511 443 An importation inference. ...
exp5c 444 An exportation inference. ...
exp5j 445 An exportation inference. ...
exp5l 446 An exportation inference. ...
exp53 447 An exportation inference. ...
pm3.3 448 Theorem *3.3 (Exp) of [Whi...
pm3.31 449 Theorem *3.31 (Imp) of [Wh...
impexp 450 Import-export theorem. Pa...
impancom 451 Mixed importation/commutat...
expdimp 452 A deduction version of exp...
expimpd 453 Exportation followed by a ...
impr 454 Import a wff into a right ...
impl 455 Export a wff from a left c...
expr 456 Export a wff from a right ...
expl 457 Export a wff from a left c...
ancoms 458 Inference commuting conjun...
pm3.22 459 Theorem *3.22 of [Whitehea...
ancom 460 Commutative law for conjun...
ancomd 461 Commutation of conjuncts i...
biancomi 462 Commuting conjunction in a...
biancomd 463 Commuting conjunction in a...
ancomst 464 Closed form of ~ ancoms . ...
ancomsd 465 Deduction commuting conjun...
anasss 466 Associative law for conjun...
anassrs 467 Associative law for conjun...
anass 468 Associative law for conjun...
pm3.2 469 Join antecedents with conj...
pm3.2i 470 Infer conjunction of premi...
pm3.21 471 Join antecedents with conj...
pm3.43i 472 Nested conjunction of ante...
pm3.43 473 Theorem *3.43 (Comp) of [W...
dfbi2 474 A theorem similar to the s...
dfbi 475 Definition ~ df-bi rewritt...
biimpa 476 Importation inference from...
biimpar 477 Importation inference from...
biimpac 478 Importation inference from...
biimparc 479 Importation inference from...
adantr 480 Inference adding a conjunc...
adantl 481 Inference adding a conjunc...
simpl 482 Elimination of a conjunct....
simpli 483 Inference eliminating a co...
simpr 484 Elimination of a conjunct....
simpri 485 Inference eliminating a co...
intnan 486 Introduction of conjunct i...
intnanr 487 Introduction of conjunct i...
intnand 488 Introduction of conjunct i...
intnanrd 489 Introduction of conjunct i...
adantld 490 Deduction adding a conjunc...
adantrd 491 Deduction adding a conjunc...
pm3.41 492 Theorem *3.41 of [Whitehea...
pm3.42 493 Theorem *3.42 of [Whitehea...
simpld 494 Deduction eliminating a co...
simprd 495 Deduction eliminating a co...
simprbi 496 Deduction eliminating a co...
simplbi 497 Deduction eliminating a co...
simprbda 498 Deduction eliminating a co...
simplbda 499 Deduction eliminating a co...
simplbi2 500 Deduction eliminating a co...
simplbi2comt 501 Closed form of ~ simplbi2c...
simplbi2com 502 A deduction eliminating a ...
simpl2im 503 Implication from an elimin...
simplbiim 504 Implication from an elimin...
impel 505 An inference for implicati...
mpan9 506 Modus ponens conjoining di...
sylan9 507 Nested syllogism inference...
sylan9r 508 Nested syllogism inference...
sylan9bb 509 Nested syllogism inference...
sylan9bbr 510 Nested syllogism inference...
jca 511 Deduce conjunction of the ...
jcad 512 Deduction conjoining the c...
jca2 513 Inference conjoining the c...
jca31 514 Join three consequents. (...
jca32 515 Join three consequents. (...
jcai 516 Deduction replacing implic...
jcab 517 Distributive law for impli...
pm4.76 518 Theorem *4.76 of [Whitehea...
jctil 519 Inference conjoining a the...
jctir 520 Inference conjoining a the...
jccir 521 Inference conjoining a con...
jccil 522 Inference conjoining a con...
jctl 523 Inference conjoining a the...
jctr 524 Inference conjoining a the...
jctild 525 Deduction conjoining a the...
jctird 526 Deduction conjoining a the...
iba 527 Introduction of antecedent...
ibar 528 Introduction of antecedent...
biantru 529 A wff is equivalent to its...
biantrur 530 A wff is equivalent to its...
biantrud 531 A wff is equivalent to its...
biantrurd 532 A wff is equivalent to its...
bianfi 533 A wff conjoined with false...
bianfd 534 A wff conjoined with false...
baib 535 Move conjunction outside o...
baibr 536 Move conjunction outside o...
rbaibr 537 Move conjunction outside o...
rbaib 538 Move conjunction outside o...
baibd 539 Move conjunction outside o...
rbaibd 540 Move conjunction outside o...
bianabs 541 Absorb a hypothesis into t...
pm5.44 542 Theorem *5.44 of [Whitehea...
pm5.42 543 Theorem *5.42 of [Whitehea...
ancl 544 Conjoin antecedent to left...
anclb 545 Conjoin antecedent to left...
ancr 546 Conjoin antecedent to righ...
ancrb 547 Conjoin antecedent to righ...
ancli 548 Deduction conjoining antec...
ancri 549 Deduction conjoining antec...
ancld 550 Deduction conjoining antec...
ancrd 551 Deduction conjoining antec...
impac 552 Importation with conjuncti...
anc2l 553 Conjoin antecedent to left...
anc2r 554 Conjoin antecedent to righ...
anc2li 555 Deduction conjoining antec...
anc2ri 556 Deduction conjoining antec...
pm4.71 557 Implication in terms of bi...
pm4.71r 558 Implication in terms of bi...
pm4.71i 559 Inference converting an im...
pm4.71ri 560 Inference converting an im...
pm4.71d 561 Deduction converting an im...
pm4.71rd 562 Deduction converting an im...
pm4.24 563 Theorem *4.24 of [Whitehea...
anidm 564 Idempotent law for conjunc...
anidmdbi 565 Conjunction idempotence wi...
anidms 566 Inference from idempotent ...
imdistan 567 Distribution of implicatio...
imdistani 568 Distribution of implicatio...
imdistanri 569 Distribution of implicatio...
imdistand 570 Distribution of implicatio...
imdistanda 571 Distribution of implicatio...
pm5.3 572 Theorem *5.3 of [Whitehead...
pm5.32 573 Distribution of implicatio...
pm5.32i 574 Distribution of implicatio...
pm5.32ri 575 Distribution of implicatio...
bianim 576 Exchanging conjunction in ...
pm5.32d 577 Distribution of implicatio...
pm5.32rd 578 Distribution of implicatio...
pm5.32da 579 Distribution of implicatio...
sylan 580 A syllogism inference. (C...
sylanb 581 A syllogism inference. (C...
sylanbr 582 A syllogism inference. (C...
sylanbrc 583 Syllogism inference. (Con...
syl2anc 584 Syllogism inference combin...
syl2anc2 585 Double syllogism inference...
sylancl 586 Syllogism inference combin...
sylancr 587 Syllogism inference combin...
sylancom 588 Syllogism inference with c...
sylanblc 589 Syllogism inference combin...
sylanblrc 590 Syllogism inference combin...
syldan 591 A syllogism deduction with...
sylbida 592 A syllogism deduction. (C...
sylan2 593 A syllogism inference. (C...
sylan2b 594 A syllogism inference. (C...
sylan2br 595 A syllogism inference. (C...
syl2an 596 A double syllogism inferen...
syl2anr 597 A double syllogism inferen...
syl2anb 598 A double syllogism inferen...
syl2anbr 599 A double syllogism inferen...
sylancb 600 A syllogism inference comb...
sylancbr 601 A syllogism inference comb...
syldanl 602 A syllogism deduction with...
syland 603 A syllogism deduction. (C...
sylani 604 A syllogism inference. (C...
sylan2d 605 A syllogism deduction. (C...
sylan2i 606 A syllogism inference. (C...
syl2ani 607 A syllogism inference. (C...
syl2and 608 A syllogism deduction. (C...
anim12d 609 Conjoin antecedents and co...
anim12d1 610 Variant of ~ anim12d where...
anim1d 611 Add a conjunct to right of...
anim2d 612 Add a conjunct to left of ...
anim12i 613 Conjoin antecedents and co...
anim12ci 614 Variant of ~ anim12i with ...
anim1i 615 Introduce conjunct to both...
anim1ci 616 Introduce conjunct to both...
anim2i 617 Introduce conjunct to both...
anim12ii 618 Conjoin antecedents and co...
anim12dan 619 Conjoin antecedents and co...
im2anan9 620 Deduction joining nested i...
im2anan9r 621 Deduction joining nested i...
pm3.45 622 Theorem *3.45 (Fact) of [W...
anbi2i 623 Introduce a left conjunct ...
anbi1i 624 Introduce a right conjunct...
anbi2ci 625 Variant of ~ anbi2i with c...
anbi1ci 626 Variant of ~ anbi1i with c...
bianbi 627 Exchanging conjunction in ...
anbi12i 628 Conjoin both sides of two ...
anbi12ci 629 Variant of ~ anbi12i with ...
anbi2d 630 Deduction adding a left co...
anbi1d 631 Deduction adding a right c...
anbi12d 632 Deduction joining two equi...
anbi1 633 Introduce a right conjunct...
anbi2 634 Introduce a left conjunct ...
anbi1cd 635 Introduce a proposition as...
an2anr 636 Double commutation in conj...
pm4.38 637 Theorem *4.38 of [Whitehea...
bi2anan9 638 Deduction joining two equi...
bi2anan9r 639 Deduction joining two equi...
bi2bian9 640 Deduction joining two bico...
anbiim 641 Adding biconditional when ...
bianass 642 An inference to merge two ...
bianassc 643 An inference to merge two ...
an21 644 Swap two conjuncts. (Cont...
an12 645 Swap two conjuncts. Note ...
an32 646 A rearrangement of conjunc...
an13 647 A rearrangement of conjunc...
an31 648 A rearrangement of conjunc...
an12s 649 Swap two conjuncts in ante...
ancom2s 650 Inference commuting a nest...
an13s 651 Swap two conjuncts in ante...
an32s 652 Swap two conjuncts in ante...
ancom1s 653 Inference commuting a nest...
an31s 654 Swap two conjuncts in ante...
anass1rs 655 Commutative-associative la...
an4 656 Rearrangement of 4 conjunc...
an42 657 Rearrangement of 4 conjunc...
an43 658 Rearrangement of 4 conjunc...
an3 659 A rearrangement of conjunc...
an4s 660 Inference rearranging 4 co...
an42s 661 Inference rearranging 4 co...
anabs1 662 Absorption into embedded c...
anabs5 663 Absorption into embedded c...
anabs7 664 Absorption into embedded c...
anabsan 665 Absorption of antecedent w...
anabss1 666 Absorption of antecedent i...
anabss4 667 Absorption of antecedent i...
anabss5 668 Absorption of antecedent i...
anabsi5 669 Absorption of antecedent i...
anabsi6 670 Absorption of antecedent i...
anabsi7 671 Absorption of antecedent i...
anabsi8 672 Absorption of antecedent i...
anabss7 673 Absorption of antecedent i...
anabsan2 674 Absorption of antecedent w...
anabss3 675 Absorption of antecedent i...
anandi 676 Distribution of conjunctio...
anandir 677 Distribution of conjunctio...
anandis 678 Inference that undistribut...
anandirs 679 Inference that undistribut...
sylanl1 680 A syllogism inference. (C...
sylanl2 681 A syllogism inference. (C...
sylanr1 682 A syllogism inference. (C...
sylanr2 683 A syllogism inference. (C...
syl6an 684 A syllogism deduction comb...
syl2an2r 685 ~ syl2anr with antecedents...
syl2an2 686 ~ syl2an with antecedents ...
mpdan 687 An inference based on modu...
mpancom 688 An inference based on modu...
mpidan 689 A deduction which "stacks"...
mpan 690 An inference based on modu...
mpan2 691 An inference based on modu...
mp2an 692 An inference based on modu...
mp4an 693 An inference based on modu...
mpan2d 694 A deduction based on modus...
mpand 695 A deduction based on modus...
mpani 696 An inference based on modu...
mpan2i 697 An inference based on modu...
mp2ani 698 An inference based on modu...
mp2and 699 A deduction based on modus...
mpanl1 700 An inference based on modu...
mpanl2 701 An inference based on modu...
mpanl12 702 An inference based on modu...
mpanr1 703 An inference based on modu...
mpanr2 704 An inference based on modu...
mpanr12 705 An inference based on modu...
mpanlr1 706 An inference based on modu...
mpbirand 707 Detach truth from conjunct...
mpbiran2d 708 Detach truth from conjunct...
mpbiran 709 Detach truth from conjunct...
mpbiran2 710 Detach truth from conjunct...
mpbir2an 711 Detach a conjunction of tr...
mpbi2and 712 Detach a conjunction of tr...
mpbir2and 713 Detach a conjunction of tr...
adantll 714 Deduction adding a conjunc...
adantlr 715 Deduction adding a conjunc...
adantrl 716 Deduction adding a conjunc...
adantrr 717 Deduction adding a conjunc...
adantlll 718 Deduction adding a conjunc...
adantllr 719 Deduction adding a conjunc...
adantlrl 720 Deduction adding a conjunc...
adantlrr 721 Deduction adding a conjunc...
adantrll 722 Deduction adding a conjunc...
adantrlr 723 Deduction adding a conjunc...
adantrrl 724 Deduction adding a conjunc...
adantrrr 725 Deduction adding a conjunc...
ad2antrr 726 Deduction adding two conju...
ad2antlr 727 Deduction adding two conju...
ad2antrl 728 Deduction adding two conju...
ad2antll 729 Deduction adding conjuncts...
ad3antrrr 730 Deduction adding three con...
ad3antlr 731 Deduction adding three con...
ad4antr 732 Deduction adding 4 conjunc...
ad4antlr 733 Deduction adding 4 conjunc...
ad5antr 734 Deduction adding 5 conjunc...
ad5antlr 735 Deduction adding 5 conjunc...
ad6antr 736 Deduction adding 6 conjunc...
ad6antlr 737 Deduction adding 6 conjunc...
ad7antr 738 Deduction adding 7 conjunc...
ad7antlr 739 Deduction adding 7 conjunc...
ad8antr 740 Deduction adding 8 conjunc...
ad8antlr 741 Deduction adding 8 conjunc...
ad9antr 742 Deduction adding 9 conjunc...
ad9antlr 743 Deduction adding 9 conjunc...
ad10antr 744 Deduction adding 10 conjun...
ad10antlr 745 Deduction adding 10 conjun...
ad2ant2l 746 Deduction adding two conju...
ad2ant2r 747 Deduction adding two conju...
ad2ant2lr 748 Deduction adding two conju...
ad2ant2rl 749 Deduction adding two conju...
adantl3r 750 Deduction adding 1 conjunc...
ad4ant13 751 Deduction adding conjuncts...
ad4ant14 752 Deduction adding conjuncts...
ad4ant23 753 Deduction adding conjuncts...
ad4ant24 754 Deduction adding conjuncts...
adantl4r 755 Deduction adding 1 conjunc...
ad5ant13 756 Deduction adding conjuncts...
ad5ant14 757 Deduction adding conjuncts...
ad5ant15 758 Deduction adding conjuncts...
ad5ant23 759 Deduction adding conjuncts...
ad5ant24 760 Deduction adding conjuncts...
ad5ant25 761 Deduction adding conjuncts...
adantl5r 762 Deduction adding 1 conjunc...
adantl6r 763 Deduction adding 1 conjunc...
pm3.33 764 Theorem *3.33 (Syll) of [W...
pm3.34 765 Theorem *3.34 (Syll) of [W...
simpll 766 Simplification of a conjun...
simplld 767 Deduction form of ~ simpll...
simplr 768 Simplification of a conjun...
simplrd 769 Deduction eliminating a do...
simprl 770 Simplification of a conjun...
simprld 771 Deduction eliminating a do...
simprr 772 Simplification of a conjun...
simprrd 773 Deduction form of ~ simprr...
simplll 774 Simplification of a conjun...
simpllr 775 Simplification of a conjun...
simplrl 776 Simplification of a conjun...
simplrr 777 Simplification of a conjun...
simprll 778 Simplification of a conjun...
simprlr 779 Simplification of a conjun...
simprrl 780 Simplification of a conjun...
simprrr 781 Simplification of a conjun...
simp-4l 782 Simplification of a conjun...
simp-4r 783 Simplification of a conjun...
simp-5l 784 Simplification of a conjun...
simp-5r 785 Simplification of a conjun...
simp-6l 786 Simplification of a conjun...
simp-6r 787 Simplification of a conjun...
simp-7l 788 Simplification of a conjun...
simp-7r 789 Simplification of a conjun...
simp-8l 790 Simplification of a conjun...
simp-8r 791 Simplification of a conjun...
simp-9l 792 Simplification of a conjun...
simp-9r 793 Simplification of a conjun...
simp-10l 794 Simplification of a conjun...
simp-10r 795 Simplification of a conjun...
simp-11l 796 Simplification of a conjun...
simp-11r 797 Simplification of a conjun...
pm2.01da 798 Deduction based on reducti...
pm2.18da 799 Deduction based on reducti...
impbida 800 Deduce an equivalence from...
pm5.21nd 801 Eliminate an antecedent im...
pm3.35 802 Conjunctive detachment. T...
pm5.74da 803 Distribution of implicatio...
bitr 804 Theorem *4.22 of [Whitehea...
biantr 805 A transitive law of equiva...
pm4.14 806 Theorem *4.14 of [Whitehea...
pm3.37 807 Theorem *3.37 (Transp) of ...
anim12 808 Conjoin antecedents and co...
pm3.4 809 Conjunction implies implic...
exbiri 810 Inference form of ~ exbir ...
pm2.61ian 811 Elimination of an antecede...
pm2.61dan 812 Elimination of an antecede...
pm2.61ddan 813 Elimination of two anteced...
pm2.61dda 814 Elimination of two anteced...
mtand 815 A modus tollens deduction....
pm2.65da 816 Deduction for proof by con...
condan 817 Proof by contradiction. (...
biadan 818 An implication is equivale...
biadani 819 Inference associated with ...
biadaniALT 820 Alternate proof of ~ biada...
biadanii 821 Inference associated with ...
biadanid 822 Deduction associated with ...
pm5.1 823 Two propositions are equiv...
pm5.21 824 Two propositions are equiv...
pm5.35 825 Theorem *5.35 of [Whitehea...
abai 826 Introduce one conjunct as ...
pm4.45im 827 Conjunction with implicati...
impimprbi 828 An implication and its rev...
nan 829 Theorem to move a conjunct...
pm5.31 830 Theorem *5.31 of [Whitehea...
pm5.31r 831 Variant of ~ pm5.31 . (Co...
pm4.15 832 Theorem *4.15 of [Whitehea...
pm5.36 833 Theorem *5.36 of [Whitehea...
annotanannot 834 A conjunction with a negat...
pm5.33 835 Theorem *5.33 of [Whitehea...
syl12anc 836 Syllogism combined with co...
syl21anc 837 Syllogism combined with co...
syl22anc 838 Syllogism combined with co...
bibiad 839 Eliminate an hypothesis ` ...
syl1111anc 840 Four-hypothesis eliminatio...
syldbl2 841 Stacked hypotheseis implie...
mpsyl4anc 842 An elimination deduction. ...
pm4.87 843 Theorem *4.87 of [Whitehea...
bimsc1 844 Removal of conjunct from o...
a2and 845 Deduction distributing a c...
animpimp2impd 846 Deduction deriving nested ...
pm4.64 849 Theorem *4.64 of [Whitehea...
pm4.66 850 Theorem *4.66 of [Whitehea...
pm2.53 851 Theorem *2.53 of [Whitehea...
pm2.54 852 Theorem *2.54 of [Whitehea...
imor 853 Implication in terms of di...
imori 854 Infer disjunction from imp...
imorri 855 Infer implication from dis...
pm4.62 856 Theorem *4.62 of [Whitehea...
jaoi 857 Inference disjoining the a...
jao1i 858 Add a disjunct in the ante...
jaod 859 Deduction disjoining the a...
mpjaod 860 Eliminate a disjunction in...
ori 861 Infer implication from dis...
orri 862 Infer disjunction from imp...
orrd 863 Deduce disjunction from im...
ord 864 Deduce implication from di...
orci 865 Deduction introducing a di...
olci 866 Deduction introducing a di...
orc 867 Introduction of a disjunct...
olc 868 Introduction of a disjunct...
pm1.4 869 Axiom *1.4 of [WhiteheadRu...
orcom 870 Commutative law for disjun...
orcomd 871 Commutation of disjuncts i...
orcoms 872 Commutation of disjuncts i...
orcd 873 Deduction introducing a di...
olcd 874 Deduction introducing a di...
orcs 875 Deduction eliminating disj...
olcs 876 Deduction eliminating disj...
olcnd 877 A lemma for Conjunctive No...
orcnd 878 A lemma for Conjunctive No...
mtord 879 A modus tollens deduction ...
pm3.2ni 880 Infer negated disjunction ...
pm2.45 881 Theorem *2.45 of [Whitehea...
pm2.46 882 Theorem *2.46 of [Whitehea...
pm2.47 883 Theorem *2.47 of [Whitehea...
pm2.48 884 Theorem *2.48 of [Whitehea...
pm2.49 885 Theorem *2.49 of [Whitehea...
norbi 886 If neither of two proposit...
nbior 887 If two propositions are no...
orel1 888 Elimination of disjunction...
pm2.25 889 Theorem *2.25 of [Whitehea...
orel2 890 Elimination of disjunction...
pm2.67-2 891 Slight generalization of T...
pm2.67 892 Theorem *2.67 of [Whitehea...
curryax 893 A non-intuitionistic posit...
exmid 894 Law of excluded middle, al...
exmidd 895 Law of excluded middle in ...
pm2.1 896 Theorem *2.1 of [Whitehead...
pm2.13 897 Theorem *2.13 of [Whitehea...
pm2.621 898 Theorem *2.621 of [Whitehe...
pm2.62 899 Theorem *2.62 of [Whitehea...
pm2.68 900 Theorem *2.68 of [Whitehea...
dfor2 901 Logical 'or' expressed in ...
pm2.07 902 Theorem *2.07 of [Whitehea...
pm1.2 903 Axiom *1.2 of [WhiteheadRu...
oridm 904 Idempotent law for disjunc...
pm4.25 905 Theorem *4.25 of [Whitehea...
pm2.4 906 Theorem *2.4 of [Whitehead...
pm2.41 907 Theorem *2.41 of [Whitehea...
orim12i 908 Disjoin antecedents and co...
orim1i 909 Introduce disjunct to both...
orim2i 910 Introduce disjunct to both...
orim12dALT 911 Alternate proof of ~ orim1...
orbi2i 912 Inference adding a left di...
orbi1i 913 Inference adding a right d...
orbi12i 914 Infer the disjunction of t...
orbi2d 915 Deduction adding a left di...
orbi1d 916 Deduction adding a right d...
orbi1 917 Theorem *4.37 of [Whitehea...
orbi12d 918 Deduction joining two equi...
pm1.5 919 Axiom *1.5 (Assoc) of [Whi...
or12 920 Swap two disjuncts. (Cont...
orass 921 Associative law for disjun...
pm2.31 922 Theorem *2.31 of [Whitehea...
pm2.32 923 Theorem *2.32 of [Whitehea...
pm2.3 924 Theorem *2.3 of [Whitehead...
or32 925 A rearrangement of disjunc...
or4 926 Rearrangement of 4 disjunc...
or42 927 Rearrangement of 4 disjunc...
orordi 928 Distribution of disjunctio...
orordir 929 Distribution of disjunctio...
orimdi 930 Disjunction distributes ov...
pm2.76 931 Theorem *2.76 of [Whitehea...
pm2.85 932 Theorem *2.85 of [Whitehea...
pm2.75 933 Theorem *2.75 of [Whitehea...
pm4.78 934 Implication distributes ov...
biort 935 A disjunction with a true ...
biorf 936 A wff is equivalent to its...
biortn 937 A wff is equivalent to its...
biorfi 938 The dual of ~ biorf is not...
biorfri 939 A wff is equivalent to its...
biorfriOLD 940 Obsolete version of ~ bior...
pm2.26 941 Theorem *2.26 of [Whitehea...
pm2.63 942 Theorem *2.63 of [Whitehea...
pm2.64 943 Theorem *2.64 of [Whitehea...
pm2.42 944 Theorem *2.42 of [Whitehea...
pm5.11g 945 A general instance of Theo...
pm5.11 946 Theorem *5.11 of [Whitehea...
pm5.12 947 Theorem *5.12 of [Whitehea...
pm5.14 948 Theorem *5.14 of [Whitehea...
pm5.13 949 Theorem *5.13 of [Whitehea...
pm5.55 950 Theorem *5.55 of [Whitehea...
pm4.72 951 Implication in terms of bi...
imimorb 952 Simplify an implication be...
oibabs 953 Absorption of disjunction ...
orbidi 954 Disjunction distributes ov...
pm5.7 955 Disjunction distributes ov...
jaao 956 Inference conjoining and d...
jaoa 957 Inference disjoining and c...
jaoian 958 Inference disjoining the a...
jaodan 959 Deduction disjoining the a...
mpjaodan 960 Eliminate a disjunction in...
pm3.44 961 Theorem *3.44 of [Whitehea...
jao 962 Disjunction of antecedents...
jaob 963 Disjunction of antecedents...
pm4.77 964 Theorem *4.77 of [Whitehea...
pm3.48 965 Theorem *3.48 of [Whitehea...
orim12d 966 Disjoin antecedents and co...
orim1d 967 Disjoin antecedents and co...
orim2d 968 Disjoin antecedents and co...
orim2 969 Axiom *1.6 (Sum) of [White...
pm2.38 970 Theorem *2.38 of [Whitehea...
pm2.36 971 Theorem *2.36 of [Whitehea...
pm2.37 972 Theorem *2.37 of [Whitehea...
pm2.81 973 Theorem *2.81 of [Whitehea...
pm2.8 974 Theorem *2.8 of [Whitehead...
pm2.73 975 Theorem *2.73 of [Whitehea...
pm2.74 976 Theorem *2.74 of [Whitehea...
pm2.82 977 Theorem *2.82 of [Whitehea...
pm4.39 978 Theorem *4.39 of [Whitehea...
animorl 979 Conjunction implies disjun...
animorr 980 Conjunction implies disjun...
animorlr 981 Conjunction implies disjun...
animorrl 982 Conjunction implies disjun...
ianor 983 Negated conjunction in ter...
anor 984 Conjunction in terms of di...
ioran 985 Negated disjunction in ter...
pm4.52 986 Theorem *4.52 of [Whitehea...
pm4.53 987 Theorem *4.53 of [Whitehea...
pm4.54 988 Theorem *4.54 of [Whitehea...
pm4.55 989 Theorem *4.55 of [Whitehea...
pm4.56 990 Theorem *4.56 of [Whitehea...
oran 991 Disjunction in terms of co...
pm4.57 992 Theorem *4.57 of [Whitehea...
pm3.1 993 Theorem *3.1 of [Whitehead...
pm3.11 994 Theorem *3.11 of [Whitehea...
pm3.12 995 Theorem *3.12 of [Whitehea...
pm3.13 996 Theorem *3.13 of [Whitehea...
pm3.14 997 Theorem *3.14 of [Whitehea...
pm4.44 998 Theorem *4.44 of [Whitehea...
pm4.45 999 Theorem *4.45 of [Whitehea...
orabs 1000 Absorption of redundant in...
oranabs 1001 Absorb a disjunct into a c...
pm5.61 1002 Theorem *5.61 of [Whitehea...
pm5.6 1003 Conjunction in antecedent ...
orcanai 1004 Change disjunction in cons...
pm4.79 1005 Theorem *4.79 of [Whitehea...
pm5.53 1006 Theorem *5.53 of [Whitehea...
ordi 1007 Distributive law for disju...
ordir 1008 Distributive law for disju...
andi 1009 Distributive law for conju...
andir 1010 Distributive law for conju...
orddi 1011 Double distributive law fo...
anddi 1012 Double distributive law fo...
pm5.17 1013 Theorem *5.17 of [Whitehea...
pm5.15 1014 Theorem *5.15 of [Whitehea...
pm5.16 1015 Theorem *5.16 of [Whitehea...
xor 1016 Two ways to express exclus...
nbi2 1017 Two ways to express "exclu...
xordi 1018 Conjunction distributes ov...
pm5.54 1019 Theorem *5.54 of [Whitehea...
pm5.62 1020 Theorem *5.62 of [Whitehea...
pm5.63 1021 Theorem *5.63 of [Whitehea...
niabn 1022 Miscellaneous inference re...
ninba 1023 Miscellaneous inference re...
pm4.43 1024 Theorem *4.43 of [Whitehea...
pm4.82 1025 Theorem *4.82 of [Whitehea...
pm4.83 1026 Theorem *4.83 of [Whitehea...
pclem6 1027 Negation inferred from emb...
bigolden 1028 Dijkstra-Scholten's Golden...
pm5.71 1029 Theorem *5.71 of [Whitehea...
pm5.75 1030 Theorem *5.75 of [Whitehea...
ecase2d 1031 Deduction for elimination ...
ecase3 1032 Inference for elimination ...
ecase 1033 Inference for elimination ...
ecase3d 1034 Deduction for elimination ...
ecased 1035 Deduction for elimination ...
ecase3ad 1036 Deduction for elimination ...
ccase 1037 Inference for combining ca...
ccased 1038 Deduction for combining ca...
ccase2 1039 Inference for combining ca...
4cases 1040 Inference eliminating two ...
4casesdan 1041 Deduction eliminating two ...
cases 1042 Case disjunction according...
dedlem0a 1043 Lemma for an alternate ver...
dedlem0b 1044 Lemma for an alternate ver...
dedlema 1045 Lemma for weak deduction t...
dedlemb 1046 Lemma for weak deduction t...
cases2 1047 Case disjunction according...
cases2ALT 1048 Alternate proof of ~ cases...
dfbi3 1049 An alternate definition of...
pm5.24 1050 Theorem *5.24 of [Whitehea...
4exmid 1051 The disjunction of the fou...
consensus 1052 The consensus theorem. Th...
pm4.42 1053 Theorem *4.42 of [Whitehea...
prlem1 1054 A specialized lemma for se...
prlem2 1055 A specialized lemma for se...
oplem1 1056 A specialized lemma for se...
dn1 1057 A single axiom for Boolean...
bianir 1058 A closed form of ~ mpbir ,...
jaoi2 1059 Inference removing a negat...
jaoi3 1060 Inference separating a dis...
ornld 1061 Selecting one statement fr...
dfifp2 1064 Alternate definition of th...
dfifp3 1065 Alternate definition of th...
dfifp4 1066 Alternate definition of th...
dfifp5 1067 Alternate definition of th...
dfifp6 1068 Alternate definition of th...
dfifp7 1069 Alternate definition of th...
ifpdfbi 1070 Define the biconditional a...
anifp 1071 The conditional operator i...
ifpor 1072 The conditional operator i...
ifpn 1073 Conditional operator for t...
ifptru 1074 Value of the conditional o...
ifpfal 1075 Value of the conditional o...
ifpid 1076 Value of the conditional o...
casesifp 1077 Version of ~ cases express...
ifpbi123d 1078 Equivalence deduction for ...
ifpbi23d 1079 Equivalence deduction for ...
ifpimpda 1080 Separation of the values o...
1fpid3 1081 The value of the condition...
elimh 1082 Hypothesis builder for the...
dedt 1083 The weak deduction theorem...
con3ALT 1084 Proof of ~ con3 from its a...
3orass 1089 Associative law for triple...
3orel1 1090 Partial elimination of a t...
3orrot 1091 Rotation law for triple di...
3orcoma 1092 Commutation law for triple...
3orcomb 1093 Commutation law for triple...
3anass 1094 Associative law for triple...
3anan12 1095 Convert triple conjunction...
3anan32 1096 Convert triple conjunction...
3ancoma 1097 Commutation law for triple...
3ancomb 1098 Commutation law for triple...
3anrot 1099 Rotation law for triple co...
3anrev 1100 Reversal law for triple co...
anandi3 1101 Distribution of triple con...
anandi3r 1102 Distribution of triple con...
3anidm 1103 Idempotent law for conjunc...
3an4anass 1104 Associative law for four c...
3ioran 1105 Negated triple disjunction...
3ianor 1106 Negated triple conjunction...
3anor 1107 Triple conjunction express...
3oran 1108 Triple disjunction in term...
3impa 1109 Importation from double to...
3imp 1110 Importation inference. (C...
3imp31 1111 The importation inference ...
3imp231 1112 Importation inference. (C...
3imp21 1113 The importation inference ...
3impb 1114 Importation from double to...
bi23imp13 1115 ~ 3imp with middle implica...
3impib 1116 Importation to triple conj...
3impia 1117 Importation to triple conj...
3expa 1118 Exportation from triple to...
3exp 1119 Exportation inference. (C...
3expb 1120 Exportation from triple to...
3expia 1121 Exportation from triple co...
3expib 1122 Exportation from triple co...
3com12 1123 Commutation in antecedent....
3com13 1124 Commutation in antecedent....
3comr 1125 Commutation in antecedent....
3com23 1126 Commutation in antecedent....
3coml 1127 Commutation in antecedent....
3jca 1128 Join consequents with conj...
3jcad 1129 Deduction conjoining the c...
3adant1 1130 Deduction adding a conjunc...
3adant2 1131 Deduction adding a conjunc...
3adant3 1132 Deduction adding a conjunc...
3ad2ant1 1133 Deduction adding conjuncts...
3ad2ant2 1134 Deduction adding conjuncts...
3ad2ant3 1135 Deduction adding conjuncts...
simp1 1136 Simplification of triple c...
simp2 1137 Simplification of triple c...
simp3 1138 Simplification of triple c...
simp1i 1139 Infer a conjunct from a tr...
simp2i 1140 Infer a conjunct from a tr...
simp3i 1141 Infer a conjunct from a tr...
simp1d 1142 Deduce a conjunct from a t...
simp2d 1143 Deduce a conjunct from a t...
simp3d 1144 Deduce a conjunct from a t...
simp1bi 1145 Deduce a conjunct from a t...
simp2bi 1146 Deduce a conjunct from a t...
simp3bi 1147 Deduce a conjunct from a t...
3simpa 1148 Simplification of triple c...
3simpb 1149 Simplification of triple c...
3simpc 1150 Simplification of triple c...
3anim123i 1151 Join antecedents and conse...
3anim1i 1152 Add two conjuncts to antec...
3anim2i 1153 Add two conjuncts to antec...
3anim3i 1154 Add two conjuncts to antec...
3anbi123i 1155 Join 3 biconditionals with...
3orbi123i 1156 Join 3 biconditionals with...
3anbi1i 1157 Inference adding two conju...
3anbi2i 1158 Inference adding two conju...
3anbi3i 1159 Inference adding two conju...
syl3an 1160 A triple syllogism inferen...
syl3anb 1161 A triple syllogism inferen...
syl3anbr 1162 A triple syllogism inferen...
syl3an1 1163 A syllogism inference. (C...
syl3an2 1164 A syllogism inference. (C...
syl3an3 1165 A syllogism inference. (C...
syl3an132 1166 ~ syl2an with antecedents ...
3adantl1 1167 Deduction adding a conjunc...
3adantl2 1168 Deduction adding a conjunc...
3adantl3 1169 Deduction adding a conjunc...
3adantr1 1170 Deduction adding a conjunc...
3adantr2 1171 Deduction adding a conjunc...
3adantr3 1172 Deduction adding a conjunc...
ad4ant123 1173 Deduction adding conjuncts...
ad4ant124 1174 Deduction adding conjuncts...
ad4ant134 1175 Deduction adding conjuncts...
ad4ant234 1176 Deduction adding conjuncts...
3adant1l 1177 Deduction adding a conjunc...
3adant1r 1178 Deduction adding a conjunc...
3adant2l 1179 Deduction adding a conjunc...
3adant2r 1180 Deduction adding a conjunc...
3adant3l 1181 Deduction adding a conjunc...
3adant3r 1182 Deduction adding a conjunc...
3adant3r1 1183 Deduction adding a conjunc...
3adant3r2 1184 Deduction adding a conjunc...
3adant3r3 1185 Deduction adding a conjunc...
3ad2antl1 1186 Deduction adding conjuncts...
3ad2antl2 1187 Deduction adding conjuncts...
3ad2antl3 1188 Deduction adding conjuncts...
3ad2antr1 1189 Deduction adding conjuncts...
3ad2antr2 1190 Deduction adding conjuncts...
3ad2antr3 1191 Deduction adding conjuncts...
simpl1 1192 Simplification of conjunct...
simpl2 1193 Simplification of conjunct...
simpl3 1194 Simplification of conjunct...
simpr1 1195 Simplification of conjunct...
simpr2 1196 Simplification of conjunct...
simpr3 1197 Simplification of conjunct...
simp1l 1198 Simplification of triple c...
simp1r 1199 Simplification of triple c...
simp2l 1200 Simplification of triple c...
simp2r 1201 Simplification of triple c...
simp3l 1202 Simplification of triple c...
simp3r 1203 Simplification of triple c...
simp11 1204 Simplification of doubly t...
simp12 1205 Simplification of doubly t...
simp13 1206 Simplification of doubly t...
simp21 1207 Simplification of doubly t...
simp22 1208 Simplification of doubly t...
simp23 1209 Simplification of doubly t...
simp31 1210 Simplification of doubly t...
simp32 1211 Simplification of doubly t...
simp33 1212 Simplification of doubly t...
simpll1 1213 Simplification of conjunct...
simpll2 1214 Simplification of conjunct...
simpll3 1215 Simplification of conjunct...
simplr1 1216 Simplification of conjunct...
simplr2 1217 Simplification of conjunct...
simplr3 1218 Simplification of conjunct...
simprl1 1219 Simplification of conjunct...
simprl2 1220 Simplification of conjunct...
simprl3 1221 Simplification of conjunct...
simprr1 1222 Simplification of conjunct...
simprr2 1223 Simplification of conjunct...
simprr3 1224 Simplification of conjunct...
simpl1l 1225 Simplification of conjunct...
simpl1r 1226 Simplification of conjunct...
simpl2l 1227 Simplification of conjunct...
simpl2r 1228 Simplification of conjunct...
simpl3l 1229 Simplification of conjunct...
simpl3r 1230 Simplification of conjunct...
simpr1l 1231 Simplification of conjunct...
simpr1r 1232 Simplification of conjunct...
simpr2l 1233 Simplification of conjunct...
simpr2r 1234 Simplification of conjunct...
simpr3l 1235 Simplification of conjunct...
simpr3r 1236 Simplification of conjunct...
simp1ll 1237 Simplification of conjunct...
simp1lr 1238 Simplification of conjunct...
simp1rl 1239 Simplification of conjunct...
simp1rr 1240 Simplification of conjunct...
simp2ll 1241 Simplification of conjunct...
simp2lr 1242 Simplification of conjunct...
simp2rl 1243 Simplification of conjunct...
simp2rr 1244 Simplification of conjunct...
simp3ll 1245 Simplification of conjunct...
simp3lr 1246 Simplification of conjunct...
simp3rl 1247 Simplification of conjunct...
simp3rr 1248 Simplification of conjunct...
simpl11 1249 Simplification of conjunct...
simpl12 1250 Simplification of conjunct...
simpl13 1251 Simplification of conjunct...
simpl21 1252 Simplification of conjunct...
simpl22 1253 Simplification of conjunct...
simpl23 1254 Simplification of conjunct...
simpl31 1255 Simplification of conjunct...
simpl32 1256 Simplification of conjunct...
simpl33 1257 Simplification of conjunct...
simpr11 1258 Simplification of conjunct...
simpr12 1259 Simplification of conjunct...
simpr13 1260 Simplification of conjunct...
simpr21 1261 Simplification of conjunct...
simpr22 1262 Simplification of conjunct...
simpr23 1263 Simplification of conjunct...
simpr31 1264 Simplification of conjunct...
simpr32 1265 Simplification of conjunct...
simpr33 1266 Simplification of conjunct...
simp1l1 1267 Simplification of conjunct...
simp1l2 1268 Simplification of conjunct...
simp1l3 1269 Simplification of conjunct...
simp1r1 1270 Simplification of conjunct...
simp1r2 1271 Simplification of conjunct...
simp1r3 1272 Simplification of conjunct...
simp2l1 1273 Simplification of conjunct...
simp2l2 1274 Simplification of conjunct...
simp2l3 1275 Simplification of conjunct...
simp2r1 1276 Simplification of conjunct...
simp2r2 1277 Simplification of conjunct...
simp2r3 1278 Simplification of conjunct...
simp3l1 1279 Simplification of conjunct...
simp3l2 1280 Simplification of conjunct...
simp3l3 1281 Simplification of conjunct...
simp3r1 1282 Simplification of conjunct...
simp3r2 1283 Simplification of conjunct...
simp3r3 1284 Simplification of conjunct...
simp11l 1285 Simplification of conjunct...
simp11r 1286 Simplification of conjunct...
simp12l 1287 Simplification of conjunct...
simp12r 1288 Simplification of conjunct...
simp13l 1289 Simplification of conjunct...
simp13r 1290 Simplification of conjunct...
simp21l 1291 Simplification of conjunct...
simp21r 1292 Simplification of conjunct...
simp22l 1293 Simplification of conjunct...
simp22r 1294 Simplification of conjunct...
simp23l 1295 Simplification of conjunct...
simp23r 1296 Simplification of conjunct...
simp31l 1297 Simplification of conjunct...
simp31r 1298 Simplification of conjunct...
simp32l 1299 Simplification of conjunct...
simp32r 1300 Simplification of conjunct...
simp33l 1301 Simplification of conjunct...
simp33r 1302 Simplification of conjunct...
simp111 1303 Simplification of conjunct...
simp112 1304 Simplification of conjunct...
simp113 1305 Simplification of conjunct...
simp121 1306 Simplification of conjunct...
simp122 1307 Simplification of conjunct...
simp123 1308 Simplification of conjunct...
simp131 1309 Simplification of conjunct...
simp132 1310 Simplification of conjunct...
simp133 1311 Simplification of conjunct...
simp211 1312 Simplification of conjunct...
simp212 1313 Simplification of conjunct...
simp213 1314 Simplification of conjunct...
simp221 1315 Simplification of conjunct...
simp222 1316 Simplification of conjunct...
simp223 1317 Simplification of conjunct...
simp231 1318 Simplification of conjunct...
simp232 1319 Simplification of conjunct...
simp233 1320 Simplification of conjunct...
simp311 1321 Simplification of conjunct...
simp312 1322 Simplification of conjunct...
simp313 1323 Simplification of conjunct...
simp321 1324 Simplification of conjunct...
simp322 1325 Simplification of conjunct...
simp323 1326 Simplification of conjunct...
simp331 1327 Simplification of conjunct...
simp332 1328 Simplification of conjunct...
simp333 1329 Simplification of conjunct...
3anibar 1330 Remove a hypothesis from t...
3mix1 1331 Introduction in triple dis...
3mix2 1332 Introduction in triple dis...
3mix3 1333 Introduction in triple dis...
3mix1i 1334 Introduction in triple dis...
3mix2i 1335 Introduction in triple dis...
3mix3i 1336 Introduction in triple dis...
3mix1d 1337 Deduction introducing trip...
3mix2d 1338 Deduction introducing trip...
3mix3d 1339 Deduction introducing trip...
3pm3.2i 1340 Infer conjunction of premi...
pm3.2an3 1341 Version of ~ pm3.2 for a t...
mpbir3an 1342 Detach a conjunction of tr...
mpbir3and 1343 Detach a conjunction of tr...
syl3anbrc 1344 Syllogism inference. (Con...
syl21anbrc 1345 Syllogism inference. (Con...
3imp3i2an 1346 An elimination deduction. ...
ex3 1347 Apply ~ ex to a hypothesis...
3imp1 1348 Importation to left triple...
3impd 1349 Importation deduction for ...
3imp2 1350 Importation to right tripl...
3impdi 1351 Importation inference (und...
3impdir 1352 Importation inference (und...
3exp1 1353 Exportation from left trip...
3expd 1354 Exportation deduction for ...
3exp2 1355 Exportation from right tri...
exp5o 1356 A triple exportation infer...
exp516 1357 A triple exportation infer...
exp520 1358 A triple exportation infer...
3impexp 1359 Version of ~ impexp for a ...
3an1rs 1360 Swap conjuncts. (Contribu...
3anassrs 1361 Associative law for conjun...
4anpull2 1362 An equivalence of two four...
ad5ant245 1363 Deduction adding conjuncts...
ad5ant234 1364 Deduction adding conjuncts...
ad5ant235 1365 Deduction adding conjuncts...
ad5ant123 1366 Deduction adding conjuncts...
ad5ant124 1367 Deduction adding conjuncts...
ad5ant125 1368 Deduction adding conjuncts...
ad5ant134 1369 Deduction adding conjuncts...
ad5ant135 1370 Deduction adding conjuncts...
ad5ant145 1371 Deduction adding conjuncts...
ad5ant2345 1372 Deduction adding conjuncts...
syl3anc 1373 Syllogism combined with co...
syl13anc 1374 Syllogism combined with co...
syl31anc 1375 Syllogism combined with co...
syl112anc 1376 Syllogism combined with co...
syl121anc 1377 Syllogism combined with co...
syl211anc 1378 Syllogism combined with co...
syl23anc 1379 Syllogism combined with co...
syl32anc 1380 Syllogism combined with co...
syl122anc 1381 Syllogism combined with co...
syl212anc 1382 Syllogism combined with co...
syl221anc 1383 Syllogism combined with co...
syl113anc 1384 Syllogism combined with co...
syl131anc 1385 Syllogism combined with co...
syl311anc 1386 Syllogism combined with co...
syl33anc 1387 Syllogism combined with co...
syl222anc 1388 Syllogism combined with co...
syl123anc 1389 Syllogism combined with co...
syl132anc 1390 Syllogism combined with co...
syl213anc 1391 Syllogism combined with co...
syl231anc 1392 Syllogism combined with co...
syl312anc 1393 Syllogism combined with co...
syl321anc 1394 Syllogism combined with co...
syl133anc 1395 Syllogism combined with co...
syl313anc 1396 Syllogism combined with co...
syl331anc 1397 Syllogism combined with co...
syl223anc 1398 Syllogism combined with co...
syl232anc 1399 Syllogism combined with co...
syl322anc 1400 Syllogism combined with co...
syl233anc 1401 Syllogism combined with co...
syl323anc 1402 Syllogism combined with co...
syl332anc 1403 Syllogism combined with co...
syl333anc 1404 A syllogism inference comb...
syl3an1b 1405 A syllogism inference. (C...
syl3an2b 1406 A syllogism inference. (C...
syl3an3b 1407 A syllogism inference. (C...
syl3an1br 1408 A syllogism inference. (C...
syl3an2br 1409 A syllogism inference. (C...
syl3an3br 1410 A syllogism inference. (C...
syld3an3 1411 A syllogism inference. (C...
syld3an1 1412 A syllogism inference. (C...
syld3an2 1413 A syllogism inference. (C...
syl3anl1 1414 A syllogism inference. (C...
syl3anl2 1415 A syllogism inference. (C...
syl3anl3 1416 A syllogism inference. (C...
syl3anl 1417 A triple syllogism inferen...
syl3anr1 1418 A syllogism inference. (C...
syl3anr2 1419 A syllogism inference. (C...
syl3anr3 1420 A syllogism inference. (C...
3anidm12 1421 Inference from idempotent ...
3anidm13 1422 Inference from idempotent ...
3anidm23 1423 Inference from idempotent ...
syl2an3an 1424 ~ syl3an with antecedents ...
syl2an23an 1425 Deduction related to ~ syl...
3ori 1426 Infer implication from tri...
3jao 1427 Disjunction of three antec...
3jaob 1428 Disjunction of three antec...
3jaobOLD 1429 Obsolete version of ~ 3jao...
3jaoi 1430 Disjunction of three antec...
3jaod 1431 Disjunction of three antec...
3jaoian 1432 Disjunction of three antec...
3jaodan 1433 Disjunction of three antec...
mpjao3dan 1434 Eliminate a three-way disj...
3jaao 1435 Inference conjoining and d...
syl3an9b 1436 Nested syllogism inference...
3orbi123d 1437 Deduction joining 3 equiva...
3anbi123d 1438 Deduction joining 3 equiva...
3anbi12d 1439 Deduction conjoining and a...
3anbi13d 1440 Deduction conjoining and a...
3anbi23d 1441 Deduction conjoining and a...
3anbi1d 1442 Deduction adding conjuncts...
3anbi2d 1443 Deduction adding conjuncts...
3anbi3d 1444 Deduction adding conjuncts...
3anim123d 1445 Deduction joining 3 implic...
3orim123d 1446 Deduction joining 3 implic...
an6 1447 Rearrangement of 6 conjunc...
3an6 1448 Analogue of ~ an4 for trip...
3or6 1449 Analogue of ~ or4 for trip...
mp3an1 1450 An inference based on modu...
mp3an2 1451 An inference based on modu...
mp3an3 1452 An inference based on modu...
mp3an12 1453 An inference based on modu...
mp3an13 1454 An inference based on modu...
mp3an23 1455 An inference based on modu...
mp3an1i 1456 An inference based on modu...
mp3anl1 1457 An inference based on modu...
mp3anl2 1458 An inference based on modu...
mp3anl3 1459 An inference based on modu...
mp3anr1 1460 An inference based on modu...
mp3anr2 1461 An inference based on modu...
mp3anr3 1462 An inference based on modu...
mp3an 1463 An inference based on modu...
mpd3an3 1464 An inference based on modu...
mpd3an23 1465 An inference based on modu...
mp3and 1466 A deduction based on modus...
mp3an12i 1467 ~ mp3an with antecedents i...
mp3an2i 1468 ~ mp3an with antecedents i...
mp3an3an 1469 ~ mp3an with antecedents i...
mp3an2ani 1470 An elimination deduction. ...
biimp3a 1471 Infer implication from a l...
biimp3ar 1472 Infer implication from a l...
3anandis 1473 Inference that undistribut...
3anandirs 1474 Inference that undistribut...
ecase23d 1475 Deduction for elimination ...
3ecase 1476 Inference for elimination ...
3bior1fd 1477 A disjunction is equivalen...
3bior1fand 1478 A disjunction is equivalen...
3bior2fd 1479 A wff is equivalent to its...
3biant1d 1480 A conjunction is equivalen...
intn3an1d 1481 Introduction of a triple c...
intn3an2d 1482 Introduction of a triple c...
intn3an3d 1483 Introduction of a triple c...
an3andi 1484 Distribution of conjunctio...
an33rean 1485 Rearrange a 9-fold conjunc...
3orel2 1486 Partial elimination of a t...
3orel2OLD 1487 Obsolete version of ~ 3ore...
3orel3 1488 Partial elimination of a t...
3orel13 1489 Elimination of two disjunc...
3pm3.2ni 1490 Triple negated disjunction...
nanan 1493 Conjunction in terms of al...
dfnan2 1494 Alternative denial in term...
nanor 1495 Alternative denial in term...
nancom 1496 Alternative denial is comm...
nannan 1497 Nested alternative denials...
nanim 1498 Implication in terms of al...
nannot 1499 Negation in terms of alter...
nanbi 1500 Biconditional in terms of ...
nanbi1 1501 Introduce a right anti-con...
nanbi2 1502 Introduce a left anti-conj...
nanbi12 1503 Join two logical equivalen...
nanbi1i 1504 Introduce a right anti-con...
nanbi2i 1505 Introduce a left anti-conj...
nanbi12i 1506 Join two logical equivalen...
nanbi1d 1507 Introduce a right anti-con...
nanbi2d 1508 Introduce a left anti-conj...
nanbi12d 1509 Join two logical equivalen...
nanass 1510 A characterization of when...
xnor 1513 Two ways to write XNOR (ex...
xorcom 1514 The connector ` \/_ ` is c...
xorass 1515 The connector ` \/_ ` is a...
excxor 1516 This tautology shows that ...
xor2 1517 Two ways to express "exclu...
xoror 1518 Exclusive disjunction impl...
xornan 1519 Exclusive disjunction impl...
xornan2 1520 XOR implies NAND (written ...
xorneg2 1521 The connector ` \/_ ` is n...
xorneg1 1522 The connector ` \/_ ` is n...
xorneg 1523 The connector ` \/_ ` is u...
xorbi12i 1524 Equality property for excl...
xorbi12d 1525 Equality property for excl...
anxordi 1526 Conjunction distributes ov...
xorexmid 1527 Exclusive-or variant of th...
norcom 1530 The connector ` -\/ ` is c...
nornot 1531 ` -. ` is expressible via ...
noran 1532 ` /\ ` is expressible via ...
noror 1533 ` \/ ` is expressible via ...
norasslem1 1534 This lemma shows the equiv...
norasslem2 1535 This lemma specializes ~ b...
norasslem3 1536 This lemma specializes ~ b...
norass 1537 A characterization of when...
trujust 1542 Soundness justification th...
tru 1544 The truth value ` T. ` is ...
dftru2 1545 An alternate definition of...
trut 1546 A proposition is equivalen...
mptru 1547 Eliminate ` T. ` as an ant...
tbtru 1548 A proposition is equivalen...
bitru 1549 A theorem is equivalent to...
trud 1550 Anything implies ` T. ` . ...
truan 1551 True can be removed from a...
fal 1554 The truth value ` F. ` is ...
nbfal 1555 The negation of a proposit...
bifal 1556 A contradiction is equival...
falim 1557 The truth value ` F. ` imp...
falimd 1558 The truth value ` F. ` imp...
dfnot 1559 Given falsum ` F. ` , we c...
inegd 1560 Negation introduction rule...
efald 1561 Deduction based on reducti...
pm2.21fal 1562 If a wff and its negation ...
truimtru 1563 A ` -> ` identity. (Contr...
truimfal 1564 A ` -> ` identity. (Contr...
falimtru 1565 A ` -> ` identity. (Contr...
falimfal 1566 A ` -> ` identity. (Contr...
nottru 1567 A ` -. ` identity. (Contr...
notfal 1568 A ` -. ` identity. (Contr...
trubitru 1569 A ` <-> ` identity. (Cont...
falbitru 1570 A ` <-> ` identity. (Cont...
trubifal 1571 A ` <-> ` identity. (Cont...
falbifal 1572 A ` <-> ` identity. (Cont...
truantru 1573 A ` /\ ` identity. (Contr...
truanfal 1574 A ` /\ ` identity. (Contr...
falantru 1575 A ` /\ ` identity. (Contr...
falanfal 1576 A ` /\ ` identity. (Contr...
truortru 1577 A ` \/ ` identity. (Contr...
truorfal 1578 A ` \/ ` identity. (Contr...
falortru 1579 A ` \/ ` identity. (Contr...
falorfal 1580 A ` \/ ` identity. (Contr...
trunantru 1581 A ` -/\ ` identity. (Cont...
trunanfal 1582 A ` -/\ ` identity. (Cont...
falnantru 1583 A ` -/\ ` identity. (Cont...
falnanfal 1584 A ` -/\ ` identity. (Cont...
truxortru 1585 A ` \/_ ` identity. (Cont...
truxorfal 1586 A ` \/_ ` identity. (Cont...
falxortru 1587 A ` \/_ ` identity. (Cont...
falxorfal 1588 A ` \/_ ` identity. (Cont...
trunortru 1589 A ` -\/ ` identity. (Cont...
trunorfal 1590 A ` -\/ ` identity. (Cont...
falnortru 1591 A ` -\/ ` identity. (Cont...
falnorfal 1592 A ` -\/ ` identity. (Cont...
hadbi123d 1595 Equality theorem for the a...
hadbi123i 1596 Equality theorem for the a...
hadass 1597 Associative law for the ad...
hadbi 1598 The adder sum is the same ...
hadcoma 1599 Commutative law for the ad...
hadcomb 1600 Commutative law for the ad...
hadrot 1601 Rotation law for the adder...
hadnot 1602 The adder sum distributes ...
had1 1603 If the first input is true...
had0 1604 If the first input is fals...
hadifp 1605 The value of the adder sum...
cador 1608 The adder carry in disjunc...
cadan 1609 The adder carry in conjunc...
cadbi123d 1610 Equality theorem for the a...
cadbi123i 1611 Equality theorem for the a...
cadcoma 1612 Commutative law for the ad...
cadcomb 1613 Commutative law for the ad...
cadrot 1614 Rotation law for the adder...
cadnot 1615 The adder carry distribute...
cad11 1616 If (at least) two inputs a...
cad1 1617 If one input is true, then...
cad0 1618 If one input is false, the...
cadifp 1619 The value of the carry is,...
cadtru 1620 The adder carry is true as...
minimp 1621 A single axiom for minimal...
minimp-syllsimp 1622 Derivation of Syll-Simp ( ...
minimp-ax1 1623 Derivation of ~ ax-1 from ...
minimp-ax2c 1624 Derivation of a commuted f...
minimp-ax2 1625 Derivation of ~ ax-2 from ...
minimp-pm2.43 1626 Derivation of ~ pm2.43 (al...
impsingle 1627 The shortest single axiom ...
impsingle-step4 1628 Derivation of impsingle-st...
impsingle-step8 1629 Derivation of impsingle-st...
impsingle-ax1 1630 Derivation of impsingle-ax...
impsingle-step15 1631 Derivation of impsingle-st...
impsingle-step18 1632 Derivation of impsingle-st...
impsingle-step19 1633 Derivation of impsingle-st...
impsingle-step20 1634 Derivation of impsingle-st...
impsingle-step21 1635 Derivation of impsingle-st...
impsingle-step22 1636 Derivation of impsingle-st...
impsingle-step25 1637 Derivation of impsingle-st...
impsingle-imim1 1638 Derivation of impsingle-im...
impsingle-peirce 1639 Derivation of impsingle-pe...
tarski-bernays-ax2 1640 Derivation of ~ ax-2 from ...
meredith 1641 Carew Meredith's sole axio...
merlem1 1642 Step 3 of Meredith's proof...
merlem2 1643 Step 4 of Meredith's proof...
merlem3 1644 Step 7 of Meredith's proof...
merlem4 1645 Step 8 of Meredith's proof...
merlem5 1646 Step 11 of Meredith's proo...
merlem6 1647 Step 12 of Meredith's proo...
merlem7 1648 Between steps 14 and 15 of...
merlem8 1649 Step 15 of Meredith's proo...
merlem9 1650 Step 18 of Meredith's proo...
merlem10 1651 Step 19 of Meredith's proo...
merlem11 1652 Step 20 of Meredith's proo...
merlem12 1653 Step 28 of Meredith's proo...
merlem13 1654 Step 35 of Meredith's proo...
luk-1 1655 1 of 3 axioms for proposit...
luk-2 1656 2 of 3 axioms for proposit...
luk-3 1657 3 of 3 axioms for proposit...
luklem1 1658 Used to rederive standard ...
luklem2 1659 Used to rederive standard ...
luklem3 1660 Used to rederive standard ...
luklem4 1661 Used to rederive standard ...
luklem5 1662 Used to rederive standard ...
luklem6 1663 Used to rederive standard ...
luklem7 1664 Used to rederive standard ...
luklem8 1665 Used to rederive standard ...
ax1 1666 Standard propositional axi...
ax2 1667 Standard propositional axi...
ax3 1668 Standard propositional axi...
nic-dfim 1669 This theorem "defines" imp...
nic-dfneg 1670 This theorem "defines" neg...
nic-mp 1671 Derive Nicod's rule of mod...
nic-mpALT 1672 A direct proof of ~ nic-mp...
nic-ax 1673 Nicod's axiom derived from...
nic-axALT 1674 A direct proof of ~ nic-ax...
nic-imp 1675 Inference for ~ nic-mp usi...
nic-idlem1 1676 Lemma for ~ nic-id . (Con...
nic-idlem2 1677 Lemma for ~ nic-id . Infe...
nic-id 1678 Theorem ~ id expressed wit...
nic-swap 1679 The connector ` -/\ ` is s...
nic-isw1 1680 Inference version of ~ nic...
nic-isw2 1681 Inference for swapping nes...
nic-iimp1 1682 Inference version of ~ nic...
nic-iimp2 1683 Inference version of ~ nic...
nic-idel 1684 Inference to remove the tr...
nic-ich 1685 Chained inference. (Contr...
nic-idbl 1686 Double the terms. Since d...
nic-bijust 1687 Biconditional justificatio...
nic-bi1 1688 Inference to extract one s...
nic-bi2 1689 Inference to extract the o...
nic-stdmp 1690 Derive the standard modus ...
nic-luk1 1691 Proof of ~ luk-1 from ~ ni...
nic-luk2 1692 Proof of ~ luk-2 from ~ ni...
nic-luk3 1693 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1694 This alternative axiom for...
lukshefth1 1695 Lemma for ~ renicax . (Co...
lukshefth2 1696 Lemma for ~ renicax . (Co...
renicax 1697 A rederivation of ~ nic-ax...
tbw-bijust 1698 Justification for ~ tbw-ne...
tbw-negdf 1699 The definition of negation...
tbw-ax1 1700 The first of four axioms i...
tbw-ax2 1701 The second of four axioms ...
tbw-ax3 1702 The third of four axioms i...
tbw-ax4 1703 The fourth of four axioms ...
tbwsyl 1704 Used to rederive the Lukas...
tbwlem1 1705 Used to rederive the Lukas...
tbwlem2 1706 Used to rederive the Lukas...
tbwlem3 1707 Used to rederive the Lukas...
tbwlem4 1708 Used to rederive the Lukas...
tbwlem5 1709 Used to rederive the Lukas...
re1luk1 1710 ~ luk-1 derived from the T...
re1luk2 1711 ~ luk-2 derived from the T...
re1luk3 1712 ~ luk-3 derived from the T...
merco1 1713 A single axiom for proposi...
merco1lem1 1714 Used to rederive the Tarsk...
retbwax4 1715 ~ tbw-ax4 rederived from ~...
retbwax2 1716 ~ tbw-ax2 rederived from ~...
merco1lem2 1717 Used to rederive the Tarsk...
merco1lem3 1718 Used to rederive the Tarsk...
merco1lem4 1719 Used to rederive the Tarsk...
merco1lem5 1720 Used to rederive the Tarsk...
merco1lem6 1721 Used to rederive the Tarsk...
merco1lem7 1722 Used to rederive the Tarsk...
retbwax3 1723 ~ tbw-ax3 rederived from ~...
merco1lem8 1724 Used to rederive the Tarsk...
merco1lem9 1725 Used to rederive the Tarsk...
merco1lem10 1726 Used to rederive the Tarsk...
merco1lem11 1727 Used to rederive the Tarsk...
merco1lem12 1728 Used to rederive the Tarsk...
merco1lem13 1729 Used to rederive the Tarsk...
merco1lem14 1730 Used to rederive the Tarsk...
merco1lem15 1731 Used to rederive the Tarsk...
merco1lem16 1732 Used to rederive the Tarsk...
merco1lem17 1733 Used to rederive the Tarsk...
merco1lem18 1734 Used to rederive the Tarsk...
retbwax1 1735 ~ tbw-ax1 rederived from ~...
merco2 1736 A single axiom for proposi...
mercolem1 1737 Used to rederive the Tarsk...
mercolem2 1738 Used to rederive the Tarsk...
mercolem3 1739 Used to rederive the Tarsk...
mercolem4 1740 Used to rederive the Tarsk...
mercolem5 1741 Used to rederive the Tarsk...
mercolem6 1742 Used to rederive the Tarsk...
mercolem7 1743 Used to rederive the Tarsk...
mercolem8 1744 Used to rederive the Tarsk...
re1tbw1 1745 ~ tbw-ax1 rederived from ~...
re1tbw2 1746 ~ tbw-ax2 rederived from ~...
re1tbw3 1747 ~ tbw-ax3 rederived from ~...
re1tbw4 1748 ~ tbw-ax4 rederived from ~...
rb-bijust 1749 Justification for ~ rb-imd...
rb-imdf 1750 The definition of implicat...
anmp 1751 Modus ponens for ` { \/ , ...
rb-ax1 1752 The first of four axioms i...
rb-ax2 1753 The second of four axioms ...
rb-ax3 1754 The third of four axioms i...
rb-ax4 1755 The fourth of four axioms ...
rbsyl 1756 Used to rederive the Lukas...
rblem1 1757 Used to rederive the Lukas...
rblem2 1758 Used to rederive the Lukas...
rblem3 1759 Used to rederive the Lukas...
rblem4 1760 Used to rederive the Lukas...
rblem5 1761 Used to rederive the Lukas...
rblem6 1762 Used to rederive the Lukas...
rblem7 1763 Used to rederive the Lukas...
re1axmp 1764 ~ ax-mp derived from Russe...
re2luk1 1765 ~ luk-1 derived from Russe...
re2luk2 1766 ~ luk-2 derived from Russe...
re2luk3 1767 ~ luk-3 derived from Russe...
mptnan 1768 Modus ponendo tollens 1, o...
mptxor 1769 Modus ponendo tollens 2, o...
mtpor 1770 Modus tollendo ponens (inc...
mtpxor 1771 Modus tollendo ponens (ori...
stoic1a 1772 Stoic logic Thema 1 (part ...
stoic1b 1773 Stoic logic Thema 1 (part ...
stoic2a 1774 Stoic logic Thema 2 versio...
stoic2b 1775 Stoic logic Thema 2 versio...
stoic3 1776 Stoic logic Thema 3. Stat...
stoic4a 1777 Stoic logic Thema 4 versio...
stoic4b 1778 Stoic logic Thema 4 versio...
alnex 1781 Universal quantification o...
eximal 1782 An equivalence between an ...
nf2 1785 Alternate definition of no...
nf3 1786 Alternate definition of no...
nf4 1787 Alternate definition of no...
nfi 1788 Deduce that ` x ` is not f...
nfri 1789 Consequence of the definit...
nfd 1790 Deduce that ` x ` is not f...
nfrd 1791 Consequence of the definit...
nftht 1792 Closed form of ~ nfth . (...
nfntht 1793 Closed form of ~ nfnth . ...
nfntht2 1794 Closed form of ~ nfnth . ...
gen2 1796 Generalization applied twi...
mpg 1797 Modus ponens combined with...
mpgbi 1798 Modus ponens on biconditio...
mpgbir 1799 Modus ponens on biconditio...
nex 1800 Generalization rule for ne...
nfth 1801 No variable is (effectivel...
nfnth 1802 No variable is (effectivel...
hbth 1803 No variable is (effectivel...
nftru 1804 The true constant has no f...
nffal 1805 The false constant has no ...
sptruw 1806 Version of ~ sp when ` ph ...
altru 1807 For all sets, ` T. ` is tr...
alfal 1808 For all sets, ` -. F. ` is...
alim 1810 Restatement of Axiom ~ ax-...
alimi 1811 Inference quantifying both...
2alimi 1812 Inference doubly quantifyi...
ala1 1813 Add an antecedent in a uni...
al2im 1814 Closed form of ~ al2imi . ...
al2imi 1815 Inference quantifying ante...
alanimi 1816 Variant of ~ al2imi with c...
alimdh 1817 Deduction form of Theorem ...
albi 1818 Theorem 19.15 of [Margaris...
albii 1819 Inference adding universal...
2albii 1820 Inference adding two unive...
3albii 1821 Inference adding three uni...
sylgt 1822 Closed form of ~ sylg . (...
sylg 1823 A syllogism combined with ...
alrimih 1824 Inference form of Theorem ...
hbxfrbi 1825 A utility lemma to transfe...
alex 1826 Universal quantifier in te...
exnal 1827 Existential quantification...
2nalexn 1828 Part of theorem *11.5 in [...
2exnaln 1829 Theorem *11.22 in [Whitehe...
2nexaln 1830 Theorem *11.25 in [Whitehe...
alimex 1831 An equivalence between an ...
aleximi 1832 A variant of ~ al2imi : in...
alexbii 1833 Biconditional form of ~ al...
exim 1834 Theorem 19.22 of [Margaris...
eximi 1835 Inference adding existenti...
2eximi 1836 Inference adding two exist...
eximii 1837 Inference associated with ...
exa1 1838 Add an antecedent in an ex...
19.38 1839 Theorem 19.38 of [Margaris...
19.38a 1840 Under a nonfreeness hypoth...
19.38b 1841 Under a nonfreeness hypoth...
imnang 1842 Quantified implication in ...
alinexa 1843 A transformation of quanti...
exnalimn 1844 Existential quantification...
alexn 1845 A relationship between two...
2exnexn 1846 Theorem *11.51 in [Whitehe...
exbi 1847 Theorem 19.18 of [Margaris...
exbii 1848 Inference adding existenti...
2exbii 1849 Inference adding two exist...
3exbii 1850 Inference adding three exi...
nfbiit 1851 Equivalence theorem for th...
nfbii 1852 Equality theorem for the n...
nfxfr 1853 A utility lemma to transfe...
nfxfrd 1854 A utility lemma to transfe...
nfnbi 1855 A variable is nonfree in a...
nfnt 1856 If a variable is nonfree i...
nfn 1857 Inference associated with ...
nfnd 1858 Deduction associated with ...
exanali 1859 A transformation of quanti...
2exanali 1860 Theorem *11.521 in [Whiteh...
exancom 1861 Commutation of conjunction...
exan 1862 Place a conjunct in the sc...
alrimdh 1863 Deduction form of Theorem ...
eximdh 1864 Deduction from Theorem 19....
nexdh 1865 Deduction for generalizati...
albidh 1866 Formula-building rule for ...
exbidh 1867 Formula-building rule for ...
exsimpl 1868 Simplification of an exist...
exsimpr 1869 Simplification of an exist...
19.26 1870 Theorem 19.26 of [Margaris...
19.26-2 1871 Theorem ~ 19.26 with two q...
19.26-3an 1872 Theorem ~ 19.26 with tripl...
19.29 1873 Theorem 19.29 of [Margaris...
19.29r 1874 Variation of ~ 19.29 . (C...
19.29r2 1875 Variation of ~ 19.29r with...
19.29x 1876 Variation of ~ 19.29 with ...
19.35 1877 Theorem 19.35 of [Margaris...
19.35i 1878 Inference associated with ...
19.35ri 1879 Inference associated with ...
19.25 1880 Theorem 19.25 of [Margaris...
19.30 1881 Theorem 19.30 of [Margaris...
19.43 1882 Theorem 19.43 of [Margaris...
19.43OLD 1883 Obsolete proof of ~ 19.43 ...
19.33 1884 Theorem 19.33 of [Margaris...
19.33b 1885 The antecedent provides a ...
19.40 1886 Theorem 19.40 of [Margaris...
19.40-2 1887 Theorem *11.42 in [Whitehe...
19.40b 1888 The antecedent provides a ...
albiim 1889 Split a biconditional and ...
2albiim 1890 Split a biconditional and ...
exintrbi 1891 Add/remove a conjunct in t...
exintr 1892 Introduce a conjunct in th...
alsyl 1893 Universally quantified and...
nfimd 1894 If in a context ` x ` is n...
nfimt 1895 Closed form of ~ nfim and ...
nfim 1896 If ` x ` is not free in ` ...
nfand 1897 If in a context ` x ` is n...
nf3and 1898 Deduction form of bound-va...
nfan 1899 If ` x ` is not free in ` ...
nfnan 1900 If ` x ` is not free in ` ...
nf3an 1901 If ` x ` is not free in ` ...
nfbid 1902 If in a context ` x ` is n...
nfbi 1903 If ` x ` is not free in ` ...
nfor 1904 If ` x ` is not free in ` ...
nf3or 1905 If ` x ` is not free in ` ...
empty 1906 Two characterizations of t...
emptyex 1907 On the empty domain, any e...
emptyal 1908 On the empty domain, any u...
emptynf 1909 On the empty domain, any v...
ax5d 1911 Version of ~ ax-5 with ant...
ax5e 1912 A rephrasing of ~ ax-5 usi...
ax5ea 1913 If a formula holds for som...
nfv 1914 If ` x ` is not present in...
nfvd 1915 ~ nfv with antecedent. Us...
alimdv 1916 Deduction form of Theorem ...
eximdv 1917 Deduction form of Theorem ...
2alimdv 1918 Deduction form of Theorem ...
2eximdv 1919 Deduction form of Theorem ...
albidv 1920 Formula-building rule for ...
exbidv 1921 Formula-building rule for ...
nfbidv 1922 An equality theorem for no...
2albidv 1923 Formula-building rule for ...
2exbidv 1924 Formula-building rule for ...
3exbidv 1925 Formula-building rule for ...
4exbidv 1926 Formula-building rule for ...
alrimiv 1927 Inference form of Theorem ...
alrimivv 1928 Inference form of Theorem ...
alrimdv 1929 Deduction form of Theorem ...
exlimiv 1930 Inference form of Theorem ...
exlimiiv 1931 Inference (Rule C) associa...
exlimivv 1932 Inference form of Theorem ...
exlimdv 1933 Deduction form of Theorem ...
exlimdvv 1934 Deduction form of Theorem ...
exlimddv 1935 Existential elimination ru...
nexdv 1936 Deduction for generalizati...
2ax5 1937 Quantification of two vari...
stdpc5v 1938 Version of ~ stdpc5 with a...
19.21v 1939 Version of ~ 19.21 with a ...
19.32v 1940 Version of ~ 19.32 with a ...
19.31v 1941 Version of ~ 19.31 with a ...
19.23v 1942 Version of ~ 19.23 with a ...
19.23vv 1943 Theorem ~ 19.23v extended ...
pm11.53v 1944 Version of ~ pm11.53 with ...
19.36imv 1945 One direction of ~ 19.36v ...
19.36iv 1946 Inference associated with ...
19.37imv 1947 One direction of ~ 19.37v ...
19.37iv 1948 Inference associated with ...
19.41v 1949 Version of ~ 19.41 with a ...
19.41vv 1950 Version of ~ 19.41 with tw...
19.41vvv 1951 Version of ~ 19.41 with th...
19.41vvvv 1952 Version of ~ 19.41 with fo...
19.42v 1953 Version of ~ 19.42 with a ...
exdistr 1954 Distribution of existentia...
exdistrv 1955 Distribute a pair of exist...
4exdistrv 1956 Distribute two pairs of ex...
19.42vv 1957 Version of ~ 19.42 with tw...
exdistr2 1958 Distribution of existentia...
19.42vvv 1959 Version of ~ 19.42 with th...
3exdistr 1960 Distribution of existentia...
4exdistr 1961 Distribution of existentia...
weq 1962 Extend wff definition to i...
speimfw 1963 Specialization, with addit...
speimfwALT 1964 Alternate proof of ~ speim...
spimfw 1965 Specialization, with addit...
ax12i 1966 Inference that has ~ ax-12...
ax6v 1968 Axiom B7 of [Tarski] p. 75...
ax6ev 1969 At least one individual ex...
spimw 1970 Specialization. Lemma 8 o...
spimew 1971 Existential introduction, ...
speiv 1972 Inference from existential...
speivw 1973 Version of ~ spei with a d...
exgen 1974 Rule of existential genera...
extru 1975 There exists a variable su...
19.2 1976 Theorem 19.2 of [Margaris]...
19.2d 1977 Deduction associated with ...
19.8w 1978 Weak version of ~ 19.8a an...
spnfw 1979 Weak version of ~ sp . Us...
spfalw 1980 Version of ~ sp when ` ph ...
spvw 1981 Version of ~ sp when ` x `...
19.3v 1982 Version of ~ 19.3 with a d...
19.8v 1983 Version of ~ 19.8a with a ...
19.9v 1984 Version of ~ 19.9 with a d...
spimevw 1985 Existential introduction, ...
spimvw 1986 A weak form of specializat...
spsv 1987 Generalization of antecede...
spvv 1988 Specialization, using impl...
chvarvv 1989 Implicit substitution of `...
19.39 1990 Theorem 19.39 of [Margaris...
19.24 1991 Theorem 19.24 of [Margaris...
19.34 1992 Theorem 19.34 of [Margaris...
19.36v 1993 Version of ~ 19.36 with a ...
19.12vvv 1994 Version of ~ 19.12vv with ...
19.27v 1995 Version of ~ 19.27 with a ...
19.28v 1996 Version of ~ 19.28 with a ...
19.37v 1997 Version of ~ 19.37 with a ...
19.44v 1998 Version of ~ 19.44 with a ...
19.45v 1999 Version of ~ 19.45 with a ...
equs4v 2000 Version of ~ equs4 with a ...
alequexv 2001 Version of ~ equs4v with i...
exsbim 2002 One direction of the equiv...
equsv 2003 If a formula does not cont...
equsalvw 2004 Version of ~ equsalv with ...
equsexvw 2005 Version of ~ equsexv with ...
cbvaliw 2006 Change bound variable. Us...
cbvalivw 2007 Change bound variable. Us...
ax7v 2009 Weakened version of ~ ax-7...
ax7v1 2010 First of two weakened vers...
ax7v2 2011 Second of two weakened ver...
equid 2012 Identity law for equality....
nfequid 2013 Bound-variable hypothesis ...
equcomiv 2014 Weaker form of ~ equcomi w...
ax6evr 2015 A commuted form of ~ ax6ev...
ax7 2016 Proof of ~ ax-7 from ~ ax7...
equcomi 2017 Commutative law for equali...
equcom 2018 Commutative law for equali...
equcomd 2019 Deduction form of ~ equcom...
equcoms 2020 An inference commuting equ...
equtr 2021 A transitive law for equal...
equtrr 2022 A transitive law for equal...
equeuclr 2023 Commuted version of ~ eque...
equeucl 2024 Equality is a left-Euclide...
equequ1 2025 An equivalence law for equ...
equequ2 2026 An equivalence law for equ...
equtr2 2027 Equality is a left-Euclide...
stdpc6 2028 One of the two equality ax...
equvinv 2029 A variable introduction la...
equvinva 2030 A modified version of the ...
equvelv 2031 A biconditional form of ~ ...
ax13b 2032 An equivalence between two...
spfw 2033 Weak version of ~ sp . Us...
spw 2034 Weak version of the specia...
cbvalw 2035 Change bound variable. Us...
cbvalvw 2036 Change bound variable. Us...
cbvexvw 2037 Change bound variable. Us...
cbvaldvaw 2038 Rule used to change the bo...
cbvexdvaw 2039 Rule used to change the bo...
cbval2vw 2040 Rule used to change bound ...
cbvex2vw 2041 Rule used to change bound ...
cbvex4vw 2042 Rule used to change bound ...
alcomimw 2043 Weak version of ~ ax-11 . ...
excomimw 2044 Weak version of ~ excomim ...
alcomw 2045 Weak version of ~ alcom an...
hbn1fw 2046 Weak version of ~ ax-10 fr...
hbn1w 2047 Weak version of ~ hbn1 . ...
hba1w 2048 Weak version of ~ hba1 . ...
hbe1w 2049 Weak version of ~ hbe1 . ...
hbalw 2050 Weak version of ~ hbal . ...
19.8aw 2051 If a formula is true, then...
exexw 2052 Existential quantification...
spaev 2053 A special instance of ~ sp...
cbvaev 2054 Change bound variable in a...
aevlem0 2055 Lemma for ~ aevlem . Inst...
aevlem 2056 Lemma for ~ aev and ~ axc1...
aeveq 2057 The antecedent ` A. x x = ...
aev 2058 A "distinctor elimination"...
aev2 2059 A version of ~ aev with tw...
hbaev 2060 All variables are effectiv...
naev 2061 If some set variables can ...
naev2 2062 Generalization of ~ hbnaev...
hbnaev 2063 Any variable is free in ` ...
sbjust 2064 Justification theorem for ...
sbt 2067 A substitution into a theo...
sbtru 2068 The result of substituting...
stdpc4 2069 The specialization axiom o...
sbtALT 2070 Alternate proof of ~ sbt ,...
2stdpc4 2071 A double specialization us...
sbi1 2072 Distribute substitution ov...
spsbim 2073 Distribute substitution ov...
spsbbi 2074 Biconditional property for...
sbimi 2075 Distribute substitution ov...
sb2imi 2076 Distribute substitution ov...
sbbii 2077 Infer substitution into bo...
2sbbii 2078 Infer double substitution ...
sbimdv 2079 Deduction substituting bot...
sbbidv 2080 Deduction substituting bot...
sban 2081 Conjunction inside and out...
sb3an 2082 Threefold conjunction insi...
spsbe 2083 Existential generalization...
sbequ 2084 Equality property for subs...
sbequi 2085 An equality theorem for su...
sb6 2086 Alternate definition of su...
2sb6 2087 Equivalence for double sub...
sb1v 2088 One direction of ~ sb5 , p...
sbv 2089 Substitution for a variabl...
sbcom4 2090 Commutativity law for subs...
pm11.07 2091 Axiom *11.07 in [Whitehead...
sbrimvw 2092 Substitution in an implica...
sbbiiev 2093 An equivalence of substitu...
sbievw 2094 Conversion of implicit sub...
sbievwOLD 2095 Obsolete version of ~ sbie...
sbiedvw 2096 Conversion of implicit sub...
2sbievw 2097 Conversion of double impli...
sbcom3vv 2098 Substituting ` y ` for ` x...
sbievw2 2099 ~ sbievw applied twice, av...
sbco2vv 2100 A composition law for subs...
cbvsbv 2101 Change the bound variable ...
sbco4lem 2102 Lemma for ~ sbco4 . It re...
sbco4 2103 Two ways of exchanging two...
equsb3 2104 Substitution in an equalit...
equsb3r 2105 Substitution applied to th...
equsb1v 2106 Substitution applied to an...
nsb 2107 Any substitution in an alw...
sbn1 2108 One direction of ~ sbn , u...
wel 2110 Extend wff definition to i...
ax8v 2112 Weakened version of ~ ax-8...
ax8v1 2113 First of two weakened vers...
ax8v2 2114 Second of two weakened ver...
ax8 2115 Proof of ~ ax-8 from ~ ax8...
elequ1 2116 An identity law for the no...
elsb1 2117 Substitution for the first...
cleljust 2118 When the class variables i...
ax9v 2120 Weakened version of ~ ax-9...
ax9v1 2121 First of two weakened vers...
ax9v2 2122 Second of two weakened ver...
ax9 2123 Proof of ~ ax-9 from ~ ax9...
elequ2 2124 An identity law for the no...
elequ2g 2125 A form of ~ elequ2 with a ...
elsb2 2126 Substitution for the secon...
elequ12 2127 An identity law for the no...
ru0 2128 The FOL statement used in ...
ax6dgen 2129 Tarski's system uses the w...
ax10w 2130 Weak version of ~ ax-10 fr...
ax11w 2131 Weak version of ~ ax-11 fr...
ax11dgen 2132 Degenerate instance of ~ a...
ax12wlem 2133 Lemma for weak version of ...
ax12w 2134 Weak version of ~ ax-12 fr...
ax12dgen 2135 Degenerate instance of ~ a...
ax12wdemo 2136 Example of an application ...
ax13w 2137 Weak version (principal in...
ax13dgen1 2138 Degenerate instance of ~ a...
ax13dgen2 2139 Degenerate instance of ~ a...
ax13dgen3 2140 Degenerate instance of ~ a...
ax13dgen4 2141 Degenerate instance of ~ a...
hbn1 2143 Alias for ~ ax-10 to be us...
hbe1 2144 The setvar ` x ` is not fr...
hbe1a 2145 Dual statement of ~ hbe1 ....
nf5-1 2146 One direction of ~ nf5 can...
nf5i 2147 Deduce that ` x ` is not f...
nf5dh 2148 Deduce that ` x ` is not f...
nf5dv 2149 Apply the definition of no...
nfnaew 2150 All variables are effectiv...
nfe1 2151 The setvar ` x ` is not fr...
nfa1 2152 The setvar ` x ` is not fr...
nfna1 2153 A convenience theorem part...
nfia1 2154 Lemma 23 of [Monk2] p. 114...
nfnf1 2155 The setvar ` x ` is not fr...
modal5 2156 The analogue in our predic...
nfs1v 2157 The setvar ` x ` is not fr...
alcoms 2159 Swap quantifiers in an ant...
alcom 2160 Theorem 19.5 of [Margaris]...
alrot3 2161 Theorem *11.21 in [Whitehe...
alrot4 2162 Rotate four universal quan...
excom 2163 Theorem 19.11 of [Margaris...
excomim 2164 One direction of Theorem 1...
excom13 2165 Swap 1st and 3rd existenti...
exrot3 2166 Rotate existential quantif...
exrot4 2167 Rotate existential quantif...
hbal 2168 If ` x ` is not free in ` ...
hbald 2169 Deduction form of bound-va...
sbal 2170 Move universal quantifier ...
sbalv 2171 Quantify with new variable...
hbsbw 2172 If ` z ` is not free in ` ...
hbsbwOLD 2173 Obsolete version of ~ hbsb...
sbcom2 2174 Commutativity law for subs...
sbco4lemOLD 2175 Obsolete version of ~ sbco...
sbco4OLD 2176 Obsolete version of ~ sbco...
nfa2 2177 Lemma 24 of [Monk2] p. 114...
ax12v 2179 This is essentially Axiom ...
ax12v2 2180 It is possible to remove a...
ax12ev2 2181 Version of ~ ax12v2 rewrit...
19.8a 2182 If a wff is true, it is tr...
19.8ad 2183 If a wff is true, it is tr...
sp 2184 Specialization. A univers...
spi 2185 Inference rule of universa...
sps 2186 Generalization of antecede...
2sp 2187 A double specialization (s...
spsd 2188 Deduction generalizing ant...
19.2g 2189 Theorem 19.2 of [Margaris]...
19.21bi 2190 Inference form of ~ 19.21 ...
19.21bbi 2191 Inference removing two uni...
19.23bi 2192 Inference form of Theorem ...
nexr 2193 Inference associated with ...
qexmid 2194 Quantified excluded middle...
nf5r 2195 Consequence of the definit...
nf5ri 2196 Consequence of the definit...
nf5rd 2197 Consequence of the definit...
spimedv 2198 Deduction version of ~ spi...
spimefv 2199 Version of ~ spime with a ...
nfim1 2200 A closed form of ~ nfim . ...
nfan1 2201 A closed form of ~ nfan . ...
19.3t 2202 Closed form of ~ 19.3 and ...
19.3 2203 A wff may be quantified wi...
19.9d 2204 A deduction version of one...
19.9t 2205 Closed form of ~ 19.9 and ...
19.9 2206 A wff may be existentially...
19.21t 2207 Closed form of Theorem 19....
19.21 2208 Theorem 19.21 of [Margaris...
stdpc5 2209 An axiom scheme of standar...
19.21-2 2210 Version of ~ 19.21 with tw...
19.23t 2211 Closed form of Theorem 19....
19.23 2212 Theorem 19.23 of [Margaris...
alimd 2213 Deduction form of Theorem ...
alrimi 2214 Inference form of Theorem ...
alrimdd 2215 Deduction form of Theorem ...
alrimd 2216 Deduction form of Theorem ...
eximd 2217 Deduction form of Theorem ...
exlimi 2218 Inference associated with ...
exlimd 2219 Deduction form of Theorem ...
exlimimdd 2220 Existential elimination ru...
exlimdd 2221 Existential elimination ru...
nexd 2222 Deduction for generalizati...
albid 2223 Formula-building rule for ...
exbid 2224 Formula-building rule for ...
nfbidf 2225 An equality theorem for ef...
19.16 2226 Theorem 19.16 of [Margaris...
19.17 2227 Theorem 19.17 of [Margaris...
19.27 2228 Theorem 19.27 of [Margaris...
19.28 2229 Theorem 19.28 of [Margaris...
19.19 2230 Theorem 19.19 of [Margaris...
19.36 2231 Theorem 19.36 of [Margaris...
19.36i 2232 Inference associated with ...
19.37 2233 Theorem 19.37 of [Margaris...
19.32 2234 Theorem 19.32 of [Margaris...
19.31 2235 Theorem 19.31 of [Margaris...
19.41 2236 Theorem 19.41 of [Margaris...
19.42 2237 Theorem 19.42 of [Margaris...
19.44 2238 Theorem 19.44 of [Margaris...
19.45 2239 Theorem 19.45 of [Margaris...
spimfv 2240 Specialization, using impl...
chvarfv 2241 Implicit substitution of `...
cbv3v2 2242 Version of ~ cbv3 with two...
sbalex 2243 Equivalence of two ways to...
sbalexOLD 2244 Obsolete version of ~ sbal...
sb4av 2245 Version of ~ sb4a with a d...
sbimd 2246 Deduction substituting bot...
sbbid 2247 Deduction substituting bot...
2sbbid 2248 Deduction doubly substitut...
sbequ1 2249 An equality theorem for su...
sbequ2 2250 An equality theorem for su...
stdpc7 2251 One of the two equality ax...
sbequ12 2252 An equality theorem for su...
sbequ12r 2253 An equality theorem for su...
sbelx 2254 Elimination of substitutio...
sbequ12a 2255 An equality theorem for su...
sbid 2256 An identity theorem for su...
sbcov 2257 A composition law for subs...
sbcovOLD 2258 Obsolete version of ~ sbco...
sb6a 2259 Equivalence for substituti...
sbid2vw 2260 Reverting substitution yie...
axc16g 2261 Generalization of ~ axc16 ...
axc16 2262 Proof of older axiom ~ ax-...
axc16gb 2263 Biconditional strengthenin...
axc16nf 2264 If ~ dtru is false, then t...
axc11v 2265 Version of ~ axc11 with a ...
axc11rv 2266 Version of ~ axc11r with a...
drsb2 2267 Formula-building lemma for...
equsalv 2268 An equivalence related to ...
equsexv 2269 An equivalence related to ...
sbft 2270 Substitution has no effect...
sbf 2271 Substitution for a variabl...
sbf2 2272 Substitution has no effect...
sbh 2273 Substitution for a variabl...
hbs1 2274 The setvar ` x ` is not fr...
nfs1f 2275 If ` x ` is not free in ` ...
sb5 2276 Alternate definition of su...
equs5av 2277 A property related to subs...
2sb5 2278 Equivalence for double sub...
dfsb7 2279 An alternate definition of...
sbn 2280 Negation inside and outsid...
sbex 2281 Move existential quantifie...
nf5 2282 Alternate definition of ~ ...
nf6 2283 An alternate definition of...
nf5d 2284 Deduce that ` x ` is not f...
nf5di 2285 Since the converse holds b...
19.9h 2286 A wff may be existentially...
19.21h 2287 Theorem 19.21 of [Margaris...
19.23h 2288 Theorem 19.23 of [Margaris...
exlimih 2289 Inference associated with ...
exlimdh 2290 Deduction form of Theorem ...
equsalhw 2291 Version of ~ equsalh with ...
equsexhv 2292 An equivalence related to ...
hba1 2293 The setvar ` x ` is not fr...
hbnt 2294 Closed theorem version of ...
hbn 2295 If ` x ` is not free in ` ...
hbnd 2296 Deduction form of bound-va...
hbim1 2297 A closed form of ~ hbim . ...
hbimd 2298 Deduction form of bound-va...
hbim 2299 If ` x ` is not free in ` ...
hban 2300 If ` x ` is not free in ` ...
hb3an 2301 If ` x ` is not free in ` ...
sbi2 2302 Introduction of implicatio...
sbim 2303 Implication inside and out...
sbrim 2304 Substitution in an implica...
sblim 2305 Substitution in an implica...
sbor 2306 Disjunction inside and out...
sbbi 2307 Equivalence inside and out...
sblbis 2308 Introduce left bicondition...
sbrbis 2309 Introduce right biconditio...
sbrbif 2310 Introduce right biconditio...
sbnf 2311 Move nonfree predicate in ...
sbnfOLD 2312 Obsolete version of ~ sbnf...
sbiev 2313 Conversion of implicit sub...
sbievOLD 2314 Obsolete version of ~ sbie...
sbiedw 2315 Conversion of implicit sub...
axc7 2316 Show that the original axi...
axc7e 2317 Abbreviated version of ~ a...
modal-b 2318 The analogue in our predic...
19.9ht 2319 A closed version of ~ 19.9...
axc4 2320 Show that the original axi...
axc4i 2321 Inference version of ~ axc...
nfal 2322 If ` x ` is not free in ` ...
nfex 2323 If ` x ` is not free in ` ...
hbex 2324 If ` x ` is not free in ` ...
nfnf 2325 If ` x ` is not free in ` ...
19.12 2326 Theorem 19.12 of [Margaris...
nfald 2327 Deduction form of ~ nfal ....
nfexd 2328 If ` x ` is not free in ` ...
nfsbv 2329 If ` z ` is not free in ` ...
sbco2v 2330 A composition law for subs...
aaan 2331 Distribute universal quant...
eeor 2332 Distribute existential qua...
cbv3v 2333 Rule used to change bound ...
cbv1v 2334 Rule used to change bound ...
cbv2w 2335 Rule used to change bound ...
cbvaldw 2336 Deduction used to change b...
cbvexdw 2337 Deduction used to change b...
cbv3hv 2338 Rule used to change bound ...
cbvalv1 2339 Rule used to change bound ...
cbvexv1 2340 Rule used to change bound ...
cbval2v 2341 Rule used to change bound ...
cbvex2v 2342 Rule used to change bound ...
dvelimhw 2343 Proof of ~ dvelimh without...
pm11.53 2344 Theorem *11.53 in [Whitehe...
19.12vv 2345 Special case of ~ 19.12 wh...
eean 2346 Distribute existential qua...
eeanv 2347 Distribute a pair of exist...
eeeanv 2348 Distribute three existenti...
ee4anv 2349 Distribute two pairs of ex...
ee4anvOLD 2350 Obsolete version of ~ ee4a...
sb8v 2351 Substitution of variable i...
sb8f 2352 Substitution of variable i...
sb8fOLD 2353 Obsolete version of ~ sb8f...
sb8ef 2354 Substitution of variable i...
2sb8ef 2355 An equivalent expression f...
sb6rfv 2356 Reversed substitution. Ve...
sbnf2 2357 Two ways of expressing " `...
exsb 2358 An equivalent expression f...
2exsb 2359 An equivalent expression f...
sbbib 2360 Reversal of substitution. ...
sbbibvv 2361 Reversal of substitution. ...
cbvsbvf 2362 Change the bound variable ...
cleljustALT 2363 Alternate proof of ~ clelj...
cleljustALT2 2364 Alternate proof of ~ clelj...
equs5aALT 2365 Alternate proof of ~ equs5...
equs5eALT 2366 Alternate proof of ~ equs5...
axc11r 2367 Same as ~ axc11 but with r...
dral1v 2368 Formula-building lemma for...
drex1v 2369 Formula-building lemma for...
drnf1v 2370 Formula-building lemma for...
ax13v 2372 A weaker version of ~ ax-1...
ax13lem1 2373 A version of ~ ax13v with ...
ax13 2374 Derive ~ ax-13 from ~ ax13...
ax13lem2 2375 Lemma for ~ nfeqf2 . This...
nfeqf2 2376 An equation between setvar...
dveeq2 2377 Quantifier introduction wh...
nfeqf1 2378 An equation between setvar...
dveeq1 2379 Quantifier introduction wh...
nfeqf 2380 A variable is effectively ...
axc9 2381 Derive set.mm's original ~...
ax6e 2382 At least one individual ex...
ax6 2383 Theorem showing that ~ ax-...
axc10 2384 Show that the original axi...
spimt 2385 Closed theorem form of ~ s...
spim 2386 Specialization, using impl...
spimed 2387 Deduction version of ~ spi...
spime 2388 Existential introduction, ...
spimv 2389 A version of ~ spim with a...
spimvALT 2390 Alternate proof of ~ spimv...
spimev 2391 Distinct-variable version ...
spv 2392 Specialization, using impl...
spei 2393 Inference from existential...
chvar 2394 Implicit substitution of `...
chvarv 2395 Implicit substitution of `...
cbv3 2396 Rule used to change bound ...
cbval 2397 Rule used to change bound ...
cbvex 2398 Rule used to change bound ...
cbvalv 2399 Rule used to change bound ...
cbvexv 2400 Rule used to change bound ...
cbv1 2401 Rule used to change bound ...
cbv2 2402 Rule used to change bound ...
cbv3h 2403 Rule used to change bound ...
cbv1h 2404 Rule used to change bound ...
cbv2h 2405 Rule used to change bound ...
cbvald 2406 Deduction used to change b...
cbvexd 2407 Deduction used to change b...
cbvaldva 2408 Rule used to change the bo...
cbvexdva 2409 Rule used to change the bo...
cbval2 2410 Rule used to change bound ...
cbvex2 2411 Rule used to change bound ...
cbval2vv 2412 Rule used to change bound ...
cbvex2vv 2413 Rule used to change bound ...
cbvex4v 2414 Rule used to change bound ...
equs4 2415 Lemma used in proofs of im...
equsal 2416 An equivalence related to ...
equsex 2417 An equivalence related to ...
equsexALT 2418 Alternate proof of ~ equse...
equsalh 2419 An equivalence related to ...
equsexh 2420 An equivalence related to ...
axc15 2421 Derivation of set.mm's ori...
ax12 2422 Rederivation of Axiom ~ ax...
ax12b 2423 A bidirectional version of...
ax13ALT 2424 Alternate proof of ~ ax13 ...
axc11n 2425 Derive set.mm's original ~...
aecom 2426 Commutation law for identi...
aecoms 2427 A commutation rule for ide...
naecoms 2428 A commutation rule for dis...
axc11 2429 Show that ~ ax-c11 can be ...
hbae 2430 All variables are effectiv...
hbnae 2431 All variables are effectiv...
nfae 2432 All variables are effectiv...
nfnae 2433 All variables are effectiv...
hbnaes 2434 Rule that applies ~ hbnae ...
axc16i 2435 Inference with ~ axc16 as ...
axc16nfALT 2436 Alternate proof of ~ axc16...
dral2 2437 Formula-building lemma for...
dral1 2438 Formula-building lemma for...
dral1ALT 2439 Alternate proof of ~ dral1...
drex1 2440 Formula-building lemma for...
drex2 2441 Formula-building lemma for...
drnf1 2442 Formula-building lemma for...
drnf2 2443 Formula-building lemma for...
nfald2 2444 Variation on ~ nfald which...
nfexd2 2445 Variation on ~ nfexd which...
exdistrf 2446 Distribution of existentia...
dvelimf 2447 Version of ~ dvelimv witho...
dvelimdf 2448 Deduction form of ~ dvelim...
dvelimh 2449 Version of ~ dvelim withou...
dvelim 2450 This theorem can be used t...
dvelimv 2451 Similar to ~ dvelim with f...
dvelimnf 2452 Version of ~ dvelim using ...
dveeq2ALT 2453 Alternate proof of ~ dveeq...
equvini 2454 A variable introduction la...
equvel 2455 A variable elimination law...
equs5a 2456 A property related to subs...
equs5e 2457 A property related to subs...
equs45f 2458 Two ways of expressing sub...
equs5 2459 Lemma used in proofs of su...
dveel1 2460 Quantifier introduction wh...
dveel2 2461 Quantifier introduction wh...
axc14 2462 Axiom ~ ax-c14 is redundan...
sb6x 2463 Equivalence involving subs...
sbequ5 2464 Substitution does not chan...
sbequ6 2465 Substitution does not chan...
sb5rf 2466 Reversed substitution. Us...
sb6rf 2467 Reversed substitution. Fo...
ax12vALT 2468 Alternate proof of ~ ax12v...
2ax6elem 2469 We can always find values ...
2ax6e 2470 We can always find values ...
2sb5rf 2471 Reversed double substituti...
2sb6rf 2472 Reversed double substituti...
sbel2x 2473 Elimination of double subs...
sb4b 2474 Simplified definition of s...
sb3b 2475 Simplified definition of s...
sb3 2476 One direction of a simplif...
sb1 2477 One direction of a simplif...
sb2 2478 One direction of a simplif...
sb4a 2479 A version of one implicati...
dfsb1 2480 Alternate definition of su...
hbsb2 2481 Bound-variable hypothesis ...
nfsb2 2482 Bound-variable hypothesis ...
hbsb2a 2483 Special case of a bound-va...
sb4e 2484 One direction of a simplif...
hbsb2e 2485 Special case of a bound-va...
hbsb3 2486 If ` y ` is not free in ` ...
nfs1 2487 If ` y ` is not free in ` ...
axc16ALT 2488 Alternate proof of ~ axc16...
axc16gALT 2489 Alternate proof of ~ axc16...
equsb1 2490 Substitution applied to an...
equsb2 2491 Substitution applied to an...
dfsb2 2492 An alternate definition of...
dfsb3 2493 An alternate definition of...
drsb1 2494 Formula-building lemma for...
sb2ae 2495 In the case of two success...
sb6f 2496 Equivalence for substituti...
sb5f 2497 Equivalence for substituti...
nfsb4t 2498 A variable not free in a p...
nfsb4 2499 A variable not free in a p...
sbequ8 2500 Elimination of equality fr...
sbie 2501 Conversion of implicit sub...
sbied 2502 Conversion of implicit sub...
sbiedv 2503 Conversion of implicit sub...
2sbiev 2504 Conversion of double impli...
sbcom3 2505 Substituting ` y ` for ` x...
sbco 2506 A composition law for subs...
sbid2 2507 An identity law for substi...
sbid2v 2508 An identity law for substi...
sbidm 2509 An idempotent law for subs...
sbco2 2510 A composition law for subs...
sbco2d 2511 A composition law for subs...
sbco3 2512 A composition law for subs...
sbcom 2513 A commutativity law for su...
sbtrt 2514 Partially closed form of ~...
sbtr 2515 A partial converse to ~ sb...
sb8 2516 Substitution of variable i...
sb8e 2517 Substitution of variable i...
sb9 2518 Commutation of quantificat...
sb9i 2519 Commutation of quantificat...
sbhb 2520 Two ways of expressing " `...
nfsbd 2521 Deduction version of ~ nfs...
nfsb 2522 If ` z ` is not free in ` ...
hbsb 2523 If ` z ` is not free in ` ...
sb7f 2524 This version of ~ dfsb7 do...
sb7h 2525 This version of ~ dfsb7 do...
sb10f 2526 Hao Wang's identity axiom ...
sbal1 2527 Check out ~ sbal for a ver...
sbal2 2528 Move quantifier in and out...
2sb8e 2529 An equivalent expression f...
dfmoeu 2530 An elementary proof of ~ m...
dfeumo 2531 An elementary proof showin...
mojust 2533 Soundness justification th...
nexmo 2535 Nonexistence implies uniqu...
exmo 2536 Any proposition holds for ...
moabs 2537 Absorption of existence co...
moim 2538 The at-most-one quantifier...
moimi 2539 The at-most-one quantifier...
moimdv 2540 The at-most-one quantifier...
mobi 2541 Equivalence theorem for th...
mobii 2542 Formula-building rule for ...
mobidv 2543 Formula-building rule for ...
mobid 2544 Formula-building rule for ...
moa1 2545 If an implication holds fo...
moan 2546 "At most one" is still the...
moani 2547 "At most one" is still tru...
moor 2548 "At most one" is still the...
mooran1 2549 "At most one" imports disj...
mooran2 2550 "At most one" exports disj...
nfmo1 2551 Bound-variable hypothesis ...
nfmod2 2552 Bound-variable hypothesis ...
nfmodv 2553 Bound-variable hypothesis ...
nfmov 2554 Bound-variable hypothesis ...
nfmod 2555 Bound-variable hypothesis ...
nfmo 2556 Bound-variable hypothesis ...
mof 2557 Version of ~ df-mo with di...
mo3 2558 Alternate definition of th...
mo 2559 Equivalent definitions of ...
mo4 2560 At-most-one quantifier exp...
mo4f 2561 At-most-one quantifier exp...
eu3v 2564 An alternate way to expres...
eujust 2565 Soundness justification th...
eujustALT 2566 Alternate proof of ~ eujus...
eu6lem 2567 Lemma of ~ eu6im . A diss...
eu6 2568 Alternate definition of th...
eu6im 2569 One direction of ~ eu6 nee...
euf 2570 Version of ~ eu6 with disj...
euex 2571 Existential uniqueness imp...
eumo 2572 Existential uniqueness imp...
eumoi 2573 Uniqueness inferred from e...
exmoeub 2574 Existence implies that uni...
exmoeu 2575 Existence is equivalent to...
moeuex 2576 Uniqueness implies that ex...
moeu 2577 Uniqueness is equivalent t...
eubi 2578 Equivalence theorem for th...
eubii 2579 Introduce unique existenti...
eubidv 2580 Formula-building rule for ...
eubid 2581 Formula-building rule for ...
nfeu1 2582 Bound-variable hypothesis ...
nfeu1ALT 2583 Alternate proof of ~ nfeu1...
nfeud2 2584 Bound-variable hypothesis ...
nfeudw 2585 Bound-variable hypothesis ...
nfeud 2586 Bound-variable hypothesis ...
nfeuw 2587 Bound-variable hypothesis ...
nfeu 2588 Bound-variable hypothesis ...
dfeu 2589 Rederive ~ df-eu from the ...
dfmo 2590 Rederive ~ df-mo from the ...
euequ 2591 There exists a unique set ...
sb8eulem 2592 Lemma. Factor out the com...
sb8euv 2593 Variable substitution in u...
sb8eu 2594 Variable substitution in u...
sb8mo 2595 Variable substitution for ...
cbvmovw 2596 Change bound variable. Us...
cbvmow 2597 Rule used to change bound ...
cbvmo 2598 Rule used to change bound ...
cbveuvw 2599 Change bound variable. Us...
cbveuw 2600 Version of ~ cbveu with a ...
cbveu 2601 Rule used to change bound ...
cbveuALT 2602 Alternative proof of ~ cbv...
eu2 2603 An alternate way of defini...
eu1 2604 An alternate way to expres...
euor 2605 Introduce a disjunct into ...
euorv 2606 Introduce a disjunct into ...
euor2 2607 Introduce or eliminate a d...
sbmo 2608 Substitution into an at-mo...
eu4 2609 Uniqueness using implicit ...
euimmo 2610 Existential uniqueness imp...
euim 2611 Add unique existential qua...
moanimlem 2612 Factor out the common proo...
moanimv 2613 Introduction of a conjunct...
moanim 2614 Introduction of a conjunct...
euan 2615 Introduction of a conjunct...
moanmo 2616 Nested at-most-one quantif...
moaneu 2617 Nested at-most-one and uni...
euanv 2618 Introduction of a conjunct...
mopick 2619 "At most one" picks a vari...
moexexlem 2620 Factor out the proof skele...
2moexv 2621 Double quantification with...
moexexvw 2622 "At most one" double quant...
2moswapv 2623 A condition allowing to sw...
2euswapv 2624 A condition allowing to sw...
2euexv 2625 Double quantification with...
2exeuv 2626 Double existential uniquen...
eupick 2627 Existential uniqueness "pi...
eupicka 2628 Version of ~ eupick with c...
eupickb 2629 Existential uniqueness "pi...
eupickbi 2630 Theorem *14.26 in [Whitehe...
mopick2 2631 "At most one" can show the...
moexex 2632 "At most one" double quant...
moexexv 2633 "At most one" double quant...
2moex 2634 Double quantification with...
2euex 2635 Double quantification with...
2eumo 2636 Nested unique existential ...
2eu2ex 2637 Double existential uniquen...
2moswap 2638 A condition allowing to sw...
2euswap 2639 A condition allowing to sw...
2exeu 2640 Double existential uniquen...
2mo2 2641 Two ways of expressing "th...
2mo 2642 Two ways of expressing "th...
2mos 2643 Double "there exists at mo...
2mosOLD 2644 Obsolete version of ~ 2mos...
2eu1 2645 Double existential uniquen...
2eu1v 2646 Double existential uniquen...
2eu2 2647 Double existential uniquen...
2eu3 2648 Double existential uniquen...
2eu4 2649 This theorem provides us w...
2eu5 2650 An alternate definition of...
2eu6 2651 Two equivalent expressions...
2eu7 2652 Two equivalent expressions...
2eu8 2653 Two equivalent expressions...
euae 2654 Two ways to express "exact...
exists1 2655 Two ways to express "exact...
exists2 2656 A condition implying that ...
barbara 2657 "Barbara", one of the fund...
celarent 2658 "Celarent", one of the syl...
darii 2659 "Darii", one of the syllog...
dariiALT 2660 Alternate proof of ~ darii...
ferio 2661 "Ferio" ("Ferioque"), one ...
barbarilem 2662 Lemma for ~ barbari and th...
barbari 2663 "Barbari", one of the syll...
barbariALT 2664 Alternate proof of ~ barba...
celaront 2665 "Celaront", one of the syl...
cesare 2666 "Cesare", one of the syllo...
camestres 2667 "Camestres", one of the sy...
festino 2668 "Festino", one of the syll...
festinoALT 2669 Alternate proof of ~ festi...
baroco 2670 "Baroco", one of the syllo...
barocoALT 2671 Alternate proof of ~ festi...
cesaro 2672 "Cesaro", one of the syllo...
camestros 2673 "Camestros", one of the sy...
datisi 2674 "Datisi", one of the syllo...
disamis 2675 "Disamis", one of the syll...
ferison 2676 "Ferison", one of the syll...
bocardo 2677 "Bocardo", one of the syll...
darapti 2678 "Darapti", one of the syll...
daraptiALT 2679 Alternate proof of ~ darap...
felapton 2680 "Felapton", one of the syl...
calemes 2681 "Calemes", one of the syll...
dimatis 2682 "Dimatis", one of the syll...
fresison 2683 "Fresison", one of the syl...
calemos 2684 "Calemos", one of the syll...
fesapo 2685 "Fesapo", one of the syllo...
bamalip 2686 "Bamalip", one of the syll...
axia1 2687 Left 'and' elimination (in...
axia2 2688 Right 'and' elimination (i...
axia3 2689 'And' introduction (intuit...
axin1 2690 'Not' introduction (intuit...
axin2 2691 'Not' elimination (intuiti...
axio 2692 Definition of 'or' (intuit...
axi4 2693 Specialization (intuitioni...
axi5r 2694 Converse of ~ axc4 (intuit...
axial 2695 The setvar ` x ` is not fr...
axie1 2696 The setvar ` x ` is not fr...
axie2 2697 A key property of existent...
axi9 2698 Axiom of existence (intuit...
axi10 2699 Axiom of Quantifier Substi...
axi12 2700 Axiom of Quantifier Introd...
axbnd 2701 Axiom of Bundling (intuiti...
axexte 2703 The axiom of extensionalit...
axextg 2704 A generalization of the ax...
axextb 2705 A bidirectional version of...
axextmo 2706 There exists at most one s...
nulmo 2707 There exists at most one e...
eleq1ab 2710 Extension (in the sense of...
cleljustab 2711 Extension of ~ cleljust fr...
abid 2712 Simplification of class ab...
vexwt 2713 A standard theorem of pred...
vexw 2714 If ` ph ` is a theorem, th...
vextru 2715 Every setvar is a member o...
nfsab1 2716 Bound-variable hypothesis ...
hbab1 2717 Bound-variable hypothesis ...
hbab 2718 Bound-variable hypothesis ...
hbabg 2719 Bound-variable hypothesis ...
nfsab 2720 Bound-variable hypothesis ...
nfsabg 2721 Bound-variable hypothesis ...
dfcleq 2723 The defining characterizat...
cvjust 2724 Every set is a class. Pro...
ax9ALT 2725 Proof of ~ ax-9 from Tarsk...
eleq2w2 2726 A weaker version of ~ eleq...
eqriv 2727 Infer equality of classes ...
eqrdv 2728 Deduce equality of classes...
eqrdav 2729 Deduce equality of classes...
eqid 2730 Law of identity (reflexivi...
eqidd 2731 Class identity law with an...
eqeq1d 2732 Deduction from equality to...
eqeq1dALT 2733 Alternate proof of ~ eqeq1...
eqeq1 2734 Equality implies equivalen...
eqeq1i 2735 Inference from equality to...
eqcomd 2736 Deduction from commutative...
eqcom 2737 Commutative law for class ...
eqcoms 2738 Inference applying commuta...
eqcomi 2739 Inference from commutative...
neqcomd 2740 Commute an inequality. (C...
eqeq2d 2741 Deduction from equality to...
eqeq2 2742 Equality implies equivalen...
eqeq2i 2743 Inference from equality to...
eqeqan12d 2744 A useful inference for sub...
eqeqan12rd 2745 A useful inference for sub...
eqeq12d 2746 A useful inference for sub...
eqeq12 2747 Equality relationship amon...
eqeq12i 2748 A useful inference for sub...
eqeqan12dALT 2749 Alternate proof of ~ eqeqa...
eqtr 2750 Transitive law for class e...
eqtr2 2751 A transitive law for class...
eqtr3 2752 A transitive law for class...
eqtri 2753 An equality transitivity i...
eqtr2i 2754 An equality transitivity i...
eqtr3i 2755 An equality transitivity i...
eqtr4i 2756 An equality transitivity i...
3eqtri 2757 An inference from three ch...
3eqtrri 2758 An inference from three ch...
3eqtr2i 2759 An inference from three ch...
3eqtr2ri 2760 An inference from three ch...
3eqtr3i 2761 An inference from three ch...
3eqtr3ri 2762 An inference from three ch...
3eqtr4i 2763 An inference from three ch...
3eqtr4ri 2764 An inference from three ch...
eqtrd 2765 An equality transitivity d...
eqtr2d 2766 An equality transitivity d...
eqtr3d 2767 An equality transitivity e...
eqtr4d 2768 An equality transitivity e...
3eqtrd 2769 A deduction from three cha...
3eqtrrd 2770 A deduction from three cha...
3eqtr2d 2771 A deduction from three cha...
3eqtr2rd 2772 A deduction from three cha...
3eqtr3d 2773 A deduction from three cha...
3eqtr3rd 2774 A deduction from three cha...
3eqtr4d 2775 A deduction from three cha...
3eqtr4rd 2776 A deduction from three cha...
eqtrid 2777 An equality transitivity d...
eqtr2id 2778 An equality transitivity d...
eqtr3id 2779 An equality transitivity d...
eqtr3di 2780 An equality transitivity d...
eqtrdi 2781 An equality transitivity d...
eqtr2di 2782 An equality transitivity d...
eqtr4di 2783 An equality transitivity d...
eqtr4id 2784 An equality transitivity d...
sylan9eq 2785 An equality transitivity d...
sylan9req 2786 An equality transitivity d...
sylan9eqr 2787 An equality transitivity d...
3eqtr3g 2788 A chained equality inferen...
3eqtr3a 2789 A chained equality inferen...
3eqtr4g 2790 A chained equality inferen...
3eqtr4a 2791 A chained equality inferen...
eq2tri 2792 A compound transitive infe...
iseqsetvlem 2793 Lemma for ~ iseqsetv-cleq ...
iseqsetv-cleq 2794 Alternate proof of ~ iseqs...
abbi 2795 Equivalent formulas yield ...
abbidv 2796 Equivalent wff's yield equ...
abbii 2797 Equivalent wff's yield equ...
abbid 2798 Equivalent wff's yield equ...
abbib 2799 Equal class abstractions r...
cbvabv 2800 Rule used to change bound ...
cbvabw 2801 Rule used to change bound ...
cbvab 2802 Rule used to change bound ...
eqabbw 2803 Version of ~ eqabb using i...
dfclel 2805 Characterization of the el...
elex2 2806 If a class contains anothe...
issettru 2807 Weak version of ~ isset . ...
iseqsetv-clel 2808 Alternate proof of ~ iseqs...
issetlem 2809 Lemma for ~ elisset and ~ ...
elissetv 2810 An element of a class exis...
elisset 2811 An element of a class exis...
eleq1w 2812 Weaker version of ~ eleq1 ...
eleq2w 2813 Weaker version of ~ eleq2 ...
eleq1d 2814 Deduction from equality to...
eleq2d 2815 Deduction from equality to...
eleq2dALT 2816 Alternate proof of ~ eleq2...
eleq1 2817 Equality implies equivalen...
eleq2 2818 Equality implies equivalen...
eleq12 2819 Equality implies equivalen...
eleq1i 2820 Inference from equality to...
eleq2i 2821 Inference from equality to...
eleq12i 2822 Inference from equality to...
eleq12d 2823 Deduction from equality to...
eleq1a 2824 A transitive-type law rela...
eqeltri 2825 Substitution of equal clas...
eqeltrri 2826 Substitution of equal clas...
eleqtri 2827 Substitution of equal clas...
eleqtrri 2828 Substitution of equal clas...
eqeltrd 2829 Substitution of equal clas...
eqeltrrd 2830 Deduction that substitutes...
eleqtrd 2831 Deduction that substitutes...
eleqtrrd 2832 Deduction that substitutes...
eqeltrid 2833 A membership and equality ...
eqeltrrid 2834 A membership and equality ...
eleqtrid 2835 A membership and equality ...
eleqtrrid 2836 A membership and equality ...
eqeltrdi 2837 A membership and equality ...
eqeltrrdi 2838 A membership and equality ...
eleqtrdi 2839 A membership and equality ...
eleqtrrdi 2840 A membership and equality ...
3eltr3i 2841 Substitution of equal clas...
3eltr4i 2842 Substitution of equal clas...
3eltr3d 2843 Substitution of equal clas...
3eltr4d 2844 Substitution of equal clas...
3eltr3g 2845 Substitution of equal clas...
3eltr4g 2846 Substitution of equal clas...
eleq2s 2847 Substitution of equal clas...
eqneltri 2848 If a class is not an eleme...
eqneltrd 2849 If a class is not an eleme...
eqneltrrd 2850 If a class is not an eleme...
neleqtrd 2851 If a class is not an eleme...
neleqtrrd 2852 If a class is not an eleme...
nelneq 2853 A way of showing two class...
nelneq2 2854 A way of showing two class...
eqsb1 2855 Substitution for the left-...
clelsb1 2856 Substitution for the first...
clelsb2 2857 Substitution for the secon...
cleqh 2858 Establish equality between...
hbxfreq 2859 A utility lemma to transfe...
hblem 2860 Change the free variable o...
hblemg 2861 Change the free variable o...
eqabdv 2862 Deduction from a wff to a ...
eqabcdv 2863 Deduction from a wff to a ...
eqabi 2864 Equality of a class variab...
abid1 2865 Every class is equal to a ...
abid2 2866 A simplification of class ...
eqab 2867 One direction of ~ eqabb i...
eqabb 2868 Equality of a class variab...
eqabbOLD 2869 Obsolete version of ~ eqab...
eqabcb 2870 Equality of a class variab...
eqabrd 2871 Equality of a class variab...
eqabri 2872 Equality of a class variab...
eqabcri 2873 Equality of a class variab...
clelab 2874 Membership of a class vari...
clabel 2875 Membership of a class abst...
sbab 2876 The right-hand side of the...
nfcjust 2878 Justification theorem for ...
nfci 2880 Deduce that a class ` A ` ...
nfcii 2881 Deduce that a class ` A ` ...
nfcr 2882 Consequence of the not-fre...
nfcrALT 2883 Alternate version of ~ nfc...
nfcri 2884 Consequence of the not-fre...
nfcd 2885 Deduce that a class ` A ` ...
nfcrd 2886 Consequence of the not-fre...
nfcrii 2887 Consequence of the not-fre...
nfceqdf 2888 An equality theorem for ef...
nfceqi 2889 Equality theorem for class...
nfcxfr 2890 A utility lemma to transfe...
nfcxfrd 2891 A utility lemma to transfe...
nfcv 2892 If ` x ` is disjoint from ...
nfcvd 2893 If ` x ` is disjoint from ...
nfab1 2894 Bound-variable hypothesis ...
nfnfc1 2895 The setvar ` x ` is bound ...
clelsb1fw 2896 Substitution for the first...
clelsb1f 2897 Substitution for the first...
nfab 2898 Bound-variable hypothesis ...
nfabg 2899 Bound-variable hypothesis ...
nfaba1 2900 Bound-variable hypothesis ...
nfaba1OLD 2901 Obsolete version of ~ nfab...
nfaba1g 2902 Bound-variable hypothesis ...
nfeqd 2903 Hypothesis builder for equ...
nfeld 2904 Hypothesis builder for ele...
nfnfc 2905 Hypothesis builder for ` F...
nfeq 2906 Hypothesis builder for equ...
nfel 2907 Hypothesis builder for ele...
nfeq1 2908 Hypothesis builder for equ...
nfel1 2909 Hypothesis builder for ele...
nfeq2 2910 Hypothesis builder for equ...
nfel2 2911 Hypothesis builder for ele...
drnfc1 2912 Formula-building lemma for...
drnfc2 2913 Formula-building lemma for...
nfabdw 2914 Bound-variable hypothesis ...
nfabd 2915 Bound-variable hypothesis ...
nfabd2 2916 Bound-variable hypothesis ...
dvelimdc 2917 Deduction form of ~ dvelim...
dvelimc 2918 Version of ~ dvelim for cl...
nfcvf 2919 If ` x ` and ` y ` are dis...
nfcvf2 2920 If ` x ` and ` y ` are dis...
cleqf 2921 Establish equality between...
eqabf 2922 Equality of a class variab...
abid2f 2923 A simplification of class ...
abid2fOLD 2924 Obsolete version of ~ abid...
sbabel 2925 Theorem to move a substitu...
neii 2928 Inference associated with ...
neir 2929 Inference associated with ...
nne 2930 Negation of inequality. (...
neneqd 2931 Deduction eliminating ineq...
neneq 2932 From inequality to non-equ...
neqned 2933 If it is not the case that...
neqne 2934 From non-equality to inequ...
neirr 2935 No class is unequal to its...
exmidne 2936 Excluded middle with equal...
eqneqall 2937 A contradiction concerning...
nonconne 2938 Law of noncontradiction wi...
necon3ad 2939 Contrapositive law deducti...
necon3bd 2940 Contrapositive law deducti...
necon2ad 2941 Contrapositive inference f...
necon2bd 2942 Contrapositive inference f...
necon1ad 2943 Contrapositive deduction f...
necon1bd 2944 Contrapositive deduction f...
necon4ad 2945 Contrapositive inference f...
necon4bd 2946 Contrapositive inference f...
necon3d 2947 Contrapositive law deducti...
necon1d 2948 Contrapositive law deducti...
necon2d 2949 Contrapositive inference f...
necon4d 2950 Contrapositive inference f...
necon3ai 2951 Contrapositive inference f...
necon3bi 2952 Contrapositive inference f...
necon1ai 2953 Contrapositive inference f...
necon1bi 2954 Contrapositive inference f...
necon2ai 2955 Contrapositive inference f...
necon2bi 2956 Contrapositive inference f...
necon4ai 2957 Contrapositive inference f...
necon3i 2958 Contrapositive inference f...
necon1i 2959 Contrapositive inference f...
necon2i 2960 Contrapositive inference f...
necon4i 2961 Contrapositive inference f...
necon3abid 2962 Deduction from equality to...
necon3bbid 2963 Deduction from equality to...
necon1abid 2964 Contrapositive deduction f...
necon1bbid 2965 Contrapositive inference f...
necon4abid 2966 Contrapositive law deducti...
necon4bbid 2967 Contrapositive law deducti...
necon2abid 2968 Contrapositive deduction f...
necon2bbid 2969 Contrapositive deduction f...
necon3bid 2970 Deduction from equality to...
necon4bid 2971 Contrapositive law deducti...
necon3abii 2972 Deduction from equality to...
necon3bbii 2973 Deduction from equality to...
necon1abii 2974 Contrapositive inference f...
necon1bbii 2975 Contrapositive inference f...
necon2abii 2976 Contrapositive inference f...
necon2bbii 2977 Contrapositive inference f...
necon3bii 2978 Inference from equality to...
necom 2979 Commutation of inequality....
necomi 2980 Inference from commutative...
necomd 2981 Deduction from commutative...
nesym 2982 Characterization of inequa...
nesymi 2983 Inference associated with ...
nesymir 2984 Inference associated with ...
neeq1d 2985 Deduction for inequality. ...
neeq2d 2986 Deduction for inequality. ...
neeq12d 2987 Deduction for inequality. ...
neeq1 2988 Equality theorem for inequ...
neeq2 2989 Equality theorem for inequ...
neeq1i 2990 Inference for inequality. ...
neeq2i 2991 Inference for inequality. ...
neeq12i 2992 Inference for inequality. ...
eqnetrd 2993 Substitution of equal clas...
eqnetrrd 2994 Substitution of equal clas...
neeqtrd 2995 Substitution of equal clas...
eqnetri 2996 Substitution of equal clas...
eqnetrri 2997 Substitution of equal clas...
neeqtri 2998 Substitution of equal clas...
neeqtrri 2999 Substitution of equal clas...
neeqtrrd 3000 Substitution of equal clas...
eqnetrrid 3001 A chained equality inferen...
3netr3d 3002 Substitution of equality i...
3netr4d 3003 Substitution of equality i...
3netr3g 3004 Substitution of equality i...
3netr4g 3005 Substitution of equality i...
nebi 3006 Contraposition law for ine...
pm13.18 3007 Theorem *13.18 in [Whitehe...
pm13.181 3008 Theorem *13.181 in [Whiteh...
pm2.61ine 3009 Inference eliminating an i...
pm2.21ddne 3010 A contradiction implies an...
pm2.61ne 3011 Deduction eliminating an i...
pm2.61dne 3012 Deduction eliminating an i...
pm2.61dane 3013 Deduction eliminating an i...
pm2.61da2ne 3014 Deduction eliminating two ...
pm2.61da3ne 3015 Deduction eliminating thre...
pm2.61iine 3016 Equality version of ~ pm2....
mteqand 3017 A modus tollens deduction ...
neor 3018 Logical OR with an equalit...
neanior 3019 A De Morgan's law for ineq...
ne3anior 3020 A De Morgan's law for ineq...
neorian 3021 A De Morgan's law for ineq...
nemtbir 3022 An inference from an inequ...
nelne1 3023 Two classes are different ...
nelne2 3024 Two classes are different ...
nelelne 3025 Two classes are different ...
neneor 3026 If two classes are differe...
nfne 3027 Bound-variable hypothesis ...
nfned 3028 Bound-variable hypothesis ...
nabbib 3029 Not equivalent wff's corre...
neli 3032 Inference associated with ...
nelir 3033 Inference associated with ...
nelcon3d 3034 Contrapositive law deducti...
neleq12d 3035 Equality theorem for negat...
neleq1 3036 Equality theorem for negat...
neleq2 3037 Equality theorem for negat...
nfnel 3038 Bound-variable hypothesis ...
nfneld 3039 Bound-variable hypothesis ...
nnel 3040 Negation of negated member...
elnelne1 3041 Two classes are different ...
elnelne2 3042 Two classes are different ...
pm2.24nel 3043 A contradiction concerning...
pm2.61danel 3044 Deduction eliminating an e...
rgen 3047 Generalization rule for re...
ralel 3048 All elements of a class ar...
rgenw 3049 Generalization rule for re...
rgen2w 3050 Generalization rule for re...
mprg 3051 Modus ponens combined with...
mprgbir 3052 Modus ponens on biconditio...
raln 3053 Restricted universally qua...
ralnex 3056 Relationship between restr...
dfrex2 3057 Relationship between restr...
nrex 3058 Inference adding restricte...
alral 3059 Universal quantification i...
rexex 3060 Restricted existence impli...
rextru 3061 Two ways of expressing tha...
ralimi2 3062 Inference quantifying both...
reximi2 3063 Inference quantifying both...
ralimia 3064 Inference quantifying both...
reximia 3065 Inference quantifying both...
ralimiaa 3066 Inference quantifying both...
ralimi 3067 Inference quantifying both...
reximi 3068 Inference quantifying both...
ral2imi 3069 Inference quantifying ante...
ralim 3070 Distribution of restricted...
rexim 3071 Theorem 19.22 of [Margaris...
ralbii2 3072 Inference adding different...
rexbii2 3073 Inference adding different...
ralbiia 3074 Inference adding restricte...
rexbiia 3075 Inference adding restricte...
ralbii 3076 Inference adding restricte...
rexbii 3077 Inference adding restricte...
ralanid 3078 Cancellation law for restr...
rexanid 3079 Cancellation law for restr...
ralcom3 3080 A commutation law for rest...
ralcom3OLD 3081 Obsolete version of ~ ralc...
dfral2 3082 Relationship between restr...
rexnal 3083 Relationship between restr...
ralinexa 3084 A transformation of restri...
rexanali 3085 A transformation of restri...
ralbi 3086 Distribute a restricted un...
rexbi 3087 Distribute restricted quan...
ralrexbid 3088 Formula-building rule for ...
r19.35 3089 Restricted quantifier vers...
r19.35OLD 3090 Obsolete version of ~ 19.3...
r19.26m 3091 Version of ~ 19.26 and ~ r...
r19.26 3092 Restricted quantifier vers...
r19.26-3 3093 Version of ~ r19.26 with t...
ralbiim 3094 Split a biconditional and ...
r19.29 3095 Restricted quantifier vers...
r19.29OLD 3096 Obsolete version of ~ r19....
r19.29r 3097 Restricted quantifier vers...
r19.29rOLD 3098 Obsolete version of ~ r19....
r19.29imd 3099 Theorem 19.29 of [Margaris...
r19.40 3100 Restricted quantifier vers...
r19.30 3101 Restricted quantifier vers...
r19.43 3102 Restricted quantifier vers...
3r19.43 3103 Restricted quantifier vers...
2ralimi 3104 Inference quantifying both...
3ralimi 3105 Inference quantifying both...
4ralimi 3106 Inference quantifying both...
5ralimi 3107 Inference quantifying both...
6ralimi 3108 Inference quantifying both...
2ralbii 3109 Inference adding two restr...
2rexbii 3110 Inference adding two restr...
3ralbii 3111 Inference adding three res...
4ralbii 3112 Inference adding four rest...
2ralbiim 3113 Split a biconditional and ...
ralnex2 3114 Relationship between two r...
ralnex3 3115 Relationship between three...
rexnal2 3116 Relationship between two r...
rexnal3 3117 Relationship between three...
nrexralim 3118 Negation of a complex pred...
r19.26-2 3119 Restricted quantifier vers...
2r19.29 3120 Theorem ~ r19.29 with two ...
r19.29d2r 3121 Theorem 19.29 of [Margaris...
r2allem 3122 Lemma factoring out common...
r2exlem 3123 Lemma factoring out common...
hbralrimi 3124 Inference from Theorem 19....
ralrimiv 3125 Inference from Theorem 19....
ralrimiva 3126 Inference from Theorem 19....
rexlimiva 3127 Inference from Theorem 19....
rexlimiv 3128 Inference from Theorem 19....
nrexdv 3129 Deduction adding restricte...
ralrimivw 3130 Inference from Theorem 19....
rexlimivw 3131 Weaker version of ~ rexlim...
ralrimdv 3132 Inference from Theorem 19....
rexlimdv 3133 Inference from Theorem 19....
ralrimdva 3134 Inference from Theorem 19....
rexlimdva 3135 Inference from Theorem 19....
rexlimdvaa 3136 Inference from Theorem 19....
rexlimdva2 3137 Inference from Theorem 19....
r19.29an 3138 A commonly used pattern in...
rexlimdv3a 3139 Inference from Theorem 19....
rexlimdvw 3140 Inference from Theorem 19....
rexlimddv 3141 Restricted existential eli...
r19.29a 3142 A commonly used pattern in...
ralimdv2 3143 Inference quantifying both...
reximdv2 3144 Deduction quantifying both...
reximdvai 3145 Deduction quantifying both...
ralimdva 3146 Deduction quantifying both...
reximdva 3147 Deduction quantifying both...
ralimdv 3148 Deduction quantifying both...
reximdv 3149 Deduction from Theorem 19....
reximddv 3150 Deduction from Theorem 19....
reximddv3 3151 Deduction from Theorem 19....
reximssdv 3152 Derivation of a restricted...
ralbidv2 3153 Formula-building rule for ...
rexbidv2 3154 Formula-building rule for ...
ralbidva 3155 Formula-building rule for ...
rexbidva 3156 Formula-building rule for ...
ralbidv 3157 Formula-building rule for ...
rexbidv 3158 Formula-building rule for ...
r19.21v 3159 Restricted quantifier vers...
r19.21vOLD 3160 Obsolete version of ~ r19....
r19.37v 3161 Restricted quantifier vers...
r19.23v 3162 Restricted quantifier vers...
r19.36v 3163 Restricted quantifier vers...
rexlimivOLD 3164 Obsolete version of ~ rexl...
rexlimivaOLD 3165 Obsolete version of ~ rexl...
rexlimivwOLD 3166 Obsolete version of ~ rexl...
r19.27v 3167 Restricted quantitifer ver...
r19.41v 3168 Restricted quantifier vers...
r19.28v 3169 Restricted quantifier vers...
r19.42v 3170 Restricted quantifier vers...
r19.32v 3171 Restricted quantifier vers...
r19.45v 3172 Restricted quantifier vers...
r19.44v 3173 One direction of a restric...
r2al 3174 Double restricted universa...
r2ex 3175 Double restricted existent...
r3al 3176 Triple restricted universa...
r3ex 3177 Triple existential quantif...
rgen2 3178 Generalization rule for re...
ralrimivv 3179 Inference from Theorem 19....
rexlimivv 3180 Inference from Theorem 19....
ralrimivva 3181 Inference from Theorem 19....
ralrimdvv 3182 Inference from Theorem 19....
rgen3 3183 Generalization rule for re...
ralrimivvva 3184 Inference from Theorem 19....
ralimdvva 3185 Deduction doubly quantifyi...
reximdvva 3186 Deduction doubly quantifyi...
ralimdvv 3187 Deduction doubly quantifyi...
ralimdvvOLD 3188 Obsolete version of ~ rali...
ralimd4v 3189 Deduction quadrupally quan...
ralimd4vOLD 3190 Obsolete version of ~ rali...
ralimd6v 3191 Deduction sextupally quant...
ralimd6vOLD 3192 Obsolete version of ~ rali...
ralrimdvva 3193 Inference from Theorem 19....
rexlimdvv 3194 Inference from Theorem 19....
rexlimdvva 3195 Inference from Theorem 19....
rexlimdvvva 3196 Inference from Theorem 19....
reximddv2 3197 Double deduction from Theo...
r19.29vva 3198 A commonly used pattern ba...
2rexbiia 3199 Inference adding two restr...
2ralbidva 3200 Formula-building rule for ...
2rexbidva 3201 Formula-building rule for ...
2ralbidv 3202 Formula-building rule for ...
2rexbidv 3203 Formula-building rule for ...
rexralbidv 3204 Formula-building rule for ...
3ralbidv 3205 Formula-building rule for ...
4ralbidv 3206 Formula-building rule for ...
6ralbidv 3207 Formula-building rule for ...
r19.41vv 3208 Version of ~ r19.41v with ...
reeanlem 3209 Lemma factoring out common...
reeanv 3210 Rearrange restricted exist...
3reeanv 3211 Rearrange three restricted...
2ralor 3212 Distribute restricted univ...
risset 3213 Two ways to say " ` A ` be...
nelb 3214 A definition of ` -. A e. ...
rspw 3215 Restricted specialization....
cbvralvw 3216 Change the bound variable ...
cbvrexvw 3217 Change the bound variable ...
cbvraldva 3218 Rule used to change the bo...
cbvrexdva 3219 Rule used to change the bo...
cbvral2vw 3220 Change bound variables of ...
cbvrex2vw 3221 Change bound variables of ...
cbvral3vw 3222 Change bound variables of ...
cbvral4vw 3223 Change bound variables of ...
cbvral6vw 3224 Change bound variables of ...
cbvral8vw 3225 Change bound variables of ...
rsp 3226 Restricted specialization....
rspa 3227 Restricted specialization....
rspe 3228 Restricted specialization....
rspec 3229 Specialization rule for re...
r19.21bi 3230 Inference from Theorem 19....
r19.21be 3231 Inference from Theorem 19....
r19.21t 3232 Restricted quantifier vers...
r19.21 3233 Restricted quantifier vers...
r19.23t 3234 Closed theorem form of ~ r...
r19.23 3235 Restricted quantifier vers...
ralrimi 3236 Inference from Theorem 19....
ralrimia 3237 Inference from Theorem 19....
rexlimi 3238 Restricted quantifier vers...
ralimdaa 3239 Deduction quantifying both...
reximdai 3240 Deduction from Theorem 19....
r19.37 3241 Restricted quantifier vers...
r19.41 3242 Restricted quantifier vers...
ralrimd 3243 Inference from Theorem 19....
rexlimd2 3244 Version of ~ rexlimd with ...
rexlimd 3245 Deduction form of ~ rexlim...
r19.29af2 3246 A commonly used pattern ba...
r19.29af 3247 A commonly used pattern ba...
reximd2a 3248 Deduction quantifying both...
ralbida 3249 Formula-building rule for ...
rexbida 3250 Formula-building rule for ...
ralbid 3251 Formula-building rule for ...
rexbid 3252 Formula-building rule for ...
rexbidvALT 3253 Alternate proof of ~ rexbi...
rexbidvaALT 3254 Alternate proof of ~ rexbi...
rsp2 3255 Restricted specialization,...
rsp2e 3256 Restricted specialization....
rspec2 3257 Specialization rule for re...
rspec3 3258 Specialization rule for re...
r2alf 3259 Double restricted universa...
r2exf 3260 Double restricted existent...
2ralbida 3261 Formula-building rule for ...
nfra1 3262 The setvar ` x ` is not fr...
nfre1 3263 The setvar ` x ` is not fr...
ralcom4 3264 Commutation of restricted ...
rexcom4 3265 Commutation of restricted ...
ralcom 3266 Commutation of restricted ...
rexcom 3267 Commutation of restricted ...
rexcomOLD 3268 Obsolete version of ~ rexc...
rexcom4a 3269 Specialized existential co...
ralrot3 3270 Rotate three restricted un...
ralcom13 3271 Swap first and third restr...
ralcom13OLD 3272 Obsolete version of ~ ralc...
rexcom13 3273 Swap first and third restr...
rexrot4 3274 Rotate four restricted exi...
2ex2rexrot 3275 Rotate two existential qua...
nfra2w 3276 Similar to Lemma 24 of [Mo...
hbra1 3277 The setvar ` x ` is not fr...
ralcomf 3278 Commutation of restricted ...
rexcomf 3279 Commutation of restricted ...
cbvralfw 3280 Rule used to change bound ...
cbvrexfw 3281 Rule used to change bound ...
cbvralw 3282 Rule used to change bound ...
cbvrexw 3283 Rule used to change bound ...
hbral 3284 Bound-variable hypothesis ...
nfraldw 3285 Deduction version of ~ nfr...
nfrexdw 3286 Deduction version of ~ nfr...
nfralw 3287 Bound-variable hypothesis ...
nfralwOLD 3288 Obsolete version of ~ nfra...
nfrexw 3289 Bound-variable hypothesis ...
r19.12 3290 Restricted quantifier vers...
reean 3291 Rearrange restricted exist...
cbvralsvw 3292 Change bound variable by u...
cbvrexsvw 3293 Change bound variable by u...
cbvralsvwOLD 3294 Obsolete version of ~ cbvr...
cbvralsvwOLDOLD 3295 Obsolete version of ~ cbvr...
cbvrexsvwOLD 3296 Obsolete version of ~ cbvr...
rexeq 3297 Equality theorem for restr...
raleq 3298 Equality theorem for restr...
raleqi 3299 Equality inference for res...
rexeqi 3300 Equality inference for res...
raleqdv 3301 Equality deduction for res...
rexeqdv 3302 Equality deduction for res...
raleqtrdv 3303 Substitution of equal clas...
rexeqtrdv 3304 Substitution of equal clas...
raleqtrrdv 3305 Substitution of equal clas...
rexeqtrrdv 3306 Substitution of equal clas...
raleqbidva 3307 Equality deduction for res...
rexeqbidva 3308 Equality deduction for res...
raleqbidvv 3309 Version of ~ raleqbidv wit...
raleqbidvvOLD 3310 Obsolete version of ~ rale...
rexeqbidvv 3311 Version of ~ rexeqbidv wit...
rexeqbidvvOLD 3312 Obsolete version of ~ rexe...
raleqbi1dv 3313 Equality deduction for res...
rexeqbi1dv 3314 Equality deduction for res...
raleqOLD 3315 Obsolete version of ~ rale...
rexeqOLD 3316 Obsolete version of ~ rale...
raleleq 3317 All elements of a class ar...
raleleqOLD 3318 Obsolete version of ~ rale...
raleqbii 3319 Equality deduction for res...
rexeqbii 3320 Equality deduction for res...
raleqbidv 3321 Equality deduction for res...
rexeqbidv 3322 Equality deduction for res...
cbvraldva2 3323 Rule used to change the bo...
cbvrexdva2 3324 Rule used to change the bo...
cbvrexdva2OLD 3325 Obsolete version of ~ cbvr...
cbvraldvaOLD 3326 Obsolete version of ~ cbvr...
cbvrexdvaOLD 3327 Obsolete version of ~ cbvr...
sbralie 3328 Implicit to explicit subst...
sbralieALT 3329 Alternative shorter proof ...
sbralieOLD 3330 Obsolete version of ~ sbra...
raleqf 3331 Equality theorem for restr...
rexeqf 3332 Equality theorem for restr...
rexeqfOLD 3333 Obsolete version of ~ rexe...
raleqbid 3334 Equality deduction for res...
rexeqbid 3335 Equality deduction for res...
cbvralf 3336 Rule used to change bound ...
cbvrexf 3337 Rule used to change bound ...
cbvral 3338 Rule used to change bound ...
cbvrex 3339 Rule used to change bound ...
cbvralv 3340 Change the bound variable ...
cbvrexv 3341 Change the bound variable ...
cbvralsv 3342 Change bound variable by u...
cbvrexsv 3343 Change bound variable by u...
cbvral2v 3344 Change bound variables of ...
cbvrex2v 3345 Change bound variables of ...
cbvral3v 3346 Change bound variables of ...
rgen2a 3347 Generalization rule for re...
nfrald 3348 Deduction version of ~ nfr...
nfrexd 3349 Deduction version of ~ nfr...
nfral 3350 Bound-variable hypothesis ...
nfrex 3351 Bound-variable hypothesis ...
nfra2 3352 Similar to Lemma 24 of [Mo...
ralcom2 3353 Commutation of restricted ...
reu5 3358 Restricted uniqueness in t...
reurmo 3359 Restricted existential uni...
reurex 3360 Restricted unique existenc...
mormo 3361 Unrestricted "at most one"...
rmobiia 3362 Formula-building rule for ...
reubiia 3363 Formula-building rule for ...
rmobii 3364 Formula-building rule for ...
reubii 3365 Formula-building rule for ...
rmoanid 3366 Cancellation law for restr...
reuanid 3367 Cancellation law for restr...
rmoanidOLD 3368 Obsolete version of ~ rmoa...
reuanidOLD 3369 Obsolete version of ~ reua...
2reu2rex 3370 Double restricted existent...
rmobidva 3371 Formula-building rule for ...
reubidva 3372 Formula-building rule for ...
rmobidv 3373 Formula-building rule for ...
reubidv 3374 Formula-building rule for ...
reueubd 3375 Restricted existential uni...
rmo5 3376 Restricted "at most one" i...
nrexrmo 3377 Nonexistence implies restr...
moel 3378 "At most one" element in a...
cbvrmovw 3379 Change the bound variable ...
cbvreuvw 3380 Change the bound variable ...
rmobida 3381 Formula-building rule for ...
reubida 3382 Formula-building rule for ...
cbvrmow 3383 Change the bound variable ...
cbvreuw 3384 Change the bound variable ...
nfrmo1 3385 The setvar ` x ` is not fr...
nfreu1 3386 The setvar ` x ` is not fr...
nfrmow 3387 Bound-variable hypothesis ...
nfreuw 3388 Bound-variable hypothesis ...
cbvreuwOLD 3389 Obsolete version of ~ cbvr...
rmoeq1 3390 Equality theorem for restr...
reueq1 3391 Equality theorem for restr...
rmoeq1OLD 3392 Obsolete version of ~ rmoe...
reueq1OLD 3393 Obsolete version of ~ reue...
rmoeqd 3394 Equality deduction for res...
reueqd 3395 Equality deduction for res...
reueqdv 3396 Formula-building rule for ...
reueqbidv 3397 Formula-building rule for ...
rmoeq1f 3398 Equality theorem for restr...
reueq1f 3399 Equality theorem for restr...
cbvreu 3400 Change the bound variable ...
cbvrmo 3401 Change the bound variable ...
cbvrmov 3402 Change the bound variable ...
cbvreuv 3403 Change the bound variable ...
nfrmod 3404 Deduction version of ~ nfr...
nfreud 3405 Deduction version of ~ nfr...
nfrmo 3406 Bound-variable hypothesis ...
nfreu 3407 Bound-variable hypothesis ...
rabbidva2 3410 Equivalent wff's yield equ...
rabbia2 3411 Equivalent wff's yield equ...
rabbiia 3412 Equivalent formulas yield ...
rabbiiaOLD 3413 Obsolete version of ~ rabb...
rabbii 3414 Equivalent wff's correspon...
rabbidva 3415 Equivalent wff's yield equ...
rabbidv 3416 Equivalent wff's yield equ...
rabbieq 3417 Equivalent wff's correspon...
rabswap 3418 Swap with a membership rel...
cbvrabv 3419 Rule to change the bound v...
rabeqcda 3420 When ` ps ` is always true...
rabeqc 3421 A restricted class abstrac...
rabeqi 3422 Equality theorem for restr...
rabeq 3423 Equality theorem for restr...
rabeqdv 3424 Equality of restricted cla...
rabeqbidva 3425 Equality of restricted cla...
rabeqbidvaOLD 3426 Obsolete version of ~ rabe...
rabeqbidv 3427 Equality of restricted cla...
rabrabi 3428 Abstract builder restricte...
nfrab1 3429 The abstraction variable i...
rabid 3430 An "identity" law of concr...
rabidim1 3431 Membership in a restricted...
reqabi 3432 Inference from equality of...
rabrab 3433 Abstract builder restricte...
rabbida4 3434 Version of ~ rabbidva2 wit...
rabbida 3435 Equivalent wff's yield equ...
rabbid 3436 Version of ~ rabbidv with ...
rabeqd 3437 Deduction form of ~ rabeq ...
rabeqbida 3438 Version of ~ rabeqbidva wi...
rabbi 3439 Equivalent wff's correspon...
rabid2f 3440 An "identity" law for rest...
rabid2im 3441 One direction of ~ rabid2 ...
rabid2 3442 An "identity" law for rest...
rabeqf 3443 Equality theorem for restr...
cbvrabw 3444 Rule to change the bound v...
cbvrabwOLD 3445 Obsolete version of ~ cbvr...
nfrabw 3446 A variable not free in a w...
rabbidaOLD 3447 Obsolete version of ~ rabb...
nfrab 3448 A variable not free in a w...
cbvrab 3449 Rule to change the bound v...
vjust 3451 Justification theorem for ...
dfv2 3453 Alternate definition of th...
vex 3454 All setvar variables are s...
elv 3455 If a proposition is implie...
elvd 3456 If a proposition is implie...
el2v 3457 If a proposition is implie...
el3v 3458 If a proposition is implie...
el3v3 3459 If a proposition is implie...
eqv 3460 The universe contains ever...
eqvf 3461 The universe contains ever...
abv 3462 The class of sets verifyin...
abvALT 3463 Alternate proof of ~ abv ,...
isset 3464 Two ways to express that "...
cbvexeqsetf 3465 The expression ` E. x x = ...
issetft 3466 Closed theorem form of ~ i...
issetf 3467 A version of ~ isset that ...
isseti 3468 A way to say " ` A ` is a ...
issetri 3469 A way to say " ` A ` is a ...
eqvisset 3470 A class equal to a variabl...
elex 3471 If a class is a member of ...
elexOLD 3472 Obsolete version of ~ elex...
elexi 3473 If a class is a member of ...
elexd 3474 If a class is a member of ...
elex22 3475 If two classes each contai...
prcnel 3476 A proper class doesn't bel...
ralv 3477 A universal quantifier res...
rexv 3478 An existential quantifier ...
reuv 3479 A unique existential quant...
rmov 3480 An at-most-one quantifier ...
rabab 3481 A class abstraction restri...
rexcom4b 3482 Specialized existential co...
ceqsal1t 3483 One direction of ~ ceqsalt...
ceqsalt 3484 Closed theorem version of ...
ceqsralt 3485 Restricted quantifier vers...
ceqsalg 3486 A representation of explic...
ceqsalgALT 3487 Alternate proof of ~ ceqsa...
ceqsal 3488 A representation of explic...
ceqsalALT 3489 A representation of explic...
ceqsalv 3490 A representation of explic...
ceqsralv 3491 Restricted quantifier vers...
gencl 3492 Implicit substitution for ...
2gencl 3493 Implicit substitution for ...
3gencl 3494 Implicit substitution for ...
cgsexg 3495 Implicit substitution infe...
cgsex2g 3496 Implicit substitution infe...
cgsex4g 3497 An implicit substitution i...
cgsex4gOLD 3498 Obsolete version of ~ cgse...
ceqsex 3499 Elimination of an existent...
ceqsexOLD 3500 Obsolete version of ~ ceqs...
ceqsexv 3501 Elimination of an existent...
ceqsexv2d 3502 Elimination of an existent...
ceqsexv2dOLD 3503 Obsolete version of ~ ceqs...
ceqsex2 3504 Elimination of two existen...
ceqsex2v 3505 Elimination of two existen...
ceqsex3v 3506 Elimination of three exist...
ceqsex4v 3507 Elimination of four existe...
ceqsex6v 3508 Elimination of six existen...
ceqsex8v 3509 Elimination of eight exist...
gencbvex 3510 Change of bound variable u...
gencbvex2 3511 Restatement of ~ gencbvex ...
gencbval 3512 Change of bound variable u...
sbhypf 3513 Introduce an explicit subs...
sbhypfOLD 3514 Obsolete version of ~ sbhy...
spcimgft 3515 Closed theorem form of ~ s...
spcimgfi1 3516 A closed version of ~ spci...
spcimgfi1OLD 3517 Obsolete version of ~ spci...
spcgft 3518 A closed version of ~ spcg...
spcimgf 3519 Rule of specialization, us...
spcimegf 3520 Existential specialization...
vtoclgft 3521 Closed theorem form of ~ v...
vtocleg 3522 Implicit substitution of a...
vtoclg 3523 Implicit substitution of a...
vtocle 3524 Implicit substitution of a...
vtocleOLD 3525 Obsolete version of ~ vtoc...
vtoclbg 3526 Implicit substitution of a...
vtocl 3527 Implicit substitution of a...
vtoclOLD 3528 Obsolete version of ~ vtoc...
vtocldf 3529 Implicit substitution of a...
vtocld 3530 Implicit substitution of a...
vtocl2d 3531 Implicit substitution of t...
vtoclef 3532 Implicit substitution of a...
vtoclf 3533 Implicit substitution of a...
vtoclfOLD 3534 Obsolete version of ~ vtoc...
vtocl2 3535 Implicit substitution of c...
vtocl3 3536 Implicit substitution of c...
vtoclb 3537 Implicit substitution of a...
vtoclgf 3538 Implicit substitution of a...
vtoclg1f 3539 Version of ~ vtoclgf with ...
vtoclgOLD 3540 Obsolete version of ~ vtoc...
vtocl2gf 3541 Implicit substitution of a...
vtocl3gf 3542 Implicit substitution of a...
vtocl2g 3543 Implicit substitution of 2...
vtocl3g 3544 Implicit substitution of a...
vtoclgaf 3545 Implicit substitution of a...
vtoclga 3546 Implicit substitution of a...
vtocl2ga 3547 Implicit substitution of 2...
vtocl2gaf 3548 Implicit substitution of 2...
vtocl2gafOLD 3549 Obsolete version of ~ vtoc...
vtocl3gaf 3550 Implicit substitution of 3...
vtocl3gafOLD 3551 Obsolete version of ~ vtoc...
vtocl3ga 3552 Implicit substitution of 3...
vtocl3gaOLD 3553 Obsolete version of ~ vtoc...
vtocl4g 3554 Implicit substitution of 4...
vtocl4ga 3555 Implicit substitution of 4...
vtocl4gaOLD 3556 Obsolete version of ~ vtoc...
vtoclegft 3557 Implicit substitution of a...
vtoclegftOLD 3558 Obsolete version of ~ vtoc...
vtoclri 3559 Implicit substitution of a...
spcgf 3560 Rule of specialization, us...
spcegf 3561 Existential specialization...
spcimdv 3562 Restricted specialization,...
spcdv 3563 Rule of specialization, us...
spcimedv 3564 Restricted existential spe...
spcgv 3565 Rule of specialization, us...
spcegv 3566 Existential specialization...
spcedv 3567 Existential specialization...
spc2egv 3568 Existential specialization...
spc2gv 3569 Specialization with two qu...
spc2ed 3570 Existential specialization...
spc2d 3571 Specialization with 2 quan...
spc3egv 3572 Existential specialization...
spc3gv 3573 Specialization with three ...
spcv 3574 Rule of specialization, us...
spcev 3575 Existential specialization...
spc2ev 3576 Existential specialization...
rspct 3577 A closed version of ~ rspc...
rspcdf 3578 Restricted specialization,...
rspc 3579 Restricted specialization,...
rspce 3580 Restricted existential spe...
rspcimdv 3581 Restricted specialization,...
rspcimedv 3582 Restricted existential spe...
rspcdv 3583 Restricted specialization,...
rspcedv 3584 Restricted existential spe...
rspcebdv 3585 Restricted existential spe...
rspcdv2 3586 Restricted specialization,...
rspcv 3587 Restricted specialization,...
rspccv 3588 Restricted specialization,...
rspcva 3589 Restricted specialization,...
rspccva 3590 Restricted specialization,...
rspcev 3591 Restricted existential spe...
rspcdva 3592 Restricted specialization,...
rspcedvd 3593 Restricted existential spe...
rspcedvdw 3594 Version of ~ rspcedvd wher...
rspceb2dv 3595 Restricted existential spe...
rspcime 3596 Prove a restricted existen...
rspceaimv 3597 Restricted existential spe...
rspcedeq1vd 3598 Restricted existential spe...
rspcedeq2vd 3599 Restricted existential spe...
rspc2 3600 Restricted specialization ...
rspc2gv 3601 Restricted specialization ...
rspc2v 3602 2-variable restricted spec...
rspc2va 3603 2-variable restricted spec...
rspc2ev 3604 2-variable restricted exis...
2rspcedvdw 3605 Double application of ~ rs...
rspc2dv 3606 2-variable restricted spec...
rspc3v 3607 3-variable restricted spec...
rspc3ev 3608 3-variable restricted exis...
3rspcedvdw 3609 Triple application of ~ rs...
rspc3dv 3610 3-variable restricted spec...
rspc4v 3611 4-variable restricted spec...
rspc6v 3612 6-variable restricted spec...
rspc8v 3613 8-variable restricted spec...
rspceeqv 3614 Restricted existential spe...
ralxpxfr2d 3615 Transfer a universal quant...
rexraleqim 3616 Statement following from e...
eqvincg 3617 A variable introduction la...
eqvinc 3618 A variable introduction la...
eqvincf 3619 A variable introduction la...
alexeqg 3620 Two ways to express substi...
ceqex 3621 Equality implies equivalen...
ceqsexg 3622 A representation of explic...
ceqsexgv 3623 Elimination of an existent...
ceqsrexv 3624 Elimination of a restricte...
ceqsrexbv 3625 Elimination of a restricte...
ceqsralbv 3626 Elimination of a restricte...
ceqsrex2v 3627 Elimination of a restricte...
clel2g 3628 Alternate definition of me...
clel2 3629 Alternate definition of me...
clel3g 3630 Alternate definition of me...
clel3 3631 Alternate definition of me...
clel4g 3632 Alternate definition of me...
clel4 3633 Alternate definition of me...
clel5 3634 Alternate definition of cl...
pm13.183 3635 Compare theorem *13.183 in...
rr19.3v 3636 Restricted quantifier vers...
rr19.28v 3637 Restricted quantifier vers...
elab6g 3638 Membership in a class abst...
elabd2 3639 Membership in a class abst...
elabd3 3640 Membership in a class abst...
elabgt 3641 Membership in a class abst...
elabgtOLD 3642 Obsolete version of ~ elab...
elabgtOLDOLD 3643 Obsolete version of ~ elab...
elabgf 3644 Membership in a class abst...
elabf 3645 Membership in a class abst...
elabg 3646 Membership in a class abst...
elabgw 3647 Membership in a class abst...
elab2gw 3648 Membership in a class abst...
elab 3649 Membership in a class abst...
elab2g 3650 Membership in a class abst...
elabd 3651 Explicit demonstration the...
elab2 3652 Membership in a class abst...
elab4g 3653 Membership in a class abst...
elab3gf 3654 Membership in a class abst...
elab3g 3655 Membership in a class abst...
elab3 3656 Membership in a class abst...
elrabi 3657 Implication for the member...
elrabf 3658 Membership in a restricted...
rabtru 3659 Abstract builder using the...
rabeqcOLD 3660 Obsolete version of ~ rabe...
elrab3t 3661 Membership in a restricted...
elrab 3662 Membership in a restricted...
elrab3 3663 Membership in a restricted...
elrabd 3664 Membership in a restricted...
elrab2 3665 Membership in a restricted...
elrab2w 3666 Membership in a restricted...
ralab 3667 Universal quantification o...
ralrab 3668 Universal quantification o...
rexab 3669 Existential quantification...
rexrab 3670 Existential quantification...
ralab2 3671 Universal quantification o...
ralrab2 3672 Universal quantification o...
rexab2 3673 Existential quantification...
rexrab2 3674 Existential quantification...
reurab 3675 Restricted existential uni...
abidnf 3676 Identity used to create cl...
dedhb 3677 A deduction theorem for co...
class2seteq 3678 Writing a set as a class a...
nelrdva 3679 Deduce negative membership...
eqeu 3680 A condition which implies ...
moeq 3681 There exists at most one s...
eueq 3682 A class is a set if and on...
eueqi 3683 There exists a unique set ...
eueq2 3684 Equality has existential u...
eueq3 3685 Equality has existential u...
moeq3 3686 "At most one" property of ...
mosub 3687 "At most one" remains true...
mo2icl 3688 Theorem for inferring "at ...
mob2 3689 Consequence of "at most on...
moi2 3690 Consequence of "at most on...
mob 3691 Equality implied by "at mo...
moi 3692 Equality implied by "at mo...
morex 3693 Derive membership from uni...
euxfr2w 3694 Transfer existential uniqu...
euxfrw 3695 Transfer existential uniqu...
euxfr2 3696 Transfer existential uniqu...
euxfr 3697 Transfer existential uniqu...
euind 3698 Existential uniqueness via...
reu2 3699 A way to express restricte...
reu6 3700 A way to express restricte...
reu3 3701 A way to express restricte...
reu6i 3702 A condition which implies ...
eqreu 3703 A condition which implies ...
rmo4 3704 Restricted "at most one" u...
reu4 3705 Restricted uniqueness usin...
reu7 3706 Restricted uniqueness usin...
reu8 3707 Restricted uniqueness usin...
rmo3f 3708 Restricted "at most one" u...
rmo4f 3709 Restricted "at most one" u...
reu2eqd 3710 Deduce equality from restr...
reueq 3711 Equality has existential u...
rmoeq 3712 Equality's restricted exis...
rmoan 3713 Restricted "at most one" s...
rmoim 3714 Restricted "at most one" i...
rmoimia 3715 Restricted "at most one" i...
rmoimi 3716 Restricted "at most one" i...
rmoimi2 3717 Restricted "at most one" i...
2reu5a 3718 Double restricted existent...
reuimrmo 3719 Restricted uniqueness impl...
2reuswap 3720 A condition allowing swap ...
2reuswap2 3721 A condition allowing swap ...
reuxfrd 3722 Transfer existential uniqu...
reuxfr 3723 Transfer existential uniqu...
reuxfr1d 3724 Transfer existential uniqu...
reuxfr1ds 3725 Transfer existential uniqu...
reuxfr1 3726 Transfer existential uniqu...
reuind 3727 Existential uniqueness via...
2rmorex 3728 Double restricted quantifi...
2reu5lem1 3729 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3730 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3731 Lemma for ~ 2reu5 . This ...
2reu5 3732 Double restricted existent...
2reurmo 3733 Double restricted quantifi...
2reurex 3734 Double restricted quantifi...
2rmoswap 3735 A condition allowing to sw...
2rexreu 3736 Double restricted existent...
cdeqi 3739 Deduce conditional equalit...
cdeqri 3740 Property of conditional eq...
cdeqth 3741 Deduce conditional equalit...
cdeqnot 3742 Distribute conditional equ...
cdeqal 3743 Distribute conditional equ...
cdeqab 3744 Distribute conditional equ...
cdeqal1 3745 Distribute conditional equ...
cdeqab1 3746 Distribute conditional equ...
cdeqim 3747 Distribute conditional equ...
cdeqcv 3748 Conditional equality for s...
cdeqeq 3749 Distribute conditional equ...
cdeqel 3750 Distribute conditional equ...
nfcdeq 3751 If we have a conditional e...
nfccdeq 3752 Variation of ~ nfcdeq for ...
rru 3753 Relative version of Russel...
ru 3754 Russell's Paradox. Propos...
ruOLD 3755 Obsolete version of ~ ru a...
dfsbcq 3758 Proper substitution of a c...
dfsbcq2 3759 This theorem, which is sim...
sbsbc 3760 Show that ~ df-sb and ~ df...
sbceq1d 3761 Equality theorem for class...
sbceq1dd 3762 Equality theorem for class...
sbceqbid 3763 Equality theorem for class...
sbc8g 3764 This is the closest we can...
sbc2or 3765 The disjunction of two equ...
sbcex 3766 By our definition of prope...
sbceq1a 3767 Equality theorem for class...
sbceq2a 3768 Equality theorem for class...
spsbc 3769 Specialization: if a formu...
spsbcd 3770 Specialization: if a formu...
sbcth 3771 A substitution into a theo...
sbcthdv 3772 Deduction version of ~ sbc...
sbcid 3773 An identity theorem for su...
nfsbc1d 3774 Deduction version of ~ nfs...
nfsbc1 3775 Bound-variable hypothesis ...
nfsbc1v 3776 Bound-variable hypothesis ...
nfsbcdw 3777 Deduction version of ~ nfs...
nfsbcw 3778 Bound-variable hypothesis ...
sbccow 3779 A composition law for clas...
nfsbcd 3780 Deduction version of ~ nfs...
nfsbc 3781 Bound-variable hypothesis ...
sbcco 3782 A composition law for clas...
sbcco2 3783 A composition law for clas...
sbc5 3784 An equivalence for class s...
sbc5ALT 3785 Alternate proof of ~ sbc5 ...
sbc6g 3786 An equivalence for class s...
sbc6 3787 An equivalence for class s...
sbc7 3788 An equivalence for class s...
cbvsbcw 3789 Change bound variables in ...
cbvsbcvw 3790 Change the bound variable ...
cbvsbc 3791 Change bound variables in ...
cbvsbcv 3792 Change the bound variable ...
sbciegft 3793 Conversion of implicit sub...
sbciegftOLD 3794 Obsolete version of ~ sbci...
sbciegf 3795 Conversion of implicit sub...
sbcieg 3796 Conversion of implicit sub...
sbcie2g 3797 Conversion of implicit sub...
sbcie 3798 Conversion of implicit sub...
sbciedf 3799 Conversion of implicit sub...
sbcied 3800 Conversion of implicit sub...
sbcied2 3801 Conversion of implicit sub...
elrabsf 3802 Membership in a restricted...
eqsbc1 3803 Substitution for the left-...
sbcng 3804 Move negation in and out o...
sbcimg 3805 Distribution of class subs...
sbcan 3806 Distribution of class subs...
sbcor 3807 Distribution of class subs...
sbcbig 3808 Distribution of class subs...
sbcn1 3809 Move negation in and out o...
sbcim1 3810 Distribution of class subs...
sbcbid 3811 Formula-building deduction...
sbcbidv 3812 Formula-building deduction...
sbcbii 3813 Formula-building inference...
sbcbi1 3814 Distribution of class subs...
sbcbi2 3815 Substituting into equivale...
sbcal 3816 Move universal quantifier ...
sbcex2 3817 Move existential quantifie...
sbceqal 3818 Class version of one impli...
sbeqalb 3819 Theorem *14.121 in [Whiteh...
eqsbc2 3820 Substitution for the right...
sbc3an 3821 Distribution of class subs...
sbcel1v 3822 Class substitution into a ...
sbcel2gv 3823 Class substitution into a ...
sbcel21v 3824 Class substitution into a ...
sbcimdv 3825 Substitution analogue of T...
sbctt 3826 Substitution for a variabl...
sbcgf 3827 Substitution for a variabl...
sbc19.21g 3828 Substitution for a variabl...
sbcg 3829 Substitution for a variabl...
sbcgfi 3830 Substitution for a variabl...
sbc2iegf 3831 Conversion of implicit sub...
sbc2ie 3832 Conversion of implicit sub...
sbc2iedv 3833 Conversion of implicit sub...
sbc3ie 3834 Conversion of implicit sub...
sbccomlem 3835 Lemma for ~ sbccom . (Con...
sbccomlemOLD 3836 Obsolete version of ~ sbcc...
sbccom 3837 Commutative law for double...
sbcralt 3838 Interchange class substitu...
sbcrext 3839 Interchange class substitu...
sbcralg 3840 Interchange class substitu...
sbcrex 3841 Interchange class substitu...
sbcreu 3842 Interchange class substitu...
reu8nf 3843 Restricted uniqueness usin...
sbcabel 3844 Interchange class substitu...
rspsbc 3845 Restricted quantifier vers...
rspsbca 3846 Restricted quantifier vers...
rspesbca 3847 Existence form of ~ rspsbc...
spesbc 3848 Existence form of ~ spsbc ...
spesbcd 3849 form of ~ spsbc . (Contri...
sbcth2 3850 A substitution into a theo...
ra4v 3851 Version of ~ ra4 with a di...
ra4 3852 Restricted quantifier vers...
rmo2 3853 Alternate definition of re...
rmo2i 3854 Condition implying restric...
rmo3 3855 Restricted "at most one" u...
rmob 3856 Consequence of "at most on...
rmoi 3857 Consequence of "at most on...
rmob2 3858 Consequence of "restricted...
rmoi2 3859 Consequence of "restricted...
rmoanim 3860 Introduction of a conjunct...
rmoanimALT 3861 Alternate proof of ~ rmoan...
reuan 3862 Introduction of a conjunct...
2reu1 3863 Double restricted existent...
2reu2 3864 Double restricted existent...
csb2 3867 Alternate expression for t...
csbeq1 3868 Analogue of ~ dfsbcq for p...
csbeq1d 3869 Equality deduction for pro...
csbeq2 3870 Substituting into equivale...
csbeq2d 3871 Formula-building deduction...
csbeq2dv 3872 Formula-building deduction...
csbeq2i 3873 Formula-building inference...
csbeq12dv 3874 Formula-building inference...
cbvcsbw 3875 Change bound variables in ...
cbvcsb 3876 Change bound variables in ...
cbvcsbv 3877 Change the bound variable ...
csbid 3878 Analogue of ~ sbid for pro...
csbeq1a 3879 Equality theorem for prope...
csbcow 3880 Composition law for chaine...
csbco 3881 Composition law for chaine...
csbtt 3882 Substitution doesn't affec...
csbconstgf 3883 Substitution doesn't affec...
csbconstg 3884 Substitution doesn't affec...
csbgfi 3885 Substitution for a variabl...
csbconstgi 3886 The proper substitution of...
nfcsb1d 3887 Bound-variable hypothesis ...
nfcsb1 3888 Bound-variable hypothesis ...
nfcsb1v 3889 Bound-variable hypothesis ...
nfcsbd 3890 Deduction version of ~ nfc...
nfcsbw 3891 Bound-variable hypothesis ...
nfcsb 3892 Bound-variable hypothesis ...
csbhypf 3893 Introduce an explicit subs...
csbiebt 3894 Conversion of implicit sub...
csbiedf 3895 Conversion of implicit sub...
csbieb 3896 Bidirectional conversion b...
csbiebg 3897 Bidirectional conversion b...
csbiegf 3898 Conversion of implicit sub...
csbief 3899 Conversion of implicit sub...
csbie 3900 Conversion of implicit sub...
csbied 3901 Conversion of implicit sub...
csbied2 3902 Conversion of implicit sub...
csbie2t 3903 Conversion of implicit sub...
csbie2 3904 Conversion of implicit sub...
csbie2g 3905 Conversion of implicit sub...
cbvrabcsfw 3906 Version of ~ cbvrabcsf wit...
cbvralcsf 3907 A more general version of ...
cbvrexcsf 3908 A more general version of ...
cbvreucsf 3909 A more general version of ...
cbvrabcsf 3910 A more general version of ...
cbvralv2 3911 Rule used to change the bo...
cbvrexv2 3912 Rule used to change the bo...
rspc2vd 3913 Deduction version of 2-var...
difjust 3919 Soundness justification th...
unjust 3921 Soundness justification th...
injust 3923 Soundness justification th...
dfin5 3925 Alternate definition for t...
dfdif2 3926 Alternate definition of cl...
eldif 3927 Expansion of membership in...
eldifd 3928 If a class is in one class...
eldifad 3929 If a class is in the diffe...
eldifbd 3930 If a class is in the diffe...
elneeldif 3931 The elements of a set diff...
velcomp 3932 Characterization of setvar...
elin 3933 Expansion of membership in...
dfss2 3935 Alternate definition of th...
dfss 3936 Variant of subclass defini...
dfss3 3938 Alternate definition of su...
dfss6 3939 Alternate definition of su...
dfssf 3940 Equivalence for subclass r...
dfss3f 3941 Equivalence for subclass r...
nfss 3942 If ` x ` is not free in ` ...
ssel 3943 Membership relationships f...
ssel2 3944 Membership relationships f...
sseli 3945 Membership implication fro...
sselii 3946 Membership inference from ...
sselid 3947 Membership inference from ...
sseld 3948 Membership deduction from ...
sselda 3949 Membership deduction from ...
sseldd 3950 Membership inference from ...
ssneld 3951 If a class is not in anoth...
ssneldd 3952 If an element is not in a ...
ssriv 3953 Inference based on subclas...
ssrd 3954 Deduction based on subclas...
ssrdv 3955 Deduction based on subclas...
sstr2 3956 Transitivity of subclass r...
sstr2OLD 3957 Obsolete version of ~ sstr...
sstr 3958 Transitivity of subclass r...
sstri 3959 Subclass transitivity infe...
sstrd 3960 Subclass transitivity dedu...
sstrid 3961 Subclass transitivity dedu...
sstrdi 3962 Subclass transitivity dedu...
sylan9ss 3963 A subclass transitivity de...
sylan9ssr 3964 A subclass transitivity de...
eqss 3965 The subclass relationship ...
eqssi 3966 Infer equality from two su...
eqssd 3967 Equality deduction from tw...
sssseq 3968 If a class is a subclass o...
eqrd 3969 Deduce equality of classes...
eqri 3970 Infer equality of classes ...
eqelssd 3971 Equality deduction from su...
ssid 3972 Any class is a subclass of...
ssidd 3973 Weakening of ~ ssid . (Co...
ssv 3974 Any class is a subclass of...
sseq1 3975 Equality theorem for subcl...
sseq2 3976 Equality theorem for the s...
sseq12 3977 Equality theorem for the s...
sseq1i 3978 An equality inference for ...
sseq2i 3979 An equality inference for ...
sseq12i 3980 An equality inference for ...
sseq1d 3981 An equality deduction for ...
sseq2d 3982 An equality deduction for ...
sseq12d 3983 An equality deduction for ...
eqsstrd 3984 Substitution of equality i...
eqsstrrd 3985 Substitution of equality i...
sseqtrd 3986 Substitution of equality i...
sseqtrrd 3987 Substitution of equality i...
eqsstrid 3988 A chained subclass and equ...
eqsstrrid 3989 A chained subclass and equ...
sseqtrdi 3990 A chained subclass and equ...
sseqtrrdi 3991 A chained subclass and equ...
sseqtrid 3992 Subclass transitivity dedu...
sseqtrrid 3993 Subclass transitivity dedu...
eqsstrdi 3994 A chained subclass and equ...
eqsstrrdi 3995 A chained subclass and equ...
eqsstri 3996 Substitution of equality i...
eqsstrri 3997 Substitution of equality i...
sseqtri 3998 Substitution of equality i...
sseqtrri 3999 Substitution of equality i...
3sstr3i 4000 Substitution of equality i...
3sstr4i 4001 Substitution of equality i...
3sstr3g 4002 Substitution of equality i...
3sstr4g 4003 Substitution of equality i...
3sstr3d 4004 Substitution of equality i...
3sstr4d 4005 Substitution of equality i...
eqimssd 4006 Equality implies inclusion...
eqimsscd 4007 Equality implies inclusion...
eqimss 4008 Equality implies inclusion...
eqimss2 4009 Equality implies inclusion...
eqimssi 4010 Infer subclass relationshi...
eqimss2i 4011 Infer subclass relationshi...
nssne1 4012 Two classes are different ...
nssne2 4013 Two classes are different ...
nss 4014 Negation of subclass relat...
nelss 4015 Demonstrate by witnesses t...
ssrexf 4016 Restricted existential qua...
ssrmof 4017 "At most one" existential ...
ssralv 4018 Quantification restricted ...
ssrexv 4019 Existential quantification...
ss2ralv 4020 Two quantifications restri...
ss2rexv 4021 Two existential quantifica...
ssralvOLD 4022 Obsolete version of ~ ssra...
ssrexvOLD 4023 Obsolete version of ~ ssre...
ralss 4024 Restricted universal quant...
rexss 4025 Restricted existential qua...
ralssOLD 4026 Obsolete version of ~ rals...
rexssOLD 4027 Obsolete version of ~ rexs...
ss2ab 4028 Class abstractions in a su...
abss 4029 Class abstraction in a sub...
ssab 4030 Subclass of a class abstra...
ssabral 4031 The relation for a subclas...
ss2abdv 4032 Deduction of abstraction s...
ss2abi 4033 Inference of abstraction s...
abssdv 4034 Deduction of abstraction s...
abssdvOLD 4035 Obsolete version of ~ abss...
abssi 4036 Inference of abstraction s...
ss2rab 4037 Restricted abstraction cla...
rabss 4038 Restricted class abstracti...
ssrab 4039 Subclass of a restricted c...
ssrabdv 4040 Subclass of a restricted c...
rabssdv 4041 Subclass of a restricted c...
ss2rabdv 4042 Deduction of restricted ab...
ss2rabi 4043 Inference of restricted ab...
rabss2 4044 Subclass law for restricte...
ssab2 4045 Subclass relation for the ...
ssrab2 4046 Subclass relation for a re...
rabss3d 4047 Subclass law for restricte...
ssrab3 4048 Subclass relation for a re...
rabssrabd 4049 Subclass of a restricted c...
ssrabeq 4050 If the restricting class o...
rabssab 4051 A restricted class is a su...
eqrrabd 4052 Deduce equality with a res...
uniiunlem 4053 A subset relationship usef...
dfpss2 4054 Alternate definition of pr...
dfpss3 4055 Alternate definition of pr...
psseq1 4056 Equality theorem for prope...
psseq2 4057 Equality theorem for prope...
psseq1i 4058 An equality inference for ...
psseq2i 4059 An equality inference for ...
psseq12i 4060 An equality inference for ...
psseq1d 4061 An equality deduction for ...
psseq2d 4062 An equality deduction for ...
psseq12d 4063 An equality deduction for ...
pssss 4064 A proper subclass is a sub...
pssne 4065 Two classes in a proper su...
pssssd 4066 Deduce subclass from prope...
pssned 4067 Proper subclasses are uneq...
sspss 4068 Subclass in terms of prope...
pssirr 4069 Proper subclass is irrefle...
pssn2lp 4070 Proper subclass has no 2-c...
sspsstri 4071 Two ways of stating tricho...
ssnpss 4072 Partial trichotomy law for...
psstr 4073 Transitive law for proper ...
sspsstr 4074 Transitive law for subclas...
psssstr 4075 Transitive law for subclas...
psstrd 4076 Proper subclass inclusion ...
sspsstrd 4077 Transitivity involving sub...
psssstrd 4078 Transitivity involving sub...
npss 4079 A class is not a proper su...
ssnelpss 4080 A subclass missing a membe...
ssnelpssd 4081 Subclass inclusion with on...
ssexnelpss 4082 If there is an element of ...
dfdif3 4083 Alternate definition of cl...
dfdif3OLD 4084 Obsolete version of ~ dfdi...
difeq1 4085 Equality theorem for class...
difeq2 4086 Equality theorem for class...
difeq12 4087 Equality theorem for class...
difeq1i 4088 Inference adding differenc...
difeq2i 4089 Inference adding differenc...
difeq12i 4090 Equality inference for cla...
difeq1d 4091 Deduction adding differenc...
difeq2d 4092 Deduction adding differenc...
difeq12d 4093 Equality deduction for cla...
difeqri 4094 Inference from membership ...
nfdif 4095 Bound-variable hypothesis ...
nfdifOLD 4096 Obsolete version of ~ nfdi...
eldifi 4097 Implication of membership ...
eldifn 4098 Implication of membership ...
elndif 4099 A set does not belong to a...
neldif 4100 Implication of membership ...
difdif 4101 Double class difference. ...
difss 4102 Subclass relationship for ...
difssd 4103 A difference of two classe...
difss2 4104 If a class is contained in...
difss2d 4105 If a class is contained in...
ssdifss 4106 Preservation of a subclass...
ddif 4107 Double complement under un...
ssconb 4108 Contraposition law for sub...
sscon 4109 Contraposition law for sub...
ssdif 4110 Difference law for subsets...
ssdifd 4111 If ` A ` is contained in `...
sscond 4112 If ` A ` is contained in `...
ssdifssd 4113 If ` A ` is contained in `...
ssdif2d 4114 If ` A ` is contained in `...
raldifb 4115 Restricted universal quant...
rexdifi 4116 Restricted existential qua...
complss 4117 Complementation reverses i...
compleq 4118 Two classes are equal if a...
elun 4119 Expansion of membership in...
elunnel1 4120 A member of a union that i...
elunnel2 4121 A member of a union that i...
uneqri 4122 Inference from membership ...
unidm 4123 Idempotent law for union o...
uncom 4124 Commutative law for union ...
equncom 4125 If a class equals the unio...
equncomi 4126 Inference form of ~ equnco...
uneq1 4127 Equality theorem for the u...
uneq2 4128 Equality theorem for the u...
uneq12 4129 Equality theorem for the u...
uneq1i 4130 Inference adding union to ...
uneq2i 4131 Inference adding union to ...
uneq12i 4132 Equality inference for the...
uneq1d 4133 Deduction adding union to ...
uneq2d 4134 Deduction adding union to ...
uneq12d 4135 Equality deduction for the...
nfun 4136 Bound-variable hypothesis ...
nfunOLD 4137 Obsolete version of ~ nfun...
unass 4138 Associative law for union ...
un12 4139 A rearrangement of union. ...
un23 4140 A rearrangement of union. ...
un4 4141 A rearrangement of the uni...
unundi 4142 Union distributes over its...
unundir 4143 Union distributes over its...
ssun1 4144 Subclass relationship for ...
ssun2 4145 Subclass relationship for ...
ssun3 4146 Subclass law for union of ...
ssun4 4147 Subclass law for union of ...
elun1 4148 Membership law for union o...
elun2 4149 Membership law for union o...
elunant 4150 A statement is true for ev...
unss1 4151 Subclass law for union of ...
ssequn1 4152 A relationship between sub...
unss2 4153 Subclass law for union of ...
unss12 4154 Subclass law for union of ...
ssequn2 4155 A relationship between sub...
unss 4156 The union of two subclasse...
unssi 4157 An inference showing the u...
unssd 4158 A deduction showing the un...
unssad 4159 If ` ( A u. B ) ` is conta...
unssbd 4160 If ` ( A u. B ) ` is conta...
ssun 4161 A condition that implies i...
rexun 4162 Restricted existential qua...
ralunb 4163 Restricted quantification ...
ralun 4164 Restricted quantification ...
elini 4165 Membership in an intersect...
elind 4166 Deduce membership in an in...
elinel1 4167 Membership in an intersect...
elinel2 4168 Membership in an intersect...
elin2 4169 Membership in a class defi...
elin1d 4170 Elementhood in the first s...
elin2d 4171 Elementhood in the first s...
elin3 4172 Membership in a class defi...
nel1nelin 4173 Membership in an intersect...
nel2nelin 4174 Membership in an intersect...
incom 4175 Commutative law for inters...
ineqcom 4176 Two ways of expressing tha...
ineqcomi 4177 Two ways of expressing tha...
ineqri 4178 Inference from membership ...
ineq1 4179 Equality theorem for inter...
ineq2 4180 Equality theorem for inter...
ineq12 4181 Equality theorem for inter...
ineq1i 4182 Equality inference for int...
ineq2i 4183 Equality inference for int...
ineq12i 4184 Equality inference for int...
ineq1d 4185 Equality deduction for int...
ineq2d 4186 Equality deduction for int...
ineq12d 4187 Equality deduction for int...
ineqan12d 4188 Equality deduction for int...
sseqin2 4189 A relationship between sub...
nfin 4190 Bound-variable hypothesis ...
nfinOLD 4191 Obsolete version of ~ nfin...
rabbi2dva 4192 Deduction from a wff to a ...
inidm 4193 Idempotent law for interse...
inass 4194 Associative law for inters...
in12 4195 A rearrangement of interse...
in32 4196 A rearrangement of interse...
in13 4197 A rearrangement of interse...
in31 4198 A rearrangement of interse...
inrot 4199 Rotate the intersection of...
in4 4200 Rearrangement of intersect...
inindi 4201 Intersection distributes o...
inindir 4202 Intersection distributes o...
inss1 4203 The intersection of two cl...
inss2 4204 The intersection of two cl...
ssin 4205 Subclass of intersection. ...
ssini 4206 An inference showing that ...
ssind 4207 A deduction showing that a...
ssrin 4208 Add right intersection to ...
sslin 4209 Add left intersection to s...
ssrind 4210 Add right intersection to ...
ss2in 4211 Intersection of subclasses...
ssinss1 4212 Intersection preserves sub...
ssinss1d 4213 Intersection preserves sub...
inss 4214 Inclusion of an intersecti...
ralin 4215 Restricted universal quant...
rexin 4216 Restricted existential qua...
dfss7 4217 Alternate definition of su...
symdifcom 4220 Symmetric difference commu...
symdifeq1 4221 Equality theorem for symme...
symdifeq2 4222 Equality theorem for symme...
nfsymdif 4223 Hypothesis builder for sym...
elsymdif 4224 Membership in a symmetric ...
dfsymdif4 4225 Alternate definition of th...
elsymdifxor 4226 Membership in a symmetric ...
dfsymdif2 4227 Alternate definition of th...
symdifass 4228 Symmetric difference is as...
difsssymdif 4229 The symmetric difference c...
difsymssdifssd 4230 If the symmetric differenc...
unabs 4231 Absorption law for union. ...
inabs 4232 Absorption law for interse...
nssinpss 4233 Negation of subclass expre...
nsspssun 4234 Negation of subclass expre...
dfss4 4235 Subclass defined in terms ...
dfun2 4236 An alternate definition of...
dfin2 4237 An alternate definition of...
difin 4238 Difference with intersecti...
ssdifim 4239 Implication of a class dif...
ssdifsym 4240 Symmetric class difference...
dfss5 4241 Alternate definition of su...
dfun3 4242 Union defined in terms of ...
dfin3 4243 Intersection defined in te...
dfin4 4244 Alternate definition of th...
invdif 4245 Intersection with universa...
indif 4246 Intersection with class di...
indif2 4247 Bring an intersection in a...
indif1 4248 Bring an intersection in a...
indifcom 4249 Commutation law for inters...
indi 4250 Distributive law for inter...
undi 4251 Distributive law for union...
indir 4252 Distributive law for inter...
undir 4253 Distributive law for union...
unineq 4254 Infer equality from equali...
uneqin 4255 Equality of union and inte...
difundi 4256 Distributive law for class...
difundir 4257 Distributive law for class...
difindi 4258 Distributive law for class...
difindir 4259 Distributive law for class...
indifdi 4260 Distribute intersection ov...
indifdir 4261 Distribute intersection ov...
difdif2 4262 Class difference by a clas...
undm 4263 De Morgan's law for union....
indm 4264 De Morgan's law for inters...
difun1 4265 A relationship involving d...
undif3 4266 An equality involving clas...
difin2 4267 Represent a class differen...
dif32 4268 Swap second and third argu...
difabs 4269 Absorption-like law for cl...
sscon34b 4270 Relative complementation r...
rcompleq 4271 Two subclasses are equal i...
dfsymdif3 4272 Alternate definition of th...
unabw 4273 Union of two class abstrac...
unab 4274 Union of two class abstrac...
inab 4275 Intersection of two class ...
difab 4276 Difference of two class ab...
abanssl 4277 A class abstraction with a...
abanssr 4278 A class abstraction with a...
notabw 4279 A class abstraction define...
notab 4280 A class abstraction define...
unrab 4281 Union of two restricted cl...
inrab 4282 Intersection of two restri...
inrab2 4283 Intersection with a restri...
difrab 4284 Difference of two restrict...
dfrab3 4285 Alternate definition of re...
dfrab2 4286 Alternate definition of re...
rabdif 4287 Move difference in and out...
notrab 4288 Complementation of restric...
dfrab3ss 4289 Restricted class abstracti...
rabun2 4290 Abstraction restricted to ...
reuun2 4291 Transfer uniqueness to a s...
reuss2 4292 Transfer uniqueness to a s...
reuss 4293 Transfer uniqueness to a s...
reuun1 4294 Transfer uniqueness to a s...
reupick 4295 Restricted uniqueness "pic...
reupick3 4296 Restricted uniqueness "pic...
reupick2 4297 Restricted uniqueness "pic...
euelss 4298 Transfer uniqueness of an ...
dfnul4 4301 Alternate definition of th...
dfnul2 4302 Alternate definition of th...
dfnul3 4303 Alternate definition of th...
noel 4304 The empty set has no eleme...
nel02 4305 The empty set has no eleme...
n0i 4306 If a class has elements, t...
ne0i 4307 If a class has elements, t...
ne0d 4308 Deduction form of ~ ne0i ....
n0ii 4309 If a class has elements, t...
ne0ii 4310 If a class has elements, t...
vn0 4311 The universal class is not...
vn0ALT 4312 Alternate proof of ~ vn0 ....
eq0f 4313 A class is equal to the em...
neq0f 4314 A class is not empty if an...
n0f 4315 A class is nonempty if and...
eq0 4316 A class is equal to the em...
eq0ALT 4317 Alternate proof of ~ eq0 ....
neq0 4318 A class is not empty if an...
n0 4319 A class is nonempty if and...
nel0 4320 From the general negation ...
reximdva0 4321 Restricted existence deduc...
rspn0 4322 Specialization for restric...
n0rex 4323 There is an element in a n...
ssn0rex 4324 There is an element in a c...
n0moeu 4325 A case of equivalence of "...
rex0 4326 Vacuous restricted existen...
reu0 4327 Vacuous restricted uniquen...
rmo0 4328 Vacuous restricted at-most...
0el 4329 Membership of the empty se...
n0el 4330 Negated membership of the ...
eqeuel 4331 A condition which implies ...
ssdif0 4332 Subclass expressed in term...
difn0 4333 If the difference of two s...
pssdifn0 4334 A proper subclass has a no...
pssdif 4335 A proper subclass has a no...
ndisj 4336 Express that an intersecti...
inn0f 4337 A nonempty intersection. ...
inn0 4338 A nonempty intersection. ...
difin0ss 4339 Difference, intersection, ...
inssdif0 4340 Intersection, subclass, an...
inindif 4341 The intersection and class...
difid 4342 The difference between a c...
difidALT 4343 Alternate proof of ~ difid...
dif0 4344 The difference between a c...
ab0w 4345 The class of sets verifyin...
ab0 4346 The class of sets verifyin...
ab0ALT 4347 Alternate proof of ~ ab0 ,...
dfnf5 4348 Characterization of nonfre...
ab0orv 4349 The class abstraction defi...
ab0orvALT 4350 Alternate proof of ~ ab0or...
abn0 4351 Nonempty class abstraction...
rab0 4352 Any restricted class abstr...
rabeq0w 4353 Condition for a restricted...
rabeq0 4354 Condition for a restricted...
rabn0 4355 Nonempty restricted class ...
rabxm 4356 Law of excluded middle, in...
rabnc 4357 Law of noncontradiction, i...
elneldisj 4358 The set of elements ` s ` ...
elnelun 4359 The union of the set of el...
un0 4360 The union of a class with ...
in0 4361 The intersection of a clas...
0un 4362 The union of the empty set...
0in 4363 The intersection of the em...
inv1 4364 The intersection of a clas...
unv 4365 The union of a class with ...
0ss 4366 The null set is a subset o...
ss0b 4367 Any subset of the empty se...
ss0 4368 Any subset of the empty se...
sseq0 4369 A subclass of an empty cla...
ssn0 4370 A class with a nonempty su...
0dif 4371 The difference between the...
abf 4372 A class abstraction determ...
eq0rdv 4373 Deduction for equality to ...
eq0rdvALT 4374 Alternate proof of ~ eq0rd...
csbprc 4375 The proper substitution of...
csb0 4376 The proper substitution of...
sbcel12 4377 Distribute proper substitu...
sbceqg 4378 Distribute proper substitu...
sbceqi 4379 Distribution of class subs...
sbcnel12g 4380 Distribute proper substitu...
sbcne12 4381 Distribute proper substitu...
sbcel1g 4382 Move proper substitution i...
sbceq1g 4383 Move proper substitution t...
sbcel2 4384 Move proper substitution i...
sbceq2g 4385 Move proper substitution t...
csbcom 4386 Commutative law for double...
sbcnestgfw 4387 Nest the composition of tw...
csbnestgfw 4388 Nest the composition of tw...
sbcnestgw 4389 Nest the composition of tw...
csbnestgw 4390 Nest the composition of tw...
sbcco3gw 4391 Composition of two substit...
sbcnestgf 4392 Nest the composition of tw...
csbnestgf 4393 Nest the composition of tw...
sbcnestg 4394 Nest the composition of tw...
csbnestg 4395 Nest the composition of tw...
sbcco3g 4396 Composition of two substit...
csbco3g 4397 Composition of two class s...
csbnest1g 4398 Nest the composition of tw...
csbidm 4399 Idempotent law for class s...
csbvarg 4400 The proper substitution of...
csbvargi 4401 The proper substitution of...
sbccsb 4402 Substitution into a wff ex...
sbccsb2 4403 Substitution into a wff ex...
rspcsbela 4404 Special case related to ~ ...
sbnfc2 4405 Two ways of expressing " `...
csbab 4406 Move substitution into a c...
csbun 4407 Distribution of class subs...
csbin 4408 Distribute proper substitu...
csbie2df 4409 Conversion of implicit sub...
2nreu 4410 If there are two different...
un00 4411 Two classes are empty iff ...
vss 4412 Only the universal class h...
0pss 4413 The null set is a proper s...
npss0 4414 No set is a proper subset ...
pssv 4415 Any non-universal class is...
disj 4416 Two ways of saying that tw...
disjr 4417 Two ways of saying that tw...
disj1 4418 Two ways of saying that tw...
reldisj 4419 Two ways of saying that tw...
disj3 4420 Two ways of saying that tw...
disjne 4421 Members of disjoint sets a...
disjeq0 4422 Two disjoint sets are equa...
disjel 4423 A set can't belong to both...
disj2 4424 Two ways of saying that tw...
disj4 4425 Two ways of saying that tw...
ssdisj 4426 Intersection with a subcla...
disjpss 4427 A class is a proper subset...
undisj1 4428 The union of disjoint clas...
undisj2 4429 The union of disjoint clas...
ssindif0 4430 Subclass expressed in term...
inelcm 4431 The intersection of classe...
minel 4432 A minimum element of a cla...
undif4 4433 Distribute union over diff...
disjssun 4434 Subset relation for disjoi...
vdif0 4435 Universal class equality i...
difrab0eq 4436 If the difference between ...
pssnel 4437 A proper subclass has a me...
disjdif 4438 A class and its relative c...
disjdifr 4439 A class and its relative c...
difin0 4440 The difference of a class ...
unvdif 4441 The union of a class and i...
undif1 4442 Absorption of difference b...
undif2 4443 Absorption of difference b...
undifabs 4444 Absorption of difference b...
inundif 4445 The intersection and class...
disjdif2 4446 The difference of a class ...
difun2 4447 Absorption of union by dif...
undif 4448 Union of complementary par...
undifr 4449 Union of complementary par...
undifrOLD 4450 Obsolete version of ~ undi...
undif5 4451 An equality involving clas...
ssdifin0 4452 A subset of a difference d...
ssdifeq0 4453 A class is a subclass of i...
ssundif 4454 A condition equivalent to ...
difcom 4455 Swap the arguments of a cl...
pssdifcom1 4456 Two ways to express overla...
pssdifcom2 4457 Two ways to express non-co...
difdifdir 4458 Distributive law for class...
uneqdifeq 4459 Two ways to say that ` A `...
raldifeq 4460 Equality theorem for restr...
r19.2z 4461 Theorem 19.2 of [Margaris]...
r19.2zb 4462 A response to the notion t...
r19.3rz 4463 Restricted quantification ...
r19.28z 4464 Restricted quantifier vers...
r19.3rzv 4465 Restricted quantification ...
r19.9rzv 4466 Restricted quantification ...
r19.28zv 4467 Restricted quantifier vers...
r19.37zv 4468 Restricted quantifier vers...
r19.45zv 4469 Restricted version of Theo...
r19.44zv 4470 Restricted version of Theo...
r19.27z 4471 Restricted quantifier vers...
r19.27zv 4472 Restricted quantifier vers...
r19.36zv 4473 Restricted quantifier vers...
ralidmw 4474 Idempotent law for restric...
rzal 4475 Vacuous quantification is ...
rzalALT 4476 Alternate proof of ~ rzal ...
rexn0 4477 Restricted existential qua...
ralidm 4478 Idempotent law for restric...
ral0 4479 Vacuous universal quantifi...
ralf0 4480 The quantification of a fa...
ralnralall 4481 A contradiction concerning...
falseral0 4482 A false statement can only...
raaan 4483 Rearrange restricted quant...
raaanv 4484 Rearrange restricted quant...
sbss 4485 Set substitution into the ...
sbcssg 4486 Distribute proper substitu...
raaan2 4487 Rearrange restricted quant...
2reu4lem 4488 Lemma for ~ 2reu4 . (Cont...
2reu4 4489 Definition of double restr...
csbdif 4490 Distribution of class subs...
dfif2 4493 An alternate definition of...
dfif6 4494 An alternate definition of...
ifeq1 4495 Equality theorem for condi...
ifeq2 4496 Equality theorem for condi...
iftrue 4497 Value of the conditional o...
iftruei 4498 Inference associated with ...
iftrued 4499 Value of the conditional o...
iffalse 4500 Value of the conditional o...
iffalsei 4501 Inference associated with ...
iffalsed 4502 Value of the conditional o...
ifnefalse 4503 When values are unequal, b...
iftrueb 4504 When the branches are not ...
ifsb 4505 Distribute a function over...
dfif3 4506 Alternate definition of th...
dfif4 4507 Alternate definition of th...
dfif5 4508 Alternate definition of th...
ifssun 4509 A conditional class is inc...
ifeq12 4510 Equality theorem for condi...
ifeq1d 4511 Equality deduction for con...
ifeq2d 4512 Equality deduction for con...
ifeq12d 4513 Equality deduction for con...
ifbi 4514 Equivalence theorem for co...
ifbid 4515 Equivalence deduction for ...
ifbieq1d 4516 Equivalence/equality deduc...
ifbieq2i 4517 Equivalence/equality infer...
ifbieq2d 4518 Equivalence/equality deduc...
ifbieq12i 4519 Equivalence deduction for ...
ifbieq12d 4520 Equivalence deduction for ...
nfifd 4521 Deduction form of ~ nfif ....
nfif 4522 Bound-variable hypothesis ...
ifeq1da 4523 Conditional equality. (Co...
ifeq2da 4524 Conditional equality. (Co...
ifeq12da 4525 Equivalence deduction for ...
ifbieq12d2 4526 Equivalence deduction for ...
ifclda 4527 Conditional closure. (Con...
ifeqda 4528 Separation of the values o...
elimif 4529 Elimination of a condition...
ifbothda 4530 A wff ` th ` containing a ...
ifboth 4531 A wff ` th ` containing a ...
ifid 4532 Identical true and false a...
eqif 4533 Expansion of an equality w...
ifval 4534 Another expression of the ...
elif 4535 Membership in a conditiona...
ifel 4536 Membership of a conditiona...
ifcl 4537 Membership (closure) of a ...
ifcld 4538 Membership (closure) of a ...
ifcli 4539 Inference associated with ...
ifexd 4540 Existence of the condition...
ifexg 4541 Existence of the condition...
ifex 4542 Existence of the condition...
ifeqor 4543 The possible values of a c...
ifnot 4544 Negating the first argumen...
ifan 4545 Rewrite a conjunction in a...
ifor 4546 Rewrite a disjunction in a...
2if2 4547 Resolve two nested conditi...
ifcomnan 4548 Commute the conditions in ...
csbif 4549 Distribute proper substitu...
dedth 4550 Weak deduction theorem tha...
dedth2h 4551 Weak deduction theorem eli...
dedth3h 4552 Weak deduction theorem eli...
dedth4h 4553 Weak deduction theorem eli...
dedth2v 4554 Weak deduction theorem for...
dedth3v 4555 Weak deduction theorem for...
dedth4v 4556 Weak deduction theorem for...
elimhyp 4557 Eliminate a hypothesis con...
elimhyp2v 4558 Eliminate a hypothesis con...
elimhyp3v 4559 Eliminate a hypothesis con...
elimhyp4v 4560 Eliminate a hypothesis con...
elimel 4561 Eliminate a membership hyp...
elimdhyp 4562 Version of ~ elimhyp where...
keephyp 4563 Transform a hypothesis ` p...
keephyp2v 4564 Keep a hypothesis containi...
keephyp3v 4565 Keep a hypothesis containi...
pwjust 4567 Soundness justification th...
elpwg 4569 Membership in a power clas...
elpw 4570 Membership in a power clas...
velpw 4571 Setvar variable membership...
elpwd 4572 Membership in a power clas...
elpwi 4573 Subset relation implied by...
elpwb 4574 Characterization of the el...
elpwid 4575 An element of a power clas...
elelpwi 4576 If ` A ` belongs to a part...
sspw 4577 The powerclass preserves i...
sspwi 4578 The powerclass preserves i...
sspwd 4579 The powerclass preserves i...
pweq 4580 Equality theorem for power...
pweqALT 4581 Alternate proof of ~ pweq ...
pweqi 4582 Equality inference for pow...
pweqd 4583 Equality deduction for pow...
pwunss 4584 The power class of the uni...
nfpw 4585 Bound-variable hypothesis ...
pwidg 4586 A set is an element of its...
pwidb 4587 A class is an element of i...
pwid 4588 A set is a member of its p...
pwss 4589 Subclass relationship for ...
pwundif 4590 Break up the power class o...
snjust 4591 Soundness justification th...
sneq 4602 Equality theorem for singl...
sneqi 4603 Equality inference for sin...
sneqd 4604 Equality deduction for sin...
dfsn2 4605 Alternate definition of si...
elsng 4606 There is exactly one eleme...
elsn 4607 There is exactly one eleme...
velsn 4608 There is only one element ...
elsni 4609 There is at most one eleme...
elsnd 4610 There is at most one eleme...
rabsneq 4611 Equality of class abstract...
absn 4612 Condition for a class abst...
dfpr2 4613 Alternate definition of a ...
dfsn2ALT 4614 Alternate definition of si...
elprg 4615 A member of a pair of clas...
elpri 4616 If a class is an element o...
elpr 4617 A member of a pair of clas...
elpr2g 4618 A member of a pair of sets...
elpr2 4619 A member of a pair of sets...
nelpr2 4620 If a class is not an eleme...
nelpr1 4621 If a class is not an eleme...
nelpri 4622 If an element doesn't matc...
prneli 4623 If an element doesn't matc...
nelprd 4624 If an element doesn't matc...
eldifpr 4625 Membership in a set with t...
rexdifpr 4626 Restricted existential qua...
snidg 4627 A set is a member of its s...
snidb 4628 A class is a set iff it is...
snid 4629 A set is a member of its s...
vsnid 4630 A setvar variable is a mem...
elsn2g 4631 There is exactly one eleme...
elsn2 4632 There is exactly one eleme...
nelsn 4633 If a class is not equal to...
rabeqsn 4634 Conditions for a restricte...
rabsssn 4635 Conditions for a restricte...
rabeqsnd 4636 Conditions for a restricte...
ralsnsg 4637 Substitution expressed in ...
rexsns 4638 Restricted existential qua...
rexsngf 4639 Restricted existential qua...
ralsngf 4640 Restricted universal quant...
reusngf 4641 Restricted existential uni...
ralsng 4642 Substitution expressed in ...
rexsng 4643 Restricted existential qua...
reusng 4644 Restricted existential uni...
2ralsng 4645 Substitution expressed in ...
rexreusng 4646 Restricted existential uni...
exsnrex 4647 There is a set being the e...
ralsn 4648 Convert a universal quanti...
rexsn 4649 Convert an existential qua...
elunsn 4650 Elementhood in a union wit...
elpwunsn 4651 Membership in an extension...
eqoreldif 4652 An element of a set is eit...
eltpg 4653 Members of an unordered tr...
eldiftp 4654 Membership in a set with t...
eltpi 4655 A member of an unordered t...
eltp 4656 A member of an unordered t...
el7g 4657 Members of a set with seve...
dftp2 4658 Alternate definition of un...
nfpr 4659 Bound-variable hypothesis ...
ifpr 4660 Membership of a conditiona...
ralprgf 4661 Convert a restricted unive...
rexprgf 4662 Convert a restricted exist...
ralprg 4663 Convert a restricted unive...
rexprg 4664 Convert a restricted exist...
raltpg 4665 Convert a restricted unive...
rextpg 4666 Convert a restricted exist...
ralpr 4667 Convert a restricted unive...
rexpr 4668 Convert a restricted exist...
reuprg0 4669 Convert a restricted exist...
reuprg 4670 Convert a restricted exist...
reurexprg 4671 Convert a restricted exist...
raltp 4672 Convert a universal quanti...
rextp 4673 Convert an existential qua...
nfsn 4674 Bound-variable hypothesis ...
csbsng 4675 Distribute proper substitu...
csbprg 4676 Distribute proper substitu...
elinsn 4677 If the intersection of two...
disjsn 4678 Intersection with the sing...
disjsn2 4679 Two distinct singletons ar...
disjpr2 4680 Two completely distinct un...
disjprsn 4681 The disjoint intersection ...
disjtpsn 4682 The disjoint intersection ...
disjtp2 4683 Two completely distinct un...
snprc 4684 The singleton of a proper ...
snnzb 4685 A singleton is nonempty if...
rmosn 4686 A restricted at-most-one q...
r19.12sn 4687 Special case of ~ r19.12 w...
rabsn 4688 Condition where a restrict...
rabsnifsb 4689 A restricted class abstrac...
rabsnif 4690 A restricted class abstrac...
rabrsn 4691 A restricted class abstrac...
euabsn2 4692 Another way to express exi...
euabsn 4693 Another way to express exi...
reusn 4694 A way to express restricte...
absneu 4695 Restricted existential uni...
rabsneu 4696 Restricted existential uni...
eusn 4697 Two ways to express " ` A ...
rabsnt 4698 Truth implied by equality ...
prcom 4699 Commutative law for unorde...
preq1 4700 Equality theorem for unord...
preq2 4701 Equality theorem for unord...
preq12 4702 Equality theorem for unord...
preq1i 4703 Equality inference for uno...
preq2i 4704 Equality inference for uno...
preq12i 4705 Equality inference for uno...
preq1d 4706 Equality deduction for uno...
preq2d 4707 Equality deduction for uno...
preq12d 4708 Equality deduction for uno...
tpeq1 4709 Equality theorem for unord...
tpeq2 4710 Equality theorem for unord...
tpeq3 4711 Equality theorem for unord...
tpeq1d 4712 Equality theorem for unord...
tpeq2d 4713 Equality theorem for unord...
tpeq3d 4714 Equality theorem for unord...
tpeq123d 4715 Equality theorem for unord...
tprot 4716 Rotation of the elements o...
tpcoma 4717 Swap 1st and 2nd members o...
tpcomb 4718 Swap 2nd and 3rd members o...
tpass 4719 Split off the first elemen...
qdass 4720 Two ways to write an unord...
qdassr 4721 Two ways to write an unord...
tpidm12 4722 Unordered triple ` { A , A...
tpidm13 4723 Unordered triple ` { A , B...
tpidm23 4724 Unordered triple ` { A , B...
tpidm 4725 Unordered triple ` { A , A...
tppreq3 4726 An unordered triple is an ...
prid1g 4727 An unordered pair contains...
prid2g 4728 An unordered pair contains...
prid1 4729 An unordered pair contains...
prid2 4730 An unordered pair contains...
ifpprsnss 4731 An unordered pair is a sin...
prprc1 4732 A proper class vanishes in...
prprc2 4733 A proper class vanishes in...
prprc 4734 An unordered pair containi...
tpid1 4735 One of the three elements ...
tpid1g 4736 Closed theorem form of ~ t...
tpid2 4737 One of the three elements ...
tpid2g 4738 Closed theorem form of ~ t...
tpid3g 4739 Closed theorem form of ~ t...
tpid3 4740 One of the three elements ...
snnzg 4741 The singleton of a set is ...
snn0d 4742 The singleton of a set is ...
snnz 4743 The singleton of a set is ...
prnz 4744 A pair containing a set is...
prnzg 4745 A pair containing a set is...
tpnz 4746 An unordered triple contai...
tpnzd 4747 An unordered triple contai...
raltpd 4748 Convert a universal quanti...
snssb 4749 Characterization of the in...
snssg 4750 The singleton formed on a ...
snssgOLD 4751 Obsolete version of ~ snss...
snss 4752 The singleton of an elemen...
eldifsn 4753 Membership in a set with a...
eldifsnd 4754 Membership in a set with a...
ssdifsn 4755 Subset of a set with an el...
elpwdifsn 4756 A subset of a set is an el...
eldifsni 4757 Membership in a set with a...
eldifsnneq 4758 An element of a difference...
neldifsn 4759 The class ` A ` is not in ...
neldifsnd 4760 The class ` A ` is not in ...
rexdifsn 4761 Restricted existential qua...
raldifsni 4762 Rearrangement of a propert...
raldifsnb 4763 Restricted universal quant...
eldifvsn 4764 A set is an element of the...
difsn 4765 An element not in a set ca...
difprsnss 4766 Removal of a singleton fro...
difprsn1 4767 Removal of a singleton fro...
difprsn2 4768 Removal of a singleton fro...
diftpsn3 4769 Removal of a singleton fro...
difpr 4770 Removing two elements as p...
tpprceq3 4771 An unordered triple is an ...
tppreqb 4772 An unordered triple is an ...
difsnb 4773 ` ( B \ { A } ) ` equals `...
difsnpss 4774 ` ( B \ { A } ) ` is a pro...
snssi 4775 The singleton of an elemen...
snssd 4776 The singleton of an elemen...
difsnid 4777 If we remove a single elem...
eldifeldifsn 4778 An element of a difference...
pw0 4779 Compute the power set of t...
pwpw0 4780 Compute the power set of t...
snsspr1 4781 A singleton is a subset of...
snsspr2 4782 A singleton is a subset of...
snsstp1 4783 A singleton is a subset of...
snsstp2 4784 A singleton is a subset of...
snsstp3 4785 A singleton is a subset of...
prssg 4786 A pair of elements of a cl...
prss 4787 A pair of elements of a cl...
prssi 4788 A pair of elements of a cl...
prssd 4789 Deduction version of ~ prs...
prsspwg 4790 An unordered pair belongs ...
ssprss 4791 A pair as subset of a pair...
ssprsseq 4792 A proper pair is a subset ...
sssn 4793 The subsets of a singleton...
ssunsn2 4794 The property of being sand...
ssunsn 4795 Possible values for a set ...
eqsn 4796 Two ways to express that a...
eqsnd 4797 Deduce that a set is a sin...
eqsndOLD 4798 Obsolete version of ~ eqsn...
issn 4799 A sufficient condition for...
n0snor2el 4800 A nonempty set is either a...
ssunpr 4801 Possible values for a set ...
sspr 4802 The subsets of a pair. (C...
sstp 4803 The subsets of an unordere...
tpss 4804 An unordered triple of ele...
tpssi 4805 An unordered triple of ele...
sneqrg 4806 Closed form of ~ sneqr . ...
sneqr 4807 If the singletons of two s...
snsssn 4808 If a singleton is a subset...
mosneq 4809 There exists at most one s...
sneqbg 4810 Two singletons of sets are...
snsspw 4811 The singleton of a class i...
prsspw 4812 An unordered pair belongs ...
preq1b 4813 Biconditional equality lem...
preq2b 4814 Biconditional equality lem...
preqr1 4815 Reverse equality lemma for...
preqr2 4816 Reverse equality lemma for...
preq12b 4817 Equality relationship for ...
opthpr 4818 An unordered pair has the ...
preqr1g 4819 Reverse equality lemma for...
preq12bg 4820 Closed form of ~ preq12b ....
prneimg 4821 Two pairs are not equal if...
prneimg2 4822 Two pairs are not equal if...
prnebg 4823 A (proper) pair is not equ...
pr1eqbg 4824 A (proper) pair is equal t...
pr1nebg 4825 A (proper) pair is not equ...
preqsnd 4826 Equivalence for a pair equ...
prnesn 4827 A proper unordered pair is...
prneprprc 4828 A proper unordered pair is...
preqsn 4829 Equivalence for a pair equ...
preq12nebg 4830 Equality relationship for ...
prel12g 4831 Equality of two unordered ...
opthprneg 4832 An unordered pair has the ...
elpreqprlem 4833 Lemma for ~ elpreqpr . (C...
elpreqpr 4834 Equality and membership ru...
elpreqprb 4835 A set is an element of an ...
elpr2elpr 4836 For an element ` A ` of an...
dfopif 4837 Rewrite ~ df-op using ` if...
dfopg 4838 Value of the ordered pair ...
dfop 4839 Value of an ordered pair w...
opeq1 4840 Equality theorem for order...
opeq2 4841 Equality theorem for order...
opeq12 4842 Equality theorem for order...
opeq1i 4843 Equality inference for ord...
opeq2i 4844 Equality inference for ord...
opeq12i 4845 Equality inference for ord...
opeq1d 4846 Equality deduction for ord...
opeq2d 4847 Equality deduction for ord...
opeq12d 4848 Equality deduction for ord...
oteq1 4849 Equality theorem for order...
oteq2 4850 Equality theorem for order...
oteq3 4851 Equality theorem for order...
oteq1d 4852 Equality deduction for ord...
oteq2d 4853 Equality deduction for ord...
oteq3d 4854 Equality deduction for ord...
oteq123d 4855 Equality deduction for ord...
nfop 4856 Bound-variable hypothesis ...
nfopd 4857 Deduction version of bound...
csbopg 4858 Distribution of class subs...
opidg 4859 The ordered pair ` <. A , ...
opid 4860 The ordered pair ` <. A , ...
ralunsn 4861 Restricted quantification ...
2ralunsn 4862 Double restricted quantifi...
opprc 4863 Expansion of an ordered pa...
opprc1 4864 Expansion of an ordered pa...
opprc2 4865 Expansion of an ordered pa...
oprcl 4866 If an ordered pair has an ...
pwsn 4867 The power set of a singlet...
pwpr 4868 The power set of an unorde...
pwtp 4869 The power set of an unorde...
pwpwpw0 4870 Compute the power set of t...
pwv 4871 The power class of the uni...
prproe 4872 For an element of a proper...
3elpr2eq 4873 If there are three element...
dfuni2 4876 Alternate definition of cl...
eluni 4877 Membership in class union....
eluni2 4878 Membership in class union....
elunii 4879 Membership in class union....
nfunid 4880 Deduction version of ~ nfu...
nfuni 4881 Bound-variable hypothesis ...
uniss 4882 Subclass relationship for ...
unissi 4883 Subclass relationship for ...
unissd 4884 Subclass relationship for ...
unieq 4885 Equality theorem for class...
unieqi 4886 Inference of equality of t...
unieqd 4887 Deduction of equality of t...
eluniab 4888 Membership in union of a c...
elunirab 4889 Membership in union of a c...
uniprg 4890 The union of a pair is the...
unipr 4891 The union of a pair is the...
unisng 4892 A set equals the union of ...
unisn 4893 A set equals the union of ...
unisnv 4894 A set equals the union of ...
unisn3 4895 Union of a singleton in th...
dfnfc2 4896 An alternative statement o...
uniun 4897 The class union of the uni...
uniin 4898 The class union of the int...
ssuni 4899 Subclass relationship for ...
uni0b 4900 The union of a set is empt...
uni0c 4901 The union of a set is empt...
uni0 4902 The union of the empty set...
csbuni 4903 Distribute proper substitu...
elssuni 4904 An element of a class is a...
unissel 4905 Condition turning a subcla...
unissb 4906 Relationship involving mem...
unissbOLD 4907 Obsolete version of ~ unis...
uniss2 4908 A subclass condition on th...
unidif 4909 If the difference ` A \ B ...
ssunieq 4910 Relationship implying unio...
unimax 4911 Any member of a class is t...
pwuni 4912 A class is a subclass of t...
dfint2 4915 Alternate definition of cl...
inteq 4916 Equality law for intersect...
inteqi 4917 Equality inference for cla...
inteqd 4918 Equality deduction for cla...
elint 4919 Membership in class inters...
elint2 4920 Membership in class inters...
elintg 4921 Membership in class inters...
elinti 4922 Membership in class inters...
nfint 4923 Bound-variable hypothesis ...
elintabg 4924 Two ways of saying a set i...
elintab 4925 Membership in the intersec...
elintabOLD 4926 Obsolete version of ~ elin...
elintrab 4927 Membership in the intersec...
elintrabg 4928 Membership in the intersec...
int0 4929 The intersection of the em...
intss1 4930 An element of a class incl...
ssint 4931 Subclass of a class inters...
ssintab 4932 Subclass of the intersecti...
ssintub 4933 Subclass of the least uppe...
ssmin 4934 Subclass of the minimum va...
intmin 4935 Any member of a class is t...
intss 4936 Intersection of subclasses...
intssuni 4937 The intersection of a none...
ssintrab 4938 Subclass of the intersecti...
unissint 4939 If the union of a class is...
intssuni2 4940 Subclass relationship for ...
intminss 4941 Under subset ordering, the...
intmin2 4942 Any set is the smallest of...
intmin3 4943 Under subset ordering, the...
intmin4 4944 Elimination of a conjunct ...
intab 4945 The intersection of a spec...
int0el 4946 The intersection of a clas...
intun 4947 The class intersection of ...
intprg 4948 The intersection of a pair...
intpr 4949 The intersection of a pair...
intsng 4950 Intersection of a singleto...
intsn 4951 The intersection of a sing...
uniintsn 4952 Two ways to express " ` A ...
uniintab 4953 The union and the intersec...
intunsn 4954 Theorem joining a singleto...
rint0 4955 Relative intersection of a...
elrint 4956 Membership in a restricted...
elrint2 4957 Membership in a restricted...
eliun 4962 Membership in indexed unio...
eliin 4963 Membership in indexed inte...
eliuni 4964 Membership in an indexed u...
eliund 4965 Membership in indexed unio...
iuncom 4966 Commutation of indexed uni...
iuncom4 4967 Commutation of union with ...
iunconst 4968 Indexed union of a constan...
iinconst 4969 Indexed intersection of a ...
iuneqconst 4970 Indexed union of identical...
iuniin 4971 Law combining indexed unio...
iinssiun 4972 An indexed intersection is...
iunss1 4973 Subclass theorem for index...
iinss1 4974 Subclass theorem for index...
iuneq1 4975 Equality theorem for index...
iineq1 4976 Equality theorem for index...
ss2iun 4977 Subclass theorem for index...
iuneq2 4978 Equality theorem for index...
iineq2 4979 Equality theorem for index...
iuneq2i 4980 Equality inference for ind...
iineq2i 4981 Equality inference for ind...
iineq2d 4982 Equality deduction for ind...
iuneq2dv 4983 Equality deduction for ind...
iineq2dv 4984 Equality deduction for ind...
iuneq12df 4985 Equality deduction for ind...
iuneq1d 4986 Equality theorem for index...
iuneq12dOLD 4987 Obsolete version of ~ iune...
iuneq12d 4988 Equality deduction for ind...
iuneq2d 4989 Equality deduction for ind...
nfiun 4990 Bound-variable hypothesis ...
nfiin 4991 Bound-variable hypothesis ...
nfiung 4992 Bound-variable hypothesis ...
nfiing 4993 Bound-variable hypothesis ...
nfiu1 4994 Bound-variable hypothesis ...
nfiu1OLD 4995 Obsolete version of ~ nfiu...
nfii1 4996 Bound-variable hypothesis ...
dfiun2g 4997 Alternate definition of in...
dfiun2gOLD 4998 Obsolete version of ~ dfiu...
dfiin2g 4999 Alternate definition of in...
dfiun2 5000 Alternate definition of in...
dfiin2 5001 Alternate definition of in...
dfiunv2 5002 Define double indexed unio...
cbviun 5003 Rule used to change the bo...
cbviin 5004 Change bound variables in ...
cbviung 5005 Rule used to change the bo...
cbviing 5006 Change bound variables in ...
cbviunv 5007 Rule used to change the bo...
cbviinv 5008 Change bound variables in ...
cbviunvg 5009 Rule used to change the bo...
cbviinvg 5010 Change bound variables in ...
iunssf 5011 Subset theorem for an inde...
iunss 5012 Subset theorem for an inde...
ssiun 5013 Subset implication for an ...
ssiun2 5014 Identity law for subset of...
ssiun2s 5015 Subset relationship for an...
iunss2 5016 A subclass condition on th...
iunssd 5017 Subset theorem for an inde...
iunab 5018 The indexed union of a cla...
iunrab 5019 The indexed union of a res...
iunxdif2 5020 Indexed union with a class...
ssiinf 5021 Subset theorem for an inde...
ssiin 5022 Subset theorem for an inde...
iinss 5023 Subset implication for an ...
iinss2 5024 An indexed intersection is...
uniiun 5025 Class union in terms of in...
intiin 5026 Class intersection in term...
iunid 5027 An indexed union of single...
iunidOLD 5028 Obsolete version of ~ iuni...
iun0 5029 An indexed union of the em...
0iun 5030 An empty indexed union is ...
0iin 5031 An empty indexed intersect...
viin 5032 Indexed intersection with ...
iunsn 5033 Indexed union of a singlet...
iunn0 5034 There is a nonempty class ...
iinab 5035 Indexed intersection of a ...
iinrab 5036 Indexed intersection of a ...
iinrab2 5037 Indexed intersection of a ...
iunin2 5038 Indexed union of intersect...
iunin1 5039 Indexed union of intersect...
iinun2 5040 Indexed intersection of un...
iundif2 5041 Indexed union of class dif...
iindif1 5042 Indexed intersection of cl...
2iunin 5043 Rearrange indexed unions o...
iindif2 5044 Indexed intersection of cl...
iinin2 5045 Indexed intersection of in...
iinin1 5046 Indexed intersection of in...
iinvdif 5047 The indexed intersection o...
elriin 5048 Elementhood in a relative ...
riin0 5049 Relative intersection of a...
riinn0 5050 Relative intersection of a...
riinrab 5051 Relative intersection of a...
symdif0 5052 Symmetric difference with ...
symdifv 5053 The symmetric difference w...
symdifid 5054 The symmetric difference o...
iinxsng 5055 A singleton index picks ou...
iinxprg 5056 Indexed intersection with ...
iunxsng 5057 A singleton index picks ou...
iunxsn 5058 A singleton index picks ou...
iunxsngf 5059 A singleton index picks ou...
iunun 5060 Separate a union in an ind...
iunxun 5061 Separate a union in the in...
iunxdif3 5062 An indexed union where som...
iunxprg 5063 A pair index picks out two...
iunxiun 5064 Separate an indexed union ...
iinuni 5065 A relationship involving u...
iununi 5066 A relationship involving u...
sspwuni 5067 Subclass relationship for ...
pwssb 5068 Two ways to express a coll...
elpwpw 5069 Characterization of the el...
pwpwab 5070 The double power class wri...
pwpwssunieq 5071 The class of sets whose un...
elpwuni 5072 Relationship for power cla...
iinpw 5073 The power class of an inte...
iunpwss 5074 Inclusion of an indexed un...
intss2 5075 A nonempty intersection of...
rintn0 5076 Relative intersection of a...
dfdisj2 5079 Alternate definition for d...
disjss2 5080 If each element of a colle...
disjeq2 5081 Equality theorem for disjo...
disjeq2dv 5082 Equality deduction for dis...
disjss1 5083 A subset of a disjoint col...
disjeq1 5084 Equality theorem for disjo...
disjeq1d 5085 Equality theorem for disjo...
disjeq12d 5086 Equality theorem for disjo...
cbvdisj 5087 Change bound variables in ...
cbvdisjv 5088 Change bound variables in ...
nfdisjw 5089 Bound-variable hypothesis ...
nfdisj 5090 Bound-variable hypothesis ...
nfdisj1 5091 Bound-variable hypothesis ...
disjor 5092 Two ways to say that a col...
disjors 5093 Two ways to say that a col...
disji2 5094 Property of a disjoint col...
disji 5095 Property of a disjoint col...
invdisj 5096 If there is a function ` C...
invdisjrab 5097 The restricted class abstr...
disjiun 5098 A disjoint collection yiel...
disjord 5099 Conditions for a collectio...
disjiunb 5100 Two ways to say that a col...
disjiund 5101 Conditions for a collectio...
sndisj 5102 Any collection of singleto...
0disj 5103 Any collection of empty se...
disjxsn 5104 A singleton collection is ...
disjx0 5105 An empty collection is dis...
disjprg 5106 A pair collection is disjo...
disjxiun 5107 An indexed union of a disj...
disjxun 5108 The union of two disjoint ...
disjss3 5109 Expand a disjoint collecti...
breq 5112 Equality theorem for binar...
breq1 5113 Equality theorem for a bin...
breq2 5114 Equality theorem for a bin...
breq12 5115 Equality theorem for a bin...
breqi 5116 Equality inference for bin...
breq1i 5117 Equality inference for a b...
breq2i 5118 Equality inference for a b...
breq12i 5119 Equality inference for a b...
breq1d 5120 Equality deduction for a b...
breqd 5121 Equality deduction for a b...
breq2d 5122 Equality deduction for a b...
breq12d 5123 Equality deduction for a b...
breq123d 5124 Equality deduction for a b...
breqdi 5125 Equality deduction for a b...
breqan12d 5126 Equality deduction for a b...
breqan12rd 5127 Equality deduction for a b...
eqnbrtrd 5128 Substitution of equal clas...
nbrne1 5129 Two classes are different ...
nbrne2 5130 Two classes are different ...
eqbrtri 5131 Substitution of equal clas...
eqbrtrd 5132 Substitution of equal clas...
eqbrtrri 5133 Substitution of equal clas...
eqbrtrrd 5134 Substitution of equal clas...
breqtri 5135 Substitution of equal clas...
breqtrd 5136 Substitution of equal clas...
breqtrri 5137 Substitution of equal clas...
breqtrrd 5138 Substitution of equal clas...
3brtr3i 5139 Substitution of equality i...
3brtr4i 5140 Substitution of equality i...
3brtr3d 5141 Substitution of equality i...
3brtr4d 5142 Substitution of equality i...
3brtr3g 5143 Substitution of equality i...
3brtr4g 5144 Substitution of equality i...
eqbrtrid 5145 A chained equality inferen...
eqbrtrrid 5146 A chained equality inferen...
breqtrid 5147 A chained equality inferen...
breqtrrid 5148 A chained equality inferen...
eqbrtrdi 5149 A chained equality inferen...
eqbrtrrdi 5150 A chained equality inferen...
breqtrdi 5151 A chained equality inferen...
breqtrrdi 5152 A chained equality inferen...
ssbrd 5153 Deduction from a subclass ...
ssbr 5154 Implication from a subclas...
ssbri 5155 Inference from a subclass ...
nfbrd 5156 Deduction version of bound...
nfbr 5157 Bound-variable hypothesis ...
brab1 5158 Relationship between a bin...
br0 5159 The empty binary relation ...
brne0 5160 If two sets are in a binar...
brun 5161 The union of two binary re...
brin 5162 The intersection of two re...
brdif 5163 The difference of two bina...
sbcbr123 5164 Move substitution in and o...
sbcbr 5165 Move substitution in and o...
sbcbr12g 5166 Move substitution in and o...
sbcbr1g 5167 Move substitution in and o...
sbcbr2g 5168 Move substitution in and o...
brsymdif 5169 Characterization of the sy...
brralrspcev 5170 Restricted existential spe...
brimralrspcev 5171 Restricted existential spe...
opabss 5174 The collection of ordered ...
opabbid 5175 Equivalent wff's yield equ...
opabbidv 5176 Equivalent wff's yield equ...
opabbii 5177 Equivalent wff's yield equ...
nfopabd 5178 Bound-variable hypothesis ...
nfopab 5179 Bound-variable hypothesis ...
nfopab1 5180 The first abstraction vari...
nfopab2 5181 The second abstraction var...
cbvopab 5182 Rule used to change bound ...
cbvopabv 5183 Rule used to change bound ...
cbvopab1 5184 Change first bound variabl...
cbvopab1g 5185 Change first bound variabl...
cbvopab2 5186 Change second bound variab...
cbvopab1s 5187 Change first bound variabl...
cbvopab1v 5188 Rule used to change the fi...
cbvopab2v 5189 Rule used to change the se...
unopab 5190 Union of two ordered pair ...
mpteq12da 5193 An equality inference for ...
mpteq12df 5194 An equality inference for ...
mpteq12f 5195 An equality theorem for th...
mpteq12dva 5196 An equality inference for ...
mpteq12dv 5197 An equality inference for ...
mpteq12 5198 An equality theorem for th...
mpteq1 5199 An equality theorem for th...
mpteq1d 5200 An equality theorem for th...
mpteq1i 5201 An equality theorem for th...
mpteq2da 5202 Slightly more general equa...
mpteq2dva 5203 Slightly more general equa...
mpteq2dv 5204 An equality inference for ...
mpteq2ia 5205 An equality inference for ...
mpteq2i 5206 An equality inference for ...
mpteq12i 5207 An equality inference for ...
nfmpt 5208 Bound-variable hypothesis ...
nfmpt1 5209 Bound-variable hypothesis ...
cbvmptf 5210 Rule to change the bound v...
cbvmptfg 5211 Rule to change the bound v...
cbvmpt 5212 Rule to change the bound v...
cbvmptg 5213 Rule to change the bound v...
cbvmptv 5214 Rule to change the bound v...
cbvmptvg 5215 Rule to change the bound v...
mptv 5216 Function with universal do...
dftr2 5219 An alternate way of defini...
dftr2c 5220 Variant of ~ dftr2 with co...
dftr5 5221 An alternate way of defini...
dftr5OLD 5222 Obsolete version of ~ dftr...
dftr3 5223 An alternate way of defini...
dftr4 5224 An alternate way of defini...
treq 5225 Equality theorem for the t...
trel 5226 In a transitive class, the...
trel3 5227 In a transitive class, the...
trss 5228 An element of a transitive...
trin 5229 The intersection of transi...
tr0 5230 The empty set is transitiv...
trv 5231 The universe is transitive...
triun 5232 An indexed union of a clas...
truni 5233 The union of a class of tr...
triin 5234 An indexed intersection of...
trint 5235 The intersection of a clas...
trintss 5236 Any nonempty transitive cl...
axrep1 5238 The version of the Axiom o...
axreplem 5239 Lemma for ~ axrep2 and ~ a...
axrep2 5240 Axiom of Replacement expre...
axrep3 5241 Axiom of Replacement sligh...
axrep4v 5242 Version of ~ axrep4 with a...
axrep4 5243 A more traditional version...
axrep4OLD 5244 Obsolete version of ~ axre...
axrep5 5245 Axiom of Replacement (simi...
axrep6 5246 A condensed form of ~ ax-r...
axrep6OLD 5247 Obsolete version of ~ axre...
axrep6g 5248 ~ axrep6 in class notation...
zfrepclf 5249 An inference based on the ...
zfrep3cl 5250 An inference based on the ...
zfrep4 5251 A version of Replacement u...
axsepgfromrep 5252 A more general version ~ a...
axsep 5253 Axiom scheme of separation...
axsepg 5255 A more general version of ...
zfauscl 5256 Separation Scheme (Aussond...
sepexlem 5257 Lemma for ~ sepex . Use ~...
sepex 5258 Convert implication to equ...
sepexi 5259 Convert implication to equ...
bm1.3iiOLD 5260 Obsolete version of ~ sepe...
ax6vsep 5261 Derive ~ ax6v (a weakened ...
axnulALT 5262 Alternate proof of ~ axnul...
axnul 5263 The Null Set Axiom of ZF s...
0ex 5265 The Null Set Axiom of ZF s...
al0ssb 5266 The empty set is the uniqu...
sseliALT 5267 Alternate proof of ~ sseli...
csbexg 5268 The existence of proper su...
csbex 5269 The existence of proper su...
unisn2 5270 A version of ~ unisn witho...
nalset 5271 No set contains all sets. ...
vnex 5272 The universal class does n...
vprc 5273 The universal class is not...
nvel 5274 The universal class does n...
inex1 5275 Separation Scheme (Aussond...
inex2 5276 Separation Scheme (Aussond...
inex1g 5277 Closed-form, generalized S...
inex2g 5278 Sufficient condition for a...
ssex 5279 The subset of a set is als...
ssexi 5280 The subset of a set is als...
ssexg 5281 The subset of a set is als...
ssexd 5282 A subclass of a set is a s...
abexd 5283 Conditions for a class abs...
abex 5284 Conditions for a class abs...
prcssprc 5285 The superclass of a proper...
sselpwd 5286 Elementhood to a power set...
difexg 5287 Existence of a difference....
difexi 5288 Existence of a difference,...
difexd 5289 Existence of a difference....
zfausab 5290 Separation Scheme (Aussond...
elpw2g 5291 Membership in a power clas...
elpw2 5292 Membership in a power clas...
elpwi2 5293 Membership in a power clas...
rabelpw 5294 A restricted class abstrac...
rabexg 5295 Separation Scheme in terms...
rabexgOLD 5296 Obsolete version of ~ rabe...
rabex 5297 Separation Scheme in terms...
rabexd 5298 Separation Scheme in terms...
rabex2 5299 Separation Scheme in terms...
rab2ex 5300 A class abstraction based ...
elssabg 5301 Membership in a class abst...
intex 5302 The intersection of a none...
intnex 5303 If a class intersection is...
intexab 5304 The intersection of a none...
intexrab 5305 The intersection of a none...
iinexg 5306 The existence of a class i...
intabs 5307 Absorption of a redundant ...
inuni 5308 The intersection of a unio...
axpweq 5309 Two equivalent ways to exp...
pwnss 5310 The power set of a set is ...
pwne 5311 No set equals its power se...
difelpw 5312 A difference is an element...
class2set 5313 The class of elements of `...
0elpw 5314 Every power class contains...
pwne0 5315 A power class is never emp...
0nep0 5316 The empty set and its powe...
0inp0 5317 Something cannot be equal ...
unidif0 5318 The removal of the empty s...
eqsnuniex 5319 If a class is equal to the...
iin0 5320 An indexed intersection of...
notzfaus 5321 In the Separation Scheme ~...
intv 5322 The intersection of the un...
zfpow 5324 Axiom of Power Sets expres...
axpow2 5325 A variant of the Axiom of ...
axpow3 5326 A variant of the Axiom of ...
elALT2 5327 Alternate proof of ~ el us...
dtruALT2 5328 Alternate proof of ~ dtru ...
dtrucor 5329 Corollary of ~ dtru . Thi...
dtrucor2 5330 The theorem form of the de...
dvdemo1 5331 Demonstration of a theorem...
dvdemo2 5332 Demonstration of a theorem...
nfnid 5333 A setvar variable is not f...
nfcvb 5334 The "distinctor" expressio...
vpwex 5335 Power set axiom: the power...
pwexg 5336 Power set axiom expressed ...
pwexd 5337 Deduction version of the p...
pwex 5338 Power set axiom expressed ...
pwel 5339 Quantitative version of ~ ...
abssexg 5340 Existence of a class of su...
snexALT 5341 Alternate proof of ~ snex ...
p0ex 5342 The power set of the empty...
p0exALT 5343 Alternate proof of ~ p0ex ...
pp0ex 5344 The power set of the power...
ord3ex 5345 The ordinal number 3 is a ...
dtruALT 5346 Alternate proof of ~ dtru ...
axc16b 5347 This theorem shows that Ax...
eunex 5348 Existential uniqueness imp...
eusv1 5349 Two ways to express single...
eusvnf 5350 Even if ` x ` is free in `...
eusvnfb 5351 Two ways to say that ` A (...
eusv2i 5352 Two ways to express single...
eusv2nf 5353 Two ways to express single...
eusv2 5354 Two ways to express single...
reusv1 5355 Two ways to express single...
reusv2lem1 5356 Lemma for ~ reusv2 . (Con...
reusv2lem2 5357 Lemma for ~ reusv2 . (Con...
reusv2lem3 5358 Lemma for ~ reusv2 . (Con...
reusv2lem4 5359 Lemma for ~ reusv2 . (Con...
reusv2lem5 5360 Lemma for ~ reusv2 . (Con...
reusv2 5361 Two ways to express single...
reusv3i 5362 Two ways of expressing exi...
reusv3 5363 Two ways to express single...
eusv4 5364 Two ways to express single...
alxfr 5365 Transfer universal quantif...
ralxfrd 5366 Transfer universal quantif...
rexxfrd 5367 Transfer existential quant...
ralxfr2d 5368 Transfer universal quantif...
rexxfr2d 5369 Transfer existential quant...
ralxfrd2 5370 Transfer universal quantif...
rexxfrd2 5371 Transfer existence from a ...
ralxfr 5372 Transfer universal quantif...
ralxfrALT 5373 Alternate proof of ~ ralxf...
rexxfr 5374 Transfer existence from a ...
rabxfrd 5375 Membership in a restricted...
rabxfr 5376 Membership in a restricted...
reuhypd 5377 A theorem useful for elimi...
reuhyp 5378 A theorem useful for elimi...
zfpair 5379 The Axiom of Pairing of Ze...
axprALT 5380 Alternate proof of ~ axpr ...
axprlem1 5381 Lemma for ~ axpr . There ...
axprlem2 5382 Lemma for ~ axpr . There ...
axprlem3 5383 Lemma for ~ axpr . Elimin...
axprlem4 5384 Lemma for ~ axpr . If an ...
axpr 5385 Unabbreviated version of t...
axprlem3OLD 5386 Obsolete version of ~ axpr...
axprlem4OLD 5387 Obsolete version of ~ axpr...
axprlem5OLD 5388 Obsolete version of ~ axpr...
axprOLD 5389 Obsolete version of ~ axpr...
zfpair2 5391 Derive the abbreviated ver...
vsnex 5392 A singleton built on a set...
snexg 5393 A singleton built on a set...
snex 5394 A singleton is a set. The...
prex 5395 The Axiom of Pairing using...
exel 5396 There exist two sets, one ...
exexneq 5397 There exist two different ...
exneq 5398 Given any set (the " ` y `...
dtru 5399 Given any set (the " ` y `...
el 5400 Any set is an element of s...
sels 5401 If a class is a set, then ...
selsALT 5402 Alternate proof of ~ sels ...
elALT 5403 Alternate proof of ~ el , ...
dtruOLD 5404 Obsolete version of ~ dtru...
snelpwg 5405 A singleton of a set is a ...
snelpwi 5406 If a set is a member of a ...
snelpwiOLD 5407 Obsolete version of ~ snel...
snelpw 5408 A singleton of a set is a ...
prelpw 5409 An unordered pair of two s...
prelpwi 5410 If two sets are members of...
rext 5411 A theorem similar to exten...
sspwb 5412 The powerclass constructio...
unipw 5413 A class equals the union o...
univ 5414 The union of the universe ...
pwtr 5415 A class is transitive iff ...
ssextss 5416 An extensionality-like pri...
ssext 5417 An extensionality-like pri...
nssss 5418 Negation of subclass relat...
pweqb 5419 Classes are equal if and o...
intidg 5420 The intersection of all se...
intidOLD 5421 Obsolete version of ~ inti...
moabex 5422 "At most one" existence im...
rmorabex 5423 Restricted "at most one" e...
euabex 5424 The abstraction of a wff w...
nnullss 5425 A nonempty class (even if ...
exss 5426 Restricted existence in a ...
opex 5427 An ordered pair of classes...
otex 5428 An ordered triple of class...
elopg 5429 Characterization of the el...
elop 5430 Characterization of the el...
opi1 5431 One of the two elements in...
opi2 5432 One of the two elements of...
opeluu 5433 Each member of an ordered ...
op1stb 5434 Extract the first member o...
brv 5435 Two classes are always in ...
opnz 5436 An ordered pair is nonempt...
opnzi 5437 An ordered pair is nonempt...
opth1 5438 Equality of the first memb...
opth 5439 The ordered pair theorem. ...
opthg 5440 Ordered pair theorem. ` C ...
opth1g 5441 Equality of the first memb...
opthg2 5442 Ordered pair theorem. (Co...
opth2 5443 Ordered pair theorem. (Co...
opthneg 5444 Two ordered pairs are not ...
opthne 5445 Two ordered pairs are not ...
otth2 5446 Ordered triple theorem, wi...
otth 5447 Ordered triple theorem. (...
otthg 5448 Ordered triple theorem, cl...
otthne 5449 Contrapositive of the orde...
eqvinop 5450 A variable introduction la...
sbcop1 5451 The proper substitution of...
sbcop 5452 The proper substitution of...
copsexgw 5453 Version of ~ copsexg with ...
copsexg 5454 Substitution of class ` A ...
copsex2t 5455 Closed theorem form of ~ c...
copsex2g 5456 Implicit substitution infe...
copsex2dv 5457 Implicit substitution dedu...
copsex4g 5458 An implicit substitution i...
0nelop 5459 A property of ordered pair...
opwo0id 5460 An ordered pair is equal t...
opeqex 5461 Equivalence of existence i...
oteqex2 5462 Equivalence of existence i...
oteqex 5463 Equivalence of existence i...
opcom 5464 An ordered pair commutes i...
moop2 5465 "At most one" property of ...
opeqsng 5466 Equivalence for an ordered...
opeqsn 5467 Equivalence for an ordered...
opeqpr 5468 Equivalence for an ordered...
snopeqop 5469 Equivalence for an ordered...
propeqop 5470 Equivalence for an ordered...
propssopi 5471 If a pair of ordered pairs...
snopeqopsnid 5472 Equivalence for an ordered...
mosubopt 5473 "At most one" remains true...
mosubop 5474 "At most one" remains true...
euop2 5475 Transfer existential uniqu...
euotd 5476 Prove existential uniquene...
opthwiener 5477 Justification theorem for ...
uniop 5478 The union of an ordered pa...
uniopel 5479 Ordered pair membership is...
opthhausdorff 5480 Justification theorem for ...
opthhausdorff0 5481 Justification theorem for ...
otsndisj 5482 The singletons consisting ...
otiunsndisj 5483 The union of singletons co...
iunopeqop 5484 Implication of an ordered ...
brsnop 5485 Binary relation for an ord...
brtp 5486 A necessary and sufficient...
opabidw 5487 The law of concretion. Sp...
opabid 5488 The law of concretion. Sp...
elopabw 5489 Membership in a class abst...
elopab 5490 Membership in a class abst...
rexopabb 5491 Restricted existential qua...
vopelopabsb 5492 The law of concretion in t...
opelopabsb 5493 The law of concretion in t...
brabsb 5494 The law of concretion in t...
opelopabt 5495 Closed theorem form of ~ o...
opelopabga 5496 The law of concretion. Th...
brabga 5497 The law of concretion for ...
opelopab2a 5498 Ordered pair membership in...
opelopaba 5499 The law of concretion. Th...
braba 5500 The law of concretion for ...
opelopabg 5501 The law of concretion. Th...
brabg 5502 The law of concretion for ...
opelopabgf 5503 The law of concretion. Th...
opelopab2 5504 Ordered pair membership in...
opelopab 5505 The law of concretion. Th...
brab 5506 The law of concretion for ...
opelopabaf 5507 The law of concretion. Th...
opelopabf 5508 The law of concretion. Th...
ssopab2 5509 Equivalence of ordered pai...
ssopab2bw 5510 Equivalence of ordered pai...
eqopab2bw 5511 Equivalence of ordered pai...
ssopab2b 5512 Equivalence of ordered pai...
ssopab2i 5513 Inference of ordered pair ...
ssopab2dv 5514 Inference of ordered pair ...
eqopab2b 5515 Equivalence of ordered pai...
opabn0 5516 Nonempty ordered pair clas...
opab0 5517 Empty ordered pair class a...
csbopab 5518 Move substitution into a c...
csbopabgALT 5519 Move substitution into a c...
csbmpt12 5520 Move substitution into a m...
csbmpt2 5521 Move substitution into the...
iunopab 5522 Move indexed union inside ...
iunopabOLD 5523 Obsolete version of ~ iuno...
elopabr 5524 Membership in an ordered-p...
elopabran 5525 Membership in an ordered-p...
elopabrOLD 5526 Obsolete version of ~ elop...
rbropapd 5527 Properties of a pair in an...
rbropap 5528 Properties of a pair in a ...
2rbropap 5529 Properties of a pair in a ...
0nelopab 5530 The empty set is never an ...
brabv 5531 If two classes are in a re...
pwin 5532 The power class of the int...
pwssun 5533 The power class of the uni...
pwun 5534 The power class of the uni...
dfid4 5537 The identity function expr...
dfid2 5538 Alternate definition of th...
dfid3 5539 A stronger version of ~ df...
epelg 5542 The membership relation an...
epeli 5543 The membership relation an...
epel 5544 The membership relation an...
0sn0ep 5545 An example for the members...
epn0 5546 The membership relation is...
poss 5551 Subset theorem for the par...
poeq1 5552 Equality theorem for parti...
poeq2 5553 Equality theorem for parti...
poeq12d 5554 Equality deduction for par...
nfpo 5555 Bound-variable hypothesis ...
nfso 5556 Bound-variable hypothesis ...
pocl 5557 Characteristic properties ...
ispod 5558 Sufficient conditions for ...
swopolem 5559 Perform the substitutions ...
swopo 5560 A strict weak order is a p...
poirr 5561 A partial order is irrefle...
potr 5562 A partial order is a trans...
po2nr 5563 A partial order has no 2-c...
po3nr 5564 A partial order has no 3-c...
po2ne 5565 Two sets related by a part...
po0 5566 Any relation is a partial ...
pofun 5567 The inverse image of a par...
sopo 5568 A strict linear order is a...
soss 5569 Subset theorem for the str...
soeq1 5570 Equality theorem for the s...
soeq2 5571 Equality theorem for the s...
soeq12d 5572 Equality deduction for tot...
sonr 5573 A strict order relation is...
sotr 5574 A strict order relation is...
sotrd 5575 Transitivity law for stric...
solin 5576 A strict order relation is...
so2nr 5577 A strict order relation ha...
so3nr 5578 A strict order relation ha...
sotric 5579 A strict order relation sa...
sotrieq 5580 Trichotomy law for strict ...
sotrieq2 5581 Trichotomy law for strict ...
soasym 5582 Asymmetry law for strict o...
sotr2 5583 A transitivity relation. ...
issod 5584 An irreflexive, transitive...
issoi 5585 An irreflexive, transitive...
isso2i 5586 Deduce strict ordering fro...
so0 5587 Any relation is a strict o...
somo 5588 A totally ordered set has ...
sotrine 5589 Trichotomy law for strict ...
sotr3 5590 Transitivity law for stric...
dffr6 5597 Alternate definition of ~ ...
frd 5598 A nonempty subset of an ` ...
fri 5599 A nonempty subset of an ` ...
seex 5600 The ` R ` -preimage of an ...
exse 5601 Any relation on a set is s...
dffr2 5602 Alternate definition of we...
dffr2ALT 5603 Alternate proof of ~ dffr2...
frc 5604 Property of well-founded r...
frss 5605 Subset theorem for the wel...
sess1 5606 Subset theorem for the set...
sess2 5607 Subset theorem for the set...
freq1 5608 Equality theorem for the w...
freq2 5609 Equality theorem for the w...
freq12d 5610 Equality deduction for wel...
seeq1 5611 Equality theorem for the s...
seeq2 5612 Equality theorem for the s...
seeq12d 5613 Equality deduction for the...
nffr 5614 Bound-variable hypothesis ...
nfse 5615 Bound-variable hypothesis ...
nfwe 5616 Bound-variable hypothesis ...
frirr 5617 A well-founded relation is...
fr2nr 5618 A well-founded relation ha...
fr0 5619 Any relation is well-found...
frminex 5620 If an element of a well-fo...
efrirr 5621 A well-founded class does ...
efrn2lp 5622 A well-founded class conta...
epse 5623 The membership relation is...
tz7.2 5624 Similar to Theorem 7.2 of ...
dfepfr 5625 An alternate way of saying...
epfrc 5626 A subset of a well-founded...
wess 5627 Subset theorem for the wel...
weeq1 5628 Equality theorem for the w...
weeq2 5629 Equality theorem for the w...
weeq12d 5630 Equality deduction for wel...
wefr 5631 A well-ordering is well-fo...
weso 5632 A well-ordering is a stric...
wecmpep 5633 The elements of a class we...
wetrep 5634 On a class well-ordered by...
wefrc 5635 A nonempty subclass of a c...
we0 5636 Any relation is a well-ord...
wereu 5637 A nonempty subset of an ` ...
wereu2 5638 A nonempty subclass of an ...
xpeq1 5655 Equality theorem for Carte...
xpss12 5656 Subset theorem for Cartesi...
xpss 5657 A Cartesian product is inc...
inxpssres 5658 Intersection with a Cartes...
relxp 5659 A Cartesian product is a r...
xpss1 5660 Subset relation for Cartes...
xpss2 5661 Subset relation for Cartes...
xpeq2 5662 Equality theorem for Carte...
elxpi 5663 Membership in a Cartesian ...
elxp 5664 Membership in a Cartesian ...
elxp2 5665 Membership in a Cartesian ...
xpeq12 5666 Equality theorem for Carte...
xpeq1i 5667 Equality inference for Car...
xpeq2i 5668 Equality inference for Car...
xpeq12i 5669 Equality inference for Car...
xpeq1d 5670 Equality deduction for Car...
xpeq2d 5671 Equality deduction for Car...
xpeq12d 5672 Equality deduction for Car...
sqxpeqd 5673 Equality deduction for a C...
nfxp 5674 Bound-variable hypothesis ...
0nelxp 5675 The empty set is not a mem...
0nelelxp 5676 A member of a Cartesian pr...
opelxp 5677 Ordered pair membership in...
opelxpi 5678 Ordered pair membership in...
opelxpii 5679 Ordered pair membership in...
opelxpd 5680 Ordered pair membership in...
opelvv 5681 Ordered pair membership in...
opelvvg 5682 Ordered pair membership in...
opelxp1 5683 The first member of an ord...
opelxp2 5684 The second member of an or...
otelxp 5685 Ordered triple membership ...
otelxp1 5686 The first member of an ord...
otel3xp 5687 An ordered triple is an el...
opabssxpd 5688 An ordered-pair class abst...
rabxp 5689 Class abstraction restrict...
brxp 5690 Binary relation on a Carte...
pwvrel 5691 A set is a binary relation...
pwvabrel 5692 The powerclass of the cart...
brrelex12 5693 Two classes related by a b...
brrelex1 5694 If two classes are related...
brrelex2 5695 If two classes are related...
brrelex12i 5696 Two classes that are relat...
brrelex1i 5697 The first argument of a bi...
brrelex2i 5698 The second argument of a b...
nprrel12 5699 Proper classes are not rel...
nprrel 5700 No proper class is related...
0nelrel0 5701 A binary relation does not...
0nelrel 5702 A binary relation does not...
fconstmpt 5703 Representation of a consta...
vtoclr 5704 Variable to class conversi...
opthprc 5705 Justification theorem for ...
brel 5706 Two things in a binary rel...
elxp3 5707 Membership in a Cartesian ...
opeliunxp 5708 Membership in a union of C...
opeliun2xp 5709 Membership of an ordered p...
xpundi 5710 Distributive law for Carte...
xpundir 5711 Distributive law for Carte...
xpiundi 5712 Distributive law for Carte...
xpiundir 5713 Distributive law for Carte...
iunxpconst 5714 Membership in a union of C...
xpun 5715 The Cartesian product of t...
elvv 5716 Membership in universal cl...
elvvv 5717 Membership in universal cl...
elvvuni 5718 An ordered pair contains i...
brinxp2 5719 Intersection of binary rel...
brinxp 5720 Intersection of binary rel...
opelinxp 5721 Ordered pair element in an...
poinxp 5722 Intersection of partial or...
soinxp 5723 Intersection of total orde...
frinxp 5724 Intersection of well-found...
seinxp 5725 Intersection of set-like r...
weinxp 5726 Intersection of well-order...
posn 5727 Partial ordering of a sing...
sosn 5728 Strict ordering on a singl...
frsn 5729 Founded relation on a sing...
wesn 5730 Well-ordering of a singlet...
elopaelxp 5731 Membership in an ordered-p...
elopaelxpOLD 5732 Obsolete version of ~ elop...
bropaex12 5733 Two classes related by an ...
opabssxp 5734 An abstraction relation is...
brab2a 5735 The law of concretion for ...
optocl 5736 Implicit substitution of c...
2optocl 5737 Implicit substitution of c...
3optocl 5738 Implicit substitution of c...
opbrop 5739 Ordered pair membership in...
0xp 5740 The Cartesian product with...
csbxp 5741 Distribute proper substitu...
releq 5742 Equality theorem for the r...
releqi 5743 Equality inference for the...
releqd 5744 Equality deduction for the...
nfrel 5745 Bound-variable hypothesis ...
sbcrel 5746 Distribute proper substitu...
relss 5747 Subclass theorem for relat...
ssrel 5748 A subclass relationship de...
ssrelOLD 5749 Obsolete version of ~ ssre...
eqrel 5750 Extensionality principle f...
ssrel2 5751 A subclass relationship de...
ssrel3 5752 Subclass relation in anoth...
relssi 5753 Inference from subclass pr...
relssdv 5754 Deduction from subclass pr...
eqrelriv 5755 Inference from extensional...
eqrelriiv 5756 Inference from extensional...
eqbrriv 5757 Inference from extensional...
eqrelrdv 5758 Deduce equality of relatio...
eqbrrdv 5759 Deduction from extensional...
eqbrrdiv 5760 Deduction from extensional...
eqrelrdv2 5761 A version of ~ eqrelrdv . ...
ssrelrel 5762 A subclass relationship de...
eqrelrel 5763 Extensionality principle f...
elrel 5764 A member of a relation is ...
rel0 5765 The empty set is a relatio...
nrelv 5766 The universal class is not...
relsng 5767 A singleton is a relation ...
relsnb 5768 An at-most-singleton is a ...
relsnopg 5769 A singleton of an ordered ...
relsn 5770 A singleton is a relation ...
relsnop 5771 A singleton of an ordered ...
copsex2gb 5772 Implicit substitution infe...
copsex2ga 5773 Implicit substitution infe...
elopaba 5774 Membership in an ordered-p...
xpsspw 5775 A Cartesian product is inc...
unixpss 5776 The double class union of ...
relun 5777 The union of two relations...
relin1 5778 The intersection with a re...
relin2 5779 The intersection with a re...
relinxp 5780 Intersection with a Cartes...
reldif 5781 A difference cutting down ...
reliun 5782 An indexed union is a rela...
reliin 5783 An indexed intersection is...
reluni 5784 The union of a class is a ...
relint 5785 The intersection of a clas...
relopabiv 5786 A class of ordered pairs i...
relopabv 5787 A class of ordered pairs i...
relopabi 5788 A class of ordered pairs i...
relopabiALT 5789 Alternate proof of ~ relop...
relopab 5790 A class of ordered pairs i...
mptrel 5791 The maps-to notation alway...
reli 5792 The identity relation is a...
rele 5793 The membership relation is...
opabid2 5794 A relation expressed as an...
inopab 5795 Intersection of two ordere...
difopab 5796 Difference of two ordered-...
difopabOLD 5797 Obsolete version of ~ difo...
inxp 5798 Intersection of two Cartes...
inxpOLD 5799 Obsolete version of ~ inxp...
xpindi 5800 Distributive law for Carte...
xpindir 5801 Distributive law for Carte...
xpiindi 5802 Distributive law for Carte...
xpriindi 5803 Distributive law for Carte...
eliunxp 5804 Membership in a union of C...
opeliunxp2 5805 Membership in a union of C...
raliunxp 5806 Write a double restricted ...
rexiunxp 5807 Write a double restricted ...
ralxp 5808 Universal quantification r...
rexxp 5809 Existential quantification...
exopxfr 5810 Transfer ordered-pair exis...
exopxfr2 5811 Transfer ordered-pair exis...
djussxp 5812 Disjoint union is a subset...
ralxpf 5813 Version of ~ ralxp with bo...
rexxpf 5814 Version of ~ rexxp with bo...
iunxpf 5815 Indexed union on a Cartesi...
opabbi2dv 5816 Deduce equality of a relat...
relop 5817 A necessary and sufficient...
ideqg 5818 For sets, the identity rel...
ideq 5819 For sets, the identity rel...
ididg 5820 A set is identical to itse...
issetid 5821 Two ways of expressing set...
coss1 5822 Subclass theorem for compo...
coss2 5823 Subclass theorem for compo...
coeq1 5824 Equality theorem for compo...
coeq2 5825 Equality theorem for compo...
coeq1i 5826 Equality inference for com...
coeq2i 5827 Equality inference for com...
coeq1d 5828 Equality deduction for com...
coeq2d 5829 Equality deduction for com...
coeq12i 5830 Equality inference for com...
coeq12d 5831 Equality deduction for com...
nfco 5832 Bound-variable hypothesis ...
brcog 5833 Ordered pair membership in...
opelco2g 5834 Ordered pair membership in...
brcogw 5835 Ordered pair membership in...
eqbrrdva 5836 Deduction from extensional...
brco 5837 Binary relation on a compo...
opelco 5838 Ordered pair membership in...
cnvss 5839 Subset theorem for convers...
cnveq 5840 Equality theorem for conve...
cnveqi 5841 Equality inference for con...
cnveqd 5842 Equality deduction for con...
elcnv 5843 Membership in a converse r...
elcnv2 5844 Membership in a converse r...
nfcnv 5845 Bound-variable hypothesis ...
brcnvg 5846 The converse of a binary r...
opelcnvg 5847 Ordered-pair membership in...
opelcnv 5848 Ordered-pair membership in...
brcnv 5849 The converse of a binary r...
csbcnv 5850 Move class substitution in...
csbcnvgALT 5851 Move class substitution in...
cnvco 5852 Distributive law of conver...
cnvuni 5853 The converse of a class un...
dfdm3 5854 Alternate definition of do...
dfrn2 5855 Alternate definition of ra...
dfrn3 5856 Alternate definition of ra...
elrn2g 5857 Membership in a range. (C...
elrng 5858 Membership in a range. (C...
elrn2 5859 Membership in a range. (C...
elrn 5860 Membership in a range. (C...
ssrelrn 5861 If a relation is a subset ...
dfdm4 5862 Alternate definition of do...
dfdmf 5863 Definition of domain, usin...
csbdm 5864 Distribute proper substitu...
eldmg 5865 Domain membership. Theore...
eldm2g 5866 Domain membership. Theore...
eldm 5867 Membership in a domain. T...
eldm2 5868 Membership in a domain. T...
dmss 5869 Subset theorem for domain....
dmeq 5870 Equality theorem for domai...
dmeqi 5871 Equality inference for dom...
dmeqd 5872 Equality deduction for dom...
opeldmd 5873 Membership of first of an ...
opeldm 5874 Membership of first of an ...
breldm 5875 Membership of first of a b...
breldmg 5876 Membership of first of a b...
dmun 5877 The domain of a union is t...
dmin 5878 The domain of an intersect...
breldmd 5879 Membership of first of a b...
dmiun 5880 The domain of an indexed u...
dmuni 5881 The domain of a union. Pa...
dmopab 5882 The domain of a class of o...
dmopabelb 5883 A set is an element of the...
dmopab2rex 5884 The domain of an ordered p...
dmopabss 5885 Upper bound for the domain...
dmopab3 5886 The domain of a restricted...
dm0 5887 The domain of the empty se...
dmi 5888 The domain of the identity...
dmv 5889 The domain of the universe...
dmep 5890 The domain of the membersh...
dm0rn0 5891 An empty domain is equival...
rn0 5892 The range of the empty set...
rnep 5893 The range of the membershi...
reldm0 5894 A relation is empty iff it...
dmxp 5895 The domain of a Cartesian ...
dmxpOLD 5896 Obsolete version of ~ dmxp...
dmxpid 5897 The domain of a Cartesian ...
dmxpin 5898 The domain of the intersec...
xpid11 5899 The Cartesian square is a ...
dmcnvcnv 5900 The domain of the double c...
rncnvcnv 5901 The range of the double co...
elreldm 5902 The first member of an ord...
rneq 5903 Equality theorem for range...
rneqi 5904 Equality inference for ran...
rneqd 5905 Equality deduction for ran...
rnss 5906 Subset theorem for range. ...
rnssi 5907 Subclass inference for ran...
brelrng 5908 The second argument of a b...
brelrn 5909 The second argument of a b...
opelrn 5910 Membership of second membe...
releldm 5911 The first argument of a bi...
relelrn 5912 The second argument of a b...
releldmb 5913 Membership in a domain. (...
relelrnb 5914 Membership in a range. (C...
releldmi 5915 The first argument of a bi...
relelrni 5916 The second argument of a b...
dfrnf 5917 Definition of range, using...
nfdm 5918 Bound-variable hypothesis ...
nfrn 5919 Bound-variable hypothesis ...
dmiin 5920 Domain of an intersection....
rnopab 5921 The range of a class of or...
rnopabss 5922 Upper bound for the range ...
rnopab3 5923 The range of a restricted ...
rnmpt 5924 The range of a function in...
elrnmpt 5925 The range of a function in...
elrnmpt1s 5926 Elementhood in an image se...
elrnmpt1 5927 Elementhood in an image se...
elrnmptg 5928 Membership in the range of...
elrnmpti 5929 Membership in the range of...
elrnmptd 5930 The range of a function in...
elrnmpt1d 5931 Elementhood in an image se...
elrnmptdv 5932 Elementhood in the range o...
elrnmpt2d 5933 Elementhood in the range o...
dfiun3g 5934 Alternate definition of in...
dfiin3g 5935 Alternate definition of in...
dfiun3 5936 Alternate definition of in...
dfiin3 5937 Alternate definition of in...
riinint 5938 Express a relative indexed...
relrn0 5939 A relation is empty iff it...
dmrnssfld 5940 The domain and range of a ...
dmcoss 5941 Domain of a composition. ...
rncoss 5942 Range of a composition. (...
dmcosseq 5943 Domain of a composition. ...
dmcosseqOLD 5944 Obsolete version of ~ dmco...
dmcoeq 5945 Domain of a composition. ...
rncoeq 5946 Range of a composition. (...
reseq1 5947 Equality theorem for restr...
reseq2 5948 Equality theorem for restr...
reseq1i 5949 Equality inference for res...
reseq2i 5950 Equality inference for res...
reseq12i 5951 Equality inference for res...
reseq1d 5952 Equality deduction for res...
reseq2d 5953 Equality deduction for res...
reseq12d 5954 Equality deduction for res...
nfres 5955 Bound-variable hypothesis ...
csbres 5956 Distribute proper substitu...
res0 5957 A restriction to the empty...
dfres3 5958 Alternate definition of re...
opelres 5959 Ordered pair elementhood i...
brres 5960 Binary relation on a restr...
opelresi 5961 Ordered pair membership in...
brresi 5962 Binary relation on a restr...
opres 5963 Ordered pair membership in...
resieq 5964 A restricted identity rela...
opelidres 5965 ` <. A , A >. ` belongs to...
resres 5966 The restriction of a restr...
resundi 5967 Distributive law for restr...
resundir 5968 Distributive law for restr...
resindi 5969 Class restriction distribu...
resindir 5970 Class restriction distribu...
inres 5971 Move intersection into cla...
resdifcom 5972 Commutative law for restri...
resiun1 5973 Distribution of restrictio...
resiun2 5974 Distribution of restrictio...
resss 5975 A class includes its restr...
rescom 5976 Commutative law for restri...
ssres 5977 Subclass theorem for restr...
ssres2 5978 Subclass theorem for restr...
relres 5979 A restriction is a relatio...
resabs1 5980 Absorption law for restric...
resabs1i 5981 Absorption law for restric...
resabs1d 5982 Absorption law for restric...
resabs2 5983 Absorption law for restric...
residm 5984 Idempotent law for restric...
dmresss 5985 The domain of a restrictio...
dmres 5986 The domain of a restrictio...
ssdmres 5987 A domain restricted to a s...
dmresexg 5988 The domain of a restrictio...
resima 5989 A restriction to an image....
resima2 5990 Image under a restricted c...
rnresss 5991 The range of a restriction...
xpssres 5992 Restriction of a constant ...
elinxp 5993 Membership in an intersect...
elres 5994 Membership in a restrictio...
elsnres 5995 Membership in restriction ...
relssres 5996 Simplification law for res...
dmressnsn 5997 The domain of a restrictio...
eldmressnsn 5998 The element of the domain ...
eldmeldmressn 5999 An element of the domain (...
resdm 6000 A relation restricted to i...
resexg 6001 The restriction of a set i...
resexd 6002 The restriction of a set i...
resex 6003 The restriction of a set i...
resindm 6004 When restricting a relatio...
resdmdfsn 6005 Restricting a relation to ...
reldisjun 6006 Split a relation into two ...
relresdm1 6007 Restriction of a disjoint ...
resopab 6008 Restriction of a class abs...
iss 6009 A subclass of the identity...
resopab2 6010 Restriction of a class abs...
resmpt 6011 Restriction of the mapping...
resmpt3 6012 Unconditional restriction ...
resmptf 6013 Restriction of the mapping...
resmptd 6014 Restriction of the mapping...
dfres2 6015 Alternate definition of th...
mptss 6016 Sufficient condition for i...
elimampt 6017 Membership in the image of...
elidinxp 6018 Characterization of the el...
elidinxpid 6019 Characterization of the el...
elrid 6020 Characterization of the el...
idinxpres 6021 The intersection of the id...
idinxpresid 6022 The intersection of the id...
idssxp 6023 A diagonal set as a subset...
opabresid 6024 The restricted identity re...
mptresid 6025 The restricted identity re...
dmresi 6026 The domain of a restricted...
restidsing 6027 Restriction of the identit...
iresn0n0 6028 The identity function rest...
imaeq1 6029 Equality theorem for image...
imaeq2 6030 Equality theorem for image...
imaeq1i 6031 Equality theorem for image...
imaeq2i 6032 Equality theorem for image...
imaeq1d 6033 Equality theorem for image...
imaeq2d 6034 Equality theorem for image...
imaeq12d 6035 Equality theorem for image...
dfima2 6036 Alternate definition of im...
dfima3 6037 Alternate definition of im...
elimag 6038 Membership in an image. T...
elima 6039 Membership in an image. T...
elima2 6040 Membership in an image. T...
elima3 6041 Membership in an image. T...
nfima 6042 Bound-variable hypothesis ...
nfimad 6043 Deduction version of bound...
imadmrn 6044 The image of the domain of...
imassrn 6045 The image of a class is a ...
mptima 6046 Image of a function in map...
mptimass 6047 Image of a function in map...
imai 6048 Image under the identity r...
rnresi 6049 The range of the restricte...
resiima 6050 The image of a restriction...
ima0 6051 Image of the empty set. T...
0ima 6052 Image under the empty rela...
csbima12 6053 Move class substitution in...
imadisj 6054 A class whose image under ...
imadisjlnd 6055 Deduction form of one nega...
cnvimass 6056 A preimage under any class...
cnvimarndm 6057 The preimage of the range ...
imasng 6058 The image of a singleton. ...
relimasn 6059 The image of a singleton. ...
elrelimasn 6060 Elementhood in the image o...
elimasng1 6061 Membership in an image of ...
elimasn1 6062 Membership in an image of ...
elimasng 6063 Membership in an image of ...
elimasn 6064 Membership in an image of ...
elimasni 6065 Membership in an image of ...
args 6066 Two ways to express the cl...
elinisegg 6067 Membership in the inverse ...
eliniseg 6068 Membership in the inverse ...
epin 6069 Any set is equal to its pr...
epini 6070 Any set is equal to its pr...
iniseg 6071 An idiom that signifies an...
inisegn0 6072 Nonemptiness of an initial...
dffr3 6073 Alternate definition of we...
dfse2 6074 Alternate definition of se...
imass1 6075 Subset theorem for image. ...
imass2 6076 Subset theorem for image. ...
ndmima 6077 The image of a singleton o...
relcnv 6078 A converse is a relation. ...
relbrcnvg 6079 When ` R ` is a relation, ...
eliniseg2 6080 Eliminate the class existe...
relbrcnv 6081 When ` R ` is a relation, ...
relco 6082 A composition is a relatio...
cotrg 6083 Two ways of saying that th...
cotrgOLD 6084 Obsolete version of ~ cotr...
cotrgOLDOLD 6085 Obsolete version of ~ cotr...
cotr 6086 Two ways of saying a relat...
idrefALT 6087 Alternate proof of ~ idref...
cnvsym 6088 Two ways of saying a relat...
cnvsymOLD 6089 Obsolete version of ~ cnvs...
cnvsymOLDOLD 6090 Obsolete version of ~ cnvs...
intasym 6091 Two ways of saying a relat...
asymref 6092 Two ways of saying a relat...
asymref2 6093 Two ways of saying a relat...
intirr 6094 Two ways of saying a relat...
brcodir 6095 Two ways of saying that tw...
codir 6096 Two ways of saying a relat...
qfto 6097 A quantifier-free way of e...
xpidtr 6098 A Cartesian square is a tr...
trin2 6099 The intersection of two tr...
poirr2 6100 A partial order is irrefle...
trinxp 6101 The relation induced by a ...
soirri 6102 A strict order relation is...
sotri 6103 A strict order relation is...
son2lpi 6104 A strict order relation ha...
sotri2 6105 A transitivity relation. ...
sotri3 6106 A transitivity relation. ...
poleloe 6107 Express "less than or equa...
poltletr 6108 Transitive law for general...
somin1 6109 Property of a minimum in a...
somincom 6110 Commutativity of minimum i...
somin2 6111 Property of a minimum in a...
soltmin 6112 Being less than a minimum,...
cnvopab 6113 The converse of a class ab...
cnvopabOLD 6114 Obsolete version of ~ cnvo...
mptcnv 6115 The converse of a mapping ...
cnv0 6116 The converse of the empty ...
cnvi 6117 The converse of the identi...
cnvun 6118 The converse of a union is...
cnvdif 6119 Distributive law for conve...
cnvin 6120 Distributive law for conve...
rnun 6121 Distributive law for range...
rnin 6122 The range of an intersecti...
rniun 6123 The range of an indexed un...
rnuni 6124 The range of a union. Par...
imaundi 6125 Distributive law for image...
imaundir 6126 The image of a union. (Co...
imadifssran 6127 Condition for the range of...
cnvimassrndm 6128 The preimage of a superset...
dminss 6129 An upper bound for interse...
imainss 6130 An upper bound for interse...
inimass 6131 The image of an intersecti...
inimasn 6132 The intersection of the im...
cnvxp 6133 The converse of a Cartesia...
xp0 6134 The Cartesian product with...
xpnz 6135 The Cartesian product of n...
xpeq0 6136 At least one member of an ...
xpdisj1 6137 Cartesian products with di...
xpdisj2 6138 Cartesian products with di...
xpsndisj 6139 Cartesian products with tw...
difxp 6140 Difference of Cartesian pr...
difxp1 6141 Difference law for Cartesi...
difxp2 6142 Difference law for Cartesi...
djudisj 6143 Disjoint unions with disjo...
xpdifid 6144 The set of distinct couple...
resdisj 6145 A double restriction to di...
rnxp 6146 The range of a Cartesian p...
dmxpss 6147 The domain of a Cartesian ...
rnxpss 6148 The range of a Cartesian p...
rnxpid 6149 The range of a Cartesian s...
ssxpb 6150 A Cartesian product subcla...
xp11 6151 The Cartesian product of n...
xpcan 6152 Cancellation law for Carte...
xpcan2 6153 Cancellation law for Carte...
ssrnres 6154 Two ways to express surjec...
rninxp 6155 Two ways to express surjec...
dminxp 6156 Two ways to express totali...
imainrect 6157 Image by a restricted and ...
xpima 6158 Direct image by a Cartesia...
xpima1 6159 Direct image by a Cartesia...
xpima2 6160 Direct image by a Cartesia...
xpimasn 6161 Direct image of a singleto...
sossfld 6162 The base set of a strict o...
sofld 6163 The base set of a nonempty...
cnvcnv3 6164 The set of all ordered pai...
dfrel2 6165 Alternate definition of re...
dfrel4v 6166 A relation can be expresse...
dfrel4 6167 A relation can be expresse...
cnvcnv 6168 The double converse of a c...
cnvcnv2 6169 The double converse of a c...
cnvcnvss 6170 The double converse of a c...
cnvrescnv 6171 Two ways to express the co...
cnveqb 6172 Equality theorem for conve...
cnveq0 6173 A relation empty iff its c...
dfrel3 6174 Alternate definition of re...
elid 6175 Characterization of the el...
dmresv 6176 The domain of a universal ...
rnresv 6177 The range of a universal r...
dfrn4 6178 Range defined in terms of ...
csbrn 6179 Distribute proper substitu...
rescnvcnv 6180 The restriction of the dou...
cnvcnvres 6181 The double converse of the...
imacnvcnv 6182 The image of the double co...
dmsnn0 6183 The domain of a singleton ...
rnsnn0 6184 The range of a singleton i...
dmsn0 6185 The domain of the singleto...
cnvsn0 6186 The converse of the single...
dmsn0el 6187 The domain of a singleton ...
relsn2 6188 A singleton is a relation ...
dmsnopg 6189 The domain of a singleton ...
dmsnopss 6190 The domain of a singleton ...
dmpropg 6191 The domain of an unordered...
dmsnop 6192 The domain of a singleton ...
dmprop 6193 The domain of an unordered...
dmtpop 6194 The domain of an unordered...
cnvcnvsn 6195 Double converse of a singl...
dmsnsnsn 6196 The domain of the singleto...
rnsnopg 6197 The range of a singleton o...
rnpropg 6198 The range of a pair of ord...
cnvsng 6199 Converse of a singleton of...
rnsnop 6200 The range of a singleton o...
op1sta 6201 Extract the first member o...
cnvsn 6202 Converse of a singleton of...
op2ndb 6203 Extract the second member ...
op2nda 6204 Extract the second member ...
opswap 6205 Swap the members of an ord...
cnvresima 6206 An image under the convers...
resdm2 6207 A class restricted to its ...
resdmres 6208 Restriction to the domain ...
resresdm 6209 A restriction by an arbitr...
imadmres 6210 The image of the domain of...
resdmss 6211 Subset relationship for th...
resdifdi 6212 Distributive law for restr...
resdifdir 6213 Distributive law for restr...
mptpreima 6214 The preimage of a function...
mptiniseg 6215 Converse singleton image o...
dmmpt 6216 The domain of the mapping ...
dmmptss 6217 The domain of a mapping is...
dmmptg 6218 The domain of the mapping ...
rnmpt0f 6219 The range of a function in...
rnmptn0 6220 The range of a function in...
dfco2 6221 Alternate definition of a ...
dfco2a 6222 Generalization of ~ dfco2 ...
coundi 6223 Class composition distribu...
coundir 6224 Class composition distribu...
cores 6225 Restricted first member of...
resco 6226 Associative law for the re...
imaco 6227 Image of the composition o...
rnco 6228 The range of the compositi...
rnco2 6229 The range of the compositi...
dmco 6230 The domain of a compositio...
coeq0 6231 A composition of two relat...
coiun 6232 Composition with an indexe...
cocnvcnv1 6233 A composition is not affec...
cocnvcnv2 6234 A composition is not affec...
cores2 6235 Absorption of a reverse (p...
co02 6236 Composition with the empty...
co01 6237 Composition with the empty...
coi1 6238 Composition with the ident...
coi2 6239 Composition with the ident...
coires1 6240 Composition with a restric...
coass 6241 Associative law for class ...
relcnvtrg 6242 General form of ~ relcnvtr...
relcnvtr 6243 A relation is transitive i...
relssdmrn 6244 A relation is included in ...
relssdmrnOLD 6245 Obsolete version of ~ rels...
resssxp 6246 If the ` R ` -image of a c...
cnvssrndm 6247 The converse is a subset o...
cossxp 6248 Composition as a subset of...
relrelss 6249 Two ways to describe the s...
unielrel 6250 The membership relation fo...
relfld 6251 The double union of a rela...
relresfld 6252 Restriction of a relation ...
relcoi2 6253 Composition with the ident...
relcoi1 6254 Composition with the ident...
unidmrn 6255 The double union of the co...
relcnvfld 6256 if ` R ` is a relation, it...
dfdm2 6257 Alternate definition of do...
unixp 6258 The double class union of ...
unixp0 6259 A Cartesian product is emp...
unixpid 6260 Field of a Cartesian squar...
ressn 6261 Restriction of a class to ...
cnviin 6262 The converse of an interse...
cnvpo 6263 The converse of a partial ...
cnvso 6264 The converse of a strict o...
xpco 6265 Composition of two Cartesi...
xpcoid 6266 Composition of two Cartesi...
elsnxp 6267 Membership in a Cartesian ...
reu3op 6268 There is a unique ordered ...
reuop 6269 There is a unique ordered ...
opreu2reurex 6270 There is a unique ordered ...
opreu2reu 6271 If there is a unique order...
dfpo2 6272 Quantifier-free definition...
csbcog 6273 Distribute proper substitu...
snres0 6274 Condition for restriction ...
imaindm 6275 The image is unaffected by...
predeq123 6278 Equality theorem for the p...
predeq1 6279 Equality theorem for the p...
predeq2 6280 Equality theorem for the p...
predeq3 6281 Equality theorem for the p...
nfpred 6282 Bound-variable hypothesis ...
csbpredg 6283 Move class substitution in...
predpredss 6284 If ` A ` is a subset of ` ...
predss 6285 The predecessor class of `...
sspred 6286 Another subset/predecessor...
dfpred2 6287 An alternate definition of...
dfpred3 6288 An alternate definition of...
dfpred3g 6289 An alternate definition of...
elpredgg 6290 Membership in a predecesso...
elpredg 6291 Membership in a predecesso...
elpredimg 6292 Membership in a predecesso...
elpredim 6293 Membership in a predecesso...
elpred 6294 Membership in a predecesso...
predexg 6295 The predecessor class exis...
dffr4 6296 Alternate definition of we...
predel 6297 Membership in the predeces...
predtrss 6298 If ` R ` is transitive ove...
predpo 6299 Property of the predecesso...
predso 6300 Property of the predecesso...
setlikespec 6301 If ` R ` is set-like in ` ...
predidm 6302 Idempotent law for the pre...
predin 6303 Intersection law for prede...
predun 6304 Union law for predecessor ...
preddif 6305 Difference law for predece...
predep 6306 The predecessor under the ...
trpred 6307 The class of predecessors ...
preddowncl 6308 A property of classes that...
predpoirr 6309 Given a partial ordering, ...
predfrirr 6310 Given a well-founded relat...
pred0 6311 The predecessor class over...
dfse3 6312 Alternate definition of se...
predrelss 6313 Subset carries from relati...
predprc 6314 The predecessor of a prope...
predres 6315 Predecessor class is unaff...
frpomin 6316 Every nonempty (possibly p...
frpomin2 6317 Every nonempty (possibly p...
frpoind 6318 The principle of well-foun...
frpoinsg 6319 Well-Founded Induction Sch...
frpoins2fg 6320 Well-Founded Induction sch...
frpoins2g 6321 Well-Founded Induction sch...
frpoins3g 6322 Well-Founded Induction sch...
tz6.26 6323 All nonempty subclasses of...
tz6.26i 6324 All nonempty subclasses of...
wfi 6325 The Principle of Well-Orde...
wfii 6326 The Principle of Well-Orde...
wfisg 6327 Well-Ordered Induction Sch...
wfis 6328 Well-Ordered Induction Sch...
wfis2fg 6329 Well-Ordered Induction Sch...
wfis2f 6330 Well-Ordered Induction sch...
wfis2g 6331 Well-Ordered Induction Sch...
wfis2 6332 Well-Ordered Induction sch...
wfis3 6333 Well-Ordered Induction sch...
ordeq 6342 Equality theorem for the o...
elong 6343 An ordinal number is an or...
elon 6344 An ordinal number is an or...
eloni 6345 An ordinal number has the ...
elon2 6346 An ordinal number is an or...
limeq 6347 Equality theorem for the l...
ordwe 6348 Membership well-orders eve...
ordtr 6349 An ordinal class is transi...
ordfr 6350 Membership is well-founded...
ordelss 6351 An element of an ordinal c...
trssord 6352 A transitive subclass of a...
ordirr 6353 No ordinal class is a memb...
nordeq 6354 A member of an ordinal cla...
ordn2lp 6355 An ordinal class cannot be...
tz7.5 6356 A nonempty subclass of an ...
ordelord 6357 An element of an ordinal c...
tron 6358 The class of all ordinal n...
ordelon 6359 An element of an ordinal c...
onelon 6360 An element of an ordinal n...
tz7.7 6361 A transitive class belongs...
ordelssne 6362 For ordinal classes, membe...
ordelpss 6363 For ordinal classes, membe...
ordsseleq 6364 For ordinal classes, inclu...
ordin 6365 The intersection of two or...
onin 6366 The intersection of two or...
ordtri3or 6367 A trichotomy law for ordin...
ordtri1 6368 A trichotomy law for ordin...
ontri1 6369 A trichotomy law for ordin...
ordtri2 6370 A trichotomy law for ordin...
ordtri3 6371 A trichotomy law for ordin...
ordtri4 6372 A trichotomy law for ordin...
orddisj 6373 An ordinal class and its s...
onfr 6374 The ordinal class is well-...
onelpss 6375 Relationship between membe...
onsseleq 6376 Relationship between subse...
onelss 6377 An element of an ordinal n...
oneltri 6378 The elementhood relation o...
ordtr1 6379 Transitive law for ordinal...
ordtr2 6380 Transitive law for ordinal...
ordtr3 6381 Transitive law for ordinal...
ontr1 6382 Transitive law for ordinal...
ontr2 6383 Transitive law for ordinal...
onelssex 6384 Ordinal less than is equiv...
ordunidif 6385 The union of an ordinal st...
ordintdif 6386 If ` B ` is smaller than `...
onintss 6387 If a property is true for ...
oneqmini 6388 A way to show that an ordi...
ord0 6389 The empty set is an ordina...
0elon 6390 The empty set is an ordina...
ord0eln0 6391 A nonempty ordinal contain...
on0eln0 6392 An ordinal number contains...
dflim2 6393 An alternate definition of...
inton 6394 The intersection of the cl...
nlim0 6395 The empty set is not a lim...
limord 6396 A limit ordinal is ordinal...
limuni 6397 A limit ordinal is its own...
limuni2 6398 The union of a limit ordin...
0ellim 6399 A limit ordinal contains t...
limelon 6400 A limit ordinal class that...
onn0 6401 The class of all ordinal n...
suceqd 6402 Deduction associated with ...
suceq 6403 Equality of successors. (...
elsuci 6404 Membership in a successor....
elsucg 6405 Membership in a successor....
elsuc2g 6406 Variant of membership in a...
elsuc 6407 Membership in a successor....
elsuc2 6408 Membership in a successor....
nfsuc 6409 Bound-variable hypothesis ...
elelsuc 6410 Membership in a successor....
sucel 6411 Membership of a successor ...
suc0 6412 The successor of the empty...
sucprc 6413 A proper class is its own ...
unisucs 6414 The union of the successor...
unisucg 6415 A transitive class is equa...
unisuc 6416 A transitive class is equa...
sssucid 6417 A class is included in its...
sucidg 6418 Part of Proposition 7.23 o...
sucid 6419 A set belongs to its succe...
nsuceq0 6420 No successor is empty. (C...
eqelsuc 6421 A set belongs to the succe...
iunsuc 6422 Inductive definition for t...
suctr 6423 The successor of a transit...
trsuc 6424 A set whose successor belo...
trsucss 6425 A member of the successor ...
ordsssuc 6426 An ordinal is a subset of ...
onsssuc 6427 A subset of an ordinal num...
ordsssuc2 6428 An ordinal subset of an or...
onmindif 6429 When its successor is subt...
ordnbtwn 6430 There is no set between an...
onnbtwn 6431 There is no set between an...
sucssel 6432 A set whose successor is a...
orddif 6433 Ordinal derived from its s...
orduniss 6434 An ordinal class includes ...
ordtri2or 6435 A trichotomy law for ordin...
ordtri2or2 6436 A trichotomy law for ordin...
ordtri2or3 6437 A consequence of total ord...
ordelinel 6438 The intersection of two or...
ordssun 6439 Property of a subclass of ...
ordequn 6440 The maximum (i.e. union) o...
ordun 6441 The maximum (i.e., union) ...
onunel 6442 The union of two ordinals ...
ordunisssuc 6443 A subclass relationship fo...
suc11 6444 The successor operation be...
onun2 6445 The union of two ordinals ...
ontr 6446 An ordinal number is a tra...
onunisuc 6447 An ordinal number is equal...
onordi 6448 An ordinal number is an or...
ontrciOLD 6449 Obsolete version of ~ ontr...
onirri 6450 An ordinal number is not a...
oneli 6451 A member of an ordinal num...
onelssi 6452 A member of an ordinal num...
onssneli 6453 An ordering law for ordina...
onssnel2i 6454 An ordering law for ordina...
onelini 6455 An element of an ordinal n...
oneluni 6456 An ordinal number equals i...
onunisuci 6457 An ordinal number is equal...
onsseli 6458 Subset is equivalent to me...
onun2i 6459 The union of two ordinal n...
unizlim 6460 An ordinal equal to its ow...
on0eqel 6461 An ordinal number either e...
snsn0non 6462 The singleton of the singl...
onxpdisj 6463 Ordinal numbers and ordere...
onnev 6464 The class of ordinal numbe...
iotajust 6466 Soundness justification th...
dfiota2 6468 Alternate definition for d...
nfiota1 6469 Bound-variable hypothesis ...
nfiotadw 6470 Deduction version of ~ nfi...
nfiotaw 6471 Bound-variable hypothesis ...
nfiotad 6472 Deduction version of ~ nfi...
nfiota 6473 Bound-variable hypothesis ...
cbviotaw 6474 Change bound variables in ...
cbviotavw 6475 Change bound variables in ...
cbviota 6476 Change bound variables in ...
cbviotav 6477 Change bound variables in ...
sb8iota 6478 Variable substitution in d...
iotaeq 6479 Equality theorem for descr...
iotabi 6480 Equivalence theorem for de...
uniabio 6481 Part of Theorem 8.17 in [Q...
iotaval2 6482 Version of ~ iotaval using...
iotauni2 6483 Version of ~ iotauni using...
iotanul2 6484 Version of ~ iotanul using...
iotaval 6485 Theorem 8.19 in [Quine] p....
iotassuni 6486 The ` iota ` class is a su...
iotaex 6487 Theorem 8.23 in [Quine] p....
iotavalOLD 6488 Obsolete version of ~ iota...
iotauni 6489 Equivalence between two di...
iotaint 6490 Equivalence between two di...
iota1 6491 Property of iota. (Contri...
iotanul 6492 Theorem 8.22 in [Quine] p....
iotassuniOLD 6493 Obsolete version of ~ iota...
iotaexOLD 6494 Obsolete version of ~ iota...
iota4 6495 Theorem *14.22 in [Whitehe...
iota4an 6496 Theorem *14.23 in [Whitehe...
iota5 6497 A method for computing iot...
iotabidv 6498 Formula-building deduction...
iotabii 6499 Formula-building deduction...
iotacl 6500 Membership law for descrip...
iota2df 6501 A condition that allows to...
iota2d 6502 A condition that allows to...
iota2 6503 The unique element such th...
iotan0 6504 Representation of "the uni...
sniota 6505 A class abstraction with a...
dfiota4 6506 The ` iota ` operation usi...
csbiota 6507 Class substitution within ...
dffun2 6524 Alternate definition of a ...
dffun2OLD 6525 Obsolete version of ~ dffu...
dffun2OLDOLD 6526 Obsolete version of ~ dffu...
dffun6 6527 Alternate definition of a ...
dffun3 6528 Alternate definition of fu...
dffun3OLD 6529 Obsolete version of ~ dffu...
dffun4 6530 Alternate definition of a ...
dffun5 6531 Alternate definition of fu...
dffun6f 6532 Definition of function, us...
dffun6OLD 6533 Obsolete version of ~ dffu...
funmo 6534 A function has at most one...
funmoOLD 6535 Obsolete version of ~ funm...
funrel 6536 A function is a relation. ...
0nelfun 6537 A function does not contai...
funss 6538 Subclass theorem for funct...
funeq 6539 Equality theorem for funct...
funeqi 6540 Equality inference for the...
funeqd 6541 Equality deduction for the...
nffun 6542 Bound-variable hypothesis ...
sbcfung 6543 Distribute proper substitu...
funeu 6544 There is exactly one value...
funeu2 6545 There is exactly one value...
dffun7 6546 Alternate definition of a ...
dffun8 6547 Alternate definition of a ...
dffun9 6548 Alternate definition of a ...
funfn 6549 A class is a function if a...
funfnd 6550 A function is a function o...
funi 6551 The identity relation is a...
nfunv 6552 The universal class is not...
funopg 6553 A Kuratowski ordered pair ...
funopab 6554 A class of ordered pairs i...
funopabeq 6555 A class of ordered pairs o...
funopab4 6556 A class of ordered pairs o...
funmpt 6557 A function in maps-to nota...
funmpt2 6558 Functionality of a class g...
funco 6559 The composition of two fun...
funresfunco 6560 Composition of two functio...
funres 6561 A restriction of a functio...
funresd 6562 A restriction of a functio...
funssres 6563 The restriction of a funct...
fun2ssres 6564 Equality of restrictions o...
funun 6565 The union of functions wit...
fununmo 6566 If the union of classes is...
fununfun 6567 If the union of classes is...
fundif 6568 A function with removed el...
funcnvsn 6569 The converse singleton of ...
funsng 6570 A singleton of an ordered ...
fnsng 6571 Functionality and domain o...
funsn 6572 A singleton of an ordered ...
funprg 6573 A set of two pairs is a fu...
funtpg 6574 A set of three pairs is a ...
funpr 6575 A function with a domain o...
funtp 6576 A function with a domain o...
fnsn 6577 Functionality and domain o...
fnprg 6578 Function with a domain of ...
fntpg 6579 Function with a domain of ...
fntp 6580 A function with a domain o...
funcnvpr 6581 The converse pair of order...
funcnvtp 6582 The converse triple of ord...
funcnvqp 6583 The converse quadruple of ...
fun0 6584 The empty set is a functio...
funcnv0 6585 The converse of the empty ...
funcnvcnv 6586 The double converse of a f...
funcnv2 6587 A simpler equivalence for ...
funcnv 6588 The converse of a class is...
funcnv3 6589 A condition showing a clas...
fun2cnv 6590 The double converse of a c...
svrelfun 6591 A single-valued relation i...
fncnv 6592 Single-rootedness (see ~ f...
fun11 6593 Two ways of stating that `...
fununi 6594 The union of a chain (with...
funin 6595 The intersection with a fu...
funres11 6596 The restriction of a one-t...
funcnvres 6597 The converse of a restrict...
cnvresid 6598 Converse of a restricted i...
funcnvres2 6599 The converse of a restrict...
funimacnv 6600 The image of the preimage ...
funimass1 6601 A kind of contraposition l...
funimass2 6602 A kind of contraposition l...
imadif 6603 The image of a difference ...
imain 6604 The image of an intersecti...
f1imadifssran 6605 Condition for the range of...
funimaexg 6606 Axiom of Replacement using...
funimaexgOLD 6607 Obsolete version of ~ funi...
funimaex 6608 The image of a set under a...
isarep1 6609 Part of a study of the Axi...
isarep1OLD 6610 Obsolete version of ~ isar...
isarep2 6611 Part of a study of the Axi...
fneq1 6612 Equality theorem for funct...
fneq2 6613 Equality theorem for funct...
fneq1d 6614 Equality deduction for fun...
fneq2d 6615 Equality deduction for fun...
fneq12d 6616 Equality deduction for fun...
fneq12 6617 Equality theorem for funct...
fneq1i 6618 Equality inference for fun...
fneq2i 6619 Equality inference for fun...
nffn 6620 Bound-variable hypothesis ...
fnfun 6621 A function with domain is ...
fnfund 6622 A function with domain is ...
fnrel 6623 A function with domain is ...
fndm 6624 The domain of a function. ...
fndmi 6625 The domain of a function. ...
fndmd 6626 The domain of a function. ...
funfni 6627 Inference to convert a fun...
fndmu 6628 A function has a unique do...
fnbr 6629 The first argument of bina...
fnop 6630 The first argument of an o...
fneu 6631 There is exactly one value...
fneu2 6632 There is exactly one value...
fnunres1 6633 Restriction of a disjoint ...
fnunres2 6634 Restriction of a disjoint ...
fnun 6635 The union of two functions...
fnund 6636 The union of two functions...
fnunop 6637 Extension of a function wi...
fncofn 6638 Composition of a function ...
fnco 6639 Composition of two functio...
fnresdm 6640 A function does not change...
fnresdisj 6641 A function restricted to a...
2elresin 6642 Membership in two function...
fnssresb 6643 Restriction of a function ...
fnssres 6644 Restriction of a function ...
fnssresd 6645 Restriction of a function ...
fnresin1 6646 Restriction of a function'...
fnresin2 6647 Restriction of a function'...
fnres 6648 An equivalence for functio...
idfn 6649 The identity relation is a...
fnresi 6650 The restricted identity re...
fnima 6651 The image of a function's ...
fn0 6652 A function with empty doma...
fnimadisj 6653 A class that is disjoint w...
fnimaeq0 6654 Images under a function ne...
dfmpt3 6655 Alternate definition for t...
mptfnf 6656 The maps-to notation defin...
fnmptf 6657 The maps-to notation defin...
fnopabg 6658 Functionality and domain o...
fnopab 6659 Functionality and domain o...
mptfng 6660 The maps-to notation defin...
fnmpt 6661 The maps-to notation defin...
fnmptd 6662 The maps-to notation defin...
mpt0 6663 A mapping operation with e...
fnmpti 6664 Functionality and domain o...
dmmpti 6665 Domain of the mapping oper...
dmmptd 6666 The domain of the mapping ...
mptun 6667 Union of mappings which ar...
partfun 6668 Rewrite a function defined...
feq1 6669 Equality theorem for funct...
feq2 6670 Equality theorem for funct...
feq3 6671 Equality theorem for funct...
feq23 6672 Equality theorem for funct...
feq1d 6673 Equality deduction for fun...
feq1dd 6674 Equality deduction for fun...
feq2d 6675 Equality deduction for fun...
feq3d 6676 Equality deduction for fun...
feq2dd 6677 Equality deduction for fun...
feq3dd 6678 Equality deduction for fun...
feq12d 6679 Equality deduction for fun...
feq123d 6680 Equality deduction for fun...
feq123 6681 Equality theorem for funct...
feq1i 6682 Equality inference for fun...
feq2i 6683 Equality inference for fun...
feq12i 6684 Equality inference for fun...
feq23i 6685 Equality inference for fun...
feq23d 6686 Equality deduction for fun...
nff 6687 Bound-variable hypothesis ...
sbcfng 6688 Distribute proper substitu...
sbcfg 6689 Distribute proper substitu...
elimf 6690 Eliminate a mapping hypoth...
ffn 6691 A mapping is a function wi...
ffnd 6692 A mapping is a function wi...
dffn2 6693 Any function is a mapping ...
ffun 6694 A mapping is a function. ...
ffund 6695 A mapping is a function, d...
frel 6696 A mapping is a relation. ...
freld 6697 A mapping is a relation. ...
frn 6698 The range of a mapping. (...
frnd 6699 Deduction form of ~ frn . ...
fdm 6700 The domain of a mapping. ...
fdmd 6701 Deduction form of ~ fdm . ...
fdmi 6702 Inference associated with ...
dffn3 6703 A function maps to its ran...
ffrn 6704 A function maps to its ran...
ffrnb 6705 Characterization of a func...
ffrnbd 6706 A function maps to its ran...
fss 6707 Expanding the codomain of ...
fssd 6708 Expanding the codomain of ...
fssdmd 6709 Expressing that a class is...
fssdm 6710 Expressing that a class is...
fimass 6711 The image of a class under...
fimassd 6712 The image of a class is a ...
fimacnv 6713 The preimage of the codoma...
fcof 6714 Composition of a function ...
fco 6715 Composition of two functio...
fcod 6716 Composition of two mapping...
fco2 6717 Functionality of a composi...
fssxp 6718 A mapping is a class of or...
funssxp 6719 Two ways of specifying a p...
ffdm 6720 A mapping is a partial fun...
ffdmd 6721 The domain of a function. ...
fdmrn 6722 A different way to write `...
funcofd 6723 Composition of two functio...
opelf 6724 The members of an ordered ...
fun 6725 The union of two functions...
fun2 6726 The union of two functions...
fun2d 6727 The union of functions wit...
fnfco 6728 Composition of two functio...
fssres 6729 Restriction of a function ...
fssresd 6730 Restriction of a function ...
fssres2 6731 Restriction of a restricte...
fresin 6732 An identity for the mappin...
resasplit 6733 If two functions agree on ...
fresaun 6734 The union of two functions...
fresaunres2 6735 From the union of two func...
fresaunres1 6736 From the union of two func...
fcoi1 6737 Composition of a mapping a...
fcoi2 6738 Composition of restricted ...
feu 6739 There is exactly one value...
fcnvres 6740 The converse of a restrict...
fimacnvdisj 6741 The preimage of a class di...
fint 6742 Function into an intersect...
fin 6743 Mapping into an intersecti...
f0 6744 The empty function. (Cont...
f00 6745 A class is a function with...
f0bi 6746 A function with empty doma...
f0dom0 6747 A function is empty iff it...
f0rn0 6748 If there is no element in ...
fconst 6749 A Cartesian product with a...
fconstg 6750 A Cartesian product with a...
fnconstg 6751 A Cartesian product with a...
fconst6g 6752 Constant function with loo...
fconst6 6753 A constant function as a m...
f1eq1 6754 Equality theorem for one-t...
f1eq2 6755 Equality theorem for one-t...
f1eq3 6756 Equality theorem for one-t...
nff1 6757 Bound-variable hypothesis ...
dff12 6758 Alternate definition of a ...
f1f 6759 A one-to-one mapping is a ...
f1fn 6760 A one-to-one mapping is a ...
f1fun 6761 A one-to-one mapping is a ...
f1rel 6762 A one-to-one onto mapping ...
f1dm 6763 The domain of a one-to-one...
f1ss 6764 A function that is one-to-...
f1ssr 6765 A function that is one-to-...
f1ssres 6766 A function that is one-to-...
f1resf1 6767 The restriction of an inje...
f1cnvcnv 6768 Two ways to express that a...
f1cof1 6769 Composition of two one-to-...
f1co 6770 Composition of one-to-one ...
foeq1 6771 Equality theorem for onto ...
foeq2 6772 Equality theorem for onto ...
foeq3 6773 Equality theorem for onto ...
nffo 6774 Bound-variable hypothesis ...
fof 6775 An onto mapping is a mappi...
fofun 6776 An onto mapping is a funct...
fofn 6777 An onto mapping is a funct...
forn 6778 The codomain of an onto fu...
dffo2 6779 Alternate definition of an...
foima 6780 The image of the domain of...
dffn4 6781 A function maps onto its r...
funforn 6782 A function maps its domain...
fodmrnu 6783 An onto function has uniqu...
fimadmfo 6784 A function is a function o...
fores 6785 Restriction of an onto fun...
fimadmfoALT 6786 Alternate proof of ~ fimad...
focnvimacdmdm 6787 The preimage of the codoma...
focofo 6788 Composition of onto functi...
foco 6789 Composition of onto functi...
foconst 6790 A nonzero constant functio...
f1oeq1 6791 Equality theorem for one-t...
f1oeq2 6792 Equality theorem for one-t...
f1oeq3 6793 Equality theorem for one-t...
f1oeq23 6794 Equality theorem for one-t...
f1eq123d 6795 Equality deduction for one...
foeq123d 6796 Equality deduction for ont...
f1oeq123d 6797 Equality deduction for one...
f1oeq1d 6798 Equality deduction for one...
f1oeq2d 6799 Equality deduction for one...
f1oeq3d 6800 Equality deduction for one...
nff1o 6801 Bound-variable hypothesis ...
f1of1 6802 A one-to-one onto mapping ...
f1of 6803 A one-to-one onto mapping ...
f1ofn 6804 A one-to-one onto mapping ...
f1ofun 6805 A one-to-one onto mapping ...
f1orel 6806 A one-to-one onto mapping ...
f1odm 6807 The domain of a one-to-one...
dff1o2 6808 Alternate definition of on...
dff1o3 6809 Alternate definition of on...
f1ofo 6810 A one-to-one onto function...
dff1o4 6811 Alternate definition of on...
dff1o5 6812 Alternate definition of on...
f1orn 6813 A one-to-one function maps...
f1f1orn 6814 A one-to-one function maps...
f1ocnv 6815 The converse of a one-to-o...
f1ocnvb 6816 A relation is a one-to-one...
f1ores 6817 The restriction of a one-t...
f1orescnv 6818 The converse of a one-to-o...
f1imacnv 6819 Preimage of an image. (Co...
foimacnv 6820 A reverse version of ~ f1i...
foun 6821 The union of two onto func...
f1oun 6822 The union of two one-to-on...
f1un 6823 The union of two one-to-on...
resdif 6824 The restriction of a one-t...
resin 6825 The restriction of a one-t...
f1oco 6826 Composition of one-to-one ...
f1cnv 6827 The converse of an injecti...
funcocnv2 6828 Composition with the conve...
fococnv2 6829 The composition of an onto...
f1ococnv2 6830 The composition of a one-t...
f1cocnv2 6831 Composition of an injectiv...
f1ococnv1 6832 The composition of a one-t...
f1cocnv1 6833 Composition of an injectiv...
funcoeqres 6834 Express a constraint on a ...
f1ssf1 6835 A subset of an injective f...
f10 6836 The empty set maps one-to-...
f10d 6837 The empty set maps one-to-...
f1o00 6838 One-to-one onto mapping of...
fo00 6839 Onto mapping of the empty ...
f1o0 6840 One-to-one onto mapping of...
f1oi 6841 A restriction of the ident...
f1ovi 6842 The identity relation is a...
f1osn 6843 A singleton of an ordered ...
f1osng 6844 A singleton of an ordered ...
f1sng 6845 A singleton of an ordered ...
fsnd 6846 A singleton of an ordered ...
f1oprswap 6847 A two-element swap is a bi...
f1oprg 6848 An unordered pair of order...
tz6.12-2 6849 Function value when ` F ` ...
fveu 6850 The value of a function at...
brprcneu 6851 If ` A ` is a proper class...
brprcneuALT 6852 Alternate proof of ~ brprc...
fvprc 6853 A function's value at a pr...
fvprcALT 6854 Alternate proof of ~ fvprc...
rnfvprc 6855 The range of a function va...
fv2 6856 Alternate definition of fu...
dffv3 6857 A definition of function v...
dffv4 6858 The previous definition of...
elfv 6859 Membership in a function v...
fveq1 6860 Equality theorem for funct...
fveq2 6861 Equality theorem for funct...
fveq1i 6862 Equality inference for fun...
fveq1d 6863 Equality deduction for fun...
fveq2i 6864 Equality inference for fun...
fveq2d 6865 Equality deduction for fun...
2fveq3 6866 Equality theorem for neste...
fveq12i 6867 Equality deduction for fun...
fveq12d 6868 Equality deduction for fun...
fveqeq2d 6869 Equality deduction for fun...
fveqeq2 6870 Equality deduction for fun...
nffv 6871 Bound-variable hypothesis ...
nffvmpt1 6872 Bound-variable hypothesis ...
nffvd 6873 Deduction version of bound...
fvex 6874 The value of a class exist...
fvexi 6875 The value of a class exist...
fvexd 6876 The value of a class exist...
fvif 6877 Move a conditional outside...
iffv 6878 Move a conditional outside...
fv3 6879 Alternate definition of th...
fvres 6880 The value of a restricted ...
fvresd 6881 The value of a restricted ...
funssfv 6882 The value of a member of t...
tz6.12c 6883 Corollary of Theorem 6.12(...
tz6.12-1 6884 Function value. Theorem 6...
tz6.12-1OLD 6885 Obsolete version of ~ tz6....
tz6.12 6886 Function value. Theorem 6...
tz6.12f 6887 Function value, using boun...
tz6.12cOLD 6888 Obsolete version of ~ tz6....
tz6.12i 6889 Corollary of Theorem 6.12(...
fvbr0 6890 Two possibilities for the ...
fvrn0 6891 A function value is a memb...
fvn0fvelrn 6892 If the value of a function...
elfvunirn 6893 A function value is a subs...
fvssunirn 6894 The result of a function v...
fvssunirnOLD 6895 Obsolete version of ~ fvss...
ndmfv 6896 The value of a class outsi...
ndmfvrcl 6897 Reverse closure law for fu...
elfvdm 6898 If a function value has a ...
elfvex 6899 If a function value has a ...
elfvexd 6900 If a function value has a ...
eliman0 6901 A nonempty function value ...
nfvres 6902 The value of a non-member ...
nfunsn 6903 If the restriction of a cl...
fvfundmfvn0 6904 If the "value of a class" ...
0fv 6905 Function value of the empt...
fv2prc 6906 A function value of a func...
elfv2ex 6907 If a function value of a f...
fveqres 6908 Equal values imply equal v...
csbfv12 6909 Move class substitution in...
csbfv2g 6910 Move class substitution in...
csbfv 6911 Substitution for a functio...
funbrfv 6912 The second argument of a b...
funopfv 6913 The second element in an o...
fnbrfvb 6914 Equivalence of function va...
fnopfvb 6915 Equivalence of function va...
fvelima2 6916 Function value in an image...
funbrfvb 6917 Equivalence of function va...
funopfvb 6918 Equivalence of function va...
fnbrfvb2 6919 Version of ~ fnbrfvb for f...
fdmeu 6920 There is exactly one codom...
funbrfv2b 6921 Function value in terms of...
dffn5 6922 Representation of a functi...
fnrnfv 6923 The range of a function ex...
fvelrnb 6924 A member of a function's r...
foelcdmi 6925 A member of a surjective f...
dfimafn 6926 Alternate definition of th...
dfimafn2 6927 Alternate definition of th...
funimass4 6928 Membership relation for th...
fvelima 6929 Function value in an image...
funimassd 6930 Sufficient condition for t...
fvelimad 6931 Function value in an image...
feqmptd 6932 Deduction form of ~ dffn5 ...
feqresmpt 6933 Express a restricted funct...
feqmptdf 6934 Deduction form of ~ dffn5f...
dffn5f 6935 Representation of a functi...
fvelimab 6936 Function value in an image...
fvelimabd 6937 Deduction form of ~ fvelim...
fimarab 6938 Expressing the image of a ...
unima 6939 Image of a union. (Contri...
fvi 6940 The value of the identity ...
fviss 6941 The value of the identity ...
fniinfv 6942 The indexed intersection o...
fnsnfv 6943 Singleton of function valu...
opabiotafun 6944 Define a function whose va...
opabiotadm 6945 Define a function whose va...
opabiota 6946 Define a function whose va...
fnimapr 6947 The image of a pair under ...
fnimatpd 6948 The image of an unordered ...
ssimaex 6949 The existence of a subimag...
ssimaexg 6950 The existence of a subimag...
funfv 6951 A simplified expression fo...
funfv2 6952 The value of a function. ...
funfv2f 6953 The value of a function. ...
fvun 6954 Value of the union of two ...
fvun1 6955 The value of a union when ...
fvun2 6956 The value of a union when ...
fvun1d 6957 The value of a union when ...
fvun2d 6958 The value of a union when ...
dffv2 6959 Alternate definition of fu...
dmfco 6960 Domains of a function comp...
fvco2 6961 Value of a function compos...
fvco 6962 Value of a function compos...
fvco3 6963 Value of a function compos...
fvco3d 6964 Value of a function compos...
fvco4i 6965 Conditions for a compositi...
fvopab3g 6966 Value of a function given ...
fvopab3ig 6967 Value of a function given ...
brfvopabrbr 6968 The binary relation of a f...
fvmptg 6969 Value of a function given ...
fvmpti 6970 Value of a function given ...
fvmpt 6971 Value of a function given ...
fvmpt2f 6972 Value of a function given ...
fvtresfn 6973 Functionality of a tuple-r...
fvmpts 6974 Value of a function given ...
fvmpt3 6975 Value of a function given ...
fvmpt3i 6976 Value of a function given ...
fvmptdf 6977 Deduction version of ~ fvm...
fvmptd 6978 Deduction version of ~ fvm...
fvmptd2 6979 Deduction version of ~ fvm...
mptrcl 6980 Reverse closure for a mapp...
fvmpt2i 6981 Value of a function given ...
fvmpt2 6982 Value of a function given ...
fvmptss 6983 If all the values of the m...
fvmpt2d 6984 Deduction version of ~ fvm...
fvmptex 6985 Express a function ` F ` w...
fvmptd3f 6986 Alternate deduction versio...
fvmptd2f 6987 Alternate deduction versio...
fvmptdv 6988 Alternate deduction versio...
fvmptdv2 6989 Alternate deduction versio...
mpteqb 6990 Bidirectional equality the...
fvmptt 6991 Closed theorem form of ~ f...
fvmptf 6992 Value of a function given ...
fvmptnf 6993 The value of a function gi...
fvmptd3 6994 Deduction version of ~ fvm...
fvmptd4 6995 Deduction version of ~ fvm...
fvmptn 6996 This somewhat non-intuitiv...
fvmptss2 6997 A mapping always evaluates...
elfvmptrab1w 6998 Implications for the value...
elfvmptrab1 6999 Implications for the value...
elfvmptrab 7000 Implications for the value...
fvopab4ndm 7001 Value of a function given ...
fvmptndm 7002 Value of a function given ...
fvmptrabfv 7003 Value of a function mappin...
fvopab5 7004 The value of a function th...
fvopab6 7005 Value of a function given ...
eqfnfv 7006 Equality of functions is d...
eqfnfv2 7007 Equality of functions is d...
eqfnfv3 7008 Derive equality of functio...
eqfnfvd 7009 Deduction for equality of ...
eqfnfv2f 7010 Equality of functions is d...
eqfunfv 7011 Equality of functions is d...
eqfnun 7012 Two functions on ` A u. B ...
fvreseq0 7013 Equality of restricted fun...
fvreseq1 7014 Equality of a function res...
fvreseq 7015 Equality of restricted fun...
fnmptfvd 7016 A function with a given do...
fndmdif 7017 Two ways to express the lo...
fndmdifcom 7018 The difference set between...
fndmdifeq0 7019 The difference set of two ...
fndmin 7020 Two ways to express the lo...
fneqeql 7021 Two functions are equal if...
fneqeql2 7022 Two functions are equal if...
fnreseql 7023 Two functions are equal on...
chfnrn 7024 The range of a choice func...
funfvop 7025 Ordered pair with function...
funfvbrb 7026 Two ways to say that ` A `...
fvimacnvi 7027 A member of a preimage is ...
fvimacnv 7028 The argument of a function...
funimass3 7029 A kind of contraposition l...
funimass5 7030 A subclass of a preimage i...
funconstss 7031 Two ways of specifying tha...
fvimacnvALT 7032 Alternate proof of ~ fvima...
elpreima 7033 Membership in the preimage...
elpreimad 7034 Membership in the preimage...
fniniseg 7035 Membership in the preimage...
fncnvima2 7036 Inverse images under funct...
fniniseg2 7037 Inverse point images under...
unpreima 7038 Preimage of a union. (Con...
inpreima 7039 Preimage of an intersectio...
difpreima 7040 Preimage of a difference. ...
respreima 7041 The preimage of a restrict...
cnvimainrn 7042 The preimage of the inters...
sspreima 7043 The preimage of a subset i...
iinpreima 7044 Preimage of an intersectio...
intpreima 7045 Preimage of an intersectio...
fimacnvinrn 7046 Taking the converse image ...
fimacnvinrn2 7047 Taking the converse image ...
rescnvimafod 7048 The restriction of a funct...
fvn0ssdmfun 7049 If a class' function value...
fnopfv 7050 Ordered pair with function...
fvelrn 7051 A function's value belongs...
nelrnfvne 7052 A function value cannot be...
fveqdmss 7053 If the empty set is not co...
fveqressseq 7054 If the empty set is not co...
fnfvelrn 7055 A function's value belongs...
ffvelcdm 7056 A function's value belongs...
fnfvelrnd 7057 A function's value belongs...
ffvelcdmi 7058 A function's value belongs...
ffvelcdmda 7059 A function's value belongs...
ffvelcdmd 7060 A function's value belongs...
feldmfvelcdm 7061 A class is an element of t...
rexrn 7062 Restricted existential qua...
ralrn 7063 Restricted universal quant...
elrnrexdm 7064 For any element in the ran...
elrnrexdmb 7065 For any element in the ran...
eldmrexrn 7066 For any element in the dom...
eldmrexrnb 7067 For any element in the dom...
fvcofneq 7068 The values of two function...
ralrnmptw 7069 A restricted quantifier ov...
rexrnmptw 7070 A restricted quantifier ov...
ralrnmpt 7071 A restricted quantifier ov...
rexrnmpt 7072 A restricted quantifier ov...
f0cli 7073 Unconditional closure of a...
dff2 7074 Alternate definition of a ...
dff3 7075 Alternate definition of a ...
dff4 7076 Alternate definition of a ...
dffo3 7077 An onto mapping expressed ...
dffo4 7078 Alternate definition of an...
dffo5 7079 Alternate definition of an...
exfo 7080 A relation equivalent to t...
dffo3f 7081 An onto mapping expressed ...
foelrn 7082 Property of a surjective f...
foelrnf 7083 Property of a surjective f...
foco2 7084 If a composition of two fu...
fmpt 7085 Functionality of the mappi...
f1ompt 7086 Express bijection for a ma...
fmpti 7087 Functionality of the mappi...
fvmptelcdm 7088 The value of a function at...
fmptd 7089 Domain and codomain of the...
fmpttd 7090 Version of ~ fmptd with in...
fmpt3d 7091 Domain and codomain of the...
fmptdf 7092 A version of ~ fmptd using...
fompt 7093 Express being onto for a m...
ffnfv 7094 A function maps to a class...
ffnfvf 7095 A function maps to a class...
fnfvrnss 7096 An upper bound for range d...
fcdmssb 7097 A function is a function i...
rnmptss 7098 The range of an operation ...
fmpt2d 7099 Domain and codomain of the...
ffvresb 7100 A necessary and sufficient...
fssrescdmd 7101 Restriction of a function ...
f1oresrab 7102 Build a bijection between ...
f1ossf1o 7103 Restricting a bijection, w...
fmptco 7104 Composition of two functio...
fmptcof 7105 Version of ~ fmptco where ...
fmptcos 7106 Composition of two functio...
cofmpt 7107 Express composition of a m...
fcompt 7108 Express composition of two...
fcoconst 7109 Composition with a constan...
fsn 7110 A function maps a singleto...
fsn2 7111 A function that maps a sin...
fsng 7112 A function maps a singleto...
fsn2g 7113 A function that maps a sin...
xpsng 7114 The Cartesian product of t...
xpprsng 7115 The Cartesian product of a...
xpsn 7116 The Cartesian product of t...
f1o2sn 7117 A singleton consisting in ...
residpr 7118 Restriction of the identit...
dfmpt 7119 Alternate definition for t...
fnasrn 7120 A function expressed as th...
idref 7121 Two ways to state that a r...
funiun 7122 A function is a union of s...
funopsn 7123 If a function is an ordere...
funop 7124 An ordered pair is a funct...
funopdmsn 7125 The domain of a function w...
funsndifnop 7126 A singleton of an ordered ...
funsneqopb 7127 A singleton of an ordered ...
ressnop0 7128 If ` A ` is not in ` C ` ,...
fpr 7129 A function with a domain o...
fprg 7130 A function with a domain o...
ftpg 7131 A function with a domain o...
ftp 7132 A function with a domain o...
fnressn 7133 A function restricted to a...
funressn 7134 A function restricted to a...
fressnfv 7135 The value of a function re...
fvrnressn 7136 If the value of a function...
fvressn 7137 The value of a function re...
fvn0fvelrnOLD 7138 Obsolete version of ~ fvn0...
fvconst 7139 The value of a constant fu...
fnsnr 7140 If a class belongs to a fu...
fnsnbg 7141 A function's domain is a s...
fnsnb 7142 A function whose domain is...
fnsnbOLD 7143 Obsolete version of ~ fnsn...
fmptsn 7144 Express a singleton functi...
fmptsng 7145 Express a singleton functi...
fmptsnd 7146 Express a singleton functi...
fmptap 7147 Append an additional value...
fmptapd 7148 Append an additional value...
fmptpr 7149 Express a pair function in...
fvresi 7150 The value of a restricted ...
fninfp 7151 Express the class of fixed...
fnelfp 7152 Property of a fixed point ...
fndifnfp 7153 Express the class of non-f...
fnelnfp 7154 Property of a non-fixed po...
fnnfpeq0 7155 A function is the identity...
fvunsn 7156 Remove an ordered pair not...
fvsng 7157 The value of a singleton o...
fvsn 7158 The value of a singleton o...
fvsnun1 7159 The value of a function wi...
fvsnun2 7160 The value of a function wi...
fnsnsplit 7161 Split a function into a si...
fsnunf 7162 Adjoining a point to a fun...
fsnunf2 7163 Adjoining a point to a pun...
fsnunfv 7164 Recover the added point fr...
fsnunres 7165 Recover the original funct...
funresdfunsn 7166 Restricting a function to ...
fvpr1g 7167 The value of a function wi...
fvpr2g 7168 The value of a function wi...
fvpr1 7169 The value of a function wi...
fvpr2 7170 The value of a function wi...
fprb 7171 A condition for functionho...
fvtp1 7172 The first value of a funct...
fvtp2 7173 The second value of a func...
fvtp3 7174 The third value of a funct...
fvtp1g 7175 The value of a function wi...
fvtp2g 7176 The value of a function wi...
fvtp3g 7177 The value of a function wi...
tpres 7178 An unordered triple of ord...
fvconst2g 7179 The value of a constant fu...
fconst2g 7180 A constant function expres...
fvconst2 7181 The value of a constant fu...
fconst2 7182 A constant function expres...
fconst5 7183 Two ways to express that a...
rnmptc 7184 Range of a constant functi...
fnprb 7185 A function whose domain ha...
fntpb 7186 A function whose domain ha...
fnpr2g 7187 A function whose domain ha...
fpr2g 7188 A function that maps a pai...
fconstfv 7189 A constant function expres...
fconst3 7190 Two ways to express a cons...
fconst4 7191 Two ways to express a cons...
resfunexg 7192 The restriction of a funct...
resiexd 7193 The restriction of the ide...
fnex 7194 If the domain of a functio...
fnexd 7195 If the domain of a functio...
funex 7196 If the domain of a functio...
opabex 7197 Existence of a function ex...
mptexg 7198 If the domain of a functio...
mptexgf 7199 If the domain of a functio...
mptex 7200 If the domain of a functio...
mptexd 7201 If the domain of a functio...
mptrabex 7202 If the domain of a functio...
fex 7203 If the domain of a mapping...
fexd 7204 If the domain of a mapping...
mptfvmpt 7205 A function in maps-to nota...
eufnfv 7206 A function is uniquely det...
funfvima 7207 A function's value in a pr...
funfvima2 7208 A function's value in an i...
funfvima2d 7209 A function's value in a pr...
fnfvima 7210 The function value of an o...
fnfvimad 7211 A function's value belongs...
resfvresima 7212 The value of the function ...
funfvima3 7213 A class including a functi...
ralima 7214 Universal quantification u...
rexima 7215 Existential quantification...
reximaOLD 7216 Obsolete version of ~ rexi...
ralimaOLD 7217 Obsolete version of ~ rali...
fvclss 7218 Upper bound for the class ...
elabrex 7219 Elementhood in an image se...
elabrexg 7220 Elementhood in an image se...
abrexco 7221 Composition of two image m...
imaiun 7222 The image of an indexed un...
imauni 7223 The image of a union is th...
fniunfv 7224 The indexed union of a fun...
funiunfv 7225 The indexed union of a fun...
funiunfvf 7226 The indexed union of a fun...
eluniima 7227 Membership in the union of...
elunirn 7228 Membership in the union of...
elunirnALT 7229 Alternate proof of ~ eluni...
elunirn2OLD 7230 Obsolete version of ~ elfv...
fnunirn 7231 Membership in a union of s...
dff13 7232 A one-to-one function in t...
dff13f 7233 A one-to-one function in t...
f1veqaeq 7234 If the values of a one-to-...
f1cofveqaeq 7235 If the values of a composi...
f1cofveqaeqALT 7236 Alternate proof of ~ f1cof...
dff14i 7237 A one-to-one function maps...
2f1fvneq 7238 If two one-to-one function...
f1mpt 7239 Express injection for a ma...
f1fveq 7240 Equality of function value...
f1elima 7241 Membership in the image of...
f1imass 7242 Taking images under a one-...
f1imaeq 7243 Taking images under a one-...
f1imapss 7244 Taking images under a one-...
fpropnf1 7245 A function, given by an un...
f1dom3fv3dif 7246 The function values for a ...
f1dom3el3dif 7247 The codomain of a 1-1 func...
dff14a 7248 A one-to-one function in t...
dff14b 7249 A one-to-one function in t...
f1ounsn 7250 Extension of a bijection b...
f12dfv 7251 A one-to-one function with...
f13dfv 7252 A one-to-one function with...
dff1o6 7253 A one-to-one onto function...
f1ocnvfv1 7254 The converse value of the ...
f1ocnvfv2 7255 The value of the converse ...
f1ocnvfv 7256 Relationship between the v...
f1ocnvfvb 7257 Relationship between the v...
nvof1o 7258 An involution is a bijecti...
nvocnv 7259 The converse of an involut...
f1cdmsn 7260 If a one-to-one function w...
fsnex 7261 Relate a function with a s...
f1prex 7262 Relate a one-to-one functi...
f1ocnvdm 7263 The value of the converse ...
f1ocnvfvrneq 7264 If the values of a one-to-...
fcof1 7265 An application is injectiv...
fcofo 7266 An application is surjecti...
cbvfo 7267 Change bound variable betw...
cbvexfo 7268 Change bound variable betw...
cocan1 7269 An injection is left-cance...
cocan2 7270 A surjection is right-canc...
fcof1oinvd 7271 Show that a function is th...
fcof1od 7272 A function is bijective if...
2fcoidinvd 7273 Show that a function is th...
fcof1o 7274 Show that two functions ar...
2fvcoidd 7275 Show that the composition ...
2fvidf1od 7276 A function is bijective if...
2fvidinvd 7277 Show that two functions ar...
foeqcnvco 7278 Condition for function equ...
f1eqcocnv 7279 Condition for function equ...
fveqf1o 7280 Given a bijection ` F ` , ...
f1ocoima 7281 The composition of two bij...
nf1const 7282 A constant function from a...
nf1oconst 7283 A constant function from a...
f1ofvswap 7284 Swapping two values in a b...
fvf1pr 7285 Values of a one-to-one fun...
fliftrel 7286 ` F ` , a function lift, i...
fliftel 7287 Elementhood in the relatio...
fliftel1 7288 Elementhood in the relatio...
fliftcnv 7289 Converse of the relation `...
fliftfun 7290 The function ` F ` is the ...
fliftfund 7291 The function ` F ` is the ...
fliftfuns 7292 The function ` F ` is the ...
fliftf 7293 The domain and range of th...
fliftval 7294 The value of the function ...
isoeq1 7295 Equality theorem for isomo...
isoeq2 7296 Equality theorem for isomo...
isoeq3 7297 Equality theorem for isomo...
isoeq4 7298 Equality theorem for isomo...
isoeq5 7299 Equality theorem for isomo...
nfiso 7300 Bound-variable hypothesis ...
isof1o 7301 An isomorphism is a one-to...
isof1oidb 7302 A function is a bijection ...
isof1oopb 7303 A function is a bijection ...
isorel 7304 An isomorphism connects bi...
soisores 7305 Express the condition of i...
soisoi 7306 Infer isomorphism from one...
isoid 7307 Identity law for isomorphi...
isocnv 7308 Converse law for isomorphi...
isocnv2 7309 Converse law for isomorphi...
isocnv3 7310 Complementation law for is...
isores2 7311 An isomorphism from one we...
isores1 7312 An isomorphism from one we...
isores3 7313 Induced isomorphism on a s...
isotr 7314 Composition (transitive) l...
isomin 7315 Isomorphisms preserve mini...
isoini 7316 Isomorphisms preserve init...
isoini2 7317 Isomorphisms are isomorphi...
isofrlem 7318 Lemma for ~ isofr . (Cont...
isoselem 7319 Lemma for ~ isose . (Cont...
isofr 7320 An isomorphism preserves w...
isose 7321 An isomorphism preserves s...
isofr2 7322 A weak form of ~ isofr tha...
isopolem 7323 Lemma for ~ isopo . (Cont...
isopo 7324 An isomorphism preserves t...
isosolem 7325 Lemma for ~ isoso . (Cont...
isoso 7326 An isomorphism preserves t...
isowe 7327 An isomorphism preserves t...
isowe2 7328 A weak form of ~ isowe tha...
f1oiso 7329 Any one-to-one onto functi...
f1oiso2 7330 Any one-to-one onto functi...
f1owe 7331 Well-ordering of isomorphi...
weniso 7332 A set-like well-ordering h...
weisoeq 7333 Thus, there is at most one...
weisoeq2 7334 Thus, there is at most one...
knatar 7335 The Knaster-Tarski theorem...
fvresval 7336 The value of a restricted ...
funeldmb 7337 If ` (/) ` is not part of ...
eqfunresadj 7338 Law for adjoining an eleme...
eqfunressuc 7339 Law for equality of restri...
fnssintima 7340 Condition for subset of an...
imaeqsexvOLD 7341 Obsolete version of ~ rexi...
imaeqsalvOLD 7342 Obsolete version of ~ rali...
fnimasnd 7343 The image of a function by...
canth 7344 No set ` A ` is equinumero...
ncanth 7345 Cantor's theorem fails for...
riotaeqdv 7348 Formula-building deduction...
riotabidv 7349 Formula-building deduction...
riotaeqbidv 7350 Equality deduction for res...
riotaex 7351 Restricted iota is a set. ...
riotav 7352 An iota restricted to the ...
riotauni 7353 Restricted iota in terms o...
nfriota1 7354 The abstraction variable i...
nfriotadw 7355 Deduction version of ~ nfr...
cbvriotaw 7356 Change bound variable in a...
cbvriotavw 7357 Change bound variable in a...
nfriotad 7358 Deduction version of ~ nfr...
nfriota 7359 A variable not free in a w...
cbvriota 7360 Change bound variable in a...
cbvriotav 7361 Change bound variable in a...
csbriota 7362 Interchange class substitu...
riotacl2 7363 Membership law for "the un...
riotacl 7364 Closure of restricted iota...
riotasbc 7365 Substitution law for descr...
riotabidva 7366 Equivalent wff's yield equ...
riotabiia 7367 Equivalent wff's yield equ...
riota1 7368 Property of restricted iot...
riota1a 7369 Property of iota. (Contri...
riota2df 7370 A deduction version of ~ r...
riota2f 7371 This theorem shows a condi...
riota2 7372 This theorem shows a condi...
riotaeqimp 7373 If two restricted iota des...
riotaprop 7374 Properties of a restricted...
riota5f 7375 A method for computing res...
riota5 7376 A method for computing res...
riotass2 7377 Restriction of a unique el...
riotass 7378 Restriction of a unique el...
moriotass 7379 Restriction of a unique el...
snriota 7380 A restricted class abstrac...
riotaxfrd 7381 Change the variable ` x ` ...
eusvobj2 7382 Specify the same property ...
eusvobj1 7383 Specify the same object in...
f1ofveu 7384 There is one domain elemen...
f1ocnvfv3 7385 Value of the converse of a...
riotaund 7386 Restricted iota equals the...
riotassuni 7387 The restricted iota class ...
riotaclb 7388 Bidirectional closure of r...
riotarab 7389 Restricted iota of a restr...
oveq 7396 Equality theorem for opera...
oveq1 7397 Equality theorem for opera...
oveq2 7398 Equality theorem for opera...
oveq12 7399 Equality theorem for opera...
oveq1i 7400 Equality inference for ope...
oveq2i 7401 Equality inference for ope...
oveq12i 7402 Equality inference for ope...
oveqi 7403 Equality inference for ope...
oveq123i 7404 Equality inference for ope...
oveq1d 7405 Equality deduction for ope...
oveq2d 7406 Equality deduction for ope...
oveqd 7407 Equality deduction for ope...
oveq12d 7408 Equality deduction for ope...
oveqan12d 7409 Equality deduction for ope...
oveqan12rd 7410 Equality deduction for ope...
oveq123d 7411 Equality deduction for ope...
fvoveq1d 7412 Equality deduction for nes...
fvoveq1 7413 Equality theorem for neste...
ovanraleqv 7414 Equality theorem for a con...
imbrov2fvoveq 7415 Equality theorem for neste...
ovrspc2v 7416 If an operation value is a...
oveqrspc2v 7417 Restricted specialization ...
oveqdr 7418 Equality of two operations...
nfovd 7419 Deduction version of bound...
nfov 7420 Bound-variable hypothesis ...
oprabidw 7421 The law of concretion. Sp...
oprabid 7422 The law of concretion. Sp...
ovex 7423 The result of an operation...
ovexi 7424 The result of an operation...
ovexd 7425 The result of an operation...
ovssunirn 7426 The result of an operation...
0ov 7427 Operation value of the emp...
ovprc 7428 The value of an operation ...
ovprc1 7429 The value of an operation ...
ovprc2 7430 The value of an operation ...
ovrcl 7431 Reverse closure for an ope...
elfvov1 7432 Utility theorem: reverse c...
elfvov2 7433 Utility theorem: reverse c...
csbov123 7434 Move class substitution in...
csbov 7435 Move class substitution in...
csbov12g 7436 Move class substitution in...
csbov1g 7437 Move class substitution in...
csbov2g 7438 Move class substitution in...
rspceov 7439 A frequently used special ...
elovimad 7440 Elementhood of the image s...
fnbrovb 7441 Value of a binary operatio...
fnotovb 7442 Equivalence of operation v...
opabbrex 7443 A collection of ordered pa...
opabresex2 7444 Restrictions of a collecti...
opabresex2d 7445 Obsolete version of ~ opab...
fvmptopab 7446 The function value of a ma...
fvmptopabOLD 7447 Obsolete version of ~ fvmp...
f1opr 7448 Condition for an operation...
brfvopab 7449 The classes involved in a ...
dfoprab2 7450 Class abstraction for oper...
reloprab 7451 An operation class abstrac...
oprabv 7452 If a pair and a class are ...
nfoprab1 7453 The abstraction variables ...
nfoprab2 7454 The abstraction variables ...
nfoprab3 7455 The abstraction variables ...
nfoprab 7456 Bound-variable hypothesis ...
oprabbid 7457 Equivalent wff's yield equ...
oprabbidv 7458 Equivalent wff's yield equ...
oprabbii 7459 Equivalent wff's yield equ...
ssoprab2 7460 Equivalence of ordered pai...
ssoprab2b 7461 Equivalence of ordered pai...
eqoprab2bw 7462 Equivalence of ordered pai...
eqoprab2b 7463 Equivalence of ordered pai...
mpoeq123 7464 An equality theorem for th...
mpoeq12 7465 An equality theorem for th...
mpoeq123dva 7466 An equality deduction for ...
mpoeq123dv 7467 An equality deduction for ...
mpoeq123i 7468 An equality inference for ...
mpoeq3dva 7469 Slightly more general equa...
mpoeq3ia 7470 An equality inference for ...
mpoeq3dv 7471 An equality deduction for ...
nfmpo1 7472 Bound-variable hypothesis ...
nfmpo2 7473 Bound-variable hypothesis ...
nfmpo 7474 Bound-variable hypothesis ...
0mpo0 7475 A mapping operation with e...
mpo0v 7476 A mapping operation with e...
mpo0 7477 A mapping operation with e...
oprab4 7478 Two ways to state the doma...
cbvoprab1 7479 Rule used to change first ...
cbvoprab2 7480 Change the second bound va...
cbvoprab12 7481 Rule used to change first ...
cbvoprab12v 7482 Rule used to change first ...
cbvoprab3 7483 Rule used to change the th...
cbvoprab3v 7484 Rule used to change the th...
cbvmpox 7485 Rule to change the bound v...
cbvmpo 7486 Rule to change the bound v...
cbvmpov 7487 Rule to change the bound v...
elimdelov 7488 Eliminate a hypothesis whi...
brif1 7489 Move a relation inside and...
ovif 7490 Move a conditional outside...
ovif2 7491 Move a conditional outside...
ovif12 7492 Move a conditional outside...
ifov 7493 Move a conditional outside...
ifmpt2v 7494 Move a conditional inside ...
dmoprab 7495 The domain of an operation...
dmoprabss 7496 The domain of an operation...
rnoprab 7497 The range of an operation ...
rnoprab2 7498 The range of a restricted ...
reldmoprab 7499 The domain of an operation...
oprabss 7500 Structure of an operation ...
eloprabga 7501 The law of concretion for ...
eloprabg 7502 The law of concretion for ...
ssoprab2i 7503 Inference of operation cla...
mpov 7504 Operation with universal d...
mpomptx 7505 Express a two-argument fun...
mpompt 7506 Express a two-argument fun...
mpodifsnif 7507 A mapping with two argumen...
mposnif 7508 A mapping with two argumen...
fconstmpo 7509 Representation of a consta...
resoprab 7510 Restriction of an operatio...
resoprab2 7511 Restriction of an operator...
resmpo 7512 Restriction of the mapping...
funoprabg 7513 "At most one" is a suffici...
funoprab 7514 "At most one" is a suffici...
fnoprabg 7515 Functionality and domain o...
mpofun 7516 The maps-to notation for a...
fnoprab 7517 Functionality and domain o...
ffnov 7518 An operation maps to a cla...
fovcld 7519 Closure law for an operati...
fovcl 7520 Closure law for an operati...
eqfnov 7521 Equality of two operations...
eqfnov2 7522 Two operators with the sam...
fnov 7523 Representation of a functi...
mpo2eqb 7524 Bidirectional equality the...
rnmpo 7525 The range of an operation ...
reldmmpo 7526 The domain of an operation...
elrnmpog 7527 Membership in the range of...
elrnmpo 7528 Membership in the range of...
elimampo 7529 Membership in the image of...
elrnmpores 7530 Membership in the range of...
ralrnmpo 7531 A restricted quantifier ov...
rexrnmpo 7532 A restricted quantifier ov...
ovid 7533 The value of an operation ...
ovidig 7534 The value of an operation ...
ovidi 7535 The value of an operation ...
ov 7536 The value of an operation ...
ovigg 7537 The value of an operation ...
ovig 7538 The value of an operation ...
ovmpt4g 7539 Value of a function given ...
ovmpos 7540 Value of a function given ...
ov2gf 7541 The value of an operation ...
ovmpodxf 7542 Value of an operation give...
ovmpodx 7543 Value of an operation give...
ovmpod 7544 Value of an operation give...
ovmpox 7545 The value of an operation ...
ovmpoga 7546 Value of an operation give...
ovmpoa 7547 Value of an operation give...
ovmpodf 7548 Alternate deduction versio...
ovmpodv 7549 Alternate deduction versio...
ovmpodv2 7550 Alternate deduction versio...
ovmpog 7551 Value of an operation give...
ovmpo 7552 Value of an operation give...
ovmpot 7553 The value of an operation ...
fvmpopr2d 7554 Value of an operation give...
ov3 7555 The value of an operation ...
ov6g 7556 The value of an operation ...
ovg 7557 The value of an operation ...
ovres 7558 The value of a restricted ...
ovresd 7559 Lemma for converting metri...
oprres 7560 The restriction of an oper...
oprssov 7561 The value of a member of t...
fovcdm 7562 An operation's value belon...
fovcdmda 7563 An operation's value belon...
fovcdmd 7564 An operation's value belon...
fnrnov 7565 The range of an operation ...
foov 7566 An onto mapping of an oper...
fnovrn 7567 An operation's value belon...
ovelrn 7568 A member of an operation's...
funimassov 7569 Membership relation for th...
ovelimab 7570 Operation value in an imag...
ovima0 7571 An operation value is a me...
ovconst2 7572 The value of a constant op...
oprssdm 7573 Domain of closure of an op...
nssdmovg 7574 The value of an operation ...
ndmovg 7575 The value of an operation ...
ndmov 7576 The value of an operation ...
ndmovcl 7577 The closure of an operatio...
ndmovrcl 7578 Reverse closure law, when ...
ndmovcom 7579 Any operation is commutati...
ndmovass 7580 Any operation is associati...
ndmovdistr 7581 Any operation is distribut...
ndmovord 7582 Elimination of redundant a...
ndmovordi 7583 Elimination of redundant a...
caovclg 7584 Convert an operation closu...
caovcld 7585 Convert an operation closu...
caovcl 7586 Convert an operation closu...
caovcomg 7587 Convert an operation commu...
caovcomd 7588 Convert an operation commu...
caovcom 7589 Convert an operation commu...
caovassg 7590 Convert an operation assoc...
caovassd 7591 Convert an operation assoc...
caovass 7592 Convert an operation assoc...
caovcang 7593 Convert an operation cance...
caovcand 7594 Convert an operation cance...
caovcanrd 7595 Commute the arguments of a...
caovcan 7596 Convert an operation cance...
caovordig 7597 Convert an operation order...
caovordid 7598 Convert an operation order...
caovordg 7599 Convert an operation order...
caovordd 7600 Convert an operation order...
caovord2d 7601 Operation ordering law wit...
caovord3d 7602 Ordering law. (Contribute...
caovord 7603 Convert an operation order...
caovord2 7604 Operation ordering law wit...
caovord3 7605 Ordering law. (Contribute...
caovdig 7606 Convert an operation distr...
caovdid 7607 Convert an operation distr...
caovdir2d 7608 Convert an operation distr...
caovdirg 7609 Convert an operation rever...
caovdird 7610 Convert an operation distr...
caovdi 7611 Convert an operation distr...
caov32d 7612 Rearrange arguments in a c...
caov12d 7613 Rearrange arguments in a c...
caov31d 7614 Rearrange arguments in a c...
caov13d 7615 Rearrange arguments in a c...
caov4d 7616 Rearrange arguments in a c...
caov411d 7617 Rearrange arguments in a c...
caov42d 7618 Rearrange arguments in a c...
caov32 7619 Rearrange arguments in a c...
caov12 7620 Rearrange arguments in a c...
caov31 7621 Rearrange arguments in a c...
caov13 7622 Rearrange arguments in a c...
caov4 7623 Rearrange arguments in a c...
caov411 7624 Rearrange arguments in a c...
caov42 7625 Rearrange arguments in a c...
caovdir 7626 Reverse distributive law. ...
caovdilem 7627 Lemma used by real number ...
caovlem2 7628 Lemma used in real number ...
caovmo 7629 Uniqueness of inverse elem...
imaeqexov 7630 Substitute an operation va...
imaeqalov 7631 Substitute an operation va...
mpondm0 7632 The value of an operation ...
elmpocl 7633 If a two-parameter class i...
elmpocl1 7634 If a two-parameter class i...
elmpocl2 7635 If a two-parameter class i...
elovmpod 7636 Utility lemma for two-para...
elovmpo 7637 Utility lemma for two-para...
elovmporab 7638 Implications for the value...
elovmporab1w 7639 Implications for the value...
elovmporab1 7640 Implications for the value...
2mpo0 7641 If the operation value of ...
relmptopab 7642 Any function to sets of or...
f1ocnvd 7643 Describe an implicit one-t...
f1od 7644 Describe an implicit one-t...
f1ocnv2d 7645 Describe an implicit one-t...
f1o2d 7646 Describe an implicit one-t...
f1opw2 7647 A one-to-one mapping induc...
f1opw 7648 A one-to-one mapping induc...
elovmpt3imp 7649 If the value of a function...
ovmpt3rab1 7650 The value of an operation ...
ovmpt3rabdm 7651 If the value of a function...
elovmpt3rab1 7652 Implications for the value...
elovmpt3rab 7653 Implications for the value...
ofeqd 7658 Equality theorem for funct...
ofeq 7659 Equality theorem for funct...
ofreq 7660 Equality theorem for funct...
ofexg 7661 A function operation restr...
nfof 7662 Hypothesis builder for fun...
nfofr 7663 Hypothesis builder for fun...
ofrfvalg 7664 Value of a relation applie...
offval 7665 Value of an operation appl...
ofrfval 7666 Value of a relation applie...
ofval 7667 Evaluate a function operat...
ofrval 7668 Exhibit a function relatio...
offn 7669 The function operation pro...
offun 7670 The function operation pro...
offval2f 7671 The function operation exp...
ofmresval 7672 Value of a restriction of ...
fnfvof 7673 Function value of a pointw...
off 7674 The function operation pro...
ofres 7675 Restrict the operands of a...
offval2 7676 The function operation exp...
ofrfval2 7677 The function relation acti...
offvalfv 7678 The function operation exp...
ofmpteq 7679 Value of a pointwise opera...
coof 7680 The composition of a _homo...
ofco 7681 The composition of a funct...
offveq 7682 Convert an identity of the...
offveqb 7683 Equivalent expressions for...
ofc1 7684 Left operation by a consta...
ofc2 7685 Right operation by a const...
ofc12 7686 Function operation on two ...
caofref 7687 Transfer a reflexive law t...
caofinvl 7688 Transfer a left inverse la...
caofid0l 7689 Transfer a left identity l...
caofid0r 7690 Transfer a right identity ...
caofid1 7691 Transfer a right absorptio...
caofid2 7692 Transfer a right absorptio...
caofcom 7693 Transfer a commutative law...
caofidlcan 7694 Transfer a cancellation/id...
caofrss 7695 Transfer a relation subset...
caofass 7696 Transfer an associative la...
caoftrn 7697 Transfer a transitivity la...
caofdi 7698 Transfer a distributive la...
caofdir 7699 Transfer a reverse distrib...
caonncan 7700 Transfer ~ nncan -shaped l...
relrpss 7703 The proper subset relation...
brrpssg 7704 The proper subset relation...
brrpss 7705 The proper subset relation...
porpss 7706 Every class is partially o...
sorpss 7707 Express strict ordering un...
sorpssi 7708 Property of a chain of set...
sorpssun 7709 A chain of sets is closed ...
sorpssin 7710 A chain of sets is closed ...
sorpssuni 7711 In a chain of sets, a maxi...
sorpssint 7712 In a chain of sets, a mini...
sorpsscmpl 7713 The componentwise compleme...
zfun 7715 Axiom of Union expressed w...
axun2 7716 A variant of the Axiom of ...
uniex2 7717 The Axiom of Union using t...
vuniex 7718 The union of a setvar is a...
uniexg 7719 The ZF Axiom of Union in c...
uniex 7720 The Axiom of Union in clas...
uniexd 7721 Deduction version of the Z...
unexg 7722 The union of two sets is a...
unex 7723 The union of two sets is a...
unexOLD 7724 Obsolete version of ~ unex...
tpex 7725 An unordered triple of cla...
unexb 7726 Existence of union is equi...
unexbOLD 7727 Obsolete version of ~ unex...
unexgOLD 7728 Obsolete version of ~ unex...
xpexg 7729 The Cartesian product of t...
xpexd 7730 The Cartesian product of t...
3xpexg 7731 The Cartesian product of t...
xpex 7732 The Cartesian product of t...
unexd 7733 The union of two sets is a...
sqxpexg 7734 The Cartesian square of a ...
abnexg 7735 Sufficient condition for a...
abnex 7736 Sufficient condition for a...
snnex 7737 The class of all singleton...
pwnex 7738 The class of all power set...
difex2 7739 If the subtrahend of a cla...
difsnexi 7740 If the difference of a cla...
uniuni 7741 Expression for double unio...
uniexr 7742 Converse of the Axiom of U...
uniexb 7743 The Axiom of Union and its...
pwexr 7744 Converse of the Axiom of P...
pwexb 7745 The Axiom of Power Sets an...
elpwpwel 7746 A class belongs to a doubl...
eldifpw 7747 Membership in a power clas...
elpwun 7748 Membership in the power cl...
pwuncl 7749 Power classes are closed u...
iunpw 7750 An indexed union of a powe...
fr3nr 7751 A well-founded relation ha...
epne3 7752 A well-founded class conta...
dfwe2 7753 Alternate definition of we...
epweon 7754 The membership relation we...
epweonALT 7755 Alternate proof of ~ epweo...
ordon 7756 The class of all ordinal n...
onprc 7757 No set contains all ordina...
ssorduni 7758 The union of a class of or...
ssonuni 7759 The union of a set of ordi...
ssonunii 7760 The union of a set of ordi...
ordeleqon 7761 A way to express the ordin...
ordsson 7762 Any ordinal class is a sub...
dford5 7763 A class is ordinal iff it ...
onss 7764 An ordinal number is a sub...
predon 7765 The predecessor of an ordi...
ssonprc 7766 Two ways of saying a class...
onuni 7767 The union of an ordinal nu...
orduni 7768 The union of an ordinal cl...
onint 7769 The intersection (infimum)...
onint0 7770 The intersection of a clas...
onssmin 7771 A nonempty class of ordina...
onminesb 7772 If a property is true for ...
onminsb 7773 If a property is true for ...
oninton 7774 The intersection of a none...
onintrab 7775 The intersection of a clas...
onintrab2 7776 An existence condition equ...
onnmin 7777 No member of a set of ordi...
onnminsb 7778 An ordinal number smaller ...
oneqmin 7779 A way to show that an ordi...
uniordint 7780 The union of a set of ordi...
onminex 7781 If a wff is true for an or...
sucon 7782 The class of all ordinal n...
sucexb 7783 A successor exists iff its...
sucexg 7784 The successor of a set is ...
sucex 7785 The successor of a set is ...
onmindif2 7786 The minimum of a class of ...
ordsuci 7787 The successor of an ordina...
sucexeloni 7788 If the successor of an ord...
sucexeloniOLD 7789 Obsolete version of ~ suce...
onsuc 7790 The successor of an ordina...
ordsuc 7791 A class is ordinal if and ...
ordsucOLD 7792 Obsolete version of ~ ords...
ordpwsuc 7793 The collection of ordinals...
onpwsuc 7794 The collection of ordinal ...
onsucb 7795 A class is an ordinal numb...
ordsucss 7796 The successor of an elemen...
onpsssuc 7797 An ordinal number is a pro...
ordelsuc 7798 A set belongs to an ordina...
onsucmin 7799 The successor of an ordina...
ordsucelsuc 7800 Membership is inherited by...
ordsucsssuc 7801 The subclass relationship ...
ordsucuniel 7802 Given an element ` A ` of ...
ordsucun 7803 The successor of the maxim...
ordunpr 7804 The maximum of two ordinal...
ordunel 7805 The maximum of two ordinal...
onsucuni 7806 A class of ordinal numbers...
ordsucuni 7807 An ordinal class is a subc...
orduniorsuc 7808 An ordinal class is either...
unon 7809 The class of all ordinal n...
ordunisuc 7810 An ordinal class is equal ...
orduniss2 7811 The union of the ordinal s...
onsucuni2 7812 A successor ordinal is the...
0elsuc 7813 The successor of an ordina...
limon 7814 The class of ordinal numbe...
onuniorsuc 7815 An ordinal number is eithe...
onssi 7816 An ordinal number is a sub...
onsuci 7817 The successor of an ordina...
onuniorsuciOLD 7818 Obsolete version of ~ onun...
onuninsuci 7819 An ordinal is equal to its...
onsucssi 7820 A set belongs to an ordina...
nlimsucg 7821 A successor is not a limit...
orduninsuc 7822 An ordinal class is equal ...
ordunisuc2 7823 An ordinal equal to its un...
ordzsl 7824 An ordinal is zero, a succ...
onzsl 7825 An ordinal number is zero,...
dflim3 7826 An alternate definition of...
dflim4 7827 An alternate definition of...
limsuc 7828 The successor of a member ...
limsssuc 7829 A class includes a limit o...
nlimon 7830 Two ways to express the cl...
limuni3 7831 The union of a nonempty cl...
tfi 7832 The Principle of Transfini...
tfisg 7833 A closed form of ~ tfis . ...
tfis 7834 Transfinite Induction Sche...
tfis2f 7835 Transfinite Induction Sche...
tfis2 7836 Transfinite Induction Sche...
tfis3 7837 Transfinite Induction Sche...
tfisi 7838 A transfinite induction sc...
tfinds 7839 Principle of Transfinite I...
tfindsg 7840 Transfinite Induction (inf...
tfindsg2 7841 Transfinite Induction (inf...
tfindes 7842 Transfinite Induction with...
tfinds2 7843 Transfinite Induction (inf...
tfinds3 7844 Principle of Transfinite I...
dfom2 7847 An alternate definition of...
elom 7848 Membership in omega. The ...
omsson 7849 Omega is a subset of ` On ...
limomss 7850 The class of natural numbe...
nnon 7851 A natural number is an ord...
nnoni 7852 A natural number is an ord...
nnord 7853 A natural number is ordina...
trom 7854 The class of finite ordina...
ordom 7855 The class of finite ordina...
elnn 7856 A member of a natural numb...
omon 7857 The class of natural numbe...
omelon2 7858 Omega is an ordinal number...
nnlim 7859 A natural number is not a ...
omssnlim 7860 The class of natural numbe...
limom 7861 Omega is a limit ordinal. ...
peano2b 7862 A class belongs to omega i...
nnsuc 7863 A nonzero natural number i...
omsucne 7864 A natural number is not th...
ssnlim 7865 An ordinal subclass of non...
omsinds 7866 Strong (or "total") induct...
omun 7867 The union of two finite or...
peano1 7868 Zero is a natural number. ...
peano2 7869 The successor of any natur...
peano3 7870 The successor of any natur...
peano4 7871 Two natural numbers are eq...
peano5 7872 The induction postulate: a...
nn0suc 7873 A natural number is either...
find 7874 The Principle of Finite In...
finds 7875 Principle of Finite Induct...
findsg 7876 Principle of Finite Induct...
finds2 7877 Principle of Finite Induct...
finds1 7878 Principle of Finite Induct...
findes 7879 Finite induction with expl...
dmexg 7880 The domain of a set is a s...
rnexg 7881 The range of a set is a se...
dmexd 7882 The domain of a set is a s...
fndmexd 7883 If a function is a set, it...
dmfex 7884 If a mapping is a set, its...
fndmexb 7885 The domain of a function i...
fdmexb 7886 The domain of a function i...
dmfexALT 7887 Alternate proof of ~ dmfex...
dmex 7888 The domain of a set is a s...
rnex 7889 The range of a set is a se...
iprc 7890 The identity function is a...
resiexg 7891 The existence of a restric...
imaexg 7892 The image of a set is a se...
imaex 7893 The image of a set is a se...
rnexd 7894 The range of a set is a se...
imaexd 7895 The image of a set is a se...
exse2 7896 Any set relation is set-li...
xpexr 7897 If a Cartesian product is ...
xpexr2 7898 If a nonempty Cartesian pr...
xpexcnv 7899 A condition where the conv...
soex 7900 If the relation in a stric...
elxp4 7901 Membership in a Cartesian ...
elxp5 7902 Membership in a Cartesian ...
cnvexg 7903 The converse of a set is a...
cnvex 7904 The converse of a set is a...
relcnvexb 7905 A relation is a set iff it...
f1oexrnex 7906 If the range of a 1-1 onto...
f1oexbi 7907 There is a one-to-one onto...
coexg 7908 The composition of two set...
coex 7909 The composition of two set...
coexd 7910 The composition of two set...
funcnvuni 7911 The union of a chain (with...
fun11uni 7912 The union of a chain (with...
resf1extb 7913 Extension of an injection ...
resf1ext2b 7914 Extension of an injection ...
fex2 7915 A function with bounded do...
fabexd 7916 Existence of a set of func...
fabexg 7917 Existence of a set of func...
fabexgOLD 7918 Obsolete version of ~ fabe...
fabex 7919 Existence of a set of func...
mapex 7920 The class of all functions...
f1oabexg 7921 The class of all 1-1-onto ...
f1oabexgOLD 7922 Obsolete version of ~ f1oa...
fiunlem 7923 Lemma for ~ fiun and ~ f1i...
fiun 7924 The union of a chain (with...
f1iun 7925 The union of a chain (with...
fviunfun 7926 The function value of an i...
ffoss 7927 Relationship between a map...
f11o 7928 Relationship between one-t...
resfunexgALT 7929 Alternate proof of ~ resfu...
cofunexg 7930 Existence of a composition...
cofunex2g 7931 Existence of a composition...
fnexALT 7932 Alternate proof of ~ fnex ...
funexw 7933 Weak version of ~ funex th...
mptexw 7934 Weak version of ~ mptex th...
funrnex 7935 If the domain of a functio...
zfrep6 7936 A version of the Axiom of ...
focdmex 7937 If the domain of an onto f...
f1dmex 7938 If the codomain of a one-t...
f1ovv 7939 The codomain/range of a 1-...
fvclex 7940 Existence of the class of ...
fvresex 7941 Existence of the class of ...
abrexexg 7942 Existence of a class abstr...
abrexexgOLD 7943 Obsolete version of ~ abre...
abrexex 7944 Existence of a class abstr...
iunexg 7945 The existence of an indexe...
abrexex2g 7946 Existence of an existentia...
opabex3d 7947 Existence of an ordered pa...
opabex3rd 7948 Existence of an ordered pa...
opabex3 7949 Existence of an ordered pa...
iunex 7950 The existence of an indexe...
abrexex2 7951 Existence of an existentia...
abexssex 7952 Existence of a class abstr...
abexex 7953 A condition where a class ...
f1oweALT 7954 Alternate proof of ~ f1owe...
wemoiso 7955 Thus, there is at most one...
wemoiso2 7956 Thus, there is at most one...
oprabexd 7957 Existence of an operator a...
oprabex 7958 Existence of an operation ...
oprabex3 7959 Existence of an operation ...
oprabrexex2 7960 Existence of an existentia...
ab2rexex 7961 Existence of a class abstr...
ab2rexex2 7962 Existence of an existentia...
xpexgALT 7963 Alternate proof of ~ xpexg...
offval3 7964 General value of ` ( F oF ...
offres 7965 Pointwise combination comm...
ofmres 7966 Equivalent expressions for...
ofmresex 7967 Existence of a restriction...
mptcnfimad 7968 The converse of a mapping ...
1stval 7973 The value of the function ...
2ndval 7974 The value of the function ...
1stnpr 7975 Value of the first-member ...
2ndnpr 7976 Value of the second-member...
1st0 7977 The value of the first-mem...
2nd0 7978 The value of the second-me...
op1st 7979 Extract the first member o...
op2nd 7980 Extract the second member ...
op1std 7981 Extract the first member o...
op2ndd 7982 Extract the second member ...
op1stg 7983 Extract the first member o...
op2ndg 7984 Extract the second member ...
ot1stg 7985 Extract the first member o...
ot2ndg 7986 Extract the second member ...
ot3rdg 7987 Extract the third member o...
1stval2 7988 Alternate value of the fun...
2ndval2 7989 Alternate value of the fun...
oteqimp 7990 The components of an order...
fo1st 7991 The ` 1st ` function maps ...
fo2nd 7992 The ` 2nd ` function maps ...
br1steqg 7993 Uniqueness condition for t...
br2ndeqg 7994 Uniqueness condition for t...
f1stres 7995 Mapping of a restriction o...
f2ndres 7996 Mapping of a restriction o...
fo1stres 7997 Onto mapping of a restrict...
fo2ndres 7998 Onto mapping of a restrict...
1st2val 7999 Value of an alternate defi...
2nd2val 8000 Value of an alternate defi...
1stcof 8001 Composition of the first m...
2ndcof 8002 Composition of the second ...
xp1st 8003 Location of the first elem...
xp2nd 8004 Location of the second ele...
elxp6 8005 Membership in a Cartesian ...
elxp7 8006 Membership in a Cartesian ...
eqopi 8007 Equality with an ordered p...
xp2 8008 Representation of Cartesia...
unielxp 8009 The membership relation fo...
1st2nd2 8010 Reconstruction of a member...
1st2ndb 8011 Reconstruction of an order...
xpopth 8012 An ordered pair theorem fo...
eqop 8013 Two ways to express equali...
eqop2 8014 Two ways to express equali...
op1steq 8015 Two ways of expressing tha...
opreuopreu 8016 There is a unique ordered ...
el2xptp 8017 A member of a nested Carte...
el2xptp0 8018 A member of a nested Carte...
el2xpss 8019 Version of ~ elrel for tri...
2nd1st 8020 Swap the members of an ord...
1st2nd 8021 Reconstruction of a member...
1stdm 8022 The first ordered pair com...
2ndrn 8023 The second ordered pair co...
1st2ndbr 8024 Express an element of a re...
releldm2 8025 Two ways of expressing mem...
reldm 8026 An expression for the doma...
releldmdifi 8027 One way of expressing memb...
funfv1st2nd 8028 The function value for the...
funelss 8029 If the first component of ...
funeldmdif 8030 Two ways of expressing mem...
sbcopeq1a 8031 Equality theorem for subst...
csbopeq1a 8032 Equality theorem for subst...
sbcoteq1a 8033 Equality theorem for subst...
dfopab2 8034 A way to define an ordered...
dfoprab3s 8035 A way to define an operati...
dfoprab3 8036 Operation class abstractio...
dfoprab4 8037 Operation class abstractio...
dfoprab4f 8038 Operation class abstractio...
opabex2 8039 Condition for an operation...
opabn1stprc 8040 An ordered-pair class abst...
opiota 8041 The property of a uniquely...
cnvoprab 8042 The converse of a class ab...
dfxp3 8043 Define the Cartesian produ...
elopabi 8044 A consequence of membershi...
eloprabi 8045 A consequence of membershi...
mpomptsx 8046 Express a two-argument fun...
mpompts 8047 Express a two-argument fun...
dmmpossx 8048 The domain of a mapping is...
fmpox 8049 Functionality, domain and ...
fmpo 8050 Functionality, domain and ...
fnmpo 8051 Functionality and domain o...
fnmpoi 8052 Functionality and domain o...
dmmpo 8053 Domain of a class given by...
ovmpoelrn 8054 An operation's value belon...
dmmpoga 8055 Domain of an operation giv...
dmmpog 8056 Domain of an operation giv...
mpoexxg 8057 Existence of an operation ...
mpoexg 8058 Existence of an operation ...
mpoexga 8059 If the domain of an operat...
mpoexw 8060 Weak version of ~ mpoex th...
mpoex 8061 If the domain of an operat...
mptmpoopabbrd 8062 The operation value of a f...
mptmpoopabbrdOLD 8063 Obsolete version of ~ mptm...
mptmpoopabovd 8064 The operation value of a f...
mptmpoopabbrdOLDOLD 8065 Obsolete version of ~ mptm...
mptmpoopabovdOLD 8066 Obsolete version of ~ mptm...
el2mpocsbcl 8067 If the operation value of ...
el2mpocl 8068 If the operation value of ...
fnmpoovd 8069 A function with a Cartesia...
offval22 8070 The function operation exp...
brovpreldm 8071 If a binary relation holds...
bropopvvv 8072 If a binary relation holds...
bropfvvvvlem 8073 Lemma for ~ bropfvvvv . (...
bropfvvvv 8074 If a binary relation holds...
ovmptss 8075 If all the values of the m...
relmpoopab 8076 Any function to sets of or...
fmpoco 8077 Composition of two functio...
oprabco 8078 Composition of a function ...
oprab2co 8079 Composition of operator ab...
df1st2 8080 An alternate possible defi...
df2nd2 8081 An alternate possible defi...
1stconst 8082 The mapping of a restricti...
2ndconst 8083 The mapping of a restricti...
dfmpo 8084 Alternate definition for t...
mposn 8085 An operation (in maps-to n...
curry1 8086 Composition with ` ``' ( 2...
curry1val 8087 The value of a curried fun...
curry1f 8088 Functionality of a curried...
curry2 8089 Composition with ` ``' ( 1...
curry2f 8090 Functionality of a curried...
curry2val 8091 The value of a curried fun...
cnvf1olem 8092 Lemma for ~ cnvf1o . (Con...
cnvf1o 8093 Describe a function that m...
fparlem1 8094 Lemma for ~ fpar . (Contr...
fparlem2 8095 Lemma for ~ fpar . (Contr...
fparlem3 8096 Lemma for ~ fpar . (Contr...
fparlem4 8097 Lemma for ~ fpar . (Contr...
fpar 8098 Merge two functions in par...
fsplit 8099 A function that can be use...
fsplitfpar 8100 Merge two functions with a...
offsplitfpar 8101 Express the function opera...
f2ndf 8102 The ` 2nd ` (second compon...
fo2ndf 8103 The ` 2nd ` (second compon...
f1o2ndf1 8104 The ` 2nd ` (second compon...
opco1 8105 Value of an operation prec...
opco2 8106 Value of an operation prec...
opco1i 8107 Inference form of ~ opco1 ...
frxp 8108 A lexicographical ordering...
xporderlem 8109 Lemma for lexicographical ...
poxp 8110 A lexicographical ordering...
soxp 8111 A lexicographical ordering...
wexp 8112 A lexicographical ordering...
fnwelem 8113 Lemma for ~ fnwe . (Contr...
fnwe 8114 A variant on lexicographic...
fnse 8115 Condition for the well-ord...
fvproj 8116 Value of a function on ord...
fimaproj 8117 Image of a cartesian produ...
ralxpes 8118 A version of ~ ralxp with ...
ralxp3f 8119 Restricted for all over a ...
ralxp3 8120 Restricted for all over a ...
ralxp3es 8121 Restricted for-all over a ...
frpoins3xpg 8122 Special case of founded pa...
frpoins3xp3g 8123 Special case of founded pa...
xpord2lem 8124 Lemma for Cartesian produc...
poxp2 8125 Another way of partially o...
frxp2 8126 Another way of giving a we...
xpord2pred 8127 Calculate the predecessor ...
sexp2 8128 Condition for the relation...
xpord2indlem 8129 Induction over the Cartesi...
xpord2ind 8130 Induction over the Cartesi...
xpord3lem 8131 Lemma for triple ordering....
poxp3 8132 Triple Cartesian product p...
frxp3 8133 Give well-foundedness over...
xpord3pred 8134 Calculate the predecsessor...
sexp3 8135 Show that the triple order...
xpord3inddlem 8136 Induction over the triple ...
xpord3indd 8137 Induction over the triple ...
xpord3ind 8138 Induction over the triple ...
orderseqlem 8139 Lemma for ~ poseq and ~ so...
poseq 8140 A partial ordering of ordi...
soseq 8141 A linear ordering of ordin...
suppval 8144 The value of the operation...
supp0prc 8145 The support of a class is ...
suppvalbr 8146 The value of the operation...
supp0 8147 The support of the empty s...
suppval1 8148 The value of the operation...
suppvalfng 8149 The value of the operation...
suppvalfn 8150 The value of the operation...
elsuppfng 8151 An element of the support ...
elsuppfn 8152 An element of the support ...
fvdifsupp 8153 Function value is zero out...
cnvimadfsn 8154 The support of functions "...
suppimacnvss 8155 The support of functions "...
suppimacnv 8156 Support sets of functions ...
fsuppeq 8157 Two ways of writing the su...
fsuppeqg 8158 Version of ~ fsuppeq avoid...
suppssdm 8159 The support of a function ...
suppsnop 8160 The support of a singleton...
snopsuppss 8161 The support of a singleton...
fvn0elsupp 8162 If the function value for ...
fvn0elsuppb 8163 The function value for a g...
rexsupp 8164 Existential quantification...
ressuppss 8165 The support of the restric...
suppun 8166 The support of a class/fun...
ressuppssdif 8167 The support of the restric...
mptsuppdifd 8168 The support of a function ...
mptsuppd 8169 The support of a function ...
extmptsuppeq 8170 The support of an extended...
suppfnss 8171 The support of a function ...
funsssuppss 8172 The support of a function ...
fnsuppres 8173 Two ways to express restri...
fnsuppeq0 8174 The support of a function ...
fczsupp0 8175 The support of a constant ...
suppss 8176 Show that the support of a...
suppssr 8177 A function is zero outside...
suppssrg 8178 A function is zero outside...
suppssov1 8179 Formula building theorem f...
suppssov2 8180 Formula building theorem f...
suppssof1 8181 Formula building theorem f...
suppss2 8182 Show that the support of a...
suppsssn 8183 Show that the support of a...
suppssfv 8184 Formula building theorem f...
suppofssd 8185 Condition for the support ...
suppofss1d 8186 Condition for the support ...
suppofss2d 8187 Condition for the support ...
suppco 8188 The support of the composi...
suppcoss 8189 The support of the composi...
supp0cosupp0 8190 The support of the composi...
imacosupp 8191 The image of the support o...
opeliunxp2f 8192 Membership in a union of C...
mpoxeldm 8193 If there is an element of ...
mpoxneldm 8194 If the first argument of a...
mpoxopn0yelv 8195 If there is an element of ...
mpoxopynvov0g 8196 If the second argument of ...
mpoxopxnop0 8197 If the first argument of a...
mpoxopx0ov0 8198 If the first argument of a...
mpoxopxprcov0 8199 If the components of the f...
mpoxopynvov0 8200 If the second argument of ...
mpoxopoveq 8201 Value of an operation give...
mpoxopovel 8202 Element of the value of an...
mpoxopoveqd 8203 Value of an operation give...
brovex 8204 A binary relation of the v...
brovmpoex 8205 A binary relation of the v...
sprmpod 8206 The extension of a binary ...
tposss 8209 Subset theorem for transpo...
tposeq 8210 Equality theorem for trans...
tposeqd 8211 Equality theorem for trans...
tposssxp 8212 The transposition is a sub...
reltpos 8213 The transposition is a rel...
brtpos2 8214 Value of the transposition...
brtpos0 8215 The behavior of ` tpos ` w...
reldmtpos 8216 Necessary and sufficient c...
brtpos 8217 The transposition swaps ar...
ottpos 8218 The transposition swaps th...
relbrtpos 8219 The transposition swaps ar...
dmtpos 8220 The domain of ` tpos F ` w...
rntpos 8221 The range of ` tpos F ` wh...
tposexg 8222 The transposition of a set...
ovtpos 8223 The transposition swaps th...
tposfun 8224 The transposition of a fun...
dftpos2 8225 Alternate definition of ` ...
dftpos3 8226 Alternate definition of ` ...
dftpos4 8227 Alternate definition of ` ...
tpostpos 8228 Value of the double transp...
tpostpos2 8229 Value of the double transp...
tposfn2 8230 The domain of a transposit...
tposfo2 8231 Condition for a surjective...
tposf2 8232 The domain and codomain of...
tposf12 8233 Condition for an injective...
tposf1o2 8234 Condition of a bijective t...
tposfo 8235 The domain and codomain/ra...
tposf 8236 The domain and codomain of...
tposfn 8237 Functionality of a transpo...
tpos0 8238 Transposition of the empty...
tposco 8239 Transposition of a composi...
tpossym 8240 Two ways to say a function...
tposeqi 8241 Equality theorem for trans...
tposex 8242 A transposition is a set. ...
nftpos 8243 Hypothesis builder for tra...
tposoprab 8244 Transposition of a class o...
tposmpo 8245 Transposition of a two-arg...
tposconst 8246 The transposition of a con...
mpocurryd 8251 The currying of an operati...
mpocurryvald 8252 The value of a curried ope...
fvmpocurryd 8253 The value of the value of ...
pwuninel2 8256 Proof of ~ pwuninel under ...
pwuninel 8257 The powerclass of the unio...
undefval 8258 Value of the undefined val...
undefnel2 8259 The undefined value genera...
undefnel 8260 The undefined value genera...
undefne0 8261 The undefined value genera...
frecseq123 8264 Equality theorem for the w...
nffrecs 8265 Bound-variable hypothesis ...
csbfrecsg 8266 Move class substitution in...
fpr3g 8267 Functions defined by well-...
frrlem1 8268 Lemma for well-founded rec...
frrlem2 8269 Lemma for well-founded rec...
frrlem3 8270 Lemma for well-founded rec...
frrlem4 8271 Lemma for well-founded rec...
frrlem5 8272 Lemma for well-founded rec...
frrlem6 8273 Lemma for well-founded rec...
frrlem7 8274 Lemma for well-founded rec...
frrlem8 8275 Lemma for well-founded rec...
frrlem9 8276 Lemma for well-founded rec...
frrlem10 8277 Lemma for well-founded rec...
frrlem11 8278 Lemma for well-founded rec...
frrlem12 8279 Lemma for well-founded rec...
frrlem13 8280 Lemma for well-founded rec...
frrlem14 8281 Lemma for well-founded rec...
fprlem1 8282 Lemma for well-founded rec...
fprlem2 8283 Lemma for well-founded rec...
fpr2a 8284 Weak version of ~ fpr2 whi...
fpr1 8285 Law of well-founded recurs...
fpr2 8286 Law of well-founded recurs...
fpr3 8287 Law of well-founded recurs...
frrrel 8288 Show without using the axi...
frrdmss 8289 Show without using the axi...
frrdmcl 8290 Show without using the axi...
fprfung 8291 A "function" defined by we...
fprresex 8292 The restriction of a funct...
wrecseq123 8295 General equality theorem f...
nfwrecs 8296 Bound-variable hypothesis ...
wrecseq1 8297 Equality theorem for the w...
wrecseq2 8298 Equality theorem for the w...
wrecseq3 8299 Equality theorem for the w...
csbwrecsg 8300 Move class substitution in...
wfr3g 8301 Functions defined by well-...
wfrrel 8302 The well-ordered recursion...
wfrdmss 8303 The domain of the well-ord...
wfrdmcl 8304 The predecessor class of a...
wfrfun 8305 The "function" generated b...
wfrresex 8306 Show without using the axi...
wfr2a 8307 A weak version of ~ wfr2 w...
wfr1 8308 The Principle of Well-Orde...
wfr2 8309 The Principle of Well-Orde...
wfr3 8310 The principle of Well-Orde...
iunon 8311 The indexed union of a set...
iinon 8312 The nonempty indexed inter...
onfununi 8313 A property of functions on...
onovuni 8314 A variant of ~ onfununi fo...
onoviun 8315 A variant of ~ onovuni wit...
onnseq 8316 There are no length ` _om ...
dfsmo2 8319 Alternate definition of a ...
issmo 8320 Conditions for which ` A `...
issmo2 8321 Alternate definition of a ...
smoeq 8322 Equality theorem for stric...
smodm 8323 The domain of a strictly m...
smores 8324 A strictly monotone functi...
smores3 8325 A strictly monotone functi...
smores2 8326 A strictly monotone ordina...
smodm2 8327 The domain of a strictly m...
smofvon2 8328 The function values of a s...
iordsmo 8329 The identity relation rest...
smo0 8330 The null set is a strictly...
smofvon 8331 If ` B ` is a strictly mon...
smoel 8332 If ` x ` is less than ` y ...
smoiun 8333 The value of a strictly mo...
smoiso 8334 If ` F ` is an isomorphism...
smoel2 8335 A strictly monotone ordina...
smo11 8336 A strictly monotone ordina...
smoord 8337 A strictly monotone ordina...
smoword 8338 A strictly monotone ordina...
smogt 8339 A strictly monotone ordina...
smocdmdom 8340 The codomain of a strictly...
smoiso2 8341 The strictly monotone ordi...
dfrecs3 8344 The old definition of tran...
recseq 8345 Equality theorem for ` rec...
nfrecs 8346 Bound-variable hypothesis ...
tfrlem1 8347 A technical lemma for tran...
tfrlem3a 8348 Lemma for transfinite recu...
tfrlem3 8349 Lemma for transfinite recu...
tfrlem4 8350 Lemma for transfinite recu...
tfrlem5 8351 Lemma for transfinite recu...
recsfval 8352 Lemma for transfinite recu...
tfrlem6 8353 Lemma for transfinite recu...
tfrlem7 8354 Lemma for transfinite recu...
tfrlem8 8355 Lemma for transfinite recu...
tfrlem9 8356 Lemma for transfinite recu...
tfrlem9a 8357 Lemma for transfinite recu...
tfrlem10 8358 Lemma for transfinite recu...
tfrlem11 8359 Lemma for transfinite recu...
tfrlem12 8360 Lemma for transfinite recu...
tfrlem13 8361 Lemma for transfinite recu...
tfrlem14 8362 Lemma for transfinite recu...
tfrlem15 8363 Lemma for transfinite recu...
tfrlem16 8364 Lemma for finite recursion...
tfr1a 8365 A weak version of ~ tfr1 w...
tfr2a 8366 A weak version of ~ tfr2 w...
tfr2b 8367 Without assuming ~ ax-rep ...
tfr1 8368 Principle of Transfinite R...
tfr2 8369 Principle of Transfinite R...
tfr3 8370 Principle of Transfinite R...
tfr1ALT 8371 Alternate proof of ~ tfr1 ...
tfr2ALT 8372 Alternate proof of ~ tfr2 ...
tfr3ALT 8373 Alternate proof of ~ tfr3 ...
recsfnon 8374 Strong transfinite recursi...
recsval 8375 Strong transfinite recursi...
tz7.44lem1 8376 The ordered pair abstracti...
tz7.44-1 8377 The value of ` F ` at ` (/...
tz7.44-2 8378 The value of ` F ` at a su...
tz7.44-3 8379 The value of ` F ` at a li...
rdgeq1 8382 Equality theorem for the r...
rdgeq2 8383 Equality theorem for the r...
rdgeq12 8384 Equality theorem for the r...
nfrdg 8385 Bound-variable hypothesis ...
rdglem1 8386 Lemma used with the recurs...
rdgfun 8387 The recursive definition g...
rdgdmlim 8388 The domain of the recursiv...
rdgfnon 8389 The recursive definition g...
rdgvalg 8390 Value of the recursive def...
rdgval 8391 Value of the recursive def...
rdg0 8392 The initial value of the r...
rdgseg 8393 The initial segments of th...
rdgsucg 8394 The value of the recursive...
rdgsuc 8395 The value of the recursive...
rdglimg 8396 The value of the recursive...
rdglim 8397 The value of the recursive...
rdg0g 8398 The initial value of the r...
rdgsucmptf 8399 The value of the recursive...
rdgsucmptnf 8400 The value of the recursive...
rdgsucmpt2 8401 This version of ~ rdgsucmp...
rdgsucmpt 8402 The value of the recursive...
rdglim2 8403 The value of the recursive...
rdglim2a 8404 The value of the recursive...
rdg0n 8405 If ` A ` is a proper class...
frfnom 8406 The function generated by ...
fr0g 8407 The initial value resultin...
frsuc 8408 The successor value result...
frsucmpt 8409 The successor value result...
frsucmptn 8410 The value of the finite re...
frsucmpt2 8411 The successor value result...
tz7.48lem 8412 A way of showing an ordina...
tz7.48-2 8413 Proposition 7.48(2) of [Ta...
tz7.48-1 8414 Proposition 7.48(1) of [Ta...
tz7.48-3 8415 Proposition 7.48(3) of [Ta...
tz7.49 8416 Proposition 7.49 of [Takeu...
tz7.49c 8417 Corollary of Proposition 7...
seqomlem0 8420 Lemma for ` seqom ` . Cha...
seqomlem1 8421 Lemma for ` seqom ` . The...
seqomlem2 8422 Lemma for ` seqom ` . (Co...
seqomlem3 8423 Lemma for ` seqom ` . (Co...
seqomlem4 8424 Lemma for ` seqom ` . (Co...
seqomeq12 8425 Equality theorem for ` seq...
fnseqom 8426 An index-aware recursive d...
seqom0g 8427 Value of an index-aware re...
seqomsuc 8428 Value of an index-aware re...
omsucelsucb 8429 Membership is inherited by...
df1o2 8444 Expanded value of the ordi...
df2o3 8445 Expanded value of the ordi...
df2o2 8446 Expanded value of the ordi...
1oex 8447 Ordinal 1 is a set. (Cont...
2oex 8448 ` 2o ` is a set. (Contrib...
1on 8449 Ordinal 1 is an ordinal nu...
2on 8450 Ordinal 2 is an ordinal nu...
2on0 8451 Ordinal two is not zero. ...
ord3 8452 Ordinal 3 is an ordinal cl...
3on 8453 Ordinal 3 is an ordinal nu...
4on 8454 Ordinal 4 is an ordinal nu...
1n0 8455 Ordinal one is not equal t...
nlim1 8456 1 is not a limit ordinal. ...
nlim2 8457 2 is not a limit ordinal. ...
xp01disj 8458 Cartesian products with th...
xp01disjl 8459 Cartesian products with th...
ordgt0ge1 8460 Two ways to express that a...
ordge1n0 8461 An ordinal greater than or...
el1o 8462 Membership in ordinal one....
ord1eln01 8463 An ordinal that is not 0 o...
ord2eln012 8464 An ordinal that is not 0, ...
1ellim 8465 A limit ordinal contains 1...
2ellim 8466 A limit ordinal contains 2...
dif1o 8467 Two ways to say that ` A `...
ondif1 8468 Two ways to say that ` A `...
ondif2 8469 Two ways to say that ` A `...
2oconcl 8470 Closure of the pair swappi...
0lt1o 8471 Ordinal zero is less than ...
dif20el 8472 An ordinal greater than on...
0we1 8473 The empty set is a well-or...
brwitnlem 8474 Lemma for relations which ...
fnoa 8475 Functionality and domain o...
fnom 8476 Functionality and domain o...
fnoe 8477 Functionality and domain o...
oav 8478 Value of ordinal addition....
omv 8479 Value of ordinal multiplic...
oe0lem 8480 A helper lemma for ~ oe0 a...
oev 8481 Value of ordinal exponenti...
oevn0 8482 Value of ordinal exponenti...
oa0 8483 Addition with zero. Propo...
om0 8484 Ordinal multiplication wit...
oe0m 8485 Value of zero raised to an...
om0x 8486 Ordinal multiplication wit...
oe0m0 8487 Ordinal exponentiation wit...
oe0m1 8488 Ordinal exponentiation wit...
oe0 8489 Ordinal exponentiation wit...
oev2 8490 Alternate value of ordinal...
oasuc 8491 Addition with successor. ...
oesuclem 8492 Lemma for ~ oesuc . (Cont...
omsuc 8493 Multiplication with succes...
oesuc 8494 Ordinal exponentiation wit...
onasuc 8495 Addition with successor. ...
onmsuc 8496 Multiplication with succes...
onesuc 8497 Exponentiation with a succ...
oa1suc 8498 Addition with 1 is same as...
oalim 8499 Ordinal addition with a li...
omlim 8500 Ordinal multiplication wit...
oelim 8501 Ordinal exponentiation wit...
oacl 8502 Closure law for ordinal ad...
omcl 8503 Closure law for ordinal mu...
oecl 8504 Closure law for ordinal ex...
oa0r 8505 Ordinal addition with zero...
om0r 8506 Ordinal multiplication wit...
o1p1e2 8507 1 + 1 = 2 for ordinal numb...
o2p2e4 8508 2 + 2 = 4 for ordinal numb...
om1 8509 Ordinal multiplication wit...
om1r 8510 Ordinal multiplication wit...
oe1 8511 Ordinal exponentiation wit...
oe1m 8512 Ordinal exponentiation wit...
oaordi 8513 Ordering property of ordin...
oaord 8514 Ordering property of ordin...
oacan 8515 Left cancellation law for ...
oaword 8516 Weak ordering property of ...
oawordri 8517 Weak ordering property of ...
oaord1 8518 An ordinal is less than it...
oaword1 8519 An ordinal is less than or...
oaword2 8520 An ordinal is less than or...
oawordeulem 8521 Lemma for ~ oawordex . (C...
oawordeu 8522 Existence theorem for weak...
oawordexr 8523 Existence theorem for weak...
oawordex 8524 Existence theorem for weak...
oaordex 8525 Existence theorem for orde...
oa00 8526 An ordinal sum is zero iff...
oalimcl 8527 The ordinal sum with a lim...
oaass 8528 Ordinal addition is associ...
oarec 8529 Recursive definition of or...
oaf1o 8530 Left addition by a constan...
oacomf1olem 8531 Lemma for ~ oacomf1o . (C...
oacomf1o 8532 Define a bijection from ` ...
omordi 8533 Ordering property of ordin...
omord2 8534 Ordering property of ordin...
omord 8535 Ordering property of ordin...
omcan 8536 Left cancellation law for ...
omword 8537 Weak ordering property of ...
omwordi 8538 Weak ordering property of ...
omwordri 8539 Weak ordering property of ...
omword1 8540 An ordinal is less than or...
omword2 8541 An ordinal is less than or...
om00 8542 The product of two ordinal...
om00el 8543 The product of two nonzero...
omordlim 8544 Ordering involving the pro...
omlimcl 8545 The product of any nonzero...
odi 8546 Distributive law for ordin...
omass 8547 Multiplication of ordinal ...
oneo 8548 If an ordinal number is ev...
omeulem1 8549 Lemma for ~ omeu : existen...
omeulem2 8550 Lemma for ~ omeu : uniquen...
omopth2 8551 An ordered pair-like theor...
omeu 8552 The division algorithm for...
oen0 8553 Ordinal exponentiation wit...
oeordi 8554 Ordering law for ordinal e...
oeord 8555 Ordering property of ordin...
oecan 8556 Left cancellation law for ...
oeword 8557 Weak ordering property of ...
oewordi 8558 Weak ordering property of ...
oewordri 8559 Weak ordering property of ...
oeworde 8560 Ordinal exponentiation com...
oeordsuc 8561 Ordering property of ordin...
oelim2 8562 Ordinal exponentiation wit...
oeoalem 8563 Lemma for ~ oeoa . (Contr...
oeoa 8564 Sum of exponents law for o...
oeoelem 8565 Lemma for ~ oeoe . (Contr...
oeoe 8566 Product of exponents law f...
oelimcl 8567 The ordinal exponential wi...
oeeulem 8568 Lemma for ~ oeeu . (Contr...
oeeui 8569 The division algorithm for...
oeeu 8570 The division algorithm for...
nna0 8571 Addition with zero. Theor...
nnm0 8572 Multiplication with zero. ...
nnasuc 8573 Addition with successor. ...
nnmsuc 8574 Multiplication with succes...
nnesuc 8575 Exponentiation with a succ...
nna0r 8576 Addition to zero. Remark ...
nnm0r 8577 Multiplication with zero. ...
nnacl 8578 Closure of addition of nat...
nnmcl 8579 Closure of multiplication ...
nnecl 8580 Closure of exponentiation ...
nnacli 8581 ` _om ` is closed under ad...
nnmcli 8582 ` _om ` is closed under mu...
nnarcl 8583 Reverse closure law for ad...
nnacom 8584 Addition of natural number...
nnaordi 8585 Ordering property of addit...
nnaord 8586 Ordering property of addit...
nnaordr 8587 Ordering property of addit...
nnawordi 8588 Adding to both sides of an...
nnaass 8589 Addition of natural number...
nndi 8590 Distributive law for natur...
nnmass 8591 Multiplication of natural ...
nnmsucr 8592 Multiplication with succes...
nnmcom 8593 Multiplication of natural ...
nnaword 8594 Weak ordering property of ...
nnacan 8595 Cancellation law for addit...
nnaword1 8596 Weak ordering property of ...
nnaword2 8597 Weak ordering property of ...
nnmordi 8598 Ordering property of multi...
nnmord 8599 Ordering property of multi...
nnmword 8600 Weak ordering property of ...
nnmcan 8601 Cancellation law for multi...
nnmwordi 8602 Weak ordering property of ...
nnmwordri 8603 Weak ordering property of ...
nnawordex 8604 Equivalence for weak order...
nnaordex 8605 Equivalence for ordering. ...
nnaordex2 8606 Equivalence for ordering. ...
1onn 8607 The ordinal 1 is a natural...
1onnALT 8608 Shorter proof of ~ 1onn us...
2onn 8609 The ordinal 2 is a natural...
2onnALT 8610 Shorter proof of ~ 2onn us...
3onn 8611 The ordinal 3 is a natural...
4onn 8612 The ordinal 4 is a natural...
1one2o 8613 Ordinal one is not ordinal...
oaabslem 8614 Lemma for ~ oaabs . (Cont...
oaabs 8615 Ordinal addition absorbs a...
oaabs2 8616 The absorption law ~ oaabs...
omabslem 8617 Lemma for ~ omabs . (Cont...
omabs 8618 Ordinal multiplication is ...
nnm1 8619 Multiply an element of ` _...
nnm2 8620 Multiply an element of ` _...
nn2m 8621 Multiply an element of ` _...
nnneo 8622 If a natural number is eve...
nneob 8623 A natural number is even i...
omsmolem 8624 Lemma for ~ omsmo . (Cont...
omsmo 8625 A strictly monotonic ordin...
omopthlem1 8626 Lemma for ~ omopthi . (Co...
omopthlem2 8627 Lemma for ~ omopthi . (Co...
omopthi 8628 An ordered pair theorem fo...
omopth 8629 An ordered pair theorem fo...
nnasmo 8630 There is at most one left ...
eldifsucnn 8631 Condition for membership i...
on2recsfn 8634 Show that double recursion...
on2recsov 8635 Calculate the value of the...
on2ind 8636 Double induction over ordi...
on3ind 8637 Triple induction over ordi...
coflton 8638 Cofinality theorem for ord...
cofon1 8639 Cofinality theorem for ord...
cofon2 8640 Cofinality theorem for ord...
cofonr 8641 Inverse cofinality law for...
naddfn 8642 Natural addition is a func...
naddcllem 8643 Lemma for ordinal addition...
naddcl 8644 Closure law for natural ad...
naddov 8645 The value of natural addit...
naddov2 8646 Alternate expression for n...
naddov3 8647 Alternate expression for n...
naddf 8648 Function statement for nat...
naddcom 8649 Natural addition commutes....
naddrid 8650 Ordinal zero is the additi...
naddlid 8651 Ordinal zero is the additi...
naddssim 8652 Ordinal less-than-or-equal...
naddelim 8653 Ordinal less-than is prese...
naddel1 8654 Ordinal less-than is not a...
naddel2 8655 Ordinal less-than is not a...
naddss1 8656 Ordinal less-than-or-equal...
naddss2 8657 Ordinal less-than-or-equal...
naddword1 8658 Weak-ordering principle fo...
naddword2 8659 Weak-ordering principle fo...
naddunif 8660 Uniformity theorem for nat...
naddasslem1 8661 Lemma for ~ naddass . Exp...
naddasslem2 8662 Lemma for ~ naddass . Exp...
naddass 8663 Natural ordinal addition i...
nadd32 8664 Commutative/associative la...
nadd4 8665 Rearragement of terms in a...
nadd42 8666 Rearragement of terms in a...
naddel12 8667 Natural addition to both s...
naddsuc2 8668 Natural addition with succ...
naddoa 8669 Natural addition of a natu...
omnaddcl 8670 The naturals are closed un...
dfer2 8675 Alternate definition of eq...
dfec2 8677 Alternate definition of ` ...
ecexg 8678 An equivalence class modul...
ecexr 8679 A nonempty equivalence cla...
ereq1 8681 Equality theorem for equiv...
ereq2 8682 Equality theorem for equiv...
errel 8683 An equivalence relation is...
erdm 8684 The domain of an equivalen...
ercl 8685 Elementhood in the field o...
ersym 8686 An equivalence relation is...
ercl2 8687 Elementhood in the field o...
ersymb 8688 An equivalence relation is...
ertr 8689 An equivalence relation is...
ertrd 8690 A transitivity relation fo...
ertr2d 8691 A transitivity relation fo...
ertr3d 8692 A transitivity relation fo...
ertr4d 8693 A transitivity relation fo...
erref 8694 An equivalence relation is...
ercnv 8695 The converse of an equival...
errn 8696 The range and domain of an...
erssxp 8697 An equivalence relation is...
erex 8698 An equivalence relation is...
erexb 8699 An equivalence relation is...
iserd 8700 A reflexive, symmetric, tr...
iseri 8701 A reflexive, symmetric, tr...
iseriALT 8702 Alternate proof of ~ iseri...
brinxper 8703 Conditions for a reflexive...
brdifun 8704 Evaluate the incomparabili...
swoer 8705 Incomparability under a st...
swoord1 8706 The incomparability equiva...
swoord2 8707 The incomparability equiva...
swoso 8708 If the incomparability rel...
eqerlem 8709 Lemma for ~ eqer . (Contr...
eqer 8710 Equivalence relation invol...
ider 8711 The identity relation is a...
0er 8712 The empty set is an equiva...
eceq1 8713 Equality theorem for equiv...
eceq1d 8714 Equality theorem for equiv...
eceq2 8715 Equality theorem for equiv...
eceq2i 8716 Equality theorem for the `...
eceq2d 8717 Equality theorem for the `...
elecg 8718 Membership in an equivalen...
ecref 8719 All elements are in their ...
elec 8720 Membership in an equivalen...
relelec 8721 Membership in an equivalen...
elecres 8722 Elementhood in the restric...
elecreseq 8723 The restricted coset of ` ...
elecex 8724 Condition for a coset to b...
ecss 8725 An equivalence class is a ...
ecdmn0 8726 A representative of a none...
ereldm 8727 Equality of equivalence cl...
erth 8728 Basic property of equivale...
erth2 8729 Basic property of equivale...
erthi 8730 Basic property of equivale...
erdisj 8731 Equivalence classes do not...
ecidsn 8732 An equivalence class modul...
qseq1 8733 Equality theorem for quoti...
qseq2 8734 Equality theorem for quoti...
qseq2i 8735 Equality theorem for quoti...
qseq1d 8736 Equality theorem for quoti...
qseq2d 8737 Equality theorem for quoti...
qseq12 8738 Equality theorem for quoti...
0qs 8739 Quotient set with the empt...
elqsg 8740 Closed form of ~ elqs . (...
elqs 8741 Membership in a quotient s...
elqsi 8742 Membership in a quotient s...
elqsecl 8743 Membership in a quotient s...
ecelqs 8744 Membership of an equivalen...
ecelqsw 8745 Membership of an equivalen...
ecelqsi 8746 Membership of an equivalen...
ecopqsi 8747 "Closure" law for equivale...
qsexg 8748 A quotient set exists. (C...
qsex 8749 A quotient set exists. (C...
uniqs 8750 The union of a quotient se...
uniqsw 8751 The union of a quotient se...
qsss 8752 A quotient set is a set of...
uniqs2 8753 The union of a quotient se...
snec 8754 The singleton of an equiva...
ecqs 8755 Equivalence class in terms...
ecid 8756 A set is equal to its cose...
qsid 8757 A set is equal to its quot...
ectocld 8758 Implicit substitution of c...
ectocl 8759 Implicit substitution of c...
elqsn0 8760 A quotient set does not co...
ecelqsdm 8761 Membership of an equivalen...
ecelqsdmb 8762 ` R ` -coset of ` B ` in a...
eceldmqs 8763 ` R ` -coset in its domain...
xpider 8764 A Cartesian square is an e...
iiner 8765 The intersection of a none...
riiner 8766 The relative intersection ...
erinxp 8767 A restricted equivalence r...
ecinxp 8768 Restrict the relation in a...
qsinxp 8769 Restrict the equivalence r...
qsdisj 8770 Members of a quotient set ...
qsdisj2 8771 A quotient set is a disjoi...
qsel 8772 If an element of a quotien...
uniinqs 8773 Class union distributes ov...
qliftlem 8774 Lemma for theorems about a...
qliftrel 8775 ` F ` , a function lift, i...
qliftel 8776 Elementhood in the relatio...
qliftel1 8777 Elementhood in the relatio...
qliftfun 8778 The function ` F ` is the ...
qliftfund 8779 The function ` F ` is the ...
qliftfuns 8780 The function ` F ` is the ...
qliftf 8781 The domain and codomain of...
qliftval 8782 The value of the function ...
ecoptocl 8783 Implicit substitution of c...
2ecoptocl 8784 Implicit substitution of c...
3ecoptocl 8785 Implicit substitution of c...
brecop 8786 Binary relation on a quoti...
brecop2 8787 Binary relation on a quoti...
eroveu 8788 Lemma for ~ erov and ~ ero...
erovlem 8789 Lemma for ~ erov and ~ ero...
erov 8790 The value of an operation ...
eroprf 8791 Functionality of an operat...
erov2 8792 The value of an operation ...
eroprf2 8793 Functionality of an operat...
ecopoveq 8794 This is the first of sever...
ecopovsym 8795 Assuming the operation ` F...
ecopovtrn 8796 Assuming that operation ` ...
ecopover 8797 Assuming that operation ` ...
eceqoveq 8798 Equality of equivalence re...
ecovcom 8799 Lemma used to transfer a c...
ecovass 8800 Lemma used to transfer an ...
ecovdi 8801 Lemma used to transfer a d...
mapprc 8806 When ` A ` is a proper cla...
pmex 8807 The class of all partial f...
mapexOLD 8808 Obsolete version of ~ mape...
fnmap 8809 Set exponentiation has a u...
fnpm 8810 Partial function exponenti...
reldmmap 8811 Set exponentiation is a we...
mapvalg 8812 The value of set exponenti...
pmvalg 8813 The value of the partial m...
mapval 8814 The value of set exponenti...
elmapg 8815 Membership relation for se...
elmapd 8816 Deduction form of ~ elmapg...
elmapdd 8817 Deduction associated with ...
mapdm0 8818 The empty set is the only ...
elpmg 8819 The predicate "is a partia...
elpm2g 8820 The predicate "is a partia...
elpm2r 8821 Sufficient condition for b...
elpmi 8822 A partial function is a fu...
pmfun 8823 A partial function is a fu...
elmapex 8824 Eliminate antecedent for m...
elmapi 8825 A mapping is a function, f...
mapfset 8826 If ` B ` is a set, the val...
mapssfset 8827 The value of the set expon...
mapfoss 8828 The value of the set expon...
fsetsspwxp 8829 The class of all functions...
fset0 8830 The set of functions from ...
fsetdmprc0 8831 The set of functions with ...
fsetex 8832 The set of functions betwe...
f1setex 8833 The set of injections betw...
fosetex 8834 The set of surjections bet...
f1osetex 8835 The set of bijections betw...
fsetfcdm 8836 The class of functions wit...
fsetfocdm 8837 The class of functions wit...
fsetprcnex 8838 The class of all functions...
fsetcdmex 8839 The class of all functions...
fsetexb 8840 The class of all functions...
elmapfn 8841 A mapping is a function wi...
elmapfun 8842 A mapping is always a func...
elmapssres 8843 A restricted mapping is a ...
fpmg 8844 A total function is a part...
pmss12g 8845 Subset relation for the se...
pmresg 8846 Elementhood of a restricte...
elmap 8847 Membership relation for se...
mapval2 8848 Alternate expression for t...
elpm 8849 The predicate "is a partia...
elpm2 8850 The predicate "is a partia...
fpm 8851 A total function is a part...
mapsspm 8852 Set exponentiation is a su...
pmsspw 8853 Partial maps are a subset ...
mapsspw 8854 Set exponentiation is a su...
mapfvd 8855 The value of a function th...
elmapresaun 8856 ~ fresaun transposed to ma...
fvmptmap 8857 Special case of ~ fvmpt fo...
map0e 8858 Set exponentiation with an...
map0b 8859 Set exponentiation with an...
map0g 8860 Set exponentiation is empt...
0map0sn0 8861 The set of mappings of the...
mapsnd 8862 The value of set exponenti...
map0 8863 Set exponentiation is empt...
mapsn 8864 The value of set exponenti...
mapss 8865 Subset inheritance for set...
fdiagfn 8866 Functionality of the diago...
fvdiagfn 8867 Functionality of the diago...
mapsnconst 8868 Every singleton map is a c...
mapsncnv 8869 Expression for the inverse...
mapsnf1o2 8870 Explicit bijection between...
mapsnf1o3 8871 Explicit bijection in the ...
ralxpmap 8872 Quantification over functi...
dfixp 8875 Eliminate the expression `...
ixpsnval 8876 The value of an infinite C...
elixp2 8877 Membership in an infinite ...
fvixp 8878 Projection of a factor of ...
ixpfn 8879 A nuple is a function. (C...
elixp 8880 Membership in an infinite ...
elixpconst 8881 Membership in an infinite ...
ixpconstg 8882 Infinite Cartesian product...
ixpconst 8883 Infinite Cartesian product...
ixpeq1 8884 Equality theorem for infin...
ixpeq1d 8885 Equality theorem for infin...
ss2ixp 8886 Subclass theorem for infin...
ixpeq2 8887 Equality theorem for infin...
ixpeq2dva 8888 Equality theorem for infin...
ixpeq2dv 8889 Equality theorem for infin...
cbvixp 8890 Change bound variable in a...
cbvixpv 8891 Change bound variable in a...
nfixpw 8892 Bound-variable hypothesis ...
nfixp 8893 Bound-variable hypothesis ...
nfixp1 8894 The index variable in an i...
ixpprc 8895 A cartesian product of pro...
ixpf 8896 A member of an infinite Ca...
uniixp 8897 The union of an infinite C...
ixpexg 8898 The existence of an infini...
ixpin 8899 The intersection of two in...
ixpiin 8900 The indexed intersection o...
ixpint 8901 The intersection of a coll...
ixp0x 8902 An infinite Cartesian prod...
ixpssmap2g 8903 An infinite Cartesian prod...
ixpssmapg 8904 An infinite Cartesian prod...
0elixp 8905 Membership of the empty se...
ixpn0 8906 The infinite Cartesian pro...
ixp0 8907 The infinite Cartesian pro...
ixpssmap 8908 An infinite Cartesian prod...
resixp 8909 Restriction of an element ...
undifixp 8910 Union of two projections o...
mptelixpg 8911 Condition for an explicit ...
resixpfo 8912 Restriction of elements of...
elixpsn 8913 Membership in a class of s...
ixpsnf1o 8914 A bijection between a clas...
mapsnf1o 8915 A bijection between a set ...
boxriin 8916 A rectangular subset of a ...
boxcutc 8917 The relative complement of...
relen 8926 Equinumerosity is a relati...
reldom 8927 Dominance is a relation. ...
relsdom 8928 Strict dominance is a rela...
encv 8929 If two classes are equinum...
breng 8930 Equinumerosity relation. ...
bren 8931 Equinumerosity relation. ...
brdom2g 8932 Dominance relation. This ...
brdomg 8933 Dominance relation. (Cont...
brdomi 8934 Dominance relation. (Cont...
brdom 8935 Dominance relation. (Cont...
domen 8936 Dominance in terms of equi...
domeng 8937 Dominance in terms of equi...
ctex 8938 A countable set is a set. ...
f1oen4g 8939 The domain and range of a ...
f1dom4g 8940 The domain of a one-to-one...
f1oen3g 8941 The domain and range of a ...
f1dom3g 8942 The domain of a one-to-one...
f1oen2g 8943 The domain and range of a ...
f1dom2g 8944 The domain of a one-to-one...
f1oeng 8945 The domain and range of a ...
f1domg 8946 The domain of a one-to-one...
f1oen 8947 The domain and range of a ...
f1dom 8948 The domain of a one-to-one...
brsdom 8949 Strict dominance relation,...
isfi 8950 Express " ` A ` is finite"...
enssdom 8951 Equinumerosity implies dom...
dfdom2 8952 Alternate definition of do...
endom 8953 Equinumerosity implies dom...
sdomdom 8954 Strict dominance implies d...
sdomnen 8955 Strict dominance implies n...
brdom2 8956 Dominance in terms of stri...
bren2 8957 Equinumerosity expressed i...
enrefg 8958 Equinumerosity is reflexiv...
enref 8959 Equinumerosity is reflexiv...
eqeng 8960 Equality implies equinumer...
domrefg 8961 Dominance is reflexive. (...
en2d 8962 Equinumerosity inference f...
en3d 8963 Equinumerosity inference f...
en2i 8964 Equinumerosity inference f...
en3i 8965 Equinumerosity inference f...
dom2lem 8966 A mapping (first hypothesi...
dom2d 8967 A mapping (first hypothesi...
dom3d 8968 A mapping (first hypothesi...
dom2 8969 A mapping (first hypothesi...
dom3 8970 A mapping (first hypothesi...
idssen 8971 Equality implies equinumer...
domssl 8972 If ` A ` is a subset of ` ...
domssr 8973 If ` C ` is a superset of ...
ssdomg 8974 A set dominates its subset...
ener 8975 Equinumerosity is an equiv...
ensymb 8976 Symmetry of equinumerosity...
ensym 8977 Symmetry of equinumerosity...
ensymi 8978 Symmetry of equinumerosity...
ensymd 8979 Symmetry of equinumerosity...
entr 8980 Transitivity of equinumero...
domtr 8981 Transitivity of dominance ...
entri 8982 A chained equinumerosity i...
entr2i 8983 A chained equinumerosity i...
entr3i 8984 A chained equinumerosity i...
entr4i 8985 A chained equinumerosity i...
endomtr 8986 Transitivity of equinumero...
domentr 8987 Transitivity of dominance ...
f1imaeng 8988 If a function is one-to-on...
f1imaen2g 8989 If a function is one-to-on...
f1imaen3g 8990 If a set function is one-t...
f1imaen 8991 If a function is one-to-on...
en0 8992 The empty set is equinumer...
en0ALT 8993 Shorter proof of ~ en0 , d...
en0r 8994 The empty set is equinumer...
ensn1 8995 A singleton is equinumerou...
ensn1g 8996 A singleton is equinumerou...
enpr1g 8997 ` { A , A } ` has only one...
en1 8998 A set is equinumerous to o...
en1b 8999 A set is equinumerous to o...
reuen1 9000 Two ways to express "exact...
euen1 9001 Two ways to express "exact...
euen1b 9002 Two ways to express " ` A ...
en1uniel 9003 A singleton contains its s...
2dom 9004 A set that dominates ordin...
fundmen 9005 A function is equinumerous...
fundmeng 9006 A function is equinumerous...
cnven 9007 A relational set is equinu...
cnvct 9008 If a set is countable, so ...
fndmeng 9009 A function is equinumerate...
mapsnend 9010 Set exponentiation to a si...
mapsnen 9011 Set exponentiation to a si...
snmapen 9012 Set exponentiation: a sing...
snmapen1 9013 Set exponentiation: a sing...
map1 9014 Set exponentiation: ordina...
en2sn 9015 Two singletons are equinum...
0fi 9016 The empty set is finite. ...
snfi 9017 A singleton is finite. (C...
snfiOLD 9018 Obsolete version of ~ snfi...
fiprc 9019 The class of finite sets i...
unen 9020 Equinumerosity of union of...
enrefnn 9021 Equinumerosity is reflexiv...
en2prd 9022 Two unordered pairs are eq...
enpr2d 9023 A pair with distinct eleme...
enpr2dOLD 9024 Obsolete version of ~ enpr...
ssct 9025 Any subset of a countable ...
ssctOLD 9026 Obsolete version of ~ ssct...
difsnen 9027 All decrements of a set ar...
domdifsn 9028 Dominance over a set with ...
xpsnen 9029 A set is equinumerous to i...
xpsneng 9030 A set is equinumerous to i...
xp1en 9031 One times a cardinal numbe...
endisj 9032 Any two sets are equinumer...
undom 9033 Dominance law for union. ...
undomOLD 9034 Obsolete version of ~ undo...
xpcomf1o 9035 The canonical bijection fr...
xpcomco 9036 Composition with the bijec...
xpcomen 9037 Commutative law for equinu...
xpcomeng 9038 Commutative law for equinu...
xpsnen2g 9039 A set is equinumerous to i...
xpassen 9040 Associative law for equinu...
xpdom2 9041 Dominance law for Cartesia...
xpdom2g 9042 Dominance law for Cartesia...
xpdom1g 9043 Dominance law for Cartesia...
xpdom3 9044 A set is dominated by its ...
xpdom1 9045 Dominance law for Cartesia...
domunsncan 9046 A singleton cancellation l...
omxpenlem 9047 Lemma for ~ omxpen . (Con...
omxpen 9048 The cardinal and ordinal p...
omf1o 9049 Construct an explicit bije...
pw2f1olem 9050 Lemma for ~ pw2f1o . (Con...
pw2f1o 9051 The power set of a set is ...
pw2eng 9052 The power set of a set is ...
pw2en 9053 The power set of a set is ...
fopwdom 9054 Covering implies injection...
enfixsn 9055 Given two equipollent sets...
sucdom2OLD 9056 Obsolete version of ~ sucd...
sbthlem1 9057 Lemma for ~ sbth . (Contr...
sbthlem2 9058 Lemma for ~ sbth . (Contr...
sbthlem3 9059 Lemma for ~ sbth . (Contr...
sbthlem4 9060 Lemma for ~ sbth . (Contr...
sbthlem5 9061 Lemma for ~ sbth . (Contr...
sbthlem6 9062 Lemma for ~ sbth . (Contr...
sbthlem7 9063 Lemma for ~ sbth . (Contr...
sbthlem8 9064 Lemma for ~ sbth . (Contr...
sbthlem9 9065 Lemma for ~ sbth . (Contr...
sbthlem10 9066 Lemma for ~ sbth . (Contr...
sbth 9067 Schroeder-Bernstein Theore...
sbthb 9068 Schroeder-Bernstein Theore...
sbthcl 9069 Schroeder-Bernstein Theore...
dfsdom2 9070 Alternate definition of st...
brsdom2 9071 Alternate definition of st...
sdomnsym 9072 Strict dominance is asymme...
domnsym 9073 Theorem 22(i) of [Suppes] ...
0domg 9074 Any set dominates the empt...
dom0 9075 A set dominated by the emp...
0sdomg 9076 A set strictly dominates t...
0dom 9077 Any set dominates the empt...
0sdom 9078 A set strictly dominates t...
sdom0 9079 The empty set does not str...
sdomdomtr 9080 Transitivity of strict dom...
sdomentr 9081 Transitivity of strict dom...
domsdomtr 9082 Transitivity of dominance ...
ensdomtr 9083 Transitivity of equinumero...
sdomirr 9084 Strict dominance is irrefl...
sdomtr 9085 Strict dominance is transi...
sdomn2lp 9086 Strict dominance has no 2-...
enen1 9087 Equality-like theorem for ...
enen2 9088 Equality-like theorem for ...
domen1 9089 Equality-like theorem for ...
domen2 9090 Equality-like theorem for ...
sdomen1 9091 Equality-like theorem for ...
sdomen2 9092 Equality-like theorem for ...
domtriord 9093 Dominance is trichotomous ...
sdomel 9094 For ordinals, strict domin...
sdomdif 9095 The difference of a set fr...
onsdominel 9096 An ordinal with more eleme...
domunsn 9097 Dominance over a set with ...
fodomr 9098 There exists a mapping fro...
pwdom 9099 Injection of sets implies ...
canth2 9100 Cantor's Theorem. No set ...
canth2g 9101 Cantor's theorem with the ...
2pwuninel 9102 The power set of the power...
2pwne 9103 No set equals the power se...
disjen 9104 A stronger form of ~ pwuni...
disjenex 9105 Existence version of ~ dis...
domss2 9106 A corollary of ~ disjenex ...
domssex2 9107 A corollary of ~ disjenex ...
domssex 9108 Weakening of ~ domssex2 to...
xpf1o 9109 Construct a bijection on a...
xpen 9110 Equinumerosity law for Car...
mapen 9111 Two set exponentiations ar...
mapdom1 9112 Order-preserving property ...
mapxpen 9113 Equinumerosity law for dou...
xpmapenlem 9114 Lemma for ~ xpmapen . (Co...
xpmapen 9115 Equinumerosity law for set...
mapunen 9116 Equinumerosity law for set...
map2xp 9117 A cardinal power with expo...
mapdom2 9118 Order-preserving property ...
mapdom3 9119 Set exponentiation dominat...
pwen 9120 If two sets are equinumero...
ssenen 9121 Equinumerosity of equinume...
limenpsi 9122 A limit ordinal is equinum...
limensuci 9123 A limit ordinal is equinum...
limensuc 9124 A limit ordinal is equinum...
infensuc 9125 Any infinite ordinal is eq...
dif1enlem 9126 Lemma for ~ rexdif1en and ...
dif1enlemOLD 9127 Obsolete version of ~ dif1...
rexdif1en 9128 If a set is equinumerous t...
rexdif1enOLD 9129 Obsolete version of ~ rexd...
dif1en 9130 If a set ` A ` is equinume...
dif1ennn 9131 If a set ` A ` is equinume...
dif1enOLD 9132 Obsolete version of ~ dif1...
findcard 9133 Schema for induction on th...
findcard2 9134 Schema for induction on th...
findcard2s 9135 Variation of ~ findcard2 r...
findcard2d 9136 Deduction version of ~ fin...
nnfi 9137 Natural numbers are finite...
pssnn 9138 A proper subset of a natur...
ssnnfi 9139 A subset of a natural numb...
0finOLD 9140 Obsolete version of ~ 0fi ...
unfi 9141 The union of two finite se...
unfid 9142 The union of two finite se...
ssfi 9143 A subset of a finite set i...
ssfiALT 9144 Shorter proof of ~ ssfi us...
diffi 9145 If ` A ` is finite, ` ( A ...
cnvfi 9146 If a set is finite, its co...
pwssfi 9147 Every element of the power...
fnfi 9148 A version of ~ fnex for fi...
f1oenfi 9149 If the domain of a one-to-...
f1oenfirn 9150 If the range of a one-to-o...
f1domfi 9151 If the codomain of a one-t...
f1domfi2 9152 If the domain of a one-to-...
enreffi 9153 Equinumerosity is reflexiv...
ensymfib 9154 Symmetry of equinumerosity...
entrfil 9155 Transitivity of equinumero...
enfii 9156 A set equinumerous to a fi...
enfi 9157 Equinumerous sets have the...
enfiALT 9158 Shorter proof of ~ enfi us...
domfi 9159 A set dominated by a finit...
entrfi 9160 Transitivity of equinumero...
entrfir 9161 Transitivity of equinumero...
domtrfil 9162 Transitivity of dominance ...
domtrfi 9163 Transitivity of dominance ...
domtrfir 9164 Transitivity of dominance ...
f1imaenfi 9165 If a function is one-to-on...
ssdomfi 9166 A finite set dominates its...
ssdomfi2 9167 A set dominates its finite...
sbthfilem 9168 Lemma for ~ sbthfi . (Con...
sbthfi 9169 Schroeder-Bernstein Theore...
domnsymfi 9170 If a set dominates a finit...
sdomdomtrfi 9171 Transitivity of strict dom...
domsdomtrfi 9172 Transitivity of dominance ...
sucdom2 9173 Strict dominance of a set ...
phplem1 9174 Lemma for Pigeonhole Princ...
phplem2 9175 Lemma for Pigeonhole Princ...
nneneq 9176 Two equinumerous natural n...
php 9177 Pigeonhole Principle. A n...
php2 9178 Corollary of Pigeonhole Pr...
php3 9179 Corollary of Pigeonhole Pr...
php4 9180 Corollary of the Pigeonhol...
php5 9181 Corollary of the Pigeonhol...
phpeqd 9182 Corollary of the Pigeonhol...
nndomog 9183 Cardinal ordering agrees w...
onomeneq 9184 An ordinal number equinume...
onfin 9185 An ordinal number is finit...
onfin2 9186 A set is a natural number ...
nndomo 9187 Cardinal ordering agrees w...
nnsdomo 9188 Cardinal ordering agrees w...
sucdom 9189 Strict dominance of a set ...
sucdomOLD 9190 Obsolete version of ~ sucd...
snnen2o 9191 A singleton ` { A } ` is n...
0sdom1dom 9192 Strict dominance over 0 is...
0sdom1domALT 9193 Alternate proof of ~ 0sdom...
1sdom2 9194 Ordinal 1 is strictly domi...
1sdom2ALT 9195 Alternate proof of ~ 1sdom...
sdom1 9196 A set has less than one me...
sdom1OLD 9197 Obsolete version of ~ sdom...
modom 9198 Two ways to express "at mo...
modom2 9199 Two ways to express "at mo...
rex2dom 9200 A set that has at least 2 ...
1sdom2dom 9201 Strict dominance over 1 is...
1sdom 9202 A set that strictly domina...
1sdomOLD 9203 Obsolete version of ~ 1sdo...
unxpdomlem1 9204 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 9205 Lemma for ~ unxpdom . (Co...
unxpdomlem3 9206 Lemma for ~ unxpdom . (Co...
unxpdom 9207 Cartesian product dominate...
unxpdom2 9208 Corollary of ~ unxpdom . ...
sucxpdom 9209 Cartesian product dominate...
pssinf 9210 A set equinumerous to a pr...
fisseneq 9211 A finite set is equal to i...
ominf 9212 The set of natural numbers...
ominfOLD 9213 Obsolete version of ~ omin...
isinf 9214 Any set that is not finite...
isinfOLD 9215 Obsolete version of ~ isin...
fineqvlem 9216 Lemma for ~ fineqv . (Con...
fineqv 9217 If the Axiom of Infinity i...
xpfir 9218 The components of a nonemp...
ssfid 9219 A subset of a finite set i...
infi 9220 The intersection of two se...
rabfi 9221 A restricted class built f...
finresfin 9222 The restriction of a finit...
f1finf1o 9223 Any injection from one fin...
f1finf1oOLD 9224 Obsolete version of ~ f1fi...
nfielex 9225 If a class is not finite, ...
en1eqsn 9226 A set with one element is ...
en1eqsnOLD 9227 Obsolete version of ~ en1e...
en1eqsnbi 9228 A set containing an elemen...
dif1ennnALT 9229 Alternate proof of ~ dif1e...
enp1ilem 9230 Lemma for uses of ~ enp1i ...
enp1i 9231 Proof induction for ~ en2 ...
enp1iOLD 9232 Obsolete version of ~ enp1...
en2 9233 A set equinumerous to ordi...
en3 9234 A set equinumerous to ordi...
en4 9235 A set equinumerous to ordi...
findcard3 9236 Schema for strong inductio...
findcard3OLD 9237 Obsolete version of ~ find...
ac6sfi 9238 A version of ~ ac6s for fi...
frfi 9239 A partial order is well-fo...
fimax2g 9240 A finite set has a maximum...
fimaxg 9241 A finite set has a maximum...
fisupg 9242 Lemma showing existence an...
wofi 9243 A total order on a finite ...
ordunifi 9244 The maximum of a finite co...
nnunifi 9245 The union (supremum) of a ...
unblem1 9246 Lemma for ~ unbnn . After...
unblem2 9247 Lemma for ~ unbnn . The v...
unblem3 9248 Lemma for ~ unbnn . The v...
unblem4 9249 Lemma for ~ unbnn . The f...
unbnn 9250 Any unbounded subset of na...
unbnn2 9251 Version of ~ unbnn that do...
isfinite2 9252 Any set strictly dominated...
nnsdomg 9253 Omega strictly dominates a...
nnsdomgOLD 9254 Obsolete version of ~ nnsd...
isfiniteg 9255 A set is finite iff it is ...
infsdomnn 9256 An infinite set strictly d...
infsdomnnOLD 9257 Obsolete version of ~ infs...
infn0 9258 An infinite set is not emp...
infn0ALT 9259 Shorter proof of ~ infn0 u...
fin2inf 9260 This (useless) theorem, wh...
unfilem1 9261 Lemma for proving that the...
unfilem2 9262 Lemma for proving that the...
unfilem3 9263 Lemma for proving that the...
unfir 9264 If a union is finite, the ...
unfib 9265 A union is finite if and o...
unfi2 9266 The union of two finite se...
difinf 9267 An infinite set ` A ` minu...
fodomfi 9268 An onto function implies d...
fofi 9269 If an onto function has a ...
f1fi 9270 If a 1-to-1 function has a...
imafi 9271 Images of finite sets are ...
imafiOLD 9272 Obsolete version of ~ imaf...
pwfir 9273 If the power set of a set ...
pwfilem 9274 Lemma for ~ pwfi . (Contr...
pwfi 9275 The power set of a finite ...
xpfi 9276 The Cartesian product of t...
xpfiOLD 9277 Obsolete version of ~ xpfi...
3xpfi 9278 The Cartesian product of t...
domunfican 9279 A finite set union cancell...
infcntss 9280 Every infinite set has a d...
prfi 9281 An unordered pair is finit...
prfiALT 9282 Shorter proof of ~ prfi us...
tpfi 9283 An unordered triple is fin...
fiint 9284 Equivalent ways of stating...
fiintOLD 9285 Obsolete version of ~ fiin...
fodomfir 9286 There exists a mapping fro...
fodomfib 9287 Equivalence of an onto map...
fodomfiOLD 9288 Obsolete version of ~ fodo...
fodomfibOLD 9289 Obsolete version of ~ fodo...
fofinf1o 9290 Any surjection from one fi...
rneqdmfinf1o 9291 Any function from a finite...
fidomdm 9292 Any finite set dominates i...
dmfi 9293 The domain of a finite set...
fundmfibi 9294 A function is finite if an...
resfnfinfin 9295 The restriction of a funct...
residfi 9296 A restricted identity func...
cnvfiALT 9297 Shorter proof of ~ cnvfi u...
rnfi 9298 The range of a finite set ...
f1dmvrnfibi 9299 A one-to-one function whos...
f1vrnfibi 9300 A one-to-one function whic...
iunfi 9301 The finite union of finite...
unifi 9302 The finite union of finite...
unifi2 9303 The finite union of finite...
infssuni 9304 If an infinite set ` A ` i...
unirnffid 9305 The union of the range of ...
mapfi 9306 Set exponentiation of fini...
ixpfi 9307 A Cartesian product of fin...
ixpfi2 9308 A Cartesian product of fin...
mptfi 9309 A finite mapping set is fi...
abrexfi 9310 An image set from a finite...
cnvimamptfin 9311 A preimage of a mapping wi...
elfpw 9312 Membership in a class of f...
unifpw 9313 A set is the union of its ...
f1opwfi 9314 A one-to-one mapping induc...
fissuni 9315 A finite subset of a union...
fipreima 9316 Given a finite subset ` A ...
finsschain 9317 A finite subset of the uni...
indexfi 9318 If for every element of a ...
relfsupp 9321 The property of a function...
relprcnfsupp 9322 A proper class is never fi...
isfsupp 9323 The property of a class to...
isfsuppd 9324 Deduction form of ~ isfsup...
funisfsupp 9325 The property of a function...
fsuppimp 9326 Implications of a class be...
fsuppimpd 9327 A finitely supported funct...
fsuppfund 9328 A finitely supported funct...
fisuppfi 9329 A function on a finite set...
fidmfisupp 9330 A function with a finite d...
finnzfsuppd 9331 If a function is zero outs...
fdmfisuppfi 9332 The support of a function ...
fdmfifsupp 9333 A function with a finite d...
fsuppmptdm 9334 A mapping with a finite do...
fndmfisuppfi 9335 The support of a function ...
fndmfifsupp 9336 A function with a finite d...
suppeqfsuppbi 9337 If two functions have the ...
suppssfifsupp 9338 If the support of a functi...
fsuppsssupp 9339 If the support of a functi...
fsuppsssuppgd 9340 If the support of a functi...
fsuppss 9341 A subset of a finitely sup...
fsuppssov1 9342 Formula building theorem f...
fsuppxpfi 9343 The cartesian product of t...
fczfsuppd 9344 A constant function with v...
fsuppun 9345 The union of two finitely ...
fsuppunfi 9346 The union of the support o...
fsuppunbi 9347 If the union of two classe...
0fsupp 9348 The empty set is a finitel...
snopfsupp 9349 A singleton containing an ...
funsnfsupp 9350 Finite support for a funct...
fsuppres 9351 The restriction of a finit...
fmptssfisupp 9352 The restriction of a mappi...
ressuppfi 9353 If the support of the rest...
resfsupp 9354 If the restriction of a fu...
resfifsupp 9355 The restriction of a funct...
ffsuppbi 9356 Two ways of saying that a ...
fsuppmptif 9357 A function mapping an argu...
sniffsupp 9358 A function mapping all but...
fsuppcolem 9359 Lemma for ~ fsuppco . For...
fsuppco 9360 The composition of a 1-1 f...
fsuppco2 9361 The composition of a funct...
fsuppcor 9362 The composition of a funct...
mapfienlem1 9363 Lemma 1 for ~ mapfien . (...
mapfienlem2 9364 Lemma 2 for ~ mapfien . (...
mapfienlem3 9365 Lemma 3 for ~ mapfien . (...
mapfien 9366 A bijection of the base se...
mapfien2 9367 Equinumerousity relation f...
fival 9370 The set of all the finite ...
elfi 9371 Specific properties of an ...
elfi2 9372 The empty intersection nee...
elfir 9373 Sufficient condition for a...
intrnfi 9374 Sufficient condition for t...
iinfi 9375 An indexed intersection of...
inelfi 9376 The intersection of two se...
ssfii 9377 Any element of a set ` A `...
fi0 9378 The set of finite intersec...
fieq0 9379 A set is empty iff the cla...
fiin 9380 The elements of ` ( fi `` ...
dffi2 9381 The set of finite intersec...
fiss 9382 Subset relationship for fu...
inficl 9383 A set which is closed unde...
fipwuni 9384 The set of finite intersec...
fisn 9385 A singleton is closed unde...
fiuni 9386 The union of the finite in...
fipwss 9387 If a set is a family of su...
elfiun 9388 A finite intersection of e...
dffi3 9389 The set of finite intersec...
fifo 9390 Describe a surjection from...
marypha1lem 9391 Core induction for Philip ...
marypha1 9392 (Philip) Hall's marriage t...
marypha2lem1 9393 Lemma for ~ marypha2 . Pr...
marypha2lem2 9394 Lemma for ~ marypha2 . Pr...
marypha2lem3 9395 Lemma for ~ marypha2 . Pr...
marypha2lem4 9396 Lemma for ~ marypha2 . Pr...
marypha2 9397 Version of ~ marypha1 usin...
dfsup2 9402 Quantifier-free definition...
supeq1 9403 Equality theorem for supre...
supeq1d 9404 Equality deduction for sup...
supeq1i 9405 Equality inference for sup...
supeq2 9406 Equality theorem for supre...
supeq3 9407 Equality theorem for supre...
supeq123d 9408 Equality deduction for sup...
nfsup 9409 Hypothesis builder for sup...
supmo 9410 Any class ` B ` has at mos...
supexd 9411 A supremum is a set. (Con...
supeu 9412 A supremum is unique. Sim...
supval2 9413 Alternate expression for t...
eqsup 9414 Sufficient condition for a...
eqsupd 9415 Sufficient condition for a...
supcl 9416 A supremum belongs to its ...
supub 9417 A supremum is an upper bou...
suplub 9418 A supremum is the least up...
suplub2 9419 Bidirectional form of ~ su...
supnub 9420 An upper bound is not less...
supssd 9421 Inequality deduction for s...
supex 9422 A supremum is a set. (Con...
sup00 9423 The supremum under an empt...
sup0riota 9424 The supremum of an empty s...
sup0 9425 The supremum of an empty s...
supmax 9426 The greatest element of a ...
fisup2g 9427 A finite set satisfies the...
fisupcl 9428 A nonempty finite set cont...
supgtoreq 9429 The supremum of a finite s...
suppr 9430 The supremum of a pair. (...
supsn 9431 The supremum of a singleto...
supisolem 9432 Lemma for ~ supiso . (Con...
supisoex 9433 Lemma for ~ supiso . (Con...
supiso 9434 Image of a supremum under ...
infeq1 9435 Equality theorem for infim...
infeq1d 9436 Equality deduction for inf...
infeq1i 9437 Equality inference for inf...
infeq2 9438 Equality theorem for infim...
infeq3 9439 Equality theorem for infim...
infeq123d 9440 Equality deduction for inf...
nfinf 9441 Hypothesis builder for inf...
infexd 9442 An infimum is a set. (Con...
eqinf 9443 Sufficient condition for a...
eqinfd 9444 Sufficient condition for a...
infval 9445 Alternate expression for t...
infcllem 9446 Lemma for ~ infcl , ~ infl...
infcl 9447 An infimum belongs to its ...
inflb 9448 An infimum is a lower boun...
infglb 9449 An infimum is the greatest...
infglbb 9450 Bidirectional form of ~ in...
infnlb 9451 A lower bound is not great...
infssd 9452 Inequality deduction for i...
infex 9453 An infimum is a set. (Con...
infmin 9454 The smallest element of a ...
infmo 9455 Any class ` B ` has at mos...
infeu 9456 An infimum is unique. (Co...
fimin2g 9457 A finite set has a minimum...
fiming 9458 A finite set has a minimum...
fiinfg 9459 Lemma showing existence an...
fiinf2g 9460 A finite set satisfies the...
fiinfcl 9461 A nonempty finite set cont...
infltoreq 9462 The infimum of a finite se...
infpr 9463 The infimum of a pair. (C...
infsupprpr 9464 The infimum of a proper pa...
infsn 9465 The infimum of a singleton...
inf00 9466 The infimum regarding an e...
infempty 9467 The infimum of an empty se...
infiso 9468 Image of an infimum under ...
dfoi 9471 Rewrite ~ df-oi with abbre...
oieq1 9472 Equality theorem for ordin...
oieq2 9473 Equality theorem for ordin...
nfoi 9474 Hypothesis builder for ord...
ordiso2 9475 Generalize ~ ordiso to pro...
ordiso 9476 Order-isomorphic ordinal n...
ordtypecbv 9477 Lemma for ~ ordtype . (Co...
ordtypelem1 9478 Lemma for ~ ordtype . (Co...
ordtypelem2 9479 Lemma for ~ ordtype . (Co...
ordtypelem3 9480 Lemma for ~ ordtype . (Co...
ordtypelem4 9481 Lemma for ~ ordtype . (Co...
ordtypelem5 9482 Lemma for ~ ordtype . (Co...
ordtypelem6 9483 Lemma for ~ ordtype . (Co...
ordtypelem7 9484 Lemma for ~ ordtype . ` ra...
ordtypelem8 9485 Lemma for ~ ordtype . (Co...
ordtypelem9 9486 Lemma for ~ ordtype . Eit...
ordtypelem10 9487 Lemma for ~ ordtype . Usi...
oi0 9488 Definition of the ordinal ...
oicl 9489 The order type of the well...
oif 9490 The order isomorphism of t...
oiiso2 9491 The order isomorphism of t...
ordtype 9492 For any set-like well-orde...
oiiniseg 9493 ` ran F ` is an initial se...
ordtype2 9494 For any set-like well-orde...
oiexg 9495 The order isomorphism on a...
oion 9496 The order type of the well...
oiiso 9497 The order isomorphism of t...
oien 9498 The order type of a well-o...
oieu 9499 Uniqueness of the unique o...
oismo 9500 When ` A ` is a subclass o...
oiid 9501 The order type of an ordin...
hartogslem1 9502 Lemma for ~ hartogs . (Co...
hartogslem2 9503 Lemma for ~ hartogs . (Co...
hartogs 9504 The class of ordinals domi...
wofib 9505 The only sets which are we...
wemaplem1 9506 Value of the lexicographic...
wemaplem2 9507 Lemma for ~ wemapso . Tra...
wemaplem3 9508 Lemma for ~ wemapso . Tra...
wemappo 9509 Construct lexicographic or...
wemapsolem 9510 Lemma for ~ wemapso . (Co...
wemapso 9511 Construct lexicographic or...
wemapso2lem 9512 Lemma for ~ wemapso2 . (C...
wemapso2 9513 An alternative to having a...
card2on 9514 The alternate definition o...
card2inf 9515 The alternate definition o...
harf 9518 Functionality of the Harto...
harcl 9519 Values of the Hartogs func...
harval 9520 Function value of the Hart...
elharval 9521 The Hartogs number of a se...
harndom 9522 The Hartogs number of a se...
harword 9523 Weak ordering property of ...
relwdom 9526 Weak dominance is a relati...
brwdom 9527 Property of weak dominance...
brwdomi 9528 Property of weak dominance...
brwdomn0 9529 Weak dominance over nonemp...
0wdom 9530 Any set weakly dominates t...
fowdom 9531 An onto function implies w...
wdomref 9532 Reflexivity of weak domina...
brwdom2 9533 Alternate characterization...
domwdom 9534 Weak dominance is implied ...
wdomtr 9535 Transitivity of weak domin...
wdomen1 9536 Equality-like theorem for ...
wdomen2 9537 Equality-like theorem for ...
wdompwdom 9538 Weak dominance strengthens...
canthwdom 9539 Cantor's Theorem, stated u...
wdom2d 9540 Deduce weak dominance from...
wdomd 9541 Deduce weak dominance from...
brwdom3 9542 Condition for weak dominan...
brwdom3i 9543 Weak dominance implies exi...
unwdomg 9544 Weak dominance of a (disjo...
xpwdomg 9545 Weak dominance of a Cartes...
wdomima2g 9546 A set is weakly dominant o...
wdomimag 9547 A set is weakly dominant o...
unxpwdom2 9548 Lemma for ~ unxpwdom . (C...
unxpwdom 9549 If a Cartesian product is ...
ixpiunwdom 9550 Describe an onto function ...
harwdom 9551 The value of the Hartogs f...
axreg2 9553 Axiom of Regularity expres...
zfregcl 9554 The Axiom of Regularity wi...
zfreg 9555 The Axiom of Regularity us...
elirrv 9556 The membership relation is...
elirr 9557 No class is a member of it...
elneq 9558 A class is not equal to an...
nelaneq 9559 A class is not an element ...
epinid0 9560 The membership relation an...
sucprcreg 9561 A class is equal to its su...
ruv 9562 The Russell class is equal...
ruALT 9563 Alternate proof of ~ ru , ...
disjcsn 9564 A class is disjoint from i...
zfregfr 9565 The membership relation is...
en2lp 9566 No class has 2-cycle membe...
elnanel 9567 Two classes are not elemen...
cnvepnep 9568 The membership (epsilon) r...
epnsym 9569 The membership (epsilon) r...
elnotel 9570 A class cannot be an eleme...
elnel 9571 A class cannot be an eleme...
en3lplem1 9572 Lemma for ~ en3lp . (Cont...
en3lplem2 9573 Lemma for ~ en3lp . (Cont...
en3lp 9574 No class has 3-cycle membe...
preleqg 9575 Equality of two unordered ...
preleq 9576 Equality of two unordered ...
preleqALT 9577 Alternate proof of ~ prele...
opthreg 9578 Theorem for alternate repr...
suc11reg 9579 The successor operation be...
dford2 9580 Assuming ~ ax-reg , an ord...
inf0 9581 Existence of ` _om ` impli...
inf1 9582 Variation of Axiom of Infi...
inf2 9583 Variation of Axiom of Infi...
inf3lema 9584 Lemma for our Axiom of Inf...
inf3lemb 9585 Lemma for our Axiom of Inf...
inf3lemc 9586 Lemma for our Axiom of Inf...
inf3lemd 9587 Lemma for our Axiom of Inf...
inf3lem1 9588 Lemma for our Axiom of Inf...
inf3lem2 9589 Lemma for our Axiom of Inf...
inf3lem3 9590 Lemma for our Axiom of Inf...
inf3lem4 9591 Lemma for our Axiom of Inf...
inf3lem5 9592 Lemma for our Axiom of Inf...
inf3lem6 9593 Lemma for our Axiom of Inf...
inf3lem7 9594 Lemma for our Axiom of Inf...
inf3 9595 Our Axiom of Infinity ~ ax...
infeq5i 9596 Half of ~ infeq5 . (Contr...
infeq5 9597 The statement "there exist...
zfinf 9599 Axiom of Infinity expresse...
axinf2 9600 A standard version of Axio...
zfinf2 9602 A standard version of the ...
omex 9603 The existence of omega (th...
axinf 9604 The first version of the A...
inf5 9605 The statement "there exist...
omelon 9606 Omega is an ordinal number...
dfom3 9607 The class of natural numbe...
elom3 9608 A simplification of ~ elom...
dfom4 9609 A simplification of ~ df-o...
dfom5 9610 ` _om ` is the smallest li...
oancom 9611 Ordinal addition is not co...
isfinite 9612 A set is finite iff it is ...
fict 9613 A finite set is countable ...
nnsdom 9614 A natural number is strict...
omenps 9615 Omega is equinumerous to a...
omensuc 9616 The set of natural numbers...
infdifsn 9617 Removing a singleton from ...
infdiffi 9618 Removing a finite set from...
unbnn3 9619 Any unbounded subset of na...
noinfep 9620 Using the Axiom of Regular...
cantnffval 9623 The value of the Cantor no...
cantnfdm 9624 The domain of the Cantor n...
cantnfvalf 9625 Lemma for ~ cantnf . The ...
cantnfs 9626 Elementhood in the set of ...
cantnfcl 9627 Basic properties of the or...
cantnfval 9628 The value of the Cantor no...
cantnfval2 9629 Alternate expression for t...
cantnfsuc 9630 The value of the recursive...
cantnfle 9631 A lower bound on the ` CNF...
cantnflt 9632 An upper bound on the part...
cantnflt2 9633 An upper bound on the ` CN...
cantnff 9634 The ` CNF ` function is a ...
cantnf0 9635 The value of the zero func...
cantnfrescl 9636 A function is finitely sup...
cantnfres 9637 The ` CNF ` function respe...
cantnfp1lem1 9638 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9639 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9640 Lemma for ~ cantnfp1 . (C...
cantnfp1 9641 If ` F ` is created by add...
oemapso 9642 The relation ` T ` is a st...
oemapval 9643 Value of the relation ` T ...
oemapvali 9644 If ` F < G ` , then there ...
cantnflem1a 9645 Lemma for ~ cantnf . (Con...
cantnflem1b 9646 Lemma for ~ cantnf . (Con...
cantnflem1c 9647 Lemma for ~ cantnf . (Con...
cantnflem1d 9648 Lemma for ~ cantnf . (Con...
cantnflem1 9649 Lemma for ~ cantnf . This...
cantnflem2 9650 Lemma for ~ cantnf . (Con...
cantnflem3 9651 Lemma for ~ cantnf . Here...
cantnflem4 9652 Lemma for ~ cantnf . Comp...
cantnf 9653 The Cantor Normal Form the...
oemapwe 9654 The lexicographic order on...
cantnffval2 9655 An alternate definition of...
cantnff1o 9656 Simplify the isomorphism o...
wemapwe 9657 Construct lexicographic or...
oef1o 9658 A bijection of the base se...
cnfcomlem 9659 Lemma for ~ cnfcom . (Con...
cnfcom 9660 Any ordinal ` B ` is equin...
cnfcom2lem 9661 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9662 Any nonzero ordinal ` B ` ...
cnfcom3lem 9663 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9664 Any infinite ordinal ` B `...
cnfcom3clem 9665 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9666 Wrap the construction of ~...
ttrcleq 9669 Equality theorem for trans...
nfttrcld 9670 Bound variable hypothesis ...
nfttrcl 9671 Bound variable hypothesis ...
relttrcl 9672 The transitive closure of ...
brttrcl 9673 Characterization of elemen...
brttrcl2 9674 Characterization of elemen...
ssttrcl 9675 If ` R ` is a relation, th...
ttrcltr 9676 The transitive closure of ...
ttrclresv 9677 The transitive closure of ...
ttrclco 9678 Composition law for the tr...
cottrcl 9679 Composition law for the tr...
ttrclss 9680 If ` R ` is a subclass of ...
dmttrcl 9681 The domain of a transitive...
rnttrcl 9682 The range of a transitive ...
ttrclexg 9683 If ` R ` is a set, then so...
dfttrcl2 9684 When ` R ` is a set and a ...
ttrclselem1 9685 Lemma for ~ ttrclse . Sho...
ttrclselem2 9686 Lemma for ~ ttrclse . Sho...
ttrclse 9687 If ` R ` is set-like over ...
trcl 9688 For any set ` A ` , show t...
tz9.1 9689 Every set has a transitive...
tz9.1c 9690 Alternate expression for t...
epfrs 9691 The strong form of the Axi...
zfregs 9692 The strong form of the Axi...
zfregs2 9693 Alternate strong form of t...
setind 9694 Set (epsilon) induction. ...
setind2 9695 Set (epsilon) induction, s...
tcvalg 9698 Value of the transitive cl...
tcid 9699 Defining property of the t...
tctr 9700 Defining property of the t...
tcmin 9701 Defining property of the t...
tc2 9702 A variant of the definitio...
tcsni 9703 The transitive closure of ...
tcss 9704 The transitive closure fun...
tcel 9705 The transitive closure fun...
tcidm 9706 The transitive closure fun...
tc0 9707 The transitive closure of ...
tc00 9708 The transitive closure is ...
frmin 9709 Every (possibly proper) su...
frind 9710 A subclass of a well-found...
frinsg 9711 Well-Founded Induction Sch...
frins 9712 Well-Founded Induction Sch...
frins2f 9713 Well-Founded Induction sch...
frins2 9714 Well-Founded Induction sch...
frins3 9715 Well-Founded Induction sch...
frr3g 9716 Functions defined by well-...
frrlem15 9717 Lemma for general well-fou...
frrlem16 9718 Lemma for general well-fou...
frr1 9719 Law of general well-founde...
frr2 9720 Law of general well-founde...
frr3 9721 Law of general well-founde...
r1funlim 9726 The cumulative hierarchy o...
r1fnon 9727 The cumulative hierarchy o...
r10 9728 Value of the cumulative hi...
r1sucg 9729 Value of the cumulative hi...
r1suc 9730 Value of the cumulative hi...
r1limg 9731 Value of the cumulative hi...
r1lim 9732 Value of the cumulative hi...
r1fin 9733 The first ` _om ` levels o...
r1sdom 9734 Each stage in the cumulati...
r111 9735 The cumulative hierarchy i...
r1tr 9736 The cumulative hierarchy o...
r1tr2 9737 The union of a cumulative ...
r1ordg 9738 Ordering relation for the ...
r1ord3g 9739 Ordering relation for the ...
r1ord 9740 Ordering relation for the ...
r1ord2 9741 Ordering relation for the ...
r1ord3 9742 Ordering relation for the ...
r1sssuc 9743 The value of the cumulativ...
r1pwss 9744 Each set of the cumulative...
r1sscl 9745 Each set of the cumulative...
r1val1 9746 The value of the cumulativ...
tz9.12lem1 9747 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9748 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9749 Lemma for ~ tz9.12 . (Con...
tz9.12 9750 A set is well-founded if a...
tz9.13 9751 Every set is well-founded,...
tz9.13g 9752 Every set is well-founded,...
rankwflemb 9753 Two ways of saying a set i...
rankf 9754 The domain and codomain of...
rankon 9755 The rank of a set is an or...
r1elwf 9756 Any member of the cumulati...
rankvalb 9757 Value of the rank function...
rankr1ai 9758 One direction of ~ rankr1a...
rankvaln 9759 Value of the rank function...
rankidb 9760 Identity law for the rank ...
rankdmr1 9761 A rank is a member of the ...
rankr1ag 9762 A version of ~ rankr1a tha...
rankr1bg 9763 A relationship between ran...
r1rankidb 9764 Any set is a subset of the...
r1elssi 9765 The range of the ` R1 ` fu...
r1elss 9766 The range of the ` R1 ` fu...
pwwf 9767 A power set is well-founde...
sswf 9768 A subset of a well-founded...
snwf 9769 A singleton is well-founde...
unwf 9770 A binary union is well-fou...
prwf 9771 An unordered pair is well-...
opwf 9772 An ordered pair is well-fo...
unir1 9773 The cumulative hierarchy o...
jech9.3 9774 Every set belongs to some ...
rankwflem 9775 Every set is well-founded,...
rankval 9776 Value of the rank function...
rankvalg 9777 Value of the rank function...
rankval2 9778 Value of an alternate defi...
uniwf 9779 A union is well-founded if...
rankr1clem 9780 Lemma for ~ rankr1c . (Co...
rankr1c 9781 A relationship between the...
rankidn 9782 A relationship between the...
rankpwi 9783 The rank of a power set. ...
rankelb 9784 The membership relation is...
wfelirr 9785 A well-founded set is not ...
rankval3b 9786 The value of the rank func...
ranksnb 9787 The rank of a singleton. ...
rankonidlem 9788 Lemma for ~ rankonid . (C...
rankonid 9789 The rank of an ordinal num...
onwf 9790 The ordinals are all well-...
onssr1 9791 Initial segments of the or...
rankr1g 9792 A relationship between the...
rankid 9793 Identity law for the rank ...
rankr1 9794 A relationship between the...
ssrankr1 9795 A relationship between an ...
rankr1a 9796 A relationship between ran...
r1val2 9797 The value of the cumulativ...
r1val3 9798 The value of the cumulativ...
rankel 9799 The membership relation is...
rankval3 9800 The value of the rank func...
bndrank 9801 Any class whose elements h...
unbndrank 9802 The elements of a proper c...
rankpw 9803 The rank of a power set. ...
ranklim 9804 The rank of a set belongs ...
r1pw 9805 A stronger property of ` R...
r1pwALT 9806 Alternate shorter proof of...
r1pwcl 9807 The cumulative hierarchy o...
rankssb 9808 The subset relation is inh...
rankss 9809 The subset relation is inh...
rankunb 9810 The rank of the union of t...
rankprb 9811 The rank of an unordered p...
rankopb 9812 The rank of an ordered pai...
rankuni2b 9813 The value of the rank func...
ranksn 9814 The rank of a singleton. ...
rankuni2 9815 The rank of a union. Part...
rankun 9816 The rank of the union of t...
rankpr 9817 The rank of an unordered p...
rankop 9818 The rank of an ordered pai...
r1rankid 9819 Any set is a subset of the...
rankeq0b 9820 A set is empty iff its ran...
rankeq0 9821 A set is empty iff its ran...
rankr1id 9822 The rank of the hierarchy ...
rankuni 9823 The rank of a union. Part...
rankr1b 9824 A relationship between ran...
ranksuc 9825 The rank of a successor. ...
rankuniss 9826 Upper bound of the rank of...
rankval4 9827 The rank of a set is the s...
rankbnd 9828 The rank of a set is bound...
rankbnd2 9829 The rank of a set is bound...
rankc1 9830 A relationship that can be...
rankc2 9831 A relationship that can be...
rankelun 9832 Rank membership is inherit...
rankelpr 9833 Rank membership is inherit...
rankelop 9834 Rank membership is inherit...
rankxpl 9835 A lower bound on the rank ...
rankxpu 9836 An upper bound on the rank...
rankfu 9837 An upper bound on the rank...
rankmapu 9838 An upper bound on the rank...
rankxplim 9839 The rank of a Cartesian pr...
rankxplim2 9840 If the rank of a Cartesian...
rankxplim3 9841 The rank of a Cartesian pr...
rankxpsuc 9842 The rank of a Cartesian pr...
tcwf 9843 The transitive closure fun...
tcrank 9844 This theorem expresses two...
scottex 9845 Scott's trick collects all...
scott0 9846 Scott's trick collects all...
scottexs 9847 Theorem scheme version of ...
scott0s 9848 Theorem scheme version of ...
cplem1 9849 Lemma for the Collection P...
cplem2 9850 Lemma for the Collection P...
cp 9851 Collection Principle. Thi...
bnd 9852 A very strong generalizati...
bnd2 9853 A variant of the Boundedne...
kardex 9854 The collection of all sets...
karden 9855 If we allow the Axiom of R...
htalem 9856 Lemma for defining an emul...
hta 9857 A ZFC emulation of Hilbert...
djueq12 9864 Equality theorem for disjo...
djueq1 9865 Equality theorem for disjo...
djueq2 9866 Equality theorem for disjo...
nfdju 9867 Bound-variable hypothesis ...
djuex 9868 The disjoint union of sets...
djuexb 9869 The disjoint union of two ...
djulcl 9870 Left closure of disjoint u...
djurcl 9871 Right closure of disjoint ...
djulf1o 9872 The left injection functio...
djurf1o 9873 The right injection functi...
inlresf 9874 The left injection restric...
inlresf1 9875 The left injection restric...
inrresf 9876 The right injection restri...
inrresf1 9877 The right injection restri...
djuin 9878 The images of any classes ...
djur 9879 A member of a disjoint uni...
djuss 9880 A disjoint union is a subc...
djuunxp 9881 The union of a disjoint un...
djuexALT 9882 Alternate proof of ~ djuex...
eldju1st 9883 The first component of an ...
eldju2ndl 9884 The second component of an...
eldju2ndr 9885 The second component of an...
djuun 9886 The disjoint union of two ...
1stinl 9887 The first component of the...
2ndinl 9888 The second component of th...
1stinr 9889 The first component of the...
2ndinr 9890 The second component of th...
updjudhf 9891 The mapping of an element ...
updjudhcoinlf 9892 The composition of the map...
updjudhcoinrg 9893 The composition of the map...
updjud 9894 Universal property of the ...
cardf2 9903 The cardinality function i...
cardon 9904 The cardinal number of a s...
isnum2 9905 A way to express well-orde...
isnumi 9906 A set equinumerous to an o...
ennum 9907 Equinumerous sets are equi...
finnum 9908 Every finite set is numera...
onenon 9909 Every ordinal number is nu...
tskwe 9910 A Tarski set is well-order...
xpnum 9911 The cartesian product of n...
cardval3 9912 An alternate definition of...
cardid2 9913 Any numerable set is equin...
isnum3 9914 A set is numerable iff it ...
oncardval 9915 The value of the cardinal ...
oncardid 9916 Any ordinal number is equi...
cardonle 9917 The cardinal of an ordinal...
card0 9918 The cardinality of the emp...
cardidm 9919 The cardinality function i...
oncard 9920 A set is a cardinal number...
ficardom 9921 The cardinal number of a f...
ficardid 9922 A finite set is equinumero...
cardnn 9923 The cardinality of a natur...
cardnueq0 9924 The empty set is the only ...
cardne 9925 No member of a cardinal nu...
carden2a 9926 If two sets have equal non...
carden2b 9927 If two sets are equinumero...
card1 9928 A set has cardinality one ...
cardsn 9929 A singleton has cardinalit...
carddomi2 9930 Two sets have the dominanc...
sdomsdomcardi 9931 A set strictly dominates i...
cardlim 9932 An infinite cardinal is a ...
cardsdomelir 9933 A cardinal strictly domina...
cardsdomel 9934 A cardinal strictly domina...
iscard 9935 Two ways to express the pr...
iscard2 9936 Two ways to express the pr...
carddom2 9937 Two numerable sets have th...
harcard 9938 The class of ordinal numbe...
cardprclem 9939 Lemma for ~ cardprc . (Co...
cardprc 9940 The class of all cardinal ...
carduni 9941 The union of a set of card...
cardiun 9942 The indexed union of a set...
cardennn 9943 If ` A ` is equinumerous t...
cardsucinf 9944 The cardinality of the suc...
cardsucnn 9945 The cardinality of the suc...
cardom 9946 The set of natural numbers...
carden2 9947 Two numerable sets are equ...
cardsdom2 9948 A numerable set is strictl...
domtri2 9949 Trichotomy of dominance fo...
nnsdomel 9950 Strict dominance and eleme...
cardval2 9951 An alternate version of th...
isinffi 9952 An infinite set contains s...
fidomtri 9953 Trichotomy of dominance wi...
fidomtri2 9954 Trichotomy of dominance wi...
harsdom 9955 The Hartogs number of a we...
onsdom 9956 Any well-orderable set is ...
harval2 9957 An alternate expression fo...
harsucnn 9958 The next cardinal after a ...
cardmin2 9959 The smallest ordinal that ...
pm54.43lem 9960 In Theorem *54.43 of [Whit...
pm54.43 9961 Theorem *54.43 of [Whitehe...
enpr2 9962 An unordered pair with dis...
pr2nelemOLD 9963 Obsolete version of ~ enpr...
pr2ne 9964 If an unordered pair has t...
pr2neOLD 9965 Obsolete version of ~ pr2n...
prdom2 9966 An unordered pair has at m...
en2eqpr 9967 Building a set with two el...
en2eleq 9968 Express a set of pair card...
en2other2 9969 Taking the other element t...
dif1card 9970 The cardinality of a nonem...
leweon 9971 Lexicographical order is a...
r0weon 9972 A set-like well-ordering o...
infxpenlem 9973 Lemma for ~ infxpen . (Co...
infxpen 9974 Every infinite ordinal is ...
xpomen 9975 The Cartesian product of o...
xpct 9976 The cartesian product of t...
infxpidm2 9977 Every infinite well-ordera...
infxpenc 9978 A canonical version of ~ i...
infxpenc2lem1 9979 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 9980 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 9981 Lemma for ~ infxpenc2 . (...
infxpenc2 9982 Existence form of ~ infxpe...
iunmapdisj 9983 The union ` U_ n e. C ( A ...
fseqenlem1 9984 Lemma for ~ fseqen . (Con...
fseqenlem2 9985 Lemma for ~ fseqen . (Con...
fseqdom 9986 One half of ~ fseqen . (C...
fseqen 9987 A set that is equinumerous...
infpwfidom 9988 The collection of finite s...
dfac8alem 9989 Lemma for ~ dfac8a . If t...
dfac8a 9990 Numeration theorem: every ...
dfac8b 9991 The well-ordering theorem:...
dfac8clem 9992 Lemma for ~ dfac8c . (Con...
dfac8c 9993 If the union of a set is w...
ac10ct 9994 A proof of the well-orderi...
ween 9995 A set is numerable iff it ...
ac5num 9996 A version of ~ ac5b with t...
ondomen 9997 If a set is dominated by a...
numdom 9998 A set dominated by a numer...
ssnum 9999 A subset of a numerable se...
onssnum 10000 All subsets of the ordinal...
indcardi 10001 Indirect strong induction ...
acnrcl 10002 Reverse closure for the ch...
acneq 10003 Equality theorem for the c...
isacn 10004 The property of being a ch...
acni 10005 The property of being a ch...
acni2 10006 The property of being a ch...
acni3 10007 The property of being a ch...
acnlem 10008 Construct a mapping satisf...
numacn 10009 A well-orderable set has c...
finacn 10010 Every set has finite choic...
acndom 10011 A set with long choice seq...
acnnum 10012 A set ` X ` which has choi...
acnen 10013 The class of choice sets o...
acndom2 10014 A set smaller than one wit...
acnen2 10015 The class of sets with cho...
fodomacn 10016 A version of ~ fodom that ...
fodomnum 10017 A version of ~ fodom that ...
fonum 10018 A surjection maps numerabl...
numwdom 10019 A surjection maps numerabl...
fodomfi2 10020 Onto functions define domi...
wdomfil 10021 Weak dominance agrees with...
infpwfien 10022 Any infinite well-orderabl...
inffien 10023 The set of finite intersec...
wdomnumr 10024 Weak dominance agrees with...
alephfnon 10025 The aleph function is a fu...
aleph0 10026 The first infinite cardina...
alephlim 10027 Value of the aleph functio...
alephsuc 10028 Value of the aleph functio...
alephon 10029 An aleph is an ordinal num...
alephcard 10030 Every aleph is a cardinal ...
alephnbtwn 10031 No cardinal can be sandwic...
alephnbtwn2 10032 No set has equinumerosity ...
alephordilem1 10033 Lemma for ~ alephordi . (...
alephordi 10034 Strict ordering property o...
alephord 10035 Ordering property of the a...
alephord2 10036 Ordering property of the a...
alephord2i 10037 Ordering property of the a...
alephord3 10038 Ordering property of the a...
alephsucdom 10039 A set dominated by an alep...
alephsuc2 10040 An alternate representatio...
alephdom 10041 Relationship between inclu...
alephgeom 10042 Every aleph is greater tha...
alephislim 10043 Every aleph is a limit ord...
aleph11 10044 The aleph function is one-...
alephf1 10045 The aleph function is a on...
alephsdom 10046 If an ordinal is smaller t...
alephdom2 10047 A dominated initial ordina...
alephle 10048 The argument of the aleph ...
cardaleph 10049 Given any transfinite card...
cardalephex 10050 Every transfinite cardinal...
infenaleph 10051 An infinite numerable set ...
isinfcard 10052 Two ways to express the pr...
iscard3 10053 Two ways to express the pr...
cardnum 10054 Two ways to express the cl...
alephinit 10055 An infinite initial ordina...
carduniima 10056 The union of the image of ...
cardinfima 10057 If a mapping to cardinals ...
alephiso 10058 Aleph is an order isomorph...
alephprc 10059 The class of all transfini...
alephsson 10060 The class of transfinite c...
unialeph 10061 The union of the class of ...
alephsmo 10062 The aleph function is stri...
alephf1ALT 10063 Alternate proof of ~ aleph...
alephfplem1 10064 Lemma for ~ alephfp . (Co...
alephfplem2 10065 Lemma for ~ alephfp . (Co...
alephfplem3 10066 Lemma for ~ alephfp . (Co...
alephfplem4 10067 Lemma for ~ alephfp . (Co...
alephfp 10068 The aleph function has a f...
alephfp2 10069 The aleph function has at ...
alephval3 10070 An alternate way to expres...
alephsucpw2 10071 The power set of an aleph ...
mappwen 10072 Power rule for cardinal ar...
finnisoeu 10073 A finite totally ordered s...
iunfictbso 10074 Countability of a countabl...
aceq1 10077 Equivalence of two version...
aceq0 10078 Equivalence of two version...
aceq2 10079 Equivalence of two version...
aceq3lem 10080 Lemma for ~ dfac3 . (Cont...
dfac3 10081 Equivalence of two version...
dfac4 10082 Equivalence of two version...
dfac5lem1 10083 Lemma for ~ dfac5 . (Cont...
dfac5lem2 10084 Lemma for ~ dfac5 . (Cont...
dfac5lem3 10085 Lemma for ~ dfac5 . (Cont...
dfac5lem4 10086 Lemma for ~ dfac5 . (Cont...
dfac5lem5 10087 Lemma for ~ dfac5 . (Cont...
dfac5lem4OLD 10088 Obsolete version of ~ dfac...
dfac5 10089 Equivalence of two version...
dfac2a 10090 Our Axiom of Choice (in th...
dfac2b 10091 Axiom of Choice (first for...
dfac2 10092 Axiom of Choice (first for...
dfac7 10093 Equivalence of the Axiom o...
dfac0 10094 Equivalence of two version...
dfac1 10095 Equivalence of two version...
dfac8 10096 A proof of the equivalency...
dfac9 10097 Equivalence of the axiom o...
dfac10 10098 Axiom of Choice equivalent...
dfac10c 10099 Axiom of Choice equivalent...
dfac10b 10100 Axiom of Choice equivalent...
acacni 10101 A choice equivalent: every...
dfacacn 10102 A choice equivalent: every...
dfac13 10103 The axiom of choice holds ...
dfac12lem1 10104 Lemma for ~ dfac12 . (Con...
dfac12lem2 10105 Lemma for ~ dfac12 . (Con...
dfac12lem3 10106 Lemma for ~ dfac12 . (Con...
dfac12r 10107 The axiom of choice holds ...
dfac12k 10108 Equivalence of ~ dfac12 an...
dfac12a 10109 The axiom of choice holds ...
dfac12 10110 The axiom of choice holds ...
kmlem1 10111 Lemma for 5-quantifier AC ...
kmlem2 10112 Lemma for 5-quantifier AC ...
kmlem3 10113 Lemma for 5-quantifier AC ...
kmlem4 10114 Lemma for 5-quantifier AC ...
kmlem5 10115 Lemma for 5-quantifier AC ...
kmlem6 10116 Lemma for 5-quantifier AC ...
kmlem7 10117 Lemma for 5-quantifier AC ...
kmlem8 10118 Lemma for 5-quantifier AC ...
kmlem9 10119 Lemma for 5-quantifier AC ...
kmlem10 10120 Lemma for 5-quantifier AC ...
kmlem11 10121 Lemma for 5-quantifier AC ...
kmlem12 10122 Lemma for 5-quantifier AC ...
kmlem13 10123 Lemma for 5-quantifier AC ...
kmlem14 10124 Lemma for 5-quantifier AC ...
kmlem15 10125 Lemma for 5-quantifier AC ...
kmlem16 10126 Lemma for 5-quantifier AC ...
dfackm 10127 Equivalence of the Axiom o...
undjudom 10128 Cardinal addition dominate...
endjudisj 10129 Equinumerosity of a disjoi...
djuen 10130 Disjoint unions of equinum...
djuenun 10131 Disjoint union is equinume...
dju1en 10132 Cardinal addition with car...
dju1dif 10133 Adding and subtracting one...
dju1p1e2 10134 1+1=2 for cardinal number ...
dju1p1e2ALT 10135 Alternate proof of ~ dju1p...
dju0en 10136 Cardinal addition with car...
xp2dju 10137 Two times a cardinal numbe...
djucomen 10138 Commutative law for cardin...
djuassen 10139 Associative law for cardin...
xpdjuen 10140 Cardinal multiplication di...
mapdjuen 10141 Sum of exponents law for c...
pwdjuen 10142 Sum of exponents law for c...
djudom1 10143 Ordering law for cardinal ...
djudom2 10144 Ordering law for cardinal ...
djudoml 10145 A set is dominated by its ...
djuxpdom 10146 Cartesian product dominate...
djufi 10147 The disjoint union of two ...
cdainflem 10148 Any partition of omega int...
djuinf 10149 A set is infinite iff the ...
infdju1 10150 An infinite set is equinum...
pwdju1 10151 The sum of a powerset with...
pwdjuidm 10152 If the natural numbers inj...
djulepw 10153 If ` A ` is idempotent und...
onadju 10154 The cardinal and ordinal s...
cardadju 10155 The cardinal sum is equinu...
djunum 10156 The disjoint union of two ...
unnum 10157 The union of two numerable...
nnadju 10158 The cardinal and ordinal s...
nnadjuALT 10159 Shorter proof of ~ nnadju ...
ficardadju 10160 The disjoint union of fini...
ficardun 10161 The cardinality of the uni...
ficardun2 10162 The cardinality of the uni...
pwsdompw 10163 Lemma for ~ domtriom . Th...
unctb 10164 The union of two countable...
infdjuabs 10165 Absorption law for additio...
infunabs 10166 An infinite set is equinum...
infdju 10167 The sum of two cardinal nu...
infdif 10168 The cardinality of an infi...
infdif2 10169 Cardinality ordering for a...
infxpdom 10170 Dominance law for multipli...
infxpabs 10171 Absorption law for multipl...
infunsdom1 10172 The union of two sets that...
infunsdom 10173 The union of two sets that...
infxp 10174 Absorption law for multipl...
pwdjudom 10175 A property of dominance ov...
infpss 10176 Every infinite set has an ...
infmap2 10177 An exponentiation law for ...
ackbij2lem1 10178 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 10179 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 10180 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 10181 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 10182 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 10183 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 10184 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 10185 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 10186 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 10187 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 10188 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 10189 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 10190 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 10191 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 10192 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 10193 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 10194 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 10195 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 10196 Lemma for ~ ackbij1 . (Co...
ackbij1 10197 The Ackermann bijection, p...
ackbij1b 10198 The Ackermann bijection, p...
ackbij2lem2 10199 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 10200 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 10201 Lemma for ~ ackbij2 . (Co...
ackbij2 10202 The Ackermann bijection, p...
r1om 10203 The set of hereditarily fi...
fictb 10204 A set is countable iff its...
cflem 10205 A lemma used to simplify c...
cflemOLD 10206 Obsolete version of ~ cfle...
cfval 10207 Value of the cofinality fu...
cff 10208 Cofinality is a function o...
cfub 10209 An upper bound on cofinali...
cflm 10210 Value of the cofinality fu...
cf0 10211 Value of the cofinality fu...
cardcf 10212 Cofinality is a cardinal n...
cflecard 10213 Cofinality is bounded by t...
cfle 10214 Cofinality is bounded by i...
cfon 10215 The cofinality of any set ...
cfeq0 10216 Only the ordinal zero has ...
cfsuc 10217 Value of the cofinality fu...
cff1 10218 There is always a map from...
cfflb 10219 If there is a cofinal map ...
cfval2 10220 Another expression for the...
coflim 10221 A simpler expression for t...
cflim3 10222 Another expression for the...
cflim2 10223 The cofinality function is...
cfom 10224 Value of the cofinality fu...
cfss 10225 There is a cofinal subset ...
cfslb 10226 Any cofinal subset of ` A ...
cfslbn 10227 Any subset of ` A ` smalle...
cfslb2n 10228 Any small collection of sm...
cofsmo 10229 Any cofinal map implies th...
cfsmolem 10230 Lemma for ~ cfsmo . (Cont...
cfsmo 10231 The map in ~ cff1 can be a...
cfcoflem 10232 Lemma for ~ cfcof , showin...
coftr 10233 If there is a cofinal map ...
cfcof 10234 If there is a cofinal map ...
cfidm 10235 The cofinality function is...
alephsing 10236 The cofinality of a limit ...
sornom 10237 The range of a single-step...
isfin1a 10252 Definition of a Ia-finite ...
fin1ai 10253 Property of a Ia-finite se...
isfin2 10254 Definition of a II-finite ...
fin2i 10255 Property of a II-finite se...
isfin3 10256 Definition of a III-finite...
isfin4 10257 Definition of a IV-finite ...
fin4i 10258 Infer that a set is IV-inf...
isfin5 10259 Definition of a V-finite s...
isfin6 10260 Definition of a VI-finite ...
isfin7 10261 Definition of a VII-finite...
sdom2en01 10262 A set with less than two e...
infpssrlem1 10263 Lemma for ~ infpssr . (Co...
infpssrlem2 10264 Lemma for ~ infpssr . (Co...
infpssrlem3 10265 Lemma for ~ infpssr . (Co...
infpssrlem4 10266 Lemma for ~ infpssr . (Co...
infpssrlem5 10267 Lemma for ~ infpssr . (Co...
infpssr 10268 Dedekind infinity implies ...
fin4en1 10269 Dedekind finite is a cardi...
ssfin4 10270 Dedekind finite sets have ...
domfin4 10271 A set dominated by a Dedek...
ominf4 10272 ` _om ` is Dedekind infini...
infpssALT 10273 Alternate proof of ~ infps...
isfin4-2 10274 Alternate definition of IV...
isfin4p1 10275 Alternate definition of IV...
fin23lem7 10276 Lemma for ~ isfin2-2 . Th...
fin23lem11 10277 Lemma for ~ isfin2-2 . (C...
fin2i2 10278 A II-finite set contains m...
isfin2-2 10279 ` Fin2 ` expressed in term...
ssfin2 10280 A subset of a II-finite se...
enfin2i 10281 II-finiteness is a cardina...
fin23lem24 10282 Lemma for ~ fin23 . In a ...
fincssdom 10283 In a chain of finite sets,...
fin23lem25 10284 Lemma for ~ fin23 . In a ...
fin23lem26 10285 Lemma for ~ fin23lem22 . ...
fin23lem23 10286 Lemma for ~ fin23lem22 . ...
fin23lem22 10287 Lemma for ~ fin23 but coul...
fin23lem27 10288 The mapping constructed in...
isfin3ds 10289 Property of a III-finite s...
ssfin3ds 10290 A subset of a III-finite s...
fin23lem12 10291 The beginning of the proof...
fin23lem13 10292 Lemma for ~ fin23 . Each ...
fin23lem14 10293 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10294 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10295 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10296 Lemma for ~ fin23 . The f...
fin23lem20 10297 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10298 Lemma for ~ fin23 . By ? ...
fin23lem21 10299 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10300 Lemma for ~ fin23 . The r...
fin23lem29 10301 Lemma for ~ fin23 . The r...
fin23lem30 10302 Lemma for ~ fin23 . The r...
fin23lem31 10303 Lemma for ~ fin23 . The r...
fin23lem32 10304 Lemma for ~ fin23 . Wrap ...
fin23lem33 10305 Lemma for ~ fin23 . Disch...
fin23lem34 10306 Lemma for ~ fin23 . Estab...
fin23lem35 10307 Lemma for ~ fin23 . Stric...
fin23lem36 10308 Lemma for ~ fin23 . Weak ...
fin23lem38 10309 Lemma for ~ fin23 . The c...
fin23lem39 10310 Lemma for ~ fin23 . Thus,...
fin23lem40 10311 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10312 Lemma for ~ fin23 . A set...
isf32lem1 10313 Lemma for ~ isfin3-2 . De...
isf32lem2 10314 Lemma for ~ isfin3-2 . No...
isf32lem3 10315 Lemma for ~ isfin3-2 . Be...
isf32lem4 10316 Lemma for ~ isfin3-2 . Be...
isf32lem5 10317 Lemma for ~ isfin3-2 . Th...
isf32lem6 10318 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10319 Lemma for ~ isfin3-2 . Di...
isf32lem8 10320 Lemma for ~ isfin3-2 . K ...
isf32lem9 10321 Lemma for ~ isfin3-2 . Co...
isf32lem10 10322 Lemma for isfin3-2 . Writ...
isf32lem11 10323 Lemma for ~ isfin3-2 . Re...
isf32lem12 10324 Lemma for ~ isfin3-2 . (C...
isfin32i 10325 One half of ~ isfin3-2 . ...
isf33lem 10326 Lemma for ~ isfin3-3 . (C...
isfin3-2 10327 Weakly Dedekind-infinite s...
isfin3-3 10328 Weakly Dedekind-infinite s...
fin33i 10329 Inference from ~ isfin3-3 ...
compsscnvlem 10330 Lemma for ~ compsscnv . (...
compsscnv 10331 Complementation on a power...
isf34lem1 10332 Lemma for ~ isfin3-4 . (C...
isf34lem2 10333 Lemma for ~ isfin3-4 . (C...
compssiso 10334 Complementation is an anti...
isf34lem3 10335 Lemma for ~ isfin3-4 . (C...
compss 10336 Express image under of the...
isf34lem4 10337 Lemma for ~ isfin3-4 . (C...
isf34lem5 10338 Lemma for ~ isfin3-4 . (C...
isf34lem7 10339 Lemma for ~ isfin3-4 . (C...
isf34lem6 10340 Lemma for ~ isfin3-4 . (C...
fin34i 10341 Inference from ~ isfin3-4 ...
isfin3-4 10342 Weakly Dedekind-infinite s...
fin11a 10343 Every I-finite set is Ia-f...
enfin1ai 10344 Ia-finiteness is a cardina...
isfin1-2 10345 A set is finite in the usu...
isfin1-3 10346 A set is I-finite iff ever...
isfin1-4 10347 A set is I-finite iff ever...
dffin1-5 10348 Compact quantifier-free ve...
fin23 10349 Every II-finite set (every...
fin34 10350 Every III-finite set is IV...
isfin5-2 10351 Alternate definition of V-...
fin45 10352 Every IV-finite set is V-f...
fin56 10353 Every V-finite set is VI-f...
fin17 10354 Every I-finite set is VII-...
fin67 10355 Every VI-finite set is VII...
isfin7-2 10356 A set is VII-finite iff it...
fin71num 10357 A well-orderable set is VI...
dffin7-2 10358 Class form of ~ isfin7-2 ....
dfacfin7 10359 Axiom of Choice equivalent...
fin1a2lem1 10360 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10361 Lemma for ~ fin1a2 . The ...
fin1a2lem3 10362 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10363 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10364 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10365 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10366 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10367 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10368 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10369 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10370 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10371 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10372 Lemma for ~ fin1a2 . (Con...
fin12 10373 Weak theorem which skips I...
fin1a2s 10374 An II-infinite set can hav...
fin1a2 10375 Every Ia-finite set is II-...
itunifval 10376 Function value of iterated...
itunifn 10377 Functionality of the itera...
ituni0 10378 A zero-fold iterated union...
itunisuc 10379 Successor iterated union. ...
itunitc1 10380 Each union iterate is a me...
itunitc 10381 The union of all union ite...
ituniiun 10382 Unwrap an iterated union f...
hsmexlem7 10383 Lemma for ~ hsmex . Prope...
hsmexlem8 10384 Lemma for ~ hsmex . Prope...
hsmexlem9 10385 Lemma for ~ hsmex . Prope...
hsmexlem1 10386 Lemma for ~ hsmex . Bound...
hsmexlem2 10387 Lemma for ~ hsmex . Bound...
hsmexlem3 10388 Lemma for ~ hsmex . Clear...
hsmexlem4 10389 Lemma for ~ hsmex . The c...
hsmexlem5 10390 Lemma for ~ hsmex . Combi...
hsmexlem6 10391 Lemma for ~ hsmex . (Cont...
hsmex 10392 The collection of heredita...
hsmex2 10393 The set of hereditary size...
hsmex3 10394 The set of hereditary size...
axcc2lem 10396 Lemma for ~ axcc2 . (Cont...
axcc2 10397 A possibly more useful ver...
axcc3 10398 A possibly more useful ver...
axcc4 10399 A version of ~ axcc3 that ...
acncc 10400 An ~ ax-cc equivalent: eve...
axcc4dom 10401 Relax the constraint on ~ ...
domtriomlem 10402 Lemma for ~ domtriom . (C...
domtriom 10403 Trichotomy of equinumerosi...
fin41 10404 Under countable choice, th...
dominf 10405 A nonempty set that is a s...
dcomex 10407 The Axiom of Dependent Cho...
axdc2lem 10408 Lemma for ~ axdc2 . We co...
axdc2 10409 An apparent strengthening ...
axdc3lem 10410 The class ` S ` of finite ...
axdc3lem2 10411 Lemma for ~ axdc3 . We ha...
axdc3lem3 10412 Simple substitution lemma ...
axdc3lem4 10413 Lemma for ~ axdc3 . We ha...
axdc3 10414 Dependent Choice. Axiom D...
axdc4lem 10415 Lemma for ~ axdc4 . (Cont...
axdc4 10416 A more general version of ...
axcclem 10417 Lemma for ~ axcc . (Contr...
axcc 10418 Although CC can be proven ...
zfac 10420 Axiom of Choice expressed ...
ac2 10421 Axiom of Choice equivalent...
ac3 10422 Axiom of Choice using abbr...
axac3 10424 This theorem asserts that ...
ackm 10425 A remarkable equivalent to...
axac2 10426 Derive ~ ax-ac2 from ~ ax-...
axac 10427 Derive ~ ax-ac from ~ ax-a...
axaci 10428 Apply a choice equivalent....
cardeqv 10429 All sets are well-orderabl...
numth3 10430 All sets are well-orderabl...
numth2 10431 Numeration theorem: any se...
numth 10432 Numeration theorem: every ...
ac7 10433 An Axiom of Choice equival...
ac7g 10434 An Axiom of Choice equival...
ac4 10435 Equivalent of Axiom of Cho...
ac4c 10436 Equivalent of Axiom of Cho...
ac5 10437 An Axiom of Choice equival...
ac5b 10438 Equivalent of Axiom of Cho...
ac6num 10439 A version of ~ ac6 which t...
ac6 10440 Equivalent of Axiom of Cho...
ac6c4 10441 Equivalent of Axiom of Cho...
ac6c5 10442 Equivalent of Axiom of Cho...
ac9 10443 An Axiom of Choice equival...
ac6s 10444 Equivalent of Axiom of Cho...
ac6n 10445 Equivalent of Axiom of Cho...
ac6s2 10446 Generalization of the Axio...
ac6s3 10447 Generalization of the Axio...
ac6sg 10448 ~ ac6s with sethood as ant...
ac6sf 10449 Version of ~ ac6 with boun...
ac6s4 10450 Generalization of the Axio...
ac6s5 10451 Generalization of the Axio...
ac8 10452 An Axiom of Choice equival...
ac9s 10453 An Axiom of Choice equival...
numthcor 10454 Any set is strictly domina...
weth 10455 Well-ordering theorem: any...
zorn2lem1 10456 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10457 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10458 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10459 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10460 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10461 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10462 Lemma for ~ zorn2 . (Cont...
zorn2g 10463 Zorn's Lemma of [Monk1] p....
zorng 10464 Zorn's Lemma. If the unio...
zornn0g 10465 Variant of Zorn's lemma ~ ...
zorn2 10466 Zorn's Lemma of [Monk1] p....
zorn 10467 Zorn's Lemma. If the unio...
zornn0 10468 Variant of Zorn's lemma ~ ...
ttukeylem1 10469 Lemma for ~ ttukey . Expa...
ttukeylem2 10470 Lemma for ~ ttukey . A pr...
ttukeylem3 10471 Lemma for ~ ttukey . (Con...
ttukeylem4 10472 Lemma for ~ ttukey . (Con...
ttukeylem5 10473 Lemma for ~ ttukey . The ...
ttukeylem6 10474 Lemma for ~ ttukey . (Con...
ttukeylem7 10475 Lemma for ~ ttukey . (Con...
ttukey2g 10476 The Teichmüller-Tukey...
ttukeyg 10477 The Teichmüller-Tukey...
ttukey 10478 The Teichmüller-Tukey...
axdclem 10479 Lemma for ~ axdc . (Contr...
axdclem2 10480 Lemma for ~ axdc . Using ...
axdc 10481 This theorem derives ~ ax-...
fodomg 10482 An onto function implies d...
fodom 10483 An onto function implies d...
dmct 10484 The domain of a countable ...
rnct 10485 The range of a countable s...
fodomb 10486 Equivalence of an onto map...
wdomac 10487 When assuming AC, weak and...
brdom3 10488 Equivalence to a dominance...
brdom5 10489 An equivalence to a domina...
brdom4 10490 An equivalence to a domina...
brdom7disj 10491 An equivalence to a domina...
brdom6disj 10492 An equivalence to a domina...
fin71ac 10493 Once we allow AC, the "str...
imadomg 10494 An image of a function und...
fimact 10495 The image by a function of...
fnrndomg 10496 The range of a function is...
fnct 10497 If the domain of a functio...
mptct 10498 A countable mapping set is...
iunfo 10499 Existence of an onto funct...
iundom2g 10500 An upper bound for the car...
iundomg 10501 An upper bound for the car...
iundom 10502 An upper bound for the car...
unidom 10503 An upper bound for the car...
uniimadom 10504 An upper bound for the car...
uniimadomf 10505 An upper bound for the car...
cardval 10506 The value of the cardinal ...
cardid 10507 Any set is equinumerous to...
cardidg 10508 Any set is equinumerous to...
cardidd 10509 Any set is equinumerous to...
cardf 10510 The cardinality function i...
carden 10511 Two sets are equinumerous ...
cardeq0 10512 Only the empty set has car...
unsnen 10513 Equinumerosity of a set wi...
carddom 10514 Two sets have the dominanc...
cardsdom 10515 Two sets have the strict d...
domtri 10516 Trichotomy law for dominan...
entric 10517 Trichotomy of equinumerosi...
entri2 10518 Trichotomy of dominance an...
entri3 10519 Trichotomy of dominance. ...
sdomsdomcard 10520 A set strictly dominates i...
canth3 10521 Cantor's theorem in terms ...
infxpidm 10522 Every infinite class is eq...
ondomon 10523 The class of ordinals domi...
cardmin 10524 The smallest ordinal that ...
ficard 10525 A set is finite iff its ca...
infinf 10526 Equivalence between two in...
unirnfdomd 10527 The union of the range of ...
konigthlem 10528 Lemma for ~ konigth . (Co...
konigth 10529 Konig's Theorem. If ` m (...
alephsucpw 10530 The power set of an aleph ...
aleph1 10531 The set exponentiation of ...
alephval2 10532 An alternate way to expres...
dominfac 10533 A nonempty set that is a s...
iunctb 10534 The countable union of cou...
unictb 10535 The countable union of cou...
infmap 10536 An exponentiation law for ...
alephadd 10537 The sum of two alephs is t...
alephmul 10538 The product of two alephs ...
alephexp1 10539 An exponentiation law for ...
alephsuc3 10540 An alternate representatio...
alephexp2 10541 An expression equinumerous...
alephreg 10542 A successor aleph is regul...
pwcfsdom 10543 A corollary of Konig's The...
cfpwsdom 10544 A corollary of Konig's The...
alephom 10545 From ~ canth2 , we know th...
smobeth 10546 The beth function is stric...
nd1 10547 A lemma for proving condit...
nd2 10548 A lemma for proving condit...
nd3 10549 A lemma for proving condit...
nd4 10550 A lemma for proving condit...
axextnd 10551 A version of the Axiom of ...
axrepndlem1 10552 Lemma for the Axiom of Rep...
axrepndlem2 10553 Lemma for the Axiom of Rep...
axrepnd 10554 A version of the Axiom of ...
axunndlem1 10555 Lemma for the Axiom of Uni...
axunnd 10556 A version of the Axiom of ...
axpowndlem1 10557 Lemma for the Axiom of Pow...
axpowndlem2 10558 Lemma for the Axiom of Pow...
axpowndlem3 10559 Lemma for the Axiom of Pow...
axpowndlem4 10560 Lemma for the Axiom of Pow...
axpownd 10561 A version of the Axiom of ...
axregndlem1 10562 Lemma for the Axiom of Reg...
axregndlem2 10563 Lemma for the Axiom of Reg...
axregnd 10564 A version of the Axiom of ...
axinfndlem1 10565 Lemma for the Axiom of Inf...
axinfnd 10566 A version of the Axiom of ...
axacndlem1 10567 Lemma for the Axiom of Cho...
axacndlem2 10568 Lemma for the Axiom of Cho...
axacndlem3 10569 Lemma for the Axiom of Cho...
axacndlem4 10570 Lemma for the Axiom of Cho...
axacndlem5 10571 Lemma for the Axiom of Cho...
axacnd 10572 A version of the Axiom of ...
zfcndext 10573 Axiom of Extensionality ~ ...
zfcndrep 10574 Axiom of Replacement ~ ax-...
zfcndun 10575 Axiom of Union ~ ax-un , r...
zfcndpow 10576 Axiom of Power Sets ~ ax-p...
zfcndreg 10577 Axiom of Regularity ~ ax-r...
zfcndinf 10578 Axiom of Infinity ~ ax-inf...
zfcndac 10579 Axiom of Choice ~ ax-ac , ...
elgch 10582 Elementhood in the collect...
fingch 10583 A finite set is a GCH-set....
gchi 10584 The only GCH-sets which ha...
gchen1 10585 If ` A <_ B < ~P A ` , and...
gchen2 10586 If ` A < B <_ ~P A ` , and...
gchor 10587 If ` A <_ B <_ ~P A ` , an...
engch 10588 The property of being a GC...
gchdomtri 10589 Under certain conditions, ...
fpwwe2cbv 10590 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10591 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10592 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10593 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10594 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10595 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10596 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10597 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10598 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10599 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10600 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10601 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10602 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10603 Given any function ` F ` f...
fpwwecbv 10604 Lemma for ~ fpwwe . (Cont...
fpwwelem 10605 Lemma for ~ fpwwe . (Cont...
fpwwe 10606 Given any function ` F ` f...
canth4 10607 An "effective" form of Can...
canthnumlem 10608 Lemma for ~ canthnum . (C...
canthnum 10609 The set of well-orderable ...
canthwelem 10610 Lemma for ~ canthwe . (Co...
canthwe 10611 The set of well-orders of ...
canthp1lem1 10612 Lemma for ~ canthp1 . (Co...
canthp1lem2 10613 Lemma for ~ canthp1 . (Co...
canthp1 10614 A slightly stronger form o...
finngch 10615 The exclusion of finite se...
gchdju1 10616 An infinite GCH-set is ide...
gchinf 10617 An infinite GCH-set is Ded...
pwfseqlem1 10618 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10619 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10620 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10621 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10622 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10623 Lemma for ~ pwfseq . Alth...
pwfseq 10624 The powerset of a Dedekind...
pwxpndom2 10625 The powerset of a Dedekind...
pwxpndom 10626 The powerset of a Dedekind...
pwdjundom 10627 The powerset of a Dedekind...
gchdjuidm 10628 An infinite GCH-set is ide...
gchxpidm 10629 An infinite GCH-set is ide...
gchpwdom 10630 A relationship between dom...
gchaleph 10631 If ` ( aleph `` A ) ` is a...
gchaleph2 10632 If ` ( aleph `` A ) ` and ...
hargch 10633 If ` A + ~~ ~P A ` , then ...
alephgch 10634 If ` ( aleph `` suc A ) ` ...
gch2 10635 It is sufficient to requir...
gch3 10636 An equivalent formulation ...
gch-kn 10637 The equivalence of two ver...
gchaclem 10638 Lemma for ~ gchac (obsolet...
gchhar 10639 A "local" form of ~ gchac ...
gchacg 10640 A "local" form of ~ gchac ...
gchac 10641 The Generalized Continuum ...
elwina 10646 Conditions of weak inacces...
elina 10647 Conditions of strong inacc...
winaon 10648 A weakly inaccessible card...
inawinalem 10649 Lemma for ~ inawina . (Co...
inawina 10650 Every strongly inaccessibl...
omina 10651 ` _om ` is a strongly inac...
winacard 10652 A weakly inaccessible card...
winainflem 10653 A weakly inaccessible card...
winainf 10654 A weakly inaccessible card...
winalim 10655 A weakly inaccessible card...
winalim2 10656 A nontrivial weakly inacce...
winafp 10657 A nontrivial weakly inacce...
winafpi 10658 This theorem, which states...
gchina 10659 Assuming the GCH, weakly a...
iswun 10664 Properties of a weak unive...
wuntr 10665 A weak universe is transit...
wununi 10666 A weak universe is closed ...
wunpw 10667 A weak universe is closed ...
wunelss 10668 The elements of a weak uni...
wunpr 10669 A weak universe is closed ...
wunun 10670 A weak universe is closed ...
wuntp 10671 A weak universe is closed ...
wunss 10672 A weak universe is closed ...
wunin 10673 A weak universe is closed ...
wundif 10674 A weak universe is closed ...
wunint 10675 A weak universe is closed ...
wunsn 10676 A weak universe is closed ...
wunsuc 10677 A weak universe is closed ...
wun0 10678 A weak universe contains t...
wunr1om 10679 A weak universe is infinit...
wunom 10680 A weak universe contains a...
wunfi 10681 A weak universe contains a...
wunop 10682 A weak universe is closed ...
wunot 10683 A weak universe is closed ...
wunxp 10684 A weak universe is closed ...
wunpm 10685 A weak universe is closed ...
wunmap 10686 A weak universe is closed ...
wunf 10687 A weak universe is closed ...
wundm 10688 A weak universe is closed ...
wunrn 10689 A weak universe is closed ...
wuncnv 10690 A weak universe is closed ...
wunres 10691 A weak universe is closed ...
wunfv 10692 A weak universe is closed ...
wunco 10693 A weak universe is closed ...
wuntpos 10694 A weak universe is closed ...
intwun 10695 The intersection of a coll...
r1limwun 10696 Each limit stage in the cu...
r1wunlim 10697 The weak universes in the ...
wunex2 10698 Construct a weak universe ...
wunex 10699 Construct a weak universe ...
uniwun 10700 Every set is contained in ...
wunex3 10701 Construct a weak universe ...
wuncval 10702 Value of the weak universe...
wuncid 10703 The weak universe closure ...
wunccl 10704 The weak universe closure ...
wuncss 10705 The weak universe closure ...
wuncidm 10706 The weak universe closure ...
wuncval2 10707 Our earlier expression for...
eltskg 10710 Properties of a Tarski cla...
eltsk2g 10711 Properties of a Tarski cla...
tskpwss 10712 First axiom of a Tarski cl...
tskpw 10713 Second axiom of a Tarski c...
tsken 10714 Third axiom of a Tarski cl...
0tsk 10715 The empty set is a (transi...
tsksdom 10716 An element of a Tarski cla...
tskssel 10717 A part of a Tarski class s...
tskss 10718 The subsets of an element ...
tskin 10719 The intersection of two el...
tsksn 10720 A singleton of an element ...
tsktrss 10721 A transitive element of a ...
tsksuc 10722 If an element of a Tarski ...
tsk0 10723 A nonempty Tarski class co...
tsk1 10724 One is an element of a non...
tsk2 10725 Two is an element of a non...
2domtsk 10726 If a Tarski class is not e...
tskr1om 10727 A nonempty Tarski class is...
tskr1om2 10728 A nonempty Tarski class co...
tskinf 10729 A nonempty Tarski class is...
tskpr 10730 If ` A ` and ` B ` are mem...
tskop 10731 If ` A ` and ` B ` are mem...
tskxpss 10732 A Cartesian product of two...
tskwe2 10733 A Tarski class is well-ord...
inttsk 10734 The intersection of a coll...
inar1 10735 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10736 Alternate proof of ~ r1om ...
rankcf 10737 Any set must be at least a...
inatsk 10738 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10739 The set of hereditarily fi...
tskord 10740 A Tarski class contains al...
tskcard 10741 An even more direct relati...
r1tskina 10742 There is a direct relation...
tskuni 10743 The union of an element of...
tskwun 10744 A nonempty transitive Tars...
tskint 10745 The intersection of an ele...
tskun 10746 The union of two elements ...
tskxp 10747 The Cartesian product of t...
tskmap 10748 Set exponentiation is an e...
tskurn 10749 A transitive Tarski class ...
elgrug 10752 Properties of a Grothendie...
grutr 10753 A Grothendieck universe is...
gruelss 10754 A Grothendieck universe is...
grupw 10755 A Grothendieck universe co...
gruss 10756 Any subset of an element o...
grupr 10757 A Grothendieck universe co...
gruurn 10758 A Grothendieck universe co...
gruiun 10759 If ` B ( x ) ` is a family...
gruuni 10760 A Grothendieck universe co...
grurn 10761 A Grothendieck universe co...
gruima 10762 A Grothendieck universe co...
gruel 10763 Any element of an element ...
grusn 10764 A Grothendieck universe co...
gruop 10765 A Grothendieck universe co...
gruun 10766 A Grothendieck universe co...
gruxp 10767 A Grothendieck universe co...
grumap 10768 A Grothendieck universe co...
gruixp 10769 A Grothendieck universe co...
gruiin 10770 A Grothendieck universe co...
gruf 10771 A Grothendieck universe co...
gruen 10772 A Grothendieck universe co...
gruwun 10773 A nonempty Grothendieck un...
intgru 10774 The intersection of a fami...
ingru 10775 The intersection of a univ...
wfgru 10776 The wellfounded part of a ...
grudomon 10777 Each ordinal that is compa...
gruina 10778 If a Grothendieck universe...
grur1a 10779 A characterization of Grot...
grur1 10780 A characterization of Grot...
grutsk1 10781 Grothendieck universes are...
grutsk 10782 Grothendieck universes are...
axgroth5 10784 The Tarski-Grothendieck ax...
axgroth2 10785 Alternate version of the T...
grothpw 10786 Derive the Axiom of Power ...
grothpwex 10787 Derive the Axiom of Power ...
axgroth6 10788 The Tarski-Grothendieck ax...
grothomex 10789 The Tarski-Grothendieck Ax...
grothac 10790 The Tarski-Grothendieck Ax...
axgroth3 10791 Alternate version of the T...
axgroth4 10792 Alternate version of the T...
grothprimlem 10793 Lemma for ~ grothprim . E...
grothprim 10794 The Tarski-Grothendieck Ax...
grothtsk 10795 The Tarski-Grothendieck Ax...
inaprc 10796 An equivalent to the Tarsk...
tskmval 10799 Value of our tarski map. ...
tskmid 10800 The set ` A ` is an elemen...
tskmcl 10801 A Tarski class that contai...
sstskm 10802 Being a part of ` ( tarski...
eltskm 10803 Belonging to ` ( tarskiMap...
elni 10836 Membership in the class of...
elni2 10837 Membership in the class of...
pinn 10838 A positive integer is a na...
pion 10839 A positive integer is an o...
piord 10840 A positive integer is ordi...
niex 10841 The class of positive inte...
0npi 10842 The empty set is not a pos...
1pi 10843 Ordinal 'one' is a positiv...
addpiord 10844 Positive integer addition ...
mulpiord 10845 Positive integer multiplic...
mulidpi 10846 1 is an identity element f...
ltpiord 10847 Positive integer 'less tha...
ltsopi 10848 Positive integer 'less tha...
ltrelpi 10849 Positive integer 'less tha...
dmaddpi 10850 Domain of addition on posi...
dmmulpi 10851 Domain of multiplication o...
addclpi 10852 Closure of addition of pos...
mulclpi 10853 Closure of multiplication ...
addcompi 10854 Addition of positive integ...
addasspi 10855 Addition of positive integ...
mulcompi 10856 Multiplication of positive...
mulasspi 10857 Multiplication of positive...
distrpi 10858 Multiplication of positive...
addcanpi 10859 Addition cancellation law ...
mulcanpi 10860 Multiplication cancellatio...
addnidpi 10861 There is no identity eleme...
ltexpi 10862 Ordering on positive integ...
ltapi 10863 Ordering property of addit...
ltmpi 10864 Ordering property of multi...
1lt2pi 10865 One is less than two (one ...
nlt1pi 10866 No positive integer is les...
indpi 10867 Principle of Finite Induct...
enqbreq 10879 Equivalence relation for p...
enqbreq2 10880 Equivalence relation for p...
enqer 10881 The equivalence relation f...
enqex 10882 The equivalence relation f...
nqex 10883 The class of positive frac...
0nnq 10884 The empty set is not a pos...
elpqn 10885 Each positive fraction is ...
ltrelnq 10886 Positive fraction 'less th...
pinq 10887 The representatives of pos...
1nq 10888 The positive fraction 'one...
nqereu 10889 There is a unique element ...
nqerf 10890 Corollary of ~ nqereu : th...
nqercl 10891 Corollary of ~ nqereu : cl...
nqerrel 10892 Any member of ` ( N. X. N....
nqerid 10893 Corollary of ~ nqereu : th...
enqeq 10894 Corollary of ~ nqereu : if...
nqereq 10895 The function ` /Q ` acts a...
addpipq2 10896 Addition of positive fract...
addpipq 10897 Addition of positive fract...
addpqnq 10898 Addition of positive fract...
mulpipq2 10899 Multiplication of positive...
mulpipq 10900 Multiplication of positive...
mulpqnq 10901 Multiplication of positive...
ordpipq 10902 Ordering of positive fract...
ordpinq 10903 Ordering of positive fract...
addpqf 10904 Closure of addition on pos...
addclnq 10905 Closure of addition on pos...
mulpqf 10906 Closure of multiplication ...
mulclnq 10907 Closure of multiplication ...
addnqf 10908 Domain of addition on posi...
mulnqf 10909 Domain of multiplication o...
addcompq 10910 Addition of positive fract...
addcomnq 10911 Addition of positive fract...
mulcompq 10912 Multiplication of positive...
mulcomnq 10913 Multiplication of positive...
adderpqlem 10914 Lemma for ~ adderpq . (Co...
mulerpqlem 10915 Lemma for ~ mulerpq . (Co...
adderpq 10916 Addition is compatible wit...
mulerpq 10917 Multiplication is compatib...
addassnq 10918 Addition of positive fract...
mulassnq 10919 Multiplication of positive...
mulcanenq 10920 Lemma for distributive law...
distrnq 10921 Multiplication of positive...
1nqenq 10922 The equivalence class of r...
mulidnq 10923 Multiplication identity el...
recmulnq 10924 Relationship between recip...
recidnq 10925 A positive fraction times ...
recclnq 10926 Closure law for positive f...
recrecnq 10927 Reciprocal of reciprocal o...
dmrecnq 10928 Domain of reciprocal on po...
ltsonq 10929 'Less than' is a strict or...
lterpq 10930 Compatibility of ordering ...
ltanq 10931 Ordering property of addit...
ltmnq 10932 Ordering property of multi...
1lt2nq 10933 One is less than two (one ...
ltaddnq 10934 The sum of two fractions i...
ltexnq 10935 Ordering on positive fract...
halfnq 10936 One-half of any positive f...
nsmallnq 10937 The is no smallest positiv...
ltbtwnnq 10938 There exists a number betw...
ltrnq 10939 Ordering property of recip...
archnq 10940 For any fraction, there is...
npex 10946 The class of positive real...
elnp 10947 Membership in positive rea...
elnpi 10948 Membership in positive rea...
prn0 10949 A positive real is not emp...
prpssnq 10950 A positive real is a subse...
elprnq 10951 A positive real is a set o...
0npr 10952 The empty set is not a pos...
prcdnq 10953 A positive real is closed ...
prub 10954 A positive fraction not in...
prnmax 10955 A positive real has no lar...
npomex 10956 A simplifying observation,...
prnmadd 10957 A positive real has no lar...
ltrelpr 10958 Positive real 'less than' ...
genpv 10959 Value of general operation...
genpelv 10960 Membership in value of gen...
genpprecl 10961 Pre-closure law for genera...
genpdm 10962 Domain of general operatio...
genpn0 10963 The result of an operation...
genpss 10964 The result of an operation...
genpnnp 10965 The result of an operation...
genpcd 10966 Downward closure of an ope...
genpnmax 10967 An operation on positive r...
genpcl 10968 Closure of an operation on...
genpass 10969 Associativity of an operat...
plpv 10970 Value of addition on posit...
mpv 10971 Value of multiplication on...
dmplp 10972 Domain of addition on posi...
dmmp 10973 Domain of multiplication o...
nqpr 10974 The canonical embedding of...
1pr 10975 The positive real number '...
addclprlem1 10976 Lemma to prove downward cl...
addclprlem2 10977 Lemma to prove downward cl...
addclpr 10978 Closure of addition on pos...
mulclprlem 10979 Lemma to prove downward cl...
mulclpr 10980 Closure of multiplication ...
addcompr 10981 Addition of positive reals...
addasspr 10982 Addition of positive reals...
mulcompr 10983 Multiplication of positive...
mulasspr 10984 Multiplication of positive...
distrlem1pr 10985 Lemma for distributive law...
distrlem4pr 10986 Lemma for distributive law...
distrlem5pr 10987 Lemma for distributive law...
distrpr 10988 Multiplication of positive...
1idpr 10989 1 is an identity element f...
ltprord 10990 Positive real 'less than' ...
psslinpr 10991 Proper subset is a linear ...
ltsopr 10992 Positive real 'less than' ...
prlem934 10993 Lemma 9-3.4 of [Gleason] p...
ltaddpr 10994 The sum of two positive re...
ltaddpr2 10995 The sum of two positive re...
ltexprlem1 10996 Lemma for Proposition 9-3....
ltexprlem2 10997 Lemma for Proposition 9-3....
ltexprlem3 10998 Lemma for Proposition 9-3....
ltexprlem4 10999 Lemma for Proposition 9-3....
ltexprlem5 11000 Lemma for Proposition 9-3....
ltexprlem6 11001 Lemma for Proposition 9-3....
ltexprlem7 11002 Lemma for Proposition 9-3....
ltexpri 11003 Proposition 9-3.5(iv) of [...
ltaprlem 11004 Lemma for Proposition 9-3....
ltapr 11005 Ordering property of addit...
addcanpr 11006 Addition cancellation law ...
prlem936 11007 Lemma 9-3.6 of [Gleason] p...
reclem2pr 11008 Lemma for Proposition 9-3....
reclem3pr 11009 Lemma for Proposition 9-3....
reclem4pr 11010 Lemma for Proposition 9-3....
recexpr 11011 The reciprocal of a positi...
suplem1pr 11012 The union of a nonempty, b...
suplem2pr 11013 The union of a set of posi...
supexpr 11014 The union of a nonempty, b...
enrer 11023 The equivalence relation f...
nrex1 11024 The class of signed reals ...
enrbreq 11025 Equivalence relation for s...
enreceq 11026 Equivalence class equality...
enrex 11027 The equivalence relation f...
ltrelsr 11028 Signed real 'less than' is...
addcmpblnr 11029 Lemma showing compatibilit...
mulcmpblnrlem 11030 Lemma used in lemma showin...
mulcmpblnr 11031 Lemma showing compatibilit...
prsrlem1 11032 Decomposing signed reals i...
addsrmo 11033 There is at most one resul...
mulsrmo 11034 There is at most one resul...
addsrpr 11035 Addition of signed reals i...
mulsrpr 11036 Multiplication of signed r...
ltsrpr 11037 Ordering of signed reals i...
gt0srpr 11038 Greater than zero in terms...
0nsr 11039 The empty set is not a sig...
0r 11040 The constant ` 0R ` is a s...
1sr 11041 The constant ` 1R ` is a s...
m1r 11042 The constant ` -1R ` is a ...
addclsr 11043 Closure of addition on sig...
mulclsr 11044 Closure of multiplication ...
dmaddsr 11045 Domain of addition on sign...
dmmulsr 11046 Domain of multiplication o...
addcomsr 11047 Addition of signed reals i...
addasssr 11048 Addition of signed reals i...
mulcomsr 11049 Multiplication of signed r...
mulasssr 11050 Multiplication of signed r...
distrsr 11051 Multiplication of signed r...
m1p1sr 11052 Minus one plus one is zero...
m1m1sr 11053 Minus one times minus one ...
ltsosr 11054 Signed real 'less than' is...
0lt1sr 11055 0 is less than 1 for signe...
1ne0sr 11056 1 and 0 are distinct for s...
0idsr 11057 The signed real number 0 i...
1idsr 11058 1 is an identity element f...
00sr 11059 A signed real times 0 is 0...
ltasr 11060 Ordering property of addit...
pn0sr 11061 A signed real plus its neg...
negexsr 11062 Existence of negative sign...
recexsrlem 11063 The reciprocal of a positi...
addgt0sr 11064 The sum of two positive si...
mulgt0sr 11065 The product of two positiv...
sqgt0sr 11066 The square of a nonzero si...
recexsr 11067 The reciprocal of a nonzer...
mappsrpr 11068 Mapping from positive sign...
ltpsrpr 11069 Mapping of order from posi...
map2psrpr 11070 Equivalence for positive s...
supsrlem 11071 Lemma for supremum theorem...
supsr 11072 A nonempty, bounded set of...
opelcn 11089 Ordered pair membership in...
opelreal 11090 Ordered pair membership in...
elreal 11091 Membership in class of rea...
elreal2 11092 Ordered pair membership in...
0ncn 11093 The empty set is not a com...
ltrelre 11094 'Less than' is a relation ...
addcnsr 11095 Addition of complex number...
mulcnsr 11096 Multiplication of complex ...
eqresr 11097 Equality of real numbers i...
addresr 11098 Addition of real numbers i...
mulresr 11099 Multiplication of real num...
ltresr 11100 Ordering of real subset of...
ltresr2 11101 Ordering of real subset of...
dfcnqs 11102 Technical trick to permit ...
addcnsrec 11103 Technical trick to permit ...
mulcnsrec 11104 Technical trick to permit ...
axaddf 11105 Addition is an operation o...
axmulf 11106 Multiplication is an opera...
axcnex 11107 The complex numbers form a...
axresscn 11108 The real numbers are a sub...
ax1cn 11109 1 is a complex number. Ax...
axicn 11110 ` _i ` is a complex number...
axaddcl 11111 Closure law for addition o...
axaddrcl 11112 Closure law for addition i...
axmulcl 11113 Closure law for multiplica...
axmulrcl 11114 Closure law for multiplica...
axmulcom 11115 Multiplication of complex ...
axaddass 11116 Addition of complex number...
axmulass 11117 Multiplication of complex ...
axdistr 11118 Distributive law for compl...
axi2m1 11119 i-squared equals -1 (expre...
ax1ne0 11120 1 and 0 are distinct. Axi...
ax1rid 11121 ` 1 ` is an identity eleme...
axrnegex 11122 Existence of negative of r...
axrrecex 11123 Existence of reciprocal of...
axcnre 11124 A complex number can be ex...
axpre-lttri 11125 Ordering on reals satisfie...
axpre-lttrn 11126 Ordering on reals is trans...
axpre-ltadd 11127 Ordering property of addit...
axpre-mulgt0 11128 The product of two positiv...
axpre-sup 11129 A nonempty, bounded-above ...
wuncn 11130 A weak universe containing...
cnex 11156 Alias for ~ ax-cnex . See...
addcl 11157 Alias for ~ ax-addcl , for...
readdcl 11158 Alias for ~ ax-addrcl , fo...
mulcl 11159 Alias for ~ ax-mulcl , for...
remulcl 11160 Alias for ~ ax-mulrcl , fo...
mulcom 11161 Alias for ~ ax-mulcom , fo...
addass 11162 Alias for ~ ax-addass , fo...
mulass 11163 Alias for ~ ax-mulass , fo...
adddi 11164 Alias for ~ ax-distr , for...
recn 11165 A real number is a complex...
reex 11166 The real numbers form a se...
reelprrecn 11167 Reals are a subset of the ...
cnelprrecn 11168 Complex numbers are a subs...
mpoaddf 11169 Addition is an operation o...
mpomulf 11170 Multiplication is an opera...
elimne0 11171 Hypothesis for weak deduct...
adddir 11172 Distributive law for compl...
0cn 11173 Zero is a complex number. ...
0cnd 11174 Zero is a complex number, ...
c0ex 11175 Zero is a set. (Contribut...
1cnd 11176 One is a complex number, d...
1ex 11177 One is a set. (Contribute...
cnre 11178 Alias for ~ ax-cnre , for ...
mulrid 11179 The number 1 is an identit...
mullid 11180 Identity law for multiplic...
1re 11181 The number 1 is real. Thi...
1red 11182 The number 1 is real, dedu...
0re 11183 The number 0 is real. Rem...
0red 11184 The number 0 is real, dedu...
mulridi 11185 Identity law for multiplic...
mullidi 11186 Identity law for multiplic...
addcli 11187 Closure law for addition. ...
mulcli 11188 Closure law for multiplica...
mulcomi 11189 Commutative law for multip...
mulcomli 11190 Commutative law for multip...
addassi 11191 Associative law for additi...
mulassi 11192 Associative law for multip...
adddii 11193 Distributive law (left-dis...
adddiri 11194 Distributive law (right-di...
recni 11195 A real number is a complex...
readdcli 11196 Closure law for addition o...
remulcli 11197 Closure law for multiplica...
mulridd 11198 Identity law for multiplic...
mullidd 11199 Identity law for multiplic...
addcld 11200 Closure law for addition. ...
mulcld 11201 Closure law for multiplica...
mulcomd 11202 Commutative law for multip...
addassd 11203 Associative law for additi...
mulassd 11204 Associative law for multip...
adddid 11205 Distributive law (left-dis...
adddird 11206 Distributive law (right-di...
adddirp1d 11207 Distributive law, plus 1 v...
joinlmuladdmuld 11208 Join AB+CB into (A+C) on L...
recnd 11209 Deduction from real number...
readdcld 11210 Closure law for addition o...
remulcld 11211 Closure law for multiplica...
pnfnre 11222 Plus infinity is not a rea...
pnfnre2 11223 Plus infinity is not a rea...
mnfnre 11224 Minus infinity is not a re...
ressxr 11225 The standard reals are a s...
rexpssxrxp 11226 The Cartesian product of s...
rexr 11227 A standard real is an exte...
0xr 11228 Zero is an extended real. ...
renepnf 11229 No (finite) real equals pl...
renemnf 11230 No real equals minus infin...
rexrd 11231 A standard real is an exte...
renepnfd 11232 No (finite) real equals pl...
renemnfd 11233 No real equals minus infin...
pnfex 11234 Plus infinity exists. (Co...
pnfxr 11235 Plus infinity belongs to t...
pnfnemnf 11236 Plus and minus infinity ar...
mnfnepnf 11237 Minus and plus infinity ar...
mnfxr 11238 Minus infinity belongs to ...
rexri 11239 A standard real is an exte...
1xr 11240 ` 1 ` is an extended real ...
renfdisj 11241 The reals and the infiniti...
ltrelxr 11242 "Less than" is a relation ...
ltrel 11243 "Less than" is a relation....
lerelxr 11244 "Less than or equal to" is...
lerel 11245 "Less than or equal to" is...
xrlenlt 11246 "Less than or equal to" ex...
xrlenltd 11247 "Less than or equal to" ex...
xrltnle 11248 "Less than" expressed in t...
xrnltled 11249 "Not less than" implies "l...
ssxr 11250 The three (non-exclusive) ...
ltxrlt 11251 The standard less-than ` <...
axlttri 11252 Ordering on reals satisfie...
axlttrn 11253 Ordering on reals is trans...
axltadd 11254 Ordering property of addit...
axmulgt0 11255 The product of two positiv...
axsup 11256 A nonempty, bounded-above ...
lttr 11257 Alias for ~ axlttrn , for ...
mulgt0 11258 The product of two positiv...
lenlt 11259 'Less than or equal to' ex...
ltnle 11260 'Less than' expressed in t...
ltso 11261 'Less than' is a strict or...
gtso 11262 'Greater than' is a strict...
lttri2 11263 Consequence of trichotomy....
lttri3 11264 Trichotomy law for 'less t...
lttri4 11265 Trichotomy law for 'less t...
letri3 11266 Trichotomy law. (Contribu...
leloe 11267 'Less than or equal to' ex...
eqlelt 11268 Equality in terms of 'less...
ltle 11269 'Less than' implies 'less ...
leltne 11270 'Less than or equal to' im...
lelttr 11271 Transitive law. (Contribu...
leltletr 11272 Transitive law, weaker for...
ltletr 11273 Transitive law. (Contribu...
ltleletr 11274 Transitive law, weaker for...
letr 11275 Transitive law. (Contribu...
ltnr 11276 'Less than' is irreflexive...
leid 11277 'Less than or equal to' is...
ltne 11278 'Less than' implies not eq...
ltnsym 11279 'Less than' is not symmetr...
ltnsym2 11280 'Less than' is antisymmetr...
letric 11281 Trichotomy law. (Contribu...
ltlen 11282 'Less than' expressed in t...
eqle 11283 Equality implies 'less tha...
eqled 11284 Equality implies 'less tha...
ltadd2 11285 Addition to both sides of ...
ne0gt0 11286 A nonzero nonnegative numb...
lecasei 11287 Ordering elimination by ca...
lelttric 11288 Trichotomy law. (Contribu...
ltlecasei 11289 Ordering elimination by ca...
ltnri 11290 'Less than' is irreflexive...
eqlei 11291 Equality implies 'less tha...
eqlei2 11292 Equality implies 'less tha...
gtneii 11293 'Less than' implies not eq...
ltneii 11294 'Greater than' implies not...
lttri2i 11295 Consequence of trichotomy....
lttri3i 11296 Consequence of trichotomy....
letri3i 11297 Consequence of trichotomy....
leloei 11298 'Less than or equal to' in...
ltleni 11299 'Less than' expressed in t...
ltnsymi 11300 'Less than' is not symmetr...
lenlti 11301 'Less than or equal to' in...
ltnlei 11302 'Less than' in terms of 'l...
ltlei 11303 'Less than' implies 'less ...
ltleii 11304 'Less than' implies 'less ...
ltnei 11305 'Less than' implies not eq...
letrii 11306 Trichotomy law for 'less t...
lttri 11307 'Less than' is transitive....
lelttri 11308 'Less than or equal to', '...
ltletri 11309 'Less than', 'less than or...
letri 11310 'Less than or equal to' is...
le2tri3i 11311 Extended trichotomy law fo...
ltadd2i 11312 Addition to both sides of ...
mulgt0i 11313 The product of two positiv...
mulgt0ii 11314 The product of two positiv...
ltnrd 11315 'Less than' is irreflexive...
gtned 11316 'Less than' implies not eq...
ltned 11317 'Greater than' implies not...
ne0gt0d 11318 A nonzero nonnegative numb...
lttrid 11319 Ordering on reals satisfie...
lttri2d 11320 Consequence of trichotomy....
lttri3d 11321 Consequence of trichotomy....
lttri4d 11322 Trichotomy law for 'less t...
letri3d 11323 Consequence of trichotomy....
leloed 11324 'Less than or equal to' in...
eqleltd 11325 Equality in terms of 'less...
ltlend 11326 'Less than' expressed in t...
lenltd 11327 'Less than or equal to' in...
ltnled 11328 'Less than' in terms of 'l...
ltled 11329 'Less than' implies 'less ...
ltnsymd 11330 'Less than' implies 'less ...
nltled 11331 'Not less than ' implies '...
lensymd 11332 'Less than or equal to' im...
letrid 11333 Trichotomy law for 'less t...
leltned 11334 'Less than or equal to' im...
leneltd 11335 'Less than or equal to' an...
mulgt0d 11336 The product of two positiv...
ltadd2d 11337 Addition to both sides of ...
letrd 11338 Transitive law deduction f...
lelttrd 11339 Transitive law deduction f...
ltadd2dd 11340 Addition to both sides of ...
ltletrd 11341 Transitive law deduction f...
lttrd 11342 Transitive law deduction f...
lelttrdi 11343 If a number is less than a...
dedekind 11344 The Dedekind cut theorem. ...
dedekindle 11345 The Dedekind cut theorem, ...
mul12 11346 Commutative/associative la...
mul32 11347 Commutative/associative la...
mul31 11348 Commutative/associative la...
mul4 11349 Rearrangement of 4 factors...
mul4r 11350 Rearrangement of 4 factors...
muladd11 11351 A simple product of sums e...
1p1times 11352 Two times a number. (Cont...
peano2cn 11353 A theorem for complex numb...
peano2re 11354 A theorem for reals analog...
readdcan 11355 Cancellation law for addit...
00id 11356 ` 0 ` is its own additive ...
mul02lem1 11357 Lemma for ~ mul02 . If an...
mul02lem2 11358 Lemma for ~ mul02 . Zero ...
mul02 11359 Multiplication by ` 0 ` . ...
mul01 11360 Multiplication by ` 0 ` . ...
addrid 11361 ` 0 ` is an additive ident...
cnegex 11362 Existence of the negative ...
cnegex2 11363 Existence of a left invers...
addlid 11364 ` 0 ` is a left identity f...
addcan 11365 Cancellation law for addit...
addcan2 11366 Cancellation law for addit...
addcom 11367 Addition commutes. This u...
addridi 11368 ` 0 ` is an additive ident...
addlidi 11369 ` 0 ` is a left identity f...
mul02i 11370 Multiplication by 0. Theo...
mul01i 11371 Multiplication by ` 0 ` . ...
addcomi 11372 Addition commutes. Based ...
addcomli 11373 Addition commutes. (Contr...
addcani 11374 Cancellation law for addit...
addcan2i 11375 Cancellation law for addit...
mul12i 11376 Commutative/associative la...
mul32i 11377 Commutative/associative la...
mul4i 11378 Rearrangement of 4 factors...
mul02d 11379 Multiplication by 0. Theo...
mul01d 11380 Multiplication by ` 0 ` . ...
addridd 11381 ` 0 ` is an additive ident...
addlidd 11382 ` 0 ` is a left identity f...
addcomd 11383 Addition commutes. Based ...
addcand 11384 Cancellation law for addit...
addcan2d 11385 Cancellation law for addit...
addcanad 11386 Cancelling a term on the l...
addcan2ad 11387 Cancelling a term on the r...
addneintrd 11388 Introducing a term on the ...
addneintr2d 11389 Introducing a term on the ...
mul12d 11390 Commutative/associative la...
mul32d 11391 Commutative/associative la...
mul31d 11392 Commutative/associative la...
mul4d 11393 Rearrangement of 4 factors...
muladd11r 11394 A simple product of sums e...
comraddd 11395 Commute RHS addition, in d...
comraddi 11396 Commute RHS addition. See...
ltaddneg 11397 Adding a negative number t...
ltaddnegr 11398 Adding a negative number t...
add12 11399 Commutative/associative la...
add32 11400 Commutative/associative la...
add32r 11401 Commutative/associative la...
add4 11402 Rearrangement of 4 terms i...
add42 11403 Rearrangement of 4 terms i...
add12i 11404 Commutative/associative la...
add32i 11405 Commutative/associative la...
add4i 11406 Rearrangement of 4 terms i...
add42i 11407 Rearrangement of 4 terms i...
add12d 11408 Commutative/associative la...
add32d 11409 Commutative/associative la...
add4d 11410 Rearrangement of 4 terms i...
add42d 11411 Rearrangement of 4 terms i...
0cnALT 11416 Alternate proof of ~ 0cn w...
0cnALT2 11417 Alternate proof of ~ 0cnAL...
negeu 11418 Existential uniqueness of ...
subval 11419 Value of subtraction, whic...
negeq 11420 Equality theorem for negat...
negeqi 11421 Equality inference for neg...
negeqd 11422 Equality deduction for neg...
nfnegd 11423 Deduction version of ~ nfn...
nfneg 11424 Bound-variable hypothesis ...
csbnegg 11425 Move class substitution in...
negex 11426 A negative is a set. (Con...
subcl 11427 Closure law for subtractio...
negcl 11428 Closure law for negative. ...
negicn 11429 ` -u _i ` is a complex num...
subf 11430 Subtraction is an operatio...
subadd 11431 Relationship between subtr...
subadd2 11432 Relationship between subtr...
subsub23 11433 Swap subtrahend and result...
pncan 11434 Cancellation law for subtr...
pncan2 11435 Cancellation law for subtr...
pncan3 11436 Subtraction and addition o...
npcan 11437 Cancellation law for subtr...
addsubass 11438 Associative-type law for a...
addsub 11439 Law for addition and subtr...
subadd23 11440 Commutative/associative la...
addsub12 11441 Commutative/associative la...
2addsub 11442 Law for subtraction and ad...
addsubeq4 11443 Relation between sums and ...
pncan3oi 11444 Subtraction and addition o...
mvrraddi 11445 Move the right term in a s...
mvrladdi 11446 Move the left term in a su...
mvlladdi 11447 Move the left term in a su...
subid 11448 Subtraction of a number fr...
subid1 11449 Identity law for subtracti...
npncan 11450 Cancellation law for subtr...
nppcan 11451 Cancellation law for subtr...
nnpcan 11452 Cancellation law for subtr...
nppcan3 11453 Cancellation law for subtr...
subcan2 11454 Cancellation law for subtr...
subeq0 11455 If the difference between ...
npncan2 11456 Cancellation law for subtr...
subsub2 11457 Law for double subtraction...
nncan 11458 Cancellation law for subtr...
subsub 11459 Law for double subtraction...
nppcan2 11460 Cancellation law for subtr...
subsub3 11461 Law for double subtraction...
subsub4 11462 Law for double subtraction...
sub32 11463 Swap the second and third ...
nnncan 11464 Cancellation law for subtr...
nnncan1 11465 Cancellation law for subtr...
nnncan2 11466 Cancellation law for subtr...
npncan3 11467 Cancellation law for subtr...
pnpcan 11468 Cancellation law for mixed...
pnpcan2 11469 Cancellation law for mixed...
pnncan 11470 Cancellation law for mixed...
ppncan 11471 Cancellation law for mixed...
addsub4 11472 Rearrangement of 4 terms i...
subadd4 11473 Rearrangement of 4 terms i...
sub4 11474 Rearrangement of 4 terms i...
neg0 11475 Minus 0 equals 0. (Contri...
negid 11476 Addition of a number and i...
negsub 11477 Relationship between subtr...
subneg 11478 Relationship between subtr...
negneg 11479 A number is equal to the n...
neg11 11480 Negative is one-to-one. (...
negcon1 11481 Negative contraposition la...
negcon2 11482 Negative contraposition la...
negeq0 11483 A number is zero iff its n...
subcan 11484 Cancellation law for subtr...
negsubdi 11485 Distribution of negative o...
negdi 11486 Distribution of negative o...
negdi2 11487 Distribution of negative o...
negsubdi2 11488 Distribution of negative o...
neg2sub 11489 Relationship between subtr...
renegcli 11490 Closure law for negative o...
resubcli 11491 Closure law for subtractio...
renegcl 11492 Closure law for negative o...
resubcl 11493 Closure law for subtractio...
negreb 11494 The negative of a real is ...
peano2cnm 11495 "Reverse" second Peano pos...
peano2rem 11496 "Reverse" second Peano pos...
negcli 11497 Closure law for negative. ...
negidi 11498 Addition of a number and i...
negnegi 11499 A number is equal to the n...
subidi 11500 Subtraction of a number fr...
subid1i 11501 Identity law for subtracti...
negne0bi 11502 A number is nonzero iff it...
negrebi 11503 The negative of a real is ...
negne0i 11504 The negative of a nonzero ...
subcli 11505 Closure law for subtractio...
pncan3i 11506 Subtraction and addition o...
negsubi 11507 Relationship between subtr...
subnegi 11508 Relationship between subtr...
subeq0i 11509 If the difference between ...
neg11i 11510 Negative is one-to-one. (...
negcon1i 11511 Negative contraposition la...
negcon2i 11512 Negative contraposition la...
negdii 11513 Distribution of negative o...
negsubdii 11514 Distribution of negative o...
negsubdi2i 11515 Distribution of negative o...
subaddi 11516 Relationship between subtr...
subadd2i 11517 Relationship between subtr...
subaddrii 11518 Relationship between subtr...
subsub23i 11519 Swap subtrahend and result...
addsubassi 11520 Associative-type law for s...
addsubi 11521 Law for subtraction and ad...
subcani 11522 Cancellation law for subtr...
subcan2i 11523 Cancellation law for subtr...
pnncani 11524 Cancellation law for mixed...
addsub4i 11525 Rearrangement of 4 terms i...
0reALT 11526 Alternate proof of ~ 0re ....
negcld 11527 Closure law for negative. ...
subidd 11528 Subtraction of a number fr...
subid1d 11529 Identity law for subtracti...
negidd 11530 Addition of a number and i...
negnegd 11531 A number is equal to the n...
negeq0d 11532 A number is zero iff its n...
negne0bd 11533 A number is nonzero iff it...
negcon1d 11534 Contraposition law for una...
negcon1ad 11535 Contraposition law for una...
neg11ad 11536 The negatives of two compl...
negned 11537 If two complex numbers are...
negne0d 11538 The negative of a nonzero ...
negrebd 11539 The negative of a real is ...
subcld 11540 Closure law for subtractio...
pncand 11541 Cancellation law for subtr...
pncan2d 11542 Cancellation law for subtr...
pncan3d 11543 Subtraction and addition o...
npcand 11544 Cancellation law for subtr...
nncand 11545 Cancellation law for subtr...
negsubd 11546 Relationship between subtr...
subnegd 11547 Relationship between subtr...
subeq0d 11548 If the difference between ...
subne0d 11549 Two unequal numbers have n...
subeq0ad 11550 The difference of two comp...
subne0ad 11551 If the difference of two c...
neg11d 11552 If the difference between ...
negdid 11553 Distribution of negative o...
negdi2d 11554 Distribution of negative o...
negsubdid 11555 Distribution of negative o...
negsubdi2d 11556 Distribution of negative o...
neg2subd 11557 Relationship between subtr...
subaddd 11558 Relationship between subtr...
subadd2d 11559 Relationship between subtr...
addsubassd 11560 Associative-type law for s...
addsubd 11561 Law for subtraction and ad...
subadd23d 11562 Commutative/associative la...
addsub12d 11563 Commutative/associative la...
npncand 11564 Cancellation law for subtr...
nppcand 11565 Cancellation law for subtr...
nppcan2d 11566 Cancellation law for subtr...
nppcan3d 11567 Cancellation law for subtr...
subsubd 11568 Law for double subtraction...
subsub2d 11569 Law for double subtraction...
subsub3d 11570 Law for double subtraction...
subsub4d 11571 Law for double subtraction...
sub32d 11572 Swap the second and third ...
nnncand 11573 Cancellation law for subtr...
nnncan1d 11574 Cancellation law for subtr...
nnncan2d 11575 Cancellation law for subtr...
npncan3d 11576 Cancellation law for subtr...
pnpcand 11577 Cancellation law for mixed...
pnpcan2d 11578 Cancellation law for mixed...
pnncand 11579 Cancellation law for mixed...
ppncand 11580 Cancellation law for mixed...
subcand 11581 Cancellation law for subtr...
subcan2d 11582 Cancellation law for subtr...
subcanad 11583 Cancellation law for subtr...
subneintrd 11584 Introducing subtraction on...
subcan2ad 11585 Cancellation law for subtr...
subneintr2d 11586 Introducing subtraction on...
addsub4d 11587 Rearrangement of 4 terms i...
subadd4d 11588 Rearrangement of 4 terms i...
sub4d 11589 Rearrangement of 4 terms i...
2addsubd 11590 Law for subtraction and ad...
addsubeq4d 11591 Relation between sums and ...
subsubadd23 11592 Swap the second and the th...
addsubsub23 11593 Swap the second and the th...
subeqxfrd 11594 Transfer two terms of a su...
mvlraddd 11595 Move the right term in a s...
mvlladdd 11596 Move the left term in a su...
mvrraddd 11597 Move the right term in a s...
mvrladdd 11598 Move the left term in a su...
assraddsubd 11599 Associate RHS addition-sub...
subaddeqd 11600 Transfer two terms of a su...
addlsub 11601 Left-subtraction: Subtrac...
addrsub 11602 Right-subtraction: Subtra...
subexsub 11603 A subtraction law: Exchan...
addid0 11604 If adding a number to a an...
addn0nid 11605 Adding a nonzero number to...
pnpncand 11606 Addition/subtraction cance...
subeqrev 11607 Reverse the order of subtr...
addeq0 11608 Two complex numbers add up...
pncan1 11609 Cancellation law for addit...
npcan1 11610 Cancellation law for subtr...
subeq0bd 11611 If two complex numbers are...
renegcld 11612 Closure law for negative o...
resubcld 11613 Closure law for subtractio...
negn0 11614 The image under negation o...
negf1o 11615 Negation is an isomorphism...
kcnktkm1cn 11616 k times k minus 1 is a com...
muladd 11617 Product of two sums. (Con...
subdi 11618 Distribution of multiplica...
subdir 11619 Distribution of multiplica...
ine0 11620 The imaginary unit ` _i ` ...
mulneg1 11621 Product with negative is n...
mulneg2 11622 The product with a negativ...
mulneg12 11623 Swap the negative sign in ...
mul2neg 11624 Product of two negatives. ...
submul2 11625 Convert a subtraction to a...
mulm1 11626 Product with minus one is ...
addneg1mul 11627 Addition with product with...
mulsub 11628 Product of two differences...
mulsub2 11629 Swap the order of subtract...
mulm1i 11630 Product with minus one is ...
mulneg1i 11631 Product with negative is n...
mulneg2i 11632 Product with negative is n...
mul2negi 11633 Product of two negatives. ...
subdii 11634 Distribution of multiplica...
subdiri 11635 Distribution of multiplica...
muladdi 11636 Product of two sums. (Con...
mulm1d 11637 Product with minus one is ...
mulneg1d 11638 Product with negative is n...
mulneg2d 11639 Product with negative is n...
mul2negd 11640 Product of two negatives. ...
subdid 11641 Distribution of multiplica...
subdird 11642 Distribution of multiplica...
muladdd 11643 Product of two sums. (Con...
mulsubd 11644 Product of two differences...
muls1d 11645 Multiplication by one minu...
mulsubfacd 11646 Multiplication followed by...
addmulsub 11647 The product of a sum and a...
subaddmulsub 11648 The difference with a prod...
mulsubaddmulsub 11649 A special difference of a ...
gt0ne0 11650 Positive implies nonzero. ...
lt0ne0 11651 A number which is less tha...
ltadd1 11652 Addition to both sides of ...
leadd1 11653 Addition to both sides of ...
leadd2 11654 Addition to both sides of ...
ltsubadd 11655 'Less than' relationship b...
ltsubadd2 11656 'Less than' relationship b...
lesubadd 11657 'Less than or equal to' re...
lesubadd2 11658 'Less than or equal to' re...
ltaddsub 11659 'Less than' relationship b...
ltaddsub2 11660 'Less than' relationship b...
leaddsub 11661 'Less than or equal to' re...
leaddsub2 11662 'Less than or equal to' re...
suble 11663 Swap subtrahends in an ine...
lesub 11664 Swap subtrahends in an ine...
ltsub23 11665 'Less than' relationship b...
ltsub13 11666 'Less than' relationship b...
le2add 11667 Adding both sides of two '...
ltleadd 11668 Adding both sides of two o...
leltadd 11669 Adding both sides of two o...
lt2add 11670 Adding both sides of two '...
addgt0 11671 The sum of 2 positive numb...
addgegt0 11672 The sum of nonnegative and...
addgtge0 11673 The sum of nonnegative and...
addge0 11674 The sum of 2 nonnegative n...
ltaddpos 11675 Adding a positive number t...
ltaddpos2 11676 Adding a positive number t...
ltsubpos 11677 Subtracting a positive num...
posdif 11678 Comparison of two numbers ...
lesub1 11679 Subtraction from both side...
lesub2 11680 Subtraction of both sides ...
ltsub1 11681 Subtraction from both side...
ltsub2 11682 Subtraction of both sides ...
lt2sub 11683 Subtracting both sides of ...
le2sub 11684 Subtracting both sides of ...
ltneg 11685 Negative of both sides of ...
ltnegcon1 11686 Contraposition of negative...
ltnegcon2 11687 Contraposition of negative...
leneg 11688 Negative of both sides of ...
lenegcon1 11689 Contraposition of negative...
lenegcon2 11690 Contraposition of negative...
lt0neg1 11691 Comparison of a number and...
lt0neg2 11692 Comparison of a number and...
le0neg1 11693 Comparison of a number and...
le0neg2 11694 Comparison of a number and...
addge01 11695 A number is less than or e...
addge02 11696 A number is less than or e...
add20 11697 Two nonnegative numbers ar...
subge0 11698 Nonnegative subtraction. ...
suble0 11699 Nonpositive subtraction. ...
leaddle0 11700 The sum of a real number a...
subge02 11701 Nonnegative subtraction. ...
lesub0 11702 Lemma to show a nonnegativ...
mulge0 11703 The product of two nonnega...
mullt0 11704 The product of two negativ...
msqgt0 11705 A nonzero square is positi...
msqge0 11706 A square is nonnegative. ...
0lt1 11707 0 is less than 1. Theorem...
0le1 11708 0 is less than or equal to...
relin01 11709 An interval law for less t...
ltordlem 11710 Lemma for ~ ltord1 . (Con...
ltord1 11711 Infer an ordering relation...
leord1 11712 Infer an ordering relation...
eqord1 11713 A strictly increasing real...
ltord2 11714 Infer an ordering relation...
leord2 11715 Infer an ordering relation...
eqord2 11716 A strictly decreasing real...
wloglei 11717 Form of ~ wlogle where bot...
wlogle 11718 If the predicate ` ch ( x ...
leidi 11719 'Less than or equal to' is...
gt0ne0i 11720 Positive means nonzero (us...
gt0ne0ii 11721 Positive implies nonzero. ...
msqgt0i 11722 A nonzero square is positi...
msqge0i 11723 A square is nonnegative. ...
addgt0i 11724 Addition of 2 positive num...
addge0i 11725 Addition of 2 nonnegative ...
addgegt0i 11726 Addition of nonnegative an...
addgt0ii 11727 Addition of 2 positive num...
add20i 11728 Two nonnegative numbers ar...
ltnegi 11729 Negative of both sides of ...
lenegi 11730 Negative of both sides of ...
ltnegcon2i 11731 Contraposition of negative...
mulge0i 11732 The product of two nonnega...
lesub0i 11733 Lemma to show a nonnegativ...
ltaddposi 11734 Adding a positive number t...
posdifi 11735 Comparison of two numbers ...
ltnegcon1i 11736 Contraposition of negative...
lenegcon1i 11737 Contraposition of negative...
subge0i 11738 Nonnegative subtraction. ...
ltadd1i 11739 Addition to both sides of ...
leadd1i 11740 Addition to both sides of ...
leadd2i 11741 Addition to both sides of ...
ltsubaddi 11742 'Less than' relationship b...
lesubaddi 11743 'Less than or equal to' re...
ltsubadd2i 11744 'Less than' relationship b...
lesubadd2i 11745 'Less than or equal to' re...
ltaddsubi 11746 'Less than' relationship b...
lt2addi 11747 Adding both side of two in...
le2addi 11748 Adding both side of two in...
gt0ne0d 11749 Positive implies nonzero. ...
lt0ne0d 11750 Something less than zero i...
leidd 11751 'Less than or equal to' is...
msqgt0d 11752 A nonzero square is positi...
msqge0d 11753 A square is nonnegative. ...
lt0neg1d 11754 Comparison of a number and...
lt0neg2d 11755 Comparison of a number and...
le0neg1d 11756 Comparison of a number and...
le0neg2d 11757 Comparison of a number and...
addgegt0d 11758 Addition of nonnegative an...
addgtge0d 11759 Addition of positive and n...
addgt0d 11760 Addition of 2 positive num...
addge0d 11761 Addition of 2 nonnegative ...
mulge0d 11762 The product of two nonnega...
ltnegd 11763 Negative of both sides of ...
lenegd 11764 Negative of both sides of ...
ltnegcon1d 11765 Contraposition of negative...
ltnegcon2d 11766 Contraposition of negative...
lenegcon1d 11767 Contraposition of negative...
lenegcon2d 11768 Contraposition of negative...
ltaddposd 11769 Adding a positive number t...
ltaddpos2d 11770 Adding a positive number t...
ltsubposd 11771 Subtracting a positive num...
posdifd 11772 Comparison of two numbers ...
addge01d 11773 A number is less than or e...
addge02d 11774 A number is less than or e...
subge0d 11775 Nonnegative subtraction. ...
suble0d 11776 Nonpositive subtraction. ...
subge02d 11777 Nonnegative subtraction. ...
ltadd1d 11778 Addition to both sides of ...
leadd1d 11779 Addition to both sides of ...
leadd2d 11780 Addition to both sides of ...
ltsubaddd 11781 'Less than' relationship b...
lesubaddd 11782 'Less than or equal to' re...
ltsubadd2d 11783 'Less than' relationship b...
lesubadd2d 11784 'Less than or equal to' re...
ltaddsubd 11785 'Less than' relationship b...
ltaddsub2d 11786 'Less than' relationship b...
leaddsub2d 11787 'Less than or equal to' re...
subled 11788 Swap subtrahends in an ine...
lesubd 11789 Swap subtrahends in an ine...
ltsub23d 11790 'Less than' relationship b...
ltsub13d 11791 'Less than' relationship b...
lesub1d 11792 Subtraction from both side...
lesub2d 11793 Subtraction of both sides ...
ltsub1d 11794 Subtraction from both side...
ltsub2d 11795 Subtraction of both sides ...
ltadd1dd 11796 Addition to both sides of ...
ltsub1dd 11797 Subtraction from both side...
ltsub2dd 11798 Subtraction of both sides ...
leadd1dd 11799 Addition to both sides of ...
leadd2dd 11800 Addition to both sides of ...
lesub1dd 11801 Subtraction from both side...
lesub2dd 11802 Subtraction of both sides ...
lesub3d 11803 The result of subtracting ...
le2addd 11804 Adding both side of two in...
le2subd 11805 Subtracting both sides of ...
ltleaddd 11806 Adding both sides of two o...
leltaddd 11807 Adding both sides of two o...
lt2addd 11808 Adding both side of two in...
lt2subd 11809 Subtracting both sides of ...
possumd 11810 Condition for a positive s...
sublt0d 11811 When a subtraction gives a...
ltaddsublt 11812 Addition and subtraction o...
1le1 11813 One is less than or equal ...
ixi 11814 ` _i ` times itself is min...
recextlem1 11815 Lemma for ~ recex . (Cont...
recextlem2 11816 Lemma for ~ recex . (Cont...
recex 11817 Existence of reciprocal of...
mulcand 11818 Cancellation law for multi...
mulcan2d 11819 Cancellation law for multi...
mulcanad 11820 Cancellation of a nonzero ...
mulcan2ad 11821 Cancellation of a nonzero ...
mulcan 11822 Cancellation law for multi...
mulcan2 11823 Cancellation law for multi...
mulcani 11824 Cancellation law for multi...
mul0or 11825 If a product is zero, one ...
mulne0b 11826 The product of two nonzero...
mulne0 11827 The product of two nonzero...
mulne0i 11828 The product of two nonzero...
muleqadd 11829 Property of numbers whose ...
receu 11830 Existential uniqueness of ...
mulnzcnf 11831 Multiplication maps nonzer...
mul0ori 11832 If a product is zero, one ...
mul0ord 11833 If a product is zero, one ...
msq0i 11834 A number is zero iff its s...
msq0d 11835 A number is zero iff its s...
mulne0bd 11836 The product of two nonzero...
mulne0d 11837 The product of two nonzero...
mulcan1g 11838 A generalized form of the ...
mulcan2g 11839 A generalized form of the ...
mulne0bad 11840 A factor of a nonzero comp...
mulne0bbd 11841 A factor of a nonzero comp...
1div0 11844 You can't divide by zero, ...
1div0OLD 11845 Obsolete version of ~ 1div...
divval 11846 Value of division: if ` A ...
divmul 11847 Relationship between divis...
divmul2 11848 Relationship between divis...
divmul3 11849 Relationship between divis...
divcl 11850 Closure law for division. ...
reccl 11851 Closure law for reciprocal...
divcan2 11852 A cancellation law for div...
divcan1 11853 A cancellation law for div...
diveq0 11854 A ratio is zero iff the nu...
divne0b 11855 The ratio of nonzero numbe...
divne0 11856 The ratio of nonzero numbe...
recne0 11857 The reciprocal of a nonzer...
recid 11858 Multiplication of a number...
recid2 11859 Multiplication of a number...
divrec 11860 Relationship between divis...
divrec2 11861 Relationship between divis...
divass 11862 An associative law for div...
div23 11863 A commutative/associative ...
div32 11864 A commutative/associative ...
div13 11865 A commutative/associative ...
div12 11866 A commutative/associative ...
divmulass 11867 An associative law for div...
divmulasscom 11868 An associative/commutative...
divdir 11869 Distribution of division o...
divcan3 11870 A cancellation law for div...
divcan4 11871 A cancellation law for div...
div11 11872 One-to-one relationship fo...
div11OLD 11873 Obsolete version of ~ div1...
diveq1 11874 Equality in terms of unit ...
divid 11875 A number divided by itself...
dividOLD 11876 Obsolete version of ~ divi...
div0 11877 Division into zero is zero...
div0OLD 11878 Obsolete version of ~ div0...
div1 11879 A number divided by 1 is i...
1div1e1 11880 1 divided by 1 is 1. (Con...
divneg 11881 Move negative sign inside ...
muldivdir 11882 Distribution of division o...
divsubdir 11883 Distribution of division o...
subdivcomb1 11884 Bring a term in a subtract...
subdivcomb2 11885 Bring a term in a subtract...
recrec 11886 A number is equal to the r...
rec11 11887 Reciprocal is one-to-one. ...
rec11r 11888 Mutual reciprocals. (Cont...
divmuldiv 11889 Multiplication of two rati...
divdivdiv 11890 Division of two ratios. T...
divcan5 11891 Cancellation of common fac...
divmul13 11892 Swap the denominators in t...
divmul24 11893 Swap the numerators in the...
divmuleq 11894 Cross-multiply in an equal...
recdiv 11895 The reciprocal of a ratio....
divcan6 11896 Cancellation of inverted f...
divdiv32 11897 Swap denominators in a div...
divcan7 11898 Cancel equal divisors in a...
dmdcan 11899 Cancellation law for divis...
divdiv1 11900 Division into a fraction. ...
divdiv2 11901 Division by a fraction. (...
recdiv2 11902 Division into a reciprocal...
ddcan 11903 Cancellation in a double d...
divadddiv 11904 Addition of two ratios. T...
divsubdiv 11905 Subtraction of two ratios....
conjmul 11906 Two numbers whose reciproc...
rereccl 11907 Closure law for reciprocal...
redivcl 11908 Closure law for division o...
eqneg 11909 A number equal to its nega...
eqnegd 11910 A complex number equals it...
eqnegad 11911 If a complex number equals...
div2neg 11912 Quotient of two negatives....
divneg2 11913 Move negative sign inside ...
recclzi 11914 Closure law for reciprocal...
recne0zi 11915 The reciprocal of a nonzer...
recidzi 11916 Multiplication of a number...
div1i 11917 A number divided by 1 is i...
eqnegi 11918 A number equal to its nega...
reccli 11919 Closure law for reciprocal...
recidi 11920 Multiplication of a number...
recreci 11921 A number is equal to the r...
dividi 11922 A number divided by itself...
div0i 11923 Division into zero is zero...
divclzi 11924 Closure law for division. ...
divcan1zi 11925 A cancellation law for div...
divcan2zi 11926 A cancellation law for div...
divreczi 11927 Relationship between divis...
divcan3zi 11928 A cancellation law for div...
divcan4zi 11929 A cancellation law for div...
rec11i 11930 Reciprocal is one-to-one. ...
divcli 11931 Closure law for division. ...
divcan2i 11932 A cancellation law for div...
divcan1i 11933 A cancellation law for div...
divreci 11934 Relationship between divis...
divcan3i 11935 A cancellation law for div...
divcan4i 11936 A cancellation law for div...
divne0i 11937 The ratio of nonzero numbe...
rec11ii 11938 Reciprocal is one-to-one. ...
divasszi 11939 An associative law for div...
divmulzi 11940 Relationship between divis...
divdirzi 11941 Distribution of division o...
divdiv23zi 11942 Swap denominators in a div...
divmuli 11943 Relationship between divis...
divdiv32i 11944 Swap denominators in a div...
divassi 11945 An associative law for div...
divdiri 11946 Distribution of division o...
div23i 11947 A commutative/associative ...
div11i 11948 One-to-one relationship fo...
divmuldivi 11949 Multiplication of two rati...
divmul13i 11950 Swap denominators of two r...
divadddivi 11951 Addition of two ratios. T...
divdivdivi 11952 Division of two ratios. T...
rerecclzi 11953 Closure law for reciprocal...
rereccli 11954 Closure law for reciprocal...
redivclzi 11955 Closure law for division o...
redivcli 11956 Closure law for division o...
div1d 11957 A number divided by 1 is i...
reccld 11958 Closure law for reciprocal...
recne0d 11959 The reciprocal of a nonzer...
recidd 11960 Multiplication of a number...
recid2d 11961 Multiplication of a number...
recrecd 11962 A number is equal to the r...
dividd 11963 A number divided by itself...
div0d 11964 Division into zero is zero...
divcld 11965 Closure law for division. ...
divcan1d 11966 A cancellation law for div...
divcan2d 11967 A cancellation law for div...
divrecd 11968 Relationship between divis...
divrec2d 11969 Relationship between divis...
divcan3d 11970 A cancellation law for div...
divcan4d 11971 A cancellation law for div...
diveq0d 11972 A ratio is zero iff the nu...
diveq1d 11973 Equality in terms of unit ...
diveq1ad 11974 The quotient of two comple...
diveq0ad 11975 A fraction of complex numb...
divne1d 11976 If two complex numbers are...
divne0bd 11977 A ratio is zero iff the nu...
divnegd 11978 Move negative sign inside ...
divneg2d 11979 Move negative sign inside ...
div2negd 11980 Quotient of two negatives....
divne0d 11981 The ratio of nonzero numbe...
recdivd 11982 The reciprocal of a ratio....
recdiv2d 11983 Division into a reciprocal...
divcan6d 11984 Cancellation of inverted f...
ddcand 11985 Cancellation in a double d...
rec11d 11986 Reciprocal is one-to-one. ...
divmuld 11987 Relationship between divis...
div32d 11988 A commutative/associative ...
div13d 11989 A commutative/associative ...
divdiv32d 11990 Swap denominators in a div...
divcan5d 11991 Cancellation of common fac...
divcan5rd 11992 Cancellation of common fac...
divcan7d 11993 Cancel equal divisors in a...
dmdcand 11994 Cancellation law for divis...
dmdcan2d 11995 Cancellation law for divis...
divdiv1d 11996 Division into a fraction. ...
divdiv2d 11997 Division by a fraction. (...
divmul2d 11998 Relationship between divis...
divmul3d 11999 Relationship between divis...
divassd 12000 An associative law for div...
div12d 12001 A commutative/associative ...
div23d 12002 A commutative/associative ...
divdird 12003 Distribution of division o...
divsubdird 12004 Distribution of division o...
div11d 12005 One-to-one relationship fo...
divmuldivd 12006 Multiplication of two rati...
divmul13d 12007 Swap denominators of two r...
divmul24d 12008 Swap the numerators in the...
divadddivd 12009 Addition of two ratios. T...
divsubdivd 12010 Subtraction of two ratios....
divmuleqd 12011 Cross-multiply in an equal...
divdivdivd 12012 Division of two ratios. T...
diveq1bd 12013 If two complex numbers are...
div2sub 12014 Swap the order of subtract...
div2subd 12015 Swap subtrahend and minuen...
rereccld 12016 Closure law for reciprocal...
redivcld 12017 Closure law for division o...
subrecd 12018 Subtraction of reciprocals...
subrec 12019 Subtraction of reciprocals...
subreci 12020 Subtraction of reciprocals...
mvllmuld 12021 Move the left term in a pr...
mvllmuli 12022 Move the left term in a pr...
ldiv 12023 Left-division. (Contribut...
rdiv 12024 Right-division. (Contribu...
mdiv 12025 A division law. (Contribu...
lineq 12026 Solution of a (scalar) lin...
elimgt0 12027 Hypothesis for weak deduct...
elimge0 12028 Hypothesis for weak deduct...
ltp1 12029 A number is less than itse...
lep1 12030 A number is less than or e...
ltm1 12031 A number minus 1 is less t...
lem1 12032 A number minus 1 is less t...
letrp1 12033 A transitive property of '...
p1le 12034 A transitive property of p...
recgt0 12035 The reciprocal of a positi...
prodgt0 12036 Infer that a multiplicand ...
prodgt02 12037 Infer that a multiplier is...
ltmul1a 12038 Lemma for ~ ltmul1 . Mult...
ltmul1 12039 Multiplication of both sid...
ltmul2 12040 Multiplication of both sid...
lemul1 12041 Multiplication of both sid...
lemul2 12042 Multiplication of both sid...
lemul1a 12043 Multiplication of both sid...
lemul2a 12044 Multiplication of both sid...
ltmul12a 12045 Comparison of product of t...
lemul12b 12046 Comparison of product of t...
lemul12a 12047 Comparison of product of t...
mulgt1OLD 12048 Obsolete version of ~ mulg...
ltmulgt11 12049 Multiplication by a number...
ltmulgt12 12050 Multiplication by a number...
mulgt1 12051 The product of two numbers...
lemulge11 12052 Multiplication by a number...
lemulge12 12053 Multiplication by a number...
ltdiv1 12054 Division of both sides of ...
lediv1 12055 Division of both sides of ...
gt0div 12056 Division of a positive num...
ge0div 12057 Division of a nonnegative ...
divgt0 12058 The ratio of two positive ...
divge0 12059 The ratio of nonnegative a...
mulge0b 12060 A condition for multiplica...
mulle0b 12061 A condition for multiplica...
mulsuble0b 12062 A condition for multiplica...
ltmuldiv 12063 'Less than' relationship b...
ltmuldiv2 12064 'Less than' relationship b...
ltdivmul 12065 'Less than' relationship b...
ledivmul 12066 'Less than or equal to' re...
ltdivmul2 12067 'Less than' relationship b...
lt2mul2div 12068 'Less than' relationship b...
ledivmul2 12069 'Less than or equal to' re...
lemuldiv 12070 'Less than or equal' relat...
lemuldiv2 12071 'Less than or equal' relat...
ltrec 12072 The reciprocal of both sid...
lerec 12073 The reciprocal of both sid...
lt2msq1 12074 Lemma for ~ lt2msq . (Con...
lt2msq 12075 Two nonnegative numbers co...
ltdiv2 12076 Division of a positive num...
ltrec1 12077 Reciprocal swap in a 'less...
lerec2 12078 Reciprocal swap in a 'less...
ledivdiv 12079 Invert ratios of positive ...
lediv2 12080 Division of a positive num...
ltdiv23 12081 Swap denominator with othe...
lediv23 12082 Swap denominator with othe...
lediv12a 12083 Comparison of ratio of two...
lediv2a 12084 Division of both sides of ...
reclt1 12085 The reciprocal of a positi...
recgt1 12086 The reciprocal of a positi...
recgt1i 12087 The reciprocal of a number...
recp1lt1 12088 Construct a number less th...
recreclt 12089 Given a positive number ` ...
le2msq 12090 The square function on non...
msq11 12091 The square of a nonnegativ...
ledivp1 12092 "Less than or equal to" an...
squeeze0 12093 If a nonnegative number is...
ltp1i 12094 A number is less than itse...
recgt0i 12095 The reciprocal of a positi...
recgt0ii 12096 The reciprocal of a positi...
prodgt0i 12097 Infer that a multiplicand ...
divgt0i 12098 The ratio of two positive ...
divge0i 12099 The ratio of nonnegative a...
ltreci 12100 The reciprocal of both sid...
lereci 12101 The reciprocal of both sid...
lt2msqi 12102 The square function on non...
le2msqi 12103 The square function on non...
msq11i 12104 The square of a nonnegativ...
divgt0i2i 12105 The ratio of two positive ...
ltrecii 12106 The reciprocal of both sid...
divgt0ii 12107 The ratio of two positive ...
ltmul1i 12108 Multiplication of both sid...
ltdiv1i 12109 Division of both sides of ...
ltmuldivi 12110 'Less than' relationship b...
ltmul2i 12111 Multiplication of both sid...
lemul1i 12112 Multiplication of both sid...
lemul2i 12113 Multiplication of both sid...
ltdiv23i 12114 Swap denominator with othe...
ledivp1i 12115 "Less than or equal to" an...
ltdivp1i 12116 Less-than and division rel...
ltdiv23ii 12117 Swap denominator with othe...
ltmul1ii 12118 Multiplication of both sid...
ltdiv1ii 12119 Division of both sides of ...
ltp1d 12120 A number is less than itse...
lep1d 12121 A number is less than or e...
ltm1d 12122 A number minus 1 is less t...
lem1d 12123 A number minus 1 is less t...
recgt0d 12124 The reciprocal of a positi...
divgt0d 12125 The ratio of two positive ...
mulgt1d 12126 The product of two numbers...
lemulge11d 12127 Multiplication by a number...
lemulge12d 12128 Multiplication by a number...
lemul1ad 12129 Multiplication of both sid...
lemul2ad 12130 Multiplication of both sid...
ltmul12ad 12131 Comparison of product of t...
lemul12ad 12132 Comparison of product of t...
lemul12bd 12133 Comparison of product of t...
fimaxre 12134 A finite set of real numbe...
fimaxre2 12135 A nonempty finite set of r...
fimaxre3 12136 A nonempty finite set of r...
fiminre 12137 A nonempty finite set of r...
fiminre2 12138 A nonempty finite set of r...
negfi 12139 The negation of a finite s...
lbreu 12140 If a set of reals contains...
lbcl 12141 If a set of reals contains...
lble 12142 If a set of reals contains...
lbinf 12143 If a set of reals contains...
lbinfcl 12144 If a set of reals contains...
lbinfle 12145 If a set of reals contains...
sup2 12146 A nonempty, bounded-above ...
sup3 12147 A version of the completen...
infm3lem 12148 Lemma for ~ infm3 . (Cont...
infm3 12149 The completeness axiom for...
suprcl 12150 Closure of supremum of a n...
suprub 12151 A member of a nonempty bou...
suprubd 12152 Natural deduction form of ...
suprcld 12153 Natural deduction form of ...
suprlub 12154 The supremum of a nonempty...
suprnub 12155 An upper bound is not less...
suprleub 12156 The supremum of a nonempty...
supaddc 12157 The supremum function dist...
supadd 12158 The supremum function dist...
supmul1 12159 The supremum function dist...
supmullem1 12160 Lemma for ~ supmul . (Con...
supmullem2 12161 Lemma for ~ supmul . (Con...
supmul 12162 The supremum function dist...
sup3ii 12163 A version of the completen...
suprclii 12164 Closure of supremum of a n...
suprubii 12165 A member of a nonempty bou...
suprlubii 12166 The supremum of a nonempty...
suprnubii 12167 An upper bound is not less...
suprleubii 12168 The supremum of a nonempty...
riotaneg 12169 The negative of the unique...
negiso 12170 Negation is an order anti-...
dfinfre 12171 The infimum of a set of re...
infrecl 12172 Closure of infimum of a no...
infrenegsup 12173 The infimum of a set of re...
infregelb 12174 Any lower bound of a nonem...
infrelb 12175 If a nonempty set of real ...
infrefilb 12176 The infimum of a finite se...
supfirege 12177 The supremum of a finite s...
neg1cn 12178 -1 is a complex number. (...
neg1rr 12179 -1 is a real number. (Con...
neg1ne0 12180 -1 is nonzero. (Contribut...
neg1lt0 12181 -1 is less than 0. (Contr...
negneg1e1 12182 ` -u -u 1 ` is 1. (Contri...
inelr 12183 The imaginary unit ` _i ` ...
rimul 12184 A real number times the im...
cru 12185 The representation of comp...
crne0 12186 The real representation of...
creur 12187 The real part of a complex...
creui 12188 The imaginary part of a co...
cju 12189 The complex conjugate of a...
ofsubeq0 12190 Function analogue of ~ sub...
ofnegsub 12191 Function analogue of ~ neg...
ofsubge0 12192 Function analogue of ~ sub...
nnexALT 12195 Alternate proof of ~ nnex ...
peano5nni 12196 Peano's inductive postulat...
nnssre 12197 The positive integers are ...
nnsscn 12198 The positive integers are ...
nnex 12199 The set of positive intege...
nnre 12200 A positive integer is a re...
nncn 12201 A positive integer is a co...
nnrei 12202 A positive integer is a re...
nncni 12203 A positive integer is a co...
1nn 12204 Peano postulate: 1 is a po...
peano2nn 12205 Peano postulate: a success...
dfnn2 12206 Alternate definition of th...
dfnn3 12207 Alternate definition of th...
nnred 12208 A positive integer is a re...
nncnd 12209 A positive integer is a co...
peano2nnd 12210 Peano postulate: a success...
nnind 12211 Principle of Mathematical ...
nnindALT 12212 Principle of Mathematical ...
nnindd 12213 Principle of Mathematical ...
nn1m1nn 12214 Every positive integer is ...
nn1suc 12215 If a statement holds for 1...
nnaddcl 12216 Closure of addition of pos...
nnmulcl 12217 Closure of multiplication ...
nnmulcli 12218 Closure of multiplication ...
nnmtmip 12219 "Minus times minus is plus...
nn2ge 12220 There exists a positive in...
nnge1 12221 A positive integer is one ...
nngt1ne1 12222 A positive integer is grea...
nnle1eq1 12223 A positive integer is less...
nngt0 12224 A positive integer is posi...
nnnlt1 12225 A positive integer is not ...
nnnle0 12226 A positive integer is not ...
nnne0 12227 A positive integer is nonz...
nnneneg 12228 No positive integer is equ...
0nnn 12229 Zero is not a positive int...
0nnnALT 12230 Alternate proof of ~ 0nnn ...
nnne0ALT 12231 Alternate version of ~ nnn...
nngt0i 12232 A positive integer is posi...
nnne0i 12233 A positive integer is nonz...
nndivre 12234 The quotient of a real and...
nnrecre 12235 The reciprocal of a positi...
nnrecgt0 12236 The reciprocal of a positi...
nnsub 12237 Subtraction of positive in...
nnsubi 12238 Subtraction of positive in...
nndiv 12239 Two ways to express " ` A ...
nndivtr 12240 Transitive property of div...
nnge1d 12241 A positive integer is one ...
nngt0d 12242 A positive integer is posi...
nnne0d 12243 A positive integer is nonz...
nnrecred 12244 The reciprocal of a positi...
nnaddcld 12245 Closure of addition of pos...
nnmulcld 12246 Closure of multiplication ...
nndivred 12247 A positive integer is one ...
0ne1 12264 Zero is different from one...
1m1e0 12265 One minus one equals zero....
2nn 12266 2 is a positive integer. ...
2re 12267 The number 2 is real. (Co...
2cn 12268 The number 2 is a complex ...
2cnALT 12269 Alternate proof of ~ 2cn ....
2ex 12270 The number 2 is a set. (C...
2cnd 12271 The number 2 is a complex ...
3nn 12272 3 is a positive integer. ...
3re 12273 The number 3 is real. (Co...
3cn 12274 The number 3 is a complex ...
3ex 12275 The number 3 is a set. (C...
4nn 12276 4 is a positive integer. ...
4re 12277 The number 4 is real. (Co...
4cn 12278 The number 4 is a complex ...
5nn 12279 5 is a positive integer. ...
5re 12280 The number 5 is real. (Co...
5cn 12281 The number 5 is a complex ...
6nn 12282 6 is a positive integer. ...
6re 12283 The number 6 is real. (Co...
6cn 12284 The number 6 is a complex ...
7nn 12285 7 is a positive integer. ...
7re 12286 The number 7 is real. (Co...
7cn 12287 The number 7 is a complex ...
8nn 12288 8 is a positive integer. ...
8re 12289 The number 8 is real. (Co...
8cn 12290 The number 8 is a complex ...
9nn 12291 9 is a positive integer. ...
9re 12292 The number 9 is real. (Co...
9cn 12293 The number 9 is a complex ...
0le0 12294 Zero is nonnegative. (Con...
0le2 12295 The number 0 is less than ...
2pos 12296 The number 2 is positive. ...
2ne0 12297 The number 2 is nonzero. ...
3pos 12298 The number 3 is positive. ...
3ne0 12299 The number 3 is nonzero. ...
4pos 12300 The number 4 is positive. ...
4ne0 12301 The number 4 is nonzero. ...
5pos 12302 The number 5 is positive. ...
6pos 12303 The number 6 is positive. ...
7pos 12304 The number 7 is positive. ...
8pos 12305 The number 8 is positive. ...
9pos 12306 The number 9 is positive. ...
1pneg1e0 12307 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12308 0 minus 0 equals 0. (Cont...
1m0e1 12309 1 - 0 = 1. (Contributed b...
0p1e1 12310 0 + 1 = 1. (Contributed b...
fv0p1e1 12311 Function value at ` N + 1 ...
1p0e1 12312 1 + 0 = 1. (Contributed b...
1p1e2 12313 1 + 1 = 2. (Contributed b...
2m1e1 12314 2 - 1 = 1. The result is ...
1e2m1 12315 1 = 2 - 1. (Contributed b...
3m1e2 12316 3 - 1 = 2. (Contributed b...
4m1e3 12317 4 - 1 = 3. (Contributed b...
5m1e4 12318 5 - 1 = 4. (Contributed b...
6m1e5 12319 6 - 1 = 5. (Contributed b...
7m1e6 12320 7 - 1 = 6. (Contributed b...
8m1e7 12321 8 - 1 = 7. (Contributed b...
9m1e8 12322 9 - 1 = 8. (Contributed b...
2p2e4 12323 Two plus two equals four. ...
2times 12324 Two times a number. (Cont...
times2 12325 A number times 2. (Contri...
2timesi 12326 Two times a number. (Cont...
times2i 12327 A number times 2. (Contri...
2txmxeqx 12328 Two times a complex number...
2div2e1 12329 2 divided by 2 is 1. (Con...
2p1e3 12330 2 + 1 = 3. (Contributed b...
1p2e3 12331 1 + 2 = 3. For a shorter ...
1p2e3ALT 12332 Alternate proof of ~ 1p2e3...
3p1e4 12333 3 + 1 = 4. (Contributed b...
4p1e5 12334 4 + 1 = 5. (Contributed b...
5p1e6 12335 5 + 1 = 6. (Contributed b...
6p1e7 12336 6 + 1 = 7. (Contributed b...
7p1e8 12337 7 + 1 = 8. (Contributed b...
8p1e9 12338 8 + 1 = 9. (Contributed b...
3p2e5 12339 3 + 2 = 5. (Contributed b...
3p3e6 12340 3 + 3 = 6. (Contributed b...
4p2e6 12341 4 + 2 = 6. (Contributed b...
4p3e7 12342 4 + 3 = 7. (Contributed b...
4p4e8 12343 4 + 4 = 8. (Contributed b...
5p2e7 12344 5 + 2 = 7. (Contributed b...
5p3e8 12345 5 + 3 = 8. (Contributed b...
5p4e9 12346 5 + 4 = 9. (Contributed b...
6p2e8 12347 6 + 2 = 8. (Contributed b...
6p3e9 12348 6 + 3 = 9. (Contributed b...
7p2e9 12349 7 + 2 = 9. (Contributed b...
1t1e1 12350 1 times 1 equals 1. (Cont...
2t1e2 12351 2 times 1 equals 2. (Cont...
2t2e4 12352 2 times 2 equals 4. (Cont...
3t1e3 12353 3 times 1 equals 3. (Cont...
3t2e6 12354 3 times 2 equals 6. (Cont...
3t3e9 12355 3 times 3 equals 9. (Cont...
4t2e8 12356 4 times 2 equals 8. (Cont...
2t0e0 12357 2 times 0 equals 0. (Cont...
4d2e2 12358 One half of four is two. ...
1lt2 12359 1 is less than 2. (Contri...
2lt3 12360 2 is less than 3. (Contri...
1lt3 12361 1 is less than 3. (Contri...
3lt4 12362 3 is less than 4. (Contri...
2lt4 12363 2 is less than 4. (Contri...
1lt4 12364 1 is less than 4. (Contri...
4lt5 12365 4 is less than 5. (Contri...
3lt5 12366 3 is less than 5. (Contri...
2lt5 12367 2 is less than 5. (Contri...
1lt5 12368 1 is less than 5. (Contri...
5lt6 12369 5 is less than 6. (Contri...
4lt6 12370 4 is less than 6. (Contri...
3lt6 12371 3 is less than 6. (Contri...
2lt6 12372 2 is less than 6. (Contri...
1lt6 12373 1 is less than 6. (Contri...
6lt7 12374 6 is less than 7. (Contri...
5lt7 12375 5 is less than 7. (Contri...
4lt7 12376 4 is less than 7. (Contri...
3lt7 12377 3 is less than 7. (Contri...
2lt7 12378 2 is less than 7. (Contri...
1lt7 12379 1 is less than 7. (Contri...
7lt8 12380 7 is less than 8. (Contri...
6lt8 12381 6 is less than 8. (Contri...
5lt8 12382 5 is less than 8. (Contri...
4lt8 12383 4 is less than 8. (Contri...
3lt8 12384 3 is less than 8. (Contri...
2lt8 12385 2 is less than 8. (Contri...
1lt8 12386 1 is less than 8. (Contri...
8lt9 12387 8 is less than 9. (Contri...
7lt9 12388 7 is less than 9. (Contri...
6lt9 12389 6 is less than 9. (Contri...
5lt9 12390 5 is less than 9. (Contri...
4lt9 12391 4 is less than 9. (Contri...
3lt9 12392 3 is less than 9. (Contri...
2lt9 12393 2 is less than 9. (Contri...
1lt9 12394 1 is less than 9. (Contri...
0ne2 12395 0 is not equal to 2. (Con...
1ne2 12396 1 is not equal to 2. (Con...
1le2 12397 1 is less than or equal to...
2cnne0 12398 2 is a nonzero complex num...
2rene0 12399 2 is a nonzero real number...
1le3 12400 1 is less than or equal to...
neg1mulneg1e1 12401 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12402 One-half is real. (Contri...
halfcn 12403 One-half is a complex numb...
halfgt0 12404 One-half is greater than z...
halfge0 12405 One-half is not negative. ...
halflt1 12406 One-half is less than one....
2halves 12407 Two halves make a whole. ...
1mhlfehlf 12408 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12409 An eighth of four thirds i...
halfthird 12410 Half minus a third. (Cont...
halfpm6th 12411 One half plus or minus one...
it0e0 12412 i times 0 equals 0. (Cont...
2mulicn 12413 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12414 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12415 Closure of half of a numbe...
rehalfcl 12416 Real closure of half. (Co...
half0 12417 Half of a number is zero i...
halfpos2 12418 A number is positive iff i...
halfpos 12419 A positive number is great...
halfnneg2 12420 A number is nonnegative if...
halfaddsubcl 12421 Closure of half-sum and ha...
halfaddsub 12422 Sum and difference of half...
subhalfhalf 12423 Subtracting the half of a ...
lt2halves 12424 A sum is less than the who...
addltmul 12425 Sum is less than product f...
nominpos 12426 There is no smallest posit...
avglt1 12427 Ordering property for aver...
avglt2 12428 Ordering property for aver...
avgle1 12429 Ordering property for aver...
avgle2 12430 Ordering property for aver...
avgle 12431 The average of two numbers...
2timesd 12432 Two times a number. (Cont...
times2d 12433 A number times 2. (Contri...
halfcld 12434 Closure of half of a numbe...
2halvesd 12435 Two halves make a whole. ...
rehalfcld 12436 Real closure of half. (Co...
lt2halvesd 12437 A sum is less than the who...
rehalfcli 12438 Half a real number is real...
lt2addmuld 12439 If two real numbers are le...
add1p1 12440 Adding two times 1 to a nu...
sub1m1 12441 Subtracting two times 1 fr...
cnm2m1cnm3 12442 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12443 A complex number increased...
div4p1lem1div2 12444 An integer greater than 5,...
nnunb 12445 The set of positive intege...
arch 12446 Archimedean property of re...
nnrecl 12447 There exists a positive in...
bndndx 12448 A bounded real sequence ` ...
elnn0 12451 Nonnegative integers expre...
nnssnn0 12452 Positive naturals are a su...
nn0ssre 12453 Nonnegative integers are a...
nn0sscn 12454 Nonnegative integers are a...
nn0ex 12455 The set of nonnegative int...
nnnn0 12456 A positive integer is a no...
nnnn0i 12457 A positive integer is a no...
nn0re 12458 A nonnegative integer is a...
nn0cn 12459 A nonnegative integer is a...
nn0rei 12460 A nonnegative integer is a...
nn0cni 12461 A nonnegative integer is a...
dfn2 12462 The set of positive intege...
elnnne0 12463 The positive integer prope...
0nn0 12464 0 is a nonnegative integer...
1nn0 12465 1 is a nonnegative integer...
2nn0 12466 2 is a nonnegative integer...
3nn0 12467 3 is a nonnegative integer...
4nn0 12468 4 is a nonnegative integer...
5nn0 12469 5 is a nonnegative integer...
6nn0 12470 6 is a nonnegative integer...
7nn0 12471 7 is a nonnegative integer...
8nn0 12472 8 is a nonnegative integer...
9nn0 12473 9 is a nonnegative integer...
nn0ge0 12474 A nonnegative integer is g...
nn0nlt0 12475 A nonnegative integer is n...
nn0ge0i 12476 Nonnegative integers are n...
nn0le0eq0 12477 A nonnegative integer is l...
nn0p1gt0 12478 A nonnegative integer incr...
nnnn0addcl 12479 A positive integer plus a ...
nn0nnaddcl 12480 A nonnegative integer plus...
0mnnnnn0 12481 The result of subtracting ...
un0addcl 12482 If ` S ` is closed under a...
un0mulcl 12483 If ` S ` is closed under m...
nn0addcl 12484 Closure of addition of non...
nn0mulcl 12485 Closure of multiplication ...
nn0addcli 12486 Closure of addition of non...
nn0mulcli 12487 Closure of multiplication ...
nn0p1nn 12488 A nonnegative integer plus...
peano2nn0 12489 Second Peano postulate for...
nnm1nn0 12490 A positive integer minus 1...
elnn0nn 12491 The nonnegative integer pr...
elnnnn0 12492 The positive integer prope...
elnnnn0b 12493 The positive integer prope...
elnnnn0c 12494 The positive integer prope...
nn0addge1 12495 A number is less than or e...
nn0addge2 12496 A number is less than or e...
nn0addge1i 12497 A number is less than or e...
nn0addge2i 12498 A number is less than or e...
nn0sub 12499 Subtraction of nonnegative...
ltsubnn0 12500 Subtracting a nonnegative ...
nn0negleid 12501 A nonnegative integer is g...
difgtsumgt 12502 If the difference of a rea...
nn0le2x 12503 A nonnegative integer is l...
nn0le2xi 12504 A nonnegative integer is l...
nn0lele2xi 12505 'Less than or equal to' im...
fcdmnn0supp 12506 Two ways to write the supp...
fcdmnn0fsupp 12507 A function into ` NN0 ` is...
fcdmnn0suppg 12508 Version of ~ fcdmnn0supp a...
fcdmnn0fsuppg 12509 Version of ~ fcdmnn0fsupp ...
nnnn0d 12510 A positive integer is a no...
nn0red 12511 A nonnegative integer is a...
nn0cnd 12512 A nonnegative integer is a...
nn0ge0d 12513 A nonnegative integer is g...
nn0addcld 12514 Closure of addition of non...
nn0mulcld 12515 Closure of multiplication ...
nn0readdcl 12516 Closure law for addition o...
nn0n0n1ge2 12517 A nonnegative integer whic...
nn0n0n1ge2b 12518 A nonnegative integer is n...
nn0ge2m1nn 12519 If a nonnegative integer i...
nn0ge2m1nn0 12520 If a nonnegative integer i...
nn0nndivcl 12521 Closure law for dividing o...
elxnn0 12524 An extended nonnegative in...
nn0ssxnn0 12525 The standard nonnegative i...
nn0xnn0 12526 A standard nonnegative int...
xnn0xr 12527 An extended nonnegative in...
0xnn0 12528 Zero is an extended nonneg...
pnf0xnn0 12529 Positive infinity is an ex...
nn0nepnf 12530 No standard nonnegative in...
nn0xnn0d 12531 A standard nonnegative int...
nn0nepnfd 12532 No standard nonnegative in...
xnn0nemnf 12533 No extended nonnegative in...
xnn0xrnemnf 12534 The extended nonnegative i...
xnn0nnn0pnf 12535 An extended nonnegative in...
elz 12538 Membership in the set of i...
nnnegz 12539 The negative of a positive...
zre 12540 An integer is a real. (Co...
zcn 12541 An integer is a complex nu...
zrei 12542 An integer is a real numbe...
zssre 12543 The integers are a subset ...
zsscn 12544 The integers are a subset ...
zex 12545 The set of integers exists...
elnnz 12546 Positive integer property ...
0z 12547 Zero is an integer. (Cont...
0zd 12548 Zero is an integer, deduct...
elnn0z 12549 Nonnegative integer proper...
elznn0nn 12550 Integer property expressed...
elznn0 12551 Integer property expressed...
elznn 12552 Integer property expressed...
zle0orge1 12553 There is no integer in the...
elz2 12554 Membership in the set of i...
dfz2 12555 Alternative definition of ...
zexALT 12556 Alternate proof of ~ zex ....
nnz 12557 A positive integer is an i...
nnssz 12558 Positive integers are a su...
nn0ssz 12559 Nonnegative integers are a...
nnzOLD 12560 Obsolete version of ~ nnz ...
nn0z 12561 A nonnegative integer is a...
nn0zd 12562 A nonnegative integer is a...
nnzd 12563 A positive integer is an i...
nnzi 12564 A positive integer is an i...
nn0zi 12565 A nonnegative integer is a...
elnnz1 12566 Positive integer property ...
znnnlt1 12567 An integer is not a positi...
nnzrab 12568 Positive integers expresse...
nn0zrab 12569 Nonnegative integers expre...
1z 12570 One is an integer. (Contr...
1zzd 12571 One is an integer, deducti...
2z 12572 2 is an integer. (Contrib...
3z 12573 3 is an integer. (Contrib...
4z 12574 4 is an integer. (Contrib...
znegcl 12575 Closure law for negative i...
neg1z 12576 -1 is an integer. (Contri...
znegclb 12577 A complex number is an int...
nn0negz 12578 The negative of a nonnegat...
nn0negzi 12579 The negative of a nonnegat...
zaddcl 12580 Closure of addition of int...
peano2z 12581 Second Peano postulate gen...
zsubcl 12582 Closure of subtraction of ...
peano2zm 12583 "Reverse" second Peano pos...
zletr 12584 Transitive law of ordering...
zrevaddcl 12585 Reverse closure law for ad...
znnsub 12586 The positive difference of...
znn0sub 12587 The nonnegative difference...
nzadd 12588 The sum of a real number n...
zmulcl 12589 Closure of multiplication ...
zltp1le 12590 Integer ordering relation....
zleltp1 12591 Integer ordering relation....
zlem1lt 12592 Integer ordering relation....
zltlem1 12593 Integer ordering relation....
zltlem1d 12594 Integer ordering relation,...
zgt0ge1 12595 An integer greater than ` ...
nnleltp1 12596 Positive integer ordering ...
nnltp1le 12597 Positive integer ordering ...
nnaddm1cl 12598 Closure of addition of pos...
nn0ltp1le 12599 Nonnegative integer orderi...
nn0leltp1 12600 Nonnegative integer orderi...
nn0ltlem1 12601 Nonnegative integer orderi...
nn0sub2 12602 Subtraction of nonnegative...
nn0lt10b 12603 A nonnegative integer less...
nn0lt2 12604 A nonnegative integer less...
nn0le2is012 12605 A nonnegative integer whic...
nn0lem1lt 12606 Nonnegative integer orderi...
nnlem1lt 12607 Positive integer ordering ...
nnltlem1 12608 Positive integer ordering ...
nnm1ge0 12609 A positive integer decreas...
nn0ge0div 12610 Division of a nonnegative ...
zdiv 12611 Two ways to express " ` M ...
zdivadd 12612 Property of divisibility: ...
zdivmul 12613 Property of divisibility: ...
zextle 12614 An extensionality-like pro...
zextlt 12615 An extensionality-like pro...
recnz 12616 The reciprocal of a number...
btwnnz 12617 A number between an intege...
gtndiv 12618 A larger number does not d...
halfnz 12619 One-half is not an integer...
3halfnz 12620 Three halves is not an int...
suprzcl 12621 The supremum of a bounded-...
prime 12622 Two ways to express " ` A ...
msqznn 12623 The square of a nonzero in...
zneo 12624 No even integer equals an ...
nneo 12625 A positive integer is even...
nneoi 12626 A positive integer is even...
zeo 12627 An integer is even or odd....
zeo2 12628 An integer is even or odd ...
peano2uz2 12629 Second Peano postulate for...
peano5uzi 12630 Peano's inductive postulat...
peano5uzti 12631 Peano's inductive postulat...
dfuzi 12632 An expression for the uppe...
uzind 12633 Induction on the upper int...
uzind2 12634 Induction on the upper int...
uzind3 12635 Induction on the upper int...
nn0ind 12636 Principle of Mathematical ...
nn0indALT 12637 Principle of Mathematical ...
nn0indd 12638 Principle of Mathematical ...
fzind 12639 Induction on the integers ...
fnn0ind 12640 Induction on the integers ...
nn0ind-raph 12641 Principle of Mathematical ...
zindd 12642 Principle of Mathematical ...
fzindd 12643 Induction on the integers ...
btwnz 12644 Any real number can be san...
zred 12645 An integer is a real numbe...
zcnd 12646 An integer is a complex nu...
znegcld 12647 Closure law for negative i...
peano2zd 12648 Deduction from second Pean...
zaddcld 12649 Closure of addition of int...
zsubcld 12650 Closure of subtraction of ...
zmulcld 12651 Closure of multiplication ...
znnn0nn 12652 The negative of a negative...
zadd2cl 12653 Increasing an integer by 2...
zriotaneg 12654 The negative of the unique...
suprfinzcl 12655 The supremum of a nonempty...
9p1e10 12658 9 + 1 = 10. (Contributed ...
dfdec10 12659 Version of the definition ...
decex 12660 A decimal number is a set....
deceq1 12661 Equality theorem for the d...
deceq2 12662 Equality theorem for the d...
deceq1i 12663 Equality theorem for the d...
deceq2i 12664 Equality theorem for the d...
deceq12i 12665 Equality theorem for the d...
numnncl 12666 Closure for a numeral (wit...
num0u 12667 Add a zero in the units pl...
num0h 12668 Add a zero in the higher p...
numcl 12669 Closure for a decimal inte...
numsuc 12670 The successor of a decimal...
deccl 12671 Closure for a numeral. (C...
10nn 12672 10 is a positive integer. ...
10pos 12673 The number 10 is positive....
10nn0 12674 10 is a nonnegative intege...
10re 12675 The number 10 is real. (C...
decnncl 12676 Closure for a numeral. (C...
dec0u 12677 Add a zero in the units pl...
dec0h 12678 Add a zero in the higher p...
numnncl2 12679 Closure for a decimal inte...
decnncl2 12680 Closure for a decimal inte...
numlt 12681 Comparing two decimal inte...
numltc 12682 Comparing two decimal inte...
le9lt10 12683 A "decimal digit" (i.e. a ...
declt 12684 Comparing two decimal inte...
decltc 12685 Comparing two decimal inte...
declth 12686 Comparing two decimal inte...
decsuc 12687 The successor of a decimal...
3declth 12688 Comparing two decimal inte...
3decltc 12689 Comparing two decimal inte...
decle 12690 Comparing two decimal inte...
decleh 12691 Comparing two decimal inte...
declei 12692 Comparing a digit to a dec...
numlti 12693 Comparing a digit to a dec...
declti 12694 Comparing a digit to a dec...
decltdi 12695 Comparing a digit to a dec...
numsucc 12696 The successor of a decimal...
decsucc 12697 The successor of a decimal...
1e0p1 12698 The successor of zero. (C...
dec10p 12699 Ten plus an integer. (Con...
numma 12700 Perform a multiply-add of ...
nummac 12701 Perform a multiply-add of ...
numma2c 12702 Perform a multiply-add of ...
numadd 12703 Add two decimal integers `...
numaddc 12704 Add two decimal integers `...
nummul1c 12705 The product of a decimal i...
nummul2c 12706 The product of a decimal i...
decma 12707 Perform a multiply-add of ...
decmac 12708 Perform a multiply-add of ...
decma2c 12709 Perform a multiply-add of ...
decadd 12710 Add two numerals ` M ` and...
decaddc 12711 Add two numerals ` M ` and...
decaddc2 12712 Add two numerals ` M ` and...
decrmanc 12713 Perform a multiply-add of ...
decrmac 12714 Perform a multiply-add of ...
decaddm10 12715 The sum of two multiples o...
decaddi 12716 Add two numerals ` M ` and...
decaddci 12717 Add two numerals ` M ` and...
decaddci2 12718 Add two numerals ` M ` and...
decsubi 12719 Difference between a numer...
decmul1 12720 The product of a numeral w...
decmul1c 12721 The product of a numeral w...
decmul2c 12722 The product of a numeral w...
decmulnc 12723 The product of a numeral w...
11multnc 12724 The product of 11 (as nume...
decmul10add 12725 A multiplication of a numb...
6p5lem 12726 Lemma for ~ 6p5e11 and rel...
5p5e10 12727 5 + 5 = 10. (Contributed ...
6p4e10 12728 6 + 4 = 10. (Contributed ...
6p5e11 12729 6 + 5 = 11. (Contributed ...
6p6e12 12730 6 + 6 = 12. (Contributed ...
7p3e10 12731 7 + 3 = 10. (Contributed ...
7p4e11 12732 7 + 4 = 11. (Contributed ...
7p5e12 12733 7 + 5 = 12. (Contributed ...
7p6e13 12734 7 + 6 = 13. (Contributed ...
7p7e14 12735 7 + 7 = 14. (Contributed ...
8p2e10 12736 8 + 2 = 10. (Contributed ...
8p3e11 12737 8 + 3 = 11. (Contributed ...
8p4e12 12738 8 + 4 = 12. (Contributed ...
8p5e13 12739 8 + 5 = 13. (Contributed ...
8p6e14 12740 8 + 6 = 14. (Contributed ...
8p7e15 12741 8 + 7 = 15. (Contributed ...
8p8e16 12742 8 + 8 = 16. (Contributed ...
9p2e11 12743 9 + 2 = 11. (Contributed ...
9p3e12 12744 9 + 3 = 12. (Contributed ...
9p4e13 12745 9 + 4 = 13. (Contributed ...
9p5e14 12746 9 + 5 = 14. (Contributed ...
9p6e15 12747 9 + 6 = 15. (Contributed ...
9p7e16 12748 9 + 7 = 16. (Contributed ...
9p8e17 12749 9 + 8 = 17. (Contributed ...
9p9e18 12750 9 + 9 = 18. (Contributed ...
10p10e20 12751 10 + 10 = 20. (Contribute...
10m1e9 12752 10 - 1 = 9. (Contributed ...
4t3lem 12753 Lemma for ~ 4t3e12 and rel...
4t3e12 12754 4 times 3 equals 12. (Con...
4t4e16 12755 4 times 4 equals 16. (Con...
5t2e10 12756 5 times 2 equals 10. (Con...
5t3e15 12757 5 times 3 equals 15. (Con...
5t4e20 12758 5 times 4 equals 20. (Con...
5t5e25 12759 5 times 5 equals 25. (Con...
6t2e12 12760 6 times 2 equals 12. (Con...
6t3e18 12761 6 times 3 equals 18. (Con...
6t4e24 12762 6 times 4 equals 24. (Con...
6t5e30 12763 6 times 5 equals 30. (Con...
6t6e36 12764 6 times 6 equals 36. (Con...
7t2e14 12765 7 times 2 equals 14. (Con...
7t3e21 12766 7 times 3 equals 21. (Con...
7t4e28 12767 7 times 4 equals 28. (Con...
7t5e35 12768 7 times 5 equals 35. (Con...
7t6e42 12769 7 times 6 equals 42. (Con...
7t7e49 12770 7 times 7 equals 49. (Con...
8t2e16 12771 8 times 2 equals 16. (Con...
8t3e24 12772 8 times 3 equals 24. (Con...
8t4e32 12773 8 times 4 equals 32. (Con...
8t5e40 12774 8 times 5 equals 40. (Con...
8t6e48 12775 8 times 6 equals 48. (Con...
8t7e56 12776 8 times 7 equals 56. (Con...
8t8e64 12777 8 times 8 equals 64. (Con...
9t2e18 12778 9 times 2 equals 18. (Con...
9t3e27 12779 9 times 3 equals 27. (Con...
9t4e36 12780 9 times 4 equals 36. (Con...
9t5e45 12781 9 times 5 equals 45. (Con...
9t6e54 12782 9 times 6 equals 54. (Con...
9t7e63 12783 9 times 7 equals 63. (Con...
9t8e72 12784 9 times 8 equals 72. (Con...
9t9e81 12785 9 times 9 equals 81. (Con...
9t11e99 12786 9 times 11 equals 99. (Co...
9lt10 12787 9 is less than 10. (Contr...
8lt10 12788 8 is less than 10. (Contr...
7lt10 12789 7 is less than 10. (Contr...
6lt10 12790 6 is less than 10. (Contr...
5lt10 12791 5 is less than 10. (Contr...
4lt10 12792 4 is less than 10. (Contr...
3lt10 12793 3 is less than 10. (Contr...
2lt10 12794 2 is less than 10. (Contr...
1lt10 12795 1 is less than 10. (Contr...
decbin0 12796 Decompose base 4 into base...
decbin2 12797 Decompose base 4 into base...
decbin3 12798 Decompose base 4 into base...
5recm6rec 12799 One fifth minus one sixth....
uzval 12802 The value of the upper int...
uzf 12803 The domain and codomain of...
eluz1 12804 Membership in the upper se...
eluzel2 12805 Implication of membership ...
eluz2 12806 Membership in an upper set...
eluzmn 12807 Membership in an earlier u...
eluz1i 12808 Membership in an upper set...
eluzuzle 12809 An integer in an upper set...
eluzelz 12810 A member of an upper set o...
eluzelre 12811 A member of an upper set o...
eluzelcn 12812 A member of an upper set o...
eluzle 12813 Implication of membership ...
eluz 12814 Membership in an upper set...
uzid 12815 Membership of the least me...
uzidd 12816 Membership of the least me...
uzn0 12817 The upper integers are all...
uztrn 12818 Transitive law for sets of...
uztrn2 12819 Transitive law for sets of...
uzneg 12820 Contraposition law for upp...
uzssz 12821 An upper set of integers i...
uzssre 12822 An upper set of integers i...
uzss 12823 Subset relationship for tw...
uztric 12824 Totality of the ordering r...
uz11 12825 The upper integers functio...
eluzp1m1 12826 Membership in the next upp...
eluzp1l 12827 Strict ordering implied by...
eluzp1p1 12828 Membership in the next upp...
eluzadd 12829 Membership in a later uppe...
eluzsub 12830 Membership in an earlier u...
eluzaddi 12831 Membership in a later uppe...
eluzaddiOLD 12832 Obsolete version of ~ eluz...
eluzsubi 12833 Membership in an earlier u...
eluzsubiOLD 12834 Obsolete version of ~ eluz...
eluzaddOLD 12835 Obsolete version of ~ eluz...
eluzsubOLD 12836 Obsolete version of ~ eluz...
subeluzsub 12837 Membership of a difference...
uzm1 12838 Choices for an element of ...
uznn0sub 12839 The nonnegative difference...
uzin 12840 Intersection of two upper ...
uzp1 12841 Choices for an element of ...
nn0uz 12842 Nonnegative integers expre...
nnuz 12843 Positive integers expresse...
elnnuz 12844 A positive integer express...
elnn0uz 12845 A nonnegative integer expr...
1eluzge0 12846 1 is an integer greater th...
2eluzge0 12847 2 is an integer greater th...
2eluzge1 12848 2 is an integer greater th...
5eluz3 12849 5 is an integer greater th...
uzuzle23 12850 An integer greater than or...
uzuzle24 12851 An integer greater than or...
uzuzle34 12852 An integer greater than or...
uzuzle35 12853 An integer greater than or...
eluz2nn 12854 An integer greater than or...
eluz3nn 12855 An integer greater than or...
eluz4nn 12856 An integer greater than or...
eluz5nn 12857 An integer greater than or...
eluzge2nn0 12858 If an integer is greater t...
eluz2n0 12859 An integer greater than or...
uz3m2nn 12860 An integer greater than or...
uznnssnn 12861 The upper integers startin...
raluz 12862 Restricted universal quant...
raluz2 12863 Restricted universal quant...
rexuz 12864 Restricted existential qua...
rexuz2 12865 Restricted existential qua...
2rexuz 12866 Double existential quantif...
peano2uz 12867 Second Peano postulate for...
peano2uzs 12868 Second Peano postulate for...
peano2uzr 12869 Reversed second Peano axio...
uzaddcl 12870 Addition closure law for a...
nn0pzuz 12871 The sum of a nonnegative i...
uzind4 12872 Induction on the upper set...
uzind4ALT 12873 Induction on the upper set...
uzind4s 12874 Induction on the upper set...
uzind4s2 12875 Induction on the upper set...
uzind4i 12876 Induction on the upper int...
uzwo 12877 Well-ordering principle: a...
uzwo2 12878 Well-ordering principle: a...
nnwo 12879 Well-ordering principle: a...
nnwof 12880 Well-ordering principle: a...
nnwos 12881 Well-ordering principle: a...
indstr 12882 Strong Mathematical Induct...
eluznn0 12883 Membership in a nonnegativ...
eluznn 12884 Membership in a positive u...
eluz2b1 12885 Two ways to say "an intege...
eluz2gt1 12886 An integer greater than or...
eluz2b2 12887 Two ways to say "an intege...
eluz2b3 12888 Two ways to say "an intege...
uz2m1nn 12889 One less than an integer g...
1nuz2 12890 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12891 A positive integer is eith...
uz2mulcl 12892 Closure of multiplication ...
indstr2 12893 Strong Mathematical Induct...
uzinfi 12894 Extract the lower bound of...
nninf 12895 The infimum of the set of ...
nn0inf 12896 The infimum of the set of ...
infssuzle 12897 The infimum of a subset of...
infssuzcl 12898 The infimum of a subset of...
ublbneg 12899 The image under negation o...
eqreznegel 12900 Two ways to express the im...
supminf 12901 The supremum of a bounded-...
lbzbi 12902 If a set of reals is bound...
zsupss 12903 Any nonempty bounded subse...
suprzcl2 12904 The supremum of a bounded-...
suprzub 12905 The supremum of a bounded-...
uzsupss 12906 Any bounded subset of an u...
nn01to3 12907 A (nonnegative) integer be...
nn0ge2m1nnALT 12908 Alternate proof of ~ nn0ge...
uzwo3 12909 Well-ordering principle: a...
zmin 12910 There is a unique smallest...
zmax 12911 There is a unique largest ...
zbtwnre 12912 There is a unique integer ...
rebtwnz 12913 There is a unique greatest...
elq 12916 Membership in the set of r...
qmulz 12917 If ` A ` is rational, then...
znq 12918 The ratio of an integer an...
qre 12919 A rational number is a rea...
zq 12920 An integer is a rational n...
qred 12921 A rational number is a rea...
zssq 12922 The integers are a subset ...
nn0ssq 12923 The nonnegative integers a...
nnssq 12924 The positive integers are ...
qssre 12925 The rationals are a subset...
qsscn 12926 The rationals are a subset...
qex 12927 The set of rational number...
nnq 12928 A positive integer is rati...
qcn 12929 A rational number is a com...
qexALT 12930 Alternate proof of ~ qex ....
qaddcl 12931 Closure of addition of rat...
qnegcl 12932 Closure law for the negati...
qmulcl 12933 Closure of multiplication ...
qsubcl 12934 Closure of subtraction of ...
qreccl 12935 Closure of reciprocal of r...
qdivcl 12936 Closure of division of rat...
qrevaddcl 12937 Reverse closure law for ad...
nnrecq 12938 The reciprocal of a positi...
irradd 12939 The sum of an irrational n...
irrmul 12940 The product of an irration...
elpq 12941 A positive rational is the...
elpqb 12942 A class is a positive rati...
rpnnen1lem2 12943 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12944 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12945 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12946 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12947 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12948 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12949 One half of ~ rpnnen , whe...
reexALT 12950 Alternate proof of ~ reex ...
cnref1o 12951 There is a natural one-to-...
cnexALT 12952 The set of complex numbers...
xrex 12953 The set of extended reals ...
mpoaddex 12954 The addition operation is ...
addex 12955 The addition operation is ...
mpomulex 12956 The multiplication operati...
mulex 12957 The multiplication operati...
elrp 12960 Membership in the set of p...
elrpii 12961 Membership in the set of p...
1rp 12962 1 is a positive real. (Co...
2rp 12963 2 is a positive real. (Co...
3rp 12964 3 is a positive real. (Co...
5rp 12965 5 is a positive real. (Co...
rpssre 12966 The positive reals are a s...
rpre 12967 A positive real is a real....
rpxr 12968 A positive real is an exte...
rpcn 12969 A positive real is a compl...
nnrp 12970 A positive integer is a po...
rpgt0 12971 A positive real is greater...
rpge0 12972 A positive real is greater...
rpregt0 12973 A positive real is a posit...
rprege0 12974 A positive real is a nonne...
rpne0 12975 A positive real is nonzero...
rprene0 12976 A positive real is a nonze...
rpcnne0 12977 A positive real is a nonze...
neglt 12978 The negative of a positive...
rpcndif0 12979 A positive real number is ...
ralrp 12980 Quantification over positi...
rexrp 12981 Quantification over positi...
rpaddcl 12982 Closure law for addition o...
rpmulcl 12983 Closure law for multiplica...
rpmtmip 12984 "Minus times minus is plus...
rpdivcl 12985 Closure law for division o...
rpreccl 12986 Closure law for reciprocat...
rphalfcl 12987 Closure law for half of a ...
rpgecl 12988 A number greater than or e...
rphalflt 12989 Half of a positive real is...
rerpdivcl 12990 Closure law for division o...
ge0p1rp 12991 A nonnegative number plus ...
rpneg 12992 Either a nonzero real or i...
negelrp 12993 Elementhood of a negation ...
negelrpd 12994 The negation of a negative...
0nrp 12995 Zero is not a positive rea...
ltsubrp 12996 Subtracting a positive rea...
ltaddrp 12997 Adding a positive number t...
difrp 12998 Two ways to say one number...
elrpd 12999 Membership in the set of p...
nnrpd 13000 A positive integer is a po...
zgt1rpn0n1 13001 An integer greater than 1 ...
rpred 13002 A positive real is a real....
rpxrd 13003 A positive real is an exte...
rpcnd 13004 A positive real is a compl...
rpgt0d 13005 A positive real is greater...
rpge0d 13006 A positive real is greater...
rpne0d 13007 A positive real is nonzero...
rpregt0d 13008 A positive real is real an...
rprege0d 13009 A positive real is real an...
rprene0d 13010 A positive real is a nonze...
rpcnne0d 13011 A positive real is a nonze...
rpreccld 13012 Closure law for reciprocat...
rprecred 13013 Closure law for reciprocat...
rphalfcld 13014 Closure law for half of a ...
reclt1d 13015 The reciprocal of a positi...
recgt1d 13016 The reciprocal of a positi...
rpaddcld 13017 Closure law for addition o...
rpmulcld 13018 Closure law for multiplica...
rpdivcld 13019 Closure law for division o...
ltrecd 13020 The reciprocal of both sid...
lerecd 13021 The reciprocal of both sid...
ltrec1d 13022 Reciprocal swap in a 'less...
lerec2d 13023 Reciprocal swap in a 'less...
lediv2ad 13024 Division of both sides of ...
ltdiv2d 13025 Division of a positive num...
lediv2d 13026 Division of a positive num...
ledivdivd 13027 Invert ratios of positive ...
divge1 13028 The ratio of a number over...
divlt1lt 13029 A real number divided by a...
divle1le 13030 A real number divided by a...
ledivge1le 13031 If a number is less than o...
ge0p1rpd 13032 A nonnegative number plus ...
rerpdivcld 13033 Closure law for division o...
ltsubrpd 13034 Subtracting a positive rea...
ltaddrpd 13035 Adding a positive number t...
ltaddrp2d 13036 Adding a positive number t...
ltmulgt11d 13037 Multiplication by a number...
ltmulgt12d 13038 Multiplication by a number...
gt0divd 13039 Division of a positive num...
ge0divd 13040 Division of a nonnegative ...
rpgecld 13041 A number greater than or e...
divge0d 13042 The ratio of nonnegative a...
ltmul1d 13043 The ratio of nonnegative a...
ltmul2d 13044 Multiplication of both sid...
lemul1d 13045 Multiplication of both sid...
lemul2d 13046 Multiplication of both sid...
ltdiv1d 13047 Division of both sides of ...
lediv1d 13048 Division of both sides of ...
ltmuldivd 13049 'Less than' relationship b...
ltmuldiv2d 13050 'Less than' relationship b...
lemuldivd 13051 'Less than or equal to' re...
lemuldiv2d 13052 'Less than or equal to' re...
ltdivmuld 13053 'Less than' relationship b...
ltdivmul2d 13054 'Less than' relationship b...
ledivmuld 13055 'Less than or equal to' re...
ledivmul2d 13056 'Less than or equal to' re...
ltmul1dd 13057 The ratio of nonnegative a...
ltmul2dd 13058 Multiplication of both sid...
ltdiv1dd 13059 Division of both sides of ...
lediv1dd 13060 Division of both sides of ...
lediv12ad 13061 Comparison of ratio of two...
mul2lt0rlt0 13062 If the result of a multipl...
mul2lt0rgt0 13063 If the result of a multipl...
mul2lt0llt0 13064 If the result of a multipl...
mul2lt0lgt0 13065 If the result of a multipl...
mul2lt0bi 13066 If the result of a multipl...
prodge0rd 13067 Infer that a multiplicand ...
prodge0ld 13068 Infer that a multiplier is...
ltdiv23d 13069 Swap denominator with othe...
lediv23d 13070 Swap denominator with othe...
lt2mul2divd 13071 The ratio of nonnegative a...
nnledivrp 13072 Division of a positive int...
nn0ledivnn 13073 Division of a nonnegative ...
addlelt 13074 If the sum of a real numbe...
ge2halflem1 13075 Half of an integer greater...
ltxr 13082 The 'less than' binary rel...
elxr 13083 Membership in the set of e...
xrnemnf 13084 An extended real other tha...
xrnepnf 13085 An extended real other tha...
xrltnr 13086 The extended real 'less th...
ltpnf 13087 Any (finite) real is less ...
ltpnfd 13088 Any (finite) real is less ...
0ltpnf 13089 Zero is less than plus inf...
mnflt 13090 Minus infinity is less tha...
mnfltd 13091 Minus infinity is less tha...
mnflt0 13092 Minus infinity is less tha...
mnfltpnf 13093 Minus infinity is less tha...
mnfltxr 13094 Minus infinity is less tha...
pnfnlt 13095 No extended real is greate...
nltmnf 13096 No extended real is less t...
pnfge 13097 Plus infinity is an upper ...
pnfged 13098 Plus infinity is an upper ...
xnn0n0n1ge2b 13099 An extended nonnegative in...
0lepnf 13100 0 less than or equal to po...
xnn0ge0 13101 An extended nonnegative in...
mnfle 13102 Minus infinity is less tha...
mnfled 13103 Minus infinity is less tha...
xrltnsym 13104 Ordering on the extended r...
xrltnsym2 13105 'Less than' is antisymmetr...
xrlttri 13106 Ordering on the extended r...
xrlttr 13107 Ordering on the extended r...
xrltso 13108 'Less than' is a strict or...
xrlttri2 13109 Trichotomy law for 'less t...
xrlttri3 13110 Trichotomy law for 'less t...
xrleloe 13111 'Less than or equal' expre...
xrleltne 13112 'Less than or equal to' im...
xrltlen 13113 'Less than' expressed in t...
dfle2 13114 Alternative definition of ...
dflt2 13115 Alternative definition of ...
xrltle 13116 'Less than' implies 'less ...
xrltled 13117 'Less than' implies 'less ...
xrleid 13118 'Less than or equal to' is...
xrleidd 13119 'Less than or equal to' is...
xrletri 13120 Trichotomy law for extende...
xrletri3 13121 Trichotomy law for extende...
xrletrid 13122 Trichotomy law for extende...
xrlelttr 13123 Transitive law for orderin...
xrltletr 13124 Transitive law for orderin...
xrletr 13125 Transitive law for orderin...
xrlttrd 13126 Transitive law for orderin...
xrlelttrd 13127 Transitive law for orderin...
xrltletrd 13128 Transitive law for orderin...
xrletrd 13129 Transitive law for orderin...
xrltne 13130 'Less than' implies not eq...
nltpnft 13131 An extended real is not le...
xgepnf 13132 An extended real which is ...
ngtmnft 13133 An extended real is not gr...
xlemnf 13134 An extended real which is ...
xrrebnd 13135 An extended real is real i...
xrre 13136 A way of proving that an e...
xrre2 13137 An extended real between t...
xrre3 13138 A way of proving that an e...
ge0gtmnf 13139 A nonnegative extended rea...
ge0nemnf 13140 A nonnegative extended rea...
xrrege0 13141 A nonnegative extended rea...
xrmax1 13142 An extended real is less t...
xrmax2 13143 An extended real is less t...
xrmin1 13144 The minimum of two extende...
xrmin2 13145 The minimum of two extende...
xrmaxeq 13146 The maximum of two extende...
xrmineq 13147 The minimum of two extende...
xrmaxlt 13148 Two ways of saying the max...
xrltmin 13149 Two ways of saying an exte...
xrmaxle 13150 Two ways of saying the max...
xrlemin 13151 Two ways of saying a numbe...
max1 13152 A number is less than or e...
max1ALT 13153 A number is less than or e...
max2 13154 A number is less than or e...
2resupmax 13155 The supremum of two real n...
min1 13156 The minimum of two numbers...
min2 13157 The minimum of two numbers...
maxle 13158 Two ways of saying the max...
lemin 13159 Two ways of saying a numbe...
maxlt 13160 Two ways of saying the max...
ltmin 13161 Two ways of saying a numbe...
lemaxle 13162 A real number which is les...
max0sub 13163 Decompose a real number in...
ifle 13164 An if statement transforms...
z2ge 13165 There exists an integer gr...
qbtwnre 13166 The rational numbers are d...
qbtwnxr 13167 The rational numbers are d...
qsqueeze 13168 If a nonnegative real is l...
qextltlem 13169 Lemma for ~ qextlt and qex...
qextlt 13170 An extensionality-like pro...
qextle 13171 An extensionality-like pro...
xralrple 13172 Show that ` A ` is less th...
alrple 13173 Show that ` A ` is less th...
xnegeq 13174 Equality of two extended n...
xnegex 13175 A negative extended real e...
xnegpnf 13176 Minus ` +oo ` . Remark of...
xnegmnf 13177 Minus ` -oo ` . Remark of...
rexneg 13178 Minus a real number. Rema...
xneg0 13179 The negative of zero. (Co...
xnegcl 13180 Closure of extended real n...
xnegneg 13181 Extended real version of ~...
xneg11 13182 Extended real version of ~...
xltnegi 13183 Forward direction of ~ xlt...
xltneg 13184 Extended real version of ~...
xleneg 13185 Extended real version of ~...
xlt0neg1 13186 Extended real version of ~...
xlt0neg2 13187 Extended real version of ~...
xle0neg1 13188 Extended real version of ~...
xle0neg2 13189 Extended real version of ~...
xaddval 13190 Value of the extended real...
xaddf 13191 The extended real addition...
xmulval 13192 Value of the extended real...
xaddpnf1 13193 Addition of positive infin...
xaddpnf2 13194 Addition of positive infin...
xaddmnf1 13195 Addition of negative infin...
xaddmnf2 13196 Addition of negative infin...
pnfaddmnf 13197 Addition of positive and n...
mnfaddpnf 13198 Addition of negative and p...
rexadd 13199 The extended real addition...
rexsub 13200 Extended real subtraction ...
rexaddd 13201 The extended real addition...
xnn0xaddcl 13202 The extended nonnegative i...
xaddnemnf 13203 Closure of extended real a...
xaddnepnf 13204 Closure of extended real a...
xnegid 13205 Extended real version of ~...
xaddcl 13206 The extended real addition...
xaddcom 13207 The extended real addition...
xaddrid 13208 Extended real version of ~...
xaddlid 13209 Extended real version of ~...
xaddridd 13210 ` 0 ` is a right identity ...
xnn0lem1lt 13211 Extended nonnegative integ...
xnn0lenn0nn0 13212 An extended nonnegative in...
xnn0le2is012 13213 An extended nonnegative in...
xnn0xadd0 13214 The sum of two extended no...
xnegdi 13215 Extended real version of ~...
xaddass 13216 Associativity of extended ...
xaddass2 13217 Associativity of extended ...
xpncan 13218 Extended real version of ~...
xnpcan 13219 Extended real version of ~...
xleadd1a 13220 Extended real version of ~...
xleadd2a 13221 Commuted form of ~ xleadd1...
xleadd1 13222 Weakened version of ~ xlea...
xltadd1 13223 Extended real version of ~...
xltadd2 13224 Extended real version of ~...
xaddge0 13225 The sum of nonnegative ext...
xle2add 13226 Extended real version of ~...
xlt2add 13227 Extended real version of ~...
xsubge0 13228 Extended real version of ~...
xposdif 13229 Extended real version of ~...
xlesubadd 13230 Under certain conditions, ...
xmullem 13231 Lemma for ~ rexmul . (Con...
xmullem2 13232 Lemma for ~ xmulneg1 . (C...
xmulcom 13233 Extended real multiplicati...
xmul01 13234 Extended real version of ~...
xmul02 13235 Extended real version of ~...
xmulneg1 13236 Extended real version of ~...
xmulneg2 13237 Extended real version of ~...
rexmul 13238 The extended real multipli...
xmulf 13239 The extended real multipli...
xmulcl 13240 Closure of extended real m...
xmulpnf1 13241 Multiplication by plus inf...
xmulpnf2 13242 Multiplication by plus inf...
xmulmnf1 13243 Multiplication by minus in...
xmulmnf2 13244 Multiplication by minus in...
xmulpnf1n 13245 Multiplication by plus inf...
xmulrid 13246 Extended real version of ~...
xmullid 13247 Extended real version of ~...
xmulm1 13248 Extended real version of ~...
xmulasslem2 13249 Lemma for ~ xmulass . (Co...
xmulgt0 13250 Extended real version of ~...
xmulge0 13251 Extended real version of ~...
xmulasslem 13252 Lemma for ~ xmulass . (Co...
xmulasslem3 13253 Lemma for ~ xmulass . (Co...
xmulass 13254 Associativity of the exten...
xlemul1a 13255 Extended real version of ~...
xlemul2a 13256 Extended real version of ~...
xlemul1 13257 Extended real version of ~...
xlemul2 13258 Extended real version of ~...
xltmul1 13259 Extended real version of ~...
xltmul2 13260 Extended real version of ~...
xadddilem 13261 Lemma for ~ xadddi . (Con...
xadddi 13262 Distributive property for ...
xadddir 13263 Commuted version of ~ xadd...
xadddi2 13264 The assumption that the mu...
xadddi2r 13265 Commuted version of ~ xadd...
x2times 13266 Extended real version of ~...
xnegcld 13267 Closure of extended real n...
xaddcld 13268 The extended real addition...
xmulcld 13269 Closure of extended real m...
xadd4d 13270 Rearrangement of 4 terms i...
xnn0add4d 13271 Rearrangement of 4 terms i...
xrsupexmnf 13272 Adding minus infinity to a...
xrinfmexpnf 13273 Adding plus infinity to a ...
xrsupsslem 13274 Lemma for ~ xrsupss . (Co...
xrinfmsslem 13275 Lemma for ~ xrinfmss . (C...
xrsupss 13276 Any subset of extended rea...
xrinfmss 13277 Any subset of extended rea...
xrinfmss2 13278 Any subset of extended rea...
xrub 13279 By quantifying only over r...
supxr 13280 The supremum of a set of e...
supxr2 13281 The supremum of a set of e...
supxrcl 13282 The supremum of an arbitra...
supxrun 13283 The supremum of the union ...
supxrmnf 13284 Adding minus infinity to a...
supxrpnf 13285 The supremum of a set of e...
supxrunb1 13286 The supremum of an unbound...
supxrunb2 13287 The supremum of an unbound...
supxrbnd1 13288 The supremum of a bounded-...
supxrbnd2 13289 The supremum of a bounded-...
xrsup0 13290 The supremum of an empty s...
supxrub 13291 A member of a set of exten...
supxrlub 13292 The supremum of a set of e...
supxrleub 13293 The supremum of a set of e...
supxrre 13294 The real and extended real...
supxrbnd 13295 The supremum of a bounded-...
supxrgtmnf 13296 The supremum of a nonempty...
supxrre1 13297 The supremum of a nonempty...
supxrre2 13298 The supremum of a nonempty...
supxrss 13299 Smaller sets of extended r...
xrsupssd 13300 Inequality deduction for s...
infxrcl 13301 The infimum of an arbitrar...
infxrlb 13302 A member of a set of exten...
infxrgelb 13303 The infimum of a set of ex...
infxrre 13304 The real and extended real...
infxrmnf 13305 The infinimum of a set of ...
xrinf0 13306 The infimum of the empty s...
infxrss 13307 Larger sets of extended re...
reltre 13308 For all real numbers there...
rpltrp 13309 For all positive real numb...
reltxrnmnf 13310 For all extended real numb...
infmremnf 13311 The infimum of the reals i...
infmrp1 13312 The infimum of the positiv...
ixxval 13321 Value of the interval func...
elixx1 13322 Membership in an interval ...
ixxf 13323 The set of intervals of ex...
ixxex 13324 The set of intervals of ex...
ixxssxr 13325 The set of intervals of ex...
elixx3g 13326 Membership in a set of ope...
ixxssixx 13327 An interval is a subset of...
ixxdisj 13328 Split an interval into dis...
ixxun 13329 Split an interval into two...
ixxin 13330 Intersection of two interv...
ixxss1 13331 Subset relationship for in...
ixxss2 13332 Subset relationship for in...
ixxss12 13333 Subset relationship for in...
ixxub 13334 Extract the upper bound of...
ixxlb 13335 Extract the lower bound of...
iooex 13336 The set of open intervals ...
iooval 13337 Value of the open interval...
ioo0 13338 An empty open interval of ...
ioon0 13339 An open interval of extend...
ndmioo 13340 The open interval function...
iooid 13341 An open interval with iden...
elioo3g 13342 Membership in a set of ope...
elioore 13343 A member of an open interv...
lbioo 13344 An open interval does not ...
ubioo 13345 An open interval does not ...
iooval2 13346 Value of the open interval...
iooin 13347 Intersection of two open i...
iooss1 13348 Subset relationship for op...
iooss2 13349 Subset relationship for op...
iocval 13350 Value of the open-below, c...
icoval 13351 Value of the closed-below,...
iccval 13352 Value of the closed interv...
elioo1 13353 Membership in an open inte...
elioo2 13354 Membership in an open inte...
elioc1 13355 Membership in an open-belo...
elico1 13356 Membership in a closed-bel...
elicc1 13357 Membership in a closed int...
iccid 13358 A closed interval with ide...
ico0 13359 An empty open interval of ...
ioc0 13360 An empty open interval of ...
icc0 13361 An empty closed interval o...
dfrp2 13362 Alternate definition of th...
elicod 13363 Membership in a left-close...
icogelb 13364 An element of a left-close...
icogelbd 13365 An element of a left-close...
elicore 13366 A member of a left-closed ...
ubioc1 13367 The upper bound belongs to...
lbico1 13368 The lower bound belongs to...
iccleub 13369 An element of a closed int...
iccgelb 13370 An element of a closed int...
elioo5 13371 Membership in an open inte...
eliooxr 13372 A nonempty open interval s...
eliooord 13373 Ordering implied by a memb...
elioo4g 13374 Membership in an open inte...
ioossre 13375 An open interval is a set ...
ioosscn 13376 An open interval is a set ...
elioc2 13377 Membership in an open-belo...
elico2 13378 Membership in a closed-bel...
elicc2 13379 Membership in a closed rea...
elicc2i 13380 Inference for membership i...
elicc4 13381 Membership in a closed rea...
iccss 13382 Condition for a closed int...
iccssioo 13383 Condition for a closed int...
icossico 13384 Condition for a closed-bel...
iccss2 13385 Condition for a closed int...
iccssico 13386 Condition for a closed int...
iccssioo2 13387 Condition for a closed int...
iccssico2 13388 Condition for a closed int...
icossico2d 13389 Condition for a closed-bel...
ioomax 13390 The open interval from min...
iccmax 13391 The closed interval from m...
ioopos 13392 The set of positive reals ...
ioorp 13393 The set of positive reals ...
iooshf 13394 Shift the arguments of the...
iocssre 13395 A closed-above interval wi...
icossre 13396 A closed-below interval wi...
iccssre 13397 A closed real interval is ...
iccssxr 13398 A closed interval is a set...
iocssxr 13399 An open-below, closed-abov...
icossxr 13400 A closed-below, open-above...
ioossicc 13401 An open interval is a subs...
iccssred 13402 A closed real interval is ...
eliccxr 13403 A member of a closed inter...
icossicc 13404 A closed-below, open-above...
iocssicc 13405 A closed-above, open-below...
ioossico 13406 An open interval is a subs...
iocssioo 13407 Condition for a closed int...
icossioo 13408 Condition for a closed int...
ioossioo 13409 Condition for an open inte...
iccsupr 13410 A nonempty subset of a clo...
elioopnf 13411 Membership in an unbounded...
elioomnf 13412 Membership in an unbounded...
elicopnf 13413 Membership in a closed unb...
repos 13414 Two ways of saying that a ...
ioof 13415 The set of open intervals ...
iccf 13416 The set of closed interval...
unirnioo 13417 The union of the range of ...
dfioo2 13418 Alternate definition of th...
ioorebas 13419 Open intervals are element...
xrge0neqmnf 13420 A nonnegative extended rea...
xrge0nre 13421 An extended real which is ...
elrege0 13422 The predicate "is a nonneg...
nn0rp0 13423 A nonnegative integer is a...
rge0ssre 13424 Nonnegative real numbers a...
elxrge0 13425 Elementhood in the set of ...
0e0icopnf 13426 0 is a member of ` ( 0 [,)...
0e0iccpnf 13427 0 is a member of ` ( 0 [,]...
ge0addcl 13428 The nonnegative reals are ...
ge0mulcl 13429 The nonnegative reals are ...
ge0xaddcl 13430 The nonnegative reals are ...
ge0xmulcl 13431 The nonnegative extended r...
lbicc2 13432 The lower bound of a close...
ubicc2 13433 The upper bound of a close...
elicc01 13434 Membership in the closed r...
elunitrn 13435 The closed unit interval i...
elunitcn 13436 The closed unit interval i...
0elunit 13437 Zero is an element of the ...
1elunit 13438 One is an element of the c...
iooneg 13439 Membership in a negated op...
iccneg 13440 Membership in a negated cl...
icoshft 13441 A shifted real is a member...
icoshftf1o 13442 Shifting a closed-below, o...
icoun 13443 The union of two adjacent ...
icodisj 13444 Adjacent left-closed right...
ioounsn 13445 The union of an open inter...
snunioo 13446 The closure of one end of ...
snunico 13447 The closure of the open en...
snunioc 13448 The closure of the open en...
prunioo 13449 The closure of an open rea...
ioodisj 13450 If the upper bound of one ...
ioojoin 13451 Join two open intervals to...
difreicc 13452 The class difference of ` ...
iccsplit 13453 Split a closed interval in...
iccshftr 13454 Membership in a shifted in...
iccshftri 13455 Membership in a shifted in...
iccshftl 13456 Membership in a shifted in...
iccshftli 13457 Membership in a shifted in...
iccdil 13458 Membership in a dilated in...
iccdili 13459 Membership in a dilated in...
icccntr 13460 Membership in a contracted...
icccntri 13461 Membership in a contracted...
divelunit 13462 A condition for a ratio to...
lincmb01cmp 13463 A linear combination of tw...
iccf1o 13464 Describe a bijection from ...
iccen 13465 Any nontrivial closed inte...
xov1plusxeqvd 13466 A complex number ` X ` is ...
unitssre 13467 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13468 The closed unit interval i...
supicc 13469 Supremum of a bounded set ...
supiccub 13470 The supremum of a bounded ...
supicclub 13471 The supremum of a bounded ...
supicclub2 13472 The supremum of a bounded ...
zltaddlt1le 13473 The sum of an integer and ...
xnn0xrge0 13474 An extended nonnegative in...
fzval 13477 The value of a finite set ...
fzval2 13478 An alternative way of expr...
fzf 13479 Establish the domain and c...
elfz1 13480 Membership in a finite set...
elfz 13481 Membership in a finite set...
elfz2 13482 Membership in a finite set...
elfzd 13483 Membership in a finite set...
elfz5 13484 Membership in a finite set...
elfz4 13485 Membership in a finite set...
elfzuzb 13486 Membership in a finite set...
eluzfz 13487 Membership in a finite set...
elfzuz 13488 A member of a finite set o...
elfzuz3 13489 Membership in a finite set...
elfzel2 13490 Membership in a finite set...
elfzel1 13491 Membership in a finite set...
elfzelz 13492 A member of a finite set o...
elfzelzd 13493 A member of a finite set o...
fzssz 13494 A finite sequence of integ...
elfzle1 13495 A member of a finite set o...
elfzle2 13496 A member of a finite set o...
elfzuz2 13497 Implication of membership ...
elfzle3 13498 Membership in a finite set...
eluzfz1 13499 Membership in a finite set...
eluzfz2 13500 Membership in a finite set...
eluzfz2b 13501 Membership in a finite set...
elfz3 13502 Membership in a finite set...
elfz1eq 13503 Membership in a finite set...
elfzubelfz 13504 If there is a member in a ...
peano2fzr 13505 A Peano-postulate-like the...
fzn0 13506 Properties of a finite int...
fz0 13507 A finite set of sequential...
fzn 13508 A finite set of sequential...
fzen 13509 A shifted finite set of se...
fz1n 13510 A 1-based finite set of se...
0nelfz1 13511 0 is not an element of a f...
0fz1 13512 Two ways to say a finite 1...
fz10 13513 There are no integers betw...
uzsubsubfz 13514 Membership of an integer g...
uzsubsubfz1 13515 Membership of an integer g...
ige3m2fz 13516 Membership of an integer g...
fzsplit2 13517 Split a finite interval of...
fzsplit 13518 Split a finite interval of...
fzdisj 13519 Condition for two finite i...
fz01en 13520 0-based and 1-based finite...
elfznn 13521 A member of a finite set o...
elfz1end 13522 A nonempty finite range of...
fz1ssnn 13523 A finite set of positive i...
fznn0sub 13524 Subtraction closure for a ...
fzmmmeqm 13525 Subtracting the difference...
fzaddel 13526 Membership of a sum in a f...
fzadd2 13527 Membership of a sum in a f...
fzsubel 13528 Membership of a difference...
fzopth 13529 A finite set of sequential...
fzass4 13530 Two ways to express a nond...
fzss1 13531 Subset relationship for fi...
fzss2 13532 Subset relationship for fi...
fzssuz 13533 A finite set of sequential...
fzsn 13534 A finite interval of integ...
fzssp1 13535 Subset relationship for fi...
fzssnn 13536 Finite sets of sequential ...
ssfzunsnext 13537 A subset of a finite seque...
ssfzunsn 13538 A subset of a finite seque...
fzsuc 13539 Join a successor to the en...
fzpred 13540 Join a predecessor to the ...
fzpreddisj 13541 A finite set of sequential...
elfzp1 13542 Append an element to a fin...
fzp1ss 13543 Subset relationship for fi...
fzelp1 13544 Membership in a set of seq...
fzp1elp1 13545 Add one to an element of a...
fznatpl1 13546 Shift membership in a fini...
fzpr 13547 A finite interval of integ...
fztp 13548 A finite interval of integ...
fz12pr 13549 An integer range between 1...
fzsuc2 13550 Join a successor to the en...
fzp1disj 13551 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13552 Remove a successor from th...
fzprval 13553 Two ways of defining the f...
fztpval 13554 Two ways of defining the f...
fzrev 13555 Reversal of start and end ...
fzrev2 13556 Reversal of start and end ...
fzrev2i 13557 Reversal of start and end ...
fzrev3 13558 The "complement" of a memb...
fzrev3i 13559 The "complement" of a memb...
fznn 13560 Finite set of sequential i...
elfz1b 13561 Membership in a 1-based fi...
elfz1uz 13562 Membership in a 1-based fi...
elfzm11 13563 Membership in a finite set...
uzsplit 13564 Express an upper integer s...
uzdisj 13565 The first ` N ` elements o...
fseq1p1m1 13566 Add/remove an item to/from...
fseq1m1p1 13567 Add/remove an item to/from...
fz1sbc 13568 Quantification over a one-...
elfzp1b 13569 An integer is a member of ...
elfzm1b 13570 An integer is a member of ...
elfzp12 13571 Options for membership in ...
fzne1 13572 Elementhood in a finite se...
fzdif1 13573 Split the first element of...
fz0dif1 13574 Split the first element of...
fzm1 13575 Choices for an element of ...
fzneuz 13576 No finite set of sequentia...
fznuz 13577 Disjointness of the upper ...
uznfz 13578 Disjointness of the upper ...
fzp1nel 13579 One plus the upper bound o...
fzrevral 13580 Reversal of scanning order...
fzrevral2 13581 Reversal of scanning order...
fzrevral3 13582 Reversal of scanning order...
fzshftral 13583 Shift the scanning order i...
ige2m1fz1 13584 Membership of an integer g...
ige2m1fz 13585 Membership in a 0-based fi...
elfz2nn0 13586 Membership in a finite set...
fznn0 13587 Characterization of a fini...
elfznn0 13588 A member of a finite set o...
elfz3nn0 13589 The upper bound of a nonem...
fz0ssnn0 13590 Finite sets of sequential ...
fz1ssfz0 13591 Subset relationship for fi...
0elfz 13592 0 is an element of a finit...
nn0fz0 13593 A nonnegative integer is a...
elfz0add 13594 An element of a finite set...
fz0sn 13595 An integer range from 0 to...
fz0tp 13596 An integer range from 0 to...
fz0to3un2pr 13597 An integer range from 0 to...
fz0to4untppr 13598 An integer range from 0 to...
fz0to5un2tp 13599 An integer range from 0 to...
elfz0ubfz0 13600 An element of a finite set...
elfz0fzfz0 13601 A member of a finite set o...
fz0fzelfz0 13602 If a member of a finite se...
fznn0sub2 13603 Subtraction closure for a ...
uzsubfz0 13604 Membership of an integer g...
fz0fzdiffz0 13605 The difference of an integ...
elfzmlbm 13606 Subtracting the lower boun...
elfzmlbp 13607 Subtracting the lower boun...
fzctr 13608 Lemma for theorems about t...
difelfzle 13609 The difference of two inte...
difelfznle 13610 The difference of two inte...
nn0split 13611 Express the set of nonnega...
nn0disj 13612 The first ` N + 1 ` elemen...
fz0sn0fz1 13613 A finite set of sequential...
fvffz0 13614 The function value of a fu...
1fv 13615 A function on a singleton....
4fvwrd4 13616 The first four function va...
2ffzeq 13617 Two functions over 0-based...
preduz 13618 The value of the predecess...
prednn 13619 The value of the predecess...
prednn0 13620 The value of the predecess...
predfz 13621 Calculate the predecessor ...
fzof 13624 Functionality of the half-...
elfzoel1 13625 Reverse closure for half-o...
elfzoel2 13626 Reverse closure for half-o...
elfzoelz 13627 Reverse closure for half-o...
fzoval 13628 Value of the half-open int...
elfzo 13629 Membership in a half-open ...
elfzo2 13630 Membership in a half-open ...
elfzouz 13631 Membership in a half-open ...
nelfzo 13632 An integer not being a mem...
fzolb 13633 The left endpoint of a hal...
fzolb2 13634 The left endpoint of a hal...
elfzole1 13635 A member in a half-open in...
elfzolt2 13636 A member in a half-open in...
elfzolt3 13637 Membership in a half-open ...
elfzolt2b 13638 A member in a half-open in...
elfzolt3b 13639 Membership in a half-open ...
elfzop1le2 13640 A member in a half-open in...
fzonel 13641 A half-open range does not...
elfzouz2 13642 The upper bound of a half-...
elfzofz 13643 A half-open range is conta...
elfzo3 13644 Express membership in a ha...
fzon0 13645 A half-open integer interv...
fzossfz 13646 A half-open range is conta...
fzossz 13647 A half-open integer interv...
fzon 13648 A half-open set of sequent...
fzo0n 13649 A half-open range of nonne...
fzonlt0 13650 A half-open integer range ...
fzo0 13651 Half-open sets with equal ...
fzonnsub 13652 If ` K < N ` then ` N - K ...
fzonnsub2 13653 If ` M < N ` then ` N - M ...
fzoss1 13654 Subset relationship for ha...
fzoss2 13655 Subset relationship for ha...
fzossrbm1 13656 Subset of a half-open rang...
fzo0ss1 13657 Subset relationship for ha...
fzossnn0 13658 A half-open integer range ...
fzospliti 13659 One direction of splitting...
fzosplit 13660 Split a half-open integer ...
fzodisj 13661 Abutting half-open integer...
fzouzsplit 13662 Split an upper integer set...
fzouzdisj 13663 A half-open integer range ...
fzoun 13664 A half-open integer range ...
fzodisjsn 13665 A half-open integer range ...
prinfzo0 13666 The intersection of a half...
lbfzo0 13667 An integer is strictly gre...
elfzo0 13668 Membership in a half-open ...
elfzo0z 13669 Membership in a half-open ...
nn0p1elfzo 13670 A nonnegative integer incr...
elfzo0le 13671 A member in a half-open ra...
elfzolem1 13672 A member in a half-open in...
elfzo0subge1 13673 The difference of the uppe...
elfzo0suble 13674 The difference of the uppe...
elfzonn0 13675 A member of a half-open ra...
fzonmapblen 13676 The result of subtracting ...
fzofzim 13677 If a nonnegative integer i...
fz1fzo0m1 13678 Translation of one between...
fzossnn 13679 Half-open integer ranges s...
elfzo1 13680 Membership in a half-open ...
fzo1lb 13681 1 is the left endpoint of ...
1elfzo1 13682 1 is in a half-open range ...
fzo1fzo0n0 13683 An integer between 1 and a...
fzo0n0 13684 A half-open integer range ...
fzoaddel 13685 Translate membership in a ...
fzo0addel 13686 Translate membership in a ...
fzo0addelr 13687 Translate membership in a ...
fzoaddel2 13688 Translate membership in a ...
elfzoextl 13689 Membership of an integer i...
elfzoext 13690 Membership of an integer i...
elincfzoext 13691 Membership of an increased...
fzosubel 13692 Translate membership in a ...
fzosubel2 13693 Membership in a translated...
fzosubel3 13694 Membership in a translated...
eluzgtdifelfzo 13695 Membership of the differen...
ige2m2fzo 13696 Membership of an integer g...
fzocatel 13697 Translate membership in a ...
ubmelfzo 13698 If an integer in a 1-based...
elfzodifsumelfzo 13699 If an integer is in a half...
elfzom1elp1fzo 13700 Membership of an integer i...
elfzom1elfzo 13701 Membership in a half-open ...
fzval3 13702 Expressing a closed intege...
fz0add1fz1 13703 Translate membership in a ...
fzosn 13704 Expressing a singleton as ...
elfzomin 13705 Membership of an integer i...
zpnn0elfzo 13706 Membership of an integer i...
zpnn0elfzo1 13707 Membership of an integer i...
fzosplitsnm1 13708 Removing a singleton from ...
elfzonlteqm1 13709 If an element of a half-op...
fzonn0p1 13710 A nonnegative integer is a...
fzossfzop1 13711 A half-open range of nonne...
fzonn0p1p1 13712 If a nonnegative integer i...
elfzom1p1elfzo 13713 Increasing an element of a...
fzo0ssnn0 13714 Half-open integer ranges s...
fzo01 13715 Expressing the singleton o...
fzo12sn 13716 A 1-based half-open intege...
fzo13pr 13717 A 1-based half-open intege...
fzo0to2pr 13718 A half-open integer range ...
fz01pr 13719 An integer range between 0...
fzo0to3tp 13720 A half-open integer range ...
fzo0to42pr 13721 A half-open integer range ...
fzo1to4tp 13722 A half-open integer range ...
fzo0sn0fzo1 13723 A half-open range of nonne...
elfzo0l 13724 A member of a half-open ra...
fzoend 13725 The endpoint of a half-ope...
fzo0end 13726 The endpoint of a zero-bas...
ssfzo12 13727 Subset relationship for ha...
ssfzoulel 13728 If a half-open integer ran...
ssfzo12bi 13729 Subset relationship for ha...
fzoopth 13730 A half-open integer range ...
ubmelm1fzo 13731 The result of subtracting ...
fzofzp1 13732 If a point is in a half-op...
fzofzp1b 13733 If a point is in a half-op...
elfzom1b 13734 An integer is a member of ...
elfzom1elp1fzo1 13735 Membership of a nonnegativ...
elfzo1elm1fzo0 13736 Membership of a positive i...
elfzonelfzo 13737 If an element of a half-op...
fzonfzoufzol 13738 If an element of a half-op...
elfzomelpfzo 13739 An integer increased by an...
elfznelfzo 13740 A value in a finite set of...
elfznelfzob 13741 A value in a finite set of...
peano2fzor 13742 A Peano-postulate-like the...
fzosplitsn 13743 Extending a half-open rang...
fzosplitpr 13744 Extending a half-open inte...
fzosplitprm1 13745 Extending a half-open inte...
fzosplitsni 13746 Membership in a half-open ...
fzisfzounsn 13747 A finite interval of integ...
elfzr 13748 A member of a finite inter...
elfzlmr 13749 A member of a finite inter...
elfz0lmr 13750 A member of a finite inter...
fzostep1 13751 Two possibilities for a nu...
fzoshftral 13752 Shift the scanning order i...
fzind2 13753 Induction on the integers ...
fvinim0ffz 13754 The function values for th...
injresinjlem 13755 Lemma for ~ injresinj . (...
injresinj 13756 A function whose restricti...
subfzo0 13757 The difference between two...
fvf1tp 13758 Values of a one-to-one fun...
flval 13763 Value of the floor (greate...
flcl 13764 The floor (greatest intege...
reflcl 13765 The floor (greatest intege...
fllelt 13766 A basic property of the fl...
flcld 13767 The floor (greatest intege...
flle 13768 A basic property of the fl...
flltp1 13769 A basic property of the fl...
fllep1 13770 A basic property of the fl...
fraclt1 13771 The fractional part of a r...
fracle1 13772 The fractional part of a r...
fracge0 13773 The fractional part of a r...
flge 13774 The floor function value i...
fllt 13775 The floor function value i...
flflp1 13776 Move floor function betwee...
flid 13777 An integer is its own floo...
flidm 13778 The floor function is idem...
flidz 13779 A real number equals its f...
flltnz 13780 The floor of a non-integer...
flwordi 13781 Ordering relation for the ...
flword2 13782 Ordering relation for the ...
flval2 13783 An alternate way to define...
flval3 13784 An alternate way to define...
flbi 13785 A condition equivalent to ...
flbi2 13786 A condition equivalent to ...
adddivflid 13787 The floor of a sum of an i...
ico01fl0 13788 The floor of a real number...
flge0nn0 13789 The floor of a number grea...
flge1nn 13790 The floor of a number grea...
fldivnn0 13791 The floor function of a di...
refldivcl 13792 The floor function of a di...
divfl0 13793 The floor of a fraction is...
fladdz 13794 An integer can be moved in...
flzadd 13795 An integer can be moved in...
flmulnn0 13796 Move a nonnegative integer...
btwnzge0 13797 A real bounded between an ...
2tnp1ge0ge0 13798 Two times an integer plus ...
flhalf 13799 Ordering relation for the ...
fldivle 13800 The floor function of a di...
fldivnn0le 13801 The floor function of a di...
flltdivnn0lt 13802 The floor function of a di...
ltdifltdiv 13803 If the dividend of a divis...
fldiv4p1lem1div2 13804 The floor of an integer eq...
fldiv4lem1div2uz2 13805 The floor of an integer gr...
fldiv4lem1div2 13806 The floor of a positive in...
ceilval 13807 The value of the ceiling f...
dfceil2 13808 Alternative definition of ...
ceilval2 13809 The value of the ceiling f...
ceicl 13810 The ceiling function retur...
ceilcl 13811 Closure of the ceiling fun...
ceilcld 13812 Closure of the ceiling fun...
ceige 13813 The ceiling of a real numb...
ceilge 13814 The ceiling of a real numb...
ceilged 13815 The ceiling of a real numb...
ceim1l 13816 One less than the ceiling ...
ceilm1lt 13817 One less than the ceiling ...
ceile 13818 The ceiling of a real numb...
ceille 13819 The ceiling of a real numb...
ceilid 13820 An integer is its own ceil...
ceilidz 13821 A real number equals its c...
flleceil 13822 The floor of a real number...
fleqceilz 13823 A real number is an intege...
quoremz 13824 Quotient and remainder of ...
quoremnn0 13825 Quotient and remainder of ...
quoremnn0ALT 13826 Alternate proof of ~ quore...
intfrac2 13827 Decompose a real into inte...
intfracq 13828 Decompose a rational numbe...
fldiv 13829 Cancellation of the embedd...
fldiv2 13830 Cancellation of an embedde...
fznnfl 13831 Finite set of sequential i...
uzsup 13832 An upper set of integers i...
ioopnfsup 13833 An upper set of reals is u...
icopnfsup 13834 An upper set of reals is u...
rpsup 13835 The positive reals are unb...
resup 13836 The real numbers are unbou...
xrsup 13837 The extended real numbers ...
modval 13840 The value of the modulo op...
modvalr 13841 The value of the modulo op...
modcl 13842 Closure law for the modulo...
flpmodeq 13843 Partition of a division in...
modcld 13844 Closure law for the modulo...
mod0 13845 ` A mod B ` is zero iff ` ...
mulmod0 13846 The product of an integer ...
negmod0 13847 ` A ` is divisible by ` B ...
modge0 13848 The modulo operation is no...
modlt 13849 The modulo operation is le...
modelico 13850 Modular reduction produces...
moddiffl 13851 Value of the modulo operat...
moddifz 13852 The modulo operation diffe...
modfrac 13853 The fractional part of a n...
flmod 13854 The floor function express...
intfrac 13855 Break a number into its in...
zmod10 13856 An integer modulo 1 is 0. ...
zmod1congr 13857 Two arbitrary integers are...
modmulnn 13858 Move a positive integer in...
modvalp1 13859 The value of the modulo op...
zmodcl 13860 Closure law for the modulo...
zmodcld 13861 Closure law for the modulo...
zmodfz 13862 An integer mod ` B ` lies ...
zmodfzo 13863 An integer mod ` B ` lies ...
zmodfzp1 13864 An integer mod ` B ` lies ...
modid 13865 Identity law for modulo. ...
modid0 13866 A positive real number mod...
modid2 13867 Identity law for modulo. ...
zmodid2 13868 Identity law for modulo re...
zmodidfzo 13869 Identity law for modulo re...
zmodidfzoimp 13870 Identity law for modulo re...
0mod 13871 Special case: 0 modulo a p...
1mod 13872 Special case: 1 modulo a r...
modabs 13873 Absorption law for modulo....
modabs2 13874 Absorption law for modulo....
modcyc 13875 The modulo operation is pe...
modcyc2 13876 The modulo operation is pe...
modadd1 13877 Addition property of the m...
modaddb 13878 Addition property of the m...
modaddid 13879 The sums of two nonnegativ...
modaddabs 13880 Absorption law for modulo....
modaddmod 13881 The sum of a real number m...
muladdmodid 13882 The sum of a positive real...
mulp1mod1 13883 The product of an integer ...
muladdmod 13884 A real number is the sum o...
modmuladd 13885 Decomposition of an intege...
modmuladdim 13886 Implication of a decomposi...
modmuladdnn0 13887 Implication of a decomposi...
negmod 13888 The negation of a number m...
m1modnnsub1 13889 Minus one modulo a positiv...
m1modge3gt1 13890 Minus one modulo an intege...
addmodid 13891 The sum of a positive inte...
addmodidr 13892 The sum of a positive inte...
modadd2mod 13893 The sum of a real number m...
modm1p1mod0 13894 If a real number modulo a ...
modltm1p1mod 13895 If a real number modulo a ...
modmul1 13896 Multiplication property of...
modmul12d 13897 Multiplication property of...
modnegd 13898 Negation property of the m...
modadd12d 13899 Additive property of the m...
modsub12d 13900 Subtraction property of th...
modsubmod 13901 The difference of a real n...
modsubmodmod 13902 The difference of a real n...
2txmodxeq0 13903 Two times a positive real ...
2submod 13904 If a real number is betwee...
modifeq2int 13905 If a nonnegative integer i...
modaddmodup 13906 The sum of an integer modu...
modaddmodlo 13907 The sum of an integer modu...
modmulmod 13908 The product of a real numb...
modmulmodr 13909 The product of an integer ...
modaddmulmod 13910 The sum of a real number a...
moddi 13911 Distribute multiplication ...
modsubdir 13912 Distribute the modulo oper...
modeqmodmin 13913 A real number equals the d...
modirr 13914 A number modulo an irratio...
modfzo0difsn 13915 For a number within a half...
modsumfzodifsn 13916 The sum of a number within...
modlteq 13917 Two nonnegative integers l...
addmodlteq 13918 Two nonnegative integers l...
om2uz0i 13919 The mapping ` G ` is a one...
om2uzsuci 13920 The value of ` G ` (see ~ ...
om2uzuzi 13921 The value ` G ` (see ~ om2...
om2uzlti 13922 Less-than relation for ` G...
om2uzlt2i 13923 The mapping ` G ` (see ~ o...
om2uzrani 13924 Range of ` G ` (see ~ om2u...
om2uzf1oi 13925 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13926 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13927 An alternative definition ...
om2uzrdg 13928 A helper lemma for the val...
uzrdglem 13929 A helper lemma for the val...
uzrdgfni 13930 The recursive definition g...
uzrdg0i 13931 Initial value of a recursi...
uzrdgsuci 13932 Successor value of a recur...
ltweuz 13933 ` < ` is a well-founded re...
ltwenn 13934 Less than well-orders the ...
ltwefz 13935 Less than well-orders a se...
uzenom 13936 An upper integer set is de...
uzinf 13937 An upper integer set is in...
nnnfi 13938 The set of positive intege...
uzrdgxfr 13939 Transfer the value of the ...
fzennn 13940 The cardinality of a finit...
fzen2 13941 The cardinality of a finit...
cardfz 13942 The cardinality of a finit...
hashgf1o 13943 ` G ` maps ` _om ` one-to-...
fzfi 13944 A finite interval of integ...
fzfid 13945 Commonly used special case...
fzofi 13946 Half-open integer sets are...
fsequb 13947 The values of a finite rea...
fsequb2 13948 The values of a finite rea...
fseqsupcl 13949 The values of a finite rea...
fseqsupubi 13950 The values of a finite rea...
nn0ennn 13951 The nonnegative integers a...
nnenom 13952 The set of positive intege...
nnct 13953 ` NN ` is countable. (Con...
uzindi 13954 Indirect strong induction ...
axdc4uzlem 13955 Lemma for ~ axdc4uz . (Co...
axdc4uz 13956 A version of ~ axdc4 that ...
ssnn0fi 13957 A subset of the nonnegativ...
rabssnn0fi 13958 A subset of the nonnegativ...
uzsinds 13959 Strong (or "total") induct...
nnsinds 13960 Strong (or "total") induct...
nn0sinds 13961 Strong (or "total") induct...
fsuppmapnn0fiublem 13962 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13963 If all functions of a fini...
fsuppmapnn0fiubex 13964 If all functions of a fini...
fsuppmapnn0fiub0 13965 If all functions of a fini...
suppssfz 13966 Condition for a function o...
fsuppmapnn0ub 13967 If a function over the non...
fsuppmapnn0fz 13968 If a function over the non...
mptnn0fsupp 13969 A mapping from the nonnega...
mptnn0fsuppd 13970 A mapping from the nonnega...
mptnn0fsuppr 13971 A finitely supported mappi...
f13idfv 13972 A one-to-one function with...
seqex 13975 Existence of the sequence ...
seqeq1 13976 Equality theorem for the s...
seqeq2 13977 Equality theorem for the s...
seqeq3 13978 Equality theorem for the s...
seqeq1d 13979 Equality deduction for the...
seqeq2d 13980 Equality deduction for the...
seqeq3d 13981 Equality deduction for the...
seqeq123d 13982 Equality deduction for the...
nfseq 13983 Hypothesis builder for the...
seqval 13984 Value of the sequence buil...
seqfn 13985 The sequence builder funct...
seq1 13986 Value of the sequence buil...
seq1i 13987 Value of the sequence buil...
seqp1 13988 Value of the sequence buil...
seqexw 13989 Weak version of ~ seqex th...
seqp1d 13990 Value of the sequence buil...
seqm1 13991 Value of the sequence buil...
seqcl2 13992 Closure properties of the ...
seqf2 13993 Range of the recursive seq...
seqcl 13994 Closure properties of the ...
seqf 13995 Range of the recursive seq...
seqfveq2 13996 Equality of sequences. (C...
seqfeq2 13997 Equality of sequences. (C...
seqfveq 13998 Equality of sequences. (C...
seqfeq 13999 Equality of sequences. (C...
seqshft2 14000 Shifting the index set of ...
seqres 14001 Restricting its characteri...
serf 14002 An infinite series of comp...
serfre 14003 An infinite series of real...
monoord 14004 Ordering relation for a mo...
monoord2 14005 Ordering relation for a mo...
sermono 14006 The partial sums in an inf...
seqsplit 14007 Split a sequence into two ...
seq1p 14008 Removing the first term fr...
seqcaopr3 14009 Lemma for ~ seqcaopr2 . (...
seqcaopr2 14010 The sum of two infinite se...
seqcaopr 14011 The sum of two infinite se...
seqf1olem2a 14012 Lemma for ~ seqf1o . (Con...
seqf1olem1 14013 Lemma for ~ seqf1o . (Con...
seqf1olem2 14014 Lemma for ~ seqf1o . (Con...
seqf1o 14015 Rearrange a sum via an arb...
seradd 14016 The sum of two infinite se...
sersub 14017 The difference of two infi...
seqid3 14018 A sequence that consists e...
seqid 14019 Discarding the first few t...
seqid2 14020 The last few partial sums ...
seqhomo 14021 Apply a homomorphism to a ...
seqz 14022 If the operation ` .+ ` ha...
seqfeq4 14023 Equality of series under d...
seqfeq3 14024 Equality of series under d...
seqdistr 14025 The distributive property ...
ser0 14026 The value of the partial s...
ser0f 14027 A zero-valued infinite ser...
serge0 14028 A finite sum of nonnegativ...
serle 14029 Comparison of partial sums...
ser1const 14030 Value of the partial serie...
seqof 14031 Distribute function operat...
seqof2 14032 Distribute function operat...
expval 14035 Value of exponentiation to...
expnnval 14036 Value of exponentiation to...
exp0 14037 Value of a complex number ...
0exp0e1 14038 The zeroth power of zero e...
exp1 14039 Value of a complex number ...
expp1 14040 Value of a complex number ...
expneg 14041 Value of a complex number ...
expneg2 14042 Value of a complex number ...
expn1 14043 A complex number raised to...
expcllem 14044 Lemma for proving nonnegat...
expcl2lem 14045 Lemma for proving integer ...
nnexpcl 14046 Closure of exponentiation ...
nn0expcl 14047 Closure of exponentiation ...
zexpcl 14048 Closure of exponentiation ...
qexpcl 14049 Closure of exponentiation ...
reexpcl 14050 Closure of exponentiation ...
expcl 14051 Closure law for nonnegativ...
rpexpcl 14052 Closure law for integer ex...
qexpclz 14053 Closure of integer exponen...
reexpclz 14054 Closure of integer exponen...
expclzlem 14055 Lemma for ~ expclz . (Con...
expclz 14056 Closure law for integer ex...
m1expcl2 14057 Closure of integer exponen...
m1expcl 14058 Closure of exponentiation ...
zexpcld 14059 Closure of exponentiation ...
nn0expcli 14060 Closure of exponentiation ...
nn0sqcl 14061 The square of a nonnegativ...
expm1t 14062 Exponentiation in terms of...
1exp 14063 Value of 1 raised to an in...
expeq0 14064 A positive integer power i...
expne0 14065 A positive integer power i...
expne0i 14066 An integer power is nonzer...
expgt0 14067 A positive real raised to ...
expnegz 14068 Value of a nonzero complex...
0exp 14069 Value of zero raised to a ...
expge0 14070 A nonnegative real raised ...
expge1 14071 A real greater than or equ...
expgt1 14072 A real greater than 1 rais...
mulexp 14073 Nonnegative integer expone...
mulexpz 14074 Integer exponentiation of ...
exprec 14075 Integer exponentiation of ...
expadd 14076 Sum of exponents law for n...
expaddzlem 14077 Lemma for ~ expaddz . (Co...
expaddz 14078 Sum of exponents law for i...
expmul 14079 Product of exponents law f...
expmulz 14080 Product of exponents law f...
m1expeven 14081 Exponentiation of negative...
expsub 14082 Exponent subtraction law f...
expp1z 14083 Value of a nonzero complex...
expm1 14084 Value of a nonzero complex...
expdiv 14085 Nonnegative integer expone...
sqval 14086 Value of the square of a c...
sqneg 14087 The square of the negative...
sqnegd 14088 The square of the negative...
sqsubswap 14089 Swap the order of subtract...
sqcl 14090 Closure of square. (Contr...
sqmul 14091 Distribution of squaring o...
sqeq0 14092 A complex number is zero i...
sqdiv 14093 Distribution of squaring o...
sqdivid 14094 The square of a nonzero co...
sqne0 14095 A complex number is nonzer...
resqcl 14096 Closure of squaring in rea...
resqcld 14097 Closure of squaring in rea...
sqgt0 14098 The square of a nonzero re...
sqn0rp 14099 The square of a nonzero re...
nnsqcl 14100 The positive naturals are ...
zsqcl 14101 Integers are closed under ...
qsqcl 14102 The square of a rational i...
sq11 14103 The square function is one...
nn0sq11 14104 The square function is one...
lt2sq 14105 The square function is inc...
le2sq 14106 The square function is non...
le2sq2 14107 The square function is non...
sqge0 14108 The square of a real is no...
sqge0d 14109 The square of a real is no...
zsqcl2 14110 The square of an integer i...
0expd 14111 Value of zero raised to a ...
exp0d 14112 Value of a complex number ...
exp1d 14113 Value of a complex number ...
expeq0d 14114 If a positive integer powe...
sqvald 14115 Value of square. Inferenc...
sqcld 14116 Closure of square. (Contr...
sqeq0d 14117 A number is zero iff its s...
expcld 14118 Closure law for nonnegativ...
expp1d 14119 Value of a complex number ...
expaddd 14120 Sum of exponents law for n...
expmuld 14121 Product of exponents law f...
sqrecd 14122 Square of reciprocal is re...
expclzd 14123 Closure law for integer ex...
expne0d 14124 A nonnegative integer powe...
expnegd 14125 Value of a nonzero complex...
exprecd 14126 An integer power of a reci...
expp1zd 14127 Value of a nonzero complex...
expm1d 14128 Value of a nonzero complex...
expsubd 14129 Exponent subtraction law f...
sqmuld 14130 Distribution of squaring o...
sqdivd 14131 Distribution of squaring o...
expdivd 14132 Nonnegative integer expone...
mulexpd 14133 Nonnegative integer expone...
znsqcld 14134 The square of a nonzero in...
reexpcld 14135 Closure of exponentiation ...
expge0d 14136 A nonnegative real raised ...
expge1d 14137 A real greater than or equ...
ltexp2a 14138 Exponent ordering relation...
expmordi 14139 Base ordering relationship...
rpexpmord 14140 Base ordering relationship...
expcan 14141 Cancellation law for integ...
ltexp2 14142 Strict ordering law for ex...
leexp2 14143 Ordering law for exponenti...
leexp2a 14144 Weak ordering relationship...
ltexp2r 14145 The integer powers of a fi...
leexp2r 14146 Weak ordering relationship...
leexp1a 14147 Weak base ordering relatio...
leexp1ad 14148 Weak base ordering relatio...
exple1 14149 A real between 0 and 1 inc...
expubnd 14150 An upper bound on ` A ^ N ...
sumsqeq0 14151 The sum of two squres of r...
sqvali 14152 Value of square. Inferenc...
sqcli 14153 Closure of square. (Contr...
sqeq0i 14154 A complex number is zero i...
sqrecii 14155 The square of a reciprocal...
sqmuli 14156 Distribution of squaring o...
sqdivi 14157 Distribution of squaring o...
resqcli 14158 Closure of square in reals...
sqgt0i 14159 The square of a nonzero re...
sqge0i 14160 The square of a real is no...
lt2sqi 14161 The square function on non...
le2sqi 14162 The square function on non...
sq11i 14163 The square function is one...
sq0 14164 The square of 0 is 0. (Co...
sq0i 14165 If a number is zero, then ...
sq0id 14166 If a number is zero, then ...
sq1 14167 The square of 1 is 1. (Co...
neg1sqe1 14168 The square of ` -u 1 ` is ...
sq2 14169 The square of 2 is 4. (Co...
sq3 14170 The square of 3 is 9. (Co...
sq4e2t8 14171 The square of 4 is 2 times...
cu2 14172 The cube of 2 is 8. (Cont...
irec 14173 The reciprocal of ` _i ` ....
i2 14174 ` _i ` squared. (Contribu...
i3 14175 ` _i ` cubed. (Contribute...
i4 14176 ` _i ` to the fourth power...
nnlesq 14177 A positive integer is less...
zzlesq 14178 An integer is less than or...
iexpcyc 14179 Taking ` _i ` to the ` K `...
expnass 14180 A counterexample showing t...
sqlecan 14181 Cancel one factor of a squ...
subsq 14182 Factor the difference of t...
subsq2 14183 Express the difference of ...
binom2i 14184 The square of a binomial. ...
subsqi 14185 Factor the difference of t...
sqeqori 14186 The squares of two complex...
subsq0i 14187 The two solutions to the d...
sqeqor 14188 The squares of two complex...
binom2 14189 The square of a binomial. ...
binom2d 14190 Deduction form of ~ binom2...
binom21 14191 Special case of ~ binom2 w...
binom2sub 14192 Expand the square of a sub...
binom2sub1 14193 Special case of ~ binom2su...
binom2subi 14194 Expand the square of a sub...
mulbinom2 14195 The square of a binomial w...
binom3 14196 The cube of a binomial. (...
sq01 14197 If a complex number equals...
zesq 14198 An integer is even iff its...
nnesq 14199 A positive integer is even...
crreczi 14200 Reciprocal of a complex nu...
bernneq 14201 Bernoulli's inequality, du...
bernneq2 14202 Variation of Bernoulli's i...
bernneq3 14203 A corollary of ~ bernneq ....
expnbnd 14204 Exponentiation with a base...
expnlbnd 14205 The reciprocal of exponent...
expnlbnd2 14206 The reciprocal of exponent...
expmulnbnd 14207 Exponentiation with a base...
digit2 14208 Two ways to express the ` ...
digit1 14209 Two ways to express the ` ...
modexp 14210 Exponentiation property of...
discr1 14211 A nonnegative quadratic fo...
discr 14212 If a quadratic polynomial ...
expnngt1 14213 If an integer power with a...
expnngt1b 14214 An integer power with an i...
sqoddm1div8 14215 A squared odd number minus...
nnsqcld 14216 The naturals are closed un...
nnexpcld 14217 Closure of exponentiation ...
nn0expcld 14218 Closure of exponentiation ...
rpexpcld 14219 Closure law for exponentia...
ltexp2rd 14220 The power of a positive nu...
reexpclzd 14221 Closure of exponentiation ...
sqgt0d 14222 The square of a nonzero re...
ltexp2d 14223 Ordering relationship for ...
leexp2d 14224 Ordering law for exponenti...
expcand 14225 Ordering relationship for ...
leexp2ad 14226 Ordering relationship for ...
leexp2rd 14227 Ordering relationship for ...
lt2sqd 14228 The square function on non...
le2sqd 14229 The square function on non...
sq11d 14230 The square function is one...
ltexp1d 14231 Elevating to a positive po...
ltexp1dd 14232 Raising both sides of 'les...
exp11nnd 14233 The function elevating non...
mulsubdivbinom2 14234 The square of a binomial w...
muldivbinom2 14235 The square of a binomial w...
sq10 14236 The square of 10 is 100. ...
sq10e99m1 14237 The square of 10 is 99 plu...
3dec 14238 A "decimal constructor" wh...
nn0le2msqi 14239 The square function on non...
nn0opthlem1 14240 A rather pretty lemma for ...
nn0opthlem2 14241 Lemma for ~ nn0opthi . (C...
nn0opthi 14242 An ordered pair theorem fo...
nn0opth2i 14243 An ordered pair theorem fo...
nn0opth2 14244 An ordered pair theorem fo...
facnn 14247 Value of the factorial fun...
fac0 14248 The factorial of 0. (Cont...
fac1 14249 The factorial of 1. (Cont...
facp1 14250 The factorial of a success...
fac2 14251 The factorial of 2. (Cont...
fac3 14252 The factorial of 3. (Cont...
fac4 14253 The factorial of 4. (Cont...
facnn2 14254 Value of the factorial fun...
faccl 14255 Closure of the factorial f...
faccld 14256 Closure of the factorial f...
facmapnn 14257 The factorial function res...
facne0 14258 The factorial function is ...
facdiv 14259 A positive integer divides...
facndiv 14260 No positive integer (great...
facwordi 14261 Ordering property of facto...
faclbnd 14262 A lower bound for the fact...
faclbnd2 14263 A lower bound for the fact...
faclbnd3 14264 A lower bound for the fact...
faclbnd4lem1 14265 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 14266 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 14267 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 14268 Lemma for ~ faclbnd4 . Pr...
faclbnd4 14269 Variant of ~ faclbnd5 prov...
faclbnd5 14270 The factorial function gro...
faclbnd6 14271 Geometric lower bound for ...
facubnd 14272 An upper bound for the fac...
facavg 14273 The product of two factori...
bcval 14276 Value of the binomial coef...
bcval2 14277 Value of the binomial coef...
bcval3 14278 Value of the binomial coef...
bcval4 14279 Value of the binomial coef...
bcrpcl 14280 Closure of the binomial co...
bccmpl 14281 "Complementing" its second...
bcn0 14282 ` N ` choose 0 is 1. Rema...
bc0k 14283 The binomial coefficient "...
bcnn 14284 ` N ` choose ` N ` is 1. ...
bcn1 14285 Binomial coefficient: ` N ...
bcnp1n 14286 Binomial coefficient: ` N ...
bcm1k 14287 The proportion of one bino...
bcp1n 14288 The proportion of one bino...
bcp1nk 14289 The proportion of one bino...
bcval5 14290 Write out the top and bott...
bcn2 14291 Binomial coefficient: ` N ...
bcp1m1 14292 Compute the binomial coeff...
bcpasc 14293 Pascal's rule for the bino...
bccl 14294 A binomial coefficient, in...
bccl2 14295 A binomial coefficient, in...
bcn2m1 14296 Compute the binomial coeff...
bcn2p1 14297 Compute the binomial coeff...
permnn 14298 The number of permutations...
bcnm1 14299 The binomial coefficient o...
4bc3eq4 14300 The value of four choose t...
4bc2eq6 14301 The value of four choose t...
hashkf 14304 The finite part of the siz...
hashgval 14305 The value of the ` # ` fun...
hashginv 14306 The converse of ` G ` maps...
hashinf 14307 The value of the ` # ` fun...
hashbnd 14308 If ` A ` has size bounded ...
hashfxnn0 14309 The size function is a fun...
hashf 14310 The size function maps all...
hashxnn0 14311 The value of the hash func...
hashresfn 14312 Restriction of the domain ...
dmhashres 14313 Restriction of the domain ...
hashnn0pnf 14314 The value of the hash func...
hashnnn0genn0 14315 If the size of a set is no...
hashnemnf 14316 The size of a set is never...
hashv01gt1 14317 The size of a set is eithe...
hashfz1 14318 The set ` ( 1 ... N ) ` ha...
hashen 14319 Two finite sets have the s...
hasheni 14320 Equinumerous sets have the...
hasheqf1o 14321 The size of two finite set...
fiinfnf1o 14322 There is no bijection betw...
hasheqf1oi 14323 The size of two sets is eq...
hashf1rn 14324 The size of a finite set w...
hasheqf1od 14325 The size of two sets is eq...
fz1eqb 14326 Two possibly-empty 1-based...
hashcard 14327 The size function of the c...
hashcl 14328 Closure of the ` # ` funct...
hashxrcl 14329 Extended real closure of t...
hashclb 14330 Reverse closure of the ` #...
nfile 14331 The size of any infinite s...
hashvnfin 14332 A set of finite size is a ...
hashnfinnn0 14333 The size of an infinite se...
isfinite4 14334 A finite set is equinumero...
hasheq0 14335 Two ways of saying a set i...
hashneq0 14336 Two ways of saying a set i...
hashgt0n0 14337 If the size of a set is gr...
hashnncl 14338 Positive natural closure o...
hash0 14339 The empty set has size zer...
hashelne0d 14340 A set with an element has ...
hashsng 14341 The size of a singleton. ...
hashen1 14342 A set has size 1 if and on...
hash1elsn 14343 A set of size 1 with a kno...
hashrabrsn 14344 The size of a restricted c...
hashrabsn01 14345 The size of a restricted c...
hashrabsn1 14346 If the size of a restricte...
hashfn 14347 A function is equinumerous...
fseq1hash 14348 The value of the size func...
hashgadd 14349 ` G ` maps ordinal additio...
hashgval2 14350 A short expression for the...
hashdom 14351 Dominance relation for the...
hashdomi 14352 Non-strict order relation ...
hashsdom 14353 Strict dominance relation ...
hashun 14354 The size of the union of d...
hashun2 14355 The size of the union of f...
hashun3 14356 The size of the union of f...
hashinfxadd 14357 The extended real addition...
hashunx 14358 The size of the union of d...
hashge0 14359 The cardinality of a set i...
hashgt0 14360 The cardinality of a nonem...
hashge1 14361 The cardinality of a nonem...
1elfz0hash 14362 1 is an element of the fin...
hashnn0n0nn 14363 If a nonnegative integer i...
hashunsng 14364 The size of the union of a...
hashunsngx 14365 The size of the union of a...
hashunsnggt 14366 The size of a set is great...
hashprg 14367 The size of an unordered p...
elprchashprn2 14368 If one element of an unord...
hashprb 14369 The size of an unordered p...
hashprdifel 14370 The elements of an unorder...
prhash2ex 14371 There is (at least) one se...
hashle00 14372 If the size of a set is le...
hashgt0elex 14373 If the size of a set is gr...
hashgt0elexb 14374 The size of a set is great...
hashp1i 14375 Size of a finite ordinal. ...
hash1 14376 Size of a finite ordinal. ...
hash2 14377 Size of a finite ordinal. ...
hash3 14378 Size of a finite ordinal. ...
hash4 14379 Size of a finite ordinal. ...
pr0hash2ex 14380 There is (at least) one se...
hashss 14381 The size of a subset is le...
prsshashgt1 14382 The size of a superset of ...
hashin 14383 The size of the intersecti...
hashssdif 14384 The size of the difference...
hashdif 14385 The size of the difference...
hashdifsn 14386 The size of the difference...
hashdifpr 14387 The size of the difference...
hashsn01 14388 The size of a singleton is...
hashsnle1 14389 The size of a singleton is...
hashsnlei 14390 Get an upper bound on a co...
hash1snb 14391 The size of a set is 1 if ...
euhash1 14392 The size of a set is 1 in ...
hash1n0 14393 If the size of a set is 1 ...
hashgt12el 14394 In a set with more than on...
hashgt12el2 14395 In a set with more than on...
hashgt23el 14396 A set with more than two e...
hashunlei 14397 Get an upper bound on a co...
hashsslei 14398 Get an upper bound on a co...
hashfz 14399 Value of the numeric cardi...
fzsdom2 14400 Condition for finite range...
hashfzo 14401 Cardinality of a half-open...
hashfzo0 14402 Cardinality of a half-open...
hashfzp1 14403 Value of the numeric cardi...
hashfz0 14404 Value of the numeric cardi...
hashxplem 14405 Lemma for ~ hashxp . (Con...
hashxp 14406 The size of the Cartesian ...
hashmap 14407 The size of the set expone...
hashpw 14408 The size of the power set ...
hashfun 14409 A finite set is a function...
hashres 14410 The number of elements of ...
hashreshashfun 14411 The number of elements of ...
hashimarn 14412 The size of the image of a...
hashimarni 14413 If the size of the image o...
hashfundm 14414 The size of a set function...
hashf1dmrn 14415 The size of the domain of ...
hashf1dmcdm 14416 The size of the domain of ...
resunimafz0 14417 TODO-AV: Revise using ` F...
fnfz0hash 14418 The size of a function on ...
ffz0hash 14419 The size of a function on ...
fnfz0hashnn0 14420 The size of a function on ...
ffzo0hash 14421 The size of a function on ...
fnfzo0hash 14422 The size of a function on ...
fnfzo0hashnn0 14423 The value of the size func...
hashbclem 14424 Lemma for ~ hashbc : induc...
hashbc 14425 The binomial coefficient c...
hashfacen 14426 The number of bijections b...
hashf1lem1 14427 Lemma for ~ hashf1 . (Con...
hashf1lem2 14428 Lemma for ~ hashf1 . (Con...
hashf1 14429 The permutation number ` |...
hashfac 14430 A factorial counts the num...
leiso 14431 Two ways to write a strict...
leisorel 14432 Version of ~ isorel for st...
fz1isolem 14433 Lemma for ~ fz1iso . (Con...
fz1iso 14434 Any finite ordered set has...
ishashinf 14435 Any set that is not finite...
seqcoll 14436 The function ` F ` contain...
seqcoll2 14437 The function ` F ` contain...
phphashd 14438 Corollary of the Pigeonhol...
phphashrd 14439 Corollary of the Pigeonhol...
hashprlei 14440 An unordered pair has at m...
hash2pr 14441 A set of size two is an un...
hash2prde 14442 A set of size two is an un...
hash2exprb 14443 A set of size two is an un...
hash2prb 14444 A set of size two is a pro...
prprrab 14445 The set of proper pairs of...
nehash2 14446 The cardinality of a set w...
hash2prd 14447 A set of size two is an un...
hash2pwpr 14448 If the size of a subset of...
hashle2pr 14449 A nonempty set of size les...
hashle2prv 14450 A nonempty subset of a pow...
pr2pwpr 14451 The set of subsets of a pa...
hashge2el2dif 14452 A set with size at least 2...
hashge2el2difr 14453 A set with at least 2 diff...
hashge2el2difb 14454 A set has size at least 2 ...
hashdmpropge2 14455 The size of the domain of ...
hashtplei 14456 An unordered triple has at...
hashtpg 14457 The size of an unordered t...
hash7g 14458 The size of an unordered s...
hashge3el3dif 14459 A set with size at least 3...
elss2prb 14460 An element of the set of s...
hash2sspr 14461 A subset of size two is an...
exprelprel 14462 If there is an element of ...
hash3tr 14463 A set of size three is an ...
hash1to3 14464 If the size of a set is be...
hash3tpde 14465 A set of size three is an ...
hash3tpexb 14466 A set of size three is an ...
hash3tpb 14467 A set of size three is a p...
tpf1ofv0 14468 The value of a one-to-one ...
tpf1ofv1 14469 The value of a one-to-one ...
tpf1ofv2 14470 The value of a one-to-one ...
tpf 14471 A function into a (proper)...
tpfo 14472 A function onto a (proper)...
tpf1o 14473 A bijection onto a (proper...
fundmge2nop0 14474 A function with a domain c...
fundmge2nop 14475 A function with a domain c...
fun2dmnop0 14476 A function with a domain c...
fun2dmnop 14477 A function with a domain c...
hashdifsnp1 14478 If the size of a set is a ...
fi1uzind 14479 Properties of an ordered p...
brfi1uzind 14480 Properties of a binary rel...
brfi1ind 14481 Properties of a binary rel...
brfi1indALT 14482 Alternate proof of ~ brfi1...
opfi1uzind 14483 Properties of an ordered p...
opfi1ind 14484 Properties of an ordered p...
iswrd 14487 Property of being a word o...
wrdval 14488 Value of the set of words ...
iswrdi 14489 A zero-based sequence is a...
wrdf 14490 A word is a zero-based seq...
wrdfd 14491 A word is a zero-based seq...
iswrdb 14492 A word over an alphabet is...
wrddm 14493 The indices of a word (i.e...
sswrd 14494 The set of words respects ...
snopiswrd 14495 A singleton of an ordered ...
wrdexg 14496 The set of words over a se...
wrdexb 14497 The set of words over a se...
wrdexi 14498 The set of words over a se...
wrdsymbcl 14499 A symbol within a word ove...
wrdfn 14500 A word is a function with ...
wrdv 14501 A word over an alphabet is...
wrdlndm 14502 The length of a word is no...
iswrdsymb 14503 An arbitrary word is a wor...
wrdfin 14504 A word is a finite set. (...
lencl 14505 The length of a word is a ...
lennncl 14506 The length of a nonempty w...
wrdffz 14507 A word is a function from ...
wrdeq 14508 Equality theorem for the s...
wrdeqi 14509 Equality theorem for the s...
iswrddm0 14510 A function with empty doma...
wrd0 14511 The empty set is a word (t...
0wrd0 14512 The empty word is the only...
ffz0iswrd 14513 A sequence with zero-based...
wrdsymb 14514 A word is a word over the ...
nfwrd 14515 Hypothesis builder for ` W...
csbwrdg 14516 Class substitution for the...
wrdnval 14517 Words of a fixed length ar...
wrdmap 14518 Words as a mapping. (Cont...
hashwrdn 14519 If there is only a finite ...
wrdnfi 14520 If there is only a finite ...
wrdsymb0 14521 A symbol at a position "ou...
wrdlenge1n0 14522 A word with length at leas...
len0nnbi 14523 The length of a word is a ...
wrdlenge2n0 14524 A word with length at leas...
wrdsymb1 14525 The first symbol of a none...
wrdlen1 14526 A word of length 1 starts ...
fstwrdne 14527 The first symbol of a none...
fstwrdne0 14528 The first symbol of a none...
eqwrd 14529 Two words are equal iff th...
elovmpowrd 14530 Implications for the value...
elovmptnn0wrd 14531 Implications for the value...
wrdred1 14532 A word truncated by a symb...
wrdred1hash 14533 The length of a word trunc...
lsw 14536 Extract the last symbol of...
lsw0 14537 The last symbol of an empt...
lsw0g 14538 The last symbol of an empt...
lsw1 14539 The last symbol of a word ...
lswcl 14540 Closure of the last symbol...
lswlgt0cl 14541 The last symbol of a nonem...
ccatfn 14544 The concatenation operator...
ccatfval 14545 Value of the concatenation...
ccatcl 14546 The concatenation of two w...
ccatlen 14547 The length of a concatenat...
ccat0 14548 The concatenation of two w...
ccatval1 14549 Value of a symbol in the l...
ccatval2 14550 Value of a symbol in the r...
ccatval3 14551 Value of a symbol in the r...
elfzelfzccat 14552 An element of a finite set...
ccatvalfn 14553 The concatenation of two w...
ccatsymb 14554 The symbol at a given posi...
ccatfv0 14555 The first symbol of a conc...
ccatval1lsw 14556 The last symbol of the lef...
ccatval21sw 14557 The first symbol of the ri...
ccatlid 14558 Concatenation of a word by...
ccatrid 14559 Concatenation of a word by...
ccatass 14560 Associative law for concat...
ccatrn 14561 The range of a concatenate...
ccatidid 14562 Concatenation of the empty...
lswccatn0lsw 14563 The last symbol of a word ...
lswccat0lsw 14564 The last symbol of a word ...
ccatalpha 14565 A concatenation of two arb...
ccatrcl1 14566 Reverse closure of a conca...
ids1 14569 Identity function protecti...
s1val 14570 Value of a singleton word....
s1rn 14571 The range of a singleton w...
s1eq 14572 Equality theorem for a sin...
s1eqd 14573 Equality theorem for a sin...
s1cl 14574 A singleton word is a word...
s1cld 14575 A singleton word is a word...
s1prc 14576 Value of a singleton word ...
s1cli 14577 A singleton word is a word...
s1len 14578 Length of a singleton word...
s1nz 14579 A singleton word is not th...
s1dm 14580 The domain of a singleton ...
s1dmALT 14581 Alternate version of ~ s1d...
s1fv 14582 Sole symbol of a singleton...
lsws1 14583 The last symbol of a singl...
eqs1 14584 A word of length 1 is a si...
wrdl1exs1 14585 A word of length 1 is a si...
wrdl1s1 14586 A word of length 1 is a si...
s111 14587 The singleton word functio...
ccatws1cl 14588 The concatenation of a wor...
ccatws1clv 14589 The concatenation of a wor...
ccat2s1cl 14590 The concatenation of two s...
ccats1alpha 14591 A concatenation of a word ...
ccatws1len 14592 The length of the concaten...
ccatws1lenp1b 14593 The length of a word is ` ...
wrdlenccats1lenm1 14594 The length of a word is th...
ccat2s1len 14595 The length of the concaten...
ccatw2s1cl 14596 The concatenation of a wor...
ccatw2s1len 14597 The length of the concaten...
ccats1val1 14598 Value of a symbol in the l...
ccats1val2 14599 Value of the symbol concat...
ccat1st1st 14600 The first symbol of a word...
ccat2s1p1 14601 Extract the first of two c...
ccat2s1p2 14602 Extract the second of two ...
ccatw2s1ass 14603 Associative law for a conc...
ccatws1n0 14604 The concatenation of a wor...
ccatws1ls 14605 The last symbol of the con...
lswccats1 14606 The last symbol of a word ...
lswccats1fst 14607 The last symbol of a nonem...
ccatw2s1p1 14608 Extract the symbol of the ...
ccatw2s1p2 14609 Extract the second of two ...
ccat2s1fvw 14610 Extract a symbol of a word...
ccat2s1fst 14611 The first symbol of the co...
swrdnznd 14614 The value of a subword ope...
swrdval 14615 Value of a subword. (Cont...
swrd00 14616 A zero length substring. ...
swrdcl 14617 Closure of the subword ext...
swrdval2 14618 Value of the subword extra...
swrdlen 14619 Length of an extracted sub...
swrdfv 14620 A symbol in an extracted s...
swrdfv0 14621 The first symbol in an ext...
swrdf 14622 A subword of a word is a f...
swrdvalfn 14623 Value of the subword extra...
swrdrn 14624 The range of a subword of ...
swrdlend 14625 The value of the subword e...
swrdnd 14626 The value of the subword e...
swrdnd2 14627 Value of the subword extra...
swrdnnn0nd 14628 The value of a subword ope...
swrdnd0 14629 The value of a subword ope...
swrd0 14630 A subword of an empty set ...
swrdrlen 14631 Length of a right-anchored...
swrdlen2 14632 Length of an extracted sub...
swrdfv2 14633 A symbol in an extracted s...
swrdwrdsymb 14634 A subword is a word over t...
swrdsb0eq 14635 Two subwords with the same...
swrdsbslen 14636 Two subwords with the same...
swrdspsleq 14637 Two words have a common su...
swrds1 14638 Extract a single symbol fr...
swrdlsw 14639 Extract the last single sy...
ccatswrd 14640 Joining two adjacent subwo...
swrdccat2 14641 Recover the right half of ...
pfxnndmnd 14644 The value of a prefix oper...
pfxval 14645 Value of a prefix operatio...
pfx00 14646 The zero length prefix is ...
pfx0 14647 A prefix of an empty set i...
pfxval0 14648 Value of a prefix operatio...
pfxcl 14649 Closure of the prefix extr...
pfxmpt 14650 Value of the prefix extrac...
pfxres 14651 Value of the subword extra...
pfxf 14652 A prefix of a word is a fu...
pfxfn 14653 Value of the prefix extrac...
pfxfv 14654 A symbol in a prefix of a ...
pfxlen 14655 Length of a prefix. (Cont...
pfxid 14656 A word is a prefix of itse...
pfxrn 14657 The range of a prefix of a...
pfxn0 14658 A prefix consisting of at ...
pfxnd 14659 The value of a prefix oper...
pfxnd0 14660 The value of a prefix oper...
pfxwrdsymb 14661 A prefix of a word is a wo...
addlenrevpfx 14662 The sum of the lengths of ...
addlenpfx 14663 The sum of the lengths of ...
pfxfv0 14664 The first symbol of a pref...
pfxtrcfv 14665 A symbol in a word truncat...
pfxtrcfv0 14666 The first symbol in a word...
pfxfvlsw 14667 The last symbol in a nonem...
pfxeq 14668 The prefixes of two words ...
pfxtrcfvl 14669 The last symbol in a word ...
pfxsuffeqwrdeq 14670 Two words are equal if and...
pfxsuff1eqwrdeq 14671 Two (nonempty) words are e...
disjwrdpfx 14672 Sets of words are disjoint...
ccatpfx 14673 Concatenating a prefix wit...
pfxccat1 14674 Recover the left half of a...
pfx1 14675 The prefix of length one o...
swrdswrdlem 14676 Lemma for ~ swrdswrd . (C...
swrdswrd 14677 A subword of a subword is ...
pfxswrd 14678 A prefix of a subword is a...
swrdpfx 14679 A subword of a prefix is a...
pfxpfx 14680 A prefix of a prefix is a ...
pfxpfxid 14681 A prefix of a prefix with ...
pfxcctswrd 14682 The concatenation of the p...
lenpfxcctswrd 14683 The length of the concaten...
lenrevpfxcctswrd 14684 The length of the concaten...
pfxlswccat 14685 Reconstruct a nonempty wor...
ccats1pfxeq 14686 The last symbol of a word ...
ccats1pfxeqrex 14687 There exists a symbol such...
ccatopth 14688 An ~ opth -like theorem fo...
ccatopth2 14689 An ~ opth -like theorem fo...
ccatlcan 14690 Concatenation of words is ...
ccatrcan 14691 Concatenation of words is ...
wrdeqs1cat 14692 Decompose a nonempty word ...
cats1un 14693 Express a word with an ext...
wrdind 14694 Perform induction over the...
wrd2ind 14695 Perform induction over the...
swrdccatfn 14696 The subword of a concatena...
swrdccatin1 14697 The subword of a concatena...
pfxccatin12lem4 14698 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14699 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14700 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14701 The subword of a concatena...
pfxccatin12lem2c 14702 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14703 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14704 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14705 The subword of a concatena...
pfxccat3 14706 The subword of a concatena...
swrdccat 14707 The subword of a concatena...
pfxccatpfx1 14708 A prefix of a concatenatio...
pfxccatpfx2 14709 A prefix of a concatenatio...
pfxccat3a 14710 A prefix of a concatenatio...
swrdccat3blem 14711 Lemma for ~ swrdccat3b . ...
swrdccat3b 14712 A suffix of a concatenatio...
pfxccatid 14713 A prefix of a concatenatio...
ccats1pfxeqbi 14714 A word is a prefix of a wo...
swrdccatin1d 14715 The subword of a concatena...
swrdccatin2d 14716 The subword of a concatena...
pfxccatin12d 14717 The subword of a concatena...
reuccatpfxs1lem 14718 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14719 There is a unique word hav...
reuccatpfxs1v 14720 There is a unique word hav...
splval 14723 Value of the substring rep...
splcl 14724 Closure of the substring r...
splid 14725 Splicing a subword for the...
spllen 14726 The length of a splice. (...
splfv1 14727 Symbols to the left of a s...
splfv2a 14728 Symbols within the replace...
splval2 14729 Value of a splice, assumin...
revval 14732 Value of the word reversin...
revcl 14733 The reverse of a word is a...
revlen 14734 The reverse of a word has ...
revfv 14735 Reverse of a word at a poi...
rev0 14736 The empty word is its own ...
revs1 14737 Singleton words are their ...
revccat 14738 Antiautomorphic property o...
revrev 14739 Reversal is an involution ...
reps 14742 Construct a function mappi...
repsundef 14743 A function mapping a half-...
repsconst 14744 Construct a function mappi...
repsf 14745 The constructed function m...
repswsymb 14746 The symbols of a "repeated...
repsw 14747 A function mapping a half-...
repswlen 14748 The length of a "repeated ...
repsw0 14749 The "repeated symbol word"...
repsdf2 14750 Alternative definition of ...
repswsymball 14751 All the symbols of a "repe...
repswsymballbi 14752 A word is a "repeated symb...
repswfsts 14753 The first symbol of a none...
repswlsw 14754 The last symbol of a nonem...
repsw1 14755 The "repeated symbol word"...
repswswrd 14756 A subword of a "repeated s...
repswpfx 14757 A prefix of a repeated sym...
repswccat 14758 The concatenation of two "...
repswrevw 14759 The reverse of a "repeated...
cshfn 14762 Perform a cyclical shift f...
cshword 14763 Perform a cyclical shift f...
cshnz 14764 A cyclical shift is the em...
0csh0 14765 Cyclically shifting an emp...
cshw0 14766 A word cyclically shifted ...
cshwmodn 14767 Cyclically shifting a word...
cshwsublen 14768 Cyclically shifting a word...
cshwn 14769 A word cyclically shifted ...
cshwcl 14770 A cyclically shifted word ...
cshwlen 14771 The length of a cyclically...
cshwf 14772 A cyclically shifted word ...
cshwfn 14773 A cyclically shifted word ...
cshwrn 14774 The range of a cyclically ...
cshwidxmod 14775 The symbol at a given inde...
cshwidxmodr 14776 The symbol at a given inde...
cshwidx0mod 14777 The symbol at index 0 of a...
cshwidx0 14778 The symbol at index 0 of a...
cshwidxm1 14779 The symbol at index ((n-N)...
cshwidxm 14780 The symbol at index (n-N) ...
cshwidxn 14781 The symbol at index (n-1) ...
cshf1 14782 Cyclically shifting a word...
cshinj 14783 If a word is injectiv (reg...
repswcshw 14784 A cyclically shifted "repe...
2cshw 14785 Cyclically shifting a word...
2cshwid 14786 Cyclically shifting a word...
lswcshw 14787 The last symbol of a word ...
2cshwcom 14788 Cyclically shifting a word...
cshwleneq 14789 If the results of cyclical...
3cshw 14790 Cyclically shifting a word...
cshweqdif2 14791 If cyclically shifting two...
cshweqdifid 14792 If cyclically shifting a w...
cshweqrep 14793 If cyclically shifting a w...
cshw1 14794 If cyclically shifting a w...
cshw1repsw 14795 If cyclically shifting a w...
cshwsexa 14796 The class of (different!) ...
cshwsexaOLD 14797 Obsolete version of ~ cshw...
2cshwcshw 14798 If a word is a cyclically ...
scshwfzeqfzo 14799 For a nonempty word the se...
cshwcshid 14800 A cyclically shifted word ...
cshwcsh2id 14801 A cyclically shifted word ...
cshimadifsn 14802 The image of a cyclically ...
cshimadifsn0 14803 The image of a cyclically ...
wrdco 14804 Mapping a word by a functi...
lenco 14805 Length of a mapped word is...
s1co 14806 Mapping of a singleton wor...
revco 14807 Mapping of words (i.e., a ...
ccatco 14808 Mapping of words commutes ...
cshco 14809 Mapping of words commutes ...
swrdco 14810 Mapping of words commutes ...
pfxco 14811 Mapping of words commutes ...
lswco 14812 Mapping of (nonempty) word...
repsco 14813 Mapping of words commutes ...
cats1cld 14828 Closure of concatenation w...
cats1co 14829 Closure of concatenation w...
cats1cli 14830 Closure of concatenation w...
cats1fvn 14831 The last symbol of a conca...
cats1fv 14832 A symbol other than the la...
cats1len 14833 The length of concatenatio...
cats1cat 14834 Closure of concatenation w...
cats2cat 14835 Closure of concatenation o...
s2eqd 14836 Equality theorem for a dou...
s3eqd 14837 Equality theorem for a len...
s4eqd 14838 Equality theorem for a len...
s5eqd 14839 Equality theorem for a len...
s6eqd 14840 Equality theorem for a len...
s7eqd 14841 Equality theorem for a len...
s8eqd 14842 Equality theorem for a len...
s3eq2 14843 Equality theorem for a len...
s2cld 14844 A doubleton word is a word...
s3cld 14845 A length 3 string is a wor...
s4cld 14846 A length 4 string is a wor...
s5cld 14847 A length 5 string is a wor...
s6cld 14848 A length 6 string is a wor...
s7cld 14849 A length 7 string is a wor...
s8cld 14850 A length 7 string is a wor...
s2cl 14851 A doubleton word is a word...
s3cl 14852 A length 3 string is a wor...
s2cli 14853 A doubleton word is a word...
s3cli 14854 A length 3 string is a wor...
s4cli 14855 A length 4 string is a wor...
s5cli 14856 A length 5 string is a wor...
s6cli 14857 A length 6 string is a wor...
s7cli 14858 A length 7 string is a wor...
s8cli 14859 A length 8 string is a wor...
s2fv0 14860 Extract the first symbol f...
s2fv1 14861 Extract the second symbol ...
s2len 14862 The length of a doubleton ...
s2dm 14863 The domain of a doubleton ...
s3fv0 14864 Extract the first symbol f...
s3fv1 14865 Extract the second symbol ...
s3fv2 14866 Extract the third symbol f...
s3len 14867 The length of a length 3 s...
s4fv0 14868 Extract the first symbol f...
s4fv1 14869 Extract the second symbol ...
s4fv2 14870 Extract the third symbol f...
s4fv3 14871 Extract the fourth symbol ...
s4len 14872 The length of a length 4 s...
s5len 14873 The length of a length 5 s...
s6len 14874 The length of a length 6 s...
s7len 14875 The length of a length 7 s...
s8len 14876 The length of a length 8 s...
lsws2 14877 The last symbol of a doubl...
lsws3 14878 The last symbol of a 3 let...
lsws4 14879 The last symbol of a 4 let...
s2prop 14880 A length 2 word is an unor...
s2dmALT 14881 Alternate version of ~ s2d...
s3tpop 14882 A length 3 word is an unor...
s4prop 14883 A length 4 word is a union...
s3fn 14884 A length 3 word is a funct...
funcnvs1 14885 The converse of a singleto...
funcnvs2 14886 The converse of a length 2...
funcnvs3 14887 The converse of a length 3...
funcnvs4 14888 The converse of a length 4...
s2f1o 14889 A length 2 word with mutua...
f1oun2prg 14890 A union of unordered pairs...
s4f1o 14891 A length 4 word with mutua...
s4dom 14892 The domain of a length 4 w...
s2co 14893 Mapping a doubleton word b...
s3co 14894 Mapping a length 3 string ...
s0s1 14895 Concatenation of fixed len...
s1s2 14896 Concatenation of fixed len...
s1s3 14897 Concatenation of fixed len...
s1s4 14898 Concatenation of fixed len...
s1s5 14899 Concatenation of fixed len...
s1s6 14900 Concatenation of fixed len...
s1s7 14901 Concatenation of fixed len...
s2s2 14902 Concatenation of fixed len...
s4s2 14903 Concatenation of fixed len...
s4s3 14904 Concatenation of fixed len...
s4s4 14905 Concatenation of fixed len...
s3s4 14906 Concatenation of fixed len...
s2s5 14907 Concatenation of fixed len...
s5s2 14908 Concatenation of fixed len...
s2eq2s1eq 14909 Two length 2 words are equ...
s2eq2seq 14910 Two length 2 words are equ...
s3eqs2s1eq 14911 Two length 3 words are equ...
s3eq3seq 14912 Two length 3 words are equ...
swrds2 14913 Extract two adjacent symbo...
swrds2m 14914 Extract two adjacent symbo...
wrdlen2i 14915 Implications of a word of ...
wrd2pr2op 14916 A word of length two repre...
wrdlen2 14917 A word of length two. (Co...
wrdlen2s2 14918 A word of length two as do...
wrdl2exs2 14919 A word of length two is a ...
pfx2 14920 A prefix of length two. (...
wrd3tpop 14921 A word of length three rep...
wrdlen3s3 14922 A word of length three as ...
repsw2 14923 The "repeated symbol word"...
repsw3 14924 The "repeated symbol word"...
swrd2lsw 14925 Extract the last two symbo...
2swrd2eqwrdeq 14926 Two words of length at lea...
ccatw2s1ccatws2 14927 The concatenation of a wor...
ccat2s1fvwALT 14928 Alternate proof of ~ ccat2...
wwlktovf 14929 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14930 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14931 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14932 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14933 There is a bijection betwe...
eqwrds3 14934 A word is equal with a len...
wrdl3s3 14935 A word of length 3 is a le...
s2rn 14936 Range of a length 2 string...
s3rn 14937 Range of a length 3 string...
s7rn 14938 Range of a length 7 string...
s7f1o 14939 A length 7 word with mutua...
s3sndisj 14940 The singletons consisting ...
s3iunsndisj 14941 The union of singletons co...
ofccat 14942 Letterwise operations on w...
ofs1 14943 Letterwise operations on a...
ofs2 14944 Letterwise operations on a...
coss12d 14945 Subset deduction for compo...
trrelssd 14946 The composition of subclas...
xpcogend 14947 The most interesting case ...
xpcoidgend 14948 If two classes are not dis...
cotr2g 14949 Two ways of saying that th...
cotr2 14950 Two ways of saying a relat...
cotr3 14951 Two ways of saying a relat...
coemptyd 14952 Deduction about compositio...
xptrrel 14953 The cross product is alway...
0trrel 14954 The empty class is a trans...
cleq1lem 14955 Equality implies bijection...
cleq1 14956 Equality of relations impl...
clsslem 14957 The closure of a subclass ...
trcleq1 14962 Equality of relations impl...
trclsslem 14963 The transitive closure (as...
trcleq2lem 14964 Equality implies bijection...
cvbtrcl 14965 Change of bound variable i...
trcleq12lem 14966 Equality implies bijection...
trclexlem 14967 Existence of relation impl...
trclublem 14968 If a relation exists then ...
trclubi 14969 The Cartesian product of t...
trclubgi 14970 The union with the Cartesi...
trclub 14971 The Cartesian product of t...
trclubg 14972 The union with the Cartesi...
trclfv 14973 The transitive closure of ...
brintclab 14974 Two ways to express a bina...
brtrclfv 14975 Two ways of expressing the...
brcnvtrclfv 14976 Two ways of expressing the...
brtrclfvcnv 14977 Two ways of expressing the...
brcnvtrclfvcnv 14978 Two ways of expressing the...
trclfvss 14979 The transitive closure (as...
trclfvub 14980 The transitive closure of ...
trclfvlb 14981 The transitive closure of ...
trclfvcotr 14982 The transitive closure of ...
trclfvlb2 14983 The transitive closure of ...
trclfvlb3 14984 The transitive closure of ...
cotrtrclfv 14985 The transitive closure of ...
trclidm 14986 The transitive closure of ...
trclun 14987 Transitive closure of a un...
trclfvg 14988 The value of the transitiv...
trclfvcotrg 14989 The value of the transitiv...
reltrclfv 14990 The transitive closure of ...
dmtrclfv 14991 The domain of the transiti...
reldmrelexp 14994 The domain of the repeated...
relexp0g 14995 A relation composed zero t...
relexp0 14996 A relation composed zero t...
relexp0d 14997 A relation composed zero t...
relexpsucnnr 14998 A reduction for relation e...
relexp1g 14999 A relation composed once i...
dfid5 15000 Identity relation is equal...
dfid6 15001 Identity relation expresse...
relexp1d 15002 A relation composed once i...
relexpsucnnl 15003 A reduction for relation e...
relexpsucl 15004 A reduction for relation e...
relexpsucr 15005 A reduction for relation e...
relexpsucrd 15006 A reduction for relation e...
relexpsucld 15007 A reduction for relation e...
relexpcnv 15008 Commutation of converse an...
relexpcnvd 15009 Commutation of converse an...
relexp0rel 15010 The exponentiation of a cl...
relexprelg 15011 The exponentiation of a cl...
relexprel 15012 The exponentiation of a re...
relexpreld 15013 The exponentiation of a re...
relexpnndm 15014 The domain of an exponenti...
relexpdmg 15015 The domain of an exponenti...
relexpdm 15016 The domain of an exponenti...
relexpdmd 15017 The domain of an exponenti...
relexpnnrn 15018 The range of an exponentia...
relexprng 15019 The range of an exponentia...
relexprn 15020 The range of an exponentia...
relexprnd 15021 The range of an exponentia...
relexpfld 15022 The field of an exponentia...
relexpfldd 15023 The field of an exponentia...
relexpaddnn 15024 Relation composition becom...
relexpuzrel 15025 The exponentiation of a cl...
relexpaddg 15026 Relation composition becom...
relexpaddd 15027 Relation composition becom...
rtrclreclem1 15030 The reflexive, transitive ...
dfrtrclrec2 15031 If two elements are connec...
rtrclreclem2 15032 The reflexive, transitive ...
rtrclreclem3 15033 The reflexive, transitive ...
rtrclreclem4 15034 The reflexive, transitive ...
dfrtrcl2 15035 The two definitions ` t* `...
relexpindlem 15036 Principle of transitive in...
relexpind 15037 Principle of transitive in...
rtrclind 15038 Principle of transitive in...
shftlem 15041 Two ways to write a shifte...
shftuz 15042 A shift of the upper integ...
shftfval 15043 The value of the sequence ...
shftdm 15044 Domain of a relation shift...
shftfib 15045 Value of a fiber of the re...
shftfn 15046 Functionality and domain o...
shftval 15047 Value of a sequence shifte...
shftval2 15048 Value of a sequence shifte...
shftval3 15049 Value of a sequence shifte...
shftval4 15050 Value of a sequence shifte...
shftval5 15051 Value of a shifted sequenc...
shftf 15052 Functionality of a shifted...
2shfti 15053 Composite shift operations...
shftidt2 15054 Identity law for the shift...
shftidt 15055 Identity law for the shift...
shftcan1 15056 Cancellation law for the s...
shftcan2 15057 Cancellation law for the s...
seqshft 15058 Shifting the index set of ...
sgnval 15061 Value of the signum functi...
sgn0 15062 The signum of 0 is 0. (Co...
sgnp 15063 The signum of a positive e...
sgnrrp 15064 The signum of a positive r...
sgn1 15065 The signum of 1 is 1. (Co...
sgnpnf 15066 The signum of ` +oo ` is 1...
sgnn 15067 The signum of a negative e...
sgnmnf 15068 The signum of ` -oo ` is -...
cjval 15075 The value of the conjugate...
cjth 15076 The defining property of t...
cjf 15077 Domain and codomain of the...
cjcl 15078 The conjugate of a complex...
reval 15079 The value of the real part...
imval 15080 The value of the imaginary...
imre 15081 The imaginary part of a co...
reim 15082 The real part of a complex...
recl 15083 The real part of a complex...
imcl 15084 The imaginary part of a co...
ref 15085 Domain and codomain of the...
imf 15086 Domain and codomain of the...
crre 15087 The real part of a complex...
crim 15088 The real part of a complex...
replim 15089 Reconstruct a complex numb...
remim 15090 Value of the conjugate of ...
reim0 15091 The imaginary part of a re...
reim0b 15092 A number is real iff its i...
rereb 15093 A number is real iff it eq...
mulre 15094 A product with a nonzero r...
rere 15095 A real number equals its r...
cjreb 15096 A number is real iff it eq...
recj 15097 Real part of a complex con...
reneg 15098 Real part of negative. (C...
readd 15099 Real part distributes over...
resub 15100 Real part distributes over...
remullem 15101 Lemma for ~ remul , ~ immu...
remul 15102 Real part of a product. (...
remul2 15103 Real part of a product. (...
rediv 15104 Real part of a division. ...
imcj 15105 Imaginary part of a comple...
imneg 15106 The imaginary part of a ne...
imadd 15107 Imaginary part distributes...
imsub 15108 Imaginary part distributes...
immul 15109 Imaginary part of a produc...
immul2 15110 Imaginary part of a produc...
imdiv 15111 Imaginary part of a divisi...
cjre 15112 A real number equals its c...
cjcj 15113 The conjugate of the conju...
cjadd 15114 Complex conjugate distribu...
cjmul 15115 Complex conjugate distribu...
ipcnval 15116 Standard inner product on ...
cjmulrcl 15117 A complex number times its...
cjmulval 15118 A complex number times its...
cjmulge0 15119 A complex number times its...
cjneg 15120 Complex conjugate of negat...
addcj 15121 A number plus its conjugat...
cjsub 15122 Complex conjugate distribu...
cjexp 15123 Complex conjugate of posit...
imval2 15124 The imaginary part of a nu...
re0 15125 The real part of zero. (C...
im0 15126 The imaginary part of zero...
re1 15127 The real part of one. (Co...
im1 15128 The imaginary part of one....
rei 15129 The real part of ` _i ` . ...
imi 15130 The imaginary part of ` _i...
cj0 15131 The conjugate of zero. (C...
cji 15132 The complex conjugate of t...
cjreim 15133 The conjugate of a represe...
cjreim2 15134 The conjugate of the repre...
cj11 15135 Complex conjugate is a one...
cjne0 15136 A number is nonzero iff it...
cjdiv 15137 Complex conjugate distribu...
cnrecnv 15138 The inverse to the canonic...
sqeqd 15139 A deduction for showing tw...
recli 15140 The real part of a complex...
imcli 15141 The imaginary part of a co...
cjcli 15142 Closure law for complex co...
replimi 15143 Construct a complex number...
cjcji 15144 The conjugate of the conju...
reim0bi 15145 A number is real iff its i...
rerebi 15146 A real number equals its r...
cjrebi 15147 A number is real iff it eq...
recji 15148 Real part of a complex con...
imcji 15149 Imaginary part of a comple...
cjmulrcli 15150 A complex number times its...
cjmulvali 15151 A complex number times its...
cjmulge0i 15152 A complex number times its...
renegi 15153 Real part of negative. (C...
imnegi 15154 Imaginary part of negative...
cjnegi 15155 Complex conjugate of negat...
addcji 15156 A number plus its conjugat...
readdi 15157 Real part distributes over...
imaddi 15158 Imaginary part distributes...
remuli 15159 Real part of a product. (...
immuli 15160 Imaginary part of a produc...
cjaddi 15161 Complex conjugate distribu...
cjmuli 15162 Complex conjugate distribu...
ipcni 15163 Standard inner product on ...
cjdivi 15164 Complex conjugate distribu...
crrei 15165 The real part of a complex...
crimi 15166 The imaginary part of a co...
recld 15167 The real part of a complex...
imcld 15168 The imaginary part of a co...
cjcld 15169 Closure law for complex co...
replimd 15170 Construct a complex number...
remimd 15171 Value of the conjugate of ...
cjcjd 15172 The conjugate of the conju...
reim0bd 15173 A number is real iff its i...
rerebd 15174 A real number equals its r...
cjrebd 15175 A number is real iff it eq...
cjne0d 15176 A number is nonzero iff it...
recjd 15177 Real part of a complex con...
imcjd 15178 Imaginary part of a comple...
cjmulrcld 15179 A complex number times its...
cjmulvald 15180 A complex number times its...
cjmulge0d 15181 A complex number times its...
renegd 15182 Real part of negative. (C...
imnegd 15183 Imaginary part of negative...
cjnegd 15184 Complex conjugate of negat...
addcjd 15185 A number plus its conjugat...
cjexpd 15186 Complex conjugate of posit...
readdd 15187 Real part distributes over...
imaddd 15188 Imaginary part distributes...
resubd 15189 Real part distributes over...
imsubd 15190 Imaginary part distributes...
remuld 15191 Real part of a product. (...
immuld 15192 Imaginary part of a produc...
cjaddd 15193 Complex conjugate distribu...
cjmuld 15194 Complex conjugate distribu...
ipcnd 15195 Standard inner product on ...
cjdivd 15196 Complex conjugate distribu...
rered 15197 A real number equals its r...
reim0d 15198 The imaginary part of a re...
cjred 15199 A real number equals its c...
remul2d 15200 Real part of a product. (...
immul2d 15201 Imaginary part of a produc...
redivd 15202 Real part of a division. ...
imdivd 15203 Imaginary part of a divisi...
crred 15204 The real part of a complex...
crimd 15205 The imaginary part of a co...
sqrtval 15210 Value of square root funct...
absval 15211 The absolute value (modulu...
rennim 15212 A real number does not lie...
cnpart 15213 The specification of restr...
sqrt0 15214 The square root of zero is...
01sqrexlem1 15215 Lemma for ~ 01sqrex . (Co...
01sqrexlem2 15216 Lemma for ~ 01sqrex . (Co...
01sqrexlem3 15217 Lemma for ~ 01sqrex . (Co...
01sqrexlem4 15218 Lemma for ~ 01sqrex . (Co...
01sqrexlem5 15219 Lemma for ~ 01sqrex . (Co...
01sqrexlem6 15220 Lemma for ~ 01sqrex . (Co...
01sqrexlem7 15221 Lemma for ~ 01sqrex . (Co...
01sqrex 15222 Existence of a square root...
resqrex 15223 Existence of a square root...
sqrmo 15224 Uniqueness for the square ...
resqreu 15225 Existence and uniqueness f...
resqrtcl 15226 Closure of the square root...
resqrtthlem 15227 Lemma for ~ resqrtth . (C...
resqrtth 15228 Square root theorem over t...
remsqsqrt 15229 Square of square root. (C...
sqrtge0 15230 The square root function i...
sqrtgt0 15231 The square root function i...
sqrtmul 15232 Square root distributes ov...
sqrtle 15233 Square root is monotonic. ...
sqrtlt 15234 Square root is strictly mo...
sqrt11 15235 The square root function i...
sqrt00 15236 A square root is zero iff ...
rpsqrtcl 15237 The square root of a posit...
sqrtdiv 15238 Square root distributes ov...
sqrtneglem 15239 The square root of a negat...
sqrtneg 15240 The square root of a negat...
sqrtsq2 15241 Relationship between squar...
sqrtsq 15242 Square root of square. (C...
sqrtmsq 15243 Square root of square. (C...
sqrt1 15244 The square root of 1 is 1....
sqrt4 15245 The square root of 4 is 2....
sqrt9 15246 The square root of 9 is 3....
sqrt2gt1lt2 15247 The square root of 2 is bo...
sqrtm1 15248 The imaginary unit is the ...
nn0sqeq1 15249 A natural number with squa...
absneg 15250 Absolute value of the nega...
abscl 15251 Real closure of absolute v...
abscj 15252 The absolute value of a nu...
absvalsq 15253 Square of value of absolut...
absvalsq2 15254 Square of value of absolut...
sqabsadd 15255 Square of absolute value o...
sqabssub 15256 Square of absolute value o...
absval2 15257 Value of absolute value fu...
abs0 15258 The absolute value of 0. ...
absi 15259 The absolute value of the ...
absge0 15260 Absolute value is nonnegat...
absrpcl 15261 The absolute value of a no...
abs00 15262 The absolute value of a nu...
abs00ad 15263 A complex number is zero i...
abs00bd 15264 If a complex number is zer...
absreimsq 15265 Square of the absolute val...
absreim 15266 Absolute value of a number...
absmul 15267 Absolute value distributes...
absdiv 15268 Absolute value distributes...
absid 15269 A nonnegative number is it...
abs1 15270 The absolute value of one ...
absnid 15271 For a negative number, its...
leabs 15272 A real number is less than...
absor 15273 The absolute value of a re...
absre 15274 Absolute value of a real n...
absresq 15275 Square of the absolute val...
absmod0 15276 ` A ` is divisible by ` B ...
absexp 15277 Absolute value of positive...
absexpz 15278 Absolute value of integer ...
abssq 15279 Square can be moved in and...
sqabs 15280 The squares of two reals a...
absrele 15281 The absolute value of a co...
absimle 15282 The absolute value of a co...
max0add 15283 The sum of the positive an...
absz 15284 A real number is an intege...
nn0abscl 15285 The absolute value of an i...
zabscl 15286 The absolute value of an i...
zabs0b 15287 An integer has an absolute...
abslt 15288 Absolute value and 'less t...
absle 15289 Absolute value and 'less t...
abssubne0 15290 If the absolute value of a...
absdiflt 15291 The absolute value of a di...
absdifle 15292 The absolute value of a di...
elicc4abs 15293 Membership in a symmetric ...
lenegsq 15294 Comparison to a nonnegativ...
releabs 15295 The real part of a number ...
recval 15296 Reciprocal expressed with ...
absidm 15297 The absolute value functio...
absgt0 15298 The absolute value of a no...
nnabscl 15299 The absolute value of a no...
abssub 15300 Swapping order of subtract...
abssubge0 15301 Absolute value of a nonneg...
abssuble0 15302 Absolute value of a nonpos...
absmax 15303 The maximum of two numbers...
abstri 15304 Triangle inequality for ab...
abs3dif 15305 Absolute value of differen...
abs2dif 15306 Difference of absolute val...
abs2dif2 15307 Difference of absolute val...
abs2difabs 15308 Absolute value of differen...
abs1m 15309 For any complex number, th...
recan 15310 Cancellation law involving...
absf 15311 Mapping domain and codomai...
abs3lem 15312 Lemma involving absolute v...
abslem2 15313 Lemma involving absolute v...
rddif 15314 The difference between a r...
absrdbnd 15315 Bound on the absolute valu...
fzomaxdiflem 15316 Lemma for ~ fzomaxdif . (...
fzomaxdif 15317 A bound on the separation ...
uzin2 15318 The upper integers are clo...
rexanuz 15319 Combine two different uppe...
rexanre 15320 Combine two different uppe...
rexfiuz 15321 Combine finitely many diff...
rexuz3 15322 Restrict the base of the u...
rexanuz2 15323 Combine two different uppe...
r19.29uz 15324 A version of ~ 19.29 for u...
r19.2uz 15325 A version of ~ r19.2z for ...
rexuzre 15326 Convert an upper real quan...
rexico 15327 Restrict the base of an up...
cau3lem 15328 Lemma for ~ cau3 . (Contr...
cau3 15329 Convert between three-quan...
cau4 15330 Change the base of a Cauch...
caubnd2 15331 A Cauchy sequence of compl...
caubnd 15332 A Cauchy sequence of compl...
sqreulem 15333 Lemma for ~ sqreu : write ...
sqreu 15334 Existence and uniqueness f...
sqrtcl 15335 Closure of the square root...
sqrtthlem 15336 Lemma for ~ sqrtth . (Con...
sqrtf 15337 Mapping domain and codomai...
sqrtth 15338 Square root theorem over t...
sqrtrege0 15339 The square root function m...
eqsqrtor 15340 Solve an equation containi...
eqsqrtd 15341 A deduction for showing th...
eqsqrt2d 15342 A deduction for showing th...
amgm2 15343 Arithmetic-geometric mean ...
sqrtthi 15344 Square root theorem. Theo...
sqrtcli 15345 The square root of a nonne...
sqrtgt0i 15346 The square root of a posit...
sqrtmsqi 15347 Square root of square. (C...
sqrtsqi 15348 Square root of square. (C...
sqsqrti 15349 Square of square root. (C...
sqrtge0i 15350 The square root of a nonne...
absidi 15351 A nonnegative number is it...
absnidi 15352 A negative number is the n...
leabsi 15353 A real number is less than...
absori 15354 The absolute value of a re...
absrei 15355 Absolute value of a real n...
sqrtpclii 15356 The square root of a posit...
sqrtgt0ii 15357 The square root of a posit...
sqrt11i 15358 The square root function i...
sqrtmuli 15359 Square root distributes ov...
sqrtmulii 15360 Square root distributes ov...
sqrtmsq2i 15361 Relationship between squar...
sqrtlei 15362 Square root is monotonic. ...
sqrtlti 15363 Square root is strictly mo...
abslti 15364 Absolute value and 'less t...
abslei 15365 Absolute value and 'less t...
cnsqrt00 15366 A square root of a complex...
absvalsqi 15367 Square of value of absolut...
absvalsq2i 15368 Square of value of absolut...
abscli 15369 Real closure of absolute v...
absge0i 15370 Absolute value is nonnegat...
absval2i 15371 Value of absolute value fu...
abs00i 15372 The absolute value of a nu...
absgt0i 15373 The absolute value of a no...
absnegi 15374 Absolute value of negative...
abscji 15375 The absolute value of a nu...
releabsi 15376 The real part of a number ...
abssubi 15377 Swapping order of subtract...
absmuli 15378 Absolute value distributes...
sqabsaddi 15379 Square of absolute value o...
sqabssubi 15380 Square of absolute value o...
absdivzi 15381 Absolute value distributes...
abstrii 15382 Triangle inequality for ab...
abs3difi 15383 Absolute value of differen...
abs3lemi 15384 Lemma involving absolute v...
rpsqrtcld 15385 The square root of a posit...
sqrtgt0d 15386 The square root of a posit...
absnidd 15387 A negative number is the n...
leabsd 15388 A real number is less than...
absord 15389 The absolute value of a re...
absred 15390 Absolute value of a real n...
resqrtcld 15391 The square root of a nonne...
sqrtmsqd 15392 Square root of square. (C...
sqrtsqd 15393 Square root of square. (C...
sqrtge0d 15394 The square root of a nonne...
sqrtnegd 15395 The square root of a negat...
absidd 15396 A nonnegative number is it...
sqrtdivd 15397 Square root distributes ov...
sqrtmuld 15398 Square root distributes ov...
sqrtsq2d 15399 Relationship between squar...
sqrtled 15400 Square root is monotonic. ...
sqrtltd 15401 Square root is strictly mo...
sqr11d 15402 The square root function i...
nn0absid 15403 A nonnegative integer is i...
nn0absidi 15404 A nonnegative integer is i...
absltd 15405 Absolute value and 'less t...
absled 15406 Absolute value and 'less t...
abssubge0d 15407 Absolute value of a nonneg...
abssuble0d 15408 Absolute value of a nonpos...
absdifltd 15409 The absolute value of a di...
absdifled 15410 The absolute value of a di...
icodiamlt 15411 Two elements in a half-ope...
abscld 15412 Real closure of absolute v...
sqrtcld 15413 Closure of the square root...
sqrtrege0d 15414 The real part of the squar...
sqsqrtd 15415 Square root theorem. Theo...
msqsqrtd 15416 Square root theorem. Theo...
sqr00d 15417 A square root is zero iff ...
absvalsqd 15418 Square of value of absolut...
absvalsq2d 15419 Square of value of absolut...
absge0d 15420 Absolute value is nonnegat...
absval2d 15421 Value of absolute value fu...
abs00d 15422 The absolute value of a nu...
absne0d 15423 The absolute value of a nu...
absrpcld 15424 The absolute value of a no...
absnegd 15425 Absolute value of negative...
abscjd 15426 The absolute value of a nu...
releabsd 15427 The real part of a number ...
absexpd 15428 Absolute value of positive...
abssubd 15429 Swapping order of subtract...
absmuld 15430 Absolute value distributes...
absdivd 15431 Absolute value distributes...
abstrid 15432 Triangle inequality for ab...
abs2difd 15433 Difference of absolute val...
abs2dif2d 15434 Difference of absolute val...
abs2difabsd 15435 Absolute value of differen...
abs3difd 15436 Absolute value of differen...
abs3lemd 15437 Lemma involving absolute v...
reusq0 15438 A complex number is the sq...
bhmafibid1cn 15439 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15440 The Brahmagupta-Fibonacci ...
bhmafibid1 15441 The Brahmagupta-Fibonacci ...
bhmafibid2 15442 The Brahmagupta-Fibonacci ...
limsupgord 15445 Ordering property of the s...
limsupcl 15446 Closure of the superior li...
limsupval 15447 The superior limit of an i...
limsupgf 15448 Closure of the superior li...
limsupgval 15449 Value of the superior limi...
limsupgle 15450 The defining property of t...
limsuple 15451 The defining property of t...
limsuplt 15452 The defining property of t...
limsupval2 15453 The superior limit, relati...
limsupgre 15454 If a sequence of real numb...
limsupbnd1 15455 If a sequence is eventuall...
limsupbnd2 15456 If a sequence is eventuall...
climrel 15465 The limit relation is a re...
rlimrel 15466 The limit relation is a re...
clim 15467 Express the predicate: Th...
rlim 15468 Express the predicate: Th...
rlim2 15469 Rewrite ~ rlim for a mappi...
rlim2lt 15470 Use strictly less-than in ...
rlim3 15471 Restrict the range of the ...
climcl 15472 Closure of the limit of a ...
rlimpm 15473 Closure of a function with...
rlimf 15474 Closure of a function with...
rlimss 15475 Domain closure of a functi...
rlimcl 15476 Closure of the limit of a ...
clim2 15477 Express the predicate: Th...
clim2c 15478 Express the predicate ` F ...
clim0 15479 Express the predicate ` F ...
clim0c 15480 Express the predicate ` F ...
rlim0 15481 Express the predicate ` B ...
rlim0lt 15482 Use strictly less-than in ...
climi 15483 Convergence of a sequence ...
climi2 15484 Convergence of a sequence ...
climi0 15485 Convergence of a sequence ...
rlimi 15486 Convergence at infinity of...
rlimi2 15487 Convergence at infinity of...
ello1 15488 Elementhood in the set of ...
ello12 15489 Elementhood in the set of ...
ello12r 15490 Sufficient condition for e...
lo1f 15491 An eventually upper bounde...
lo1dm 15492 An eventually upper bounde...
lo1bdd 15493 The defining property of a...
ello1mpt 15494 Elementhood in the set of ...
ello1mpt2 15495 Elementhood in the set of ...
ello1d 15496 Sufficient condition for e...
lo1bdd2 15497 If an eventually bounded f...
lo1bddrp 15498 Refine ~ o1bdd2 to give a ...
elo1 15499 Elementhood in the set of ...
elo12 15500 Elementhood in the set of ...
elo12r 15501 Sufficient condition for e...
o1f 15502 An eventually bounded func...
o1dm 15503 An eventually bounded func...
o1bdd 15504 The defining property of a...
lo1o1 15505 A function is eventually b...
lo1o12 15506 A function is eventually b...
elo1mpt 15507 Elementhood in the set of ...
elo1mpt2 15508 Elementhood in the set of ...
elo1d 15509 Sufficient condition for e...
o1lo1 15510 A real function is eventua...
o1lo12 15511 A lower bounded real funct...
o1lo1d 15512 A real eventually bounded ...
icco1 15513 Derive eventual boundednes...
o1bdd2 15514 If an eventually bounded f...
o1bddrp 15515 Refine ~ o1bdd2 to give a ...
climconst 15516 An (eventually) constant s...
rlimconst 15517 A constant sequence conver...
rlimclim1 15518 Forward direction of ~ rli...
rlimclim 15519 A sequence on an upper int...
climrlim2 15520 Produce a real limit from ...
climconst2 15521 A constant sequence conver...
climz 15522 The zero sequence converge...
rlimuni 15523 A real function whose doma...
rlimdm 15524 Two ways to express that a...
climuni 15525 An infinite sequence of co...
fclim 15526 The limit relation is func...
climdm 15527 Two ways to express that a...
climeu 15528 An infinite sequence of co...
climreu 15529 An infinite sequence of co...
climmo 15530 An infinite sequence of co...
rlimres 15531 The restriction of a funct...
lo1res 15532 The restriction of an even...
o1res 15533 The restriction of an even...
rlimres2 15534 The restriction of a funct...
lo1res2 15535 The restriction of a funct...
o1res2 15536 The restriction of a funct...
lo1resb 15537 The restriction of a funct...
rlimresb 15538 The restriction of a funct...
o1resb 15539 The restriction of a funct...
climeq 15540 Two functions that are eve...
lo1eq 15541 Two functions that are eve...
rlimeq 15542 Two functions that are eve...
o1eq 15543 Two functions that are eve...
climmpt 15544 Exhibit a function ` G ` w...
2clim 15545 If two sequences converge ...
climmpt2 15546 Relate an integer limit on...
climshftlem 15547 A shifted function converg...
climres 15548 A function restricted to u...
climshft 15549 A shifted function converg...
serclim0 15550 The zero series converges ...
rlimcld2 15551 If ` D ` is a closed set i...
rlimrege0 15552 The limit of a sequence of...
rlimrecl 15553 The limit of a real sequen...
rlimge0 15554 The limit of a sequence of...
climshft2 15555 A shifted function converg...
climrecl 15556 The limit of a convergent ...
climge0 15557 A nonnegative sequence con...
climabs0 15558 Convergence to zero of the...
o1co 15559 Sufficient condition for t...
o1compt 15560 Sufficient condition for t...
rlimcn1 15561 Image of a limit under a c...
rlimcn1b 15562 Image of a limit under a c...
rlimcn3 15563 Image of a limit under a c...
rlimcn2 15564 Image of a limit under a c...
climcn1 15565 Image of a limit under a c...
climcn2 15566 Image of a limit under a c...
addcn2 15567 Complex number addition is...
subcn2 15568 Complex number subtraction...
mulcn2 15569 Complex number multiplicat...
reccn2 15570 The reciprocal function is...
cn1lem 15571 A sufficient condition for...
abscn2 15572 The absolute value functio...
cjcn2 15573 The complex conjugate func...
recn2 15574 The real part function is ...
imcn2 15575 The imaginary part functio...
climcn1lem 15576 The limit of a continuous ...
climabs 15577 Limit of the absolute valu...
climcj 15578 Limit of the complex conju...
climre 15579 Limit of the real part of ...
climim 15580 Limit of the imaginary par...
rlimmptrcl 15581 Reverse closure for a real...
rlimabs 15582 Limit of the absolute valu...
rlimcj 15583 Limit of the complex conju...
rlimre 15584 Limit of the real part of ...
rlimim 15585 Limit of the imaginary par...
o1of2 15586 Show that a binary operati...
o1add 15587 The sum of two eventually ...
o1mul 15588 The product of two eventua...
o1sub 15589 The difference of two even...
rlimo1 15590 Any function with a finite...
rlimdmo1 15591 A convergent function is e...
o1rlimmul 15592 The product of an eventual...
o1const 15593 A constant function is eve...
lo1const 15594 A constant function is eve...
lo1mptrcl 15595 Reverse closure for an eve...
o1mptrcl 15596 Reverse closure for an eve...
o1add2 15597 The sum of two eventually ...
o1mul2 15598 The product of two eventua...
o1sub2 15599 The product of two eventua...
lo1add 15600 The sum of two eventually ...
lo1mul 15601 The product of an eventual...
lo1mul2 15602 The product of an eventual...
o1dif 15603 If the difference of two f...
lo1sub 15604 The difference of an event...
climadd 15605 Limit of the sum of two co...
climmul 15606 Limit of the product of tw...
climsub 15607 Limit of the difference of...
climaddc1 15608 Limit of a constant ` C ` ...
climaddc2 15609 Limit of a constant ` C ` ...
climmulc2 15610 Limit of a sequence multip...
climsubc1 15611 Limit of a constant ` C ` ...
climsubc2 15612 Limit of a constant ` C ` ...
climle 15613 Comparison of the limits o...
climsqz 15614 Convergence of a sequence ...
climsqz2 15615 Convergence of a sequence ...
rlimadd 15616 Limit of the sum of two co...
rlimsub 15617 Limit of the difference of...
rlimmul 15618 Limit of the product of tw...
rlimdiv 15619 Limit of the quotient of t...
rlimneg 15620 Limit of the negative of a...
rlimle 15621 Comparison of the limits o...
rlimsqzlem 15622 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15623 Convergence of a sequence ...
rlimsqz2 15624 Convergence of a sequence ...
lo1le 15625 Transfer eventual upper bo...
o1le 15626 Transfer eventual boundedn...
rlimno1 15627 A function whose inverse c...
clim2ser 15628 The limit of an infinite s...
clim2ser2 15629 The limit of an infinite s...
iserex 15630 An infinite series converg...
isermulc2 15631 Multiplication of an infin...
climlec2 15632 Comparison of a constant t...
iserle 15633 Comparison of the limits o...
iserge0 15634 The limit of an infinite s...
climub 15635 The limit of a monotonic s...
climserle 15636 The partial sums of a conv...
isershft 15637 Index shift of the limit o...
isercolllem1 15638 Lemma for ~ isercoll . (C...
isercolllem2 15639 Lemma for ~ isercoll . (C...
isercolllem3 15640 Lemma for ~ isercoll . (C...
isercoll 15641 Rearrange an infinite seri...
isercoll2 15642 Generalize ~ isercoll so t...
climsup 15643 A bounded monotonic sequen...
climcau 15644 A converging sequence of c...
climbdd 15645 A converging sequence of c...
caucvgrlem 15646 Lemma for ~ caurcvgr . (C...
caurcvgr 15647 A Cauchy sequence of real ...
caucvgrlem2 15648 Lemma for ~ caucvgr . (Co...
caucvgr 15649 A Cauchy sequence of compl...
caurcvg 15650 A Cauchy sequence of real ...
caurcvg2 15651 A Cauchy sequence of real ...
caucvg 15652 A Cauchy sequence of compl...
caucvgb 15653 A function is convergent i...
serf0 15654 If an infinite series conv...
iseraltlem1 15655 Lemma for ~ iseralt . A d...
iseraltlem2 15656 Lemma for ~ iseralt . The...
iseraltlem3 15657 Lemma for ~ iseralt . Fro...
iseralt 15658 The alternating series tes...
sumex 15661 A sum is a set. (Contribu...
sumeq1 15662 Equality theorem for a sum...
nfsum1 15663 Bound-variable hypothesis ...
nfsum 15664 Bound-variable hypothesis ...
sumeq2w 15665 Equality theorem for sum, ...
sumeq2ii 15666 Equality theorem for sum, ...
sumeq2 15667 Equality theorem for sum. ...
cbvsum 15668 Change bound variable in a...
cbvsumv 15669 Change bound variable in a...
sumeq1i 15670 Equality inference for sum...
sumeq2i 15671 Equality inference for sum...
sumeq12i 15672 Equality inference for sum...
sumeq1d 15673 Equality deduction for sum...
sumeq2d 15674 Equality deduction for sum...
sumeq2dv 15675 Equality deduction for sum...
sumeq2sdv 15676 Equality deduction for sum...
sumeq2sdvOLD 15677 Obsolete version of ~ sume...
2sumeq2dv 15678 Equality deduction for dou...
sumeq12dv 15679 Equality deduction for sum...
sumeq12rdv 15680 Equality deduction for sum...
sum2id 15681 The second class argument ...
sumfc 15682 A lemma to facilitate conv...
fz1f1o 15683 A lemma for working with f...
sumrblem 15684 Lemma for ~ sumrb . (Cont...
fsumcvg 15685 The sequence of partial su...
sumrb 15686 Rebase the starting point ...
summolem3 15687 Lemma for ~ summo . (Cont...
summolem2a 15688 Lemma for ~ summo . (Cont...
summolem2 15689 Lemma for ~ summo . (Cont...
summo 15690 A sum has at most one limi...
zsum 15691 Series sum with index set ...
isum 15692 Series sum with an upper i...
fsum 15693 The value of a sum over a ...
sum0 15694 Any sum over the empty set...
sumz 15695 Any sum of zero over a sum...
fsumf1o 15696 Re-index a finite sum usin...
sumss 15697 Change the index set to a ...
fsumss 15698 Change the index set to a ...
sumss2 15699 Change the index set of a ...
fsumcvg2 15700 The sequence of partial su...
fsumsers 15701 Special case of series sum...
fsumcvg3 15702 A finite sum is convergent...
fsumser 15703 A finite sum expressed in ...
fsumcl2lem 15704 - Lemma for finite sum clo...
fsumcllem 15705 - Lemma for finite sum clo...
fsumcl 15706 Closure of a finite sum of...
fsumrecl 15707 Closure of a finite sum of...
fsumzcl 15708 Closure of a finite sum of...
fsumnn0cl 15709 Closure of a finite sum of...
fsumrpcl 15710 Closure of a finite sum of...
fsumclf 15711 Closure of a finite sum of...
fsumzcl2 15712 A finite sum with integer ...
fsumadd 15713 The sum of two finite sums...
fsumsplit 15714 Split a sum into two parts...
fsumsplitf 15715 Split a sum into two parts...
sumsnf 15716 A sum of a singleton is th...
fsumsplitsn 15717 Separate out a term in a f...
fsumsplit1 15718 Separate out a term in a f...
sumsn 15719 A sum of a singleton is th...
fsum1 15720 The finite sum of ` A ( k ...
sumpr 15721 A sum over a pair is the s...
sumtp 15722 A sum over a triple is the...
sumsns 15723 A sum of a singleton is th...
fsumm1 15724 Separate out the last term...
fzosump1 15725 Separate out the last term...
fsum1p 15726 Separate out the first ter...
fsummsnunz 15727 A finite sum all of whose ...
fsumsplitsnun 15728 Separate out a term in a f...
fsump1 15729 The addition of the next t...
isumclim 15730 An infinite sum equals the...
isumclim2 15731 A converging series conver...
isumclim3 15732 The sequence of partial fi...
sumnul 15733 The sum of a non-convergen...
isumcl 15734 The sum of a converging in...
isummulc2 15735 An infinite sum multiplied...
isummulc1 15736 An infinite sum multiplied...
isumdivc 15737 An infinite sum divided by...
isumrecl 15738 The sum of a converging in...
isumge0 15739 An infinite sum of nonnega...
isumadd 15740 Addition of infinite sums....
sumsplit 15741 Split a sum into two parts...
fsump1i 15742 Optimized version of ~ fsu...
fsum2dlem 15743 Lemma for ~ fsum2d - induc...
fsum2d 15744 Write a double sum as a su...
fsumxp 15745 Combine two sums into a si...
fsumcnv 15746 Transform a region of summ...
fsumcom2 15747 Interchange order of summa...
fsumcom 15748 Interchange order of summa...
fsum0diaglem 15749 Lemma for ~ fsum0diag . (...
fsum0diag 15750 Two ways to express "the s...
mptfzshft 15751 1-1 onto function in maps-...
fsumrev 15752 Reversal of a finite sum. ...
fsumshft 15753 Index shift of a finite su...
fsumshftm 15754 Negative index shift of a ...
fsumrev2 15755 Reversal of a finite sum. ...
fsum0diag2 15756 Two ways to express "the s...
fsummulc2 15757 A finite sum multiplied by...
fsummulc1 15758 A finite sum multiplied by...
fsumdivc 15759 A finite sum divided by a ...
fsumneg 15760 Negation of a finite sum. ...
fsumsub 15761 Split a finite sum over a ...
fsum2mul 15762 Separate the nested sum of...
fsumconst 15763 The sum of constant terms ...
fsumdifsnconst 15764 The sum of constant terms ...
modfsummodslem1 15765 Lemma 1 for ~ modfsummods ...
modfsummods 15766 Induction step for ~ modfs...
modfsummod 15767 A finite sum modulo a posi...
fsumge0 15768 If all of the terms of a f...
fsumless 15769 A shorter sum of nonnegati...
fsumge1 15770 A sum of nonnegative numbe...
fsum00 15771 A sum of nonnegative numbe...
fsumle 15772 If all of the terms of fin...
fsumlt 15773 If every term in one finit...
fsumabs 15774 Generalized triangle inequ...
telfsumo 15775 Sum of a telescoping serie...
telfsumo2 15776 Sum of a telescoping serie...
telfsum 15777 Sum of a telescoping serie...
telfsum2 15778 Sum of a telescoping serie...
fsumparts 15779 Summation by parts. (Cont...
fsumrelem 15780 Lemma for ~ fsumre , ~ fsu...
fsumre 15781 The real part of a sum. (...
fsumim 15782 The imaginary part of a su...
fsumcj 15783 The complex conjugate of a...
fsumrlim 15784 Limit of a finite sum of c...
fsumo1 15785 The finite sum of eventual...
o1fsum 15786 If ` A ( k ) ` is O(1), th...
seqabs 15787 Generalized triangle inequ...
iserabs 15788 Generalized triangle inequ...
cvgcmp 15789 A comparison test for conv...
cvgcmpub 15790 An upper bound for the lim...
cvgcmpce 15791 A comparison test for conv...
abscvgcvg 15792 An absolutely convergent s...
climfsum 15793 Limit of a finite sum of c...
fsumiun 15794 Sum over a disjoint indexe...
hashiun 15795 The cardinality of a disjo...
hash2iun 15796 The cardinality of a neste...
hash2iun1dif1 15797 The cardinality of a neste...
hashrabrex 15798 The number of elements in ...
hashuni 15799 The cardinality of a disjo...
qshash 15800 The cardinality of a set w...
ackbijnn 15801 Translate the Ackermann bi...
binomlem 15802 Lemma for ~ binom (binomia...
binom 15803 The binomial theorem: ` ( ...
binom1p 15804 Special case of the binomi...
binom11 15805 Special case of the binomi...
binom1dif 15806 A summation for the differ...
bcxmaslem1 15807 Lemma for ~ bcxmas . (Con...
bcxmas 15808 Parallel summation (Christ...
incexclem 15809 Lemma for ~ incexc . (Con...
incexc 15810 The inclusion/exclusion pr...
incexc2 15811 The inclusion/exclusion pr...
isumshft 15812 Index shift of an infinite...
isumsplit 15813 Split off the first ` N ` ...
isum1p 15814 The infinite sum of a conv...
isumnn0nn 15815 Sum from 0 to infinity in ...
isumrpcl 15816 The infinite sum of positi...
isumle 15817 Comparison of two infinite...
isumless 15818 A finite sum of nonnegativ...
isumsup2 15819 An infinite sum of nonnega...
isumsup 15820 An infinite sum of nonnega...
isumltss 15821 A partial sum of a series ...
climcndslem1 15822 Lemma for ~ climcnds : bou...
climcndslem2 15823 Lemma for ~ climcnds : bou...
climcnds 15824 The Cauchy condensation te...
divrcnv 15825 The sequence of reciprocal...
divcnv 15826 The sequence of reciprocal...
flo1 15827 The floor function satisfi...
divcnvshft 15828 Limit of a ratio function....
supcvg 15829 Extract a sequence ` f ` i...
infcvgaux1i 15830 Auxiliary theorem for appl...
infcvgaux2i 15831 Auxiliary theorem for appl...
harmonic 15832 The harmonic series ` H ` ...
arisum 15833 Arithmetic series sum of t...
arisum2 15834 Arithmetic series sum of t...
trireciplem 15835 Lemma for ~ trirecip . Sh...
trirecip 15836 The sum of the reciprocals...
expcnv 15837 A sequence of powers of a ...
explecnv 15838 A sequence of terms conver...
geoserg 15839 The value of the finite ge...
geoser 15840 The value of the finite ge...
pwdif 15841 The difference of two numb...
pwm1geoser 15842 The n-th power of a number...
geolim 15843 The partial sums in the in...
geolim2 15844 The partial sums in the ge...
georeclim 15845 The limit of a geometric s...
geo2sum 15846 The value of the finite ge...
geo2sum2 15847 The value of the finite ge...
geo2lim 15848 The value of the infinite ...
geomulcvg 15849 The geometric series conve...
geoisum 15850 The infinite sum of ` 1 + ...
geoisumr 15851 The infinite sum of recipr...
geoisum1 15852 The infinite sum of ` A ^ ...
geoisum1c 15853 The infinite sum of ` A x....
0.999... 15854 The recurring decimal 0.99...
geoihalfsum 15855 Prove that the infinite ge...
cvgrat 15856 Ratio test for convergence...
mertenslem1 15857 Lemma for ~ mertens . (Co...
mertenslem2 15858 Lemma for ~ mertens . (Co...
mertens 15859 Mertens' theorem. If ` A ...
prodf 15860 An infinite product of com...
clim2prod 15861 The limit of an infinite p...
clim2div 15862 The limit of an infinite p...
prodfmul 15863 The product of two infinit...
prodf1 15864 The value of the partial p...
prodf1f 15865 A one-valued infinite prod...
prodfclim1 15866 The constant one product c...
prodfn0 15867 No term of a nonzero infin...
prodfrec 15868 The reciprocal of an infin...
prodfdiv 15869 The quotient of two infini...
ntrivcvg 15870 A non-trivially converging...
ntrivcvgn0 15871 A product that converges t...
ntrivcvgfvn0 15872 Any value of a product seq...
ntrivcvgtail 15873 A tail of a non-trivially ...
ntrivcvgmullem 15874 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15875 The product of two non-tri...
prodex 15878 A product is a set. (Cont...
prodeq1f 15879 Equality theorem for a pro...
prodeq1 15880 Equality theorem for a pro...
nfcprod1 15881 Bound-variable hypothesis ...
nfcprod 15882 Bound-variable hypothesis ...
prodeq2w 15883 Equality theorem for produ...
prodeq2ii 15884 Equality theorem for produ...
prodeq2 15885 Equality theorem for produ...
cbvprod 15886 Change bound variable in a...
cbvprodv 15887 Change bound variable in a...
cbvprodi 15888 Change bound variable in a...
prodeq1i 15889 Equality inference for pro...
prodeq1iOLD 15890 Obsolete version of ~ prod...
prodeq2i 15891 Equality inference for pro...
prodeq12i 15892 Equality inference for pro...
prodeq1d 15893 Equality deduction for pro...
prodeq2d 15894 Equality deduction for pro...
prodeq2dv 15895 Equality deduction for pro...
prodeq2sdv 15896 Equality deduction for pro...
prodeq2sdvOLD 15897 Obsolete version of ~ prod...
2cprodeq2dv 15898 Equality deduction for dou...
prodeq12dv 15899 Equality deduction for pro...
prodeq12rdv 15900 Equality deduction for pro...
prod2id 15901 The second class argument ...
prodrblem 15902 Lemma for ~ prodrb . (Con...
fprodcvg 15903 The sequence of partial pr...
prodrblem2 15904 Lemma for ~ prodrb . (Con...
prodrb 15905 Rebase the starting point ...
prodmolem3 15906 Lemma for ~ prodmo . (Con...
prodmolem2a 15907 Lemma for ~ prodmo . (Con...
prodmolem2 15908 Lemma for ~ prodmo . (Con...
prodmo 15909 A product has at most one ...
zprod 15910 Series product with index ...
iprod 15911 Series product with an upp...
zprodn0 15912 Nonzero series product wit...
iprodn0 15913 Nonzero series product wit...
fprod 15914 The value of a product ove...
fprodntriv 15915 A non-triviality lemma for...
prod0 15916 A product over the empty s...
prod1 15917 Any product of one over a ...
prodfc 15918 A lemma to facilitate conv...
fprodf1o 15919 Re-index a finite product ...
prodss 15920 Change the index set to a ...
fprodss 15921 Change the index set to a ...
fprodser 15922 A finite product expressed...
fprodcl2lem 15923 Finite product closure lem...
fprodcllem 15924 Finite product closure lem...
fprodcl 15925 Closure of a finite produc...
fprodrecl 15926 Closure of a finite produc...
fprodzcl 15927 Closure of a finite produc...
fprodnncl 15928 Closure of a finite produc...
fprodrpcl 15929 Closure of a finite produc...
fprodnn0cl 15930 Closure of a finite produc...
fprodcllemf 15931 Finite product closure lem...
fprodreclf 15932 Closure of a finite produc...
fprodmul 15933 The product of two finite ...
fproddiv 15934 The quotient of two finite...
prodsn 15935 A product of a singleton i...
fprod1 15936 A finite product of only o...
prodsnf 15937 A product of a singleton i...
climprod1 15938 The limit of a product ove...
fprodsplit 15939 Split a finite product int...
fprodm1 15940 Separate out the last term...
fprod1p 15941 Separate out the first ter...
fprodp1 15942 Multiply in the last term ...
fprodm1s 15943 Separate out the last term...
fprodp1s 15944 Multiply in the last term ...
prodsns 15945 A product of the singleton...
fprodfac 15946 Factorial using product no...
fprodabs 15947 The absolute value of a fi...
fprodeq0 15948 Any finite product contain...
fprodshft 15949 Shift the index of a finit...
fprodrev 15950 Reversal of a finite produ...
fprodconst 15951 The product of constant te...
fprodn0 15952 A finite product of nonzer...
fprod2dlem 15953 Lemma for ~ fprod2d - indu...
fprod2d 15954 Write a double product as ...
fprodxp 15955 Combine two products into ...
fprodcnv 15956 Transform a product region...
fprodcom2 15957 Interchange order of multi...
fprodcom 15958 Interchange product order....
fprod0diag 15959 Two ways to express "the p...
fproddivf 15960 The quotient of two finite...
fprodsplitf 15961 Split a finite product int...
fprodsplitsn 15962 Separate out a term in a f...
fprodsplit1f 15963 Separate out a term in a f...
fprodn0f 15964 A finite product of nonzer...
fprodclf 15965 Closure of a finite produc...
fprodge0 15966 If all the terms of a fini...
fprodeq0g 15967 Any finite product contain...
fprodge1 15968 If all of the terms of a f...
fprodle 15969 If all the terms of two fi...
fprodmodd 15970 If all factors of two fini...
iprodclim 15971 An infinite product equals...
iprodclim2 15972 A converging product conve...
iprodclim3 15973 The sequence of partial fi...
iprodcl 15974 The product of a non-trivi...
iprodrecl 15975 The product of a non-trivi...
iprodmul 15976 Multiplication of infinite...
risefacval 15981 The value of the rising fa...
fallfacval 15982 The value of the falling f...
risefacval2 15983 One-based value of rising ...
fallfacval2 15984 One-based value of falling...
fallfacval3 15985 A product representation o...
risefaccllem 15986 Lemma for rising factorial...
fallfaccllem 15987 Lemma for falling factoria...
risefaccl 15988 Closure law for rising fac...
fallfaccl 15989 Closure law for falling fa...
rerisefaccl 15990 Closure law for rising fac...
refallfaccl 15991 Closure law for falling fa...
nnrisefaccl 15992 Closure law for rising fac...
zrisefaccl 15993 Closure law for rising fac...
zfallfaccl 15994 Closure law for falling fa...
nn0risefaccl 15995 Closure law for rising fac...
rprisefaccl 15996 Closure law for rising fac...
risefallfac 15997 A relationship between ris...
fallrisefac 15998 A relationship between fal...
risefall0lem 15999 Lemma for ~ risefac0 and ~...
risefac0 16000 The value of the rising fa...
fallfac0 16001 The value of the falling f...
risefacp1 16002 The value of the rising fa...
fallfacp1 16003 The value of the falling f...
risefacp1d 16004 The value of the rising fa...
fallfacp1d 16005 The value of the falling f...
risefac1 16006 The value of rising factor...
fallfac1 16007 The value of falling facto...
risefacfac 16008 Relate rising factorial to...
fallfacfwd 16009 The forward difference of ...
0fallfac 16010 The value of the zero fall...
0risefac 16011 The value of the zero risi...
binomfallfaclem1 16012 Lemma for ~ binomfallfac ....
binomfallfaclem2 16013 Lemma for ~ binomfallfac ....
binomfallfac 16014 A version of the binomial ...
binomrisefac 16015 A version of the binomial ...
fallfacval4 16016 Represent the falling fact...
bcfallfac 16017 Binomial coefficient in te...
fallfacfac 16018 Relate falling factorial t...
bpolylem 16021 Lemma for ~ bpolyval . (C...
bpolyval 16022 The value of the Bernoulli...
bpoly0 16023 The value of the Bernoulli...
bpoly1 16024 The value of the Bernoulli...
bpolycl 16025 Closure law for Bernoulli ...
bpolysum 16026 A sum for Bernoulli polyno...
bpolydiflem 16027 Lemma for ~ bpolydif . (C...
bpolydif 16028 Calculate the difference b...
fsumkthpow 16029 A closed-form expression f...
bpoly2 16030 The Bernoulli polynomials ...
bpoly3 16031 The Bernoulli polynomials ...
bpoly4 16032 The Bernoulli polynomials ...
fsumcube 16033 Express the sum of cubes i...
eftcl 16046 Closure of a term in the s...
reeftcl 16047 The terms of the series ex...
eftabs 16048 The absolute value of a te...
eftval 16049 The value of a term in the...
efcllem 16050 Lemma for ~ efcl . The se...
ef0lem 16051 The series defining the ex...
efval 16052 Value of the exponential f...
esum 16053 Value of Euler's constant ...
eff 16054 Domain and codomain of the...
efcl 16055 Closure law for the expone...
efcld 16056 Closure law for the expone...
efval2 16057 Value of the exponential f...
efcvg 16058 The series that defines th...
efcvgfsum 16059 Exponential function conve...
reefcl 16060 The exponential function i...
reefcld 16061 The exponential function i...
ere 16062 Euler's constant ` _e ` = ...
ege2le3 16063 Lemma for ~ egt2lt3 . (Co...
ef0 16064 Value of the exponential f...
efcj 16065 The exponential of a compl...
efaddlem 16066 Lemma for ~ efadd (exponen...
efadd 16067 Sum of exponents law for e...
fprodefsum 16068 Move the exponential funct...
efcan 16069 Cancellation law for expon...
efne0d 16070 The exponential of a compl...
efne0 16071 The exponential of a compl...
efne0OLD 16072 Obsolete version of ~ efne...
efneg 16073 The exponential of the opp...
eff2 16074 The exponential function m...
efsub 16075 Difference of exponents la...
efexp 16076 The exponential of an inte...
efzval 16077 Value of the exponential f...
efgt0 16078 The exponential of a real ...
rpefcl 16079 The exponential of a real ...
rpefcld 16080 The exponential of a real ...
eftlcvg 16081 The tail series of the exp...
eftlcl 16082 Closure of the sum of an i...
reeftlcl 16083 Closure of the sum of an i...
eftlub 16084 An upper bound on the abso...
efsep 16085 Separate out the next term...
effsumlt 16086 The partial sums of the se...
eft0val 16087 The value of the first ter...
ef4p 16088 Separate out the first fou...
efgt1p2 16089 The exponential of a posit...
efgt1p 16090 The exponential of a posit...
efgt1 16091 The exponential of a posit...
eflt 16092 The exponential function o...
efle 16093 The exponential function o...
reef11 16094 The exponential function o...
reeff1 16095 The exponential function m...
eflegeo 16096 The exponential function o...
sinval 16097 Value of the sine function...
cosval 16098 Value of the cosine functi...
sinf 16099 Domain and codomain of the...
cosf 16100 Domain and codomain of the...
sincl 16101 Closure of the sine functi...
coscl 16102 Closure of the cosine func...
tanval 16103 Value of the tangent funct...
tancl 16104 The closure of the tangent...
sincld 16105 Closure of the sine functi...
coscld 16106 Closure of the cosine func...
tancld 16107 Closure of the tangent fun...
tanval2 16108 Express the tangent functi...
tanval3 16109 Express the tangent functi...
resinval 16110 The sine of a real number ...
recosval 16111 The cosine of a real numbe...
efi4p 16112 Separate out the first fou...
resin4p 16113 Separate out the first fou...
recos4p 16114 Separate out the first fou...
resincl 16115 The sine of a real number ...
recoscl 16116 The cosine of a real numbe...
retancl 16117 The closure of the tangent...
resincld 16118 Closure of the sine functi...
recoscld 16119 Closure of the cosine func...
retancld 16120 Closure of the tangent fun...
sinneg 16121 The sine of a negative is ...
cosneg 16122 The cosines of a number an...
tanneg 16123 The tangent of a negative ...
sin0 16124 Value of the sine function...
cos0 16125 Value of the cosine functi...
tan0 16126 The value of the tangent f...
efival 16127 The exponential function i...
efmival 16128 The exponential function i...
sinhval 16129 Value of the hyperbolic si...
coshval 16130 Value of the hyperbolic co...
resinhcl 16131 The hyperbolic sine of a r...
rpcoshcl 16132 The hyperbolic cosine of a...
recoshcl 16133 The hyperbolic cosine of a...
retanhcl 16134 The hyperbolic tangent of ...
tanhlt1 16135 The hyperbolic tangent of ...
tanhbnd 16136 The hyperbolic tangent of ...
efeul 16137 Eulerian representation of...
efieq 16138 The exponentials of two im...
sinadd 16139 Addition formula for sine....
cosadd 16140 Addition formula for cosin...
tanaddlem 16141 A useful intermediate step...
tanadd 16142 Addition formula for tange...
sinsub 16143 Sine of difference. (Cont...
cossub 16144 Cosine of difference. (Co...
addsin 16145 Sum of sines. (Contribute...
subsin 16146 Difference of sines. (Con...
sinmul 16147 Product of sines can be re...
cosmul 16148 Product of cosines can be ...
addcos 16149 Sum of cosines. (Contribu...
subcos 16150 Difference of cosines. (C...
sincossq 16151 Sine squared plus cosine s...
sin2t 16152 Double-angle formula for s...
cos2t 16153 Double-angle formula for c...
cos2tsin 16154 Double-angle formula for c...
sinbnd 16155 The sine of a real number ...
cosbnd 16156 The cosine of a real numbe...
sinbnd2 16157 The sine of a real number ...
cosbnd2 16158 The cosine of a real numbe...
ef01bndlem 16159 Lemma for ~ sin01bnd and ~...
sin01bnd 16160 Bounds on the sine of a po...
cos01bnd 16161 Bounds on the cosine of a ...
cos1bnd 16162 Bounds on the cosine of 1....
cos2bnd 16163 Bounds on the cosine of 2....
sinltx 16164 The sine of a positive rea...
sin01gt0 16165 The sine of a positive rea...
cos01gt0 16166 The cosine of a positive r...
sin02gt0 16167 The sine of a positive rea...
sincos1sgn 16168 The signs of the sine and ...
sincos2sgn 16169 The signs of the sine and ...
sin4lt0 16170 The sine of 4 is negative....
absefi 16171 The absolute value of the ...
absef 16172 The absolute value of the ...
absefib 16173 A complex number is real i...
efieq1re 16174 A number whose imaginary e...
demoivre 16175 De Moivre's Formula. Proo...
demoivreALT 16176 Alternate proof of ~ demoi...
eirrlem 16179 Lemma for ~ eirr . (Contr...
eirr 16180 ` _e ` is irrational. (Co...
egt2lt3 16181 Euler's constant ` _e ` = ...
epos 16182 Euler's constant ` _e ` is...
epr 16183 Euler's constant ` _e ` is...
ene0 16184 ` _e ` is not 0. (Contrib...
ene1 16185 ` _e ` is not 1. (Contrib...
xpnnen 16186 The Cartesian product of t...
znnen 16187 The set of integers and th...
qnnen 16188 The rational numbers are c...
rpnnen2lem1 16189 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 16190 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 16191 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 16192 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 16193 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 16194 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 16195 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 16196 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 16197 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 16198 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 16199 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 16200 Lemma for ~ rpnnen2 . (Co...
rpnnen2 16201 The other half of ~ rpnnen...
rpnnen 16202 The cardinality of the con...
rexpen 16203 The real numbers are equin...
cpnnen 16204 The complex numbers are eq...
rucALT 16205 Alternate proof of ~ ruc ....
ruclem1 16206 Lemma for ~ ruc (the reals...
ruclem2 16207 Lemma for ~ ruc . Orderin...
ruclem3 16208 Lemma for ~ ruc . The con...
ruclem4 16209 Lemma for ~ ruc . Initial...
ruclem6 16210 Lemma for ~ ruc . Domain ...
ruclem7 16211 Lemma for ~ ruc . Success...
ruclem8 16212 Lemma for ~ ruc . The int...
ruclem9 16213 Lemma for ~ ruc . The fir...
ruclem10 16214 Lemma for ~ ruc . Every f...
ruclem11 16215 Lemma for ~ ruc . Closure...
ruclem12 16216 Lemma for ~ ruc . The sup...
ruclem13 16217 Lemma for ~ ruc . There i...
ruc 16218 The set of positive intege...
resdomq 16219 The set of rationals is st...
aleph1re 16220 There are at least aleph-o...
aleph1irr 16221 There are at least aleph-o...
cnso 16222 The complex numbers can be...
sqrt2irrlem 16223 Lemma for ~ sqrt2irr . Th...
sqrt2irr 16224 The square root of 2 is ir...
sqrt2re 16225 The square root of 2 exist...
sqrt2irr0 16226 The square root of 2 is an...
nthruc 16227 The sequence ` NN ` , ` ZZ...
nthruz 16228 The sequence ` NN ` , ` NN...
divides 16231 Define the divides relatio...
dvdsval2 16232 One nonzero integer divide...
dvdsval3 16233 One nonzero integer divide...
dvdszrcl 16234 Reverse closure for the di...
dvdsmod0 16235 If a positive integer divi...
p1modz1 16236 If a number greater than 1...
dvdsmodexp 16237 If a positive integer divi...
nndivdvds 16238 Strong form of ~ dvdsval2 ...
nndivides 16239 Definition of the divides ...
moddvds 16240 Two ways to say ` A == B `...
modm1div 16241 An integer greater than on...
addmulmodb 16242 An integer plus a product ...
dvds0lem 16243 A lemma to assist theorems...
dvds1lem 16244 A lemma to assist theorems...
dvds2lem 16245 A lemma to assist theorems...
iddvds 16246 An integer divides itself....
1dvds 16247 1 divides any integer. Th...
dvds0 16248 Any integer divides 0. Th...
negdvdsb 16249 An integer divides another...
dvdsnegb 16250 An integer divides another...
absdvdsb 16251 An integer divides another...
dvdsabsb 16252 An integer divides another...
0dvds 16253 Only 0 is divisible by 0. ...
dvdsmul1 16254 An integer divides a multi...
dvdsmul2 16255 An integer divides a multi...
iddvdsexp 16256 An integer divides a posit...
muldvds1 16257 If a product divides an in...
muldvds2 16258 If a product divides an in...
dvdscmul 16259 Multiplication by a consta...
dvdsmulc 16260 Multiplication by a consta...
dvdscmulr 16261 Cancellation law for the d...
dvdsmulcr 16262 Cancellation law for the d...
summodnegmod 16263 The sum of two integers mo...
difmod0 16264 The difference of two inte...
modmulconst 16265 Constant multiplication in...
dvds2ln 16266 If an integer divides each...
dvds2add 16267 If an integer divides each...
dvds2sub 16268 If an integer divides each...
dvds2addd 16269 Deduction form of ~ dvds2a...
dvds2subd 16270 Deduction form of ~ dvds2s...
dvdstr 16271 The divides relation is tr...
dvdstrd 16272 The divides relation is tr...
dvdsmultr1 16273 If an integer divides anot...
dvdsmultr1d 16274 Deduction form of ~ dvdsmu...
dvdsmultr2 16275 If an integer divides anot...
dvdsmultr2d 16276 Deduction form of ~ dvdsmu...
ordvdsmul 16277 If an integer divides eith...
dvdssub2 16278 If an integer divides a di...
dvdsadd 16279 An integer divides another...
dvdsaddr 16280 An integer divides another...
dvdssub 16281 An integer divides another...
dvdssubr 16282 An integer divides another...
dvdsadd2b 16283 Adding a multiple of the b...
dvdsaddre2b 16284 Adding a multiple of the b...
fsumdvds 16285 If every term in a sum is ...
dvdslelem 16286 Lemma for ~ dvdsle . (Con...
dvdsle 16287 The divisors of a positive...
dvdsleabs 16288 The divisors of a nonzero ...
dvdsleabs2 16289 Transfer divisibility to a...
dvdsabseq 16290 If two integers divide eac...
dvdseq 16291 If two nonnegative integer...
divconjdvds 16292 If a nonzero integer ` M `...
dvdsdivcl 16293 The complement of a diviso...
dvdsflip 16294 An involution of the divis...
dvdsssfz1 16295 The set of divisors of a n...
dvds1 16296 The only nonnegative integ...
alzdvds 16297 Only 0 is divisible by all...
dvdsext 16298 Poset extensionality for d...
fzm1ndvds 16299 No number between ` 1 ` an...
fzo0dvdseq 16300 Zero is the only one of th...
fzocongeq 16301 Two different elements of ...
addmodlteqALT 16302 Two nonnegative integers l...
dvdsfac 16303 A positive integer divides...
dvdsexp2im 16304 If an integer divides anot...
dvdsexp 16305 A power divides a power wi...
dvdsmod 16306 Any number ` K ` whose mod...
mulmoddvds 16307 If an integer is divisible...
3dvds 16308 A rule for divisibility by...
3dvdsdec 16309 A decimal number is divisi...
3dvds2dec 16310 A decimal number is divisi...
fprodfvdvdsd 16311 A finite product of intege...
fproddvdsd 16312 A finite product of intege...
evenelz 16313 An even number is an integ...
zeo3 16314 An integer is even or odd....
zeo4 16315 An integer is even or odd ...
zeneo 16316 No even integer equals an ...
odd2np1lem 16317 Lemma for ~ odd2np1 . (Co...
odd2np1 16318 An integer is odd iff it i...
even2n 16319 An integer is even iff it ...
oddm1even 16320 An integer is odd iff its ...
oddp1even 16321 An integer is odd iff its ...
oexpneg 16322 The exponential of the neg...
mod2eq0even 16323 An integer is 0 modulo 2 i...
mod2eq1n2dvds 16324 An integer is 1 modulo 2 i...
oddnn02np1 16325 A nonnegative integer is o...
oddge22np1 16326 An integer greater than on...
evennn02n 16327 A nonnegative integer is e...
evennn2n 16328 A positive integer is even...
2tp1odd 16329 A number which is twice an...
mulsucdiv2z 16330 An integer multiplied with...
sqoddm1div8z 16331 A squared odd number minus...
2teven 16332 A number which is twice an...
zeo5 16333 An integer is either even ...
evend2 16334 An integer is even iff its...
oddp1d2 16335 An integer is odd iff its ...
zob 16336 Alternate characterization...
oddm1d2 16337 An integer is odd iff its ...
ltoddhalfle 16338 An integer is less than ha...
halfleoddlt 16339 An integer is greater than...
opoe 16340 The sum of two odds is eve...
omoe 16341 The difference of two odds...
opeo 16342 The sum of an odd and an e...
omeo 16343 The difference of an odd a...
z0even 16344 2 divides 0. That means 0...
n2dvds1 16345 2 does not divide 1. That...
n2dvdsm1 16346 2 does not divide -1. Tha...
z2even 16347 2 divides 2. That means 2...
n2dvds3 16348 2 does not divide 3. That...
z4even 16349 2 divides 4. That means 4...
4dvdseven 16350 An integer which is divisi...
m1expe 16351 Exponentiation of -1 by an...
m1expo 16352 Exponentiation of -1 by an...
m1exp1 16353 Exponentiation of negative...
nn0enne 16354 A positive integer is an e...
nn0ehalf 16355 The half of an even nonneg...
nnehalf 16356 The half of an even positi...
nn0onn 16357 An odd nonnegative integer...
nn0o1gt2 16358 An odd nonnegative integer...
nno 16359 An alternate characterizat...
nn0o 16360 An alternate characterizat...
nn0ob 16361 Alternate characterization...
nn0oddm1d2 16362 A positive integer is odd ...
nnoddm1d2 16363 A positive integer is odd ...
sumeven 16364 If every term in a sum is ...
sumodd 16365 If every term in a sum is ...
evensumodd 16366 If every term in a sum wit...
oddsumodd 16367 If every term in a sum wit...
pwp1fsum 16368 The n-th power of a number...
oddpwp1fsum 16369 An odd power of a number i...
divalglem0 16370 Lemma for ~ divalg . (Con...
divalglem1 16371 Lemma for ~ divalg . (Con...
divalglem2 16372 Lemma for ~ divalg . (Con...
divalglem4 16373 Lemma for ~ divalg . (Con...
divalglem5 16374 Lemma for ~ divalg . (Con...
divalglem6 16375 Lemma for ~ divalg . (Con...
divalglem7 16376 Lemma for ~ divalg . (Con...
divalglem8 16377 Lemma for ~ divalg . (Con...
divalglem9 16378 Lemma for ~ divalg . (Con...
divalglem10 16379 Lemma for ~ divalg . (Con...
divalg 16380 The division algorithm (th...
divalgb 16381 Express the division algor...
divalg2 16382 The division algorithm (th...
divalgmod 16383 The result of the ` mod ` ...
divalgmodcl 16384 The result of the ` mod ` ...
modremain 16385 The result of the modulo o...
ndvdssub 16386 Corollary of the division ...
ndvdsadd 16387 Corollary of the division ...
ndvdsp1 16388 Special case of ~ ndvdsadd...
ndvdsi 16389 A quick test for non-divis...
5ndvds3 16390 5 does not divide 3. (Con...
5ndvds6 16391 5 does not divide 6. (Con...
flodddiv4 16392 The floor of an odd intege...
fldivndvdslt 16393 The floor of an integer di...
flodddiv4lt 16394 The floor of an odd number...
flodddiv4t2lthalf 16395 The floor of an odd number...
bitsfval 16400 Expand the definition of t...
bitsval 16401 Expand the definition of t...
bitsval2 16402 Expand the definition of t...
bitsss 16403 The set of bits of an inte...
bitsf 16404 The ` bits ` function is a...
bits0 16405 Value of the zeroth bit. ...
bits0e 16406 The zeroth bit of an even ...
bits0o 16407 The zeroth bit of an odd n...
bitsp1 16408 The ` M + 1 ` -th bit of `...
bitsp1e 16409 The ` M + 1 ` -th bit of `...
bitsp1o 16410 The ` M + 1 ` -th bit of `...
bitsfzolem 16411 Lemma for ~ bitsfzo . (Co...
bitsfzo 16412 The bits of a number are a...
bitsmod 16413 Truncating the bit sequenc...
bitsfi 16414 Every number is associated...
bitscmp 16415 The bit complement of ` N ...
0bits 16416 The bits of zero. (Contri...
m1bits 16417 The bits of negative one. ...
bitsinv1lem 16418 Lemma for ~ bitsinv1 . (C...
bitsinv1 16419 There is an explicit inver...
bitsinv2 16420 There is an explicit inver...
bitsf1ocnv 16421 The ` bits ` function rest...
bitsf1o 16422 The ` bits ` function rest...
bitsf1 16423 The ` bits ` function is a...
2ebits 16424 The bits of a power of two...
bitsinv 16425 The inverse of the ` bits ...
bitsinvp1 16426 Recursive definition of th...
sadadd2lem2 16427 The core of the proof of ~...
sadfval 16429 Define the addition of two...
sadcf 16430 The carry sequence is a se...
sadc0 16431 The initial element of the...
sadcp1 16432 The carry sequence (which ...
sadval 16433 The full adder sequence is...
sadcaddlem 16434 Lemma for ~ sadcadd . (Co...
sadcadd 16435 Non-recursive definition o...
sadadd2lem 16436 Lemma for ~ sadadd2 . (Co...
sadadd2 16437 Sum of initial segments of...
sadadd3 16438 Sum of initial segments of...
sadcl 16439 The sum of two sequences i...
sadcom 16440 The adder sequence functio...
saddisjlem 16441 Lemma for ~ sadadd . (Con...
saddisj 16442 The sum of disjoint sequen...
sadaddlem 16443 Lemma for ~ sadadd . (Con...
sadadd 16444 For sequences that corresp...
sadid1 16445 The adder sequence functio...
sadid2 16446 The adder sequence functio...
sadasslem 16447 Lemma for ~ sadass . (Con...
sadass 16448 Sequence addition is assoc...
sadeq 16449 Any element of a sequence ...
bitsres 16450 Restrict the bits of a num...
bitsuz 16451 The bits of a number are a...
bitsshft 16452 Shifting a bit sequence to...
smufval 16454 The multiplication of two ...
smupf 16455 The sequence of partial su...
smup0 16456 The initial element of the...
smupp1 16457 The initial element of the...
smuval 16458 Define the addition of two...
smuval2 16459 The partial sum sequence s...
smupvallem 16460 If ` A ` only has elements...
smucl 16461 The product of two sequenc...
smu01lem 16462 Lemma for ~ smu01 and ~ sm...
smu01 16463 Multiplication of a sequen...
smu02 16464 Multiplication of a sequen...
smupval 16465 Rewrite the elements of th...
smup1 16466 Rewrite ~ smupp1 using onl...
smueqlem 16467 Any element of a sequence ...
smueq 16468 Any element of a sequence ...
smumullem 16469 Lemma for ~ smumul . (Con...
smumul 16470 For sequences that corresp...
gcdval 16473 The value of the ` gcd ` o...
gcd0val 16474 The value, by convention, ...
gcdn0val 16475 The value of the ` gcd ` o...
gcdcllem1 16476 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16477 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16478 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16479 Closure of the ` gcd ` ope...
gcddvds 16480 The gcd of two integers di...
dvdslegcd 16481 An integer which divides b...
nndvdslegcd 16482 A positive integer which d...
gcdcl 16483 Closure of the ` gcd ` ope...
gcdnncl 16484 Closure of the ` gcd ` ope...
gcdcld 16485 Closure of the ` gcd ` ope...
gcd2n0cl 16486 Closure of the ` gcd ` ope...
zeqzmulgcd 16487 An integer is the product ...
divgcdz 16488 An integer divided by the ...
gcdf 16489 Domain and codomain of the...
gcdcom 16490 The ` gcd ` operator is co...
gcdcomd 16491 The ` gcd ` operator is co...
divgcdnn 16492 A positive integer divided...
divgcdnnr 16493 A positive integer divided...
gcdeq0 16494 The gcd of two integers is...
gcdn0gt0 16495 The gcd of two integers is...
gcd0id 16496 The gcd of 0 and an intege...
gcdid0 16497 The gcd of an integer and ...
nn0gcdid0 16498 The gcd of a nonnegative i...
gcdneg 16499 Negating one operand of th...
neggcd 16500 Negating one operand of th...
gcdaddmlem 16501 Lemma for ~ gcdaddm . (Co...
gcdaddm 16502 Adding a multiple of one o...
gcdadd 16503 The GCD of two numbers is ...
gcdid 16504 The gcd of a number and it...
gcd1 16505 The gcd of a number with 1...
gcdabs1 16506 ` gcd ` of the absolute va...
gcdabs2 16507 ` gcd ` of the absolute va...
gcdabs 16508 The gcd of two integers is...
modgcd 16509 The gcd remains unchanged ...
1gcd 16510 The GCD of one and an inte...
gcdmultipled 16511 The greatest common diviso...
gcdmultiplez 16512 The GCD of a multiple of a...
gcdmultiple 16513 The GCD of a multiple of a...
dvdsgcdidd 16514 The greatest common diviso...
6gcd4e2 16515 The greatest common diviso...
bezoutlem1 16516 Lemma for ~ bezout . (Con...
bezoutlem2 16517 Lemma for ~ bezout . (Con...
bezoutlem3 16518 Lemma for ~ bezout . (Con...
bezoutlem4 16519 Lemma for ~ bezout . (Con...
bezout 16520 Bézout's identity: ...
dvdsgcd 16521 An integer which divides e...
dvdsgcdb 16522 Biconditional form of ~ dv...
dfgcd2 16523 Alternate definition of th...
gcdass 16524 Associative law for ` gcd ...
mulgcd 16525 Distribute multiplication ...
absmulgcd 16526 Distribute absolute value ...
mulgcdr 16527 Reverse distribution law f...
gcddiv 16528 Division law for GCD. (Con...
gcdzeq 16529 A positive integer ` A ` i...
gcdeq 16530 ` A ` is equal to its gcd ...
dvdssqim 16531 Unidirectional form of ~ d...
dvdsexpim 16532 If two numbers are divisib...
dvdsmulgcd 16533 A divisibility equivalent ...
rpmulgcd 16534 If ` K ` and ` M ` are rel...
rplpwr 16535 If ` A ` and ` B ` are rel...
rprpwr 16536 If ` A ` and ` B ` are rel...
rppwr 16537 If ` A ` and ` B ` are rel...
nn0rppwr 16538 If ` A ` and ` B ` are rel...
sqgcd 16539 Square distributes over gc...
expgcd 16540 Exponentiation distributes...
nn0expgcd 16541 Exponentiation distributes...
zexpgcd 16542 Exponentiation distributes...
dvdssqlem 16543 Lemma for ~ dvdssq . (Con...
dvdssq 16544 Two numbers are divisible ...
bezoutr 16545 Partial converse to ~ bezo...
bezoutr1 16546 Converse of ~ bezout for w...
nn0seqcvgd 16547 A strictly-decreasing nonn...
seq1st 16548 A sequence whose iteration...
algr0 16549 The value of the algorithm...
algrf 16550 An algorithm is a step fun...
algrp1 16551 The value of the algorithm...
alginv 16552 If ` I ` is an invariant o...
algcvg 16553 One way to prove that an a...
algcvgblem 16554 Lemma for ~ algcvgb . (Co...
algcvgb 16555 Two ways of expressing tha...
algcvga 16556 The countdown function ` C...
algfx 16557 If ` F ` reaches a fixed p...
eucalgval2 16558 The value of the step func...
eucalgval 16559 Euclid's Algorithm ~ eucal...
eucalgf 16560 Domain and codomain of the...
eucalginv 16561 The invariant of the step ...
eucalglt 16562 The second member of the s...
eucalgcvga 16563 Once Euclid's Algorithm ha...
eucalg 16564 Euclid's Algorithm compute...
lcmval 16569 Value of the ` lcm ` opera...
lcmcom 16570 The ` lcm ` operator is co...
lcm0val 16571 The value, by convention, ...
lcmn0val 16572 The value of the ` lcm ` o...
lcmcllem 16573 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16574 Closure of the ` lcm ` ope...
dvdslcm 16575 The lcm of two integers is...
lcmledvds 16576 A positive integer which b...
lcmeq0 16577 The lcm of two integers is...
lcmcl 16578 Closure of the ` lcm ` ope...
gcddvdslcm 16579 The greatest common diviso...
lcmneg 16580 Negating one operand of th...
neglcm 16581 Negating one operand of th...
lcmabs 16582 The lcm of two integers is...
lcmgcdlem 16583 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16584 The product of two numbers...
lcmdvds 16585 The lcm of two integers di...
lcmid 16586 The lcm of an integer and ...
lcm1 16587 The lcm of an integer and ...
lcmgcdnn 16588 The product of two positiv...
lcmgcdeq 16589 Two integers' absolute val...
lcmdvdsb 16590 Biconditional form of ~ lc...
lcmass 16591 Associative law for ` lcm ...
3lcm2e6woprm 16592 The least common multiple ...
6lcm4e12 16593 The least common multiple ...
absproddvds 16594 The absolute value of the ...
absprodnn 16595 The absolute value of the ...
fissn0dvds 16596 For each finite subset of ...
fissn0dvdsn0 16597 For each finite subset of ...
lcmfval 16598 Value of the ` _lcm ` func...
lcmf0val 16599 The value, by convention, ...
lcmfn0val 16600 The value of the ` _lcm ` ...
lcmfnnval 16601 The value of the ` _lcm ` ...
lcmfcllem 16602 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16603 Closure of the ` _lcm ` fu...
lcmfpr 16604 The value of the ` _lcm ` ...
lcmfcl 16605 Closure of the ` _lcm ` fu...
lcmfnncl 16606 Closure of the ` _lcm ` fu...
lcmfeq0b 16607 The least common multiple ...
dvdslcmf 16608 The least common multiple ...
lcmfledvds 16609 A positive integer which i...
lcmf 16610 Characterization of the le...
lcmf0 16611 The least common multiple ...
lcmfsn 16612 The least common multiple ...
lcmftp 16613 The least common multiple ...
lcmfunsnlem1 16614 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16615 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16616 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16617 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16618 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16619 The least common multiple ...
lcmfdvdsb 16620 Biconditional form of ~ lc...
lcmfunsn 16621 The ` _lcm ` function for ...
lcmfun 16622 The ` _lcm ` function for ...
lcmfass 16623 Associative law for the ` ...
lcmf2a3a4e12 16624 The least common multiple ...
lcmflefac 16625 The least common multiple ...
coprmgcdb 16626 Two positive integers are ...
ncoprmgcdne1b 16627 Two positive integers are ...
ncoprmgcdgt1b 16628 Two positive integers are ...
coprmdvds1 16629 If two positive integers a...
coprmdvds 16630 Euclid's Lemma (see ProofW...
coprmdvds2 16631 If an integer is divisible...
mulgcddvds 16632 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16633 If ` M ` is relatively pri...
qredeq 16634 Two equal reduced fraction...
qredeu 16635 Every rational number has ...
rpmul 16636 If ` K ` is relatively pri...
rpdvds 16637 If ` K ` is relatively pri...
coprmprod 16638 The product of the element...
coprmproddvdslem 16639 Lemma for ~ coprmproddvds ...
coprmproddvds 16640 If a positive integer is d...
congr 16641 Definition of congruence b...
divgcdcoprm0 16642 Integers divided by gcd ar...
divgcdcoprmex 16643 Integers divided by gcd ar...
cncongr1 16644 One direction of the bicon...
cncongr2 16645 The other direction of the...
cncongr 16646 Cancellability of Congruen...
cncongrcoprm 16647 Corollary 1 of Cancellabil...
isprm 16650 The predicate "is a prime ...
prmnn 16651 A prime number is a positi...
prmz 16652 A prime number is an integ...
prmssnn 16653 The prime numbers are a su...
prmex 16654 The set of prime numbers e...
0nprm 16655 0 is not a prime number. ...
1nprm 16656 1 is not a prime number. ...
1idssfct 16657 The positive divisors of a...
isprm2lem 16658 Lemma for ~ isprm2 . (Con...
isprm2 16659 The predicate "is a prime ...
isprm3 16660 The predicate "is a prime ...
isprm4 16661 The predicate "is a prime ...
prmind2 16662 A variation on ~ prmind as...
prmind 16663 Perform induction over the...
dvdsprime 16664 If ` M ` divides a prime, ...
nprm 16665 A product of two integers ...
nprmi 16666 An inference for composite...
dvdsnprmd 16667 If a number is divisible b...
prm2orodd 16668 A prime number is either 2...
2prm 16669 2 is a prime number. (Con...
2mulprm 16670 A multiple of two is prime...
3prm 16671 3 is a prime number. (Con...
4nprm 16672 4 is not a prime number. ...
prmuz2 16673 A prime number is an integ...
prmgt1 16674 A prime number is an integ...
prmm2nn0 16675 Subtracting 2 from a prime...
oddprmgt2 16676 An odd prime is greater th...
oddprmge3 16677 An odd prime is greater th...
ge2nprmge4 16678 A composite integer greate...
sqnprm 16679 A square is never prime. ...
dvdsprm 16680 An integer greater than or...
exprmfct 16681 Every integer greater than...
prmdvdsfz 16682 Each integer greater than ...
nprmdvds1 16683 No prime number divides 1....
isprm5 16684 One need only check prime ...
isprm7 16685 One need only check prime ...
maxprmfct 16686 The set of prime factors o...
divgcdodd 16687 Either ` A / ( A gcd B ) `...
coprm 16688 A prime number either divi...
prmrp 16689 Unequal prime numbers are ...
euclemma 16690 Euclid's lemma. A prime n...
isprm6 16691 A number is prime iff it s...
prmdvdsexp 16692 A prime divides a positive...
prmdvdsexpb 16693 A prime divides a positive...
prmdvdsexpr 16694 If a prime divides a nonne...
prmdvdssq 16695 Condition for a prime divi...
prmexpb 16696 Two positive prime powers ...
prmfac1 16697 The factorial of a number ...
dvdszzq 16698 Divisibility for an intege...
rpexp 16699 If two numbers ` A ` and `...
rpexp1i 16700 Relative primality passes ...
rpexp12i 16701 Relative primality passes ...
prmndvdsfaclt 16702 A prime number does not di...
prmdvdsbc 16703 Condition for a prime numb...
prmdvdsncoprmbd 16704 Two positive integers are ...
ncoprmlnprm 16705 If two positive integers a...
cncongrprm 16706 Corollary 2 of Cancellabil...
isevengcd2 16707 The predicate "is an even ...
isoddgcd1 16708 The predicate "is an odd n...
3lcm2e6 16709 The least common multiple ...
qnumval 16714 Value of the canonical num...
qdenval 16715 Value of the canonical den...
qnumdencl 16716 Lemma for ~ qnumcl and ~ q...
qnumcl 16717 The canonical numerator of...
qdencl 16718 The canonical denominator ...
fnum 16719 Canonical numerator define...
fden 16720 Canonical denominator defi...
qnumdenbi 16721 Two numbers are the canoni...
qnumdencoprm 16722 The canonical representati...
qeqnumdivden 16723 Recover a rational number ...
qmuldeneqnum 16724 Multiplying a rational by ...
divnumden 16725 Calculate the reduced form...
divdenle 16726 Reducing a quotient never ...
qnumgt0 16727 A rational is positive iff...
qgt0numnn 16728 A rational is positive iff...
nn0gcdsq 16729 Squaring commutes with GCD...
zgcdsq 16730 ~ nn0gcdsq extended to int...
numdensq 16731 Squaring a rational square...
numsq 16732 Square commutes with canon...
densq 16733 Square commutes with canon...
qden1elz 16734 A rational is an integer i...
zsqrtelqelz 16735 If an integer has a ration...
nonsq 16736 Any integer strictly betwe...
numdenexp 16737 Elevating a rational numbe...
numexp 16738 Elevating to a nonnegative...
denexp 16739 Elevating to a nonnegative...
phival 16744 Value of the Euler ` phi `...
phicl2 16745 Bounds and closure for the...
phicl 16746 Closure for the value of t...
phibndlem 16747 Lemma for ~ phibnd . (Con...
phibnd 16748 A slightly tighter bound o...
phicld 16749 Closure for the value of t...
phi1 16750 Value of the Euler ` phi `...
dfphi2 16751 Alternate definition of th...
hashdvds 16752 The number of numbers in a...
phiprmpw 16753 Value of the Euler ` phi `...
phiprm 16754 Value of the Euler ` phi `...
crth 16755 The Chinese Remainder Theo...
phimullem 16756 Lemma for ~ phimul . (Con...
phimul 16757 The Euler ` phi ` function...
eulerthlem1 16758 Lemma for ~ eulerth . (Co...
eulerthlem2 16759 Lemma for ~ eulerth . (Co...
eulerth 16760 Euler's theorem, a general...
fermltl 16761 Fermat's little theorem. ...
prmdiv 16762 Show an explicit expressio...
prmdiveq 16763 The modular inverse of ` A...
prmdivdiv 16764 The (modular) inverse of t...
hashgcdlem 16765 A correspondence between e...
dvdsfi 16766 A natural number has finit...
hashgcdeq 16767 Number of initial positive...
phisum 16768 The divisor sum identity o...
odzval 16769 Value of the order functio...
odzcllem 16770 - Lemma for ~ odzcl , show...
odzcl 16771 The order of a group eleme...
odzid 16772 Any element raised to the ...
odzdvds 16773 The only powers of ` A ` t...
odzphi 16774 The order of any group ele...
modprm1div 16775 A prime number divides an ...
m1dvdsndvds 16776 If an integer minus 1 is d...
modprminv 16777 Show an explicit expressio...
modprminveq 16778 The modular inverse of ` A...
vfermltl 16779 Variant of Fermat's little...
vfermltlALT 16780 Alternate proof of ~ vferm...
powm2modprm 16781 If an integer minus 1 is d...
reumodprminv 16782 For any prime number and f...
modprm0 16783 For two positive integers ...
nnnn0modprm0 16784 For a positive integer and...
modprmn0modprm0 16785 For an integer not being 0...
coprimeprodsq 16786 If three numbers are copri...
coprimeprodsq2 16787 If three numbers are copri...
oddprm 16788 A prime not equal to ` 2 `...
nnoddn2prm 16789 A prime not equal to ` 2 `...
oddn2prm 16790 A prime not equal to ` 2 `...
nnoddn2prmb 16791 A number is a prime number...
prm23lt5 16792 A prime less than 5 is eit...
prm23ge5 16793 A prime is either 2 or 3 o...
pythagtriplem1 16794 Lemma for ~ pythagtrip . ...
pythagtriplem2 16795 Lemma for ~ pythagtrip . ...
pythagtriplem3 16796 Lemma for ~ pythagtrip . ...
pythagtriplem4 16797 Lemma for ~ pythagtrip . ...
pythagtriplem10 16798 Lemma for ~ pythagtrip . ...
pythagtriplem6 16799 Lemma for ~ pythagtrip . ...
pythagtriplem7 16800 Lemma for ~ pythagtrip . ...
pythagtriplem8 16801 Lemma for ~ pythagtrip . ...
pythagtriplem9 16802 Lemma for ~ pythagtrip . ...
pythagtriplem11 16803 Lemma for ~ pythagtrip . ...
pythagtriplem12 16804 Lemma for ~ pythagtrip . ...
pythagtriplem13 16805 Lemma for ~ pythagtrip . ...
pythagtriplem14 16806 Lemma for ~ pythagtrip . ...
pythagtriplem15 16807 Lemma for ~ pythagtrip . ...
pythagtriplem16 16808 Lemma for ~ pythagtrip . ...
pythagtriplem17 16809 Lemma for ~ pythagtrip . ...
pythagtriplem18 16810 Lemma for ~ pythagtrip . ...
pythagtriplem19 16811 Lemma for ~ pythagtrip . ...
pythagtrip 16812 Parameterize the Pythagore...
iserodd 16813 Collect the odd terms in a...
pclem 16816 - Lemma for the prime powe...
pcprecl 16817 Closure of the prime power...
pcprendvds 16818 Non-divisibility property ...
pcprendvds2 16819 Non-divisibility property ...
pcpre1 16820 Value of the prime power p...
pcpremul 16821 Multiplicative property of...
pcval 16822 The value of the prime pow...
pceulem 16823 Lemma for ~ pceu . (Contr...
pceu 16824 Uniqueness for the prime p...
pczpre 16825 Connect the prime count pr...
pczcl 16826 Closure of the prime power...
pccl 16827 Closure of the prime power...
pccld 16828 Closure of the prime power...
pcmul 16829 Multiplication property of...
pcdiv 16830 Division property of the p...
pcqmul 16831 Multiplication property of...
pc0 16832 The value of the prime pow...
pc1 16833 Value of the prime count f...
pcqcl 16834 Closure of the general pri...
pcqdiv 16835 Division property of the p...
pcrec 16836 Prime power of a reciproca...
pcexp 16837 Prime power of an exponent...
pcxnn0cl 16838 Extended nonnegative integ...
pcxcl 16839 Extended real closure of t...
pcge0 16840 The prime count of an inte...
pczdvds 16841 Defining property of the p...
pcdvds 16842 Defining property of the p...
pczndvds 16843 Defining property of the p...
pcndvds 16844 Defining property of the p...
pczndvds2 16845 The remainder after dividi...
pcndvds2 16846 The remainder after dividi...
pcdvdsb 16847 ` P ^ A ` divides ` N ` if...
pcelnn 16848 There are a positive numbe...
pceq0 16849 There are zero powers of a...
pcidlem 16850 The prime count of a prime...
pcid 16851 The prime count of a prime...
pcneg 16852 The prime count of a negat...
pcabs 16853 The prime count of an abso...
pcdvdstr 16854 The prime count increases ...
pcgcd1 16855 The prime count of a GCD i...
pcgcd 16856 The prime count of a GCD i...
pc2dvds 16857 A characterization of divi...
pc11 16858 The prime count function, ...
pcz 16859 The prime count function c...
pcprmpw2 16860 Self-referential expressio...
pcprmpw 16861 Self-referential expressio...
dvdsprmpweq 16862 If a positive integer divi...
dvdsprmpweqnn 16863 If an integer greater than...
dvdsprmpweqle 16864 If a positive integer divi...
difsqpwdvds 16865 If the difference of two s...
pcaddlem 16866 Lemma for ~ pcadd . The o...
pcadd 16867 An inequality for the prim...
pcadd2 16868 The inequality of ~ pcadd ...
pcmptcl 16869 Closure for the prime powe...
pcmpt 16870 Construct a function with ...
pcmpt2 16871 Dividing two prime count m...
pcmptdvds 16872 The partial products of th...
pcprod 16873 The product of the primes ...
sumhash 16874 The sum of 1 over a set is...
fldivp1 16875 The difference between the...
pcfaclem 16876 Lemma for ~ pcfac . (Cont...
pcfac 16877 Calculate the prime count ...
pcbc 16878 Calculate the prime count ...
qexpz 16879 If a power of a rational n...
expnprm 16880 A second or higher power o...
oddprmdvds 16881 Every positive integer whi...
prmpwdvds 16882 A relation involving divis...
pockthlem 16883 Lemma for ~ pockthg . (Co...
pockthg 16884 The generalized Pocklingto...
pockthi 16885 Pocklington's theorem, whi...
unbenlem 16886 Lemma for ~ unben . (Cont...
unben 16887 An unbounded set of positi...
infpnlem1 16888 Lemma for ~ infpn . The s...
infpnlem2 16889 Lemma for ~ infpn . For a...
infpn 16890 There exist infinitely man...
infpn2 16891 There exist infinitely man...
prmunb 16892 The primes are unbounded. ...
prminf 16893 There are an infinite numb...
prmreclem1 16894 Lemma for ~ prmrec . Prop...
prmreclem2 16895 Lemma for ~ prmrec . Ther...
prmreclem3 16896 Lemma for ~ prmrec . The ...
prmreclem4 16897 Lemma for ~ prmrec . Show...
prmreclem5 16898 Lemma for ~ prmrec . Here...
prmreclem6 16899 Lemma for ~ prmrec . If t...
prmrec 16900 The sum of the reciprocals...
1arithlem1 16901 Lemma for ~ 1arith . (Con...
1arithlem2 16902 Lemma for ~ 1arith . (Con...
1arithlem3 16903 Lemma for ~ 1arith . (Con...
1arithlem4 16904 Lemma for ~ 1arith . (Con...
1arith 16905 Fundamental theorem of ari...
1arith2 16906 Fundamental theorem of ari...
elgz 16909 Elementhood in the gaussia...
gzcn 16910 A gaussian integer is a co...
zgz 16911 An integer is a gaussian i...
igz 16912 ` _i ` is a gaussian integ...
gznegcl 16913 The gaussian integers are ...
gzcjcl 16914 The gaussian integers are ...
gzaddcl 16915 The gaussian integers are ...
gzmulcl 16916 The gaussian integers are ...
gzreim 16917 Construct a gaussian integ...
gzsubcl 16918 The gaussian integers are ...
gzabssqcl 16919 The squared norm of a gaus...
4sqlem5 16920 Lemma for ~ 4sq . (Contri...
4sqlem6 16921 Lemma for ~ 4sq . (Contri...
4sqlem7 16922 Lemma for ~ 4sq . (Contri...
4sqlem8 16923 Lemma for ~ 4sq . (Contri...
4sqlem9 16924 Lemma for ~ 4sq . (Contri...
4sqlem10 16925 Lemma for ~ 4sq . (Contri...
4sqlem1 16926 Lemma for ~ 4sq . The set...
4sqlem2 16927 Lemma for ~ 4sq . Change ...
4sqlem3 16928 Lemma for ~ 4sq . Suffici...
4sqlem4a 16929 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16930 Lemma for ~ 4sq . We can ...
mul4sqlem 16931 Lemma for ~ mul4sq : algeb...
mul4sq 16932 Euler's four-square identi...
4sqlem11 16933 Lemma for ~ 4sq . Use the...
4sqlem12 16934 Lemma for ~ 4sq . For any...
4sqlem13 16935 Lemma for ~ 4sq . (Contri...
4sqlem14 16936 Lemma for ~ 4sq . (Contri...
4sqlem15 16937 Lemma for ~ 4sq . (Contri...
4sqlem16 16938 Lemma for ~ 4sq . (Contri...
4sqlem17 16939 Lemma for ~ 4sq . (Contri...
4sqlem18 16940 Lemma for ~ 4sq . Inducti...
4sqlem19 16941 Lemma for ~ 4sq . The pro...
4sq 16942 Lagrange's four-square the...
vdwapfval 16949 Define the arithmetic prog...
vdwapf 16950 The arithmetic progression...
vdwapval 16951 Value of the arithmetic pr...
vdwapun 16952 Remove the first element o...
vdwapid1 16953 The first element of an ar...
vdwap0 16954 Value of a length-1 arithm...
vdwap1 16955 Value of a length-1 arithm...
vdwmc 16956 The predicate " The ` <. R...
vdwmc2 16957 Expand out the definition ...
vdwpc 16958 The predicate " The colori...
vdwlem1 16959 Lemma for ~ vdw . (Contri...
vdwlem2 16960 Lemma for ~ vdw . (Contri...
vdwlem3 16961 Lemma for ~ vdw . (Contri...
vdwlem4 16962 Lemma for ~ vdw . (Contri...
vdwlem5 16963 Lemma for ~ vdw . (Contri...
vdwlem6 16964 Lemma for ~ vdw . (Contri...
vdwlem7 16965 Lemma for ~ vdw . (Contri...
vdwlem8 16966 Lemma for ~ vdw . (Contri...
vdwlem9 16967 Lemma for ~ vdw . (Contri...
vdwlem10 16968 Lemma for ~ vdw . Set up ...
vdwlem11 16969 Lemma for ~ vdw . (Contri...
vdwlem12 16970 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16971 Lemma for ~ vdw . Main in...
vdw 16972 Van der Waerden's theorem....
vdwnnlem1 16973 Corollary of ~ vdw , and l...
vdwnnlem2 16974 Lemma for ~ vdwnn . The s...
vdwnnlem3 16975 Lemma for ~ vdwnn . (Cont...
vdwnn 16976 Van der Waerden's theorem,...
ramtlecl 16978 The set ` T ` of numbers w...
hashbcval 16980 Value of the "binomial set...
hashbccl 16981 The binomial set is a fini...
hashbcss 16982 Subset relation for the bi...
hashbc0 16983 The set of subsets of size...
hashbc2 16984 The size of the binomial s...
0hashbc 16985 There are no subsets of th...
ramval 16986 The value of the Ramsey nu...
ramcl2lem 16987 Lemma for extended real cl...
ramtcl 16988 The Ramsey number has the ...
ramtcl2 16989 The Ramsey number is an in...
ramtub 16990 The Ramsey number is a low...
ramub 16991 The Ramsey number is a low...
ramub2 16992 It is sufficient to check ...
rami 16993 The defining property of a...
ramcl2 16994 The Ramsey number is eithe...
ramxrcl 16995 The Ramsey number is an ex...
ramubcl 16996 If the Ramsey number is up...
ramlb 16997 Establish a lower bound on...
0ram 16998 The Ramsey number when ` M...
0ram2 16999 The Ramsey number when ` M...
ram0 17000 The Ramsey number when ` R...
0ramcl 17001 Lemma for ~ ramcl : Exist...
ramz2 17002 The Ramsey number when ` F...
ramz 17003 The Ramsey number when ` F...
ramub1lem1 17004 Lemma for ~ ramub1 . (Con...
ramub1lem2 17005 Lemma for ~ ramub1 . (Con...
ramub1 17006 Inductive step for Ramsey'...
ramcl 17007 Ramsey's theorem: the Rams...
ramsey 17008 Ramsey's theorem with the ...
prmoval 17011 Value of the primorial fun...
prmocl 17012 Closure of the primorial f...
prmone0 17013 The primorial function is ...
prmo0 17014 The primorial of 0. (Cont...
prmo1 17015 The primorial of 1. (Cont...
prmop1 17016 The primorial of a success...
prmonn2 17017 Value of the primorial fun...
prmo2 17018 The primorial of 2. (Cont...
prmo3 17019 The primorial of 3. (Cont...
prmdvdsprmo 17020 The primorial of a number ...
prmdvdsprmop 17021 The primorial of a number ...
fvprmselelfz 17022 The value of the prime sel...
fvprmselgcd1 17023 The greatest common diviso...
prmolefac 17024 The primorial of a positiv...
prmodvdslcmf 17025 The primorial of a nonnega...
prmolelcmf 17026 The primorial of a positiv...
prmgaplem1 17027 Lemma for ~ prmgap : The ...
prmgaplem2 17028 Lemma for ~ prmgap : The ...
prmgaplcmlem1 17029 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 17030 Lemma for ~ prmgaplcm : T...
prmgaplem3 17031 Lemma for ~ prmgap . (Con...
prmgaplem4 17032 Lemma for ~ prmgap . (Con...
prmgaplem5 17033 Lemma for ~ prmgap : for e...
prmgaplem6 17034 Lemma for ~ prmgap : for e...
prmgaplem7 17035 Lemma for ~ prmgap . (Con...
prmgaplem8 17036 Lemma for ~ prmgap . (Con...
prmgap 17037 The prime gap theorem: for...
prmgaplcm 17038 Alternate proof of ~ prmga...
prmgapprmolem 17039 Lemma for ~ prmgapprmo : ...
prmgapprmo 17040 Alternate proof of ~ prmga...
dec2dvds 17041 Divisibility by two is obv...
dec5dvds 17042 Divisibility by five is ob...
dec5dvds2 17043 Divisibility by five is ob...
dec5nprm 17044 A decimal number greater t...
dec2nprm 17045 A decimal number greater t...
modxai 17046 Add exponents in a power m...
mod2xi 17047 Double exponents in a powe...
modxp1i 17048 Add one to an exponent in ...
mod2xnegi 17049 Version of ~ mod2xi with a...
modsubi 17050 Subtract from within a mod...
gcdi 17051 Calculate a GCD via Euclid...
gcdmodi 17052 Calculate a GCD via Euclid...
numexp0 17053 Calculate an integer power...
numexp1 17054 Calculate an integer power...
numexpp1 17055 Calculate an integer power...
numexp2x 17056 Double an integer power. ...
decsplit0b 17057 Split a decimal number int...
decsplit0 17058 Split a decimal number int...
decsplit1 17059 Split a decimal number int...
decsplit 17060 Split a decimal number int...
karatsuba 17061 The Karatsuba multiplicati...
2exp4 17062 Two to the fourth power is...
2exp5 17063 Two to the fifth power is ...
2exp6 17064 Two to the sixth power is ...
2exp7 17065 Two to the seventh power i...
2exp8 17066 Two to the eighth power is...
2exp11 17067 Two to the eleventh power ...
2exp16 17068 Two to the sixteenth power...
3exp3 17069 Three to the third power i...
2expltfac 17070 The factorial grows faster...
cshwsidrepsw 17071 If cyclically shifting a w...
cshwsidrepswmod0 17072 If cyclically shifting a w...
cshwshashlem1 17073 If cyclically shifting a w...
cshwshashlem2 17074 If cyclically shifting a w...
cshwshashlem3 17075 If cyclically shifting a w...
cshwsdisj 17076 The singletons resulting b...
cshwsiun 17077 The set of (different!) wo...
cshwsex 17078 The class of (different!) ...
cshws0 17079 The size of the set of (di...
cshwrepswhash1 17080 The size of the set of (di...
cshwshashnsame 17081 If a word (not consisting ...
cshwshash 17082 If a word has a length bei...
prmlem0 17083 Lemma for ~ prmlem1 and ~ ...
prmlem1a 17084 A quick proof skeleton to ...
prmlem1 17085 A quick proof skeleton to ...
5prm 17086 5 is a prime number. (Con...
6nprm 17087 6 is not a prime number. ...
7prm 17088 7 is a prime number. (Con...
8nprm 17089 8 is not a prime number. ...
9nprm 17090 9 is not a prime number. ...
10nprm 17091 10 is not a prime number. ...
11prm 17092 11 is a prime number. (Co...
13prm 17093 13 is a prime number. (Co...
17prm 17094 17 is a prime number. (Co...
19prm 17095 19 is a prime number. (Co...
23prm 17096 23 is a prime number. (Co...
prmlem2 17097 Our last proving session g...
37prm 17098 37 is a prime number. (Co...
43prm 17099 43 is a prime number. (Co...
83prm 17100 83 is a prime number. (Co...
139prm 17101 139 is a prime number. (C...
163prm 17102 163 is a prime number. (C...
317prm 17103 317 is a prime number. (C...
631prm 17104 631 is a prime number. (C...
prmo4 17105 The primorial of 4. (Cont...
prmo5 17106 The primorial of 5. (Cont...
prmo6 17107 The primorial of 6. (Cont...
1259lem1 17108 Lemma for ~ 1259prm . Cal...
1259lem2 17109 Lemma for ~ 1259prm . Cal...
1259lem3 17110 Lemma for ~ 1259prm . Cal...
1259lem4 17111 Lemma for ~ 1259prm . Cal...
1259lem5 17112 Lemma for ~ 1259prm . Cal...
1259prm 17113 1259 is a prime number. (...
2503lem1 17114 Lemma for ~ 2503prm . Cal...
2503lem2 17115 Lemma for ~ 2503prm . Cal...
2503lem3 17116 Lemma for ~ 2503prm . Cal...
2503prm 17117 2503 is a prime number. (...
4001lem1 17118 Lemma for ~ 4001prm . Cal...
4001lem2 17119 Lemma for ~ 4001prm . Cal...
4001lem3 17120 Lemma for ~ 4001prm . Cal...
4001lem4 17121 Lemma for ~ 4001prm . Cal...
4001prm 17122 4001 is a prime number. (...
brstruct 17125 The structure relation is ...
isstruct2 17126 The property of being a st...
structex 17127 A structure is a set. (Co...
structn0fun 17128 A structure without the em...
isstruct 17129 The property of being a st...
structcnvcnv 17130 Two ways to express the re...
structfung 17131 The converse of the conver...
structfun 17132 Convert between two kinds ...
structfn 17133 Convert between two kinds ...
strleun 17134 Combine two structures int...
strle1 17135 Make a structure from a si...
strle2 17136 Make a structure from a pa...
strle3 17137 Make a structure from a tr...
sbcie2s 17138 A special version of class...
sbcie3s 17139 A special version of class...
reldmsets 17142 The structure override ope...
setsvalg 17143 Value of the structure rep...
setsval 17144 Value of the structure rep...
fvsetsid 17145 The value of the structure...
fsets 17146 The structure replacement ...
setsdm 17147 The domain of a structure ...
setsfun 17148 A structure with replaceme...
setsfun0 17149 A structure with replaceme...
setsn0fun 17150 The value of the structure...
setsstruct2 17151 An extensible structure wi...
setsexstruct2 17152 An extensible structure wi...
setsstruct 17153 An extensible structure wi...
wunsets 17154 Closure of structure repla...
setsres 17155 The structure replacement ...
setsabs 17156 Replacing the same compone...
setscom 17157 Different components can b...
sloteq 17160 Equality theorem for the `...
slotfn 17161 A slot is a function on se...
strfvnd 17162 Deduction version of ~ str...
strfvn 17163 Value of a structure compo...
strfvss 17164 A structure component extr...
wunstr 17165 Closure of a structure ind...
str0 17166 All components of the empt...
strfvi 17167 Structure slot extractors ...
fveqprc 17168 Lemma for showing the equa...
oveqprc 17169 Lemma for showing the equa...
wunndx 17172 Closure of the index extra...
ndxarg 17173 Get the numeric argument f...
ndxid 17174 A structure component extr...
strndxid 17175 The value of a structure c...
setsidvald 17176 Value of the structure rep...
strfvd 17177 Deduction version of ~ str...
strfv2d 17178 Deduction version of ~ str...
strfv2 17179 A variation on ~ strfv to ...
strfv 17180 Extract a structure compon...
strfv3 17181 Variant on ~ strfv for lar...
strssd 17182 Deduction version of ~ str...
strss 17183 Propagate component extrac...
setsid 17184 Value of the structure rep...
setsnid 17185 Value of the structure rep...
baseval 17188 Value of the base set extr...
baseid 17189 Utility theorem: index-ind...
basfn 17190 The base set extractor is ...
base0 17191 The base set of the empty ...
elbasfv 17192 Utility theorem: reverse c...
elbasov 17193 Utility theorem: reverse c...
strov2rcl 17194 Partial reverse closure fo...
basendx 17195 Index value of the base se...
basendxnn 17196 The index value of the bas...
basndxelwund 17197 The index of the base set ...
basprssdmsets 17198 The pair of the base index...
opelstrbas 17199 The base set of a structur...
1strstr 17200 A constructed one-slot str...
1strbas 17201 The base set of a construc...
1strwunbndx 17202 A constructed one-slot str...
1strwun 17203 A constructed one-slot str...
2strstr 17204 A constructed two-slot str...
2strbas 17205 The base set of a construc...
2strop 17206 The other slot of a constr...
reldmress 17209 The structure restriction ...
ressval 17210 Value of structure restric...
ressid2 17211 General behavior of trivia...
ressval2 17212 Value of nontrivial struct...
ressbas 17213 Base set of a structure re...
ressbasssg 17214 The base set of a restrict...
ressbas2 17215 Base set of a structure re...
ressbasss 17216 The base set of a restrict...
ressbasssOLD 17217 Obsolete version of ~ ress...
ressbasss2 17218 The base set of a restrict...
resseqnbas 17219 The components of an exten...
ress0 17220 All restrictions of the nu...
ressid 17221 Behavior of trivial restri...
ressinbas 17222 Restriction only cares abo...
ressval3d 17223 Value of structure restric...
ressress 17224 Restriction composition la...
ressabs 17225 Restriction absorption law...
wunress 17226 Closure of structure restr...
plusgndx 17253 Index value of the ~ df-pl...
plusgid 17254 Utility theorem: index-ind...
plusgndxnn 17255 The index of the slot for ...
basendxltplusgndx 17256 The index of the slot for ...
basendxnplusgndx 17257 The slot for the base set ...
grpstr 17258 A constructed group is a s...
grpbase 17259 The base set of a construc...
grpplusg 17260 The operation of a constru...
ressplusg 17261 ` +g ` is unaffected by re...
grpbasex 17262 The base of an explicitly ...
grpplusgx 17263 The operation of an explic...
mulrndx 17264 Index value of the ~ df-mu...
mulridx 17265 Utility theorem: index-ind...
basendxnmulrndx 17266 The slot for the base set ...
plusgndxnmulrndx 17267 The slot for the group (ad...
rngstr 17268 A constructed ring is a st...
rngbase 17269 The base set of a construc...
rngplusg 17270 The additive operation of ...
rngmulr 17271 The multiplicative operati...
starvndx 17272 Index value of the ~ df-st...
starvid 17273 Utility theorem: index-ind...
starvndxnbasendx 17274 The slot for the involutio...
starvndxnplusgndx 17275 The slot for the involutio...
starvndxnmulrndx 17276 The slot for the involutio...
ressmulr 17277 ` .r ` is unaffected by re...
ressstarv 17278 ` *r ` is unaffected by re...
srngstr 17279 A constructed star ring is...
srngbase 17280 The base set of a construc...
srngplusg 17281 The addition operation of ...
srngmulr 17282 The multiplication operati...
srnginvl 17283 The involution function of...
scandx 17284 Index value of the ~ df-sc...
scaid 17285 Utility theorem: index-ind...
scandxnbasendx 17286 The slot for the scalar is...
scandxnplusgndx 17287 The slot for the scalar fi...
scandxnmulrndx 17288 The slot for the scalar fi...
vscandx 17289 Index value of the ~ df-vs...
vscaid 17290 Utility theorem: index-ind...
vscandxnbasendx 17291 The slot for the scalar pr...
vscandxnplusgndx 17292 The slot for the scalar pr...
vscandxnmulrndx 17293 The slot for the scalar pr...
vscandxnscandx 17294 The slot for the scalar pr...
lmodstr 17295 A constructed left module ...
lmodbase 17296 The base set of a construc...
lmodplusg 17297 The additive operation of ...
lmodsca 17298 The set of scalars of a co...
lmodvsca 17299 The scalar product operati...
ipndx 17300 Index value of the ~ df-ip...
ipid 17301 Utility theorem: index-ind...
ipndxnbasendx 17302 The slot for the inner pro...
ipndxnplusgndx 17303 The slot for the inner pro...
ipndxnmulrndx 17304 The slot for the inner pro...
slotsdifipndx 17305 The slot for the scalar is...
ipsstr 17306 Lemma to shorten proofs of...
ipsbase 17307 The base set of a construc...
ipsaddg 17308 The additive operation of ...
ipsmulr 17309 The multiplicative operati...
ipssca 17310 The set of scalars of a co...
ipsvsca 17311 The scalar product operati...
ipsip 17312 The multiplicative operati...
resssca 17313 ` Scalar ` is unaffected b...
ressvsca 17314 ` .s ` is unaffected by re...
ressip 17315 The inner product is unaff...
phlstr 17316 A constructed pre-Hilbert ...
phlbase 17317 The base set of a construc...
phlplusg 17318 The additive operation of ...
phlsca 17319 The ring of scalars of a c...
phlvsca 17320 The scalar product operati...
phlip 17321 The inner product (Hermiti...
tsetndx 17322 Index value of the ~ df-ts...
tsetid 17323 Utility theorem: index-ind...
tsetndxnn 17324 The index of the slot for ...
basendxlttsetndx 17325 The index of the slot for ...
tsetndxnbasendx 17326 The slot for the topology ...
tsetndxnplusgndx 17327 The slot for the topology ...
tsetndxnmulrndx 17328 The slot for the topology ...
tsetndxnstarvndx 17329 The slot for the topology ...
slotstnscsi 17330 The slots ` Scalar ` , ` ....
topgrpstr 17331 A constructed topological ...
topgrpbas 17332 The base set of a construc...
topgrpplusg 17333 The additive operation of ...
topgrptset 17334 The topology of a construc...
resstset 17335 ` TopSet ` is unaffected b...
plendx 17336 Index value of the ~ df-pl...
pleid 17337 Utility theorem: self-refe...
plendxnn 17338 The index value of the ord...
basendxltplendx 17339 The index value of the ` B...
plendxnbasendx 17340 The slot for the order is ...
plendxnplusgndx 17341 The slot for the "less tha...
plendxnmulrndx 17342 The slot for the "less tha...
plendxnscandx 17343 The slot for the "less tha...
plendxnvscandx 17344 The slot for the "less tha...
slotsdifplendx 17345 The index of the slot for ...
otpsstr 17346 Functionality of a topolog...
otpsbas 17347 The base set of a topologi...
otpstset 17348 The open sets of a topolog...
otpsle 17349 The order of a topological...
ressle 17350 ` le ` is unaffected by re...
ocndx 17351 Index value of the ~ df-oc...
ocid 17352 Utility theorem: index-ind...
basendxnocndx 17353 The slot for the orthocomp...
plendxnocndx 17354 The slot for the orthocomp...
dsndx 17355 Index value of the ~ df-ds...
dsid 17356 Utility theorem: index-ind...
dsndxnn 17357 The index of the slot for ...
basendxltdsndx 17358 The index of the slot for ...
dsndxnbasendx 17359 The slot for the distance ...
dsndxnplusgndx 17360 The slot for the distance ...
dsndxnmulrndx 17361 The slot for the distance ...
slotsdnscsi 17362 The slots ` Scalar ` , ` ....
dsndxntsetndx 17363 The slot for the distance ...
slotsdifdsndx 17364 The index of the slot for ...
unifndx 17365 Index value of the ~ df-un...
unifid 17366 Utility theorem: index-ind...
unifndxnn 17367 The index of the slot for ...
basendxltunifndx 17368 The index of the slot for ...
unifndxnbasendx 17369 The slot for the uniform s...
unifndxntsetndx 17370 The slot for the uniform s...
slotsdifunifndx 17371 The index of the slot for ...
ressunif 17372 ` UnifSet ` is unaffected ...
odrngstr 17373 Functionality of an ordere...
odrngbas 17374 The base set of an ordered...
odrngplusg 17375 The addition operation of ...
odrngmulr 17376 The multiplication operati...
odrngtset 17377 The open sets of an ordere...
odrngle 17378 The order of an ordered me...
odrngds 17379 The metric of an ordered m...
ressds 17380 ` dist ` is unaffected by ...
homndx 17381 Index value of the ~ df-ho...
homid 17382 Utility theorem: index-ind...
ccondx 17383 Index value of the ~ df-cc...
ccoid 17384 Utility theorem: index-ind...
slotsbhcdif 17385 The slots ` Base ` , ` Hom...
slotsdifplendx2 17386 The index of the slot for ...
slotsdifocndx 17387 The index of the slot for ...
resshom 17388 ` Hom ` is unaffected by r...
ressco 17389 ` comp ` is unaffected by ...
restfn 17394 The subspace topology oper...
topnfn 17395 The topology extractor fun...
restval 17396 The subspace topology indu...
elrest 17397 The predicate "is an open ...
elrestr 17398 Sufficient condition for b...
0rest 17399 Value of the structure res...
restid2 17400 The subspace topology over...
restsspw 17401 The subspace topology is a...
firest 17402 The finite intersections o...
restid 17403 The subspace topology of t...
topnval 17404 Value of the topology extr...
topnid 17405 Value of the topology extr...
topnpropd 17406 The topology extractor fun...
reldmprds 17418 The structure product is a...
prdsbasex 17420 Lemma for structure produc...
imasvalstr 17421 An image structure value i...
prdsvalstr 17422 Structure product value is...
prdsbaslem 17423 Lemma for ~ prdsbas and si...
prdsvallem 17424 Lemma for ~ prdsval . (Co...
prdsval 17425 Value of the structure pro...
prdssca 17426 Scalar ring of a structure...
prdsbas 17427 Base set of a structure pr...
prdsplusg 17428 Addition in a structure pr...
prdsmulr 17429 Multiplication in a struct...
prdsvsca 17430 Scalar multiplication in a...
prdsip 17431 Inner product in a structu...
prdsle 17432 Structure product weak ord...
prdsless 17433 Closure of the order relat...
prdsds 17434 Structure product distance...
prdsdsfn 17435 Structure product distance...
prdstset 17436 Structure product topology...
prdshom 17437 Structure product hom-sets...
prdsco 17438 Structure product composit...
prdsbas2 17439 The base set of a structur...
prdsbasmpt 17440 A constructed tuple is a p...
prdsbasfn 17441 Points in the structure pr...
prdsbasprj 17442 Each point in a structure ...
prdsplusgval 17443 Value of a componentwise s...
prdsplusgfval 17444 Value of a structure produ...
prdsmulrval 17445 Value of a componentwise r...
prdsmulrfval 17446 Value of a structure produ...
prdsleval 17447 Value of the product order...
prdsdsval 17448 Value of the metric in a s...
prdsvscaval 17449 Scalar multiplication in a...
prdsvscafval 17450 Scalar multiplication of a...
prdsbas3 17451 The base set of an indexed...
prdsbasmpt2 17452 A constructed tuple is a p...
prdsbascl 17453 An element of the base has...
prdsdsval2 17454 Value of the metric in a s...
prdsdsval3 17455 Value of the metric in a s...
pwsval 17456 Value of a structure power...
pwsbas 17457 Base set of a structure po...
pwselbasb 17458 Membership in the base set...
pwselbas 17459 An element of a structure ...
pwsplusgval 17460 Value of addition in a str...
pwsmulrval 17461 Value of multiplication in...
pwsle 17462 Ordering in a structure po...
pwsleval 17463 Ordering in a structure po...
pwsvscafval 17464 Scalar multiplication in a...
pwsvscaval 17465 Scalar multiplication of a...
pwssca 17466 The ring of scalars of a s...
pwsdiagel 17467 Membership of diagonal ele...
pwssnf1o 17468 Triviality of singleton po...
imasval 17481 Value of an image structur...
imasbas 17482 The base set of an image s...
imasds 17483 The distance function of a...
imasdsfn 17484 The distance function is a...
imasdsval 17485 The distance function of a...
imasdsval2 17486 The distance function of a...
imasplusg 17487 The group operation in an ...
imasmulr 17488 The ring multiplication in...
imassca 17489 The scalar field of an ima...
imasvsca 17490 The scalar multiplication ...
imasip 17491 The inner product of an im...
imastset 17492 The topology of an image s...
imasle 17493 The ordering of an image s...
f1ocpbllem 17494 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17495 An injection is compatible...
f1ovscpbl 17496 An injection is compatible...
f1olecpbl 17497 An injection is compatible...
imasaddfnlem 17498 The image structure operat...
imasaddvallem 17499 The operation of an image ...
imasaddflem 17500 The image set operations a...
imasaddfn 17501 The image structure's grou...
imasaddval 17502 The value of an image stru...
imasaddf 17503 The image structure's grou...
imasmulfn 17504 The image structure's ring...
imasmulval 17505 The value of an image stru...
imasmulf 17506 The image structure's ring...
imasvscafn 17507 The image structure's scal...
imasvscaval 17508 The value of an image stru...
imasvscaf 17509 The image structure's scal...
imasless 17510 The order relation defined...
imasleval 17511 The value of the image str...
qusval 17512 Value of a quotient struct...
quslem 17513 The function in ~ qusval i...
qusin 17514 Restrict the equivalence r...
qusbas 17515 Base set of a quotient str...
quss 17516 The scalar field of a quot...
divsfval 17517 Value of the function in ~...
ercpbllem 17518 Lemma for ~ ercpbl . (Con...
ercpbl 17519 Translate the function com...
erlecpbl 17520 Translate the relation com...
qusaddvallem 17521 Value of an operation defi...
qusaddflem 17522 The operation of a quotien...
qusaddval 17523 The addition in a quotient...
qusaddf 17524 The addition in a quotient...
qusmulval 17525 The multiplication in a qu...
qusmulf 17526 The multiplication in a qu...
fnpr2o 17527 Function with a domain of ...
fnpr2ob 17528 Biconditional version of ~...
fvpr0o 17529 The value of a function wi...
fvpr1o 17530 The value of a function wi...
fvprif 17531 The value of the pair func...
xpsfrnel 17532 Elementhood in the target ...
xpsfeq 17533 A function on ` 2o ` is de...
xpsfrnel2 17534 Elementhood in the target ...
xpscf 17535 Equivalent condition for t...
xpsfval 17536 The value of the function ...
xpsff1o 17537 The function appearing in ...
xpsfrn 17538 A short expression for the...
xpsff1o2 17539 The function appearing in ...
xpsval 17540 Value of the binary struct...
xpsrnbas 17541 The indexed structure prod...
xpsbas 17542 The base set of the binary...
xpsaddlem 17543 Lemma for ~ xpsadd and ~ x...
xpsadd 17544 Value of the addition oper...
xpsmul 17545 Value of the multiplicatio...
xpssca 17546 Value of the scalar field ...
xpsvsca 17547 Value of the scalar multip...
xpsless 17548 Closure of the ordering in...
xpsle 17549 Value of the ordering in a...
ismre 17558 Property of being a Moore ...
fnmre 17559 The Moore collection gener...
mresspw 17560 A Moore collection is a su...
mress 17561 A Moore-closed subset is a...
mre1cl 17562 In any Moore collection th...
mreintcl 17563 A nonempty collection of c...
mreiincl 17564 A nonempty indexed interse...
mrerintcl 17565 The relative intersection ...
mreriincl 17566 The relative intersection ...
mreincl 17567 Two closed sets have a clo...
mreuni 17568 Since the entire base set ...
mreunirn 17569 Two ways to express the no...
ismred 17570 Properties that determine ...
ismred2 17571 Properties that determine ...
mremre 17572 The Moore collections of s...
submre 17573 The subcollection of a clo...
mrcflem 17574 The domain and codomain of...
fnmrc 17575 Moore-closure is a well-be...
mrcfval 17576 Value of the function expr...
mrcf 17577 The Moore closure is a fun...
mrcval 17578 Evaluation of the Moore cl...
mrccl 17579 The Moore closure of a set...
mrcsncl 17580 The Moore closure of a sin...
mrcid 17581 The closure of a closed se...
mrcssv 17582 The closure of a set is a ...
mrcidb 17583 A set is closed iff it is ...
mrcss 17584 Closure preserves subset o...
mrcssid 17585 The closure of a set is a ...
mrcidb2 17586 A set is closed iff it con...
mrcidm 17587 The closure operation is i...
mrcsscl 17588 The closure is the minimal...
mrcuni 17589 Idempotence of closure und...
mrcun 17590 Idempotence of closure und...
mrcssvd 17591 The Moore closure of a set...
mrcssd 17592 Moore closure preserves su...
mrcssidd 17593 A set is contained in its ...
mrcidmd 17594 Moore closure is idempoten...
mressmrcd 17595 In a Moore system, if a se...
submrc 17596 In a closure system which ...
mrieqvlemd 17597 In a Moore system, if ` Y ...
mrisval 17598 Value of the set of indepe...
ismri 17599 Criterion for a set to be ...
ismri2 17600 Criterion for a subset of ...
ismri2d 17601 Criterion for a subset of ...
ismri2dd 17602 Definition of independence...
mriss 17603 An independent set of a Mo...
mrissd 17604 An independent set of a Mo...
ismri2dad 17605 Consequence of a set in a ...
mrieqvd 17606 In a Moore system, a set i...
mrieqv2d 17607 In a Moore system, a set i...
mrissmrcd 17608 In a Moore system, if an i...
mrissmrid 17609 In a Moore system, subsets...
mreexd 17610 In a Moore system, the clo...
mreexmrid 17611 In a Moore system whose cl...
mreexexlemd 17612 This lemma is used to gene...
mreexexlem2d 17613 Used in ~ mreexexlem4d to ...
mreexexlem3d 17614 Base case of the induction...
mreexexlem4d 17615 Induction step of the indu...
mreexexd 17616 Exchange-type theorem. In...
mreexdomd 17617 In a Moore system whose cl...
mreexfidimd 17618 In a Moore system whose cl...
isacs 17619 A set is an algebraic clos...
acsmre 17620 Algebraic closure systems ...
isacs2 17621 In the definition of an al...
acsfiel 17622 A set is closed in an alge...
acsfiel2 17623 A set is closed in an alge...
acsmred 17624 An algebraic closure syste...
isacs1i 17625 A closure system determine...
mreacs 17626 Algebraicity is a composab...
acsfn 17627 Algebraicity of a conditio...
acsfn0 17628 Algebraicity of a point cl...
acsfn1 17629 Algebraicity of a one-argu...
acsfn1c 17630 Algebraicity of a one-argu...
acsfn2 17631 Algebraicity of a two-argu...
iscat 17640 The predicate "is a catego...
iscatd 17641 Properties that determine ...
catidex 17642 Each object in a category ...
catideu 17643 Each object in a category ...
cidfval 17644 Each object in a category ...
cidval 17645 Each object in a category ...
cidffn 17646 The identity arrow constru...
cidfn 17647 The identity arrow operato...
catidd 17648 Deduce the identity arrow ...
iscatd2 17649 Version of ~ iscatd with a...
catidcl 17650 Each object in a category ...
catlid 17651 Left identity property of ...
catrid 17652 Right identity property of...
catcocl 17653 Closure of a composition a...
catass 17654 Associativity of compositi...
catcone0 17655 Composition of non-empty h...
0catg 17656 Any structure with an empt...
0cat 17657 The empty set is a categor...
homffval 17658 Value of the functionalize...
fnhomeqhomf 17659 If the Hom-set operation i...
homfval 17660 Value of the functionalize...
homffn 17661 The functionalized Hom-set...
homfeq 17662 Condition for two categori...
homfeqd 17663 If two structures have the...
homfeqbas 17664 Deduce equality of base se...
homfeqval 17665 Value of the functionalize...
comfffval 17666 Value of the functionalize...
comffval 17667 Value of the functionalize...
comfval 17668 Value of the functionalize...
comfffval2 17669 Value of the functionalize...
comffval2 17670 Value of the functionalize...
comfval2 17671 Value of the functionalize...
comfffn 17672 The functionalized composi...
comffn 17673 The functionalized composi...
comfeq 17674 Condition for two categori...
comfeqd 17675 Condition for two categori...
comfeqval 17676 Equality of two compositio...
catpropd 17677 Two structures with the sa...
cidpropd 17678 Two structures with the sa...
oppcval 17681 Value of the opposite cate...
oppchomfval 17682 Hom-sets of the opposite c...
oppchom 17683 Hom-sets of the opposite c...
oppccofval 17684 Composition in the opposit...
oppcco 17685 Composition in the opposit...
oppcbas 17686 Base set of an opposite ca...
oppccatid 17687 Lemma for ~ oppccat . (Co...
oppchomf 17688 Hom-sets of the opposite c...
oppcid 17689 Identity function of an op...
oppccat 17690 An opposite category is a ...
2oppcbas 17691 The double opposite catego...
2oppchomf 17692 The double opposite catego...
2oppccomf 17693 The double opposite catego...
oppchomfpropd 17694 If two categories have the...
oppccomfpropd 17695 If two categories have the...
oppccatf 17696 ` oppCat ` restricted to `...
monfval 17701 Definition of a monomorphi...
ismon 17702 Definition of a monomorphi...
ismon2 17703 Write out the monomorphism...
monhom 17704 A monomorphism is a morphi...
moni 17705 Property of a monomorphism...
monpropd 17706 If two categories have the...
oppcmon 17707 A monomorphism in the oppo...
oppcepi 17708 An epimorphism in the oppo...
isepi 17709 Definition of an epimorphi...
isepi2 17710 Write out the epimorphism ...
epihom 17711 An epimorphism is a morphi...
epii 17712 Property of an epimorphism...
sectffval 17719 Value of the section opera...
sectfval 17720 Value of the section relat...
sectss 17721 The section relation is a ...
issect 17722 The property " ` F ` is a ...
issect2 17723 Property of being a sectio...
sectcan 17724 If ` G ` is a section of `...
sectco 17725 Composition of two section...
isofval 17726 Function value of the func...
invffval 17727 Value of the inverse relat...
invfval 17728 Value of the inverse relat...
isinv 17729 Value of the inverse relat...
invss 17730 The inverse relation is a ...
invsym 17731 The inverse relation is sy...
invsym2 17732 The inverse relation is sy...
invfun 17733 The inverse relation is a ...
isoval 17734 The isomorphisms are the d...
inviso1 17735 If ` G ` is an inverse to ...
inviso2 17736 If ` G ` is an inverse to ...
invf 17737 The inverse relation is a ...
invf1o 17738 The inverse relation is a ...
invinv 17739 The inverse of the inverse...
invco 17740 The composition of two iso...
dfiso2 17741 Alternate definition of an...
dfiso3 17742 Alternate definition of an...
inveq 17743 If there are two inverses ...
isofn 17744 The function value of the ...
isohom 17745 An isomorphism is a homomo...
isoco 17746 The composition of two iso...
oppcsect 17747 A section in the opposite ...
oppcsect2 17748 A section in the opposite ...
oppcinv 17749 An inverse in the opposite...
oppciso 17750 An isomorphism in the oppo...
sectmon 17751 If ` F ` is a section of `...
monsect 17752 If ` F ` is a monomorphism...
sectepi 17753 If ` F ` is a section of `...
episect 17754 If ` F ` is an epimorphism...
sectid 17755 The identity is a section ...
invid 17756 The inverse of the identit...
idiso 17757 The identity is an isomorp...
idinv 17758 The inverse of the identit...
invisoinvl 17759 The inverse of an isomorph...
invisoinvr 17760 The inverse of an isomorph...
invcoisoid 17761 The inverse of an isomorph...
isocoinvid 17762 The inverse of an isomorph...
rcaninv 17763 Right cancellation of an i...
cicfval 17766 The set of isomorphic obje...
brcic 17767 The relation "is isomorphi...
cic 17768 Objects ` X ` and ` Y ` in...
brcici 17769 Prove that two objects are...
cicref 17770 Isomorphism is reflexive. ...
ciclcl 17771 Isomorphism implies the le...
cicrcl 17772 Isomorphism implies the ri...
cicsym 17773 Isomorphism is symmetric. ...
cictr 17774 Isomorphism is transitive....
cicer 17775 Isomorphism is an equivale...
sscrel 17782 The subcategory subset rel...
brssc 17783 The subcategory subset rel...
sscpwex 17784 An analogue of ~ pwex for ...
subcrcl 17785 Reverse closure for the su...
sscfn1 17786 The subcategory subset rel...
sscfn2 17787 The subcategory subset rel...
ssclem 17788 Lemma for ~ ssc1 and simil...
isssc 17789 Value of the subcategory s...
ssc1 17790 Infer subset relation on o...
ssc2 17791 Infer subset relation on m...
sscres 17792 Any function restricted to...
sscid 17793 The subcategory subset rel...
ssctr 17794 The subcategory subset rel...
ssceq 17795 The subcategory subset rel...
rescval 17796 Value of the category rest...
rescval2 17797 Value of the category rest...
rescbas 17798 Base set of the category r...
reschom 17799 Hom-sets of the category r...
reschomf 17800 Hom-sets of the category r...
rescco 17801 Composition in the categor...
rescabs 17802 Restriction absorption law...
rescabs2 17803 Restriction absorption law...
issubc 17804 Elementhood in the set of ...
issubc2 17805 Elementhood in the set of ...
0ssc 17806 For any category ` C ` , t...
0subcat 17807 For any category ` C ` , t...
catsubcat 17808 For any category ` C ` , `...
subcssc 17809 An element in the set of s...
subcfn 17810 An element in the set of s...
subcss1 17811 The objects of a subcatego...
subcss2 17812 The morphisms of a subcate...
subcidcl 17813 The identity of the origin...
subccocl 17814 A subcategory is closed un...
subccatid 17815 A subcategory is a categor...
subcid 17816 The identity in a subcateg...
subccat 17817 A subcategory is a categor...
issubc3 17818 Alternate definition of a ...
fullsubc 17819 The full subcategory gener...
fullresc 17820 The category formed by str...
resscat 17821 A category restricted to a...
subsubc 17822 A subcategory of a subcate...
relfunc 17831 The set of functors is a r...
funcrcl 17832 Reverse closure for a func...
isfunc 17833 Value of the set of functo...
isfuncd 17834 Deduce that an operation i...
funcf1 17835 The object part of a funct...
funcixp 17836 The morphism part of a fun...
funcf2 17837 The morphism part of a fun...
funcfn2 17838 The morphism part of a fun...
funcid 17839 A functor maps each identi...
funcco 17840 A functor maps composition...
funcsect 17841 The image of a section und...
funcinv 17842 The image of an inverse un...
funciso 17843 The image of an isomorphis...
funcoppc 17844 A functor on categories yi...
idfuval 17845 Value of the identity func...
idfu2nd 17846 Value of the morphism part...
idfu2 17847 Value of the morphism part...
idfu1st 17848 Value of the object part o...
idfu1 17849 Value of the object part o...
idfucl 17850 The identity functor is a ...
cofuval 17851 Value of the composition o...
cofu1st 17852 Value of the object part o...
cofu1 17853 Value of the object part o...
cofu2nd 17854 Value of the morphism part...
cofu2 17855 Value of the morphism part...
cofuval2 17856 Value of the composition o...
cofucl 17857 The composition of two fun...
cofuass 17858 Functor composition is ass...
cofulid 17859 The identity functor is a ...
cofurid 17860 The identity functor is a ...
resfval 17861 Value of the functor restr...
resfval2 17862 Value of the functor restr...
resf1st 17863 Value of the functor restr...
resf2nd 17864 Value of the functor restr...
funcres 17865 A functor restricted to a ...
funcres2b 17866 Condition for a functor to...
funcres2 17867 A functor into a restricte...
idfusubc0 17868 The identity functor for a...
idfusubc 17869 The identity functor for a...
wunfunc 17870 A weak universe is closed ...
funcpropd 17871 If two categories have the...
funcres2c 17872 Condition for a functor to...
fullfunc 17877 A full functor is a functo...
fthfunc 17878 A faithful functor is a fu...
relfull 17879 The set of full functors i...
relfth 17880 The set of faithful functo...
isfull 17881 Value of the set of full f...
isfull2 17882 Equivalent condition for a...
fullfo 17883 The morphism map of a full...
fulli 17884 The morphism map of a full...
isfth 17885 Value of the set of faithf...
isfth2 17886 Equivalent condition for a...
isffth2 17887 A fully faithful functor i...
fthf1 17888 The morphism map of a fait...
fthi 17889 The morphism map of a fait...
ffthf1o 17890 The morphism map of a full...
fullpropd 17891 If two categories have the...
fthpropd 17892 If two categories have the...
fulloppc 17893 The opposite functor of a ...
fthoppc 17894 The opposite functor of a ...
ffthoppc 17895 The opposite functor of a ...
fthsect 17896 A faithful functor reflect...
fthinv 17897 A faithful functor reflect...
fthmon 17898 A faithful functor reflect...
fthepi 17899 A faithful functor reflect...
ffthiso 17900 A fully faithful functor r...
fthres2b 17901 Condition for a faithful f...
fthres2c 17902 Condition for a faithful f...
fthres2 17903 A faithful functor into a ...
idffth 17904 The identity functor is a ...
cofull 17905 The composition of two ful...
cofth 17906 The composition of two fai...
coffth 17907 The composition of two ful...
rescfth 17908 The inclusion functor from...
ressffth 17909 The inclusion functor from...
fullres2c 17910 Condition for a full funct...
ffthres2c 17911 Condition for a fully fait...
inclfusubc 17912 The "inclusion functor" fr...
fnfuc 17917 The ` FuncCat ` operation ...
natfval 17918 Value of the function givi...
isnat 17919 Property of being a natura...
isnat2 17920 Property of being a natura...
natffn 17921 The natural transformation...
natrcl 17922 Reverse closure for a natu...
nat1st2nd 17923 Rewrite the natural transf...
natixp 17924 A natural transformation i...
natcl 17925 A component of a natural t...
natfn 17926 A natural transformation i...
nati 17927 Naturality property of a n...
wunnat 17928 A weak universe is closed ...
catstr 17929 A category structure is a ...
fucval 17930 Value of the functor categ...
fuccofval 17931 Value of the functor categ...
fucbas 17932 The objects of the functor...
fuchom 17933 The morphisms in the funct...
fucco 17934 Value of the composition o...
fuccoval 17935 Value of the functor categ...
fuccocl 17936 The composition of two nat...
fucidcl 17937 The identity natural trans...
fuclid 17938 Left identity of natural t...
fucrid 17939 Right identity of natural ...
fucass 17940 Associativity of natural t...
fuccatid 17941 The functor category is a ...
fuccat 17942 The functor category is a ...
fucid 17943 The identity morphism in t...
fucsect 17944 Two natural transformation...
fucinv 17945 Two natural transformation...
invfuc 17946 If ` V ( x ) ` is an inver...
fuciso 17947 A natural transformation i...
natpropd 17948 If two categories have the...
fucpropd 17949 If two categories have the...
initofn 17956 ` InitO ` is a function on...
termofn 17957 ` TermO ` is a function on...
zeroofn 17958 ` ZeroO ` is a function on...
initorcl 17959 Reverse closure for an ini...
termorcl 17960 Reverse closure for a term...
zeroorcl 17961 Reverse closure for a zero...
initoval 17962 The value of the initial o...
termoval 17963 The value of the terminal ...
zerooval 17964 The value of the zero obje...
isinito 17965 The predicate "is an initi...
istermo 17966 The predicate "is a termin...
iszeroo 17967 The predicate "is a zero o...
isinitoi 17968 Implication of a class bei...
istermoi 17969 Implication of a class bei...
initoid 17970 For an initial object, the...
termoid 17971 For a terminal object, the...
dfinito2 17972 An initial object is a ter...
dftermo2 17973 A terminal object is an in...
dfinito3 17974 An alternate definition of...
dftermo3 17975 An alternate definition of...
initoo 17976 An initial object is an ob...
termoo 17977 A terminal object is an ob...
iszeroi 17978 Implication of a class bei...
2initoinv 17979 Morphisms between two init...
initoeu1 17980 Initial objects are essent...
initoeu1w 17981 Initial objects are essent...
initoeu2lem0 17982 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 17983 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 17984 Lemma 2 for ~ initoeu2 . ...
initoeu2 17985 Initial objects are essent...
2termoinv 17986 Morphisms between two term...
termoeu1 17987 Terminal objects are essen...
termoeu1w 17988 Terminal objects are essen...
homarcl 17997 Reverse closure for an arr...
homafval 17998 Value of the disjointified...
homaf 17999 Functionality of the disjo...
homaval 18000 Value of the disjointified...
elhoma 18001 Value of the disjointified...
elhomai 18002 Produce an arrow from a mo...
elhomai2 18003 Produce an arrow from a mo...
homarcl2 18004 Reverse closure for the do...
homarel 18005 An arrow is an ordered pai...
homa1 18006 The first component of an ...
homahom2 18007 The second component of an...
homahom 18008 The second component of an...
homadm 18009 The domain of an arrow wit...
homacd 18010 The codomain of an arrow w...
homadmcd 18011 Decompose an arrow into do...
arwval 18012 The set of arrows is the u...
arwrcl 18013 The first component of an ...
arwhoma 18014 An arrow is contained in t...
homarw 18015 A hom-set is a subset of t...
arwdm 18016 The domain of an arrow is ...
arwcd 18017 The codomain of an arrow i...
dmaf 18018 The domain function is a f...
cdaf 18019 The codomain function is a...
arwhom 18020 The second component of an...
arwdmcd 18021 Decompose an arrow into do...
idafval 18026 Value of the identity arro...
idaval 18027 Value of the identity arro...
ida2 18028 Morphism part of the ident...
idahom 18029 Domain and codomain of the...
idadm 18030 Domain of the identity arr...
idacd 18031 Codomain of the identity a...
idaf 18032 The identity arrow functio...
coafval 18033 The value of the compositi...
eldmcoa 18034 A pair ` <. G , F >. ` is ...
dmcoass 18035 The domain of composition ...
homdmcoa 18036 If ` F : X --> Y ` and ` G...
coaval 18037 Value of composition for c...
coa2 18038 The morphism part of arrow...
coahom 18039 The composition of two com...
coapm 18040 Composition of arrows is a...
arwlid 18041 Left identity of a categor...
arwrid 18042 Right identity of a catego...
arwass 18043 Associativity of compositi...
setcval 18046 Value of the category of s...
setcbas 18047 Set of objects of the cate...
setchomfval 18048 Set of arrows of the categ...
setchom 18049 Set of arrows of the categ...
elsetchom 18050 A morphism of sets is a fu...
setccofval 18051 Composition in the categor...
setcco 18052 Composition in the categor...
setccatid 18053 Lemma for ~ setccat . (Co...
setccat 18054 The category of sets is a ...
setcid 18055 The identity arrow in the ...
setcmon 18056 A monomorphism of sets is ...
setcepi 18057 An epimorphism of sets is ...
setcsect 18058 A section in the category ...
setcinv 18059 An inverse in the category...
setciso 18060 An isomorphism in the cate...
resssetc 18061 The restriction of the cat...
funcsetcres2 18062 A functor into a smaller c...
setc2obas 18063 ` (/) ` and ` 1o ` are dis...
setc2ohom 18064 ` ( SetCat `` 2o ) ` is a ...
cat1lem 18065 The category of sets in a ...
cat1 18066 The definition of category...
catcval 18069 Value of the category of c...
catcbas 18070 Set of objects of the cate...
catchomfval 18071 Set of arrows of the categ...
catchom 18072 Set of arrows of the categ...
catccofval 18073 Composition in the categor...
catcco 18074 Composition in the categor...
catccatid 18075 Lemma for ~ catccat . (Co...
catcid 18076 The identity arrow in the ...
catccat 18077 The category of categories...
resscatc 18078 The restriction of the cat...
catcisolem 18079 Lemma for ~ catciso . (Co...
catciso 18080 A functor is an isomorphis...
catcbascl 18081 An element of the base set...
catcslotelcl 18082 A slot entry of an element...
catcbaselcl 18083 The base set of an element...
catchomcl 18084 The Hom-set of an element ...
catcccocl 18085 The composition operation ...
catcoppccl 18086 The category of categories...
catcfuccl 18087 The category of categories...
fncnvimaeqv 18088 The inverse images of the ...
bascnvimaeqv 18089 The inverse image of the u...
estrcval 18092 Value of the category of e...
estrcbas 18093 Set of objects of the cate...
estrchomfval 18094 Set of morphisms ("arrows"...
estrchom 18095 The morphisms between exte...
elestrchom 18096 A morphism between extensi...
estrccofval 18097 Composition in the categor...
estrcco 18098 Composition in the categor...
estrcbasbas 18099 An element of the base set...
estrccatid 18100 Lemma for ~ estrccat . (C...
estrccat 18101 The category of extensible...
estrcid 18102 The identity arrow in the ...
estrchomfn 18103 The Hom-set operation in t...
estrchomfeqhom 18104 The functionalized Hom-set...
estrreslem1 18105 Lemma 1 for ~ estrres . (...
estrreslem2 18106 Lemma 2 for ~ estrres . (...
estrres 18107 Any restriction of a categ...
funcestrcsetclem1 18108 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 18109 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 18110 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 18111 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 18112 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 18113 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 18114 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 18115 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 18116 Lemma 9 for ~ funcestrcset...
funcestrcsetc 18117 The "natural forgetful fun...
fthestrcsetc 18118 The "natural forgetful fun...
fullestrcsetc 18119 The "natural forgetful fun...
equivestrcsetc 18120 The "natural forgetful fun...
setc1strwun 18121 A constructed one-slot str...
funcsetcestrclem1 18122 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 18123 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 18124 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 18125 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 18126 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 18127 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 18128 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 18129 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 18130 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 18131 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 18132 The "embedding functor" fr...
fthsetcestrc 18133 The "embedding functor" fr...
fullsetcestrc 18134 The "embedding functor" fr...
embedsetcestrc 18135 The "embedding functor" fr...
fnxpc 18144 The binary product of cate...
xpcval 18145 Value of the binary produc...
xpcbas 18146 Set of objects of the bina...
xpchomfval 18147 Set of morphisms of the bi...
xpchom 18148 Set of morphisms of the bi...
relxpchom 18149 A hom-set in the binary pr...
xpccofval 18150 Value of composition in th...
xpcco 18151 Value of composition in th...
xpcco1st 18152 Value of composition in th...
xpcco2nd 18153 Value of composition in th...
xpchom2 18154 Value of the set of morphi...
xpcco2 18155 Value of composition in th...
xpccatid 18156 The product of two categor...
xpcid 18157 The identity morphism in t...
xpccat 18158 The product of two categor...
1stfval 18159 Value of the first project...
1stf1 18160 Value of the first project...
1stf2 18161 Value of the first project...
2ndfval 18162 Value of the first project...
2ndf1 18163 Value of the first project...
2ndf2 18164 Value of the first project...
1stfcl 18165 The first projection funct...
2ndfcl 18166 The second projection func...
prfval 18167 Value of the pairing funct...
prf1 18168 Value of the pairing funct...
prf2fval 18169 Value of the pairing funct...
prf2 18170 Value of the pairing funct...
prfcl 18171 The pairing of functors ` ...
prf1st 18172 Cancellation of pairing wi...
prf2nd 18173 Cancellation of pairing wi...
1st2ndprf 18174 Break a functor into a pro...
catcxpccl 18175 The category of categories...
xpcpropd 18176 If two categories have the...
evlfval 18185 Value of the evaluation fu...
evlf2 18186 Value of the evaluation fu...
evlf2val 18187 Value of the evaluation na...
evlf1 18188 Value of the evaluation fu...
evlfcllem 18189 Lemma for ~ evlfcl . (Con...
evlfcl 18190 The evaluation functor is ...
curfval 18191 Value of the curry functor...
curf1fval 18192 Value of the object part o...
curf1 18193 Value of the object part o...
curf11 18194 Value of the double evalua...
curf12 18195 The partially evaluated cu...
curf1cl 18196 The partially evaluated cu...
curf2 18197 Value of the curry functor...
curf2val 18198 Value of a component of th...
curf2cl 18199 The curry functor at a mor...
curfcl 18200 The curry functor of a fun...
curfpropd 18201 If two categories have the...
uncfval 18202 Value of the uncurry funct...
uncfcl 18203 The uncurry operation take...
uncf1 18204 Value of the uncurry funct...
uncf2 18205 Value of the uncurry funct...
curfuncf 18206 Cancellation of curry with...
uncfcurf 18207 Cancellation of uncurry wi...
diagval 18208 Define the diagonal functo...
diagcl 18209 The diagonal functor is a ...
diag1cl 18210 The constant functor of ` ...
diag11 18211 Value of the constant func...
diag12 18212 Value of the constant func...
diag2 18213 Value of the diagonal func...
diag2cl 18214 The diagonal functor at a ...
curf2ndf 18215 As shown in ~ diagval , th...
hofval 18220 Value of the Hom functor, ...
hof1fval 18221 The object part of the Hom...
hof1 18222 The object part of the Hom...
hof2fval 18223 The morphism part of the H...
hof2val 18224 The morphism part of the H...
hof2 18225 The morphism part of the H...
hofcllem 18226 Lemma for ~ hofcl . (Cont...
hofcl 18227 Closure of the Hom functor...
oppchofcl 18228 Closure of the opposite Ho...
yonval 18229 Value of the Yoneda embedd...
yoncl 18230 The Yoneda embedding is a ...
yon1cl 18231 The Yoneda embedding at an...
yon11 18232 Value of the Yoneda embedd...
yon12 18233 Value of the Yoneda embedd...
yon2 18234 Value of the Yoneda embedd...
hofpropd 18235 If two categories have the...
yonpropd 18236 If two categories have the...
oppcyon 18237 Value of the opposite Yone...
oyoncl 18238 The opposite Yoneda embedd...
oyon1cl 18239 The opposite Yoneda embedd...
yonedalem1 18240 Lemma for ~ yoneda . (Con...
yonedalem21 18241 Lemma for ~ yoneda . (Con...
yonedalem3a 18242 Lemma for ~ yoneda . (Con...
yonedalem4a 18243 Lemma for ~ yoneda . (Con...
yonedalem4b 18244 Lemma for ~ yoneda . (Con...
yonedalem4c 18245 Lemma for ~ yoneda . (Con...
yonedalem22 18246 Lemma for ~ yoneda . (Con...
yonedalem3b 18247 Lemma for ~ yoneda . (Con...
yonedalem3 18248 Lemma for ~ yoneda . (Con...
yonedainv 18249 The Yoneda Lemma with expl...
yonffthlem 18250 Lemma for ~ yonffth . (Co...
yoneda 18251 The Yoneda Lemma. There i...
yonffth 18252 The Yoneda Lemma. The Yon...
yoniso 18253 If the codomain is recover...
oduval 18256 Value of an order dual str...
oduleval 18257 Value of the less-equal re...
oduleg 18258 Truth of the less-equal re...
odubas 18259 Base set of an order dual ...
isprs 18264 Property of being a preord...
prslem 18265 Lemma for ~ prsref and ~ p...
prsref 18266 "Less than or equal to" is...
prstr 18267 "Less than or equal to" is...
oduprs 18268 Being a proset is a self-d...
isdrs 18269 Property of being a direct...
drsdir 18270 Direction of a directed se...
drsprs 18271 A directed set is a proset...
drsbn0 18272 The base of a directed set...
drsdirfi 18273 Any _finite_ number of ele...
isdrs2 18274 Directed sets may be defin...
ispos 18282 The predicate "is a poset"...
ispos2 18283 A poset is an antisymmetri...
posprs 18284 A poset is a proset. (Con...
posi 18285 Lemma for poset properties...
posref 18286 A poset ordering is reflex...
posasymb 18287 A poset ordering is asymme...
postr 18288 A poset ordering is transi...
0pos 18289 Technical lemma to simplif...
isposd 18290 Properties that determine ...
isposi 18291 Properties that determine ...
isposix 18292 Properties that determine ...
pospropd 18293 Posethood is determined on...
odupos 18294 Being a poset is a self-du...
oduposb 18295 Being a poset is a self-du...
pltfval 18297 Value of the less-than rel...
pltval 18298 Less-than relation. ( ~ d...
pltle 18299 "Less than" implies "less ...
pltne 18300 The "less than" relation i...
pltirr 18301 The "less than" relation i...
pleval2i 18302 One direction of ~ pleval2...
pleval2 18303 "Less than or equal to" in...
pltnle 18304 "Less than" implies not co...
pltval3 18305 Alternate expression for t...
pltnlt 18306 The less-than relation imp...
pltn2lp 18307 The less-than relation has...
plttr 18308 The less-than relation is ...
pltletr 18309 Transitive law for chained...
plelttr 18310 Transitive law for chained...
pospo 18311 Write a poset structure in...
lubfval 18316 Value of the least upper b...
lubdm 18317 Domain of the least upper ...
lubfun 18318 The LUB is a function. (C...
lubeldm 18319 Member of the domain of th...
lubelss 18320 A member of the domain of ...
lubeu 18321 Unique existence proper of...
lubval 18322 Value of the least upper b...
lubcl 18323 The least upper bound func...
lubprop 18324 Properties of greatest low...
luble 18325 The greatest lower bound i...
lublecllem 18326 Lemma for ~ lublecl and ~ ...
lublecl 18327 The set of all elements le...
lubid 18328 The LUB of elements less t...
glbfval 18329 Value of the greatest lowe...
glbdm 18330 Domain of the greatest low...
glbfun 18331 The GLB is a function. (C...
glbeldm 18332 Member of the domain of th...
glbelss 18333 A member of the domain of ...
glbeu 18334 Unique existence proper of...
glbval 18335 Value of the greatest lowe...
glbcl 18336 The least upper bound func...
glbprop 18337 Properties of greatest low...
glble 18338 The greatest lower bound i...
joinfval 18339 Value of join function for...
joinfval2 18340 Value of join function for...
joindm 18341 Domain of join function fo...
joindef 18342 Two ways to say that a joi...
joinval 18343 Join value. Since both si...
joincl 18344 Closure of join of element...
joindmss 18345 Subset property of domain ...
joinval2lem 18346 Lemma for ~ joinval2 and ~...
joinval2 18347 Value of join for a poset ...
joineu 18348 Uniqueness of join of elem...
joinlem 18349 Lemma for join properties....
lejoin1 18350 A join's first argument is...
lejoin2 18351 A join's second argument i...
joinle 18352 A join is less than or equ...
meetfval 18353 Value of meet function for...
meetfval2 18354 Value of meet function for...
meetdm 18355 Domain of meet function fo...
meetdef 18356 Two ways to say that a mee...
meetval 18357 Meet value. Since both si...
meetcl 18358 Closure of meet of element...
meetdmss 18359 Subset property of domain ...
meetval2lem 18360 Lemma for ~ meetval2 and ~...
meetval2 18361 Value of meet for a poset ...
meeteu 18362 Uniqueness of meet of elem...
meetlem 18363 Lemma for meet properties....
lemeet1 18364 A meet's first argument is...
lemeet2 18365 A meet's second argument i...
meetle 18366 A meet is less than or equ...
joincomALT 18367 The join of a poset is com...
joincom 18368 The join of a poset is com...
meetcomALT 18369 The meet of a poset is com...
meetcom 18370 The meet of a poset is com...
join0 18371 Lemma for ~ odumeet . (Co...
meet0 18372 Lemma for ~ odujoin . (Co...
odulub 18373 Least upper bounds in a du...
odujoin 18374 Joins in a dual order are ...
oduglb 18375 Greatest lower bounds in a...
odumeet 18376 Meets in a dual order are ...
poslubmo 18377 Least upper bounds in a po...
posglbmo 18378 Greatest lower bounds in a...
poslubd 18379 Properties which determine...
poslubdg 18380 Properties which determine...
posglbdg 18381 Properties which determine...
istos 18384 The predicate "is a toset"...
tosso 18385 Write the totally ordered ...
tospos 18386 A Toset is a Poset. (Cont...
tleile 18387 In a Toset, any two elemen...
tltnle 18388 In a Toset, "less than" is...
p0val 18393 Value of poset zero. (Con...
p1val 18394 Value of poset zero. (Con...
p0le 18395 Any element is less than o...
ple1 18396 Any element is less than o...
islat 18399 The predicate "is a lattic...
odulatb 18400 Being a lattice is self-du...
odulat 18401 Being a lattice is self-du...
latcl2 18402 The join and meet of any t...
latlem 18403 Lemma for lattice properti...
latpos 18404 A lattice is a poset. (Co...
latjcl 18405 Closure of join operation ...
latmcl 18406 Closure of meet operation ...
latref 18407 A lattice ordering is refl...
latasymb 18408 A lattice ordering is asym...
latasym 18409 A lattice ordering is asym...
lattr 18410 A lattice ordering is tran...
latasymd 18411 Deduce equality from latti...
lattrd 18412 A lattice ordering is tran...
latjcom 18413 The join of a lattice comm...
latlej1 18414 A join's first argument is...
latlej2 18415 A join's second argument i...
latjle12 18416 A join is less than or equ...
latleeqj1 18417 "Less than or equal to" in...
latleeqj2 18418 "Less than or equal to" in...
latjlej1 18419 Add join to both sides of ...
latjlej2 18420 Add join to both sides of ...
latjlej12 18421 Add join to both sides of ...
latnlej 18422 An idiom to express that a...
latnlej1l 18423 An idiom to express that a...
latnlej1r 18424 An idiom to express that a...
latnlej2 18425 An idiom to express that a...
latnlej2l 18426 An idiom to express that a...
latnlej2r 18427 An idiom to express that a...
latjidm 18428 Lattice join is idempotent...
latmcom 18429 The join of a lattice comm...
latmle1 18430 A meet is less than or equ...
latmle2 18431 A meet is less than or equ...
latlem12 18432 An element is less than or...
latleeqm1 18433 "Less than or equal to" in...
latleeqm2 18434 "Less than or equal to" in...
latmlem1 18435 Add meet to both sides of ...
latmlem2 18436 Add meet to both sides of ...
latmlem12 18437 Add join to both sides of ...
latnlemlt 18438 Negation of "less than or ...
latnle 18439 Equivalent expressions for...
latmidm 18440 Lattice meet is idempotent...
latabs1 18441 Lattice absorption law. F...
latabs2 18442 Lattice absorption law. F...
latledi 18443 An ortholattice is distrib...
latmlej11 18444 Ordering of a meet and joi...
latmlej12 18445 Ordering of a meet and joi...
latmlej21 18446 Ordering of a meet and joi...
latmlej22 18447 Ordering of a meet and joi...
lubsn 18448 The least upper bound of a...
latjass 18449 Lattice join is associativ...
latj12 18450 Swap 1st and 2nd members o...
latj32 18451 Swap 2nd and 3rd members o...
latj13 18452 Swap 1st and 3rd members o...
latj31 18453 Swap 2nd and 3rd members o...
latjrot 18454 Rotate lattice join of 3 c...
latj4 18455 Rearrangement of lattice j...
latj4rot 18456 Rotate lattice join of 4 c...
latjjdi 18457 Lattice join distributes o...
latjjdir 18458 Lattice join distributes o...
mod1ile 18459 The weak direction of the ...
mod2ile 18460 The weak direction of the ...
latmass 18461 Lattice meet is associativ...
latdisdlem 18462 Lemma for ~ latdisd . (Co...
latdisd 18463 In a lattice, joins distri...
isclat 18466 The predicate "is a comple...
clatpos 18467 A complete lattice is a po...
clatlem 18468 Lemma for properties of a ...
clatlubcl 18469 Any subset of the base set...
clatlubcl2 18470 Any subset of the base set...
clatglbcl 18471 Any subset of the base set...
clatglbcl2 18472 Any subset of the base set...
oduclatb 18473 Being a complete lattice i...
clatl 18474 A complete lattice is a la...
isglbd 18475 Properties that determine ...
lublem 18476 Lemma for the least upper ...
lubub 18477 The LUB of a complete latt...
lubl 18478 The LUB of a complete latt...
lubss 18479 Subset law for least upper...
lubel 18480 An element of a set is les...
lubun 18481 The LUB of a union. (Cont...
clatglb 18482 Properties of greatest low...
clatglble 18483 The greatest lower bound i...
clatleglb 18484 Two ways of expressing "le...
clatglbss 18485 Subset law for greatest lo...
isdlat 18488 Property of being a distri...
dlatmjdi 18489 In a distributive lattice,...
dlatl 18490 A distributive lattice is ...
odudlatb 18491 The dual of a distributive...
dlatjmdi 18492 In a distributive lattice,...
ipostr 18495 The structure of ~ df-ipo ...
ipoval 18496 Value of the inclusion pos...
ipobas 18497 Base set of the inclusion ...
ipolerval 18498 Relation of the inclusion ...
ipotset 18499 Topology of the inclusion ...
ipole 18500 Weak order condition of th...
ipolt 18501 Strict order condition of ...
ipopos 18502 The inclusion poset on a f...
isipodrs 18503 Condition for a family of ...
ipodrscl 18504 Direction by inclusion as ...
ipodrsfi 18505 Finite upper bound propert...
fpwipodrs 18506 The finite subsets of any ...
ipodrsima 18507 The monotone image of a di...
isacs3lem 18508 An algebraic closure syste...
acsdrsel 18509 An algebraic closure syste...
isacs4lem 18510 In a closure system in whi...
isacs5lem 18511 If closure commutes with d...
acsdrscl 18512 In an algebraic closure sy...
acsficl 18513 A closure in an algebraic ...
isacs5 18514 A closure system is algebr...
isacs4 18515 A closure system is algebr...
isacs3 18516 A closure system is algebr...
acsficld 18517 In an algebraic closure sy...
acsficl2d 18518 In an algebraic closure sy...
acsfiindd 18519 In an algebraic closure sy...
acsmapd 18520 In an algebraic closure sy...
acsmap2d 18521 In an algebraic closure sy...
acsinfd 18522 In an algebraic closure sy...
acsdomd 18523 In an algebraic closure sy...
acsinfdimd 18524 In an algebraic closure sy...
acsexdimd 18525 In an algebraic closure sy...
mrelatglb 18526 Greatest lower bounds in a...
mrelatglb0 18527 The empty intersection in ...
mrelatlub 18528 Least upper bounds in a Mo...
mreclatBAD 18529 A Moore space is a complet...
isps 18534 The predicate "is a poset"...
psrel 18535 A poset is a relation. (C...
psref2 18536 A poset is antisymmetric a...
pstr2 18537 A poset is transitive. (C...
pslem 18538 Lemma for ~ psref and othe...
psdmrn 18539 The domain and range of a ...
psref 18540 A poset is reflexive. (Co...
psrn 18541 The range of a poset equal...
psasym 18542 A poset is antisymmetric. ...
pstr 18543 A poset is transitive. (C...
cnvps 18544 The converse of a poset is...
cnvpsb 18545 The converse of a poset is...
psss 18546 Any subset of a partially ...
psssdm2 18547 Field of a subposet. (Con...
psssdm 18548 Field of a subposet. (Con...
istsr 18549 The predicate is a toset. ...
istsr2 18550 The predicate is a toset. ...
tsrlin 18551 A toset is a linear order....
tsrlemax 18552 Two ways of saying a numbe...
tsrps 18553 A toset is a poset. (Cont...
cnvtsr 18554 The converse of a toset is...
tsrss 18555 Any subset of a totally or...
ledm 18556 The domain of ` <_ ` is ` ...
lern 18557 The range of ` <_ ` is ` R...
lefld 18558 The field of the 'less or ...
letsr 18559 The "less than or equal to...
isdir 18564 A condition for a relation...
reldir 18565 A direction is a relation....
dirdm 18566 A direction's domain is eq...
dirref 18567 A direction is reflexive. ...
dirtr 18568 A direction is transitive....
dirge 18569 For any two elements of a ...
tsrdir 18570 A totally ordered set is a...
ismgm 18575 The predicate "is a magma"...
ismgmn0 18576 The predicate "is a magma"...
mgmcl 18577 Closure of the operation o...
isnmgm 18578 A condition for a structur...
mgmsscl 18579 If the base set of a magma...
plusffval 18580 The group addition operati...
plusfval 18581 The group addition operati...
plusfeq 18582 If the addition operation ...
plusffn 18583 The group addition operati...
mgmplusf 18584 The group addition functio...
mgmpropd 18585 If two structures have the...
ismgmd 18586 Deduce a magma from its pr...
issstrmgm 18587 Characterize a substructur...
intopsn 18588 The internal operation for...
mgmb1mgm1 18589 The only magma with a base...
mgm0 18590 Any set with an empty base...
mgm0b 18591 The structure with an empt...
mgm1 18592 The structure with one ele...
opifismgm 18593 A structure with a group a...
mgmidmo 18594 A two-sided identity eleme...
grpidval 18595 The value of the identity ...
grpidpropd 18596 If two structures have the...
fn0g 18597 The group zero extractor i...
0g0 18598 The identity element funct...
ismgmid 18599 The identity element of a ...
mgmidcl 18600 The identity element of a ...
mgmlrid 18601 The identity element of a ...
ismgmid2 18602 Show that a given element ...
lidrideqd 18603 If there is a left and rig...
lidrididd 18604 If there is a left and rig...
grpidd 18605 Deduce the identity elemen...
mgmidsssn0 18606 Property of the set of ide...
grpinvalem 18607 Lemma for ~ grpinva . (Co...
grpinva 18608 Deduce right inverse from ...
grprida 18609 Deduce right identity from...
gsumvalx 18610 Expand out the substitutio...
gsumval 18611 Expand out the substitutio...
gsumpropd 18612 The group sum depends only...
gsumpropd2lem 18613 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18614 A stronger version of ~ gs...
gsummgmpropd 18615 A stronger version of ~ gs...
gsumress 18616 The group sum in a substru...
gsumval1 18617 Value of the group sum ope...
gsum0 18618 Value of the empty group s...
gsumval2a 18619 Value of the group sum ope...
gsumval2 18620 Value of the group sum ope...
gsumsplit1r 18621 Splitting off the rightmos...
gsumprval 18622 Value of the group sum ope...
gsumpr12val 18623 Value of the group sum ope...
mgmhmrcl 18628 Reverse closure of a magma...
submgmrcl 18629 Reverse closure for submag...
ismgmhm 18630 Property of a magma homomo...
mgmhmf 18631 A magma homomorphism is a ...
mgmhmpropd 18632 Magma homomorphism depends...
mgmhmlin 18633 A magma homomorphism prese...
mgmhmf1o 18634 A magma homomorphism is bi...
idmgmhm 18635 The identity homomorphism ...
issubmgm 18636 Expand definition of a sub...
issubmgm2 18637 Submagmas are subsets that...
rabsubmgmd 18638 Deduction for proving that...
submgmss 18639 Submagmas are subsets of t...
submgmid 18640 Every magma is trivially a...
submgmcl 18641 Submagmas are closed under...
submgmmgm 18642 Submagmas are themselves m...
submgmbas 18643 The base set of a submagma...
subsubmgm 18644 A submagma of a submagma i...
resmgmhm 18645 Restriction of a magma hom...
resmgmhm2 18646 One direction of ~ resmgmh...
resmgmhm2b 18647 Restriction of the codomai...
mgmhmco 18648 The composition of magma h...
mgmhmima 18649 The homomorphic image of a...
mgmhmeql 18650 The equalizer of two magma...
submgmacs 18651 Submagmas are an algebraic...
issgrp 18654 The predicate "is a semigr...
issgrpv 18655 The predicate "is a semigr...
issgrpn0 18656 The predicate "is a semigr...
isnsgrp 18657 A condition for a structur...
sgrpmgm 18658 A semigroup is a magma. (...
sgrpass 18659 A semigroup operation is a...
sgrpcl 18660 Closure of the operation o...
sgrp0 18661 Any set with an empty base...
sgrp0b 18662 The structure with an empt...
sgrp1 18663 The structure with one ele...
issgrpd 18664 Deduce a semigroup from it...
sgrppropd 18665 If two structures are sets...
prdsplusgsgrpcl 18666 Structure product pointwis...
prdssgrpd 18667 The product of a family of...
ismnddef 18670 The predicate "is a monoid...
ismnd 18671 The predicate "is a monoid...
isnmnd 18672 A condition for a structur...
sgrpidmnd 18673 A semigroup with an identi...
mndsgrp 18674 A monoid is a semigroup. ...
mndmgm 18675 A monoid is a magma. (Con...
mndcl 18676 Closure of the operation o...
mndass 18677 A monoid operation is asso...
mndid 18678 A monoid has a two-sided i...
mndideu 18679 The two-sided identity ele...
mnd32g 18680 Commutative/associative la...
mnd12g 18681 Commutative/associative la...
mnd4g 18682 Commutative/associative la...
mndidcl 18683 The identity element of a ...
mndbn0 18684 The base set of a monoid i...
hashfinmndnn 18685 A finite monoid has positi...
mndplusf 18686 The group addition operati...
mndlrid 18687 A monoid's identity elemen...
mndlid 18688 The identity element of a ...
mndrid 18689 The identity element of a ...
ismndd 18690 Deduce a monoid from its p...
mndpfo 18691 The addition operation of ...
mndfo 18692 The addition operation of ...
mndpropd 18693 If two structures have the...
mndprop 18694 If two structures have the...
issubmnd 18695 Characterize a submonoid b...
ress0g 18696 ` 0g ` is unaffected by re...
submnd0 18697 The zero of a submonoid is...
mndinvmod 18698 Uniqueness of an inverse e...
mndpsuppss 18699 The support of a mapping o...
mndpsuppfi 18700 The support of a mapping o...
mndpfsupp 18701 A mapping of a scalar mult...
prdsplusgcl 18702 Structure product pointwis...
prdsidlem 18703 Characterization of identi...
prdsmndd 18704 The product of a family of...
prds0g 18705 The identity in a product ...
pwsmnd 18706 The structure power of a m...
pws0g 18707 The identity in a structur...
imasmnd2 18708 The image structure of a m...
imasmnd 18709 The image structure of a m...
imasmndf1 18710 The image of a monoid unde...
xpsmnd 18711 The binary product of mono...
xpsmnd0 18712 The identity element of a ...
mnd1 18713 The (smallest) structure r...
mnd1id 18714 The singleton element of a...
ismhm 18719 Property of a monoid homom...
ismhmd 18720 Deduction version of ~ ism...
mhmrcl1 18721 Reverse closure of a monoi...
mhmrcl2 18722 Reverse closure of a monoi...
mhmf 18723 A monoid homomorphism is a...
ismhm0 18724 Property of a monoid homom...
mhmismgmhm 18725 Each monoid homomorphism i...
mhmpropd 18726 Monoid homomorphism depend...
mhmlin 18727 A monoid homomorphism comm...
mhm0 18728 A monoid homomorphism pres...
idmhm 18729 The identity homomorphism ...
mhmf1o 18730 A monoid homomorphism is b...
mndvcl 18731 Tuple-wise additive closur...
mndvass 18732 Tuple-wise associativity i...
mndvlid 18733 Tuple-wise left identity i...
mndvrid 18734 Tuple-wise right identity ...
mhmvlin 18735 Tuple extension of monoid ...
submrcl 18736 Reverse closure for submon...
issubm 18737 Expand definition of a sub...
issubm2 18738 Submonoids are subsets tha...
issubmndb 18739 The submonoid predicate. ...
issubmd 18740 Deduction for proving a su...
mndissubm 18741 If the base set of a monoi...
resmndismnd 18742 If the base set of a monoi...
submss 18743 Submonoids are subsets of ...
submid 18744 Every monoid is trivially ...
subm0cl 18745 Submonoids contain zero. ...
submcl 18746 Submonoids are closed unde...
submmnd 18747 Submonoids are themselves ...
submbas 18748 The base set of a submonoi...
subm0 18749 Submonoids have the same i...
subsubm 18750 A submonoid of a submonoid...
0subm 18751 The zero submonoid of an a...
insubm 18752 The intersection of two su...
0mhm 18753 The constant zero linear f...
resmhm 18754 Restriction of a monoid ho...
resmhm2 18755 One direction of ~ resmhm2...
resmhm2b 18756 Restriction of the codomai...
mhmco 18757 The composition of monoid ...
mhmimalem 18758 Lemma for ~ mhmima and sim...
mhmima 18759 The homomorphic image of a...
mhmeql 18760 The equalizer of two monoi...
submacs 18761 Submonoids are an algebrai...
mndind 18762 Induction in a monoid. In...
prdspjmhm 18763 A projection from a produc...
pwspjmhm 18764 A projection from a struct...
pwsdiagmhm 18765 Diagonal monoid homomorphi...
pwsco1mhm 18766 Right composition with a f...
pwsco2mhm 18767 Left composition with a mo...
gsumvallem2 18768 Lemma for properties of th...
gsumsubm 18769 Evaluate a group sum in a ...
gsumz 18770 Value of a group sum over ...
gsumwsubmcl 18771 Closure of the composite i...
gsumws1 18772 A singleton composite reco...
gsumwcl 18773 Closure of the composite o...
gsumsgrpccat 18774 Homomorphic property of no...
gsumccat 18775 Homomorphic property of co...
gsumws2 18776 Valuation of a pair in a m...
gsumccatsn 18777 Homomorphic property of co...
gsumspl 18778 The primary purpose of the...
gsumwmhm 18779 Behavior of homomorphisms ...
gsumwspan 18780 The submonoid generated by...
frmdval 18785 Value of the free monoid c...
frmdbas 18786 The base set of a free mon...
frmdelbas 18787 An element of the base set...
frmdplusg 18788 The monoid operation of a ...
frmdadd 18789 Value of the monoid operat...
vrmdfval 18790 The canonical injection fr...
vrmdval 18791 The value of the generatin...
vrmdf 18792 The mapping from the index...
frmdmnd 18793 A free monoid is a monoid....
frmd0 18794 The identity of the free m...
frmdsssubm 18795 The set of words taking va...
frmdgsum 18796 Any word in a free monoid ...
frmdss2 18797 A subset of generators is ...
frmdup1 18798 Any assignment of the gene...
frmdup2 18799 The evaluation map has the...
frmdup3lem 18800 Lemma for ~ frmdup3 . (Co...
frmdup3 18801 Universal property of the ...
efmnd 18804 The monoid of endofunction...
efmndbas 18805 The base set of the monoid...
efmndbasabf 18806 The base set of the monoid...
elefmndbas 18807 Two ways of saying a funct...
elefmndbas2 18808 Two ways of saying a funct...
efmndbasf 18809 Elements in the monoid of ...
efmndhash 18810 The monoid of endofunction...
efmndbasfi 18811 The monoid of endofunction...
efmndfv 18812 The function value of an e...
efmndtset 18813 The topology of the monoid...
efmndplusg 18814 The group operation of a m...
efmndov 18815 The value of the group ope...
efmndcl 18816 The group operation of the...
efmndtopn 18817 The topology of the monoid...
symggrplem 18818 Lemma for ~ symggrp and ~ ...
efmndmgm 18819 The monoid of endofunction...
efmndsgrp 18820 The monoid of endofunction...
ielefmnd 18821 The identity function rest...
efmndid 18822 The identity function rest...
efmndmnd 18823 The monoid of endofunction...
efmnd0nmnd 18824 Even the monoid of endofun...
efmndbas0 18825 The base set of the monoid...
efmnd1hash 18826 The monoid of endofunction...
efmnd1bas 18827 The monoid of endofunction...
efmnd2hash 18828 The monoid of endofunction...
submefmnd 18829 If the base set of a monoi...
sursubmefmnd 18830 The set of surjective endo...
injsubmefmnd 18831 The set of injective endof...
idressubmefmnd 18832 The singleton containing o...
idresefmnd 18833 The structure with the sin...
smndex1ibas 18834 The modulo function ` I ` ...
smndex1iidm 18835 The modulo function ` I ` ...
smndex1gbas 18836 The constant functions ` (...
smndex1gid 18837 The composition of a const...
smndex1igid 18838 The composition of the mod...
smndex1basss 18839 The modulo function ` I ` ...
smndex1bas 18840 The base set of the monoid...
smndex1mgm 18841 The monoid of endofunction...
smndex1sgrp 18842 The monoid of endofunction...
smndex1mndlem 18843 Lemma for ~ smndex1mnd and...
smndex1mnd 18844 The monoid of endofunction...
smndex1id 18845 The modulo function ` I ` ...
smndex1n0mnd 18846 The identity of the monoid...
nsmndex1 18847 The base set ` B ` of the ...
smndex2dbas 18848 The doubling function ` D ...
smndex2dnrinv 18849 The doubling function ` D ...
smndex2hbas 18850 The halving functions ` H ...
smndex2dlinvh 18851 The halving functions ` H ...
mgm2nsgrplem1 18852 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18853 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18854 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18855 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18856 A small magma (with two el...
sgrp2nmndlem1 18857 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18858 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18859 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18860 A small semigroup (with tw...
sgrp2rid2ex 18861 A small semigroup (with tw...
sgrp2nmndlem4 18862 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18863 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18864 A small semigroup (with tw...
mgmnsgrpex 18865 There is a magma which is ...
sgrpnmndex 18866 There is a semigroup which...
sgrpssmgm 18867 The class of all semigroup...
mndsssgrp 18868 The class of all monoids i...
pwmndgplus 18869 The operation of the monoi...
pwmndid 18870 The identity of the monoid...
pwmnd 18871 The power set of a class `...
isgrp 18878 The predicate "is a group"...
grpmnd 18879 A group is a monoid. (Con...
grpcl 18880 Closure of the operation o...
grpass 18881 A group operation is assoc...
grpinvex 18882 Every member of a group ha...
grpideu 18883 The two-sided identity ele...
grpassd 18884 A group operation is assoc...
grpmndd 18885 A group is a monoid. (Con...
grpcld 18886 Closure of the operation o...
grpplusf 18887 The group addition operati...
grpplusfo 18888 The group addition operati...
resgrpplusfrn 18889 The underlying set of a gr...
grppropd 18890 If two structures have the...
grpprop 18891 If two structures have the...
grppropstr 18892 Generalize a specific 2-el...
grpss 18893 Show that a structure exte...
isgrpd2e 18894 Deduce a group from its pr...
isgrpd2 18895 Deduce a group from its pr...
isgrpde 18896 Deduce a group from its pr...
isgrpd 18897 Deduce a group from its pr...
isgrpi 18898 Properties that determine ...
grpsgrp 18899 A group is a semigroup. (...
grpmgmd 18900 A group is a magma, deduct...
dfgrp2 18901 Alternate definition of a ...
dfgrp2e 18902 Alternate definition of a ...
isgrpix 18903 Properties that determine ...
grpidcl 18904 The identity element of a ...
grpbn0 18905 The base set of a group is...
grplid 18906 The identity element of a ...
grprid 18907 The identity element of a ...
grplidd 18908 The identity element of a ...
grpridd 18909 The identity element of a ...
grpn0 18910 A group is not empty. (Co...
hashfingrpnn 18911 A finite group has positiv...
grprcan 18912 Right cancellation law for...
grpinveu 18913 The left inverse element o...
grpid 18914 Two ways of saying that an...
isgrpid2 18915 Properties showing that an...
grpidd2 18916 Deduce the identity elemen...
grpinvfval 18917 The inverse function of a ...
grpinvfvalALT 18918 Shorter proof of ~ grpinvf...
grpinvval 18919 The inverse of a group ele...
grpinvfn 18920 Functionality of the group...
grpinvfvi 18921 The group inverse function...
grpsubfval 18922 Group subtraction (divisio...
grpsubfvalALT 18923 Shorter proof of ~ grpsubf...
grpsubval 18924 Group subtraction (divisio...
grpinvf 18925 The group inversion operat...
grpinvcl 18926 A group element's inverse ...
grpinvcld 18927 A group element's inverse ...
grplinv 18928 The left inverse of a grou...
grprinv 18929 The right inverse of a gro...
grpinvid1 18930 The inverse of a group ele...
grpinvid2 18931 The inverse of a group ele...
isgrpinv 18932 Properties showing that a ...
grplinvd 18933 The left inverse of a grou...
grprinvd 18934 The right inverse of a gro...
grplrinv 18935 In a group, every member h...
grpidinv2 18936 A group's properties using...
grpidinv 18937 A group has a left and rig...
grpinvid 18938 The inverse of the identit...
grplcan 18939 Left cancellation law for ...
grpasscan1 18940 An associative cancellatio...
grpasscan2 18941 An associative cancellatio...
grpidrcan 18942 If right adding an element...
grpidlcan 18943 If left adding an element ...
grpinvinv 18944 Double inverse law for gro...
grpinvcnv 18945 The group inverse is its o...
grpinv11 18946 The group inverse is one-t...
grpinv11OLD 18947 Obsolete version of ~ grpi...
grpinvf1o 18948 The group inverse is a one...
grpinvnz 18949 The inverse of a nonzero g...
grpinvnzcl 18950 The inverse of a nonzero g...
grpsubinv 18951 Subtraction of an inverse....
grplmulf1o 18952 Left multiplication by a g...
grpraddf1o 18953 Right addition by a group ...
grpinvpropd 18954 If two structures have the...
grpidssd 18955 If the base set of a group...
grpinvssd 18956 If the base set of a group...
grpinvadd 18957 The inverse of the group o...
grpsubf 18958 Functionality of group sub...
grpsubcl 18959 Closure of group subtracti...
grpsubrcan 18960 Right cancellation law for...
grpinvsub 18961 Inverse of a group subtrac...
grpinvval2 18962 A ~ df-neg -like equation ...
grpsubid 18963 Subtraction of a group ele...
grpsubid1 18964 Subtraction of the identit...
grpsubeq0 18965 If the difference between ...
grpsubadd0sub 18966 Subtraction expressed as a...
grpsubadd 18967 Relationship between group...
grpsubsub 18968 Double group subtraction. ...
grpaddsubass 18969 Associative-type law for g...
grppncan 18970 Cancellation law for subtr...
grpnpcan 18971 Cancellation law for subtr...
grpsubsub4 18972 Double group subtraction (...
grppnpcan2 18973 Cancellation law for mixed...
grpnpncan 18974 Cancellation law for group...
grpnpncan0 18975 Cancellation law for group...
grpnnncan2 18976 Cancellation law for group...
dfgrp3lem 18977 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18978 Alternate definition of a ...
dfgrp3e 18979 Alternate definition of a ...
grplactfval 18980 The left group action of e...
grplactval 18981 The value of the left grou...
grplactcnv 18982 The left group action of e...
grplactf1o 18983 The left group action of e...
grpsubpropd 18984 Weak property deduction fo...
grpsubpropd2 18985 Strong property deduction ...
grp1 18986 The (smallest) structure r...
grp1inv 18987 The inverse function of th...
prdsinvlem 18988 Characterization of invers...
prdsgrpd 18989 The product of a family of...
prdsinvgd 18990 Negation in a product of g...
pwsgrp 18991 A structure power of a gro...
pwsinvg 18992 Negation in a group power....
pwssub 18993 Subtraction in a group pow...
imasgrp2 18994 The image structure of a g...
imasgrp 18995 The image structure of a g...
imasgrpf1 18996 The image of a group under...
qusgrp2 18997 Prove that a quotient stru...
xpsgrp 18998 The binary product of grou...
xpsinv 18999 Value of the negation oper...
xpsgrpsub 19000 Value of the subtraction o...
mhmlem 19001 Lemma for ~ mhmmnd and ~ g...
mhmid 19002 A surjective monoid morphi...
mhmmnd 19003 The image of a monoid ` G ...
mhmfmhm 19004 The function fulfilling th...
ghmgrp 19005 The image of a group ` G `...
mulgfval 19008 Group multiple (exponentia...
mulgfvalALT 19009 Shorter proof of ~ mulgfva...
mulgval 19010 Value of the group multipl...
mulgfn 19011 Functionality of the group...
mulgfvi 19012 The group multiple operati...
mulg0 19013 Group multiple (exponentia...
mulgnn 19014 Group multiple (exponentia...
ressmulgnn 19015 Values for the group multi...
ressmulgnn0 19016 Values for the group multi...
ressmulgnnd 19017 Values for the group multi...
mulgnngsum 19018 Group multiple (exponentia...
mulgnn0gsum 19019 Group multiple (exponentia...
mulg1 19020 Group multiple (exponentia...
mulgnnp1 19021 Group multiple (exponentia...
mulg2 19022 Group multiple (exponentia...
mulgnegnn 19023 Group multiple (exponentia...
mulgnn0p1 19024 Group multiple (exponentia...
mulgnnsubcl 19025 Closure of the group multi...
mulgnn0subcl 19026 Closure of the group multi...
mulgsubcl 19027 Closure of the group multi...
mulgnncl 19028 Closure of the group multi...
mulgnn0cl 19029 Closure of the group multi...
mulgcl 19030 Closure of the group multi...
mulgneg 19031 Group multiple (exponentia...
mulgnegneg 19032 The inverse of a negative ...
mulgm1 19033 Group multiple (exponentia...
mulgnn0cld 19034 Closure of the group multi...
mulgcld 19035 Deduction associated with ...
mulgaddcomlem 19036 Lemma for ~ mulgaddcom . ...
mulgaddcom 19037 The group multiple operato...
mulginvcom 19038 The group multiple operato...
mulginvinv 19039 The group multiple operato...
mulgnn0z 19040 A group multiple of the id...
mulgz 19041 A group multiple of the id...
mulgnndir 19042 Sum of group multiples, fo...
mulgnn0dir 19043 Sum of group multiples, ge...
mulgdirlem 19044 Lemma for ~ mulgdir . (Co...
mulgdir 19045 Sum of group multiples, ge...
mulgp1 19046 Group multiple (exponentia...
mulgneg2 19047 Group multiple (exponentia...
mulgnnass 19048 Product of group multiples...
mulgnn0ass 19049 Product of group multiples...
mulgass 19050 Product of group multiples...
mulgassr 19051 Reversed product of group ...
mulgmodid 19052 Casting out multiples of t...
mulgsubdir 19053 Distribution of group mult...
mhmmulg 19054 A homomorphism of monoids ...
mulgpropd 19055 Two structures with the sa...
submmulgcl 19056 Closure of the group multi...
submmulg 19057 A group multiple is the sa...
pwsmulg 19058 Value of a group multiple ...
issubg 19065 The subgroup predicate. (...
subgss 19066 A subgroup is a subset. (...
subgid 19067 A group is a subgroup of i...
subggrp 19068 A subgroup is a group. (C...
subgbas 19069 The base of the restricted...
subgrcl 19070 Reverse closure for the su...
subg0 19071 A subgroup of a group must...
subginv 19072 The inverse of an element ...
subg0cl 19073 The group identity is an e...
subginvcl 19074 The inverse of an element ...
subgcl 19075 A subgroup is closed under...
subgsubcl 19076 A subgroup is closed under...
subgsub 19077 The subtraction of element...
subgmulgcl 19078 Closure of the group multi...
subgmulg 19079 A group multiple is the sa...
issubg2 19080 Characterize the subgroups...
issubgrpd2 19081 Prove a subgroup by closur...
issubgrpd 19082 Prove a subgroup by closur...
issubg3 19083 A subgroup is a symmetric ...
issubg4 19084 A subgroup is a nonempty s...
grpissubg 19085 If the base set of a group...
resgrpisgrp 19086 If the base set of a group...
subgsubm 19087 A subgroup is a submonoid....
subsubg 19088 A subgroup of a subgroup i...
subgint 19089 The intersection of a none...
0subg 19090 The zero subgroup of an ar...
0subgOLD 19091 Obsolete version of ~ 0sub...
trivsubgd 19092 The only subgroup of a tri...
trivsubgsnd 19093 The only subgroup of a tri...
isnsg 19094 Property of being a normal...
isnsg2 19095 Weaken the condition of ~ ...
nsgbi 19096 Defining property of a nor...
nsgsubg 19097 A normal subgroup is a sub...
nsgconj 19098 The conjugation of an elem...
isnsg3 19099 A subgroup is normal iff t...
subgacs 19100 Subgroups are an algebraic...
nsgacs 19101 Normal subgroups form an a...
elnmz 19102 Elementhood in the normali...
nmzbi 19103 Defining property of the n...
nmzsubg 19104 The normalizer N_G(S) of a...
ssnmz 19105 A subgroup is a subset of ...
isnsg4 19106 A subgroup is normal iff i...
nmznsg 19107 Any subgroup is a normal s...
0nsg 19108 The zero subgroup is norma...
nsgid 19109 The whole group is a norma...
0idnsgd 19110 The whole group and the ze...
trivnsgd 19111 The only normal subgroup o...
triv1nsgd 19112 A trivial group has exactl...
1nsgtrivd 19113 A group with exactly one n...
releqg 19114 The left coset equivalence...
eqgfval 19115 Value of the subgroup left...
eqgval 19116 Value of the subgroup left...
eqger 19117 The subgroup coset equival...
eqglact 19118 A left coset can be expres...
eqgid 19119 The left coset containing ...
eqgen 19120 Each coset is equipotent t...
eqgcpbl 19121 The subgroup coset equival...
eqg0el 19122 Equivalence class of a quo...
quselbas 19123 Membership in the base set...
quseccl0 19124 Closure of the quotient ma...
qusgrp 19125 If ` Y ` is a normal subgr...
quseccl 19126 Closure of the quotient ma...
qusadd 19127 Value of the group operati...
qus0 19128 Value of the group identit...
qusinv 19129 Value of the group inverse...
qussub 19130 Value of the group subtrac...
ecqusaddd 19131 Addition of equivalence cl...
ecqusaddcl 19132 Closure of the addition in...
lagsubg2 19133 Lagrange's theorem for fin...
lagsubg 19134 Lagrange's theorem for Gro...
eqg0subg 19135 The coset equivalence rela...
eqg0subgecsn 19136 The equivalence classes mo...
qus0subgbas 19137 The base set of a quotient...
qus0subgadd 19138 The addition in a quotient...
cycsubmel 19139 Characterization of an ele...
cycsubmcl 19140 The set of nonnegative int...
cycsubm 19141 The set of nonnegative int...
cyccom 19142 Condition for an operation...
cycsubmcom 19143 The operation of a monoid ...
cycsubggend 19144 The cyclic subgroup genera...
cycsubgcl 19145 The set of integer powers ...
cycsubgss 19146 The cyclic subgroup genera...
cycsubg 19147 The cyclic group generated...
cycsubgcld 19148 The cyclic subgroup genera...
cycsubg2 19149 The subgroup generated by ...
cycsubg2cl 19150 Any multiple of an element...
reldmghm 19153 Lemma for group homomorphi...
isghm 19154 Property of being a homomo...
isghmOLD 19155 Obsolete version of ~ isgh...
isghm3 19156 Property of a group homomo...
ghmgrp1 19157 A group homomorphism is on...
ghmgrp2 19158 A group homomorphism is on...
ghmf 19159 A group homomorphism is a ...
ghmlin 19160 A homomorphism of groups i...
ghmid 19161 A homomorphism of groups p...
ghminv 19162 A homomorphism of groups p...
ghmsub 19163 Linearity of subtraction t...
isghmd 19164 Deduction for a group homo...
ghmmhm 19165 A group homomorphism is a ...
ghmmhmb 19166 Group homomorphisms and mo...
ghmmulg 19167 A group homomorphism prese...
ghmrn 19168 The range of a homomorphis...
0ghm 19169 The constant zero linear f...
idghm 19170 The identity homomorphism ...
resghm 19171 Restriction of a homomorph...
resghm2 19172 One direction of ~ resghm2...
resghm2b 19173 Restriction of the codomai...
ghmghmrn 19174 A group homomorphism from ...
ghmco 19175 The composition of group h...
ghmima 19176 The image of a subgroup un...
ghmpreima 19177 The inverse image of a sub...
ghmeql 19178 The equalizer of two group...
ghmnsgima 19179 The image of a normal subg...
ghmnsgpreima 19180 The inverse image of a nor...
ghmker 19181 The kernel of a homomorphi...
ghmeqker 19182 Two source points map to t...
pwsdiagghm 19183 Diagonal homomorphism into...
f1ghm0to0 19184 If a group homomorphism ` ...
ghmf1 19185 Two ways of saying a group...
kerf1ghm 19186 A group homomorphism ` F `...
ghmf1o 19187 A bijective group homomorp...
conjghm 19188 Conjugation is an automorp...
conjsubg 19189 A conjugated subgroup is a...
conjsubgen 19190 A conjugated subgroup is e...
conjnmz 19191 A subgroup is unchanged un...
conjnmzb 19192 Alternative condition for ...
conjnsg 19193 A normal subgroup is uncha...
qusghm 19194 If ` Y ` is a normal subgr...
ghmpropd 19195 Group homomorphism depends...
gimfn 19200 The group isomorphism func...
isgim 19201 An isomorphism of groups i...
gimf1o 19202 An isomorphism of groups i...
gimghm 19203 An isomorphism of groups i...
isgim2 19204 A group isomorphism is a h...
subggim 19205 Behavior of subgroups unde...
gimcnv 19206 The converse of a group is...
gimco 19207 The composition of group i...
gim0to0 19208 A group isomorphism maps t...
brgic 19209 The relation "is isomorphi...
brgici 19210 Prove isomorphic by an exp...
gicref 19211 Isomorphism is reflexive. ...
giclcl 19212 Isomorphism implies the le...
gicrcl 19213 Isomorphism implies the ri...
gicsym 19214 Isomorphism is symmetric. ...
gictr 19215 Isomorphism is transitive....
gicer 19216 Isomorphism is an equivale...
gicen 19217 Isomorphic groups have equ...
gicsubgen 19218 A less trivial example of ...
ghmqusnsglem1 19219 Lemma for ~ ghmqusnsg . (...
ghmqusnsglem2 19220 Lemma for ~ ghmqusnsg . (...
ghmqusnsg 19221 The mapping ` H ` induced ...
ghmquskerlem1 19222 Lemma for ~ ghmqusker . (...
ghmquskerco 19223 In the case of theorem ~ g...
ghmquskerlem2 19224 Lemma for ~ ghmqusker . (...
ghmquskerlem3 19225 The mapping ` H ` induced ...
ghmqusker 19226 A surjective group homomor...
gicqusker 19227 The image ` H ` of a group...
isga 19230 The predicate "is a (left)...
gagrp 19231 The left argument of a gro...
gaset 19232 The right argument of a gr...
gagrpid 19233 The identity of the group ...
gaf 19234 The mapping of the group a...
gafo 19235 A group action is onto its...
gaass 19236 An "associative" property ...
ga0 19237 The action of a group on t...
gaid 19238 The trivial action of a gr...
subgga 19239 A subgroup acts on its par...
gass 19240 A subset of a group action...
gasubg 19241 The restriction of a group...
gaid2 19242 A group operation is a lef...
galcan 19243 The action of a particular...
gacan 19244 Group inverses cancel in a...
gapm 19245 The action of a particular...
gaorb 19246 The orbit equivalence rela...
gaorber 19247 The orbit equivalence rela...
gastacl 19248 The stabilizer subgroup in...
gastacos 19249 Write the coset relation f...
orbstafun 19250 Existence and uniqueness f...
orbstaval 19251 Value of the function at a...
orbsta 19252 The Orbit-Stabilizer theor...
orbsta2 19253 Relation between the size ...
cntrval 19258 Substitute definition of t...
cntzfval 19259 First level substitution f...
cntzval 19260 Definition substitution fo...
elcntz 19261 Elementhood in the central...
cntzel 19262 Membership in a centralize...
cntzsnval 19263 Special substitution for t...
elcntzsn 19264 Value of the centralizer o...
sscntz 19265 A centralizer expression f...
cntzrcl 19266 Reverse closure for elemen...
cntzssv 19267 The centralizer is uncondi...
cntzi 19268 Membership in a centralize...
elcntr 19269 Elementhood in the center ...
cntrss 19270 The center is a subset of ...
cntri 19271 Defining property of the c...
resscntz 19272 Centralizer in a substruct...
cntzsgrpcl 19273 Centralizers are closed un...
cntz2ss 19274 Centralizers reverse the s...
cntzrec 19275 Reciprocity relationship f...
cntziinsn 19276 Express any centralizer as...
cntzsubm 19277 Centralizers in a monoid a...
cntzsubg 19278 Centralizers in a group ar...
cntzidss 19279 If the elements of ` S ` c...
cntzmhm 19280 Centralizers in a monoid a...
cntzmhm2 19281 Centralizers in a monoid a...
cntrsubgnsg 19282 A central subgroup is norm...
cntrnsg 19283 The center of a group is a...
oppgval 19286 Value of the opposite grou...
oppgplusfval 19287 Value of the addition oper...
oppgplus 19288 Value of the addition oper...
setsplusg 19289 The other components of an...
oppgbas 19290 Base set of an opposite gr...
oppgtset 19291 Topology of an opposite gr...
oppgtopn 19292 Topology of an opposite gr...
oppgmnd 19293 The opposite of a monoid i...
oppgmndb 19294 Bidirectional form of ~ op...
oppgid 19295 Zero in a monoid is a symm...
oppggrp 19296 The opposite of a group is...
oppggrpb 19297 Bidirectional form of ~ op...
oppginv 19298 Inverses in a group are a ...
invoppggim 19299 The inverse is an antiauto...
oppggic 19300 Every group is (naturally)...
oppgsubm 19301 Being a submonoid is a sym...
oppgsubg 19302 Being a subgroup is a symm...
oppgcntz 19303 A centralizer in a group i...
oppgcntr 19304 The center of a group is t...
gsumwrev 19305 A sum in an opposite monoi...
symgval 19308 The value of the symmetric...
symgbas 19309 The base set of the symmet...
elsymgbas2 19310 Two ways of saying a funct...
elsymgbas 19311 Two ways of saying a funct...
symgbasf1o 19312 Elements in the symmetric ...
symgbasf 19313 A permutation (element of ...
symgbasmap 19314 A permutation (element of ...
symghash 19315 The symmetric group on ` n...
symgbasfi 19316 The symmetric group on a f...
symgfv 19317 The function value of a pe...
symgfvne 19318 The function values of a p...
symgressbas 19319 The symmetric group on ` A...
symgplusg 19320 The group operation of a s...
symgov 19321 The value of the group ope...
symgcl 19322 The group operation of the...
idresperm 19323 The identity function rest...
symgmov1 19324 For a permutation of a set...
symgmov2 19325 For a permutation of a set...
symgbas0 19326 The base set of the symmet...
symg1hash 19327 The symmetric group on a s...
symg1bas 19328 The symmetric group on a s...
symg2hash 19329 The symmetric group on a (...
symg2bas 19330 The symmetric group on a p...
0symgefmndeq 19331 The symmetric group on the...
snsymgefmndeq 19332 The symmetric group on a s...
symgpssefmnd 19333 For a set ` A ` with more ...
symgvalstruct 19334 The value of the symmetric...
symgsubmefmnd 19335 The symmetric group on a s...
symgtset 19336 The topology of the symmet...
symggrp 19337 The symmetric group on a s...
symgid 19338 The group identity element...
symginv 19339 The group inverse in the s...
symgsubmefmndALT 19340 The symmetric group on a s...
galactghm 19341 The currying of a group ac...
lactghmga 19342 The converse of ~ galactgh...
symgtopn 19343 The topology of the symmet...
symgga 19344 The symmetric group induce...
pgrpsubgsymgbi 19345 Every permutation group is...
pgrpsubgsymg 19346 Every permutation group is...
idressubgsymg 19347 The singleton containing o...
idrespermg 19348 The structure with the sin...
cayleylem1 19349 Lemma for ~ cayley . (Con...
cayleylem2 19350 Lemma for ~ cayley . (Con...
cayley 19351 Cayley's Theorem (construc...
cayleyth 19352 Cayley's Theorem (existenc...
symgfix2 19353 If a permutation does not ...
symgextf 19354 The extension of a permuta...
symgextfv 19355 The function value of the ...
symgextfve 19356 The function value of the ...
symgextf1lem 19357 Lemma for ~ symgextf1 . (...
symgextf1 19358 The extension of a permuta...
symgextfo 19359 The extension of a permuta...
symgextf1o 19360 The extension of a permuta...
symgextsymg 19361 The extension of a permuta...
symgextres 19362 The restriction of the ext...
gsumccatsymgsn 19363 Homomorphic property of co...
gsmsymgrfixlem1 19364 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 19365 The composition of permuta...
fvcosymgeq 19366 The values of two composit...
gsmsymgreqlem1 19367 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 19368 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 19369 Two combination of permuta...
symgfixelq 19370 A permutation of a set fix...
symgfixels 19371 The restriction of a permu...
symgfixelsi 19372 The restriction of a permu...
symgfixf 19373 The mapping of a permutati...
symgfixf1 19374 The mapping of a permutati...
symgfixfolem1 19375 Lemma 1 for ~ symgfixfo . ...
symgfixfo 19376 The mapping of a permutati...
symgfixf1o 19377 The mapping of a permutati...
f1omvdmvd 19380 A permutation of any class...
f1omvdcnv 19381 A permutation and its inve...
mvdco 19382 Composing two permutations...
f1omvdconj 19383 Conjugation of a permutati...
f1otrspeq 19384 A transposition is charact...
f1omvdco2 19385 If exactly one of two perm...
f1omvdco3 19386 If a point is moved by exa...
pmtrfval 19387 The function generating tr...
pmtrval 19388 A generated transposition,...
pmtrfv 19389 General value of mapping a...
pmtrprfv 19390 In a transposition of two ...
pmtrprfv3 19391 In a transposition of two ...
pmtrf 19392 Functionality of a transpo...
pmtrmvd 19393 A transposition moves prec...
pmtrrn 19394 Transposing two points giv...
pmtrfrn 19395 A transposition (as a kind...
pmtrffv 19396 Mapping of a point under a...
pmtrrn2 19397 For any transposition ther...
pmtrfinv 19398 A transposition function i...
pmtrfmvdn0 19399 A transposition moves at l...
pmtrff1o 19400 A transposition function i...
pmtrfcnv 19401 A transposition function i...
pmtrfb 19402 An intrinsic characterizat...
pmtrfconj 19403 Any conjugate of a transpo...
symgsssg 19404 The symmetric group has su...
symgfisg 19405 The symmetric group has a ...
symgtrf 19406 Transpositions are element...
symggen 19407 The span of the transposit...
symggen2 19408 A finite permutation group...
symgtrinv 19409 To invert a permutation re...
pmtr3ncomlem1 19410 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 19411 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 19412 Transpositions over sets w...
pmtrdifellem1 19413 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19414 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19415 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19416 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19417 A transposition of element...
pmtrdifwrdellem1 19418 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19419 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19420 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19421 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19422 A sequence of transpositio...
pmtrdifwrdel2 19423 A sequence of transpositio...
pmtrprfval 19424 The transpositions on a pa...
pmtrprfvalrn 19425 The range of the transposi...
psgnunilem1 19430 Lemma for ~ psgnuni . Giv...
psgnunilem5 19431 Lemma for ~ psgnuni . It ...
psgnunilem2 19432 Lemma for ~ psgnuni . Ind...
psgnunilem3 19433 Lemma for ~ psgnuni . Any...
psgnunilem4 19434 Lemma for ~ psgnuni . An ...
m1expaddsub 19435 Addition and subtraction o...
psgnuni 19436 If the same permutation ca...
psgnfval 19437 Function definition of the...
psgnfn 19438 Functionality and domain o...
psgndmsubg 19439 The finitary permutations ...
psgneldm 19440 Property of being a finita...
psgneldm2 19441 The finitary permutations ...
psgneldm2i 19442 A sequence of transpositio...
psgneu 19443 A finitary permutation has...
psgnval 19444 Value of the permutation s...
psgnvali 19445 A finitary permutation has...
psgnvalii 19446 Any representation of a pe...
psgnpmtr 19447 All transpositions are odd...
psgn0fv0 19448 The permutation sign funct...
sygbasnfpfi 19449 The class of non-fixed poi...
psgnfvalfi 19450 Function definition of the...
psgnvalfi 19451 Value of the permutation s...
psgnran 19452 The range of the permutati...
gsmtrcl 19453 The group sum of transposi...
psgnfitr 19454 A permutation of a finite ...
psgnfieu 19455 A permutation of a finite ...
pmtrsn 19456 The value of the transposi...
psgnsn 19457 The permutation sign funct...
psgnprfval 19458 The permutation sign funct...
psgnprfval1 19459 The permutation sign of th...
psgnprfval2 19460 The permutation sign of th...
odfval 19469 Value of the order functio...
odfvalALT 19470 Shorter proof of ~ odfval ...
odval 19471 Second substitution for th...
odlem1 19472 The group element order is...
odcl 19473 The order of a group eleme...
odf 19474 Functionality of the group...
odid 19475 Any element to the power o...
odlem2 19476 Any positive annihilator o...
odmodnn0 19477 Reduce the argument of a g...
mndodconglem 19478 Lemma for ~ mndodcong . (...
mndodcong 19479 If two multipliers are con...
mndodcongi 19480 If two multipliers are con...
oddvdsnn0 19481 The only multiples of ` A ...
odnncl 19482 If a nonzero multiple of a...
odmod 19483 Reduce the argument of a g...
oddvds 19484 The only multiples of ` A ...
oddvdsi 19485 Any group element is annih...
odcong 19486 If two multipliers are con...
odeq 19487 The ~ oddvds property uniq...
odval2 19488 A non-conditional definiti...
odcld 19489 The order of a group eleme...
odm1inv 19490 The (order-1)th multiple o...
odmulgid 19491 A relationship between the...
odmulg2 19492 The order of a multiple di...
odmulg 19493 Relationship between the o...
odmulgeq 19494 A multiple of a point of f...
odbezout 19495 If ` N ` is coprime to the...
od1 19496 The order of the group ide...
odeq1 19497 The group identity is the ...
odinv 19498 The order of the inverse o...
odf1 19499 The multiples of an elemen...
odinf 19500 The multiples of an elemen...
dfod2 19501 An alternative definition ...
odcl2 19502 The order of an element of...
oddvds2 19503 The order of an element of...
finodsubmsubg 19504 A submonoid whose elements...
0subgALT 19505 A shorter proof of ~ 0subg...
submod 19506 The order of an element is...
subgod 19507 The order of an element is...
odsubdvds 19508 The order of an element of...
odf1o1 19509 An element with zero order...
odf1o2 19510 An element with nonzero or...
odhash 19511 An element of zero order g...
odhash2 19512 If an element has nonzero ...
odhash3 19513 An element which generates...
odngen 19514 A cyclic subgroup of size ...
gexval 19515 Value of the exponent of a...
gexlem1 19516 The group element order is...
gexcl 19517 The exponent of a group is...
gexid 19518 Any element to the power o...
gexlem2 19519 Any positive annihilator o...
gexdvdsi 19520 Any group element is annih...
gexdvds 19521 The only ` N ` that annihi...
gexdvds2 19522 An integer divides the gro...
gexod 19523 Any group element is annih...
gexcl3 19524 If the order of every grou...
gexnnod 19525 Every group element has fi...
gexcl2 19526 The exponent of a finite g...
gexdvds3 19527 The exponent of a finite g...
gex1 19528 A group or monoid has expo...
ispgp 19529 A group is a ` P ` -group ...
pgpprm 19530 Reverse closure for the fi...
pgpgrp 19531 Reverse closure for the se...
pgpfi1 19532 A finite group with order ...
pgp0 19533 The identity subgroup is a...
subgpgp 19534 A subgroup of a p-group is...
sylow1lem1 19535 Lemma for ~ sylow1 . The ...
sylow1lem2 19536 Lemma for ~ sylow1 . The ...
sylow1lem3 19537 Lemma for ~ sylow1 . One ...
sylow1lem4 19538 Lemma for ~ sylow1 . The ...
sylow1lem5 19539 Lemma for ~ sylow1 . Usin...
sylow1 19540 Sylow's first theorem. If...
odcau 19541 Cauchy's theorem for the o...
pgpfi 19542 The converse to ~ pgpfi1 ....
pgpfi2 19543 Alternate version of ~ pgp...
pgphash 19544 The order of a p-group. (...
isslw 19545 The property of being a Sy...
slwprm 19546 Reverse closure for the fi...
slwsubg 19547 A Sylow ` P ` -subgroup is...
slwispgp 19548 Defining property of a Syl...
slwpss 19549 A proper superset of a Syl...
slwpgp 19550 A Sylow ` P ` -subgroup is...
pgpssslw 19551 Every ` P ` -subgroup is c...
slwn0 19552 Every finite group contain...
subgslw 19553 A Sylow subgroup that is c...
sylow2alem1 19554 Lemma for ~ sylow2a . An ...
sylow2alem2 19555 Lemma for ~ sylow2a . All...
sylow2a 19556 A named lemma of Sylow's s...
sylow2blem1 19557 Lemma for ~ sylow2b . Eva...
sylow2blem2 19558 Lemma for ~ sylow2b . Lef...
sylow2blem3 19559 Sylow's second theorem. P...
sylow2b 19560 Sylow's second theorem. A...
slwhash 19561 A sylow subgroup has cardi...
fislw 19562 The sylow subgroups of a f...
sylow2 19563 Sylow's second theorem. S...
sylow3lem1 19564 Lemma for ~ sylow3 , first...
sylow3lem2 19565 Lemma for ~ sylow3 , first...
sylow3lem3 19566 Lemma for ~ sylow3 , first...
sylow3lem4 19567 Lemma for ~ sylow3 , first...
sylow3lem5 19568 Lemma for ~ sylow3 , secon...
sylow3lem6 19569 Lemma for ~ sylow3 , secon...
sylow3 19570 Sylow's third theorem. Th...
lsmfval 19575 The subgroup sum function ...
lsmvalx 19576 Subspace sum value (for a ...
lsmelvalx 19577 Subspace sum membership (f...
lsmelvalix 19578 Subspace sum membership (f...
oppglsm 19579 The subspace sum operation...
lsmssv 19580 Subgroup sum is a subset o...
lsmless1x 19581 Subset implies subgroup su...
lsmless2x 19582 Subset implies subgroup su...
lsmub1x 19583 Subgroup sum is an upper b...
lsmub2x 19584 Subgroup sum is an upper b...
lsmval 19585 Subgroup sum value (for a ...
lsmelval 19586 Subgroup sum membership (f...
lsmelvali 19587 Subgroup sum membership (f...
lsmelvalm 19588 Subgroup sum membership an...
lsmelvalmi 19589 Membership of vector subtr...
lsmsubm 19590 The sum of two commuting s...
lsmsubg 19591 The sum of two commuting s...
lsmcom2 19592 Subgroup sum commutes. (C...
smndlsmidm 19593 The direct product is idem...
lsmub1 19594 Subgroup sum is an upper b...
lsmub2 19595 Subgroup sum is an upper b...
lsmunss 19596 Union of subgroups is a su...
lsmless1 19597 Subset implies subgroup su...
lsmless2 19598 Subset implies subgroup su...
lsmless12 19599 Subset implies subgroup su...
lsmidm 19600 Subgroup sum is idempotent...
lsmlub 19601 The least upper bound prop...
lsmss1 19602 Subgroup sum with a subset...
lsmss1b 19603 Subgroup sum with a subset...
lsmss2 19604 Subgroup sum with a subset...
lsmss2b 19605 Subgroup sum with a subset...
lsmass 19606 Subgroup sum is associativ...
mndlsmidm 19607 Subgroup sum is idempotent...
lsm01 19608 Subgroup sum with the zero...
lsm02 19609 Subgroup sum with the zero...
subglsm 19610 The subgroup sum evaluated...
lssnle 19611 Equivalent expressions for...
lsmmod 19612 The modular law holds for ...
lsmmod2 19613 Modular law dual for subgr...
lsmpropd 19614 If two structures have the...
cntzrecd 19615 Commute the "subgroups com...
lsmcntz 19616 The "subgroups commute" pr...
lsmcntzr 19617 The "subgroups commute" pr...
lsmdisj 19618 Disjointness from a subgro...
lsmdisj2 19619 Association of the disjoin...
lsmdisj3 19620 Association of the disjoin...
lsmdisjr 19621 Disjointness from a subgro...
lsmdisj2r 19622 Association of the disjoin...
lsmdisj3r 19623 Association of the disjoin...
lsmdisj2a 19624 Association of the disjoin...
lsmdisj2b 19625 Association of the disjoin...
lsmdisj3a 19626 Association of the disjoin...
lsmdisj3b 19627 Association of the disjoin...
subgdisj1 19628 Vectors belonging to disjo...
subgdisj2 19629 Vectors belonging to disjo...
subgdisjb 19630 Vectors belonging to disjo...
pj1fval 19631 The left projection functi...
pj1val 19632 The left projection functi...
pj1eu 19633 Uniqueness of a left proje...
pj1f 19634 The left projection functi...
pj2f 19635 The right projection funct...
pj1id 19636 Any element of a direct su...
pj1eq 19637 Any element of a direct su...
pj1lid 19638 The left projection functi...
pj1rid 19639 The left projection functi...
pj1ghm 19640 The left projection functi...
pj1ghm2 19641 The left projection functi...
lsmhash 19642 The order of the direct pr...
efgmval 19649 Value of the formal invers...
efgmf 19650 The formal inverse operati...
efgmnvl 19651 The inversion function on ...
efgrcl 19652 Lemma for ~ efgval . (Con...
efglem 19653 Lemma for ~ efgval . (Con...
efgval 19654 Value of the free group co...
efger 19655 Value of the free group co...
efgi 19656 Value of the free group co...
efgi0 19657 Value of the free group co...
efgi1 19658 Value of the free group co...
efgtf 19659 Value of the free group co...
efgtval 19660 Value of the extension fun...
efgval2 19661 Value of the free group co...
efgi2 19662 Value of the free group co...
efgtlen 19663 Value of the free group co...
efginvrel2 19664 The inverse of the reverse...
efginvrel1 19665 The inverse of the reverse...
efgsf 19666 Value of the auxiliary fun...
efgsdm 19667 Elementhood in the domain ...
efgsval 19668 Value of the auxiliary fun...
efgsdmi 19669 Property of the last link ...
efgsval2 19670 Value of the auxiliary fun...
efgsrel 19671 The start and end of any e...
efgs1 19672 A singleton of an irreduci...
efgs1b 19673 Every extension sequence e...
efgsp1 19674 If ` F ` is an extension s...
efgsres 19675 An initial segment of an e...
efgsfo 19676 For any word, there is a s...
efgredlema 19677 The reduced word that form...
efgredlemf 19678 Lemma for ~ efgredleme . ...
efgredlemg 19679 Lemma for ~ efgred . (Con...
efgredleme 19680 Lemma for ~ efgred . (Con...
efgredlemd 19681 The reduced word that form...
efgredlemc 19682 The reduced word that form...
efgredlemb 19683 The reduced word that form...
efgredlem 19684 The reduced word that form...
efgred 19685 The reduced word that form...
efgrelexlema 19686 If two words ` A , B ` are...
efgrelexlemb 19687 If two words ` A , B ` are...
efgrelex 19688 If two words ` A , B ` are...
efgredeu 19689 There is a unique reduced ...
efgred2 19690 Two extension sequences ha...
efgcpbllema 19691 Lemma for ~ efgrelex . De...
efgcpbllemb 19692 Lemma for ~ efgrelex . Sh...
efgcpbl 19693 Two extension sequences ha...
efgcpbl2 19694 Two extension sequences ha...
frgpval 19695 Value of the free group co...
frgpcpbl 19696 Compatibility of the group...
frgp0 19697 The free group is a group....
frgpeccl 19698 Closure of the quotient ma...
frgpgrp 19699 The free group is a group....
frgpadd 19700 Addition in the free group...
frgpinv 19701 The inverse of an element ...
frgpmhm 19702 The "natural map" from wor...
vrgpfval 19703 The canonical injection fr...
vrgpval 19704 The value of the generatin...
vrgpf 19705 The mapping from the index...
vrgpinv 19706 The inverse of a generatin...
frgpuptf 19707 Any assignment of the gene...
frgpuptinv 19708 Any assignment of the gene...
frgpuplem 19709 Any assignment of the gene...
frgpupf 19710 Any assignment of the gene...
frgpupval 19711 Any assignment of the gene...
frgpup1 19712 Any assignment of the gene...
frgpup2 19713 The evaluation map has the...
frgpup3lem 19714 The evaluation map has the...
frgpup3 19715 Universal property of the ...
0frgp 19716 The free group on zero gen...
isabl 19721 The predicate "is an Abeli...
ablgrp 19722 An Abelian group is a grou...
ablgrpd 19723 An Abelian group is a grou...
ablcmn 19724 An Abelian group is a comm...
ablcmnd 19725 An Abelian group is a comm...
iscmn 19726 The predicate "is a commut...
isabl2 19727 The predicate "is an Abeli...
cmnpropd 19728 If two structures have the...
ablpropd 19729 If two structures have the...
ablprop 19730 If two structures have the...
iscmnd 19731 Properties that determine ...
isabld 19732 Properties that determine ...
isabli 19733 Properties that determine ...
cmnmnd 19734 A commutative monoid is a ...
cmncom 19735 A commutative monoid is co...
ablcom 19736 An Abelian group operation...
cmn32 19737 Commutative/associative la...
cmn4 19738 Commutative/associative la...
cmn12 19739 Commutative/associative la...
abl32 19740 Commutative/associative la...
cmnmndd 19741 A commutative monoid is a ...
cmnbascntr 19742 The base set of a commutat...
rinvmod 19743 Uniqueness of a right inve...
ablinvadd 19744 The inverse of an Abelian ...
ablsub2inv 19745 Abelian group subtraction ...
ablsubadd 19746 Relationship between Abeli...
ablsub4 19747 Commutative/associative su...
abladdsub4 19748 Abelian group addition/sub...
abladdsub 19749 Associative-type law for g...
ablsubadd23 19750 Commutative/associative la...
ablsubaddsub 19751 Double subtraction and add...
ablpncan2 19752 Cancellation law for subtr...
ablpncan3 19753 A cancellation law for Abe...
ablsubsub 19754 Law for double subtraction...
ablsubsub4 19755 Law for double subtraction...
ablpnpcan 19756 Cancellation law for mixed...
ablnncan 19757 Cancellation law for group...
ablsub32 19758 Swap the second and third ...
ablnnncan 19759 Cancellation law for group...
ablnnncan1 19760 Cancellation law for group...
ablsubsub23 19761 Swap subtrahend and result...
mulgnn0di 19762 Group multiple of a sum, f...
mulgdi 19763 Group multiple of a sum. ...
mulgmhm 19764 The map from ` x ` to ` n ...
mulgghm 19765 The map from ` x ` to ` n ...
mulgsubdi 19766 Group multiple of a differ...
ghmfghm 19767 The function fulfilling th...
ghmcmn 19768 The image of a commutative...
ghmabl 19769 The image of an abelian gr...
invghm 19770 The inversion map is a gro...
eqgabl 19771 Value of the subgroup cose...
qusecsub 19772 Two subgroup cosets are eq...
subgabl 19773 A subgroup of an abelian g...
subcmn 19774 A submonoid of a commutati...
submcmn 19775 A submonoid of a commutati...
submcmn2 19776 A submonoid is commutative...
cntzcmn 19777 The centralizer of any sub...
cntzcmnss 19778 Any subset in a commutativ...
cntrcmnd 19779 The center of a monoid is ...
cntrabl 19780 The center of a group is a...
cntzspan 19781 If the generators commute,...
cntzcmnf 19782 Discharge the centralizer ...
ghmplusg 19783 The pointwise sum of two l...
ablnsg 19784 Every subgroup of an abeli...
odadd1 19785 The order of a product in ...
odadd2 19786 The order of a product in ...
odadd 19787 The order of a product is ...
gex2abl 19788 A group with exponent 2 (o...
gexexlem 19789 Lemma for ~ gexex . (Cont...
gexex 19790 In an abelian group with f...
torsubg 19791 The set of all elements of...
oddvdssubg 19792 The set of all elements wh...
lsmcomx 19793 Subgroup sum commutes (ext...
ablcntzd 19794 All subgroups in an abelia...
lsmcom 19795 Subgroup sum commutes. (C...
lsmsubg2 19796 The sum of two subgroups i...
lsm4 19797 Commutative/associative la...
prdscmnd 19798 The product of a family of...
prdsabld 19799 The product of a family of...
pwscmn 19800 The structure power on a c...
pwsabl 19801 The structure power on an ...
qusabl 19802 If ` Y ` is a subgroup of ...
abl1 19803 The (smallest) structure r...
abln0 19804 Abelian groups (and theref...
cnaddablx 19805 The complex numbers are an...
cnaddabl 19806 The complex numbers are an...
cnaddid 19807 The group identity element...
cnaddinv 19808 Value of the group inverse...
zaddablx 19809 The integers are an Abelia...
frgpnabllem1 19810 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19811 Lemma for ~ frgpnabl . (C...
frgpnabl 19812 The free group on two or m...
imasabl 19813 The image structure of an ...
iscyg 19816 Definition of a cyclic gro...
iscyggen 19817 The property of being a cy...
iscyggen2 19818 The property of being a cy...
iscyg2 19819 A cyclic group is a group ...
cyggeninv 19820 The inverse of a cyclic ge...
cyggenod 19821 An element is the generato...
cyggenod2 19822 In an infinite cyclic grou...
iscyg3 19823 Definition of a cyclic gro...
iscygd 19824 Definition of a cyclic gro...
iscygodd 19825 Show that a group with an ...
cycsubmcmn 19826 The set of nonnegative int...
cyggrp 19827 A cyclic group is a group....
cygabl 19828 A cyclic group is abelian....
cygctb 19829 A cyclic group is countabl...
0cyg 19830 The trivial group is cycli...
prmcyg 19831 A group with prime order i...
lt6abl 19832 A group with fewer than ` ...
ghmcyg 19833 The image of a cyclic grou...
cyggex2 19834 The exponent of a cyclic g...
cyggex 19835 The exponent of a finite c...
cyggexb 19836 A finite abelian group is ...
giccyg 19837 Cyclicity is a group prope...
cycsubgcyg 19838 The cyclic subgroup genera...
cycsubgcyg2 19839 The cyclic subgroup genera...
gsumval3a 19840 Value of the group sum ope...
gsumval3eu 19841 The group sum as defined i...
gsumval3lem1 19842 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19843 Lemma 2 for ~ gsumval3 . ...
gsumval3 19844 Value of the group sum ope...
gsumcllem 19845 Lemma for ~ gsumcl and rel...
gsumzres 19846 Extend a finite group sum ...
gsumzcl2 19847 Closure of a finite group ...
gsumzcl 19848 Closure of a finite group ...
gsumzf1o 19849 Re-index a finite group su...
gsumres 19850 Extend a finite group sum ...
gsumcl2 19851 Closure of a finite group ...
gsumcl 19852 Closure of a finite group ...
gsumf1o 19853 Re-index a finite group su...
gsumreidx 19854 Re-index a finite group su...
gsumzsubmcl 19855 Closure of a group sum in ...
gsumsubmcl 19856 Closure of a group sum in ...
gsumsubgcl 19857 Closure of a group sum in ...
gsumzaddlem 19858 The sum of two group sums....
gsumzadd 19859 The sum of two group sums....
gsumadd 19860 The sum of two group sums....
gsummptfsadd 19861 The sum of two group sums ...
gsummptfidmadd 19862 The sum of two group sums ...
gsummptfidmadd2 19863 The sum of two group sums ...
gsumzsplit 19864 Split a group sum into two...
gsumsplit 19865 Split a group sum into two...
gsumsplit2 19866 Split a group sum into two...
gsummptfidmsplit 19867 Split a group sum expresse...
gsummptfidmsplitres 19868 Split a group sum expresse...
gsummptfzsplit 19869 Split a group sum expresse...
gsummptfzsplitl 19870 Split a group sum expresse...
gsumconst 19871 Sum of a constant series. ...
gsumconstf 19872 Sum of a constant series. ...
gsummptshft 19873 Index shift of a finite gr...
gsumzmhm 19874 Apply a group homomorphism...
gsummhm 19875 Apply a group homomorphism...
gsummhm2 19876 Apply a group homomorphism...
gsummptmhm 19877 Apply a group homomorphism...
gsummulglem 19878 Lemma for ~ gsummulg and ~...
gsummulg 19879 Nonnegative multiple of a ...
gsummulgz 19880 Integer multiple of a grou...
gsumzoppg 19881 The opposite of a group su...
gsumzinv 19882 Inverse of a group sum. (...
gsuminv 19883 Inverse of a group sum. (...
gsummptfidminv 19884 Inverse of a group sum exp...
gsumsub 19885 The difference of two grou...
gsummptfssub 19886 The difference of two grou...
gsummptfidmsub 19887 The difference of two grou...
gsumsnfd 19888 Group sum of a singleton, ...
gsumsnd 19889 Group sum of a singleton, ...
gsumsnf 19890 Group sum of a singleton, ...
gsumsn 19891 Group sum of a singleton. ...
gsumpr 19892 Group sum of a pair. (Con...
gsumzunsnd 19893 Append an element to a fin...
gsumunsnfd 19894 Append an element to a fin...
gsumunsnd 19895 Append an element to a fin...
gsumunsnf 19896 Append an element to a fin...
gsumunsn 19897 Append an element to a fin...
gsumdifsnd 19898 Extract a summand from a f...
gsumpt 19899 Sum of a family that is no...
gsummptf1o 19900 Re-index a finite group su...
gsummptun 19901 Group sum of a disjoint un...
gsummpt1n0 19902 If only one summand in a f...
gsummptif1n0 19903 If only one summand in a f...
gsummptcl 19904 Closure of a finite group ...
gsummptfif1o 19905 Re-index a finite group su...
gsummptfzcl 19906 Closure of a finite group ...
gsum2dlem1 19907 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19908 Lemma for ~ gsum2d . (Con...
gsum2d 19909 Write a sum over a two-dim...
gsum2d2lem 19910 Lemma for ~ gsum2d2 : show...
gsum2d2 19911 Write a group sum over a t...
gsumcom2 19912 Two-dimensional commutatio...
gsumxp 19913 Write a group sum over a c...
gsumcom 19914 Commute the arguments of a...
gsumcom3 19915 A commutative law for fini...
gsumcom3fi 19916 A commutative law for fini...
gsumxp2 19917 Write a group sum over a c...
prdsgsum 19918 Finite commutative sums in...
pwsgsum 19919 Finite commutative sums in...
fsfnn0gsumfsffz 19920 Replacing a finitely suppo...
nn0gsumfz 19921 Replacing a finitely suppo...
nn0gsumfz0 19922 Replacing a finitely suppo...
gsummptnn0fz 19923 A final group sum over a f...
gsummptnn0fzfv 19924 A final group sum over a f...
telgsumfzslem 19925 Lemma for ~ telgsumfzs (in...
telgsumfzs 19926 Telescoping group sum rang...
telgsumfz 19927 Telescoping group sum rang...
telgsumfz0s 19928 Telescoping finite group s...
telgsumfz0 19929 Telescoping finite group s...
telgsums 19930 Telescoping finitely suppo...
telgsum 19931 Telescoping finitely suppo...
reldmdprd 19936 The domain of the internal...
dmdprd 19937 The domain of definition o...
dmdprdd 19938 Show that a given family i...
dprddomprc 19939 A family of subgroups inde...
dprddomcld 19940 If a family of subgroups i...
dprdval0prc 19941 The internal direct produc...
dprdval 19942 The value of the internal ...
eldprd 19943 A class ` A ` is an intern...
dprdgrp 19944 Reverse closure for the in...
dprdf 19945 The function ` S ` is a fa...
dprdf2 19946 The function ` S ` is a fa...
dprdcntz 19947 The function ` S ` is a fa...
dprddisj 19948 The function ` S ` is a fa...
dprdw 19949 The property of being a fi...
dprdwd 19950 A mapping being a finitely...
dprdff 19951 A finitely supported funct...
dprdfcl 19952 A finitely supported funct...
dprdffsupp 19953 A finitely supported funct...
dprdfcntz 19954 A function on the elements...
dprdssv 19955 The internal direct produc...
dprdfid 19956 A function mapping all but...
eldprdi 19957 The domain of definition o...
dprdfinv 19958 Take the inverse of a grou...
dprdfadd 19959 Take the sum of group sums...
dprdfsub 19960 Take the difference of gro...
dprdfeq0 19961 The zero function is the o...
dprdf11 19962 Two group sums over a dire...
dprdsubg 19963 The internal direct produc...
dprdub 19964 Each factor is a subset of...
dprdlub 19965 The direct product is smal...
dprdspan 19966 The direct product is the ...
dprdres 19967 Restriction of a direct pr...
dprdss 19968 Create a direct product by...
dprdz 19969 A family consisting entire...
dprd0 19970 The empty family is an int...
dprdf1o 19971 Rearrange the index set of...
dprdf1 19972 Rearrange the index set of...
subgdmdprd 19973 A direct product in a subg...
subgdprd 19974 A direct product in a subg...
dprdsn 19975 A singleton family is an i...
dmdprdsplitlem 19976 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19977 The function ` S ` is a fa...
dprddisj2 19978 The function ` S ` is a fa...
dprd2dlem2 19979 The direct product of a co...
dprd2dlem1 19980 The direct product of a co...
dprd2da 19981 The direct product of a co...
dprd2db 19982 The direct product of a co...
dprd2d2 19983 The direct product of a co...
dmdprdsplit2lem 19984 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 19985 The direct product splits ...
dmdprdsplit 19986 The direct product splits ...
dprdsplit 19987 The direct product is the ...
dmdprdpr 19988 A singleton family is an i...
dprdpr 19989 A singleton family is an i...
dpjlem 19990 Lemma for theorems about d...
dpjcntz 19991 The two subgroups that app...
dpjdisj 19992 The two subgroups that app...
dpjlsm 19993 The two subgroups that app...
dpjfval 19994 Value of the direct produc...
dpjval 19995 Value of the direct produc...
dpjf 19996 The ` X ` -th index projec...
dpjidcl 19997 The key property of projec...
dpjeq 19998 Decompose a group sum into...
dpjid 19999 The key property of projec...
dpjlid 20000 The ` X ` -th index projec...
dpjrid 20001 The ` Y ` -th index projec...
dpjghm 20002 The direct product is the ...
dpjghm2 20003 The direct product is the ...
ablfacrplem 20004 Lemma for ~ ablfacrp2 . (...
ablfacrp 20005 A finite abelian group who...
ablfacrp2 20006 The factors ` K , L ` of ~...
ablfac1lem 20007 Lemma for ~ ablfac1b . Sa...
ablfac1a 20008 The factors of ~ ablfac1b ...
ablfac1b 20009 Any abelian group is the d...
ablfac1c 20010 The factors of ~ ablfac1b ...
ablfac1eulem 20011 Lemma for ~ ablfac1eu . (...
ablfac1eu 20012 The factorization of ~ abl...
pgpfac1lem1 20013 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 20014 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 20015 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 20016 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 20017 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 20018 Lemma for ~ pgpfac1 . (Co...
pgpfac1 20019 Factorization of a finite ...
pgpfaclem1 20020 Lemma for ~ pgpfac . (Con...
pgpfaclem2 20021 Lemma for ~ pgpfac . (Con...
pgpfaclem3 20022 Lemma for ~ pgpfac . (Con...
pgpfac 20023 Full factorization of a fi...
ablfaclem1 20024 Lemma for ~ ablfac . (Con...
ablfaclem2 20025 Lemma for ~ ablfac . (Con...
ablfaclem3 20026 Lemma for ~ ablfac . (Con...
ablfac 20027 The Fundamental Theorem of...
ablfac2 20028 Choose generators for each...
issimpg 20031 The predicate "is a simple...
issimpgd 20032 Deduce a simple group from...
simpggrp 20033 A simple group is a group....
simpggrpd 20034 A simple group is a group....
simpg2nsg 20035 A simple group has two nor...
trivnsimpgd 20036 Trivial groups are not sim...
simpgntrivd 20037 Simple groups are nontrivi...
simpgnideld 20038 A simple group contains a ...
simpgnsgd 20039 The only normal subgroups ...
simpgnsgeqd 20040 A normal subgroup of a sim...
2nsgsimpgd 20041 If any normal subgroup of ...
simpgnsgbid 20042 A nontrivial group is simp...
ablsimpnosubgd 20043 A subgroup of an abelian s...
ablsimpg1gend 20044 An abelian simple group is...
ablsimpgcygd 20045 An abelian simple group is...
ablsimpgfindlem1 20046 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 20047 Lemma for ~ ablsimpgfind ....
cycsubggenodd 20048 Relationship between the o...
ablsimpgfind 20049 An abelian simple group is...
fincygsubgd 20050 The subgroup referenced in...
fincygsubgodd 20051 Calculate the order of a s...
fincygsubgodexd 20052 A finite cyclic group has ...
prmgrpsimpgd 20053 A group of prime order is ...
ablsimpgprmd 20054 An abelian simple group ha...
ablsimpgd 20055 An abelian group is simple...
fnmgp 20058 The multiplicative group o...
mgpval 20059 Value of the multiplicatio...
mgpplusg 20060 Value of the group operati...
mgpbas 20061 Base set of the multiplica...
mgpsca 20062 The multiplication monoid ...
mgptset 20063 Topology component of the ...
mgptopn 20064 Topology of the multiplica...
mgpds 20065 Distance function of the m...
mgpress 20066 Subgroup commutes with the...
prdsmgp 20067 The multiplicative monoid ...
isrng 20070 The predicate "is a non-un...
rngabl 20071 A non-unital ring is an (a...
rngmgp 20072 A non-unital ring is a sem...
rngmgpf 20073 Restricted functionality o...
rnggrp 20074 A non-unital ring is a (ad...
rngass 20075 Associative law for the mu...
rngdi 20076 Distributive law for the m...
rngdir 20077 Distributive law for the m...
rngacl 20078 Closure of the addition op...
rng0cl 20079 The zero element of a non-...
rngcl 20080 Closure of the multiplicat...
rnglz 20081 The zero of a non-unital r...
rngrz 20082 The zero of a non-unital r...
rngmneg1 20083 Negation of a product in a...
rngmneg2 20084 Negation of a product in a...
rngm2neg 20085 Double negation of a produ...
rngansg 20086 Every additive subgroup of...
rngsubdi 20087 Ring multiplication distri...
rngsubdir 20088 Ring multiplication distri...
isrngd 20089 Properties that determine ...
rngpropd 20090 If two structures have the...
prdsmulrngcl 20091 Closure of the multiplicat...
prdsrngd 20092 A product of non-unital ri...
imasrng 20093 The image structure of a n...
imasrngf1 20094 The image of a non-unital ...
xpsrngd 20095 A product of two non-unita...
qusrng 20096 The quotient structure of ...
ringidval 20099 The value of the unity ele...
dfur2 20100 The multiplicative identit...
ringurd 20101 Deduce the unity element o...
issrg 20104 The predicate "is a semiri...
srgcmn 20105 A semiring is a commutativ...
srgmnd 20106 A semiring is a monoid. (...
srgmgp 20107 A semiring is a monoid und...
srgdilem 20108 Lemma for ~ srgdi and ~ sr...
srgcl 20109 Closure of the multiplicat...
srgass 20110 Associative law for the mu...
srgideu 20111 The unity element of a sem...
srgfcl 20112 Functionality of the multi...
srgdi 20113 Distributive law for the m...
srgdir 20114 Distributive law for the m...
srgidcl 20115 The unity element of a sem...
srg0cl 20116 The zero element of a semi...
srgidmlem 20117 Lemma for ~ srglidm and ~ ...
srglidm 20118 The unity element of a sem...
srgridm 20119 The unity element of a sem...
issrgid 20120 Properties showing that an...
srgacl 20121 Closure of the addition op...
srgcom 20122 Commutativity of the addit...
srgrz 20123 The zero of a semiring is ...
srglz 20124 The zero of a semiring is ...
srgisid 20125 In a semiring, the only le...
o2timesd 20126 An element of a ring-like ...
rglcom4d 20127 Restricted commutativity o...
srgo2times 20128 A semiring element plus it...
srgcom4lem 20129 Lemma for ~ srgcom4 . Thi...
srgcom4 20130 Restricted commutativity o...
srg1zr 20131 The only semiring with a b...
srgen1zr 20132 The only semiring with one...
srgmulgass 20133 An associative property be...
srgpcomp 20134 If two elements of a semir...
srgpcompp 20135 If two elements of a semir...
srgpcomppsc 20136 If two elements of a semir...
srglmhm 20137 Left-multiplication in a s...
srgrmhm 20138 Right-multiplication in a ...
srgsummulcr 20139 A finite semiring sum mult...
sgsummulcl 20140 A finite semiring sum mult...
srg1expzeq1 20141 The exponentiation (by a n...
srgbinomlem1 20142 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 20143 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 20144 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 20145 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 20146 Lemma for ~ srgbinom . In...
srgbinom 20147 The binomial theorem for c...
csrgbinom 20148 The binomial theorem for c...
isring 20153 The predicate "is a (unita...
ringgrp 20154 A ring is a group. (Contr...
ringmgp 20155 A ring is a monoid under m...
iscrng 20156 A commutative ring is a ri...
crngmgp 20157 A commutative ring's multi...
ringgrpd 20158 A ring is a group. (Contr...
ringmnd 20159 A ring is a monoid under a...
ringmgm 20160 A ring is a magma. (Contr...
crngring 20161 A commutative ring is a ri...
crngringd 20162 A commutative ring is a ri...
crnggrpd 20163 A commutative ring is a gr...
mgpf 20164 Restricted functionality o...
ringdilem 20165 Properties of a unital rin...
ringcl 20166 Closure of the multiplicat...
crngcom 20167 A commutative ring's multi...
iscrng2 20168 A commutative ring is a ri...
ringass 20169 Associative law for multip...
ringideu 20170 The unity element of a rin...
crngcomd 20171 Multiplication is commutat...
crngbascntr 20172 The base set of a commutat...
ringassd 20173 Associative law for multip...
crng12d 20174 Commutative/associative la...
crng32d 20175 Commutative/associative la...
ringcld 20176 Closure of the multiplicat...
ringdi 20177 Distributive law for the m...
ringdir 20178 Distributive law for the m...
ringdid 20179 Distributive law for the m...
ringdird 20180 Distributive law for the m...
ringidcl 20181 The unity element of a rin...
ringidcld 20182 The unity element of a rin...
ring0cl 20183 The zero element of a ring...
ringidmlem 20184 Lemma for ~ ringlidm and ~...
ringlidm 20185 The unity element of a rin...
ringridm 20186 The unity element of a rin...
isringid 20187 Properties showing that an...
ringlidmd 20188 The unity element of a rin...
ringridmd 20189 The unity element of a rin...
ringid 20190 The multiplication operati...
ringo2times 20191 A ring element plus itself...
ringadd2 20192 A ring element plus itself...
ringidss 20193 A subset of the multiplica...
ringacl 20194 Closure of the addition op...
ringcomlem 20195 Lemma for ~ ringcom . Thi...
ringcom 20196 Commutativity of the addit...
ringabl 20197 A ring is an Abelian group...
ringcmn 20198 A ring is a commutative mo...
ringabld 20199 A ring is an Abelian group...
ringcmnd 20200 A ring is a commutative mo...
ringrng 20201 A unital ring is a non-uni...
ringssrng 20202 The unital rings are non-u...
isringrng 20203 The predicate "is a unital...
ringpropd 20204 If two structures have the...
crngpropd 20205 If two structures have the...
ringprop 20206 If two structures have the...
isringd 20207 Properties that determine ...
iscrngd 20208 Properties that determine ...
ringlz 20209 The zero of a unital ring ...
ringrz 20210 The zero of a unital ring ...
ringlzd 20211 The zero of a unital ring ...
ringrzd 20212 The zero of a unital ring ...
ringsrg 20213 Any ring is also a semirin...
ring1eq0 20214 If one and zero are equal,...
ring1ne0 20215 If a ring has at least two...
ringinvnz1ne0 20216 In a unital ring, a left i...
ringinvnzdiv 20217 In a unital ring, a left i...
ringnegl 20218 Negation in a ring is the ...
ringnegr 20219 Negation in a ring is the ...
ringmneg1 20220 Negation of a product in a...
ringmneg2 20221 Negation of a product in a...
ringm2neg 20222 Double negation of a produ...
ringsubdi 20223 Ring multiplication distri...
ringsubdir 20224 Ring multiplication distri...
mulgass2 20225 An associative property be...
ring1 20226 The (smallest) structure r...
ringn0 20227 Rings exist. (Contributed...
ringlghm 20228 Left-multiplication in a r...
ringrghm 20229 Right-multiplication in a ...
gsummulc1OLD 20230 Obsolete version of ~ gsum...
gsummulc2OLD 20231 Obsolete version of ~ gsum...
gsummulc1 20232 A finite ring sum multipli...
gsummulc2 20233 A finite ring sum multipli...
gsummgp0 20234 If one factor in a finite ...
gsumdixp 20235 Distribute a binary produc...
prdsmulrcl 20236 A structure product of rin...
prdsringd 20237 A product of rings is a ri...
prdscrngd 20238 A product of commutative r...
prds1 20239 Value of the ring unity in...
pwsring 20240 A structure power of a rin...
pws1 20241 Value of the ring unity in...
pwscrng 20242 A structure power of a com...
pwsmgp 20243 The multiplicative group o...
pwspjmhmmgpd 20244 The projection given by ~ ...
pwsexpg 20245 Value of a group exponenti...
imasring 20246 The image structure of a r...
imasringf1 20247 The image of a ring under ...
xpsringd 20248 A product of two rings is ...
xpsring1d 20249 The multiplicative identit...
qusring2 20250 The quotient structure of ...
crngbinom 20251 The binomial theorem for c...
opprval 20254 Value of the opposite ring...
opprmulfval 20255 Value of the multiplicatio...
opprmul 20256 Value of the multiplicatio...
crngoppr 20257 In a commutative ring, the...
opprlem 20258 Lemma for ~ opprbas and ~ ...
opprbas 20259 Base set of an opposite ri...
oppradd 20260 Addition operation of an o...
opprrng 20261 An opposite non-unital rin...
opprrngb 20262 A class is a non-unital ri...
opprring 20263 An opposite ring is a ring...
opprringb 20264 Bidirectional form of ~ op...
oppr0 20265 Additive identity of an op...
oppr1 20266 Multiplicative identity of...
opprneg 20267 The negative function in a...
opprsubg 20268 Being a subgroup is a symm...
mulgass3 20269 An associative property be...
reldvdsr 20276 The divides relation is a ...
dvdsrval 20277 Value of the divides relat...
dvdsr 20278 Value of the divides relat...
dvdsr2 20279 Value of the divides relat...
dvdsrmul 20280 A left-multiple of ` X ` i...
dvdsrcl 20281 Closure of a dividing elem...
dvdsrcl2 20282 Closure of a dividing elem...
dvdsrid 20283 An element in a (unital) r...
dvdsrtr 20284 Divisibility is transitive...
dvdsrmul1 20285 The divisibility relation ...
dvdsrneg 20286 An element divides its neg...
dvdsr01 20287 In a ring, zero is divisib...
dvdsr02 20288 Only zero is divisible by ...
isunit 20289 Property of being a unit o...
1unit 20290 The multiplicative identit...
unitcl 20291 A unit is an element of th...
unitss 20292 The set of units is contai...
opprunit 20293 Being a unit is a symmetri...
crngunit 20294 Property of being a unit i...
dvdsunit 20295 A divisor of a unit is a u...
unitmulcl 20296 The product of units is a ...
unitmulclb 20297 Reversal of ~ unitmulcl in...
unitgrpbas 20298 The base set of the group ...
unitgrp 20299 The group of units is a gr...
unitabl 20300 The group of units of a co...
unitgrpid 20301 The identity of the group ...
unitsubm 20302 The group of units is a su...
invrfval 20305 Multiplicative inverse fun...
unitinvcl 20306 The inverse of a unit exis...
unitinvinv 20307 The inverse of the inverse...
ringinvcl 20308 The inverse of a unit is a...
unitlinv 20309 A unit times its inverse i...
unitrinv 20310 A unit times its inverse i...
1rinv 20311 The inverse of the ring un...
0unit 20312 The additive identity is a...
unitnegcl 20313 The negative of a unit is ...
ringunitnzdiv 20314 In a unitary ring, a unit ...
ring1nzdiv 20315 In a unitary ring, the rin...
dvrfval 20318 Division operation in a ri...
dvrval 20319 Division operation in a ri...
dvrcl 20320 Closure of division operat...
unitdvcl 20321 The units are closed under...
dvrid 20322 A ring element divided by ...
dvr1 20323 A ring element divided by ...
dvrass 20324 An associative law for div...
dvrcan1 20325 A cancellation law for div...
dvrcan3 20326 A cancellation law for div...
dvreq1 20327 Equality in terms of ratio...
dvrdir 20328 Distributive law for the d...
rdivmuldivd 20329 Multiplication of two rati...
ringinvdv 20330 Write the inverse function...
rngidpropd 20331 The ring unity depends onl...
dvdsrpropd 20332 The divisibility relation ...
unitpropd 20333 The set of units depends o...
invrpropd 20334 The ring inverse function ...
isirred 20335 An irreducible element of ...
isnirred 20336 The property of being a no...
isirred2 20337 Expand out the class diffe...
opprirred 20338 Irreducibility is symmetri...
irredn0 20339 The additive identity is n...
irredcl 20340 An irreducible element is ...
irrednu 20341 An irreducible element is ...
irredn1 20342 The multiplicative identit...
irredrmul 20343 The product of an irreduci...
irredlmul 20344 The product of a unit and ...
irredmul 20345 If product of two elements...
irredneg 20346 The negative of an irreduc...
irrednegb 20347 An element is irreducible ...
rnghmrcl 20354 Reverse closure of a non-u...
rnghmfn 20355 The mapping of two non-uni...
rnghmval 20356 The set of the non-unital ...
isrnghm 20357 A function is a non-unital...
isrnghmmul 20358 A function is a non-unital...
rnghmmgmhm 20359 A non-unital ring homomorp...
rnghmval2 20360 The non-unital ring homomo...
isrngim 20361 An isomorphism of non-unit...
rngimrcl 20362 Reverse closure for an iso...
rnghmghm 20363 A non-unital ring homomorp...
rnghmf 20364 A ring homomorphism is a f...
rnghmmul 20365 A homomorphism of non-unit...
isrnghm2d 20366 Demonstration of non-unita...
isrnghmd 20367 Demonstration of non-unita...
rnghmf1o 20368 A non-unital ring homomorp...
isrngim2 20369 An isomorphism of non-unit...
rngimf1o 20370 An isomorphism of non-unit...
rngimrnghm 20371 An isomorphism of non-unit...
rngimcnv 20372 The converse of an isomorp...
rnghmco 20373 The composition of non-uni...
idrnghm 20374 The identity homomorphism ...
c0mgm 20375 The constant mapping to ze...
c0mhm 20376 The constant mapping to ze...
c0ghm 20377 The constant mapping to ze...
c0snmgmhm 20378 The constant mapping to ze...
c0snmhm 20379 The constant mapping to ze...
c0snghm 20380 The constant mapping to ze...
rngisomfv1 20381 If there is a non-unital r...
rngisom1 20382 If there is a non-unital r...
rngisomring 20383 If there is a non-unital r...
rngisomring1 20384 If there is a non-unital r...
dfrhm2 20390 The property of a ring hom...
rhmrcl1 20392 Reverse closure of a ring ...
rhmrcl2 20393 Reverse closure of a ring ...
isrhm 20394 A function is a ring homom...
rhmmhm 20395 A ring homomorphism is a h...
rhmisrnghm 20396 Each unital ring homomorph...
isrim0OLD 20397 Obsolete version of ~ isri...
rimrcl 20398 Reverse closure for an iso...
isrim0 20399 A ring isomorphism is a ho...
rhmghm 20400 A ring homomorphism is an ...
rhmf 20401 A ring homomorphism is a f...
rhmmul 20402 A homomorphism of rings pr...
isrhm2d 20403 Demonstration of ring homo...
isrhmd 20404 Demonstration of ring homo...
rhm1 20405 Ring homomorphisms are req...
idrhm 20406 The identity homomorphism ...
rhmf1o 20407 A ring homomorphism is bij...
isrim 20408 An isomorphism of rings is...
isrimOLD 20409 Obsolete version of ~ isri...
rimf1o 20410 An isomorphism of rings is...
rimrhmOLD 20411 Obsolete version of ~ rimr...
rimrhm 20412 A ring isomorphism is a ho...
rimgim 20413 An isomorphism of rings is...
rimisrngim 20414 Each unital ring isomorphi...
rhmfn 20415 The mapping of two rings t...
rhmval 20416 The ring homomorphisms bet...
rhmco 20417 The composition of ring ho...
pwsco1rhm 20418 Right composition with a f...
pwsco2rhm 20419 Left composition with a ri...
brric 20420 The relation "is isomorphi...
brrici 20421 Prove isomorphic by an exp...
brric2 20422 The relation "is isomorphi...
ricgic 20423 If two rings are (ring) is...
rhmdvdsr 20424 A ring homomorphism preser...
rhmopp 20425 A ring homomorphism is als...
elrhmunit 20426 Ring homomorphisms preserv...
rhmunitinv 20427 Ring homomorphisms preserv...
isnzr 20430 Property of a nonzero ring...
nzrnz 20431 One and zero are different...
nzrring 20432 A nonzero ring is a ring. ...
nzrringOLD 20433 Obsolete version of ~ nzrr...
isnzr2 20434 Equivalent characterizatio...
isnzr2hash 20435 Equivalent characterizatio...
nzrpropd 20436 If two structures have the...
opprnzrb 20437 The opposite of a nonzero ...
opprnzr 20438 The opposite of a nonzero ...
ringelnzr 20439 A ring is nonzero if it ha...
nzrunit 20440 A unit is nonzero in any n...
0ringnnzr 20441 A ring is a zero ring iff ...
0ring 20442 If a ring has only one ele...
0ringdif 20443 A zero ring is a ring whic...
0ringbas 20444 The base set of a zero rin...
0ring01eq 20445 In a ring with only one el...
01eq0ring 20446 If the zero and the identi...
01eq0ringOLD 20447 Obsolete version of ~ 01eq...
0ring01eqbi 20448 In a unital ring the zero ...
0ring1eq0 20449 In a zero ring, a ring whi...
c0rhm 20450 The constant mapping to ze...
c0rnghm 20451 The constant mapping to ze...
zrrnghm 20452 The constant mapping to ze...
nrhmzr 20453 There is no ring homomorph...
islring 20456 The predicate "is a local ...
lringnzr 20457 A local ring is a nonzero ...
lringring 20458 A local ring is a ring. (...
lringnz 20459 A local ring is a nonzero ...
lringuplu 20460 If the sum of two elements...
issubrng 20463 The subring of non-unital ...
subrngss 20464 A subring is a subset. (C...
subrngid 20465 Every non-unital ring is a...
subrngrng 20466 A subring is a non-unital ...
subrngrcl 20467 Reverse closure for a subr...
subrngsubg 20468 A subring is a subgroup. ...
subrngringnsg 20469 A subring is a normal subg...
subrngbas 20470 Base set of a subring stru...
subrng0 20471 A subring always has the s...
subrngacl 20472 A subring is closed under ...
subrngmcl 20473 A subring is closed under ...
issubrng2 20474 Characterize the subrings ...
opprsubrng 20475 Being a subring is a symme...
subrngint 20476 The intersection of a none...
subrngin 20477 The intersection of two su...
subrngmre 20478 The subrings of a non-unit...
subsubrng 20479 A subring of a subring is ...
subsubrng2 20480 The set of subrings of a s...
rhmimasubrnglem 20481 Lemma for ~ rhmimasubrng :...
rhmimasubrng 20482 The homomorphic image of a...
cntzsubrng 20483 Centralizers in a non-unit...
subrngpropd 20484 If two structures have the...
issubrg 20487 The subring predicate. (C...
subrgss 20488 A subring is a subset. (C...
subrgid 20489 Every ring is a subring of...
subrgring 20490 A subring is a ring. (Con...
subrgcrng 20491 A subring of a commutative...
subrgrcl 20492 Reverse closure for a subr...
subrgsubg 20493 A subring is a subgroup. ...
subrgsubrng 20494 A subring of a unital ring...
subrg0 20495 A subring always has the s...
subrg1cl 20496 A subring contains the mul...
subrgbas 20497 Base set of a subring stru...
subrg1 20498 A subring always has the s...
subrgacl 20499 A subring is closed under ...
subrgmcl 20500 A subring is closed under ...
subrgsubm 20501 A subring is a submonoid o...
subrgdvds 20502 If an element divides anot...
subrguss 20503 A unit of a subring is a u...
subrginv 20504 A subring always has the s...
subrgdv 20505 A subring always has the s...
subrgunit 20506 An element of a ring is a ...
subrgugrp 20507 The units of a subring for...
issubrg2 20508 Characterize the subrings ...
opprsubrg 20509 Being a subring is a symme...
subrgnzr 20510 A subring of a nonzero rin...
subrgint 20511 The intersection of a none...
subrgin 20512 The intersection of two su...
subrgmre 20513 The subrings of a ring are...
subsubrg 20514 A subring of a subring is ...
subsubrg2 20515 The set of subrings of a s...
issubrg3 20516 A subring is an additive s...
resrhm 20517 Restriction of a ring homo...
resrhm2b 20518 Restriction of the codomai...
rhmeql 20519 The equalizer of two ring ...
rhmima 20520 The homomorphic image of a...
rnrhmsubrg 20521 The range of a ring homomo...
cntzsubr 20522 Centralizers in a ring are...
pwsdiagrhm 20523 Diagonal homomorphism into...
subrgpropd 20524 If two structures have the...
rhmpropd 20525 Ring homomorphism depends ...
rgspnval 20528 Value of the ring-span of ...
rgspncl 20529 The ring-span of a set is ...
rgspnssid 20530 The ring-span of a set con...
rgspnmin 20531 The ring-span is contained...
rngcval 20534 Value of the category of n...
rnghmresfn 20535 The class of non-unital ri...
rnghmresel 20536 An element of the non-unit...
rngcbas 20537 Set of objects of the cate...
rngchomfval 20538 Set of arrows of the categ...
rngchom 20539 Set of arrows of the categ...
elrngchom 20540 A morphism of non-unital r...
rngchomfeqhom 20541 The functionalized Hom-set...
rngccofval 20542 Composition in the categor...
rngcco 20543 Composition in the categor...
dfrngc2 20544 Alternate definition of th...
rnghmsscmap2 20545 The non-unital ring homomo...
rnghmsscmap 20546 The non-unital ring homomo...
rnghmsubcsetclem1 20547 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 20548 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 20549 The non-unital ring homomo...
rngccat 20550 The category of non-unital...
rngcid 20551 The identity arrow in the ...
rngcsect 20552 A section in the category ...
rngcinv 20553 An inverse in the category...
rngciso 20554 An isomorphism in the cate...
rngcifuestrc 20555 The "inclusion functor" fr...
funcrngcsetc 20556 The "natural forgetful fun...
funcrngcsetcALT 20557 Alternate proof of ~ funcr...
zrinitorngc 20558 The zero ring is an initia...
zrtermorngc 20559 The zero ring is a termina...
zrzeroorngc 20560 The zero ring is a zero ob...
ringcval 20563 Value of the category of u...
rhmresfn 20564 The class of unital ring h...
rhmresel 20565 An element of the unital r...
ringcbas 20566 Set of objects of the cate...
ringchomfval 20567 Set of arrows of the categ...
ringchom 20568 Set of arrows of the categ...
elringchom 20569 A morphism of unital rings...
ringchomfeqhom 20570 The functionalized Hom-set...
ringccofval 20571 Composition in the categor...
ringcco 20572 Composition in the categor...
dfringc2 20573 Alternate definition of th...
rhmsscmap2 20574 The unital ring homomorphi...
rhmsscmap 20575 The unital ring homomorphi...
rhmsubcsetclem1 20576 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 20577 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 20578 The unital ring homomorphi...
ringccat 20579 The category of unital rin...
ringcid 20580 The identity arrow in the ...
rhmsscrnghm 20581 The unital ring homomorphi...
rhmsubcrngclem1 20582 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 20583 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 20584 The unital ring homomorphi...
rngcresringcat 20585 The restriction of the cat...
ringcsect 20586 A section in the category ...
ringcinv 20587 An inverse in the category...
ringciso 20588 An isomorphism in the cate...
ringcbasbas 20589 An element of the base set...
funcringcsetc 20590 The "natural forgetful fun...
zrtermoringc 20591 The zero ring is a termina...
zrninitoringc 20592 The zero ring is not an in...
srhmsubclem1 20593 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 20594 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 20595 Lemma 3 for ~ srhmsubc . ...
srhmsubc 20596 According to ~ df-subc , t...
sringcat 20597 The restriction of the cat...
crhmsubc 20598 According to ~ df-subc , t...
cringcat 20599 The restriction of the cat...
rngcrescrhm 20600 The category of non-unital...
rhmsubclem1 20601 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 20602 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 20603 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 20604 Lemma 4 for ~ rhmsubc . (...
rhmsubc 20605 According to ~ df-subc , t...
rhmsubccat 20606 The restriction of the cat...
rrgval 20613 Value of the set or left-r...
isrrg 20614 Membership in the set of l...
rrgeq0i 20615 Property of a left-regular...
rrgeq0 20616 Left-multiplication by a l...
rrgsupp 20617 Left multiplication by a l...
rrgss 20618 Left-regular elements are ...
unitrrg 20619 Units are regular elements...
rrgnz 20620 In a nonzero ring, the zer...
isdomn 20621 Expand definition of a dom...
domnnzr 20622 A domain is a nonzero ring...
domnring 20623 A domain is a ring. (Cont...
domneq0 20624 In a domain, a product is ...
domnmuln0 20625 In a domain, a product of ...
isdomn5 20626 The equivalence between th...
isdomn2 20627 A ring is a domain iff all...
isdomn2OLD 20628 Obsolete version of ~ isdo...
domnrrg 20629 In a domain, a nonzero ele...
isdomn6 20630 A ring is a domain iff the...
isdomn3 20631 Nonzero elements form a mu...
isdomn4 20632 A ring is a domain iff it ...
opprdomnb 20633 A class is a domain if and...
opprdomn 20634 The opposite of a domain i...
isdomn4r 20635 A ring is a domain iff it ...
domnlcanb 20636 Left-cancellation law for ...
domnlcan 20637 Left-cancellation law for ...
domnrcanb 20638 Right-cancellation law for...
domnrcan 20639 Right-cancellation law for...
domneq0r 20640 Right multiplication by a ...
isidom 20641 An integral domain is a co...
idomdomd 20642 An integral domain is a do...
idomcringd 20643 An integral domain is a co...
idomringd 20644 An integral domain is a ri...
isdrng 20649 The predicate "is a divisi...
drngunit 20650 Elementhood in the set of ...
drngui 20651 The set of units of a divi...
drngring 20652 A division ring is a ring....
drngringd 20653 A division ring is a ring....
drnggrpd 20654 A division ring is a group...
drnggrp 20655 A division ring is a group...
isfld 20656 A field is a commutative d...
flddrngd 20657 A field is a division ring...
fldcrngd 20658 A field is a commutative r...
isdrng2 20659 A division ring can equiva...
drngprop 20660 If two structures have the...
drngmgp 20661 A division ring contains a...
drngid 20662 A division ring's unity is...
drngunz 20663 A division ring's unity is...
drngnzr 20664 A division ring is a nonze...
drngdomn 20665 A division ring is a domai...
drngmcl 20666 The product of two nonzero...
drngmclOLD 20667 Obsolete version of ~ drng...
drngid2 20668 Properties showing that an...
drnginvrcl 20669 Closure of the multiplicat...
drnginvrn0 20670 The multiplicative inverse...
drnginvrcld 20671 Closure of the multiplicat...
drnginvrl 20672 Property of the multiplica...
drnginvrr 20673 Property of the multiplica...
drnginvrld 20674 Property of the multiplica...
drnginvrrd 20675 Property of the multiplica...
drngmul0or 20676 A product is zero iff one ...
drngmul0orOLD 20677 Obsolete version of ~ drng...
drngmulne0 20678 A product is nonzero iff b...
drngmuleq0 20679 An element is zero iff its...
opprdrng 20680 The opposite of a division...
isdrngd 20681 Properties that characteri...
isdrngrd 20682 Properties that characteri...
isdrngdOLD 20683 Obsolete version of ~ isdr...
isdrngrdOLD 20684 Obsolete version of ~ isdr...
drngpropd 20685 If two structures have the...
fldpropd 20686 If two structures have the...
fldidom 20687 A field is an integral dom...
fidomndrnglem 20688 Lemma for ~ fidomndrng . ...
fidomndrng 20689 A finite domain is a divis...
fiidomfld 20690 A finite integral domain i...
rng1nnzr 20691 The (smallest) structure r...
ring1zr 20692 The only (unital) ring wit...
rngen1zr 20693 The only (unital) ring wit...
ringen1zr 20694 The only unital ring with ...
rng1nfld 20695 The zero ring is not a fie...
issubdrg 20696 Characterize the subfields...
drhmsubc 20697 According to ~ df-subc , t...
drngcat 20698 The restriction of the cat...
fldcat 20699 The restriction of the cat...
fldc 20700 The restriction of the cat...
fldhmsubc 20701 According to ~ df-subc , t...
issdrg 20704 Property of a division sub...
sdrgrcl 20705 Reverse closure for a sub-...
sdrgdrng 20706 A sub-division-ring is a d...
sdrgsubrg 20707 A sub-division-ring is a s...
sdrgid 20708 Every division ring is a d...
sdrgss 20709 A division subring is a su...
sdrgbas 20710 Base set of a sub-division...
issdrg2 20711 Property of a division sub...
sdrgunit 20712 A unit of a sub-division-r...
imadrhmcl 20713 The image of a (nontrivial...
fldsdrgfld 20714 A sub-division-ring of a f...
acsfn1p 20715 Construction of a closure ...
subrgacs 20716 Closure property of subrin...
sdrgacs 20717 Closure property of divisi...
cntzsdrg 20718 Centralizers in division r...
subdrgint 20719 The intersection of a none...
sdrgint 20720 The intersection of a none...
primefld 20721 The smallest sub division ...
primefld0cl 20722 The prime field contains t...
primefld1cl 20723 The prime field contains t...
abvfval 20726 Value of the set of absolu...
isabv 20727 Elementhood in the set of ...
isabvd 20728 Properties that determine ...
abvrcl 20729 Reverse closure for the ab...
abvfge0 20730 An absolute value is a fun...
abvf 20731 An absolute value is a fun...
abvcl 20732 An absolute value is a fun...
abvge0 20733 The absolute value of a nu...
abveq0 20734 The value of an absolute v...
abvne0 20735 The absolute value of a no...
abvgt0 20736 The absolute value of a no...
abvmul 20737 An absolute value distribu...
abvtri 20738 An absolute value satisfie...
abv0 20739 The absolute value of zero...
abv1z 20740 The absolute value of one ...
abv1 20741 The absolute value of one ...
abvneg 20742 The absolute value of a ne...
abvsubtri 20743 An absolute value satisfie...
abvrec 20744 The absolute value distrib...
abvdiv 20745 The absolute value distrib...
abvdom 20746 Any ring with an absolute ...
abvres 20747 The restriction of an abso...
abvtrivd 20748 The trivial absolute value...
abvtrivg 20749 The trivial absolute value...
abvtriv 20750 The trivial absolute value...
abvpropd 20751 If two structures have the...
abvn0b 20752 Another characterization o...
staffval 20757 The functionalization of t...
stafval 20758 The functionalization of t...
staffn 20759 The functionalization is e...
issrng 20760 The predicate "is a star r...
srngrhm 20761 The involution function in...
srngring 20762 A star ring is a ring. (C...
srngcnv 20763 The involution function in...
srngf1o 20764 The involution function in...
srngcl 20765 The involution function in...
srngnvl 20766 The involution function in...
srngadd 20767 The involution function in...
srngmul 20768 The involution function in...
srng1 20769 The conjugate of the ring ...
srng0 20770 The conjugate of the ring ...
issrngd 20771 Properties that determine ...
idsrngd 20772 A commutative ring is a st...
islmod 20777 The predicate "is a left m...
lmodlema 20778 Lemma for properties of a ...
islmodd 20779 Properties that determine ...
lmodgrp 20780 A left module is a group. ...
lmodring 20781 The scalar component of a ...
lmodfgrp 20782 The scalar component of a ...
lmodgrpd 20783 A left module is a group. ...
lmodbn0 20784 The base set of a left mod...
lmodacl 20785 Closure of ring addition f...
lmodmcl 20786 Closure of ring multiplica...
lmodsn0 20787 The set of scalars in a le...
lmodvacl 20788 Closure of vector addition...
lmodass 20789 Left module vector sum is ...
lmodlcan 20790 Left cancellation law for ...
lmodvscl 20791 Closure of scalar product ...
lmodvscld 20792 Closure of scalar product ...
scaffval 20793 The scalar multiplication ...
scafval 20794 The scalar multiplication ...
scafeq 20795 If the scalar multiplicati...
scaffn 20796 The scalar multiplication ...
lmodscaf 20797 The scalar multiplication ...
lmodvsdi 20798 Distributive law for scala...
lmodvsdir 20799 Distributive law for scala...
lmodvsass 20800 Associative law for scalar...
lmod0cl 20801 The ring zero in a left mo...
lmod1cl 20802 The ring unity in a left m...
lmodvs1 20803 Scalar product with the ri...
lmod0vcl 20804 The zero vector is a vecto...
lmod0vlid 20805 Left identity law for the ...
lmod0vrid 20806 Right identity law for the...
lmod0vid 20807 Identity equivalent to the...
lmod0vs 20808 Zero times a vector is the...
lmodvs0 20809 Anything times the zero ve...
lmodvsmmulgdi 20810 Distributive law for a gro...
lmodfopnelem1 20811 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20812 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20813 The (functionalized) opera...
lcomf 20814 A linear-combination sum i...
lcomfsupp 20815 A linear-combination sum i...
lmodvnegcl 20816 Closure of vector negative...
lmodvnegid 20817 Addition of a vector with ...
lmodvneg1 20818 Minus 1 times a vector is ...
lmodvsneg 20819 Multiplication of a vector...
lmodvsubcl 20820 Closure of vector subtract...
lmodcom 20821 Left module vector sum is ...
lmodabl 20822 A left module is an abelia...
lmodcmn 20823 A left module is a commuta...
lmodnegadd 20824 Distribute negation throug...
lmod4 20825 Commutative/associative la...
lmodvsubadd 20826 Relationship between vecto...
lmodvaddsub4 20827 Vector addition/subtractio...
lmodvpncan 20828 Addition/subtraction cance...
lmodvnpcan 20829 Cancellation law for vecto...
lmodvsubval2 20830 Value of vector subtractio...
lmodsubvs 20831 Subtraction of a scalar pr...
lmodsubdi 20832 Scalar multiplication dist...
lmodsubdir 20833 Scalar multiplication dist...
lmodsubeq0 20834 If the difference between ...
lmodsubid 20835 Subtraction of a vector fr...
lmodvsghm 20836 Scalar multiplication of t...
lmodprop2d 20837 If two structures have the...
lmodpropd 20838 If two structures have the...
gsumvsmul 20839 Pull a scalar multiplicati...
mptscmfsupp0 20840 A mapping to a scalar prod...
mptscmfsuppd 20841 A function mapping to a sc...
rmodislmodlem 20842 Lemma for ~ rmodislmod . ...
rmodislmod 20843 The right module ` R ` ind...
lssset 20846 The set of all (not necess...
islss 20847 The predicate "is a subspa...
islssd 20848 Properties that determine ...
lssss 20849 A subspace is a set of vec...
lssel 20850 A subspace member is a vec...
lss1 20851 The set of vectors in a le...
lssuni 20852 The union of all subspaces...
lssn0 20853 A subspace is not empty. ...
00lss 20854 The empty structure has no...
lsscl 20855 Closure property of a subs...
lssvacl 20856 Closure of vector addition...
lssvsubcl 20857 Closure of vector subtract...
lssvancl1 20858 Non-closure: if one vector...
lssvancl2 20859 Non-closure: if one vector...
lss0cl 20860 The zero vector belongs to...
lsssn0 20861 The singleton of the zero ...
lss0ss 20862 The zero subspace is inclu...
lssle0 20863 No subspace is smaller tha...
lssne0 20864 A nonzero subspace has a n...
lssvneln0 20865 A vector ` X ` which doesn...
lssneln0 20866 A vector ` X ` which doesn...
lssssr 20867 Conclude subspace ordering...
lssvscl 20868 Closure of scalar product ...
lssvnegcl 20869 Closure of negative vector...
lsssubg 20870 All subspaces are subgroup...
lsssssubg 20871 All subspaces are subgroup...
islss3 20872 A linear subspace of a mod...
lsslmod 20873 A submodule is a module. ...
lsslss 20874 The subspaces of a subspac...
islss4 20875 A linear subspace is a sub...
lss1d 20876 One-dimensional subspace (...
lssintcl 20877 The intersection of a none...
lssincl 20878 The intersection of two su...
lssmre 20879 The subspaces of a module ...
lssacs 20880 Submodules are an algebrai...
prdsvscacl 20881 Pointwise scalar multiplic...
prdslmodd 20882 The product of a family of...
pwslmod 20883 A structure power of a lef...
lspfval 20886 The span function for a le...
lspf 20887 The span function on a lef...
lspval 20888 The span of a set of vecto...
lspcl 20889 The span of a set of vecto...
lspsncl 20890 The span of a singleton is...
lspprcl 20891 The span of a pair is a su...
lsptpcl 20892 The span of an unordered t...
lspsnsubg 20893 The span of a singleton is...
00lsp 20894 ~ fvco4i lemma for linear ...
lspid 20895 The span of a subspace is ...
lspssv 20896 A span is a set of vectors...
lspss 20897 Span preserves subset orde...
lspssid 20898 A set of vectors is a subs...
lspidm 20899 The span of a set of vecto...
lspun 20900 The span of union is the s...
lspssp 20901 If a set of vectors is a s...
mrclsp 20902 Moore closure generalizes ...
lspsnss 20903 The span of the singleton ...
ellspsn3 20904 A member of the span of th...
lspprss 20905 The span of a pair of vect...
lspsnid 20906 A vector belongs to the sp...
ellspsn6 20907 Relationship between a vec...
ellspsn5b 20908 Relationship between a vec...
ellspsn5 20909 Relationship between a vec...
lspprid1 20910 A member of a pair of vect...
lspprid2 20911 A member of a pair of vect...
lspprvacl 20912 The sum of two vectors bel...
lssats2 20913 A way to express atomistic...
ellspsni 20914 A scalar product with a ve...
lspsn 20915 Span of the singleton of a...
ellspsn 20916 Member of span of the sing...
lspsnvsi 20917 Span of a scalar product o...
lspsnss2 20918 Comparable spans of single...
lspsnneg 20919 Negation does not change t...
lspsnsub 20920 Swapping subtraction order...
lspsn0 20921 Span of the singleton of t...
lsp0 20922 Span of the empty set. (C...
lspuni0 20923 Union of the span of the e...
lspun0 20924 The span of a union with t...
lspsneq0 20925 Span of the singleton is t...
lspsneq0b 20926 Equal singleton spans impl...
lmodindp1 20927 Two independent (non-colin...
lsslsp 20928 Spans in submodules corres...
lsslspOLD 20929 Obsolete version of ~ lssl...
lss0v 20930 The zero vector in a submo...
lsspropd 20931 If two structures have the...
lsppropd 20932 If two structures have the...
reldmlmhm 20939 Lemma for module homomorph...
lmimfn 20940 Lemma for module isomorphi...
islmhm 20941 Property of being a homomo...
islmhm3 20942 Property of a module homom...
lmhmlem 20943 Non-quantified consequence...
lmhmsca 20944 A homomorphism of left mod...
lmghm 20945 A homomorphism of left mod...
lmhmlmod2 20946 A homomorphism of left mod...
lmhmlmod1 20947 A homomorphism of left mod...
lmhmf 20948 A homomorphism of left mod...
lmhmlin 20949 A homomorphism of left mod...
lmodvsinv 20950 Multiplication of a vector...
lmodvsinv2 20951 Multiplying a negated vect...
islmhm2 20952 A one-equation proof of li...
islmhmd 20953 Deduction for a module hom...
0lmhm 20954 The constant zero linear f...
idlmhm 20955 The identity function on a...
invlmhm 20956 The negative function on a...
lmhmco 20957 The composition of two mod...
lmhmplusg 20958 The pointwise sum of two l...
lmhmvsca 20959 The pointwise scalar produ...
lmhmf1o 20960 A bijective module homomor...
lmhmima 20961 The image of a subspace un...
lmhmpreima 20962 The inverse image of a sub...
lmhmlsp 20963 Homomorphisms preserve spa...
lmhmrnlss 20964 The range of a homomorphis...
lmhmkerlss 20965 The kernel of a homomorphi...
reslmhm 20966 Restriction of a homomorph...
reslmhm2 20967 Expansion of the codomain ...
reslmhm2b 20968 Expansion of the codomain ...
lmhmeql 20969 The equalizer of two modul...
lspextmo 20970 A linear function is compl...
pwsdiaglmhm 20971 Diagonal homomorphism into...
pwssplit0 20972 Splitting for structure po...
pwssplit1 20973 Splitting for structure po...
pwssplit2 20974 Splitting for structure po...
pwssplit3 20975 Splitting for structure po...
islmim 20976 An isomorphism of left mod...
lmimf1o 20977 An isomorphism of left mod...
lmimlmhm 20978 An isomorphism of modules ...
lmimgim 20979 An isomorphism of modules ...
islmim2 20980 An isomorphism of left mod...
lmimcnv 20981 The converse of a bijectiv...
brlmic 20982 The relation "is isomorphi...
brlmici 20983 Prove isomorphic by an exp...
lmiclcl 20984 Isomorphism implies the le...
lmicrcl 20985 Isomorphism implies the ri...
lmicsym 20986 Module isomorphism is symm...
lmhmpropd 20987 Module homomorphism depend...
islbs 20990 The predicate " ` B ` is a...
lbsss 20991 A basis is a set of vector...
lbsel 20992 An element of a basis is a...
lbssp 20993 The span of a basis is the...
lbsind 20994 A basis is linearly indepe...
lbsind2 20995 A basis is linearly indepe...
lbspss 20996 No proper subset of a basi...
lsmcl 20997 The sum of two subspaces i...
lsmspsn 20998 Member of subspace sum of ...
lsmelval2 20999 Subspace sum membership in...
lsmsp 21000 Subspace sum in terms of s...
lsmsp2 21001 Subspace sum of spans of s...
lsmssspx 21002 Subspace sum (in its exten...
lsmpr 21003 The span of a pair of vect...
lsppreli 21004 A vector expressed as a su...
lsmelpr 21005 Two ways to say that a vec...
lsppr0 21006 The span of a vector paire...
lsppr 21007 Span of a pair of vectors....
lspprel 21008 Member of the span of a pa...
lspprabs 21009 Absorption of vector sum i...
lspvadd 21010 The span of a vector sum i...
lspsntri 21011 Triangle-type inequality f...
lspsntrim 21012 Triangle-type inequality f...
lbspropd 21013 If two structures have the...
pj1lmhm 21014 The left projection functi...
pj1lmhm2 21015 The left projection functi...
islvec 21018 The predicate "is a left v...
lvecdrng 21019 The set of scalars of a le...
lveclmod 21020 A left vector space is a l...
lveclmodd 21021 A vector space is a left m...
lvecgrpd 21022 A vector space is a group....
lsslvec 21023 A vector subspace is a vec...
lmhmlvec 21024 The property for modules t...
lvecvs0or 21025 If a scalar product is zer...
lvecvsn0 21026 A scalar product is nonzer...
lssvs0or 21027 If a scalar product belong...
lvecvscan 21028 Cancellation law for scala...
lvecvscan2 21029 Cancellation law for scala...
lvecinv 21030 Invert coefficient of scal...
lspsnvs 21031 A nonzero scalar product d...
lspsneleq 21032 Membership relation that i...
lspsncmp 21033 Comparable spans of nonzer...
lspsnne1 21034 Two ways to express that v...
lspsnne2 21035 Two ways to express that v...
lspsnnecom 21036 Swap two vectors with diff...
lspabs2 21037 Absorption law for span of...
lspabs3 21038 Absorption law for span of...
lspsneq 21039 Equal spans of singletons ...
lspsneu 21040 Nonzero vectors with equal...
ellspsn4 21041 A member of the span of th...
lspdisj 21042 The span of a vector not i...
lspdisjb 21043 A nonzero vector is not in...
lspdisj2 21044 Unequal spans are disjoint...
lspfixed 21045 Show membership in the spa...
lspexch 21046 Exchange property for span...
lspexchn1 21047 Exchange property for span...
lspexchn2 21048 Exchange property for span...
lspindpi 21049 Partial independence prope...
lspindp1 21050 Alternate way to say 3 vec...
lspindp2l 21051 Alternate way to say 3 vec...
lspindp2 21052 Alternate way to say 3 vec...
lspindp3 21053 Independence of 2 vectors ...
lspindp4 21054 (Partial) independence of ...
lvecindp 21055 Compute the ` X ` coeffici...
lvecindp2 21056 Sums of independent vector...
lspsnsubn0 21057 Unequal singleton spans im...
lsmcv 21058 Subspace sum has the cover...
lspsolvlem 21059 Lemma for ~ lspsolv . (Co...
lspsolv 21060 If ` X ` is in the span of...
lssacsex 21061 In a vector space, subspac...
lspsnat 21062 There is no subspace stric...
lspsncv0 21063 The span of a singleton co...
lsppratlem1 21064 Lemma for ~ lspprat . Let...
lsppratlem2 21065 Lemma for ~ lspprat . Sho...
lsppratlem3 21066 Lemma for ~ lspprat . In ...
lsppratlem4 21067 Lemma for ~ lspprat . In ...
lsppratlem5 21068 Lemma for ~ lspprat . Com...
lsppratlem6 21069 Lemma for ~ lspprat . Neg...
lspprat 21070 A proper subspace of the s...
islbs2 21071 An equivalent formulation ...
islbs3 21072 An equivalent formulation ...
lbsacsbs 21073 Being a basis in a vector ...
lvecdim 21074 The dimension theorem for ...
lbsextlem1 21075 Lemma for ~ lbsext . The ...
lbsextlem2 21076 Lemma for ~ lbsext . Sinc...
lbsextlem3 21077 Lemma for ~ lbsext . A ch...
lbsextlem4 21078 Lemma for ~ lbsext . ~ lbs...
lbsextg 21079 For any linearly independe...
lbsext 21080 For any linearly independe...
lbsexg 21081 Every vector space has a b...
lbsex 21082 Every vector space has a b...
lvecprop2d 21083 If two structures have the...
lvecpropd 21084 If two structures have the...
sraval 21089 Lemma for ~ srabase throug...
sralem 21090 Lemma for ~ srabase and si...
srabase 21091 Base set of a subring alge...
sraaddg 21092 Additive operation of a su...
sramulr 21093 Multiplicative operation o...
srasca 21094 The set of scalars of a su...
sravsca 21095 The scalar product operati...
sraip 21096 The inner product operatio...
sratset 21097 Topology component of a su...
sratopn 21098 Topology component of a su...
srads 21099 Distance function of a sub...
sraring 21100 Condition for a subring al...
sralmod 21101 The subring algebra is a l...
sralmod0 21102 The subring module inherit...
issubrgd 21103 Prove a subring by closure...
rlmfn 21104 ` ringLMod ` is a function...
rlmval 21105 Value of the ring module. ...
rlmval2 21106 Value of the ring module e...
rlmbas 21107 Base set of the ring modul...
rlmplusg 21108 Vector addition in the rin...
rlm0 21109 Zero vector in the ring mo...
rlmsub 21110 Subtraction in the ring mo...
rlmmulr 21111 Ring multiplication in the...
rlmsca 21112 Scalars in the ring module...
rlmsca2 21113 Scalars in the ring module...
rlmvsca 21114 Scalar multiplication in t...
rlmtopn 21115 Topology component of the ...
rlmds 21116 Metric component of the ri...
rlmlmod 21117 The ring module is a modul...
rlmlvec 21118 The ring module over a div...
rlmlsm 21119 Subgroup sum of the ring m...
rlmvneg 21120 Vector negation in the rin...
rlmscaf 21121 Functionalized scalar mult...
ixpsnbasval 21122 The value of an infinite C...
lidlval 21127 Value of the set of ring i...
rspval 21128 Value of the ring span fun...
lidlss 21129 An ideal is a subset of th...
lidlssbas 21130 The base set of the restri...
lidlbas 21131 A (left) ideal of a ring i...
islidl 21132 Predicate of being a (left...
rnglidlmcl 21133 A (left) ideal containing ...
rngridlmcl 21134 A right ideal (which is a ...
dflidl2rng 21135 Alternate (the usual textb...
isridlrng 21136 A right ideal is a left id...
lidl0cl 21137 An ideal contains 0. (Con...
lidlacl 21138 An ideal is closed under a...
lidlnegcl 21139 An ideal contains negative...
lidlsubg 21140 An ideal is a subgroup of ...
lidlsubcl 21141 An ideal is closed under s...
lidlmcl 21142 An ideal is closed under l...
lidl1el 21143 An ideal contains 1 iff it...
dflidl2 21144 Alternate (the usual textb...
lidl0ALT 21145 Alternate proof for ~ lidl...
rnglidl0 21146 Every non-unital ring cont...
lidl0 21147 Every ring contains a zero...
lidl1ALT 21148 Alternate proof for ~ lidl...
rnglidl1 21149 The base set of every non-...
lidl1 21150 Every ring contains a unit...
lidlacs 21151 The ideal system is an alg...
rspcl 21152 The span of a set of ring ...
rspssid 21153 The span of a set of ring ...
rsp1 21154 The span of the identity e...
rsp0 21155 The span of the zero eleme...
rspssp 21156 The ideal span of a set of...
elrspsn 21157 Membership in a principal ...
mrcrsp 21158 Moore closure generalizes ...
lidlnz 21159 A nonzero ideal contains a...
drngnidl 21160 A division ring has only t...
lidlrsppropd 21161 The left ideals and ring s...
rnglidlmmgm 21162 The multiplicative group o...
rnglidlmsgrp 21163 The multiplicative group o...
rnglidlrng 21164 A (left) ideal of a non-un...
lidlnsg 21165 An ideal is a normal subgr...
2idlval 21168 Definition of a two-sided ...
isridl 21169 A right ideal is a left id...
2idlelb 21170 Membership in a two-sided ...
2idllidld 21171 A two-sided ideal is a lef...
2idlridld 21172 A two-sided ideal is a rig...
df2idl2rng 21173 Alternate (the usual textb...
df2idl2 21174 Alternate (the usual textb...
ridl0 21175 Every ring contains a zero...
ridl1 21176 Every ring contains a unit...
2idl0 21177 Every ring contains a zero...
2idl1 21178 Every ring contains a unit...
2idlss 21179 A two-sided ideal is a sub...
2idlbas 21180 The base set of a two-side...
2idlelbas 21181 The base set of a two-side...
rng2idlsubrng 21182 A two-sided ideal of a non...
rng2idlnsg 21183 A two-sided ideal of a non...
rng2idl0 21184 The zero (additive identit...
rng2idlsubgsubrng 21185 A two-sided ideal of a non...
rng2idlsubgnsg 21186 A two-sided ideal of a non...
rng2idlsubg0 21187 The zero (additive identit...
2idlcpblrng 21188 The coset equivalence rela...
2idlcpbl 21189 The coset equivalence rela...
qus2idrng 21190 The quotient of a non-unit...
qus1 21191 The multiplicative identit...
qusring 21192 If ` S ` is a two-sided id...
qusrhm 21193 If ` S ` is a two-sided id...
rhmpreimaidl 21194 The preimage of an ideal b...
kerlidl 21195 The kernel of a ring homom...
qusmul2idl 21196 Value of the ring operatio...
crngridl 21197 In a commutative ring, the...
crng2idl 21198 In a commutative ring, a t...
qusmulrng 21199 Value of the multiplicatio...
quscrng 21200 The quotient of a commutat...
qusmulcrng 21201 Value of the ring operatio...
rhmqusnsg 21202 The mapping ` J ` induced ...
rngqiprng1elbas 21203 The ring unity of a two-si...
rngqiprngghmlem1 21204 Lemma 1 for ~ rngqiprngghm...
rngqiprngghmlem2 21205 Lemma 2 for ~ rngqiprngghm...
rngqiprngghmlem3 21206 Lemma 3 for ~ rngqiprngghm...
rngqiprngimfolem 21207 Lemma for ~ rngqiprngimfo ...
rngqiprnglinlem1 21208 Lemma 1 for ~ rngqiprnglin...
rngqiprnglinlem2 21209 Lemma 2 for ~ rngqiprnglin...
rngqiprnglinlem3 21210 Lemma 3 for ~ rngqiprnglin...
rngqiprngimf1lem 21211 Lemma for ~ rngqiprngimf1 ...
rngqipbas 21212 The base set of the produc...
rngqiprng 21213 The product of the quotien...
rngqiprngimf 21214 ` F ` is a function from (...
rngqiprngimfv 21215 The value of the function ...
rngqiprngghm 21216 ` F ` is a homomorphism of...
rngqiprngimf1 21217 ` F ` is a one-to-one func...
rngqiprngimfo 21218 ` F ` is a function from (...
rngqiprnglin 21219 ` F ` is linear with respe...
rngqiprngho 21220 ` F ` is a homomorphism of...
rngqiprngim 21221 ` F ` is an isomorphism of...
rng2idl1cntr 21222 The unity of a two-sided i...
rngringbdlem1 21223 In a unital ring, the quot...
rngringbdlem2 21224 A non-unital ring is unita...
rngringbd 21225 A non-unital ring is unita...
ring2idlqus 21226 For every unital ring ther...
ring2idlqusb 21227 A non-unital ring is unita...
rngqiprngfulem1 21228 Lemma 1 for ~ rngqiprngfu ...
rngqiprngfulem2 21229 Lemma 2 for ~ rngqiprngfu ...
rngqiprngfulem3 21230 Lemma 3 for ~ rngqiprngfu ...
rngqiprngfulem4 21231 Lemma 4 for ~ rngqiprngfu ...
rngqiprngfulem5 21232 Lemma 5 for ~ rngqiprngfu ...
rngqipring1 21233 The ring unity of the prod...
rngqiprngfu 21234 The function value of ` F ...
rngqiprngu 21235 If a non-unital ring has a...
ring2idlqus1 21236 If a non-unital ring has a...
lpival 21241 Value of the set of princi...
islpidl 21242 Property of being a princi...
lpi0 21243 The zero ideal is always p...
lpi1 21244 The unit ideal is always p...
islpir 21245 Principal ideal rings are ...
lpiss 21246 Principal ideals are a sub...
islpir2 21247 Principal ideal rings are ...
lpirring 21248 Principal ideal rings are ...
drnglpir 21249 Division rings are princip...
rspsn 21250 Membership in principal id...
lidldvgen 21251 An element generates an id...
lpigen 21252 An ideal is principal iff ...
cnfldstr 21273 The field of complex numbe...
cnfldex 21274 The field of complex numbe...
cnfldbas 21275 The base set of the field ...
mpocnfldadd 21276 The addition operation of ...
cnfldadd 21277 The addition operation of ...
mpocnfldmul 21278 The multiplication operati...
cnfldmul 21279 The multiplication operati...
cnfldcj 21280 The conjugation operation ...
cnfldtset 21281 The topology component of ...
cnfldle 21282 The ordering of the field ...
cnfldds 21283 The metric of the field of...
cnfldunif 21284 The uniform structure comp...
cnfldfun 21285 The field of complex numbe...
cnfldfunALT 21286 The field of complex numbe...
dfcnfldOLD 21287 Obsolete version of ~ df-c...
cnfldstrOLD 21288 Obsolete version of ~ cnfl...
cnfldexOLD 21289 Obsolete version of ~ cnfl...
cnfldbasOLD 21290 Obsolete version of ~ cnfl...
cnfldaddOLD 21291 Obsolete version of ~ cnfl...
cnfldmulOLD 21292 Obsolete version of ~ cnfl...
cnfldcjOLD 21293 Obsolete version of ~ cnfl...
cnfldtsetOLD 21294 Obsolete version of ~ cnfl...
cnfldleOLD 21295 Obsolete version of ~ cnfl...
cnflddsOLD 21296 Obsolete version of ~ cnfl...
cnfldunifOLD 21297 Obsolete version of ~ cnfl...
cnfldfunOLD 21298 Obsolete version of ~ cnfl...
cnfldfunALTOLD 21299 Obsolete version of ~ cnfl...
xrsstr 21300 The extended real structur...
xrsex 21301 The extended real structur...
xrsbas 21302 The base set of the extend...
xrsadd 21303 The addition operation of ...
xrsmul 21304 The multiplication operati...
xrstset 21305 The topology component of ...
xrsle 21306 The ordering of the extend...
cncrng 21307 The complex numbers form a...
cncrngOLD 21308 Obsolete version of ~ cncr...
cnring 21309 The complex numbers form a...
xrsmcmn 21310 The "multiplicative group"...
cnfld0 21311 Zero is the zero element o...
cnfld1 21312 One is the unity element o...
cnfld1OLD 21313 Obsolete version of ~ cnfl...
cnfldneg 21314 The additive inverse in th...
cnfldplusf 21315 The functionalized additio...
cnfldsub 21316 The subtraction operator i...
cndrng 21317 The complex numbers form a...
cndrngOLD 21318 Obsolete version of ~ cndr...
cnflddiv 21319 The division operation in ...
cnflddivOLD 21320 Obsolete version of ~ cnfl...
cnfldinv 21321 The multiplicative inverse...
cnfldmulg 21322 The group multiple functio...
cnfldexp 21323 The exponentiation operato...
cnsrng 21324 The complex numbers form a...
xrsmgm 21325 The "additive group" of th...
xrsnsgrp 21326 The "additive group" of th...
xrsmgmdifsgrp 21327 The "additive group" of th...
xrs1mnd 21328 The extended real numbers,...
xrs10 21329 The zero of the extended r...
xrs1cmn 21330 The extended real numbers ...
xrge0subm 21331 The nonnegative extended r...
xrge0cmn 21332 The nonnegative extended r...
xrsds 21333 The metric of the extended...
xrsdsval 21334 The metric of the extended...
xrsdsreval 21335 The metric of the extended...
xrsdsreclblem 21336 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 21337 The metric of the extended...
cnsubmlem 21338 Lemma for ~ nn0subm and fr...
cnsubglem 21339 Lemma for ~ resubdrg and f...
cnsubrglem 21340 Lemma for ~ resubdrg and f...
cnsubrglemOLD 21341 Obsolete version of ~ cnsu...
cnsubdrglem 21342 Lemma for ~ resubdrg and f...
qsubdrg 21343 The rational numbers form ...
zsubrg 21344 The integers form a subrin...
gzsubrg 21345 The gaussian integers form...
nn0subm 21346 The nonnegative integers f...
rege0subm 21347 The nonnegative reals form...
absabv 21348 The regular absolute value...
zsssubrg 21349 The integers are a subset ...
qsssubdrg 21350 The rational numbers are a...
cnsubrg 21351 There are no subrings of t...
cnmgpabl 21352 The unit group of the comp...
cnmgpid 21353 The group identity element...
cnmsubglem 21354 Lemma for ~ rpmsubg and fr...
rpmsubg 21355 The positive reals form a ...
gzrngunitlem 21356 Lemma for ~ gzrngunit . (...
gzrngunit 21357 The units on ` ZZ [ _i ] `...
gsumfsum 21358 Relate a group sum on ` CC...
regsumfsum 21359 Relate a group sum on ` ( ...
expmhm 21360 Exponentiation is a monoid...
nn0srg 21361 The nonnegative integers f...
rge0srg 21362 The nonnegative real numbe...
zringcrng 21365 The ring of integers is a ...
zringring 21366 The ring of integers is a ...
zringrng 21367 The ring of integers is a ...
zringabl 21368 The ring of integers is an...
zringgrp 21369 The ring of integers is an...
zringbas 21370 The integers are the base ...
zringplusg 21371 The addition operation of ...
zringsub 21372 The subtraction of element...
zringmulg 21373 The multiplication (group ...
zringmulr 21374 The multiplication operati...
zring0 21375 The zero element of the ri...
zring1 21376 The unity element of the r...
zringnzr 21377 The ring of integers is a ...
dvdsrzring 21378 Ring divisibility in the r...
zringlpirlem1 21379 Lemma for ~ zringlpir . A...
zringlpirlem2 21380 Lemma for ~ zringlpir . A...
zringlpirlem3 21381 Lemma for ~ zringlpir . A...
zringinvg 21382 The additive inverse of an...
zringunit 21383 The units of ` ZZ ` are th...
zringlpir 21384 The integers are a princip...
zringndrg 21385 The integers are not a div...
zringcyg 21386 The integers are a cyclic ...
zringsubgval 21387 Subtraction in the ring of...
zringmpg 21388 The multiplicative group o...
prmirredlem 21389 A positive integer is irre...
dfprm2 21390 The positive irreducible e...
prmirred 21391 The irreducible elements o...
expghm 21392 Exponentiation is a group ...
mulgghm2 21393 The powers of a group elem...
mulgrhm 21394 The powers of the element ...
mulgrhm2 21395 The powers of the element ...
irinitoringc 21396 The ring of integers is an...
nzerooringczr 21397 There is no zero object in...
pzriprnglem1 21398 Lemma 1 for ~ pzriprng : `...
pzriprnglem2 21399 Lemma 2 for ~ pzriprng : ...
pzriprnglem3 21400 Lemma 3 for ~ pzriprng : ...
pzriprnglem4 21401 Lemma 4 for ~ pzriprng : `...
pzriprnglem5 21402 Lemma 5 for ~ pzriprng : `...
pzriprnglem6 21403 Lemma 6 for ~ pzriprng : `...
pzriprnglem7 21404 Lemma 7 for ~ pzriprng : `...
pzriprnglem8 21405 Lemma 8 for ~ pzriprng : `...
pzriprnglem9 21406 Lemma 9 for ~ pzriprng : ...
pzriprnglem10 21407 Lemma 10 for ~ pzriprng : ...
pzriprnglem11 21408 Lemma 11 for ~ pzriprng : ...
pzriprnglem12 21409 Lemma 12 for ~ pzriprng : ...
pzriprnglem13 21410 Lemma 13 for ~ pzriprng : ...
pzriprnglem14 21411 Lemma 14 for ~ pzriprng : ...
pzriprngALT 21412 The non-unital ring ` ( ZZ...
pzriprng1ALT 21413 The ring unity of the ring...
pzriprng 21414 The non-unital ring ` ( ZZ...
pzriprng1 21415 The ring unity of the ring...
zrhval 21424 Define the unique homomorp...
zrhval2 21425 Alternate value of the ` Z...
zrhmulg 21426 Value of the ` ZRHom ` hom...
zrhrhmb 21427 The ` ZRHom ` homomorphism...
zrhrhm 21428 The ` ZRHom ` homomorphism...
zrh1 21429 Interpretation of 1 in a r...
zrh0 21430 Interpretation of 0 in a r...
zrhpropd 21431 The ` ZZ ` ring homomorphi...
zlmval 21432 Augment an abelian group w...
zlmlem 21433 Lemma for ~ zlmbas and ~ z...
zlmbas 21434 Base set of a ` ZZ ` -modu...
zlmplusg 21435 Group operation of a ` ZZ ...
zlmmulr 21436 Ring operation of a ` ZZ `...
zlmsca 21437 Scalar ring of a ` ZZ ` -m...
zlmvsca 21438 Scalar multiplication oper...
zlmlmod 21439 The ` ZZ ` -module operati...
chrval 21440 Definition substitution of...
chrcl 21441 Closure of the characteris...
chrid 21442 The canonical ` ZZ ` ring ...
chrdvds 21443 The ` ZZ ` ring homomorphi...
chrcong 21444 If two integers are congru...
dvdschrmulg 21445 In a ring, any multiple of...
fermltlchr 21446 A generalization of Fermat...
chrnzr 21447 Nonzero rings are precisel...
chrrhm 21448 The characteristic restric...
domnchr 21449 The characteristic of a do...
znlidl 21450 The set ` n ZZ ` is an ide...
zncrng2 21451 Making a commutative ring ...
znval 21452 The value of the ` Z/nZ ` ...
znle 21453 The value of the ` Z/nZ ` ...
znval2 21454 Self-referential expressio...
znbaslem 21455 Lemma for ~ znbas . (Cont...
znbas2 21456 The base set of ` Z/nZ ` i...
znadd 21457 The additive structure of ...
znmul 21458 The multiplicative structu...
znzrh 21459 The ` ZZ ` ring homomorphi...
znbas 21460 The base set of ` Z/nZ ` s...
zncrng 21461 ` Z/nZ ` is a commutative ...
znzrh2 21462 The ` ZZ ` ring homomorphi...
znzrhval 21463 The ` ZZ ` ring homomorphi...
znzrhfo 21464 The ` ZZ ` ring homomorphi...
zncyg 21465 The group ` ZZ / n ZZ ` is...
zndvds 21466 Express equality of equiva...
zndvds0 21467 Special case of ~ zndvds w...
znf1o 21468 The function ` F ` enumera...
zzngim 21469 The ` ZZ ` ring homomorphi...
znle2 21470 The ordering of the ` Z/nZ...
znleval 21471 The ordering of the ` Z/nZ...
znleval2 21472 The ordering of the ` Z/nZ...
zntoslem 21473 Lemma for ~ zntos . (Cont...
zntos 21474 The ` Z/nZ ` structure is ...
znhash 21475 The ` Z/nZ ` structure has...
znfi 21476 The ` Z/nZ ` structure is ...
znfld 21477 The ` Z/nZ ` structure is ...
znidomb 21478 The ` Z/nZ ` structure is ...
znchr 21479 Cyclic rings are defined b...
znunit 21480 The units of ` Z/nZ ` are ...
znunithash 21481 The size of the unit group...
znrrg 21482 The regular elements of ` ...
cygznlem1 21483 Lemma for ~ cygzn . (Cont...
cygznlem2a 21484 Lemma for ~ cygzn . (Cont...
cygznlem2 21485 Lemma for ~ cygzn . (Cont...
cygznlem3 21486 A cyclic group with ` n ` ...
cygzn 21487 A cyclic group with ` n ` ...
cygth 21488 The "fundamental theorem o...
cyggic 21489 Cyclic groups are isomorph...
frgpcyg 21490 A free group is cyclic iff...
freshmansdream 21491 For a prime number ` P ` ,...
frobrhm 21492 In a commutative ring with...
cnmsgnsubg 21493 The signs form a multiplic...
cnmsgnbas 21494 The base set of the sign s...
cnmsgngrp 21495 The group of signs under m...
psgnghm 21496 The sign is a homomorphism...
psgnghm2 21497 The sign is a homomorphism...
psgninv 21498 The sign of a permutation ...
psgnco 21499 Multiplicativity of the pe...
zrhpsgnmhm 21500 Embedding of permutation s...
zrhpsgninv 21501 The embedded sign of a per...
evpmss 21502 Even permutations are perm...
psgnevpmb 21503 A class is an even permuta...
psgnodpm 21504 A permutation which is odd...
psgnevpm 21505 A permutation which is eve...
psgnodpmr 21506 If a permutation has sign ...
zrhpsgnevpm 21507 The sign of an even permut...
zrhpsgnodpm 21508 The sign of an odd permuta...
cofipsgn 21509 Composition of any class `...
zrhpsgnelbas 21510 Embedding of permutation s...
zrhcopsgnelbas 21511 Embedding of permutation s...
evpmodpmf1o 21512 The function for performin...
pmtrodpm 21513 A transposition is an odd ...
psgnfix1 21514 A permutation of a finite ...
psgnfix2 21515 A permutation of a finite ...
psgndiflemB 21516 Lemma 1 for ~ psgndif . (...
psgndiflemA 21517 Lemma 2 for ~ psgndif . (...
psgndif 21518 Embedding of permutation s...
copsgndif 21519 Embedding of permutation s...
rebase 21522 The base of the field of r...
remulg 21523 The multiplication (group ...
resubdrg 21524 The real numbers form a di...
resubgval 21525 Subtraction in the field o...
replusg 21526 The addition operation of ...
remulr 21527 The multiplication operati...
re0g 21528 The zero element of the fi...
re1r 21529 The unity element of the f...
rele2 21530 The ordering relation of t...
relt 21531 The ordering relation of t...
reds 21532 The distance of the field ...
redvr 21533 The division operation of ...
retos 21534 The real numbers are a tot...
refld 21535 The real numbers form a fi...
refldcj 21536 The conjugation operation ...
resrng 21537 The real numbers form a st...
regsumsupp 21538 The group sum over the rea...
rzgrp 21539 The quotient group ` RR / ...
isphl 21544 The predicate "is a genera...
phllvec 21545 A pre-Hilbert space is a l...
phllmod 21546 A pre-Hilbert space is a l...
phlsrng 21547 The scalar ring of a pre-H...
phllmhm 21548 The inner product of a pre...
ipcl 21549 Closure of the inner produ...
ipcj 21550 Conjugate of an inner prod...
iporthcom 21551 Orthogonality (meaning inn...
ip0l 21552 Inner product with a zero ...
ip0r 21553 Inner product with a zero ...
ipeq0 21554 The inner product of a vec...
ipdir 21555 Distributive law for inner...
ipdi 21556 Distributive law for inner...
ip2di 21557 Distributive law for inner...
ipsubdir 21558 Distributive law for inner...
ipsubdi 21559 Distributive law for inner...
ip2subdi 21560 Distributive law for inner...
ipass 21561 Associative law for inner ...
ipassr 21562 "Associative" law for seco...
ipassr2 21563 "Associative" law for inne...
ipffval 21564 The inner product operatio...
ipfval 21565 The inner product operatio...
ipfeq 21566 If the inner product opera...
ipffn 21567 The inner product operatio...
phlipf 21568 The inner product operatio...
ip2eq 21569 Two vectors are equal iff ...
isphld 21570 Properties that determine ...
phlpropd 21571 If two structures have the...
ssipeq 21572 The inner product on a sub...
phssipval 21573 The inner product on a sub...
phssip 21574 The inner product (as a fu...
phlssphl 21575 A subspace of an inner pro...
ocvfval 21582 The orthocomplement operat...
ocvval 21583 Value of the orthocompleme...
elocv 21584 Elementhood in the orthoco...
ocvi 21585 Property of a member of th...
ocvss 21586 The orthocomplement of a s...
ocvocv 21587 A set is contained in its ...
ocvlss 21588 The orthocomplement of a s...
ocv2ss 21589 Orthocomplements reverse s...
ocvin 21590 An orthocomplement has tri...
ocvsscon 21591 Two ways to say that ` S `...
ocvlsp 21592 The orthocomplement of a l...
ocv0 21593 The orthocomplement of the...
ocvz 21594 The orthocomplement of the...
ocv1 21595 The orthocomplement of the...
unocv 21596 The orthocomplement of a u...
iunocv 21597 The orthocomplement of an ...
cssval 21598 The set of closed subspace...
iscss 21599 The predicate "is a closed...
cssi 21600 Property of a closed subsp...
cssss 21601 A closed subspace is a sub...
iscss2 21602 It is sufficient to prove ...
ocvcss 21603 The orthocomplement of any...
cssincl 21604 The zero subspace is a clo...
css0 21605 The zero subspace is a clo...
css1 21606 The whole space is a close...
csslss 21607 A closed subspace of a pre...
lsmcss 21608 A subset of a pre-Hilbert ...
cssmre 21609 The closed subspaces of a ...
mrccss 21610 The Moore closure correspo...
thlval 21611 Value of the Hilbert latti...
thlbas 21612 Base set of the Hilbert la...
thlle 21613 Ordering on the Hilbert la...
thlleval 21614 Ordering on the Hilbert la...
thloc 21615 Orthocomplement on the Hil...
pjfval 21622 The value of the projectio...
pjdm 21623 A subspace is in the domai...
pjpm 21624 The projection map is a pa...
pjfval2 21625 Value of the projection ma...
pjval 21626 Value of the projection ma...
pjdm2 21627 A subspace is in the domai...
pjff 21628 A projection is a linear o...
pjf 21629 A projection is a function...
pjf2 21630 A projection is a function...
pjfo 21631 A projection is a surjecti...
pjcss 21632 A projection subspace is a...
ocvpj 21633 The orthocomplement of a p...
ishil 21634 The predicate "is a Hilber...
ishil2 21635 The predicate "is a Hilber...
isobs 21636 The predicate "is an ortho...
obsip 21637 The inner product of two e...
obsipid 21638 A basis element has length...
obsrcl 21639 Reverse closure for an ort...
obsss 21640 An orthonormal basis is a ...
obsne0 21641 A basis element is nonzero...
obsocv 21642 An orthonormal basis has t...
obs2ocv 21643 The double orthocomplement...
obselocv 21644 A basis element is in the ...
obs2ss 21645 A basis has no proper subs...
obslbs 21646 An orthogonal basis is a l...
reldmdsmm 21649 The direct sum is a well-b...
dsmmval 21650 Value of the module direct...
dsmmbase 21651 Base set of the module dir...
dsmmval2 21652 Self-referential definitio...
dsmmbas2 21653 Base set of the direct sum...
dsmmfi 21654 For finite products, the d...
dsmmelbas 21655 Membership in the finitely...
dsmm0cl 21656 The all-zero vector is con...
dsmmacl 21657 The finite hull is closed ...
prdsinvgd2 21658 Negation of a single coord...
dsmmsubg 21659 The finite hull of a produ...
dsmmlss 21660 The finite hull of a produ...
dsmmlmod 21661 The direct sum of a family...
frlmval 21664 Value of the "free module"...
frlmlmod 21665 The free module is a modul...
frlmpws 21666 The free module as a restr...
frlmlss 21667 The base set of the free m...
frlmpwsfi 21668 The finite free module is ...
frlmsca 21669 The ring of scalars of a f...
frlm0 21670 Zero in a free module (rin...
frlmbas 21671 Base set of the free modul...
frlmelbas 21672 Membership in the base set...
frlmrcl 21673 If a free module is inhabi...
frlmbasfsupp 21674 Elements of the free modul...
frlmbasmap 21675 Elements of the free modul...
frlmbasf 21676 Elements of the free modul...
frlmlvec 21677 The free module over a div...
frlmfibas 21678 The base set of the finite...
elfrlmbasn0 21679 If the dimension of a free...
frlmplusgval 21680 Addition in a free module....
frlmsubgval 21681 Subtraction in a free modu...
frlmvscafval 21682 Scalar multiplication in a...
frlmvplusgvalc 21683 Coordinates of a sum with ...
frlmvscaval 21684 Coordinates of a scalar mu...
frlmplusgvalb 21685 Addition in a free module ...
frlmvscavalb 21686 Scalar multiplication in a...
frlmvplusgscavalb 21687 Addition combined with sca...
frlmgsum 21688 Finite commutative sums in...
frlmsplit2 21689 Restriction is homomorphic...
frlmsslss 21690 A subset of a free module ...
frlmsslss2 21691 A subset of a free module ...
frlmbas3 21692 An element of the base set...
mpofrlmd 21693 Elements of the free modul...
frlmip 21694 The inner product of a fre...
frlmipval 21695 The inner product of a fre...
frlmphllem 21696 Lemma for ~ frlmphl . (Co...
frlmphl 21697 Conditions for a free modu...
uvcfval 21700 Value of the unit-vector g...
uvcval 21701 Value of a single unit vec...
uvcvval 21702 Value of a unit vector coo...
uvcvvcl 21703 A coordinate of a unit vec...
uvcvvcl2 21704 A unit vector coordinate i...
uvcvv1 21705 The unit vector is one at ...
uvcvv0 21706 The unit vector is zero at...
uvcff 21707 Domain and codomain of the...
uvcf1 21708 In a nonzero ring, each un...
uvcresum 21709 Any element of a free modu...
frlmssuvc1 21710 A scalar multiple of a uni...
frlmssuvc2 21711 A nonzero scalar multiple ...
frlmsslsp 21712 A subset of a free module ...
frlmlbs 21713 The unit vectors comprise ...
frlmup1 21714 Any assignment of unit vec...
frlmup2 21715 The evaluation map has the...
frlmup3 21716 The range of such an evalu...
frlmup4 21717 Universal property of the ...
ellspd 21718 The elements of the span o...
elfilspd 21719 Simplified version of ~ el...
rellindf 21724 The independent-family pre...
islinds 21725 Property of an independent...
linds1 21726 An independent set of vect...
linds2 21727 An independent set of vect...
islindf 21728 Property of an independent...
islinds2 21729 Expanded property of an in...
islindf2 21730 Property of an independent...
lindff 21731 Functional property of a l...
lindfind 21732 A linearly independent fam...
lindsind 21733 A linearly independent set...
lindfind2 21734 In a linearly independent ...
lindsind2 21735 In a linearly independent ...
lindff1 21736 A linearly independent fam...
lindfrn 21737 The range of an independen...
f1lindf 21738 Rearranging and deleting e...
lindfres 21739 Any restriction of an inde...
lindsss 21740 Any subset of an independe...
f1linds 21741 A family constructed from ...
islindf3 21742 In a nonzero ring, indepen...
lindfmm 21743 Linear independence of a f...
lindsmm 21744 Linear independence of a s...
lindsmm2 21745 The monomorphic image of a...
lsslindf 21746 Linear independence is unc...
lsslinds 21747 Linear independence is unc...
islbs4 21748 A basis is an independent ...
lbslinds 21749 A basis is independent. (...
islinds3 21750 A subset is linearly indep...
islinds4 21751 A set is independent in a ...
lmimlbs 21752 The isomorphic image of a ...
lmiclbs 21753 Having a basis is an isomo...
islindf4 21754 A family is independent if...
islindf5 21755 A family is independent if...
indlcim 21756 An independent, spanning f...
lbslcic 21757 A module with a basis is i...
lmisfree 21758 A module has a basis iff i...
lvecisfrlm 21759 Every vector space is isom...
lmimco 21760 The composition of two iso...
lmictra 21761 Module isomorphism is tran...
uvcf1o 21762 In a nonzero ring, the map...
uvcendim 21763 In a nonzero ring, the num...
frlmisfrlm 21764 A free module is isomorphi...
frlmiscvec 21765 Every free module is isomo...
isassa 21772 The properties of an assoc...
assalem 21773 The properties of an assoc...
assaass 21774 Left-associative property ...
assaassr 21775 Right-associative property...
assalmod 21776 An associative algebra is ...
assaring 21777 An associative algebra is ...
assasca 21778 The scalars of an associat...
assa2ass 21779 Left- and right-associativ...
assa2ass2 21780 Left- and right-associativ...
isassad 21781 Sufficient condition for b...
issubassa3 21782 A subring that is also a s...
issubassa 21783 The subalgebras of an asso...
sraassab 21784 A subring algebra is an as...
sraassa 21785 The subring algebra over a...
sraassaOLD 21786 Obsolete version of ~ sraa...
rlmassa 21787 The ring module over a com...
assapropd 21788 If two structures have the...
aspval 21789 Value of the algebraic clo...
asplss 21790 The algebraic span of a se...
aspid 21791 The algebraic span of a su...
aspsubrg 21792 The algebraic span of a se...
aspss 21793 Span preserves subset orde...
aspssid 21794 A set of vectors is a subs...
asclfval 21795 Function value of the alge...
asclval 21796 Value of a mapped algebra ...
asclfn 21797 Unconditional functionalit...
asclf 21798 The algebra scalar lifting...
asclghm 21799 The algebra scalar lifting...
ascl0 21800 The scalar 0 embedded into...
ascl1 21801 The scalar 1 embedded into...
asclmul1 21802 Left multiplication by a l...
asclmul2 21803 Right multiplication by a ...
ascldimul 21804 The algebra scalar lifting...
asclinvg 21805 The group inverse (negatio...
asclrhm 21806 The algebra scalar lifting...
rnascl 21807 The set of lifted scalars ...
issubassa2 21808 A subring of a unital alge...
rnasclsubrg 21809 The scalar multiples of th...
rnasclmulcl 21810 (Vector) multiplication is...
rnasclassa 21811 The scalar multiples of th...
ressascl 21812 The lifting of scalars is ...
asclpropd 21813 If two structures have the...
aspval2 21814 The algebraic closure is t...
assamulgscmlem1 21815 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21816 Lemma for ~ assamulgscm (i...
assamulgscm 21817 Exponentiation of a scalar...
asclmulg 21818 Apply group multiplication...
zlmassa 21819 The ` ZZ ` -module operati...
reldmpsr 21830 The multivariate power ser...
psrval 21831 Value of the multivariate ...
psrvalstr 21832 The multivariate power ser...
psrbag 21833 Elementhood in the set of ...
psrbagf 21834 A finite bag is a function...
psrbagfsupp 21835 Finite bags have finite su...
snifpsrbag 21836 A bag containing one eleme...
fczpsrbag 21837 The constant function equa...
psrbaglesupp 21838 The support of a dominated...
psrbaglecl 21839 The set of finite bags is ...
psrbagaddcl 21840 The sum of two finite bags...
psrbagcon 21841 The analogue of the statem...
psrbaglefi 21842 There are finitely many ba...
psrbagconcl 21843 The complement of a bag is...
psrbagleadd1 21844 The analogue of " ` X <_ F...
psrbagconf1o 21845 Bag complementation is a b...
gsumbagdiaglem 21846 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21847 Two-dimensional commutatio...
psrass1lem 21848 A group sum commutation us...
psrbas 21849 The base set of the multiv...
psrelbas 21850 An element of the set of p...
psrelbasfun 21851 An element of the set of p...
psrplusg 21852 The addition operation of ...
psradd 21853 The addition operation of ...
psraddcl 21854 Closure of the power serie...
psraddclOLD 21855 Obsolete version of ~ psra...
rhmpsrlem1 21856 Lemma for ~ rhmpsr et al. ...
rhmpsrlem2 21857 Lemma for ~ rhmpsr et al. ...
psrmulr 21858 The multiplication operati...
psrmulfval 21859 The multiplication operati...
psrmulval 21860 The multiplication operati...
psrmulcllem 21861 Closure of the power serie...
psrmulcl 21862 Closure of the power serie...
psrsca 21863 The scalar field of the mu...
psrvscafval 21864 The scalar multiplication ...
psrvsca 21865 The scalar multiplication ...
psrvscaval 21866 The scalar multiplication ...
psrvscacl 21867 Closure of the power serie...
psr0cl 21868 The zero element of the ri...
psr0lid 21869 The zero element of the ri...
psrnegcl 21870 The negative function in t...
psrlinv 21871 The negative function in t...
psrgrp 21872 The ring of power series i...
psrgrpOLD 21873 Obsolete version of ~ psrg...
psr0 21874 The zero element of the ri...
psrneg 21875 The negative function of t...
psrlmod 21876 The ring of power series i...
psr1cl 21877 The identity element of th...
psrlidm 21878 The identity element of th...
psrridm 21879 The identity element of th...
psrass1 21880 Associative identity for t...
psrdi 21881 Distributive law for the r...
psrdir 21882 Distributive law for the r...
psrass23l 21883 Associative identity for t...
psrcom 21884 Commutative law for the ri...
psrass23 21885 Associative identities for...
psrring 21886 The ring of power series i...
psr1 21887 The identity element of th...
psrcrng 21888 The ring of power series i...
psrassa 21889 The ring of power series i...
resspsrbas 21890 A restricted power series ...
resspsradd 21891 A restricted power series ...
resspsrmul 21892 A restricted power series ...
resspsrvsca 21893 A restricted power series ...
subrgpsr 21894 A subring of the base ring...
psrascl 21895 Value of the scalar inject...
psrasclcl 21896 A scalar is lifted into a ...
mvrfval 21897 Value of the generating el...
mvrval 21898 Value of the generating el...
mvrval2 21899 Value of the generating el...
mvrid 21900 The ` X i ` -th coefficien...
mvrf 21901 The power series variable ...
mvrf1 21902 The power series variable ...
mvrcl2 21903 A power series variable is...
reldmmpl 21904 The multivariate polynomia...
mplval 21905 Value of the set of multiv...
mplbas 21906 Base set of the set of mul...
mplelbas 21907 Property of being a polyno...
mvrcl 21908 A power series variable is...
mvrf2 21909 The power series/polynomia...
mplrcl 21910 Reverse closure for the po...
mplelsfi 21911 A polynomial treated as a ...
mplval2 21912 Self-referential expressio...
mplbasss 21913 The set of polynomials is ...
mplelf 21914 A polynomial is defined as...
mplsubglem 21915 If ` A ` is an ideal of se...
mpllsslem 21916 If ` A ` is an ideal of su...
mplsubglem2 21917 Lemma for ~ mplsubg and ~ ...
mplsubg 21918 The set of polynomials is ...
mpllss 21919 The set of polynomials is ...
mplsubrglem 21920 Lemma for ~ mplsubrg . (C...
mplsubrg 21921 The set of polynomials is ...
mpl0 21922 The zero polynomial. (Con...
mplplusg 21923 Value of addition in a pol...
mplmulr 21924 Value of multiplication in...
mpladd 21925 The addition operation on ...
mplneg 21926 The negative function on m...
mplmul 21927 The multiplication operati...
mpl1 21928 The identity element of th...
mplsca 21929 The scalar field of a mult...
mplvsca2 21930 The scalar multiplication ...
mplvsca 21931 The scalar multiplication ...
mplvscaval 21932 The scalar multiplication ...
mplgrp 21933 The polynomial ring is a g...
mpllmod 21934 The polynomial ring is a l...
mplring 21935 The polynomial ring is a r...
mpllvec 21936 The polynomial ring is a v...
mplcrng 21937 The polynomial ring is a c...
mplassa 21938 The polynomial ring is an ...
mplringd 21939 The polynomial ring is a r...
mpllmodd 21940 The polynomial ring is a l...
ressmplbas2 21941 The base set of a restrict...
ressmplbas 21942 A restricted polynomial al...
ressmpladd 21943 A restricted polynomial al...
ressmplmul 21944 A restricted polynomial al...
ressmplvsca 21945 A restricted power series ...
subrgmpl 21946 A subring of the base ring...
subrgmvr 21947 The variables in a subring...
subrgmvrf 21948 The variables in a polynom...
mplmon 21949 A monomial is a polynomial...
mplmonmul 21950 The product of two monomia...
mplcoe1 21951 Decompose a polynomial int...
mplcoe3 21952 Decompose a monomial in on...
mplcoe5lem 21953 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21954 Decompose a monomial into ...
mplcoe2 21955 Decompose a monomial into ...
mplbas2 21956 An alternative expression ...
ltbval 21957 Value of the well-order on...
ltbwe 21958 The finite bag order is a ...
reldmopsr 21959 Lemma for ordered power se...
opsrval 21960 The value of the "ordered ...
opsrle 21961 An alternative expression ...
opsrval2 21962 Self-referential expressio...
opsrbaslem 21963 Get a component of the ord...
opsrbas 21964 The base set of the ordere...
opsrplusg 21965 The addition operation of ...
opsrmulr 21966 The multiplication operati...
opsrvsca 21967 The scalar product operati...
opsrsca 21968 The scalar ring of the ord...
opsrtoslem1 21969 Lemma for ~ opsrtos . (Co...
opsrtoslem2 21970 Lemma for ~ opsrtos . (Co...
opsrtos 21971 The ordered power series s...
opsrso 21972 The ordered power series s...
opsrcrng 21973 The ring of ordered power ...
opsrassa 21974 The ring of ordered power ...
mplmon2 21975 Express a scaled monomial....
psrbag0 21976 The empty bag is a bag. (...
psrbagsn 21977 A singleton bag is a bag. ...
mplascl 21978 Value of the scalar inject...
mplasclf 21979 The scalar injection is a ...
subrgascl 21980 The scalar injection funct...
subrgasclcl 21981 The scalars in a polynomia...
mplmon2cl 21982 A scaled monomial is a pol...
mplmon2mul 21983 Product of scaled monomial...
mplind 21984 Prove a property of polyno...
mplcoe4 21985 Decompose a polynomial int...
evlslem4 21990 The support of a tensor pr...
psrbagev1 21991 A bag of multipliers provi...
psrbagev2 21992 Closure of a sum using a b...
evlslem2 21993 A linear function on the p...
evlslem3 21994 Lemma for ~ evlseu . Poly...
evlslem6 21995 Lemma for ~ evlseu . Fini...
evlslem1 21996 Lemma for ~ evlseu , give ...
evlseu 21997 For a given interpretation...
reldmevls 21998 Well-behaved binary operat...
mpfrcl 21999 Reverse closure for the se...
evlsval 22000 Value of the polynomial ev...
evlsval2 22001 Characterizing properties ...
evlsrhm 22002 Polynomial evaluation is a...
evlssca 22003 Polynomial evaluation maps...
evlsvar 22004 Polynomial evaluation maps...
evlsgsumadd 22005 Polynomial evaluation maps...
evlsgsummul 22006 Polynomial evaluation maps...
evlspw 22007 Polynomial evaluation for ...
evlsvarpw 22008 Polynomial evaluation for ...
evlval 22009 Value of the simple/same r...
evlrhm 22010 The simple evaluation map ...
evlsscasrng 22011 The evaluation of a scalar...
evlsca 22012 Simple polynomial evaluati...
evlsvarsrng 22013 The evaluation of the vari...
evlvar 22014 Simple polynomial evaluati...
mpfconst 22015 Constants are multivariate...
mpfproj 22016 Projections are multivaria...
mpfsubrg 22017 Polynomial functions are a...
mpff 22018 Polynomial functions are f...
mpfaddcl 22019 The sum of multivariate po...
mpfmulcl 22020 The product of multivariat...
mpfind 22021 Prove a property of polyno...
selvffval 22027 Value of the "variable sel...
selvfval 22028 Value of the "variable sel...
selvval 22029 Value of the "variable sel...
reldmmhp 22031 The domain of the homogene...
mhpfval 22032 Value of the "homogeneous ...
mhpval 22033 Value of the "homogeneous ...
ismhp 22034 Property of being a homoge...
ismhp2 22035 Deduce a homogeneous polyn...
ismhp3 22036 A polynomial is homogeneou...
mhprcl 22037 Reverse closure for homoge...
mhpmpl 22038 A homogeneous polynomial i...
mhpdeg 22039 All nonzero terms of a hom...
mhp0cl 22040 The zero polynomial is hom...
mhpsclcl 22041 A scalar (or constant) pol...
mhpvarcl 22042 A power series variable is...
mhpmulcl 22043 A product of homogeneous p...
mhppwdeg 22044 Degree of a homogeneous po...
mhpaddcl 22045 Homogeneous polynomials ar...
mhpinvcl 22046 Homogeneous polynomials ar...
mhpsubg 22047 Homogeneous polynomials fo...
mhpvscacl 22048 Homogeneous polynomials ar...
mhplss 22049 Homogeneous polynomials fo...
psdffval 22051 Value of the power series ...
psdfval 22052 Give a map between power s...
psdval 22053 Evaluate the partial deriv...
psdcoef 22054 Coefficient of a term of t...
psdcl 22055 The derivative of a power ...
psdmplcl 22056 The derivative of a polyno...
psdadd 22057 The derivative of a sum is...
psdvsca 22058 The derivative of a scaled...
psdmullem 22059 Lemma for ~ psdmul . Tran...
psdmul 22060 Product rule for power ser...
psd1 22061 The derivative of one is z...
psdascl 22062 The derivative of a consta...
psdmvr 22063 The partial derivative of ...
psdpw 22064 Power rule for partial der...
psr1baslem 22076 The set of finite bags on ...
psr1val 22077 Value of the ring of univa...
psr1crng 22078 The ring of univariate pow...
psr1assa 22079 The ring of univariate pow...
psr1tos 22080 The ordered power series s...
psr1bas2 22081 The base set of the ring o...
psr1bas 22082 The base set of the ring o...
vr1val 22083 The value of the generator...
vr1cl2 22084 The variable ` X ` is a me...
ply1val 22085 The value of the set of un...
ply1bas 22086 The value of the base set ...
ply1basOLD 22087 Obsolete version of ~ ply1...
ply1lss 22088 Univariate polynomials for...
ply1subrg 22089 Univariate polynomials for...
ply1crng 22090 The ring of univariate pol...
ply1assa 22091 The ring of univariate pol...
psr1bascl 22092 A univariate power series ...
psr1basf 22093 Univariate power series ba...
ply1basf 22094 Univariate polynomial base...
ply1bascl 22095 A univariate polynomial is...
ply1bascl2 22096 A univariate polynomial is...
coe1fval 22097 Value of the univariate po...
coe1fv 22098 Value of an evaluated coef...
fvcoe1 22099 Value of a multivariate co...
coe1fval3 22100 Univariate power series co...
coe1f2 22101 Functionality of univariat...
coe1fval2 22102 Univariate polynomial coef...
coe1f 22103 Functionality of univariat...
coe1fvalcl 22104 A coefficient of a univari...
coe1sfi 22105 Finite support of univaria...
coe1fsupp 22106 The coefficient vector of ...
mptcoe1fsupp 22107 A mapping involving coeffi...
coe1ae0 22108 The coefficient vector of ...
vr1cl 22109 The generator of a univari...
opsr0 22110 Zero in the ordered power ...
opsr1 22111 One in the ordered power s...
psr1plusg 22112 Value of addition in a uni...
psr1vsca 22113 Value of scalar multiplica...
psr1mulr 22114 Value of multiplication in...
ply1plusg 22115 Value of addition in a uni...
ply1vsca 22116 Value of scalar multiplica...
ply1mulr 22117 Value of multiplication in...
ply1ass23l 22118 Associative identity with ...
ressply1bas2 22119 The base set of a restrict...
ressply1bas 22120 A restricted polynomial al...
ressply1add 22121 A restricted polynomial al...
ressply1mul 22122 A restricted polynomial al...
ressply1vsca 22123 A restricted power series ...
subrgply1 22124 A subring of the base ring...
gsumply1subr 22125 Evaluate a group sum in a ...
psrbaspropd 22126 Property deduction for pow...
psrplusgpropd 22127 Property deduction for pow...
mplbaspropd 22128 Property deduction for pol...
psropprmul 22129 Reversing multiplication i...
ply1opprmul 22130 Reversing multiplication i...
00ply1bas 22131 Lemma for ~ ply1basfvi and...
ply1basfvi 22132 Protection compatibility o...
ply1plusgfvi 22133 Protection compatibility o...
ply1baspropd 22134 Property deduction for uni...
ply1plusgpropd 22135 Property deduction for uni...
opsrring 22136 Ordered power series form ...
opsrlmod 22137 Ordered power series form ...
psr1ring 22138 Univariate power series fo...
ply1ring 22139 Univariate polynomials for...
psr1lmod 22140 Univariate power series fo...
psr1sca 22141 Scalars of a univariate po...
psr1sca2 22142 Scalars of a univariate po...
ply1lmod 22143 Univariate polynomials for...
ply1sca 22144 Scalars of a univariate po...
ply1sca2 22145 Scalars of a univariate po...
ply1ascl0 22146 The zero scalar as a polyn...
ply1ascl1 22147 The multiplicative identit...
ply1mpl0 22148 The univariate polynomial ...
ply10s0 22149 Zero times a univariate po...
ply1mpl1 22150 The univariate polynomial ...
ply1ascl 22151 The univariate polynomial ...
subrg1ascl 22152 The scalar injection funct...
subrg1asclcl 22153 The scalars in a polynomia...
subrgvr1 22154 The variables in a subring...
subrgvr1cl 22155 The variables in a polynom...
coe1z 22156 The coefficient vector of ...
coe1add 22157 The coefficient vector of ...
coe1addfv 22158 A particular coefficient o...
coe1subfv 22159 A particular coefficient o...
coe1mul2lem1 22160 An equivalence for ~ coe1m...
coe1mul2lem2 22161 An equivalence for ~ coe1m...
coe1mul2 22162 The coefficient vector of ...
coe1mul 22163 The coefficient vector of ...
ply1moncl 22164 Closure of the expression ...
ply1tmcl 22165 Closure of the expression ...
coe1tm 22166 Coefficient vector of a po...
coe1tmfv1 22167 Nonzero coefficient of a p...
coe1tmfv2 22168 Zero coefficient of a poly...
coe1tmmul2 22169 Coefficient vector of a po...
coe1tmmul 22170 Coefficient vector of a po...
coe1tmmul2fv 22171 Function value of a right-...
coe1pwmul 22172 Coefficient vector of a po...
coe1pwmulfv 22173 Function value of a right-...
ply1scltm 22174 A scalar is a term with ze...
coe1sclmul 22175 Coefficient vector of a po...
coe1sclmulfv 22176 A single coefficient of a ...
coe1sclmul2 22177 Coefficient vector of a po...
ply1sclf 22178 A scalar polynomial is a p...
ply1sclcl 22179 The value of the algebra s...
coe1scl 22180 Coefficient vector of a sc...
ply1sclid 22181 Recover the base scalar fr...
ply1sclf1 22182 The polynomial scalar func...
ply1scl0 22183 The zero scalar is zero. ...
ply1scl0OLD 22184 Obsolete version of ~ ply1...
ply1scln0 22185 Nonzero scalars create non...
ply1scl1 22186 The one scalar is the unit...
ply1scl1OLD 22187 Obsolete version of ~ ply1...
ply1idvr1 22188 The identity of a polynomi...
ply1idvr1OLD 22189 Obsolete version of ~ ply1...
cply1mul 22190 The product of two constan...
ply1coefsupp 22191 The decomposition of a uni...
ply1coe 22192 Decompose a univariate pol...
eqcoe1ply1eq 22193 Two polynomials over the s...
ply1coe1eq 22194 Two polynomials over the s...
cply1coe0 22195 All but the first coeffici...
cply1coe0bi 22196 A polynomial is constant (...
coe1fzgsumdlem 22197 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 22198 Value of an evaluated coef...
ply1scleq 22199 Equality of a constant pol...
ply1chr 22200 The characteristic of a po...
gsumsmonply1 22201 A finite group sum of scal...
gsummoncoe1 22202 A coefficient of the polyn...
gsumply1eq 22203 Two univariate polynomials...
lply1binom 22204 The binomial theorem for l...
lply1binomsc 22205 The binomial theorem for l...
ply1fermltlchr 22206 Fermat's little theorem fo...
reldmevls1 22211 Well-behaved binary operat...
ply1frcl 22212 Reverse closure for the se...
evls1fval 22213 Value of the univariate po...
evls1val 22214 Value of the univariate po...
evls1rhmlem 22215 Lemma for ~ evl1rhm and ~ ...
evls1rhm 22216 Polynomial evaluation is a...
evls1sca 22217 Univariate polynomial eval...
evls1gsumadd 22218 Univariate polynomial eval...
evls1gsummul 22219 Univariate polynomial eval...
evls1pw 22220 Univariate polynomial eval...
evls1varpw 22221 Univariate polynomial eval...
evl1fval 22222 Value of the simple/same r...
evl1val 22223 Value of the simple/same r...
evl1fval1lem 22224 Lemma for ~ evl1fval1 . (...
evl1fval1 22225 Value of the simple/same r...
evl1rhm 22226 Polynomial evaluation is a...
fveval1fvcl 22227 The function value of the ...
evl1sca 22228 Polynomial evaluation maps...
evl1scad 22229 Polynomial evaluation buil...
evl1var 22230 Polynomial evaluation maps...
evl1vard 22231 Polynomial evaluation buil...
evls1var 22232 Univariate polynomial eval...
evls1scasrng 22233 The evaluation of a scalar...
evls1varsrng 22234 The evaluation of the vari...
evl1addd 22235 Polynomial evaluation buil...
evl1subd 22236 Polynomial evaluation buil...
evl1muld 22237 Polynomial evaluation buil...
evl1vsd 22238 Polynomial evaluation buil...
evl1expd 22239 Polynomial evaluation buil...
pf1const 22240 Constants are polynomial f...
pf1id 22241 The identity is a polynomi...
pf1subrg 22242 Polynomial functions are a...
pf1rcl 22243 Reverse closure for the se...
pf1f 22244 Polynomial functions are f...
mpfpf1 22245 Convert a multivariate pol...
pf1mpf 22246 Convert a univariate polyn...
pf1addcl 22247 The sum of multivariate po...
pf1mulcl 22248 The product of multivariat...
pf1ind 22249 Prove a property of polyno...
evl1gsumdlem 22250 Lemma for ~ evl1gsumd (ind...
evl1gsumd 22251 Polynomial evaluation buil...
evl1gsumadd 22252 Univariate polynomial eval...
evl1gsumaddval 22253 Value of a univariate poly...
evl1gsummul 22254 Univariate polynomial eval...
evl1varpw 22255 Univariate polynomial eval...
evl1varpwval 22256 Value of a univariate poly...
evl1scvarpw 22257 Univariate polynomial eval...
evl1scvarpwval 22258 Value of a univariate poly...
evl1gsummon 22259 Value of a univariate poly...
evls1scafv 22260 Value of the univariate po...
evls1expd 22261 Univariate polynomial eval...
evls1varpwval 22262 Univariate polynomial eval...
evls1fpws 22263 Evaluation of a univariate...
ressply1evl 22264 Evaluation of a univariate...
evls1addd 22265 Univariate polynomial eval...
evls1muld 22266 Univariate polynomial eval...
evls1vsca 22267 Univariate polynomial eval...
asclply1subcl 22268 Closure of the algebra sca...
evls1fvcl 22269 Variant of ~ fveval1fvcl f...
evls1maprhm 22270 The function ` F ` mapping...
evls1maplmhm 22271 The function ` F ` mapping...
evls1maprnss 22272 The function ` F ` mapping...
evl1maprhm 22273 The function ` F ` mapping...
mhmcompl 22274 The composition of a monoi...
mhmcoaddmpl 22275 Show that the ring homomor...
rhmcomulmpl 22276 Show that the ring homomor...
rhmmpl 22277 Provide a ring homomorphis...
ply1vscl 22278 Closure of scalar multipli...
mhmcoply1 22279 The composition of a monoi...
rhmply1 22280 Provide a ring homomorphis...
rhmply1vr1 22281 A ring homomorphism betwee...
rhmply1vsca 22282 Apply a ring homomorphism ...
rhmply1mon 22283 Apply a ring homomorphism ...
mamufval 22286 Functional value of the ma...
mamuval 22287 Multiplication of two matr...
mamufv 22288 A cell in the multiplicati...
mamudm 22289 The domain of the matrix m...
mamufacex 22290 Every solution of the equa...
mamures 22291 Rows in a matrix product a...
grpvlinv 22292 Tuple-wise left inverse in...
grpvrinv 22293 Tuple-wise right inverse i...
ringvcl 22294 Tuple-wise multiplication ...
mamucl 22295 Operation closure of matri...
mamuass 22296 Matrix multiplication is a...
mamudi 22297 Matrix multiplication dist...
mamudir 22298 Matrix multiplication dist...
mamuvs1 22299 Matrix multiplication dist...
mamuvs2 22300 Matrix multiplication dist...
matbas0pc 22303 There is no matrix with a ...
matbas0 22304 There is no matrix for a n...
matval 22305 Value of the matrix algebr...
matrcl 22306 Reverse closure for the ma...
matbas 22307 The matrix ring has the sa...
matplusg 22308 The matrix ring has the sa...
matsca 22309 The matrix ring has the sa...
matvsca 22310 The matrix ring has the sa...
mat0 22311 The matrix ring has the sa...
matinvg 22312 The matrix ring has the sa...
mat0op 22313 Value of a zero matrix as ...
matsca2 22314 The scalars of the matrix ...
matbas2 22315 The base set of the matrix...
matbas2i 22316 A matrix is a function. (...
matbas2d 22317 The base set of the matrix...
eqmat 22318 Two square matrices of the...
matecl 22319 Each entry (according to W...
matecld 22320 Each entry (according to W...
matplusg2 22321 Addition in the matrix rin...
matvsca2 22322 Scalar multiplication in t...
matlmod 22323 The matrix ring is a linea...
matgrp 22324 The matrix ring is a group...
matvscl 22325 Closure of the scalar mult...
matsubg 22326 The matrix ring has the sa...
matplusgcell 22327 Addition in the matrix rin...
matsubgcell 22328 Subtraction in the matrix ...
matinvgcell 22329 Additive inversion in the ...
matvscacell 22330 Scalar multiplication in t...
matgsum 22331 Finite commutative sums in...
matmulr 22332 Multiplication in the matr...
mamumat1cl 22333 The identity matrix (as op...
mat1comp 22334 The components of the iden...
mamulid 22335 The identity matrix (as op...
mamurid 22336 The identity matrix (as op...
matring 22337 Existence of the matrix ri...
matassa 22338 Existence of the matrix al...
matmulcell 22339 Multiplication in the matr...
mpomatmul 22340 Multiplication of two N x ...
mat1 22341 Value of an identity matri...
mat1ov 22342 Entries of an identity mat...
mat1bas 22343 The identity matrix is a m...
matsc 22344 The identity matrix multip...
ofco2 22345 Distribution law for the f...
oftpos 22346 The transposition of the v...
mattposcl 22347 The transpose of a square ...
mattpostpos 22348 The transpose of the trans...
mattposvs 22349 The transposition of a mat...
mattpos1 22350 The transposition of the i...
tposmap 22351 The transposition of an I ...
mamutpos 22352 Behavior of transposes in ...
mattposm 22353 Multiplying two transposed...
matgsumcl 22354 Closure of a group sum ove...
madetsumid 22355 The identity summand in th...
matepmcl 22356 Each entry of a matrix wit...
matepm2cl 22357 Each entry of a matrix wit...
madetsmelbas 22358 A summand of the determina...
madetsmelbas2 22359 A summand of the determina...
mat0dimbas0 22360 The empty set is the one a...
mat0dim0 22361 The zero of the algebra of...
mat0dimid 22362 The identity of the algebr...
mat0dimscm 22363 The scalar multiplication ...
mat0dimcrng 22364 The algebra of matrices wi...
mat1dimelbas 22365 A matrix with dimension 1 ...
mat1dimbas 22366 A matrix with dimension 1 ...
mat1dim0 22367 The zero of the algebra of...
mat1dimid 22368 The identity of the algebr...
mat1dimscm 22369 The scalar multiplication ...
mat1dimmul 22370 The ring multiplication in...
mat1dimcrng 22371 The algebra of matrices wi...
mat1f1o 22372 There is a 1-1 function fr...
mat1rhmval 22373 The value of the ring homo...
mat1rhmelval 22374 The value of the ring homo...
mat1rhmcl 22375 The value of the ring homo...
mat1f 22376 There is a function from a...
mat1ghm 22377 There is a group homomorph...
mat1mhm 22378 There is a monoid homomorp...
mat1rhm 22379 There is a ring homomorphi...
mat1rngiso 22380 There is a ring isomorphis...
mat1ric 22381 A ring is isomorphic to th...
dmatval 22386 The set of ` N ` x ` N ` d...
dmatel 22387 A ` N ` x ` N ` diagonal m...
dmatmat 22388 An ` N ` x ` N ` diagonal ...
dmatid 22389 The identity matrix is a d...
dmatelnd 22390 An extradiagonal entry of ...
dmatmul 22391 The product of two diagona...
dmatsubcl 22392 The difference of two diag...
dmatsgrp 22393 The set of diagonal matric...
dmatmulcl 22394 The product of two diagona...
dmatsrng 22395 The set of diagonal matric...
dmatcrng 22396 The subring of diagonal ma...
dmatscmcl 22397 The multiplication of a di...
scmatval 22398 The set of ` N ` x ` N ` s...
scmatel 22399 An ` N ` x ` N ` scalar ma...
scmatscmid 22400 A scalar matrix can be exp...
scmatscmide 22401 An entry of a scalar matri...
scmatscmiddistr 22402 Distributive law for scala...
scmatmat 22403 An ` N ` x ` N ` scalar ma...
scmate 22404 An entry of an ` N ` x ` N...
scmatmats 22405 The set of an ` N ` x ` N ...
scmateALT 22406 Alternate proof of ~ scmat...
scmatscm 22407 The multiplication of a ma...
scmatid 22408 The identity matrix is a s...
scmatdmat 22409 A scalar matrix is a diago...
scmataddcl 22410 The sum of two scalar matr...
scmatsubcl 22411 The difference of two scal...
scmatmulcl 22412 The product of two scalar ...
scmatsgrp 22413 The set of scalar matrices...
scmatsrng 22414 The set of scalar matrices...
scmatcrng 22415 The subring of scalar matr...
scmatsgrp1 22416 The set of scalar matrices...
scmatsrng1 22417 The set of scalar matrices...
smatvscl 22418 Closure of the scalar mult...
scmatlss 22419 The set of scalar matrices...
scmatstrbas 22420 The set of scalar matrices...
scmatrhmval 22421 The value of the ring homo...
scmatrhmcl 22422 The value of the ring homo...
scmatf 22423 There is a function from a...
scmatfo 22424 There is a function from a...
scmatf1 22425 There is a 1-1 function fr...
scmatf1o 22426 There is a bijection betwe...
scmatghm 22427 There is a group homomorph...
scmatmhm 22428 There is a monoid homomorp...
scmatrhm 22429 There is a ring homomorphi...
scmatrngiso 22430 There is a ring isomorphis...
scmatric 22431 A ring is isomorphic to ev...
mat0scmat 22432 The empty matrix over a ri...
mat1scmat 22433 A 1-dimensional matrix ove...
mvmulfval 22436 Functional value of the ma...
mvmulval 22437 Multiplication of a vector...
mvmulfv 22438 A cell/element in the vect...
mavmulval 22439 Multiplication of a vector...
mavmulfv 22440 A cell/element in the vect...
mavmulcl 22441 Multiplication of an NxN m...
1mavmul 22442 Multiplication of the iden...
mavmulass 22443 Associativity of the multi...
mavmuldm 22444 The domain of the matrix v...
mavmulsolcl 22445 Every solution of the equa...
mavmul0 22446 Multiplication of a 0-dime...
mavmul0g 22447 The result of the 0-dimens...
mvmumamul1 22448 The multiplication of an M...
mavmumamul1 22449 The multiplication of an N...
marrepfval 22454 First substitution for the...
marrepval0 22455 Second substitution for th...
marrepval 22456 Third substitution for the...
marrepeval 22457 An entry of a matrix with ...
marrepcl 22458 Closure of the row replace...
marepvfval 22459 First substitution for the...
marepvval0 22460 Second substitution for th...
marepvval 22461 Third substitution for the...
marepveval 22462 An entry of a matrix with ...
marepvcl 22463 Closure of the column repl...
ma1repvcl 22464 Closure of the column repl...
ma1repveval 22465 An entry of an identity ma...
mulmarep1el 22466 Element by element multipl...
mulmarep1gsum1 22467 The sum of element by elem...
mulmarep1gsum2 22468 The sum of element by elem...
1marepvmarrepid 22469 Replacing the ith row by 0...
submabas 22472 Any subset of the index se...
submafval 22473 First substitution for a s...
submaval0 22474 Second substitution for a ...
submaval 22475 Third substitution for a s...
submaeval 22476 An entry of a submatrix of...
1marepvsma1 22477 The submatrix of the ident...
mdetfval 22480 First substitution for the...
mdetleib 22481 Full substitution of our d...
mdetleib2 22482 Leibniz' formula can also ...
nfimdetndef 22483 The determinant is not def...
mdetfval1 22484 First substitution of an a...
mdetleib1 22485 Full substitution of an al...
mdet0pr 22486 The determinant function f...
mdet0f1o 22487 The determinant function f...
mdet0fv0 22488 The determinant of the emp...
mdetf 22489 Functionality of the deter...
mdetcl 22490 The determinant evaluates ...
m1detdiag 22491 The determinant of a 1-dim...
mdetdiaglem 22492 Lemma for ~ mdetdiag . Pr...
mdetdiag 22493 The determinant of a diago...
mdetdiagid 22494 The determinant of a diago...
mdet1 22495 The determinant of the ide...
mdetrlin 22496 The determinant function i...
mdetrsca 22497 The determinant function i...
mdetrsca2 22498 The determinant function i...
mdetr0 22499 The determinant of a matri...
mdet0 22500 The determinant of the zer...
mdetrlin2 22501 The determinant function i...
mdetralt 22502 The determinant function i...
mdetralt2 22503 The determinant function i...
mdetero 22504 The determinant function i...
mdettpos 22505 Determinant is invariant u...
mdetunilem1 22506 Lemma for ~ mdetuni . (Co...
mdetunilem2 22507 Lemma for ~ mdetuni . (Co...
mdetunilem3 22508 Lemma for ~ mdetuni . (Co...
mdetunilem4 22509 Lemma for ~ mdetuni . (Co...
mdetunilem5 22510 Lemma for ~ mdetuni . (Co...
mdetunilem6 22511 Lemma for ~ mdetuni . (Co...
mdetunilem7 22512 Lemma for ~ mdetuni . (Co...
mdetunilem8 22513 Lemma for ~ mdetuni . (Co...
mdetunilem9 22514 Lemma for ~ mdetuni . (Co...
mdetuni0 22515 Lemma for ~ mdetuni . (Co...
mdetuni 22516 According to the definitio...
mdetmul 22517 Multiplicativity of the de...
m2detleiblem1 22518 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 22519 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 22520 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 22521 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 22522 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 22523 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 22524 Lemma 4 for ~ m2detleib . ...
m2detleib 22525 Leibniz' Formula for 2x2-m...
mndifsplit 22530 Lemma for ~ maducoeval2 . ...
madufval 22531 First substitution for the...
maduval 22532 Second substitution for th...
maducoeval 22533 An entry of the adjunct (c...
maducoeval2 22534 An entry of the adjunct (c...
maduf 22535 Creating the adjunct of ma...
madutpos 22536 The adjuct of a transposed...
madugsum 22537 The determinant of a matri...
madurid 22538 Multiplying a matrix with ...
madulid 22539 Multiplying the adjunct of...
minmar1fval 22540 First substitution for the...
minmar1val0 22541 Second substitution for th...
minmar1val 22542 Third substitution for the...
minmar1eval 22543 An entry of a matrix for a...
minmar1marrep 22544 The minor matrix is a spec...
minmar1cl 22545 Closure of the row replace...
maducoevalmin1 22546 The coefficients of an adj...
symgmatr01lem 22547 Lemma for ~ symgmatr01 . ...
symgmatr01 22548 Applying a permutation tha...
gsummatr01lem1 22549 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 22550 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 22551 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 22552 Lemma 2 for ~ gsummatr01 ....
gsummatr01 22553 Lemma 1 for ~ smadiadetlem...
marep01ma 22554 Replacing a row of a squar...
smadiadetlem0 22555 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 22556 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 22557 Lemma 1a for ~ smadiadet :...
smadiadetlem2 22558 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 22559 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 22560 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 22561 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 22562 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 22563 Lemma 4 for ~ smadiadet . ...
smadiadet 22564 The determinant of a subma...
smadiadetglem1 22565 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 22566 Lemma 2 for ~ smadiadetg ....
smadiadetg 22567 The determinant of a squar...
smadiadetg0 22568 Lemma for ~ smadiadetr : v...
smadiadetr 22569 The determinant of a squar...
invrvald 22570 If a matrix multiplied wit...
matinv 22571 The inverse of a matrix is...
matunit 22572 A matrix is a unit in the ...
slesolvec 22573 Every solution of a system...
slesolinv 22574 The solution of a system o...
slesolinvbi 22575 The solution of a system o...
slesolex 22576 Every system of linear equ...
cramerimplem1 22577 Lemma 1 for ~ cramerimp : ...
cramerimplem2 22578 Lemma 2 for ~ cramerimp : ...
cramerimplem3 22579 Lemma 3 for ~ cramerimp : ...
cramerimp 22580 One direction of Cramer's ...
cramerlem1 22581 Lemma 1 for ~ cramer . (C...
cramerlem2 22582 Lemma 2 for ~ cramer . (C...
cramerlem3 22583 Lemma 3 for ~ cramer . (C...
cramer0 22584 Special case of Cramer's r...
cramer 22585 Cramer's rule. According ...
pmatring 22586 The set of polynomial matr...
pmatlmod 22587 The set of polynomial matr...
pmatassa 22588 The set of polynomial matr...
pmat0op 22589 The zero polynomial matrix...
pmat1op 22590 The identity polynomial ma...
pmat1ovd 22591 Entries of the identity po...
pmat0opsc 22592 The zero polynomial matrix...
pmat1opsc 22593 The identity polynomial ma...
pmat1ovscd 22594 Entries of the identity po...
pmatcoe1fsupp 22595 For a polynomial matrix th...
1pmatscmul 22596 The scalar product of the ...
cpmat 22603 Value of the constructor o...
cpmatpmat 22604 A constant polynomial matr...
cpmatel 22605 Property of a constant pol...
cpmatelimp 22606 Implication of a set being...
cpmatel2 22607 Another property of a cons...
cpmatelimp2 22608 Another implication of a s...
1elcpmat 22609 The identity of the ring o...
cpmatacl 22610 The set of all constant po...
cpmatinvcl 22611 The set of all constant po...
cpmatmcllem 22612 Lemma for ~ cpmatmcl . (C...
cpmatmcl 22613 The set of all constant po...
cpmatsubgpmat 22614 The set of all constant po...
cpmatsrgpmat 22615 The set of all constant po...
0elcpmat 22616 The zero of the ring of al...
mat2pmatfval 22617 Value of the matrix transf...
mat2pmatval 22618 The result of a matrix tra...
mat2pmatvalel 22619 A (matrix) element of the ...
mat2pmatbas 22620 The result of a matrix tra...
mat2pmatbas0 22621 The result of a matrix tra...
mat2pmatf 22622 The matrix transformation ...
mat2pmatf1 22623 The matrix transformation ...
mat2pmatghm 22624 The transformation of matr...
mat2pmatmul 22625 The transformation of matr...
mat2pmat1 22626 The transformation of the ...
mat2pmatmhm 22627 The transformation of matr...
mat2pmatrhm 22628 The transformation of matr...
mat2pmatlin 22629 The transformation of matr...
0mat2pmat 22630 The transformed zero matri...
idmatidpmat 22631 The transformed identity m...
d0mat2pmat 22632 The transformed empty set ...
d1mat2pmat 22633 The transformation of a ma...
mat2pmatscmxcl 22634 A transformed matrix multi...
m2cpm 22635 The result of a matrix tra...
m2cpmf 22636 The matrix transformation ...
m2cpmf1 22637 The matrix transformation ...
m2cpmghm 22638 The transformation of matr...
m2cpmmhm 22639 The transformation of matr...
m2cpmrhm 22640 The transformation of matr...
m2pmfzmap 22641 The transformed values of ...
m2pmfzgsumcl 22642 Closure of the sum of scal...
cpm2mfval 22643 Value of the inverse matri...
cpm2mval 22644 The result of an inverse m...
cpm2mvalel 22645 A (matrix) element of the ...
cpm2mf 22646 The inverse matrix transfo...
m2cpminvid 22647 The inverse transformation...
m2cpminvid2lem 22648 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 22649 The transformation applied...
m2cpmfo 22650 The matrix transformation ...
m2cpmf1o 22651 The matrix transformation ...
m2cpmrngiso 22652 The transformation of matr...
matcpmric 22653 The ring of matrices over ...
m2cpminv 22654 The inverse matrix transfo...
m2cpminv0 22655 The inverse matrix transfo...
decpmatval0 22658 The matrix consisting of t...
decpmatval 22659 The matrix consisting of t...
decpmate 22660 An entry of the matrix con...
decpmatcl 22661 Closure of the decompositi...
decpmataa0 22662 The matrix consisting of t...
decpmatfsupp 22663 The mapping to the matrice...
decpmatid 22664 The matrix consisting of t...
decpmatmullem 22665 Lemma for ~ decpmatmul . ...
decpmatmul 22666 The matrix consisting of t...
decpmatmulsumfsupp 22667 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 22668 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 22669 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 22670 Write a polynomial matrix ...
pmatcollpw2lem 22671 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 22672 Write a polynomial matrix ...
monmatcollpw 22673 The matrix consisting of t...
pmatcollpwlem 22674 Lemma for ~ pmatcollpw . ...
pmatcollpw 22675 Write a polynomial matrix ...
pmatcollpwfi 22676 Write a polynomial matrix ...
pmatcollpw3lem 22677 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 22678 Write a polynomial matrix ...
pmatcollpw3fi 22679 Write a polynomial matrix ...
pmatcollpw3fi1lem1 22680 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 22681 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 22682 Write a polynomial matrix ...
pmatcollpwscmatlem1 22683 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 22684 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 22685 Write a scalar matrix over...
pm2mpf1lem 22688 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 22689 Value of the transformatio...
pm2mpfval 22690 A polynomial matrix transf...
pm2mpcl 22691 The transformation of poly...
pm2mpf 22692 The transformation of poly...
pm2mpf1 22693 The transformation of poly...
pm2mpcoe1 22694 A coefficient of the polyn...
idpm2idmp 22695 The transformation of the ...
mptcoe1matfsupp 22696 The mapping extracting the...
mply1topmatcllem 22697 Lemma for ~ mply1topmatcl ...
mply1topmatval 22698 A polynomial over matrices...
mply1topmatcl 22699 A polynomial over matrices...
mp2pm2mplem1 22700 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 22701 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 22702 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 22703 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 22704 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 22705 A polynomial over matrices...
pm2mpghmlem2 22706 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 22707 Lemma 1 for pm2mpghm . (C...
pm2mpfo 22708 The transformation of poly...
pm2mpf1o 22709 The transformation of poly...
pm2mpghm 22710 The transformation of poly...
pm2mpgrpiso 22711 The transformation of poly...
pm2mpmhmlem1 22712 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 22713 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 22714 The transformation of poly...
pm2mprhm 22715 The transformation of poly...
pm2mprngiso 22716 The transformation of poly...
pmmpric 22717 The ring of polynomial mat...
monmat2matmon 22718 The transformation of a po...
pm2mp 22719 The transformation of a su...
chmatcl 22722 Closure of the characteris...
chmatval 22723 The entries of the charact...
chpmatfval 22724 Value of the characteristi...
chpmatval 22725 The characteristic polynom...
chpmatply1 22726 The characteristic polynom...
chpmatval2 22727 The characteristic polynom...
chpmat0d 22728 The characteristic polynom...
chpmat1dlem 22729 Lemma for ~ chpmat1d . (C...
chpmat1d 22730 The characteristic polynom...
chpdmatlem0 22731 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 22732 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 22733 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 22734 Lemma 3 for ~ chpdmat . (...
chpdmat 22735 The characteristic polynom...
chpscmat 22736 The characteristic polynom...
chpscmat0 22737 The characteristic polynom...
chpscmatgsumbin 22738 The characteristic polynom...
chpscmatgsummon 22739 The characteristic polynom...
chp0mat 22740 The characteristic polynom...
chpidmat 22741 The characteristic polynom...
chmaidscmat 22742 The characteristic polynom...
fvmptnn04if 22743 The function values of a m...
fvmptnn04ifa 22744 The function value of a ma...
fvmptnn04ifb 22745 The function value of a ma...
fvmptnn04ifc 22746 The function value of a ma...
fvmptnn04ifd 22747 The function value of a ma...
chfacfisf 22748 The "characteristic factor...
chfacfisfcpmat 22749 The "characteristic factor...
chfacffsupp 22750 The "characteristic factor...
chfacfscmulcl 22751 Closure of a scaled value ...
chfacfscmul0 22752 A scaled value of the "cha...
chfacfscmulfsupp 22753 A mapping of scaled values...
chfacfscmulgsum 22754 Breaking up a sum of value...
chfacfpmmulcl 22755 Closure of the value of th...
chfacfpmmul0 22756 The value of the "characte...
chfacfpmmulfsupp 22757 A mapping of values of the...
chfacfpmmulgsum 22758 Breaking up a sum of value...
chfacfpmmulgsum2 22759 Breaking up a sum of value...
cayhamlem1 22760 Lemma 1 for ~ cayleyhamilt...
cpmadurid 22761 The right-hand fundamental...
cpmidgsum 22762 Representation of the iden...
cpmidgsumm2pm 22763 Representation of the iden...
cpmidpmatlem1 22764 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 22765 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 22766 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 22767 Representation of the iden...
cpmadugsumlemB 22768 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 22769 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 22770 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 22771 The product of the charact...
cpmadugsum 22772 The product of the charact...
cpmidgsum2 22773 Representation of the iden...
cpmidg2sum 22774 Equality of two sums repre...
cpmadumatpolylem1 22775 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 22776 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 22777 The product of the charact...
cayhamlem2 22778 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 22779 Lemma for ~ chcoeffeq . (...
chcoeffeq 22780 The coefficients of the ch...
cayhamlem3 22781 Lemma for ~ cayhamlem4 . ...
cayhamlem4 22782 Lemma for ~ cayleyhamilton...
cayleyhamilton0 22783 The Cayley-Hamilton theore...
cayleyhamilton 22784 The Cayley-Hamilton theore...
cayleyhamiltonALT 22785 Alternate proof of ~ cayle...
cayleyhamilton1 22786 The Cayley-Hamilton theore...
istopg 22789 Express the predicate " ` ...
istop2g 22790 Express the predicate " ` ...
uniopn 22791 The union of a subset of a...
iunopn 22792 The indexed union of a sub...
inopn 22793 The intersection of two op...
fitop 22794 A topology is closed under...
fiinopn 22795 The intersection of a none...
iinopn 22796 The intersection of a none...
unopn 22797 The union of two open sets...
0opn 22798 The empty set is an open s...
0ntop 22799 The empty set is not a top...
topopn 22800 The underlying set of a to...
eltopss 22801 A member of a topology is ...
riinopn 22802 A finite indexed relative ...
rintopn 22803 A finite relative intersec...
istopon 22806 Property of being a topolo...
topontop 22807 A topology on a given base...
toponuni 22808 The base set of a topology...
topontopi 22809 A topology on a given base...
toponunii 22810 The base set of a topology...
toptopon 22811 Alternative definition of ...
toptopon2 22812 A topology is the same thi...
topontopon 22813 A topology on a set is a t...
funtopon 22814 The class ` TopOn ` is a f...
toponrestid 22815 Given a topology on a set,...
toponsspwpw 22816 The set of topologies on a...
dmtopon 22817 The domain of ` TopOn ` is...
fntopon 22818 The class ` TopOn ` is a f...
toprntopon 22819 A topology is the same thi...
toponmax 22820 The base set of a topology...
toponss 22821 A member of a topology is ...
toponcom 22822 If ` K ` is a topology on ...
toponcomb 22823 Biconditional form of ~ to...
topgele 22824 The topologies over the sa...
topsn 22825 The only topology on a sin...
istps 22828 Express the predicate "is ...
istps2 22829 Express the predicate "is ...
tpsuni 22830 The base set of a topologi...
tpstop 22831 The topology extractor on ...
tpspropd 22832 A topological space depend...
tpsprop2d 22833 A topological space depend...
topontopn 22834 Express the predicate "is ...
tsettps 22835 If the topology component ...
istpsi 22836 Properties that determine ...
eltpsg 22837 Properties that determine ...
eltpsi 22838 Properties that determine ...
isbasisg 22841 Express the predicate "the...
isbasis2g 22842 Express the predicate "the...
isbasis3g 22843 Express the predicate "the...
basis1 22844 Property of a basis. (Con...
basis2 22845 Property of a basis. (Con...
fiinbas 22846 If a set is closed under f...
basdif0 22847 A basis is not affected by...
baspartn 22848 A disjoint system of sets ...
tgval 22849 The topology generated by ...
tgval2 22850 Definition of a topology g...
eltg 22851 Membership in a topology g...
eltg2 22852 Membership in a topology g...
eltg2b 22853 Membership in a topology g...
eltg4i 22854 An open set in a topology ...
eltg3i 22855 The union of a set of basi...
eltg3 22856 Membership in a topology g...
tgval3 22857 Alternate expression for t...
tg1 22858 Property of a member of a ...
tg2 22859 Property of a member of a ...
bastg 22860 A member of a basis is a s...
unitg 22861 The topology generated by ...
tgss 22862 Subset relation for genera...
tgcl 22863 Show that a basis generate...
tgclb 22864 The property ~ tgcl can be...
tgtopon 22865 A basis generates a topolo...
topbas 22866 A topology is its own basi...
tgtop 22867 A topology is its own basi...
eltop 22868 Membership in a topology, ...
eltop2 22869 Membership in a topology. ...
eltop3 22870 Membership in a topology. ...
fibas 22871 A collection of finite int...
tgdom 22872 A space has no more open s...
tgiun 22873 The indexed union of a set...
tgidm 22874 The topology generator fun...
bastop 22875 Two ways to express that a...
tgtop11 22876 The topology generation fu...
0top 22877 The singleton of the empty...
en1top 22878 ` { (/) } ` is the only to...
en2top 22879 If a topology has two elem...
tgss3 22880 A criterion for determinin...
tgss2 22881 A criterion for determinin...
basgen 22882 Given a topology ` J ` , s...
basgen2 22883 Given a topology ` J ` , s...
2basgen 22884 Conditions that determine ...
tgfiss 22885 If a subbase is included i...
tgdif0 22886 A generated topology is no...
bastop1 22887 A subset of a topology is ...
bastop2 22888 A version of ~ bastop1 tha...
distop 22889 The discrete topology on a...
topnex 22890 The class of all topologie...
distopon 22891 The discrete topology on a...
sn0topon 22892 The singleton of the empty...
sn0top 22893 The singleton of the empty...
indislem 22894 A lemma to eliminate some ...
indistopon 22895 The indiscrete topology on...
indistop 22896 The indiscrete topology on...
indisuni 22897 The base set of the indisc...
fctop 22898 The finite complement topo...
fctop2 22899 The finite complement topo...
cctop 22900 The countable complement t...
ppttop 22901 The particular point topol...
pptbas 22902 The particular point topol...
epttop 22903 The excluded point topolog...
indistpsx 22904 The indiscrete topology on...
indistps 22905 The indiscrete topology on...
indistps2 22906 The indiscrete topology on...
indistpsALT 22907 The indiscrete topology on...
indistps2ALT 22908 The indiscrete topology on...
distps 22909 The discrete topology on a...
fncld 22916 The closed-set generator i...
cldval 22917 The set of closed sets of ...
ntrfval 22918 The interior function on t...
clsfval 22919 The closure function on th...
cldrcl 22920 Reverse closure of the clo...
iscld 22921 The predicate "the class `...
iscld2 22922 A subset of the underlying...
cldss 22923 A closed set is a subset o...
cldss2 22924 The set of closed sets is ...
cldopn 22925 The complement of a closed...
isopn2 22926 A subset of the underlying...
opncld 22927 The complement of an open ...
difopn 22928 The difference of a closed...
topcld 22929 The underlying set of a to...
ntrval 22930 The interior of a subset o...
clsval 22931 The closure of a subset of...
0cld 22932 The empty set is closed. ...
iincld 22933 The indexed intersection o...
intcld 22934 The intersection of a set ...
uncld 22935 The union of two closed se...
cldcls 22936 A closed subset equals its...
incld 22937 The intersection of two cl...
riincld 22938 An indexed relative inters...
iuncld 22939 A finite indexed union of ...
unicld 22940 A finite union of closed s...
clscld 22941 The closure of a subset of...
clsf 22942 The closure function is a ...
ntropn 22943 The interior of a subset o...
clsval2 22944 Express closure in terms o...
ntrval2 22945 Interior expressed in term...
ntrdif 22946 An interior of a complemen...
clsdif 22947 A closure of a complement ...
clsss 22948 Subset relationship for cl...
ntrss 22949 Subset relationship for in...
sscls 22950 A subset of a topology's u...
ntrss2 22951 A subset includes its inte...
ssntr 22952 An open subset of a set is...
clsss3 22953 The closure of a subset of...
ntrss3 22954 The interior of a subset o...
ntrin 22955 A pairwise intersection of...
cmclsopn 22956 The complement of a closur...
cmntrcld 22957 The complement of an inter...
iscld3 22958 A subset is closed iff it ...
iscld4 22959 A subset is closed iff it ...
isopn3 22960 A subset is open iff it eq...
clsidm 22961 The closure operation is i...
ntridm 22962 The interior operation is ...
clstop 22963 The closure of a topology'...
ntrtop 22964 The interior of a topology...
0ntr 22965 A subset with an empty int...
clsss2 22966 If a subset is included in...
elcls 22967 Membership in a closure. ...
elcls2 22968 Membership in a closure. ...
clsndisj 22969 Any open set containing a ...
ntrcls0 22970 A subset whose closure has...
ntreq0 22971 Two ways to say that a sub...
cldmre 22972 The closed sets of a topol...
mrccls 22973 Moore closure generalizes ...
cls0 22974 The closure of the empty s...
ntr0 22975 The interior of the empty ...
isopn3i 22976 An open subset equals its ...
elcls3 22977 Membership in a closure in...
opncldf1 22978 A bijection useful for con...
opncldf2 22979 The values of the open-clo...
opncldf3 22980 The values of the converse...
isclo 22981 A set ` A ` is clopen iff ...
isclo2 22982 A set ` A ` is clopen iff ...
discld 22983 The open sets of a discret...
sn0cld 22984 The closed sets of the top...
indiscld 22985 The closed sets of an indi...
mretopd 22986 A Moore collection which i...
toponmre 22987 The topologies over a give...
cldmreon 22988 The closed sets of a topol...
iscldtop 22989 A family is the closed set...
mreclatdemoBAD 22990 The closed subspaces of a ...
neifval 22993 Value of the neighborhood ...
neif 22994 The neighborhood function ...
neiss2 22995 A set with a neighborhood ...
neival 22996 Value of the set of neighb...
isnei 22997 The predicate "the class `...
neiint 22998 An intuitive definition of...
isneip 22999 The predicate "the class `...
neii1 23000 A neighborhood is included...
neisspw 23001 The neighborhoods of any s...
neii2 23002 Property of a neighborhood...
neiss 23003 Any neighborhood of a set ...
ssnei 23004 A set is included in any o...
elnei 23005 A point belongs to any of ...
0nnei 23006 The empty set is not a nei...
neips 23007 A neighborhood of a set is...
opnneissb 23008 An open set is a neighborh...
opnssneib 23009 Any superset of an open se...
ssnei2 23010 Any subset ` M ` of ` X ` ...
neindisj 23011 Any neighborhood of an ele...
opnneiss 23012 An open set is a neighborh...
opnneip 23013 An open set is a neighborh...
opnnei 23014 A set is open iff it is a ...
tpnei 23015 The underlying set of a to...
neiuni 23016 The union of the neighborh...
neindisj2 23017 A point ` P ` belongs to t...
topssnei 23018 A finer topology has more ...
innei 23019 The intersection of two ne...
opnneiid 23020 Only an open set is a neig...
neissex 23021 For any neighborhood ` N `...
0nei 23022 The empty set is a neighbo...
neipeltop 23023 Lemma for ~ neiptopreu . ...
neiptopuni 23024 Lemma for ~ neiptopreu . ...
neiptoptop 23025 Lemma for ~ neiptopreu . ...
neiptopnei 23026 Lemma for ~ neiptopreu . ...
neiptopreu 23027 If, to each element ` P ` ...
lpfval 23032 The limit point function o...
lpval 23033 The set of limit points of...
islp 23034 The predicate "the class `...
lpsscls 23035 The limit points of a subs...
lpss 23036 The limit points of a subs...
lpdifsn 23037 ` P ` is a limit point of ...
lpss3 23038 Subset relationship for li...
islp2 23039 The predicate " ` P ` is a...
islp3 23040 The predicate " ` P ` is a...
maxlp 23041 A point is a limit point o...
clslp 23042 The closure of a subset of...
islpi 23043 A point belonging to a set...
cldlp 23044 A subset of a topological ...
isperf 23045 Definition of a perfect sp...
isperf2 23046 Definition of a perfect sp...
isperf3 23047 A perfect space is a topol...
perflp 23048 The limit points of a perf...
perfi 23049 Property of a perfect spac...
perftop 23050 A perfect space is a topol...
restrcl 23051 Reverse closure for the su...
restbas 23052 A subspace topology basis ...
tgrest 23053 A subspace can be generate...
resttop 23054 A subspace topology is a t...
resttopon 23055 A subspace topology is a t...
restuni 23056 The underlying set of a su...
stoig 23057 The topological space buil...
restco 23058 Composition of subspaces. ...
restabs 23059 Equivalence of being a sub...
restin 23060 When the subspace region i...
restuni2 23061 The underlying set of a su...
resttopon2 23062 The underlying set of a su...
rest0 23063 The subspace topology indu...
restsn 23064 The only subspace topology...
restsn2 23065 The subspace topology indu...
restcld 23066 A closed set of a subspace...
restcldi 23067 A closed set is closed in ...
restcldr 23068 A set which is closed in t...
restopnb 23069 If ` B ` is an open subset...
ssrest 23070 If ` K ` is a finer topolo...
restopn2 23071 If ` A ` is open, then ` B...
restdis 23072 A subspace of a discrete t...
restfpw 23073 The restriction of the set...
neitr 23074 The neighborhood of a trac...
restcls 23075 A closure in a subspace to...
restntr 23076 An interior in a subspace ...
restlp 23077 The limit points of a subs...
restperf 23078 Perfection of a subspace. ...
perfopn 23079 An open subset of a perfec...
resstopn 23080 The topology of a restrict...
resstps 23081 A restricted topological s...
ordtbaslem 23082 Lemma for ~ ordtbas . In ...
ordtval 23083 Value of the order topolog...
ordtuni 23084 Value of the order topolog...
ordtbas2 23085 Lemma for ~ ordtbas . (Co...
ordtbas 23086 In a total order, the fini...
ordttopon 23087 Value of the order topolog...
ordtopn1 23088 An upward ray ` ( P , +oo ...
ordtopn2 23089 A downward ray ` ( -oo , P...
ordtopn3 23090 An open interval ` ( A , B...
ordtcld1 23091 A downward ray ` ( -oo , P...
ordtcld2 23092 An upward ray ` [ P , +oo ...
ordtcld3 23093 A closed interval ` [ A , ...
ordttop 23094 The order topology is a to...
ordtcnv 23095 The order dual generates t...
ordtrest 23096 The subspace topology of a...
ordtrest2lem 23097 Lemma for ~ ordtrest2 . (...
ordtrest2 23098 An interval-closed set ` A...
letopon 23099 The topology of the extend...
letop 23100 The topology of the extend...
letopuni 23101 The topology of the extend...
xrstopn 23102 The topology component of ...
xrstps 23103 The extended real number s...
leordtvallem1 23104 Lemma for ~ leordtval . (...
leordtvallem2 23105 Lemma for ~ leordtval . (...
leordtval2 23106 The topology of the extend...
leordtval 23107 The topology of the extend...
iccordt 23108 A closed interval is close...
iocpnfordt 23109 An unbounded above open in...
icomnfordt 23110 An unbounded above open in...
iooordt 23111 An open interval is open i...
reordt 23112 The real numbers are an op...
lecldbas 23113 The set of closed interval...
pnfnei 23114 A neighborhood of ` +oo ` ...
mnfnei 23115 A neighborhood of ` -oo ` ...
ordtrestixx 23116 The restriction of the les...
ordtresticc 23117 The restriction of the les...
lmrel 23124 The topological space conv...
lmrcl 23125 Reverse closure for the co...
lmfval 23126 The relation "sequence ` f...
cnfval 23127 The set of all continuous ...
cnpfval 23128 The function mapping the p...
iscn 23129 The predicate "the class `...
cnpval 23130 The set of all functions f...
iscnp 23131 The predicate "the class `...
iscn2 23132 The predicate "the class `...
iscnp2 23133 The predicate "the class `...
cntop1 23134 Reverse closure for a cont...
cntop2 23135 Reverse closure for a cont...
cnptop1 23136 Reverse closure for a func...
cnptop2 23137 Reverse closure for a func...
iscnp3 23138 The predicate "the class `...
cnprcl 23139 Reverse closure for a func...
cnf 23140 A continuous function is a...
cnpf 23141 A continuous function at p...
cnpcl 23142 The value of a continuous ...
cnf2 23143 A continuous function is a...
cnpf2 23144 A continuous function at p...
cnprcl2 23145 Reverse closure for a func...
tgcn 23146 The continuity predicate w...
tgcnp 23147 The "continuous at a point...
subbascn 23148 The continuity predicate w...
ssidcn 23149 The identity function is a...
cnpimaex 23150 Property of a function con...
idcn 23151 A restricted identity func...
lmbr 23152 Express the binary relatio...
lmbr2 23153 Express the binary relatio...
lmbrf 23154 Express the binary relatio...
lmconst 23155 A constant sequence conver...
lmcvg 23156 Convergence property of a ...
iscnp4 23157 The predicate "the class `...
cnpnei 23158 A condition for continuity...
cnima 23159 An open subset of the codo...
cnco 23160 The composition of two con...
cnpco 23161 The composition of a funct...
cnclima 23162 A closed subset of the cod...
iscncl 23163 A characterization of a co...
cncls2i 23164 Property of the preimage o...
cnntri 23165 Property of the preimage o...
cnclsi 23166 Property of the image of a...
cncls2 23167 Continuity in terms of clo...
cncls 23168 Continuity in terms of clo...
cnntr 23169 Continuity in terms of int...
cnss1 23170 If the topology ` K ` is f...
cnss2 23171 If the topology ` K ` is f...
cncnpi 23172 A continuous function is c...
cnsscnp 23173 The set of continuous func...
cncnp 23174 A continuous function is c...
cncnp2 23175 A continuous function is c...
cnnei 23176 Continuity in terms of nei...
cnconst2 23177 A constant function is con...
cnconst 23178 A constant function is con...
cnrest 23179 Continuity of a restrictio...
cnrest2 23180 Equivalence of continuity ...
cnrest2r 23181 Equivalence of continuity ...
cnpresti 23182 One direction of ~ cnprest...
cnprest 23183 Equivalence of continuity ...
cnprest2 23184 Equivalence of point-conti...
cndis 23185 Every function is continuo...
cnindis 23186 Every function is continuo...
cnpdis 23187 If ` A ` is an isolated po...
paste 23188 Pasting lemma. If ` A ` a...
lmfpm 23189 If ` F ` converges, then `...
lmfss 23190 Inclusion of a function ha...
lmcl 23191 Closure of a limit. (Cont...
lmss 23192 Limit on a subspace. (Con...
sslm 23193 A finer topology has fewer...
lmres 23194 A function converges iff i...
lmff 23195 If ` F ` converges, there ...
lmcls 23196 Any convergent sequence of...
lmcld 23197 Any convergent sequence of...
lmcnp 23198 The image of a convergent ...
lmcn 23199 The image of a convergent ...
ist0 23214 The predicate "is a T_0 sp...
ist1 23215 The predicate "is a T_1 sp...
ishaus 23216 The predicate "is a Hausdo...
iscnrm 23217 The property of being comp...
t0sep 23218 Any two topologically indi...
t0dist 23219 Any two distinct points in...
t1sncld 23220 In a T_1 space, singletons...
t1ficld 23221 In a T_1 space, finite set...
hausnei 23222 Neighborhood property of a...
t0top 23223 A T_0 space is a topologic...
t1top 23224 A T_1 space is a topologic...
haustop 23225 A Hausdorff space is a top...
isreg 23226 The predicate "is a regula...
regtop 23227 A regular space is a topol...
regsep 23228 In a regular space, every ...
isnrm 23229 The predicate "is a normal...
nrmtop 23230 A normal space is a topolo...
cnrmtop 23231 A completely normal space ...
iscnrm2 23232 The property of being comp...
ispnrm 23233 The property of being perf...
pnrmnrm 23234 A perfectly normal space i...
pnrmtop 23235 A perfectly normal space i...
pnrmcld 23236 A closed set in a perfectl...
pnrmopn 23237 An open set in a perfectly...
ist0-2 23238 The predicate "is a T_0 sp...
ist0-3 23239 The predicate "is a T_0 sp...
cnt0 23240 The preimage of a T_0 topo...
ist1-2 23241 An alternate characterizat...
t1t0 23242 A T_1 space is a T_0 space...
ist1-3 23243 A space is T_1 iff every p...
cnt1 23244 The preimage of a T_1 topo...
ishaus2 23245 Express the predicate " ` ...
haust1 23246 A Hausdorff space is a T_1...
hausnei2 23247 The Hausdorff condition st...
cnhaus 23248 The preimage of a Hausdorf...
nrmsep3 23249 In a normal space, given a...
nrmsep2 23250 In a normal space, any two...
nrmsep 23251 In a normal space, disjoin...
isnrm2 23252 An alternate characterizat...
isnrm3 23253 A topological space is nor...
cnrmi 23254 A subspace of a completely...
cnrmnrm 23255 A completely normal space ...
restcnrm 23256 A subspace of a completely...
resthauslem 23257 Lemma for ~ resthaus and s...
lpcls 23258 The limit points of the cl...
perfcls 23259 A subset of a perfect spac...
restt0 23260 A subspace of a T_0 topolo...
restt1 23261 A subspace of a T_1 topolo...
resthaus 23262 A subspace of a Hausdorff ...
t1sep2 23263 Any two points in a T_1 sp...
t1sep 23264 Any two distinct points in...
sncld 23265 A singleton is closed in a...
sshauslem 23266 Lemma for ~ sshaus and sim...
sst0 23267 A topology finer than a T_...
sst1 23268 A topology finer than a T_...
sshaus 23269 A topology finer than a Ha...
regsep2 23270 In a regular space, a clos...
isreg2 23271 A topological space is reg...
dnsconst 23272 If a continuous mapping to...
ordtt1 23273 The order topology is T_1 ...
lmmo 23274 A sequence in a Hausdorff ...
lmfun 23275 The convergence relation i...
dishaus 23276 A discrete topology is Hau...
ordthauslem 23277 Lemma for ~ ordthaus . (C...
ordthaus 23278 The order topology of a to...
xrhaus 23279 The topology of the extend...
iscmp 23282 The predicate "is a compac...
cmpcov 23283 An open cover of a compact...
cmpcov2 23284 Rewrite ~ cmpcov for the c...
cmpcovf 23285 Combine ~ cmpcov with ~ ac...
cncmp 23286 Compactness is respected b...
fincmp 23287 A finite topology is compa...
0cmp 23288 The singleton of the empty...
cmptop 23289 A compact topology is a to...
rncmp 23290 The image of a compact set...
imacmp 23291 The image of a compact set...
discmp 23292 A discrete topology is com...
cmpsublem 23293 Lemma for ~ cmpsub . (Con...
cmpsub 23294 Two equivalent ways of des...
tgcmp 23295 A topology generated by a ...
cmpcld 23296 A closed subset of a compa...
uncmp 23297 The union of two compact s...
fiuncmp 23298 A finite union of compact ...
sscmp 23299 A subset of a compact topo...
hauscmplem 23300 Lemma for ~ hauscmp . (Co...
hauscmp 23301 A compact subspace of a T2...
cmpfi 23302 If a topology is compact a...
cmpfii 23303 In a compact topology, a s...
bwth 23304 The glorious Bolzano-Weier...
isconn 23307 The predicate ` J ` is a c...
isconn2 23308 The predicate ` J ` is a c...
connclo 23309 The only nonempty clopen s...
conndisj 23310 If a topology is connected...
conntop 23311 A connected topology is a ...
indisconn 23312 The indiscrete topology (o...
dfconn2 23313 An alternate definition of...
connsuba 23314 Connectedness for a subspa...
connsub 23315 Two equivalent ways of say...
cnconn 23316 Connectedness is respected...
nconnsubb 23317 Disconnectedness for a sub...
connsubclo 23318 If a clopen set meets a co...
connima 23319 The image of a connected s...
conncn 23320 A continuous function from...
iunconnlem 23321 Lemma for ~ iunconn . (Co...
iunconn 23322 The indexed union of conne...
unconn 23323 The union of two connected...
clsconn 23324 The closure of a connected...
conncompid 23325 The connected component co...
conncompconn 23326 The connected component co...
conncompss 23327 The connected component co...
conncompcld 23328 The connected component co...
conncompclo 23329 The connected component co...
t1connperf 23330 A connected T_1 space is p...
is1stc 23335 The predicate "is a first-...
is1stc2 23336 An equivalent way of sayin...
1stctop 23337 A first-countable topology...
1stcclb 23338 A property of points in a ...
1stcfb 23339 For any point ` A ` in a f...
is2ndc 23340 The property of being seco...
2ndctop 23341 A second-countable topolog...
2ndci 23342 A countable basis generate...
2ndcsb 23343 Having a countable subbase...
2ndcredom 23344 A second-countable space h...
2ndc1stc 23345 A second-countable space i...
1stcrestlem 23346 Lemma for ~ 1stcrest . (C...
1stcrest 23347 A subspace of a first-coun...
2ndcrest 23348 A subspace of a second-cou...
2ndcctbss 23349 If a topology is second-co...
2ndcdisj 23350 Any disjoint family of ope...
2ndcdisj2 23351 Any disjoint collection of...
2ndcomap 23352 A surjective continuous op...
2ndcsep 23353 A second-countable topolog...
dis2ndc 23354 A discrete space is second...
1stcelcls 23355 A point belongs to the clo...
1stccnp 23356 A mapping is continuous at...
1stccn 23357 A mapping ` X --> Y ` , wh...
islly 23362 The property of being a lo...
isnlly 23363 The property of being an n...
llyeq 23364 Equality theorem for the `...
nllyeq 23365 Equality theorem for the `...
llytop 23366 A locally ` A ` space is a...
nllytop 23367 A locally ` A ` space is a...
llyi 23368 The property of a locally ...
nllyi 23369 The property of an n-local...
nlly2i 23370 Eliminate the neighborhood...
llynlly 23371 A locally ` A ` space is n...
llyssnlly 23372 A locally ` A ` space is n...
llyss 23373 The "locally" predicate re...
nllyss 23374 The "n-locally" predicate ...
subislly 23375 The property of a subspace...
restnlly 23376 If the property ` A ` pass...
restlly 23377 If the property ` A ` pass...
islly2 23378 An alternative expression ...
llyrest 23379 An open subspace of a loca...
nllyrest 23380 An open subspace of an n-l...
loclly 23381 If ` A ` is a local proper...
llyidm 23382 Idempotence of the "locall...
nllyidm 23383 Idempotence of the "n-loca...
toplly 23384 A topology is locally a to...
topnlly 23385 A topology is n-locally a ...
hauslly 23386 A Hausdorff space is local...
hausnlly 23387 A Hausdorff space is n-loc...
hausllycmp 23388 A compact Hausdorff space ...
cldllycmp 23389 A closed subspace of a loc...
lly1stc 23390 First-countability is a lo...
dislly 23391 The discrete space ` ~P X ...
disllycmp 23392 A discrete space is locall...
dis1stc 23393 A discrete space is first-...
hausmapdom 23394 If ` X ` is a first-counta...
hauspwdom 23395 Simplify the cardinal ` A ...
refrel 23402 Refinement is a relation. ...
isref 23403 The property of being a re...
refbas 23404 A refinement covers the sa...
refssex 23405 Every set in a refinement ...
ssref 23406 A subcover is a refinement...
refref 23407 Reflexivity of refinement....
reftr 23408 Refinement is transitive. ...
refun0 23409 Adding the empty set prese...
isptfin 23410 The statement "is a point-...
islocfin 23411 The statement "is a locall...
finptfin 23412 A finite cover is a point-...
ptfinfin 23413 A point covered by a point...
finlocfin 23414 A finite cover of a topolo...
locfintop 23415 A locally finite cover cov...
locfinbas 23416 A locally finite cover mus...
locfinnei 23417 A point covered by a local...
lfinpfin 23418 A locally finite cover is ...
lfinun 23419 Adding a finite set preser...
locfincmp 23420 For a compact space, the l...
unisngl 23421 Taking the union of the se...
dissnref 23422 The set of singletons is a...
dissnlocfin 23423 The set of singletons is l...
locfindis 23424 The locally finite covers ...
locfincf 23425 A locally finite cover in ...
comppfsc 23426 A space where every open c...
kgenval 23429 Value of the compact gener...
elkgen 23430 Value of the compact gener...
kgeni 23431 Property of the open sets ...
kgentopon 23432 The compact generator gene...
kgenuni 23433 The base set of the compac...
kgenftop 23434 The compact generator gene...
kgenf 23435 The compact generator is a...
kgentop 23436 A compactly generated spac...
kgenss 23437 The compact generator gene...
kgenhaus 23438 The compact generator gene...
kgencmp 23439 The compact generator topo...
kgencmp2 23440 The compact generator topo...
kgenidm 23441 The compact generator is i...
iskgen2 23442 A space is compactly gener...
iskgen3 23443 Derive the usual definitio...
llycmpkgen2 23444 A locally compact space is...
cmpkgen 23445 A compact space is compact...
llycmpkgen 23446 A locally compact space is...
1stckgenlem 23447 The one-point compactifica...
1stckgen 23448 A first-countable space is...
kgen2ss 23449 The compact generator pres...
kgencn 23450 A function from a compactl...
kgencn2 23451 A function ` F : J --> K `...
kgencn3 23452 The set of continuous func...
kgen2cn 23453 A continuous function is a...
txval 23458 Value of the binary topolo...
txuni2 23459 The underlying set of the ...
txbasex 23460 The basis for the product ...
txbas 23461 The set of Cartesian produ...
eltx 23462 A set in a product is open...
txtop 23463 The product of two topolog...
ptval 23464 The value of the product t...
ptpjpre1 23465 The preimage of a projecti...
elpt 23466 Elementhood in the bases o...
elptr 23467 A basic open set in the pr...
elptr2 23468 A basic open set in the pr...
ptbasid 23469 The base set of the produc...
ptuni2 23470 The base set for the produ...
ptbasin 23471 The basis for a product to...
ptbasin2 23472 The basis for a product to...
ptbas 23473 The basis for a product to...
ptpjpre2 23474 The basis for a product to...
ptbasfi 23475 The basis for the product ...
pttop 23476 The product topology is a ...
ptopn 23477 A basic open set in the pr...
ptopn2 23478 A sub-basic open set in th...
xkotf 23479 Functionality of function ...
xkobval 23480 Alternative expression for...
xkoval 23481 Value of the compact-open ...
xkotop 23482 The compact-open topology ...
xkoopn 23483 A basic open set of the co...
txtopi 23484 The product of two topolog...
txtopon 23485 The underlying set of the ...
txuni 23486 The underlying set of the ...
txunii 23487 The underlying set of the ...
ptuni 23488 The base set for the produ...
ptunimpt 23489 Base set of a product topo...
pttopon 23490 The base set for the produ...
pttoponconst 23491 The base set for a product...
ptuniconst 23492 The base set for a product...
xkouni 23493 The base set of the compac...
xkotopon 23494 The base set of the compac...
ptval2 23495 The value of the product t...
txopn 23496 The product of two open se...
txcld 23497 The product of two closed ...
txcls 23498 Closure of a rectangle in ...
txss12 23499 Subset property of the top...
txbasval 23500 It is sufficient to consid...
neitx 23501 The Cartesian product of t...
txcnpi 23502 Continuity of a two-argume...
tx1cn 23503 Continuity of the first pr...
tx2cn 23504 Continuity of the second p...
ptpjcn 23505 Continuity of a projection...
ptpjopn 23506 The projection map is an o...
ptcld 23507 A closed box in the produc...
ptcldmpt 23508 A closed box in the produc...
ptclsg 23509 The closure of a box in th...
ptcls 23510 The closure of a box in th...
dfac14lem 23511 Lemma for ~ dfac14 . By e...
dfac14 23512 Theorem ~ ptcls is an equi...
xkoccn 23513 The "constant function" fu...
txcnp 23514 If two functions are conti...
ptcnplem 23515 Lemma for ~ ptcnp . (Cont...
ptcnp 23516 If every projection of a f...
upxp 23517 Universal property of the ...
txcnmpt 23518 A map into the product of ...
uptx 23519 Universal property of the ...
txcn 23520 A map into the product of ...
ptcn 23521 If every projection of a f...
prdstopn 23522 Topology of a structure pr...
prdstps 23523 A structure product of top...
pwstps 23524 A structure power of a top...
txrest 23525 The subspace of a topologi...
txdis 23526 The topological product of...
txindislem 23527 Lemma for ~ txindis . (Co...
txindis 23528 The topological product of...
txdis1cn 23529 A function is jointly cont...
txlly 23530 If the property ` A ` is p...
txnlly 23531 If the property ` A ` is p...
pthaus 23532 The product of a collectio...
ptrescn 23533 Restriction is a continuou...
txtube 23534 The "tube lemma". If ` X ...
txcmplem1 23535 Lemma for ~ txcmp . (Cont...
txcmplem2 23536 Lemma for ~ txcmp . (Cont...
txcmp 23537 The topological product of...
txcmpb 23538 The topological product of...
hausdiag 23539 A topology is Hausdorff if...
hauseqlcld 23540 In a Hausdorff topology, t...
txhaus 23541 The topological product of...
txlm 23542 Two sequences converge iff...
lmcn2 23543 The image of a convergent ...
tx1stc 23544 The topological product of...
tx2ndc 23545 The topological product of...
txkgen 23546 The topological product of...
xkohaus 23547 If the codomain space is H...
xkoptsub 23548 The compact-open topology ...
xkopt 23549 The compact-open topology ...
xkopjcn 23550 Continuity of a projection...
xkoco1cn 23551 If ` F ` is a continuous f...
xkoco2cn 23552 If ` F ` is a continuous f...
xkococnlem 23553 Continuity of the composit...
xkococn 23554 Continuity of the composit...
cnmptid 23555 The identity function is c...
cnmptc 23556 A constant function is con...
cnmpt11 23557 The composition of continu...
cnmpt11f 23558 The composition of continu...
cnmpt1t 23559 The composition of continu...
cnmpt12f 23560 The composition of continu...
cnmpt12 23561 The composition of continu...
cnmpt1st 23562 The projection onto the fi...
cnmpt2nd 23563 The projection onto the se...
cnmpt2c 23564 A constant function is con...
cnmpt21 23565 The composition of continu...
cnmpt21f 23566 The composition of continu...
cnmpt2t 23567 The composition of continu...
cnmpt22 23568 The composition of continu...
cnmpt22f 23569 The composition of continu...
cnmpt1res 23570 The restriction of a conti...
cnmpt2res 23571 The restriction of a conti...
cnmptcom 23572 The argument converse of a...
cnmptkc 23573 The curried first projecti...
cnmptkp 23574 The evaluation of the inne...
cnmptk1 23575 The composition of a curri...
cnmpt1k 23576 The composition of a one-a...
cnmptkk 23577 The composition of two cur...
xkofvcn 23578 Joint continuity of the fu...
cnmptk1p 23579 The evaluation of a currie...
cnmptk2 23580 The uncurrying of a currie...
xkoinjcn 23581 Continuity of "injection",...
cnmpt2k 23582 The currying of a two-argu...
txconn 23583 The topological product of...
imasnopn 23584 If a relation graph is ope...
imasncld 23585 If a relation graph is clo...
imasncls 23586 If a relation graph is clo...
qtopval 23589 Value of the quotient topo...
qtopval2 23590 Value of the quotient topo...
elqtop 23591 Value of the quotient topo...
qtopres 23592 The quotient topology is u...
qtoptop2 23593 The quotient topology is a...
qtoptop 23594 The quotient topology is a...
elqtop2 23595 Value of the quotient topo...
qtopuni 23596 The base set of the quotie...
elqtop3 23597 Value of the quotient topo...
qtoptopon 23598 The base set of the quotie...
qtopid 23599 A quotient map is a contin...
idqtop 23600 The quotient topology indu...
qtopcmplem 23601 Lemma for ~ qtopcmp and ~ ...
qtopcmp 23602 A quotient of a compact sp...
qtopconn 23603 A quotient of a connected ...
qtopkgen 23604 A quotient of a compactly ...
basqtop 23605 An injection maps bases to...
tgqtop 23606 An injection maps generate...
qtopcld 23607 The property of being a cl...
qtopcn 23608 Universal property of a qu...
qtopss 23609 A surjective continuous fu...
qtopeu 23610 Universal property of the ...
qtoprest 23611 If ` A ` is a saturated op...
qtopomap 23612 If ` F ` is a surjective c...
qtopcmap 23613 If ` F ` is a surjective c...
imastopn 23614 The topology of an image s...
imastps 23615 The image of a topological...
qustps 23616 A quotient structure is a ...
kqfval 23617 Value of the function appe...
kqfeq 23618 Two points in the Kolmogor...
kqffn 23619 The topological indistingu...
kqval 23620 Value of the quotient topo...
kqtopon 23621 The Kolmogorov quotient is...
kqid 23622 The topological indistingu...
ist0-4 23623 The topological indistingu...
kqfvima 23624 When the image set is open...
kqsat 23625 Any open set is saturated ...
kqdisj 23626 A version of ~ imain for t...
kqcldsat 23627 Any closed set is saturate...
kqopn 23628 The topological indistingu...
kqcld 23629 The topological indistingu...
kqt0lem 23630 Lemma for ~ kqt0 . (Contr...
isr0 23631 The property " ` J ` is an...
r0cld 23632 The analogue of the T_1 ax...
regr1lem 23633 Lemma for ~ regr1 . (Cont...
regr1lem2 23634 A Kolmogorov quotient of a...
kqreglem1 23635 A Kolmogorov quotient of a...
kqreglem2 23636 If the Kolmogorov quotient...
kqnrmlem1 23637 A Kolmogorov quotient of a...
kqnrmlem2 23638 If the Kolmogorov quotient...
kqtop 23639 The Kolmogorov quotient is...
kqt0 23640 The Kolmogorov quotient is...
kqf 23641 The Kolmogorov quotient is...
r0sep 23642 The separation property of...
nrmr0reg 23643 A normal R_0 space is also...
regr1 23644 A regular space is R_1, wh...
kqreg 23645 The Kolmogorov quotient of...
kqnrm 23646 The Kolmogorov quotient of...
hmeofn 23651 The set of homeomorphisms ...
hmeofval 23652 The set of all the homeomo...
ishmeo 23653 The predicate F is a homeo...
hmeocn 23654 A homeomorphism is continu...
hmeocnvcn 23655 The converse of a homeomor...
hmeocnv 23656 The converse of a homeomor...
hmeof1o2 23657 A homeomorphism is a 1-1-o...
hmeof1o 23658 A homeomorphism is a 1-1-o...
hmeoima 23659 The image of an open set b...
hmeoopn 23660 Homeomorphisms preserve op...
hmeocld 23661 Homeomorphisms preserve cl...
hmeocls 23662 Homeomorphisms preserve cl...
hmeontr 23663 Homeomorphisms preserve in...
hmeoimaf1o 23664 The function mapping open ...
hmeores 23665 The restriction of a homeo...
hmeoco 23666 The composite of two homeo...
idhmeo 23667 The identity function is a...
hmeocnvb 23668 The converse of a homeomor...
hmeoqtop 23669 A homeomorphism is a quoti...
hmph 23670 Express the predicate ` J ...
hmphi 23671 If there is a homeomorphis...
hmphtop 23672 Reverse closure for the ho...
hmphtop1 23673 The relation "being homeom...
hmphtop2 23674 The relation "being homeom...
hmphref 23675 "Is homeomorphic to" is re...
hmphsym 23676 "Is homeomorphic to" is sy...
hmphtr 23677 "Is homeomorphic to" is tr...
hmpher 23678 "Is homeomorphic to" is an...
hmphen 23679 Homeomorphisms preserve th...
hmphsymb 23680 "Is homeomorphic to" is sy...
haushmphlem 23681 Lemma for ~ haushmph and s...
cmphmph 23682 Compactness is a topologic...
connhmph 23683 Connectedness is a topolog...
t0hmph 23684 T_0 is a topological prope...
t1hmph 23685 T_1 is a topological prope...
haushmph 23686 Hausdorff-ness is a topolo...
reghmph 23687 Regularity is a topologica...
nrmhmph 23688 Normality is a topological...
hmph0 23689 A topology homeomorphic to...
hmphdis 23690 Homeomorphisms preserve to...
hmphindis 23691 Homeomorphisms preserve to...
indishmph 23692 Equinumerous sets equipped...
hmphen2 23693 Homeomorphisms preserve th...
cmphaushmeo 23694 A continuous bijection fro...
ordthmeolem 23695 Lemma for ~ ordthmeo . (C...
ordthmeo 23696 An order isomorphism is a ...
txhmeo 23697 Lift a pair of homeomorphi...
txswaphmeolem 23698 Show inverse for the "swap...
txswaphmeo 23699 There is a homeomorphism f...
pt1hmeo 23700 The canonical homeomorphis...
ptuncnv 23701 Exhibit the converse funct...
ptunhmeo 23702 Define a homeomorphism fro...
xpstopnlem1 23703 The function ` F ` used in...
xpstps 23704 A binary product of topolo...
xpstopnlem2 23705 Lemma for ~ xpstopn . (Co...
xpstopn 23706 The topology on a binary p...
ptcmpfi 23707 A topological product of f...
xkocnv 23708 The inverse of the "curryi...
xkohmeo 23709 The Exponential Law for to...
qtopf1 23710 If a quotient map is injec...
qtophmeo 23711 If two functions on a base...
t0kq 23712 A topological space is T_0...
kqhmph 23713 A topological space is T_0...
ist1-5lem 23714 Lemma for ~ ist1-5 and sim...
t1r0 23715 A T_1 space is R_0. That ...
ist1-5 23716 A topological space is T_1...
ishaus3 23717 A topological space is Hau...
nrmreg 23718 A normal T_1 space is regu...
reghaus 23719 A regular T_0 space is Hau...
nrmhaus 23720 A T_1 normal space is Haus...
elmptrab 23721 Membership in a one-parame...
elmptrab2 23722 Membership in a one-parame...
isfbas 23723 The predicate " ` F ` is a...
fbasne0 23724 There are no empty filter ...
0nelfb 23725 No filter base contains th...
fbsspw 23726 A filter base on a set is ...
fbelss 23727 An element of the filter b...
fbdmn0 23728 The domain of a filter bas...
isfbas2 23729 The predicate " ` F ` is a...
fbasssin 23730 A filter base contains sub...
fbssfi 23731 A filter base contains sub...
fbssint 23732 A filter base contains sub...
fbncp 23733 A filter base does not con...
fbun 23734 A necessary and sufficient...
fbfinnfr 23735 No filter base containing ...
opnfbas 23736 The collection of open sup...
trfbas2 23737 Conditions for the trace o...
trfbas 23738 Conditions for the trace o...
isfil 23741 The predicate "is a filter...
filfbas 23742 A filter is a filter base....
0nelfil 23743 The empty set doesn't belo...
fileln0 23744 An element of a filter is ...
filsspw 23745 A filter is a subset of th...
filelss 23746 An element of a filter is ...
filss 23747 A filter is closed under t...
filin 23748 A filter is closed under t...
filtop 23749 The underlying set belongs...
isfil2 23750 Derive the standard axioms...
isfildlem 23751 Lemma for ~ isfild . (Con...
isfild 23752 Sufficient condition for a...
filfi 23753 A filter is closed under t...
filinn0 23754 The intersection of two el...
filintn0 23755 A filter has the finite in...
filn0 23756 The empty set is not a fil...
infil 23757 The intersection of two fi...
snfil 23758 A singleton is a filter. ...
fbasweak 23759 A filter base on any set i...
snfbas 23760 Condition for a singleton ...
fsubbas 23761 A condition for a set to g...
fbasfip 23762 A filter base has the fini...
fbunfip 23763 A helpful lemma for showin...
fgval 23764 The filter generating clas...
elfg 23765 A condition for elements o...
ssfg 23766 A filter base is a subset ...
fgss 23767 A bigger base generates a ...
fgss2 23768 A condition for a filter t...
fgfil 23769 A filter generates itself....
elfilss 23770 An element belongs to a fi...
filfinnfr 23771 No filter containing a fin...
fgcl 23772 A generated filter is a fi...
fgabs 23773 Absorption law for filter ...
neifil 23774 The neighborhoods of a non...
filunibas 23775 Recover the base set from ...
filunirn 23776 Two ways to express a filt...
filconn 23777 A filter gives rise to a c...
fbasrn 23778 Given a filter on a domain...
filuni 23779 The union of a nonempty se...
trfil1 23780 Conditions for the trace o...
trfil2 23781 Conditions for the trace o...
trfil3 23782 Conditions for the trace o...
trfilss 23783 If ` A ` is a member of th...
fgtr 23784 If ` A ` is a member of th...
trfg 23785 The trace operation and th...
trnei 23786 The trace, over a set ` A ...
cfinfil 23787 Relative complements of th...
csdfil 23788 The set of all elements wh...
supfil 23789 The supersets of a nonempt...
zfbas 23790 The set of upper sets of i...
uzrest 23791 The restriction of the set...
uzfbas 23792 The set of upper sets of i...
isufil 23797 The property of being an u...
ufilfil 23798 An ultrafilter is a filter...
ufilss 23799 For any subset of the base...
ufilb 23800 The complement is in an ul...
ufilmax 23801 Any filter finer than an u...
isufil2 23802 The maximal property of an...
ufprim 23803 An ultrafilter is a prime ...
trufil 23804 Conditions for the trace o...
filssufilg 23805 A filter is contained in s...
filssufil 23806 A filter is contained in s...
isufl 23807 Define the (strong) ultraf...
ufli 23808 Property of a set that sat...
numufl 23809 Consequence of ~ filssufil...
fiufl 23810 A finite set satisfies the...
acufl 23811 The axiom of choice implie...
ssufl 23812 If ` Y ` is a subset of ` ...
ufileu 23813 If the ultrafilter contain...
filufint 23814 A filter is equal to the i...
uffix 23815 Lemma for ~ fixufil and ~ ...
fixufil 23816 The condition describing a...
uffixfr 23817 An ultrafilter is either f...
uffix2 23818 A classification of fixed ...
uffixsn 23819 The singleton of the gener...
ufildom1 23820 An ultrafilter is generate...
uffinfix 23821 An ultrafilter containing ...
cfinufil 23822 An ultrafilter is free iff...
ufinffr 23823 An infinite subset is cont...
ufilen 23824 Any infinite set has an ul...
ufildr 23825 An ultrafilter gives rise ...
fin1aufil 23826 There are no definable fre...
fmval 23837 Introduce a function that ...
fmfil 23838 A mapping filter is a filt...
fmf 23839 Pushing-forward via a func...
fmss 23840 A finer filter produces a ...
elfm 23841 An element of a mapping fi...
elfm2 23842 An element of a mapping fi...
fmfg 23843 The image filter of a filt...
elfm3 23844 An alternate formulation o...
imaelfm 23845 An image of a filter eleme...
rnelfmlem 23846 Lemma for ~ rnelfm . (Con...
rnelfm 23847 A condition for a filter t...
fmfnfmlem1 23848 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23849 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23850 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23851 Lemma for ~ fmfnfm . (Con...
fmfnfm 23852 A filter finer than an ima...
fmufil 23853 An image filter of an ultr...
fmid 23854 The filter map applied to ...
fmco 23855 Composition of image filte...
ufldom 23856 The ultrafilter lemma prop...
flimval 23857 The set of limit points of...
elflim2 23858 The predicate "is a limit ...
flimtop 23859 Reverse closure for the li...
flimneiss 23860 A filter contains the neig...
flimnei 23861 A filter contains all of t...
flimelbas 23862 A limit point of a filter ...
flimfil 23863 Reverse closure for the li...
flimtopon 23864 Reverse closure for the li...
elflim 23865 The predicate "is a limit ...
flimss2 23866 A limit point of a filter ...
flimss1 23867 A limit point of a filter ...
neiflim 23868 A point is a limit point o...
flimopn 23869 The condition for being a ...
fbflim 23870 A condition for a filter t...
fbflim2 23871 A condition for a filter b...
flimclsi 23872 The convergent points of a...
hausflimlem 23873 If ` A ` and ` B ` are bot...
hausflimi 23874 One direction of ~ hausfli...
hausflim 23875 A condition for a topology...
flimcf 23876 Fineness is properly chara...
flimrest 23877 The set of limit points in...
flimclslem 23878 Lemma for ~ flimcls . (Co...
flimcls 23879 Closure in terms of filter...
flimsncls 23880 If ` A ` is a limit point ...
hauspwpwf1 23881 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23882 If ` X ` is a Hausdorff sp...
flffval 23883 Given a topology and a fil...
flfval 23884 Given a function from a fi...
flfnei 23885 The property of being a li...
flfneii 23886 A neighborhood of a limit ...
isflf 23887 The property of being a li...
flfelbas 23888 A limit point of a functio...
flffbas 23889 Limit points of a function...
flftg 23890 Limit points of a function...
hausflf 23891 If a function has its valu...
hausflf2 23892 If a convergent function h...
cnpflfi 23893 Forward direction of ~ cnp...
cnpflf2 23894 ` F ` is continuous at poi...
cnpflf 23895 Continuity of a function a...
cnflf 23896 A function is continuous i...
cnflf2 23897 A function is continuous i...
flfcnp 23898 A continuous function pres...
lmflf 23899 The topological limit rela...
txflf 23900 Two sequences converge in ...
flfcnp2 23901 The image of a convergent ...
fclsval 23902 The set of all cluster poi...
isfcls 23903 A cluster point of a filte...
fclsfil 23904 Reverse closure for the cl...
fclstop 23905 Reverse closure for the cl...
fclstopon 23906 Reverse closure for the cl...
isfcls2 23907 A cluster point of a filte...
fclsopn 23908 Write the cluster point co...
fclsopni 23909 An open neighborhood of a ...
fclselbas 23910 A cluster point is in the ...
fclsneii 23911 A neighborhood of a cluste...
fclssscls 23912 The set of cluster points ...
fclsnei 23913 Cluster points in terms of...
supnfcls 23914 The filter of supersets of...
fclsbas 23915 Cluster points in terms of...
fclsss1 23916 A finer topology has fewer...
fclsss2 23917 A finer filter has fewer c...
fclsrest 23918 The set of cluster points ...
fclscf 23919 Characterization of finene...
flimfcls 23920 A limit point is a cluster...
fclsfnflim 23921 A filter clusters at a poi...
flimfnfcls 23922 A filter converges to a po...
fclscmpi 23923 Forward direction of ~ fcl...
fclscmp 23924 A space is compact iff eve...
uffclsflim 23925 The cluster points of an u...
ufilcmp 23926 A space is compact iff eve...
fcfval 23927 The set of cluster points ...
isfcf 23928 The property of being a cl...
fcfnei 23929 The property of being a cl...
fcfelbas 23930 A cluster point of a funct...
fcfneii 23931 A neighborhood of a cluste...
flfssfcf 23932 A limit point of a functio...
uffcfflf 23933 If the domain filter is an...
cnpfcfi 23934 Lemma for ~ cnpfcf . If a...
cnpfcf 23935 A function ` F ` is contin...
cnfcf 23936 Continuity of a function i...
flfcntr 23937 A continuous function's va...
alexsublem 23938 Lemma for ~ alexsub . (Co...
alexsub 23939 The Alexander Subbase Theo...
alexsubb 23940 Biconditional form of the ...
alexsubALTlem1 23941 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23942 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23943 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23944 Lemma for ~ alexsubALT . ...
alexsubALT 23945 The Alexander Subbase Theo...
ptcmplem1 23946 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23947 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23948 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23949 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23950 Lemma for ~ ptcmp . (Cont...
ptcmpg 23951 Tychonoff's theorem: The ...
ptcmp 23952 Tychonoff's theorem: The ...
cnextval 23955 The function applying cont...
cnextfval 23956 The continuous extension o...
cnextrel 23957 In the general case, a con...
cnextfun 23958 If the target space is Hau...
cnextfvval 23959 The value of the continuou...
cnextf 23960 Extension by continuity. ...
cnextcn 23961 Extension by continuity. ...
cnextfres1 23962 ` F ` and its extension by...
cnextfres 23963 ` F ` and its extension by...
istmd 23968 The predicate "is a topolo...
tmdmnd 23969 A topological monoid is a ...
tmdtps 23970 A topological monoid is a ...
istgp 23971 The predicate "is a topolo...
tgpgrp 23972 A topological group is a g...
tgptmd 23973 A topological group is a t...
tgptps 23974 A topological group is a t...
tmdtopon 23975 The topology of a topologi...
tgptopon 23976 The topology of a topologi...
tmdcn 23977 In a topological monoid, t...
tgpcn 23978 In a topological group, th...
tgpinv 23979 In a topological group, th...
grpinvhmeo 23980 The inverse function in a ...
cnmpt1plusg 23981 Continuity of the group su...
cnmpt2plusg 23982 Continuity of the group su...
tmdcn2 23983 Write out the definition o...
tgpsubcn 23984 In a topological group, th...
istgp2 23985 A group with a topology is...
tmdmulg 23986 In a topological monoid, t...
tgpmulg 23987 In a topological group, th...
tgpmulg2 23988 In a topological monoid, t...
tmdgsum 23989 In a topological monoid, t...
tmdgsum2 23990 For any neighborhood ` U `...
oppgtmd 23991 The opposite of a topologi...
oppgtgp 23992 The opposite of a topologi...
distgp 23993 Any group equipped with th...
indistgp 23994 Any group equipped with th...
efmndtmd 23995 The monoid of endofunction...
tmdlactcn 23996 The left group action of e...
tgplacthmeo 23997 The left group action of e...
submtmd 23998 A submonoid of a topologic...
subgtgp 23999 A subgroup of a topologica...
symgtgp 24000 The symmetric group is a t...
subgntr 24001 A subgroup of a topologica...
opnsubg 24002 An open subgroup of a topo...
clssubg 24003 The closure of a subgroup ...
clsnsg 24004 The closure of a normal su...
cldsubg 24005 A subgroup of finite index...
tgpconncompeqg 24006 The connected component co...
tgpconncomp 24007 The identity component, th...
tgpconncompss 24008 The identity component is ...
ghmcnp 24009 A group homomorphism on to...
snclseqg 24010 The coset of the closure o...
tgphaus 24011 A topological group is Hau...
tgpt1 24012 Hausdorff and T1 are equiv...
tgpt0 24013 Hausdorff and T0 are equiv...
qustgpopn 24014 A quotient map in a topolo...
qustgplem 24015 Lemma for ~ qustgp . (Con...
qustgp 24016 The quotient of a topologi...
qustgphaus 24017 The quotient of a topologi...
prdstmdd 24018 The product of a family of...
prdstgpd 24019 The product of a family of...
tsmsfbas 24022 The collection of all sets...
tsmslem1 24023 The finite partial sums of...
tsmsval2 24024 Definition of the topologi...
tsmsval 24025 Definition of the topologi...
tsmspropd 24026 The group sum depends only...
eltsms 24027 The property of being a su...
tsmsi 24028 The property of being a su...
tsmscl 24029 A sum in a topological gro...
haustsms 24030 In a Hausdorff topological...
haustsms2 24031 In a Hausdorff topological...
tsmscls 24032 One half of ~ tgptsmscls ,...
tsmsgsum 24033 The convergent points of a...
tsmsid 24034 If a sum is finite, the us...
haustsmsid 24035 In a Hausdorff topological...
tsms0 24036 The sum of zero is zero. ...
tsmssubm 24037 Evaluate an infinite group...
tsmsres 24038 Extend an infinite group s...
tsmsf1o 24039 Re-index an infinite group...
tsmsmhm 24040 Apply a continuous group h...
tsmsadd 24041 The sum of two infinite gr...
tsmsinv 24042 Inverse of an infinite gro...
tsmssub 24043 The difference of two infi...
tgptsmscls 24044 A sum in a topological gro...
tgptsmscld 24045 The set of limit points to...
tsmssplit 24046 Split a topological group ...
tsmsxplem1 24047 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 24048 Lemma for ~ tsmsxp . (Con...
tsmsxp 24049 Write a sum over a two-dim...
istrg 24058 Express the predicate " ` ...
trgtmd 24059 The multiplicative monoid ...
istdrg 24060 Express the predicate " ` ...
tdrgunit 24061 The unit group of a topolo...
trgtgp 24062 A topological ring is a to...
trgtmd2 24063 A topological ring is a to...
trgtps 24064 A topological ring is a to...
trgring 24065 A topological ring is a ri...
trggrp 24066 A topological ring is a gr...
tdrgtrg 24067 A topological division rin...
tdrgdrng 24068 A topological division rin...
tdrgring 24069 A topological division rin...
tdrgtmd 24070 A topological division rin...
tdrgtps 24071 A topological division rin...
istdrg2 24072 A topological-ring divisio...
mulrcn 24073 The functionalization of t...
invrcn2 24074 The multiplicative inverse...
invrcn 24075 The multiplicative inverse...
cnmpt1mulr 24076 Continuity of ring multipl...
cnmpt2mulr 24077 Continuity of ring multipl...
dvrcn 24078 The division function is c...
istlm 24079 The predicate " ` W ` is a...
vscacn 24080 The scalar multiplication ...
tlmtmd 24081 A topological module is a ...
tlmtps 24082 A topological module is a ...
tlmlmod 24083 A topological module is a ...
tlmtrg 24084 The scalar ring of a topol...
tlmscatps 24085 The scalar ring of a topol...
istvc 24086 A topological vector space...
tvctdrg 24087 The scalar field of a topo...
cnmpt1vsca 24088 Continuity of scalar multi...
cnmpt2vsca 24089 Continuity of scalar multi...
tlmtgp 24090 A topological vector space...
tvctlm 24091 A topological vector space...
tvclmod 24092 A topological vector space...
tvclvec 24093 A topological vector space...
ustfn 24096 The defined uniform struct...
ustval 24097 The class of all uniform s...
isust 24098 The predicate " ` U ` is a...
ustssxp 24099 Entourages are subsets of ...
ustssel 24100 A uniform structure is upw...
ustbasel 24101 The full set is always an ...
ustincl 24102 A uniform structure is clo...
ustdiag 24103 The diagonal set is includ...
ustinvel 24104 If ` V ` is an entourage, ...
ustexhalf 24105 For each entourage ` V ` t...
ustrel 24106 The elements of uniform st...
ustfilxp 24107 A uniform structure on a n...
ustne0 24108 A uniform structure cannot...
ustssco 24109 In an uniform structure, a...
ustexsym 24110 In an uniform structure, f...
ustex2sym 24111 In an uniform structure, f...
ustex3sym 24112 In an uniform structure, f...
ustref 24113 Any element of the base se...
ust0 24114 The unique uniform structu...
ustn0 24115 The empty set is not an un...
ustund 24116 If two intersecting sets `...
ustelimasn 24117 Any point ` A ` is near en...
ustneism 24118 For a point ` A ` in ` X `...
elrnustOLD 24119 Obsolete version of ~ elfv...
ustbas2 24120 Second direction for ~ ust...
ustuni 24121 The set union of a uniform...
ustbas 24122 Recover the base of an uni...
ustimasn 24123 Lemma for ~ ustuqtop . (C...
trust 24124 The trace of a uniform str...
utopval 24127 The topology induced by a ...
elutop 24128 Open sets in the topology ...
utoptop 24129 The topology induced by a ...
utopbas 24130 The base of the topology i...
utoptopon 24131 Topology induced by a unif...
restutop 24132 Restriction of a topology ...
restutopopn 24133 The restriction of the top...
ustuqtoplem 24134 Lemma for ~ ustuqtop . (C...
ustuqtop0 24135 Lemma for ~ ustuqtop . (C...
ustuqtop1 24136 Lemma for ~ ustuqtop , sim...
ustuqtop2 24137 Lemma for ~ ustuqtop . (C...
ustuqtop3 24138 Lemma for ~ ustuqtop , sim...
ustuqtop4 24139 Lemma for ~ ustuqtop . (C...
ustuqtop5 24140 Lemma for ~ ustuqtop . (C...
ustuqtop 24141 For a given uniform struct...
utopsnneiplem 24142 The neighborhoods of a poi...
utopsnneip 24143 The neighborhoods of a poi...
utopsnnei 24144 Images of singletons by en...
utop2nei 24145 For any symmetrical entour...
utop3cls 24146 Relation between a topolog...
utopreg 24147 All Hausdorff uniform spac...
ussval 24154 The uniform structure on u...
ussid 24155 In case the base of the ` ...
isusp 24156 The predicate ` W ` is a u...
ressuss 24157 Value of the uniform struc...
ressust 24158 The uniform structure of a...
ressusp 24159 The restriction of a unifo...
tusval 24160 The value of the uniform s...
tuslem 24161 Lemma for ~ tusbas , ~ tus...
tusbas 24162 The base set of a construc...
tusunif 24163 The uniform structure of a...
tususs 24164 The uniform structure of a...
tustopn 24165 The topology induced by a ...
tususp 24166 A constructed uniform spac...
tustps 24167 A constructed uniform spac...
uspreg 24168 If a uniform space is Haus...
ucnval 24171 The set of all uniformly c...
isucn 24172 The predicate " ` F ` is a...
isucn2 24173 The predicate " ` F ` is a...
ucnimalem 24174 Reformulate the ` G ` func...
ucnima 24175 An equivalent statement of...
ucnprima 24176 The preimage by a uniforml...
iducn 24177 The identity is uniformly ...
cstucnd 24178 A constant function is uni...
ucncn 24179 Uniform continuity implies...
iscfilu 24182 The predicate " ` F ` is a...
cfilufbas 24183 A Cauchy filter base is a ...
cfiluexsm 24184 For a Cauchy filter base a...
fmucndlem 24185 Lemma for ~ fmucnd . (Con...
fmucnd 24186 The image of a Cauchy filt...
cfilufg 24187 The filter generated by a ...
trcfilu 24188 Condition for the trace of...
cfiluweak 24189 A Cauchy filter base is al...
neipcfilu 24190 In an uniform space, a nei...
iscusp 24193 The predicate " ` W ` is a...
cuspusp 24194 A complete uniform space i...
cuspcvg 24195 In a complete uniform spac...
iscusp2 24196 The predicate " ` W ` is a...
cnextucn 24197 Extension by continuity. ...
ucnextcn 24198 Extension by continuity. ...
ispsmet 24199 Express the predicate " ` ...
psmetdmdm 24200 Recover the base set from ...
psmetf 24201 The distance function of a...
psmetcl 24202 Closure of the distance fu...
psmet0 24203 The distance function of a...
psmettri2 24204 Triangle inequality for th...
psmetsym 24205 The distance function of a...
psmettri 24206 Triangle inequality for th...
psmetge0 24207 The distance function of a...
psmetxrge0 24208 The distance function of a...
psmetres2 24209 Restriction of a pseudomet...
psmetlecl 24210 Real closure of an extende...
distspace 24211 A set ` X ` together with ...
ismet 24218 Express the predicate " ` ...
isxmet 24219 Express the predicate " ` ...
ismeti 24220 Properties that determine ...
isxmetd 24221 Properties that determine ...
isxmet2d 24222 It is safe to only require...
metflem 24223 Lemma for ~ metf and other...
xmetf 24224 Mapping of the distance fu...
metf 24225 Mapping of the distance fu...
xmetcl 24226 Closure of the distance fu...
metcl 24227 Closure of the distance fu...
ismet2 24228 An extended metric is a me...
metxmet 24229 A metric is an extended me...
xmetdmdm 24230 Recover the base set from ...
metdmdm 24231 Recover the base set from ...
xmetunirn 24232 Two ways to express an ext...
xmeteq0 24233 The value of an extended m...
meteq0 24234 The value of a metric is z...
xmettri2 24235 Triangle inequality for th...
mettri2 24236 Triangle inequality for th...
xmet0 24237 The distance function of a...
met0 24238 The distance function of a...
xmetge0 24239 The distance function of a...
metge0 24240 The distance function of a...
xmetlecl 24241 Real closure of an extende...
xmetsym 24242 The distance function of a...
xmetpsmet 24243 An extended metric is a ps...
xmettpos 24244 The distance function of a...
metsym 24245 The distance function of a...
xmettri 24246 Triangle inequality for th...
mettri 24247 Triangle inequality for th...
xmettri3 24248 Triangle inequality for th...
mettri3 24249 Triangle inequality for th...
xmetrtri 24250 One half of the reverse tr...
xmetrtri2 24251 The reverse triangle inequ...
metrtri 24252 Reverse triangle inequalit...
xmetgt0 24253 The distance function of a...
metgt0 24254 The distance function of a...
metn0 24255 A metric space is nonempty...
xmetres2 24256 Restriction of an extended...
metreslem 24257 Lemma for ~ metres . (Con...
metres2 24258 Lemma for ~ metres . (Con...
xmetres 24259 A restriction of an extend...
metres 24260 A restriction of a metric ...
0met 24261 The empty metric. (Contri...
prdsdsf 24262 The product metric is a fu...
prdsxmetlem 24263 The product metric is an e...
prdsxmet 24264 The product metric is an e...
prdsmet 24265 The product metric is a me...
ressprdsds 24266 Restriction of a product m...
resspwsds 24267 Restriction of a power met...
imasdsf1olem 24268 Lemma for ~ imasdsf1o . (...
imasdsf1o 24269 The distance function is t...
imasf1oxmet 24270 The image of an extended m...
imasf1omet 24271 The image of a metric is a...
xpsdsfn 24272 Closure of the metric in a...
xpsdsfn2 24273 Closure of the metric in a...
xpsxmetlem 24274 Lemma for ~ xpsxmet . (Co...
xpsxmet 24275 A product metric of extend...
xpsdsval 24276 Value of the metric in a b...
xpsmet 24277 The direct product of two ...
blfvalps 24278 The value of the ball func...
blfval 24279 The value of the ball func...
blvalps 24280 The ball around a point ` ...
blval 24281 The ball around a point ` ...
elblps 24282 Membership in a ball. (Co...
elbl 24283 Membership in a ball. (Co...
elbl2ps 24284 Membership in a ball. (Co...
elbl2 24285 Membership in a ball. (Co...
elbl3ps 24286 Membership in a ball, with...
elbl3 24287 Membership in a ball, with...
blcomps 24288 Commute the arguments to t...
blcom 24289 Commute the arguments to t...
xblpnfps 24290 The infinity ball in an ex...
xblpnf 24291 The infinity ball in an ex...
blpnf 24292 The infinity ball in a sta...
bldisj 24293 Two balls are disjoint if ...
blgt0 24294 A nonempty ball implies th...
bl2in 24295 Two balls are disjoint if ...
xblss2ps 24296 One ball is contained in a...
xblss2 24297 One ball is contained in a...
blss2ps 24298 One ball is contained in a...
blss2 24299 One ball is contained in a...
blhalf 24300 A ball of radius ` R / 2 `...
blfps 24301 Mapping of a ball. (Contr...
blf 24302 Mapping of a ball. (Contr...
blrnps 24303 Membership in the range of...
blrn 24304 Membership in the range of...
xblcntrps 24305 A ball contains its center...
xblcntr 24306 A ball contains its center...
blcntrps 24307 A ball contains its center...
blcntr 24308 A ball contains its center...
xbln0 24309 A ball is nonempty iff the...
bln0 24310 A ball is not empty. (Con...
blelrnps 24311 A ball belongs to the set ...
blelrn 24312 A ball belongs to the set ...
blssm 24313 A ball is a subset of the ...
unirnblps 24314 The union of the set of ba...
unirnbl 24315 The union of the set of ba...
blin 24316 The intersection of two ba...
ssblps 24317 The size of a ball increas...
ssbl 24318 The size of a ball increas...
blssps 24319 Any point ` P ` in a ball ...
blss 24320 Any point ` P ` in a ball ...
blssexps 24321 Two ways to express the ex...
blssex 24322 Two ways to express the ex...
ssblex 24323 A nested ball exists whose...
blin2 24324 Given any two balls and a ...
blbas 24325 The balls of a metric spac...
blres 24326 A ball in a restricted met...
xmeterval 24327 Value of the "finitely sep...
xmeter 24328 The "finitely separated" r...
xmetec 24329 The equivalence classes un...
blssec 24330 A ball centered at ` P ` i...
blpnfctr 24331 The infinity ball in an ex...
xmetresbl 24332 An extended metric restric...
mopnval 24333 An open set is a subset of...
mopntopon 24334 The set of open sets of a ...
mopntop 24335 The set of open sets of a ...
mopnuni 24336 The union of all open sets...
elmopn 24337 The defining property of a...
mopnfss 24338 The family of open sets of...
mopnm 24339 The base set of a metric s...
elmopn2 24340 A defining property of an ...
mopnss 24341 An open set of a metric sp...
isxms 24342 Express the predicate " ` ...
isxms2 24343 Express the predicate " ` ...
isms 24344 Express the predicate " ` ...
isms2 24345 Express the predicate " ` ...
xmstopn 24346 The topology component of ...
mstopn 24347 The topology component of ...
xmstps 24348 An extended metric space i...
msxms 24349 A metric space is an exten...
mstps 24350 A metric space is a topolo...
xmsxmet 24351 The distance function, sui...
msmet 24352 The distance function, sui...
msf 24353 The distance function of a...
xmsxmet2 24354 The distance function, sui...
msmet2 24355 The distance function, sui...
mscl 24356 Closure of the distance fu...
xmscl 24357 Closure of the distance fu...
xmsge0 24358 The distance function in a...
xmseq0 24359 The distance between two p...
xmssym 24360 The distance function in a...
xmstri2 24361 Triangle inequality for th...
mstri2 24362 Triangle inequality for th...
xmstri 24363 Triangle inequality for th...
mstri 24364 Triangle inequality for th...
xmstri3 24365 Triangle inequality for th...
mstri3 24366 Triangle inequality for th...
msrtri 24367 Reverse triangle inequalit...
xmspropd 24368 Property deduction for an ...
mspropd 24369 Property deduction for a m...
setsmsbas 24370 The base set of a construc...
setsmsds 24371 The distance function of a...
setsmstset 24372 The topology of a construc...
setsmstopn 24373 The topology of a construc...
setsxms 24374 The constructed metric spa...
setsms 24375 The constructed metric spa...
tmsval 24376 For any metric there is an...
tmslem 24377 Lemma for ~ tmsbas , ~ tms...
tmsbas 24378 The base set of a construc...
tmsds 24379 The metric of a constructe...
tmstopn 24380 The topology of a construc...
tmsxms 24381 The constructed metric spa...
tmsms 24382 The constructed metric spa...
imasf1obl 24383 The image of a metric spac...
imasf1oxms 24384 The image of a metric spac...
imasf1oms 24385 The image of a metric spac...
prdsbl 24386 A ball in the product metr...
mopni 24387 An open set of a metric sp...
mopni2 24388 An open set of a metric sp...
mopni3 24389 An open set of a metric sp...
blssopn 24390 The balls of a metric spac...
unimopn 24391 The union of a collection ...
mopnin 24392 The intersection of two op...
mopn0 24393 The empty set is an open s...
rnblopn 24394 A ball of a metric space i...
blopn 24395 A ball of a metric space i...
neibl 24396 The neighborhoods around a...
blnei 24397 A ball around a point is a...
lpbl 24398 Every ball around a limit ...
blsscls2 24399 A smaller closed ball is c...
blcld 24400 A "closed ball" in a metri...
blcls 24401 The closure of an open bal...
blsscls 24402 If two concentric balls ha...
metss 24403 Two ways of saying that me...
metequiv 24404 Two ways of saying that tw...
metequiv2 24405 If there is a sequence of ...
metss2lem 24406 Lemma for ~ metss2 . (Con...
metss2 24407 If the metric ` D ` is "st...
comet 24408 The composition of an exte...
stdbdmetval 24409 Value of the standard boun...
stdbdxmet 24410 The standard bounded metri...
stdbdmet 24411 The standard bounded metri...
stdbdbl 24412 The standard bounded metri...
stdbdmopn 24413 The standard bounded metri...
mopnex 24414 The topology generated by ...
methaus 24415 The topology generated by ...
met1stc 24416 The topology generated by ...
met2ndci 24417 A separable metric space (...
met2ndc 24418 A metric space is second-c...
metrest 24419 Two alternate formulations...
ressxms 24420 The restriction of a metri...
ressms 24421 The restriction of a metri...
prdsmslem1 24422 Lemma for ~ prdsms . The ...
prdsxmslem1 24423 Lemma for ~ prdsms . The ...
prdsxmslem2 24424 Lemma for ~ prdsxms . The...
prdsxms 24425 The indexed product struct...
prdsms 24426 The indexed product struct...
pwsxms 24427 A power of an extended met...
pwsms 24428 A power of a metric space ...
xpsxms 24429 A binary product of metric...
xpsms 24430 A binary product of metric...
tmsxps 24431 Express the product of two...
tmsxpsmopn 24432 Express the product of two...
tmsxpsval 24433 Value of the product of tw...
tmsxpsval2 24434 Value of the product of tw...
metcnp3 24435 Two ways to express that `...
metcnp 24436 Two ways to say a mapping ...
metcnp2 24437 Two ways to say a mapping ...
metcn 24438 Two ways to say a mapping ...
metcnpi 24439 Epsilon-delta property of ...
metcnpi2 24440 Epsilon-delta property of ...
metcnpi3 24441 Epsilon-delta property of ...
txmetcnp 24442 Continuity of a binary ope...
txmetcn 24443 Continuity of a binary ope...
metuval 24444 Value of the uniform struc...
metustel 24445 Define a filter base ` F `...
metustss 24446 Range of the elements of t...
metustrel 24447 Elements of the filter bas...
metustto 24448 Any two elements of the fi...
metustid 24449 The identity diagonal is i...
metustsym 24450 Elements of the filter bas...
metustexhalf 24451 For any element ` A ` of t...
metustfbas 24452 The filter base generated ...
metust 24453 The uniform structure gene...
cfilucfil 24454 Given a metric ` D ` and a...
metuust 24455 The uniform structure gene...
cfilucfil2 24456 Given a metric ` D ` and a...
blval2 24457 The ball around a point ` ...
elbl4 24458 Membership in a ball, alte...
metuel 24459 Elementhood in the uniform...
metuel2 24460 Elementhood in the uniform...
metustbl 24461 The "section" image of an ...
psmetutop 24462 The topology induced by a ...
xmetutop 24463 The topology induced by a ...
xmsusp 24464 If the uniform set of a me...
restmetu 24465 The uniform structure gene...
metucn 24466 Uniform continuity in metr...
dscmet 24467 The discrete metric on any...
dscopn 24468 The discrete metric genera...
nrmmetd 24469 Show that a group norm gen...
abvmet 24470 An absolute value ` F ` ge...
nmfval 24483 The value of the norm func...
nmval 24484 The value of the norm as t...
nmfval0 24485 The value of the norm func...
nmfval2 24486 The value of the norm func...
nmval2 24487 The value of the norm on a...
nmf2 24488 The norm on a metric group...
nmpropd 24489 Weak property deduction fo...
nmpropd2 24490 Strong property deduction ...
isngp 24491 The property of being a no...
isngp2 24492 The property of being a no...
isngp3 24493 The property of being a no...
ngpgrp 24494 A normed group is a group....
ngpms 24495 A normed group is a metric...
ngpxms 24496 A normed group is an exten...
ngptps 24497 A normed group is a topolo...
ngpmet 24498 The (induced) metric of a ...
ngpds 24499 Value of the distance func...
ngpdsr 24500 Value of the distance func...
ngpds2 24501 Write the distance between...
ngpds2r 24502 Write the distance between...
ngpds3 24503 Write the distance between...
ngpds3r 24504 Write the distance between...
ngprcan 24505 Cancel right addition insi...
ngplcan 24506 Cancel left addition insid...
isngp4 24507 Express the property of be...
ngpinvds 24508 Two elements are the same ...
ngpsubcan 24509 Cancel right subtraction i...
nmf 24510 The norm on a normed group...
nmcl 24511 The norm of a normed group...
nmge0 24512 The norm of a normed group...
nmeq0 24513 The identity is the only e...
nmne0 24514 The norm of a nonzero elem...
nmrpcl 24515 The norm of a nonzero elem...
nminv 24516 The norm of a negated elem...
nmmtri 24517 The triangle inequality fo...
nmsub 24518 The norm of the difference...
nmrtri 24519 Reverse triangle inequalit...
nm2dif 24520 Inequality for the differe...
nmtri 24521 The triangle inequality fo...
nmtri2 24522 Triangle inequality for th...
ngpi 24523 The properties of a normed...
nm0 24524 Norm of the identity eleme...
nmgt0 24525 The norm of a nonzero elem...
sgrim 24526 The induced metric on a su...
sgrimval 24527 The induced metric on a su...
subgnm 24528 The norm in a subgroup. (...
subgnm2 24529 A substructure assigns the...
subgngp 24530 A normed group restricted ...
ngptgp 24531 A normed abelian group is ...
ngppropd 24532 Property deduction for a n...
reldmtng 24533 The function ` toNrmGrp ` ...
tngval 24534 Value of the function whic...
tnglem 24535 Lemma for ~ tngbas and sim...
tngbas 24536 The base set of a structur...
tngplusg 24537 The group addition of a st...
tng0 24538 The group identity of a st...
tngmulr 24539 The ring multiplication of...
tngsca 24540 The scalar ring of a struc...
tngvsca 24541 The scalar multiplication ...
tngip 24542 The inner product operatio...
tngds 24543 The metric function of a s...
tngtset 24544 The topology generated by ...
tngtopn 24545 The topology generated by ...
tngnm 24546 The topology generated by ...
tngngp2 24547 A norm turns a group into ...
tngngpd 24548 Derive the axioms for a no...
tngngp 24549 Derive the axioms for a no...
tnggrpr 24550 If a structure equipped wi...
tngngp3 24551 Alternate definition of a ...
nrmtngdist 24552 The augmentation of a norm...
nrmtngnrm 24553 The augmentation of a norm...
tngngpim 24554 The induced metric of a no...
isnrg 24555 A normed ring is a ring wi...
nrgabv 24556 The norm of a normed ring ...
nrgngp 24557 A normed ring is a normed ...
nrgring 24558 A normed ring is a ring. ...
nmmul 24559 The norm of a product in a...
nrgdsdi 24560 Distribute a distance calc...
nrgdsdir 24561 Distribute a distance calc...
nm1 24562 The norm of one in a nonze...
unitnmn0 24563 The norm of a unit is nonz...
nminvr 24564 The norm of an inverse in ...
nmdvr 24565 The norm of a division in ...
nrgdomn 24566 A nonzero normed ring is a...
nrgtgp 24567 A normed ring is a topolog...
subrgnrg 24568 A normed ring restricted t...
tngnrg 24569 Given any absolute value o...
isnlm 24570 A normed (left) module is ...
nmvs 24571 Defining property of a nor...
nlmngp 24572 A normed module is a norme...
nlmlmod 24573 A normed module is a left ...
nlmnrg 24574 The scalar component of a ...
nlmngp2 24575 The scalar component of a ...
nlmdsdi 24576 Distribute a distance calc...
nlmdsdir 24577 Distribute a distance calc...
nlmmul0or 24578 If a scalar product is zer...
sranlm 24579 The subring algebra over a...
nlmvscnlem2 24580 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 24581 Lemma for ~ nlmvscn . (Co...
nlmvscn 24582 The scalar multiplication ...
rlmnlm 24583 The ring module over a nor...
rlmnm 24584 The norm function in the r...
nrgtrg 24585 A normed ring is a topolog...
nrginvrcnlem 24586 Lemma for ~ nrginvrcn . C...
nrginvrcn 24587 The ring inverse function ...
nrgtdrg 24588 A normed division ring is ...
nlmtlm 24589 A normed module is a topol...
isnvc 24590 A normed vector space is j...
nvcnlm 24591 A normed vector space is a...
nvclvec 24592 A normed vector space is a...
nvclmod 24593 A normed vector space is a...
isnvc2 24594 A normed vector space is j...
nvctvc 24595 A normed vector space is a...
lssnlm 24596 A subspace of a normed mod...
lssnvc 24597 A subspace of a normed vec...
rlmnvc 24598 The ring module over a nor...
ngpocelbl 24599 Membership of an off-cente...
nmoffn 24606 The function producing ope...
reldmnghm 24607 Lemma for normed group hom...
reldmnmhm 24608 Lemma for module homomorph...
nmofval 24609 Value of the operator norm...
nmoval 24610 Value of the operator norm...
nmogelb 24611 Property of the operator n...
nmolb 24612 Any upper bound on the val...
nmolb2d 24613 Any upper bound on the val...
nmof 24614 The operator norm is a fun...
nmocl 24615 The operator norm of an op...
nmoge0 24616 The operator norm of an op...
nghmfval 24617 A normed group homomorphis...
isnghm 24618 A normed group homomorphis...
isnghm2 24619 A normed group homomorphis...
isnghm3 24620 A normed group homomorphis...
bddnghm 24621 A bounded group homomorphi...
nghmcl 24622 A normed group homomorphis...
nmoi 24623 The operator norm achieves...
nmoix 24624 The operator norm is a bou...
nmoi2 24625 The operator norm is a bou...
nmoleub 24626 The operator norm, defined...
nghmrcl1 24627 Reverse closure for a norm...
nghmrcl2 24628 Reverse closure for a norm...
nghmghm 24629 A normed group homomorphis...
nmo0 24630 The operator norm of the z...
nmoeq0 24631 The operator norm is zero ...
nmoco 24632 An upper bound on the oper...
nghmco 24633 The composition of normed ...
nmotri 24634 Triangle inequality for th...
nghmplusg 24635 The sum of two bounded lin...
0nghm 24636 The zero operator is a nor...
nmoid 24637 The operator norm of the i...
idnghm 24638 The identity operator is a...
nmods 24639 Upper bound for the distan...
nghmcn 24640 A normed group homomorphis...
isnmhm 24641 A normed module homomorphi...
nmhmrcl1 24642 Reverse closure for a norm...
nmhmrcl2 24643 Reverse closure for a norm...
nmhmlmhm 24644 A normed module homomorphi...
nmhmnghm 24645 A normed module homomorphi...
nmhmghm 24646 A normed module homomorphi...
isnmhm2 24647 A normed module homomorphi...
nmhmcl 24648 A normed module homomorphi...
idnmhm 24649 The identity operator is a...
0nmhm 24650 The zero operator is a bou...
nmhmco 24651 The composition of bounded...
nmhmplusg 24652 The sum of two bounded lin...
qtopbaslem 24653 The set of open intervals ...
qtopbas 24654 The set of open intervals ...
retopbas 24655 A basis for the standard t...
retop 24656 The standard topology on t...
uniretop 24657 The underlying set of the ...
retopon 24658 The standard topology on t...
retps 24659 The standard topological s...
iooretop 24660 Open intervals are open se...
icccld 24661 Closed intervals are close...
icopnfcld 24662 Right-unbounded closed int...
iocmnfcld 24663 Left-unbounded closed inte...
qdensere 24664 ` QQ ` is dense in the sta...
cnmetdval 24665 Value of the distance func...
cnmet 24666 The absolute value metric ...
cnxmet 24667 The absolute value metric ...
cnbl0 24668 Two ways to write the open...
cnblcld 24669 Two ways to write the clos...
cnfldms 24670 The complex number field i...
cnfldxms 24671 The complex number field i...
cnfldtps 24672 The complex number field i...
cnfldnm 24673 The norm of the field of c...
cnngp 24674 The complex numbers form a...
cnnrg 24675 The complex numbers form a...
cnfldtopn 24676 The topology of the comple...
cnfldtopon 24677 The topology of the comple...
cnfldtop 24678 The topology of the comple...
cnfldhaus 24679 The topology of the comple...
unicntop 24680 The underlying set of the ...
cnopn 24681 The set of complex numbers...
cnn0opn 24682 The set of nonzero complex...
zringnrg 24683 The ring of integers is a ...
remetdval 24684 Value of the distance func...
remet 24685 The absolute value metric ...
rexmet 24686 The absolute value metric ...
bl2ioo 24687 A ball in terms of an open...
ioo2bl 24688 An open interval of reals ...
ioo2blex 24689 An open interval of reals ...
blssioo 24690 The balls of the standard ...
tgioo 24691 The topology generated by ...
qdensere2 24692 ` QQ ` is dense in ` RR ` ...
blcvx 24693 An open ball in the comple...
rehaus 24694 The standard topology on t...
tgqioo 24695 The topology generated by ...
re2ndc 24696 The standard topology on t...
resubmet 24697 The subspace topology indu...
tgioo2 24698 The standard topology on t...
rerest 24699 The subspace topology indu...
tgioo4 24700 The standard topology on t...
tgioo3 24701 The standard topology on t...
xrtgioo 24702 The topology on the extend...
xrrest 24703 The subspace topology indu...
xrrest2 24704 The subspace topology indu...
xrsxmet 24705 The metric on the extended...
xrsdsre 24706 The metric on the extended...
xrsblre 24707 Any ball of the metric of ...
xrsmopn 24708 The metric on the extended...
zcld 24709 The integers are a closed ...
recld2 24710 The real numbers are a clo...
zcld2 24711 The integers are a closed ...
zdis 24712 The integers are a discret...
sszcld 24713 Every subset of the intege...
reperflem 24714 A subset of the real numbe...
reperf 24715 The real numbers are a per...
cnperf 24716 The complex numbers are a ...
iccntr 24717 The interior of a closed i...
icccmplem1 24718 Lemma for ~ icccmp . (Con...
icccmplem2 24719 Lemma for ~ icccmp . (Con...
icccmplem3 24720 Lemma for ~ icccmp . (Con...
icccmp 24721 A closed interval in ` RR ...
reconnlem1 24722 Lemma for ~ reconn . Conn...
reconnlem2 24723 Lemma for ~ reconn . (Con...
reconn 24724 A subset of the reals is c...
retopconn 24725 Corollary of ~ reconn . T...
iccconn 24726 A closed interval is conne...
opnreen 24727 Every nonempty open set is...
rectbntr0 24728 A countable subset of the ...
xrge0gsumle 24729 A finite sum in the nonneg...
xrge0tsms 24730 Any finite or infinite sum...
xrge0tsms2 24731 Any finite or infinite sum...
metdcnlem 24732 The metric function of a m...
xmetdcn2 24733 The metric function of an ...
xmetdcn 24734 The metric function of an ...
metdcn2 24735 The metric function of a m...
metdcn 24736 The metric function of a m...
msdcn 24737 The metric function of a m...
cnmpt1ds 24738 Continuity of the metric f...
cnmpt2ds 24739 Continuity of the metric f...
nmcn 24740 The norm of a normed group...
ngnmcncn 24741 The norm of a normed group...
abscn 24742 The absolute value functio...
metdsval 24743 Value of the "distance to ...
metdsf 24744 The distance from a point ...
metdsge 24745 The distance from the poin...
metds0 24746 If a point is in a set, it...
metdstri 24747 A generalization of the tr...
metdsle 24748 The distance from a point ...
metdsre 24749 The distance from a point ...
metdseq0 24750 The distance from a point ...
metdscnlem 24751 Lemma for ~ metdscn . (Co...
metdscn 24752 The function ` F ` which g...
metdscn2 24753 The function ` F ` which g...
metnrmlem1a 24754 Lemma for ~ metnrm . (Con...
metnrmlem1 24755 Lemma for ~ metnrm . (Con...
metnrmlem2 24756 Lemma for ~ metnrm . (Con...
metnrmlem3 24757 Lemma for ~ metnrm . (Con...
metnrm 24758 A metric space is normal. ...
metreg 24759 A metric space is regular....
addcnlem 24760 Lemma for ~ addcn , ~ subc...
addcn 24761 Complex number addition is...
subcn 24762 Complex number subtraction...
mulcn 24763 Complex number multiplicat...
divcnOLD 24764 Obsolete version of ~ divc...
mpomulcn 24765 Complex number multiplicat...
divcn 24766 Complex number division is...
cnfldtgp 24767 The complex numbers form a...
fsumcn 24768 A finite sum of functions ...
fsum2cn 24769 Version of ~ fsumcn for tw...
expcn 24770 The power function on comp...
divccn 24771 Division by a nonzero cons...
expcnOLD 24772 Obsolete version of ~ expc...
divccnOLD 24773 Obsolete version of ~ divc...
sqcn 24774 The square function on com...
iitopon 24779 The unit interval is a top...
iitop 24780 The unit interval is a top...
iiuni 24781 The base set of the unit i...
dfii2 24782 Alternate definition of th...
dfii3 24783 Alternate definition of th...
dfii4 24784 Alternate definition of th...
dfii5 24785 The unit interval expresse...
iicmp 24786 The unit interval is compa...
iiconn 24787 The unit interval is conne...
cncfval 24788 The value of the continuou...
elcncf 24789 Membership in the set of c...
elcncf2 24790 Version of ~ elcncf with a...
cncfrss 24791 Reverse closure of the con...
cncfrss2 24792 Reverse closure of the con...
cncff 24793 A continuous complex funct...
cncfi 24794 Defining property of a con...
elcncf1di 24795 Membership in the set of c...
elcncf1ii 24796 Membership in the set of c...
rescncf 24797 A continuous complex funct...
cncfcdm 24798 Change the codomain of a c...
cncfss 24799 The set of continuous func...
climcncf 24800 Image of a limit under a c...
abscncf 24801 Absolute value is continuo...
recncf 24802 Real part is continuous. ...
imcncf 24803 Imaginary part is continuo...
cjcncf 24804 Complex conjugate is conti...
mulc1cncf 24805 Multiplication by a consta...
divccncf 24806 Division by a constant is ...
cncfco 24807 The composition of two con...
cncfcompt2 24808 Composition of continuous ...
cncfmet 24809 Relate complex function co...
cncfcn 24810 Relate complex function co...
cncfcn1 24811 Relate complex function co...
cncfmptc 24812 A constant function is a c...
cncfmptid 24813 The identity function is a...
cncfmpt1f 24814 Composition of continuous ...
cncfmpt2f 24815 Composition of continuous ...
cncfmpt2ss 24816 Composition of continuous ...
addccncf 24817 Adding a constant is a con...
idcncf 24818 The identity function is a...
sub1cncf 24819 Subtracting a constant is ...
sub2cncf 24820 Subtraction from a constan...
cdivcncf 24821 Division with a constant n...
negcncf 24822 The negative function is c...
negcncfOLD 24823 Obsolete version of ~ negc...
negfcncf 24824 The negative of a continuo...
abscncfALT 24825 Absolute value is continuo...
cncfcnvcn 24826 Rewrite ~ cmphaushmeo for ...
expcncf 24827 The power function on comp...
cnmptre 24828 Lemma for ~ iirevcn and re...
cnmpopc 24829 Piecewise definition of a ...
iirev 24830 Reverse the unit interval....
iirevcn 24831 The reversion function is ...
iihalf1 24832 Map the first half of ` II...
iihalf1cn 24833 The first half function is...
iihalf1cnOLD 24834 Obsolete version of ~ iiha...
iihalf2 24835 Map the second half of ` I...
iihalf2cn 24836 The second half function i...
iihalf2cnOLD 24837 Obsolete version of ~ iiha...
elii1 24838 Divide the unit interval i...
elii2 24839 Divide the unit interval i...
iimulcl 24840 The unit interval is close...
iimulcn 24841 Multiplication is a contin...
iimulcnOLD 24842 Obsolete version of ~ iimu...
icoopnst 24843 A half-open interval start...
iocopnst 24844 A half-open interval endin...
icchmeo 24845 The natural bijection from...
icchmeoOLD 24846 Obsolete version of ~ icch...
icopnfcnv 24847 Define a bijection from ` ...
icopnfhmeo 24848 The defined bijection from...
iccpnfcnv 24849 Define a bijection from ` ...
iccpnfhmeo 24850 The defined bijection from...
xrhmeo 24851 The bijection from ` [ -u ...
xrhmph 24852 The extended reals are hom...
xrcmp 24853 The topology of the extend...
xrconn 24854 The topology of the extend...
icccvx 24855 A linear combination of tw...
oprpiece1res1 24856 Restriction to the first p...
oprpiece1res2 24857 Restriction to the second ...
cnrehmeo 24858 The canonical bijection fr...
cnrehmeoOLD 24859 Obsolete version of ~ cnre...
cnheiborlem 24860 Lemma for ~ cnheibor . (C...
cnheibor 24861 Heine-Borel theorem for co...
cnllycmp 24862 The topology on the comple...
rellycmp 24863 The topology on the reals ...
bndth 24864 The Boundedness Theorem. ...
evth 24865 The Extreme Value Theorem....
evth2 24866 The Extreme Value Theorem,...
lebnumlem1 24867 Lemma for ~ lebnum . The ...
lebnumlem2 24868 Lemma for ~ lebnum . As a...
lebnumlem3 24869 Lemma for ~ lebnum . By t...
lebnum 24870 The Lebesgue number lemma,...
xlebnum 24871 Generalize ~ lebnum to ext...
lebnumii 24872 Specialize the Lebesgue nu...
ishtpy 24878 Membership in the class of...
htpycn 24879 A homotopy is a continuous...
htpyi 24880 A homotopy evaluated at it...
ishtpyd 24881 Deduction for membership i...
htpycom 24882 Given a homotopy from ` F ...
htpyid 24883 A homotopy from a function...
htpyco1 24884 Compose a homotopy with a ...
htpyco2 24885 Compose a homotopy with a ...
htpycc 24886 Concatenate two homotopies...
isphtpy 24887 Membership in the class of...
phtpyhtpy 24888 A path homotopy is a homot...
phtpycn 24889 A path homotopy is a conti...
phtpyi 24890 Membership in the class of...
phtpy01 24891 Two path-homotopic paths h...
isphtpyd 24892 Deduction for membership i...
isphtpy2d 24893 Deduction for membership i...
phtpycom 24894 Given a homotopy from ` F ...
phtpyid 24895 A homotopy from a path to ...
phtpyco2 24896 Compose a path homotopy wi...
phtpycc 24897 Concatenate two path homot...
phtpcrel 24899 The path homotopy relation...
isphtpc 24900 The relation "is path homo...
phtpcer 24901 Path homotopy is an equiva...
phtpc01 24902 Path homotopic paths have ...
reparphti 24903 Lemma for ~ reparpht . (C...
reparphtiOLD 24904 Obsolete version of ~ repa...
reparpht 24905 Reparametrization lemma. ...
phtpcco2 24906 Compose a path homotopy wi...
pcofval 24917 The value of the path conc...
pcoval 24918 The concatenation of two p...
pcovalg 24919 Evaluate the concatenation...
pcoval1 24920 Evaluate the concatenation...
pco0 24921 The starting point of a pa...
pco1 24922 The ending point of a path...
pcoval2 24923 Evaluate the concatenation...
pcocn 24924 The concatenation of two p...
copco 24925 The composition of a conca...
pcohtpylem 24926 Lemma for ~ pcohtpy . (Co...
pcohtpy 24927 Homotopy invariance of pat...
pcoptcl 24928 A constant function is a p...
pcopt 24929 Concatenation with a point...
pcopt2 24930 Concatenation with a point...
pcoass 24931 Order of concatenation doe...
pcorevcl 24932 Closure for a reversed pat...
pcorevlem 24933 Lemma for ~ pcorev . Prov...
pcorev 24934 Concatenation with the rev...
pcorev2 24935 Concatenation with the rev...
pcophtb 24936 The path homotopy equivale...
om1val 24937 The definition of the loop...
om1bas 24938 The base set of the loop s...
om1elbas 24939 Elementhood in the base se...
om1addcl 24940 Closure of the group opera...
om1plusg 24941 The group operation (which...
om1tset 24942 The topology of the loop s...
om1opn 24943 The topology of the loop s...
pi1val 24944 The definition of the fund...
pi1bas 24945 The base set of the fundam...
pi1blem 24946 Lemma for ~ pi1buni . (Co...
pi1buni 24947 Another way to write the l...
pi1bas2 24948 The base set of the fundam...
pi1eluni 24949 Elementhood in the base se...
pi1bas3 24950 The base set of the fundam...
pi1cpbl 24951 The group operation, loop ...
elpi1 24952 The elements of the fundam...
elpi1i 24953 The elements of the fundam...
pi1addf 24954 The group operation of ` p...
pi1addval 24955 The concatenation of two p...
pi1grplem 24956 Lemma for ~ pi1grp . (Con...
pi1grp 24957 The fundamental group is a...
pi1id 24958 The identity element of th...
pi1inv 24959 An inverse in the fundamen...
pi1xfrf 24960 Functionality of the loop ...
pi1xfrval 24961 The value of the loop tran...
pi1xfr 24962 Given a path ` F ` and its...
pi1xfrcnvlem 24963 Given a path ` F ` between...
pi1xfrcnv 24964 Given a path ` F ` between...
pi1xfrgim 24965 The mapping ` G ` between ...
pi1cof 24966 Functionality of the loop ...
pi1coval 24967 The value of the loop tran...
pi1coghm 24968 The mapping ` G ` between ...
isclm 24971 A subcomplex module is a l...
clmsca 24972 The ring of scalars ` F ` ...
clmsubrg 24973 The base set of the ring o...
clmlmod 24974 A subcomplex module is a l...
clmgrp 24975 A subcomplex module is an ...
clmabl 24976 A subcomplex module is an ...
clmring 24977 The scalar ring of a subco...
clmfgrp 24978 The scalar ring of a subco...
clm0 24979 The zero of the scalar rin...
clm1 24980 The identity of the scalar...
clmadd 24981 The addition of the scalar...
clmmul 24982 The multiplication of the ...
clmcj 24983 The conjugation of the sca...
isclmi 24984 Reverse direction of ~ isc...
clmzss 24985 The scalar ring of a subco...
clmsscn 24986 The scalar ring of a subco...
clmsub 24987 Subtraction in the scalar ...
clmneg 24988 Negation in the scalar rin...
clmneg1 24989 Minus one is in the scalar...
clmabs 24990 Norm in the scalar ring of...
clmacl 24991 Closure of ring addition f...
clmmcl 24992 Closure of ring multiplica...
clmsubcl 24993 Closure of ring subtractio...
lmhmclm 24994 The domain of a linear ope...
clmvscl 24995 Closure of scalar product ...
clmvsass 24996 Associative law for scalar...
clmvscom 24997 Commutative law for the sc...
clmvsdir 24998 Distributive law for scala...
clmvsdi 24999 Distributive law for scala...
clmvs1 25000 Scalar product with ring u...
clmvs2 25001 A vector plus itself is tw...
clm0vs 25002 Zero times a vector is the...
clmopfne 25003 The (functionalized) opera...
isclmp 25004 The predicate "is a subcom...
isclmi0 25005 Properties that determine ...
clmvneg1 25006 Minus 1 times a vector is ...
clmvsneg 25007 Multiplication of a vector...
clmmulg 25008 The group multiple functio...
clmsubdir 25009 Scalar multiplication dist...
clmpm1dir 25010 Subtractive distributive l...
clmnegneg 25011 Double negative of a vecto...
clmnegsubdi2 25012 Distribution of negative o...
clmsub4 25013 Rearrangement of 4 terms i...
clmvsrinv 25014 A vector minus itself. (C...
clmvslinv 25015 Minus a vector plus itself...
clmvsubval 25016 Value of vector subtractio...
clmvsubval2 25017 Value of vector subtractio...
clmvz 25018 Two ways to express the ne...
zlmclm 25019 The ` ZZ ` -module operati...
clmzlmvsca 25020 The scalar product of a su...
nmoleub2lem 25021 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 25022 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 25023 Lemma for ~ nmoleub2a and ...
nmoleub2a 25024 The operator norm is the s...
nmoleub2b 25025 The operator norm is the s...
nmoleub3 25026 The operator norm is the s...
nmhmcn 25027 A linear operator over a n...
cmodscexp 25028 The powers of ` _i ` belon...
cmodscmulexp 25029 The scalar product of a ve...
cvslvec 25032 A subcomplex vector space ...
cvsclm 25033 A subcomplex vector space ...
iscvs 25034 A subcomplex vector space ...
iscvsp 25035 The predicate "is a subcom...
iscvsi 25036 Properties that determine ...
cvsi 25037 The properties of a subcom...
cvsunit 25038 Unit group of the scalar r...
cvsdiv 25039 Division of the scalar rin...
cvsdivcl 25040 The scalar field of a subc...
cvsmuleqdivd 25041 An equality involving rati...
cvsdiveqd 25042 An equality involving rati...
cnlmodlem1 25043 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 25044 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 25045 Lemma 3 for ~ cnlmod . (C...
cnlmod4 25046 Lemma 4 for ~ cnlmod . (C...
cnlmod 25047 The set of complex numbers...
cnstrcvs 25048 The set of complex numbers...
cnrbas 25049 The set of complex numbers...
cnrlmod 25050 The complex left module of...
cnrlvec 25051 The complex left module of...
cncvs 25052 The complex left module of...
recvs 25053 The field of the real numb...
qcvs 25054 The field of rational numb...
zclmncvs 25055 The ring of integers as le...
isncvsngp 25056 A normed subcomplex vector...
isncvsngpd 25057 Properties that determine ...
ncvsi 25058 The properties of a normed...
ncvsprp 25059 Proportionality property o...
ncvsge0 25060 The norm of a scalar produ...
ncvsm1 25061 The norm of the opposite o...
ncvsdif 25062 The norm of the difference...
ncvspi 25063 The norm of a vector plus ...
ncvs1 25064 From any nonzero vector of...
cnrnvc 25065 The module of complex numb...
cnncvs 25066 The module of complex numb...
cnnm 25067 The norm of the normed sub...
ncvspds 25068 Value of the distance func...
cnindmet 25069 The metric induced on the ...
cnncvsaddassdemo 25070 Derive the associative law...
cnncvsmulassdemo 25071 Derive the associative law...
cnncvsabsnegdemo 25072 Derive the absolute value ...
iscph 25077 A subcomplex pre-Hilbert s...
cphphl 25078 A subcomplex pre-Hilbert s...
cphnlm 25079 A subcomplex pre-Hilbert s...
cphngp 25080 A subcomplex pre-Hilbert s...
cphlmod 25081 A subcomplex pre-Hilbert s...
cphlvec 25082 A subcomplex pre-Hilbert s...
cphnvc 25083 A subcomplex pre-Hilbert s...
cphsubrglem 25084 Lemma for ~ cphsubrg . (C...
cphreccllem 25085 Lemma for ~ cphreccl . (C...
cphsca 25086 A subcomplex pre-Hilbert s...
cphsubrg 25087 The scalar field of a subc...
cphreccl 25088 The scalar field of a subc...
cphdivcl 25089 The scalar field of a subc...
cphcjcl 25090 The scalar field of a subc...
cphsqrtcl 25091 The scalar field of a subc...
cphabscl 25092 The scalar field of a subc...
cphsqrtcl2 25093 The scalar field of a subc...
cphsqrtcl3 25094 If the scalar field of a s...
cphqss 25095 The scalar field of a subc...
cphclm 25096 A subcomplex pre-Hilbert s...
cphnmvs 25097 Norm of a scalar product. ...
cphipcl 25098 An inner product is a memb...
cphnmfval 25099 The value of the norm in a...
cphnm 25100 The square of the norm is ...
nmsq 25101 The square of the norm is ...
cphnmf 25102 The norm of a vector is a ...
cphnmcl 25103 The norm of a vector is a ...
reipcl 25104 An inner product of an ele...
ipge0 25105 The inner product in a sub...
cphipcj 25106 Conjugate of an inner prod...
cphipipcj 25107 An inner product times its...
cphorthcom 25108 Orthogonality (meaning inn...
cphip0l 25109 Inner product with a zero ...
cphip0r 25110 Inner product with a zero ...
cphipeq0 25111 The inner product of a vec...
cphdir 25112 Distributive law for inner...
cphdi 25113 Distributive law for inner...
cph2di 25114 Distributive law for inner...
cphsubdir 25115 Distributive law for inner...
cphsubdi 25116 Distributive law for inner...
cph2subdi 25117 Distributive law for inner...
cphass 25118 Associative law for inner ...
cphassr 25119 "Associative" law for seco...
cph2ass 25120 Move scalar multiplication...
cphassi 25121 Associative law for the fi...
cphassir 25122 "Associative" law for the ...
cphpyth 25123 The pythagorean theorem fo...
tcphex 25124 Lemma for ~ tcphbas and si...
tcphval 25125 Define a function to augme...
tcphbas 25126 The base set of a subcompl...
tchplusg 25127 The addition operation of ...
tcphsub 25128 The subtraction operation ...
tcphmulr 25129 The ring operation of a su...
tcphsca 25130 The scalar field of a subc...
tcphvsca 25131 The scalar multiplication ...
tcphip 25132 The inner product of a sub...
tcphtopn 25133 The topology of a subcompl...
tcphphl 25134 Augmentation of a subcompl...
tchnmfval 25135 The norm of a subcomplex p...
tcphnmval 25136 The norm of a subcomplex p...
cphtcphnm 25137 The norm of a norm-augment...
tcphds 25138 The distance of a pre-Hilb...
phclm 25139 A pre-Hilbert space whose ...
tcphcphlem3 25140 Lemma for ~ tcphcph : real...
ipcau2 25141 The Cauchy-Schwarz inequal...
tcphcphlem1 25142 Lemma for ~ tcphcph : the ...
tcphcphlem2 25143 Lemma for ~ tcphcph : homo...
tcphcph 25144 The standard definition of...
ipcau 25145 The Cauchy-Schwarz inequal...
nmparlem 25146 Lemma for ~ nmpar . (Cont...
nmpar 25147 A subcomplex pre-Hilbert s...
cphipval2 25148 Value of the inner product...
4cphipval2 25149 Four times the inner produ...
cphipval 25150 Value of the inner product...
ipcnlem2 25151 The inner product operatio...
ipcnlem1 25152 The inner product operatio...
ipcn 25153 The inner product operatio...
cnmpt1ip 25154 Continuity of inner produc...
cnmpt2ip 25155 Continuity of inner produc...
csscld 25156 A "closed subspace" in a s...
clsocv 25157 The orthogonal complement ...
cphsscph 25158 A subspace of a subcomplex...
lmmbr 25165 Express the binary relatio...
lmmbr2 25166 Express the binary relatio...
lmmbr3 25167 Express the binary relatio...
lmmcvg 25168 Convergence property of a ...
lmmbrf 25169 Express the binary relatio...
lmnn 25170 A condition that implies c...
cfilfval 25171 The set of Cauchy filters ...
iscfil 25172 The property of being a Ca...
iscfil2 25173 The property of being a Ca...
cfilfil 25174 A Cauchy filter is a filte...
cfili 25175 Property of a Cauchy filte...
cfil3i 25176 A Cauchy filter contains b...
cfilss 25177 A filter finer than a Cauc...
fgcfil 25178 The Cauchy filter conditio...
fmcfil 25179 The Cauchy filter conditio...
iscfil3 25180 A filter is Cauchy iff it ...
cfilfcls 25181 Similar to ultrafilters ( ...
caufval 25182 The set of Cauchy sequence...
iscau 25183 Express the property " ` F...
iscau2 25184 Express the property " ` F...
iscau3 25185 Express the Cauchy sequenc...
iscau4 25186 Express the property " ` F...
iscauf 25187 Express the property " ` F...
caun0 25188 A metric with a Cauchy seq...
caufpm 25189 Inclusion of a Cauchy sequ...
caucfil 25190 A Cauchy sequence predicat...
iscmet 25191 The property " ` D ` is a ...
cmetcvg 25192 The convergence of a Cauch...
cmetmet 25193 A complete metric space is...
cmetmeti 25194 A complete metric space is...
cmetcaulem 25195 Lemma for ~ cmetcau . (Co...
cmetcau 25196 The convergence of a Cauch...
iscmet3lem3 25197 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 25198 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 25199 Lemma for ~ iscmet3 . (Co...
iscmet3 25200 The property " ` D ` is a ...
iscmet2 25201 A metric ` D ` is complete...
cfilresi 25202 A Cauchy filter on a metri...
cfilres 25203 Cauchy filter on a metric ...
caussi 25204 Cauchy sequence on a metri...
causs 25205 Cauchy sequence on a metri...
equivcfil 25206 If the metric ` D ` is "st...
equivcau 25207 If the metric ` D ` is "st...
lmle 25208 If the distance from each ...
nglmle 25209 If the norm of each member...
lmclim 25210 Relate a limit on the metr...
lmclimf 25211 Relate a limit on the metr...
metelcls 25212 A point belongs to the clo...
metcld 25213 A subset of a metric space...
metcld2 25214 A subset of a metric space...
caubl 25215 Sufficient condition to en...
caublcls 25216 The convergent point of a ...
metcnp4 25217 Two ways to say a mapping ...
metcn4 25218 Two ways to say a mapping ...
iscmet3i 25219 Properties that determine ...
lmcau 25220 Every convergent sequence ...
flimcfil 25221 Every convergent filter in...
metsscmetcld 25222 A complete subspace of a m...
cmetss 25223 A subspace of a complete m...
equivcmet 25224 If two metrics are strongl...
relcmpcmet 25225 If ` D ` is a metric space...
cmpcmet 25226 A compact metric space is ...
cfilucfil3 25227 Given a metric ` D ` and a...
cfilucfil4 25228 Given a metric ` D ` and a...
cncmet 25229 The set of complex numbers...
recmet 25230 The real numbers are a com...
bcthlem1 25231 Lemma for ~ bcth . Substi...
bcthlem2 25232 Lemma for ~ bcth . The ba...
bcthlem3 25233 Lemma for ~ bcth . The li...
bcthlem4 25234 Lemma for ~ bcth . Given ...
bcthlem5 25235 Lemma for ~ bcth . The pr...
bcth 25236 Baire's Category Theorem. ...
bcth2 25237 Baire's Category Theorem, ...
bcth3 25238 Baire's Category Theorem, ...
isbn 25245 A Banach space is a normed...
bnsca 25246 The scalar field of a Bana...
bnnvc 25247 A Banach space is a normed...
bnnlm 25248 A Banach space is a normed...
bnngp 25249 A Banach space is a normed...
bnlmod 25250 A Banach space is a left m...
bncms 25251 A Banach space is a comple...
iscms 25252 A complete metric space is...
cmscmet 25253 The induced metric on a co...
bncmet 25254 The induced metric on Bana...
cmsms 25255 A complete metric space is...
cmspropd 25256 Property deduction for a c...
cmssmscld 25257 The restriction of a metri...
cmsss 25258 The restriction of a compl...
lssbn 25259 A subspace of a Banach spa...
cmetcusp1 25260 If the uniform set of a co...
cmetcusp 25261 The uniform space generate...
cncms 25262 The field of complex numbe...
cnflduss 25263 The uniform structure of t...
cnfldcusp 25264 The field of complex numbe...
resscdrg 25265 The real numbers are a sub...
cncdrg 25266 The only complete subfield...
srabn 25267 The subring algebra over a...
rlmbn 25268 The ring module over a com...
ishl 25269 The predicate "is a subcom...
hlbn 25270 Every subcomplex Hilbert s...
hlcph 25271 Every subcomplex Hilbert s...
hlphl 25272 Every subcomplex Hilbert s...
hlcms 25273 Every subcomplex Hilbert s...
hlprlem 25274 Lemma for ~ hlpr . (Contr...
hlress 25275 The scalar field of a subc...
hlpr 25276 The scalar field of a subc...
ishl2 25277 A Hilbert space is a compl...
cphssphl 25278 A Banach subspace of a sub...
cmslssbn 25279 A complete linear subspace...
cmscsscms 25280 A closed subspace of a com...
bncssbn 25281 A closed subspace of a Ban...
cssbn 25282 A complete subspace of a n...
csschl 25283 A complete subspace of a c...
cmslsschl 25284 A complete linear subspace...
chlcsschl 25285 A closed subspace of a sub...
retopn 25286 The topology of the real n...
recms 25287 The real numbers form a co...
reust 25288 The Uniform structure of t...
recusp 25289 The real numbers form a co...
rrxval 25294 Value of the generalized E...
rrxbase 25295 The base of the generalize...
rrxprds 25296 Expand the definition of t...
rrxip 25297 The inner product of the g...
rrxnm 25298 The norm of the generalize...
rrxcph 25299 Generalized Euclidean real...
rrxds 25300 The distance over generali...
rrxvsca 25301 The scalar product over ge...
rrxplusgvscavalb 25302 The result of the addition...
rrxsca 25303 The field of real numbers ...
rrx0 25304 The zero ("origin") in a g...
rrx0el 25305 The zero ("origin") in a g...
csbren 25306 Cauchy-Schwarz-Bunjakovsky...
trirn 25307 Triangle inequality in R^n...
rrxf 25308 Euclidean vectors as funct...
rrxfsupp 25309 Euclidean vectors are of f...
rrxsuppss 25310 Support of Euclidean vecto...
rrxmvallem 25311 Support of the function us...
rrxmval 25312 The value of the Euclidean...
rrxmfval 25313 The value of the Euclidean...
rrxmetlem 25314 Lemma for ~ rrxmet . (Con...
rrxmet 25315 Euclidean space is a metri...
rrxdstprj1 25316 The distance between two p...
rrxbasefi 25317 The base of the generalize...
rrxdsfi 25318 The distance over generali...
rrxmetfi 25319 Euclidean space is a metri...
rrxdsfival 25320 The value of the Euclidean...
ehlval 25321 Value of the Euclidean spa...
ehlbase 25322 The base of the Euclidean ...
ehl0base 25323 The base of the Euclidean ...
ehl0 25324 The Euclidean space of dim...
ehleudis 25325 The Euclidean distance fun...
ehleudisval 25326 The value of the Euclidean...
ehl1eudis 25327 The Euclidean distance fun...
ehl1eudisval 25328 The value of the Euclidean...
ehl2eudis 25329 The Euclidean distance fun...
ehl2eudisval 25330 The value of the Euclidean...
minveclem1 25331 Lemma for ~ minvec . The ...
minveclem4c 25332 Lemma for ~ minvec . The ...
minveclem2 25333 Lemma for ~ minvec . Any ...
minveclem3a 25334 Lemma for ~ minvec . ` D `...
minveclem3b 25335 Lemma for ~ minvec . The ...
minveclem3 25336 Lemma for ~ minvec . The ...
minveclem4a 25337 Lemma for ~ minvec . ` F `...
minveclem4b 25338 Lemma for ~ minvec . The ...
minveclem4 25339 Lemma for ~ minvec . The ...
minveclem5 25340 Lemma for ~ minvec . Disc...
minveclem6 25341 Lemma for ~ minvec . Any ...
minveclem7 25342 Lemma for ~ minvec . Sinc...
minvec 25343 Minimizing vector theorem,...
pjthlem1 25344 Lemma for ~ pjth . (Contr...
pjthlem2 25345 Lemma for ~ pjth . (Contr...
pjth 25346 Projection Theorem: Any H...
pjth2 25347 Projection Theorem with ab...
cldcss 25348 Corollary of the Projectio...
cldcss2 25349 Corollary of the Projectio...
hlhil 25350 Corollary of the Projectio...
addcncf 25351 The addition of two contin...
subcncf 25352 The subtraction of two con...
mulcncf 25353 The multiplication of two ...
mulcncfOLD 25354 Obsolete version of ~ mulc...
divcncf 25355 The quotient of two contin...
pmltpclem1 25356 Lemma for ~ pmltpc . (Con...
pmltpclem2 25357 Lemma for ~ pmltpc . (Con...
pmltpc 25358 Any function on the reals ...
ivthlem1 25359 Lemma for ~ ivth . The se...
ivthlem2 25360 Lemma for ~ ivth . Show t...
ivthlem3 25361 Lemma for ~ ivth , the int...
ivth 25362 The intermediate value the...
ivth2 25363 The intermediate value the...
ivthle 25364 The intermediate value the...
ivthle2 25365 The intermediate value the...
ivthicc 25366 The interval between any t...
evthicc 25367 Specialization of the Extr...
evthicc2 25368 Combine ~ ivthicc with ~ e...
cniccbdd 25369 A continuous function on a...
ovolfcl 25374 Closure for the interval e...
ovolfioo 25375 Unpack the interval coveri...
ovolficc 25376 Unpack the interval coveri...
ovolficcss 25377 Any (closed) interval cove...
ovolfsval 25378 The value of the interval ...
ovolfsf 25379 Closure for the interval l...
ovolsf 25380 Closure for the partial su...
ovolval 25381 The value of the outer mea...
elovolmlem 25382 Lemma for ~ elovolm and re...
elovolm 25383 Elementhood in the set ` M...
elovolmr 25384 Sufficient condition for e...
ovolmge0 25385 The set ` M ` is composed ...
ovolcl 25386 The volume of a set is an ...
ovollb 25387 The outer volume is a lowe...
ovolgelb 25388 The outer volume is the gr...
ovolge0 25389 The volume of a set is alw...
ovolf 25390 The domain and codomain of...
ovollecl 25391 If an outer volume is boun...
ovolsslem 25392 Lemma for ~ ovolss . (Con...
ovolss 25393 The volume of a set is mon...
ovolsscl 25394 If a set is contained in a...
ovolssnul 25395 A subset of a nullset is n...
ovollb2lem 25396 Lemma for ~ ovollb2 . (Co...
ovollb2 25397 It is often more convenien...
ovolctb 25398 The volume of a denumerabl...
ovolq 25399 The rational numbers have ...
ovolctb2 25400 The volume of a countable ...
ovol0 25401 The empty set has 0 outer ...
ovolfi 25402 A finite set has 0 outer L...
ovolsn 25403 A singleton has 0 outer Le...
ovolunlem1a 25404 Lemma for ~ ovolun . (Con...
ovolunlem1 25405 Lemma for ~ ovolun . (Con...
ovolunlem2 25406 Lemma for ~ ovolun . (Con...
ovolun 25407 The Lebesgue outer measure...
ovolunnul 25408 Adding a nullset does not ...
ovolfiniun 25409 The Lebesgue outer measure...
ovoliunlem1 25410 Lemma for ~ ovoliun . (Co...
ovoliunlem2 25411 Lemma for ~ ovoliun . (Co...
ovoliunlem3 25412 Lemma for ~ ovoliun . (Co...
ovoliun 25413 The Lebesgue outer measure...
ovoliun2 25414 The Lebesgue outer measure...
ovoliunnul 25415 A countable union of nulls...
shft2rab 25416 If ` B ` is a shift of ` A...
ovolshftlem1 25417 Lemma for ~ ovolshft . (C...
ovolshftlem2 25418 Lemma for ~ ovolshft . (C...
ovolshft 25419 The Lebesgue outer measure...
sca2rab 25420 If ` B ` is a scale of ` A...
ovolscalem1 25421 Lemma for ~ ovolsca . (Co...
ovolscalem2 25422 Lemma for ~ ovolshft . (C...
ovolsca 25423 The Lebesgue outer measure...
ovolicc1 25424 The measure of a closed in...
ovolicc2lem1 25425 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 25426 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 25427 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 25428 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 25429 Lemma for ~ ovolicc2 . (C...
ovolicc2 25430 The measure of a closed in...
ovolicc 25431 The measure of a closed in...
ovolicopnf 25432 The measure of a right-unb...
ovolre 25433 The measure of the real nu...
ismbl 25434 The predicate " ` A ` is L...
ismbl2 25435 From ~ ovolun , it suffice...
volres 25436 A self-referencing abbrevi...
volf 25437 The domain and codomain of...
mblvol 25438 The volume of a measurable...
mblss 25439 A measurable set is a subs...
mblsplit 25440 The defining property of m...
volss 25441 The Lebesgue measure is mo...
cmmbl 25442 The complement of a measur...
nulmbl 25443 A nullset is measurable. ...
nulmbl2 25444 A set of outer measure zer...
unmbl 25445 A union of measurable sets...
shftmbl 25446 A shift of a measurable se...
0mbl 25447 The empty set is measurabl...
rembl 25448 The set of all real number...
unidmvol 25449 The union of the Lebesgue ...
inmbl 25450 An intersection of measura...
difmbl 25451 A difference of measurable...
finiunmbl 25452 A finite union of measurab...
volun 25453 The Lebesgue measure funct...
volinun 25454 Addition of non-disjoint s...
volfiniun 25455 The volume of a disjoint f...
iundisj 25456 Rewrite a countable union ...
iundisj2 25457 A disjoint union is disjoi...
voliunlem1 25458 Lemma for ~ voliun . (Con...
voliunlem2 25459 Lemma for ~ voliun . (Con...
voliunlem3 25460 Lemma for ~ voliun . (Con...
iunmbl 25461 The measurable sets are cl...
voliun 25462 The Lebesgue measure funct...
volsuplem 25463 Lemma for ~ volsup . (Con...
volsup 25464 The volume of the limit of...
iunmbl2 25465 The measurable sets are cl...
ioombl1lem1 25466 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 25467 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 25468 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 25469 Lemma for ~ ioombl1 . (Co...
ioombl1 25470 An open right-unbounded in...
icombl1 25471 A closed unbounded-above i...
icombl 25472 A closed-below, open-above...
ioombl 25473 An open real interval is m...
iccmbl 25474 A closed real interval is ...
iccvolcl 25475 A closed real interval has...
ovolioo 25476 The measure of an open int...
volioo 25477 The measure of an open int...
ioovolcl 25478 An open real interval has ...
ovolfs2 25479 Alternative expression for...
ioorcl2 25480 An open interval with fini...
ioorf 25481 Define a function from ope...
ioorval 25482 Define a function from ope...
ioorinv2 25483 The function ` F ` is an "...
ioorinv 25484 The function ` F ` is an "...
ioorcl 25485 The function ` F ` does no...
uniiccdif 25486 A union of closed interval...
uniioovol 25487 A disjoint union of open i...
uniiccvol 25488 An almost-disjoint union o...
uniioombllem1 25489 Lemma for ~ uniioombl . (...
uniioombllem2a 25490 Lemma for ~ uniioombl . (...
uniioombllem2 25491 Lemma for ~ uniioombl . (...
uniioombllem3a 25492 Lemma for ~ uniioombl . (...
uniioombllem3 25493 Lemma for ~ uniioombl . (...
uniioombllem4 25494 Lemma for ~ uniioombl . (...
uniioombllem5 25495 Lemma for ~ uniioombl . (...
uniioombllem6 25496 Lemma for ~ uniioombl . (...
uniioombl 25497 A disjoint union of open i...
uniiccmbl 25498 An almost-disjoint union o...
dyadf 25499 The function ` F ` returns...
dyadval 25500 Value of the dyadic ration...
dyadovol 25501 Volume of a dyadic rationa...
dyadss 25502 Two closed dyadic rational...
dyaddisjlem 25503 Lemma for ~ dyaddisj . (C...
dyaddisj 25504 Two closed dyadic rational...
dyadmaxlem 25505 Lemma for ~ dyadmax . (Co...
dyadmax 25506 Any nonempty set of dyadic...
dyadmbllem 25507 Lemma for ~ dyadmbl . (Co...
dyadmbl 25508 Any union of dyadic ration...
opnmbllem 25509 Lemma for ~ opnmbl . (Con...
opnmbl 25510 All open sets are measurab...
opnmblALT 25511 All open sets are measurab...
subopnmbl 25512 Sets which are open in a m...
volsup2 25513 The volume of ` A ` is the...
volcn 25514 The function formed by res...
volivth 25515 The Intermediate Value The...
vitalilem1 25516 Lemma for ~ vitali . (Con...
vitalilem2 25517 Lemma for ~ vitali . (Con...
vitalilem3 25518 Lemma for ~ vitali . (Con...
vitalilem4 25519 Lemma for ~ vitali . (Con...
vitalilem5 25520 Lemma for ~ vitali . (Con...
vitali 25521 If the reals can be well-o...
ismbf1 25532 The predicate " ` F ` is a...
mbff 25533 A measurable function is a...
mbfdm 25534 The domain of a measurable...
mbfconstlem 25535 Lemma for ~ mbfconst and r...
ismbf 25536 The predicate " ` F ` is a...
ismbfcn 25537 A complex function is meas...
mbfima 25538 Definitional property of a...
mbfimaicc 25539 The preimage of any closed...
mbfimasn 25540 The preimage of a point un...
mbfconst 25541 A constant function is mea...
mbf0 25542 The empty function is meas...
mbfid 25543 The identity function is m...
mbfmptcl 25544 Lemma for the ` MblFn ` pr...
mbfdm2 25545 The domain of a measurable...
ismbfcn2 25546 A complex function is meas...
ismbfd 25547 Deduction to prove measura...
ismbf2d 25548 Deduction to prove measura...
mbfeqalem1 25549 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 25550 Lemma for ~ mbfeqa . (Con...
mbfeqa 25551 If two functions are equal...
mbfres 25552 The restriction of a measu...
mbfres2 25553 Measurability of a piecewi...
mbfss 25554 Change the domain of a mea...
mbfmulc2lem 25555 Multiplication by a consta...
mbfmulc2re 25556 Multiplication by a consta...
mbfmax 25557 The maximum of two functio...
mbfneg 25558 The negative of a measurab...
mbfpos 25559 The positive part of a mea...
mbfposr 25560 Converse to ~ mbfpos . (C...
mbfposb 25561 A function is measurable i...
ismbf3d 25562 Simplified form of ~ ismbf...
mbfimaopnlem 25563 Lemma for ~ mbfimaopn . (...
mbfimaopn 25564 The preimage of any open s...
mbfimaopn2 25565 The preimage of any set op...
cncombf 25566 The composition of a conti...
cnmbf 25567 A continuous function is m...
mbfaddlem 25568 The sum of two measurable ...
mbfadd 25569 The sum of two measurable ...
mbfsub 25570 The difference of two meas...
mbfmulc2 25571 A complex constant times a...
mbfsup 25572 The supremum of a sequence...
mbfinf 25573 The infimum of a sequence ...
mbflimsup 25574 The limit supremum of a se...
mbflimlem 25575 The pointwise limit of a s...
mbflim 25576 The pointwise limit of a s...
0pval 25579 The zero function evaluate...
0plef 25580 Two ways to say that the f...
0pledm 25581 Adjust the domain of the l...
isi1f 25582 The predicate " ` F ` is a...
i1fmbf 25583 Simple functions are measu...
i1ff 25584 A simple function is a fun...
i1frn 25585 A simple function has fini...
i1fima 25586 Any preimage of a simple f...
i1fima2 25587 Any preimage of a simple f...
i1fima2sn 25588 Preimage of a singleton. ...
i1fd 25589 A simplified set of assump...
i1f0rn 25590 Any simple function takes ...
itg1val 25591 The value of the integral ...
itg1val2 25592 The value of the integral ...
itg1cl 25593 Closure of the integral on...
itg1ge0 25594 Closure of the integral on...
i1f0 25595 The zero function is simpl...
itg10 25596 The zero function has zero...
i1f1lem 25597 Lemma for ~ i1f1 and ~ itg...
i1f1 25598 Base case simple functions...
itg11 25599 The integral of an indicat...
itg1addlem1 25600 Decompose a preimage, whic...
i1faddlem 25601 Decompose the preimage of ...
i1fmullem 25602 Decompose the preimage of ...
i1fadd 25603 The sum of two simple func...
i1fmul 25604 The pointwise product of t...
itg1addlem2 25605 Lemma for ~ itg1add . The...
itg1addlem3 25606 Lemma for ~ itg1add . (Co...
itg1addlem4 25607 Lemma for ~ itg1add . (Co...
itg1addlem5 25608 Lemma for ~ itg1add . (Co...
itg1add 25609 The integral of a sum of s...
i1fmulclem 25610 Decompose the preimage of ...
i1fmulc 25611 A nonnegative constant tim...
itg1mulc 25612 The integral of a constant...
i1fres 25613 The "restriction" of a sim...
i1fpos 25614 The positive part of a sim...
i1fposd 25615 Deduction form of ~ i1fpos...
i1fsub 25616 The difference of two simp...
itg1sub 25617 The integral of a differen...
itg10a 25618 The integral of a simple f...
itg1ge0a 25619 The integral of an almost ...
itg1lea 25620 Approximate version of ~ i...
itg1le 25621 If one simple function dom...
itg1climres 25622 Restricting the simple fun...
mbfi1fseqlem1 25623 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 25624 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 25625 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 25626 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 25627 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 25628 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 25629 A characterization of meas...
mbfi1flimlem 25630 Lemma for ~ mbfi1flim . (...
mbfi1flim 25631 Any real measurable functi...
mbfmullem2 25632 Lemma for ~ mbfmul . (Con...
mbfmullem 25633 Lemma for ~ mbfmul . (Con...
mbfmul 25634 The product of two measura...
itg2lcl 25635 The set of lower sums is a...
itg2val 25636 Value of the integral on n...
itg2l 25637 Elementhood in the set ` L...
itg2lr 25638 Sufficient condition for e...
xrge0f 25639 A real function is a nonne...
itg2cl 25640 The integral of a nonnegat...
itg2ub 25641 The integral of a nonnegat...
itg2leub 25642 Any upper bound on the int...
itg2ge0 25643 The integral of a nonnegat...
itg2itg1 25644 The integral of a nonnegat...
itg20 25645 The integral of the zero f...
itg2lecl 25646 If an ` S.2 ` integral is ...
itg2le 25647 If one function dominates ...
itg2const 25648 Integral of a constant fun...
itg2const2 25649 When the base set of a con...
itg2seq 25650 Definitional property of t...
itg2uba 25651 Approximate version of ~ i...
itg2lea 25652 Approximate version of ~ i...
itg2eqa 25653 Approximate equality of in...
itg2mulclem 25654 Lemma for ~ itg2mulc . (C...
itg2mulc 25655 The integral of a nonnegat...
itg2splitlem 25656 Lemma for ~ itg2split . (...
itg2split 25657 The ` S.2 ` integral split...
itg2monolem1 25658 Lemma for ~ itg2mono . We...
itg2monolem2 25659 Lemma for ~ itg2mono . (C...
itg2monolem3 25660 Lemma for ~ itg2mono . (C...
itg2mono 25661 The Monotone Convergence T...
itg2i1fseqle 25662 Subject to the conditions ...
itg2i1fseq 25663 Subject to the conditions ...
itg2i1fseq2 25664 In an extension to the res...
itg2i1fseq3 25665 Special case of ~ itg2i1fs...
itg2addlem 25666 Lemma for ~ itg2add . (Co...
itg2add 25667 The ` S.2 ` integral is li...
itg2gt0 25668 If the function ` F ` is s...
itg2cnlem1 25669 Lemma for ~ itgcn . (Cont...
itg2cnlem2 25670 Lemma for ~ itgcn . (Cont...
itg2cn 25671 A sort of absolute continu...
ibllem 25672 Conditioned equality theor...
isibl 25673 The predicate " ` F ` is i...
isibl2 25674 The predicate " ` F ` is i...
iblmbf 25675 An integrable function is ...
iblitg 25676 If a function is integrabl...
dfitg 25677 Evaluate the class substit...
itgex 25678 An integral is a set. (Co...
itgeq1f 25679 Equality theorem for an in...
itgeq1fOLD 25680 Obsolete version of ~ itge...
itgeq1 25681 Equality theorem for an in...
nfitg1 25682 Bound-variable hypothesis ...
nfitg 25683 Bound-variable hypothesis ...
cbvitg 25684 Change bound variable in a...
cbvitgv 25685 Change bound variable in a...
itgeq2 25686 Equality theorem for an in...
itgresr 25687 The domain of an integral ...
itg0 25688 The integral of anything o...
itgz 25689 The integral of zero on an...
itgeq2dv 25690 Equality theorem for an in...
itgmpt 25691 Change bound variable in a...
itgcl 25692 The integral of an integra...
itgvallem 25693 Substitution lemma. (Cont...
itgvallem3 25694 Lemma for ~ itgposval and ...
ibl0 25695 The zero function is integ...
iblcnlem1 25696 Lemma for ~ iblcnlem . (C...
iblcnlem 25697 Expand out the universal q...
itgcnlem 25698 Expand out the sum in ~ df...
iblrelem 25699 Integrability of a real fu...
iblposlem 25700 Lemma for ~ iblpos . (Con...
iblpos 25701 Integrability of a nonnega...
iblre 25702 Integrability of a real fu...
itgrevallem1 25703 Lemma for ~ itgposval and ...
itgposval 25704 The integral of a nonnegat...
itgreval 25705 Decompose the integral of ...
itgrecl 25706 Real closure of an integra...
iblcn 25707 Integrability of a complex...
itgcnval 25708 Decompose the integral of ...
itgre 25709 Real part of an integral. ...
itgim 25710 Imaginary part of an integ...
iblneg 25711 The negative of an integra...
itgneg 25712 Negation of an integral. ...
iblss 25713 A subset of an integrable ...
iblss2 25714 Change the domain of an in...
itgitg2 25715 Transfer an integral using...
i1fibl 25716 A simple function is integ...
itgitg1 25717 Transfer an integral using...
itgle 25718 Monotonicity of an integra...
itgge0 25719 The integral of a positive...
itgss 25720 Expand the set of an integ...
itgss2 25721 Expand the set of an integ...
itgeqa 25722 Approximate equality of in...
itgss3 25723 Expand the set of an integ...
itgioo 25724 Equality of integrals on o...
itgless 25725 Expand the integral of a n...
iblconst 25726 A constant function is int...
itgconst 25727 Integral of a constant fun...
ibladdlem 25728 Lemma for ~ ibladd . (Con...
ibladd 25729 Add two integrals over the...
iblsub 25730 Subtract two integrals ove...
itgaddlem1 25731 Lemma for ~ itgadd . (Con...
itgaddlem2 25732 Lemma for ~ itgadd . (Con...
itgadd 25733 Add two integrals over the...
itgsub 25734 Subtract two integrals ove...
itgfsum 25735 Take a finite sum of integ...
iblabslem 25736 Lemma for ~ iblabs . (Con...
iblabs 25737 The absolute value of an i...
iblabsr 25738 A measurable function is i...
iblmulc2 25739 Multiply an integral by a ...
itgmulc2lem1 25740 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 25741 Lemma for ~ itgmulc2 : rea...
itgmulc2 25742 Multiply an integral by a ...
itgabs 25743 The triangle inequality fo...
itgsplit 25744 The ` S. ` integral splits...
itgspliticc 25745 The ` S. ` integral splits...
itgsplitioo 25746 The ` S. ` integral splits...
bddmulibl 25747 A bounded function times a...
bddibl 25748 A bounded function is inte...
cniccibl 25749 A continuous function on a...
bddiblnc 25750 Choice-free proof of ~ bdd...
cnicciblnc 25751 Choice-free proof of ~ cni...
itggt0 25752 The integral of a strictly...
itgcn 25753 Transfer ~ itg2cn to the f...
ditgeq1 25756 Equality theorem for the d...
ditgeq2 25757 Equality theorem for the d...
ditgeq3 25758 Equality theorem for the d...
ditgeq3dv 25759 Equality theorem for the d...
ditgex 25760 A directed integral is a s...
ditg0 25761 Value of the directed inte...
cbvditg 25762 Change bound variable in a...
cbvditgv 25763 Change bound variable in a...
ditgpos 25764 Value of the directed inte...
ditgneg 25765 Value of the directed inte...
ditgcl 25766 Closure of a directed inte...
ditgswap 25767 Reverse a directed integra...
ditgsplitlem 25768 Lemma for ~ ditgsplit . (...
ditgsplit 25769 This theorem is the raison...
reldv 25778 The derivative function is...
limcvallem 25779 Lemma for ~ ellimc . (Con...
limcfval 25780 Value and set bounds on th...
ellimc 25781 Value of the limit predica...
limcrcl 25782 Reverse closure for the li...
limccl 25783 Closure of the limit opera...
limcdif 25784 It suffices to consider fu...
ellimc2 25785 Write the definition of a ...
limcnlp 25786 If ` B ` is not a limit po...
ellimc3 25787 Write the epsilon-delta de...
limcflflem 25788 Lemma for ~ limcflf . (Co...
limcflf 25789 The limit operator can be ...
limcmo 25790 If ` B ` is a limit point ...
limcmpt 25791 Express the limit operator...
limcmpt2 25792 Express the limit operator...
limcresi 25793 Any limit of ` F ` is also...
limcres 25794 If ` B ` is an interior po...
cnplimc 25795 A function is continuous a...
cnlimc 25796 ` F ` is a continuous func...
cnlimci 25797 If ` F ` is a continuous f...
cnmptlimc 25798 If ` F ` is a continuous f...
limccnp 25799 If the limit of ` F ` at `...
limccnp2 25800 The image of a convergent ...
limcco 25801 Composition of two limits....
limciun 25802 A point is a limit of ` F ...
limcun 25803 A point is a limit of ` F ...
dvlem 25804 Closure for a difference q...
dvfval 25805 Value and set bounds on th...
eldv 25806 The differentiable predica...
dvcl 25807 The derivative function ta...
dvbssntr 25808 The set of differentiable ...
dvbss 25809 The set of differentiable ...
dvbsss 25810 The set of differentiable ...
perfdvf 25811 The derivative is a functi...
recnprss 25812 Both ` RR ` and ` CC ` are...
recnperf 25813 Both ` RR ` and ` CC ` are...
dvfg 25814 Explicitly write out the f...
dvf 25815 The derivative is a functi...
dvfcn 25816 The derivative is a functi...
dvreslem 25817 Lemma for ~ dvres . (Cont...
dvres2lem 25818 Lemma for ~ dvres2 . (Con...
dvres 25819 Restriction of a derivativ...
dvres2 25820 Restriction of the base se...
dvres3 25821 Restriction of a complex d...
dvres3a 25822 Restriction of a complex d...
dvidlem 25823 Lemma for ~ dvid and ~ dvc...
dvmptresicc 25824 Derivative of a function r...
dvconst 25825 Derivative of a constant f...
dvid 25826 Derivative of the identity...
dvcnp 25827 The difference quotient is...
dvcnp2 25828 A function is continuous a...
dvcnp2OLD 25829 Obsolete version of ~ dvcn...
dvcn 25830 A differentiable function ...
dvnfval 25831 Value of the iterated deri...
dvnff 25832 The iterated derivative is...
dvn0 25833 Zero times iterated deriva...
dvnp1 25834 Successor iterated derivat...
dvn1 25835 One times iterated derivat...
dvnf 25836 The N-times derivative is ...
dvnbss 25837 The set of N-times differe...
dvnadd 25838 The ` N ` -th derivative o...
dvn2bss 25839 An N-times differentiable ...
dvnres 25840 Multiple derivative versio...
cpnfval 25841 Condition for n-times cont...
fncpn 25842 The ` C^n ` object is a fu...
elcpn 25843 Condition for n-times cont...
cpnord 25844 ` C^n ` conditions are ord...
cpncn 25845 A ` C^n ` function is cont...
cpnres 25846 The restriction of a ` C^n...
dvaddbr 25847 The sum rule for derivativ...
dvmulbr 25848 The product rule for deriv...
dvmulbrOLD 25849 Obsolete version of ~ dvmu...
dvadd 25850 The sum rule for derivativ...
dvmul 25851 The product rule for deriv...
dvaddf 25852 The sum rule for everywher...
dvmulf 25853 The product rule for every...
dvcmul 25854 The product rule when one ...
dvcmulf 25855 The product rule when one ...
dvcobr 25856 The chain rule for derivat...
dvcobrOLD 25857 Obsolete version of ~ dvco...
dvco 25858 The chain rule for derivat...
dvcof 25859 The chain rule for everywh...
dvcjbr 25860 The derivative of the conj...
dvcj 25861 The derivative of the conj...
dvfre 25862 The derivative of a real f...
dvnfre 25863 The ` N ` -th derivative o...
dvexp 25864 Derivative of a power func...
dvexp2 25865 Derivative of an exponenti...
dvrec 25866 Derivative of the reciproc...
dvmptres3 25867 Function-builder for deriv...
dvmptid 25868 Function-builder for deriv...
dvmptc 25869 Function-builder for deriv...
dvmptcl 25870 Closure lemma for ~ dvmptc...
dvmptadd 25871 Function-builder for deriv...
dvmptmul 25872 Function-builder for deriv...
dvmptres2 25873 Function-builder for deriv...
dvmptres 25874 Function-builder for deriv...
dvmptcmul 25875 Function-builder for deriv...
dvmptdivc 25876 Function-builder for deriv...
dvmptneg 25877 Function-builder for deriv...
dvmptsub 25878 Function-builder for deriv...
dvmptcj 25879 Function-builder for deriv...
dvmptre 25880 Function-builder for deriv...
dvmptim 25881 Function-builder for deriv...
dvmptntr 25882 Function-builder for deriv...
dvmptco 25883 Function-builder for deriv...
dvrecg 25884 Derivative of the reciproc...
dvmptdiv 25885 Function-builder for deriv...
dvmptfsum 25886 Function-builder for deriv...
dvcnvlem 25887 Lemma for ~ dvcnvre . (Co...
dvcnv 25888 A weak version of ~ dvcnvr...
dvexp3 25889 Derivative of an exponenti...
dveflem 25890 Derivative of the exponent...
dvef 25891 Derivative of the exponent...
dvsincos 25892 Derivative of the sine and...
dvsin 25893 Derivative of the sine fun...
dvcos 25894 Derivative of the cosine f...
dvferm1lem 25895 Lemma for ~ dvferm . (Con...
dvferm1 25896 One-sided version of ~ dvf...
dvferm2lem 25897 Lemma for ~ dvferm . (Con...
dvferm2 25898 One-sided version of ~ dvf...
dvferm 25899 Fermat's theorem on statio...
rollelem 25900 Lemma for ~ rolle . (Cont...
rolle 25901 Rolle's theorem. If ` F `...
cmvth 25902 Cauchy's Mean Value Theore...
cmvthOLD 25903 Obsolete version of ~ cmvt...
mvth 25904 The Mean Value Theorem. I...
dvlip 25905 A function with derivative...
dvlipcn 25906 A complex function with de...
dvlip2 25907 Combine the results of ~ d...
c1liplem1 25908 Lemma for ~ c1lip1 . (Con...
c1lip1 25909 C^1 functions are Lipschit...
c1lip2 25910 C^1 functions are Lipschit...
c1lip3 25911 C^1 functions are Lipschit...
dveq0 25912 If a continuous function h...
dv11cn 25913 Two functions defined on a...
dvgt0lem1 25914 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25915 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25916 A function on a closed int...
dvlt0 25917 A function on a closed int...
dvge0 25918 A function on a closed int...
dvle 25919 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25920 Lemma for ~ dvivth . (Con...
dvivthlem2 25921 Lemma for ~ dvivth . (Con...
dvivth 25922 Darboux' theorem, or the i...
dvne0 25923 A function on a closed int...
dvne0f1 25924 A function on a closed int...
lhop1lem 25925 Lemma for ~ lhop1 . (Cont...
lhop1 25926 L'Hôpital's Rule for...
lhop2 25927 L'Hôpital's Rule for...
lhop 25928 L'Hôpital's Rule. I...
dvcnvrelem1 25929 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25930 Lemma for ~ dvcnvre . (Co...
dvcnvre 25931 The derivative rule for in...
dvcvx 25932 A real function with stric...
dvfsumle 25933 Compare a finite sum to an...
dvfsumleOLD 25934 Obsolete version of ~ dvfs...
dvfsumge 25935 Compare a finite sum to an...
dvfsumabs 25936 Compare a finite sum to an...
dvmptrecl 25937 Real closure of a derivati...
dvfsumrlimf 25938 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25939 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25940 Lemma for ~ dvfsumrlim . ...
dvfsumlem2OLD 25941 Obsolete version of ~ dvfs...
dvfsumlem3 25942 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25943 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25944 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25945 Compare a finite sum to an...
dvfsumrlim2 25946 Compare a finite sum to an...
dvfsumrlim3 25947 Conjoin the statements of ...
dvfsum2 25948 The reverse of ~ dvfsumrli...
ftc1lem1 25949 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 25950 Lemma for ~ ftc1 . (Contr...
ftc1a 25951 The Fundamental Theorem of...
ftc1lem3 25952 Lemma for ~ ftc1 . (Contr...
ftc1lem4 25953 Lemma for ~ ftc1 . (Contr...
ftc1lem5 25954 Lemma for ~ ftc1 . (Contr...
ftc1lem6 25955 Lemma for ~ ftc1 . (Contr...
ftc1 25956 The Fundamental Theorem of...
ftc1cn 25957 Strengthen the assumptions...
ftc2 25958 The Fundamental Theorem of...
ftc2ditglem 25959 Lemma for ~ ftc2ditg . (C...
ftc2ditg 25960 Directed integral analogue...
itgparts 25961 Integration by parts. If ...
itgsubstlem 25962 Lemma for ~ itgsubst . (C...
itgsubst 25963 Integration by ` u ` -subs...
itgpowd 25964 The integral of a monomial...
reldmmdeg 25969 Multivariate degree is a b...
tdeglem1 25970 Functionality of the total...
tdeglem3 25971 Additivity of the total de...
tdeglem4 25972 There is only one multi-in...
tdeglem2 25973 Simplification of total de...
mdegfval 25974 Value of the multivariate ...
mdegval 25975 Value of the multivariate ...
mdegleb 25976 Property of being of limit...
mdeglt 25977 If there is an upper limit...
mdegldg 25978 A nonzero polynomial has s...
mdegxrcl 25979 Closure of polynomial degr...
mdegxrf 25980 Functionality of polynomia...
mdegcl 25981 Sharp closure for multivar...
mdeg0 25982 Degree of the zero polynom...
mdegnn0cl 25983 Degree of a nonzero polyno...
degltlem1 25984 Theorem on arithmetic of e...
degltp1le 25985 Theorem on arithmetic of e...
mdegaddle 25986 The degree of a sum is at ...
mdegvscale 25987 The degree of a scalar mul...
mdegvsca 25988 The degree of a scalar mul...
mdegle0 25989 A polynomial has nonpositi...
mdegmullem 25990 Lemma for ~ mdegmulle2 . ...
mdegmulle2 25991 The multivariate degree of...
deg1fval 25992 Relate univariate polynomi...
deg1xrf 25993 Functionality of univariat...
deg1xrcl 25994 Closure of univariate poly...
deg1cl 25995 Sharp closure of univariat...
mdegpropd 25996 Property deduction for pol...
deg1fvi 25997 Univariate polynomial degr...
deg1propd 25998 Property deduction for pol...
deg1z 25999 Degree of the zero univari...
deg1nn0cl 26000 Degree of a nonzero univar...
deg1n0ima 26001 Degree image of a set of p...
deg1nn0clb 26002 A polynomial is nonzero if...
deg1lt0 26003 A polynomial is zero iff i...
deg1ldg 26004 A nonzero univariate polyn...
deg1ldgn 26005 An index at which a polyno...
deg1ldgdomn 26006 A nonzero univariate polyn...
deg1leb 26007 Property of being of limit...
deg1val 26008 Value of the univariate de...
deg1lt 26009 If the degree of a univari...
deg1ge 26010 Conversely, a nonzero coef...
coe1mul3 26011 The coefficient vector of ...
coe1mul4 26012 Value of the "leading" coe...
deg1addle 26013 The degree of a sum is at ...
deg1addle2 26014 If both factors have degre...
deg1add 26015 Exact degree of a sum of t...
deg1vscale 26016 The degree of a scalar tim...
deg1vsca 26017 The degree of a scalar tim...
deg1invg 26018 The degree of the negated ...
deg1suble 26019 The degree of a difference...
deg1sub 26020 Exact degree of a differen...
deg1mulle2 26021 Produce a bound on the pro...
deg1sublt 26022 Subtraction of two polynom...
deg1le0 26023 A polynomial has nonpositi...
deg1sclle 26024 A scalar polynomial has no...
deg1scl 26025 A nonzero scalar polynomia...
deg1mul2 26026 Degree of multiplication o...
deg1mul 26027 Degree of multiplication o...
deg1mul3 26028 Degree of multiplication o...
deg1mul3le 26029 Degree of multiplication o...
deg1tmle 26030 Limiting degree of a polyn...
deg1tm 26031 Exact degree of a polynomi...
deg1pwle 26032 Limiting degree of a varia...
deg1pw 26033 Exact degree of a variable...
ply1nz 26034 Univariate polynomials ove...
ply1nzb 26035 Univariate polynomials are...
ply1domn 26036 Corollary of ~ deg1mul2 : ...
ply1idom 26037 The ring of univariate pol...
ply1divmo 26048 Uniqueness of a quotient i...
ply1divex 26049 Lemma for ~ ply1divalg : e...
ply1divalg 26050 The division algorithm for...
ply1divalg2 26051 Reverse the order of multi...
uc1pval 26052 Value of the set of unitic...
isuc1p 26053 Being a unitic polynomial....
mon1pval 26054 Value of the set of monic ...
ismon1p 26055 Being a monic polynomial. ...
uc1pcl 26056 Unitic polynomials are pol...
mon1pcl 26057 Monic polynomials are poly...
uc1pn0 26058 Unitic polynomials are not...
mon1pn0 26059 Monic polynomials are not ...
uc1pdeg 26060 Unitic polynomials have no...
uc1pldg 26061 Unitic polynomials have un...
mon1pldg 26062 Unitic polynomials have on...
mon1puc1p 26063 Monic polynomials are unit...
uc1pmon1p 26064 Make a unitic polynomial m...
deg1submon1p 26065 The difference of two moni...
mon1pid 26066 Monicity and degree of the...
q1pval 26067 Value of the univariate po...
q1peqb 26068 Characterizing property of...
q1pcl 26069 Closure of the quotient by...
r1pval 26070 Value of the polynomial re...
r1pcl 26071 Closure of remainder follo...
r1pdeglt 26072 The remainder has a degree...
r1pid 26073 Express the original polyn...
r1pid2 26074 Identity law for polynomia...
dvdsq1p 26075 Divisibility in a polynomi...
dvdsr1p 26076 Divisibility in a polynomi...
ply1remlem 26077 A term of the form ` x - N...
ply1rem 26078 The polynomial remainder t...
facth1 26079 The factor theorem and its...
fta1glem1 26080 Lemma for ~ fta1g . (Cont...
fta1glem2 26081 Lemma for ~ fta1g . (Cont...
fta1g 26082 The one-sided fundamental ...
fta1blem 26083 Lemma for ~ fta1b . (Cont...
fta1b 26084 The assumption that ` R ` ...
idomrootle 26085 No element of an integral ...
drnguc1p 26086 Over a division ring, all ...
ig1peu 26087 There is a unique monic po...
ig1pval 26088 Substitutions for the poly...
ig1pval2 26089 Generator of the zero idea...
ig1pval3 26090 Characterizing properties ...
ig1pcl 26091 The monic generator of an ...
ig1pdvds 26092 The monic generator of an ...
ig1prsp 26093 Any ideal of polynomials o...
ply1lpir 26094 The ring of polynomials ov...
ply1pid 26095 The polynomials over a fie...
plyco0 26104 Two ways to say that a fun...
plyval 26105 Value of the polynomial se...
plybss 26106 Reverse closure of the par...
elply 26107 Definition of a polynomial...
elply2 26108 The coefficient function c...
plyun0 26109 The set of polynomials is ...
plyf 26110 A polynomial is a function...
plyss 26111 The polynomial set functio...
plyssc 26112 Every polynomial ring is c...
elplyr 26113 Sufficient condition for e...
elplyd 26114 Sufficient condition for e...
ply1termlem 26115 Lemma for ~ ply1term . (C...
ply1term 26116 A one-term polynomial. (C...
plypow 26117 A power is a polynomial. ...
plyconst 26118 A constant function is a p...
ne0p 26119 A test to show that a poly...
ply0 26120 The zero function is a pol...
plyid 26121 The identity function is a...
plyeq0lem 26122 Lemma for ~ plyeq0 . If `...
plyeq0 26123 If a polynomial is zero at...
plypf1 26124 Write the set of complex p...
plyaddlem1 26125 Derive the coefficient fun...
plymullem1 26126 Derive the coefficient fun...
plyaddlem 26127 Lemma for ~ plyadd . (Con...
plymullem 26128 Lemma for ~ plymul . (Con...
plyadd 26129 The sum of two polynomials...
plymul 26130 The product of two polynom...
plysub 26131 The difference of two poly...
plyaddcl 26132 The sum of two polynomials...
plymulcl 26133 The product of two polynom...
plysubcl 26134 The difference of two poly...
coeval 26135 Value of the coefficient f...
coeeulem 26136 Lemma for ~ coeeu . (Cont...
coeeu 26137 Uniqueness of the coeffici...
coelem 26138 Lemma for properties of th...
coeeq 26139 If ` A ` satisfies the pro...
dgrval 26140 Value of the degree functi...
dgrlem 26141 Lemma for ~ dgrcl and simi...
coef 26142 The domain and codomain of...
coef2 26143 The domain and codomain of...
coef3 26144 The domain and codomain of...
dgrcl 26145 The degree of any polynomi...
dgrub 26146 If the ` M ` -th coefficie...
dgrub2 26147 All the coefficients above...
dgrlb 26148 If all the coefficients ab...
coeidlem 26149 Lemma for ~ coeid . (Cont...
coeid 26150 Reconstruct a polynomial a...
coeid2 26151 Reconstruct a polynomial a...
coeid3 26152 Reconstruct a polynomial a...
plyco 26153 The composition of two pol...
coeeq2 26154 Compute the coefficient fu...
dgrle 26155 Given an explicit expressi...
dgreq 26156 If the highest term in a p...
0dgr 26157 A constant function has de...
0dgrb 26158 A function has degree zero...
dgrnznn 26159 A nonzero polynomial with ...
coefv0 26160 The result of evaluating a...
coeaddlem 26161 Lemma for ~ coeadd and ~ d...
coemullem 26162 Lemma for ~ coemul and ~ d...
coeadd 26163 The coefficient function o...
coemul 26164 A coefficient of a product...
coe11 26165 The coefficient function i...
coemulhi 26166 The leading coefficient of...
coemulc 26167 The coefficient function i...
coe0 26168 The coefficients of the ze...
coesub 26169 The coefficient function o...
coe1termlem 26170 The coefficient function o...
coe1term 26171 The coefficient function o...
dgr1term 26172 The degree of a monomial. ...
plycn 26173 A polynomial is a continuo...
plycnOLD 26174 Obsolete version of ~ plyc...
dgr0 26175 The degree of the zero pol...
coeidp 26176 The coefficients of the id...
dgrid 26177 The degree of the identity...
dgreq0 26178 The leading coefficient of...
dgrlt 26179 Two ways to say that the d...
dgradd 26180 The degree of a sum of pol...
dgradd2 26181 The degree of a sum of pol...
dgrmul2 26182 The degree of a product of...
dgrmul 26183 The degree of a product of...
dgrmulc 26184 Scalar multiplication by a...
dgrsub 26185 The degree of a difference...
dgrcolem1 26186 The degree of a compositio...
dgrcolem2 26187 Lemma for ~ dgrco . (Cont...
dgrco 26188 The degree of a compositio...
plycjlem 26189 Lemma for ~ plycj and ~ co...
plycj 26190 The double conjugation of ...
coecj 26191 Double conjugation of a po...
plycjOLD 26192 Obsolete version of ~ plyc...
coecjOLD 26193 Obsolete version of ~ coec...
plyrecj 26194 A polynomial with real coe...
plymul0or 26195 Polynomial multiplication ...
ofmulrt 26196 The set of roots of a prod...
plyreres 26197 Real-coefficient polynomia...
dvply1 26198 Derivative of a polynomial...
dvply2g 26199 The derivative of a polyno...
dvply2gOLD 26200 Obsolete version of ~ dvpl...
dvply2 26201 The derivative of a polyno...
dvnply2 26202 Polynomials have polynomia...
dvnply 26203 Polynomials have polynomia...
plycpn 26204 Polynomials are smooth. (...
quotval 26207 Value of the quotient func...
plydivlem1 26208 Lemma for ~ plydivalg . (...
plydivlem2 26209 Lemma for ~ plydivalg . (...
plydivlem3 26210 Lemma for ~ plydivex . Ba...
plydivlem4 26211 Lemma for ~ plydivex . In...
plydivex 26212 Lemma for ~ plydivalg . (...
plydiveu 26213 Lemma for ~ plydivalg . (...
plydivalg 26214 The division algorithm on ...
quotlem 26215 Lemma for properties of th...
quotcl 26216 The quotient of two polyno...
quotcl2 26217 Closure of the quotient fu...
quotdgr 26218 Remainder property of the ...
plyremlem 26219 Closure of a linear factor...
plyrem 26220 The polynomial remainder t...
facth 26221 The factor theorem. If a ...
fta1lem 26222 Lemma for ~ fta1 . (Contr...
fta1 26223 The easy direction of the ...
quotcan 26224 Exact division with a mult...
vieta1lem1 26225 Lemma for ~ vieta1 . (Con...
vieta1lem2 26226 Lemma for ~ vieta1 : induc...
vieta1 26227 The first-order Vieta's fo...
plyexmo 26228 An infinite set of values ...
elaa 26231 Elementhood in the set of ...
aacn 26232 An algebraic number is a c...
aasscn 26233 The algebraic numbers are ...
elqaalem1 26234 Lemma for ~ elqaa . The f...
elqaalem2 26235 Lemma for ~ elqaa . (Cont...
elqaalem3 26236 Lemma for ~ elqaa . (Cont...
elqaa 26237 The set of numbers generat...
qaa 26238 Every rational number is a...
qssaa 26239 The rational numbers are c...
iaa 26240 The imaginary unit is alge...
aareccl 26241 The reciprocal of an algeb...
aacjcl 26242 The conjugate of an algebr...
aannenlem1 26243 Lemma for ~ aannen . (Con...
aannenlem2 26244 Lemma for ~ aannen . (Con...
aannenlem3 26245 The algebraic numbers are ...
aannen 26246 The algebraic numbers are ...
aalioulem1 26247 Lemma for ~ aaliou . An i...
aalioulem2 26248 Lemma for ~ aaliou . (Con...
aalioulem3 26249 Lemma for ~ aaliou . (Con...
aalioulem4 26250 Lemma for ~ aaliou . (Con...
aalioulem5 26251 Lemma for ~ aaliou . (Con...
aalioulem6 26252 Lemma for ~ aaliou . (Con...
aaliou 26253 Liouville's theorem on dio...
geolim3 26254 Geometric series convergen...
aaliou2 26255 Liouville's approximation ...
aaliou2b 26256 Liouville's approximation ...
aaliou3lem1 26257 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 26258 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 26259 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 26260 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 26261 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 26262 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 26263 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 26264 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 26265 Example of a "Liouville nu...
aaliou3 26266 Example of a "Liouville nu...
taylfvallem1 26271 Lemma for ~ taylfval . (C...
taylfvallem 26272 Lemma for ~ taylfval . (C...
taylfval 26273 Define the Taylor polynomi...
eltayl 26274 Value of the Taylor series...
taylf 26275 The Taylor series defines ...
tayl0 26276 The Taylor series is alway...
taylplem1 26277 Lemma for ~ taylpfval and ...
taylplem2 26278 Lemma for ~ taylpfval and ...
taylpfval 26279 Define the Taylor polynomi...
taylpf 26280 The Taylor polynomial is a...
taylpval 26281 Value of the Taylor polyno...
taylply2 26282 The Taylor polynomial is a...
taylply2OLD 26283 Obsolete version of ~ tayl...
taylply 26284 The Taylor polynomial is a...
dvtaylp 26285 The derivative of the Tayl...
dvntaylp 26286 The ` M ` -th derivative o...
dvntaylp0 26287 The first ` N ` derivative...
taylthlem1 26288 Lemma for ~ taylth . This...
taylthlem2 26289 Lemma for ~ taylth . (Con...
taylthlem2OLD 26290 Obsolete version of ~ tayl...
taylth 26291 Taylor's theorem. The Tay...
ulmrel 26294 The uniform limit relation...
ulmscl 26295 Closure of the base set in...
ulmval 26296 Express the predicate: Th...
ulmcl 26297 Closure of a uniform limit...
ulmf 26298 Closure of a uniform limit...
ulmpm 26299 Closure of a uniform limit...
ulmf2 26300 Closure of a uniform limit...
ulm2 26301 Simplify ~ ulmval when ` F...
ulmi 26302 The uniform limit property...
ulmclm 26303 A uniform limit of functio...
ulmres 26304 A sequence of functions co...
ulmshftlem 26305 Lemma for ~ ulmshft . (Co...
ulmshft 26306 A sequence of functions co...
ulm0 26307 Every function converges u...
ulmuni 26308 A sequence of functions un...
ulmdm 26309 Two ways to express that a...
ulmcaulem 26310 Lemma for ~ ulmcau and ~ u...
ulmcau 26311 A sequence of functions co...
ulmcau2 26312 A sequence of functions co...
ulmss 26313 A uniform limit of functio...
ulmbdd 26314 A uniform limit of bounded...
ulmcn 26315 A uniform limit of continu...
ulmdvlem1 26316 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 26317 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 26318 Lemma for ~ ulmdv . (Cont...
ulmdv 26319 If ` F ` is a sequence of ...
mtest 26320 The Weierstrass M-test. I...
mtestbdd 26321 Given the hypotheses of th...
mbfulm 26322 A uniform limit of measura...
iblulm 26323 A uniform limit of integra...
itgulm 26324 A uniform limit of integra...
itgulm2 26325 A uniform limit of integra...
pserval 26326 Value of the function ` G ...
pserval2 26327 Value of the function ` G ...
psergf 26328 The sequence of terms in t...
radcnvlem1 26329 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 26330 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 26331 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 26332 Zero is always a convergen...
radcnvcl 26333 The radius of convergence ...
radcnvlt1 26334 If ` X ` is within the ope...
radcnvlt2 26335 If ` X ` is within the ope...
radcnvle 26336 If ` X ` is a convergent p...
dvradcnv 26337 The radius of convergence ...
pserulm 26338 If ` S ` is a region conta...
psercn2 26339 Since by ~ pserulm the ser...
psercn2OLD 26340 Obsolete version of ~ pser...
psercnlem2 26341 Lemma for ~ psercn . (Con...
psercnlem1 26342 Lemma for ~ psercn . (Con...
psercn 26343 An infinite series converg...
pserdvlem1 26344 Lemma for ~ pserdv . (Con...
pserdvlem2 26345 Lemma for ~ pserdv . (Con...
pserdv 26346 The derivative of a power ...
pserdv2 26347 The derivative of a power ...
abelthlem1 26348 Lemma for ~ abelth . (Con...
abelthlem2 26349 Lemma for ~ abelth . The ...
abelthlem3 26350 Lemma for ~ abelth . (Con...
abelthlem4 26351 Lemma for ~ abelth . (Con...
abelthlem5 26352 Lemma for ~ abelth . (Con...
abelthlem6 26353 Lemma for ~ abelth . (Con...
abelthlem7a 26354 Lemma for ~ abelth . (Con...
abelthlem7 26355 Lemma for ~ abelth . (Con...
abelthlem8 26356 Lemma for ~ abelth . (Con...
abelthlem9 26357 Lemma for ~ abelth . By a...
abelth 26358 Abel's theorem. If the po...
abelth2 26359 Abel's theorem, restricted...
efcn 26360 The exponential function i...
sincn 26361 Sine is continuous. (Cont...
coscn 26362 Cosine is continuous. (Co...
reeff1olem 26363 Lemma for ~ reeff1o . (Co...
reeff1o 26364 The real exponential funct...
reefiso 26365 The exponential function o...
efcvx 26366 The exponential function o...
reefgim 26367 The exponential function i...
pilem1 26368 Lemma for ~ pire , ~ pigt2...
pilem2 26369 Lemma for ~ pire , ~ pigt2...
pilem3 26370 Lemma for ~ pire , ~ pigt2...
pigt2lt4 26371 ` _pi ` is between 2 and 4...
sinpi 26372 The sine of ` _pi ` is 0. ...
pire 26373 ` _pi ` is a real number. ...
picn 26374 ` _pi ` is a complex numbe...
pipos 26375 ` _pi ` is positive. (Con...
pine0 26376 ` _pi ` is nonzero. (Cont...
pirp 26377 ` _pi ` is a positive real...
negpicn 26378 ` -u _pi ` is a real numbe...
sinhalfpilem 26379 Lemma for ~ sinhalfpi and ...
halfpire 26380 ` _pi / 2 ` is real. (Con...
neghalfpire 26381 ` -u _pi / 2 ` is real. (...
neghalfpirx 26382 ` -u _pi / 2 ` is an exten...
pidiv2halves 26383 Adding ` _pi / 2 ` to itse...
sinhalfpi 26384 The sine of ` _pi / 2 ` is...
coshalfpi 26385 The cosine of ` _pi / 2 ` ...
cosneghalfpi 26386 The cosine of ` -u _pi / 2...
efhalfpi 26387 The exponential of ` _i _p...
cospi 26388 The cosine of ` _pi ` is `...
efipi 26389 The exponential of ` _i x....
eulerid 26390 Euler's identity. (Contri...
sin2pi 26391 The sine of ` 2 _pi ` is 0...
cos2pi 26392 The cosine of ` 2 _pi ` is...
ef2pi 26393 The exponential of ` 2 _pi...
ef2kpi 26394 If ` K ` is an integer, th...
efper 26395 The exponential function i...
sinperlem 26396 Lemma for ~ sinper and ~ c...
sinper 26397 The sine function is perio...
cosper 26398 The cosine function is per...
sin2kpi 26399 If ` K ` is an integer, th...
cos2kpi 26400 If ` K ` is an integer, th...
sin2pim 26401 Sine of a number subtracte...
cos2pim 26402 Cosine of a number subtrac...
sinmpi 26403 Sine of a number less ` _p...
cosmpi 26404 Cosine of a number less ` ...
sinppi 26405 Sine of a number plus ` _p...
cosppi 26406 Cosine of a number plus ` ...
efimpi 26407 The exponential function a...
sinhalfpip 26408 The sine of ` _pi / 2 ` pl...
sinhalfpim 26409 The sine of ` _pi / 2 ` mi...
coshalfpip 26410 The cosine of ` _pi / 2 ` ...
coshalfpim 26411 The cosine of ` _pi / 2 ` ...
ptolemy 26412 Ptolemy's Theorem. This t...
sincosq1lem 26413 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 26414 The signs of the sine and ...
sincosq2sgn 26415 The signs of the sine and ...
sincosq3sgn 26416 The signs of the sine and ...
sincosq4sgn 26417 The signs of the sine and ...
coseq00topi 26418 Location of the zeroes of ...
coseq0negpitopi 26419 Location of the zeroes of ...
tanrpcl 26420 Positive real closure of t...
tangtx 26421 The tangent function is gr...
tanabsge 26422 The tangent function is gr...
sinq12gt0 26423 The sine of a number stric...
sinq12ge0 26424 The sine of a number betwe...
sinq34lt0t 26425 The sine of a number stric...
cosq14gt0 26426 The cosine of a number str...
cosq14ge0 26427 The cosine of a number bet...
sincosq1eq 26428 Complementarity of the sin...
sincos4thpi 26429 The sine and cosine of ` _...
tan4thpi 26430 The tangent of ` _pi / 4 `...
tan4thpiOLD 26431 Obsolete version of ~ tan4...
sincos6thpi 26432 The sine and cosine of ` _...
sincos3rdpi 26433 The sine and cosine of ` _...
pigt3 26434 ` _pi ` is greater than 3....
pige3 26435 ` _pi ` is greater than or...
pige3ALT 26436 Alternate proof of ~ pige3...
abssinper 26437 The absolute value of sine...
sinkpi 26438 The sine of an integer mul...
coskpi 26439 The absolute value of the ...
sineq0 26440 A complex number whose sin...
coseq1 26441 A complex number whose cos...
cos02pilt1 26442 Cosine is less than one be...
cosq34lt1 26443 Cosine is less than one in...
efeq1 26444 A complex number whose exp...
cosne0 26445 The cosine function has no...
cosordlem 26446 Lemma for ~ cosord . (Con...
cosord 26447 Cosine is decreasing over ...
cos0pilt1 26448 Cosine is between minus on...
cos11 26449 Cosine is one-to-one over ...
sinord 26450 Sine is increasing over th...
recosf1o 26451 The cosine function is a b...
resinf1o 26452 The sine function is a bij...
tanord1 26453 The tangent function is st...
tanord 26454 The tangent function is st...
tanregt0 26455 The real part of the tange...
negpitopissre 26456 The interval ` ( -u _pi (,...
efgh 26457 The exponential function o...
efif1olem1 26458 Lemma for ~ efif1o . (Con...
efif1olem2 26459 Lemma for ~ efif1o . (Con...
efif1olem3 26460 Lemma for ~ efif1o . (Con...
efif1olem4 26461 The exponential function o...
efif1o 26462 The exponential function o...
efifo 26463 The exponential function o...
eff1olem 26464 The exponential function m...
eff1o 26465 The exponential function m...
efabl 26466 The image of a subgroup of...
efsubm 26467 The image of a subgroup of...
circgrp 26468 The circle group ` T ` is ...
circsubm 26469 The circle group ` T ` is ...
logrn 26474 The range of the natural l...
ellogrn 26475 Write out the property ` A...
dflog2 26476 The natural logarithm func...
relogrn 26477 The range of the natural l...
logrncn 26478 The range of the natural l...
eff1o2 26479 The exponential function r...
logf1o 26480 The natural logarithm func...
dfrelog 26481 The natural logarithm func...
relogf1o 26482 The natural logarithm func...
logrncl 26483 Closure of the natural log...
logcl 26484 Closure of the natural log...
logimcl 26485 Closure of the imaginary p...
logcld 26486 The logarithm of a nonzero...
logimcld 26487 The imaginary part of the ...
logimclad 26488 The imaginary part of the ...
abslogimle 26489 The imaginary part of the ...
logrnaddcl 26490 The range of the natural l...
relogcl 26491 Closure of the natural log...
eflog 26492 Relationship between the n...
logeq0im1 26493 If the logarithm of a numb...
logccne0 26494 The logarithm isn't 0 if i...
logne0 26495 Logarithm of a non-1 posit...
reeflog 26496 Relationship between the n...
logef 26497 Relationship between the n...
relogef 26498 Relationship between the n...
logeftb 26499 Relationship between the n...
relogeftb 26500 Relationship between the n...
log1 26501 The natural logarithm of `...
loge 26502 The natural logarithm of `...
logi 26503 The natural logarithm of `...
logneg 26504 The natural logarithm of a...
logm1 26505 The natural logarithm of n...
lognegb 26506 If a number has imaginary ...
relogoprlem 26507 Lemma for ~ relogmul and ~...
relogmul 26508 The natural logarithm of t...
relogdiv 26509 The natural logarithm of t...
explog 26510 Exponentiation of a nonzer...
reexplog 26511 Exponentiation of a positi...
relogexp 26512 The natural logarithm of p...
relog 26513 Real part of a logarithm. ...
relogiso 26514 The natural logarithm func...
reloggim 26515 The natural logarithm is a...
logltb 26516 The natural logarithm func...
logfac 26517 The logarithm of a factori...
eflogeq 26518 Solve an equation involvin...
logleb 26519 Natural logarithm preserve...
rplogcl 26520 Closure of the logarithm f...
logge0 26521 The logarithm of a number ...
logcj 26522 The natural logarithm dist...
efiarg 26523 The exponential of the "ar...
cosargd 26524 The cosine of the argument...
cosarg0d 26525 The cosine of the argument...
argregt0 26526 Closure of the argument of...
argrege0 26527 Closure of the argument of...
argimgt0 26528 Closure of the argument of...
argimlt0 26529 Closure of the argument of...
logimul 26530 Multiplying a number by ` ...
logneg2 26531 The logarithm of the negat...
logmul2 26532 Generalization of ~ relogm...
logdiv2 26533 Generalization of ~ relogd...
abslogle 26534 Bound on the magnitude of ...
tanarg 26535 The basic relation between...
logdivlti 26536 The ` log x / x ` function...
logdivlt 26537 The ` log x / x ` function...
logdivle 26538 The ` log x / x ` function...
relogcld 26539 Closure of the natural log...
reeflogd 26540 Relationship between the n...
relogmuld 26541 The natural logarithm of t...
relogdivd 26542 The natural logarithm of t...
logled 26543 Natural logarithm preserve...
relogefd 26544 Relationship between the n...
rplogcld 26545 Closure of the logarithm f...
logge0d 26546 The logarithm of a number ...
logge0b 26547 The logarithm of a number ...
loggt0b 26548 The logarithm of a number ...
logle1b 26549 The logarithm of a number ...
loglt1b 26550 The logarithm of a number ...
divlogrlim 26551 The inverse logarithm func...
logno1 26552 The logarithm function is ...
dvrelog 26553 The derivative of the real...
relogcn 26554 The real logarithm functio...
ellogdm 26555 Elementhood in the "contin...
logdmn0 26556 A number in the continuous...
logdmnrp 26557 A number in the continuous...
logdmss 26558 The continuity domain of `...
logcnlem2 26559 Lemma for ~ logcn . (Cont...
logcnlem3 26560 Lemma for ~ logcn . (Cont...
logcnlem4 26561 Lemma for ~ logcn . (Cont...
logcnlem5 26562 Lemma for ~ logcn . (Cont...
logcn 26563 The logarithm function is ...
dvloglem 26564 Lemma for ~ dvlog . (Cont...
logdmopn 26565 The "continuous domain" of...
logf1o2 26566 The logarithm maps its con...
dvlog 26567 The derivative of the comp...
dvlog2lem 26568 Lemma for ~ dvlog2 . (Con...
dvlog2 26569 The derivative of the comp...
advlog 26570 The antiderivative of the ...
advlogexp 26571 The antiderivative of a po...
efopnlem1 26572 Lemma for ~ efopn . (Cont...
efopnlem2 26573 Lemma for ~ efopn . (Cont...
efopn 26574 The exponential map is an ...
logtayllem 26575 Lemma for ~ logtayl . (Co...
logtayl 26576 The Taylor series for ` -u...
logtaylsum 26577 The Taylor series for ` -u...
logtayl2 26578 Power series expression fo...
logccv 26579 The natural logarithm func...
cxpval 26580 Value of the complex power...
cxpef 26581 Value of the complex power...
0cxp 26582 Value of the complex power...
cxpexpz 26583 Relate the complex power f...
cxpexp 26584 Relate the complex power f...
logcxp 26585 Logarithm of a complex pow...
cxp0 26586 Value of the complex power...
cxp1 26587 Value of the complex power...
1cxp 26588 Value of the complex power...
ecxp 26589 Write the exponential func...
cxpcl 26590 Closure of the complex pow...
recxpcl 26591 Real closure of the comple...
rpcxpcl 26592 Positive real closure of t...
cxpne0 26593 Complex exponentiation is ...
cxpeq0 26594 Complex exponentiation is ...
cxpadd 26595 Sum of exponents law for c...
cxpp1 26596 Value of a nonzero complex...
cxpneg 26597 Value of a complex number ...
cxpsub 26598 Exponent subtraction law f...
cxpge0 26599 Nonnegative exponentiation...
mulcxplem 26600 Lemma for ~ mulcxp . (Con...
mulcxp 26601 Complex exponentiation of ...
cxprec 26602 Complex exponentiation of ...
divcxp 26603 Complex exponentiation of ...
cxpmul 26604 Product of exponents law f...
cxpmul2 26605 Product of exponents law f...
cxproot 26606 The complex power function...
cxpmul2z 26607 Generalize ~ cxpmul2 to ne...
abscxp 26608 Absolute value of a power,...
abscxp2 26609 Absolute value of a power,...
cxplt 26610 Ordering property for comp...
cxple 26611 Ordering property for comp...
cxplea 26612 Ordering property for comp...
cxple2 26613 Ordering property for comp...
cxplt2 26614 Ordering property for comp...
cxple2a 26615 Ordering property for comp...
cxplt3 26616 Ordering property for comp...
cxple3 26617 Ordering property for comp...
cxpsqrtlem 26618 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 26619 The complex exponential fu...
logsqrt 26620 Logarithm of a square root...
cxp0d 26621 Value of the complex power...
cxp1d 26622 Value of the complex power...
1cxpd 26623 Value of the complex power...
cxpcld 26624 Closure of the complex pow...
cxpmul2d 26625 Product of exponents law f...
0cxpd 26626 Value of the complex power...
cxpexpzd 26627 Relate the complex power f...
cxpefd 26628 Value of the complex power...
cxpne0d 26629 Complex exponentiation is ...
cxpp1d 26630 Value of a nonzero complex...
cxpnegd 26631 Value of a complex number ...
cxpmul2zd 26632 Generalize ~ cxpmul2 to ne...
cxpaddd 26633 Sum of exponents law for c...
cxpsubd 26634 Exponent subtraction law f...
cxpltd 26635 Ordering property for comp...
cxpled 26636 Ordering property for comp...
cxplead 26637 Ordering property for comp...
divcxpd 26638 Complex exponentiation of ...
recxpcld 26639 Positive real closure of t...
cxpge0d 26640 Nonnegative exponentiation...
cxple2ad 26641 Ordering property for comp...
cxplt2d 26642 Ordering property for comp...
cxple2d 26643 Ordering property for comp...
mulcxpd 26644 Complex exponentiation of ...
recxpf1lem 26645 Complex exponentiation on ...
cxpsqrtth 26646 Square root theorem over t...
2irrexpq 26647 There exist irrational num...
cxprecd 26648 Complex exponentiation of ...
rpcxpcld 26649 Positive real closure of t...
logcxpd 26650 Logarithm of a complex pow...
cxplt3d 26651 Ordering property for comp...
cxple3d 26652 Ordering property for comp...
cxpmuld 26653 Product of exponents law f...
cxpgt0d 26654 A positive real raised to ...
cxpcom 26655 Commutative law for real e...
dvcxp1 26656 The derivative of a comple...
dvcxp2 26657 The derivative of a comple...
dvsqrt 26658 The derivative of the real...
dvcncxp1 26659 Derivative of complex powe...
dvcnsqrt 26660 Derivative of square root ...
cxpcn 26661 Domain of continuity of th...
cxpcnOLD 26662 Obsolete version of ~ cxpc...
cxpcn2 26663 Continuity of the complex ...
cxpcn3lem 26664 Lemma for ~ cxpcn3 . (Con...
cxpcn3 26665 Extend continuity of the c...
resqrtcn 26666 Continuity of the real squ...
sqrtcn 26667 Continuity of the square r...
cxpaddlelem 26668 Lemma for ~ cxpaddle . (C...
cxpaddle 26669 Ordering property for comp...
abscxpbnd 26670 Bound on the absolute valu...
root1id 26671 Property of an ` N ` -th r...
root1eq1 26672 The only powers of an ` N ...
root1cj 26673 Within the ` N ` -th roots...
cxpeq 26674 Solve an equation involvin...
zrtelqelz 26675 If the ` N ` -th root of a...
zrtdvds 26676 A positive integer root di...
rtprmirr 26677 The root of a prime number...
loglesqrt 26678 An upper bound on the loga...
logreclem 26679 Symmetry of the natural lo...
logrec 26680 Logarithm of a reciprocal ...
logbval 26683 Define the value of the ` ...
logbcl 26684 General logarithm closure....
logbid1 26685 General logarithm is 1 whe...
logb1 26686 The logarithm of ` 1 ` to ...
elogb 26687 The general logarithm of a...
logbchbase 26688 Change of base for logarit...
relogbval 26689 Value of the general logar...
relogbcl 26690 Closure of the general log...
relogbzcl 26691 Closure of the general log...
relogbreexp 26692 Power law for the general ...
relogbzexp 26693 Power law for the general ...
relogbmul 26694 The logarithm of the produ...
relogbmulexp 26695 The logarithm of the produ...
relogbdiv 26696 The logarithm of the quoti...
relogbexp 26697 Identity law for general l...
nnlogbexp 26698 Identity law for general l...
logbrec 26699 Logarithm of a reciprocal ...
logbleb 26700 The general logarithm func...
logblt 26701 The general logarithm func...
relogbcxp 26702 Identity law for the gener...
cxplogb 26703 Identity law for the gener...
relogbcxpb 26704 The logarithm is the inver...
logbmpt 26705 The general logarithm to a...
logbf 26706 The general logarithm to a...
logbfval 26707 The general logarithm of a...
relogbf 26708 The general logarithm to a...
logblog 26709 The general logarithm to t...
logbgt0b 26710 The logarithm of a positiv...
logbgcd1irr 26711 The logarithm of an intege...
2logb9irr 26712 Example for ~ logbgcd1irr ...
logbprmirr 26713 The logarithm of a prime t...
2logb3irr 26714 Example for ~ logbprmirr ....
2logb9irrALT 26715 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 26716 The square root of two to ...
2irrexpqALT 26717 Alternate proof of ~ 2irre...
angval 26718 Define the angle function,...
angcan 26719 Cancel a constant multipli...
angneg 26720 Cancel a negative sign in ...
angvald 26721 The (signed) angle between...
angcld 26722 The (signed) angle between...
angrteqvd 26723 Two vectors are at a right...
cosangneg2d 26724 The cosine of the angle be...
angrtmuld 26725 Perpendicularity of two ve...
ang180lem1 26726 Lemma for ~ ang180 . Show...
ang180lem2 26727 Lemma for ~ ang180 . Show...
ang180lem3 26728 Lemma for ~ ang180 . Sinc...
ang180lem4 26729 Lemma for ~ ang180 . Redu...
ang180lem5 26730 Lemma for ~ ang180 : Redu...
ang180 26731 The sum of angles ` m A B ...
lawcoslem1 26732 Lemma for ~ lawcos . Here...
lawcos 26733 Law of cosines (also known...
pythag 26734 Pythagorean theorem. Give...
isosctrlem1 26735 Lemma for ~ isosctr . (Co...
isosctrlem2 26736 Lemma for ~ isosctr . Cor...
isosctrlem3 26737 Lemma for ~ isosctr . Cor...
isosctr 26738 Isosceles triangle theorem...
ssscongptld 26739 If two triangles have equa...
affineequiv 26740 Equivalence between two wa...
affineequiv2 26741 Equivalence between two wa...
affineequiv3 26742 Equivalence between two wa...
affineequiv4 26743 Equivalence between two wa...
affineequivne 26744 Equivalence between two wa...
angpieqvdlem 26745 Equivalence used in the pr...
angpieqvdlem2 26746 Equivalence used in ~ angp...
angpined 26747 If the angle at ABC is ` _...
angpieqvd 26748 The angle ABC is ` _pi ` i...
chordthmlem 26749 If ` M ` is the midpoint o...
chordthmlem2 26750 If M is the midpoint of AB...
chordthmlem3 26751 If M is the midpoint of AB...
chordthmlem4 26752 If P is on the segment AB ...
chordthmlem5 26753 If P is on the segment AB ...
chordthm 26754 The intersecting chords th...
heron 26755 Heron's formula gives the ...
quad2 26756 The quadratic equation, wi...
quad 26757 The quadratic equation. (...
1cubrlem 26758 The cube roots of unity. ...
1cubr 26759 The cube roots of unity. ...
dcubic1lem 26760 Lemma for ~ dcubic1 and ~ ...
dcubic2 26761 Reverse direction of ~ dcu...
dcubic1 26762 Forward direction of ~ dcu...
dcubic 26763 Solutions to the depressed...
mcubic 26764 Solutions to a monic cubic...
cubic2 26765 The solution to the genera...
cubic 26766 The cubic equation, which ...
binom4 26767 Work out a quartic binomia...
dquartlem1 26768 Lemma for ~ dquart . (Con...
dquartlem2 26769 Lemma for ~ dquart . (Con...
dquart 26770 Solve a depressed quartic ...
quart1cl 26771 Closure lemmas for ~ quart...
quart1lem 26772 Lemma for ~ quart1 . (Con...
quart1 26773 Depress a quartic equation...
quartlem1 26774 Lemma for ~ quart . (Cont...
quartlem2 26775 Closure lemmas for ~ quart...
quartlem3 26776 Closure lemmas for ~ quart...
quartlem4 26777 Closure lemmas for ~ quart...
quart 26778 The quartic equation, writ...
asinlem 26785 The argument to the logari...
asinlem2 26786 The argument to the logari...
asinlem3a 26787 Lemma for ~ asinlem3 . (C...
asinlem3 26788 The argument to the logari...
asinf 26789 Domain and codomain of the...
asincl 26790 Closure for the arcsin fun...
acosf 26791 Domain and codoamin of the...
acoscl 26792 Closure for the arccos fun...
atandm 26793 Since the property is a li...
atandm2 26794 This form of ~ atandm is a...
atandm3 26795 A compact form of ~ atandm...
atandm4 26796 A compact form of ~ atandm...
atanf 26797 Domain and codoamin of the...
atancl 26798 Closure for the arctan fun...
asinval 26799 Value of the arcsin functi...
acosval 26800 Value of the arccos functi...
atanval 26801 Value of the arctan functi...
atanre 26802 A real number is in the do...
asinneg 26803 The arcsine function is od...
acosneg 26804 The negative symmetry rela...
efiasin 26805 The exponential of the arc...
sinasin 26806 The arcsine function is an...
cosacos 26807 The arccosine function is ...
asinsinlem 26808 Lemma for ~ asinsin . (Co...
asinsin 26809 The arcsine function compo...
acoscos 26810 The arccosine function is ...
asin1 26811 The arcsine of ` 1 ` is ` ...
acos1 26812 The arccosine of ` 1 ` is ...
reasinsin 26813 The arcsine function compo...
asinsinb 26814 Relationship between sine ...
acoscosb 26815 Relationship between cosin...
asinbnd 26816 The arcsine function has r...
acosbnd 26817 The arccosine function has...
asinrebnd 26818 Bounds on the arcsine func...
asinrecl 26819 The arcsine function is re...
acosrecl 26820 The arccosine function is ...
cosasin 26821 The cosine of the arcsine ...
sinacos 26822 The sine of the arccosine ...
atandmneg 26823 The domain of the arctange...
atanneg 26824 The arctangent function is...
atan0 26825 The arctangent of zero is ...
atandmcj 26826 The arctangent function di...
atancj 26827 The arctangent function di...
atanrecl 26828 The arctangent function is...
efiatan 26829 Value of the exponential o...
atanlogaddlem 26830 Lemma for ~ atanlogadd . ...
atanlogadd 26831 The rule ` sqrt ( z w ) = ...
atanlogsublem 26832 Lemma for ~ atanlogsub . ...
atanlogsub 26833 A variation on ~ atanlogad...
efiatan2 26834 Value of the exponential o...
2efiatan 26835 Value of the exponential o...
tanatan 26836 The arctangent function is...
atandmtan 26837 The tangent function has r...
cosatan 26838 The cosine of an arctangen...
cosatanne0 26839 The arctangent function ha...
atantan 26840 The arctangent function is...
atantanb 26841 Relationship between tange...
atanbndlem 26842 Lemma for ~ atanbnd . (Co...
atanbnd 26843 The arctangent function is...
atanord 26844 The arctangent function is...
atan1 26845 The arctangent of ` 1 ` is...
bndatandm 26846 A point in the open unit d...
atans 26847 The "domain of continuity"...
atans2 26848 It suffices to show that `...
atansopn 26849 The domain of continuity o...
atansssdm 26850 The domain of continuity o...
ressatans 26851 The real number line is a ...
dvatan 26852 The derivative of the arct...
atancn 26853 The arctangent is a contin...
atantayl 26854 The Taylor series for ` ar...
atantayl2 26855 The Taylor series for ` ar...
atantayl3 26856 The Taylor series for ` ar...
leibpilem1 26857 Lemma for ~ leibpi . (Con...
leibpilem2 26858 The Leibniz formula for ` ...
leibpi 26859 The Leibniz formula for ` ...
leibpisum 26860 The Leibniz formula for ` ...
log2cnv 26861 Using the Taylor series fo...
log2tlbnd 26862 Bound the error term in th...
log2ublem1 26863 Lemma for ~ log2ub . The ...
log2ublem2 26864 Lemma for ~ log2ub . (Con...
log2ublem3 26865 Lemma for ~ log2ub . In d...
log2ub 26866 ` log 2 ` is less than ` 2...
log2le1 26867 ` log 2 ` is less than ` 1...
birthdaylem1 26868 Lemma for ~ birthday . (C...
birthdaylem2 26869 For general ` N ` and ` K ...
birthdaylem3 26870 For general ` N ` and ` K ...
birthday 26871 The Birthday Problem. The...
dmarea 26874 The domain of the area fun...
areambl 26875 The fibers of a measurable...
areass 26876 A measurable region is a s...
dfarea 26877 Rewrite ~ df-area self-ref...
areaf 26878 Area measurement is a func...
areacl 26879 The area of a measurable r...
areage0 26880 The area of a measurable r...
areaval 26881 The area of a measurable r...
rlimcnp 26882 Relate a limit of a real-v...
rlimcnp2 26883 Relate a limit of a real-v...
rlimcnp3 26884 Relate a limit of a real-v...
xrlimcnp 26885 Relate a limit of a real-v...
efrlim 26886 The limit of the sequence ...
efrlimOLD 26887 Obsolete version of ~ efrl...
dfef2 26888 The limit of the sequence ...
cxplim 26889 A power to a negative expo...
sqrtlim 26890 The inverse square root fu...
rlimcxp 26891 Any power to a positive ex...
o1cxp 26892 An eventually bounded func...
cxp2limlem 26893 A linear factor grows slow...
cxp2lim 26894 Any power grows slower tha...
cxploglim 26895 The logarithm grows slower...
cxploglim2 26896 Every power of the logarit...
divsqrtsumlem 26897 Lemma for ~ divsqrsum and ...
divsqrsumf 26898 The function ` F ` used in...
divsqrsum 26899 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26900 A bound on the distance of...
divsqrtsumo1 26901 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26902 Closure of a 0-1 linear co...
scvxcvx 26903 A strictly convex function...
jensenlem1 26904 Lemma for ~ jensen . (Con...
jensenlem2 26905 Lemma for ~ jensen . (Con...
jensen 26906 Jensen's inequality, a fin...
amgmlem 26907 Lemma for ~ amgm . (Contr...
amgm 26908 Inequality of arithmetic a...
logdifbnd 26911 Bound on the difference of...
logdiflbnd 26912 Lower bound on the differe...
emcllem1 26913 Lemma for ~ emcl . The se...
emcllem2 26914 Lemma for ~ emcl . ` F ` i...
emcllem3 26915 Lemma for ~ emcl . The fu...
emcllem4 26916 Lemma for ~ emcl . The di...
emcllem5 26917 Lemma for ~ emcl . The pa...
emcllem6 26918 Lemma for ~ emcl . By the...
emcllem7 26919 Lemma for ~ emcl and ~ har...
emcl 26920 Closure and bounds for the...
harmonicbnd 26921 A bound on the harmonic se...
harmonicbnd2 26922 A bound on the harmonic se...
emre 26923 The Euler-Mascheroni const...
emgt0 26924 The Euler-Mascheroni const...
harmonicbnd3 26925 A bound on the harmonic se...
harmoniclbnd 26926 A bound on the harmonic se...
harmonicubnd 26927 A bound on the harmonic se...
harmonicbnd4 26928 The asymptotic behavior of...
fsumharmonic 26929 Bound a finite sum based o...
zetacvg 26932 The zeta series is converg...
eldmgm 26939 Elementhood in the set of ...
dmgmaddn0 26940 If ` A ` is not a nonposit...
dmlogdmgm 26941 If ` A ` is in the continu...
rpdmgm 26942 A positive real number is ...
dmgmn0 26943 If ` A ` is not a nonposit...
dmgmaddnn0 26944 If ` A ` is not a nonposit...
dmgmdivn0 26945 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26946 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26947 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26948 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26949 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26950 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26951 The series ` G ` is unifor...
lgamgulm 26952 The series ` G ` is unifor...
lgamgulm2 26953 Rewrite the limit of the s...
lgambdd 26954 The log-Gamma function is ...
lgamucov 26955 The ` U ` regions used in ...
lgamucov2 26956 The ` U ` regions used in ...
lgamcvglem 26957 Lemma for ~ lgamf and ~ lg...
lgamcl 26958 The log-Gamma function is ...
lgamf 26959 The log-Gamma function is ...
gamf 26960 The Gamma function is a co...
gamcl 26961 The exponential of the log...
eflgam 26962 The exponential of the log...
gamne0 26963 The Gamma function is neve...
igamval 26964 Value of the inverse Gamma...
igamz 26965 Value of the inverse Gamma...
igamgam 26966 Value of the inverse Gamma...
igamlgam 26967 Value of the inverse Gamma...
igamf 26968 Closure of the inverse Gam...
igamcl 26969 Closure of the inverse Gam...
gamigam 26970 The Gamma function is the ...
lgamcvg 26971 The series ` G ` converges...
lgamcvg2 26972 The series ` G ` converges...
gamcvg 26973 The pointwise exponential ...
lgamp1 26974 The functional equation of...
gamp1 26975 The functional equation of...
gamcvg2lem 26976 Lemma for ~ gamcvg2 . (Co...
gamcvg2 26977 An infinite product expres...
regamcl 26978 The Gamma function is real...
relgamcl 26979 The log-Gamma function is ...
rpgamcl 26980 The log-Gamma function is ...
lgam1 26981 The log-Gamma function at ...
gam1 26982 The log-Gamma function at ...
facgam 26983 The Gamma function general...
gamfac 26984 The Gamma function general...
wilthlem1 26985 The only elements that are...
wilthlem2 26986 Lemma for ~ wilth : induct...
wilthlem3 26987 Lemma for ~ wilth . Here ...
wilth 26988 Wilson's theorem. A numbe...
wilthimp 26989 The forward implication of...
ftalem1 26990 Lemma for ~ fta : "growth...
ftalem2 26991 Lemma for ~ fta . There e...
ftalem3 26992 Lemma for ~ fta . There e...
ftalem4 26993 Lemma for ~ fta : Closure...
ftalem5 26994 Lemma for ~ fta : Main pr...
ftalem6 26995 Lemma for ~ fta : Dischar...
ftalem7 26996 Lemma for ~ fta . Shift t...
fta 26997 The Fundamental Theorem of...
basellem1 26998 Lemma for ~ basel . Closu...
basellem2 26999 Lemma for ~ basel . Show ...
basellem3 27000 Lemma for ~ basel . Using...
basellem4 27001 Lemma for ~ basel . By ~ ...
basellem5 27002 Lemma for ~ basel . Using...
basellem6 27003 Lemma for ~ basel . The f...
basellem7 27004 Lemma for ~ basel . The f...
basellem8 27005 Lemma for ~ basel . The f...
basellem9 27006 Lemma for ~ basel . Since...
basel 27007 The sum of the inverse squ...
efnnfsumcl 27020 Finite sum closure in the ...
ppisval 27021 The set of primes less tha...
ppisval2 27022 The set of primes less tha...
ppifi 27023 The set of primes less tha...
prmdvdsfi 27024 The set of prime divisors ...
chtf 27025 Domain and codoamin of the...
chtcl 27026 Real closure of the Chebys...
chtval 27027 Value of the Chebyshev fun...
efchtcl 27028 The Chebyshev function is ...
chtge0 27029 The Chebyshev function is ...
vmaval 27030 Value of the von Mangoldt ...
isppw 27031 Two ways to say that ` A `...
isppw2 27032 Two ways to say that ` A `...
vmappw 27033 Value of the von Mangoldt ...
vmaprm 27034 Value of the von Mangoldt ...
vmacl 27035 Closure for the von Mangol...
vmaf 27036 Functionality of the von M...
efvmacl 27037 The von Mangoldt is closed...
vmage0 27038 The von Mangoldt function ...
chpval 27039 Value of the second Chebys...
chpf 27040 Functionality of the secon...
chpcl 27041 Closure for the second Che...
efchpcl 27042 The second Chebyshev funct...
chpge0 27043 The second Chebyshev funct...
ppival 27044 Value of the prime-countin...
ppival2 27045 Value of the prime-countin...
ppival2g 27046 Value of the prime-countin...
ppif 27047 Domain and codomain of the...
ppicl 27048 Real closure of the prime-...
muval 27049 The value of the Möbi...
muval1 27050 The value of the Möbi...
muval2 27051 The value of the Möbi...
isnsqf 27052 Two ways to say that a num...
issqf 27053 Two ways to say that a num...
sqfpc 27054 The prime count of a squar...
dvdssqf 27055 A divisor of a squarefree ...
sqf11 27056 A squarefree number is com...
muf 27057 The Möbius function i...
mucl 27058 Closure of the Möbius...
sgmval 27059 The value of the divisor f...
sgmval2 27060 The value of the divisor f...
0sgm 27061 The value of the sum-of-di...
sgmf 27062 The divisor function is a ...
sgmcl 27063 Closure of the divisor fun...
sgmnncl 27064 Closure of the divisor fun...
mule1 27065 The Möbius function t...
chtfl 27066 The Chebyshev function doe...
chpfl 27067 The second Chebyshev funct...
ppiprm 27068 The prime-counting functio...
ppinprm 27069 The prime-counting functio...
chtprm 27070 The Chebyshev function at ...
chtnprm 27071 The Chebyshev function at ...
chpp1 27072 The second Chebyshev funct...
chtwordi 27073 The Chebyshev function is ...
chpwordi 27074 The second Chebyshev funct...
chtdif 27075 The difference of the Cheb...
efchtdvds 27076 The exponentiated Chebyshe...
ppifl 27077 The prime-counting functio...
ppip1le 27078 The prime-counting functio...
ppiwordi 27079 The prime-counting functio...
ppidif 27080 The difference of the prim...
ppi1 27081 The prime-counting functio...
cht1 27082 The Chebyshev function at ...
vma1 27083 The von Mangoldt function ...
chp1 27084 The second Chebyshev funct...
ppi1i 27085 Inference form of ~ ppiprm...
ppi2i 27086 Inference form of ~ ppinpr...
ppi2 27087 The prime-counting functio...
ppi3 27088 The prime-counting functio...
cht2 27089 The Chebyshev function at ...
cht3 27090 The Chebyshev function at ...
ppinncl 27091 Closure of the prime-count...
chtrpcl 27092 Closure of the Chebyshev f...
ppieq0 27093 The prime-counting functio...
ppiltx 27094 The prime-counting functio...
prmorcht 27095 Relate the primorial (prod...
mumullem1 27096 Lemma for ~ mumul . A mul...
mumullem2 27097 Lemma for ~ mumul . The p...
mumul 27098 The Möbius function i...
sqff1o 27099 There is a bijection from ...
fsumdvdsdiaglem 27100 A "diagonal commutation" o...
fsumdvdsdiag 27101 A "diagonal commutation" o...
fsumdvdscom 27102 A double commutation of di...
dvdsppwf1o 27103 A bijection between the di...
dvdsflf1o 27104 A bijection from the numbe...
dvdsflsumcom 27105 A sum commutation from ` s...
fsumfldivdiaglem 27106 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 27107 The right-hand side of ~ d...
musum 27108 The sum of the Möbius...
musumsum 27109 Evaluate a collapsing sum ...
muinv 27110 The Möbius inversion ...
mpodvdsmulf1o 27111 If ` M ` and ` N ` are two...
fsumdvdsmul 27112 Product of two divisor sum...
dvdsmulf1o 27113 If ` M ` and ` N ` are two...
fsumdvdsmulOLD 27114 Obsolete version of ~ fsum...
sgmppw 27115 The value of the divisor f...
0sgmppw 27116 A prime power ` P ^ K ` ha...
1sgmprm 27117 The sum of divisors for a ...
1sgm2ppw 27118 The sum of the divisors of...
sgmmul 27119 The divisor function for f...
ppiublem1 27120 Lemma for ~ ppiub . (Cont...
ppiublem2 27121 A prime greater than ` 3 `...
ppiub 27122 An upper bound on the prim...
vmalelog 27123 The von Mangoldt function ...
chtlepsi 27124 The first Chebyshev functi...
chprpcl 27125 Closure of the second Cheb...
chpeq0 27126 The second Chebyshev funct...
chteq0 27127 The first Chebyshev functi...
chtleppi 27128 Upper bound on the ` theta...
chtublem 27129 Lemma for ~ chtub . (Cont...
chtub 27130 An upper bound on the Cheb...
fsumvma 27131 Rewrite a sum over the von...
fsumvma2 27132 Apply ~ fsumvma for the co...
pclogsum 27133 The logarithmic analogue o...
vmasum 27134 The sum of the von Mangold...
logfac2 27135 Another expression for the...
chpval2 27136 Express the second Chebysh...
chpchtsum 27137 The second Chebyshev funct...
chpub 27138 An upper bound on the seco...
logfacubnd 27139 A simple upper bound on th...
logfaclbnd 27140 A lower bound on the logar...
logfacbnd3 27141 Show the stronger statemen...
logfacrlim 27142 Combine the estimates ~ lo...
logexprlim 27143 The sum ` sum_ n <_ x , lo...
logfacrlim2 27144 Write out ~ logfacrlim as ...
mersenne 27145 A Mersenne prime is a prim...
perfect1 27146 Euclid's contribution to t...
perfectlem1 27147 Lemma for ~ perfect . (Co...
perfectlem2 27148 Lemma for ~ perfect . (Co...
perfect 27149 The Euclid-Euler theorem, ...
dchrval 27152 Value of the group of Diri...
dchrbas 27153 Base set of the group of D...
dchrelbas 27154 A Dirichlet character is a...
dchrelbas2 27155 A Dirichlet character is a...
dchrelbas3 27156 A Dirichlet character is a...
dchrelbasd 27157 A Dirichlet character is a...
dchrrcl 27158 Reverse closure for a Diri...
dchrmhm 27159 A Dirichlet character is a...
dchrf 27160 A Dirichlet character is a...
dchrelbas4 27161 A Dirichlet character is a...
dchrzrh1 27162 Value of a Dirichlet chara...
dchrzrhcl 27163 A Dirichlet character take...
dchrzrhmul 27164 A Dirichlet character is c...
dchrplusg 27165 Group operation on the gro...
dchrmul 27166 Group operation on the gro...
dchrmulcl 27167 Closure of the group opera...
dchrn0 27168 A Dirichlet character is n...
dchr1cl 27169 Closure of the principal D...
dchrmullid 27170 Left identity for the prin...
dchrinvcl 27171 Closure of the group inver...
dchrabl 27172 The set of Dirichlet chara...
dchrfi 27173 The group of Dirichlet cha...
dchrghm 27174 A Dirichlet character rest...
dchr1 27175 Value of the principal Dir...
dchreq 27176 A Dirichlet character is d...
dchrresb 27177 A Dirichlet character is d...
dchrabs 27178 A Dirichlet character take...
dchrinv 27179 The inverse of a Dirichlet...
dchrabs2 27180 A Dirichlet character take...
dchr1re 27181 The principal Dirichlet ch...
dchrptlem1 27182 Lemma for ~ dchrpt . (Con...
dchrptlem2 27183 Lemma for ~ dchrpt . (Con...
dchrptlem3 27184 Lemma for ~ dchrpt . (Con...
dchrpt 27185 For any element other than...
dchrsum2 27186 An orthogonality relation ...
dchrsum 27187 An orthogonality relation ...
sumdchr2 27188 Lemma for ~ sumdchr . (Co...
dchrhash 27189 There are exactly ` phi ( ...
sumdchr 27190 An orthogonality relation ...
dchr2sum 27191 An orthogonality relation ...
sum2dchr 27192 An orthogonality relation ...
bcctr 27193 Value of the central binom...
pcbcctr 27194 Prime count of a central b...
bcmono 27195 The binomial coefficient i...
bcmax 27196 The binomial coefficient t...
bcp1ctr 27197 Ratio of two central binom...
bclbnd 27198 A bound on the binomial co...
efexple 27199 Convert a bound on a power...
bpos1lem 27200 Lemma for ~ bpos1 . (Cont...
bpos1 27201 Bertrand's postulate, chec...
bposlem1 27202 An upper bound on the prim...
bposlem2 27203 There are no odd primes in...
bposlem3 27204 Lemma for ~ bpos . Since ...
bposlem4 27205 Lemma for ~ bpos . (Contr...
bposlem5 27206 Lemma for ~ bpos . Bound ...
bposlem6 27207 Lemma for ~ bpos . By usi...
bposlem7 27208 Lemma for ~ bpos . The fu...
bposlem8 27209 Lemma for ~ bpos . Evalua...
bposlem9 27210 Lemma for ~ bpos . Derive...
bpos 27211 Bertrand's postulate: ther...
zabsle1 27214 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 27215 When ` a ` is coprime to t...
lgslem2 27216 The set ` Z ` of all integ...
lgslem3 27217 The set ` Z ` of all integ...
lgslem4 27218 Lemma for ~ lgsfcl2 . (Co...
lgsval 27219 Value of the Legendre symb...
lgsfval 27220 Value of the function ` F ...
lgsfcl2 27221 The function ` F ` is clos...
lgscllem 27222 The Legendre symbol is an ...
lgsfcl 27223 Closure of the function ` ...
lgsfle1 27224 The function ` F ` has mag...
lgsval2lem 27225 Lemma for ~ lgsval2 . (Co...
lgsval4lem 27226 Lemma for ~ lgsval4 . (Co...
lgscl2 27227 The Legendre symbol is an ...
lgs0 27228 The Legendre symbol when t...
lgscl 27229 The Legendre symbol is an ...
lgsle1 27230 The Legendre symbol has ab...
lgsval2 27231 The Legendre symbol at a p...
lgs2 27232 The Legendre symbol at ` 2...
lgsval3 27233 The Legendre symbol at an ...
lgsvalmod 27234 The Legendre symbol is equ...
lgsval4 27235 Restate ~ lgsval for nonze...
lgsfcl3 27236 Closure of the function ` ...
lgsval4a 27237 Same as ~ lgsval4 for posi...
lgscl1 27238 The value of the Legendre ...
lgsneg 27239 The Legendre symbol is eit...
lgsneg1 27240 The Legendre symbol for no...
lgsmod 27241 The Legendre (Jacobi) symb...
lgsdilem 27242 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 27243 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 27244 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 27245 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 27246 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 27247 Lemma for ~ lgsdir2 . (Co...
lgsdir2 27248 The Legendre symbol is com...
lgsdirprm 27249 The Legendre symbol is com...
lgsdir 27250 The Legendre symbol is com...
lgsdilem2 27251 Lemma for ~ lgsdi . (Cont...
lgsdi 27252 The Legendre symbol is com...
lgsne0 27253 The Legendre symbol is non...
lgsabs1 27254 The Legendre symbol is non...
lgssq 27255 The Legendre symbol at a s...
lgssq2 27256 The Legendre symbol at a s...
lgsprme0 27257 The Legendre symbol at any...
1lgs 27258 The Legendre symbol at ` 1...
lgs1 27259 The Legendre symbol at ` 1...
lgsmodeq 27260 The Legendre (Jacobi) symb...
lgsmulsqcoprm 27261 The Legendre (Jacobi) symb...
lgsdirnn0 27262 Variation on ~ lgsdir vali...
lgsdinn0 27263 Variation on ~ lgsdi valid...
lgsqrlem1 27264 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 27265 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 27266 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 27267 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 27268 Lemma for ~ lgsqr . (Cont...
lgsqr 27269 The Legendre symbol for od...
lgsqrmod 27270 If the Legendre symbol of ...
lgsqrmodndvds 27271 If the Legendre symbol of ...
lgsdchrval 27272 The Legendre symbol functi...
lgsdchr 27273 The Legendre symbol functi...
gausslemma2dlem0a 27274 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 27275 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 27276 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 27277 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 27278 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 27279 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 27280 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 27281 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 27282 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 27283 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 27284 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 27285 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 27286 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 27287 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 27288 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 27289 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 27290 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 27291 Lemma 7 for ~ gausslemma2d...
gausslemma2d 27292 Gauss' Lemma (see also the...
lgseisenlem1 27293 Lemma for ~ lgseisen . If...
lgseisenlem2 27294 Lemma for ~ lgseisen . Th...
lgseisenlem3 27295 Lemma for ~ lgseisen . (C...
lgseisenlem4 27296 Lemma for ~ lgseisen . (C...
lgseisen 27297 Eisenstein's lemma, an exp...
lgsquadlem1 27298 Lemma for ~ lgsquad . Cou...
lgsquadlem2 27299 Lemma for ~ lgsquad . Cou...
lgsquadlem3 27300 Lemma for ~ lgsquad . (Co...
lgsquad 27301 The Law of Quadratic Recip...
lgsquad2lem1 27302 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 27303 Lemma for ~ lgsquad2 . (C...
lgsquad2 27304 Extend ~ lgsquad to coprim...
lgsquad3 27305 Extend ~ lgsquad2 to integ...
m1lgs 27306 The first supplement to th...
2lgslem1a1 27307 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 27308 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 27309 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 27310 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 27311 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 27312 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 27313 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 27314 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 27315 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 27316 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 27317 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 27318 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 27319 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 27320 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 27321 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 27322 Lemma 3 for ~ 2lgs . (Con...
2lgs2 27323 The Legendre symbol for ` ...
2lgslem4 27324 Lemma 4 for ~ 2lgs : speci...
2lgs 27325 The second supplement to t...
2lgsoddprmlem1 27326 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 27327 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 27328 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 27329 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 27330 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 27331 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 27332 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 27333 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 27334 The second supplement to t...
2sqlem1 27335 Lemma for ~ 2sq . (Contri...
2sqlem2 27336 Lemma for ~ 2sq . (Contri...
mul2sq 27337 Fibonacci's identity (actu...
2sqlem3 27338 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 27339 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 27340 Lemma for ~ 2sq . If a nu...
2sqlem6 27341 Lemma for ~ 2sq . If a nu...
2sqlem7 27342 Lemma for ~ 2sq . (Contri...
2sqlem8a 27343 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 27344 Lemma for ~ 2sq . (Contri...
2sqlem9 27345 Lemma for ~ 2sq . (Contri...
2sqlem10 27346 Lemma for ~ 2sq . Every f...
2sqlem11 27347 Lemma for ~ 2sq . (Contri...
2sq 27348 All primes of the form ` 4...
2sqblem 27349 Lemma for ~ 2sqb . (Contr...
2sqb 27350 The converse to ~ 2sq . (...
2sq2 27351 ` 2 ` is the sum of square...
2sqn0 27352 If the sum of two squares ...
2sqcoprm 27353 If the sum of two squares ...
2sqmod 27354 Given two decompositions o...
2sqmo 27355 There exists at most one d...
2sqnn0 27356 All primes of the form ` 4...
2sqnn 27357 All primes of the form ` 4...
addsq2reu 27358 For each complex number ` ...
addsqn2reu 27359 For each complex number ` ...
addsqrexnreu 27360 For each complex number, t...
addsqnreup 27361 There is no unique decompo...
addsq2nreurex 27362 For each complex number ` ...
addsqn2reurex2 27363 For each complex number ` ...
2sqreulem1 27364 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 27365 Lemma for ~ 2sqreult . (C...
2sqreultblem 27366 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 27367 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 27368 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 27369 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 27370 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 27371 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 27372 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 27373 Lemma 2 for ~ 2sqreunn . ...
2sqreu 27374 There exists a unique deco...
2sqreunn 27375 There exists a unique deco...
2sqreult 27376 There exists a unique deco...
2sqreultb 27377 There exists a unique deco...
2sqreunnlt 27378 There exists a unique deco...
2sqreunnltb 27379 There exists a unique deco...
2sqreuop 27380 There exists a unique deco...
2sqreuopnn 27381 There exists a unique deco...
2sqreuoplt 27382 There exists a unique deco...
2sqreuopltb 27383 There exists a unique deco...
2sqreuopnnlt 27384 There exists a unique deco...
2sqreuopnnltb 27385 There exists a unique deco...
2sqreuopb 27386 There exists a unique deco...
chebbnd1lem1 27387 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 27388 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 27389 Lemma for ~ chebbnd1 : get...
chebbnd1 27390 The Chebyshev bound: The ...
chtppilimlem1 27391 Lemma for ~ chtppilim . (...
chtppilimlem2 27392 Lemma for ~ chtppilim . (...
chtppilim 27393 The ` theta ` function is ...
chto1ub 27394 The ` theta ` function is ...
chebbnd2 27395 The Chebyshev bound, part ...
chto1lb 27396 The ` theta ` function is ...
chpchtlim 27397 The ` psi ` and ` theta ` ...
chpo1ub 27398 The ` psi ` function is up...
chpo1ubb 27399 The ` psi ` function is up...
vmadivsum 27400 The sum of the von Mangold...
vmadivsumb 27401 Give a total bound on the ...
rplogsumlem1 27402 Lemma for ~ rplogsum . (C...
rplogsumlem2 27403 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 27404 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 27405 Lemma for ~ rpvmasum . Ca...
dchrisumlema 27406 Lemma for ~ dchrisum . Le...
dchrisumlem1 27407 Lemma for ~ dchrisum . Le...
dchrisumlem2 27408 Lemma for ~ dchrisum . Le...
dchrisumlem3 27409 Lemma for ~ dchrisum . Le...
dchrisum 27410 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 27411 Lemma for ~ dchrmusum and ...
dchrmusum2 27412 The sum of the Möbius...
dchrvmasumlem1 27413 An alternative expression ...
dchrvmasum2lem 27414 Give an expression for ` l...
dchrvmasum2if 27415 Combine the results of ~ d...
dchrvmasumlem2 27416 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 27417 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 27418 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 27419 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 27420 Lemma for ~ dchrvmasum . ...
dchrvmasumif 27421 An asymptotic approximatio...
dchrvmaeq0 27422 The set ` W ` is the colle...
dchrisum0fval 27423 Value of the function ` F ...
dchrisum0fmul 27424 The function ` F ` , the d...
dchrisum0ff 27425 The function ` F ` is a re...
dchrisum0flblem1 27426 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 27427 Lemma for ~ dchrisum0flb ....
dchrisum0flb 27428 The divisor sum of a real ...
dchrisum0fno1 27429 The sum ` sum_ k <_ x , F ...
rpvmasum2 27430 A partial result along the...
dchrisum0re 27431 Suppose ` X ` is a non-pri...
dchrisum0lema 27432 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 27433 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 27434 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 27435 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 27436 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 27437 Lemma for ~ dchrisum0 . (...
dchrisum0 27438 The sum ` sum_ n e. NN , X...
dchrisumn0 27439 The sum ` sum_ n e. NN , X...
dchrmusumlem 27440 The sum of the Möbius...
dchrvmasumlem 27441 The sum of the Möbius...
dchrmusum 27442 The sum of the Möbius...
dchrvmasum 27443 The sum of the von Mangold...
rpvmasum 27444 The sum of the von Mangold...
rplogsum 27445 The sum of ` log p / p ` o...
dirith2 27446 Dirichlet's theorem: there...
dirith 27447 Dirichlet's theorem: there...
mudivsum 27448 Asymptotic formula for ` s...
mulogsumlem 27449 Lemma for ~ mulogsum . (C...
mulogsum 27450 Asymptotic formula for ...
logdivsum 27451 Asymptotic analysis of ...
mulog2sumlem1 27452 Asymptotic formula for ...
mulog2sumlem2 27453 Lemma for ~ mulog2sum . (...
mulog2sumlem3 27454 Lemma for ~ mulog2sum . (...
mulog2sum 27455 Asymptotic formula for ...
vmalogdivsum2 27456 The sum ` sum_ n <_ x , La...
vmalogdivsum 27457 The sum ` sum_ n <_ x , La...
2vmadivsumlem 27458 Lemma for ~ 2vmadivsum . ...
2vmadivsum 27459 The sum ` sum_ m n <_ x , ...
logsqvma 27460 A formula for ` log ^ 2 ( ...
logsqvma2 27461 The Möbius inverse of...
log2sumbnd 27462 Bound on the difference be...
selberglem1 27463 Lemma for ~ selberg . Est...
selberglem2 27464 Lemma for ~ selberg . (Co...
selberglem3 27465 Lemma for ~ selberg . Est...
selberg 27466 Selberg's symmetry formula...
selbergb 27467 Convert eventual boundedne...
selberg2lem 27468 Lemma for ~ selberg2 . Eq...
selberg2 27469 Selberg's symmetry formula...
selberg2b 27470 Convert eventual boundedne...
chpdifbndlem1 27471 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 27472 Lemma for ~ chpdifbnd . (...
chpdifbnd 27473 A bound on the difference ...
logdivbnd 27474 A bound on a sum of logs, ...
selberg3lem1 27475 Introduce a log weighting ...
selberg3lem2 27476 Lemma for ~ selberg3 . Eq...
selberg3 27477 Introduce a log weighting ...
selberg4lem1 27478 Lemma for ~ selberg4 . Eq...
selberg4 27479 The Selberg symmetry formu...
pntrval 27480 Define the residual of the...
pntrf 27481 Functionality of the resid...
pntrmax 27482 There is a bound on the re...
pntrsumo1 27483 A bound on a sum over ` R ...
pntrsumbnd 27484 A bound on a sum over ` R ...
pntrsumbnd2 27485 A bound on a sum over ` R ...
selbergr 27486 Selberg's symmetry formula...
selberg3r 27487 Selberg's symmetry formula...
selberg4r 27488 Selberg's symmetry formula...
selberg34r 27489 The sum of ~ selberg3r and...
pntsval 27490 Define the "Selberg functi...
pntsf 27491 Functionality of the Selbe...
selbergs 27492 Selberg's symmetry formula...
selbergsb 27493 Selberg's symmetry formula...
pntsval2 27494 The Selberg function can b...
pntrlog2bndlem1 27495 The sum of ~ selberg3r and...
pntrlog2bndlem2 27496 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 27497 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 27498 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 27499 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 27500 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 27501 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 27502 A bound on ` R ( x ) log ^...
pntpbnd1a 27503 Lemma for ~ pntpbnd . (Co...
pntpbnd1 27504 Lemma for ~ pntpbnd . (Co...
pntpbnd2 27505 Lemma for ~ pntpbnd . (Co...
pntpbnd 27506 Lemma for ~ pnt . Establi...
pntibndlem1 27507 Lemma for ~ pntibnd . (Co...
pntibndlem2a 27508 Lemma for ~ pntibndlem2 . ...
pntibndlem2 27509 Lemma for ~ pntibnd . The...
pntibndlem3 27510 Lemma for ~ pntibnd . Pac...
pntibnd 27511 Lemma for ~ pnt . Establi...
pntlemd 27512 Lemma for ~ pnt . Closure...
pntlemc 27513 Lemma for ~ pnt . Closure...
pntlema 27514 Lemma for ~ pnt . Closure...
pntlemb 27515 Lemma for ~ pnt . Unpack ...
pntlemg 27516 Lemma for ~ pnt . Closure...
pntlemh 27517 Lemma for ~ pnt . Bounds ...
pntlemn 27518 Lemma for ~ pnt . The "na...
pntlemq 27519 Lemma for ~ pntlemj . (Co...
pntlemr 27520 Lemma for ~ pntlemj . (Co...
pntlemj 27521 Lemma for ~ pnt . The ind...
pntlemi 27522 Lemma for ~ pnt . Elimina...
pntlemf 27523 Lemma for ~ pnt . Add up ...
pntlemk 27524 Lemma for ~ pnt . Evaluat...
pntlemo 27525 Lemma for ~ pnt . Combine...
pntleme 27526 Lemma for ~ pnt . Package...
pntlem3 27527 Lemma for ~ pnt . Equatio...
pntlemp 27528 Lemma for ~ pnt . Wrappin...
pntleml 27529 Lemma for ~ pnt . Equatio...
pnt3 27530 The Prime Number Theorem, ...
pnt2 27531 The Prime Number Theorem, ...
pnt 27532 The Prime Number Theorem: ...
abvcxp 27533 Raising an absolute value ...
padicfval 27534 Value of the p-adic absolu...
padicval 27535 Value of the p-adic absolu...
ostth2lem1 27536 Lemma for ~ ostth2 , altho...
qrngbas 27537 The base set of the field ...
qdrng 27538 The rationals form a divis...
qrng0 27539 The zero element of the fi...
qrng1 27540 The unity element of the f...
qrngneg 27541 The additive inverse in th...
qrngdiv 27542 The division operation in ...
qabvle 27543 By using induction on ` N ...
qabvexp 27544 Induct the product rule ~ ...
ostthlem1 27545 Lemma for ~ ostth . If tw...
ostthlem2 27546 Lemma for ~ ostth . Refin...
qabsabv 27547 The regular absolute value...
padicabv 27548 The p-adic absolute value ...
padicabvf 27549 The p-adic absolute value ...
padicabvcxp 27550 All positive powers of the...
ostth1 27551 - Lemma for ~ ostth : triv...
ostth2lem2 27552 Lemma for ~ ostth2 . (Con...
ostth2lem3 27553 Lemma for ~ ostth2 . (Con...
ostth2lem4 27554 Lemma for ~ ostth2 . (Con...
ostth2 27555 - Lemma for ~ ostth : regu...
ostth3 27556 - Lemma for ~ ostth : p-ad...
ostth 27557 Ostrowski's theorem, which...
elno 27564 Membership in the surreals...
elnoOLD 27565 Obsolete version of ~ elno...
sltval 27566 The value of the surreal l...
bdayval 27567 The value of the birthday ...
nofun 27568 A surreal is a function. ...
nodmon 27569 The domain of a surreal is...
norn 27570 The range of a surreal is ...
nofnbday 27571 A surreal is a function ov...
nodmord 27572 The domain of a surreal ha...
elno2 27573 An alternative condition f...
elno3 27574 Another condition for memb...
sltval2 27575 Alternate expression for s...
nofv 27576 The function value of a su...
nosgnn0 27577 ` (/) ` is not a surreal s...
nosgnn0i 27578 If ` X ` is a surreal sign...
noreson 27579 The restriction of a surre...
sltintdifex 27580 If ` A
sltres 27581 If the restrictions of two...
noxp1o 27582 The Cartesian product of a...
noseponlem 27583 Lemma for ~ nosepon . Con...
nosepon 27584 Given two unequal surreals...
noextend 27585 Extending a surreal by one...
noextendseq 27586 Extend a surreal by a sequ...
noextenddif 27587 Calculate the place where ...
noextendlt 27588 Extending a surreal with a...
noextendgt 27589 Extending a surreal with a...
nolesgn2o 27590 Given ` A ` less-than or e...
nolesgn2ores 27591 Given ` A ` less-than or e...
nogesgn1o 27592 Given ` A ` greater than o...
nogesgn1ores 27593 Given ` A ` greater than o...
sltsolem1 27594 Lemma for ~ sltso . The "...
sltso 27595 Less-than totally orders t...
bdayfo 27596 The birthday function maps...
fvnobday 27597 The value of a surreal at ...
nosepnelem 27598 Lemma for ~ nosepne . (Co...
nosepne 27599 The value of two non-equal...
nosep1o 27600 If the value of a surreal ...
nosep2o 27601 If the value of a surreal ...
nosepdmlem 27602 Lemma for ~ nosepdm . (Co...
nosepdm 27603 The first place two surrea...
nosepeq 27604 The values of two surreals...
nosepssdm 27605 Given two non-equal surrea...
nodenselem4 27606 Lemma for ~ nodense . Sho...
nodenselem5 27607 Lemma for ~ nodense . If ...
nodenselem6 27608 The restriction of a surre...
nodenselem7 27609 Lemma for ~ nodense . ` A ...
nodenselem8 27610 Lemma for ~ nodense . Giv...
nodense 27611 Given two distinct surreal...
bdayimaon 27612 Lemma for full-eta propert...
nolt02olem 27613 Lemma for ~ nolt02o . If ...
nolt02o 27614 Given ` A ` less-than ` B ...
nogt01o 27615 Given ` A ` greater than `...
noresle 27616 Restriction law for surrea...
nomaxmo 27617 A class of surreals has at...
nominmo 27618 A class of surreals has at...
nosupprefixmo 27619 In any class of surreals, ...
noinfprefixmo 27620 In any class of surreals, ...
nosupcbv 27621 Lemma to change bound vari...
nosupno 27622 The next several theorems ...
nosupdm 27623 The domain of the surreal ...
nosupbday 27624 Birthday bounding law for ...
nosupfv 27625 The value of surreal supre...
nosupres 27626 A restriction law for surr...
nosupbnd1lem1 27627 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 27628 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 27629 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 27630 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 27631 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 27632 Lemma for ~ nosupbnd1 . E...
nosupbnd1 27633 Bounding law from below fo...
nosupbnd2lem1 27634 Bounding law from above wh...
nosupbnd2 27635 Bounding law from above fo...
noinfcbv 27636 Change bound variables for...
noinfno 27637 The next several theorems ...
noinfdm 27638 Next, we calculate the dom...
noinfbday 27639 Birthday bounding law for ...
noinffv 27640 The value of surreal infim...
noinfres 27641 The restriction of surreal...
noinfbnd1lem1 27642 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 27643 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 27644 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 27645 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 27646 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 27647 Lemma for ~ noinfbnd1 . E...
noinfbnd1 27648 Bounding law from above fo...
noinfbnd2lem1 27649 Bounding law from below wh...
noinfbnd2 27650 Bounding law from below fo...
nosupinfsep 27651 Given two sets of surreals...
noetasuplem1 27652 Lemma for ~ noeta . Estab...
noetasuplem2 27653 Lemma for ~ noeta . The r...
noetasuplem3 27654 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 27655 Lemma for ~ noeta . When ...
noetainflem1 27656 Lemma for ~ noeta . Estab...
noetainflem2 27657 Lemma for ~ noeta . The r...
noetainflem3 27658 Lemma for ~ noeta . ` W ` ...
noetainflem4 27659 Lemma for ~ noeta . If ` ...
noetalem1 27660 Lemma for ~ noeta . Eithe...
noetalem2 27661 Lemma for ~ noeta . The f...
noeta 27662 The full-eta axiom for the...
sltirr 27665 Surreal less-than is irref...
slttr 27666 Surreal less-than is trans...
sltasym 27667 Surreal less-than is asymm...
sltlin 27668 Surreal less-than obeys tr...
slttrieq2 27669 Trichotomy law for surreal...
slttrine 27670 Trichotomy law for surreal...
slenlt 27671 Surreal less-than or equal...
sltnle 27672 Surreal less-than in terms...
sleloe 27673 Surreal less-than or equal...
sletri3 27674 Trichotomy law for surreal...
sltletr 27675 Surreal transitive law. (...
slelttr 27676 Surreal transitive law. (...
sletr 27677 Surreal transitive law. (...
slttrd 27678 Surreal less-than is trans...
sltletrd 27679 Surreal less-than is trans...
slelttrd 27680 Surreal less-than is trans...
sletrd 27681 Surreal less-than or equal...
slerflex 27682 Surreal less-than or equal...
sletric 27683 Surreal trichotomy law. (...
maxs1 27684 A surreal is less than or ...
maxs2 27685 A surreal is less than or ...
mins1 27686 The minimum of two surreal...
mins2 27687 The minimum of two surreal...
sltled 27688 Surreal less-than implies ...
sltne 27689 Surreal less-than implies ...
sltlend 27690 Surreal less-than in terms...
bdayfun 27691 The birthday function is a...
bdayfn 27692 The birthday function is a...
bdaydm 27693 The birthday function's do...
bdayrn 27694 The birthday function's ra...
bdayelon 27695 The value of the birthday ...
nocvxminlem 27696 Lemma for ~ nocvxmin . Gi...
nocvxmin 27697 Given a nonempty convex cl...
noprc 27698 The surreal numbers are a ...
noeta2 27703 A version of ~ noeta with ...
brsslt 27704 Binary relation form of th...
ssltex1 27705 The first argument of surr...
ssltex2 27706 The second argument of sur...
ssltss1 27707 The first argument of surr...
ssltss2 27708 The second argument of sur...
ssltsep 27709 The separation property of...
ssltd 27710 Deduce surreal set less-th...
ssltsn 27711 Surreal set less-than of t...
ssltsepc 27712 Two elements of separated ...
ssltsepcd 27713 Two elements of separated ...
sssslt1 27714 Relation between surreal s...
sssslt2 27715 Relation between surreal s...
nulsslt 27716 The empty set is less-than...
nulssgt 27717 The empty set is greater t...
conway 27718 Conway's Simplicity Theore...
scutval 27719 The value of the surreal c...
scutcut 27720 Cut properties of the surr...
scutcl 27721 Closure law for surreal cu...
scutcld 27722 Closure law for surreal cu...
scutbday 27723 The birthday of the surrea...
eqscut 27724 Condition for equality to ...
eqscut2 27725 Condition for equality to ...
sslttr 27726 Transitive law for surreal...
ssltun1 27727 Union law for surreal set ...
ssltun2 27728 Union law for surreal set ...
scutun12 27729 Union law for surreal cuts...
dmscut 27730 The domain of the surreal ...
scutf 27731 Functionality statement fo...
etasslt 27732 A restatement of ~ noeta u...
etasslt2 27733 A version of ~ etasslt wit...
scutbdaybnd 27734 An upper bound on the birt...
scutbdaybnd2 27735 An upper bound on the birt...
scutbdaybnd2lim 27736 An upper bound on the birt...
scutbdaylt 27737 If a surreal lies in a gap...
slerec 27738 A comparison law for surre...
sltrec 27739 A comparison law for surre...
ssltdisj 27740 If ` A ` preceeds ` B ` , ...
0sno 27745 Surreal zero is a surreal....
1sno 27746 Surreal one is a surreal. ...
bday0s 27747 Calculate the birthday of ...
0slt1s 27748 Surreal zero is less than ...
bday0b 27749 The only surreal with birt...
bday1s 27750 The birthday of surreal on...
cuteq0 27751 Condition for a surreal cu...
cutneg 27752 The simplest number greate...
cuteq1 27753 Condition for a surreal cu...
sgt0ne0 27754 A positive surreal is not ...
sgt0ne0d 27755 A positive surreal is not ...
1sne0s 27756 Surreal zero does not equa...
madeval 27767 The value of the made by f...
madeval2 27768 Alternative characterizati...
oldval 27769 The value of the old optio...
newval 27770 The value of the new optio...
madef 27771 The made function is a fun...
oldf 27772 The older function is a fu...
newf 27773 The new function is a func...
old0 27774 No surreal is older than `...
madessno 27775 Made sets are surreals. (...
oldssno 27776 Old sets are surreals. (C...
newssno 27777 New sets are surreals. (C...
leftval 27778 The value of the left opti...
rightval 27779 The value of the right opt...
elleft 27780 Membership in the left set...
elright 27781 Membership in the right se...
leftlt 27782 A member of a surreal's le...
rightgt 27783 A member of a surreal's ri...
leftf 27784 The functionality of the l...
rightf 27785 The functionality of the r...
elmade 27786 Membership in the made fun...
elmade2 27787 Membership in the made fun...
elold 27788 Membership in an old set. ...
ssltleft 27789 A surreal is greater than ...
ssltright 27790 A surreal is less than its...
lltropt 27791 The left options of a surr...
made0 27792 The only surreal made on d...
new0 27793 The only surreal new on da...
old1 27794 The only surreal older tha...
madess 27795 If ` A ` is less than or e...
oldssmade 27796 The older-than set is a su...
leftssold 27797 The left options are a sub...
rightssold 27798 The right options are a su...
leftssno 27799 The left set of a surreal ...
rightssno 27800 The right set of a surreal...
madecut 27801 Given a section that is a ...
madeun 27802 The made set is the union ...
madeoldsuc 27803 The made set is the old se...
oldsuc 27804 The value of the old set a...
oldlim 27805 The value of the old set a...
madebdayim 27806 If a surreal is a member o...
oldbdayim 27807 If ` X ` is in the old set...
oldirr 27808 No surreal is a member of ...
leftirr 27809 No surreal is a member of ...
rightirr 27810 No surreal is a member of ...
left0s 27811 The left set of ` 0s ` is ...
right0s 27812 The right set of ` 0s ` is...
left1s 27813 The left set of ` 1s ` is ...
right1s 27814 The right set of ` 1s ` is...
lrold 27815 The union of the left and ...
madebdaylemold 27816 Lemma for ~ madebday . If...
madebdaylemlrcut 27817 Lemma for ~ madebday . If...
madebday 27818 A surreal is part of the s...
oldbday 27819 A surreal is part of the s...
newbday 27820 A surreal is an element of...
newbdayim 27821 One direction of the bicon...
lrcut 27822 A surreal is equal to the ...
scutfo 27823 The surreal cut function i...
sltn0 27824 If ` X ` is less than ` Y ...
lruneq 27825 If two surreals share a bi...
sltlpss 27826 If two surreals share a bi...
slelss 27827 If two surreals ` A ` and ...
0elold 27828 Zero is in the old set of ...
0elleft 27829 Zero is in the left set of...
0elright 27830 Zero is in the right set o...
madefi 27831 The made set of an ordinal...
oldfi 27832 The old set of an ordinal ...
cofsslt 27833 If every element of ` A ` ...
coinitsslt 27834 If ` B ` is coinitial with...
cofcut1 27835 If ` C ` is cofinal with `...
cofcut1d 27836 If ` C ` is cofinal with `...
cofcut2 27837 If ` A ` and ` C ` are mut...
cofcut2d 27838 If ` A ` and ` C ` are mut...
cofcutr 27839 If ` X ` is the cut of ` A...
cofcutr1d 27840 If ` X ` is the cut of ` A...
cofcutr2d 27841 If ` X ` is the cut of ` A...
cofcutrtime 27842 If ` X ` is the cut of ` A...
cofcutrtime1d 27843 If ` X ` is a timely cut o...
cofcutrtime2d 27844 If ` X ` is a timely cut o...
cofss 27845 Cofinality for a subset. ...
coiniss 27846 Coinitiality for a subset....
cutlt 27847 Eliminating all elements b...
cutpos 27848 Reduce the elements of a c...
cutmax 27849 If ` A ` has a maximum, th...
cutmin 27850 If ` B ` has a minimum, th...
lrrecval 27853 The next step in the devel...
lrrecval2 27854 Next, we establish an alte...
lrrecpo 27855 Now, we establish that ` R...
lrrecse 27856 Next, we show that ` R ` i...
lrrecfr 27857 Now we show that ` R ` is ...
lrrecpred 27858 Finally, we calculate the ...
noinds 27859 Induction principle for a ...
norecfn 27860 Surreal recursion over one...
norecov 27861 Calculate the value of the...
noxpordpo 27864 To get through most of the...
noxpordfr 27865 Next we establish the foun...
noxpordse 27866 Next we establish the set-...
noxpordpred 27867 Next we calculate the pred...
no2indslem 27868 Double induction on surrea...
no2inds 27869 Double induction on surrea...
norec2fn 27870 The double-recursion opera...
norec2ov 27871 The value of the double-re...
no3inds 27872 Triple induction over surr...
addsfn 27875 Surreal addition is a func...
addsval 27876 The value of surreal addit...
addsval2 27877 The value of surreal addit...
addsrid 27878 Surreal addition to zero i...
addsridd 27879 Surreal addition to zero i...
addscom 27880 Surreal addition commutes....
addscomd 27881 Surreal addition commutes....
addslid 27882 Surreal addition to zero i...
addsproplem1 27883 Lemma for surreal addition...
addsproplem2 27884 Lemma for surreal addition...
addsproplem3 27885 Lemma for surreal addition...
addsproplem4 27886 Lemma for surreal addition...
addsproplem5 27887 Lemma for surreal addition...
addsproplem6 27888 Lemma for surreal addition...
addsproplem7 27889 Lemma for surreal addition...
addsprop 27890 Inductively show that surr...
addscutlem 27891 Lemma for ~ addscut . Sho...
addscut 27892 Demonstrate the cut proper...
addscut2 27893 Show that the cut involved...
addscld 27894 Surreal numbers are closed...
addscl 27895 Surreal numbers are closed...
addsf 27896 Function statement for sur...
addsfo 27897 Surreal addition is onto. ...
peano2no 27898 A theorem for surreals tha...
sltadd1im 27899 Surreal less-than is prese...
sltadd2im 27900 Surreal less-than is prese...
sleadd1im 27901 Surreal less-than or equal...
sleadd2im 27902 Surreal less-than or equal...
sleadd1 27903 Addition to both sides of ...
sleadd2 27904 Addition to both sides of ...
sltadd2 27905 Addition to both sides of ...
sltadd1 27906 Addition to both sides of ...
addscan2 27907 Cancellation law for surre...
addscan1 27908 Cancellation law for surre...
sleadd1d 27909 Addition to both sides of ...
sleadd2d 27910 Addition to both sides of ...
sltadd2d 27911 Addition to both sides of ...
sltadd1d 27912 Addition to both sides of ...
addscan2d 27913 Cancellation law for surre...
addscan1d 27914 Cancellation law for surre...
addsuniflem 27915 Lemma for ~ addsunif . St...
addsunif 27916 Uniformity theorem for sur...
addsasslem1 27917 Lemma for addition associa...
addsasslem2 27918 Lemma for addition associa...
addsass 27919 Surreal addition is associ...
addsassd 27920 Surreal addition is associ...
adds32d 27921 Commutative/associative la...
adds12d 27922 Commutative/associative la...
adds4d 27923 Rearrangement of four term...
adds42d 27924 Rearrangement of four term...
sltaddpos1d 27925 Addition of a positive num...
sltaddpos2d 27926 Addition of a positive num...
slt2addd 27927 Adding both sides of two s...
addsgt0d 27928 The sum of two positive su...
sltp1d 27929 A surreal is less than its...
addsbdaylem 27930 Lemma for ~ addsbday . (C...
addsbday 27931 The birthday of the sum of...
negsfn 27936 Surreal negation is a func...
subsfn 27937 Surreal subtraction is a f...
negsval 27938 The value of the surreal n...
negs0s 27939 Negative surreal zero is s...
negs1s 27940 An expression for negative...
negsproplem1 27941 Lemma for surreal negation...
negsproplem2 27942 Lemma for surreal negation...
negsproplem3 27943 Lemma for surreal negation...
negsproplem4 27944 Lemma for surreal negation...
negsproplem5 27945 Lemma for surreal negation...
negsproplem6 27946 Lemma for surreal negation...
negsproplem7 27947 Lemma for surreal negation...
negsprop 27948 Show closure and ordering ...
negscl 27949 The surreals are closed un...
negscld 27950 The surreals are closed un...
sltnegim 27951 The forward direction of t...
negscut 27952 The cut properties of surr...
negscut2 27953 The cut that defines surre...
negsid 27954 Surreal addition of a numb...
negsidd 27955 Surreal addition of a numb...
negsex 27956 Every surreal has a negati...
negnegs 27957 A surreal is equal to the ...
sltneg 27958 Negative of both sides of ...
sleneg 27959 Negative of both sides of ...
sltnegd 27960 Negative of both sides of ...
slenegd 27961 Negative of both sides of ...
negs11 27962 Surreal negation is one-to...
negsdi 27963 Distribution of surreal ne...
slt0neg2d 27964 Comparison of a surreal an...
negsf 27965 Function statement for sur...
negsfo 27966 Function statement for sur...
negsf1o 27967 Surreal negation is a bije...
negsunif 27968 Uniformity property for su...
negsbdaylem 27969 Lemma for ~ negsbday . Bo...
negsbday 27970 Negation of a surreal numb...
subsval 27971 The value of surreal subtr...
subsvald 27972 The value of surreal subtr...
subscl 27973 Closure law for surreal su...
subscld 27974 Closure law for surreal su...
subsf 27975 Function statement for sur...
subsfo 27976 Surreal subtraction is an ...
negsval2 27977 Surreal negation in terms ...
negsval2d 27978 Surreal negation in terms ...
subsid1 27979 Identity law for subtracti...
subsid 27980 Subtraction of a surreal f...
subadds 27981 Relationship between addit...
subaddsd 27982 Relationship between addit...
pncans 27983 Cancellation law for surre...
pncan3s 27984 Subtraction and addition o...
pncan2s 27985 Cancellation law for surre...
npcans 27986 Cancellation law for surre...
sltsub1 27987 Subtraction from both side...
sltsub2 27988 Subtraction from both side...
sltsub1d 27989 Subtraction from both side...
sltsub2d 27990 Subtraction from both side...
negsubsdi2d 27991 Distribution of negative o...
addsubsassd 27992 Associative-type law for s...
addsubsd 27993 Law for surreal addition a...
sltsubsubbd 27994 Equivalence for the surrea...
sltsubsub2bd 27995 Equivalence for the surrea...
sltsubsub3bd 27996 Equivalence for the surrea...
slesubsubbd 27997 Equivalence for the surrea...
slesubsub2bd 27998 Equivalence for the surrea...
slesubsub3bd 27999 Equivalence for the surrea...
sltsubaddd 28000 Surreal less-than relation...
sltsubadd2d 28001 Surreal less-than relation...
sltaddsubd 28002 Surreal less-than relation...
sltaddsub2d 28003 Surreal less-than relation...
slesubaddd 28004 Surreal less-than or equal...
subsubs4d 28005 Law for double surreal sub...
subsubs2d 28006 Law for double surreal sub...
nncansd 28007 Cancellation law for surre...
posdifsd 28008 Comparison of two surreals...
sltsubposd 28009 Subtraction of a positive ...
subsge0d 28010 Non-negative subtraction. ...
addsubs4d 28011 Rearrangement of four term...
sltm1d 28012 A surreal is greater than ...
subscan1d 28013 Cancellation law for surre...
subscan2d 28014 Cancellation law for surre...
subseq0d 28015 The difference between two...
mulsfn 28018 Surreal multiplication is ...
mulsval 28019 The value of surreal multi...
mulsval2lem 28020 Lemma for ~ mulsval2 . Ch...
mulsval2 28021 The value of surreal multi...
muls01 28022 Surreal multiplication by ...
mulsrid 28023 Surreal one is a right ide...
mulsridd 28024 Surreal one is a right ide...
mulsproplemcbv 28025 Lemma for surreal multipli...
mulsproplem1 28026 Lemma for surreal multipli...
mulsproplem2 28027 Lemma for surreal multipli...
mulsproplem3 28028 Lemma for surreal multipli...
mulsproplem4 28029 Lemma for surreal multipli...
mulsproplem5 28030 Lemma for surreal multipli...
mulsproplem6 28031 Lemma for surreal multipli...
mulsproplem7 28032 Lemma for surreal multipli...
mulsproplem8 28033 Lemma for surreal multipli...
mulsproplem9 28034 Lemma for surreal multipli...
mulsproplem10 28035 Lemma for surreal multipli...
mulsproplem11 28036 Lemma for surreal multipli...
mulsproplem12 28037 Lemma for surreal multipli...
mulsproplem13 28038 Lemma for surreal multipli...
mulsproplem14 28039 Lemma for surreal multipli...
mulsprop 28040 Surreals are closed under ...
mulscutlem 28041 Lemma for ~ mulscut . Sta...
mulscut 28042 Show the cut properties of...
mulscut2 28043 Show that the cut involved...
mulscl 28044 The surreals are closed un...
mulscld 28045 The surreals are closed un...
sltmul 28046 An ordering relationship f...
sltmuld 28047 An ordering relationship f...
slemuld 28048 An ordering relationship f...
mulscom 28049 Surreal multiplication com...
mulscomd 28050 Surreal multiplication com...
muls02 28051 Surreal multiplication by ...
mulslid 28052 Surreal one is a left iden...
mulslidd 28053 Surreal one is a left iden...
mulsgt0 28054 The product of two positiv...
mulsgt0d 28055 The product of two positiv...
mulsge0d 28056 The product of two non-neg...
ssltmul1 28057 One surreal set less-than ...
ssltmul2 28058 One surreal set less-than ...
mulsuniflem 28059 Lemma for ~ mulsunif . St...
mulsunif 28060 Surreal multiplication has...
addsdilem1 28061 Lemma for surreal distribu...
addsdilem2 28062 Lemma for surreal distribu...
addsdilem3 28063 Lemma for ~ addsdi . Show...
addsdilem4 28064 Lemma for ~ addsdi . Show...
addsdi 28065 Distributive law for surre...
addsdid 28066 Distributive law for surre...
addsdird 28067 Distributive law for surre...
subsdid 28068 Distribution of surreal mu...
subsdird 28069 Distribution of surreal mu...
mulnegs1d 28070 Product with negative is n...
mulnegs2d 28071 Product with negative is n...
mul2negsd 28072 Surreal product of two neg...
mulsasslem1 28073 Lemma for ~ mulsass . Exp...
mulsasslem2 28074 Lemma for ~ mulsass . Exp...
mulsasslem3 28075 Lemma for ~ mulsass . Dem...
mulsass 28076 Associative law for surrea...
mulsassd 28077 Associative law for surrea...
muls4d 28078 Rearrangement of four surr...
mulsunif2lem 28079 Lemma for ~ mulsunif2 . S...
mulsunif2 28080 Alternate expression for s...
sltmul2 28081 Multiplication of both sid...
sltmul2d 28082 Multiplication of both sid...
sltmul1d 28083 Multiplication of both sid...
slemul2d 28084 Multiplication of both sid...
slemul1d 28085 Multiplication of both sid...
sltmulneg1d 28086 Multiplication of both sid...
sltmulneg2d 28087 Multiplication of both sid...
mulscan2dlem 28088 Lemma for ~ mulscan2d . C...
mulscan2d 28089 Cancellation of surreal mu...
mulscan1d 28090 Cancellation of surreal mu...
muls12d 28091 Commutative/associative la...
slemul1ad 28092 Multiplication of both sid...
sltmul12ad 28093 Comparison of the product ...
divsmo 28094 Uniqueness of surreal inve...
muls0ord 28095 If a surreal product is ze...
mulsne0bd 28096 The product of two non-zer...
divsval 28099 The value of surreal divis...
norecdiv 28100 If a surreal has a recipro...
noreceuw 28101 If a surreal has a recipro...
recsne0 28102 If a surreal has a recipro...
divsmulw 28103 Relationship between surre...
divsmulwd 28104 Relationship between surre...
divsclw 28105 Weak division closure law....
divsclwd 28106 Weak division closure law....
divscan2wd 28107 A weak cancellation law fo...
divscan1wd 28108 A weak cancellation law fo...
sltdivmulwd 28109 Surreal less-than relation...
sltdivmul2wd 28110 Surreal less-than relation...
sltmuldivwd 28111 Surreal less-than relation...
sltmuldiv2wd 28112 Surreal less-than relation...
divsasswd 28113 An associative law for sur...
divs1 28114 A surreal divided by one i...
precsexlemcbv 28115 Lemma for surreal reciproc...
precsexlem1 28116 Lemma for surreal reciproc...
precsexlem2 28117 Lemma for surreal reciproc...
precsexlem3 28118 Lemma for surreal reciproc...
precsexlem4 28119 Lemma for surreal reciproc...
precsexlem5 28120 Lemma for surreal reciproc...
precsexlem6 28121 Lemma for surreal reciproc...
precsexlem7 28122 Lemma for surreal reciproc...
precsexlem8 28123 Lemma for surreal reciproc...
precsexlem9 28124 Lemma for surreal reciproc...
precsexlem10 28125 Lemma for surreal reciproc...
precsexlem11 28126 Lemma for surreal reciproc...
precsex 28127 Every positive surreal has...
recsex 28128 A non-zero surreal has a r...
recsexd 28129 A non-zero surreal has a r...
divsmul 28130 Relationship between surre...
divsmuld 28131 Relationship between surre...
divscl 28132 Surreal division closure l...
divscld 28133 Surreal division closure l...
divscan2d 28134 A cancellation law for sur...
divscan1d 28135 A cancellation law for sur...
sltdivmuld 28136 Surreal less-than relation...
sltdivmul2d 28137 Surreal less-than relation...
sltmuldivd 28138 Surreal less-than relation...
sltmuldiv2d 28139 Surreal less-than relation...
divsassd 28140 An associative law for sur...
divmuldivsd 28141 Multiplication of two surr...
divdivs1d 28142 Surreal division into a fr...
divsrecd 28143 Relationship between surre...
divsdird 28144 Distribution of surreal di...
divscan3d 28145 A cancellation law for sur...
abssval 28148 The value of surreal absol...
absscl 28149 Closure law for surreal ab...
abssid 28150 The absolute value of a no...
abs0s 28151 The absolute value of surr...
abssnid 28152 For a negative surreal, it...
absmuls 28153 Surreal absolute value dis...
abssge0 28154 The absolute value of a su...
abssor 28155 The absolute value of a su...
abssneg 28156 Surreal absolute value of ...
sleabs 28157 A surreal is less than or ...
absslt 28158 Surreal absolute value and...
elons 28161 Membership in the class of...
onssno 28162 The surreal ordinals are a...
onsno 28163 A surreal ordinal is a sur...
0ons 28164 Surreal zero is a surreal ...
1ons 28165 Surreal one is a surreal o...
elons2 28166 A surreal is ordinal iff i...
elons2d 28167 The cut of any set of surr...
onsleft 28168 The left set of a surreal ...
sltonold 28169 The class of ordinals less...
sltonex 28170 The class of ordinals less...
onscutleft 28171 A surreal ordinal is equal...
onscutlt 28172 A surreal ordinal is the s...
bday11on 28173 The birthday function is o...
onnolt 28174 If a surreal ordinal is le...
onslt 28175 Less-than is the same as b...
onsiso 28176 The birthday function rest...
onswe 28177 Surreal less-than well-ord...
onsse 28178 Surreal less-than is set-l...
onsis 28179 Transfinite induction sche...
bdayon 28180 The birthday of a surreal ...
onaddscl 28181 The surreal ordinals are c...
onmulscl 28182 The surreal ordinals are c...
peano2ons 28183 The successor of a surreal...
seqsex 28186 Existence of the surreal s...
seqseq123d 28187 Equality deduction for the...
nfseqs 28188 Hypothesis builder for the...
seqsval 28189 The value of the surreal s...
noseqex 28190 The next several theorems ...
noseq0 28191 The surreal ` A ` is a mem...
noseqp1 28192 One plus an element of ` Z...
noseqind 28193 Peano's inductive postulat...
noseqinds 28194 Induction schema for surre...
noseqssno 28195 A surreal sequence is a su...
noseqno 28196 An element of a surreal se...
om2noseq0 28197 The mapping ` G ` is a one...
om2noseqsuc 28198 The value of ` G ` at a su...
om2noseqfo 28199 Function statement for ` G...
om2noseqlt 28200 Surreal less-than relation...
om2noseqlt2 28201 The mapping ` G ` preserve...
om2noseqf1o 28202 ` G ` is a bijection. (Co...
om2noseqiso 28203 ` G ` is an isomorphism fr...
om2noseqoi 28204 An alternative definition ...
om2noseqrdg 28205 A helper lemma for the val...
noseqrdglem 28206 A helper lemma for the val...
noseqrdgfn 28207 The recursive definition g...
noseqrdg0 28208 Initial value of a recursi...
noseqrdgsuc 28209 Successor value of a recur...
seqsfn 28210 The surreal sequence build...
seqs1 28211 The value of the surreal s...
seqsp1 28212 The value of the surreal s...
n0sex 28217 The set of all non-negativ...
nnsex 28218 The set of all positive su...
peano5n0s 28219 Peano's inductive postulat...
n0ssno 28220 The non-negative surreal i...
nnssn0s 28221 The positive surreal integ...
nnssno 28222 The positive surreal integ...
n0sno 28223 A non-negative surreal int...
nnsno 28224 A positive surreal integer...
n0snod 28225 A non-negative surreal int...
nnsnod 28226 A positive surreal integer...
nnn0s 28227 A positive surreal integer...
nnn0sd 28228 A positive surreal integer...
0n0s 28229 Peano postulate: ` 0s ` is...
peano2n0s 28230 Peano postulate: the succe...
dfn0s2 28231 Alternate definition of th...
n0sind 28232 Principle of Mathematical ...
n0scut 28233 A cut form for non-negativ...
n0scut2 28234 A cut form for the success...
n0ons 28235 A surreal natural is a sur...
nnne0s 28236 A surreal positive integer...
n0sge0 28237 A non-negative integer is ...
nnsgt0 28238 A positive integer is grea...
elnns 28239 Membership in the positive...
elnns2 28240 A positive surreal integer...
n0s0suc 28241 A non-negative surreal int...
nnsge1 28242 A positive surreal integer...
n0addscl 28243 The non-negative surreal i...
n0mulscl 28244 The non-negative surreal i...
nnaddscl 28245 The positive surreal integ...
nnmulscl 28246 The positive surreal integ...
1n0s 28247 Surreal one is a non-negat...
1nns 28248 Surreal one is a positive ...
peano2nns 28249 Peano postulate for positi...
nnsrecgt0d 28250 The reciprocal of a positi...
n0sbday 28251 A non-negative surreal int...
n0ssold 28252 The non-negative surreal i...
n0sfincut 28253 The simplest number greate...
onsfi 28254 A surreal ordinal with a f...
onltn0s 28255 A surreal ordinal that is ...
n0cutlt 28256 A non-negative surreal int...
seqn0sfn 28257 The surreal sequence build...
eln0s 28258 A non-negative surreal int...
n0s0m1 28259 Every non-negative surreal...
n0subs 28260 Subtraction of non-negativ...
n0subs2 28261 Subtraction of non-negativ...
n0sltp1le 28262 Non-negative surreal order...
n0sleltp1 28263 Non-negative surreal order...
n0slem1lt 28264 Non-negative surreal order...
bdayn0p1 28265 The birthday of ` A +s 1s ...
bdayn0sf1o 28266 The birthday function rest...
n0p1nns 28267 One plus a non-negative su...
dfnns2 28268 Alternate definition of th...
nnsind 28269 Principle of Mathematical ...
nn1m1nns 28270 Every positive surreal int...
nnm1n0s 28271 A positive surreal integer...
eucliddivs 28272 Euclid's division lemma fo...
zsex 28275 The surreal integers form ...
zssno 28276 The surreal integers are a...
zno 28277 A surreal integer is a sur...
znod 28278 A surreal integer is a sur...
elzs 28279 Membership in the set of s...
nnzsubs 28280 The difference of two surr...
nnzs 28281 A positive surreal integer...
nnzsd 28282 A positive surreal integer...
0zs 28283 Zero is a surreal integer....
n0zs 28284 A non-negative surreal int...
n0zsd 28285 A non-negative surreal int...
1zs 28286 One is a surreal integer. ...
znegscl 28287 The surreal integers are c...
znegscld 28288 The surreal integers are c...
zaddscl 28289 The surreal integers are c...
zaddscld 28290 The surreal integers are c...
zsubscld 28291 The surreal integers are c...
zmulscld 28292 The surreal integers are c...
elzn0s 28293 A surreal integer is a sur...
elzs2 28294 A surreal integer is eithe...
eln0zs 28295 Non-negative surreal integ...
elnnzs 28296 Positive surreal integer p...
elznns 28297 Surreal integer property e...
zn0subs 28298 The non-negative differenc...
peano5uzs 28299 Peano's inductive postulat...
uzsind 28300 Induction on the upper sur...
zsbday 28301 A surreal integer has a fi...
zscut 28302 A cut expression for surre...
1p1e2s 28309 One plus one is two. Surr...
no2times 28310 Version of ~ 2times for su...
2nns 28311 Surreal two is a surreal n...
2sno 28312 Surreal two is a surreal n...
2ne0s 28313 Surreal two is non-zero. ...
n0seo 28314 A non-negative surreal int...
zseo 28315 A surreal integer is eithe...
twocut 28316 Two times the cut of zero ...
nohalf 28317 An explicit expression for...
expsval 28318 The value of surreal expon...
expsnnval 28319 Value of surreal exponenti...
exps0 28320 Surreal exponentiation to ...
exps1 28321 Surreal exponentiation to ...
expsp1 28322 Value of a surreal number ...
expscllem 28323 Lemma for proving non-nega...
expscl 28324 Closure law for surreal ex...
n0expscl 28325 Closure law for non-negati...
nnexpscl 28326 Closure law for positive s...
expadds 28327 Sum of exponents law for s...
expsne0 28328 A non-negative surreal int...
expsgt0 28329 A non-negative surreal int...
pw2recs 28330 Any power of two has a mul...
pw2divscld 28331 Division closure for power...
pw2divsmuld 28332 Relationship between surre...
pw2divscan3d 28333 Cancellation law for surre...
pw2divscan2d 28334 A cancellation law for sur...
pw2gt0divsd 28335 Division of a positive sur...
pw2ge0divsd 28336 Divison of a non-negative ...
pw2divsrecd 28337 Relationship between surre...
pw2divsdird 28338 Distribution of surreal di...
pw2divsnegd 28339 Move negative sign inside ...
halfcut 28340 Relate the cut of twice of...
addhalfcut 28341 The cut of a surreal non-n...
pw2cut 28342 Extend ~ halfcut to arbitr...
pw2cutp1 28343 Simplify ~ pw2cut in the c...
elzs12 28344 Membership in the dyadic f...
zs12ex 28345 The class of dyadic fracti...
zzs12 28346 A surreal integer is a dya...
zs12negscl 28347 The dyadics are closed und...
zs12negsclb 28348 A surreal is a dyadic frac...
zs12ge0 28349 An expression for non-nega...
zs12bday 28350 A dyadic fraction has a fi...
elreno 28353 Membership in the set of s...
recut 28354 The cut involved in defini...
0reno 28355 Surreal zero is a surreal ...
renegscl 28356 The surreal reals are clos...
readdscl 28357 The surreal reals are clos...
remulscllem1 28358 Lemma for ~ remulscl . Sp...
remulscllem2 28359 Lemma for ~ remulscl . Bo...
remulscl 28360 The surreal reals are clos...
itvndx 28371 Index value of the Interva...
lngndx 28372 Index value of the "line" ...
itvid 28373 Utility theorem: index-ind...
lngid 28374 Utility theorem: index-ind...
slotsinbpsd 28375 The slots ` Base ` , ` +g ...
slotslnbpsd 28376 The slots ` Base ` , ` +g ...
lngndxnitvndx 28377 The slot for the line is n...
trkgstr 28378 Functionality of a Tarski ...
trkgbas 28379 The base set of a Tarski g...
trkgdist 28380 The measure of a distance ...
trkgitv 28381 The congruence relation in...
istrkgc 28388 Property of being a Tarski...
istrkgb 28389 Property of being a Tarski...
istrkgcb 28390 Property of being a Tarski...
istrkge 28391 Property of fulfilling Euc...
istrkgl 28392 Building lines from the se...
istrkgld 28393 Property of fulfilling the...
istrkg2ld 28394 Property of fulfilling the...
istrkg3ld 28395 Property of fulfilling the...
axtgcgrrflx 28396 Axiom of reflexivity of co...
axtgcgrid 28397 Axiom of identity of congr...
axtgsegcon 28398 Axiom of segment construct...
axtg5seg 28399 Five segments axiom, Axiom...
axtgbtwnid 28400 Identity of Betweenness. ...
axtgpasch 28401 Axiom of (Inner) Pasch, Ax...
axtgcont1 28402 Axiom of Continuity. Axio...
axtgcont 28403 Axiom of Continuity. Axio...
axtglowdim2 28404 Lower dimension axiom for ...
axtgupdim2 28405 Upper dimension axiom for ...
axtgeucl 28406 Euclid's Axiom. Axiom A10...
tgjustf 28407 Given any function ` F ` ,...
tgjustr 28408 Given any equivalence rela...
tgjustc1 28409 A justification for using ...
tgjustc2 28410 A justification for using ...
tgcgrcomimp 28411 Congruence commutes on the...
tgcgrcomr 28412 Congruence commutes on the...
tgcgrcoml 28413 Congruence commutes on the...
tgcgrcomlr 28414 Congruence commutes on bot...
tgcgreqb 28415 Congruence and equality. ...
tgcgreq 28416 Congruence and equality. ...
tgcgrneq 28417 Congruence and equality. ...
tgcgrtriv 28418 Degenerate segments are co...
tgcgrextend 28419 Link congruence over a pai...
tgsegconeq 28420 Two points that satisfy th...
tgbtwntriv2 28421 Betweenness always holds f...
tgbtwncom 28422 Betweenness commutes. The...
tgbtwncomb 28423 Betweenness commutes, bico...
tgbtwnne 28424 Betweenness and inequality...
tgbtwntriv1 28425 Betweenness always holds f...
tgbtwnswapid 28426 If you can swap the first ...
tgbtwnintr 28427 Inner transitivity law for...
tgbtwnexch3 28428 Exchange the first endpoin...
tgbtwnouttr2 28429 Outer transitivity law for...
tgbtwnexch2 28430 Exchange the outer point o...
tgbtwnouttr 28431 Outer transitivity law for...
tgbtwnexch 28432 Outer transitivity law for...
tgtrisegint 28433 A line segment between two...
tglowdim1 28434 Lower dimension axiom for ...
tglowdim1i 28435 Lower dimension axiom for ...
tgldimor 28436 Excluded-middle like state...
tgldim0eq 28437 In dimension zero, any two...
tgldim0itv 28438 In dimension zero, any two...
tgldim0cgr 28439 In dimension zero, any two...
tgbtwndiff 28440 There is always a ` c ` di...
tgdim01 28441 In geometries of dimension...
tgifscgr 28442 Inner five segment congrue...
tgcgrsub 28443 Removing identical parts f...
iscgrg 28446 The congruence property fo...
iscgrgd 28447 The property for two seque...
iscgrglt 28448 The property for two seque...
trgcgrg 28449 The property for two trian...
trgcgr 28450 Triangle congruence. (Con...
ercgrg 28451 The shape congruence relat...
tgcgrxfr 28452 A line segment can be divi...
cgr3id 28453 Reflexivity law for three-...
cgr3simp1 28454 Deduce segment congruence ...
cgr3simp2 28455 Deduce segment congruence ...
cgr3simp3 28456 Deduce segment congruence ...
cgr3swap12 28457 Permutation law for three-...
cgr3swap23 28458 Permutation law for three-...
cgr3swap13 28459 Permutation law for three-...
cgr3rotr 28460 Permutation law for three-...
cgr3rotl 28461 Permutation law for three-...
trgcgrcom 28462 Commutative law for three-...
cgr3tr 28463 Transitivity law for three...
tgbtwnxfr 28464 A condition for extending ...
tgcgr4 28465 Two quadrilaterals to be c...
isismt 28468 Property of being an isome...
ismot 28469 Property of being an isome...
motcgr 28470 Property of a motion: dist...
idmot 28471 The identity is a motion. ...
motf1o 28472 Motions are bijections. (...
motcl 28473 Closure of motions. (Cont...
motco 28474 The composition of two mot...
cnvmot 28475 The converse of a motion i...
motplusg 28476 The operation for motions ...
motgrp 28477 The motions of a geometry ...
motcgrg 28478 Property of a motion: dist...
motcgr3 28479 Property of a motion: dist...
tglng 28480 Lines of a Tarski Geometry...
tglnfn 28481 Lines as functions. (Cont...
tglnunirn 28482 Lines are sets of points. ...
tglnpt 28483 Lines are sets of points. ...
tglngne 28484 It takes two different poi...
tglngval 28485 The line going through poi...
tglnssp 28486 Lines are subset of the ge...
tgellng 28487 Property of lying on the l...
tgcolg 28488 We choose the notation ` (...
btwncolg1 28489 Betweenness implies coline...
btwncolg2 28490 Betweenness implies coline...
btwncolg3 28491 Betweenness implies coline...
colcom 28492 Swapping the points defini...
colrot1 28493 Rotating the points defini...
colrot2 28494 Rotating the points defini...
ncolcom 28495 Swapping non-colinear poin...
ncolrot1 28496 Rotating non-colinear poin...
ncolrot2 28497 Rotating non-colinear poin...
tgdim01ln 28498 In geometries of dimension...
ncoltgdim2 28499 If there are three non-col...
lnxfr 28500 Transfer law for colineari...
lnext 28501 Extend a line with a missi...
tgfscgr 28502 Congruence law for the gen...
lncgr 28503 Congruence rule for lines....
lnid 28504 Identity law for points on...
tgidinside 28505 Law for finding a point in...
tgbtwnconn1lem1 28506 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 28507 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 28508 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 28509 Connectivity law for betwe...
tgbtwnconn2 28510 Another connectivity law f...
tgbtwnconn3 28511 Inner connectivity law for...
tgbtwnconnln3 28512 Derive colinearity from be...
tgbtwnconn22 28513 Double connectivity law fo...
tgbtwnconnln1 28514 Derive colinearity from be...
tgbtwnconnln2 28515 Derive colinearity from be...
legval 28518 Value of the less-than rel...
legov 28519 Value of the less-than rel...
legov2 28520 An equivalent definition o...
legid 28521 Reflexivity of the less-th...
btwnleg 28522 Betweenness implies less-t...
legtrd 28523 Transitivity of the less-t...
legtri3 28524 Equality from the less-tha...
legtrid 28525 Trichotomy law for the les...
leg0 28526 Degenerated (zero-length) ...
legeq 28527 Deduce equality from "less...
legbtwn 28528 Deduce betweenness from "l...
tgcgrsub2 28529 Removing identical parts f...
ltgseg 28530 The set ` E ` denotes the ...
ltgov 28531 Strict "shorter than" geom...
legov3 28532 An equivalent definition o...
legso 28533 The "shorter than" relatio...
ishlg 28536 Rays : Definition 6.1 of ...
hlcomb 28537 The half-line relation com...
hlcomd 28538 The half-line relation com...
hlne1 28539 The half-line relation imp...
hlne2 28540 The half-line relation imp...
hlln 28541 The half-line relation imp...
hleqnid 28542 The endpoint does not belo...
hlid 28543 The half-line relation is ...
hltr 28544 The half-line relation is ...
hlbtwn 28545 Betweenness is a sufficien...
btwnhl1 28546 Deduce half-line from betw...
btwnhl2 28547 Deduce half-line from betw...
btwnhl 28548 Swap betweenness for a hal...
lnhl 28549 Either a point ` C ` on th...
hlcgrex 28550 Construct a point on a hal...
hlcgreulem 28551 Lemma for ~ hlcgreu . (Co...
hlcgreu 28552 The point constructed in ~...
btwnlng1 28553 Betweenness implies coline...
btwnlng2 28554 Betweenness implies coline...
btwnlng3 28555 Betweenness implies coline...
lncom 28556 Swapping the points defini...
lnrot1 28557 Rotating the points defini...
lnrot2 28558 Rotating the points defini...
ncolne1 28559 Non-colinear points are di...
ncolne2 28560 Non-colinear points are di...
tgisline 28561 The property of being a pr...
tglnne 28562 It takes two different poi...
tglndim0 28563 There are no lines in dime...
tgelrnln 28564 The property of being a pr...
tglineeltr 28565 Transitivity law for lines...
tglineelsb2 28566 If ` S ` lies on PQ , then...
tglinerflx1 28567 Reflexivity law for line m...
tglinerflx2 28568 Reflexivity law for line m...
tglinecom 28569 Commutativity law for line...
tglinethru 28570 If ` A ` is a line contain...
tghilberti1 28571 There is a line through an...
tghilberti2 28572 There is at most one line ...
tglinethrueu 28573 There is a unique line goi...
tglnne0 28574 A line ` A ` has at least ...
tglnpt2 28575 Find a second point on a l...
tglineintmo 28576 Two distinct lines interse...
tglineineq 28577 Two distinct lines interse...
tglineneq 28578 Given three non-colinear p...
tglineinteq 28579 Two distinct lines interse...
ncolncol 28580 Deduce non-colinearity fro...
coltr 28581 A transitivity law for col...
coltr3 28582 A transitivity law for col...
colline 28583 Three points are colinear ...
tglowdim2l 28584 Reformulation of the lower...
tglowdim2ln 28585 There is always one point ...
mirreu3 28588 Existential uniqueness of ...
mirval 28589 Value of the point inversi...
mirfv 28590 Value of the point inversi...
mircgr 28591 Property of the image by t...
mirbtwn 28592 Property of the image by t...
ismir 28593 Property of the image by t...
mirf 28594 Point inversion as functio...
mircl 28595 Closure of the point inver...
mirmir 28596 The point inversion functi...
mircom 28597 Variation on ~ mirmir . (...
mirreu 28598 Any point has a unique ant...
mireq 28599 Equality deduction for poi...
mirinv 28600 The only invariant point o...
mirne 28601 Mirror of non-center point...
mircinv 28602 The center point is invari...
mirf1o 28603 The point inversion functi...
miriso 28604 The point inversion functi...
mirbtwni 28605 Point inversion preserves ...
mirbtwnb 28606 Point inversion preserves ...
mircgrs 28607 Point inversion preserves ...
mirmir2 28608 Point inversion of a point...
mirmot 28609 Point investion is a motio...
mirln 28610 If two points are on the s...
mirln2 28611 If a point and its mirror ...
mirconn 28612 Point inversion of connect...
mirhl 28613 If two points ` X ` and ` ...
mirbtwnhl 28614 If the center of the point...
mirhl2 28615 Deduce half-line relation ...
mircgrextend 28616 Link congruence over a pai...
mirtrcgr 28617 Point inversion of one poi...
mirauto 28618 Point inversion preserves ...
miduniq 28619 Uniqueness of the middle p...
miduniq1 28620 Uniqueness of the middle p...
miduniq2 28621 If two point inversions co...
colmid 28622 Colinearity and equidistan...
symquadlem 28623 Lemma of the symetrial qua...
krippenlem 28624 Lemma for ~ krippen . We ...
krippen 28625 Krippenlemma (German for c...
midexlem 28626 Lemma for the existence of...
israg 28631 Property for 3 points A, B...
ragcom 28632 Commutative rule for right...
ragcol 28633 The right angle property i...
ragmir 28634 Right angle property is pr...
mirrag 28635 Right angle is conserved b...
ragtrivb 28636 Trivial right angle. Theo...
ragflat2 28637 Deduce equality from two r...
ragflat 28638 Deduce equality from two r...
ragtriva 28639 Trivial right angle. Theo...
ragflat3 28640 Right angle and colinearit...
ragcgr 28641 Right angle and colinearit...
motrag 28642 Right angles are preserved...
ragncol 28643 Right angle implies non-co...
perpln1 28644 Derive a line from perpend...
perpln2 28645 Derive a line from perpend...
isperp 28646 Property for 2 lines A, B ...
perpcom 28647 The "perpendicular" relati...
perpneq 28648 Two perpendicular lines ar...
isperp2 28649 Property for 2 lines A, B,...
isperp2d 28650 One direction of ~ isperp2...
ragperp 28651 Deduce that two lines are ...
footexALT 28652 Alternative version of ~ f...
footexlem1 28653 Lemma for ~ footex . (Con...
footexlem2 28654 Lemma for ~ footex . (Con...
footex 28655 From a point ` C ` outside...
foot 28656 From a point ` C ` outside...
footne 28657 Uniqueness of the foot poi...
footeq 28658 Uniqueness of the foot poi...
hlperpnel 28659 A point on a half-line whi...
perprag 28660 Deduce a right angle from ...
perpdragALT 28661 Deduce a right angle from ...
perpdrag 28662 Deduce a right angle from ...
colperp 28663 Deduce a perpendicularity ...
colperpexlem1 28664 Lemma for ~ colperp . Fir...
colperpexlem2 28665 Lemma for ~ colperpex . S...
colperpexlem3 28666 Lemma for ~ colperpex . C...
colperpex 28667 In dimension 2 and above, ...
mideulem2 28668 Lemma for ~ opphllem , whi...
opphllem 28669 Lemma 8.24 of [Schwabhause...
mideulem 28670 Lemma for ~ mideu . We ca...
midex 28671 Existence of the midpoint,...
mideu 28672 Existence and uniqueness o...
islnopp 28673 The property for two point...
islnoppd 28674 Deduce that ` A ` and ` B ...
oppne1 28675 Points lying on opposite s...
oppne2 28676 Points lying on opposite s...
oppne3 28677 Points lying on opposite s...
oppcom 28678 Commutativity rule for "op...
opptgdim2 28679 If two points opposite to ...
oppnid 28680 The "opposite to a line" r...
opphllem1 28681 Lemma for ~ opphl . (Cont...
opphllem2 28682 Lemma for ~ opphl . Lemma...
opphllem3 28683 Lemma for ~ opphl : We as...
opphllem4 28684 Lemma for ~ opphl . (Cont...
opphllem5 28685 Second part of Lemma 9.4 o...
opphllem6 28686 First part of Lemma 9.4 of...
oppperpex 28687 Restating ~ colperpex usin...
opphl 28688 If two points ` A ` and ` ...
outpasch 28689 Axiom of Pasch, outer form...
hlpasch 28690 An application of the axio...
ishpg 28693 Value of the half-plane re...
hpgbr 28694 Half-planes : property for...
hpgne1 28695 Points on the open half pl...
hpgne2 28696 Points on the open half pl...
lnopp2hpgb 28697 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 28698 If two points lie on the o...
hpgerlem 28699 Lemma for the proof that t...
hpgid 28700 The half-plane relation is...
hpgcom 28701 The half-plane relation co...
hpgtr 28702 The half-plane relation is...
colopp 28703 Opposite sides of a line f...
colhp 28704 Half-plane relation for co...
hphl 28705 If two points are on the s...
midf 28710 Midpoint as a function. (...
midcl 28711 Closure of the midpoint. ...
ismidb 28712 Property of the midpoint. ...
midbtwn 28713 Betweenness of midpoint. ...
midcgr 28714 Congruence of midpoint. (...
midid 28715 Midpoint of a null segment...
midcom 28716 Commutativity rule for the...
mirmid 28717 Point inversion preserves ...
lmieu 28718 Uniqueness of the line mir...
lmif 28719 Line mirror as a function....
lmicl 28720 Closure of the line mirror...
islmib 28721 Property of the line mirro...
lmicom 28722 The line mirroring functio...
lmilmi 28723 Line mirroring is an invol...
lmireu 28724 Any point has a unique ant...
lmieq 28725 Equality deduction for lin...
lmiinv 28726 The invariants of the line...
lmicinv 28727 The mirroring line is an i...
lmimid 28728 If we have a right angle, ...
lmif1o 28729 The line mirroring functio...
lmiisolem 28730 Lemma for ~ lmiiso . (Con...
lmiiso 28731 The line mirroring functio...
lmimot 28732 Line mirroring is a motion...
hypcgrlem1 28733 Lemma for ~ hypcgr , case ...
hypcgrlem2 28734 Lemma for ~ hypcgr , case ...
hypcgr 28735 If the catheti of two righ...
lmiopp 28736 Line mirroring produces po...
lnperpex 28737 Existence of a perpendicul...
trgcopy 28738 Triangle construction: a c...
trgcopyeulem 28739 Lemma for ~ trgcopyeu . (...
trgcopyeu 28740 Triangle construction: a c...
iscgra 28743 Property for two angles AB...
iscgra1 28744 A special version of ~ isc...
iscgrad 28745 Sufficient conditions for ...
cgrane1 28746 Angles imply inequality. ...
cgrane2 28747 Angles imply inequality. ...
cgrane3 28748 Angles imply inequality. ...
cgrane4 28749 Angles imply inequality. ...
cgrahl1 28750 Angle congruence is indepe...
cgrahl2 28751 Angle congruence is indepe...
cgracgr 28752 First direction of proposi...
cgraid 28753 Angle congruence is reflex...
cgraswap 28754 Swap rays in a congruence ...
cgrcgra 28755 Triangle congruence implie...
cgracom 28756 Angle congruence commutes....
cgratr 28757 Angle congruence is transi...
flatcgra 28758 Flat angles are congruent....
cgraswaplr 28759 Swap both side of angle co...
cgrabtwn 28760 Angle congruence preserves...
cgrahl 28761 Angle congruence preserves...
cgracol 28762 Angle congruence preserves...
cgrancol 28763 Angle congruence preserves...
dfcgra2 28764 This is the full statement...
sacgr 28765 Supplementary angles of co...
oacgr 28766 Vertical angle theorem. V...
acopy 28767 Angle construction. Theor...
acopyeu 28768 Angle construction. Theor...
isinag 28772 Property for point ` X ` t...
isinagd 28773 Sufficient conditions for ...
inagflat 28774 Any point lies in a flat a...
inagswap 28775 Swap the order of the half...
inagne1 28776 Deduce inequality from the...
inagne2 28777 Deduce inequality from the...
inagne3 28778 Deduce inequality from the...
inaghl 28779 The "point lie in angle" r...
isleag 28781 Geometrical "less than" pr...
isleagd 28782 Sufficient condition for "...
leagne1 28783 Deduce inequality from the...
leagne2 28784 Deduce inequality from the...
leagne3 28785 Deduce inequality from the...
leagne4 28786 Deduce inequality from the...
cgrg3col4 28787 Lemma 11.28 of [Schwabhaus...
tgsas1 28788 First congruence theorem: ...
tgsas 28789 First congruence theorem: ...
tgsas2 28790 First congruence theorem: ...
tgsas3 28791 First congruence theorem: ...
tgasa1 28792 Second congruence theorem:...
tgasa 28793 Second congruence theorem:...
tgsss1 28794 Third congruence theorem: ...
tgsss2 28795 Third congruence theorem: ...
tgsss3 28796 Third congruence theorem: ...
dfcgrg2 28797 Congruence for two triangl...
isoas 28798 Congruence theorem for iso...
iseqlg 28801 Property of a triangle bei...
iseqlgd 28802 Condition for a triangle t...
f1otrgds 28803 Convenient lemma for ~ f1o...
f1otrgitv 28804 Convenient lemma for ~ f1o...
f1otrg 28805 A bijection between bases ...
f1otrge 28806 A bijection between bases ...
ttgval 28809 Define a function to augme...
ttglem 28810 Lemma for ~ ttgbas , ~ ttg...
ttgbas 28811 The base set of a subcompl...
ttgplusg 28812 The addition operation of ...
ttgsub 28813 The subtraction operation ...
ttgvsca 28814 The scalar product of a su...
ttgds 28815 The metric of a subcomplex...
ttgitvval 28816 Betweenness for a subcompl...
ttgelitv 28817 Betweenness for a subcompl...
ttgbtwnid 28818 Any subcomplex module equi...
ttgcontlem1 28819 Lemma for % ttgcont . (Co...
xmstrkgc 28820 Any metric space fulfills ...
cchhllem 28821 Lemma for chlbas and chlvs...
elee 28828 Membership in a Euclidean ...
mptelee 28829 A condition for a mapping ...
eleenn 28830 If ` A ` is in ` ( EE `` N...
eleei 28831 The forward direction of ~...
eedimeq 28832 A point belongs to at most...
brbtwn 28833 The binary relation form o...
brcgr 28834 The binary relation form o...
fveere 28835 The function value of a po...
fveecn 28836 The function value of a po...
eqeefv 28837 Two points are equal iff t...
eqeelen 28838 Two points are equal iff t...
brbtwn2 28839 Alternate characterization...
colinearalglem1 28840 Lemma for ~ colinearalg . ...
colinearalglem2 28841 Lemma for ~ colinearalg . ...
colinearalglem3 28842 Lemma for ~ colinearalg . ...
colinearalglem4 28843 Lemma for ~ colinearalg . ...
colinearalg 28844 An algebraic characterizat...
eleesub 28845 Membership of a subtractio...
eleesubd 28846 Membership of a subtractio...
axdimuniq 28847 The unique dimension axiom...
axcgrrflx 28848 ` A ` is as far from ` B `...
axcgrtr 28849 Congruence is transitive. ...
axcgrid 28850 If there is no distance be...
axsegconlem1 28851 Lemma for ~ axsegcon . Ha...
axsegconlem2 28852 Lemma for ~ axsegcon . Sh...
axsegconlem3 28853 Lemma for ~ axsegcon . Sh...
axsegconlem4 28854 Lemma for ~ axsegcon . Sh...
axsegconlem5 28855 Lemma for ~ axsegcon . Sh...
axsegconlem6 28856 Lemma for ~ axsegcon . Sh...
axsegconlem7 28857 Lemma for ~ axsegcon . Sh...
axsegconlem8 28858 Lemma for ~ axsegcon . Sh...
axsegconlem9 28859 Lemma for ~ axsegcon . Sh...
axsegconlem10 28860 Lemma for ~ axsegcon . Sh...
axsegcon 28861 Any segment ` A B ` can be...
ax5seglem1 28862 Lemma for ~ ax5seg . Rexp...
ax5seglem2 28863 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 28864 Lemma for ~ ax5seg . (Con...
ax5seglem3 28865 Lemma for ~ ax5seg . Comb...
ax5seglem4 28866 Lemma for ~ ax5seg . Give...
ax5seglem5 28867 Lemma for ~ ax5seg . If `...
ax5seglem6 28868 Lemma for ~ ax5seg . Give...
ax5seglem7 28869 Lemma for ~ ax5seg . An a...
ax5seglem8 28870 Lemma for ~ ax5seg . Use ...
ax5seglem9 28871 Lemma for ~ ax5seg . Take...
ax5seg 28872 The five segment axiom. T...
axbtwnid 28873 Points are indivisible. T...
axpaschlem 28874 Lemma for ~ axpasch . Set...
axpasch 28875 The inner Pasch axiom. Ta...
axlowdimlem1 28876 Lemma for ~ axlowdim . Es...
axlowdimlem2 28877 Lemma for ~ axlowdim . Sh...
axlowdimlem3 28878 Lemma for ~ axlowdim . Se...
axlowdimlem4 28879 Lemma for ~ axlowdim . Se...
axlowdimlem5 28880 Lemma for ~ axlowdim . Sh...
axlowdimlem6 28881 Lemma for ~ axlowdim . Sh...
axlowdimlem7 28882 Lemma for ~ axlowdim . Se...
axlowdimlem8 28883 Lemma for ~ axlowdim . Ca...
axlowdimlem9 28884 Lemma for ~ axlowdim . Ca...
axlowdimlem10 28885 Lemma for ~ axlowdim . Se...
axlowdimlem11 28886 Lemma for ~ axlowdim . Ca...
axlowdimlem12 28887 Lemma for ~ axlowdim . Ca...
axlowdimlem13 28888 Lemma for ~ axlowdim . Es...
axlowdimlem14 28889 Lemma for ~ axlowdim . Ta...
axlowdimlem15 28890 Lemma for ~ axlowdim . Se...
axlowdimlem16 28891 Lemma for ~ axlowdim . Se...
axlowdimlem17 28892 Lemma for ~ axlowdim . Es...
axlowdim1 28893 The lower dimension axiom ...
axlowdim2 28894 The lower two-dimensional ...
axlowdim 28895 The general lower dimensio...
axeuclidlem 28896 Lemma for ~ axeuclid . Ha...
axeuclid 28897 Euclid's axiom. Take an a...
axcontlem1 28898 Lemma for ~ axcont . Chan...
axcontlem2 28899 Lemma for ~ axcont . The ...
axcontlem3 28900 Lemma for ~ axcont . Give...
axcontlem4 28901 Lemma for ~ axcont . Give...
axcontlem5 28902 Lemma for ~ axcont . Comp...
axcontlem6 28903 Lemma for ~ axcont . Stat...
axcontlem7 28904 Lemma for ~ axcont . Give...
axcontlem8 28905 Lemma for ~ axcont . A po...
axcontlem9 28906 Lemma for ~ axcont . Give...
axcontlem10 28907 Lemma for ~ axcont . Give...
axcontlem11 28908 Lemma for ~ axcont . Elim...
axcontlem12 28909 Lemma for ~ axcont . Elim...
axcont 28910 The axiom of continuity. ...
eengv 28913 The value of the Euclidean...
eengstr 28914 The Euclidean geometry as ...
eengbas 28915 The Base of the Euclidean ...
ebtwntg 28916 The betweenness relation u...
ecgrtg 28917 The congruence relation us...
elntg 28918 The line definition in the...
elntg2 28919 The line definition in the...
eengtrkg 28920 The geometry structure for...
eengtrkge 28921 The geometry structure for...
edgfid 28924 Utility theorem: index-ind...
edgfndx 28925 Index value of the ~ df-ed...
edgfndxnn 28926 The index value of the edg...
edgfndxid 28927 The value of the edge func...
basendxltedgfndx 28928 The index value of the ` B...
basendxnedgfndx 28929 The slots ` Base ` and ` ....
vtxval 28934 The set of vertices of a g...
iedgval 28935 The set of indexed edges o...
1vgrex 28936 A graph with at least one ...
opvtxval 28937 The set of vertices of a g...
opvtxfv 28938 The set of vertices of a g...
opvtxov 28939 The set of vertices of a g...
opiedgval 28940 The set of indexed edges o...
opiedgfv 28941 The set of indexed edges o...
opiedgov 28942 The set of indexed edges o...
opvtxfvi 28943 The set of vertices of a g...
opiedgfvi 28944 The set of indexed edges o...
funvtxdmge2val 28945 The set of vertices of an ...
funiedgdmge2val 28946 The set of indexed edges o...
funvtxdm2val 28947 The set of vertices of an ...
funiedgdm2val 28948 The set of indexed edges o...
funvtxval0 28949 The set of vertices of an ...
basvtxval 28950 The set of vertices of a g...
edgfiedgval 28951 The set of indexed edges o...
funvtxval 28952 The set of vertices of a g...
funiedgval 28953 The set of indexed edges o...
structvtxvallem 28954 Lemma for ~ structvtxval a...
structvtxval 28955 The set of vertices of an ...
structiedg0val 28956 The set of indexed edges o...
structgrssvtxlem 28957 Lemma for ~ structgrssvtx ...
structgrssvtx 28958 The set of vertices of a g...
structgrssiedg 28959 The set of indexed edges o...
struct2grstr 28960 A graph represented as an ...
struct2grvtx 28961 The set of vertices of a g...
struct2griedg 28962 The set of indexed edges o...
graop 28963 Any representation of a gr...
grastruct 28964 Any representation of a gr...
gropd 28965 If any representation of a...
grstructd 28966 If any representation of a...
gropeld 28967 If any representation of a...
grstructeld 28968 If any representation of a...
setsvtx 28969 The vertices of a structur...
setsiedg 28970 The (indexed) edges of a s...
snstrvtxval 28971 The set of vertices of a g...
snstriedgval 28972 The set of indexed edges o...
vtxval0 28973 Degenerated case 1 for ver...
iedgval0 28974 Degenerated case 1 for edg...
vtxvalsnop 28975 Degenerated case 2 for ver...
iedgvalsnop 28976 Degenerated case 2 for edg...
vtxval3sn 28977 Degenerated case 3 for ver...
iedgval3sn 28978 Degenerated case 3 for edg...
vtxvalprc 28979 Degenerated case 4 for ver...
iedgvalprc 28980 Degenerated case 4 for edg...
edgval 28983 The edges of a graph. (Co...
iedgedg 28984 An indexed edge is an edge...
edgopval 28985 The edges of a graph repre...
edgov 28986 The edges of a graph repre...
edgstruct 28987 The edges of a graph repre...
edgiedgb 28988 A set is an edge iff it is...
edg0iedg0 28989 There is no edge in a grap...
isuhgr 28994 The predicate "is an undir...
isushgr 28995 The predicate "is an undir...
uhgrf 28996 The edge function of an un...
ushgrf 28997 The edge function of an un...
uhgrss 28998 An edge is a subset of ver...
uhgreq12g 28999 If two sets have the same ...
uhgrfun 29000 The edge function of an un...
uhgrn0 29001 An edge is a nonempty subs...
lpvtx 29002 The endpoints of a loop (w...
ushgruhgr 29003 An undirected simple hyper...
isuhgrop 29004 The property of being an u...
uhgr0e 29005 The empty graph, with vert...
uhgr0vb 29006 The null graph, with no ve...
uhgr0 29007 The null graph represented...
uhgrun 29008 The union ` U ` of two (un...
uhgrunop 29009 The union of two (undirect...
ushgrun 29010 The union ` U ` of two (un...
ushgrunop 29011 The union of two (undirect...
uhgrstrrepe 29012 Replacing (or adding) the ...
incistruhgr 29013 An _incidence structure_ `...
isupgr 29018 The property of being an u...
wrdupgr 29019 The property of being an u...
upgrf 29020 The edge function of an un...
upgrfn 29021 The edge function of an un...
upgrss 29022 An edge is a subset of ver...
upgrn0 29023 An edge is a nonempty subs...
upgrle 29024 An edge of an undirected p...
upgrfi 29025 An edge is a finite subset...
upgrex 29026 An edge is an unordered pa...
upgrbi 29027 Show that an unordered pai...
upgrop 29028 A pseudograph represented ...
isumgr 29029 The property of being an u...
isumgrs 29030 The simplified property of...
wrdumgr 29031 The property of being an u...
umgrf 29032 The edge function of an un...
umgrfn 29033 The edge function of an un...
umgredg2 29034 An edge of a multigraph ha...
umgrbi 29035 Show that an unordered pai...
upgruhgr 29036 An undirected pseudograph ...
umgrupgr 29037 An undirected multigraph i...
umgruhgr 29038 An undirected multigraph i...
upgrle2 29039 An edge of an undirected p...
umgrnloopv 29040 In a multigraph, there is ...
umgredgprv 29041 In a multigraph, an edge i...
umgrnloop 29042 In a multigraph, there is ...
umgrnloop0 29043 A multigraph has no loops....
umgr0e 29044 The empty graph, with vert...
upgr0e 29045 The empty graph, with vert...
upgr1elem 29046 Lemma for ~ upgr1e and ~ u...
upgr1e 29047 A pseudograph with one edg...
upgr0eop 29048 The empty graph, with vert...
upgr1eop 29049 A pseudograph with one edg...
upgr0eopALT 29050 Alternate proof of ~ upgr0...
upgr1eopALT 29051 Alternate proof of ~ upgr1...
upgrun 29052 The union ` U ` of two pse...
upgrunop 29053 The union of two pseudogra...
umgrun 29054 The union ` U ` of two mul...
umgrunop 29055 The union of two multigrap...
umgrislfupgrlem 29056 Lemma for ~ umgrislfupgr a...
umgrislfupgr 29057 A multigraph is a loop-fre...
lfgredgge2 29058 An edge of a loop-free gra...
lfgrnloop 29059 A loop-free graph has no l...
uhgredgiedgb 29060 In a hypergraph, a set is ...
uhgriedg0edg0 29061 A hypergraph has no edges ...
uhgredgn0 29062 An edge of a hypergraph is...
edguhgr 29063 An edge of a hypergraph is...
uhgredgrnv 29064 An edge of a hypergraph co...
uhgredgss 29065 The set of edges of a hype...
upgredgss 29066 The set of edges of a pseu...
umgredgss 29067 The set of edges of a mult...
edgupgr 29068 Properties of an edge of a...
edgumgr 29069 Properties of an edge of a...
uhgrvtxedgiedgb 29070 In a hypergraph, a vertex ...
upgredg 29071 For each edge in a pseudog...
umgredg 29072 For each edge in a multigr...
upgrpredgv 29073 An edge of a pseudograph a...
umgrpredgv 29074 An edge of a multigraph al...
upgredg2vtx 29075 For a vertex incident to a...
upgredgpr 29076 If a proper pair (of verti...
edglnl 29077 The edges incident with a ...
numedglnl 29078 The number of edges incide...
umgredgne 29079 An edge of a multigraph al...
umgrnloop2 29080 A multigraph has no loops....
umgredgnlp 29081 An edge of a multigraph is...
isuspgr 29086 The property of being a si...
isusgr 29087 The property of being a si...
uspgrf 29088 The edge function of a sim...
usgrf 29089 The edge function of a sim...
isusgrs 29090 The property of being a si...
usgrfs 29091 The edge function of a sim...
usgrfun 29092 The edge function of a sim...
usgredgss 29093 The set of edges of a simp...
edgusgr 29094 An edge of a simple graph ...
isuspgrop 29095 The property of being an u...
isusgrop 29096 The property of being an u...
usgrop 29097 A simple graph represented...
isausgr 29098 The property of an unorder...
ausgrusgrb 29099 The equivalence of the def...
usgrausgri 29100 A simple graph represented...
ausgrumgri 29101 If an alternatively define...
ausgrusgri 29102 The equivalence of the def...
usgrausgrb 29103 The equivalence of the def...
usgredgop 29104 An edge of a simple graph ...
usgrf1o 29105 The edge function of a sim...
usgrf1 29106 The edge function of a sim...
uspgrf1oedg 29107 The edge function of a sim...
usgrss 29108 An edge is a subset of ver...
uspgredgiedg 29109 In a simple pseudograph, f...
uspgriedgedg 29110 In a simple pseudograph, f...
uspgrushgr 29111 A simple pseudograph is an...
uspgrupgr 29112 A simple pseudograph is an...
uspgrupgrushgr 29113 A graph is a simple pseudo...
usgruspgr 29114 A simple graph is a simple...
usgrumgr 29115 A simple graph is an undir...
usgrumgruspgr 29116 A graph is a simple graph ...
usgruspgrb 29117 A class is a simple graph ...
uspgruhgr 29118 An undirected simple pseud...
usgrupgr 29119 A simple graph is an undir...
usgruhgr 29120 A simple graph is an undir...
usgrislfuspgr 29121 A simple graph is a loop-f...
uspgrun 29122 The union ` U ` of two sim...
uspgrunop 29123 The union of two simple ps...
usgrun 29124 The union ` U ` of two sim...
usgrunop 29125 The union of two simple gr...
usgredg2 29126 The value of the "edge fun...
usgredg2ALT 29127 Alternate proof of ~ usgre...
usgredgprv 29128 In a simple graph, an edge...
usgredgprvALT 29129 Alternate proof of ~ usgre...
usgredgppr 29130 An edge of a simple graph ...
usgrpredgv 29131 An edge of a simple graph ...
edgssv2 29132 An edge of a simple graph ...
usgredg 29133 For each edge in a simple ...
usgrnloopv 29134 In a simple graph, there i...
usgrnloopvALT 29135 Alternate proof of ~ usgrn...
usgrnloop 29136 In a simple graph, there i...
usgrnloopALT 29137 Alternate proof of ~ usgrn...
usgrnloop0 29138 A simple graph has no loop...
usgrnloop0ALT 29139 Alternate proof of ~ usgrn...
usgredgne 29140 An edge of a simple graph ...
usgrf1oedg 29141 The edge function of a sim...
uhgr2edg 29142 If a vertex is adjacent to...
umgr2edg 29143 If a vertex is adjacent to...
usgr2edg 29144 If a vertex is adjacent to...
umgr2edg1 29145 If a vertex is adjacent to...
usgr2edg1 29146 If a vertex is adjacent to...
umgrvad2edg 29147 If a vertex is adjacent to...
umgr2edgneu 29148 If a vertex is adjacent to...
usgrsizedg 29149 In a simple graph, the siz...
usgredg3 29150 The value of the "edge fun...
usgredg4 29151 For a vertex incident to a...
usgredgreu 29152 For a vertex incident to a...
usgredg2vtx 29153 For a vertex incident to a...
uspgredg2vtxeu 29154 For a vertex incident to a...
usgredg2vtxeu 29155 For a vertex incident to a...
usgredg2vtxeuALT 29156 Alternate proof of ~ usgre...
uspgredg2vlem 29157 Lemma for ~ uspgredg2v . ...
uspgredg2v 29158 In a simple pseudograph, t...
usgredg2vlem1 29159 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 29160 Lemma 2 for ~ usgredg2v . ...
usgredg2v 29161 In a simple graph, the map...
usgriedgleord 29162 Alternate version of ~ usg...
ushgredgedg 29163 In a simple hypergraph the...
usgredgedg 29164 In a simple graph there is...
ushgredgedgloop 29165 In a simple hypergraph the...
uspgredgleord 29166 In a simple pseudograph th...
usgredgleord 29167 In a simple graph the numb...
usgredgleordALT 29168 Alternate proof for ~ usgr...
usgrstrrepe 29169 Replacing (or adding) the ...
usgr0e 29170 The empty graph, with vert...
usgr0vb 29171 The null graph, with no ve...
uhgr0v0e 29172 The null graph, with no ve...
uhgr0vsize0 29173 The size of a hypergraph w...
uhgr0edgfi 29174 A graph of order 0 (i.e. w...
usgr0v 29175 The null graph, with no ve...
uhgr0vusgr 29176 The null graph, with no ve...
usgr0 29177 The null graph represented...
uspgr1e 29178 A simple pseudograph with ...
usgr1e 29179 A simple graph with one ed...
usgr0eop 29180 The empty graph, with vert...
uspgr1eop 29181 A simple pseudograph with ...
uspgr1ewop 29182 A simple pseudograph with ...
uspgr1v1eop 29183 A simple pseudograph with ...
usgr1eop 29184 A simple graph with (at le...
uspgr2v1e2w 29185 A simple pseudograph with ...
usgr2v1e2w 29186 A simple graph with two ve...
edg0usgr 29187 A class without edges is a...
lfuhgr1v0e 29188 A loop-free hypergraph wit...
usgr1vr 29189 A simple graph with one ve...
usgr1v 29190 A class with one (or no) v...
usgr1v0edg 29191 A class with one (or no) v...
usgrexmpldifpr 29192 Lemma for ~ usgrexmpledg :...
usgrexmplef 29193 Lemma for ~ usgrexmpl . (...
usgrexmpllem 29194 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 29195 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 29196 The edges ` { 0 , 1 } , { ...
usgrexmpl 29197 ` G ` is a simple graph of...
griedg0prc 29198 The class of empty graphs ...
griedg0ssusgr 29199 The class of all simple gr...
usgrprc 29200 The class of simple graphs...
relsubgr 29203 The class of the subgraph ...
subgrv 29204 If a class is a subgraph o...
issubgr 29205 The property of a set to b...
issubgr2 29206 The property of a set to b...
subgrprop 29207 The properties of a subgra...
subgrprop2 29208 The properties of a subgra...
uhgrissubgr 29209 The property of a hypergra...
subgrprop3 29210 The properties of a subgra...
egrsubgr 29211 An empty graph consisting ...
0grsubgr 29212 The null graph (represente...
0uhgrsubgr 29213 The null graph (as hypergr...
uhgrsubgrself 29214 A hypergraph is a subgraph...
subgrfun 29215 The edge function of a sub...
subgruhgrfun 29216 The edge function of a sub...
subgreldmiedg 29217 An element of the domain o...
subgruhgredgd 29218 An edge of a subgraph of a...
subumgredg2 29219 An edge of a subgraph of a...
subuhgr 29220 A subgraph of a hypergraph...
subupgr 29221 A subgraph of a pseudograp...
subumgr 29222 A subgraph of a multigraph...
subusgr 29223 A subgraph of a simple gra...
uhgrspansubgrlem 29224 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 29225 A spanning subgraph ` S ` ...
uhgrspan 29226 A spanning subgraph ` S ` ...
upgrspan 29227 A spanning subgraph ` S ` ...
umgrspan 29228 A spanning subgraph ` S ` ...
usgrspan 29229 A spanning subgraph ` S ` ...
uhgrspanop 29230 A spanning subgraph of a h...
upgrspanop 29231 A spanning subgraph of a p...
umgrspanop 29232 A spanning subgraph of a m...
usgrspanop 29233 A spanning subgraph of a s...
uhgrspan1lem1 29234 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 29235 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 29236 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 29237 The induced subgraph ` S `...
upgrreslem 29238 Lemma for ~ upgrres . (Co...
umgrreslem 29239 Lemma for ~ umgrres and ~ ...
upgrres 29240 A subgraph obtained by rem...
umgrres 29241 A subgraph obtained by rem...
usgrres 29242 A subgraph obtained by rem...
upgrres1lem1 29243 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 29244 Lemma for ~ umgrres1 . (C...
upgrres1lem2 29245 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 29246 Lemma 3 for ~ upgrres1 . ...
upgrres1 29247 A pseudograph obtained by ...
umgrres1 29248 A multigraph obtained by r...
usgrres1 29249 Restricting a simple graph...
isfusgr 29252 The property of being a fi...
fusgrvtxfi 29253 A finite simple graph has ...
isfusgrf1 29254 The property of being a fi...
isfusgrcl 29255 The property of being a fi...
fusgrusgr 29256 A finite simple graph is a...
opfusgr 29257 A finite simple graph repr...
usgredgffibi 29258 The number of edges in a s...
fusgredgfi 29259 In a finite simple graph t...
usgr1v0e 29260 The size of a (finite) sim...
usgrfilem 29261 In a finite simple graph, ...
fusgrfisbase 29262 Induction base for ~ fusgr...
fusgrfisstep 29263 Induction step in ~ fusgrf...
fusgrfis 29264 A finite simple graph is o...
fusgrfupgrfs 29265 A finite simple graph is a...
nbgrprc0 29268 The set of neighbors is em...
nbgrcl 29269 If a class ` X ` has at le...
nbgrval 29270 The set of neighbors of a ...
dfnbgr2 29271 Alternate definition of th...
dfnbgr3 29272 Alternate definition of th...
nbgrnvtx0 29273 If a class ` X ` is not a ...
nbgrel 29274 Characterization of a neig...
nbgrisvtx 29275 Every neighbor ` N ` of a ...
nbgrssvtx 29276 The neighbors of a vertex ...
nbuhgr 29277 The set of neighbors of a ...
nbupgr 29278 The set of neighbors of a ...
nbupgrel 29279 A neighbor of a vertex in ...
nbumgrvtx 29280 The set of neighbors of a ...
nbumgr 29281 The set of neighbors of an...
nbusgrvtx 29282 The set of neighbors of a ...
nbusgr 29283 The set of neighbors of an...
nbgr2vtx1edg 29284 If a graph has two vertice...
nbuhgr2vtx1edgblem 29285 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 29286 If a hypergraph has two ve...
nbusgreledg 29287 A class/vertex is a neighb...
uhgrnbgr0nb 29288 A vertex which is not endp...
nbgr0vtx 29289 In a null graph (with no v...
nbgr0edglem 29290 Lemma for ~ nbgr0edg and ~...
nbgr0edg 29291 In an empty graph (with no...
nbgr1vtx 29292 In a graph with one vertex...
nbgrnself 29293 A vertex in a graph is not...
nbgrnself2 29294 A class ` X ` is not a nei...
nbgrssovtx 29295 The neighbors of a vertex ...
nbgrssvwo2 29296 The neighbors of a vertex ...
nbgrsym 29297 In a graph, the neighborho...
nbupgrres 29298 The neighborhood of a vert...
usgrnbcnvfv 29299 Applying the edge function...
nbusgredgeu 29300 For each neighbor of a ver...
edgnbusgreu 29301 For each edge incident to ...
nbusgredgeu0 29302 For each neighbor of a ver...
nbusgrf1o0 29303 The mapping of neighbors o...
nbusgrf1o1 29304 The set of neighbors of a ...
nbusgrf1o 29305 The set of neighbors of a ...
nbedgusgr 29306 The number of neighbors of...
edgusgrnbfin 29307 The number of neighbors of...
nbusgrfi 29308 The class of neighbors of ...
nbfiusgrfi 29309 The class of neighbors of ...
hashnbusgrnn0 29310 The number of neighbors of...
nbfusgrlevtxm1 29311 The number of neighbors of...
nbfusgrlevtxm2 29312 If there is a vertex which...
nbusgrvtxm1 29313 If the number of neighbors...
nb3grprlem1 29314 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 29315 Lemma 2 for ~ nb3grpr . (...
nb3grpr 29316 The neighbors of a vertex ...
nb3grpr2 29317 The neighbors of a vertex ...
nb3gr2nb 29318 If the neighbors of two ve...
uvtxval 29321 The set of all universal v...
uvtxel 29322 A universal vertex, i.e. a...
uvtxisvtx 29323 A universal vertex is a ve...
uvtxssvtx 29324 The set of the universal v...
vtxnbuvtx 29325 A universal vertex has all...
uvtxnbgrss 29326 A universal vertex has all...
uvtxnbgrvtx 29327 A universal vertex is neig...
uvtx0 29328 There is no universal vert...
isuvtx 29329 The set of all universal v...
uvtxel1 29330 Characterization of a univ...
uvtx01vtx 29331 If a graph/class has no ed...
uvtx2vtx1edg 29332 If a graph has two vertice...
uvtx2vtx1edgb 29333 If a hypergraph has two ve...
uvtxnbgr 29334 A universal vertex has all...
uvtxnbgrb 29335 A vertex is universal iff ...
uvtxusgr 29336 The set of all universal v...
uvtxusgrel 29337 A universal vertex, i.e. a...
uvtxnm1nbgr 29338 A universal vertex has ` n...
nbusgrvtxm1uvtx 29339 If the number of neighbors...
uvtxnbvtxm1 29340 A universal vertex has ` n...
nbupgruvtxres 29341 The neighborhood of a univ...
uvtxupgrres 29342 A universal vertex is univ...
cplgruvtxb 29347 A graph ` G ` is complete ...
prcliscplgr 29348 A proper class (representi...
iscplgr 29349 The property of being a co...
iscplgrnb 29350 A graph is complete iff al...
iscplgredg 29351 A graph ` G ` is complete ...
iscusgr 29352 The property of being a co...
cusgrusgr 29353 A complete simple graph is...
cusgrcplgr 29354 A complete simple graph is...
iscusgrvtx 29355 A simple graph is complete...
cusgruvtxb 29356 A simple graph is complete...
iscusgredg 29357 A simple graph is complete...
cusgredg 29358 In a complete simple graph...
cplgr0 29359 The null graph (with no ve...
cusgr0 29360 The null graph (with no ve...
cplgr0v 29361 A null graph (with no vert...
cusgr0v 29362 A graph with no vertices a...
cplgr1vlem 29363 Lemma for ~ cplgr1v and ~ ...
cplgr1v 29364 A graph with one vertex is...
cusgr1v 29365 A graph with one vertex an...
cplgr2v 29366 An undirected hypergraph w...
cplgr2vpr 29367 An undirected hypergraph w...
nbcplgr 29368 In a complete graph, each ...
cplgr3v 29369 A pseudograph with three (...
cusgr3vnbpr 29370 The neighbors of a vertex ...
cplgrop 29371 A complete graph represent...
cusgrop 29372 A complete simple graph re...
cusgrexilem1 29373 Lemma 1 for ~ cusgrexi . ...
usgrexilem 29374 Lemma for ~ usgrexi . (Co...
usgrexi 29375 An arbitrary set regarded ...
cusgrexilem2 29376 Lemma 2 for ~ cusgrexi . ...
cusgrexi 29377 An arbitrary set ` V ` reg...
cusgrexg 29378 For each set there is a se...
structtousgr 29379 Any (extensible) structure...
structtocusgr 29380 Any (extensible) structure...
cffldtocusgr 29381 The field of complex numbe...
cffldtocusgrOLD 29382 Obsolete version of ~ cffl...
cusgrres 29383 Restricting a complete sim...
cusgrsizeindb0 29384 Base case of the induction...
cusgrsizeindb1 29385 Base case of the induction...
cusgrsizeindslem 29386 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 29387 Part 1 of induction step i...
cusgrsize2inds 29388 Induction step in ~ cusgrs...
cusgrsize 29389 The size of a finite compl...
cusgrfilem1 29390 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 29391 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 29392 Lemma 3 for ~ cusgrfi . (...
cusgrfi 29393 If the size of a complete ...
usgredgsscusgredg 29394 A simple graph is a subgra...
usgrsscusgr 29395 A simple graph is a subgra...
sizusglecusglem1 29396 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 29397 Lemma 2 for ~ sizusglecusg...
sizusglecusg 29398 The size of a simple graph...
fusgrmaxsize 29399 The maximum size of a fini...
vtxdgfval 29402 The value of the vertex de...
vtxdgval 29403 The degree of a vertex. (...
vtxdgfival 29404 The degree of a vertex for...
vtxdgop 29405 The vertex degree expresse...
vtxdgf 29406 The vertex degree function...
vtxdgelxnn0 29407 The degree of a vertex is ...
vtxdg0v 29408 The degree of a vertex in ...
vtxdg0e 29409 The degree of a vertex in ...
vtxdgfisnn0 29410 The degree of a vertex in ...
vtxdgfisf 29411 The vertex degree function...
vtxdeqd 29412 Equality theorem for the v...
vtxduhgr0e 29413 The degree of a vertex in ...
vtxdlfuhgr1v 29414 The degree of the vertex i...
vdumgr0 29415 A vertex in a multigraph h...
vtxdun 29416 The degree of a vertex in ...
vtxdfiun 29417 The degree of a vertex in ...
vtxduhgrun 29418 The degree of a vertex in ...
vtxduhgrfiun 29419 The degree of a vertex in ...
vtxdlfgrval 29420 The value of the vertex de...
vtxdumgrval 29421 The value of the vertex de...
vtxdusgrval 29422 The value of the vertex de...
vtxd0nedgb 29423 A vertex has degree 0 iff ...
vtxdushgrfvedglem 29424 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 29425 The value of the vertex de...
vtxdusgrfvedg 29426 The value of the vertex de...
vtxduhgr0nedg 29427 If a vertex in a hypergrap...
vtxdumgr0nedg 29428 If a vertex in a multigrap...
vtxduhgr0edgnel 29429 A vertex in a hypergraph h...
vtxdusgr0edgnel 29430 A vertex in a simple graph...
vtxdusgr0edgnelALT 29431 Alternate proof of ~ vtxdu...
vtxdgfusgrf 29432 The vertex degree function...
vtxdgfusgr 29433 In a finite simple graph, ...
fusgrn0degnn0 29434 In a nonempty, finite grap...
1loopgruspgr 29435 A graph with one edge whic...
1loopgredg 29436 The set of edges in a grap...
1loopgrnb0 29437 In a graph (simple pseudog...
1loopgrvd2 29438 The vertex degree of a one...
1loopgrvd0 29439 The vertex degree of a one...
1hevtxdg0 29440 The vertex degree of verte...
1hevtxdg1 29441 The vertex degree of verte...
1hegrvtxdg1 29442 The vertex degree of a gra...
1hegrvtxdg1r 29443 The vertex degree of a gra...
1egrvtxdg1 29444 The vertex degree of a one...
1egrvtxdg1r 29445 The vertex degree of a one...
1egrvtxdg0 29446 The vertex degree of a one...
p1evtxdeqlem 29447 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 29448 If an edge ` E ` which doe...
p1evtxdp1 29449 If an edge ` E ` (not bein...
uspgrloopvtx 29450 The set of vertices in a g...
uspgrloopvtxel 29451 A vertex in a graph (simpl...
uspgrloopiedg 29452 The set of edges in a grap...
uspgrloopedg 29453 The set of edges in a grap...
uspgrloopnb0 29454 In a graph (simple pseudog...
uspgrloopvd2 29455 The vertex degree of a one...
umgr2v2evtx 29456 The set of vertices in a m...
umgr2v2evtxel 29457 A vertex in a multigraph w...
umgr2v2eiedg 29458 The edge function in a mul...
umgr2v2eedg 29459 The set of edges in a mult...
umgr2v2e 29460 A multigraph with two edge...
umgr2v2enb1 29461 In a multigraph with two e...
umgr2v2evd2 29462 In a multigraph with two e...
hashnbusgrvd 29463 In a simple graph, the num...
usgruvtxvdb 29464 In a finite simple graph w...
vdiscusgrb 29465 A finite simple graph with...
vdiscusgr 29466 In a finite complete simpl...
vtxdusgradjvtx 29467 The degree of a vertex in ...
usgrvd0nedg 29468 If a vertex in a simple gr...
uhgrvd00 29469 If every vertex in a hyper...
usgrvd00 29470 If every vertex in a simpl...
vdegp1ai 29471 The induction step for a v...
vdegp1bi 29472 The induction step for a v...
vdegp1ci 29473 The induction step for a v...
vtxdginducedm1lem1 29474 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 29475 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 29476 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 29477 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 29478 The degree of a vertex ` v...
vtxdginducedm1fi 29479 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 29480 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 29481 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 29482 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 29483 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 29484 Induction step of ~ finsum...
finsumvtxdg2size 29485 The sum of the degrees of ...
fusgr1th 29486 The sum of the degrees of ...
finsumvtxdgeven 29487 The sum of the degrees of ...
vtxdgoddnumeven 29488 The number of vertices of ...
fusgrvtxdgonume 29489 The number of vertices of ...
isrgr 29494 The property of a class be...
rgrprop 29495 The properties of a k-regu...
isrusgr 29496 The property of being a k-...
rusgrprop 29497 The properties of a k-regu...
rusgrrgr 29498 A k-regular simple graph i...
rusgrusgr 29499 A k-regular simple graph i...
finrusgrfusgr 29500 A finite regular simple gr...
isrusgr0 29501 The property of being a k-...
rusgrprop0 29502 The properties of a k-regu...
usgreqdrusgr 29503 If all vertices in a simpl...
fusgrregdegfi 29504 In a nonempty finite simpl...
fusgrn0eqdrusgr 29505 If all vertices in a nonem...
frusgrnn0 29506 In a nonempty finite k-reg...
0edg0rgr 29507 A graph is 0-regular if it...
uhgr0edg0rgr 29508 A hypergraph is 0-regular ...
uhgr0edg0rgrb 29509 A hypergraph is 0-regular ...
usgr0edg0rusgr 29510 A simple graph is 0-regula...
0vtxrgr 29511 A null graph (with no vert...
0vtxrusgr 29512 A graph with no vertices a...
0uhgrrusgr 29513 The null graph as hypergra...
0grrusgr 29514 The null graph represented...
0grrgr 29515 The null graph represented...
cusgrrusgr 29516 A complete simple graph wi...
cusgrm1rusgr 29517 A finite simple graph with...
rusgrpropnb 29518 The properties of a k-regu...
rusgrpropedg 29519 The properties of a k-regu...
rusgrpropadjvtx 29520 The properties of a k-regu...
rusgrnumwrdl2 29521 In a k-regular simple grap...
rusgr1vtxlem 29522 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 29523 If a k-regular simple grap...
rgrusgrprc 29524 The class of 0-regular sim...
rusgrprc 29525 The class of 0-regular sim...
rgrprc 29526 The class of 0-regular gra...
rgrprcx 29527 The class of 0-regular gra...
rgrx0ndm 29528 0 is not in the domain of ...
rgrx0nd 29529 The potentially alternativ...
ewlksfval 29536 The set of s-walks of edge...
isewlk 29537 Conditions for a function ...
ewlkprop 29538 Properties of an s-walk of...
ewlkinedg 29539 The intersection (common v...
ewlkle 29540 An s-walk of edges is also...
upgrewlkle2 29541 In a pseudograph, there is...
wkslem1 29542 Lemma 1 for walks to subst...
wkslem2 29543 Lemma 2 for walks to subst...
wksfval 29544 The set of walks (in an un...
iswlk 29545 Properties of a pair of fu...
wlkprop 29546 Properties of a walk. (Co...
wlkv 29547 The classes involved in a ...
iswlkg 29548 Generalization of ~ iswlk ...
wlkf 29549 The mapping enumerating th...
wlkcl 29550 A walk has length ` # ( F ...
wlkp 29551 The mapping enumerating th...
wlkpwrd 29552 The sequence of vertices o...
wlklenvp1 29553 The number of vertices of ...
wksv 29554 The class of walks is a se...
wksvOLD 29555 Obsolete version of ~ wksv...
wlkn0 29556 The sequence of vertices o...
wlklenvm1 29557 The number of edges of a w...
ifpsnprss 29558 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 29559 Each pair of adjacent vert...
wlkvtxiedg 29560 The vertices of a walk are...
relwlk 29561 The set ` ( Walks `` G ) `...
wlkvv 29562 If there is at least one w...
wlkop 29563 A walk is an ordered pair....
wlkcpr 29564 A walk as class with two c...
wlk2f 29565 If there is a walk ` W ` t...
wlkcomp 29566 A walk expressed by proper...
wlkcompim 29567 Implications for the prope...
wlkelwrd 29568 The components of a walk a...
wlkeq 29569 Conditions for two walks (...
edginwlk 29570 The value of the edge func...
upgredginwlk 29571 The value of the edge func...
iedginwlk 29572 The value of the edge func...
wlkl1loop 29573 A walk of length 1 from a ...
wlk1walk 29574 A walk is a 1-walk "on the...
wlk1ewlk 29575 A walk is an s-walk "on th...
upgriswlk 29576 Properties of a pair of fu...
upgrwlkedg 29577 The edges of a walk in a p...
upgrwlkcompim 29578 Implications for the prope...
wlkvtxedg 29579 The vertices of a walk are...
upgrwlkvtxedg 29580 The pairs of connected ver...
uspgr2wlkeq 29581 Conditions for two walks w...
uspgr2wlkeq2 29582 Conditions for two walks w...
uspgr2wlkeqi 29583 Conditions for two walks w...
umgrwlknloop 29584 In a multigraph, each walk...
wlkResOLD 29585 Obsolete version of ~ opab...
wlkv0 29586 If there is a walk in the ...
g0wlk0 29587 There is no walk in a null...
0wlk0 29588 There is no walk for the e...
wlk0prc 29589 There is no walk in a null...
wlklenvclwlk 29590 The number of vertices in ...
wlkson 29591 The set of walks between t...
iswlkon 29592 Properties of a pair of fu...
wlkonprop 29593 Properties of a walk betwe...
wlkpvtx 29594 A walk connects vertices. ...
wlkepvtx 29595 The endpoints of a walk ar...
wlkoniswlk 29596 A walk between two vertice...
wlkonwlk 29597 A walk is a walk between i...
wlkonwlk1l 29598 A walk is a walk from its ...
wlksoneq1eq2 29599 Two walks with identical s...
wlkonl1iedg 29600 If there is a walk between...
wlkon2n0 29601 The length of a walk betwe...
2wlklem 29602 Lemma for theorems for wal...
upgr2wlk 29603 Properties of a pair of fu...
wlkreslem 29604 Lemma for ~ wlkres . (Con...
wlkres 29605 The restriction ` <. H , Q...
redwlklem 29606 Lemma for ~ redwlk . (Con...
redwlk 29607 A walk ending at the last ...
wlkp1lem1 29608 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 29609 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 29610 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 29611 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 29612 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 29613 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 29614 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 29615 Lemma for ~ wlkp1 . (Cont...
wlkp1 29616 Append one path segment (e...
wlkdlem1 29617 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 29618 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 29619 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 29620 Lemma 4 for ~ wlkd . (Con...
wlkd 29621 Two words representing a w...
lfgrwlkprop 29622 Two adjacent vertices in a...
lfgriswlk 29623 Conditions for a pair of f...
lfgrwlknloop 29624 In a loop-free graph, each...
reltrls 29629 The set ` ( Trails `` G ) ...
trlsfval 29630 The set of trails (in an u...
istrl 29631 Conditions for a pair of c...
trliswlk 29632 A trail is a walk. (Contr...
trlf1 29633 The enumeration ` F ` of a...
trlreslem 29634 Lemma for ~ trlres . Form...
trlres 29635 The restriction ` <. H , Q...
upgrtrls 29636 The set of trails in a pse...
upgristrl 29637 Properties of a pair of fu...
upgrf1istrl 29638 Properties of a pair of a ...
wksonproplem 29639 Lemma for theorems for pro...
wksonproplemOLD 29640 Obsolete version of ~ wkso...
trlsonfval 29641 The set of trails between ...
istrlson 29642 Properties of a pair of fu...
trlsonprop 29643 Properties of a trail betw...
trlsonistrl 29644 A trail between two vertic...
trlsonwlkon 29645 A trail between two vertic...
trlontrl 29646 A trail is a trail between...
relpths 29655 The set ` ( Paths `` G ) `...
pthsfval 29656 The set of paths (in an un...
spthsfval 29657 The set of simple paths (i...
ispth 29658 Conditions for a pair of c...
isspth 29659 Conditions for a pair of c...
pthistrl 29660 A path is a trail (in an u...
spthispth 29661 A simple path is a path (i...
pthiswlk 29662 A path is a walk (in an un...
spthiswlk 29663 A simple path is a walk (i...
pthdivtx 29664 The inner vertices of a pa...
pthdadjvtx 29665 The adjacent vertices of a...
dfpth2 29666 Alternate definition for a...
pthdifv 29667 The vertices of a path are...
2pthnloop 29668 A path of length at least ...
upgr2pthnlp 29669 A path of length at least ...
spthdifv 29670 The vertices of a simple p...
spthdep 29671 A simple path (at least of...
pthdepisspth 29672 A path with different star...
upgrwlkdvdelem 29673 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 29674 In a pseudograph, all edge...
upgrspthswlk 29675 The set of simple paths in...
upgrwlkdvspth 29676 A walk consisting of diffe...
pthsonfval 29677 The set of paths between t...
spthson 29678 The set of simple paths be...
ispthson 29679 Properties of a pair of fu...
isspthson 29680 Properties of a pair of fu...
pthsonprop 29681 Properties of a path betwe...
spthonprop 29682 Properties of a simple pat...
pthonispth 29683 A path between two vertice...
pthontrlon 29684 A path between two vertice...
pthonpth 29685 A path is a path between i...
isspthonpth 29686 A pair of functions is a s...
spthonisspth 29687 A simple path between to v...
spthonpthon 29688 A simple path between two ...
spthonepeq 29689 The endpoints of a simple ...
uhgrwkspthlem1 29690 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 29691 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 29692 Any walk of length 1 betwe...
usgr2wlkneq 29693 The vertices and edges are...
usgr2wlkspthlem1 29694 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 29695 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 29696 In a simple graph, any wal...
usgr2trlncl 29697 In a simple graph, any tra...
usgr2trlspth 29698 In a simple graph, any tra...
usgr2pthspth 29699 In a simple graph, any pat...
usgr2pthlem 29700 Lemma for ~ usgr2pth . (C...
usgr2pth 29701 In a simple graph, there i...
usgr2pth0 29702 In a simply graph, there i...
pthdlem1 29703 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 29704 Lemma for ~ pthdlem2 . (C...
pthdlem2 29705 Lemma 2 for ~ pthd . (Con...
pthd 29706 Two words representing a t...
clwlks 29709 The set of closed walks (i...
isclwlk 29710 A pair of functions repres...
clwlkiswlk 29711 A closed walk is a walk (i...
clwlkwlk 29712 Closed walks are walks (in...
clwlkswks 29713 Closed walks are walks (in...
isclwlke 29714 Properties of a pair of fu...
isclwlkupgr 29715 Properties of a pair of fu...
clwlkcomp 29716 A closed walk expressed by...
clwlkcompim 29717 Implications for the prope...
upgrclwlkcompim 29718 Implications for the prope...
clwlkcompbp 29719 Basic properties of the co...
clwlkl1loop 29720 A closed walk of length 1 ...
crcts 29725 The set of circuits (in an...
cycls 29726 The set of cycles (in an u...
iscrct 29727 Sufficient and necessary c...
iscycl 29728 Sufficient and necessary c...
crctprop 29729 The properties of a circui...
cyclprop 29730 The properties of a cycle:...
crctisclwlk 29731 A circuit is a closed walk...
crctistrl 29732 A circuit is a trail. (Co...
crctiswlk 29733 A circuit is a walk. (Con...
cyclispth 29734 A cycle is a path. (Contr...
cycliswlk 29735 A cycle is a walk. (Contr...
cycliscrct 29736 A cycle is a circuit. (Co...
cyclnumvtx 29737 The number of vertices of ...
cyclnspth 29738 A (non-trivial) cycle is n...
pthisspthorcycl 29739 A path is either a simple ...
pthspthcyc 29740 A pair ` <. F , P >. ` rep...
cyclispthon 29741 A cycle is a path starting...
lfgrn1cycl 29742 In a loop-free graph there...
usgr2trlncrct 29743 In a simple graph, any tra...
umgrn1cycl 29744 In a multigraph graph (wit...
uspgrn2crct 29745 In a simple pseudograph th...
usgrn2cycl 29746 In a simple graph there ar...
crctcshwlkn0lem1 29747 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 29748 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 29749 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 29750 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 29751 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 29752 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 29753 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 29754 Lemma for ~ crctcsh . (Co...
crctcshlem2 29755 Lemma for ~ crctcsh . (Co...
crctcshlem3 29756 Lemma for ~ crctcsh . (Co...
crctcshlem4 29757 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 29758 Cyclically shifting the in...
crctcshwlk 29759 Cyclically shifting the in...
crctcshtrl 29760 Cyclically shifting the in...
crctcsh 29761 Cyclically shifting the in...
wwlks 29772 The set of walks (in an un...
iswwlks 29773 A word over the set of ver...
wwlksn 29774 The set of walks (in an un...
iswwlksn 29775 A word over the set of ver...
wwlksnprcl 29776 Derivation of the length o...
iswwlksnx 29777 Properties of a word to re...
wwlkbp 29778 Basic properties of a walk...
wwlknbp 29779 Basic properties of a walk...
wwlknp 29780 Properties of a set being ...
wwlknbp1 29781 Other basic properties of ...
wwlknvtx 29782 The symbols of a word ` W ...
wwlknllvtx 29783 If a word ` W ` represents...
wwlknlsw 29784 If a word represents a wal...
wspthsn 29785 The set of simple paths of...
iswspthn 29786 An element of the set of s...
wspthnp 29787 Properties of a set being ...
wwlksnon 29788 The set of walks of a fixe...
wspthsnon 29789 The set of simple paths of...
iswwlksnon 29790 The set of walks of a fixe...
wwlksnon0 29791 Sufficient conditions for ...
wwlksonvtx 29792 If a word ` W ` represents...
iswspthsnon 29793 The set of simple paths of...
wwlknon 29794 An element of the set of w...
wspthnon 29795 An element of the set of s...
wspthnonp 29796 Properties of a set being ...
wspthneq1eq2 29797 Two simple paths with iden...
wwlksn0s 29798 The set of all walks as wo...
wwlkssswrd 29799 Walks (represented by word...
wwlksn0 29800 A walk of length 0 is repr...
0enwwlksnge1 29801 In graphs without edges, t...
wwlkswwlksn 29802 A walk of a fixed length a...
wwlkssswwlksn 29803 The walks of a fixed lengt...
wlkiswwlks1 29804 The sequence of vertices i...
wlklnwwlkln1 29805 The sequence of vertices i...
wlkiswwlks2lem1 29806 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 29807 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 29808 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 29809 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 29810 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 29811 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 29812 A walk as word corresponds...
wlkiswwlks 29813 A walk as word corresponds...
wlkiswwlksupgr2 29814 A walk as word corresponds...
wlkiswwlkupgr 29815 A walk as word corresponds...
wlkswwlksf1o 29816 The mapping of (ordinary) ...
wlkswwlksen 29817 The set of walks as words ...
wwlksm1edg 29818 Removing the trailing edge...
wlklnwwlkln2lem 29819 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 29820 A walk of length ` N ` as ...
wlklnwwlkn 29821 A walk of length ` N ` as ...
wlklnwwlklnupgr2 29822 A walk of length ` N ` as ...
wlklnwwlknupgr 29823 A walk of length ` N ` as ...
wlknewwlksn 29824 If a walk in a pseudograph...
wlknwwlksnbij 29825 The mapping ` ( t e. T |->...
wlknwwlksnen 29826 In a simple pseudograph, t...
wlknwwlksneqs 29827 The set of walks of a fixe...
wwlkseq 29828 Equality of two walks (as ...
wwlksnred 29829 Reduction of a walk (as wo...
wwlksnext 29830 Extension of a walk (as wo...
wwlksnextbi 29831 Extension of a walk (as wo...
wwlksnredwwlkn 29832 For each walk (as word) of...
wwlksnredwwlkn0 29833 For each walk (as word) of...
wwlksnextwrd 29834 Lemma for ~ wwlksnextbij ....
wwlksnextfun 29835 Lemma for ~ wwlksnextbij ....
wwlksnextinj 29836 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 29837 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 29838 Lemma for ~ wwlksnextbij ....
wwlksnextbij 29839 There is a bijection betwe...
wwlksnexthasheq 29840 The number of the extensio...
disjxwwlksn 29841 Sets of walks (as words) e...
wwlksnndef 29842 Conditions for ` WWalksN `...
wwlksnfi 29843 The number of walks repres...
wlksnfi 29844 The number of walks of fix...
wlksnwwlknvbij 29845 There is a bijection betwe...
wwlksnextproplem1 29846 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 29847 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 29848 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 29849 Adding additional properti...
disjxwwlkn 29850 Sets of walks (as words) e...
hashwwlksnext 29851 Number of walks (as words)...
wwlksnwwlksnon 29852 A walk of fixed length is ...
wspthsnwspthsnon 29853 A simple path of fixed len...
wspthsnonn0vne 29854 If the set of simple paths...
wspthsswwlkn 29855 The set of simple paths of...
wspthnfi 29856 In a finite graph, the set...
wwlksnonfi 29857 In a finite graph, the set...
wspthsswwlknon 29858 The set of simple paths of...
wspthnonfi 29859 In a finite graph, the set...
wspniunwspnon 29860 The set of nonempty simple...
wspn0 29861 If there are no vertices, ...
2wlkdlem1 29862 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 29863 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 29864 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 29865 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 29866 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 29867 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 29868 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 29869 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 29870 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 29871 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 29872 Lemma 10 for ~ 3wlkd . (C...
2wlkd 29873 Construction of a walk fro...
2wlkond 29874 A walk of length 2 from on...
2trld 29875 Construction of a trail fr...
2trlond 29876 A trail of length 2 from o...
2pthd 29877 A path of length 2 from on...
2spthd 29878 A simple path of length 2 ...
2pthond 29879 A simple path of length 2 ...
2pthon3v 29880 For a vertex adjacent to t...
umgr2adedgwlklem 29881 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 29882 In a multigraph, two adjac...
umgr2adedgwlkon 29883 In a multigraph, two adjac...
umgr2adedgwlkonALT 29884 Alternate proof for ~ umgr...
umgr2adedgspth 29885 In a multigraph, two adjac...
umgr2wlk 29886 In a multigraph, there is ...
umgr2wlkon 29887 For each pair of adjacent ...
elwwlks2s3 29888 A walk of length 2 as word...
midwwlks2s3 29889 There is a vertex between ...
wwlks2onv 29890 If a length 3 string repre...
elwwlks2ons3im 29891 A walk as word of length 2...
elwwlks2ons3 29892 For each walk of length 2 ...
s3wwlks2on 29893 A length 3 string which re...
umgrwwlks2on 29894 A walk of length 2 between...
wwlks2onsym 29895 There is a walk of length ...
elwwlks2on 29896 A walk of length 2 between...
elwspths2on 29897 A simple path of length 2 ...
wpthswwlks2on 29898 For two different vertices...
2wspdisj 29899 All simple paths of length...
2wspiundisj 29900 All simple paths of length...
usgr2wspthons3 29901 A simple path of length 2 ...
usgr2wspthon 29902 A simple path of length 2 ...
elwwlks2 29903 A walk of length 2 between...
elwspths2spth 29904 A simple path of length 2 ...
rusgrnumwwlkl1 29905 In a k-regular graph, ther...
rusgrnumwwlkslem 29906 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 29907 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 29908 Induction base 0 for ~ rus...
rusgrnumwwlkb1 29909 Induction base 1 for ~ rus...
rusgr0edg 29910 Special case for graphs wi...
rusgrnumwwlks 29911 Induction step for ~ rusgr...
rusgrnumwwlk 29912 In a ` K `-regular graph, ...
rusgrnumwwlkg 29913 In a ` K `-regular graph, ...
rusgrnumwlkg 29914 In a k-regular graph, the ...
clwwlknclwwlkdif 29915 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 29916 In a ` K `-regular graph, ...
clwwlk 29919 The set of closed walks (i...
isclwwlk 29920 Properties of a word to re...
clwwlkbp 29921 Basic properties of a clos...
clwwlkgt0 29922 There is no empty closed w...
clwwlksswrd 29923 Closed walks (represented ...
clwwlk1loop 29924 A closed walk of length 1 ...
clwwlkccatlem 29925 Lemma for ~ clwwlkccat : i...
clwwlkccat 29926 The concatenation of two w...
umgrclwwlkge2 29927 A closed walk in a multigr...
clwlkclwwlklem2a1 29928 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 29929 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 29930 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 29931 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 29932 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 29933 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 29934 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 29935 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 29936 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 29937 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 29938 A closed walk as word of l...
clwlkclwwlk2 29939 A closed walk corresponds ...
clwlkclwwlkflem 29940 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 29941 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 29942 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 29943 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 29944 ` F ` is a function from t...
clwlkclwwlkfo 29945 ` F ` is a function from t...
clwlkclwwlkf1 29946 ` F ` is a one-to-one func...
clwlkclwwlkf1o 29947 ` F ` is a bijection betwe...
clwlkclwwlken 29948 The set of the nonempty cl...
clwwisshclwwslemlem 29949 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 29950 Lemma for ~ clwwisshclwws ...
clwwisshclwws 29951 Cyclically shifting a clos...
clwwisshclwwsn 29952 Cyclically shifting a clos...
erclwwlkrel 29953 ` .~ ` is a relation. (Co...
erclwwlkeq 29954 Two classes are equivalent...
erclwwlkeqlen 29955 If two classes are equival...
erclwwlkref 29956 ` .~ ` is a reflexive rela...
erclwwlksym 29957 ` .~ ` is a symmetric rela...
erclwwlktr 29958 ` .~ ` is a transitive rel...
erclwwlk 29959 ` .~ ` is an equivalence r...
clwwlkn 29962 The set of closed walks of...
isclwwlkn 29963 A word over the set of ver...
clwwlkn0 29964 There is no closed walk of...
clwwlkneq0 29965 Sufficient conditions for ...
clwwlkclwwlkn 29966 A closed walk of a fixed l...
clwwlksclwwlkn 29967 The closed walks of a fixe...
clwwlknlen 29968 The length of a word repre...
clwwlknnn 29969 The length of a closed wal...
clwwlknwrd 29970 A closed walk of a fixed l...
clwwlknbp 29971 Basic properties of a clos...
isclwwlknx 29972 Characterization of a word...
clwwlknp 29973 Properties of a set being ...
clwwlknwwlksn 29974 A word representing a clos...
clwwlknlbonbgr1 29975 The last but one vertex in...
clwwlkinwwlk 29976 If the initial vertex of a...
clwwlkn1 29977 A closed walk of length 1 ...
loopclwwlkn1b 29978 The singleton word consist...
clwwlkn1loopb 29979 A word represents a closed...
clwwlkn2 29980 A closed walk of length 2 ...
clwwlknfi 29981 If there is only a finite ...
clwwlkel 29982 Obtaining a closed walk (a...
clwwlkf 29983 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 29984 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 29985 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 29986 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 29987 F is a 1-1 onto function, ...
clwwlken 29988 The set of closed walks of...
clwwlknwwlkncl 29989 Obtaining a closed walk (a...
clwwlkwwlksb 29990 A nonempty word over verti...
clwwlknwwlksnb 29991 A word over vertices repre...
clwwlkext2edg 29992 If a word concatenated wit...
wwlksext2clwwlk 29993 If a word represents a wal...
wwlksubclwwlk 29994 Any prefix of a word repre...
clwwnisshclwwsn 29995 Cyclically shifting a clos...
eleclclwwlknlem1 29996 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 29997 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 29998 The set of cyclical shifts...
clwwlknccat 29999 The concatenation of two w...
umgr2cwwk2dif 30000 If a word represents a clo...
umgr2cwwkdifex 30001 If a word represents a clo...
erclwwlknrel 30002 ` .~ ` is a relation. (Co...
erclwwlkneq 30003 Two classes are equivalent...
erclwwlkneqlen 30004 If two classes are equival...
erclwwlknref 30005 ` .~ ` is a reflexive rela...
erclwwlknsym 30006 ` .~ ` is a symmetric rela...
erclwwlkntr 30007 ` .~ ` is a transitive rel...
erclwwlkn 30008 ` .~ ` is an equivalence r...
qerclwwlknfi 30009 The quotient set of the se...
hashclwwlkn0 30010 The number of closed walks...
eclclwwlkn1 30011 An equivalence class accor...
eleclclwwlkn 30012 A member of an equivalence...
hashecclwwlkn1 30013 The size of every equivale...
umgrhashecclwwlk 30014 The size of every equivale...
fusgrhashclwwlkn 30015 The size of the set of clo...
clwwlkndivn 30016 The size of the set of clo...
clwlknf1oclwwlknlem1 30017 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 30018 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 30019 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 30020 There is a one-to-one onto...
clwlkssizeeq 30021 The size of the set of clo...
clwlksndivn 30022 The size of the set of clo...
clwwlknonmpo 30025 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 30026 The set of closed walks on...
isclwwlknon 30027 A word over the set of ver...
clwwlk0on0 30028 There is no word over the ...
clwwlknon0 30029 Sufficient conditions for ...
clwwlknonfin 30030 In a finite graph ` G ` , ...
clwwlknonel 30031 Characterization of a word...
clwwlknonccat 30032 The concatenation of two w...
clwwlknon1 30033 The set of closed walks on...
clwwlknon1loop 30034 If there is a loop at vert...
clwwlknon1nloop 30035 If there is no loop at ver...
clwwlknon1sn 30036 The set of (closed) walks ...
clwwlknon1le1 30037 There is at most one (clos...
clwwlknon2 30038 The set of closed walks on...
clwwlknon2x 30039 The set of closed walks on...
s2elclwwlknon2 30040 Sufficient conditions of a...
clwwlknon2num 30041 In a ` K `-regular graph `...
clwwlknonwwlknonb 30042 A word over vertices repre...
clwwlknonex2lem1 30043 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 30044 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 30045 Extending a closed walk ` ...
clwwlknonex2e 30046 Extending a closed walk ` ...
clwwlknondisj 30047 The sets of closed walks o...
clwwlknun 30048 The set of closed walks of...
clwwlkvbij 30049 There is a bijection betwe...
0ewlk 30050 The empty set (empty seque...
1ewlk 30051 A sequence of 1 edge is an...
0wlk 30052 A pair of an empty set (of...
is0wlk 30053 A pair of an empty set (of...
0wlkonlem1 30054 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 30055 Lemma 2 for ~ 0wlkon and ~...
0wlkon 30056 A walk of length 0 from a ...
0wlkons1 30057 A walk of length 0 from a ...
0trl 30058 A pair of an empty set (of...
is0trl 30059 A pair of an empty set (of...
0trlon 30060 A trail of length 0 from a...
0pth 30061 A pair of an empty set (of...
0spth 30062 A pair of an empty set (of...
0pthon 30063 A path of length 0 from a ...
0pthon1 30064 A path of length 0 from a ...
0pthonv 30065 For each vertex there is a...
0clwlk 30066 A pair of an empty set (of...
0clwlkv 30067 Any vertex (more precisely...
0clwlk0 30068 There is no closed walk in...
0crct 30069 A pair of an empty set (of...
0cycl 30070 A pair of an empty set (of...
1pthdlem1 30071 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 30072 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 30073 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 30074 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 30075 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 30076 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 30077 In a graph with two vertic...
1trld 30078 In a graph with two vertic...
1pthd 30079 In a graph with two vertic...
1pthond 30080 In a graph with two vertic...
upgr1wlkdlem1 30081 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 30082 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 30083 In a pseudograph with two ...
upgr1trld 30084 In a pseudograph with two ...
upgr1pthd 30085 In a pseudograph with two ...
upgr1pthond 30086 In a pseudograph with two ...
lppthon 30087 A loop (which is an edge a...
lp1cycl 30088 A loop (which is an edge a...
1pthon2v 30089 For each pair of adjacent ...
1pthon2ve 30090 For each pair of adjacent ...
wlk2v2elem1 30091 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 30092 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 30093 In a graph with two vertic...
ntrl2v2e 30094 A walk which is not a trai...
3wlkdlem1 30095 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 30096 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 30097 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 30098 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 30099 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 30100 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 30101 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 30102 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 30103 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 30104 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 30105 Lemma 10 for ~ 3wlkd . (C...
3wlkd 30106 Construction of a walk fro...
3wlkond 30107 A walk of length 3 from on...
3trld 30108 Construction of a trail fr...
3trlond 30109 A trail of length 3 from o...
3pthd 30110 A path of length 3 from on...
3pthond 30111 A path of length 3 from on...
3spthd 30112 A simple path of length 3 ...
3spthond 30113 A simple path of length 3 ...
3cycld 30114 Construction of a 3-cycle ...
3cyclpd 30115 Construction of a 3-cycle ...
upgr3v3e3cycl 30116 If there is a cycle of len...
uhgr3cyclexlem 30117 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 30118 If there are three differe...
umgr3cyclex 30119 If there are three (differ...
umgr3v3e3cycl 30120 If and only if there is a ...
upgr4cycl4dv4e 30121 If there is a cycle of len...
dfconngr1 30124 Alternative definition of ...
isconngr 30125 The property of being a co...
isconngr1 30126 The property of being a co...
cusconngr 30127 A complete hypergraph is c...
0conngr 30128 A graph without vertices i...
0vconngr 30129 A graph without vertices i...
1conngr 30130 A graph with (at most) one...
conngrv2edg 30131 A vertex in a connected gr...
vdn0conngrumgrv2 30132 A vertex in a connected mu...
releupth 30135 The set ` ( EulerPaths `` ...
eupths 30136 The Eulerian paths on the ...
iseupth 30137 The property " ` <. F , P ...
iseupthf1o 30138 The property " ` <. F , P ...
eupthi 30139 Properties of an Eulerian ...
eupthf1o 30140 The ` F ` function in an E...
eupthfi 30141 Any graph with an Eulerian...
eupthseg 30142 The ` N ` -th edge in an e...
upgriseupth 30143 The property " ` <. F , P ...
upgreupthi 30144 Properties of an Eulerian ...
upgreupthseg 30145 The ` N ` -th edge in an e...
eupthcl 30146 An Eulerian path has lengt...
eupthistrl 30147 An Eulerian path is a trai...
eupthiswlk 30148 An Eulerian path is a walk...
eupthpf 30149 The ` P ` function in an E...
eupth0 30150 There is an Eulerian path ...
eupthres 30151 The restriction ` <. H , Q...
eupthp1 30152 Append one path segment to...
eupth2eucrct 30153 Append one path segment to...
eupth2lem1 30154 Lemma for ~ eupth2 . (Con...
eupth2lem2 30155 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 30156 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 30157 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 30158 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 30159 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 30160 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 30161 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 30162 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 30163 Formerly part of proof of ...
eupth2lem3lem1 30164 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 30165 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 30166 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 30167 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 30168 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 30169 Formerly part of proof of ...
eupth2lem3lem7 30170 Lemma for ~ eupth2lem3 : ...
eupthvdres 30171 Formerly part of proof of ...
eupth2lem3 30172 Lemma for ~ eupth2 . (Con...
eupth2lemb 30173 Lemma for ~ eupth2 (induct...
eupth2lems 30174 Lemma for ~ eupth2 (induct...
eupth2 30175 The only vertices of odd d...
eulerpathpr 30176 A graph with an Eulerian p...
eulerpath 30177 A pseudograph with an Eule...
eulercrct 30178 A pseudograph with an Eule...
eucrctshift 30179 Cyclically shifting the in...
eucrct2eupth1 30180 Removing one edge ` ( I ``...
eucrct2eupth 30181 Removing one edge ` ( I ``...
konigsbergvtx 30182 The set of vertices of the...
konigsbergiedg 30183 The indexed edges of the K...
konigsbergiedgw 30184 The indexed edges of the K...
konigsbergssiedgwpr 30185 Each subset of the indexed...
konigsbergssiedgw 30186 Each subset of the indexed...
konigsbergumgr 30187 The Königsberg graph ...
konigsberglem1 30188 Lemma 1 for ~ konigsberg :...
konigsberglem2 30189 Lemma 2 for ~ konigsberg :...
konigsberglem3 30190 Lemma 3 for ~ konigsberg :...
konigsberglem4 30191 Lemma 4 for ~ konigsberg :...
konigsberglem5 30192 Lemma 5 for ~ konigsberg :...
konigsberg 30193 The Königsberg Bridge...
isfrgr 30196 The property of being a fr...
frgrusgr 30197 A friendship graph is a si...
frgr0v 30198 Any null graph (set with n...
frgr0vb 30199 Any null graph (without ve...
frgruhgr0v 30200 Any null graph (without ve...
frgr0 30201 The null graph (graph with...
frcond1 30202 The friendship condition: ...
frcond2 30203 The friendship condition: ...
frgreu 30204 Variant of ~ frcond2 : An...
frcond3 30205 The friendship condition, ...
frcond4 30206 The friendship condition, ...
frgr1v 30207 Any graph with (at most) o...
nfrgr2v 30208 Any graph with two (differ...
frgr3vlem1 30209 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 30210 Lemma 2 for ~ frgr3v . (C...
frgr3v 30211 Any graph with three verti...
1vwmgr 30212 Every graph with one verte...
3vfriswmgrlem 30213 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 30214 Every friendship graph wit...
1to2vfriswmgr 30215 Every friendship graph wit...
1to3vfriswmgr 30216 Every friendship graph wit...
1to3vfriendship 30217 The friendship theorem for...
2pthfrgrrn 30218 Between any two (different...
2pthfrgrrn2 30219 Between any two (different...
2pthfrgr 30220 Between any two (different...
3cyclfrgrrn1 30221 Every vertex in a friendsh...
3cyclfrgrrn 30222 Every vertex in a friendsh...
3cyclfrgrrn2 30223 Every vertex in a friendsh...
3cyclfrgr 30224 Every vertex in a friendsh...
4cycl2v2nb 30225 In a (maybe degenerate) 4-...
4cycl2vnunb 30226 In a 4-cycle, two distinct...
n4cyclfrgr 30227 There is no 4-cycle in a f...
4cyclusnfrgr 30228 A graph with a 4-cycle is ...
frgrnbnb 30229 If two neighbors ` U ` and...
frgrconngr 30230 A friendship graph is conn...
vdgn0frgrv2 30231 A vertex in a friendship g...
vdgn1frgrv2 30232 Any vertex in a friendship...
vdgn1frgrv3 30233 Any vertex in a friendship...
vdgfrgrgt2 30234 Any vertex in a friendship...
frgrncvvdeqlem1 30235 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 30236 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 30237 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 30238 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 30239 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 30240 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 30241 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 30242 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 30243 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 30244 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 30245 In a friendship graph, two...
frgrwopreglem4a 30246 In a friendship graph any ...
frgrwopreglem5a 30247 If a friendship graph has ...
frgrwopreglem1 30248 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 30249 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 30250 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 30251 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 30252 According to statement 5 i...
frgrwopregbsn 30253 According to statement 5 i...
frgrwopreg1 30254 According to statement 5 i...
frgrwopreg2 30255 According to statement 5 i...
frgrwopreglem5lem 30256 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 30257 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 30258 Alternate direct proof of ...
frgrwopreg 30259 In a friendship graph ther...
frgrregorufr0 30260 In a friendship graph ther...
frgrregorufr 30261 If there is a vertex havin...
frgrregorufrg 30262 If there is a vertex havin...
frgr2wwlkeu 30263 For two different vertices...
frgr2wwlkn0 30264 In a friendship graph, the...
frgr2wwlk1 30265 In a friendship graph, the...
frgr2wsp1 30266 In a friendship graph, the...
frgr2wwlkeqm 30267 If there is a (simple) pat...
frgrhash2wsp 30268 The number of simple paths...
fusgreg2wsplem 30269 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 30270 The set of paths of length...
fusgreghash2wspv 30271 According to statement 7 i...
fusgreg2wsp 30272 In a finite simple graph, ...
2wspmdisj 30273 The sets of paths of lengt...
fusgreghash2wsp 30274 In a finite k-regular grap...
frrusgrord0lem 30275 Lemma for ~ frrusgrord0 . ...
frrusgrord0 30276 If a nonempty finite frien...
frrusgrord 30277 If a nonempty finite frien...
numclwwlk2lem1lem 30278 Lemma for ~ numclwwlk2lem1...
2clwwlklem 30279 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 30280 If the initial vertex of a...
clwwnonrepclwwnon 30281 If the initial vertex of a...
2clwwlk2clwwlklem 30282 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 30283 Value of operation ` C ` ,...
2clwwlk2 30284 The set ` ( X C 2 ) ` of d...
2clwwlkel 30285 Characterization of an ele...
2clwwlk2clwwlk 30286 An element of the value of...
numclwwlk1lem2foalem 30287 Lemma for ~ numclwwlk1lem2...
extwwlkfab 30288 The set ` ( X C N ) ` of d...
extwwlkfabel 30289 Characterization of an ele...
numclwwlk1lem2foa 30290 Going forth and back from ...
numclwwlk1lem2f 30291 ` T ` is a function, mappi...
numclwwlk1lem2fv 30292 Value of the function ` T ...
numclwwlk1lem2f1 30293 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 30294 ` T ` is an onto function....
numclwwlk1lem2f1o 30295 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 30296 The set of double loops of...
numclwwlk1 30297 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 30298 ` F ` is a bijection betwe...
clwwlknonclwlknonen 30299 The sets of the two repres...
dlwwlknondlwlknonf1olem1 30300 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 30301 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 30302 The sets of the two repres...
wlkl0 30303 There is exactly one walk ...
clwlknon2num 30304 There are k walks of lengt...
numclwlk1lem1 30305 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 30306 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 30307 Statement 9 in [Huneke] p....
numclwwlkovh0 30308 Value of operation ` H ` ,...
numclwwlkovh 30309 Value of operation ` H ` ,...
numclwwlkovq 30310 Value of operation ` Q ` ,...
numclwwlkqhash 30311 In a ` K `-regular graph, ...
numclwwlk2lem1 30312 In a friendship graph, for...
numclwlk2lem2f 30313 ` R ` is a function mappin...
numclwlk2lem2fv 30314 Value of the function ` R ...
numclwlk2lem2f1o 30315 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 30316 In a friendship graph, the...
numclwwlk2 30317 Statement 10 in [Huneke] p...
numclwwlk3lem1 30318 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 30319 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 30320 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 30321 Statement 12 in [Huneke] p...
numclwwlk4 30322 The total number of closed...
numclwwlk5lem 30323 Lemma for ~ numclwwlk5 . ...
numclwwlk5 30324 Statement 13 in [Huneke] p...
numclwwlk7lem 30325 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 30326 For a prime divisor ` P ` ...
numclwwlk7 30327 Statement 14 in [Huneke] p...
numclwwlk8 30328 The size of the set of clo...
frgrreggt1 30329 If a finite nonempty frien...
frgrreg 30330 If a finite nonempty frien...
frgrregord013 30331 If a finite friendship gra...
frgrregord13 30332 If a nonempty finite frien...
frgrogt3nreg 30333 If a finite friendship gra...
friendshipgt3 30334 The friendship theorem for...
friendship 30335 The friendship theorem: I...
conventions 30336

H...

conventions-labels 30337

...

conventions-comments 30338

...

natded 30339 Here are typical n...
ex-natded5.2 30340 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 30341 A more efficient proof of ...
ex-natded5.2i 30342 The same as ~ ex-natded5.2...
ex-natded5.3 30343 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 30344 A more efficient proof of ...
ex-natded5.3i 30345 The same as ~ ex-natded5.3...
ex-natded5.5 30346 Theorem 5.5 of [Clemente] ...
ex-natded5.7 30347 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 30348 A more efficient proof of ...
ex-natded5.8 30349 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 30350 A more efficient proof of ...
ex-natded5.13 30351 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 30352 A more efficient proof of ...
ex-natded9.20 30353 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 30354 A more efficient proof of ...
ex-natded9.26 30355 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 30356 A more efficient proof of ...
ex-or 30357 Example for ~ df-or . Exa...
ex-an 30358 Example for ~ df-an . Exa...
ex-dif 30359 Example for ~ df-dif . Ex...
ex-un 30360 Example for ~ df-un . Exa...
ex-in 30361 Example for ~ df-in . Exa...
ex-uni 30362 Example for ~ df-uni . Ex...
ex-ss 30363 Example for ~ df-ss . Exa...
ex-pss 30364 Example for ~ df-pss . Ex...
ex-pw 30365 Example for ~ df-pw . Exa...
ex-pr 30366 Example for ~ df-pr . (Co...
ex-br 30367 Example for ~ df-br . Exa...
ex-opab 30368 Example for ~ df-opab . E...
ex-eprel 30369 Example for ~ df-eprel . ...
ex-id 30370 Example for ~ df-id . Exa...
ex-po 30371 Example for ~ df-po . Exa...
ex-xp 30372 Example for ~ df-xp . Exa...
ex-cnv 30373 Example for ~ df-cnv . Ex...
ex-co 30374 Example for ~ df-co . Exa...
ex-dm 30375 Example for ~ df-dm . Exa...
ex-rn 30376 Example for ~ df-rn . Exa...
ex-res 30377 Example for ~ df-res . Ex...
ex-ima 30378 Example for ~ df-ima . Ex...
ex-fv 30379 Example for ~ df-fv . Exa...
ex-1st 30380 Example for ~ df-1st . Ex...
ex-2nd 30381 Example for ~ df-2nd . Ex...
1kp2ke3k 30382 Example for ~ df-dec , 100...
ex-fl 30383 Example for ~ df-fl . Exa...
ex-ceil 30384 Example for ~ df-ceil . (...
ex-mod 30385 Example for ~ df-mod . (C...
ex-exp 30386 Example for ~ df-exp . (C...
ex-fac 30387 Example for ~ df-fac . (C...
ex-bc 30388 Example for ~ df-bc . (Co...
ex-hash 30389 Example for ~ df-hash . (...
ex-sqrt 30390 Example for ~ df-sqrt . (...
ex-abs 30391 Example for ~ df-abs . (C...
ex-dvds 30392 Example for ~ df-dvds : 3 ...
ex-gcd 30393 Example for ~ df-gcd . (C...
ex-lcm 30394 Example for ~ df-lcm . (C...
ex-prmo 30395 Example for ~ df-prmo : ` ...
aevdemo 30396 Proof illustrating the com...
ex-ind-dvds 30397 Example of a proof by indu...
ex-fpar 30398 Formalized example provide...
avril1 30399 Poisson d'Avril's Theorem....
2bornot2b 30400 The law of excluded middle...
helloworld 30401 The classic "Hello world" ...
1p1e2apr1 30402 One plus one equals two. ...
eqid1 30403 Law of identity (reflexivi...
1div0apr 30404 Division by zero is forbid...
topnfbey 30405 Nothing seems to be imposs...
9p10ne21 30406 9 + 10 is not equal to 21....
9p10ne21fool 30407 9 + 10 equals 21. This as...
nrt2irr 30409 The ` N ` -th root of 2 is...
isplig 30412 The predicate "is a planar...
ispligb 30413 The predicate "is a planar...
tncp 30414 In any planar incidence ge...
l2p 30415 For any line in a planar i...
lpni 30416 For any line in a planar i...
nsnlplig 30417 There is no "one-point lin...
nsnlpligALT 30418 Alternate version of ~ nsn...
n0lplig 30419 There is no "empty line" i...
n0lpligALT 30420 Alternate version of ~ n0l...
eulplig 30421 Through two distinct point...
pliguhgr 30422 Any planar incidence geome...
dummylink 30423 Alias for ~ a1ii that may ...
id1 30424 Alias for ~ idALT that may...
isgrpo 30433 The predicate "is a group ...
isgrpoi 30434 Properties that determine ...
grpofo 30435 A group operation maps ont...
grpocl 30436 Closure law for a group op...
grpolidinv 30437 A group has a left identit...
grpon0 30438 The base set of a group is...
grpoass 30439 A group operation is assoc...
grpoidinvlem1 30440 Lemma for ~ grpoidinv . (...
grpoidinvlem2 30441 Lemma for ~ grpoidinv . (...
grpoidinvlem3 30442 Lemma for ~ grpoidinv . (...
grpoidinvlem4 30443 Lemma for ~ grpoidinv . (...
grpoidinv 30444 A group has a left and rig...
grpoideu 30445 The left identity element ...
grporndm 30446 A group's range in terms o...
0ngrp 30447 The empty set is not a gro...
gidval 30448 The value of the identity ...
grpoidval 30449 Lemma for ~ grpoidcl and o...
grpoidcl 30450 The identity element of a ...
grpoidinv2 30451 A group's properties using...
grpolid 30452 The identity element of a ...
grporid 30453 The identity element of a ...
grporcan 30454 Right cancellation law for...
grpoinveu 30455 The left inverse element o...
grpoid 30456 Two ways of saying that an...
grporn 30457 The range of a group opera...
grpoinvfval 30458 The inverse function of a ...
grpoinvval 30459 The inverse of a group ele...
grpoinvcl 30460 A group element's inverse ...
grpoinv 30461 The properties of a group ...
grpolinv 30462 The left inverse of a grou...
grporinv 30463 The right inverse of a gro...
grpoinvid1 30464 The inverse of a group ele...
grpoinvid2 30465 The inverse of a group ele...
grpolcan 30466 Left cancellation law for ...
grpo2inv 30467 Double inverse law for gro...
grpoinvf 30468 Mapping of the inverse fun...
grpoinvop 30469 The inverse of the group o...
grpodivfval 30470 Group division (or subtrac...
grpodivval 30471 Group division (or subtrac...
grpodivinv 30472 Group division by an inver...
grpoinvdiv 30473 Inverse of a group divisio...
grpodivf 30474 Mapping for group division...
grpodivcl 30475 Closure of group division ...
grpodivdiv 30476 Double group division. (C...
grpomuldivass 30477 Associative-type law for m...
grpodivid 30478 Division of a group member...
grponpcan 30479 Cancellation law for group...
isablo 30482 The predicate "is an Abeli...
ablogrpo 30483 An Abelian group operation...
ablocom 30484 An Abelian group operation...
ablo32 30485 Commutative/associative la...
ablo4 30486 Commutative/associative la...
isabloi 30487 Properties that determine ...
ablomuldiv 30488 Law for group multiplicati...
ablodivdiv 30489 Law for double group divis...
ablodivdiv4 30490 Law for double group divis...
ablodiv32 30491 Swap the second and third ...
ablonncan 30492 Cancellation law for group...
ablonnncan1 30493 Cancellation law for group...
vcrel 30496 The class of all complex v...
vciOLD 30497 Obsolete version of ~ cvsi...
vcsm 30498 Functionality of th scalar...
vccl 30499 Closure of the scalar prod...
vcidOLD 30500 Identity element for the s...
vcdi 30501 Distributive law for the s...
vcdir 30502 Distributive law for the s...
vcass 30503 Associative law for the sc...
vc2OLD 30504 A vector plus itself is tw...
vcablo 30505 Vector addition is an Abel...
vcgrp 30506 Vector addition is a group...
vclcan 30507 Left cancellation law for ...
vczcl 30508 The zero vector is a vecto...
vc0rid 30509 The zero vector is a right...
vc0 30510 Zero times a vector is the...
vcz 30511 Anything times the zero ve...
vcm 30512 Minus 1 times a vector is ...
isvclem 30513 Lemma for ~ isvcOLD . (Co...
vcex 30514 The components of a comple...
isvcOLD 30515 The predicate "is a comple...
isvciOLD 30516 Properties that determine ...
cnaddabloOLD 30517 Obsolete version of ~ cnad...
cnidOLD 30518 Obsolete version of ~ cnad...
cncvcOLD 30519 Obsolete version of ~ cncv...
nvss 30529 Structure of the class of ...
nvvcop 30530 A normed complex vector sp...
nvrel 30538 The class of all normed co...
vafval 30539 Value of the function for ...
bafval 30540 Value of the function for ...
smfval 30541 Value of the function for ...
0vfval 30542 Value of the function for ...
nmcvfval 30543 Value of the norm function...
nvop2 30544 A normed complex vector sp...
nvvop 30545 The vector space component...
isnvlem 30546 Lemma for ~ isnv . (Contr...
nvex 30547 The components of a normed...
isnv 30548 The predicate "is a normed...
isnvi 30549 Properties that determine ...
nvi 30550 The properties of a normed...
nvvc 30551 The vector space component...
nvablo 30552 The vector addition operat...
nvgrp 30553 The vector addition operat...
nvgf 30554 Mapping for the vector add...
nvsf 30555 Mapping for the scalar mul...
nvgcl 30556 Closure law for the vector...
nvcom 30557 The vector addition (group...
nvass 30558 The vector addition (group...
nvadd32 30559 Commutative/associative la...
nvrcan 30560 Right cancellation law for...
nvadd4 30561 Rearrangement of 4 terms i...
nvscl 30562 Closure law for the scalar...
nvsid 30563 Identity element for the s...
nvsass 30564 Associative law for the sc...
nvscom 30565 Commutative law for the sc...
nvdi 30566 Distributive law for the s...
nvdir 30567 Distributive law for the s...
nv2 30568 A vector plus itself is tw...
vsfval 30569 Value of the function for ...
nvzcl 30570 Closure law for the zero v...
nv0rid 30571 The zero vector is a right...
nv0lid 30572 The zero vector is a left ...
nv0 30573 Zero times a vector is the...
nvsz 30574 Anything times the zero ve...
nvinv 30575 Minus 1 times a vector is ...
nvinvfval 30576 Function for the negative ...
nvm 30577 Vector subtraction in term...
nvmval 30578 Value of vector subtractio...
nvmval2 30579 Value of vector subtractio...
nvmfval 30580 Value of the function for ...
nvmf 30581 Mapping for the vector sub...
nvmcl 30582 Closure law for the vector...
nvnnncan1 30583 Cancellation law for vecto...
nvmdi 30584 Distributive law for scala...
nvnegneg 30585 Double negative of a vecto...
nvmul0or 30586 If a scalar product is zer...
nvrinv 30587 A vector minus itself. (C...
nvlinv 30588 Minus a vector plus itself...
nvpncan2 30589 Cancellation law for vecto...
nvpncan 30590 Cancellation law for vecto...
nvaddsub 30591 Commutative/associative la...
nvnpcan 30592 Cancellation law for a nor...
nvaddsub4 30593 Rearrangement of 4 terms i...
nvmeq0 30594 The difference between two...
nvmid 30595 A vector minus itself is t...
nvf 30596 Mapping for the norm funct...
nvcl 30597 The norm of a normed compl...
nvcli 30598 The norm of a normed compl...
nvs 30599 Proportionality property o...
nvsge0 30600 The norm of a scalar produ...
nvm1 30601 The norm of the negative o...
nvdif 30602 The norm of the difference...
nvpi 30603 The norm of a vector plus ...
nvz0 30604 The norm of a zero vector ...
nvz 30605 The norm of a vector is ze...
nvtri 30606 Triangle inequality for th...
nvmtri 30607 Triangle inequality for th...
nvabs 30608 Norm difference property o...
nvge0 30609 The norm of a normed compl...
nvgt0 30610 A nonzero norm is positive...
nv1 30611 From any nonzero vector, c...
nvop 30612 A complex inner product sp...
cnnv 30613 The set of complex numbers...
cnnvg 30614 The vector addition (group...
cnnvba 30615 The base set of the normed...
cnnvs 30616 The scalar product operati...
cnnvnm 30617 The norm operation of the ...
cnnvm 30618 The vector subtraction ope...
elimnv 30619 Hypothesis elimination lem...
elimnvu 30620 Hypothesis elimination lem...
imsval 30621 Value of the induced metri...
imsdval 30622 Value of the induced metri...
imsdval2 30623 Value of the distance func...
nvnd 30624 The norm of a normed compl...
imsdf 30625 Mapping for the induced me...
imsmetlem 30626 Lemma for ~ imsmet . (Con...
imsmet 30627 The induced metric of a no...
imsxmet 30628 The induced metric of a no...
cnims 30629 The metric induced on the ...
vacn 30630 Vector addition is jointly...
nmcvcn 30631 The norm of a normed compl...
nmcnc 30632 The norm of a normed compl...
smcnlem 30633 Lemma for ~ smcn . (Contr...
smcn 30634 Scalar multiplication is j...
vmcn 30635 Vector subtraction is join...
dipfval 30638 The inner product function...
ipval 30639 Value of the inner product...
ipval2lem2 30640 Lemma for ~ ipval3 . (Con...
ipval2lem3 30641 Lemma for ~ ipval3 . (Con...
ipval2lem4 30642 Lemma for ~ ipval3 . (Con...
ipval2 30643 Expansion of the inner pro...
4ipval2 30644 Four times the inner produ...
ipval3 30645 Expansion of the inner pro...
ipidsq 30646 The inner product of a vec...
ipnm 30647 Norm expressed in terms of...
dipcl 30648 An inner product is a comp...
ipf 30649 Mapping for the inner prod...
dipcj 30650 The complex conjugate of a...
ipipcj 30651 An inner product times its...
diporthcom 30652 Orthogonality (meaning inn...
dip0r 30653 Inner product with a zero ...
dip0l 30654 Inner product with a zero ...
ipz 30655 The inner product of a vec...
dipcn 30656 Inner product is jointly c...
sspval 30659 The set of all subspaces o...
isssp 30660 The predicate "is a subspa...
sspid 30661 A normed complex vector sp...
sspnv 30662 A subspace is a normed com...
sspba 30663 The base set of a subspace...
sspg 30664 Vector addition on a subsp...
sspgval 30665 Vector addition on a subsp...
ssps 30666 Scalar multiplication on a...
sspsval 30667 Scalar multiplication on a...
sspmlem 30668 Lemma for ~ sspm and other...
sspmval 30669 Vector addition on a subsp...
sspm 30670 Vector subtraction on a su...
sspz 30671 The zero vector of a subsp...
sspn 30672 The norm on a subspace is ...
sspnval 30673 The norm on a subspace in ...
sspimsval 30674 The induced metric on a su...
sspims 30675 The induced metric on a su...
lnoval 30688 The set of linear operator...
islno 30689 The predicate "is a linear...
lnolin 30690 Basic linearity property o...
lnof 30691 A linear operator is a map...
lno0 30692 The value of a linear oper...
lnocoi 30693 The composition of two lin...
lnoadd 30694 Addition property of a lin...
lnosub 30695 Subtraction property of a ...
lnomul 30696 Scalar multiplication prop...
nvo00 30697 Two ways to express a zero...
nmoofval 30698 The operator norm function...
nmooval 30699 The operator norm function...
nmosetre 30700 The set in the supremum of...
nmosetn0 30701 The set in the supremum of...
nmoxr 30702 The norm of an operator is...
nmooge0 30703 The norm of an operator is...
nmorepnf 30704 The norm of an operator is...
nmoreltpnf 30705 The norm of any operator i...
nmogtmnf 30706 The norm of an operator is...
nmoolb 30707 A lower bound for an opera...
nmoubi 30708 An upper bound for an oper...
nmoub3i 30709 An upper bound for an oper...
nmoub2i 30710 An upper bound for an oper...
nmobndi 30711 Two ways to express that a...
nmounbi 30712 Two ways two express that ...
nmounbseqi 30713 An unbounded operator dete...
nmounbseqiALT 30714 Alternate shorter proof of...
nmobndseqi 30715 A bounded sequence determi...
nmobndseqiALT 30716 Alternate shorter proof of...
bloval 30717 The class of bounded linea...
isblo 30718 The predicate "is a bounde...
isblo2 30719 The predicate "is a bounde...
bloln 30720 A bounded operator is a li...
blof 30721 A bounded operator is an o...
nmblore 30722 The norm of a bounded oper...
0ofval 30723 The zero operator between ...
0oval 30724 Value of the zero operator...
0oo 30725 The zero operator is an op...
0lno 30726 The zero operator is linea...
nmoo0 30727 The operator norm of the z...
0blo 30728 The zero operator is a bou...
nmlno0lem 30729 Lemma for ~ nmlno0i . (Co...
nmlno0i 30730 The norm of a linear opera...
nmlno0 30731 The norm of a linear opera...
nmlnoubi 30732 An upper bound for the ope...
nmlnogt0 30733 The norm of a nonzero line...
lnon0 30734 The domain of a nonzero li...
nmblolbii 30735 A lower bound for the norm...
nmblolbi 30736 A lower bound for the norm...
isblo3i 30737 The predicate "is a bounde...
blo3i 30738 Properties that determine ...
blometi 30739 Upper bound for the distan...
blocnilem 30740 Lemma for ~ blocni and ~ l...
blocni 30741 A linear operator is conti...
lnocni 30742 If a linear operator is co...
blocn 30743 A linear operator is conti...
blocn2 30744 A bounded linear operator ...
ajfval 30745 The adjoint function. (Co...
hmoval 30746 The set of Hermitian (self...
ishmo 30747 The predicate "is a hermit...
phnv 30750 Every complex inner produc...
phrel 30751 The class of all complex i...
phnvi 30752 Every complex inner produc...
isphg 30753 The predicate "is a comple...
phop 30754 A complex inner product sp...
cncph 30755 The set of complex numbers...
elimph 30756 Hypothesis elimination lem...
elimphu 30757 Hypothesis elimination lem...
isph 30758 The predicate "is an inner...
phpar2 30759 The parallelogram law for ...
phpar 30760 The parallelogram law for ...
ip0i 30761 A slight variant of Equati...
ip1ilem 30762 Lemma for ~ ip1i . (Contr...
ip1i 30763 Equation 6.47 of [Ponnusam...
ip2i 30764 Equation 6.48 of [Ponnusam...
ipdirilem 30765 Lemma for ~ ipdiri . (Con...
ipdiri 30766 Distributive law for inner...
ipasslem1 30767 Lemma for ~ ipassi . Show...
ipasslem2 30768 Lemma for ~ ipassi . Show...
ipasslem3 30769 Lemma for ~ ipassi . Show...
ipasslem4 30770 Lemma for ~ ipassi . Show...
ipasslem5 30771 Lemma for ~ ipassi . Show...
ipasslem7 30772 Lemma for ~ ipassi . Show...
ipasslem8 30773 Lemma for ~ ipassi . By ~...
ipasslem9 30774 Lemma for ~ ipassi . Conc...
ipasslem10 30775 Lemma for ~ ipassi . Show...
ipasslem11 30776 Lemma for ~ ipassi . Show...
ipassi 30777 Associative law for inner ...
dipdir 30778 Distributive law for inner...
dipdi 30779 Distributive law for inner...
ip2dii 30780 Inner product of two sums....
dipass 30781 Associative law for inner ...
dipassr 30782 "Associative" law for seco...
dipassr2 30783 "Associative" law for inne...
dipsubdir 30784 Distributive law for inner...
dipsubdi 30785 Distributive law for inner...
pythi 30786 The Pythagorean theorem fo...
siilem1 30787 Lemma for ~ sii . (Contri...
siilem2 30788 Lemma for ~ sii . (Contri...
siii 30789 Inference from ~ sii . (C...
sii 30790 Obsolete version of ~ ipca...
ipblnfi 30791 A function ` F ` generated...
ip2eqi 30792 Two vectors are equal iff ...
phoeqi 30793 A condition implying that ...
ajmoi 30794 Every operator has at most...
ajfuni 30795 The adjoint function is a ...
ajfun 30796 The adjoint function is a ...
ajval 30797 Value of the adjoint funct...
iscbn 30800 A complex Banach space is ...
cbncms 30801 The induced metric on comp...
bnnv 30802 Every complex Banach space...
bnrel 30803 The class of all complex B...
bnsscmcl 30804 A subspace of a Banach spa...
cnbn 30805 The set of complex numbers...
ubthlem1 30806 Lemma for ~ ubth . The fu...
ubthlem2 30807 Lemma for ~ ubth . Given ...
ubthlem3 30808 Lemma for ~ ubth . Prove ...
ubth 30809 Uniform Boundedness Theore...
minvecolem1 30810 Lemma for ~ minveco . The...
minvecolem2 30811 Lemma for ~ minveco . Any...
minvecolem3 30812 Lemma for ~ minveco . The...
minvecolem4a 30813 Lemma for ~ minveco . ` F ...
minvecolem4b 30814 Lemma for ~ minveco . The...
minvecolem4c 30815 Lemma for ~ minveco . The...
minvecolem4 30816 Lemma for ~ minveco . The...
minvecolem5 30817 Lemma for ~ minveco . Dis...
minvecolem6 30818 Lemma for ~ minveco . Any...
minvecolem7 30819 Lemma for ~ minveco . Sin...
minveco 30820 Minimizing vector theorem,...
ishlo 30823 The predicate "is a comple...
hlobn 30824 Every complex Hilbert spac...
hlph 30825 Every complex Hilbert spac...
hlrel 30826 The class of all complex H...
hlnv 30827 Every complex Hilbert spac...
hlnvi 30828 Every complex Hilbert spac...
hlvc 30829 Every complex Hilbert spac...
hlcmet 30830 The induced metric on a co...
hlmet 30831 The induced metric on a co...
hlpar2 30832 The parallelogram law sati...
hlpar 30833 The parallelogram law sati...
hlex 30834 The base set of a Hilbert ...
hladdf 30835 Mapping for Hilbert space ...
hlcom 30836 Hilbert space vector addit...
hlass 30837 Hilbert space vector addit...
hl0cl 30838 The Hilbert space zero vec...
hladdid 30839 Hilbert space addition wit...
hlmulf 30840 Mapping for Hilbert space ...
hlmulid 30841 Hilbert space scalar multi...
hlmulass 30842 Hilbert space scalar multi...
hldi 30843 Hilbert space scalar multi...
hldir 30844 Hilbert space scalar multi...
hlmul0 30845 Hilbert space scalar multi...
hlipf 30846 Mapping for Hilbert space ...
hlipcj 30847 Conjugate law for Hilbert ...
hlipdir 30848 Distributive law for Hilbe...
hlipass 30849 Associative law for Hilber...
hlipgt0 30850 The inner product of a Hil...
hlcompl 30851 Completeness of a Hilbert ...
cnchl 30852 The set of complex numbers...
htthlem 30853 Lemma for ~ htth . The co...
htth 30854 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 30910 The group (addition) opera...
h2hsm 30911 The scalar product operati...
h2hnm 30912 The norm function of Hilbe...
h2hvs 30913 The vector subtraction ope...
h2hmetdval 30914 Value of the distance func...
h2hcau 30915 The Cauchy sequences of Hi...
h2hlm 30916 The limit sequences of Hil...
axhilex-zf 30917 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 30918 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 30919 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 30920 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 30921 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 30922 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 30923 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 30924 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 30925 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 30926 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 30927 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 30928 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 30929 Derive Axiom ~ ax-hfi from...
axhis1-zf 30930 Derive Axiom ~ ax-his1 fro...
axhis2-zf 30931 Derive Axiom ~ ax-his2 fro...
axhis3-zf 30932 Derive Axiom ~ ax-his3 fro...
axhis4-zf 30933 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 30934 Derive Axiom ~ ax-hcompl f...
hvmulex 30947 The Hilbert space scalar p...
hvaddcl 30948 Closure of vector addition...
hvmulcl 30949 Closure of scalar multipli...
hvmulcli 30950 Closure inference for scal...
hvsubf 30951 Mapping domain and codomai...
hvsubval 30952 Value of vector subtractio...
hvsubcl 30953 Closure of vector subtract...
hvaddcli 30954 Closure of vector addition...
hvcomi 30955 Commutation of vector addi...
hvsubvali 30956 Value of vector subtractio...
hvsubcli 30957 Closure of vector subtract...
ifhvhv0 30958 Prove ` if ( A e. ~H , A ,...
hvaddlid 30959 Addition with the zero vec...
hvmul0 30960 Scalar multiplication with...
hvmul0or 30961 If a scalar product is zer...
hvsubid 30962 Subtraction of a vector fr...
hvnegid 30963 Addition of negative of a ...
hv2neg 30964 Two ways to express the ne...
hvaddlidi 30965 Addition with the zero vec...
hvnegidi 30966 Addition of negative of a ...
hv2negi 30967 Two ways to express the ne...
hvm1neg 30968 Convert minus one times a ...
hvaddsubval 30969 Value of vector addition i...
hvadd32 30970 Commutative/associative la...
hvadd12 30971 Commutative/associative la...
hvadd4 30972 Hilbert vector space addit...
hvsub4 30973 Hilbert vector space addit...
hvaddsub12 30974 Commutative/associative la...
hvpncan 30975 Addition/subtraction cance...
hvpncan2 30976 Addition/subtraction cance...
hvaddsubass 30977 Associativity of sum and d...
hvpncan3 30978 Subtraction and addition o...
hvmulcom 30979 Scalar multiplication comm...
hvsubass 30980 Hilbert vector space assoc...
hvsub32 30981 Hilbert vector space commu...
hvmulassi 30982 Scalar multiplication asso...
hvmulcomi 30983 Scalar multiplication comm...
hvmul2negi 30984 Double negative in scalar ...
hvsubdistr1 30985 Scalar multiplication dist...
hvsubdistr2 30986 Scalar multiplication dist...
hvdistr1i 30987 Scalar multiplication dist...
hvsubdistr1i 30988 Scalar multiplication dist...
hvassi 30989 Hilbert vector space assoc...
hvadd32i 30990 Hilbert vector space commu...
hvsubassi 30991 Hilbert vector space assoc...
hvsub32i 30992 Hilbert vector space commu...
hvadd12i 30993 Hilbert vector space commu...
hvadd4i 30994 Hilbert vector space addit...
hvsubsub4i 30995 Hilbert vector space addit...
hvsubsub4 30996 Hilbert vector space addit...
hv2times 30997 Two times a vector. (Cont...
hvnegdii 30998 Distribution of negative o...
hvsubeq0i 30999 If the difference between ...
hvsubcan2i 31000 Vector cancellation law. ...
hvaddcani 31001 Cancellation law for vecto...
hvsubaddi 31002 Relationship between vecto...
hvnegdi 31003 Distribution of negative o...
hvsubeq0 31004 If the difference between ...
hvaddeq0 31005 If the sum of two vectors ...
hvaddcan 31006 Cancellation law for vecto...
hvaddcan2 31007 Cancellation law for vecto...
hvmulcan 31008 Cancellation law for scala...
hvmulcan2 31009 Cancellation law for scala...
hvsubcan 31010 Cancellation law for vecto...
hvsubcan2 31011 Cancellation law for vecto...
hvsub0 31012 Subtraction of a zero vect...
hvsubadd 31013 Relationship between vecto...
hvaddsub4 31014 Hilbert vector space addit...
hicl 31016 Closure of inner product. ...
hicli 31017 Closure inference for inne...
his5 31022 Associative law for inner ...
his52 31023 Associative law for inner ...
his35 31024 Move scalar multiplication...
his35i 31025 Move scalar multiplication...
his7 31026 Distributive law for inner...
hiassdi 31027 Distributive/associative l...
his2sub 31028 Distributive law for inner...
his2sub2 31029 Distributive law for inner...
hire 31030 A necessary and sufficient...
hiidrcl 31031 Real closure of inner prod...
hi01 31032 Inner product with the 0 v...
hi02 31033 Inner product with the 0 v...
hiidge0 31034 Inner product with self is...
his6 31035 Zero inner product with se...
his1i 31036 Conjugate law for inner pr...
abshicom 31037 Commuted inner products ha...
hial0 31038 A vector whose inner produ...
hial02 31039 A vector whose inner produ...
hisubcomi 31040 Two vector subtractions si...
hi2eq 31041 Lemma used to prove equali...
hial2eq 31042 Two vectors whose inner pr...
hial2eq2 31043 Two vectors whose inner pr...
orthcom 31044 Orthogonality commutes. (...
normlem0 31045 Lemma used to derive prope...
normlem1 31046 Lemma used to derive prope...
normlem2 31047 Lemma used to derive prope...
normlem3 31048 Lemma used to derive prope...
normlem4 31049 Lemma used to derive prope...
normlem5 31050 Lemma used to derive prope...
normlem6 31051 Lemma used to derive prope...
normlem7 31052 Lemma used to derive prope...
normlem8 31053 Lemma used to derive prope...
normlem9 31054 Lemma used to derive prope...
normlem7tALT 31055 Lemma used to derive prope...
bcseqi 31056 Equality case of Bunjakova...
normlem9at 31057 Lemma used to derive prope...
dfhnorm2 31058 Alternate definition of th...
normf 31059 The norm function maps fro...
normval 31060 The value of the norm of a...
normcl 31061 Real closure of the norm o...
normge0 31062 The norm of a vector is no...
normgt0 31063 The norm of nonzero vector...
norm0 31064 The norm of a zero vector....
norm-i 31065 Theorem 3.3(i) of [Beran] ...
normne0 31066 A norm is nonzero iff its ...
normcli 31067 Real closure of the norm o...
normsqi 31068 The square of a norm. (Co...
norm-i-i 31069 Theorem 3.3(i) of [Beran] ...
normsq 31070 The square of a norm. (Co...
normsub0i 31071 Two vectors are equal iff ...
normsub0 31072 Two vectors are equal iff ...
norm-ii-i 31073 Triangle inequality for no...
norm-ii 31074 Triangle inequality for no...
norm-iii-i 31075 Theorem 3.3(iii) of [Beran...
norm-iii 31076 Theorem 3.3(iii) of [Beran...
normsubi 31077 Negative doesn't change th...
normpythi 31078 Analogy to Pythagorean the...
normsub 31079 Swapping order of subtract...
normneg 31080 The norm of a vector equal...
normpyth 31081 Analogy to Pythagorean the...
normpyc 31082 Corollary to Pythagorean t...
norm3difi 31083 Norm of differences around...
norm3adifii 31084 Norm of differences around...
norm3lem 31085 Lemma involving norm of di...
norm3dif 31086 Norm of differences around...
norm3dif2 31087 Norm of differences around...
norm3lemt 31088 Lemma involving norm of di...
norm3adifi 31089 Norm of differences around...
normpari 31090 Parallelogram law for norm...
normpar 31091 Parallelogram law for norm...
normpar2i 31092 Corollary of parallelogram...
polid2i 31093 Generalized polarization i...
polidi 31094 Polarization identity. Re...
polid 31095 Polarization identity. Re...
hilablo 31096 Hilbert space vector addit...
hilid 31097 The group identity element...
hilvc 31098 Hilbert space is a complex...
hilnormi 31099 Hilbert space norm in term...
hilhhi 31100 Deduce the structure of Hi...
hhnv 31101 Hilbert space is a normed ...
hhva 31102 The group (addition) opera...
hhba 31103 The base set of Hilbert sp...
hh0v 31104 The zero vector of Hilbert...
hhsm 31105 The scalar product operati...
hhvs 31106 The vector subtraction ope...
hhnm 31107 The norm function of Hilbe...
hhims 31108 The induced metric of Hilb...
hhims2 31109 Hilbert space distance met...
hhmet 31110 The induced metric of Hilb...
hhxmet 31111 The induced metric of Hilb...
hhmetdval 31112 Value of the distance func...
hhip 31113 The inner product operatio...
hhph 31114 The Hilbert space of the H...
bcsiALT 31115 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 31116 Bunjakovaskij-Cauchy-Schwa...
bcs 31117 Bunjakovaskij-Cauchy-Schwa...
bcs2 31118 Corollary of the Bunjakova...
bcs3 31119 Corollary of the Bunjakova...
hcau 31120 Member of the set of Cauch...
hcauseq 31121 A Cauchy sequences on a Hi...
hcaucvg 31122 A Cauchy sequence on a Hil...
seq1hcau 31123 A sequence on a Hilbert sp...
hlimi 31124 Express the predicate: Th...
hlimseqi 31125 A sequence with a limit on...
hlimveci 31126 Closure of the limit of a ...
hlimconvi 31127 Convergence of a sequence ...
hlim2 31128 The limit of a sequence on...
hlimadd 31129 Limit of the sum of two se...
hilmet 31130 The Hilbert space norm det...
hilxmet 31131 The Hilbert space norm det...
hilmetdval 31132 Value of the distance func...
hilims 31133 Hilbert space distance met...
hhcau 31134 The Cauchy sequences of Hi...
hhlm 31135 The limit sequences of Hil...
hhcmpl 31136 Lemma used for derivation ...
hilcompl 31137 Lemma used for derivation ...
hhcms 31139 The Hilbert space induced ...
hhhl 31140 The Hilbert space structur...
hilcms 31141 The Hilbert space norm det...
hilhl 31142 The Hilbert space of the H...
issh 31144 Subspace ` H ` of a Hilber...
issh2 31145 Subspace ` H ` of a Hilber...
shss 31146 A subspace is a subset of ...
shel 31147 A member of a subspace of ...
shex 31148 The set of subspaces of a ...
shssii 31149 A closed subspace of a Hil...
sheli 31150 A member of a subspace of ...
shelii 31151 A member of a subspace of ...
sh0 31152 The zero vector belongs to...
shaddcl 31153 Closure of vector addition...
shmulcl 31154 Closure of vector scalar m...
issh3 31155 Subspace ` H ` of a Hilber...
shsubcl 31156 Closure of vector subtract...
isch 31158 Closed subspace ` H ` of a...
isch2 31159 Closed subspace ` H ` of a...
chsh 31160 A closed subspace is a sub...
chsssh 31161 Closed subspaces are subsp...
chex 31162 The set of closed subspace...
chshii 31163 A closed subspace is a sub...
ch0 31164 The zero vector belongs to...
chss 31165 A closed subspace of a Hil...
chel 31166 A member of a closed subsp...
chssii 31167 A closed subspace of a Hil...
cheli 31168 A member of a closed subsp...
chelii 31169 A member of a closed subsp...
chlimi 31170 The limit property of a cl...
hlim0 31171 The zero sequence in Hilbe...
hlimcaui 31172 If a sequence in Hilbert s...
hlimf 31173 Function-like behavior of ...
hlimuni 31174 A Hilbert space sequence c...
hlimreui 31175 The limit of a Hilbert spa...
hlimeui 31176 The limit of a Hilbert spa...
isch3 31177 A Hilbert subspace is clos...
chcompl 31178 Completeness of a closed s...
helch 31179 The Hilbert lattice one (w...
ifchhv 31180 Prove ` if ( A e. CH , A ,...
helsh 31181 Hilbert space is a subspac...
shsspwh 31182 Subspaces are subsets of H...
chsspwh 31183 Closed subspaces are subse...
hsn0elch 31184 The zero subspace belongs ...
norm1 31185 From any nonzero Hilbert s...
norm1exi 31186 A normalized vector exists...
norm1hex 31187 A normalized vector can ex...
elch0 31190 Membership in zero for clo...
h0elch 31191 The zero subspace is a clo...
h0elsh 31192 The zero subspace is a sub...
hhssva 31193 The vector addition operat...
hhsssm 31194 The scalar multiplication ...
hhssnm 31195 The norm operation on a su...
issubgoilem 31196 Lemma for ~ hhssabloilem ....
hhssabloilem 31197 Lemma for ~ hhssabloi . F...
hhssabloi 31198 Abelian group property of ...
hhssablo 31199 Abelian group property of ...
hhssnv 31200 Normed complex vector spac...
hhssnvt 31201 Normed complex vector spac...
hhsst 31202 A member of ` SH ` is a su...
hhshsslem1 31203 Lemma for ~ hhsssh . (Con...
hhshsslem2 31204 Lemma for ~ hhsssh . (Con...
hhsssh 31205 The predicate " ` H ` is a...
hhsssh2 31206 The predicate " ` H ` is a...
hhssba 31207 The base set of a subspace...
hhssvs 31208 The vector subtraction ope...
hhssvsf 31209 Mapping of the vector subt...
hhssims 31210 Induced metric of a subspa...
hhssims2 31211 Induced metric of a subspa...
hhssmet 31212 Induced metric of a subspa...
hhssmetdval 31213 Value of the distance func...
hhsscms 31214 The induced metric of a cl...
hhssbnOLD 31215 Obsolete version of ~ cssb...
ocval 31216 Value of orthogonal comple...
ocel 31217 Membership in orthogonal c...
shocel 31218 Membership in orthogonal c...
ocsh 31219 The orthogonal complement ...
shocsh 31220 The orthogonal complement ...
ocss 31221 An orthogonal complement i...
shocss 31222 An orthogonal complement i...
occon 31223 Contraposition law for ort...
occon2 31224 Double contraposition for ...
occon2i 31225 Double contraposition for ...
oc0 31226 The zero vector belongs to...
ocorth 31227 Members of a subset and it...
shocorth 31228 Members of a subspace and ...
ococss 31229 Inclusion in complement of...
shococss 31230 Inclusion in complement of...
shorth 31231 Members of orthogonal subs...
ocin 31232 Intersection of a Hilbert ...
occon3 31233 Hilbert lattice contraposi...
ocnel 31234 A nonzero vector in the co...
chocvali 31235 Value of the orthogonal co...
shuni 31236 Two subspaces with trivial...
chocunii 31237 Lemma for uniqueness part ...
pjhthmo 31238 Projection Theorem, unique...
occllem 31239 Lemma for ~ occl . (Contr...
occl 31240 Closure of complement of H...
shoccl 31241 Closure of complement of H...
choccl 31242 Closure of complement of H...
choccli 31243 Closure of ` CH ` orthocom...
shsval 31248 Value of subspace sum of t...
shsss 31249 The subspace sum is a subs...
shsel 31250 Membership in the subspace...
shsel3 31251 Membership in the subspace...
shseli 31252 Membership in subspace sum...
shscli 31253 Closure of subspace sum. ...
shscl 31254 Closure of subspace sum. ...
shscom 31255 Commutative law for subspa...
shsva 31256 Vector sum belongs to subs...
shsel1 31257 A subspace sum contains a ...
shsel2 31258 A subspace sum contains a ...
shsvs 31259 Vector subtraction belongs...
shsub1 31260 Subspace sum is an upper b...
shsub2 31261 Subspace sum is an upper b...
choc0 31262 The orthocomplement of the...
choc1 31263 The orthocomplement of the...
chocnul 31264 Orthogonal complement of t...
shintcli 31265 Closure of intersection of...
shintcl 31266 The intersection of a none...
chintcli 31267 The intersection of a none...
chintcl 31268 The intersection (infimum)...
spanval 31269 Value of the linear span o...
hsupval 31270 Value of supremum of set o...
chsupval 31271 The value of the supremum ...
spancl 31272 The span of a subset of Hi...
elspancl 31273 A member of a span is a ve...
shsupcl 31274 Closure of the subspace su...
hsupcl 31275 Closure of supremum of set...
chsupcl 31276 Closure of supremum of sub...
hsupss 31277 Subset relation for suprem...
chsupss 31278 Subset relation for suprem...
hsupunss 31279 The union of a set of Hilb...
chsupunss 31280 The union of a set of clos...
spanss2 31281 A subset of Hilbert space ...
shsupunss 31282 The union of a set of subs...
spanid 31283 A subspace of Hilbert spac...
spanss 31284 Ordering relationship for ...
spanssoc 31285 The span of a subset of Hi...
sshjval 31286 Value of join for subsets ...
shjval 31287 Value of join in ` SH ` . ...
chjval 31288 Value of join in ` CH ` . ...
chjvali 31289 Value of join in ` CH ` . ...
sshjval3 31290 Value of join for subsets ...
sshjcl 31291 Closure of join for subset...
shjcl 31292 Closure of join in ` SH ` ...
chjcl 31293 Closure of join in ` CH ` ...
shjcom 31294 Commutative law for Hilber...
shless 31295 Subset implies subset of s...
shlej1 31296 Add disjunct to both sides...
shlej2 31297 Add disjunct to both sides...
shincli 31298 Closure of intersection of...
shscomi 31299 Commutative law for subspa...
shsvai 31300 Vector sum belongs to subs...
shsel1i 31301 A subspace sum contains a ...
shsel2i 31302 A subspace sum contains a ...
shsvsi 31303 Vector subtraction belongs...
shunssi 31304 Union is smaller than subs...
shunssji 31305 Union is smaller than Hilb...
shsleji 31306 Subspace sum is smaller th...
shjcomi 31307 Commutative law for join i...
shsub1i 31308 Subspace sum is an upper b...
shsub2i 31309 Subspace sum is an upper b...
shub1i 31310 Hilbert lattice join is an...
shjcli 31311 Closure of ` CH ` join. (...
shjshcli 31312 ` SH ` closure of join. (...
shlessi 31313 Subset implies subset of s...
shlej1i 31314 Add disjunct to both sides...
shlej2i 31315 Add disjunct to both sides...
shslej 31316 Subspace sum is smaller th...
shincl 31317 Closure of intersection of...
shub1 31318 Hilbert lattice join is an...
shub2 31319 A subspace is a subset of ...
shsidmi 31320 Idempotent law for Hilbert...
shslubi 31321 The least upper bound law ...
shlesb1i 31322 Hilbert lattice ordering i...
shsval2i 31323 An alternate way to expres...
shsval3i 31324 An alternate way to expres...
shmodsi 31325 The modular law holds for ...
shmodi 31326 The modular law is implied...
pjhthlem1 31327 Lemma for ~ pjhth . (Cont...
pjhthlem2 31328 Lemma for ~ pjhth . (Cont...
pjhth 31329 Projection Theorem: Any H...
pjhtheu 31330 Projection Theorem: Any H...
pjhfval 31332 The value of the projectio...
pjhval 31333 Value of a projection. (C...
pjpreeq 31334 Equality with a projection...
pjeq 31335 Equality with a projection...
axpjcl 31336 Closure of a projection in...
pjhcl 31337 Closure of a projection in...
omlsilem 31338 Lemma for orthomodular law...
omlsii 31339 Subspace inference form of...
omlsi 31340 Subspace form of orthomodu...
ococi 31341 Complement of complement o...
ococ 31342 Complement of complement o...
dfch2 31343 Alternate definition of th...
ococin 31344 The double complement is t...
hsupval2 31345 Alternate definition of su...
chsupval2 31346 The value of the supremum ...
sshjval2 31347 Value of join in the set o...
chsupid 31348 A subspace is the supremum...
chsupsn 31349 Value of supremum of subse...
shlub 31350 Hilbert lattice join is th...
shlubi 31351 Hilbert lattice join is th...
pjhtheu2 31352 Uniqueness of ` y ` for th...
pjcli 31353 Closure of a projection in...
pjhcli 31354 Closure of a projection in...
pjpjpre 31355 Decomposition of a vector ...
axpjpj 31356 Decomposition of a vector ...
pjclii 31357 Closure of a projection in...
pjhclii 31358 Closure of a projection in...
pjpj0i 31359 Decomposition of a vector ...
pjpji 31360 Decomposition of a vector ...
pjpjhth 31361 Projection Theorem: Any H...
pjpjhthi 31362 Projection Theorem: Any H...
pjop 31363 Orthocomplement projection...
pjpo 31364 Projection in terms of ort...
pjopi 31365 Orthocomplement projection...
pjpoi 31366 Projection in terms of ort...
pjoc1i 31367 Projection of a vector in ...
pjchi 31368 Projection of a vector in ...
pjoccl 31369 The part of a vector that ...
pjoc1 31370 Projection of a vector in ...
pjomli 31371 Subspace form of orthomodu...
pjoml 31372 Subspace form of orthomodu...
pjococi 31373 Proof of orthocomplement t...
pjoc2i 31374 Projection of a vector in ...
pjoc2 31375 Projection of a vector in ...
sh0le 31376 The zero subspace is the s...
ch0le 31377 The zero subspace is the s...
shle0 31378 No subspace is smaller tha...
chle0 31379 No Hilbert lattice element...
chnlen0 31380 A Hilbert lattice element ...
ch0pss 31381 The zero subspace is a pro...
orthin 31382 The intersection of orthog...
ssjo 31383 The lattice join of a subs...
shne0i 31384 A nonzero subspace has a n...
shs0i 31385 Hilbert subspace sum with ...
shs00i 31386 Two subspaces are zero iff...
ch0lei 31387 The closed subspace zero i...
chle0i 31388 No Hilbert closed subspace...
chne0i 31389 A nonzero closed subspace ...
chocini 31390 Intersection of a closed s...
chj0i 31391 Join with lattice zero in ...
chm1i 31392 Meet with lattice one in `...
chjcli 31393 Closure of ` CH ` join. (...
chsleji 31394 Subspace sum is smaller th...
chseli 31395 Membership in subspace sum...
chincli 31396 Closure of Hilbert lattice...
chsscon3i 31397 Hilbert lattice contraposi...
chsscon1i 31398 Hilbert lattice contraposi...
chsscon2i 31399 Hilbert lattice contraposi...
chcon2i 31400 Hilbert lattice contraposi...
chcon1i 31401 Hilbert lattice contraposi...
chcon3i 31402 Hilbert lattice contraposi...
chunssji 31403 Union is smaller than ` CH...
chjcomi 31404 Commutative law for join i...
chub1i 31405 ` CH ` join is an upper bo...
chub2i 31406 ` CH ` join is an upper bo...
chlubi 31407 Hilbert lattice join is th...
chlubii 31408 Hilbert lattice join is th...
chlej1i 31409 Add join to both sides of ...
chlej2i 31410 Add join to both sides of ...
chlej12i 31411 Add join to both sides of ...
chlejb1i 31412 Hilbert lattice ordering i...
chdmm1i 31413 De Morgan's law for meet i...
chdmm2i 31414 De Morgan's law for meet i...
chdmm3i 31415 De Morgan's law for meet i...
chdmm4i 31416 De Morgan's law for meet i...
chdmj1i 31417 De Morgan's law for join i...
chdmj2i 31418 De Morgan's law for join i...
chdmj3i 31419 De Morgan's law for join i...
chdmj4i 31420 De Morgan's law for join i...
chnlei 31421 Equivalent expressions for...
chjassi 31422 Associative law for Hilber...
chj00i 31423 Two Hilbert lattice elemen...
chjoi 31424 The join of a closed subsp...
chj1i 31425 Join with Hilbert lattice ...
chm0i 31426 Meet with Hilbert lattice ...
chm0 31427 Meet with Hilbert lattice ...
shjshsi 31428 Hilbert lattice join equal...
shjshseli 31429 A closed subspace sum equa...
chne0 31430 A nonzero closed subspace ...
chocin 31431 Intersection of a closed s...
chssoc 31432 A closed subspace less tha...
chj0 31433 Join with Hilbert lattice ...
chslej 31434 Subspace sum is smaller th...
chincl 31435 Closure of Hilbert lattice...
chsscon3 31436 Hilbert lattice contraposi...
chsscon1 31437 Hilbert lattice contraposi...
chsscon2 31438 Hilbert lattice contraposi...
chpsscon3 31439 Hilbert lattice contraposi...
chpsscon1 31440 Hilbert lattice contraposi...
chpsscon2 31441 Hilbert lattice contraposi...
chjcom 31442 Commutative law for Hilber...
chub1 31443 Hilbert lattice join is gr...
chub2 31444 Hilbert lattice join is gr...
chlub 31445 Hilbert lattice join is th...
chlej1 31446 Add join to both sides of ...
chlej2 31447 Add join to both sides of ...
chlejb1 31448 Hilbert lattice ordering i...
chlejb2 31449 Hilbert lattice ordering i...
chnle 31450 Equivalent expressions for...
chjo 31451 The join of a closed subsp...
chabs1 31452 Hilbert lattice absorption...
chabs2 31453 Hilbert lattice absorption...
chabs1i 31454 Hilbert lattice absorption...
chabs2i 31455 Hilbert lattice absorption...
chjidm 31456 Idempotent law for Hilbert...
chjidmi 31457 Idempotent law for Hilbert...
chj12i 31458 A rearrangement of Hilbert...
chj4i 31459 Rearrangement of the join ...
chjjdiri 31460 Hilbert lattice join distr...
chdmm1 31461 De Morgan's law for meet i...
chdmm2 31462 De Morgan's law for meet i...
chdmm3 31463 De Morgan's law for meet i...
chdmm4 31464 De Morgan's law for meet i...
chdmj1 31465 De Morgan's law for join i...
chdmj2 31466 De Morgan's law for join i...
chdmj3 31467 De Morgan's law for join i...
chdmj4 31468 De Morgan's law for join i...
chjass 31469 Associative law for Hilber...
chj12 31470 A rearrangement of Hilbert...
chj4 31471 Rearrangement of the join ...
ledii 31472 An ortholattice is distrib...
lediri 31473 An ortholattice is distrib...
lejdii 31474 An ortholattice is distrib...
lejdiri 31475 An ortholattice is distrib...
ledi 31476 An ortholattice is distrib...
spansn0 31477 The span of the singleton ...
span0 31478 The span of the empty set ...
elspani 31479 Membership in the span of ...
spanuni 31480 The span of a union is the...
spanun 31481 The span of a union is the...
sshhococi 31482 The join of two Hilbert sp...
hne0 31483 Hilbert space has a nonzer...
chsup0 31484 The supremum of the empty ...
h1deoi 31485 Membership in orthocomplem...
h1dei 31486 Membership in 1-dimensiona...
h1did 31487 A generating vector belong...
h1dn0 31488 A nonzero vector generates...
h1de2i 31489 Membership in 1-dimensiona...
h1de2bi 31490 Membership in 1-dimensiona...
h1de2ctlem 31491 Lemma for ~ h1de2ci . (Co...
h1de2ci 31492 Membership in 1-dimensiona...
spansni 31493 The span of a singleton in...
elspansni 31494 Membership in the span of ...
spansn 31495 The span of a singleton in...
spansnch 31496 The span of a Hilbert spac...
spansnsh 31497 The span of a Hilbert spac...
spansnchi 31498 The span of a singleton in...
spansnid 31499 A vector belongs to the sp...
spansnmul 31500 A scalar product with a ve...
elspansncl 31501 A member of a span of a si...
elspansn 31502 Membership in the span of ...
elspansn2 31503 Membership in the span of ...
spansncol 31504 The singletons of collinea...
spansneleqi 31505 Membership relation implie...
spansneleq 31506 Membership relation that i...
spansnss 31507 The span of the singleton ...
elspansn3 31508 A member of the span of th...
elspansn4 31509 A span membership conditio...
elspansn5 31510 A vector belonging to both...
spansnss2 31511 The span of the singleton ...
normcan 31512 Cancellation-type law that...
pjspansn 31513 A projection on the span o...
spansnpji 31514 A subset of Hilbert space ...
spanunsni 31515 The span of the union of a...
spanpr 31516 The span of a pair of vect...
h1datomi 31517 A 1-dimensional subspace i...
h1datom 31518 A 1-dimensional subspace i...
cmbr 31520 Binary relation expressing...
pjoml2i 31521 Variation of orthomodular ...
pjoml3i 31522 Variation of orthomodular ...
pjoml4i 31523 Variation of orthomodular ...
pjoml5i 31524 The orthomodular law. Rem...
pjoml6i 31525 An equivalent of the ortho...
cmbri 31526 Binary relation expressing...
cmcmlem 31527 Commutation is symmetric. ...
cmcmi 31528 Commutation is symmetric. ...
cmcm2i 31529 Commutation with orthocomp...
cmcm3i 31530 Commutation with orthocomp...
cmcm4i 31531 Commutation with orthocomp...
cmbr2i 31532 Alternate definition of th...
cmcmii 31533 Commutation is symmetric. ...
cmcm2ii 31534 Commutation with orthocomp...
cmcm3ii 31535 Commutation with orthocomp...
cmbr3i 31536 Alternate definition for t...
cmbr4i 31537 Alternate definition for t...
lecmi 31538 Comparable Hilbert lattice...
lecmii 31539 Comparable Hilbert lattice...
cmj1i 31540 A Hilbert lattice element ...
cmj2i 31541 A Hilbert lattice element ...
cmm1i 31542 A Hilbert lattice element ...
cmm2i 31543 A Hilbert lattice element ...
cmbr3 31544 Alternate definition for t...
cm0 31545 The zero Hilbert lattice e...
cmidi 31546 The commutes relation is r...
pjoml2 31547 Variation of orthomodular ...
pjoml3 31548 Variation of orthomodular ...
pjoml5 31549 The orthomodular law. Rem...
cmcm 31550 Commutation is symmetric. ...
cmcm3 31551 Commutation with orthocomp...
cmcm2 31552 Commutation with orthocomp...
lecm 31553 Comparable Hilbert lattice...
fh1 31554 Foulis-Holland Theorem. I...
fh2 31555 Foulis-Holland Theorem. I...
cm2j 31556 A lattice element that com...
fh1i 31557 Foulis-Holland Theorem. I...
fh2i 31558 Foulis-Holland Theorem. I...
fh3i 31559 Variation of the Foulis-Ho...
fh4i 31560 Variation of the Foulis-Ho...
cm2ji 31561 A lattice element that com...
cm2mi 31562 A lattice element that com...
qlax1i 31563 One of the equations showi...
qlax2i 31564 One of the equations showi...
qlax3i 31565 One of the equations showi...
qlax4i 31566 One of the equations showi...
qlax5i 31567 One of the equations showi...
qlaxr1i 31568 One of the conditions show...
qlaxr2i 31569 One of the conditions show...
qlaxr4i 31570 One of the conditions show...
qlaxr5i 31571 One of the conditions show...
qlaxr3i 31572 A variation of the orthomo...
chscllem1 31573 Lemma for ~ chscl . (Cont...
chscllem2 31574 Lemma for ~ chscl . (Cont...
chscllem3 31575 Lemma for ~ chscl . (Cont...
chscllem4 31576 Lemma for ~ chscl . (Cont...
chscl 31577 The subspace sum of two cl...
osumi 31578 If two closed subspaces of...
osumcori 31579 Corollary of ~ osumi . (C...
osumcor2i 31580 Corollary of ~ osumi , sho...
osum 31581 If two closed subspaces of...
spansnji 31582 The subspace sum of a clos...
spansnj 31583 The subspace sum of a clos...
spansnscl 31584 The subspace sum of a clos...
sumspansn 31585 The sum of two vectors bel...
spansnm0i 31586 The meet of different one-...
nonbooli 31587 A Hilbert lattice with two...
spansncvi 31588 Hilbert space has the cove...
spansncv 31589 Hilbert space has the cove...
5oalem1 31590 Lemma for orthoarguesian l...
5oalem2 31591 Lemma for orthoarguesian l...
5oalem3 31592 Lemma for orthoarguesian l...
5oalem4 31593 Lemma for orthoarguesian l...
5oalem5 31594 Lemma for orthoarguesian l...
5oalem6 31595 Lemma for orthoarguesian l...
5oalem7 31596 Lemma for orthoarguesian l...
5oai 31597 Orthoarguesian law 5OA. Th...
3oalem1 31598 Lemma for 3OA (weak) ortho...
3oalem2 31599 Lemma for 3OA (weak) ortho...
3oalem3 31600 Lemma for 3OA (weak) ortho...
3oalem4 31601 Lemma for 3OA (weak) ortho...
3oalem5 31602 Lemma for 3OA (weak) ortho...
3oalem6 31603 Lemma for 3OA (weak) ortho...
3oai 31604 3OA (weak) orthoarguesian ...
pjorthi 31605 Projection components on o...
pjch1 31606 Property of identity proje...
pjo 31607 The orthogonal projection....
pjcompi 31608 Component of a projection....
pjidmi 31609 A projection is idempotent...
pjadjii 31610 A projection is self-adjoi...
pjaddii 31611 Projection of vector sum i...
pjinormii 31612 The inner product of a pro...
pjmulii 31613 Projection of (scalar) pro...
pjsubii 31614 Projection of vector diffe...
pjsslem 31615 Lemma for subset relations...
pjss2i 31616 Subset relationship for pr...
pjssmii 31617 Projection meet property. ...
pjssge0ii 31618 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 31619 Theorem 4.5(v)<->(vi) of [...
pjcji 31620 The projection on a subspa...
pjadji 31621 A projection is self-adjoi...
pjaddi 31622 Projection of vector sum i...
pjinormi 31623 The inner product of a pro...
pjsubi 31624 Projection of vector diffe...
pjmuli 31625 Projection of scalar produ...
pjige0i 31626 The inner product of a pro...
pjige0 31627 The inner product of a pro...
pjcjt2 31628 The projection on a subspa...
pj0i 31629 The projection of the zero...
pjch 31630 Projection of a vector in ...
pjid 31631 The projection of a vector...
pjvec 31632 The set of vectors belongi...
pjocvec 31633 The set of vectors belongi...
pjocini 31634 Membership of projection i...
pjini 31635 Membership of projection i...
pjjsi 31636 A sufficient condition for...
pjfni 31637 Functionality of a project...
pjrni 31638 The range of a projection....
pjfoi 31639 A projection maps onto its...
pjfi 31640 The mapping of a projectio...
pjvi 31641 The value of a projection ...
pjhfo 31642 A projection maps onto its...
pjrn 31643 The range of a projection....
pjhf 31644 The mapping of a projectio...
pjfn 31645 Functionality of a project...
pjsumi 31646 The projection on a subspa...
pj11i 31647 One-to-one correspondence ...
pjdsi 31648 Vector decomposition into ...
pjds3i 31649 Vector decomposition into ...
pj11 31650 One-to-one correspondence ...
pjmfn 31651 Functionality of the proje...
pjmf1 31652 The projector function map...
pjoi0 31653 The inner product of proje...
pjoi0i 31654 The inner product of proje...
pjopythi 31655 Pythagorean theorem for pr...
pjopyth 31656 Pythagorean theorem for pr...
pjnormi 31657 The norm of the projection...
pjpythi 31658 Pythagorean theorem for pr...
pjneli 31659 If a vector does not belon...
pjnorm 31660 The norm of the projection...
pjpyth 31661 Pythagorean theorem for pr...
pjnel 31662 If a vector does not belon...
pjnorm2 31663 A vector belongs to the su...
mayete3i 31664 Mayet's equation E_3. Par...
mayetes3i 31665 Mayet's equation E^*_3, de...
hosmval 31671 Value of the sum of two Hi...
hommval 31672 Value of the scalar produc...
hodmval 31673 Value of the difference of...
hfsmval 31674 Value of the sum of two Hi...
hfmmval 31675 Value of the scalar produc...
hosval 31676 Value of the sum of two Hi...
homval 31677 Value of the scalar produc...
hodval 31678 Value of the difference of...
hfsval 31679 Value of the sum of two Hi...
hfmval 31680 Value of the scalar produc...
hoscl 31681 Closure of the sum of two ...
homcl 31682 Closure of the scalar prod...
hodcl 31683 Closure of the difference ...
ho0val 31686 Value of the zero Hilbert ...
ho0f 31687 Functionality of the zero ...
df0op2 31688 Alternate definition of Hi...
dfiop2 31689 Alternate definition of Hi...
hoif 31690 Functionality of the Hilbe...
hoival 31691 The value of the Hilbert s...
hoico1 31692 Composition with the Hilbe...
hoico2 31693 Composition with the Hilbe...
hoaddcl 31694 The sum of Hilbert space o...
homulcl 31695 The scalar product of a Hi...
hoeq 31696 Equality of Hilbert space ...
hoeqi 31697 Equality of Hilbert space ...
hoscli 31698 Closure of Hilbert space o...
hodcli 31699 Closure of Hilbert space o...
hocoi 31700 Composition of Hilbert spa...
hococli 31701 Closure of composition of ...
hocofi 31702 Mapping of composition of ...
hocofni 31703 Functionality of compositi...
hoaddcli 31704 Mapping of sum of Hilbert ...
hosubcli 31705 Mapping of difference of H...
hoaddfni 31706 Functionality of sum of Hi...
hosubfni 31707 Functionality of differenc...
hoaddcomi 31708 Commutativity of sum of Hi...
hosubcl 31709 Mapping of difference of H...
hoaddcom 31710 Commutativity of sum of Hi...
hodsi 31711 Relationship between Hilbe...
hoaddassi 31712 Associativity of sum of Hi...
hoadd12i 31713 Commutative/associative la...
hoadd32i 31714 Commutative/associative la...
hocadddiri 31715 Distributive law for Hilbe...
hocsubdiri 31716 Distributive law for Hilbe...
ho2coi 31717 Double composition of Hilb...
hoaddass 31718 Associativity of sum of Hi...
hoadd32 31719 Commutative/associative la...
hoadd4 31720 Rearrangement of 4 terms i...
hocsubdir 31721 Distributive law for Hilbe...
hoaddridi 31722 Sum of a Hilbert space ope...
hodidi 31723 Difference of a Hilbert sp...
ho0coi 31724 Composition of the zero op...
hoid1i 31725 Composition of Hilbert spa...
hoid1ri 31726 Composition of Hilbert spa...
hoaddrid 31727 Sum of a Hilbert space ope...
hodid 31728 Difference of a Hilbert sp...
hon0 31729 A Hilbert space operator i...
hodseqi 31730 Subtraction and addition o...
ho0subi 31731 Subtraction of Hilbert spa...
honegsubi 31732 Relationship between Hilbe...
ho0sub 31733 Subtraction of Hilbert spa...
hosubid1 31734 The zero operator subtract...
honegsub 31735 Relationship between Hilbe...
homullid 31736 An operator equals its sca...
homco1 31737 Associative law for scalar...
homulass 31738 Scalar product associative...
hoadddi 31739 Scalar product distributiv...
hoadddir 31740 Scalar product reverse dis...
homul12 31741 Swap first and second fact...
honegneg 31742 Double negative of a Hilbe...
hosubneg 31743 Relationship between opera...
hosubdi 31744 Scalar product distributiv...
honegdi 31745 Distribution of negative o...
honegsubdi 31746 Distribution of negative o...
honegsubdi2 31747 Distribution of negative o...
hosubsub2 31748 Law for double subtraction...
hosub4 31749 Rearrangement of 4 terms i...
hosubadd4 31750 Rearrangement of 4 terms i...
hoaddsubass 31751 Associative-type law for a...
hoaddsub 31752 Law for operator addition ...
hosubsub 31753 Law for double subtraction...
hosubsub4 31754 Law for double subtraction...
ho2times 31755 Two times a Hilbert space ...
hoaddsubassi 31756 Associativity of sum and d...
hoaddsubi 31757 Law for sum and difference...
hosd1i 31758 Hilbert space operator sum...
hosd2i 31759 Hilbert space operator sum...
hopncani 31760 Hilbert space operator can...
honpcani 31761 Hilbert space operator can...
hosubeq0i 31762 If the difference between ...
honpncani 31763 Hilbert space operator can...
ho01i 31764 A condition implying that ...
ho02i 31765 A condition implying that ...
hoeq1 31766 A condition implying that ...
hoeq2 31767 A condition implying that ...
adjmo 31768 Every Hilbert space operat...
adjsym 31769 Symmetry property of an ad...
eigrei 31770 A necessary and sufficient...
eigre 31771 A necessary and sufficient...
eigposi 31772 A sufficient condition (fi...
eigorthi 31773 A necessary and sufficient...
eigorth 31774 A necessary and sufficient...
nmopval 31792 Value of the norm of a Hil...
elcnop 31793 Property defining a contin...
ellnop 31794 Property defining a linear...
lnopf 31795 A linear Hilbert space ope...
elbdop 31796 Property defining a bounde...
bdopln 31797 A bounded linear Hilbert s...
bdopf 31798 A bounded linear Hilbert s...
nmopsetretALT 31799 The set in the supremum of...
nmopsetretHIL 31800 The set in the supremum of...
nmopsetn0 31801 The set in the supremum of...
nmopxr 31802 The norm of a Hilbert spac...
nmoprepnf 31803 The norm of a Hilbert spac...
nmopgtmnf 31804 The norm of a Hilbert spac...
nmopreltpnf 31805 The norm of a Hilbert spac...
nmopre 31806 The norm of a bounded oper...
elbdop2 31807 Property defining a bounde...
elunop 31808 Property defining a unitar...
elhmop 31809 Property defining a Hermit...
hmopf 31810 A Hermitian operator is a ...
hmopex 31811 The class of Hermitian ope...
nmfnval 31812 Value of the norm of a Hil...
nmfnsetre 31813 The set in the supremum of...
nmfnsetn0 31814 The set in the supremum of...
nmfnxr 31815 The norm of any Hilbert sp...
nmfnrepnf 31816 The norm of a Hilbert spac...
nlfnval 31817 Value of the null space of...
elcnfn 31818 Property defining a contin...
ellnfn 31819 Property defining a linear...
lnfnf 31820 A linear Hilbert space fun...
dfadj2 31821 Alternate definition of th...
funadj 31822 Functionality of the adjoi...
dmadjss 31823 The domain of the adjoint ...
dmadjop 31824 A member of the domain of ...
adjeu 31825 Elementhood in the domain ...
adjval 31826 Value of the adjoint funct...
adjval2 31827 Value of the adjoint funct...
cnvadj 31828 The adjoint function equal...
funcnvadj 31829 The converse of the adjoin...
adj1o 31830 The adjoint function maps ...
dmadjrn 31831 The adjoint of an operator...
eigvecval 31832 The set of eigenvectors of...
eigvalfval 31833 The eigenvalues of eigenve...
specval 31834 The value of the spectrum ...
speccl 31835 The spectrum of an operato...
hhlnoi 31836 The linear operators of Hi...
hhnmoi 31837 The norm of an operator in...
hhbloi 31838 A bounded linear operator ...
hh0oi 31839 The zero operator in Hilbe...
hhcno 31840 The continuous operators o...
hhcnf 31841 The continuous functionals...
dmadjrnb 31842 The adjoint of an operator...
nmoplb 31843 A lower bound for an opera...
nmopub 31844 An upper bound for an oper...
nmopub2tALT 31845 An upper bound for an oper...
nmopub2tHIL 31846 An upper bound for an oper...
nmopge0 31847 The norm of any Hilbert sp...
nmopgt0 31848 A linear Hilbert space ope...
cnopc 31849 Basic continuity property ...
lnopl 31850 Basic linearity property o...
unop 31851 Basic inner product proper...
unopf1o 31852 A unitary operator in Hilb...
unopnorm 31853 A unitary operator is idem...
cnvunop 31854 The inverse (converse) of ...
unopadj 31855 The inverse (converse) of ...
unoplin 31856 A unitary operator is line...
counop 31857 The composition of two uni...
hmop 31858 Basic inner product proper...
hmopre 31859 The inner product of the v...
nmfnlb 31860 A lower bound for a functi...
nmfnleub 31861 An upper bound for the nor...
nmfnleub2 31862 An upper bound for the nor...
nmfnge0 31863 The norm of any Hilbert sp...
elnlfn 31864 Membership in the null spa...
elnlfn2 31865 Membership in the null spa...
cnfnc 31866 Basic continuity property ...
lnfnl 31867 Basic linearity property o...
adjcl 31868 Closure of the adjoint of ...
adj1 31869 Property of an adjoint Hil...
adj2 31870 Property of an adjoint Hil...
adjeq 31871 A property that determines...
adjadj 31872 Double adjoint. Theorem 3...
adjvalval 31873 Value of the value of the ...
unopadj2 31874 The adjoint of a unitary o...
hmopadj 31875 A Hermitian operator is se...
hmdmadj 31876 Every Hermitian operator h...
hmopadj2 31877 An operator is Hermitian i...
hmoplin 31878 A Hermitian operator is li...
brafval 31879 The bra of a vector, expre...
braval 31880 A bra-ket juxtaposition, e...
braadd 31881 Linearity property of bra ...
bramul 31882 Linearity property of bra ...
brafn 31883 The bra function is a func...
bralnfn 31884 The Dirac bra function is ...
bracl 31885 Closure of the bra functio...
bra0 31886 The Dirac bra of the zero ...
brafnmul 31887 Anti-linearity property of...
kbfval 31888 The outer product of two v...
kbop 31889 The outer product of two v...
kbval 31890 The value of the operator ...
kbmul 31891 Multiplication property of...
kbpj 31892 If a vector ` A ` has norm...
eleigvec 31893 Membership in the set of e...
eleigvec2 31894 Membership in the set of e...
eleigveccl 31895 Closure of an eigenvector ...
eigvalval 31896 The eigenvalue of an eigen...
eigvalcl 31897 An eigenvalue is a complex...
eigvec1 31898 Property of an eigenvector...
eighmre 31899 The eigenvalues of a Hermi...
eighmorth 31900 Eigenvectors of a Hermitia...
nmopnegi 31901 Value of the norm of the n...
lnop0 31902 The value of a linear Hilb...
lnopmul 31903 Multiplicative property of...
lnopli 31904 Basic scalar product prope...
lnopfi 31905 A linear Hilbert space ope...
lnop0i 31906 The value of a linear Hilb...
lnopaddi 31907 Additive property of a lin...
lnopmuli 31908 Multiplicative property of...
lnopaddmuli 31909 Sum/product property of a ...
lnopsubi 31910 Subtraction property for a...
lnopsubmuli 31911 Subtraction/product proper...
lnopmulsubi 31912 Product/subtraction proper...
homco2 31913 Move a scalar product out ...
idunop 31914 The identity function (res...
0cnop 31915 The identically zero funct...
0cnfn 31916 The identically zero funct...
idcnop 31917 The identity function (res...
idhmop 31918 The Hilbert space identity...
0hmop 31919 The identically zero funct...
0lnop 31920 The identically zero funct...
0lnfn 31921 The identically zero funct...
nmop0 31922 The norm of the zero opera...
nmfn0 31923 The norm of the identicall...
hmopbdoptHIL 31924 A Hermitian operator is a ...
hoddii 31925 Distributive law for Hilbe...
hoddi 31926 Distributive law for Hilbe...
nmop0h 31927 The norm of any operator o...
idlnop 31928 The identity function (res...
0bdop 31929 The identically zero opera...
adj0 31930 Adjoint of the zero operat...
nmlnop0iALT 31931 A linear operator with a z...
nmlnop0iHIL 31932 A linear operator with a z...
nmlnopgt0i 31933 A linear Hilbert space ope...
nmlnop0 31934 A linear operator with a z...
nmlnopne0 31935 A linear operator with a n...
lnopmi 31936 The scalar product of a li...
lnophsi 31937 The sum of two linear oper...
lnophdi 31938 The difference of two line...
lnopcoi 31939 The composition of two lin...
lnopco0i 31940 The composition of a linea...
lnopeq0lem1 31941 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 31942 Lemma for ~ lnopeq0i . (C...
lnopeq0i 31943 A condition implying that ...
lnopeqi 31944 Two linear Hilbert space o...
lnopeq 31945 Two linear Hilbert space o...
lnopunilem1 31946 Lemma for ~ lnopunii . (C...
lnopunilem2 31947 Lemma for ~ lnopunii . (C...
lnopunii 31948 If a linear operator (whos...
elunop2 31949 An operator is unitary iff...
nmopun 31950 Norm of a unitary Hilbert ...
unopbd 31951 A unitary operator is a bo...
lnophmlem1 31952 Lemma for ~ lnophmi . (Co...
lnophmlem2 31953 Lemma for ~ lnophmi . (Co...
lnophmi 31954 A linear operator is Hermi...
lnophm 31955 A linear operator is Hermi...
hmops 31956 The sum of two Hermitian o...
hmopm 31957 The scalar product of a He...
hmopd 31958 The difference of two Herm...
hmopco 31959 The composition of two com...
nmbdoplbi 31960 A lower bound for the norm...
nmbdoplb 31961 A lower bound for the norm...
nmcexi 31962 Lemma for ~ nmcopexi and ~...
nmcopexi 31963 The norm of a continuous l...
nmcoplbi 31964 A lower bound for the norm...
nmcopex 31965 The norm of a continuous l...
nmcoplb 31966 A lower bound for the norm...
nmophmi 31967 The norm of the scalar pro...
bdophmi 31968 The scalar product of a bo...
lnconi 31969 Lemma for ~ lnopconi and ~...
lnopconi 31970 A condition equivalent to ...
lnopcon 31971 A condition equivalent to ...
lnopcnbd 31972 A linear operator is conti...
lncnopbd 31973 A continuous linear operat...
lncnbd 31974 A continuous linear operat...
lnopcnre 31975 A linear operator is conti...
lnfnli 31976 Basic property of a linear...
lnfnfi 31977 A linear Hilbert space fun...
lnfn0i 31978 The value of a linear Hilb...
lnfnaddi 31979 Additive property of a lin...
lnfnmuli 31980 Multiplicative property of...
lnfnaddmuli 31981 Sum/product property of a ...
lnfnsubi 31982 Subtraction property for a...
lnfn0 31983 The value of a linear Hilb...
lnfnmul 31984 Multiplicative property of...
nmbdfnlbi 31985 A lower bound for the norm...
nmbdfnlb 31986 A lower bound for the norm...
nmcfnexi 31987 The norm of a continuous l...
nmcfnlbi 31988 A lower bound for the norm...
nmcfnex 31989 The norm of a continuous l...
nmcfnlb 31990 A lower bound of the norm ...
lnfnconi 31991 A condition equivalent to ...
lnfncon 31992 A condition equivalent to ...
lnfncnbd 31993 A linear functional is con...
imaelshi 31994 The image of a subspace un...
rnelshi 31995 The range of a linear oper...
nlelshi 31996 The null space of a linear...
nlelchi 31997 The null space of a contin...
riesz3i 31998 A continuous linear functi...
riesz4i 31999 A continuous linear functi...
riesz4 32000 A continuous linear functi...
riesz1 32001 Part 1 of the Riesz repres...
riesz2 32002 Part 2 of the Riesz repres...
cnlnadjlem1 32003 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 32004 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 32005 Lemma for ~ cnlnadji . By...
cnlnadjlem4 32006 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 32007 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 32008 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 32009 Lemma for ~ cnlnadji . He...
cnlnadjlem8 32010 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 32011 Lemma for ~ cnlnadji . ` F...
cnlnadji 32012 Every continuous linear op...
cnlnadjeui 32013 Every continuous linear op...
cnlnadjeu 32014 Every continuous linear op...
cnlnadj 32015 Every continuous linear op...
cnlnssadj 32016 Every continuous linear Hi...
bdopssadj 32017 Every bounded linear Hilbe...
bdopadj 32018 Every bounded linear Hilbe...
adjbdln 32019 The adjoint of a bounded l...
adjbdlnb 32020 An operator is bounded and...
adjbd1o 32021 The mapping of adjoints of...
adjlnop 32022 The adjoint of an operator...
adjsslnop 32023 Every operator with an adj...
nmopadjlei 32024 Property of the norm of an...
nmopadjlem 32025 Lemma for ~ nmopadji . (C...
nmopadji 32026 Property of the norm of an...
adjeq0 32027 An operator is zero iff it...
adjmul 32028 The adjoint of the scalar ...
adjadd 32029 The adjoint of the sum of ...
nmoptrii 32030 Triangle inequality for th...
nmopcoi 32031 Upper bound for the norm o...
bdophsi 32032 The sum of two bounded lin...
bdophdi 32033 The difference between two...
bdopcoi 32034 The composition of two bou...
nmoptri2i 32035 Triangle-type inequality f...
adjcoi 32036 The adjoint of a compositi...
nmopcoadji 32037 The norm of an operator co...
nmopcoadj2i 32038 The norm of an operator co...
nmopcoadj0i 32039 An operator composed with ...
unierri 32040 If we approximate a chain ...
branmfn 32041 The norm of the bra functi...
brabn 32042 The bra of a vector is a b...
rnbra 32043 The set of bras equals the...
bra11 32044 The bra function maps vect...
bracnln 32045 A bra is a continuous line...
cnvbraval 32046 Value of the converse of t...
cnvbracl 32047 Closure of the converse of...
cnvbrabra 32048 The converse bra of the br...
bracnvbra 32049 The bra of the converse br...
bracnlnval 32050 The vector that a continuo...
cnvbramul 32051 Multiplication property of...
kbass1 32052 Dirac bra-ket associative ...
kbass2 32053 Dirac bra-ket associative ...
kbass3 32054 Dirac bra-ket associative ...
kbass4 32055 Dirac bra-ket associative ...
kbass5 32056 Dirac bra-ket associative ...
kbass6 32057 Dirac bra-ket associative ...
leopg 32058 Ordering relation for posi...
leop 32059 Ordering relation for oper...
leop2 32060 Ordering relation for oper...
leop3 32061 Operator ordering in terms...
leoppos 32062 Binary relation defining a...
leoprf2 32063 The ordering relation for ...
leoprf 32064 The ordering relation for ...
leopsq 32065 The square of a Hermitian ...
0leop 32066 The zero operator is a pos...
idleop 32067 The identity operator is a...
leopadd 32068 The sum of two positive op...
leopmuli 32069 The scalar product of a no...
leopmul 32070 The scalar product of a po...
leopmul2i 32071 Scalar product applied to ...
leoptri 32072 The positive operator orde...
leoptr 32073 The positive operator orde...
leopnmid 32074 A bounded Hermitian operat...
nmopleid 32075 A nonzero, bounded Hermiti...
opsqrlem1 32076 Lemma for opsqri . (Contr...
opsqrlem2 32077 Lemma for opsqri . ` F `` ...
opsqrlem3 32078 Lemma for opsqri . (Contr...
opsqrlem4 32079 Lemma for opsqri . (Contr...
opsqrlem5 32080 Lemma for opsqri . (Contr...
opsqrlem6 32081 Lemma for opsqri . (Contr...
pjhmopi 32082 A projector is a Hermitian...
pjlnopi 32083 A projector is a linear op...
pjnmopi 32084 The operator norm of a pro...
pjbdlni 32085 A projector is a bounded l...
pjhmop 32086 A projection is a Hermitia...
hmopidmchi 32087 An idempotent Hermitian op...
hmopidmpji 32088 An idempotent Hermitian op...
hmopidmch 32089 An idempotent Hermitian op...
hmopidmpj 32090 An idempotent Hermitian op...
pjsdii 32091 Distributive law for Hilbe...
pjddii 32092 Distributive law for Hilbe...
pjsdi2i 32093 Chained distributive law f...
pjcoi 32094 Composition of projections...
pjcocli 32095 Closure of composition of ...
pjcohcli 32096 Closure of composition of ...
pjadjcoi 32097 Adjoint of composition of ...
pjcofni 32098 Functionality of compositi...
pjss1coi 32099 Subset relationship for pr...
pjss2coi 32100 Subset relationship for pr...
pjssmi 32101 Projection meet property. ...
pjssge0i 32102 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 32103 Theorem 4.5(v)<->(vi) of [...
pjnormssi 32104 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 32105 Composition of projections...
pjscji 32106 The projection of orthogon...
pjssumi 32107 The projection on a subspa...
pjssposi 32108 Projector ordering can be ...
pjordi 32109 The definition of projecto...
pjssdif2i 32110 The projection subspace of...
pjssdif1i 32111 A necessary and sufficient...
pjimai 32112 The image of a projection....
pjidmcoi 32113 A projection is idempotent...
pjoccoi 32114 Composition of projections...
pjtoi 32115 Subspace sum of projection...
pjoci 32116 Projection of orthocomplem...
pjidmco 32117 A projection operator is i...
dfpjop 32118 Definition of projection o...
pjhmopidm 32119 Two ways to express the se...
elpjidm 32120 A projection operator is i...
elpjhmop 32121 A projection operator is H...
0leopj 32122 A projector is a positive ...
pjadj2 32123 A projector is self-adjoin...
pjadj3 32124 A projector is self-adjoin...
elpjch 32125 Reconstruction of the subs...
elpjrn 32126 Reconstruction of the subs...
pjinvari 32127 A closed subspace ` H ` wi...
pjin1i 32128 Lemma for Theorem 1.22 of ...
pjin2i 32129 Lemma for Theorem 1.22 of ...
pjin3i 32130 Lemma for Theorem 1.22 of ...
pjclem1 32131 Lemma for projection commu...
pjclem2 32132 Lemma for projection commu...
pjclem3 32133 Lemma for projection commu...
pjclem4a 32134 Lemma for projection commu...
pjclem4 32135 Lemma for projection commu...
pjci 32136 Two subspaces commute iff ...
pjcmul1i 32137 A necessary and sufficient...
pjcmul2i 32138 The projection subspace of...
pjcohocli 32139 Closure of composition of ...
pjadj2coi 32140 Adjoint of double composit...
pj2cocli 32141 Closure of double composit...
pj3lem1 32142 Lemma for projection tripl...
pj3si 32143 Stronger projection triple...
pj3i 32144 Projection triplet theorem...
pj3cor1i 32145 Projection triplet corolla...
pjs14i 32146 Theorem S-14 of Watanabe, ...
isst 32149 Property of a state. (Con...
ishst 32150 Property of a complex Hilb...
sticl 32151 ` [ 0 , 1 ] ` closure of t...
stcl 32152 Real closure of the value ...
hstcl 32153 Closure of the value of a ...
hst1a 32154 Unit value of a Hilbert-sp...
hstel2 32155 Properties of a Hilbert-sp...
hstorth 32156 Orthogonality property of ...
hstosum 32157 Orthogonal sum property of...
hstoc 32158 Sum of a Hilbert-space-val...
hstnmoc 32159 Sum of norms of a Hilbert-...
stge0 32160 The value of a state is no...
stle1 32161 The value of a state is le...
hstle1 32162 The norm of the value of a...
hst1h 32163 The norm of a Hilbert-spac...
hst0h 32164 The norm of a Hilbert-spac...
hstpyth 32165 Pythagorean property of a ...
hstle 32166 Ordering property of a Hil...
hstles 32167 Ordering property of a Hil...
hstoh 32168 A Hilbert-space-valued sta...
hst0 32169 A Hilbert-space-valued sta...
sthil 32170 The value of a state at th...
stj 32171 The value of a state on a ...
sto1i 32172 The state of a subspace pl...
sto2i 32173 The state of the orthocomp...
stge1i 32174 If a state is greater than...
stle0i 32175 If a state is less than or...
stlei 32176 Ordering law for states. ...
stlesi 32177 Ordering law for states. ...
stji1i 32178 Join of components of Sasa...
stm1i 32179 State of component of unit...
stm1ri 32180 State of component of unit...
stm1addi 32181 Sum of states whose meet i...
staddi 32182 If the sum of 2 states is ...
stm1add3i 32183 Sum of states whose meet i...
stadd3i 32184 If the sum of 3 states is ...
st0 32185 The state of the zero subs...
strlem1 32186 Lemma for strong state the...
strlem2 32187 Lemma for strong state the...
strlem3a 32188 Lemma for strong state the...
strlem3 32189 Lemma for strong state the...
strlem4 32190 Lemma for strong state the...
strlem5 32191 Lemma for strong state the...
strlem6 32192 Lemma for strong state the...
stri 32193 Strong state theorem. The...
strb 32194 Strong state theorem (bidi...
hstrlem2 32195 Lemma for strong set of CH...
hstrlem3a 32196 Lemma for strong set of CH...
hstrlem3 32197 Lemma for strong set of CH...
hstrlem4 32198 Lemma for strong set of CH...
hstrlem5 32199 Lemma for strong set of CH...
hstrlem6 32200 Lemma for strong set of CH...
hstri 32201 Hilbert space admits a str...
hstrbi 32202 Strong CH-state theorem (b...
largei 32203 A Hilbert lattice admits a...
jplem1 32204 Lemma for Jauch-Piron theo...
jplem2 32205 Lemma for Jauch-Piron theo...
jpi 32206 The function ` S ` , that ...
golem1 32207 Lemma for Godowski's equat...
golem2 32208 Lemma for Godowski's equat...
goeqi 32209 Godowski's equation, shown...
stcltr1i 32210 Property of a strong class...
stcltr2i 32211 Property of a strong class...
stcltrlem1 32212 Lemma for strong classical...
stcltrlem2 32213 Lemma for strong classical...
stcltrthi 32214 Theorem for classically st...
cvbr 32218 Binary relation expressing...
cvbr2 32219 Binary relation expressing...
cvcon3 32220 Contraposition law for the...
cvpss 32221 The covers relation implie...
cvnbtwn 32222 The covers relation implie...
cvnbtwn2 32223 The covers relation implie...
cvnbtwn3 32224 The covers relation implie...
cvnbtwn4 32225 The covers relation implie...
cvnsym 32226 The covers relation is not...
cvnref 32227 The covers relation is not...
cvntr 32228 The covers relation is not...
spansncv2 32229 Hilbert space has the cove...
mdbr 32230 Binary relation expressing...
mdi 32231 Consequence of the modular...
mdbr2 32232 Binary relation expressing...
mdbr3 32233 Binary relation expressing...
mdbr4 32234 Binary relation expressing...
dmdbr 32235 Binary relation expressing...
dmdmd 32236 The dual modular pair prop...
mddmd 32237 The modular pair property ...
dmdi 32238 Consequence of the dual mo...
dmdbr2 32239 Binary relation expressing...
dmdi2 32240 Consequence of the dual mo...
dmdbr3 32241 Binary relation expressing...
dmdbr4 32242 Binary relation expressing...
dmdi4 32243 Consequence of the dual mo...
dmdbr5 32244 Binary relation expressing...
mddmd2 32245 Relationship between modul...
mdsl0 32246 A sublattice condition tha...
ssmd1 32247 Ordering implies the modul...
ssmd2 32248 Ordering implies the modul...
ssdmd1 32249 Ordering implies the dual ...
ssdmd2 32250 Ordering implies the dual ...
dmdsl3 32251 Sublattice mapping for a d...
mdsl3 32252 Sublattice mapping for a m...
mdslle1i 32253 Order preservation of the ...
mdslle2i 32254 Order preservation of the ...
mdslj1i 32255 Join preservation of the o...
mdslj2i 32256 Meet preservation of the r...
mdsl1i 32257 If the modular pair proper...
mdsl2i 32258 If the modular pair proper...
mdsl2bi 32259 If the modular pair proper...
cvmdi 32260 The covering property impl...
mdslmd1lem1 32261 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 32262 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 32263 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 32264 Lemma for ~ mdslmd1i . (C...
mdslmd1i 32265 Preservation of the modula...
mdslmd2i 32266 Preservation of the modula...
mdsldmd1i 32267 Preservation of the dual m...
mdslmd3i 32268 Modular pair conditions th...
mdslmd4i 32269 Modular pair condition tha...
csmdsymi 32270 Cross-symmetry implies M-s...
mdexchi 32271 An exchange lemma for modu...
cvmd 32272 The covering property impl...
cvdmd 32273 The covering property impl...
ela 32275 Atoms in a Hilbert lattice...
elat2 32276 Expanded membership relati...
elatcv0 32277 A Hilbert lattice element ...
atcv0 32278 An atom covers the zero su...
atssch 32279 Atoms are a subset of the ...
atelch 32280 An atom is a Hilbert latti...
atne0 32281 An atom is not the Hilbert...
atss 32282 A lattice element smaller ...
atsseq 32283 Two atoms in a subset rela...
atcveq0 32284 A Hilbert lattice element ...
h1da 32285 A 1-dimensional subspace i...
spansna 32286 The span of the singleton ...
sh1dle 32287 A 1-dimensional subspace i...
ch1dle 32288 A 1-dimensional subspace i...
atom1d 32289 The 1-dimensional subspace...
superpos 32290 Superposition Principle. ...
chcv1 32291 The Hilbert lattice has th...
chcv2 32292 The Hilbert lattice has th...
chjatom 32293 The join of a closed subsp...
shatomici 32294 The lattice of Hilbert sub...
hatomici 32295 The Hilbert lattice is ato...
hatomic 32296 A Hilbert lattice is atomi...
shatomistici 32297 The lattice of Hilbert sub...
hatomistici 32298 ` CH ` is atomistic, i.e. ...
chpssati 32299 Two Hilbert lattice elemen...
chrelati 32300 The Hilbert lattice is rel...
chrelat2i 32301 A consequence of relative ...
cvati 32302 If a Hilbert lattice eleme...
cvbr4i 32303 An alternate way to expres...
cvexchlem 32304 Lemma for ~ cvexchi . (Co...
cvexchi 32305 The Hilbert lattice satisf...
chrelat2 32306 A consequence of relative ...
chrelat3 32307 A consequence of relative ...
chrelat3i 32308 A consequence of the relat...
chrelat4i 32309 A consequence of relative ...
cvexch 32310 The Hilbert lattice satisf...
cvp 32311 The Hilbert lattice satisf...
atnssm0 32312 The meet of a Hilbert latt...
atnemeq0 32313 The meet of distinct atoms...
atssma 32314 The meet with an atom's su...
atcv0eq 32315 Two atoms covering the zer...
atcv1 32316 Two atoms covering the zer...
atexch 32317 The Hilbert lattice satisf...
atomli 32318 An assertion holding in at...
atoml2i 32319 An assertion holding in at...
atordi 32320 An ordering law for a Hilb...
atcvatlem 32321 Lemma for ~ atcvati . (Co...
atcvati 32322 A nonzero Hilbert lattice ...
atcvat2i 32323 A Hilbert lattice element ...
atord 32324 An ordering law for a Hilb...
atcvat2 32325 A Hilbert lattice element ...
chirredlem1 32326 Lemma for ~ chirredi . (C...
chirredlem2 32327 Lemma for ~ chirredi . (C...
chirredlem3 32328 Lemma for ~ chirredi . (C...
chirredlem4 32329 Lemma for ~ chirredi . (C...
chirredi 32330 The Hilbert lattice is irr...
chirred 32331 The Hilbert lattice is irr...
atcvat3i 32332 A condition implying that ...
atcvat4i 32333 A condition implying exist...
atdmd 32334 Two Hilbert lattice elemen...
atmd 32335 Two Hilbert lattice elemen...
atmd2 32336 Two Hilbert lattice elemen...
atabsi 32337 Absorption of an incompara...
atabs2i 32338 Absorption of an incompara...
mdsymlem1 32339 Lemma for ~ mdsymi . (Con...
mdsymlem2 32340 Lemma for ~ mdsymi . (Con...
mdsymlem3 32341 Lemma for ~ mdsymi . (Con...
mdsymlem4 32342 Lemma for ~ mdsymi . This...
mdsymlem5 32343 Lemma for ~ mdsymi . (Con...
mdsymlem6 32344 Lemma for ~ mdsymi . This...
mdsymlem7 32345 Lemma for ~ mdsymi . Lemm...
mdsymlem8 32346 Lemma for ~ mdsymi . Lemm...
mdsymi 32347 M-symmetry of the Hilbert ...
mdsym 32348 M-symmetry of the Hilbert ...
dmdsym 32349 Dual M-symmetry of the Hil...
atdmd2 32350 Two Hilbert lattice elemen...
sumdmdii 32351 If the subspace sum of two...
cmmdi 32352 Commuting subspaces form a...
cmdmdi 32353 Commuting subspaces form a...
sumdmdlem 32354 Lemma for ~ sumdmdi . The...
sumdmdlem2 32355 Lemma for ~ sumdmdi . (Co...
sumdmdi 32356 The subspace sum of two Hi...
dmdbr4ati 32357 Dual modular pair property...
dmdbr5ati 32358 Dual modular pair property...
dmdbr6ati 32359 Dual modular pair property...
dmdbr7ati 32360 Dual modular pair property...
mdoc1i 32361 Orthocomplements form a mo...
mdoc2i 32362 Orthocomplements form a mo...
dmdoc1i 32363 Orthocomplements form a du...
dmdoc2i 32364 Orthocomplements form a du...
mdcompli 32365 A condition equivalent to ...
dmdcompli 32366 A condition equivalent to ...
mddmdin0i 32367 If dual modular implies mo...
cdjreui 32368 A member of the sum of dis...
cdj1i 32369 Two ways to express " ` A ...
cdj3lem1 32370 A property of " ` A ` and ...
cdj3lem2 32371 Lemma for ~ cdj3i . Value...
cdj3lem2a 32372 Lemma for ~ cdj3i . Closu...
cdj3lem2b 32373 Lemma for ~ cdj3i . The f...
cdj3lem3 32374 Lemma for ~ cdj3i . Value...
cdj3lem3a 32375 Lemma for ~ cdj3i . Closu...
cdj3lem3b 32376 Lemma for ~ cdj3i . The s...
cdj3i 32377 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 32378 (_This theorem is a dummy ...
sa-abvi 32379 A theorem about the univer...
xfree 32380 A partial converse to ~ 19...
xfree2 32381 A partial converse to ~ 19...
addltmulALT 32382 A proof readability experi...
ad11antr 32383 Deduction adding 11 conjun...
simp-12l 32384 Simplification of a conjun...
simp-12r 32385 Simplification of a conjun...
an42ds 32386 Inference exchanging the l...
an52ds 32387 Inference exchanging the l...
an62ds 32388 Inference exchanging the l...
an72ds 32389 Inference exchanging the l...
an82ds 32390 Inference exchanging the l...
syl22anbrc 32391 Syllogism inference. (Con...
bian1d 32392 Adding a superfluous conju...
bian1dOLD 32393 Obsolete version of ~ bian...
orim12da 32394 Deduce a disjunction from ...
or3di 32395 Distributive law for disju...
or3dir 32396 Distributive law for disju...
3o1cs 32397 Deduction eliminating disj...
3o2cs 32398 Deduction eliminating disj...
3o3cs 32399 Deduction eliminating disj...
13an22anass 32400 Associative law for four c...
sbc2iedf 32401 Conversion of implicit sub...
rspc2daf 32402 Double restricted speciali...
ralcom4f 32403 Commutation of restricted ...
rexcom4f 32404 Commutation of restricted ...
19.9d2rf 32405 A deduction version of one...
19.9d2r 32406 A deduction version of one...
r19.29ffa 32407 A commonly used pattern ba...
n0limd 32408 Deduction rule for nonempt...
reu6dv 32409 A condition which implies ...
eqtrb 32410 A transposition of equalit...
eqelbid 32411 A variable elimination law...
opsbc2ie 32412 Conversion of implicit sub...
opreu2reuALT 32413 Correspondence between uni...
2reucom 32416 Double restricted existent...
2reu2rex1 32417 Double restricted existent...
2reureurex 32418 Double restricted existent...
2reu2reu2 32419 Double restricted existent...
opreu2reu1 32420 Equivalent definition of t...
sq2reunnltb 32421 There exists a unique deco...
addsqnot2reu 32422 For each complex number ` ...
sbceqbidf 32423 Equality theorem for class...
sbcies 32424 A special version of class...
mo5f 32425 Alternate definition of "a...
nmo 32426 Negation of "at most one"....
reuxfrdf 32427 Transfer existential uniqu...
rexunirn 32428 Restricted existential qua...
rmoxfrd 32429 Transfer "at most one" res...
rmoun 32430 "At most one" restricted e...
rmounid 32431 A case where an "at most o...
riotaeqbidva 32432 Equivalent wff's yield equ...
dmrab 32433 Domain of a restricted cla...
difrab2 32434 Difference of two restrict...
rabexgfGS 32435 Separation Scheme in terms...
rabsnel 32436 Truth implied by equality ...
rabsspr 32437 Conditions for a restricte...
rabsstp 32438 Conditions for a restricte...
3unrab 32439 Union of three restricted ...
foresf1o 32440 From a surjective function...
rabfodom 32441 Domination relation for re...
rabrexfi 32442 Conditions for a class abs...
abrexdomjm 32443 An indexed set is dominate...
abrexdom2jm 32444 An indexed set is dominate...
abrexexd 32445 Existence of a class abstr...
elabreximd 32446 Class substitution in an i...
elabreximdv 32447 Class substitution in an i...
abrexss 32448 A necessary condition for ...
nelun 32449 Negated membership for a u...
snsssng 32450 If a singleton is a subset...
n0nsnel 32451 If a class with one elemen...
inin 32452 Intersection with an inter...
difininv 32453 Condition for the intersec...
difeq 32454 Rewriting an equation with...
eqdif 32455 If both set differences of...
indifbi 32456 Two ways to express equali...
diffib 32457 Case where ~ diffi is a bi...
difxp1ss 32458 Difference law for Cartesi...
difxp2ss 32459 Difference law for Cartesi...
indifundif 32460 A remarkable equation with...
elpwincl1 32461 Closure of intersection wi...
elpwdifcl 32462 Closure of class differenc...
elpwiuncl 32463 Closure of indexed union w...
elpreq 32464 Equality wihin a pair. (C...
prssad 32465 If a pair is a subset of a...
prssbd 32466 If a pair is a subset of a...
nelpr 32467 A set ` A ` not in a pair ...
inpr0 32468 Rewrite an empty intersect...
neldifpr1 32469 The first element of a pai...
neldifpr2 32470 The second element of a pa...
unidifsnel 32471 The other element of a pai...
unidifsnne 32472 The other element of a pai...
tpssg 32473 An unordered triple of ele...
tpssd 32474 Deduction version of tpssi...
tpssad 32475 If an ordered triple is a ...
tpssbd 32476 If an ordered triple is a ...
tpsscd 32477 If an ordered triple is a ...
ifeqeqx 32478 An equality theorem tailor...
elimifd 32479 Elimination of a condition...
elim2if 32480 Elimination of two conditi...
elim2ifim 32481 Elimination of two conditi...
ifeq3da 32482 Given an expression ` C ` ...
ifnetrue 32483 Deduce truth from a condit...
ifnefals 32484 Deduce falsehood from a co...
ifnebib 32485 The converse of ~ ifbi hol...
uniinn0 32486 Sufficient and necessary c...
uniin1 32487 Union of intersection. Ge...
uniin2 32488 Union of intersection. Ge...
difuncomp 32489 Express a class difference...
elpwunicl 32490 Closure of a set union wit...
cbviunf 32491 Rule used to change the bo...
iuneq12daf 32492 Equality deduction for ind...
iunin1f 32493 Indexed union of intersect...
ssiun3 32494 Subset equivalence for an ...
ssiun2sf 32495 Subset relationship for an...
iuninc 32496 The union of an increasing...
iundifdifd 32497 The intersection of a set ...
iundifdif 32498 The intersection of a set ...
iunrdx 32499 Re-index an indexed union....
iunpreima 32500 Preimage of an indexed uni...
iunrnmptss 32501 A subset relation for an i...
iunxunsn 32502 Appending a set to an inde...
iunxunpr 32503 Appending two sets to an i...
iunxpssiun1 32504 Provide an upper bound for...
iinabrex 32505 Rewriting an indexed inter...
disjnf 32506 In case ` x ` is not free ...
cbvdisjf 32507 Change bound variables in ...
disjss1f 32508 A subset of a disjoint col...
disjeq1f 32509 Equality theorem for disjo...
disjxun0 32510 Simplify a disjoint union....
disjdifprg 32511 A trivial partition into a...
disjdifprg2 32512 A trivial partition of a s...
disji2f 32513 Property of a disjoint col...
disjif 32514 Property of a disjoint col...
disjorf 32515 Two ways to say that a col...
disjorsf 32516 Two ways to say that a col...
disjif2 32517 Property of a disjoint col...
disjabrex 32518 Rewriting a disjoint colle...
disjabrexf 32519 Rewriting a disjoint colle...
disjpreima 32520 A preimage of a disjoint s...
disjrnmpt 32521 Rewriting a disjoint colle...
disjin 32522 If a collection is disjoin...
disjin2 32523 If a collection is disjoin...
disjxpin 32524 Derive a disjunction over ...
iundisjf 32525 Rewrite a countable union ...
iundisj2f 32526 A disjoint union is disjoi...
disjrdx 32527 Re-index a disjunct collec...
disjex 32528 Two ways to say that two c...
disjexc 32529 A variant of ~ disjex , ap...
disjunsn 32530 Append an element to a dis...
disjun0 32531 Adding the empty element p...
disjiunel 32532 A set of elements B of a d...
disjuniel 32533 A set of elements B of a d...
xpdisjres 32534 Restriction of a constant ...
opeldifid 32535 Ordered pair elementhood o...
difres 32536 Case when class difference...
imadifxp 32537 Image of the difference wi...
relfi 32538 A relation (set) is finite...
0res 32539 Restriction of the empty f...
fcoinver 32540 Build an equivalence relat...
fcoinvbr 32541 Binary relation for the eq...
brab2d 32542 Expressing that two sets a...
brabgaf 32543 The law of concretion for ...
brelg 32544 Two things in a binary rel...
br8d 32545 Substitution for an eight-...
opabdm 32546 Domain of an ordered-pair ...
opabrn 32547 Range of an ordered-pair c...
opabssi 32548 Sufficient condition for a...
opabid2ss 32549 One direction of ~ opabid2...
ssrelf 32550 A subclass relationship de...
eqrelrd2 32551 A version of ~ eqrelrdv2 w...
erbr3b 32552 Biconditional for equivale...
iunsnima 32553 Image of a singleton by an...
iunsnima2 32554 Version of ~ iunsnima with...
ac6sf2 32555 Alternate version of ~ ac6...
ac6mapd 32556 Axiom of choice equivalent...
fnresin 32557 Restriction of a function ...
f1o3d 32558 Describe an implicit one-t...
eldmne0 32559 A function of nonempty dom...
f1rnen 32560 Equinumerosity of the rang...
rinvf1o 32561 Sufficient conditions for ...
fresf1o 32562 Conditions for a restricti...
nfpconfp 32563 The set of fixed points of...
fmptco1f1o 32564 The action of composing (t...
cofmpt2 32565 Express composition of a m...
f1mptrn 32566 Express injection for a ma...
dfimafnf 32567 Alternate definition of th...
funimass4f 32568 Membership relation for th...
suppss2f 32569 Show that the support of a...
ofrn 32570 The range of the function ...
ofrn2 32571 The range of the function ...
off2 32572 The function operation pro...
ofresid 32573 Applying an operation rest...
unipreima 32574 Preimage of a class union....
opfv 32575 Value of a function produc...
xppreima 32576 The preimage of a Cartesia...
2ndimaxp 32577 Image of a cartesian produ...
dmdju 32578 Domain of a disjoint union...
djussxp2 32579 Stronger version of ~ djus...
2ndresdju 32580 The ` 2nd ` function restr...
2ndresdjuf1o 32581 The ` 2nd ` function restr...
xppreima2 32582 The preimage of a Cartesia...
abfmpunirn 32583 Membership in a union of a...
rabfmpunirn 32584 Membership in a union of a...
abfmpeld 32585 Membership in an element o...
abfmpel 32586 Membership in an element o...
fmptdF 32587 Domain and codomain of the...
fmptcof2 32588 Composition of two functio...
fcomptf 32589 Express composition of two...
acunirnmpt 32590 Axiom of choice for the un...
acunirnmpt2 32591 Axiom of choice for the un...
acunirnmpt2f 32592 Axiom of choice for the un...
aciunf1lem 32593 Choice in an index union. ...
aciunf1 32594 Choice in an index union. ...
ofoprabco 32595 Function operation as a co...
ofpreima 32596 Express the preimage of a ...
ofpreima2 32597 Express the preimage of a ...
funcnvmpt 32598 Condition for a function i...
funcnv5mpt 32599 Two ways to say that a fun...
funcnv4mpt 32600 Two ways to say that a fun...
preimane 32601 Different elements have di...
fnpreimac 32602 Choose a set ` x ` contain...
fgreu 32603 Exactly one point of a fun...
fcnvgreu 32604 If the converse of a relat...
rnmposs 32605 The range of an operation ...
mptssALT 32606 Deduce subset relation of ...
dfcnv2 32607 Alternative definition of ...
mpomptxf 32608 Express a two-argument fun...
of0r 32609 Function operation with th...
elmaprd 32610 Deduction associated with ...
suppovss 32611 A bound for the support of...
elsuppfnd 32612 Deduce membership in the s...
fisuppov1 32613 Formula building theorem f...
suppun2 32614 The support of a union is ...
fdifsupp 32615 Express the support of a f...
suppiniseg 32616 Relation between the suppo...
fsuppinisegfi 32617 The initial segment ` ( ``...
fressupp 32618 The restriction of a funct...
fdifsuppconst 32619 A function is a zero const...
ressupprn 32620 The range of a function re...
supppreima 32621 Express the support of a f...
fsupprnfi 32622 Finite support implies fin...
mptiffisupp 32623 Conditions for a mapping f...
cosnopne 32624 Composition of two ordered...
cosnop 32625 Composition of two ordered...
cnvprop 32626 Converse of a pair of orde...
brprop 32627 Binary relation for a pair...
mptprop 32628 Rewrite pairs of ordered p...
coprprop 32629 Composition of two pairs o...
fmptunsnop 32630 Two ways to express a func...
gtiso 32631 Two ways to write a strict...
isoun 32632 Infer an isomorphism from ...
disjdsct 32633 A disjoint collection is d...
df1stres 32634 Definition for a restricti...
df2ndres 32635 Definition for a restricti...
1stpreimas 32636 The preimage of a singleto...
1stpreima 32637 The preimage by ` 1st ` is...
2ndpreima 32638 The preimage by ` 2nd ` is...
curry2ima 32639 The image of a curried fun...
preiman0 32640 The preimage of a nonempty...
intimafv 32641 The intersection of an ima...
imafi2 32642 The image by a finite set ...
unifi3 32643 If a union is finite, then...
snct 32644 A singleton is countable. ...
prct 32645 An unordered pair is count...
mpocti 32646 An operation is countable ...
abrexct 32647 An image set of a countabl...
mptctf 32648 A countable mapping set is...
abrexctf 32649 An image set of a countabl...
padct 32650 Index a countable set with...
f1od2 32651 Sufficient condition for a...
fcobij 32652 Composing functions with a...
fcobijfs 32653 Composing finitely support...
suppss3 32654 Deduce a function's suppor...
fsuppcurry1 32655 Finite support of a currie...
fsuppcurry2 32656 Finite support of a currie...
offinsupp1 32657 Finite support for a funct...
ffs2 32658 Rewrite a function's suppo...
ffsrn 32659 The range of a finitely su...
resf1o 32660 Restriction of functions t...
maprnin 32661 Restricting the range of t...
fpwrelmapffslem 32662 Lemma for ~ fpwrelmapffs ....
fpwrelmap 32663 Define a canonical mapping...
fpwrelmapffs 32664 Define a canonical mapping...
sgnval2 32665 Value of the signum of a r...
creq0 32666 The real representation of...
1nei 32667 The imaginary unit ` _i ` ...
1neg1t1neg1 32668 An integer unit times itse...
nnmulge 32669 Multiplying by a positive ...
submuladdd 32670 The product of a differenc...
muldivdid 32671 Distribution of division o...
binom2subadd 32672 The difference of the squa...
cjsubd 32673 Complex conjugate distribu...
re0cj 32674 The conjugate of a pure im...
receqid 32675 Real numbers equal to thei...
pythagreim 32676 A simplified version of th...
efiargd 32677 The exponential of the "ar...
arginv 32678 The argument of the invers...
argcj 32679 The argument of the conjug...
quad3d 32680 Variant of quadratic equat...
lt2addrd 32681 If the right-hand side of ...
xrlelttric 32682 Trichotomy law for extende...
xaddeq0 32683 Two extended reals which a...
rexmul2 32684 If the result ` A ` of an ...
xrinfm 32685 The extended real numbers ...
le2halvesd 32686 A sum is less than the who...
xraddge02 32687 A number is less than or e...
xrge0addge 32688 A number is less than or e...
xlt2addrd 32689 If the right-hand side of ...
xrge0infss 32690 Any subset of nonnegative ...
xrge0infssd 32691 Inequality deduction for i...
xrge0addcld 32692 Nonnegative extended reals...
xrge0subcld 32693 Condition for closure of n...
infxrge0lb 32694 A member of a set of nonne...
infxrge0glb 32695 The infimum of a set of no...
infxrge0gelb 32696 The infimum of a set of no...
xrofsup 32697 The supremum is preserved ...
supxrnemnf 32698 The supremum of a nonempty...
xnn0gt0 32699 Nonzero extended nonnegati...
xnn01gt 32700 An extended nonnegative in...
nn0xmulclb 32701 Finite multiplication in t...
xnn0nn0d 32702 Conditions for an extended...
xnn0nnd 32703 Conditions for an extended...
joiniooico 32704 Disjoint joining an open i...
ubico 32705 A right-open interval does...
xeqlelt 32706 Equality in terms of 'less...
eliccelico 32707 Relate elementhood to a cl...
elicoelioo 32708 Relate elementhood to a cl...
iocinioc2 32709 Intersection between two o...
xrdifh 32710 Class difference of a half...
iocinif 32711 Relate intersection of two...
difioo 32712 The difference between two...
difico 32713 The difference between two...
uzssico 32714 Upper integer sets are a s...
fz2ssnn0 32715 A finite set of sequential...
nndiffz1 32716 Upper set of the positive ...
ssnnssfz 32717 For any finite subset of `...
fzm1ne1 32718 Elementhood of an integer ...
fzspl 32719 Split the last element of ...
fzdif2 32720 Split the last element of ...
fzodif2 32721 Split the last element of ...
fzodif1 32722 Set difference of two half...
fzsplit3 32723 Split a finite interval of...
elfzodif0 32724 If an integer ` M ` is in ...
bcm1n 32725 The proportion of one bino...
iundisjfi 32726 Rewrite a countable union ...
iundisj2fi 32727 A disjoint union is disjoi...
iundisjcnt 32728 Rewrite a countable union ...
iundisj2cnt 32729 A countable disjoint union...
fzone1 32730 Elementhood in a half-open...
fzom1ne1 32731 Elementhood in a half-open...
f1ocnt 32732 Given a countable set ` A ...
fz1nnct 32733 NN and integer ranges star...
fz1nntr 32734 NN and integer ranges star...
fzo0opth 32735 Equality for a half open i...
nn0difffzod 32736 A nonnegative integer that...
suppssnn0 32737 Show that the support of a...
hashunif 32738 The cardinality of a disjo...
hashxpe 32739 The size of the Cartesian ...
hashgt1 32740 Restate "set contains at l...
hashpss 32741 The size of a proper subse...
hashne0 32742 Deduce that the size of a ...
elq2 32743 Elementhood in the rationa...
znumd 32744 Numerator of an integer. ...
zdend 32745 Denominator of an integer....
numdenneg 32746 Numerator and denominator ...
divnumden2 32747 Calculate the reduced form...
expgt0b 32748 A real number ` A ` raised...
nn0split01 32749 Split 0 and 1 from the non...
nn0disj01 32750 The pair ` { 0 , 1 } ` doe...
nnindf 32751 Principle of Mathematical ...
nn0min 32752 Extracting the minimum pos...
subne0nn 32753 A nonnegative difference i...
ltesubnnd 32754 Subtracting an integer num...
fprodeq02 32755 If one of the factors is z...
pr01ssre 32756 The range of the indicator...
fprodex01 32757 A product of factors equal...
prodpr 32758 A product over a pair is t...
prodtp 32759 A product over a triple is...
fsumub 32760 An upper bound for a term ...
fsumiunle 32761 Upper bound for a sum of n...
dfdec100 32762 Split the hundreds from a ...
sgncl 32763 Closure of the signum. (C...
sgnclre 32764 Closure of the signum. (C...
sgnneg 32765 Negation of the signum. (...
sgn3da 32766 A conditional containing a...
sgnmul 32767 Signum of a product. (Con...
sgnmulrp2 32768 Multiplication by a positi...
sgnsub 32769 Subtraction of a number of...
sgnnbi 32770 Negative signum. (Contrib...
sgnpbi 32771 Positive signum. (Contrib...
sgn0bi 32772 Zero signum. (Contributed...
sgnsgn 32773 Signum is idempotent. (Co...
sgnmulsgn 32774 If two real numbers are of...
sgnmulsgp 32775 If two real numbers are of...
nexple 32776 A lower bound for an expon...
2exple2exp 32777 If a nonnegative integer `...
expevenpos 32778 Even powers are positive. ...
oexpled 32779 Odd power monomials are mo...
indv 32782 Value of the indicator fun...
indval 32783 Value of the indicator fun...
indval2 32784 Alternate value of the ind...
indf 32785 An indicator function as a...
indfval 32786 Value of the indicator fun...
ind1 32787 Value of the indicator fun...
ind0 32788 Value of the indicator fun...
ind1a 32789 Value of the indicator fun...
indpi1 32790 Preimage of the singleton ...
indsum 32791 Finite sum of a product wi...
indsumin 32792 Finite sum of a product wi...
prodindf 32793 The product of indicators ...
indf1o 32794 The bijection between a po...
indpreima 32795 A function with range ` { ...
indf1ofs 32796 The bijection between fini...
indsupp 32797 The support of the indicat...
dp2eq1 32800 Equality theorem for the d...
dp2eq2 32801 Equality theorem for the d...
dp2eq1i 32802 Equality theorem for the d...
dp2eq2i 32803 Equality theorem for the d...
dp2eq12i 32804 Equality theorem for the d...
dp20u 32805 Add a zero in the tenths (...
dp20h 32806 Add a zero in the unit pla...
dp2cl 32807 Closure for the decimal fr...
dp2clq 32808 Closure for a decimal frac...
rpdp2cl 32809 Closure for a decimal frac...
rpdp2cl2 32810 Closure for a decimal frac...
dp2lt10 32811 Decimal fraction builds re...
dp2lt 32812 Comparing two decimal frac...
dp2ltsuc 32813 Comparing a decimal fracti...
dp2ltc 32814 Comparing two decimal expa...
dpval 32817 Define the value of the de...
dpcl 32818 Prove that the closure of ...
dpfrac1 32819 Prove a simple equivalence...
dpval2 32820 Value of the decimal point...
dpval3 32821 Value of the decimal point...
dpmul10 32822 Multiply by 10 a decimal e...
decdiv10 32823 Divide a decimal number by...
dpmul100 32824 Multiply by 100 a decimal ...
dp3mul10 32825 Multiply by 10 a decimal e...
dpmul1000 32826 Multiply by 1000 a decimal...
dpval3rp 32827 Value of the decimal point...
dp0u 32828 Add a zero in the tenths p...
dp0h 32829 Remove a zero in the units...
rpdpcl 32830 Closure of the decimal poi...
dplt 32831 Comparing two decimal expa...
dplti 32832 Comparing a decimal expans...
dpgti 32833 Comparing a decimal expans...
dpltc 32834 Comparing two decimal inte...
dpexpp1 32835 Add one zero to the mantis...
0dp2dp 32836 Multiply by 10 a decimal e...
dpadd2 32837 Addition with one decimal,...
dpadd 32838 Addition with one decimal....
dpadd3 32839 Addition with two decimals...
dpmul 32840 Multiplication with one de...
dpmul4 32841 An upper bound to multipli...
threehalves 32842 Example theorem demonstrat...
1mhdrd 32843 Example theorem demonstrat...
xdivval 32846 Value of division: the (un...
xrecex 32847 Existence of reciprocal of...
xmulcand 32848 Cancellation law for exten...
xreceu 32849 Existential uniqueness of ...
xdivcld 32850 Closure law for the extend...
xdivcl 32851 Closure law for the extend...
xdivmul 32852 Relationship between divis...
rexdiv 32853 The extended real division...
xdivrec 32854 Relationship between divis...
xdivid 32855 A number divided by itself...
xdiv0 32856 Division into zero is zero...
xdiv0rp 32857 Division into zero is zero...
eliccioo 32858 Membership in a closed int...
elxrge02 32859 Elementhood in the set of ...
xdivpnfrp 32860 Plus infinity divided by a...
rpxdivcld 32861 Closure law for extended d...
xrpxdivcld 32862 Closure law for extended d...
wrdres 32863 Condition for the restrict...
wrdsplex 32864 Existence of a split of a ...
wrdfsupp 32865 A word has finite support....
wrdpmcl 32866 Closure of a word with per...
pfx1s2 32867 The prefix of length 1 of ...
pfxrn2 32868 The range of a prefix of a...
pfxrn3 32869 Express the range of a pre...
pfxf1 32870 Condition for a prefix to ...
s1f1 32871 Conditions for a length 1 ...
s2rnOLD 32872 Obsolete version of ~ s2rn...
s2f1 32873 Conditions for a length 2 ...
s3rnOLD 32874 Obsolete version of ~ s2rn...
s3f1 32875 Conditions for a length 3 ...
s3clhash 32876 Closure of the words of le...
ccatf1 32877 Conditions for a concatena...
ccatdmss 32878 The domain of a concatenat...
pfxlsw2ccat 32879 Reconstruct a word from it...
ccatws1f1o 32880 Conditions for the concate...
ccatws1f1olast 32881 Two ways to reorder symbol...
wrdt2ind 32882 Perform an induction over ...
swrdrn2 32883 The range of a subword is ...
swrdrn3 32884 Express the range of a sub...
swrdf1 32885 Condition for a subword to...
swrdrndisj 32886 Condition for the range of...
splfv3 32887 Symbols to the right of a ...
1cshid 32888 Cyclically shifting a sing...
cshw1s2 32889 Cyclically shifting a leng...
cshwrnid 32890 Cyclically shifting a word...
cshf1o 32891 Condition for the cyclic s...
ressplusf 32892 The group operation functi...
ressnm 32893 The norm in a restricted s...
abvpropd2 32894 Weaker version of ~ abvpro...
oppgle 32895 less-than relation of an o...
oppglt 32896 less-than relation of an o...
ressprs 32897 The restriction of a prose...
posrasymb 32898 A poset ordering is asymet...
resspos 32899 The restriction of a Poset...
resstos 32900 The restriction of a Toset...
odutos 32901 Being a toset is a self-du...
tlt2 32902 In a Toset, two elements m...
tlt3 32903 In a Toset, two elements m...
trleile 32904 In a Toset, two elements m...
toslublem 32905 Lemma for ~ toslub and ~ x...
toslub 32906 In a toset, the lowest upp...
tosglblem 32907 Lemma for ~ tosglb and ~ x...
tosglb 32908 Same theorem as ~ toslub ,...
clatp0cl 32909 The poset zero of a comple...
clatp1cl 32910 The poset one of a complet...
mntoval 32915 Operation value of the mon...
ismnt 32916 Express the statement " ` ...
ismntd 32917 Property of being a monoto...
mntf 32918 A monotone function is a f...
mgcoval 32919 Operation value of the mon...
mgcval 32920 Monotone Galois connection...
mgcf1 32921 The lower adjoint ` F ` of...
mgcf2 32922 The upper adjoint ` G ` of...
mgccole1 32923 An inequality for the kern...
mgccole2 32924 Inequality for the closure...
mgcmnt1 32925 The lower adjoint ` F ` of...
mgcmnt2 32926 The upper adjoint ` G ` of...
mgcmntco 32927 A Galois connection like s...
dfmgc2lem 32928 Lemma for dfmgc2, backward...
dfmgc2 32929 Alternate definition of th...
mgcmnt1d 32930 Galois connection implies ...
mgcmnt2d 32931 Galois connection implies ...
mgccnv 32932 The inverse Galois connect...
pwrssmgc 32933 Given a function ` F ` , e...
mgcf1olem1 32934 Property of a Galois conne...
mgcf1olem2 32935 Property of a Galois conne...
mgcf1o 32936 Given a Galois connection,...
ischn 32939 Property of being a chain....
chnwrd 32940 A chain is an ordered sequ...
chnltm1 32941 Basic property of a chain....
pfxchn 32942 A prefix of a chain is sti...
s1chn 32943 A singleton word is always...
chnind 32944 Induction over a chain. S...
chnub 32945 In a chain, the last eleme...
chnlt 32946 Compare any two elements i...
chnso 32947 A chain induces a total or...
chnccats1 32948 Extend a chain with a sing...
xrs0 32951 The zero of the extended r...
xrslt 32952 The "strictly less than" r...
xrsinvgval 32953 The inversion operation in...
xrsmulgzz 32954 The "multiple" function in...
xrstos 32955 The extended real numbers ...
xrsclat 32956 The extended real numbers ...
xrsp0 32957 The poset 0 of the extende...
xrsp1 32958 The poset 1 of the extende...
xrge0base 32959 The base of the extended n...
xrge00 32960 The zero of the extended n...
xrge0plusg 32961 The additive law of the ex...
xrge0le 32962 The "less than or equal to...
xrge0mulgnn0 32963 The group multiple functio...
xrge0addass 32964 Associativity of extended ...
xrge0addgt0 32965 The sum of nonnegative and...
xrge0adddir 32966 Right-distributivity of ex...
xrge0adddi 32967 Left-distributivity of ext...
xrge0npcan 32968 Extended nonnegative real ...
fsumrp0cl 32969 Closure of a finite sum of...
mndcld 32970 Closure of the operation o...
mndassd 32971 A monoid operation is asso...
mndlrinv 32972 In a monoid, if an element...
mndlrinvb 32973 In a monoid, if an element...
mndlactf1 32974 If an element ` X ` of a m...
mndlactfo 32975 An element ` X ` of a mono...
mndractf1 32976 If an element ` X ` of a m...
mndractfo 32977 An element ` X ` of a mono...
mndlactf1o 32978 An element ` X ` of a mono...
mndractf1o 32979 An element ` X ` of a mono...
cmn4d 32980 Commutative/associative la...
cmn246135 32981 Rearrange terms in a commu...
cmn145236 32982 Rearrange terms in a commu...
submcld 32983 Submonoids are closed unde...
abliso 32984 The image of an Abelian gr...
lmhmghmd 32985 A module homomorphism is a...
mhmimasplusg 32986 Value of the operation of ...
lmhmimasvsca 32987 Value of the scalar produc...
grpsubcld 32988 Closure of group subtracti...
subgcld 32989 A subgroup is closed under...
subgsubcld 32990 A subgroup is closed under...
subgmulgcld 32991 Closure of the group multi...
ressmulgnn0d 32992 Values for the group multi...
gsumsubg 32993 The group sum in a subgrou...
gsumsra 32994 The group sum in a subring...
gsummpt2co 32995 Split a finite sum into a ...
gsummpt2d 32996 Express a finite sum over ...
lmodvslmhm 32997 Scalar multiplication in a...
gsumvsmul1 32998 Pull a scalar multiplicati...
gsummptres 32999 Extend a finite group sum ...
gsummptres2 33000 Extend a finite group sum ...
gsummptfsf1o 33001 Re-index a finite group su...
gsumfs2d 33002 Express a finite sum over ...
gsumzresunsn 33003 Append an element to a fin...
gsumpart 33004 Express a group sum as a d...
gsumtp 33005 Group sum of an unordered ...
gsumzrsum 33006 Relate a group sum on ` ZZ...
gsummulgc2 33007 A finite group sum multipl...
gsumhashmul 33008 Express a group sum by gro...
xrge0tsmsd 33009 Any finite or infinite sum...
xrge0tsmsbi 33010 Any limit of a finite or i...
xrge0tsmseq 33011 Any limit of a finite or i...
gsumwun 33012 In a commutative ring, a g...
gsumwrd2dccatlem 33013 Lemma for ~ gsumwrd2dccat ...
gsumwrd2dccat 33014 Rewrite a sum ranging over...
cntzun 33015 The centralizer of a union...
cntzsnid 33016 The centralizer of the ide...
cntrcrng 33017 The center of a ring is a ...
isomnd 33022 A (left) ordered monoid is...
isogrp 33023 A (left-)ordered group is ...
ogrpgrp 33024 A left-ordered group is a ...
omndmnd 33025 A left-ordered monoid is a...
omndtos 33026 A left-ordered monoid is a...
omndadd 33027 In an ordered monoid, the ...
omndaddr 33028 In a right ordered monoid,...
omndadd2d 33029 In a commutative left orde...
omndadd2rd 33030 In a left- and right- orde...
submomnd 33031 A submonoid of an ordered ...
xrge0omnd 33032 The nonnegative extended r...
omndmul2 33033 In an ordered monoid, the ...
omndmul3 33034 In an ordered monoid, the ...
omndmul 33035 In a commutative ordered m...
ogrpinv0le 33036 In an ordered group, the o...
ogrpsub 33037 In an ordered group, the o...
ogrpaddlt 33038 In an ordered group, stric...
ogrpaddltbi 33039 In a right ordered group, ...
ogrpaddltrd 33040 In a right ordered group, ...
ogrpaddltrbid 33041 In a right ordered group, ...
ogrpsublt 33042 In an ordered group, stric...
ogrpinv0lt 33043 In an ordered group, the o...
ogrpinvlt 33044 In an ordered group, the o...
gsumle 33045 A finite sum in an ordered...
symgfcoeu 33046 Uniqueness property of per...
symgcom 33047 Two permutations ` X ` and...
symgcom2 33048 Two permutations ` X ` and...
symgcntz 33049 All elements of a (finite)...
odpmco 33050 The composition of two odd...
symgsubg 33051 The value of the group sub...
pmtrprfv2 33052 In a transposition of two ...
pmtrcnel 33053 Composing a permutation ` ...
pmtrcnel2 33054 Variation on ~ pmtrcnel . ...
pmtrcnelor 33055 Composing a permutation ` ...
fzo0pmtrlast 33056 Reorder a half-open intege...
wrdpmtrlast 33057 Reorder a word, so that th...
pmtridf1o 33058 Transpositions of ` X ` an...
pmtridfv1 33059 Value at X of the transpos...
pmtridfv2 33060 Value at Y of the transpos...
psgnid 33061 Permutation sign of the id...
psgndmfi 33062 For a finite base set, the...
pmtrto1cl 33063 Useful lemma for the follo...
psgnfzto1stlem 33064 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 33065 Value of our permutation `...
fzto1st1 33066 Special case where the per...
fzto1st 33067 The function moving one el...
fzto1stinvn 33068 Value of the inverse of ou...
psgnfzto1st 33069 The permutation sign for m...
tocycval 33072 Value of the cycle builder...
tocycfv 33073 Function value of a permut...
tocycfvres1 33074 A cyclic permutation is a ...
tocycfvres2 33075 A cyclic permutation is th...
cycpmfvlem 33076 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 33077 Value of a cycle function ...
cycpmfv2 33078 Value of a cycle function ...
cycpmfv3 33079 Values outside of the orbi...
cycpmcl 33080 Cyclic permutations are pe...
tocycf 33081 The permutation cycle buil...
tocyc01 33082 Permutation cycles built f...
cycpm2tr 33083 A cyclic permutation of 2 ...
cycpm2cl 33084 Closure for the 2-cycles. ...
cyc2fv1 33085 Function value of a 2-cycl...
cyc2fv2 33086 Function value of a 2-cycl...
trsp2cyc 33087 Exhibit the word a transpo...
cycpmco2f1 33088 The word U used in ~ cycpm...
cycpmco2rn 33089 The orbit of the compositi...
cycpmco2lem1 33090 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 33091 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 33092 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 33093 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 33094 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 33095 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 33096 Lemma for ~ cycpmco2 . (C...
cycpmco2 33097 The composition of a cycli...
cyc2fvx 33098 Function value of a 2-cycl...
cycpm3cl 33099 Closure of the 3-cycles in...
cycpm3cl2 33100 Closure of the 3-cycles in...
cyc3fv1 33101 Function value of a 3-cycl...
cyc3fv2 33102 Function value of a 3-cycl...
cyc3fv3 33103 Function value of a 3-cycl...
cyc3co2 33104 Represent a 3-cycle as a c...
cycpmconjvlem 33105 Lemma for ~ cycpmconjv . ...
cycpmconjv 33106 A formula for computing co...
cycpmrn 33107 The range of the word used...
tocyccntz 33108 All elements of a (finite)...
evpmval 33109 Value of the set of even p...
cnmsgn0g 33110 The neutral element of the...
evpmsubg 33111 The alternating group is a...
evpmid 33112 The identity is an even pe...
altgnsg 33113 The alternating group ` ( ...
cyc3evpm 33114 3-Cycles are even permutat...
cyc3genpmlem 33115 Lemma for ~ cyc3genpm . (...
cyc3genpm 33116 The alternating group ` A ...
cycpmgcl 33117 Cyclic permutations are pe...
cycpmconjslem1 33118 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 33119 Lemma for ~ cycpmconjs . ...
cycpmconjs 33120 All cycles of the same len...
cyc3conja 33121 All 3-cycles are conjugate...
sgnsv 33124 The sign mapping. (Contri...
sgnsval 33125 The sign value. (Contribu...
sgnsf 33126 The sign function. (Contr...
fxpval 33129 Value of the set of fixed ...
fxpss 33130 The set of fixed points is...
fxpgaval 33131 Value of the set of fixed ...
isfxp 33132 Property of being a fixed ...
fxpgaeq 33133 A fixed point ` X ` is inv...
conjga 33134 Group conjugation induces ...
cntrval2 33135 Express the center ` Z ` o...
fxpsubm 33136 Provided the group action ...
inftmrel 33141 The infinitesimal relation...
isinftm 33142 Express ` x ` is infinites...
isarchi 33143 Express the predicate " ` ...
pnfinf 33144 Plus infinity is an infini...
xrnarchi 33145 The completed real line is...
isarchi2 33146 Alternative way to express...
submarchi 33147 A submonoid is archimedean...
isarchi3 33148 This is the usual definiti...
archirng 33149 Property of Archimedean or...
archirngz 33150 Property of Archimedean le...
archiexdiv 33151 In an Archimedean group, g...
archiabllem1a 33152 Lemma for ~ archiabl : In...
archiabllem1b 33153 Lemma for ~ archiabl . (C...
archiabllem1 33154 Archimedean ordered groups...
archiabllem2a 33155 Lemma for ~ archiabl , whi...
archiabllem2c 33156 Lemma for ~ archiabl . (C...
archiabllem2b 33157 Lemma for ~ archiabl . (C...
archiabllem2 33158 Archimedean ordered groups...
archiabl 33159 Archimedean left- and righ...
isslmd 33162 The predicate "is a semimo...
slmdlema 33163 Lemma for properties of a ...
lmodslmd 33164 Left semimodules generaliz...
slmdcmn 33165 A semimodule is a commutat...
slmdmnd 33166 A semimodule is a monoid. ...
slmdsrg 33167 The scalar component of a ...
slmdbn0 33168 The base set of a semimodu...
slmdacl 33169 Closure of ring addition f...
slmdmcl 33170 Closure of ring multiplica...
slmdsn0 33171 The set of scalars in a se...
slmdvacl 33172 Closure of vector addition...
slmdass 33173 Semiring left module vecto...
slmdvscl 33174 Closure of scalar product ...
slmdvsdi 33175 Distributive law for scala...
slmdvsdir 33176 Distributive law for scala...
slmdvsass 33177 Associative law for scalar...
slmd0cl 33178 The ring zero in a semimod...
slmd1cl 33179 The ring unity in a semiri...
slmdvs1 33180 Scalar product with ring u...
slmd0vcl 33181 The zero vector is a vecto...
slmd0vlid 33182 Left identity law for the ...
slmd0vrid 33183 Right identity law for the...
slmd0vs 33184 Zero times a vector is the...
slmdvs0 33185 Anything times the zero ve...
gsumvsca1 33186 Scalar product of a finite...
gsumvsca2 33187 Scalar product of a finite...
prmsimpcyc 33188 A group of prime order is ...
ringdi22 33189 Expand the product of two ...
urpropd 33190 Sufficient condition for r...
subrgmcld 33191 A subring is closed under ...
ress1r 33192 ` 1r ` is unaffected by re...
ringinvval 33193 The ring inverse expressed...
dvrcan5 33194 Cancellation law for commo...
subrgchr 33195 If ` A ` is a subring of `...
rmfsupp2 33196 A mapping of a multiplicat...
unitnz 33197 In a nonzero ring, a unit ...
isunit2 33198 Alternate definition of be...
isunit3 33199 Alternate definition of be...
elrgspnlem1 33200 Lemma for ~ elrgspn . (Co...
elrgspnlem2 33201 Lemma for ~ elrgspn . (Co...
elrgspnlem3 33202 Lemma for ~ elrgspn . (Co...
elrgspnlem4 33203 Lemma for ~ elrgspn . (Co...
elrgspn 33204 Membership in the subring ...
elrgspnsubrunlem1 33205 Lemma for ~ elrgspnsubrun ...
elrgspnsubrunlem2 33206 Lemma for ~ elrgspnsubrun ...
elrgspnsubrun 33207 Membership in the ring spa...
irrednzr 33208 A ring with an irreducible...
0ringsubrg 33209 A subring of a zero ring i...
0ringcring 33210 The zero ring is commutati...
reldmrloc 33215 Ring localization is a pro...
erlval 33216 Value of the ring localiza...
rlocval 33217 Expand the value of the ri...
erlcl1 33218 Closure for the ring local...
erlcl2 33219 Closure for the ring local...
erldi 33220 Main property of the ring ...
erlbrd 33221 Deduce the ring localizati...
erlbr2d 33222 Deduce the ring localizati...
erler 33223 The relation used to build...
elrlocbasi 33224 Membership in the basis of...
rlocbas 33225 The base set of a ring loc...
rlocaddval 33226 Value of the addition in t...
rlocmulval 33227 Value of the addition in t...
rloccring 33228 The ring localization ` L ...
rloc0g 33229 The zero of a ring localiz...
rloc1r 33230 The multiplicative identit...
rlocf1 33231 The embedding ` F ` of a r...
domnmuln0rd 33232 In a domain, factors of a ...
domnprodn0 33233 In a domain, a finite prod...
domnpropd 33234 If two structures have the...
idompropd 33235 If two structures have the...
idomrcan 33236 Right-cancellation law for...
domnlcanOLD 33237 Obsolete version of ~ domn...
domnlcanbOLD 33238 Obsolete version of ~ domn...
idomrcanOLD 33239 Obsolete version of ~ idom...
1rrg 33240 The multiplicative identit...
rrgsubm 33241 The left regular elements ...
subrdom 33242 A subring of a domain is a...
subridom 33243 A subring of an integral d...
subrfld 33244 A subring of a field is an...
eufndx 33247 Index value of the Euclide...
eufid 33248 Utility theorem: index-ind...
ringinveu 33251 If a ring unit element ` X...
isdrng4 33252 A division ring is a ring ...
rndrhmcl 33253 The image of a division ri...
qfld 33254 The field of rational numb...
subsdrg 33255 A subring of a sub-divisio...
sdrgdvcl 33256 A sub-division-ring is clo...
sdrginvcl 33257 A sub-division-ring is clo...
primefldchr 33258 The characteristic of a pr...
fracval 33261 Value of the field of frac...
fracbas 33262 The base of the field of f...
fracerl 33263 Rewrite the ring localizat...
fracf1 33264 The embedding of a commuta...
fracfld 33265 The field of fractions of ...
idomsubr 33266 Every integral domain is i...
fldgenval 33269 Value of the field generat...
fldgenssid 33270 The field generated by a s...
fldgensdrg 33271 A generated subfield is a ...
fldgenssv 33272 A generated subfield is a ...
fldgenss 33273 Generated subfields preser...
fldgenidfld 33274 The subfield generated by ...
fldgenssp 33275 The field generated by a s...
fldgenid 33276 The subfield of a field ` ...
fldgenfld 33277 A generated subfield is a ...
primefldgen1 33278 The prime field of a divis...
1fldgenq 33279 The field of rational numb...
isorng 33284 An ordered ring is a ring ...
orngring 33285 An ordered ring is a ring....
orngogrp 33286 An ordered ring is an orde...
isofld 33287 An ordered field is a fiel...
orngmul 33288 In an ordered ring, the or...
orngsqr 33289 In an ordered ring, all sq...
ornglmulle 33290 In an ordered ring, multip...
orngrmulle 33291 In an ordered ring, multip...
ornglmullt 33292 In an ordered ring, multip...
orngrmullt 33293 In an ordered ring, multip...
orngmullt 33294 In an ordered ring, the st...
ofldfld 33295 An ordered field is a fiel...
ofldtos 33296 An ordered field is a tota...
orng0le1 33297 In an ordered ring, the ri...
ofldlt1 33298 In an ordered field, the r...
ofldchr 33299 The characteristic of an o...
suborng 33300 Every subring of an ordere...
subofld 33301 Every subfield of an order...
isarchiofld 33302 Axiom of Archimedes : a ch...
rhmdvd 33303 A ring homomorphism preser...
kerunit 33304 If a unit element lies in ...
reldmresv 33307 The scalar restriction is ...
resvval 33308 Value of structure restric...
resvid2 33309 General behavior of trivia...
resvval2 33310 Value of nontrivial struct...
resvsca 33311 Base set of a structure re...
resvlem 33312 Other elements of a scalar...
resvbas 33313 ` Base ` is unaffected by ...
resvplusg 33314 ` +g ` is unaffected by sc...
resvvsca 33315 ` .s ` is unaffected by sc...
resvmulr 33316 ` .r ` is unaffected by sc...
resv0g 33317 ` 0g ` is unaffected by sc...
resv1r 33318 ` 1r ` is unaffected by sc...
resvcmn 33319 Scalar restriction preserv...
gzcrng 33320 The gaussian integers form...
cnfldfld 33321 The complex numbers form a...
reofld 33322 The real numbers form an o...
nn0omnd 33323 The nonnegative integers f...
rearchi 33324 The field of the real numb...
nn0archi 33325 The monoid of the nonnegat...
xrge0slmod 33326 The extended nonnegative r...
qusker 33327 The kernel of a quotient m...
eqgvscpbl 33328 The left coset equivalence...
qusvscpbl 33329 The quotient map distribut...
qusvsval 33330 Value of the scalar multip...
imaslmod 33331 The image structure of a l...
imasmhm 33332 Given a function ` F ` wit...
imasghm 33333 Given a function ` F ` wit...
imasrhm 33334 Given a function ` F ` wit...
imaslmhm 33335 Given a function ` F ` wit...
quslmod 33336 If ` G ` is a submodule in...
quslmhm 33337 If ` G ` is a submodule of...
quslvec 33338 If ` S ` is a vector subsp...
ecxpid 33339 The equivalence class of a...
qsxpid 33340 The quotient set of a cart...
qusxpid 33341 The Group quotient equival...
qustriv 33342 The quotient of a group ` ...
qustrivr 33343 Converse of ~ qustriv . (...
znfermltl 33344 Fermat's little theorem in...
islinds5 33345 A set is linearly independ...
ellspds 33346 Variation on ~ ellspd . (...
0ellsp 33347 Zero is in all spans. (Co...
0nellinds 33348 The group identity cannot ...
rspsnid 33349 A principal ideal contains...
elrsp 33350 Write the elements of a ri...
ellpi 33351 Elementhood in a left prin...
lpirlidllpi 33352 In a principal ideal ring,...
rspidlid 33353 The ideal span of an ideal...
pidlnz 33354 A principal ideal generate...
lbslsp 33355 Any element of a left modu...
lindssn 33356 Any singleton of a nonzero...
lindflbs 33357 Conditions for an independ...
islbs5 33358 An equivalent formulation ...
linds2eq 33359 Deduce equality of element...
lindfpropd 33360 Property deduction for lin...
lindspropd 33361 Property deduction for lin...
dvdsruassoi 33362 If two elements ` X ` and ...
dvdsruasso 33363 Two elements ` X ` and ` Y...
dvdsruasso2 33364 A reformulation of ~ dvdsr...
dvdsrspss 33365 In a ring, an element ` X ...
rspsnasso 33366 Two elements ` X ` and ` Y...
unitprodclb 33367 A finite product is a unit...
elgrplsmsn 33368 Membership in a sumset wit...
lsmsnorb 33369 The sumset of a group with...
lsmsnorb2 33370 The sumset of a single ele...
elringlsm 33371 Membership in a product of...
elringlsmd 33372 Membership in a product of...
ringlsmss 33373 Closure of the product of ...
ringlsmss1 33374 The product of an ideal ` ...
ringlsmss2 33375 The product with an ideal ...
lsmsnpridl 33376 The product of the ring wi...
lsmsnidl 33377 The product of the ring wi...
lsmidllsp 33378 The sum of two ideals is t...
lsmidl 33379 The sum of two ideals is a...
lsmssass 33380 Group sum is associative, ...
grplsm0l 33381 Sumset with the identity s...
grplsmid 33382 The direct sum of an eleme...
quslsm 33383 Express the image by the q...
qusbas2 33384 Alternate definition of th...
qus0g 33385 The identity element of a ...
qusima 33386 The image of a subgroup by...
qusrn 33387 The natural map from eleme...
nsgqus0 33388 A normal subgroup ` N ` is...
nsgmgclem 33389 Lemma for ~ nsgmgc . (Con...
nsgmgc 33390 There is a monotone Galois...
nsgqusf1olem1 33391 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 33392 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 33393 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 33394 The canonical projection h...
lmhmqusker 33395 A surjective module homomo...
lmicqusker 33396 The image ` H ` of a modul...
lidlmcld 33397 An ideal is closed under l...
intlidl 33398 The intersection of a none...
0ringidl 33399 The zero ideal is the only...
pidlnzb 33400 A principal ideal is nonze...
lidlunitel 33401 If an ideal ` I ` contains...
unitpidl1 33402 The ideal ` I ` generated ...
rhmquskerlem 33403 The mapping ` J ` induced ...
rhmqusker 33404 A surjective ring homomorp...
ricqusker 33405 The image ` H ` of a ring ...
elrspunidl 33406 Elementhood in the span of...
elrspunsn 33407 Membership to the span of ...
lidlincl 33408 Ideals are closed under in...
idlinsubrg 33409 The intersection between a...
rhmimaidl 33410 The image of an ideal ` I ...
drngidl 33411 A nonzero ring is a divisi...
drngidlhash 33412 A ring is a division ring ...
prmidlval 33415 The class of prime ideals ...
isprmidl 33416 The predicate "is a prime ...
prmidlnr 33417 A prime ideal is a proper ...
prmidl 33418 The main property of a pri...
prmidl2 33419 A condition that shows an ...
idlmulssprm 33420 Let ` P ` be a prime ideal...
pridln1 33421 A proper ideal cannot cont...
prmidlidl 33422 A prime ideal is an ideal....
prmidlssidl 33423 Prime ideals as a subset o...
cringm4 33424 Commutative/associative la...
isprmidlc 33425 The predicate "is prime id...
prmidlc 33426 Property of a prime ideal ...
0ringprmidl 33427 The trivial ring does not ...
prmidl0 33428 The zero ideal of a commut...
rhmpreimaprmidl 33429 The preimage of a prime id...
qsidomlem1 33430 If the quotient ring of a ...
qsidomlem2 33431 A quotient by a prime idea...
qsidom 33432 An ideal ` I ` in the comm...
qsnzr 33433 A quotient of a non-zero r...
ssdifidllem 33434 Lemma for ~ ssdifidl : Th...
ssdifidl 33435 Let ` R ` be a ring, and l...
ssdifidlprm 33436 If the set ` S ` of ~ ssdi...
mxidlval 33439 The set of maximal ideals ...
ismxidl 33440 The predicate "is a maxima...
mxidlidl 33441 A maximal ideal is an idea...
mxidlnr 33442 A maximal ideal is proper....
mxidlmax 33443 A maximal ideal is a maxim...
mxidln1 33444 One is not contained in an...
mxidlnzr 33445 A ring with a maximal idea...
mxidlmaxv 33446 An ideal ` I ` strictly co...
crngmxidl 33447 In a commutative ring, max...
mxidlprm 33448 Every maximal ideal is pri...
mxidlirredi 33449 In an integral domain, the...
mxidlirred 33450 In a principal ideal domai...
ssmxidllem 33451 The set ` P ` used in the ...
ssmxidl 33452 Let ` R ` be a ring, and l...
drnglidl1ne0 33453 In a nonzero ring, the zer...
drng0mxidl 33454 In a division ring, the ze...
drngmxidl 33455 The zero ideal is the only...
drngmxidlr 33456 If a ring's only maximal i...
krull 33457 Krull's theorem: Any nonz...
mxidlnzrb 33458 A ring is nonzero if and o...
krullndrng 33459 Krull's theorem for non-di...
opprabs 33460 The opposite ring of the o...
oppreqg 33461 Group coset equivalence re...
opprnsg 33462 Normal subgroups of the op...
opprlidlabs 33463 The ideals of the opposite...
oppr2idl 33464 Two sided ideal of the opp...
opprmxidlabs 33465 The maximal ideal of the o...
opprqusbas 33466 The base of the quotient o...
opprqusplusg 33467 The group operation of the...
opprqus0g 33468 The group identity element...
opprqusmulr 33469 The multiplication operati...
opprqus1r 33470 The ring unity of the quot...
opprqusdrng 33471 The quotient of the opposi...
qsdrngilem 33472 Lemma for ~ qsdrngi . (Co...
qsdrngi 33473 A quotient by a maximal le...
qsdrnglem2 33474 Lemma for ~ qsdrng . (Con...
qsdrng 33475 An ideal ` M ` is both lef...
qsfld 33476 An ideal ` M ` in the comm...
mxidlprmALT 33477 Every maximal ideal is pri...
idlsrgstr 33480 A constructed semiring of ...
idlsrgval 33481 Lemma for ~ idlsrgbas thro...
idlsrgbas 33482 Base of the ideals of a ri...
idlsrgplusg 33483 Additive operation of the ...
idlsrg0g 33484 The zero ideal is the addi...
idlsrgmulr 33485 Multiplicative operation o...
idlsrgtset 33486 Topology component of the ...
idlsrgmulrval 33487 Value of the ring multipli...
idlsrgmulrcl 33488 Ideals of a ring ` R ` are...
idlsrgmulrss1 33489 In a commutative ring, the...
idlsrgmulrss2 33490 The product of two ideals ...
idlsrgmulrssin 33491 In a commutative ring, the...
idlsrgmnd 33492 The ideals of a ring form ...
idlsrgcmnd 33493 The ideals of a ring form ...
rprmval 33494 The prime elements of a ri...
isrprm 33495 Property for ` P ` to be a...
rprmcl 33496 A ring prime is an element...
rprmdvds 33497 If a ring prime ` Q ` divi...
rprmnz 33498 A ring prime is nonzero. ...
rprmnunit 33499 A ring prime is not a unit...
rsprprmprmidl 33500 In a commutative ring, ide...
rsprprmprmidlb 33501 In an integral domain, an ...
rprmndvdsr1 33502 A ring prime element does ...
rprmasso 33503 In an integral domain, the...
rprmasso2 33504 In an integral domain, if ...
rprmasso3 33505 In an integral domain, if ...
unitmulrprm 33506 A ring unit multiplied by ...
rprmndvdsru 33507 A ring prime element does ...
rprmirredlem 33508 Lemma for ~ rprmirred . (...
rprmirred 33509 In an integral domain, rin...
rprmirredb 33510 In a principal ideal domai...
rprmdvdspow 33511 If a prime element divides...
rprmdvdsprod 33512 If a prime element ` Q ` d...
1arithidomlem1 33513 Lemma for ~ 1arithidom . ...
1arithidomlem2 33514 Lemma for ~ 1arithidom : i...
1arithidom 33515 Uniqueness of prime factor...
isufd 33518 The property of being a Un...
ufdprmidl 33519 In a unique factorization ...
ufdidom 33520 A nonzero unique factoriza...
pidufd 33521 Every principal ideal doma...
1arithufdlem1 33522 Lemma for ~ 1arithufd . T...
1arithufdlem2 33523 Lemma for ~ 1arithufd . T...
1arithufdlem3 33524 Lemma for ~ 1arithufd . I...
1arithufdlem4 33525 Lemma for ~ 1arithufd . N...
1arithufd 33526 Existence of a factorizati...
dfufd2lem 33527 Lemma for ~ dfufd2 . (Con...
dfufd2 33528 Alternative definition of ...
zringidom 33529 The ring of integers is an...
zringpid 33530 The ring of integers is a ...
dfprm3 33531 The (positive) prime eleme...
zringfrac 33532 The field of fractions of ...
0ringmon1p 33533 There are no monic polynom...
fply1 33534 Conditions for a function ...
ply1lvec 33535 In a division ring, the un...
evls1fn 33536 Functionality of the subri...
evls1dm 33537 The domain of the subring ...
evls1fvf 33538 The subring evaluation fun...
evl1fvf 33539 The univariate polynomial ...
evl1fpws 33540 Evaluation of a univariate...
ressply1evls1 33541 Subring evaluation of a un...
ressdeg1 33542 The degree of a univariate...
ressply10g 33543 A restricted polynomial al...
ressply1mon1p 33544 The monic polynomials of a...
ressply1invg 33545 An element of a restricted...
ressply1sub 33546 A restricted polynomial al...
ressasclcl 33547 Closure of the univariate ...
evls1subd 33548 Univariate polynomial eval...
deg1le0eq0 33549 A polynomial with nonposit...
ply1asclunit 33550 A non-zero scalar polynomi...
ply1unit 33551 In a field ` F ` , a polyn...
evl1deg1 33552 Evaluation of a univariate...
evl1deg2 33553 Evaluation of a univariate...
evl1deg3 33554 Evaluation of a univariate...
ply1dg1rt 33555 Express the root ` - B / A...
ply1dg1rtn0 33556 Polynomials of degree 1 ov...
ply1mulrtss 33557 The roots of a factor ` F ...
ply1dg3rt0irred 33558 If a cubic polynomial over...
m1pmeq 33559 If two monic polynomials `...
ply1fermltl 33560 Fermat's little theorem fo...
coe1mon 33561 Coefficient vector of a mo...
ply1moneq 33562 Two monomials are equal if...
coe1zfv 33563 The coefficients of the ze...
coe1vr1 33564 Polynomial coefficient of ...
deg1vr 33565 The degree of the variable...
vr1nz 33566 A univariate polynomial va...
ply1degltel 33567 Characterize elementhood i...
ply1degleel 33568 Characterize elementhood i...
ply1degltlss 33569 The space ` S ` of the uni...
gsummoncoe1fzo 33570 A coefficient of the polyn...
ply1gsumz 33571 If a polynomial given as a...
deg1addlt 33572 If both factors have degre...
ig1pnunit 33573 The polynomial ideal gener...
ig1pmindeg 33574 The polynomial ideal gener...
q1pdir 33575 Distribution of univariate...
q1pvsca 33576 Scalar multiplication prop...
r1pvsca 33577 Scalar multiplication prop...
r1p0 33578 Polynomial remainder opera...
r1pcyc 33579 The polynomial remainder o...
r1padd1 33580 Addition property of the p...
r1pid2OLD 33581 Obsolete version of ~ r1pi...
r1plmhm 33582 The univariate polynomial ...
r1pquslmic 33583 The univariate polynomial ...
sra1r 33584 The unity element of a sub...
sradrng 33585 Condition for a subring al...
sraidom 33586 Condition for a subring al...
srasubrg 33587 A subring of the original ...
sralvec 33588 Given a sub division ring ...
srafldlvec 33589 Given a subfield ` F ` of ...
resssra 33590 The subring algebra of a r...
lsssra 33591 A subring is a subspace of...
drgext0g 33592 The additive neutral eleme...
drgextvsca 33593 The scalar multiplication ...
drgext0gsca 33594 The additive neutral eleme...
drgextsubrg 33595 The scalar field is a subr...
drgextlsp 33596 The scalar field is a subs...
drgextgsum 33597 Group sum in a division ri...
lvecdimfi 33598 Finite version of ~ lvecdi...
exsslsb 33599 Any finite generating set ...
lbslelsp 33600 The size of a basis ` X ` ...
dimval 33603 The dimension of a vector ...
dimvalfi 33604 The dimension of a vector ...
dimcl 33605 Closure of the vector spac...
lmimdim 33606 Module isomorphisms preser...
lmicdim 33607 Module isomorphisms preser...
lvecdim0i 33608 A vector space of dimensio...
lvecdim0 33609 A vector space of dimensio...
lssdimle 33610 The dimension of a linear ...
dimpropd 33611 If two structures have the...
rlmdim 33612 The left vector space indu...
rgmoddimOLD 33613 Obsolete version of ~ rlmd...
frlmdim 33614 Dimension of a free left m...
tnglvec 33615 Augmenting a structure wit...
tngdim 33616 Dimension of a left vector...
rrxdim 33617 Dimension of the generaliz...
matdim 33618 Dimension of the space of ...
lbslsat 33619 A nonzero vector ` X ` is ...
lsatdim 33620 A line, spanned by a nonze...
drngdimgt0 33621 The dimension of a vector ...
lmhmlvec2 33622 A homomorphism of left vec...
kerlmhm 33623 The kernel of a vector spa...
imlmhm 33624 The image of a vector spac...
ply1degltdimlem 33625 Lemma for ~ ply1degltdim ....
ply1degltdim 33626 The space ` S ` of the uni...
lindsunlem 33627 Lemma for ~ lindsun . (Co...
lindsun 33628 Condition for the union of...
lbsdiflsp0 33629 The linear spans of two di...
dimkerim 33630 Given a linear map ` F ` b...
qusdimsum 33631 Let ` W ` be a vector spac...
fedgmullem1 33632 Lemma for ~ fedgmul . (Co...
fedgmullem2 33633 Lemma for ~ fedgmul . (Co...
fedgmul 33634 The multiplicativity formu...
dimlssid 33635 If the dimension of a line...
lvecendof1f1o 33636 If an endomorphism ` U ` o...
lactlmhm 33637 In an associative algebra ...
assalactf1o 33638 In an associative algebra ...
assarrginv 33639 If an element ` X ` of an ...
assafld 33640 If an algebra ` A ` of fin...
relfldext 33647 The field extension is a r...
brfldext 33648 The field extension relati...
ccfldextrr 33649 The field of the complex n...
fldextfld1 33650 A field extension is only ...
fldextfld2 33651 A field extension is only ...
fldextsubrg 33652 Field extension implies a ...
sdrgfldext 33653 A field ` E ` and any sub-...
fldextress 33654 Field extension implies a ...
brfinext 33655 The finite field extension...
extdgval 33656 Value of the field extensi...
fldextsdrg 33657 Deduce sub-division-ring f...
fldextsralvec 33658 The subring algebra associ...
extdgcl 33659 Closure of the field exten...
extdggt0 33660 Degrees of field extension...
fldexttr 33661 Field extension is a trans...
fldextid 33662 The field extension relati...
extdgid 33663 A trivial field extension ...
fldsdrgfldext 33664 A sub-division-ring of a f...
fldsdrgfldext2 33665 A sub-sub-division-ring of...
extdgmul 33666 The multiplicativity formu...
finexttrb 33667 The extension ` E ` of ` K...
extdg1id 33668 If the degree of the exten...
extdg1b 33669 The degree of the extensio...
fldgenfldext 33670 A subfield ` F ` extended ...
fldextchr 33671 The characteristic of a su...
evls1fldgencl 33672 Closure of the subring pol...
ccfldsrarelvec 33673 The subring algebra of the...
ccfldextdgrr 33674 The degree of the field ex...
fldextrspunlsplem 33675 Lemma for ~ fldextrspunlsp...
fldextrspunlsp 33676 Lemma for ~ fldextrspunfld...
fldextrspunlem1 33677 Lemma for ~ fldextrspunfld...
fldextrspunfld 33678 The ring generated by the ...
fldextrspunlem2 33679 Part of the proof of Propo...
fldextrspundgle 33680 Inequality involving the d...
fldextrspundglemul 33681 Given two field extensions...
fldextrspundgdvdslem 33682 Lemma for ~ fldextrspundgd...
fldextrspundgdvds 33683 Given two finite extension...
fldext2rspun 33684 Given two field extensions...
irngval 33687 The elements of a field ` ...
elirng 33688 Property for an element ` ...
irngss 33689 All elements of a subring ...
irngssv 33690 An integral element is an ...
0ringirng 33691 A zero ring ` R ` has no i...
irngnzply1lem 33692 In the case of a field ` E...
irngnzply1 33693 In the case of a field ` E...
ply1annidllem 33698 Write the set ` Q ` of pol...
ply1annidl 33699 The set ` Q ` of polynomia...
ply1annnr 33700 The set ` Q ` of polynomia...
ply1annig1p 33701 The ideal ` Q ` of polynom...
minplyval 33702 Expand the value of the mi...
minplycl 33703 The minimal polynomial is ...
ply1annprmidl 33704 The set ` Q ` of polynomia...
minplymindeg 33705 The minimal polynomial of ...
minplyann 33706 The minimal polynomial for...
minplyirredlem 33707 Lemma for ~ minplyirred . ...
minplyirred 33708 A nonzero minimal polynomi...
irngnminplynz 33709 Integral elements have non...
minplym1p 33710 A minimal polynomial is mo...
minplynzm1p 33711 If a minimal polynomial is...
minplyelirng 33712 If the minimial polynomial...
irredminply 33713 An irreducible, monic, ann...
algextdeglem1 33714 Lemma for ~ algextdeg . (...
algextdeglem2 33715 Lemma for ~ algextdeg . B...
algextdeglem3 33716 Lemma for ~ algextdeg . T...
algextdeglem4 33717 Lemma for ~ algextdeg . B...
algextdeglem5 33718 Lemma for ~ algextdeg . T...
algextdeglem6 33719 Lemma for ~ algextdeg . B...
algextdeglem7 33720 Lemma for ~ algextdeg . T...
algextdeglem8 33721 Lemma for ~ algextdeg . T...
algextdeg 33722 The degree of an algebraic...
rtelextdg2lem 33723 Lemma for ~ rtelextdg2 : ...
rtelextdg2 33724 If an element ` X ` is a s...
fldext2chn 33725 In a non-empty chain ` T `...
constrrtll 33728 In the construction of con...
constrrtlc1 33729 In the construction of con...
constrrtlc2 33730 In the construction of con...
constrrtcclem 33731 In the construction of con...
constrrtcc 33732 In the construction of con...
isconstr 33733 Property of being a constr...
constr0 33734 The first step of the cons...
constrsuc 33735 Membership in the successo...
constrlim 33736 Limit step of the construc...
constrsscn 33737 Closure of the constructib...
constrsslem 33738 Lemma for ~ constrss . Th...
constr01 33739 ` 0 ` and ` 1 ` are in all...
constrss 33740 Constructed points are in ...
constrmon 33741 The construction of constr...
constrconj 33742 If a point ` X ` of the co...
constrfin 33743 Each step of the construct...
constrelextdg2 33744 If the ` N ` -th step ` ( ...
constrextdg2lem 33745 Lemma for ~ constrextdg2 (...
constrextdg2 33746 Any step ` ( C `` N ) ` of...
constrext2chnlem 33747 Lemma for ~ constrext2chn ...
constrfiss 33748 For any finite set ` A ` o...
constrllcllem 33749 Constructible numbers are ...
constrlccllem 33750 Constructible numbers are ...
constrcccllem 33751 Constructible numbers are ...
constrcbvlem 33752 Technical lemma for elimin...
constrllcl 33753 Constructible numbers are ...
constrlccl 33754 Constructible numbers are ...
constrcccl 33755 Constructible numbers are ...
constrext2chn 33756 If a constructible number ...
constrcn 33757 Constructible numbers are ...
nn0constr 33758 Nonnegative integers are c...
constraddcl 33759 Constructive numbers are c...
constrnegcl 33760 Constructible numbers are ...
zconstr 33761 Integers are constructible...
constrdircl 33762 Constructible numbers are ...
iconstr 33763 The imaginary unit ` _i ` ...
constrremulcl 33764 If two real numbers ` X ` ...
constrcjcl 33765 Constructible numbers are ...
constrrecl 33766 Constructible numbers are ...
constrimcl 33767 Constructible numbers are ...
constrmulcl 33768 Constructible numbers are ...
constrreinvcl 33769 If a real number ` X ` is ...
constrinvcl 33770 Constructible numbers are ...
constrcon 33771 Contradiction of construct...
constrsdrg 33772 Constructible numbers form...
constrfld 33773 The constructible numbers ...
constrresqrtcl 33774 If a positive real number ...
constrabscl 33775 Constructible numbers are ...
constrsqrtcl 33776 Constructible numbers are ...
2sqr3minply 33777 The polynomial ` ( ( X ^ 3...
2sqr3nconstr 33778 Doubling the cube is an im...
cos9thpiminplylem1 33779 The polynomial ` ( ( X ^ 3...
cos9thpiminplylem2 33780 The polynomial ` ( ( X ^ 3...
cos9thpiminplylem3 33781 Lemma for ~ cos9thpiminply...
cos9thpiminplylem4 33782 Lemma for ~ cos9thpiminply...
cos9thpiminplylem5 33783 The constructed complex nu...
cos9thpiminplylem6 33784 Evaluation of the polynomi...
cos9thpiminply 33785 The polynomial ` ( ( X ^ 3...
cos9thpinconstrlem1 33786 The complex number ` O ` ,...
cos9thpinconstrlem2 33787 The complex number ` A ` i...
cos9thpinconstr 33788 Trisecting an angle is an ...
trisecnconstr 33789 Not all angles can be tris...
smatfval 33792 Value of the submatrix. (...
smatrcl 33793 Closure of the rectangular...
smatlem 33794 Lemma for the next theorem...
smattl 33795 Entries of a submatrix, to...
smattr 33796 Entries of a submatrix, to...
smatbl 33797 Entries of a submatrix, bo...
smatbr 33798 Entries of a submatrix, bo...
smatcl 33799 Closure of the square subm...
matmpo 33800 Write a square matrix as a...
1smat1 33801 The submatrix of the ident...
submat1n 33802 One case where the submatr...
submatres 33803 Special case where the sub...
submateqlem1 33804 Lemma for ~ submateq . (C...
submateqlem2 33805 Lemma for ~ submateq . (C...
submateq 33806 Sufficient condition for t...
submatminr1 33807 If we take a submatrix by ...
lmatval 33810 Value of the literal matri...
lmatfval 33811 Entries of a literal matri...
lmatfvlem 33812 Useful lemma to extract li...
lmatcl 33813 Closure of the literal mat...
lmat22lem 33814 Lemma for ~ lmat22e11 and ...
lmat22e11 33815 Entry of a 2x2 literal mat...
lmat22e12 33816 Entry of a 2x2 literal mat...
lmat22e21 33817 Entry of a 2x2 literal mat...
lmat22e22 33818 Entry of a 2x2 literal mat...
lmat22det 33819 The determinant of a liter...
mdetpmtr1 33820 The determinant of a matri...
mdetpmtr2 33821 The determinant of a matri...
mdetpmtr12 33822 The determinant of a matri...
mdetlap1 33823 A Laplace expansion of the...
madjusmdetlem1 33824 Lemma for ~ madjusmdet . ...
madjusmdetlem2 33825 Lemma for ~ madjusmdet . ...
madjusmdetlem3 33826 Lemma for ~ madjusmdet . ...
madjusmdetlem4 33827 Lemma for ~ madjusmdet . ...
madjusmdet 33828 Express the cofactor of th...
mdetlap 33829 Laplace expansion of the d...
ist0cld 33830 The predicate "is a T_0 sp...
txomap 33831 Given two open maps ` F ` ...
qtopt1 33832 If every equivalence class...
qtophaus 33833 If an open map's graph in ...
circtopn 33834 The topology of the unit c...
circcn 33835 The function gluing the re...
reff 33836 For any cover refinement, ...
locfinreflem 33837 A locally finite refinemen...
locfinref 33838 A locally finite refinemen...
iscref 33841 The property that every op...
crefeq 33842 Equality theorem for the "...
creftop 33843 A space where every open c...
crefi 33844 The property that every op...
crefdf 33845 A formulation of ~ crefi e...
crefss 33846 The "every open cover has ...
cmpcref 33847 Equivalent definition of c...
cmpfiref 33848 Every open cover of a Comp...
ldlfcntref 33851 Every open cover of a Lind...
ispcmp 33854 The predicate "is a paraco...
cmppcmp 33855 Every compact space is par...
dispcmp 33856 Every discrete space is pa...
pcmplfin 33857 Given a paracompact topolo...
pcmplfinf 33858 Given a paracompact topolo...
rspecval 33861 Value of the spectrum of t...
rspecbas 33862 The prime ideals form the ...
rspectset 33863 Topology component of the ...
rspectopn 33864 The topology component of ...
zarcls0 33865 The closure of the identit...
zarcls1 33866 The unit ideal ` B ` is th...
zarclsun 33867 The union of two closed se...
zarclsiin 33868 In a Zariski topology, the...
zarclsint 33869 The intersection of a fami...
zarclssn 33870 The closed points of Zaris...
zarcls 33871 The open sets of the Zaris...
zartopn 33872 The Zariski topology is a ...
zartop 33873 The Zariski topology is a ...
zartopon 33874 The points of the Zariski ...
zar0ring 33875 The Zariski Topology of th...
zart0 33876 The Zariski topology is T_...
zarmxt1 33877 The Zariski topology restr...
zarcmplem 33878 Lemma for ~ zarcmp . (Con...
zarcmp 33879 The Zariski topology is co...
rspectps 33880 The spectrum of a ring ` R...
rhmpreimacnlem 33881 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 33882 The function mapping a pri...
metidval 33887 Value of the metric identi...
metidss 33888 As a relation, the metric ...
metidv 33889 ` A ` and ` B ` identify b...
metideq 33890 Basic property of the metr...
metider 33891 The metric identification ...
pstmval 33892 Value of the metric induce...
pstmfval 33893 Function value of the metr...
pstmxmet 33894 The metric induced by a ps...
hauseqcn 33895 In a Hausdorff topology, t...
elunitge0 33896 An element of the closed u...
unitssxrge0 33897 The closed unit interval i...
unitdivcld 33898 Necessary conditions for a...
iistmd 33899 The closed unit interval f...
unicls 33900 The union of the closed se...
tpr2tp 33901 The usual topology on ` ( ...
tpr2uni 33902 The usual topology on ` ( ...
xpinpreima 33903 Rewrite the cartesian prod...
xpinpreima2 33904 Rewrite the cartesian prod...
sqsscirc1 33905 The complex square of side...
sqsscirc2 33906 The complex square of side...
cnre2csqlem 33907 Lemma for ~ cnre2csqima . ...
cnre2csqima 33908 Image of a centered square...
tpr2rico 33909 For any point of an open s...
cnvordtrestixx 33910 The restriction of the 'gr...
prsdm 33911 Domain of the relation of ...
prsrn 33912 Range of the relation of a...
prsss 33913 Relation of a subproset. ...
prsssdm 33914 Domain of a subproset rela...
ordtprsval 33915 Value of the order topolog...
ordtprsuni 33916 Value of the order topolog...
ordtcnvNEW 33917 The order dual generates t...
ordtrestNEW 33918 The subspace topology of a...
ordtrest2NEWlem 33919 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 33920 An interval-closed set ` A...
ordtconnlem1 33921 Connectedness in the order...
ordtconn 33922 Connectedness in the order...
mndpluscn 33923 A mapping that is both a h...
mhmhmeotmd 33924 Deduce a Topological Monoi...
rmulccn 33925 Multiplication by a real c...
raddcn 33926 Addition in the real numbe...
xrmulc1cn 33927 The operation multiplying ...
fmcncfil 33928 The image of a Cauchy filt...
xrge0hmph 33929 The extended nonnegative r...
xrge0iifcnv 33930 Define a bijection from ` ...
xrge0iifcv 33931 The defined function's val...
xrge0iifiso 33932 The defined bijection from...
xrge0iifhmeo 33933 Expose a homeomorphism fro...
xrge0iifhom 33934 The defined function from ...
xrge0iif1 33935 Condition for the defined ...
xrge0iifmhm 33936 The defined function from ...
xrge0pluscn 33937 The addition operation of ...
xrge0mulc1cn 33938 The operation multiplying ...
xrge0tps 33939 The extended nonnegative r...
xrge0topn 33940 The topology of the extend...
xrge0haus 33941 The topology of the extend...
xrge0tmd 33942 The extended nonnegative r...
xrge0tmdALT 33943 Alternate proof of ~ xrge0...
lmlim 33944 Relate a limit in a given ...
lmlimxrge0 33945 Relate a limit in the nonn...
rge0scvg 33946 Implication of convergence...
fsumcvg4 33947 A serie with finite suppor...
pnfneige0 33948 A neighborhood of ` +oo ` ...
lmxrge0 33949 Express "sequence ` F ` co...
lmdvg 33950 If a monotonic sequence of...
lmdvglim 33951 If a monotonic real number...
pl1cn 33952 A univariate polynomial is...
zringnm 33955 The norm (function) for a ...
zzsnm 33956 The norm of the ring of th...
zlm0 33957 Zero of a ` ZZ ` -module. ...
zlm1 33958 Unity element of a ` ZZ ` ...
zlmds 33959 Distance in a ` ZZ ` -modu...
zlmtset 33960 Topology in a ` ZZ ` -modu...
zlmnm 33961 Norm of a ` ZZ ` -module (...
zhmnrg 33962 The ` ZZ ` -module built f...
nmmulg 33963 The norm of a group produc...
zrhnm 33964 The norm of the image by `...
cnzh 33965 The ` ZZ ` -module of ` CC...
rezh 33966 The ` ZZ ` -module of ` RR...
qqhval 33969 Value of the canonical hom...
zrhf1ker 33970 The kernel of the homomorp...
zrhchr 33971 The kernel of the homomorp...
zrhker 33972 The kernel of the homomorp...
zrhunitpreima 33973 The preimage by ` ZRHom ` ...
elzrhunit 33974 Condition for the image by...
zrhneg 33975 The canonical homomorphism...
zrhcntr 33976 The canonical representati...
elzdif0 33977 Lemma for ~ qqhval2 . (Co...
qqhval2lem 33978 Lemma for ~ qqhval2 . (Co...
qqhval2 33979 Value of the canonical hom...
qqhvval 33980 Value of the canonical hom...
qqh0 33981 The image of ` 0 ` by the ...
qqh1 33982 The image of ` 1 ` by the ...
qqhf 33983 ` QQHom ` as a function. ...
qqhvq 33984 The image of a quotient by...
qqhghm 33985 The ` QQHom ` homomorphism...
qqhrhm 33986 The ` QQHom ` homomorphism...
qqhnm 33987 The norm of the image by `...
qqhcn 33988 The ` QQHom ` homomorphism...
qqhucn 33989 The ` QQHom ` homomorphism...
rrhval 33993 Value of the canonical hom...
rrhcn 33994 If the topology of ` R ` i...
rrhf 33995 If the topology of ` R ` i...
isrrext 33997 Express the property " ` R...
rrextnrg 33998 An extension of ` RR ` is ...
rrextdrg 33999 An extension of ` RR ` is ...
rrextnlm 34000 The norm of an extension o...
rrextchr 34001 The ring characteristic of...
rrextcusp 34002 An extension of ` RR ` is ...
rrexttps 34003 An extension of ` RR ` is ...
rrexthaus 34004 The topology of an extensi...
rrextust 34005 The uniformity of an exten...
rerrext 34006 The field of the real numb...
cnrrext 34007 The field of the complex n...
qqtopn 34008 The topology of the field ...
rrhfe 34009 If ` R ` is an extension o...
rrhcne 34010 If ` R ` is an extension o...
rrhqima 34011 The ` RRHom ` homomorphism...
rrh0 34012 The image of ` 0 ` by the ...
xrhval 34015 The value of the embedding...
zrhre 34016 The ` ZRHom ` homomorphism...
qqhre 34017 The ` QQHom ` homomorphism...
rrhre 34018 The ` RRHom ` homomorphism...
relmntop 34021 Manifold is a relation. (...
ismntoplly 34022 Property of being a manifo...
ismntop 34023 Property of being a manifo...
esumex 34026 An extended sum is a set b...
esumcl 34027 Closure for extended sum i...
esumeq12dvaf 34028 Equality deduction for ext...
esumeq12dva 34029 Equality deduction for ext...
esumeq12d 34030 Equality deduction for ext...
esumeq1 34031 Equality theorem for an ex...
esumeq1d 34032 Equality theorem for an ex...
esumeq2 34033 Equality theorem for exten...
esumeq2d 34034 Equality deduction for ext...
esumeq2dv 34035 Equality deduction for ext...
esumeq2sdv 34036 Equality deduction for ext...
nfesum1 34037 Bound-variable hypothesis ...
nfesum2 34038 Bound-variable hypothesis ...
cbvesum 34039 Change bound variable in a...
cbvesumv 34040 Change bound variable in a...
esumid 34041 Identify the extended sum ...
esumgsum 34042 A finite extended sum is t...
esumval 34043 Develop the value of the e...
esumel 34044 The extended sum is a limi...
esumnul 34045 Extended sum over the empt...
esum0 34046 Extended sum of zero. (Co...
esumf1o 34047 Re-index an extended sum u...
esumc 34048 Convert from the collectio...
esumrnmpt 34049 Rewrite an extended sum in...
esumsplit 34050 Split an extended sum into...
esummono 34051 Extended sum is monotonic....
esumpad 34052 Extend an extended sum by ...
esumpad2 34053 Remove zeroes from an exte...
esumadd 34054 Addition of infinite sums....
esumle 34055 If all of the terms of an ...
gsumesum 34056 Relate a group sum on ` ( ...
esumlub 34057 The extended sum is the lo...
esumaddf 34058 Addition of infinite sums....
esumlef 34059 If all of the terms of an ...
esumcst 34060 The extended sum of a cons...
esumsnf 34061 The extended sum of a sing...
esumsn 34062 The extended sum of a sing...
esumpr 34063 Extended sum over a pair. ...
esumpr2 34064 Extended sum over a pair, ...
esumrnmpt2 34065 Rewrite an extended sum in...
esumfzf 34066 Formulating a partial exte...
esumfsup 34067 Formulating an extended su...
esumfsupre 34068 Formulating an extended su...
esumss 34069 Change the index set to a ...
esumpinfval 34070 The value of the extended ...
esumpfinvallem 34071 Lemma for ~ esumpfinval . ...
esumpfinval 34072 The value of the extended ...
esumpfinvalf 34073 Same as ~ esumpfinval , mi...
esumpinfsum 34074 The value of the extended ...
esumpcvgval 34075 The value of the extended ...
esumpmono 34076 The partial sums in an ext...
esumcocn 34077 Lemma for ~ esummulc2 and ...
esummulc1 34078 An extended sum multiplied...
esummulc2 34079 An extended sum multiplied...
esumdivc 34080 An extended sum divided by...
hashf2 34081 Lemma for ~ hasheuni . (C...
hasheuni 34082 The cardinality of a disjo...
esumcvg 34083 The sequence of partial su...
esumcvg2 34084 Simpler version of ~ esumc...
esumcvgsum 34085 The value of the extended ...
esumsup 34086 Express an extended sum as...
esumgect 34087 "Send ` n ` to ` +oo ` " i...
esumcvgre 34088 All terms of a converging ...
esum2dlem 34089 Lemma for ~ esum2d (finite...
esum2d 34090 Write a double extended su...
esumiun 34091 Sum over a nonnecessarily ...
ofceq 34094 Equality theorem for funct...
ofcfval 34095 Value of an operation appl...
ofcval 34096 Evaluate a function/consta...
ofcfn 34097 The function operation pro...
ofcfeqd2 34098 Equality theorem for funct...
ofcfval3 34099 General value of ` ( F oFC...
ofcf 34100 The function/constant oper...
ofcfval2 34101 The function operation exp...
ofcfval4 34102 The function/constant oper...
ofcc 34103 Left operation by a consta...
ofcof 34104 Relate function operation ...
sigaex 34107 Lemma for ~ issiga and ~ i...
sigaval 34108 The set of sigma-algebra w...
issiga 34109 An alternative definition ...
isrnsiga 34110 The property of being a si...
0elsiga 34111 A sigma-algebra contains t...
baselsiga 34112 A sigma-algebra contains i...
sigasspw 34113 A sigma-algebra is a set o...
sigaclcu 34114 A sigma-algebra is closed ...
sigaclcuni 34115 A sigma-algebra is closed ...
sigaclfu 34116 A sigma-algebra is closed ...
sigaclcu2 34117 A sigma-algebra is closed ...
sigaclfu2 34118 A sigma-algebra is closed ...
sigaclcu3 34119 A sigma-algebra is closed ...
issgon 34120 Property of being a sigma-...
sgon 34121 A sigma-algebra is a sigma...
elsigass 34122 An element of a sigma-alge...
elrnsiga 34123 Dropping the base informat...
isrnsigau 34124 The property of being a si...
unielsiga 34125 A sigma-algebra contains i...
dmvlsiga 34126 Lebesgue-measurable subset...
pwsiga 34127 Any power set forms a sigm...
prsiga 34128 The smallest possible sigm...
sigaclci 34129 A sigma-algebra is closed ...
difelsiga 34130 A sigma-algebra is closed ...
unelsiga 34131 A sigma-algebra is closed ...
inelsiga 34132 A sigma-algebra is closed ...
sigainb 34133 Building a sigma-algebra f...
insiga 34134 The intersection of a coll...
sigagenval 34137 Value of the generated sig...
sigagensiga 34138 A generated sigma-algebra ...
sgsiga 34139 A generated sigma-algebra ...
unisg 34140 The sigma-algebra generate...
dmsigagen 34141 A sigma-algebra can be gen...
sssigagen 34142 A set is a subset of the s...
sssigagen2 34143 A subset of the generating...
elsigagen 34144 Any element of a set is al...
elsigagen2 34145 Any countable union of ele...
sigagenss 34146 The generated sigma-algebr...
sigagenss2 34147 Sufficient condition for i...
sigagenid 34148 The sigma-algebra generate...
ispisys 34149 The property of being a pi...
ispisys2 34150 The property of being a pi...
inelpisys 34151 Pi-systems are closed unde...
sigapisys 34152 All sigma-algebras are pi-...
isldsys 34153 The property of being a la...
pwldsys 34154 The power set of the unive...
unelldsys 34155 Lambda-systems are closed ...
sigaldsys 34156 All sigma-algebras are lam...
ldsysgenld 34157 The intersection of all la...
sigapildsyslem 34158 Lemma for ~ sigapildsys . ...
sigapildsys 34159 Sigma-algebra are exactly ...
ldgenpisyslem1 34160 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 34161 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 34162 Lemma for ~ ldgenpisys . ...
ldgenpisys 34163 The lambda system ` E ` ge...
dynkin 34164 Dynkin's lambda-pi theorem...
isros 34165 The property of being a ri...
rossspw 34166 A ring of sets is a collec...
0elros 34167 A ring of sets contains th...
unelros 34168 A ring of sets is closed u...
difelros 34169 A ring of sets is closed u...
inelros 34170 A ring of sets is closed u...
fiunelros 34171 A ring of sets is closed u...
issros 34172 The property of being a se...
srossspw 34173 A semiring of sets is a co...
0elsros 34174 A semiring of sets contain...
inelsros 34175 A semiring of sets is clos...
diffiunisros 34176 In semiring of sets, compl...
rossros 34177 Rings of sets are semiring...
brsiga 34180 The Borel Algebra on real ...
brsigarn 34181 The Borel Algebra is a sig...
brsigasspwrn 34182 The Borel Algebra is a set...
unibrsiga 34183 The union of the Borel Alg...
cldssbrsiga 34184 A Borel Algebra contains a...
sxval 34187 Value of the product sigma...
sxsiga 34188 A product sigma-algebra is...
sxsigon 34189 A product sigma-algebra is...
sxuni 34190 The base set of a product ...
elsx 34191 The cartesian product of t...
measbase 34194 The base set of a measure ...
measval 34195 The value of the ` measure...
ismeas 34196 The property of being a me...
isrnmeas 34197 The property of being a me...
dmmeas 34198 The domain of a measure is...
measbasedom 34199 The base set of a measure ...
measfrge0 34200 A measure is a function ov...
measfn 34201 A measure is a function on...
measvxrge0 34202 The values of a measure ar...
measvnul 34203 The measure of the empty s...
measge0 34204 A measure is nonnegative. ...
measle0 34205 If the measure of a given ...
measvun 34206 The measure of a countable...
measxun2 34207 The measure the union of t...
measun 34208 The measure the union of t...
measvunilem 34209 Lemma for ~ measvuni . (C...
measvunilem0 34210 Lemma for ~ measvuni . (C...
measvuni 34211 The measure of a countable...
measssd 34212 A measure is monotone with...
measunl 34213 A measure is sub-additive ...
measiuns 34214 The measure of the union o...
measiun 34215 A measure is sub-additive....
meascnbl 34216 A measure is continuous fr...
measinblem 34217 Lemma for ~ measinb . (Co...
measinb 34218 Building a measure restric...
measres 34219 Building a measure restric...
measinb2 34220 Building a measure restric...
measdivcst 34221 Division of a measure by a...
measdivcstALTV 34222 Alternate version of ~ mea...
cntmeas 34223 The Counting measure is a ...
pwcntmeas 34224 The counting measure is a ...
cntnevol 34225 Counting and Lebesgue meas...
voliune 34226 The Lebesgue measure funct...
volfiniune 34227 The Lebesgue measure funct...
volmeas 34228 The Lebesgue measure is a ...
ddeval1 34231 Value of the delta measure...
ddeval0 34232 Value of the delta measure...
ddemeas 34233 The Dirac delta measure is...
relae 34237 'almost everywhere' is a r...
brae 34238 'almost everywhere' relati...
braew 34239 'almost everywhere' relati...
truae 34240 A truth holds almost every...
aean 34241 A conjunction holds almost...
faeval 34243 Value of the 'almost every...
relfae 34244 The 'almost everywhere' bu...
brfae 34245 'almost everywhere' relati...
ismbfm 34248 The predicate " ` F ` is a...
elunirnmbfm 34249 The property of being a me...
mbfmfun 34250 A measurable function is a...
mbfmf 34251 A measurable function as a...
isanmbfmOLD 34252 Obsolete version of ~ isan...
mbfmcnvima 34253 The preimage by a measurab...
isanmbfm 34254 The predicate to be a meas...
mbfmbfmOLD 34255 A measurable function to a...
mbfmbfm 34256 A measurable function to a...
mbfmcst 34257 A constant function is mea...
1stmbfm 34258 The first projection map i...
2ndmbfm 34259 The second projection map ...
imambfm 34260 If the sigma-algebra in th...
cnmbfm 34261 A continuous function is m...
mbfmco 34262 The composition of two mea...
mbfmco2 34263 The pair building of two m...
mbfmvolf 34264 Measurable functions with ...
elmbfmvol2 34265 Measurable functions with ...
mbfmcnt 34266 All functions are measurab...
br2base 34267 The base set for the gener...
dya2ub 34268 An upper bound for a dyadi...
sxbrsigalem0 34269 The closed half-spaces of ...
sxbrsigalem3 34270 The sigma-algebra generate...
dya2iocival 34271 The function ` I ` returns...
dya2iocress 34272 Dyadic intervals are subse...
dya2iocbrsiga 34273 Dyadic intervals are Borel...
dya2icobrsiga 34274 Dyadic intervals are Borel...
dya2icoseg 34275 For any point and any clos...
dya2icoseg2 34276 For any point and any open...
dya2iocrfn 34277 The function returning dya...
dya2iocct 34278 The dyadic rectangle set i...
dya2iocnrect 34279 For any point of an open r...
dya2iocnei 34280 For any point of an open s...
dya2iocuni 34281 Every open set of ` ( RR X...
dya2iocucvr 34282 The dyadic rectangular set...
sxbrsigalem1 34283 The Borel algebra on ` ( R...
sxbrsigalem2 34284 The sigma-algebra generate...
sxbrsigalem4 34285 The Borel algebra on ` ( R...
sxbrsigalem5 34286 First direction for ~ sxbr...
sxbrsigalem6 34287 First direction for ~ sxbr...
sxbrsiga 34288 The product sigma-algebra ...
omsval 34291 Value of the function mapp...
omsfval 34292 Value of the outer measure...
omscl 34293 A closure lemma for the co...
omsf 34294 A constructed outer measur...
oms0 34295 A constructed outer measur...
omsmon 34296 A constructed outer measur...
omssubaddlem 34297 For any small margin ` E `...
omssubadd 34298 A constructed outer measur...
carsgval 34301 Value of the Caratheodory ...
carsgcl 34302 Closure of the Caratheodor...
elcarsg 34303 Property of being a Carath...
baselcarsg 34304 The universe set, ` O ` , ...
0elcarsg 34305 The empty set is Caratheod...
carsguni 34306 The union of all Caratheod...
elcarsgss 34307 Caratheodory measurable se...
difelcarsg 34308 The Caratheodory measurabl...
inelcarsg 34309 The Caratheodory measurabl...
unelcarsg 34310 The Caratheodory-measurabl...
difelcarsg2 34311 The Caratheodory-measurabl...
carsgmon 34312 Utility lemma: Apply mono...
carsgsigalem 34313 Lemma for the following th...
fiunelcarsg 34314 The Caratheodory measurabl...
carsgclctunlem1 34315 Lemma for ~ carsgclctun . ...
carsggect 34316 The outer measure is count...
carsgclctunlem2 34317 Lemma for ~ carsgclctun . ...
carsgclctunlem3 34318 Lemma for ~ carsgclctun . ...
carsgclctun 34319 The Caratheodory measurabl...
carsgsiga 34320 The Caratheodory measurabl...
omsmeas 34321 The restriction of a const...
pmeasmono 34322 This theorem's hypotheses ...
pmeasadd 34323 A premeasure on a ring of ...
itgeq12dv 34324 Equality theorem for an in...
sitgval 34330 Value of the simple functi...
issibf 34331 The predicate " ` F ` is a...
sibf0 34332 The constant zero function...
sibfmbl 34333 A simple function is measu...
sibff 34334 A simple function is a fun...
sibfrn 34335 A simple function has fini...
sibfima 34336 Any preimage of a singleto...
sibfinima 34337 The measure of the interse...
sibfof 34338 Applying function operatio...
sitgfval 34339 Value of the Bochner integ...
sitgclg 34340 Closure of the Bochner int...
sitgclbn 34341 Closure of the Bochner int...
sitgclcn 34342 Closure of the Bochner int...
sitgclre 34343 Closure of the Bochner int...
sitg0 34344 The integral of the consta...
sitgf 34345 The integral for simple fu...
sitgaddlemb 34346 Lemma for * sitgadd . (Co...
sitmval 34347 Value of the simple functi...
sitmfval 34348 Value of the integral dist...
sitmcl 34349 Closure of the integral di...
sitmf 34350 The integral metric as a f...
oddpwdc 34352 Lemma for ~ eulerpart . T...
oddpwdcv 34353 Lemma for ~ eulerpart : va...
eulerpartlemsv1 34354 Lemma for ~ eulerpart . V...
eulerpartlemelr 34355 Lemma for ~ eulerpart . (...
eulerpartlemsv2 34356 Lemma for ~ eulerpart . V...
eulerpartlemsf 34357 Lemma for ~ eulerpart . (...
eulerpartlems 34358 Lemma for ~ eulerpart . (...
eulerpartlemsv3 34359 Lemma for ~ eulerpart . V...
eulerpartlemgc 34360 Lemma for ~ eulerpart . (...
eulerpartleme 34361 Lemma for ~ eulerpart . (...
eulerpartlemv 34362 Lemma for ~ eulerpart . (...
eulerpartlemo 34363 Lemma for ~ eulerpart : ` ...
eulerpartlemd 34364 Lemma for ~ eulerpart : ` ...
eulerpartlem1 34365 Lemma for ~ eulerpart . (...
eulerpartlemb 34366 Lemma for ~ eulerpart . T...
eulerpartlemt0 34367 Lemma for ~ eulerpart . (...
eulerpartlemf 34368 Lemma for ~ eulerpart : O...
eulerpartlemt 34369 Lemma for ~ eulerpart . (...
eulerpartgbij 34370 Lemma for ~ eulerpart : T...
eulerpartlemgv 34371 Lemma for ~ eulerpart : va...
eulerpartlemr 34372 Lemma for ~ eulerpart . (...
eulerpartlemmf 34373 Lemma for ~ eulerpart . (...
eulerpartlemgvv 34374 Lemma for ~ eulerpart : va...
eulerpartlemgu 34375 Lemma for ~ eulerpart : R...
eulerpartlemgh 34376 Lemma for ~ eulerpart : T...
eulerpartlemgf 34377 Lemma for ~ eulerpart : I...
eulerpartlemgs2 34378 Lemma for ~ eulerpart : T...
eulerpartlemn 34379 Lemma for ~ eulerpart . (...
eulerpart 34380 Euler's theorem on partiti...
subiwrd 34383 Lemma for ~ sseqp1 . (Con...
subiwrdlen 34384 Length of a subword of an ...
iwrdsplit 34385 Lemma for ~ sseqp1 . (Con...
sseqval 34386 Value of the strong sequen...
sseqfv1 34387 Value of the strong sequen...
sseqfn 34388 A strong recursive sequenc...
sseqmw 34389 Lemma for ~ sseqf amd ~ ss...
sseqf 34390 A strong recursive sequenc...
sseqfres 34391 The first elements in the ...
sseqfv2 34392 Value of the strong sequen...
sseqp1 34393 Value of the strong sequen...
fiblem 34396 Lemma for ~ fib0 , ~ fib1 ...
fib0 34397 Value of the Fibonacci seq...
fib1 34398 Value of the Fibonacci seq...
fibp1 34399 Value of the Fibonacci seq...
fib2 34400 Value of the Fibonacci seq...
fib3 34401 Value of the Fibonacci seq...
fib4 34402 Value of the Fibonacci seq...
fib5 34403 Value of the Fibonacci seq...
fib6 34404 Value of the Fibonacci seq...
elprob 34407 The property of being a pr...
domprobmeas 34408 A probability measure is a...
domprobsiga 34409 The domain of a probabilit...
probtot 34410 The probability of the uni...
prob01 34411 A probability is an elemen...
probnul 34412 The probability of the emp...
unveldomd 34413 The universe is an element...
unveldom 34414 The universe is an element...
nuleldmp 34415 The empty set is an elemen...
probcun 34416 The probability of the uni...
probun 34417 The probability of the uni...
probdif 34418 The probability of the dif...
probinc 34419 A probability law is incre...
probdsb 34420 The probability of the com...
probmeasd 34421 A probability measure is a...
probvalrnd 34422 The value of a probability...
probtotrnd 34423 The probability of the uni...
totprobd 34424 Law of total probability, ...
totprob 34425 Law of total probability. ...
probfinmeasb 34426 Build a probability measur...
probfinmeasbALTV 34427 Alternate version of ~ pro...
probmeasb 34428 Build a probability from a...
cndprobval 34431 The value of the condition...
cndprobin 34432 An identity linking condit...
cndprob01 34433 The conditional probabilit...
cndprobtot 34434 The conditional probabilit...
cndprobnul 34435 The conditional probabilit...
cndprobprob 34436 The conditional probabilit...
bayesth 34437 Bayes Theorem. (Contribut...
rrvmbfm 34440 A real-valued random varia...
isrrvv 34441 Elementhood to the set of ...
rrvvf 34442 A real-valued random varia...
rrvfn 34443 A real-valued random varia...
rrvdm 34444 The domain of a random var...
rrvrnss 34445 The range of a random vari...
rrvf2 34446 A real-valued random varia...
rrvdmss 34447 The domain of a random var...
rrvfinvima 34448 For a real-value random va...
0rrv 34449 The constant function equa...
rrvadd 34450 The sum of two random vari...
rrvmulc 34451 A random variable multipli...
rrvsum 34452 An indexed sum of random v...
boolesineq 34453 Boole's inequality (union ...
orvcval 34456 Value of the preimage mapp...
orvcval2 34457 Another way to express the...
elorvc 34458 Elementhood of a preimage....
orvcval4 34459 The value of the preimage ...
orvcoel 34460 If the relation produces o...
orvccel 34461 If the relation produces c...
elorrvc 34462 Elementhood of a preimage ...
orrvcval4 34463 The value of the preimage ...
orrvcoel 34464 If the relation produces o...
orrvccel 34465 If the relation produces c...
orvcgteel 34466 Preimage maps produced by ...
orvcelval 34467 Preimage maps produced by ...
orvcelel 34468 Preimage maps produced by ...
dstrvval 34469 The value of the distribut...
dstrvprob 34470 The distribution of a rand...
orvclteel 34471 Preimage maps produced by ...
dstfrvel 34472 Elementhood of preimage ma...
dstfrvunirn 34473 The limit of all preimage ...
orvclteinc 34474 Preimage maps produced by ...
dstfrvinc 34475 A cumulative distribution ...
dstfrvclim1 34476 The limit of the cumulativ...
coinfliplem 34477 Division in the extended r...
coinflipprob 34478 The ` P ` we defined for c...
coinflipspace 34479 The space of our coin-flip...
coinflipuniv 34480 The universe of our coin-f...
coinfliprv 34481 The ` X ` we defined for c...
coinflippv 34482 The probability of heads i...
coinflippvt 34483 The probability of tails i...
ballotlemoex 34484 ` O ` is a set. (Contribu...
ballotlem1 34485 The size of the universe i...
ballotlemelo 34486 Elementhood in ` O ` . (C...
ballotlem2 34487 The probability that the f...
ballotlemfval 34488 The value of ` F ` . (Con...
ballotlemfelz 34489 ` ( F `` C ) ` has values ...
ballotlemfp1 34490 If the ` J ` th ballot is ...
ballotlemfc0 34491 ` F ` takes value 0 betwee...
ballotlemfcc 34492 ` F ` takes value 0 betwee...
ballotlemfmpn 34493 ` ( F `` C ) ` finishes co...
ballotlemfval0 34494 ` ( F `` C ) ` always star...
ballotleme 34495 Elements of ` E ` . (Cont...
ballotlemodife 34496 Elements of ` ( O \ E ) ` ...
ballotlem4 34497 If the first pick is a vot...
ballotlem5 34498 If A is not ahead througho...
ballotlemi 34499 Value of ` I ` for a given...
ballotlemiex 34500 Properties of ` ( I `` C )...
ballotlemi1 34501 The first tie cannot be re...
ballotlemii 34502 The first tie cannot be re...
ballotlemsup 34503 The set of zeroes of ` F `...
ballotlemimin 34504 ` ( I `` C ) ` is the firs...
ballotlemic 34505 If the first vote is for B...
ballotlem1c 34506 If the first vote is for A...
ballotlemsval 34507 Value of ` S ` . (Contrib...
ballotlemsv 34508 Value of ` S ` evaluated a...
ballotlemsgt1 34509 ` S ` maps values less tha...
ballotlemsdom 34510 Domain of ` S ` for a give...
ballotlemsel1i 34511 The range ` ( 1 ... ( I ``...
ballotlemsf1o 34512 The defined ` S ` is a bij...
ballotlemsi 34513 The image by ` S ` of the ...
ballotlemsima 34514 The image by ` S ` of an i...
ballotlemieq 34515 If two countings share the...
ballotlemrval 34516 Value of ` R ` . (Contrib...
ballotlemscr 34517 The image of ` ( R `` C ) ...
ballotlemrv 34518 Value of ` R ` evaluated a...
ballotlemrv1 34519 Value of ` R ` before the ...
ballotlemrv2 34520 Value of ` R ` after the t...
ballotlemro 34521 Range of ` R ` is included...
ballotlemgval 34522 Expand the value of ` .^ `...
ballotlemgun 34523 A property of the defined ...
ballotlemfg 34524 Express the value of ` ( F...
ballotlemfrc 34525 Express the value of ` ( F...
ballotlemfrci 34526 Reverse counting preserves...
ballotlemfrceq 34527 Value of ` F ` for a rever...
ballotlemfrcn0 34528 Value of ` F ` for a rever...
ballotlemrc 34529 Range of ` R ` . (Contrib...
ballotlemirc 34530 Applying ` R ` does not ch...
ballotlemrinv0 34531 Lemma for ~ ballotlemrinv ...
ballotlemrinv 34532 ` R ` is its own inverse :...
ballotlem1ri 34533 When the vote on the first...
ballotlem7 34534 ` R ` is a bijection betwe...
ballotlem8 34535 There are as many counting...
ballotth 34536 Bertrand's ballot problem ...
fzssfzo 34537 Condition for an integer i...
gsumncl 34538 Closure of a group sum in ...
gsumnunsn 34539 Closure of a group sum in ...
ccatmulgnn0dir 34540 Concatenation of words fol...
ofcccat 34541 Letterwise operations on w...
ofcs1 34542 Letterwise operations on a...
ofcs2 34543 Letterwise operations on a...
plymul02 34544 Product of a polynomial wi...
plymulx0 34545 Coefficients of a polynomi...
plymulx 34546 Coefficients of a polynomi...
plyrecld 34547 Closure of a polynomial wi...
signsplypnf 34548 The quotient of a polynomi...
signsply0 34549 Lemma for the rule of sign...
signspval 34550 The value of the skipping ...
signsw0glem 34551 Neutral element property o...
signswbase 34552 The base of ` W ` is the u...
signswplusg 34553 The operation of ` W ` . ...
signsw0g 34554 The neutral element of ` W...
signswmnd 34555 ` W ` is a monoid structur...
signswrid 34556 The zero-skipping operatio...
signswlid 34557 The zero-skipping operatio...
signswn0 34558 The zero-skipping operatio...
signswch 34559 The zero-skipping operatio...
signslema 34560 Computational part of ~~? ...
signstfv 34561 Value of the zero-skipping...
signstfval 34562 Value of the zero-skipping...
signstcl 34563 Closure of the zero skippi...
signstf 34564 The zero skipping sign wor...
signstlen 34565 Length of the zero skippin...
signstf0 34566 Sign of a single letter wo...
signstfvn 34567 Zero-skipping sign in a wo...
signsvtn0 34568 If the last letter is nonz...
signstfvp 34569 Zero-skipping sign in a wo...
signstfvneq0 34570 In case the first letter i...
signstfvcl 34571 Closure of the zero skippi...
signstfvc 34572 Zero-skipping sign in a wo...
signstres 34573 Restriction of a zero skip...
signstfveq0a 34574 Lemma for ~ signstfveq0 . ...
signstfveq0 34575 In case the last letter is...
signsvvfval 34576 The value of ` V ` , which...
signsvvf 34577 ` V ` is a function. (Con...
signsvf0 34578 There is no change of sign...
signsvf1 34579 In a single-letter word, w...
signsvfn 34580 Number of changes in a wor...
signsvtp 34581 Adding a letter of the sam...
signsvtn 34582 Adding a letter of a diffe...
signsvfpn 34583 Adding a letter of the sam...
signsvfnn 34584 Adding a letter of a diffe...
signlem0 34585 Adding a zero as the highe...
signshf 34586 ` H ` , corresponding to t...
signshwrd 34587 ` H ` , corresponding to t...
signshlen 34588 Length of ` H ` , correspo...
signshnz 34589 ` H ` is not the empty wor...
iblidicc 34590 The identity function is i...
rpsqrtcn 34591 Continuity of the real pos...
divsqrtid 34592 A real number divided by i...
cxpcncf1 34593 The power function on comp...
efmul2picn 34594 Multiplying by ` ( _i x. (...
fct2relem 34595 Lemma for ~ ftc2re . (Con...
ftc2re 34596 The Fundamental Theorem of...
fdvposlt 34597 Functions with a positive ...
fdvneggt 34598 Functions with a negative ...
fdvposle 34599 Functions with a nonnegati...
fdvnegge 34600 Functions with a nonpositi...
prodfzo03 34601 A product of three factors...
actfunsnf1o 34602 The action ` F ` of extend...
actfunsnrndisj 34603 The action ` F ` of extend...
itgexpif 34604 The basis for the circle m...
fsum2dsub 34605 Lemma for ~ breprexp - Re-...
reprval 34608 Value of the representatio...
repr0 34609 There is exactly one repre...
reprf 34610 Members of the representat...
reprsum 34611 Sums of values of the memb...
reprle 34612 Upper bound to the terms i...
reprsuc 34613 Express the representation...
reprfi 34614 Bounded representations ar...
reprss 34615 Representations with terms...
reprinrn 34616 Representations with term ...
reprlt 34617 There are no representatio...
hashreprin 34618 Express a sum of represent...
reprgt 34619 There are no representatio...
reprinfz1 34620 For the representation of ...
reprfi2 34621 Corollary of ~ reprinfz1 ....
reprfz1 34622 Corollary of ~ reprinfz1 ....
hashrepr 34623 Develop the number of repr...
reprpmtf1o 34624 Transposing ` 0 ` and ` X ...
reprdifc 34625 Express the representation...
chpvalz 34626 Value of the second Chebys...
chtvalz 34627 Value of the Chebyshev fun...
breprexplema 34628 Lemma for ~ breprexp (indu...
breprexplemb 34629 Lemma for ~ breprexp (clos...
breprexplemc 34630 Lemma for ~ breprexp (indu...
breprexp 34631 Express the ` S ` th power...
breprexpnat 34632 Express the ` S ` th power...
vtsval 34635 Value of the Vinogradov tr...
vtscl 34636 Closure of the Vinogradov ...
vtsprod 34637 Express the Vinogradov tri...
circlemeth 34638 The Hardy, Littlewood and ...
circlemethnat 34639 The Hardy, Littlewood and ...
circlevma 34640 The Circle Method, where t...
circlemethhgt 34641 The circle method, where t...
hgt750lemc 34645 An upper bound to the summ...
hgt750lemd 34646 An upper bound to the summ...
hgt749d 34647 A deduction version of ~ a...
logdivsqrle 34648 Conditions for ` ( ( log `...
hgt750lem 34649 Lemma for ~ tgoldbachgtd ....
hgt750lem2 34650 Decimal multiplication gal...
hgt750lemf 34651 Lemma for the statement 7....
hgt750lemg 34652 Lemma for the statement 7....
oddprm2 34653 Two ways to write the set ...
hgt750lemb 34654 An upper bound on the cont...
hgt750lema 34655 An upper bound on the cont...
hgt750leme 34656 An upper bound on the cont...
tgoldbachgnn 34657 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 34658 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 34659 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 34660 Odd integers greater than ...
tgoldbachgt 34661 Odd integers greater than ...
istrkg2d 34664 Property of fulfilling dim...
axtglowdim2ALTV 34665 Alternate version of ~ axt...
axtgupdim2ALTV 34666 Alternate version of ~ axt...
afsval 34669 Value of the AFS relation ...
brafs 34670 Binary relation form of th...
tg5segofs 34671 Rephrase ~ axtg5seg using ...
lpadval 34674 Value of the ` leftpad ` f...
lpadlem1 34675 Lemma for the ` leftpad ` ...
lpadlem3 34676 Lemma for ~ lpadlen1 . (C...
lpadlen1 34677 Length of a left-padded wo...
lpadlem2 34678 Lemma for the ` leftpad ` ...
lpadlen2 34679 Length of a left-padded wo...
lpadmax 34680 Length of a left-padded wo...
lpadleft 34681 The contents of prefix of ...
lpadright 34682 The suffix of a left-padde...
bnj170 34695 ` /\ ` -manipulation. (Co...
bnj240 34696 ` /\ ` -manipulation. (Co...
bnj248 34697 ` /\ ` -manipulation. (Co...
bnj250 34698 ` /\ ` -manipulation. (Co...
bnj251 34699 ` /\ ` -manipulation. (Co...
bnj252 34700 ` /\ ` -manipulation. (Co...
bnj253 34701 ` /\ ` -manipulation. (Co...
bnj255 34702 ` /\ ` -manipulation. (Co...
bnj256 34703 ` /\ ` -manipulation. (Co...
bnj257 34704 ` /\ ` -manipulation. (Co...
bnj258 34705 ` /\ ` -manipulation. (Co...
bnj268 34706 ` /\ ` -manipulation. (Co...
bnj290 34707 ` /\ ` -manipulation. (Co...
bnj291 34708 ` /\ ` -manipulation. (Co...
bnj312 34709 ` /\ ` -manipulation. (Co...
bnj334 34710 ` /\ ` -manipulation. (Co...
bnj345 34711 ` /\ ` -manipulation. (Co...
bnj422 34712 ` /\ ` -manipulation. (Co...
bnj432 34713 ` /\ ` -manipulation. (Co...
bnj446 34714 ` /\ ` -manipulation. (Co...
bnj23 34715 First-order logic and set ...
bnj31 34716 First-order logic and set ...
bnj62 34717 First-order logic and set ...
bnj89 34718 First-order logic and set ...
bnj90 34719 First-order logic and set ...
bnj101 34720 First-order logic and set ...
bnj105 34721 First-order logic and set ...
bnj115 34722 First-order logic and set ...
bnj132 34723 First-order logic and set ...
bnj133 34724 First-order logic and set ...
bnj156 34725 First-order logic and set ...
bnj158 34726 First-order logic and set ...
bnj168 34727 First-order logic and set ...
bnj206 34728 First-order logic and set ...
bnj216 34729 First-order logic and set ...
bnj219 34730 First-order logic and set ...
bnj226 34731 First-order logic and set ...
bnj228 34732 First-order logic and set ...
bnj519 34733 First-order logic and set ...
bnj524 34734 First-order logic and set ...
bnj525 34735 First-order logic and set ...
bnj534 34736 First-order logic and set ...
bnj538 34737 First-order logic and set ...
bnj529 34738 First-order logic and set ...
bnj551 34739 First-order logic and set ...
bnj563 34740 First-order logic and set ...
bnj564 34741 First-order logic and set ...
bnj593 34742 First-order logic and set ...
bnj596 34743 First-order logic and set ...
bnj610 34744 Pass from equality ( ` x =...
bnj642 34745 ` /\ ` -manipulation. (Co...
bnj643 34746 ` /\ ` -manipulation. (Co...
bnj645 34747 ` /\ ` -manipulation. (Co...
bnj658 34748 ` /\ ` -manipulation. (Co...
bnj667 34749 ` /\ ` -manipulation. (Co...
bnj705 34750 ` /\ ` -manipulation. (Co...
bnj706 34751 ` /\ ` -manipulation. (Co...
bnj707 34752 ` /\ ` -manipulation. (Co...
bnj708 34753 ` /\ ` -manipulation. (Co...
bnj721 34754 ` /\ ` -manipulation. (Co...
bnj832 34755 ` /\ ` -manipulation. (Co...
bnj835 34756 ` /\ ` -manipulation. (Co...
bnj836 34757 ` /\ ` -manipulation. (Co...
bnj837 34758 ` /\ ` -manipulation. (Co...
bnj769 34759 ` /\ ` -manipulation. (Co...
bnj770 34760 ` /\ ` -manipulation. (Co...
bnj771 34761 ` /\ ` -manipulation. (Co...
bnj887 34762 ` /\ ` -manipulation. (Co...
bnj918 34763 First-order logic and set ...
bnj919 34764 First-order logic and set ...
bnj923 34765 First-order logic and set ...
bnj927 34766 First-order logic and set ...
bnj931 34767 First-order logic and set ...
bnj937 34768 First-order logic and set ...
bnj941 34769 First-order logic and set ...
bnj945 34770 Technical lemma for ~ bnj6...
bnj946 34771 First-order logic and set ...
bnj951 34772 ` /\ ` -manipulation. (Co...
bnj956 34773 First-order logic and set ...
bnj976 34774 First-order logic and set ...
bnj982 34775 First-order logic and set ...
bnj1019 34776 First-order logic and set ...
bnj1023 34777 First-order logic and set ...
bnj1095 34778 First-order logic and set ...
bnj1096 34779 First-order logic and set ...
bnj1098 34780 First-order logic and set ...
bnj1101 34781 First-order logic and set ...
bnj1113 34782 First-order logic and set ...
bnj1109 34783 First-order logic and set ...
bnj1131 34784 First-order logic and set ...
bnj1138 34785 First-order logic and set ...
bnj1142 34786 First-order logic and set ...
bnj1143 34787 First-order logic and set ...
bnj1146 34788 First-order logic and set ...
bnj1149 34789 First-order logic and set ...
bnj1185 34790 First-order logic and set ...
bnj1196 34791 First-order logic and set ...
bnj1198 34792 First-order logic and set ...
bnj1209 34793 First-order logic and set ...
bnj1211 34794 First-order logic and set ...
bnj1213 34795 First-order logic and set ...
bnj1212 34796 First-order logic and set ...
bnj1219 34797 First-order logic and set ...
bnj1224 34798 First-order logic and set ...
bnj1230 34799 First-order logic and set ...
bnj1232 34800 First-order logic and set ...
bnj1235 34801 First-order logic and set ...
bnj1239 34802 First-order logic and set ...
bnj1238 34803 First-order logic and set ...
bnj1241 34804 First-order logic and set ...
bnj1247 34805 First-order logic and set ...
bnj1254 34806 First-order logic and set ...
bnj1262 34807 First-order logic and set ...
bnj1266 34808 First-order logic and set ...
bnj1265 34809 First-order logic and set ...
bnj1275 34810 First-order logic and set ...
bnj1276 34811 First-order logic and set ...
bnj1292 34812 First-order logic and set ...
bnj1293 34813 First-order logic and set ...
bnj1294 34814 First-order logic and set ...
bnj1299 34815 First-order logic and set ...
bnj1304 34816 First-order logic and set ...
bnj1316 34817 First-order logic and set ...
bnj1317 34818 First-order logic and set ...
bnj1322 34819 First-order logic and set ...
bnj1340 34820 First-order logic and set ...
bnj1345 34821 First-order logic and set ...
bnj1350 34822 First-order logic and set ...
bnj1351 34823 First-order logic and set ...
bnj1352 34824 First-order logic and set ...
bnj1361 34825 First-order logic and set ...
bnj1366 34826 First-order logic and set ...
bnj1379 34827 First-order logic and set ...
bnj1383 34828 First-order logic and set ...
bnj1385 34829 First-order logic and set ...
bnj1386 34830 First-order logic and set ...
bnj1397 34831 First-order logic and set ...
bnj1400 34832 First-order logic and set ...
bnj1405 34833 First-order logic and set ...
bnj1422 34834 First-order logic and set ...
bnj1424 34835 First-order logic and set ...
bnj1436 34836 First-order logic and set ...
bnj1441 34837 First-order logic and set ...
bnj1441g 34838 First-order logic and set ...
bnj1454 34839 First-order logic and set ...
bnj1459 34840 First-order logic and set ...
bnj1464 34841 Conversion of implicit sub...
bnj1465 34842 First-order logic and set ...
bnj1468 34843 Conversion of implicit sub...
bnj1476 34844 First-order logic and set ...
bnj1502 34845 First-order logic and set ...
bnj1503 34846 First-order logic and set ...
bnj1517 34847 First-order logic and set ...
bnj1521 34848 First-order logic and set ...
bnj1533 34849 First-order logic and set ...
bnj1534 34850 First-order logic and set ...
bnj1536 34851 First-order logic and set ...
bnj1538 34852 First-order logic and set ...
bnj1541 34853 First-order logic and set ...
bnj1542 34854 First-order logic and set ...
bnj110 34855 Well-founded induction res...
bnj157 34856 Well-founded induction res...
bnj66 34857 Technical lemma for ~ bnj6...
bnj91 34858 First-order logic and set ...
bnj92 34859 First-order logic and set ...
bnj93 34860 Technical lemma for ~ bnj9...
bnj95 34861 Technical lemma for ~ bnj1...
bnj96 34862 Technical lemma for ~ bnj1...
bnj97 34863 Technical lemma for ~ bnj1...
bnj98 34864 Technical lemma for ~ bnj1...
bnj106 34865 First-order logic and set ...
bnj118 34866 First-order logic and set ...
bnj121 34867 First-order logic and set ...
bnj124 34868 Technical lemma for ~ bnj1...
bnj125 34869 Technical lemma for ~ bnj1...
bnj126 34870 Technical lemma for ~ bnj1...
bnj130 34871 Technical lemma for ~ bnj1...
bnj149 34872 Technical lemma for ~ bnj1...
bnj150 34873 Technical lemma for ~ bnj1...
bnj151 34874 Technical lemma for ~ bnj1...
bnj154 34875 Technical lemma for ~ bnj1...
bnj155 34876 Technical lemma for ~ bnj1...
bnj153 34877 Technical lemma for ~ bnj8...
bnj207 34878 Technical lemma for ~ bnj8...
bnj213 34879 First-order logic and set ...
bnj222 34880 Technical lemma for ~ bnj2...
bnj229 34881 Technical lemma for ~ bnj5...
bnj517 34882 Technical lemma for ~ bnj5...
bnj518 34883 Technical lemma for ~ bnj8...
bnj523 34884 Technical lemma for ~ bnj8...
bnj526 34885 Technical lemma for ~ bnj8...
bnj528 34886 Technical lemma for ~ bnj8...
bnj535 34887 Technical lemma for ~ bnj8...
bnj539 34888 Technical lemma for ~ bnj8...
bnj540 34889 Technical lemma for ~ bnj8...
bnj543 34890 Technical lemma for ~ bnj8...
bnj544 34891 Technical lemma for ~ bnj8...
bnj545 34892 Technical lemma for ~ bnj8...
bnj546 34893 Technical lemma for ~ bnj8...
bnj548 34894 Technical lemma for ~ bnj8...
bnj553 34895 Technical lemma for ~ bnj8...
bnj554 34896 Technical lemma for ~ bnj8...
bnj556 34897 Technical lemma for ~ bnj8...
bnj557 34898 Technical lemma for ~ bnj8...
bnj558 34899 Technical lemma for ~ bnj8...
bnj561 34900 Technical lemma for ~ bnj8...
bnj562 34901 Technical lemma for ~ bnj8...
bnj570 34902 Technical lemma for ~ bnj8...
bnj571 34903 Technical lemma for ~ bnj8...
bnj605 34904 Technical lemma. This lem...
bnj581 34905 Technical lemma for ~ bnj5...
bnj589 34906 Technical lemma for ~ bnj8...
bnj590 34907 Technical lemma for ~ bnj8...
bnj591 34908 Technical lemma for ~ bnj8...
bnj594 34909 Technical lemma for ~ bnj8...
bnj580 34910 Technical lemma for ~ bnj5...
bnj579 34911 Technical lemma for ~ bnj8...
bnj602 34912 Equality theorem for the `...
bnj607 34913 Technical lemma for ~ bnj8...
bnj609 34914 Technical lemma for ~ bnj8...
bnj611 34915 Technical lemma for ~ bnj8...
bnj600 34916 Technical lemma for ~ bnj8...
bnj601 34917 Technical lemma for ~ bnj8...
bnj852 34918 Technical lemma for ~ bnj6...
bnj864 34919 Technical lemma for ~ bnj6...
bnj865 34920 Technical lemma for ~ bnj6...
bnj873 34921 Technical lemma for ~ bnj6...
bnj849 34922 Technical lemma for ~ bnj6...
bnj882 34923 Definition (using hypothes...
bnj18eq1 34924 Equality theorem for trans...
bnj893 34925 Property of ` _trCl ` . U...
bnj900 34926 Technical lemma for ~ bnj6...
bnj906 34927 Property of ` _trCl ` . (...
bnj908 34928 Technical lemma for ~ bnj6...
bnj911 34929 Technical lemma for ~ bnj6...
bnj916 34930 Technical lemma for ~ bnj6...
bnj917 34931 Technical lemma for ~ bnj6...
bnj934 34932 Technical lemma for ~ bnj6...
bnj929 34933 Technical lemma for ~ bnj6...
bnj938 34934 Technical lemma for ~ bnj6...
bnj944 34935 Technical lemma for ~ bnj6...
bnj953 34936 Technical lemma for ~ bnj6...
bnj958 34937 Technical lemma for ~ bnj6...
bnj1000 34938 Technical lemma for ~ bnj8...
bnj965 34939 Technical lemma for ~ bnj8...
bnj964 34940 Technical lemma for ~ bnj6...
bnj966 34941 Technical lemma for ~ bnj6...
bnj967 34942 Technical lemma for ~ bnj6...
bnj969 34943 Technical lemma for ~ bnj6...
bnj970 34944 Technical lemma for ~ bnj6...
bnj910 34945 Technical lemma for ~ bnj6...
bnj978 34946 Technical lemma for ~ bnj6...
bnj981 34947 Technical lemma for ~ bnj6...
bnj983 34948 Technical lemma for ~ bnj6...
bnj984 34949 Technical lemma for ~ bnj6...
bnj985v 34950 Version of ~ bnj985 with a...
bnj985 34951 Technical lemma for ~ bnj6...
bnj986 34952 Technical lemma for ~ bnj6...
bnj996 34953 Technical lemma for ~ bnj6...
bnj998 34954 Technical lemma for ~ bnj6...
bnj999 34955 Technical lemma for ~ bnj6...
bnj1001 34956 Technical lemma for ~ bnj6...
bnj1006 34957 Technical lemma for ~ bnj6...
bnj1014 34958 Technical lemma for ~ bnj6...
bnj1015 34959 Technical lemma for ~ bnj6...
bnj1018g 34960 Version of ~ bnj1018 with ...
bnj1018 34961 Technical lemma for ~ bnj6...
bnj1020 34962 Technical lemma for ~ bnj6...
bnj1021 34963 Technical lemma for ~ bnj6...
bnj907 34964 Technical lemma for ~ bnj6...
bnj1029 34965 Property of ` _trCl ` . (...
bnj1033 34966 Technical lemma for ~ bnj6...
bnj1034 34967 Technical lemma for ~ bnj6...
bnj1039 34968 Technical lemma for ~ bnj6...
bnj1040 34969 Technical lemma for ~ bnj6...
bnj1047 34970 Technical lemma for ~ bnj6...
bnj1049 34971 Technical lemma for ~ bnj6...
bnj1052 34972 Technical lemma for ~ bnj6...
bnj1053 34973 Technical lemma for ~ bnj6...
bnj1071 34974 Technical lemma for ~ bnj6...
bnj1083 34975 Technical lemma for ~ bnj6...
bnj1090 34976 Technical lemma for ~ bnj6...
bnj1093 34977 Technical lemma for ~ bnj6...
bnj1097 34978 Technical lemma for ~ bnj6...
bnj1110 34979 Technical lemma for ~ bnj6...
bnj1112 34980 Technical lemma for ~ bnj6...
bnj1118 34981 Technical lemma for ~ bnj6...
bnj1121 34982 Technical lemma for ~ bnj6...
bnj1123 34983 Technical lemma for ~ bnj6...
bnj1030 34984 Technical lemma for ~ bnj6...
bnj1124 34985 Property of ` _trCl ` . (...
bnj1133 34986 Technical lemma for ~ bnj6...
bnj1128 34987 Technical lemma for ~ bnj6...
bnj1127 34988 Property of ` _trCl ` . (...
bnj1125 34989 Property of ` _trCl ` . (...
bnj1145 34990 Technical lemma for ~ bnj6...
bnj1147 34991 Property of ` _trCl ` . (...
bnj1137 34992 Property of ` _trCl ` . (...
bnj1148 34993 Property of ` _pred ` . (...
bnj1136 34994 Technical lemma for ~ bnj6...
bnj1152 34995 Technical lemma for ~ bnj6...
bnj1154 34996 Property of ` Fr ` . (Con...
bnj1171 34997 Technical lemma for ~ bnj6...
bnj1172 34998 Technical lemma for ~ bnj6...
bnj1173 34999 Technical lemma for ~ bnj6...
bnj1174 35000 Technical lemma for ~ bnj6...
bnj1175 35001 Technical lemma for ~ bnj6...
bnj1176 35002 Technical lemma for ~ bnj6...
bnj1177 35003 Technical lemma for ~ bnj6...
bnj1186 35004 Technical lemma for ~ bnj6...
bnj1190 35005 Technical lemma for ~ bnj6...
bnj1189 35006 Technical lemma for ~ bnj6...
bnj69 35007 Existence of a minimal ele...
bnj1228 35008 Existence of a minimal ele...
bnj1204 35009 Well-founded induction. T...
bnj1234 35010 Technical lemma for ~ bnj6...
bnj1245 35011 Technical lemma for ~ bnj6...
bnj1256 35012 Technical lemma for ~ bnj6...
bnj1259 35013 Technical lemma for ~ bnj6...
bnj1253 35014 Technical lemma for ~ bnj6...
bnj1279 35015 Technical lemma for ~ bnj6...
bnj1286 35016 Technical lemma for ~ bnj6...
bnj1280 35017 Technical lemma for ~ bnj6...
bnj1296 35018 Technical lemma for ~ bnj6...
bnj1309 35019 Technical lemma for ~ bnj6...
bnj1307 35020 Technical lemma for ~ bnj6...
bnj1311 35021 Technical lemma for ~ bnj6...
bnj1318 35022 Technical lemma for ~ bnj6...
bnj1326 35023 Technical lemma for ~ bnj6...
bnj1321 35024 Technical lemma for ~ bnj6...
bnj1364 35025 Property of ` _FrSe ` . (...
bnj1371 35026 Technical lemma for ~ bnj6...
bnj1373 35027 Technical lemma for ~ bnj6...
bnj1374 35028 Technical lemma for ~ bnj6...
bnj1384 35029 Technical lemma for ~ bnj6...
bnj1388 35030 Technical lemma for ~ bnj6...
bnj1398 35031 Technical lemma for ~ bnj6...
bnj1413 35032 Property of ` _trCl ` . (...
bnj1408 35033 Technical lemma for ~ bnj1...
bnj1414 35034 Property of ` _trCl ` . (...
bnj1415 35035 Technical lemma for ~ bnj6...
bnj1416 35036 Technical lemma for ~ bnj6...
bnj1418 35037 Property of ` _pred ` . (...
bnj1417 35038 Technical lemma for ~ bnj6...
bnj1421 35039 Technical lemma for ~ bnj6...
bnj1444 35040 Technical lemma for ~ bnj6...
bnj1445 35041 Technical lemma for ~ bnj6...
bnj1446 35042 Technical lemma for ~ bnj6...
bnj1447 35043 Technical lemma for ~ bnj6...
bnj1448 35044 Technical lemma for ~ bnj6...
bnj1449 35045 Technical lemma for ~ bnj6...
bnj1442 35046 Technical lemma for ~ bnj6...
bnj1450 35047 Technical lemma for ~ bnj6...
bnj1423 35048 Technical lemma for ~ bnj6...
bnj1452 35049 Technical lemma for ~ bnj6...
bnj1466 35050 Technical lemma for ~ bnj6...
bnj1467 35051 Technical lemma for ~ bnj6...
bnj1463 35052 Technical lemma for ~ bnj6...
bnj1489 35053 Technical lemma for ~ bnj6...
bnj1491 35054 Technical lemma for ~ bnj6...
bnj1312 35055 Technical lemma for ~ bnj6...
bnj1493 35056 Technical lemma for ~ bnj6...
bnj1497 35057 Technical lemma for ~ bnj6...
bnj1498 35058 Technical lemma for ~ bnj6...
bnj60 35059 Well-founded recursion, pa...
bnj1514 35060 Technical lemma for ~ bnj1...
bnj1518 35061 Technical lemma for ~ bnj1...
bnj1519 35062 Technical lemma for ~ bnj1...
bnj1520 35063 Technical lemma for ~ bnj1...
bnj1501 35064 Technical lemma for ~ bnj1...
bnj1500 35065 Well-founded recursion, pa...
bnj1525 35066 Technical lemma for ~ bnj1...
bnj1529 35067 Technical lemma for ~ bnj1...
bnj1523 35068 Technical lemma for ~ bnj1...
bnj1522 35069 Well-founded recursion, pa...
nfan1c 35070 Variant of ~ nfan and comm...
cbvex1v 35071 Rule used to change bound ...
dvelimalcased 35072 Eliminate a disjoint varia...
dvelimalcasei 35073 Eliminate a disjoint varia...
dvelimexcased 35074 Eliminate a disjoint varia...
dvelimexcasei 35075 Eliminate a disjoint varia...
exdifsn 35076 There exists an element in...
srcmpltd 35077 If a statement is true for...
prsrcmpltd 35078 If a statement is true for...
axsepg2 35079 A generalization of ~ ax-s...
axsepg2ALT 35080 Alternate proof of ~ axsep...
dff15 35081 A one-to-one function in t...
f1resveqaeq 35082 If a function restricted t...
f1resrcmplf1dlem 35083 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 35084 If a function's restrictio...
funen1cnv 35085 If a function is equinumer...
fnrelpredd 35086 A function that preserves ...
cardpred 35087 The cardinality function p...
nummin 35088 Every nonempty class of nu...
axnulg 35089 A generalization of ~ ax-n...
axnulALT2 35090 Alternate proof of ~ axnul...
prcinf 35091 Any proper class is litera...
fineqvrep 35092 If the Axiom of Infinity i...
fineqvpow 35093 If the Axiom of Infinity i...
fineqvac 35094 If the Axiom of Infinity i...
fineqvacALT 35095 Shorter proof of ~ fineqva...
gblacfnacd 35096 If ` G ` is a global choic...
onvf1odlem1 35097 Lemma for ~ onvf1od . (Co...
onvf1odlem2 35098 Lemma for ~ onvf1od . (Co...
onvf1odlem3 35099 Lemma for ~ onvf1od . The...
onvf1odlem4 35100 Lemma for ~ onvf1od . If ...
onvf1od 35101 If ` G ` is a global choic...
vonf1owev 35102 If ` F ` is a bijection fr...
wevgblacfn 35103 If ` R ` is a well-orderin...
zltp1ne 35104 Integer ordering relation....
nnltp1ne 35105 Positive integer ordering ...
nn0ltp1ne 35106 Nonnegative integer orderi...
0nn0m1nnn0 35107 A number is zero if and on...
f1resfz0f1d 35108 If a function with a seque...
fisshasheq 35109 A finite set is equal to i...
revpfxsfxrev 35110 The reverse of a prefix of...
swrdrevpfx 35111 A subword expressed in ter...
lfuhgr 35112 A hypergraph is loop-free ...
lfuhgr2 35113 A hypergraph is loop-free ...
lfuhgr3 35114 A hypergraph is loop-free ...
cplgredgex 35115 Any two (distinct) vertice...
cusgredgex 35116 Any two (distinct) vertice...
cusgredgex2 35117 Any two distinct vertices ...
pfxwlk 35118 A prefix of a walk is a wa...
revwlk 35119 The reverse of a walk is a...
revwlkb 35120 Two words represent a walk...
swrdwlk 35121 Two matching subwords of a...
pthhashvtx 35122 A graph containing a path ...
spthcycl 35123 A walk is a trivial path i...
usgrgt2cycl 35124 A non-trivial cycle in a s...
usgrcyclgt2v 35125 A simple graph with a non-...
subgrwlk 35126 If a walk exists in a subg...
subgrtrl 35127 If a trail exists in a sub...
subgrpth 35128 If a path exists in a subg...
subgrcycl 35129 If a cycle exists in a sub...
cusgr3cyclex 35130 Every complete simple grap...
loop1cycl 35131 A hypergraph has a cycle o...
2cycld 35132 Construction of a 2-cycle ...
2cycl2d 35133 Construction of a 2-cycle ...
umgr2cycllem 35134 Lemma for ~ umgr2cycl . (...
umgr2cycl 35135 A multigraph with two dist...
dfacycgr1 35138 An alternate definition of...
isacycgr 35139 The property of being an a...
isacycgr1 35140 The property of being an a...
acycgrcycl 35141 Any cycle in an acyclic gr...
acycgr0v 35142 A null graph (with no vert...
acycgr1v 35143 A multigraph with one vert...
acycgr2v 35144 A simple graph with two ve...
prclisacycgr 35145 A proper class (representi...
acycgrislfgr 35146 An acyclic hypergraph is a...
upgracycumgr 35147 An acyclic pseudograph is ...
umgracycusgr 35148 An acyclic multigraph is a...
upgracycusgr 35149 An acyclic pseudograph is ...
cusgracyclt3v 35150 A complete simple graph is...
pthacycspth 35151 A path in an acyclic graph...
acycgrsubgr 35152 The subgraph of an acyclic...
quartfull 35159 The quartic equation, writ...
deranglem 35160 Lemma for derangements. (...
derangval 35161 Define the derangement fun...
derangf 35162 The derangement number is ...
derang0 35163 The derangement number of ...
derangsn 35164 The derangement number of ...
derangenlem 35165 One half of ~ derangen . ...
derangen 35166 The derangement number is ...
subfacval 35167 The subfactorial is define...
derangen2 35168 Write the derangement numb...
subfacf 35169 The subfactorial is a func...
subfaclefac 35170 The subfactorial is less t...
subfac0 35171 The subfactorial at zero. ...
subfac1 35172 The subfactorial at one. ...
subfacp1lem1 35173 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 35174 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 35175 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 35176 Lemma for ~ subfacp1 . In...
subfacp1lem4 35177 Lemma for ~ subfacp1 . Th...
subfacp1lem5 35178 Lemma for ~ subfacp1 . In...
subfacp1lem6 35179 Lemma for ~ subfacp1 . By...
subfacp1 35180 A two-term recurrence for ...
subfacval2 35181 A closed-form expression f...
subfaclim 35182 The subfactorial converges...
subfacval3 35183 Another closed form expres...
derangfmla 35184 The derangements formula, ...
erdszelem1 35185 Lemma for ~ erdsze . (Con...
erdszelem2 35186 Lemma for ~ erdsze . (Con...
erdszelem3 35187 Lemma for ~ erdsze . (Con...
erdszelem4 35188 Lemma for ~ erdsze . (Con...
erdszelem5 35189 Lemma for ~ erdsze . (Con...
erdszelem6 35190 Lemma for ~ erdsze . (Con...
erdszelem7 35191 Lemma for ~ erdsze . (Con...
erdszelem8 35192 Lemma for ~ erdsze . (Con...
erdszelem9 35193 Lemma for ~ erdsze . (Con...
erdszelem10 35194 Lemma for ~ erdsze . (Con...
erdszelem11 35195 Lemma for ~ erdsze . (Con...
erdsze 35196 The Erdős-Szekeres th...
erdsze2lem1 35197 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 35198 Lemma for ~ erdsze2 . (Co...
erdsze2 35199 Generalize the statement o...
kur14lem1 35200 Lemma for ~ kur14 . (Cont...
kur14lem2 35201 Lemma for ~ kur14 . Write...
kur14lem3 35202 Lemma for ~ kur14 . A clo...
kur14lem4 35203 Lemma for ~ kur14 . Compl...
kur14lem5 35204 Lemma for ~ kur14 . Closu...
kur14lem6 35205 Lemma for ~ kur14 . If ` ...
kur14lem7 35206 Lemma for ~ kur14 : main p...
kur14lem8 35207 Lemma for ~ kur14 . Show ...
kur14lem9 35208 Lemma for ~ kur14 . Since...
kur14lem10 35209 Lemma for ~ kur14 . Disch...
kur14 35210 Kuratowski's closure-compl...
ispconn 35217 The property of being a pa...
pconncn 35218 The property of being a pa...
pconntop 35219 A simply connected space i...
issconn 35220 The property of being a si...
sconnpconn 35221 A simply connected space i...
sconntop 35222 A simply connected space i...
sconnpht 35223 A closed path in a simply ...
cnpconn 35224 An image of a path-connect...
pconnconn 35225 A path-connected space is ...
txpconn 35226 The topological product of...
ptpconn 35227 The topological product of...
indispconn 35228 The indiscrete topology (o...
connpconn 35229 A connected and locally pa...
qtoppconn 35230 A quotient of a path-conne...
pconnpi1 35231 All fundamental groups in ...
sconnpht2 35232 Any two paths in a simply ...
sconnpi1 35233 A path-connected topologic...
txsconnlem 35234 Lemma for ~ txsconn . (Co...
txsconn 35235 The topological product of...
cvxpconn 35236 A convex subset of the com...
cvxsconn 35237 A convex subset of the com...
blsconn 35238 An open ball in the comple...
cnllysconn 35239 The topology of the comple...
resconn 35240 A subset of ` RR ` is simp...
ioosconn 35241 An open interval is simply...
iccsconn 35242 A closed interval is simpl...
retopsconn 35243 The real numbers are simpl...
iccllysconn 35244 A closed interval is local...
rellysconn 35245 The real numbers are local...
iisconn 35246 The unit interval is simpl...
iillysconn 35247 The unit interval is local...
iinllyconn 35248 The unit interval is local...
fncvm 35251 Lemma for covering maps. ...
cvmscbv 35252 Change bound variables in ...
iscvm 35253 The property of being a co...
cvmtop1 35254 Reverse closure for a cove...
cvmtop2 35255 Reverse closure for a cove...
cvmcn 35256 A covering map is a contin...
cvmcov 35257 Property of a covering map...
cvmsrcl 35258 Reverse closure for an eve...
cvmsi 35259 One direction of ~ cvmsval...
cvmsval 35260 Elementhood in the set ` S...
cvmsss 35261 An even covering is a subs...
cvmsn0 35262 An even covering is nonemp...
cvmsuni 35263 An even covering of ` U ` ...
cvmsdisj 35264 An even covering of ` U ` ...
cvmshmeo 35265 Every element of an even c...
cvmsf1o 35266 ` F ` , localized to an el...
cvmscld 35267 The sets of an even coveri...
cvmsss2 35268 An open subset of an evenl...
cvmcov2 35269 The covering map property ...
cvmseu 35270 Every element in ` U. T ` ...
cvmsiota 35271 Identify the unique elemen...
cvmopnlem 35272 Lemma for ~ cvmopn . (Con...
cvmfolem 35273 Lemma for ~ cvmfo . (Cont...
cvmopn 35274 A covering map is an open ...
cvmliftmolem1 35275 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 35276 Lemma for ~ cvmliftmo . (...
cvmliftmoi 35277 A lift of a continuous fun...
cvmliftmo 35278 A lift of a continuous fun...
cvmliftlem1 35279 Lemma for ~ cvmlift . In ...
cvmliftlem2 35280 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 35281 Lemma for ~ cvmlift . Sin...
cvmliftlem4 35282 Lemma for ~ cvmlift . The...
cvmliftlem5 35283 Lemma for ~ cvmlift . Def...
cvmliftlem6 35284 Lemma for ~ cvmlift . Ind...
cvmliftlem7 35285 Lemma for ~ cvmlift . Pro...
cvmliftlem8 35286 Lemma for ~ cvmlift . The...
cvmliftlem9 35287 Lemma for ~ cvmlift . The...
cvmliftlem10 35288 Lemma for ~ cvmlift . The...
cvmliftlem11 35289 Lemma for ~ cvmlift . (Co...
cvmliftlem13 35290 Lemma for ~ cvmlift . The...
cvmliftlem14 35291 Lemma for ~ cvmlift . Put...
cvmliftlem15 35292 Lemma for ~ cvmlift . Dis...
cvmlift 35293 One of the important prope...
cvmfo 35294 A covering map is an onto ...
cvmliftiota 35295 Write out a function ` H `...
cvmlift2lem1 35296 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 35297 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 35298 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 35299 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 35300 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 35301 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 35302 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 35303 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 35304 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 35305 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 35306 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 35307 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 35308 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 35309 Lemma for ~ cvmlift2 . (C...
cvmlift2 35310 A two-dimensional version ...
cvmliftphtlem 35311 Lemma for ~ cvmliftpht . ...
cvmliftpht 35312 If ` G ` and ` H ` are pat...
cvmlift3lem1 35313 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 35314 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 35315 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 35316 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 35317 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 35318 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 35319 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 35320 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 35321 Lemma for ~ cvmlift2 . (C...
cvmlift3 35322 A general version of ~ cvm...
snmlff 35323 The function ` F ` from ~ ...
snmlfval 35324 The function ` F ` from ~ ...
snmlval 35325 The property " ` A ` is si...
snmlflim 35326 If ` A ` is simply normal,...
goel 35341 A "Godel-set of membership...
goelel3xp 35342 A "Godel-set of membership...
goeleq12bg 35343 Two "Godel-set of membersh...
gonafv 35344 The "Godel-set for the She...
goaleq12d 35345 Equality of the "Godel-set...
gonanegoal 35346 The Godel-set for the Shef...
satf 35347 The satisfaction predicate...
satfsucom 35348 The satisfaction predicate...
satfn 35349 The satisfaction predicate...
satom 35350 The satisfaction predicate...
satfvsucom 35351 The satisfaction predicate...
satfv0 35352 The value of the satisfact...
satfvsuclem1 35353 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 35354 Lemma 2 for ~ satfvsuc . ...
satfvsuc 35355 The value of the satisfact...
satfv1lem 35356 Lemma for ~ satfv1 . (Con...
satfv1 35357 The value of the satisfact...
satfsschain 35358 The binary relation of a s...
satfvsucsuc 35359 The satisfaction predicate...
satfbrsuc 35360 The binary relation of a s...
satfrel 35361 The value of the satisfact...
satfdmlem 35362 Lemma for ~ satfdm . (Con...
satfdm 35363 The domain of the satisfac...
satfrnmapom 35364 The range of the satisfact...
satfv0fun 35365 The value of the satisfact...
satf0 35366 The satisfaction predicate...
satf0sucom 35367 The satisfaction predicate...
satf00 35368 The value of the satisfact...
satf0suclem 35369 Lemma for ~ satf0suc , ~ s...
satf0suc 35370 The value of the satisfact...
satf0op 35371 An element of a value of t...
satf0n0 35372 The value of the satisfact...
sat1el2xp 35373 The first component of an ...
fmlafv 35374 The valid Godel formulas o...
fmla 35375 The set of all valid Godel...
fmla0 35376 The valid Godel formulas o...
fmla0xp 35377 The valid Godel formulas o...
fmlasuc0 35378 The valid Godel formulas o...
fmlafvel 35379 A class is a valid Godel f...
fmlasuc 35380 The valid Godel formulas o...
fmla1 35381 The valid Godel formulas o...
isfmlasuc 35382 The characterization of a ...
fmlasssuc 35383 The Godel formulas of heig...
fmlaomn0 35384 The empty set is not a God...
fmlan0 35385 The empty set is not a God...
gonan0 35386 The "Godel-set of NAND" is...
goaln0 35387 The "Godel-set of universa...
gonarlem 35388 Lemma for ~ gonar (inducti...
gonar 35389 If the "Godel-set of NAND"...
goalrlem 35390 Lemma for ~ goalr (inducti...
goalr 35391 If the "Godel-set of unive...
fmla0disjsuc 35392 The set of valid Godel for...
fmlasucdisj 35393 The valid Godel formulas o...
satfdmfmla 35394 The domain of the satisfac...
satffunlem 35395 Lemma for ~ satffunlem1lem...
satffunlem1lem1 35396 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 35397 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 35398 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 35399 The domain of an ordered p...
satffunlem2lem2 35400 Lemma 2 for ~ satffunlem2 ...
satffunlem1 35401 Lemma 1 for ~ satffun : in...
satffunlem2 35402 Lemma 2 for ~ satffun : in...
satffun 35403 The value of the satisfact...
satff 35404 The satisfaction predicate...
satfun 35405 The satisfaction predicate...
satfvel 35406 An element of the value of...
satfv0fvfmla0 35407 The value of the satisfact...
satefv 35408 The simplified satisfactio...
sate0 35409 The simplified satisfactio...
satef 35410 The simplified satisfactio...
sate0fv0 35411 A simplified satisfaction ...
satefvfmla0 35412 The simplified satisfactio...
sategoelfvb 35413 Characterization of a valu...
sategoelfv 35414 Condition of a valuation `...
ex-sategoelel 35415 Example of a valuation of ...
ex-sategoel 35416 Instance of ~ sategoelfv f...
satfv1fvfmla1 35417 The value of the satisfact...
2goelgoanfmla1 35418 Two Godel-sets of membersh...
satefvfmla1 35419 The simplified satisfactio...
ex-sategoelelomsuc 35420 Example of a valuation of ...
ex-sategoelel12 35421 Example of a valuation of ...
prv 35422 The "proves" relation on a...
elnanelprv 35423 The wff ` ( A e. B -/\ B e...
prv0 35424 Every wff encoded as ` U `...
prv1n 35425 No wff encoded as a Godel-...
mvtval 35494 The set of variable typeco...
mrexval 35495 The set of "raw expression...
mexval 35496 The set of expressions, wh...
mexval2 35497 The set of expressions, wh...
mdvval 35498 The set of disjoint variab...
mvrsval 35499 The set of variables in an...
mvrsfpw 35500 The set of variables in an...
mrsubffval 35501 The substitution of some v...
mrsubfval 35502 The substitution of some v...
mrsubval 35503 The substitution of some v...
mrsubcv 35504 The value of a substituted...
mrsubvr 35505 The value of a substituted...
mrsubff 35506 A substitution is a functi...
mrsubrn 35507 Although it is defined for...
mrsubff1 35508 When restricted to complet...
mrsubff1o 35509 When restricted to complet...
mrsub0 35510 The value of the substitut...
mrsubf 35511 A substitution is a functi...
mrsubccat 35512 Substitution distributes o...
mrsubcn 35513 A substitution does not ch...
elmrsubrn 35514 Characterization of the su...
mrsubco 35515 The composition of two sub...
mrsubvrs 35516 The set of variables in a ...
msubffval 35517 A substitution applied to ...
msubfval 35518 A substitution applied to ...
msubval 35519 A substitution applied to ...
msubrsub 35520 A substitution applied to ...
msubty 35521 The type of a substituted ...
elmsubrn 35522 Characterization of substi...
msubrn 35523 Although it is defined for...
msubff 35524 A substitution is a functi...
msubco 35525 The composition of two sub...
msubf 35526 A substitution is a functi...
mvhfval 35527 Value of the function mapp...
mvhval 35528 Value of the function mapp...
mpstval 35529 A pre-statement is an orde...
elmpst 35530 Property of being a pre-st...
msrfval 35531 Value of the reduct of a p...
msrval 35532 Value of the reduct of a p...
mpstssv 35533 A pre-statement is an orde...
mpst123 35534 Decompose a pre-statement ...
mpstrcl 35535 The elements of a pre-stat...
msrf 35536 The reduct of a pre-statem...
msrrcl 35537 If ` X ` and ` Y ` have th...
mstaval 35538 Value of the set of statem...
msrid 35539 The reduct of a statement ...
msrfo 35540 The reduct of a pre-statem...
mstapst 35541 A statement is a pre-state...
elmsta 35542 Property of being a statem...
ismfs 35543 A formal system is a tuple...
mfsdisj 35544 The constants and variable...
mtyf2 35545 The type function maps var...
mtyf 35546 The type function maps var...
mvtss 35547 The set of variable typeco...
maxsta 35548 An axiom is a statement. ...
mvtinf 35549 Each variable typecode has...
msubff1 35550 When restricted to complet...
msubff1o 35551 When restricted to complet...
mvhf 35552 The function mapping varia...
mvhf1 35553 The function mapping varia...
msubvrs 35554 The set of variables in a ...
mclsrcl 35555 Reverse closure for the cl...
mclsssvlem 35556 Lemma for ~ mclsssv . (Co...
mclsval 35557 The function mapping varia...
mclsssv 35558 The closure of a set of ex...
ssmclslem 35559 Lemma for ~ ssmcls . (Con...
vhmcls 35560 All variable hypotheses ar...
ssmcls 35561 The original expressions a...
ss2mcls 35562 The closure is monotonic u...
mclsax 35563 The closure is closed unde...
mclsind 35564 Induction theorem for clos...
mppspstlem 35565 Lemma for ~ mppspst . (Co...
mppsval 35566 Definition of a provable p...
elmpps 35567 Definition of a provable p...
mppspst 35568 A provable pre-statement i...
mthmval 35569 A theorem is a pre-stateme...
elmthm 35570 A theorem is a pre-stateme...
mthmi 35571 A statement whose reduct i...
mthmsta 35572 A theorem is a pre-stateme...
mppsthm 35573 A provable pre-statement i...
mthmblem 35574 Lemma for ~ mthmb . (Cont...
mthmb 35575 If two statements have the...
mthmpps 35576 Given a theorem, there is ...
mclsppslem 35577 The closure is closed unde...
mclspps 35578 The closure is closed unde...
rexxfr3d 35632 Transfer existential quant...
rexxfr3dALT 35633 Longer proof of ~ rexxfr3d...
rspssbasd 35634 The span of a set of ring ...
ellcsrspsn 35635 Membership in a left coset...
ply1divalg3 35636 Uniqueness of polynomial r...
r1peuqusdeg1 35637 Uniqueness of polynomial r...
problem1 35659 Practice problem 1. Clues...
problem2 35660 Practice problem 2. Clues...
problem3 35661 Practice problem 3. Clues...
problem4 35662 Practice problem 4. Clues...
problem5 35663 Practice problem 5. Clues...
quad3 35664 Variant of quadratic equat...
climuzcnv 35665 Utility lemma to convert b...
sinccvglem 35666 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 35667 ` ( ( sin `` x ) / x ) ~~>...
circum 35668 The circumference of a cir...
elfzm12 35669 Membership in a curtailed ...
nn0seqcvg 35670 A strictly-decreasing nonn...
lediv2aALT 35671 Division of both sides of ...
abs2sqlei 35672 The absolute values of two...
abs2sqlti 35673 The absolute values of two...
abs2sqle 35674 The absolute values of two...
abs2sqlt 35675 The absolute values of two...
abs2difi 35676 Difference of absolute val...
abs2difabsi 35677 Absolute value of differen...
2thALT 35678 Alternate proof of ~ 2th ....
orbi2iALT 35679 Alternate proof of ~ orbi2...
pm3.48ALT 35680 Alternate proof of ~ pm3.4...
3jcadALT 35681 Alternate proof of ~ 3jcad...
currybi 35682 Biconditional version of C...
antnest 35683 Suppose ` ph ` , ` ps ` ar...
antnestlaw3lem 35684 Lemma for ~ antnestlaw3 . ...
antnestlaw1 35685 A law of nested antecedent...
antnestlaw2 35686 A law of nested antecedent...
antnestlaw3 35687 A law of nested antecedent...
antnestALT 35688 Alternative proof of ~ ant...
axextprim 35695 ~ ax-ext without distinct ...
axrepprim 35696 ~ ax-rep without distinct ...
axunprim 35697 ~ ax-un without distinct v...
axpowprim 35698 ~ ax-pow without distinct ...
axregprim 35699 ~ ax-reg without distinct ...
axinfprim 35700 ~ ax-inf without distinct ...
axacprim 35701 ~ ax-ac without distinct v...
untelirr 35702 We call a class "untanged"...
untuni 35703 The union of a class is un...
untsucf 35704 If a class is untangled, t...
unt0 35705 The null set is untangled....
untint 35706 If there is an untangled e...
efrunt 35707 If ` A ` is well-founded b...
untangtr 35708 A transitive class is unta...
3jaodd 35709 Double deduction form of ~...
3orit 35710 Closed form of ~ 3ori . (...
biimpexp 35711 A biconditional in the ant...
nepss 35712 Two classes are unequal if...
3ccased 35713 Triple disjunction form of...
dfso3 35714 Expansion of the definitio...
brtpid1 35715 A binary relation involvin...
brtpid2 35716 A binary relation involvin...
brtpid3 35717 A binary relation involvin...
iota5f 35718 A method for computing iot...
jath 35719 Closed form of ~ ja . Pro...
xpab 35720 Cartesian product of two c...
nnuni 35721 The union of a finite ordi...
sqdivzi 35722 Distribution of square ove...
supfz 35723 The supremum of a finite s...
inffz 35724 The infimum of a finite se...
fz0n 35725 The sequence ` ( 0 ... ( N...
shftvalg 35726 Value of a sequence shifte...
divcnvlin 35727 Limit of the ratio of two ...
climlec3 35728 Comparison of a constant t...
iexpire 35729 ` _i ` raised to itself is...
bcneg1 35730 The binomial coefficient o...
bcm1nt 35731 The proportion of one bino...
bcprod 35732 A product identity for bin...
bccolsum 35733 A column-sum rule for bino...
iprodefisumlem 35734 Lemma for ~ iprodefisum . ...
iprodefisum 35735 Applying the exponential f...
iprodgam 35736 An infinite product versio...
faclimlem1 35737 Lemma for ~ faclim . Clos...
faclimlem2 35738 Lemma for ~ faclim . Show...
faclimlem3 35739 Lemma for ~ faclim . Alge...
faclim 35740 An infinite product expres...
iprodfac 35741 An infinite product expres...
faclim2 35742 Another factorial limit du...
gcd32 35743 Swap the second and third ...
gcdabsorb 35744 Absorption law for gcd. (...
dftr6 35745 A potential definition of ...
coep 35746 Composition with the membe...
coepr 35747 Composition with the conve...
dffr5 35748 A quantifier-free definiti...
dfso2 35749 Quantifier-free definition...
br8 35750 Substitution for an eight-...
br6 35751 Substitution for a six-pla...
br4 35752 Substitution for a four-pl...
cnvco1 35753 Another distributive law o...
cnvco2 35754 Another distributive law o...
eldm3 35755 Quantifier-free definition...
elrn3 35756 Quantifier-free definition...
pocnv 35757 The converse of a partial ...
socnv 35758 The converse of a strict o...
elintfv 35759 Membership in an intersect...
funpsstri 35760 A condition for subset tri...
fundmpss 35761 If a class ` F ` is a prop...
funsseq 35762 Given two functions with e...
fununiq 35763 The uniqueness condition o...
funbreq 35764 An equality condition for ...
br1steq 35765 Uniqueness condition for t...
br2ndeq 35766 Uniqueness condition for t...
dfdm5 35767 Definition of domain in te...
dfrn5 35768 Definition of range in ter...
opelco3 35769 Alternate way of saying th...
elima4 35770 Quantifier-free expression...
fv1stcnv 35771 The value of the converse ...
fv2ndcnv 35772 The value of the converse ...
setinds 35773 Principle of set induction...
setinds2f 35774 ` _E ` induction schema, u...
setinds2 35775 ` _E ` induction schema, u...
elpotr 35776 A class of transitive sets...
dford5reg 35777 Given ~ ax-reg , an ordina...
dfon2lem1 35778 Lemma for ~ dfon2 . (Cont...
dfon2lem2 35779 Lemma for ~ dfon2 . (Cont...
dfon2lem3 35780 Lemma for ~ dfon2 . All s...
dfon2lem4 35781 Lemma for ~ dfon2 . If tw...
dfon2lem5 35782 Lemma for ~ dfon2 . Two s...
dfon2lem6 35783 Lemma for ~ dfon2 . A tra...
dfon2lem7 35784 Lemma for ~ dfon2 . All e...
dfon2lem8 35785 Lemma for ~ dfon2 . The i...
dfon2lem9 35786 Lemma for ~ dfon2 . A cla...
dfon2 35787 ` On ` consists of all set...
rdgprc0 35788 The value of the recursive...
rdgprc 35789 The value of the recursive...
dfrdg2 35790 Alternate definition of th...
dfrdg3 35791 Generalization of ~ dfrdg2...
axextdfeq 35792 A version of ~ ax-ext for ...
ax8dfeq 35793 A version of ~ ax-8 for us...
axextdist 35794 ~ ax-ext with distinctors ...
axextbdist 35795 ~ axextb with distinctors ...
19.12b 35796 Version of ~ 19.12vv with ...
exnel 35797 There is always a set not ...
distel 35798 Distinctors in terms of me...
axextndbi 35799 ~ axextnd as a bicondition...
hbntg 35800 A more general form of ~ h...
hbimtg 35801 A more general and closed ...
hbaltg 35802 A more general and closed ...
hbng 35803 A more general form of ~ h...
hbimg 35804 A more general form of ~ h...
wsuceq123 35809 Equality theorem for well-...
wsuceq1 35810 Equality theorem for well-...
wsuceq2 35811 Equality theorem for well-...
wsuceq3 35812 Equality theorem for well-...
nfwsuc 35813 Bound-variable hypothesis ...
wlimeq12 35814 Equality theorem for the l...
wlimeq1 35815 Equality theorem for the l...
wlimeq2 35816 Equality theorem for the l...
nfwlim 35817 Bound-variable hypothesis ...
elwlim 35818 Membership in the limit cl...
wzel 35819 The zero of a well-founded...
wsuclem 35820 Lemma for the supremum pro...
wsucex 35821 Existence theorem for well...
wsuccl 35822 If ` X ` is a set with an ...
wsuclb 35823 A well-founded successor i...
wlimss 35824 The class of limit points ...
txpss3v 35873 A tail Cartesian product i...
txprel 35874 A tail Cartesian product i...
brtxp 35875 Characterize a ternary rel...
brtxp2 35876 The binary relation over a...
dfpprod2 35877 Expanded definition of par...
pprodcnveq 35878 A converse law for paralle...
pprodss4v 35879 The parallel product is a ...
brpprod 35880 Characterize a quaternary ...
brpprod3a 35881 Condition for parallel pro...
brpprod3b 35882 Condition for parallel pro...
relsset 35883 The subset class is a bina...
brsset 35884 For sets, the ` SSet ` bin...
idsset 35885 ` _I ` is equal to the int...
eltrans 35886 Membership in the class of...
dfon3 35887 A quantifier-free definiti...
dfon4 35888 Another quantifier-free de...
brtxpsd 35889 Expansion of a common form...
brtxpsd2 35890 Another common abbreviatio...
brtxpsd3 35891 A third common abbreviatio...
relbigcup 35892 The ` Bigcup ` relationshi...
brbigcup 35893 Binary relation over ` Big...
dfbigcup2 35894 ` Bigcup ` using maps-to n...
fobigcup 35895 ` Bigcup ` maps the univer...
fnbigcup 35896 ` Bigcup ` is a function o...
fvbigcup 35897 For sets, ` Bigcup ` yield...
elfix 35898 Membership in the fixpoint...
elfix2 35899 Alternative membership in ...
dffix2 35900 The fixpoints of a class i...
fixssdm 35901 The fixpoints of a class a...
fixssrn 35902 The fixpoints of a class a...
fixcnv 35903 The fixpoints of a class a...
fixun 35904 The fixpoint operator dist...
ellimits 35905 Membership in the class of...
limitssson 35906 The class of all limit ord...
dfom5b 35907 A quantifier-free definiti...
sscoid 35908 A condition for subset and...
dffun10 35909 Another potential definiti...
elfuns 35910 Membership in the class of...
elfunsg 35911 Closed form of ~ elfuns . ...
brsingle 35912 The binary relation form o...
elsingles 35913 Membership in the class of...
fnsingle 35914 The singleton relationship...
fvsingle 35915 The value of the singleton...
dfsingles2 35916 Alternate definition of th...
snelsingles 35917 A singleton is a member of...
dfiota3 35918 A definition of iota using...
dffv5 35919 Another quantifier-free de...
unisnif 35920 Express union of singleton...
brimage 35921 Binary relation form of th...
brimageg 35922 Closed form of ~ brimage ....
funimage 35923 ` Image A ` is a function....
fnimage 35924 ` Image R ` is a function ...
imageval 35925 The image functor in maps-...
fvimage 35926 Value of the image functor...
brcart 35927 Binary relation form of th...
brdomain 35928 Binary relation form of th...
brrange 35929 Binary relation form of th...
brdomaing 35930 Closed form of ~ brdomain ...
brrangeg 35931 Closed form of ~ brrange ....
brimg 35932 Binary relation form of th...
brapply 35933 Binary relation form of th...
brcup 35934 Binary relation form of th...
brcap 35935 Binary relation form of th...
brsuccf 35936 Binary relation form of th...
funpartlem 35937 Lemma for ~ funpartfun . ...
funpartfun 35938 The functional part of ` F...
funpartss 35939 The functional part of ` F...
funpartfv 35940 The function value of the ...
fullfunfnv 35941 The full functional part o...
fullfunfv 35942 The function value of the ...
brfullfun 35943 A binary relation form con...
brrestrict 35944 Binary relation form of th...
dfrecs2 35945 A quantifier-free definiti...
dfrdg4 35946 A quantifier-free definiti...
dfint3 35947 Quantifier-free definition...
imagesset 35948 The Image functor applied ...
brub 35949 Binary relation form of th...
brlb 35950 Binary relation form of th...
altopex 35955 Alternative ordered pairs ...
altopthsn 35956 Two alternate ordered pair...
altopeq12 35957 Equality for alternate ord...
altopeq1 35958 Equality for alternate ord...
altopeq2 35959 Equality for alternate ord...
altopth1 35960 Equality of the first memb...
altopth2 35961 Equality of the second mem...
altopthg 35962 Alternate ordered pair the...
altopthbg 35963 Alternate ordered pair the...
altopth 35964 The alternate ordered pair...
altopthb 35965 Alternate ordered pair the...
altopthc 35966 Alternate ordered pair the...
altopthd 35967 Alternate ordered pair the...
altxpeq1 35968 Equality for alternate Car...
altxpeq2 35969 Equality for alternate Car...
elaltxp 35970 Membership in alternate Ca...
altopelaltxp 35971 Alternate ordered pair mem...
altxpsspw 35972 An inclusion rule for alte...
altxpexg 35973 The alternate Cartesian pr...
rankaltopb 35974 Compute the rank of an alt...
nfaltop 35975 Bound-variable hypothesis ...
sbcaltop 35976 Distribution of class subs...
cgrrflx2d 35979 Deduction form of ~ axcgrr...
cgrtr4d 35980 Deduction form of ~ axcgrt...
cgrtr4and 35981 Deduction form of ~ axcgrt...
cgrrflx 35982 Reflexivity law for congru...
cgrrflxd 35983 Deduction form of ~ cgrrfl...
cgrcomim 35984 Congruence commutes on the...
cgrcom 35985 Congruence commutes betwee...
cgrcomand 35986 Deduction form of ~ cgrcom...
cgrtr 35987 Transitivity law for congr...
cgrtrand 35988 Deduction form of ~ cgrtr ...
cgrtr3 35989 Transitivity law for congr...
cgrtr3and 35990 Deduction form of ~ cgrtr3...
cgrcoml 35991 Congruence commutes on the...
cgrcomr 35992 Congruence commutes on the...
cgrcomlr 35993 Congruence commutes on bot...
cgrcomland 35994 Deduction form of ~ cgrcom...
cgrcomrand 35995 Deduction form of ~ cgrcom...
cgrcomlrand 35996 Deduction form of ~ cgrcom...
cgrtriv 35997 Degenerate segments are co...
cgrid2 35998 Identity law for congruenc...
cgrdegen 35999 Two congruent segments are...
brofs 36000 Binary relation form of th...
5segofs 36001 Rephrase ~ ax5seg using th...
ofscom 36002 The outer five segment pre...
cgrextend 36003 Link congruence over a pai...
cgrextendand 36004 Deduction form of ~ cgrext...
segconeq 36005 Two points that satisfy th...
segconeu 36006 Existential uniqueness ver...
btwntriv2 36007 Betweenness always holds f...
btwncomim 36008 Betweenness commutes. Imp...
btwncom 36009 Betweenness commutes. (Co...
btwncomand 36010 Deduction form of ~ btwnco...
btwntriv1 36011 Betweenness always holds f...
btwnswapid 36012 If you can swap the first ...
btwnswapid2 36013 If you can swap arguments ...
btwnintr 36014 Inner transitivity law for...
btwnexch3 36015 Exchange the first endpoin...
btwnexch3and 36016 Deduction form of ~ btwnex...
btwnouttr2 36017 Outer transitivity law for...
btwnexch2 36018 Exchange the outer point o...
btwnouttr 36019 Outer transitivity law for...
btwnexch 36020 Outer transitivity law for...
btwnexchand 36021 Deduction form of ~ btwnex...
btwndiff 36022 There is always a ` c ` di...
trisegint 36023 A line segment between two...
funtransport 36026 The ` TransportTo ` relati...
fvtransport 36027 Calculate the value of the...
transportcl 36028 Closure law for segment tr...
transportprops 36029 Calculate the defining pro...
brifs 36038 Binary relation form of th...
ifscgr 36039 Inner five segment congrue...
cgrsub 36040 Removing identical parts f...
brcgr3 36041 Binary relation form of th...
cgr3permute3 36042 Permutation law for three-...
cgr3permute1 36043 Permutation law for three-...
cgr3permute2 36044 Permutation law for three-...
cgr3permute4 36045 Permutation law for three-...
cgr3permute5 36046 Permutation law for three-...
cgr3tr4 36047 Transitivity law for three...
cgr3com 36048 Commutativity law for thre...
cgr3rflx 36049 Identity law for three-pla...
cgrxfr 36050 A line segment can be divi...
btwnxfr 36051 A condition for extending ...
colinrel 36052 Colinearity is a relations...
brcolinear2 36053 Alternate colinearity bina...
brcolinear 36054 The binary relation form o...
colinearex 36055 The colinear predicate exi...
colineardim1 36056 If ` A ` is colinear with ...
colinearperm1 36057 Permutation law for coline...
colinearperm3 36058 Permutation law for coline...
colinearperm2 36059 Permutation law for coline...
colinearperm4 36060 Permutation law for coline...
colinearperm5 36061 Permutation law for coline...
colineartriv1 36062 Trivial case of colinearit...
colineartriv2 36063 Trivial case of colinearit...
btwncolinear1 36064 Betweenness implies coline...
btwncolinear2 36065 Betweenness implies coline...
btwncolinear3 36066 Betweenness implies coline...
btwncolinear4 36067 Betweenness implies coline...
btwncolinear5 36068 Betweenness implies coline...
btwncolinear6 36069 Betweenness implies coline...
colinearxfr 36070 Transfer law for colineari...
lineext 36071 Extend a line with a missi...
brofs2 36072 Change some conditions for...
brifs2 36073 Change some conditions for...
brfs 36074 Binary relation form of th...
fscgr 36075 Congruence law for the gen...
linecgr 36076 Congruence rule for lines....
linecgrand 36077 Deduction form of ~ linecg...
lineid 36078 Identity law for points on...
idinside 36079 Law for finding a point in...
endofsegid 36080 If ` A ` , ` B ` , and ` C...
endofsegidand 36081 Deduction form of ~ endofs...
btwnconn1lem1 36082 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 36083 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 36084 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 36085 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 36086 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 36087 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 36088 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 36089 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 36090 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 36091 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 36092 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 36093 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 36094 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 36095 Lemma for ~ btwnconn1 . F...
btwnconn1 36096 Connectitivy law for betwe...
btwnconn2 36097 Another connectivity law f...
btwnconn3 36098 Inner connectivity law for...
midofsegid 36099 If two points fall in the ...
segcon2 36100 Generalization of ~ axsegc...
brsegle 36103 Binary relation form of th...
brsegle2 36104 Alternate characterization...
seglecgr12im 36105 Substitution law for segme...
seglecgr12 36106 Substitution law for segme...
seglerflx 36107 Segment comparison is refl...
seglemin 36108 Any segment is at least as...
segletr 36109 Segment less than is trans...
segleantisym 36110 Antisymmetry law for segme...
seglelin 36111 Linearity law for segment ...
btwnsegle 36112 If ` B ` falls between ` A...
colinbtwnle 36113 Given three colinear point...
broutsideof 36116 Binary relation form of ` ...
broutsideof2 36117 Alternate form of ` Outsid...
outsidene1 36118 Outsideness implies inequa...
outsidene2 36119 Outsideness implies inequa...
btwnoutside 36120 A principle linking outsid...
broutsideof3 36121 Characterization of outsid...
outsideofrflx 36122 Reflexivity of outsideness...
outsideofcom 36123 Commutativity law for outs...
outsideoftr 36124 Transitivity law for outsi...
outsideofeq 36125 Uniqueness law for ` Outsi...
outsideofeu 36126 Given a nondegenerate ray,...
outsidele 36127 Relate ` OutsideOf ` to ` ...
outsideofcol 36128 Outside of implies colinea...
funray 36135 Show that the ` Ray ` rela...
fvray 36136 Calculate the value of the...
funline 36137 Show that the ` Line ` rel...
linedegen 36138 When ` Line ` is applied w...
fvline 36139 Calculate the value of the...
liness 36140 A line is a subset of the ...
fvline2 36141 Alternate definition of a ...
lineunray 36142 A line is composed of a po...
lineelsb2 36143 If ` S ` lies on ` P Q ` ,...
linerflx1 36144 Reflexivity law for line m...
linecom 36145 Commutativity law for line...
linerflx2 36146 Reflexivity law for line m...
ellines 36147 Membership in the set of a...
linethru 36148 If ` A ` is a line contain...
hilbert1.1 36149 There is a line through an...
hilbert1.2 36150 There is at most one line ...
linethrueu 36151 There is a unique line goi...
lineintmo 36152 Two distinct lines interse...
fwddifval 36157 Calculate the value of the...
fwddifnval 36158 The value of the forward d...
fwddifn0 36159 The value of the n-iterate...
fwddifnp1 36160 The value of the n-iterate...
rankung 36161 The rank of the union of t...
ranksng 36162 The rank of a singleton. ...
rankelg 36163 The membership relation is...
rankpwg 36164 The rank of a power set. ...
rank0 36165 The rank of the empty set ...
rankeq1o 36166 The only set with rank ` 1...
elhf 36169 Membership in the heredita...
elhf2 36170 Alternate form of membersh...
elhf2g 36171 Hereditarily finiteness vi...
0hf 36172 The empty set is a heredit...
hfun 36173 The union of two HF sets i...
hfsn 36174 The singleton of an HF set...
hfadj 36175 Adjoining one HF element t...
hfelhf 36176 Any member of an HF set is...
hftr 36177 The class of all hereditar...
hfext 36178 Extensionality for HF sets...
hfuni 36179 The union of an HF set is ...
hfpw 36180 The power class of an HF s...
hfninf 36181 ` _om ` is not hereditaril...
rmoeqi 36182 Equality inference for res...
rmoeqbii 36183 Equality inference for res...
reueqi 36184 Equality inference for res...
reueqbii 36185 Equality inference for res...
sbceqbii 36186 Formula-building inference...
disjeq1i 36187 Equality theorem for disjo...
disjeq12i 36188 Equality theorem for disjo...
rabeqbii 36189 Equality theorem for restr...
iuneq12i 36190 Equality theorem for index...
iineq1i 36191 Equality theorem for index...
iineq12i 36192 Equality theorem for index...
riotaeqbii 36193 Equivalent wff's and equal...
riotaeqi 36194 Equal domains yield equal ...
ixpeq1i 36195 Equality inference for inf...
ixpeq12i 36196 Equality inference for inf...
sumeq2si 36197 Equality inference for sum...
sumeq12si 36198 Equality inference for sum...
prodeq2si 36199 Equality inference for pro...
prodeq12si 36200 Equality inference for pro...
itgeq12i 36201 Equality inference for an ...
itgeq1i 36202 Equality inference for an ...
itgeq2i 36203 Equality inference for an ...
ditgeq123i 36204 Equality inference for the...
ditgeq12i 36205 Equality inference for the...
ditgeq3i 36206 Equality inference for the...
rmoeqdv 36207 Formula-building rule for ...
rmoeqbidv 36208 Formula-building rule for ...
sbequbidv 36209 Deduction substituting bot...
disjeq12dv 36210 Equality theorem for disjo...
ixpeq12dv 36211 Equality theorem for infin...
sumeq12sdv 36212 Equality deduction for sum...
prodeq12sdv 36213 Equality deduction for pro...
itgeq12sdv 36214 Equality theorem for an in...
itgeq2sdv 36215 Equality theorem for an in...
ditgeq123dv 36216 Equality theorem for the d...
ditgeq12d 36217 Equality theorem for the d...
ditgeq3sdv 36218 Equality theorem for the d...
in-ax8 36219 A proof of ~ ax-8 that doe...
ss-ax8 36220 A proof of ~ ax-8 that doe...
cbvralvw2 36221 Change bound variable and ...
cbvrexvw2 36222 Change bound variable and ...
cbvrmovw2 36223 Change bound variable and ...
cbvreuvw2 36224 Change bound variable and ...
cbvsbcvw2 36225 Change bound variable of a...
cbvcsbvw2 36226 Change bound variable of a...
cbviunvw2 36227 Change bound variable and ...
cbviinvw2 36228 Change bound variable and ...
cbvmptvw2 36229 Change bound variable and ...
cbvdisjvw2 36230 Change bound variable and ...
cbvriotavw2 36231 Change bound variable and ...
cbvoprab1vw 36232 Change the first bound var...
cbvoprab2vw 36233 Change the second bound va...
cbvoprab123vw 36234 Change all bound variables...
cbvoprab23vw 36235 Change the second and thir...
cbvoprab13vw 36236 Change the first and third...
cbvmpovw2 36237 Change bound variables and...
cbvmpo1vw2 36238 Change domains and the fir...
cbvmpo2vw2 36239 Change domains and the sec...
cbvixpvw2 36240 Change bound variable and ...
cbvsumvw2 36241 Change bound variable and ...
cbvprodvw2 36242 Change bound variable and ...
cbvitgvw2 36243 Change bound variable and ...
cbvditgvw2 36244 Change bound variable and ...
cbvmodavw 36245 Change bound variable in t...
cbveudavw 36246 Change bound variable in t...
cbvrmodavw 36247 Change bound variable in t...
cbvreudavw 36248 Change bound variable in t...
cbvsbdavw 36249 Change bound variable in p...
cbvsbdavw2 36250 Change bound variable in p...
cbvabdavw 36251 Change bound variable in c...
cbvsbcdavw 36252 Change bound variable of a...
cbvsbcdavw2 36253 Change bound variable of a...
cbvcsbdavw 36254 Change bound variable of a...
cbvcsbdavw2 36255 Change bound variable of a...
cbvrabdavw 36256 Change bound variable in r...
cbviundavw 36257 Change bound variable in i...
cbviindavw 36258 Change bound variable in i...
cbvopab1davw 36259 Change the first bound var...
cbvopab2davw 36260 Change the second bound va...
cbvopabdavw 36261 Change bound variables in ...
cbvmptdavw 36262 Change bound variable in a...
cbvdisjdavw 36263 Change bound variable in a...
cbviotadavw 36264 Change bound variable in a...
cbvriotadavw 36265 Change bound variable in a...
cbvoprab1davw 36266 Change the first bound var...
cbvoprab2davw 36267 Change the second bound va...
cbvoprab3davw 36268 Change the third bound var...
cbvoprab123davw 36269 Change all bound variables...
cbvoprab12davw 36270 Change the first and secon...
cbvoprab23davw 36271 Change the second and thir...
cbvoprab13davw 36272 Change the first and third...
cbvixpdavw 36273 Change bound variable in a...
cbvsumdavw 36274 Change bound variable in a...
cbvproddavw 36275 Change bound variable in a...
cbvitgdavw 36276 Change bound variable in a...
cbvditgdavw 36277 Change bound variable in a...
cbvrmodavw2 36278 Change bound variable and ...
cbvreudavw2 36279 Change bound variable and ...
cbvrabdavw2 36280 Change bound variable and ...
cbviundavw2 36281 Change bound variable and ...
cbviindavw2 36282 Change bound variable and ...
cbvmptdavw2 36283 Change bound variable and ...
cbvdisjdavw2 36284 Change bound variable and ...
cbvriotadavw2 36285 Change bound variable and ...
cbvmpodavw2 36286 Change bound variable and ...
cbvmpo1davw2 36287 Change first bound variabl...
cbvmpo2davw2 36288 Change second bound variab...
cbvixpdavw2 36289 Change bound variable and ...
cbvsumdavw2 36290 Change bound variable and ...
cbvproddavw2 36291 Change bound variable and ...
cbvitgdavw2 36292 Change bound variable and ...
cbvditgdavw2 36293 Change bound variable and ...
mpomulnzcnf 36294 Multiplication maps nonzer...
a1i14 36295 Add two antecedents to a w...
a1i24 36296 Add two antecedents to a w...
exp5d 36297 An exportation inference. ...
exp5g 36298 An exportation inference. ...
exp5k 36299 An exportation inference. ...
exp56 36300 An exportation inference. ...
exp58 36301 An exportation inference. ...
exp510 36302 An exportation inference. ...
exp511 36303 An exportation inference. ...
exp512 36304 An exportation inference. ...
3com12d 36305 Commutation in consequent....
imp5p 36306 A triple importation infer...
imp5q 36307 A triple importation infer...
ecase13d 36308 Deduction for elimination ...
subtr 36309 Transitivity of implicit s...
subtr2 36310 Transitivity of implicit s...
trer 36311 A relation intersected wit...
elicc3 36312 An equivalent membership c...
finminlem 36313 A useful lemma about finit...
gtinf 36314 Any number greater than an...
opnrebl 36315 A set is open in the stand...
opnrebl2 36316 A set is open in the stand...
nn0prpwlem 36317 Lemma for ~ nn0prpw . Use...
nn0prpw 36318 Two nonnegative integers a...
topbnd 36319 Two equivalent expressions...
opnbnd 36320 A set is open iff it is di...
cldbnd 36321 A set is closed iff it con...
ntruni 36322 A union of interiors is a ...
clsun 36323 A pairwise union of closur...
clsint2 36324 The closure of an intersec...
opnregcld 36325 A set is regularly closed ...
cldregopn 36326 A set if regularly open if...
neiin 36327 Two neighborhoods intersec...
hmeoclda 36328 Homeomorphisms preserve cl...
hmeocldb 36329 Homeomorphisms preserve cl...
ivthALT 36330 An alternate proof of the ...
fnerel 36333 Fineness is a relation. (...
isfne 36334 The predicate " ` B ` is f...
isfne4 36335 The predicate " ` B ` is f...
isfne4b 36336 A condition for a topology...
isfne2 36337 The predicate " ` B ` is f...
isfne3 36338 The predicate " ` B ` is f...
fnebas 36339 A finer cover covers the s...
fnetg 36340 A finer cover generates a ...
fnessex 36341 If ` B ` is finer than ` A...
fneuni 36342 If ` B ` is finer than ` A...
fneint 36343 If a cover is finer than a...
fness 36344 A cover is finer than its ...
fneref 36345 Reflexivity of the finenes...
fnetr 36346 Transitivity of the finene...
fneval 36347 Two covers are finer than ...
fneer 36348 Fineness intersected with ...
topfne 36349 Fineness for covers corres...
topfneec 36350 A cover is equivalent to a...
topfneec2 36351 A topology is precisely id...
fnessref 36352 A cover is finer iff it ha...
refssfne 36353 A cover is a refinement if...
neibastop1 36354 A collection of neighborho...
neibastop2lem 36355 Lemma for ~ neibastop2 . ...
neibastop2 36356 In the topology generated ...
neibastop3 36357 The topology generated by ...
topmtcl 36358 The meet of a collection o...
topmeet 36359 Two equivalent formulation...
topjoin 36360 Two equivalent formulation...
fnemeet1 36361 The meet of a collection o...
fnemeet2 36362 The meet of equivalence cl...
fnejoin1 36363 Join of equivalence classe...
fnejoin2 36364 Join of equivalence classe...
fgmin 36365 Minimality property of a g...
neifg 36366 The neighborhood filter of...
tailfval 36367 The tail function for a di...
tailval 36368 The tail of an element in ...
eltail 36369 An element of a tail. (Co...
tailf 36370 The tail function of a dir...
tailini 36371 A tail contains its initia...
tailfb 36372 The collection of tails of...
filnetlem1 36373 Lemma for ~ filnet . Chan...
filnetlem2 36374 Lemma for ~ filnet . The ...
filnetlem3 36375 Lemma for ~ filnet . (Con...
filnetlem4 36376 Lemma for ~ filnet . (Con...
filnet 36377 A filter has the same conv...
tb-ax1 36378 The first of three axioms ...
tb-ax2 36379 The second of three axioms...
tb-ax3 36380 The third of three axioms ...
tbsyl 36381 The weak syllogism from Ta...
re1ax2lem 36382 Lemma for ~ re1ax2 . (Con...
re1ax2 36383 ~ ax-2 rederived from the ...
naim1 36384 Constructor theorem for ` ...
naim2 36385 Constructor theorem for ` ...
naim1i 36386 Constructor rule for ` -/\...
naim2i 36387 Constructor rule for ` -/\...
naim12i 36388 Constructor rule for ` -/\...
nabi1i 36389 Constructor rule for ` -/\...
nabi2i 36390 Constructor rule for ` -/\...
nabi12i 36391 Constructor rule for ` -/\...
df3nandALT1 36394 The double nand expressed ...
df3nandALT2 36395 The double nand expressed ...
andnand1 36396 Double and in terms of dou...
imnand2 36397 An ` -> ` nand relation. ...
nalfal 36398 Not all sets hold ` F. ` a...
nexntru 36399 There does not exist a set...
nexfal 36400 There does not exist a set...
neufal 36401 There does not exist exact...
neutru 36402 There does not exist exact...
nmotru 36403 There does not exist at mo...
mofal 36404 There exist at most one se...
nrmo 36405 "At most one" restricted e...
meran1 36406 A single axiom for proposi...
meran2 36407 A single axiom for proposi...
meran3 36408 A single axiom for proposi...
waj-ax 36409 A single axiom for proposi...
lukshef-ax2 36410 A single axiom for proposi...
arg-ax 36411 A single axiom for proposi...
negsym1 36412 In the paper "On Variable ...
imsym1 36413 A symmetry with ` -> ` . ...
bisym1 36414 A symmetry with ` <-> ` . ...
consym1 36415 A symmetry with ` /\ ` . ...
dissym1 36416 A symmetry with ` \/ ` . ...
nandsym1 36417 A symmetry with ` -/\ ` . ...
unisym1 36418 A symmetry with ` A. ` . ...
exisym1 36419 A symmetry with ` E. ` . ...
unqsym1 36420 A symmetry with ` E! ` . ...
amosym1 36421 A symmetry with ` E* ` . ...
subsym1 36422 A symmetry with ` [ x / y ...
ontopbas 36423 An ordinal number is a top...
onsstopbas 36424 The class of ordinal numbe...
onpsstopbas 36425 The class of ordinal numbe...
ontgval 36426 The topology generated fro...
ontgsucval 36427 The topology generated fro...
onsuctop 36428 A successor ordinal number...
onsuctopon 36429 One of the topologies on a...
ordtoplem 36430 Membership of the class of...
ordtop 36431 An ordinal is a topology i...
onsucconni 36432 A successor ordinal number...
onsucconn 36433 A successor ordinal number...
ordtopconn 36434 An ordinal topology is con...
onintopssconn 36435 An ordinal topology is con...
onsuct0 36436 A successor ordinal number...
ordtopt0 36437 An ordinal topology is T_0...
onsucsuccmpi 36438 The successor of a success...
onsucsuccmp 36439 The successor of a success...
limsucncmpi 36440 The successor of a limit o...
limsucncmp 36441 The successor of a limit o...
ordcmp 36442 An ordinal topology is com...
ssoninhaus 36443 The ordinal topologies ` 1...
onint1 36444 The ordinal T_1 spaces are...
oninhaus 36445 The ordinal Hausdorff spac...
fveleq 36446 Please add description her...
findfvcl 36447 Please add description her...
findreccl 36448 Please add description her...
findabrcl 36449 Please add description her...
nnssi2 36450 Convert a theorem for real...
nnssi3 36451 Convert a theorem for real...
nndivsub 36452 Please add description her...
nndivlub 36453 A factor of a positive int...
ee7.2aOLD 36456 Lemma for Euclid's Element...
weiunlem1 36457 Lemma for ~ weiunpo , ~ we...
weiunlem2 36458 Lemma for ~ weiunpo , ~ we...
weiunfrlem 36459 Lemma for ~ weiunfr . (Co...
weiunpo 36460 A partial ordering on an i...
weiunso 36461 A strict ordering on an in...
weiunfr 36462 A well-founded relation on...
weiunse 36463 The relation constructed i...
weiunwe 36464 A well-ordering on an inde...
numiunnum 36465 An indexed union of sets i...
dnival 36466 Value of the "distance to ...
dnicld1 36467 Closure theorem for the "d...
dnicld2 36468 Closure theorem for the "d...
dnif 36469 The "distance to nearest i...
dnizeq0 36470 The distance to nearest in...
dnizphlfeqhlf 36471 The distance to nearest in...
rddif2 36472 Variant of ~ rddif . (Con...
dnibndlem1 36473 Lemma for ~ dnibnd . (Con...
dnibndlem2 36474 Lemma for ~ dnibnd . (Con...
dnibndlem3 36475 Lemma for ~ dnibnd . (Con...
dnibndlem4 36476 Lemma for ~ dnibnd . (Con...
dnibndlem5 36477 Lemma for ~ dnibnd . (Con...
dnibndlem6 36478 Lemma for ~ dnibnd . (Con...
dnibndlem7 36479 Lemma for ~ dnibnd . (Con...
dnibndlem8 36480 Lemma for ~ dnibnd . (Con...
dnibndlem9 36481 Lemma for ~ dnibnd . (Con...
dnibndlem10 36482 Lemma for ~ dnibnd . (Con...
dnibndlem11 36483 Lemma for ~ dnibnd . (Con...
dnibndlem12 36484 Lemma for ~ dnibnd . (Con...
dnibndlem13 36485 Lemma for ~ dnibnd . (Con...
dnibnd 36486 The "distance to nearest i...
dnicn 36487 The "distance to nearest i...
knoppcnlem1 36488 Lemma for ~ knoppcn . (Co...
knoppcnlem2 36489 Lemma for ~ knoppcn . (Co...
knoppcnlem3 36490 Lemma for ~ knoppcn . (Co...
knoppcnlem4 36491 Lemma for ~ knoppcn . (Co...
knoppcnlem5 36492 Lemma for ~ knoppcn . (Co...
knoppcnlem6 36493 Lemma for ~ knoppcn . (Co...
knoppcnlem7 36494 Lemma for ~ knoppcn . (Co...
knoppcnlem8 36495 Lemma for ~ knoppcn . (Co...
knoppcnlem9 36496 Lemma for ~ knoppcn . (Co...
knoppcnlem10 36497 Lemma for ~ knoppcn . (Co...
knoppcnlem11 36498 Lemma for ~ knoppcn . (Co...
knoppcn 36499 The continuous nowhere dif...
knoppcld 36500 Closure theorem for Knopp'...
unblimceq0lem 36501 Lemma for ~ unblimceq0 . ...
unblimceq0 36502 If ` F ` is unbounded near...
unbdqndv1 36503 If the difference quotient...
unbdqndv2lem1 36504 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 36505 Lemma for ~ unbdqndv2 . (...
unbdqndv2 36506 Variant of ~ unbdqndv1 wit...
knoppndvlem1 36507 Lemma for ~ knoppndv . (C...
knoppndvlem2 36508 Lemma for ~ knoppndv . (C...
knoppndvlem3 36509 Lemma for ~ knoppndv . (C...
knoppndvlem4 36510 Lemma for ~ knoppndv . (C...
knoppndvlem5 36511 Lemma for ~ knoppndv . (C...
knoppndvlem6 36512 Lemma for ~ knoppndv . (C...
knoppndvlem7 36513 Lemma for ~ knoppndv . (C...
knoppndvlem8 36514 Lemma for ~ knoppndv . (C...
knoppndvlem9 36515 Lemma for ~ knoppndv . (C...
knoppndvlem10 36516 Lemma for ~ knoppndv . (C...
knoppndvlem11 36517 Lemma for ~ knoppndv . (C...
knoppndvlem12 36518 Lemma for ~ knoppndv . (C...
knoppndvlem13 36519 Lemma for ~ knoppndv . (C...
knoppndvlem14 36520 Lemma for ~ knoppndv . (C...
knoppndvlem15 36521 Lemma for ~ knoppndv . (C...
knoppndvlem16 36522 Lemma for ~ knoppndv . (C...
knoppndvlem17 36523 Lemma for ~ knoppndv . (C...
knoppndvlem18 36524 Lemma for ~ knoppndv . (C...
knoppndvlem19 36525 Lemma for ~ knoppndv . (C...
knoppndvlem20 36526 Lemma for ~ knoppndv . (C...
knoppndvlem21 36527 Lemma for ~ knoppndv . (C...
knoppndvlem22 36528 Lemma for ~ knoppndv . (C...
knoppndv 36529 The continuous nowhere dif...
knoppf 36530 Knopp's function is a func...
knoppcn2 36531 Variant of ~ knoppcn with ...
cnndvlem1 36532 Lemma for ~ cnndv . (Cont...
cnndvlem2 36533 Lemma for ~ cnndv . (Cont...
cnndv 36534 There exists a continuous ...
bj-mp2c 36535 A double _modus ponens_ in...
bj-mp2d 36536 A double _modus ponens_ in...
bj-0 36537 A syntactic theorem. See ...
bj-1 36538 In this proof, the use of ...
bj-a1k 36539 Weakening of ~ ax-1 . As ...
bj-poni 36540 Inference associated with ...
bj-nnclav 36541 When ` F. ` is substituted...
bj-nnclavi 36542 Inference associated with ...
bj-nnclavc 36543 Commuted form of ~ bj-nncl...
bj-nnclavci 36544 Inference associated with ...
bj-jarrii 36545 Inference associated with ...
bj-imim21 36546 The propositional function...
bj-imim21i 36547 Inference associated with ...
bj-peircestab 36548 Over minimal implicational...
bj-stabpeirce 36549 This minimal implicational...
bj-syl66ib 36550 A mixed syllogism inferenc...
bj-orim2 36551 Proof of ~ orim2 from the ...
bj-currypeirce 36552 Curry's axiom ~ curryax (a...
bj-peircecurry 36553 Peirce's axiom ~ peirce im...
bj-animbi 36554 Conjunction in terms of im...
bj-currypara 36555 Curry's paradox. Note tha...
bj-con2com 36556 A commuted form of the con...
bj-con2comi 36557 Inference associated with ...
bj-nimn 36558 If a formula is true, then...
bj-nimni 36559 Inference associated with ...
bj-peircei 36560 Inference associated with ...
bj-looinvi 36561 Inference associated with ...
bj-looinvii 36562 Inference associated with ...
bj-mt2bi 36563 Version of ~ mt2 where the...
bj-ntrufal 36564 The negation of a theorem ...
bj-fal 36565 Shortening of ~ fal using ...
bj-jaoi1 36566 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 36567 Shortens ~ consensus (110>...
bj-dfbi4 36568 Alternate definition of th...
bj-dfbi5 36569 Alternate definition of th...
bj-dfbi6 36570 Alternate definition of th...
bj-bijust0ALT 36571 Alternate proof of ~ bijus...
bj-bijust00 36572 A self-implication does no...
bj-consensus 36573 Version of ~ consensus exp...
bj-consensusALT 36574 Alternate proof of ~ bj-co...
bj-df-ifc 36575 Candidate definition for t...
bj-dfif 36576 Alternate definition of th...
bj-ififc 36577 A biconditional connecting...
bj-imbi12 36578 Uncurried (imported) form ...
bj-falor 36579 Dual of ~ truan (which has...
bj-falor2 36580 Dual of ~ truan . (Contri...
bj-bibibi 36581 A property of the bicondit...
bj-imn3ani 36582 Duplication of ~ bnj1224 ....
bj-andnotim 36583 Two ways of expressing a c...
bj-bi3ant 36584 This used to be in the mai...
bj-bisym 36585 This used to be in the mai...
bj-bixor 36586 Equivalence of two ternary...
bj-axdd2 36587 This implication, proved u...
bj-axd2d 36588 This implication, proved u...
bj-axtd 36589 This implication, proved f...
bj-gl4 36590 In a normal modal logic, t...
bj-axc4 36591 Over minimal calculus, the...
prvlem1 36596 An elementary property of ...
prvlem2 36597 An elementary property of ...
bj-babygodel 36598 See the section header com...
bj-babylob 36599 See the section header com...
bj-godellob 36600 Proof of Gödel's theo...
bj-genr 36601 Generalization rule on the...
bj-genl 36602 Generalization rule on the...
bj-genan 36603 Generalization rule on a c...
bj-mpgs 36604 From a closed form theorem...
bj-2alim 36605 Closed form of ~ 2alimi . ...
bj-2exim 36606 Closed form of ~ 2eximi . ...
bj-alanim 36607 Closed form of ~ alanimi ....
bj-2albi 36608 Closed form of ~ 2albii . ...
bj-notalbii 36609 Equivalence of universal q...
bj-2exbi 36610 Closed form of ~ 2exbii . ...
bj-3exbi 36611 Closed form of ~ 3exbii . ...
bj-sylggt 36612 Stronger form of ~ sylgt ,...
bj-sylgt2 36613 Uncurried (imported) form ...
bj-alrimg 36614 The general form of the *a...
bj-alrimd 36615 A slightly more general ~ ...
bj-sylget 36616 Dual statement of ~ sylgt ...
bj-sylget2 36617 Uncurried (imported) form ...
bj-exlimg 36618 The general form of the *e...
bj-sylge 36619 Dual statement of ~ sylg (...
bj-exlimd 36620 A slightly more general ~ ...
bj-nfimexal 36621 A weak from of nonfreeness...
bj-alexim 36622 Closed form of ~ aleximi ....
bj-nexdh 36623 Closed form of ~ nexdh (ac...
bj-nexdh2 36624 Uncurried (imported) form ...
bj-hbxfrbi 36625 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 36626 Version of ~ bj-hbxfrbi wi...
bj-exalim 36627 Distribute quantifiers ove...
bj-exalimi 36628 An inference for distribut...
bj-exalims 36629 Distributing quantifiers o...
bj-exalimsi 36630 An inference for distribut...
bj-ax12ig 36631 A lemma used to prove a we...
bj-ax12i 36632 A weakening of ~ bj-ax12ig...
bj-nfimt 36633 Closed form of ~ nfim and ...
bj-cbvalimt 36634 A lemma in closed form use...
bj-cbveximt 36635 A lemma in closed form use...
bj-eximALT 36636 Alternate proof of ~ exim ...
bj-aleximiALT 36637 Alternate proof of ~ alexi...
bj-eximcom 36638 A commuted form of ~ exim ...
bj-ax12wlem 36639 A lemma used to prove a we...
bj-cbvalim 36640 A lemma used to prove ~ bj...
bj-cbvexim 36641 A lemma used to prove ~ bj...
bj-cbvalimi 36642 An equality-free general i...
bj-cbveximi 36643 An equality-free general i...
bj-cbval 36644 Changing a bound variable ...
bj-cbvex 36645 Changing a bound variable ...
bj-ssbeq 36648 Substitution in an equalit...
bj-ssblem1 36649 A lemma for the definiens ...
bj-ssblem2 36650 An instance of ~ ax-11 pro...
bj-ax12v 36651 A weaker form of ~ ax-12 a...
bj-ax12 36652 Remove a DV condition from...
bj-ax12ssb 36653 Axiom ~ bj-ax12 expressed ...
bj-19.41al 36654 Special case of ~ 19.41 pr...
bj-equsexval 36655 Special case of ~ equsexv ...
bj-subst 36656 Proof of ~ sbalex from cor...
bj-ssbid2 36657 A special case of ~ sbequ2...
bj-ssbid2ALT 36658 Alternate proof of ~ bj-ss...
bj-ssbid1 36659 A special case of ~ sbequ1...
bj-ssbid1ALT 36660 Alternate proof of ~ bj-ss...
bj-ax6elem1 36661 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 36662 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 36663 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 36664 Closed form of ~ spimvw . ...
bj-spnfw 36665 Theorem close to a closed ...
bj-cbvexiw 36666 Change bound variable. Th...
bj-cbvexivw 36667 Change bound variable. Th...
bj-modald 36668 A short form of the axiom ...
bj-denot 36669 A weakening of ~ ax-6 and ...
bj-eqs 36670 A lemma for substitutions,...
bj-cbvexw 36671 Change bound variable. Th...
bj-ax12w 36672 The general statement that...
bj-ax89 36673 A theorem which could be u...
bj-cleljusti 36674 One direction of ~ cleljus...
bj-alcomexcom 36675 Commutation of two existen...
bj-hbalt 36676 Closed form of ~ hbal . W...
axc11n11 36677 Proof of ~ axc11n from { ~...
axc11n11r 36678 Proof of ~ axc11n from { ~...
bj-axc16g16 36679 Proof of ~ axc16g from { ~...
bj-ax12v3 36680 A weak version of ~ ax-12 ...
bj-ax12v3ALT 36681 Alternate proof of ~ bj-ax...
bj-sb 36682 A weak variant of ~ sbid2 ...
bj-modalbe 36683 The predicate-calculus ver...
bj-spst 36684 Closed form of ~ sps . On...
bj-19.21bit 36685 Closed form of ~ 19.21bi ....
bj-19.23bit 36686 Closed form of ~ 19.23bi ....
bj-nexrt 36687 Closed form of ~ nexr . C...
bj-alrim 36688 Closed form of ~ alrimi . ...
bj-alrim2 36689 Uncurried (imported) form ...
bj-nfdt0 36690 A theorem close to a close...
bj-nfdt 36691 Closed form of ~ nf5d and ...
bj-nexdt 36692 Closed form of ~ nexd . (...
bj-nexdvt 36693 Closed form of ~ nexdv . ...
bj-alexbiex 36694 Adding a second quantifier...
bj-exexbiex 36695 Adding a second quantifier...
bj-alalbial 36696 Adding a second quantifier...
bj-exalbial 36697 Adding a second quantifier...
bj-19.9htbi 36698 Strengthening ~ 19.9ht by ...
bj-hbntbi 36699 Strengthening ~ hbnt by re...
bj-biexal1 36700 A general FOL biconditiona...
bj-biexal2 36701 When ` ph ` is substituted...
bj-biexal3 36702 When ` ph ` is substituted...
bj-bialal 36703 When ` ph ` is substituted...
bj-biexex 36704 When ` ph ` is substituted...
bj-hbext 36705 Closed form of ~ hbex . (...
bj-nfalt 36706 Closed form of ~ nfal . (...
bj-nfext 36707 Closed form of ~ nfex . (...
bj-eeanvw 36708 Version of ~ exdistrv with...
bj-modal4 36709 First-order logic form of ...
bj-modal4e 36710 First-order logic form of ...
bj-modalb 36711 A short form of the axiom ...
bj-wnf1 36712 When ` ph ` is substituted...
bj-wnf2 36713 When ` ph ` is substituted...
bj-wnfanf 36714 When ` ph ` is substituted...
bj-wnfenf 36715 When ` ph ` is substituted...
bj-substax12 36716 Equivalent form of the axi...
bj-substw 36717 Weak form of the LHS of ~ ...
bj-nnfbi 36720 If two formulas are equiva...
bj-nnfbd 36721 If two formulas are equiva...
bj-nnfbii 36722 If two formulas are equiva...
bj-nnfa 36723 Nonfreeness implies the eq...
bj-nnfad 36724 Nonfreeness implies the eq...
bj-nnfai 36725 Nonfreeness implies the eq...
bj-nnfe 36726 Nonfreeness implies the eq...
bj-nnfed 36727 Nonfreeness implies the eq...
bj-nnfei 36728 Nonfreeness implies the eq...
bj-nnfea 36729 Nonfreeness implies the eq...
bj-nnfead 36730 Nonfreeness implies the eq...
bj-nnfeai 36731 Nonfreeness implies the eq...
bj-dfnnf2 36732 Alternate definition of ~ ...
bj-nnfnfTEMP 36733 New nonfreeness implies ol...
bj-wnfnf 36734 When ` ph ` is substituted...
bj-nnfnt 36735 A variable is nonfree in a...
bj-nnftht 36736 A variable is nonfree in a...
bj-nnfth 36737 A variable is nonfree in a...
bj-nnfnth 36738 A variable is nonfree in t...
bj-nnfim1 36739 A consequence of nonfreene...
bj-nnfim2 36740 A consequence of nonfreene...
bj-nnfim 36741 Nonfreeness in the anteced...
bj-nnfimd 36742 Nonfreeness in the anteced...
bj-nnfan 36743 Nonfreeness in both conjun...
bj-nnfand 36744 Nonfreeness in both conjun...
bj-nnfor 36745 Nonfreeness in both disjun...
bj-nnford 36746 Nonfreeness in both disjun...
bj-nnfbit 36747 Nonfreeness in both sides ...
bj-nnfbid 36748 Nonfreeness in both sides ...
bj-nnfv 36749 A non-occurring variable i...
bj-nnf-alrim 36750 Proof of the closed form o...
bj-nnf-exlim 36751 Proof of the closed form o...
bj-dfnnf3 36752 Alternate definition of no...
bj-nfnnfTEMP 36753 New nonfreeness is equival...
bj-nnfa1 36754 See ~ nfa1 . (Contributed...
bj-nnfe1 36755 See ~ nfe1 . (Contributed...
bj-19.12 36756 See ~ 19.12 . Could be la...
bj-nnflemaa 36757 One of four lemmas for non...
bj-nnflemee 36758 One of four lemmas for non...
bj-nnflemae 36759 One of four lemmas for non...
bj-nnflemea 36760 One of four lemmas for non...
bj-nnfalt 36761 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 36762 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 36763 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 36764 Statement ~ 19.21t proved ...
bj-19.23t 36765 Statement ~ 19.23t proved ...
bj-19.36im 36766 One direction of ~ 19.36 f...
bj-19.37im 36767 One direction of ~ 19.37 f...
bj-19.42t 36768 Closed form of ~ 19.42 fro...
bj-19.41t 36769 Closed form of ~ 19.41 fro...
bj-sbft 36770 Version of ~ sbft using ` ...
bj-pm11.53vw 36771 Version of ~ pm11.53v with...
bj-pm11.53v 36772 Version of ~ pm11.53v with...
bj-pm11.53a 36773 A variant of ~ pm11.53v . ...
bj-equsvt 36774 A variant of ~ equsv . (C...
bj-equsalvwd 36775 Variant of ~ equsalvw . (...
bj-equsexvwd 36776 Variant of ~ equsexvw . (...
bj-sbievwd 36777 Variant of ~ sbievw . (Co...
bj-axc10 36778 Alternate proof of ~ axc10...
bj-alequex 36779 A fol lemma. See ~ aleque...
bj-spimt2 36780 A step in the proof of ~ s...
bj-cbv3ta 36781 Closed form of ~ cbv3 . (...
bj-cbv3tb 36782 Closed form of ~ cbv3 . (...
bj-hbsb3t 36783 A theorem close to a close...
bj-hbsb3 36784 Shorter proof of ~ hbsb3 ....
bj-nfs1t 36785 A theorem close to a close...
bj-nfs1t2 36786 A theorem close to a close...
bj-nfs1 36787 Shorter proof of ~ nfs1 (t...
bj-axc10v 36788 Version of ~ axc10 with a ...
bj-spimtv 36789 Version of ~ spimt with a ...
bj-cbv3hv2 36790 Version of ~ cbv3h with tw...
bj-cbv1hv 36791 Version of ~ cbv1h with a ...
bj-cbv2hv 36792 Version of ~ cbv2h with a ...
bj-cbv2v 36793 Version of ~ cbv2 with a d...
bj-cbvaldv 36794 Version of ~ cbvald with a...
bj-cbvexdv 36795 Version of ~ cbvexd with a...
bj-cbval2vv 36796 Version of ~ cbval2vv with...
bj-cbvex2vv 36797 Version of ~ cbvex2vv with...
bj-cbvaldvav 36798 Version of ~ cbvaldva with...
bj-cbvexdvav 36799 Version of ~ cbvexdva with...
bj-cbvex4vv 36800 Version of ~ cbvex4v with ...
bj-equsalhv 36801 Version of ~ equsalh with ...
bj-axc11nv 36802 Version of ~ axc11n with a...
bj-aecomsv 36803 Version of ~ aecoms with a...
bj-axc11v 36804 Version of ~ axc11 with a ...
bj-drnf2v 36805 Version of ~ drnf2 with a ...
bj-equs45fv 36806 Version of ~ equs45f with ...
bj-hbs1 36807 Version of ~ hbsb2 with a ...
bj-nfs1v 36808 Version of ~ nfsb2 with a ...
bj-hbsb2av 36809 Version of ~ hbsb2a with a...
bj-hbsb3v 36810 Version of ~ hbsb3 with a ...
bj-nfsab1 36811 Remove dependency on ~ ax-...
bj-dtrucor2v 36812 Version of ~ dtrucor2 with...
bj-hbaeb2 36813 Biconditional version of a...
bj-hbaeb 36814 Biconditional version of ~...
bj-hbnaeb 36815 Biconditional version of ~...
bj-dvv 36816 A special instance of ~ bj...
bj-equsal1t 36817 Duplication of ~ wl-equsal...
bj-equsal1ti 36818 Inference associated with ...
bj-equsal1 36819 One direction of ~ equsal ...
bj-equsal2 36820 One direction of ~ equsal ...
bj-equsal 36821 Shorter proof of ~ equsal ...
stdpc5t 36822 Closed form of ~ stdpc5 . ...
bj-stdpc5 36823 More direct proof of ~ std...
2stdpc5 36824 A double ~ stdpc5 (one dir...
bj-19.21t0 36825 Proof of ~ 19.21t from ~ s...
exlimii 36826 Inference associated with ...
ax11-pm 36827 Proof of ~ ax-11 similar t...
ax6er 36828 Commuted form of ~ ax6e . ...
exlimiieq1 36829 Inferring a theorem when i...
exlimiieq2 36830 Inferring a theorem when i...
ax11-pm2 36831 Proof of ~ ax-11 from the ...
bj-sbsb 36832 Biconditional showing two ...
bj-dfsb2 36833 Alternate (dual) definitio...
bj-sbf3 36834 Substitution has no effect...
bj-sbf4 36835 Substitution has no effect...
bj-eu3f 36836 Version of ~ eu3v where th...
bj-sblem1 36837 Lemma for substitution. (...
bj-sblem2 36838 Lemma for substitution. (...
bj-sblem 36839 Lemma for substitution. (...
bj-sbievw1 36840 Lemma for substitution. (...
bj-sbievw2 36841 Lemma for substitution. (...
bj-sbievw 36842 Lemma for substitution. C...
bj-sbievv 36843 Version of ~ sbie with a s...
bj-moeub 36844 Uniqueness is equivalent t...
bj-sbidmOLD 36845 Obsolete proof of ~ sbidm ...
bj-dvelimdv 36846 Deduction form of ~ dvelim...
bj-dvelimdv1 36847 Curried (exported) form of...
bj-dvelimv 36848 A version of ~ dvelim usin...
bj-nfeel2 36849 Nonfreeness in a membershi...
bj-axc14nf 36850 Proof of a version of ~ ax...
bj-axc14 36851 Alternate proof of ~ axc14...
mobidvALT 36852 Alternate proof of ~ mobid...
sbn1ALT 36853 Alternate proof of ~ sbn1 ...
eliminable1 36854 A theorem used to prove th...
eliminable2a 36855 A theorem used to prove th...
eliminable2b 36856 A theorem used to prove th...
eliminable2c 36857 A theorem used to prove th...
eliminable3a 36858 A theorem used to prove th...
eliminable3b 36859 A theorem used to prove th...
eliminable-velab 36860 A theorem used to prove th...
eliminable-veqab 36861 A theorem used to prove th...
eliminable-abeqv 36862 A theorem used to prove th...
eliminable-abeqab 36863 A theorem used to prove th...
eliminable-abelv 36864 A theorem used to prove th...
eliminable-abelab 36865 A theorem used to prove th...
bj-denoteslem 36866 Duplicate of ~ issettru an...
bj-denotesALTV 36867 Moved to main as ~ iseqset...
bj-issettruALTV 36868 Moved to main as ~ issettr...
bj-elabtru 36869 This is as close as we can...
bj-issetwt 36870 Closed form of ~ bj-issetw...
bj-issetw 36871 The closest one can get to...
bj-issetiv 36872 Version of ~ bj-isseti wit...
bj-isseti 36873 Version of ~ isseti with a...
bj-ralvw 36874 A weak version of ~ ralv n...
bj-rexvw 36875 A weak version of ~ rexv n...
bj-rababw 36876 A weak version of ~ rabab ...
bj-rexcom4bv 36877 Version of ~ rexcom4b and ...
bj-rexcom4b 36878 Remove from ~ rexcom4b dep...
bj-ceqsalt0 36879 The FOL content of ~ ceqsa...
bj-ceqsalt1 36880 The FOL content of ~ ceqsa...
bj-ceqsalt 36881 Remove from ~ ceqsalt depe...
bj-ceqsaltv 36882 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 36883 The FOL content of ~ ceqsa...
bj-ceqsalg 36884 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 36885 Alternate proof of ~ bj-ce...
bj-ceqsalgv 36886 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 36887 Alternate proof of ~ bj-ce...
bj-ceqsal 36888 Remove from ~ ceqsal depen...
bj-ceqsalv 36889 Remove from ~ ceqsalv depe...
bj-spcimdv 36890 Remove from ~ spcimdv depe...
bj-spcimdvv 36891 Remove from ~ spcimdv depe...
elelb 36892 Equivalence between two co...
bj-pwvrelb 36893 Characterization of the el...
bj-nfcsym 36894 The nonfreeness quantifier...
bj-sbeqALT 36895 Substitution in an equalit...
bj-sbeq 36896 Distribute proper substitu...
bj-sbceqgALT 36897 Distribute proper substitu...
bj-csbsnlem 36898 Lemma for ~ bj-csbsn (in t...
bj-csbsn 36899 Substitution in a singleto...
bj-sbel1 36900 Version of ~ sbcel1g when ...
bj-abv 36901 The class of sets verifyin...
bj-abvALT 36902 Alternate version of ~ bj-...
bj-ab0 36903 The class of sets verifyin...
bj-abf 36904 Shorter proof of ~ abf (wh...
bj-csbprc 36905 More direct proof of ~ csb...
bj-exlimvmpi 36906 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 36907 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 36908 Lemma for theorems of the ...
bj-exlimmpbir 36909 Lemma for theorems of the ...
bj-vtoclf 36910 Remove dependency on ~ ax-...
bj-vtocl 36911 Remove dependency on ~ ax-...
bj-vtoclg1f1 36912 The FOL content of ~ vtocl...
bj-vtoclg1f 36913 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 36914 Version of ~ bj-vtoclg1f w...
bj-vtoclg 36915 A version of ~ vtoclg with...
bj-rabeqbid 36916 Version of ~ rabeqbidv wit...
bj-seex 36917 Version of ~ seex with a d...
bj-nfcf 36918 Version of ~ df-nfc with a...
bj-zfauscl 36919 General version of ~ zfaus...
bj-elabd2ALT 36920 Alternate proof of ~ elabd...
bj-unrab 36921 Generalization of ~ unrab ...
bj-inrab 36922 Generalization of ~ inrab ...
bj-inrab2 36923 Shorter proof of ~ inrab ....
bj-inrab3 36924 Generalization of ~ dfrab3...
bj-rabtr 36925 Restricted class abstracti...
bj-rabtrALT 36926 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 36927 Proof of ~ bj-rabtr found ...
bj-gabss 36930 Inclusion of generalized c...
bj-gabssd 36931 Inclusion of generalized c...
bj-gabeqd 36932 Equality of generalized cl...
bj-gabeqis 36933 Equality of generalized cl...
bj-elgab 36934 Elements of a generalized ...
bj-gabima 36935 Generalized class abstract...
bj-ru1 36938 A version of Russell's par...
bj-ru 36939 Remove dependency on ~ ax-...
currysetlem 36940 Lemma for ~ currysetlem , ...
curryset 36941 Curry's paradox in set the...
currysetlem1 36942 Lemma for ~ currysetALT . ...
currysetlem2 36943 Lemma for ~ currysetALT . ...
currysetlem3 36944 Lemma for ~ currysetALT . ...
currysetALT 36945 Alternate proof of ~ curry...
bj-n0i 36946 Inference associated with ...
bj-disjsn01 36947 Disjointness of the single...
bj-0nel1 36948 The empty set does not bel...
bj-1nel0 36949 ` 1o ` does not belong to ...
bj-xpimasn 36950 The image of a singleton, ...
bj-xpima1sn 36951 The image of a singleton b...
bj-xpima1snALT 36952 Alternate proof of ~ bj-xp...
bj-xpima2sn 36953 The image of a singleton b...
bj-xpnzex 36954 If the first factor of a p...
bj-xpexg2 36955 Curried (exported) form of...
bj-xpnzexb 36956 If the first factor of a p...
bj-cleq 36957 Substitution property for ...
bj-snsetex 36958 The class of sets "whose s...
bj-clexab 36959 Sethood of certain classes...
bj-sngleq 36962 Substitution property for ...
bj-elsngl 36963 Characterization of the el...
bj-snglc 36964 Characterization of the el...
bj-snglss 36965 The singletonization of a ...
bj-0nelsngl 36966 The empty set is not a mem...
bj-snglinv 36967 Inverse of singletonizatio...
bj-snglex 36968 A class is a set if and on...
bj-tageq 36971 Substitution property for ...
bj-eltag 36972 Characterization of the el...
bj-0eltag 36973 The empty set belongs to t...
bj-tagn0 36974 The tagging of a class is ...
bj-tagss 36975 The tagging of a class is ...
bj-snglsstag 36976 The singletonization is in...
bj-sngltagi 36977 The singletonization is in...
bj-sngltag 36978 The singletonization and t...
bj-tagci 36979 Characterization of the el...
bj-tagcg 36980 Characterization of the el...
bj-taginv 36981 Inverse of tagging. (Cont...
bj-tagex 36982 A class is a set if and on...
bj-xtageq 36983 The products of a given cl...
bj-xtagex 36984 The product of a set and t...
bj-projeq 36987 Substitution property for ...
bj-projeq2 36988 Substitution property for ...
bj-projun 36989 The class projection on a ...
bj-projex 36990 Sethood of the class proje...
bj-projval 36991 Value of the class project...
bj-1upleq 36994 Substitution property for ...
bj-pr1eq 36997 Substitution property for ...
bj-pr1un 36998 The first projection prese...
bj-pr1val 36999 Value of the first project...
bj-pr11val 37000 Value of the first project...
bj-pr1ex 37001 Sethood of the first proje...
bj-1uplth 37002 The characteristic propert...
bj-1uplex 37003 A monuple is a set if and ...
bj-1upln0 37004 A monuple is nonempty. (C...
bj-2upleq 37007 Substitution property for ...
bj-pr21val 37008 Value of the first project...
bj-pr2eq 37011 Substitution property for ...
bj-pr2un 37012 The second projection pres...
bj-pr2val 37013 Value of the second projec...
bj-pr22val 37014 Value of the second projec...
bj-pr2ex 37015 Sethood of the second proj...
bj-2uplth 37016 The characteristic propert...
bj-2uplex 37017 A couple is a set if and o...
bj-2upln0 37018 A couple is nonempty. (Co...
bj-2upln1upl 37019 A couple is never equal to...
bj-rcleqf 37020 Relative version of ~ cleq...
bj-rcleq 37021 Relative version of ~ dfcl...
bj-reabeq 37022 Relative form of ~ eqabb ....
bj-disj2r 37023 Relative version of ~ ssdi...
bj-sscon 37024 Contraposition law for rel...
bj-abex 37025 Two ways of stating that t...
bj-clex 37026 Two ways of stating that a...
bj-axsn 37027 Two ways of stating the ax...
bj-snexg 37029 A singleton built on a set...
bj-snex 37030 A singleton is a set. See...
bj-axbun 37031 Two ways of stating the ax...
bj-unexg 37033 Existence of binary unions...
bj-prexg 37034 Existence of unordered pai...
bj-prex 37035 Existence of unordered pai...
bj-axadj 37036 Two ways of stating the ax...
bj-adjg1 37038 Existence of the result of...
bj-snfromadj 37039 Singleton from adjunction ...
bj-prfromadj 37040 Unordered pair from adjunc...
bj-adjfrombun 37041 Adjunction from singleton ...
eleq2w2ALT 37042 Alternate proof of ~ eleq2...
bj-clel3gALT 37043 Alternate proof of ~ clel3...
bj-pw0ALT 37044 Alternate proof of ~ pw0 ....
bj-sselpwuni 37045 Quantitative version of ~ ...
bj-unirel 37046 Quantitative version of ~ ...
bj-elpwg 37047 If the intersection of two...
bj-velpwALT 37048 This theorem ~ bj-velpwALT...
bj-elpwgALT 37049 Alternate proof of ~ elpwg...
bj-vjust 37050 Justification theorem for ...
bj-nul 37051 Two formulations of the ax...
bj-nuliota 37052 Definition of the empty se...
bj-nuliotaALT 37053 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 37054 Alternate proof of ~ vtocl...
bj-elsn12g 37055 Join of ~ elsng and ~ elsn...
bj-elsnb 37056 Biconditional version of ~...
bj-pwcfsdom 37057 Remove hypothesis from ~ p...
bj-grur1 37058 Remove hypothesis from ~ g...
bj-bm1.3ii 37059 The extension of a predica...
bj-dfid2ALT 37060 Alternate version of ~ dfi...
bj-0nelopab 37061 The empty set is never an ...
bj-brrelex12ALT 37062 Two classes related by a b...
bj-epelg 37063 The membership relation an...
bj-epelb 37064 Two classes are related by...
bj-nsnid 37065 A set does not contain the...
bj-rdg0gALT 37066 Alternate proof of ~ rdg0g...
bj-evaleq 37067 Equality theorem for the `...
bj-evalfun 37068 The evaluation at a class ...
bj-evalfn 37069 The evaluation at a class ...
bj-evalval 37070 Value of the evaluation at...
bj-evalid 37071 The evaluation at a set of...
bj-ndxarg 37072 Proof of ~ ndxarg from ~ b...
bj-evalidval 37073 Closed general form of ~ s...
bj-rest00 37076 An elementwise intersectio...
bj-restsn 37077 An elementwise intersectio...
bj-restsnss 37078 Special case of ~ bj-rests...
bj-restsnss2 37079 Special case of ~ bj-rests...
bj-restsn0 37080 An elementwise intersectio...
bj-restsn10 37081 Special case of ~ bj-rests...
bj-restsnid 37082 The elementwise intersecti...
bj-rest10 37083 An elementwise intersectio...
bj-rest10b 37084 Alternate version of ~ bj-...
bj-restn0 37085 An elementwise intersectio...
bj-restn0b 37086 Alternate version of ~ bj-...
bj-restpw 37087 The elementwise intersecti...
bj-rest0 37088 An elementwise intersectio...
bj-restb 37089 An elementwise intersectio...
bj-restv 37090 An elementwise intersectio...
bj-resta 37091 An elementwise intersectio...
bj-restuni 37092 The union of an elementwis...
bj-restuni2 37093 The union of an elementwis...
bj-restreg 37094 A reformulation of the axi...
bj-raldifsn 37095 All elements in a set sati...
bj-0int 37096 If ` A ` is a collection o...
bj-mooreset 37097 A Moore collection is a se...
bj-ismoore 37100 Characterization of Moore ...
bj-ismoored0 37101 Necessary condition to be ...
bj-ismoored 37102 Necessary condition to be ...
bj-ismoored2 37103 Necessary condition to be ...
bj-ismooredr 37104 Sufficient condition to be...
bj-ismooredr2 37105 Sufficient condition to be...
bj-discrmoore 37106 The powerclass ` ~P A ` is...
bj-0nmoore 37107 The empty set is not a Moo...
bj-snmoore 37108 A singleton is a Moore col...
bj-snmooreb 37109 A singleton is a Moore col...
bj-prmoore 37110 A pair formed of two neste...
bj-0nelmpt 37111 The empty set is not an el...
bj-mptval 37112 Value of a function given ...
bj-dfmpoa 37113 An equivalent definition o...
bj-mpomptALT 37114 Alternate proof of ~ mpomp...
setsstrset 37131 Relation between ~ df-sets...
bj-nfald 37132 Variant of ~ nfald . (Con...
bj-nfexd 37133 Variant of ~ nfexd . (Con...
copsex2d 37134 Implicit substitution dedu...
copsex2b 37135 Biconditional form of ~ co...
opelopabd 37136 Membership of an ordere pa...
opelopabb 37137 Membership of an ordered p...
opelopabbv 37138 Membership of an ordered p...
bj-opelrelex 37139 The coordinates of an orde...
bj-opelresdm 37140 If an ordered pair is in a...
bj-brresdm 37141 If two classes are related...
brabd0 37142 Expressing that two sets a...
brabd 37143 Expressing that two sets a...
bj-brab2a1 37144 "Unbounded" version of ~ b...
bj-opabssvv 37145 A variant of ~ relopabiv (...
bj-funidres 37146 The restricted identity re...
bj-opelidb 37147 Characterization of the or...
bj-opelidb1 37148 Characterization of the or...
bj-inexeqex 37149 Lemma for ~ bj-opelid (but...
bj-elsn0 37150 If the intersection of two...
bj-opelid 37151 Characterization of the or...
bj-ideqg 37152 Characterization of the cl...
bj-ideqgALT 37153 Alternate proof of ~ bj-id...
bj-ideqb 37154 Characterization of classe...
bj-idres 37155 Alternate expression for t...
bj-opelidres 37156 Characterization of the or...
bj-idreseq 37157 Sufficient condition for t...
bj-idreseqb 37158 Characterization for two c...
bj-ideqg1 37159 For sets, the identity rel...
bj-ideqg1ALT 37160 Alternate proof of bj-ideq...
bj-opelidb1ALT 37161 Characterization of the co...
bj-elid3 37162 Characterization of the co...
bj-elid4 37163 Characterization of the el...
bj-elid5 37164 Characterization of the el...
bj-elid6 37165 Characterization of the el...
bj-elid7 37166 Characterization of the el...
bj-diagval 37169 Value of the functionalize...
bj-diagval2 37170 Value of the functionalize...
bj-eldiag 37171 Characterization of the el...
bj-eldiag2 37172 Characterization of the el...
bj-imdirvallem 37175 Lemma for ~ bj-imdirval an...
bj-imdirval 37176 Value of the functionalize...
bj-imdirval2lem 37177 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 37178 Value of the functionalize...
bj-imdirval3 37179 Value of the functionalize...
bj-imdiridlem 37180 Lemma for ~ bj-imdirid and...
bj-imdirid 37181 Functorial property of the...
bj-opelopabid 37182 Membership in an ordered-p...
bj-opabco 37183 Composition of ordered-pai...
bj-xpcossxp 37184 The composition of two Car...
bj-imdirco 37185 Functorial property of the...
bj-iminvval 37188 Value of the functionalize...
bj-iminvval2 37189 Value of the functionalize...
bj-iminvid 37190 Functorial property of the...
bj-inftyexpitaufo 37197 The function ` inftyexpita...
bj-inftyexpitaudisj 37200 An element of the circle a...
bj-inftyexpiinv 37203 Utility theorem for the in...
bj-inftyexpiinj 37204 Injectivity of the paramet...
bj-inftyexpidisj 37205 An element of the circle a...
bj-ccinftydisj 37208 The circle at infinity is ...
bj-elccinfty 37209 A lemma for infinite exten...
bj-ccssccbar 37212 Complex numbers are extend...
bj-ccinftyssccbar 37213 Infinite extended complex ...
bj-pinftyccb 37216 The class ` pinfty ` is an...
bj-pinftynrr 37217 The extended complex numbe...
bj-minftyccb 37220 The class ` minfty ` is an...
bj-minftynrr 37221 The extended complex numbe...
bj-pinftynminfty 37222 The extended complex numbe...
bj-rrhatsscchat 37231 The real projective line i...
bj-imafv 37246 If the direct image of a s...
bj-funun 37247 Value of a function expres...
bj-fununsn1 37248 Value of a function expres...
bj-fununsn2 37249 Value of a function expres...
bj-fvsnun1 37250 The value of a function wi...
bj-fvsnun2 37251 The value of a function wi...
bj-fvmptunsn1 37252 Value of a function expres...
bj-fvmptunsn2 37253 Value of a function expres...
bj-iomnnom 37254 The canonical bijection fr...
bj-smgrpssmgm 37263 Semigroups are magmas. (C...
bj-smgrpssmgmel 37264 Semigroups are magmas (ele...
bj-mndsssmgrp 37265 Monoids are semigroups. (...
bj-mndsssmgrpel 37266 Monoids are semigroups (el...
bj-cmnssmnd 37267 Commutative monoids are mo...
bj-cmnssmndel 37268 Commutative monoids are mo...
bj-grpssmnd 37269 Groups are monoids. (Cont...
bj-grpssmndel 37270 Groups are monoids (elemen...
bj-ablssgrp 37271 Abelian groups are groups....
bj-ablssgrpel 37272 Abelian groups are groups ...
bj-ablsscmn 37273 Abelian groups are commuta...
bj-ablsscmnel 37274 Abelian groups are commuta...
bj-modssabl 37275 (The additive groups of) m...
bj-vecssmod 37276 Vector spaces are modules....
bj-vecssmodel 37277 Vector spaces are modules ...
bj-finsumval0 37280 Value of a finite sum. (C...
bj-fvimacnv0 37281 Variant of ~ fvimacnv wher...
bj-isvec 37282 The predicate "is a vector...
bj-fldssdrng 37283 Fields are division rings....
bj-flddrng 37284 Fields are division rings ...
bj-rrdrg 37285 The field of real numbers ...
bj-isclm 37286 The predicate "is a subcom...
bj-isrvec 37289 The predicate "is a real v...
bj-rvecmod 37290 Real vector spaces are mod...
bj-rvecssmod 37291 Real vector spaces are mod...
bj-rvecrr 37292 The field of scalars of a ...
bj-isrvecd 37293 The predicate "is a real v...
bj-rvecvec 37294 Real vector spaces are vec...
bj-isrvec2 37295 The predicate "is a real v...
bj-rvecssvec 37296 Real vector spaces are vec...
bj-rveccmod 37297 Real vector spaces are sub...
bj-rvecsscmod 37298 Real vector spaces are sub...
bj-rvecsscvec 37299 Real vector spaces are sub...
bj-rveccvec 37300 Real vector spaces are sub...
bj-rvecssabl 37301 (The additive groups of) r...
bj-rvecabl 37302 (The additive groups of) r...
bj-subcom 37303 A consequence of commutati...
bj-lineqi 37304 Solution of a (scalar) lin...
bj-bary1lem 37305 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 37306 Lemma for ~ bj-bary1 : com...
bj-bary1 37307 Barycentric coordinates in...
bj-endval 37310 Value of the monoid of end...
bj-endbase 37311 Base set of the monoid of ...
bj-endcomp 37312 Composition law of the mon...
bj-endmnd 37313 The monoid of endomorphism...
taupilem3 37314 Lemma for tau-related theo...
taupilemrplb 37315 A set of positive reals ha...
taupilem1 37316 Lemma for ~ taupi . A pos...
taupilem2 37317 Lemma for ~ taupi . The s...
taupi 37318 Relationship between ` _ta...
dfgcd3 37319 Alternate definition of th...
irrdifflemf 37320 Lemma for ~ irrdiff . The...
irrdiff 37321 The irrationals are exactl...
iccioo01 37322 The closed unit interval i...
csbrecsg 37323 Move class substitution in...
csbrdgg 37324 Move class substitution in...
csboprabg 37325 Move class substitution in...
csbmpo123 37326 Move class substitution in...
con1bii2 37327 A contraposition inference...
con2bii2 37328 A contraposition inference...
vtoclefex 37329 Implicit substitution of a...
rnmptsn 37330 The range of a function ma...
f1omptsnlem 37331 This is the core of the pr...
f1omptsn 37332 A function mapping to sing...
mptsnunlem 37333 This is the core of the pr...
mptsnun 37334 A class ` B ` is equal to ...
dissneqlem 37335 This is the core of the pr...
dissneq 37336 Any topology that contains...
exlimim 37337 Closed form of ~ exlimimd ...
exlimimd 37338 Existential elimination ru...
exellim 37339 Closed form of ~ exellimdd...
exellimddv 37340 Eliminate an antecedent wh...
topdifinfindis 37341 Part of Exercise 3 of [Mun...
topdifinffinlem 37342 This is the core of the pr...
topdifinffin 37343 Part of Exercise 3 of [Mun...
topdifinf 37344 Part of Exercise 3 of [Mun...
topdifinfeq 37345 Two different ways of defi...
icorempo 37346 Closed-below, open-above i...
icoreresf 37347 Closed-below, open-above i...
icoreval 37348 Value of the closed-below,...
icoreelrnab 37349 Elementhood in the set of ...
isbasisrelowllem1 37350 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 37351 Lemma for ~ isbasisrelowl ...
icoreclin 37352 The set of closed-below, o...
isbasisrelowl 37353 The set of all closed-belo...
icoreunrn 37354 The union of all closed-be...
istoprelowl 37355 The set of all closed-belo...
icoreelrn 37356 A class abstraction which ...
iooelexlt 37357 An element of an open inte...
relowlssretop 37358 The lower limit topology o...
relowlpssretop 37359 The lower limit topology o...
sucneqond 37360 Inequality of an ordinal s...
sucneqoni 37361 Inequality of an ordinal s...
onsucuni3 37362 If an ordinal number has a...
1oequni2o 37363 The ordinal number ` 1o ` ...
rdgsucuni 37364 If an ordinal number has a...
rdgeqoa 37365 If a recursive function wi...
elxp8 37366 Membership in a Cartesian ...
cbveud 37367 Deduction used to change b...
cbvreud 37368 Deduction used to change b...
difunieq 37369 The difference of unions i...
inunissunidif 37370 Theorem about subsets of t...
rdgellim 37371 Elementhood in a recursive...
rdglimss 37372 A recursive definition at ...
rdgssun 37373 In a recursive definition ...
exrecfnlem 37374 Lemma for ~ exrecfn . (Co...
exrecfn 37375 Theorem about the existenc...
exrecfnpw 37376 For any base set, a set wh...
finorwe 37377 If the Axiom of Infinity i...
dffinxpf 37380 This theorem is the same a...
finxpeq1 37381 Equality theorem for Carte...
finxpeq2 37382 Equality theorem for Carte...
csbfinxpg 37383 Distribute proper substitu...
finxpreclem1 37384 Lemma for ` ^^ ` recursion...
finxpreclem2 37385 Lemma for ` ^^ ` recursion...
finxp0 37386 The value of Cartesian exp...
finxp1o 37387 The value of Cartesian exp...
finxpreclem3 37388 Lemma for ` ^^ ` recursion...
finxpreclem4 37389 Lemma for ` ^^ ` recursion...
finxpreclem5 37390 Lemma for ` ^^ ` recursion...
finxpreclem6 37391 Lemma for ` ^^ ` recursion...
finxpsuclem 37392 Lemma for ~ finxpsuc . (C...
finxpsuc 37393 The value of Cartesian exp...
finxp2o 37394 The value of Cartesian exp...
finxp3o 37395 The value of Cartesian exp...
finxpnom 37396 Cartesian exponentiation w...
finxp00 37397 Cartesian exponentiation o...
iunctb2 37398 Using the axiom of countab...
domalom 37399 A class which dominates ev...
isinf2 37400 The converse of ~ isinf . ...
ctbssinf 37401 Using the axiom of choice,...
ralssiun 37402 The index set of an indexe...
nlpineqsn 37403 For every point ` p ` of a...
nlpfvineqsn 37404 Given a subset ` A ` of ` ...
fvineqsnf1 37405 A theorem about functions ...
fvineqsneu 37406 A theorem about functions ...
fvineqsneq 37407 A theorem about functions ...
pibp16 37408 Property P000016 of pi-bas...
pibp19 37409 Property P000019 of pi-bas...
pibp21 37410 Property P000021 of pi-bas...
pibt1 37411 Theorem T000001 of pi-base...
pibt2 37412 Theorem T000002 of pi-base...
wl-section-prop 37413 Intuitionistic logic is no...
wl-section-boot 37417 In this section, I provide...
wl-luk-imim1i 37418 Inference adding common co...
wl-luk-syl 37419 An inference version of th...
wl-luk-imtrid 37420 A syllogism rule of infere...
wl-luk-pm2.18d 37421 Deduction based on reducti...
wl-luk-con4i 37422 Inference rule. Copy of ~...
wl-luk-pm2.24i 37423 Inference rule. Copy of ~...
wl-luk-a1i 37424 Inference rule. Copy of ~...
wl-luk-mpi 37425 A nested _modus ponens_ in...
wl-luk-imim2i 37426 Inference adding common an...
wl-luk-imtrdi 37427 A syllogism rule of infere...
wl-luk-ax3 37428 ~ ax-3 proved from Lukasie...
wl-luk-ax1 37429 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 37430 This theorem, called "Asse...
wl-luk-com12 37431 Inference that swaps (comm...
wl-luk-pm2.21 37432 From a wff and its negatio...
wl-luk-con1i 37433 A contraposition inference...
wl-luk-ja 37434 Inference joining the ante...
wl-luk-imim2 37435 A closed form of syllogism...
wl-luk-a1d 37436 Deduction introducing an e...
wl-luk-ax2 37437 ~ ax-2 proved from Lukasie...
wl-luk-id 37438 Principle of identity. Th...
wl-luk-notnotr 37439 Converse of double negatio...
wl-luk-pm2.04 37440 Swap antecedents. Theorem...
wl-section-impchain 37441 An implication like ` ( ps...
wl-impchain-mp-x 37442 This series of theorems pr...
wl-impchain-mp-0 37443 This theorem is the start ...
wl-impchain-mp-1 37444 This theorem is in fact a ...
wl-impchain-mp-2 37445 This theorem is in fact a ...
wl-impchain-com-1.x 37446 It is often convenient to ...
wl-impchain-com-1.1 37447 A degenerate form of antec...
wl-impchain-com-1.2 37448 This theorem is in fact a ...
wl-impchain-com-1.3 37449 This theorem is in fact a ...
wl-impchain-com-1.4 37450 This theorem is in fact a ...
wl-impchain-com-n.m 37451 This series of theorems al...
wl-impchain-com-2.3 37452 This theorem is in fact a ...
wl-impchain-com-2.4 37453 This theorem is in fact a ...
wl-impchain-com-3.2.1 37454 This theorem is in fact a ...
wl-impchain-a1-x 37455 If an implication chain is...
wl-impchain-a1-1 37456 Inference rule, a copy of ...
wl-impchain-a1-2 37457 Inference rule, a copy of ...
wl-impchain-a1-3 37458 Inference rule, a copy of ...
wl-ifp-ncond1 37459 If one case of an ` if- ` ...
wl-ifp-ncond2 37460 If one case of an ` if- ` ...
wl-ifpimpr 37461 If one case of an ` if- ` ...
wl-ifp4impr 37462 If one case of an ` if- ` ...
wl-df-3xor 37463 Alternative definition of ...
wl-df3xor2 37464 Alternative definition of ...
wl-df3xor3 37465 Alternative form of ~ wl-d...
wl-3xortru 37466 If the first input is true...
wl-3xorfal 37467 If the first input is fals...
wl-3xorbi 37468 Triple xor can be replaced...
wl-3xorbi2 37469 Alternative form of ~ wl-3...
wl-3xorbi123d 37470 Equivalence theorem for tr...
wl-3xorbi123i 37471 Equivalence theorem for tr...
wl-3xorrot 37472 Rotation law for triple xo...
wl-3xorcoma 37473 Commutative law for triple...
wl-3xorcomb 37474 Commutative law for triple...
wl-3xornot1 37475 Flipping the first input f...
wl-3xornot 37476 Triple xor distributes ove...
wl-1xor 37477 In the recursive scheme ...
wl-2xor 37478 In the recursive scheme ...
wl-df-3mintru2 37479 Alternative definition of ...
wl-df2-3mintru2 37480 The adder carry in disjunc...
wl-df3-3mintru2 37481 The adder carry in conjunc...
wl-df4-3mintru2 37482 An alternative definition ...
wl-1mintru1 37483 Using the recursion formul...
wl-1mintru2 37484 Using the recursion formul...
wl-2mintru1 37485 Using the recursion formul...
wl-2mintru2 37486 Using the recursion formul...
wl-df3maxtru1 37487 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 37489 A version of ~ ax-wl-13v w...
wl-cleq-0 37490
Disclaimer:
wl-cleq-1 37491
Disclaimer:
wl-cleq-2 37492
Disclaimer:
wl-cleq-3 37493
Disclaimer:
wl-cleq-4 37494
Disclaimer:
wl-cleq-5 37495
Disclaimer:
wl-cleq-6 37496
Disclaimer:
wl-df-clab 37499 Disclaimer: The material ...
wl-isseteq 37500 A class equal to a set var...
wl-ax12v2cl 37501 The class version of ~ ax1...
wl-mps 37502 Replacing a nested consequ...
wl-syls1 37503 Replacing a nested consequ...
wl-syls2 37504 Replacing a nested anteced...
wl-embant 37505 A true wff can always be a...
wl-orel12 37506 In a conjunctive normal fo...
wl-cases2-dnf 37507 A particular instance of ~...
wl-cbvmotv 37508 Change bound variable. Us...
wl-moteq 37509 Change bound variable. Us...
wl-motae 37510 Change bound variable. Us...
wl-moae 37511 Two ways to express "at mo...
wl-euae 37512 Two ways to express "exact...
wl-nax6im 37513 The following series of th...
wl-hbae1 37514 This specialization of ~ h...
wl-naevhba1v 37515 An instance of ~ hbn1w app...
wl-spae 37516 Prove an instance of ~ sp ...
wl-speqv 37517 Under the assumption ` -. ...
wl-19.8eqv 37518 Under the assumption ` -. ...
wl-19.2reqv 37519 Under the assumption ` -. ...
wl-nfalv 37520 If ` x ` is not present in...
wl-nfimf1 37521 An antecedent is irrelevan...
wl-nfae1 37522 Unlike ~ nfae , this speci...
wl-nfnae1 37523 Unlike ~ nfnae , this spec...
wl-aetr 37524 A transitive law for varia...
wl-axc11r 37525 Same as ~ axc11r , but usi...
wl-dral1d 37526 A version of ~ dral1 with ...
wl-cbvalnaed 37527 ~ wl-cbvalnae with a conte...
wl-cbvalnae 37528 A more general version of ...
wl-exeq 37529 The semantics of ` E. x y ...
wl-aleq 37530 The semantics of ` A. x y ...
wl-nfeqfb 37531 Extend ~ nfeqf to an equiv...
wl-nfs1t 37532 If ` y ` is not free in ` ...
wl-equsalvw 37533 Version of ~ equsalv with ...
wl-equsald 37534 Deduction version of ~ equ...
wl-equsaldv 37535 Deduction version of ~ equ...
wl-equsal 37536 A useful equivalence relat...
wl-equsal1t 37537 The expression ` x = y ` i...
wl-equsalcom 37538 This simple equivalence ea...
wl-equsal1i 37539 The antecedent ` x = y ` i...
wl-sbid2ft 37540 A more general version of ...
wl-cbvalsbi 37541 Change bounded variables i...
wl-sbrimt 37542 Substitution with a variab...
wl-sblimt 37543 Substitution with a variab...
wl-sb9v 37544 Commutation of quantificat...
wl-sb8ft 37545 Substitution of variable i...
wl-sb8eft 37546 Substitution of variable i...
wl-sb8t 37547 Substitution of variable i...
wl-sb8et 37548 Substitution of variable i...
wl-sbhbt 37549 Closed form of ~ sbhb . C...
wl-sbnf1 37550 Two ways expressing that `...
wl-equsb3 37551 ~ equsb3 with a distinctor...
wl-equsb4 37552 Substitution applied to an...
wl-2sb6d 37553 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 37554 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 37555 Lemma used to prove ~ wl-s...
wl-sbcom2d 37556 Version of ~ sbcom2 with a...
wl-sbalnae 37557 A theorem used in eliminat...
wl-sbal1 37558 A theorem used in eliminat...
wl-sbal2 37559 Move quantifier in and out...
wl-2spsbbi 37560 ~ spsbbi applied twice. (...
wl-lem-exsb 37561 This theorem provides a ba...
wl-lem-nexmo 37562 This theorem provides a ba...
wl-lem-moexsb 37563 The antecedent ` A. x ( ph...
wl-alanbii 37564 This theorem extends ~ ala...
wl-mo2df 37565 Version of ~ mof with a co...
wl-mo2tf 37566 Closed form of ~ mof with ...
wl-eudf 37567 Version of ~ eu6 with a co...
wl-eutf 37568 Closed form of ~ eu6 with ...
wl-euequf 37569 ~ euequ proved with a dist...
wl-mo2t 37570 Closed form of ~ mof . (C...
wl-mo3t 37571 Closed form of ~ mo3 . (C...
wl-nfsbtv 37572 Closed form of ~ nfsbv . ...
wl-sb8eut 37573 Substitution of variable i...
wl-sb8eutv 37574 Substitution of variable i...
wl-sb8mot 37575 Substitution of variable i...
wl-sb8motv 37576 Substitution of variable i...
wl-issetft 37577 A closed form of ~ issetf ...
wl-axc11rc11 37578 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 37580 A transitive law for varia...
wl-ax11-lem2 37581 Lemma. (Contributed by Wo...
wl-ax11-lem3 37582 Lemma. (Contributed by Wo...
wl-ax11-lem4 37583 Lemma. (Contributed by Wo...
wl-ax11-lem5 37584 Lemma. (Contributed by Wo...
wl-ax11-lem6 37585 Lemma. (Contributed by Wo...
wl-ax11-lem7 37586 Lemma. (Contributed by Wo...
wl-ax11-lem8 37587 Lemma. (Contributed by Wo...
wl-ax11-lem9 37588 The easy part when ` x ` c...
wl-ax11-lem10 37589 We now have prepared every...
wl-clabv 37590 Variant of ~ df-clab , whe...
wl-dfclab 37591 Rederive ~ df-clab from ~ ...
wl-clabtv 37592 Using class abstraction in...
wl-clabt 37593 Using class abstraction in...
rabiun 37594 Abstraction restricted to ...
iundif1 37595 Indexed union of class dif...
imadifss 37596 The difference of images i...
cureq 37597 Equality theorem for curry...
unceq 37598 Equality theorem for uncur...
curf 37599 Functional property of cur...
uncf 37600 Functional property of unc...
curfv 37601 Value of currying. (Contr...
uncov 37602 Value of uncurrying. (Con...
curunc 37603 Currying of uncurrying. (...
unccur 37604 Uncurrying of currying. (...
phpreu 37605 Theorem related to pigeonh...
finixpnum 37606 A finite Cartesian product...
fin2solem 37607 Lemma for ~ fin2so . (Con...
fin2so 37608 Any totally ordered Tarski...
ltflcei 37609 Theorem to move the floor ...
leceifl 37610 Theorem to move the floor ...
sin2h 37611 Half-angle rule for sine. ...
cos2h 37612 Half-angle rule for cosine...
tan2h 37613 Half-angle rule for tangen...
lindsadd 37614 In a vector space, the uni...
lindsdom 37615 A linearly independent set...
lindsenlbs 37616 A maximal linearly indepen...
matunitlindflem1 37617 One direction of ~ matunit...
matunitlindflem2 37618 One direction of ~ matunit...
matunitlindf 37619 A matrix over a field is i...
ptrest 37620 Expressing a restriction o...
ptrecube 37621 Any point in an open set o...
poimirlem1 37622 Lemma for ~ poimir - the v...
poimirlem2 37623 Lemma for ~ poimir - conse...
poimirlem3 37624 Lemma for ~ poimir to add ...
poimirlem4 37625 Lemma for ~ poimir connect...
poimirlem5 37626 Lemma for ~ poimir to esta...
poimirlem6 37627 Lemma for ~ poimir establi...
poimirlem7 37628 Lemma for ~ poimir , simil...
poimirlem8 37629 Lemma for ~ poimir , estab...
poimirlem9 37630 Lemma for ~ poimir , estab...
poimirlem10 37631 Lemma for ~ poimir establi...
poimirlem11 37632 Lemma for ~ poimir connect...
poimirlem12 37633 Lemma for ~ poimir connect...
poimirlem13 37634 Lemma for ~ poimir - for a...
poimirlem14 37635 Lemma for ~ poimir - for a...
poimirlem15 37636 Lemma for ~ poimir , that ...
poimirlem16 37637 Lemma for ~ poimir establi...
poimirlem17 37638 Lemma for ~ poimir establi...
poimirlem18 37639 Lemma for ~ poimir stating...
poimirlem19 37640 Lemma for ~ poimir establi...
poimirlem20 37641 Lemma for ~ poimir establi...
poimirlem21 37642 Lemma for ~ poimir stating...
poimirlem22 37643 Lemma for ~ poimir , that ...
poimirlem23 37644 Lemma for ~ poimir , two w...
poimirlem24 37645 Lemma for ~ poimir , two w...
poimirlem25 37646 Lemma for ~ poimir stating...
poimirlem26 37647 Lemma for ~ poimir showing...
poimirlem27 37648 Lemma for ~ poimir showing...
poimirlem28 37649 Lemma for ~ poimir , a var...
poimirlem29 37650 Lemma for ~ poimir connect...
poimirlem30 37651 Lemma for ~ poimir combini...
poimirlem31 37652 Lemma for ~ poimir , assig...
poimirlem32 37653 Lemma for ~ poimir , combi...
poimir 37654 Poincare-Miranda theorem. ...
broucube 37655 Brouwer - or as Kulpa call...
heicant 37656 Heine-Cantor theorem: a co...
opnmbllem0 37657 Lemma for ~ ismblfin ; cou...
mblfinlem1 37658 Lemma for ~ ismblfin , ord...
mblfinlem2 37659 Lemma for ~ ismblfin , eff...
mblfinlem3 37660 The difference between two...
mblfinlem4 37661 Backward direction of ~ is...
ismblfin 37662 Measurability in terms of ...
ovoliunnfl 37663 ~ ovoliun is incompatible ...
ex-ovoliunnfl 37664 Demonstration of ~ ovoliun...
voliunnfl 37665 ~ voliun is incompatible w...
volsupnfl 37666 ~ volsup is incompatible w...
mbfresfi 37667 Measurability of a piecewi...
mbfposadd 37668 If the sum of two measurab...
cnambfre 37669 A real-valued, a.e. contin...
dvtanlem 37670 Lemma for ~ dvtan - the do...
dvtan 37671 Derivative of tangent. (C...
itg2addnclem 37672 An alternate expression fo...
itg2addnclem2 37673 Lemma for ~ itg2addnc . T...
itg2addnclem3 37674 Lemma incomprehensible in ...
itg2addnc 37675 Alternate proof of ~ itg2a...
itg2gt0cn 37676 ~ itg2gt0 holds on functio...
ibladdnclem 37677 Lemma for ~ ibladdnc ; cf ...
ibladdnc 37678 Choice-free analogue of ~ ...
itgaddnclem1 37679 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 37680 Lemma for ~ itgaddnc ; cf....
itgaddnc 37681 Choice-free analogue of ~ ...
iblsubnc 37682 Choice-free analogue of ~ ...
itgsubnc 37683 Choice-free analogue of ~ ...
iblabsnclem 37684 Lemma for ~ iblabsnc ; cf....
iblabsnc 37685 Choice-free analogue of ~ ...
iblmulc2nc 37686 Choice-free analogue of ~ ...
itgmulc2nclem1 37687 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 37688 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 37689 Choice-free analogue of ~ ...
itgabsnc 37690 Choice-free analogue of ~ ...
itggt0cn 37691 ~ itggt0 holds for continu...
ftc1cnnclem 37692 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 37693 Choice-free proof of ~ ftc...
ftc1anclem1 37694 Lemma for ~ ftc1anc - the ...
ftc1anclem2 37695 Lemma for ~ ftc1anc - rest...
ftc1anclem3 37696 Lemma for ~ ftc1anc - the ...
ftc1anclem4 37697 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 37698 Lemma for ~ ftc1anc , the ...
ftc1anclem6 37699 Lemma for ~ ftc1anc - cons...
ftc1anclem7 37700 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 37701 Lemma for ~ ftc1anc . (Co...
ftc1anc 37702 ~ ftc1a holds for function...
ftc2nc 37703 Choice-free proof of ~ ftc...
asindmre 37704 Real part of domain of dif...
dvasin 37705 Derivative of arcsine. (C...
dvacos 37706 Derivative of arccosine. ...
dvreasin 37707 Real derivative of arcsine...
dvreacos 37708 Real derivative of arccosi...
areacirclem1 37709 Antiderivative of cross-se...
areacirclem2 37710 Endpoint-inclusive continu...
areacirclem3 37711 Integrability of cross-sec...
areacirclem4 37712 Endpoint-inclusive continu...
areacirclem5 37713 Finding the cross-section ...
areacirc 37714 The area of a circle of ra...
unirep 37715 Define a quantity whose de...
cover2 37716 Two ways of expressing the...
cover2g 37717 Two ways of expressing the...
brabg2 37718 Relation by a binary relat...
opelopab3 37719 Ordered pair membership in...
cocanfo 37720 Cancellation of a surjecti...
brresi2 37721 Restriction of a binary re...
fnopabeqd 37722 Equality deduction for fun...
fvopabf4g 37723 Function value of an opera...
fnopabco 37724 Composition of a function ...
opropabco 37725 Composition of an operator...
cocnv 37726 Composition with a functio...
f1ocan1fv 37727 Cancel a composition by a ...
f1ocan2fv 37728 Cancel a composition by th...
inixp 37729 Intersection of Cartesian ...
upixp 37730 Universal property of the ...
abrexdom 37731 An indexed set is dominate...
abrexdom2 37732 An indexed set is dominate...
ac6gf 37733 Axiom of Choice. (Contrib...
indexa 37734 If for every element of an...
indexdom 37735 If for every element of an...
frinfm 37736 A subset of a well-founded...
welb 37737 A nonempty subset of a wel...
supex2g 37738 Existence of supremum. (C...
supclt 37739 Closure of supremum. (Con...
supubt 37740 Upper bound property of su...
filbcmb 37741 Combine a finite set of lo...
fzmul 37742 Membership of a product in...
sdclem2 37743 Lemma for ~ sdc . (Contri...
sdclem1 37744 Lemma for ~ sdc . (Contri...
sdc 37745 Strong dependent choice. ...
fdc 37746 Finite version of dependen...
fdc1 37747 Variant of ~ fdc with no s...
seqpo 37748 Two ways to say that a seq...
incsequz 37749 An increasing sequence of ...
incsequz2 37750 An increasing sequence of ...
nnubfi 37751 A bounded above set of pos...
nninfnub 37752 An infinite set of positiv...
subspopn 37753 An open set is open in the...
neificl 37754 Neighborhoods are closed u...
lpss2 37755 Limit points of a subset a...
metf1o 37756 Use a bijection with a met...
blssp 37757 A ball in the subspace met...
mettrifi 37758 Generalized triangle inequ...
lmclim2 37759 A sequence in a metric spa...
geomcau 37760 If the distance between co...
caures 37761 The restriction of a Cauch...
caushft 37762 A shifted Cauchy sequence ...
constcncf 37763 A constant function is a c...
cnres2 37764 The restriction of a conti...
cnresima 37765 A continuous function is c...
cncfres 37766 A continuous function on c...
istotbnd 37770 The predicate "is a totall...
istotbnd2 37771 The predicate "is a totall...
istotbnd3 37772 A metric space is totally ...
totbndmet 37773 The predicate "totally bou...
0totbnd 37774 The metric (there is only ...
sstotbnd2 37775 Condition for a subset of ...
sstotbnd 37776 Condition for a subset of ...
sstotbnd3 37777 Use a net that is not nece...
totbndss 37778 A subset of a totally boun...
equivtotbnd 37779 If the metric ` M ` is "st...
isbnd 37781 The predicate "is a bounde...
bndmet 37782 A bounded metric space is ...
isbndx 37783 A "bounded extended metric...
isbnd2 37784 The predicate "is a bounde...
isbnd3 37785 A metric space is bounded ...
isbnd3b 37786 A metric space is bounded ...
bndss 37787 A subset of a bounded metr...
blbnd 37788 A ball is bounded. (Contr...
ssbnd 37789 A subset of a metric space...
totbndbnd 37790 A totally bounded metric s...
equivbnd 37791 If the metric ` M ` is "st...
bnd2lem 37792 Lemma for ~ equivbnd2 and ...
equivbnd2 37793 If balls are totally bound...
prdsbnd 37794 The product metric over fi...
prdstotbnd 37795 The product metric over fi...
prdsbnd2 37796 If balls are totally bound...
cntotbnd 37797 A subset of the complex nu...
cnpwstotbnd 37798 A subset of ` A ^ I ` , wh...
ismtyval 37801 The set of isometries betw...
isismty 37802 The condition "is an isome...
ismtycnv 37803 The inverse of an isometry...
ismtyima 37804 The image of a ball under ...
ismtyhmeolem 37805 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 37806 An isometry is a homeomorp...
ismtybndlem 37807 Lemma for ~ ismtybnd . (C...
ismtybnd 37808 Isometries preserve bounde...
ismtyres 37809 A restriction of an isomet...
heibor1lem 37810 Lemma for ~ heibor1 . A c...
heibor1 37811 One half of ~ heibor , tha...
heiborlem1 37812 Lemma for ~ heibor . We w...
heiborlem2 37813 Lemma for ~ heibor . Subs...
heiborlem3 37814 Lemma for ~ heibor . Usin...
heiborlem4 37815 Lemma for ~ heibor . Usin...
heiborlem5 37816 Lemma for ~ heibor . The ...
heiborlem6 37817 Lemma for ~ heibor . Sinc...
heiborlem7 37818 Lemma for ~ heibor . Sinc...
heiborlem8 37819 Lemma for ~ heibor . The ...
heiborlem9 37820 Lemma for ~ heibor . Disc...
heiborlem10 37821 Lemma for ~ heibor . The ...
heibor 37822 Generalized Heine-Borel Th...
bfplem1 37823 Lemma for ~ bfp . The seq...
bfplem2 37824 Lemma for ~ bfp . Using t...
bfp 37825 Banach fixed point theorem...
rrnval 37828 The n-dimensional Euclidea...
rrnmval 37829 The value of the Euclidean...
rrnmet 37830 Euclidean space is a metri...
rrndstprj1 37831 The distance between two p...
rrndstprj2 37832 Bound on the distance betw...
rrncmslem 37833 Lemma for ~ rrncms . (Con...
rrncms 37834 Euclidean space is complet...
repwsmet 37835 The supremum metric on ` R...
rrnequiv 37836 The supremum metric on ` R...
rrntotbnd 37837 A set in Euclidean space i...
rrnheibor 37838 Heine-Borel theorem for Eu...
ismrer1 37839 An isometry between ` RR `...
reheibor 37840 Heine-Borel theorem for re...
iccbnd 37841 A closed interval in ` RR ...
icccmpALT 37842 A closed interval in ` RR ...
isass 37847 The predicate "is an assoc...
isexid 37848 The predicate ` G ` has a ...
ismgmOLD 37851 Obsolete version of ~ ismg...
clmgmOLD 37852 Obsolete version of ~ mgmc...
opidonOLD 37853 Obsolete version of ~ mndp...
rngopidOLD 37854 Obsolete version of ~ mndp...
opidon2OLD 37855 Obsolete version of ~ mndp...
isexid2 37856 If ` G e. ( Magma i^i ExId...
exidu1 37857 Uniqueness of the left and...
idrval 37858 The value of the identity ...
iorlid 37859 A magma right and left ide...
cmpidelt 37860 A magma right and left ide...
smgrpismgmOLD 37863 Obsolete version of ~ sgrp...
issmgrpOLD 37864 Obsolete version of ~ issg...
smgrpmgm 37865 A semigroup is a magma. (...
smgrpassOLD 37866 Obsolete version of ~ sgrp...
mndoissmgrpOLD 37869 Obsolete version of ~ mnds...
mndoisexid 37870 A monoid has an identity e...
mndoismgmOLD 37871 Obsolete version of ~ mndm...
mndomgmid 37872 A monoid is a magma with a...
ismndo 37873 The predicate "is a monoid...
ismndo1 37874 The predicate "is a monoid...
ismndo2 37875 The predicate "is a monoid...
grpomndo 37876 A group is a monoid. (Con...
exidcl 37877 Closure of the binary oper...
exidreslem 37878 Lemma for ~ exidres and ~ ...
exidres 37879 The restriction of a binar...
exidresid 37880 The restriction of a binar...
ablo4pnp 37881 A commutative/associative ...
grpoeqdivid 37882 Two group elements are equ...
grposnOLD 37883 The group operation for th...
elghomlem1OLD 37886 Obsolete as of 15-Mar-2020...
elghomlem2OLD 37887 Obsolete as of 15-Mar-2020...
elghomOLD 37888 Obsolete version of ~ isgh...
ghomlinOLD 37889 Obsolete version of ~ ghml...
ghomidOLD 37890 Obsolete version of ~ ghmi...
ghomf 37891 Mapping property of a grou...
ghomco 37892 The composition of two gro...
ghomdiv 37893 Group homomorphisms preser...
grpokerinj 37894 A group homomorphism is in...
relrngo 37897 The class of all unital ri...
isrngo 37898 The predicate "is a (unita...
isrngod 37899 Conditions that determine ...
rngoi 37900 The properties of a unital...
rngosm 37901 Functionality of the multi...
rngocl 37902 Closure of the multiplicat...
rngoid 37903 The multiplication operati...
rngoideu 37904 The unity element of a rin...
rngodi 37905 Distributive law for the m...
rngodir 37906 Distributive law for the m...
rngoass 37907 Associative law for the mu...
rngo2 37908 A ring element plus itself...
rngoablo 37909 A ring's addition operatio...
rngoablo2 37910 In a unital ring the addit...
rngogrpo 37911 A ring's addition operatio...
rngone0 37912 The base set of a ring is ...
rngogcl 37913 Closure law for the additi...
rngocom 37914 The addition operation of ...
rngoaass 37915 The addition operation of ...
rngoa32 37916 The addition operation of ...
rngoa4 37917 Rearrangement of 4 terms i...
rngorcan 37918 Right cancellation law for...
rngolcan 37919 Left cancellation law for ...
rngo0cl 37920 A ring has an additive ide...
rngo0rid 37921 The additive identity of a...
rngo0lid 37922 The additive identity of a...
rngolz 37923 The zero of a unital ring ...
rngorz 37924 The zero of a unital ring ...
rngosn3 37925 Obsolete as of 25-Jan-2020...
rngosn4 37926 Obsolete as of 25-Jan-2020...
rngosn6 37927 Obsolete as of 25-Jan-2020...
rngonegcl 37928 A ring is closed under neg...
rngoaddneg1 37929 Adding the negative in a r...
rngoaddneg2 37930 Adding the negative in a r...
rngosub 37931 Subtraction in a ring, in ...
rngmgmbs4 37932 The range of an internal o...
rngodm1dm2 37933 In a unital ring the domai...
rngorn1 37934 In a unital ring the range...
rngorn1eq 37935 In a unital ring the range...
rngomndo 37936 In a unital ring the multi...
rngoidmlem 37937 The unity element of a rin...
rngolidm 37938 The unity element of a rin...
rngoridm 37939 The unity element of a rin...
rngo1cl 37940 The unity element of a rin...
rngoueqz 37941 Obsolete as of 23-Jan-2020...
rngonegmn1l 37942 Negation in a ring is the ...
rngonegmn1r 37943 Negation in a ring is the ...
rngoneglmul 37944 Negation of a product in a...
rngonegrmul 37945 Negation of a product in a...
rngosubdi 37946 Ring multiplication distri...
rngosubdir 37947 Ring multiplication distri...
zerdivemp1x 37948 In a unital ring a left in...
isdivrngo 37951 The predicate "is a divisi...
drngoi 37952 The properties of a divisi...
gidsn 37953 Obsolete as of 23-Jan-2020...
zrdivrng 37954 The zero ring is not a div...
dvrunz 37955 In a division ring the rin...
isgrpda 37956 Properties that determine ...
isdrngo1 37957 The predicate "is a divisi...
divrngcl 37958 The product of two nonzero...
isdrngo2 37959 A division ring is a ring ...
isdrngo3 37960 A division ring is a ring ...
rngohomval 37965 The set of ring homomorphi...
isrngohom 37966 The predicate "is a ring h...
rngohomf 37967 A ring homomorphism is a f...
rngohomcl 37968 Closure law for a ring hom...
rngohom1 37969 A ring homomorphism preser...
rngohomadd 37970 Ring homomorphisms preserv...
rngohommul 37971 Ring homomorphisms preserv...
rngogrphom 37972 A ring homomorphism is a g...
rngohom0 37973 A ring homomorphism preser...
rngohomsub 37974 Ring homomorphisms preserv...
rngohomco 37975 The composition of two rin...
rngokerinj 37976 A ring homomorphism is inj...
rngoisoval 37978 The set of ring isomorphis...
isrngoiso 37979 The predicate "is a ring i...
rngoiso1o 37980 A ring isomorphism is a bi...
rngoisohom 37981 A ring isomorphism is a ri...
rngoisocnv 37982 The inverse of a ring isom...
rngoisoco 37983 The composition of two rin...
isriscg 37985 The ring isomorphism relat...
isrisc 37986 The ring isomorphism relat...
risc 37987 The ring isomorphism relat...
risci 37988 Determine that two rings a...
riscer 37989 Ring isomorphism is an equ...
iscom2 37996 A device to add commutativ...
iscrngo 37997 The predicate "is a commut...
iscrngo2 37998 The predicate "is a commut...
iscringd 37999 Conditions that determine ...
flddivrng 38000 A field is a division ring...
crngorngo 38001 A commutative ring is a ri...
crngocom 38002 The multiplication operati...
crngm23 38003 Commutative/associative la...
crngm4 38004 Commutative/associative la...
fldcrngo 38005 A field is a commutative r...
isfld2 38006 The predicate "is a field"...
crngohomfo 38007 The image of a homomorphis...
idlval 38014 The class of ideals of a r...
isidl 38015 The predicate "is an ideal...
isidlc 38016 The predicate "is an ideal...
idlss 38017 An ideal of ` R ` is a sub...
idlcl 38018 An element of an ideal is ...
idl0cl 38019 An ideal contains ` 0 ` . ...
idladdcl 38020 An ideal is closed under a...
idllmulcl 38021 An ideal is closed under m...
idlrmulcl 38022 An ideal is closed under m...
idlnegcl 38023 An ideal is closed under n...
idlsubcl 38024 An ideal is closed under s...
rngoidl 38025 A ring ` R ` is an ` R ` i...
0idl 38026 The set containing only ` ...
1idl 38027 Two ways of expressing the...
0rngo 38028 In a ring, ` 0 = 1 ` iff t...
divrngidl 38029 The only ideals in a divis...
intidl 38030 The intersection of a none...
inidl 38031 The intersection of two id...
unichnidl 38032 The union of a nonempty ch...
keridl 38033 The kernel of a ring homom...
pridlval 38034 The class of prime ideals ...
ispridl 38035 The predicate "is a prime ...
pridlidl 38036 A prime ideal is an ideal....
pridlnr 38037 A prime ideal is a proper ...
pridl 38038 The main property of a pri...
ispridl2 38039 A condition that shows an ...
maxidlval 38040 The set of maximal ideals ...
ismaxidl 38041 The predicate "is a maxima...
maxidlidl 38042 A maximal ideal is an idea...
maxidlnr 38043 A maximal ideal is proper....
maxidlmax 38044 A maximal ideal is a maxim...
maxidln1 38045 One is not contained in an...
maxidln0 38046 A ring with a maximal idea...
isprrngo 38051 The predicate "is a prime ...
prrngorngo 38052 A prime ring is a ring. (...
smprngopr 38053 A simple ring (one whose o...
divrngpr 38054 A division ring is a prime...
isdmn 38055 The predicate "is a domain...
isdmn2 38056 The predicate "is a domain...
dmncrng 38057 A domain is a commutative ...
dmnrngo 38058 A domain is a ring. (Cont...
flddmn 38059 A field is a domain. (Con...
igenval 38062 The ideal generated by a s...
igenss 38063 A set is a subset of the i...
igenidl 38064 The ideal generated by a s...
igenmin 38065 The ideal generated by a s...
igenidl2 38066 The ideal generated by an ...
igenval2 38067 The ideal generated by a s...
prnc 38068 A principal ideal (an idea...
isfldidl 38069 Determine if a ring is a f...
isfldidl2 38070 Determine if a ring is a f...
ispridlc 38071 The predicate "is a prime ...
pridlc 38072 Property of a prime ideal ...
pridlc2 38073 Property of a prime ideal ...
pridlc3 38074 Property of a prime ideal ...
isdmn3 38075 The predicate "is a domain...
dmnnzd 38076 A domain has no zero-divis...
dmncan1 38077 Cancellation law for domai...
dmncan2 38078 Cancellation law for domai...
efald2 38079 A proof by contradiction. ...
notbinot1 38080 Simplification rule of neg...
bicontr 38081 Biconditional of its own n...
impor 38082 An equivalent formula for ...
orfa 38083 The falsum ` F. ` can be r...
notbinot2 38084 Commutation rule between n...
biimpor 38085 A rewriting rule for bicon...
orfa1 38086 Add a contradicting disjun...
orfa2 38087 Remove a contradicting dis...
bifald 38088 Infer the equivalence to a...
orsild 38089 A lemma for not-or-not eli...
orsird 38090 A lemma for not-or-not eli...
cnf1dd 38091 A lemma for Conjunctive No...
cnf2dd 38092 A lemma for Conjunctive No...
cnfn1dd 38093 A lemma for Conjunctive No...
cnfn2dd 38094 A lemma for Conjunctive No...
or32dd 38095 A rearrangement of disjunc...
notornotel1 38096 A lemma for not-or-not eli...
notornotel2 38097 A lemma for not-or-not eli...
contrd 38098 A proof by contradiction, ...
an12i 38099 An inference from commutin...
exmid2 38100 An excluded middle law. (...
selconj 38101 An inference for selecting...
truconj 38102 Add true as a conjunct. (...
orel 38103 An inference for disjuncti...
negel 38104 An inference for negation ...
botel 38105 An inference for bottom el...
tradd 38106 Add top ad a conjunct. (C...
gm-sbtru 38107 Substitution does not chan...
sbfal 38108 Substitution does not chan...
sbcani 38109 Distribution of class subs...
sbcori 38110 Distribution of class subs...
sbcimi 38111 Distribution of class subs...
sbcni 38112 Move class substitution in...
sbali 38113 Discard class substitution...
sbexi 38114 Discard class substitution...
sbcalf 38115 Move universal quantifier ...
sbcexf 38116 Move existential quantifie...
sbcalfi 38117 Move universal quantifier ...
sbcexfi 38118 Move existential quantifie...
spsbcdi 38119 A lemma for eliminating a ...
alrimii 38120 A lemma for introducing a ...
spesbcdi 38121 A lemma for introducing an...
exlimddvf 38122 A lemma for eliminating an...
exlimddvfi 38123 A lemma for eliminating an...
sbceq1ddi 38124 A lemma for eliminating in...
sbccom2lem 38125 Lemma for ~ sbccom2 . (Co...
sbccom2 38126 Commutative law for double...
sbccom2f 38127 Commutative law for double...
sbccom2fi 38128 Commutative law for double...
csbcom2fi 38129 Commutative law for double...
fald 38130 Refutation of falsity, in ...
tsim1 38131 A Tseitin axiom for logica...
tsim2 38132 A Tseitin axiom for logica...
tsim3 38133 A Tseitin axiom for logica...
tsbi1 38134 A Tseitin axiom for logica...
tsbi2 38135 A Tseitin axiom for logica...
tsbi3 38136 A Tseitin axiom for logica...
tsbi4 38137 A Tseitin axiom for logica...
tsxo1 38138 A Tseitin axiom for logica...
tsxo2 38139 A Tseitin axiom for logica...
tsxo3 38140 A Tseitin axiom for logica...
tsxo4 38141 A Tseitin axiom for logica...
tsan1 38142 A Tseitin axiom for logica...
tsan2 38143 A Tseitin axiom for logica...
tsan3 38144 A Tseitin axiom for logica...
tsna1 38145 A Tseitin axiom for logica...
tsna2 38146 A Tseitin axiom for logica...
tsna3 38147 A Tseitin axiom for logica...
tsor1 38148 A Tseitin axiom for logica...
tsor2 38149 A Tseitin axiom for logica...
tsor3 38150 A Tseitin axiom for logica...
ts3an1 38151 A Tseitin axiom for triple...
ts3an2 38152 A Tseitin axiom for triple...
ts3an3 38153 A Tseitin axiom for triple...
ts3or1 38154 A Tseitin axiom for triple...
ts3or2 38155 A Tseitin axiom for triple...
ts3or3 38156 A Tseitin axiom for triple...
iuneq2f 38157 Equality deduction for ind...
rabeq12f 38158 Equality deduction for res...
csbeq12 38159 Equality deduction for sub...
sbeqi 38160 Equality deduction for sub...
ralbi12f 38161 Equality deduction for res...
oprabbi 38162 Equality deduction for cla...
mpobi123f 38163 Equality deduction for map...
iuneq12f 38164 Equality deduction for ind...
iineq12f 38165 Equality deduction for ind...
opabbi 38166 Equality deduction for cla...
mptbi12f 38167 Equality deduction for map...
orcomdd 38168 Commutativity of logic dis...
scottexf 38169 A version of ~ scottex wit...
scott0f 38170 A version of ~ scott0 with...
scottn0f 38171 A version of ~ scott0f wit...
ac6s3f 38172 Generalization of the Axio...
ac6s6 38173 Generalization of the Axio...
ac6s6f 38174 Generalization of the Axio...
el2v1 38218 New way ( ~ elv , and the ...
el3v1 38219 New way ( ~ elv , and the ...
el3v2 38220 New way ( ~ elv , and the ...
el3v12 38221 New way ( ~ elv , and the ...
el3v13 38222 New way ( ~ elv , and the ...
el3v23 38223 New way ( ~ elv , and the ...
anan 38224 Multiple commutations in c...
triantru3 38225 A wff is equivalent to its...
biorfd 38226 A wff is equivalent to its...
eqbrtr 38227 Substitution of equal clas...
eqbrb 38228 Substitution of equal clas...
eqeltr 38229 Substitution of equal clas...
eqelb 38230 Substitution of equal clas...
eqeqan2d 38231 Implication of introducing...
suceqsneq 38232 One-to-one relationship be...
sucdifsn2 38233 Absorption of union with a...
sucdifsn 38234 The difference between the...
disjresin 38235 The restriction to a disjo...
disjresdisj 38236 The intersection of restri...
disjresdif 38237 The difference between res...
disjresundif 38238 Lemma for ~ ressucdifsn2 ....
ressucdifsn2 38239 The difference between res...
ressucdifsn 38240 The difference between res...
inres2 38241 Two ways of expressing the...
coideq 38242 Equality theorem for compo...
nexmo1 38243 If there is no case where ...
eqab2 38244 Implication of a class abs...
r2alan 38245 Double restricted universa...
ssrabi 38246 Inference of restricted ab...
rabimbieq 38247 Restricted equivalent wff'...
abeqin 38248 Intersection with class ab...
abeqinbi 38249 Intersection with class ab...
rabeqel 38250 Class element of a restric...
eqrelf 38251 The equality connective be...
br1cnvinxp 38252 Binary relation on the con...
releleccnv 38253 Elementhood in a converse ...
releccnveq 38254 Equality of converse ` R `...
opelvvdif 38255 Negated elementhood of ord...
vvdifopab 38256 Ordered-pair class abstrac...
brvdif 38257 Binary relation with unive...
brvdif2 38258 Binary relation with unive...
brvvdif 38259 Binary relation with the c...
brvbrvvdif 38260 Binary relation with the c...
brcnvep 38261 The converse of the binary...
elecALTV 38262 Elementhood in the ` R ` -...
brcnvepres 38263 Restricted converse epsilo...
brres2 38264 Binary relation on a restr...
br1cnvres 38265 Binary relation on the con...
eldmres 38266 Elementhood in the domain ...
elrnres 38267 Element of the range of a ...
eldmressnALTV 38268 Element of the domain of a...
elrnressn 38269 Element of the range of a ...
eldm4 38270 Elementhood in a domain. ...
eldmres2 38271 Elementhood in the domain ...
eldmres3 38272 Elementhood in the domain ...
eceq1i 38273 Equality theorem for ` C `...
ecres 38274 Restricted coset of ` B ` ...
eccnvepres 38275 Restricted converse epsilo...
eleccnvep 38276 Elementhood in the convers...
eccnvep 38277 The converse epsilon coset...
extep 38278 Property of epsilon relati...
disjeccnvep 38279 Property of the epsilon re...
eccnvepres2 38280 The restricted converse ep...
eccnvepres3 38281 Condition for a restricted...
eldmqsres 38282 Elementhood in a restricte...
eldmqsres2 38283 Elementhood in a restricte...
qsss1 38284 Subclass theorem for quoti...
qseq1i 38285 Equality theorem for quoti...
brinxprnres 38286 Binary relation on a restr...
inxprnres 38287 Restriction of a class as ...
dfres4 38288 Alternate definition of th...
exan3 38289 Equivalent expressions wit...
exanres 38290 Equivalent expressions wit...
exanres3 38291 Equivalent expressions wit...
exanres2 38292 Equivalent expressions wit...
cnvepres 38293 Restricted converse epsilo...
eqrel2 38294 Equality of relations. (C...
rncnv 38295 Range of converse is the d...
dfdm6 38296 Alternate definition of do...
dfrn6 38297 Alternate definition of ra...
rncnvepres 38298 The range of the restricte...
dmecd 38299 Equality of the coset of `...
dmec2d 38300 Equality of the coset of `...
brid 38301 Property of the identity b...
ideq2 38302 For sets, the identity bin...
idresssidinxp 38303 Condition for the identity...
idreseqidinxp 38304 Condition for the identity...
extid 38305 Property of identity relat...
inxpss 38306 Two ways to say that an in...
idinxpss 38307 Two ways to say that an in...
ref5 38308 Two ways to say that an in...
inxpss3 38309 Two ways to say that an in...
inxpss2 38310 Two ways to say that inter...
inxpssidinxp 38311 Two ways to say that inter...
idinxpssinxp 38312 Two ways to say that inter...
idinxpssinxp2 38313 Identity intersection with...
idinxpssinxp3 38314 Identity intersection with...
idinxpssinxp4 38315 Identity intersection with...
relcnveq3 38316 Two ways of saying a relat...
relcnveq 38317 Two ways of saying a relat...
relcnveq2 38318 Two ways of saying a relat...
relcnveq4 38319 Two ways of saying a relat...
qsresid 38320 Simplification of a specia...
n0elqs 38321 Two ways of expressing tha...
n0elqs2 38322 Two ways of expressing tha...
rnresequniqs 38323 The range of a restriction...
n0el2 38324 Two ways of expressing tha...
cnvepresex 38325 Sethood condition for the ...
cnvepima 38326 The image of converse epsi...
inex3 38327 Sufficient condition for t...
inxpex 38328 Sufficient condition for a...
eqres 38329 Converting a class constan...
brrabga 38330 The law of concretion for ...
brcnvrabga 38331 The law of concretion for ...
opideq 38332 Equality conditions for or...
iss2 38333 A subclass of the identity...
eldmcnv 38334 Elementhood in a domain of...
dfrel5 38335 Alternate definition of th...
dfrel6 38336 Alternate definition of th...
cnvresrn 38337 Converse restricted to ran...
relssinxpdmrn 38338 Subset of restriction, spe...
cnvref4 38339 Two ways to say that a rel...
cnvref5 38340 Two ways to say that a rel...
ecin0 38341 Two ways of saying that th...
ecinn0 38342 Two ways of saying that th...
ineleq 38343 Equivalence of restricted ...
inecmo 38344 Equivalence of a double re...
inecmo2 38345 Equivalence of a double re...
ineccnvmo 38346 Equivalence of a double re...
alrmomorn 38347 Equivalence of an "at most...
alrmomodm 38348 Equivalence of an "at most...
ineccnvmo2 38349 Equivalence of a double un...
inecmo3 38350 Equivalence of a double un...
moeu2 38351 Uniqueness is equivalent t...
mopickr 38352 "At most one" picks a vari...
moantr 38353 Sufficient condition for t...
brabidgaw 38354 The law of concretion for ...
brabidga 38355 The law of concretion for ...
inxp2 38356 Intersection with a Cartes...
opabf 38357 A class abstraction of a c...
ec0 38358 The empty-coset of a class...
brcnvin 38359 Intersection with a conver...
xrnss3v 38361 A range Cartesian product ...
xrnrel 38362 A range Cartesian product ...
brxrn 38363 Characterize a ternary rel...
brxrn2 38364 A characterization of the ...
dfxrn2 38365 Alternate definition of th...
brxrncnvep 38366 The range product with con...
dmxrn 38367 Domain of the range produc...
dmcnvep 38368 Domain of converse epsilon...
dmxrncnvep 38369 Domain of the range produc...
xrneq1 38370 Equality theorem for the r...
xrneq1i 38371 Equality theorem for the r...
xrneq1d 38372 Equality theorem for the r...
xrneq2 38373 Equality theorem for the r...
xrneq2i 38374 Equality theorem for the r...
xrneq2d 38375 Equality theorem for the r...
xrneq12 38376 Equality theorem for the r...
xrneq12i 38377 Equality theorem for the r...
xrneq12d 38378 Equality theorem for the r...
elecxrn 38379 Elementhood in the ` ( R |...
ecxrn 38380 The ` ( R |X. S ) ` -coset...
disjressuc2 38381 Double restricted quantifi...
disjecxrn 38382 Two ways of saying that ` ...
disjecxrncnvep 38383 Two ways of saying that co...
disjsuc2 38384 Double restricted quantifi...
xrninxp 38385 Intersection of a range Ca...
xrninxp2 38386 Intersection of a range Ca...
xrninxpex 38387 Sufficient condition for t...
inxpxrn 38388 Two ways to express the in...
br1cnvxrn2 38389 The converse of a binary r...
elec1cnvxrn2 38390 Elementhood in the convers...
rnxrn 38391 Range of the range Cartesi...
rnxrnres 38392 Range of a range Cartesian...
rnxrncnvepres 38393 Range of a range Cartesian...
rnxrnidres 38394 Range of a range Cartesian...
xrnres 38395 Two ways to express restri...
xrnres2 38396 Two ways to express restri...
xrnres3 38397 Two ways to express restri...
xrnres4 38398 Two ways to express restri...
xrnresex 38399 Sufficient condition for a...
xrnidresex 38400 Sufficient condition for a...
xrncnvepresex 38401 Sufficient condition for a...
dmxrncnvepres 38402 Domain of the range produc...
eldmxrncnvepres 38403 Element of the domain of t...
eldmxrncnvepres2 38404 Element of the domain of t...
eceldmqsxrncnvepres 38405 An ` ( R |X. ( ` ' E | ` A...
eceldmqsxrncnvepres2 38406 An ` ( R |X. ( ` ' E | ` A...
brin2 38407 Binary relation on an inte...
brin3 38408 Binary relation on an inte...
dfcoss2 38411 Alternate definition of th...
dfcoss3 38412 Alternate definition of th...
dfcoss4 38413 Alternate definition of th...
cosscnv 38414 Class of cosets by the con...
coss1cnvres 38415 Class of cosets by the con...
coss2cnvepres 38416 Special case of ~ coss1cnv...
cossex 38417 If ` A ` is a set then the...
cosscnvex 38418 If ` A ` is a set then the...
1cosscnvepresex 38419 Sufficient condition for a...
1cossxrncnvepresex 38420 Sufficient condition for a...
relcoss 38421 Cosets by ` R ` is a relat...
relcoels 38422 Coelements on ` A ` is a r...
cossss 38423 Subclass theorem for the c...
cosseq 38424 Equality theorem for the c...
cosseqi 38425 Equality theorem for the c...
cosseqd 38426 Equality theorem for the c...
1cossres 38427 The class of cosets by a r...
dfcoels 38428 Alternate definition of th...
brcoss 38429 ` A ` and ` B ` are cosets...
brcoss2 38430 Alternate form of the ` A ...
brcoss3 38431 Alternate form of the ` A ...
brcosscnvcoss 38432 For sets, the ` A ` and ` ...
brcoels 38433 ` B ` and ` C ` are coelem...
cocossss 38434 Two ways of saying that co...
cnvcosseq 38435 The converse of cosets by ...
br2coss 38436 Cosets by ` ,~ R ` binary ...
br1cossres 38437 ` B ` and ` C ` are cosets...
br1cossres2 38438 ` B ` and ` C ` are cosets...
brressn 38439 Binary relation on a restr...
ressn2 38440 A class ' R ' restricted t...
refressn 38441 Any class ' R ' restricted...
antisymressn 38442 Every class ' R ' restrict...
trressn 38443 Any class ' R ' restricted...
relbrcoss 38444 ` A ` and ` B ` are cosets...
br1cossinres 38445 ` B ` and ` C ` are cosets...
br1cossxrnres 38446 ` <. B , C >. ` and ` <. D...
br1cossinidres 38447 ` B ` and ` C ` are cosets...
br1cossincnvepres 38448 ` B ` and ` C ` are cosets...
br1cossxrnidres 38449 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 38450 ` <. B , C >. ` and ` <. D...
dmcoss3 38451 The domain of cosets is th...
dmcoss2 38452 The domain of cosets is th...
rncossdmcoss 38453 The range of cosets is the...
dm1cosscnvepres 38454 The domain of cosets of th...
dmcoels 38455 The domain of coelements i...
eldmcoss 38456 Elementhood in the domain ...
eldmcoss2 38457 Elementhood in the domain ...
eldm1cossres 38458 Elementhood in the domain ...
eldm1cossres2 38459 Elementhood in the domain ...
refrelcosslem 38460 Lemma for the left side of...
refrelcoss3 38461 The class of cosets by ` R...
refrelcoss2 38462 The class of cosets by ` R...
symrelcoss3 38463 The class of cosets by ` R...
symrelcoss2 38464 The class of cosets by ` R...
cossssid 38465 Equivalent expressions for...
cossssid2 38466 Equivalent expressions for...
cossssid3 38467 Equivalent expressions for...
cossssid4 38468 Equivalent expressions for...
cossssid5 38469 Equivalent expressions for...
brcosscnv 38470 ` A ` and ` B ` are cosets...
brcosscnv2 38471 ` A ` and ` B ` are cosets...
br1cosscnvxrn 38472 ` A ` and ` B ` are cosets...
1cosscnvxrn 38473 Cosets by the converse ran...
cosscnvssid3 38474 Equivalent expressions for...
cosscnvssid4 38475 Equivalent expressions for...
cosscnvssid5 38476 Equivalent expressions for...
coss0 38477 Cosets by the empty set ar...
cossid 38478 Cosets by the identity rel...
cosscnvid 38479 Cosets by the converse ide...
trcoss 38480 Sufficient condition for t...
eleccossin 38481 Two ways of saying that th...
trcoss2 38482 Equivalent expressions for...
elrels2 38484 The element of the relatio...
elrelsrel 38485 The element of the relatio...
elrelsrelim 38486 The element of the relatio...
elrels5 38487 Equivalent expressions for...
elrels6 38488 Equivalent expressions for...
elrelscnveq3 38489 Two ways of saying a relat...
elrelscnveq 38490 Two ways of saying a relat...
elrelscnveq2 38491 Two ways of saying a relat...
elrelscnveq4 38492 Two ways of saying a relat...
cnvelrels 38493 The converse of a set is a...
cosselrels 38494 Cosets of sets are element...
cosscnvelrels 38495 Cosets of converse sets ar...
dfssr2 38497 Alternate definition of th...
relssr 38498 The subset relation is a r...
brssr 38499 The subset relation and su...
brssrid 38500 Any set is a subset of its...
issetssr 38501 Two ways of expressing set...
brssrres 38502 Restricted subset binary r...
br1cnvssrres 38503 Restricted converse subset...
brcnvssr 38504 The converse of a subset r...
brcnvssrid 38505 Any set is a converse subs...
br1cossxrncnvssrres 38506 ` <. B , C >. ` and ` <. D...
extssr 38507 Property of subset relatio...
dfrefrels2 38511 Alternate definition of th...
dfrefrels3 38512 Alternate definition of th...
dfrefrel2 38513 Alternate definition of th...
dfrefrel3 38514 Alternate definition of th...
dfrefrel5 38515 Alternate definition of th...
elrefrels2 38516 Element of the class of re...
elrefrels3 38517 Element of the class of re...
elrefrelsrel 38518 For sets, being an element...
refreleq 38519 Equality theorem for refle...
refrelid 38520 Identity relation is refle...
refrelcoss 38521 The class of cosets by ` R...
refrelressn 38522 Any class ' R ' restricted...
dfcnvrefrels2 38526 Alternate definition of th...
dfcnvrefrels3 38527 Alternate definition of th...
dfcnvrefrel2 38528 Alternate definition of th...
dfcnvrefrel3 38529 Alternate definition of th...
dfcnvrefrel4 38530 Alternate definition of th...
dfcnvrefrel5 38531 Alternate definition of th...
elcnvrefrels2 38532 Element of the class of co...
elcnvrefrels3 38533 Element of the class of co...
elcnvrefrelsrel 38534 For sets, being an element...
cnvrefrelcoss2 38535 Necessary and sufficient c...
cosselcnvrefrels2 38536 Necessary and sufficient c...
cosselcnvrefrels3 38537 Necessary and sufficient c...
cosselcnvrefrels4 38538 Necessary and sufficient c...
cosselcnvrefrels5 38539 Necessary and sufficient c...
dfsymrels2 38543 Alternate definition of th...
dfsymrels3 38544 Alternate definition of th...
dfsymrels4 38545 Alternate definition of th...
dfsymrels5 38546 Alternate definition of th...
dfsymrel2 38547 Alternate definition of th...
dfsymrel3 38548 Alternate definition of th...
dfsymrel4 38549 Alternate definition of th...
dfsymrel5 38550 Alternate definition of th...
elsymrels2 38551 Element of the class of sy...
elsymrels3 38552 Element of the class of sy...
elsymrels4 38553 Element of the class of sy...
elsymrels5 38554 Element of the class of sy...
elsymrelsrel 38555 For sets, being an element...
symreleq 38556 Equality theorem for symme...
symrelim 38557 Symmetric relation implies...
symrelcoss 38558 The class of cosets by ` R...
idsymrel 38559 The identity relation is s...
epnsymrel 38560 The membership (epsilon) r...
symrefref2 38561 Symmetry is a sufficient c...
symrefref3 38562 Symmetry is a sufficient c...
refsymrels2 38563 Elements of the class of r...
refsymrels3 38564 Elements of the class of r...
refsymrel2 38565 A relation which is reflex...
refsymrel3 38566 A relation which is reflex...
elrefsymrels2 38567 Elements of the class of r...
elrefsymrels3 38568 Elements of the class of r...
elrefsymrelsrel 38569 For sets, being an element...
dftrrels2 38573 Alternate definition of th...
dftrrels3 38574 Alternate definition of th...
dftrrel2 38575 Alternate definition of th...
dftrrel3 38576 Alternate definition of th...
eltrrels2 38577 Element of the class of tr...
eltrrels3 38578 Element of the class of tr...
eltrrelsrel 38579 For sets, being an element...
trreleq 38580 Equality theorem for the t...
trrelressn 38581 Any class ' R ' restricted...
dfeqvrels2 38586 Alternate definition of th...
dfeqvrels3 38587 Alternate definition of th...
dfeqvrel2 38588 Alternate definition of th...
dfeqvrel3 38589 Alternate definition of th...
eleqvrels2 38590 Element of the class of eq...
eleqvrels3 38591 Element of the class of eq...
eleqvrelsrel 38592 For sets, being an element...
elcoeleqvrels 38593 Elementhood in the coeleme...
elcoeleqvrelsrel 38594 For sets, being an element...
eqvrelrel 38595 An equivalence relation is...
eqvrelrefrel 38596 An equivalence relation is...
eqvrelsymrel 38597 An equivalence relation is...
eqvreltrrel 38598 An equivalence relation is...
eqvrelim 38599 Equivalence relation impli...
eqvreleq 38600 Equality theorem for equiv...
eqvreleqi 38601 Equality theorem for equiv...
eqvreleqd 38602 Equality theorem for equiv...
eqvrelsym 38603 An equivalence relation is...
eqvrelsymb 38604 An equivalence relation is...
eqvreltr 38605 An equivalence relation is...
eqvreltrd 38606 A transitivity relation fo...
eqvreltr4d 38607 A transitivity relation fo...
eqvrelref 38608 An equivalence relation is...
eqvrelth 38609 Basic property of equivale...
eqvrelcl 38610 Elementhood in the field o...
eqvrelthi 38611 Basic property of equivale...
eqvreldisj 38612 Equivalence classes do not...
qsdisjALTV 38613 Elements of a quotient set...
eqvrelqsel 38614 If an element of a quotien...
eqvrelcoss 38615 Two ways to express equiva...
eqvrelcoss3 38616 Two ways to express equiva...
eqvrelcoss2 38617 Two ways to express equiva...
eqvrelcoss4 38618 Two ways to express equiva...
dfcoeleqvrels 38619 Alternate definition of th...
dfcoeleqvrel 38620 Alternate definition of th...
brredunds 38624 Binary relation on the cla...
brredundsredund 38625 For sets, binary relation ...
redundss3 38626 Implication of redundancy ...
redundeq1 38627 Equivalence of redundancy ...
redundpim3 38628 Implication of redundancy ...
redundpbi1 38629 Equivalence of redundancy ...
refrelsredund4 38630 The naive version of the c...
refrelsredund2 38631 The naive version of the c...
refrelsredund3 38632 The naive version of the c...
refrelredund4 38633 The naive version of the d...
refrelredund2 38634 The naive version of the d...
refrelredund3 38635 The naive version of the d...
dmqseq 38638 Equality theorem for domai...
dmqseqi 38639 Equality theorem for domai...
dmqseqd 38640 Equality theorem for domai...
dmqseqeq1 38641 Equality theorem for domai...
dmqseqeq1i 38642 Equality theorem for domai...
dmqseqeq1d 38643 Equality theorem for domai...
brdmqss 38644 The domain quotient binary...
brdmqssqs 38645 If ` A ` and ` R ` are set...
n0eldmqs 38646 The empty set is not an el...
qseq 38647 The quotient set equal to ...
n0eldmqseq 38648 The empty set is not an el...
n0elim 38649 Implication of that the em...
n0el3 38650 Two ways of expressing tha...
cnvepresdmqss 38651 The domain quotient binary...
cnvepresdmqs 38652 The domain quotient predic...
unidmqs 38653 The range of a relation is...
unidmqseq 38654 The union of the domain qu...
dmqseqim 38655 If the domain quotient of ...
dmqseqim2 38656 Lemma for ~ erimeq2 . (Co...
releldmqs 38657 Elementhood in the domain ...
eldmqs1cossres 38658 Elementhood in the domain ...
releldmqscoss 38659 Elementhood in the domain ...
dmqscoelseq 38660 Two ways to express the eq...
dmqs1cosscnvepreseq 38661 Two ways to express the eq...
brers 38666 Binary equivalence relatio...
dferALTV2 38667 Equivalence relation with ...
erALTVeq1 38668 Equality theorem for equiv...
erALTVeq1i 38669 Equality theorem for equiv...
erALTVeq1d 38670 Equality theorem for equiv...
dfcomember 38671 Alternate definition of th...
dfcomember2 38672 Alternate definition of th...
dfcomember3 38673 Alternate definition of th...
eqvreldmqs 38674 Two ways to express comemb...
eqvreldmqs2 38675 Two ways to express comemb...
brerser 38676 Binary equivalence relatio...
erimeq2 38677 Equivalence relation on it...
erimeq 38678 Equivalence relation on it...
dffunsALTV 38682 Alternate definition of th...
dffunsALTV2 38683 Alternate definition of th...
dffunsALTV3 38684 Alternate definition of th...
dffunsALTV4 38685 Alternate definition of th...
dffunsALTV5 38686 Alternate definition of th...
dffunALTV2 38687 Alternate definition of th...
dffunALTV3 38688 Alternate definition of th...
dffunALTV4 38689 Alternate definition of th...
dffunALTV5 38690 Alternate definition of th...
elfunsALTV 38691 Elementhood in the class o...
elfunsALTV2 38692 Elementhood in the class o...
elfunsALTV3 38693 Elementhood in the class o...
elfunsALTV4 38694 Elementhood in the class o...
elfunsALTV5 38695 Elementhood in the class o...
elfunsALTVfunALTV 38696 The element of the class o...
funALTVfun 38697 Our definition of the func...
funALTVss 38698 Subclass theorem for funct...
funALTVeq 38699 Equality theorem for funct...
funALTVeqi 38700 Equality inference for the...
funALTVeqd 38701 Equality deduction for the...
dfdisjs 38707 Alternate definition of th...
dfdisjs2 38708 Alternate definition of th...
dfdisjs3 38709 Alternate definition of th...
dfdisjs4 38710 Alternate definition of th...
dfdisjs5 38711 Alternate definition of th...
dfdisjALTV 38712 Alternate definition of th...
dfdisjALTV2 38713 Alternate definition of th...
dfdisjALTV3 38714 Alternate definition of th...
dfdisjALTV4 38715 Alternate definition of th...
dfdisjALTV5 38716 Alternate definition of th...
dfeldisj2 38717 Alternate definition of th...
dfeldisj3 38718 Alternate definition of th...
dfeldisj4 38719 Alternate definition of th...
dfeldisj5 38720 Alternate definition of th...
eldisjs 38721 Elementhood in the class o...
eldisjs2 38722 Elementhood in the class o...
eldisjs3 38723 Elementhood in the class o...
eldisjs4 38724 Elementhood in the class o...
eldisjs5 38725 Elementhood in the class o...
eldisjsdisj 38726 The element of the class o...
eleldisjs 38727 Elementhood in the disjoin...
eleldisjseldisj 38728 The element of the disjoin...
disjrel 38729 Disjoint relation is a rel...
disjss 38730 Subclass theorem for disjo...
disjssi 38731 Subclass theorem for disjo...
disjssd 38732 Subclass theorem for disjo...
disjeq 38733 Equality theorem for disjo...
disjeqi 38734 Equality theorem for disjo...
disjeqd 38735 Equality theorem for disjo...
disjdmqseqeq1 38736 Lemma for the equality the...
eldisjss 38737 Subclass theorem for disjo...
eldisjssi 38738 Subclass theorem for disjo...
eldisjssd 38739 Subclass theorem for disjo...
eldisjeq 38740 Equality theorem for disjo...
eldisjeqi 38741 Equality theorem for disjo...
eldisjeqd 38742 Equality theorem for disjo...
disjres 38743 Disjoint restriction. (Co...
eldisjn0elb 38744 Two forms of disjoint elem...
disjxrn 38745 Two ways of saying that a ...
disjxrnres5 38746 Disjoint range Cartesian p...
disjorimxrn 38747 Disjointness condition for...
disjimxrn 38748 Disjointness condition for...
disjimres 38749 Disjointness condition for...
disjimin 38750 Disjointness condition for...
disjiminres 38751 Disjointness condition for...
disjimxrnres 38752 Disjointness condition for...
disjALTV0 38753 The null class is disjoint...
disjALTVid 38754 The class of identity rela...
disjALTVidres 38755 The class of identity rela...
disjALTVinidres 38756 The intersection with rest...
disjALTVxrnidres 38757 The class of range Cartesi...
disjsuc 38758 Disjoint range Cartesian p...
dfantisymrel4 38760 Alternate definition of th...
dfantisymrel5 38761 Alternate definition of th...
antisymrelres 38762 (Contributed by Peter Mazs...
antisymrelressn 38763 (Contributed by Peter Mazs...
dfpart2 38768 Alternate definition of th...
dfmembpart2 38769 Alternate definition of th...
brparts 38770 Binary partitions relation...
brparts2 38771 Binary partitions relation...
brpartspart 38772 Binary partition and the p...
parteq1 38773 Equality theorem for parti...
parteq2 38774 Equality theorem for parti...
parteq12 38775 Equality theorem for parti...
parteq1i 38776 Equality theorem for parti...
parteq1d 38777 Equality theorem for parti...
partsuc2 38778 Property of the partition....
partsuc 38779 Property of the partition....
disjim 38780 The "Divide et Aequivalere...
disjimi 38781 Every disjoint relation ge...
detlem 38782 If a relation is disjoint,...
eldisjim 38783 If the elements of ` A ` a...
eldisjim2 38784 Alternate form of ~ eldisj...
eqvrel0 38785 The null class is an equiv...
det0 38786 The cosets by the null cla...
eqvrelcoss0 38787 The cosets by the null cla...
eqvrelid 38788 The identity relation is a...
eqvrel1cossidres 38789 The cosets by a restricted...
eqvrel1cossinidres 38790 The cosets by an intersect...
eqvrel1cossxrnidres 38791 The cosets by a range Cart...
detid 38792 The cosets by the identity...
eqvrelcossid 38793 The cosets by the identity...
detidres 38794 The cosets by the restrict...
detinidres 38795 The cosets by the intersec...
detxrnidres 38796 The cosets by the range Ca...
disjlem14 38797 Lemma for ~ disjdmqseq , ~...
disjlem17 38798 Lemma for ~ disjdmqseq , ~...
disjlem18 38799 Lemma for ~ disjdmqseq , ~...
disjlem19 38800 Lemma for ~ disjdmqseq , ~...
disjdmqsss 38801 Lemma for ~ disjdmqseq via...
disjdmqscossss 38802 Lemma for ~ disjdmqseq via...
disjdmqs 38803 If a relation is disjoint,...
disjdmqseq 38804 If a relation is disjoint,...
eldisjn0el 38805 Special case of ~ disjdmqs...
partim2 38806 Disjoint relation on its n...
partim 38807 Partition implies equivale...
partimeq 38808 Partition implies that the...
eldisjlem19 38809 Special case of ~ disjlem1...
membpartlem19 38810 Together with ~ disjlem19 ...
petlem 38811 If you can prove that the ...
petlemi 38812 If you can prove disjointn...
pet02 38813 Class ` A ` is a partition...
pet0 38814 Class ` A ` is a partition...
petid2 38815 Class ` A ` is a partition...
petid 38816 A class is a partition by ...
petidres2 38817 Class ` A ` is a partition...
petidres 38818 A class is a partition by ...
petinidres2 38819 Class ` A ` is a partition...
petinidres 38820 A class is a partition by ...
petxrnidres2 38821 Class ` A ` is a partition...
petxrnidres 38822 A class is a partition by ...
eqvreldisj1 38823 The elements of the quotie...
eqvreldisj2 38824 The elements of the quotie...
eqvreldisj3 38825 The elements of the quotie...
eqvreldisj4 38826 Intersection with the conv...
eqvreldisj5 38827 Range Cartesian product wi...
eqvrelqseqdisj2 38828 Implication of ~ eqvreldis...
fences3 38829 Implication of ~ eqvrelqse...
eqvrelqseqdisj3 38830 Implication of ~ eqvreldis...
eqvrelqseqdisj4 38831 Lemma for ~ petincnvepres2...
eqvrelqseqdisj5 38832 Lemma for the Partition-Eq...
mainer 38833 The Main Theorem of Equiva...
partimcomember 38834 Partition with general ` R...
mpet3 38835 Member Partition-Equivalen...
cpet2 38836 The conventional form of t...
cpet 38837 The conventional form of M...
mpet 38838 Member Partition-Equivalen...
mpet2 38839 Member Partition-Equivalen...
mpets2 38840 Member Partition-Equivalen...
mpets 38841 Member Partition-Equivalen...
mainpart 38842 Partition with general ` R...
fences 38843 The Theorem of Fences by E...
fences2 38844 The Theorem of Fences by E...
mainer2 38845 The Main Theorem of Equiva...
mainerim 38846 Every equivalence relation...
petincnvepres2 38847 A partition-equivalence th...
petincnvepres 38848 The shortest form of a par...
pet2 38849 Partition-Equivalence Theo...
pet 38850 Partition-Equivalence Theo...
pets 38851 Partition-Equivalence Theo...
dmqsblocks 38852 If the ~ pet span ` ( R |X...
prtlem60 38853 Lemma for ~ prter3 . (Con...
bicomdd 38854 Commute two sides of a bic...
jca2r 38855 Inference conjoining the c...
jca3 38856 Inference conjoining the c...
prtlem70 38857 Lemma for ~ prter3 : a rea...
ibdr 38858 Reverse of ~ ibd . (Contr...
prtlem100 38859 Lemma for ~ prter3 . (Con...
prtlem5 38860 Lemma for ~ prter1 , ~ prt...
prtlem80 38861 Lemma for ~ prter2 . (Con...
brabsb2 38862 A closed form of ~ brabsb ...
eqbrrdv2 38863 Other version of ~ eqbrrdi...
prtlem9 38864 Lemma for ~ prter3 . (Con...
prtlem10 38865 Lemma for ~ prter3 . (Con...
prtlem11 38866 Lemma for ~ prter2 . (Con...
prtlem12 38867 Lemma for ~ prtex and ~ pr...
prtlem13 38868 Lemma for ~ prter1 , ~ prt...
prtlem16 38869 Lemma for ~ prtex , ~ prte...
prtlem400 38870 Lemma for ~ prter2 and als...
erprt 38873 The quotient set of an equ...
prtlem14 38874 Lemma for ~ prter1 , ~ prt...
prtlem15 38875 Lemma for ~ prter1 and ~ p...
prtlem17 38876 Lemma for ~ prter2 . (Con...
prtlem18 38877 Lemma for ~ prter2 . (Con...
prtlem19 38878 Lemma for ~ prter2 . (Con...
prter1 38879 Every partition generates ...
prtex 38880 The equivalence relation g...
prter2 38881 The quotient set of the eq...
prter3 38882 For every partition there ...
axc5 38893 This theorem repeats ~ sp ...
ax4fromc4 38894 Rederivation of Axiom ~ ax...
ax10fromc7 38895 Rederivation of Axiom ~ ax...
ax6fromc10 38896 Rederivation of Axiom ~ ax...
hba1-o 38897 The setvar ` x ` is not fr...
axc4i-o 38898 Inference version of ~ ax-...
equid1 38899 Proof of ~ equid from our ...
equcomi1 38900 Proof of ~ equcomi from ~ ...
aecom-o 38901 Commutation law for identi...
aecoms-o 38902 A commutation rule for ide...
hbae-o 38903 All variables are effectiv...
dral1-o 38904 Formula-building lemma for...
ax12fromc15 38905 Rederivation of Axiom ~ ax...
ax13fromc9 38906 Derive ~ ax-13 from ~ ax-c...
ax5ALT 38907 Axiom to quantify a variab...
sps-o 38908 Generalization of antecede...
hbequid 38909 Bound-variable hypothesis ...
nfequid-o 38910 Bound-variable hypothesis ...
axc5c7 38911 Proof of a single axiom th...
axc5c7toc5 38912 Rederivation of ~ ax-c5 fr...
axc5c7toc7 38913 Rederivation of ~ ax-c7 fr...
axc711 38914 Proof of a single axiom th...
nfa1-o 38915 ` x ` is not free in ` A. ...
axc711toc7 38916 Rederivation of ~ ax-c7 fr...
axc711to11 38917 Rederivation of ~ ax-11 fr...
axc5c711 38918 Proof of a single axiom th...
axc5c711toc5 38919 Rederivation of ~ ax-c5 fr...
axc5c711toc7 38920 Rederivation of ~ ax-c7 fr...
axc5c711to11 38921 Rederivation of ~ ax-11 fr...
equidqe 38922 ~ equid with existential q...
axc5sp1 38923 A special case of ~ ax-c5 ...
equidq 38924 ~ equid with universal qua...
equid1ALT 38925 Alternate proof of ~ equid...
axc11nfromc11 38926 Rederivation of ~ ax-c11n ...
naecoms-o 38927 A commutation rule for dis...
hbnae-o 38928 All variables are effectiv...
dvelimf-o 38929 Proof of ~ dvelimh that us...
dral2-o 38930 Formula-building lemma for...
aev-o 38931 A "distinctor elimination"...
ax5eq 38932 Theorem to add distinct qu...
dveeq2-o 38933 Quantifier introduction wh...
axc16g-o 38934 A generalization of Axiom ...
dveeq1-o 38935 Quantifier introduction wh...
dveeq1-o16 38936 Version of ~ dveeq1 using ...
ax5el 38937 Theorem to add distinct qu...
axc11n-16 38938 This theorem shows that, g...
dveel2ALT 38939 Alternate proof of ~ dveel...
ax12f 38940 Basis step for constructin...
ax12eq 38941 Basis step for constructin...
ax12el 38942 Basis step for constructin...
ax12indn 38943 Induction step for constru...
ax12indi 38944 Induction step for constru...
ax12indalem 38945 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 38946 Alternate proof of ~ ax12i...
ax12inda2 38947 Induction step for constru...
ax12inda 38948 Induction step for constru...
ax12v2-o 38949 Rederivation of ~ ax-c15 f...
ax12a2-o 38950 Derive ~ ax-c15 from a hyp...
axc11-o 38951 Show that ~ ax-c11 can be ...
fsumshftd 38952 Index shift of a finite su...
riotaclbgBAD 38954 Closure of restricted iota...
riotaclbBAD 38955 Closure of restricted iota...
riotasvd 38956 Deduction version of ~ rio...
riotasv2d 38957 Value of description binde...
riotasv2s 38958 The value of description b...
riotasv 38959 Value of description binde...
riotasv3d 38960 A property ` ch ` holding ...
elimhyps 38961 A version of ~ elimhyp usi...
dedths 38962 A version of weak deductio...
renegclALT 38963 Closure law for negative o...
elimhyps2 38964 Generalization of ~ elimhy...
dedths2 38965 Generalization of ~ dedths...
nfcxfrdf 38966 A utility lemma to transfe...
nfded 38967 A deduction theorem that c...
nfded2 38968 A deduction theorem that c...
nfunidALT2 38969 Deduction version of ~ nfu...
nfunidALT 38970 Deduction version of ~ nfu...
nfopdALT 38971 Deduction version of bound...
cnaddcom 38972 Recover the commutative la...
toycom 38973 Show the commutative law f...
lshpset 38978 The set of all hyperplanes...
islshp 38979 The predicate "is a hyperp...
islshpsm 38980 Hyperplane properties expr...
lshplss 38981 A hyperplane is a subspace...
lshpne 38982 A hyperplane is not equal ...
lshpnel 38983 A hyperplane's generating ...
lshpnelb 38984 The subspace sum of a hype...
lshpnel2N 38985 Condition that determines ...
lshpne0 38986 The member of the span in ...
lshpdisj 38987 A hyperplane and the span ...
lshpcmp 38988 If two hyperplanes are com...
lshpinN 38989 The intersection of two di...
lsatset 38990 The set of all 1-dim subsp...
islsat 38991 The predicate "is a 1-dim ...
lsatlspsn2 38992 The span of a nonzero sing...
lsatlspsn 38993 The span of a nonzero sing...
islsati 38994 A 1-dim subspace (atom) (o...
lsateln0 38995 A 1-dim subspace (atom) (o...
lsatlss 38996 The set of 1-dim subspaces...
lsatlssel 38997 An atom is a subspace. (C...
lsatssv 38998 An atom is a set of vector...
lsatn0 38999 A 1-dim subspace (atom) of...
lsatspn0 39000 The span of a vector is an...
lsator0sp 39001 The span of a vector is ei...
lsatssn0 39002 A subspace (or any class) ...
lsatcmp 39003 If two atoms are comparabl...
lsatcmp2 39004 If an atom is included in ...
lsatel 39005 A nonzero vector in an ato...
lsatelbN 39006 A nonzero vector in an ato...
lsat2el 39007 Two atoms sharing a nonzer...
lsmsat 39008 Convert comparison of atom...
lsatfixedN 39009 Show equality with the spa...
lsmsatcv 39010 Subspace sum has the cover...
lssatomic 39011 The lattice of subspaces i...
lssats 39012 The lattice of subspaces i...
lpssat 39013 Two subspaces in a proper ...
lrelat 39014 Subspaces are relatively a...
lssatle 39015 The ordering of two subspa...
lssat 39016 Two subspaces in a proper ...
islshpat 39017 Hyperplane properties expr...
lcvfbr 39020 The covers relation for a ...
lcvbr 39021 The covers relation for a ...
lcvbr2 39022 The covers relation for a ...
lcvbr3 39023 The covers relation for a ...
lcvpss 39024 The covers relation implie...
lcvnbtwn 39025 The covers relation implie...
lcvntr 39026 The covers relation is not...
lcvnbtwn2 39027 The covers relation implie...
lcvnbtwn3 39028 The covers relation implie...
lsmcv2 39029 Subspace sum has the cover...
lcvat 39030 If a subspace covers anoth...
lsatcv0 39031 An atom covers the zero su...
lsatcveq0 39032 A subspace covered by an a...
lsat0cv 39033 A subspace is an atom iff ...
lcvexchlem1 39034 Lemma for ~ lcvexch . (Co...
lcvexchlem2 39035 Lemma for ~ lcvexch . (Co...
lcvexchlem3 39036 Lemma for ~ lcvexch . (Co...
lcvexchlem4 39037 Lemma for ~ lcvexch . (Co...
lcvexchlem5 39038 Lemma for ~ lcvexch . (Co...
lcvexch 39039 Subspaces satisfy the exch...
lcvp 39040 Covering property of Defin...
lcv1 39041 Covering property of a sub...
lcv2 39042 Covering property of a sub...
lsatexch 39043 The atom exchange property...
lsatnle 39044 The meet of a subspace and...
lsatnem0 39045 The meet of distinct atoms...
lsatexch1 39046 The atom exch1ange propert...
lsatcv0eq 39047 If the sum of two atoms co...
lsatcv1 39048 Two atoms covering the zer...
lsatcvatlem 39049 Lemma for ~ lsatcvat . (C...
lsatcvat 39050 A nonzero subspace less th...
lsatcvat2 39051 A subspace covered by the ...
lsatcvat3 39052 A condition implying that ...
islshpcv 39053 Hyperplane properties expr...
l1cvpat 39054 A subspace covered by the ...
l1cvat 39055 Create an atom under an el...
lshpat 39056 Create an atom under a hyp...
lflset 39059 The set of linear function...
islfl 39060 The predicate "is a linear...
lfli 39061 Property of a linear funct...
islfld 39062 Properties that determine ...
lflf 39063 A linear functional is a f...
lflcl 39064 A linear functional value ...
lfl0 39065 A linear functional is zer...
lfladd 39066 Property of a linear funct...
lflsub 39067 Property of a linear funct...
lflmul 39068 Property of a linear funct...
lfl0f 39069 The zero function is a fun...
lfl1 39070 A nonzero functional has a...
lfladdcl 39071 Closure of addition of two...
lfladdcom 39072 Commutativity of functiona...
lfladdass 39073 Associativity of functiona...
lfladd0l 39074 Functional addition with t...
lflnegcl 39075 Closure of the negative of...
lflnegl 39076 A functional plus its nega...
lflvscl 39077 Closure of a scalar produc...
lflvsdi1 39078 Distributive law for (righ...
lflvsdi2 39079 Reverse distributive law f...
lflvsdi2a 39080 Reverse distributive law f...
lflvsass 39081 Associative law for (right...
lfl0sc 39082 The (right vector space) s...
lflsc0N 39083 The scalar product with th...
lfl1sc 39084 The (right vector space) s...
lkrfval 39087 The kernel of a functional...
lkrval 39088 Value of the kernel of a f...
ellkr 39089 Membership in the kernel o...
lkrval2 39090 Value of the kernel of a f...
ellkr2 39091 Membership in the kernel o...
lkrcl 39092 A member of the kernel of ...
lkrf0 39093 The value of a functional ...
lkr0f 39094 The kernel of the zero fun...
lkrlss 39095 The kernel of a linear fun...
lkrssv 39096 The kernel of a linear fun...
lkrsc 39097 The kernel of a nonzero sc...
lkrscss 39098 The kernel of a scalar pro...
eqlkr 39099 Two functionals with the s...
eqlkr2 39100 Two functionals with the s...
eqlkr3 39101 Two functionals with the s...
lkrlsp 39102 The subspace sum of a kern...
lkrlsp2 39103 The subspace sum of a kern...
lkrlsp3 39104 The subspace sum of a kern...
lkrshp 39105 The kernel of a nonzero fu...
lkrshp3 39106 The kernels of nonzero fun...
lkrshpor 39107 The kernel of a functional...
lkrshp4 39108 A kernel is a hyperplane i...
lshpsmreu 39109 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 39110 Lemma for ~ lshpkrex . Th...
lshpkrlem2 39111 Lemma for ~ lshpkrex . Th...
lshpkrlem3 39112 Lemma for ~ lshpkrex . De...
lshpkrlem4 39113 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 39114 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 39115 Lemma for ~ lshpkrex . Sh...
lshpkrcl 39116 The set ` G ` defined by h...
lshpkr 39117 The kernel of functional `...
lshpkrex 39118 There exists a functional ...
lshpset2N 39119 The set of all hyperplanes...
islshpkrN 39120 The predicate "is a hyperp...
lfl1dim 39121 Equivalent expressions for...
lfl1dim2N 39122 Equivalent expressions for...
ldualset 39125 Define the (left) dual of ...
ldualvbase 39126 The vectors of a dual spac...
ldualelvbase 39127 Utility theorem for conver...
ldualfvadd 39128 Vector addition in the dua...
ldualvadd 39129 Vector addition in the dua...
ldualvaddcl 39130 The value of vector additi...
ldualvaddval 39131 The value of the value of ...
ldualsca 39132 The ring of scalars of the...
ldualsbase 39133 Base set of scalar ring fo...
ldualsaddN 39134 Scalar addition for the du...
ldualsmul 39135 Scalar multiplication for ...
ldualfvs 39136 Scalar product operation f...
ldualvs 39137 Scalar product operation v...
ldualvsval 39138 Value of scalar product op...
ldualvscl 39139 The scalar product operati...
ldualvaddcom 39140 Commutative law for vector...
ldualvsass 39141 Associative law for scalar...
ldualvsass2 39142 Associative law for scalar...
ldualvsdi1 39143 Distributive law for scala...
ldualvsdi2 39144 Reverse distributive law f...
ldualgrplem 39145 Lemma for ~ ldualgrp . (C...
ldualgrp 39146 The dual of a vector space...
ldual0 39147 The zero scalar of the dua...
ldual1 39148 The unit scalar of the dua...
ldualneg 39149 The negative of a scalar o...
ldual0v 39150 The zero vector of the dua...
ldual0vcl 39151 The dual zero vector is a ...
lduallmodlem 39152 Lemma for ~ lduallmod . (...
lduallmod 39153 The dual of a left module ...
lduallvec 39154 The dual of a left vector ...
ldualvsub 39155 The value of vector subtra...
ldualvsubcl 39156 Closure of vector subtract...
ldualvsubval 39157 The value of the value of ...
ldualssvscl 39158 Closure of scalar product ...
ldualssvsubcl 39159 Closure of vector subtract...
ldual0vs 39160 Scalar zero times a functi...
lkr0f2 39161 The kernel of the zero fun...
lduallkr3 39162 The kernels of nonzero fun...
lkrpssN 39163 Proper subset relation bet...
lkrin 39164 Intersection of the kernel...
eqlkr4 39165 Two functionals with the s...
ldual1dim 39166 Equivalent expressions for...
ldualkrsc 39167 The kernel of a nonzero sc...
lkrss 39168 The kernel of a scalar pro...
lkrss2N 39169 Two functionals with kerne...
lkreqN 39170 Proportional functionals h...
lkrlspeqN 39171 Condition for colinear fun...
isopos 39180 The predicate "is an ortho...
opposet 39181 Every orthoposet is a pose...
oposlem 39182 Lemma for orthoposet prope...
op01dm 39183 Conditions necessary for z...
op0cl 39184 An orthoposet has a zero e...
op1cl 39185 An orthoposet has a unity ...
op0le 39186 Orthoposet zero is less th...
ople0 39187 An element less than or eq...
opnlen0 39188 An element not less than a...
lub0N 39189 The least upper bound of t...
opltn0 39190 A lattice element greater ...
ople1 39191 Any element is less than t...
op1le 39192 If the orthoposet unity is...
glb0N 39193 The greatest lower bound o...
opoccl 39194 Closure of orthocomplement...
opococ 39195 Double negative law for or...
opcon3b 39196 Contraposition law for ort...
opcon2b 39197 Orthocomplement contraposi...
opcon1b 39198 Orthocomplement contraposi...
oplecon3 39199 Contraposition law for ort...
oplecon3b 39200 Contraposition law for ort...
oplecon1b 39201 Contraposition law for str...
opoc1 39202 Orthocomplement of orthopo...
opoc0 39203 Orthocomplement of orthopo...
opltcon3b 39204 Contraposition law for str...
opltcon1b 39205 Contraposition law for str...
opltcon2b 39206 Contraposition law for str...
opexmid 39207 Law of excluded middle for...
opnoncon 39208 Law of contradiction for o...
riotaocN 39209 The orthocomplement of the...
cmtfvalN 39210 Value of commutes relation...
cmtvalN 39211 Equivalence for commutes r...
isolat 39212 The predicate "is an ortho...
ollat 39213 An ortholattice is a latti...
olop 39214 An ortholattice is an orth...
olposN 39215 An ortholattice is a poset...
isolatiN 39216 Properties that determine ...
oldmm1 39217 De Morgan's law for meet i...
oldmm2 39218 De Morgan's law for meet i...
oldmm3N 39219 De Morgan's law for meet i...
oldmm4 39220 De Morgan's law for meet i...
oldmj1 39221 De Morgan's law for join i...
oldmj2 39222 De Morgan's law for join i...
oldmj3 39223 De Morgan's law for join i...
oldmj4 39224 De Morgan's law for join i...
olj01 39225 An ortholattice element jo...
olj02 39226 An ortholattice element jo...
olm11 39227 The meet of an ortholattic...
olm12 39228 The meet of an ortholattic...
latmassOLD 39229 Ortholattice meet is assoc...
latm12 39230 A rearrangement of lattice...
latm32 39231 A rearrangement of lattice...
latmrot 39232 Rotate lattice meet of 3 c...
latm4 39233 Rearrangement of lattice m...
latmmdiN 39234 Lattice meet distributes o...
latmmdir 39235 Lattice meet distributes o...
olm01 39236 Meet with lattice zero is ...
olm02 39237 Meet with lattice zero is ...
isoml 39238 The predicate "is an ortho...
isomliN 39239 Properties that determine ...
omlol 39240 An orthomodular lattice is...
omlop 39241 An orthomodular lattice is...
omllat 39242 An orthomodular lattice is...
omllaw 39243 The orthomodular law. (Co...
omllaw2N 39244 Variation of orthomodular ...
omllaw3 39245 Orthomodular law equivalen...
omllaw4 39246 Orthomodular law equivalen...
omllaw5N 39247 The orthomodular law. Rem...
cmtcomlemN 39248 Lemma for ~ cmtcomN . ( ~...
cmtcomN 39249 Commutation is symmetric. ...
cmt2N 39250 Commutation with orthocomp...
cmt3N 39251 Commutation with orthocomp...
cmt4N 39252 Commutation with orthocomp...
cmtbr2N 39253 Alternate definition of th...
cmtbr3N 39254 Alternate definition for t...
cmtbr4N 39255 Alternate definition for t...
lecmtN 39256 Ordered elements commute. ...
cmtidN 39257 Any element commutes with ...
omlfh1N 39258 Foulis-Holland Theorem, pa...
omlfh3N 39259 Foulis-Holland Theorem, pa...
omlmod1i2N 39260 Analogue of modular law ~ ...
omlspjN 39261 Contraction of a Sasaki pr...
cvrfval 39268 Value of covers relation "...
cvrval 39269 Binary relation expressing...
cvrlt 39270 The covers relation implie...
cvrnbtwn 39271 There is no element betwee...
ncvr1 39272 No element covers the latt...
cvrletrN 39273 Property of an element abo...
cvrval2 39274 Binary relation expressing...
cvrnbtwn2 39275 The covers relation implie...
cvrnbtwn3 39276 The covers relation implie...
cvrcon3b 39277 Contraposition law for the...
cvrle 39278 The covers relation implie...
cvrnbtwn4 39279 The covers relation implie...
cvrnle 39280 The covers relation implie...
cvrne 39281 The covers relation implie...
cvrnrefN 39282 The covers relation is not...
cvrcmp 39283 If two lattice elements th...
cvrcmp2 39284 If two lattice elements co...
pats 39285 The set of atoms in a pose...
isat 39286 The predicate "is an atom"...
isat2 39287 The predicate "is an atom"...
atcvr0 39288 An atom covers zero. ( ~ ...
atbase 39289 An atom is a member of the...
atssbase 39290 The set of atoms is a subs...
0ltat 39291 An atom is greater than ze...
leatb 39292 A poset element less than ...
leat 39293 A poset element less than ...
leat2 39294 A nonzero poset element le...
leat3 39295 A poset element less than ...
meetat 39296 The meet of any element wi...
meetat2 39297 The meet of any element wi...
isatl 39299 The predicate "is an atomi...
atllat 39300 An atomic lattice is a lat...
atlpos 39301 An atomic lattice is a pos...
atl0dm 39302 Condition necessary for ze...
atl0cl 39303 An atomic lattice has a ze...
atl0le 39304 Orthoposet zero is less th...
atlle0 39305 An element less than or eq...
atlltn0 39306 A lattice element greater ...
isat3 39307 The predicate "is an atom"...
atn0 39308 An atom is not zero. ( ~ ...
atnle0 39309 An atom is not less than o...
atlen0 39310 A lattice element is nonze...
atcmp 39311 If two atoms are comparabl...
atncmp 39312 Frequently-used variation ...
atnlt 39313 Two atoms cannot satisfy t...
atcvreq0 39314 An element covered by an a...
atncvrN 39315 Two atoms cannot satisfy t...
atlex 39316 Every nonzero element of a...
atnle 39317 Two ways of expressing "an...
atnem0 39318 The meet of distinct atoms...
atlatmstc 39319 An atomic, complete, ortho...
atlatle 39320 The ordering of two Hilber...
atlrelat1 39321 An atomistic lattice with ...
iscvlat 39323 The predicate "is an atomi...
iscvlat2N 39324 The predicate "is an atomi...
cvlatl 39325 An atomic lattice with the...
cvllat 39326 An atomic lattice with the...
cvlposN 39327 An atomic lattice with the...
cvlexch1 39328 An atomic covering lattice...
cvlexch2 39329 An atomic covering lattice...
cvlexchb1 39330 An atomic covering lattice...
cvlexchb2 39331 An atomic covering lattice...
cvlexch3 39332 An atomic covering lattice...
cvlexch4N 39333 An atomic covering lattice...
cvlatexchb1 39334 A version of ~ cvlexchb1 f...
cvlatexchb2 39335 A version of ~ cvlexchb2 f...
cvlatexch1 39336 Atom exchange property. (...
cvlatexch2 39337 Atom exchange property. (...
cvlatexch3 39338 Atom exchange property. (...
cvlcvr1 39339 The covering property. Pr...
cvlcvrp 39340 A Hilbert lattice satisfie...
cvlatcvr1 39341 An atom is covered by its ...
cvlatcvr2 39342 An atom is covered by its ...
cvlsupr2 39343 Two equivalent ways of exp...
cvlsupr3 39344 Two equivalent ways of exp...
cvlsupr4 39345 Consequence of superpositi...
cvlsupr5 39346 Consequence of superpositi...
cvlsupr6 39347 Consequence of superpositi...
cvlsupr7 39348 Consequence of superpositi...
cvlsupr8 39349 Consequence of superpositi...
ishlat1 39352 The predicate "is a Hilber...
ishlat2 39353 The predicate "is a Hilber...
ishlat3N 39354 The predicate "is a Hilber...
ishlatiN 39355 Properties that determine ...
hlomcmcv 39356 A Hilbert lattice is ortho...
hloml 39357 A Hilbert lattice is ortho...
hlclat 39358 A Hilbert lattice is compl...
hlcvl 39359 A Hilbert lattice is an at...
hlatl 39360 A Hilbert lattice is atomi...
hlol 39361 A Hilbert lattice is an or...
hlop 39362 A Hilbert lattice is an or...
hllat 39363 A Hilbert lattice is a lat...
hllatd 39364 Deduction form of ~ hllat ...
hlomcmat 39365 A Hilbert lattice is ortho...
hlpos 39366 A Hilbert lattice is a pos...
hlatjcl 39367 Closure of join operation....
hlatjcom 39368 Commutatitivity of join op...
hlatjidm 39369 Idempotence of join operat...
hlatjass 39370 Lattice join is associativ...
hlatj12 39371 Swap 1st and 2nd members o...
hlatj32 39372 Swap 2nd and 3rd members o...
hlatjrot 39373 Rotate lattice join of 3 c...
hlatj4 39374 Rearrangement of lattice j...
hlatlej1 39375 A join's first argument is...
hlatlej2 39376 A join's second argument i...
glbconN 39377 De Morgan's law for GLB an...
glbconNOLD 39378 Obsolete version of ~ glbc...
glbconxN 39379 De Morgan's law for GLB an...
atnlej1 39380 If an atom is not less tha...
atnlej2 39381 If an atom is not less tha...
hlsuprexch 39382 A Hilbert lattice has the ...
hlexch1 39383 A Hilbert lattice has the ...
hlexch2 39384 A Hilbert lattice has the ...
hlexchb1 39385 A Hilbert lattice has the ...
hlexchb2 39386 A Hilbert lattice has the ...
hlsupr 39387 A Hilbert lattice has the ...
hlsupr2 39388 A Hilbert lattice has the ...
hlhgt4 39389 A Hilbert lattice has a he...
hlhgt2 39390 A Hilbert lattice has a he...
hl0lt1N 39391 Lattice 0 is less than lat...
hlexch3 39392 A Hilbert lattice has the ...
hlexch4N 39393 A Hilbert lattice has the ...
hlatexchb1 39394 A version of ~ hlexchb1 fo...
hlatexchb2 39395 A version of ~ hlexchb2 fo...
hlatexch1 39396 Atom exchange property. (...
hlatexch2 39397 Atom exchange property. (...
hlatmstcOLDN 39398 An atomic, complete, ortho...
hlatle 39399 The ordering of two Hilber...
hlateq 39400 The equality of two Hilber...
hlrelat1 39401 An atomistic lattice with ...
hlrelat5N 39402 An atomistic lattice with ...
hlrelat 39403 A Hilbert lattice is relat...
hlrelat2 39404 A consequence of relative ...
exatleN 39405 A condition for an atom to...
hl2at 39406 A Hilbert lattice has at l...
atex 39407 At least one atom exists. ...
intnatN 39408 If the intersection with a...
2llnne2N 39409 Condition implying that tw...
2llnneN 39410 Condition implying that tw...
cvr1 39411 A Hilbert lattice has the ...
cvr2N 39412 Less-than and covers equiv...
hlrelat3 39413 The Hilbert lattice is rel...
cvrval3 39414 Binary relation expressing...
cvrval4N 39415 Binary relation expressing...
cvrval5 39416 Binary relation expressing...
cvrp 39417 A Hilbert lattice satisfie...
atcvr1 39418 An atom is covered by its ...
atcvr2 39419 An atom is covered by its ...
cvrexchlem 39420 Lemma for ~ cvrexch . ( ~...
cvrexch 39421 A Hilbert lattice satisfie...
cvratlem 39422 Lemma for ~ cvrat . ( ~ a...
cvrat 39423 A nonzero Hilbert lattice ...
ltltncvr 39424 A chained strong ordering ...
ltcvrntr 39425 Non-transitive condition f...
cvrntr 39426 The covers relation is not...
atcvr0eq 39427 The covers relation is not...
lnnat 39428 A line (the join of two di...
atcvrj0 39429 Two atoms covering the zer...
cvrat2 39430 A Hilbert lattice element ...
atcvrneN 39431 Inequality derived from at...
atcvrj1 39432 Condition for an atom to b...
atcvrj2b 39433 Condition for an atom to b...
atcvrj2 39434 Condition for an atom to b...
atleneN 39435 Inequality derived from at...
atltcvr 39436 An equivalence of less-tha...
atle 39437 Any nonzero element has an...
atlt 39438 Two atoms are unequal iff ...
atlelt 39439 Transfer less-than relatio...
2atlt 39440 Given an atom less than an...
atexchcvrN 39441 Atom exchange property. V...
atexchltN 39442 Atom exchange property. V...
cvrat3 39443 A condition implying that ...
cvrat4 39444 A condition implying exist...
cvrat42 39445 Commuted version of ~ cvra...
2atjm 39446 The meet of a line (expres...
atbtwn 39447 Property of a 3rd atom ` R...
atbtwnexOLDN 39448 There exists a 3rd atom ` ...
atbtwnex 39449 Given atoms ` P ` in ` X `...
3noncolr2 39450 Two ways to express 3 non-...
3noncolr1N 39451 Two ways to express 3 non-...
hlatcon3 39452 Atom exchange combined wit...
hlatcon2 39453 Atom exchange combined wit...
4noncolr3 39454 A way to express 4 non-col...
4noncolr2 39455 A way to express 4 non-col...
4noncolr1 39456 A way to express 4 non-col...
athgt 39457 A Hilbert lattice, whose h...
3dim0 39458 There exists a 3-dimension...
3dimlem1 39459 Lemma for ~ 3dim1 . (Cont...
3dimlem2 39460 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 39461 Lemma for ~ 3dim3 . (Cont...
3dimlem3 39462 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 39463 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 39464 Lemma for ~ 3dim3 . (Cont...
3dimlem4 39465 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 39466 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 39467 Lemma for ~ 3dim1 . (Cont...
3dim1 39468 Construct a 3-dimensional ...
3dim2 39469 Construct 2 new layers on ...
3dim3 39470 Construct a new layer on t...
2dim 39471 Generate a height-3 elemen...
1dimN 39472 An atom is covered by a he...
1cvrco 39473 The orthocomplement of an ...
1cvratex 39474 There exists an atom less ...
1cvratlt 39475 An atom less than or equal...
1cvrjat 39476 An element covered by the ...
1cvrat 39477 Create an atom under an el...
ps-1 39478 The join of two atoms ` R ...
ps-2 39479 Lattice analogue for the p...
2atjlej 39480 Two atoms are different if...
hlatexch3N 39481 Rearrange join of atoms in...
hlatexch4 39482 Exchange 2 atoms. (Contri...
ps-2b 39483 Variation of projective ge...
3atlem1 39484 Lemma for ~ 3at . (Contri...
3atlem2 39485 Lemma for ~ 3at . (Contri...
3atlem3 39486 Lemma for ~ 3at . (Contri...
3atlem4 39487 Lemma for ~ 3at . (Contri...
3atlem5 39488 Lemma for ~ 3at . (Contri...
3atlem6 39489 Lemma for ~ 3at . (Contri...
3atlem7 39490 Lemma for ~ 3at . (Contri...
3at 39491 Any three non-colinear ato...
llnset 39506 The set of lattice lines i...
islln 39507 The predicate "is a lattic...
islln4 39508 The predicate "is a lattic...
llni 39509 Condition implying a latti...
llnbase 39510 A lattice line is a lattic...
islln3 39511 The predicate "is a lattic...
islln2 39512 The predicate "is a lattic...
llni2 39513 The join of two different ...
llnnleat 39514 An atom cannot majorize a ...
llnneat 39515 A lattice line is not an a...
2atneat 39516 The join of two distinct a...
llnn0 39517 A lattice line is nonzero....
islln2a 39518 The predicate "is a lattic...
llnle 39519 Any element greater than 0...
atcvrlln2 39520 An atom under a line is co...
atcvrlln 39521 An element covering an ato...
llnexatN 39522 Given an atom on a line, t...
llncmp 39523 If two lattice lines are c...
llnnlt 39524 Two lattice lines cannot s...
2llnmat 39525 Two intersecting lines int...
2at0mat0 39526 Special case of ~ 2atmat0 ...
2atmat0 39527 The meet of two unequal li...
2atm 39528 An atom majorized by two d...
ps-2c 39529 Variation of projective ge...
lplnset 39530 The set of lattice planes ...
islpln 39531 The predicate "is a lattic...
islpln4 39532 The predicate "is a lattic...
lplni 39533 Condition implying a latti...
islpln3 39534 The predicate "is a lattic...
lplnbase 39535 A lattice plane is a latti...
islpln5 39536 The predicate "is a lattic...
islpln2 39537 The predicate "is a lattic...
lplni2 39538 The join of 3 different at...
lvolex3N 39539 There is an atom outside o...
llnmlplnN 39540 The intersection of a line...
lplnle 39541 Any element greater than 0...
lplnnle2at 39542 A lattice line (or atom) c...
lplnnleat 39543 A lattice plane cannot maj...
lplnnlelln 39544 A lattice plane is not les...
2atnelpln 39545 The join of two atoms is n...
lplnneat 39546 No lattice plane is an ato...
lplnnelln 39547 No lattice plane is a latt...
lplnn0N 39548 A lattice plane is nonzero...
islpln2a 39549 The predicate "is a lattic...
islpln2ah 39550 The predicate "is a lattic...
lplnriaN 39551 Property of a lattice plan...
lplnribN 39552 Property of a lattice plan...
lplnric 39553 Property of a lattice plan...
lplnri1 39554 Property of a lattice plan...
lplnri2N 39555 Property of a lattice plan...
lplnri3N 39556 Property of a lattice plan...
lplnllnneN 39557 Two lattice lines defined ...
llncvrlpln2 39558 A lattice line under a lat...
llncvrlpln 39559 An element covering a latt...
2lplnmN 39560 If the join of two lattice...
2llnmj 39561 The meet of two lattice li...
2atmat 39562 The meet of two intersecti...
lplncmp 39563 If two lattice planes are ...
lplnexatN 39564 Given a lattice line on a ...
lplnexllnN 39565 Given an atom on a lattice...
lplnnlt 39566 Two lattice planes cannot ...
2llnjaN 39567 The join of two different ...
2llnjN 39568 The join of two different ...
2llnm2N 39569 The meet of two different ...
2llnm3N 39570 Two lattice lines in a lat...
2llnm4 39571 Two lattice lines that maj...
2llnmeqat 39572 An atom equals the interse...
lvolset 39573 The set of 3-dim lattice v...
islvol 39574 The predicate "is a 3-dim ...
islvol4 39575 The predicate "is a 3-dim ...
lvoli 39576 Condition implying a 3-dim...
islvol3 39577 The predicate "is a 3-dim ...
lvoli3 39578 Condition implying a 3-dim...
lvolbase 39579 A 3-dim lattice volume is ...
islvol5 39580 The predicate "is a 3-dim ...
islvol2 39581 The predicate "is a 3-dim ...
lvoli2 39582 The join of 4 different at...
lvolnle3at 39583 A lattice plane (or lattic...
lvolnleat 39584 An atom cannot majorize a ...
lvolnlelln 39585 A lattice line cannot majo...
lvolnlelpln 39586 A lattice plane cannot maj...
3atnelvolN 39587 The join of 3 atoms is not...
2atnelvolN 39588 The join of two atoms is n...
lvolneatN 39589 No lattice volume is an at...
lvolnelln 39590 No lattice volume is a lat...
lvolnelpln 39591 No lattice volume is a lat...
lvoln0N 39592 A lattice volume is nonzer...
islvol2aN 39593 The predicate "is a lattic...
4atlem0a 39594 Lemma for ~ 4at . (Contri...
4atlem0ae 39595 Lemma for ~ 4at . (Contri...
4atlem0be 39596 Lemma for ~ 4at . (Contri...
4atlem3 39597 Lemma for ~ 4at . Break i...
4atlem3a 39598 Lemma for ~ 4at . Break i...
4atlem3b 39599 Lemma for ~ 4at . Break i...
4atlem4a 39600 Lemma for ~ 4at . Frequen...
4atlem4b 39601 Lemma for ~ 4at . Frequen...
4atlem4c 39602 Lemma for ~ 4at . Frequen...
4atlem4d 39603 Lemma for ~ 4at . Frequen...
4atlem9 39604 Lemma for ~ 4at . Substit...
4atlem10a 39605 Lemma for ~ 4at . Substit...
4atlem10b 39606 Lemma for ~ 4at . Substit...
4atlem10 39607 Lemma for ~ 4at . Combine...
4atlem11a 39608 Lemma for ~ 4at . Substit...
4atlem11b 39609 Lemma for ~ 4at . Substit...
4atlem11 39610 Lemma for ~ 4at . Combine...
4atlem12a 39611 Lemma for ~ 4at . Substit...
4atlem12b 39612 Lemma for ~ 4at . Substit...
4atlem12 39613 Lemma for ~ 4at . Combine...
4at 39614 Four atoms determine a lat...
4at2 39615 Four atoms determine a lat...
lplncvrlvol2 39616 A lattice line under a lat...
lplncvrlvol 39617 An element covering a latt...
lvolcmp 39618 If two lattice planes are ...
lvolnltN 39619 Two lattice volumes cannot...
2lplnja 39620 The join of two different ...
2lplnj 39621 The join of two different ...
2lplnm2N 39622 The meet of two different ...
2lplnmj 39623 The meet of two lattice pl...
dalemkehl 39624 Lemma for ~ dath . Freque...
dalemkelat 39625 Lemma for ~ dath . Freque...
dalemkeop 39626 Lemma for ~ dath . Freque...
dalempea 39627 Lemma for ~ dath . Freque...
dalemqea 39628 Lemma for ~ dath . Freque...
dalemrea 39629 Lemma for ~ dath . Freque...
dalemsea 39630 Lemma for ~ dath . Freque...
dalemtea 39631 Lemma for ~ dath . Freque...
dalemuea 39632 Lemma for ~ dath . Freque...
dalemyeo 39633 Lemma for ~ dath . Freque...
dalemzeo 39634 Lemma for ~ dath . Freque...
dalemclpjs 39635 Lemma for ~ dath . Freque...
dalemclqjt 39636 Lemma for ~ dath . Freque...
dalemclrju 39637 Lemma for ~ dath . Freque...
dalem-clpjq 39638 Lemma for ~ dath . Freque...
dalemceb 39639 Lemma for ~ dath . Freque...
dalempeb 39640 Lemma for ~ dath . Freque...
dalemqeb 39641 Lemma for ~ dath . Freque...
dalemreb 39642 Lemma for ~ dath . Freque...
dalemseb 39643 Lemma for ~ dath . Freque...
dalemteb 39644 Lemma for ~ dath . Freque...
dalemueb 39645 Lemma for ~ dath . Freque...
dalempjqeb 39646 Lemma for ~ dath . Freque...
dalemsjteb 39647 Lemma for ~ dath . Freque...
dalemtjueb 39648 Lemma for ~ dath . Freque...
dalemqrprot 39649 Lemma for ~ dath . Freque...
dalemyeb 39650 Lemma for ~ dath . Freque...
dalemcnes 39651 Lemma for ~ dath . Freque...
dalempnes 39652 Lemma for ~ dath . Freque...
dalemqnet 39653 Lemma for ~ dath . Freque...
dalempjsen 39654 Lemma for ~ dath . Freque...
dalemply 39655 Lemma for ~ dath . Freque...
dalemsly 39656 Lemma for ~ dath . Freque...
dalemswapyz 39657 Lemma for ~ dath . Swap t...
dalemrot 39658 Lemma for ~ dath . Rotate...
dalemrotyz 39659 Lemma for ~ dath . Rotate...
dalem1 39660 Lemma for ~ dath . Show t...
dalemcea 39661 Lemma for ~ dath . Freque...
dalem2 39662 Lemma for ~ dath . Show t...
dalemdea 39663 Lemma for ~ dath . Freque...
dalemeea 39664 Lemma for ~ dath . Freque...
dalem3 39665 Lemma for ~ dalemdnee . (...
dalem4 39666 Lemma for ~ dalemdnee . (...
dalemdnee 39667 Lemma for ~ dath . Axis o...
dalem5 39668 Lemma for ~ dath . Atom `...
dalem6 39669 Lemma for ~ dath . Analog...
dalem7 39670 Lemma for ~ dath . Analog...
dalem8 39671 Lemma for ~ dath . Plane ...
dalem-cly 39672 Lemma for ~ dalem9 . Cent...
dalem9 39673 Lemma for ~ dath . Since ...
dalem10 39674 Lemma for ~ dath . Atom `...
dalem11 39675 Lemma for ~ dath . Analog...
dalem12 39676 Lemma for ~ dath . Analog...
dalem13 39677 Lemma for ~ dalem14 . (Co...
dalem14 39678 Lemma for ~ dath . Planes...
dalem15 39679 Lemma for ~ dath . The ax...
dalem16 39680 Lemma for ~ dath . The at...
dalem17 39681 Lemma for ~ dath . When p...
dalem18 39682 Lemma for ~ dath . Show t...
dalem19 39683 Lemma for ~ dath . Show t...
dalemccea 39684 Lemma for ~ dath . Freque...
dalemddea 39685 Lemma for ~ dath . Freque...
dalem-ccly 39686 Lemma for ~ dath . Freque...
dalem-ddly 39687 Lemma for ~ dath . Freque...
dalemccnedd 39688 Lemma for ~ dath . Freque...
dalemclccjdd 39689 Lemma for ~ dath . Freque...
dalemcceb 39690 Lemma for ~ dath . Freque...
dalemswapyzps 39691 Lemma for ~ dath . Swap t...
dalemrotps 39692 Lemma for ~ dath . Rotate...
dalemcjden 39693 Lemma for ~ dath . Show t...
dalem20 39694 Lemma for ~ dath . Show t...
dalem21 39695 Lemma for ~ dath . Show t...
dalem22 39696 Lemma for ~ dath . Show t...
dalem23 39697 Lemma for ~ dath . Show t...
dalem24 39698 Lemma for ~ dath . Show t...
dalem25 39699 Lemma for ~ dath . Show t...
dalem27 39700 Lemma for ~ dath . Show t...
dalem28 39701 Lemma for ~ dath . Lemma ...
dalem29 39702 Lemma for ~ dath . Analog...
dalem30 39703 Lemma for ~ dath . Analog...
dalem31N 39704 Lemma for ~ dath . Analog...
dalem32 39705 Lemma for ~ dath . Analog...
dalem33 39706 Lemma for ~ dath . Analog...
dalem34 39707 Lemma for ~ dath . Analog...
dalem35 39708 Lemma for ~ dath . Analog...
dalem36 39709 Lemma for ~ dath . Analog...
dalem37 39710 Lemma for ~ dath . Analog...
dalem38 39711 Lemma for ~ dath . Plane ...
dalem39 39712 Lemma for ~ dath . Auxili...
dalem40 39713 Lemma for ~ dath . Analog...
dalem41 39714 Lemma for ~ dath . (Contr...
dalem42 39715 Lemma for ~ dath . Auxili...
dalem43 39716 Lemma for ~ dath . Planes...
dalem44 39717 Lemma for ~ dath . Dummy ...
dalem45 39718 Lemma for ~ dath . Dummy ...
dalem46 39719 Lemma for ~ dath . Analog...
dalem47 39720 Lemma for ~ dath . Analog...
dalem48 39721 Lemma for ~ dath . Analog...
dalem49 39722 Lemma for ~ dath . Analog...
dalem50 39723 Lemma for ~ dath . Analog...
dalem51 39724 Lemma for ~ dath . Constr...
dalem52 39725 Lemma for ~ dath . Lines ...
dalem53 39726 Lemma for ~ dath . The au...
dalem54 39727 Lemma for ~ dath . Line `...
dalem55 39728 Lemma for ~ dath . Lines ...
dalem56 39729 Lemma for ~ dath . Analog...
dalem57 39730 Lemma for ~ dath . Axis o...
dalem58 39731 Lemma for ~ dath . Analog...
dalem59 39732 Lemma for ~ dath . Analog...
dalem60 39733 Lemma for ~ dath . ` B ` i...
dalem61 39734 Lemma for ~ dath . Show t...
dalem62 39735 Lemma for ~ dath . Elimin...
dalem63 39736 Lemma for ~ dath . Combin...
dath 39737 Desargues's theorem of pro...
dath2 39738 Version of Desargues's the...
lineset 39739 The set of lines in a Hilb...
isline 39740 The predicate "is a line"....
islinei 39741 Condition implying "is a l...
pointsetN 39742 The set of points in a Hil...
ispointN 39743 The predicate "is a point"...
atpointN 39744 The singleton of an atom i...
psubspset 39745 The set of projective subs...
ispsubsp 39746 The predicate "is a projec...
ispsubsp2 39747 The predicate "is a projec...
psubspi 39748 Property of a projective s...
psubspi2N 39749 Property of a projective s...
0psubN 39750 The empty set is a project...
snatpsubN 39751 The singleton of an atom i...
pointpsubN 39752 A point (singleton of an a...
linepsubN 39753 A line is a projective sub...
atpsubN 39754 The set of all atoms is a ...
psubssat 39755 A projective subspace cons...
psubatN 39756 A member of a projective s...
pmapfval 39757 The projective map of a Hi...
pmapval 39758 Value of the projective ma...
elpmap 39759 Member of a projective map...
pmapssat 39760 The projective map of a Hi...
pmapssbaN 39761 A weakening of ~ pmapssat ...
pmaple 39762 The projective map of a Hi...
pmap11 39763 The projective map of a Hi...
pmapat 39764 The projective map of an a...
elpmapat 39765 Member of the projective m...
pmap0 39766 Value of the projective ma...
pmapeq0 39767 A projective map value is ...
pmap1N 39768 Value of the projective ma...
pmapsub 39769 The projective map of a Hi...
pmapglbx 39770 The projective map of the ...
pmapglb 39771 The projective map of the ...
pmapglb2N 39772 The projective map of the ...
pmapglb2xN 39773 The projective map of the ...
pmapmeet 39774 The projective map of a me...
isline2 39775 Definition of line in term...
linepmap 39776 A line described with a pr...
isline3 39777 Definition of line in term...
isline4N 39778 Definition of line in term...
lneq2at 39779 A line equals the join of ...
lnatexN 39780 There is an atom in a line...
lnjatN 39781 Given an atom in a line, t...
lncvrelatN 39782 A lattice element covered ...
lncvrat 39783 A line covers the atoms it...
lncmp 39784 If two lines are comparabl...
2lnat 39785 Two intersecting lines int...
2atm2atN 39786 Two joins with a common at...
2llnma1b 39787 Generalization of ~ 2llnma...
2llnma1 39788 Two different intersecting...
2llnma3r 39789 Two different intersecting...
2llnma2 39790 Two different intersecting...
2llnma2rN 39791 Two different intersecting...
cdlema1N 39792 A condition for required f...
cdlema2N 39793 A condition for required f...
cdlemblem 39794 Lemma for ~ cdlemb . (Con...
cdlemb 39795 Given two atoms not less t...
paddfval 39798 Projective subspace sum op...
paddval 39799 Projective subspace sum op...
elpadd 39800 Member of a projective sub...
elpaddn0 39801 Member of projective subsp...
paddvaln0N 39802 Projective subspace sum op...
elpaddri 39803 Condition implying members...
elpaddatriN 39804 Condition implying members...
elpaddat 39805 Membership in a projective...
elpaddatiN 39806 Consequence of membership ...
elpadd2at 39807 Membership in a projective...
elpadd2at2 39808 Membership in a projective...
paddunssN 39809 Projective subspace sum in...
elpadd0 39810 Member of projective subsp...
paddval0 39811 Projective subspace sum wi...
padd01 39812 Projective subspace sum wi...
padd02 39813 Projective subspace sum wi...
paddcom 39814 Projective subspace sum co...
paddssat 39815 A projective subspace sum ...
sspadd1 39816 A projective subspace sum ...
sspadd2 39817 A projective subspace sum ...
paddss1 39818 Subset law for projective ...
paddss2 39819 Subset law for projective ...
paddss12 39820 Subset law for projective ...
paddasslem1 39821 Lemma for ~ paddass . (Co...
paddasslem2 39822 Lemma for ~ paddass . (Co...
paddasslem3 39823 Lemma for ~ paddass . Res...
paddasslem4 39824 Lemma for ~ paddass . Com...
paddasslem5 39825 Lemma for ~ paddass . Sho...
paddasslem6 39826 Lemma for ~ paddass . (Co...
paddasslem7 39827 Lemma for ~ paddass . Com...
paddasslem8 39828 Lemma for ~ paddass . (Co...
paddasslem9 39829 Lemma for ~ paddass . Com...
paddasslem10 39830 Lemma for ~ paddass . Use...
paddasslem11 39831 Lemma for ~ paddass . The...
paddasslem12 39832 Lemma for ~ paddass . The...
paddasslem13 39833 Lemma for ~ paddass . The...
paddasslem14 39834 Lemma for ~ paddass . Rem...
paddasslem15 39835 Lemma for ~ paddass . Use...
paddasslem16 39836 Lemma for ~ paddass . Use...
paddasslem17 39837 Lemma for ~ paddass . The...
paddasslem18 39838 Lemma for ~ paddass . Com...
paddass 39839 Projective subspace sum is...
padd12N 39840 Commutative/associative la...
padd4N 39841 Rearrangement of 4 terms i...
paddidm 39842 Projective subspace sum is...
paddclN 39843 The projective sum of two ...
paddssw1 39844 Subset law for projective ...
paddssw2 39845 Subset law for projective ...
paddss 39846 Subset law for projective ...
pmodlem1 39847 Lemma for ~ pmod1i . (Con...
pmodlem2 39848 Lemma for ~ pmod1i . (Con...
pmod1i 39849 The modular law holds in a...
pmod2iN 39850 Dual of the modular law. ...
pmodN 39851 The modular law for projec...
pmodl42N 39852 Lemma derived from modular...
pmapjoin 39853 The projective map of the ...
pmapjat1 39854 The projective map of the ...
pmapjat2 39855 The projective map of the ...
pmapjlln1 39856 The projective map of the ...
hlmod1i 39857 A version of the modular l...
atmod1i1 39858 Version of modular law ~ p...
atmod1i1m 39859 Version of modular law ~ p...
atmod1i2 39860 Version of modular law ~ p...
llnmod1i2 39861 Version of modular law ~ p...
atmod2i1 39862 Version of modular law ~ p...
atmod2i2 39863 Version of modular law ~ p...
llnmod2i2 39864 Version of modular law ~ p...
atmod3i1 39865 Version of modular law tha...
atmod3i2 39866 Version of modular law tha...
atmod4i1 39867 Version of modular law tha...
atmod4i2 39868 Version of modular law tha...
llnexchb2lem 39869 Lemma for ~ llnexchb2 . (...
llnexchb2 39870 Line exchange property (co...
llnexch2N 39871 Line exchange property (co...
dalawlem1 39872 Lemma for ~ dalaw . Speci...
dalawlem2 39873 Lemma for ~ dalaw . Utili...
dalawlem3 39874 Lemma for ~ dalaw . First...
dalawlem4 39875 Lemma for ~ dalaw . Secon...
dalawlem5 39876 Lemma for ~ dalaw . Speci...
dalawlem6 39877 Lemma for ~ dalaw . First...
dalawlem7 39878 Lemma for ~ dalaw . Secon...
dalawlem8 39879 Lemma for ~ dalaw . Speci...
dalawlem9 39880 Lemma for ~ dalaw . Speci...
dalawlem10 39881 Lemma for ~ dalaw . Combi...
dalawlem11 39882 Lemma for ~ dalaw . First...
dalawlem12 39883 Lemma for ~ dalaw . Secon...
dalawlem13 39884 Lemma for ~ dalaw . Speci...
dalawlem14 39885 Lemma for ~ dalaw . Combi...
dalawlem15 39886 Lemma for ~ dalaw . Swap ...
dalaw 39887 Desargues's law, derived f...
pclfvalN 39890 The projective subspace cl...
pclvalN 39891 Value of the projective su...
pclclN 39892 Closure of the projective ...
elpclN 39893 Membership in the projecti...
elpcliN 39894 Implication of membership ...
pclssN 39895 Ordering is preserved by s...
pclssidN 39896 A set of atoms is included...
pclidN 39897 The projective subspace cl...
pclbtwnN 39898 A projective subspace sand...
pclunN 39899 The projective subspace cl...
pclun2N 39900 The projective subspace cl...
pclfinN 39901 The projective subspace cl...
pclcmpatN 39902 The set of projective subs...
polfvalN 39905 The projective subspace po...
polvalN 39906 Value of the projective su...
polval2N 39907 Alternate expression for v...
polsubN 39908 The polarity of a set of a...
polssatN 39909 The polarity of a set of a...
pol0N 39910 The polarity of the empty ...
pol1N 39911 The polarity of the whole ...
2pol0N 39912 The closed subspace closur...
polpmapN 39913 The polarity of a projecti...
2polpmapN 39914 Double polarity of a proje...
2polvalN 39915 Value of double polarity. ...
2polssN 39916 A set of atoms is a subset...
3polN 39917 Triple polarity cancels to...
polcon3N 39918 Contraposition law for pol...
2polcon4bN 39919 Contraposition law for pol...
polcon2N 39920 Contraposition law for pol...
polcon2bN 39921 Contraposition law for pol...
pclss2polN 39922 The projective subspace cl...
pcl0N 39923 The projective subspace cl...
pcl0bN 39924 The projective subspace cl...
pmaplubN 39925 The LUB of a projective ma...
sspmaplubN 39926 A set of atoms is a subset...
2pmaplubN 39927 Double projective map of a...
paddunN 39928 The closure of the project...
poldmj1N 39929 De Morgan's law for polari...
pmapj2N 39930 The projective map of the ...
pmapocjN 39931 The projective map of the ...
polatN 39932 The polarity of the single...
2polatN 39933 Double polarity of the sin...
pnonsingN 39934 The intersection of a set ...
psubclsetN 39937 The set of closed projecti...
ispsubclN 39938 The predicate "is a closed...
psubcliN 39939 Property of a closed proje...
psubcli2N 39940 Property of a closed proje...
psubclsubN 39941 A closed projective subspa...
psubclssatN 39942 A closed projective subspa...
pmapidclN 39943 Projective map of the LUB ...
0psubclN 39944 The empty set is a closed ...
1psubclN 39945 The set of all atoms is a ...
atpsubclN 39946 A point (singleton of an a...
pmapsubclN 39947 A projective map value is ...
ispsubcl2N 39948 Alternate predicate for "i...
psubclinN 39949 The intersection of two cl...
paddatclN 39950 The projective sum of a cl...
pclfinclN 39951 The projective subspace cl...
linepsubclN 39952 A line is a closed project...
polsubclN 39953 A polarity is a closed pro...
poml4N 39954 Orthomodular law for proje...
poml5N 39955 Orthomodular law for proje...
poml6N 39956 Orthomodular law for proje...
osumcllem1N 39957 Lemma for ~ osumclN . (Co...
osumcllem2N 39958 Lemma for ~ osumclN . (Co...
osumcllem3N 39959 Lemma for ~ osumclN . (Co...
osumcllem4N 39960 Lemma for ~ osumclN . (Co...
osumcllem5N 39961 Lemma for ~ osumclN . (Co...
osumcllem6N 39962 Lemma for ~ osumclN . Use...
osumcllem7N 39963 Lemma for ~ osumclN . (Co...
osumcllem8N 39964 Lemma for ~ osumclN . (Co...
osumcllem9N 39965 Lemma for ~ osumclN . (Co...
osumcllem10N 39966 Lemma for ~ osumclN . Con...
osumcllem11N 39967 Lemma for ~ osumclN . (Co...
osumclN 39968 Closure of orthogonal sum....
pmapojoinN 39969 For orthogonal elements, p...
pexmidN 39970 Excluded middle law for cl...
pexmidlem1N 39971 Lemma for ~ pexmidN . Hol...
pexmidlem2N 39972 Lemma for ~ pexmidN . (Co...
pexmidlem3N 39973 Lemma for ~ pexmidN . Use...
pexmidlem4N 39974 Lemma for ~ pexmidN . (Co...
pexmidlem5N 39975 Lemma for ~ pexmidN . (Co...
pexmidlem6N 39976 Lemma for ~ pexmidN . (Co...
pexmidlem7N 39977 Lemma for ~ pexmidN . Con...
pexmidlem8N 39978 Lemma for ~ pexmidN . The...
pexmidALTN 39979 Excluded middle law for cl...
pl42lem1N 39980 Lemma for ~ pl42N . (Cont...
pl42lem2N 39981 Lemma for ~ pl42N . (Cont...
pl42lem3N 39982 Lemma for ~ pl42N . (Cont...
pl42lem4N 39983 Lemma for ~ pl42N . (Cont...
pl42N 39984 Law holding in a Hilbert l...
watfvalN 39993 The W atoms function. (Co...
watvalN 39994 Value of the W atoms funct...
iswatN 39995 The predicate "is a W atom...
lhpset 39996 The set of co-atoms (latti...
islhp 39997 The predicate "is a co-ato...
islhp2 39998 The predicate "is a co-ato...
lhpbase 39999 A co-atom is a member of t...
lhp1cvr 40000 The lattice unity covers a...
lhplt 40001 An atom under a co-atom is...
lhp2lt 40002 The join of two atoms unde...
lhpexlt 40003 There exists an atom less ...
lhp0lt 40004 A co-atom is greater than ...
lhpn0 40005 A co-atom is nonzero. TOD...
lhpexle 40006 There exists an atom under...
lhpexnle 40007 There exists an atom not u...
lhpexle1lem 40008 Lemma for ~ lhpexle1 and o...
lhpexle1 40009 There exists an atom under...
lhpexle2lem 40010 Lemma for ~ lhpexle2 . (C...
lhpexle2 40011 There exists atom under a ...
lhpexle3lem 40012 There exists atom under a ...
lhpexle3 40013 There exists atom under a ...
lhpex2leN 40014 There exist at least two d...
lhpoc 40015 The orthocomplement of a c...
lhpoc2N 40016 The orthocomplement of an ...
lhpocnle 40017 The orthocomplement of a c...
lhpocat 40018 The orthocomplement of a c...
lhpocnel 40019 The orthocomplement of a c...
lhpocnel2 40020 The orthocomplement of a c...
lhpjat1 40021 The join of a co-atom (hyp...
lhpjat2 40022 The join of a co-atom (hyp...
lhpj1 40023 The join of a co-atom (hyp...
lhpmcvr 40024 The meet of a lattice hype...
lhpmcvr2 40025 Alternate way to express t...
lhpmcvr3 40026 Specialization of ~ lhpmcv...
lhpmcvr4N 40027 Specialization of ~ lhpmcv...
lhpmcvr5N 40028 Specialization of ~ lhpmcv...
lhpmcvr6N 40029 Specialization of ~ lhpmcv...
lhpm0atN 40030 If the meet of a lattice h...
lhpmat 40031 An element covered by the ...
lhpmatb 40032 An element covered by the ...
lhp2at0 40033 Join and meet with differe...
lhp2atnle 40034 Inequality for 2 different...
lhp2atne 40035 Inequality for joins with ...
lhp2at0nle 40036 Inequality for 2 different...
lhp2at0ne 40037 Inequality for joins with ...
lhpelim 40038 Eliminate an atom not unde...
lhpmod2i2 40039 Modular law for hyperplane...
lhpmod6i1 40040 Modular law for hyperplane...
lhprelat3N 40041 The Hilbert lattice is rel...
cdlemb2 40042 Given two atoms not under ...
lhple 40043 Property of a lattice elem...
lhpat 40044 Create an atom under a co-...
lhpat4N 40045 Property of an atom under ...
lhpat2 40046 Create an atom under a co-...
lhpat3 40047 There is only one atom und...
4atexlemk 40048 Lemma for ~ 4atexlem7 . (...
4atexlemw 40049 Lemma for ~ 4atexlem7 . (...
4atexlempw 40050 Lemma for ~ 4atexlem7 . (...
4atexlemp 40051 Lemma for ~ 4atexlem7 . (...
4atexlemq 40052 Lemma for ~ 4atexlem7 . (...
4atexlems 40053 Lemma for ~ 4atexlem7 . (...
4atexlemt 40054 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 40055 Lemma for ~ 4atexlem7 . (...
4atexlempnq 40056 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 40057 Lemma for ~ 4atexlem7 . (...
4atexlemkl 40058 Lemma for ~ 4atexlem7 . (...
4atexlemkc 40059 Lemma for ~ 4atexlem7 . (...
4atexlemwb 40060 Lemma for ~ 4atexlem7 . (...
4atexlempsb 40061 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 40062 Lemma for ~ 4atexlem7 . (...
4atexlempns 40063 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 40064 Lemma for ~ 4atexlem7 . S...
4atexlemu 40065 Lemma for ~ 4atexlem7 . (...
4atexlemv 40066 Lemma for ~ 4atexlem7 . (...
4atexlemunv 40067 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 40068 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 40069 Lemma for ~ 4atexlem7 . (...
4atexlemc 40070 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 40071 Lemma for ~ 4atexlem7 . (...
4atexlemex2 40072 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 40073 Lemma for ~ 4atexlem7 . (...
4atexlemex4 40074 Lemma for ~ 4atexlem7 . S...
4atexlemex6 40075 Lemma for ~ 4atexlem7 . (...
4atexlem7 40076 Whenever there are at leas...
4atex 40077 Whenever there are at leas...
4atex2 40078 More general version of ~ ...
4atex2-0aOLDN 40079 Same as ~ 4atex2 except th...
4atex2-0bOLDN 40080 Same as ~ 4atex2 except th...
4atex2-0cOLDN 40081 Same as ~ 4atex2 except th...
4atex3 40082 More general version of ~ ...
lautset 40083 The set of lattice automor...
islaut 40084 The predicate "is a lattic...
lautle 40085 Less-than or equal propert...
laut1o 40086 A lattice automorphism is ...
laut11 40087 One-to-one property of a l...
lautcl 40088 A lattice automorphism val...
lautcnvclN 40089 Reverse closure of a latti...
lautcnvle 40090 Less-than or equal propert...
lautcnv 40091 The converse of a lattice ...
lautlt 40092 Less-than property of a la...
lautcvr 40093 Covering property of a lat...
lautj 40094 Meet property of a lattice...
lautm 40095 Meet property of a lattice...
lauteq 40096 A lattice automorphism arg...
idlaut 40097 The identity function is a...
lautco 40098 The composition of two lat...
pautsetN 40099 The set of projective auto...
ispautN 40100 The predicate "is a projec...
ldilfset 40109 The mapping from fiducial ...
ldilset 40110 The set of lattice dilatio...
isldil 40111 The predicate "is a lattic...
ldillaut 40112 A lattice dilation is an a...
ldil1o 40113 A lattice dilation is a on...
ldilval 40114 Value of a lattice dilatio...
idldil 40115 The identity function is a...
ldilcnv 40116 The converse of a lattice ...
ldilco 40117 The composition of two lat...
ltrnfset 40118 The set of all lattice tra...
ltrnset 40119 The set of lattice transla...
isltrn 40120 The predicate "is a lattic...
isltrn2N 40121 The predicate "is a lattic...
ltrnu 40122 Uniqueness property of a l...
ltrnldil 40123 A lattice translation is a...
ltrnlaut 40124 A lattice translation is a...
ltrn1o 40125 A lattice translation is a...
ltrncl 40126 Closure of a lattice trans...
ltrn11 40127 One-to-one property of a l...
ltrncnvnid 40128 If a translation is differ...
ltrncoidN 40129 Two translations are equal...
ltrnle 40130 Less-than or equal propert...
ltrncnvleN 40131 Less-than or equal propert...
ltrnm 40132 Lattice translation of a m...
ltrnj 40133 Lattice translation of a m...
ltrncvr 40134 Covering property of a lat...
ltrnval1 40135 Value of a lattice transla...
ltrnid 40136 A lattice translation is t...
ltrnnid 40137 If a lattice translation i...
ltrnatb 40138 The lattice translation of...
ltrncnvatb 40139 The converse of the lattic...
ltrnel 40140 The lattice translation of...
ltrnat 40141 The lattice translation of...
ltrncnvat 40142 The converse of the lattic...
ltrncnvel 40143 The converse of the lattic...
ltrncoelN 40144 Composition of lattice tra...
ltrncoat 40145 Composition of lattice tra...
ltrncoval 40146 Two ways to express value ...
ltrncnv 40147 The converse of a lattice ...
ltrn11at 40148 Frequently used one-to-one...
ltrneq2 40149 The equality of two transl...
ltrneq 40150 The equality of two transl...
idltrn 40151 The identity function is a...
ltrnmw 40152 Property of lattice transl...
dilfsetN 40153 The mapping from fiducial ...
dilsetN 40154 The set of dilations for a...
isdilN 40155 The predicate "is a dilati...
trnfsetN 40156 The mapping from fiducial ...
trnsetN 40157 The set of translations fo...
istrnN 40158 The predicate "is a transl...
trlfset 40161 The set of all traces of l...
trlset 40162 The set of traces of latti...
trlval 40163 The value of the trace of ...
trlval2 40164 The value of the trace of ...
trlcl 40165 Closure of the trace of a ...
trlcnv 40166 The trace of the converse ...
trljat1 40167 The value of a translation...
trljat2 40168 The value of a translation...
trljat3 40169 The value of a translation...
trlat 40170 If an atom differs from it...
trl0 40171 If an atom not under the f...
trlator0 40172 The trace of a lattice tra...
trlatn0 40173 The trace of a lattice tra...
trlnidat 40174 The trace of a lattice tra...
ltrnnidn 40175 If a lattice translation i...
ltrnideq 40176 Property of the identity l...
trlid0 40177 The trace of the identity ...
trlnidatb 40178 A lattice translation is n...
trlid0b 40179 A lattice translation is t...
trlnid 40180 Different translations wit...
ltrn2ateq 40181 Property of the equality o...
ltrnateq 40182 If any atom (under ` W ` )...
ltrnatneq 40183 If any atom (under ` W ` )...
ltrnatlw 40184 If the value of an atom eq...
trlle 40185 The trace of a lattice tra...
trlne 40186 The trace of a lattice tra...
trlnle 40187 The atom not under the fid...
trlval3 40188 The value of the trace of ...
trlval4 40189 The value of the trace of ...
trlval5 40190 The value of the trace of ...
arglem1N 40191 Lemma for Desargues's law....
cdlemc1 40192 Part of proof of Lemma C i...
cdlemc2 40193 Part of proof of Lemma C i...
cdlemc3 40194 Part of proof of Lemma C i...
cdlemc4 40195 Part of proof of Lemma C i...
cdlemc5 40196 Lemma for ~ cdlemc . (Con...
cdlemc6 40197 Lemma for ~ cdlemc . (Con...
cdlemc 40198 Lemma C in [Crawley] p. 11...
cdlemd1 40199 Part of proof of Lemma D i...
cdlemd2 40200 Part of proof of Lemma D i...
cdlemd3 40201 Part of proof of Lemma D i...
cdlemd4 40202 Part of proof of Lemma D i...
cdlemd5 40203 Part of proof of Lemma D i...
cdlemd6 40204 Part of proof of Lemma D i...
cdlemd7 40205 Part of proof of Lemma D i...
cdlemd8 40206 Part of proof of Lemma D i...
cdlemd9 40207 Part of proof of Lemma D i...
cdlemd 40208 If two translations agree ...
ltrneq3 40209 Two translations agree at ...
cdleme00a 40210 Part of proof of Lemma E i...
cdleme0aa 40211 Part of proof of Lemma E i...
cdleme0a 40212 Part of proof of Lemma E i...
cdleme0b 40213 Part of proof of Lemma E i...
cdleme0c 40214 Part of proof of Lemma E i...
cdleme0cp 40215 Part of proof of Lemma E i...
cdleme0cq 40216 Part of proof of Lemma E i...
cdleme0dN 40217 Part of proof of Lemma E i...
cdleme0e 40218 Part of proof of Lemma E i...
cdleme0fN 40219 Part of proof of Lemma E i...
cdleme0gN 40220 Part of proof of Lemma E i...
cdlemeulpq 40221 Part of proof of Lemma E i...
cdleme01N 40222 Part of proof of Lemma E i...
cdleme02N 40223 Part of proof of Lemma E i...
cdleme0ex1N 40224 Part of proof of Lemma E i...
cdleme0ex2N 40225 Part of proof of Lemma E i...
cdleme0moN 40226 Part of proof of Lemma E i...
cdleme1b 40227 Part of proof of Lemma E i...
cdleme1 40228 Part of proof of Lemma E i...
cdleme2 40229 Part of proof of Lemma E i...
cdleme3b 40230 Part of proof of Lemma E i...
cdleme3c 40231 Part of proof of Lemma E i...
cdleme3d 40232 Part of proof of Lemma E i...
cdleme3e 40233 Part of proof of Lemma E i...
cdleme3fN 40234 Part of proof of Lemma E i...
cdleme3g 40235 Part of proof of Lemma E i...
cdleme3h 40236 Part of proof of Lemma E i...
cdleme3fa 40237 Part of proof of Lemma E i...
cdleme3 40238 Part of proof of Lemma E i...
cdleme4 40239 Part of proof of Lemma E i...
cdleme4a 40240 Part of proof of Lemma E i...
cdleme5 40241 Part of proof of Lemma E i...
cdleme6 40242 Part of proof of Lemma E i...
cdleme7aa 40243 Part of proof of Lemma E i...
cdleme7a 40244 Part of proof of Lemma E i...
cdleme7b 40245 Part of proof of Lemma E i...
cdleme7c 40246 Part of proof of Lemma E i...
cdleme7d 40247 Part of proof of Lemma E i...
cdleme7e 40248 Part of proof of Lemma E i...
cdleme7ga 40249 Part of proof of Lemma E i...
cdleme7 40250 Part of proof of Lemma E i...
cdleme8 40251 Part of proof of Lemma E i...
cdleme9a 40252 Part of proof of Lemma E i...
cdleme9b 40253 Utility lemma for Lemma E ...
cdleme9 40254 Part of proof of Lemma E i...
cdleme10 40255 Part of proof of Lemma E i...
cdleme8tN 40256 Part of proof of Lemma E i...
cdleme9taN 40257 Part of proof of Lemma E i...
cdleme9tN 40258 Part of proof of Lemma E i...
cdleme10tN 40259 Part of proof of Lemma E i...
cdleme16aN 40260 Part of proof of Lemma E i...
cdleme11a 40261 Part of proof of Lemma E i...
cdleme11c 40262 Part of proof of Lemma E i...
cdleme11dN 40263 Part of proof of Lemma E i...
cdleme11e 40264 Part of proof of Lemma E i...
cdleme11fN 40265 Part of proof of Lemma E i...
cdleme11g 40266 Part of proof of Lemma E i...
cdleme11h 40267 Part of proof of Lemma E i...
cdleme11j 40268 Part of proof of Lemma E i...
cdleme11k 40269 Part of proof of Lemma E i...
cdleme11l 40270 Part of proof of Lemma E i...
cdleme11 40271 Part of proof of Lemma E i...
cdleme12 40272 Part of proof of Lemma E i...
cdleme13 40273 Part of proof of Lemma E i...
cdleme14 40274 Part of proof of Lemma E i...
cdleme15a 40275 Part of proof of Lemma E i...
cdleme15b 40276 Part of proof of Lemma E i...
cdleme15c 40277 Part of proof of Lemma E i...
cdleme15d 40278 Part of proof of Lemma E i...
cdleme15 40279 Part of proof of Lemma E i...
cdleme16b 40280 Part of proof of Lemma E i...
cdleme16c 40281 Part of proof of Lemma E i...
cdleme16d 40282 Part of proof of Lemma E i...
cdleme16e 40283 Part of proof of Lemma E i...
cdleme16f 40284 Part of proof of Lemma E i...
cdleme16g 40285 Part of proof of Lemma E i...
cdleme16 40286 Part of proof of Lemma E i...
cdleme17a 40287 Part of proof of Lemma E i...
cdleme17b 40288 Lemma leading to ~ cdleme1...
cdleme17c 40289 Part of proof of Lemma E i...
cdleme17d1 40290 Part of proof of Lemma E i...
cdleme0nex 40291 Part of proof of Lemma E i...
cdleme18a 40292 Part of proof of Lemma E i...
cdleme18b 40293 Part of proof of Lemma E i...
cdleme18c 40294 Part of proof of Lemma E i...
cdleme22gb 40295 Utility lemma for Lemma E ...
cdleme18d 40296 Part of proof of Lemma E i...
cdlemesner 40297 Part of proof of Lemma E i...
cdlemedb 40298 Part of proof of Lemma E i...
cdlemeda 40299 Part of proof of Lemma E i...
cdlemednpq 40300 Part of proof of Lemma E i...
cdlemednuN 40301 Part of proof of Lemma E i...
cdleme20zN 40302 Part of proof of Lemma E i...
cdleme20y 40303 Part of proof of Lemma E i...
cdleme19a 40304 Part of proof of Lemma E i...
cdleme19b 40305 Part of proof of Lemma E i...
cdleme19c 40306 Part of proof of Lemma E i...
cdleme19d 40307 Part of proof of Lemma E i...
cdleme19e 40308 Part of proof of Lemma E i...
cdleme19f 40309 Part of proof of Lemma E i...
cdleme20aN 40310 Part of proof of Lemma E i...
cdleme20bN 40311 Part of proof of Lemma E i...
cdleme20c 40312 Part of proof of Lemma E i...
cdleme20d 40313 Part of proof of Lemma E i...
cdleme20e 40314 Part of proof of Lemma E i...
cdleme20f 40315 Part of proof of Lemma E i...
cdleme20g 40316 Part of proof of Lemma E i...
cdleme20h 40317 Part of proof of Lemma E i...
cdleme20i 40318 Part of proof of Lemma E i...
cdleme20j 40319 Part of proof of Lemma E i...
cdleme20k 40320 Part of proof of Lemma E i...
cdleme20l1 40321 Part of proof of Lemma E i...
cdleme20l2 40322 Part of proof of Lemma E i...
cdleme20l 40323 Part of proof of Lemma E i...
cdleme20m 40324 Part of proof of Lemma E i...
cdleme20 40325 Combine ~ cdleme19f and ~ ...
cdleme21a 40326 Part of proof of Lemma E i...
cdleme21b 40327 Part of proof of Lemma E i...
cdleme21c 40328 Part of proof of Lemma E i...
cdleme21at 40329 Part of proof of Lemma E i...
cdleme21ct 40330 Part of proof of Lemma E i...
cdleme21d 40331 Part of proof of Lemma E i...
cdleme21e 40332 Part of proof of Lemma E i...
cdleme21f 40333 Part of proof of Lemma E i...
cdleme21g 40334 Part of proof of Lemma E i...
cdleme21h 40335 Part of proof of Lemma E i...
cdleme21i 40336 Part of proof of Lemma E i...
cdleme21j 40337 Combine ~ cdleme20 and ~ c...
cdleme21 40338 Part of proof of Lemma E i...
cdleme21k 40339 Eliminate ` S =/= T ` cond...
cdleme22aa 40340 Part of proof of Lemma E i...
cdleme22a 40341 Part of proof of Lemma E i...
cdleme22b 40342 Part of proof of Lemma E i...
cdleme22cN 40343 Part of proof of Lemma E i...
cdleme22d 40344 Part of proof of Lemma E i...
cdleme22e 40345 Part of proof of Lemma E i...
cdleme22eALTN 40346 Part of proof of Lemma E i...
cdleme22f 40347 Part of proof of Lemma E i...
cdleme22f2 40348 Part of proof of Lemma E i...
cdleme22g 40349 Part of proof of Lemma E i...
cdleme23a 40350 Part of proof of Lemma E i...
cdleme23b 40351 Part of proof of Lemma E i...
cdleme23c 40352 Part of proof of Lemma E i...
cdleme24 40353 Quantified version of ~ cd...
cdleme25a 40354 Lemma for ~ cdleme25b . (...
cdleme25b 40355 Transform ~ cdleme24 . TO...
cdleme25c 40356 Transform ~ cdleme25b . (...
cdleme25dN 40357 Transform ~ cdleme25c . (...
cdleme25cl 40358 Show closure of the unique...
cdleme25cv 40359 Change bound variables in ...
cdleme26e 40360 Part of proof of Lemma E i...
cdleme26ee 40361 Part of proof of Lemma E i...
cdleme26eALTN 40362 Part of proof of Lemma E i...
cdleme26fALTN 40363 Part of proof of Lemma E i...
cdleme26f 40364 Part of proof of Lemma E i...
cdleme26f2ALTN 40365 Part of proof of Lemma E i...
cdleme26f2 40366 Part of proof of Lemma E i...
cdleme27cl 40367 Part of proof of Lemma E i...
cdleme27a 40368 Part of proof of Lemma E i...
cdleme27b 40369 Lemma for ~ cdleme27N . (...
cdleme27N 40370 Part of proof of Lemma E i...
cdleme28a 40371 Lemma for ~ cdleme25b . T...
cdleme28b 40372 Lemma for ~ cdleme25b . T...
cdleme28c 40373 Part of proof of Lemma E i...
cdleme28 40374 Quantified version of ~ cd...
cdleme29ex 40375 Lemma for ~ cdleme29b . (...
cdleme29b 40376 Transform ~ cdleme28 . (C...
cdleme29c 40377 Transform ~ cdleme28b . (...
cdleme29cl 40378 Show closure of the unique...
cdleme30a 40379 Part of proof of Lemma E i...
cdleme31so 40380 Part of proof of Lemma E i...
cdleme31sn 40381 Part of proof of Lemma E i...
cdleme31sn1 40382 Part of proof of Lemma E i...
cdleme31se 40383 Part of proof of Lemma D i...
cdleme31se2 40384 Part of proof of Lemma D i...
cdleme31sc 40385 Part of proof of Lemma E i...
cdleme31sde 40386 Part of proof of Lemma D i...
cdleme31snd 40387 Part of proof of Lemma D i...
cdleme31sdnN 40388 Part of proof of Lemma E i...
cdleme31sn1c 40389 Part of proof of Lemma E i...
cdleme31sn2 40390 Part of proof of Lemma E i...
cdleme31fv 40391 Part of proof of Lemma E i...
cdleme31fv1 40392 Part of proof of Lemma E i...
cdleme31fv1s 40393 Part of proof of Lemma E i...
cdleme31fv2 40394 Part of proof of Lemma E i...
cdleme31id 40395 Part of proof of Lemma E i...
cdlemefrs29pre00 40396 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 40397 TODO fix comment. (Contri...
cdlemefrs29bpre1 40398 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 40399 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 40400 TODO: NOT USED? Show clo...
cdlemefrs32fva 40401 Part of proof of Lemma E i...
cdlemefrs32fva1 40402 Part of proof of Lemma E i...
cdlemefr29exN 40403 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 40404 Part of proof of Lemma E i...
cdlemefr32sn2aw 40405 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 40406 Show closure of ` [_ R / s...
cdlemefr29bpre0N 40407 TODO fix comment. (Contri...
cdlemefr29clN 40408 Show closure of the unique...
cdleme43frv1snN 40409 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 40410 Part of proof of Lemma E i...
cdlemefr32fva1 40411 Part of proof of Lemma E i...
cdlemefr31fv1 40412 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 40413 FIX COMMENT. TODO: see if ...
cdlemefs27cl 40414 Part of proof of Lemma E i...
cdlemefs32sn1aw 40415 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 40416 Show closure of ` [_ R / s...
cdlemefs29bpre0N 40417 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 40418 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 40419 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 40420 Show closure of the unique...
cdleme43fsv1snlem 40421 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 40422 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 40423 Part of proof of Lemma E i...
cdlemefs32fva1 40424 Part of proof of Lemma E i...
cdlemefs31fv1 40425 Value of ` ( F `` R ) ` wh...
cdlemefr44 40426 Value of f(r) when r is an...
cdlemefs44 40427 Value of f_s(r) when r is ...
cdlemefr45 40428 Value of f(r) when r is an...
cdlemefr45e 40429 Explicit expansion of ~ cd...
cdlemefs45 40430 Value of f_s(r) when r is ...
cdlemefs45ee 40431 Explicit expansion of ~ cd...
cdlemefs45eN 40432 Explicit expansion of ~ cd...
cdleme32sn1awN 40433 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 40434 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 40435 Show that ` [_ R / s ]_ N ...
cdleme32snaw 40436 Show that ` [_ R / s ]_ N ...
cdleme32snb 40437 Show closure of ` [_ R / s...
cdleme32fva 40438 Part of proof of Lemma D i...
cdleme32fva1 40439 Part of proof of Lemma D i...
cdleme32fvaw 40440 Show that ` ( F `` R ) ` i...
cdleme32fvcl 40441 Part of proof of Lemma D i...
cdleme32a 40442 Part of proof of Lemma D i...
cdleme32b 40443 Part of proof of Lemma D i...
cdleme32c 40444 Part of proof of Lemma D i...
cdleme32d 40445 Part of proof of Lemma D i...
cdleme32e 40446 Part of proof of Lemma D i...
cdleme32f 40447 Part of proof of Lemma D i...
cdleme32le 40448 Part of proof of Lemma D i...
cdleme35a 40449 Part of proof of Lemma E i...
cdleme35fnpq 40450 Part of proof of Lemma E i...
cdleme35b 40451 Part of proof of Lemma E i...
cdleme35c 40452 Part of proof of Lemma E i...
cdleme35d 40453 Part of proof of Lemma E i...
cdleme35e 40454 Part of proof of Lemma E i...
cdleme35f 40455 Part of proof of Lemma E i...
cdleme35g 40456 Part of proof of Lemma E i...
cdleme35h 40457 Part of proof of Lemma E i...
cdleme35h2 40458 Part of proof of Lemma E i...
cdleme35sn2aw 40459 Part of proof of Lemma E i...
cdleme35sn3a 40460 Part of proof of Lemma E i...
cdleme36a 40461 Part of proof of Lemma E i...
cdleme36m 40462 Part of proof of Lemma E i...
cdleme37m 40463 Part of proof of Lemma E i...
cdleme38m 40464 Part of proof of Lemma E i...
cdleme38n 40465 Part of proof of Lemma E i...
cdleme39a 40466 Part of proof of Lemma E i...
cdleme39n 40467 Part of proof of Lemma E i...
cdleme40m 40468 Part of proof of Lemma E i...
cdleme40n 40469 Part of proof of Lemma E i...
cdleme40v 40470 Part of proof of Lemma E i...
cdleme40w 40471 Part of proof of Lemma E i...
cdleme42a 40472 Part of proof of Lemma E i...
cdleme42c 40473 Part of proof of Lemma E i...
cdleme42d 40474 Part of proof of Lemma E i...
cdleme41sn3aw 40475 Part of proof of Lemma E i...
cdleme41sn4aw 40476 Part of proof of Lemma E i...
cdleme41snaw 40477 Part of proof of Lemma E i...
cdleme41fva11 40478 Part of proof of Lemma E i...
cdleme42b 40479 Part of proof of Lemma E i...
cdleme42e 40480 Part of proof of Lemma E i...
cdleme42f 40481 Part of proof of Lemma E i...
cdleme42g 40482 Part of proof of Lemma E i...
cdleme42h 40483 Part of proof of Lemma E i...
cdleme42i 40484 Part of proof of Lemma E i...
cdleme42k 40485 Part of proof of Lemma E i...
cdleme42ke 40486 Part of proof of Lemma E i...
cdleme42keg 40487 Part of proof of Lemma E i...
cdleme42mN 40488 Part of proof of Lemma E i...
cdleme42mgN 40489 Part of proof of Lemma E i...
cdleme43aN 40490 Part of proof of Lemma E i...
cdleme43bN 40491 Lemma for Lemma E in [Craw...
cdleme43cN 40492 Part of proof of Lemma E i...
cdleme43dN 40493 Part of proof of Lemma E i...
cdleme46f2g2 40494 Conversion for ` G ` to re...
cdleme46f2g1 40495 Conversion for ` G ` to re...
cdleme17d2 40496 Part of proof of Lemma E i...
cdleme17d3 40497 TODO: FIX COMMENT. (Contr...
cdleme17d4 40498 TODO: FIX COMMENT. (Contr...
cdleme17d 40499 Part of proof of Lemma E i...
cdleme48fv 40500 Part of proof of Lemma D i...
cdleme48fvg 40501 Remove ` P =/= Q ` conditi...
cdleme46fvaw 40502 Show that ` ( F `` R ) ` i...
cdleme48bw 40503 TODO: fix comment. TODO: ...
cdleme48b 40504 TODO: fix comment. (Contr...
cdleme46frvlpq 40505 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 40506 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 40507 TODO: fix comment. (Contr...
cdleme4gfv 40508 Part of proof of Lemma D i...
cdlemeg47b 40509 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 40510 Value of g_s(r) when r is ...
cdlemeg47rv2 40511 Value of g_s(r) when r is ...
cdlemeg49le 40512 Part of proof of Lemma D i...
cdlemeg46bOLDN 40513 TODO FIX COMMENT. (Contrib...
cdlemeg46c 40514 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 40515 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 40516 Value of g_s(r) when r is ...
cdlemeg46fvaw 40517 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 40518 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 40519 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 40520 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 40521 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 40522 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 40523 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 40524 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 40525 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 40526 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 40527 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 40528 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 40529 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 40530 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 40531 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 40532 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 40533 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 40534 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 40535 TODO FIX COMMENT p. 116 pe...
cdleme48d 40536 TODO: fix comment. (Contr...
cdleme48gfv1 40537 TODO: fix comment. (Contr...
cdleme48gfv 40538 TODO: fix comment. (Contr...
cdleme48fgv 40539 TODO: fix comment. (Contr...
cdlemeg49lebilem 40540 Part of proof of Lemma D i...
cdleme50lebi 40541 Part of proof of Lemma D i...
cdleme50eq 40542 Part of proof of Lemma D i...
cdleme50f 40543 Part of proof of Lemma D i...
cdleme50f1 40544 Part of proof of Lemma D i...
cdleme50rnlem 40545 Part of proof of Lemma D i...
cdleme50rn 40546 Part of proof of Lemma D i...
cdleme50f1o 40547 Part of proof of Lemma D i...
cdleme50laut 40548 Part of proof of Lemma D i...
cdleme50ldil 40549 Part of proof of Lemma D i...
cdleme50trn1 40550 Part of proof that ` F ` i...
cdleme50trn2a 40551 Part of proof that ` F ` i...
cdleme50trn2 40552 Part of proof that ` F ` i...
cdleme50trn12 40553 Part of proof that ` F ` i...
cdleme50trn3 40554 Part of proof that ` F ` i...
cdleme50trn123 40555 Part of proof that ` F ` i...
cdleme51finvfvN 40556 Part of proof of Lemma E i...
cdleme51finvN 40557 Part of proof of Lemma E i...
cdleme50ltrn 40558 Part of proof of Lemma E i...
cdleme51finvtrN 40559 Part of proof of Lemma E i...
cdleme50ex 40560 Part of Lemma E in [Crawle...
cdleme 40561 Lemma E in [Crawley] p. 11...
cdlemf1 40562 Part of Lemma F in [Crawle...
cdlemf2 40563 Part of Lemma F in [Crawle...
cdlemf 40564 Lemma F in [Crawley] p. 11...
cdlemfnid 40565 ~ cdlemf with additional c...
cdlemftr3 40566 Special case of ~ cdlemf s...
cdlemftr2 40567 Special case of ~ cdlemf s...
cdlemftr1 40568 Part of proof of Lemma G o...
cdlemftr0 40569 Special case of ~ cdlemf s...
trlord 40570 The ordering of two Hilber...
cdlemg1a 40571 Shorter expression for ` G...
cdlemg1b2 40572 This theorem can be used t...
cdlemg1idlemN 40573 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 40574 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 40575 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 40576 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 40577 This theorem can be used t...
cdlemg1idN 40578 Version of ~ cdleme31id wi...
ltrniotafvawN 40579 Version of ~ cdleme46fvaw ...
ltrniotacl 40580 Version of ~ cdleme50ltrn ...
ltrniotacnvN 40581 Version of ~ cdleme51finvt...
ltrniotaval 40582 Value of the unique transl...
ltrniotacnvval 40583 Converse value of the uniq...
ltrniotaidvalN 40584 Value of the unique transl...
ltrniotavalbN 40585 Value of the unique transl...
cdlemeiota 40586 A translation is uniquely ...
cdlemg1ci2 40587 Any function of the form o...
cdlemg1cN 40588 Any translation belongs to...
cdlemg1cex 40589 Any translation is one of ...
cdlemg2cN 40590 Any translation belongs to...
cdlemg2dN 40591 This theorem can be used t...
cdlemg2cex 40592 Any translation is one of ...
cdlemg2ce 40593 Utility theorem to elimina...
cdlemg2jlemOLDN 40594 Part of proof of Lemma E i...
cdlemg2fvlem 40595 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 40596 ~ cdleme42keg with simpler...
cdlemg2idN 40597 Version of ~ cdleme31id wi...
cdlemg3a 40598 Part of proof of Lemma G i...
cdlemg2jOLDN 40599 TODO: Replace this with ~...
cdlemg2fv 40600 Value of a translation in ...
cdlemg2fv2 40601 Value of a translation in ...
cdlemg2k 40602 ~ cdleme42keg with simpler...
cdlemg2kq 40603 ~ cdlemg2k with ` P ` and ...
cdlemg2l 40604 TODO: FIX COMMENT. (Contr...
cdlemg2m 40605 TODO: FIX COMMENT. (Contr...
cdlemg5 40606 TODO: Is there a simpler ...
cdlemb3 40607 Given two atoms not under ...
cdlemg7fvbwN 40608 Properties of a translatio...
cdlemg4a 40609 TODO: FIX COMMENT If fg(p...
cdlemg4b1 40610 TODO: FIX COMMENT. (Contr...
cdlemg4b2 40611 TODO: FIX COMMENT. (Contr...
cdlemg4b12 40612 TODO: FIX COMMENT. (Contr...
cdlemg4c 40613 TODO: FIX COMMENT. (Contr...
cdlemg4d 40614 TODO: FIX COMMENT. (Contr...
cdlemg4e 40615 TODO: FIX COMMENT. (Contr...
cdlemg4f 40616 TODO: FIX COMMENT. (Contr...
cdlemg4g 40617 TODO: FIX COMMENT. (Contr...
cdlemg4 40618 TODO: FIX COMMENT. (Contr...
cdlemg6a 40619 TODO: FIX COMMENT. TODO: ...
cdlemg6b 40620 TODO: FIX COMMENT. TODO: ...
cdlemg6c 40621 TODO: FIX COMMENT. (Contr...
cdlemg6d 40622 TODO: FIX COMMENT. (Contr...
cdlemg6e 40623 TODO: FIX COMMENT. (Contr...
cdlemg6 40624 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 40625 Value of a translation com...
cdlemg7aN 40626 TODO: FIX COMMENT. (Contr...
cdlemg7N 40627 TODO: FIX COMMENT. (Contr...
cdlemg8a 40628 TODO: FIX COMMENT. (Contr...
cdlemg8b 40629 TODO: FIX COMMENT. (Contr...
cdlemg8c 40630 TODO: FIX COMMENT. (Contr...
cdlemg8d 40631 TODO: FIX COMMENT. (Contr...
cdlemg8 40632 TODO: FIX COMMENT. (Contr...
cdlemg9a 40633 TODO: FIX COMMENT. (Contr...
cdlemg9b 40634 The triples ` <. P , ( F `...
cdlemg9 40635 The triples ` <. P , ( F `...
cdlemg10b 40636 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 40637 TODO: FIX COMMENT. TODO: ...
cdlemg11a 40638 TODO: FIX COMMENT. (Contr...
cdlemg11aq 40639 TODO: FIX COMMENT. TODO: ...
cdlemg10c 40640 TODO: FIX COMMENT. TODO: ...
cdlemg10a 40641 TODO: FIX COMMENT. (Contr...
cdlemg10 40642 TODO: FIX COMMENT. (Contr...
cdlemg11b 40643 TODO: FIX COMMENT. (Contr...
cdlemg12a 40644 TODO: FIX COMMENT. (Contr...
cdlemg12b 40645 The triples ` <. P , ( F `...
cdlemg12c 40646 The triples ` <. P , ( F `...
cdlemg12d 40647 TODO: FIX COMMENT. (Contr...
cdlemg12e 40648 TODO: FIX COMMENT. (Contr...
cdlemg12f 40649 TODO: FIX COMMENT. (Contr...
cdlemg12g 40650 TODO: FIX COMMENT. TODO: ...
cdlemg12 40651 TODO: FIX COMMENT. (Contr...
cdlemg13a 40652 TODO: FIX COMMENT. (Contr...
cdlemg13 40653 TODO: FIX COMMENT. (Contr...
cdlemg14f 40654 TODO: FIX COMMENT. (Contr...
cdlemg14g 40655 TODO: FIX COMMENT. (Contr...
cdlemg15a 40656 Eliminate the ` ( F `` P )...
cdlemg15 40657 Eliminate the ` ( (...
cdlemg16 40658 Part of proof of Lemma G o...
cdlemg16ALTN 40659 This version of ~ cdlemg16...
cdlemg16z 40660 Eliminate ` ( ( F `...
cdlemg16zz 40661 Eliminate ` P =/= Q ` from...
cdlemg17a 40662 TODO: FIX COMMENT. (Contr...
cdlemg17b 40663 Part of proof of Lemma G i...
cdlemg17dN 40664 TODO: fix comment. (Contr...
cdlemg17dALTN 40665 Same as ~ cdlemg17dN with ...
cdlemg17e 40666 TODO: fix comment. (Contr...
cdlemg17f 40667 TODO: fix comment. (Contr...
cdlemg17g 40668 TODO: fix comment. (Contr...
cdlemg17h 40669 TODO: fix comment. (Contr...
cdlemg17i 40670 TODO: fix comment. (Contr...
cdlemg17ir 40671 TODO: fix comment. (Contr...
cdlemg17j 40672 TODO: fix comment. (Contr...
cdlemg17pq 40673 Utility theorem for swappi...
cdlemg17bq 40674 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 40675 ~ cdlemg17i with ` P ` and...
cdlemg17irq 40676 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 40677 ~ cdlemg17j with ` P ` and...
cdlemg17 40678 Part of Lemma G of [Crawle...
cdlemg18a 40679 Show two lines are differe...
cdlemg18b 40680 Lemma for ~ cdlemg18c . T...
cdlemg18c 40681 Show two lines intersect a...
cdlemg18d 40682 Show two lines intersect a...
cdlemg18 40683 Show two lines intersect a...
cdlemg19a 40684 Show two lines intersect a...
cdlemg19 40685 Show two lines intersect a...
cdlemg20 40686 Show two lines intersect a...
cdlemg21 40687 Version of cdlemg19 with `...
cdlemg22 40688 ~ cdlemg21 with ` ( F `` P...
cdlemg24 40689 Combine ~ cdlemg16z and ~ ...
cdlemg37 40690 Use ~ cdlemg8 to eliminate...
cdlemg25zz 40691 ~ cdlemg16zz restated for ...
cdlemg26zz 40692 ~ cdlemg16zz restated for ...
cdlemg27a 40693 For use with case when ` (...
cdlemg28a 40694 Part of proof of Lemma G o...
cdlemg31b0N 40695 TODO: Fix comment. (Cont...
cdlemg31b0a 40696 TODO: Fix comment. (Cont...
cdlemg27b 40697 TODO: Fix comment. (Cont...
cdlemg31a 40698 TODO: fix comment. (Contr...
cdlemg31b 40699 TODO: fix comment. (Contr...
cdlemg31c 40700 Show that when ` N ` is an...
cdlemg31d 40701 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 40702 TODO: Fix comment. (Cont...
cdlemg33c0 40703 TODO: Fix comment. (Cont...
cdlemg28b 40704 Part of proof of Lemma G o...
cdlemg28 40705 Part of proof of Lemma G o...
cdlemg29 40706 Eliminate ` ( F `` P ) =/=...
cdlemg33a 40707 TODO: Fix comment. (Cont...
cdlemg33b 40708 TODO: Fix comment. (Cont...
cdlemg33c 40709 TODO: Fix comment. (Cont...
cdlemg33d 40710 TODO: Fix comment. (Cont...
cdlemg33e 40711 TODO: Fix comment. (Cont...
cdlemg33 40712 Combine ~ cdlemg33b , ~ cd...
cdlemg34 40713 Use cdlemg33 to eliminate ...
cdlemg35 40714 TODO: Fix comment. TODO:...
cdlemg36 40715 Use cdlemg35 to eliminate ...
cdlemg38 40716 Use ~ cdlemg37 to eliminat...
cdlemg39 40717 Eliminate ` =/= ` conditio...
cdlemg40 40718 Eliminate ` P =/= Q ` cond...
cdlemg41 40719 Convert ~ cdlemg40 to func...
ltrnco 40720 The composition of two tra...
trlcocnv 40721 Swap the arguments of the ...
trlcoabs 40722 Absorption into a composit...
trlcoabs2N 40723 Absorption of the trace of...
trlcoat 40724 The trace of a composition...
trlcocnvat 40725 Commonly used special case...
trlconid 40726 The composition of two dif...
trlcolem 40727 Lemma for ~ trlco . (Cont...
trlco 40728 The trace of a composition...
trlcone 40729 If two translations have d...
cdlemg42 40730 Part of proof of Lemma G o...
cdlemg43 40731 Part of proof of Lemma G o...
cdlemg44a 40732 Part of proof of Lemma G o...
cdlemg44b 40733 Eliminate ` ( F `` P ) =/=...
cdlemg44 40734 Part of proof of Lemma G o...
cdlemg47a 40735 TODO: fix comment. TODO: ...
cdlemg46 40736 Part of proof of Lemma G o...
cdlemg47 40737 Part of proof of Lemma G o...
cdlemg48 40738 Eliminate ` h ` from ~ cdl...
ltrncom 40739 Composition is commutative...
ltrnco4 40740 Rearrange a composition of...
trljco 40741 Trace joined with trace of...
trljco2 40742 Trace joined with trace of...
tgrpfset 40745 The translation group maps...
tgrpset 40746 The translation group for ...
tgrpbase 40747 The base set of the transl...
tgrpopr 40748 The group operation of the...
tgrpov 40749 The group operation value ...
tgrpgrplem 40750 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 40751 The translation group is a...
tgrpabl 40752 The translation group is a...
tendofset 40759 The set of all trace-prese...
tendoset 40760 The set of trace-preservin...
istendo 40761 The predicate "is a trace-...
tendotp 40762 Trace-preserving property ...
istendod 40763 Deduce the predicate "is a...
tendof 40764 Functionality of a trace-p...
tendoeq1 40765 Condition determining equa...
tendovalco 40766 Value of composition of tr...
tendocoval 40767 Value of composition of en...
tendocl 40768 Closure of a trace-preserv...
tendoco2 40769 Distribution of compositio...
tendoidcl 40770 The identity is a trace-pr...
tendo1mul 40771 Multiplicative identity mu...
tendo1mulr 40772 Multiplicative identity mu...
tendococl 40773 The composition of two tra...
tendoid 40774 The identity value of a tr...
tendoeq2 40775 Condition determining equa...
tendoplcbv 40776 Define sum operation for t...
tendopl 40777 Value of endomorphism sum ...
tendopl2 40778 Value of result of endomor...
tendoplcl2 40779 Value of result of endomor...
tendoplco2 40780 Value of result of endomor...
tendopltp 40781 Trace-preserving property ...
tendoplcl 40782 Endomorphism sum is a trac...
tendoplcom 40783 The endomorphism sum opera...
tendoplass 40784 The endomorphism sum opera...
tendodi1 40785 Endomorphism composition d...
tendodi2 40786 Endomorphism composition d...
tendo0cbv 40787 Define additive identity f...
tendo02 40788 Value of additive identity...
tendo0co2 40789 The additive identity trac...
tendo0tp 40790 Trace-preserving property ...
tendo0cl 40791 The additive identity is a...
tendo0pl 40792 Property of the additive i...
tendo0plr 40793 Property of the additive i...
tendoicbv 40794 Define inverse function fo...
tendoi 40795 Value of inverse endomorph...
tendoi2 40796 Value of additive inverse ...
tendoicl 40797 Closure of the additive in...
tendoipl 40798 Property of the additive i...
tendoipl2 40799 Property of the additive i...
erngfset 40800 The division rings on trac...
erngset 40801 The division ring on trace...
erngbase 40802 The base set of the divisi...
erngfplus 40803 Ring addition operation. ...
erngplus 40804 Ring addition operation. ...
erngplus2 40805 Ring addition operation. ...
erngfmul 40806 Ring multiplication operat...
erngmul 40807 Ring addition operation. ...
erngfset-rN 40808 The division rings on trac...
erngset-rN 40809 The division ring on trace...
erngbase-rN 40810 The base set of the divisi...
erngfplus-rN 40811 Ring addition operation. ...
erngplus-rN 40812 Ring addition operation. ...
erngplus2-rN 40813 Ring addition operation. ...
erngfmul-rN 40814 Ring multiplication operat...
erngmul-rN 40815 Ring addition operation. ...
cdlemh1 40816 Part of proof of Lemma H o...
cdlemh2 40817 Part of proof of Lemma H o...
cdlemh 40818 Lemma H of [Crawley] p. 11...
cdlemi1 40819 Part of proof of Lemma I o...
cdlemi2 40820 Part of proof of Lemma I o...
cdlemi 40821 Lemma I of [Crawley] p. 11...
cdlemj1 40822 Part of proof of Lemma J o...
cdlemj2 40823 Part of proof of Lemma J o...
cdlemj3 40824 Part of proof of Lemma J o...
tendocan 40825 Cancellation law: if the v...
tendoid0 40826 A trace-preserving endomor...
tendo0mul 40827 Additive identity multipli...
tendo0mulr 40828 Additive identity multipli...
tendo1ne0 40829 The identity (unity) is no...
tendoconid 40830 The composition (product) ...
tendotr 40831 The trace of the value of ...
cdlemk1 40832 Part of proof of Lemma K o...
cdlemk2 40833 Part of proof of Lemma K o...
cdlemk3 40834 Part of proof of Lemma K o...
cdlemk4 40835 Part of proof of Lemma K o...
cdlemk5a 40836 Part of proof of Lemma K o...
cdlemk5 40837 Part of proof of Lemma K o...
cdlemk6 40838 Part of proof of Lemma K o...
cdlemk8 40839 Part of proof of Lemma K o...
cdlemk9 40840 Part of proof of Lemma K o...
cdlemk9bN 40841 Part of proof of Lemma K o...
cdlemki 40842 Part of proof of Lemma K o...
cdlemkvcl 40843 Part of proof of Lemma K o...
cdlemk10 40844 Part of proof of Lemma K o...
cdlemksv 40845 Part of proof of Lemma K o...
cdlemksel 40846 Part of proof of Lemma K o...
cdlemksat 40847 Part of proof of Lemma K o...
cdlemksv2 40848 Part of proof of Lemma K o...
cdlemk7 40849 Part of proof of Lemma K o...
cdlemk11 40850 Part of proof of Lemma K o...
cdlemk12 40851 Part of proof of Lemma K o...
cdlemkoatnle 40852 Utility lemma. (Contribut...
cdlemk13 40853 Part of proof of Lemma K o...
cdlemkole 40854 Utility lemma. (Contribut...
cdlemk14 40855 Part of proof of Lemma K o...
cdlemk15 40856 Part of proof of Lemma K o...
cdlemk16a 40857 Part of proof of Lemma K o...
cdlemk16 40858 Part of proof of Lemma K o...
cdlemk17 40859 Part of proof of Lemma K o...
cdlemk1u 40860 Part of proof of Lemma K o...
cdlemk5auN 40861 Part of proof of Lemma K o...
cdlemk5u 40862 Part of proof of Lemma K o...
cdlemk6u 40863 Part of proof of Lemma K o...
cdlemkj 40864 Part of proof of Lemma K o...
cdlemkuvN 40865 Part of proof of Lemma K o...
cdlemkuel 40866 Part of proof of Lemma K o...
cdlemkuat 40867 Part of proof of Lemma K o...
cdlemkuv2 40868 Part of proof of Lemma K o...
cdlemk18 40869 Part of proof of Lemma K o...
cdlemk19 40870 Part of proof of Lemma K o...
cdlemk7u 40871 Part of proof of Lemma K o...
cdlemk11u 40872 Part of proof of Lemma K o...
cdlemk12u 40873 Part of proof of Lemma K o...
cdlemk21N 40874 Part of proof of Lemma K o...
cdlemk20 40875 Part of proof of Lemma K o...
cdlemkoatnle-2N 40876 Utility lemma. (Contribut...
cdlemk13-2N 40877 Part of proof of Lemma K o...
cdlemkole-2N 40878 Utility lemma. (Contribut...
cdlemk14-2N 40879 Part of proof of Lemma K o...
cdlemk15-2N 40880 Part of proof of Lemma K o...
cdlemk16-2N 40881 Part of proof of Lemma K o...
cdlemk17-2N 40882 Part of proof of Lemma K o...
cdlemkj-2N 40883 Part of proof of Lemma K o...
cdlemkuv-2N 40884 Part of proof of Lemma K o...
cdlemkuel-2N 40885 Part of proof of Lemma K o...
cdlemkuv2-2 40886 Part of proof of Lemma K o...
cdlemk18-2N 40887 Part of proof of Lemma K o...
cdlemk19-2N 40888 Part of proof of Lemma K o...
cdlemk7u-2N 40889 Part of proof of Lemma K o...
cdlemk11u-2N 40890 Part of proof of Lemma K o...
cdlemk12u-2N 40891 Part of proof of Lemma K o...
cdlemk21-2N 40892 Part of proof of Lemma K o...
cdlemk20-2N 40893 Part of proof of Lemma K o...
cdlemk22 40894 Part of proof of Lemma K o...
cdlemk30 40895 Part of proof of Lemma K o...
cdlemkuu 40896 Convert between function a...
cdlemk31 40897 Part of proof of Lemma K o...
cdlemk32 40898 Part of proof of Lemma K o...
cdlemkuel-3 40899 Part of proof of Lemma K o...
cdlemkuv2-3N 40900 Part of proof of Lemma K o...
cdlemk18-3N 40901 Part of proof of Lemma K o...
cdlemk22-3 40902 Part of proof of Lemma K o...
cdlemk23-3 40903 Part of proof of Lemma K o...
cdlemk24-3 40904 Part of proof of Lemma K o...
cdlemk25-3 40905 Part of proof of Lemma K o...
cdlemk26b-3 40906 Part of proof of Lemma K o...
cdlemk26-3 40907 Part of proof of Lemma K o...
cdlemk27-3 40908 Part of proof of Lemma K o...
cdlemk28-3 40909 Part of proof of Lemma K o...
cdlemk33N 40910 Part of proof of Lemma K o...
cdlemk34 40911 Part of proof of Lemma K o...
cdlemk29-3 40912 Part of proof of Lemma K o...
cdlemk35 40913 Part of proof of Lemma K o...
cdlemk36 40914 Part of proof of Lemma K o...
cdlemk37 40915 Part of proof of Lemma K o...
cdlemk38 40916 Part of proof of Lemma K o...
cdlemk39 40917 Part of proof of Lemma K o...
cdlemk40 40918 TODO: fix comment. (Contr...
cdlemk40t 40919 TODO: fix comment. (Contr...
cdlemk40f 40920 TODO: fix comment. (Contr...
cdlemk41 40921 Part of proof of Lemma K o...
cdlemkfid1N 40922 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 40923 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 40924 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 40925 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 40926 TODO: is this useful or sh...
cdlemky 40927 Part of proof of Lemma K o...
cdlemkyu 40928 Convert between function a...
cdlemkyuu 40929 ~ cdlemkyu with some hypot...
cdlemk11ta 40930 Part of proof of Lemma K o...
cdlemk19ylem 40931 Lemma for ~ cdlemk19y . (...
cdlemk11tb 40932 Part of proof of Lemma K o...
cdlemk19y 40933 ~ cdlemk19 with simpler hy...
cdlemkid3N 40934 Lemma for ~ cdlemkid . (C...
cdlemkid4 40935 Lemma for ~ cdlemkid . (C...
cdlemkid5 40936 Lemma for ~ cdlemkid . (C...
cdlemkid 40937 The value of the tau funct...
cdlemk35s 40938 Substitution version of ~ ...
cdlemk35s-id 40939 Substitution version of ~ ...
cdlemk39s 40940 Substitution version of ~ ...
cdlemk39s-id 40941 Substitution version of ~ ...
cdlemk42 40942 Part of proof of Lemma K o...
cdlemk19xlem 40943 Lemma for ~ cdlemk19x . (...
cdlemk19x 40944 ~ cdlemk19 with simpler hy...
cdlemk42yN 40945 Part of proof of Lemma K o...
cdlemk11tc 40946 Part of proof of Lemma K o...
cdlemk11t 40947 Part of proof of Lemma K o...
cdlemk45 40948 Part of proof of Lemma K o...
cdlemk46 40949 Part of proof of Lemma K o...
cdlemk47 40950 Part of proof of Lemma K o...
cdlemk48 40951 Part of proof of Lemma K o...
cdlemk49 40952 Part of proof of Lemma K o...
cdlemk50 40953 Part of proof of Lemma K o...
cdlemk51 40954 Part of proof of Lemma K o...
cdlemk52 40955 Part of proof of Lemma K o...
cdlemk53a 40956 Lemma for ~ cdlemk53 . (C...
cdlemk53b 40957 Lemma for ~ cdlemk53 . (C...
cdlemk53 40958 Part of proof of Lemma K o...
cdlemk54 40959 Part of proof of Lemma K o...
cdlemk55a 40960 Lemma for ~ cdlemk55 . (C...
cdlemk55b 40961 Lemma for ~ cdlemk55 . (C...
cdlemk55 40962 Part of proof of Lemma K o...
cdlemkyyN 40963 Part of proof of Lemma K o...
cdlemk43N 40964 Part of proof of Lemma K o...
cdlemk35u 40965 Substitution version of ~ ...
cdlemk55u1 40966 Lemma for ~ cdlemk55u . (...
cdlemk55u 40967 Part of proof of Lemma K o...
cdlemk39u1 40968 Lemma for ~ cdlemk39u . (...
cdlemk39u 40969 Part of proof of Lemma K o...
cdlemk19u1 40970 ~ cdlemk19 with simpler hy...
cdlemk19u 40971 Part of Lemma K of [Crawle...
cdlemk56 40972 Part of Lemma K of [Crawle...
cdlemk19w 40973 Use a fixed element to eli...
cdlemk56w 40974 Use a fixed element to eli...
cdlemk 40975 Lemma K of [Crawley] p. 11...
tendoex 40976 Generalization of Lemma K ...
cdleml1N 40977 Part of proof of Lemma L o...
cdleml2N 40978 Part of proof of Lemma L o...
cdleml3N 40979 Part of proof of Lemma L o...
cdleml4N 40980 Part of proof of Lemma L o...
cdleml5N 40981 Part of proof of Lemma L o...
cdleml6 40982 Part of proof of Lemma L o...
cdleml7 40983 Part of proof of Lemma L o...
cdleml8 40984 Part of proof of Lemma L o...
cdleml9 40985 Part of proof of Lemma L o...
dva1dim 40986 Two expressions for the 1-...
dvhb1dimN 40987 Two expressions for the 1-...
erng1lem 40988 Value of the endomorphism ...
erngdvlem1 40989 Lemma for ~ eringring . (...
erngdvlem2N 40990 Lemma for ~ eringring . (...
erngdvlem3 40991 Lemma for ~ eringring . (...
erngdvlem4 40992 Lemma for ~ erngdv . (Con...
eringring 40993 An endomorphism ring is a ...
erngdv 40994 An endomorphism ring is a ...
erng0g 40995 The division ring zero of ...
erng1r 40996 The division ring unity of...
erngdvlem1-rN 40997 Lemma for ~ eringring . (...
erngdvlem2-rN 40998 Lemma for ~ eringring . (...
erngdvlem3-rN 40999 Lemma for ~ eringring . (...
erngdvlem4-rN 41000 Lemma for ~ erngdv . (Con...
erngring-rN 41001 An endomorphism ring is a ...
erngdv-rN 41002 An endomorphism ring is a ...
dvafset 41005 The constructed partial ve...
dvaset 41006 The constructed partial ve...
dvasca 41007 The ring base set of the c...
dvabase 41008 The ring base set of the c...
dvafplusg 41009 Ring addition operation fo...
dvaplusg 41010 Ring addition operation fo...
dvaplusgv 41011 Ring addition operation fo...
dvafmulr 41012 Ring multiplication operat...
dvamulr 41013 Ring multiplication operat...
dvavbase 41014 The vectors (vector base s...
dvafvadd 41015 The vector sum operation f...
dvavadd 41016 Ring addition operation fo...
dvafvsca 41017 Ring addition operation fo...
dvavsca 41018 Ring addition operation fo...
tendospcl 41019 Closure of endomorphism sc...
tendospass 41020 Associative law for endomo...
tendospdi1 41021 Forward distributive law f...
tendocnv 41022 Converse of a trace-preser...
tendospdi2 41023 Reverse distributive law f...
tendospcanN 41024 Cancellation law for trace...
dvaabl 41025 The constructed partial ve...
dvalveclem 41026 Lemma for ~ dvalvec . (Co...
dvalvec 41027 The constructed partial ve...
dva0g 41028 The zero vector of partial...
diaffval 41031 The partial isomorphism A ...
diafval 41032 The partial isomorphism A ...
diaval 41033 The partial isomorphism A ...
diaelval 41034 Member of the partial isom...
diafn 41035 Functionality and domain o...
diadm 41036 Domain of the partial isom...
diaeldm 41037 Member of domain of the pa...
diadmclN 41038 A member of domain of the ...
diadmleN 41039 A member of domain of the ...
dian0 41040 The value of the partial i...
dia0eldmN 41041 The lattice zero belongs t...
dia1eldmN 41042 The fiducial hyperplane (t...
diass 41043 The value of the partial i...
diael 41044 A member of the value of t...
diatrl 41045 Trace of a member of the p...
diaelrnN 41046 Any value of the partial i...
dialss 41047 The value of partial isomo...
diaord 41048 The partial isomorphism A ...
dia11N 41049 The partial isomorphism A ...
diaf11N 41050 The partial isomorphism A ...
diaclN 41051 Closure of partial isomorp...
diacnvclN 41052 Closure of partial isomorp...
dia0 41053 The value of the partial i...
dia1N 41054 The value of the partial i...
dia1elN 41055 The largest subspace in th...
diaglbN 41056 Partial isomorphism A of a...
diameetN 41057 Partial isomorphism A of a...
diainN 41058 Inverse partial isomorphis...
diaintclN 41059 The intersection of partia...
diasslssN 41060 The partial isomorphism A ...
diassdvaN 41061 The partial isomorphism A ...
dia1dim 41062 Two expressions for the 1-...
dia1dim2 41063 Two expressions for a 1-di...
dia1dimid 41064 A vector (translation) bel...
dia2dimlem1 41065 Lemma for ~ dia2dim . Sho...
dia2dimlem2 41066 Lemma for ~ dia2dim . Def...
dia2dimlem3 41067 Lemma for ~ dia2dim . Def...
dia2dimlem4 41068 Lemma for ~ dia2dim . Sho...
dia2dimlem5 41069 Lemma for ~ dia2dim . The...
dia2dimlem6 41070 Lemma for ~ dia2dim . Eli...
dia2dimlem7 41071 Lemma for ~ dia2dim . Eli...
dia2dimlem8 41072 Lemma for ~ dia2dim . Eli...
dia2dimlem9 41073 Lemma for ~ dia2dim . Eli...
dia2dimlem10 41074 Lemma for ~ dia2dim . Con...
dia2dimlem11 41075 Lemma for ~ dia2dim . Con...
dia2dimlem12 41076 Lemma for ~ dia2dim . Obt...
dia2dimlem13 41077 Lemma for ~ dia2dim . Eli...
dia2dim 41078 A two-dimensional subspace...
dvhfset 41081 The constructed full vecto...
dvhset 41082 The constructed full vecto...
dvhsca 41083 The ring of scalars of the...
dvhbase 41084 The ring base set of the c...
dvhfplusr 41085 Ring addition operation fo...
dvhfmulr 41086 Ring multiplication operat...
dvhmulr 41087 Ring multiplication operat...
dvhvbase 41088 The vectors (vector base s...
dvhelvbasei 41089 Vector membership in the c...
dvhvaddcbv 41090 Change bound variables to ...
dvhvaddval 41091 The vector sum operation f...
dvhfvadd 41092 The vector sum operation f...
dvhvadd 41093 The vector sum operation f...
dvhopvadd 41094 The vector sum operation f...
dvhopvadd2 41095 The vector sum operation f...
dvhvaddcl 41096 Closure of the vector sum ...
dvhvaddcomN 41097 Commutativity of vector su...
dvhvaddass 41098 Associativity of vector su...
dvhvscacbv 41099 Change bound variables to ...
dvhvscaval 41100 The scalar product operati...
dvhfvsca 41101 Scalar product operation f...
dvhvsca 41102 Scalar product operation f...
dvhopvsca 41103 Scalar product operation f...
dvhvscacl 41104 Closure of the scalar prod...
tendoinvcl 41105 Closure of multiplicative ...
tendolinv 41106 Left multiplicative invers...
tendorinv 41107 Right multiplicative inver...
dvhgrp 41108 The full vector space ` U ...
dvhlveclem 41109 Lemma for ~ dvhlvec . TOD...
dvhlvec 41110 The full vector space ` U ...
dvhlmod 41111 The full vector space ` U ...
dvh0g 41112 The zero vector of vector ...
dvheveccl 41113 Properties of a unit vecto...
dvhopclN 41114 Closure of a ` DVecH ` vec...
dvhopaddN 41115 Sum of ` DVecH ` vectors e...
dvhopspN 41116 Scalar product of ` DVecH ...
dvhopN 41117 Decompose a ` DVecH ` vect...
dvhopellsm 41118 Ordered pair membership in...
cdlemm10N 41119 The image of the map ` G `...
docaffvalN 41122 Subspace orthocomplement f...
docafvalN 41123 Subspace orthocomplement f...
docavalN 41124 Subspace orthocomplement f...
docaclN 41125 Closure of subspace orthoc...
diaocN 41126 Value of partial isomorphi...
doca2N 41127 Double orthocomplement of ...
doca3N 41128 Double orthocomplement of ...
dvadiaN 41129 Any closed subspace is a m...
diarnN 41130 Partial isomorphism A maps...
diaf1oN 41131 The partial isomorphism A ...
djaffvalN 41134 Subspace join for ` DVecA ...
djafvalN 41135 Subspace join for ` DVecA ...
djavalN 41136 Subspace join for ` DVecA ...
djaclN 41137 Closure of subspace join f...
djajN 41138 Transfer lattice join to `...
dibffval 41141 The partial isomorphism B ...
dibfval 41142 The partial isomorphism B ...
dibval 41143 The partial isomorphism B ...
dibopelvalN 41144 Member of the partial isom...
dibval2 41145 Value of the partial isomo...
dibopelval2 41146 Member of the partial isom...
dibval3N 41147 Value of the partial isomo...
dibelval3 41148 Member of the partial isom...
dibopelval3 41149 Member of the partial isom...
dibelval1st 41150 Membership in value of the...
dibelval1st1 41151 Membership in value of the...
dibelval1st2N 41152 Membership in value of the...
dibelval2nd 41153 Membership in value of the...
dibn0 41154 The value of the partial i...
dibfna 41155 Functionality and domain o...
dibdiadm 41156 Domain of the partial isom...
dibfnN 41157 Functionality and domain o...
dibdmN 41158 Domain of the partial isom...
dibeldmN 41159 Member of domain of the pa...
dibord 41160 The isomorphism B for a la...
dib11N 41161 The isomorphism B for a la...
dibf11N 41162 The partial isomorphism A ...
dibclN 41163 Closure of partial isomorp...
dibvalrel 41164 The value of partial isomo...
dib0 41165 The value of partial isomo...
dib1dim 41166 Two expressions for the 1-...
dibglbN 41167 Partial isomorphism B of a...
dibintclN 41168 The intersection of partia...
dib1dim2 41169 Two expressions for a 1-di...
dibss 41170 The partial isomorphism B ...
diblss 41171 The value of partial isomo...
diblsmopel 41172 Membership in subspace sum...
dicffval 41175 The partial isomorphism C ...
dicfval 41176 The partial isomorphism C ...
dicval 41177 The partial isomorphism C ...
dicopelval 41178 Membership in value of the...
dicelvalN 41179 Membership in value of the...
dicval2 41180 The partial isomorphism C ...
dicelval3 41181 Member of the partial isom...
dicopelval2 41182 Membership in value of the...
dicelval2N 41183 Membership in value of the...
dicfnN 41184 Functionality and domain o...
dicdmN 41185 Domain of the partial isom...
dicvalrelN 41186 The value of partial isomo...
dicssdvh 41187 The partial isomorphism C ...
dicelval1sta 41188 Membership in value of the...
dicelval1stN 41189 Membership in value of the...
dicelval2nd 41190 Membership in value of the...
dicvaddcl 41191 Membership in value of the...
dicvscacl 41192 Membership in value of the...
dicn0 41193 The value of the partial i...
diclss 41194 The value of partial isomo...
diclspsn 41195 The value of isomorphism C...
cdlemn2 41196 Part of proof of Lemma N o...
cdlemn2a 41197 Part of proof of Lemma N o...
cdlemn3 41198 Part of proof of Lemma N o...
cdlemn4 41199 Part of proof of Lemma N o...
cdlemn4a 41200 Part of proof of Lemma N o...
cdlemn5pre 41201 Part of proof of Lemma N o...
cdlemn5 41202 Part of proof of Lemma N o...
cdlemn6 41203 Part of proof of Lemma N o...
cdlemn7 41204 Part of proof of Lemma N o...
cdlemn8 41205 Part of proof of Lemma N o...
cdlemn9 41206 Part of proof of Lemma N o...
cdlemn10 41207 Part of proof of Lemma N o...
cdlemn11a 41208 Part of proof of Lemma N o...
cdlemn11b 41209 Part of proof of Lemma N o...
cdlemn11c 41210 Part of proof of Lemma N o...
cdlemn11pre 41211 Part of proof of Lemma N o...
cdlemn11 41212 Part of proof of Lemma N o...
cdlemn 41213 Lemma N of [Crawley] p. 12...
dihordlem6 41214 Part of proof of Lemma N o...
dihordlem7 41215 Part of proof of Lemma N o...
dihordlem7b 41216 Part of proof of Lemma N o...
dihjustlem 41217 Part of proof after Lemma ...
dihjust 41218 Part of proof after Lemma ...
dihord1 41219 Part of proof after Lemma ...
dihord2a 41220 Part of proof after Lemma ...
dihord2b 41221 Part of proof after Lemma ...
dihord2cN 41222 Part of proof after Lemma ...
dihord11b 41223 Part of proof after Lemma ...
dihord10 41224 Part of proof after Lemma ...
dihord11c 41225 Part of proof after Lemma ...
dihord2pre 41226 Part of proof after Lemma ...
dihord2pre2 41227 Part of proof after Lemma ...
dihord2 41228 Part of proof after Lemma ...
dihffval 41231 The isomorphism H for a la...
dihfval 41232 Isomorphism H for a lattic...
dihval 41233 Value of isomorphism H for...
dihvalc 41234 Value of isomorphism H for...
dihlsscpre 41235 Closure of isomorphism H f...
dihvalcqpre 41236 Value of isomorphism H for...
dihvalcq 41237 Value of isomorphism H for...
dihvalb 41238 Value of isomorphism H for...
dihopelvalbN 41239 Ordered pair member of the...
dihvalcqat 41240 Value of isomorphism H for...
dih1dimb 41241 Two expressions for a 1-di...
dih1dimb2 41242 Isomorphism H at an atom u...
dih1dimc 41243 Isomorphism H at an atom n...
dib2dim 41244 Extend ~ dia2dim to partia...
dih2dimb 41245 Extend ~ dib2dim to isomor...
dih2dimbALTN 41246 Extend ~ dia2dim to isomor...
dihopelvalcqat 41247 Ordered pair member of the...
dihvalcq2 41248 Value of isomorphism H for...
dihopelvalcpre 41249 Member of value of isomorp...
dihopelvalc 41250 Member of value of isomorp...
dihlss 41251 The value of isomorphism H...
dihss 41252 The value of isomorphism H...
dihssxp 41253 An isomorphism H value is ...
dihopcl 41254 Closure of an ordered pair...
xihopellsmN 41255 Ordered pair membership in...
dihopellsm 41256 Ordered pair membership in...
dihord6apre 41257 Part of proof that isomorp...
dihord3 41258 The isomorphism H for a la...
dihord4 41259 The isomorphism H for a la...
dihord5b 41260 Part of proof that isomorp...
dihord6b 41261 Part of proof that isomorp...
dihord6a 41262 Part of proof that isomorp...
dihord5apre 41263 Part of proof that isomorp...
dihord5a 41264 Part of proof that isomorp...
dihord 41265 The isomorphism H is order...
dih11 41266 The isomorphism H is one-t...
dihf11lem 41267 Functionality of the isomo...
dihf11 41268 The isomorphism H for a la...
dihfn 41269 Functionality and domain o...
dihdm 41270 Domain of isomorphism H. (...
dihcl 41271 Closure of isomorphism H. ...
dihcnvcl 41272 Closure of isomorphism H c...
dihcnvid1 41273 The converse isomorphism o...
dihcnvid2 41274 The isomorphism of a conve...
dihcnvord 41275 Ordering property for conv...
dihcnv11 41276 The converse of isomorphis...
dihsslss 41277 The isomorphism H maps to ...
dihrnlss 41278 The isomorphism H maps to ...
dihrnss 41279 The isomorphism H maps to ...
dihvalrel 41280 The value of isomorphism H...
dih0 41281 The value of isomorphism H...
dih0bN 41282 A lattice element is zero ...
dih0vbN 41283 A vector is zero iff its s...
dih0cnv 41284 The isomorphism H converse...
dih0rn 41285 The zero subspace belongs ...
dih0sb 41286 A subspace is zero iff the...
dih1 41287 The value of isomorphism H...
dih1rn 41288 The full vector space belo...
dih1cnv 41289 The isomorphism H converse...
dihwN 41290 Value of isomorphism H at ...
dihmeetlem1N 41291 Isomorphism H of a conjunc...
dihglblem5apreN 41292 A conjunction property of ...
dihglblem5aN 41293 A conjunction property of ...
dihglblem2aN 41294 Lemma for isomorphism H of...
dihglblem2N 41295 The GLB of a set of lattic...
dihglblem3N 41296 Isomorphism H of a lattice...
dihglblem3aN 41297 Isomorphism H of a lattice...
dihglblem4 41298 Isomorphism H of a lattice...
dihglblem5 41299 Isomorphism H of a lattice...
dihmeetlem2N 41300 Isomorphism H of a conjunc...
dihglbcpreN 41301 Isomorphism H of a lattice...
dihglbcN 41302 Isomorphism H of a lattice...
dihmeetcN 41303 Isomorphism H of a lattice...
dihmeetbN 41304 Isomorphism H of a lattice...
dihmeetbclemN 41305 Lemma for isomorphism H of...
dihmeetlem3N 41306 Lemma for isomorphism H of...
dihmeetlem4preN 41307 Lemma for isomorphism H of...
dihmeetlem4N 41308 Lemma for isomorphism H of...
dihmeetlem5 41309 Part of proof that isomorp...
dihmeetlem6 41310 Lemma for isomorphism H of...
dihmeetlem7N 41311 Lemma for isomorphism H of...
dihjatc1 41312 Lemma for isomorphism H of...
dihjatc2N 41313 Isomorphism H of join with...
dihjatc3 41314 Isomorphism H of join with...
dihmeetlem8N 41315 Lemma for isomorphism H of...
dihmeetlem9N 41316 Lemma for isomorphism H of...
dihmeetlem10N 41317 Lemma for isomorphism H of...
dihmeetlem11N 41318 Lemma for isomorphism H of...
dihmeetlem12N 41319 Lemma for isomorphism H of...
dihmeetlem13N 41320 Lemma for isomorphism H of...
dihmeetlem14N 41321 Lemma for isomorphism H of...
dihmeetlem15N 41322 Lemma for isomorphism H of...
dihmeetlem16N 41323 Lemma for isomorphism H of...
dihmeetlem17N 41324 Lemma for isomorphism H of...
dihmeetlem18N 41325 Lemma for isomorphism H of...
dihmeetlem19N 41326 Lemma for isomorphism H of...
dihmeetlem20N 41327 Lemma for isomorphism H of...
dihmeetALTN 41328 Isomorphism H of a lattice...
dih1dimatlem0 41329 Lemma for ~ dih1dimat . (...
dih1dimatlem 41330 Lemma for ~ dih1dimat . (...
dih1dimat 41331 Any 1-dimensional subspace...
dihlsprn 41332 The span of a vector belon...
dihlspsnssN 41333 A subspace included in a 1...
dihlspsnat 41334 The inverse isomorphism H ...
dihatlat 41335 The isomorphism H of an at...
dihat 41336 There exists at least one ...
dihpN 41337 The value of isomorphism H...
dihlatat 41338 The reverse isomorphism H ...
dihatexv 41339 There is a nonzero vector ...
dihatexv2 41340 There is a nonzero vector ...
dihglblem6 41341 Isomorphism H of a lattice...
dihglb 41342 Isomorphism H of a lattice...
dihglb2 41343 Isomorphism H of a lattice...
dihmeet 41344 Isomorphism H of a lattice...
dihintcl 41345 The intersection of closed...
dihmeetcl 41346 Closure of closed subspace...
dihmeet2 41347 Reverse isomorphism H of a...
dochffval 41350 Subspace orthocomplement f...
dochfval 41351 Subspace orthocomplement f...
dochval 41352 Subspace orthocomplement f...
dochval2 41353 Subspace orthocomplement f...
dochcl 41354 Closure of subspace orthoc...
dochlss 41355 A subspace orthocomplement...
dochssv 41356 A subspace orthocomplement...
dochfN 41357 Domain and codomain of the...
dochvalr 41358 Orthocomplement of a close...
doch0 41359 Orthocomplement of the zer...
doch1 41360 Orthocomplement of the uni...
dochoc0 41361 The zero subspace is close...
dochoc1 41362 The unit subspace (all vec...
dochvalr2 41363 Orthocomplement of a close...
dochvalr3 41364 Orthocomplement of a close...
doch2val2 41365 Double orthocomplement for...
dochss 41366 Subset law for orthocomple...
dochocss 41367 Double negative law for or...
dochoc 41368 Double negative law for or...
dochsscl 41369 If a set of vectors is inc...
dochoccl 41370 A set of vectors is closed...
dochord 41371 Ordering law for orthocomp...
dochord2N 41372 Ordering law for orthocomp...
dochord3 41373 Ordering law for orthocomp...
doch11 41374 Orthocomplement is one-to-...
dochsordN 41375 Strict ordering law for or...
dochn0nv 41376 An orthocomplement is nonz...
dihoml4c 41377 Version of ~ dihoml4 with ...
dihoml4 41378 Orthomodular law for const...
dochspss 41379 The span of a set of vecto...
dochocsp 41380 The span of an orthocomple...
dochspocN 41381 The span of an orthocomple...
dochocsn 41382 The double orthocomplement...
dochsncom 41383 Swap vectors in an orthoco...
dochsat 41384 The double orthocomplement...
dochshpncl 41385 If a hyperplane is not clo...
dochlkr 41386 Equivalent conditions for ...
dochkrshp 41387 The closure of a kernel is...
dochkrshp2 41388 Properties of the closure ...
dochkrshp3 41389 Properties of the closure ...
dochkrshp4 41390 Properties of the closure ...
dochdmj1 41391 De Morgan-like law for sub...
dochnoncon 41392 Law of noncontradiction. ...
dochnel2 41393 A nonzero member of a subs...
dochnel 41394 A nonzero vector doesn't b...
djhffval 41397 Subspace join for ` DVecH ...
djhfval 41398 Subspace join for ` DVecH ...
djhval 41399 Subspace join for ` DVecH ...
djhval2 41400 Value of subspace join for...
djhcl 41401 Closure of subspace join f...
djhlj 41402 Transfer lattice join to `...
djhljjN 41403 Lattice join in terms of `...
djhjlj 41404 ` DVecH ` vector space clo...
djhj 41405 ` DVecH ` vector space clo...
djhcom 41406 Subspace join commutes. (...
djhspss 41407 Subspace span of union is ...
djhsumss 41408 Subspace sum is a subset o...
dihsumssj 41409 The subspace sum of two is...
djhunssN 41410 Subspace union is a subset...
dochdmm1 41411 De Morgan-like law for clo...
djhexmid 41412 Excluded middle property o...
djh01 41413 Closed subspace join with ...
djh02 41414 Closed subspace join with ...
djhlsmcl 41415 A closed subspace sum equa...
djhcvat42 41416 A covering property. ( ~ ...
dihjatb 41417 Isomorphism H of lattice j...
dihjatc 41418 Isomorphism H of lattice j...
dihjatcclem1 41419 Lemma for isomorphism H of...
dihjatcclem2 41420 Lemma for isomorphism H of...
dihjatcclem3 41421 Lemma for ~ dihjatcc . (C...
dihjatcclem4 41422 Lemma for isomorphism H of...
dihjatcc 41423 Isomorphism H of lattice j...
dihjat 41424 Isomorphism H of lattice j...
dihprrnlem1N 41425 Lemma for ~ dihprrn , show...
dihprrnlem2 41426 Lemma for ~ dihprrn . (Co...
dihprrn 41427 The span of a vector pair ...
djhlsmat 41428 The sum of two subspace at...
dihjat1lem 41429 Subspace sum of a closed s...
dihjat1 41430 Subspace sum of a closed s...
dihsmsprn 41431 Subspace sum of a closed s...
dihjat2 41432 The subspace sum of a clos...
dihjat3 41433 Isomorphism H of lattice j...
dihjat4 41434 Transfer the subspace sum ...
dihjat6 41435 Transfer the subspace sum ...
dihsmsnrn 41436 The subspace sum of two si...
dihsmatrn 41437 The subspace sum of a clos...
dihjat5N 41438 Transfer lattice join with...
dvh4dimat 41439 There is an atom that is o...
dvh3dimatN 41440 There is an atom that is o...
dvh2dimatN 41441 Given an atom, there exist...
dvh1dimat 41442 There exists an atom. (Co...
dvh1dim 41443 There exists a nonzero vec...
dvh4dimlem 41444 Lemma for ~ dvh4dimN . (C...
dvhdimlem 41445 Lemma for ~ dvh2dim and ~ ...
dvh2dim 41446 There is a vector that is ...
dvh3dim 41447 There is a vector that is ...
dvh4dimN 41448 There is a vector that is ...
dvh3dim2 41449 There is a vector that is ...
dvh3dim3N 41450 There is a vector that is ...
dochsnnz 41451 The orthocomplement of a s...
dochsatshp 41452 The orthocomplement of a s...
dochsatshpb 41453 The orthocomplement of a s...
dochsnshp 41454 The orthocomplement of a n...
dochshpsat 41455 A hyperplane is closed iff...
dochkrsat 41456 The orthocomplement of a k...
dochkrsat2 41457 The orthocomplement of a k...
dochsat0 41458 The orthocomplement of a k...
dochkrsm 41459 The subspace sum of a clos...
dochexmidat 41460 Special case of excluded m...
dochexmidlem1 41461 Lemma for ~ dochexmid . H...
dochexmidlem2 41462 Lemma for ~ dochexmid . (...
dochexmidlem3 41463 Lemma for ~ dochexmid . U...
dochexmidlem4 41464 Lemma for ~ dochexmid . (...
dochexmidlem5 41465 Lemma for ~ dochexmid . (...
dochexmidlem6 41466 Lemma for ~ dochexmid . (...
dochexmidlem7 41467 Lemma for ~ dochexmid . C...
dochexmidlem8 41468 Lemma for ~ dochexmid . T...
dochexmid 41469 Excluded middle law for cl...
dochsnkrlem1 41470 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 41471 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 41472 Lemma for ~ dochsnkr . (C...
dochsnkr 41473 A (closed) kernel expresse...
dochsnkr2 41474 Kernel of the explicit fun...
dochsnkr2cl 41475 The ` X ` determining func...
dochflcl 41476 Closure of the explicit fu...
dochfl1 41477 The value of the explicit ...
dochfln0 41478 The value of a functional ...
dochkr1 41479 A nonzero functional has a...
dochkr1OLDN 41480 A nonzero functional has a...
lpolsetN 41483 The set of polarities of a...
islpolN 41484 The predicate "is a polari...
islpoldN 41485 Properties that determine ...
lpolfN 41486 Functionality of a polarit...
lpolvN 41487 The polarity of the whole ...
lpolconN 41488 Contraposition property of...
lpolsatN 41489 The polarity of an atomic ...
lpolpolsatN 41490 Property of a polarity. (...
dochpolN 41491 The subspace orthocompleme...
lcfl1lem 41492 Property of a functional w...
lcfl1 41493 Property of a functional w...
lcfl2 41494 Property of a functional w...
lcfl3 41495 Property of a functional w...
lcfl4N 41496 Property of a functional w...
lcfl5 41497 Property of a functional w...
lcfl5a 41498 Property of a functional w...
lcfl6lem 41499 Lemma for ~ lcfl6 . A fun...
lcfl7lem 41500 Lemma for ~ lcfl7N . If t...
lcfl6 41501 Property of a functional w...
lcfl7N 41502 Property of a functional w...
lcfl8 41503 Property of a functional w...
lcfl8a 41504 Property of a functional w...
lcfl8b 41505 Property of a nonzero func...
lcfl9a 41506 Property implying that a f...
lclkrlem1 41507 The set of functionals hav...
lclkrlem2a 41508 Lemma for ~ lclkr . Use ~...
lclkrlem2b 41509 Lemma for ~ lclkr . (Cont...
lclkrlem2c 41510 Lemma for ~ lclkr . (Cont...
lclkrlem2d 41511 Lemma for ~ lclkr . (Cont...
lclkrlem2e 41512 Lemma for ~ lclkr . The k...
lclkrlem2f 41513 Lemma for ~ lclkr . Const...
lclkrlem2g 41514 Lemma for ~ lclkr . Compa...
lclkrlem2h 41515 Lemma for ~ lclkr . Elimi...
lclkrlem2i 41516 Lemma for ~ lclkr . Elimi...
lclkrlem2j 41517 Lemma for ~ lclkr . Kerne...
lclkrlem2k 41518 Lemma for ~ lclkr . Kerne...
lclkrlem2l 41519 Lemma for ~ lclkr . Elimi...
lclkrlem2m 41520 Lemma for ~ lclkr . Const...
lclkrlem2n 41521 Lemma for ~ lclkr . (Cont...
lclkrlem2o 41522 Lemma for ~ lclkr . When ...
lclkrlem2p 41523 Lemma for ~ lclkr . When ...
lclkrlem2q 41524 Lemma for ~ lclkr . The s...
lclkrlem2r 41525 Lemma for ~ lclkr . When ...
lclkrlem2s 41526 Lemma for ~ lclkr . Thus,...
lclkrlem2t 41527 Lemma for ~ lclkr . We el...
lclkrlem2u 41528 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 41529 Lemma for ~ lclkr . When ...
lclkrlem2w 41530 Lemma for ~ lclkr . This ...
lclkrlem2x 41531 Lemma for ~ lclkr . Elimi...
lclkrlem2y 41532 Lemma for ~ lclkr . Resta...
lclkrlem2 41533 The set of functionals hav...
lclkr 41534 The set of functionals wit...
lcfls1lem 41535 Property of a functional w...
lcfls1N 41536 Property of a functional w...
lcfls1c 41537 Property of a functional w...
lclkrslem1 41538 The set of functionals hav...
lclkrslem2 41539 The set of functionals hav...
lclkrs 41540 The set of functionals hav...
lclkrs2 41541 The set of functionals wit...
lcfrvalsnN 41542 Reconstruction from the du...
lcfrlem1 41543 Lemma for ~ lcfr . Note t...
lcfrlem2 41544 Lemma for ~ lcfr . (Contr...
lcfrlem3 41545 Lemma for ~ lcfr . (Contr...
lcfrlem4 41546 Lemma for ~ lcfr . (Contr...
lcfrlem5 41547 Lemma for ~ lcfr . The se...
lcfrlem6 41548 Lemma for ~ lcfr . Closur...
lcfrlem7 41549 Lemma for ~ lcfr . Closur...
lcfrlem8 41550 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 41551 Lemma for ~ lcf1o . (This...
lcf1o 41552 Define a function ` J ` th...
lcfrlem10 41553 Lemma for ~ lcfr . (Contr...
lcfrlem11 41554 Lemma for ~ lcfr . (Contr...
lcfrlem12N 41555 Lemma for ~ lcfr . (Contr...
lcfrlem13 41556 Lemma for ~ lcfr . (Contr...
lcfrlem14 41557 Lemma for ~ lcfr . (Contr...
lcfrlem15 41558 Lemma for ~ lcfr . (Contr...
lcfrlem16 41559 Lemma for ~ lcfr . (Contr...
lcfrlem17 41560 Lemma for ~ lcfr . Condit...
lcfrlem18 41561 Lemma for ~ lcfr . (Contr...
lcfrlem19 41562 Lemma for ~ lcfr . (Contr...
lcfrlem20 41563 Lemma for ~ lcfr . (Contr...
lcfrlem21 41564 Lemma for ~ lcfr . (Contr...
lcfrlem22 41565 Lemma for ~ lcfr . (Contr...
lcfrlem23 41566 Lemma for ~ lcfr . TODO: ...
lcfrlem24 41567 Lemma for ~ lcfr . (Contr...
lcfrlem25 41568 Lemma for ~ lcfr . Specia...
lcfrlem26 41569 Lemma for ~ lcfr . Specia...
lcfrlem27 41570 Lemma for ~ lcfr . Specia...
lcfrlem28 41571 Lemma for ~ lcfr . TODO: ...
lcfrlem29 41572 Lemma for ~ lcfr . (Contr...
lcfrlem30 41573 Lemma for ~ lcfr . (Contr...
lcfrlem31 41574 Lemma for ~ lcfr . (Contr...
lcfrlem32 41575 Lemma for ~ lcfr . (Contr...
lcfrlem33 41576 Lemma for ~ lcfr . (Contr...
lcfrlem34 41577 Lemma for ~ lcfr . (Contr...
lcfrlem35 41578 Lemma for ~ lcfr . (Contr...
lcfrlem36 41579 Lemma for ~ lcfr . (Contr...
lcfrlem37 41580 Lemma for ~ lcfr . (Contr...
lcfrlem38 41581 Lemma for ~ lcfr . Combin...
lcfrlem39 41582 Lemma for ~ lcfr . Elimin...
lcfrlem40 41583 Lemma for ~ lcfr . Elimin...
lcfrlem41 41584 Lemma for ~ lcfr . Elimin...
lcfrlem42 41585 Lemma for ~ lcfr . Elimin...
lcfr 41586 Reconstruction of a subspa...
lcdfval 41589 Dual vector space of funct...
lcdval 41590 Dual vector space of funct...
lcdval2 41591 Dual vector space of funct...
lcdlvec 41592 The dual vector space of f...
lcdlmod 41593 The dual vector space of f...
lcdvbase 41594 Vector base set of a dual ...
lcdvbasess 41595 The vector base set of the...
lcdvbaselfl 41596 A vector in the base set o...
lcdvbasecl 41597 Closure of the value of a ...
lcdvadd 41598 Vector addition for the cl...
lcdvaddval 41599 The value of the value of ...
lcdsca 41600 The ring of scalars of the...
lcdsbase 41601 Base set of scalar ring fo...
lcdsadd 41602 Scalar addition for the cl...
lcdsmul 41603 Scalar multiplication for ...
lcdvs 41604 Scalar product for the clo...
lcdvsval 41605 Value of scalar product op...
lcdvscl 41606 The scalar product operati...
lcdlssvscl 41607 Closure of scalar product ...
lcdvsass 41608 Associative law for scalar...
lcd0 41609 The zero scalar of the clo...
lcd1 41610 The unit scalar of the clo...
lcdneg 41611 The unit scalar of the clo...
lcd0v 41612 The zero functional in the...
lcd0v2 41613 The zero functional in the...
lcd0vvalN 41614 Value of the zero function...
lcd0vcl 41615 Closure of the zero functi...
lcd0vs 41616 A scalar zero times a func...
lcdvs0N 41617 A scalar times the zero fu...
lcdvsub 41618 The value of vector subtra...
lcdvsubval 41619 The value of the value of ...
lcdlss 41620 Subspaces of a dual vector...
lcdlss2N 41621 Subspaces of a dual vector...
lcdlsp 41622 Span in the set of functio...
lcdlkreqN 41623 Colinear functionals have ...
lcdlkreq2N 41624 Colinear functionals have ...
mapdffval 41627 Projectivity from vector s...
mapdfval 41628 Projectivity from vector s...
mapdval 41629 Value of projectivity from...
mapdvalc 41630 Value of projectivity from...
mapdval2N 41631 Value of projectivity from...
mapdval3N 41632 Value of projectivity from...
mapdval4N 41633 Value of projectivity from...
mapdval5N 41634 Value of projectivity from...
mapdordlem1a 41635 Lemma for ~ mapdord . (Co...
mapdordlem1bN 41636 Lemma for ~ mapdord . (Co...
mapdordlem1 41637 Lemma for ~ mapdord . (Co...
mapdordlem2 41638 Lemma for ~ mapdord . Ord...
mapdord 41639 Ordering property of the m...
mapd11 41640 The map defined by ~ df-ma...
mapddlssN 41641 The mapping of a subspace ...
mapdsn 41642 Value of the map defined b...
mapdsn2 41643 Value of the map defined b...
mapdsn3 41644 Value of the map defined b...
mapd1dim2lem1N 41645 Value of the map defined b...
mapdrvallem2 41646 Lemma for ~ mapdrval . TO...
mapdrvallem3 41647 Lemma for ~ mapdrval . (C...
mapdrval 41648 Given a dual subspace ` R ...
mapd1o 41649 The map defined by ~ df-ma...
mapdrn 41650 Range of the map defined b...
mapdunirnN 41651 Union of the range of the ...
mapdrn2 41652 Range of the map defined b...
mapdcnvcl 41653 Closure of the converse of...
mapdcl 41654 Closure the value of the m...
mapdcnvid1N 41655 Converse of the value of t...
mapdsord 41656 Strong ordering property o...
mapdcl2 41657 The mapping of a subspace ...
mapdcnvid2 41658 Value of the converse of t...
mapdcnvordN 41659 Ordering property of the c...
mapdcnv11N 41660 The converse of the map de...
mapdcv 41661 Covering property of the c...
mapdincl 41662 Closure of dual subspace i...
mapdin 41663 Subspace intersection is p...
mapdlsmcl 41664 Closure of dual subspace s...
mapdlsm 41665 Subspace sum is preserved ...
mapd0 41666 Projectivity map of the ze...
mapdcnvatN 41667 Atoms are preserved by the...
mapdat 41668 Atoms are preserved by the...
mapdspex 41669 The map of a span equals t...
mapdn0 41670 Transfer nonzero property ...
mapdncol 41671 Transfer non-colinearity f...
mapdindp 41672 Transfer (part of) vector ...
mapdpglem1 41673 Lemma for ~ mapdpg . Baer...
mapdpglem2 41674 Lemma for ~ mapdpg . Baer...
mapdpglem2a 41675 Lemma for ~ mapdpg . (Con...
mapdpglem3 41676 Lemma for ~ mapdpg . Baer...
mapdpglem4N 41677 Lemma for ~ mapdpg . (Con...
mapdpglem5N 41678 Lemma for ~ mapdpg . (Con...
mapdpglem6 41679 Lemma for ~ mapdpg . Baer...
mapdpglem8 41680 Lemma for ~ mapdpg . Baer...
mapdpglem9 41681 Lemma for ~ mapdpg . Baer...
mapdpglem10 41682 Lemma for ~ mapdpg . Baer...
mapdpglem11 41683 Lemma for ~ mapdpg . (Con...
mapdpglem12 41684 Lemma for ~ mapdpg . TODO...
mapdpglem13 41685 Lemma for ~ mapdpg . (Con...
mapdpglem14 41686 Lemma for ~ mapdpg . (Con...
mapdpglem15 41687 Lemma for ~ mapdpg . (Con...
mapdpglem16 41688 Lemma for ~ mapdpg . Baer...
mapdpglem17N 41689 Lemma for ~ mapdpg . Baer...
mapdpglem18 41690 Lemma for ~ mapdpg . Baer...
mapdpglem19 41691 Lemma for ~ mapdpg . Baer...
mapdpglem20 41692 Lemma for ~ mapdpg . Baer...
mapdpglem21 41693 Lemma for ~ mapdpg . (Con...
mapdpglem22 41694 Lemma for ~ mapdpg . Baer...
mapdpglem23 41695 Lemma for ~ mapdpg . Baer...
mapdpglem30a 41696 Lemma for ~ mapdpg . (Con...
mapdpglem30b 41697 Lemma for ~ mapdpg . (Con...
mapdpglem25 41698 Lemma for ~ mapdpg . Baer...
mapdpglem26 41699 Lemma for ~ mapdpg . Baer...
mapdpglem27 41700 Lemma for ~ mapdpg . Baer...
mapdpglem29 41701 Lemma for ~ mapdpg . Baer...
mapdpglem28 41702 Lemma for ~ mapdpg . Baer...
mapdpglem30 41703 Lemma for ~ mapdpg . Baer...
mapdpglem31 41704 Lemma for ~ mapdpg . Baer...
mapdpglem24 41705 Lemma for ~ mapdpg . Exis...
mapdpglem32 41706 Lemma for ~ mapdpg . Uniq...
mapdpg 41707 Part 1 of proof of the fir...
baerlem3lem1 41708 Lemma for ~ baerlem3 . (C...
baerlem5alem1 41709 Lemma for ~ baerlem5a . (...
baerlem5blem1 41710 Lemma for ~ baerlem5b . (...
baerlem3lem2 41711 Lemma for ~ baerlem3 . (C...
baerlem5alem2 41712 Lemma for ~ baerlem5a . (...
baerlem5blem2 41713 Lemma for ~ baerlem5b . (...
baerlem3 41714 An equality that holds whe...
baerlem5a 41715 An equality that holds whe...
baerlem5b 41716 An equality that holds whe...
baerlem5amN 41717 An equality that holds whe...
baerlem5bmN 41718 An equality that holds whe...
baerlem5abmN 41719 An equality that holds whe...
mapdindp0 41720 Vector independence lemma....
mapdindp1 41721 Vector independence lemma....
mapdindp2 41722 Vector independence lemma....
mapdindp3 41723 Vector independence lemma....
mapdindp4 41724 Vector independence lemma....
mapdhval 41725 Lemmma for ~~? mapdh . (C...
mapdhval0 41726 Lemmma for ~~? mapdh . (C...
mapdhval2 41727 Lemmma for ~~? mapdh . (C...
mapdhcl 41728 Lemmma for ~~? mapdh . (C...
mapdheq 41729 Lemmma for ~~? mapdh . Th...
mapdheq2 41730 Lemmma for ~~? mapdh . On...
mapdheq2biN 41731 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 41732 Lemma for ~ mapdheq4 . Pa...
mapdheq4 41733 Lemma for ~~? mapdh . Par...
mapdh6lem1N 41734 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 41735 Lemma for ~ mapdh6N . Par...
mapdh6aN 41736 Lemma for ~ mapdh6N . Par...
mapdh6b0N 41737 Lemmma for ~ mapdh6N . (C...
mapdh6bN 41738 Lemmma for ~ mapdh6N . (C...
mapdh6cN 41739 Lemmma for ~ mapdh6N . (C...
mapdh6dN 41740 Lemmma for ~ mapdh6N . (C...
mapdh6eN 41741 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 41742 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 41743 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 41744 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 41745 Lemmma for ~ mapdh6N . El...
mapdh6jN 41746 Lemmma for ~ mapdh6N . El...
mapdh6kN 41747 Lemmma for ~ mapdh6N . El...
mapdh6N 41748 Part (6) of [Baer] p. 47 l...
mapdh7eN 41749 Part (7) of [Baer] p. 48 l...
mapdh7cN 41750 Part (7) of [Baer] p. 48 l...
mapdh7dN 41751 Part (7) of [Baer] p. 48 l...
mapdh7fN 41752 Part (7) of [Baer] p. 48 l...
mapdh75e 41753 Part (7) of [Baer] p. 48 l...
mapdh75cN 41754 Part (7) of [Baer] p. 48 l...
mapdh75d 41755 Part (7) of [Baer] p. 48 l...
mapdh75fN 41756 Part (7) of [Baer] p. 48 l...
hvmapffval 41759 Map from nonzero vectors t...
hvmapfval 41760 Map from nonzero vectors t...
hvmapval 41761 Value of map from nonzero ...
hvmapvalvalN 41762 Value of value of map (i.e...
hvmapidN 41763 The value of the vector to...
hvmap1o 41764 The vector to functional m...
hvmapclN 41765 Closure of the vector to f...
hvmap1o2 41766 The vector to functional m...
hvmapcl2 41767 Closure of the vector to f...
hvmaplfl 41768 The vector to functional m...
hvmaplkr 41769 Kernel of the vector to fu...
mapdhvmap 41770 Relationship between ` map...
lspindp5 41771 Obtain an independent vect...
hdmaplem1 41772 Lemma to convert a frequen...
hdmaplem2N 41773 Lemma to convert a frequen...
hdmaplem3 41774 Lemma to convert a frequen...
hdmaplem4 41775 Lemma to convert a frequen...
mapdh8a 41776 Part of Part (8) in [Baer]...
mapdh8aa 41777 Part of Part (8) in [Baer]...
mapdh8ab 41778 Part of Part (8) in [Baer]...
mapdh8ac 41779 Part of Part (8) in [Baer]...
mapdh8ad 41780 Part of Part (8) in [Baer]...
mapdh8b 41781 Part of Part (8) in [Baer]...
mapdh8c 41782 Part of Part (8) in [Baer]...
mapdh8d0N 41783 Part of Part (8) in [Baer]...
mapdh8d 41784 Part of Part (8) in [Baer]...
mapdh8e 41785 Part of Part (8) in [Baer]...
mapdh8g 41786 Part of Part (8) in [Baer]...
mapdh8i 41787 Part of Part (8) in [Baer]...
mapdh8j 41788 Part of Part (8) in [Baer]...
mapdh8 41789 Part (8) in [Baer] p. 48. ...
mapdh9a 41790 Lemma for part (9) in [Bae...
mapdh9aOLDN 41791 Lemma for part (9) in [Bae...
hdmap1ffval 41796 Preliminary map from vecto...
hdmap1fval 41797 Preliminary map from vecto...
hdmap1vallem 41798 Value of preliminary map f...
hdmap1val 41799 Value of preliminary map f...
hdmap1val0 41800 Value of preliminary map f...
hdmap1val2 41801 Value of preliminary map f...
hdmap1eq 41802 The defining equation for ...
hdmap1cbv 41803 Frequently used lemma to c...
hdmap1valc 41804 Connect the value of the p...
hdmap1cl 41805 Convert closure theorem ~ ...
hdmap1eq2 41806 Convert ~ mapdheq2 to use ...
hdmap1eq4N 41807 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 41808 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 41809 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 41810 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 41811 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 41812 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 41813 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 41814 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 41815 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 41816 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 41817 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 41818 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 41819 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 41820 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 41821 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 41822 Part (6) of [Baer] p. 47 l...
hdmap1eulem 41823 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 41824 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 41825 Convert ~ mapdh9a to use t...
hdmap1euOLDN 41826 Convert ~ mapdh9aOLDN to u...
hdmapffval 41827 Map from vectors to functi...
hdmapfval 41828 Map from vectors to functi...
hdmapval 41829 Value of map from vectors ...
hdmapfnN 41830 Functionality of map from ...
hdmapcl 41831 Closure of map from vector...
hdmapval2lem 41832 Lemma for ~ hdmapval2 . (...
hdmapval2 41833 Value of map from vectors ...
hdmapval0 41834 Value of map from vectors ...
hdmapeveclem 41835 Lemma for ~ hdmapevec . T...
hdmapevec 41836 Value of map from vectors ...
hdmapevec2 41837 The inner product of the r...
hdmapval3lemN 41838 Value of map from vectors ...
hdmapval3N 41839 Value of map from vectors ...
hdmap10lem 41840 Lemma for ~ hdmap10 . (Co...
hdmap10 41841 Part 10 in [Baer] p. 48 li...
hdmap11lem1 41842 Lemma for ~ hdmapadd . (C...
hdmap11lem2 41843 Lemma for ~ hdmapadd . (C...
hdmapadd 41844 Part 11 in [Baer] p. 48 li...
hdmapeq0 41845 Part of proof of part 12 i...
hdmapnzcl 41846 Nonzero vector closure of ...
hdmapneg 41847 Part of proof of part 12 i...
hdmapsub 41848 Part of proof of part 12 i...
hdmap11 41849 Part of proof of part 12 i...
hdmaprnlem1N 41850 Part of proof of part 12 i...
hdmaprnlem3N 41851 Part of proof of part 12 i...
hdmaprnlem3uN 41852 Part of proof of part 12 i...
hdmaprnlem4tN 41853 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 41854 Part of proof of part 12 i...
hdmaprnlem6N 41855 Part of proof of part 12 i...
hdmaprnlem7N 41856 Part of proof of part 12 i...
hdmaprnlem8N 41857 Part of proof of part 12 i...
hdmaprnlem9N 41858 Part of proof of part 12 i...
hdmaprnlem3eN 41859 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 41860 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 41861 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 41862 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 41863 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 41864 Lemma for ~ hdmaprnN . In...
hdmaprnN 41865 Part of proof of part 12 i...
hdmapf1oN 41866 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 41867 Prior to part 14 in [Baer]...
hdmap14lem2a 41868 Prior to part 14 in [Baer]...
hdmap14lem1 41869 Prior to part 14 in [Baer]...
hdmap14lem2N 41870 Prior to part 14 in [Baer]...
hdmap14lem3 41871 Prior to part 14 in [Baer]...
hdmap14lem4a 41872 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 41873 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 41874 Case where ` F ` is zero. ...
hdmap14lem7 41875 Combine cases of ` F ` . ...
hdmap14lem8 41876 Part of proof of part 14 i...
hdmap14lem9 41877 Part of proof of part 14 i...
hdmap14lem10 41878 Part of proof of part 14 i...
hdmap14lem11 41879 Part of proof of part 14 i...
hdmap14lem12 41880 Lemma for proof of part 14...
hdmap14lem13 41881 Lemma for proof of part 14...
hdmap14lem14 41882 Part of proof of part 14 i...
hdmap14lem15 41883 Part of proof of part 14 i...
hgmapffval 41886 Map from the scalar divisi...
hgmapfval 41887 Map from the scalar divisi...
hgmapval 41888 Value of map from the scal...
hgmapfnN 41889 Functionality of scalar si...
hgmapcl 41890 Closure of scalar sigma ma...
hgmapdcl 41891 Closure of the vector spac...
hgmapvs 41892 Part 15 of [Baer] p. 50 li...
hgmapval0 41893 Value of the scalar sigma ...
hgmapval1 41894 Value of the scalar sigma ...
hgmapadd 41895 Part 15 of [Baer] p. 50 li...
hgmapmul 41896 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 41897 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 41898 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 41899 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 41900 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 41901 Lemma for ~ hgmaprnN . El...
hgmaprnN 41902 Part of proof of part 16 i...
hgmap11 41903 The scalar sigma map is on...
hgmapf1oN 41904 The scalar sigma map is a ...
hgmapeq0 41905 The scalar sigma map is ze...
hdmapipcl 41906 The inner product (Hermiti...
hdmapln1 41907 Linearity property that wi...
hdmaplna1 41908 Additive property of first...
hdmaplns1 41909 Subtraction property of fi...
hdmaplnm1 41910 Multiplicative property of...
hdmaplna2 41911 Additive property of secon...
hdmapglnm2 41912 g-linear property of secon...
hdmapgln2 41913 g-linear property that wil...
hdmaplkr 41914 Kernel of the vector to du...
hdmapellkr 41915 Membership in the kernel (...
hdmapip0 41916 Zero property that will be...
hdmapip1 41917 Construct a proportional v...
hdmapip0com 41918 Commutation property of Ba...
hdmapinvlem1 41919 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 41920 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 41921 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 41922 Part 1.1 of Proposition 1 ...
hdmapglem5 41923 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 41924 Involution property of sca...
hgmapvvlem2 41925 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 41926 Lemma for ~ hgmapvv . Eli...
hgmapvv 41927 Value of a double involuti...
hdmapglem7a 41928 Lemma for ~ hdmapg . (Con...
hdmapglem7b 41929 Lemma for ~ hdmapg . (Con...
hdmapglem7 41930 Lemma for ~ hdmapg . Line...
hdmapg 41931 Apply the scalar sigma fun...
hdmapoc 41932 Express our constructed or...
hlhilset 41935 The final Hilbert space co...
hlhilsca 41936 The scalar of the final co...
hlhilbase 41937 The base set of the final ...
hlhilplus 41938 The vector addition for th...
hlhilslem 41939 Lemma for ~ hlhilsbase etc...
hlhilsbase 41940 The scalar base set of the...
hlhilsplus 41941 Scalar addition for the fi...
hlhilsmul 41942 Scalar multiplication for ...
hlhilsbase2 41943 The scalar base set of the...
hlhilsplus2 41944 Scalar addition for the fi...
hlhilsmul2 41945 Scalar multiplication for ...
hlhils0 41946 The scalar ring zero for t...
hlhils1N 41947 The scalar ring unity for ...
hlhilvsca 41948 The scalar product for the...
hlhilip 41949 Inner product operation fo...
hlhilipval 41950 Value of inner product ope...
hlhilnvl 41951 The involution operation o...
hlhillvec 41952 The final constructed Hilb...
hlhildrng 41953 The star division ring for...
hlhilsrnglem 41954 Lemma for ~ hlhilsrng . (...
hlhilsrng 41955 The star division ring for...
hlhil0 41956 The zero vector for the fi...
hlhillsm 41957 The vector sum operation f...
hlhilocv 41958 The orthocomplement for th...
hlhillcs 41959 The closed subspaces of th...
hlhilphllem 41960 Lemma for ~ hlhil . (Cont...
hlhilhillem 41961 Lemma for ~ hlhil . (Cont...
hlathil 41962 Construction of a Hilbert ...
iscsrg 41965 A commutative semiring is ...
rhmzrhval 41966 Evaluation of integers acr...
zndvdchrrhm 41967 Construction of a ring hom...
relogbcld 41968 Closure of the general log...
relogbexpd 41969 Identity law for general l...
relogbzexpd 41970 Power law for the general ...
logblebd 41971 The general logarithm is m...
uzindd 41972 Induction on the upper int...
fzadd2d 41973 Membership of a sum in a f...
zltp1led 41974 Integer ordering relation,...
fzne2d 41975 Elementhood in a finite se...
eqfnfv2d2 41976 Equality of functions is d...
fzsplitnd 41977 Split a finite interval of...
fzsplitnr 41978 Split a finite interval of...
addassnni 41979 Associative law for additi...
addcomnni 41980 Commutative law for additi...
mulassnni 41981 Associative law for multip...
mulcomnni 41982 Commutative law for multip...
gcdcomnni 41983 Commutative law for gcd. ...
gcdnegnni 41984 Negation invariance for gc...
neggcdnni 41985 Negation invariance for gc...
bccl2d 41986 Closure of the binomial co...
recbothd 41987 Take reciprocal on both si...
gcdmultiplei 41988 The GCD of a multiple of a...
gcdaddmzz2nni 41989 Adding a multiple of one o...
gcdaddmzz2nncomi 41990 Adding a multiple of one o...
gcdnncli 41991 Closure of the gcd operato...
muldvds1d 41992 If a product divides an in...
muldvds2d 41993 If a product divides an in...
nndivdvdsd 41994 A positive integer divides...
nnproddivdvdsd 41995 A product of natural numbe...
coprmdvds2d 41996 If an integer is divisible...
imadomfi 41997 An image of a function und...
12gcd5e1 41998 The gcd of 12 and 5 is 1. ...
60gcd6e6 41999 The gcd of 60 and 6 is 6. ...
60gcd7e1 42000 The gcd of 60 and 7 is 1. ...
420gcd8e4 42001 The gcd of 420 and 8 is 4....
lcmeprodgcdi 42002 Calculate the least common...
12lcm5e60 42003 The lcm of 12 and 5 is 60....
60lcm6e60 42004 The lcm of 60 and 6 is 60....
60lcm7e420 42005 The lcm of 60 and 7 is 420...
420lcm8e840 42006 The lcm of 420 and 8 is 84...
lcmfunnnd 42007 Useful equation to calcula...
lcm1un 42008 Least common multiple of n...
lcm2un 42009 Least common multiple of n...
lcm3un 42010 Least common multiple of n...
lcm4un 42011 Least common multiple of n...
lcm5un 42012 Least common multiple of n...
lcm6un 42013 Least common multiple of n...
lcm7un 42014 Least common multiple of n...
lcm8un 42015 Least common multiple of n...
3factsumint1 42016 Move constants out of inte...
3factsumint2 42017 Move constants out of inte...
3factsumint3 42018 Move constants out of inte...
3factsumint4 42019 Move constants out of inte...
3factsumint 42020 Helpful equation for lcm i...
resopunitintvd 42021 Restrict continuous functi...
resclunitintvd 42022 Restrict continuous functi...
resdvopclptsd 42023 Restrict derivative on uni...
lcmineqlem1 42024 Part of lcm inequality lem...
lcmineqlem2 42025 Part of lcm inequality lem...
lcmineqlem3 42026 Part of lcm inequality lem...
lcmineqlem4 42027 Part of lcm inequality lem...
lcmineqlem5 42028 Technical lemma for recipr...
lcmineqlem6 42029 Part of lcm inequality lem...
lcmineqlem7 42030 Derivative of 1-x for chai...
lcmineqlem8 42031 Derivative of (1-x)^(N-M)....
lcmineqlem9 42032 (1-x)^(N-M) is continuous....
lcmineqlem10 42033 Induction step of ~ lcmine...
lcmineqlem11 42034 Induction step, continuati...
lcmineqlem12 42035 Base case for induction. ...
lcmineqlem13 42036 Induction proof for lcm in...
lcmineqlem14 42037 Technical lemma for inequa...
lcmineqlem15 42038 F times the least common m...
lcmineqlem16 42039 Technical divisibility lem...
lcmineqlem17 42040 Inequality of 2^{2n}. (Co...
lcmineqlem18 42041 Technical lemma to shift f...
lcmineqlem19 42042 Dividing implies inequalit...
lcmineqlem20 42043 Inequality for lcm lemma. ...
lcmineqlem21 42044 The lcm inequality lemma w...
lcmineqlem22 42045 The lcm inequality lemma w...
lcmineqlem23 42046 Penultimate step to the lc...
lcmineqlem 42047 The least common multiple ...
3exp7 42048 3 to the power of 7 equals...
3lexlogpow5ineq1 42049 First inequality in inequa...
3lexlogpow5ineq2 42050 Second inequality in inequ...
3lexlogpow5ineq4 42051 Sharper logarithm inequali...
3lexlogpow5ineq3 42052 Combined inequality chain ...
3lexlogpow2ineq1 42053 Result for bound in AKS in...
3lexlogpow2ineq2 42054 Result for bound in AKS in...
3lexlogpow5ineq5 42055 Result for bound in AKS in...
intlewftc 42056 Inequality inference by in...
aks4d1lem1 42057 Technical lemma to reduce ...
aks4d1p1p1 42058 Exponential law for finite...
dvrelog2 42059 The derivative of the loga...
dvrelog3 42060 The derivative of the loga...
dvrelog2b 42061 Derivative of the binary l...
0nonelalab 42062 Technical lemma for open i...
dvrelogpow2b 42063 Derivative of the power of...
aks4d1p1p3 42064 Bound of a ceiling of the ...
aks4d1p1p2 42065 Rewrite ` A ` in more suit...
aks4d1p1p4 42066 Technical step for inequal...
dvle2 42067 Collapsed ~ dvle . (Contr...
aks4d1p1p6 42068 Inequality lift to differe...
aks4d1p1p7 42069 Bound of intermediary of i...
aks4d1p1p5 42070 Show inequality for existe...
aks4d1p1 42071 Show inequality for existe...
aks4d1p2 42072 Technical lemma for existe...
aks4d1p3 42073 There exists a small enoug...
aks4d1p4 42074 There exists a small enoug...
aks4d1p5 42075 Show that ` N ` and ` R ` ...
aks4d1p6 42076 The maximal prime power ex...
aks4d1p7d1 42077 Technical step in AKS lemm...
aks4d1p7 42078 Technical step in AKS lemm...
aks4d1p8d1 42079 If a prime divides one num...
aks4d1p8d2 42080 Any prime power dividing a...
aks4d1p8d3 42081 The remainder of a divisio...
aks4d1p8 42082 Show that ` N ` and ` R ` ...
aks4d1p9 42083 Show that the order is bou...
aks4d1 42084 Lemma 4.1 from ~ https://w...
fldhmf1 42085 A field homomorphism is in...
isprimroot 42088 The value of a primitive r...
isprimroot2 42089 Alternative way of creatin...
mndmolinv 42090 An element of a monoid tha...
linvh 42091 If an element has a unique...
primrootsunit1 42092 Primitive roots have left ...
primrootsunit 42093 Primitive roots have left ...
primrootscoprmpow 42094 Coprime powers of primitiv...
posbezout 42095 Bezout's identity restrict...
primrootscoprf 42096 Coprime powers of primitiv...
primrootscoprbij 42097 A bijection between coprim...
primrootscoprbij2 42098 A bijection between coprim...
remexz 42099 Division with rest. (Cont...
primrootlekpowne0 42100 There is no smaller power ...
primrootspoweq0 42101 The power of a ` R ` -th p...
aks6d1c1p1 42102 Definition of the introspe...
aks6d1c1p1rcl 42103 Reverse closure of the int...
aks6d1c1p2 42104 ` P ` and linear factors a...
aks6d1c1p3 42105 In a field with a Frobeniu...
aks6d1c1p4 42106 The product of polynomials...
aks6d1c1p5 42107 The product of exponents i...
aks6d1c1p7 42108 ` X ` is introspective to ...
aks6d1c1p6 42109 If a polynomials ` F ` is ...
aks6d1c1p8 42110 If a number ` E ` is intro...
aks6d1c1 42111 Claim 1 of Theorem 6.1 ~ h...
evl1gprodd 42112 Polynomial evaluation buil...
aks6d1c2p1 42113 In the AKS-theorem the sub...
aks6d1c2p2 42114 Injective condition for co...
hashscontpowcl 42115 Closure of E for ~ https:/...
hashscontpow1 42116 Helper lemma for to prove ...
hashscontpow 42117 If a set contains all ` N ...
aks6d1c3 42118 Claim 3 of Theorem 6.1 of ...
aks6d1c4 42119 Claim 4 of Theorem 6.1 of ...
aks6d1c1rh 42120 Claim 1 of AKS primality p...
aks6d1c2lem3 42121 Lemma for ~ aks6d1c2 to si...
aks6d1c2lem4 42122 Claim 2 of Theorem 6.1 AKS...
hashnexinj 42123 If the number of elements ...
hashnexinjle 42124 If the number of elements ...
aks6d1c2 42125 Claim 2 of Theorem 6.1 of ...
rspcsbnea 42126 Special case related to ~ ...
idomnnzpownz 42127 A non-zero power in an int...
idomnnzgmulnz 42128 A finite product of non-ze...
ringexp0nn 42129 Zero to the power of a pos...
aks6d1c5lem0 42130 Lemma for Claim 5 of Theor...
aks6d1c5lem1 42131 Lemma for claim 5, evaluat...
aks6d1c5lem3 42132 Lemma for Claim 5, polynom...
aks6d1c5lem2 42133 Lemma for Claim 5, contrad...
aks6d1c5 42134 Claim 5 of Theorem 6.1 ~ h...
deg1gprod 42135 Degree multiplication is a...
deg1pow 42136 Exact degree of a power of...
5bc2eq10 42137 The value of 5 choose 2. ...
facp2 42138 The factorial of a success...
2np3bcnp1 42139 Part of induction step for...
2ap1caineq 42140 Inequality for Theorem 6.6...
sticksstones1 42141 Different strictly monoton...
sticksstones2 42142 The range function on stri...
sticksstones3 42143 The range function on stri...
sticksstones4 42144 Equinumerosity lemma for s...
sticksstones5 42145 Count the number of strict...
sticksstones6 42146 Function induces an order ...
sticksstones7 42147 Closure property of sticks...
sticksstones8 42148 Establish mapping between ...
sticksstones9 42149 Establish mapping between ...
sticksstones10 42150 Establish mapping between ...
sticksstones11 42151 Establish bijective mappin...
sticksstones12a 42152 Establish bijective mappin...
sticksstones12 42153 Establish bijective mappin...
sticksstones13 42154 Establish bijective mappin...
sticksstones14 42155 Sticks and stones with def...
sticksstones15 42156 Sticks and stones with alm...
sticksstones16 42157 Sticks and stones with col...
sticksstones17 42158 Extend sticks and stones t...
sticksstones18 42159 Extend sticks and stones t...
sticksstones19 42160 Extend sticks and stones t...
sticksstones20 42161 Lift sticks and stones to ...
sticksstones21 42162 Lift sticks and stones to ...
sticksstones22 42163 Non-exhaustive sticks and ...
sticksstones23 42164 Non-exhaustive sticks and ...
aks6d1c6lem1 42165 Lemma for claim 6, deduce ...
aks6d1c6lem2 42166 Every primitive root is ro...
aks6d1c6lem3 42167 Claim 6 of Theorem 6.1 of ...
aks6d1c6lem4 42168 Claim 6 of Theorem 6.1 of ...
aks6d1c6isolem1 42169 Lemma to construct the map...
aks6d1c6isolem2 42170 Lemma to construct the gro...
aks6d1c6isolem3 42171 The preimage of a map send...
aks6d1c6lem5 42172 Eliminate the size hypothe...
bcled 42173 Inequality for binomial co...
bcle2d 42174 Inequality for binomial co...
aks6d1c7lem1 42175 The last set of inequaliti...
aks6d1c7lem2 42176 Contradiction to Claim 2 a...
aks6d1c7lem3 42177 Remove lots of hypotheses ...
aks6d1c7lem4 42178 In the AKS algorithm there...
aks6d1c7 42179 ` N ` is a prime power if ...
rhmqusspan 42180 Ring homomorphism out of a...
aks5lem1 42181 Section 5 of ~ https://www...
aks5lem2 42182 Lemma for section 5 ~ http...
ply1asclzrhval 42183 Transfer results from alge...
aks5lem3a 42184 Lemma for AKS section 5. ...
aks5lem4a 42185 Lemma for AKS section 5, r...
aks5lem5a 42186 Lemma for AKS, section 5, ...
aks5lem6 42187 Connect results of section...
indstrd 42188 Strong induction, deductio...
grpods 42189 Relate sums of elements of...
unitscyglem1 42190 Lemma for unitscyg. (Cont...
unitscyglem2 42191 Lemma for unitscyg. (Cont...
unitscyglem3 42192 Lemma for unitscyg. (Cont...
unitscyglem4 42193 Lemma for unitscyg (Contri...
unitscyglem5 42194 Lemma for unitscyg (Contri...
aks5lem7 42195 Lemma for aks5. We clean ...
aks5lem8 42196 Lemma for aks5. Clean up ...
exfinfldd 42198 For any prime ` P ` and an...
aks5 42199 The AKS Primality test, gi...
jarrii 42200 Inference associated with ...
intnanrt 42201 Introduction of conjunct i...
ioin9i8 42202 Miscellaneous inference cr...
jaodd 42203 Double deduction form of ~...
syl3an12 42204 A double syllogism inferen...
exbiii 42205 Inference associated with ...
sbtd 42206 A true statement is true u...
sbor2 42207 One direction of ~ sbor , ...
sbalexi 42208 Inference form of ~ sbalex...
19.9dev 42209 ~ 19.9d in the case of an ...
3rspcedvd 42210 Triple application of ~ rs...
sn-axrep5v 42211 A condensed form of ~ axre...
sn-axprlem3 42212 ~ axprlem3 using only Tars...
sn-exelALT 42213 Alternate proof of ~ exel ...
ss2ab1 42214 Class abstractions in a su...
ssabdv 42215 Deduction of abstraction s...
sn-iotalem 42216 An unused lemma showing th...
sn-iotalemcor 42217 Corollary of ~ sn-iotalem ...
abbi1sn 42218 Originally part of ~ uniab...
brif2 42219 Move a relation inside and...
brif12 42220 Move a relation inside and...
pssexg 42221 The proper subset of a set...
pssn0 42222 A proper superset is nonem...
psspwb 42223 Classes are proper subclas...
xppss12 42224 Proper subset theorem for ...
elpwbi 42225 Membership in a power set,...
imaopab 42226 The image of a class of or...
eqresfnbd 42227 Property of being the rest...
f1o2d2 42228 Sufficient condition for a...
fmpocos 42229 Composition of two functio...
ovmpogad 42230 Value of an operation give...
ofun 42231 A function operation of un...
dfqs2 42232 Alternate definition of qu...
dfqs3 42233 Alternate definition of qu...
qseq12d 42234 Equality theorem for quoti...
qsalrel 42235 The quotient set is equal ...
elmapssresd 42236 A restricted mapping is a ...
supinf 42237 The supremum is the infimu...
mapcod 42238 Compose two mappings. (Co...
fisdomnn 42239 A finite set is dominated ...
ltex 42240 The less-than relation is ...
leex 42241 The less-than-or-equal-to ...
subex 42242 The subtraction operation ...
absex 42243 The absolute value functio...
cjex 42244 The conjugate function is ...
fzosumm1 42245 Separate out the last term...
ccatcan2d 42246 Cancellation law for conca...
c0exALT 42247 Alternate proof of ~ c0ex ...
0cnALT3 42248 Alternate proof of ~ 0cn u...
elre0re 42249 Specialized version of ~ 0...
1t1e1ALT 42250 Alternate proof of ~ 1t1e1...
lttrii 42251 'Less than' is transitive....
remulcan2d 42252 ~ mulcan2d for real number...
readdridaddlidd 42253 Given some real number ` B...
1p3e4 42254 1 + 3 = 4. (Contributed b...
5ne0 42255 The number 5 is nonzero. ...
6ne0 42256 The number 6 is nonzero. ...
7ne0 42257 The number 7 is nonzero. ...
8ne0 42258 The number 8 is nonzero. ...
9ne0 42259 The number 9 is nonzero. ...
sn-1ne2 42260 A proof of ~ 1ne2 without ...
nnn1suc 42261 A positive integer that is...
nnadd1com 42262 Addition with 1 is commuta...
nnaddcom 42263 Addition is commutative fo...
nnaddcomli 42264 Version of ~ addcomli for ...
nnadddir 42265 Right-distributivity for n...
nnmul1com 42266 Multiplication with 1 is c...
nnmulcom 42267 Multiplication is commutat...
readdrcl2d 42268 Reverse closure for additi...
mvrrsubd 42269 Move a subtraction in the ...
laddrotrd 42270 Rotate the variables right...
raddswap12d 42271 Swap the first two variabl...
lsubrotld 42272 Rotate the variables left ...
rsubrotld 42273 Rotate the variables left ...
lsubswap23d 42274 Swap the second and third ...
addsubeq4com 42275 Relation between sums and ...
sqsumi 42276 A sum squared. (Contribut...
negn0nposznnd 42277 Lemma for ~ dffltz . (Con...
sqmid3api 42278 Value of the square of the...
decaddcom 42279 Commute ones place in addi...
sqn5i 42280 The square of a number end...
sqn5ii 42281 The square of a number end...
decpmulnc 42282 Partial products algorithm...
decpmul 42283 Partial products algorithm...
sqdeccom12 42284 The square of a number in ...
sq3deccom12 42285 Variant of ~ sqdeccom12 wi...
4t5e20 42286 4 times 5 equals 20. (Con...
3rdpwhole 42287 A third of a number plus t...
sq4 42288 The square of 4 is 16. (C...
sq5 42289 The square of 5 is 25. (C...
sq6 42290 The square of 6 is 36. (C...
sq7 42291 The square of 7 is 49. (C...
sq8 42292 The square of 8 is 64. (C...
sq9 42293 The square of 9 is 81. (C...
rpsscn 42294 The positive reals are a s...
4rp 42295 4 is a positive real. (Co...
6rp 42296 6 is a positive real. (Co...
7rp 42297 7 is a positive real. (Co...
8rp 42298 8 is a positive real. (Co...
9rp 42299 9 is a positive real. (Co...
235t711 42300 Calculate a product by lon...
ex-decpmul 42301 Example usage of ~ decpmul...
eluzp1 42302 Membership in a successor ...
sn-eluzp1l 42303 Shorter proof of ~ eluzp1l...
fz1sumconst 42304 The sum of ` N ` constant ...
fz1sump1 42305 Add one more term to a sum...
oddnumth 42306 The Odd Number Theorem. T...
nicomachus 42307 Nicomachus's Theorem. The...
sumcubes 42308 The sum of the first ` N `...
ine1 42309 ` _i ` is not 1. (Contrib...
0tie0 42310 0 times ` _i ` equals 0. ...
it1ei 42311 ` _i ` times 1 equals ` _i...
1tiei 42312 1 times ` _i ` equals ` _i...
itrere 42313 ` _i ` times a real is rea...
retire 42314 A real times ` _i ` is rea...
iocioodisjd 42315 Adjacent intervals where t...
rpabsid 42316 A positive real is its own...
oexpreposd 42317 Lemma for ~ dffltz . For ...
explt1d 42318 A nonnegative real number ...
expeq1d 42319 A nonnegative real number ...
expeqidd 42320 A nonnegative real number ...
exp11d 42321 ~ exp11nnd for nonzero int...
0dvds0 42322 0 divides 0. (Contributed...
absdvdsabsb 42323 Divisibility is invariant ...
gcdnn0id 42324 The ` gcd ` of a nonnegati...
gcdle1d 42325 The greatest common diviso...
gcdle2d 42326 The greatest common diviso...
dvdsexpad 42327 Deduction associated with ...
dvdsexpnn 42328 ~ dvdssqlem generalized to...
dvdsexpnn0 42329 ~ dvdsexpnn generalized to...
dvdsexpb 42330 ~ dvdssq generalized to po...
posqsqznn 42331 When a positive rational s...
zdivgd 42332 Two ways to express " ` N ...
efsubd 42333 Difference of exponents la...
ef11d 42334 General condition for the ...
logccne0d 42335 The logarithm isn't 0 if i...
cxp112d 42336 General condition for comp...
cxp111d 42337 General condition for comp...
cxpi11d 42338 ` _i ` to the powers of ` ...
logne0d 42339 Deduction form of ~ logne0...
rxp112d 42340 Real exponentiation is one...
log11d 42341 The natural logarithm is o...
rplog11d 42342 The natural logarithm is o...
rxp11d 42343 Real exponentiation is one...
tanhalfpim 42344 The tangent of ` _pi / 2 `...
sinpim 42345 Sine of a number subtracte...
cospim 42346 Cosine of a number subtrac...
tan3rdpi 42347 The tangent of ` _pi / 3 `...
sin2t3rdpi 42348 The sine of ` 2 x. ( _pi /...
cos2t3rdpi 42349 The cosine of ` 2 x. ( _pi...
sin4t3rdpi 42350 The sine of ` 4 x. ( _pi /...
cos4t3rdpi 42351 The cosine of ` 4 x. ( _pi...
asin1half 42352 The arcsine of ` 1 / 2 ` i...
acos1half 42353 The arccosine of ` 1 / 2 `...
dvun 42354 Condition for the union of...
redvmptabs 42355 The derivative of the abso...
readvrec2 42356 The antiderivative of 1/x ...
readvrec 42357 For real numbers, the anti...
resuppsinopn 42358 The support of sin ( ~ df-...
readvcot 42359 Real antiderivative of cot...
resubval 42362 Value of real subtraction,...
renegeulemv 42363 Lemma for ~ renegeu and si...
renegeulem 42364 Lemma for ~ renegeu and si...
renegeu 42365 Existential uniqueness of ...
rernegcl 42366 Closure law for negative r...
renegadd 42367 Relationship between real ...
renegid 42368 Addition of a real number ...
reneg0addlid 42369 Negative zero is a left ad...
resubeulem1 42370 Lemma for ~ resubeu . A v...
resubeulem2 42371 Lemma for ~ resubeu . A v...
resubeu 42372 Existential uniqueness of ...
rersubcl 42373 Closure for real subtracti...
resubadd 42374 Relation between real subt...
resubaddd 42375 Relationship between subtr...
resubf 42376 Real subtraction is an ope...
repncan2 42377 Addition and subtraction o...
repncan3 42378 Addition and subtraction o...
readdsub 42379 Law for addition and subtr...
reladdrsub 42380 Move LHS of a sum into RHS...
reltsub1 42381 Subtraction from both side...
reltsubadd2 42382 'Less than' relationship b...
resubcan2 42383 Cancellation law for real ...
resubsub4 42384 Law for double subtraction...
rennncan2 42385 Cancellation law for real ...
renpncan3 42386 Cancellation law for real ...
repnpcan 42387 Cancellation law for addit...
reppncan 42388 Cancellation law for mixed...
resubidaddlidlem 42389 Lemma for ~ resubidaddlid ...
resubidaddlid 42390 Any real number subtracted...
resubdi 42391 Distribution of multiplica...
re1m1e0m0 42392 Equality of two left-addit...
sn-00idlem1 42393 Lemma for ~ sn-00id . (Co...
sn-00idlem2 42394 Lemma for ~ sn-00id . (Co...
sn-00idlem3 42395 Lemma for ~ sn-00id . (Co...
sn-00id 42396 ~ 00id proven without ~ ax...
re0m0e0 42397 Real number version of ~ 0...
readdlid 42398 Real number version of ~ a...
sn-addlid 42399 ~ addlid without ~ ax-mulc...
remul02 42400 Real number version of ~ m...
sn-0ne2 42401 ~ 0ne2 without ~ ax-mulcom...
remul01 42402 Real number version of ~ m...
sn-remul0ord 42403 A product is zero iff one ...
resubid 42404 Subtraction of a real numb...
readdrid 42405 Real number version of ~ a...
resubid1 42406 Real number version of ~ s...
renegneg 42407 A real number is equal to ...
readdcan2 42408 Commuted version of ~ read...
renegid2 42409 Commuted version of ~ rene...
remulneg2d 42410 Product with negative is n...
sn-it0e0 42411 Proof of ~ it0e0 without ~...
sn-negex12 42412 A combination of ~ cnegex ...
sn-negex 42413 Proof of ~ cnegex without ...
sn-negex2 42414 Proof of ~ cnegex2 without...
sn-addcand 42415 ~ addcand without ~ ax-mul...
sn-addrid 42416 ~ addrid without ~ ax-mulc...
sn-addcan2d 42417 ~ addcan2d without ~ ax-mu...
reixi 42418 ~ ixi without ~ ax-mulcom ...
rei4 42419 ~ i4 without ~ ax-mulcom ....
sn-addid0 42420 A number that sums to itse...
sn-mul01 42421 ~ mul01 without ~ ax-mulco...
sn-subeu 42422 ~ negeu without ~ ax-mulco...
sn-subcl 42423 ~ subcl without ~ ax-mulco...
sn-subf 42424 ~ subf without ~ ax-mulcom...
resubeqsub 42425 Equivalence between real s...
subresre 42426 Subtraction restricted to ...
addinvcom 42427 A number commutes with its...
remulinvcom 42428 A left multiplicative inve...
remullid 42429 Commuted version of ~ ax-1...
sn-1ticom 42430 Lemma for ~ sn-mullid and ...
sn-mullid 42431 ~ mullid without ~ ax-mulc...
sn-it1ei 42432 ~ it1ei without ~ ax-mulco...
ipiiie0 42433 The multiplicative inverse...
remulcand 42434 Commuted version of ~ remu...
redivvald 42437 Value of real division, wh...
rediveud 42438 Existential uniqueness of ...
sn-redivcld 42439 Closure law for real divis...
redivmuld 42440 Relationship between divis...
redivcan2d 42441 A cancellation law for div...
redivcan3d 42442 A cancellation law for div...
sn-rereccld 42443 Closure law for reciprocal...
rerecid 42444 Multiplication of a number...
rerecid2 42445 Multiplication of a number...
sn-0tie0 42446 Lemma for ~ sn-mul02 . Co...
sn-mul02 42447 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 42448 ~ ltaddpos without ~ ax-mu...
sn-ltaddneg 42449 ~ ltaddneg without ~ ax-mu...
reposdif 42450 Comparison of two numbers ...
relt0neg1 42451 Comparison of a real and i...
relt0neg2 42452 Comparison of a real and i...
sn-addlt0d 42453 The sum of negative number...
sn-addgt0d 42454 The sum of positive number...
sn-nnne0 42455 ~ nnne0 without ~ ax-mulco...
reelznn0nn 42456 ~ elznn0nn restated using ...
nn0addcom 42457 Addition is commutative fo...
zaddcomlem 42458 Lemma for ~ zaddcom . (Co...
zaddcom 42459 Addition is commutative fo...
renegmulnnass 42460 Move multiplication by a n...
nn0mulcom 42461 Multiplication is commutat...
zmulcomlem 42462 Lemma for ~ zmulcom . (Co...
zmulcom 42463 Multiplication is commutat...
mulgt0con1dlem 42464 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 42465 Counterpart to ~ mulgt0con...
mulgt0con2d 42466 Lemma for ~ mulgt0b1d and ...
mulgt0b1d 42467 Biconditional, deductive f...
sn-ltmul2d 42468 ~ ltmul2d without ~ ax-mul...
sn-ltmulgt11d 42469 ~ ltmulgt11d without ~ ax-...
sn-0lt1 42470 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 42471 ~ ltp1 without ~ ax-mulcom...
sn-recgt0d 42472 The reciprocal of a positi...
mulgt0b2d 42473 Biconditional, deductive f...
sn-mulgt1d 42474 ~ mulgt1d without ~ ax-mul...
reneg1lt0 42475 Negative one is a negative...
sn-reclt0d 42476 The reciprocal of a negati...
mulltgt0d 42477 Negative times positive is...
mullt0b1d 42478 When the first term is neg...
mullt0b2d 42479 When the second term is ne...
sn-mullt0d 42480 The product of two negativ...
sn-msqgt0d 42481 A nonzero square is positi...
sn-inelr 42482 ~ inelr without ~ ax-mulco...
sn-itrere 42483 ` _i ` times a real is rea...
sn-retire 42484 Commuted version of ~ sn-i...
cnreeu 42485 The reals in the expressio...
sn-sup2 42486 ~ sup2 with exactly the sa...
sn-sup3d 42487 ~ sup3 without ~ ax-mulcom...
sn-suprcld 42488 ~ suprcld without ~ ax-mul...
sn-suprubd 42489 ~ suprubd without ~ ax-mul...
sn-base0 42490 Avoid axioms in ~ base0 by...
nelsubginvcld 42491 The inverse of a non-subgr...
nelsubgcld 42492 A non-subgroup-member plus...
nelsubgsubcld 42493 A non-subgroup-member minu...
rnasclg 42494 The set of injected scalar...
frlmfielbas 42495 The vectors of a finite fr...
frlmfzwrd 42496 A vector of a module with ...
frlmfzowrd 42497 A vector of a module with ...
frlmfzolen 42498 The dimension of a vector ...
frlmfzowrdb 42499 The vectors of a module wi...
frlmfzoccat 42500 The concatenation of two v...
frlmvscadiccat 42501 Scalar multiplication dist...
grpasscan2d 42502 An associative cancellatio...
grpcominv1 42503 If two elements commute, t...
grpcominv2 42504 If two elements commute, t...
finsubmsubg 42505 A submonoid of a finite gr...
opprmndb 42506 A class is a monoid if and...
opprgrpb 42507 A class is a group if and ...
opprablb 42508 A class is an Abelian grou...
imacrhmcl 42509 The image of a commutative...
rimrcl1 42510 Reverse closure of a ring ...
rimrcl2 42511 Reverse closure of a ring ...
rimcnv 42512 The converse of a ring iso...
rimco 42513 The composition of ring is...
ricsym 42514 Ring isomorphism is symmet...
rictr 42515 Ring isomorphism is transi...
riccrng1 42516 Ring isomorphism preserves...
riccrng 42517 A ring is commutative if a...
domnexpgn0cl 42518 In a domain, a (nonnegativ...
drnginvrn0d 42519 A multiplicative inverse i...
drngmullcan 42520 Cancellation of a nonzero ...
drngmulrcan 42521 Cancellation of a nonzero ...
drnginvmuld 42522 Inverse of a nonzero produ...
ricdrng1 42523 A ring isomorphism maps a ...
ricdrng 42524 A ring is a division ring ...
ricfld 42525 A ring is a field if and o...
asclf1 42526 Two ways of saying the sca...
abvexp 42527 Move exponentiation in and...
fimgmcyclem 42528 Lemma for ~ fimgmcyc . (C...
fimgmcyc 42529 Version of ~ odcl2 for fin...
fidomncyc 42530 Version of ~ odcl2 for mul...
fiabv 42531 In a finite domain (a fini...
lvecgrp 42532 A vector space is a group....
lvecring 42533 The scalar component of a ...
frlm0vald 42534 All coordinates of the zer...
frlmsnic 42535 Given a free module with a...
uvccl 42536 A unit vector is a vector....
uvcn0 42537 A unit vector is nonzero. ...
pwselbasr 42538 The reverse direction of ~...
pwsgprod 42539 Finite products in a power...
psrmnd 42540 The ring of power series i...
psrbagres 42541 Restrict a bag of variable...
mplcrngd 42542 The polynomial ring is a c...
mplsubrgcl 42543 An element of a polynomial...
mhmcopsr 42544 The composition of a monoi...
mhmcoaddpsr 42545 Show that the ring homomor...
rhmcomulpsr 42546 Show that the ring homomor...
rhmpsr 42547 Provide a ring homomorphis...
rhmpsr1 42548 Provide a ring homomorphis...
mplascl0 42549 The zero scalar as a polyn...
mplascl1 42550 The one scalar as a polyno...
mplmapghm 42551 The function ` H ` mapping...
evl0 42552 The zero polynomial evalua...
evlscl 42553 A polynomial over the ring...
evlsval3 42554 Give a formula for the pol...
evlsvval 42555 Give a formula for the eva...
evlsvvvallem 42556 Lemma for ~ evlsvvval akin...
evlsvvvallem2 42557 Lemma for theorems using ~...
evlsvvval 42558 Give a formula for the eva...
evlsscaval 42559 Polynomial evaluation buil...
evlsvarval 42560 Polynomial evaluation buil...
evlsbagval 42561 Polynomial evaluation buil...
evlsexpval 42562 Polynomial evaluation buil...
evlsaddval 42563 Polynomial evaluation buil...
evlsmulval 42564 Polynomial evaluation buil...
evlsmaprhm 42565 The function ` F ` mapping...
evlsevl 42566 Evaluation in a subring is...
evlcl 42567 A polynomial over the ring...
evlvvval 42568 Give a formula for the eva...
evlvvvallem 42569 Lemma for theorems using ~...
evladdval 42570 Polynomial evaluation buil...
evlmulval 42571 Polynomial evaluation buil...
selvcllem1 42572 ` T ` is an associative al...
selvcllem2 42573 ` D ` is a ring homomorphi...
selvcllem3 42574 The third argument passed ...
selvcllemh 42575 Apply the third argument (...
selvcllem4 42576 The fourth argument passed...
selvcllem5 42577 The fifth argument passed ...
selvcl 42578 Closure of the "variable s...
selvval2 42579 Value of the "variable sel...
selvvvval 42580 Recover the original polyn...
evlselvlem 42581 Lemma for ~ evlselv . Use...
evlselv 42582 Evaluating a selection of ...
selvadd 42583 The "variable selection" f...
selvmul 42584 The "variable selection" f...
fsuppind 42585 Induction on functions ` F...
fsuppssindlem1 42586 Lemma for ~ fsuppssind . ...
fsuppssindlem2 42587 Lemma for ~ fsuppssind . ...
fsuppssind 42588 Induction on functions ` F...
mhpind 42589 The homogeneous polynomial...
evlsmhpvvval 42590 Give a formula for the eva...
mhphflem 42591 Lemma for ~ mhphf . Add s...
mhphf 42592 A homogeneous polynomial d...
mhphf2 42593 A homogeneous polynomial d...
mhphf3 42594 A homogeneous polynomial d...
mhphf4 42595 A homogeneous polynomial d...
prjspval 42598 Value of the projective sp...
prjsprel 42599 Utility theorem regarding ...
prjspertr 42600 The relation in ` PrjSp ` ...
prjsperref 42601 The relation in ` PrjSp ` ...
prjspersym 42602 The relation in ` PrjSp ` ...
prjsper 42603 The relation used to defin...
prjspreln0 42604 Two nonzero vectors are eq...
prjspvs 42605 A nonzero multiple of a ve...
prjsprellsp 42606 Two vectors are equivalent...
prjspeclsp 42607 The vectors equivalent to ...
prjspval2 42608 Alternate definition of pr...
prjspnval 42611 Value of the n-dimensional...
prjspnerlem 42612 A lemma showing that the e...
prjspnval2 42613 Value of the n-dimensional...
prjspner 42614 The relation used to defin...
prjspnvs 42615 A nonzero multiple of a ve...
prjspnssbas 42616 A projective point spans a...
prjspnn0 42617 A projective point is none...
0prjspnlem 42618 Lemma for ~ 0prjspn . The...
prjspnfv01 42619 Any vector is equivalent t...
prjspner01 42620 Any vector is equivalent t...
prjspner1 42621 Two vectors whose zeroth c...
0prjspnrel 42622 In the zero-dimensional pr...
0prjspn 42623 A zero-dimensional project...
prjcrvfval 42626 Value of the projective cu...
prjcrvval 42627 Value of the projective cu...
prjcrv0 42628 The "curve" (zero set) cor...
dffltz 42629 Fermat's Last Theorem (FLT...
fltmul 42630 A counterexample to FLT st...
fltdiv 42631 A counterexample to FLT st...
flt0 42632 A counterexample for FLT d...
fltdvdsabdvdsc 42633 Any factor of both ` A ` a...
fltabcoprmex 42634 A counterexample to FLT im...
fltaccoprm 42635 A counterexample to FLT wi...
fltbccoprm 42636 A counterexample to FLT wi...
fltabcoprm 42637 A counterexample to FLT wi...
infdesc 42638 Infinite descent. The hyp...
fltne 42639 If a counterexample to FLT...
flt4lem 42640 Raising a number to the fo...
flt4lem1 42641 Satisfy the antecedent use...
flt4lem2 42642 If ` A ` is even, ` B ` is...
flt4lem3 42643 Equivalent to ~ pythagtrip...
flt4lem4 42644 If the product of two copr...
flt4lem5 42645 In the context of the lemm...
flt4lem5elem 42646 Version of ~ fltaccoprm an...
flt4lem5a 42647 Part 1 of Equation 1 of ...
flt4lem5b 42648 Part 2 of Equation 1 of ...
flt4lem5c 42649 Part 2 of Equation 2 of ...
flt4lem5d 42650 Part 3 of Equation 2 of ...
flt4lem5e 42651 Satisfy the hypotheses of ...
flt4lem5f 42652 Final equation of ~...
flt4lem6 42653 Remove shared factors in a...
flt4lem7 42654 Convert ~ flt4lem5f into a...
nna4b4nsq 42655 Strengthening of Fermat's ...
fltltc 42656 ` ( C ^ N ) ` is the large...
fltnltalem 42657 Lemma for ~ fltnlta . A l...
fltnlta 42658 In a Fermat counterexample...
iddii 42659 Version of ~ a1ii with the...
bicomdALT 42660 Alternate proof of ~ bicom...
alan 42661 Alias for ~ 19.26 for easi...
exor 42662 Alias for ~ 19.43 for easi...
rexor 42663 Alias for ~ r19.43 for eas...
ruvALT 42664 Alternate proof of ~ ruv w...
sn-wcdeq 42665 Alternative to ~ wcdeq and...
sq45 42666 45 squared is 2025. (Cont...
sum9cubes 42667 The sum of the first nine ...
sn-isghm 42668 Longer proof of ~ isghm , ...
aprilfools2025 42669 An abuse of notation. (Co...
nfa1w 42670 Replace ~ ax-10 in ~ nfa1 ...
eu6w 42671 Replace ~ ax-10 , ~ ax-12 ...
abbibw 42672 Replace ~ ax-10 , ~ ax-11 ...
absnw 42673 Replace ~ ax-10 , ~ ax-11 ...
euabsn2w 42674 Replace ~ ax-10 , ~ ax-11 ...
sn-tz6.12-2 42675 ~ tz6.12-2 without ~ ax-10...
cu3addd 42676 Cube of sum of three numbe...
negexpidd 42677 The sum of a real number t...
rexlimdv3d 42678 An extended version of ~ r...
3cubeslem1 42679 Lemma for ~ 3cubes . (Con...
3cubeslem2 42680 Lemma for ~ 3cubes . Used...
3cubeslem3l 42681 Lemma for ~ 3cubes . (Con...
3cubeslem3r 42682 Lemma for ~ 3cubes . (Con...
3cubeslem3 42683 Lemma for ~ 3cubes . (Con...
3cubeslem4 42684 Lemma for ~ 3cubes . This...
3cubes 42685 Every rational number is a...
rntrclfvOAI 42686 The range of the transitiv...
moxfr 42687 Transfer at-most-one betwe...
imaiinfv 42688 Indexed intersection of an...
elrfi 42689 Elementhood in a set of re...
elrfirn 42690 Elementhood in a set of re...
elrfirn2 42691 Elementhood in a set of re...
cmpfiiin 42692 In a compact topology, a s...
ismrcd1 42693 Any function from the subs...
ismrcd2 42694 Second half of ~ ismrcd1 ....
istopclsd 42695 A closure function which s...
ismrc 42696 A function is a Moore clos...
isnacs 42699 Expand definition of Noeth...
nacsfg 42700 In a Noetherian-type closu...
isnacs2 42701 Express Noetherian-type cl...
mrefg2 42702 Slight variation on finite...
mrefg3 42703 Slight variation on finite...
nacsacs 42704 A closure system of Noethe...
isnacs3 42705 A choice-free order equiva...
incssnn0 42706 Transitivity induction of ...
nacsfix 42707 An increasing sequence of ...
constmap 42708 A constant (represented wi...
mapco2g 42709 Renaming indices in a tupl...
mapco2 42710 Post-composition (renaming...
mapfzcons 42711 Extending a one-based mapp...
mapfzcons1 42712 Recover prefix mapping fro...
mapfzcons1cl 42713 A nonempty mapping has a p...
mapfzcons2 42714 Recover added element from...
mptfcl 42715 Interpret range of a maps-...
mzpclval 42720 Substitution lemma for ` m...
elmzpcl 42721 Double substitution lemma ...
mzpclall 42722 The set of all functions w...
mzpcln0 42723 Corollary of ~ mzpclall : ...
mzpcl1 42724 Defining property 1 of a p...
mzpcl2 42725 Defining property 2 of a p...
mzpcl34 42726 Defining properties 3 and ...
mzpval 42727 Value of the ` mzPoly ` fu...
dmmzp 42728 ` mzPoly ` is defined for ...
mzpincl 42729 Polynomial closedness is a...
mzpconst 42730 Constant functions are pol...
mzpf 42731 A polynomial function is a...
mzpproj 42732 A projection function is p...
mzpadd 42733 The pointwise sum of two p...
mzpmul 42734 The pointwise product of t...
mzpconstmpt 42735 A constant function expres...
mzpaddmpt 42736 Sum of polynomial function...
mzpmulmpt 42737 Product of polynomial func...
mzpsubmpt 42738 The difference of two poly...
mzpnegmpt 42739 Negation of a polynomial f...
mzpexpmpt 42740 Raise a polynomial functio...
mzpindd 42741 "Structural" induction to ...
mzpmfp 42742 Relationship between multi...
mzpsubst 42743 Substituting polynomials f...
mzprename 42744 Simplified version of ~ mz...
mzpresrename 42745 A polynomial is a polynomi...
mzpcompact2lem 42746 Lemma for ~ mzpcompact2 . ...
mzpcompact2 42747 Polynomials are finitary o...
coeq0i 42748 ~ coeq0 but without explic...
fzsplit1nn0 42749 Split a finite 1-based set...
eldiophb 42752 Initial expression of Diop...
eldioph 42753 Condition for a set to be ...
diophrw 42754 Renaming and adding unused...
eldioph2lem1 42755 Lemma for ~ eldioph2 . Co...
eldioph2lem2 42756 Lemma for ~ eldioph2 . Co...
eldioph2 42757 Construct a Diophantine se...
eldioph2b 42758 While Diophantine sets wer...
eldiophelnn0 42759 Remove antecedent on ` B `...
eldioph3b 42760 Define Diophantine sets in...
eldioph3 42761 Inference version of ~ eld...
ellz1 42762 Membership in a lower set ...
lzunuz 42763 The union of a lower set o...
fz1eqin 42764 Express a one-based finite...
lzenom 42765 Lower integers are countab...
elmapresaunres2 42766 ~ fresaunres2 transposed t...
diophin 42767 If two sets are Diophantin...
diophun 42768 If two sets are Diophantin...
eldiophss 42769 Diophantine sets are sets ...
diophrex 42770 Projecting a Diophantine s...
eq0rabdioph 42771 This is the first of a num...
eqrabdioph 42772 Diophantine set builder fo...
0dioph 42773 The null set is Diophantin...
vdioph 42774 The "universal" set (as la...
anrabdioph 42775 Diophantine set builder fo...
orrabdioph 42776 Diophantine set builder fo...
3anrabdioph 42777 Diophantine set builder fo...
3orrabdioph 42778 Diophantine set builder fo...
2sbcrex 42779 Exchange an existential qu...
sbcrexgOLD 42780 Interchange class substitu...
2sbcrexOLD 42781 Exchange an existential qu...
sbc2rex 42782 Exchange a substitution wi...
sbc2rexgOLD 42783 Exchange a substitution wi...
sbc4rex 42784 Exchange a substitution wi...
sbc4rexgOLD 42785 Exchange a substitution wi...
sbcrot3 42786 Rotate a sequence of three...
sbcrot5 42787 Rotate a sequence of five ...
sbccomieg 42788 Commute two explicit subst...
rexrabdioph 42789 Diophantine set builder fo...
rexfrabdioph 42790 Diophantine set builder fo...
2rexfrabdioph 42791 Diophantine set builder fo...
3rexfrabdioph 42792 Diophantine set builder fo...
4rexfrabdioph 42793 Diophantine set builder fo...
6rexfrabdioph 42794 Diophantine set builder fo...
7rexfrabdioph 42795 Diophantine set builder fo...
rabdiophlem1 42796 Lemma for arithmetic dioph...
rabdiophlem2 42797 Lemma for arithmetic dioph...
elnn0rabdioph 42798 Diophantine set builder fo...
rexzrexnn0 42799 Rewrite an existential qua...
lerabdioph 42800 Diophantine set builder fo...
eluzrabdioph 42801 Diophantine set builder fo...
elnnrabdioph 42802 Diophantine set builder fo...
ltrabdioph 42803 Diophantine set builder fo...
nerabdioph 42804 Diophantine set builder fo...
dvdsrabdioph 42805 Divisibility is a Diophant...
eldioph4b 42806 Membership in ` Dioph ` ex...
eldioph4i 42807 Forward-only version of ~ ...
diophren 42808 Change variables in a Diop...
rabrenfdioph 42809 Change variable numbers in...
rabren3dioph 42810 Change variable numbers in...
fphpd 42811 Pigeonhole principle expre...
fphpdo 42812 Pigeonhole principle for s...
ctbnfien 42813 An infinite subset of a co...
fiphp3d 42814 Infinite pigeonhole princi...
rencldnfilem 42815 Lemma for ~ rencldnfi . (...
rencldnfi 42816 A set of real numbers whic...
irrapxlem1 42817 Lemma for ~ irrapx1 . Div...
irrapxlem2 42818 Lemma for ~ irrapx1 . Two...
irrapxlem3 42819 Lemma for ~ irrapx1 . By ...
irrapxlem4 42820 Lemma for ~ irrapx1 . Eli...
irrapxlem5 42821 Lemma for ~ irrapx1 . Swi...
irrapxlem6 42822 Lemma for ~ irrapx1 . Exp...
irrapx1 42823 Dirichlet's approximation ...
pellexlem1 42824 Lemma for ~ pellex . Arit...
pellexlem2 42825 Lemma for ~ pellex . Arit...
pellexlem3 42826 Lemma for ~ pellex . To e...
pellexlem4 42827 Lemma for ~ pellex . Invo...
pellexlem5 42828 Lemma for ~ pellex . Invo...
pellexlem6 42829 Lemma for ~ pellex . Doin...
pellex 42830 Every Pell equation has a ...
pell1qrval 42841 Value of the set of first-...
elpell1qr 42842 Membership in a first-quad...
pell14qrval 42843 Value of the set of positi...
elpell14qr 42844 Membership in the set of p...
pell1234qrval 42845 Value of the set of genera...
elpell1234qr 42846 Membership in the set of g...
pell1234qrre 42847 General Pell solutions are...
pell1234qrne0 42848 No solution to a Pell equa...
pell1234qrreccl 42849 General solutions of the P...
pell1234qrmulcl 42850 General solutions of the P...
pell14qrss1234 42851 A positive Pell solution i...
pell14qrre 42852 A positive Pell solution i...
pell14qrne0 42853 A positive Pell solution i...
pell14qrgt0 42854 A positive Pell solution i...
pell14qrrp 42855 A positive Pell solution i...
pell1234qrdich 42856 A general Pell solution is...
elpell14qr2 42857 A number is a positive Pel...
pell14qrmulcl 42858 Positive Pell solutions ar...
pell14qrreccl 42859 Positive Pell solutions ar...
pell14qrdivcl 42860 Positive Pell solutions ar...
pell14qrexpclnn0 42861 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 42862 Positive Pell solutions ar...
pell1qrss14 42863 First-quadrant Pell soluti...
pell14qrdich 42864 A positive Pell solution i...
pell1qrge1 42865 A Pell solution in the fir...
pell1qr1 42866 1 is a Pell solution and i...
elpell1qr2 42867 The first quadrant solutio...
pell1qrgaplem 42868 Lemma for ~ pell1qrgap . ...
pell1qrgap 42869 First-quadrant Pell soluti...
pell14qrgap 42870 Positive Pell solutions ar...
pell14qrgapw 42871 Positive Pell solutions ar...
pellqrexplicit 42872 Condition for a calculated...
infmrgelbi 42873 Any lower bound of a nonem...
pellqrex 42874 There is a nontrivial solu...
pellfundval 42875 Value of the fundamental s...
pellfundre 42876 The fundamental solution o...
pellfundge 42877 Lower bound on the fundame...
pellfundgt1 42878 Weak lower bound on the Pe...
pellfundlb 42879 A nontrivial first quadran...
pellfundglb 42880 If a real is larger than t...
pellfundex 42881 The fundamental solution a...
pellfund14gap 42882 There are no solutions bet...
pellfundrp 42883 The fundamental Pell solut...
pellfundne1 42884 The fundamental Pell solut...
reglogcl 42885 General logarithm is a rea...
reglogltb 42886 General logarithm preserve...
reglogleb 42887 General logarithm preserve...
reglogmul 42888 Multiplication law for gen...
reglogexp 42889 Power law for general log....
reglogbas 42890 General log of the base is...
reglog1 42891 General log of 1 is 0. (C...
reglogexpbas 42892 General log of a power of ...
pellfund14 42893 Every positive Pell soluti...
pellfund14b 42894 The positive Pell solution...
rmxfval 42899 Value of the X sequence. ...
rmyfval 42900 Value of the Y sequence. ...
rmspecsqrtnq 42901 The discriminant used to d...
rmspecnonsq 42902 The discriminant used to d...
qirropth 42903 This lemma implements the ...
rmspecfund 42904 The base of exponent used ...
rmxyelqirr 42905 The solutions used to cons...
rmxyelqirrOLD 42906 Obsolete version of ~ rmxy...
rmxypairf1o 42907 The function used to extra...
rmxyelxp 42908 Lemma for ~ frmx and ~ frm...
frmx 42909 The X sequence is a nonneg...
frmy 42910 The Y sequence is an integ...
rmxyval 42911 Main definition of the X a...
rmspecpos 42912 The discriminant used to d...
rmxycomplete 42913 The X and Y sequences take...
rmxynorm 42914 The X and Y sequences defi...
rmbaserp 42915 The base of exponentiation...
rmxyneg 42916 Negation law for X and Y s...
rmxyadd 42917 Addition formula for X and...
rmxy1 42918 Value of the X and Y seque...
rmxy0 42919 Value of the X and Y seque...
rmxneg 42920 Negation law (even functio...
rmx0 42921 Value of X sequence at 0. ...
rmx1 42922 Value of X sequence at 1. ...
rmxadd 42923 Addition formula for X seq...
rmyneg 42924 Negation formula for Y seq...
rmy0 42925 Value of Y sequence at 0. ...
rmy1 42926 Value of Y sequence at 1. ...
rmyadd 42927 Addition formula for Y seq...
rmxp1 42928 Special addition-of-1 form...
rmyp1 42929 Special addition of 1 form...
rmxm1 42930 Subtraction of 1 formula f...
rmym1 42931 Subtraction of 1 formula f...
rmxluc 42932 The X sequence is a Lucas ...
rmyluc 42933 The Y sequence is a Lucas ...
rmyluc2 42934 Lucas sequence property of...
rmxdbl 42935 "Double-angle formula" for...
rmydbl 42936 "Double-angle formula" for...
monotuz 42937 A function defined on an u...
monotoddzzfi 42938 A function which is odd an...
monotoddzz 42939 A function (given implicit...
oddcomabszz 42940 An odd function which take...
2nn0ind 42941 Induction on nonnegative i...
zindbi 42942 Inductively transfer a pro...
rmxypos 42943 For all nonnegative indice...
ltrmynn0 42944 The Y-sequence is strictly...
ltrmxnn0 42945 The X-sequence is strictly...
lermxnn0 42946 The X-sequence is monotoni...
rmxnn 42947 The X-sequence is defined ...
ltrmy 42948 The Y-sequence is strictly...
rmyeq0 42949 Y is zero only at zero. (...
rmyeq 42950 Y is one-to-one. (Contrib...
lermy 42951 Y is monotonic (non-strict...
rmynn 42952 ` rmY ` is positive for po...
rmynn0 42953 ` rmY ` is nonnegative for...
rmyabs 42954 ` rmY ` commutes with ` ab...
jm2.24nn 42955 X(n) is strictly greater t...
jm2.17a 42956 First half of lemma 2.17 o...
jm2.17b 42957 Weak form of the second ha...
jm2.17c 42958 Second half of lemma 2.17 ...
jm2.24 42959 Lemma 2.24 of [JonesMatija...
rmygeid 42960 Y(n) increases faster than...
congtr 42961 A wff of the form ` A || (...
congadd 42962 If two pairs of numbers ar...
congmul 42963 If two pairs of numbers ar...
congsym 42964 Congruence mod ` A ` is a ...
congneg 42965 If two integers are congru...
congsub 42966 If two pairs of numbers ar...
congid 42967 Every integer is congruent...
mzpcong 42968 Polynomials commute with c...
congrep 42969 Every integer is congruent...
congabseq 42970 If two integers are congru...
acongid 42971 A wff like that in this th...
acongsym 42972 Symmetry of alternating co...
acongneg2 42973 Negate right side of alter...
acongtr 42974 Transitivity of alternatin...
acongeq12d 42975 Substitution deduction for...
acongrep 42976 Every integer is alternati...
fzmaxdif 42977 Bound on the difference be...
fzneg 42978 Reflection of a finite ran...
acongeq 42979 Two numbers in the fundame...
dvdsacongtr 42980 Alternating congruence pas...
coprmdvdsb 42981 Multiplication by a coprim...
modabsdifz 42982 Divisibility in terms of m...
dvdsabsmod0 42983 Divisibility in terms of m...
jm2.18 42984 Theorem 2.18 of [JonesMati...
jm2.19lem1 42985 Lemma for ~ jm2.19 . X an...
jm2.19lem2 42986 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 42987 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 42988 Lemma for ~ jm2.19 . Exte...
jm2.19 42989 Lemma 2.19 of [JonesMatija...
jm2.21 42990 Lemma for ~ jm2.20nn . Ex...
jm2.22 42991 Lemma for ~ jm2.20nn . Ap...
jm2.23 42992 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 42993 Lemma 2.20 of [JonesMatija...
jm2.25lem1 42994 Lemma for ~ jm2.26 . (Con...
jm2.25 42995 Lemma for ~ jm2.26 . Rema...
jm2.26a 42996 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 42997 Lemma for ~ jm2.26 . Use ...
jm2.26 42998 Lemma 2.26 of [JonesMatija...
jm2.15nn0 42999 Lemma 2.15 of [JonesMatija...
jm2.16nn0 43000 Lemma 2.16 of [JonesMatija...
jm2.27a 43001 Lemma for ~ jm2.27 . Reve...
jm2.27b 43002 Lemma for ~ jm2.27 . Expa...
jm2.27c 43003 Lemma for ~ jm2.27 . Forw...
jm2.27 43004 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 43005 Lemma for ~ rmydioph . Su...
jm2.27dlem2 43006 Lemma for ~ rmydioph . Th...
jm2.27dlem3 43007 Lemma for ~ rmydioph . In...
jm2.27dlem4 43008 Lemma for ~ rmydioph . In...
jm2.27dlem5 43009 Lemma for ~ rmydioph . Us...
rmydioph 43010 ~ jm2.27 restated in terms...
rmxdiophlem 43011 X can be expressed in term...
rmxdioph 43012 X is a Diophantine functio...
jm3.1lem1 43013 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 43014 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 43015 Lemma for ~ jm3.1 . (Cont...
jm3.1 43016 Diophantine expression for...
expdiophlem1 43017 Lemma for ~ expdioph . Fu...
expdiophlem2 43018 Lemma for ~ expdioph . Ex...
expdioph 43019 The exponential function i...
setindtr 43020 Set induction for sets con...
setindtrs 43021 Set induction scheme witho...
dford3lem1 43022 Lemma for ~ dford3 . (Con...
dford3lem2 43023 Lemma for ~ dford3 . (Con...
dford3 43024 Ordinals are precisely the...
dford4 43025 ~ dford3 expressed in prim...
wopprc 43026 Unrelated: Wiener pairs t...
rpnnen3lem 43027 Lemma for ~ rpnnen3 . (Co...
rpnnen3 43028 Dedekind cut injection of ...
axac10 43029 Characterization of choice...
harinf 43030 The Hartogs number of an i...
wdom2d2 43031 Deduction for weak dominan...
ttac 43032 Tarski's theorem about cho...
pw2f1ocnv 43033 Define a bijection between...
pw2f1o2 43034 Define a bijection between...
pw2f1o2val 43035 Function value of the ~ pw...
pw2f1o2val2 43036 Membership in a mapped set...
limsuc2 43037 Limit ordinals in the sens...
wepwsolem 43038 Transfer an ordering on ch...
wepwso 43039 A well-ordering induces a ...
dnnumch1 43040 Define an enumeration of a...
dnnumch2 43041 Define an enumeration (wea...
dnnumch3lem 43042 Value of the ordinal injec...
dnnumch3 43043 Define an injection from a...
dnwech 43044 Define a well-ordering fro...
fnwe2val 43045 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 43046 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 43047 Lemma for ~ fnwe2 . An el...
fnwe2lem3 43048 Lemma for ~ fnwe2 . Trich...
fnwe2 43049 A well-ordering can be con...
aomclem1 43050 Lemma for ~ dfac11 . This...
aomclem2 43051 Lemma for ~ dfac11 . Succ...
aomclem3 43052 Lemma for ~ dfac11 . Succ...
aomclem4 43053 Lemma for ~ dfac11 . Limi...
aomclem5 43054 Lemma for ~ dfac11 . Comb...
aomclem6 43055 Lemma for ~ dfac11 . Tran...
aomclem7 43056 Lemma for ~ dfac11 . ` ( R...
aomclem8 43057 Lemma for ~ dfac11 . Perf...
dfac11 43058 The right-hand side of thi...
kelac1 43059 Kelley's choice, basic for...
kelac2lem 43060 Lemma for ~ kelac2 and ~ d...
kelac2 43061 Kelley's choice, most comm...
dfac21 43062 Tychonoff's theorem is a c...
islmodfg 43065 Property of a finitely gen...
islssfg 43066 Property of a finitely gen...
islssfg2 43067 Property of a finitely gen...
islssfgi 43068 Finitely spanned subspaces...
fglmod 43069 Finitely generated left mo...
lsmfgcl 43070 The sum of two finitely ge...
islnm 43073 Property of being a Noethe...
islnm2 43074 Property of being a Noethe...
lnmlmod 43075 A Noetherian left module i...
lnmlssfg 43076 A submodule of Noetherian ...
lnmlsslnm 43077 All submodules of a Noethe...
lnmfg 43078 A Noetherian left module i...
kercvrlsm 43079 The domain of a linear fun...
lmhmfgima 43080 A homomorphism maps finite...
lnmepi 43081 Epimorphic images of Noeth...
lmhmfgsplit 43082 If the kernel and range of...
lmhmlnmsplit 43083 If the kernel and range of...
lnmlmic 43084 Noetherian is an invariant...
pwssplit4 43085 Splitting for structure po...
filnm 43086 Finite left modules are No...
pwslnmlem0 43087 Zeroeth powers are Noether...
pwslnmlem1 43088 First powers are Noetheria...
pwslnmlem2 43089 A sum of powers is Noether...
pwslnm 43090 Finite powers of Noetheria...
unxpwdom3 43091 Weaker version of ~ unxpwd...
pwfi2f1o 43092 The ~ pw2f1o bijection rel...
pwfi2en 43093 Finitely supported indicat...
frlmpwfi 43094 Formal linear combinations...
gicabl 43095 Being Abelian is a group i...
imasgim 43096 A relabeling of the elemen...
isnumbasgrplem1 43097 A set which is equipollent...
harn0 43098 The Hartogs number of a se...
numinfctb 43099 A numerable infinite set c...
isnumbasgrplem2 43100 If the (to be thought of a...
isnumbasgrplem3 43101 Every nonempty numerable s...
isnumbasabl 43102 A set is numerable iff it ...
isnumbasgrp 43103 A set is numerable iff it ...
dfacbasgrp 43104 A choice equivalent in abs...
islnr 43107 Property of a left-Noether...
lnrring 43108 Left-Noetherian rings are ...
lnrlnm 43109 Left-Noetherian rings have...
islnr2 43110 Property of being a left-N...
islnr3 43111 Relate left-Noetherian rin...
lnr2i 43112 Given an ideal in a left-N...
lpirlnr 43113 Left principal ideal rings...
lnrfrlm 43114 Finite-dimensional free mo...
lnrfg 43115 Finitely-generated modules...
lnrfgtr 43116 A submodule of a finitely ...
hbtlem1 43119 Value of the leading coeff...
hbtlem2 43120 Leading coefficient ideals...
hbtlem7 43121 Functionality of leading c...
hbtlem4 43122 The leading ideal function...
hbtlem3 43123 The leading ideal function...
hbtlem5 43124 The leading ideal function...
hbtlem6 43125 There is a finite set of p...
hbt 43126 The Hilbert Basis Theorem ...
dgrsub2 43131 Subtracting two polynomial...
elmnc 43132 Property of a monic polyno...
mncply 43133 A monic polynomial is a po...
mnccoe 43134 A monic polynomial has lea...
mncn0 43135 A monic polynomial is not ...
dgraaval 43140 Value of the degree functi...
dgraalem 43141 Properties of the degree o...
dgraacl 43142 Closure of the degree func...
dgraaf 43143 Degree function on algebra...
dgraaub 43144 Upper bound on degree of a...
dgraa0p 43145 A rational polynomial of d...
mpaaeu 43146 An algebraic number has ex...
mpaaval 43147 Value of the minimal polyn...
mpaalem 43148 Properties of the minimal ...
mpaacl 43149 Minimal polynomial is a po...
mpaadgr 43150 Minimal polynomial has deg...
mpaaroot 43151 The minimal polynomial of ...
mpaamn 43152 Minimal polynomial is moni...
itgoval 43157 Value of the integral-over...
aaitgo 43158 The standard algebraic num...
itgoss 43159 An integral element is int...
itgocn 43160 All integral elements are ...
cnsrexpcl 43161 Exponentiation is closed i...
fsumcnsrcl 43162 Finite sums are closed in ...
cnsrplycl 43163 Polynomials are closed in ...
rgspnid 43164 The span of a subring is i...
rngunsnply 43165 Adjoining one element to a...
flcidc 43166 Finite linear combinations...
algstr 43169 Lemma to shorten proofs of...
algbase 43170 The base set of a construc...
algaddg 43171 The additive operation of ...
algmulr 43172 The multiplicative operati...
algsca 43173 The set of scalars of a co...
algvsca 43174 The scalar product operati...
mendval 43175 Value of the module endomo...
mendbas 43176 Base set of the module end...
mendplusgfval 43177 Addition in the module end...
mendplusg 43178 A specific addition in the...
mendmulrfval 43179 Multiplication in the modu...
mendmulr 43180 A specific multiplication ...
mendsca 43181 The module endomorphism al...
mendvscafval 43182 Scalar multiplication in t...
mendvsca 43183 A specific scalar multipli...
mendring 43184 The module endomorphism al...
mendlmod 43185 The module endomorphism al...
mendassa 43186 The module endomorphism al...
idomodle 43187 Limit on the number of ` N...
fiuneneq 43188 Two finite sets of equal s...
idomsubgmo 43189 The units of an integral d...
proot1mul 43190 Any primitive ` N ` -th ro...
proot1hash 43191 If an integral domain has ...
proot1ex 43192 The complex field has prim...
mon1psubm 43195 Monic polynomials are a mu...
deg1mhm 43196 Homomorphic property of th...
cytpfn 43197 Functionality of the cyclo...
cytpval 43198 Substitutions for the Nth ...
fgraphopab 43199 Express a function as a su...
fgraphxp 43200 Express a function as a su...
hausgraph 43201 The graph of a continuous ...
r1sssucd 43206 Deductive form of ~ r1sssu...
iocunico 43207 Split an open interval int...
iocinico 43208 The intersection of two se...
iocmbl 43209 An open-below, closed-abov...
cnioobibld 43210 A bounded, continuous func...
arearect 43211 The area of a rectangle wh...
areaquad 43212 The area of a quadrilatera...
uniel 43213 Two ways to say a union is...
unielss 43214 Two ways to say the union ...
unielid 43215 Two ways to say the union ...
ssunib 43216 Two ways to say a class is...
rp-intrabeq 43217 Equality theorem for supre...
rp-unirabeq 43218 Equality theorem for infim...
onmaxnelsup 43219 Two ways to say the maximu...
onsupneqmaxlim0 43220 If the supremum of a class...
onsupcl2 43221 The supremum of a set of o...
onuniintrab 43222 The union of a set of ordi...
onintunirab 43223 The intersection of a non-...
onsupnmax 43224 If the union of a class of...
onsupuni 43225 The supremum of a set of o...
onsupuni2 43226 The supremum of a set of o...
onsupintrab 43227 The supremum of a set of o...
onsupintrab2 43228 The supremum of a set of o...
onsupcl3 43229 The supremum of a set of o...
onsupex3 43230 The supremum of a set of o...
onuniintrab2 43231 The union of a set of ordi...
oninfint 43232 The infimum of a non-empty...
oninfunirab 43233 The infimum of a non-empty...
oninfcl2 43234 The infimum of a non-empty...
onsupmaxb 43235 The union of a class of or...
onexgt 43236 For any ordinal, there is ...
onexomgt 43237 For any ordinal, there is ...
omlimcl2 43238 The product of a limit ord...
onexlimgt 43239 For any ordinal, there is ...
onexoegt 43240 For any ordinal, there is ...
oninfex2 43241 The infimum of a non-empty...
onsupeqmax 43242 Condition when the supremu...
onsupeqnmax 43243 Condition when the supremu...
onsuplub 43244 The supremum of a set of o...
onsupnub 43245 An upper bound of a set of...
onfisupcl 43246 Sufficient condition when ...
onelord 43247 Every element of a ordinal...
onepsuc 43248 Every ordinal is less than...
epsoon 43249 The ordinals are strictly ...
epirron 43250 The strict order on the or...
oneptr 43251 The strict order on the or...
oneltr 43252 The elementhood relation o...
oneptri 43253 The strict, complete (line...
ordeldif 43254 Membership in the differen...
ordeldifsucon 43255 Membership in the differen...
ordeldif1o 43256 Membership in the differen...
ordne0gt0 43257 Ordinal zero is less than ...
ondif1i 43258 Ordinal zero is less than ...
onsucelab 43259 The successor of every ord...
dflim6 43260 A limit ordinal is a non-z...
limnsuc 43261 A limit ordinal is not an ...
onsucss 43262 If one ordinal is less tha...
ordnexbtwnsuc 43263 For any distinct pair of o...
orddif0suc 43264 For any distinct pair of o...
onsucf1lem 43265 For ordinals, the successo...
onsucf1olem 43266 The successor operation is...
onsucrn 43267 The successor operation is...
onsucf1o 43268 The successor operation is...
dflim7 43269 A limit ordinal is a non-z...
onov0suclim 43270 Compactly express rules fo...
oa0suclim 43271 Closed form expression of ...
om0suclim 43272 Closed form expression of ...
oe0suclim 43273 Closed form expression of ...
oaomoecl 43274 The operations of addition...
onsupsucismax 43275 If the union of a set of o...
onsssupeqcond 43276 If for every element of a ...
limexissup 43277 An ordinal which is a limi...
limiun 43278 A limit ordinal is the uni...
limexissupab 43279 An ordinal which is a limi...
om1om1r 43280 Ordinal one is both a left...
oe0rif 43281 Ordinal zero raised to any...
oasubex 43282 While subtraction can't be...
nnamecl 43283 Natural numbers are closed...
onsucwordi 43284 The successor operation pr...
oalim2cl 43285 The ordinal sum of any ord...
oaltublim 43286 Given ` C ` is a limit ord...
oaordi3 43287 Ordinal addition of the sa...
oaord3 43288 When the same ordinal is a...
1oaomeqom 43289 Ordinal one plus omega is ...
oaabsb 43290 The right addend absorbs t...
oaordnrex 43291 When omega is added on the...
oaordnr 43292 When the same ordinal is a...
omge1 43293 Any non-zero ordinal produ...
omge2 43294 Any non-zero ordinal produ...
omlim2 43295 The non-zero product with ...
omord2lim 43296 Given a limit ordinal, the...
omord2i 43297 Ordinal multiplication of ...
omord2com 43298 When the same non-zero ord...
2omomeqom 43299 Ordinal two times omega is...
omnord1ex 43300 When omega is multiplied o...
omnord1 43301 When the same non-zero ord...
oege1 43302 Any non-zero ordinal power...
oege2 43303 Any power of an ordinal at...
rp-oelim2 43304 The power of an ordinal at...
oeord2lim 43305 Given a limit ordinal, the...
oeord2i 43306 Ordinal exponentiation of ...
oeord2com 43307 When the same base at leas...
nnoeomeqom 43308 Any natural number at leas...
df3o2 43309 Ordinal 3 is the unordered...
df3o3 43310 Ordinal 3, fully expanded....
oenord1ex 43311 When ordinals two and thre...
oenord1 43312 When two ordinals (both at...
oaomoencom 43313 Ordinal addition, multipli...
oenassex 43314 Ordinal two raised to two ...
oenass 43315 Ordinal exponentiation is ...
cantnftermord 43316 For terms of the form of a...
cantnfub 43317 Given a finite number of t...
cantnfub2 43318 Given a finite number of t...
bropabg 43319 Equivalence for two classe...
cantnfresb 43320 A Cantor normal form which...
cantnf2 43321 For every ordinal, ` A ` ,...
oawordex2 43322 If ` C ` is between ` A ` ...
nnawordexg 43323 If an ordinal, ` B ` , is ...
succlg 43324 Closure law for ordinal su...
dflim5 43325 A limit ordinal is either ...
oacl2g 43326 Closure law for ordinal ad...
onmcl 43327 If an ordinal is less than...
omabs2 43328 Ordinal multiplication by ...
omcl2 43329 Closure law for ordinal mu...
omcl3g 43330 Closure law for ordinal mu...
ordsssucb 43331 An ordinal number is less ...
tfsconcatlem 43332 Lemma for ~ tfsconcatun . ...
tfsconcatun 43333 The concatenation of two t...
tfsconcatfn 43334 The concatenation of two t...
tfsconcatfv1 43335 An early value of the conc...
tfsconcatfv2 43336 A latter value of the conc...
tfsconcatfv 43337 The value of the concatena...
tfsconcatrn 43338 The range of the concatena...
tfsconcatfo 43339 The concatenation of two t...
tfsconcatb0 43340 The concatentation with th...
tfsconcat0i 43341 The concatentation with th...
tfsconcat0b 43342 The concatentation with th...
tfsconcat00 43343 The concatentation of two ...
tfsconcatrev 43344 If the domain of a transfi...
tfsconcatrnss12 43345 The range of the concatena...
tfsconcatrnss 43346 The concatenation of trans...
tfsconcatrnsson 43347 The concatenation of trans...
tfsnfin 43348 A transfinite sequence is ...
rp-tfslim 43349 The limit of a sequence of...
ofoafg 43350 Addition operator for func...
ofoaf 43351 Addition operator for func...
ofoafo 43352 Addition operator for func...
ofoacl 43353 Closure law for component ...
ofoaid1 43354 Identity law for component...
ofoaid2 43355 Identity law for component...
ofoaass 43356 Component-wise addition of...
ofoacom 43357 Component-wise addition of...
naddcnff 43358 Addition operator for Cant...
naddcnffn 43359 Addition operator for Cant...
naddcnffo 43360 Addition of Cantor normal ...
naddcnfcl 43361 Closure law for component-...
naddcnfcom 43362 Component-wise ordinal add...
naddcnfid1 43363 Identity law for component...
naddcnfid2 43364 Identity law for component...
naddcnfass 43365 Component-wise addition of...
onsucunifi 43366 The successor to the union...
sucunisn 43367 The successor to the union...
onsucunipr 43368 The successor to the union...
onsucunitp 43369 The successor to the union...
oaun3lem1 43370 The class of all ordinal s...
oaun3lem2 43371 The class of all ordinal s...
oaun3lem3 43372 The class of all ordinal s...
oaun3lem4 43373 The class of all ordinal s...
rp-abid 43374 Two ways to express a clas...
oadif1lem 43375 Express the set difference...
oadif1 43376 Express the set difference...
oaun2 43377 Ordinal addition as a unio...
oaun3 43378 Ordinal addition as a unio...
naddov4 43379 Alternate expression for n...
nadd2rabtr 43380 The set of ordinals which ...
nadd2rabord 43381 The set of ordinals which ...
nadd2rabex 43382 The class of ordinals whic...
nadd2rabon 43383 The set of ordinals which ...
nadd1rabtr 43384 The set of ordinals which ...
nadd1rabord 43385 The set of ordinals which ...
nadd1rabex 43386 The class of ordinals whic...
nadd1rabon 43387 The set of ordinals which ...
nadd1suc 43388 Natural addition with 1 is...
naddass1 43389 Natural addition of ordina...
naddgeoa 43390 Natural addition results i...
naddonnn 43391 Natural addition with a na...
naddwordnexlem0 43392 When ` A ` is the sum of a...
naddwordnexlem1 43393 When ` A ` is the sum of a...
naddwordnexlem2 43394 When ` A ` is the sum of a...
naddwordnexlem3 43395 When ` A ` is the sum of a...
oawordex3 43396 When ` A ` is the sum of a...
naddwordnexlem4 43397 When ` A ` is the sum of a...
ordsssucim 43398 If an ordinal is less than...
insucid 43399 The intersection of a clas...
om2 43400 Two ways to double an ordi...
oaltom 43401 Multiplication eventually ...
oe2 43402 Two ways to square an ordi...
omltoe 43403 Exponentiation eventually ...
abeqabi 43404 Generalized condition for ...
abpr 43405 Condition for a class abst...
abtp 43406 Condition for a class abst...
ralopabb 43407 Restricted universal quant...
fpwfvss 43408 Functions into a powerset ...
sdomne0 43409 A class that strictly domi...
sdomne0d 43410 A class that strictly domi...
safesnsupfiss 43411 If ` B ` is a finite subse...
safesnsupfiub 43412 If ` B ` is a finite subse...
safesnsupfidom1o 43413 If ` B ` is a finite subse...
safesnsupfilb 43414 If ` B ` is a finite subse...
isoeq145d 43415 Equality deduction for iso...
resisoeq45d 43416 Equality deduction for equ...
negslem1 43417 An equivalence between ide...
nvocnvb 43418 Equivalence to saying the ...
rp-brsslt 43419 Binary relation form of a ...
nla0002 43420 Extending a linear order t...
nla0003 43421 Extending a linear order t...
nla0001 43422 Extending a linear order t...
faosnf0.11b 43423 ` B ` is called a non-limi...
dfno2 43424 A surreal number, in the f...
onnog 43425 Every ordinal maps to a su...
onnobdayg 43426 Every ordinal maps to a su...
bdaybndex 43427 Bounds formed from the bir...
bdaybndbday 43428 Bounds formed from the bir...
onno 43429 Every ordinal maps to a su...
onnoi 43430 Every ordinal maps to a su...
0no 43431 Ordinal zero maps to a sur...
1no 43432 Ordinal one maps to a surr...
2no 43433 Ordinal two maps to a surr...
3no 43434 Ordinal three maps to a su...
4no 43435 Ordinal four maps to a sur...
fnimafnex 43436 The functional image of a ...
nlimsuc 43437 A successor is not a limit...
nlim1NEW 43438 1 is not a limit ordinal. ...
nlim2NEW 43439 2 is not a limit ordinal. ...
nlim3 43440 3 is not a limit ordinal. ...
nlim4 43441 4 is not a limit ordinal. ...
oa1un 43442 Given ` A e. On ` , let ` ...
oa1cl 43443 ` A +o 1o ` is in ` On ` ....
0finon 43444 0 is a finite ordinal. Se...
1finon 43445 1 is a finite ordinal. Se...
2finon 43446 2 is a finite ordinal. Se...
3finon 43447 3 is a finite ordinal. Se...
4finon 43448 4 is a finite ordinal. Se...
finona1cl 43449 The finite ordinals are cl...
finonex 43450 The finite ordinals are a ...
fzunt 43451 Union of two adjacent fini...
fzuntd 43452 Union of two adjacent fini...
fzunt1d 43453 Union of two overlapping f...
fzuntgd 43454 Union of two adjacent or o...
ifpan123g 43455 Conjunction of conditional...
ifpan23 43456 Conjunction of conditional...
ifpdfor2 43457 Define or in terms of cond...
ifporcor 43458 Corollary of commutation o...
ifpdfan2 43459 Define and with conditiona...
ifpancor 43460 Corollary of commutation o...
ifpdfor 43461 Define or in terms of cond...
ifpdfan 43462 Define and with conditiona...
ifpbi2 43463 Equivalence theorem for co...
ifpbi3 43464 Equivalence theorem for co...
ifpim1 43465 Restate implication as con...
ifpnot 43466 Restate negated wff as con...
ifpid2 43467 Restate wff as conditional...
ifpim2 43468 Restate implication as con...
ifpbi23 43469 Equivalence theorem for co...
ifpbiidcor 43470 Restatement of ~ biid . (...
ifpbicor 43471 Corollary of commutation o...
ifpxorcor 43472 Corollary of commutation o...
ifpbi1 43473 Equivalence theorem for co...
ifpnot23 43474 Negation of conditional lo...
ifpnotnotb 43475 Factor conditional logic o...
ifpnorcor 43476 Corollary of commutation o...
ifpnancor 43477 Corollary of commutation o...
ifpnot23b 43478 Negation of conditional lo...
ifpbiidcor2 43479 Restatement of ~ biid . (...
ifpnot23c 43480 Negation of conditional lo...
ifpnot23d 43481 Negation of conditional lo...
ifpdfnan 43482 Define nand as conditional...
ifpdfxor 43483 Define xor as conditional ...
ifpbi12 43484 Equivalence theorem for co...
ifpbi13 43485 Equivalence theorem for co...
ifpbi123 43486 Equivalence theorem for co...
ifpidg 43487 Restate wff as conditional...
ifpid3g 43488 Restate wff as conditional...
ifpid2g 43489 Restate wff as conditional...
ifpid1g 43490 Restate wff as conditional...
ifpim23g 43491 Restate implication as con...
ifpim3 43492 Restate implication as con...
ifpnim1 43493 Restate negated implicatio...
ifpim4 43494 Restate implication as con...
ifpnim2 43495 Restate negated implicatio...
ifpim123g 43496 Implication of conditional...
ifpim1g 43497 Implication of conditional...
ifp1bi 43498 Substitute the first eleme...
ifpbi1b 43499 When the first variable is...
ifpimimb 43500 Factor conditional logic o...
ifpororb 43501 Factor conditional logic o...
ifpananb 43502 Factor conditional logic o...
ifpnannanb 43503 Factor conditional logic o...
ifpor123g 43504 Disjunction of conditional...
ifpimim 43505 Consequnce of implication....
ifpbibib 43506 Factor conditional logic o...
ifpxorxorb 43507 Factor conditional logic o...
rp-fakeimass 43508 A special case where impli...
rp-fakeanorass 43509 A special case where a mix...
rp-fakeoranass 43510 A special case where a mix...
rp-fakeinunass 43511 A special case where a mix...
rp-fakeuninass 43512 A special case where a mix...
rp-isfinite5 43513 A set is said to be finite...
rp-isfinite6 43514 A set is said to be finite...
intabssd 43515 When for each element ` y ...
eu0 43516 There is only one empty se...
epelon2 43517 Over the ordinal numbers, ...
ontric3g 43518 For all ` x , y e. On ` , ...
dfsucon 43519 ` A ` is called a successo...
snen1g 43520 A singleton is equinumerou...
snen1el 43521 A singleton is equinumerou...
sn1dom 43522 A singleton is dominated b...
pr2dom 43523 An unordered pair is domin...
tr3dom 43524 An unordered triple is dom...
ensucne0 43525 A class equinumerous to a ...
ensucne0OLD 43526 A class equinumerous to a ...
dfom6 43527 Let ` _om ` be defined to ...
infordmin 43528 ` _om ` is the smallest in...
iscard4 43529 Two ways to express the pr...
minregex 43530 Given any cardinal number ...
minregex2 43531 Given any cardinal number ...
iscard5 43532 Two ways to express the pr...
elrncard 43533 Let us define a cardinal n...
harval3 43534 ` ( har `` A ) ` is the le...
harval3on 43535 For any ordinal number ` A...
omssrncard 43536 All natural numbers are ca...
0iscard 43537 0 is a cardinal number. (...
1iscard 43538 1 is a cardinal number. (...
omiscard 43539 ` _om ` is a cardinal numb...
sucomisnotcard 43540 ` _om +o 1o ` is not a car...
nna1iscard 43541 For any natural number, th...
har2o 43542 The least cardinal greater...
en2pr 43543 A class is equinumerous to...
pr2cv 43544 If an unordered pair is eq...
pr2el1 43545 If an unordered pair is eq...
pr2cv1 43546 If an unordered pair is eq...
pr2el2 43547 If an unordered pair is eq...
pr2cv2 43548 If an unordered pair is eq...
pren2 43549 An unordered pair is equin...
pr2eldif1 43550 If an unordered pair is eq...
pr2eldif2 43551 If an unordered pair is eq...
pren2d 43552 A pair of two distinct set...
aleph1min 43553 ` ( aleph `` 1o ) ` is the...
alephiso2 43554 ` aleph ` is a strictly or...
alephiso3 43555 ` aleph ` is a strictly or...
pwelg 43556 The powerclass is an eleme...
pwinfig 43557 The powerclass of an infin...
pwinfi2 43558 The powerclass of an infin...
pwinfi3 43559 The powerclass of an infin...
pwinfi 43560 The powerclass of an infin...
fipjust 43561 A definition of the finite...
cllem0 43562 The class of all sets with...
superficl 43563 The class of all supersets...
superuncl 43564 The class of all supersets...
ssficl 43565 The class of all subsets o...
ssuncl 43566 The class of all subsets o...
ssdifcl 43567 The class of all subsets o...
sssymdifcl 43568 The class of all subsets o...
fiinfi 43569 If two classes have the fi...
rababg 43570 Condition when restricted ...
elinintab 43571 Two ways of saying a set i...
elmapintrab 43572 Two ways to say a set is a...
elinintrab 43573 Two ways of saying a set i...
inintabss 43574 Upper bound on intersectio...
inintabd 43575 Value of the intersection ...
xpinintabd 43576 Value of the intersection ...
relintabex 43577 If the intersection of a c...
elcnvcnvintab 43578 Two ways of saying a set i...
relintab 43579 Value of the intersection ...
nonrel 43580 A non-relation is equal to...
elnonrel 43581 Only an ordered pair where...
cnvssb 43582 Subclass theorem for conve...
relnonrel 43583 The non-relation part of a...
cnvnonrel 43584 The converse of the non-re...
brnonrel 43585 A non-relation cannot rela...
dmnonrel 43586 The domain of the non-rela...
rnnonrel 43587 The range of the non-relat...
resnonrel 43588 A restriction of the non-r...
imanonrel 43589 An image under the non-rel...
cononrel1 43590 Composition with the non-r...
cononrel2 43591 Composition with the non-r...
elmapintab 43592 Two ways to say a set is a...
fvnonrel 43593 The function value of any ...
elinlem 43594 Two ways to say a set is a...
elcnvcnvlem 43595 Two ways to say a set is a...
cnvcnvintabd 43596 Value of the relationship ...
elcnvlem 43597 Two ways to say a set is a...
elcnvintab 43598 Two ways of saying a set i...
cnvintabd 43599 Value of the converse of t...
undmrnresiss 43600 Two ways of saying the ide...
reflexg 43601 Two ways of saying a relat...
cnvssco 43602 A condition weaker than re...
refimssco 43603 Reflexive relations are su...
cleq2lem 43604 Equality implies bijection...
cbvcllem 43605 Change of bound variable i...
clublem 43606 If a superset ` Y ` of ` X...
clss2lem 43607 The closure of a property ...
dfid7 43608 Definition of identity rel...
mptrcllem 43609 Show two versions of a clo...
cotrintab 43610 The intersection of a clas...
rclexi 43611 The reflexive closure of a...
rtrclexlem 43612 Existence of relation impl...
rtrclex 43613 The reflexive-transitive c...
trclubgNEW 43614 If a relation exists then ...
trclubNEW 43615 If a relation exists then ...
trclexi 43616 The transitive closure of ...
rtrclexi 43617 The reflexive-transitive c...
clrellem 43618 When the property ` ps ` h...
clcnvlem 43619 When ` A ` , an upper boun...
cnvtrucl0 43620 The converse of the trivia...
cnvrcl0 43621 The converse of the reflex...
cnvtrcl0 43622 The converse of the transi...
dmtrcl 43623 The domain of the transiti...
rntrcl 43624 The range of the transitiv...
dfrtrcl5 43625 Definition of reflexive-tr...
trcleq2lemRP 43626 Equality implies bijection...
sqrtcvallem1 43627 Two ways of saying a compl...
reabsifneg 43628 Alternate expression for t...
reabsifnpos 43629 Alternate expression for t...
reabsifpos 43630 Alternate expression for t...
reabsifnneg 43631 Alternate expression for t...
reabssgn 43632 Alternate expression for t...
sqrtcvallem2 43633 Equivalent to saying that ...
sqrtcvallem3 43634 Equivalent to saying that ...
sqrtcvallem4 43635 Equivalent to saying that ...
sqrtcvallem5 43636 Equivalent to saying that ...
sqrtcval 43637 Explicit formula for the c...
sqrtcval2 43638 Explicit formula for the c...
resqrtval 43639 Real part of the complex s...
imsqrtval 43640 Imaginary part of the comp...
resqrtvalex 43641 Example for ~ resqrtval . ...
imsqrtvalex 43642 Example for ~ imsqrtval . ...
al3im 43643 Version of ~ ax-4 for a ne...
intima0 43644 Two ways of expressing the...
elimaint 43645 Element of image of inters...
cnviun 43646 Converse of indexed union....
imaiun1 43647 The image of an indexed un...
coiun1 43648 Composition with an indexe...
elintima 43649 Element of intersection of...
intimass 43650 The image under the inters...
intimass2 43651 The image under the inters...
intimag 43652 Requirement for the image ...
intimasn 43653 Two ways to express the im...
intimasn2 43654 Two ways to express the im...
ss2iundf 43655 Subclass theorem for index...
ss2iundv 43656 Subclass theorem for index...
cbviuneq12df 43657 Rule used to change the bo...
cbviuneq12dv 43658 Rule used to change the bo...
conrel1d 43659 Deduction about compositio...
conrel2d 43660 Deduction about compositio...
trrelind 43661 The intersection of transi...
xpintrreld 43662 The intersection of a tran...
restrreld 43663 The restriction of a trans...
trrelsuperreldg 43664 Concrete construction of a...
trficl 43665 The class of all transitiv...
cnvtrrel 43666 The converse of a transiti...
trrelsuperrel2dg 43667 Concrete construction of a...
dfrcl2 43670 Reflexive closure of a rel...
dfrcl3 43671 Reflexive closure of a rel...
dfrcl4 43672 Reflexive closure of a rel...
relexp2 43673 A set operated on by the r...
relexpnul 43674 If the domain and range of...
eliunov2 43675 Membership in the indexed ...
eltrclrec 43676 Membership in the indexed ...
elrtrclrec 43677 Membership in the indexed ...
briunov2 43678 Two classes related by the...
brmptiunrelexpd 43679 If two elements are connec...
fvmptiunrelexplb0d 43680 If the indexed union range...
fvmptiunrelexplb0da 43681 If the indexed union range...
fvmptiunrelexplb1d 43682 If the indexed union range...
brfvid 43683 If two elements are connec...
brfvidRP 43684 If two elements are connec...
fvilbd 43685 A set is a subset of its i...
fvilbdRP 43686 A set is a subset of its i...
brfvrcld 43687 If two elements are connec...
brfvrcld2 43688 If two elements are connec...
fvrcllb0d 43689 A restriction of the ident...
fvrcllb0da 43690 A restriction of the ident...
fvrcllb1d 43691 A set is a subset of its i...
brtrclrec 43692 Two classes related by the...
brrtrclrec 43693 Two classes related by the...
briunov2uz 43694 Two classes related by the...
eliunov2uz 43695 Membership in the indexed ...
ov2ssiunov2 43696 Any particular operator va...
relexp0eq 43697 The zeroth power of relati...
iunrelexp0 43698 Simplification of zeroth p...
relexpxpnnidm 43699 Any positive power of a Ca...
relexpiidm 43700 Any power of any restricti...
relexpss1d 43701 The relational power of a ...
comptiunov2i 43702 The composition two indexe...
corclrcl 43703 The reflexive closure is i...
iunrelexpmin1 43704 The indexed union of relat...
relexpmulnn 43705 With exponents limited to ...
relexpmulg 43706 With ordered exponents, th...
trclrelexplem 43707 The union of relational po...
iunrelexpmin2 43708 The indexed union of relat...
relexp01min 43709 With exponents limited to ...
relexp1idm 43710 Repeated raising a relatio...
relexp0idm 43711 Repeated raising a relatio...
relexp0a 43712 Absorption law for zeroth ...
relexpxpmin 43713 The composition of powers ...
relexpaddss 43714 The composition of two pow...
iunrelexpuztr 43715 The indexed union of relat...
dftrcl3 43716 Transitive closure of a re...
brfvtrcld 43717 If two elements are connec...
fvtrcllb1d 43718 A set is a subset of its i...
trclfvcom 43719 The transitive closure of ...
cnvtrclfv 43720 The converse of the transi...
cotrcltrcl 43721 The transitive closure is ...
trclimalb2 43722 Lower bound for image unde...
brtrclfv2 43723 Two ways to indicate two e...
trclfvdecomr 43724 The transitive closure of ...
trclfvdecoml 43725 The transitive closure of ...
dmtrclfvRP 43726 The domain of the transiti...
rntrclfvRP 43727 The range of the transitiv...
rntrclfv 43728 The range of the transitiv...
dfrtrcl3 43729 Reflexive-transitive closu...
brfvrtrcld 43730 If two elements are connec...
fvrtrcllb0d 43731 A restriction of the ident...
fvrtrcllb0da 43732 A restriction of the ident...
fvrtrcllb1d 43733 A set is a subset of its i...
dfrtrcl4 43734 Reflexive-transitive closu...
corcltrcl 43735 The composition of the ref...
cortrcltrcl 43736 Composition with the refle...
corclrtrcl 43737 Composition with the refle...
cotrclrcl 43738 The composition of the ref...
cortrclrcl 43739 Composition with the refle...
cotrclrtrcl 43740 Composition with the refle...
cortrclrtrcl 43741 The reflexive-transitive c...
frege77d 43742 If the images of both ` { ...
frege81d 43743 If the image of ` U ` is a...
frege83d 43744 If the image of the union ...
frege96d 43745 If ` C ` follows ` A ` in ...
frege87d 43746 If the images of both ` { ...
frege91d 43747 If ` B ` follows ` A ` in ...
frege97d 43748 If ` A ` contains all elem...
frege98d 43749 If ` C ` follows ` A ` and...
frege102d 43750 If either ` A ` and ` C ` ...
frege106d 43751 If ` B ` follows ` A ` in ...
frege108d 43752 If either ` A ` and ` C ` ...
frege109d 43753 If ` A ` contains all elem...
frege114d 43754 If either ` R ` relates ` ...
frege111d 43755 If either ` A ` and ` C ` ...
frege122d 43756 If ` F ` is a function, ` ...
frege124d 43757 If ` F ` is a function, ` ...
frege126d 43758 If ` F ` is a function, ` ...
frege129d 43759 If ` F ` is a function and...
frege131d 43760 If ` F ` is a function and...
frege133d 43761 If ` F ` is a function and...
dfxor4 43762 Express exclusive-or in te...
dfxor5 43763 Express exclusive-or in te...
df3or2 43764 Express triple-or in terms...
df3an2 43765 Express triple-and in term...
nev 43766 Express that not every set...
0pssin 43767 Express that an intersecti...
dfhe2 43770 The property of relation `...
dfhe3 43771 The property of relation `...
heeq12 43772 Equality law for relations...
heeq1 43773 Equality law for relations...
heeq2 43774 Equality law for relations...
sbcheg 43775 Distribute proper substitu...
hess 43776 Subclass law for relations...
xphe 43777 Any Cartesian product is h...
0he 43778 The empty relation is here...
0heALT 43779 The empty relation is here...
he0 43780 Any relation is hereditary...
unhe1 43781 The union of two relations...
snhesn 43782 Any singleton is hereditar...
idhe 43783 The identity relation is h...
psshepw 43784 The relation between sets ...
sshepw 43785 The relation between sets ...
rp-simp2-frege 43788 Simplification of triple c...
rp-simp2 43789 Simplification of triple c...
rp-frege3g 43790 Add antecedent to ~ ax-fre...
frege3 43791 Add antecedent to ~ ax-fre...
rp-misc1-frege 43792 Double-use of ~ ax-frege2 ...
rp-frege24 43793 Introducing an embedded an...
rp-frege4g 43794 Deduction related to distr...
frege4 43795 Special case of closed for...
frege5 43796 A closed form of ~ syl . ...
rp-7frege 43797 Distribute antecedent and ...
rp-4frege 43798 Elimination of a nested an...
rp-6frege 43799 Elimination of a nested an...
rp-8frege 43800 Eliminate antecedent when ...
rp-frege25 43801 Closed form for ~ a1dd . ...
frege6 43802 A closed form of ~ imim2d ...
axfrege8 43803 Swap antecedents. Identic...
frege7 43804 A closed form of ~ syl6 . ...
frege26 43806 Identical to ~ idd . Prop...
frege27 43807 We cannot (at the same tim...
frege9 43808 Closed form of ~ syl with ...
frege12 43809 A closed form of ~ com23 ....
frege11 43810 Elimination of a nested an...
frege24 43811 Closed form for ~ a1d . D...
frege16 43812 A closed form of ~ com34 ....
frege25 43813 Closed form for ~ a1dd . ...
frege18 43814 Closed form of a syllogism...
frege22 43815 A closed form of ~ com45 ....
frege10 43816 Result commuting anteceden...
frege17 43817 A closed form of ~ com3l ....
frege13 43818 A closed form of ~ com3r ....
frege14 43819 Closed form of a deduction...
frege19 43820 A closed form of ~ syl6 . ...
frege23 43821 Syllogism followed by rota...
frege15 43822 A closed form of ~ com4r ....
frege21 43823 Replace antecedent in ante...
frege20 43824 A closed form of ~ syl8 . ...
axfrege28 43825 Contraposition. Identical...
frege29 43827 Closed form of ~ con3d . ...
frege30 43828 Commuted, closed form of ~...
axfrege31 43829 Identical to ~ notnotr . ...
frege32 43831 Deduce ~ con1 from ~ con3 ...
frege33 43832 If ` ph ` or ` ps ` takes ...
frege34 43833 If as a consequence of the...
frege35 43834 Commuted, closed form of ~...
frege36 43835 The case in which ` ps ` i...
frege37 43836 If ` ch ` is a necessary c...
frege38 43837 Identical to ~ pm2.21 . P...
frege39 43838 Syllogism between ~ pm2.18...
frege40 43839 Anything implies ~ pm2.18 ...
axfrege41 43840 Identical to ~ notnot . A...
frege42 43842 Not not ~ id . Propositio...
frege43 43843 If there is a choice only ...
frege44 43844 Similar to a commuted ~ pm...
frege45 43845 Deduce ~ pm2.6 from ~ con1...
frege46 43846 If ` ps ` holds when ` ph ...
frege47 43847 Deduce consequence follows...
frege48 43848 Closed form of syllogism w...
frege49 43849 Closed form of deduction w...
frege50 43850 Closed form of ~ jaoi . P...
frege51 43851 Compare with ~ jaod . Pro...
axfrege52a 43852 Justification for ~ ax-fre...
frege52aid 43854 The case when the content ...
frege53aid 43855 Specialization of ~ frege5...
frege53a 43856 Lemma for ~ frege55a . Pr...
axfrege54a 43857 Justification for ~ ax-fre...
frege54cor0a 43859 Synonym for logical equiva...
frege54cor1a 43860 Reflexive equality. (Cont...
frege55aid 43861 Lemma for ~ frege57aid . ...
frege55lem1a 43862 Necessary deduction regard...
frege55lem2a 43863 Core proof of Proposition ...
frege55a 43864 Proposition 55 of [Frege18...
frege55cor1a 43865 Proposition 55 of [Frege18...
frege56aid 43866 Lemma for ~ frege57aid . ...
frege56a 43867 Proposition 56 of [Frege18...
frege57aid 43868 This is the all important ...
frege57a 43869 Analogue of ~ frege57aid ....
axfrege58a 43870 Identical to ~ anifp . Ju...
frege58acor 43872 Lemma for ~ frege59a . (C...
frege59a 43873 A kind of Aristotelian inf...
frege60a 43874 Swap antecedents of ~ ax-f...
frege61a 43875 Lemma for ~ frege65a . Pr...
frege62a 43876 A kind of Aristotelian inf...
frege63a 43877 Proposition 63 of [Frege18...
frege64a 43878 Lemma for ~ frege65a . Pr...
frege65a 43879 A kind of Aristotelian inf...
frege66a 43880 Swap antecedents of ~ freg...
frege67a 43881 Lemma for ~ frege68a . Pr...
frege68a 43882 Combination of applying a ...
axfrege52c 43883 Justification for ~ ax-fre...
frege52b 43885 The case when the content ...
frege53b 43886 Lemma for frege102 (via ~ ...
axfrege54c 43887 Reflexive equality of clas...
frege54b 43889 Reflexive equality of sets...
frege54cor1b 43890 Reflexive equality. (Cont...
frege55lem1b 43891 Necessary deduction regard...
frege55lem2b 43892 Lemma for ~ frege55b . Co...
frege55b 43893 Lemma for ~ frege57b . Pr...
frege56b 43894 Lemma for ~ frege57b . Pr...
frege57b 43895 Analogue of ~ frege57aid ....
axfrege58b 43896 If ` A. x ph ` is affirmed...
frege58bid 43898 If ` A. x ph ` is affirmed...
frege58bcor 43899 Lemma for ~ frege59b . (C...
frege59b 43900 A kind of Aristotelian inf...
frege60b 43901 Swap antecedents of ~ ax-f...
frege61b 43902 Lemma for ~ frege65b . Pr...
frege62b 43903 A kind of Aristotelian inf...
frege63b 43904 Lemma for ~ frege91 . Pro...
frege64b 43905 Lemma for ~ frege65b . Pr...
frege65b 43906 A kind of Aristotelian inf...
frege66b 43907 Swap antecedents of ~ freg...
frege67b 43908 Lemma for ~ frege68b . Pr...
frege68b 43909 Combination of applying a ...
frege53c 43910 Proposition 53 of [Frege18...
frege54cor1c 43911 Reflexive equality. (Cont...
frege55lem1c 43912 Necessary deduction regard...
frege55lem2c 43913 Core proof of Proposition ...
frege55c 43914 Proposition 55 of [Frege18...
frege56c 43915 Lemma for ~ frege57c . Pr...
frege57c 43916 Swap order of implication ...
frege58c 43917 Principle related to ~ sp ...
frege59c 43918 A kind of Aristotelian inf...
frege60c 43919 Swap antecedents of ~ freg...
frege61c 43920 Lemma for ~ frege65c . Pr...
frege62c 43921 A kind of Aristotelian inf...
frege63c 43922 Analogue of ~ frege63b . ...
frege64c 43923 Lemma for ~ frege65c . Pr...
frege65c 43924 A kind of Aristotelian inf...
frege66c 43925 Swap antecedents of ~ freg...
frege67c 43926 Lemma for ~ frege68c . Pr...
frege68c 43927 Combination of applying a ...
dffrege69 43928 If from the proposition th...
frege70 43929 Lemma for ~ frege72 . Pro...
frege71 43930 Lemma for ~ frege72 . Pro...
frege72 43931 If property ` A ` is hered...
frege73 43932 Lemma for ~ frege87 . Pro...
frege74 43933 If ` X ` has a property ` ...
frege75 43934 If from the proposition th...
dffrege76 43935 If from the two propositio...
frege77 43936 If ` Y ` follows ` X ` in ...
frege78 43937 Commuted form of ~ frege77...
frege79 43938 Distributed form of ~ freg...
frege80 43939 Add additional condition t...
frege81 43940 If ` X ` has a property ` ...
frege82 43941 Closed-form deduction base...
frege83 43942 Apply commuted form of ~ f...
frege84 43943 Commuted form of ~ frege81...
frege85 43944 Commuted form of ~ frege77...
frege86 43945 Conclusion about element o...
frege87 43946 If ` Z ` is a result of an...
frege88 43947 Commuted form of ~ frege87...
frege89 43948 One direction of ~ dffrege...
frege90 43949 Add antecedent to ~ frege8...
frege91 43950 Every result of an applica...
frege92 43951 Inference from ~ frege91 ....
frege93 43952 Necessary condition for tw...
frege94 43953 Looking one past a pair re...
frege95 43954 Looking one past a pair re...
frege96 43955 Every result of an applica...
frege97 43956 The property of following ...
frege98 43957 If ` Y ` follows ` X ` and...
dffrege99 43958 If ` Z ` is identical with...
frege100 43959 One direction of ~ dffrege...
frege101 43960 Lemma for ~ frege102 . Pr...
frege102 43961 If ` Z ` belongs to the ` ...
frege103 43962 Proposition 103 of [Frege1...
frege104 43963 Proposition 104 of [Frege1...
frege105 43964 Proposition 105 of [Frege1...
frege106 43965 Whatever follows ` X ` in ...
frege107 43966 Proposition 107 of [Frege1...
frege108 43967 If ` Y ` belongs to the ` ...
frege109 43968 The property of belonging ...
frege110 43969 Proposition 110 of [Frege1...
frege111 43970 If ` Y ` belongs to the ` ...
frege112 43971 Identity implies belonging...
frege113 43972 Proposition 113 of [Frege1...
frege114 43973 If ` X ` belongs to the ` ...
dffrege115 43974 If from the circumstance t...
frege116 43975 One direction of ~ dffrege...
frege117 43976 Lemma for ~ frege118 . Pr...
frege118 43977 Simplified application of ...
frege119 43978 Lemma for ~ frege120 . Pr...
frege120 43979 Simplified application of ...
frege121 43980 Lemma for ~ frege122 . Pr...
frege122 43981 If ` X ` is a result of an...
frege123 43982 Lemma for ~ frege124 . Pr...
frege124 43983 If ` X ` is a result of an...
frege125 43984 Lemma for ~ frege126 . Pr...
frege126 43985 If ` M ` follows ` Y ` in ...
frege127 43986 Communte antecedents of ~ ...
frege128 43987 Lemma for ~ frege129 . Pr...
frege129 43988 If the procedure ` R ` is ...
frege130 43989 Lemma for ~ frege131 . Pr...
frege131 43990 If the procedure ` R ` is ...
frege132 43991 Lemma for ~ frege133 . Pr...
frege133 43992 If the procedure ` R ` is ...
enrelmap 43993 The set of all possible re...
enrelmapr 43994 The set of all possible re...
enmappw 43995 The set of all mappings fr...
enmappwid 43996 The set of all mappings fr...
rfovd 43997 Value of the operator, ` (...
rfovfvd 43998 Value of the operator, ` (...
rfovfvfvd 43999 Value of the operator, ` (...
rfovcnvf1od 44000 Properties of the operator...
rfovcnvd 44001 Value of the converse of t...
rfovf1od 44002 The value of the operator,...
rfovcnvfvd 44003 Value of the converse of t...
fsovd 44004 Value of the operator, ` (...
fsovrfovd 44005 The operator which gives a...
fsovfvd 44006 Value of the operator, ` (...
fsovfvfvd 44007 Value of the operator, ` (...
fsovfd 44008 The operator, ` ( A O B ) ...
fsovcnvlem 44009 The ` O ` operator, which ...
fsovcnvd 44010 The value of the converse ...
fsovcnvfvd 44011 The value of the converse ...
fsovf1od 44012 The value of ` ( A O B ) `...
dssmapfvd 44013 Value of the duality opera...
dssmapfv2d 44014 Value of the duality opera...
dssmapfv3d 44015 Value of the duality opera...
dssmapnvod 44016 For any base set ` B ` the...
dssmapf1od 44017 For any base set ` B ` the...
dssmap2d 44018 For any base set ` B ` the...
or3or 44019 Decompose disjunction into...
andi3or 44020 Distribute over triple dis...
uneqsn 44021 If a union of classes is e...
brfvimex 44022 If a binary relation holds...
brovmptimex 44023 If a binary relation holds...
brovmptimex1 44024 If a binary relation holds...
brovmptimex2 44025 If a binary relation holds...
brcoffn 44026 Conditions allowing the de...
brcofffn 44027 Conditions allowing the de...
brco2f1o 44028 Conditions allowing the de...
brco3f1o 44029 Conditions allowing the de...
ntrclsbex 44030 If (pseudo-)interior and (...
ntrclsrcomplex 44031 The relative complement of...
neik0imk0p 44032 Kuratowski's K0 axiom impl...
ntrk2imkb 44033 If an interior function is...
ntrkbimka 44034 If the interiors of disjoi...
ntrk0kbimka 44035 If the interiors of disjoi...
clsk3nimkb 44036 If the base set is not emp...
clsk1indlem0 44037 The ansatz closure functio...
clsk1indlem2 44038 The ansatz closure functio...
clsk1indlem3 44039 The ansatz closure functio...
clsk1indlem4 44040 The ansatz closure functio...
clsk1indlem1 44041 The ansatz closure functio...
clsk1independent 44042 For generalized closure fu...
neik0pk1imk0 44043 Kuratowski's K0' and K1 ax...
isotone1 44044 Two different ways to say ...
isotone2 44045 Two different ways to say ...
ntrk1k3eqk13 44046 An interior function is bo...
ntrclsf1o 44047 If (pseudo-)interior and (...
ntrclsnvobr 44048 If (pseudo-)interior and (...
ntrclsiex 44049 If (pseudo-)interior and (...
ntrclskex 44050 If (pseudo-)interior and (...
ntrclsfv1 44051 If (pseudo-)interior and (...
ntrclsfv2 44052 If (pseudo-)interior and (...
ntrclselnel1 44053 If (pseudo-)interior and (...
ntrclselnel2 44054 If (pseudo-)interior and (...
ntrclsfv 44055 The value of the interior ...
ntrclsfveq1 44056 If interior and closure fu...
ntrclsfveq2 44057 If interior and closure fu...
ntrclsfveq 44058 If interior and closure fu...
ntrclsss 44059 If interior and closure fu...
ntrclsneine0lem 44060 If (pseudo-)interior and (...
ntrclsneine0 44061 If (pseudo-)interior and (...
ntrclscls00 44062 If (pseudo-)interior and (...
ntrclsiso 44063 If (pseudo-)interior and (...
ntrclsk2 44064 An interior function is co...
ntrclskb 44065 The interiors of disjoint ...
ntrclsk3 44066 The intersection of interi...
ntrclsk13 44067 The interior of the inters...
ntrclsk4 44068 Idempotence of the interio...
ntrneibex 44069 If (pseudo-)interior and (...
ntrneircomplex 44070 The relative complement of...
ntrneif1o 44071 If (pseudo-)interior and (...
ntrneiiex 44072 If (pseudo-)interior and (...
ntrneinex 44073 If (pseudo-)interior and (...
ntrneicnv 44074 If (pseudo-)interior and (...
ntrneifv1 44075 If (pseudo-)interior and (...
ntrneifv2 44076 If (pseudo-)interior and (...
ntrneiel 44077 If (pseudo-)interior and (...
ntrneifv3 44078 The value of the neighbors...
ntrneineine0lem 44079 If (pseudo-)interior and (...
ntrneineine1lem 44080 If (pseudo-)interior and (...
ntrneifv4 44081 The value of the interior ...
ntrneiel2 44082 Membership in iterated int...
ntrneineine0 44083 If (pseudo-)interior and (...
ntrneineine1 44084 If (pseudo-)interior and (...
ntrneicls00 44085 If (pseudo-)interior and (...
ntrneicls11 44086 If (pseudo-)interior and (...
ntrneiiso 44087 If (pseudo-)interior and (...
ntrneik2 44088 An interior function is co...
ntrneix2 44089 An interior (closure) func...
ntrneikb 44090 The interiors of disjoint ...
ntrneixb 44091 The interiors (closures) o...
ntrneik3 44092 The intersection of interi...
ntrneix3 44093 The closure of the union o...
ntrneik13 44094 The interior of the inters...
ntrneix13 44095 The closure of the union o...
ntrneik4w 44096 Idempotence of the interio...
ntrneik4 44097 Idempotence of the interio...
clsneibex 44098 If (pseudo-)closure and (p...
clsneircomplex 44099 The relative complement of...
clsneif1o 44100 If a (pseudo-)closure func...
clsneicnv 44101 If a (pseudo-)closure func...
clsneikex 44102 If closure and neighborhoo...
clsneinex 44103 If closure and neighborhoo...
clsneiel1 44104 If a (pseudo-)closure func...
clsneiel2 44105 If a (pseudo-)closure func...
clsneifv3 44106 Value of the neighborhoods...
clsneifv4 44107 Value of the closure (inte...
neicvgbex 44108 If (pseudo-)neighborhood a...
neicvgrcomplex 44109 The relative complement of...
neicvgf1o 44110 If neighborhood and conver...
neicvgnvo 44111 If neighborhood and conver...
neicvgnvor 44112 If neighborhood and conver...
neicvgmex 44113 If the neighborhoods and c...
neicvgnex 44114 If the neighborhoods and c...
neicvgel1 44115 A subset being an element ...
neicvgel2 44116 The complement of a subset...
neicvgfv 44117 The value of the neighborh...
ntrrn 44118 The range of the interior ...
ntrf 44119 The interior function of a...
ntrf2 44120 The interior function is a...
ntrelmap 44121 The interior function is a...
clsf2 44122 The closure function is a ...
clselmap 44123 The closure function is a ...
dssmapntrcls 44124 The interior and closure o...
dssmapclsntr 44125 The closure and interior o...
gneispa 44126 Each point ` p ` of the ne...
gneispb 44127 Given a neighborhood ` N `...
gneispace2 44128 The predicate that ` F ` i...
gneispace3 44129 The predicate that ` F ` i...
gneispace 44130 The predicate that ` F ` i...
gneispacef 44131 A generic neighborhood spa...
gneispacef2 44132 A generic neighborhood spa...
gneispacefun 44133 A generic neighborhood spa...
gneispacern 44134 A generic neighborhood spa...
gneispacern2 44135 A generic neighborhood spa...
gneispace0nelrn 44136 A generic neighborhood spa...
gneispace0nelrn2 44137 A generic neighborhood spa...
gneispace0nelrn3 44138 A generic neighborhood spa...
gneispaceel 44139 Every neighborhood of a po...
gneispaceel2 44140 Every neighborhood of a po...
gneispacess 44141 All supersets of a neighbo...
gneispacess2 44142 All supersets of a neighbo...
k0004lem1 44143 Application of ~ ssin to r...
k0004lem2 44144 A mapping with a particula...
k0004lem3 44145 When the value of a mappin...
k0004val 44146 The topological simplex of...
k0004ss1 44147 The topological simplex of...
k0004ss2 44148 The topological simplex of...
k0004ss3 44149 The topological simplex of...
k0004val0 44150 The topological simplex of...
inductionexd 44151 Simple induction example. ...
wwlemuld 44152 Natural deduction form of ...
leeq1d 44153 Specialization of ~ breq1d...
leeq2d 44154 Specialization of ~ breq2d...
absmulrposd 44155 Specialization of absmuld ...
imadisjld 44156 Natural dduction form of o...
wnefimgd 44157 The image of a mapping fro...
fco2d 44158 Natural deduction form of ...
wfximgfd 44159 The value of a function on...
extoimad 44160 If |f(x)| <= C for all x t...
imo72b2lem0 44161 Lemma for ~ imo72b2 . (Co...
suprleubrd 44162 Natural deduction form of ...
imo72b2lem2 44163 Lemma for ~ imo72b2 . (Co...
suprlubrd 44164 Natural deduction form of ...
imo72b2lem1 44165 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 44166 'Less than or equal to' re...
lemuldiv4d 44167 'Less than or equal to' re...
imo72b2 44168 IMO 1972 B2. (14th Intern...
int-addcomd 44169 AdditionCommutativity gene...
int-addassocd 44170 AdditionAssociativity gene...
int-addsimpd 44171 AdditionSimplification gen...
int-mulcomd 44172 MultiplicationCommutativit...
int-mulassocd 44173 MultiplicationAssociativit...
int-mulsimpd 44174 MultiplicationSimplificati...
int-leftdistd 44175 AdditionMultiplicationLeft...
int-rightdistd 44176 AdditionMultiplicationRigh...
int-sqdefd 44177 SquareDefinition generator...
int-mul11d 44178 First MultiplicationOne ge...
int-mul12d 44179 Second MultiplicationOne g...
int-add01d 44180 First AdditionZero generat...
int-add02d 44181 Second AdditionZero genera...
int-sqgeq0d 44182 SquareGEQZero generator ru...
int-eqprincd 44183 PrincipleOfEquality genera...
int-eqtransd 44184 EqualityTransitivity gener...
int-eqmvtd 44185 EquMoveTerm generator rule...
int-eqineqd 44186 EquivalenceImpliesDoubleIn...
int-ineqmvtd 44187 IneqMoveTerm generator rul...
int-ineq1stprincd 44188 FirstPrincipleOfInequality...
int-ineq2ndprincd 44189 SecondPrincipleOfInequalit...
int-ineqtransd 44190 InequalityTransitivity gen...
unitadd 44191 Theorem used in conjunctio...
gsumws3 44192 Valuation of a length 3 wo...
gsumws4 44193 Valuation of a length 4 wo...
amgm2d 44194 Arithmetic-geometric mean ...
amgm3d 44195 Arithmetic-geometric mean ...
amgm4d 44196 Arithmetic-geometric mean ...
spALT 44197 ~ sp can be proven from th...
elnelneqd 44198 Two classes are not equal ...
elnelneq2d 44199 Two classes are not equal ...
rr-spce 44200 Prove an existential. (Co...
rexlimdvaacbv 44201 Unpack a restricted existe...
rexlimddvcbvw 44202 Unpack a restricted existe...
rexlimddvcbv 44203 Unpack a restricted existe...
rr-elrnmpt3d 44204 Elementhood in an image se...
rr-phpd 44205 Equivalent of ~ php withou...
tfindsd 44206 Deduction associated with ...
mnringvald 44209 Value of the monoid ring f...
mnringnmulrd 44210 Components of a monoid rin...
mnringbased 44211 The base set of a monoid r...
mnringbaserd 44212 The base set of a monoid r...
mnringelbased 44213 Membership in the base set...
mnringbasefd 44214 Elements of a monoid ring ...
mnringbasefsuppd 44215 Elements of a monoid ring ...
mnringaddgd 44216 The additive operation of ...
mnring0gd 44217 The additive identity of a...
mnring0g2d 44218 The additive identity of a...
mnringmulrd 44219 The ring product of a mono...
mnringscad 44220 The scalar ring of a monoi...
mnringvscad 44221 The scalar product of a mo...
mnringlmodd 44222 Monoid rings are left modu...
mnringmulrvald 44223 Value of multiplication in...
mnringmulrcld 44224 Monoid rings are closed un...
gru0eld 44225 A nonempty Grothendieck un...
grusucd 44226 Grothendieck universes are...
r1rankcld 44227 Any rank of the cumulative...
grur1cld 44228 Grothendieck universes are...
grurankcld 44229 Grothendieck universes are...
grurankrcld 44230 If a Grothendieck universe...
scotteqd 44233 Equality theorem for the S...
scotteq 44234 Closed form of ~ scotteqd ...
nfscott 44235 Bound-variable hypothesis ...
scottabf 44236 Value of the Scott operati...
scottab 44237 Value of the Scott operati...
scottabes 44238 Value of the Scott operati...
scottss 44239 Scott's trick produces a s...
elscottab 44240 An element of the output o...
scottex2 44241 ~ scottex expressed using ...
scotteld 44242 The Scott operation sends ...
scottelrankd 44243 Property of a Scott's tric...
scottrankd 44244 Rank of a nonempty Scott's...
gruscottcld 44245 If a Grothendieck universe...
dfcoll2 44248 Alternate definition of th...
colleq12d 44249 Equality theorem for the c...
colleq1 44250 Equality theorem for the c...
colleq2 44251 Equality theorem for the c...
nfcoll 44252 Bound-variable hypothesis ...
collexd 44253 The output of the collecti...
cpcolld 44254 Property of the collection...
cpcoll2d 44255 ~ cpcolld with an extra ex...
grucollcld 44256 A Grothendieck universe co...
ismnu 44257 The hypothesis of this the...
mnuop123d 44258 Operations of a minimal un...
mnussd 44259 Minimal universes are clos...
mnuss2d 44260 ~ mnussd with arguments pr...
mnu0eld 44261 A nonempty minimal univers...
mnuop23d 44262 Second and third operation...
mnupwd 44263 Minimal universes are clos...
mnusnd 44264 Minimal universes are clos...
mnuprssd 44265 A minimal universe contain...
mnuprss2d 44266 Special case of ~ mnuprssd...
mnuop3d 44267 Third operation of a minim...
mnuprdlem1 44268 Lemma for ~ mnuprd . (Con...
mnuprdlem2 44269 Lemma for ~ mnuprd . (Con...
mnuprdlem3 44270 Lemma for ~ mnuprd . (Con...
mnuprdlem4 44271 Lemma for ~ mnuprd . Gene...
mnuprd 44272 Minimal universes are clos...
mnuunid 44273 Minimal universes are clos...
mnuund 44274 Minimal universes are clos...
mnutrcld 44275 Minimal universes contain ...
mnutrd 44276 Minimal universes are tran...
mnurndlem1 44277 Lemma for ~ mnurnd . (Con...
mnurndlem2 44278 Lemma for ~ mnurnd . Dedu...
mnurnd 44279 Minimal universes contain ...
mnugrud 44280 Minimal universes are Grot...
grumnudlem 44281 Lemma for ~ grumnud . (Co...
grumnud 44282 Grothendieck universes are...
grumnueq 44283 The class of Grothendieck ...
expandan 44284 Expand conjunction to prim...
expandexn 44285 Expand an existential quan...
expandral 44286 Expand a restricted univer...
expandrexn 44287 Expand a restricted existe...
expandrex 44288 Expand a restricted existe...
expanduniss 44289 Expand ` U. A C_ B ` to pr...
ismnuprim 44290 Express the predicate on `...
rr-grothprimbi 44291 Express "every set is cont...
inagrud 44292 Inaccessible levels of the...
inaex 44293 Assuming the Tarski-Grothe...
gruex 44294 Assuming the Tarski-Grothe...
rr-groth 44295 An equivalent of ~ ax-grot...
rr-grothprim 44296 An equivalent of ~ ax-grot...
ismnushort 44297 Express the predicate on `...
dfuniv2 44298 Alternative definition of ...
rr-grothshortbi 44299 Express "every set is cont...
rr-grothshort 44300 A shorter equivalent of ~ ...
nanorxor 44301 'nand' is equivalent to th...
undisjrab 44302 Union of two disjoint rest...
iso0 44303 The empty set is an ` R , ...
ssrecnpr 44304 ` RR ` is a subset of both...
seff 44305 Let set ` S ` be the real ...
sblpnf 44306 The infinity ball in the a...
prmunb2 44307 The primes are unbounded. ...
dvgrat 44308 Ratio test for divergence ...
cvgdvgrat 44309 Ratio test for convergence...
radcnvrat 44310 Let ` L ` be the limit, if...
reldvds 44311 The divides relation is in...
nznngen 44312 All positive integers in t...
nzss 44313 The set of multiples of _m...
nzin 44314 The intersection of the se...
nzprmdif 44315 Subtract one prime's multi...
hashnzfz 44316 Special case of ~ hashdvds...
hashnzfz2 44317 Special case of ~ hashnzfz...
hashnzfzclim 44318 As the upper bound ` K ` o...
caofcan 44319 Transfer a cancellation la...
ofsubid 44320 Function analogue of ~ sub...
ofmul12 44321 Function analogue of ~ mul...
ofdivrec 44322 Function analogue of ~ div...
ofdivcan4 44323 Function analogue of ~ div...
ofdivdiv2 44324 Function analogue of ~ div...
lhe4.4ex1a 44325 Example of the Fundamental...
dvsconst 44326 Derivative of a constant f...
dvsid 44327 Derivative of the identity...
dvsef 44328 Derivative of the exponent...
expgrowthi 44329 Exponential growth and dec...
dvconstbi 44330 The derivative of a functi...
expgrowth 44331 Exponential growth and dec...
bccval 44334 Value of the generalized b...
bcccl 44335 Closure of the generalized...
bcc0 44336 The generalized binomial c...
bccp1k 44337 Generalized binomial coeff...
bccm1k 44338 Generalized binomial coeff...
bccn0 44339 Generalized binomial coeff...
bccn1 44340 Generalized binomial coeff...
bccbc 44341 The binomial coefficient a...
uzmptshftfval 44342 When ` F ` is a maps-to fu...
dvradcnv2 44343 The radius of convergence ...
binomcxplemwb 44344 Lemma for ~ binomcxp . Th...
binomcxplemnn0 44345 Lemma for ~ binomcxp . Wh...
binomcxplemrat 44346 Lemma for ~ binomcxp . As...
binomcxplemfrat 44347 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 44348 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 44349 Lemma for ~ binomcxp . By...
binomcxplemcvg 44350 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 44351 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 44352 Lemma for ~ binomcxp . Wh...
binomcxp 44353 Generalize the binomial th...
pm10.12 44354 Theorem *10.12 in [Whitehe...
pm10.14 44355 Theorem *10.14 in [Whitehe...
pm10.251 44356 Theorem *10.251 in [Whiteh...
pm10.252 44357 Theorem *10.252 in [Whiteh...
pm10.253 44358 Theorem *10.253 in [Whiteh...
albitr 44359 Theorem *10.301 in [Whiteh...
pm10.42 44360 Theorem *10.42 in [Whitehe...
pm10.52 44361 Theorem *10.52 in [Whitehe...
pm10.53 44362 Theorem *10.53 in [Whitehe...
pm10.541 44363 Theorem *10.541 in [Whiteh...
pm10.542 44364 Theorem *10.542 in [Whiteh...
pm10.55 44365 Theorem *10.55 in [Whitehe...
pm10.56 44366 Theorem *10.56 in [Whitehe...
pm10.57 44367 Theorem *10.57 in [Whitehe...
2alanimi 44368 Removes two universal quan...
2al2imi 44369 Removes two universal quan...
pm11.11 44370 Theorem *11.11 in [Whitehe...
pm11.12 44371 Theorem *11.12 in [Whitehe...
19.21vv 44372 Compare Theorem *11.3 in [...
2alim 44373 Theorem *11.32 in [Whitehe...
2albi 44374 Theorem *11.33 in [Whitehe...
2exim 44375 Theorem *11.34 in [Whitehe...
2exbi 44376 Theorem *11.341 in [Whiteh...
spsbce-2 44377 Theorem *11.36 in [Whitehe...
19.33-2 44378 Theorem *11.421 in [Whiteh...
19.36vv 44379 Theorem *11.43 in [Whitehe...
19.31vv 44380 Theorem *11.44 in [Whitehe...
19.37vv 44381 Theorem *11.46 in [Whitehe...
19.28vv 44382 Theorem *11.47 in [Whitehe...
pm11.52 44383 Theorem *11.52 in [Whitehe...
aaanv 44384 Theorem *11.56 in [Whitehe...
pm11.57 44385 Theorem *11.57 in [Whitehe...
pm11.58 44386 Theorem *11.58 in [Whitehe...
pm11.59 44387 Theorem *11.59 in [Whitehe...
pm11.6 44388 Theorem *11.6 in [Whitehea...
pm11.61 44389 Theorem *11.61 in [Whitehe...
pm11.62 44390 Theorem *11.62 in [Whitehe...
pm11.63 44391 Theorem *11.63 in [Whitehe...
pm11.7 44392 Theorem *11.7 in [Whitehea...
pm11.71 44393 Theorem *11.71 in [Whitehe...
sbeqal1 44394 If ` x = y ` always implie...
sbeqal1i 44395 Suppose you know ` x = y `...
sbeqal2i 44396 If ` x = y ` implies ` x =...
axc5c4c711 44397 Proof of a theorem that ca...
axc5c4c711toc5 44398 Rederivation of ~ sp from ...
axc5c4c711toc4 44399 Rederivation of ~ axc4 fro...
axc5c4c711toc7 44400 Rederivation of ~ axc7 fro...
axc5c4c711to11 44401 Rederivation of ~ ax-11 fr...
axc11next 44402 This theorem shows that, g...
pm13.13a 44403 One result of theorem *13....
pm13.13b 44404 Theorem *13.13 in [Whitehe...
pm13.14 44405 Theorem *13.14 in [Whitehe...
pm13.192 44406 Theorem *13.192 in [Whiteh...
pm13.193 44407 Theorem *13.193 in [Whiteh...
pm13.194 44408 Theorem *13.194 in [Whiteh...
pm13.195 44409 Theorem *13.195 in [Whiteh...
pm13.196a 44410 Theorem *13.196 in [Whiteh...
2sbc6g 44411 Theorem *13.21 in [Whitehe...
2sbc5g 44412 Theorem *13.22 in [Whitehe...
iotain 44413 Equivalence between two di...
iotaexeu 44414 The iota class exists. Th...
iotasbc 44415 Definition *14.01 in [Whit...
iotasbc2 44416 Theorem *14.111 in [Whiteh...
pm14.12 44417 Theorem *14.12 in [Whitehe...
pm14.122a 44418 Theorem *14.122 in [Whiteh...
pm14.122b 44419 Theorem *14.122 in [Whiteh...
pm14.122c 44420 Theorem *14.122 in [Whiteh...
pm14.123a 44421 Theorem *14.123 in [Whiteh...
pm14.123b 44422 Theorem *14.123 in [Whiteh...
pm14.123c 44423 Theorem *14.123 in [Whiteh...
pm14.18 44424 Theorem *14.18 in [Whitehe...
iotaequ 44425 Theorem *14.2 in [Whitehea...
iotavalb 44426 Theorem *14.202 in [Whiteh...
iotasbc5 44427 Theorem *14.205 in [Whiteh...
pm14.24 44428 Theorem *14.24 in [Whitehe...
iotavalsb 44429 Theorem *14.242 in [Whiteh...
sbiota1 44430 Theorem *14.25 in [Whitehe...
sbaniota 44431 Theorem *14.26 in [Whitehe...
eubiOLD 44432 Obsolete proof of ~ eubi a...
iotasbcq 44433 Theorem *14.272 in [Whiteh...
elnev 44434 Any set that contains one ...
rusbcALT 44435 A version of Russell's par...
compeq 44436 Equality between two ways ...
compne 44437 The complement of ` A ` is...
compab 44438 Two ways of saying "the co...
conss2 44439 Contrapositive law for sub...
conss1 44440 Contrapositive law for sub...
ralbidar 44441 More general form of ~ ral...
rexbidar 44442 More general form of ~ rex...
dropab1 44443 Theorem to aid use of the ...
dropab2 44444 Theorem to aid use of the ...
ipo0 44445 If the identity relation p...
ifr0 44446 A class that is founded by...
ordpss 44447 ~ ordelpss with an anteced...
fvsb 44448 Explicit substitution of a...
fveqsb 44449 Implicit substitution of a...
xpexb 44450 A Cartesian product exists...
trelpss 44451 An element of a transitive...
addcomgi 44452 Generalization of commutat...
addrval 44462 Value of the operation of ...
subrval 44463 Value of the operation of ...
mulvval 44464 Value of the operation of ...
addrfv 44465 Vector addition at a value...
subrfv 44466 Vector subtraction at a va...
mulvfv 44467 Scalar multiplication at a...
addrfn 44468 Vector addition produces a...
subrfn 44469 Vector subtraction produce...
mulvfn 44470 Scalar multiplication prod...
addrcom 44471 Vector addition is commuta...
idiALT 44475 Placeholder for ~ idi . T...
exbir 44476 Exportation implication al...
3impexpbicom 44477 Version of ~ 3impexp where...
3impexpbicomi 44478 Inference associated with ...
bi1imp 44479 Importation inference simi...
bi2imp 44480 Importation inference simi...
bi3impb 44481 Similar to ~ 3impb with im...
bi3impa 44482 Similar to ~ 3impa with im...
bi23impib 44483 ~ 3impib with the inner im...
bi13impib 44484 ~ 3impib with the outer im...
bi123impib 44485 ~ 3impib with the implicat...
bi13impia 44486 ~ 3impia with the outer im...
bi123impia 44487 ~ 3impia with the implicat...
bi33imp12 44488 ~ 3imp with innermost impl...
bi13imp23 44489 ~ 3imp with outermost impl...
bi13imp2 44490 Similar to ~ 3imp except t...
bi12imp3 44491 Similar to ~ 3imp except a...
bi23imp1 44492 Similar to ~ 3imp except a...
bi123imp0 44493 Similar to ~ 3imp except a...
4animp1 44494 A single hypothesis unific...
4an31 44495 A rearrangement of conjunc...
4an4132 44496 A rearrangement of conjunc...
expcomdg 44497 Biconditional form of ~ ex...
iidn3 44498 ~ idn3 without virtual ded...
ee222 44499 ~ e222 without virtual ded...
ee3bir 44500 Right-biconditional form o...
ee13 44501 ~ e13 without virtual dedu...
ee121 44502 ~ e121 without virtual ded...
ee122 44503 ~ e122 without virtual ded...
ee333 44504 ~ e333 without virtual ded...
ee323 44505 ~ e323 without virtual ded...
3ornot23 44506 If the second and third di...
orbi1r 44507 ~ orbi1 with order of disj...
3orbi123 44508 ~ pm4.39 with a 3-conjunct...
syl5imp 44509 Closed form of ~ syl5 . D...
impexpd 44510 The following User's Proof...
com3rgbi 44511 The following User's Proof...
impexpdcom 44512 The following User's Proof...
ee1111 44513 Non-virtual deduction form...
pm2.43bgbi 44514 Logical equivalence of a 2...
pm2.43cbi 44515 Logical equivalence of a 3...
ee233 44516 Non-virtual deduction form...
imbi13 44517 Join three logical equival...
ee33 44518 Non-virtual deduction form...
con5 44519 Biconditional contrapositi...
con5i 44520 Inference form of ~ con5 ....
exlimexi 44521 Inference similar to Theor...
sb5ALT 44522 Equivalence for substituti...
eexinst01 44523 ~ exinst01 without virtual...
eexinst11 44524 ~ exinst11 without virtual...
vk15.4j 44525 Excercise 4j of Unit 15 of...
notnotrALT 44526 Converse of double negatio...
con3ALT2 44527 Contraposition. Alternate...
ssralv2 44528 Quantification restricted ...
sbc3or 44529 ~ sbcor with a 3-disjuncts...
alrim3con13v 44530 Closed form of ~ alrimi wi...
rspsbc2 44531 ~ rspsbc with two quantify...
sbcoreleleq 44532 Substitution of a setvar v...
tratrb 44533 If a class is transitive a...
ordelordALT 44534 An element of an ordinal c...
sbcim2g 44535 Distribution of class subs...
sbcbi 44536 Implication form of ~ sbcb...
trsbc 44537 Formula-building inference...
truniALT 44538 The union of a class of tr...
onfrALTlem5 44539 Lemma for ~ onfrALT . (Co...
onfrALTlem4 44540 Lemma for ~ onfrALT . (Co...
onfrALTlem3 44541 Lemma for ~ onfrALT . (Co...
ggen31 44542 ~ gen31 without virtual de...
onfrALTlem2 44543 Lemma for ~ onfrALT . (Co...
cbvexsv 44544 A theorem pertaining to th...
onfrALTlem1 44545 Lemma for ~ onfrALT . (Co...
onfrALT 44546 The membership relation is...
19.41rg 44547 Closed form of right-to-le...
opelopab4 44548 Ordered pair membership in...
2pm13.193 44549 ~ pm13.193 for two variabl...
hbntal 44550 A closed form of ~ hbn . ~...
hbimpg 44551 A closed form of ~ hbim . ...
hbalg 44552 Closed form of ~ hbal . D...
hbexg 44553 Closed form of ~ nfex . D...
ax6e2eq 44554 Alternate form of ~ ax6e f...
ax6e2nd 44555 If at least two sets exist...
ax6e2ndeq 44556 "At least two sets exist" ...
2sb5nd 44557 Equivalence for double sub...
2uasbanh 44558 Distribute the unabbreviat...
2uasban 44559 Distribute the unabbreviat...
e2ebind 44560 Absorption of an existenti...
elpwgded 44561 ~ elpwgdedVD in convention...
trelded 44562 Deduction form of ~ trel ....
jaoded 44563 Deduction form of ~ jao . ...
sbtT 44564 A substitution into a theo...
not12an2impnot1 44565 If a double conjunction is...
in1 44568 Inference form of ~ df-vd1...
iin1 44569 ~ in1 without virtual dedu...
dfvd1ir 44570 Inference form of ~ df-vd1...
idn1 44571 Virtual deduction identity...
dfvd1imp 44572 Left-to-right part of defi...
dfvd1impr 44573 Right-to-left part of defi...
dfvd2 44576 Definition of a 2-hypothes...
dfvd2an 44579 Definition of a 2-hypothes...
dfvd2ani 44580 Inference form of ~ dfvd2a...
dfvd2anir 44581 Right-to-left inference fo...
dfvd2i 44582 Inference form of ~ dfvd2 ...
dfvd2ir 44583 Right-to-left inference fo...
dfvd3 44588 Definition of a 3-hypothes...
dfvd3i 44589 Inference form of ~ dfvd3 ...
dfvd3ir 44590 Right-to-left inference fo...
dfvd3an 44591 Definition of a 3-hypothes...
dfvd3ani 44592 Inference form of ~ dfvd3a...
dfvd3anir 44593 Right-to-left inference fo...
vd01 44594 A virtual hypothesis virtu...
vd02 44595 Two virtual hypotheses vir...
vd03 44596 A theorem is virtually inf...
vd12 44597 A virtual deduction with 1...
vd13 44598 A virtual deduction with 1...
vd23 44599 A virtual deduction with 2...
dfvd2imp 44600 The virtual deduction form...
dfvd2impr 44601 A 2-antecedent nested impl...
in2 44602 The virtual deduction intr...
int2 44603 The virtual deduction intr...
iin2 44604 ~ in2 without virtual dedu...
in2an 44605 The virtual deduction intr...
in3 44606 The virtual deduction intr...
iin3 44607 ~ in3 without virtual dedu...
in3an 44608 The virtual deduction intr...
int3 44609 The virtual deduction intr...
idn2 44610 Virtual deduction identity...
iden2 44611 Virtual deduction identity...
idn3 44612 Virtual deduction identity...
gen11 44613 Virtual deduction generali...
gen11nv 44614 Virtual deduction generali...
gen12 44615 Virtual deduction generali...
gen21 44616 Virtual deduction generali...
gen21nv 44617 Virtual deduction form of ...
gen31 44618 Virtual deduction generali...
gen22 44619 Virtual deduction generali...
ggen22 44620 ~ gen22 without virtual de...
exinst 44621 Existential Instantiation....
exinst01 44622 Existential Instantiation....
exinst11 44623 Existential Instantiation....
e1a 44624 A Virtual deduction elimin...
el1 44625 A Virtual deduction elimin...
e1bi 44626 Biconditional form of ~ e1...
e1bir 44627 Right biconditional form o...
e2 44628 A virtual deduction elimin...
e2bi 44629 Biconditional form of ~ e2...
e2bir 44630 Right biconditional form o...
ee223 44631 ~ e223 without virtual ded...
e223 44632 A virtual deduction elimin...
e222 44633 A virtual deduction elimin...
e220 44634 A virtual deduction elimin...
ee220 44635 ~ e220 without virtual ded...
e202 44636 A virtual deduction elimin...
ee202 44637 ~ e202 without virtual ded...
e022 44638 A virtual deduction elimin...
ee022 44639 ~ e022 without virtual ded...
e002 44640 A virtual deduction elimin...
ee002 44641 ~ e002 without virtual ded...
e020 44642 A virtual deduction elimin...
ee020 44643 ~ e020 without virtual ded...
e200 44644 A virtual deduction elimin...
ee200 44645 ~ e200 without virtual ded...
e221 44646 A virtual deduction elimin...
ee221 44647 ~ e221 without virtual ded...
e212 44648 A virtual deduction elimin...
ee212 44649 ~ e212 without virtual ded...
e122 44650 A virtual deduction elimin...
e112 44651 A virtual deduction elimin...
ee112 44652 ~ e112 without virtual ded...
e121 44653 A virtual deduction elimin...
e211 44654 A virtual deduction elimin...
ee211 44655 ~ e211 without virtual ded...
e210 44656 A virtual deduction elimin...
ee210 44657 ~ e210 without virtual ded...
e201 44658 A virtual deduction elimin...
ee201 44659 ~ e201 without virtual ded...
e120 44660 A virtual deduction elimin...
ee120 44661 Virtual deduction rule ~ e...
e021 44662 A virtual deduction elimin...
ee021 44663 ~ e021 without virtual ded...
e012 44664 A virtual deduction elimin...
ee012 44665 ~ e012 without virtual ded...
e102 44666 A virtual deduction elimin...
ee102 44667 ~ e102 without virtual ded...
e22 44668 A virtual deduction elimin...
e22an 44669 Conjunction form of ~ e22 ...
ee22an 44670 ~ e22an without virtual de...
e111 44671 A virtual deduction elimin...
e1111 44672 A virtual deduction elimin...
e110 44673 A virtual deduction elimin...
ee110 44674 ~ e110 without virtual ded...
e101 44675 A virtual deduction elimin...
ee101 44676 ~ e101 without virtual ded...
e011 44677 A virtual deduction elimin...
ee011 44678 ~ e011 without virtual ded...
e100 44679 A virtual deduction elimin...
ee100 44680 ~ e100 without virtual ded...
e010 44681 A virtual deduction elimin...
ee010 44682 ~ e010 without virtual ded...
e001 44683 A virtual deduction elimin...
ee001 44684 ~ e001 without virtual ded...
e11 44685 A virtual deduction elimin...
e11an 44686 Conjunction form of ~ e11 ...
ee11an 44687 ~ e11an without virtual de...
e01 44688 A virtual deduction elimin...
e01an 44689 Conjunction form of ~ e01 ...
ee01an 44690 ~ e01an without virtual de...
e10 44691 A virtual deduction elimin...
e10an 44692 Conjunction form of ~ e10 ...
ee10an 44693 ~ e10an without virtual de...
e02 44694 A virtual deduction elimin...
e02an 44695 Conjunction form of ~ e02 ...
ee02an 44696 ~ e02an without virtual de...
eel021old 44697 ~ el021old without virtual...
el021old 44698 A virtual deduction elimin...
eel000cT 44699 An elimination deduction. ...
eel0TT 44700 An elimination deduction. ...
eelT00 44701 An elimination deduction. ...
eelTTT 44702 An elimination deduction. ...
eelT11 44703 An elimination deduction. ...
eelT1 44704 Syllogism inference combin...
eelT12 44705 An elimination deduction. ...
eelTT1 44706 An elimination deduction. ...
eelT01 44707 An elimination deduction. ...
eel0T1 44708 An elimination deduction. ...
eel12131 44709 An elimination deduction. ...
eel2131 44710 ~ syl2an with antecedents ...
eel3132 44711 ~ syl2an with antecedents ...
eel0321old 44712 ~ el0321old without virtua...
el0321old 44713 A virtual deduction elimin...
eel2122old 44714 ~ el2122old without virtua...
el2122old 44715 A virtual deduction elimin...
eel0000 44716 Elimination rule similar t...
eel00001 44717 An elimination deduction. ...
eel00000 44718 Elimination rule similar ~...
eel11111 44719 Five-hypothesis eliminatio...
e12 44720 A virtual deduction elimin...
e12an 44721 Conjunction form of ~ e12 ...
el12 44722 Virtual deduction form of ...
e20 44723 A virtual deduction elimin...
e20an 44724 Conjunction form of ~ e20 ...
ee20an 44725 ~ e20an without virtual de...
e21 44726 A virtual deduction elimin...
e21an 44727 Conjunction form of ~ e21 ...
ee21an 44728 ~ e21an without virtual de...
e333 44729 A virtual deduction elimin...
e33 44730 A virtual deduction elimin...
e33an 44731 Conjunction form of ~ e33 ...
ee33an 44732 ~ e33an without virtual de...
e3 44733 Meta-connective form of ~ ...
e3bi 44734 Biconditional form of ~ e3...
e3bir 44735 Right biconditional form o...
e03 44736 A virtual deduction elimin...
ee03 44737 ~ e03 without virtual dedu...
e03an 44738 Conjunction form of ~ e03 ...
ee03an 44739 Conjunction form of ~ ee03...
e30 44740 A virtual deduction elimin...
ee30 44741 ~ e30 without virtual dedu...
e30an 44742 A virtual deduction elimin...
ee30an 44743 Conjunction form of ~ ee30...
e13 44744 A virtual deduction elimin...
e13an 44745 A virtual deduction elimin...
ee13an 44746 ~ e13an without virtual de...
e31 44747 A virtual deduction elimin...
ee31 44748 ~ e31 without virtual dedu...
e31an 44749 A virtual deduction elimin...
ee31an 44750 ~ e31an without virtual de...
e23 44751 A virtual deduction elimin...
e23an 44752 A virtual deduction elimin...
ee23an 44753 ~ e23an without virtual de...
e32 44754 A virtual deduction elimin...
ee32 44755 ~ e32 without virtual dedu...
e32an 44756 A virtual deduction elimin...
ee32an 44757 ~ e33an without virtual de...
e123 44758 A virtual deduction elimin...
ee123 44759 ~ e123 without virtual ded...
el123 44760 A virtual deduction elimin...
e233 44761 A virtual deduction elimin...
e323 44762 A virtual deduction elimin...
e000 44763 A virtual deduction elimin...
e00 44764 Elimination rule identical...
e00an 44765 Elimination rule identical...
eel00cT 44766 An elimination deduction. ...
eelTT 44767 An elimination deduction. ...
e0a 44768 Elimination rule identical...
eelT 44769 An elimination deduction. ...
eel0cT 44770 An elimination deduction. ...
eelT0 44771 An elimination deduction. ...
e0bi 44772 Elimination rule identical...
e0bir 44773 Elimination rule identical...
uun0.1 44774 Convention notation form o...
un0.1 44775 ` T. ` is the constant tru...
uunT1 44776 A deduction unionizing a n...
uunT1p1 44777 A deduction unionizing a n...
uunT21 44778 A deduction unionizing a n...
uun121 44779 A deduction unionizing a n...
uun121p1 44780 A deduction unionizing a n...
uun132 44781 A deduction unionizing a n...
uun132p1 44782 A deduction unionizing a n...
anabss7p1 44783 A deduction unionizing a n...
un10 44784 A unionizing deduction. (...
un01 44785 A unionizing deduction. (...
un2122 44786 A deduction unionizing a n...
uun2131 44787 A deduction unionizing a n...
uun2131p1 44788 A deduction unionizing a n...
uunTT1 44789 A deduction unionizing a n...
uunTT1p1 44790 A deduction unionizing a n...
uunTT1p2 44791 A deduction unionizing a n...
uunT11 44792 A deduction unionizing a n...
uunT11p1 44793 A deduction unionizing a n...
uunT11p2 44794 A deduction unionizing a n...
uunT12 44795 A deduction unionizing a n...
uunT12p1 44796 A deduction unionizing a n...
uunT12p2 44797 A deduction unionizing a n...
uunT12p3 44798 A deduction unionizing a n...
uunT12p4 44799 A deduction unionizing a n...
uunT12p5 44800 A deduction unionizing a n...
uun111 44801 A deduction unionizing a n...
3anidm12p1 44802 A deduction unionizing a n...
3anidm12p2 44803 A deduction unionizing a n...
uun123 44804 A deduction unionizing a n...
uun123p1 44805 A deduction unionizing a n...
uun123p2 44806 A deduction unionizing a n...
uun123p3 44807 A deduction unionizing a n...
uun123p4 44808 A deduction unionizing a n...
uun2221 44809 A deduction unionizing a n...
uun2221p1 44810 A deduction unionizing a n...
uun2221p2 44811 A deduction unionizing a n...
3impdirp1 44812 A deduction unionizing a n...
3impcombi 44813 A 1-hypothesis proposition...
trsspwALT 44814 Virtual deduction proof of...
trsspwALT2 44815 Virtual deduction proof of...
trsspwALT3 44816 Short predicate calculus p...
sspwtr 44817 Virtual deduction proof of...
sspwtrALT 44818 Virtual deduction proof of...
sspwtrALT2 44819 Short predicate calculus p...
pwtrVD 44820 Virtual deduction proof of...
pwtrrVD 44821 Virtual deduction proof of...
suctrALT 44822 The successor of a transit...
snssiALTVD 44823 Virtual deduction proof of...
snssiALT 44824 If a class is an element o...
snsslVD 44825 Virtual deduction proof of...
snssl 44826 If a singleton is a subcla...
snelpwrVD 44827 Virtual deduction proof of...
unipwrVD 44828 Virtual deduction proof of...
unipwr 44829 A class is a subclass of t...
sstrALT2VD 44830 Virtual deduction proof of...
sstrALT2 44831 Virtual deduction proof of...
suctrALT2VD 44832 Virtual deduction proof of...
suctrALT2 44833 Virtual deduction proof of...
elex2VD 44834 Virtual deduction proof of...
elex22VD 44835 Virtual deduction proof of...
eqsbc2VD 44836 Virtual deduction proof of...
zfregs2VD 44837 Virtual deduction proof of...
tpid3gVD 44838 Virtual deduction proof of...
en3lplem1VD 44839 Virtual deduction proof of...
en3lplem2VD 44840 Virtual deduction proof of...
en3lpVD 44841 Virtual deduction proof of...
simplbi2VD 44842 Virtual deduction proof of...
3ornot23VD 44843 Virtual deduction proof of...
orbi1rVD 44844 Virtual deduction proof of...
bitr3VD 44845 Virtual deduction proof of...
3orbi123VD 44846 Virtual deduction proof of...
sbc3orgVD 44847 Virtual deduction proof of...
19.21a3con13vVD 44848 Virtual deduction proof of...
exbirVD 44849 Virtual deduction proof of...
exbiriVD 44850 Virtual deduction proof of...
rspsbc2VD 44851 Virtual deduction proof of...
3impexpVD 44852 Virtual deduction proof of...
3impexpbicomVD 44853 Virtual deduction proof of...
3impexpbicomiVD 44854 Virtual deduction proof of...
sbcoreleleqVD 44855 Virtual deduction proof of...
hbra2VD 44856 Virtual deduction proof of...
tratrbVD 44857 Virtual deduction proof of...
al2imVD 44858 Virtual deduction proof of...
syl5impVD 44859 Virtual deduction proof of...
idiVD 44860 Virtual deduction proof of...
ancomstVD 44861 Closed form of ~ ancoms . ...
ssralv2VD 44862 Quantification restricted ...
ordelordALTVD 44863 An element of an ordinal c...
equncomVD 44864 If a class equals the unio...
equncomiVD 44865 Inference form of ~ equnco...
sucidALTVD 44866 A set belongs to its succe...
sucidALT 44867 A set belongs to its succe...
sucidVD 44868 A set belongs to its succe...
imbi12VD 44869 Implication form of ~ imbi...
imbi13VD 44870 Join three logical equival...
sbcim2gVD 44871 Distribution of class subs...
sbcbiVD 44872 Implication form of ~ sbcb...
trsbcVD 44873 Formula-building inference...
truniALTVD 44874 The union of a class of tr...
ee33VD 44875 Non-virtual deduction form...
trintALTVD 44876 The intersection of a clas...
trintALT 44877 The intersection of a clas...
undif3VD 44878 The first equality of Exer...
sbcssgVD 44879 Virtual deduction proof of...
csbingVD 44880 Virtual deduction proof of...
onfrALTlem5VD 44881 Virtual deduction proof of...
onfrALTlem4VD 44882 Virtual deduction proof of...
onfrALTlem3VD 44883 Virtual deduction proof of...
simplbi2comtVD 44884 Virtual deduction proof of...
onfrALTlem2VD 44885 Virtual deduction proof of...
onfrALTlem1VD 44886 Virtual deduction proof of...
onfrALTVD 44887 Virtual deduction proof of...
csbeq2gVD 44888 Virtual deduction proof of...
csbsngVD 44889 Virtual deduction proof of...
csbxpgVD 44890 Virtual deduction proof of...
csbresgVD 44891 Virtual deduction proof of...
csbrngVD 44892 Virtual deduction proof of...
csbima12gALTVD 44893 Virtual deduction proof of...
csbunigVD 44894 Virtual deduction proof of...
csbfv12gALTVD 44895 Virtual deduction proof of...
con5VD 44896 Virtual deduction proof of...
relopabVD 44897 Virtual deduction proof of...
19.41rgVD 44898 Virtual deduction proof of...
2pm13.193VD 44899 Virtual deduction proof of...
hbimpgVD 44900 Virtual deduction proof of...
hbalgVD 44901 Virtual deduction proof of...
hbexgVD 44902 Virtual deduction proof of...
ax6e2eqVD 44903 The following User's Proof...
ax6e2ndVD 44904 The following User's Proof...
ax6e2ndeqVD 44905 The following User's Proof...
2sb5ndVD 44906 The following User's Proof...
2uasbanhVD 44907 The following User's Proof...
e2ebindVD 44908 The following User's Proof...
sb5ALTVD 44909 The following User's Proof...
vk15.4jVD 44910 The following User's Proof...
notnotrALTVD 44911 The following User's Proof...
con3ALTVD 44912 The following User's Proof...
elpwgdedVD 44913 Membership in a power clas...
sspwimp 44914 If a class is a subclass o...
sspwimpVD 44915 The following User's Proof...
sspwimpcf 44916 If a class is a subclass o...
sspwimpcfVD 44917 The following User's Proof...
suctrALTcf 44918 The successor of a transit...
suctrALTcfVD 44919 The following User's Proof...
suctrALT3 44920 The successor of a transit...
sspwimpALT 44921 If a class is a subclass o...
unisnALT 44922 A set equals the union of ...
notnotrALT2 44923 Converse of double negatio...
sspwimpALT2 44924 If a class is a subclass o...
e2ebindALT 44925 Absorption of an existenti...
ax6e2ndALT 44926 If at least two sets exist...
ax6e2ndeqALT 44927 "At least two sets exist" ...
2sb5ndALT 44928 Equivalence for double sub...
chordthmALT 44929 The intersecting chords th...
isosctrlem1ALT 44930 Lemma for ~ isosctr . Thi...
iunconnlem2 44931 The indexed union of conne...
iunconnALT 44932 The indexed union of conne...
sineq0ALT 44933 A complex number whose sin...
rspesbcd 44934 Restricted quantifier vers...
rext0 44935 Nonempty existential quant...
dfbi1ALTa 44936 Version of ~ dfbi1ALT usin...
simprimi 44937 Inference associated with ...
dfbi1ALTb 44938 Further shorten ~ dfbi1ALT...
relpeq1 44941 Equality theorem for relat...
relpeq2 44942 Equality theorem for relat...
relpeq3 44943 Equality theorem for relat...
relpeq4 44944 Equality theorem for relat...
relpeq5 44945 Equality theorem for relat...
nfrelp 44946 Bound-variable hypothesis ...
relpf 44947 A relation-preserving func...
relprel 44948 A relation-preserving func...
relpmin 44949 A preimage of a minimal el...
relpfrlem 44950 Lemma for ~ relpfr . Prov...
relpfr 44951 If the image of a set unde...
orbitex 44952 Orbits exist. Given a set...
orbitinit 44953 A set is contained in its ...
orbitcl 44954 The orbit under a function...
orbitclmpt 44955 Version of ~ orbitcl using...
trwf 44956 The class of well-founded ...
rankrelp 44957 The rank function preserve...
wffr 44958 The class of well-founded ...
trfr 44959 A transitive class well-fo...
tcfr 44960 A set is well-founded if a...
xpwf 44961 The Cartesian product of t...
dmwf 44962 The domain of a well-found...
rnwf 44963 The range of a well-founde...
relwf 44964 A relation is a well-found...
ralabso 44965 Simplification of restrict...
rexabso 44966 Simplification of restrict...
ralabsod 44967 Deduction form of ~ ralabs...
rexabsod 44968 Deduction form of ~ rexabs...
ralabsobidv 44969 Formula-building lemma for...
rexabsobidv 44970 Formula-building lemma for...
ssabso 44971 The notion " ` x ` is a su...
disjabso 44972 Disjointness is absolute f...
n0abso 44973 Nonemptiness is absolute f...
traxext 44974 A transitive class models ...
modelaxreplem1 44975 Lemma for ~ modelaxrep . ...
modelaxreplem2 44976 Lemma for ~ modelaxrep . ...
modelaxreplem3 44977 Lemma for ~ modelaxrep . ...
modelaxrep 44978 Conditions which guarantee...
ssclaxsep 44979 A class that is closed und...
0elaxnul 44980 A class that contains the ...
pwclaxpow 44981 Suppose ` M ` is a transit...
prclaxpr 44982 A class that is closed und...
uniclaxun 44983 A class that is closed und...
sswfaxreg 44984 A subclass of the class of...
omssaxinf2 44985 A class that contains all ...
omelaxinf2 44986 A transitive class that co...
dfac5prim 44987 ~ dfac5 expanded into prim...
ac8prim 44988 ~ ac8 expanded into primit...
modelac8prim 44989 If ` M ` is a transitive c...
wfaxext 44990 The class of well-founded ...
wfaxrep 44991 The class of well-founded ...
wfaxsep 44992 The class of well-founded ...
wfaxnul 44993 The class of well-founded ...
wfaxpow 44994 The class of well-founded ...
wfaxpr 44995 The class of well-founded ...
wfaxun 44996 The class of well-founded ...
wfaxreg 44997 The class of well-founded ...
wfaxinf2 44998 The class of well-founded ...
wfac8prim 44999 The class of well-founded ...
brpermmodel 45000 The membership relation in...
brpermmodelcnv 45001 Ordinary membership expres...
permaxext 45002 The Axiom of Extensionalit...
permaxrep 45003 The Axiom of Replacement ~...
permaxsep 45004 The Axiom of Separation ~ ...
permaxnul 45005 The Null Set Axiom ~ ax-nu...
permaxpow 45006 The Axiom of Power Sets ~ ...
permaxpr 45007 The Axiom of Pairing ~ ax-...
permaxun 45008 The Axiom of Union ~ ax-un...
permaxinf2lem 45009 Lemma for ~ permaxinf2 . ...
permaxinf2 45010 The Axiom of Infinity ~ ax...
permac8prim 45011 The Axiom of Choice ~ ac8p...
nregmodelf1o 45012 Define a permutation ` F `...
nregmodellem 45013 Lemma for ~ nregmodel . (...
nregmodel 45014 The Axiom of Regularity ~ ...
nregmodelaxext 45015 The Axiom of Extensionalit...
evth2f 45016 A version of ~ evth2 using...
elunif 45017 A version of ~ eluni using...
rzalf 45018 A version of ~ rzal using ...
fvelrnbf 45019 A version of ~ fvelrnb usi...
rfcnpre1 45020 If F is a continuous funct...
ubelsupr 45021 If U belongs to A and U is...
fsumcnf 45022 A finite sum of functions ...
mulltgt0 45023 The product of a negative ...
rspcegf 45024 A version of ~ rspcev usin...
rabexgf 45025 A version of ~ rabexg usin...
fcnre 45026 A function continuous with...
sumsnd 45027 A sum of a singleton is th...
evthf 45028 A version of ~ evth using ...
cnfex 45029 The class of continuous fu...
fnchoice 45030 For a finite set, a choice...
refsumcn 45031 A finite sum of continuous...
rfcnpre2 45032 If ` F ` is a continuous f...
cncmpmax 45033 When the hypothesis for th...
rfcnpre3 45034 If F is a continuous funct...
rfcnpre4 45035 If F is a continuous funct...
sumpair 45036 Sum of two distinct comple...
rfcnnnub 45037 Given a real continuous fu...
refsum2cnlem1 45038 This is the core Lemma for...
refsum2cn 45039 The sum of two continuus r...
adantlllr 45040 Deduction adding a conjunc...
3adantlr3 45041 Deduction adding a conjunc...
3adantll2 45042 Deduction adding a conjunc...
3adantll3 45043 Deduction adding a conjunc...
ssnel 45044 If not element of a set, t...
sncldre 45045 A singleton is closed w.r....
n0p 45046 A polynomial with a nonzer...
pm2.65ni 45047 Inference rule for proof b...
iuneq2df 45048 Equality deduction for ind...
nnfoctb 45049 There exists a mapping fro...
elpwinss 45050 An element of the powerset...
unidmex 45051 If ` F ` is a set, then ` ...
ndisj2 45052 A non-disjointness conditi...
zenom 45053 The set of integer numbers...
uzwo4 45054 Well-ordering principle: a...
unisn0 45055 The union of the singleton...
ssin0 45056 If two classes are disjoin...
inabs3 45057 Absorption law for interse...
pwpwuni 45058 Relationship between power...
disjiun2 45059 In a disjoint collection, ...
0pwfi 45060 The empty set is in any po...
ssinss2d 45061 Intersection preserves sub...
zct 45062 The set of integer numbers...
pwfin0 45063 A finite set always belong...
uzct 45064 An upper integer set is co...
iunxsnf 45065 A singleton index picks ou...
fiiuncl 45066 If a set is closed under t...
iunp1 45067 The addition of the next s...
fiunicl 45068 If a set is closed under t...
ixpeq2d 45069 Equality theorem for infin...
disjxp1 45070 The sets of a cartesian pr...
disjsnxp 45071 The sets in the cartesian ...
eliind 45072 Membership in indexed inte...
rspcef 45073 Restricted existential spe...
ixpssmapc 45074 An infinite Cartesian prod...
elintd 45075 Membership in class inters...
ssdf 45076 A sufficient condition for...
brneqtrd 45077 Substitution of equal clas...
ssnct 45078 A set containing an uncoun...
ssuniint 45079 Sufficient condition for b...
elintdv 45080 Membership in class inters...
ssd 45081 A sufficient condition for...
ralimralim 45082 Introducing any antecedent...
snelmap 45083 Membership of the element ...
xrnmnfpnf 45084 An extended real that is n...
nelrnmpt 45085 Non-membership in the rang...
iuneq1i 45086 Equality theorem for index...
nssrex 45087 Negation of subclass relat...
ssinc 45088 Inclusion relation for a m...
ssdec 45089 Inclusion relation for a m...
elixpconstg 45090 Membership in an infinite ...
iineq1d 45091 Equality theorem for index...
metpsmet 45092 A metric is a pseudometric...
ixpssixp 45093 Subclass theorem for infin...
ballss3 45094 A sufficient condition for...
iunincfi 45095 Given a sequence of increa...
nsstr 45096 If it's not a subclass, it...
rexanuz3 45097 Combine two different uppe...
cbvmpo2 45098 Rule to change the second ...
cbvmpo1 45099 Rule to change the first b...
eliuniin 45100 Indexed union of indexed i...
ssabf 45101 Subclass of a class abstra...
pssnssi 45102 A proper subclass does not...
rabidim2 45103 Membership in a restricted...
eluni2f 45104 Membership in class union....
eliin2f 45105 Membership in indexed inte...
nssd 45106 Negation of subclass relat...
iineq12dv 45107 Equality deduction for ind...
supxrcld 45108 The supremum of an arbitra...
elrestd 45109 A sufficient condition for...
eliuniincex 45110 Counterexample to show tha...
eliincex 45111 Counterexample to show tha...
eliinid 45112 Membership in an indexed i...
abssf 45113 Class abstraction in a sub...
supxrubd 45114 A member of a set of exten...
ssrabf 45115 Subclass of a restricted c...
ssrabdf 45116 Subclass of a restricted c...
eliin2 45117 Membership in indexed inte...
ssrab2f 45118 Subclass relation for a re...
restuni3 45119 The underlying set of a su...
rabssf 45120 Restricted class abstracti...
eliuniin2 45121 Indexed union of indexed i...
restuni4 45122 The underlying set of a su...
restuni6 45123 The underlying set of a su...
restuni5 45124 The underlying set of a su...
unirestss 45125 The union of an elementwis...
iniin1 45126 Indexed intersection of in...
iniin2 45127 Indexed intersection of in...
cbvrabv2 45128 A more general version of ...
cbvrabv2w 45129 A more general version of ...
iinssiin 45130 Subset implication for an ...
eliind2 45131 Membership in indexed inte...
iinssd 45132 Subset implication for an ...
rabbida2 45133 Equivalent wff's yield equ...
iinexd 45134 The existence of an indexe...
rabexf 45135 Separation Scheme in terms...
rabbida3 45136 Equivalent wff's yield equ...
r19.36vf 45137 Restricted quantifier vers...
raleqd 45138 Equality deduction for res...
iinssf 45139 Subset implication for an ...
iinssdf 45140 Subset implication for an ...
resabs2i 45141 Absorption law for restric...
ssdf2 45142 A sufficient condition for...
rabssd 45143 Restricted class abstracti...
rexnegd 45144 Minus a real number. (Con...
rexlimd3 45145 * Inference from Theorem 1...
nel1nelini 45146 Membership in an intersect...
nel2nelini 45147 Membership in an intersect...
eliunid 45148 Membership in indexed unio...
reximdd 45149 Deduction from Theorem 19....
inopnd 45150 The intersection of two op...
ss2rabdf 45151 Deduction of restricted ab...
restopn3 45152 If ` A ` is open, then ` A...
restopnssd 45153 A topology restricted to a...
restsubel 45154 A subset belongs in the sp...
toprestsubel 45155 A subset is open in the to...
rabidd 45156 An "identity" law of concr...
iunssdf 45157 Subset theorem for an inde...
iinss2d 45158 Subset implication for an ...
r19.3rzf 45159 Restricted quantification ...
r19.28zf 45160 Restricted quantifier vers...
iindif2f 45161 Indexed intersection of cl...
ralfal 45162 Two ways of expressing emp...
archd 45163 Archimedean property of re...
nimnbi 45164 If an implication is false...
nimnbi2 45165 If an implication is false...
notbicom 45166 Commutative law for the ne...
rexeqif 45167 Equality inference for res...
rspced 45168 Restricted existential spe...
fnresdmss 45169 A function does not change...
fmptsnxp 45170 Maps-to notation and Carte...
fvmpt2bd 45171 Value of a function given ...
rnmptfi 45172 The range of a function wi...
fresin2 45173 Restriction of a function ...
ffi 45174 A function with finite dom...
suprnmpt 45175 An explicit bound for the ...
rnffi 45176 The range of a function wi...
mptelpm 45177 A function in maps-to nota...
rnmptpr 45178 Range of a function define...
resmpti 45179 Restriction of the mapping...
founiiun 45180 Union expressed as an inde...
rnresun 45181 Distribution law for range...
elrnmptf 45182 The range of a function in...
rnmptssrn 45183 Inclusion relation for two...
disjf1 45184 A 1 to 1 mapping built fro...
rnsnf 45185 The range of a function wh...
wessf1ornlem 45186 Given a function ` F ` on ...
wessf1orn 45187 Given a function ` F ` on ...
nelrnres 45188 If ` A ` is not in the ran...
disjrnmpt2 45189 Disjointness of the range ...
elrnmpt1sf 45190 Elementhood in an image se...
founiiun0 45191 Union expressed as an inde...
disjf1o 45192 A bijection built from dis...
disjinfi 45193 Only a finite number of di...
fvovco 45194 Value of the composition o...
ssnnf1octb 45195 There exists a bijection b...
nnf1oxpnn 45196 There is a bijection betwe...
rnmptssd 45197 The range of a function gi...
projf1o 45198 A biijection from a set to...
fvmap 45199 Function value for a membe...
fvixp2 45200 Projection of a factor of ...
choicefi 45201 For a finite set, a choice...
mpct 45202 The exponentiation of a co...
cnmetcoval 45203 Value of the distance func...
fcomptss 45204 Express composition of two...
elmapsnd 45205 Membership in a set expone...
mapss2 45206 Subset inheritance for set...
fsneq 45207 Equality condition for two...
difmap 45208 Difference of two sets exp...
unirnmap 45209 Given a subset of a set ex...
inmap 45210 Intersection of two sets e...
fcoss 45211 Composition of two mapping...
fsneqrn 45212 Equality condition for two...
difmapsn 45213 Difference of two sets exp...
mapssbi 45214 Subset inheritance for set...
unirnmapsn 45215 Equality theorem for a sub...
iunmapss 45216 The indexed union of set e...
ssmapsn 45217 A subset ` C ` of a set ex...
iunmapsn 45218 The indexed union of set e...
absfico 45219 Mapping domain and codomai...
icof 45220 The set of left-closed rig...
elpmrn 45221 The range of a partial fun...
imaexi 45222 The image of a set is a se...
axccdom 45223 Relax the constraint on ax...
dmmptdff 45224 The domain of the mapping ...
dmmptdf 45225 The domain of the mapping ...
elpmi2 45226 The domain of a partial fu...
dmrelrnrel 45227 A relation preserving func...
fvcod 45228 Value of a function compos...
elrnmpoid 45229 Membership in the range of...
axccd 45230 An alternative version of ...
axccd2 45231 An alternative version of ...
feqresmptf 45232 Express a restricted funct...
dmmptssf 45233 The domain of a mapping is...
dmmptdf2 45234 The domain of the mapping ...
dmuz 45235 Domain of the upper intege...
fmptd2f 45236 Domain and codomain of the...
mpteq1df 45237 An equality theorem for th...
mptexf 45238 If the domain of a functio...
fvmpt4 45239 Value of a function given ...
fmptf 45240 Functionality of the mappi...
resimass 45241 The image of a restriction...
mptssid 45242 The mapping operation expr...
mptfnd 45243 The maps-to notation defin...
rnmptlb 45244 Boundness below of the ran...
rnmptbddlem 45245 Boundness of the range of ...
rnmptbdd 45246 Boundness of the range of ...
funimaeq 45247 Membership relation for th...
rnmptssf 45248 The range of a function gi...
rnmptbd2lem 45249 Boundness below of the ran...
rnmptbd2 45250 Boundness below of the ran...
infnsuprnmpt 45251 The indexed infimum of rea...
suprclrnmpt 45252 Closure of the indexed sup...
suprubrnmpt2 45253 A member of a nonempty ind...
suprubrnmpt 45254 A member of a nonempty ind...
rnmptssdf 45255 The range of a function gi...
rnmptbdlem 45256 Boundness above of the ran...
rnmptbd 45257 Boundness above of the ran...
rnmptss2 45258 The range of a function gi...
elmptima 45259 The image of a function in...
ralrnmpt3 45260 A restricted quantifier ov...
rnmptssbi 45261 The range of a function gi...
imass2d 45262 Subset theorem for image. ...
imassmpt 45263 Membership relation for th...
fpmd 45264 A total function is a part...
fconst7 45265 An alternative way to expr...
fnmptif 45266 Functionality and domain o...
dmmptif 45267 Domain of the mapping oper...
mpteq2dfa 45268 Slightly more general equa...
dmmpt1 45269 The domain of the mapping ...
fmptff 45270 Functionality of the mappi...
fvmptelcdmf 45271 The value of a function at...
fmptdff 45272 A version of ~ fmptd using...
fvmpt2df 45273 Deduction version of ~ fvm...
rn1st 45274 The range of a function wi...
rnmptssff 45275 The range of a function gi...
rnmptssdff 45276 The range of a function gi...
fvmpt4d 45277 Value of a function given ...
sub2times 45278 Subtracting from a number,...
nnxrd 45279 A natural number is an ext...
nnxr 45280 A natural number is an ext...
abssubrp 45281 The distance of two distin...
elfzfzo 45282 Relationship between membe...
oddfl 45283 Odd number representation ...
abscosbd 45284 Bound for the absolute val...
mul13d 45285 Commutative/associative la...
negpilt0 45286 Negative ` _pi ` is negati...
dstregt0 45287 A complex number ` A ` tha...
subadd4b 45288 Rearrangement of 4 terms i...
xrlttri5d 45289 Not equal and not larger i...
zltlesub 45290 If an integer ` N ` is les...
divlt0gt0d 45291 The ratio of a negative nu...
subsub23d 45292 Swap subtrahend and result...
2timesgt 45293 Double of a positive real ...
reopn 45294 The reals are open with re...
sub31 45295 Swap the first and third t...
nnne1ge2 45296 A positive integer which i...
lefldiveq 45297 A closed enough, smaller r...
negsubdi3d 45298 Distribution of negative o...
ltdiv2dd 45299 Division of a positive num...
abssinbd 45300 Bound for the absolute val...
halffl 45301 Floor of ` ( 1 / 2 ) ` . ...
monoords 45302 Ordering relation for a st...
hashssle 45303 The size of a subset of a ...
lttri5d 45304 Not equal and not larger i...
fzisoeu 45305 A finite ordered set has a...
lt3addmuld 45306 If three real numbers are ...
absnpncan2d 45307 Triangular inequality, com...
fperiodmullem 45308 A function with period ` T...
fperiodmul 45309 A function with period T i...
upbdrech 45310 Choice of an upper bound f...
lt4addmuld 45311 If four real numbers are l...
absnpncan3d 45312 Triangular inequality, com...
upbdrech2 45313 Choice of an upper bound f...
ssfiunibd 45314 A finite union of bounded ...
fzdifsuc2 45315 Remove a successor from th...
fzsscn 45316 A finite sequence of integ...
divcan8d 45317 A cancellation law for div...
dmmcand 45318 Cancellation law for divis...
fzssre 45319 A finite sequence of integ...
bccld 45320 A binomial coefficient, in...
fzssnn0 45321 A finite set of sequential...
xreqle 45322 Equality implies 'less tha...
xaddlidd 45323 ` 0 ` is a left identity f...
xadd0ge 45324 A number is less than or e...
xrgtned 45325 'Greater than' implies not...
xrleneltd 45326 'Less than or equal to' an...
xaddcomd 45327 The extended real addition...
supxrre3 45328 The supremum of a nonempty...
uzfissfz 45329 For any finite subset of t...
xleadd2d 45330 Addition of extended reals...
suprltrp 45331 The supremum of a nonempty...
xleadd1d 45332 Addition of extended reals...
xreqled 45333 Equality implies 'less tha...
xrgepnfd 45334 An extended real greater t...
xrge0nemnfd 45335 A nonnegative extended rea...
supxrgere 45336 If a real number can be ap...
iuneqfzuzlem 45337 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 45338 If two unions indexed by u...
xle2addd 45339 Adding both side of two in...
supxrgelem 45340 If an extended real number...
supxrge 45341 If an extended real number...
suplesup 45342 If any element of ` A ` ca...
infxrglb 45343 The infimum of a set of ex...
xadd0ge2 45344 A number is less than or e...
nepnfltpnf 45345 An extended real that is n...
ltadd12dd 45346 Addition to both sides of ...
nemnftgtmnft 45347 An extended real that is n...
xrgtso 45348 'Greater than' is a strict...
rpex 45349 The positive reals form a ...
xrge0ge0 45350 A nonnegative extended rea...
xrssre 45351 A subset of extended reals...
ssuzfz 45352 A finite subset of the upp...
absfun 45353 The absolute value is a fu...
infrpge 45354 The infimum of a nonempty,...
xrlexaddrp 45355 If an extended real number...
supsubc 45356 The supremum function dist...
xralrple2 45357 Show that ` A ` is less th...
nnuzdisj 45358 The first ` N ` elements o...
ltdivgt1 45359 Divsion by a number greate...
xrltned 45360 'Less than' implies not eq...
nnsplit 45361 Express the set of positiv...
divdiv3d 45362 Division into a fraction. ...
abslt2sqd 45363 Comparison of the square o...
qenom 45364 The set of rational number...
qct 45365 The set of rational number...
xrltnled 45366 'Less than' in terms of 'l...
lenlteq 45367 'less than or equal to' bu...
xrred 45368 An extended real that is n...
rr2sscn2 45369 The cartesian square of ` ...
infxr 45370 The infimum of a set of ex...
infxrunb2 45371 The infimum of an unbounde...
infxrbnd2 45372 The infimum of a bounded-b...
infleinflem1 45373 Lemma for ~ infleinf , cas...
infleinflem2 45374 Lemma for ~ infleinf , whe...
infleinf 45375 If any element of ` B ` ca...
xralrple4 45376 Show that ` A ` is less th...
xralrple3 45377 Show that ` A ` is less th...
eluzelzd 45378 A member of an upper set o...
suplesup2 45379 If any element of ` A ` is...
recnnltrp 45380 ` N ` is a natural number ...
nnn0 45381 The set of positive intege...
fzct 45382 A finite set of sequential...
rpgtrecnn 45383 Any positive real number i...
fzossuz 45384 A half-open integer interv...
infxrrefi 45385 The real and extended real...
xrralrecnnle 45386 Show that ` A ` is less th...
fzoct 45387 A finite set of sequential...
frexr 45388 A function taking real val...
nnrecrp 45389 The reciprocal of a positi...
reclt0d 45390 The reciprocal of a negati...
lt0neg1dd 45391 If a number is negative, i...
infxrcld 45392 The infimum of an arbitrar...
xrralrecnnge 45393 Show that ` A ` is less th...
reclt0 45394 The reciprocal of a negati...
ltmulneg 45395 Multiplying by a negative ...
allbutfi 45396 For all but finitely many....
ltdiv23neg 45397 Swap denominator with othe...
xreqnltd 45398 A consequence of trichotom...
mnfnre2 45399 Minus infinity is not a re...
zssxr 45400 The integers are a subset ...
fisupclrnmpt 45401 A nonempty finite indexed ...
supxrunb3 45402 The supremum of an unbound...
elfzod 45403 Membership in a half-open ...
fimaxre4 45404 A nonempty finite set of r...
ren0 45405 The set of reals is nonemp...
eluzelz2 45406 A member of an upper set o...
resabs2d 45407 Absorption law for restric...
uzid2 45408 Membership of the least me...
supxrleubrnmpt 45409 The supremum of a nonempty...
uzssre2 45410 An upper set of integers i...
uzssd 45411 Subset relationship for tw...
eluzd 45412 Membership in an upper set...
infxrlbrnmpt2 45413 A member of a nonempty ind...
xrre4 45414 An extended real is real i...
uz0 45415 The upper integers functio...
eluzelz2d 45416 A member of an upper set o...
infleinf2 45417 If any element in ` B ` is...
unb2ltle 45418 "Unbounded below" expresse...
uzidd2 45419 Membership of the least me...
uzssd2 45420 Subset relationship for tw...
rexabslelem 45421 An indexed set of absolute...
rexabsle 45422 An indexed set of absolute...
allbutfiinf 45423 Given a "for all but finit...
supxrrernmpt 45424 The real and extended real...
suprleubrnmpt 45425 The supremum of a nonempty...
infrnmptle 45426 An indexed infimum of exte...
infxrunb3 45427 The infimum of an unbounde...
uzn0d 45428 The upper integers are all...
uzssd3 45429 Subset relationship for tw...
rexabsle2 45430 An indexed set of absolute...
infxrunb3rnmpt 45431 The infimum of an unbounde...
supxrre3rnmpt 45432 The indexed supremum of a ...
uzublem 45433 A set of reals, indexed by...
uzub 45434 A set of reals, indexed by...
ssrexr 45435 A subset of the reals is a...
supxrmnf2 45436 Removing minus infinity fr...
supxrcli 45437 The supremum of an arbitra...
uzid3 45438 Membership of the least me...
infxrlesupxr 45439 The supremum of a nonempty...
xnegeqd 45440 Equality of two extended n...
xnegrecl 45441 The extended real negative...
xnegnegi 45442 Extended real version of ~...
xnegeqi 45443 Equality of two extended n...
nfxnegd 45444 Deduction version of ~ nfx...
xnegnegd 45445 Extended real version of ~...
uzred 45446 An upper integer is a real...
xnegcli 45447 Closure of extended real n...
supminfrnmpt 45448 The indexed supremum of a ...
infxrpnf 45449 Adding plus infinity to a ...
infxrrnmptcl 45450 The infimum of an arbitrar...
leneg2d 45451 Negative of one side of 'l...
supxrltinfxr 45452 The supremum of the empty ...
max1d 45453 A number is less than or e...
supxrleubrnmptf 45454 The supremum of a nonempty...
nleltd 45455 'Not less than or equal to...
zxrd 45456 An integer is an extended ...
infxrgelbrnmpt 45457 The infimum of an indexed ...
rphalfltd 45458 Half of a positive real is...
uzssz2 45459 An upper set of integers i...
leneg3d 45460 Negative of one side of 'l...
max2d 45461 A number is less than or e...
uzn0bi 45462 The upper integers functio...
xnegrecl2 45463 If the extended real negat...
nfxneg 45464 Bound-variable hypothesis ...
uzxrd 45465 An upper integer is an ext...
infxrpnf2 45466 Removing plus infinity fro...
supminfxr 45467 The extended real suprema ...
infrpgernmpt 45468 The infimum of a nonempty,...
xnegre 45469 An extended real is real i...
xnegrecl2d 45470 If the extended real negat...
uzxr 45471 An upper integer is an ext...
supminfxr2 45472 The extended real suprema ...
xnegred 45473 An extended real is real i...
supminfxrrnmpt 45474 The indexed supremum of a ...
min1d 45475 The minimum of two numbers...
min2d 45476 The minimum of two numbers...
xrnpnfmnf 45477 An extended real that is n...
uzsscn 45478 An upper set of integers i...
absimnre 45479 The absolute value of the ...
uzsscn2 45480 An upper set of integers i...
xrtgcntopre 45481 The standard topologies on...
absimlere 45482 The absolute value of the ...
rpssxr 45483 The positive reals are a s...
monoordxrv 45484 Ordering relation for a mo...
monoordxr 45485 Ordering relation for a mo...
monoord2xrv 45486 Ordering relation for a mo...
monoord2xr 45487 Ordering relation for a mo...
xrpnf 45488 An extended real is plus i...
xlenegcon1 45489 Extended real version of ~...
xlenegcon2 45490 Extended real version of ~...
pimxrneun 45491 The preimage of a set of e...
caucvgbf 45492 A function is convergent i...
cvgcau 45493 A convergent function is C...
cvgcaule 45494 A convergent function is C...
rexanuz2nf 45495 A simple counterexample re...
gtnelioc 45496 A real number larger than ...
ioossioc 45497 An open interval is a subs...
ioondisj2 45498 A condition for two open i...
ioondisj1 45499 A condition for two open i...
ioogtlb 45500 An element of a closed int...
evthiccabs 45501 Extreme Value Theorem on y...
ltnelicc 45502 A real number smaller than...
eliood 45503 Membership in an open real...
iooabslt 45504 An upper bound for the dis...
gtnelicc 45505 A real number greater than...
iooinlbub 45506 An open interval has empty...
iocgtlb 45507 An element of a left-open ...
iocleub 45508 An element of a left-open ...
eliccd 45509 Membership in a closed rea...
eliccre 45510 A member of a closed inter...
eliooshift 45511 Element of an open interva...
eliocd 45512 Membership in a left-open ...
icoltub 45513 An element of a left-close...
eliocre 45514 A member of a left-open ri...
iooltub 45515 An element of an open inte...
ioontr 45516 The interior of an interva...
snunioo1 45517 The closure of one end of ...
lbioc 45518 A left-open right-closed i...
ioomidp 45519 The midpoint is an element...
iccdifioo 45520 If the open inverval is re...
iccdifprioo 45521 An open interval is the cl...
ioossioobi 45522 Biconditional form of ~ io...
iccshift 45523 A closed interval shifted ...
iccsuble 45524 An upper bound to the dist...
iocopn 45525 A left-open right-closed i...
eliccelioc 45526 Membership in a closed int...
iooshift 45527 An open interval shifted b...
iccintsng 45528 Intersection of two adiace...
icoiccdif 45529 Left-closed right-open int...
icoopn 45530 A left-closed right-open i...
icoub 45531 A left-closed, right-open ...
eliccxrd 45532 Membership in a closed rea...
pnfel0pnf 45533 ` +oo ` is a nonnegative e...
eliccnelico 45534 An element of a closed int...
eliccelicod 45535 A member of a closed inter...
ge0xrre 45536 A nonnegative extended rea...
ge0lere 45537 A nonnegative extended Rea...
elicores 45538 Membership in a left-close...
inficc 45539 The infimum of a nonempty ...
qinioo 45540 The rational numbers are d...
lenelioc 45541 A real number smaller than...
ioonct 45542 A nonempty open interval i...
xrgtnelicc 45543 A real number greater than...
iccdificc 45544 The difference of two clos...
iocnct 45545 A nonempty left-open, righ...
iccnct 45546 A closed interval, with mo...
iooiinicc 45547 A closed interval expresse...
iccgelbd 45548 An element of a closed int...
iooltubd 45549 An element of an open inte...
icoltubd 45550 An element of a left-close...
qelioo 45551 The rational numbers are d...
tgqioo2 45552 Every open set of reals is...
iccleubd 45553 An element of a closed int...
elioored 45554 A member of an open interv...
ioogtlbd 45555 An element of a closed int...
ioofun 45556 ` (,) ` is a function. (C...
icomnfinre 45557 A left-closed, right-open,...
sqrlearg 45558 The square compared with i...
ressiocsup 45559 If the supremum belongs to...
ressioosup 45560 If the supremum does not b...
iooiinioc 45561 A left-open, right-closed ...
ressiooinf 45562 If the infimum does not be...
iocleubd 45563 An element of a left-open ...
uzinico 45564 An upper interval of integ...
preimaiocmnf 45565 Preimage of a right-closed...
uzinico2 45566 An upper interval of integ...
uzinico3 45567 An upper interval of integ...
dmico 45568 The domain of the closed-b...
ndmico 45569 The closed-below, open-abo...
uzubioo 45570 The upper integers are unb...
uzubico 45571 The upper integers are unb...
uzubioo2 45572 The upper integers are unb...
uzubico2 45573 The upper integers are unb...
iocgtlbd 45574 An element of a left-open ...
xrtgioo2 45575 The topology on the extend...
fsummulc1f 45576 Closure of a finite sum of...
fsumnncl 45577 Closure of a nonempty, fin...
fsumge0cl 45578 The finite sum of nonnegat...
fsumf1of 45579 Re-index a finite sum usin...
fsumiunss 45580 Sum over a disjoint indexe...
fsumreclf 45581 Closure of a finite sum of...
fsumlessf 45582 A shorter sum of nonnegati...
fsumsupp0 45583 Finite sum of function val...
fsumsermpt 45584 A finite sum expressed in ...
fmul01 45585 Multiplying a finite numbe...
fmulcl 45586 If ' Y ' is closed under t...
fmuldfeqlem1 45587 induction step for the pro...
fmuldfeq 45588 X and Z are two equivalent...
fmul01lt1lem1 45589 Given a finite multiplicat...
fmul01lt1lem2 45590 Given a finite multiplicat...
fmul01lt1 45591 Given a finite multiplicat...
cncfmptss 45592 A continuous complex funct...
rrpsscn 45593 The positive reals are a s...
mulc1cncfg 45594 A version of ~ mulc1cncf u...
infrglb 45595 The infimum of a nonempty ...
expcnfg 45596 If ` F ` is a complex cont...
prodeq2ad 45597 Equality deduction for pro...
fprodsplit1 45598 Separate out a term in a f...
fprodexp 45599 Positive integer exponenti...
fprodabs2 45600 The absolute value of a fi...
fprod0 45601 A finite product with a ze...
mccllem 45602 * Induction step for ~ mcc...
mccl 45603 A multinomial coefficient,...
fprodcnlem 45604 A finite product of functi...
fprodcn 45605 A finite product of functi...
clim1fr1 45606 A class of sequences of fr...
isumneg 45607 Negation of a converging s...
climrec 45608 Limit of the reciprocal of...
climmulf 45609 A version of ~ climmul usi...
climexp 45610 The limit of natural power...
climinf 45611 A bounded monotonic noninc...
climsuselem1 45612 The subsequence index ` I ...
climsuse 45613 A subsequence ` G ` of a c...
climrecf 45614 A version of ~ climrec usi...
climneg 45615 Complex limit of the negat...
climinff 45616 A version of ~ climinf usi...
climdivf 45617 Limit of the ratio of two ...
climreeq 45618 If ` F ` is a real functio...
ellimciota 45619 An explicit value for the ...
climaddf 45620 A version of ~ climadd usi...
mullimc 45621 Limit of the product of tw...
ellimcabssub0 45622 An equivalent condition fo...
limcdm0 45623 If a function has empty do...
islptre 45624 An equivalence condition f...
limccog 45625 Limit of the composition o...
limciccioolb 45626 The limit of a function at...
climf 45627 Express the predicate: Th...
mullimcf 45628 Limit of the multiplicatio...
constlimc 45629 Limit of constant function...
rexlim2d 45630 Inference removing two res...
idlimc 45631 Limit of the identity func...
divcnvg 45632 The sequence of reciprocal...
limcperiod 45633 If ` F ` is a periodic fun...
limcrecl 45634 If ` F ` is a real-valued ...
sumnnodd 45635 A series indexed by ` NN `...
lptioo2 45636 The upper bound of an open...
lptioo1 45637 The lower bound of an open...
elprn1 45638 A member of an unordered p...
elprn2 45639 A member of an unordered p...
limcmptdm 45640 The domain of a maps-to fu...
clim2f 45641 Express the predicate: Th...
limcicciooub 45642 The limit of a function at...
ltmod 45643 A sufficient condition for...
islpcn 45644 A characterization for a l...
lptre2pt 45645 If a set in the real line ...
limsupre 45646 If a sequence is bounded, ...
limcresiooub 45647 The left limit doesn't cha...
limcresioolb 45648 The right limit doesn't ch...
limcleqr 45649 If the left and the right ...
lptioo2cn 45650 The upper bound of an open...
lptioo1cn 45651 The lower bound of an open...
neglimc 45652 Limit of the negative func...
addlimc 45653 Sum of two limits. (Contr...
0ellimcdiv 45654 If the numerator converges...
clim2cf 45655 Express the predicate ` F ...
limclner 45656 For a limit point, both fr...
sublimc 45657 Subtraction of two limits....
reclimc 45658 Limit of the reciprocal of...
clim0cf 45659 Express the predicate ` F ...
limclr 45660 For a limit point, both fr...
divlimc 45661 Limit of the quotient of t...
expfac 45662 Factorial grows faster tha...
climconstmpt 45663 A constant sequence conver...
climresmpt 45664 A function restricted to u...
climsubmpt 45665 Limit of the difference of...
climsubc2mpt 45666 Limit of the difference of...
climsubc1mpt 45667 Limit of the difference of...
fnlimfv 45668 The value of the limit fun...
climreclf 45669 The limit of a convergent ...
climeldmeq 45670 Two functions that are eve...
climf2 45671 Express the predicate: Th...
fnlimcnv 45672 The sequence of function v...
climeldmeqmpt 45673 Two functions that are eve...
climfveq 45674 Two functions that are eve...
clim2f2 45675 Express the predicate: Th...
climfveqmpt 45676 Two functions that are eve...
climd 45677 Express the predicate: Th...
clim2d 45678 The limit of complex numbe...
fnlimfvre 45679 The limit function of real...
allbutfifvre 45680 Given a sequence of real-v...
climleltrp 45681 The limit of complex numbe...
fnlimfvre2 45682 The limit function of real...
fnlimf 45683 The limit function of real...
fnlimabslt 45684 A sequence of function val...
climfveqf 45685 Two functions that are eve...
climmptf 45686 Exhibit a function ` G ` w...
climfveqmpt3 45687 Two functions that are eve...
climeldmeqf 45688 Two functions that are eve...
climreclmpt 45689 The limit of B convergent ...
limsupref 45690 If a sequence is bounded, ...
limsupbnd1f 45691 If a sequence is eventuall...
climbddf 45692 A converging sequence of c...
climeqf 45693 Two functions that are eve...
climeldmeqmpt3 45694 Two functions that are eve...
limsupcld 45695 Closure of the superior li...
climfv 45696 The limit of a convergent ...
limsupval3 45697 The superior limit of an i...
climfveqmpt2 45698 Two functions that are eve...
limsup0 45699 The superior limit of the ...
climeldmeqmpt2 45700 Two functions that are eve...
limsupresre 45701 The supremum limit of a fu...
climeqmpt 45702 Two functions that are eve...
climfvd 45703 The limit of a convergent ...
limsuplesup 45704 An upper bound for the sup...
limsupresico 45705 The superior limit doesn't...
limsuppnfdlem 45706 If the restriction of a fu...
limsuppnfd 45707 If the restriction of a fu...
limsupresuz 45708 If the real part of the do...
limsupub 45709 If the limsup is not ` +oo...
limsupres 45710 The superior limit of a re...
climinf2lem 45711 A convergent, nonincreasin...
climinf2 45712 A convergent, nonincreasin...
limsupvaluz 45713 The superior limit, when t...
limsupresuz2 45714 If the domain of a functio...
limsuppnflem 45715 If the restriction of a fu...
limsuppnf 45716 If the restriction of a fu...
limsupubuzlem 45717 If the limsup is not ` +oo...
limsupubuz 45718 For a real-valued function...
climinf2mpt 45719 A bounded below, monotonic...
climinfmpt 45720 A bounded below, monotonic...
climinf3 45721 A convergent, nonincreasin...
limsupvaluzmpt 45722 The superior limit, when t...
limsupequzmpt2 45723 Two functions that are eve...
limsupubuzmpt 45724 If the limsup is not ` +oo...
limsupmnflem 45725 The superior limit of a fu...
limsupmnf 45726 The superior limit of a fu...
limsupequzlem 45727 Two functions that are eve...
limsupequz 45728 Two functions that are eve...
limsupre2lem 45729 Given a function on the ex...
limsupre2 45730 Given a function on the ex...
limsupmnfuzlem 45731 The superior limit of a fu...
limsupmnfuz 45732 The superior limit of a fu...
limsupequzmptlem 45733 Two functions that are eve...
limsupequzmpt 45734 Two functions that are eve...
limsupre2mpt 45735 Given a function on the ex...
limsupequzmptf 45736 Two functions that are eve...
limsupre3lem 45737 Given a function on the ex...
limsupre3 45738 Given a function on the ex...
limsupre3mpt 45739 Given a function on the ex...
limsupre3uzlem 45740 Given a function on the ex...
limsupre3uz 45741 Given a function on the ex...
limsupreuz 45742 Given a function on the re...
limsupvaluz2 45743 The superior limit, when t...
limsupreuzmpt 45744 Given a function on the re...
supcnvlimsup 45745 If a function on a set of ...
supcnvlimsupmpt 45746 If a function on a set of ...
0cnv 45747 If ` (/) ` is a complex nu...
climuzlem 45748 Express the predicate: Th...
climuz 45749 Express the predicate: Th...
lmbr3v 45750 Express the binary relatio...
climisp 45751 If a sequence converges to...
lmbr3 45752 Express the binary relatio...
climrescn 45753 A sequence converging w.r....
climxrrelem 45754 If a sequence ranging over...
climxrre 45755 If a sequence ranging over...
limsuplt2 45758 The defining property of t...
liminfgord 45759 Ordering property of the i...
limsupvald 45760 The superior limit of a se...
limsupresicompt 45761 The superior limit doesn't...
limsupcli 45762 Closure of the superior li...
liminfgf 45763 Closure of the inferior li...
liminfval 45764 The inferior limit of a se...
climlimsup 45765 A sequence of real numbers...
limsupge 45766 The defining property of t...
liminfgval 45767 Value of the inferior limi...
liminfcl 45768 Closure of the inferior li...
liminfvald 45769 The inferior limit of a se...
liminfval5 45770 The inferior limit of an i...
limsupresxr 45771 The superior limit of a fu...
liminfresxr 45772 The inferior limit of a fu...
liminfval2 45773 The superior limit, relati...
climlimsupcex 45774 Counterexample for ~ climl...
liminfcld 45775 Closure of the inferior li...
liminfresico 45776 The inferior limit doesn't...
limsup10exlem 45777 The range of the given fun...
limsup10ex 45778 The superior limit of a fu...
liminf10ex 45779 The inferior limit of a fu...
liminflelimsuplem 45780 The superior limit is grea...
liminflelimsup 45781 The superior limit is grea...
limsupgtlem 45782 For any positive real, the...
limsupgt 45783 Given a sequence of real n...
liminfresre 45784 The inferior limit of a fu...
liminfresicompt 45785 The inferior limit doesn't...
liminfltlimsupex 45786 An example where the ` lim...
liminfgelimsup 45787 The inferior limit is grea...
liminfvalxr 45788 Alternate definition of ` ...
liminfresuz 45789 If the real part of the do...
liminflelimsupuz 45790 The superior limit is grea...
liminfvalxrmpt 45791 Alternate definition of ` ...
liminfresuz2 45792 If the domain of a functio...
liminfgelimsupuz 45793 The inferior limit is grea...
liminfval4 45794 Alternate definition of ` ...
liminfval3 45795 Alternate definition of ` ...
liminfequzmpt2 45796 Two functions that are eve...
liminfvaluz 45797 Alternate definition of ` ...
liminf0 45798 The inferior limit of the ...
limsupval4 45799 Alternate definition of ` ...
liminfvaluz2 45800 Alternate definition of ` ...
liminfvaluz3 45801 Alternate definition of ` ...
liminflelimsupcex 45802 A counterexample for ~ lim...
limsupvaluz3 45803 Alternate definition of ` ...
liminfvaluz4 45804 Alternate definition of ` ...
limsupvaluz4 45805 Alternate definition of ` ...
climliminflimsupd 45806 If a sequence of real numb...
liminfreuzlem 45807 Given a function on the re...
liminfreuz 45808 Given a function on the re...
liminfltlem 45809 Given a sequence of real n...
liminflt 45810 Given a sequence of real n...
climliminf 45811 A sequence of real numbers...
liminflimsupclim 45812 A sequence of real numbers...
climliminflimsup 45813 A sequence of real numbers...
climliminflimsup2 45814 A sequence of real numbers...
climliminflimsup3 45815 A sequence of real numbers...
climliminflimsup4 45816 A sequence of real numbers...
limsupub2 45817 A extended real valued fun...
limsupubuz2 45818 A sequence with values in ...
xlimpnfxnegmnf 45819 A sequence converges to ` ...
liminflbuz2 45820 A sequence with values in ...
liminfpnfuz 45821 The inferior limit of a fu...
liminflimsupxrre 45822 A sequence with values in ...
xlimrel 45825 The limit on extended real...
xlimres 45826 A function converges iff i...
xlimcl 45827 The limit of a sequence of...
rexlimddv2 45828 Restricted existential eli...
xlimclim 45829 Given a sequence of reals,...
xlimconst 45830 A constant sequence conver...
climxlim 45831 A converging sequence in t...
xlimbr 45832 Express the binary relatio...
fuzxrpmcn 45833 A function mapping from an...
cnrefiisplem 45834 Lemma for ~ cnrefiisp (som...
cnrefiisp 45835 A non-real, complex number...
xlimxrre 45836 If a sequence ranging over...
xlimmnfvlem1 45837 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 45838 Lemma for ~ xlimmnf : the ...
xlimmnfv 45839 A function converges to mi...
xlimconst2 45840 A sequence that eventually...
xlimpnfvlem1 45841 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 45842 Lemma for ~ xlimpnfv : the...
xlimpnfv 45843 A function converges to pl...
xlimclim2lem 45844 Lemma for ~ xlimclim2 . H...
xlimclim2 45845 Given a sequence of extend...
xlimmnf 45846 A function converges to mi...
xlimpnf 45847 A function converges to pl...
xlimmnfmpt 45848 A function converges to pl...
xlimpnfmpt 45849 A function converges to pl...
climxlim2lem 45850 In this lemma for ~ climxl...
climxlim2 45851 A sequence of extended rea...
dfxlim2v 45852 An alternative definition ...
dfxlim2 45853 An alternative definition ...
climresd 45854 A function restricted to u...
climresdm 45855 A real function converges ...
dmclimxlim 45856 A real valued sequence tha...
xlimmnflimsup2 45857 A sequence of extended rea...
xlimuni 45858 An infinite sequence conve...
xlimclimdm 45859 A sequence of extended rea...
xlimfun 45860 The convergence relation o...
xlimmnflimsup 45861 If a sequence of extended ...
xlimdm 45862 Two ways to express that a...
xlimpnfxnegmnf2 45863 A sequence converges to ` ...
xlimresdm 45864 A function converges in th...
xlimpnfliminf 45865 If a sequence of extended ...
xlimpnfliminf2 45866 A sequence of extended rea...
xlimliminflimsup 45867 A sequence of extended rea...
xlimlimsupleliminf 45868 A sequence of extended rea...
coseq0 45869 A complex number whose cos...
sinmulcos 45870 Multiplication formula for...
coskpi2 45871 The cosine of an integer m...
cosnegpi 45872 The cosine of negative ` _...
sinaover2ne0 45873 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 45874 The cosine of an integer m...
mulcncff 45875 The multiplication of two ...
cncfmptssg 45876 A continuous complex funct...
constcncfg 45877 A constant function is a c...
idcncfg 45878 The identity function is a...
cncfshift 45879 A periodic continuous func...
resincncf 45880 ` sin ` restricted to real...
addccncf2 45881 Adding a constant is a con...
0cnf 45882 The empty set is a continu...
fsumcncf 45883 The finite sum of continuo...
cncfperiod 45884 A periodic continuous func...
subcncff 45885 The subtraction of two con...
negcncfg 45886 The opposite of a continuo...
cnfdmsn 45887 A function with a singleto...
cncfcompt 45888 Composition of continuous ...
addcncff 45889 The sum of two continuous ...
ioccncflimc 45890 Limit at the upper bound o...
cncfuni 45891 A complex function on a su...
icccncfext 45892 A continuous function on a...
cncficcgt0 45893 A the absolute value of a ...
icocncflimc 45894 Limit at the lower bound, ...
cncfdmsn 45895 A complex function with a ...
divcncff 45896 The quotient of two contin...
cncfshiftioo 45897 A periodic continuous func...
cncfiooicclem1 45898 A continuous function ` F ...
cncfiooicc 45899 A continuous function ` F ...
cncfiooiccre 45900 A continuous function ` F ...
cncfioobdlem 45901 ` G ` actually extends ` F...
cncfioobd 45902 A continuous function ` F ...
jumpncnp 45903 Jump discontinuity or disc...
cxpcncf2 45904 The complex power function...
fprodcncf 45905 The finite product of cont...
add1cncf 45906 Addition to a constant is ...
add2cncf 45907 Addition to a constant is ...
sub1cncfd 45908 Subtracting a constant is ...
sub2cncfd 45909 Subtraction from a constan...
fprodsub2cncf 45910 ` F ` is continuous. (Con...
fprodadd2cncf 45911 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 45912 The sequence ` S ` of fini...
fprodsubrecnncnv 45913 The sequence ` S ` of fini...
fprodaddrecnncnvlem 45914 The sequence ` S ` of fini...
fprodaddrecnncnv 45915 The sequence ` S ` of fini...
dvsinexp 45916 The derivative of sin^N . ...
dvcosre 45917 The real derivative of the...
dvsinax 45918 Derivative exercise: the d...
dvsubf 45919 The subtraction rule for e...
dvmptconst 45920 Function-builder for deriv...
dvcnre 45921 From complex differentiati...
dvmptidg 45922 Function-builder for deriv...
dvresntr 45923 Function-builder for deriv...
fperdvper 45924 The derivative of a period...
dvasinbx 45925 Derivative exercise: the d...
dvresioo 45926 Restriction of a derivativ...
dvdivf 45927 The quotient rule for ever...
dvdivbd 45928 A sufficient condition for...
dvsubcncf 45929 A sufficient condition for...
dvmulcncf 45930 A sufficient condition for...
dvcosax 45931 Derivative exercise: the d...
dvdivcncf 45932 A sufficient condition for...
dvbdfbdioolem1 45933 Given a function with boun...
dvbdfbdioolem2 45934 A function on an open inte...
dvbdfbdioo 45935 A function on an open inte...
ioodvbdlimc1lem1 45936 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 45937 Limit at the lower bound o...
ioodvbdlimc1 45938 A real function with bound...
ioodvbdlimc2lem 45939 Limit at the upper bound o...
ioodvbdlimc2 45940 A real function with bound...
dvdmsscn 45941 ` X ` is a subset of ` CC ...
dvmptmulf 45942 Function-builder for deriv...
dvnmptdivc 45943 Function-builder for itera...
dvdsn1add 45944 If ` K ` divides ` N ` but...
dvxpaek 45945 Derivative of the polynomi...
dvnmptconst 45946 The ` N ` -th derivative o...
dvnxpaek 45947 The ` n ` -th derivative o...
dvnmul 45948 Function-builder for the `...
dvmptfprodlem 45949 Induction step for ~ dvmpt...
dvmptfprod 45950 Function-builder for deriv...
dvnprodlem1 45951 ` D ` is bijective. (Cont...
dvnprodlem2 45952 Induction step for ~ dvnpr...
dvnprodlem3 45953 The multinomial formula fo...
dvnprod 45954 The multinomial formula fo...
itgsin0pilem1 45955 Calculation of the integra...
ibliccsinexp 45956 sin^n on a closed interval...
itgsin0pi 45957 Calculation of the integra...
iblioosinexp 45958 sin^n on an open integral ...
itgsinexplem1 45959 Integration by parts is ap...
itgsinexp 45960 A recursive formula for th...
iblconstmpt 45961 A constant function is int...
itgeq1d 45962 Equality theorem for an in...
mbfres2cn 45963 Measurability of a piecewi...
vol0 45964 The measure of the empty s...
ditgeqiooicc 45965 A function ` F ` on an ope...
volge0 45966 The volume of a set is alw...
cnbdibl 45967 A continuous bounded funct...
snmbl 45968 A singleton is measurable....
ditgeq3d 45969 Equality theorem for the d...
iblempty 45970 The empty function is inte...
iblsplit 45971 The union of two integrabl...
volsn 45972 A singleton has 0 Lebesgue...
itgvol0 45973 If the domani is negligibl...
itgcoscmulx 45974 Exercise: the integral of ...
iblsplitf 45975 A version of ~ iblsplit us...
ibliooicc 45976 If a function is integrabl...
volioc 45977 The measure of a left-open...
iblspltprt 45978 If a function is integrabl...
itgsincmulx 45979 Exercise: the integral of ...
itgsubsticclem 45980 lemma for ~ itgsubsticc . ...
itgsubsticc 45981 Integration by u-substitut...
itgioocnicc 45982 The integral of a piecewis...
iblcncfioo 45983 A continuous function ` F ...
itgspltprt 45984 The ` S. ` integral splits...
itgiccshift 45985 The integral of a function...
itgperiod 45986 The integral of a periodic...
itgsbtaddcnst 45987 Integral substitution, add...
volico 45988 The measure of left-closed...
sublevolico 45989 The Lebesgue measure of a ...
dmvolss 45990 Lebesgue measurable sets a...
ismbl3 45991 The predicate " ` A ` is L...
volioof 45992 The function that assigns ...
ovolsplit 45993 The Lebesgue outer measure...
fvvolioof 45994 The function value of the ...
volioore 45995 The measure of an open int...
fvvolicof 45996 The function value of the ...
voliooico 45997 An open interval and a lef...
ismbl4 45998 The predicate " ` A ` is L...
volioofmpt 45999 ` ( ( vol o. (,) ) o. F ) ...
volicoff 46000 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 46001 The Lebesgue measure of op...
volicofmpt 46002 ` ( ( vol o. [,) ) o. F ) ...
volicc 46003 The Lebesgue measure of a ...
voliccico 46004 A closed interval and a le...
mbfdmssre 46005 The domain of a measurable...
stoweidlem1 46006 Lemma for ~ stoweid . Thi...
stoweidlem2 46007 lemma for ~ stoweid : here...
stoweidlem3 46008 Lemma for ~ stoweid : if `...
stoweidlem4 46009 Lemma for ~ stoweid : a cl...
stoweidlem5 46010 There exists a δ as ...
stoweidlem6 46011 Lemma for ~ stoweid : two ...
stoweidlem7 46012 This lemma is used to prov...
stoweidlem8 46013 Lemma for ~ stoweid : two ...
stoweidlem9 46014 Lemma for ~ stoweid : here...
stoweidlem10 46015 Lemma for ~ stoweid . Thi...
stoweidlem11 46016 This lemma is used to prov...
stoweidlem12 46017 Lemma for ~ stoweid . Thi...
stoweidlem13 46018 Lemma for ~ stoweid . Thi...
stoweidlem14 46019 There exists a ` k ` as in...
stoweidlem15 46020 This lemma is used to prov...
stoweidlem16 46021 Lemma for ~ stoweid . The...
stoweidlem17 46022 This lemma proves that the...
stoweidlem18 46023 This theorem proves Lemma ...
stoweidlem19 46024 If a set of real functions...
stoweidlem20 46025 If a set A of real functio...
stoweidlem21 46026 Once the Stone Weierstrass...
stoweidlem22 46027 If a set of real functions...
stoweidlem23 46028 This lemma is used to prov...
stoweidlem24 46029 This lemma proves that for...
stoweidlem25 46030 This lemma proves that for...
stoweidlem26 46031 This lemma is used to prov...
stoweidlem27 46032 This lemma is used to prov...
stoweidlem28 46033 There exists a δ as ...
stoweidlem29 46034 When the hypothesis for th...
stoweidlem30 46035 This lemma is used to prov...
stoweidlem31 46036 This lemma is used to prov...
stoweidlem32 46037 If a set A of real functio...
stoweidlem33 46038 If a set of real functions...
stoweidlem34 46039 This lemma proves that for...
stoweidlem35 46040 This lemma is used to prov...
stoweidlem36 46041 This lemma is used to prov...
stoweidlem37 46042 This lemma is used to prov...
stoweidlem38 46043 This lemma is used to prov...
stoweidlem39 46044 This lemma is used to prov...
stoweidlem40 46045 This lemma proves that q_n...
stoweidlem41 46046 This lemma is used to prov...
stoweidlem42 46047 This lemma is used to prov...
stoweidlem43 46048 This lemma is used to prov...
stoweidlem44 46049 This lemma is used to prov...
stoweidlem45 46050 This lemma proves that, gi...
stoweidlem46 46051 This lemma proves that set...
stoweidlem47 46052 Subtracting a constant fro...
stoweidlem48 46053 This lemma is used to prov...
stoweidlem49 46054 There exists a function q_...
stoweidlem50 46055 This lemma proves that set...
stoweidlem51 46056 There exists a function x ...
stoweidlem52 46057 There exists a neighborhoo...
stoweidlem53 46058 This lemma is used to prov...
stoweidlem54 46059 There exists a function ` ...
stoweidlem55 46060 This lemma proves the exis...
stoweidlem56 46061 This theorem proves Lemma ...
stoweidlem57 46062 There exists a function x ...
stoweidlem58 46063 This theorem proves Lemma ...
stoweidlem59 46064 This lemma proves that the...
stoweidlem60 46065 This lemma proves that the...
stoweidlem61 46066 This lemma proves that the...
stoweidlem62 46067 This theorem proves the St...
stoweid 46068 This theorem proves the St...
stowei 46069 This theorem proves the St...
wallispilem1 46070 ` I ` is monotone: increas...
wallispilem2 46071 A first set of properties ...
wallispilem3 46072 I maps to real values. (C...
wallispilem4 46073 ` F ` maps to explicit exp...
wallispilem5 46074 The sequence ` H ` converg...
wallispi 46075 Wallis' formula for π :...
wallispi2lem1 46076 An intermediate step betwe...
wallispi2lem2 46077 Two expressions are proven...
wallispi2 46078 An alternative version of ...
stirlinglem1 46079 A simple limit of fraction...
stirlinglem2 46080 ` A ` maps to positive rea...
stirlinglem3 46081 Long but simple algebraic ...
stirlinglem4 46082 Algebraic manipulation of ...
stirlinglem5 46083 If ` T ` is between ` 0 ` ...
stirlinglem6 46084 A series that converges to...
stirlinglem7 46085 Algebraic manipulation of ...
stirlinglem8 46086 If ` A ` converges to ` C ...
stirlinglem9 46087 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 46088 A bound for any B(N)-B(N +...
stirlinglem11 46089 ` B ` is decreasing. (Con...
stirlinglem12 46090 The sequence ` B ` is boun...
stirlinglem13 46091 ` B ` is decreasing and ha...
stirlinglem14 46092 The sequence ` A ` converg...
stirlinglem15 46093 The Stirling's formula is ...
stirling 46094 Stirling's approximation f...
stirlingr 46095 Stirling's approximation f...
dirkerval 46096 The N_th Dirichlet Kernel....
dirker2re 46097 The Dirichlet Kernel value...
dirkerdenne0 46098 The Dirichlet Kernel denom...
dirkerval2 46099 The N_th Dirichlet Kernel ...
dirkerre 46100 The Dirichlet Kernel at an...
dirkerper 46101 the Dirichlet Kernel has p...
dirkerf 46102 For any natural number ` N...
dirkertrigeqlem1 46103 Sum of an even number of a...
dirkertrigeqlem2 46104 Trigonomic equality lemma ...
dirkertrigeqlem3 46105 Trigonometric equality lem...
dirkertrigeq 46106 Trigonometric equality for...
dirkeritg 46107 The definite integral of t...
dirkercncflem1 46108 If ` Y ` is a multiple of ...
dirkercncflem2 46109 Lemma used to prove that t...
dirkercncflem3 46110 The Dirichlet Kernel is co...
dirkercncflem4 46111 The Dirichlet Kernel is co...
dirkercncf 46112 For any natural number ` N...
fourierdlem1 46113 A partition interval is a ...
fourierdlem2 46114 Membership in a partition....
fourierdlem3 46115 Membership in a partition....
fourierdlem4 46116 ` E ` is a function that m...
fourierdlem5 46117 ` S ` is a function. (Con...
fourierdlem6 46118 ` X ` is in the periodic p...
fourierdlem7 46119 The difference between the...
fourierdlem8 46120 A partition interval is a ...
fourierdlem9 46121 ` H ` is a complex functio...
fourierdlem10 46122 Condition on the bounds of...
fourierdlem11 46123 If there is a partition, t...
fourierdlem12 46124 A point of a partition is ...
fourierdlem13 46125 Value of ` V ` in terms of...
fourierdlem14 46126 Given the partition ` V ` ...
fourierdlem15 46127 The range of the partition...
fourierdlem16 46128 The coefficients of the fo...
fourierdlem17 46129 The defined ` L ` is actua...
fourierdlem18 46130 The function ` S ` is cont...
fourierdlem19 46131 If two elements of ` D ` h...
fourierdlem20 46132 Every interval in the part...
fourierdlem21 46133 The coefficients of the fo...
fourierdlem22 46134 The coefficients of the fo...
fourierdlem23 46135 If ` F ` is continuous and...
fourierdlem24 46136 A sufficient condition for...
fourierdlem25 46137 If ` C ` is not in the ran...
fourierdlem26 46138 Periodic image of a point ...
fourierdlem27 46139 A partition open interval ...
fourierdlem28 46140 Derivative of ` ( F `` ( X...
fourierdlem29 46141 Explicit function value fo...
fourierdlem30 46142 Sum of three small pieces ...
fourierdlem31 46143 If ` A ` is finite and for...
fourierdlem32 46144 Limit of a continuous func...
fourierdlem33 46145 Limit of a continuous func...
fourierdlem34 46146 A partition is one to one....
fourierdlem35 46147 There is a single point in...
fourierdlem36 46148 ` F ` is an isomorphism. ...
fourierdlem37 46149 ` I ` is a function that m...
fourierdlem38 46150 The function ` F ` is cont...
fourierdlem39 46151 Integration by parts of ...
fourierdlem40 46152 ` H ` is a continuous func...
fourierdlem41 46153 Lemma used to prove that e...
fourierdlem42 46154 The set of points in a mov...
fourierdlem43 46155 ` K ` is a real function. ...
fourierdlem44 46156 A condition for having ` (...
fourierdlem46 46157 The function ` F ` has a l...
fourierdlem47 46158 For ` r ` large enough, th...
fourierdlem48 46159 The given periodic functio...
fourierdlem49 46160 The given periodic functio...
fourierdlem50 46161 Continuity of ` O ` and it...
fourierdlem51 46162 ` X ` is in the periodic p...
fourierdlem52 46163 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 46164 The limit of ` F ( s ) ` a...
fourierdlem54 46165 Given a partition ` Q ` an...
fourierdlem55 46166 ` U ` is a real function. ...
fourierdlem56 46167 Derivative of the ` K ` fu...
fourierdlem57 46168 The derivative of ` O ` . ...
fourierdlem58 46169 The derivative of ` K ` is...
fourierdlem59 46170 The derivative of ` H ` is...
fourierdlem60 46171 Given a differentiable fun...
fourierdlem61 46172 Given a differentiable fun...
fourierdlem62 46173 The function ` K ` is cont...
fourierdlem63 46174 The upper bound of interva...
fourierdlem64 46175 The partition ` V ` is fin...
fourierdlem65 46176 The distance of two adjace...
fourierdlem66 46177 Value of the ` G ` functio...
fourierdlem67 46178 ` G ` is a function. (Con...
fourierdlem68 46179 The derivative of ` O ` is...
fourierdlem69 46180 A piecewise continuous fun...
fourierdlem70 46181 A piecewise continuous fun...
fourierdlem71 46182 A periodic piecewise conti...
fourierdlem72 46183 The derivative of ` O ` is...
fourierdlem73 46184 A version of the Riemann L...
fourierdlem74 46185 Given a piecewise smooth f...
fourierdlem75 46186 Given a piecewise smooth f...
fourierdlem76 46187 Continuity of ` O ` and it...
fourierdlem77 46188 If ` H ` is bounded, then ...
fourierdlem78 46189 ` G ` is continuous when r...
fourierdlem79 46190 ` E ` projects every inter...
fourierdlem80 46191 The derivative of ` O ` is...
fourierdlem81 46192 The integral of a piecewis...
fourierdlem82 46193 Integral by substitution, ...
fourierdlem83 46194 The fourier partial sum fo...
fourierdlem84 46195 If ` F ` is piecewise cont...
fourierdlem85 46196 Limit of the function ` G ...
fourierdlem86 46197 Continuity of ` O ` and it...
fourierdlem87 46198 The integral of ` G ` goes...
fourierdlem88 46199 Given a piecewise continuo...
fourierdlem89 46200 Given a piecewise continuo...
fourierdlem90 46201 Given a piecewise continuo...
fourierdlem91 46202 Given a piecewise continuo...
fourierdlem92 46203 The integral of a piecewis...
fourierdlem93 46204 Integral by substitution (...
fourierdlem94 46205 For a piecewise smooth fun...
fourierdlem95 46206 Algebraic manipulation of ...
fourierdlem96 46207 limit for ` F ` at the low...
fourierdlem97 46208 ` F ` is continuous on the...
fourierdlem98 46209 ` F ` is continuous on the...
fourierdlem99 46210 limit for ` F ` at the upp...
fourierdlem100 46211 A piecewise continuous fun...
fourierdlem101 46212 Integral by substitution f...
fourierdlem102 46213 For a piecewise smooth fun...
fourierdlem103 46214 The half lower part of the...
fourierdlem104 46215 The half upper part of the...
fourierdlem105 46216 A piecewise continuous fun...
fourierdlem106 46217 For a piecewise smooth fun...
fourierdlem107 46218 The integral of a piecewis...
fourierdlem108 46219 The integral of a piecewis...
fourierdlem109 46220 The integral of a piecewis...
fourierdlem110 46221 The integral of a piecewis...
fourierdlem111 46222 The fourier partial sum fo...
fourierdlem112 46223 Here abbreviations (local ...
fourierdlem113 46224 Fourier series convergence...
fourierdlem114 46225 Fourier series convergence...
fourierdlem115 46226 Fourier serier convergence...
fourierd 46227 Fourier series convergence...
fourierclimd 46228 Fourier series convergence...
fourierclim 46229 Fourier series convergence...
fourier 46230 Fourier series convergence...
fouriercnp 46231 If ` F ` is continuous at ...
fourier2 46232 Fourier series convergence...
sqwvfoura 46233 Fourier coefficients for t...
sqwvfourb 46234 Fourier series ` B ` coeff...
fourierswlem 46235 The Fourier series for the...
fouriersw 46236 Fourier series convergence...
fouriercn 46237 If the derivative of ` F `...
elaa2lem 46238 Elementhood in the set of ...
elaa2 46239 Elementhood in the set of ...
etransclem1 46240 ` H ` is a function. (Con...
etransclem2 46241 Derivative of ` G ` . (Co...
etransclem3 46242 The given ` if ` term is a...
etransclem4 46243 ` F ` expressed as a finit...
etransclem5 46244 A change of bound variable...
etransclem6 46245 A change of bound variable...
etransclem7 46246 The given product is an in...
etransclem8 46247 ` F ` is a function. (Con...
etransclem9 46248 If ` K ` divides ` N ` but...
etransclem10 46249 The given ` if ` term is a...
etransclem11 46250 A change of bound variable...
etransclem12 46251 ` C ` applied to ` N ` . ...
etransclem13 46252 ` F ` applied to ` Y ` . ...
etransclem14 46253 Value of the term ` T ` , ...
etransclem15 46254 Value of the term ` T ` , ...
etransclem16 46255 Every element in the range...
etransclem17 46256 The ` N ` -th derivative o...
etransclem18 46257 The given function is inte...
etransclem19 46258 The ` N ` -th derivative o...
etransclem20 46259 ` H ` is smooth. (Contrib...
etransclem21 46260 The ` N ` -th derivative o...
etransclem22 46261 The ` N ` -th derivative o...
etransclem23 46262 This is the claim proof in...
etransclem24 46263 ` P ` divides the I -th de...
etransclem25 46264 ` P ` factorial divides th...
etransclem26 46265 Every term in the sum of t...
etransclem27 46266 The ` N ` -th derivative o...
etransclem28 46267 ` ( P - 1 ) ` factorial di...
etransclem29 46268 The ` N ` -th derivative o...
etransclem30 46269 The ` N ` -th derivative o...
etransclem31 46270 The ` N ` -th derivative o...
etransclem32 46271 This is the proof for the ...
etransclem33 46272 ` F ` is smooth. (Contrib...
etransclem34 46273 The ` N ` -th derivative o...
etransclem35 46274 ` P ` does not divide the ...
etransclem36 46275 The ` N ` -th derivative o...
etransclem37 46276 ` ( P - 1 ) ` factorial di...
etransclem38 46277 ` P ` divides the I -th de...
etransclem39 46278 ` G ` is a function. (Con...
etransclem40 46279 The ` N ` -th derivative o...
etransclem41 46280 ` P ` does not divide the ...
etransclem42 46281 The ` N ` -th derivative o...
etransclem43 46282 ` G ` is a continuous func...
etransclem44 46283 The given finite sum is no...
etransclem45 46284 ` K ` is an integer. (Con...
etransclem46 46285 This is the proof for equa...
etransclem47 46286 ` _e ` is transcendental. ...
etransclem48 46287 ` _e ` is transcendental. ...
etransc 46288 ` _e ` is transcendental. ...
rrxtopn 46289 The topology of the genera...
rrxngp 46290 Generalized Euclidean real...
rrxtps 46291 Generalized Euclidean real...
rrxtopnfi 46292 The topology of the n-dime...
rrxtopon 46293 The topology on generalize...
rrxtop 46294 The topology on generalize...
rrndistlt 46295 Given two points in the sp...
rrxtoponfi 46296 The topology on n-dimensio...
rrxunitopnfi 46297 The base set of the standa...
rrxtopn0 46298 The topology of the zero-d...
qndenserrnbllem 46299 n-dimensional rational num...
qndenserrnbl 46300 n-dimensional rational num...
rrxtopn0b 46301 The topology of the zero-d...
qndenserrnopnlem 46302 n-dimensional rational num...
qndenserrnopn 46303 n-dimensional rational num...
qndenserrn 46304 n-dimensional rational num...
rrxsnicc 46305 A multidimensional singlet...
rrnprjdstle 46306 The distance between two p...
rrndsmet 46307 ` D ` is a metric for the ...
rrndsxmet 46308 ` D ` is an extended metri...
ioorrnopnlem 46309 The a point in an indexed ...
ioorrnopn 46310 The indexed product of ope...
ioorrnopnxrlem 46311 Given a point ` F ` that b...
ioorrnopnxr 46312 The indexed product of ope...
issal 46319 Express the predicate " ` ...
pwsal 46320 The power set of a given s...
salunicl 46321 SAlg sigma-algebra is clos...
saluncl 46322 The union of two sets in a...
prsal 46323 The pair of the empty set ...
saldifcl 46324 The complement of an eleme...
0sal 46325 The empty set belongs to e...
salgenval 46326 The sigma-algebra generate...
saliunclf 46327 SAlg sigma-algebra is clos...
saliuncl 46328 SAlg sigma-algebra is clos...
salincl 46329 The intersection of two se...
saluni 46330 A set is an element of any...
saliinclf 46331 SAlg sigma-algebra is clos...
saliincl 46332 SAlg sigma-algebra is clos...
saldifcl2 46333 The difference of two elem...
intsaluni 46334 The union of an arbitrary ...
intsal 46335 The arbitrary intersection...
salgenn0 46336 The set used in the defini...
salgencl 46337 ` SalGen ` actually genera...
issald 46338 Sufficient condition to pr...
salexct 46339 An example of nontrivial s...
sssalgen 46340 A set is a subset of the s...
salgenss 46341 The sigma-algebra generate...
salgenuni 46342 The base set of the sigma-...
issalgend 46343 One side of ~ dfsalgen2 . ...
salexct2 46344 An example of a subset tha...
unisalgen 46345 The union of a set belongs...
dfsalgen2 46346 Alternate characterization...
salexct3 46347 An example of a sigma-alge...
salgencntex 46348 This counterexample shows ...
salgensscntex 46349 This counterexample shows ...
issalnnd 46350 Sufficient condition to pr...
dmvolsal 46351 Lebesgue measurable sets f...
saldifcld 46352 The complement of an eleme...
saluncld 46353 The union of two sets in a...
salgencld 46354 ` SalGen ` actually genera...
0sald 46355 The empty set belongs to e...
iooborel 46356 An open interval is a Bore...
salincld 46357 The intersection of two se...
salunid 46358 A set is an element of any...
unisalgen2 46359 The union of a set belongs...
bor1sal 46360 The Borel sigma-algebra on...
iocborel 46361 A left-open, right-closed ...
subsaliuncllem 46362 A subspace sigma-algebra i...
subsaliuncl 46363 A subspace sigma-algebra i...
subsalsal 46364 A subspace sigma-algebra i...
subsaluni 46365 A set belongs to the subsp...
salrestss 46366 A sigma-algebra restricted...
sge0rnre 46369 When ` sum^ ` is applied t...
fge0icoicc 46370 If ` F ` maps to nonnegati...
sge0val 46371 The value of the sum of no...
fge0npnf 46372 If ` F ` maps to nonnegati...
sge0rnn0 46373 The range used in the defi...
sge0vald 46374 The value of the sum of no...
fge0iccico 46375 A range of nonnegative ext...
gsumge0cl 46376 Closure of group sum, for ...
sge0reval 46377 Value of the sum of nonneg...
sge0pnfval 46378 If a term in the sum of no...
fge0iccre 46379 A range of nonnegative ext...
sge0z 46380 Any nonnegative extended s...
sge00 46381 The sum of nonnegative ext...
fsumlesge0 46382 Every finite subsum of non...
sge0revalmpt 46383 Value of the sum of nonneg...
sge0sn 46384 A sum of a nonnegative ext...
sge0tsms 46385 ` sum^ ` applied to a nonn...
sge0cl 46386 The arbitrary sum of nonne...
sge0f1o 46387 Re-index a nonnegative ext...
sge0snmpt 46388 A sum of a nonnegative ext...
sge0ge0 46389 The sum of nonnegative ext...
sge0xrcl 46390 The arbitrary sum of nonne...
sge0repnf 46391 The of nonnegative extende...
sge0fsum 46392 The arbitrary sum of a fin...
sge0rern 46393 If the sum of nonnegative ...
sge0supre 46394 If the arbitrary sum of no...
sge0fsummpt 46395 The arbitrary sum of a fin...
sge0sup 46396 The arbitrary sum of nonne...
sge0less 46397 A shorter sum of nonnegati...
sge0rnbnd 46398 The range used in the defi...
sge0pr 46399 Sum of a pair of nonnegati...
sge0gerp 46400 The arbitrary sum of nonne...
sge0pnffigt 46401 If the sum of nonnegative ...
sge0ssre 46402 If a sum of nonnegative ex...
sge0lefi 46403 A sum of nonnegative exten...
sge0lessmpt 46404 A shorter sum of nonnegati...
sge0ltfirp 46405 If the sum of nonnegative ...
sge0prle 46406 The sum of a pair of nonne...
sge0gerpmpt 46407 The arbitrary sum of nonne...
sge0resrnlem 46408 The sum of nonnegative ext...
sge0resrn 46409 The sum of nonnegative ext...
sge0ssrempt 46410 If a sum of nonnegative ex...
sge0resplit 46411 ` sum^ ` splits into two p...
sge0le 46412 If all of the terms of sum...
sge0ltfirpmpt 46413 If the extended sum of non...
sge0split 46414 Split a sum of nonnegative...
sge0lempt 46415 If all of the terms of sum...
sge0splitmpt 46416 Split a sum of nonnegative...
sge0ss 46417 Change the index set to a ...
sge0iunmptlemfi 46418 Sum of nonnegative extende...
sge0p1 46419 The addition of the next t...
sge0iunmptlemre 46420 Sum of nonnegative extende...
sge0fodjrnlem 46421 Re-index a nonnegative ext...
sge0fodjrn 46422 Re-index a nonnegative ext...
sge0iunmpt 46423 Sum of nonnegative extende...
sge0iun 46424 Sum of nonnegative extende...
sge0nemnf 46425 The generalized sum of non...
sge0rpcpnf 46426 The sum of an infinite num...
sge0rernmpt 46427 If the sum of nonnegative ...
sge0lefimpt 46428 A sum of nonnegative exten...
nn0ssge0 46429 Nonnegative integers are n...
sge0clmpt 46430 The generalized sum of non...
sge0ltfirpmpt2 46431 If the extended sum of non...
sge0isum 46432 If a series of nonnegative...
sge0xrclmpt 46433 The generalized sum of non...
sge0xp 46434 Combine two generalized su...
sge0isummpt 46435 If a series of nonnegative...
sge0ad2en 46436 The value of the infinite ...
sge0isummpt2 46437 If a series of nonnegative...
sge0xaddlem1 46438 The extended addition of t...
sge0xaddlem2 46439 The extended addition of t...
sge0xadd 46440 The extended addition of t...
sge0fsummptf 46441 The generalized sum of a f...
sge0snmptf 46442 A sum of a nonnegative ext...
sge0ge0mpt 46443 The sum of nonnegative ext...
sge0repnfmpt 46444 The of nonnegative extende...
sge0pnffigtmpt 46445 If the generalized sum of ...
sge0splitsn 46446 Separate out a term in a g...
sge0pnffsumgt 46447 If the sum of nonnegative ...
sge0gtfsumgt 46448 If the generalized sum of ...
sge0uzfsumgt 46449 If a real number is smalle...
sge0pnfmpt 46450 If a term in the sum of no...
sge0seq 46451 A series of nonnegative re...
sge0reuz 46452 Value of the generalized s...
sge0reuzb 46453 Value of the generalized s...
ismea 46456 Express the predicate " ` ...
dmmeasal 46457 The domain of a measure is...
meaf 46458 A measure is a function th...
mea0 46459 The measure of the empty s...
nnfoctbdjlem 46460 There exists a mapping fro...
nnfoctbdj 46461 There exists a mapping fro...
meadjuni 46462 The measure of the disjoin...
meacl 46463 The measure of a set is a ...
iundjiunlem 46464 The sets in the sequence `...
iundjiun 46465 Given a sequence ` E ` of ...
meaxrcl 46466 The measure of a set is an...
meadjun 46467 The measure of the union o...
meassle 46468 The measure of a set is gr...
meaunle 46469 The measure of the union o...
meadjiunlem 46470 The sum of nonnegative ext...
meadjiun 46471 The measure of the disjoin...
ismeannd 46472 Sufficient condition to pr...
meaiunlelem 46473 The measure of the union o...
meaiunle 46474 The measure of the union o...
psmeasurelem 46475 ` M ` applied to a disjoin...
psmeasure 46476 Point supported measure, R...
voliunsge0lem 46477 The Lebesgue measure funct...
voliunsge0 46478 The Lebesgue measure funct...
volmea 46479 The Lebesgue measure on th...
meage0 46480 If the measure of a measur...
meadjunre 46481 The measure of the union o...
meassre 46482 If the measure of a measur...
meale0eq0 46483 A measure that is less tha...
meadif 46484 The measure of the differe...
meaiuninclem 46485 Measures are continuous fr...
meaiuninc 46486 Measures are continuous fr...
meaiuninc2 46487 Measures are continuous fr...
meaiunincf 46488 Measures are continuous fr...
meaiuninc3v 46489 Measures are continuous fr...
meaiuninc3 46490 Measures are continuous fr...
meaiininclem 46491 Measures are continuous fr...
meaiininc 46492 Measures are continuous fr...
meaiininc2 46493 Measures are continuous fr...
caragenval 46498 The sigma-algebra generate...
isome 46499 Express the predicate " ` ...
caragenel 46500 Membership in the Caratheo...
omef 46501 An outer measure is a func...
ome0 46502 The outer measure of the e...
omessle 46503 The outer measure of a set...
omedm 46504 The domain of an outer mea...
caragensplit 46505 If ` E ` is in the set gen...
caragenelss 46506 An element of the Caratheo...
carageneld 46507 Membership in the Caratheo...
omecl 46508 The outer measure of a set...
caragenss 46509 The sigma-algebra generate...
omeunile 46510 The outer measure of the u...
caragen0 46511 The empty set belongs to a...
omexrcl 46512 The outer measure of a set...
caragenunidm 46513 The base set of an outer m...
caragensspw 46514 The sigma-algebra generate...
omessre 46515 If the outer measure of a ...
caragenuni 46516 The base set of the sigma-...
caragenuncllem 46517 The Caratheodory's constru...
caragenuncl 46518 The Caratheodory's constru...
caragendifcl 46519 The Caratheodory's constru...
caragenfiiuncl 46520 The Caratheodory's constru...
omeunle 46521 The outer measure of the u...
omeiunle 46522 The outer measure of the i...
omelesplit 46523 The outer measure of a set...
omeiunltfirp 46524 If the outer measure of a ...
omeiunlempt 46525 The outer measure of the i...
carageniuncllem1 46526 The outer measure of ` A i...
carageniuncllem2 46527 The Caratheodory's constru...
carageniuncl 46528 The Caratheodory's constru...
caragenunicl 46529 The Caratheodory's constru...
caragensal 46530 Caratheodory's method gene...
caratheodorylem1 46531 Lemma used to prove that C...
caratheodorylem2 46532 Caratheodory's constructio...
caratheodory 46533 Caratheodory's constructio...
0ome 46534 The map that assigns 0 to ...
isomenndlem 46535 ` O ` is sub-additive w.r....
isomennd 46536 Sufficient condition to pr...
caragenel2d 46537 Membership in the Caratheo...
omege0 46538 If the outer measure of a ...
omess0 46539 If the outer measure of a ...
caragencmpl 46540 A measure built with the C...
vonval 46545 Value of the Lebesgue meas...
ovnval 46546 Value of the Lebesgue oute...
elhoi 46547 Membership in a multidimen...
icoresmbl 46548 A closed-below, open-above...
hoissre 46549 The projection of a half-o...
ovnval2 46550 Value of the Lebesgue oute...
volicorecl 46551 The Lebesgue measure of a ...
hoiprodcl 46552 The pre-measure of half-op...
hoicvr 46553 ` I ` is a countable set o...
hoissrrn 46554 A half-open interval is a ...
ovn0val 46555 The Lebesgue outer measure...
ovnn0val 46556 The value of a (multidimen...
ovnval2b 46557 Value of the Lebesgue oute...
volicorescl 46558 The Lebesgue measure of a ...
ovnprodcl 46559 The product used in the de...
hoiprodcl2 46560 The pre-measure of half-op...
hoicvrrex 46561 Any subset of the multidim...
ovnsupge0 46562 The set used in the defini...
ovnlecvr 46563 Given a subset of multidim...
ovnpnfelsup 46564 ` +oo ` is an element of t...
ovnsslelem 46565 The (multidimensional, non...
ovnssle 46566 The (multidimensional) Leb...
ovnlerp 46567 The Lebesgue outer measure...
ovnf 46568 The Lebesgue outer measure...
ovncvrrp 46569 The Lebesgue outer measure...
ovn0lem 46570 For any finite dimension, ...
ovn0 46571 For any finite dimension, ...
ovncl 46572 The Lebesgue outer measure...
ovn02 46573 For the zero-dimensional s...
ovnxrcl 46574 The Lebesgue outer measure...
ovnsubaddlem1 46575 The Lebesgue outer measure...
ovnsubaddlem2 46576 ` ( voln* `` X ) ` is suba...
ovnsubadd 46577 ` ( voln* `` X ) ` is suba...
ovnome 46578 ` ( voln* `` X ) ` is an o...
vonmea 46579 ` ( voln `` X ) ` is a mea...
volicon0 46580 The measure of a nonempty ...
hsphoif 46581 ` H ` is a function (that ...
hoidmvval 46582 The dimensional volume of ...
hoissrrn2 46583 A half-open interval is a ...
hsphoival 46584 ` H ` is a function (that ...
hoiprodcl3 46585 The pre-measure of half-op...
volicore 46586 The Lebesgue measure of a ...
hoidmvcl 46587 The dimensional volume of ...
hoidmv0val 46588 The dimensional volume of ...
hoidmvn0val 46589 The dimensional volume of ...
hsphoidmvle2 46590 The dimensional volume of ...
hsphoidmvle 46591 The dimensional volume of ...
hoidmvval0 46592 The dimensional volume of ...
hoiprodp1 46593 The dimensional volume of ...
sge0hsphoire 46594 If the generalized sum of ...
hoidmvval0b 46595 The dimensional volume of ...
hoidmv1lelem1 46596 The supremum of ` U ` belo...
hoidmv1lelem2 46597 This is the contradiction ...
hoidmv1lelem3 46598 The dimensional volume of ...
hoidmv1le 46599 The dimensional volume of ...
hoidmvlelem1 46600 The supremum of ` U ` belo...
hoidmvlelem2 46601 This is the contradiction ...
hoidmvlelem3 46602 This is the contradiction ...
hoidmvlelem4 46603 The dimensional volume of ...
hoidmvlelem5 46604 The dimensional volume of ...
hoidmvle 46605 The dimensional volume of ...
ovnhoilem1 46606 The Lebesgue outer measure...
ovnhoilem2 46607 The Lebesgue outer measure...
ovnhoi 46608 The Lebesgue outer measure...
dmovn 46609 The domain of the Lebesgue...
hoicoto2 46610 The half-open interval exp...
dmvon 46611 Lebesgue measurable n-dime...
hoi2toco 46612 The half-open interval exp...
hoidifhspval 46613 ` D ` is a function that r...
hspval 46614 The value of the half-spac...
ovnlecvr2 46615 Given a subset of multidim...
ovncvr2 46616 ` B ` and ` T ` are the le...
dmovnsal 46617 The domain of the Lebesgue...
unidmovn 46618 Base set of the n-dimensio...
rrnmbl 46619 The set of n-dimensional R...
hoidifhspval2 46620 ` D ` is a function that r...
hspdifhsp 46621 A n-dimensional half-open ...
unidmvon 46622 Base set of the n-dimensio...
hoidifhspf 46623 ` D ` is a function that r...
hoidifhspval3 46624 ` D ` is a function that r...
hoidifhspdmvle 46625 The dimensional volume of ...
voncmpl 46626 The Lebesgue measure is co...
hoiqssbllem1 46627 The center of the n-dimens...
hoiqssbllem2 46628 The center of the n-dimens...
hoiqssbllem3 46629 A n-dimensional ball conta...
hoiqssbl 46630 A n-dimensional ball conta...
hspmbllem1 46631 Any half-space of the n-di...
hspmbllem2 46632 Any half-space of the n-di...
hspmbllem3 46633 Any half-space of the n-di...
hspmbl 46634 Any half-space of the n-di...
hoimbllem 46635 Any n-dimensional half-ope...
hoimbl 46636 Any n-dimensional half-ope...
opnvonmbllem1 46637 The half-open interval exp...
opnvonmbllem2 46638 An open subset of the n-di...
opnvonmbl 46639 An open subset of the n-di...
opnssborel 46640 Open sets of a generalized...
borelmbl 46641 All Borel subsets of the n...
volicorege0 46642 The Lebesgue measure of a ...
isvonmbl 46643 The predicate " ` A ` is m...
mblvon 46644 The n-dimensional Lebesgue...
vonmblss 46645 n-dimensional Lebesgue mea...
volico2 46646 The measure of left-closed...
vonmblss2 46647 n-dimensional Lebesgue mea...
ovolval2lem 46648 The value of the Lebesgue ...
ovolval2 46649 The value of the Lebesgue ...
ovnsubadd2lem 46650 ` ( voln* `` X ) ` is suba...
ovnsubadd2 46651 ` ( voln* `` X ) ` is suba...
ovolval3 46652 The value of the Lebesgue ...
ovnsplit 46653 The n-dimensional Lebesgue...
ovolval4lem1 46654 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 46655 The value of the Lebesgue ...
ovolval4 46656 The value of the Lebesgue ...
ovolval5lem1 46657 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 46658 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 46659 The value of the Lebesgue ...
ovolval5 46660 The value of the Lebesgue ...
ovnovollem1 46661 if ` F ` is a cover of ` B...
ovnovollem2 46662 if ` I ` is a cover of ` (...
ovnovollem3 46663 The 1-dimensional Lebesgue...
ovnovol 46664 The 1-dimensional Lebesgue...
vonvolmbllem 46665 If a subset ` B ` of real ...
vonvolmbl 46666 A subset of Real numbers i...
vonvol 46667 The 1-dimensional Lebesgue...
vonvolmbl2 46668 A subset ` X ` of the spac...
vonvol2 46669 The 1-dimensional Lebesgue...
hoimbl2 46670 Any n-dimensional half-ope...
voncl 46671 The Lebesgue measure of a ...
vonhoi 46672 The Lebesgue outer measure...
vonxrcl 46673 The Lebesgue measure of a ...
ioosshoi 46674 A n-dimensional open inter...
vonn0hoi 46675 The Lebesgue outer measure...
von0val 46676 The Lebesgue measure (for ...
vonhoire 46677 The Lebesgue measure of a ...
iinhoiicclem 46678 A n-dimensional closed int...
iinhoiicc 46679 A n-dimensional closed int...
iunhoiioolem 46680 A n-dimensional open inter...
iunhoiioo 46681 A n-dimensional open inter...
ioovonmbl 46682 Any n-dimensional open int...
iccvonmbllem 46683 Any n-dimensional closed i...
iccvonmbl 46684 Any n-dimensional closed i...
vonioolem1 46685 The sequence of the measur...
vonioolem2 46686 The n-dimensional Lebesgue...
vonioo 46687 The n-dimensional Lebesgue...
vonicclem1 46688 The sequence of the measur...
vonicclem2 46689 The n-dimensional Lebesgue...
vonicc 46690 The n-dimensional Lebesgue...
snvonmbl 46691 A n-dimensional singleton ...
vonn0ioo 46692 The n-dimensional Lebesgue...
vonn0icc 46693 The n-dimensional Lebesgue...
ctvonmbl 46694 Any n-dimensional countabl...
vonn0ioo2 46695 The n-dimensional Lebesgue...
vonsn 46696 The n-dimensional Lebesgue...
vonn0icc2 46697 The n-dimensional Lebesgue...
vonct 46698 The n-dimensional Lebesgue...
vitali2 46699 There are non-measurable s...
pimltmnf2f 46702 Given a real-valued functi...
pimltmnf2 46703 Given a real-valued functi...
preimagelt 46704 The preimage of a right-op...
preimalegt 46705 The preimage of a left-ope...
pimconstlt0 46706 Given a constant function,...
pimconstlt1 46707 Given a constant function,...
pimltpnff 46708 Given a real-valued functi...
pimltpnf 46709 Given a real-valued functi...
pimgtpnf2f 46710 Given a real-valued functi...
pimgtpnf2 46711 Given a real-valued functi...
salpreimagelt 46712 If all the preimages of le...
pimrecltpos 46713 The preimage of an unbound...
salpreimalegt 46714 If all the preimages of ri...
pimiooltgt 46715 The preimage of an open in...
preimaicomnf 46716 Preimage of an open interv...
pimltpnf2f 46717 Given a real-valued functi...
pimltpnf2 46718 Given a real-valued functi...
pimgtmnf2 46719 Given a real-valued functi...
pimdecfgtioc 46720 Given a nonincreasing func...
pimincfltioc 46721 Given a nondecreasing func...
pimdecfgtioo 46722 Given a nondecreasing func...
pimincfltioo 46723 Given a nondecreasing func...
preimaioomnf 46724 Preimage of an open interv...
preimageiingt 46725 A preimage of a left-close...
preimaleiinlt 46726 A preimage of a left-open,...
pimgtmnff 46727 Given a real-valued functi...
pimgtmnf 46728 Given a real-valued functi...
pimrecltneg 46729 The preimage of an unbound...
salpreimagtge 46730 If all the preimages of le...
salpreimaltle 46731 If all the preimages of ri...
issmflem 46732 The predicate " ` F ` is a...
issmf 46733 The predicate " ` F ` is a...
salpreimalelt 46734 If all the preimages of ri...
salpreimagtlt 46735 If all the preimages of le...
smfpreimalt 46736 Given a function measurabl...
smff 46737 A function measurable w.r....
smfdmss 46738 The domain of a function m...
issmff 46739 The predicate " ` F ` is a...
issmfd 46740 A sufficient condition for...
smfpreimaltf 46741 Given a function measurabl...
issmfdf 46742 A sufficient condition for...
sssmf 46743 The restriction of a sigma...
mbfresmf 46744 A real-valued measurable f...
cnfsmf 46745 A continuous function is m...
incsmflem 46746 A nondecreasing function i...
incsmf 46747 A real-valued, nondecreasi...
smfsssmf 46748 If a function is measurabl...
issmflelem 46749 The predicate " ` F ` is a...
issmfle 46750 The predicate " ` F ` is a...
smfpimltmpt 46751 Given a function measurabl...
smfpimltxr 46752 Given a function measurabl...
issmfdmpt 46753 A sufficient condition for...
smfconst 46754 Given a sigma-algebra over...
sssmfmpt 46755 The restriction of a sigma...
cnfrrnsmf 46756 A function, continuous fro...
smfid 46757 The identity function is B...
bormflebmf 46758 A Borel measurable functio...
smfpreimale 46759 Given a function measurabl...
issmfgtlem 46760 The predicate " ` F ` is a...
issmfgt 46761 The predicate " ` F ` is a...
issmfled 46762 A sufficient condition for...
smfpimltxrmptf 46763 Given a function measurabl...
smfpimltxrmpt 46764 Given a function measurabl...
smfmbfcex 46765 A constant function, with ...
issmfgtd 46766 A sufficient condition for...
smfpreimagt 46767 Given a function measurabl...
smfaddlem1 46768 Given the sum of two funct...
smfaddlem2 46769 The sum of two sigma-measu...
smfadd 46770 The sum of two sigma-measu...
decsmflem 46771 A nonincreasing function i...
decsmf 46772 A real-valued, nonincreasi...
smfpreimagtf 46773 Given a function measurabl...
issmfgelem 46774 The predicate " ` F ` is a...
issmfge 46775 The predicate " ` F ` is a...
smflimlem1 46776 Lemma for the proof that t...
smflimlem2 46777 Lemma for the proof that t...
smflimlem3 46778 The limit of sigma-measura...
smflimlem4 46779 Lemma for the proof that t...
smflimlem5 46780 Lemma for the proof that t...
smflimlem6 46781 Lemma for the proof that t...
smflim 46782 The limit of sigma-measura...
nsssmfmbflem 46783 The sigma-measurable funct...
nsssmfmbf 46784 The sigma-measurable funct...
smfpimgtxr 46785 Given a function measurabl...
smfpimgtmpt 46786 Given a function measurabl...
smfpreimage 46787 Given a function measurabl...
mbfpsssmf 46788 Real-valued measurable fun...
smfpimgtxrmptf 46789 Given a function measurabl...
smfpimgtxrmpt 46790 Given a function measurabl...
smfpimioompt 46791 Given a function measurabl...
smfpimioo 46792 Given a function measurabl...
smfresal 46793 Given a sigma-measurable f...
smfrec 46794 The reciprocal of a sigma-...
smfres 46795 The restriction of sigma-m...
smfmullem1 46796 The multiplication of two ...
smfmullem2 46797 The multiplication of two ...
smfmullem3 46798 The multiplication of two ...
smfmullem4 46799 The multiplication of two ...
smfmul 46800 The multiplication of two ...
smfmulc1 46801 A sigma-measurable functio...
smfdiv 46802 The fraction of two sigma-...
smfpimbor1lem1 46803 Every open set belongs to ...
smfpimbor1lem2 46804 Given a sigma-measurable f...
smfpimbor1 46805 Given a sigma-measurable f...
smf2id 46806 Twice the identity functio...
smfco 46807 The composition of a Borel...
smfneg 46808 The negative of a sigma-me...
smffmptf 46809 A function measurable w.r....
smffmpt 46810 A function measurable w.r....
smflim2 46811 The limit of a sequence of...
smfpimcclem 46812 Lemma for ~ smfpimcc given...
smfpimcc 46813 Given a countable set of s...
issmfle2d 46814 A sufficient condition for...
smflimmpt 46815 The limit of a sequence of...
smfsuplem1 46816 The supremum of a countabl...
smfsuplem2 46817 The supremum of a countabl...
smfsuplem3 46818 The supremum of a countabl...
smfsup 46819 The supremum of a countabl...
smfsupmpt 46820 The supremum of a countabl...
smfsupxr 46821 The supremum of a countabl...
smfinflem 46822 The infimum of a countable...
smfinf 46823 The infimum of a countable...
smfinfmpt 46824 The infimum of a countable...
smflimsuplem1 46825 If ` H ` converges, the ` ...
smflimsuplem2 46826 The superior limit of a se...
smflimsuplem3 46827 The limit of the ` ( H `` ...
smflimsuplem4 46828 If ` H ` converges, the ` ...
smflimsuplem5 46829 ` H ` converges to the sup...
smflimsuplem6 46830 The superior limit of a se...
smflimsuplem7 46831 The superior limit of a se...
smflimsuplem8 46832 The superior limit of a se...
smflimsup 46833 The superior limit of a se...
smflimsupmpt 46834 The superior limit of a se...
smfliminflem 46835 The inferior limit of a co...
smfliminf 46836 The inferior limit of a co...
smfliminfmpt 46837 The inferior limit of a co...
adddmmbl 46838 If two functions have doma...
adddmmbl2 46839 If two functions have doma...
muldmmbl 46840 If two functions have doma...
muldmmbl2 46841 If two functions have doma...
smfdmmblpimne 46842 If a measurable function w...
smfdivdmmbl 46843 If a functions and a sigma...
smfpimne 46844 Given a function measurabl...
smfpimne2 46845 Given a function measurabl...
smfdivdmmbl2 46846 If a functions and a sigma...
fsupdm 46847 The domain of the sup func...
fsupdm2 46848 The domain of the sup func...
smfsupdmmbllem 46849 If a countable set of sigm...
smfsupdmmbl 46850 If a countable set of sigm...
finfdm 46851 The domain of the inf func...
finfdm2 46852 The domain of the inf func...
smfinfdmmbllem 46853 If a countable set of sigm...
smfinfdmmbl 46854 If a countable set of sigm...
sigarval 46855 Define the signed area by ...
sigarim 46856 Signed area takes value in...
sigarac 46857 Signed area is anticommuta...
sigaraf 46858 Signed area is additive by...
sigarmf 46859 Signed area is additive (w...
sigaras 46860 Signed area is additive by...
sigarms 46861 Signed area is additive (w...
sigarls 46862 Signed area is linear by t...
sigarid 46863 Signed area of a flat para...
sigarexp 46864 Expand the signed area for...
sigarperm 46865 Signed area ` ( A - C ) G ...
sigardiv 46866 If signed area between vec...
sigarimcd 46867 Signed area takes value in...
sigariz 46868 If signed area is zero, th...
sigarcol 46869 Given three points ` A ` ,...
sharhght 46870 Let ` A B C ` be a triangl...
sigaradd 46871 Subtracting (double) area ...
cevathlem1 46872 Ceva's theorem first lemma...
cevathlem2 46873 Ceva's theorem second lemm...
cevath 46874 Ceva's theorem. Let ` A B...
simpcntrab 46875 The center of a simple gro...
et-ltneverrefl 46876 Less-than class is never r...
et-equeucl 46877 Alternative proof that equ...
et-sqrtnegnre 46878 The square root of a negat...
ormklocald 46879 If elements of a certain s...
ormkglobd 46880 If all adjacent elements o...
natlocalincr 46881 Global monotonicity on hal...
natglobalincr 46882 Local monotonicity on half...
upwordnul 46885 Empty set is an increasing...
upwordisword 46886 Any increasing sequence is...
singoutnword 46887 Singleton with character o...
singoutnupword 46888 Singleton with character o...
upwordsing 46889 Singleton is an increasing...
upwordsseti 46890 Strictly increasing sequen...
tworepnotupword 46891 Concatenation of identical...
upwrdfi 46892 There is a finite number o...
evenwodadd 46893 If an integer is multiplie...
squeezedltsq 46894 If a real value is squeeze...
lambert0 46895 A value of Lambert W (prod...
lamberte 46896 A value of Lambert W (prod...
hirstL-ax3 46897 The third axiom of a syste...
ax3h 46898 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 46899 A closed form showing (a i...
aibandbiaiaiffb 46900 A closed form showing (a i...
notatnand 46901 Do not use. Use intnanr i...
aistia 46902 Given a is equivalent to `...
aisfina 46903 Given a is equivalent to `...
bothtbothsame 46904 Given both a, b are equiva...
bothfbothsame 46905 Given both a, b are equiva...
aiffbbtat 46906 Given a is equivalent to b...
aisbbisfaisf 46907 Given a is equivalent to b...
axorbtnotaiffb 46908 Given a is exclusive to b,...
aiffnbandciffatnotciffb 46909 Given a is equivalent to (...
axorbciffatcxorb 46910 Given a is equivalent to (...
aibnbna 46911 Given a implies b, (not b)...
aibnbaif 46912 Given a implies b, not b, ...
aiffbtbat 46913 Given a is equivalent to b...
astbstanbst 46914 Given a is equivalent to T...
aistbistaandb 46915 Given a is equivalent to T...
aisbnaxb 46916 Given a is equivalent to b...
atbiffatnnb 46917 If a implies b, then a imp...
bisaiaisb 46918 Application of bicom1 with...
atbiffatnnbalt 46919 If a implies b, then a imp...
abnotbtaxb 46920 Assuming a, not b, there e...
abnotataxb 46921 Assuming not a, b, there e...
conimpf 46922 Assuming a, not b, and a i...
conimpfalt 46923 Assuming a, not b, and a i...
aistbisfiaxb 46924 Given a is equivalent to T...
aisfbistiaxb 46925 Given a is equivalent to F...
aifftbifffaibif 46926 Given a is equivalent to T...
aifftbifffaibifff 46927 Given a is equivalent to T...
atnaiana 46928 Given a, it is not the cas...
ainaiaandna 46929 Given a, a implies it is n...
abcdta 46930 Given (((a and b) and c) a...
abcdtb 46931 Given (((a and b) and c) a...
abcdtc 46932 Given (((a and b) and c) a...
abcdtd 46933 Given (((a and b) and c) a...
abciffcbatnabciffncba 46934 Operands in a biconditiona...
abciffcbatnabciffncbai 46935 Operands in a biconditiona...
nabctnabc 46936 not ( a -> ( b /\ c ) ) we...
jabtaib 46937 For when pm3.4 lacks a pm3...
onenotinotbothi 46938 From one negated implicati...
twonotinotbothi 46939 From these two negated imp...
clifte 46940 show d is the same as an i...
cliftet 46941 show d is the same as an i...
clifteta 46942 show d is the same as an i...
cliftetb 46943 show d is the same as an i...
confun 46944 Given the hypotheses there...
confun2 46945 Confun simplified to two p...
confun3 46946 Confun's more complex form...
confun4 46947 An attempt at derivative. ...
confun5 46948 An attempt at derivative. ...
plcofph 46949 Given, a,b and a "definiti...
pldofph 46950 Given, a,b c, d, "definiti...
plvcofph 46951 Given, a,b,d, and "definit...
plvcofphax 46952 Given, a,b,d, and "definit...
plvofpos 46953 rh is derivable because ON...
mdandyv0 46954 Given the equivalences set...
mdandyv1 46955 Given the equivalences set...
mdandyv2 46956 Given the equivalences set...
mdandyv3 46957 Given the equivalences set...
mdandyv4 46958 Given the equivalences set...
mdandyv5 46959 Given the equivalences set...
mdandyv6 46960 Given the equivalences set...
mdandyv7 46961 Given the equivalences set...
mdandyv8 46962 Given the equivalences set...
mdandyv9 46963 Given the equivalences set...
mdandyv10 46964 Given the equivalences set...
mdandyv11 46965 Given the equivalences set...
mdandyv12 46966 Given the equivalences set...
mdandyv13 46967 Given the equivalences set...
mdandyv14 46968 Given the equivalences set...
mdandyv15 46969 Given the equivalences set...
mdandyvr0 46970 Given the equivalences set...
mdandyvr1 46971 Given the equivalences set...
mdandyvr2 46972 Given the equivalences set...
mdandyvr3 46973 Given the equivalences set...
mdandyvr4 46974 Given the equivalences set...
mdandyvr5 46975 Given the equivalences set...
mdandyvr6 46976 Given the equivalences set...
mdandyvr7 46977 Given the equivalences set...
mdandyvr8 46978 Given the equivalences set...
mdandyvr9 46979 Given the equivalences set...
mdandyvr10 46980 Given the equivalences set...
mdandyvr11 46981 Given the equivalences set...
mdandyvr12 46982 Given the equivalences set...
mdandyvr13 46983 Given the equivalences set...
mdandyvr14 46984 Given the equivalences set...
mdandyvr15 46985 Given the equivalences set...
mdandyvrx0 46986 Given the exclusivities se...
mdandyvrx1 46987 Given the exclusivities se...
mdandyvrx2 46988 Given the exclusivities se...
mdandyvrx3 46989 Given the exclusivities se...
mdandyvrx4 46990 Given the exclusivities se...
mdandyvrx5 46991 Given the exclusivities se...
mdandyvrx6 46992 Given the exclusivities se...
mdandyvrx7 46993 Given the exclusivities se...
mdandyvrx8 46994 Given the exclusivities se...
mdandyvrx9 46995 Given the exclusivities se...
mdandyvrx10 46996 Given the exclusivities se...
mdandyvrx11 46997 Given the exclusivities se...
mdandyvrx12 46998 Given the exclusivities se...
mdandyvrx13 46999 Given the exclusivities se...
mdandyvrx14 47000 Given the exclusivities se...
mdandyvrx15 47001 Given the exclusivities se...
H15NH16TH15IH16 47002 Given 15 hypotheses and a ...
dandysum2p2e4 47003 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 47004 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 47005 Replacement of a nested an...
adh-minim 47006 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 47007 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 47008 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 47009 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 47010 Fourth lemma for the deriv...
adh-minim-ax1 47011 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 47012 Fifth lemma for the deriva...
adh-minim-ax2-lem6 47013 Sixth lemma for the deriva...
adh-minim-ax2c 47014 Derivation of a commuted f...
adh-minim-ax2 47015 Derivation of ~ ax-2 from ...
adh-minim-idALT 47016 Derivation of ~ id (reflex...
adh-minim-pm2.43 47017 Derivation of ~ pm2.43 Whi...
adh-minimp 47018 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 47019 First lemma for the deriva...
adh-minimp-jarr-lem2 47020 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 47021 Third lemma for the deriva...
adh-minimp-sylsimp 47022 Derivation of ~ jarr (also...
adh-minimp-ax1 47023 Derivation of ~ ax-1 from ...
adh-minimp-imim1 47024 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 47025 Derivation of a commuted f...
adh-minimp-ax2-lem4 47026 Fourth lemma for the deriv...
adh-minimp-ax2 47027 Derivation of ~ ax-2 from ...
adh-minimp-idALT 47028 Derivation of ~ id (reflex...
adh-minimp-pm2.43 47029 Derivation of ~ pm2.43 Whi...
n0nsn2el 47030 If a class with one elemen...
eusnsn 47031 There is a unique element ...
absnsb 47032 If the class abstraction `...
euabsneu 47033 Another way to express exi...
elprneb 47034 An element of a proper uno...
oppr 47035 Equality for ordered pairs...
opprb 47036 Equality for unordered pai...
or2expropbilem1 47037 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 47038 Lemma 2 for ~ or2expropbi ...
or2expropbi 47039 If two classes are strictl...
eubrv 47040 If there is a unique set w...
eubrdm 47041 If there is a unique set w...
eldmressn 47042 Element of the domain of a...
iota0def 47043 Example for a defined iota...
iota0ndef 47044 Example for an undefined i...
fveqvfvv 47045 If a function's value at a...
fnresfnco 47046 Composition of two functio...
funcoressn 47047 A composition restricted t...
funressnfv 47048 A restriction to a singlet...
funressndmfvrn 47049 The value of a function ` ...
funressnvmo 47050 A function restricted to a...
funressnmo 47051 A function restricted to a...
funressneu 47052 There is exactly one value...
fresfo 47053 Conditions for a restricti...
fsetsniunop 47054 The class of all functions...
fsetabsnop 47055 The class of all functions...
fsetsnf 47056 The mapping of an element ...
fsetsnf1 47057 The mapping of an element ...
fsetsnfo 47058 The mapping of an element ...
fsetsnf1o 47059 The mapping of an element ...
fsetsnprcnex 47060 The class of all functions...
cfsetssfset 47061 The class of constant func...
cfsetsnfsetfv 47062 The function value of the ...
cfsetsnfsetf 47063 The mapping of the class o...
cfsetsnfsetf1 47064 The mapping of the class o...
cfsetsnfsetfo 47065 The mapping of the class o...
cfsetsnfsetf1o 47066 The mapping of the class o...
fsetprcnexALT 47067 First version of proof for...
fcoreslem1 47068 Lemma 1 for ~ fcores . (C...
fcoreslem2 47069 Lemma 2 for ~ fcores . (C...
fcoreslem3 47070 Lemma 3 for ~ fcores . (C...
fcoreslem4 47071 Lemma 4 for ~ fcores . (C...
fcores 47072 Every composite function `...
fcoresf1lem 47073 Lemma for ~ fcoresf1 . (C...
fcoresf1 47074 If a composition is inject...
fcoresf1b 47075 A composition is injective...
fcoresfo 47076 If a composition is surjec...
fcoresfob 47077 A composition is surjectiv...
fcoresf1ob 47078 A composition is bijective...
f1cof1blem 47079 Lemma for ~ f1cof1b and ~ ...
3f1oss1 47080 The composition of three b...
3f1oss2 47081 The composition of three b...
f1cof1b 47082 If the range of ` F ` equa...
funfocofob 47083 If the domain of a functio...
fnfocofob 47084 If the domain of a functio...
focofob 47085 If the domain of a functio...
f1ocof1ob 47086 If the range of ` F ` equa...
f1ocof1ob2 47087 If the range of ` F ` equa...
aiotajust 47089 Soundness justification th...
dfaiota2 47091 Alternate definition of th...
reuabaiotaiota 47092 The iota and the alternate...
reuaiotaiota 47093 The iota and the alternate...
aiotaexb 47094 The alternate iota over a ...
aiotavb 47095 The alternate iota over a ...
aiotaint 47096 This is to ~ df-aiota what...
dfaiota3 47097 Alternate definition of ` ...
iotan0aiotaex 47098 If the iota over a wff ` p...
aiotaexaiotaiota 47099 The alternate iota over a ...
aiotaval 47100 Theorem 8.19 in [Quine] p....
aiota0def 47101 Example for a defined alte...
aiota0ndef 47102 Example for an undefined a...
r19.32 47103 Theorem 19.32 of [Margaris...
rexsb 47104 An equivalent expression f...
rexrsb 47105 An equivalent expression f...
2rexsb 47106 An equivalent expression f...
2rexrsb 47107 An equivalent expression f...
cbvral2 47108 Change bound variables of ...
cbvrex2 47109 Change bound variables of ...
ralndv1 47110 Example for a theorem abou...
ralndv2 47111 Second example for a theor...
reuf1odnf 47112 There is exactly one eleme...
reuf1od 47113 There is exactly one eleme...
euoreqb 47114 There is a set which is eq...
2reu3 47115 Double restricted existent...
2reu7 47116 Two equivalent expressions...
2reu8 47117 Two equivalent expressions...
2reu8i 47118 Implication of a double re...
2reuimp0 47119 Implication of a double re...
2reuimp 47120 Implication of a double re...
ralbinrald 47127 Elemination of a restricte...
nvelim 47128 If a class is the universa...
alneu 47129 If a statement holds for a...
eu2ndop1stv 47130 If there is a unique secon...
dfateq12d 47131 Equality deduction for "de...
nfdfat 47132 Bound-variable hypothesis ...
dfdfat2 47133 Alternate definition of th...
fundmdfat 47134 A function is defined at a...
dfatprc 47135 A function is not defined ...
dfatelrn 47136 The value of a function ` ...
dfafv2 47137 Alternative definition of ...
afveq12d 47138 Equality deduction for fun...
afveq1 47139 Equality theorem for funct...
afveq2 47140 Equality theorem for funct...
nfafv 47141 Bound-variable hypothesis ...
csbafv12g 47142 Move class substitution in...
afvfundmfveq 47143 If a class is a function r...
afvnfundmuv 47144 If a set is not in the dom...
ndmafv 47145 The value of a class outsi...
afvvdm 47146 If the function value of a...
nfunsnafv 47147 If the restriction of a cl...
afvvfunressn 47148 If the function value of a...
afvprc 47149 A function's value at a pr...
afvvv 47150 If a function's value at a...
afvpcfv0 47151 If the value of the altern...
afvnufveq 47152 The value of the alternati...
afvvfveq 47153 The value of the alternati...
afv0fv0 47154 If the value of the altern...
afvfvn0fveq 47155 If the function's value at...
afv0nbfvbi 47156 The function's value at an...
afvfv0bi 47157 The function's value at an...
afveu 47158 The value of a function at...
fnbrafvb 47159 Equivalence of function va...
fnopafvb 47160 Equivalence of function va...
funbrafvb 47161 Equivalence of function va...
funopafvb 47162 Equivalence of function va...
funbrafv 47163 The second argument of a b...
funbrafv2b 47164 Function value in terms of...
dfafn5a 47165 Representation of a functi...
dfafn5b 47166 Representation of a functi...
fnrnafv 47167 The range of a function ex...
afvelrnb 47168 A member of a function's r...
afvelrnb0 47169 A member of a function's r...
dfaimafn 47170 Alternate definition of th...
dfaimafn2 47171 Alternate definition of th...
afvelima 47172 Function value in an image...
afvelrn 47173 A function's value belongs...
fnafvelrn 47174 A function's value belongs...
fafvelcdm 47175 A function's value belongs...
ffnafv 47176 A function maps to a class...
afvres 47177 The value of a restricted ...
tz6.12-afv 47178 Function value. Theorem 6...
tz6.12-1-afv 47179 Function value (Theorem 6....
dmfcoafv 47180 Domains of a function comp...
afvco2 47181 Value of a function compos...
rlimdmafv 47182 Two ways to express that a...
aoveq123d 47183 Equality deduction for ope...
nfaov 47184 Bound-variable hypothesis ...
csbaovg 47185 Move class substitution in...
aovfundmoveq 47186 If a class is a function r...
aovnfundmuv 47187 If an ordered pair is not ...
ndmaov 47188 The value of an operation ...
ndmaovg 47189 The value of an operation ...
aovvdm 47190 If the operation value of ...
nfunsnaov 47191 If the restriction of a cl...
aovvfunressn 47192 If the operation value of ...
aovprc 47193 The value of an operation ...
aovrcl 47194 Reverse closure for an ope...
aovpcov0 47195 If the alternative value o...
aovnuoveq 47196 The alternative value of t...
aovvoveq 47197 The alternative value of t...
aov0ov0 47198 If the alternative value o...
aovovn0oveq 47199 If the operation's value a...
aov0nbovbi 47200 The operation's value on a...
aovov0bi 47201 The operation's value on a...
rspceaov 47202 A frequently used special ...
fnotaovb 47203 Equivalence of operation v...
ffnaov 47204 An operation maps to a cla...
faovcl 47205 Closure law for an operati...
aovmpt4g 47206 Value of a function given ...
aoprssdm 47207 Domain of closure of an op...
ndmaovcl 47208 The "closure" of an operat...
ndmaovrcl 47209 Reverse closure law, in co...
ndmaovcom 47210 Any operation is commutati...
ndmaovass 47211 Any operation is associati...
ndmaovdistr 47212 Any operation is distribut...
dfatafv2iota 47215 If a function is defined a...
ndfatafv2 47216 The alternate function val...
ndfatafv2undef 47217 The alternate function val...
dfatafv2ex 47218 The alternate function val...
afv2ex 47219 The alternate function val...
afv2eq12d 47220 Equality deduction for fun...
afv2eq1 47221 Equality theorem for funct...
afv2eq2 47222 Equality theorem for funct...
nfafv2 47223 Bound-variable hypothesis ...
csbafv212g 47224 Move class substitution in...
fexafv2ex 47225 The alternate function val...
ndfatafv2nrn 47226 The alternate function val...
ndmafv2nrn 47227 The value of a class outsi...
funressndmafv2rn 47228 The alternate function val...
afv2ndefb 47229 Two ways to say that an al...
nfunsnafv2 47230 If the restriction of a cl...
afv2prc 47231 A function's value at a pr...
dfatafv2rnb 47232 The alternate function val...
afv2orxorb 47233 If a set is in the range o...
dmafv2rnb 47234 The alternate function val...
fundmafv2rnb 47235 The alternate function val...
afv2elrn 47236 An alternate function valu...
afv20defat 47237 If the alternate function ...
fnafv2elrn 47238 An alternate function valu...
fafv2elcdm 47239 An alternate function valu...
fafv2elrnb 47240 An alternate function valu...
fcdmvafv2v 47241 If the codomain of a funct...
tz6.12-2-afv2 47242 Function value when ` F ` ...
afv2eu 47243 The value of a function at...
afv2res 47244 The value of a restricted ...
tz6.12-afv2 47245 Function value (Theorem 6....
tz6.12-1-afv2 47246 Function value (Theorem 6....
tz6.12c-afv2 47247 Corollary of Theorem 6.12(...
tz6.12i-afv2 47248 Corollary of Theorem 6.12(...
funressnbrafv2 47249 The second argument of a b...
dfatbrafv2b 47250 Equivalence of function va...
dfatopafv2b 47251 Equivalence of function va...
funbrafv2 47252 The second argument of a b...
fnbrafv2b 47253 Equivalence of function va...
fnopafv2b 47254 Equivalence of function va...
funbrafv22b 47255 Equivalence of function va...
funopafv2b 47256 Equivalence of function va...
dfatsnafv2 47257 Singleton of function valu...
dfafv23 47258 A definition of function v...
dfatdmfcoafv2 47259 Domain of a function compo...
dfatcolem 47260 Lemma for ~ dfatco . (Con...
dfatco 47261 The predicate "defined at"...
afv2co2 47262 Value of a function compos...
rlimdmafv2 47263 Two ways to express that a...
dfafv22 47264 Alternate definition of ` ...
afv2ndeffv0 47265 If the alternate function ...
dfatafv2eqfv 47266 If a function is defined a...
afv2rnfveq 47267 If the alternate function ...
afv20fv0 47268 If the alternate function ...
afv2fvn0fveq 47269 If the function's value at...
afv2fv0 47270 If the function's value at...
afv2fv0b 47271 The function's value at an...
afv2fv0xorb 47272 If a set is in the range o...
an4com24 47273 Rearrangement of 4 conjunc...
3an4ancom24 47274 Commutative law for a conj...
4an21 47275 Rearrangement of 4 conjunc...
dfnelbr2 47278 Alternate definition of th...
nelbr 47279 The binary relation of a s...
nelbrim 47280 If a set is related to ano...
nelbrnel 47281 A set is related to anothe...
nelbrnelim 47282 If a set is related to ano...
ralralimp 47283 Selecting one of two alter...
otiunsndisjX 47284 The union of singletons co...
fvifeq 47285 Equality of function value...
rnfdmpr 47286 The range of a one-to-one ...
imarnf1pr 47287 The image of the range of ...
funop1 47288 A function is an ordered p...
fun2dmnopgexmpl 47289 A function with a domain c...
opabresex0d 47290 A collection of ordered pa...
opabbrfex0d 47291 A collection of ordered pa...
opabresexd 47292 A collection of ordered pa...
opabbrfexd 47293 A collection of ordered pa...
f1oresf1orab 47294 Build a bijection by restr...
f1oresf1o 47295 Build a bijection by restr...
f1oresf1o2 47296 Build a bijection by restr...
fvmptrab 47297 Value of a function mappin...
fvmptrabdm 47298 Value of a function mappin...
cnambpcma 47299 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 47300 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 47301 The sum of two complex num...
leaddsuble 47302 Addition and subtraction o...
2leaddle2 47303 If two real numbers are le...
ltnltne 47304 Variant of trichotomy law ...
p1lep2 47305 A real number increasd by ...
ltsubsubaddltsub 47306 If the result of subtracti...
zm1nn 47307 An integer minus 1 is posi...
readdcnnred 47308 The sum of a real number a...
resubcnnred 47309 The difference of a real n...
recnmulnred 47310 The product of a real numb...
cndivrenred 47311 The quotient of an imagina...
sqrtnegnre 47312 The square root of a negat...
nn0resubcl 47313 Closure law for subtractio...
zgeltp1eq 47314 If an integer is between a...
1t10e1p1e11 47315 11 is 1 times 10 to the po...
deccarry 47316 Add 1 to a 2 digit number ...
eluzge0nn0 47317 If an integer is greater t...
nltle2tri 47318 Negated extended trichotom...
ssfz12 47319 Subset relationship for fi...
elfz2z 47320 Membership of an integer i...
2elfz3nn0 47321 If there are two elements ...
fz0addcom 47322 The addition of two member...
2elfz2melfz 47323 If the sum of two integers...
fz0addge0 47324 The sum of two integers in...
elfzlble 47325 Membership of an integer i...
elfzelfzlble 47326 Membership of an element o...
fzopred 47327 Join a predecessor to the ...
fzopredsuc 47328 Join a predecessor and a s...
1fzopredsuc 47329 Join 0 and a successor to ...
el1fzopredsuc 47330 An element of an open inte...
subsubelfzo0 47331 Subtracting a difference f...
2ffzoeq 47332 Two functions over a half-...
2ltceilhalf 47333 The ceiling of half of an ...
ceilhalfgt1 47334 The ceiling of half of an ...
ceilhalfelfzo1 47335 A positive integer less th...
gpgedgvtx1lem 47336 Lemma for ~ gpgedgvtx1 . ...
2tceilhalfelfzo1 47337 Two times a positive integ...
ceilbi 47338 A condition equivalent to ...
ceilhalf1 47339 The ceiling of one half is...
rehalfge1 47340 Half of a real number grea...
ceilhalfnn 47341 The ceiling of half of a p...
1elfzo1ceilhalf1 47342 1 is in the half-open inte...
fldivmod 47343 Expressing the floor of a ...
ceildivmod 47344 Expressing the ceiling of ...
ceil5half3 47345 The ceiling of half of 5 i...
submodaddmod 47346 Subtraction and addition m...
difltmodne 47347 Two nonnegative integers a...
zplusmodne 47348 A nonnegative integer is n...
addmodne 47349 The sum of a nonnegative i...
plusmod5ne 47350 A nonnegative integer is n...
zp1modne 47351 An integer is not itself p...
p1modne 47352 A nonnegative integer is n...
m1modne 47353 A nonnegative integer is n...
minusmod5ne 47354 A nonnegative integer is n...
submodlt 47355 The difference of an eleme...
submodneaddmod 47356 An integer minus ` B ` is ...
m1modnep2mod 47357 A nonnegative integer minu...
minusmodnep2tmod 47358 A nonnegative integer minu...
m1mod0mod1 47359 An integer decreased by 1 ...
elmod2 47360 An integer modulo 2 is eit...
mod0mul 47361 If an integer is 0 modulo ...
modn0mul 47362 If an integer is not 0 mod...
m1modmmod 47363 An integer decreased by 1 ...
difmodm1lt 47364 The difference between an ...
8mod5e3 47365 8 modulo 5 is 3. (Contrib...
modmkpkne 47366 If an integer minus a cons...
modmknepk 47367 A nonnegative integer less...
modlt0b 47368 An integer with an absolut...
mod2addne 47369 The sums of a nonnegative ...
modm1nep1 47370 A nonnegative integer less...
modm2nep1 47371 A nonnegative integer less...
modp2nep1 47372 A nonnegative integer less...
modm1nep2 47373 A nonnegative integer less...
modm1nem2 47374 A nonnegative integer less...
modm1p1ne 47375 If an integer minus one eq...
smonoord 47376 Ordering relation for a st...
fsummsndifre 47377 A finite sum with one of i...
fsumsplitsndif 47378 Separate out a term in a f...
fsummmodsndifre 47379 A finite sum of summands m...
fsummmodsnunz 47380 A finite sum of summands m...
setsidel 47381 The injected slot is an el...
setsnidel 47382 The injected slot is an el...
setsv 47383 The value of the structure...
preimafvsnel 47384 The preimage of a function...
preimafvn0 47385 The preimage of a function...
uniimafveqt 47386 The union of the image of ...
uniimaprimaeqfv 47387 The union of the image of ...
setpreimafvex 47388 The class ` P ` of all pre...
elsetpreimafvb 47389 The characterization of an...
elsetpreimafv 47390 An element of the class ` ...
elsetpreimafvssdm 47391 An element of the class ` ...
fvelsetpreimafv 47392 There is an element in a p...
preimafvelsetpreimafv 47393 The preimage of a function...
preimafvsspwdm 47394 The class ` P ` of all pre...
0nelsetpreimafv 47395 The empty set is not an el...
elsetpreimafvbi 47396 An element of the preimage...
elsetpreimafveqfv 47397 The elements of the preima...
eqfvelsetpreimafv 47398 If an element of the domai...
elsetpreimafvrab 47399 An element of the preimage...
imaelsetpreimafv 47400 The image of an element of...
uniimaelsetpreimafv 47401 The union of the image of ...
elsetpreimafveq 47402 If two preimages of functi...
fundcmpsurinjlem1 47403 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 47404 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 47405 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 47406 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 47407 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 47408 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 47409 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 47410 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 47411 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 47412 Every function ` F : A -->...
fundcmpsurinjpreimafv 47413 Every function ` F : A -->...
fundcmpsurinj 47414 Every function ` F : A -->...
fundcmpsurbijinj 47415 Every function ` F : A -->...
fundcmpsurinjimaid 47416 Every function ` F : A -->...
fundcmpsurinjALT 47417 Alternate proof of ~ fundc...
iccpval 47420 Partition consisting of a ...
iccpart 47421 A special partition. Corr...
iccpartimp 47422 Implications for a class b...
iccpartres 47423 The restriction of a parti...
iccpartxr 47424 If there is a partition, t...
iccpartgtprec 47425 If there is a partition, t...
iccpartipre 47426 If there is a partition, t...
iccpartiltu 47427 If there is a partition, t...
iccpartigtl 47428 If there is a partition, t...
iccpartlt 47429 If there is a partition, t...
iccpartltu 47430 If there is a partition, t...
iccpartgtl 47431 If there is a partition, t...
iccpartgt 47432 If there is a partition, t...
iccpartleu 47433 If there is a partition, t...
iccpartgel 47434 If there is a partition, t...
iccpartrn 47435 If there is a partition, t...
iccpartf 47436 The range of the partition...
iccpartel 47437 If there is a partition, t...
iccelpart 47438 An element of any partitio...
iccpartiun 47439 A half-open interval of ex...
icceuelpartlem 47440 Lemma for ~ icceuelpart . ...
icceuelpart 47441 An element of a partitione...
iccpartdisj 47442 The segments of a partitio...
iccpartnel 47443 A point of a partition is ...
fargshiftfv 47444 If a class is a function, ...
fargshiftf 47445 If a class is a function, ...
fargshiftf1 47446 If a function is 1-1, then...
fargshiftfo 47447 If a function is onto, the...
fargshiftfva 47448 The values of a shifted fu...
lswn0 47449 The last symbol of a not e...
nfich1 47452 The first interchangeable ...
nfich2 47453 The second interchangeable...
ichv 47454 Setvar variables are inter...
ichf 47455 Setvar variables are inter...
ichid 47456 A setvar variable is alway...
icht 47457 A theorem is interchangeab...
ichbidv 47458 Formula building rule for ...
ichcircshi 47459 The setvar variables are i...
ichan 47460 If two setvar variables ar...
ichn 47461 Negation does not affect i...
ichim 47462 Formula building rule for ...
dfich2 47463 Alternate definition of th...
ichcom 47464 The interchangeability of ...
ichbi12i 47465 Equivalence for interchang...
icheqid 47466 In an equality for the sam...
icheq 47467 In an equality of setvar v...
ichnfimlem 47468 Lemma for ~ ichnfim : A s...
ichnfim 47469 If in an interchangeabilit...
ichnfb 47470 If ` x ` and ` y ` are int...
ichal 47471 Move a universal quantifie...
ich2al 47472 Two setvar variables are a...
ich2ex 47473 Two setvar variables are a...
ichexmpl1 47474 Example for interchangeabl...
ichexmpl2 47475 Example for interchangeabl...
ich2exprop 47476 If the setvar variables ar...
ichnreuop 47477 If the setvar variables ar...
ichreuopeq 47478 If the setvar variables ar...
sprid 47479 Two identical representati...
elsprel 47480 An unordered pair is an el...
spr0nelg 47481 The empty set is not an el...
sprval 47484 The set of all unordered p...
sprvalpw 47485 The set of all unordered p...
sprssspr 47486 The set of all unordered p...
spr0el 47487 The empty set is not an un...
sprvalpwn0 47488 The set of all unordered p...
sprel 47489 An element of the set of a...
prssspr 47490 An element of a subset of ...
prelspr 47491 An unordered pair of eleme...
prsprel 47492 The elements of a pair fro...
prsssprel 47493 The elements of a pair fro...
sprvalpwle2 47494 The set of all unordered p...
sprsymrelfvlem 47495 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 47496 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 47497 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 47498 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 47499 The value of the function ...
sprsymrelf 47500 The mapping ` F ` is a fun...
sprsymrelf1 47501 The mapping ` F ` is a one...
sprsymrelfo 47502 The mapping ` F ` is a fun...
sprsymrelf1o 47503 The mapping ` F ` is a bij...
sprbisymrel 47504 There is a bijection betwe...
sprsymrelen 47505 The class ` P ` of subsets...
prpair 47506 Characterization of a prop...
prproropf1olem0 47507 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 47508 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 47509 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 47510 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 47511 Lemma 4 for ~ prproropf1o ...
prproropf1o 47512 There is a bijection betwe...
prproropen 47513 The set of proper pairs an...
prproropreud 47514 There is exactly one order...
pairreueq 47515 Two equivalent representat...
paireqne 47516 Two sets are not equal iff...
prprval 47519 The set of all proper unor...
prprvalpw 47520 The set of all proper unor...
prprelb 47521 An element of the set of a...
prprelprb 47522 A set is an element of the...
prprspr2 47523 The set of all proper unor...
prprsprreu 47524 There is a unique proper u...
prprreueq 47525 There is a unique proper u...
sbcpr 47526 The proper substitution of...
reupr 47527 There is a unique unordere...
reuprpr 47528 There is a unique proper u...
poprelb 47529 Equality for unordered pai...
2exopprim 47530 The existence of an ordere...
reuopreuprim 47531 There is a unique unordere...
fmtno 47534 The ` N ` th Fermat number...
fmtnoge3 47535 Each Fermat number is grea...
fmtnonn 47536 Each Fermat number is a po...
fmtnom1nn 47537 A Fermat number minus one ...
fmtnoodd 47538 Each Fermat number is odd....
fmtnorn 47539 A Fermat number is a funct...
fmtnof1 47540 The enumeration of the Fer...
fmtnoinf 47541 The set of Fermat numbers ...
fmtnorec1 47542 The first recurrence relat...
sqrtpwpw2p 47543 The floor of the square ro...
fmtnosqrt 47544 The floor of the square ro...
fmtno0 47545 The ` 0 ` th Fermat number...
fmtno1 47546 The ` 1 ` st Fermat number...
fmtnorec2lem 47547 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 47548 The second recurrence rela...
fmtnodvds 47549 Any Fermat number divides ...
goldbachthlem1 47550 Lemma 1 for ~ goldbachth ....
goldbachthlem2 47551 Lemma 2 for ~ goldbachth ....
goldbachth 47552 Goldbach's theorem: Two d...
fmtnorec3 47553 The third recurrence relat...
fmtnorec4 47554 The fourth recurrence rela...
fmtno2 47555 The ` 2 ` nd Fermat number...
fmtno3 47556 The ` 3 ` rd Fermat number...
fmtno4 47557 The ` 4 ` th Fermat number...
fmtno5lem1 47558 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 47559 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 47560 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 47561 Lemma 4 for ~ fmtno5 . (C...
fmtno5 47562 The ` 5 ` th Fermat number...
fmtno0prm 47563 The ` 0 ` th Fermat number...
fmtno1prm 47564 The ` 1 ` st Fermat number...
fmtno2prm 47565 The ` 2 ` nd Fermat number...
257prm 47566 257 is a prime number (the...
fmtno3prm 47567 The ` 3 ` rd Fermat number...
odz2prm2pw 47568 Any power of two is coprim...
fmtnoprmfac1lem 47569 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 47570 Divisor of Fermat number (...
fmtnoprmfac2lem1 47571 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 47572 Divisor of Fermat number (...
fmtnofac2lem 47573 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 47574 Divisor of Fermat number (...
fmtnofac1 47575 Divisor of Fermat number (...
fmtno4sqrt 47576 The floor of the square ro...
fmtno4prmfac 47577 If P was a (prime) factor ...
fmtno4prmfac193 47578 If P was a (prime) factor ...
fmtno4nprmfac193 47579 193 is not a (prime) facto...
fmtno4prm 47580 The ` 4 `-th Fermat number...
65537prm 47581 65537 is a prime number (t...
fmtnofz04prm 47582 The first five Fermat numb...
fmtnole4prm 47583 The first five Fermat numb...
fmtno5faclem1 47584 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 47585 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 47586 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 47587 The factorization of the `...
fmtno5nprm 47588 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 47589 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 47590 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 47591 The mapping of a Fermat nu...
prmdvdsfmtnof1 47592 The mapping of a Fermat nu...
prminf2 47593 The set of prime numbers i...
2pwp1prm 47594 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 47595 Every prime number of the ...
m2prm 47596 The second Mersenne number...
m3prm 47597 The third Mersenne number ...
flsqrt 47598 A condition equivalent to ...
flsqrt5 47599 The floor of the square ro...
3ndvds4 47600 3 does not divide 4. (Con...
139prmALT 47601 139 is a prime number. In...
31prm 47602 31 is a prime number. In ...
m5prm 47603 The fifth Mersenne number ...
127prm 47604 127 is a prime number. (C...
m7prm 47605 The seventh Mersenne numbe...
m11nprm 47606 The eleventh Mersenne numb...
mod42tp1mod8 47607 If a number is ` 3 ` modul...
sfprmdvdsmersenne 47608 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 47609 If ` P ` is a Sophie Germa...
lighneallem1 47610 Lemma 1 for ~ lighneal . ...
lighneallem2 47611 Lemma 2 for ~ lighneal . ...
lighneallem3 47612 Lemma 3 for ~ lighneal . ...
lighneallem4a 47613 Lemma 1 for ~ lighneallem4...
lighneallem4b 47614 Lemma 2 for ~ lighneallem4...
lighneallem4 47615 Lemma 3 for ~ lighneal . ...
lighneal 47616 If a power of a prime ` P ...
modexp2m1d 47617 The square of an integer w...
proththdlem 47618 Lemma for ~ proththd . (C...
proththd 47619 Proth's theorem (1878). I...
5tcu2e40 47620 5 times the cube of 2 is 4...
3exp4mod41 47621 3 to the fourth power is -...
41prothprmlem1 47622 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 47623 Lemma 2 for ~ 41prothprm ....
41prothprm 47624 41 is a _Proth prime_. (C...
quad1 47625 A condition for a quadrati...
requad01 47626 A condition for a quadrati...
requad1 47627 A condition for a quadrati...
requad2 47628 A condition for a quadrati...
iseven 47633 The predicate "is an even ...
isodd 47634 The predicate "is an odd n...
evenz 47635 An even number is an integ...
oddz 47636 An odd number is an intege...
evendiv2z 47637 The result of dividing an ...
oddp1div2z 47638 The result of dividing an ...
oddm1div2z 47639 The result of dividing an ...
isodd2 47640 The predicate "is an odd n...
dfodd2 47641 Alternate definition for o...
dfodd6 47642 Alternate definition for o...
dfeven4 47643 Alternate definition for e...
evenm1odd 47644 The predecessor of an even...
evenp1odd 47645 The successor of an even n...
oddp1eveni 47646 The successor of an odd nu...
oddm1eveni 47647 The predecessor of an odd ...
evennodd 47648 An even number is not an o...
oddneven 47649 An odd number is not an ev...
enege 47650 The negative of an even nu...
onego 47651 The negative of an odd num...
m1expevenALTV 47652 Exponentiation of -1 by an...
m1expoddALTV 47653 Exponentiation of -1 by an...
dfeven2 47654 Alternate definition for e...
dfodd3 47655 Alternate definition for o...
iseven2 47656 The predicate "is an even ...
isodd3 47657 The predicate "is an odd n...
2dvdseven 47658 2 divides an even number. ...
m2even 47659 A multiple of 2 is an even...
2ndvdsodd 47660 2 does not divide an odd n...
2dvdsoddp1 47661 2 divides an odd number in...
2dvdsoddm1 47662 2 divides an odd number de...
dfeven3 47663 Alternate definition for e...
dfodd4 47664 Alternate definition for o...
dfodd5 47665 Alternate definition for o...
zefldiv2ALTV 47666 The floor of an even numbe...
zofldiv2ALTV 47667 The floor of an odd number...
oddflALTV 47668 Odd number representation ...
iseven5 47669 The predicate "is an even ...
isodd7 47670 The predicate "is an odd n...
dfeven5 47671 Alternate definition for e...
dfodd7 47672 Alternate definition for o...
gcd2odd1 47673 The greatest common diviso...
zneoALTV 47674 No even integer equals an ...
zeoALTV 47675 An integer is even or odd....
zeo2ALTV 47676 An integer is even or odd ...
nneoALTV 47677 A positive integer is even...
nneoiALTV 47678 A positive integer is even...
odd2np1ALTV 47679 An integer is odd iff it i...
oddm1evenALTV 47680 An integer is odd iff its ...
oddp1evenALTV 47681 An integer is odd iff its ...
oexpnegALTV 47682 The exponential of the neg...
oexpnegnz 47683 The exponential of the neg...
bits0ALTV 47684 Value of the zeroth bit. ...
bits0eALTV 47685 The zeroth bit of an even ...
bits0oALTV 47686 The zeroth bit of an odd n...
divgcdoddALTV 47687 Either ` A / ( A gcd B ) `...
opoeALTV 47688 The sum of two odds is eve...
opeoALTV 47689 The sum of an odd and an e...
omoeALTV 47690 The difference of two odds...
omeoALTV 47691 The difference of an odd a...
oddprmALTV 47692 A prime not equal to ` 2 `...
0evenALTV 47693 0 is an even number. (Con...
0noddALTV 47694 0 is not an odd number. (...
1oddALTV 47695 1 is an odd number. (Cont...
1nevenALTV 47696 1 is not an even number. ...
2evenALTV 47697 2 is an even number. (Con...
2noddALTV 47698 2 is not an odd number. (...
nn0o1gt2ALTV 47699 An odd nonnegative integer...
nnoALTV 47700 An alternate characterizat...
nn0oALTV 47701 An alternate characterizat...
nn0e 47702 An alternate characterizat...
nneven 47703 An alternate characterizat...
nn0onn0exALTV 47704 For each odd nonnegative i...
nn0enn0exALTV 47705 For each even nonnegative ...
nnennexALTV 47706 For each even positive int...
nnpw2evenALTV 47707 2 to the power of a positi...
epoo 47708 The sum of an even and an ...
emoo 47709 The difference of an even ...
epee 47710 The sum of two even number...
emee 47711 The difference of two even...
evensumeven 47712 If a summand is even, the ...
3odd 47713 3 is an odd number. (Cont...
4even 47714 4 is an even number. (Con...
5odd 47715 5 is an odd number. (Cont...
6even 47716 6 is an even number. (Con...
7odd 47717 7 is an odd number. (Cont...
8even 47718 8 is an even number. (Con...
evenprm2 47719 A prime number is even iff...
oddprmne2 47720 Every prime number not bei...
oddprmuzge3 47721 A prime number which is od...
evenltle 47722 If an even number is great...
odd2prm2 47723 If an odd number is the su...
even3prm2 47724 If an even number is the s...
mogoldbblem 47725 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 47726 Lemma for ~ perfectALTV . ...
perfectALTVlem2 47727 Lemma for ~ perfectALTV . ...
perfectALTV 47728 The Euclid-Euler theorem, ...
fppr 47731 The set of Fermat pseudopr...
fpprmod 47732 The set of Fermat pseudopr...
fpprel 47733 A Fermat pseudoprime to th...
fpprbasnn 47734 The base of a Fermat pseud...
fpprnn 47735 A Fermat pseudoprime to th...
fppr2odd 47736 A Fermat pseudoprime to th...
11t31e341 47737 341 is the product of 11 a...
2exp340mod341 47738 Eight to the eighth power ...
341fppr2 47739 341 is the (smallest) _Pou...
4fppr1 47740 4 is the (smallest) Fermat...
8exp8mod9 47741 Eight to the eighth power ...
9fppr8 47742 9 is the (smallest) Fermat...
dfwppr 47743 Alternate definition of a ...
fpprwppr 47744 A Fermat pseudoprime to th...
fpprwpprb 47745 An integer ` X ` which is ...
fpprel2 47746 An alternate definition fo...
nfermltl8rev 47747 Fermat's little theorem wi...
nfermltl2rev 47748 Fermat's little theorem wi...
nfermltlrev 47749 Fermat's little theorem re...
isgbe 47756 The predicate "is an even ...
isgbow 47757 The predicate "is a weak o...
isgbo 47758 The predicate "is an odd G...
gbeeven 47759 An even Goldbach number is...
gbowodd 47760 A weak odd Goldbach number...
gbogbow 47761 A (strong) odd Goldbach nu...
gboodd 47762 An odd Goldbach number is ...
gbepos 47763 Any even Goldbach number i...
gbowpos 47764 Any weak odd Goldbach numb...
gbopos 47765 Any odd Goldbach number is...
gbegt5 47766 Any even Goldbach number i...
gbowgt5 47767 Any weak odd Goldbach numb...
gbowge7 47768 Any weak odd Goldbach numb...
gboge9 47769 Any odd Goldbach number is...
gbege6 47770 Any even Goldbach number i...
gbpart6 47771 The Goldbach partition of ...
gbpart7 47772 The (weak) Goldbach partit...
gbpart8 47773 The Goldbach partition of ...
gbpart9 47774 The (strong) Goldbach part...
gbpart11 47775 The (strong) Goldbach part...
6gbe 47776 6 is an even Goldbach numb...
7gbow 47777 7 is a weak odd Goldbach n...
8gbe 47778 8 is an even Goldbach numb...
9gbo 47779 9 is an odd Goldbach numbe...
11gbo 47780 11 is an odd Goldbach numb...
stgoldbwt 47781 If the strong ternary Gold...
sbgoldbwt 47782 If the strong binary Goldb...
sbgoldbst 47783 If the strong binary Goldb...
sbgoldbaltlem1 47784 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 47785 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 47786 An alternate (related to t...
sbgoldbb 47787 If the strong binary Goldb...
sgoldbeven3prm 47788 If the binary Goldbach con...
sbgoldbm 47789 If the strong binary Goldb...
mogoldbb 47790 If the modern version of t...
sbgoldbmb 47791 The strong binary Goldbach...
sbgoldbo 47792 If the strong binary Goldb...
nnsum3primes4 47793 4 is the sum of at most 3 ...
nnsum4primes4 47794 4 is the sum of at most 4 ...
nnsum3primesprm 47795 Every prime is "the sum of...
nnsum4primesprm 47796 Every prime is "the sum of...
nnsum3primesgbe 47797 Any even Goldbach number i...
nnsum4primesgbe 47798 Any even Goldbach number i...
nnsum3primesle9 47799 Every integer greater than...
nnsum4primesle9 47800 Every integer greater than...
nnsum4primesodd 47801 If the (weak) ternary Gold...
nnsum4primesoddALTV 47802 If the (strong) ternary Go...
evengpop3 47803 If the (weak) ternary Gold...
evengpoap3 47804 If the (strong) ternary Go...
nnsum4primeseven 47805 If the (weak) ternary Gold...
nnsum4primesevenALTV 47806 If the (strong) ternary Go...
wtgoldbnnsum4prm 47807 If the (weak) ternary Gold...
stgoldbnnsum4prm 47808 If the (strong) ternary Go...
bgoldbnnsum3prm 47809 If the binary Goldbach con...
bgoldbtbndlem1 47810 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 47811 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 47812 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 47813 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 47814 If the binary Goldbach con...
tgoldbachgtALTV 47817 Variant of Thierry Arnoux'...
bgoldbachlt 47818 The binary Goldbach conjec...
tgblthelfgott 47820 The ternary Goldbach conje...
tgoldbachlt 47821 The ternary Goldbach conje...
tgoldbach 47822 The ternary Goldbach conje...
clnbgrprc0 47825 The closed neighborhood is...
clnbgrcl 47826 If a class ` X ` has at le...
clnbgrval 47827 The closed neighborhood of...
dfclnbgr2 47828 Alternate definition of th...
dfclnbgr4 47829 Alternate definition of th...
elclnbgrelnbgr 47830 An element of the closed n...
dfclnbgr3 47831 Alternate definition of th...
clnbgrnvtx0 47832 If a class ` X ` is not a ...
clnbgrel 47833 Characterization of a memb...
clnbgrvtxel 47834 Every vertex ` K ` is a me...
clnbgrisvtx 47835 Every member ` N ` of the ...
clnbgrssvtx 47836 The closed neighborhood of...
clnbgrn0 47837 The closed neighborhood of...
clnbupgr 47838 The closed neighborhood of...
clnbupgrel 47839 A member of the closed nei...
clnbgr0vtx 47840 In a null graph (with no v...
clnbgr0edg 47841 In an empty graph (with no...
clnbgrsym 47842 In a graph, the closed nei...
predgclnbgrel 47843 If a (not necessarily prop...
clnbgredg 47844 A vertex connected by an e...
clnbgrssedg 47845 The vertices connected by ...
edgusgrclnbfin 47846 The size of the closed nei...
clnbusgrfi 47847 The closed neighborhood of...
clnbfiusgrfi 47848 The closed neighborhood of...
clnbgrlevtx 47849 The size of the closed nei...
dfsclnbgr2 47850 Alternate definition of th...
sclnbgrel 47851 Characterization of a memb...
sclnbgrelself 47852 A vertex ` N ` is a member...
sclnbgrisvtx 47853 Every member ` X ` of the ...
dfclnbgr5 47854 Alternate definition of th...
dfnbgr5 47855 Alternate definition of th...
dfnbgrss 47856 Subset chain for different...
dfvopnbgr2 47857 Alternate definition of th...
vopnbgrel 47858 Characterization of a memb...
vopnbgrelself 47859 A vertex ` N ` is a member...
dfclnbgr6 47860 Alternate definition of th...
dfnbgr6 47861 Alternate definition of th...
dfsclnbgr6 47862 Alternate definition of a ...
dfnbgrss2 47863 Subset chain for different...
isisubgr 47866 The subgraph induced by a ...
isubgriedg 47867 The edges of an induced su...
isubgrvtxuhgr 47868 The subgraph induced by th...
isubgredgss 47869 The edges of an induced su...
isubgredg 47870 An edge of an induced subg...
isubgrvtx 47871 The vertices of an induced...
isubgruhgr 47872 An induced subgraph of a h...
isubgrsubgr 47873 An induced subgraph of a h...
isubgrupgr 47874 An induced subgraph of a p...
isubgrumgr 47875 An induced subgraph of a m...
isubgrusgr 47876 An induced subgraph of a s...
isubgr0uhgr 47877 The subgraph induced by an...
grimfn 47883 The graph isomorphism func...
grimdmrel 47884 The domain of the graph is...
isgrim 47886 An isomorphism of graphs i...
grimprop 47887 Properties of an isomorphi...
grimf1o 47888 An isomorphism of graphs i...
grimidvtxedg 47889 The identity relation rest...
grimid 47890 The identity relation rest...
grimuhgr 47891 If there is a graph isomor...
grimcnv 47892 The converse of a graph is...
grimco 47893 The composition of graph i...
uhgrimedgi 47894 An isomorphism between gra...
uhgrimedg 47895 An isomorphism between gra...
uhgrimprop 47896 An isomorphism between hyp...
isuspgrim0lem 47897 An isomorphism of simple p...
isuspgrim0 47898 An isomorphism of simple p...
isuspgrimlem 47899 Lemma for ~ isuspgrim . (...
isuspgrim 47900 A class is an isomorphism ...
upgrimwlklem1 47901 Lemma 1 for ~ upgrimwlk an...
upgrimwlklem2 47902 Lemma 2 for ~ upgrimwlk . ...
upgrimwlklem3 47903 Lemma 3 for ~ upgrimwlk . ...
upgrimwlklem4 47904 Lemma 4 for ~ upgrimwlk . ...
upgrimwlklem5 47905 Lemma 5 for ~ upgrimwlk . ...
upgrimwlk 47906 Graph isomorphisms between...
upgrimwlklen 47907 Graph isomorphisms between...
upgrimtrlslem1 47908 Lemma 1 for ~ upgrimtrls ....
upgrimtrlslem2 47909 Lemma 2 for ~ upgrimtrls ....
upgrimtrls 47910 Graph isomorphisms between...
upgrimpthslem1 47911 Lemma 1 for ~ upgrimpths ....
upgrimpthslem2 47912 Lemma 2 for ~ upgrimpths ....
upgrimpths 47913 Graph isomorphisms between...
upgrimspths 47914 Graph isomorphisms between...
upgrimcycls 47915 Graph isomorphisms between...
brgric 47916 The relation "is isomorphi...
brgrici 47917 Prove that two graphs are ...
gricrcl 47918 Reverse closure of the "is...
dfgric2 47919 Alternate, explicit defini...
gricbri 47920 Implications of two graphs...
gricushgr 47921 The "is isomorphic to" rel...
gricuspgr 47922 The "is isomorphic to" rel...
gricrel 47923 The "is isomorphic to" rel...
gricref 47924 Graph isomorphism is refle...
gricsym 47925 Graph isomorphism is symme...
gricsymb 47926 Graph isomorphism is symme...
grictr 47927 Graph isomorphism is trans...
gricer 47928 Isomorphism is an equivale...
gricen 47929 Isomorphic graphs have equ...
opstrgric 47930 A graph represented as an ...
ushggricedg 47931 A simple hypergraph (with ...
cycldlenngric 47932 Two simple pseudographs ar...
isubgrgrim 47933 Isomorphic subgraphs induc...
uhgrimisgrgriclem 47934 Lemma for ~ uhgrimisgrgric...
uhgrimisgrgric 47935 For isomorphic hypergraphs...
clnbgrisubgrgrim 47936 Isomorphic subgraphs induc...
clnbgrgrimlem 47937 Lemma for ~ clnbgrgrim : ...
clnbgrgrim 47938 Graph isomorphisms between...
grimedg 47939 Graph isomorphisms map edg...
grtriproplem 47942 Lemma for ~ grtriprop . (...
grtri 47943 The triangles in a graph. ...
grtriprop 47944 The properties of a triang...
grtrif1o 47945 Any bijection onto a trian...
isgrtri 47946 A triangle in a graph. (C...
grtrissvtx 47947 A triangle is a subset of ...
grtriclwlk3 47948 A triangle induces a close...
cycl3grtrilem 47949 Lemma for ~ cycl3grtri . ...
cycl3grtri 47950 The vertices of a cycle of...
grtrimap 47951 Conditions for mapping tri...
grimgrtri 47952 Graph isomorphisms map tri...
usgrgrtrirex 47953 Conditions for a simple gr...
stgrfv 47956 The star graph S_N. (Contr...
stgrvtx 47957 The vertices of the star g...
stgriedg 47958 The indexed edges of the s...
stgredg 47959 The edges of the star grap...
stgredgel 47960 An edge of the star graph ...
stgredgiun 47961 The edges of the star grap...
stgrusgra 47962 The star graph S_N is a si...
stgr0 47963 The star graph S_0 consist...
stgr1 47964 The star graph S_1 consist...
stgrvtx0 47965 The center ("internal node...
stgrorder 47966 The order of a star graph ...
stgrnbgr0 47967 All vertices of a star gra...
stgrclnbgr0 47968 All vertices of a star gra...
isubgr3stgrlem1 47969 Lemma 1 for ~ isubgr3stgr ...
isubgr3stgrlem2 47970 Lemma 2 for ~ isubgr3stgr ...
isubgr3stgrlem3 47971 Lemma 3 for ~ isubgr3stgr ...
isubgr3stgrlem4 47972 Lemma 4 for ~ isubgr3stgr ...
isubgr3stgrlem5 47973 Lemma 5 for ~ isubgr3stgr ...
isubgr3stgrlem6 47974 Lemma 6 for ~ isubgr3stgr ...
isubgr3stgrlem7 47975 Lemma 7 for ~ isubgr3stgr ...
isubgr3stgrlem8 47976 Lemma 8 for ~ isubgr3stgr ...
isubgr3stgrlem9 47977 Lemma 9 for ~ isubgr3stgr ...
isubgr3stgr 47978 If a vertex of a simple gr...
grlimfn 47982 The graph local isomorphis...
grlimdmrel 47983 The domain of the graph lo...
isgrlim 47985 A local isomorphism of gra...
isgrlim2 47986 A local isomorphism of gra...
grlimprop 47987 Properties of a local isom...
grlimf1o 47988 A local isomorphism of gra...
grlimprop2 47989 Properties of a local isom...
uhgrimgrlim 47990 An isomorphism of hypergra...
uspgrlimlem1 47991 Lemma 1 for ~ uspgrlim . ...
uspgrlimlem2 47992 Lemma 2 for ~ uspgrlim . ...
uspgrlimlem3 47993 Lemma 3 for ~ uspgrlim . ...
uspgrlimlem4 47994 Lemma 4 for ~ uspgrlim . ...
uspgrlim 47995 A local isomorphism of sim...
usgrlimprop 47996 Properties of a local isom...
grlimgrtrilem1 47997 Lemma 3 for ~ grlimgrtri ....
grlimgrtrilem2 47998 Lemma 3 for ~ grlimgrtri ....
grlimgrtri 47999 Local isomorphisms between...
brgrlic 48000 The relation "is locally i...
brgrilci 48001 Prove that two graphs are ...
grlicrel 48002 The "is locally isomorphic...
grlicrcl 48003 Reverse closure of the "is...
dfgrlic2 48004 Alternate, explicit defini...
grilcbri 48005 Implications of two graphs...
dfgrlic3 48006 Alternate, explicit defini...
grilcbri2 48007 Implications of two graphs...
grlicref 48008 Graph local isomorphism is...
grlicsym 48009 Graph local isomorphism is...
grlicsymb 48010 Graph local isomorphism is...
grlictr 48011 Graph local isomorphism is...
grlicer 48012 Local isomorphism is an eq...
grlicen 48013 Locally isomorphic graphs ...
gricgrlic 48014 Isomorphic hypergraphs are...
clnbgr3stgrgrlic 48015 If all (closed) neighborho...
usgrexmpl1lem 48016 Lemma for ~ usgrexmpl1 . ...
usgrexmpl1 48017 ` G ` is a simple graph of...
usgrexmpl1vtx 48018 The vertices ` 0 , 1 , 2 ,...
usgrexmpl1edg 48019 The edges ` { 0 , 1 } , { ...
usgrexmpl1tri 48020 ` G ` contains a triangle ...
usgrexmpl2lem 48021 Lemma for ~ usgrexmpl2 . ...
usgrexmpl2 48022 ` G ` is a simple graph of...
usgrexmpl2vtx 48023 The vertices ` 0 , 1 , 2 ,...
usgrexmpl2edg 48024 The edges ` { 0 , 1 } , { ...
usgrexmpl2nblem 48025 Lemma for ~ usgrexmpl2nb0 ...
usgrexmpl2nb0 48026 The neighborhood of the fi...
usgrexmpl2nb1 48027 The neighborhood of the se...
usgrexmpl2nb2 48028 The neighborhood of the th...
usgrexmpl2nb3 48029 The neighborhood of the fo...
usgrexmpl2nb4 48030 The neighborhood of the fi...
usgrexmpl2nb5 48031 The neighborhood of the si...
usgrexmpl2trifr 48032 ` G ` is triangle-free. (...
usgrexmpl12ngric 48033 The graphs ` H ` and ` G `...
usgrexmpl12ngrlic 48034 The graphs ` H ` and ` G `...
gpgov 48037 The generalized Petersen g...
gpgvtx 48038 The vertices of the genera...
gpgiedg 48039 The indexed edges of the g...
gpgedg 48040 The edges of the generaliz...
gpgiedgdmellem 48041 Lemma for ~ gpgiedgdmel an...
gpgvtxel 48042 A vertex in a generalized ...
gpgvtxel2 48043 The second component of a ...
gpgiedgdmel 48044 An index of edges of the g...
gpgedgel 48045 An edge in a generalized P...
gpgprismgriedgdmel 48046 An index of edges of the g...
gpgprismgriedgdmss 48047 A subset of the index of e...
gpgvtx0 48048 The outside vertices in a ...
gpgvtx1 48049 The inside vertices in a g...
opgpgvtx 48050 A vertex in a generalized ...
gpgusgralem 48051 Lemma for ~ gpgusgra . (C...
gpgusgra 48052 The generalized Petersen g...
gpgprismgrusgra 48053 The generalized Petersen g...
gpgorder 48054 The order of the generaliz...
gpg5order 48055 The order of a generalized...
gpgedgvtx0 48056 The edges starting at an o...
gpgedgvtx1 48057 The edges starting at an i...
gpgvtxedg0 48058 The edges starting at an o...
gpgvtxedg1 48059 The edges starting at an i...
gpgedgiov 48060 The edges of the generaliz...
gpgedg2ov 48061 The edges of the generaliz...
gpgedg2iv 48062 The edges of the generaliz...
gpg5nbgrvtx03starlem1 48063 Lemma 1 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx03starlem2 48064 Lemma 2 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx03starlem3 48065 Lemma 3 for ~ gpg5nbgrvtx0...
gpg5nbgrvtx13starlem1 48066 Lemma 1 for ~ gpg5nbgr3sta...
gpg5nbgrvtx13starlem2 48067 Lemma 2 for ~ gpg5nbgr3sta...
gpg5nbgrvtx13starlem3 48068 Lemma 3 for ~ gpg5nbgr3sta...
gpgnbgrvtx0 48069 The (open) neighborhood of...
gpgnbgrvtx1 48070 The (open) neighborhood of...
gpg3nbgrvtx0 48071 In a generalized Petersen ...
gpg3nbgrvtx0ALT 48072 In a generalized Petersen ...
gpg3nbgrvtx1 48073 In a generalized Petersen ...
gpgcubic 48074 Every generalized Petersen...
gpg5nbgrvtx03star 48075 In a generalized Petersen ...
gpg5nbgr3star 48076 In a generalized Petersen ...
gpgvtxdg3 48077 Every vertex in a generali...
gpg3kgrtriexlem1 48078 Lemma 1 for ~ gpg3kgrtriex...
gpg3kgrtriexlem2 48079 Lemma 2 for ~ gpg3kgrtriex...
gpg3kgrtriexlem3 48080 Lemma 3 for ~ gpg3kgrtriex...
gpg3kgrtriexlem4 48081 Lemma 4 for ~ gpg3kgrtriex...
gpg3kgrtriexlem5 48082 Lemma 5 for ~ gpg3kgrtriex...
gpg3kgrtriexlem6 48083 Lemma 6 for ~ gpg3kgrtriex...
gpg3kgrtriex 48084 All generalized Petersen g...
gpg5gricstgr3 48085 Each closed neighborhood i...
pglem 48086 Lemma for theorems about P...
pgjsgr 48087 A Petersen graph is a simp...
gpg5grlic 48088 The two generalized Peters...
gpgprismgr4cycllem1 48089 Lemma 1 for ~ gpgprismgr4c...
gpgprismgr4cycllem2 48090 Lemma 2 for ~ gpgprismgr4c...
gpgprismgr4cycllem3 48091 Lemma 3 for ~ gpgprismgr4c...
gpgprismgr4cycllem4 48092 Lemma 4 for ~ gpgprismgr4c...
gpgprismgr4cycllem5 48093 Lemma 5 for ~ gpgprismgr4c...
gpgprismgr4cycllem6 48094 Lemma 6 for ~ gpgprismgr4c...
gpgprismgr4cycllem7 48095 Lemma 7 for ~ gpgprismgr4c...
gpgprismgr4cycllem8 48096 Lemma 8 for ~ gpgprismgr4c...
gpgprismgr4cycllem9 48097 Lemma 9 for ~ gpgprismgr4c...
gpgprismgr4cycllem10 48098 Lemma 10 for ~ gpgprismgr4...
gpgprismgr4cycllem11 48099 Lemma 11 for ~ gpgprismgr4...
gpgprismgr4cycl0 48100 The generalized Petersen g...
gpgprismgr4cyclex 48101 The generalized Petersen g...
pgnioedg1 48102 An inside and an outside v...
pgnioedg2 48103 An inside and an outside v...
pgnioedg3 48104 An inside and an outside v...
pgnioedg4 48105 An inside and an outside v...
pgnioedg5 48106 An inside and an outside v...
pgnbgreunbgrlem1 48107 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem1 48108 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem2 48109 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2lem3 48110 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem2 48111 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem3 48112 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem4 48113 Lemma 4 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem1 48114 Lemma 1 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem2 48115 Lemma 2 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5lem3 48116 Lemma 3 for ~ pgnbgreunbgr...
pgnbgreunbgrlem5 48117 Lemma 5 for ~ pgnbgreunbgr...
pgnbgreunbgrlem6 48118 Lemma 6 for ~ pgnbgreunbgr...
pgnbgreunbgr 48119 In a Petersen graph, two d...
pgn4cyclex 48120 A cycle in a Petersen grap...
pg4cyclnex 48121 In the Petersen graph G(5,...
gpg5ngric 48122 The two generalized Peters...
lgricngricex 48123 There are two different lo...
1hegrlfgr 48124 A graph ` G ` with one hyp...
upwlksfval 48127 The set of simple walks (i...
isupwlk 48128 Properties of a pair of fu...
isupwlkg 48129 Generalization of ~ isupwl...
upwlkbprop 48130 Basic properties of a simp...
upwlkwlk 48131 A simple walk is a walk. ...
upgrwlkupwlk 48132 In a pseudograph, a walk i...
upgrwlkupwlkb 48133 In a pseudograph, the defi...
upgrisupwlkALT 48134 Alternate proof of ~ upgri...
upgredgssspr 48135 The set of edges of a pseu...
uspgropssxp 48136 The set ` G ` of "simple p...
uspgrsprfv 48137 The value of the function ...
uspgrsprf 48138 The mapping ` F ` is a fun...
uspgrsprf1 48139 The mapping ` F ` is a one...
uspgrsprfo 48140 The mapping ` F ` is a fun...
uspgrsprf1o 48141 The mapping ` F ` is a bij...
uspgrex 48142 The class ` G ` of all "si...
uspgrbispr 48143 There is a bijection betwe...
uspgrspren 48144 The set ` G ` of the "simp...
uspgrymrelen 48145 The set ` G ` of the "simp...
uspgrbisymrel 48146 There is a bijection betwe...
uspgrbisymrelALT 48147 Alternate proof of ~ uspgr...
ovn0dmfun 48148 If a class operation value...
xpsnopab 48149 A Cartesian product with a...
xpiun 48150 A Cartesian product expres...
ovn0ssdmfun 48151 If a class' operation valu...
fnxpdmdm 48152 The domain of the domain o...
cnfldsrngbas 48153 The base set of a subring ...
cnfldsrngadd 48154 The group addition operati...
cnfldsrngmul 48155 The ring multiplication op...
plusfreseq 48156 If the empty set is not co...
mgmplusfreseq 48157 If the empty set is not co...
0mgm 48158 A set with an empty base s...
opmpoismgm 48159 A structure with a group a...
copissgrp 48160 A structure with a constan...
copisnmnd 48161 A structure with a constan...
0nodd 48162 0 is not an odd integer. ...
1odd 48163 1 is an odd integer. (Con...
2nodd 48164 2 is not an odd integer. ...
oddibas 48165 Lemma 1 for ~ oddinmgm : ...
oddiadd 48166 Lemma 2 for ~ oddinmgm : ...
oddinmgm 48167 The structure of all odd i...
nnsgrpmgm 48168 The structure of positive ...
nnsgrp 48169 The structure of positive ...
nnsgrpnmnd 48170 The structure of positive ...
nn0mnd 48171 The set of nonnegative int...
gsumsplit2f 48172 Split a group sum into two...
gsumdifsndf 48173 Extract a summand from a f...
gsumfsupp 48174 A group sum of a family ca...
iscllaw 48181 The predicate "is a closed...
iscomlaw 48182 The predicate "is a commut...
clcllaw 48183 Closure of a closed operat...
isasslaw 48184 The predicate "is an assoc...
asslawass 48185 Associativity of an associ...
mgmplusgiopALT 48186 Slot 2 (group operation) o...
sgrpplusgaopALT 48187 Slot 2 (group operation) o...
intopval 48194 The internal (binary) oper...
intop 48195 An internal (binary) opera...
clintopval 48196 The closed (internal binar...
assintopval 48197 The associative (closed in...
assintopmap 48198 The associative (closed in...
isclintop 48199 The predicate "is a closed...
clintop 48200 A closed (internal binary)...
assintop 48201 An associative (closed int...
isassintop 48202 The predicate "is an assoc...
clintopcllaw 48203 The closure law holds for ...
assintopcllaw 48204 The closure low holds for ...
assintopasslaw 48205 The associative low holds ...
assintopass 48206 An associative (closed int...
ismgmALT 48215 The predicate "is a magma"...
iscmgmALT 48216 The predicate "is a commut...
issgrpALT 48217 The predicate "is a semigr...
iscsgrpALT 48218 The predicate "is a commut...
mgm2mgm 48219 Equivalence of the two def...
sgrp2sgrp 48220 Equivalence of the two def...
lmod0rng 48221 If the scalar ring of a mo...
nzrneg1ne0 48222 The additive inverse of th...
lidldomn1 48223 If a (left) ideal (which i...
lidlabl 48224 A (left) ideal of a ring i...
lidlrng 48225 A (left) ideal of a ring i...
zlidlring 48226 The zero (left) ideal of a...
uzlidlring 48227 Only the zero (left) ideal...
lidldomnnring 48228 A (left) ideal of a domain...
0even 48229 0 is an even integer. (Co...
1neven 48230 1 is not an even integer. ...
2even 48231 2 is an even integer. (Co...
2zlidl 48232 The even integers are a (l...
2zrng 48233 The ring of integers restr...
2zrngbas 48234 The base set of R is the s...
2zrngadd 48235 The group addition operati...
2zrng0 48236 The additive identity of R...
2zrngamgm 48237 R is an (additive) magma. ...
2zrngasgrp 48238 R is an (additive) semigro...
2zrngamnd 48239 R is an (additive) monoid....
2zrngacmnd 48240 R is a commutative (additi...
2zrngagrp 48241 R is an (additive) group. ...
2zrngaabl 48242 R is an (additive) abelian...
2zrngmul 48243 The ring multiplication op...
2zrngmmgm 48244 R is a (multiplicative) ma...
2zrngmsgrp 48245 R is a (multiplicative) se...
2zrngALT 48246 The ring of integers restr...
2zrngnmlid 48247 R has no multiplicative (l...
2zrngnmrid 48248 R has no multiplicative (r...
2zrngnmlid2 48249 R has no multiplicative (l...
2zrngnring 48250 R is not a unital ring. (...
cznrnglem 48251 Lemma for ~ cznrng : The ...
cznabel 48252 The ring constructed from ...
cznrng 48253 The ring constructed from ...
cznnring 48254 The ring constructed from ...
rngcvalALTV 48257 Value of the category of n...
rngcbasALTV 48258 Set of objects of the cate...
rngchomfvalALTV 48259 Set of arrows of the categ...
rngchomALTV 48260 Set of arrows of the categ...
elrngchomALTV 48261 A morphism of non-unital r...
rngccofvalALTV 48262 Composition in the categor...
rngccoALTV 48263 Composition in the categor...
rngccatidALTV 48264 Lemma for ~ rngccatALTV . ...
rngccatALTV 48265 The category of non-unital...
rngcidALTV 48266 The identity arrow in the ...
rngcsectALTV 48267 A section in the category ...
rngcinvALTV 48268 An inverse in the category...
rngcisoALTV 48269 An isomorphism in the cate...
rngchomffvalALTV 48270 The value of the functiona...
rngchomrnghmresALTV 48271 The value of the functiona...
rngcrescrhmALTV 48272 The category of non-unital...
rhmsubcALTVlem1 48273 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 48274 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 48275 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 48276 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 48277 According to ~ df-subc , t...
rhmsubcALTVcat 48278 The restriction of the cat...
ringcvalALTV 48281 Value of the category of r...
funcringcsetcALTV2lem1 48282 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 48283 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 48284 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 48285 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 48286 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 48287 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 48288 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 48289 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 48290 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 48291 The "natural forgetful fun...
ringcbasALTV 48292 Set of objects of the cate...
ringchomfvalALTV 48293 Set of arrows of the categ...
ringchomALTV 48294 Set of arrows of the categ...
elringchomALTV 48295 A morphism of rings is a f...
ringccofvalALTV 48296 Composition in the categor...
ringccoALTV 48297 Composition in the categor...
ringccatidALTV 48298 Lemma for ~ ringccatALTV ....
ringccatALTV 48299 The category of rings is a...
ringcidALTV 48300 The identity arrow in the ...
ringcsectALTV 48301 A section in the category ...
ringcinvALTV 48302 An inverse in the category...
ringcisoALTV 48303 An isomorphism in the cate...
ringcbasbasALTV 48304 An element of the base set...
funcringcsetclem1ALTV 48305 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 48306 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 48307 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 48308 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 48309 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 48310 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 48311 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 48312 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 48313 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 48314 The "natural forgetful fun...
srhmsubcALTVlem1 48315 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 48316 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 48317 According to ~ df-subc , t...
sringcatALTV 48318 The restriction of the cat...
crhmsubcALTV 48319 According to ~ df-subc , t...
cringcatALTV 48320 The restriction of the cat...
drhmsubcALTV 48321 According to ~ df-subc , t...
drngcatALTV 48322 The restriction of the cat...
fldcatALTV 48323 The restriction of the cat...
fldcALTV 48324 The restriction of the cat...
fldhmsubcALTV 48325 According to ~ df-subc , t...
eliunxp2 48326 Membership in a union of C...
mpomptx2 48327 Express a two-argument fun...
cbvmpox2 48328 Rule to change the bound v...
dmmpossx2 48329 The domain of a mapping is...
mpoexxg2 48330 Existence of an operation ...
ovmpordxf 48331 Value of an operation give...
ovmpordx 48332 Value of an operation give...
ovmpox2 48333 The value of an operation ...
fdmdifeqresdif 48334 The restriction of a condi...
ofaddmndmap 48335 The function operation app...
mapsnop 48336 A singleton of an ordered ...
fprmappr 48337 A function with a domain o...
mapprop 48338 An unordered pair containi...
ztprmneprm 48339 A prime is not an integer ...
2t6m3t4e0 48340 2 times 6 minus 3 times 4 ...
ssnn0ssfz 48341 For any finite subset of `...
nn0sumltlt 48342 If the sum of two nonnegat...
bcpascm1 48343 Pascal's rule for the bino...
altgsumbc 48344 The sum of binomial coeffi...
altgsumbcALT 48345 Alternate proof of ~ altgs...
zlmodzxzlmod 48346 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 48347 An element of the (base se...
zlmodzxz0 48348 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 48349 The scalar multiplication ...
zlmodzxzadd 48350 The addition of the ` ZZ `...
zlmodzxzsubm 48351 The subtraction of the ` Z...
zlmodzxzsub 48352 The subtraction of the ` Z...
mgpsumunsn 48353 Extract a summand/factor f...
mgpsumz 48354 If the group sum for the m...
mgpsumn 48355 If the group sum for the m...
exple2lt6 48356 A nonnegative integer to t...
pgrple2abl 48357 Every symmetric group on a...
pgrpgt2nabl 48358 Every symmetric group on a...
invginvrid 48359 Identity for a multiplicat...
rmsupp0 48360 The support of a mapping o...
domnmsuppn0 48361 The support of a mapping o...
rmsuppss 48362 The support of a mapping o...
scmsuppss 48363 The support of a mapping o...
rmsuppfi 48364 The support of a mapping o...
rmfsupp 48365 A mapping of a multiplicat...
scmsuppfi 48366 The support of a mapping o...
scmfsupp 48367 A mapping of a scalar mult...
suppmptcfin 48368 The support of a mapping w...
mptcfsupp 48369 A mapping with value 0 exc...
fsuppmptdmf 48370 A mapping with a finite do...
lmodvsmdi 48371 Multiple distributive law ...
gsumlsscl 48372 Closure of a group sum in ...
assaascl0 48373 The scalar 0 embedded into...
assaascl1 48374 The scalar 1 embedded into...
ply1vr1smo 48375 The variable in a polynomi...
ply1sclrmsm 48376 The ring multiplication of...
coe1id 48377 Coefficient vector of the ...
coe1sclmulval 48378 The value of the coefficie...
ply1mulgsumlem1 48379 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 48380 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 48381 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 48382 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 48383 The product of two polynom...
evl1at0 48384 Polynomial evaluation for ...
evl1at1 48385 Polynomial evaluation for ...
linply1 48386 A term of the form ` x - C...
lineval 48387 A term of the form ` x - C...
linevalexample 48388 The polynomial ` x - 3 ` o...
dmatALTval 48393 The algebra of ` N ` x ` N...
dmatALTbas 48394 The base set of the algebr...
dmatALTbasel 48395 An element of the base set...
dmatbas 48396 The set of all ` N ` x ` N...
lincop 48401 A linear combination as op...
lincval 48402 The value of a linear comb...
dflinc2 48403 Alternative definition of ...
lcoop 48404 A linear combination as op...
lcoval 48405 The value of a linear comb...
lincfsuppcl 48406 A linear combination of ve...
linccl 48407 A linear combination of ve...
lincval0 48408 The value of an empty line...
lincvalsng 48409 The linear combination ove...
lincvalsn 48410 The linear combination ove...
lincvalpr 48411 The linear combination ove...
lincval1 48412 The linear combination ove...
lcosn0 48413 Properties of a linear com...
lincvalsc0 48414 The linear combination whe...
lcoc0 48415 Properties of a linear com...
linc0scn0 48416 If a set contains the zero...
lincdifsn 48417 A vector is a linear combi...
linc1 48418 A vector is a linear combi...
lincellss 48419 A linear combination of a ...
lco0 48420 The set of empty linear co...
lcoel0 48421 The zero vector is always ...
lincsum 48422 The sum of two linear comb...
lincscm 48423 A linear combinations mult...
lincsumcl 48424 The sum of two linear comb...
lincscmcl 48425 The multiplication of a li...
lincsumscmcl 48426 The sum of a linear combin...
lincolss 48427 According to the statement...
ellcoellss 48428 Every linear combination o...
lcoss 48429 A set of vectors of a modu...
lspsslco 48430 Lemma for ~ lspeqlco . (C...
lcosslsp 48431 Lemma for ~ lspeqlco . (C...
lspeqlco 48432 Equivalence of a _span_ of...
rellininds 48436 The class defining the rel...
linindsv 48438 The classes of the module ...
islininds 48439 The property of being a li...
linindsi 48440 The implications of being ...
linindslinci 48441 The implications of being ...
islinindfis 48442 The property of being a li...
islinindfiss 48443 The property of being a li...
linindscl 48444 A linearly independent set...
lindepsnlininds 48445 A linearly dependent subse...
islindeps 48446 The property of being a li...
lincext1 48447 Property 1 of an extension...
lincext2 48448 Property 2 of an extension...
lincext3 48449 Property 3 of an extension...
lindslinindsimp1 48450 Implication 1 for ~ lindsl...
lindslinindimp2lem1 48451 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 48452 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 48453 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 48454 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 48455 Lemma 5 for ~ lindslininds...
lindslinindsimp2 48456 Implication 2 for ~ lindsl...
lindslininds 48457 Equivalence of definitions...
linds0 48458 The empty set is always a ...
el0ldep 48459 A set containing the zero ...
el0ldepsnzr 48460 A set containing the zero ...
lindsrng01 48461 Any subset of a module is ...
lindszr 48462 Any subset of a module ove...
snlindsntorlem 48463 Lemma for ~ snlindsntor . ...
snlindsntor 48464 A singleton is linearly in...
ldepsprlem 48465 Lemma for ~ ldepspr . (Co...
ldepspr 48466 If a vector is a scalar mu...
lincresunit3lem3 48467 Lemma 3 for ~ lincresunit3...
lincresunitlem1 48468 Lemma 1 for properties of ...
lincresunitlem2 48469 Lemma for properties of a ...
lincresunit1 48470 Property 1 of a specially ...
lincresunit2 48471 Property 2 of a specially ...
lincresunit3lem1 48472 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 48473 Lemma 2 for ~ lincresunit3...
lincresunit3 48474 Property 3 of a specially ...
lincreslvec3 48475 Property 3 of a specially ...
islindeps2 48476 Conditions for being a lin...
islininds2 48477 Implication of being a lin...
isldepslvec2 48478 Alternative definition of ...
lindssnlvec 48479 A singleton not containing...
lmod1lem1 48480 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 48481 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 48482 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 48483 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 48484 Lemma 5 for ~ lmod1 . (Co...
lmod1 48485 The (smallest) structure r...
lmod1zr 48486 The (smallest) structure r...
lmod1zrnlvec 48487 There is a (left) module (...
lmodn0 48488 Left modules exist. (Cont...
zlmodzxzequa 48489 Example of an equation wit...
zlmodzxznm 48490 Example of a linearly depe...
zlmodzxzldeplem 48491 A and B are not equal. (C...
zlmodzxzequap 48492 Example of an equation wit...
zlmodzxzldeplem1 48493 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 48494 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 48495 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 48496 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 48497 { A , B } is a linearly de...
ldepsnlinclem1 48498 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 48499 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 48500 The class of all (left) ve...
ldepsnlinc 48501 The reverse implication of...
ldepslinc 48502 For (left) vector spaces, ...
suppdm 48503 If the range of a function...
eluz2cnn0n1 48504 An integer greater than 1 ...
divge1b 48505 The ratio of a real number...
divgt1b 48506 The ratio of a real number...
ltsubaddb 48507 Equivalence for the "less ...
ltsubsubb 48508 Equivalence for the "less ...
ltsubadd2b 48509 Equivalence for the "less ...
divsub1dir 48510 Distribution of division o...
expnegico01 48511 An integer greater than 1 ...
elfzolborelfzop1 48512 An element of a half-open ...
pw2m1lepw2m1 48513 2 to the power of a positi...
zgtp1leeq 48514 If an integer is between a...
flsubz 48515 An integer can be moved in...
nn0onn0ex 48516 For each odd nonnegative i...
nn0enn0ex 48517 For each even nonnegative ...
nnennex 48518 For each even positive int...
nneop 48519 A positive integer is even...
nneom 48520 A positive integer is even...
nn0eo 48521 A nonnegative integer is e...
nnpw2even 48522 2 to the power of a positi...
zefldiv2 48523 The floor of an even integ...
zofldiv2 48524 The floor of an odd intege...
nn0ofldiv2 48525 The floor of an odd nonneg...
flnn0div2ge 48526 The floor of a positive in...
flnn0ohalf 48527 The floor of the half of a...
logcxp0 48528 Logarithm of a complex pow...
regt1loggt0 48529 The natural logarithm for ...
fdivval 48532 The quotient of two functi...
fdivmpt 48533 The quotient of two functi...
fdivmptf 48534 The quotient of two functi...
refdivmptf 48535 The quotient of two functi...
fdivpm 48536 The quotient of two functi...
refdivpm 48537 The quotient of two functi...
fdivmptfv 48538 The function value of a qu...
refdivmptfv 48539 The function value of a qu...
bigoval 48542 Set of functions of order ...
elbigofrcl 48543 Reverse closure of the "bi...
elbigo 48544 Properties of a function o...
elbigo2 48545 Properties of a function o...
elbigo2r 48546 Sufficient condition for a...
elbigof 48547 A function of order G(x) i...
elbigodm 48548 The domain of a function o...
elbigoimp 48549 The defining property of a...
elbigolo1 48550 A function (into the posit...
rege1logbrege0 48551 The general logarithm, wit...
rege1logbzge0 48552 The general logarithm, wit...
fllogbd 48553 A real number is between t...
relogbmulbexp 48554 The logarithm of the produ...
relogbdivb 48555 The logarithm of the quoti...
logbge0b 48556 The logarithm of a number ...
logblt1b 48557 The logarithm of a number ...
fldivexpfllog2 48558 The floor of a positive re...
nnlog2ge0lt1 48559 A positive integer is 1 if...
logbpw2m1 48560 The floor of the binary lo...
fllog2 48561 The floor of the binary lo...
blenval 48564 The binary length of an in...
blen0 48565 The binary length of 0. (...
blenn0 48566 The binary length of a "nu...
blenre 48567 The binary length of a pos...
blennn 48568 The binary length of a pos...
blennnelnn 48569 The binary length of a pos...
blennn0elnn 48570 The binary length of a non...
blenpw2 48571 The binary length of a pow...
blenpw2m1 48572 The binary length of a pow...
nnpw2blen 48573 A positive integer is betw...
nnpw2blenfzo 48574 A positive integer is betw...
nnpw2blenfzo2 48575 A positive integer is eith...
nnpw2pmod 48576 Every positive integer can...
blen1 48577 The binary length of 1. (...
blen2 48578 The binary length of 2. (...
nnpw2p 48579 Every positive integer can...
nnpw2pb 48580 A number is a positive int...
blen1b 48581 The binary length of a non...
blennnt2 48582 The binary length of a pos...
nnolog2flm1 48583 The floor of the binary lo...
blennn0em1 48584 The binary length of the h...
blennngt2o2 48585 The binary length of an od...
blengt1fldiv2p1 48586 The binary length of an in...
blennn0e2 48587 The binary length of an ev...
digfval 48590 Operation to obtain the ` ...
digval 48591 The ` K ` th digit of a no...
digvalnn0 48592 The ` K ` th digit of a no...
nn0digval 48593 The ` K ` th digit of a no...
dignn0fr 48594 The digits of the fraction...
dignn0ldlem 48595 Lemma for ~ dignnld . (Co...
dignnld 48596 The leading digits of a po...
dig2nn0ld 48597 The leading digits of a po...
dig2nn1st 48598 The first (relevant) digit...
dig0 48599 All digits of 0 are 0. (C...
digexp 48600 The ` K ` th digit of a po...
dig1 48601 All but one digits of 1 ar...
0dig1 48602 The ` 0 ` th digit of 1 is...
0dig2pr01 48603 The integers 0 and 1 corre...
dig2nn0 48604 A digit of a nonnegative i...
0dig2nn0e 48605 The last bit of an even in...
0dig2nn0o 48606 The last bit of an odd int...
dig2bits 48607 The ` K ` th digit of a no...
dignn0flhalflem1 48608 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 48609 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 48610 The digits of the half of ...
dignn0flhalf 48611 The digits of the rounded ...
nn0sumshdiglemA 48612 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 48613 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 48614 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 48615 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 48616 A nonnegative integer can ...
nn0mulfsum 48617 Trivial algorithm to calcu...
nn0mullong 48618 Standard algorithm (also k...
naryfval 48621 The set of the n-ary (endo...
naryfvalixp 48622 The set of the n-ary (endo...
naryfvalel 48623 An n-ary (endo)function on...
naryrcl 48624 Reverse closure for n-ary ...
naryfvalelfv 48625 The value of an n-ary (end...
naryfvalelwrdf 48626 An n-ary (endo)function on...
0aryfvalel 48627 A nullary (endo)function o...
0aryfvalelfv 48628 The value of a nullary (en...
1aryfvalel 48629 A unary (endo)function on ...
fv1arycl 48630 Closure of a unary (endo)f...
1arympt1 48631 A unary (endo)function in ...
1arympt1fv 48632 The value of a unary (endo...
1arymaptfv 48633 The value of the mapping o...
1arymaptf 48634 The mapping of unary (endo...
1arymaptf1 48635 The mapping of unary (endo...
1arymaptfo 48636 The mapping of unary (endo...
1arymaptf1o 48637 The mapping of unary (endo...
1aryenef 48638 The set of unary (endo)fun...
1aryenefmnd 48639 The set of unary (endo)fun...
2aryfvalel 48640 A binary (endo)function on...
fv2arycl 48641 Closure of a binary (endo)...
2arympt 48642 A binary (endo)function in...
2arymptfv 48643 The value of a binary (end...
2arymaptfv 48644 The value of the mapping o...
2arymaptf 48645 The mapping of binary (end...
2arymaptf1 48646 The mapping of binary (end...
2arymaptfo 48647 The mapping of binary (end...
2arymaptf1o 48648 The mapping of binary (end...
2aryenef 48649 The set of binary (endo)fu...
itcoval 48654 The value of the function ...
itcoval0 48655 A function iterated zero t...
itcoval1 48656 A function iterated once. ...
itcoval2 48657 A function iterated twice....
itcoval3 48658 A function iterated three ...
itcoval0mpt 48659 A mapping iterated zero ti...
itcovalsuc 48660 The value of the function ...
itcovalsucov 48661 The value of the function ...
itcovalendof 48662 The n-th iterate of an end...
itcovalpclem1 48663 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 48664 Lemma 2 for ~ itcovalpc : ...
itcovalpc 48665 The value of the function ...
itcovalt2lem2lem1 48666 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 48667 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 48668 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 48669 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 48670 The value of the function ...
ackvalsuc1mpt 48671 The Ackermann function at ...
ackvalsuc1 48672 The Ackermann function at ...
ackval0 48673 The Ackermann function at ...
ackval1 48674 The Ackermann function at ...
ackval2 48675 The Ackermann function at ...
ackval3 48676 The Ackermann function at ...
ackendofnn0 48677 The Ackermann function at ...
ackfnnn0 48678 The Ackermann function at ...
ackval0val 48679 The Ackermann function at ...
ackvalsuc0val 48680 The Ackermann function at ...
ackvalsucsucval 48681 The Ackermann function at ...
ackval0012 48682 The Ackermann function at ...
ackval1012 48683 The Ackermann function at ...
ackval2012 48684 The Ackermann function at ...
ackval3012 48685 The Ackermann function at ...
ackval40 48686 The Ackermann function at ...
ackval41a 48687 The Ackermann function at ...
ackval41 48688 The Ackermann function at ...
ackval42 48689 The Ackermann function at ...
ackval42a 48690 The Ackermann function at ...
ackval50 48691 The Ackermann function at ...
fv1prop 48692 The function value of unor...
fv2prop 48693 The function value of unor...
submuladdmuld 48694 Transformation of a sum of...
affinecomb1 48695 Combination of two real af...
affinecomb2 48696 Combination of two real af...
affineid 48697 Identity of an affine comb...
1subrec1sub 48698 Subtract the reciprocal of...
resum2sqcl 48699 The sum of two squares of ...
resum2sqgt0 48700 The sum of the square of a...
resum2sqrp 48701 The sum of the square of a...
resum2sqorgt0 48702 The sum of the square of t...
reorelicc 48703 Membership in and outside ...
rrx2pxel 48704 The x-coordinate of a poin...
rrx2pyel 48705 The y-coordinate of a poin...
prelrrx2 48706 An unordered pair of order...
prelrrx2b 48707 An unordered pair of order...
rrx2pnecoorneor 48708 If two different points ` ...
rrx2pnedifcoorneor 48709 If two different points ` ...
rrx2pnedifcoorneorr 48710 If two different points ` ...
rrx2xpref1o 48711 There is a bijection betwe...
rrx2xpreen 48712 The set of points in the t...
rrx2plord 48713 The lexicographical orderi...
rrx2plord1 48714 The lexicographical orderi...
rrx2plord2 48715 The lexicographical orderi...
rrx2plordisom 48716 The set of points in the t...
rrx2plordso 48717 The lexicographical orderi...
ehl2eudisval0 48718 The Euclidean distance of ...
ehl2eudis0lt 48719 An upper bound of the Eucl...
lines 48724 The lines passing through ...
line 48725 The line passing through t...
rrxlines 48726 Definition of lines passin...
rrxline 48727 The line passing through t...
rrxlinesc 48728 Definition of lines passin...
rrxlinec 48729 The line passing through t...
eenglngeehlnmlem1 48730 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 48731 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 48732 The line definition in the...
rrx2line 48733 The line passing through t...
rrx2vlinest 48734 The vertical line passing ...
rrx2linest 48735 The line passing through t...
rrx2linesl 48736 The line passing through t...
rrx2linest2 48737 The line passing through t...
elrrx2linest2 48738 The line passing through t...
spheres 48739 The spheres for given cent...
sphere 48740 A sphere with center ` X `...
rrxsphere 48741 The sphere with center ` M...
2sphere 48742 The sphere with center ` M...
2sphere0 48743 The sphere around the orig...
line2ylem 48744 Lemma for ~ line2y . This...
line2 48745 Example for a line ` G ` p...
line2xlem 48746 Lemma for ~ line2x . This...
line2x 48747 Example for a horizontal l...
line2y 48748 Example for a vertical lin...
itsclc0lem1 48749 Lemma for theorems about i...
itsclc0lem2 48750 Lemma for theorems about i...
itsclc0lem3 48751 Lemma for theorems about i...
itscnhlc0yqe 48752 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 48753 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 48754 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 48755 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 48756 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 48757 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 48758 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 48759 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 48760 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 48761 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 48762 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 48763 Lemma for ~ itsclc0 . Sol...
itsclc0 48764 The intersection points of...
itsclc0b 48765 The intersection points of...
itsclinecirc0 48766 The intersection points of...
itsclinecirc0b 48767 The intersection points of...
itsclinecirc0in 48768 The intersection points of...
itsclquadb 48769 Quadratic equation for the...
itsclquadeu 48770 Quadratic equation for the...
2itscplem1 48771 Lemma 1 for ~ 2itscp . (C...
2itscplem2 48772 Lemma 2 for ~ 2itscp . (C...
2itscplem3 48773 Lemma D for ~ 2itscp . (C...
2itscp 48774 A condition for a quadrati...
itscnhlinecirc02plem1 48775 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 48776 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 48777 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 48778 Intersection of a nonhoriz...
inlinecirc02plem 48779 Lemma for ~ inlinecirc02p ...
inlinecirc02p 48780 Intersection of a line wit...
inlinecirc02preu 48781 Intersection of a line wit...
pm4.71da 48782 Deduction converting a bic...
logic1 48783 Distribution of implicatio...
logic1a 48784 Variant of ~ logic1 . (Co...
logic2 48785 Variant of ~ logic1 . (Co...
pm5.32dav 48786 Distribution of implicatio...
pm5.32dra 48787 Reverse distribution of im...
exp12bd 48788 The import-export theorem ...
mpbiran3d 48789 Equivalence with a conjunc...
mpbiran4d 48790 Equivalence with a conjunc...
dtrucor3 48791 An example of how ~ ax-5 w...
ralbidb 48792 Formula-building rule for ...
ralbidc 48793 Formula-building rule for ...
r19.41dv 48794 A complex deduction form o...
rmotru 48795 Two ways of expressing "at...
reutru 48796 Two ways of expressing "ex...
reutruALT 48797 Alternate proof of ~ reutr...
reueqbidva 48798 Formula-building rule for ...
reuxfr1dd 48799 Transfer existential uniqu...
ssdisjd 48800 Subset preserves disjointn...
ssdisjdr 48801 Subset preserves disjointn...
disjdifb 48802 Relative complement is ant...
predisj 48803 Preimages of disjoint sets...
vsn 48804 The singleton of the unive...
mosn 48805 "At most one" element in a...
mo0 48806 "At most one" element in a...
mosssn 48807 "At most one" element in a...
mo0sn 48808 Two ways of expressing "at...
mosssn2 48809 Two ways of expressing "at...
unilbss 48810 Superclass of the greatest...
iuneq0 48811 An indexed union is empty ...
iineq0 48812 An indexed intersection is...
iunlub 48813 The indexed union is the t...
iinglb 48814 The indexed intersection i...
iuneqconst2 48815 Indexed union of identical...
iineqconst2 48816 Indexed intersection of id...
inpw 48817 Two ways of expressing a c...
opth1neg 48818 Two ordered pairs are not ...
opth2neg 48819 Two ordered pairs are not ...
brab2dd 48820 Expressing that two sets a...
brab2ddw 48821 Expressing that two sets a...
brab2ddw2 48822 Expressing that two sets a...
iinxp 48823 Indexed intersection of Ca...
intxp 48824 Intersection of Cartesian ...
coxp 48825 Composition with a Cartesi...
cosn 48826 Composition with an ordere...
cosni 48827 Composition with an ordere...
inisegn0a 48828 The inverse image of a sin...
dmrnxp 48829 A Cartesian product is the...
mof0 48830 There is at most one funct...
mof02 48831 A variant of ~ mof0 . (Co...
mof0ALT 48832 Alternate proof of ~ mof0 ...
eufsnlem 48833 There is exactly one funct...
eufsn 48834 There is exactly one funct...
eufsn2 48835 There is exactly one funct...
mofsn 48836 There is at most one funct...
mofsn2 48837 There is at most one funct...
mofsssn 48838 There is at most one funct...
mofmo 48839 There is at most one funct...
mofeu 48840 The uniqueness of a functi...
elfvne0 48841 If a function value has a ...
fdomne0 48842 A function with non-empty ...
f1sn2g 48843 A function that maps a sin...
f102g 48844 A function that maps the e...
f1mo 48845 A function that maps a set...
f002 48846 A function with an empty c...
map0cor 48847 A function exists iff an e...
ffvbr 48848 Relation with function val...
xpco2 48849 Composition of a Cartesian...
ovsng 48850 The operation value of a s...
ovsng2 48851 The operation value of a s...
ovsn 48852 The operation value of a s...
ovsn2 48853 The operation value of a s...
fvconstr 48854 Two ways of expressing ` A...
fvconstrn0 48855 Two ways of expressing ` A...
fvconstr2 48856 Two ways of expressing ` A...
ovmpt4d 48857 Deduction version of ~ ovm...
eqfnovd 48858 Deduction for equality of ...
fonex 48859 The domain of a surjection...
eloprab1st2nd 48860 Reconstruction of a nested...
fmpodg 48861 Domain and codomain of the...
fmpod 48862 Domain and codomain of the...
resinsnlem 48863 Lemma for ~ resinsnALT . ...
resinsn 48864 Restriction to the interse...
resinsnALT 48865 Restriction to the interse...
dftpos5 48866 Alternate definition of ` ...
dftpos6 48867 Alternate definition of ` ...
dmtposss 48868 The domain of ` tpos F ` i...
tposres0 48869 The transposition of a set...
tposresg 48870 The transposition restrict...
tposrescnv 48871 The transposition restrict...
tposres2 48872 The transposition restrict...
tposres3 48873 The transposition restrict...
tposres 48874 The transposition restrict...
tposresxp 48875 The transposition restrict...
tposf1o 48876 Condition of a bijective t...
tposid 48877 Swap an ordered pair. (Co...
tposidres 48878 Swap an ordered pair. (Co...
tposidf1o 48879 The swap function, or the ...
tposideq 48880 Two ways of expressing the...
tposideq2 48881 Two ways of expressing the...
ixpv 48882 Infinite Cartesian product...
fvconst0ci 48883 A constant function's valu...
fvconstdomi 48884 A constant function's valu...
f1omo 48885 There is at most one eleme...
f1omoOLD 48886 Obsolete version of ~ f1om...
f1omoALT 48887 There is at most one eleme...
iccin 48888 Intersection of two closed...
iccdisj2 48889 If the upper bound of one ...
iccdisj 48890 If the upper bound of one ...
slotresfo 48891 The condition of a structu...
mreuniss 48892 The union of a collection ...
clduni 48893 The union of closed sets i...
opncldeqv 48894 Conditions on open sets ar...
opndisj 48895 Two ways of saying that tw...
clddisj 48896 Two ways of saying that tw...
neircl 48897 Reverse closure of the nei...
opnneilem 48898 Lemma factoring out common...
opnneir 48899 If something is true for a...
opnneirv 48900 A variant of ~ opnneir wit...
opnneilv 48901 The converse of ~ opnneir ...
opnneil 48902 A variant of ~ opnneilv . ...
opnneieqv 48903 The equivalence between ne...
opnneieqvv 48904 The equivalence between ne...
restcls2lem 48905 A closed set in a subspace...
restcls2 48906 A closed set in a subspace...
restclsseplem 48907 Lemma for ~ restclssep . ...
restclssep 48908 Two disjoint closed sets i...
cnneiima 48909 Given a continuous functio...
iooii 48910 Open intervals are open se...
icccldii 48911 Closed intervals are close...
i0oii 48912 ` ( 0 [,) A ) ` is open in...
io1ii 48913 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 48914 Lemma for ~ sepnsepo . (C...
sepnsepolem2 48915 Open neighborhood and neig...
sepnsepo 48916 Open neighborhood and neig...
sepdisj 48917 Separated sets are disjoin...
seposep 48918 If two sets are separated ...
sepcsepo 48919 If two sets are separated ...
sepfsepc 48920 If two sets are separated ...
seppsepf 48921 If two sets are precisely ...
seppcld 48922 If two sets are precisely ...
isnrm4 48923 A topological space is nor...
dfnrm2 48924 A topological space is nor...
dfnrm3 48925 A topological space is nor...
iscnrm3lem1 48926 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 48927 Lemma for ~ iscnrm3 provin...
iscnrm3lem4 48928 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 48929 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 48930 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 48931 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 48932 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 48933 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 48934 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 48935 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 48936 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 48937 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 48938 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 48939 Lemma for ~ iscnrm3r . Di...
iscnrm3r 48940 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 48941 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 48942 Lemma for ~ iscnrm3l . If...
iscnrm3l 48943 Lemma for ~ iscnrm3 . Giv...
iscnrm3 48944 A completely normal topolo...
iscnrm3v 48945 A topology is completely n...
iscnrm4 48946 A completely normal topolo...
isprsd 48947 Property of being a preord...
lubeldm2 48948 Member of the domain of th...
glbeldm2 48949 Member of the domain of th...
lubeldm2d 48950 Member of the domain of th...
glbeldm2d 48951 Member of the domain of th...
lubsscl 48952 If a subset of ` S ` conta...
glbsscl 48953 If a subset of ` S ` conta...
lubprlem 48954 Lemma for ~ lubprdm and ~ ...
lubprdm 48955 The set of two comparable ...
lubpr 48956 The LUB of the set of two ...
glbprlem 48957 Lemma for ~ glbprdm and ~ ...
glbprdm 48958 The set of two comparable ...
glbpr 48959 The GLB of the set of two ...
joindm2 48960 The join of any two elemen...
joindm3 48961 The join of any two elemen...
meetdm2 48962 The meet of any two elemen...
meetdm3 48963 The meet of any two elemen...
posjidm 48964 Poset join is idempotent. ...
posmidm 48965 Poset meet is idempotent. ...
resiposbas 48966 Construct a poset ( ~ resi...
resipos 48967 A set equipped with an ord...
exbaspos 48968 There exists a poset for a...
exbasprs 48969 There exists a preordered ...
basresposfo 48970 The base function restrict...
basresprsfo 48971 The base function restrict...
posnex 48972 The class of posets is a p...
prsnex 48973 The class of preordered se...
toslat 48974 A toset is a lattice. (Co...
isclatd 48975 The predicate "is a comple...
intubeu 48976 Existential uniqueness of ...
unilbeu 48977 Existential uniqueness of ...
ipolublem 48978 Lemma for ~ ipolubdm and ~...
ipolubdm 48979 The domain of the LUB of t...
ipolub 48980 The LUB of the inclusion p...
ipoglblem 48981 Lemma for ~ ipoglbdm and ~...
ipoglbdm 48982 The domain of the GLB of t...
ipoglb 48983 The GLB of the inclusion p...
ipolub0 48984 The LUB of the empty set i...
ipolub00 48985 The LUB of the empty set i...
ipoglb0 48986 The GLB of the empty set i...
mrelatlubALT 48987 Least upper bounds in a Mo...
mrelatglbALT 48988 Greatest lower bounds in a...
mreclat 48989 A Moore space is a complet...
topclat 48990 A topology is a complete l...
toplatglb0 48991 The empty intersection in ...
toplatlub 48992 Least upper bounds in a to...
toplatglb 48993 Greatest lower bounds in a...
toplatjoin 48994 Joins in a topology are re...
toplatmeet 48995 Meets in a topology are re...
topdlat 48996 A topology is a distributi...
elmgpcntrd 48997 The center of a ring. (Co...
asclelbas 48998 Lifted scalars are in the ...
asclelbasALT 48999 Alternate proof of ~ ascle...
asclcntr 49000 The algebra scalar lifting...
asclcom 49001 Scalars are commutative af...
homf0 49002 The base is empty iff the ...
catprslem 49003 Lemma for ~ catprs . (Con...
catprs 49004 A preorder can be extracte...
catprs2 49005 A category equipped with t...
catprsc 49006 A construction of the preo...
catprsc2 49007 An alternate construction ...
endmndlem 49008 A diagonal hom-set in a ca...
oppccatb 49009 An opposite category is a ...
oppcmndclem 49010 Lemma for ~ oppcmndc . Ev...
oppcendc 49011 The opposite category of a...
oppcmndc 49012 The opposite category of a...
idmon 49013 An identity arrow, or an i...
idepi 49014 An identity arrow, or an i...
sectrcl 49015 Reverse closure for sectio...
sectrcl2 49016 Reverse closure for sectio...
invrcl 49017 Reverse closure for invers...
invrcl2 49018 Reverse closure for invers...
isinv2 49019 The property " ` F ` is an...
isisod 49020 The predicate "is an isomo...
upeu2lem 49021 Lemma for ~ upeu2 . There...
sectfn 49022 The function value of the ...
invfn 49023 The function value of the ...
isofnALT 49024 The function value of the ...
isofval2 49025 Function value of the func...
isorcl 49026 Reverse closure for isomor...
isorcl2 49027 Reverse closure for isomor...
isoval2 49028 The isomorphisms are the d...
sectpropdlem 49029 Lemma for ~ sectpropd . (...
sectpropd 49030 Two structures with the sa...
invpropdlem 49031 Lemma for ~ invpropd . (C...
invpropd 49032 Two structures with the sa...
isopropdlem 49033 Lemma for ~ isopropd . (C...
isopropd 49034 Two structures with the sa...
cicfn 49035 ` ~=c ` is a function on `...
cicrcl2 49036 Isomorphism implies the st...
oppccic 49037 Isomorphic objects are iso...
relcic 49038 The set of isomorphic obje...
cicerALT 49039 Isomorphism is an equivale...
cic1st2nd 49040 Reconstruction of a pair o...
cic1st2ndbr 49041 Rewrite the predicate of i...
cicpropdlem 49042 Lemma for ~ cicpropd . (C...
cicpropd 49043 Two structures with the sa...
oppccicb 49044 Isomorphic objects are iso...
oppcciceq 49045 The opposite category has ...
dmdm 49046 The double domain of a fun...
iinfssclem1 49047 Lemma for ~ iinfssc . (Co...
iinfssclem2 49048 Lemma for ~ iinfssc . (Co...
iinfssclem3 49049 Lemma for ~ iinfssc . (Co...
iinfssc 49050 Indexed intersection of su...
iinfsubc 49051 Indexed intersection of su...
iinfprg 49052 Indexed intersection of fu...
infsubc 49053 The intersection of two su...
infsubc2 49054 The intersection of two su...
infsubc2d 49055 The intersection of two su...
discsubclem 49056 Lemma for ~ discsubc . (C...
discsubc 49057 A discrete category, whose...
iinfconstbaslem 49058 Lemma for ~ iinfconstbas ....
iinfconstbas 49059 The discrete category is t...
nelsubclem 49060 Lemma for ~ nelsubc . (Co...
nelsubc 49061 An empty "hom-set" for non...
nelsubc2 49062 An empty "hom-set" for non...
nelsubc3lem 49063 Lemma for ~ nelsubc3 . (C...
nelsubc3 49064 Remark 4.2(2) of [Adamek] ...
ssccatid 49065 A category ` C ` restricte...
resccatlem 49066 Lemma for ~ resccat . (Co...
resccat 49067 A class ` C ` restricted b...
reldmfunc 49068 The domain of ` Func ` is ...
func1st2nd 49069 Rewrite the functor predic...
func1st 49070 Extract the first member o...
func2nd 49071 Extract the second member ...
funcrcl2 49072 Reverse closure for a func...
funcrcl3 49073 Reverse closure for a func...
funcf2lem 49074 A utility theorem for prov...
funcf2lem2 49075 A utility theorem for prov...
0funcglem 49076 Lemma for ~ 0funcg . (Con...
0funcg2 49077 The functor from the empty...
0funcg 49078 The functor from the empty...
0funclem 49079 Lemma for ~ 0funcALT . (C...
0func 49080 The functor from the empty...
0funcALT 49081 Alternate proof of ~ 0func...
func0g 49082 The source category of a f...
func0g2 49083 The source category of a f...
initc 49084 Sets with empty base are t...
cofu1st2nd 49085 Rewrite the functor compos...
rescofuf 49086 The restriction of functor...
cofu1a 49087 Value of the object part o...
cofu2a 49088 Value of the morphism part...
cofucla 49089 The composition of two fun...
funchomf 49090 Source categories of a fun...
idfurcl 49091 Reverse closure for an ide...
idfu1stf1o 49092 The identity functor/inclu...
idfu1stalem 49093 Lemma for ~ idfu1sta . (C...
idfu1sta 49094 Value of the object part o...
idfu1a 49095 Value of the object part o...
idfu2nda 49096 Value of the morphism part...
imasubclem1 49097 Lemma for ~ imasubc . (Co...
imasubclem2 49098 Lemma for ~ imasubc . (Co...
imasubclem3 49099 Lemma for ~ imasubc . (Co...
imaf1homlem 49100 Lemma for ~ imaf1hom and o...
imaf1hom 49101 The hom-set of an image of...
imaidfu2lem 49102 Lemma for ~ imaidfu2 . (C...
imaidfu 49103 The image of the identity ...
imaidfu2 49104 The image of the identity ...
cofid1a 49105 Express the object part of...
cofid2a 49106 Express the morphism part ...
cofid1 49107 Express the object part of...
cofid2 49108 Express the morphism part ...
cofidvala 49109 The property " ` F ` is a ...
cofidf2a 49110 If " ` F ` is a section of...
cofidf1a 49111 If " ` F ` is a section of...
cofidval 49112 The property " ` <. F , G ...
cofidf2 49113 If " ` F ` is a section of...
cofidf1 49114 If " ` <. F , G >. ` is a ...
oppffn 49117 ` oppFunc ` is a function ...
reldmoppf 49118 The domain of ` oppFunc ` ...
oppfvalg 49119 Value of the opposite func...
oppfrcllem 49120 Lemma for ~ oppfrcl . (Co...
oppfrcl 49121 If an opposite functor of ...
oppfrcl2 49122 If an opposite functor of ...
oppfrcl3 49123 If an opposite functor of ...
oppf1st2nd 49124 Rewrite the opposite funct...
2oppf 49125 The double opposite functo...
eloppf 49126 The pre-image of a non-emp...
eloppf2 49127 Both components of a pre-i...
oppfvallem 49128 Lemma for ~ oppfval . (Co...
oppfval 49129 Value of the opposite func...
oppfval2 49130 Value of the opposite func...
oppfval3 49131 Value of the opposite func...
oppf1 49132 Value of the object part o...
oppf2 49133 Value of the morphism part...
oppfoppc 49134 The opposite functor is a ...
oppfoppc2 49135 The opposite functor is a ...
funcoppc2 49136 A functor on opposite cate...
funcoppc4 49137 A functor on opposite cate...
funcoppc5 49138 A functor on opposite cate...
2oppffunc 49139 The opposite functor of an...
funcoppc3 49140 A functor on opposite cate...
oppff1 49141 The operation generating o...
oppff1o 49142 The operation generating o...
cofuoppf 49143 Composition of opposite fu...
imasubc 49144 An image of a full functor...
imasubc2 49145 An image of a full functor...
imassc 49146 An image of a functor sati...
imaid 49147 An image of a functor pres...
imaf1co 49148 An image of a functor whos...
imasubc3 49149 An image of a functor inje...
fthcomf 49150 Source categories of a fai...
idfth 49151 The inclusion functor is a...
idemb 49152 The inclusion functor is a...
idsubc 49153 The source category of an ...
idfullsubc 49154 The source category of an ...
cofidfth 49155 If " ` F ` is a section of...
fulloppf 49156 The opposite functor of a ...
fthoppf 49157 The opposite functor of a ...
ffthoppf 49158 The opposite functor of a ...
upciclem1 49159 Lemma for ~ upcic , ~ upeu...
upciclem2 49160 Lemma for ~ upciclem3 and ...
upciclem3 49161 Lemma for ~ upciclem4 . (...
upciclem4 49162 Lemma for ~ upcic and ~ up...
upcic 49163 A universal property defin...
upeu 49164 A universal property defin...
upeu2 49165 Generate new universal mor...
reldmup 49168 The domain of ` UP ` is a ...
upfval 49169 Function value of the clas...
upfval2 49170 Function value of the clas...
upfval3 49171 Function value of the clas...
isuplem 49172 Lemma for ~ isup and other...
isup 49173 The predicate "is a univer...
uppropd 49174 If two categories have the...
reldmup2 49175 The domain of ` ( D UP E )...
relup 49176 The set of universal pairs...
uprcl 49177 Reverse closure for the cl...
up1st2nd 49178 Rewrite the universal prop...
up1st2ndr 49179 Combine separated parts in...
up1st2ndb 49180 Combine/separate parts in ...
up1st2nd2 49181 Rewrite the universal prop...
uprcl2 49182 Reverse closure for the cl...
uprcl3 49183 Reverse closure for the cl...
uprcl4 49184 Reverse closure for the cl...
uprcl5 49185 Reverse closure for the cl...
uobrcl 49186 Reverse closure for univer...
isup2 49187 The universal property of ...
upeu3 49188 The universal pair ` <. X ...
upeu4 49189 Generate a new universal m...
uptposlem 49190 Lemma for ~ uptpos . (Con...
uptpos 49191 Rewrite the predicate of u...
oppcuprcl4 49192 Reverse closure for the cl...
oppcuprcl3 49193 Reverse closure for the cl...
oppcuprcl5 49194 Reverse closure for the cl...
oppcuprcl2 49195 Reverse closure for the cl...
uprcl2a 49196 Reverse closure for the cl...
oppfuprcl 49197 Reverse closure for the cl...
oppfuprcl2 49198 Reverse closure for the cl...
oppcup3lem 49199 Lemma for ~ oppcup3 . (Co...
oppcup 49200 The universal pair ` <. X ...
oppcup2 49201 The universal property for...
oppcup3 49202 The universal property for...
uptrlem1 49203 Lemma for ~ uptr . (Contr...
uptrlem2 49204 Lemma for ~ uptr . (Contr...
uptrlem3 49205 Lemma for ~ uptr . (Contr...
uptr 49206 Universal property and ful...
uptri 49207 Universal property and ful...
uptra 49208 Universal property and ful...
uptrar 49209 Universal property and ful...
uptrai 49210 Universal property and ful...
uobffth 49211 A fully faithful functor g...
uobeqw 49212 If a full functor (in fact...
uobeq 49213 If a full functor (in fact...
uptr2 49214 Universal property and ful...
uptr2a 49215 Universal property and ful...
isnatd 49216 Property of being a natura...
natrcl2 49217 Reverse closure for a natu...
natrcl3 49218 Reverse closure for a natu...
catbas 49219 The base of the category s...
cathomfval 49220 The hom-sets of the catego...
catcofval 49221 Composition of the categor...
natoppf 49222 A natural transformation i...
natoppf2 49223 A natural transformation i...
natoppfb 49224 A natural transformation i...
initoo2 49225 An initial object is an ob...
termoo2 49226 A terminal object is an ob...
zeroo2 49227 A zero object is an object...
oppcinito 49228 Initial objects are termin...
oppctermo 49229 Terminal objects are initi...
oppczeroo 49230 Zero objects are zero in t...
termoeu2 49231 Terminal objects are essen...
initopropdlemlem 49232 Lemma for ~ initopropdlem ...
initopropdlem 49233 Lemma for ~ initopropd . ...
termopropdlem 49234 Lemma for ~ termopropd . ...
zeroopropdlem 49235 Lemma for ~ zeroopropd . ...
initopropd 49236 Two structures with the sa...
termopropd 49237 Two structures with the sa...
zeroopropd 49238 Two structures with the sa...
reldmxpc 49239 The binary product of cate...
reldmxpcALT 49240 Alternate proof of ~ reldm...
elxpcbasex1 49241 A non-empty base set of th...
elxpcbasex1ALT 49242 Alternate proof of ~ elxpc...
elxpcbasex2 49243 A non-empty base set of th...
elxpcbasex2ALT 49244 Alternate proof of ~ elxpc...
xpcfucbas 49245 The base set of the produc...
xpcfuchomfval 49246 Set of morphisms of the bi...
xpcfuchom 49247 Set of morphisms of the bi...
xpcfuchom2 49248 Value of the set of morphi...
xpcfucco2 49249 Value of composition in th...
xpcfuccocl 49250 The composition of two nat...
xpcfucco3 49251 Value of composition in th...
dfswapf2 49254 Alternate definition of ` ...
swapfval 49255 Value of the swap functor....
swapfelvv 49256 A swap functor is an order...
swapf2fvala 49257 The morphism part of the s...
swapf2fval 49258 The morphism part of the s...
swapf1vala 49259 The object part of the swa...
swapf1val 49260 The object part of the swa...
swapf2fn 49261 The morphism part of the s...
swapf1a 49262 The object part of the swa...
swapf2vala 49263 The morphism part of the s...
swapf2a 49264 The morphism part of the s...
swapf1 49265 The object part of the swa...
swapf2val 49266 The morphism part of the s...
swapf2 49267 The morphism part of the s...
swapf1f1o 49268 The object part of the swa...
swapf2f1o 49269 The morphism part of the s...
swapf2f1oa 49270 The morphism part of the s...
swapf2f1oaALT 49271 Alternate proof of ~ swapf...
swapfid 49272 Each identity morphism in ...
swapfida 49273 Each identity morphism in ...
swapfcoa 49274 Composition in the source ...
swapffunc 49275 The swap functor is a func...
swapfffth 49276 The swap functor is a full...
swapffunca 49277 The swap functor is a func...
swapfiso 49278 The swap functor is an iso...
swapciso 49279 The product category is ca...
oppc1stflem 49280 A utility theorem for prov...
oppc1stf 49281 The opposite functor of th...
oppc2ndf 49282 The opposite functor of th...
1stfpropd 49283 If two categories have the...
2ndfpropd 49284 If two categories have the...
diagpropd 49285 If two categories have the...
cofuswapfcl 49286 The bifunctor pre-composed...
cofuswapf1 49287 The object part of a bifun...
cofuswapf2 49288 The morphism part of a bif...
tposcurf1cl 49289 The partially evaluated tr...
tposcurf11 49290 Value of the double evalua...
tposcurf12 49291 The partially evaluated tr...
tposcurf1 49292 Value of the object part o...
tposcurf2 49293 Value of the transposed cu...
tposcurf2val 49294 Value of a component of th...
tposcurf2cl 49295 The transposed curry funct...
tposcurfcl 49296 The transposed curry funct...
diag1 49297 The constant functor of ` ...
diag1a 49298 The constant functor of ` ...
diag1f1lem 49299 The object part of the dia...
diag1f1 49300 The object part of the dia...
diag2f1lem 49301 Lemma for ~ diag2f1 . The...
diag2f1 49302 If ` B ` is non-empty, the...
fucofulem1 49303 Lemma for proving functor ...
fucofulem2 49304 Lemma for proving functor ...
fuco2el 49305 Equivalence of product fun...
fuco2eld 49306 Equivalence of product fun...
fuco2eld2 49307 Equivalence of product fun...
fuco2eld3 49308 Equivalence of product fun...
fucofvalg 49311 Value of the function givi...
fucofval 49312 Value of the function givi...
fucoelvv 49313 A functor composition bifu...
fuco1 49314 The object part of the fun...
fucof1 49315 The object part of the fun...
fuco2 49316 The morphism part of the f...
fucofn2 49317 The morphism part of the f...
fucofvalne 49318 Value of the function givi...
fuco11 49319 The object part of the fun...
fuco11cl 49320 The object part of the fun...
fuco11a 49321 The object part of the fun...
fuco112 49322 The object part of the fun...
fuco111 49323 The object part of the fun...
fuco111x 49324 The object part of the fun...
fuco112x 49325 The object part of the fun...
fuco112xa 49326 The object part of the fun...
fuco11id 49327 The identity morphism of t...
fuco11idx 49328 The identity morphism of t...
fuco21 49329 The morphism part of the f...
fuco11b 49330 The object part of the fun...
fuco11bALT 49331 Alternate proof of ~ fuco1...
fuco22 49332 The morphism part of the f...
fucofn22 49333 The morphism part of the f...
fuco23 49334 The morphism part of the f...
fuco22natlem1 49335 Lemma for ~ fuco22nat . T...
fuco22natlem2 49336 Lemma for ~ fuco22nat . T...
fuco22natlem3 49337 Combine ~ fuco22natlem2 wi...
fuco22natlem 49338 The composed natural trans...
fuco22nat 49339 The composed natural trans...
fucof21 49340 The morphism part of the f...
fucoid 49341 Each identity morphism in ...
fucoid2 49342 Each identity morphism in ...
fuco22a 49343 The morphism part of the f...
fuco23alem 49344 The naturality property ( ...
fuco23a 49345 The morphism part of the f...
fucocolem1 49346 Lemma for ~ fucoco . Asso...
fucocolem2 49347 Lemma for ~ fucoco . The ...
fucocolem3 49348 Lemma for ~ fucoco . The ...
fucocolem4 49349 Lemma for ~ fucoco . The ...
fucoco 49350 Composition in the source ...
fucoco2 49351 Composition in the source ...
fucofunc 49352 The functor composition bi...
fucofunca 49353 The functor composition bi...
fucolid 49354 Post-compose a natural tra...
fucorid 49355 Pre-composing a natural tr...
fucorid2 49356 Pre-composing a natural tr...
postcofval 49357 Value of the post-composit...
postcofcl 49358 The post-composition funct...
precofvallem 49359 Lemma for ~ precofval to e...
precofval 49360 Value of the pre-compositi...
precofvalALT 49361 Alternate proof of ~ preco...
precofval2 49362 Value of the pre-compositi...
precofcl 49363 The pre-composition functo...
precofval3 49364 Value of the pre-compositi...
precoffunc 49365 The pre-composition functo...
reldmprcof 49368 The domain of ` -o.F ` is ...
prcofvalg 49369 Value of the pre-compositi...
prcofvala 49370 Value of the pre-compositi...
prcofval 49371 Value of the pre-compositi...
prcofpropd 49372 If the categories have the...
prcofelvv 49373 The pre-composition functo...
reldmprcof1 49374 The domain of the object p...
reldmprcof2 49375 The domain of the morphism...
prcoftposcurfuco 49376 The pre-composition functo...
prcoftposcurfucoa 49377 The pre-composition functo...
prcoffunc 49378 The pre-composition functo...
prcoffunca 49379 The pre-composition functo...
prcoffunca2 49380 The pre-composition functo...
prcof1 49381 The object part of the pre...
prcof2a 49382 The morphism part of the p...
prcof2 49383 The morphism part of the p...
prcof21a 49384 The morphism part of the p...
prcof22a 49385 The morphism part of the p...
prcofdiag1 49386 A constant functor pre-com...
prcofdiag 49387 A diagonal functor post-co...
catcrcl 49388 Reverse closure for the ca...
catcrcl2 49389 Reverse closure for the ca...
elcatchom 49390 A morphism of the category...
catcsect 49391 The property " ` F ` is a ...
catcinv 49392 The property " ` F ` is an...
catcisoi 49393 A functor is an isomorphis...
uobeq2 49394 If a full functor (in fact...
uobeq3 49395 An isomorphism between cat...
opf11 49396 The object part of the op ...
opf12 49397 The object part of the op ...
opf2fval 49398 The morphism part of the o...
opf2 49399 The morphism part of the o...
fucoppclem 49400 Lemma for ~ fucoppc . (Co...
fucoppcid 49401 The opposite category of f...
fucoppcco 49402 The opposite category of f...
fucoppc 49403 The isomorphism from the o...
fucoppcffth 49404 A fully faithful functor f...
fucoppcfunc 49405 A functor from the opposit...
fucoppccic 49406 The opposite category of f...
oppfdiag1 49407 A constant functor for opp...
oppfdiag1a 49408 A constant functor for opp...
oppfdiag 49409 A diagonal functor for opp...
isthinc 49412 The predicate "is a thin c...
isthinc2 49413 A thin category is a categ...
isthinc3 49414 A thin category is a categ...
thincc 49415 A thin category is a categ...
thinccd 49416 A thin category is a categ...
thincssc 49417 A thin category is a categ...
isthincd2lem1 49418 Lemma for ~ isthincd2 and ...
thincmo2 49419 Morphisms in the same hom-...
thinchom 49420 A non-empty hom-set of a t...
thincmo 49421 There is at most one morph...
thincmoALT 49422 Alternate proof of ~ thinc...
thincmod 49423 At most one morphism in ea...
thincn0eu 49424 In a thin category, a hom-...
thincid 49425 In a thin category, a morp...
thincmon 49426 In a thin category, all mo...
thincepi 49427 In a thin category, all mo...
isthincd2lem2 49428 Lemma for ~ isthincd2 . (...
isthincd 49429 The predicate "is a thin c...
isthincd2 49430 The predicate " ` C ` is a...
oppcthin 49431 The opposite category of a...
oppcthinco 49432 If the opposite category o...
oppcthinendc 49433 The opposite category of a...
oppcthinendcALT 49434 Alternate proof of ~ oppct...
thincpropd 49435 Two structures with the sa...
subthinc 49436 A subcategory of a thin ca...
functhinclem1 49437 Lemma for ~ functhinc . G...
functhinclem2 49438 Lemma for ~ functhinc . (...
functhinclem3 49439 Lemma for ~ functhinc . T...
functhinclem4 49440 Lemma for ~ functhinc . O...
functhinc 49441 A functor to a thin catego...
functhincfun 49442 A functor to a thin catego...
fullthinc 49443 A functor to a thin catego...
fullthinc2 49444 A full functor to a thin c...
thincfth 49445 A functor from a thin cate...
thincciso 49446 Two thin categories are is...
thinccisod 49447 Two thin categories are is...
thincciso2 49448 Categories isomorphic to a...
thincciso3 49449 Categories isomorphic to a...
thincciso4 49450 Two isomorphic categories ...
0thincg 49451 Any structure with an empt...
0thinc 49452 The empty category (see ~ ...
indcthing 49453 An indiscrete category, i....
discthing 49454 A discrete category, i.e.,...
indthinc 49455 An indiscrete category in ...
indthincALT 49456 An alternate proof of ~ in...
prsthinc 49457 Preordered sets as categor...
setcthin 49458 A category of sets all of ...
setc2othin 49459 The category ` ( SetCat ``...
thincsect 49460 In a thin category, one mo...
thincsect2 49461 In a thin category, ` F ` ...
thincinv 49462 In a thin category, ` F ` ...
thinciso 49463 In a thin category, ` F : ...
thinccic 49464 In a thin category, two ob...
istermc 49467 The predicate "is a termin...
istermc2 49468 The predicate "is a termin...
istermc3 49469 The predicate "is a termin...
termcthin 49470 A terminal category is a t...
termcthind 49471 A terminal category is a t...
termccd 49472 A terminal category is a c...
termcbas 49473 The base of a terminal cat...
termco 49474 The object of a terminal c...
termcbas2 49475 The base of a terminal cat...
termcbasmo 49476 Two objects in a terminal ...
termchomn0 49477 All hom-sets of a terminal...
termchommo 49478 All morphisms of a termina...
termcid 49479 The morphism of a terminal...
termcid2 49480 The morphism of a terminal...
termchom 49481 The hom-set of a terminal ...
termchom2 49482 The hom-set of a terminal ...
setcsnterm 49483 The category of one set, e...
setc1oterm 49484 The category ` ( SetCat ``...
setc1obas 49485 The base of the trivial ca...
setc1ohomfval 49486 Set of morphisms of the tr...
setc1ocofval 49487 Composition in the trivial...
setc1oid 49488 The identity morphism of t...
funcsetc1ocl 49489 The functor to the trivial...
funcsetc1o 49490 Value of the functor to th...
isinito2lem 49491 The predicate "is an initi...
isinito2 49492 The predicate "is an initi...
isinito3 49493 The predicate "is an initi...
dfinito4 49494 An alternate definition of...
dftermo4 49495 An alternate definition of...
termcpropd 49496 Two structures with the sa...
oppctermhom 49497 The opposite category of a...
oppctermco 49498 The opposite category of a...
oppcterm 49499 The opposite category of a...
functermclem 49500 Lemma for ~ functermc . (...
functermc 49501 Functor to a terminal cate...
functermc2 49502 Functor to a terminal cate...
functermceu 49503 There exists a unique func...
fulltermc 49504 A functor to a terminal ca...
fulltermc2 49505 Given a full functor to a ...
termcterm 49506 A terminal category is a t...
termcterm2 49507 A terminal object of the c...
termcterm3 49508 In the category of small c...
termcciso 49509 A category is isomorphic t...
termccisoeu 49510 The isomorphism between te...
termc2 49511 If there exists a unique f...
termc 49512 Alternate definition of ` ...
dftermc2 49513 Alternate definition of ` ...
eufunclem 49514 If there exists a unique f...
eufunc 49515 If there exists a unique f...
idfudiag1lem 49516 Lemma for ~ idfudiag1bas a...
idfudiag1bas 49517 If the identity functor of...
idfudiag1 49518 If the identity functor of...
euendfunc 49519 If there exists a unique e...
euendfunc2 49520 If there exists a unique e...
termcarweu 49521 There exists a unique disj...
arweuthinc 49522 If a structure has a uniqu...
arweutermc 49523 If a structure has a uniqu...
dftermc3 49524 Alternate definition of ` ...
termcfuncval 49525 The value of a functor fro...
diag1f1olem 49526 To any functor from a term...
diag1f1o 49527 The object part of the dia...
termcnatval 49528 Value of natural transform...
diag2f1olem 49529 Lemma for ~ diag2f1o . (C...
diag2f1o 49530 If ` D ` is terminal, the ...
diagffth 49531 The diagonal functor is a ...
diagciso 49532 The diagonal functor is an...
diagcic 49533 Any category ` C ` is isom...
funcsn 49534 The category of one functo...
fucterm 49535 The category of functors t...
0fucterm 49536 The category of functors f...
termfucterm 49537 All functors between two t...
cofuterm 49538 Post-compose with a functo...
uobeqterm 49539 Universal objects and term...
isinito4 49540 The predicate "is an initi...
isinito4a 49541 The predicate "is an initi...
prstcval 49544 Lemma for ~ prstcnidlem an...
prstcnidlem 49545 Lemma for ~ prstcnid and ~...
prstcnid 49546 Components other than ` Ho...
prstcbas 49547 The base set is unchanged....
prstcleval 49548 Value of the less-than-or-...
prstcle 49549 Value of the less-than-or-...
prstcocval 49550 Orthocomplementation is un...
prstcoc 49551 Orthocomplementation is un...
prstchomval 49552 Hom-sets of the constructe...
prstcprs 49553 The category is a preorder...
prstcthin 49554 The preordered set is equi...
prstchom 49555 Hom-sets of the constructe...
prstchom2 49556 Hom-sets of the constructe...
prstchom2ALT 49557 Hom-sets of the constructe...
oduoppcbas 49558 The dual of a preordered s...
oduoppcciso 49559 The dual of a preordered s...
postcpos 49560 The converted category is ...
postcposALT 49561 Alternate proof of ~ postc...
postc 49562 The converted category is ...
discsntermlem 49563 A singlegon is an element ...
basrestermcfolem 49564 An element of the class of...
discbas 49565 A discrete category (a cat...
discthin 49566 A discrete category (a cat...
discsnterm 49567 A discrete category (a cat...
basrestermcfo 49568 The base function restrict...
termcnex 49569 The class of all terminal ...
mndtcval 49572 Value of the category buil...
mndtcbasval 49573 The base set of the catego...
mndtcbas 49574 The category built from a ...
mndtcob 49575 Lemma for ~ mndtchom and ~...
mndtcbas2 49576 Two objects in a category ...
mndtchom 49577 The only hom-set of the ca...
mndtcco 49578 The composition of the cat...
mndtcco2 49579 The composition of the cat...
mndtccatid 49580 Lemma for ~ mndtccat and ~...
mndtccat 49581 The function value is a ca...
mndtcid 49582 The identity morphism, or ...
oppgoppchom 49583 The converted opposite mon...
oppgoppcco 49584 The converted opposite mon...
oppgoppcid 49585 The converted opposite mon...
grptcmon 49586 All morphisms in a categor...
grptcepi 49587 All morphisms in a categor...
2arwcatlem1 49588 Lemma for ~ 2arwcat . (Co...
2arwcatlem2 49589 Lemma for ~ 2arwcat . (Co...
2arwcatlem3 49590 Lemma for ~ 2arwcat . (Co...
2arwcatlem4 49591 Lemma for ~ 2arwcat . (Co...
2arwcatlem5 49592 Lemma for ~ 2arwcat . (Co...
2arwcat 49593 The condition for a struct...
incat 49594 Constructing a category wi...
setc1onsubc 49595 Construct a category with ...
cnelsubclem 49596 Lemma for ~ cnelsubc . (C...
cnelsubc 49597 Remark 4.2(2) of [Adamek] ...
lanfn 49602 ` Lan ` is a function on `...
ranfn 49603 ` Ran ` is a function on `...
reldmlan 49604 The domain of ` Lan ` is a...
reldmran 49605 The domain of ` Ran ` is a...
lanfval 49606 Value of the function gene...
ranfval 49607 Value of the function gene...
lanpropd 49608 If the categories have the...
ranpropd 49609 If the categories have the...
reldmlan2 49610 The domain of ` ( P Lan E ...
reldmran2 49611 The domain of ` ( P Ran E ...
lanval 49612 Value of the set of left K...
ranval 49613 Value of the set of right ...
lanrcl 49614 Reverse closure for left K...
ranrcl 49615 Reverse closure for right ...
rellan 49616 The set of left Kan extens...
relran 49617 The set of right Kan exten...
islan 49618 A left Kan extension is a ...
islan2 49619 A left Kan extension is a ...
lanval2 49620 The set of left Kan extens...
isran 49621 A right Kan extension is a...
isran2 49622 A right Kan extension is a...
ranval2 49623 The set of right Kan exten...
ranval3 49624 The set of right Kan exten...
lanrcl2 49625 Reverse closure for left K...
lanrcl3 49626 Reverse closure for left K...
lanrcl4 49627 The first component of a l...
lanrcl5 49628 The second component of a ...
ranrcl2 49629 Reverse closure for right ...
ranrcl3 49630 Reverse closure for right ...
ranrcl4lem 49631 Lemma for ~ ranrcl4 and ~ ...
ranrcl4 49632 The first component of a r...
ranrcl5 49633 The second component of a ...
lanup 49634 The universal property of ...
ranup 49635 The universal property of ...
reldmlmd 49640 The domain of ` Limit ` is...
reldmcmd 49641 The domain of ` Colimit ` ...
lmdfval 49642 Function value of ` Limit ...
cmdfval 49643 Function value of ` Colimi...
lmdrcl 49644 Reverse closure for a limi...
cmdrcl 49645 Reverse closure for a coli...
reldmlmd2 49646 The domain of ` ( C Limit ...
reldmcmd2 49647 The domain of ` ( C Colimi...
lmdfval2 49648 The set of limits of a dia...
cmdfval2 49649 The set of colimits of a d...
lmdpropd 49650 If the categories have the...
cmdpropd 49651 If the categories have the...
rellmd 49652 The set of limits of a dia...
relcmd 49653 The set of colimits of a d...
concl 49654 A natural transformation f...
coccl 49655 A natural transformation t...
concom 49656 A cone to a diagram commut...
coccom 49657 A co-cone to a diagram com...
islmd 49658 The universal property of ...
iscmd 49659 The universal property of ...
lmddu 49660 The duality of limits and ...
cmddu 49661 The duality of limits and ...
initocmd 49662 Initial objects are the ob...
termolmd 49663 Terminal objects are the o...
lmdran 49664 To each limit of a diagram...
cmdlan 49665 To each colimit of a diagr...
nfintd 49666 Bound-variable hypothesis ...
nfiund 49667 Bound-variable hypothesis ...
nfiundg 49668 Bound-variable hypothesis ...
iunord 49669 The indexed union of a col...
iunordi 49670 The indexed union of a col...
spd 49671 Specialization deduction, ...
spcdvw 49672 A version of ~ spcdv where...
tfis2d 49673 Transfinite Induction Sche...
bnd2d 49674 Deduction form of ~ bnd2 ....
dffun3f 49675 Alternate definition of fu...
setrecseq 49678 Equality theorem for set r...
nfsetrecs 49679 Bound-variable hypothesis ...
setrec1lem1 49680 Lemma for ~ setrec1 . Thi...
setrec1lem2 49681 Lemma for ~ setrec1 . If ...
setrec1lem3 49682 Lemma for ~ setrec1 . If ...
setrec1lem4 49683 Lemma for ~ setrec1 . If ...
setrec1 49684 This is the first of two f...
setrec2fun 49685 This is the second of two ...
setrec2lem1 49686 Lemma for ~ setrec2 . The...
setrec2lem2 49687 Lemma for ~ setrec2 . The...
setrec2 49688 This is the second of two ...
setrec2v 49689 Version of ~ setrec2 with ...
setrec2mpt 49690 Version of ~ setrec2 where...
setis 49691 Version of ~ setrec2 expre...
elsetrecslem 49692 Lemma for ~ elsetrecs . A...
elsetrecs 49693 A set ` A ` is an element ...
setrecsss 49694 The ` setrecs ` operator r...
setrecsres 49695 A recursively generated cl...
vsetrec 49696 Construct ` _V ` using set...
0setrec 49697 If a function sends the em...
onsetreclem1 49698 Lemma for ~ onsetrec . (C...
onsetreclem2 49699 Lemma for ~ onsetrec . (C...
onsetreclem3 49700 Lemma for ~ onsetrec . (C...
onsetrec 49701 Construct ` On ` using set...
elpglem1 49704 Lemma for ~ elpg . (Contr...
elpglem2 49705 Lemma for ~ elpg . (Contr...
elpglem3 49706 Lemma for ~ elpg . (Contr...
elpg 49707 Membership in the class of...
pgindlem 49708 Lemma for ~ pgind . (Cont...
pgindnf 49709 Version of ~ pgind with ex...
pgind 49710 Induction on partizan game...
sbidd 49711 An identity theorem for su...
sbidd-misc 49712 An identity theorem for su...
gte-lte 49717 Simple relationship betwee...
gt-lt 49718 Simple relationship betwee...
gte-lteh 49719 Relationship between ` <_ ...
gt-lth 49720 Relationship between ` < `...
ex-gt 49721 Simple example of ` > ` , ...
ex-gte 49722 Simple example of ` >_ ` ,...
sinhval-named 49729 Value of the named sinh fu...
coshval-named 49730 Value of the named cosh fu...
tanhval-named 49731 Value of the named tanh fu...
sinh-conventional 49732 Conventional definition of...
sinhpcosh 49733 Prove that ` ( sinh `` A )...
secval 49740 Value of the secant functi...
cscval 49741 Value of the cosecant func...
cotval 49742 Value of the cotangent fun...
seccl 49743 The closure of the secant ...
csccl 49744 The closure of the cosecan...
cotcl 49745 The closure of the cotange...
reseccl 49746 The closure of the secant ...
recsccl 49747 The closure of the cosecan...
recotcl 49748 The closure of the cotange...
recsec 49749 The reciprocal of secant i...
reccsc 49750 The reciprocal of cosecant...
reccot 49751 The reciprocal of cotangen...
rectan 49752 The reciprocal of tangent ...
sec0 49753 The value of the secant fu...
onetansqsecsq 49754 Prove the tangent squared ...
cotsqcscsq 49755 Prove the tangent squared ...
ifnmfalse 49756 If A is not a member of B,...
logb2aval 49757 Define the value of the ` ...
mvlraddi 49764 Move the right term in a s...
assraddsubi 49765 Associate RHS addition-sub...
joinlmuladdmuli 49766 Join AB+CB into (A+C) on L...
joinlmulsubmuld 49767 Join AB-CB into (A-C) on L...
joinlmulsubmuli 49768 Join AB-CB into (A-C) on L...
mvlrmuld 49769 Move the right term in a p...
mvlrmuli 49770 Move the right term in a p...
i2linesi 49771 Solve for the intersection...
i2linesd 49772 Solve for the intersection...
alimp-surprise 49773 Demonstrate that when usin...
alimp-no-surprise 49774 There is no "surprise" in ...
empty-surprise 49775 Demonstrate that when usin...
empty-surprise2 49776 "Prove" that false is true...
eximp-surprise 49777 Show what implication insi...
eximp-surprise2 49778 Show that "there exists" w...
alsconv 49783 There is an equivalence be...
alsi1d 49784 Deduction rule: Given "al...
alsi2d 49785 Deduction rule: Given "al...
alsc1d 49786 Deduction rule: Given "al...
alsc2d 49787 Deduction rule: Given "al...
alscn0d 49788 Deduction rule: Given "al...
alsi-no-surprise 49789 Demonstrate that there is ...
5m4e1 49790 Prove that 5 - 4 = 1. (Co...
2p2ne5 49791 Prove that ` 2 + 2 =/= 5 `...
resolution 49792 Resolution rule. This is ...
testable 49793 In classical logic all wff...
aacllem 49794 Lemma for other theorems a...
amgmwlem 49795 Weighted version of ~ amgm...
amgmlemALT 49796 Alternate proof of ~ amgml...
amgmw2d 49797 Weighted arithmetic-geomet...
young2d 49798 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator